Advanced Proof-Systems - Problem Set 3

Yosef Goren

December 31, 2022

1 MIP vs PCP

1.1

Denote the concatenation of m_1 and m_2 with $m_1||m_2$.

Let $L \subseteq \{0,1\}^*$ be a language with a k-prover, $2-message\ MIP$.

Since this protocol is a $2-message\ MIP$, we know the structure of communications: in the first round the verifier sends a message to all provers, and in the second round each prover sends a message to the verifier.

Let $x \in L$, in the run of the protocol on x, Denote the message sent by the V to P_i with $m_{q,i}$, denote the message sent by P_i to V with $m_{r,i}$.

The set of possible values of $m_{q,i}$ is bounded with it's maximal size. Each such value will yield an appropriate $m_{r,i}$ response, which is independent of any other $m_{q,j}$ 'queries' sent by the verifier.

Thus for each $i \in [n]$ we can define a function from query values to response values; for any query value we can define the response value to be 0. Thus we are left with a function $Resp_i : \{0,1\}^{l_V} \to \{0,1\}^{l_P}$, where $\forall m_{q,i} \forall, Resp_i(m_{q,i}) = m_{r,i}$.

For the purposes of accessing the correct response later we can also pad the response values with 0's so that all of them are exactly l_P in length.

Define the PCP proof of x as:

$$\begin{split} PCP_x := Resp_0(0)||Resp_0(1)||\dots||Resp_0(2^{l_V} - 1) \\ ||Resp_1(0)||Resp_1(1)||\dots||Resp_1(2^{l_V} - 1) \\ \dots \\ ||Resp_{k-1}(0)||Resp_{k-1}(1)||\dots||Resp_{k-1}(2^{l_V} - 1) \end{split}$$

Note $|Resp_i(j)| = l_P$, thus each line in the definition of PCP_x is equal to $l_p \cdot 2^{l_V}$. And the whole size is equal to $k \cdot l_p \cdot 2^{l_V}$.

The PCP verifier V_p with be based on the MIP verifier V_m . On the run of $V_p(x, PCP_x)$, V_p will first use V_m to ask it what queries to make. For each query $m_{q,i}$ to P_i made by V_m , V_p will look at:

$$PCP_x[l_P\cdot (2^{l_V}\cdot i+m_{q,i}):l_P\cdot (2^{l_V}\cdot i+m_{q,i})+l_P]$$

Or in other words, the bits corresponsing to the response for $m_{q,i}$ in P_i 's section of PCP_x .

After the PCP verifier gets all these bits, it gives them back to V_m as the responses to the queries - and accepts iff V_m accepts.

• Completness:

If $x \in L$ - our PCP_x is well defined. And for whatever query V_m makes - it receives the exact response it should get from P_i - thus since it will accept on P_i 's responses - it will accepts on the messages sent by V_p , meaning V_p will accept on x.

• Soundness:

Let there be a set of PCP_x values (defined also on $x \notin L$). WLOG $\forall x, |PCP_x| = l_P$ - since it is easy for V to check if that is the case. Thus we can esaly use this set of PCP_x 's to construct a set of 'mallicious' provers $P_0, ..., P_{k-1}$: Each P_i on query $m_{q,i}$ will response with:

$$PCP_x[l_P \cdot (2^{l_V} \cdot j + m_{q,i}) : l_P \cdot (2^{l_V} \cdot j + m_{q,i}) + l_P]$$

Now for each instance where $V_p(x, PCP_x) = 1$, we have $(V_m, P_0, ..., P_{k-1})(x) = 1$ since the only way for V_p to accept is if V_m does - and it runs on the same inputs (including randomizations) in both cases. Thus:

$$\Pr[V_p(x, PCP_x) = 1] \le \Pr[(V_m, P_0, ..., P_{k-1})(x) = 1] \le \frac{1}{2}$$

1.2

Let $L \subseteq \{0,1\}^*$ be a language with a PCP verifier V_p set of proofs bounded by in length m.

Define the following $q - prover\ MIP$ for it:

The protocol on input x:

- Verifier V_m :
 - 1. sample $B \leftarrow \$ \{0, 1\}$.
 - 2. if B = 0 (verify PCP):
 - (a) Get the set of queries $Q = \{Q_i \mid i \in [q]\}$ from V_p on input x.
 - (b) For all $i \in [q]$, send Q_i to P_i .
 - (c) Denote the bit returned by P_i with b_i .
 - (d) Verify V_p 's acceptence on query results $\{b_i \mid i \in [q]\}$.
 - 3. if B = 1 (Verify consistency):
 - (a) Sample $r \leftarrow \$ [m]$.
 - (b) For all $i \in [q]$, send r to P_i .

