UTC - CF04 Session Automne

CF04 Mécanique des fluides numérique et couplages multiphysiques

Emmanuel LEFRANÇOIS

Equipe Numérique

Mots-clés :

Mécanique des fluides, méthodes numériques, couplages multiphysiques

Laboratoire Roberval, UMR 7337 UTC-CNRS

http://roberval.utc.fr

Quatrième partie

Introduction aux techniques CFD (3/3)

Section. 1

Calcul des flux

Flux / Classification des (2) flux

- convectifs (transport) liés aux effets de transport et responsable des instabilités numériques au voisinage des discontinuités (?),
- 2. diffusifs liés aux effets de diffusion numérique/physique et qui au contraire jouent un rôle stabilisant sur la solution (mais point trop n'en faut...)

Flux / Convectifs - généralités

- Etape décisive dans le choix des schémas de discrétisation retenus,
- Origine des phénomènes d'instabilité numérique en présence de fronts raides,
- ► Garantir l'absence d'oscillations numérique au voisinage des discontinuités.

TROIS principales familles des schémas :

1. TVD (Total Variation Diminishing)

Roe, Harten-Yee, Steger-Warming ou Mac-Cormack,

2. FCT (Flux Corrected Transport)

Boris et Book (1973),

3. WENO (Weighted Essentially Non Oscillatory) ordre élevés (4, 5 voire plus).

Harten, Osher, Chakravarthy (1987)

En règle générale : gain de stabilité \leftrightarrow dégradation de l'ordre de précision !

- technique de décentrement (TVD, WENO),
- ajoût diffusion/anti-diffusion (FCT).

Flux / Convectifs - illustration du principe sur un cas simplifié

Equations d'Euler 1D, compressible, non visqueux, instationnaire, section constante.

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} = \mathbf{0} \quad \text{avec} \quad \mathbf{U} = \begin{Bmatrix} \rho \\ \rho u \\ E \end{Bmatrix}, \quad \mathbf{F} = \begin{Bmatrix} \rho u \\ \rho u^2 + p \\ (E + \rho)u \end{Bmatrix}.$$

Forme discrétisée sur la cellule i :

$$\frac{\partial \mathbf{U}_i}{\partial t} + \frac{1}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right) = \mathbf{0},$$

$$\mathbf{F}_{i+\frac{1}{3}}$$
 (resp. $\mathbf{F}_{i-\frac{1}{3}}$) \rightarrow flux numérique à travers l'interface $i+\frac{1}{2}$ (resp. $i-\frac{1}{2}$).

Flux / Convectifs - technique du décentrement des flux (1/2)

Décomposition du flux $F_{i\pm\frac{1}{4}}$ en la somme :

- $lackbox{ contribution amont } (
 ightarrow)$ notée $\mathbf{F}^+_{i\pm \frac{1}{2}}$,
- ▶ contribution avale (←) notée $\mathbf{F}_{i\pm\frac{1}{2}}^{-}$.

$$ightarrow \mathbf{F}_{i\pm rac{1}{2}} = \mathbf{F}_{i\pm rac{1}{2}}^{+} + \mathbf{F}_{i\pm rac{1}{2}}^{-}.$$

Plusieurs choix selon l'ordre de précision recherché :

au premier ordre :

$$\mathbf{F}_{i+\frac{1}{2}}^{+} = \mathbf{F}_{i}^{+} \text{ et } \mathbf{F}_{i+\frac{1}{2}}^{-} = \mathbf{F}_{i+1}^{-}$$

au second ordre :

$$\begin{split} \mathbf{F}_{i+\frac{1}{2}}^{+} &= \frac{3}{2}\mathbf{F}_{i}^{+} - \frac{1}{2}\mathbf{F}_{i-1}^{+} \\ \mathbf{F}_{i+\frac{1}{2}}^{-} &= \frac{3}{2}\mathbf{F}_{i+1}^{-} - \frac{1}{2}\mathbf{F}_{i+2}^{-} \end{split}$$

ELF/2017 CF04 7 / 38

Flux / Convectifs - technique du décentrement des flux (2/2)

Question:

Comment distinguer les deux contributions \mathbf{F}^+ et \mathbf{F}^- ?

