

Rigid Body Dynamics

and a brief introduction to rotation representations

Learning objectives

- Understand rigid body representations and core physical concepts
 - Center of mass, local and global coordinate frames, 3d rotation representations, etc.
 - Linear angular momenta, mass and moment of inertia, forces and torques, etc

Understand the differential equations underlying rigid body dynamics

Learn typical numerical integration schemes for rigid bodies

Particle Dynamics

- We've seen what it takes to simulate particles:
 - Keep track of positions x and velocities v
 - Underlying ODE: f = ma
- Let's assume intermolecular forces couple the motion of these particles
- As these forces get stronger...
 - How can you ensure the simulation remains numerically stable?
 - What happens in the limit?

No object is truly rigid, but this is nevertheless a VERY convenient approximation!

Particles moving through space

- We've seen what it takes to simulate particles:
 - Keep track of positions x and velocities v
 - Underlying ODE: f = ma

Let's assume intermolecular forces couple the motion of these particles

- As these forces get stronger...
 - How can you ensure the simulation remains numerically stable?
 - What happens in the limit?
- Rather than simulating lots of particles connected via stiff springs, we will model the entire group as one *rigid body*

What is a rigid body?

- Rigid Body: an ensemble of particles that cannot move relative to each other
 - Distance between any two particles on a rigid body remains constant
 - Shape does not change
- How can a rigid body move through space?
 - It can translate
 - It can rotate
 - Or a composition of the two
- As we model the motion of the rigid body, we must therefore keep track of its position and orientation relative to a global frame of reference

Local and global coordinate frames

- What is the position of this rigid body in the global coordinate frame?
 - Every point on the rigid body has different world frame coordinates...
- Choose one point on the rigid body and store its position explicitly
 - Typically, this is the center of mass

Center of mass: p

Think of it as the mass-weighted geometric center of the rigid body:

Center of mass: p

Think of it as the mass-weighted geometric center of the rigid body:

$$\sum_{i} m_{i} \boldsymbol{r}_{i} = \boldsymbol{0} \Rightarrow \sum_{i} m_{i} \overline{(\boldsymbol{p}, \boldsymbol{x}_{i})} = \sum_{i} m_{i} (\boldsymbol{x}_{i} - \boldsymbol{p}) = \boldsymbol{0} \Rightarrow \boldsymbol{p} = \frac{\sum_{i} m_{i} \boldsymbol{x}_{i}}{M}$$

In general:

$$p = \frac{\int_{\Omega} x_{dV} \rho dV}{\int_{\Omega} \rho dV}$$
 total mass

Local and global coordinate frames

- Choose one point on the rigid body and store its position explicitly
 - Typically, this is the *center of mass* p(t)
- This point will act as the *origin* of the RB's local coordinate frame (i.e. it has local coordinates (0, 0, 0))
- Also need an orientation R(t) which tells us how the rigid body has rotated relative to the world frame
- R transforms vectors from local frame to global coordinates!
- Using p(t) and R(t) we can compute the world coordinates of any point on the RB

• What are the world coordinates of an arbitrary point \bar{x} that is expressed in the local coordinate frame of the rigid body?

• What are the world coordinates of an arbitrary point \bar{x} that is expressed in the local coordinate frame of the rigid body?

• What are the world coordinates of an arbitrary point \bar{x} that is expressed in the

local coordinate frame of the rigid body?

Note: $\mathbf{R} = \begin{bmatrix} r_{xx} & r_{yx} & r_{zx} \\ r_{xy} & r_{yy} & r_{zy} \\ r_{xz} & r_{yz} & r_{zz} \end{bmatrix}$

- What is the meaning of p(t)?
 - Position of the rigid body's Center of Mass at time t.
- What does $\mathbf{R}(t)$ tell us?
 - Consider the x-axis in body space, (1, 0, 0), what is the direction of this vector in world space at time t?

$$\mathbf{R}(t) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{bmatrix}$$
 The first column of $\mathbf{R}(t)$

• Columns of $\mathbf{R}(t)$ encode global coordinates of body space \mathbf{x} , \mathbf{y} and \mathbf{z} vectors at time t.

