534 Rec'd PCT/PTC 3 0 OCT 2000

SEQUENCE LISTING

<110> Japan Science And Technology Corporation

<120> Nicotianamine synthase, genes coding nicotianamine synthase

<130> PA906235

<160> 22

<210> 1

<211> 328

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Ala	Gln	Asn	Lys	Glu	Val	Ala	Ala	Leu	Ile	Glu	Lys	Ile	15
Ala	${\tt Gly}$	Ile	Gln	Ala	Ala	Ile	Ala	Glu	Leu	Pro	Ser	Leu	Ser	Pro	30
Ser	Pro	Glu	Val	Asp	Arg	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	45
Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Ser	Pro	Glu	His	60
Gln	Arg	Met	Arg	Glu	Ala	Leu	Ile	Arg	Leu	Cys	Ser	Ala	Ala	Glu	75
Gly	Lys	Leu	${\tt Glu}$	Ala	His	Tyr	Ala	Asp	Leu	Leu	Ala	Thr	Phe	Asp	90
Asn	Pro	Leu	Asp	His	Leu	Gly	Leu	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	105
Val	Asn	Leu	Ser	Arg	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	His	Val	120
Pro	Gly	Ile	Ala	Pro	Ala	Arg	Val	Ala	Phe	Val	Gly	Ser	Gly	Pro	135
Leu	Pro	Phe	Ser	Ser	Leu	Val	Leu	Ala	Ala	His	His	Leu	Pro	Glu	150
Thr	Gln	Phe	Asp	Asn	Tyr	Asp	Leu	Cys	Gly	Ala	Ala	Asn	Glu	Arg	165
Ala	Arg	Lys	Leu	Phe	Gly	Ala	Thr	Ala	Asp	Gly	Val	Gly	Ala	Arg	180
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Gln	Glu	Leu	195

Gly	Ala	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Gļu	Lys	Ala	Lys	Val	Ιlе	Ala	His	Leu	Gly	Ala	His	Met	225
Val	Glu	Gly	Ala	Ser	Leu	Val	Val	Arg	Ser	Ala	Arg	Pro	Arg	Gly	240
Phe	Leu	Tyr	Pro	Ile	Val	Asp	Pro	Glu	Asp	Ile	Arg	Arg	Gly	Gly	255
Phe	Glu	Val	Leu	Ala	Val	His	His	Pro	Glu	Gly	Glu	Val	Ile	Asn	270
Ser	Val	Ile	Val	Ala	Arg	Lys	Ala	Val	Glu	Ala	Gln	Leu	Ser	Gly	285
Pro	Gln	Asn	Gly	Asp	Ala	His	Ala	Arg	Gly	Ala	Val	Pro	Leu	Val	300
Ser	Pro	Pro	Çys	Asn	Phe	Ser	Thr	Lys	Met	Glu	Ala	Ser	Ala	Leu	315
Glu	Lys	Ser	Glu	Glu	Leu	Thr	Ala	Lys	Glu	Leu	Ala	Phe			328

<211> 1295

<212> DNA

<213> Hordeum vulgare L.

<400> 2

10 20 30 40 50 60 GCGTTCAGAG GCTTCCAGAG TTCTTCCGGT CACCAAGAAG CATTTGATCA TAACATGGAT

70 80 90 100 110 120 GCCCAGAACA AGGAGGTCGC TGCTCTGATC GAGAAGATCG CCGGTATCCA GGCCGCCATC

130 140 150 160 170 180 GCCGAGCTGC CGTCGCTGAG CCCGTCCCCC GAGGTCGACA GGCTCTTCAC CGACCTCGTC

ACGGCCTGCG TCCCGCCGAG CCCCGTCGAC GTGACGAAGC TCAGCCCGGA GCACCAGAGG

250 260 270 280 290 300

				_	
GGCGCACTAC	GGAAGCTCGA	GCCGCCGAGG	CTTGTGCTCC	CTCTCATCCG	ATGCGGGAGG
360	350	340	330	320	310
CCCGTACTAC	TCGGCCTCTT	CTCGACCACC	CGACAACCCG	TCGCCACCTT	GCCGACCTGC
420	410	400	390	380	370
CGTGCCGGGC	TGGCGCGCCA	TACGAGCTCC	CAGGCTGGAG	TCAACCTCAG	AGCAACTACG
480	470	460	450	440	430
				CGCGCGTCGC	
540	530	520	510	500	490
CGGCGCGGCC	ACGACCTGTG	TTCGACAACT	CGAGACCCAG	ACCACCTGCC	CTCGCCGCGC
	-			m	
600	590	580	570	560	550
GCGTATGTCG	GCGTCGGCGC	ACGGCGGACG	GTTCGGCGCG	CCAGGAAGCT	AAUGAGUGUG
660	650	640	630	620	610
CGTGGTCTTC	GCGCCTACGA	CAGGAGCTCG	CGACCTCACC	CGGACGTCGC	TTCCACACGG
				•	
720	710	700	690	680	670
CCACCTGGGC	AGGTGATTGC	GAGAAGGCCA	GGCAGCCGAG	TCGTCGGCAT	CTCGCCGCGC
F.0.0	770	500	77.0	7.40	700
780	770	760	750	740	730
CUUCITICIT		UIUUUUAUUU	diccoludic	TGGAGGGGC	GOGORORIGO
840	830	820	810	800	790
GGCCGTGCAC	TCGAGGTGCT	CGGGGTGGGT	GGACATCAGG	TCGACCCGGA	TACCCCATTG

850	860	870	880	890	900
CACCCGGAAG	GTGAGGTGAT	CAACTCTGTC	ATCGTCGCCC	GTAAGGCCGT	CGAAGCGCAG
910	920	930	940	950	960
CTCAGTGGGC	CGCAGAACGG	AGACGCGCAC	GCACGGGGCG	CGGTGCCGTT	GGTCAGCCCG
970	980	990	1000	1010	1020
CCATGCAACT	TCTCCACCAA	GATGGAGGCG	AGCGCGCTTG	AGAAGAGCGA	GGAGCTGACC
1030	1040	1050	1060	1070	1080
GCCAAAGAGC	TGGCCTTTTG	ATTGAAGAGT	GCGCGTGGTC	ATTCTGTCGC	CTGCGATCGT
1090	1100	1110	1120	1130	1140
GGTAACTTTC	CTACTCGTGT	GTGTTTTGAT	GTTTGTGCCT	GTAAGAGTTA	TGCTTCCGGC
1150	1160	1170	1180	1190	1200
CTTGTGCTGT	TAATTTACAC	GCGTTACATG	TAGTACTTGT	ATTTATACCT	GGAATAACGG
1210	1220	1230	1240	1250	1260
TATGTAACAT	AAATATTAGT	GGGATTTGAA	GTGTAATGCT	AAATAATAAG	AAAACTTGAT
1270	1280	1290	1300		
GCAGACATTC	AAAAAAAA	AAAAAAAA	AAAAA		

<211> 335

<212> PRT

<213> Hordeum vulgare L.

Met	Ala	Ala	Gln	Asn	Asn	Gln	Glu	Val	Asp	Ala	Leu	Val	Glu	Lys	15
Ile	Thr	Gly	Leu	His	Ala	Ala	Ile	Ala	Lys	Leu	Pro	Ser	Leu	Ser	30
Pro	Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Glu	Leu	Val	Thr	Ala	45
Cys	Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Gly	Pro	Glu	60
Ala	Gln	Glu	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	Ala	75
Glu	Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	Phe	90
Asp	Lys	Pro	Leu	Asp	His	Leu	Gly	Met	Phe	Pro	Tyr	Tyr	Asn	Asn	105
Tyr	Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	Tyr	120
Val	Pro	Gly	Gly	Tyr	Arg	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	135
Gly	Pro	Leu	Pro	Phe	Ser	Ser	Phe	Val	Leu	Ala	Ala	Arg	His	Leu	150
Pro	Asp	Thr	Met	Phe	Asp	Asn	Ťyr	Asp	Leu	Cys	Gly	Ala	Ala	Asn	165
Asp	Arg	Ala	Ser	Lys	Leu	Phe	Arg	Ala	Asp	Arg	Asp	Val	Gly	Ala	180
Arg	Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Ala	${\tt Gl}{\bm y}$	Glu	195
Leu	Ala	Lys	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	210
Ala	Ala	Glu	Asp	Lys	Ala	Lys	Val	Ile	Ala	His	Leu	Gly	Ala	His	225
Met	Ala	Asp	Gly	Ala	Ala	Leu	Val	Val	Arg	Ser	Ala	His	Gly	Ala	240
Arg	Gly	Phe	Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	255
Gly	Gly	Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	270
Val	Asn	Ser	Val	Ile	Ile	Ala	Gln	Lys	Ser	Lys	Asp	Val	His	Ala	285
Asp	Gly	Leu	Gly	Ser	Gly	Arg	Gly	Ala	Gly	Gly	Gln	Tyr	Ala	Arg	300
Gly	Thr	Val	Pro	Val	Val	Ser	Pro	Pro	Cys	Arg	Phe	Gly	Glu	Met	315
Val	Ala	Asp	Val	Thr	Gln	Asn	His	Lys	Arg	Asp	Glu	Phe	Ala	Asn	330
Ala	Glu	Val	Ala	Phe											335

<211> 1342

<212> DNA

<213> Hordeum vulgare L.

