CSE 105: Data Structures and Algorithms-I (Part 2)

Instructor
Dr Md Monirul Islam

Applications of DFS:

- 1. Topological sort of a DAG
- 2. Strongly Connected Components of a DiGraph

Topological sort Example: dressing of a person

Find finishing times by DFS of the DAG

sorted by finishing times: use linked list

Strongly Connected Components

Directed Graph

- DFS is run on a *directed graph*, G = (V, E)
 - decomposes G into several strongly connected components (sub-graphs)

4 strongly connected components

Strongly Connected Component: Definition

- An SCC is a **maximal** set of vertices $C \subseteq V$
- for any arbitrary vertex pair u and v, there are paths
 - from *u* to *v*, and
 - from *v* to *u*

There are paths: $a \rightarrow b$ and $b \rightarrow e \rightarrow b$

Directed Graph

Strongly Connected Component: Definition

- An SCC is a **maximal** set of vertices $C \subseteq V$
- for any arbitrary vertex pair u and v, there are paths
 - from *u* to *v*, and
 - from v to u

Directed Graph

Changed Graph

Strongly Connected Component: Definition

- An SCC is a **maximal** set of vertices $C \subseteq V$
- for any arbitrary vertex pair u and v, there are paths
 - from *u* to *v*, and
 - from *v* to *u*

abe and fg are NOT maximal abefg is maximal

Directed Graph

Identifies the cycles

 $G^T = (V, E^T)$, where $E^T = \{(u, v) : (v, u) \in E\}$

 $G^T = (V, E^T)$, where $E^T = \{(u, v) : (v, u) \in E\}$

G and G^T both have exactly the same SCCs, because

u and v are reachable from each other in G if and only if u and v are reachable from each other in G^T

Algorithm to find SCCs

STRONGLY-CONNECTED-COMPONENTS (G)

- 1. call DFS (G) to compute finishing times u.f for each vertex u
- 2. compute G^T
- 3. call DFS (G^T) , but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate SCC

Algorithm to find SCCs: Complexity

STRONGLY-CONNECTED-COMPONENTS (G)

- 1. call DFS (G) to compute finishing times u.f for each vertex $u \longrightarrow O(E+V)$
- 2. compute $G^T \longrightarrow O(E+V)$
- 3. call DFS (G^T) , but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1) $\longrightarrow O(E+V)$
- 4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate SCC $\longrightarrow O(V)$

Graph, G

Strongly Connected Components

Also called Component Graph, GSCC

$$G^{SCC} = (V^{SCC}, E^{SCC})$$

Graph, G

Strongly Connected Components

Also called Component Graph, GSCC

$$G^{SCC} = (V^{SCC}, E^{SCC})$$

Components: C_1 , C_2 , C_3 , ..., C_k

Strongly Connected Components

Also called Component Graph, GSCC

$$G^{SCC} = (V^{SCC}, E^{SCC})$$

Components: $C_1, C_2, C_3, ..., C_k$

Vertices,
$$V^{SCC} = \{v_1, v_2, v_3, ..., v_k\}$$

 $(v_i, v_j) \in E^{SCC}$ if $(x, y) \in G$ such that $x \in C_i$ and $y \in C_j$

Strongly Connected Components

Also called Component Graph, GSCC

$$G^{SCC} = (V^{SCC}, E^{SCC})$$

Components: $C_1, C_2, C_3, ..., C_k$

Vertices, $V^{SCC} = \{v_1, v_2, v_3, ..., v_k\}$

GSCC is a DAG

Strongly Connected Components

Also called Component Graph, GSCC

$$G^{SCC} = (V^{SCC}, E^{SCC})$$

Components: $C_1, C_2, C_3, ..., C_k$

Vertices, $V^{SCC} = \{v_1, v_2, v_3, ..., v_k\}$

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'.

Then G cannot also contain a path v' to v

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'. Then G cannot also contain a path v' to v

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'. Then G cannot also contain a path v' to v

We have $u \rightsquigarrow u'$ given $u' \rightsquigarrow v'$ Members of C' $v \rightsquigarrow u$ Members of C

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'. Then G cannot also contain a path v' to v

We have
$$u \rightsquigarrow u'$$

$$u' \rightsquigarrow v'$$

$$v \rightsquigarrow u$$
Therefore, we have $u \rightsquigarrow u' \rightsquigarrow v'$

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'. Then G cannot also contain a path v' to v

We have
$$u \rightsquigarrow u'$$

$$u' \rightsquigarrow v'$$

$$v \rightsquigarrow u$$
Therefore, we have $u \rightsquigarrow v$

Therefore, we have $u \rightsquigarrow u' \rightsquigarrow v'$ If *G* contains a path $v' \rightsquigarrow v$ We will have $v' \rightsquigarrow v \rightsquigarrow u$

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'. Then G cannot also contain a path v' to v

We will have a cycle

$$u \rightsquigarrow u' \rightsquigarrow v' \rightsquigarrow v \rightsquigarrow u$$

We have
$$u \rightsquigarrow u'$$
 $u' \rightsquigarrow v'$
 $v \rightsquigarrow u$

Therefore, we have $u \rightsquigarrow u' \rightsquigarrow v'$ If G contains a path $v' \rightsquigarrow v$ We will have $v' \rightsquigarrow v \rightsquigarrow u$

Let C and C' be **distinct** SCCs in directed graph G = (V, E), let $u, v \in C$, and $u', v' \in C'$ and suppose that G contains a path u to u'. Then G cannot also contain a path v' to v

We will have a cycle

$$u \rightsquigarrow u' \rightsquigarrow v' \rightsquigarrow v \rightsquigarrow u$$

If C and C' will NOT be distinct!!
Contradiction!!

