Лекция 7

14.05.2020

Закон больших чисел

2. Понятие о центральной предельной теореме

- В теории вероятностей и математической статистике большое значение имеет *центральная предельная теорема Ляпунова*, в которой утверждается, что если сложить большое число случайных величин, имеющих один или различные законы распределения, то случайная величина, являющаяся результатом суммы, при некоторых условиях будет иметь нормальный закон распределения.
- Примером *центральной предельной теоремы* (для последовательности независимых случайных величин) является интегральная теорема Муавра-Лапласа.

2. Понятие о центральной предельной теореме

• **Теорема 1.** Пусть производится n независимых опытов, в каждом из которых вероятность наступления события A равна p (не наступления $q = 1 - p, p \neq 0, p \neq 1$).

Если K — число появлений события A в серии из n испытаний, то при достаточно больших n CB K можно считать нормально распределенной $(M(K)=np, \ \sigma(K) = \sqrt{D(K)} = \sqrt{npq})$:

$$P(K < \kappa) \to P(X < x_0) = \int_{-\infty}^{x_2} \varphi(x) dx = \frac{1}{2} + \Phi(x_0),$$
 (9)

где
$$x_0 = \frac{k - np}{\sqrt{npq}}$$
, $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $\Phi(x_0)$ – функция Лапласа.

2. Понятие о центральной предельной теореме

В более общем случае верна следующая теорема.

• **Теорема 2.** Если случайные величины $X_1, X_2, ..., X_n$ независимы, одинаково распределены и имеют конечную дисперсию, то при $n \rightarrow \infty$:

$$P\left(\frac{X_1 + X_2 + \dots + X_n - na}{\sigma\sqrt{n}} < t\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{u^2}{2}} du, \tag{10}$$

где $M(X_i)=a$, $\sigma^2=D(X_i)$; U — нормально распределенная случайная величина, M(U)=0, D(U)=1.

Пример 2. На отрезке [0; 1] случайным образом выбрано 100 чисел, точнее рассматриваются 100 независимых средних $X_1, X_2,...$ X_n , равномерно распределенных на отрезке [0; 1]. Найти вероятность того, что их сумма заключена между 51 и 60, т.е. $P(51 < \sum X_i < 60)$.

Решение. В силу теоремы 2:
$$\frac{\sum X_i - na}{\sigma \sqrt{n}} = U$$
, $\sum (X_i) - na = \sigma \sqrt{n}U$.

Из условия, в силу равномерности $CB X_i$, следует, что

$$M(X_i) = \frac{1+0}{2} = \frac{1}{2}, \sigma^2 = \frac{(1-0)^2}{12}.$$

Имеем,
$$M(\sum X_i) = M(na + \sigma\sqrt{n}U) = na = 100\frac{1}{2} = 50$$
,
$$D\left(\sum X_i\right) = D(na + \sigma\sqrt{n}U) = na = 100\frac{1}{12} = \frac{100}{12}.$$

Пример 2. На отрезке [0; 1] случайным образом выбрано 100 чисел, точнее рассматриваются 100 независимых средних X_1 , X_2 ,... X_n , равномерно распределенных на отрезке [0; 1]. Найти вероятность того, что их сумма заключена между 51 и 60, т.е. $P(51 < \sum X_i < 60)$.

Решение.

Итак, $\sum X_i \in N(na, n\sigma^2)$ — сумма, нормально распределенная случайная величина с математическим ожиданием na=50 и дисперсией $n\sigma^2=100/12$. Отсюда,

$$P(51 \le \sum X_i \le 60) = \Phi\left(\frac{60 - na}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{51 - na}{\sqrt{n}\sigma}\right) = \Phi\left(\frac{60 - 50}{\frac{10}{\sqrt{12}}}\right) - \Phi\left(\frac{51 - 50}{\frac{10}{\sqrt{12}}}\right) = \Phi(\sqrt{12}) - \Phi\left(\frac{\sqrt{12}}{\frac{10}{\sqrt{12}}}\right) = \Phi(3,464) - \Phi(0,3464) \approx 0,49971 - 0,1353 = 0,3644.$$

То есть вероятность того, что сумма 100 независимых средних X_1 , X_2 ,..., X_n , равномерно распределенных на отрезке [0; 1], заключена между 51 и 60 и равна 0,3644.

