

2025 LONI Scientific Computing Bootcamp

Overview

HPC User Services

Oleg Starovoytov, Jason Li, Siva P Kasetti

Feng Chen, Neill Killgore, and Le Yan

LONI HPC

sys-help@loni.org

June 2 - 4 and June 9 - 11, 2025

Outline

Why Scientific Computing?

Why Parallel?

Getting Started with Scientific and Parallel Computing - How to

Introduction to Scientific and Parallel Computing

Why Scientific Computing?

Why Scientific Computing?

Scientific Computing is nowadays:

 The "third pillar of science", in addition to theoretical analysis and experiments for scientific discovery.

> Sometimes other means are:

- Impossible
- Costly (time, labor and money)
- Dangerous or undesirable

Astrophysics

Aircraft design

Nuclear weapon tests

What is Scientific Computing?

- "Scientific Computing is the collection of tools, techniques, and theories required to solve on a computer mathematical models of problems in Science and Engineering." (Golub & Ortega 1992)
- It is a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems.

Calculating-Table by Gregor Reisch: Margarita Philosophica, 1503.

How to Conduct Scientific Computing?

- > Scientific theory and algorithm
 - From your own study/research background
- Software
 - General purpose
 - Excel
 - Matlab
 - Python/R/Perl/C/Fortran, etc.
 - Dedicated software, such as:
 - Ansys (CFD, Structural/Solid Mechanics/Electronics)
 - Lammps/Gromacs/NAMD/Amber (Molecular Dynamics)
 - Most cases, we need both
- Hardware
 - Your laptop/desktop/lab server
 - Cloud Computing
 - Supercomputers
 - HPC

LONI QB3/4 cluster

Introduction to Scientific and Parallel Computing

Why Parallel?

Introductory Problem

> Fly from New Orleans, LA to New York, NY

1 (one) Boeing 787 Distance=1182 miles
Velocity =~600 mph
Time = ~2 hours

2 (two) Boeing 787 ???

Considering number of seats?

> 787-8 Dreamliner has 248 seats

Some background

Computer runs one program at a time.

Can we have something that just run 100x faster?

The von Neumann Architecture

Changing Times

- From 1986 2002, microprocessors were speeding like a rocket, increasing in performance an average of 50% per year.
- Since then, it's dropped to about 20% increase per year.

History of Processor Performance

Limitation:

2 GHz Consumer4 GHz Server

Source:

http://www.cs.columbia.edu/~sed wards/classes/2012/3827-spring/

A Little Physics Problem

- > Smaller transistors = faster processors.
- > Faster processors = increased power consumption.
- > Increased power consumption = increased heat.
- Increased heat = unreliable processors.

Solution:

- Move away from single-core systems to multicore processors.
- "core" = central processing unit (CPU)
- Introducing parallelism
 - What if your problem is also not CPU dominant?

The von Neumann Architecture

An intelligent solution

Instead of designing and building faster microprocessors, put <u>multiple</u> processors on a single integrated circuit.

Scenario to Avoid

Core, CPU, Processor?

- > A core is usually the basic computation unit.
- > A CPU may have one or more cores to perform tasks at a given time.

➤ In this training, CPU = processor, which has multiple cores.

Case study – core and processor

> How many cores does this computer have?

4 cores * 4 processors = 16 total cores

Concluding Remarks

- > The laws of physics have brought us to the multi-core era.
- Serial programs typically don't benefit from the multi-core architecture.
- > To get speedup, your code needs to be able to make use of multiple cores.

What is HPC

- High Performance Computing (HPC) is computation at the cutting edge of modern technology, often done on a supercomputer
- > A supercomputer is in the class of machines that rank among the fastest in the world
 - Rule of thumb: a supercomputer could be defined to be at least 100 times as powerful as a PC

600 mph

60 mph

> How do we evaluate the performance of HPC?

Measure HPC performance-FLOPS

- Performance is measured in *Floating Point Operations Per Second* (FLOPS or flop/s)
- \succ FLOPS = cores \times clock $\times \frac{FLOPs}{cycle}$
 - Most processors today can do 4 FLOPs per clock cycle.
 Therefore a single-core 2.5-GHz processor has a theoretical performance of 10 billion FLOPs = 10 GFLOPs
 - Dual core, quad core? (Intel i3, i5, i7)

Computer performance

•	
Name	FLOP
yottaFLOPS	1024
zettaFLOPS	1021
exaFLOPS	1018
petaFLOPS	1015
teraFLOPS	1012
gigaFLOPS	109
megaFLOPS	106
kiloFLOPS	103

> Question:

- A 4-core 2.5GHz desktop, each core can do 16 floating point operations per cycle
- What is the FLOPs of my desktop?
- Answer=4x2.5x16=160 GFlops

Supercomputing on a Cell Phone?

