

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 379 806 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 10.04.1996 Bulletin 1996/15
- (51) Int. Cl.⁶: **C07D 239/48**, C07D 401/04, C07D 403/04, A61K 31/505
- (21) Application number: 89313595.4
- (22) Date of filing: 27.12.1989
- (54) Pyrimidines and their pharmaceutical acceptable salts, and their use as medicines

Pyrimidine und deren pharmazeutisch brauchbare Salze und deren Verwendung als Arzneimittel Pyrimidines et leurs sels acceptables en pharmacie, et leur utilisation comme médicaments

- (84) Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- (30) Priority: 29.12.1988 JP 333670/88 23.02.1989 JP 41728/89 23.02.1989 JP 41729/89
- (43) Date of publication of application: 01.08.1990 Bulletin 1990/31
- (60) Divisional application: 94105018.9
- (73) Proprietors:
 - MITSUI PETROCHEMICAL INDUSTRIES, LTD. Tokyo 100 (JP)
 - · MITSUI PHARMACEUTICALS, INC. Tokyo 103 (JP)
- (72) Inventors:
 - · Tomino, Ikuo Ohtake-shi Hiroshima-ken (JP)
 - · Takesue, Mitsuyuki Kuga-gun Yamaguchi-ken (JP)
 - Kihara, Noriaki Iwakuni-shi Yamaguchi-ken (JP)

- Kitahara, Takumi Ohtake-shi Hiroshima-ken (JP)
- Awaya, Akira Yokohama-shi Kanagawa-ken (JP)
- Horikomi, Kazutoshi Mobara-shi Chiba-ken (JP)
- Sasaki, Tadavuki Mobara-shi Chiba-ken (JP)
- Mizuchi, Akira Mobara-shi Chiba-ken (JP)
- (74) Representative: Cresswell, Thomas Anthony et al J.A. KEMP & CO. 14 South Square Gray's Inn London WC1R 5LX (GB)
- (56) References cited:

EP-A- 0 192 783

EP-A- 0 257 102

FR-A- 2 539 414

- PATENT ABSTRACTS OF JAPAN, vol. 11, no. 282 (C-446)[2729], 11 September 1987
- **JOURNAL OF THE CHEMICAL SOCIETY, 1965;** pp. 755-761

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

This invention relates to novel pyrimidines or their pharmaceutically acceptable salts, and to novel therapeutic compositions for use in the treatment of neurological diseases of the peripheral and central nervous systems of animals containing the above compounds as active ingredients.

Japanese Patent Publication No. 23,394/1971 discloses that aminopyrimidines represented by the following formula

15

20

5

10

wherein A represents an alkylene group having up to 16 carbon atoms, or a lower alkylene group substituted by an amino group or a C_{2-5} acylamino group, M represents H, Na, K, NH₄, Mg, Ca or an organic basic ammonium salt, and n is a value equal to the atomic valency of M,

have interesting therapeutic activity, particularly as an anti-melanchoric agent and psychoanaleptic agent in the field of psychosis.

Japanese Patent Publication No. 22044/1976 discloses that dichloro-lower aliphatic carboxylic acid salts of 2-isopropylaminopyrimidine, such as 2-isopropylaminopyrimidine dichloroacetate, are useful as a therapeutic agent for a neurological disease.

Japanese Laid-Open Patent Publication No. 100477/1977 (Patent Publication No. 28548/1984) discloses that 2-isopropylaminopyrimidine phosphate is useful as a therapeutic agent for a neurological disease.

Japanese Patent Publication No. 157575/1979 discloses a process for producing 2-chloropyrimidine in a high yield. A working example in this patent publication describes the preparation of 2-chloropyrimidine in a yield of 69 %.

Japanese Laid-Open Patent Publication No. 393/1980 discloses a process for producing 2-isopropylaminopyrimidine in a high yield. A working example of this patent publication describes the preparation of 2-isopropylaminopyrimidine in a yield of 60 %.

Japanese Laid-Open Patent Publication No. 122768/1980 discloses that a hydroxy derivative of 2-isopropylaminopyrimidine represented by the following formula

35

30

$$A^{5} \xrightarrow{N}_{N}^{N} NH-CH \xrightarrow{CH_{3}}_{CH_{3}}^{CH_{3}}$$

40

wherein A⁴, A⁵ and A⁶ each represent H or OH, and at least one of them represents OH, is useful in the field of nerve regeneration and for treatment of myodystrophy.

Japanese Laid-Open Patent Publication No. 145670/1980 discloses that 2-isopropylaminohalogenopyrimidines represented by the following formula

50

wherein A_4 ', A_5 ' and A_6 ' each represent H or a halogen atom, at least one being a halogen atom, are useful for treatment of various neurological diseases and myodystrophy.

Japanese Laid-Open Patent Publication No. 145,671/1980 discloses a process for producing a hydroxy derivative of 2-isopropylaminopyrimidine.

Japanese Laid-Open Patent Publication No. 151,571/1980 discloses that 2-isopropylamino-5-halogenopyrimidines are interesting in the treatment of neurological diseases.

Japanese Laid-Open Patent Publication No. 10177/1981 discloses a process for producing 2-isopropylaminopyrimidine substantially in a quantitative yield by aminolyzing 2-methylsulfonylpyrimidine with isopropylamine.

Japanese Laid-Open Patent Publication No. 26880/1981 discloses a process for producing 2-isopropylaminopyrimidine which comprises reacting bis(isopropylguanidine) sulfate with 1,1,3,3-tetraethoxypropane.

Japanese Laid-Open Patent Publication No. 90,013/1981 describes a therapeutic agent for myodystropy, myopathy, muscle rigidity and/or dysfunction of neuro-musclar transmission comprising substituted derivative of pyrimidine or its therapeutically acceptable salt or its metabolite as an active ingredient. However, it merely discloses various salts such as an orthophosphate, of 2-isopropylaminopyrimidine as an active compound.

Japanese Laid-Open Patent Publication No. 65873/1986 discloses that 2-piperazinopyrimidines of the following formula

wherein R1 is H or aralkyl, and Y is a divalent organic group defined in the claim of this patent publication, are useful as a herbicide for paddies and upland farms.

The present inventors previously provided a novel therapeutic agent for treatment of neurological diseases comprising a specific 2-piperazinopyrimidine derivative or its pharmaceutically acceptable salt (International Laid-open Publication No. WO87/04928).

The present invention seeks to provide therapeutic agents for the treatment of neurological diseases and spinal breakdown, especially agents which regenerate and repair nerve cells.

The present invention also seeks to provide a novel therapeutic agent for the treatment of neurological diseases and which can be applied to, for example, disorders of peripheral nerves, cerebrospinal injury and diseases of central nerves which are different from psychosis and in which abnormality in the operating system or the metabolic system of chemical transmitters is regarded as being primarily involved.

The present invention additionally seeks to provide a novel therapeutic agent for the treatment of cerebral diseases which improves and restores learning and memory.

The present invention further seeks to provide a novel therapeutic agent for the treatment of neurological diseases or cerebral diseases, which has few side effects such as liver trouble.

The present invention provides a pyrimidine represented by the following formula (1), or a pharmaceutically acceptable salt thereof,

$$\begin{array}{c}
X \\
N \\
\downarrow \\
R^{1}
\end{array}$$
(1)

wherein R1 represents a hydrogen atom or a C1-C4 alkyl group; X represents a group of the formula

55

5

15

20

25

30

40

45

a group of the formula

-N (CH₂)

10

5

in which R3 corresponds to optional one or at least two identical or different substituents replacing one or at least two hydrogen atoms of identical or different methylene groups, and represents a C_1 - C_4 alkyl group, a hydroxyl group, a phenyl group optionally substituted by nitro, a benzyl group, a benzoyloxy group, a benzoylamino group, a C_1 - C_4 alkylamino group, a di- C_1 - C_4 alkylamino group, the HO(C_6 H₅)₂C- group, a piperidino group, a hydroxy(C_1 - C_4 alkyl) group, the C_6 H₅SO₂O- group, a benzoyl group optionally substituted by halogen, a C_1 - C_4 alkylsulfonylamide group or a (C_1 - C_4 alkoxy)carbonyl group, and n is a number of 4, 5, 6 or 7, a group of the formula

20

25

in which R^4 represents a hydrogen atom, a C_1 - C_4 alkyl group or a benzyl group, and R^5 represents a C_1 - C_4 alkyl group, an acyl group of up to 6 carbon atoms, a 2-furoyl group, a benzyl group, a 4-piperidyl group optionally substituted by benzoyl, a phenethyl group, the group

30

35

or a benzoyl group optionally substituted by halogen or nitro, a group of the formula

40

45

a group of the formula

50

a group of the formula

M,

or a group of the formula

10

5

$$\bigcap_{N}$$
;

15

Y represents a group of the formula

-CH₂R9

20

wherein R^9 represents a hydrogen atom, a C_1 - C_4 alkyl group, a C_1 - C_4 alkoxy group, a C_1 - C_4 alkylamino group, a di- C_1 - C_4 alkylamino group, a group of the formula

25

$$-N < \frac{R^6}{R^7}$$

30

wherein R^6 represents a hydrogen atom, a C_1 - C_4 alkyl group, a phenyl group, a benzyl group, a C_1 - C_4 alkoxy group or a 2-(N,N-dimethylamino)ethyl group, and R^7 represents a C_1 - C_4 alkyl group, an acyl group of up to 6 carbon atoms, a cyclohexylcarbonyl group, a 2-furoyl group, a (C_1 - C_4 alkoxy)carbonyl group, a cinnamoyl group, a benzyl group, a benzyl group, a di- C_1 - C_4 alkylcarbamoyl group, a group of the formula

40

a group of the formula

45

a group of the formula

50

a group of the formula

5

a group of the formula

a group of the formula

10

a 4-C₁-C₄ alkylpiperazyl group, or a benzoyl group optionally substituted by halogen, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy,

amino, benzoylamino or phenyl, provided that when R6 is a hydrogen atom, R7 is a benzoyl group,

20

-N (CH₂)_m

25

wherein R^8 corresponds to an optional substituent replacing the hydrogen atom of the methylene group, and represents a hydrogen atom, a C_1 - C_4 alkyl group, a phenyl group or a benzyl group, and m is a number of 4, 5, 6 or 7, a group of the formula

30

35

a group of the formula

40

s or a group of the formula

50

and Z

represents a hydrogen atom, a halogen atom, a C_1 - C_4 alkyl group or a (C_1 - C_4 alkoxy) carbonyl group; provided that Y represents - CH_2R^9 only when Z is a (C_1 - C_4 alkoxy) carbonyl group; that R^4 represents a hydrogen atom and R^5 represents a C_1 - C_4 alkyl group, an acyl group of up to 6 carbon atoms, a 2-furoyl group, a benzyl group, a phenethyl group or a benzyl group optionally substituted by halogen or nitro, only when Y represents CH_2R^9 and Z represents a (C_1 - C_4)

C₄ alkoxy) carbonyl group; and that Y can be

-N (CH₂)_m

10

5

$$\bigcap_{N}$$
, or \bigcap_{N}

15

only when X is

20

$$-N_{R5}^{R4}$$

25

and R4 is a C1-C4 alkyl group.

The present invention also provides a compound of formula:

30

$$\begin{array}{c|c}
 & CH_3 \\
 & N \\
 & N \\
 & O
\end{array}$$

35

40

or the p-toluenesulfonate thereof.

The present invention additionally provides a compound of formula:

50

or the p-toluenesulfonate thereof.

The C₁-C₄ alkyl group represented by R¹ may be linear or branched. Examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and t-butyl groups.

The alkyl moiety of the acyl group represented by R5 may be linear or branched.

The acyl groups of up to 6 carbon atoms have 2 to 6 carbon atoms. Examples include acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl and hexanoyl groups.

Examples of the C_1 - C_4 alkyl groups represented by R^9 , R^6 and R^7 are the same as those exemplified with respect to R^1 .

Examples of the acyl group represented by R7 are the same as those exemplified above for R5.

Examples of the halogen and C_1 - C_4 alkoxy group substituents for the benzoyl group R^7 are fluorine, chlorine, bromine and iodine, and alkoxy groups having 1 to 4 carbon atoms such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy and sec-butoxy. When R^6 is a hydrogen atom, R^7 is a benzoyl group.

Examples of the halogen atom represented by Z are fluorine, chlorine, bromine and iodine. Examples of the C₁-C₄ alkyl group represented by Z are the same as those exemplified with respect to R¹.

Examples of compounds of the present invention are:

10 (100)

15

25

30

35

40

(104) p-Toluenesulfonate of (100) (108)

(112) p-Toluenesulfonate of (108) (116)

(120) p-Toluenesulfonate of (116) (124)

(128) p-Toluenesulfonate of (124) (132)

5 CH₃

(136) p-Toluenesulfonate of (132) (137)

10

(138) p-Toluenesulfonate of (137) 25 (140)

35 (144) p-Toluenesulfonate of (140)(149)

40 CH₃ - N N C U

55

(150) p-Toluenesulfonate of (149) (148)

 $t-C_4H_9 \longrightarrow N \\ NC \\ \parallel \\ 0$

(152) p-Toluenesulfonate of (148) (145)

15

20

10

25 (146) p-Toluenesulfonate of (145) (147)

(147-1) p-Toluenesulfonate of (147)

(153)

35

40

45

(154) p-Toluenesulfonate of (153) 50 (154-1)

(154-2) p-Toluenesulfonate of (154-1)

(156)

5

10

N N NHCO

(160) p-Toluenesulfonate of (156)

(164)

20 CH₃

(165) Sulfate of (164)

5 (166) Phosphate of (164)

(167) Maleate of (164)

(169) Naphthalenesulfonate of (164)

(171) Citrate of (164)

(171-1) Tartarate of (164)

30 (171-1-1) Fumarate of (164)

(168) p-Toluenesulfonate of (164)

(170) Hydrochloride of (164)

(170-1)

35 CH₃

(170-2) p-Toluenesulfonate of (170-1)

45 (171-2)

40

50 CH₃
N - C - CH₃
O

CH3

(171-3) p-Toluenesulfonate of (171-2) (171-4)

5 N

(171-5) p-Toluenesulfonate of (171-4) (171-6)

15

10

20

35

CH3 CH3

25 (171-7) p-Toluenesulfonate of (171-6) (171-8)

30 CH₃ F

(171-9) p-Toluenesulfonate of (171-8) (171-10)

40 CH₃ CP N-C-N-C-0

55

(171-11) p-Toluenesulfonate of (171-10) (171-12)

5

10

(171-13) p-Toluenesulfonate of (171-12) (172)

15

20

25 (176) p-Toluenesulfonate of (172) (180)

30

(184) p-Toluenesulfonate of (180) (188)

40

45

(192) p-Toluenesulfonate of (188) (196)

50

(200) p-Toluenesulfonate of (196) (204)

5

CH, NCOCH,

(208) p-Toluenesulfonate of (204) (212)

10

15

20

25

30

55

CH₃
|
NCO-i-C₃H₇

(216) p-Toluenesulfonate of (212) (220)

CH₃
NCO-t-C₄H₉

(224) p-Toluenesulfonate of (220) 35 (228)

40 CH₃
NCO H

45 (232) p-Toluenesulfonate of (228) (236)

50 CH₃
NCO CA

CH3

(240) p-Toluenesulfonate of (236) (241)

5

10

20

35

45

N N N NCO - CH,

(242) p-Toluenesulfonate of (241) (244)

15

(248) p-Toluenesulfonate of (244) 25 (252)

(256) p-Toluenesulfonate of (252) (260)

(264) p-Toluenesulfonate of (260) (268)

50 CH₃ NCO OCH:

(272) p-Toluenesulfonate of (268) (276)

CH₃
OCH₃
OCH₃
OCH₃

(280) p-Toluenesulfonate of (276)

(284)

5

10

20

30

NCO CH3

(288) p-Toluenesulfonate of (284)

25 (292)

35 (296) p-Toluenesulfonate of (292)(297)

40

(298) p-Toluenesulfonate of (297) (300)

CH₂ CH₃

55

(304) p-Toluenesulfonate of (300) (305)

5

10

25

55

CO — N — N — CO — CH3

(306) p-Toluenesulfonate of (305) (307)

20 CH₃

(307-1) Hydrochloride of (307) (308)

30 CH₃

(312) p-Toluenesulfonate of (308) 35 (316)

40 CH₃ NCOCH₃

(320) p-Toluenesulfonate of (316) (324)

CH₃

(328) p-Toluenesulfonate of (324) (332)

5 0\

(336) p-Toluenesulfonate of (332) (380)

10

30

35

40

50

CH₃
CH₃
NCOCH₃
CH₃

25 (384) p-Toluenesulfonate of (380) (388)

CH₃
NCOCH₃

(392) p-Toluenesulfonate of (388) (396)

45 CH₃

(400) p-Toluenesulfonate of (396) (404)

5 CH₃ NCO —

(408) p-Toluenesulfonate of (404) (412)

10

20

30

15

(416) p-Toluenesulfonate of (412) 25 (420)

35 (424) p-Toluenesulfonate of (420) (428)

(432) p-Toluenesulfonate of (428) (600)

(604) p-Toluenesulfonate of (600) (608)

(612) p-Toluenesulfonate of (608) (616)

(620) p-Toluenesulfonate of (616) (624)

(628) p-Toluenesulfonate of (624) (632)

(636) p-Toluenesulfonate of (632) (640)

(644) p-Toluenesulfonate of (640) 15 (648)

(652) p-Toluenesulfonate of (648) (656)

(660) p-Toluenesulfonate of (656)(661)

(662) Hydrochloride of (661) (664)

5

10

(668) p-Toluenesulfonate of (664)

15 (672)

20 NO₂ — CON N N

25

(676) p-Toluenesulfonate of (672) (680)

30

35

40

(684) p-Toluenesulfonate of (680) (688)

45

55

50

.

(692) p-Toluenesulfonate of (688) (696)

5

10

(700) p-Toluenesulfonate of (696) (800)

15

20

(804) Maleate of (800)

25 (808)

30

35 (812) Maleate of (808) (816)

40

45

(820)

50

(824)

· 5

20

25

30

35

10 (828) Maleate of (824) (2000)

CH₃ CH₃ CH₃ CH₃ CH₃ CH₃

(2004) p-Toluenesulfonate of (2000) (2008)

(2012) p-Toluenesulfonate of (2008) (2048)

40 CH₃

45 (2052) Dihydrochloride of (2048) (2056)

50 IIO N N CH₃

(2060) Hydrochloride of (2056) (2064)

· ·

10

(2070) Hydrochloride of (2064) (2074)

15

20

(2076) Hydrochloride of (2074) (2080)

25

30

(2084) Hydrochloride of (2080)

35 (2088)

40

45 (2092) Hydrochloride of (2088) (2096)

(2100) Hydrochloride of (2096) (2104)

5 CH₂)₂N N N C O

(2108) Hydrochloride of (2104) (2112)

10

25

CH₃

(2116) p-Toluenesulfonate of (2112) (2120)

(2124) p-Toluenesulfonate of (2120) 5 (2128)

40 CH₃

45 (2132) p-Toluenesulfonate of (2128) (2136)

50 CH₃

(2140) Di-p-toluenesulfonate of (2136) (2144)

5 (CH₃)₂N N N N CH₃

(2148) Dihydrochloride of (2144) (2152)

10

35

45

20 CH₃

25 (2156) Hydrochloride of (2152) (2160)

(2164) Dihydrochloride of (2160) (2170)

(2174) p-Toluenesulfonate of (2170) (2178)

50 CH₃ 1 - C - NH₂

(2182) p-Toluenesulfonate of (2178) (2184)

5

10

(2188) p-Toluenesulfonate of (2184) (2192)

15

20

(2194) p-Toluenesulfonate of (2192)

25 (2198)

30

(2202) p-Toluenesulfonate of (2198)(2206)

40

45

(2210) p-Toluenesulfonate of (2206) (2214)

50

(2218) p-Toluenesulfonate of (2214) (2222)

5 CH₃ CH₃

(2226) Hydrochloride of (2222) (2230)

10

25

55

(2234) Di-p-toluenesulfonate of (2230) (2238)

30 CH₃

N N N C - 0C₂H₅

(2242) p-Toluenesulfonate of (2238) 35 (2246)

45 (2250) p-Toluenesulfonate of (2246) (2254)

(2260) p-Toluenesulfonate of (2254) (2264)

5

10

15 (

(2270) p-Toluenesulfonate of (2264) (2274)

20

25

(2278) p-Toluenesulfonate of (2274) (2282)

30

35

(2286) p-Toluenesulfonate of (2282) (2290)

•

50

45

(2294) p-Toluenesulfonate of (2290) (2298)

5

10

15

20

25

30

55

N − C − N − C 2 H

(2302) p-Toluenesulfonate of (2298) (2306)

Ce-C-N-N-C-N-CH3

(2310) p-Toluenesulfonate of (2306) (2314)

N N OCH3

(2318) p-Toluenesulfonate of (2314) 35 (2322)

40 CH3 CH3 O

45 (2326) p-Toluenesulfonate of (2322) (2330)

50 N N - C - O - O

(2334) p-Toluenesulfonate of (2330) (2338)

5

10

15

20

30

45

(2342) Dihydrochloride of (2338) (2346)

(2350) Hydrochloride of (2346)

The compounds of formula (1) may be produced by known methods, particularly the methods described in Japanese Laid-Open Patent Publication Nos. 140568/1986 and 87627/1986, or by treating the intermediates obtained by these methods in accordance with known methods (for example, the elimination of the protecting group by reduction). Examples 1 to 6 given hereinafter describe the production of these compounds in detail.

For example, compounds of formula (1) in which Y is -NR6R7 and R6 is other than hydrogen may be produced by the following reaction scheme 1.

Reaction scheme 1

(II)

Compounds of formula (1) in which X is -NR4R5 may be produced by the following reaction scheme 2.

Reaction scheme 2

The starting compounds of formulae (II) and (III) in reaction schemes 1 and 2 may be produced by the method described in J. Chem. Soc., 1965, pages 755-761, from

10

5

as a starting material. The reactions in reaction schemes 1 and 2 are conveniently carried out at a temperature of 20 to 150 °C in a solvent such as toluene, dioxane, pyridine or water in the presence of, as required, a basic compound. The basic compound may conveniently be, for example, an organic base (such as triethylamine, pyridine and 4-dimethylaminopyridine), and an inorganic base (such as sodium carbonate and potassium carbonate).

Compounds of formula (1) in which Y is CH_2R^9 , wherein R^9 is hydrogen or a C_1 - C_4 alkyl group and Z is a (C_1 - C_4 alkoxy)carbonyl group may be produced in accordance with the following reaction scheme 3.

Reaction scheme 3

20

25

$$X \stackrel{\text{NH}}{\swarrow_{\text{NH}_2}} + R^9 \text{CH}_2 \stackrel{\text{O}}{\downarrow_{\text{OCH}_3}} \stackrel{\text{COOR}^{10}}{\longrightarrow} (1) \quad (Y = \text{CH}_2 R^9, z = \text{COOR}^{10})$$

30

35

Specifically, by reacting compounds (IV) with (V) at a temperature of 20 to 100 °C in a reaction medium such as water, methanol, ethanol, THF and DMF, compounds of formula (1) in which Y=R¹0, and Z=COOR¹3 are obtained.

Compounds of formula (1) in which Y is CH_2R^9 , wherein R^9 is other than hydrogen and a C_1 - C_4 alkyl group and Z is a $(C_1$ - C_4 alkoxy)carbonyl group may be produced in accordance with the reaction scheme 4.

Reaction scheme 4

$$(VI)^{CH_2C1} + R^9H \xrightarrow{base} (I) (Y=CH_2R^9, Z=COOR^{10})$$

45

Compound (VI) may be prepared in the same way as in Production Method No. 7 of Japanese Laid-Open Patent Publication No. 65873/1986 except that X is used instead of benzylpiperazine. Compounds of formula (1) in which Y is CH₂R⁹ and Z is COOR¹⁰ are obtained by reacting compound (VI) with R⁹H in the presence of an organic base such as pyridine or triethylamine, or an inorganic base such as potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, potassium hydride or sodium hydride in the presence of an inert solvent such as toluene or tetrahydrofuran or in the absence of solvent.

Investigations of the present inventors show that the compounds of formula (1) are useful as therapeutic agents for the treatment of neurological diseases.

The compounds of formula (1) are normally used in the form of a pharmaceutical composition, and are administered by various routes (e.g., oral, subcutaneous, intramuscular, intravenous, intrarhinal, skin permeation and through the rectum).

The present invention also embraces a pharmaceutical preparation comprising a compound of formula (1) or its pharmaceutically acceptable salt. The pharmaceutically acceptable salt includes, for example, acid addition salts and quaternary ammonium (or amine) salts.

