

Coloration de graphes ; graphes planaires

CM nº10 — Algorithmique (AL5)

Matěj Stehlík 1/12/2023

Cliques

- Une *clique* de G est un sous graphe induit de G qui est complet, c'est-à-dire, il contient toutes les arêtes possibles.
- Le nombre de clique, noté $(\omega)G$), et le nombre de sommets d'une plus grande clique dans G.

Cliques

- Une *clique* de *G* est un sous graphe induit de *G* qui est complet, c'est-à-dire, il contient toutes les arêtes possibles.
- Le nombre de clique, noté $\omega(G)$, et le nombre de sommets d'une plus grande clique dans G.

Cliques

- Une *clique* de *G* est un sous graphe induit de *G* qui est complet, c'est-à-dire, il contient toutes les arêtes possibles.
- Le nombre de clique, noté $\omega(G)$, et le nombre de sommets d'une plus grande clique dans G.

$$\omega(G) = 3$$

Ensembles stables

- Un *stable* de *G* est un sous-ensemble de sommets de *G* deux à deux non adjacents : il induit un sous graphe sans arêtes.
- Autrement dit, $U \subseteq V$ est un stable si et seulement si $uv \notin E$ pour toute paire de sommets $u, v \in U$.
- Le nombre de stabilité, noté $\alpha(G)$, est le nombre de sommets d'un plus grand stable de G.

Ensembles stables

- Un *stable* de *G* est un sous-ensemble de sommets de *G* deux à deux non adjacents : il induit un sous graphe sans arêtes.
- Autrement dit, $U \subseteq V$ est un stable si et seulement si $uv \notin E$ pour toute paire de sommets $u, v \in U$.
- Le nombre de stabilité, noté $\alpha(G)$, est le nombre de sommets d'un plus grand stable de G.

Ensembles stables

- Un *stable* de *G* est un sous-ensemble de sommets de *G* deux à deux non adjacents : il induit un sous graphe sans arêtes.
- Autrement dit, $U \subseteq V$ est un stable si et seulement si $uv \notin E$ pour toute paire de sommets $u, v \in U$.
- Le nombre de stabilité, noté $\alpha(G)$, est le nombre de sommets d'un plus grand stable de G.

$$\alpha(G) = 3$$

Relation entre cliques et stables

Observation

Les sommets d'une clique de G correspondent à un stable du complémentaire \overline{G} , et un stable de G correspond à l'ensemble de sommets d'une clique de \overline{G} . En particulier, $\omega(G)=\alpha(\overline{G})$ et $\alpha(G)=\omega(\overline{G})$.

Relation entre cliques et stables

Observation

Les sommets d'une clique de G correspondent à un stable du complémentaire \overline{G} , et un stable de G correspond à l'ensemble de sommets d'une clique de \overline{G} . En particulier, $\omega(G)=\alpha(\overline{G})$ et $\alpha(G)=\omega(\overline{G})$.

Relation entre cliques et stables

Observation

Les sommets d'une clique de G correspondent à un stable du complémentaire \overline{G} , et un stable de G correspond à l'ensemble de sommets d'une clique de \overline{G} . En particulier, $\omega(G)=\alpha(\overline{G})$ et $\alpha(G)=\omega(\overline{G})$.

Coloration

- Une k-coloration d'un graphe G = (V, E) est une application $c: V \to \{1, \dots, k\}$ telle que $c(u) \neq c(v)$ pour toute arête $uv \in E$.
- Classe chromatique : l'ensemble des sommets d'une couleur.
- Les classes chromatiques sont des stables.
- Le plus petit entier k tel qu'il existe une k-coloration de G est le nombre chromatique de G, qu'on note $\chi(G)$.

Application: planning des examens

- Les étudiants ont des examens dans toutes les UE auxquelles ils s'inscrivent.
- Les examens de deux UE différentes ne peuvent avoir lieu en même temps s'il y a des étudiants inscrits à ces deux cours.
- Pour trouver un planning avec le moins de sessions, considérons le graphe *G* dont l'ensemble de sommets est l'ensemble de toutes les UE, deux UE étant reliés par une arête s'il font l'objet d'un conflit.
- Les stables de G correspondent aux groupes de UE sans conflit.
- Ainsi le nombre minimum de sessions requis est le nombre chromatique de G.

