MINISTRY OF EDUCATION MANDALAY TECHNOLOGICAL UNIVERSITY

Department of Mechatronic Engineering 2017-2018 Academic Year

Fourth Year **Date: 26.9.2018(TUE)** **Second Semester Examination** Time: 9:00 to 12:00 noon

II. Solution & Marking of McE.42077 (Control Engineering II)

Solution Oues No.

1.(a.) Solution: The closed-loop transfer function is

$$\phi(s) = \frac{G(s)}{1 + G(s)} = \frac{5K_A}{s^2 + 34.5s + 5K_A}$$

$$K_A = 200, : \phi(s) = \frac{1000}{s^2 + 34.5s + 1000}$$

$$\therefore \omega_n^2 = 1000, \quad 2\zeta\omega_n = 34.5$$

$$\therefore \omega_n = 31.6(rad/s), \zeta = \frac{34.5}{2\omega_n} = 0.545$$

$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = 0.12(sec)$$

$$t_s \approx \frac{3}{\zeta\omega_n} = 0.174(sec)$$

$$\sigma\% = e^{-\pi\zeta/\sqrt{1-\zeta^2}} \times 100\% = 13\%$$

If $K_A = 200$, then $\omega_n = 34.5 (rad / s)$; $\zeta = 0.545$ $\therefore t_p = 0.12(s)$, $t_s = 0.23s$, $\sigma\% = 13\%$

If $K_A = 1500$, then $\omega_n = 86.2(rad/s)$; $\zeta = 0.2$ $\therefore t_p = 0.037(s)$, $t_s = 0.23s$, $\sigma\% = 52.7\%$

Thus, the greater the K_A , the less the ξ , the greater the ω_n , the less the t_p , the greater the σ %, while the settling time t_s has no change.

 $K_A = 13.5$ When $K_A = 13.5$, $\omega_n = 8.22 (rad / s)$, $\zeta = 2.1$

3 Marks

3 Marks

3 Marks

 $\zeta > 1$, Overdamped

1 Mark When system is over-damped, there is no peak time, overshoot and oscillation.

When K_A increases, t_p decreases, t_r decreases, the speed of response increases, meanwhile, the overshoot increases.

- 1.(b.) For a zero steady-state error:
 - (a.) when the input is a step, one integration is needed, or a type 1 system.
 - (b.) A type 2 system is required for $e_{ss} = 0$ for a ramp input. 2 Mark

ii. $\zeta \le 0.707$, $5 \le \omega_n \le 10$,

$$\zeta = 0.707, \ \theta = 45^{\circ}$$
 $\zeta = 0.8, \ \theta = 36.87^{\circ}$

1.5 marks

3 Mark

2 Marks

$$\label{eq:sigma_n} \begin{split} &iii. \; \zeta \, \geq \, 0.6 \;\;, \;\; \omega_n \, {\leq} \, 0.6, \\ &\zeta = 0.6, \;\; \theta = 53.13\,^\circ \end{split}$$

1.5 marks

Ques	Solution	Marks
No 2.	P.O ≤ 10 %	
	$100 e^{-\pi\zeta/\sqrt{1-\zeta^2}} \leq 10$ $e^{-\pi\zeta/\sqrt{1-\zeta^2}} \leq 0.1$	
	$\frac{-\pi\zeta}{\sqrt{1-\zeta^2}} \leq \ln 0.1$	
	$\frac{-\pi\zeta}{\sqrt{1-\zeta^2}} \qquad \leq -2.302583$	
	$\frac{\pi\zeta}{\sqrt{1-\zeta^2}} \ge 2.302583$	
	Squaring both sides,	
	$\frac{\pi^2 \zeta^2}{1-\zeta^2} \geq 5.301898$	
	$1.8615\zeta^2 \ge 1-\zeta^2$	
	$2.8615\zeta^2 \geq 1$	
	$\zeta \geq 0.59$	3 Marks
	$T(s) = \frac{12K}{s^2 + 12s + 12K}$	
	Compare with, $T(s) = \frac{\omega n^2}{s^2 + 2\zeta \omega_n \ s + \omega_n^2}$	
	$2\zeta\omega_n = 12$	
	$\zeta \omega_n = 6$	
	$\omega_n = 10.169$	
	$\omega_n^2 = 12K$	
	$K = \frac{\omega_n^2}{2} = 8.6$	2 Marks
	(b.) $K = 10, S_K^T = ?$	
	$S_K^T = \frac{\partial T}{\partial K} \times \frac{K}{T}$	
	$S_K^T = \frac{\partial}{\partial K} \left[\frac{12K}{s^2 + 12s + 12K} \right] \times \frac{K}{\left[\frac{12K}{s^2 + 12s + 12K} \right]}$	

