

Bayesian integrated population modeling using JAGS

Estimation of survival probabilities using capture-recapture data

Estimation of survival

The principle to estimate survival is fairly easy:

- Follow individuals across time
- Count individuals at time t (C_t) and assess how many of them are still alive after time Δt ($L_{t+\Delta t}$)
- Survival probability is then $S_{\Delta t} = \frac{L_{t+\Delta t}}{C_t}$

But major problem: all individuals that are still alive, but **not seen** \rightarrow classified **dead**

- Typically, we do not know $L_{t+\Delta t}$, but only $p * L_{t+\Delta t}$, where p is the detection probability
- Detection can be estimated, if we extend the experiment to at least one further occasion
- Thus, collect capture-recapture data (individual capture histories)

Marking, recaptures and resightings

Artificial marks

Natural marks

... also genetic or acustic recapture

Individual capture history

ID	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	0	0	0	0	0
2	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0
5	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
7	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
12	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0

Individual capture history: result of two processes

State process

Alive

Dead

Seen

Not seen

Observation process

→ Stochastic process

Deterministic process

State-space likelihood to analyse CR data

1. Survival process

$$\begin{aligned} & \textbf{\textit{z}}_{i,first_i} = \textbf{1} \\ & \textbf{\textit{z}}_{i,t} \left| \textbf{\textit{z}}_{i,t-1} \sim \textit{Bernoulli} \left(\textbf{\textit{z}}_{i,t-1} \boldsymbol{\varphi}_{i,t-1} \right) \right. \\ & \text{where,} \\ & \textbf{\textit{z}}_{i,t} \text{: matrix, indicating whether individual } \textit{\textit{i}} \text{ is alive at time } \textit{\textit{t}} \text{ (z = 1), or dead (z = 0)} \\ & \boldsymbol{\varphi}_{i,t} \text{: apparent survival probability for individual } \textit{\textit{i}} \text{ from time } \textit{\textit{t}} \text{ to } \textit{\textit{t}} + \textbf{1} \end{aligned}$$

2. Observation process

$$y_{i,t} \left| z_{i,t} \sim Bernoulli(z_{i,t}p_{i,t}) \right|$$

where,

 $y_{i,t}$: is the observed capture history for individual i at time t $p_{i,t}$: recapture probability for individual i at time t

```
y_{i,t} = \begin{cases} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{cases}
```

$y_{i,t} = \begin{cases} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{cases}$

$$\phi_{i,t} = \begin{matrix} NA & \phi_{1,2} & \phi_{1,3} & \phi_{1,4} \\ \phi_{2,1} & \phi_{2,2} & \phi_{2,3} & \phi_{2,4} \\ NA & NA & \phi_{3,3} & \phi_{3,4} \\ NA & \phi_{4,2} & \phi_{4,3} & \phi_{4,4} \\ & \cdot & \cdot & \cdot \\ \end{matrix}$$

$y_{i,t} = \begin{cases} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots &$

$$\phi_{i,t} = \begin{pmatrix} NA & \phi_{1,2} & \phi_{1,3} & \phi_{1,4} \\ \phi_{2,1} & \phi_{2,2} & \phi_{2,3} & \phi_{2,4} \\ NA & NA & \phi_{3,3} & \phi_{3,4} \\ NA & \phi_{4,2} & \phi_{4,3} & \phi_{4,4} \\ & \cdot & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot & \cdot \\ \end{pmatrix}$$

$$m{p}_{i,t} = egin{array}{ccccc} NA & m{p}_{1,2} & m{p}_{1,3} & m{p}_{1,4} \\ m{p}_{2,1} & m{p}_{2,2} & m{p}_{2,3} & m{p}_{2,4} \\ NA & NA & m{p}_{3,3} & m{p}_{3,4} \\ m{p}_{4,2} & m{p}_{4,3} & m{p}_{4,4} \\ & \cdot & \cdot & \cdot & \cdot \\ \end{array}$$

Modelling

along time axis

$$NA \quad \phi_{1,2} \quad \phi_{1,3} \quad \phi_{1,4} \\ \phi_{2,1} \quad \phi_{2,2} \quad \phi_{2,3} \quad \phi_{2,4} \\ \phi_{i,t} = \frac{NA}{NA} \quad NA \quad \phi_{3,3} \quad \phi_{3,4} \\ NA \quad \phi_{4,2} \quad \phi_{4,3} \quad \phi_{4,4} \\ \vdots \\ Solution \qquad Story for Oetectability$$

along individual axis

Time axis:

- temporal variation (fixed, random)
- temporal covariates
- time-constant

Individual axis:

- groups (fixed, random)
- individual covariates

Interaction of time and individual axes:

