Regularization

Big Data Lectures - Chapter 4

Lexin Li

Division of Biostatistics University of California, Berkeley

Outline

- ▶ list of topics:
 - (partial) motivation: really large p
 - ► general framework
 - ▶ L₂ regularization
 - ▶ L₁ regularization
 - ightharpoonup variants of L_1 regularization
 - additional remarks

© 2017 Lexin Li Big Data: Chapter 4 2 / 24

General Framework

Introduction

- why regularization?
 - \triangleright can effectively handle n < p, highly correlated predictors
 - can improve interpretation
 - can incorporate prior subject knowledge, e.g., structure, smoothness
 - can stabilize the estimates and improve the risk property
 - powerful, principled, simple

©2017 Lexin Li Big Data: Chapter 4 4 / 24

Introduction

- why regularization?
 - \triangleright can effectively handle n < p, highly correlated predictors
 - can improve interpretation
 - can incorporate prior subject knowledge, e.g., structure, smoothness
 - can stabilize the estimates and improve the risk property
 - powerful, principled, simple
- a general regularization problem:

$$\min_{f \in \mathcal{H}} \left[\sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda J(f) \right]$$

- ▶ L(y, f(x)) is a point-wise loss function, J(f) is a penalty functional, and \mathcal{H} is a space of candidate functions
- examples:
 - ► ridge regression; lasso; adaptive lasso; group lasso; fused lasso; elastic net; SCAD; smoothing splines; manifold regularization; . . .

Loss function

- classification $y = \pm 1$:
 - ▶ misclassification loss: $I(sign(f(x)) \neq y)$
 - exponential loss: $\exp(-yf)$
 - ▶ binomial deviance: log(1 + exp(-2yf))
 - squared error: $(y f)^2 = (1 yf)^2$
 - ▶ SVM hinge loss: $[1 yf]_+$
 - \triangleright all are monotone decreasing functions of the margin yf(x)
 - the margin plays a role analogous to the residual y f(x) in regression
 - ▶ positive margin $y_i f(\mathbf{x}_i) > 0$ correctly classified; negative margin $y_i f(\mathbf{x}_i) < 0$ misclassified
- regression:
 - squared error: $(y f)^2$
 - ▶ absolute error: |y f|
 - ▶ Huber loss: $(y f)^2$ for $|y f| \le \delta$ and $2\delta |y f| \delta^2$ o.w.

©2017 Lexin Li Big Data: Chapter 4 5 / 24

Loss function

6 / 24

Loss function

© 2017 Lexin Li Big Data: Chapter 4 7 / 24

L_1 and L_2 Regularization

▶ ridge regression:

$$\min \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

equivalent form:

$$\min \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2 \quad \text{subject to } \sum_{j=1}^{p} \beta_j^2 \le \tau$$

matrix form: after centering all predictors and response

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

where
$$\|\boldsymbol{\beta}\|_2 = (\sum_{i=1}^p \beta_i^2)^{1/2}$$
, $\mathbf{y} \in \mathbb{R}^{n \times 1}, \mathbf{X} \in \mathbb{R}^{n \times p}$

© 2017 Lexin Li Big Data: Chapter 4 9 / 24

▶ ridge (closed form) solution:

$$\hat{oldsymbol{eta}}^{ ext{ridge}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- add a positive constant to the diagonal of X^TX before inversion
- ▶ hence, can handle n < p and/or highly correlated predictors
- ▶ let $X = UDV^{\mathsf{T}}$ singular value decomposition

$$\begin{split} \mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{ols}} &= \boldsymbol{U}\boldsymbol{U}^{\mathsf{T}}\mathbf{y} = \sum_{j=1}^{p} \boldsymbol{u}_{j}\boldsymbol{u}_{j}^{\mathsf{T}}\mathbf{y} \\ \mathbf{X}\hat{\boldsymbol{\beta}}^{\mathrm{ridge}} &= \boldsymbol{U}\boldsymbol{D}(\boldsymbol{D}^{2} + \lambda\boldsymbol{I})^{-1}\boldsymbol{D}\boldsymbol{U}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{p} \boldsymbol{u}_{j}\frac{\boldsymbol{d}_{j}^{2}}{\boldsymbol{d}_{i}^{2} + \lambda}\boldsymbol{u}_{j}^{\mathsf{T}}\mathbf{y} \end{split}$$

▶ compute the coordinates of **y** wrt the orthonormal basis **U** then **shrink** these coordinates by the factors $d_i^2/(d_i^2 + \lambda)$

©2017 Lexin Li Big Data: Chapter 4 10 / 24

▶ ridge shrinkage:

- ▶ a greater amount of shrinkage is applied to the coordinates of basis vectors with smaller d_i^2
- ▶ the small singular values d_j correspond to directions in the column space of X having small variance
- ridge regression shrinks those least important principal components directions the most
- the underlying assumption: the response tends to vary most in the directions of high variance of the predictors