Examples of the pharmaceutically acceptable salts of the compound of formula (1) include salts formed from acids capable of forming pharmaceutically acceptable non-toxic acid-addition salts containing anions, such as hydrochlorides, hydrobromides, sulfates, bisulfites, phosphates, acid phosphates, acetates, maleates, fumarates, succinates, lactates, tartrates, benzoates, citrates, gluconates, glucanates, methanesulfonates, p-toluenesulfonates and naphthalenesulfonates or their hydrates, and quaternary ammonium (or amine) salts or their hydrates.

The composition of this invention may be formulated into tablets, capsules, powders, granules, troches, cachet wafer capsules, elixirs, emulsions, solutions, syrups, suspensions, aerosols, ointments, aseptic injectables, molded cataplasmas, tapes, soft and hard gelatin capsules, suppositories, and aseptic packed powders. Examples of the pharmaceutically acceptable carrier include lactose, glucose, sucrose, sorbitol, mannitol, corn starch, crystalline cellulose, gum arabic, calcium phosphate, alginates, calcium silicate, microcrystalline cellulose, polyvinyl pyrrolidone, tragacanth gum, gelatin, syrup, methyl cellulose, carboxymethyl cellulose, methylhydroxybenzoic acid esters, propylhydroxybenzoic acid esters, talc, magnesium stearates, inert polymers, water and mineral oils.

Both solid and liquid compositions may contain the aforesaid fillers, binders, lubricants, wetting agents, disintegrants, emulsifying agents, suspending agents, preservatives, sweetening agents and flavoring agents. The composition of this invention may be formulated such that, after administration to a patient, the active compound is released rapidly, continuously or slowly.

In the case of oral administration, the compound of formula (1) is mixed with a carrier or diluent and formed into, for example, tablets or capsules. In the case of parenteral administration, the active ingredient is dissolved in, for example a 10 % aqueous solution of glucose, isotonic salt water or sterilized water, and enclosed in vials or ampoules for intravenous instillation or injection or intramuscular injection. Advantageously, a dissolution aid, a local anesthetic agent, a preservative and a buffer may also be included into the medium. To increase stability, it is possible to lyophilize the present composition after introduction into a vial or ampoule. Another example of parenteral administration is the administration of the pharmaceutical composition through the skin as an ointment or a cataplasm. In this case, a molded cataplasm or a tape is advantageous.

The composition of this invention generally contains 0.1 to 2000 mg, more generally 0.5 to 1000 mg, of the active component for each unit dosage form.

The compound of formula (1) is effective over a wide dosage range. For example, the amount of the compound administered for one day usually falls within the range of 0.03 mg/kg to 100 mg/kg. The amount of the compound to be actually administered is determined by a physician depending, for example, upon the type of the compound administered, and the age, body weight and reaction condition of the patient and the administration route.

The above dosage range, therefore, does not limit the scope of the invention. The suitable number of administrations is 1 to 6, usually 1 to 4, daily.

The compound of formula (1) by itself is an effective therapeutic agent for disorders of the peripheral nervous system and the central nervous system. If required, it may be administered in combination with at least one other equally effective drug. Examples of such an additional drug are gangliosides, mecobalamin and isaxonine.

The following Examples further illustrate the present invention. Each of the Examples showing the composition of the invention uses one of the compounds described hereinabove or another pharmaceutically active compound of formula (1)

REFERENTIAL EXAMPLE 1

25

55

4-Methylamino-2-(4-phenylpiperidino)pyrimidine (compound No. 1024):-

To a solution of 17.0 g (0.11 mole) of 2,4-dichloropyrimidine in 150 ml of dichloromethane was added methylamine (0.25 mole, 20 ml of 40 % methanol solution) at such a rate that the temperature of the solution was maintained at 5 °C. After the addition, the solution was stirred at room temperature for 12 hours. The reaction mixture was concentrated under reduced pressure, and extracted with dichloromethane. The dichloromethane layer was dried over an anhydrous sodium sulfate, and concentrated under reduced pressure to give 14.0 g (purity 80 %) of 2-chloro-4-methylaminopyrimidine.

Two hundred milliliters of n-butanol was added to 3.0 g (0.02 mole) of 2-chloro-4-methylaminopyrimidine and 8.4 g (0.05 mole) of 4-phenylpiperidine, and the mixture was heated at 130 $^{\circ}$ C for 1 hour. The reaction mixture was concentrated under reduced pressure, and extracted with dichloromethane. The dichloromethane layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give 4.0 g (yield 71 %) of the desired compound as an oil.

¹H-NMR spectrum (deuterochloroform, δ ppm):

1.4-2.0(5H, m), 2.93(3H, d, J=5.2Hz), 2.6-3.1(2H, m), 4.60(1H, m), 4.92(2H, br. d, J=12.6Hz), 5.67(1H, d, J=7.2Hz), 7.28(5H, s), 7.93(1H, d, J=7.2 Hz).

In a similar manner, the following compounds were produced. (1000)

5 (CH₃)₂N NHCH₃

10 (1004)

(n-C₄H₉)₂N NHCH₃

(1008)

25

35

45

20 N NHCH₃

(1012)

30 N NHCH3

(1016) (1020)

CH₃ NHCH₃

50 N N NHCH3

(1024)

5

10

(1028)

15

20

(1032)

25

NHCH3

30

(1036)

35

N N NHCH 3

40

(1040)

45

50

(1064)

.

(1068)

(1072)

(1076)

45 (1080)

(1084)

(1088)

25 (1092)

(1096)

(1100)

5

N NHCH3

10

(1104)

15

20

25 (1108)

30

(1112) 35

40

45 (1116)

50

55

N N NHCH3

CH₃NH N

CH3NH N CH3

CH 3 NH N N N

(1120)

5

10

(1124)

15

20

(1128)

*2*5

30

(1132)

35

CH3NH N

40

(1136) 45

. 50

(1140)

(1144)

(1148)

(1156)

(1160)

The properties of the compounds (intermediate) are shown in Table 1 below.

Table 1

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, \lesssim ppm)
10	1000	51	Oil	2.90(3H, d, J=5.2Hz), 3.13(6H, s), 4.66(1H, m), 5.63(1H, d, J=5.2Hz), 7.88(1H, d, J=5.2Hz)
15	1004	29	Oil	0.92(6H, m), 1.0-1.8(8H, m), 2.88(3H, d, J=5.2Hz), 3.51(4H, m), 4.55(1H, m), 5.56(1H, d, J=5.2Hz), 7.84(1H, d, J=5.2Hz)
20	1008	68	Oil	1.92(4H, m), 2.88(3H, d, J=5.2Hz), 3.52(4H, m), 4.76(1H, m), 5.63(1H, d, J=5.2Hz), 7.88(1H, d, J=5.2Hz)
30	1012	95	Oil	1.62(6H, br. s), 2.92(3H, d, J=5.4Hz), 3.72(4H, br. s), 4.60(1H, m), 5.64(1H, d, J=6.0Hz), 7.90(1H, d, J=6.0Hz)
35	1016	72	Oil	0.95(3H, d, J=5.2Hz), 0.9-1.8(5H, m), 2.6-3.0(2H, m), 2.90(3H, d, J=5.2Hz), 4.69(2H, br. d, J=12.6Hz), 4.70(1H, m), 5.64(1H, d, J=5.2Hz), 7.89(1H, d, J=5.2Hz)
45	1020	62	Oil	0.9(9H, s), 1.0-1.9(5H, m), 2.5-3.0(2H, m), 2.90(3H, d, J=5.2Hz), 4.6(1H, m), 4.80(2H, br. d, J=12.6Hz), 5.64(1H, d, J=5.2Hz), 7.9(1H, d, J=5.2Hz)

- to be continued -

55

Table 1 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, \$ ppm)
15	1028	63	Oil	1.0-2.0(5H, m), 2.54(2H, d, J=5.2Hz), 2.4-3.0(2H, m), 2.87(3H, d, J=5.2Hz), 4.65(2H, m), 4.72(2H, br. d, J=12.6Hz), 5.62(1H, d, J=5.2Hz), 7.0-7.4(5H, m), 7.88(1H, d, J=5.2Hz)
25	1032	66	96-98	1.7-2.2(2H, m), 2.8(2H, t, J=7.2Hz) 2.89(3H, d, J=5.2Hz), 4.02(2H, t, J=7.2Hz), 4.70(1H, m), 5.82(1H, d, J=5.2Hz), 6.8-7.3(3H, m), 7.82(1H, d, J=7.2Hz), 7.99(1H, d, J=5.2Hz)
30	1036	77	Oil	2.92(5H, m), 4.02(2H, t, J=5.2Hz), 4.7(1H, m), 4.89(2H, s), 5.67(1H, d, J=7.2Hz), 7.18(4H, m), 7.94(1H, d, J=7.2Hz)
35	1040	60	Oil	2.89(3H, d, J=5.2Hz), 3.73(8H, s), 4.70(1H, m), 5.69(1H, d, J=5.2Hz), 7.88(1H, d, J=5.2Hz)

- to be continued -

Table 1 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDC1 ₃ solution, ppm)
10	1064	61	Oil	1.4-2.2(4H, m), 2.5-3.1(3H, m), 4.62(2H, br. s), 4.88(2H, br. d, J=12.6Hz), 5.72(1H, d, J=5.2Hz), 7.25(5H, m), 7.94(1H, d, J=5.2Hz)
20	1068	58	Oil	1.24(3H, t, J=7.2Hz), 1.4-2.0(4H, m), 2.5-3.1(3H, m), 3.1-3.5(2H, m), 4.58(1H, m), 4.90(2H, br. d, J=12.6Hz), 5.65(1H, d, J=5.2Hz), 7.0-7.5(5H, m), 7.92(1H, d, J=5.2Hz)
<i>25</i>	1072	75	Oil	0.97(3H, t, J=7.2Hz), 1.4-2.1(6H, m), 2.5-3.1(3H, m), 3.24(2H, q, J=7.2Hz), 4.68(1H, br. s), 4.88(2H, br. d, J=12.6Hz), 5.65(1H, d, J=5.2Hz), 7.27(5H, m), 7.90(1H, d, J=5.2Hz)
35	1076	57	Oil	1.4-2.0(4H, m), 2.5-3.1(3H, m), 4.52(2H, d, J=5.2Hz), 4.90(2H, br. d, J=12.6Hz),

- to be continued -

50

45

Table 1 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDC13 solution, ppm)
10	1076	57	Oil	4.91(1H, m), 5.68(1H, d, J=5.2Hz), 7.6-7.5(10H, m), 7.92(1H, d, J=5.2Hz)
15 20	1080	36	Oil	1.4-2.0(4H, m), 2.27(6H, s), 2.50(2H, m), 2.5-3.2(3H, m), 3.36(2H, m), 3.46(2H, s), 4.90(2H, br. d, J=12.6Hz), 5.24(1H, m), 5.67(1H, d, J=5.2Hz), 7.27(5H, m), 7.88(1H, d, J=5.2Hz)
25	1084	50	91-93	1.60(6H, br. s), 2.23(3H, s), 2.88(3H, d, J=5.2Hz), 3.75(4H, br. s), 4.50(1H, m), 5.54(1H, s)
30	1088	57	Oil	1.5-2.0(4H, m), 2.23(3H, s), 2.6-3.0(3H, m), 2.90(3H, d, J=5.2Hz), 4.51(1H, m), 4.96(2H, br. d, J=12.6Hz), 5.57(1H, s), 7.28(5H, s)
35	1092	21	Oil	1.60(6H, br. s), 1.88(3H, s), 3.0(3H, d, J=5.2Hz), 3.75(4H, br. s), 4.2(1H, br. s), 7.65(1H, s)
45	1096	75	Oil	1.4-2.0(4H, m), 1.92(3H, s), 2.5-3.1(3H, m), 3.02(3H, d, J=5.2Hz), 4.40(1H, m), 4.90(2H, br. d, J=12.6Hz), 7.28(5H, m), 7.68(1H, s)
50	1100	81	Oil	1.8-2.1(5H, m), 2.79(2H, t, J=7.2Hz), 2.99(3H, d, J=5.2Hz),

⁻ to be continued -

Table 1 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, ppm)
10	1100	81	Oil	4.03(2H, t, J=7.2Hz), 4.42(1H, m), 6.8-7.2(3H, m), 7.7-8.0(2H, m)
15	1104	48	121-124	1.4-2.1(4H, m), 2.5-3.1(3H, m), 3.02(3H, d, J=4.0Hz), 4.85(1H, m), 4.88(2H, br. d, J=12.6Hz), 7.28(5H, m), 7.75(1H, d, J=4.0Hz)
20 25	1112	24	117-118	0.96(3H, d, J=5.2Hz), 0.9-1.8(5H, m), 2.6-3.0(2H, m), 2.96(3H, d, J=5.2Hz), 4.32(2H, br. d, J=12.6Hz), 4.80(1H, m), 5.88(1H, d, J=5.2Hz), 7.87(1H, d, J=5.2Hz)
30 35	1116	16	179-180	0.89(9H, s), 1.0-1.9(5H, m), 2.5-3.0(2H, m), 2.95(3H, d, J=5.2Hz), 4.45(2H, br. d, J=12.6Hz), 4.75(1H, m), 5.89(1H, d, J=5.2Hz), 7.88(1H, d, J=5.2Hz)
40	1120	18	148-154	1.4-2.1(5H, m), 2.97(3H, d, J=5.2Hz), 2.6-3.1(2H, m), 4.53(2H, br. d, J=12.6Hz), 5.95(1H, d, J=7.2Hz), 7.28(5H, s), 7.88(1H, d, J=7.2Hz)
45	1124	20	175-176	1.8-2.1(2H, m), 2.76(2H, t, J=7.2Hz), 2.99(3H, d, J=5.2Hz), 3.96(2H, t, J=7.2Hz), 4.9(1H, m), 6.32(1H, d, J=5.2Hz), 6.9-7.5(4H, m), 7.88(1H, d, J=5.2Hz)

⁻ to be continued -

Table 1 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDCl ₃ solution, 5 ppm)
10	1128	19	123-126	2.90(5H, m), 3.83(2H, t, J=5.2Hz), 4.72(2H, s), 4.90(1H, m), 5.92(1H, d, J=7.2Hz), 7.19(4H, s), 7.92(1H, d, J=7.2Hz)
20	1132	17	-	2.47(4H, m), 2.92(3H, d, J=5.2Hz), 3.52(2H, s), 3.59(4H, m), 4.75(1H, m), 5.84(1H, d, J=5.2Hz), 7.31(5H, m), 7.85(1H, d, J=5.2Hz)
25	1136	17	158-160	1.24(3H, t, J=7.2Hz), 1.5-2.1(4H, m), 2.5-3.2(3H, m), 3.2-3.6(2H, m), 4.52(2H, br. d, J=12.6Hz), 4.70(1H, m), 5.92(1H, d, J=5.2Hz), 7.0-7.5(5H, m), 7.89(1H, d, J=5.2Hz)
35	1140	18	134-136	0.98(3H, t, J=7.2Hz), 1.4-2.1(6H, m), 2.6-3.1(3H, m), 3.35(2H, q, J=7.2Hz), 4.53(2H, br. d, J=12.6Hz), 4.80(1H, br. s), 5.93(1H, d, J=5.2Hz), 7.29(5H, m), 7.90(1H, d, J=5.2Hz)
40	1144	13	158-160	1.2(3H, s), 1.27(3H, s), 1.4-2.0(4H, m), 2.2-3.1(3H, m), 3.9-4.3(1H, m), 4.52(2H, br. d, J=12.6Hz), 4.65(1H, m), 5.9(1H, d, J=5.2Hz), 7.0-7.5(5H, m), 7.89(1H, d, J=5.2Hz)
50	1148	21	148-149	1.3-2.05(4H, m), 2.5-3.1(3H, m), 4.50(2H, br. d, J=12.6Hz), 4.60(2H, br. d, J=5.2Hz),

⁻ to be continued -

Table 1 (continued)

5	Com- pound No.		Melting point (°C)	1H-NMR spectrum (CDC1 ₃ solution, ppm)
10	1148	21	148-149	5.35(1H, m), 5.95(1H, d, J=5.2Hz), 7.0-7.5(10H, m), 7.88(1H, d, J=5.2Hz)
15	1152	31	84-85	1.65(6H, br. s), 2.22(3H, s), 2.95(3H, d, J=5.2Hz), 3.57(4H, br. s), 4.75(1H, m), 5.77(1H, s)
25 _.	1156	10	198-199	1.5-2.0(4H, m), 2.23(3H, s), 2.6-3.1(3H, m), 2.96(3H, d, J=5.2Hz), 4.4-4.8(3H, m), 5.83(1H, s), 7.26(5H, m)
30	1160	83	162-165	2.03(3H, s), 3.12(3H, d, J=5.2Hz), 4.90(1H, m), 7.2-7.5(3H, m), 7.85(3H, m), 8.12(1H, s), 8.6(1H, s)

35

40

50

55

REFERENTIAL EXAMPLE 2

4-Methylamino-2-(4-phenylpiperidino)pyrimidine maleate (compound No. 1026):-

A solution of 0.43 g (3.73 mmoles) of maleic acid in 10 ml of methanol was added to a solution of 1.0 g (3.73 mmoles) of 4-methylamino-2-(4-phenylpiperidino)pyrimidine in 10 ml of methanol, and the mixture was stirred at room temperature for 1 hour. The mixed solution was concentrated under reduced pressure and washed with ether to give 1.25 g (yield 87 %) of the desired product.

Melting point:

163-166 °C.

¹H-NMR spectrum (CDCl₃ solution, δ ppm):

 $\begin{array}{l} 1.6\text{-}2.2(4\text{H, m}),\, 2.6\text{-}3.3(5\text{H, m}),\, 3.04(3\text{H, d, J=}5.2\text{Hz}),\, 4.74(1\text{H, br. d, J=}12.6\text{Hz}),\, 6.30(1\text{H, d, J=}7.2\text{Hz}),\, 7.30(5\text{H, m}),\, 7.71(1\text{H, d, J=}7.2\text{Hz}), \end{array}$

8.40(1H, m).

Similarly, the following compounds were produced.

(1014): maleate of (1012)

(1026): maleate of (1024)

(1034): maleate of (1032)

(1038): maleate of (1036)

(1086): maleate of (1084)

(1090): maleate of (1088)

5	(1094): maleate of (1092) (1098): maleate of (1096) (1102): maleate of (1100) (1110): maleate of (1108) (1122): maleate of (1120) (1130) maleate of (1128) (1158): maleate of (1156) (1162): maleate of (1160)
10	
15	,
20	
25	

50			

The data of these compounds are given in Table 2 below.

Table 2

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, ppm)
10	1014	89	164-165	1.70(6H, br. s), 3.02(3H, d, J=3.8Hz), 3.76(4H, br. s), 6.35(2H, s), 7.65(1H, m), 8.32(1H, m), 12.50(1H, m)
20	1034	94	42-46	1.9-2.3(2H, m), 2.79(2H, t, J=7.2Hz), 3.01(3H, d, J=5.2Hz), 4.0(2H, t, J=7.2Hz), 6.22(2H, s), 6.46(1H, d, J=5.2Hz), 7.20(3H, m), 7.50(1H, m), 7.76(1H, d, J=5.2Hz), 8.80(1H, m)
30	1038	77	149-151	2.9-3.2(5H, m), 4.0(2H, t, J=7.2Hz), 4.92(2H, s), 6.32(1H, d, J=7.2Hz), 6.36(2H, s), 7.25(4H, s), 7.75(1H, d, J=7.2Hz), 8.40(1H, m)
35	1086	99	155-157	1.68(6H, br. s), 2.28(3H, s), 3.0(3H, d, J=5.2Hz), 3.80(4H, br. s), 6.0(1H, s), 6.33(2H, s), 8.15(1H, m), 11.7(1H, m)
40	1090	91	151-154	1.5-2.2(4H, m), 2.29(3H, s), 2.6-3.3(6H, m), 4.81(2H, br. d, J=12.6Hz), 6.02(1H, s), 6.32(2H, s), 7.28(5H, br. s), 8.15(1H, m), 12.2(1H, m)
50	1094	91	150-152	1.70(6H, br. s), 2.04(3H, s), 3.08(3H, d, J=5.2Hz), 3.76(4H, br. s), 6.33(2H, s), 7.15(1H, m), 7.59(1H, s)

⁻ to be continued -

Table 2 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	<pre>1H-NMR spectrum (CDC13 solution, 5 ppm)</pre>
10	1098	92	163-165	1.6-2.2(4H, m), 2.03(3H, s), 2.6-3.3(3H, m), 3.09(3H, d, J=5.2Hz), 4.71(2H, br. d, J=12.6Hz), 6.33(2H, s), 7.0-7.4(5H, m), 7.60(1H, s)
20 25	1102	81	145-150	1.8-2.3(5H, m), 2.80(2H, t, J=5.2Hz), 3.08(3H, d, J=5.2Hz), 4.0(2H, t, J=5.2Hz), 6.25(2H, s), 7.1-7.6(4H, m), 7.70(1H, s)
30	1110	91	187-188	1.74(6H, br. s), 2.32(3H, s), 2.96(3H, d, J=5.2Hz), 3.5(2H, br. s), 3.95(2H, br, s), 5.83(1H, s), 6.33(2H, s), 9.10(1H, m), 13.8(1H, m)
35	1122	92	155-158	1.6-2.2(4H, m), 3.0(3H, d, J=5.2Hz) 2.7-3.5(3H, m), 4.10(1H, br. d, J=12.6Hz), 5.25(1H, br. d, J=12.6Hz), 6.12(1H, d, J=7.2Hz), 6.33(2H, s), 7.30(5H, m), 7.50(1H, d, J=7.2Hz), 9.0(1H, br. s)
4 5	1130	87	158-159	2.9-3.2(5H, d, J=5.2Hz), 3.79(1H, t, J=5.2Hz), 4.16(1H, t, J=5.2Hz), 4.70(1H, s), 5.20(1H, s), 6.15(1H, br. d, J=7.2Hz), 6.30(2H, s), 7.27(4H, s), 7.52(1H, d, J=7.2Hz), 9.1(1H, m)

⁻ to be continued -

Table 2 (continued)

J	

10

15

20

Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC1 ₃ solution, ppm)
1158	95	173-175	1.6-2.2(4H, m), 2.32(3H, s), 2.6-3.5(6H, m), 4.1(1H, m), 5.2(1H, m), 5.88(1H, s), 6.34(2H, s), 7.30(5H, br. s), 9.20(1H, m), 13.9(1H, m)
1162	74	179-180	2.11(3H, s), 3.11(3H, d, J=7.2Hz), 6.32(2H, s), 6.50(1H, m), 7.2-8.0(6H, m), 8.20(1H, s), 8.84(1H, s)

25

REFERENTIAL EXAMPLE 3

1-Diphenylmethylpiperazine:-

11.2~g (98 mmoles) of 1-formylpiperazine was added to 10 g (49 mmoles) of chlorodiphenylmethnae, and the solution was stirred at room temperature for 48 hours, and the mixture was extracted with water and methylene chloride. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography, and 8.9 g (31.9 mmoles) of the resulting formyl compound was dissolved in 100 ml of ethanol, and 6.5 g (64 mmoles) of conc. hydrochloric acid was added, and the solution was refluxed for 1 hour. Then, the solvent was evaporated under reduced pressure, and the residue was extracted with K_2CO_3 /water/ CH_2Cl_2 . The organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 6.8 g (yield 55 %) of the desired product.

40

Melting point:

93-95 °C.

¹H-NMR spectrum (CDCl₃ solution, δ ppm):

2.33(4H, m), 2.87(4H, m), 4.19(1H, s), 7.1-7.5 (10H, m).

EXAMPLE 1

45

4-(N-methylbenzamino)-2-(4-phenylpiperidino)pyrimidine (compound No. 164):-

A solution of 5.2 g (0.037 mole) of benzoyl chloride in 50 ml of tetrahydrofuran was added at room temperature over 30 minutes to a solution of 9.0 g (0.034 mole) of 4-methylamino-2-(4-phenylpiperidino)pyrimidine in 90 ml of tetrahydrofuran and 5 ml of triethylamine. TWo hours after the end of the addition, 1 ml of pyridine was added. The mixture was then stirred for 2 days. The reaction mixture was extracted with dichloromethane. The dicloromethane layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give 8.8 g (yield 70 %) of the desired compound as an oil.

¹H-NMR spectrum (deuterochloroform, δ ppm): 1.4-2.0(4H, m), 2.5-3.0(3H, m), 3.55(3H, s), 4.62(2H, br. d, J=12.6Hz), 6.14(1H, d, J=7.2Hz), 7.1-7.6(10H, m), 8.06(1H, d, J=7.2Hz).

Data of compounds produced in the same way as above are shown in Table 3 below.

