## 第一关:基本测试

根据 S-AES 算法编写和调试程序,提供 GUI 解密支持用户交互。输入可以是 16bit 的数据和 16bit 的密钥,输出是 16bit 的密文。

加密功能:输入正确格式的明文和密钥,得到加密结果。





如果输入错误格式的明文或密钥,则会显示





解密功能:输入正确的密文和密钥,得到解密结果。





### 第二关:交叉测试

考虑到是"算法标准",所有人在编写程序的时候需要使用相同算法流程和转换单元(替换盒、列混淆矩阵等),以保证算法和程序在异构的系统或平台上都可以正常运行。

设有 A 和 B 两组位同学(选择相同的密钥 K);则 A、B 组同学编写的程序对明文 P 进行加密得到相同的密文 C;或者 B 组同学接收到 A 组程序加密的密文 C,使用 B 组程序进行解密可得到与 A 相同的 P。

第一组结果如下:



第二组结果如下:

| Ø S-AES 加密解密                                 | _  | × |
|----------------------------------------------|----|---|
| 明文(16n位二进制或2n个字符): 0101010101010101          |    |   |
| 密钥(16n位二进制或2n个字符(n=1,2,3)): 1010101010101010 |    |   |
| 初始向量Ⅳ(16位二进制):                               |    |   |
| 密文(16n位二进制或2n个字符): 1000101010010110          |    |   |
| 加密为二进制                                       | 符串 |   |
| 解密为二进制 破解密钥(32bit) 解密为字                      | 符串 |   |
| 生成初始向量Ⅳ CBC模式解密 CBC模式                        | 加密 |   |

结果表明加密结果一样, 交叉测试成功。

## 第三关: 扩展功能

考虑到向实用性扩展,加密算法的数据输入可以是 ASCII 编码字符串(分组为 2 Bytes),对应地输出也可以是 ASCII 字符串(很可能是乱码)。

当我们输入 ASCII 编码字符串时,通过"ascii 加密"和"ascii 解密"功能依然可以进行加密和解密。



## 第四关:多重加密

(1) 双重加密

将 S-AES 算法通过双重加密进行扩展,分组长度仍然是 16 bits,但密钥长度为 32 bits。

# 通过二重加密功能实现 加密结果:

| <b>▼</b> S-AIS IDENSETE |                                     |  | × |
|-------------------------|-------------------------------------|--|---|
| 加密                      | 请输入明文(或密文)                          |  |   |
| 加西                      | 1000100010001000                    |  |   |
| 解密                      | 请输入密钥 (32位二进制)                      |  |   |
|                         | 11111111111111111000000000000000000 |  |   |
| 二重加密                    | 二重加密                                |  |   |
| 三重加密                    | 二重解密                                |  |   |
| cbc加密                   |                                     |  |   |
| 破解                      |                                     |  |   |



#### 解密结果:



#### (2) 中间相遇攻击

假设你找到了使用相同密钥的明、密文对(一个或多个),请尝试使用中间相遇攻击的方法找到正确的密钥 Key(K1+K2)。

获得多组明密文对: (1000100010001000, 1000100111110100)

 $(0000111100001111,\ 1011011101100111)$ 

(1010101010101010, 1010010001001100)

通过破解功能实现



#### (3) 三重加密

将 S-AES 算法通过三重加密进行扩展,下面两种模式选择一种完成:

- (1)按照 32 bits 密钥 Key(K1+K2)的模式进行三重加密解密,
- (2)使用 48bits(K1+K2+K3)的模式进行三重加解密。

本程序采用第二种解决方式: 加密结果:



解密结果:



## 第五关:工作模式

基于 S-AES 算法,使用密码分组链(CBC)模式对较长的明文消息进行加密。注意 初始向量(16 bits)的生成,并需要加解密双方共享。

在 CBC 模式下进行加密,并尝试对密文分组进行替换或修改,然后进行解密,请对比篡改密文前后的解密结果。

#### 加密结果:



对于密文分组进行替换或修改,然后进行解密,对比篡改密文前后的解密结果。 未修改的密文分组得到的解密结果(密文为1101010001010001010000110111100):



修改后的密文分组得到的解密结果(密文为: 11010100010100010100000110111111) (第二组的密文进行了修改):



#### 由结果可得:

在 CBC 模式下, 篡改密文会导致解密结果不同;

因此,修改密文的结果会对解密过程造成明显影响,充分体现了 CBC 模式在抵御密文篡改方面的特性。