- age effect (transients)
- additive effects (group + time)
- cohort effects
- trap-response

A simple model: $\phi(.)$, p(.)

```
# Likelihood
for (i in 1:nind) {
   # Define latent state at first capture
   z[i, f[i]] < -1
   for (t in (f[i]+1):n.occasions) {
      # State process
      z[i,t] \sim dbern(phi * z[i,t-1])
      # Observation process
      y[i,t] \sim dbern(p * z[i,t])
      } #t
   } #i
 phi \sim dunif(0,1) # Prior for survival
  p \sim dunif(0,1) # Prior for recapture
```

```
z_{i,first_i} = 1
z_{i,t} \sim Bern(z_{i,t-1}\phi)
y_{i,t} \sim Bern(z_{i,t}\rho)
```

Another simple model: $\phi(t)$, p(t)

```
# Likelihood
for (i in 1:nind) {
   # Define latent state at first capture
   z[i, f[i]] < -1
                                                            z_{i,first_i} = 1
                                                            \mathbf{z}_{i,t} \sim Bern(\mathbf{z}_{i,t-1} \mathbf{\phi}_{t-1})
   for (t in (f[i]+1):n.occasions) {
       # State process
                                                           y_{i,t} \sim Bern(z_{i,t}p_t)
       z[i,t] \sim dbern(phi[t-1] * z[i,t-1])
       # Observation process
       y[i,t] \sim dbern(p[t-1] * z[i,t])
       } #t
   } #i
  phi[t] \sim dunif(0,1) \# Prior for survival
```

 $p[t] \sim dunif(0,1) + Prior for recapture$

A general program structure

```
# Likelihood
for (i in 1:nind) {
    # Define latent state at first capture
    z[i, f[i]] < -1
                                                                z_{i,first_i} = 1
                                                               z_{i,t} \sim Bern(z_{i,t-1}\phi_{i,t-1})
    for (t in (f[i]+1):n.occasions) {
        # State process
                                                               y_{i,t} \sim Bern(z_{i,t}p_{i,t})
        z[i,t] \sim dbern(phi[i,t-1] * z[i,t-1])
        # Observation process
                                                                  NA \phi_{1,2} \phi_{1,3} \phi_{1,4}
        y[i,t] \sim dbern(p[i,t-1] * z[i,t])
                                                                 \phi_{2,1} \phi_{2,2} \phi_{2,3} \phi_{2,4}
        } #t
    } #i
```

A general program structure

```
# Likelihood
for (i in 1:nind) {

# Define latent state at first capture
  z[i,f[i]] <- 1

for (t in (f[i]+1):n.occasions) {
    # State process
    z[i,t] ~ dbern(phi[i,t-1] * z[i,t-1])

# Observation process
  y[i,t] ~ dbern(p[i,t-1] * z[i,t])
  } #t
} #i</pre>
```

Example for $\phi(.)$, p(.):

```
# Priors and constraints
for (i in 1:nind) {
   for (t in 1:(n.occasions-1)) {
      phi[i,t] <- mean.phi
      p[i,t] <- mean.p
      } #t
   } #i</pre>
```

```
mean.phi ~ dunif(0,1) # Prior mean
surv
mean.p ~ dunif(0,1) # Prior mean
recap
```


Survival refers to the study area: mortality and permanent emigration are confounded. Therefore we estimate **apparent survival**, but not *true* survival.

Assumptions

- Design:
 - No mark lost
 - Identity of individuals recorded without error (no false positives)
 - Captured individuals are a random sample
- Model:
 - Homeogeneity of survival and recapture probabilities
 - Independence between individuals

Parameter identifiability

- Intrinsic non-identifiability
 - Likelihood can be expressed by a smaller number of parameters
 - Feature of the model

- Extrinsic non-identifiability
 - Model structure is OK, but due to lacking data a parameter cannot be estimated
 - Feature of the data

Parameter identifiability

Slightly different in Bayesian

- Due to prior knowledge, all parameters are defined, but they may not be informed by te data
- Compare prior and posterior

Example: classic CJS (ϕ_t , p_t) with 12 years and uniform priors

From the capture-histories to the m-array data format

Capture histories

```
1 0 1 0
```

1 1 0 0

1 0 1 1

0 1 0 0

	Rec	apture	e occ.		
Release occ.	2	3	4	Never	recaptured
2	_				
3	_	_			

From the capture-histories to the m-array data format

Capture histories

```
1 0 1 0
1 1 0 0
1 0 1 1
0 1 0 0
```

	Reca	apture	e occ.		
Release occ.	2	3	4	Never	recaptured
1		1			
2	_				
3	_	_		1	

