Práctica 2

Funciones y scripts

Ambos son ficheros con extensión .m. Sin embargo:

• Funciones: La primera línea debe contener la sentencia:

```
function salida = mifuncion(entrada)
```

Las variables de la función son locales a la función.

• Scripts: Las variables de un scripts son válidas dentro de todo el script.

Histograma

Es una aproximación de una función densidad de probablilidad.

Ejemplo: Dibujar histograma

Vamos a dibujar el histogrma de una gausiana:

Para generar la gausiana: sqrt(var) * rand(1, <n. de elementos>) + media


```
% Generamos la gausiana
x=randn(1, 1000)

% Calculamos el histograma con 100 muestras
[hi, ci]=hist(x, 100);

% Longitud de x
Np = length(x);

% Calculamos la función densidad de probabilidad
fxi = hi/Np/(ci(2), ci(1))
```

Función densidad de probabilidad

```
%% LCDfdp: Calcula la fdp de una Waa de forma empírica
function [fxi,ci] = LCDfdp(x)

% Calculamos el histograma con 100 muestras
[hi, ci]=hist(x, 100);

% Longitud de x
Np = length(x);

% Calculamos la función densidad de probabilidad
fxi = hi/Np/(ci(2) - ci(1));
```

Ejercicio 1

Apartado 1

Generar $Np=10^6\,$ muestras de dos variables aleatorias gaussianas $N_1\,$ y $N_2\,$, conjunta-mente gaussianas, con medias respectivamente $+1\,$ y $1\,$ y varianza $\sigma^2=4.$ Obtener yrepresentar en una misma figura sus funciones densidad de probabilidad.

Solución


```
Np = 1e6;
N1 = sqrt(4) * randn(1,Np) + 1;
N2 = sqrt(4) * randn(1,Np) - 1;

[f1, c1] = LCDfdp(N1);
plot(c1,f1);
```

Apartado 2

Se define una nueva variable aleatoria gaussiana (¿por qué es gaussiana?) X en la forma:

$$X = N1 + N2$$

Encontrar teórica y experimentalmente su media, varianza y función densidad de probabilidad. Representando las dos funciones teóricas y experimental en un mismo gráfico, comprobar su coincidencia.

Recordamos: El teorema central del límite nos dice que la suma de muchas variables aletorias de distinta naturaleza convergen a una variable aleatoria gaussiana.

Parámetro	Forma Teórica	Forma Experimental
μ	0	\$me = mean(x) \$
σ^2	8	\$ve = var(x) \$

Calculamos fdp

fdp experimental

```
fx, cx=LCDfdp(x); plot(x, fx);
```


Apartado 3

Sea ahora una nueva variable aleatoria X definida en la forma:

$$X = A + N$$

siendo A una variable aleatoria discreta que toma con probabilidades $\{1/4,3/4\}$ los valores +1, 1, respectivamente. N es una variable aleatoria gaussiana de media 0 y varianza $\sigma^2=0.1$. Encontrar teórica y experimentalmente las funciones densidad de probabilidad de las siguientes variables aleatorias:

- $X_1 \equiv X|A = +1$
- $X_2 \equiv X | A = 1$
- X.

Nota: para generar la función \boldsymbol{A} , que es una variable aleatoria discreta, usamos:

$$A = sign(rand(1, Np) - 0.75)$$

Solución

Parámetro	Forma Teórica	Forma Experimental
X_1	Rango, evaluar, plot	<pre>LCDfdp(); plot()</pre>
X_2	Rango, evaluar, plot	<pre>LCDfdp(); plot()</pre>
X	Rango, evaluar, plot	ve=var(x)