- System of Equations and Matrices
 - > 3 Matrix Row Operations:
 - · Switch any two rows.
 - Multiply any row by a nonzero constant.
 - Add any constant-multiple row to another
- Even and Odd functions
 - Even function: f(-x) = f(x) Odd function: f(-x) = -f(x)
- □ Graph Symmetry
 - x-axis symmetry: if (x, y) is on the graph, then (x, -y) is also on the graph
 - y-axis symmetry: if (x, y) is on the graph, then (-x, y) is also on the graph
 - origin symmetry: if (x, y)f is on the graph, then (-x, -y) is also on the graph
- □ Function Transformations
 - > Stretch and Compress
 - y = af(x), a > 0 vertical: stretch f(x) if a > 1
 - > Reflections
 - y = -f(x) reflect f(x) about x-axis
 - y = f(-x) reflect f(x) about y-axis
 - > Stretch and Compress
 - y = af(x), a > 0 vertical: stretch f(x) if a > 1: compress f(x) if 0 < a < 1
 - y = f(ax), a > 0 horizontal: stretch f(x) if 0 < a < 1 : compress f(x) if a > 1
 - ☐ Shifts
 - y = f(x) + k, k > 0 vertical: shift f(x) up y = f(x) k, k > 0 : shift f(x) down
 - y = f(x + h) h > 0 horizontal: shift f(x) left y = f(x h), h > 0 : shift f(x) right

□ Formulas/Equations

- Slope Intercept: y = mx + b Point-Slope: $y y_1 = m(x x_1)$
- Slope: $m = \frac{y_2 y_1}{x_2 x_1}$; $x_2 x_1 \neq 0$
- Average Rate of Change: $\frac{\Delta y}{\Delta x} = \frac{f(b) f(a)}{b a}$, where $a \neq b$
- Circle: $Circumference = 2\pi r = \pi d$, $Area = \pi r^2$
- Triangle: $Area = \frac{1}{2}bh$
- Rectangle: Perimeter = 2l + 2w, Area = lw
- Rectangular Solid: Volume = lwh, Surface Area = 2lw + 2lh + 2wh
- Sphere: $Volume = \frac{4}{3}\pi r^3$, $Surface\ Area = 4\pi r^2$
- Right Circular Cylinder: $Volume = \pi r^2 h$, $Surface\ Area = 2\pi r^2 + 2\pi rh$

\Box General Form of Quadratic Function: $f(x) = ax^2 + bx + c$, $(a \neq 0)$

- Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- Vertex (h,k): $h = -\frac{b}{2a}$ $k = a(h)^2 + b(h) + c$, or $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$, or $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$
- Axis of symmetry: x = h

$$\Box$$
 Vertex Form of Quadratic Function: $f(x) = a(x-h)^2 + k$ vertex (h,k)

$$\Box$$
 Polynomial function: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0$

- ightharpoonup Polynomial graph has at most n-1 turning points.
- Remainder Theorem
 - If polynomial $f(x) \div (x c)$, remainder is f(c).
- > Factor Theorem
 - If f(c) = 0, then x c is a linear factor of f(x).
 - If x c is a linear factor of f(x), then f(c) = 0.

- Rational Zeros Theorem: for polynomial function $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$ having degree of at least 1 and integer coefficients with $a_n \neq 0$, $a_0 \neq 0$
 - If $\frac{p}{q}$, in lowest terms, is a rational zero of f, then p must be a factor of a_0 , and q must be a factor of a_n .
- ightharpoonup Intermediate Value Theorem(for continuous function f(x))
 - If a < b and if f(a) and f(b) have opposite signs, then f(x) has at least one real zero between x = a and x = b.
- Conjugate Pairs Theorem
 - For polynomial functions f(x) with real coefficients: If x = a + bi is a zero of f(x), then x = a bi is also.
- \square Rational function: $f(x) = \frac{p(x)}{q(x)}$, p(x) and q(x) polynomials, but $q(x) \neq 0$.
 - \triangleright Vertical Asymptote: x = zero of denominator in reduced f(x)
 - Horizontal Asymptote:
 - y = 0 if degree of p(x) < degree of q(x)
 - $y = \frac{leading\ coefficient\ of\ p(x)}{leading\ coefficient\ of\ q(x)}$ if degree of $p(x) = degree\ of\ q(x)$
 - > Oblique Asymptote:
 - y = quotient of $\frac{p(x)}{q(x)}$ if degree of p(x) > degree of q(x)
- \Box Composite Function $(f \circ g)(x) = f(g(x))$
- \Box Exponential Function: $f(x) = a^x$
 - If $a^u = a^v$, then u = v
- \Box Logarithmic Function: $f(x) = \log_a(x)$
 - $\log_a(1) = 0$, $\log_a(a) = 1$, $a^{\log_a(M)} = M$, $\log_a(a^p) = p$
 - $\log_a(M \cdot N) = \log_a(M) + \log_a(N)$
 - $\log_a\left(\frac{M}{N}\right) = \log_a(M) \log_a(N)$
 - $\log_a(M^p) = p \cdot \log_a(M)$
 - If $\log_a(M) = \log_a(N)$, then M = N.