Every vertex has *d* and *f* time

Every vertex has d and f time Every SCC also has d and f time

Every vertex has d and f time Every SCC also has d and f time Formally we define, $d(U)=\min_{u\in U} \{u.d\}$ $f(U)=\max_{u\in U} \{u.f\}$

Some insights before next Lemma

Graph, G

Graph, G^T

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Assume two sub cases

Case 1: d(C) < d(C')

Case 2: d(C) > d(C')

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case1: $d(C) \leq d(C')$

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case1: $d(C) \leq d(C')$

Let x be the first vertex in C At x.d all vertices in C and C' are WHITE

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case1: $d(C) \leq d(C')$

Let x be the first vertex in CAt x.d all vertices in C and C' are WHITE All vertices in C and C' are reachable from x by white vertices

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case1: $d(C) \leq d(C')$

Let x be the first vertex in C
At x.d all vertices in C and C' are WHITE
All vertices in C and C' are reachable from
x by white vertices

Let $w \in C'$, then $x \rightsquigarrow u \rightarrow v \rightsquigarrow w$

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case1: $d(C) \leq d(C')$

Let x be the first vertex in CAt x.d all vertices in C and C' are WHITE All vertices in C and C' are reachable from x by white vertices

Because let $w \in C'$,

Then $x \rightsquigarrow u \rightarrow v \rightsquigarrow w$

x is ancestor of all of C and C' and will have the largest finishing time.

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case1: d(C) < d(C')

Let x be the first vertex in C At x.d all vertices in C and C' are WHITE All vertices in C and C' are reachable from *x* by white vertices

Because let $w \in C'$,

Then $x \rightsquigarrow u \rightarrow v \rightsquigarrow w$

x is ancestor of all of C and C' and will have the largest finishing time.

Therefor, x.f = f(C) > f(C')

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case 2: d(C) > d(C')Let y be the first vertex in C'

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case 2: d(C) > d(C')

Let y be the first vertex in C' At y.d all vertices in C' are WHITE and reachable.

Therefore, y.f = f(C')

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case 2: d(C) > d(C')

Let y be the first vertex in C' At y.d all vertices in C' are WHITE and reachable.

Therefore, y.f = f(C')At y.d, all in C are WHITE but NOT reachable from y as edge is (u, v)

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case 2: d(C) > d(C')

Let y be the first vertex in C' At y.d all vertices in C' are WHITE and reachable.

Therefore, y.f = f(C')At y.d, all in C are WHITE but NOT reachable from y as edge is (u, v)

If $w \in C$, w.f > y.f, so is true for others in C

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$ Then f(C) > f(C')

Case 2: d(C) > d(C')

Let y be the first vertex in C' At y.d all vertices in C' are WHITE and reachable.

Therefore, y.f = f(C')At y.d, all in C are WHITE but NOT reachable from y as edge is (u, v)

If $w \in C$, w.f > y.f, so is true for others in C

Therefore, f(C) > f(C')

Corollary 22.15

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$ Then f(C) < f(C')

Corollary 22.15

Let C and C' be distinct SCCs in directed graph G = (V, E), Let an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$ Then f(C) < f(C')

Graph, G

Graph, G^T

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated) At k = 0, it is true.

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated) Assume that it is true for k, prove it for k+1.

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated) Assume that it is true for k, prove it for k+1.

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated)

Assume that it is true for k, prove it for k+1

all vertices in C_{k+1} are WHITE at u.d and are REACHABLE. all vertices in C_{k+1} are descendant of u

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated)

Assume that it is true for k, prove it for k+1

all vertices in C_{k+1} are WHITE at u.d and are REACHABLE all vertices in C_{k+1} are descendant of u

There is NO path from u to vertices of C_{k+2} , C_{k+3} , C_{k+4} , ...

They are not reachable

Graph, G^T

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated)

Assume that it is true for k, prove it for k+1

all vertices in C_{k+1} are WHITE at u.d and are REACHABLE all vertices in C_{k+1} are descendant of u

There are PATHs from u to vertices of $C_1, C_2, ..., C_k$ But They are ALREADY VISITED

Graph, G^T

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated)

Assume that it is true for k, prove it for k+1

all vertices in C_{k+1} are WHITE at u.d and are REACHABLE all vertices in C_{k+1} are descendant of u There are PATHs from u to vertices of $C_1, C_2, ..., C_k$

2nd DFS will not visit them again

Graph, G^T

The *Algorithm*: STRONGLY-CONNECTED-COMPONENTS procedure correctly computes the SCCs of the directed graph *G* provided as its input.

Proof by induction on k (no. of SCCs generated)

Assume that it is true for k, prove it for k+1

all vertices in C_{k+1} are WHITE at u.d and are REACHABLE all vertices in C_{k+1} are descendant of u. There are PATHs from u to vertices of $C_1, C_2, ..., C_k$. Therefore, C_{k+1} will be correctly identified and will NOT include any other vertex from other components (Green or Yellow).

