ECE 486/586 Computer Architecture

Prof. Mark G. Faust

Maseeh College of Engineering and Computer Science

Review

- Contemporary computing categories
 - Desktop/laptop, Servers, Embedded, Personal Mobile Devices, Warehouse Scale Computing/Clusters
- Energy and power
- Fabrication and test economics
 - Die area, defect density, yield
- Reliability
- Instruction set architecture
 - Operations, Operands, Addressing modes
 - Instruction encoding
 - Quantitative methods
 - Instruction mix, addressing modes, displacement values
 - MIPS
- Performance measurement/analysis, benchmarking

Review

- Quantitative methods
 - Amdahl's Law
 - Speedup, Execution Time = IC x CC x (average) CPI
 - Average CPI
- Procedure call conventions
 - Call/return, parameter passing, return values
 - Memory map, storage classes
- Number representation, computer arithmetic
 - Unsigned, signed representations, floating point
 - Simple integer multiplication/division

Review

- MIPS Data Path
 - Basic data path, control logic
 - Bypassing/forwarding
 - Pipeline execution diagrams
 - Multicycle execution units
- Data dependence and hazards
 - True dependence, output dependence, antidependence
 - RAW, WAW, WAR hazards
- Scoreboard and Tomasulo's algorithm
- Branch prediction
 - Branch outcome, branch target, tournament predictors
- Thread level parallelism

Future

- ECE 587/588 Advanced Computer Architecture I, II
- ECE 540 System on Chip Design with FPGAs
- ECE 544 Embedded System Design with FPGAs
- ECE 510 Topics: Pre-Silicon Verification
- ECE 510 Topics: SystemVerilog

Warehouse scale computing

- Reliability, communications/networking, energy, cost
- Algorithm development (Map/Reduce)
- Computing as utility (Amazon Web Services)
- Parallel computing
 - Multicore, multi-thread, GPUs
 - Particularly programming
 - OpenMP (C library), MPI, Cuda (Nvidia GPUs)

Future

Virtualization

- Origins in 1960s (IBM VM)
- VirtualBox, Parallels, VMWare Fusion, Xen, others
- Provide an abstraction of the hardware to OS/application
- Uses
 - Servers
 - Run multiple application/server/OS combinations on single server
 - Better utilization over separate (underutilized) server for each
 - Lower administration costs
 - Extend to different versions as well
 - Desktop
 - Run Windows on your Mac
 - Linux on your Windows PC
 - Secure platforms
 - Isolate application to OS instance
 - Protect underlying machine, resources
 - OS debugging and instrumentation

Virtual 370s

CMS

VM/370

370 Bare hardware

CMS

I/O instructions here

Trap here -

System calls here