• If
$$M = N$$
, then $\log_a(M) = \log_a(N)$.

• Change of Base formula
$$\log_a(M) = \frac{\log(M)}{\log(a)}$$
 or $\log_a(M) = \frac{\ln(M)}{\ln(a)}$

Exponential Models Formulas

- Simple Interest: I = Prt
- Compound Interest: $A = P \left(1 + \frac{r}{n}\right)^{n \cdot t}$
- Continuous Compounding: $A = Pe^{r \cdot t}$
- · Effective Rate of Interest:

Compounding n times per year $r_{eff} = \left(1 + \frac{r}{n}\right)^n - 1$ Compounding continuously per year $r_{eff} = e^r - 1$

• Growth & Decay:
$$A(t) = A_0 e^{k \cdot t}$$

• Newton's Law of Cooling:
$$u(t) = T + (u_0 - T)e^{k \cdot t}$$

• Logistic Model:
$$P(t) = \frac{c}{1 + ae^{-b \cdot t}}$$

Sequences and Series

•
$$n! = n(n-1)(n-2) \cdot \cdots \cdot (3)(2)(1)$$

•
$$n! = n(n-1)(n-2) \cdot \dots \cdot (3)(2)(1)$$

• $P(n,r) = \frac{n!}{(n-r)!}$ $C(n,r) = \frac{n!}{r!(n-r)!}$

Arithmetic Sequence:

$$n^{th}$$
 term $a_n = a_1 + (n-1)d$

Sum of first
$$n$$
 terms $S_n = \sum_{k=1}^n (a_1 + (k-1)d) = \frac{n}{2}(a_1 + a_n)$ or $S_n = \sum_{k=1}^n (a_1 + (k-1)d) = \frac{n}{2}(2a_1 + (n-1)d)$.

Geometric Sequence:

$$n^{th}$$
 term $a_n = a_1(r)^{n-1}$

Sum of first
$$n$$
 terms $S_n = \sum_{k=1}^n a_1 r^{k-1} = a_1 \cdot \frac{1-r^n}{1-r}$ for $r \neq 0,1$

• Geometric Series:
$$\sum_{k=1}^{\infty} a_1 r^{k-1} = \frac{a_1}{1-r}$$
 if $|r| < 1$

CBC MATHEMATICS MATH 2412-PreCalculus

Exam Formula Sheets

■ Binomial Theorem:

$$(x+a)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} a^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} a + \dots + \binom{n}{n-1} x a^{n-1} + \binom{n}{n} a^n$$

Trigonometry

Circular Measure and Motion Formulas

• Arc Length
$$s = r\theta$$
 Area of Sector $A = \frac{1}{2}r^2\theta$

• Linear Speed
$$v = \frac{s}{t}$$
, $v = r\omega$ Angular Speed $\omega = \frac{\theta}{t}$

> Acute Angle

•
$$\sin(\theta) = \frac{b}{c} = \frac{opposite}{hypotenuse}$$
 $\cos(\theta) = \frac{a}{c} = \frac{adjacent}{hypotenuse}$ $\tan(\theta) = \frac{b}{a} = \frac{opposite}{adjacent}$
• $\csc(\theta) = \frac{c}{b} = \frac{hypotenuse}{opposite}$ $\sec(\theta) = \frac{c}{a} = \frac{hypotenuse}{adjacent}$ $\cot(\theta) = \frac{a}{b} = \frac{adjacent}{opposite}$