Réponse

 \Rightarrow analyse aux valeurs propres en linéarisant le terme de flux :

$$\mathbf{F} = \mathbf{A}\mathbf{U}$$
 avec la matrice jacobienne $\mathbf{A} = \partial \mathbf{F}/\partial \mathbf{U}$

 \Rightarrow Diagonalisation sur la base ${\mathcal X}$ de ses vecteurs propres :

$$\mathbf{A} = \mathcal{X} \mathbf{\Lambda} \mathcal{X}^{-1}$$
 avec $\mathbf{\Lambda} = \begin{bmatrix} u - c & u \\ & u & u + c \end{bmatrix}$

Pour écrire

$$\mathbf{F}^+ = \mathbf{A}^+ \mathbf{U}$$
 et $\mathbf{F}^- = \mathbf{A}^- \mathbf{U}$
$$\mathbf{A}^+ = \mathcal{X} \mathbf{\Lambda}^+ \mathcal{X}^{-1} \quad \text{et} \quad \mathbf{A}^- = \mathcal{X} \mathbf{\Lambda}^- \mathcal{X}^{-1}$$

où les composantes des matrices diagonales ${f \Lambda}^\pm$ sont données par :

$$\lambda_j^{\pm} = \frac{1}{2} \left(\lambda_j \pm |\lambda_j| \right), \quad j = 1, 2, 3.$$

ELF/2017 CF04 8 / 38

Flux / Convectifs - schémas décentrés les plus connus

Où évaluer les matrices jacobiennes A^+ et A^- ?

▶ Steger et Warming (1981) proposent de les calculer aux mêmes points que U :

$$\mathbf{F}_{i+\frac{1}{2}}^{SW} = \left(\frac{3}{2}\mathbf{A}_{i}^{+}\mathbf{U}_{i} - \frac{1}{2}\mathbf{A}_{i-1}^{+}\mathbf{U}_{i-1}\right) + \left(\frac{3}{2}\mathbf{A}_{i+1}^{-}\mathbf{U}_{i+1} - \frac{1}{2}\mathbf{A}_{i+2}^{-}\mathbf{U}_{i+2}\right)$$

- $\hbox{[-] Approche très dissipative $[+]$ Stabilit\'e garantie dans les zones de forts gradients}.$
- MacCormack (1985) propose d'alterner les points entre la phase prédicteur q=0 et la phase correcteur q=1 de son schéma :

$$\boldsymbol{F}_{i+\frac{1}{2}}^{MC} = \boldsymbol{A}_{i+q}^{+} \left(\frac{3}{2} \boldsymbol{U}_{i} - \frac{1}{2} \boldsymbol{U}_{i-1} \right) + \boldsymbol{A}_{i+q}^{-} \left(\frac{3}{2} \boldsymbol{U}_{i+1} - \frac{1}{2} \boldsymbol{U}_{i+2} \right)$$

- [-] Instable dans les forts gradients
- [+] Moins dissipatif, couches limites OK.

Dans la pratique \rightarrow

pondération des deux approches.

Flux / Convectifs - schéma WENO (Harten 1987, Liu, Osher et Chan 1994) (1/2)

Objectif: augmenter l'ordre de précision.

- ▶ WENO pour Weighted Essentially Non-Oscillatory
- ▶ Décomposition du flux selon trois composantes :

$$\mathbf{F}_{i\pm\frac{1}{2}} = \omega_1 \mathbf{F}_{i\pm\frac{1}{2}}^{(1)} + \omega_2 \mathbf{F}_{i\pm\frac{1}{2}}^{(2)} + \omega_3 \mathbf{F}_{i\pm\frac{1}{2}}^{(3)}$$

▶ Recherche de la combinaison la + précise et la + stable

ELF/2017 CF04 10 / 38

Flux / Convectifs - schéma WENO (2/2)

Illustration sur une équation scalaire de transport 1D + condition initiale

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0,$$

Terme flux f?

- 1. flux constant f = u,
- 2. flux de type Bürgers $f = u^2/2$.

