

Feb 10, 2022

Q Q5® Site-Directed Mutagenesis Kit Quick Protocol (E0554) V.2

New England Biolabs¹

¹New England Biolabs

1

dx.doi.org/10.17504/protocols.io.bddei23e

New England Biolabs (NEB)

Tech. support phone: +1(800)632-7799 email: info@neb.com

This is the quick protocol for the Q5® Site-Directed Mutagenesis Kit (E0554).

DOI

dx.doi.org/10.17504/protocols.io.bddei23e

https://www.neb.com/protocols/2013/01/26/q5-site-directed-mutagenesis-kit-quick-protocol-e0554

New England Biolabs 2022. Q5® Site-Directed Mutagenesis Kit Quick Protocol (E0554). **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bddei23e New England Biolabs

site directed mutagenesis, exponential amplification for SDM, E0554, SDM

_____ protocol,

Mar 07, 2020

Feb 10, 2022

33926

MATERIALS

ØQ5 Site-Directed Mutagenesis Kit - 10 rxns New England

Biolabs Catalog #E0554S

1

Citation: New England Biolabs Q5î Site-Directed Mutagenesis Kit Quick Protocol (E0554) https://dx.doi.org/10.17504/protocols.io.bddei23e

Please refer to Safety Data Sheets (SDS) for health and environmental hazards.

Primers should be designed with 5′ ends annealing back-to-back. We recommend using the NEB online design software, NEBaseChanger™.

Exponential Amplification (PCR)

1

Assemble the following reagents in a thin-walled PCR tube.

Α	В	С
	25 μl RXN	FINAL CONC.
Q5 Hot Start High-Fidelity 2X Master Mix	12.5 μΙ	1X
10 μM Forward Primer	1.25 μΙ	0.5 μΜ
10 μM Reverse Primer	1.25 μΙ	0.5 μΜ
Template DNA (1-25 ng/µl)	1 μΙ	1-25 ng
Nuclease-free water	9.0 μΙ	

2

Mix reagents completely.

3 🔀

Transfer to a thermalcycler and perform the following cycling conditions:

Α	В	С
STEP	TEMP	TIME
Initial Denaturation	98°C	30 seconds
25 Cycles	98°C	10 seconds
	50-72°C*	10-30 seconds
	72°C	20-30 seconds/kb
Final Extension	72°C	2 minutes
Hold	4-10°C	

* For mutagenic primers, please use the Ta provided by the online NEB primer design software, NEBaseChanger™.

Kinase, Ligase & DpnI (KLD) Treatment

2

Assemble the following reagents:

Α	В	С
	VOLUME	FINAL CONC.
PCR Product	1 μΙ	
2X KLD Reaction Buffer	5 μΙ	1X
10X KLD Enzyme Mix	1 μΙ	1X
Nuclease-free Water	3 μΙ	

Mix well by pipetting up and down.

6

Incubate at § Room temperature for © 00:05:00.

Transformation

7

Add $\sqsubseteq 5~\mu L$ KLD mix from previous step to $\sqsubseteq 50~\mu L$ chemically-competent cells .

8

Incubate § On ice for © 00:30:00.

Heat shock at **§ 42 °C** for **© 00:00:30**.

10

Incubate § On ice for © 00:05:00.

11

Add 950 µL SOC .

12 Gently shake at § 37 °C for © 01:00:00.

13

Spread $\blacksquare 40 \ \mu L - \blacksquare 100 \ \mu L$ onto appropriate selection plate.

14

Incubate @ Overnight at & 37 °C.