10	20	30	40	50	60
CTCCTGTGCC	TGTCCTGAGG	TACCAAGAAC	ACCAGTGAAA	TGGCTGCCCA	GAACAACCAG
70	80	90	100	110	120
GAGGTGGATG	CCCTGGTGGA	GAAGATCACC	GGGCTCCATG	CCGCAATCGC	CAAGCTGCCG
130	140	150	160	170	180
TCGCTCAGCC	CATCCCCGGA	CGTCGACGCG	CTCTTCACGG	AGCTGGTCAC	GGCGTGCGTT
190	200	210	220	230	240
CCACCGAGTC	CAGTGGACGT	GACCAAGCTC	GGGCCGGAGG	CGCAGGAGAT	GCGGGAGGGC
250	260	270	280	290	300
CTCATCCGCC	TATGCTCCGA	GGCCGAGGGG	AAGCTGGAGG	CGCACTACTC	CGACATGCTC
310	320	330	340	350	360
GCCGCCTTCG	ACAAGCCGCT	GGATCACCTC	GGCATGTTCC	CCTACTACAA	CAACTACATC
370	380	390	400	410	420
AACCTCAGCA	AGCTCGAGTA	CGAGCTCCTG	GCCCGCTACG	TGCCTGGCGG	CTATCGCCCG
430		450			
GCGCGCGTCG	CGTTCATCGG	CTCCGGCCCG	CTGCCGTTCA	GCTCCTTTGT	CCTGGCCGCG
490	500	510	520	530	540

CGCCACCTGC	CCGACACCAT	GTTCGACAAC	TATGACCTGT	GCGGTGCGGC	CAACGATCGC
550	560	570	580	590	600
GCCAGCAAGC	TCTTCCGCGC	GGATCGCGAC	GTGGGTGCCC	GCATGTCGTT	CCACACGGCC
610	620	630	640	650	660
GACGTCGCGG	ACCTCGCCGG	CGAGCTCGCC	AAGTACGACG	TTGTCTTCCT	GGCCGCACTC
670	680	690	700	710	720
GTCGGCATGG	CCGCCGAGGA	CAAGGCGAAG	GTGATCGCGC	ACCTCGGCGC	ACACATGGCA
730	740	750	760	770	780
GACGGGGCGG	CCCTCGTCGT	GCGCAGCGCA	CACGGAGCGC	GCGGGTTCCT	GTACCCGATC
790	800	810	820	830	840
GTCGACCCC	AGGACATCGG	CCGAGGCGGG	TTCGAGGTGC	TGGCCGTGTG	CCATCCCGAC
252	0.00	0.50	000	0.00	000
850	860	870	880	890	900
GACGACGTGG	TGAACTCCGT	CATCATCGCA	CAGAAGTCCA	AGGACGTGCA	TGCCGATGGA
910	920	930	940	950	960
CTTGGCAGCG	GGCGTGGTGC	CGGTGGACAG	TACGCGCGGG	GCACGGTGCC	TGTTGTCAGC
970	980	990	1000	1010	1020
	GGTTCGGCGA		•		
2 2 2 2 2 2 4 4 0 1 4	,	, 22 - 3 - 3		-	
1030	1040	1050	1060	1070	. 1080
TTTGCCAACG	CCGAAGTGGC	CTTTTGATCG	TTCGCTGCGA	GGGTGTGCAT	CCATGATCCA

1090 1100 1110 1120 1130 1140

TCCATACCTC GTTCTGTGAT TGCATCAAGC TTGCAATCGT ATGCATTTCA AGTCACGTGT

1150 1160 1170 1180 1190 1200

TGCTTCTATC CAATAATGTA CGTGTGGTGT TTACACGCGA ATGTCTTGTA GACCTTTGTA

1210 1220 1230 1240 1250 1260

TGTGTACAAG TGAATTTTAA TTCACAAGTA CATATAATGG TCACCATTGA AAAGATGTTT

1270 1280 1290 1300 1310 1320

AGTGTGTGTT TTCCAATATA TGTTTGTGTA AGGTTCATCA TCTAATAAAA TATGTTTGGA

1330 1340 1350

ACCCAAAAA AAAAAAAAA AA

<210> 5

<211> 335

<212> PRT

<213> Hordeum vulgare L.

<400> 5

Met Ala Ala Gln Asn Asn Asn Lys Asp Val Ala Ala Leu Val Glu

Lys Ile Thr Gly Leu His Ala Ala Ile Ala Lys Leu Pro Ser Leu

30
Ser Pro Ser Pro Asp Val Asp Ala Leu Phe Thr Glu Leu Val Thr

45
Ala Cys Val Pro Pro Ser Pro Val Asp Val Thr Lys Leu Gly Pro

Glu Ala Gln Glu Met Arg Glu Gly Leu Ile Arg Leu Cys Ser Glu

75
Ala Glu Gly Lys Leu Glu Ala His Tyr Ser Asp Met Leu Ala Ala

90
Phe Asp Asn Pro Leu Asp His Leu Gly Ile Phe Pro Tyr Tyr Ser

Asn	Tyr	Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	120
Tyr	Val	Arg	Arg	His	Arg	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	135
Gly	Pro	Leu	Pro	Phe	Ser	Ser	Phe	Val	Leu	Ala	Ala	Arg	His	Leu	150
Pro	Asp	Thr	Met	Phe	Asp	Asn	Tyr	Asp	Leu	Cys	Gly	Ala	Ala	Asn	165
Asp	Arg	Ala	Ser	Lys	Leu	Phe	Arg	Ala	Asp	Thr	Asp	Val	Gly	Ala	180
Arg	Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Ala	Ser	Glu	195
Leu	Ala	Lys	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	210
Ala	Ala	Glu	Asp	Lys	Ala	Lys	Val	Ile	Ala	His	Leu	Gly	Ala	His	225
Met	Ala	Asp	Gly	Ala	Ala	Leu	Val	Val	Arg	Ser	Ala	His	Gly	Ala	240
Arg	Gly	Phe	Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	255
Gly	Gly	Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	270
Val	Asn	Ser	Val	Ile	Ile	Ala	Gln	Lys	Ser	Lys	Glu	Val	His	Ala	285
Asp	Gly	Leu	Gly	Ser	Ala	Arg	Gly	Ala	Gly	Arg	Gln	Tyr	Ala	Arg	300
Gly	Thr	Val	Pro	Val	Val	Ser	Pro	Pro	Cys	Arg	Phe	Gly	Glu	Met	315
Val	Ala	Asp	Val	Thr	Gln	Asn	His	Lys	Arg	Asp	Glu	Phe	Ala	Asn	330
Ala	Glu	Val	Ala	Phe											335

<211> 1314

<212> DNA

<213> Hordeum vulgare L.

