

Design of Local Binary Pattern Facial Recognition System

Instructor: Lih-Yih Chiou

TA: Leo

Date: 04/17/2024

Outline

- LBP
- Histogram
- Recognition
- Architecture
- Data Mapping in Memory
- I/O Definition
- Waveform
- Simulation
- Grading Policy

LBP

Local binary pattern (LBP) is a unique, efficient textural operator that are suitable for facial recognition tasks.

LBP – Circular Local Binary Pattern

- Choose a pixel(center) in the image and select its neighboring pixels
- Calculate bilinear interpolation
 - Determine $r_x \& r_v$
 - Determine x_1 , x_2 , y_1 , y_2
 - Determine t_{χ} , t_{γ}
 - Determine w_1, w_2, w_3, w_4
 - Determine f(0,0), f(0,1), f(1,0), f(1,1)
 - Determine neighbor Rounding to nearest integer
- Repeat 2 to calculate all neighbors' values
- Construct the mask using threshold function
- Combine the binary values for all neighboring pixels to obtain a binary code for the central pixel and convert it to a decimal value
- Repeat steps 1–5 for each pixel in the image to obtain a binary code for each pixel

LBP – Circular Local Binary Pattern

Threshold function

$$LBP(x,y) = \sum_{k=0}^{P-1} s (g_k - g_c) 2^k$$

$$s = Threshold(g_k) \begin{cases} g_k \ge g_c, 1 \\ otherwise, 0 \end{cases}$$

where, g_k , $k \in 0,1,2,3,4,5,6,7(P-1)$

Pay attention to the inequalities!

LBP – Circular Local Binary Pattern

- In this lab, neighbor needs to be rounded to the nearest integer
 - \rightarrow neighbor = $f(0,0)w_1 + f(0,1)w_2 + f(1,0)w_3 + f(1,1)w_4$
 - 246.979 -> 247.000
 - 48.580 -> 49.000
 - 215.013 -> 215.000

from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan

- ☐ This step happens after LBP computation is done
- Histogram construction
 - → Use *GridX* and *GridY* to divide the LBP image into multiple grids
- □ LBP result is in grayscale, each histogram(from each grid) will contain only 256 positions(0-255) representing the occurrences of each pixel intensity

- Concatenate each histogram to create a new and bigger histogram
- □ Suppose we have 8x8 grids, we'll have 8x8x256=16384 positions in the final histogram
- ☐ The final histogram represents the characteristics of the original image
 - **Feature vector** of size 16384

Feature vector = histogram

- ☐ Image size of 64 x 64 is cropped into 64 equal girds
 - → Each row has 64 columns, totally 64 rows
 - Each grid is of size 8(row) x 8(col)

LPHPLMB VLSI Design LAB

Histogram

Image grid converts to region-histogram

Recognition

LPIPLUB VLSI Design LAB

Recognition

- Dataset is divided into two parts, totally 5 persons
 - → TRAIN -> each person has 7 pictures
 - → PREDICT -> each person has 4 pictures

11 pic

TRAIN

PREDICT

Recognition – mode TRAIN

- For each image in the training dataset, we construct its corresponding histogram, and store it to the histogram training database with tagged ID
 - HIST_RAM_TRAIN
 - ID_RAM

Histogram Construction Unit

from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan

- For the given prediction image in the prediction dataset, we construct its histogram, and store it to the histogram prediction database
 - HIST_RAM_PREDICT

Randomly selects subject P with picture T

☐ With the histogram of prediction image being established, we find the closest histogram compared to those in training database

- Compare histograms using distance calculation
 - → Euclidean distance
- Suppose we have hist_predict and hist_train, the equation to compute their distance D

$$\rightarrow D = \sum_{p=1}^{n} (hist_predict_p - hist_train_p)^2$$

- Where hist_predict is the prediction histogram, and hist_train is the histogram in training database
- Where n = 8x8x256= 16384

