Mecánica de los Sólidos – Unidad 1 Principios fundamentales y Diagramas de Esfuerzos

Profesor Titular Daniel Millán JTP Eduardo Rodríguez

CONICET y Facultad de Ciencias Aplicadas a la Industria, UNCuyo dmillan@fcai.uncu.edu.ar

17 de agosto de 2019, San Rafael, Argentina

Overview

- 3. Componentes estructurales esbeltos
 - 3.1 Método general
 - 3.2 Cargas distribuidas
 - 3.3 Resultante de fuerzas distribuidas
 - 3.4 Relaciones diferenciales de equilibrio
 - 3.5 Funciones de singularidad
 - 3.6 Fuerzas de fluidos
 - 3.7 Problemas en 3D

- En este capítulo nos ocuparemos solo del paso 1, el estudio de las fuerzas y los requisitos de equilibrio, aplicado a estructuras esbeltas (o elementos delgados).
- Por estructura esbelta nos referimos a cualquier elemento cuya longitud es mucho mayor (digamos al menos cinco veces mayor) que cualquiera de sus otras dimensiones.
- Esta clasificación incluye elementos como vigas, columnas, ejes, varillas, largueros, puntales y enlaces.
- Incluso si una varilla larga y delgada forma un aro o un resorte helicoidal, cuyo diámetro es grande en comparación con el grosor de la varilla, éste conserva su identidad como un elemento delgado.
- Un elemento delgado se puede tirar, doblar y torcer.
- Anteriormente hemos considerado las cargas de tracción y compresión a lo largo del eje de un elemento. Ahora pasamos a un estudio de fuerzas y momentos que tienden a torcer o doblarlo.

- Los elementos delgados que soportan cargas aplicadas en forma perpendicular a su eje longitudinal se denominan vigas.
- En general, las vigas son barras largas, lineales, con un área constante en su sección transversal.
- A menudo se clasifican de acuerdo con la forma en que están apoyadas.
 Por ejemplo:
 - una viga simplemente apoyada está articulada en un extremo y sostenida por un rodillo en el otro;
 - una viga en voladizo se encuentra fija en un extremo y libre en el otro;
 - una viga con voladizo si tiene uno o ambos extremos extendidos más allá de los apoyos.
- Las vigas se utilizan para sostener el piso de un edificio, la cubierta de un puente o el ala de un avión. Además, el eje de un automóvil, el aguilón de una grúa e incluso muchos de los huesos del cuerpo humano actúan como vigas.

3.1 Método general

- Un método general para determinar las fuerzas y los momentos que actúan en cualquier sección de un elemento delgado que está en equilibrio es imaginar un corte o sección hipotética a través del elemento en el punto de interés.
- Si luego consideramos cualquiera de las partes del elemento como un cuerpo libre aislado, la fuerza y el momento requeridos en la sección para mantener esa parte del elemento en equilibrio se pueden obtener aplicando las condiciones para el equilibrio.
- En general, habrá una fuerza y un momento actuando a través de la sección.
- Por conveniencia, generalmente descomponemos la fuerza y el momento en componentes normales y paralelos al eje del elemento.

- La notación F_{xx}, \ldots , etc., en la figura anterior se usa para indicar tanto la orientación de la sección transversal como la dirección de la fuerza particular o componente de momento.
 - El primer subíndice indica la dirección del vector normal dirigido hacia afuera. La cara de la sección transversal. La cara de la sección transversal se llamará positiva cuando el la normal exterior apunte en la dirección positiva de coordenadas. La cara de la sección transversal, en la figura, es una cara positiva (normal hacia x+).
 - El segundo subíndice indica la dirección de coordenadas de la componente de fuerza o momento. Por lo tanto, F_{xy} es la fuerza en la dirección y, y M_{xz} es la componente de momento en la dirección z, ambos actuando sobre la sección x.