<400> 6

10 20 30 40 50 60

CTACTTCACT CACACTAGTG CCCAGAAAGA AGGCTGCAAT GGCTGCCCAG AACAACAACA

70 80 90 100 110 120 AGGATGTCGC TGCCCTGGTG GAGAAGATCA CCGGGCTCCA CGCCGCCATC GCCAAGCTGC

130	140	150	160	170	180
CGTCGCTCAG	CCCATCCCCG	GACGTCGACG	CGCTCTTCAC	CGAGCTGGTC	ACGGCGTGCG
190	200	210	220	230	240
TTCCCCCGAG	CCCCGTGGAC	GTGACCAAGC	TCGGCCCCGA	GGCGCAGGAG	ATGCGGGAGG
250	260	270	280	290	300
GCCTCATCCG	CCTCTGCTCC	GAGGCCGAGG	GGAAGCTGGA	GGCGCACTAC	TCCGACATGC
310	320	330	340	350	360
TCGCCGCCTT	CGACAACCCG	CTGGATCACC	TCGGCATCTT	CCCCTACTAC	AGCAACTACA
370	380	390	400	410	420
TCAACCTCAG	CAAGCTGGAG	TACGAGCTCC	TGGCACGCTA	CGTCCGGCGG	CATCGCCCGG
430	440	450	460	470	480
CCCGCGTCGC	GTTCATCGGC	TCCGGCCCGC	TGCCGTTCAG	CTCCTTTGTC	CTGGCCGCGC
490	500	510	520	530	540
GCCACCTGCC	CGACACCATG	TTTGACAACT	ACGACCTTTG	CGGCGCGGCC	AACGATCGCG
550	560	570	580	590	600
CCAGCAAGCT	CTTCCGCGCG	GACACGGACG	TGGGTGCCCG	CATGTCGTTC	CACACGGCCG
610	620	630	640	650	660
ACGTCGCGGA	CCTCGCCAGC	GAGCTCGCCA	AGTACGACGT	CGTCTTCCTG	GCCGCGCTCG
670	680	690	700	710	720
TCGGCATGGC	CGCCGAGGAC	AAGGCCAAGG	TGATCGCGCA	CCTCGGCGCA	CACATGGCAG

730	740	750	760	770	780
ACGGGGCGGC	CCTCGTCGTG	CGCAGCGCAC	ACGGAGCGCG	CGGGTTCCTG	TACCCGATTG
790	800	810	820	830	840
TCGACCCCCA	GGACATCGGC	CGCGGCGGGT	TCGAGGTGCT	GGCCGTGTGC	CACCCCGACG
850	860	870	880	890	900
ACGACGTGGT	GAACTCCGTC	ATCATCGCAC	AGAAGTCCAA	GGAGGTGCAT	GCCGATGGAC
910	920	930	940	950	960
TTGGCAGCGC	GCGTGGTGCC	GGTCGACAGT	ACGCGCGCGG	CACGGTGCCG	GTTGTCAGCC
970	980	990	1000	1010	1020
CCCCGTGCAG	GTTCGGTGAG	ATGGTGGCGG	ATGTGACCCA	GAACCACAAG	AGAGACGAGT
1030	1040	1050	1060	1070	1080
TTGCCAACGC	CGAAGTGGCC	TTTTGATCGA	TCGTCGCCAA	GGGACAATAA	ATGAACGTGG
1090	1100	1110	1120	1130	1140
ATGTGGTAGG	GTAATTTGCC	TACCTCGCTG	CTTGATCGCT	TGCAATATGT	GCACATTTTC
1150	1160	1170	1180	1190	1200
CTACTACCGC	TGCTTATGCA	TTTCAAGCCA	TGTGATGTTG	GTATCCAATA	AAGTATGTGT
				•	
1210	1220	1230	1240	1250	1260
AGGGTTTACA	CGCAAATGTC	TTTACACCTT	GTACGTGTAA	GTGTTGACAA	CGATGAATTT
1270	1280	1290	1300	1310	1320

CAGTTCACAA TTAATAAATA GTATAATGGA TTCAAAAAAA AAAAAAAAA AAAA

<210> 7

<211> 329

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Gly	Gln	Ser	Glu	Glu	Val	Asp	Ala	Leu	Val	Gln	Lys	Ile	15
Thr	Gly	Leu	His	Ala	Ala	Ile	Ala	Lys	Leu	Pro	Ser	Leu	Ser	Pro	30
Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	45
Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Ala	Pro	Glu	Ala	60
Gln	Ala	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	Ala	Glu	75
Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	Phe	Asp	90
Asn	Pro	Leu	Asp	His	Leu	Gly	Val	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	105
Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	Tyr	Val	120
Pro	Gly	Arg	His	Arg	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	Gly	135
Pro	Leu	Pro	Phe	Ser	Ser	Tyr	Val	Leu	Ala	Ala	Arg	His	Leu	Pro	150
Asp	Thr	Val	Phe	Asp	Asn	Tyr	Asp	Leu	Cys	Gly	Ala	Ala	Asn	Asp	165
Arg	Ala	Thr	Arg	Leu	Phe	Arg	Ala	Asp	Lys	Asp	Val	Gly	Ala	Arg	180
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Asp	Glu	Leu	195
Ala	Thr	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Asp	Lys	Ala	Lys	Val	Ile	Ala	His	Leu	Gly	Ala	His	Met	225
Ala	Asp	Gly	Ala	Ala	Leu	Val	Ala	Arg	His	Gly	Ala	Arg	Gly	Phe	240
Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	Gly	Gly	Phe	255
Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	Val	Asn	Ser	270
Val	Ile	Ile	Ala	Gln	Lys	Ser	Asn	Asp	Val	His	Glu	Tyr	Gly	Leu	285
Gly	Ser	Gly	Arg	Gly	Gly	Arg	Tyr	Ala	Arg	Gly	Thr	Val	Val	Pro	300

Val Val Ser Pro Pro Cys Arg Phe Gly Glu Met Val Ala Asp Val Thr Gln Lys Arg Glu Glu Phe Ala Asn Ala Glu Val Ala Phe <210> 8 <211> 1249 <212> DNA <213> Hordeum vulgare L. <400> 8 CCACTACCGA CTACCGTAGT ACCGTGCCTC AGAGCTCATC ACTGGTCAGG TACCAAGAAG ACATAAAAAT GGACGGCCAG AGCGAGGAGG TCGACGCCCT TGTCCAGAAG ATCACCGGCC TCCACGCCGC CATCGCCAAG CTGCCCTCGC TCAGCCCGTC CCCGGACGTC GACGCGCTCT. TCACCGACCT GGTCACCGCG TGCGTGCCCC CGAGCCCCGT GGACGTGACC AAGCTCGCCC CGGAGGCGCA GGCGATGCGG GAGGGCCTCA TCCGCCTCTG CTCCGAGGCC GAGGGCAAGC

370 380 390 400 410 420 TCTTCCCCTA CTACAGCAAC TACATCAACC TCAGCAAGCT TGAGTACGAG CTCCTCGCGC

TGGAGGCGCA CTACTCCGAC ATGCTCGCCG CCTTCGACAA CCCGCTCGAC CACCTCGGCG

430	440	450	460	470	480
GCTACGTGCC	CGGCAGGCAT	CGCCCGGCCC	GCGTCGCCTT	CATCGGCTCC	GGCCCGCTGC
490	500	510	520	530	540
CGTTCAGCTC	CTACGTCCTC	GCCGCGCGCC	ACCTGCCCGA	CACCGTGTTC	GACAACTACG
550	560	570	580	590	600
ACCTGTGCGG	CGCGGCCAAC	GACCGCGCGA	CCAGGCTGTT	CCGCGCGGAC	AAGGACGTCG
610	620	630	640	650	660
GCGCCCGCAT	GTCGTTCCAC	ACCGCCGACG	TCGCGGACCT	CACCGACGAG	CTCGCTACGT
670	680	690	700	710	720
ACGACGTCGT	CTTCCTGGCC	GCGCTCGTGG	GCATGGCCGC	CGAGGACAAG	GCCAAGGTGA
730	740	750	760	770	780
TCGCGCACCT	TGGCGCGCAC	ATGGCGGACG	GGGCGGCCCT	CGTTGCGCGG	CACGGCGCGC
790	800	810	820	830	840
GTGGGTTCCT	CTACCCGATC	GTCGATCCCC	AGGACATCGG	TCGAGGCGGG	TTCGAGGTGC
850	860	870	880	890	900
			TGAACTCCGT	CATCATCGCA	CAAAAGAGCA
910	920	930	940	950	960
			GGCGTGGTGG		
NOUNUITUUN	JUNUINIUUN	DUDAUUU	GOOGIGGIGG	Modulmodod	Junuunuuu
070	000	000	1000	1010	1 0 0 0
970	980	990	1000	1010	1020

TGGTGCCGGT GGTCAGCCCA CCCTGCAGGT TCGGCGAGAT GGTGGCAGAC GTGACCCAGA

1030 1040 1050 1060 1070 1080
AGAGAGAGGA GTTTGCCAAC GCGGAAGTGG CCTTCTGATT GCTGCTGAAT CGCTTGTGAT

1090 1100 1110 1120 1130 1140 CGTACGTGGT AATTTTCTA CTACTCCTCC TCCTACCACC ACCTATCACC TATGTATGCA

1150 1160 1170 1180 1190 1200 TTTCAAGTCG TGTGTTGTTT GTATCCAATA ATGTAAGTGA GATGTTTACA CGCGCAAAAA

<210> 9

<211> 282

<212> PRT

<213> Hordeum vulgare L.