- After training database is established, system starts to predict
- Suppose we have *hist_predict* from subject P
- Pseudo code
 - initialize minDistance
 - \rightarrow for i = 0 to length(HIST_RAM_TRAIN)
 - hist_tarin = HIST_RAM_TRAINi
 - $distance = compute D(hist_predict, hist_train)$
 - *if distance* < *minDistance*
 - update minDistance

HIST RAM TRAIN

Architecture

LPHPLAB VLSI Design LAB

Architecture

Architecture

- Submodules in TOP
 - CLBP (Circular Local Binary Pattern)
 - Compute the LBP value of the current subject
 - → HCU (Histogram Construction Unit)
 - Compute the histogram of the current subject using CLBP result
 - → DCU (Distance Compute Unit)
 - Compute the distance between hist_predict and hist_train, see Recognition pseudo code
 - Comparator
 - Controls DCU circuit
 - ◆ Using DCU computed value to determine the prediction *label* and *minDistance* value, see <u>I/O</u> Definition TOP
 - Controller
 - Controls each submodule

Architecture

Memory access

Data Mapping in Memory

Introduction to VLSI CAD 2024 spring Data Mapping in Memory grid0 addr0 addr1 pix1 pix2 One subject histogram 256 addr255 pix255 grid1 addr256 pix0 addr257 pix1 pix2 grid0 256 254 255 20 30 1D mapping addr511 pix255 grid63 grid63 20 30 254 255 256

No part of this teaching material may be redistributed in any form without written pe

from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan

27

UPHPUMB VLSI Design LAB

Data Mapping in Memory

☐ HIST_RAM_TRAIN, size of 8*8*256*(7+1)*N byte

Data Mapping in Memory

HIST_RAM_PREDICT, size of 8*8*256 byte

I/O Definition - Top module

I/O Definition - TOP module (1/3)

Signal	I/O	Bit-width	Description	
clk	- 1	1	Clock signal	
rst	1	1	Reset signal	
enable	I	1	Circuit enabling signal	
mode	I	1	Indication signal of whether the system is in prediction or training phase, 0 is training, 1 is prediction	
gridX	I	4	Image sliced portion in X direction, value is 8	
gridY	-1	4	Image sliced portion in Y direction, value is 8	
valid	Į	1	Indication that current subject ID is valid	
id	į	5	Subject ID	
hcu_finish	0	1	Indication that HCU circuit is done(should be asserted every time a subject picture is finished computing histogram)	
label	0	5	Prediction result, output ID value	
minDistance	0	18	Minimum distance between the prediction histogram and the closest histogram in HIST_TRAIN_RAM	
done	0	1	Indication that prediction of one picture is finished from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan	

I/O Definition - TOP module (2/3)

Signal	I/O	Bit-width	Description
gray_addr	0	12	Address signal connected to RAM_GRAY
gray_ren	0	1	Read enable signal to RAM_GRAY
gray_rdata	ı	8	Read data signal from RAM_GRAY
lbp_addr	0	12	Address signal connected to RAM_LBP
lbp_wen	0	1	Write enable signal to RAM_LBP
lbp_wdata	0	8	Write data signal to RAM_LBP
lbp_ren	0	1	Read enable signal to RAM_LBP
lbp_rdata	1	8	Read data signal from RAM_LBP
theta	0	25(fixed-point)	Current neighbor's theta signal(unit is in radian)
theta_valid	0	1	Indication signal of current neighbor's theta is valid
cos_data	1	25(fixed-point)	Cosine value of the theta(from testbench)
cos_valid	1	1	Indication signal of cosine value is valid
sin_data	1	25(fixed-point)	Sine value of the theta(from testbench)
sin_valid	in_valid I 1		Indication signal of sine value is valid
lbp_finish	0	1	Indication signal of the CLBP circuit is finished