- Estos diferentes componentes tienen diferentes efectos en el elemento y, por lo tanto, se les han dado nombres especiales, como se indica a continuación:
 - F_{xx} Fuerza o esfuerzo axial. Este componente tiende a alargar el elemento y a menudo se le da el símbolo F o F_x .
 - F_{xy} , F_{xz} Fuerzas o esfuerzos de corte. Estos componentes tienden a cortar una parte del elemento en relación con la parte adyacente y a menudo se les da la símbolos V, o V_y y V_z .
 - M_{xx} Momento de torsión o torsor. Este componente es responsable de la torsión del elemento sobre su eje y a menudo se le da el símbolo M_t o M_{tx} .
 - M_{xy} , M_{xz} Momentos de flexión o flector. Estos componentes hacen que el elemento se doble y, a menudo, reciben los símbolos M_b o M_{by} y M_{bz} (b: bending).

- Para garantizar la coherencia y la reproducibilidad de los análisis, será conveniente definir una **convención de signos** para la fuerza axial, la fuerza de corte, el momento de torsión y el momento de flexión.
- Los definiremos como positivos cuando la componente de la fuerza o del momento actúa sobre una cara positiva en una dirección de coordenadas positiva (ver figura anterior).
- Como mencionamos anteriormente, la determinación de tensiones y deformaciones en un elemento delgado requiere el conocimiento de las fuerzas y los momentos.
- Los pasos necesarios para determinar las fuerzas y los momentos en un elemento delgado son:
 - (1) Idealice el problema real, es decir, cree un modelo del sistema y aísle la estructura principal, mostrando las fuerzas que actúan sobre la estructura.
 - (2) Usando las ecuaciones de equilibrio ($\sum F = 0$ y $\sum M = 0$), calcule cualquier fuerza externa o de apoyo desconocida.
 - (3) Corte una sección de interés del elemento, aísle uno de los segmentos, y repita el paso 2 en ese segmento.

4 D > 4 D > 4 E > 4 E > E = 900

- Debido a las cargas aplicadas, las vigas desarrollan una fuerza cortante interna y un momento flexionante que, en general, varían de un punto a otro a lo largo del eje de la viga.
- Por lo tanto, para diseñar correctamente una viga es necesario determinar la fuerza cortante y el momento máximo en la viga.
- Diagramas de corte y momento. Una forma de hacerlo es expresar V y
 M en función de su posición arbitraria x sobre el eje de la viga. Después,
 estas funciones de fuerza cortante y de momento se suelen representar
 mediante gráficas llamadas diagrama de fuerza cortante y diagrama de
 momento flector o de momento o de flexión.
- Los diagramas de fuerza cortante y de momento proporcionan información detallada sobre la variación de la fuerza cortante y del momento en el eje de la viga, por ello son utilizados con frecuencia por los ingenieros para decidir dónde colocar los materiales de refuerzo dentro de la viga o para determinar la proporción del tamaño de la viga en varios puntos de toda su longitud.
- Para formular V y M en términos de x es necesario elegir el origen y el sentido positivo de x. Aunque la elección es arbitraria, a menudo el origen se encuentra en el extremo izquierdo de la viga y la dirección positiva es hacia la derecha.

• Una idealización frecuente es suponer que tanto la carga que actúa sobre la estructura delgada, así como las fuerzas de soporte están concentradas, es decir son fuerzas "puntuales".

(a)

(b)

(c)

- Ejercicio: viga simplemente apoyada con carga concentrada.
- Determinar:
 - i) fuerzas y momentos actuando sobre la sección C;
 - ii) diagramas de corte y momento para 0 < x < L.

 R_{Λ}

• Ejercicio: viga simplemente apoyada con carga concentrada.

Determinar:

- i) fuerzas y momentos actuando sobre la sección C;
- ii) diagramas de corte y momento para $0 \le x \le L$.

3.2 Cargas distribuidas

- Otra idealización que se emplea comúnmente es el concepto de una carga distribuida continuamente.
- Considere la figura donde una viga se somete a una carga distribuida de fuerzas paralelas. Dichas fuerzas pueden surgir de presiones de fluidos o gases, o de atracciones magnéticas o gravitacionales.
- Si consideramos la fuerza actuante ΔF en una longitud Δx entonces la intensidad de carga q se define como

$$q = \lim_{\Delta x \longrightarrow 0} \frac{\Delta F}{\Delta x}.$$

• Convención de signos para las vigas.