Ques	Solution	Marks
No 2.		
	$= \frac{12s^2 + 144s + 144K - 144K}{s^2 + 12s + 12K} \times \frac{1}{12}$ $S_K^T = \frac{s^2 + 12s}{s^2 + 12s + 12K}$ $S_K^T = \frac{s(s+12)}{s(s+12) + 12K}$ $= \frac{s(s+12)}{s(s+12) + 120}$	5 Marks
	(c.) $s=0$, $S_K^T = ?$ $S_K^T = \frac{s(s+12)}{s(s+12)+120} = \frac{0}{120} = 0$	2 Marks 1Mark
	$(d.)\frac{60 \ beats}{minute} = \frac{60 \ beats}{60 \ secs} = \frac{1 \ beat}{1 \ sec} = j2\pi$	
	$S_K^T (j2\pi) = ?$ $s = j2\pi \times \frac{1 beat}{1 sec} = j2\pi$	1 Mark
	$S_K^T = \frac{s(s+12)}{s(s+12)+120}$	
	$S_K^T = \frac{j2\pi (j2\pi + 12)}{j2\pi (j2\pi + 12) + 120}$	
	$S_K^T = \frac{j2\pi (j2\pi + 12)}{j2\pi (j2\pi + 12) + 120}$	
	$= \frac{-39.478 + j \ 75.398}{-39.478 + j \ 75.398 + 120}$	
	$S_K^T = \frac{-39.478 + \text{j}}{80.522 + \text{j}} \frac{75.398}{75.398}$	
	$= \frac{85.11 < 117.6}{110 < 43.12} = 0.771 < 74.48$	
	$S_K^T = 0.771$	6 Marks

2	V(012)	1
3.	$G(s) = \frac{K(s+2)}{(s+10)} \times \frac{1}{s(s-1)}, H(s) = 1$	
	$=\frac{K(s+2)}{(s+10)(s-1)s}$	2 Marks
	(a.) Characteristics Equation,	
	1 + H(s)G(s) = 0	
	$1 + \frac{K(s+2)}{(s+10)(s-1)s} = 0$	
	$\frac{(s+10)(s-1)s+K(s+2)}{(s+10)(s-1)s} = 0$	
	(s+10)(s-1)s + K(s+2) = 0	_
	$s^3 + 9s^2 - 10s + Ks + 2K = 0$	3 Marks
	Using Routh-hurwitz,	
	S^3 1 K-10	
	S^2 9 $2K$	
	$S^1 \qquad \frac{9K - 90 - 2K}{9} \qquad 0$	4
	S^0 2K 0	Marks
	For the system to be stable,	
	$\frac{7K-90}{9} \qquad > 0$	
3.	7K - 90 > 0	
	$K > \frac{90}{7}$	
		4 Marks
	2K > 0	IVICINS
	K > 0	
	(b.) When $K = \frac{90}{7}$	
	The system is marginally stable,	
	S^2 row $q(s) = 9 s^2 + 2K = 0$	
	$9 s^2 + 2(\frac{90}{7}) = 0$	
	$9 s^2 = -\frac{180}{7}$	5 Marks

$$s^2 = -\frac{180}{7} \times \frac{1}{9} = \frac{-20}{7}$$

$$S = \pm j \sqrt{\frac{20}{7}}$$

2 Marks

20

Marks

The root of the characteristic equation is,

$$S_{1,2} = \pm j \sqrt{\frac{20}{7}}$$

4.

$$KG(s) = \frac{k(s+2)}{s(s+1)}$$

- (a) breakaway and entry point = ?
- (b) gain (k) and root? real part or complex root s = ?
- (c) Sketch R. L.

Solution:

The characteristics equation is

$$q(s) = 1 + GH(s) = 0$$

$$1 + \frac{k(s+2)}{s(s+1)} = 0$$

For breakaway point

$$k = -\left\lceil \frac{s^2 + s}{s + 2} \right\rceil$$

$$\frac{dk}{ds} = -\left[\frac{(s+2)(2s+1) - (s^2 + s)}{(s+2)^2}\right] = 0$$

$$2s^2 + s + 4s + 2 - s^2 - s = 0$$

$$s^2 + 4s + 2 = 0$$

$$s = -0.585, -3.414$$

Ques N0	Solution	Marks
4.	(i) Breakaway point, s = - 0.59	
	(ii) Entry point , $s = -3.414$	
	(b) $K = ?, s = ?$ at real part = -2	
	1+KG(s)=0	
	$1 + \frac{K(s+2)}{s(s+1)} = 0$	
	Compare with $as^2 + bs + c = 0$	
	$s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, $a = 1$, $b = K + 1$, $c = 2K$	
	$s = \frac{-(K+1)\pm\sqrt{(K+1)^2-4(1)(2K)}}{2\times1}$	
	$s = \frac{-(K+1)}{2} \pm \frac{\sqrt{(K+1)^2 - 4(1)(2K)}}{2}$	
	$\frac{-(K+1)}{2} = -2$	
	K=3	
	When $K = 3$,	
	$s^2 + (K+1)s + 2K = 0$	
	$s^2 + 4s + 6 = 0$	
	$s = -2 \pm j1.44$	
	The roots are $s = -2 + j1.44$ and $s = -2 - j1.44$.	
	(b.) Sketch the root,	
	1+KG(s)=0	
	$1+\frac{K(s+2)}{s(s+1)} = 0$	