• We know how to compute world coordinates for any point on the RB:

$$x(t) = p(t) + R(t)\overline{x}$$

• How do we compute this point's velocity, $\frac{dx}{dt} = \dot{x}(t)$?

$$\dot{\boldsymbol{x}}(t) = \dot{\boldsymbol{p}}(t) + \dot{\boldsymbol{R}}(t)\overline{\boldsymbol{x}}$$

- $\dot{p} \equiv v$ is the velocity of the COM (aka the *linear velocity* of the rigid body)
- \dot{R} is a matrix that tells us how R changes over time
 - But what does it mean?

Rigid Body Kinematics – angular velocity

- Assume a rigid body has 0 COM velocity, but it is spinning
 - rotation is about the COM
 - some points on the RB are moving faster than others
 - which points on the RB have 0 velocity (i.e. they don't move in space)?
- Define spin as angular velocity a vector $\omega(t)$
 - Direction of ω gives the axis (in world coordinates!) that the RB is rotating about
 - Magnitude of ω encodes the speed with which the RB is spinning (rad/s)

Quiz

- Consider a 2D rigid body that is circling around a fixed point
 - What's the speed of the rigid body?

$$|v| = |r| |\dot{\theta}|$$

And it's velocity?

direction is an in-plane vector orthogonal to **r**

What's the angular velocity of the rigid body?

- So, an RB in 3D is spinning in place, about the COM
 - How fast is this corner point moving?

- So, an RB in 3D is spinning in place, about the COM
 - How fast is this corner point moving?
 - Let *c* be the world coordinates vector from the COM to the point of interest
 - Decompose c into two vectors, a and b, one aligned with ω , one orthogonal
 - a does not change over time as RB spins (i.e. $\dot{a} = 0$)
 - but b does:
 - $\bullet |\dot{b}| = |b||\omega|$
 - $\dot{\boldsymbol{b}}$ is perpendicular to $\boldsymbol{\omega}$ and to \boldsymbol{b}
 - So, $\dot{\boldsymbol{b}} = \boldsymbol{\omega} \times \boldsymbol{b}$
 - Therefore, $\dot{c} = \boldsymbol{\omega} \times \boldsymbol{a} + \boldsymbol{\omega} \times \boldsymbol{b} = \boldsymbol{\omega} \times \boldsymbol{c}$

Rigid Body Kinematics: what is \dot{R} ?

- Recall that columns of $\mathbf{R}(t)$ store world coords of local \mathbf{x} , \mathbf{y} and \mathbf{z} axes
 - What do columns of R represent?

$$\begin{bmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{bmatrix}$$

first column of $\mathbf{R}(t)$

$$\begin{bmatrix} \dot{r}_{xx} \\ \dot{r}_{xy} \\ \dot{r}_{xz} \end{bmatrix} = \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{xx} \\ \dot{r}_{xy} \\ \dot{r}_{xz} \end{bmatrix}$$

first column of $\dot{\mathbf{R}}(t)$

So:

$$\dot{\mathbf{R}}(t) = \begin{bmatrix} \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{bmatrix} & \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{bmatrix} & \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{bmatrix} \end{bmatrix}$$

• Consider two vectors in 3D, a and b. Their cross product is:

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_y b_z - b_y a_z \\ -a_x b_z + b_x a_z \\ a_x b_y - b_x a_y \end{bmatrix} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}] \mathbf{b}$$

skew-symmetric matrix [a]

Therefore:

$$\dot{\mathbf{R}}(t) = \begin{bmatrix} \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{bmatrix} & \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{bmatrix} & \boldsymbol{\omega}(t) \times \begin{bmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\omega}(t) \end{bmatrix} \begin{bmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{bmatrix} & [\boldsymbol{\omega}(t)] \begin{bmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{bmatrix} & [\boldsymbol{\omega}(t)] \begin{bmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{bmatrix} \end{bmatrix} = [\boldsymbol{\omega}(t)] \mathbf{R}(t)$$

• We know how to compute world coordinates for any point on the RB:

$$x(t) = p(t) + R(t)\overline{x}$$

• How do we compute this point's velocity, $\dot{x}(t)$?

$$\dot{\mathbf{x}}(t) = \mathbf{v}(t) + \dot{\mathbf{R}}(t)\overline{\mathbf{x}}$$

where $\dot{R}(t) = [\omega(t)]R(t)$, and $v = \dot{p}$. Expanding this out gives us (and leaving out time dependence):

$$\dot{x} = v + [\omega]R\overline{x} = v + \omega \times R\overline{x}$$
$$= v + [\omega](R\overline{x} + p - p) = v + \omega \times (x - p)$$

Always be careful which coordinate frame quantities are expressed in!!!

