

MATEMATIKA

MAMZD13C0T04

DIDAKTICKÝ TEST

Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %

1 Základní informace k zadání zkoušky

- Didaktický test obsahuje 26 úloh.
- **Časový limit** pro řešení didaktického testu je **uveden na záznamovém archu.**
- Povolené pomůcky: psací a rýsovací potřeby, Matematické, fyzikální a chemické tabulky a kalkulátor bez grafického režimu, bez řešení rovnic a úprav algebraických výrazů.
- U každé úlohy je uveden maximální počet bodů.
- Odpovědi pište do záznamového archu.
- Poznámky si můžete dělat do testového sešitu, nebudou však předmětem hodnocení.
- Nejednoznačný nebo nečitelný zápis odpovědi bude považován za chybné řešení.
- První část didaktického testu (úlohy 1–15) tvoří **úlohy otevřené.**
- Ve druhé části (úlohy 16–26) jsou uzavřené úlohy, které obsahují nabídku odpovědí.
 U každé úlohy nebo podúlohy je právě jedna odpověď správná.
- Za nesprávnou nebo neuvedenou odpověď se **neudělují záporné body.**

2 Pravidla správného zápisu odpovědí

- Odpovědi zaznamenávejte modře nebo černě píšící propisovací tužkou, která píše dostatečně silně a nepřerušovaně.
- U úloh, kde budete rýsovat obyčejnou tužkou, následně obtáhněte čáry propisovací tužkou.
- Hodnoceny budou pouze odpovědi uvedené v záznamovém archu.

2.1 Pokyny k otevřeným úlohám

 Výsledky pište čitelně do vyznačených bílých polí.

- Je-li požadován celý postup řešení, uveďte jej do záznamového archu. Pokud uvedete pouze výsledek, nebudou vám přiděleny žádné body.
- **Zápisy uvedené mimo** vyznačená bílá pole **nebudou hodnoceny.**
- Chybný zápis přeškrtněte a nově zapište správné řešení.

2.2 Pokyny k uzavřeným úlohám

 Odpověď, kterou považujete za správnou, zřetelně zakřížkujte v příslušném bílém poli záznamového archu, a to přesně z rohu do rohu dle obrázku.

 Pokud budete chtít následně zvolit jinou odpověď, zabarvěte pečlivě původně zakřížkované pole a zvolenou odpověď vyznačte křížkem do nového pole.

- Jakýkoliv jiný způsob záznamu odpovědí a jejich oprav bude považován za nesprávnou odpověď.
- Pokud zakřížkujete více než jedno pole, bude vaše odpověď považována za nesprávnou.

TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Obsah testového sešitu je chráněn autorskými právy. Jakékoli jeho užití, jakož i užití jakékoli jeho části pro komerční účely či pro jejich přímou i nepřímou podporu bez předchozího explicitního písemného souhlasu CERMATu bude ve smyslu obecně závazných právních norem považováno za porušení autorských práv.

1 Jsou dány množiny $A = (-\infty; -1)$ a $B = \langle -2; -1 \rangle$.

Zapište intervalem $A \cup B$.

1 bod

2 Zjednodušte a vyjádřete jako mocninu celého čísla:

$$\frac{(3\cdot 5)^{60}}{5^{60}}\cdot 3^{120} =$$

1 bod

3 Pro $x, y \in \mathbb{R}$ rozložte na součin dvojčlenů:

$$25x^2 - 9y^4 =$$

4 Pro $a \in \mathbb{R} \setminus \{0,5;1\}$ zjednodušte:

$$(a-1):\left(2-\frac{2}{2a-1}\right)=$$

V záznamovém archu uveďte celý postup řešení.

max. 2 body

5 V oboru R řešte:

$$2 \cdot \frac{3y}{5} = \frac{2y - 3}{2} + 1$$

V záznamovém archu uveďte celý postup řešení.

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOHÁM 6-7

V Kocourkově postavili schodiště na Kocouří vyhlídku. Všechny schody mají šířku 45 cm. Nejvyšší je první schod, každý následující schod je o 0,5 cm nižší. První schod má výšku 42 cm, poslední jen 0,5 cm.

Rozměry v obrázku jsou uvedeny v centimetrech.

(CERMAT)

1 bod

6 Vypočtěte v centimetrech, jakou vodorovnou vzdálenost *d* překonává schodiště na Kocouří vyhlídku.

1 bod

7 Vypočtěte v centimetrech výšku v celého schodiště na Kocouří vyhlídku.

Funkce f s reálnou proměnnou x má předpis:

$$y = (x - 1)(x - 3)$$

(CERMAT)

max. 3 body

8

- 8.1 Zapište souřadnice průsečíku Y[x; y] grafu funkce f se souřadnicovou osou y.
- 8.2 Sestrojte graf funkce f.

V záznamovém archu obtáhněte graf funkce propisovací tužkou.

