Лабораторная работа №7

Эффективность рекламы. Вариант 12

Жижченко Глеб Михайлович

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	12

List of Figures

3.1	График решения уравнения модели Мальтуса
3.2	График логистической кривой
3.3	График для первого случая
3.4	График для второго случая
3.5	Скорость распространения рекламы для второго случая
3.6	График для третьего случая

1 Цель работы

Рассмотреть задачу об эффективности рекламы, как пример одной из задач построения математических моделей.

2 Задание

Построить график распространения рекламы, математическая модель которой описывается следующими уравнениями:

1.
$$\frac{dn}{dt} = (0.83 + 0.00013n(t))(N - n(t))$$

$$\begin{aligned} &1. \ \ \frac{dn}{dt} = (0.83 + 0.00013n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.000024 + 0.29n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.5t + 0.3tn(t))(N-n(t)) \end{aligned}$$

3.
$$\frac{dn}{dt} = (0.5t + 0.3tn(t))(N - n(t))$$

При этом объем аудитории N=885, в начальный момент о товаре знает 3человека. Для случая 2 определить в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Выполнение лабораторной работы

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ – скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t – время, прошедшее с начала рекламной кампании, n(t) – число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:

 $lpha_1(t)(N-n(t))$, где N – общее число потенциальных платежеспособных покупателей, $lpha_1(t)>0$ – характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $lpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t)) \tag{3.1}$$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид:

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой:

Figure 3.2: График логистической кривой

Код для первого случая на языке Modelica

```
model lab07
parameter Real alpha1 = 0.83;
parameter Real alpha2 = 0.00013;

parameter Integer N = 885;

Real n(start=3);
equation
der(n) = (alpha1 + alpha2 * n) * (N - n);
end lab07;

Код для второго случая на языке Modelica
model lab07_part2
parameter Real alpha1 = 0.000024;
parameter Real alpha2 = 0.29;

Real n(start=3);
```

```
equation
der(n) = (alpha1 + alpha2 * n) * (N - n);
end lab07_part2;

Код для третьего случая на языке Modelica
model lab07_part3
parameter Real alpha1 = 0.5;
parameter Real alpha2 = 0.3;

parameter Integer N = 885;

Real n(start=3);
equation
der(n) = (alpha1 * time + alpha2 * time * n) * (N - n);
end lab07_part3;
```

График для первого случая можно видеть на рис. 3.3.

Figure 3.3: График для первого случая

График и скорость распространения рекламы для второго случая можно видеть на рис. 3.4 и 3.5 соответственно.

Figure 3.4: График для второго случая

Figure 3.5: Скорость распространения рекламы для второго случая

График для третьего случая можно видеть на рис. 3.6.

Figure 3.6: График для третьего случая

4 Выводы

Рассмотрели задачу об эффективности рекламы. Провели анализ и вывод дифференциальных уравнений.