Signal	I/O	Bit-width	Description
id_addr	0	8	Address signal connected to ID_RAM
id_ren	0	1	Read enable signal to ID_RAM
id_rdata	I	5	Read data signal from ID_RAM
id_wen	0	1	Write enable signal to ID_RAM
id_wdata	0	5	Write data signal to ID_RAM
hist_addr_train	0	21	Address signal connected to HIST_RAM_TRAIN
hist_wen_train	0	1	Write enable signal to HIST_RAM_TRAIN
hist_wdata_train	0	8	Write data signal to HIST_RAM_TRAIN
hist_ren_train	0	1	Read enable signal to HIST_RAM_TRAIN
hist_rdata_train	Ι	8	Read data signal from HIST_RAM_TRAIN
hist_addr_predict	0	14	Address signal connected to HIST_RAM_PREDICT
hist_wen_predict	0	1	Write enable signal to HIST_RAM_PREDICT
hist_wdata_predict	0	8	Write data signal to HIST_RAM_PREDICT
hist_ren_predict	0	1	Read enable signal to HIST_RAM_PREDICT
hist_rdata_predict	I	8	Read data signal from HIST_RAM_PREDICT

I/O Definition - Submodule

Introduction to VLSI CAD 2024 spring

I/O D	efinition P	

1 Signal	1/0	Bit-width	Description	
clk	- 1	1	Clock signal	
rst	I	1	Reset signal	
enable	I	1	CLBP circuit enabling signal	
gray_addr	0	12	Address signal connected to RAM_GRAY	
gray_OE	0	1	Read enable signal to RAM_GRAY	
gray_data	I	8	Read data signal from RAM_GRAY	
lbp_addr	0	12	Address signal connected to RAM_LBP MUX to memory	
lbp_WEN	0	1	Write enable signal to RAM_LBP	
lbp_data	0	8	Write data signal to RAM_LBP	
theta	0	25(fixed-point)	Current neighbor's theta signal(unit is in radian)	
theta_valid	0	1	Indication signal of current neighbor's thetas is valid	
cos_data	I	25(fixed-point)	Cosine value of the theta (from testbench)	
cos_valid	I	1	Indication signal of cosine value is valid	
sin_data	I	25(fixed-point)	Sine value of the theta(from testbench)	
sin_valid	I	1	Indication signal of sine value is valid	
finish	0	1	Indication signal of the LBP circuit is finished	3

I/O Definition – HCU (1/2)

Signal	I/O	Bit-width	Description
clk	İ	1	Clock signal
rst	İ	1	Reset signal
mode	I	1	Indication signal of whether the system is in prediction or training phase, 0 is training, 1 is prediction
enable	1	1	HCU circuit enabling signal
gridX	1	4	Image sliced portion in X direction, value is 8
gridY	l	4	Image sliced portion in Y direction, value is 8
lbp_addr	0	12	Address signal connected to RAM_LBP MUX to memory
lbp_ren	0	1	Read enable signal to RAM_LBP
lbp_rdata	I	8	Read data signal from RAM_LBP

LPHPLMB VLSI Design LAB

I/O Definition – HCU (2/2)

Signal	1/0	Bit-width	Description	
hist_addr_train	0	21	Address signal connected to HIST_RAM_TRAIN MUX to memory	
hist_wen_train	0	1	Write enable signal to HIST_RAM_TRAIN	
hist_wdata_train	0	8	Write data signal to HIST_RAM_TRAIN	
hist_ren_train	0	1	Read enable signal to HIST_RAM_TRAIN MUX to memory	
hist_rdata_train	I	8	Read data signal from HIST_RAM_TRAIN	
hist_addr_predict	0	14	Address signal connected to HIST_RAM_PREDICT MUX to memory	
hist_wen_predict	0	1	Write enable signal to HIST_RAM_PREDICT	
hist_wdata_predict	0	8	Write data signal to HIST_RAM_PREDICT	
hist_ren_predict	0	1	Read enable signal to HIST_RAM_PREDICT MUX to memory	
hist_rdata_predict	ſ	8	Read data signal from HIST_RAM_PREDICT	
done	0	1	Indication that HCU circuit is done(should be asserted every time a subject picture is finished computing histogram)	

