

What Is Claimed Is:

1 1. A motor rotor adapted to be used in a fan, comprising:
2 a hub;
3 a metal plate having a first end and a second end to be
4 disposed in the hub; and
5 a magnet disposed in the metal plate.

1 2. The motor rotor as claimed in claim 1, wherein the hub
2 is ring-shaped and has a flange extending toward the center of
3 the hub to support the metal plate.

1 3. The motor rotor as claimed in claim 2, wherein the
2 metal plate further comprises a serrated edge to support the
3 magnet.

1 4. The motor rotor as claimed in claim 3, wherein the
2 metal plate is ring-shaped, and the serrated edge contacts an
3 inner surface of the flange.

1 5. The motor rotor as claimed in claim 1, wherein at least
2 one blade is disposed at the exterior periphery of the hub.

1 6. The motor rotor as claimed in claim 1, wherein the
2 first and second ends are engaged together to form an occlusive
3 seam to shape the metal plate as a ring.

1 7. The motor rotor as claimed in claim 1, wherein the
2 metal plate further comprises salient teeth, and the hub has a
3 recess engaging the salient teeth to shape the metal plate as
4 a ring.

1 8. The motor rotor as claimed in claim 1, wherein the
2 surface of the metal plate has a pressure generating pattern to
3 provide a stress and increase a friction between the metal plate
4 and the hub.

1 9. A method of manufacturing a motor rotor, comprising:
2 providing a metal plate having a first end and a second end;
3 connecting the first and second ends to shape the metal
4 plate as a ring;
5 placing the metal plate in a hub; and
6 placing a magnet in the metal plate.

1 10. The method as claimed in claim 9, wherein the hub is
2 ring-shaped and has a flange extending toward the center of the
3 hub to support the metal plate.

1 11. The method as claimed in claim 10, wherein the metal
2 plate further comprises a serrated edge to support the magnet.

1 12. The method as claimed in claim 11, further comprising
2 a step of bending the serrated edge to a predetermined angle.

1 13. The method as claimed in claim 12, wherein the metal
2 plate is ring-shaped, and the serrated edge contacts an inner
3 surface of the flange.

1 14. The method as claimed in claim 9, wherein the exterior
2 periphery of the hub comprises at least one blade.

1 15. The method as claimed in claim 9, wherein the first
2 and second ends are engaged together to prevent separation
3 thereof after bending the metal plate.

1 16. The method as claimed in claim 15, wherein the first
2 end has a protrusion and the second end has a recess.

1 17. The method as claimed in claim 9, wherein the first
2 and second ends have a salient tooth, respectively, and the hub
3 has a recess, the salient teeth engaged with the recess to
4 maintain the ring-shaped metal plate.

1 18. The method as claimed in claim 9, wherein the surface
2 of the metal plate has a pressure generating pattern to provide
3 a stress and increase a friction between the metal plate and the
4 hub.

1 19. The method as claimed in claim 9, wherein the first
2 and second ends are engaged together to form an occlusive seam
3 to maintain the ring-shaped metal plate.