Table 3

5	Com- pound No.	Yield (%)	Melting point (°C)	l _H -NMR spectrum (CDCl ₃ solution, 5 ppm)
10	100	48	Oil	3.0(6H, s), 3.52(3H, s), 6.04(1H, d, J=5.2Hz), 7.1-7.5(5H, m), 7.98(1H, d, J=5.2Hz)
15 20	108	30	Oil	0.93(6H, m), 1.0-1.7(8H, m), 3.2-3.65(4H, m), 3.50(3H, s), 6.04(1H, d, J=5.2Hz), 7.1-7.6(5H, m), 7.96(1H, d, J=5.2Hz)
25	116	41	Oil	1.92(4H, m), 3.38(4H, m), 3.53(3H, m), 6.0(1H, d, J=5.2Hz), 7.2-7.5(5H, m), 7.96(1H, d, J=5.2Hz)
30	124	63	Oil	1.67(6H, br. s), 2.35(3H, s), 3.38(3H, s), 3.78(4H, m), 6.52(1H, d, J=6.0Hz), 8.25(1H, d, J=6.0Hz)
35	132	55	Oil	1.55(6H, m), 3.53(3H, s), 3.56(4H, m), 6.08(1H, d, J=5.2Hz), 7.40(5H, m), 8.04(1H, d, J=5.2Hz)
40	140	71	Oil	1.92(3H, d, J=5.2Hz), 0.8-1.8(5H, m), 2.7(2H, m), 3.52(3H, s), 4.44(2H, br. d, J=12.6Hz), 6.08(1H, d, J=5.2Hz), 7.40(5H, m), 8.04(1H, d, J=5.2Hz)
4 5	148	34	Oil	0.88(9H, s), 1.0-1.8(5H, m), 2.63(2H, m), 3.53(3H, s), 4.55(2H, br. d, J=12.6Hz), 6.08(1H, d, J=5.2Hz), 7.2-7.7(5H, m), 8.05(1H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDC1 ₃ solution, ζppm)
10	156	71	Oil	1.4-2.0(4H, m), 2.5-3.2(3H, m), 4.91(2H, br. d, J=12.6Hz), 7.0-7.7(7H, m), 7.90(2H, m), 8.32(2H, m)
15 20	172	20	Oil	1.33(3H, t, J=7.2Hz), 1.4-2.0(4H, m), 2.5-3.0(3H, m), 4.13(2H, q, J=7.2Hz), 4.64(2H, br. d, J=12.6Hz), 6.01(1H, d, J=5.2Hz), 7.0-7.7(10H, m,), 8.04(1H, d, J=5.2Hz)
25	180	37	Oil	0.98(3H, t, J=7.2Hz), 1.3-2.0(6H, m), 2.5-3.01(3H, m), 4.03(2H, t, J=7.2Hz), 4.63(2H, br. d, J=12.6Hz), 6.0(1H, d, J=5.2Hz), 7.1-7.6(10H, m), 8.04(1H, d, J=5.2Hz)
35	188	59	Oil	1.2-2.0(4H, m), 2.5-3.0(3H, m), 4.60(2H, br. d, J=12.6Hz), 5.28(2H, s), 5.95(1H, d, J=5.2Hz), 7.0-7.70(15H, m), 7.96(1H, d, J=5.2Hz)
40	196	60	Oil	1.2-2.0(4H, m), 2.56(6H, s), 2.5-3.10(5H, m), 4.36(2H, t, J=8Hz), 4.67(2H, br. d, J=12.6Hz), 6.0(1H, d, J=5.6Hz), 7.0-7.6(10H, m), 8.0(1H, d, J=5.6Hz)
50	204	28	Oil	1.5-2.1(4H, m), 2.35(3H, s), 2.6-3.2(3H, m), 3.40(3H, s), 4.90(2H, br. d, J=12.6Hz), 6.60(1H, d, J=12.6Hz), 7.28(5H, m), 8.28(1H, d, J=7.2Hz)

- to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1 H-NMR spectrum (CDC1 $_{3}$ solution, 5 ppm)
10	212	34	88-94	1.16(6H, d, J=7.2Hz), 1.4-2.1(4H, m), 2.6-3.3(4H, m), 3.36(3H, s), 4.88(2H, br. d, J=12.6Hz), 6.51(1H, d, J=5.2Hz), 7.24(5H, m), 8.24(1H, d, J=5.2Hz)
20	220	45	Oil	1.25(9H, s), 1.5-2.0(4H, m), 2.6-3.2(3H, m), 3.29(3H, s), 4.91(2H, br. d, J=12.6Hz), 6.50(1H, d, J=5.2Hz), 7.26(5H, m), 8.26(1H, d, J=5.2Hz)
25	228	35	Oil	1.0-2.1(14H, m), 2.6-3.2(4H, m), 3.36(3H, s), 4.90(2H, br. d, J=12.6Hz), 6.50(1H, d, J=5.2Hz), 7.25(5H, m), 8.25(1H, d, J=5.2Hz)
30	236	66	101-104	1.3-2.0(4H, m), 2.5-3.0(3H, m), 3.52(3H, s), 4.60(2H, br. d, J=12.6Hz), 6.11(1H, d, J=5.2Hz), 7.1-7.5(9H, m), 8.10(1H, d, J=5.2Hz)
40	244	33	Oil	1.2-2.0(4H, m), 2.5-3.0(3H, m), 3.51(3H, s), 4.56(2H, br. d, J=12.6Hz), 6.15(1H, d, J=5.2Hz), 7.0-7.5(9H, m), 8.10(1H, d, J=5.2Hz)
45	260	41	Oil	1.2-1.9(4H, m), 2.4-2.9(3H, m), 3.56(3H, s), 4.49(2H, br. d, J=12.6Hz), 6.16(1H, d, J=3.6Hz), 7.0-7.5(5H, m), 7.6(2H, d, J=9.5Hz),
50				8.16(1H, d, J=3.6Hz), 8.20(2H, d, J=9.5Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, 5 ppm)
15	268	27	Oil	1.4-2.0(4H, m), 2.5-3.0(3H, m), 3.55(3H, s), 3.79(3H, s), 4.72(2H, br. d, J=12.6Hz), 6.07(1H, d, J=5.2Hz), 6.81(2H, m), 7.1-7.6(7H, m), 8.05(1H, d, J=5.2Hz)
20	276	57	Oil	1.4-2.0(4H, m), 2.5-3.1(3H, m), 3.53(3H, s), 3.79(6H, s), 3.84(3H, s), 4.70(2H, br. d, J=12.6Hz), 6.13(1H, d, J=5.2Hz), 6.70(2H, s), 7.22(5H, m), 8.05(1H, d, J=5.2Hz)
30	292	44	Oil	1.5-2.0(4H, m), 2.6-3.1(3H, m), 3.55(3H, s), 4.77(2H, br. d, J=12.6Hz), 6.24(1H, d, J=5.2Hz), 6.44(1H, dd, J=3.2, 2.0Hz), 7.0(1H, dd, J=3.0, 1.0Hz), 7.1-7.5(6H, m), 8.16(1H, d, J=5.2Hz)
35 40	300	84	Oil	0.5-2.0(5H, m), 2.2-2.6(4H, m), 3.59(3H, s), 3.76(2H, br. d, J=12.6Hz), 6.06(1H, d, J=5.2Hz), 7.0-7.6(10H, m), 8.0(1H, d, J=5.2Hz)
45	308	35	Oil	2.37(3H, s), 2.95(2H, t, J=5.2Hz), 3.41(3H, s), 4.05(2H, t, J=5.2Hz), 4.92(2H, s), 6.64(1H, d, J=5.2Hz), 7.22(4H, s), 8.32(1H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDC1 ₃ solution, 5 ppm)
10	316	96	Oil	1.85-2.20(2H, m), 2.33(3H, s), 2.80(2H, t, J=5.2Hz), 3.40(3H, s), 4.04(2H, t, J=5.2Hz), 6.93(1H, d, J=5.2Hz), 6.95-7.30(3H, m), 7.72(1H, dd, J=7.2, 2.0Hz), 8.34(1H, d, J=5.2Hz)
20	324	79	Oil	1.6-2.1(2H, m), 2.76(2H, t, J=5.2Hz), 3.52(3H, s), 3.80(2H, t, J=5.2Hz), 6.39(1H, d, J=5.2Hz), 6.9-7.7(9H, m), 8.15(1H, d, J=5.2Hz)
25	332	42	Oil	3.52(3H, s), 3.59(8H, m), 6.18(1H, d, J=5.2Hz), 7.36(5H, m), 8.04(1H, d, J=5.2Hz)

- to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, 8 ppm)
10	380	63	Oil	1.65(6H, br. s), 2.29(3H, s), 2.35(3H, s), 3.34(3H, s), 3.77(4H, m), 6.32(1H, s)
15 20	388	64	Oil	1.5-2.11(4H, m), 2.32(3H, s), 2.37(3H, s), 2.6-3.1(3H, m), 3.36(3H, s), 4.92(2H, br. d, J=12.6Hz), 6.40(1H, s), 7.28(5H, br. s)
25	396	52	Oil	1.3-2.0(4H, m), 2.22(3H, s), 2.5-3.0(3H, m), 3.53(3H, s), 4.64(2H, br. d, J=12.6Hz), 6.05(1H, s), 7.1-7.6(10H, m)
30	404	49	Oil	1.3-1.8(6H, m), 1.89(3H, s), 3.40(3H, s), 3.63(4H, m), 7.1-7.5(5H, m), 8.0(1H, s)
35	412	28	Oil	1.5-2.1(4H, m), 2.0(3H, s), 2.08(3H, s), 2.6-3.2(3H, m), 3.20(3H, s), 4.85(2H, br. d, J=12.6Hz), 7.27(5H, m), 8.26(1H, s)
40	420	54	Oil	1.4-1.9(4H, m), 1.94(3H, s), 2.5-3.05(3H, m), 3.42(3H, s), 4.71(2H, br. d, J=12.6Hz), 7.0-7.6(10H, m), 8.05(1H, s)

- to be continued -

55

50

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, Sppm)
10	428	55	Oil	1.3-2.1(4H, m), 2.5-3.0(3H, m), 3.51(3H, d, J=0.5Hz), 4.60(1H, br. d, J=12.6Hz), 7.0-7.6(10H, m), 8.0(1H, d, J=2Hz)
15	600	67	Oil	1.2-1.7(6H, m), 3.12(4H, m), 3.61(3H, s), 6.09(1H, d, J=7.2Hz), 7.1-7.5(5H, m), 8.0(1H, d, J=7.2Hz)
25	608	57	Oil	0.5-1.0(2H, m), 0.87(3H, d, J=5.2Hz), 1.3-1.7(3H, m), 2.3-2.7(2H, m), 3.61(3H, s), 3.5-3.9(2H, br. d, J=12.6Hz), 6.10(1H, d, J=7.2Hz), 7.1-7.5(5H, m), 8.0(1H, d, J=7.2Hz)
35	616	55	143-145	0.84(9H, s), 0.9-1.6(5H, m), 2.44(2H, m), 3.61(3H, s), 3.87(2H, br. d, J=12.6Hz). 6.10(1H, d, J=5.2Hz), 7.2-7.5(5H, m), 8.0(1H, d, J=5.2Hz)
40	624	67	Oil	1.0-1.9(4H, m), 2.4-2.9(3H, m), 3.64(3H, s), 3.95(2H, br. d, J=12.6Hz), 6.16(1H, d, J=5.2Hz), 7.0-7.55(10H, m), 8.07(1H, d, J=5.2Hz)
4 5	632	67	Oil	1.35(3H, t, J=7.2Hz), 1.0-1.9(4H, m), 2.4-2.9(3H, m), 3.97(2H, br. d, J=12.6Hz), 4.22(2H, q, J=7.2Hz), 6.15(1H, d, J=7.2Hz), 7.0-7.6(10H, m), 8.05(1H, d, J=7.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, 5 ppm)
15	640	52	Oil	0.99(3H, t, J=7.2Hz), 1.0-2.0(6H, m), 2.4-2.9(3H, m), 3.99(2H, br. d, J=12.9Hz), 4.0-4.3(2H, m), 6.15(1H, d, J=7.2Hz), 7.0-7.6(10H, m), 8.04(1H, d, J=7.2Hz)
20	648	63	Oil	1.0-2.0(4H, m), 1.46(3H, s), 1.54(3H, s), 2.5-3.0(3H, m), 4.15(2H, br. d, J=12.6Hz), 5.13(1H, m), 6.19(1H, d, J=7.2Hz), 7.0-7.6(10H, m), 8.04(1H, d, J=7.2Hz)
30	658	88	Oil	1.0-1.85(4H, m), 2.4-2.80(3H, m), 3.95(2H, br. d, J=12.6Hz), 5.38(2H, s), 6.10(1H, d, J=5.2Hz), 7.0-7.60(15H, m), 7.98(1H, d, J=5.2Hz)
35 40	664	71	160-162	1.0-2.0(4H, m), 2.4-2.9(3H, m), 3.62(3H, s), 3.99(2H, br. d, J=12.6Hz), 6.16(1H, d, J=5.2Hz), 7.0-7.5(9H, m), 8.05(1H, d, J=5.2Hz)
45	672	60	153-154	1.0-2.0(4H, m), 2.5-2.9(3H, m), 3.65(3H, s), 4.0(2H, br. d, J=12.6Hz), 6.20(1H, d, J=7.2Hz), 7.0-7.5(5H, m), 7.56(2H, d, J=10.8Hz), 8.01(1H, d, J=7.2Hz), 8.14(2H, d, J=10.8Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, 5 ppm)
15	680	59	Oil	1.4-2.0(4H, m), 2.5-3.0(3H, m), 3.56(3H, s), 4.22(2H, br. d, J=12.6Hz), 6.25(1H, d, J=5.2Hz), 6.36(1H, dd, J=4.0, 1.0Hz), 6.88(1H, d, J=4.0Hz), 7.0-7.5(6H, m), 8.08(1H, d, J=5.2Hz)
25	688	41	Oil	0.8-1.8(5H, m), 2.3-2.8(4H, m), 3.51(3H, s), 4.45(2H, br. d, J=12.6Hz), 6.07(1H, d, J=5.2Hz), 7.0-7.6(10H, m), 8.02(1H, d, J=5.2Hz)
30 35	696	69	99-101	2.0(2H, m), 2.48(3H, s), 2.79(2H, t, J=5.2Hz), 3.48(3H, s), 3.97(2H, t, J=5.2Hz), 6.80(1H, d, J=5.2Hz), 7.0-7.5(4H, m), 8.13(1H, d, J=5.2Hz)
40	252	38	Oil	1.3-2.0(4H, m), 2.4-3.0(3H, m), 3.47(3H, s), 4.59(2H, br. d, J=12.6Hz), 6.47(1H, d, J=5.2Hz), 7.0-7.6(9H, m), 8.13(1H, d, J=5.2Hz)
4 5	284	38	136-138	1.2-2.0(4H, m), 2.4-3.0(3H, m), 3.53(3H, s), 4.59(2H, br. d, J=12.6Hz), 6.15(1H, d, J=5.2Hz), 6.95-7.60(14H, m), 8.05(2H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, Sppm)
10	137	95	Oil	0.88(3H, d, J=7Hz), 1.1-2.8(7H, m), 3.50(3H, s), 4.28(2H, m), 6.03(1H, d, J=5Hz), 7.34(5H, m), 7.99(1H, d, J=5Hz)
15	145	38	Oil	0.7-2.8(12H, m), 3.49(3H, s), 4.40(2H, m), 6.02(1H, d, J=5Hz), 7.32(5H, m), 7.96(1H, d, J=5Hz)
20	147	96	Oil	0.88(6H, d, J=7Hz), 1.0-2.9(8H, m), 3.50(3H, s), 4.47(2H, m), 6.04(1H, d, J=5Hz), 7.34(5H, m), 8.00(1H, d, J=5Hz)
<i>25</i> <i>30</i>	153	38	Oil	1.04(3H, d, J=7Hz), 1.54(6H, m), 2.76(1H, m), 3.49(3H, s), 4.28(1H, m), 4.70(1H, m), 6.02(1H, d, J=5Hz), 7.32(5H, m), 7.98(1H, d, J=5Hz),
35	171-2	56	126-129	1.2-2.0(4H, m), 2.32(3H, s), 2.5-3.0(3H, m), 3.52(3H, s), 4.65(2H, br. d, J=12.6Hz), 6.08(1H, d, J=5.2Hz), 6.98-7.42(9H, m), 8.01(1H, d, J=5.2Hz)
40	2000	95	Oil	0.87(6H, d, J=7Hz), 1.1-3.4(6H, m), 3.50(3H, s), 4.36(2H, m), 6.06(1H, d, J=5Hz), 7.36(5H, m), 8.02(1H, d, J=5Hz)
45 50	2008	50	Oil	1.4-2.0(4H, m), 2.38(3H, s), 2.5-3.1(3H, m), 3.44(3H, s), 4.75(2H, br. d, J=12.6Hz), 6.80(1H, d, J=5.2Hz), 7.0-7.4(7H, m), 7.66(2H, d, J=7.2Hz), 8.09(1H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	l _{H-NMR} spectrum (CDCl ₃ solution, Σppm)
10	2048	37	Oil	8.00(1H, d, J=5Hz), 7.2-7.5(5H, m), 6.12(1H, d, J=5Hz), 4.4-4.7(2H, m), 3.50(3H, s), 1.1-3.0(17H, m)
20	2056	89	Oil	8.00(1H, d, J=5Hz), 7.2-7.5(5H, m), 6.08(1H, d, J=5Hz), 3.7-4.3(4H, m), 3.50(3H, s), 2.9-3.3(2H, m), 1.0-2.0(4H, m)
25	2064	47	Oil	8.00(1H, d, J=5Hz), 7.2-7.6(5H, m), 6.18(1H, d, J=5Hz), 4.2-4.5(2H, m), 3.60(3H, s), 1.0-4.0(12H, m)
35	2074	35	Oil	8.12(2H, d, J=7Hz), 7.88(1H, d, J=5Hz), 7.35(1H, d, J=7Hz), 6.22(1H, d, J=5Hz), 7.2-7.6(5H, m), 4.8-5.0(2H, m), 3.64(3H, s), 2.7-3.1(2H, m), 1.1-2.0(5H, m)
40	2080	16	Oil	8.02(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.29(1H, d, J=7Hz), 4.0-4.6(2H, m), 2.49(3H, s), 0.8-3.2(14H, m)
50	2088	38	Oil	8.03(1H, d, J=7Hz), 7.2-7.5(5H, m), 6.28(1H, d, J=7Hz), 3.47(3H, s), 3.08(3H, s), 1.6-3.8(10H, m)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, 5 ppm)
10	2096	36	Oil	8.03(1H, d, J=5Hz), 7.2-7.6(5H, m), 6.58(1H, d, J=5Hz), 4.5-4.8(2H, m), 4.18(2H, q, J=7Hz), 1.50(3H, s), 1.5-3.0(7H, m), 1.30(3H, t, J=2Hz)
20	2112	95	Oil	0.96(6H, s), 1.26(4H, m), 3.48(3H, s), 3.50(4H, m), 6.02(1H, d, J=5Hz), 7.32(5H, m), 7.98(1H, d, J=5Hz)
25	2120	44	Oil	0.85(3H, t, J=7Hz), 1.47(4H, m), 2.79(2H, m), 3.1-3.7(6H, m), 6.08(1H, d, J=5Hz), 7.30(10H, m), 8.04(1H, d, J=5Hz)
30	2128	28	Oil	1.4-2.1(4H, m), 2.5-3.1(3H, m), 3.54(3H, s), 4.73(2H, br. d, J=12.6Hz), 6.24(1H, d, J=5.4Hz), 6.92(1H, dd, J=5.4, 3.6Hz), 7.0-7.5(7H, m), 8.08(1H, d, J=5.4Hz)
40	2136	93	Oil	1.3-2.0(4H, m), 2.45-3.0(3H, m), 3.52(3H, s), 4.48(2H, br. d, J=12.6Hz), 6.13(1H, d, J=5.4Hz), 7.0-7.4(6H, m), 7.75(1H, m), 8.10(1H, d, J=5.4Hz), 8.54(2H, m)
45	2144	53	Oil	8.00(1H, d, J=7Hz), 7.2-7.5(5H, m), 6.13(1H, d, J=7Hz), 4.3-4.5(2H, m), 2.0-3.8(7H, m), 3.10(6H, s), 3.36(3H, s)

- to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	l _H -NMR spectrum (CDCl ₃ solution, δ ppm)
10	2152	40	Oil	8.00(1H, d, J=7Hz), 7.2-7.5(5H, m), 6.38(1H, d, J=7Hz), 3.38(3H, s), 4.0-4.8(2H, m), 0.8-2.04(14H, m)
20	2160	45	Oil	8.00(1H, d, J=5Hz), 7.2-7.6(5H, m), 6.10(1H, d, J=5Hz), 4.1-4.4(2H, m), 3.58(3H, s), 1.0-3.5(10H, m)
25	2170	42	Oil	1.2-3.1(7H, m), 3.51(3H, s), 3.89(1H, m), 4.40(2H, m), 6.19(1H, d, J=5Hz), 7.2-7.9(10H, m), 8.01(1H, d, J=5Hz)
35	2178	85	Oil	1.5-3.1(6H, m), 3.51(3H, s), 3.90(1H, m), 4.74(2H, m), 6.02(1H, d, J=5Hz), 6.50(2H, d, J=8Hz), 7.24(7H, m), 7.96(1H, d, J=8Hz)
40	2184	56	Oil	(CDCl ₃ -CD ₃ OD) 1.2-3.3(7H, m), 3.50(3H, s), 4.46(2H, m), 6.20(1H, d, J=5Hz), 7.36(5H, m), 8.01(1H, d, J=5Hz)
45	2192	50	Oil	1.4-3.3(6H, m), 3.56(3H, s), 4.2-4.7(3H, m), 6.60(1H, d, J=7Hz), 7.1-7.9(14H, m), 7.96(1H, d, J=7Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDC13 solution, 5 ppm)
15	2198	42	Oil	(CDC1 ₃ -CD ₃ OD) 1.4-3.3(7H, m), 3.53(3H, s), 4.42(2H, m), 6.72(1H, d, J=7Hz), 7.3-7.9(10H, m), 7.98(1H, d, J=7Hz)
20	2206	45	Oil	1.61(6H, br. s), 1.4-2.1(4H, m), 2.55-3.15(3H, m), 3.22(3H, s), 3.40(4H, br. s), 4.87(2H, br. d, J=12.6Hz), 5.97(1H, d, J=5.2Hz), 7.24(5H, m), 8.0(1H, d, J=5.2Hz)
30	2214	26	131-132	1.5-2.2(4H, m), 2.5-3.3(3H, m), 3.40(3H, s), 4.80(2H, br. d, J=12.6Hz), 6.16(1H, d, J=5.2Hz), 6.89-7.65(10H, m), 8.20(1H, d, J=5.2Hz), 12.23(1H, br,s)
40	2222	60	46-49	7.9-8.1(3H, m), 7.2-7.6(8H, m), 6.10(1H, d, J=5Hz), 5.0-5.2(1H, m), 3.8-4.1(2H, m), 3.50(3H, s), 1.8-2.0(6H, m)
4 5	2230	97	Oil	1.26-2.10(4H, m), 2.30(3H, s), 2.39(4H, m), 2.5-3.20(3H, m), 3.21(3H, s), 3.47(4H, m), 4.85(2H, br. d, J=12.6Hz), 5.96(1H, d, J=5.2Hz), 7.20(5H, m), 8.0(1H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1 H-NMR spectrum (CDC1 $_3$ solution, $_5$ ppm)
10	2238	69	Oil	1.35(3H, t, J=7.2Hz), 1.4-2.15(4H, m), 2.55-3.20(3H, m), 3.44(3H, s), 4.25(2H, q, J=7.2Hz), 4.86(2H, br. d, J=12.6Hz), 7.23(6H, m), 8.12(1H, d, J=5.2Hz)
20	2246	13	Oil	1.2-3.4(7H, m), 3.56(3H, s), 3.92(2H, s), 4.74(2H, m), 6.50(1H, d, J=7Hz), 7.18(10H, m), 8.18(1H, d, J=7Hz)
25	2254	45	Oil	0.94(3H, t, J=7Hz), 1.52(6H, m), 2.02(2H, m), 2.79(4H, m), 3.50(3H, s), 4.50(2H, m), 5.04(2H, m), 6.09(1H, d, J=7Hz), 7.36(5H, m), 7.98(1H, d, J=7Hz)
30	2264	90	Oil	1.1-1.6(4H, m), 2.4-2.9(3H, m), 3.46(3H, s), 4.50(2H, m), 6.06(1H, d, J=5Hz), 7.28(15H, m), 7.94(1H, d, J=5Hz)
35	2274	62	112-115	1.35-2.10(4H, m), 2.50-3.10(3H, m), 3.0(3H, s), 4.74(2H, s), 4.88(2H, br. d, J=12.6Hz), 5.79(1H, d, J=5.2Hz), 7.22(10H, m), 7.90(1H, d, J=5.2Hz)
45	2282	67	Oil	1.45-2.15(4H, m), 2.55-3.20(3H, m), 3.40(3H, s), 4.82(2H, br. d, J=12.6Hz), 5.05(2H, s), 6.37(1H, d, J=5.2Hz), 6.70-7.10(3H, m), 7.10-7.45(7H, m),
50				8.25(1H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, 5 ppm)
10	2290	42	Oil	1.4-2.1(4H, m), 2.96(6H, s), 2.58-3.20(3H, m), 3.20(3H, s), 4.85(2H, br. d, J=12.6Hz), 5.92(1H, d, J=5.2Hz), 7.22(5H, m), 8.02(1H, d, J=5.2Hz)
20	2298	56	Oil	1.15(6H, m), 1.4-2.1(4H, m), 2.5-3.2(3H, m), 3.18(3H, s), 3.35(4H, m), 4.88(2H, br. d, J=12.6Hz), 5.90(1H, d, J=5.2Hz), 7.22(5H, m), 7.98(1H, d, J=5.2Hz)
30	2306	75	Oil	1.76(4H, m), 2.92(2H, m), 3.36(1H, m), 3.51(3H, s), 4.52(2H, m), 6.52(1H, d, J=7Hz), 7.39(7H, m), 7.86(2H, d, J=7Hz), 8.02(1H, d, J=7Hz)
35	2314	26	Oil	1.2-2.0(4H, m), 2.1-2.9(3H, m), 3.90(3H, s), 4.32(2H, m), 6.70(1H, d, J=7Hz), 7.0-7.7(10H, m), 8.23(1H, d, J=7Hz)
40 45	2322	77	Oil	1.4-2.1(4H, m), 2.5-3.4(3H, m), 3.24(3H, s), 3.57(8H, m), 4.88(2H, br. d, J=12.6Hz), 6.0(1H, d, J=5.4Hz), 7.23(5H, m), 8.04(1H, d, J=5.4Hz)
50	2330	59	119-121	1.4-2.1(4H, m), 2.6-3.2(3H, m), 3.61(3H, s), 4.89(2H, br. d, J=12.6Hz), 7.0-7.5(11H), 8.16(1H, d, J=5.4Hz)