(b) Flux non linéaire (Bürgers) $F = u^2/2$

- ► Condition initiale en trait plein,
- ▶ Solution à t = 0.6 s (symboles),
- ▶ Pas de temps : CFL = 0.2, ordre 5 en espace (!)
- Maillage constitué de 500 nœuds.

Termes ne sont pas générateurs d'oscillations numériques parasites.

Recours systématique à des schémas centrés d'ordre élevé :

- 2 pour les TVD et FCT,
- ▶ 4, 5 pour WENO.

Et c'est tout ...

Flux / Estimation des gradients

Rappel des équations de Navier-Stokes en 3D visqueux et incompressible (selon x) :

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + \rho f_x$$

Constats

Composantes du gradient et du laplacien (\sim gradient second) omniprésentes !

FONDAMENTAL de savoir les calculer!

Astuce

Th. du gradient
$$\iint\limits_{\mathcal{V}_e} \nabla \phi \, d\mathcal{V} = \oint\limits_{\mathcal{S}_e} \phi \mathbf{n} d\mathcal{S} \quad \Rightarrow \quad \nabla \phi|_e = \frac{1}{\mathcal{V}_e} \sum_j \bar{\phi}_j \mathbf{S}_j$$

Illustration du concept :

ELF/2017 CF04 13 / 38

Flux / Estimation des gradients - plusieurs choix possibles

Estimation des gradients

. repose sur le choix de la valeur (uniforme!) de $\bar{\phi}_j$ sur l'interface j de la cellule.

1. Evaluation des gradients par Green-Gauss au centre des cellules (cell-based)

$$\bar{\phi}_j = \frac{\phi_{e1} + \phi_{e2}}{2}.$$

2. Evaluation nodales des gradients par Green-Gauss (node-based)

$$\bar{\phi}_j = \frac{1}{n_j} \sum_{i}^{n_j} \bar{\phi}_j^i$$

 $\bar{\phi}^i_i =$ moyenne pondérée des valeurs extraites sur les cellules voisines.

3. Evaluation par les moindres carrés...

Section. 2

Algorithmes de résolution du système algébrique

Résolution / Couplage des équations. . . or not?

Caractéristiques :

- non linéaire (terme de transport principalement),
- ▶ *n* équations couplées (variables en vitesses, pression, température...).

Deux approches/solveurs possibles :

Segregated

 \rightarrow équations individuelles résolues l'une après l'autre.

- $\blacktriangleright \ \ \, \text{\bf Avantage:} \ \, \text{efficace en terme de place m\'emoire} \leftarrow \text{\'equations stock\'ees une \'a la fois.}$
- ▶ Inconvénient : convergence relativement lente car résolution découplée.
- Usage: incompressible ou faiblement compressible.

Coupled

ightarrow équations toutes résolues **simultanément**.

- ► Avantage : taux de convergence /.
- ▶ Inconvénient : place mémoire × 1.5 à 2 fois par rapport au cas Segregated .
- ▶ **Usage :** compressible, effet de gravité, convection naturelle, acoustique.

Flux / Résolution directe

Trois principales méthodes par résolution directe :

- 1. Elimination de Gauss,
- 2. Décomposition LU,
- 3. Algorithme de Thomas (algo de matrice tridiagonale),

 \dots à oublier purement et simplement car totalement inadaptées vue la taille des systèmes ($\sim 10^6$ ddl)!

Flux / Approche itérative

Solution

Privilégier une approche ITERATIVE!

Principales méthodes :

- 1. Jacobi,
- 2. Gauss-Seidel,
- 3. Sur-relaxation successive (SOR),
- 4. Méthode du gradient conjugué,
- 5. Multigrille (accélérateur de convergence)

Flux / Approche itérative de Jacobi

- Chaque élément diagonal est résolu et une valeur approximative est calculée,
- Le processus est ensuite itéré jusqu'à ce qu'il converge,
- Approche requérant une condition de départ (initiale).