- Hex-core processors are coming to your phone
 - Nvidia, TI, QualComm...
 - Processing power in the neighborhood of 50 GigaFLOPS
 - Would make the top 500 supercomputer list 20 years ago
 - What is your phone's FLOPS?
 - According to Apple, that iPhone 13 pro's A15 Bionic chip is capable of 15.8 trillion operations per second (TFLOPS).
 - Compare to ENIAC (500 FLOPS)
 - Compare to top 500 in June 2001 #1 (12.3 TFLOPS)

Computer performance

Name	FLOPS
yottaFLOPS	1024
zettaFLOPS	1021
exaFLOPS	1018
petaFLOPS	1015
teraFLOPS	1012
gigaFLOPS	109
megaFLOPS	106
kiloFLOPS	103

- > The TOP500 project provides a list of 500 fastest supercomputers in the world ranked by their LINPACK performance.
- > Semi-annually published (in the public domain)
- November, 2024 list

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	11,039,616	1,742.00	2,746.38	29,581
2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE D0E/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	2,055.72	24,607
3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698

Introduction to Scientific and Parallel Computing

LONI HPC Resources

Our HPC

ii. State level HPC Resource: Louisiana Optical Network Infrastructure (LONI)

- State-of-the-art fiber optic network
- Runs throughout Louisiana State, connects Louisiana and Mississippi State research universities.
- \$40M Optical Network, 10Gb Ethernet over fiber optics.
- Available to LONI subscribers and their affiliates
- Administered & supported by HPC@LSU

Supercomputer Cluster Racks

Inside A Cluster Rack

Inside A Compute Node

Available LONI HPC Resources

QB3			
Hostname	qbc.loni.org		
Peak Performance/TFlops	857		
Compute nodes	202		
Processor/node	2 24-Core		
Processor Speed	2.4GHz		
Processor Type	Intel Cascade Lake Xeon 64bit		
Nodes with Accelerators	8		
Accelerator Type	NVIDIA Volta V100		
OS	RHEL v7		
Vendor	Dell		
Memory per node	192 GB		
Location	Information Systems Building, Baton Rouge		
Online June 15, 2020			

QB4		
Hostname	qbd.loni.org	
Peak Performance/TFlops	4,300	
Compute nodes	547	
Processor/node	2 32-Core	
Processor Speed	2.6GHz	
Processor Type	Intel Ice Lake Xeon 64bit	
Nodes with Accelerators	62	
Accelerator Type	NVIDIA Ampere A100	
OS	RHEL v8	
Vendor	Dell	
Memory per node	256/512/2048 GB	
Location	Information Systems Building, Baton Rouge	
Online Summer, 2024		

Ref: http://hpc.loni.org/resources/hpc/index.php

Our *Free* Service for LSU and LONI Researchers

User support on LONI/LSU HPC resources

Application support Trouble shooting

Grant proposal support

Our Goals

- Provide reliable HPC computing resources.
- > Provide a high level of expertise, technical support and knowledge domain consulting and training in order to enable better leverage of computing resources.
- > Provide both existing and emerging HPC solutions that enable them to expand their research opportunities and capabilities.
- Respond to researchers' changing software requirements.

Usual Way of Getting Started

- Understand the basic usage of popular scientific computing programming tools
 - Python

One application of the programming tools

Deep Learning

Introduction to Scientific and Parallel Computing

Bootcamp Logistics

Agenda

- > Day 1
 - Introduction to Python
- > Day 2
 - Intermediate Python
- > Day 3
 - Getting Started with MATLAB: From Python to AI Integration
- ➤ Day 4
 - Exploring Deep Neural Networks: A Beginner's Guide
- > Day 5
 - NVidia Deep Learning Institute: Fundamentals of Deep Learning
- > Day 6
 - Introduction to Large Language Models (LLMs)
- > Our source code repository:
 - https://github.com/lsuhpchelp/loniscworkshop2025
 - Computing Environment Google Colab
 - **See** https://colab.research.google.com/notebooks

Lectures and Hands-on sessions

- ➤ Morning sessions 9am-12noon
 - Lecture
- > Afternoon sessions 1pm-4pm
 - Lecture/Exercise
- > Although recordings will be available, we strongly recommend you try to follow the live session.
- > Lunch:
 - 12 noon

Google Colaboratory

- Colaboratory, or "Colab" for short, allows you to write and execute Python (or R) in your browser, with
 - Zero configuration required
 - Free access to GPUs
 - Easy sharing
- ➤ Allows you to focus on learning the Python (or R) language itself instead of working on installing and configuring a programming environment.
 - Ref: https://colab.research.google.com/notebooks/intro.ipynb

Open Colab Notebook from Github

- Open the below link:
 - https://github.com/lsuhpchelp/loniscworkshop2025/blob/main/day1/Python101.ipynb
 - Or navigate yourself in the github repo:
 - https://github.com/lsuhpchelp/loniscworkshop2025.git
 - Select "day1 > Python101.ipynb"
- Click the "Open in Colab" link:

After the Colab notebook is laid out, you need one more step, save the Colab notebook to your google drive by "COPY TO DRIVE", or you will be editing the notebook in "Playground" (read only) mode:

Possible Bug of Github (Rarely seen recently)

In case of the "Something went wrong, try again later?"

Copy and paste the github link from the browser URL box

(https://github.com/lsuhpchelp/loniscworkshop2025/blob/main/day1/Python101.ipynb) into the below the location to have it rendered: https://nbviewer.jupyter.org/

nbviewer

A simple way to share Jupyter Notebooks

Questions?

✓ Type your question in the Zoom chat window. (Preferred)

✓ Raise your hand if you do want to ask a question with your microphone, we can unmute you.

