Percobaan 2 Rangkaian Arus Searah dan Nilai Statistik Resistansi

EL2193 Praktikum Rangakain Elektrik

Tujuan

- 1. Memahami penggunaan teorema Thevenin dan teorema Norton pada rangkaian arus searah
- 2. Memahami Teorema Superposisi
- 3. Memahami Teorema Resiprositas
- 4. Dapat merancang Rangkaian Pembagi Tegangan
- 5. Memahami rangkaian resistor seri dan paralel
- 6. Memahami nilai statistik resistansi

Teorema Rangkaian

Theorema dan Hukum

- Apa arti theorema? Apa beda theorema dengan hukum?
 - Theorema diterima kebenarannya, tidak dapat dibuktikan secara langsung tetapi dapat dibuktikan secara parsial atau tak langsung, contoh: Theori Evolusi
 - Hukum diterima kebenarannya, dapat dibuktikan secara langsung, contoh: Hukum Ohm, Hukum Newton

Theorema Thevenin dan Norton

- Dapat menyederhanakan masalah
- Mudah dimengerti atau dipahami
- Banyak digunakan pada analisis rangkaian
- Rangkaian Thevenin dan Norton dapat saling dipertukarkan
- Menurunkan theorema lain: Theorema Millman
- Contoh penggunaan dalam Elektronika: Sumber sinyal pada analisis penguat

Theorema Thevenin

Gambar 1

© mth 2011

Theorema Norton

Laboratorium Dasar Teknik Elektro Sekolah Teknik Elektro dan Informatika

Rangkaian Aktif Linier?

- Aktif: ada sumber tegangan atau sumber arus independen
- Linier: seluruh komponen pasif atau sumber dependen mempunyai hubungan arus tegangan linier

```
linier y = f(x_1+x_2) = f(x_1) + f(x_2)
contoh: V=IR, v = L di/dt, dan I = C dv/dt
```

nonlinier
$$y = f(x_1+x_2) \neq f(x_1) + f(x_2)$$

contoh: $i = I_s \exp(v/V_T)$

Theorema Superposisi

- Menyederhanakan analisis rangkaian dengan analisis terpisah untuk setiap sumber
- Mudah dimengerti atau dipahami
- Banyak digunakan pada analisis rangkaian
- Contoh penggunaan dalam Elektronika: Analisis penguat sinyal sinyal kecil dengan DC dan ac terpisah

Teorema Superposisi

sumber independen dalam rangkaian V₁, V₂, ..., V_m $|_{m+1}, |_{m+2}, ..., |_{m+n}$

Rangkaian **Aktif** Linier

$$\begin{vmatrix} a_{b} - \sum_{j=1}^{m+1} a_{bi} |_{(V \cup I)_{j} = 0, (j \neq i)} \\ V_{ab} - \sum_{j=1}^{m+1} V_{abi} |_{(V \cup I)_{j} = 0, (j \neq i)} \end{vmatrix}$$

Gambar 3

Teorema Resiprositas

Nilai Riil Komponen (Resistansi)

Standar Nilai Komponen

Standar nilai komponen pasif

- Nilai diberikan dengan pola n x 10^m, contoh 27 x 10³ = 27k
- Nilai-nilai n mengikuti keluarga standard EIA yang dikenali dengan E3, E6, E12, E24 dst.
- E3 berarti hanya tersedia 3 nilai untuk n,
 E6 tersedia 6 nilai (termasuk nilai pada E3),
 E12 tersedia 12 nilai (termasuk nilai pada E6),
 dst.
- Setiap keluarga pengulangan urutan nilai berada satu dekade di atasnya, contoh E3: 10, 22, 47, 100, 220, 470, 1000, 2200, 4700, 10000 dst

Standard Nilai dan Toleransi

Standar EIA

 Memberikan nilai yang jangkauannya mendekati nilai kontinyu akibat adanya toleransi (+ dan -)

```
E3 toleransi 50%
```

