Арунова Маргарита БПМИ2011

K – конечное поле \Rightarrow char K=p>0 – простое число. Пусть $\langle 1 \rangle \subseteq K$ – циклическая подгруппа по сложению, порождённая 1. Тогда $\langle 1 \rangle$ – подкольцо в K и $\langle 1 \rangle = \mathbb{Z}_p \Rightarrow \langle 1 \rangle$ – подполе в K. Вудем отождествлять \mathbb{Z}_p с $\langle 1 \rangle$ и считать, что $\mathbb{Z}_p \subseteq K$.

Теорема. $|K| = p^n$, где $n = \dim_{\mathbb{Z}_p} K$.

Конструкция поля из p^n элементов. Выберем неприводимый многочлен $h \in \mathbb{Z}_p[x]$, $\deg h = n$. Тогда $F = \mathbb{Z}_p/(h)$ – поле и $[F : \mathbb{Z}_p] = n \Rightarrow$ получаем $|F| = p^n$.

Определение. K – конечное поле, $\operatorname{char} K = p \Rightarrow$

- (a) $|K| = p^n$, где $n = \dim_{\mathbb{Z}_n} K$
- (б) Отображение $\varphi: K \to K, \ a \mapsto a^p$ называется автоморфизмом (изоморфизмом на себя)

Замечание. K – поле и отображение $\psi: K \to K$ – автоморфизм \Rightarrow множество неподвижных точек $K^{\psi} = \{a \in K \mid \psi(a) = a\}$ является подполем в K.

Теорема. p – простое, $n \in \mathbb{N} \Rightarrow$ существует поле K, такое что $|K| = p^n$.

Обозначение: K – поле $\Rightarrow K^{\times} = (K \setminus \{0\}, \times)$ – мультипликативная группа K.

Предложение. K^{\times} является циклической.

Предложение. Существует неприводимый многочлен $h \in \mathbb{Z}_p[X]$ степени $n \in \mathbb{N}$, такой что поле $K \simeq \mathbb{Z}_p[X]/(h)$. В частности $\forall n$ в $\mathbb{Z}_p[X]$ есть неприводимый многочлен.

Пусть p – простое, $n \in N$, K – поле и $|K| = q = p^n$.

Лемма. Все элементы поля K являются корнями многочлена $f = x^q - x$ (и только они). Более того f разлагается на линейные множители в K[x], причём без кратностей.

Теорема. F – поле и $|F|=q=p^n\Rightarrow F\simeq K.$ В частности, поле из p^n элементов единственно с точностью до изоморфизма.

Обозначение: \mathbb{F}_q – поле из q элементов.

Теорема. $q = p^n$, p – простое \Rightarrow

- (a) $F \subseteq \mathbb{F}_q$ подполе $\Rightarrow |F| = p^m$, где $m \mid n$
- (б) $m\mid n\Rightarrow$ существует единственное подполе $F\subseteq\mathbb{F}_q$, такое что $|F|=p^m$

Задание 1. Реализуем поле \mathbb{F}_9 в виде $\mathbb{Z}_3[x]/(x^2+2x+2)$. Перечислите в этой реализации все элементы данного поля, являющиеся порождающими циклической группы \mathbb{F}_9^{\times} .

- 1. Мультипликативная группа \mathbb{F}_9 содержит 8 элементов, так как $\mathbb{F}_9^{\times} = (\mathbb{F}_9 \setminus \{0\}, \times)$, а $|\mathbb{F}_9| = 9$. Всякая циклическая группа, порождаемая элементом g, содержит $\operatorname{ord}(g)$ элементов. Значит, для нахождения порождающих элементов группы \mathbb{F}_9^{\times} нужно рассмотреть все элементы, порядок которых равен 8.
- 2. Поле состоит из следующих элементов

$$\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2 + 2x + 2) = \{0, 1, 2, \bar{x}, \bar{x} + 1, \bar{x} + 2, 2\bar{x}, 2\bar{x} + 1, 2\bar{x} + 2\}$$

Другими словами – оно образовано многочленами над \mathbb{Z}_3 степени меньшей двух. Соответствующая этому полю мультипликативная группа состоит из элементов

$$\mathbb{F}_{0}^{\times} = \{1, 2, \bar{x}, \bar{x}+1, \bar{x}+2, 2\bar{x}, 2\bar{x}+1, 2\bar{x}+2\}$$

Найдём порядок каждого из описанных элементов группы \mathbb{F}_9^{\times} , используя формулу понижения степени $\bar{x}^2 = \bar{x} + 1$, полученную из равенства $\bar{x}^2 + 2\bar{x} + 2 = 0$.

