Методы принятия решений и нечетких множеств в выборе оптимального расположения станции метрополитена

Калюжная Юлия Юрьевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: к.ф.-м.н., доцент Пономарева А.Ю.

Санкт-Петербург 2014г.

Постановка задачи

Задан план микрорайона города, в котором предложены возможные места расположения станции метрополитена $P=\{p_m\}\ (m=\overline{1,4})$ и расположены жилые комплексы $H=\{H_k\}\ (k=\overline{1,3})$, торговые площади, бизнес-центр, автостоянки, дороги, по которым движется общественный транспорт, и три остановки для общественного транспорта. Необходимо решить задачу принятия решения о выборе оптимального расположения станции метрополитена с учетом признаков из заданного множества $Y=\{y_l\},\ l=\overline{1,7}$:

- y₁ удобство;
- y_2 расстояние до поверхности (км);
- y₃ затраты на павильон (млрд. руб.);
- y_4 расстояние до ближайшего наземного транспорта (км);

- y_5 пропускная способность вестибюля (число эскалаторов);
- у₆ средняя площадь вокруг станции для офисов, торговых площадей и автостоянок (тыс. м²);
- y₇ расстояние до центра тяжести пассажиропотока (км).

Карта микрорайона города

Методы решения поставленной задачи

Заданы:

 $P = \{p_1, \dots, p_m\}$ — множество альтернатив или вариантов; $Y = \{y_1, \dots, y_l\}$ — множество признаков, по которым оцениваются альтернативы.

Задача – определить наилучшую альтернативу по признакам из множества Y. Для **решения** скомбинированы:

- Метод многокритериального анализа на основе парных сравнений, которые осуществляются с помощью девятибалльной шкалы Саати.
- Принцип Беллмана-Заде для определения наилучшего варианта.
- Метод определения центра тяжести физической модели системы распределения.
- Метод вычисления взвешенных степеней предпочтения, основанный на решении задачи разделения на торговые зоны в нечетких условиях, предложенный Й. Леунгом.

Метод нечеткого многокритериального анализа вариантов; принцип Беллмана-Заде

Матрицы парных сравнений Q_i $(q_{kk}=1,\ q_{kj}=1/q_{jk}\ (k,j=\overline{1,m}))$ элементов множества альтернатив P, $i=\overline{1,l}$ для каждого признака $y_i\in Y$:

$$Q_i = \begin{matrix} p_1 & \dots & p_m \\ p_1 & q_{11} & \dots & q_{1m} \\ \vdots & \ddots & \vdots \\ p_m & q_{m1} & \dots & q_{mm} \end{matrix} \right).$$

Система уравнений:

$$\begin{cases} Q_i \cdot Z = \lambda_{max} \cdot Z, \\ z_1 + z_2 + \dots + z_m = 1, \end{cases}$$

где λ_{max} — макс. собств. значение $Q_i,$ $Z=(z_1,\ldots,z_m)$ — собств. вектор $Q_i,$ соответствующий макс. собств. числу.

$$\widetilde{Q}_i = \left\{ \frac{\mu_{Q_i}(p_1)}{p_1}, \dots, \frac{\mu_{Q_i}(p_m)}{p_m} \right\},$$
(1)

где $\mu_{Q_i}(p_j)$ – степень принадлежности $p_j \in P$ к нечеткому множеству \widetilde{Q}_i .

• Случаи равновесных и неравновесных признаков:

$$\widetilde{G} = \widetilde{Q}_1^{s_1} \cap \ldots \cap \widetilde{Q}_l^{s_l} = \left\{ \frac{\min\limits_{i=\overline{1,l}} \left[\mu_{Q_i}(p_1) \right]^{s_i}}{p_1}, \ldots, \frac{\min\limits_{i=\overline{1,l}} \left[\mu_{Q_i}(p_m) \right]^{s_i}}{p_m} \right\}, \quad (2)$$

где s_i – вес признака y_i . Для равновесных признаков все s_i равны 1, в случае неравновесных признаков - $s_1 + \ldots + s_l = 1$.