Анализ вариационных рядов

Математическая статистика

- Основная цель математической статистически получение и обработка данных для статистически значимой поддержки процесса принятия решения, например, при решении задач планирования, управления, прогнозирования.
- Методы математической статистики можно разделить на описательные и аналитические.

Математическая статистика

Описательные методы позволяют описать реальные наблюдения с помощью таблиц, графиков, характеристик положения (среднее арифметическое, мода, медиана), характеристик рассеяния (среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициент вариации) и т. д.

Аналитические методы позволяют на основании выборочных наблюдений сделать статистически значимые выводы о наличии закономерностей для всей совокупности.

Две группы методов:

- методы *параметрической статистики*
- методы *непараметрической статистики*.

<u>В реальных социально-экономических системах</u> нельзя проводить активные эксперименты, поэтому данные обычно представляют собой наблюдения за происходящим процессом.

Результаты наблюдений — это, в общем случае, ряд чисел, расположенных в беспорядке, который для изучения необходимо упорядочить (проранжировать).

• Операция, заключенная в расположении значений признака по возрастанию, называется ранжированием опытных данных.

• После операции ранжирования опытные данные можно сгруппировать так, чтобы в каждой группе признак принимал одно и то же значение, которое называется вариантом (X_i) . Число элементов в каждой группе называется частотой варианта (n_i) .

Размахом вариации называется число

$$W=x_{max}-x_{min},$$

где x_{max} — наибольший вариант, x_{min} — наименьший вариант.

• Сумма всех частот равна определенному числу n, которое называется объемом совокупности:

$$\sum_{i=1}^{k} n_i = n_1 + n_2 + \dots + n_k = n . \quad (1)$$

• Отношение частоты данного варианта к объему совокупности называется *относительной частотой* (\widehat{p}_i) , или *частостью* этого варианта:

$$\widehat{p}_i = \frac{n_i}{n}, \qquad (2)$$

$$\sum_{i=1}^{k} \widehat{p}_i = \sum_{i=1}^{k} \frac{n_i}{n} = \frac{\sum_{i=1}^{k} n_i}{n} = \frac{n}{n} = 1 \quad (3)$$

- Последовательность вариантов, расположенных в возрастающем порядке, называется *вариационным рядом* (вариация изменение).
- Вариационные ряды бывают дискретными и непрерывными. Дискретным вариационным рядом называется ранжированная последовательность вариантов с соответствующими частотами и (или) частостями.

Пример 1. В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд.

Решение. Проранжируем исходный ряд, подсчитаем частоту и частость вариантов:

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4.

В результате получим дискретный вариационный ряд

Балл, x_i	Число студентов, n_i	Относительная частота, $\widehat{p_i}$					
0	6	6/24					
1	7	7/24					
2	3	3/24					
3	5	5/24					
4	3	3/24					
\sum	24	1					

- Построение дискретного вариационного ряда нецелесообразно, если число значений признака велико.
- В этом случае следует построить *интервальный* вариационный ряд (промежуток изменения признака разбивается на ряд отдельных интервалов и подсчитывается количество значений величины в каждом из них).

• Будем считать, что отдельные (частичные) интервалы имеют одну и ту же длину. Число интервалов (*k*) в случае нормально распределенной совокупности можно определить по формуле *Стерджесса*:

$$k = 1+3,322 \text{ lg}n$$
 (4)

или приближенно: $k \in [6;12]$.

• Длина частичного интервала определяется по формуле:

$$h = \frac{W}{k} = \frac{x_{max} - x_{min}}{k} = \frac{15 - 4}{7} \approx 1,6.$$
 (5)

Пример 2. Пусть дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n=60)

12	6	8	6	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12
11	15	6																

Построить интервальный вариационный ряд.