Met	Glu	Ala	Glu	Asn	Gly	Glu	Val	Ala	Ala	Leu	Val	Glu	Lys	Ile	15
Thr	Gly	Leu	His	Ala	Ala	Ile	Ser	Lys	Leu	Pro	Ala	Leu	Ser	Pro	30
Ser	Pro	Gln	Val	Asp	Ala	Leu	Phe	Thr	Glu	Leu	Val	Ala	Ala	Cys	45
Val	Pro	Ser	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Gly	Pro	Glu	Ala	60
Gln	Glu	Met	Arg	Gln	Asp	Leu	Ile	Arg	Leu	Cys	Ser	Ala	Ala	Glu	75
Gly	Leu	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Thr	Ala	Leu	Asp	90
Ser	Pro	Leu	Asp	His	Leu	Gly	Arg	Phe	Pro	Tyr	Phe	Asp	Asn	Tyr	105
Val	Asn	Leu	Ser	Lys	Leu	Glu	His	Asp	Leu	Leu	Ala	Gly	His	Val	120

Ala	Ala	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	Gly	Pro	Leu	Pro	135
Phe	Ser	Ser	Leu	Phe	Leu	Ala	Thr	Tyr	His	Leu	Pro	Asp	Thr	Arg	150
Phe	Asp	Asn	Tyr	Asp	Arg	Cys	Ser	Val	Ala	Asn	G1y	Arg	Ala	Met	165
Lys	Leu	Val	G1y	Ala	Ala	Asp	Glu	Gly	Val	Arg	Ser	Arg	Met	Ala	180
Phe	His	Thr	Ala	Glu	Val	Thr	Asp	Leu	Thr	Ala	Glu	Leu	Gly	Ala	195
Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Thr	Ser	Lys	210
Glu	Lys	Ala	Asp	Ala	Ile	Ala	His	Leu	Gly	Lys	His	Met	Ala	Asp	225
Gly	Ala	Val	Leu	Val	Arg	Glu	Ala	Leu	His	Gly	Ala	Arg	Ala	Phe	240
Leu	Tyr	Pro	Val	Val	Glu	Leu	Asp	Asp	Val	Gly	Arg	Gly	Gly	Phe	255
Gln	Val	Leu	Ala	Val	His	His	Pro	Ala	Gly	Asp	Glu	Val	Phe	Asn	270
Ser	Phe	Ile	Val	Ala	Arg	Lys	Val	Lys	Met	Ser	Ala			,	282

<211> 1044

<212> DNA

<213> Hordeum vulgare L.

<400> 10

GTGACATGGA GGCCGAAAAC GGCGAGGTGG CTGCTCTGGT CGAGAAGATC ACCGGTCTCC ACGCCGCCAT CTCCAAGCTC CCGGCACTAA GCCCGTCTCC TCAAGTCGAC GCGCTCTTCA 1.30 CCGAGCTGGT TGCGGCGTGC GTCCCATCAA GCCCGGTGGA CGTGACCAAG CTCGGCCCGG AGGCGCAGGA GATGCGGCAG GACCTCATCC GTCTCTGCTC GGCCGCCGAG GGGCTGCTCG

250	260	270	280	290	300
AGGCGCACTA	CTCCGACATG	CTCACCGCGT	TGGACAGCCC	GCTCGACCAC	CTCGGCCGCT
310	320	330	340	350	360
TCCCTTACTT	CGACAACTAC	GTCAACCTCA	GCAAGCTCGA	GCACGATCTT	CTGGCAGGTC
370	380	390	400	410	420
ACGTGGCGGC	CCCGGCCCGC	GTGGCGTTCA	TCGGGTCGGG	GCCACTGCCG	TTCAGCTCGC
400	4.40	450	400	450	400
430	440	450	460	470	480
TCTTCCTTGC	GACGTACCAC	CTGCCGGACA	CCCGGTTCGA	CAACTACGAC	CGGTGCAGCG
400	500	510	520	530	540
490		AAGCTGGTCG			
IGGUGAAIGG	CCGGGCGAIG	AAGCIGGICG	dododdodda	CUMUUUCUIU	Udrichouch
550	560	570	580	590	600
		GTCACGGACC			TACGACGTGG
14404110011					
610	620	630	640	650	660
TCTTCCTGGC	CGCGCTCGTG	GGAATGACGT	CCAAGGAGAA	GGCCGACGCC	ATAGCGCACT
670	680	690	700	710	720
TGGGGAAGCA	CATGGCAGAT	GGGGCGGTGC	TCGTGCGCGA	AGCGCTGCAC	GGGGCGCGAG
730	740	750	760	770	780
CGTTCCTGTA	TCCTGTCGTG	GAGCTGGACG	ATGTCGGGCG	TGGTGGGTTC	CAAGTGCTGG
790	800	810	820	830	840

CCGTGCACCA CCCTGCAGGC GATGAGGTGT TCAACTCATT CATAGTTGCC CGGAAGGTGA

850 860 870 880 890 900 AAATGAGTGC TTAAATTAAG AAAAGGGTGA GCCTGTCTGC TTGTGCAAAT GGTGTCTCAC

910 920 930 940 950 960 ATTGATAATA ACCAGATGAT ACCCTGCACA TTGATGGGGG TACTGCAGTA TGTTTCAATG

970 980 990 1000 1010 1020 AGGTCTGGTT GTATCAAATA TGAGTATTTG GCTTAATAAT ATCAGCGAAT ATGTTTCGAT

1030 1040 1050

TAAAAAAAA AAAAAAAAA AAAA

<210> 11

<211> 328

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Ala	Gln	Asn	Lys	Glu	Val	Asp	Ala	Leu	Val	Gln	Lys	Ile	15
Thr	Gly	Leu	His	Ala	Ala	Ile	Ala	Lys	Leu	Pro	Ser	Leu	Ser	Pro	30
Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	45
Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Gly	Ser	Glu	Ala	60
Gln	Glu	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	Ala	Glu	75
Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	Phe	Asp	90
Asn	Pro	Leu	Asp	His	Leu	Gly	Met	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	105
Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	Tyr	Val	120
Pro	Gly	Gly	Ile	Ala	Arg	Pro	Ala	Val	Ala	Phe	Ile	Gly	Ser	Gly	135

Pro	Leu	Pro	Phe	Ser	Ser	Tyr	Val	Leu	Ala	Ala	Arg	His	Leu	Pro	150
Asp	Ala	Met	Phe	Asp	Asn	Tyr	Asp	Leu	Cys	Ser	Ala	Ala	Asn	Asp	165
Arg	Ala	Ser	Lys	Leu	Phe	Arg	Ala	Asp	Lys	Asp	Val	Gly	Ala	Arg	180
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Arg	Glu	Leu	195
Ala	Ala	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Asp	Lys	Ala	Lys	Val	Ile	Pro	His	Leu	Gly	Ala	His	Met	225
Ala	Asp	Gly	Ala	Ala	Leu	Val	Val	Arg	Ser	Ala	Gln	Ala	Arg	Gly	240
Phe	Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	Gly	Gly	255
Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	Val	Asn	270
Ser	Val	Ile	Ile	Ala	His	Lys	Ser	Lys	Asp	Val	His	Ala	Asn	Glu	285
Arg	Pro	Asn	Gly	Arg	Gly	Gly	Gln	Tyr	Arg	Gly	Ala	Val	Pro	Val	300
Val	Ser	Pro	Pro	Cys	Arg	Phe	Gly	Glu	Met	Val	Ala	Asp	Val	Thr	315
His	Lys	Arg	Glu	Glu	Phe	Thr	Asn	Ala	Glu	Val	Ala	Phe			328

<211> 1352

<212> DNA

<213> Hordeum vulgare L.

