SDM_Assignment5_2

Sri Balaji Muruganandam 10/12/2021

Setting Working Directory

```
rm(list = ls())
setwd("G:\\SDM_Sem01\\Assignment5")
```

Importing necessary libraries

```
options(warn=-1)
library(rpart)
library(gbm)

## Loaded gbm 2.1.8

library(MASS)
library(randomForest)

## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.

options(warn=0)
```

The Cleveland heart-disease study was conducted by the Cleveland Clinic Foundation. The response variable is "diag1" (diagnosis of heart disease: buff = healthy, sick = heart disease). There is a second "diag2" that contains stage information about the sick, this can be disregarded. There were 303 patients in the study, and 13 predictive variables, including age, gender, and a range of biological measurements.

Loading the Cleveland dataset

```
load("cleveland.RData")
dim(cleveland)
```

```
## [1] 296  15
```

Exploring the high level overview of the data

```
names(cleveland)
```

```
## [1] "age" "gender" "cp" "trestbps" "chol" "fbs"

## [7] "restecg" "thalach" "exang" "oldpeak" "slope" "ca"

## [13] "thal" "diag1" "diag2"
```

```
head(cleveland,5)
```

```
cp trestbps chol fbs restecg thalach exang oldpeak slope ca
    age gender
## 1 63 male angina 145 233 true hyp 150 fal 2.3 down 0
## 2 67 male asympt
                        160 286 fal
                                                108 true
                                                             1.5 flat 3
                                        hyp
                     120 229 fal hyp 129 true 2.6 flat 2
130 250 fal norm 187 fal 3.5 down 0
130 204 fal hyp 172 fal 1.4 up 0
## 3 67 male asympt
## 4 37 male notang
         fem abnang
## 5 41
  thal diag1 diag2
## 1 fix buff
                 Н
## 2 norm sick S2
## 3 rev sick S1
## 4 norm buff H
## 5 norm buff H
```

Splitting the data into training and the test data

```
set.seed(23)
random_index = sample(c(1:nrow(cleveland)), size = round(8/10 * nrow(cleveland)), replace = F
ALSE)
train_data = cleveland[random_index,]
test_data = cleveland[-random_index,]

y_train_data = as.numeric(cleveland$diag1)-1
y_test_data = as.numeric(cleveland$diag1)-1
dim(train_data)
```

```
## [1] 237   15
```

```
dim(test_data)
```

```
## [1] 59 15
```

Modelling Random Forest

Modelling with m = 5

```
model_random_forest <- randomForest(diag1~., data = train_data, n.tree = 1000, mtry = 5)
varImpPlot(model_random_forest)</pre>
```

model_random_forest


```
importance(model_random_forest)
```

```
MeanDecreaseGini
##
## age
                   1.5850848
## gender
                   0.6035291
                   4.9343593
## trestbps
                   1.3845789
## chol
                   1.1254968
## fbs
                   0.1034671
                   0.3126166
## restecg
## thalach
                   5.2820791
                   2.0888872
## exang
## oldpeak
                   3.4765741
## slope
                   1.0685151
## ca
                   3.3217610
## thal
                  12.3022402
## diag2
                  80.2133423
```

Predicting with bagging model

```
y_predict = predict(model_random_forest, newdata = test_data, type = "response")
y_predict = as.numeric(y_predict)-1
#print(y_predict)
#print(y_test_data)
```

Prediction Error for Bagging model

```
prediction_error_rf = sum(abs(y_predict - y_test_data))/length(y_test_data)
```

```
## Warning in y_predict - y_test_data: longer object length is not a multiple of
## shorter object length
```

```
print(prediction_error_rf)
```

[1] 0.4797297

Modelling CART

```
model_control <- rpart.control(minsplit = 7, xval = 10, cp = 0)
model_fit <- rpart(diag1~., data = cleveland, method = "class", control = model_control)</pre>
```

Plotting the tree

```
plot(model_fit, branch = .4, uniform = T, compress = T)
text(model_fit, use.n = T, all = T, cex = 0.8)
```


Pruning the tree

```
#model_control <- rpart.control(minsplit = 7, xval = 10, cp = 0)
#model_fit_prune <- rpart(diag1~., data = cleveland, method = "class", control = model_control)

#plot(model_fit_prune$cptable[,4], main = "CP for Model Selection", ylab = "CP")

#minimum_cp = which.min(model_fit_prune$cptable[,4])
#model_prune <- prune(model_fit_prune, cp = model_fit_prune$cptable[minimum_cp,1])</pre>
```

```
model_controls = rpart.control(minbucket = 2, minsplit = 4, xval = 10, cp = 0)
model_diag = rpart(diag1~., data = cleveland, control = model_controls)
minimum_cp = which.min(model_diag$cptable[,4])
model_prune = prune(model_diag, cp = model_diag$cptable[minimum_cp, 1])
```