Решение. Для определения числа групп подставим значение n=60 в формулу Стерджесса: k=1 + 3,3221g60 \approx 6,907; k = 7.

Группы хозяйств по численности работников на 100 га с/х угодий	Число хозяйств в группе (n _i)	Накопленное число хозяйств (Si)	Относительная частота $(\widehat{p_i})$
4-5,6	5	5	5/60.
5,61-7,2	17	22	17/60
7,21-8,8	9	31	9/60
8,81-10,4	15	46	15/60
10,41 -12,0	10	56	10/60
12,01 -13,6	1	57	1/60
13,61-15,2	3	60	3/60
Итого:	60	-	1

Графическое изображение вариационных рядов

Вариационные ряды изображают графически с помощью полигона и гистограммы.

- Полигон частот это ломаная, отрезки которой соединяют точки $(x_1; n_1), (x_2; n_2), \dots, (x_k; n_k)$.
- Полигон относительных частот это ломаная, отрезки которой соединяют точки: $(x_1; \frac{n_1}{n}), (x_2; \frac{n_2}{n}), \dots, (x_k; \frac{n_k}{n}).$
- Гистограммой частот называется фигура, состоящая из прямоугольников с основанием h и высотами n_i . Для гистограммы относительных частот в качестве высоты рассматривают n_i/n .
- Гистограмма относительных частот является аналогом дифференциальной функции случайной величины.

- Вариационные ряды позволяют получить первое представление об изучаемом распределении.
- Далее необходимо исследовать *числовые характеристики распределения* (аналогичные характеристикам распределения теории вероятностей):
 - характеристики положения (средняя арифметическая, мода, медиана);
 - характеристики рассеяния (дисперсия, среднее квадратическое отклонение, коэффициент вариации);
 - характеристики меры скошенности (коэффициент асимметрии) и островершинности (эксцесс) распределения.

Характеристики положения вариационного ряда

• *Средней арифметической* (*X*) дискретного вариационного ряда называется отношение суммы произведений вариантов на соответствующие частоты к объему совокупности:

$$\bar{X} = \frac{\sum x_i n_i}{\sum n} = \frac{\sum x_i n_i}{n}.$$

• Средняя арифметическая имеет те же единицы измерения, что и варианты.

Характеристики положения вариационного ряда

• Свойства средней арифметической

1) Средняя арифметическая суммы соответствующих друг другу значений, принадлежащих двум группам наблюдений, равна алгебраической сумме средних арифметических этих групп:

$$\overline{X \pm Y} = \overline{X} \pm \overline{Y}.$$

2) Если ряд наблюдений состоит из двух непересекающихся групп наблюдений, то средняя арифметическая \bar{Z} всего ряда наблюдений равна взвешенной средней арифметической групповых средних \bar{X} и \bar{Y} , причем весами являются объемы групп $n_1 = \sum n_i$, $n_2 = \sum m_i$ соответственно

$$\overline{X \pm Y} = \frac{\sum x_i n_i + \sum y_j m_j}{n_1 + n_2}$$

Характеристики положения вариационного ряда

Свойства средней арифметической

3) Средняя арифметическая постоянной равна самой постоянной

$$\overline{C} = C.$$

4) Если все результаты наблюдений умножить на одно и то же число, то имеет место равенство:

$$\bar{Z} = \overline{CX} = C\bar{X}$$

5) Сумма отклонений результатов наблюдений от их средней, взвешенная с соответствующими частотами, равна нулю

$$\sum (x_i - \bar{X})n_i = 0.$$

Характеристики положения вариационного ряда Свойства средней арифметической

6) Если все результаты наблюдений увеличить (уменьшить) на одно и то же число, то средняя арифметическая увеличится (уменьшится) на то же число, т. е.:

$$\overline{Z} = \overline{X \pm C} = \overline{X} \pm C.$$

7) Если все частоты вариантов умножить на одно и то же число, то средняя арифметическая не изменится.