Application: Sudoku

Nombre chromatique de certains graphes

Exemple

Nombre chromatique et sous-graphes

Observation

Si $H \subseteq G$, alors $\chi(H) \leq \chi(G)$.

Démonstration

- Soit c une coloration de G.
- La restriction de c aux sommets de H définit une coloration de H.
- Donc, $\chi(H) \leq \chi(G)$.

Relation entre χ et ω

Proposition

Soit G un graphe quelconque. Alors, $\chi(G) \geq \omega(G)$.

Démonstration

- Par la définition de ω , G contient un sous-graphe complet H à $\omega(G)$ sommets.
- Par l'observation précédente, $\chi(G) \geq \omega(G)$.
- L'écart entre χ et ω peut être arbitrairement grand.
- Pour tout $k \geq 2$, il existe un graphe G tel que $\chi(G) = k$ et $\omega(G) = 2$.

*

- Soit G un graphe quelconque, avec sommets v_1, \ldots, v_n .
- Formons le graphe M(G) à partir de G comme suit.
- Nous ajoutons n+1 nouveaux sommets $u_1, \ldots, u_n, *$.
- Nous relions chaque u_i aux voisins de v_i dans G, ainsi qu'à *.

- Soit G un graphe quelconque, avec sommets v_1, \ldots, v_n .
- Formons le graphe M(G) à partir de G comme suit.
- Nous ajoutons n+1 nouveaux sommets $u_1, \ldots, u_n, *$.
- Nous relions chaque u_i aux voisins de v_i dans G, ainsi qu'à *.

- Soit G un graphe quelconque, avec sommets v_1, \ldots, v_n .
- Formons le graphe M(G) à partir de G comme suit.
- Nous ajoutons n+1 nouveaux sommets $u_1, \ldots, u_n, *$.
- Nous relions chaque u_i aux voisins de v_i dans G, ainsi qu'à *.

- Soit G un graphe quelconque, avec sommets v_1, \ldots, v_n .
- Formons le graphe M(G) à partir de G comme suit.
- Nous ajoutons n+1 nouveaux sommets $u_1, \ldots, u_n, *$.
- Nous relions chaque u_i aux voisins de v_i dans G, ainsi qu'à *.

- Soit G un graphe quelconque, avec sommets v_1, \ldots, v_n .
- Formons le graphe M(G) à partir de G comme suit.
- Nous ajoutons n+1 nouveaux sommets $u_1, \ldots, u_n, *$.
- Nous relions chaque u_i aux voisins de v_i dans G, ainsi qu'à *.

- Soit G un graphe quelconque, avec sommets v_1, \ldots, v_n .
- Formons le graphe M(G) à partir de G comme suit.
- Nous ajoutons n+1 nouveaux sommets $u_1, \ldots, u_n, *$.
- Nous relions chaque u_i aux voisins de v_i dans G, ainsi qu'à *.

Le théorème de Mycielski (1/2)

Théorème (Mycielski)

 $\chi(M(G)) = \chi(G) + 1$ pour tout graphe G. Si G est sans triangle, alors M(G) est sans triangle.

Démonstration

- Nous allons d'abord prouver l'assertion sur les triangles.
- Supposons que M(G) contient un triangle T.
- Comme les sommets u_i forment un stable, soit T est dans G (et on a terminé), soit T contient deux sommets v_i, v_j de G et un sommet u_k .
- Dans ce cas, les sommets v_i, v_j, v_k forment un triangle de G.
- Nous avons montré que si G est sans triangle, alors M(G) est sans triangle.

Le théorème de Mycielski (2/2)

Démonstration (suite)

- Étant donné une k-coloration optimale de G, on peut étendre cette coloration à une (k+1)-coloration de M(G) en coloriant les sommets u_1, \ldots, u_n avec la couleur k+1, et le sommet * avec la couleur 1.
- Cela montre que $\chi(M(G)) \leq \chi(G) + 1$.
- Soit c une coloration optimale de M(G).
- On définit une coloration c' de G comme

$$c'(v_i) = \begin{cases} c(v_i) & \text{si } c(v_i) \neq c(*) \\ c(u_i) & \text{si } c(v_i) = c(*). \end{cases}$$

• On a économisé la couleur c(*), donc $\chi(G) \leq \chi(M(G)) - 1$.

