Máquina de Mealy (ME)

Grafo:

$$ME = \{ \Sigma_{E}, \Sigma_{S}, Q, f, g \}$$

Donde:

$\Sigma_{\mathbf{E}}$	Conjunto de símbolos de entrada
$\Sigma_{\mathbb{S}}$	Conjunto de símbolos de salida
Q	Conjunto finito de estados
f	Función de transición de estados definida como f : Q x ∑ E → Q
g	Función de salida definida como g: $Q \times \Sigma E \longrightarrow \Sigma s$

Este tipo de maquina permanece en un estado mientras no reciba estimulo. Al tener un estímulo por parte de las entradas tendrá 2 acciones de manera simultanea:

1-Transita a otro estado (que puede ser el mismo en el que está pero igual se produce el transito). De acuerdo con la función de transición f

2-Emite un símbolo a la salida (símbolo que pertenece al conjunto de símbolos de salida). de acuerdo con la función de salida

Estas tres acciones: lectura de un símbolo desde exterior (cinta de Entrada), Transición de estado, y Grabado (Cinta de Salida), serán indivisibles dentro de un intervalo de tiempo.

De esta manera al transitar desde un intervalo de tiempo discreto i hasta i+1 la máquina realizará:

Acción	Significado
$q_{i+1} = f(q_i, e_i)$	Estando en el intervalo de tiempo i en el estado q_i y recibiendo desde la cinta de entrada e_i , la máquina transita al estado q_{i+1}
$S_i = f(q_i, e_i)$	Que la salida producida en el intervalo de tiempo i estará solo en función del estado en que se encuentra en ese tiempo i, y la salida que producirá será la correspondiente al símbolo del estado que este después de realizar la transición.

Si analizamos esta máquina en relación a la máquina de Mealy, notamos que la diferencia que existe entre ambas radica solo en como se comporta la función de salida q.

Aplicaciones:

Maquina expendedora

áquina expendedora de golosinas: Consideremos una máquina expendedora de golosinas, de \$4 pesos cada una, que recibe monedas de \$1, \$2, \$5 y \$10 pesos. Supongamos que la máquina funciona bajo los siguientes supuestos:

- el costo de las golosinas puede cubrirse con cualquier combinación de monedas aceptables,
- la máquina sólo da cambio en monedas de \$1 peso, las cuales están almacenadas en una alcancía. Si no puede dar cambio, es decir, si el contenido de la alcancía no es suficiente, regresa la moneda insertada, y
- sólo se puede insertar monedas en orden inverso a su denominación.

Codifiquemos el funcionamiento de la máquina con los conjuntos siguientes:

• *Monedas a insertarse*:

 m_0 : ninguna moneda se inserta,

 m_1 : moneda de un peso, m_2 : moneda de dos pesos, m_5 : moneda de cinco pesos, m_{10} : moneda de diez pesos.

• Respuestas de la máquina:

s₀: continúa sin más,

s₁: entrega una golosina,s₂: da un peso de cambio,

s₃ : devuelve la moneda insertada.

• Estados de la máquina:

 q_0 : estado inicial,

 $\forall i \in [0,5] : a_i$: resta por devolver i pesos,

 $\forall j \in [1,2]: b_i$: falta por pagar j pesos cuando se inició el pago con \$2, $\forall k \in [1,3]: c_i$: falta por pagar k pesos cuando se inició el pago con \$1.

• Depósito en la alcancía:

 $\forall i \in [1, 6] : p_i$: NO alcanza a haber i pesos,

p₇ : al menos hay \$6 pesos.

La máquina de Mealy que modela el funcionamiento de la máquina expendedora tiene como alfabeto de entrada el producto cartesiano del conjunto de monedas aceptables con el

conjunto que codifica a los depósitos de la alcancía. Hay pues $5 \times 7 = 35$ símbolos de

entrada . El alfabeto de salida está dado por las 4 posibles respuestas que da la máquina expendedora. Hay 1+6+2+3=12 estados

$orall j \leq 6: \ tran(q_0, m_{10}p_j) = q_0 \ res(q_0, m_{10}p_j) = s_3$	si se inserta una moneda de \$10 pesos y no hay cambio suficiente, se devuelve la moneda y se reinicia el proceso,		
$tran(q_0, m_{10}p_7) = a_5$ $res(q_0, m_{10}p_7) = s_2$	ya que lo hay, procédase a dar cambio,		
$\forall k = 5, 4, 3, 2, 1:$ $tran(a_k, m_0 P) = a_{k-1}$ $res(a_k, m_0 P) = s_2$	para $P=p_j$, cualquiera que sea j , continúese devolviendo un peso hasta completar el cambio. Obsérvese que aquí, en principio, puede haber combinaciones (a_k,p_j) contradictorias. Sin embargo, la interpretación que se está construyendo excluye que aparezcan esas inconsistencias.		
$tran(a_0, m_0P) = q_0$ $res(a_0, m_0P) = s_1$	Al terminar de dar el cambio, se entrega la golosina y se reinicia el proceso.		

$tran(q_0, m_5p_1) = q_0$ $res(q_0, m_5p_1) = s_3$	si se inserta una moneda de \$5 pesos y no hay cambio, se devuelve la moneda y se reinicia el proceso,
$tran(q_0, m_5P) = a_0$ $res(q_0, m_5P) = s_2$	si hay monedas en la alcancía, $P \neq p_1$ i.e. , entonces se da el peso de cambio,
$tran(q_0, m_2P) = b_2$ $res(q_0, m_2P) = s_0$	se insertan \$2 pesos y se espera a completar el importe de \$4 pesos,
$tran(b_2, m_2P) = q_0$ $res(b_2, m_2P) = s_1$	habiéndose completado el costo de la golosina, se lo entrega y se reinicia el proceso,
$tran(b_2, m_1P) = c_1$ $res(b_2, m_1P) = s_0$	se inserta un peso más y hay que esperar a que llegue el último,
$tran(b_2, MP) = b_2$ $res(b_2, MP) = s_3$	si llega una moneda con denominación mayor $M=m_5,m_{10}$ entonces se la devuelve y se continúa la espera,
$tran(q_0, m_1P) = c_3$ $res(q_0, m_1P) = s_0$	si se inicia el pago con una moneda de un peso hya que esperar los otros tres pesos,
$\forall k = 3, 2, 1:$ $tran(c_k, m_1P) = c_{k-1}$ $res(c_k, m_1P) = s_0$	se continúa el pago, recibiendo un peso a la vez. Aquí $c_0=a_0$. Si se recibe monedas de mayor denominación, se develve éstas.
	cualquier otra posibilidad (Estado,Entrada) es inconsistente e inalcanzable en la máquina.