Характеристики положения вариационного ряда

- Modoй ($M_0^*(X)$) дискретного вариационного ряда называется вариант, имеющий наибольшую частоту.
- *Медианой* $(M_e^*(X))$ дискретного вариационного ряда называется вариант, делящий ряд на две равные части.
 - Если дискретный вариационный ряд имеет 2n членов в ранжированной совокупности: $x_1, x_2, ..., x_n, x_{n+1,...}, x_{2n}$, то

$$M_e^*(X) = \frac{x_n + x_{n+1}}{2}$$
 (6)

Характеристики положения вариационного ряда

• Если дискретный вариационный ряд в ранжированной совокупности имеет 2n+1 членов: $x_1, x_2, ..., x_{n-1}, x_n, x_{n+1, ...,} x_{2n+1}$, то

$$M_e^*(X) = x_{n+1} (7)$$

В примере 1:

$$\bar{X} = \frac{0 \cdot 6 + 1 \cdot 7 + 2 \cdot 3 + 3 \cdot 5 + 4 \cdot 3}{24} = \frac{40}{24} = \frac{5}{3} = 1,67;$$

$$M_0^*(X) = 1, \qquad M_e^*(X) = \frac{1+1}{2} = 1.$$

Характеристики положения вариационного ряда

Для **интервальных вариационных рядов** имеют место формулы:

а) медианы:
$$M_e^*(X) = x_{Me} + h \cdot \frac{0.5n - S_{Me-1}}{n_{Me}}$$
, (8)

где x_{Me} - начало медианного интервала,

h - длина частичного интервала, n - объем совокупности,

 S_{Me-1} - накопленная частота интервала, предшествующего медианному, n_{Me} - частота медианного интервала;

б) моды:
$$M_0^*(X) = x_{Mo} + h \cdot \frac{(n_{Mo} - n_{Mo-1})}{(n_{Mo} - n_{Mo-1}) + (n_{Mo} - n_{Mo+1})}$$
, (9)

где x_{Mo} - начало модального интервала,

h - длина частичного интервала, n_{Mo} - частота модального интервала,

 $n_{Mo\text{-}1}$ - частота предмодального интервала,

 n_{Mo+1} - частота послемодального интервала;

Характеристики положения вариационного ряда

в) средней арифметической, совпадающей с формулой (6) для дискретного вариационного ряда, причем в качестве вариантов x_i принимаются середины соответствующих интервалов.

Мода и медиана используются в качестве характеристики среднего положения в случае, если границы ряда нечеткие или если ряд не симметричен.

Показатели вариации

Показатели центральной тенденции (M_0, M_e, \overline{X}) не исчерпывают всех свойств распределения. В одних случаях значения признака концентрируются тесно около среднего значения, в других наблюдается значительное рассеяние.

Для изучения степени изменчивости признака вводят *показатели* вариации:

- 1) $W = x_{max} x_{min} paзмах вариации;$
- 2) значения x_i имеют свойство концентрироваться около \overline{X} , поэтому вводят следующие характеристики

(т. к
$$\sum (x_i - \bar{X})n_i = 0$$
):

Показатели вариации

• Дисперсия дискретного ряда распределения:

$$D^* = \frac{\sum (x_i - \bar{X})^2 n_i}{n} \tag{10}$$

характеризует средний квадрат отклонения x_i , от $\overline{\mathbf{x}}$.

• Среднее квадратическое отклонение дискретного ряда распределения

$$\sigma^* = \sqrt{\frac{\sum (x_i - \bar{X})^2 n_i}{n}}$$

выражается в тех же единицах, что и x_i .

Показатели вариации

• Среднее линейное отклонение:

$$L(X) = \frac{\sum |x_i - \bar{X}| n_i}{n} \tag{12}$$

• Коэффициент вариации:

$$V^* = \frac{\sigma^*}{\bar{X}} \cdot 100\%, \tag{13}$$

характеризует относительное значение среднего квадратического отклонения и обычно служит для сравнения колеблемости несоизмеримых показателей.