Do you know how to compute the acceleration, $\ddot{x}(t)$?

Quiz – true or false

- If a (uniform density) cube has non-zero angular velocity:
 - a corner point always moves faster than the COM
 - a corner point can move slower than the COM
 - a corner point always moves at the same speed as the COM
- If a (uniform density) cube has non-zero angular velocity and zero linear velocity
 - the COM may or may not be moving
 - a corner point may or may not be moving

Rigid Body Dynamics

Recall the kinetic energy of a mass point:

$$K = \frac{1}{2}\dot{\boldsymbol{x}}^T m \dot{\boldsymbol{x}}$$

What is the kinetic energy of a rigid body?

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i}$$

• But recall, $\dot{x_i} = v + \omega \times (x_i - p)$, so let's work this out...

• Kinetic energy of a rigid body:

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i}$$

$$= \frac{1}{2} \sum_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))^{T} m_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))$$

$$= \frac{1}{2} \sum_{i} \boldsymbol{v}^{T} m_{i} \boldsymbol{v} + 2 \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

Kinetic energy of a rigid body:

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i}$$

$$= \frac{1}{2} \sum_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))^{T} m_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))$$

$$= \frac{1}{2} \sum_{i} \boldsymbol{v}^{T} m_{i} \boldsymbol{v} + 2 \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} M \boldsymbol{v} - \text{kinetic energy due to the linear motion of the RB's COM}$$

Kinetic energy of a rigid body:

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i}$$

$$= \frac{1}{2} \sum_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))^{T} m_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))$$

$$= \frac{1}{2} \sum_{i} \boldsymbol{v}^{T} m_{i} \boldsymbol{v} + 2 \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \boldsymbol{v}^{T} \sum_{i} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) = -\boldsymbol{v}^{T} \sum_{i} m_{i} (\boldsymbol{r}_{i} \times \boldsymbol{\omega}) = -\boldsymbol{v}^{T} \left(\sum_{i} m_{i} \boldsymbol{r}_{i} \right) \times \boldsymbol{\omega} = 0$$

• Kinetic energy of a rigid body:

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i}$$

$$= \frac{1}{2} \sum_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))^{T} m_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))$$

$$= \frac{1}{2} \sum_{i} \boldsymbol{v}^{T} m_{i} \boldsymbol{v} + 2 \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$(\boldsymbol{\omega} \times \boldsymbol{r}_i)^T m_i (\boldsymbol{\omega} \times \boldsymbol{r}_i) = m_i ([\boldsymbol{\omega}] \boldsymbol{r}_i)^T [\boldsymbol{\omega}] \boldsymbol{r}_i$$
$$= m_i ([\boldsymbol{r}_i] \boldsymbol{\omega})^T [\boldsymbol{r}_i] \boldsymbol{\omega}$$
$$= \boldsymbol{\omega}^T m_i [\boldsymbol{r}_i]^T [\boldsymbol{r}_i] \boldsymbol{\omega}$$

Recall: if
$$\mathbf{r}_i = (x, y, z)^T$$
, then $[\mathbf{r}_i] = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$, so
$$[\mathbf{r}_i]^T [\mathbf{r}_i] = -\begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} * \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$
$$= \begin{bmatrix} y^2 + z^2 & -xy & -xz \\ -xy & x^2 + z^2 & -yz \\ -xz & yz & x^2 + y^2 \end{bmatrix} = \mathbf{r}_i^T \mathbf{r}_i \mathbb{I} - \mathbf{r}_i \mathbf{r}_i^T$$
$$= \mathbf{r}_i^T \mathbf{r}_i \mathbb{I} - \mathbf{r}_i \mathbf{r}_i^T$$

So:
$$\frac{1}{2}\sum_{i}(\boldsymbol{\omega}\times\boldsymbol{r}_{i})^{T}m_{i}(\boldsymbol{\omega}\times\boldsymbol{r}_{i}) = \frac{1}{2}\boldsymbol{\omega}^{T}\sum_{i}m_{i}(\boldsymbol{r}_{i}^{T}\boldsymbol{r}_{i}\mathbb{I}-\boldsymbol{r}_{i}\boldsymbol{r}_{i}^{T})\boldsymbol{\omega}$$

