Basic Robotics Course

Class 2 - Quadcopter Parts

Pitch, Roll and Yaw

Drone Movements

Brushless Motors

- Direct Current (DC) Motors
- Advantages (compared to Brushed Motors)
 - More efficient.
 - Higher life expectancies and lower maintenance costs.
 - Accelerate and decelerate easier.
 - There is no sparking and less noise.
- Disadvantages (compared to Brushed Motors)
 - More expensive.

Brushless Motors - Inside

- There are permanent magnets on the rotor.
- Applying DC Power to the coils, they become electromagnets.
- These electromagnets interact with the permanent magnets and make the rotor spin.

Brushless Motor - Working

- When energizing a coil, it attracts the rotor to its position.
- By alternating which coil is energized, we make the rotor spin.

Brushless Motor - ESC

- The energized coil is electronically alternated.
- This is done by the ESC (Electronic Speed Controller).
- Receives speed command and makes the motor spin.

Brushless Motors - Inner and Outer

Sensors - IMU

- Inertial Measurements Unit.
- An electronic device that gathers different sensors:
 - Accelerometers: measure the linear accelerations.
 - Gyroscopes: measure the angular positions and velocities.
 - Magnetometer: measure the direction and strength of a magnetic field. It's used to measure the orientation relative to the Earth's magnetic field (like a compass).
- Modern Flight Controller have the IMU embedded.

Sensors - GPS

- Global Positioning System.
- Global position estimated by the distance to different GPS satellites.
- We desire at least six visible satellites for robust and reliable position estimations.

- Used to measure the distance to the ground or to avoid obstacles.
- Different sensors for different necessities.

- Sonar (Ultrasonic Sensor)
 - Emits and receives a sonic wave.
 - The time elapsed between emitting and receiving is used to calculate the distance.
 - Cheap and Lightweight, but have limited range and are inaccurate.
- RaDAR (Radio Detecting and Ranging)
 - Same working principles, but with radio waves or microwaves.
 - Accurate and wide-angle, but heavy and expensive.

- LRF (Laser Range Finder)
 - o Emits and receives a laser signal.
 - Accurate and with long-range, but expensive
- LiDAR
 - An LRF spinning. It is used to 3D mapping the surroundings.
 - Accurate and with long-range. But expensive, heavy and fragile.

Infrared Proximity Sensor

- Emits and receives IR signals, then analyses the intensity.
- Cheap and lightweight, but inaccurate and have limited range.

Time of Flight Camera

- Emits pulses of light and measure the return time for each pixel. It is used for 3D mapping.
- Accurate, but sunlight sensitive and have limited range.

Flight Controller

- Reads the sensors and controls the motors to make what the drone is commanded to do.
- Some advanced features:
 - Gyro stabilization: making the drone stable on the flight.
 - Altitude hold: make the drone hover.
 - Position control: command the drone to certain positions.
 - Position hold: maintain the on the same geographic position.

Pitch, Roll and Yaw

Drone Movements

Simulation Time

ROS - Robotics Operating System

- An open source meta-operating system for robotics.
 - It provides the expected services for an operating system (like hardware abstraction and low-level device control) but is built on the top of the operating system.
- It is used to simplify the integration between different parts of a robot.

Humanoid TALOS PAL Robotics (Spain)

ROS - Robotics Operating System

- Node: processes that perform computation. A robot control system usually comprises many nodes
- Message: a message is simply a data structure, comprising typed fields.
 Nodes communicate with each other by passing messages.
- Topic: messages are routed via a transport system with publish / subscribe semantics. A node sends out a message by publishing it to a given topic. A node that is interested in a certain kind of data will subscribe to the appropriate topic.

Concepts copied from http://wiki.ros.org/ROS/Concepts

How would we use ROS on an air conditioner?

ROS - Air Conditioner

ROS - Air Conditioner

ROS - Air Conditioner

Let's try a more complex example.