Показатели вариации

Свойства дисперсии:

1) Дисперсия постоянной величины равна 0

$$D^*(C)=0.$$

2) Если все результаты наблюдений увеличить (уменьшить) на одно и то же число С, то дисперсия и среднее квадратическое отклонение не изменятся, т. е.

$$D^*(X \pm C) = D^*(X), \sigma^*(X \pm C) = \sigma^*(X).$$

3) Если все результаты наблюдений умножить на одно и то же число, то имеет место равенство:

$$D^*(CX) = C^2D(X), \qquad \sigma^*(CX) = |C|\sigma^*(X).$$

Показатели вариации Свойства дисперсии:

- 4) Если все частоты вариантов умножить на одно и то же число, то дисперсия и среднее квадратическое отклонение не изменятся.
- 5) Свойство минимальности дисперсии.

$$\frac{\sum (x_i - C)^2 n_i}{n} \to \min \ \text{при } C = \bar{X}.$$

• Следствие 1. Средний квадрат отклонений значений x_i от их средней арифметической равен среднему квадрату отклонений x_i от произвольной постоянной a минус квадрат разности между средней арифметической (\overline{X}) и этой произвольной постоянной.

Пусть
$$\sigma^{*2} = \frac{\sum (x_i - \bar{X})^2 n_i}{n}$$
, $\sigma_a^{*2} = \frac{\sum (x_i - a)^2 n_i}{n}$, тогда
$$\sigma_x^{*2} = \sigma_a^{*2} - (\bar{X} - a)^2.$$

Показатели вариации

• Следствие 2. Дисперсия равна средней арифметической из квадратов значений признака минус квадрат средней арифметической:

$$\sigma_{\chi}^{*2} = \overline{X^2} - (\overline{X})^2.$$

6) Правило сложения дисперсий.

Если объединяются несколько распределений в одно, то общая дисперсия σ_0^{*2} нового распределения равна средней арифметической из дисперсий объединяемых распределений, сложенной с дисперсией частных средних относительно общей средней нового распределения.

Показатели вариации

Правило сложения дисперсий

Иначе говоря, общая дисперсия равна сумме внутригрупповой и межгрупповой дисперсий:

$$\sigma_0^{*2} = \overline{\sigma^{*2}} + \delta_0^{*2}$$
, (14) или $\sigma_0^{*2} = \frac{\sum_{i,j} (x_{ij} - \overline{X_0})^2 \cdot n_{ij}}{N} = \frac{\sum x_j^2 N_j}{N} - (\overline{X_0})^2$,

где n_{ij} — частота j-го варианта i-го частного распределения (j=1,...,m; i=1,2,...,k), x_{ii} - j- \check{u} вариант i-го частного распределения

(j=1,...,m; i=1,2,...,k), n_i - объем i-го частного распределения,

 $N_i = \sum_i n_{ij}$ - частота j-го варианта нового

распределения,

N - объем нового распределения,

 $\overline{X}_i = \frac{\sum_j n_{ij} x_i}{n_i}$ - средняя арифметическая

(i-го частного распределения, (i=1,..., κ),

 $\overline{X_0} = \frac{\sum x_j N_j}{N}$ - средняя арифметическая нового распределения,

j	\mathbf{x}_1	\mathbf{x}_2		X _m	Σ
1	n ₁₁	n ₁₂		n _{1m}	n_1
2	n ₂₁	n ₂₂	•••	n_{2m}	n_2
3	n ₃₁	n ₃₂	•••	n_{3m}	n_3
•••	•••	•••	•••	•••	•••
k	n_{k1}	n _{k2}		n _{km}	n _m
Σ	N ₁₁	N_2		$N_{\rm m}$	N

$$\sigma_i^2 = rac{\sum_j x_{ij}^2 n_{ij}}{n_i} - (\overline{X}_i)^2$$
 - дисперсия i -го

частного распределения

 $\overline{\sigma^{*2}} = \frac{\sum \sigma_i^2 n_i}{N}$ - внутригрупповая дисперсия, $\delta^{*2} = \frac{\sum (\overline{X_i} - \overline{X_0})^2}{N}$ - межгрупповая дисперсия.

