

国组曲线(1)
用平面裁与椭圆
多面倾斜别和圆瓜和溪
超线3行时 一 抛纸给

定义:年面内与西仁定点后,后,距离和新者数 (大3[h Fi])的完的轨迹叫椭圆。

椭圆的标准为经

焦点在水轴: 芸·艺·1 (a>b>0)

名心华:柳园的半途距与老松的之比的始的心 库,用e表示: e: 云 = 写 , c60,12 椭圆第=改义: 年面上到定点下距离到定直线距

高之比省常数已的点的集合 CF不在海直设入

科克: P为树园上动点, 自陪何处时, UFIPE最大

· P在投点处。

(名:椭圆谷化大维指语:

F. (-C,0), F. (c,0), P(XS)

A (X+C)²-y²+ (X-c)²y² = 2a0

2a (A-B) = 4cx (1)

 $0.0 \Rightarrow a + \frac{(7)^{2}}{a^{2}} = \frac{1}{4(4c)^{2} + y^{2}}$ $a^{2} + 2cx + \frac{cx^{2}}{a^{2}} = x^{2} + 2cx + c^{2} + y^{2}$ $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{a^{2} - c^{2}} = 1 = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{a^{2}} = 1$

双曲线之义 平面内的两位点下、应购距离差的 绝对值有常数 (小于1下时)的京的新渔叫双曲食。

双曲线板准备程:

焦点在7轴上: 芸一芸二 Ca>6)

标准方	.2 ,2	.2 ,
程	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ (a, b > 0)$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \ (a, b > 0)$
图形	$F_1 \qquad A_1 \qquad A_2 \qquad F_2 \qquad x$	$ \begin{array}{c} y \\ F_1 \\ \hline O \\ A_2 \end{array} $ F_2
范围	$x \ge a \stackrel{\text{def}}{\otimes} x \le -a, y \in \mathbb{R}$	$x \in \mathbb{R}, y \ge a \stackrel{\text{deg}}{\otimes} y \le -a$
对称性	关于 x 轴, y 轴和	印原点对称
顶点	(±a, 0)	(0, ±a)
轴长	实轴长 A_1A_2 , $ A_1A_2 = 2a$, 虚	轴长 B_1B_2 , $ B_1B_2 = 2b$

浙近伐: 焦点在对的: 上音不 (c= \aitb*)

抛物偶定义: 毛面内到一定点知一定直发的距离相等的点的轨迹和动物组织

地的绒科性为经 造焦点到性格的距离为户 低点在不轴上: y²=±2p² 促点在 y轴上: 元= +2py

士和	$y^2 = 2px$	$y^2 = -2px$	$x^2 = 2py$	$x^2 = -2py$
方程	(<i>p</i> > 0)	(p > 0)	(p > 0)	(p > 0)
图像	$\begin{array}{ c c }\hline y\\ \hline 0\\ \hline \end{array}$	$x \rightarrow x$	x	y
焦点	$(\frac{p}{2}, 0)$	$(-\frac{p}{2},0)$	$(0, \frac{p}{2})$	$(0, -\frac{p}{2})$
准线	$x = -\frac{p}{2}$	$x = \frac{p}{2}$	$y = -\frac{p}{2}$	$y = \frac{p}{2}$
x, y 范	$x \in [0, +\infty),$	$x \in (-\infty, 0],$	$x \in \mathbb{R}$,	$x \in \mathbb{R}$,
围	$y \in \mathbb{R}$	$y \in \mathbb{R}$	$y \in [0, +\infty)$	$y\in (-\infty,0]$
对称 轴	x !	轴	y ²	抽
顶点		原	点	
离心 率		1		

椭圆与双曲成第三选文 军的内面这点 A1a.00, B1-a.00) 若动这户流足 KpA·KpB= e²-1. 则动丘户与面交点到.同向成轨池 的作桶图成双曲线 数中电场高二章。

好,承插了. 13笔记的稠象性部分

练习. 证明, 有理数和无理数在实数 (这是一个度量空间) 中都是稠密的。

定义 7. $\mathbb{F} = \mathbb{R}$ 是实数域 (可以是别的域,比如说有理数或者复数),V 是集合。我们假设存在两种运算:

- 加法运算。 $+: V \times V \to V$, $(v, w) \mapsto v + w$;
- 数乘运算。 $\cdot: \mathbb{F} \times V \to V, (\lambda, v) \mapsto \lambda \cdot v$ 。

我们假设三元组 $(V,+,\cdot)$ 满足如下的八条公理 (其中 $\lambda \mu \in \mathbb{F}$, $u,v,w \in V$ 是任意选取的):

- 1) 加法结合律: u + (v + w) = (u + v) + w;
- 2) 加法交换律: u + v = v + u;
- 3) 存在加法单位元:存在 $0 \in V$ (被称作是 V 的原点),使得对任意 $v \in V$, 0+v=v 成立;
- 4) 加法逆元的存在性: 对任意 $v \in V$, 存在 $-v \in \mathbb{R}$, 使得 v + (-v) = 0;
- 5) 数乘的结合律: $\lambda \cdot (\mu \cdot v) = (\lambda \cdot_{\mathbb{F}} \mu) \cdot v$;
- 6) 数乘的分配律之一: $(\lambda +_{\mathbb{F}} \mu) \cdot v = \lambda \cdot v + \mu \cdot v$;
- 7) 数乘的分配律之二: $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$;
- 8) 乘法单位元: $1 \cdot v = v$ 。

我们就称三元组 $(V,+,\cdot)$ 是 $\mathbb F$ 上的一个线性空间或者向量空间,或者称作 $\mathbb F$ -线性空间。

练习. 试在 \mathbb{R}^n 定义 $+$ 和·的结构使得它成为一个 \mathbb{R} -线性空间。
1 a. b GIR". a= (a. az, an), b= Cbi, bz,, bn)
a+b:= (a,+b, a2+b2,, an+bn), 0:= (0,0,,0)
$\Lambda \cdot \alpha := (\lambda a_1, \lambda a_2, \dots, \lambda a_n), l := l \in IR$
易強和其滿足氣件
Dedekind 分割与实数的构造
—— 定义 8 (Dedekind 分割). $X\subset \mathbb{Q}$ 是有理数的子集,令 $X'=\mathbb{Q}-X$ 。如果下面三条性质都成立: ——
1) $X \neq \emptyset$, $X' \neq \emptyset$;
$2)$ 对任意 $x \in X$, $x' \in X'$, 都有 $x < x'$;
3) X 中没有最大元,
我们就称 X 或 $X \cup X'$ 是 $\mathbb Q$ 的一个 Dedekind 分割 。我们用 $\mathbb R$ 表示所有 $Dedekind$ 分割组成的集合。
注记. 我们可以重新解读后两条性质:
• 第二条 2) 等价于说,如果 $x_1 \in X$,那么对任意的 $x_2 < x_1$,我们就有 $x_2 \in X$ 。这也表明,如果 $x_1' \in X$,那么对任意的 $x_2' > x_1'$,我们就有 $x_2' \in X'$ 。
• 第二条 3) 指的是对任意 $x \in X'$, 总存在 $x' \in X$, 使得 $x' > x$ 。
$a)$ 假设 $\frac{p}{q}$ 是有理数,其中 $p \in \mathbb{Z}$, $q \in \mathbb{Z}_{\geqslant 1}$ 并且 p 和 q 互素,我们定义
$X_{\frac{p}{q}} = \big\{ x \in \mathbb{Q} \big x < \frac{p}{q} \big\}.$
这个例子将给出所有的有理数。
$\underline{\hspace{1cm}}$ b) 我们定义 $X_{\sqrt{2}}$ 如下:
$X_{\sqrt{2}} = \left\{ x \in \mathbb{Q}_{\geqslant 0} \middle x^2 < 2 \right\} \cup \mathbb{Q}_{\leqslant 0}.$
$=$ 这个例子将给出我们所熟悉的 $\sqrt{2}$ 。
序结构
现在,我们要在 ℜ 上定义序关系,加法和乘法,使得 (ℜ,+,·,≤)满足四套公理。 我们先定义序关系:
定义 (序关系). 对任意的 $X,Y\in \mathcal{R}$,作为 $\mathbb Q$ 的子集合,如果
• $X = Y$, 我们称 $X = Y$;