- Aunque la elección de una convención de signos es arbitraria, aquí se utilizará aquella que se emplea con mayor frecuencia en la práctica de la ingeniería y que se muestra en la figura.
- Las direcciones positivas son las siguientes:
 - la carga distribuida actúa hacia arriba sobre la viga,
 - la fuerza cortante interna ocasiona un giro en sentido antihorario del segmento de viga sobre el que actúa (regla mano derecha hacia afuera),
 - y el momento interno causa compresión en las fibras superiores del segmento, de modo que éste se dobla como para retener agua.

Carga distribuida externa positiva

• Las cargas que son opuestas a las descritas anteriormente se consideran negativas.

- Ejercicio: Determine diagramas de corte y momento para la viga en voladizo con carga distribuida que se muestra en la figura.
- Análisis:

• Ejercicio: (cont.) Determine diagramas de corte y momento para la viga en voladizo con carga distribuida que se muestra en la figura.

• Solución:

3.3 Resultante de fuerzas distribuidas

- Se dice que dos sistemas de fuerzas son estáticamente equivalentes si se necesita el mismo conjunto de fuerzas adicionales para reducir cada sistema al equilibrio.
- Una sola fuerza que es estáticamente equivalente a una distribución de fuerzas se llama la resultante del sistema de fuerzas distribuidas.
- Al resolver problemas de carga distribuida, a menudo es más conveniente trabajar con la resultante de la carga distribuida en lugar de trabajar con la distribución real. "Esto solo es permisible cuando estamos evaluando reacciones externas sobre el elemento; no está permitido al calcular fuerzas y momentos internos."

- Considere una carga unidimensional de fuerzas paralelas de intensidad q(x), como se muestra en la figura.
- Para determinar la magnitud de su resultante R y su ubicación \bar{x} , escribimos las ecuaciones de equilibrio dos veces, una vez usando la carga real q(x) y otra vez usando la resultante R aplicada en \bar{x} .
- Los dos conjuntos de ecuaciones deben dar fuerzas de reacción idénticas si R es el resultado de la carga distribuida.

$$\sum F_y = \int_0^L q \, dx - R_A - R_B = 0 \quad \sum F_y = R - R_A - R_B = 0$$

$$\sum M_A = \int_0^L x \, (q \, dx) - R_B L = 0 \quad \sum M_A = R\bar{x} - R_B L = 0$$

$$\Rightarrow R = \int_0^L q \, dx \qquad y \qquad \bar{x} = \frac{\int_0^L x \, q \, dx}{R}.$$

donde \bar{x} es el centroide del diagrama de cargas.

• Ejercicio: Determine diagramas de corte y momento para la viga en voladizo con carga distribuida que se muestra en la figura (a). Considere reemplazar la carga distribuida por su resultante R ubicada en \bar{x} .

Análisis:

• Los apoyos externos R_B y M_B se obtienen fácilmente aplicando las condiciones de equilibrio a la figura

$$(b) \qquad \stackrel{\stackrel{\wedge}{x}}{=} \qquad \stackrel{\stackrel{\wedge}$$

$$R_B = \frac{w_0 L}{2}, \qquad M_B = \frac{w_0 L^2}{6}.$$

• Ejercicio: (cont.) Determine diagramas de corte y momento para la viga en voladizo con carga distribuida que se muestra en la figura (a). Considere reemplazar la carga distribuida por su resultante R ubicada en \bar{x} .

(a)

(b)

- Análisis:
- Como se mencionó anteriormente NO es posible utilizar la resultante R para calcular V y M_b dentro de las vigas.
- Sin embargo, podemos seccionar la viga en un punto arbitrario x, como en la figura (a), de esta forma V y M_b se convierten en fuerzas externas para el elemento de viga aislado de la figura (b).

$$V=R'=\frac{w_0x^2}{2L}, \tag{c}$$

$$M_b = -\frac{R'x}{3} = -\frac{w_0 x^3}{6L}.$$

D. Millán

3.4 Relaciones diferenciales de equilibrio

- Ahora pasamos a un procedimiento alternativo para obtener fuerzas y momentos internos a lo largo de un elemento delgado.
- En lugar de cortar una viga en dos y aplicar las condiciones de equilibrio a uno de los segmentos, consideramos un elemento muy pequeño de la viga como cuerpo libre.
 - Las condiciones de equilibrio combinadas con un proceso de límite nos llevarán a ecuaciones diferenciales que conectan la carga, la fuerza de corte y el momento flector.
 - La integración de estas relaciones diferenciales de equilibrio para casos particulares nos proporciona un método alternativo para evaluar las fuerzas de corte y los momentos de flexión.