• Моменты для вариационных рядов в математической статистике находятся по формулам, аналогичным формулам для ДСВ:

$$a_S^* = rac{\sum x_i^S n_i}{n}$$
 - начальный момент *s*-го порядка,
$$\mu_S^* = rac{\sum (x_i - \bar{x})^S n_i}{n}$$
 - центральный момент *s*-го порядка,
$$r_S^* = rac{\sum (x_i - \bar{x})^S n_i}{n \sigma_X^{*S}}$$
 - основной момент *s*-го порядка,
$$r_{S,h}^* = rac{\sum (x_i - \bar{x})^S n_i}{n \sigma_X^{*S}}$$
 - основной момент порядка *s,h*.

- Соотношения между начальными и центральными моментами в математической статистике соответствуют таким формулам для ДСВ.
- Коэффициент асимметрии: $Sk^* = \frac{\sum (x_i X)^3 n_i}{n\sigma^{*3}}$.
- $\exists \kappa c \mu e c c : E x^* = \frac{\sum (x_i \bar{X})^4 n_i}{n \sigma^{*4}} 3.$

• Рассчитаем среднюю арифметическую, дисперсию, коэффициенты асимметрии и эксцесса для примера 2.

Среднее значение признака:

$$\bar{X} = \frac{\sum x_i n_i}{\sum n_i} = \frac{516,18}{60} = 8,613.$$

Дисперсия и среднее квадратическое отклонение:

$$D^* = \frac{\sum (x_i - \bar{X})^2 n_i}{n} = \frac{358,869}{60} = 5,981,$$

$$\sigma^* = \sqrt{\frac{\sum (x_i - \bar{X})^2 n_i}{n}} = \sqrt{5,981} = 2,446.$$

Коэффициент вариации:

$$V^* = \frac{\sigma^*}{\bar{X}} \cdot 100\% = \frac{2,446}{8.613} \cdot 100\% = 28,4\%.$$

• Рассчитаем среднюю арифметическую, дисперсию, коэффициенты асимметрии и эксцесса для примера 2.

Вспомогательная таблица для расчета числовых характеристик ряда распределения

Группы предприятий по численности работников на 100 га сельхозугодий, чел	Среднее значение интервала (X_i)	Число хозяйств в группе (n _i)	$X_i \Pi_i$	$x_i - ar{X}$	$(x_i - \bar{X})^2 n_i$	$rac{x_i - ar{X}}{\sigma^*}$	$\left(rac{x_i-ar{X}}{\sigma^*} ight)^3 n_i$	$\left(rac{x_i-ar{X}}{\sigma^*} ight)^4 n_i$
4-5,6	4,8	5	24	-3,813	72,708	-1,559	-18.954	29,554
5,61 - 7,2	6,4	17	108,8	-2,213	83,280	-0,905	-12,601	11,404
7,21-8,8	8	9	72	-0,613	3,386	-0,251	-0,142	0,036
8,81-10,4	9,6	15	144	0,987	14,603	0,403	0,985	0,397
10,41-12	11,2	10	112	2,587	66.908	1,058	11,832	12,514
12,01-13,6	12,8	1	12,8	4,187	17,528	1,712	5,017	8,588
13,61-15,2	14,4	3	43,2	5,787	100,457	2,366	39.740	94,030
итого	-	60	516,8	-	358,869	-	25,876	156,523

• Коэффициент асимметрии: $Sk^* = \frac{\sum (x_i - \bar{X})^3 n_i}{n\sigma^{*3}} = \frac{25,876}{60} = 0,43.$

•
$$3\kappa c \mu e c c$$
: $Ex^* = \frac{\sum (x_i - \bar{X})^4 n_i}{n\sigma^{*4}} - 3 = \frac{156,523}{60} - 3 = -0,39.$

Выводы: Плотность работников -

 $\overline{X} \pm \sigma^* = 8,61 \pm 2,45$, то есть от 6,16 до 11,06 чел. на 100га с/х угодий.

Коэффициент асимметрии недостаточно близко к нулю => распределение не симметрично.

Эксцесс $Ex^* \neq 0 = >$ возможно распределение отлично от нормального.