On cherche à résoudre :

$$KU = F$$
.

soit pour la ligne i associée à l'inconnue \mathbf{U}_i :

$$\mathcal{K}_{i1}\textbf{U}_1+...+\mathcal{K}_{i,i-1}\textbf{U}_{i-1}+\mathcal{K}_{ii}\textbf{U}_i+...+\mathcal{K}_{in}\textbf{U}_n=\textbf{F}_i$$

Méthode de Jacobi \rightarrow réorganisation en isolant \mathbf{U}_i à l'itération k+1 selon :

$$\mathbf{U}_{i}^{k+1} = \frac{1}{\mathcal{K}_{ii}} \left(\mathbf{F}_{i} - \sum_{j \neq i} \mathcal{K}_{ij} \mathbf{U}_{i}^{k} \right)$$

- ▶ Converge toujours si matrice à diagonale dominante : $|\mathcal{K}_{ii}| > \sum_{i} |\mathcal{K}_{ij}|$,
- Requiert deux tables de stockage pour U^k et U^{k+1}: pas de mise-à-jour simultanée.

Flux / Approche itérative de Jacobi : équation de la chaleur 1D (1/2)

$$\Delta T(x) = 0, \ \forall \ x \in [0, 1] \text{ avec } T(0) = 0, \ T(1) = 1.$$

La solution exacte est T(x) = x.

Forme discrète (DF, 2nd ordre) :

$$T_{i-1} - 2T_i + T_{i+1} = 0$$

lsoler T_i pour aboutir à la forme de Jacobi :

$$T_i = \frac{1}{2} (T_{i-1} + T_{i+1}) \quad \forall i = 2, N-1.$$

► Ajouter la *couche* itérative :

$$T_i^{k+1} = \frac{1}{2} (T_{i-1}^k + T_{i+1}^k) \quad \forall \quad i = 2, N-1.$$

ELF/2017 CF04 20 / 38

Flux / Approche itérative de Jacobi : équation de la chaleur 1D (2/2)

Exemple: Maillage à 5 nœuds

Iteration	T_1	T_2	<i>T</i> ₃	T_4	T_5	Erreur L_2
0	0.	0.	0.	0.	1.	1.
1	0.	0.0	0.	0.5	1.	0.61237
2	0.	0.	0.25	0.5	1.	0.43301
3	0.	0.125	0.25	0.625	1.	0.30619
4	0.	0.125	0.375	0.625	1.	0.21651
5	0.	0.1875	0.375	0.6875	1.	0.153091
6	0.	0.1875	0.43751	0.6875	1.	0.108251
7	0.	0.21875	0.4375	0.71875	1.	0.076547
8	0.	0.21875	0.46875	0.71875	1.	0.054127
9	0.	0.23438	0.46875	0.73438	1.	0.038273
10	0.	0.23438	0.48438	0.73438	1.	0.027063

La condition de départ/initiale peut fortement influencer le taux de convergence.

Flux / Approche itérative de Gauss Seidel

Approche est similaire à la méthode de Jacobi basée sur l'algorithme modifié :

$$\mathbf{U}_{i}^{k+1} = \frac{1}{\mathcal{K}_{ii}} \left(\mathbf{F}_{i} - \sum_{j < i} \mathcal{K}_{ij} \mathbf{U}_{i}^{k+1} - \sum_{j > i} \mathcal{K}_{ij} \mathbf{U}_{i}^{k} \right).$$

- ► calcul de \mathbf{U}_{i}^{k+1} repose sur les valeurs mises-à-jour \mathbf{U}_{i}^{k+1}
- requiert une seule table de stockage.

Exemple

En reprenant le même exemple, la forme itérative s'écrit désormais :

$$T_i^{k+1} = \frac{1}{2} \left(T_{i-1}^{k+1} + T_{i+1}^k \right) \ \forall \ i = 2, N-1,$$

ou bien :

$$T_i^{k+1} = \frac{1}{2} \left(T_{i-1}^k + T_{i+1}^{k+1} \right) \ \forall \ i = 2, N-1.$$

Le choix de l'un ou l'autre peut accélérer la convergence.

