

ME TO DO LO GIA

Pipeline de MLOps de nível 0: processo manual

Problema

Prever as notas da prova de ciências humanas do ENEM de 2023 a partir dos dados socioeconômicos

Objetivo

Sugerir a nota esperada para orientar o estudo do aluno conforme seu objetivo acadêmico

Entendimento dos dados

Extração

✓ Site INEP – ENEM 2023

(https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/microdados/enem)

✓ Dicionário de dados

DICIONÁRIO DE VARIÁVEIS - ENEM 2023					
NOME DA VARIÁVEL	Descrição Variáveis Categóricas		Tomaska	Time	
NOME DA VARIAVEL	Descrição	Categoria	Descrição	Tamanho	Tipo
	DADOS DO PARTICIPANTE				
NU_INSCRICAO	Número de inscrição ¹			12	Numérica
NU_ANO	Ano do Enem			4	Numérica
		1	Menor de 17 anos		
			17 anos]	
		3	18 anos	1	
		4	19 anos	1	
		5	20 anos	1	
		6	21 anos	1	
		7	22 anos	1	
		8	23 anos	1	
		9	24 anos	1	
TO SAIVA STADIA	F : 4 : 2	10	25 anos	1	
TP_FAIXA_ETARIA	Faixa etária ²	11	Entre 26 e 30 anos	2	Numérica
		12	Entre 31 e 35 anos	1	
		13	Entre 36 e 40 anos	1	

Entendimento do dados Extração

- ✓ Leitura da base de dados '.csv'
- ✓ Salvar como '.pkl'

- Dicionário_Microdados_Enem_2023.xlsx
- MICRODADOS_ENEM_2023.csv
- MICRODADOS_ENEM_2023.pkl
- MICRODADOS_ENEM_2023_filtros.pkl
- MICRODADOS_ENEM_2023_tratados.pkl

Entendimento dos dados

Exploração/análise dos dados:

Numéricos

- Assimetria, Outliers e Normalidade
- Correlações
- Relação entre alvo e variável

Binários

- Proporção verdadeiros/falsos
- Relação entre alvo e variável

Categóricos

- Classes desbalanceadas e padrões claros
- Crosstab
- Relação entre alvo e variável

NUMÉRICOS

Assimetria, Outliers e Normalidade

NUMÉRICOS

Correlações

Projeto Final Tutoria MLE

NUMÉRICOS

Relação entre alvo e variáveis numéricas

BINÁRIOS

Proporção verdadeiros/falsos

BINÁRIOS

Relação entre alvo e variáveis binárias

CATEGÓRICOS

Classes desbalanceadas e padrões claros

CATEGÓRICOS

Relação entre alvo e variáveis categóricas

CATEGÓRICOS

Crosstab

01

APLICAÇÃO DE FILTROS

- Alunos do terceiro ano do ensino médio vinculados com escola
- Canditados que possuem notas em todas as provas
- Alunos que n\u00e3o zeraram provas alternativas

VOLUME DE DADOS

02

LIMPEZA DOS DADOS

- Manter apenas colunas que agregam valor saindo de 76 para 38
- Remoção de dados nulos
 - Coluna ENSINO possuía valores não preenchidos que foram substituídos por "Não informado" (nova categoria 0)

CATEGORIA	CONTAGEM	%
0 (Não informado)	12.537	1,75
1(Regular)	702.073	97,92
2 (Especial)	2.334	0,33

PRESENCA_ASPIRADOR PRESENCA DVD PRESENCA TV ASSINATURA PRESENCA_TEL_FIXO, PRESENCA INTERNET COR_RACA CO MUNICIPIO ESC CO UF ESC DEPENDENCIA ADM ESC **ENSINO ESCOLA** ESTADO CIVIL FAIXA ETARIA LINGUA LOCALIZACAO ESC NACIONALIDADE OCUPACAO PAI OCUPACAO MAE SEX0 SIT_FUNC_ESC GRAU ESTUDO PAI GRAU ESTUDO MAE OTD RESIDENTES RENDA MENSAL FAMILIA FREQ EMPREGADO QTD BANHEIRO QTD QUARTO QTD CARRO QTD MOTO QTD GELADEIRA QTD FREEZER QTD MAQ LAVAR ROUPA QTD MAQ SECAR QTD_MICROONDAS QTD MAQ LAVAR LOUCA QTD_TELEVISOR QTD_CELULAR QTD COMPUTADOR

03

AJUSTES DE TIPOS

- 'floats' que podem ser 'ints' (ocupando menos espaço)
- Variáveis categóricas alteradas para 'category'