<400> 12

CTCCACTTCG CTCCTGTGCC TCAGGTAGCC ACAACATACA GTATTAAAAT GGATGCCCAG AACAAGGAGG TTGATGCCCT GGTCCAGAAG ATCACCGGCC TCCACGCCGC CATCGCCAAG

CTGCCGTCCC TCAGCCCATC ACCCGACGTC GACGCGCTCT TCACCGACCT GGTCACCGCG

190	200	210	220	230	240
TGCGTCCCCC	CGAGCCCCGT	GGACGTGACC	AAGCTCGGGT	CGGAGGCGCA	GGAGATGCGG
250	260	270	280	290	300
GAGGGCCTCA	TCCGCCTCTG	CTCCGAGGCC	GAGGGGAAGC	TGGAGGCGCA	CTACTCCGAC
310	320	330	340	350	360
ATGCTGGCCG	CCTTCGACAA	CCCGCTCGAC	CACCTCGGCA	TGTTCCCCTA	CTACAGCAAC
370	380	390	400	410	420
TACATCAACC	TCAGCAAGCT	GGAGTACGAG	CTCCTGGCGC	GCTACGTGCC	GGGCGGCATC
430	440	450	460	470	480
GCCCGGCCCG	CTGTCGCGTT	CATCGGCTCC	GGCCCGCTGC	CGTTCAGCTC	CTACGTCCTC
490	500	510	520	530	540
GCCGCTCGCC	ACCTGCCCGA	CGCCATGTTC	GACAACTACG	ACCTGTGTAG	CGCGGCCAAC
550	560	570	580	590	600
GACCGTGCGA	GCAAGCTGTT	CCGCGCGGAC	AAGGACGTGG	GCGCCCGCAT	GTCTTTCCAC
610					660
ACCGCCGACG	TAGCGGACCT	CACCCGCGAG	CTCGCCGCGT	ACGACGTCGT	CTTCCTGGCC
670	680				
GCGCTCGTGG	GCATGGCTGC	CGAGGACAAG	GCCAAGGTGA	TTCCGCACCT	CGGCGCGCAC
730	740	750	760	770	780

ATGGCGGACG	GGGCGGCCCT	CGTCGTGCGC	AGTGCGCAGG	CACGTGGGTT	CCTCTACCCG
•					
790	800	810	820	830	840
ATCGTCGATC	CCCAGGACAT	CGGTCGAGGC	GGGTTTGAGG	TGCTGGCCGT	GTGTCACCCC
850	860	870	880	890	900
GACGATGACG	TGGTGAACTC	CGTCATCATC	GCACACAAGT	CCAAGGACGT	GCATGCCAAT
910	920	930	940	950	960
GAACGTCCCA	ACGGGCGTGG	TGGACAGTAC	CGGGGCGCGG	TACCGGTGGT	CAGCCCGCCG
970	980	990	1000	1010	1020
TGCAGGTTCG	GTGAGATGGT	GGCGGACGTG	ACCCACAAGA	GAGAGGAGTT	CACCAACGCG
					•
1030	1040	1050	1060	1070	1080
GAAGTGGCCT	TCTGATCGTT	GCGAGGGAAT	GAAAATGAAG	GTGGACGTGT	GTGGTCAGCA
1090	1100	1110	1120	1130	1140
TCCATACGTG	GCTGCCTGCT	TCATCGCTTG	CAATCGTACT	ACTACCTACC	TATGCAGTTC
1150	1160	1170	1180	1190	1200
AAGTCATGTG	TTGTCAATGT	AAGTGTGATG	TTTACACTAG	TCTATGAAAG	GCAGGGCAGA
1210	1220	1230	1240	1250	1260
CGAGGGTAGT	GTGCCAAGTA	ACAGTGTGTC	ATTATAGGTG	TAAGTGTTGA	GAATAAGACC
1270	1280	1290	1300	1310	1320
ATTTTTGTTC	ACAAATAGTA	TGATGTAATC	GGTGTCATAT	TCGTATTGAG	TACATTTGTC

1330 1340

1350

1360

AAGTTGGTTG CTAAAAAAA AAAAAAAAAA AA

<210> 13

<211> 329

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Ala	Gln	Ser	Lys	Glu	Val	Asp	Ala	Leu	Val	Gln	Lys	Ile	15
Thr	Gly	Leu	His	Ala	Ala	Ile	Ala	Lys	Leu	Pro	Ser	Leu	Ser	Pro	30
Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	45
Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Ala	Pro	Glu	Ala	60
Gln	Ala	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	Ala	Glu	7 5
Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	ı Phe	Asp	90
Asn	Pro	Leu	Asp	His	Leu	Gly	Val	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	105
Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	Tyr.	Val	120
Pro	Gly	Gly	Ile	Ala	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	Gly	135
Pro	Leu	Pro	Phe	Ser	Ser	Tyr	Val	Leu	Ala	Ala	Arg	His	Leu	Pro	150
Asp	Thr	Val	Phe	Asp	Asn	Tyr	Val	Pro	Val	Arg	Ala	Ala	Asn	Asp	165
Arg	Ala	Thr	Arg	Leu	Phe	Arg	Ala	Asp	Lys	Asp	Val	Gly	Ala	Arg	180
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Asp	Glu	Leu	195
Ala	Thr	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Asp	Lys	Gly	Gln	Gly	Asp	Pro	His	Leu	Gly	Ala	His	Met	225
Ala	Asp	Gly	Ala	Ala	Leu	Val	Arg	Ser	Ala	His	Gly	Ala	Arg	Gly	240
Phe	Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	Gly	Gly	255
Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	Val	Asn	270
Ser	Val	Ile	Ile	Ala	Gln	Lys	Ser	Lys	Asp	Met	Phe	Ala	Asn	Gly	285

Pro	Arg	Asn	Gly	Cys	Gly	Gly	Arg	Tyr	Ala	Arg	Gly	Thr	Val	Pro	300
Val	Val	Ser	Pro	Pro	Cys	Arg	Phe	Gly	Glu	Met	Val	Ala	Asp	Val	315
Thr	Gln	Lys	Arg	Glu	Glu	Phe	Ala	Lys	Ala	Glu	Val	Ala	Phe		329

<211> 1371

<212> DNA

<213> Hordeum vulgare L.

10	20	30	40	50
GGAGCGGNAC	GCGTGGCGGA	GGTGGGCACT	ACCGTAGTAC	CGTGCCTCAG
60	70	80	90	100
AGCTCATCAC	TGGTCAGGTA	CCAAGAAGAC	ATAAAAATGG	ACGCCCAGAG
110	120	130	140	150
CAAGGAGGTC	GACGCCCTTG	TCCAGAAGAT	CACCGGCCTC	CACGCCGCCA
160	170	180	190	200
TCGCCAAGCT	GCCCTCGCTC	AGCCCGTCCC	CGGACGTCGA	CGCGCTCTTC
210	220	230	240	250
ACCGACCTGG	TCACCGCGTG	CGTGCCCCCG	AGCCCCGTGG	ACGTGACCAA
260	270	280	290	300
GCTCGCCCCG	GAGGCGCAGG	CGATGCGGGA	GGGCCTCATC	CGCCTCTGCT
310	320	330	340	350
CCGAGGCCGA	GGGCAAGCTG	GAGGCGCACT	ACTCCGACAT	GCTCGCCGCC
360	370	380	390	400
TTCGACAACC	CGCTCGACCA	CCTCGGCGTC	TTCCCCTACT	ACAGCAACTA
410	420	430	440	450

TACGTGCCCG	CCTCGCGCGC	AGTACGAGCT	AGCAAGCTCG	CATCAACCTC
500	490	480	470	460
CCCGCTCCCG	TCGGCTCCGG	GTCGCCTTCA	CCCGGCCCGC	GCGGCATCGC
550	540	530	520	510
CCGTGTTCGA	CTGCCCGACA	CGCGCGCCAC	ACGTCCTCGC	TTCAGCTCCT
600	590	580	570	560
AGGCTGTTCC	CCGCGCGACC	CGGCCAACGA	CCTGTGCGCG	CAACTACGTA
650	640	630	620	610
CGCCGACGTC	CGTTCCACAC	GCCCGCATGT	GGACGTCGGC	GCGCGGACAA
700	690	680	670	660
TCCTGGCCGC	GACGTCGTCT	CGCTACGTAC	CCGACGAGCT	GCGGACCTCA
750	740	730	720	710
CCGCACCTTG	CCAAGGTGAT	AGGACAAGGG	ATGGCCGCCG	GCTCGTGGGC
800	790	780	770	760
GCACGGGGCG	TCCGCAGCGC	GCGGCCCTCG	GGCGGACGGG	GCGCGCACAT
850	840	830	820	810
GTCGAGGCGG	CAAGACATTG	CGTCGATCCC	TCTACCCGAT	CGTGGGTTCC
900	890	.880	870	860
GTGAACTCCG	CGACGACGTG	GTCACCCCGA	CTCGCCGTGT	GTTCGAGGTG
950	940	930	920	910
ACCTCGCAAC	TTGCCAATGG	AAGGACATGT	GCAGAAGTCT	TCATCATCGC
1000	990	980	970	960
TCAGCCCGCC	GTGCCGGTGG	GCGAGGCACG	GACGGTACGC	GGGTGTGGTG
1050	1040	1030	1020	1010
AGAGAGGAGT	GACCCAGAAG	TGGCAGACGT	GGCGAGATGG	CTGCAGGTTC
1100	1090	1080	1070	1060
CCATCCGTAT	TGCGAGGTCA	TTCTGATTGC	GGAAGTGGCC	TTGCCAAGGC
1150	1140	1130	1120	1110
ATTTTCCTAC	GTAGGTGGCG	TCTTGCAATC	CCTTTCAATA	GCCGCTGCTA