Relation entre χ et α

Proposition

Soit G un graphe à n sommets. Alors, $\chi(G) \geq \lceil n/\alpha(G) \rceil$.

Démonstration

- Une coloration est une partition des sommets en stables.
- Comme chaque stable est de taille inférieure ou égale à $\alpha(G)$, il faut au moins $n/\alpha(G)$ stables pour recouvrir tous les sommets.
- Donc, $\chi(G) \ge n/\alpha(G)$, et comme $\chi(G)$ est un entier, on a $\chi(G) \ge \lceil n/\alpha(G) \rceil$.
- L'écart entre χ et n/α peut être arbitrairement grand.
- Pour tout $k \ge 2$ et tout $\varepsilon > 0$, il existe un graphe G tel que $\chi(G) = k$ et $\alpha(G) < n/2 + \varepsilon$.

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Entrées : Un graphe G=(V,E) avec un ordre total v_1,v_2,\ldots,v_n sur les sommets

Sorties : Une coloration de G

Une conséquence de l'algorithme glouton

Théorème

Soit G un graphe avec degré maximum Δ . Alors, $\chi(G) \leq \Delta + 1$.

- Cette borne est serrée pour deux familles de graphes :
 - les graphes complets : $\Delta(K_n) = n 1$, $\chi(K_n) = n$
 - les cycles impairs : $\Delta(C_{2k+1}) = 2$, $\chi(C_{2k+1}) = 3$
- La borne est stricte pour tout graphe n'appartennant pas à une de ces deux familles.

Théorème de Brooks

Si G est un graphe connexe de degré maximum Δ , qui n'est ni un cycle impair ni un graphe complet, alors $\chi(G) \leq \Delta$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $i-i \neq 1$
- L'algorithme glouton utilise *k* couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $i-i \neq 1$
- L'algorithme glouton utilise *k* couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $i-i \neq 1$
- L'algorithme glouton utilise *k* couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $i-i \neq 1$
- L'algorithme glouton utilise *k* couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $i-i \neq 1$
- L'algorithme glouton utilise *k* couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \dots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $j i \neq 1$
- L'algorithme glouton utilise k couleurs.
- Pourtant, $\chi(G) = 2$.

- Considérons le graphe G_k avec sommets v_1, v_2, \ldots, v_{2k}
- $v_i v_j \in E(G_{2k})$ ssi i est impair, j est pair, et $i-i \neq 1$
- L'algorithme glouton utilise *k* couleurs.
- Pourtant, $\chi(G) = 2$.

Dégénérescence

Définition

Un graphe est d-dégénéré s'il existe un ordre sur les sommets tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus d.

- Graphes de degré maximum Δ sont Δ -dégénérés.
- Arbres sont 1-dégénérés.
- Le théorème suivant est une conséquence directe de l'algorithme glouton.

Théorème

Si G est d-dégénéré, alors $\chi(G) \leq d+1$.

Graphes bipartis

Définition

Un graphe G=(V,E) est *biparti* si $\chi(G)\leq 2$. C'est-à-dire, on peut partitionner l'ensemble de sommets V en deux sous-ensembles stables A,B.

Exemples de graphes bipartis

Caractérisation de graphes bipartis

Théorème

Un graphe est biparti si et seulement s'il ne contient pas de cycles impairs comme sous-graphe.

Démonstration

- Un cycle de longueur impaire n'est pas biparti.
- Donc, si G est biparti, alors G ne contient aucun cycle impair.

Caractérisation de graphes bipartis

Démonstration (suite)

- Soit *G* un graphe connexe ne contenant aucun cycle impair comme sous-graph. (Si le graphe n'est pas connexe, on considère chaque composante connexe séparément).
- Soit T un arbre couvrant de G, et fixons un sommet r de T.
- Soit A l'ensemble de sommets de G dont la distance à r est paire, est soit $B = V \setminus A$.
- Nous montrerons que A et B sont des classes chromatiques d'une 2-coloration de G.