Moment of Inertia tensor I, expressed in world coordinates

Note that $r_i = x_i - p = p + R\overline{x}_i - p = R\overline{x}_i$, therefore:

$$\mathbf{r}_i^T \mathbf{r}_i \mathbb{I} = (\mathbf{R} \overline{\mathbf{x}}_i)^T (\mathbf{R} \overline{\mathbf{x}}_i) \mathbb{I} = \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_i \mathbf{R} \mathbf{R}^T = \mathbf{R} \overline{\mathbf{x}}_i^T \overline{\mathbf{x}}_i \mathbf{R}^T$$

and

$$\mathbf{r}_i \ \mathbf{r}_i^T = (\mathbf{R}\overline{\mathbf{x}}_i)(\mathbf{R}\overline{\mathbf{x}}_i)^T = \mathbf{R}\overline{\mathbf{x}}_i\overline{\mathbf{x}}_i^T\mathbf{R}^T$$

So:

Local coordinates *Moment of Inertia* tensor I_b

$$\boldsymbol{I} = \sum_{i} m_{i} (\boldsymbol{r}_{i}^{T} \boldsymbol{r}_{i} \mathbb{I} - \boldsymbol{r}_{i} \ \boldsymbol{r}_{i}^{T}) = \boldsymbol{R} \sum_{i} m_{i} (\overline{\boldsymbol{x}}_{i}^{T} \overline{\boldsymbol{x}}_{i} \mathbb{I} - \overline{\boldsymbol{x}}_{i} \overline{\boldsymbol{x}}_{i}^{T}) \boldsymbol{R}^{T}$$

• Kinetic energy of a rigid body:

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i}$$

$$= \frac{1}{2} \sum_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))^{T} m_{i} (\boldsymbol{v} + \boldsymbol{\omega} \times (\boldsymbol{x}_{i} - \boldsymbol{p}))$$

$$= \frac{1}{2} \sum_{i} \boldsymbol{v}^{T} m_{i} \boldsymbol{v} + 2 \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

$$= \frac{1}{2} \boldsymbol{v}^{T} \left(\sum_{i} m_{i}^{T} \right) \boldsymbol{v} + \sum_{i} \boldsymbol{v}^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i}) + \frac{1}{2} \sum_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})^{T} m_{i} (\boldsymbol{\omega} \times \boldsymbol{r}_{i})$$

 $\frac{1}{2}\omega^T I\omega$ - kinetic energy due to the angular motion of the RB

Kinetic energy of a rigid body:

$$K = \frac{1}{2} \sum_{i} \dot{\boldsymbol{x}}_{i}^{T} m_{i} \dot{\boldsymbol{x}}_{i} = \frac{1}{2} \boldsymbol{v}^{T} M \boldsymbol{v} + \frac{1}{2} \boldsymbol{\omega}^{T} \boldsymbol{I} \boldsymbol{\omega}$$

First order of mass: where is the mass concentrated?

Moment of Inertia

- It is "mass" for rotational motions
 - "The more mass an object has, the more force it takes to move it"
- Is constant in body coordinates
 - Only needs to be computed once!
- In world coordinates, it changes as the RB rotates: $I = RI_bR^T$
 - Can it ever be constant in world coordinates?
- What does Iω mean?
 - ω is a world coordinates vector, $I\omega$ is also expressed in world coordinates

Moment of Inertia

- $I_b = \sum_i m_i (\overline{x}_i^T \overline{x}_i \mathbb{I} \overline{x}_i \overline{x}_i^T)$, or in the continuous case $\int_{\Omega} \rho(\overline{x}_{dV}^T \overline{x}_{dV} \mathbb{I} \overline{x}_{dV} \overline{x}_{dV}^T) dV$
- For basic shapes, closed form solutions to the integral exist: https://en.wikipedia.org/wiki/List_of_moments_of_inertia

- It is always possible to choose a local coordinate frame such that I_b only has non-zero elements on the diagonal
 - These are called principal moments of inertia I_x , I_y , I_z
 - If someone already gives you a MoI, you can do an eigenvalue decomposition on it to retrieve both the principal moments of inertia, and the axes of the local coordinate frame where offdiagonal entries vanish.

