Dernière mise à jour	Informatique	Denis DEFAUCHY
09/01/2023 5 - Fonctions récursives		Résumé

Informatique

5 Fonctions récursives

Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY
09/01/2023	5 - Fonctions récursives	Résumé

Principe : la fonction s'auto appelle d'après le principe : Traiter – Diviser – Régner – Combiner

Exemple		
<pre>def fact_classique(n):</pre>	<pre>def fact_recursif(n):</pre>	
Res = 1	if n==0:	
<pre>for i in range(1,n+1):</pre>	return 1	
Res = Res * i	else:	
return Res	<pre>return n*fact_recursif(n-1)</pre>	

Avantages	Inconvénients
Programmation claire et simple à	Complexité très sensible à la programmation évoluant rapidement en puissance ex a^n , a nombre d'auto-appels récursifs à chaque étape de complexité $O(1)$
comprendre de de problèmes	Limite de la taille de la pile d'exécution (essayer 987! et 988! en récursif) Un algorithme récursif qui traite les n termes d'une liste n'est pas optimal
complexes définis	Preuve et terminaisons plus complexes à démontrer
facilement étape	Création de nouvelles variables locales à chaque exécution (mémoire)
par étape	Les variables étant locales, pour récupérer des infos sur l'exécution, il faut déclarer des variables globales ou les mettre en argument (cf compteurs)

Exemples simples d'analyse d'algorithmes		
Décompte d'auto-appels par transmission de la fonction	Décompte d'auto-appels par variable globale	
<pre>def fact(n): if n==0: return 1,1 else: Res,C = fact(n-1) return Res*n,C+1</pre>	<pre>def fact(n): global C C+=1 if n==0: return 1 else: return fact(n-1)*n</pre>	
<pre>print(fact(5))</pre>	<pre>C = 0 print(fact(5),C)</pre>	
Utilisation de fonctions pour un suivi avancé		
Initialisation du compteur	<pre>def init_compteur(): global Compteur,Compteur_Max Compteur = Compteur_Max = 0</pre>	
Affichage du compteur	<pre>def affiche_compteur(): print("Compteur: ",Compteur," , Max: ",Compteur_Max)</pre>	
Incrément du compteur et enregistrement de la plus longue pile d'exécution Pour le nombre d'exécutions, n'utiliser que incremente_compteur (1) en début de fonction Pour la plus longue pile d'exécution, ajouter incremente_compteur (-1) en sortie de fonction – A la fin, le compteur vaut alors 0 (ne pas utiliser de return en cours de fonction, il en faut un seul à la fin et l'incrément de -1 juste avant)	<pre>def incremente_compteur(i): global Compteur,Compteur_Max Compteur += i if Compteur > Compteur_Max: Compteur_Max = Compteur</pre>	

Dernière mise à jour	Informatique	Denis DEFAUCHY
09/01/2023 5 - Fonctions récursives		Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY
09/01/2023	5 - Fonctions récursives	Résumé

	Complexité			
		Exemple		
	Principe de détermination		(Cas d'un auto-appel au rang n-1)	
	Soit $O(n^{\alpha})$ la complexité à l'étape n			
Soit $C(n)$ la complexité globale à l'ordre n		`		$f(n) = f(n-1) + O(n^{\alpha})$
Po	oser (?) une fonction $f(n) = g(n) * C(h(n))$)		
Ecrire les calculs réalisés à chaque appel)	$f(n) - f(n-1) = O(n^{\alpha})$ $(n-1) - f(n-2) = O((n-1)^{\alpha})$ f(1) - f(0) = O(1)
9	Sommer les égalités (sommes télescopiques)		[f(n)] = 0	$f(1) - f(0) = O(1)$ $(1) - f(n-1) + \dots + [f(1) - f(0)]$ $O(n^{\alpha}) + O((n-1)^{\alpha}) + \dots + O(1^{\alpha})$
Dé	éterminer mathématiquement $f(n)$ puis $\mathcal{C}(r)$ Traiter les éventuels cas particuliers	ı)	$f(n) = f(0) + O((n-1)^{\alpha}) + \dots + O(\sum_{k=1}^{n} k^{\alpha}) = O\left(\sum_{k=1}^{n} f(n) = C(n) = O(n^{\alpha+1})\right)$	
	Résultat	s géı	néraux	
1	Auto-appel 1 fois au rang n-1 $C(n) = C(n-1) + O(n^{lpha})$		$C(n) = O(n^{\alpha+1})$	
2	Auto-appel γ >1 fois au rang n-1 - γ cst $C(n) = \gamma C(n-1) + O(n^{\alpha})$		$C(n) = O(\gamma^n)$	
31			$\alpha = 0$	$C(n) = O(\ln n)$
32	$C(n) = C\left(\frac{n}{2}\right) + O(n^{\alpha})$		$\alpha \geq 1$	$C(n) = O(n^{\alpha})$
41	Auto-appel γ>1 fois au rang n/γ - γ cst		$\alpha = 0$	C(n) = O(n)
42			$\alpha = 1$	$C(n) = O(n \ln(n))$
43	$C(n) = \gamma C\left(\frac{n}{\gamma}\right) + O(n^{\alpha})$		$\alpha \geq 2$	$C(n) = O(n^{\alpha})$
5	Auto-appel aux rangs n-1 et n-2 $C(n) = aC(n-1) + bC(n-2) + O(1)$ $\triangle f(n-1) + 2 * f(n-2) \leftrightarrow a = b = 1$ $f(n-1) + f(n-2) + f(n-2)$ $\leftrightarrow a = 1; b = 2$	$\begin{array}{c} n-2 \\ + O(1) \\ = h = 1 \end{array}$		$\frac{a + \sqrt{a^2 + 4b}}{2}; r_2 = \frac{a - \sqrt{a^2 + 4b}}{2}$ $O(r_1^n + r_2^n) = \begin{cases} O(r_1^n) & \text{si } r_1 > r_2 \\ O(r_2^n) & \text{si } r_2 > r_1 \end{cases}$
	Cas particuli	ers à	connaî	tre
C(n) = C(n-1) + O(1) Suite arithmétique				C(n) = O(n)
	$C(n) = \gamma C(n-1) + O(1)$		$\gamma = 1$	C(n) = O(n)
	Suite arithmético géométrique		<i>γ</i> ≠ 1	$C(n) = O(\gamma^n)$
	Da	nger	'S	
<pre>def rec(n): if n==0: return 1 else: Un_m1 = rec(n-1) if Un_m1 < 1:</pre>		def	<pre>ef rec(n): if n==0: return 1 else: if rec(n-1) < 1: return = rec(n-1) + 1</pre>	
else:				
	Pour $n=100$, avec un temps de calcul d'environ $10^{-6}\ s$ quand $n=1$, temps de $100*10^{-6}=10^{-4}\ s$		2 ⁿ) d'e	our $n=100$, avec un temps de calcul nviron 10^{-6} s quand $n=1$, temps de $2^{100}*10^{-6}=4.10^{16}$ $ann\'{e}s$
Remarquez que ce cas s'apparente à de la « mémoïsation locale » : On stocke la valeur pour la				
réutiliser plusieurs fois sans refaire d'appels récursifs inutiles				

Dernière mise à jour	Informatique	Denis DEFAUCHY
09/01/2023 5 - Fonctions récursives		Résumé