Examen 4

Entrega: 6 de diciembre de 2023

Problema 1

En el conflicto de Israel-Palestina, Estados Unidos desplegó el portaaviones USS Gerald R. Ford para intimidad a los palestinos. El portaaviones cuenta con dos reactores nucleares A1B que generan $700\,\mathrm{MW}$ térmicos con eficiencia de $33\,\%$ cada uno, de Estados Unidos a la costa de Israel recorrió $10\,853.42\,\mathrm{km}$ a una velocidad de $56\,\mathrm{km/h}$, ¿Cuántos kg de $^{235}\mathrm{U}$ se consumieron? (Considera que el $15\,\%$ de neutrones absorbidos se pierden en captura radiactiva.)

Como el tiempo de vida media de 235 U (7.13×10⁸ años) es menor al tiempo de vida media de 238 U (4.51×10⁹ años), la abundancia de 235 U ha ido decreciendo en la Tierra. ¿Hace cuánto tiempo la abundancia isotrópica del 235 U era igual a 3%? Este porcentaje es el enriquecimiento que se usa en algunas plantas nucleares.

¿Qué masa de hidrógeno necesitas para generar 1 MWD?

Se te da una muestra de madera proveniente de una excavación en Tlatelolco, su masa es de $10\,\mathrm{g}$ y su actividad es de $2.35\,\mathrm{Bq}$ ¿qué tan antigua es la muestra?

Si cada fisión del 235 U genera en promedio 2.5 neutrones de energías térmicas (aproxima a $1\,\mathrm{eV}$) ¿qué cantidad de ese combustible es necesario para recibir una dosis alta de $(5\,\mathrm{Sv})$ en una persona de $80\,\mathrm{kg}$ de peso (solo proveniente de neutrones)?