- У элемента 1 порядок равен 1: 1 = 1
- У элемента 2 порядок равен 2: $2 \cdot 2 = 4 = 1$
- У элемента \bar{x} порядок равен 8:

$$\bar{x} \stackrel{\cdot \bar{x}}{\to} \bar{x}^2 = \bar{x} + 1 \stackrel{\cdot \bar{x}}{\to} \bar{x}^2 + \bar{x} = 2\bar{x} + 1 \stackrel{\cdot \bar{x}}{\to} 2\bar{x}^2 + \bar{x} = 2 \stackrel{\cdot \bar{x}}{\to}$$

$$\stackrel{\cdot \bar{x}}{\to} 2\bar{x} \stackrel{\cdot \bar{x}}{\to} 2\bar{x}^2 = 2\bar{x} + 2 \stackrel{\cdot \bar{x}}{\to} 2\bar{x}^2 + 2\bar{x} = \bar{x} + 2 \stackrel{\cdot \bar{x}}{\to} \bar{x}^2 + 2\bar{x} = 1$$

- У элемента $\bar{x}+1$ порядок равен 4:

$$\bar{x}+1 \stackrel{\cdot \bar{x}+1}{\rightarrow} \bar{x}^2+2\bar{x}+1=2 \stackrel{\cdot \bar{x}+1}{\rightarrow} 2\bar{x}+2 \stackrel{\cdot \bar{x}+1}{\rightarrow} 2\bar{x}^2+\bar{x}+2=1$$

- У элемента $\bar{x}+2$ порядок равен 8:

$$\bar{x} + 2 \xrightarrow{\bar{x}+2} \bar{x}^2 + \bar{x} + 1 = 2\bar{x} + 2 \xrightarrow{\bar{x}+2} 2\bar{x}^2 + 1 = 2\bar{x} \xrightarrow{\bar{x}+2} 2\bar{x}^2 + \bar{x} = 2 \xrightarrow{\bar{x}+2} \xrightarrow{\bar{x}+2} 2\bar{x} + 1 \xrightarrow{\bar{x}+2} 2\bar{x}^2 + 2\bar{x} + 2 = \bar{x} + 1 \xrightarrow{\bar{x}+2} \bar{x}^2 + 2 = \bar{x} \xrightarrow{\bar{x}+2} \bar{x}^2 + 2\bar{x} = 1$$

- У элемента $2\bar{x}$ порядок равен 8:

$$2\bar{x} \stackrel{\cdot 2\bar{x}}{\to} \bar{x} + 1 \stackrel{\cdot 2\bar{x}}{\to} 2\bar{x}^2 + 2\bar{x} = \bar{x} + 2 \stackrel{\cdot 2\bar{x}}{\to} 2\bar{x}^2 + \bar{x} = 2 \stackrel{\cdot 2\bar{x}}{\to}$$

$$\stackrel{\cdot 2\bar{x}}{\to} \bar{x} \stackrel{\cdot 2\bar{x}}{\to} 2\bar{x}^2 = 2\bar{x} + 2 \stackrel{\cdot 2\bar{x}}{\to} \bar{x}^2 + \bar{x} = 2\bar{x} + 1 \stackrel{\cdot 2\bar{x}}{\to} \bar{x}^2 + 2\bar{x} = 1$$

- У элемента $2\bar{x}+1$ порядок равен 8:

$$2\bar{x} + 1 \xrightarrow{\cdot 2\bar{x} + 1} \bar{x}^2 + \bar{x} + 1 = 2\bar{x} + 2 \xrightarrow{\cdot 2\bar{x} + 1} \bar{x}^2 + 2 = \bar{x} \xrightarrow{\cdot 2\bar{x} + 1} 2\bar{x}^2 + \bar{x} = 2 \xrightarrow{\cdot 2\bar{x} + 1} \xrightarrow{\cdot 2\bar{x} + 1} \bar{x} + 2 \xrightarrow{\cdot 2\bar{x} + 1} 2\bar{x}^2 + 2\bar{x} + 2 = \bar{x} + 1 \xrightarrow{\cdot 2\bar{x} + 1} 2\bar{x}^2 + 1 = 2\bar{x} \xrightarrow{\cdot 2\bar{x} + 1} \bar{x}^2 + 2\bar{x} = 1$$

