REFERENCE MANUAL: STM32F103C8T6, *STM32F407G-DISC1

By: Michelle Cámara González

Processor: ARM Cortex-M3 with embedded Flash and SRAM.

Crystal Oscillator: HSE 4-16 MHz Crystal/ceramic resonator oscillator.

SRAM: 20 Kbytes.

Debug mode: Serial wire debug (SWD) and JTAG interfaces

I/0:

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL}	Input low level voltage ⁽²⁾		-0.5		0.8		
V _{IH}	IO TC input high level voltage ⁽²⁾	TTL ports	2		V _{DD} +0.5	V	
	IO FT high level voltage ⁽²⁾	1	2		5.5V		
V _{IL}	Input low level voltage ⁽²⁾	CMOS ports	-0.5		0.35 V _{DD}	v	
V _{IH}	Input high level voltage ⁽²⁾	CMOS ports	0.65 V _{DD}		V _{DD} +0.5		
V _{hys}	IO TC Schmitt trigger voltage hysteresis ⁽³⁾			200		mV	
	IO TC Schmitt trigger voltage hysteresis ⁽³⁾			5% V _{DD} ⁽⁴⁾		mV	
l _{lkg}	Input leakage current (5)	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os			±1	μА	
	input leakage current (*)	V _{IN} = 5 V 5 V tolerant I/Os			3		
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	V _{IN} = V _{SS}	30	40	50	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁶⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ	
C _{IO}	I/O pin capacitance			5		pF	

V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

^{2.} Values based on characterization results, and not tested in production.

^{3.} Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.

^{4.} With a minimum of 100 mV.

^{5.} Leakage could be higher than max. if negative current is injected on adjacent pins.

Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

Table 30. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port		0.4	V	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4			
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port		0.4	٧	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	I _{IO} =+ 8mA 2.7 V < V _{DD} < 3.6 V	2.4			
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA		1.3	V	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3		V	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA		0.4	V	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin when 4 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4			

The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in Table 5 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 5 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

Table 31. I/O AC characteristics(1)

I/O mode ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
10	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V		2	MHz	
	t _{f(IO)out}	Output high to low level fall time ⁽³⁾	C = 50 pE V = 2 V to 2 6 V		125	ns	
	t _{r(IO)out}	Output low to high level rise time ⁽³⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V		125	IIS	
01	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V		10	MHz	
	t _{f(IO)out}	Output high to low level fall time ⁽³⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V		25	ns	
	t _{r(IO)out}	Output low to high level rise time ⁽³⁾			25		
11	F _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V		50	MHz	
			$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		30	MHz	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V		20	MHz	
	t _{f(IO)out}	Output high to low level fall time ⁽³⁾	$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5		
			C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V		8]	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V		12	ns	
	t _{r(IO)out}	Output low to high level rise time ⁽³⁾	$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		5	113	
			C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V		8	3	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V		12		
-	t _{EXTIPW}	Pulse width of external signals detected by the EXTI controller		10		ns	

^{1.} Refer to the Reference user manual UM0306 for a description of GPIO Port configuration register.

BLOCK DIAGRAM:

^{2.} The maximum frequency is defined in Figure 16.

- 1. T_A = -40 °C to +105 °C (junction temperature up to 125 °C).
- 2. AF = alternate function on I/O port pin.

Memory Map:

MEMORY MAP

- 1. What's the base address of AHB1 Bus Peripherals?
 - 0x4002 0000
- 2. What's the base address of RCC engine registers of the MCU?
 - 0x4002 1000
- 3. What's the base address of APB1 Peripherals?
 - 0x4000 0000
- 4. What's the base address of SRAM2?
 - 0x2000 0000
- 5. What's the base address of ADC registers?
 - 0x4001 2400 ADC1
 - 0x4001 2800 ADC2

BLOCK DIAGRAM

- 1. System Bus can operate at the speed up to 180 MHz?
 - False it cannot operates because it has a maximum speed of 72 MHz.
- 2. SRAMS are connected to System Bus T/F?
 - True.
- 3. APB1 bus can operate at the speed up to 180 MHz?

- No, it cannot operate at speeds of up to 180 MHz. The maximum speed of it is 36 MHz.
- 4. Let's say I have a peripheral whose datasheet says that its operating frequency or speed must be Above 95 MHz, can I connect that peripheral via APB2 Bus?
 - No due to the maximum APB2 frequency.
- 5. What is the MAX HCLK value of your MCU?
 - 72 MHz
- 6. What is the MAX P1CLK (APB1) value of your MCU?
 - 36 MHz
- 7. What is the MAX P2CLK (APB2) value of your MCU?
 - 72 MHz.
- 8. GPIOs and processor communicate over AHB1 bus T/F?
 - True. Because the GPIO Block is directly connected to AHB1 bus.
- 9. USB OTG and processor communicate over AHB2 bus T/F?
 - False. USB OTG and other high-speed peripherals are connected to AHB1 bus.

GLOSSARY

- **ARM:** Advanced RISC Machine. It refers to a Reduced Instruction Set Computing (RISC) architecture developed by ARM Holdings. It is widely used in the design of microcontrollers and processors for embedded systems.
- **SWD:** Serial Wire Debug. It is a debugging and programming protocol used in embedded systems for communication between a development device and a microcontroller or processor.
- ITM: Instrumentation Trace Macrocell. It is a feature used in debuggers to trace events and provide additional information during software development in embedded systems.
- JTAG: Joint Test Action Group. It refers to a standard test interface used for debugging and programming microcontrollers and other electronic devices.
- **FIFO:** First In, First Out. It refers to a data structure that follows the principle that the first element to enter is the first to be removed.
- **HSE:** *High-Speed External*. It is used in the context of an external oscillator with ad adjustable frequency between 4 and 16 megahertz.

- **SRAM:** *Static Random Access Memory.* It is a type of volatile memory used to store and access data quickly in embedded systems.
- **POR:** *Power-On Reset.* It refers to a circuit that generates a reset pulse when the system is powered on.
- **PDR:** *Power-Down Reset.* Like POR, it refers to a circuit that generates a reset pulse when the system is powered down or enters a low-power mode.
- **PVD:** *Programmable Voltage Detector.* It refers to a programmable voltage detector that generate a reset or an interrupt when the supply voltage falls below a set threshold.
- MCU: Microcontroller Unit. A microcontroller is an integrated circuit that includes a central processing unit (CPU), memory and input/output peripherals.