Вычисление взвешенных степеней предпочтения для признака «Удобство»

- Задан микрорайон города, в котором предложены возможные места расположения $P=\{p_1,\dots,p_m\}$ нового объекта и расположены жилые комплексы $H=\{H_1,\dots,H_K\}$.
- Пусть $X = \{x_1, x_2, \dots, x_N\}$ множество категорий населения, которое проживает в данных жилых комплексах.
- Разбиение на категории по признакам: возраст и частота пользования метрополитеном.
- Каждая категория x_n , $n=\overline{1,N}$ принимает решение о выборе наиболее удобного расположения некоторого нового объекта на основании t+1 критериев $G=\{g_1,g_2,\ldots,g_t,r\}.$
- Задана матрица $\Omega=(\Omega_{nk})_{n=\overline{1,N}}^{k=\overline{1,K}}$ расселения по жилым комплексам H_k , где Ω_{nk} число жителей категории x_n , которые проживают в жилом комплексе H_k .

Этапы решения

- Построение согласованных матриц парных сравнений для каждой категории населения x_n :
 - $B_n=(b_{u\widetilde{u}})\frac{\widetilde{u}=\overline{1,t+1}}{u=\overline{1,t+1}}$, где $b_{u\widetilde{u}}$ степень преимущества критерия g_u над критерием $g_{\widetilde{u}}$
 - $C_u=(p_{j\theta})_{j=\overline{1,m}}^{ heta=\overline{1,t}}, u=\overline{1,t}$ и C^k , где $p_{j\theta}$ степень преимущества расположения p_i над p_{θ} по критерию g_u , $k=\overline{1,K}$.
- Построение отношения $R: X \times G \to [0,1]$ степеней относительной важности критерия g_u по оценке категории $x_n.$
- ullet Построение матриц $S_k=(\pi_{S_k}(g_u,p_j))_{u=\overline{1,t}}^{j=\overline{1,m}}$, $k=\overline{1,K}$ степеней принадлежности p_j к g_u , найденных методом парных сравнений (Saaty T. Exploring the interface between hierarchies, multiple objectives and fuzzy sets).

Этапы решения

- Нахождение нечетких множеств $E_j, j=\overline{1,m}$ с предпочтениями p_j для категории населения x_n^k , объединение их функций принадлежности в матрицы $T_k, \ (k=\overline{1,K})$, элементы которой взвешенная степень предпочтения p_j категорией населения x_n^k (Й. Леунг. Разделение на торговые зоны в нечетких условиях).
 - Получение матриц попарного сравнения W_k из $T_k.$
 - ullet Вычисление порога разделимости \widetilde{l}^k для каждой матрицы $T_k.$
 - Получение уровневых множеств M_j^k , $j=\overline{1,m}$ из матриц T_k , иллюстрирующих сколько человек из различных категорий населения жилого комплекса H_k предпочитает расположение p_j .
- Вычисление взвешенных степеней предпочтения χ_j^k индивидуумами из жилого комплекса H_k $(k=\overline{1,K})$ расположения p_j $(j=\overline{1,m}).$
- Составление искомого вектора взвешенных степеней предпочтения:

$$V = (v_1, v_2, \dots, v_m)$$
, где $v_j = \sum_{k=1}^K \chi_j^k$.

Метод определения центра тяжести физической модели системы распределения

Дана модель некоторого района города с заданной дорожной инфраструктурой. **Ограничение:** в рассматриваемой модели должна быть достаточно развитая система дорог.

Пусть $D = \{d_1, \dots, d_m\}$ – множество объектов (потребителей).

Необходимо: определить координаты расположения распределительного центра.

- \bullet Ввод системы координат с осями \widetilde{X} и $\widetilde{Y}.$ Перенос на нее контура заданного района.
- ullet Пусть задан грузооборот Γ_j для каждого объекта $d_j, j=\overline{1,m}.$

Искомые координаты центра тяжести грузооборота для объектов потребителей d_1,\dots,d_m :

$$\widetilde{X}_{center} = \frac{\sum_{j=1}^{m} \Gamma_{j} \cdot \widetilde{x}_{j}}{\sum_{j=1}^{m} \Gamma_{j}}, \widetilde{Y}_{center} = \frac{\sum_{j=1}^{m} \Gamma_{j} \cdot \widetilde{y}_{j}}{\sum_{j=1}^{m} \Gamma_{j}},$$
(3)

где $\widetilde{x}_j,\widetilde{y}_j$ — координаты j-го объекта.