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 716944 entries, 0 to 716943
Data columns (total 43 columns):
    Column
                            Non-Null Count
                                             Dtype
                            716944 non-null category
    TP FAIXA ETARIA
    TP_SEX0
                            716944 non-null category
                            716944 non-null category
    TP ESTADO CIVIL
    TP COR RACA
                            716944 non-null category
    TP NACIONALIDADE
                            716944 non-null category
    TP_ESCOLA
                            716944 non-null category
    NU NOTA CN
                            716944 non-null float64
    NU NOTA CH
                            716944 non-null float64
    NU NOTA LC
                            716944 non-null float64
    NU NOTA MT
                            716944 non-null float64
                            716944 non-null category
    TP LINGUA
    NU NOTA REDACAO
                            716944 non-null float64
    Q001
                            716944 non-null category
    0002
                            716944 non-null category
    Q003
                            716944 non-null category
                            716944 non-null category
    0004
    Q005
                            716944 non-null int64
    Q006
                            716944 non-null category
```

04

REMOÇÃO DE CATEGORIAS

4.1 Análise e ajuste de campos que podem trazer viés aleatório

- TP_ESTADO_CIVIL: 0 (N\u00e400 informado)
- TP_COR_RACA: 0 (N\u00e40 declarado)
- TP_NACIONALIDADE: 0 (N\u00e400 informado)
- TP_ESCOLA: 1 (Não Respondeu)
- TP_ENSINO: 0 (N\u00e40 informado)

VARIÁVEL	CONTAGEM	%
TP_ESTADO_CIVIL	25.896	3,61
TP_COR_RACA	8.056	1,12
TP_NACIONALIDADE	372	0,05
TP_ESCOLA	2	0,00
TP_ENSINO	12.537	1,75

04

REMOÇÃO DE CATEGORIAS

4.1.1 TP_ESTADO_CIVIL: 0 (Não informado) --> MANTER

- Quantidade representativa de dados (3,61%)
- Comportamento relevante com estatísticas diferentes de outros grupos

Amostra	Média CH	Dif. Média	Desv P.
Base	527	0	84
Cat 0	515	-12	83
Cat 1	528	+1	84
Cat 2	488	-39	83
Cat 3	513	-14	84
Cat 4	480	-47	83

TP_ESTADO_CIVIL
0 25896
1 681625
2 4119
3 5116
4 188

04

REMOÇÃO DE CATEGORIAS

4.1.2 TP_COR_RACA: 0 (Não declarado) --> MANTER

- Quantidade relativa de dados (1,12%)
- Comportamento relevante com estatísticas diferentes de outros grupos

Amostra	Média CH	Dif. Média	Desv P.
Base	527	0	84
Cat 0	519	-8	90
Cat 1	549	+22	80
Cat 2	506	-21	81
Cat 3	507	-20	83
Cat 4	523	- 4	88
Cat 5	477	- 50	78

04

REMOÇÃO DE CATEGORIAS

4.1.3 TP_NACIONALIDADE: 0 (Não declarado) --> REMOVER

- Baixa proporção do grupo (0,05%)
- Não aparenta possuir um significado sendo apenas ruído