Caractérisation de graphes bipartis

Démonstration (suite)

- Il suffit de montrer que toute arête uv de G a une extrémité dans A et l'autre dans B.
- Si $uv \in E(T)$, c'est évidemment le cas.
- Si $uv \in E(G) \setminus E(T)$, le graphe $T \cup \{e\}$ contient un cycle élémentaire C.
- Comme $T \cup \{uv\} \subseteq G$, le cycle C est de longueur paire.
- La Chaîne élémentaire unique entre u et v dans T doit être de longueur impaire.
- Donc, u et v sont dans des parties différentes de (A,B).

Graphes planaires

Définition

Un graphe G = (V, E) est *planaire* s'il peut être représenté dans le plan \mathbb{R}^2 de sorte que deux arêtes distinctes ne se croisent pas. On appelle une telle représentation un *plongement* de G dans le plan, ou parfois un graphe *plan*.

Application

Design de circuits imprimés en microélectronique

 K_4

plongement de K_4 dans le plan

Définition

Soit G un graphe plongé dans le plan \mathbb{R}^2 . Les composantes connexes de $\mathbb{R}^2 \setminus G$ sont les faces de G.

Exemple

Définition

Soit G un graphe plongé dans le plan \mathbb{R}^2 . Les composantes connexes de $\mathbb{R}^2 \setminus G$ sont les faces de G.

Exemple

Définition

Soit G un graphe plongé dans le plan \mathbb{R}^2 . Les composantes connexes de $\mathbb{R}^2 \setminus G$ sont les faces de G.

Exemple

Définition

Soit G un graphe plongé dans le plan \mathbb{R}^2 . Les composantes connexes de $\mathbb{R}^2 \setminus G$ sont les faces de G.

Exemple

Définition

Soit G un graphe plongé dans le plan \mathbb{R}^2 . Les composantes connexes de $\mathbb{R}^2 \setminus G$ sont les faces de G.

Exemple

Le graphe dual

Définition

- Soit G un graphe plongé dans le plan.
- On définit le graphe dual G^* de G comme suit.
- À chaque face f de G correspond un sommet f^* de G^*
- À chaque arête e de G correspond un arête e^* de G.
- Deux sommets f^*, g^* de G^* sont les extrémités de l'arête e^* si et seulement si l'arête e sépare les faces f et g de G.

Le graphe dual

Remarques

- Le graphe dual n'est défini que pour un graphe planaire *plongé*
- *G* et *G** peuvent être des multigraphes (on permet des arêtes parallèles et des boucles).
- Il y a une bijection entre les arêtes de G et de G^* .
- En particulier, $|E(G)| = |E(G^*)|$.

 G^*

La formule d'Euler

Théorème (formule d'Euler)

Soit G un graphe connexe plongé dans le plan, avec n, sommets, m arêtes et f faces. Alors, n-m+f=2.

$$n = 8$$
$$m = 12$$
$$f = 6$$

• G = (V, E) graphe plan connexe.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- T: arêtes d'un arbre couvrant de G.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- T: arêtes d'un arbre couvrant de G.
- T^* : arêtes de G^* correspondant aux arêtes de $E(G) \setminus T$.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- T: arêtes d'un arbre couvrant de G.
- T^* : arêtes de G^* correspondant aux arêtes de $E(G) \setminus T$.
- (V, T) acyclique $\implies (V^*, T^*)$ connexe.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- T: arêtes d'un arbre couvrant de G.
- T^* : arêtes de G^* correspondant aux arêtes de $E(G) \setminus T$.
- (V, T) acyclique $\implies (V^*, T^*)$ connexe.
- (V, T) connexe $\implies (V^*, T^*)$ acyclique.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- T: arêtes d'un arbre couvrant de G.
- T^* : arêtes de G^* correspondant aux arêtes de $E(G) \setminus T$.
- (V, T) acyclique $\implies (V^*, T^*)$ connexe.
- (V, T) connexe $\implies (V^*, T^*)$ acyclique.
- T^* forment un arbre couvrant de G^*

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- T: arêtes d'un arbre couvrant de G.
- T^* : arêtes de G^* correspondant aux arêtes de $E(G) \setminus T$.
- (V, T) acyclique $\implies (V^*, T^*)$ connexe.
- (V, T) connexe $\implies (V^*, T^*)$ acyclique.
- T^* forment un arbre couvrant de G^*
- |T| = n 1 et $m |T| = |T^*| = f 1$.

