Face Recognition

Métodos numéricos avanzados Grupo 11

El problema

Lana Soderberg

Other Lana

Algoritmo de procesamiento

Estructura del sistema

Imágenes

Fotos standard de personas

Fotos de integrantes del grupo once

- Escala de grises
- 112x92
- Representados en una matriz (pgm)

Admite cualquier tipo de dato representable como matriz.

Base de datos

10 fotos por cada integrante del grupo. Todas con alguna pequeña variación.

Engine

- Python
- Captura de imágenes vía webcam para base de datos. - Libreria OpenCV.
- Captura de imágen en tiempo real para comparación.
- Reconocimiento y clasificación.

Métodos Numéricos

Cálculo de autovalores

QR - con Gram-Schmidt

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1, & \mathbf{e}_1 &= \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 &= \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_2), & \mathbf{e}_2 &= \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_3 &= \mathbf{v}_3 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_3) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_3), & \mathbf{e}_3 &= \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|} \\ \mathbf{u}_4 &= \mathbf{v}_4 - \operatorname{proj}_{\mathbf{u}_1}(\mathbf{v}_4) - \operatorname{proj}_{\mathbf{u}_2}(\mathbf{v}_4) - \operatorname{proj}_{\mathbf{u}_3}(\mathbf{v}_4), & \mathbf{e}_4 &= \frac{\mathbf{u}_4}{\|\mathbf{u}_4\|} \\ &\vdots & \vdots & \vdots & \\ \mathbf{u}_k &= \mathbf{v}_k - \sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_j}(\mathbf{v}_k), & \mathbf{e}_k &= \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}. \end{aligned}$$

Cálculo de autovalores

Algoritmo QR

Formalmente, sea **A** una matriz real de la que queremos calcular los valores propios, se asigna $A_0:=A$.

- A_k=Q_kR_k dondeQ_k es una matriz ortogonal y R_k es una matriz triangular superior.
- A_{k+1} = R_kQ_k. Se ha de notar que

$$A_{k+1} = R_k Q_k = Q_k^T Q_k R_k Q_k = Q_k^T A_k Q_k = Q_k^{-1} A_k Q_k,$$

Principal Component Analysis

Técnica estadística para reducir un conjunto de datos generalizando sus relaciones y **extrayendo sus componentes principales.**

Kernel P.C.A.

Extensión de PCA. Sets de datos cuando no se pueden encontrar los hiperplanos.

Se lo lleva a un espacio de mayor dimensión para luego aplicar PCA.

Resultados y su análisis

PCA con base de datos provista

Se puede ver cómo a medida que se utilizan más autocaras para chequeo de la imagen, el error disminuye hasta un mínimo y luego se mantiene cercano a este incluso aumentando el error si se agregan más autocaras.

PCA con base de datos propia

En este caso, como somos 5 personas en la base de datos en vez de 40, hay un punto en el que el algoritmo no tiene más error

KPCA con base de datos provista

Error

Un poco más lento

Meseta de error

Conclusiones

Conclusiones

- Tuvimos éxito en la clasificación en condiciones óptimas.
- La comparación y clasificación de imágenes tomadas en vivo tuvo complicaciones cuando la pose y el contexto de la imagen cambiaban.
- Como <u>mejora</u> se podría realizar un <u>preprocesamiento</u> de las imágenes para evitar que el contexto afecte al reconocimiento.

FIN

Bibliografía

- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.665
 5&rep=rep1&type=pdf
- https://eva.fing.edu.uy/file.php/514/ARCHIVO/2010/TrabajosFinales2010/informe_final_ottado.pdf
- http://www.math.tamu.edu/~dallen/linear_algebra/chpt6.pdf
- http://www.face-rec.org/algorithms/Kernel/kernelPCA_scholkop f.pdf