Research Review

Mastering the game of Go with deep neural networks and tree search

Goals

- Develop a Go program to play at the level of the strongest human players
- Introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks

Techniques

- Neural network to reduce depth and breadth of search tree with:
 - Value networks: To evaluate board positions
 - Policy networks: To sample actions
- Deep neural networks trained by
 - Supervised learning by human expert games
 - Reinforcement learning from games of self-play

Neural Network Archiecture

- Neural network to predict human expert moves in a data set of positions:
 - Rollout policy
 - Supervised learning (SL) policy network
 - Alternates between convolutional layers with weights and rectifier nonlinearities
 - Final softmax layer outputs a probability distribution over all legal moves
 - Reinforcement learning (RL) policy network is initialized to the SL policy network
 - Improved by policy gradient learning to maximize outcome
 - New data set is generated by self-play games with RL policy network
 - · Reinforcement learning (RL) value network
 - Focused on position evaluation
 - Weights trained by regression to predict expected outcome

- Searching policy and value network with Monte Carlo tree search (MCTS) algorithm
 - Selects actions by lookahead search
- Policy network
 - Input: representation of board position
 - · Convolutional layers with parameters:
 - SL policy network
 - RL policy network
 - Output: probability distribution over legal moves
- Value network
 - · Input: representation of board position
 - Convolutional layers
 - · Output: expected outcome

Results

- New search algorithm:
 - Achieved 99.8% winning rate against other Go programs
 - Defeated the European Go champion by 5 games to 0