- У элемента $2\bar{x} + 2$ порядок равен 4:

$$2\bar{x} + 2 \xrightarrow{\cdot 2\bar{x} + 2} \bar{x}^2 + 2\bar{x} + 1 = 2 \xrightarrow{\cdot 2\bar{x} + 2} \bar{x} + 1 \xrightarrow{\cdot 2\bar{x} + 2} 2\bar{x}^2 + \bar{x} + 2 = 1$$

3. Таким образом, элементы \bar{x} , $\bar{x}+2$, $2\bar{x}$, $2\bar{x}+1$ являются порождающими в группе \mathbb{F}_9^{\times} . Их порядок равен 8.

4. В цепочках преобразований, полученных выше, нетрудно увидеть, что каждый элемент из \mathbb{F}_9^{\times} может быть представлен в виде \bar{x}^k , $(\bar{x}+2)^k$, $(2\bar{x})^k$ и $(2\bar{x}+1)^k$. Получаем, что рассматриваемая циклическая группа $\mathbb{F}_9^{\times} = \langle \bar{x} \rangle = \langle \bar{x} + 2 \rangle = \langle 2\bar{x} \rangle = \langle 2\bar{x} + 1 \rangle$. Другие элементы не могут порождать эту группу, так как их порядок меньше 8.

Ответ: \bar{x} , $\bar{x} + 2$, $2\bar{x}$, $2\bar{x} + 1$

Задание 2. Проверьте, что многочлены x^2+3 и y^2+y+2 неприводимы над \mathbb{Z}_5 , и установите явно изоморфизм между полями $\mathbb{Z}_5[x]/(x^2+3)$ и $\mathbb{Z}_5[y]/(y^2+y+2)$.

1. Многочлен второй степени неприводим над полем \Leftrightarrow он не имеет корней в этом поле. Обозначим $h_1 = x^2 + 3$ и $h_2 = y^2 + y + 2$. Проверим, что h_1 и h_2 не имеют корней в \mathbb{Z}_5 , то есть неприводимы в $\mathbb{Z}_5[x]$ и $\mathbb{Z}_5[y]$ соответственно.

$$h_1(0) = 3 \neq 0$$
 $h_2(0) = 2 \neq 0$
 $h_1(1) = 4 \neq 0$ $h_2(1) = 4 \neq 0$
 $h_1(2) = 2 \neq 0$ $h_2(2) = 3 \neq 0$
 $h_1(3) = 2 \neq 0$ $h_2(3) = 4 \neq 0$
 $h_1(4) = 4 \neq 0$ $h_2(4) = 2 \neq 0$

Получаем, что многочлены неприводимы, значит $\mathbb{Z}_5[x]/(x^2+3)$ и $\mathbb{Z}_5[y]/(y^2+y+2)$ – поля, в каждом из которых по 25 элементов.

2. Обозначим $F_1 = \mathbb{Z}_5[x]/(x^2+3)$ и $F_2 = \mathbb{Z}_5[y]/(y^2+y+2)$. Известно, что существует такой $\alpha \in F_2$, что $h_1(\alpha) = 0$. Рассмотрим следующий гомоморфизм $\varphi : \mathbb{Z}_5[x] \to F_2$, $f \to f(\alpha)$. Отображение φ действительно гомоморфизм – оно сохраняет сумму и произведение (фактически это отображение – взятие значения в точке).

Найдём ядро этого гомоморфизма: это такие f, что $f(\alpha) = 0$. Ядро является главным идеалом в $\mathbb{Z}_5[x]$, то есть $\ker \varphi = (g)$ для некоторого $g \in \mathbb{Z}_5[x]$. Многочлен h_1 лежит в ядре, так как $h_1(\alpha) = 0$ $\Rightarrow h_1$: g, но h_1 неприводим над $\mathbb{Z}_5[x]$, значит, либо g = C, чего быть не может, так как иначе φ переводит все f в 0, либо пропорционален h_1 , то есть $h_1 = g$ и $\ker \varphi = (h_1)$.