E6 toleransi 20%

E12 toleransi 10%

E24 toleransi 5%

E48 toleransi 2%

E96 toleransi 1%

E192 toleransi0.5, 0.25, 0.1% dan yang lebih baik

Angka pada Standard Nilai

E3 (50%)			E6 (20%)			E12 (10%)		
Nom	Min	Max	Nom	Min	Max	Nom	Min	Max
100	50	150	100	80	120	100	90	110
						120	108	132
			150	12	180	150	135	165
						180	162	198
220	110	330	220	176	264	220	198	242
						270	243	292
			330	264	396	330	297	393
						390	351	423
470	235	705	470	376	564	470	423	517
						560	504	616
			680	544	816	680	612	748
						820	738	902

nth 2011

Nilai Tersedia dan Perilaku Statistik

- Ketersediaan di pasar
 - Resistor
 - Sangat mudah didapat E12 (10%)
 - Biasanya tersedia E24 (5%)
 - Kapasitor
 - Mudah didapat E6 (20%)
- Distribusi nilai riil
 - nilai mengikuti distribusi gauss
 - deviasi standar berkisar setengah toleransi

Percobaan

Percobaan

- Arus I akan diukur secara langsung dan dibandingkan dengan hasil perhitungan menggunakan Theorema Thevenin dan Norton
- Hubungkan beban pada rangkaian dan ukur arus I

Gambar 5

Percobaan Theorema Thevenin (1)

A Jar P V_S Li

Jaringan Pasif Linier N

Bangun rangkaian Thevenin

- ukur tegangan pada terminal rangkaian dengan beban terbuka (V_T)
- ukur resistansi terminal dengan sumber nol (R₁)

Jaringan
Pasif
V_S=0
B
N

Gambar 6

© mth 2011

Laboratorium Dasar Teknik Elektro Sekolah Teknik Elektro dan Informatika

Percobaan Theorema Thevenin (2)

- Gantikan rangkaian sumber tegangan dan jaringan N dengan rangkaian Theveninnya (sumber tegangan bernilai V_T dan resistor bernilai R_T)
- Gunakan rangkaian untuk menghitung arus I
- Bandingkan hasilnya dengan pengukuran

Gambar 7

© mth 2011

Laboratorium Dasar Teknik Elektro Sekolah Teknik Elektro dan Informatika

Percobaan Theorema Norton (1)

A V_S B

Jaringan Pasif Linier N Bangun rangkaian Norton

- ukur arus pada terminal rangkaian dengan hubung singkat (I_N)
- Gunakan
 resistansi hasil
 sebelumnya
 untuk (R_N=R_T)

Jaringan Pasif Linier N

 $R_L = \infty \Omega$

© mth 2011

Percobaan Theorema Norton (2)

- Gantikan rangkaian sumber tegangan dan jaringan N dengan rangkaian Nortonnya (sumber arus bernilai I_N dan resistor bernilai R_N)
- Gunakan rangkaian untuk menghitung arus I
- Bandingkan hasilnya dengan pengukutan

Gambar 10

© mth 2011

Catatan:

- Resistansi Thevenin R_T atau Resistansi Norton R_N diperoleh dengan memanfaatkan resistansi variabel yang diset nilainya tepat sebesar R_T atau R_N
- Untuk resistor variabel ini dapat digunakan resistor yang tersedia di kit praktikum atau menggunakan resistor metrik

Percobaan Thorema Superposisi

Lakukan pengamatan (1) dengan V₁=0, V₂ (2) dengan V₁, V₂=0 dan (3) dengan V₁ dan V₂ untuk arus dan tegangan pada R₄

Percobaan Theorema Resiprositas

Lakukan pengamatan berikut

Percobaan Pembagi Tegangan

 Gunakan generator fungsi untuk memberikan teganannya, amati, dan ukur

Merangkai Resistor Seri dan Paralel

- Susun resistor seri dan atau paralel dari yang tersedia untuk nilai
 - -70Ω
 - -870Ω
 - 5,2 k Ω
 - 1,72 M Ω
 - $-36,7 k\Omega$
- Ukur resitansi yang diperoleh

Mengamati Perilaku Statistik Resistor

- Ukur 100 buah resistor 1 kΩ
- Masukkan dalam kelompok jangkauan nilai resistansi, 0-967, 956-972, 973-977, 978-982, 983-987, 988-992, 993-997, 998-1002, 1003-1007, 1008-1012, 1013-1017, 1018-1022,1023-1027, 1028-1032, 1033-...Ω
- Hitung (cacah, count) jumlah resistor dalam masingmasing kelompok
- Gabungkan hasil perhitungan dengan semua kelompok dalam satu rombongan dan buatkan histogramnya
- Lakukan analisis pada sebaran nilai yang diperoleh

Kit Percobaan

Foto Kit Thevenin Norton

SELAMAT MELAKUKAN PERCOBAAN

011 tika