- La fig.(a) muestra un elemento de viga de longitud Δx .
- Las cargas externas en este elemento son la carga distribuida de intensidad q que actúa sobre la longitud Δx , las fuerzas de corte y los momentos de flexión en las dos caras como se muestra en la fig.(b).
- En la fig.(c) hemos reemplazado la carga distribuida por su resultante R.
 Estrictamente, debemos calcular R y su ubicación x̄.
- Es evidente que si la variación de q(x) es suave y si Δx es muy pequeña, entonces $R \approx q(x) \Delta x$, y la línea de acción de R pasará por el punto medio O del elemento.

(c)

• En aras de la simplicidad y la claridad (y a expensas del rigor matemático) asumiremos por escrito las condiciones de equilibrio de que Δx es tan pequeño que R tiene la magnitud $q \Delta x$ y pasa a través de O.

• Es decir, las condiciones de equilibrio aplicadas a la figura (c) son:

$$\sum F_y = V + \Delta V + q\Delta x - V = 0$$

$$\sum M_O = M_b + \Delta M_b + (V + \Delta V) \frac{\Delta x}{2} + V \frac{\Delta x}{2} - M_b = 0.$$

En el límite de $\Delta x \longrightarrow 0$ se obtienen las ecuaciones diferenciales básicas que relacionan la intensidad de carga q(x) con la fuerza de corte V(x) y el momento flector M(x) en una viga,

$$\frac{dV}{dx} + q = 0, \qquad \frac{dM_b}{dx} + V = 0.$$

- **Ejercicio**: viga simplemente apoyada con carga uniformemente distribuida.
- En la figura (a), una viga bajo una carga uniformemente distribuida de intensidad $q = -w_0$ es soportada por una junta fija en A y un soporte de rodillo en B.
- Se desea obtener los diagramas de fuerza cortante y momento flector mediante la integración de las relaciones diferenciales vistas anteriormente.

- Análisis:
- En la figura (b) se muestra el diagrama de cuerpo libre de la viga y en (c) el diagrama de la carga aplicada q.

- Ejercicio: (cont.) viga simplemente apoyada con carga uniformemente distribuida.
- Resultados:

- Ejercicio: viga simplemente apoyada con carga uniformemente distribuida solo en un sector, ver figura.
- Análisis y resultados:

3.5 Funciones de singularidad

- En la sección anterior observamos que el procedimiento de integración puede convertirse en bastante engorroso a menos que haya un aparato matemático especial disponible para manejar cargas discontinuas.
- En esta sección se presenta una familia de funciones de singularidad específicamente diseñadas para trabajar con cargas discontinuas, para $n \geq 0$ se definen como

$$f_n(x-a) = \langle x-a \rangle^n = \begin{cases} 0, & x < 0, & \langle x-a \rangle^1 \\ (x-a)^n, & x \ge a. \end{cases}$$

Mientras que su integral es

$$\int_{-\infty}^{x} \langle \xi - a \rangle^n d\xi = \frac{\langle x - a \rangle^{n+1}}{n+1}, \qquad n \ge 0.$$

x = a

26 / 42

D. Millán MecSol2019 17 de agosto de 2019

- La función $f_0(x-a)$ se denomina escalón unitario comenzando a x=a, mientras que $f_1(x-a)$ es la rampa unitaria comenzando en x=a.
- El caso de los dos primeros miembros de la familia: $f_{-2}(x-a)$ y $f_{-1}(x-a)$, es excepcional y por ello se suele enfatizar esto mediante el empleo de subíndices en lugar de exponentes, es decir

$$f_{-2}(x-a) = \langle x-a \rangle_{-2}, \qquad f_{-1}(x-a) = \langle x-a \rangle_{-1}.$$

