5.8 Minimum Squared Error Procedures

- Criterion function involves all of the samples, not just misclassified ones
- Previously we were interested in making all of the inner products $a^{i}y_{i}$ positive
- Now try to make $a'y_i = b_i$ where b_i are some arbitrarily specified positive constants

5.8 Minimum Squared Error Procedures

Thus replace the problem of solving a set of linear inequalities with more stringent but better understood problem of finding a solution to a set of linear equations

Minimum Squared Error and Pseudoinverse For all the samples $y_i, y_j, ..., y_n$ we want a weight vector a so that $a^i y_i = b_i$ for some arbitrarily specified positive numbers. The matrix notation:

$$\begin{pmatrix} y_{10} & y_{11} & \dots & y_{1d} \\ y_{20} & y_{21} & \dots & y_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n0} & y_{n1} & \dots & y_{nd} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{d} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix} \Leftrightarrow Ya = b$$

Error vector:

$$e = Ya - b$$

Sum-of-squared-error criterion function:

$$J_{s}(a) = ||Ya - b||^{2} = \sum_{i=1}^{n} (a^{t} y_{i} - b_{i})^{2}$$

The gradient

$$\nabla J_{s} = \sum_{i=1}^{n} 2(a^{t} y_{i} - b_{i}) y_{i} = 2Y^{t} (Ya - b)$$

Set it to zero, we get $Y^{t}Ya = Y^{t}b$

If
$$Y^tY$$
 is nonsingular, $a = (Y^tY)^{-1}Y^tb = Y^+b$

The d by n matrix Y^+ is call the pseudoinverse of Y.

Remarks: For an arbitrarily fixed b, MSE solution may not be a separating vector.

Example of Linear Classifier by Pseudoinverse

- ω_1 : $(1,2)^t$ and $(2,0)^t$
- ω_2 : $(3,1)^t$ and $(2,3)^t$

Sample Matrix (d = 1+2, n = 4)

$$Y = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 0 \\ -1 & -3 & -1 \\ -1 & -2 & -3 \end{bmatrix}$$

Spring 2005

Assuming
$$b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

our solution is
$$a = Y^t b = \begin{bmatrix} 11/3 \\ -4/3 \\ -2/3 \end{bmatrix}$$

How to classify new samples (test samples)?

$$a.y > 0$$
 $a.y < 0$

First class

Second class

y

: new sample

The Widrow-Hoff or LMS Procedure

(1) Iterative procedure: no matrix inverse

(2) Need not converge to a separating hyperplane even if there exist one

5.9 The Ho-Kashyap Procedure

Take the criterion function as a function of two variables a and b:

$$J_{s}(a,b) = ||Ya - b||^{2}$$
, where $b > 0$

If the training samples are linearly separable, then there should exist an \hat{a} and \hat{b} such that: $Y\hat{a} = \hat{b} > 0$

If we knew such \hat{b} beforehand. We would get the separating vector \hat{a} using the MSE procedure

$$\nabla_{a}J_{s} = 2Y'(Ya - b)$$

$$\nabla_{b}J_{s} = -2(Ya - b)$$

$$a = Y^{+}b$$

$$b(k+1) = b(k) - \eta \frac{1}{2} \left[\nabla_{b} J_{s} - \left| \nabla_{b} J_{s} \right| \right]$$

Ho-Kashyap Procedure

$$b(k+1) = a(k) + 2\eta(k)e + (k)$$

$$e + (k) = (e(k) + |e(k)|)/2$$

$$e(k) = Ya(k) - b(k)$$

$$a(k) = inv(Y'Y)Y'b(k)$$

■ 5.12 Multicategory Generalizations

Generalization for MSE Procedure consider multicategory case as a set of c two-

class problem

$$a_{i}^{t} y = 1 \text{ for all } y \in Y_{i} \\ a_{i}^{t} y = 0 \text{ for all } y \notin Y_{i}$$

$$A = \begin{bmatrix} a_{1} & a_{2} & \dots & a_{c} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{c1} \\ a_{12} & a_{22} & \dots & a_{c2} \\ \dots & \dots & \dots & \dots \\ a_{1d} & a_{2d} & \dots & a_{cd} \end{bmatrix}$$

$$Y = \begin{bmatrix} Y_{11} & Y_{112} & \cdots & Y_{11d} \\ Y_{121} & Y_{122} & \cdots & Y_{12d} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{2} & \vdots & \vdots & \ddots & \vdots \\ Y_{c11} & Y_{c12} & \cdots & Y_{c1d} \\ Y_{c21} & Y_{c22} & \cdots & Y_{c2d} \end{bmatrix}$$

