BERT-Based Evaluation of Text Generation Systems

Steffen Eger

eger@aiphes.tu-darmstadt.de

Agenda

This talk has three parts

- Contextualized Embeddings (very briefly)
- Referenced-based Evaluation with BERT
- Reference-free Evaluation with BERT

(Static) Embeddings

- Vector representations derived from neural networks were popularized by Word2Vec (2013-2014)
- Many extensions: Dependency Based Embeddings (2015), FastText (2017), Multilingual Embeddings (2014-2018)
- All of them had one drawback: they were static

(Static) Embeddings

(Contextualized) Embeddings

- In 2018, ELMo revolutionized word embedding models
- By giving each word a different embedding depending on its context

(Contextualized) Embeddings

From: https://medium.com/saarthi-ai/elmo-for-contextual-word-embedding-for-text-classification-24c9693b0045

ELMo

Problems with ELMo:

- It's a shallow model (2 hidden layers)
- Which uses an RNN

BERT

- BERT uses transformer blocks instead of RNN layers
- It uses a much deeper network (either 12 or 24 layers)
- BERT is a deep bidirectional model
- It does not add embeddings as features, but instead performs pre-training and fine-tuning

→ BERT has entirely changed the way Deep Learning in NLP is conducted

BERT - training objectives

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

Extensions

- RoBERTa (2019-07):
 - Trained for longer on more data
- ALBERT (2019-09):
 - Scaling down BERT
- MBERT (multilingual BERT) trained on the concatenation of 104 languages ...
- many others

Extensions

Bi- and multi-lingual embeddings (aka cross-lingual embeddings)

Similar words (or sentences) across two or more languages should be close in vector space

Cross-lingual Embeddings

Three approaches:

- Offline methods (e.g., Artetxe et al.)
 - Compute independent embeddings in each language, use dictionary to map in cross-lingual space
- Joint methods (e.g. LASER LASER computes sentence embedding)
 - Directly leverage bilingual data at train time
- Silly methods (e.g. MBERT)
 - Concatenate all data and train on the concatenation

Agenda

This talk has three parts

- Contextualized Embeddings (very briefly)
- Referenced-based Evaluation with BERT
- Reference-free Evaluation with BERT

Traditional approach

m(y,y*), where

- y* is a human reference
- y is system prediction
- m is a "metric" based on n-gram overlaps
 - e.g. ROUGE or BLEU

Failures of 'hard' metrics

EN (x): "Who died two days before, and now had found \\ An unknown barren beach for burial ground"

DE-true (y*): "Vorgestern starben; dieser <u>fand</u> im Bette; \\ Des fremden Sands die letzte Ruhestätte"

DE-pred (y): "Der vor zwei Tagen starb; und nun <u>fand \\</u> Einen unbekannten öden Strand als Grabesstätte"

Use 'soft' metrics instead

- Cannot account for lexical variation / (true) paraphrasing
- → Better approach:
 - Use word embeddings
 - Or Sentence Embeddings

Use 'soft' metrics instead

- Cannot account for lexical variation / (true) paraphrasing
- → Better approach:
 - Use word embeddings
 - Better than static word embeddings are contextual word embeddings
 - Or Sentence Embeddings

Contextualized Embeddings for Evaluation

Zhang et al., BERTScore, ICLR 2020

Contextualized Embeddings for Evaluation

We proposed to compare two sets of contextualized embeddings with so-called **Earth Mover Distance**

- measures the amount of "work to be done" to transform one distribution into another
- Zhao et al., MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance, EMNLP 2019

Earth Mover Distance

- The EMD between two distributions is proportional to the minimum amount of work required to convert one distribution into the other.
- The cost/work of moving the "dirt" depends on the weight/amount of "dirt" and the distance it needs to cover.