• Además, $f_{-2}(x-a)$ y $f_{-1}(x-a)$ valen cero para cualquier valor de x excepto para x=a donde valen infinito. Sin embargo se definen tal que:

$$\int_{-\infty}^{x} f_{-2}(\xi - a) d\xi = f_{-1}(x - a), \qquad \int_{-\infty}^{x} f_{-1}(\xi - a) d\xi = f_{0}(x - a).$$

- $f_{-1}(x)$ se conoce como carga concentrada unitaria o función impulso unitario, en los libros de física se denomina función Delta de Dirac.
- $f_{-2}(x)$ se conoce como momento concentrado unitario o función doblete unitario. Es la derivada de la función impulso unitario.
- Las reglas de integración de $f_n(x-a)$ nos permiten obtener fuerzas de corte y momentos de flexión mediante la integración de cualquier distribución de carga que podamos representar en términos de esta familia.

• Ejemplos de distribuciones de intensidad de carga y cómo se representan mediante $f_n(x-a)$. La mayoría de los casos prácticos de carga de vigas se pueden construir por superposición de los casos mostrados en esta figura.

	Carga	Función de carga $q=q(x)$	Cortante $V=-\int q(x)dx.$	Momento $M=-\int V(x)dx.$
x	Mo	$q = -M_0 < x-a>_{-2}$	$V=M_0 < x-a>_{-1}$	$M = -M_0 < x-a >^0$
x	₽↓	$q = -P < x-a>_{-1}$	V = P < x - a > 0	$M = -P < x - a >^1$
x	w	$q = -w_0 < x-a >^0$	$V=w_0 < x-a >^1$	$M = -rac{w_0}{2} < x-a >^2$
pend	fiente = m	$q = -m < x-a >^1$	$V = \frac{m}{2} < x - a >^2$	$M = -\frac{m}{6} < x-a >^3$

- Ejercicio: viga simplemente apoyada cargada uniformemente en un sector, pero empleando funciones de singularidad, ver figuras.
- Análisis y resultados:

• **Ejercicio:** (*cont.*) viga simplemente apoyada con carga uniformemente distribuida solo en un sector. Análisis y resultados:

- Existen muchas técnicas alternativas para resolver problemas como el ejemplo desarrollado anteriormente.
- El método que hemos mostrado implica la evaluación separada de una reacción de soporte (R_A) que se emplea para evaluar la constante arbitraria de integración C_1 .
- Un procedimiento alternativo implica la introducción de las reacciones de soporte, en el término de carga como incógnitas.
 Mientras que su determinación se realiza a partir de las dos condiciones de contorno en los momentos en los extremos de la viga.
- Ejercicio: considere el problema de la viga simplemente apoyada con carga uniformemente distribuida solo en un sector. Calcule, introduciendo las reacciones R_A y R_B en el término de carga q(x), las expresiones de V(x) y $M_b(x)$ así como las reacciones resultantes.

(a)

(b)

(c)

• Un sistema aporticado es aquel, cuyos elementos estructurales principales, consisten en vigas y columnas conectados a través de nudos formando pórticos resistentes en las dos direcciones principales de análisis (x - y).

• Ejercicio: (cont.) estructura aporticada. Análisis y resultados:

- Los ejemplos anteriores han mostrado la ventaja de emplear el método de la familia de funciones de singularidad.
- Sin embargo, no es descabellado que ud se haga la pregunta de ¿cuándo incluir las fuerzas de reacción en la función de intensidad de carga?, o cuestionarse sobre si las fuerzas de reacción se van a incluir en q(x), o si se evalúan primero a partir de los requisitos de equilibrio general o deben evaluarse como en la segunda parte de la solución del Ejemplo de la viga simplemente apoyada con cargada uniforme en un sector (ver pág. 29 de este documento).
- No hay respuestas definitivas a estas preguntas. Todo lo que se puede decir es que la mejor manera de proceder depende del problema.
- Sin embargo, en general, el trabajo algebraico se simplifica si todas las reacciones se determinan primero a partir del equilibrio general (suponiendo que esto se pueda hacer).
- Sin embargo, debe enfatizarse nuevamente que, independientemente de la ruta que se siga, todas las constantes de integración deben evaluarse cuidadosamente a partir de las condiciones de soporte.