From the capture-histories to the m-array data format

Capture histories

```
1 0 1 0
1 1 0 0
1 0 1 1
0 1 0 0
```

	Recaj	pture	occ.		
Release occ.	2	3	4	Never	recaptured
1	1	1			
2	_			1	
3	_	_		1	

From the capture-histories to the m-array data format

Capture histories

```
1 0 1 0
1 1 0 0
1 0 1 1
0 1 0 0
```

	Reca	apture	occ.	
Release occ.	2	3	4	Never recaptured
1	1	1+1		
2	_			1
3	_	_	1	1

From the capture-histories to the m-array data format

Capture histories

```
1 0 1 0
1 1 0 0
1 0 1 1
0 1 0 0
```

```
Recapture occ.

Release occ. 2 3 4 Never recaptured

1 1+1
2 - 1 1
3
```

From the capture-histories to the m-array data format

Capture histories

```
1 0 1 0
```

1 1 0 0

1 0 1 1

0 1 0 0

	Reca	pture	occ.	
Release occ.	2	3	4	Never recaptured
1	1	2	0	0
2	_	0	0	2
3	_	_	1	1

Cell probabilities of the m-array:

Rel.	-	ure occ.	Λ	Never
1/61.	۷.	3	7	Nevel
1	$\phi_1 p_1$	ϕ_1 (1- p_1) $\phi_2 p_2$	$\phi_1 (1-p_1) \phi_2 (1-p_2) \phi_3 p_3$	$1-\Sigma_1$
2	_	$\phi_2 p_2$	$\phi_2 (1-p_2) \phi_3 p_3$	$1-\Sigma_2$
3	_	_	$\phi_3 p_3$	$1-\Sigma_3$

Likelihood of the m-array:

 $\mathbf{m_t} \sim Multinomial(\mathbf{q_t}, R_t)$

where

 $m_t = t^{th} row of m$ -array

 q_t = cell probabilities of the m-array for release occasion t R_t = number of released individuals at occasion t

- Posterior predictive check (PPC): a general and very common Bayesian model-checking procedure
- In a nutshell:
 - Quantify how different the observed data is compared to what we expect from the estimated parameters [measure of discrepancy]
 - To assess how "bad" or "good" that difference is, compare to the same measure of discrepancy obtained for ideal data simulated from the estimated parameters
 - This double comparison is done for each sample of the MCMC chains
- Generally straightforward to implement in BUGS or in R after the analysis (from the MCMC chains)

Basic algorithm:

At each MCMC iteration *t*:

- 1) Calculate a **discrepancy statistic** $D(x;e_t)$ to measure some "distance" between the **observed data** x and the corresponding expected values, e_t at that iteration (based on the MCMC chain values of the parameters)
- 2) Generate a new data set x_t from the fitted model (using the MCMC chain value of the parameters)
- 3) Calculate a discrepancy statistic $D(x_t;e_t)$ to measure the "distance" between the **simulated data** x_t and the corresponding expected values, e_t at that iteration

Then, use the values of $D(x; e_t)$ and $D(x_t; e_t)$ to check the fit...

1) ...graphically: scatterplot of $D(x; e_t)$ and $D(x_t; e_t)$

No evidence of lack of fit if ~½ points above and ~½ below a 1:1 line

- 2) ...numerically by calculating a **Bayesian p-value** = proportion of times that $D(x; e_t) < D(x_t; e_t)$
 - → close to 0.5: good fit
 - → close to 0 or 1: suggests doubtful fit

On what response to define *observed* and *expected* values?

- Not on binary responses (i.e. detection histories) themselves
- Use some aggregating: m-array in CR data

What measure of discrepancy?

- Different options, e.g.
 - Pearson chi-squared statistic
 - Freeman-Tukey statistic
- Different measures sensible to different kinds of lack of fit; resulting p-values may differ substantially

 $D(x_t,e_t) = \sum_i \frac{(x_i - e_i)^2}{e}$

 $D(x_t, e_t) = \sum_{i} \left(\sqrt{x_i} - \sqrt{e_i} \right)^2$

 Normally assess some global measure of lack of fit; can also assess particular features of the model (e.g. extreme values)

- Implicitly depend on priors
- Bayesian p-values have been criticised
 - They use data twice: simulate data; compare them to these data
 - Not clear what values represent a good fit
- → Descriptive only! (not for model selection)

Jolly-Seber model

The CJS model is conditional on first capture

0 0 0 1 0 1 0 0 0

Jolly-Seber model

The CJS model is conditional on first capture

Jolly-Seber model

The CJS model is conditional on first capture

- The Jolly-Seber model is unconditional
- Estimation of recruitment and population size is possible
- Requires an additional assumption (capture = recapture)
- See chapter 10 in BPA book