

Instituto Superior de Engenharia de Coimbra Microprocessadores Enunciado do Trabalho Prático 2022/2023

Seleção automática de medicamentos em função da cor da etiqueta

1. Introdução

O objetivo deste trabalho é o desenvolvimento de um sistema embebido que efetue a contagem automática de comprimidos de acordo com a respetiva cor. Os comprimidos vão sendo colocados num tapete rolante e o sistema deve contar e mostrar, em tempo real, esse número num *display* alfanumérico.

O programa deve ser capaz de mostrar o numero de objetos selecionados por cor, permitir a utilização de comandos para iniciar a contagem e movimento do tapete, entre outras funcionalidades. A criatividade, que se traduz na implementação de funcionalidades adicionais e de originalidade, será valorizada.

Deve ser utilizado o µC c8051f340, a linguagem de programação C, o compilador SDCC e o ambiente de desenvolvimento MCU8051IDE. O trabalho deve ser testado em ambiente de simulação e nas plataformas experimentais (protótipos especificamente desenvolvidos para o efeito) disponibilizadas no Laboratório de Microprocessadores e em ambiente de simulação.

2. Setup experimental

3. Funcionalidades base

Assumindo que há apenas duas cores distintas de comprimidos (azul e amarelo), para além do preto (cor da base do tapete), o sistema deve fornecer as seguintes funcionalidades e que valem 60% da cotação máxima:

- Quando o utilizador carrega no botão de início, o tapete deve começar a rolar (a uma velocidade default) e arrancar a contagem dos comprimidos por cor.
- No LCD, deve aparecer, inicialmente, a informação dos elementos do grupo. Após esse período inicial, o LCD deve mostrar a informação da cor do comprimido que acabou de ser detetado pelo sensor de cor bem como a contabilização atualizada do número total de comprimidos de cada cor que passaram no tapete desde o início.
- Pelo canal série, através de uma aplicação a correr no PC, o utilizador pode enviar para o uC 3 comandos distintos para comandar a velocidade do tapete: '+' para aumentar, '-' para diminuir e '0' para parar. Por outro lado, o UC deve enviar para o canal série a informação numérica sobre o nível de cor detetado. Por exemplo, se o valor lido do sensor for 1956 us então a sequência de valores a enviar deverá ser '1' '9' '5' '6'.

O sensor de cor envia para a sua saída um pulso (onda quadrada) cujo período está diretamente relacionado com a cor detetada. Assim, para se distinguir a cor entre as 3 possíveis (azul, amarelo e preto), é necessário medir o período desse sinal. Para isso, nesta versão base, esse processo pode ser ajustado offline, ou seja, devem ser colocados objetos no tapete e vai-se medindo o período do sinal gerado pelo sensor para assim se inferir quais os tempos de pulso associados a cada uma das cores de interesse. Esses valores de threshold (limiar) são inseridos no código, offline.

4. Funcionalidades Adicionais

Após implementarem as funcionalidades base descritas na Secção 3, os alunos poderão considerar a implementação de funcionalidades adicionais (avaliadas em 40% da cotação máxima), tais como:

- Tornar o sistema de deteção de threshold automático e a ser feito durante o runtime. Por exemplo, poderá
 haver um menu (a ser construído no programa que comunica via canal série ou no LCD) que indica ao utilizador
 que cor/objeto colocar e assim calcula o período das respetivas cores;
- Classificar mais objetos com cores diferentes;
- Outras funcionalidades não descritas aqui, dependentes da criatividade dos alunos.

As funcionalidades adicionais não são todas valorizadas de igual forma, sendo considerados fatores como a dificuldade e trabalho adicional implicado, qualidade de implementação, criatividade, etc.

5. Periféricos

São utilizados periféricos internos do uC (temporizadores e interface série) e periféricos externos (*pusbuttons*, motor de passo, sensor de cor e um LCD alfanumérico) e as interrupções.

- Sobre o sensor de cor, recomenda-se a consulta do site https://www.dfrobot.com/product-540.html onde é possível encontrar informação detalhada sobre este sensor nomeadamente o seu manual técnico, o esquemático da placa, os leds de iluminação e código exemplo em C.
 Para discriminar a cor de um objeto por reflexão da luz incidente sobre ele, podem ser usados sensores como é exemplo o sensor TCS3200. Este sensor possui três matrizes de fotodetetores: uma com um filtro vermelho, uma com filtro verde e outra com filtro azul, ou sem filtro. Neste dispositivo existe um oscilador que produz uma saída de onda quadrada cuja frequência está relacionada com a cor testada. Neste trabalho, o objetivo não é "medir" a cor dos objetos numa escala RGB mas sim distinguir objetos de diferentes cores, bastando para isso utilizar uma (qualquer) das matrizes de fotodetetores.
- O motor de passo (Motor 28BYJ-48 e o Driver ULN2003) é controlado através da seleção de 4 passos, cujo espaçamento temporal e sequência de envio determinam a velocidade e direção, respetivamente.
 Recomenda-se a consulta do site https://www.youtube.com/watch?v=B86nqDRskVU onde é possível encontrar informação detalhada sobre este tipo de atuador. Recomenda-se que neste trabalho não use intervalos de tempo inferiores a 3 ms entre passos.

6. Diversos

Os grupos devem ser constituídos por 2 pessoas. O prazo de submissão passou a ser o fim do dia 5 de janeiro de 2023 Deverá ser submetida uma pasta zipada com os ficheiros:

- projeto (*.ide)
- código fonte (*.c)

As defesas são agendadas via moodle e decorrerão no dia 6 de janeiro de 2023. A defesa afere não só a qualidade do trabalho, mas, sobretudo, a grau de conhecimento e de envolvência de cada um dos elementos do grupo.

A deteção de plágio total ou parcial implica as devidas penalizações.

ISEC, 7 de dezembro de 2022. Os Docentes, Fernanda Coutinho e Marco Silva