I/O Definition - DCU

Signal	1/0	Bit-width	Description	
clk	I	1	Clock signal	
rst	I	1	Reset signal	
enable	I	1	DCU circuit enabling signal	
hist_addr_offset	Į	21	Current computing histogram address offset	
hist_addr_train	0	21	Address signal connected to HIST_RAM_TRAIN MUX to memory	
hist_ren_train	0	1	Read enable signal to HIST_RAM_TRAIN MUX to memory	
hist_rdata_train	1	8	Read data signal from HIST_RAM_TRAIN	
hist_addr_predict	0	14	Address signal connected to HIST_RAM_PREDICT MUX to memory	
hist_ren_predict	0	1	Read enable signal to HIST_RAM_PREDICT MUX to memory	
hist_rdata_predict	I	8	Read data signal from HIST_RAM_PREDICT	
distance	0	1	The computed distance value	
valid	0	1	Indication that the current distance value is valid	

I/O Definition - Comparator

Signal	1/0	Bit-width	Description	
clk	I	1	Clock signal	
rst	l	1	Reset signal	
enable	I	1	Comparator circuit enabling signal	
histcount	I	8	# IDs encountered during training mode	
distance	I	1	DCU computed distance value	
dcu_valid	I	1	Indication that the current distance value is valid	
id	I	5	Id read data from ID_RAM	
id_ren	0	1	Read enable signal to ID_RAM	
id_counter	0	8	The current ID address it is processing MUX to memory	
dcu_enable	0	1	DCU circuit enabling signal	
label	0	5	Prediction result, output ID value	
minDistance	0	18	Minimum distance between the prediction histogram and the closest histogram in HIST_TRAIN_RAM	
hist_addr_offset	0	21	The address offset in HIST_RAM_TRAIN of the id it is processing currently	
done	0	1	Indication signal of the Comparator circuit is finished	

LPHPLMB VLSI Design LAB

I/O Definition – Controller (1/2)

Signal	I/O	Bit-width	Description	
clk	ı	1	Clock signal	
rst	1	1	Reset signal	
mode	Ī	1	Indication signal of whether the system is in prediction or training phase, 0 is training, 1 is prediction	
enable	I	1	Comparator circuit enabling signal	
valid	ĺ	1	Indication that current subject ID is valid	
id	I	5	Subject ID	
id_addr	0	8	Address signal connected to ID_RAM MUX to memory	
id_wen	0	1	Write enable signal to ID_RAM	
id_wdata	0	5	Write data signal to ID_RAM	
lbp_enable	0	1	CLBP circuit enabling signal	
lbp_finish	I	1	Indication of the CLBP circuit is finished	
ram_clbp	0	1	Indication that the CLBP circuit has the access to RAM_LBP	

I/O Definition – Controller (2/2)

Signal	I/O	Bit-width	Description	
gridX_i	I	4	Image sliced portion in X direction, value is 8, from testbench	
gridY_i	I	4	Image sliced portion in Y direction, value is 8, from testbench	
hcu_enable	0	1	HCU circuit enabling signal	
gridX_o	0	4	Image sliced portion in X direction, value is 8, to HCU	
gridY_o	0	4	Image sliced portion in Y direction, value is 8, to HCU	
hcu_finish	I	1	Indication of the HCU circuit is finished	
comparator_finish	I	1	Indication of the Comparator circuit is finished	
comparator_enable	0	1	Comparator circuit enabling signal	
ram_comp	0	1	Indication that the Comparator circuit & DCU circuit has the access to ID_RAM, HIST_RAM_TRAIN, HIST_RAM_PREDICT	

