7. Formale Sprachen und Chomsky Hierarchie

Definition Grammatik

Eine Grammatik ist ein Tupel (N, T, S, P) und beschreibt eine Sprache.

N: Alphabet der nichtterminalen Symbole

T: Alphabet der terminalen Symbole ($T \cap N=\emptyset$)

S: Startsymbol ∈ N

P: Produktionsmenge \subset (N \cup T)⁺ \times (N \cup T)^{*}

Definition Chomsky Hierarchie

Typ 0: Allgemeine Grammatiken. Keine Bedingung

Typ 1: **Nichtverkürzende Grammatiken.** Für alle Produktionen $\alpha \to \beta$ gilt: α , $\beta \in (\mathbb{N} \cup \mathbb{T})^+$ und $|\alpha| \le |\beta|$ (d.h. linke Seite der Produktionen ist kleiner als die rechte Seite)

Typ 2: **Kontextfreie Grammatiken.** Für alle Produktionen $\alpha \to \beta$ gilt: $\beta \in (N \cup T)^+$ und $\alpha \in N$ (d.h. auf der linken Seite der Produktion stehen nur Nichtterminale)

Typ 3: **(Rechts-) lineare Grammatiken.** Für alle Produktionen $\alpha \to \beta$ gilt: $\alpha \in \mathbb{N}$ und $\beta = tB$, wobei $B \in \mathbb{N} \cup \{\epsilon\}$ und $\beta \neq \epsilon$ (d.h. die rechte Seite der Produktion besteht nur aus Terminalsymbolen und optional zusätzlich einem Nichtterminalsymbol rechts davon)

Sonderregel zum leeren Wort:

Zusätzliche Produktion $S_{neu} \rightarrow S \mid \epsilon$

Definition Normalformen

Тур	3	2	1	0
$A \rightarrow \epsilon$				X
$A \rightarrow t$	X	X	X	X
$A \rightarrow tB$	X			X
$A \rightarrow BC$		X	X	X
$AB \rightarrow CD$			X	X

Aufgabe 1

Geben Sie die Produktionen einer Grammatik G vom jeweiligen Typ an, mit L(G) =

- a) { $a b^n a \mid n \in \mathbb{N}$ } (Typ 3)
- b) { $a^n b c^n | n \in \mathbb{N}$ } (Typ 2)
- c) { $1 \text{ v} | \text{v} = (0 \cup 1)^*$ } (Typ 3)
- d) { $a^m b^n c^{m+n} | m, n \in \mathbb{N}_0$ } (Typ 2)
- e) { $a^n b^m | n \in \mathbb{N}_0, m \in \mathbb{N}, m > n+3$ }

Aufgabe 2

Gegeben ist die Grammatik G = ({S, A, B}, {a, b}, S, P)

$$P = \{ S \rightarrow abaA \mid A,$$

$$A \rightarrow aA \mid B,$$

$$B \rightarrow bb \}$$

- a) Welchen Typ hat die Grammatik? Normalisieren Sie die Grammatik
- b) Geben Sie zu der Normalform eine Ableitung des Wortes "abaaabb" an
- c) Geben Sie eine Sprache L an, mit L(G) = L

Aufgabe 3

Sei R = $((a \cup b) ac^*)$ und L die von R erzeugte Sprache

- a) Geben Sie eine Typ 3 Grammatik an, die L erzeugt
- b) Geben Sie eine Ableitung für das Wort "bacccc" an
- c) Konstruieren Sie den zugehörigen endlichen Automaten

Alexander Bleicher Tutorium

Aufgabe 4

Sei L = { $a^i b^j v \mid v = (c \cup d)^*$; i, $j \in \mathbb{N}_0$ }

- a) Geben Sie eine Typ 3 Grammatik an, die L erzeugt (Hinweis: Nutzen Sie die Sonderregel für das leere Wort)
- b) Konstruieren Sie den zugehörigen endlichen Automaten

Aufgabe 5

Sei A = $(\{x, y\}, \{S_0, S_1, S_2, S_3, S_f\}, S_0, \delta$ gem. Graph, $\{S_f\})$ ein DEA. Konstruieren Sie eine zugehörige Grammatik G.