⁻ to be continued -

Table 3 (continued)

5 ¹H-NMR spectrum (CDC1₃ solution, δ ppm) Com-Yield Melting pound (8) point No. (°C) 10 8.02(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.38(1H, d, J=7Hz), 3.36(3H, s), 1.0-3.5(13H, m) 2338 23 Oil 15 8.00(1H, d, J=7Hz), 7.2-7.9(10H, m), 6.48(1H, d, J=7Hz), 4.2-4.5(2H, m), 3.38(3H, s), 1.4-3.8(7H, m) 2346 Oil 54 20

- to be continued -

25

30

35

40

45

50

Table 3 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC1 ₃ solution, 5 ppm)
15	154-1	61	Oil	1.4-2.2(4H, m), 2.6-3.2(3H, m), 3.36(3H, s), 3.43(3H, s), 4.43(2H, s), 4.84(2H, br. d, J=12.6Hz), 6.44(1H, d, J=5.2Hz), 7.22(5H, m), 8.22(1H, d, J=5.2Hz)
20	171-4	64	Oil	1.37(3H, t, J=7.2Hz), 1.4-2.1(4H, m), 2.5-3.05(3H, m), 3.52(3H, s), 3.98(2H, q, J=7.2Hz), 4.69(2H, br. d, J=12.6Hz), 6.03(1H, d, J=5.2Hz), 6.76(2H, m), 7.0-7.6(7H, m), 8.0(1H, d, J=5.2Hz)
30	297	60	Oil	1.80(4H, m), 2.90(3H, m), 4.92(2H, m), 6.64(1H, d, J=5Hz), 7.20(5H, m), 7.80(4H, m), 8.39(1H, d, J=5Hz)
35	305	90	Oil	1.76(4H, m), 2.90(2H, m), 3.40(1H, m), 3.51(3H, s), 4.49(2H, m), 6.11(1H, d, J=5Hz), 7.40(8H, m), 7.92(2H, m), 8.01(1H, d, J=5Hz)
40	307	19	Oil	8.01(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.10(1H, d, J=7Hz), 4.2-4.4(2H, m), 1.2-3.8(10H, m), 3.35(3H, s)
50	241	69	Oil	1.1-2.1(4H, m), 2.5-3.0(3H, m), 3.50(3H, s), 4.60(2H, br. d, J=12.6Hz), 6.04(1H, d, J=5.2Hz), 6.8-7.7(9H, m), 8.04(1H, d, J=5.2Hz)

⁻ to be continued -

Table 3 (continueà)

_				
5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, 5 ppm)
10	149	87	103-105	0.5-1.8(5H, m), 0.88(3H, d, J=5.2Hz), 2.3-2.8(2H, m), 4.15(2H, br. d, J=12.6Hz), 6.06(1H, d, J=5.2Hz), 7.1-7.8(10H, m), 8.08(1H, d, J=5.2Hz)
20	171-8	79	Oil	1.2-2.0(4H, m), 2.4-3.0(3H, m), 3.52(3H, s), 4.51(2H, br. d, J=12.6Hz), 6.32(1H, d, J=5.2Hz), 6.76-7.65(9H, m), 8.1(1H, d, J=5.2Hz)
25	171-10	62	Oil	1.2-2.1(4H, m), 2.5-3.0(3H, m), 3.49(3H, s), 4.53(2H, br. d, J=12.6Hz), 6.36(1H, d, J=5.2Hz), 7.0-7.5(8H, m), 8.12(1H, d, J=5.2Hz)
35	171-1	26	Oil	1.3-2.1(4H, m), 2.5-3.0(3H, m), 3.47(3H, s), 4.85(2H, d, J=12.6Hz), 6.35(1H, d, J=5.2Hz), 6.90(1H, d, J=15.4Hz), 7.0-7.6(10H, m), 7.65(1H, d, J=15.4Hz), 8.20(1H, d, J=5.2Hz)

- to be continued -

Table 3 (continued)

5	
10	
15	
13	
20	

25

Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, 5 ppm)
171-6	41	Oil	1.4-2.0(4H, m), 2.34(3H, s), 2.5-3.0(3H, m), 3.46(3H, s), 4.64(2H, br. d, J=12.6Hz), 6.32(1H, d, J=5.2Hz), 7.0-7.4(9H, m), 8.04(1H, d, J=5.2Hz)
171-12	71	113-116	1.1-2.1(4H, m), 2.4-3.0(3H, m), 3.49(3H, s), 4.51(2H, br. d, J=12.6Hz), 6.1(1H, d, J=5.2Hz), 7.0-7.7(8H, m), 8.1(1H, d, J=5.2Hz)

EXAMPLE 2

4-(N-methylbenzamino)-2-(4-phenylpiperidino)pyrimidine p-toluenesulfonate (compound No. 168):-

A solution of 3.0 g (0.022 mole) of p-toluenesulfonic acid monohydrate in 300 ml of ethyl acetate was slowly added at room temperature to a solution of 6.0 g (0.022 mole) of 4-(N-methylbenzamino)-2-(4-phenylpiperidino)pyrimidine in 100 ml of ethyl acetate. As soon as the addition was effected, a suspension was formed. After the end of the addition, the suspension was stirred for 10 minutes. The resulting solid was separated by filtration, washed with ethyl acetate and ether, and dried to give 6.8 g (yield 83 %) of the desired compound.

Melting point:

180-182 °C.

 $^{1}\text{H-NMR}$ spectrum (deuterochloroform, δ ppm): 1.4-2.1(4H, m), 2.35(3H, s), 2.6-3.3(3H, m), 3.56(3H, s), 4.55(2H, br. d, J=12.6 Hz), 6.60(1H, d, J=7.2 Hz), 7.0-7.9(14H, m), 8.36 (1H, d, J=7.2Hz).

50

45

In the same way as above, the following compounds were produced and thier data are shown in Table 4.

Table 4

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDC1 ₃ solution, S ppm)
10	104	100	54-58	2.33(3H, s), 2.8-3.5(6H, m), 3.50(3H, s), 6.64(1H, d, J=7.2Hz) 7.13(2H, d, J=7.2Hz), 7.50(5H, m,), 7.75(2H, d, J=7.2Hz) 8.24(1H, d, J=7.2Hz)
20	112	100	Oil	0.90(6H, m), 1.0-1.8(8H, m), 2.35(3H, s), 3.2-3.7(4H, m), 3.5(3H, s), 6.58(1H, d, J=7.2Hz), 7.13(2H, d, J=7.2Hz), 7.3-7.7(5H, m), 7.76(2H, d, J=7.2Hz) 8.36(1H, d, J=7.2Hz)
25	120	82	125-126	2.0(4H, m), 2.35(3H, s), 3.44(2H, m), 3.52(3H, s), 3.72(2H, m), 6.56(1H, d, J=7.2Hz), 7.15(2H, d, J=7.2Hz), 7.2-7.7(5H, m), 7.78(2H, d, J=7.2Hz), 8.22(1H, d, J=7.2Hz)
35	128	90	149-150	1.72(6H, br. s), 2.37(3H, s), 2.48(3H, s), 3.50(3H, s), 3.84(4H, br. s), 7.18(2H, d, J=7.5Hz), 7.44(1H, d, J=7.2Hz), 7.81(2H, d, J=7.5Hz), 8.38(1H, d, J=7.2Hz)
45	136	79	48-52	1.63(6H, br. s), 2.36(3H, s), 3.52(3H, s), 3.64(4H, br, s), 6.56(1H, d, J=7.2Hz), 7.16(2H, d, J=7.2Hz), 7.55(5H, m), 7.79(2H, d, J=7.2Hz), 8.30(1H, d, J=7.2Hz)
50	144	90	49-51	0.94(3H, d, J=5.2Hz), 0.8-1.90(5H, m), 2.36(3H, s),

⁻ to be continued -

Table 4 (continued)

5 ·	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, ppm)
15	144	90	49-51	2.8-3.2(2H, m), 3.52(3H, s), 4.32(2H, br. d, J=12.6Hz), 6.6(1H, d, J=7.2Hz), 7.16(2H, d, J=7.2Hz), 7.3-7.7(5H, m), 7.8(2H, d, J=7.2Hz), 8.3(1H, d, J=7.2Hz)
20	152	72	52-56	0.85(9H, s), 1.0-2.0(5H, m), 2.36(3H, s), 2.5-3.2(2H, m), 3.52(3H, s), 4.44(2H, br. d, J=12.6Hz), 6.58(1H, d, J=7.2Hz), 7.16(2H, d, J=7.2Hz), 7.3-7.7(5H, m), 7.8(2H, d, J=7.2Hz) 8.28(1H, d, J=7.2Hz)
30	160	80	206-207	1.3-2.1(4H, m), 2.32(3H, s), 2.5-3.3(3H, m), 4.76(2H, br. d, J=12.6Hz), 7.0-8.4(16H, m)
35	176	75	68-72	1.36(3H, t, J=7.2Hz), 1.4-2.1(4H, m), 2.33(3H, s), 2.5-3.3(3H, m), 4.12(2H, q, J=7.2Hz), 4.42(2H, br. d, J=12.6Hz), 6.34(1H, d, J=7.2Hz), 7.0-7.9(12H, m), 8.32(1H, d, J=7.2Hz)
45	184	85	53-57	1.0(3H, t, J=7.2Hz), 1.4-2.1(6H, m) 2.35(3H, s), 2.5-3.3(3H, m), 4.04(2H, m), 4.42(2H, br. d, J=12.6Hz), 6.28(1H, d, J=7.2Hz), 7.0-7.7(14H, m), 8.35(1H, d, J=7.2Hz)

⁻ to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, § ppm)
10	192	80	59-62	1.2-2.0(4H, m), 2.31(3H, s), 2.5-3.2(3H, m), 4.34(2H, m), 5.28(2H, s), 6.33(1H, d, J=7.2Hz), 7.0-7.8(19H, m), 8.25(1H, d, J=7.2Hz)
20	200	79	98-105	1.4-2.0(4H, m), 2.32(6H, s), 2.5-3.2(3H, m), 2.92(3H, s), 2.98(3H, s), 2.98(3H, s), 3.50(2H, m), 4.40(2H, br. d, J=12.6Hz), 4.60(2H, m), 6.40(1H, d, J=5.2Hz), 7.0-7.8(18H, m), 8.10(1H, d, J=5.2Hz), 10.80(1H, m)
30	208	90	172-174	1.6-2.2(4H, m), 2.35(3H, s), 2.48(3H, s), 2.6-3.5(3H, m), 3.52(3H, s), 4.77(2H, br. d, J=12.6Hz), 7.1-7.9(10H, m), 8.42(1H, d, J=7.2Hz)
35	216	86	154-156	1.24(6H, d, J=7.0Hz), 1.4-2.2(4H, m), 2.32(3H, s), 2.6-3.4(4H, m), 3.51(3H, s), 4.75(2H, br. d, J=12.6Hz), 7.12(2H, d, J=7.2Hz), 7.20(5H, m), 7.36(1H, d, J=7.2Hz), 7.76(2H, d, J=7.2Hz), 8.34(1H, d, J=7.2Hz)
45 50	224	86	158-160	1.40(9H, s), 1.5-2.2(4H, m), 2.34(3H, s), 2.6-3.3(3H, m), 3.38(3H, s), 4.76(2H, br. d, J=12.6Hz), 6.56(1H, d, J=7.2Hz), 7.0-7.4(7H, m), 7.82(2H, d, J=7.2Hz) 8.30(1H, d, J=7.2Hz)

⁻ to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDC13 solution, \$\int \text{ppm})
10	232	100	49-52	1.0-2.3(14H, m), 2.33(3H, s), 2.6-3.5(4H, m), 3.48(3H, s), 4.75(2H, br. d, J=12.6Hz), 7.12(2H, d, J=7.2Hz), 7.0-7.5(6H, m), 7.76(2H, d, J=7.2Hz), 8.32(1H, d, J=7.2Hz)
20	240	77	132-134	1.4-2.1(4H, m), 2.36(3H, s), 2.6-3.3(3H, m), 3.55(3H, s), 4.52(2H, br. d, J=12.6Hz), 6.67(1H, d, J=7.2Hz), 7.16(2H, d, J=7.2Hz), 7.0-7.7(9H, m), 7.81(2H, d, J=7.2Hz), 8.44(1H, d, J=7.2Hz)
30	248	84	168-170	1.2-2.1(4H, m), 2.32(3H, s), 2.5-3.4(3H, m), 3.51(3H, s), 4.48(2H, br. d, J=12.6Hz), 6.69(1H, d, J=7.2Hz), 7.12(2H, d, J=7.2Hz), 7.0-7.65(9H, m), 7.76(2H, d, J=7.2Hz), 8.40(1H, d, J=7.2Hz)
40	264	95	189-190	1.2-2.0(4H, m), 2.34(3H, s), 2.5-3.3(3H, m), 3.55(3H, s), 4.40(2H, br. d, J=12.6Hz), 6.85(1H, d, J=7.2Hz), 7.0-7.5(7H, m), 7.77(4H, d, J=7.2Hz), 8.31(2H, d, J=7.2Hz), 8.52(1H, d, J=7.2Hz)
50	272	84	56-60	1.4-2.0(4H, m), 2.33(3H, s), 2.6-3.25(3H, m), 3.54(3H, s), 3.84(3H, s), 4.65(2H, br. d, J=12.6Hz),

⁻ to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1 _{H-NMR} spectrum (CDC1 ₃ solution, ppm)
10	272	84	56-60	6.38(1H, d, J=7.2Hz), 6.92(2H, d, J=8.5Hz), 7.23(7H, m), 7.59(2H, d, J=8.5Hz), 7.80(2H, d, J=7.2Hz), 8.22(1H, d, J=7.2Hz)
20	280	91	174-76	1.4-2.2(4H, m), 2.32(3H, s), 2.5-3.4(3H, m), 3.51(3H, s), 3.86(6H, s), 3.91(3H, s), 4.65(2H, br. d, J=12.6Hz), 6.69(1H, d, J=7.2Hz), 6.85(2H, s), 7.0-7.4(7H, m), 7.76(2H, s), 8.30(1H, d, J=7.2Hz)
30	296	91	174-78	1.4-2.2(4H, m), 2.35(3H, s), 2.6-3.3(3H, m), 3.58(3H, s), 4.69(2H, br. d, J=12.6Hz), 6.55(1H, d, J=7.2Hz), 6.60(1H, m), 7.0-7.5(8H, m), 7.56(1H, m), 7.8(2H, d, J=7.2Hz), 8.36(1H, d, J=7.2Hz)
35 40	304	100	54-58	0.8-2.0(5H, m), 2.33(3H, s), 2.51(2H, d, J=7.2Hz), 2.6-3.2(2H, m), 3.49(3H, s), 4.35(2H, br. d, J=12.6Hz), 6.57(1H, d, J=7.2Hz), 7.0-7.9(14H, m), 8.28(1H, d, J=7.2Hz),
45	312	78	182-184	2.37(3H, s), 2.51(3H, s), 3.01(2H, t, J=5.2Hz), 3.57(3H, s), 4.04(2H, t, J=5.2Hz), 4.95(2H, s), 7.20(2H, d, J=7.2Hz), 7.25(4H, s), 7.54(1H, d, J=7.2Hz), 7.94(2H, d, J=7.2Hz), 8.40(1H, d, J=7.2Hz)

⁻ to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, § ppm)
10	320	81	49-51	1.9-2.3(2H, m), 2.36(3H, s), 2.40(3H, s), 2.72(2H, t, J=5.2Hz), 3.38(3H, s), 4.04(2H, t, J=5.2Hz), 7.20(5H, m), 7.50(1H, m), 7.76(3H, m), 8.53(1H, d, J=5.2Hz)
20	328	75	136-138	2.04(2H, q, J=5.2Hz), 2.38(3H, s), 2.73(2H, t, J=5.2Hz), 3.43(3H, s), 3.99(2H, t, J=5.2Hz), 6.88(1H, d, J=7.2Hz), 7.20(5H, m), 7.50(6H, m), 7.80(2H, d, J=7.2Hz), 8.50(1H, d, J=7.2Hz)
<i>25</i>	336	100	58-62	2.36(3H, s), 3.52(3H, s), 3.68(8H, br. s), 6.69(1H, d, J=7.0Hz) 7.15(2H, d, J=7.2Hz), 7.52(5H, m), 7.75(2H, d, J=7.2Hz), 8.28(1H, d, J=7.0Hz)

- to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, § ppm)
15	384	80	157-158	1.67(6H, br. s), 2.31(3H, s), 2.46(3H, s), 2.71(3H, s), 3.48(3H, s), 3.76(4H, m), 6.33(1H, s), 7.14(2H, d, J=7.2Hz), 7.80(2H, d, J=7.2Hz)
20	392	85	159-161	1.6-2.2(4H, m), 2.34(3H, s), 2.48(3H, s), 2.71(3H, s), 2.7-3.4(3H, m), 3.50(3H, s), 4.87(2H, br. d, J=12.6Hz), 7.14(2H, d, J=7.2Hz), 7.30(6H, m), 7.80(2H, d, J=7.2Hz)
25 30	400	94	60-65	1.4-2.1(4H, m), 2.32(3H, s), 2.64(3H, s), 2.6-3.3(3H, m), 3.52(3H, s), 4.64(2H, br. d, J=12.6Hz), 6.51(1H, s), 7.15(2H, d, J=7.2Hz), 7.0-7.7(10H, m), 7.80(2H, d, J=7.2Hz)

- to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDCl ₃ solution, ∫ ppm)
10	408	83	50-55	1.64(6H, br. s), 2.04(3H, d, J=1.0Hz), 2.39(3H, s), 3.48(3H, s), 3.70(4H, br. s), 7.20(2H, d, J=7.2Hz), 7.52(5H, m), 7.80(2H, d, J=7.2Hz), 8.33(1H, s)
20	416	80	58-62	1.6-2.2(4H, m), 2.09(3H, m), 2.29(3H, s), 2.35(3H, s), 2.6-3.5(3H, m), 3.36(3H, s), 4.79(2H, br. d, J=12.6Hz), 7.18(2H, d, J=7.2Hz), 7.30(5H, m), 7.84(2H, d, J=7.2Hz), 8.46(1H, s),
25 30	424	94	68-72	1.4-2.2(4H, m), 2.06(3H, s), 2.35(3H, s), 2.6-3.4(3H, m), 3.49(3H, s), 4.62(2H, br. d, J=12.6Hz), 7.0-7.7(12H, m), 7.81(2H, d, J=8.5Hz), 8.37(1H, s)
35 40	432	80	146-148	1.3-2.2(4H, m), 2.36(3H, s), 2.5-3.4(3H, m), 3.58(3H, d, J=1.0Hz), 4.56(2H, br. d, J=12.6Hz), 7.0-7.9(14H, m), 8.44(1H, d, J=5.2Hz)
45	604	100	44-48	1.2-1.8(6H, m), 2.36(3H, s), 3.28(4H, m), 3.64(3H, s), 6.50(1H, dd. J=7.2, 1.5Hz), 7.20(2H, d, J=7.2Hz), 7.2-7.6(5H, m), 7.85(2H, d, J=7.2Hz) 8.39(1H, d, J=7.2Hz)

- to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, \int ppm)
15	612	100	44-48	0.5-1.1(2H, m), 0.89(3H, d, J=5.2Hz), 1.4-1.8(3H, m), 2.36(3H, s), 2.3-2.9(2H, m), 3.64(3H, s), 3.85(2H, br. d, J=12.6Hz), 6.53(1H, d, J=7.2Hz), 7.19(2H, d, J=7.2Hz), 7.2-7.6(5H, m), 7.84(2H, d, J=7.2Hz), 8.36(1H, d, J=7.2Hz)
25	620	84	106-110	0.82(9H, s), 0.9-1.8(5H, m), 2.0-3.0(2H, m), 2.36(3H, s), 3.61(3H, s), 4.0(2H, br. d, J=12.6Hz), 6.72(1H, d, J=7.2Hz), 7.18(2H, d, J=7.2Hz), 7.2-7.6(5H, m), 7.84(2H, d, J=7.2Hz), 8.42(1H, d, J=7.2Hz)
35	628	84	160-161	1.0-2.0(4H, m), 2.35(3H, s), 2.4-3.2(3H, m), 3.64(3H, s), 4.05(2H, br. d, J=12.6Hz), 6.72(1H, d, J=7.2Hz), 7.0-7.6(12H, m), 7.84(2H, d, J=7.2Hz), 8.49(1H, d, J=7.2Hz)
4 5	636	83	143-147	1.30(3H, t, J=7.2Hz), 1.0-2.0(4H, m), 2.35(3H, s), 2.4-3.3(3H, m), 4.10(2H, br. d, J=12.6Hz), 4.17(2H, q, J=7.2Hz), 6.80(1H, d, J=7.2Hz), 7.0-7.6(12H, m), 7.84(2H, d, J=7.2Hz), 8.48(1H, d, J=7.2Hz)

⁻ to be continued -

Table 4 (continued)

5				¹ H-NMR spectrum
	Com- pound No.	Yield (%)	Melting point (°C)	(CDCl ₃ solution, ppm)
15	644	96	178-180	0.95(3H, t, J=7.2Hz), 1.4-2.1(6H, m), 2.37(3H, s), 2.5-3.3(3H, m), 3.9-4.3(4H, m), 6.67(1H, d, J=7.2Hz), 7.0-8.0(14H, m), 8.55(1H, d, J=7.2Hz)
20	652	87	66-68	1.0-2.0(4H, m), 1.44(3H, s), 1.52(3H, s), 2.36(3H, s), 2.5-3.3(3H, m), 3.9-4.5(2H, m), 4.76(1H, m), 6.78(1H, d, J=7.2Hz), 7.0-7.7(12H, m), 7.83(2H, d, J=7.2Hz), 8.39(1H, d, J=7.2Hz)
30	660	91	116-120	1.2-2.0(4H, m), 2.33(3H, s), 2.4-3.2(3H, m), 4.04(2H, br. d, J=12.6Hz), 5.36(2H, s), 6.56(1H, d, J=7.2Hz), 6.9-7.9(19H, m), 8.38(1H, d, J=7.2Hz)
35 40	668	82	173-175	0.9-2.0(4H, m), 2.35(3H, s), 2.4-3.3(3H, m), 3.6(3H, s), 4.12(2H, br. d, J=12.6Hz), 6.82(1H, d, J=7.2Hz) 7.0-7.9(13H, m), 8.45(1H, d, J=7.2Hz)
45	676	79	199-200	1.0-2.0(4H, m), 2.36(3H, s), 2.5-3.2(3H, m), 3.64(3H, s), 4.14(2H, br. d, J=12.6Hz), 6.80(1H, d, J=7.2Hz) 6.95-7.50(7H, m), 7.76(4H, m), 8.20(2H, d, J=7.2Hz), 8.46(1H, d, J=7.2Hz)

