ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ 2^η εργασία

Οδηγίες

Να παραδώσετε μέσω eclass, έναν συμπιεσμένο φάκελο zip με όνομα τον αριθμό μητρώου σας, που να περιέχει:

- ένα pdf ή doc με τις απαντήσεις σας για το Μέρος Α, το ονοματεπώνυμό σας και τον αριθμό μητρώου σας
- ii. ένα Perl script «first exon from bed.pl» με τον κώδικά σας για το Μέρος Β
- iii. το BED αρχείο «**first_exons_coordinates.bed**» που δημιουργήσατε στο Μέρος Β
- iv. το BED αρχείο «exonic_length_per_transcript.txt» που δημιουργήσατε στο Μέρος Β
- v. το BED αρχείο «human_exons_prCoding_exercise_set.bed», όπως αυτό σας δίνεται στο eClass.

Για απορίες μπορείτε να χρησιμοποιήσετε την περιοχή συζητήσεων στο eClass του μαθήματος.

Μέρος Α (4 μονάδες)

Ύστερα από αναζήτηση στο internet και το υλικό του μαθήματος να απαντήσετε στις εξής ερωτήσεις:

- 1. Τα BED αρχεία χρησιμοποιούνται για την αποθήκευση γονιδιωματικών περιοχών. Να αναφέρετε τι πληροφορίες αποθηκεύουμε σε κάθε μία από τις στήλες του αρχείου. Ποιες στήλες είναι υποχρεωτικές και ποιες προαιρετικές;
- 2. Ο προσδιορισμός της <u>αρχής</u> και ο προσδιορισμός του <u>τέλους</u> μιας περιοχής σε ένα BED αρχείο ακολουθούν αρίθμηση που ξεκινάει από το μηδέν (zero-based) ή από το 1 (one-based);
- Σε ένα BED αρχείο υπάρχει η εξής γραμμή που προσδιορίζει μια γονιδιωματική περιοχή:

- α) Τι σημαίνει η συντομογραφία «chrM»;
- β) Σε ποια θέση του χρωμοσώματος ξεκινάει η γονιδιωματική περιοχή;
- γ) Σε ποια θέση του χρωμοσώματος τελειώνει η γονιδιωματική περιοχή;
- δ) Ποιο είναι το μήκος αυτής της γονιδιωματικής περιοχής;

Μέρος Β (6 μονάδες)

Το BED αρχείο «human_exons_prCoding_exercise_set.bed» που σας δίνεται στο eClass περιέχει πληροφορίες για τις θέσεις στο γονιδίωμα των εξωνίων οχτώ ανθρώπινων γονιδίων. Οι τιμές της $4^{n\varsigma}$ στήλης είναι οι κωδικοί του γονιδίου (Ensembl Gene id) και του μεταγράφου (Ensembl Transcript id) χωρισμένοι με το σύμβολο "@".

Σας ζητείται να δημιουργήσετε κώδικα στη γλώσσα Perl (να τον αποθηκεύσετε ως «first_exon_from_bed.pl»), που θα διαβάζει το αρχείο «human_exons_prCoding_exercise_set.bed» και θα δημιουργεί:

- Ένα νέο BED αρχείο με ονομασία «**first_exons_coordinates.bed»** το οποίο θα περιέχει μόνο τις γραμμές που περιγράφουν το <u>πρώτο εξώνιο</u> κάθε μεταγράφου.
- Ένα νέο text αρχείο με ονομασία «**exonic_length_per_transcript.txt**» που θα έχει 2 στήλες, η 1^η στήλη θα είναι το Ensembl Transcript id και η 2^η θα είναι το μήκος της εξωνικής περιοχής του μεταγράφου (δηλαδή, το άθροισμα των μηκών των επιμέρους εξωνίων του).

Σημειώσεις

- 1. Όταν το γονίδιο βρίσκεται στον '+' κλώνο του γονιδιώματος το <u>πρώτο εξώνιό</u> του είναι το πρώτο από αριστερά, ενώ όταν το γονίδιο βρίσκεται στο '-' κλώνο του γονιδιώματος το <u>πρώτο εξώνιο</u> του είναι το πρώτο από δεξιά.
- 2. Για τον προσδιορισμό του μήκους πρέπει να λάβετε υπόψη αν η αρίθμηση στα BED αρχεία είναι zero-based ή one-based (Μέρος Α, ερώτηση 2).
- 3. Το αρχείο «first_exons_coordinates.bed» θα έχει την παρακάτω μορφή:

CIIII	110210714	110210773	ENGGOOOOGENGIOOOOGOGE	_
chr1	92414928	92415239	ENSG00000137948@ENST00000394530 0	+
chr9	136320770	136320921	ENSG00000160323@ENST00000371910 0	+
chr8	41522323	41522779	ENSG00000029534@ENST00000522231 0	_
chr16	72088522	72088556	ENSG00000257017@ENST00000569639 0	+
chr10	75415576	75415830	ENSG00000166317@ENST00000394810 0	_
1 0	01706006	01707016	TNGG000001646040TNGT000000000000000000000000000000000	

4. Το αρχείο «**exonic_length_per_transcript.txt**» θα έχει την παρακάτω μορφή:

ENST00000371310 1003 ENST00000511269 1758 ENST00000394530 3189 ENST00000394810 4917 ENST00000369829 906

- 5. Χρήσιμη είναι η εντολή «exists» για τον έλεγχο ύπαρξης ενός ζεύγος key:value σε ένα hash (Lecture 5, slide 13).
- 6. Να συμβουλευτείτε την 2^n άσκηση της $5^{n\varsigma}$ διάλεξης, με τη λύση της (Lecture 5, Exercise 2).