- G = (V, E) graphe plan connexe.
- $G^* = (V^*, E^*)$ le graphe dual.
- *T* : arêtes d'un arbre couvrant de *G*.
- T^* : arêtes de G^* correspondant aux arêtes de $E(G) \setminus T$.
- (V, T) acyclique $\implies (V^*, T^*)$ connexe.
- (V, T) connexe $\implies (V^*, T^*)$ acyclique.
- T^* forment un arbre couvrant de G^*
- |T| = n 1 et $m |T| = |T^*| = f 1$.
- m = (n-1) + (f-1) = n + f 2.

Nombre d'arêtes dans les graphes planaires

Corollaire

Soit G un graphe planaire avec n sommets et m arêtes. Alors, $m \leq 3n - 6$.

Démonstration

- Soit *G* un graphe planaire.
- Chaque face de G est bordée par au moins 3 arêtes.

- Tous les sommets de G^* ont degré au moins 3.
- $2m = \sum_{v \in V(G^*)} d(v) \ge \sum_{v \in V(G^*)} 3 = 3f$.
- Donc, $f \le 2m/3$.
- Par la formule d'Euler, $m-n+2=f\leq 2m/3$.
- On conclut que $m \leq 3n 6$.

Dégénérescence des graphes planaires

Corollaire

Tout graphe planaire contient un sommet de degré au plus 5. C'est-à-dire, tout graphe planaire est 5-dégénéré.

Démonstration

- Soit G un graphe planaire avec n sommets et m arêtes.
- Supposons par l'absurde que $d(v) \ge 6$ pour tous les sommets de G.
- Donc, le nombre d'arêtes de G est

$$m = \frac{1}{2} \sum_{v \in V(G)} d(v) \ge \frac{1}{2} \sum_{v \in V(G)} 6 = 3n.$$

• Cela contredit le corollaire précédent, qui affirme que $m \leq 3n - 6$.

Nombre d'arêtes dans les graphes planaires sans triangle

Corollaire

Soit G un graphe planaire avec n sommets et m arêtes. Alors, $m \leq 2n-4$.

Démonstration

- Soit G un graphe planaire.
- Chaque face de G est bordée par au moins 4 arêtes.
- Tous les sommets de G^* ont degré au moins 4.
- $2m = \sum_{v \in V(G^*)} d(v) \ge \sum_{v \in V(G^*)} 4 = 4f$.
- Donc, $f \leq m/2$.
- Par la formule d'Euler, $m-n+2=f\leq m/2$.
- On conclut que $m \leq 2n 4$.

Exemples de graphes non planaires

Corollaire

Le graphe complet K_5 n'est pas planaire.

Démonstration

• On a $m = 10 > 9 = 3 \cdot 5 - 6 = 3n - 6$.

Corollaire

Le graphe biparti complet $K_{3,3}$ n'est pas planaire.

Démonstration

• On a $m = 9 > 8 = 2 \cdot 6 - 4 = 2n - 4$.

L'énigme des trois maisons

Caractérisation des graphes planaires

Définition

Une *subdivision* d'un graphe est le résultat de l'ajout d'un ou plusieurs sommets sur une ou plusieurs arêtes.

Une subdivision de $K_{3,3}$

Théorème de Kuratowski

Un graphe G est planaire si et seulement si G ne contient pas de subdivision de K_5 ni de $K_{3,3}$.

À quoi ça sert?

- Imaginons qu'on doit convaincre quelqu'un qu'un graphe G est ou non planaire.
- ullet Certificat de planarité : un plogement de G dans le plan.
- Certificat de non planarité : une subdivision de K_5 ou de $K_{3,3}$ comme sous-graphe.
- Le théorème de Kuratowski *garantit l'existence* d'un certificat de planarité ou de non planarité.

Coloration de cartes

Problème des 4 couleurs (Guthrie 1852)

Est-il possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes reçoivent toujours deux couleurs distinctes?