Расчет взвешенных степеней предпочтения для признака «Удобство»

Пусть $X = \{x_1, x_2, x_3, x_4\}$ — множество категорий населения микрорайона, разделенного по признакам: возраст и частота пользования метрополитеном, каждый из которых рассматриваем как нечеткое множество с соответствующей функцией принадлежности.

- x_1 молодые и редко пользующ.; x_3 пожилые и редко пользующ.;
- x_2 молодые и часто пользующ.: x_4 пожилые и часто пользующ..

Дана матрица $\Omega = (\Omega_{nk})_{n=1,4}^{k=\overline{1,3}}$ расселения по жилым комплексам $H_k, k=\overline{1,3}$:

$$\Omega = \begin{matrix} H_1 & H_2 & H_3 \\ x_1 & 510 & 431 & 420 \\ x_2 & 294 & 387 & 264 \\ 205 & 125 & 272 \\ 231 & 153 & 128 \end{matrix} \right).$$

Дано множество критериев $G = \{g_1, g_2, g_3, g_4, r\}$, где

- q_1 возможность подъехать на общественном транспорте,
- q₂ наличие магазинов и торговых площадей,
- q₃ наличие автомобильных стоянок,
- \bullet q_4 расположение наземного вестибюля на поверхности или под землей,
- \bullet r расстояние до жилых комплексов по прямой.

Искомый вектор взвешенных степеней предпочтения и центр тяжести пассажиропотока

•
$$B_n$$
, $n = \overline{1,4}$:

- \bullet для категории x_1 : $B_1: a_3 > a_2 > a_1 > r > a_4$
- ullet для категории x_2 : $B_2: g_1 > g_2 > g_3 > g_4 > r$
- ullet для категории x_3 : $B_3: g_1 > g_2 > r > g_3 > g_4$
- ullet для категории x_4 : $B_4: g_4 > g_1 > r > g_2 > g_3$
- $C_p, p = \overline{1, 4}$:
 - для критерия g_1 : $C_1: p_4 > p_1 > p_3 > p_2$

- ullet для критерия g_2 : $C_2: p_2 > p_3 > p_4 > p_1$
- ullet для критерия g_3 : $C_3: p_1>p_2>p_4>p_3$
- ullet для критерия g_4 : $C_4: p_3 > p_2 > p_1 > p_4$
- $C^k, k = \overline{1,3}$:
 - для жилого комплекса H_1 : $C^1: p_2 > p_4 > p_1 > p_3$
 - ullet для жилого комплекса H_2 : $C^2: p_3 > p_2 > p_1 > p_4$
 - ullet для жилого комплекса H_3 : $C^3: p_4>p_3>p_2>p_1$

Искомый вектор взвешенных степеней предпочтения предполагаемых мест расположения станций p_m , $m=\overline{1,4}$ для всех категорий населения, проживающего в жилых комплексах микрорайона:

$$V = \begin{pmatrix} p_1 & p_2 & p_3 & p_4 \\ 1.178 & 1.307 & 0.483 & 1.187 \end{pmatrix}.$$

Вычисленные координаты расположения центра тяжести пассажиропотока:

$$(\widetilde{X}_{center}, \widetilde{Y}_{center}) = (348, 93).$$

Нечеткие множества для заданных признаков,

Таблица: Значения признаков для оценки мест расположения станции

Признаки	p_1	p_2	p_3	p_4
Удобство (у1)	1.178	1.307	0.483	1.187
Расстояние до поверхности (y_2)	0.02	0.034	0.03	0.015
Затраты на павильон (y_3)	4.2	3.15	3.05	3.9
Расстояние до ближайш. наземн. транспорта (y_4)	0.28	0.55	0.3	0.24
Пропускная способность вестибюля $(y_5)^*$	2	3	2	4
Средняя площадь вокруг станции для торг. площадей и автомобильных стоянок (y_6)	20	66	15	27
Расст-е до центра тяжести пассажиропотока (y_7)	0.26	0.088	0.22	0.20

