Stat 300A Theory of Statistics

Homework 8 Solutions

Due on December 5, 2018

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (https://www.gradescope.com) for homework submission (you should have received an invitation) no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

Problems on hypothesis testing

Solve problems 3.32, 4.2 and 4.19 from Lehmann, Romano, Testing Statistical Hypotheses.

TSH 3.32 solution (sketch)

The likelihood ratio is:

$$r(x) = \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = \frac{1 + (x - \theta_0)^2}{1 + (x - \theta_1)^2}$$

by Neyman-Pearson, the MP test rejects when r(x) > k with k chosen such that $P_{\theta_0}(r(x) > k) = \alpha$. Since X has a continuous distribution, the behavior at k doesn't matter.

We plot an example with $\theta_0 = 0$ and $\theta_1 = 1$.

Notice that $r(x) \to 1$ as $x \to \pm \infty$, unlike for normal distributions and other MLR examples that we have seen. It is clear that as we vary θ_1 , the set $r(x) \ge \alpha$ changes, so there is no UMP test for $\theta = 0$ versus $\theta > 0$.

To characterize the set of distributions, we set r(x) = k for various values of θ_0, θ_1 and k and look at the shape. We find that we can get any set of the form:

- [a, b] for $-\infty \le a < b \le \infty$
- $[-\infty, a] \cap [b, \infty]$ for $-\infty < a < b < \infty$

TSH 4.2 solution

$$\begin{split} P_{\theta}(\hat{\alpha} \leq \alpha) &= P_{\theta}(x \in S_{\alpha'} \text{ for some } \alpha' \leq \alpha) \\ &= P_{\theta}(x \in S_{\alpha}) \text{ by the nested sets assumption} \\ &\geq P_{\theta_0}(x \in X_{\alpha}) \text{ by unbiasedness} \\ &= \alpha \end{split}$$

TSH 4.19 solution (sketch)

Let $T' = \sum_{i=1}^{N} T(X_i)$ and notice that (N, T') are the sufficient statistics of a multi-parameter exponential family:

$$P(N,T) \propto e^{N \log(\lambda/C(\theta)) + Q(\theta)T'} h(X,N).$$

We now wish to apply theorem 4.4.1 from TSH, but the theorem doesn't apply because we don't know that the parameter space $\{(\log(\lambda/C(\theta)),Q(\theta)):\lambda>0,\theta\in\Theta\}$ is convex. Looking at the proof of theorem 4.4.1, we find that we only need $\omega_j=\{(\log(\lambda/C(\theta)),Q(\theta)):\lambda>0,\theta=Q^{-1}(c)\}$ to contain a rectangle, which it does because λ can be any positive number. Thus the proof of theorem 4.4.1 goes through in our situation, as desired.