```
TP_NACIONALIDADE
0 372
1 701524
2 11606
3 1488
4 1954
```

04

REMOÇÃO DE CATEGORIAS

4.1.4 TP_ESCOLA: 1 (Não Respondeu) --> REMOVER

- Baixa proporção do grupo (0,001%)
- Não aparenta possuir um significado sendo apenas ruído

TP_ESCOLA 1 2 2 523156 3 193786

04

REMOÇÃO DE CATEGORIAS

4.1.5 TP_ENSINO: 0 (Não informado) --> MANTER

- Quantidade relativa de dados (1,75%)
- Comportamento relevante com estatísticas diferentes de outros grupos

Média CH	Dif. Média	Desv P.
527	0	84
476	-51	78
528	+1	84
498	-39	81
	527 476 528	527 0 476 -51 528 +1

TP_ENSINO 0 12537 1 702073 2 2334

05

FEATURE ENGINEERING

- Manter a ordem lógica das categorias com dados numéricos
- o Refletir bem o significado semântico
- Realizar análise estatística direta

PERMITE

- Evitar One-Hot Encoding
- o Melhorar compatibilidade com algoritmos

05

5.1 Variáveis categóricas que podem ser numéricas: Perguntas de quantidade

- Quantidade de banheiro
- o Quantidade de quartos
- o Quantidade de carros
- Quantidade de motos
- o Quantidade de geladeira
- Quantidade de freezer
- o Quantidade de máquina de lavar roupa
- o Quantidade de máquina de secar roupa
- o Quantidade de micro-ondas
- Quantidade de máquina de lavar louça
- o Quantidade de televisores
- Quantidade de celulares
- o Quantidade de computadores

ORIGINALMENTE

- A. O itens
- B. 1 item
- C. 2 itens
- D. 3 itens
- E. 4 ou mais

CONVERSÃO

Categoria A, B, C, D, E

Valor 0, 1, 2, 3, 5

- Analisada proporção de cada categoria
 - banheiro: 5% -> "4 ou mais"
 - celular: 28% -> "4 ou mais"
- Estimativa conservadora de 5 (busca média provável)

RESULTADO

			•
QTD_Q008	716570	non-null	int64
QTD_Q009	716570	non-null	int64
QTD_Q010	716570	non-null	int64
QTD_Q011	716570	non-null	int64
QTD_Q012	716570	non-null	int64
QTD_Q013	716570	non-null	int64
QTD_Q014	716570	non-null	int64
QTD_Q015	716570	non-null	int64
QTD_Q016	716570	non-null	int64
QTD_Q017	716570	non-null	int64
QTD_Q019	716570	non-null	int64
QTD_Q022	716570	non-null	int64
QTD_Q024	716570	non-null	int64

05

5.2 Variáveis categóricas que podem ser numéricas:Colunas com ordem lógica: Renda

ORIGINALMENTE

- A. Nenhuma Renda
- B. Até R\$ 1.320,00
- C. De R\$ 1.320,01 até R\$ 1.980,00.
- D. De R\$ 1.980,01 até R\$ 2.640,00.
- E. De R\$ 2.640,01 até R\$ 3.300,00.
- F. De R\$ 3.300,01 até R\$ 3.960,00.
- G. De R\$ 3.960,01 até R\$ 5.280,00.
- H. De R\$ 5.280,01 até R\$ 6.600,00.
- . De R\$ 6.600,01 até R\$ 7.920,00.
- J. De R\$ 7.920,01 até R\$ 9240,00.
- K. De R\$ 9.240,01 até R\$ 10.560,00.
- L. De R\$ 10.560,01 até R\$ 11.880,00.
- M. De R\$ 11.880,01 até R\$ 13.200,00.
- N. De R\$ 13.200,01 até R\$ 15.840,00.
- O. De R\$ 15.840,01 até R\$19.800,00.
- P. De R\$ 19.800,01 até R\$ 26.400,00.
- Q. Acima de R\$ 26.400,00.

	CH_MEDIA	CH_DESVP
Q006		
Α	471.987819	75.815146
В	487.590602	78.221274
С	512.013869	77.623855
D	524.863413	77.103934
E	534.117018	76.564661
F	542.872168	76.577475
G	551.354456	75.650048
н	561.115961	75.900236
I	566.928161	75.504468
J	572.064128	75.232491
K	576.701892	73.895251
L	580.241201	73.626003
М	588.239723	72.123003
N	589.535600	71.846202
О	594.494189	72.454061
P	602.992898	71.269680
Q	607.385957	70.669476

CONVERSÃO

Categoria
A até Q

Valor
0 a 17

- As médias das notas aumentam conforme a renda sobe
- o Correlação de 0,41
- o Evita a explosão de variáveis com dummies

RESULTADO

Q006_NUM

716570 non-null int64

Projeto Final Tutoria MLE

5.3 Variáveis categóricas que podem ser numéricas:Colunas com ordem lógica: Empregado (a)

Em sua residência trabalha empregado(a) doméstico(a)?

ORIGINALMENTE

- A. Não.
- B. Sim, um ou dois dias por semana.
- C. Sim, três ou quatro dias por semana.
- D. Sim, pelo menos cinco dias por semana.

CONVERSÃO

 Há uma relação crescente entre a frequência de trabalho doméstico e as médias das notas.

RESULTADO

Q007_NUM 716570 non-null int64

5.4 Variáveis categóricas que podem ser: Numérica + Dummy

- o Grau de escolaridade do pai
- o Grau de escolaridade da mãe

ORIGINALMENTE

- A. Nunca estudou.
- B. Não completou a 4ª série/5° ano do Ensino Fundamental.
- C. Completou a 4ª série/5° ano, mas não completou a 8ª série/9° ano do Ensino Fundamental.
- D. Completou a 8ª série/9° ano do Ensino Fundamental, mas não completou o Ensino Médio.
- E. Completou o Ensino Médio, mas não completou a Faculdade.
- F. Completou a Faculdade, mas não completou a Pós-graduação.
- G. Completou a Pós-graduação.
- H. Não sei.

- o 10% não sabe a escolaridade do pai
- o 4% não sabe a escolaridade da mãe

Q001 A 0.023233 B 0.107423 C 0.112053 D 0.115831 E 0.320373 F 0.119138 G 0.097870 H 0.104078

Q002	
Α	0.012056
В	0.067653
С	0.085895
D	0.114562
Е	0.369499
F	0.153181
G	0.157638
Н	0.039515

5.4 Variáveis categóricas que podem ser: Numérica + Dummy

- 1. Conversão ordinal para numérico
- o A a G representam níveis crescentes de escolaridade
- 2. "H" (Não sei) como Dummy
- o "H" não representa um nível de escolaridade real
- o Criada uma variável binária indicando a presença de "H"
- 3. Imputação na variável numérica para "H"
- Preenchidos com a mediana dos demais valores numéricos válidos -> evita distorções nos modelos

Essa abordagem ajuda o modelo a entender tanto a escolaridade quanto a ausência dessa informação.

RESULTADO

		`
Q001_DUMMY_H	716570 non-null	bool
Q001_NUM	716570 non-null	int64
Q002_DUMMY_H	716570 non-null	bool
Q002_NUM	716570 non-null	int64

30

05

5.5 Variáveis categóricas que podem ser binárias

- Existência de aspirador de pó
- Existência de DVD
- o Existência de TV por assinatura
- Existência de telefone fixo
- Existência de internet

A. Não

B. Sim

CONVERSÃO

Categoria A, B **--→**

Valor 0 ou 1

Convertidas diretamente para valores binários

RESULTADO

BIN_Q018 716570 non-null bool
BIN_Q020 716570 non-null bool
BIN_Q021 716570 non-null bool
BIN_Q023 716570 non-null bool
BIN_Q025 716570 non-null bool

06

AJUSTES FINAIS E EXPORTAÇÃO DA BASE

- Realizada padronização dos nomes por tipo
- Reset no index

ENTRADAS