Moment of Inertia

• In practice, the local moment of inertia is often approximated. For instance:

Rigid Body Dynamics

Rigid Bodies: forces and torques

- $f_i(t)$ denotes the total force from external forces acting on the i^{th} particle at time t.
 - Total/net force acting on the rigid body: $F(t) = \sum_i f_i(t)$
 - Total/net torque on the rigid body: $\tau(t) = \sum_i r_i \times f_i(t)$
- Net torque depends on the point of application of individual forces, but net force does not
- What are the net force and torque due to gravity (e.g. $f_i = m_i g$)?
 - $F = \sum_i m_i g = g \sum_i m_i = Mg$

Rigid Bodies: forces and torques

- Where do forces come from?
 - Gravity
 - Springs
 - User interaction e.g. pick an object with the mouse and drag it around
 - Joint constraints
 - Collisions and Frictional Contact
 - Motors or muscles
 - Etc.

Rigid Body Dynamics

Linear and angular momenta

• p: total *linear momentum* of the RB

$$\mathbf{p} = M\mathbf{v}$$

- Linear momentum of an RB is the same as if it was just a particle with mass M and velocity v(t)!
- L: total angular momentum of the RB is defined analogously

$$L = I\omega$$

Angular moment does not depend on linear COM motion, only on rotation about the COM.

Newton's second law of motion and conservation of momentum

$$\mathbf{F} = M\mathbf{a} = M\frac{d\mathbf{v}}{dt} = \frac{d(M\mathbf{v})}{dt} = \frac{d\mathbf{p}}{dt} = \dot{\mathbf{p}}$$

- This expression tells us how the linear velocity of the RB changes over time in response to net force applied to the rigid body.
 - Change in linear momentum is equivalent to the net force acting on the rigid body.
- Analogous expression holds for conservation of angular momentum
 - Change in angular momentum is equivalent to the net torque acting on the rigid body.

$$\dot{\mathbf{L}} = \frac{\mathrm{d}\mathbf{L}}{dt} = \boldsymbol{\tau}$$

Conservation of angular momentum

Conservation of angular momentum

$$\dot{\mathbf{L}} = \boldsymbol{\tau}, \mathbf{L} = \boldsymbol{I}\boldsymbol{\omega}$$

$$\dot{\mathbf{L}} = \dot{\boldsymbol{I}}\boldsymbol{\omega} + \boldsymbol{I}\dot{\boldsymbol{\omega}} = \boldsymbol{\tau}$$

$$\boldsymbol{I} = \boldsymbol{R}\boldsymbol{I}_{\boldsymbol{b}}\boldsymbol{R}^T \Rightarrow \dot{\boldsymbol{I}} = \dot{\boldsymbol{R}}\boldsymbol{I}_{\boldsymbol{b}}\boldsymbol{R}^T + \boldsymbol{R}\dot{\boldsymbol{I}}_{\boldsymbol{b}}\boldsymbol{R}^T + \boldsymbol{R}\boldsymbol{I}_{\boldsymbol{b}}\dot{\boldsymbol{R}}^T$$

Recall: $\dot{R} = [\omega]R$, so

$$\dot{I} = \dot{R}I_bR^T + R\dot{I}_bR^T + RI_b\dot{R}^T = [\omega]RI_bR^T + 0 - RI_bR^T[\omega]$$

$$\Rightarrow \dot{I}\omega = \omega \times I\omega + I\omega \times \omega = \omega \times I\omega$$

$$\Rightarrow I\dot{\omega} = \tau - \omega \times I\omega$$

The "F=ma" of rigid body dynamics: aka the Newton–Euler equations of motion

Note: linear and angular components of a rigid body's motion are decoupled!

Time stepping scheme (Symplectic Euler)

- At each time step:
 - Compute net force F and net torque τ
 - Update linear and angular velocities: $v_{i+1} = v_i + h \frac{F}{M}$, $\omega_{i+1} = \omega_i + h I^{-1} (\tau \omega_i \times I \omega_i)$
 - Note: $I = RI_bR^T$, so $I^{-1} = RI_b^{-1}R^T$
 - Update COM position: $p_{i+1} = p_i + hv_{i+1}$
 - Update orientation:
 - Option 1: $R_{i+1} = R_i + h\dot{R}_{i+1} = R_i + h[\omega_{i+1}]R_i = (\mathbb{I} + h[\omega_{i+1}])R_i$
 - Main issue, over time R will no longer be an orthonormal matrix. Fix via Gram-Schmidt orthonormalization process.

