Resistograph meets tomograph

Robert Mařík & Valentino Cristini Mendel University in Brno

Content of the talk

- Resistograph and tomograph: strengths and limitations
- Combined approach: a Python library to merge data from both devices
- Technical note 1: vibe coding in 2025 (GUI via ChatGPT)
- Technical note 2: code sharing in 2025 (Docker)

Tomograph

- fast and reliable tool for stem inspection
- global information from the whole cross section
- shows the size and shape of the internal defects
- cracks are reported as cavities

Resistograph

- scans the power required to microdrilling at given speed
- measures mechanical properties of the material
- local information

Merge data I

- Transform
 resistograph data to
 2D geometry of the
 cross section
- Visualize the data in the new geometry

Merge data II

- Merge resistograph data with tomograph data.
- Visualize the merged data.
- Look for short or long decreases in resistograph data. This indicates cracks and cavities, respectively.

When resistograph meets tomograph

The demo of overlays of four images. See the repository for the code.

- Tomogram
- Tomogram with resistograph data
- Section photo
- · Section photo with resistograph data

You can move the mouse over the image to reveal the other layers or click the image to switch layers.

Python library

Advantages

- language widely used in scientific data processing
- many libraries for data processing and visualization
- easy to automate, scale, modify, share and reuse
- easy to integrate with other tools

```
■ (3) Pajasan žláznatý - Allar × • TomoTree Web UI × • O resistograph_meets_tom × +
     p main ▼ resistograph_meets_tomograph / plot_resistograph_data.py
                                                                                                                                            8 Raw □ ± 0 + 0
Code
                   'yscale': 20
               scale_length = 250
              # subset of columns
              cols_bars = [1, 2, 3, 4, 5, 11, 12]
              cols_bars = []
              cols_graphs = [6,7,8,9,10]
              fig, [ax, cax] = plt.subplots(1, 2, figsize=(8, 6), gridspec_kw={'width_ratios': [40, 1]})
              resistograph_df = read_resistograph_data(data_dir, **settings_filter)
              nodes_df = read_nodes(data_dir)
  403
              ax.plot(nodes_df['x'], nodes_df['y'], 'o')
              add_resistograph_data(resistograph_df.loc[:,cols_bars], nodes_df, ax, cax, **settings_plot)
  406
               add_resistograph_graphs(resistograph_df.loc[:,cols_graphs], nodes_df, ax, **settings_graphs)
  407
              if add_scale:
                  add_all_scales_along_path(ax, resistograph_df.columns, nodes_df, scale_length=scale_length)
              #cax.axis('off')
  412
  413
              ax.set_aspect(1)
              plt.tight_layout()
              plt.show()
```

Python library

Limitations

- requires programming skills
- requires installation of Python,
 Python IDE and libraries
- no GUI

User complaints

- Want to use a GUI. No coding.
- Need simple installation.
- Need easy sharing.

Streamlit

- Python library for building web applications
- easy to use, requires minimal code
- interactive widgets for user input
- real-time updates
- free hosting on Streamlit Cloud
- widely used in data science and machine learning communities
- widely used in industry and academia

Btw: what exactly does it mean "easy to use"?

Vibe coding with ChatGPT

- ChatGPT 5 on August 2025
- web app in 2 prompts

Mam nasledujici knihovnu. Napis streamlit program, ktery umozni nahrat zazipovany adresar s daty a spusti na nem prikazy odpovidajici main funkci. Vystup se zobrazi.

OK. V levem panelu chci mit moznost menit prednastavene volby.

Docker

A containerization platform

- packages application and its dependencies into a container
- ensures consistency across different environments
- easy to share and deploy
- widely used in industry and academia
- starts a container with a single command in miliseconds

Running dockerized app

docker compose up

Advantages

- No Python install
- No dependency issues
- Works on Win / Mac / Linux
- Just clone repo with Dockerfile and docker-compose.yml
- I First run = minutes, later = ms

Summary

- Resistograph and tomograph are complementary tools for tree stem inspection
- Merging data from both devices provides a more comprehensive understanding of stem condition
- A Python library was developed to facilitate data merging and visualization
- Streamlit can be used to create a user-friendly web application for nonprogrammers
- Docker ensures easy installation across different systems