1200	1190	1180	1170	1160
ATAATGTAAG	TTTGTACCCA	TCATATGTTG	ACCTTTCAAA	TCTTGTTACG
1250	1240	1230	1220	1210
AGAAGGCAGG	CTCGGTCTCT	GTCTTGTACA	ACACGCGCAT	TGTGTTGCTT
1300	1290	1280	1270	1260
GTTGTAGGTG	AATGTGTGTT	AAGGAAAAGA	AGACTGTGCA	GCAGATCAAG
1350	1340	1330	1320	1310
AAAAAAAAA	ACAAAAAAA	ATTCTAGTTC	GAGTAAGATG	TATGAGTTGG
		1380	1370	1360
		A	AAAAAAAAA	AAAAAAAAAA

<211> 332

<212> PRT

<213> Oryza sativa L.

Met	Glu	Ala	Gln	Asn	Gln	Glu	Val	Ala	Ala	Leu	Val	Glu	Lys	11e	15
Ala	Gly	Leu	His	Ala	Ala	lle	Ser	Lys	Leu	Pro	Ser	Leu	Ser	Pro	30
Ser	Ala	Glu	Val	Asp	Ala	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	45
Val	Pro	Ala	Ser	Pro	Val	Asp	Val	Ala	Lys	Leu	Gly	Pro	Glu	Ala	. 60
Gln	Ala	Met	Arg	Glu	Glu	Leu	lle	Arg	Leu	Cys	Ser	Ala	Ala	Glu	75
Gly	His	Leu.	Glu	Ala	His	Tyr	Ala	Asp	Met	Leu	Ala	Ala	Phe	Asp	90
Asn	Pro	Leu	Asp	His	Leu	Ala	Arg	Phe	Pro	Tyr	Tyr	Gly	Asn	Tyr	105
Val	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Asp	Leu	Leu	Val	Arg	Tyr	Val	120
Pro	Gly	lle	Ala	Pro	Thr	Arg	Val	Ala	Phe	Val	Gly	Ser	Gly	Pro	135
Leu	Pro	Phe	Ser	Ser	Leu	Val	Leu	Ala	Ala	His	His	Leu	Pro	Asp	150

Ala	Val	Phe	Asp	Asn	Tyr	Asp	Arg	Cys	Gly	Ala	Ala	Asn	Glu	Arg	165
Ala	Arg	Aŗg	Leu	Phe	Arg	Gly	Ala	Asp	Glu	Gly	Leu	Gly	Ala	Arg	180
Met	Ala	Phe	His	Thr	Ala	Asp	Val	Ala	Thr	Leu	Thr	Gly	Glu	Leu	195
Gly	Ala	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Glu	Lys	Ala	Gly	Val	lle	Ala	His	Leu	Gly	Ala	His	Met	225
Ala	Asp	Gly	Ala	Ala	Leu	Val	Val	Arg	Thr	Ala	His	Gly	Ala	Arg	240
Gly	Phe	Leu	Tyr	Pro	11e	Val	Asp	Pro	Glu	Asp	Val	Arg	Arg	Gly	255
Gly	Phe	Asp	Val	Leu	Ala	Val	Cys	His	Pro	Glu	Asp	Glu	Val	11e	270
Asn	Ser	Val	lle	Val	Ala	Arg	Lys	Val	Gly	Ala	Ala	Ala	Ala	Ala	285
Ala	Ala	Ala	Arg	Arg	Asp	Glu	Leu	Ala	Asp	Ser	Arg	Gly	Val	Val	300
Leu	Pro	Val	Val	Gly	Pro	Pro	Ser	Thr	Cys	Cys	Lys	Val	Glu	Ala	315
Ser	Ala	Val	Glu	Lys	Ala	Glu	Glu	Phe	Ala	Ala	Asn	Lys	Glu	Leu	330
Ser	Val	k													345

<211> 1372

<212> DNA

<213> Oryza sativa L.

50	40	30	20	10
TCGTGCAACA	CCACCACAAC	CAACTATAAT	TTGTCATTTT	CTCCATTTGG
100	90	80	70	60
ATGGAGGCTC	AGCTTCACAG	ACCGCGACAA	CGTGTTCCCA	TCAGCTCACT
150	140	130	120	110
CCTCCACGCC	AGATCGCCGG	CTGGTCGAGA	GGTCGCTGCC	AGAACCAAGA
200	190	180	170	160

			 -	
TGGACGCGCT	TCCGCCGAGG	GCTGAGCCCA	AGCTGCCGTC	GCCATCTCCA
250	240	230	220	210
GTCGACGTGG	GGCGAGCCCC	CGTGCGTCCC	CTCGTCACGG	CTTCACCGAC
300	290	280	270	260
CATCCGCCTC	GGGAGGAGCT	CAGGCGATGC	CCCGGAGGCG	CCAAGCTCGG
350	340	330	320	310
ACATGCTCGC	CACTACGCCG	CCTCGAGGCG	CCGAGGGCCA	TGCTCCGCCG
400	390	380	370	360
TACTACGGCA	CCGCTTCCCG	ACCACCTCGC	AACCCGCTCG	CGCCTTCGAC
450	440	430	420	410
CCGCTACGTC	ACCTCCTCGT	CTGGAGTACG	CCTGAGCAAG	ACTACGTCAA
500	490	480	470	460
GCCCGCTGCC	GTCGGGTCGG	CGTCGCCTTC	CCCCCACCCG	CCCGGCATTG
550	540	530	520	510
GCGGTGTTCG	CCTGCCGGAC	CTGCGCACCA	CTCGTGCTCG	GTTCAGCTCC
600	590	580	570	560
GAGGCTGTTC	AGCGGGCGAG	GCGGCCAACG	CCGGTGCGGC	ACAACTACGA
650	640	630	620	610
ACACCGCCGA	ATGGCGTTCC	CGGCGCGCGC	ACGAGGGCCT	CGCGGCGCCG
700	690	680	670	660
GTGTTCCTGG	GTACGACGTC	AGCTCGGCGC	CTGACGGGGG	CGTGGCGACC
750	740	730	720	710
GATCGCGCAC	AGGCCGGGGT	GCCGAGGAGA	GGGCATGGCG	CGGCGCTCGT
800	790	780	770	760
GGACGGCGCA	CTCGTCGTGC	CGGCGCGGCG	ACATGGCGGA	CTGGGCGCGC
850	840	830	820	810
GACGTCAGGC	CGATCCCGAG	ACCCGATCGT	GGGTTCCTGT	CGGGGCGCGC
900	890	880	870	860
CGAGGTGATC	ACCCGGAGGA	GCGGTGTGCC	CGACGTTCTG	GTGGCGGGTT

910	920	930	940	950
AACTCCGTCA	TCGTCGCCCG	CAAGGTCGGT	GCCGCCGCCG	CCGCCGCCGC
960	970	980	990	1000
GGCGCGCAGA	GACGAGCTCG	CGGACTCGCG	CGGCGTGGTT	CTGCCGGTGG
1010	1020	1030	1040	1050
TCGGGCCGCC	GTCCACGTGC	TGCAAGGTGG	AGGCGAGCGC	GGTTGAGAAG
1060	1070	1080	1090	1100
GCAGAAGAGT	TTGCCGCCAA	CAAGGAGCTG	TCCGTCTAAC	AGCCGGACGA
1110	1120	1130	1140	1150
TCGAAAGGCG	CACTATATTA	TGGCAATAAA	TCATTTGATT	ATACTTATGC
1160	1170	1180	1190	1200
TGCATTTGCG	AAGCTAAGGT	ATACTATGCA	AGCCATATGT	TTGTGTTCGT
1210	1220	1230	1240	1250
ACGTGTTGTT	TGGGACGTAC	AGTTGTGTTG	TTGTACGTCG	TGAAGTACTG
1260	1270	1280	1290	1300
AAGTGTTCAC	AGTAGATCAC	AAGTTCACAG	CAATCAATGA	GGACCCTGTA
1310	1320	1330	1340	1350
AGCCAGTGTA	AACGAGGAAC	ATGCCATCTG	TGTATGACAG	TGAGAAATTA
1360	137	0	1380	
TATAAGAAAA	ACATTTTGTG	AC		