 ${\it SOR: Successive~Over~Relaxation} \rightarrow {\it Variante~(1950)~de~Gauss-Seidel} \\ {\it convergence~généralement~plus~rapide}.$

Décomposition de K en contrib. inférieure (L), diagonale (D) et supérieure (U) :

$$\mathcal{K} = \mathcal{L} + \mathcal{D} + \mathcal{U}.$$

Reformulation du système d'équations sous une forme itérative :

$$\mathbf{U}_{i}^{k+1} = (1-\omega)\mathbf{U}_{i}^{k} + \frac{\omega}{\mathcal{K}_{ii}}\left(\mathbf{F}_{i} - \sum_{j < i} \mathcal{K}_{ij}\mathbf{U}_{i}^{k+1} - \sum_{j > i} \mathcal{K}_{ij}\mathbf{U}_{i}^{k}\right).$$

- \triangleright Choix du facteur de relaxation ω non trivial et fonction des cœfficients de \mathcal{K} ,
- ▶ si \mathcal{K} → algorithme est convergent pour tout $\omega \in]0, 2[$,
- ightharpoonup si $\omega=1 o$ Algorithme de Gauss Seidel

ELF/2017 CF04 23 / 38

Flux / Méthode du gradient conjugué : principes

 $\mathcal{K}\mathbf{U} = \mathbf{F}$ avec \mathcal{K} symétrique et définie positive de dimensions $(n \times n)$.

▶ Résolution du problème équivalent de minimisation de la fonction :

$$f(\mathbf{U}) = \frac{1}{2}\mathbf{U}^{\top}\mathcal{K}\mathbf{U} - \mathbf{U}^{\top}\mathbf{F}.$$

▶ Définition du résidu comme le gradient de la fonctionnelle *f* :

$$r(\mathbf{U}) = \nabla f(\mathbf{U}) = \mathcal{K}\mathbf{U} - \mathbf{F}$$

Deux vecteurs ${\bf u}$ et ${\bf v}$ sont dits ${\cal K}$ -conjugués s'ils vérifient : ${\bf u}^{\top}{\cal K}{\bf v}=0.$

Méthode du gradient conjugué

ightarrow construire une suite de n vecteurs \mathbf{p}_k \mathcal{K} -conjugués tels que :

$$\mathbf{U} = \sum_{k} \alpha_k \mathbf{p}_k$$
 avec $\alpha_k = \frac{\mathbf{p}_k^{\top} \mathbf{F}}{\mathbf{p}_k^{\top} \mathcal{K} \mathbf{p}_k}, k = 1, \dots, n.$

Application

$$\begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ -8 \end{pmatrix} \quad \text{ou encore} \quad f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\top \mathbf{K} \mathbf{x} - \mathbf{x}^\top \mathbf{F}.$$

Flux / Méthode du gradient conjugué : illustrations

Source : illustrations tirées de l'excellent cours de J.R. Shewchuk, Carnegie Melon University, USA

Flux / Approche multi-grilles

IMPORTANT:

PAS un solveur, mais une technique pour obtenir un meilleur taux de convergence.

Constats:

- 1. Convergence des approches itératives dégradées pour des maillages raffinés.
- 2. Nombre d'itérations proportionnel au nombre de nœuds dans une seule direction.

Maillage grossier \rightarrow signal perçu en haute fréquence

Un mode de réponse lissé sur une grille fine l'est moins sur une grille grossière

 \rightarrow il se dégrade.

Solution retenue : déraffiner la solution.

Basses fréquences pour un maillage \to hautes fréquences pour un maillage dégradé.

Flux / Approche multi-grilles : illustration 1D

Illustration autour de l'équation de diffusion 1D :

$$-\frac{d^2u}{dx^2} = f \quad \forall \ x \in [0, L], \text{ avec } u(0) \text{ et } u(L) \text{ connus}$$

$$u_i^{k+1} = \frac{1}{2} \left(f \Delta x^2 + u_{i-1}^k + u_{i+1}^k \right)$$

 e_i^k : écart entre u_i^k et solution convergée :

$$ightarrow e_i^{k+1} = e_i^k - \frac{1}{2} \left(-e_{i-1}^k + 2e_i^k - e_{i+1}^k \right), \quad i = 1, 2, \dots, N$$

Décomposition modale :

$$\mathbf{e}^k = \sum_j \alpha_j (\lambda_j)^k \mathbf{V}_j \text{ avec } \lambda_j = 1 - \frac{j^2 \pi^2 \Delta x^2}{2}$$

Constat : $\lambda_i^k \to 0$:

- ▶ très lentement pour les premiers modes $j: \lambda_i \sim 1$,
- très rapidement pour les modes j élevés : λ_i → 0.

