Техническое описание проекта

Реализация четвертого чекпоинта находится в директории ./арр

Техническое описание будет опираться на требования, указанные в файле "Чекпоинт 4. Сервис."

 $https://docs.google.com/presentation/d/16WZAKfUzXpo_ojw2OhCNg25aVSKCAPVVmYdnDGmA1yQ/edit\#slide=id.p$

Ведение разработки в репозитории

• Вся разработка приложения велась в отдельной ветке app_backend . Я не создавал отдельных веток для /backend и /frontend частей по той причине, что код писался мною в одиночку и наличие нескольких веток усложнило бы для меня процесс разработки.

Качество кода

• По согласованию с куратором все .py-файлы были пропущены через black и успешно прошли проверку стиля flake8 .

Реализация серверной части

Реализация серверной части находится в директории ./backend. Все эндпоинты реализованы в main.py .

Функции для обучения нейронной сети (далее HC) и проведения EDA реализованы в model preprocessing.py

Описание реализованных ручек:

 POST /fit - обучение НС на основе изображений, подаваемых клиентом на вход модели.

В качестве сверточного блока НС используется предобученный сверточный блок resnet18. Признаки на выходе из сверточного блока подаются на вход в линейный слой (который состоит из одного нейрона) и далее подаются в функцию активации (сигмоиду). В качестве функции ошибок используется log-loss. Т.е. это логистическая регрессия над вектором признаков из сверточного блока. Такое решение обусловлено условиями третьего чекпоинта, где обязательным требованием было создать линейную модель. А в этом чекпоинте обязательным требованием было использовать модель с предыдущего чекпоинта.

- POST /set установка модели (среди, тех что были обучены через /fit) в качестве модели для инференса.
- POST /predict предсказание метки класса (REAL/FAKE) для изображения моделью для инференса.
- GET /models вывод списка обученных моделей с подробной информацией о них. В эту информацию входят значения гиперпараметров, ассuracy, вид предобученной модели, а также функция активации на последнем линейном слое.
- GET /eda расчет профиля данных, подаваемых клиентом на вход модели. Профиль данных состоит из следующих статистик в разрезе train/test выборок:
 - fake_cnt количество фейковых изображений;
 - o real_cnt количество реальных изображений;
 - avg_size средний размер изображения в выборке (указывается среднее число пикселей на изображении);
 - o min_size минимальный размер изображения в выборке;
 - o max_size максимальный размер изображения в выборке;
 - o mean red среднее значение по красному каналу;

- o mean_green среднее значение по зеленому каналу;
- o mean_blue среднее значение по синему каналу;
- o std_red стандартное отклонение по красному каналу;
- std_green стандартное отклонение по зеленому каналу;
- o std_blue стандартное отклонение по синему каналу;

Реализация сервиса на Streamlit

1. Необходимо загрузить архив с изображениями для обучения в определенном формате который указан в приложении (для удобства тестирования архив с данными в нужном формате дополнительно размещен на Яндекс Диске) (https://disk.yandex.ru/d/Kf_7F4yervF1pQ). После того как вы выберете архив и нажмете на кнопку "Загрузить данные и вывести EDA", архив будет загружен и распакован в специально отведенной директории и начнется расчет профиля данных. Весь процесс после нажатия кнопки до отображения профиля занимает ~5 минут (это если брать датасет с Яндекс Диска на 120к изображений).

			Deploy
<			Deploy
формацию об обученных моделях	ь данных из dataset_yp.	zip	
	train	test	
fake_cnt	50,000.0000	10,000.0000	
real_cnt	50,000.0000	10,000.0000	
avg_size	1,024.0000	1,024.0000	
min_size	1,024.0000	1,024.0000	
max_size	1,024.0000	1,024.0000	
mean_red	0.4720	0.4730	
mean_green	0.4629	0.4637	
mean_blue	0.4178	0.4186	
std_red	0.2376	0.2378	
std_green	0.2374	0.2374	
std_blue	0.2659	0.2659	

2. После того, как вы загрузите архив с данными, вы можете приступить к настройке гиперпараметров нейронной сети. Для этого обязательно нужно ввести идентификатор для нового экземпляра НС. Далее необходимо нажать на кнопку "Обучить нейронную сеть". В течение 30 секунд НС будет обучена на ваших данных (На локальном компьютере обучение занимает ~7 секунд, т.к. у меня GPU. В докере по умолчанию используется CPU).

3. После того, как вы обучили несколько моделей, вы можете вывести всю информацию об этих моделях, нажав на кнопку "Вывести информацию об обученных моделях" в левом верхнем углу.

Вывести информацию об обученных моделях

```
₩ {
   ▼ "model1" : {
      "type_nn_pretrain": "ResNet18"
      "end_activation_function": "Sigmoid"
     "batch_size": 128
     "lr": 0.03
     "C": 0.1
      "num_epochs": 1
      "accuracy": 0.7452
   ▼ "model2" : {
      "type_nn_pretrain": "ResNet18"
      "end_activation_function": "Sigmoid"
     "batch_size": 128
      "lr": 0.01
      "C": 0.26
      "num_epochs": 1
      "accuracy": 0.7472
```

4. Далее необходимо выбрать модель для инференса и нажать на кнопку "Установить модель в качестве инференса". Для выбора будут доступны только уже обученные вами модели.

Инференс обученной модели

'model1' установлена в качестве модели для инференса.

5. После того, как вы установите модель для инференса, вам станет доступна загрузка изображения для инференса. Выберите любое изображение в формате .jpg (это важно!) и нажмите кнопку PREDICT . Будут выведены вероятность принадлежности объекта к тому или иному классу, а также вердикт модели (в модели стоит treshold >= 0.60).

Выберите изображение для инференса

Drag and drop file here
Limit 200MB per file • JPG, JPEG

6_real_with_effects.jpg 82.5KB

X

PREDICT

Вероятность принадлежности изображения к классу REAL: 0.95

Изображение является РЕАЛЬНЫМ

Создание docker-приложения

- 1. Необходимо зайти в директорию ./app и в командной строке ввести команду docker compose up --build . Первоначальная сборка занимает ~10 минут.
- 2. Далее в Docker Desktop можно зайти в композицию контейнеров и перейти непосредственно в само приложение frontend.