По теореме о гомоморфизме колец получаем, что $F_1 = \mathbb{Z}_5[x]/(h_1) \simeq \operatorname{Im} \varphi \subseteq F_2$, но F_1 и F_2 имеют одинаковое число элементов, то есть $F_1 = \mathbb{Z}_5[x]/(h_1) \simeq \operatorname{Im} \varphi \Rightarrow |\operatorname{Im} \varphi| = |F_1| = |F_2| \Rightarrow \operatorname{Im} \varphi = F_2$. Таким образом, существует изоморфизм, сопоставляющий элемент $f \in \mathbb{Z}_5[x]/(h_1)$ элементу $f(\alpha) \in \mathbb{Z}_5[y]/(h_2)$.

Исходный гомоморфизм φ был ограничен на факторкольцо, что дало изоморфизм, который по прежнему сопоставляет каждому многочлену f уже из $\mathbb{Z}_5[x]/(h_1)$ многочлен $f(\alpha) \in \mathbb{Z}_5[y]/(h_2)$.

3. Для того, чтобы задать этот изоморфизм явно, нужно найти описанный элемент $\alpha \in F_2$, такой что $h_1(\alpha) = 0$. Известно, что каждый элемент $\mathbb{Z}_5[y]/(h_2)$ представляется в виде многочлена степени не выше $\deg h_2 = 2$ в следующем виде $\alpha = ay + b$, где $a, b \in \mathbb{Z}_5$. Подставим α в h_1 и, используя формулу понижения степени $\bar{y}^2 = 4\bar{y} + 3$, получим:

$$h_1(\alpha) = (a\bar{y} + b)^2 + 3 = a^2\bar{y}^2 + 2ab\bar{y} + b^2 + 3 = (4a^2 + 2ab)\bar{y} + (3a^2 + b^2 + 3) = 0$$

В данном случае достаточно найти частное решение, например, $a=1,\ b=3$. Действительно, $h_1(\bar{y}+3)=(\bar{y}+3)^2+3=\bar{y}^2+6\bar{y}+9+3=10\bar{y}+15=0$. Получаем $\alpha=\bar{y}+3$.

Ответ: Изоморфизм $\mathbb{Z}_5[x]/(x^2+3) \xrightarrow{\sim} \mathbb{Z}_5[y]/(y^2+y+2)$ задаётся формулой $a\bar{x}+b \to a(\bar{y}+3)+b$

Задание 3. Перечислите все подполя \mathbb{F}_{262144} , в которых многочлен $x^3 + x + 1$ имеет корень.

1. Число $262144=2^{18}$. Получаем, что $|\mathbb{F}_{262144}|=2^{18}$. Из последнего следует, что всякое подполе $F\subseteq\mathbb{F}_{262144}$ имеет 2^m элементов, где $m\mid 18$. Также известно, что каждое подполе $F\subseteq\mathbb{F}_{262144}$, такое что $|F|=p^m$ при $m\mid n$ единственно.

Получаем, что у \mathbb{F}_{262144} всего 6 подполей: \mathbb{F}_2 , \mathbb{F}_4 , \mathbb{F}_8 , \mathbb{F}_{64} , \mathbb{F}_{512} , \mathbb{F}_{262144} . Построим граф вложенности найденных полей:

2. Реализуем поле \mathbb{F}_8 в виде $\mathbb{Z}_2[x]/(x^3+x+1)$, данная реализация корректна, так как многочлен x^3+x+1 неприводим в $\mathbb{Z}_2[x]$ (он не имеет корней в \mathbb{Z}_2), то есть $\mathbb{Z}_2[x]/(x^3+x+1)$ – поле, и $[\mathbb{F}_8:\mathbb{Z}_2]=\deg(x^3+x+1)=3\Rightarrow$ выполнено $|\mathbb{F}_8|=2^3$.

Описанное поле $\mathbb{Z}_2[x]/(x^3+x+1)$ состоит из $\{0, 1, \bar{x}, \bar{x}+1, \bar{x}^2, \bar{x}^2+1\}$. Из равенства многочлена $\bar{x}^3+\bar{x}+1$ нулю в \mathbb{F}_8 выражается формула понижения степени: $\bar{x}^3=\bar{x}+1$.