```
'NUM_Q001', 'NUM_Q002',
'NUM_Q005', 'NUM_Q006',
'NUM_Q007', 'NUM_Q008',
'NUM_Q009', 'NUM_Q010',
'NUM_Q011', 'NUM_Q012',
'NUM_Q013', 'NUM_Q014',
'NUM_Q015', 'NUM_Q016',
'NUM_Q017', 'NUM_Q019',
'NUM_Q022', 'NUM_Q024'
```

```
'BIN_Q001_DUMMY_H', 'BIN_Q002_DUMMY_H',
'BIN_Q018', 'BIN_Q020', 'BIN_Q021',
'BIN_Q023', 'BIN_Q025',
```

```
'CAT_COR_RACA', 'CAT_CO_MUNICIPIO_ESC',
'CAT_CO_UF_ESC', 'CAT_DEPENDENCIA_ADM_ESC',
'CAT_ENSINO', 'CAT_ESCOLA', 'CAT_ESTADO_CIVIL',
'CAT_FAIXA_ETARIA', 'CAT_LINGUA',
'CAT_LOCALIZACAO_ESC', 'CAT_NACIONALIDADE',
'CAT_Q003', 'CAT_Q004', 'CAT_SEXO',
'CAT_SIT_FUNC_ESC',
```

SAÍDAS