Predicting for Test data

```
y_predict = predict(model_prune, newdata = train_data)
print(y_predict)
```

##		buff	sick
##	284	1	0
##	248	0	1
##	121	0	1
##	171	1	0
##	103	1	0
##	290	1	0
##	149	0	1
##	145	1	0
##	164	1	0
##	198	0	1
##	31	1	0
##	86	0	1
##	236	1	0
##	10	0	1
##	38	1	0
##			
	167	1	0
##	251	0	1
##	47	1	0
##	66	1	0
##	69	0	1
##	105	1	0
##	280	1	0
##	91	0	1
##	231	1	0
##	206	1	0
##	59	1	0
##	178	1	0
##	159	0	1
##	241	1	0
##	278	1	0
##	190	1	0
##	3	0	1
##	50	0	1
##	225	1	0
##	60	0	1
##	14	1	0
##	9	0	1
##	147	0	1
##	51	0	1
##	244	0	1
##	270	1	0
##	279	1	0
##	262	1	0
##	146	0	1
##	219	1	0
##	243	1	0
##	188	1	0
##	294	0	1
##	125	0	1
##	275	0	1
##	182	1	0
##	132	1	0
##	172	1	0
##	174	1	0
пπ	±/∓	_	Ü

##	28	0	1
##	56	0	1
##	76	1	0
##	107	0	1
##	126	0	1
##	266	1	0
##	161	1	0
##	58	0	1
##	156	1	0
##	195	1	0
##	138	0	1
##	295	1	0
##	133	0	1
##	263	0	1
##	74	1	0
##	252	0	1
##	101	0	1
##	37	1	0
##	127	1	0
##	289	0	1
##	199	0	1
##	232	0	1
##	41	0	1
##	89	1	0
##	120	1	0
##	189	1	0
##	140	0	1
##	287	1	0
##	98	0	1
##	162	0	1
##	128	1	0
##	292	1	0
##	222	1	0
##	30	1	0
##	90	0	1
##	166	1	0
##	19	0	1
##	223	1	0
##	276	0	1
##	228	0	1
##	112	1	0
##	210	0	1
##	249	0	1
##	40	0	1
##	208	1	0
##	35	1	0
##	193	0	1
##	291	1	0
##	155	1	0
##	286	0	1
##	25	0	1
##	204	0	1
##	234	0	1
##	212	0	1
##	179	0	1
##	78	1	0

##	152	0	1
##	183	0	1
##	64	0	1
##	273	0	1
##	170	1	0
##	230	0	1
##	197	1	0
##	237	1	0
##	32	0	1
##	80	1	0
##	57	1	0
##	43	0	1
##	181	0	1
##	106	0	1
##	88	1	0
##	216	1	0
##	175	0	1
##	184	0	1
##	119	1	0
##	253	0	1
##	137	0	1
##	87	1	0
##	95	1	0
##	268	1	0
##	36	0	1
##	220	1	0
##	130	1	0
##	12	1	0
##	256	0	1
##	16	1	0
##	293	1	0
##	226	0	1
##	53	0	1
##	274	1	0
##	247	0	1
##	250	1	0
##	116	0	1
##	62	0	1
##	18	0	1
##	79	0	1
##	123	0	1
##	254	0	1
##	82	1	0
##	46	1 1	0
##	22155	1	0 0
##	224	1	0
##	255	0	1
##	196	1	0
##	265	1	0
##	115	1	0
##	1	1	0
##	165	0	1
##	169	0	1
##	83	1	0
##	269	0	1

##	283	1	0
##	71	1	0
##	217	1	0
##	81	1	0
##	6	1	0
##	134	0	1
##	209	1	0
##	180	1	0
##	94	1	0
##	144	0	1
##	8	1	0
##	261	1	0
##	233	1	0
##	49	1	0
##	104	1	0
##	77	1	0
##	20	0	1
##	214	0	1
##	102	0	1
##	34	0	1
##	142	0	1
##	93	1	0
##	202	0	1
##	205	1	0
##	186	1	0
##	272	0	1
##	13	0	1
##	176	0	1
##	151	1	0
##	281	1	0
##	192	1	0
##	122	1	0
##	239	1	0
##	54	1	0
##	52	0	1
##	185	1	0
##	154	1	0
##	200	1	0
##	157	1	0
##	96	0	1
##	21	1	0
##	257	0	1
##	61	0	1
##	131	1	0
##	124	1	0
##	296	1	0
##	290	0	1
##	203 85	1	0
##	117	0	1
	136		
##	260	0 0	1 1
	177		
##		0 1	1 0
##	84 158	0	0 1
##	135	0	1
##	17	1	0

##	282	0	1
##	245	0	1
##	118	0	1
##	191	1	0
##	160	0	1
##	23	1	0
##	150	1	0
##	227	0	1
##	75	0	1
##	22	1	0
##	7	0	1
##	111	0	1
##	97	0	1
##	201	0	1
##	72	0	1