Coloration de cartes

Problème des 4 couleurs (Guthrie 1852)

Est-il possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes reçoivent toujours deux couleurs distinctes?

Théorème (Appel et Haken 1976)

Si G est un graphe planaire, alors $\chi(G) \leq 4$.

- Démonstration extrêmement compliquée, vérification de milliers de cas avec un ordinateur.
- Nous allons prouver un résultat plus faible.

Théorème

Si G est un graphe planaire, alors $\chi(G) \leq 6$.

Démonstration

- Si G est planaire, alors G est 5-dégénéré par le corollaire précédent.
- Par le théorème du cours magistral précédent, $\chi(G) \leq 6$.
- On peut faire mieux...

Théorème

Si G est un graphe planaire, alors $\chi(G) \leq 5$.

Démonstration (1/6)

- Par récurrence sur le nombre de sommets.
- Soit A(n) l'assertion "Tout graphe planaire avec au plus n sommets a nombre chromatique au plus 5".
- Case de base A(1) est trivial.
- Supposons que A(n) est vraie, où $n \ge 1$.
- Soit G un plongement d'un graphe planaire à n+1 sommets.

Démonstration (2/6)

- On peut 5-colorier G-v par l'hypothèse de récurrence.
- Si G a un sommet v de degré au plus 4, on peut étendre la coloration à une 5-coloration de G.
- Donc, on peut supposer que tous les sommets sont de degré au moins 5.
- Par le corollaire à la formule d'Euler, il y a un sommet v de degré exactement 5.

Démonstration (3/6)

- Toute 5-coloration de G-v peut être étendue à une 5-coloration de G, sauf si toutes les couleurs apparaissent dans le voisinage de v.
- Supposons sans perte de généralité que v_i est colorié i.
- Soit G_{ij} le sous-graphe de G induit par tous les sommets coloriés i ou j.

Démonstration (4/6)

- Supposons que la composante connexe de G_{13} contenant v_1 ne contient pas v_3 .
- Échangeons les couleurs 1 et 3 dans cette composante.
- On obtient une 5-coloration de G-v où la couleur 1 n'apparaît pas dans le voisinage de v.
- On peut alors étendre cette coloration à une 5-coloration de G; contradiction.

Démonstration (5/6)

- Donc, v_1 et v_3 sont dans la même composante connexe de G_{13} .
- En particulier, il existe une chaîne P_{13} dans G_{13} entre v_1 et v_3 .
- Par le même argument, il existe une chaîne P_{24} dans G_{24} entre v_2 et v_4 .
- Les chaînes P_{13} et P_{24} s'intersectent, et comme elles sont sommet-disjointes, une arête de P_{13} doit croiser une arête de P_{24} .
- Cela contredit l'hypothèse qu'on a un plongement de *G* dans le plan.

Démonstration (5/6)

- Donc, v_1 et v_3 sont dans la même composante connexe de G_{13} .
- En particulier, il existe une chaîne P_{13} dans G_{13} entre v_1 et v_3 .
- Par le même argument, il existe une chaîne P_{24} dans G_{24} entre v_2 et v_4 .
- Les chaînes P_{13} et P_{24} s'intersectent, et comme elles sont sommet-disjointes, une arête de P_{13} doit croiser une arête de P_{24} .
- Cela contredit l'hypothèse qu'on a un plongement de *G* dans le plan.

Démonstration (5/6)

- Donc, v_1 et v_3 sont dans la même composante connexe de G_{13} .
- En particulier, il existe une chaîne P_{13} dans G_{13} entre v_1 et v_3 .
- Par le même argument, il existe une chaîne P_{24} dans G_{24} entre v_2 et v_4 .
- Les chaînes P_{13} et P_{24} s'intersectent, et comme elles sont sommet-disjointes, une arête de P_{13} doit croiser une arête de P_{24} .
- Cela contredit l'hypothèse qu'on a un plongement de *G* dans le plan.

Démonstration (6/6)

- Donc, on peut toujours étendre une 5-coloration de G-v à une coloration de G.
- Cela démontre que A(n+1) est vraie.
- Le théorème est alors prouvé par récurrence.