Ques	Solution	Marks
N0		
4.	$1 + \frac{K(s+2)}{s(s+1)} = 0$	
	s(s+1)+ K(s+2) = 0 $n_p = 2, s = 0, s = -1$	
	$n_z = 1, s = -2$	
	$ \begin{array}{c c} & j\omega \\ & \uparrow \\ & \uparrow \\ & -2 \end{array} $	
	Segments are $s = 0$ and $s = -1$	
	$s = -2$ and $s = -\infty$	
	no of Separate root loci, $n_p = 2$	
	The root loci are symmetric with respect to the real axis	
	Center of Asymptotes,	
	$\emptyset_A = \frac{2q+1}{n_p + n_z} \times 180$, $q = n - m - 1 = 2 - 1 - 1 = 0$	
	When $q = 0$, $\emptyset_A = \frac{2(0)+1}{2-1} \times 180 = 180^\circ$	
	Breakaway point, $s = -0.59, -3.414$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Ques N0	Solution	Marks
5.(a.)	The characteristic equation is, $1 + GH(s) = 1 + \frac{K(s+1)}{s(s+2)(s+4)^2}.$	10 Marks
	$1 + GH(s) = 1 + \frac{K(s+1)}{s(s+2)(s+4)^2}. = 0$	
	When K= 0, the pole at s=0, s= -2, s=-4, s=-4 \therefore $n_p = 4$	
	When $K=\infty$, the zeros at $s=-1$, $n_z=1$	
	Root loci sections -4 -2 -1 0 Double pole	
	No of separate loci, SL= $n_p = 4$, n=4, M=1	
	The root loci are symmetric with respect to horizontal real axis.	
	The segment of Root Locus has at $s=0$ and $s=-1$, $s=-2$ and $s=-4$,	
	$s=-4$ and ∞	
	Angle of Asymptotes,	
	$\emptyset_A = \frac{2q+1}{n_p + n_z} \times 180$, $q = n-m-1=4-1-1=2$	
	When $q = 0$, q = 1, q = 1, q = 1, q = 1, q = 0, $\phi_A = 180^\circ (k = 0)$, $\phi_A = 180^\circ (k = 1)$, and $\phi_A = 300^\circ (k = 2)$,	
	Centre of Asymptotes,	
	$\sigma_{\rm A} = \frac{\sum (-p) - \sum (-z)}{n_{\rm p} - n_{\rm z}}$	

$$\sigma_A = \frac{(-2) + 2(-4) - (-1)}{4 - 1} = \frac{-9}{3} = -3.$$

Characteristics Equation is,

$$s(s+2)(s+4)^2 + K(s+1) = 0$$

$$(s^2+2s)(s+4)^2 + K(s+1) = 0$$

$$(s^2+2s)(s^2+8s+16) + K(s+1) = 0$$

$$s^4+10s^3+32s^2+(K+32)s+K=0$$

By applying the Routh-Hurwitz criterion,

The system to be stable,

$$\frac{9216 + 156K - K^2}{288 - K} = 0$$

$$9216 + 156K - K^2 = 0$$

$$K = 201.7$$
 or $K = -45.7$ (impossible)

$$\frac{288-K}{10}$$
 s² +K = 0

When K = 201.7,

$$\frac{288-201.7}{10} \quad s^2 \ +201.7 \ = \ 0$$

$$s = \pm j 4.83$$

$$G(s) = \frac{K}{(s+2)(s+4)}, \quad 1+G(s) = 1+\frac{K}{(s+2)(s+4)} = 0.$$

Breakaway point,

$$1 + GH(s) = 1 + \frac{K(s+1)}{s(s+2)(s+4)^2}.$$

$$K = \frac{-[s^4 + 10s^3 + 32s^2 + 32s]}{s+1}$$

$$\frac{dK}{ds} = \frac{d-}{ds} \frac{-[s^4 + 10s^3 + 32s^2 + 32s]}{s+1}$$

Breakaway point = -2.6

5.(b.)
$$K=?, H(s)=1$$

G(s) =
$$\frac{K(s+20)}{s(s+10)^2}$$

The characteristic equation,

$$1+G(s)H(s)=0$$

$$1 + \frac{K(s+20)}{s(s+10)^2} = 0$$

$$s(s+10)^2+K(s+20)=0$$

$$s(s+10)^2+K_S+20K=0$$

$$s(s^2+100+20s)+Ks+20K=0$$

$$s^3 + 20s^2 + s(100 + K) + 20K = 0$$

10 Marks Using the Routh-Hurwith Criterion, 1 (100+K) S^2 20 20K $\frac{20K + 2000 - 20K}{20K + 2000 - 20K} = 100$ S^1 S^0 20K For the system to bestable, 20K > 0K > 0