From: https://towardsdatascience.com/earth-movers-distance-68fff0363ef2

MoverScore

BERTScore vs. MoverScore

- BERTScore uses heuristic / greedy alignments between words
- MoverScore computes optimal alignment by solving an optimization problem

Agenda

This talk has three parts

- Contextualized Embeddings (very briefly)
- Referenced-based Evaluation with BERT
- Reference-free Evaluation with BERT

Extensions

Most metrics today still use human references y*

- Costly to obtain
- Evaluation is limited to the parallel data available

Can we get rid of human references y* and instead only use (x,y) for evaluating text generation?

where x is the source sentence(s)

27

RFEval

In other words, we aim for metrics

m(x,y)

instead of

 $m(y^*,y)$

Tasks

Evaluation of:

Machine translation

Summarization

How to do RFEval

- 1. Directly assess the quality/similarity of (x,y)
- 2. Create a pseudo-reference y** and evaluate (y**,y)

How to do RFEval

- 1. Directly assess the quality/similarity of (x,y)
 - In MT: cross-lingual space (LASER, MBERT, XUSE, ...)
 - In Summarization: mono-lingual space (but with enormous length differences)

33

How to do RFEval

- 2. Create a pseudo-reference y** and evaluate (y**,y)
 - In MT:
 - Google translate
 - Unsupervised (N)MT
 - o In Summarization:
 - Keep important sentences in source documents

Score vs. Metric

 (y^*,y)

(x,y)

Metric

Metric

Results for MT

Score vs. Metric

Metric

Results for MT

Score vs. Metric

$$(y^{**},y)$$

Metric

$$(y^{**},y)$$

Why do cross-lingual encoders fail for MT?

Suspicion:

- (1) MBERT may be ill-aligned (maybe LASER not so much)
- (2) MT systems often produce very literal translation ("translationese")
 - Krankheitsfall: Wann bezahlt der veranstalter
 - Disease case: when paying the organiser How do cross-lingual encoders deal with translationese?

(1) III-alignment

To address that MBERT hasn't seen any parallel data, we **Remap** the MBERT space using a bit of parallel data:

- We acquire bilingual data from EuroParl
- And learn a linear projection matrix, similar to the approach of Mikolov (2013)

$$\min_{\boldsymbol{W}} \|\boldsymbol{W}\boldsymbol{X}_{\ell} - \boldsymbol{X}_{k}\|_{2}.$$

X₁ and X_k contain corresponding vectors for languages I,k

(2) Translationese

We fool/probe them using the following:

- Random Shuffle y*
- Expert reordering y* (to match word order of x)
- Expert Word-by-Word translation of x

Robustness of Cross-lingual representations

X	Dieser von Langsamkeit geprägte Lebensstil scheint aber ein Patentrezept für ein hohes Alter zu sein.
у*	however, this slow pace of life seems to be the key to a long life.
y*-rand	to pace slow seems be the this life. life to a key however, of long
y*-reord	this slow pace of life seems however the key to a long life to be.
W2W	this of slow pace characterized life style seems however a patent recipee for a high age to be.

Random shuffle

Random shuffle

Expert reordered

Expert reordered

W2W

LASER(x,w2w) - LASER(x,y*)

W2W

MBERT(x,w2w) - MBERT(x,y*)

Score difference

(2) Translationese

To fix the translationese issue, we add a language model
LM to our cross-lingual embeddings:

$$m(x,y) = 0.9 * ce(x,y) + 0.1 * LM(y)$$

Conclusion

- Rapid advances due to Eval. Metrics based on BERT
- In the reference-free context still a considerable gap
- We exposed (severe) deficits of current cross-lingual sentence encoders / metrics
 - While not BOW models
 - They are indifferent between correct and source language word order
 - They like W2W ("translationese") which is a severe problem for MT evaluation metrics

THÄNK\$!

References

- Zhao, Peyrard, Liu, Gao, Meyer, Eger. MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance. EMNLP 2019
- Gao, Zhao, Eger. SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for Multi-Document Summarization. ACL 2020
- Zhao, Glavas, Peyrard, Gao, West, Eger. On the limitations of cross-lingual encoders as exposed by reference-free machine translation evaluation. ACL 2020