⁻ to be continued -

Table 4 (continued)

5 .	Com- pound No.	Yield (%)	Melting point (°C)	l _{H-NMR} spectrum (CDCl ₃ solution, ppm)
10 15	684	86	60-66	1.3-2.1(4H, m), 2.33(3H, s), 2.5-3.3(3H, m), 3.60(3H, s), 4.30(2H, br. d, J=12.6Hz), 6.48(1H, dd. J=4.0, 1.0Hz), 6.87(1H, d, J=7.2Hz) 7.0-7.5(9H, m), 7.82(2H, d, J=7.2Hz), 8.52(1H, d, J=7.2Hz)
20	692	100	56-60	0.3-1.9(5H, m), 2.33(3H, s), 2.44(2H, d, J=7.2Hz), 2.2-3.1(2H, m), 3.57(3H, s), 3.89(2H, br. d, J=12.6Hz), 6.64(1H, d, J=7.2Hz), 6.9-7.9(14H, m), 8.40(1H, d, J=7.2Hz)
30	700	96	136-138	2.5(2H, q, J=5.2Hz), 2.32(3H, s), 2.51(3H, s), 2.79(2H, t, J=5.2Hz), 3.58(3H, s), 4.04(2H, t, J=5.2Hz), 6.95(1H, d, J=7.2Hz), 7.11(2H, d, J=7.0Hz), 7.30(4H, s), 7.78(2H, d, J=7.2Hz), 8.58(1H, d, J=7.2Hz)
40	256	100	65-70	1.2-2.2(4H, m), 2.34(3H, s), 2.5-3.4(3H, m), 3.46(3H, s), 4.5(2H, br. d, J=12.6Hz), 6.9-7.6(12H, m), 7.78(2H, d, J=7.2Hz), 8.40(1H, d, J=7.2Hz)
4 5	288	100	80-85	1.2-2.0(4H, m), 2.32(3H, s), 2.5-3.3(3H, m), 3.55(3H, s), 4.47(2H, br. d, J=12.6Hz), 6.62(1H, d, J=7.2Hz) 6.9-7.9(18H, m), 8.33(1H, d, J=7.2Hz)

⁻ to be continued -

Table 4 (continued)

_				
5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, ppm)
10	138	66	121-123	0.88(3H, d, J=7Hz), 1.1-3.1(10H, m) 3.49(3H, s), 4.20(2H, m), 6.54(1H, d, J=7Hz), 7.12(2H, d, J=7Hz), 7.48(5H, m), 7.74(2H, d, J=7Hz), 8.26(1H, d, J=7Hz)
20	146	93	98-102	0.85(3H, t, J=7Hz), 1.0-3.2(15H, m) 3.47(3H, s), 4.26(2H, m), 6.58(1H, d, J=7Hz), 7.10(2H, d, J=7Hz), 7.48(5H, m), 7.72(2H, d, J=7Hz), 8.18(1H, d, J=7Hz)
30	147-1	44	98-100	0.85(6H, d, J=7Hz), 1.0-3.2(11H, m) 3.48(3H, s), 4.37(2H, m), 6.50(1H, d, J=7Hz), 7.10(2H, d, J=7Hz), 7.48(5H, m), 7.74(2H, d, J=7Hz), 8.24(1H, d, J=7Hz)
35	154	68	52-55	1.16(3H, d, J=7Hz), 1.60(5H, m), 2.34(3H, s), 2.5-3.3(2H, m), 3.50(3H, s), 4.18(1H, m), 4.52(1H, m), 6.50(1H, d, J=7Hz), 7.12(2H, d, J=7Hz), 7.48(5H, m), 7.76(2H, d, J=7Hz) 8.28(1H, d, J=7Hz)
4 5	171-3	81	128-129	1.3-2.2(4H, m), 2.33(3H, s), 2.40(3H, s), 2.5-3.4(3H, m), 3.52(3H, s), 4.58(2H, br. d, J=12.6Hz), 6.48(1H, d, J=7.2Hz), 7.0-7.9(13H, m), 8.28(1H, d, J=7.2Hz), 13.0-15.0(1H, m)
	L	l	1	<u></u>

⁻ to be continued -

5	

Table 4 (continued)

Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, ppm)
2004	64	167-169	0.89(6H, d, J=7Hz), 1.3-2.7(9H, m), 3.50(3H, s), 4.26(2H, m), 6.52(1H, d, J=7Hz), 7.13(2H, d, J=7Hz), 7.48(5H, m), 7.76(2H, d, J=7Hz), 8.28(1H, d, J=7Hz)
2012	83	186-187	1.4-2.2(4H, m), 2.33(3H, s), 2.44(3H, s), 2.5-3.4(3H, m), 3.55(3H, s), 4.65(2H, br. d, J=12.6Hz), 7.0-7.5(11H, m), 7.70(4H, m), 8.35(1H, d, J=7.2Hz)

- to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, ppm)
15	2116	78	138-140	0.96(6H, s), 1.36(4H, m), 2.33(3H, s), 3.48(3H, s), 3.60(4H, m), 6.50(1H, d, J=7Hz), 7.12(2H, d, J=7Hz), 7.48(5H, m), 7.74(2H, d, J=7Hz), 8.24(1H, d, J=7Hz)
20	2124	61	145-147	0.91(3H, t, J=7Hz), 1.60(2H, m), 2.34(3H, s), 2.7-4.0(9H, m), 6.54(1H, d, J=7Hz), 7.0-7.6(12H, m) 7.76(2H, d, J=7Hz), 8.37(1H, d, J=7Hz)
25 30	2132	61	175-178	1.4-2.2(4H, m), 2.32(3H, s), 2.6-3.4(3H, m), 3.59(3H, s), 4.68(2H, br. d, J=12.6Hz), 6.63(1H, d, J=7.2Hz) 7.0-7.4(8H, m), 7.45-7.90(4H, m), 8.28(1H, d, J=7.2Hz), 12-14(1H, m)
<i>35</i>	2140	100	82-88	1.1-2.0(4H, m), 2.31(6H, s), 2.4-3.2(3H, m), 3.5(3H, s), 4.18(2H, br. d, J=12.6Hz), 6.81(1H, d, J=7.2Hz), 6.9-7.4(9H, m), 7.55-8.0(5H, m), 8.2-8.6(2H, m), 8.85(1H, d, J=5.2Hz), 9.10(1H, s), 9.62(2H, m)
45	2174	62	94-100	1.2-3.3(10H, m), 3.47(3H, s), 4.34(2H, m), 6.55(1H, d, J=7Hz), 6.9-7.9(14H, m), 8.08(1H, d, J=7Hz)
50	2182	78	>300	1.5-2.1(4H, m), 2.32(3H, s), 2.4-3.2(2H, m), 3.48(3H, s), 4.07-4.7(3H, m), 6.46(1H, d, J=7Hz) 6.72(2H, d, J=7Hz), 7.18(7H, m),

⁻ to be continued -

Table 4 (continued)

5 1				
	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, \sum ppm)
10	2182	78	>300	7.48(2H, d, J=7Hz), 7.68(2H, d, J=7Hz), 7.88(1H, d, J=7Hz)
20	2188	60	151-156	1.4-3.2(10H, m), 3.41(3H, s), 4.40(2H, m), 6.50(1H, d, J=7Hz), 7.08(2H, d, J=7Hz), 7.42(5H, m), 7.66(2H, d, J=7Hz), 7.88(1H, d, J=7Hz)
25	2194	39	106-109	1.4-3.3(10H, m), 3.45(3H, s), 4.52(2H, m), 6.50(1H, d, J=7Hz), 7.0-8.1(19H, m)
30	2202	52	203-207	1.5-3.4(10H, m), 3.46(3H, s), 4.44(2H, m), 6.60(1H, d, J=7Hz), 7.10(2H, d, J=7Hz), 7.2-7.9(13H, m)
35	2210	100	62-66	1.3-2.2(10H, m), 2.31(3H, s), 2.5-3.6(7H, m), 3.25(3H, s), 4.72(2H, br. d, J=12.6Hz), 6.10(1H, d, J=7.2Hz), 7.0-7.4(7H, m), 7.75(2H, d, J=7.2Hz), 8.16(1H, d, J=7.2Hz)
40 45	2218	89	186-187	1.4-2.2(4H, m), 2.31(3H, s), 2.6-3.4(3H, m), 3.49(3H, s), 4.63(2H, br. d, J=12.6Hz), 6.76(1H, d, J=7.2Hz), 6.9-7.8(14H, m), 7.95(1H, d, J=7.2Hz), 10.20(1H, s)
50	2234	94	95-102	1.45-2.15(4H, m), 2.32(6H, s), 2.5-3.2(3H, m), 2.80(3H, s), 3.23(3H, s), 3.35(4H, m),

⁻ to be continued -

Table 4 (continued)

5	Com-	Yield	Melting	1 _{H-NMR} spectrum (
	pound No.	(8)	point (°C)	(CDCl ₃ solution, \sum ppm)
10	2234	94	95-102	3.80(4H, m), 4.60(2H, br. d, J=12.6Hz), 6.62(1H, d, J=7.2Hz),
15	2234	94	93-102	6.96-7.45(9H, m), 7.76(4H, d, J=7.2Hz), 8.23(1H, d, J=7.2Hz)
20	2242	76	116 117	1.40(3H, t, J=7.2Hz), 1.4-2.2(4H, m), 2.34(3H, s), 2.6-3.5(3H, m), 3.48(3H, s), 4.35(2H, q, J=7.2Hz),
25	2242	76	116-117	4.76(2H, br. d, J=12.6Hz), 7.0-7.4(7H, m), 7.6(1H, d, J=7.2Hz), 7.78(2H, d, J=7.2Hz), 8.35(1H, d, J=7.2Hz), 14.0(1H, m)
30 35	2250	30	192-196	1.50-3.40(10H, m), 3.50(5H, s), 4.05(2H, s), 4.70(2H, m), 7.10(2H, d, J=7Hz), 7.23(10H, m), 7.48(1H, d, J=7Hz), 7.76(2H, d, J=7Hz), 8.35(1H, d, J=7Hz)
				0.85(3H, t, J=7Hz), 1.1-2.2(8H, m),
40	2260	45	166-173	2.33(3H, s), 2.82(4H, m), 3.46(3H, s), 5.10(1H, m), 6.28(1H, d, J=7Hz), 7.10(2H, d, J=7Hz), 7.36(5H, m), 7.66(2H, d, J=7Hz), 7.96(1H, d, J=7Hz), 8.76(2H, m)
4 5				1.52(4H, m), 2.30(3H, s), 2.4-3.2(3H, m), 3.42(3H, s),
50	2270	50	168-169	4.40(2H, m), 6.46(1H, d, J=7Hz), 7.04(2H, d, J=7Hz), 7.36(15H, m), 7.66(2H, d, J=7Hz), 8.21(1H, d, J=7Hz)

to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1 H-NMR spectrum (CDC1 $_{3}$ solution, $\left\langle \right\rangle$ ppm)
10	2278	86	163-164	1.4-2.2(4H, m), 2.35(3H, s), 2.5-3.4(6H, m), 4.5-5.0(4H, m), 6.10(1H, d, J=7.2Hz), 7.0-7.5(12H, m), 7.80(2H, d, J=7.2Hz), 8.15(1H, m), 13.15(1H, m)
20	2286	90	204-207 (Decomp.)	1.4-2.15(4H, m), 2.33(3H, s), 2.5-3.3(3H, m), 3.48(3H, s), 4.70(2H, br. d, J=12.6Hz), 5.05(2H, s), 6.7-7.5(13H, m), 7.68(2H, m), 8.35(1H, m)
25 30	2294	100	48-52	1.4-2.15(4H, m), 2.32(3H, s), 2.6-3.2(3H, m), 3.0(6H, s), 3.26(3H, s), 4.73(2H, br. d, J=12.6Hz), 6.10(1H, d, J=7.2Hz), 7.0-7.4(7H, m), 7.76(2H, d, J=7.2Hz), 8.18(1H, d, J=7.2Hz)
35 40	2302	71	50-55	1.21(6H, t, J=7.2Hz), 1.5-2.2(4H, m), 2.32(3H, s), 2.5-3.7(10H, m), 4.70(2H, br. d, J=12.6Hz), 6.08(1H, m), 6.9-7.5(7H, m), 7.76(2H, d, J=7.2Hz), 8.18(1H, m), 13.33(1H, m)
45	2310	60	174-176	1.88(4H, m), 2.32(3H, s), 3.40(3H, m), 3.51(3H, s), 4.32(2H, m), 6.60(1H, d, J=7Hz), 7.10(2H, d, J=7Hz), 7.40(2H, d, J=7Hz), 7.50(5H, m), 7.74(2H, d, J=7Hz), 7.84(2H, d, J=7Hz), 8.24(1H, d, J=7Hz)

⁻ to be continued -

Table 4 (continued)

_				
5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, ppm)
10	2318	67	80-85	1.4-2.1(4H, m), 2.6-3.4(3H, m), 3.92(3H, s), 7.0(1H, d, J=7Hz), 7.18(2H, d, J=7Hz), 7.1-7.8(10H, m) 7.78(2H, d, J=7Hz), 8.50(2H, d, J=7Hz)
20	2322	92	192-194	1.4-2.2(4H, m), 2.32(3H, s), 2.5-3.4(3H, m), 3.29(3H, s), 3.58(8H, m), 4.69(2H, br. d, J=12.6Hz), 6.20(1H, d, J=7.2Hz), 6.95-7.42(7H, m), 7.74(2H, d, J=7.2Hz), 8.23(1H, d, J=7.2Hz)
30	2330	78	160-162	1.4-2.2(4H, m), 2.32(3H, s), 2.6-3.6(3H, m), 3.69(3H, s), 4.79(2H, br. d, J=12.6Hz), 7.0-7.9(15H, m), 8.40(1H, d, J=7.2Hz)
35	154-2	86	191-193	1.4-2.2(4H, m), 2.32(3H, s), 2.5-3.4(3H, m), 3.44(3H, s), 3.47(3H, s), 4.4(2H, s), 4.70(2H, br. d, J=12.6Hz), 7.0-7.4(6H, m), 7.75(2H, d, J=7.2Hz), 8.40(1H, d, J=7.2Hz)
45	171-5	74	172-173	1.41(3H, t, J=7.2Hz), 1.4-2.2(4H, m), 2.32(3H, s), 2.5-3.4(3H, m), 3.52(3H, s), 4.05(2H, q, J=7.2Hz), 4.60(2H, br. d, J=12.6Hz), 6.40(1H, d, J=7.2Hz), 6.89(2H, d, J=7.2Hz), 7.0-7.5(7H, m),
				7.56(2H, d, J=7.2Hz),

⁻ to be continued -

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDC1 ₃ solution, ppm)
10	171-5	74	172-173	7.75(2H, d, J=7.2Hz), 8.22(1H, d, J=7.2Hz)
15	298	70	217-218	1.6-2.2(4H, m), 2.35(3H, s), 2.7-3.5(3H, m), 4.90(2H, m), 7.22(8H, m), 7.88(6H, m), 8.75(1H, d, J=7Hz)
26	306	70	108-110	1.88(4H, m), 2.31(3H, s), 3.42(3H, m), 3.51(3H, s), 4.30(2H, m), 6.58(1H, d, J=7Hz), 7.10(2H, d, J=7Hz), 7.50(8H, m), 7.72(2H, d, J=7Hz), 7.88(2H, m), 8.24(1H, d, J=7Hz)
30	2 42	93	119-122	1.3-2.2(4H, m), 2.33(3H, s), 2.5-3.4(3H, m), 3.52(3H, s), 4.55(2H, br. d, J=12.6Hz), 6.59(1H, d, J=7.2Hz), 7.0-7.5(9H, m), 7.5-8.0(4H, m), 8.35(1H, d, J=7.2Hz)
40	150	100	48-58	0.5-1.8(5H, m), 0.87(3H, d, J=5.2Hz), 2.35(3H, s), 2.4-3.2(2H, m), 3.4-4.5(2H, m), 6.22(1H, d, J=7.2Hz), 7.0-7.9(14H, m), 8.28(1H, d, J=7.2Hz)

⁻ to be continued -

92

50

45

Table 4 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1 H-NMR spectrum (CDCl ₃ solution, β ppm)
15	171-9	88	137-139	1.2-2.2(4H, m), 2.32(3H, s), 2,5-3.4(3H, m), 3.51(3H, s), 4.44(2H, br. d, J=12.6Hz), 6.84(1H, d, J=7.2Hz), 6.9-7.9(14H, m), 8.40(1H, d, J=7.2Hz)
20	170-11	100	75-80	1.3-2.2(4H, m), 2.32(3H, s), 2.5-3.5(3H, m), 3.45(3H, s), 4.48(2H, br. d, J=12.6Hz), 6.95-7.5(11H, m), 7.72(2H, d, J=7.2Hz), 8.44(1H, d, J=7.2Hz)
30	170-2	88	147-148	1.4-2.1(4H, m), 2.33(3H, s), 2.5-3.5(3H, m), 3.55(3H, s), 4.72(2H, br. d, J=12.6Hz), 6.8-8.0(17H, m), 8.40(1H, d, J=7.2Hz)
35 40	171-7	95	70-76	1.3-2.1(4H, m), 2.32(3H, s), 2.36(3H, s), 2.5-3.3(3H, m), 3.44(3H, s), 4.56(2H, br. d, J=12.6Hz), 6.80(1H, d, J=7.2Hz), 9.0-9.6(11H, m), 7.73(2H, d, J=7.2Hz), 8.30(1H, d, J=7.2Hz)
4 5	171-13	97	154-158	1.2-2.1(4H, m), 2.3(3H, s), 2.5-3.3(3H, m), 3.48(3H, s), 4.4(2H, br. d, J=12.6Hz), 6.7(1H, d, J=7.2Hz), 7.0-7.9(12H, m), 8.39(1H, d, J=7.2Hz)

EXAMPLE 3

4-(N-methylbenzamino)-2-(4-phenylpiperidino)pyrimidine hydrochloride (coompound No. 170):-

A solution of 0.27 g (0.0027 mole) of concentrated hydrochloric acid in 2 ml of CH₃OH was slowly added to a solution of 1.0 g (0.0027 mole) of 4-(N-methylbenzamino)-2-(4-phenylpiperidino)pyrimidine in 10 ml of chloroform. After the addition, the mixture was concentrated under reduced pressure to give 1.1 g (yield 100 %) of the desired product.

Melting point:

15

20

25

30

35

40

45

50

55

80-84 °C.

¹H-NMR spectrum (deuterochloroform, δ ppm) 1.4-22(4H, m), 2.6-3.4(3H, m), 3.56(3H, s), 2.2(2H, m), 6.69(1H, d, J=7.2Hz), 7.0-7.7(10H, m), 8.1(1H, d, J=7.2Hz).

In the same way as above, the following compounds were produced, and their data are given in Table 5.

Table 5

5	Com- pound No.	Yield (%)	Melting point (°C)	lH-NMR spectrum (CDCl ₃ solution, ≤ppm)
10	662	46	241-243	10.9(1H, br), 8.03(1H, d, J=5Hz), 7.2-7.8(10H, m), 6.28(1H, d, J=5Hz), 4.63(2H, s), 3.50(3H, s), 3.0-3.4(1H, m), 1.48(6H, d, J=7Hz)
15				
20	2052	86	96-99	12.9(2H, br), 8.03(1H, d, J=5Hz), 7.2-7.6(5H, m), 6.36(1H, d, J=5Hz), 4.5-4.8(2H, m), 3.56(3H, s), 1.1-3.3(17H, m)
25	2060	93	185-189	7.98(1H, d, J=7Hz), 7.3-7.7(5H, m), 6.64(1H, d, J=7Hz), 3.6-4.4(6H, m), 3.62(3H, s), 1.4-2.2(4H, m)
30 35	2070	93	77-80	8.03(1H, d, J=5Hz), 7.2-7.6(5H, m), 6.36(1H, d, J=5Hz), 4.0-4.7(2H, m), 3.63(3H, s), 1.0-4.0(12H, m)
40	2076	86	237-239	12.5(1H, br), 8.53(1H, d, J=5Hz), 8.12(9H, d, J=7Hz), 7.32(2H, d, J=7Hz), 6.43(1H, d, J=5Hz), 7.2-7.7(5H, m), 4.8-5.0(2H, m), 3.53(3H, s), 1.1-3.4(7H, m)
4 5	2084	90	60-63	12.3(1H, br), 8.70(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.37(1H, d, J=7Hz), 4.0-4.8(2H, m), 2.63(3H, s), 0.8-3.5(14H, m)
	<u> </u>	<u> L</u>	<u>L</u> _	

⁻ to be continued -

Table 5 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	H-NMR spectrum (CDCl ₃ solution, 5 ppm)
10	2092	86	183-186	8.06(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.38(1H, d, J=7Hz), 3.60(3H, s), 3.10(3H, s), 1.8-4.0(10H, m)
20	2100	90	213-215	8.70(1H, d, J=5Hz), 7.3-7.6(5H, m), 6.48(1H, d, J=5Hz), 4.4-4.8(2H, m), 4,20(2H, q, J=7Hz), 3.58(3H, s), 1.32(3H, t, J=7Hz), 1.5-3.4(7H, m)
30	2108	93	89-91	10.5(1H, br), 8.07(1H, d, J=5Hz), 7.0-7.6(15H, m), 6.18(1H, d, J=5Hz), 4.68(4H, s), 3.44(3H, s)
35	2148	94	218-221	8.05(1H, d, J=7Hz), 7.2-7.5(5H, m), 6.40(1H, d, J=7Hz), 4.3-4.5(2H, m), 2.3-4.0(7H, m), 3.30(5.6H), 3.58(3H, s)
40	2156	89	57-60	14.0(1H, br), 8.04(1H, d, J=7Hz), 7.3-7.6(5H, m), 6.56(1H, d, J=7Hz), 3.50(3H, s), 4.0-4.8(2H, m), 1.0-2.4(14H, m)
50	2164	96	140-142	8.03(1H, d, J=5Hz), 7.2-7.6(5H, m), 6.40(1H, d, J=5Hz), 4.2-4.5(2H, m), 3.63(3H, s), 1.0-3.8(10H, m)

⁻ to be continued -

Table 5 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDCl ₃ solution, 5 ppm)
10	2226	86	187-189	7.9-8.1(3H, m), 7.2-7.7(8H, m), 6.66(1H, d, J=7Hz), 5.1-5.4(1H, m), 3.6-4.3(4H, m), 3.55(3H, s), 1.7-2.2(4H, m)
20	2342	94	135-138	12.0-12.8(1H, br), 8.03(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.50(1H, d, J=7Hz), 3.53(3H, s), 1.0-3.7(13H, m)
25	2350	88	153-157	12.8(1H, br), 8.03(1H, d, J=7Hz), 7.2-7.9(10H, m), 6.60(1H, d, J=7Hz), 4.3-4.6(2H, m), 3.50(3H, s), 1.5-4.0(7H, m)
35	307-1	94	259-261	8.07(1H, d, J=7Hz), 7.2-7.6(5H, m), 6.38(1H, d, J=7Hz), 4.2-4.4(2H, m), 3.50(3H, s), 1.4-4.0(10H, m)

The following compounds were obtained by the same method as in Example 3 except that sulfuric acid, phosphoric acid, etc. were used instead of hydrochloric acid.