Waveform

Waveform

□ TOP module signal, see TOP I/O, training mode

□ id signal & valid signal will be renewed 2 cycles after hcu_finish is asserted

📴 lbp finish

🚾 🕮 dcu_enable № 🕮 dcu valid

Waveform

- Overall system behavior
 - Note: hcu_finish & lbp_finish & done signal should be asserted only one cycle every time when it is supposed to pull high
 mode signal transition 0→ 1

Training mode

Prediction mode

Testbench checks the content in RAM_LBP whenever *lbp_finish* is asserted Testbench checks the content in HIST_RAM_TRAIN whenever *hcu_finish* is asserted

Testbench checks *label* & *minDistance* when *done* is asserted

Lab7 Session

- Lab7
 - → Lab7_1
 - Complete training mode, no error occurred in training phase
 - → Lab7_2
 - Complete prediction mode, all predictions are correct

Command

Lab7	Commands
superlint	% cd script % jg –superlint superlint.tcl
synthesis	% cd script % dv –f synthesis.tcl
Pre-sim	% cd sim % vcs -R -sverilog top_tb.sv -debug_access+all -full64
Post-sim	% cd sim % vcs -R -sverilog top_tb.sv -debug_access+all -full64 +define+SDF+SYN
Dump waveform	+define+FSDB

Don't use +define+FSDB when running post-sim, it'll occupy substantial amount of memory!

- ☐ Training phase (lab7_1)
 - Check content in RAM_LBP first
 - Check content in HIST_RAM_TRAIN secondly
 - → Simulation will be aborted if any error occurred

- Prediction phase (lab7_2)
 - Check content in RAM_LBP first
 - Check content in HIST_RAM_PREDICT secondly
 - Check predicted label signal & minDistance signal thirdly
 - → Simulation will be aborted if any error occurred

- □ Based on this top diagram <u>architecture</u>, no any I/O port should be modified
 - → However, the internal architecture can be the design of your own
 - → Submodules doesn't have to be as same as those provided
- Special design will get higher score!

No part of this teaching material may be redistributed in any fc from Prof. Lih-Yih Chiou NCKU LPHP Lab

PA Rank

Note: clock period must be No more than 2.0 ns!!!

→ P: Post-simulation time (= total cycle*period, unit in ns)

→ A : Total cell area

```
Number of ports:
                                                   2518
        Number of nets:
                                                  11103
        Number of cells:
                                                   7766
        Number of combinational cells:
                                                   7144
       Number of sequential cells:
        Number of macros/black boxes:
        Number of buf/inv:
                                                   1093
        Number of references:
        Combinational area:
                                            3454.410320
        Buf/Inv area:
                                             179.573766
       Noncombinational area:
                                            537.943687
       Macro/Black Box area:
                                               0.000000
                                     undefined (Wire load has zero net area)
       Net Interconnect area:
No par <sub>Total</sub> cell area:
```

undefined

□ Lab7 (110%)

→	Lab7	1	(30%)	
	_	_	. /	

RTL pass	(10 %)
----------	--------

→ Lab7_2 (65%)

RTL pass	(10 %)
----------	--------

SYN pass (clock period <= 2.0ns) (20 %)</p>

◆ PA (30 %)

◆ Superlint >= 90% (5 %)

→ Report (5%)

→ Demo (10%)

Note: clock period must be No more than 2.0 ns!!!

Note: clock period must be No more than 2.0 ns!!!

Note: clock period must be No more than 2.0 ns!!!

Friendly reminder

- Friendly reminder
 - Discussion with peers is recommended, but do not cheat
 - Warning! Any dishonesty found will result in zero grade
 - Warning! Do not submit in the last minute, any late submission will be handled by the late submission policy
 - → Warning! Please make sure you submit the correct file; submitted the wrong file and already pass the deadline will be viewed as late submission and will also be handled by late submission policy
 - → Warning! Please make sure that your code can be compiled in the SoC environment, any dead body that we cannot compile, will also receive zero

Late submission policy

- Within 24 hours: 30% deduction of graded score
- Within 48 hours: 60% deduction of graded score
- Within 72 hours: 90% deduction of graded score
- > After 72 hours: 100% deduction of graded score

File Hierarchy

- Please follow the file hierarchy when submitting homework
 - → Warning!!! Deduction of 5 points if not allowed!

