```
In [1]:
                                                                                                 H
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
In [2]:
                                                                                                 H
typhoon_data = pd.read_csv("typhoon.csv")
In [3]:
                                                                                                 M
typhoon_data.head()
Out[3]:
           code
                  LAT
                       LONG
                              PRS WND SiR34 SATSer
0 1.980030e+11
                13.16 177.34
                             990.0
                                    24.3
                                          137.7
                                                 GOE-3
  1.980030e+11 15.97 177.20 987.0
                                    27.5
                                          182.9
                                                GOE-3
  1.980030e+11 17.90 178.28 987.0
                                    25.9
                                          140.8
                                                GOE-3
  1.980030e+11 18.75 179.01
                             992.0
                                    22.2
                                          111.6
                                                GOE-3
   1.980030e+11 19.40 179.68 994.0
                                    22.1
                                          125.5
                                                 GOE-3
                                                                                                 H
In [4]:
typhoon_data.tail()
Out[4]:
              code
                      LAT
                           LONG
                                  PRS
                                       WND
                                             SiR34
                                                   SATSer
29983 2.016310e+11
                    14.95
                          116.37
                                 983.0
                                        29.2
                                             125.3
                                                     MET-7
29984
               NaN
                     NaN
                            NaN
                                  NaN
                                        NaN
                                              NaN
                                                      NaN
29985 2.016310e+11
                    14.68
                         115.93
                                 990.0
                                        23.8
                                             136.4
                                                     MET-7
29986
               NaN
                     NaN
                            NaN
                                  NaN
                                        NaN
                                              NaN
                                                      NaN
29987 2.016310e+11 14.24 115.45 997.0
                                        18.5
                                             180.1
                                                     MET-7
In [5]:
typhoon_data.shape
```

Out[5]:

(29988, 7)

H In [6]:

```
typhoon_data.columns
```

Out[6]:

```
Index(['code', 'LAT', 'LONG', 'PRS', 'WND', 'SiR34', 'SATSer'], dtype='obj
ect')
```

In [7]: H

```
typhoon_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29988 entries, 0 to 29987
Data columns (total 7 columns):
#
    Column Non-Null Count Dtype
            -----
                           float64
    code
            14998 non-null
0
1
    LAT
            14998 non-null float64
2
    LONG
            14998 non-null float64
3
    PRS
            14998 non-null
                           float64
4
            14998 non-null float64
    WND
5
    SiR34 14998 non-null float64
    SATSer 14998 non-null object
dtypes: float64(6), object(1)
memory usage: 1.6+ MB
```

```
H
In [8]:
```

```
typhoon_data.describe()
```

Out[8]:

	code	LAT	LONG	PRS	WND	SiR34
count	1.499800e+04	14998.000000	14998.000000	14998.000000	14998.000000	14998.000000
mean	1.997285e+11	20.689044	132.978030	970.767636	31.996806	184.908928
std	9.965561e+08	7.222782	13.798018	21.290629	10.736364	49.215084
min	1.980030e+11	1.500000	100.300000	879.000000	17.200000	54.100000
25%	1.989100e+11	15.440000	123.300000	958.000000	23.000000	149.100000
50%	1.996290e+11	19.820000	131.670000	977.000000	30.000000	179.900000
75%	2.005150e+11	25.380000	142.080000	988.000000	39.100000	215.800000
max	2.016310e+11	48.550000	179.680000	1004.000000	73.200000	447.500000

```
H
In [9]:
typhoon_data.isnull().sum()
Out[9]:
code
          14990
LAT
          14990
LONG
          14990
PRS
          14990
          14990
WND
SiR34
          14990
SATSer
          14990
dtype: int64
In [10]:
                                                                                           H
typhoon_data.dropna(inplace = True)
In [11]:
                                                                                           H
typhoon_data.shape
Out[11]:
(14998, 7)
In [12]:
                                                                                           H
typhoon_data.isnull().sum()
Out[12]:
          0
code
          0
LAT
LONG
          0
PRS
          0
WND
          0
SiR34
          0
SATSer
dtype: int64
In [16]:
                                                                                           H
typhoon_data['Time']=pd.to_datetime(typhoon_data['code'])
typhoon_data['NO']=typhoon_data['code']//int(1e6)
```

In [20]:

typhoon_data.head()

Out[20]:

	code	LAT	LONG	PRS	WND	SiR34	SATSer	Time	NO
0	1.980030e+11	13.16	177.34	990.0	24.3	137.7	GOE-3	1970-01-01 00:03:18.003	198003.0
1	1.980030e+11	15.97	177.20	987.0	27.5	182.9	GOE-3	1970-01-01 00:03:18.003	198003.0
2	1.980030e+11	17.90	178.28	987.0	25.9	140.8	GOE-3	1970-01-01 00:03:18.003	198003.0
3	1.980030e+11	18.75	179.01	992.0	22.2	111.6	GOE-3	1970-01-01 00:03:18.003	198003.0
4	1.980030e+11	19.40	179.68	994.0	22.1	125.5	GOE-3	1970-01-01 00:03:18.003	198003.0

