Atividade de Laboratório Sub [1-5]

Objetivos

O objetivo desta atividade é exercitar o uso de instruções aritméticas e a manipulação de entrada e saída utilizando o conjunto de instruções da arquitetura RISC-V.

Esta é uma atividade extra (opcional) e a nota atribuída a ela substituirá a menor nota entre as notas dos labs 1 a 5.

Descrição

Neste laboratório, você deve fazer um programa em linguagem de montagem do RISC-V que calcule a sua posição geográfica num plano bidimensional, baseado no tempo atual e em mensagens recebidas de 3 satélites.

Para simplificar o problema, assumimos que o satélite A se encontra na origem no plano cartesiano (0, 0), enquanto B e C têm posições $(0, Y_B)$ e $(X_C, 0)$, respectivamente. Os satélites enviam mensagens contendo uma Marca Temporal (*timestamp*) continuamente através de ondas que se propagam em todas as direções numa velocidade de 3 x 10^8 m/s. Em um dado instante T_R , você recebeu uma mensagem de cada satélite contendo os tempos T_A , T_B e T_C . Supondo que todos os tempos estejam perfeitamente sincronizados, imprima sua coordenada (x, y) no plano cartesiano. Note que a formulação utilizada neste exercício não é realista.

Entrada e saída

Seu programa deve ler da entrada padrão os valores Y_B , X_C , T_A , T_B , T_C e T_R e imprimir na saída padrão a sua coordenada (x, y).

Entrada:

- Linha 1 Coordenadas Y_B, X_C: Valor em metros, representado por números inteiros de 4 dígitos na base decimal e precedido pelo sinal '+' ou '-'.
- Linha 2 Tempos T_A, T_B, T_C e T_R: Valor em nanosegundos e representado por números naturais de 4 dígitos na base decimal.

Saída:

• Sua coordenada (x, y): Valor em metros, <u>aproximado</u>, representado por números inteiros de 4 dígitos na base decimal e precedido pelo sinal '+' ou '-'.

Observações:

- Múltiplos valores impressos ou lidos na mesma linha serão separados por um único espaçamento.
- Cada linha é finalizada com o caracter '\n'.

Exemplo

Entrada:

```
+0700 -0100
2000 0000 2240 2300
```

Saída:

```
-0088 +0016
```

Observações e Dicas

- Neste laboratório, aceitaremos soluções aproximadas para o problema.
 - a. Serão consideradas corretas soluções com erro absoluto menor que 10.

- Sugerimos utilizar o mesmo método do Lab 5 para cálculo da raiz quadrada, porém com um número maior de iterações (p.ex., 21 iterações). Você pode utilizar outros métodos para aproximar a raiz quadrada, desde que:
 - a. Utilize apenas inteiros. Não podem ser utilizados números em ponto flutuante ou a instrução de raiz quadrada do RISC-V.
 - b. A aproximação seja tão ou mais precisa quanto a do método sugerido.
- Sugerimos que você trabalhe com distâncias em metros e tempo em nanossegundos, para que os valores fornecidos como entrada não causem overflow na formulação proposta e você obtenha boa precisão.

Geometria do problema

Existem diversas formas de resolver o problema. Aqui, sugerimos a utilização das fórmulas do círculo. Seja d_A, d_B e d_C as distâncias entre sua posição e os satélites A, B e C, respectivamente, temos que:

- $x^2 + y^2 = d_A^2$ (Eq. 1) $x^2 + (y Y_B)^2 = d_B^2$ (Eq. 2)
- $(x X_C)^2 + y^2 = d_C^2$ (Eq. 3)

Assim, a partir das Equações 1 e 2, temos:

- $y = (d_A^2 + Y_B^2 d_B^2) / 2Y_B$ (Eq. 4)
- $x = + \operatorname{sgrt}(d_A^2 y^2) \mathbf{OU} \operatorname{sgrt}(d_A^2 y^2)$ (Eq. 5)

Para encontrar o x correto, basta substituir os dois valores possíveis na Equação 3 e verificar qual mais se aproxima de satisfazer a igualdade.

Testes

Entrada	Saída
+1042 -2042 6823 4756 6047 9913	-0902 -0215
-2168 +0280 3207 5791 3638 9550	+0989 -1626
-2491 +0965 2884 7511 2033 9357	-0065 -1941

-0656 +1337	+1255 -2381
0162 2023 1192 9133	