Note

- Use asynchronous reset
 - → Always **reset to 0** to avoid unanticipated behavior

```
always@(posedge clk or posedge rst) begin
    if(rst) begin
        signal <= 1'b0;
    end
    else begin
        // ...
    end
end</pre>
```


Note

- Synthesis script, added -attribute in report_timing command
 - See clearly what path is infeasible (i.e. why your slack is always negative no matter how large the clock period you adjust)

```
report_timing -attributes > ../syn/timing.log
```

```
Attributes:
    d - dont_touch
    u - dont_use
    mo - map_only
    so - size_only
    i - ideal_net or ideal_network
inf - infeasible path
```


Note

- ☐ Training mode, ID does not necessary given in a continuous order
 - → For instance, N=5, meaning 5 different subjects
 - → Each subject has 7 pictures fed into the system, but not in order

Appendix

TCL file

- How to synthesize without GUI
 - It's no need to go through every synthesis process.
 - By creating a TCL script, you can automate the design process
 - → You can modify synthesis.tcl file on your own

```
#Read All Files
read file -format verilog {../rtl/top.v}
#read_file -format sverilog top.sv
current design top
link
#Setting Clock Constraints
source -echo -verbose DC.sdc Source SDC file
check design
set high fanout net threshold 0
uniquify
set fix multiple port nets -all -buffer constants [get designs *]
#Synthesis all design
compile -exact map -map effort high
                                     Compile your design with high map_effort
                     -hierarchy -output "../syn/top syn.ddc"
write -format ddc
                                                               Save synthesized design file
write sdf -version 2.1 ../syn/top syn.sdf
write -format verilog -hierarchy -output ../syn/top syn.v
report area > ../syn/area.log
report timing -attributes > ../syn/timing.log
                                                Write out report file
report power > ../syn/power.log
report gor -> .../syn/top syn.gor
                                                                 rm without written permission
                                   from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan
```

SDC file

- SDC file
 - Can only change cycle period
 - → To ensure proper functionality, it is essential to adjust the testbench cycle period to match that of the SDC file configuration

```
operating conditions and boundary conditions #
set clk period 2.0
set input max [expr {double(round(1000*$clk period * 0.6))/1000}]
set input min [expr {double(round(1000*$clk period * 0.0))/1000}]
set output max [expr {double(round(1000*$clk period * 0.6))/1000}]
set output min [expr {double(round(1000*$clk period * 0.0))/1000}]
create clock -period $clk period [get ports clk]
set dont touch network
                           [get clocks clk]
set clock uncertainty 0.02 [get clocks clk]
set clock latency
                      0.2 [get clocks clk]
set input delay -clock clk -max $input max [all inputs]
set_input_delay -clock clk -min $input min [all inputs]
set output delay -clock clk -max $output max [all outputs]
set output delay -clock clk -min $output min [all outputs]
set driving cell -library N16ADFP StdCellss0p72vm40c -lib cell BUFFD4BWP16P90LVT -pi
set driving cell -library N16ADFP StdCellss0p72vm40c -lib cell DFQD1BWP16P90LVT -pi
set load [load of "N16ADFP StdCellss0p72vm40c/DFQD1BWP16P90LVT/D"] [all outputs]
set operating conditions -min library N16ADFP StdCellff0p88v125c -min ff0p88v125c \
                         -max library N16ADFP StdCellss0p72vm40c -max ss0p72vm40c
set wire load model -name ZeroWireload -library N16ADFP StdCellss0p72vm40c
set_max_fanout 20 [all_inputs]
```

Thanks for Your Attention