© 2017 Lexin Li Big Data: Chapter 4 11 / 24

© 2017 Lexin Li Big Data: Chapter 4 12 / 24

L_1 regularization

► lasso:

$$\min \left\{ \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

equivalent form:

$$\min \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le \tau$$

▶ matrix form: after centering all predictors and response

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

where
$$\|\boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\beta_j|$$

13 / 24

©2017 Lexin Li Big Data: Chapter 4

L_1 regularization

Comparison of L_1 and L_2 regularizations

▶ for orthonormal columns of X:

ridge
$$\hat{\beta}_j/(1+\lambda)$$

lasso $\operatorname{sign}(\hat{\beta}_j)(|\hat{\beta}_j|-\lambda)_+$

© 2017 Lexin Li Big Data: Chapter 4 15 / 24

Comparison of L_1 and L_2 regularizations

L_1 regularization

- lasso shrinkage:
 - lasso shrinks those coefficients whose magnitudes are less than a threshold λ , and shifts those by the amount of threshold whose magnitudes are greater
 - the underlying assumption: the response is only associated with a usually very small subset of the predictors — sparsity principle
- piecewise linear solution path: in general

$$\hat{\boldsymbol{\beta}}(\lambda) = \arg\min_{\beta} \left[R(\boldsymbol{\beta}) + \lambda J(\boldsymbol{\beta}) \right]$$

$$R(\beta) = \sum_{i=1}^{n} L(y_i, \beta_0 + \sum_{i=1}^{p} x_{ij}\beta_j)$$

then the solution path is piecewise linear if

- \triangleright R is quadratic or piecewise quadratic as a function of β , and
- ightharpoonup J is piecewise linear in β

©2017 Lexin Li Big Data: Chapter 4 17 / 24

L_1 regularization

- computation via least angle regression: entire solution path
 - a forward stepwise strategy
 - extremely efficient, requiring the same order of computation as that of a single least squares fit
- **computation** via **coordinate descent**: solution over a grid of λ values
 - rewrite the optimization problem to isolate β_j

$$\sum_{i=1}^{n} \left(y_i - \sum_{k \neq j} x_{ik} \hat{\beta}_k^{(t)}(\lambda) - x_{ij} \beta_j \right)^2 + \lambda \sum_{k \neq j} |\hat{\beta}_k^{(t)}(\lambda)| + \lambda |\beta_j|$$

the explicit soft-thresholding solution

$$\hat{\beta}_j^{(t+1)} = s \left(\sum_{i=1}^n x_{ij} [y_i - \sum_{k \neq j} x_{ik} \hat{\beta}_k^{(t)}(\lambda)], \lambda \right)$$

where $s(u, \lambda) = \operatorname{sign}(u)(|u| - \lambda)_+$

super fast since soft thresholding is fast and often yields 0

- standardization:
 - without loss of generality, assume all predictors and response are centered, so no intercept term
 - predictors are often marginally standardized to have variance 1

©2017 Lexin Li Big Data: Chapter 4 19 / 24

- standardization:
 - without loss of generality, assume all predictors and response are centered, so no intercept term
 - predictors are often marginally standardized to have variance 1
- adaptive lasso:

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1^w$$

- $\|\beta\|_1^w = \sum_{i=1}^p w_i |\beta_i| = \sum_{i=1}^p |\beta_i| / |\beta_i^{ols}|$
- ▶ intuition: if $|\beta_i^{ols}|$ is large, give less penalization; if $|\beta_i^{ols}|$ is small, give more penalization
- nice asymptotic properties / oracle properties: (a) can select all truly relevant predictors with probability going to 1; (b) can estimate the true linear model coefficients with same efficiency as if the subset were known a priori

► group lasso:

$$\min \|\mathbf{y} - \sum_{g=1}^G \mathbf{X}_g \boldsymbol{\beta}_g \|_2^2 + \lambda \sum_{g=1}^G \sqrt{p_g} \|\boldsymbol{\beta}_g \|_2$$

- predictors are divided into G groups $\mathbf{X}_1, \dots, \mathbf{X}_G$
- $ightharpoonup \|oldsymbol{eta}_g\|_2 = \sqrt{oldsymbol{eta}_g^{\mathsf{T}}oldsymbol{eta}_g}$ (Euclidean norm, not squared)
- encourage the entire group of predictors to drop out; suitable for, e.g., dummy variables coding one discrete predictor
- fussed lasso:

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\Delta(\boldsymbol{\beta})\|_1$$

- $\|\Delta(\beta)\|_1 = \sum_{j=2}^p |\beta_j \beta_{j-1}|$
- encourage sparsity of the coefficients and also sparsity of their successive differences; suitable for when features can be ordered meaningful way; e.g., a functional curve, mass spectroscopy

©2017 Lexin Li Big Data: Chapter 4 20 / 24

elastic net:

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2^2$$

- ▶ a combination of L_1 and L_2 regularization
- encourage a grouping effect, where strongly correlated predictors tend to be in or out of the model together
- particularly useful for p >> n
- Dantzig selector:

$$\min \|\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\|_{\infty}$$
 subject to $\|\boldsymbol{\beta}\|_{1} \leq \tau$

- $\|\cdot\|_{\infty}$ is the L_{∞} norm, i.e., the maximum absolute value of the components of the vector
- replace squared error loss in lasso by the maximum absolute value of its gradient
- \triangleright some interesting mathematics properties; useful for p >> n

© 2017 Lexin Li Big Data: Chapter 4 21 / 24

► SCAD:

- replace the lasso penalty with the smoothly clipped absolute deviation penalty so that larger coefficients are shrunken less severely
- ▶ nice oracle properties

© 2017 Lexin Li Big Data: Chapter 4 22 / 24

More examples of regularization

- ▶ there are many many regularization methods: different penalty functions for different purposes, for different models, e.g., mixed model, longitudinal model, survival model, . . .
- ▶ inference in regularized estimation!
- what assumptions are imposed?
- any alternative methods?

Additional readings

Hastie, H., Tibshirani, R., and Friedman, J. (2001). Elements of Statistical Learning. Springer. Chapter 3

