

Apical Constriction

Gabriel Galea
UCL GOS Institute of Child Health

2023

Closing mouse cranial neural tube

Objectives

- Describe apical constriction as a force-generating epithelial cell behaviour which changes tissue shape
- Understand key molecular regulators and effectors of apical constriction
- Appreciate differences in initiation and execution of apical constriction between epithelia
- Discuss failure of apical constriction as a cause of congenital malformations

What is an epithelium?

How are epithelial cells different from mesenchymal cells?

Cent-cent junctions. in epithelial Cent-ECM in mesenchymal.

Apical constriction is a common mechanism by which epithelial cells bend their tissue Drosophila Ventral Furrow Apical Basal Holcomb et al Plos Comp Biol 2021

Apical constriction

Pearl et al, Philos Trans B, 2018

The Rho-ROCK-Myosin pathway

GTP/GDT = Guanosine tri/di-phosphate

GEF = Guanine exchange factor

GAP = GTPase activating protein

ROCK = Rho-associated kinase

LIMK = Lim kinase

MLC = Myosin light chain

Mulherkar and Tolias 2020

Myosin needs an F-actin scaffold to pull on

Cell-Cell junctions physically link the cytoskeleton between epithelial cells

Cortex = thick ring of F-actin and myosin around the cell's apical surface

Cadherin/catenin Adherens Junctions are the main force-transmitting junctions in vertebrates

Cell-Cell junctions differ between cell types

Lakkarju 2022

Two common strategies: Medioapical cap (a) versus cell junction (b) activation of actomyosin

Drosophila ventral furrow cells use medioapical myosin to apically constrict

Mason et al Nat Cell Biol 2013

Xenopus spinal neuroepithelial cells use cortical myosin to constrict their junctions

Peculiarities in different tissues:

Apical constriction can be directionally-biased By Wnt/Planar Cell Polarity signalling Palse to adapt
Stabilise & constrict
Constrictions are
pulsatile and
ratcheted

Constrictions can be asynchronous or triggered simultaneously

Rho-ROCK Pothwar

Yan et al 2017

Application example: Identification of a Vangl2 point mutation in a patient who has spina bifida

Spina bifida is caused by failure to closure the embryonic neural tube

Neural tube cells are pseudostratified neuroepithelial cells

VANGL2 mutation in a patient who has spina bifida:

transmembrane protein upstream of ROCK

We generated human induced pluripotent stem cell (hiPSC) with the same point mutation using Crispr/Cas9 genome editing

VANGL2 mutation does not change neuroepithelial morphology and apical F-actin

Neuroepithelial cells with the patient point mutation have larger apical areas than controls

In mice, conditional Vangl2 deletion using Cre/LoxP diminishes neuroepithelial apical constriction and causes spina bifida

Objectives

- Describe apical constriction as a force-generating epithelial cell behaviour which changes tissue shape
- Understand key molecular regulators and effectors of apical constriction
- Appreciate differences in initiation and execution of agrical constriction between epithelia
- Discuss failure of apical constriction as a cause of congenital malformations

Starting point for further reading:

© 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 1987-1998 doi:10.1242/dev.102228

REVIEW

Apical constriction: themes and variations on a cellular mechanism driving morphogenesis

Adam C. Martin^{1,*} and Bob Goldstein^{2,*}

Apical Constriction

Gabriel Galea
UCL GOS Institute of Child Health

2023

Apical constriction

How epithelial tissue bends, mechanism: Actin-myosin contraction.

Myosin: Myosin I involved in apical constriction, non-muscle type.

Constitute of heavy and light chain, light chain is regulatory.

Activated by Rho-ROCK pathway

Actin: Actin Creates structure for myosin pull.

Globular actin (G-actin): monomers, form triplet & chain in spontaneous manner

Celle have formin, bind to actin dimer, allow preferential polymerisation, form filamentous actin (F-actu)

Arp 2/3 complex bind to actin, allow 70° elongation

Actin in cells

Epithelium: Cortical best between cen-cel junctions.

Cell - BM junction.

Mesenchyme: Stress fibre between focal adhesions Lamellipodía & Filopodía. rays of light spec) across which tobland Improvesions moving throught the Accol Branches coppetry their leaves white customs a coppet

Apical constriction: Medialapical constriction / Junction

planear-cell polarity pathway affects the direction of contraction. pulsatile contraction: Contract then adapt to tension. Apical constriction abnormalities.

Failure to close neural tube — spina bfida

Neural tube made up of pseudostratified epithelium.

Point mutation in Voy/2 — Transmembrane protein upstream of Rock

Does not change F-actin morphology, affect wastriction tension.

Apical constriction:

Involved in formation of the neural tube, changes tissue shape by decreasing the apical surface area

Epithelium: Layer which covers the surface of structures, with cell-cell junctions comparing to cell-ECM junctions in mesenchymal cells

- · Components involved in apical constriction:
 - o Myosin IIb: non-muscular myosin, contains heavy chain and light regulatory chain
 - Light chain can be phosphorylated to increase activity, allow power stroke of constriction
 - Myosin light chain can be phosphorylated by myosin light chain kinase, dephosphorylated by myosin light chain phosphatase
 - o Rho-ROCK signalling: Rho activates ROCK, which activates a series of downstream proteins
 - ROCK can stablise actin polymerisation
 - ROCK phosphorylation of myosin light chain increase actomyosin contractility, promote power stroke.
 - ROCK inhibit microtubule formation
 - F-actin regulators
 - Spontaneous G-actin monomer polymerisation into F-actin is energetically unfavorable so occur at a very slow rate
 - Formin catalyse the reaction, allow linear polymerisation
 - Arp2/3 complex allow polymerisation of actin in a 70° angle to previous polymer.
- Cytockeleton in different cell types:
 - Epithelium: actomyosin bands between AJs, cell-cell contact
 - Mesenchymal: Focal adhesion bind cells with ECM
- Cadherin-catenin complex at the adherence junction
 - E-cadherin bind with E-cadherin from adjacent AJ.
 - \circ Intracellular domain of E-cadherin bind with α/β -catenin, which interact with intracellular actin polymer, allow transmission of force.

<u>Different models of apical constriction</u>

- Formation of actomyosin aggregate in the medial part of the cell, isometeric constriction on all sides
- Lining of actomyosin aggregates along the cell-cell border, allow directional constriction, can be used in convergence & extension (e.g. Xenopus neuroepithelial cells)

Characteristics of apical constriction:

- Asynchronous / signal-induced synchronous constriction
- · Contractions are pulsatile, contract followed by stabilisation
- Apical constriction directionality is controlled by Wnt/PCP signalling
- Spinal Bfida: failure of neural tube closure and degeneration of the spinal cord
 - Vangl2 is a co-receptor in the non-canonical Wnt PCP pathway
 - Mutation of Vangl2 R353C single residue mutation lead to severe spina bfida.
 - Vangl2 is upstream of Rho/ROCK signalling in the PCP pathway

- Experiment: iPSC constructed neuroepithelium with induced R353C mutation show no morphology changes, but apical constriction ability decreases.
- **Experiment:** Cre/LoxP KO of Vangl2 in mice causes spinal bfida in mice, two-photon laser ablation shows less tension in the apical membrane, less apical constriction.

Apical constriction experiments

Mice iPSC Vangl2 mutation: lack of apical constriction

Mice in vivo Cre-Lox KO + laser ablation of Vangl2: less surface tension due to reduced apical constriction