Multigrille **géométrique** (FAS)

- Hiérachisation des maillages,
- Equations discrétisées sont évaluées pour chaque niveau de hiérarchie,
- Agglomération des nœuds (cellules, éléments ou volumes de contrôle),
- Mal adaptée à la MVF car nouvelles cellules de formes très irrégulières.

Multigrille algébrique (AMG)

- ▶ Agglomération de la taille du système : directement au niveau des variables,
- ▶ Bien adaptée pour un maillage non structuré,
- Un seul et unique maillage.

Si résolution d'un écoulement incompressible et en mode découplé (Segregated).

Equations de N.S. 2D incompressibles :

$$\begin{split} &\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = 0\\ &\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)\\ &\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \end{split}$$

- 1. Gradient de pression joue le rôle du moteur de l'écoulement (= terme source).
- 2. Aucune équation de transport pour résoudre la pression!
- Un champ de vitesse donné peut satisfaire l'équation de continuité sans pour autant vérifier les équations de transport de quantité de mouvement.
- → utilisation d'un algorithme de couplage pression-vitesse.

Flux / Couplage pression-vitesse : algorithmes

- 1. Algorithme SIMPLE (itératif, Patankar, 1972)
- 2. Algorithme PISO (prédicteur-correcteur, Issa, 1982)

Principes généraux

- Résolution du système → champ de vitesse intermédiaire (faux car pression fausse).
- 3. Equation de continuité \Rightarrow équation de correction de pression Δp .
- **4**. Itération du cycle \rightarrow convergence (à savoir $\Delta p = 0$).

Section. 3

Schémas de discrétisation en temps

Schémas en temps / Dans quels cas y avoir recours?

Ecriture générale du système algébrique

$$M\dot{U} + K(U)U = F$$

- Prise en compte de CL ou de paramètres de calculs évolutifs dans le temps : transitoire de démarrage,
- Paramètres stationnaires mais analyse contradictoires des courbes de résidus en stationnaire,
- ▶ Ecoulement turbulent sans modèle de turbulence...
- Aéro-acoustique (analyse de la génération de bruit),
- Contourner une convergence difficile malgré une solution connue pour être stationnaire.
- ▶ Discrétisation d'ordre 1 en temps : $\dot{\mathbf{U}} = \frac{\mathbf{U}^{n+1} \mathbf{U}^n}{\Delta t} + \Delta t (...),$
- ▶ Discrétisation d'ordre 2 en temps : $\dot{\mathbf{U}} = \frac{3\mathbf{U}^{n+1} 4\mathbf{U}^n + \mathbf{U}^{n-1}}{\Delta t} + \Delta t^2 (...)$

Schémas en temps / Principaux schémas de discrétisation en temps et ordre de précision

EXPLICITES

Avantages:

- 1. Rapides, peu coûteux en place mémoire (pas de matrice),
- 2. Bien adaptés avec des systèmes non linéaires

Inconvénients:

- 1. Limitation sévère sur le pas de temps (stabilité, CFL),
- 2. Effets instationnaires entretenus.

▶ IMPLICITES

Avantages:

- 1. Pas de temps requis bien supérieurs à l'approche explicite,
- 2. Favorise l'obtention d'une solution stationnaire (dissipation numérique)

Inconvénients:

- 1. Plus coûteux en temps et en espace mémoire, matrice à gérer.
- 2. Conditionnellement stable si non linéaire.

A compléter des approches semi-implicites.