Time stepping scheme (Symplectic Euler)

- At each time step:
 - Compute net force F and net torque τ
 - Update linear and angular velocities: $v_{i+1} = v_i + h \frac{F}{M}$, $\omega_{i+1} = \omega_i + h I^{-1} (\tau \omega_i \times I \omega_i)$
 - Note: $I = RI_bR^T$, so $I^{-1} = RI_b^{-1}R^T$
 - Update COM position: $p_{i+1} = p_i + hv_{i+1}$
 - Update orientation:
 - Option 1: $R_{i+1} = R_i + h\dot{R}_{i+1} = R_i + h[\omega_{i+1}]R_i = (\mathbb{I} + h[\omega_{i+1}])R_i$
 - Main issue, over time R will no longer be an orthonormal matrix. Fix via Gram-Schmidt orthonormalization process.
 - Option 2: first compute matrix corresponding to a rotation with angular speed ω_{i+1} for a time period h, then apply this after the rotation at previous time step: $R_{i+1} = \text{Rot}\left(h|\omega_{i+1}|, \frac{\omega_{i+1}}{|\omega_{i+1}|}\right)R_i$
 - Option 3: use a different parameterization of rotations

Quaternions

Quaternions: a generalization of complex numbers to higher dimensions

$$q = w + xi + yj + zk$$
, where $i^2 = j^2 = k^2 = ijk = -1$

- Quaternions are often written as q = [w, v], where vector $\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
- Quaternion multiplication: $\mathbf{q_1} * \mathbf{q_2} = [w_1w_2 \mathbf{v_1} \cdot \mathbf{v_2}, w_1\mathbf{v_2} + w_2\mathbf{v_1} + \mathbf{v_1} \times \mathbf{v_2}]$
- Unit quaternions (i.e. $w^2 + x^2 + y^2 + z^2 = 1$) encode a much more compact parameterization of 3D rotations

Unit quaternions

• Rotation quaternions: $\mathbf{q}(\boldsymbol{\theta}_a, \mathbf{v}_a)$

Rotating vectors:

$$Rot(\boldsymbol{v},\mathbf{q}) \equiv \mathbf{q}\boldsymbol{v} = \mathbf{q}*(\mathbf{0},\ \boldsymbol{v})*\mathbf{q}^{-1}$$

• Let q_1 and q_2 be two rotation quaternions. The quaternion $q_1 * q_2$ represents the rotation obtained by first applying rotation q_2 , then rotating by q_1 - analogous to the way in which rotations are composed using rotation matrices.

Time stepping scheme using Quaternions

- At each time step:
 - Compute net force F and net torque τ
 - Update linear and angular velocities: $v_{i+1} = v_i + h \frac{F}{M}$, $\omega_{i+1} = \omega_i + h I^{-1} (\tau \omega_i \times I \omega_i)$
 - Update COM position: $p_{i+1} = p_i + hv_{i+1}$
 - Update orientation:
 - Option 1: $q_{i+1} = \mathbf{q}\left(h|\boldsymbol{\omega}_{i+1}|, \frac{\boldsymbol{\omega}_{i+1}}{|\boldsymbol{\omega}_{i+1}|}\right)q_i$
 - Option 2: $\dot{q}_{i+1} = \frac{1}{2}(0, \omega_{i+1})q_i$, $q_{i+1} = q_i + h\dot{q}_{i+1}$
 - Can you show that in the limit, as $h \to 0$, these two options are equivalent?
 - Normalization of quaternions is still necessary, but easier/faster than orthonormalizing rotation matrices
 - Easy to extract rotation angle/axis, therefore easy to compute rotation matrix from a quaternion useful, for example, when computing world-coordinates moment of inertia. Coordinate frame transformations, on the other hand, can be implemented using quaternion operations directly.
 - Use the right representation for your problem!

Numerical simulation models

Particles

State:

Position

Velocity

Physical Properties:

Mass

Rigid Bodies

State:

Position

Orientation

Linear Velocity

Angular Velocity

Physical Properties:

Mass

Moment of Inertia

"
$$F = ma$$
"

Additional material

- Quaternions:
 - https://en.wikipedia.org/wiki/Quaternion
- Skew symmetric matrix:
 - https://en.wikipedia.org/wiki/Skew-symmetric_matrix
- Rigid body lecture notes from David Baraff:
 - https://www.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf
 - https://www.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf
- Brian Mirtich's thesis
 https://people.eecs.berkeley.edu/~jfc/mirtich/thesis/mirtichThesis.pdf
- Impulse-based collision processing
 - "Nonconvex Rigid Bodies with Stacking", Guendelman et al., 2003
 - hand-written course notes