VÝCHOZÍ TABULKA K ÚLOZE 9

x	9	3 ⁶	3	
$y = \log_3 z$	2			0

(CERMAT)

1 bod

9 V tabulce doplňte chybějící hodnoty.

10 V oboru R řešte:

$$\frac{x}{2} = 1 + \frac{4}{x}$$

VÝCHOZÍ TEXT A GRAF K ÚLOZE 11

Firma uvádí v reklamním letáku, že ve druhém čtvrtletí (duben až červen) vyvezla do zahraničí o 1 000 výrobků více než v prvním čtvrtletí. V květnu vyvezla dokonce dvakrát více výrobků než v únoru. Firma dokládá příznivý trend vývozu grafem.

(CERMAT)

max. 2 body

11 Určete, kolik výrobků vyvezla firma v <u>prvním</u> čtvrtletí.

Rovnoběžník *ABCD* rozděluje úhlopříčka *BD* na dva shodné pravoúhlé trojúhelníky.

D 2 cm C

O B

(CERMAT)

max. 2 body

12 Vypočtěte obvod rovnoběžníku ABCD.

1 bod

13 Obsah jedné stěny krychle je 0,16 m².

Vypočtěte objem krychle.

Bóje na moři má tvar tělesa sestaveného z válce a dvou polokoulí. Výška válce, poloměr válce i poloměr každé z obou polokoulí je 18 cm.

(CERMAT)

max. 2 body

14 Vypočtěte v cm² povrch tělesa.

V záznamovém archu uveďte celý postup řešení.

VÝCHOZÍ TEXT K ÚLOZE 15

Mošt se prodává v 5litrových a 2litrových lahvích. Pan Suchánek si koupil celkem 216 litrů moštu v 60 lahvích. (Všechny zakoupené lahve byly plné.)

(CERMAT)

max. 3 body

15 Užitím <u>rovnice nebo soustavy</u> rovnic **vypočtěte, kolik litrů moštu si** koupil pan Suchánek v 5litrových lahvích.

V záznamovém archu uveďte celý postup řešení.

VÝCHOZÍ TEXT A GRAF K ÚLOZE 16

V kartézské soustavě souřadnic Oxy je sestrojen graf lineární funkce f, jejíž definiční

obor je **R.**

(CERMAT)

max. 2 body

16 Rozhodněte o každém z následujících tvrzení (16.1–16.4), zda je pravdivé (ANO), či nikoli (NE).

16.1	Funkce	f ie konstantn	í.

16.2 Jeden z průsečíků grafu funkce
$$f$$
 se souřadnicovými osami je $P[1; 0]$.

16.3
$$f(0) = 2$$

16.4 Předpis funkce
$$f$$
 je $y = 2 - 2x$.

		ı

VÝCHOZÍ TEXT K ÚLOZE 17

Sklenice má tvar válce s vnitřním **průměrem** 12 cm, výška sklenice ode dna je 16 cm. Seříznutou špejli lze šikmo vložit do sklenice tak, že nepřečnívá přes okraj.

(CERMAT)

2 body

Jaká je největší možná délka seříznuté špejle? (Tloušťka špejle se při výpočtu zanedbává.)

- A) 17 cm
- B) 18 cm
- C) 19 cm
- D) 20 cm
- E) 21 cm

Martin bydlí v ulici *m*, pravděpodobně v některém z domů *A* až *D*. Bratranec Petr bydlí ve druhé ulici *p*. Chlapci by na sebe viděli z oken svých domovů, kdyby jim ve výhledu nepřekážela věž *V*, k níž to mají vzdušnou čarou stejně daleko.

(CERMAT)

2 body

18 Ve kterém domě bydlí Martin?

- A) v domě A
- B) v domě B
- C) v domě C
- D) v domě D
- E) v některém z dalších zobrazených domů

Pásový traktůrek na klíček se pohybuje pomocí dvou pásů. Každý pás je napnutý přes dvě shodná kola. Vnější plocha pásu je černá a vnitřní je bílá, tloušťka pásu se zanedbává.

(CERMAT)

2 body

19 Jaký je obsah černé plochy jednoho pásu?

- A) $4 \cdot (\pi + 10) \text{ cm}^2$
- B) $6 \cdot (\pi + 20) \text{ cm}^2$
- C) $6 \cdot (3\pi + 20) \text{ cm}^2$
- D) $12 \cdot (\pi + 5) \text{ cm}^2$
- E) $12 \cdot (\pi + 10) \text{ cm}^2$

20 Čtverec *ABCD* s **úhlopříčkou** *AC* je umístěn v kartézské soustavě souřadnic *Oxy*. Platí:

$$A[-4; 0], \overrightarrow{AC} = (6; 4)$$

Jaké jsou souřadnice středu S čtverce ABCD?

- A) S[1; 2]
- B) S[3; 2]
- C) S[2; 4]
- D) S[-1; 2]
- E) S[5; -2]

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 21

Jsou dány body A[-2; 3], B[-2; -3].

(CERMAT)

2 body

21 Jakou rovnici má osa o úsečky AB?

- A) x + 6y = 0
- $B) \quad 4x 6y = 0$
- $\mathsf{C)} \quad y = 0$
- D) x = -2
- E) jinou rovnici

VÝCHOZÍ TEXT K ÚLOZE 22

Čtyři pracovníci si rozdělili výdělek následujícím způsobem: první dostal pětinu celkové částky, zbývající tři pracovníci si rozdělili zbytek na tři stejné části.