- (c) Denote the bit returned by P_i with b_i .
- (d) Verify $b_i = b_j, \forall i, j \in [q]$.

• Prover P_i :

- 1. Recive an index i from the verifier.
- 2. Return $PCP_x[i]$.

Correctness:

• Complexity:

The integer representation of each query is of size log(m), thus it is the length of the messages sent by V_m .

• Completness:

Let $x \in L$. Denote with $PCP_x[Q]$ the set of bits corresponding to the queries Q in PCP_x .

In the standard usage of the PCP verifier V_p - it will recive $PCP_x[Q]$ as the responses to the queries Q - and since it has perfect completness (WLOG as seen previously in the course), it will accept.

When V_m invokes V_p - it sends it the same $PCP_x[Q]$, thus V_p accepts here too - and so does V_m .

• Soundness:

Let $x \notin L$.

Let $\{P_i^* \mid i \in [q]\}$ be a set of (possibly mallicious) provers.

Now we use these provers to construct PCP_x :

 PCP_x has a section corresponding to each prover P_i^* , and in each section - the j'th bit corresponds to the response of P_i^* on query j which is the most probable. If there is more than one most probable response select the minimal one.

Claim:

$$\Pr[(V_m, P_1^*, ..., P_q^*)(x) = 1] \le \Pr[V_p(x, PCP_x) = 1]$$

Proof: As a shorthand denote $P_1^*, ..., P_q^*$ as PS^* .

Denote with $C_{i,j}$ the event that P_i returns the most probable response on query j and $c_{i,j} = \Pr[C_{i,j}]$. Since there are only two possible responses (1 and 0) - $c_{i,j} \ge \frac{1}{2}$.

In the event that B = 0:

Let $C := \bigwedge_{i \in [q]} C_{i,Q_i}$ - meaning the event that all provers were consistent with PCP_x . Let $c = \Pr[C]$.

Since we know the provers cannot communicate - the probabilities for their selections are independent. Hence $c = \prod_{i \in [q]} c_{i,Q_i}$.

$$\Pr[(V_m, PS^*)(x) = 1 \mid B = 0]$$

$$= \Pr[(V_m, PS^*)(x) = 1 \mid B = 0 \land C] \Pr[C] + \Pr[(V_m, PS^*)(x) = 1 \mid B = 0 \land \neg C] \Pr[\neg C]$$

$$= c \Pr[(V_m, PS^*)(x) = 1 \mid B = 0 \land C] + (1 - c) \Pr[(V_m, PS^*)(x) = 1 \mid B = 0 \land \neg C]$$

$$= c \Pr[V_p(x, PCP_x) = 1] + (1 - c) \Pr[(V_m, PS^*)(x) = 1 \mid B = 0 \land \neg C]$$

$$\leq c \Pr[V_p(x, PCP_x) = 1] + (1 - c) \cdot 1 = 1 + c(\Pr[V_p(x, PCP_x) = 1] - 1)$$

In the event that B = 1:

Let
$$C' := \bigwedge_{i \in [q]} C_{i,r}$$
 and $c' := \Pr[C']$.
Thus $c' = \frac{1}{q} \sum_{r \in [q]} \prod_{i \in [q]} c_{i,r}$.

$$\Pr[(V_m, PS^*)(x) = 1 \mid B = 1]$$

$$\Pr[(V_m, PS^*)(x) = 1 \mid B = 1 \land C'] \Pr[C'] + \Pr[(V_m, PS^*)(x) = 1 \mid B = 1 \land \neg C'] \Pr[\neg C']$$

$$= c' \Pr[(V_m, PS^*)(x) = 1 \mid B = 1 \land C'] + (1 - c') \Pr[(V_m, PS^*)(x) = 1 \mid B = 1 \land \neg C']$$

$$= c' \cdot 1 + (1 - c') \cdot 0 = c'$$

Thus:

$$\Pr[(V_m, PS^*)(x) = 1] = \frac{1}{2}\Pr[(V_m, PS^*)(x) = 1 \mid B = 0] + \frac{1}{2}\Pr[(V_m, PS^*)(x) = 1 \mid B = 1]$$