Table 6

١	

_				
10	Com- pound No.	Yield (%)	Melting point (°C)	l _H -NMR spectrum (CDCl ₃ solution, δ ppm)
15	165	84	151-154	1.0-2.0(4H, m),2.5-3.2(3H, m), 3.45(3H, s), 4.24(2H, br. d, J=12.6Hz), 6.67(1H, d, J=7.2Hz), 6.73(1H, d, J=7.2Hz), 7.0-7.6(10H, m), 8.15(1H, d, J=7.2Hz)
25	166	67	108-113	1.2-2.0(4H, m), 2.5-3.0(3H, m), 3.51(3H, s), 4.58(2H, br. d, J=12.6Hz), 6.15(1H, d, J=5.4Hz), 7.0-7.55(10H, m), 8.02(1H, d, J=5.4Hz), 11.0(1H, m)
35	167	37	94-96	1.3-2.2(4H, m), 2.6-3.2(3H, m), 3.52(3H, s), 4.54(2H, br. d, J=12.6Hz), 6.32(2H, s), 6.49(1H, d, J=7.2Hz), 7.0-7.7(10H, m), 8.15(1H, d, J=7.2Hz), 8.93(2H, br. s)
40	169	32	132-136	1.3-2.2(4H, m), 2.55-3.3(3H, m), 3.49(3H, s), 4.49(2H, br. d, J=12-6Hz), 6.58(1H, d, J=7.2Hz), 6.8-8.5(19H, m)
45	171	45	108-112	1.0-1.9(4H, m), 2.4-2.9(6H, m), 3.0-3.6(3H, m), 3.40(3H, s), 4.36(2H, br. d, J=12.6Hz), 6.42(1H, d, J=5.4Hz), 7.0-7.4(5H, m), 7.35(5H, s), 8.15(1H, d, J=5.4Hz), 12-13(2H, m)
				La La Lasty III

⁻ to be continued -

Table 6 (continued)

5	Com- pound No.	Yield (%)	Melting point (°C)	1H-NMR spectrum (CDC13 solution, 5 ppm)
10	171-1	49	133-135	1.0-1.8(4H, m), 2.4-2.9(3H, m), 3.0-3.5(3H, m), 3.40(3H, s), 4.30(2H, s),
15				4.38(2H, br. d, J=12.6Hz), 6.42(1H, d, J=5.4Hz), 7.0-7.4(5H, m), 7.35(5H, s), 8.15(1H, d, J=5.4Hz), 12-13(1H, m)
20	171-1-1	90	124-127	3.48(3H, s), 4.55(2H, br. d, J=12.6Hz), 6.17(1H, d, J=5.4Hz),
25				6.69(2H, s), 6.9-7.5(10H, m), 8.02(1H, d, J=5.4Hz)

EXAMPLE 4

30

40

Production of 2-isopropylamino-4-methyl-5-methoxycarbonylpyrimidine (compound No. 800):-

18.2 g (0.12 mole) of 1-amidinoisopropylamine sulfate was added to a solution of 13.0 g (0.12 mole) of potassium t-butoxide in 200 ml of methanol, and the mixture was stirred at room temperature for 30 minutes. Then, 18.5 g (0.12 mole) of ethyl 2-methoxymethyleneacetoacetate was added at 0 °C over 30 minutes, and the mixture was stirred for 3 hours. The solvent was evaporated, and the residue was extracted with ether and purified by silica gel column chromatography to give 10.6 g (yield 44 %) of the desired product as a yellow solid.

Melting point: 118-119 °C. 118-NMR spectrum (deuterochloroform, δ ppm) 1.26(6H, d, J=7Hz), 2.66(3H, s), 3.87(3H, s), 4.25(1H, sex, J=7Hz), 5.40(1H, br. s), 8.80(1H, s).

45 EXAMPLE 5

Production of 2-piperidino-4-methoxymethyl-5-methoxycarbonylpyrimidine (compound No. 820):-

Sodium hydride (0.19 g; 7.8 mmoles) was added to 50 ml of methanol, and 2.1 g (7.8 mmoles) of 2-piperidino-4-chloromethyl-5-methoxycarbonylpyrimidine was added at room temperature. The mixture was stirred for 3 hours. After the solvent was evaporated, water was added to the residue and the mixture was extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography to give 0.90 g (yield 44 %) of the desired product as a white solid.

Melting point: 89-92 °C.
 ¹H-NMR spectrum (deuterochloroform, δ ppm): 1.70(6H, m), 3.54(3H, s), 3.86(3H, s), 3.92(4H, m), 4.83(2H, s), 8.82(1H, s).

In the same way as above, the following compounds were obtained.

Table 7

Compound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDCl ₃ solution, δ ppm)
808	53	Oil	1.35(3H, t, J=7Hz), 1.66(6H, m), 2.44(3H, s), 3.90(2H, s), 3.92(4H, m), 4.30(2H, q, J=7Hz), 8.80(1H, s)
816	35	Oil	1.40(3H, t, J=7Hz), 1.70(6H, m), 2.21(3H, s), 3.92(4H, m), 4.06(2H, s), 4.36(2H, q, J=7Hz), 8.91(1H, s)
824	90	Oil	1.22(6H, d, J=8Hz), 1.33(3H, t, J=8Hz), 2.36(6H, s), 3.84(2H, s), 5.5(1H, br,s), 8.78(1H, s)

15

10

5

EXAMPLE 6

Production of 2-isopropylamino-4-methyl-5-methoxycarbonylpyrimidine maleate (compound No. 804):-

20 2.48 g (11.9 mmoles) of 2-isopropylamino-4-methyl-5-methoxycarbonylpyrimidine and 1.38 g (11.9 mmoles) of maleic acid were dissolved in a mixture of 20 ml of ethanol and 20 ml of chloroform, and the solution was stirred for 3 hours. The solvents were evaporated, and ether was added for crystallization at 0 °C. The desired product was obtained in an amount of 3.21 g (yield 83 %) as pale yellow crystals.

5 Melting point:

75-79 °C

¹H-NMR spectrum (deuterochloroform, δ ppm): 1.33(6H, d, J=7Hz), 2.85(3H, s), 3.95(3H, s), 4.36(1H, sex, J=7Hz), 6.40(2H, s), 9.08(1H, br, s).

In the same way as above, the following compounds were produced.

30

35

Table 8

Compound No.	Yield (%)	Melting point (°C)	¹ H-NMR spectrum (CDCl ₃ solution, δ ppm)
812	74	115.5- 118.5	1.40(3H, t, J=7Hz), 1.68(6H, m), 3.08(3H, s), 3.92(4H, m), 4.34(2H, q, J=7Hz), 4.72(2H, s), 6.32(2H, s), 8.90(1H, s)
828	67	111-121	1.30(6H, d, J=8Hz), 1.40(3H, t, J=8Hz), 3.07(6H, s), 4.34(2H, q, J=8Hz), 4.66(2H, s), 6.32(2H, s), 8.92(1H, s)

40

45

50

EXAMPLE 1B

Tablets each containing 10 mg of an active ingredient were prepared by the following procedure.

5
v

10

15

	Per tablet
Active ingredient	10 mg
Corn starch	55 mg
Crystalline cellulose	35 mg
Polyvinyl pyrrolidone (as 10 % aqueous solution)	5 mg
Carboxymethyl cellulose calcium	10 mg
Magnesium stearate	4 mg
Talc	1 mg

Total

20

The active ingredient, corn starch and crystalline cellulose were passed through an 80-mesh sieve and thoroughly mixed. The mixed powder was granulated together with the polyvinyl pyrrolidone solution, and passed through an 18mesh sieve. The resulting granules were dried at 50 to 60 °C and again passed through an 18-mesh sieve to adjust their sizes. The carboxymethyl cellulose calcium, magnesium stearate and talc, which had been passed through an 80-mesh sieve, were added to the granules. They were mixed and tableted by a tableting machine to produce tablets each having a weight of 120 mg.

120 mg

EXAMPLE 2B

30

Tablets each containing 200 mg of an active ingredient were produced by the following procedure.

35

0			

45

Active ingredient	200 mg
Corn starch	50 mg
Crystalline cellulose	42 mg
Silicic anhydride	7 mg
Magnesium stearate	1 mg
Total	300 ma

The above components were passed through an 80-mesh sieve and thoroughly mixed. The resulting mixed powder

was compression-molded to produce tablets each having a weight of 300 mg.

Per tablet

50

EXAMPLE 3B

Capsules each containing 100 mg of an active ingredient were produced by the following procedure.

	Per capsule
Acive ingredient	100 mg
Corn starch	40 mg
Lactose	5 mg
Magnesium stearate	5 mg
Total	150 mg

15

5

10

The above components were mixed, passed through an 80-mesh sieve, and thoroughly mixed. The resulting mixed powder was filled into capsules in an amount of 150 mg for each.

O EXAMPLE 4B

Injectable preparations in vials each containing 5 mg of an active ingredient were produced by the following procedure.

25

	Per vial
Active ingredient	5 mg
Mannitol ·	50 mg

30

Just prior to use, these compounds were dissolved in 1 ml of distilled water for injection, and administered.

35 EXAMPLE 5B

Injectable preparations in ampoules each containing 50 mg of an active ingredients were produced in accordance with the following recipe.

40

45

	Per ampoule
Active ingredient	50 mg
Sodium chloride	18 mg
Distilled water for injection	proper amount
Total	2 ml

50

55

EXAMPLE 6B

An adhesive patch containing 17.5 mg of an active ingredient was produced by the following procedure.

Ten parts of poly(ammonium acrylate) was dissolved in 60 parts of water. Two parts of glycerin diglycidyl ether was dissolved under heat in 10 parts of water. Furthermore, 10 parts of polyethylene glycol (grade 400), 10 parts of water and 1 part of an active ingredient were stirred to form a solution. While the aqueous solution of poly(ammonium acrylate) was stirred, the aqueous solution of glycerin diglycidiyl ether and the solution containing the active ingredient, polyethylene glycol and water were added and mixed. The resulting solution for hydrogel was coated on a pliable plastic film

so that the rate of the active ingredent was 0.5 mg per cm². The surface was covered with releasing paper and cut to a size of 35 cm² to form an adhesive patch.

EXAMPLE 7B

5

An adhesive patch containing 10 mg of an active ingredient was produced by the following procedure.

An aqueous sol is prepared from 100 parts of poly(sodium acrylate), 100 parts of glycerin, 150 parts of water, 0.2 part of triepoxypropyl isocyanurate, 100 parts of ethanol, 25 parts of isopropyl myristate, 25 parts of propylene glycol and 15 parts of the active ingredient. The sol was then coated to a thickness of 100 micrometers on the non-woven fabric surface of a composite film composed of a rayon non-woven fabric and a polyethylene film to form an adhesive layer containing the drug. The amount of the release aids (isopropyl myristate and propylene glycol) contained in this layer was about 30 % by weight. The adhesive layer was then crosslinked at 25 °C for 24 hours, and a releasing film was bonded to the adhesive layer surface. The entire film was then cut into pieces each having an area of 35 cm².

The biological activities in <u>vitro</u> of the compounds of formula (1) on cells of the nervous system were tested. The cells tested were, for example, mouse neuroblastoma cell line neuro-2a (Dainippon Pharmaceutical Co., Ltd.) and NS-20Y, which have been established as the cells of the nervous system. The above nerve cells were grown in an incubator at 37 °C in the presence of 5 % carbon dioxide gas exponentially, and then cultivated for a certain period of time together with the compounds of the invention. The results demonstrate that the compounds of the invention have nerve cell growth promoting activity and neurite formation and sprouting promoting activity which are markedly higher with a significance than a control, and are equal to, or higher than, isaxonine as a control drug (the compound described in Japanese Patent Publication No. 28548/1984).

The biological activities of the compounds of the invention on rat PC-12 pheochromocytoma cell line were also tested. When NGF is added to PC-12 cells, the neurites sprout. It was shown that when the compound of this invention is added at this time, the binding of NGF to the PC-12 cells and the up-take of NGF into the cells increased, and that the sprouting of the neurites also increased.

When the effect of the compounds of this invention on the binding of NGF to rabbit superior cervical ganglion was examined, they were found to promote the NGF binding.

Rats having crushed sciatic nerves were prepared as a model of peripheral nervous disorder, and the effects of the compounds of this invention on it were tested. It was made clear that the compounds of the present invention have an effect of promoting recovery of the interdigit distance and the weight of the soleus muscle to normal values.

Rat and mouse models of central nervous disorders were prepared, and the pharmacological effects of the compounds of this invention were tested. Specifically, nigral dopamine cells of the rat brain were chemically destroyed by injecting a very small amount of 6-hydroxydopamine to induce motor imbalance. Two weeks later, dopamine cells of fetal brain were transplanted into the lesioned side of the caudate nucleus of the rat brain and an attempt was made to improve the motor trouble. Specifically, beginning on the day of transplantation, the compound of the invention was intraperitoneally administered every day over 2 weeks, and the activity of the compounds of the invention on the improvement of the motor imbalance and the growth of the transplanted cells were examined. It was found that the compounds of the invention have a promoting effect on the improvement of the motor trouble.

Rats and mice having nerve trouble caused by mercury poisoning were prepared and the activity of the compounds of the invention was tested. The compounds of the invention were found to have a promoting effect on the improvement of the condition and recovery to a normal condition, a curative effect on chemical-induced disorders and an effect of improving and recovering learning and memory.

Thus, it has been made clear that the compounds of this invention are useful as agents for improving or curing various neurological diseases of mammals, such as troubles in peripheral and central nerves, and also as agents for improving learning and memory.

Various types of neuropathy including, for example, various peripheral nerve disorders accompanied by motorgenic, sensory or objective flex retardation, and alcohol-induced or drug-induced, diabetic and metabolic, or idiopathic peripheral nerve disorders, including traumatic, inflammatory or immunological nerve root lesions may be cited as such neurological diseases. More specific examples include facial palsy, sciatic nerve paralysis, spinal muscular atrophy, muscular dystrophy, myasthenia gravis, multiple sclerosis, amyotrophic lateral sclerosis, acute disseminated cerebromyelitis, Guillan-Barre syndrome, postvaccinal encephalomyelitis, SMON disease, dementia, Alzheimer syndrome, a condition after cranial injury, cerebrospinal injury, neural injury disorders which occur in cerebral ischemia, sequela of cerebral infarction or cerebral hemorrhage and rheumatism. These examples are not limitative.

By a toxicity test, the compounds of this invention were found to have only weak toxicity and side effects, and be used as safe and useful medicines.

EXPERIMENTAL EXAMPLE 1

The effects of the compounds of this invention on neuroblastoma cells were examined by the following method.

Mouse neuro 2a cells in the logarithmic growth period in the Dulbecco's modified Eagle's medium [DMEM, containing 100 units/ml of penicillin G sodium and 100 micrograms/ml of streptomycin sulfate] containing 10 % of FCS were seeded in a 48-well plate so that the number of cells was 1,000 cells/well, and cultured for one day in 0.25 ml of the culture fluid in each well in an incubator containing 5 % of carbon dioxide gas in air at 37 °C. Then, a 4 % aqueous glutaraldehyde solution in the same amount as a medium (0.25 ml) was added, and the culture fluid was left to stand at room temperature for 2 hours to fix the cells. After washing with water, a 0.05 % aqueous solution of methylene blue was added to stain the cells. Under a microscope, the number of cells containing outgrown neurites (cells having at least one neurite with a length of at least two times as large as the long diameter of the cell) was counted visually, and the proportion of these cells in the entire cells was calculated. The well was observed over 5 or more visual fields (at least 2 % of the entire surface area of the well) continuous to the left and right from a mark put at the center of the well, and more than 200 cells were counted. One drug compound was used in 6 different concentrations at most, and three runs were conducted for each concentration. The results were expressed as a mean ±S.D., and the results are shown in Table 9.

Mouse neuroblastoma cells NS-20Y were similarly cultured in a dish coated with polyornithine, and the effects of the compounds were examined. The results obtained after 24 hours and 48 hours from the start of culturing are shown

in Table 10.

5

10

15

20

25

30

35

40

45

50

Table 9 Action on neuro - 2a

Compound Number of cells having neurites Run with a length at least two times No. the diameter of each cell/total number of cells, % (concentration of the compound) 3.9+2.8(0.03mM), 7.6+2.1(0.1mM), 1034 $11.\overline{3}+1.6(0.3 \text{ mM})$ 1 312 4.5+0.4(0.03mM), 9.7+0.9(0.1mM) isaxonine 26.7+7.7(10mM) control 1.8+0.8 9.9+0.6(0.3mM), 9.1+0.7(0.5mM), 19.8+2.8(1mM), 14.3+2.4(2mM) 128 7.2+2.3(0.5mM), 10.6+1.5(1mM), 11.1+1.2(2mM), 8.0+4.0(3mM) 208 2 23.8+2(0.05mM), 35.7+0.8(0.1mM), 168 24.4+6.9(0.2mM), 14.6+4.3(0.3mM) 28.5+5.4(10mM) isaxonine control 1.4+0.2 384 $10.4 \pm 2.5 (0.3 \text{ mM}), 10.8 \pm 7.2 (1 \text{ mM})$ 14.6+6.0(0.1mM), 30.9+5.7(0.3mM), 23.8+4.2(1mM), 11.1+9.7(3mM) 3 392 700 5.9+1.4(0.1mM), 6.4+1.4(0.3mM)

- to be continued -

Table 9 (continued)

10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
;	3	isaxonine	30.8 <u>+</u> 2.9(10mM)
15		control	3.2 <u>+</u> 1.6
20		416	13.2+1.3(0.1mM), 10.8+1.5(0.3mM)
	4	320	7.2±0.2(0.1mM0, 8.5±1.1(0.3mM)
25		328	$6.6\pm0.5(0.01\text{mM})$, $10.2\pm8.2(0.03\text{mM})$, $28.0\pm6.8(0.1\text{mM})$, $10.6\pm3.4(0.3\text{mM})$
		400	11.4 <u>+</u> 4.3(0.3mM), 16.0 <u>+</u> 2.7(1mM)
30		isaxonine	30.7 <u>+</u> 5.9(10mM)
		control	2.9 <u>+</u> 1.9
35		136	11.6 <u>+</u> 6.3(0.1mM), 12.1 <u>+</u> 2.9(0.3mM)
40		628	10.2+1.3(0.03mM), 13.4+3.2(0.1mM), 12.6+3.2(0.3mM), 10.0+3.9(1mM)
45	5	144	13.7±7.8(0.1mM), 33.8±8.6(0.3mM)
	,	408	9.1±1.8(0.1mM), 9.6±3.9(0.3mM)
		isaxonine	23.8 <u>+</u> 4.0(10mM)
50	I		

- to be continued -

55

1.8<u>+</u>0.8

control

Table 9 (continued)

10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
15		264	5.2+3.1(0.1mM), 8.7+1.6(0.3mM), 15.2+3.2(1mM), 7.2+1.8(3mM)
	6	424	4.5±1.4(0.03mM), 7.6±1.3(0.1mM)
20		isaxonine	27.3 <u>+</u> 4.4(10mM)
		control	2.1 <u>+</u> 0.5
25		272	4.8+1.3(0.03mM), 30.9+2.8(0.1mM), 15.9+0.5(0.3mM), 17.0+4.3(1mM)
30	7	676	4.2+2.1(1.0mM), 6.0+1.1(0.3mM)
		isaxonine	27.3 <u>+</u> 4.4(10mM)
35		control	1.8 <u>+</u> 0.5
40		240	19.8+5.7(0.03mM), 38.7+4.5(0.1mM), 33.2+0.9(0.3mM), 30.9+5.9(1mM)
	8	296	44.4±5.5(0.1mM), 22.4±3.0(0.3mM)
4 5		170	33.5+2.4(0.1mM), 31.0+4.6(0.3mM)
50		224	4.6+1.7(0.03mM), 5.5+1.5(0.1mM)

⁻ to be continued -

Table 9 (continued)

		:	Table 9 (continued)
10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
		432	2.9±1.0(0.1mM), 3.6±1.7(0.3mM)
15	8	604	18.7 <u>+</u> 4.1(0.1mM), 24.6 <u>+</u> 2.9(0.3mM)
20		612	13.8±1.5(0.01mM), 19.1±3.0(0.03mM), 19.4±3.9(0.1mM), 22.4±2.4(0.3mM)
		isaxonine	21.1 <u>+</u> 0.6(10mM)
25		control	1.7 <u>+</u> 1.3
		636	12.1 <u>+</u> 3.4(0.03mM), 8.9 <u>+</u> 5.2(0.1mM)
30 35	9	176	5.3 <u>+</u> 1.9(0.03mM), 3.2 <u>+</u> 3.1(0.1mM)
		184	18.8±4.7(0.1mM), 16.0±2.4(0.3mM)
		644	26.1 <u>+</u> 7.3(0.03mM), 14.7 <u>+</u> 7.3(0.1mM)
40		620	4.7±0.4(0.01mM), 4.0±1.3(0.03mM)
45		652	6.1±0.6(0.03mM), 12.5±2.8(0.1mM)
		152	6.2 <u>+</u> 2.3(0.03mM), 33.8 <u>+</u> 4.7(0.1mM)
		isaxonine	27.5 <u>+</u> 0.8(10mM)
50		control	1.4+0.7

⁻ to be continued -

Table 9 (continued)

		,	
5	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, & (concentration of the compound)
	10	200	4.2 <u>+</u> 1.6(0.01mM), 7.6 <u>+</u> 1.6(0.03mM)
15		192	12.1+1.5(0.3mM), 14.6+1.0(1mM)
:		isaxonine	27.8 <u>+</u> 2.5(10mM)
20		control	3.0 <u>+</u> 0.8
25		660	13.5 <u>+</u> 1.3(0.03mM), 9.1 <u>+</u> 3.7(0.1mM)
	11	3'04	38.1+1.6(0.1mM), 15.3+6.3(0.3mM)
30		isaxonine	30.7 <u>+</u> 3.8(10mM)
		control	2.6 <u>+</u> 0.5
35		692	5.8±0.9(0.03mM), 11.1±2.9(0.1mM)
	12	160	11.3+6.3(0.1mM), 6.7+4.3(0.3mM)
40 ·		isaxonine .	23.9 <u>+</u> 1.8(10mM)
45		control	1.5 <u>+</u> 1.5
	13	668	5.6+0.8(0.01mM), 4.8+0.4(0.03mM),

- to be continued -

55

Table 9 (continued)

10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
		668	5.2±0.7(0.1mM), 4.1±2.5(0.3mM)
15		684	3.8±0.5(0.01mM), 5.8±2.0(0.03mM), 16.4±2.8(0.1mM)
20	13	280	4.5+1.2(0.03mM), 17.2+1.3(0.1mM), 13.4+3.5(0.3mM), 17.4+2.6(1mM)
25		isaxonine	15.8 <u>+</u> 2.2(3mM)
		control	2.9 <u>+</u> 1.0
30		336	5.8 <u>+</u> 2.4(0.1mM), 6.3 <u>+</u> 2.8(0.3mM)
	14	120	4.9+1.0(0.1mM), 7.5+4.1(0.3mM)
35	·	232	3.9±1.8(0.03mM), 18.7±5.2(0.1mM)
40		248	4.3±0.4(0.03mM), 25.4±3.0(0.1mM), 21.5±5.7(0.3mM), 17.4±4.5(1mM)

- to be continued -

45

50

Table 9 (continued)

		:	Table 9 (continued)
10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
	14	isaxonine	19.4 <u>+</u> 3.1(3mM)
15		control	3.2 <u>+</u> 1.2
		812	3.5±0.5(0.1mM), 3.4±0.5(0.3mM)
20		816	4.7 <u>+</u> 2.1(0.03mM), 4.0 <u>+</u> 0.3(0.1mM)
25		820	8.4 <u>+</u> 1.1(1mM), 8.8 <u>+</u> 2.3(3mM)
	15	800	11.4+1.2(0.3mM), 25.7+1.9(1mM), 22.3+0.7(3mM), 16.9+0.8(10mM)
30		828	7.3 <u>+</u> 1.6(0.3mM), 6.1 <u>+</u> 2.0(1mM)
		isaxonine	27.0 <u>+</u> 3.8(10mM)
35		control	2.3 <u>+</u> 0.4
40		1014	4.7±0.7(0.1mM), 7.6±1.5(0.3mM)
		1122	4.2±2.1(0.01mM), 10.2±3.8(0.03mM)
45	16	1026	3.5±0.5(0.03mM), 5.6±2.2(0.1mM)
		1130	1.8±0.5(0.03mM), 2.0±0.3(0.1mM)
50		1038	2.2+0.4(0.03mM), 2.9+0.3(0.1mM)

- to be continued -

Table 9 (continued)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, & (concentration of the compound)		
16	isaxonine	27.4+2.4(10mM)		
	control	1.8 <u>+</u> 1.3		
	112	4.8+0.1(0.03mM), 18.6+5.2(0.1mM), 2.6+0.6(0.3mM), 7.6+4.9(1mM)		
17	216	3.7+0.4(0.01mM), 6.3+2.4(0.03mM), 26.6+5.6(0.1mM)		
	isaxonine	23.3 <u>+</u> 2.9(10mM)		
	control	2.3 <u>+</u> 0.6		
	104	2.5±0.8(0.03mM), 4.1±1.5(0.1mM), 7.7±3.8(0.3mM), 3.6±1.4(1mM)		
18	isaxonine	22.6 <u>+</u> 0.5(10mM)		
	control	1.8+1.4		
	288	1.4+0.1(0.03mM), 3.3+0.9(0.1mM), 3.8+1.9(0.3mM), 5.1+2.7(1mM)		
19	256	4.5±0.6(0.03mM), 17.9±6.3(0.1mM), 21.6±4.9(0.3mM), 16.6±2.5(1mM)		
	isaxonine	19.4 <u>+</u> 3.1(10mM)		

- to be continued -

55

Table 9 (continued)