<211> 320

<212> PRT

<213> Arabidopsis thaliana

Tyr	Asp	Gln	Ile	Ser	Lys	Leu	Lys	Ser	Leu	Lys	Pro	Ser	Lys	Asn	30
Val	Asp	Thr	Leu	Phe	Gly	Gln	Leu	Val	Ser	Thr	Cys	Leu	Pro	Thr	45
Asp	Thr	Asn	Ile	Asp	Val	Thr	Asn	Met	Cys	Glu	Glu	Val	Lys	Asp	60
Met	Arg	Ala	Asn	Leu	Ile	Lys	Leu	Cys	Gly	Glu	Ala	Glu	Gly	Tyr	75
Leu	Glu	Gln	His	Phe	Ser	Thr	Ile	Leu	Gly	Ser	Leu	Gln	Glu	Asp	90
Gln	Asn	Pro	Leu	Äsp	His	Leu	His	Ile	Phe	Pro	Tyr	Tyr	Ser	Asn	105
Tyr	Leu	Lys	Leu	G 1 y	Lys	Leu	Glu	Phe	Asp	Leu	Leu	Ser	Gln	His	120
Ser	Ser	His	Val	Pro	Thr	Lys	Ile	Ala	Phe	Val	Gly	Ser	Gly	Pro	135
Met	Pro	Leu	Thr	Ser	Ίle	Val	Leu	Ala	Lys	Phe	His	Leu	Pro	Asn	150
Thr	Thr	Phe	His	Asn	Phe	Asp	Ile	Asp	Ser	His	Ala	Asn	Thr	Leu	165
Ala	Ser	Asn	Leu	Val	Ser	Arg	Asp	Pro	Asp	Leu	Ser	Lys	Arg	Met	180
Ile	Phe	His	Thr	Thr	Asp	Val	Leu	Asn	Ala	Thr	Glu	Ala	Leu	Asp	195
Gln	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Asp	Lys	210
Glu	Ser	Lys	Val	Lys	Ala	Ile	Glu	His	Leu	Glu	Lys	His	Met	Ala	225
Pro	Gly	Ala	Val	Leu	Met	Leu	Arg	Arg	Ala	His	Ala	Leu	Arg	Ala	240
Phe	Leu	Tyr	Pro	Ile	Val	Asp	Ser	Ser	Asp	Leu	Lys	Gly	Phe	Gln	255
Leu	Leu	Thr	Ile	Tyr	His	Pro	Thr	Asp	Asp	Val	Val	Asn	Ser	Val	270
Val	Ιlе	Ala	Arg	Lys	Leu	Gly	Gly	Pro	Thr	Thr	Pro	Gly	Val	Asn	285
Gly	Thr	Arg	Gly	Cys	Met	Phe	Met	Pro	Cys	Asn	Cys	Ser	Lys	Ile	300
His	Ala	Ile	Met	Asn	Asn	Arg	Gly	Lys	Lys	Asn	Met	Ile	Glu	Glu	315
Phe	Ser	Thr	Ιlе	Glu											320

<211> 963

<212> DNA

<213> Arabidopsis thaliana

AAGCTCAAGA	GCTTAAAACC	TTCCAAAAAT	GTCGACACTT	TGTTCGGACA	ACTCGTGTCC	120
ACGTGCTTAC	CCACGGATAC	AAACATCGAT	GTCACAAATA	TGTGTGAAGA	AGTCAAAGAC	180
ATGAGAGCTA	ATCTCATCAA	GCTTTGTGGT	GAAGCCGAAG	GTTATTTGGA	GCAACACTTC	240
TCCACAATTT	TGGGATCTTT	ACAAGAAGAC	CAAAACCCAC	TTGACCATTT	ACACATCTTT	300
CCTTACTACT	CCAACTACCT	CAAGCTAGGC	AAGCTCGAGT	TCGATCTCCT	GAGCCAACAC	360
TCAAGCCATG	TCCCCACCAA	GATTGCCTTC	GTGGGTTCGG	GTCCGATGCC	TCTCACATCC	420
ATCGTATTGG	CCAAGTTTCA	CCTCCCCAAC	ACGACGTTCC	ACAACTTTGA	CATCGACTCA	480
CACGCAAACA	CACTCGCTTC	AAACCTCGTC	TCTCGCGACC	CGGACCTCTC	AAAACGCATG	540
ATCTTCCACA	CAACGGACGT	ACTAAACGCA	ACCGAAGCCC	TTGACCAATA	TGACGTCGTT	600
TTCTTAGCGG	CGCTTGTAGG	GATGGACAAA	GAGTCAAAGG	TCAAAGCCAT	CGAGCACTTG	660
GAGAAACACA	TGGCTCCTGG	AGCTGTTCTT	ATGCTAAGGA	GGGCTCATGC	TCTCAGAGCT	720
TTCTTATATC	CAATCGTTGA	CTCGTCTGAT	CTCAAAGGCT	TTCAACTCTT	GACCATCTAT	780
CATCCAACCG	ATGACGTGGT	TAACTCGGTT	GTGATCGCAC	GTAAGCTCGG	TGGTCCGACC	840
ACGCCCGGGG	TTAATGGTAC	TCGTGGATGC	ATGTTTATGC	CTTGTAACTG	CTCCAAGATT	900
CACGCGATCA	TGAACAACCG	TGGTAAGAAG	AATATGATCG	AGGAGTTTAG	TACCATCGAG	960
TAA						963

<211> 320

<212> PRT

<213> Arabidopsis thaliana

Met	Ala	Cys	Gln	Asn	Asn	Leu	Val	Val	Lys	Gln	Ile	Met	Asp	Leu	15
Tyr	Asn	Gln	Ile	Ser	Asn	Leu	Glu	Ser	Leu	Lys	Pro	Ser	Lys	Asn	30
Val	Asp	Thr	Leu	Phe	Arg	Gln	Leu	Val	Ser	Thr	Cys	Leu	Pro	Thr	45
Asp	Thr	Asn	Ile	Asp	Val	Thr	Glu	Ile	His	Asp	Glu	Lys	Val	Lys	60
Asp	Met	Arg	Ser	His	Leu	Ile	Lys	Leu	Cys	Gly	Glu	Ala	Glu	Gly	75
Tyr	Leu	Glu	Gln	His	Phe	Ser	Ala	Ile	Leu	Gly	Ser	Phe	Glu	Asp	90

Asn	Pro	Leu	Asn	His	Leu	His	Ile	Phe	Pro	Tyr	Tyr	Asn	Asn	Tyr	105
Leu	Lys	Leu	Gly	Lys	Leu	Glu	Phe	Asp	Leu	Leu	Ser	Gln	His	Thr	120
Thr	His	Val	Pro	Thr	Lys	Val	Ala	Phe	Ile	Gly	Ser	Gly	Pro	Met	135
Pro	Leu	Thr	Ser	Ile	Val	Leu	Ala	Lys	Phe	His	Leu	Pro	Asn	Thr	150
Thr	Phe	His	Asn	Phe	Asp	Ile	Asp	Ser	His	Ala	Asn	Thr	Leu	Ala	165
Ser	Asn	Leu	Val	Ser	Arg	Asp	Ser	Asp	Leu	Ser	Lys	Arg	Met	Ile	180
Phe	His	Thr	Thr	Asp	Val	Leu	Asn	Ala	Lys	Glu	Gly	Leu	Asp	Gln	195
Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Asp	Lys	Glu	210
Ser	Lys	Val	Lys	Ala	Ile	Glu	His	Leu	Glu	Lys	His	Met	Ala	Pro	225
Gly	Ala	Val	Val	Met	Leu	Arg	Ser	Ala	His	Gly	Leu	Arg	Ala	Phe	240
Leu	Tyr	Pro	Ile	Val	Asp	Ser	Cys	Asp	Leu	Lys	Gly	Phe	Glu	Val	255
Leu	Thr	Ile	Tyr	His	Pro	Ser	Asp	Asp	Val	Val	Asn	Ser	Val	Val	270
Ile	Ala	Arg	Lys	Leu	Gly	Gly	Ser	Asn	Gly	Ala	Arg	Gly	Ser	Gln	285
Ile	Gly	Arg	Cys	Val	Val	Met	Pro	Cys	Asn	Cys	Ser	Lys	Val	His	300
Ala	Ile	Leu	Asn	Asn	Arg	Gly	Met	Glu	Lys	Asn	Leu	Ιlе	Glu	Glu	315
Phe	Ser	Ala	Ile	Glu											320