General Angle

•
$$\sin(\theta) = \frac{b}{r}$$
 $\cos(\theta) = \frac{a}{r}$ $\tan(\theta) = \frac{b}{a}$
• $\csc(\theta) = \frac{r}{b}, b \neq 0$ $\sec(\theta) = \frac{r}{a}, a \neq 0$ $\cot(\theta) = \frac{a}{b}, b \neq 0$

Cofunctions

•
$$\sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right)$$
, $\cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right)$, $\tan(\theta) = \cot\left(\frac{\pi}{2} - \theta\right)$
• $\csc(\theta) = \sec\left(\frac{\pi}{2} - \theta\right)$, $\sec(\theta) = \csc\left(\frac{\pi}{2} - \theta\right)$, $\cot(\theta) = \tan\left(\frac{\pi}{2} - \theta\right)$

Fundamental Identities

•
$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$
 $\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$

•
$$\csc(\theta) = \frac{1}{\sin(\theta)}$$
 $\sec(\theta) = \frac{1}{\cos(\theta)}$ $\cot(\theta) = \frac{1}{\tan(\theta)}$

•
$$\sin^2(\theta) + \cos^2(\theta) = 1$$
 $\tan^2(\theta) + 1 = \sec^2(\theta)$ $\cot^2(\theta) + 1 = \csc^2(\theta)$

Even-Odd Identities

•
$$\sin(-\theta) = -\sin(\theta)$$
 $\cos(-\theta) = \cos(\theta)$ $\tan(-\theta) = -\tan(\theta)$
• $\csc(-\theta) = -\csc(\theta)$ $\sec(-\theta) = \sec(\theta)$ $\cot(-\theta) = -\cot(\theta)$

Inverse Functions

•
$$y = \sin^{-1}(x)$$
 means $x = \sin(y)$ where $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

•
$$y = \cos^{-1}(x)$$
 means $x = \cos(y)$ where $-1 \le x \le 1$ and $0 \le y \le \pi$

•
$$y = \tan^{-1}(x)$$
 means $x = \tan(y)$ where $-\infty \le x \le \infty$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$

CBC MATHEMATICS MATH 2412-PreCalculus

Exam Formula Sheets

•
$$y = \csc^{-1}(x)$$
 means $x = \csc(y)$ where $|x| \ge 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0$

•
$$y = \sec^{-1}(x)$$
 means $x = \sec(y)$ where $|x| \ge 1$ and $0 \le y \le \pi$, $y \ne \frac{\pi}{2}$

•
$$y = \cot^{-1}(x)$$
 means $x = \cot(y)$ where $-\infty \le x \le \infty$ and $0 < y < \pi$

Sum and Difference Formulas

•
$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

•
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

•
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

•
$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$
 $\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

> Half-Angle Formulas

•
$$\sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1-\cos(\alpha)}{2}}$$

•
$$\cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos(\alpha)}{2}}$$

•
$$\tan\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}} = \frac{1-\cos(\alpha)}{\sin(\alpha)} = \frac{\sin(\alpha)}{1+\cos(\alpha)}$$

Double-Angle Formulas

•
$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

•
$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

•
$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Product to Sum Formulas

•
$$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

•
$$\cos(\alpha)\cos(\beta) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

•
$$\sin(\alpha)\cos(\beta) = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$$

> Sum to Product Formulas

•
$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

•
$$\sin(\alpha) - \sin(\beta) = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$$

•
$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

•
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Law of Sines

•
$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Law of Cosines

•
$$a^2 = b^2 + c^2 - 2bc \cos(A)$$

•
$$b^2 = a^2 + c^2 - 2ac \cos(B)$$

•
$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

Area of SSS Triangles (Heron's Formula)

•
$$K = \sqrt{s(s-a)(s-b)(s-c)}$$
, where $s = \frac{1}{2}(a+b+c)$

> Area of SAS Triangles

•
$$K = \frac{1}{2}ab\sin(C)$$
, $K = \frac{1}{2}bc\sin(A)$, $K = \frac{1}{2}ac\sin(B)$

$$K = \frac{1}{2}bc \sin(A) ,$$

$$K = \frac{1}{2}ac\sin(B)$$

For $y = A\sin(\omega x - \varphi)$ or $y = A\cos(\omega x - \varphi)$, with $\omega > 0$

• Amplitude =
$$|A|$$
,

• Amplitude =
$$|A|$$
, Period= $T = \frac{2\pi}{\omega}$, Phase shift = $\frac{\varphi}{\omega}$

Phase shift
$$=\frac{\varphi}{\omega}$$