J	

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
19	control	2.2 <u>+</u> 1.0
	1086	1.9±1.8(0.03mM), 3.1±1.3(0.1mM), 8.7±0.8(0.3mM), 17.4±1.1(1mM)
20	1110	3.4±1.1(0.01mM), 4.4±0.3(0.03mM), 6.3±4.4(0.1mM), 16.5±2.1(0.3mM)
	isaxonine	30.2 <u>+</u> 3.5(10mM)
	control	2.6 <u>+</u> 1.0
	1090	3.7+1.0(0.01mM), 5.7+0.6(0.03mM), 12.2+2.5(0.1mM), 10.3+0.9(0.3mM)
21	1158	9.9+1.4(0.03mM), 18.4+3.0(0.1mM), 22.1+6.7(0.3mM), 19.1+2.7(1mM)
	isaxonine	26.7 <u>+</u> 3.3(10mM)
	control	2.4+1.6
	804	9.4+1.3(0.3mM), 13.0+2.1(0.5mM), 26.1+6.8(1mM), 18.8+3.1(2mM)
22	isaxonine	28.5 <u>+</u> 5.4(10mM)
	control	1.4 <u>+</u> 0.2
23	1094	5.4 <u>+</u> 1.9(0.1mM), 16.9 <u>+</u> 1.2(0.3mM),

- to be continued -

Table 9 (continued)

5	

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, & (concentration of the compound)
	1094	10.9 <u>+</u> 1.1(1mM)
23	1098	5.3±1.4(0.01mM), 10.2±0.9(0.03mM), 5.7±2.0(0.1mM)
	isaxonine	15.7 <u>+</u> 4.1(3mM)
	control	1.2 <u>+</u> 1.1
	1162	4.7 <u>+</u> 3.0(0.03mM), 5.9 <u>+</u> 1.9(0.1mM)
24	1102	11.9±0.7(0.1mM), 10.1±3.0(0.3mM)
	isaxonine	26.7 <u>+</u> 7.7(10mM)
	control	1.8+0.8
	138	6.3±1.8(0.03mM), 12.6±4.1(0.1mM)
	2004	6.6±2.2(0.03mM), 30.2±6.4(0.1mM)
25	171.3	28.8±3.1(0.1mM), 19.5±7.0(0.3mM)
	2070	5.6±3.9(0.1mM), 11.7±3.1(0.3mM)

- to be continued -

Table 9 (continued)

	2		

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
	2076	4.8±1.4(0.01mM), 1.9±1.3(0.03mM)
25	isaxonine	31.4 <u>+</u> 5.5(10mM)
	control	2.5 <u>+</u> 0.2
	2084	11.1 <u>+</u> 2.2(0.03mM), 17.6 <u>+</u> 6.6(0.1mM)
	2092	23.9±0.4(0.1mM), 11.0±3.9(1mM)
,	2100	4.4 <u>+</u> 0.8(0.03mM), 4.7 <u>+</u> 1.4(0.1mM)
	2108	4.8±2.0(0.03mM), 13.5±0.1(1mM)
26	146	8.7 <u>+</u> 2.0(0.03mM), 40.0 <u>+</u> 6.1(0.1mM)
	147.1	6.6 <u>+</u> 0.4(0.03mM), 30.5 <u>+</u> 6.1(0.1mM)
	2116	34.2 <u>+</u> 3.8(0.1mM), 8.2 <u>+</u> 3.6(0.3mM)
	2124	12.5 <u>+</u> 5.3(0.03mM), 31.7 <u>+</u> 7.0(0.1mM)
	isaxonine	31.4 <u>+</u> 5.5(10mM)
	control	2.5 <u>+</u> 0.2
27	165	41.0+0.7(0.1mM), 12.4+1.8(0.3mM)

- to be continued -

5	

Table 9	(continued)

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
	166	36.8 <u>+</u> 7.1(0.1mM), 13.4 <u>+</u> 4.0(0.3mM)
	167	22.5 <u>+</u> 3.4(0.1mM), 9.3 <u>+</u> 2.3(0.3mM)
	169	34.1 <u>+</u> 5.7(0.1mM), 16.6 <u>+</u> 5.2(0.3mM)
27	171	37.1 <u>+</u> 1.9(0.1mM), 8.8 <u>+</u> 2.6(0.3mM)
	171.1	36.4±7.8(0.1mM), 15.2±3.1(0.3mM)
	171.11	36.8±7.1(0.1mM), 14.3±3.0(0.3mM)
	isaxonine	21.0 <u>+</u> 2.3(10mM)
	control	2.5 <u>+</u> 0.2
	2132	32.6 <u>+</u> 4.4(0.1mM), 31.7 <u>+</u> 5.0(0.3mM)
	2140	5.4 <u>+</u> 3.9(0.03mM), 17.0 <u>+</u> 1.2(0.1mM)
28	2148	4.5±1.3(0.03mM), 4.2±1.2(0.1mM)
	2156	8.6±1.0(0.03mM), 19.6±5.3(0.1mM)
	307-1	3.6±0.4(0.03mM), 9.0±2.5(0.3mM)
	2164	4.6±1.1(0.1mM), 11.7±0.7(1mM)

- to be continued -

Table 9 (continued)

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, & (concentration of the compound)
28	isaxonine	21.0 <u>+</u> 2.3(10mM)
	control	3.1 <u>+</u> 1.2
	154	5.2+1.5(0.03mM), 16.2+2.1(0.1mM)
	2174	2.5 <u>+</u> 1.0(0.01mM)
	2182	8.0±3.2(0.03mM), 2.7±0.9(0.1mM)
	2188	2.4±0.9(0.1mM), 3.8±1.1(0.3mM)
29	2194	9.5 <u>+</u> 3.5(0.1mM), 7.6 <u>+</u> 2.8(0.3mM)
	2202	2.2 <u>+</u> 2.0(0.1 mM)
	2210	9.5+2.0(0.03mM), 9.5+1.9(0.1mM)
	isaxonine 19.4 <u>+</u> 2.4(10mM)	
	control	1.7 <u>+</u> 0.9
	2218	9.7 <u>+</u> 1.8(0.03mM), 11.4 <u>+</u> 6.1(0.1mM)
30	662	3.1 <u>+</u> 1.6(0.1mM), 2.6 <u>+</u> 0.9(0.3mM)
	2226	6.4+3.3(0.03mM), 15.4+3.9(0.1mM)

- to be continued -

Table 9 (continued)

Table 9 (continued)			
10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
		2234	5.1 <u>+</u> 3.2(0.03mM), 5.7 <u>+</u> 2.8(0.1mM)
15		2242	3.3+0.9(0.03mM), 24.8+2.9(0.1mM)
	30	2250	10.9 <u>+</u> 3.9(0.1mM), 19.2 <u>+</u> 1.0(0.3mM)
20		isaxonine	19.4 <u>+</u> 2.4(10mM)
25		control	1.7 <u>+</u> 0.9
		2260	2.2±0.3(0.03mM), 2.3±0.5(0.1mM)
30		2270	14.7±5.1(0.03mM), 19.9±4.2(0.1mM) 21.3±3.5(0.3mM), 15.2±1.5(1mM)
35		2278	13.9 <u>+</u> 6.3(0.03mM), 12.5 <u>+</u> 1.3(0.1mM)
	31	2286	9.7 <u>+</u> 5.4(0.03mM), 8.4 <u>+</u> 0.8(0.1mM)
40		2294	3.7±0.9(0.03mM), 8.1±1.6(0.1mM)
		2302	8.0 <u>+</u> 2.7(0.03mM), 8.2 <u>+</u> 4.7(0.1mM)
45		isaxonine	19.4 <u>+</u> 2.4(10mM)
		control	1.7 <u>+</u> 0.9
50	32	2012	6.6 <u>+</u> 1.2(0.03mM), 6.6 <u>+</u> 3.1(0.3mM)

- to be continued -

Table 9 (continued)

5	
10	
15	
20	
25	
30	
35	

Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
32	isaxonine	19.5 <u>+</u> 3.6(10mM)
	control	2.7 <u>+</u> 0.6
	2310	8.3+1.8(0.1mM), 12.1+3.6(0.3mM)
	2318	7.7+1.4(0.03mM), 35.1+1.3(0.1mM), 18.6+5.2(0.3mM), 8.8+1.3(1mM)
	2326	4.6+1.4(0.03 mM), 8.3+2.6(0.1 mM)
33	2334	13.2 <u>+</u> 0.2(0.03mM), 16.7 <u>+</u> 0.8(0.1mM)
	2342	5.9 <u>+</u> 2.1(0.03mM), 11.4 <u>+</u> 1.4(0.1mM)
	2350	5.9±1.5(0.3mM), 8.3±2.0(1mM)
	154.2	3.9+0.6(0.03mM), 8.9+2.4(0.1mM)

- to be continued -

50

45

Table 9 (continued)

Number of cells having neurites with a length at least two times the diameter of each cell/total

number of cells, % (concentration of the compound)

7.2±1.1(0.01mM), 28.4±2.2(0.1mM), 32.7±0.6(0.3mM), 14.0±4.1(1mM)

5

Run

No.

33

Compound

171.5

isaxonine

control

10

15

20

- to be continued -

 3.3 ± 0.6

16.1+0.6(10mM)

30

25

35

40

45

50

Table 9 (continued)

 $9.4 \pm \overline{3}.9 (1 \text{ mM})$

 $6.6 \pm 3.0 (0.3 \text{mM})$

12.1 + 1.6 (3mM)

2.4 + 0.4

Number of cells having neurites with a length at least two times

the diameter of each cell/total number of cells, % (concentration of the compound)

2.7+1.7(0.1mM), 6.1+5.6(0.3mM)

 $7.7 \pm 0.5(0.03 \text{mM})$, $2.8 \pm 0.8(0.1 \text{mM})$

 $17.0 \pm 2.3 (0.1 \text{ mM})$, $12.8 \pm 6.3 (0.3 \text{ mM})$

9.3+1.9(0.03mM), 13.6+1.2(0.1mM)

24.4 + 6.6(0.1 mM), 7.1 + 2.9(0.3 mM)

٠	5		

Run

No.

34

Compound

298

306

242

150

171-9

isaxonine

control

10

15

20

25

30

35

- to be continued -

40

45

50

Table 9 (continued)

10	Run No.	Compound	Number of cells having neurites with a length at least two times the diameter of each cell/total number of cells, % (concentration of the compound)
15		171-11	5.9+0.9(0.03mM), 22.1+2.3(0.1mM) 29.2+1.5(0.3mM), 31.7+5.9(1mM)
		170-2	14.7+1.1(0.1mM), 5.6+2.1(0.3mM) 13.9+3.0(1mM)
20	3 5	171-7	8.5+1.0(0.03mM), 6.7+3.1(0.1mM)
25		171-12	13.3+1.1(0.1mM), 10.7+4.2(0.3mM) 12.7+0.9(1mM)
30		isaxonine	14.9 <u>+</u> 1.9(10mM)
1		control	2.5 <u>+</u> 1.0
35		2022-1	23.1+4.8(0.1mM), 18.1+2.8(0.3mM) 19.8+2.1(1mM)
40	36	2023-1	8.3 <u>+</u> 2.1(0.1mM), 7.0 <u>+</u> 0.5(0.3mM)
		isaxonine	20.1 <u>+</u> 3.0(10mM)
45		control	3.2 <u>+</u> 0.9

50

55

Table 10
Activity on NS-20Y cells

Compound	Number of cells in which neurites appeared/total number of cells (concentration of the compound)		
	24 hours	48 hours	
112	4/51(0.025mM)	9/50(0.025mM) 4/49(0.01mM)	
control	0/51	1/51	
120	23/50(0.5mM)	4/50(0.5mM)	
control	1/49	0/50	
144	37/50(0.1mM)	31/50(0.1mM) 8/52(0.05mM)	
control	0/50	1/50 6/50(0.025mM)	
152	3/50(0.05mM)	2/50(0.025mM)	
control	0/50	0/50	
160	10/53(0.5mM)	2/50(0.5mM)	
control	0/50	0/50	
168	26/50(0.1mM) 12/50(0.25mM)	20/55(0.1mM)	
control	3/50	2/50	
208	27/53(0.1mM) 17/51(0.25mM)	28/50(0.1mM)	
control	1/50	0/52	

⁻ to be continued -

Table 10 (continued)

э	

Compoun-1	Number of cells in which neurites appeared/total number of cells (concentration of the compound)		
	24 hours	48 hours	
128	23/55(1.0mM) 4/49(0.3mM)	31/50(0.3mM) 21/50(0.5mM)	
control	3/50	4/50	
216	3/49(0.025mM)	24/50(0.025mM) 20/50(0.05mM)	
control	0/51	1/50	
232	2/50(0.025mM)	2/49(0.01mM)	
control	0/51	0/50	
240	4/50(0.2mM)	3/50(0.2mM)	
control	0/50	0/50	
248	3/49(0.1mM)	2/50(0.05mM)	
control	0/49	0/50	
256	5/51(0.2mM)	2/48(0.05mM)	
control	0/51	0/50	
272	33/50(0.1mM) 24/50(0.2mM)	17/50(0.1mM)	
control	0/50	0/51	
280	3/50(0.2mM)	8/53(0.1mM)	
control	0/50	1/53	

- to be continued -

Table 10 (continued)

5	

Compound	Number of cells in which neurites appeared/total number of cells (concentration of the compound)	
	24 hours	48 hours
288	2/52(0.1mM)	2/50(0.1mM)
control	0/50	0/50
296	9/49(0.1mM)	2/50(0.1mm)
control	0/50	0/48
304	40/50(0.1mM)	3/50(0.01mM)
control	0/50	0/51
328	32/50(0.1mM)	8/50(0.025mM) 12/51(0.1mM)
control	0/51	0/50
336	3/54(0.2mM)	2/50(0.5mM)
control	0/52	0/50

- to be continued -

Table 10 (continued)

Compound	Number of cells in which neurites appeared/total number of cells (concentration of the compound)	
	24 hours	48 hours
3 92	8/50(0.1mM)	6/51(0.05mM) 3/43(0.1mM)
control	0/52	0/50
612	2/50(0.1mM)	2/50(0.1mM)
control	0/50	1/51
668	2/50(0.1mM)	2/50(0.05mM)
control	0/50	0/50
684	2.50(0.1mM)	2/50(0.05mM)
control	0/53	0/50
1094	7/48(0.4mM) 4/54(0.1mM)	2/50(0. mM)
control	2/50	1/50
1026	31/50(0.1mM) 4/50(0.02mM)	2/50(0.02mM)
control	2/50	1/50
1086	4/50(0.4mM)	2/50(0.02mM)
control	2/50	1/50
1090	21/50(0.1mm) 4/50(0.02mm)	3/50(0.1mM)
control	1/50	1/50

- to be continued -

Table 10 (continued)

5		
10		
15		
20		
25		
30		
35		
40		
45		

Compound	Number of cells in which neurites appeared/total number of cells (concentration of the compound)	
	24 hours	48 hours
1014	9/50(0.4mM) 3/50(0.1mM)	6/50(0.4mM)
control	2/50	2/50
384	8/50(0.4mM)	3/50(0.4mM)
control	2/50	1/50
416	11/50(0.4mM) 7/50(0.1mM)	2/50(0.1mM)
control	1/50	0/50
320	8/50(0.1mM)	6/50(0.1mm)
control	2/50	1/50
400	30/53(0.4mM) 9/50(0.1mM)	3/48(0.4mM) 3/50(0.1mM)
control	2/50	1/50
136	42/50(0.4mM) 9/50(0.1mM)	15/50(0.4mM)
control	3/50	1/50
264	8/48(0.4mM)	4/50(0.4mM)
control	2/50	1/50
424	16/50(0.4mM)	3/50(0.4mM)
control	3/52	1/50

- to be continued -

55

Table 10 (continued)

1	5	

Compound	Number of cells in which neurites appeared/total number of cells (concentration of the compound)	
	24 hours	48 hours
224	6/50(0.02mM)	3/50(0.02mM)
control	1/50	1/50
432	7/50(0.4mM) 7/50(0.02mM)	4/50(0.4mM)
control	2/50	2/50
200	4/50(0.02mM)	2/50(0.02mM)
control	2/50	1/50
192	23/50(0.4mM)	4/50(0.4mM)
control	2/50	1/50
176	8/50(0.1mM)	2/50(0.02mM)
control	1/50	0/50
184	8/50(0.02mM) 5/48(0.1mM)	3/50(0.02mM)
control	1/52	1/50
628	9/50(0.1mM)	3/50(0.1mM)
control	3/50	1/50

- to be continued -

Table 10 (continued)

5	

5

Compound	Number of cells in which neurites appeared/total number of cells (concentration of the compound)	
	24 hours	48 hours
700	6/50(0.4mM) 4/53(0.1mM)	4/50(0.1mM)
control	2/50	1/50
660	5/50(0.1mM)	4/50(0.1mM)
control	2/50	1/50
604	7/50(0.4mM) 6/50(0.02mM)	2/50(0.02mM)
control	2/50	1/50
804	8/55(0.25mM) 7/50(0.5mM)	25/51(0.5mM) 8/50(0.25mM)
control	4/50	0/50
168	26/50(0.1mM) 12/50(0.25mM)	20/55(0.1mM)
control	3/50	2/50
208	27/53(0.1mM) 17/51(0.25mM)	28/50(0.lmM)
control	1/50	0/52
820	5/53(0.5mm) 4/50(0.1mm)	5/55(0.25mM) 4/50(0.1mM)
control	3/50	0/50

- to be continued -

Table 10 (continued)

		Table to (continued)	
5	Compound	appeared/total r	in which neurites number of cells of the compound)
10		24 hours	48 hours
15	828	10/58(0.3mM) 5/59(0.5mM)	6/50(0.3mM) 5/51(0.5mM)
	control	2/50	2/51
20	812	11/50(1.0mM) 9/50(0.5mM)	9/50(0.3mM) 5/51(0.5mM)
	control	2/53	2/50
25	242	6/50(0.4mM) 4/50(0.2mM)	11/50(0.2mM) 6/50(0.1mM)
	control	0/50	0/50
30	2022-1	12/50(0.2mM) 5/50(0.4mM)	2/50(0.1mM)
35	control	0/50	0/50
	2023-1	2/50(0.1mM)	2/50(0.2mM)
40	control	0/50	0/50
	171-9	7/45(0.4mM)	2/50(0.02mM)
4 5	control	0/50	0/50
	171-11	5/50(0.3mM)	2/50(0.1mM)

- to be continued -

55

Table 10 (continued)

24 hours

3/50(0.1 mm)

4/50(0.1mM)

0/50

0/50

0/50

Number of cells in which neurites appeared/total number of cells (concentration of the compound)

48 hours

2/50(0.1mM)

2/50(0.1mM)

9/50

0/50

0/50

5

10

15

20

25

45

EXPERIMENTAL EXAMPLE 2

Therapeutic effect on rats with crushed sciatic nerves:-

Compound

control

control

control

170-2

171-7

The therapeutic effect of the compound of the invention was tested on rats having crushed sciatic nerves as a model of peripheral nervous disorder using (1) a change in the action of the hind paw with the crushed sciatic nerves and (2) a change in the weight of the muscle as an index of the course of degeneration and regeneration of peripheral nerves.

In the experiment, male Wistar rats (6 weeks old), seven per group, were used. The sciatic nerves were crushed by a method similar to the method of Yamatsu et al. (see Kiyomi Yamatsu, Takenori Kaneko, Akifumi Kitahara and Isao Ohkawa, Journal of Japanese Pharmacological Society, <u>72</u>, 259-268 (1976)) and the method of Hasegawa et al. (see Kazuo Hasegawa, Naoji Mikuni and Yutaka Sakai, Journal of Japanese Pharmacological Society, <u>74</u>, 721-734 (1978). Specifically, under anesthesia with pentobarbital (40 mg/kg, i.p.), the left side sciatic nerve was exposed at the femur, and a specific site of the exposed sciatic nerve was crushed for 30 seconds by using a hemostat. After the crushing, the opetation site was immediately sutured. Thereafter, vincristine known to retard the regeneration of the peripheral nerve was intraperitoneally administered in a dose of 100 g/kg once a week.

Compounds of the invention were selected as test drugs, and administered intraperitoneally once a day from the day of crushing to 30th day from then. To a control group, only 0.9 % saline was administered.

(1) Functional change in the hind paw with crushed nerves

Twitch tension, which is a transient tension incident to contraction of the dominated muscles that occurs by electrical stimulation or the like of motor nerves, as is the case with the interdigit distance to be described, is considered to reflect functional changes of the nerves and muscles.

Thus, 30 days later, under aesthesia with chloral hydrate (400 mg/kg, i.p.), the twitch tension of rats was measured by the method of Kern et al. [J. Neurosci. Methods, 19, 259 (1987)]. Specifically, the hair on the hind paw of rats was shaven, and coated with Cardiocream (a product of Nihon Denko K.K.). Then, to the skin of the hind paw, electrodes with an alligator were attached. The cathode was attached to the rear portion of the trochiter, and the anode, to a site 1 cm rearwardly of the anode electrode and 1 cm toward its back. The rat was fixed on its back, and the hind paw to be measured was fixed perpendicularly. A silk yarn, about 20 cm long, was connected at one end to the third efferent toe joint of the hind paw to be measured and at the other end to a tension transducer. Isotonic contractions of the third muscle digitus flexus were recorded on a polygraph. Electrical stimulation was effected at a voltage of 100 V for a continuous duration of 1 msec. with rectangular waves at a frequency of 2 Hz. The static tension was 15 to 30 g, and

10 stimulations were repeated 3 times with intervals of 15 seconds. The contracting force was expressed as tension (g). From the measured values of both paws, the recovery ratio (%, left/right) of the contracting force of the paw with crushed nerves was calculated. The results are shown in Table 11.

Table 11

	Twitch tension			
Compound Dose (mg/kg) Number of cases Twitch tension 1 left/right				
Saline	-	7	33.3 ± 7.0	
168	10	7	48.4 ± 11.8 ^{*2}	
168	30	8	51.2 ± 13.6 ^{*3}	
296	30	8	48.1 ± 9.4 ^{*2}	

^{*1} mean ± S.D.,

5

10

15

40

45

The test compounds evidently increased the recovery of twitch tension, which is an electrophysiological index, and improved symptom, over the control group.

The distance between digits was measured because this is a good index which functionally shows the degeneration and regeneration of the nerve and its change can be measured with the lapse of time.

By a method similar to the method of Hasegawa [Hasegawa, K., Experientia, <u>34</u>, 750-751 (1978)], the distance between the first and fifth digits of the hind paw was measured.

The ratio of the measured distance to the interdigit distance in a normal hind paw was calculated and expressed in percentage (%). The interdigit distance of the hind paw with crushed nerves was less than 50 % of that in a normal hind paw immediately after the crushing. Recovery of the interdigit distance began 12 to 16 days later, and in drug-administered groups, there was evidently a tendency to accelerated recovery in comparison with the control group from about 17th day to the final day (26th).

(2) Change in the weight of muscle

It is known that removal of a nerve or its disorder causes atrophy of the muscle which is under its control, and the atrophy is gradually cured by re-control by the nerve. For this reason, a change in the weight of the muscle, which is quantitative, was selected as an index. Thirty days after the operation, the muscles extensor digitorum longus of both hind paws which are muscles under the control of sciatic nerves were extracted under anesthesia, and their weights were measured. The ratio of the weight of the muscle extensor digitorum longus on the crushed side to that of normal side was calculated and expressed in percentage (%). The results are shown in Table 12.

Table 12

1	Compound	Dose (mg/kg)	Number of cases	Weight of muscle extensor digitorum longus *1 left/right (%)
	Saline	-	7	48.8 ± 6.4
	168	10	7	52.1 ± 5.4
	168	30	8	59.4 ± 11.8 ^{*2}
	296	30	8	56.9 ± 9.7 ^{*2}

^{*1} mean ± S.D.,

The results show that the test compounds, in comparison with the control, evidently increased the weight % of muscle extensor digitorum longus.

Accordingly, these test compounds are useful as improvers and therapeutic agents for peripheral nerve disorders.

^{*2} p<0.05,

^{*3} p<0.01

^{*2} p<0.05

EXPERIMENTAL EXAMPLE 3

Promoting effect on the improvement of motor imbalance due to injury of the rat's brain cells by transplantation of fetal cerebral cells:-

Nigral dopaminergic nerve cells at the left side of the brain of 4-week old female Wistar rats (body weight 100 g) were lesioned by injecting a very small quantity of 6-hydroxydopamine. The rats showed a tendency to rotate spontaneously in a direction opposite to the lesioned side for several days, but no apparent abnormal action was observed after that. Upon administration of methamphethamine (5 mg/kg, i.p.) to the rats having the lesioned nigral dopaminergic nerve cells, they began rotational movement toward the lesioned side.