```
'NUM_NOTA_CH',
'NUM_NOTA_CN',
'NUM_NOTA_LC',
'NUM_NOTA_MT',
'NUM_NOTA_REDACAO',
```

Modelagem

ESTRATÉGIA

- o Regressão
- Selecionar métricas
- o Leitura da base tratada e encoding se necessário
- o Seleção de grupo de treino e teste (20%)
- o Treinamento rápido (volume de dados e tempo disponível)
- o Modelos que lidam bem com dados categóricos
- Aplicar modelo baseline simples
- o Aplicar mais de uma técnica (Árvore de Decisão e LightGBM)
- Comparar resultados (MLFlow)
- o Realizar Tunning (Grid e Bayes Search)
- Selecionar melhores modelos e exportar (.pkl)

Modelagem MÉTRICAS

Coeficiente de Determinação

mede a proporção da variabilidade explicada, métrica generalista

MAE

Erro Absoluto Médio

menor penalização para outliers, reduzindo a distorção por grandes erros, mantém a mesma unidade de medida original dos dados

RMSE

Raiz do Erro Quadrático Médio

penaliza erros maiores, sendo sensível a outliers e mantendo a unidade de medida original dos dados

Modelagem Árvore de Decisão

Estrutura-se em divisões sucessivas dos dados com base em perguntas binárias, formando subconjuntos mais homogêneos

TRÊS MODELOS TREINADOS

Baseline

- Hiperparâmetros mínimos
- Treinamento rápido

Melhor CCP Alpha (Cost Complexity Pruning)

 Controla a poda da árvore, removendo nós com impacto mínimo no erro

* Label Encoding: converte colunas categóricas em numéricas. Necessário para modelos de árvore

Grid Search

 Realiza busca exaustiva na lista de hierparâmetros definidos

Modelagem

LightGBM

É uma variante do GBM (Gradient Boosting Machine) que gera múltiplas árvores de forma sequencial, onde cada nova árvore busca corrigir os erros das anteriores, a versão Light melhora a eficiência computacional, principalmente com grandes bases e variáveis categóricas.

* Especificar colunas categóricas para o modelo

DOIS MODELOS TREINADOS

Baseline

- Hiperparâmetros mínimos
- Treinamento rápido

Bayes Search

 Realiza busca inteligente e eficiente na lista de hiperparâmetros por meio da aprendizagem com os erros

TREINO	BASE	MELHOR CCP	GRID SEARCH
R²	0,26	0,26	0,29
MAE	57,71	57,71	56,53
RMSE	72,78	72,78	71,49

TESTE	BASE	MELHOR CCP	GRID SEARCH
R ²	0,26	0,26	0,28
MAE	57,73	57,73	56,73
RMSE	72,85	72,85	71,76

TREINO	BASE	BAYES SEARCH
R ²	0,35	0,36
MAE	53,68	53,50
RMSE	68,10	67,91

TESTE	BASE	BAYES SEARCH
R ²	0,31	0,32
MAE	55,34	55,02
RMSE	70,14	69,80

Registro

Uso do MLFlow para armazenamento, controle, versionamento e comparação dos modelos

Projeto Final Tutoria MLE

Registro

Armazenamento dos hiperparâmetros e características de cada modelo

Projeto Final Tutoria MLE

Resultados Modelo

REAL VS PREVISTO

- Reconhece a tendência geral
- Prevê bem entre 350 e 650
- Subestimação das notas maiores, superestimação das menores

Árvore de Decisão (sem outliers zero)

LightGBM (com outliers zero)

Resultados Modelo

LightGBM (sem outliers zero)

CÁLCULO DE RESÍDUOS

- Distribuição normal centrada em zero
- Baixo viés de modo geral

Algumas conclusões dos resultados

MAE por faixa

```
Faixa Amostra MAE
(0, 300] 0.1 201.545286
(300, 500] 34.5 69.132923
(500, 700] 64.4 46.181468
(700, 1000] 1.0 127.771426
```

- Testar outras técnicas
- Aplicar modelos por faixas
- Base desequilibrada (SMOTE ou subamostragem para extremidades)

Pronto para servir:

- Modelo busca sugerir uma nota para guiar o estudo
- 98,9% dos alunos estão na faixa de menor erro
- MAE apresenta um erro aceitável nas principais faixas

Implantação

DISPONIBILIZAÇÃO DO MODELO

- Serviço de API (FastAPI)
 - Consumo pode ser realizado por diversos sistemas
 - Permite escalabilidade
- Serviço via Aplicação Web (Streamlit)
 - Interface amigável para o usuário final não técnico
 - Possibilita testes rápidos

MOTIVAÇÕES

- o Dois serviços permitem a separação de responsabilidades: modelo, API, UI
- Flexibilidade de consumo

Monitoramento

Modelo (qualidade preditiva):

- Data Drift: mudança nos dados de entrada ao longo do tempo
- Concept Drift: mudanças nas saídas mesmo com entradas semelhantes
- Acompanhar métrica definidas: R², MAE e RMSE
- Uso de logs e comparações periódicas com distribuição original

API

- Latência e tempo de resposta
- Taxa de erros
- Disponibilidade
- Volume de requisições
- Uso de logs, middleware, alertas

Apresentação prática

Chamada de API

```
# Fazendo a requisição POST
response = requests.post(url, json=dados_nome_front)

# Exibindo a resposta da API
print("Status Code:", response.status_code)

if response.status_code == 200:
    print("Resposta:", response.json())
    print('')
else:
    print("Erro:", response.text)
```

Status Code: 200 Resposta: {'mensagem': 479.47074971315425}

Utilização Ul

45 Projeto Final Tutoria MLE