JOHANNES KEPLER UNIVERSITÄT LINZ

Al and Visualisation Assignment 2

December 12, 2024 | Group name: Lazy Legends

JOHANNES KEPLER UNIVERSITÄT LINZ

Altenberger Straße 69 4040 Linz, Österreich jku.at

Agenda

- Dataset.
- The models.

Classification XAI techniques.

Segmentation XAI techniques.

• Summary.

Dataset: Skin cancer

- kaggle dataset
- 7 types of skin cancer
- imbalanced data distribution

lassification

melanoma (MEL)

melanocytic nevi (NV)

basal cell carcinoma (BCC)

Actinic keratoses and intraepithelial carcinoma / Bowen's disease (AKIEC)

benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses, BKL)

dermatofibroma (DF)

source:

https://www.kaggle.com/datasets/surajgh uwalewala/ham1000-segmentation-and-cl assification/code vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage, VASC).

The model

MobileNetV3

Source for this model: https://www.kaggle.com/code/dariusfoodeei/multiclass-skincancer-torch

classification

melanoma (MEL)

melanocytic nevi (NV)

basal cell carcinoma (BCC)

Actinic keratoses and intraepithelial carcinoma / Bowen's disease (AKIEC)

benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses, BKL)

dermatofibroma (DF)

vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage, VASC).

The model

Fuzzy U-net

Source for this model: https://www.kaggle.com/code/iakhtar0/2-skin-cancer-images-segmentation-fuzzy-unet

Classification XAI techniques

Approach 1.1: class prediction probabilities

- low probability even for most often used class "NV"
- insight for model developers and non-experts (doctors and patients)

Approach 1.2: Grad-CAM

- sharp bordered lesions:
 - model focusses on lesion
- blurry bordered lesion:
 - model focuses on surrounding skin
- insight for model developers and non-experts (doctors and patients)

Approach 1.3: LIME

- leison and surrounding skin important for model, not the boarder
- not only central image parts important for classification
- insight for developers & non-experts (doctors)

Approach 1.4: Entropy Visualization

- Average entropy on every class
- Lowest entropy for predictions of class NV
- Highest entropy for predictions of class DF
- → model developers should focus
 on improving DF classification

Segmentation XAI techniques

segmentation

Approach 2.1: Grad-CAM

- progression of feature learning visible:
 - early layers focus on low-level features
 - mid-layers focus on lesion-specific patterns
 - late layers focus on boundary detection
- for model developers and non-experts (doctors)

Approach 2.2: Occlusion sensitivity

- sharp bordered lesion:
 - model focuses on lesion boundaries
- blurry bordered lesion:
 - less focused heatmap
- insight for model developers and doctors

Segmentation Mas

Summary

Summary

- both in classification & segmentation:
 differences for sharp and blurry bordered
 lesions
- XAI techniques useful for both AI developers and non-experts such as doctors or patients

Thank you!

Group name: Lazy Legends

Hannah Aster - K51841985

Alba Huti - K12331691

Petra Jósár - K12336312

Liza Lengyel - K12317779