After two weeks from the destruction by the administration of the drug, portions of the truncus corporis callosi containing dopamine cells (i. e., substantia nigra and the tagmentum at the abdomen side) were cut from the brain of a fetal rat of 14 to 17 days of age, cut finely, and treated with trypsin. Then, the extracted tissues were incubated at 37°C for 30 minutes, and the tissues were subjected to pipetting to form a suspension. Five microliters of the suspension was transplanted each into two sites of the caudate nucleus of the lesioned side (10 microliters in total, about 10⁵ cells).

Compound No. 168 of the invention was administered in a dose of 156 mg/kg (i.p.) for 4 days from the day of transplantation, then with a suspension of 7 days, for 10 days in a dose of 50 mg/kg (i.p.) from the 11th day. Compound No. 296 was administered in a dose of 153 mg/kg, and then 50 mg/kg, in accordance with the same schedule.

The rotational movements induced by administration of methamphetamine were examined 2 weeks and 1 week before, and 2 (or 3), 4, 6 and 8 weeks after, the transplantation and the administration of the drug. The number of rotational movements for the first one minute was counted at intervals of 10 minutes after the administration of methamphetamine, and the total number of rotational movements counted six times was averaged to find a mean number of the rotational movements.

The results are shown in Table 13.

The results show that the test compounds are useful as improvers and therapeutic agents for cental nerve disorders.

25

30

35

50

55

5

10

Table 13

Compound	-1 W	3 W	4 W	6 W	8 W
168	13.3±7.8	9.1±5.6	4.5±4.5	1.5±3.9	0.8±2.1
296	13.2±4.1	8.4±5.0	3.1±3.4	0.9±2.3	1.0±1.5
Physiological saline	16.7±9.1	11.2±9.6	5.3±8.3	2.8±5.4	2.2±6.0

EXPERIMENTAL EXAMPLE 4

Improvement of learning and memory of mice with nerve disorder induced by mercury poisoning, and recovery effect:-

Male BalbC strain mice, 7 weeks old, were first caused to learn a T-shaped maze three times in a week so that they run straight from a starting point to a safety area. Then, methylmercury chloride (MMC for short) was administered orally in a dose of 6 mg/kg/day for 6 days to male Balb C strain mice (7 weeks old). A group of mice to which saline was administered in a dose of 0.1 ml/10 g/day was used as a control group. Beginning with the day next to the day of administering MMC, compounds of the invention were intraperitoneally administered over 10 days. On the sixth day after administration of the drug (namely, on the 12th day after start of the experiment), learning of the T-shaped maze was resumed, and the running behaviors of the mice were observed. The number of mice which could be experimented in the T-shaped maze on the 10th and 11th days after the resumption (21st and 22nd days after the start of the experiment) was counted and expressed as a denominator. The number of mice which ran to the safety area within 5 seconds at least 8 times out of ten trial runnings was counted and expressed as a numerator. The decrease in the number of the test animals was due to death by MMC poisoning. The time (seconds) required for the animals to run to the safety area was measured, and the mean ± standard error (SE) was calculated.

The results demonstrate the effect of the compounds of the invention to improve learning and momory of the mice and their recovery effect.

EXPERIMENTAL EXAMPLE 5

The acute toxicity of the compounds of the invention was examined by the following method.

Male ddy-strain 5-week old mice, 4-6 per group, were used as experimental animals. Each of the compounds was intraperitoneally (i.p.), and the toxicity of the compound was assessed 24 hours after the administration. The results are

shown in Table 14.

5

Table 14
Acute toxicity on mice

10	Compound	Estimated LD ₅₀ (mg/kg, i.p.)	
	128	>1000	
	136	>1000	
15	144	>1000	
	152	>1000	
	168	>1000	
	208	>1000	
20	392	500-1000	
	328	>1000	
	408	500-1000	
25	240	>1000	
	296	>1000	
	272	>1000	
30	170	>1000	
	604	<500	
	644	>1000	
	304	>1000	
35	424	>1000	
	248	>1000	
	216	>1000	
40	1090	500-1000	
	1158	<250	
	612	500-1000	
45	184	>1000	
	192	500-1000	
	280	500-1000	
	232	>1000	
50	112	>1000	

- to be continued -

Table 14 (continued)

5	

10

15

20

25

30

35

40

45

Estimated LD₅₀ (mg/kg, i.p.) Compound 120 >1000 160 >1000 176 >1000 264 500-1000 312 >1000 320 >1000 500-1000 400 628 500-1000 660 500-1000 684 500-1000 804 500-1000 500-1000 104 >1000 138 2004 >1000 146 >1000 154 >1000 147.1 >1000 169 >1000 500-1000 2116 2124 >1000 171.3 >1000 256 >1000 288 500-1000 2132 >1000 >1000 2140

- to be continued -

50

Table 14 (continued)

5	Compound	Estimated LD ₅₀ (mg/kg, i.p.)
	2070	>1000
10	2084	>1000
	2092	>1000
	2156	>1000
15	2164	>1000
	2182	500-1000
	2210	500-1000
20	2218	500-1000
	2242	500-1000
	2250	500-1000
25	2270	>1000
	2278	500-1000
	2302	500-1000
	2318	500-1000
30	2326	500-1000
	2342	500-1000
	154.2	500-1000
35	171.5	>1000
	2310	500-1000
	2350	500-1000
40	3104	>1000
	2318	>1000
	2334	>1000
45	171-9	500-1000
	171-11	>1000
	170-2	500-1000
50	170-12	>1000
50	2022-1	>1000
	ī	

55

The compounds of formula (1) provided by this invention have a promoting effect on the proliferation of nerve cells and the formation and sprouting of neurites and a nerve regenerating effect and a motor function recovering effect in rats and mice having nerve disorders, and can be used suitably for improving and curing neurological diseases such as disorders of peripheral nerves or central nerves and dementia. They are expected to be used also suitably for the recov-

ery, improving and curing of neurological diseases caused by nervous tissues and cells which have to do with perceptive and sensory functions and an autonomic function.

It has been found that the compounds of the invention have biological activities equal to, or higher than, those of isaxonine and mecobalamin as a control as shown in Experimental Examples 1 to 4 and Tables 9 to 14. The toxicity of the compounds of this invention are generally weak as shown in Experimental Example 5. Thus, the compounds of this invention are generally considered to be highly active and highly safe drugs and very useful with weak toxicity.

Claims

15

20

25

30

45

50

55

A pyrimidine represented by the following formula (1), or a pharmaceutically acceptable salt thereof,

$$\begin{array}{cccc}
X & Y & Y \\
N & Z & Z
\end{array}$$

wherein R1 represents a hydrogen atom or a C1-C4 alkyl group; X represents a group of the formula

a group of the formula

in which R³ corresponds to optional one or at least two identical or different substituents replacing one or at least two hydrogen atoms of identical or different methylene groups, and represents a C¹-C₄ alkyl group, a hydroxyl group, a phenyl group optionally substituted by nitro, a benzyl group, a benzoyloxy group, a benzoylamino group, a C¹-C₄ alkylamino group, a di-C¹-C₄ alkylamino group, the HO(C₆H₅)²-C- group, a piperidino group, a hydroxy(C¹-C₄ alkyl) group, the C₆H₅SO²-O- group, a benzoyl group optionally substituted by halogen, a C¹-C₄ alkylsulfonylamide group or a (C¹-C₄ alkoxy)carbonyl group, and n is a number of 4, 5, 6 or 7, a group of the formula

in which R^4 represents a hydrogen atom, a C_1 - C_4 alkyl group or a benzyl group, and R^5 represents a C_1 - C_4 alkyl group, an acyl group of up to 6 carbon atoms, a 2-furoyl group, a benzyl group, a 4-piperidyl group optionally substituted by

benzoyl, a phenethyl group, the group

or a benzoyl group optionally substituted by halogen or nitro, a group of the formula

a group of the formula

10

5

$$\bigcirc$$
_N,

15

a group of the formula

20

or a group of the formula

25

$$\bigcirc$$
N $^{\sim}$

30

Y represents a group of the formula

-CH₂R9

35

wherein R9 represents a hydrogen atom, a C_1 - C_4 alkyl group, a C_1 - C_4 alkoxy group, a C_1 - C_4 alkylthio group, or a di- C_1 - C_4 alkylamino group, a group of the formula

40

45

wherein R 6 represents a hydrogen atom, a C $_1$ -C $_4$ alkyl group, a phenyl group, a benzyl group, a C $_1$ -C $_4$ alkoxy group or a 2-(N,N-di-methylamino)ethyl group and R 7 represents a C $_1$ -C $_4$ alkyl group, an acyl group of up to 6 carbon atoms, a cyclohexylcarbonyl group, a 2-furoyl group, a (C $_1$ -C $_4$ alkoxy) carbonyl group, a cinnamoyl group, a benzyl group, a benzyl group, a benzylcarbonyl group, a tosyl group, a phenoxyacetyl group, a di-C $_1$ -C $_4$ alkylcarbamoyl group, a group of the formula

50

a group of the formula

-co-Ń ,

a group of the formula

5

10

15

20

25

30

35

45

50

55

-co-n o ,

a group of the formula

-CONH-

a group of the formula

-coo-(__)

a $4-C_1-C_4$ alkylpiperazyl group, or a benzoyl group optionally substituted by halogen, nitro, C_1-C_4 alkyl, C_1-C_4 alkoxy, amino, benzoylamino or phenyl, provided that when R^6 is a hydrogen atom, R^7 is a benzoyl group, a group or the formula

-N (CH₂) m

wherein R^8 corresponds to an optional substituent replacing the hydrogen atom of the methylene group, and represents a hydrogen atom, a C_1 - C_4 alkyl group, a phenyl group or a benzyl group, and m is a number of 4, 5, 6 or 7, a group of the formula

CO N-, ,

a group of the formula

or a group of the formula

5

10

15

20

25

30

35

40

and Z represents a hydrogen atom, a halogen atom, a C_1 - C_4 alkyl group or a $(C_1$ - C_4 alkoxy)carbonyl group; provided that Y represents - CH_2R^9 only when Z is a $(C_1$ - C_4 alkoxy)carbonyl group; that R^4 represents a hydrogen atom and R^5 represents a C_1 - C_4 alkyl group, an acyl group of up to 6 carbon atoms, a 2-furoyl group, a benzyl group, a phenethyl group or a benzoyl group optionally substituted by halogen or nitro, only when Y represents CH_2R^9 and Z represents a $(C_1$ - C_4 alkoxy) carbonyl group; and that Y can be

ON Or ON

only when X is

and R4 is a C1-C4 alkyl group.

- 2. A compound according to claim 1 in which the pharmaceutically acceptable salt is selected from hydrochlorides, hydrobromides, bisulfites, phosphates, acidic phosphates, acetates, maleates, fumarates, succinates, lactates, tartrates, benzoates, citrates, glucanates, methanesulfonates, p-toluene-sulfonates, naphthalenesulfonates and quaternary ammonium salts.
- 3. A compound of formula

or the p-toluenesulfonate thereof.

4. A compound of formula

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

or the p-toluenesulfonate thereof.

- A therapeutical composition for use in the treatment of neurological diseases comprising a compound or pharmaceutically acceptable salt as claimed in any one of claims 1 to 4 as an active ingredient.
- 6. Use of a compound or pharmaceutically acceptable salt as claimed in any one of claims 1 to 4, in the preparation of a pharmaceutical composition containing said compound or salt as active ingredient for use in the treatment of neurological diseases.
- A compound or pharmaceutically acceptable salt as claimed in any one of claims 1 to 4 for use in the treatment of neurological diseases.

Patentansprüche

10

15

30

35

40

5 1. Pyrimidin, angegeben durch die folgende Formel (1) oder ein pharmazeutisch annehmbares Salz davon

$$\begin{array}{c|c}
X & N & Y \\
N & Z
\end{array}$$
(1)

wobei R¹ ein Wasserstoffatom oder eine C₁-C₄-Alkylgruppe bedeutet; X eine Gruppe der Formel

eine Gruppe der Formel

in der R³ gegebenenfalls einem oder mindestens zwei gleichen oder verschiedenen Substituenten entspricht, die ein oder mindestens zwei Wasserstoffatome der gleichen oder von unterschiedlichen Methylengruppen ersetzen und eine C₁-C₄-Alkylgruppe, eine Hydroxygruppe, eine Phenylgruppe, gegebenenfalls substituiert durch Nitro, eine Benzylgruppe, eine Benzoyloxygruppe, eine Benzoylaminogruppe, eine C₁-C₄-Alkylaminogruppe, eine Di-C₁-C₄-alkylaminogruppe, die Gruppe HO(C₀H₅)₂C-, eine Piperidinogruppe, eine Hydroxy(C₁-C₄-alkyl)-Gruppe, die Gruppe C₀H₅SO₂O-, eine Benzoylgruppe, gegebenenfalls substituiert durch Halogen, eine C₁-C₄-Alkylsulfonylamidgruppe oder eine (C₁-C₄-Alkoxy)carbonylgruppe bedeutet und n eine Zahl von 4, 5, 6 oder 7 ist,

eine Gruppe der Formel

5

10

15

20

25

30

35

40

45

50

55

 $-N < \frac{R^4}{R^5}$

in der R⁴ ein Wasserstoffatom, eine C₁-C₄-Alkylgruppe oder eine Benzylgruppe bedeutet, R⁵ eine C₁-C₄-Alkylgruppe, eine Acylgruppe mit bis zu 6 Kohlenstoffatomen, eine 2-Furoylgruppe, eine Benzylgruppe, eine 4-Piperidylgruppe, gegebenenfalls substituiert durch Benzoyl, eine Phenethylgruppe, die Gruppe

4

oder eine Benzoylgruppe, gegebenenfalls substituiert durch Halogen oder Nitro, bedeutet, eine Gruppe der Formel

N.

eine Gruppe der Formel

₩.

eine Gruppe der Formel

O,

oder eine Gruppe der Formel

 \bigcirc N \setminus

bedeutet; Y eine Gruppe der Formel

-CH₂R9

wobei R⁹ ein Wasserstoffatom, eine C_1 - C_4 -Alkylgruppe, eine C_1 - C_4 -Alkoxygruppe, eine C_1 - C_4 -Alkylthiogruppe oder eine Di- C_1 - C_4 -alkylaminogruppe ist,

eine Gruppe der Formel

-N<R

in der R⁶ ein Wasserstoffatom, eine C₁-C₄-Alkylgruppe, eine Phenylgruppe, eine Benzylgruppe, eine C₁-C₄-Alkoxygruppe oder eine 2-(N,N-Di-methylamino)ethylgruppe ist und R⁷ eine C₁-C₄-Alkylgruppe, eine Acylgruppe mit bis zu 6 Kohlenstoffatomen, eine Cyclohexylcarbonylgruppe, eine 2-Furoylgruppe, eine (C₁-C₄-Alkoxy)carbonylgruppe, eine Cinnamoylgruppe, eine Benzylgruppe, eine Benzylgruppe, eine Tosylgruppe, eine Phenoxyacetylgruppe, eine Di-C₁-C₄-alkylcarbamoylgruppe, eine Gruppe der Formel

-co-(N)

eine Gruppe der Formel

20

5

10

15

25 eine Gruppe der Formel

30

eine Gruppe der Formel

35

eine Gruppe der Formel

40

eine $4-C_1-C_4$ -Alkylpiperazylgruppe oder eine Benzoylgruppe, gegebenenfalls substituiert durch Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Amino, Benzoylamino oder Phenyl bedeutet, mit der Maßgabe, daß, wenn R^6 ein Wasserstoffatom ist, R^7 eine Benzoylgruppe ist, eine Gruppe der Formel

50

45

55

wobei R^8 einem gegebenenfalls das Wassserstoff der Methylengruppe ersetzenden Substituenten entspricht und ein Wasserstoffatom eine C_1 - C_4 -Alkylgruppe, eine Phenylgruppe oder eine Benzylgruppe bedeutet und m eine Zahl von 4, 5, 6 oder 7 ist,

eine Gruppe der Formel

eine Gruppe der Formel

10

15

5

oder eine Gruppe der Formel

20

bedeutet und Z ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_4 -Alkylgruppe oder eine (C_1 - C_4 -Alkoxy)carbonylgruppe bedeutet, mit der Maßgabe, daß Y nur dann - CH_2R^9 bedeutet, wenn Z eine (C_1 - C_4 -Alkoxy)carbonylgruppe ist; daß R^4 ein Wasserstoffatom bedeutet und R^5 nur dann eine C_1 - C_4 -Alkylgruppe, eine Acylgruppe mit bis zu 6 Kohlenstoffatomen, eine 2-Furoylgruppe, eine Benzylgruppe, eine Phenethylgruppe oder eine Benzoylgruppe, gegebenenfalls substituiert durch Halogen oder Nitro, ist, wenn Y CH_2R^9 bedeutet und Z eine (C_1 - C_4 -Alkoxy)carbonylgruppe ist und daß Y nur dann

30

35

25

oder

sein kann, wenn X

$$-N \sim 5$$

40

bedeutet und R^4 eine $C_1\text{-}C_4\text{-}Alkylgruppe}$ ist.

 Verbindung nach Anspruch 1, wobei das pharmazeutisch annehmbare Salz ausgewählt ist aus Hydrochloriden, Hydrobromiden, Bisulfiten, Phosphaten, sauren Phosphaten, Acetaten, Maleaten, Fumaraten, Succinaten, Lactaten, Tartraten, Benzoaten, Citraten, Gluconaten, Methansulfonaten, p-Toluolsulfonaten, Naphthalinsulfonaten und quaterinären Ammoniumsalzen.

50

3. Verbindung der Formel

5

10

15

25

35

45

50

N CH₃ N −C −CH₂OCH

oder das p-Toluolsulfonat davon.

4. Verbindung der Formel

 $\begin{array}{c|c}
 & CH_3 \\
 & N \\
 & N \\
 & O
\end{array}$

oder das p-Toluolsulfonat davon.

- 5. Therapeutisches Mittel zur Verwendung bei der Behandlung von neurologischen Erkrankungen, umfassend eine Verbindung oder ein pharmazeutisch annehmbares Salz davon nach einem der Ansprüche 1 bis 4 als Wirkstoff.
- Verwendung einer Verbindung oder eines pharmazeutisch annehmbaren Salzes davon nach einem der Ansprüche
 1 bis 4 zur Herstellung eines pharmazeutischen Mittels, enthaltend die Verbindung oder das salz als wirksamen
 Bestandteil zur Verwendung bei der Behandlung von neurologischen Erkrankungen.
 - Verbindung oder pharmazeutisch annehmbares Salz nach einem der Ansprüche 1 bis 4 zur Verwendung bei der Behandlung von neurologischen Erkrankungen.

Revendications

1. Pyrimidine représentée par la formule (1) ci-dessous, ou sel d'une telle pyrimidine, acceptable en pharmacie :

 $\begin{array}{c} X \\ N \\ Y \\ R^{1} \end{array} Z$

formule dans laquelle :

R1 représente un atome d'hydrogène ou un groupe alkyle en C1-4;

X représente :

un groupe de formule

-N_O

- un groupe de formule

-N $(CH_2)_n$ R^3

10

15

20

5

dans laquelle R³ correspond à un éventuel substituant ou au moins deux éventuels substituants identiques ou différents, qui remplacent un atome d'hydrogène ou au moins deux atomes d'hydrogène du même groupe méthylène ou de différents groupes méthylène, et représente un groupe alkyle en C_{1-4} , un groupe hydroxy, un groupe phényle portant éventuellement un substituant nitro, un groupe benzyle, un groupe benzoyloxy, un groupe benzoylamino, un groupe (alkyle en C_{1-4})-amino, un groupe de formule $HO(C_6H_5)_2C$ -, un groupe pipéridino, un groupe hydroxyalkyle en C_{1-4} , un groupe de formule $C_6H_5SO_2O$ -, un groupe benzoyle portant éventuellement un substituant halogéno, un groupe (alkyle en C_{1-4})-sulfonamido, ou un groupe (alcoxy en C_{1-4})-carbonyle, et n représente l'un des nombres 4, 5, 6 et 7,

un groupe de formule

$$-N < \frac{R^4}{R^5}$$

*2*5

dans laquelle R^4 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} ou un groupe benzyle, et R^5 représente un groupe alkyle en C_{1-4} , un groupe acyle comportant au plus 6 atomes de carbone, un groupe 2-furoyle, un groupe benzyle, un groupe 4-pipéridyle portant éventuellement un substituant benzoyle, un groupe phénéthyle, un groupe benzoyle portant éventuellement un substituant halogéno ou nitro, ou un groupe de formule

35

30

40

- un groupe de formule

45

50

un groupe de formule

- un groupe de formule

 \bigcirc

ou

10 - un groupe de formule

15

5

Y représente :

- un groupe de formule

20

25

-CH₂R9

dans laquelle R⁹ représente un atome d'hydrogène, un groupe alkyle en C_{1-4} , un groupe alcoxy en C_{1-4} , un groupe alkylthio en C_{1-4} ou un groupe di-(alkyle en C_{1-4})-amino,

- un groupe de formule

-N R^6

35

40

30

dans laquelle R^6 représente un atome d'hydrogène, un groupe alkyle en C_{1-4} , un groupe phényle, un groupe benzyle, un groupe alcoxy en C_{1-4} ou un groupe 2-(N,N-diméthylamino)éthyle, et R^7 représente un groupe alkyle en C_{1-4} , un groupe acyle comportant au plus 6 atomes de carbone, un groupe cyclohexylcarbonyle, un groupe 2-furoyle, un groupe (alcoxy en C_{1-4})-carbonyle, un groupe cinnamoyle, un groupe benzyle, un groupe benzylcarbonyle, un groupe tosyle, un groupe phénoxyacétyle, un groupe di-(alkyle en C_{1-4})-carbamyle, un groupe de formule

45

$$-co-\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$$

un groupe de formule

50

$$-CO-N$$
,

un groupe de formule

un groupe de formule

-CONH-

5

un groupe de formule

10

un groupe 4-(alkyle en C_{1-4})-pipérazinyle, ou un groupe benzoyle portant éventuellement un substituant halogéno, nitro, alkyle en C_{1-4} , alcoxy en C_{1-4} , amino, benzoylamino ou phényle, sous réserve que, si R^6 représente un atome d'hydrogène, R^7 représente un groupe benzoyle,

15

un groupe de formule

25

30

dans laquelle R 8 correspond à un éventuel substituant qui remplace un atome d'hydrogène d'un groupe méthylène et représente un atome d'hydrogène, un groupe alkyle en C_{1-4} , un groupe phényle ou un groupe benzyle, et m représente l'un des nombres 4, 5, 6 et 7,

- un groupe de formule

40

un groupe de formule

45

45

ou un groupe de formule

50

55

et

Z représente un atome d'hydrogène, un atome d'halogène, un groupe alkyle en C_{1-4} ou un groupe (alcoxy en C_{1-4})-carbonyle ;

sous réserve :

- que Y ne représente -CH₂R⁹ que si Z représente un groupe (alcoxy en C₁₋₄)-carbonyle ;
 - que R⁴ ne représente un atome d'hydrogène et R⁵ ne représente un groupe alkyle en C₁₋₄, un groupe acyle comportant au plus 6 atomes de carbone, un groupe 2-furoyle, un groupe benzyle, un groupe phénéthyle ou un groupe benzoyle portant éventuellement un substituant halogéno ou nitro, que si Y représente -CH₂R⁹ et Z représente un groupe (alcoxy en C₁₋₄)-carbonyle;
 - et que Y ne peut représenter un groupe de formule

20

25

30

45

50

55

10

15

que si X représente

et R4 représente un groupe alkyle en C₁₋₄

- 2. Composé conforme à la revendication 1, dont le sel acceptable en pharmacie est choisi parmi les chlorhydrates, bromhydrates, bisulfites, phosphates, phosphates acides, acétates, maléates, fumarates, succinates, lactates, tartrates, benzoates, citrates, gluconates, méthanesulfonates, p-toluènesulfonates et naphtalènesulfonates et les sels d'ammonium quaternaire.
- 40 3. Composé de formule

ou son p-toluènesulfonate.

4. Composé de formule

ou son p-toluènesulfonate.

- 5. Composition thérapeutique destinée à être employée dans le traitement de maladies neurologiques, qui contient, en tant qu'ingrédient actif, un composé ou un sel acceptable en pharmacie, conforme à l'une des revendications 1 à 4.
- 6. Emploi d'un composé ou d'un sel acceptable en pharmacie, conforme à l'une des revendications 1 à 4, dans la préparation d'une composition pharmaceutique qui contient, en tant qu'ingrédient actif, ledit composé ou sel et qui est destinée à être employée dans le traitement de maladies neurologiques.

7. Composé ou sel acceptable enpharmacie, conforme à l'une des revendications 1 à 4, destiné à être employé dans le traitement de maladies neurologiques.