<211> 963

<212> DNA

<213> Arabidopsis thaliana

ATGGCTTGCC	AAAACAATCT	CGTTGTGAAG	CAAATCATGG	ACTTATACAA	CCAAATCTCA	60
AACCTCGAGA	GCTTAAAACC	ATCCAAGAAT	GTCGACACTT	TGTTCAGACA	ACTTGTGTCC	120
ACGTGCTTAC	CAACGGACAC	GAACATCGAT	GTCACAGAGA	TACACGATGA	AAAAGTCAAA	180
GACATGAGAT	CTCATCTCAT	CAAGCTTTGT	GGTGAAGCCG	AAGGTTATTT	AGAGCAACAC	240
TTTTCAGCAA	TCTTAGGCTC	TTTTGAAGAC	AACCCTCTAA	ACCATTTACA	CATCTTCCCC	300

TATTACAACA	ACTATCTCAA	ACTAGGCAAA	CTCGAATTCG	ATCTCCTTTC	TCAGCACACA	360
ACCCATGTCC	CGACCAAAGT	CGCCTTTATT	GGTTCCGGTC	CGATGCCACT	TACTTCCATC	420
GTCTTGGCCA	AGTTCCACCT	CCCCAACACA	ACGTTCCACA	ACTTCGACAT	CGACTCACAC	480
GCCAACACAC	TCGCTTCAAA	CCTCGTTTCT	CGTGATTCTG	ACCTTTCCAA	ACGCATGATT	540
TTCCACACAA	CTGATGTATT	AAACGCTAAG	GAGGGGTTAG	ACCAATACGA	TGTTGTTTTC	600
TTGGCAGCTC	TTGTTGGGAT	GGATAAAGAG	TCAAAGGTCA	AAGCTATTGA	GCATTTAGAG	660
AAGCATATGG	CCCCTGGAGC	TGTGGTGATG	CTAAGAAGTG	CTCATGGTCT	TAGAGCTTTC	720
TTGTATCCAA	TCGTTGACTC	TTGTGATCTT	AAAGGGTTTG	AGGTGTTAAC	CATTTATCAT	780
CCGTCTGACG	ACGTGGTTAA	TTCGGTGGTC	ATCGCACGTA	AGCTTGGTGG	TTCAAATGGA	840
GCTCGAGGCA	GCCAGATCGG	ACGGTGTGTG	GTTATGCCTT	GTAATTGCTC	TAAGGTCCAC	900
GCGATCTTGA	ACAATCGTGG	TATGGAGAAG	AATTTGATCG	AGGAGTTTAG	TGCCATCGAG	960
TAA						963

<211> 320

<212> PRT

<213> Arabidopsis thaliana

Met	Gly	Cys	Gln	Asp	Glu	Gln	Leu	Val	Gln	Thr	Ile	Cys	Asp	Leu	15
Tyr	Glu	Lys	Ile	Ser	Lys	Leu	Glu	Ser	Leu	Lys	Pro	Ser	Glu	Asp	. 30
Val	Asn	Ile	Leu	Phe	Lys	Gln	Leu	Val	Ser	Thr	Cys	Ile	Pro	Pro	45
Asn	Pro	Asn	Ile	Asp	Val	Thr	Lys	Met	Cys	Asp	Arg	Val	Gln	Glu	60
Ile	Arg	Leu	Asn	Leu	Ile	Lys	Ile	Cys	Gly	Leu	Ala	Glu	Gly	His	75
Leu	Glu	Asn	His	Phe	Ser	Ser	Ile	Leu	Thr	Ser	Tyr	Gln	Asp	Asn	90
Pro	Leu	His	His	Leu	Asn	Ile	Phe	Pro	Tyr	Tyr	Asn	Asn	Tyr	Leu	105
Lys	Leu	Gly	Lys	Leu	Glu	Phe	Asp	Leu	Leu	Glu	Gln	Asn	Leu	Asn	120
Gly	Phe	Val	Pro	Lys	Ser	Val	Ala	Phe	Ile	Gly	Ser	Gly	Pro	Leu	135
Pro	Leu	Thr	Ser	Ile	Val	Leu	Ala	Ser	Phe	His	Leu	Lys	Asp	Thr	150

Ile	Phe	His	Asn	Phe	Asp	Ile	Asp	Pro	Ser	Ala	Asn	Ser	Leu	Ala	165
Ser	Leu	Leu	Val	Ser	Ser	Asp	Pro	Asp	Ile	Ser	Gln	Arg	Met	Phe	180
Phe	His	Thr	Val	Asp	Ile	Met	Asp	Val	Thr	Glu	Ser	Leu	Lys	Ser	195
Phe	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Asn	Lys	Glu	210
Glu	Lys	Val	Lys	Val	Ile	Glu	His	Leu	Gln	Lys	His	Met	Ala	Pro	225
Gly	Ala	Val	Leu	Met	Leu	Arg	Ser	Ala	His	Gly	Pro	Arg	Ala	Phe	240
Leu	Туг	Pro	Ile	Val	Glu	Pro	Cys	Asp	Leu	Gln	Gly	Phe	Glu	Val	255
Leu	Ser	Ile	Tyr	His	Pro	Thr	Asp	Asp	Val	Ile	Asn	Ser	Val	Val	270
Ile	Ser	Lys	Lys	His	Pro	Val	Val	Ser	Ile	Gly	Asn	Val	Gly	Gly	285
Pro	Asn	Ser	Cys	Leu	Leu	Lys	Pro	Cys	Asn	Cys	Ser	Lys	Thr	His	300
Ala	Lys	Met	Asn	Lys	Asn	Met	Met	Ile	Glu	Glu	Phe	Gly	Ala	Arg	315
Glu	Glu	Gln	Leu	Ser											320

<211> 963

<212> DNA

<213> Arabidopsis thaliana

ATGGGTTGCC	AAGACGAACA	ATTGGTGCAA	ACAATATGCG	ATCTCTACGA	AAAGATCTCA	60
AAGCTTGAGA	GTCTAAAACC	ATCCGAAGAT	GTCAACATTC	TCTTCAAGCA	GCTCGTTTCC	120
ACATGCATAC	CACCAAACCC	TAACATCGAT	GTCACCAAGA	TGTGTGACAG	AGTCCAAGAG	180
ATTCGACTTA	ATCTCATCAA	GATTTGTGGT	CTAGCCGAAG	GTCACTTAGA	AAACCATTTC	240
TCTTCGATCT	TGACCTCTTA	CCAAGACAAC	CCACTTCATC	ATTTAAACAT	TTTCCCTTAT	300
TACAACAACT	ATTTGAAACT	CGGAAAGCTC	GAGTTCGACC	TCCTCGAACA	AAACCTAAAT	360
GGCTTTGTCC	CAAAGAGTGT	GGCTTTCATT	GGATCTGGTC	CTCTTCCTCT	CACTTCCATC	420
GTTCTTGCTT	CATTCCATCT	CAAAGACACA	ATCTTTCACA	ACTTTGACAT	CGACCCATCA	480
GCGAACTCAC	TCGCTTCTCT	TCTGGTTTCC	TCTGATCCAG	ACATCTCTCA	ACGCATGTTC	540
TTCCACACCG	TTGATATAAT	GGACGTGACA	GAGAGCTTAA	AGAGCTTTGA	TGTCGTGTTT	600

CTAGCTGCTC	TTGTTGGAAT	GAACAAAGAG	GAGAAAGTTA	AAGTGATCGA	GCATCTGCAG	660
AAACACATGG	CTCCTGGTGC	TGTGCTCATG	CTTAGGAGTG	CTCATGGTCC	GAGAGCGTTT	720
CTTTATCCGA	TCGTTGAGCC	GTGTGATCTT	CAGGGGTTCG	AGGTTTTGTC	TATTTATCAC	780
CCAACAGATG	ATGTTATCAA	CTCCGTGGTG	ATCTCTAAAA	AGCATCCAGT	TGTTTCAATT	840
GGGAATGTTG	GTGGTCCTAA	TTCATGCTTG	CTCAAGCCTT	GCAACTGTTC	CAAGACCCAC	900
GCGAAAATGA	ACAAGAACAT	GATGATCGAG	GAGTTCGGAG	CTAGGGAGGA	ACAGTTGTCT	960
TAA						963