In [21]:

typhoon_data.tail()

Out[21]:

	code	LAT	LONG	PRS	WND	SiR34	SATSer	Time	NO
29979	2.016310e+11	14.38	118.65	977.0	34.5	161.4	MET-7	1970-01-01 00:03:21.631	201631.0
29981	2.016310e+11	14.75	117.23	980.0	32.3	132.2	MET-7	1970-01-01 00:03:21.631	201631.0
29983	2.016310e+11	14.95	116.37	983.0	29.2	125.3	MET-7	1970-01-01 00:03:21.631	201631.0
29985	2.016310e+11	14.68	115.93	990.0	23.8	136.4	MET-7	1970-01-01 00:03:21.631	201631.0
29987	2.016310e+11	14.24	115.45	997.0	18.5	180.1	MET-7	1970-01-01 00:03:21.631	201631.0

In [22]:

typhoon_data_198003 = typhoon_data[typhoon_data['NO'] == 198003.0]

199501.0

1

Name: NO, Length: 824, dtype: int64

```
H
In [26]:
typhoon_data['NO'].unique()
       200924., 200928., 201002., 201003., 201004., 201006., 201007.,
       201008., 201009., 201010., 201011., 201012., 201013., 201014.,
       201016., 201018., 201103., 201104., 201106., 201107., 201108.,
       201112., 201113., 201115., 201116., 201117., 201118., 201119.,
       201120., 201121., 201123., 201128., 201202., 201203., 201204.,
       201205., 201206., 201207., 201208., 201209., 201210., 201211.,
       201212., 201213., 201215., 201216., 201217., 201218., 201219.,
       201220., 201221., 201222., 201223., 201226., 201227., 201301.,
       201303., 201304., 201305., 201306., 201307., 201308., 201309.,
       201310., 201311., 201312., 201318., 201320., 201321., 201322.,
       201323., 201324., 201325., 201326., 201327., 201330., 201332.,
       201402., 201403., 201406., 201407., 201408., 201409., 201410.,
       201411., 201412., 201413., 201415., 201417., 201419., 201420.,
       201421., 201422., 201423., 201424., 201425., 201501., 201502.,
       201503., 201504., 201505., 201506., 201507., 201508., 201509.,
       201510., 201511., 201513., 201516., 201517., 201521., 201522.,
       201523., 201524., 201525., 201527., 201528., 201602., 201604.,
       201605., 201606., 201608., 201610., 201617., 201620., 201621.,
       201623., 201624., 201625., 201629., 201631.])
In [25]:
typhoon_data['NO'].value_counts()
Out[25]:
198620.0
199435.0
            57
200301.0
            56
198305.0
            53
201412.0
            51
201511.0
             1
199406.0
             1
199213.0
             1
199011.0
             1
```

In [27]:

typhoon_data_198003.head()

Out[27]:

	code	LAT	LONG	PRS	WND	SiR34	SATSer	Time	NO
0	1.980030e+11	13.16	177.34	990.0	24.3	137.7	GOE-3	1970-01-01 00:03:18.003	198003.0
1	1.980030e+11	15.97	177.20	987.0	27.5	182.9	GOE-3	1970-01-01 00:03:18.003	198003.0
2	1.980030e+11	17.90	178.28	987.0	25.9	140.8	GOE-3	1970-01-01 00:03:18.003	198003.0
3	1.980030e+11	18.75	179.01	992.0	22.2	111.6	GOE-3	1970-01-01 00:03:18.003	198003.0
4	1.980030e+11	19.40	179.68	994.0	22.1	125.5	GOE-3	1970-01-01 00:03:18.003	198003.0

In [28]:

typhoon_data_198003.tail()

Out[28]:

	code	LAT	LONG	PRS	WND	SiR34	SATSer	Time	NO
0	1.980030e+11	13.16	177.34	990.0	24.3	137.7	GOE-3	1970-01-01 00:03:18.003	198003.0
1	1.980030e+11	15.97	177.20	987.0	27.5	182.9	GOE-3	1970-01-01 00:03:18.003	198003.0
2	1.980030e+11	17.90	178.28	987.0	25.9	140.8	GOE-3	1970-01-01 00:03:18.003	198003.0
3	1.980030e+11	18.75	179.01	992.0	22.2	111.6	GOE-3	1970-01-01 00:03:18.003	198003.0
4	1.980030e+11	19.40	179.68	994.0	22.1	125.5	GOE-3	1970-01-01 00:03:18.003	198003.0

In [44]:

In [45]: ▶

```
weather_data.head()
```

Out[45]:

	NO	Start	End	StLAT	EdLAT	StLONG	EdLONG	WND	SiR34	SATSer
0	198003.0	1970-01-01 00:03:18.003	1970-01-01 00:03:18.003	13.16	13.16	177.34	177.34	27.5	182.9	GOE-3
1	198015.0	1970-01-01 00:03:18.015	1970-01-01 00:03:18.015	14.15	14.15	157.04	157.04	31.3	199.7	GOE- 3,GOE- 3
2	198026.0	1970-01-01 00:03:18.026	1970-01-01 00:03:18.026	14.36	14.36	156.09	156.09	20.2	172.1	GOE-3
3	198101.0	1970-01-01 00:03:18.101	1970-01-01 00:03:18.101	7.46	7.46	165.92	165.92	46.9	236.5	GMS-1
4	198102.0	1970-01-01 00:03:18.102	1970-01-01 00:03:18.102	6.32	6.32	151.14	151.14	27.9	203.1	GMS-1

In [46]: ▶

```
weather_data.tail()
```

Out[46]:

	NO	Start	End	StLAT	EdLAT	StLONG	EdLONG	WND	SiR34	SATSei
819	201623.0	1970-01-01 00:03:21.623	1970-01-01 00:03:21.623	20.48	20.48	117.80	117.80	26.2	126.6	MET-7
820	201624.0	1970-01-01 00:03:21.624	1970-01-01 00:03:21.624	13.83	13.83	126.48	126.48	53.4	232.3	MET-7
821	201625.0	1970-01-01 00:03:21.625	1970-01-01 00:03:21.625	16.03	16.03	126.00	126.00	64.6	302.4	MET-7
822	201629.0	1970-01-01 00:03:21.629	1970-01-01 00:03:21.629	11.78	11.78	120.73	120.73	26.3	133.3	MET-7
823	201631.0	1970-01-01 00:03:21.631	1970-01-01 00:03:21.631	13.60	13.60	126.72	126.72	61.7	262.6	MET-7

In [47]: ▶

weather_data.shape

Out[47]:

(824, 10)

In [48]:

weather_data.columns

Out[48]:

In [49]: ▶

```
weather_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 824 entries, 0 to 823
Data columns (total 10 columns):
    Column Non-Null Count Dtype
#
     -----
            -----
                            ____
0
    NO
            824 non-null
                            float64
1
    Start
            824 non-null
                            datetime64[ns]
            824 non-null
                            datetime64[ns]
2
    End
3
    StLAT
            824 non-null
                            float64
4
    EdLAT
            824 non-null
                            float64
    StLONG 824 non-null
5
                            float64
                            float64
6
    EdLONG 824 non-null
7
    WND
            824 non-null
                            float64
            824 non-null
                            float64
8
    SiR34
9
    SATSer 824 non-null
                            object
dtypes: datetime64[ns](2), float64(7), object(1)
memory usage: 64.5+ KB
```

In [50]: ▶

weather_data.describe()

Out[50]:

	NO	StLAT	EdLAT	StLONG	EdLONG	WND	SiR34
count	824.000000	824.000000	824.000000	824.000000	824.000000	824.000000	824.000000
mear	199755.842233	16.595328	16.595328	135.512002	135.512002	36.823422	229.755218
sto	1019.999754	5.699368	5.699368	14.989767	14.989767	13.206671	59.636712
min	198003.000000	1.500000	1.500000	102.040000	102.040000	17.300000	96.700000
25%	198910.750000	12.267500	12.267500	125.337500	125.337500	24.775000	186.250000
50%	199702.500000	16.335000	16.335000	133.745000	133.745000	36.000000	228.350000
75%	200609.250000	20.135000	20.135000	146.395000	146.395000	47.400000	270.525000
max	201631.000000	32.970000	32.970000	177.340000	177.340000	73.200000	447.500000
4							>

```
In [52]:
```

```
plt.figure(figsize=(15,5))
sns.kdeplot(data = weather_data['SiR34'], shade=True);
plt.title('Typhoon Size')
plt.xticks(rotation = 0)
plt.show()
```



```
In [53]: ▶
```

```
plt.figure(figsize=(15,5))
sns.kdeplot(data = weather_data['WND'], shade=True);
plt.title('Typhoon Strength')
plt.xticks(rotation = 0)
plt.show()
```



```
In [55]: ▶
```

```
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import folium
```

In [57]:

Typhoon Start


```
In [59]:
weather_data_new = weather_data[['WND', 'SiR34']]
```

In [60]: ▶

weather_data_new.corr()

Out[60]:

	WND	SiR34
WND	1.000000	0.598876
SiR34	0.598876	1.000000

In [61]:

sns.heatmap(weather_data_new.corr())

Out[61]:

<AxesSubplot:>