• $X \subset Y$ 且 $X \neq Y$, 我们称 X < Y (也记做 Y > X)。 我们首先来验证这个序关系满足公理 (O1), (O2) 和 (O3): (O3). \leq 是一个全序关系,即对任意的 $X,Y \in \mathcal{R}, X \subset Y$ 和 $Y \subset X$ 必居其一: 我们假设 $X \not\subset Y$, 只要说明 $Y \subset X$ 即可。根据假设,存在 $x \in X$, 使得 $x \notin Y$, 根据序的 定义中的 2),对任意的 $y \in Y$,都有 $y \le x$ (否则 x < y, $y \in Y$,就可以推出 $x \in Y$,矛 盾!), 从而 $y \in X$ (因为 $x \in X$), 所以 $Y \subset X$ 。 (O1). 对任意的 $X, Y, Z \in \mathcal{R}$, 如果 X < Y, Y < Z, 那么 X < Z。 这就是集合关系的传递性的重新叙述。 (O2). 对任意的 $X, Y \in \mathcal{R}, X < Y, X = Y$ 或者 X > Y 三者恰有一种情形成立。 用集合的包含关系来看,这是显然的。 好, 以目前的定义我们可以再证"遍确界定理了。但对河外之。 问题俱编 加法结构 我们现在定义加法运算: 定义 (加法). 对任意的 $X,Y \in \mathbb{R}$, 我们定义 $X + Y := \{x + y | x \in X, y \in Y\}.$ 我们还定义零元素 0 为 $\overline{0} = X_0 = \{ x \in \mathbb{Q} | x < 0 \}.$ 注记. 我们首先说明加法运算 $\mathbb{R} \times \mathbb{R} \xrightarrow{+} \mathbb{R}, \ (X,Y) \mapsto X + Y$ 是良好定义的,即说明上面所定义的 X+Y 的确是 Dedekind 分割 (先验地来看, X+Y 只是 $\mathbb Q$ 的一个子集)。为此,我们只需要依次验证 Dedekind 分割的定义中的三条性质: laucug, 是是度这么。比于偷快放不能偷太多的原则这里的水是自己证一遍。 (i) (x+Y) + Ø, (X+Y) + Ø 以X、倒铵,二X+1非空 对于任何为6X,YOSY,都有为GX,外GY使得 76 < xo', yo < yo' :- x0+y6 < x0'+y6 ~ x5+y6 € x+Y :- x6+y6 € (x+Y) ·· (Xt Y) 事室 (ii) 对于的河对YEX+Y, 居ZCX+Y,则BGX+片 : 2 = x4y : 2-x 2 y = 1 提-1 Redekind 分割 · 2-x 6 Y 3、 2= 7+(2-7) - TEX, Z-TEY: 7+E-XIEX+Y, BIZGX+Y (ii) X+ Y中元最大元 若其中有最大元,没其为 不好的, 其中不 EX, YOET、 由于X、Y都是 Dedekind分割, XY 中均无最大元,即每不, EX, y, EY s.t. X, >20, y, >6 1: 不+y, EX+1且 x,+y, >20+10, 看看

是	と公理 (F5)。	
同上,	证明尼于30户4、	
	们再进一步研究刚才所以定义的加法的结构。注意到,根据刚刚证明的 (F4),我们可以数的运算: $-: \Re \to \Re, X \mapsto -X.$	以定
根据公里定义的	X 是使得 $X+Z=\overline{0}$ 的 (唯一的) 那一个 Z 。按照定义,我们有 $-X=\{y-x' y\in\overline{0},x\in Z\}$ 理 $(F1)$ - $(F4)$ (目前已经证明),这个 Z 是唯一的并且 $-(-X)=X$ 。我们还可以说明,的负号运算和本来有理数上的负号的运算是一致的,即若 $\frac{p}{q}$ 是有理数,那么 $X_{-\frac{p}{q}}=-X_{-\frac{p}{q}}$ 我们只需要说明 $X_{-\frac{p}{q}}+X_{\frac{p}{q}}=\overline{0}$ 即可,我们把验证细节的乐趣以及下面的练习题一并能	, 这 X ₂ :
这份色	逐还是下次再体验吧。而且紧接就是四套3起,这才第一课时啊于教授,该	微说您有
土法国继	L Bourbaki Kazapit ita 16 Myxenuna 03 0	