(CERMAT)

2 body

- 22 V jakém poměru jsou částky prvního a druhého pracovníka v tomto pořadí?
 - A) 3:4
 - B) 4:5
 - C) 5:4
 - D) 5:3
 - E) 3:2

2 body

23 Druhý a třetí člen **geometrické posloupnosti** je $a_2 = 12$, $a_3 = 18$.

Jaký je součet prvních čtyř členů této posloupnosti $(a_1 + a_2 + a_3 + a_4)$?

- A) 60
- B) 64
- C) 65
- D) 72
- E) jiný součet

VÝCHOZÍ TEXT K ÚLOZE 24

Učitel má nominovat 4 chlapce ze třídy do smíšeného volejbalového týmu. Ve třídě je včetně Petra 14 chlapců. Jedním z členů týmu bude Petr a ostatní chlapci se vyberou losem.

(CERMAT)

2 body

24 Kolik různých týmů je možné za těchto podmínek sestavit?

- A) $\binom{14}{3}$
- B) $\binom{13}{3}$
- C) 1 + 13 + 12 + 11
- D) 13 · 12 · 11
- E) jiný počet

max. 4 body

25 Přiřaďte každému výrazu (25.1–25.4) s reálnou proměnnou x definiční obor výrazu (A–F).

- 25.1 log *x* ____
- 25.2 2^x _____
- 25.3 $\frac{1}{x+2} \cdot \frac{x+2}{2}$
- $25.4 \quad \frac{x^2}{\sqrt{4} \cdot x}$
 - A) **R**
 - B) $(0; +\infty)$
 - C) $(2; +\infty)$
 - D) $(-\infty; 0) \cup (0; +\infty)$
 - E) $(-\infty; 2) \cup (2; +\infty)$
 - F) jiná množina

26 Přiřaďte ke každému vztahu (26.1–26.3) odpovídající vyjádření veličiny a (A–E), kde $a,b\in \mathbf{R}$.

26.1
$$b - 2a = 1 - 3a$$

26.2
$$2a - b = b - 2$$

26.3
$$\frac{2a-b}{2} = a+1$$

A)
$$a = b - 1$$

B)
$$a = b + 1$$

C)
$$a = 1 - b$$

D)
$$a = b + 2$$

E) Žádné z uvedených vyjádření nevyhovuje.

KLÍČ SPRÁVNÝCH ŘEŠENÍ

Matematika

Kód testu: MAMZD13C0T04

	Celkem	Uzavřených	Otevřených
Počet úloh	26	11	15

Úloha	Správné řešení	Body
1	$A \cup B = (-\infty; -1)$	1
2	3^{180}	1
3	$(5x - 3y^2)(5x + 3y^2)$	1
4	$\frac{2a-1}{4}$	max. 2 b.
5	$K = \left\{ -\frac{5}{2} \right\}$	max. 2 b.
6	3 780 cm	1
7	1 785 cm	1
8		(max. 3 b.)
8.1	Y[0;3]	1
8.2		2
9	x 9 3 ⁶ 3 1 $y = \log_3 x$ 2 6 1 0	1
10	$K = \{-2; 4\}$	max. 2 b.
11	2 400	max. 2 b.

Maturitní zkouška 2013 –podzimní termín

Úloha	Správné řešení	Body
12	o = 12 cm	max. 2 b.
13	$V = 0.064 \mathrm{m}^3 = \frac{8}{125} \mathrm{m}^3$	1
14	$S = 1944 \text{m cm}^2 \doteq 6107 \text{cm}^2$	max. 2 b.
15	160 litrů	max. 3 b.
16		max. 2 b.
16.1	NE	4 podúlohy 2 b.
16.2	ANO	3 podúlohy 1 b.
16.3	ANO	2 podúlohy 0 b.
16.4	ANO	1 podúloha 0 b.
		0 podúloh 0 b.
17	D	2
18	В	2
19	E	2
20	D	2
21	С	2
22	Α	2
23	С	2
24	В	2
25		max. 4 b.
25.1	В	4 podúlohy 4 b.
25.2	A	3 podúlohy 3 b.
25.3	F	2 podúlohy 2 b.
25.4	D	1 podúloha 1 b.
		0 podúloh 0 b.
26		max. 3 b.
26.1	С	3 podúlohy 3 b.
26.2	А	2 podúlohy 2 b.
26.3	E	1 podúloha 1 b.
		0 podúloh 0 b.
CELKEM		50 bodů

Všechna ekvivalentní vyjádření jsou možná.

Obsah klíče správných řešení je chráněn autorskými právy. Jakékoli jeho užití, jakož i užití jakékoli jeho části pro komerční účely či pro jejich přímou i nepřímou podporu bez předchozího explicitního písemného souhlasu CERMATu bude ve smyslu obecně závazných právních norem považováno za porušení autorských práv.