Giorgio ed il problema dei parcheggi (parcheggi)

Nella città di Jackson in Wyoming ci sono moltissimi parcheggi, addirittura più parcheggi che abitazioni!

Giorgio ha da poco iniziato a fare l'ausiliario del traffico a Jackson e gestisce gli N parcheggi che si trovano sulla Simpson Ave. Le auto aspettano nelle N traverse della Simpson Ave e Giorgio può permettere l'accesso a k auto della u-esima fila oppure controllare quante automobili occupano il parcheggio q-esimo.

Come indicato in figura, la Simposon Ave è a senso unico. Quando un'automobile viene autorizzata da Giorgio, prova ad entrare nel parcheggio di fronte al vicolo dal quale si è immessa. Se tale parcheggio è pieno (l'i-esimo parcheggio ha capacità C_i), si muove lungo la Simpson Ave fino a raggiungere il parcheggio successivo e ripete il procedimento finchè non ha trovato posto o ha raggiunto la fine della strada.

Figura 1: Giorgio ed i parcheggi della Simpson Ave.

Dati di input

La prima riga del file **input.txt** contiene due interi N e T. La reconda riga contiene gli N interi C_i . Le successive T righe contengono le azioni esguite da Giorgio, in uno dei seguenti formati:

- P k u, lascia passare k macchine dalla u-esima traversa (con $0 \le u < N$).
- M q, conta il numero di automobili nel q-esimo parcheggio (con $0 \le q < N$).

Dati di output

Il file output.txt contiene un numero di righe pari al numero di controlli sulla densità di un parcheggio effettuati da Giorgio. Su ogni riga è presente un solo intero: il numero di automobili presenti nel parcheggio quando Giorgio effettua il controllo.

Assunzioni

- 1 < N, T < 1000000.
- $1 \le C_i \le 10^9 \text{ per ogni } i = 0 \dots N 1.$
- $1 \le k \le 10^9$ e $0 \le u, q < N$ per ogni azione.

Assegnazione del punteggio

Il tuo programma verrà testato su numerosi testcase, raggruppati in subtask. Per ottenere il punteggio di un subtask il tuo programma deve risolvere correttamente tutti i suoi test case.

parcheggi Pagina 1 di 3

- Subtask 1 [0 punti]: Casi di esempio.
- Subtask 2 [10 points]: Giorgio non lascia entrare automobili.
- Subtask 3 [20 points]: u = 0, q = N 1 per ogni azione.
- Subtask 4 [25 points]: u = 0 per ogni azione.
- Subtask 5 [30 points]: $N, T \leq 1000$.
- Subtask 6 [15 points]: Nessuna limitazione aggiuntiva.

Esempi di input/output

input.txt	output.txt
4 5	2
2 2 3 1	1
P 4 1	
P 1 0	
M 2	
P 5 2	
М 3	
3 4	0
2 2 2	2
P 1 2	
P 3 1	
M O	
M 2	
4 3	1
3 3 1 1	
P 4 0	
P 3 0	
M 2	

Pagina 2 di 3

Spiegazione

Nel **primo caso di esempio**, 4 auto entrano nel primo parcheggio, portandolo a saturazione, quindi 2 automobili "scalano" nel parcheggio successivo (il numero 2). Successivamente, un'auto entra nel primo parcheggio, così la nuova configurazione diventa 1 2 2 0. A seguito di queste operazioni, 5 auto entrano nel parcheggio 2: due di esse si parcheggiano, la terza entra nell'ultimo parcheggio, mentre le altre due sono costrette a proseguire sulla Simpson Ave senza aver trovato parcheggio. Alla fine, lo stato dei parcheggi è 1 2 3 1.

Nel **secondo caso di esempio**, alla fine lo stato dei parcheggi è 0 2 2.

Nel terzo caso di esempio, lo stato finale dei parcheggi è 3 3 1 0.

parcheggi Pagina 3 di 3