34 / 42

D. Millán MecSol2019 17 de agosto de 2019

• Ejercicio: Consideremos otro ejemplo en el que es necesario incluir las fuerzas reactivas en el término de carga. Se pide encontrar la ubicación de los apoyos A y B de modo que el momento flector en el punto medio sea cero.

3.6 Fuerzas de fluidos

- En muchas aplicaciones, los componentes estructurales están sujetos a fuerzas debido a fluidos en contacto con la estructura.
- Los líquidos en reposo, por ejemplo, el agua en un globo lleno de agua, no ofrecen una resistencia apreciable a los cambios de forma si las fuerzas que causan el cambio de forma se aplican de manera suficientemente lenta. Esto sugiere que en un fluido en reposo no hay fuerzas de fricción entre las partículas de fluido.
- Es decir que la fuerza por unidad de área, o presión hidrostática p, en un punto en un fluido en reposo es normal a cualquier superficie que pase por ese punto.
- Podemos suponer que en un líquido en reposo la presión en un punto es la misma en todas las direcciones. Además, la presión sobre una superficie actúa en la dirección opuesta a la normal que apunta hacia afuera a la superficie.

401401431431

- Consideremos un fluido en equilibrio bajo la acción de la gravedad, la presión es una función lineal de la distancia desde la superficie libre.
- En la figura se muestra un pequeño elemento cilíndrico de fluido en equilibrio bajo presiones del fluido y del peso del elemento fluido $\gamma \Delta A \Delta z$, donde γ es el peso específico del fluido, ΔA es el área de la sección transversal, y Δz es el grosor vertical del elemento.

 \bullet El equilibrio de fuerzas en el plano horizontal se satisface por simetría, y el equilibrio en la dirección z requiere

$$p \Delta A + \gamma \Delta A \Delta z - (p + \Delta p)\Delta A = 0 \Rightarrow \lim_{\Delta z \to 0} : \frac{dp}{dz} = \gamma.$$

• Si la presión de referencia en z = 0 se toma como p_0 :

$$p = \gamma z + p_0$$
.

37 / 42

D. Millán MecSol2019 17 de agosto de 2019

• Ejercicio: La figura muestra una puerta cuadrada de 1.5 m que retiene agua a la mitad de su longitud. Se supone que la carga de presión total en la compuerta se transmite a los soportes en A, B, D y E por medio de vigas AB y DE simplemente apoyadas ubicadas simétricamente. Encuentre el momento de flexión máximo en las vigas.

El borde inferior DA de la puerta está a 0.6 m debajo de la línea de flotación, y $\gamma = 9.8kN/m^3$.

3.7 Problemas en 3D

- El tratamiento que hemos presentado de elementos delgados rectos sometidos a fuerzas que se encuentran en un solo plano que pasa a través del mismo puede extenderse para manejar cargas 3D arbitrarias.
- En el caso general, habrá una fuerza vectorial y un momento vectorial que actúan en cualquier sección del elemento.
- La fuerza y el momento pueden obtenerse aplicando los requisitos de equilibrio a cualquier segmento del elemento o aplicando los requisitos de equilibrio a un elemento diferencial e integrando.
- Los aspectos tridimensionales del problema pueden manejarse utilizando notación vectorial o reduciendo el problema a tres problemas bidimensionales resolviendo todas las fuerzas y momentos en tres componentes.

401401431431

• Ejercicio: Analice el mecanismo de manivela mostrado en la figura.

Bibliografía

Stephen H. Crandall; Norman C. Dahl; Thomas J. Lardner (1999).

An Introduction to the Mechanics of Solids: 2nd Ed. with SI Units. New York

An Introduction to the Mechanics of Solids: 2nd Ed. with SI Units. New York, McGraw-Hill, 1999.

Russel C. Hibbeler (2011).

Mecánica de Materiales. 8va Ed. México, Pearson, 2011.

Fin In spiritus remigio vita