 Generalization for MSE Procedure consider multicategory case as a set of c twoclass problem

$$B = \begin{bmatrix} B_1 \\ B_2 \\ \dots \\ B_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 1 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \\ 0 & 0 & \dots & 1 \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

$$YA = B$$

 $A = Y^{+}B$
 $= inv(Y'Y)Y'B$

Nonlinear Minimum Squared Error Procedures:

Just for your reference

Recently proposed new metho

Equivalent to the Minimum Squared Error Procedures in feature space

Nonlinear transform

Nonlinear Minimum Squared

Nonlinear Minimum Squared Error Procedures

Nonlinear Minimum Squared **Error Procedures**

Original Minimum Squared Error procedure in the original space:

$$\begin{pmatrix} y_{10} & y_{11} & \dots & y_{1d} \\ y_{20} & y_{21} & \dots & y_{2d} \\ \dots & \dots & \dots & \dots \\ y_{n0} & y_{n1} & \dots & y_{nd} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \dots \\ a_d \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \dots \\ -1 \end{pmatrix} \Leftrightarrow Ya = B$$

Minimum Squared Error procedure in the new space:

$$Z\beta = B$$

$$Z\beta = B$$
 $Z = [Z_1...Z_n]$ $Z_i = \varphi(Y_i)$

$$Z_i = \varphi(Y_i)$$

Nonlinear Minimum Squared Error Procedures: KMSE

Because of

$$\beta = \sum_{j=1,\dots,n} \gamma_j \varphi(Y_j) \qquad \varphi(Y_i)^T \varphi(Y_j) = k(Y_i, Y_j)$$

$$K\gamma = B$$

we have
$$K\gamma = B$$

$$K = \begin{pmatrix} k(Y_1, Y_1) & k(Y_1, Y_2) & \dots & k(Y_1, Y_n) \\ k(Y_2, Y_1) & k(Y_2, Y_2) & \dots & k(Y_2, Y_n) \\ \dots & \dots & \dots & \dots \\ k(Y_n, Y_1) & k(Y_n, Y_2) & \dots & k(Y_n, Y_n) \end{pmatrix}$$

Nonlinear Minimum Squared Error Procedures: KMSE

Kernel functions:

(1)
$$k(Y_i, Y_j) = \exp(-\frac{\|Y_i - Y_j\|^2}{\sigma})$$

(2)
$$k(Y_i, Y_j) = (Y_i^T Y_j + c)^d$$

Nonlinear Minimum Squared Error Procedures: KMSE

Training phase:

Obtain
$$\gamma = K^{-1}B$$

Testing phase (b is the output of testing sample V):

$$b = \sum_{i=1}^{n} \gamma_i k(Y_i, Y)$$

If j is closer to 1 than -1, then the testing sample is classified into the first otherwise it is classified into the second class

Disadvantage of and improvement to KMSE

■ The more the training samples, the higher the computational complexity!

If
$$\beta = \sum_{j=1,...,s} \gamma'_j \varphi(Y_j), s \ll n$$

Then $b = \sum_{i=1}^{s} \gamma'_i k(Y_i, Y)$ and the computational complexity will be greatly reduced.

Disadvantage of and improvement to KMSE: one improvement

Disadvantage of and improvement to KMSE: another improvement

Nonlinear Minimum Squared Error Procedures : KMSE

References

- Yong Xu, David Zhang, Zhong Jin, Miao Li, Jing-Yu Yang, A fast kernel-based nonlinear discriminant analysis for multi-class problems, Pattern Recognition, 2006, 39(6): 1026-1033.
- Yong Xu, J.-Y. Yang, J.-F. Lu, An efficient kernel-based nonlinear regression method for two-class classification, Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, August, 2005, pp.4442-4445.
- Yong Xu, David Zhang, Fengxi Song, Jing-Yu Yang, Zhong Jing, Miao Li, A method for speeding up feature extraction based on KPCA, Neurocomputing, 70, 1056-1061,2007
- 徐勇,张大鹏,杨健,模式识别中的核方法及其应用,北京:国防工业出版社(优秀图书二等 奖),2010