Заметим, что $h(\bar{x}) = \bar{x}^3 + \bar{x} + 1 = \bar{x} + 1 + \bar{x} + 1 = 0$. Это означает, что в данном поле многочлен $x^3 + x + 1$ имеет корень.

- 3. Поля \mathbb{F}_{2^6} , \mathbb{F}_{2^9} , $\mathbb{F}_{2^{18}}$ являются расширением поля \mathbb{F}_{2^3} (это видно и из графа вложенности), значит, они содержат все элементы из \mathbb{F}_{2^3} . В частности, эти поля содержат элемент из \mathbb{F}_{2^3} , который является корнем многочлена h. То есть многочлен h имеет корень и в полях \mathbb{F}_{2^6} , \mathbb{F}_{2^9} , $\mathbb{F}_{2^{18}}$.
- 4. Покажем, что в полях \mathbb{F}_2 и \mathbb{F}_4 у многочлена h нет корней.

Поле \mathbb{F}_2 состоит из двух элементов, а в каждом поле есть 0 и 1, значит, $\mathbb{F}_2 = \{0, 1\}$. Подставим оба значения в многочлен h и убедимся, что эти элементы не являются его корнями: $h(0) = 1 \neq 0$ и $h(1) = 1 \neq 0$.

Реализуем поле \mathbb{F}_4 в виде $\mathbb{Z}_2[x]/(x^2+x+1)$. Многочлен x^2+x+1 неприводим в $\mathbb{Z}_2[x]$, так как не имеет корней в \mathbb{Z}_2 . Элементы этого поля равны $\{0, 1, \bar{x}, \bar{x}+1\}$. Формула понижения степени в данном поле равна $\bar{x}^2=\bar{x}+1$. Покажем, что значения многочлена h от каждого из этих элементов не равно нулю:

$$h(0) = 1 \neq 0 \qquad h(1) = 1 \neq 0$$

$$h(\bar{x}) = \bar{x}^3 + \bar{x} + 1 = (\bar{x} + 1)\bar{x} + \bar{x} + 1 = \bar{x} \neq 0$$

$$h(\bar{x} + 1) = (\bar{x} + 1)^3 + \bar{x} + 1 + 1 = \bar{x}^3 + \bar{x}^2 + \bar{x} + 1 + \bar{x} = (\bar{x} + 1)\bar{x} + \bar{x} + 1 + 1 = \bar{x} + 1 \neq 0$$

Таким образом, многочлен h не имеет корней в \mathbb{F}_2 и \mathbb{F}_4 .

Otbet: $\mathbb{F}_{2^3},\ \mathbb{F}_{2^6},\ \mathbb{F}_{2^9},\ \mathbb{F}_{2^{18}}$

Задание 4. Пусть p – простое число, $q=p^n$ и $\alpha\in\mathbb{F}_q$. Докажите, что если следующий многочлен $x^p-x-\alpha\in\mathbb{F}_q[x]$ имеет корень, то он разлагается на линейные множители.

- 1. Характеристика данного поля равна p, это означает, что $(a+b)^p=a^p+b^p$ для всех $a,b\in \mathbb{F}_q$. Рассмотрим подполе $\mathbb{F}_p\subseteq \mathbb{F}_q$, такое подполе существует, так как $p\mid p^n$, и единственно. Для каждого элемента $t\in \mathbb{F}_p$ выполняется $t^p=t$, так как \mathbb{F}_p^{\times} мультипликативная циклическая группа порядка p-1, а для каждого элемента g этой группы верно $g^{|\mathbb{F}_p^{\times}|} \cdot g = e \cdot g = g$.
- 2. Пусть x_0 корень многочлена, $x_0^p x_0 \alpha = 0$. Заметим, что тогда $x_0^p t$, где $t \in \mathbb{F}_p$, также корень этого многочлена:

$$(x_0 - t)^p - (x_0 - t) - \alpha = x_0^p - t^p - x_0 + t - \alpha = x_0^p - t - x_0 + t - \alpha = x_0^p - x_0 - \alpha = 0$$

3. В \mathbb{F}_p всего p элементов. Каждый элемент t этого поля вместе с x_0 образовывает корень $x_0 - t$ многочлена $x^p - x - \alpha \in \mathbb{F}_q[x]$. Получаем, что многочлен степени p имеет p корней, значит, он разлагается на линейные множители.