^{* —} p_1 : 1 на вход (6:00—10:00), 1 на выход; p_2 : 2 на вход (6:00—10:00), 1 на выход; p_3 : 1 на вход, 1 на выход; p_4 : 2 на вход, 2 на выход;

$$\begin{split} \widetilde{Q}_1 &= \left\{ \frac{0.123}{p_1}, \frac{0.570}{p_2}, \frac{0.041}{p_3}, \frac{0.266}{p_4} \right\}, \\ \widetilde{Q}_2 &= \left\{ \frac{0.287}{p_1}, \frac{0.043}{p_2}, \frac{0.091}{p_3}, \frac{0.579}{p_4} \right\}, \\ \widetilde{Q}_3 &= \left\{ \frac{0.050}{p_1}, \frac{0.300}{p_2}, \frac{0.546}{p_3}, \frac{0.105}{p_4} \right\}, \\ \widetilde{Q}_4 &= \left\{ \frac{0.278}{p_1}, \frac{0.053}{p_2}, \frac{0.150}{p_3}, \frac{0.519}{p_3} \right\}, \\ \widetilde{Q}_4 &= \left\{ \frac{0.278}{p_1}, \frac{0.053}{p_2}, \frac{0.150}{p_3}, \frac{0.519}{p_3} \right\}, \end{split}$$

Случаи равновесных и неравновесных признаков

• Случай равновесных признаков:

$$\widetilde{G} = \widetilde{Q}_1 \cap \ldots \cap \widetilde{Q}_7 = \left\{ \frac{0.048}{p_1}, \frac{0.043}{p_2}, \frac{0.041}{p_3}, \frac{0.105}{p_4} \right\}.$$

- Случай неравновесных признаков:
 - Оценки признаков: y_1 5; y_2 1; y_3 2; y_4 3; y_5 4; y_6 4; y_7 3.
 - Веса признаков: y_1 0.227; y_2 0.045; y_3 0.091; y_4 0.136; y_5 0.182; y_6 0.182; y_7 0.136.

$$\begin{split} \widetilde{Q}_1 &= \left\{ \frac{0.621}{p_1}, \frac{0.880}{p_2}, \frac{0.484}{p_3}, \frac{0.740}{p_4} \right\}, \qquad \widetilde{Q}_5 = \left\{ \frac{0.575}{p_1}, \frac{0.772}{p_2}, \frac{0.660}{p_3}, \frac{0.913}{p_4} \right\}, \\ \widetilde{Q}_2 &= \left\{ \frac{0.945}{p_1}, \frac{0.898}{p_2}, \frac{0.898}{p_3}, \frac{0.976}{p_4} \right\}, \qquad \widetilde{Q}_6 = \left\{ \frac{0.661}{p_1}, \frac{0.924}{p_2}, \frac{0.597}{p_3}, \frac{0.74}{p_4} \right\}, \\ \widetilde{Q}_3 &= \left\{ \frac{0.761}{p_1}, \frac{0.896}{p_2}, \frac{0.946}{p_3}, \frac{0.815}{p_4} \right\}, \qquad \widetilde{Q}_7 = \left\{ \frac{0.664}{p_1}, \frac{0.944}{p_2}, \frac{0.717}{p_3}, \frac{0.808}{p_3}, \frac{0.808}{p_4} \right\}. \\ \widetilde{Q}_4 &= \left\{ \frac{0.840}{p_1}, \frac{0.671}{p_2}, \frac{0.773}{p_3}, \frac{0.915}{p_4} \right\}, \\ \widetilde{G} &= \left\{ \frac{0.575}{p_1}, \frac{0.671}{p_2}, \frac{0.484}{p_3}, \frac{0.740}{p_4} \right\}. \end{split}$$

Рис.: «Сравнение вариантов расположения станции с учетом важности признаков»

Таким образом, поставленная задача полностью решена. В результате проделанной работы были получены следующие результаты:

- максимально полная модель, принимающая во внимание различные критерии, как объективные, такой как уменьшение расходов на строительство или максимизация пропускной способности станции, так и субъективные с точки зрения разных категорий населения, проживающего в данном микрорайоне;
- решена задача принятия решения на основании оценок, проводимых экспертами, о выборе наиболее удобного для населения, проживающего в рассмотренном микрорайоне города, расположения новой станции метрополитена из возможных мест;
- определены координаты центра тяжести пассажиропотока данного микрорайона;
- скомбинированы некоторые методы принятия решений с использованием нечетких множеств, учитывая полученные в ходе вычислений результаты, на их основе был разработан метод выбора оптимального расположения новой станции метрополитена из числа предложенных вариантов мест;
- написана программа на языке Mathcad для решения поставленной задачи и проведен анализ полученных результатов.

Спасибо за внимание!