Schémas en temps / Classe des schémas explicites

Philosophie générale de la classe des schémas explicites d'ordre 1

Système algébrique général

$$M\dot{U}+K(U)U=F$$

Discrétisation d'ordre 1 en temps :

$$\dot{f U}=rac{{f U}^{n+1}-{f U}^n}{\Delta t}+\Delta t (...)$$

... explicite:

$$\mathsf{M}rac{\mathsf{U}^{n+1}-\mathsf{U}^n}{\Delta t}+\mathsf{K}\mathsf{U}^n=\mathsf{F}$$

pour aboutir à :

$$\mathbf{M}\Delta\mathbf{U} = \underbrace{-\Delta t \mathbf{K} \mathbf{U}^n + \Delta t \mathbf{F}}_{\mathbf{R}(\mathbf{U})}$$

Schémas en temps / Classe des schémas implicites

Philosophie générale de la classe des schémas implicites d'ordre 1

Système algébrique général

$$M\dot{U}+K(U)U=F$$

Discrétisation

$$\dot{f U}=rac{{f U}^{n+1}-{f U}^n}{\Delta t}+\Delta t (...)$$

... explicite:

$$\mathsf{M}\frac{\mathsf{U}^{n+1}-\mathsf{U}^n}{\Delta t}+\mathsf{K}\mathsf{U}^{n+1}=\mathsf{F}$$

pour aboutir à :

$$(\mathbf{M} + \Delta t \mathbf{K}) \, \Delta \mathbf{U} = \underbrace{-\Delta t \mathbf{K} \mathbf{U}^n + \Delta t \mathbf{F}}_{\mathbf{R}(\mathbf{U})}$$

Schémas en temps / Notion de stabilité et critère CFL

Sans entrer dans les détails et quel que soit la classe de schéma, la stabilité est contrôlée d'après :

... critère CFL pour Courant-Friedrichs-Lewy aussi appelé nombre de Courant :

$$\mathsf{CFL} = \frac{V \, \Delta t}{\Delta x} = \frac{\mathsf{Distance \ parcourue}}{\mathsf{longueur \ de \ maille}} \quad \mathsf{ou} \quad \Delta t = \mathsf{CFL} \times \frac{\Delta x}{V}$$

Critère calculable sur toutes les cellules $o \Delta t$ défini par le cas le plus sélectif.

Pour un schéma :

- ► Explicite : vérifier CFL < 1
- ▶ Implicite : vérifier CFL < 10, 20... fonction du degré de non-linéarités

Choix de la vitesse V:

- ▶ vitesse locale du fluide *u* si incompressible,
- |u| + c si compressible (captation des ondes acoustiques).

Schémas en temps / Schémas de Runge-Kutta d'ordre élevés

Carl Runge et Martin Wilhelm Kutta (1901)

ightarrow approche itérative (explicite) par correction de l'estimation précédente.

Soit à résoudre : $\dot{\mathbf{U}} = \mathbf{R}(t, \mathbf{U})$

RK2
$$2 \text{ pas} = \text{ordre } 2$$

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta t \mathbf{R}(t^n + \frac{\Delta t}{2}, \mathbf{U}^n + \frac{\Delta t}{2} \mathbf{R}(t^n, \mathbf{U}^n))$$

RK4 4 pas = ordre 4

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \frac{\Delta t}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

avec successivement :

$$1. \mathbf{k}_1 = \mathbf{R}(t^n, \mathbf{U}^n)$$

2.
$$\mathbf{k}_1 = \mathbf{R}(t^n + \frac{\Delta t}{2}, \mathbf{U}^n + \frac{\Delta t}{2}\mathbf{k}_1)$$

3.
$$\mathbf{k}_1 = \mathbf{R}(t^n + \frac{\bar{\Delta}t}{2}, \mathbf{U}^n + \frac{\bar{\Delta}t}{2}\mathbf{k}_2)$$

4.
$$\mathbf{k}_1 = \mathbf{R}(t^n + \Delta t, \mathbf{U}^n + \Delta t \mathbf{k}_3)$$

 ${\sf Source}: {\sf cinet.chim}$

Schémas en temps / Condition initiale et transitoire de démarrage

Calcul transitoire ⇒ fournir une **CONDITION INITIALE**:

- **•** pour toutes les variables : ρ , **V**, p, T...
- réaliste : qui vérifie les équations d'équilibre.

Trois approches:

- 1. mener un premier calcul avec hypothèses simplifiées (non visqueux, non turbulent),
- 2. partir d'une solution stationnaire convergée,
- 3. "boîte" vide qui se "remplit" suite à ouverture brutale d'un diaphragme en entrée (ou effet de rampe).