Linear Programming: An Overview

Goal is to maximizing profit or minimizing costs and meet constraints.

LP Model Formulation A Maximization Example

- Product mix problem Beaver Creek Pottery Company
- How many bowls and mugs should be produced to maximize profits given labor and materials constraints?
- Product resource requirements and unit profit:

	Resource Requirements			
Product	Labor (Hr./Unit)	Clay (Lb./Unit)	Profit (\$/Unit)	
Bowl	1	4	40	
Mug	2	3	50	

LP Model Formulation A Maximization Example

Resource 40 hrs of labor per day

Availability: 120 lbs of clay

Decision $x_1 = \text{number of bowls to produce per day}$

Variables: x_2 = number of mugs to produce per day

Objective Maximize $Z = $40x_1 + $50x_2$

Function: Where Z = profit per day

Resource $1x_1 + 2x_2 \le 40$ hours of labor

Constraints: $4x_1 + 3x_2 \le 120$ pounds of clay

Non-Negativity $x_1 \ge 0$; $x_2 \ge 0$

Constraints:

Model Components

- Objective function a linear mathematical relationship describing an objective of the firm, in terms of decision variables - this function is to be maximized or minimized.
- Constraints requirements or restrictions placed on the firm by the operating environment, stated in linear relationships of the decision variables.

LP Model Formulation A Maximization Example

Complete Linear Programming Model:

Maximize
$$Z = 40x_1 + 50x_2$$

subject to: $1x_1 + 2x_2 \le 40$
 $4x_1 + 3x_2 \le 120$
 $x_1, x_2 \ge 0$

Feasible Solutions

A **feasible solution** does not violate **any** of the constraints:

Example:
$$x_1 = 5$$

 $x_2 = 10$
 $Z = 40x_1 + 50x_2 = 700$

constraint check: 1(5) + 2(10) = 25 < 40 hours constraint check: 4(5) + 3(10) = 50 < 120

Infeasible Solutions

An *infeasible solution* violates *at least one* of the constraints:

Example:
$$x_1 = 10$$

 $x_2 = 20$
 $Z = 40x_1 + 50x_2 = 1400$

Labor constraint check: 1(10) + 2(20) = 50 > 40 hours

Maximize $Z = 40x_1 + 50x_2$ subject to: $1x_1 + 2x_2 \le 40$ $4x_2 + 3x_2 \le 120$ $x_1, x_2 \ge 0$

Coordinates for Graphical Analysis

Feasible Solution Area

Objective Function Solution = 800 Graphical Solution of Maximization

Objection Function Line for Z = 800

Alternative Objective Function Solution Lines Graphical Solution of Maximization

Model

Maximize
$$Z = 40x_1 + 50x_2$$

subject to: $1x_1 + 2x_2 \le 40$
 $4x_2 + 3x_2 \le 120$
 $x_1, x_2 \ge 0$

Alternative Objective Function Lines

Optimal Solution Graphical Solution of Maximization

Maximize $Z = 40x_1 + 50x_2$ subject to: $1x_1 + 2x_2 \le 40$ $4x_2 + 3x_2 \le 120$ $x_1, x_2 \ge 0$

Identification of Optimal Solution Point

Optimal Solution Coordinates Graphical Solution of Maximization

Model

```
Maximize Z = 40x_1 + 50x_2
subject to: 1x_1 + 2x_2 \le 40
4x_2 + 3x_2 \le 120
x_1, x_2 \ge 0
```


Optimal Solution Coordinates

Extreme (Corner) Point Solutions Graphical Solution of Maximization

Model

Maximize
$$Z = 40x_1 + 50x_2$$

subject to: $1x_1 + 2x_2 \le 40$
 $4x_2 + 3x_2 \le 120$
 $x_1, x_2 \ge 0$

Solutions at All Corner Points

Optimal Solution for New Objective Function Graphical Solution of Maximization Model

Maximize
$$Z = 70x_1 + 20x_2$$

subject to: $1x_1 + 2x_2 \le 40$
 $4x_2 + 3x_2 \le 120$
 $x_1, x_2 \ge 0$

Optimal Solution with $Z = 70x_1 + 20x_2$

Minimization

Graph of Both Model Constraints

Feasible Region- Minimization

Feasible Solution Area

Optimal Solution Point - Minimization

Minimize $Z = 6x_1 + 3x_2$ subject to: $2x_1 + 4x_2 \ge 16$ $4x_2 + 3x_2 \ge 24$ $x_1, x_2 \ge 0$

Optimum Solution Point

Irregular Types of Linear Programming Problems

For some linear programming models, the general rules do not apply.

- Special types of problems include those with:
 - Multiple optimal solutions
 - Infeasible solutions
 - Unbounded solutions

Multiple Optimal Solutions

The objective function is **parallel** to a constraint line.

Maximize
$$Z=40x_1 + 30x_2$$

subject to: $1x_1 + 2x_2 \le 40$
 $4x_2 + 3x_2 \le 120$
 $x_1, x_2 \ge 0$

Example with Multiple Optimal Solutions

An Infeasible Problem

Every possible solution **violates** at least one constraint:

Maximize $Z = 5x_1 + 3x_2$ subject to: $4x_1 + 2x_2 \le 8$ $x_1 \ge 4$

 $x_2 \ge 6$

 $x_1, x_2 \ge 0$

Graph of an Infeasible Problem

An Unbounded Problem

Value of the objective function increases indefinitely:

Maximize $Z = 4x_1 + 2x_2$ subject to: $x_1 \ge 4$ $x_2 \le 2$

 $x_1, x_2 \ge 0$

Graph of an Unbounded Problem

Example Problem

Solve the following model graphically:

Maximize
$$Z = 4x_1 + 5x_2$$

subject to: $x_1 + 2x_2 \le 10$
 $6x_1 + 6x_2 \le 36$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$

Step 1: Plot the constraints as equations

Constraint Equations

Example Problem

Maximize
$$Z = 4x_1 + 5x_2$$

subject to: $x_1 + 2x_2 \le 10$
 $6x_1 + 6x_2 \le 36$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$

Step 2: Determine the feasible solution space

Feasible Solution Space and Extreme Points

Example Problem

Maximize
$$Z = 4x_1 + 5x_2$$

subject to: $x_1 + 2x_2 \le 10$
 $6x_1 + 6x_2 \le 36$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$

Step 3 and 4: Determine the solution points and optimal solution

Optimal Solution Point