

TWO-WAY-COUPLING USING DYN3D-SP3 AND SUBCHANFLOW

Francisco Javier Chaparro

Nuclear Engineering School of Physics and Mathematics National Polytechnic Institute

International Journal of Heat and Mass Transfer 52 (2009) 3032-3041

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/jihmt

Drift-flux model in a sub-channel of rod bundle geometry

J. Enrique Julia ^a, Takashi Hibiki ^{b,*}, Mamoru Ishii ^b, Byong-Jo Yun ^c, Goon-Cherl Park ^d

d Department of Nuclear Engineering, Seoul National University, Seoul 151-742, South Korea

ARTICLE INFO

Article history: Received 12 November 2007 Accepted 20 February 2009 Available online 28 March 2009

Keywords: Drift-flux model Rod bundle Sub-channel

ABSTRACT

In view of the practical interest of the drift-flux model for two-phase flow analysis, the distribution parameter and drift velocity constitutive equations have been obtained for subcooled boiling flow in a sub-channel of rod bundle geometry. The constitutive equation of the distribution parameter for sub-cooled boiling flow in a sub-channel is obtained from the bubble-layer thickness model. In this derivation an existing constitutive equation for subcooled boiling flow in a round pipe is modified by taking account of the difference in the flow channel geometry between the sub-channel and round pipe. The constitutive equation of the drift velocity is proposed based on an existing correlation and considering the rod wall and sub-channel geometry effects. The prediction accuracy of the newly developed correlations has been

a Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, Campus de Riu Sec, 12071 Castellon, Spain

^bSchool of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017, USA

CThermal-hydraulics Research Center, Korea Atomic Energy Research Institute, Taejon 305-600, South Korea

Aim

Showing new constitutive equations development for the drift-flux model in a sub-channel of rod bundle geometry.

• Drift-flux model

- Drift-flux model
- \bullet Distribution parameter

- Drift-flux model
- Distribution parameter
- Drift velocity

- Drift-flux model
- Distribution parameter
- Drift velocity
- Results

- Drift-flux model
- Distribution parameter
- Drift velocity
- Results
 - Comparison of distribution parameter model with data

- Drift-flux model
- Distribution parameter
- Drift velocity
- Results
 - Comparison of distribution parameter model with data
 - Comparison of drift velocity model with data

- Drift-flux model
- Distribution parameter
- Drift velocity
- Results
 - Comparison of distribution parameter model with data
 - Comparison of drift velocity model with data
- Conclusions

Drift-flux model

The drift-flux is defined as the flux of the gas phase relative to a plane moving to the total flux.

• The basic concept of the drift-flux model is to consider the mixture as a whole, rather than two phases separately.

The one-dimensional drift-flux model can be in terms of the distribution parameter, C_0 , and the void-fraction-weighted as

$$egin{aligned} \langle\langle
u_g
angle
angle &\equiv rac{\langle j_g
angle}{\langle lpha
angle} = C_0 \langle j
angle + \langle\langle
u_{gj}
angle
angle, \ & C_0 \equiv rac{\langle lpha j
angle}{\langle lpha
angle\langle j
angle} \,. \end{aligned}$$

To get the distribution parameter C_0 the analytical forms of the j and alpha void fraction distributions, are needed.

The modeled sub-channel, including the coordinate system, is given by

The mixture volumetric flux, j, is assumed by

$$j(r,\theta) = j_c(\theta) \left\{ 1 - \left(1 - \frac{2r_0}{R - R_0} \right)^n \right\} \ (0 \leqslant r_0 \leqslant R_c - R_0; \ 0 \leqslant \theta \leqslant \pi/4)$$

where

$$R = 2R_c - R_0$$

$$R = \frac{P_0}{\cos \theta} - R_0 \qquad \cos \theta = \frac{P_0}{2R_c}.$$

substituting R in j(r,theta)

$$j(r,\theta) = j_c(\theta) \left\{ 1 - \left(1 - \frac{2r_0 \cos \theta}{P_0 - 2R_0 \cos \theta} \right)^n \right\}.$$

the mixture flux j_c at a point on the line B is

$$j_c(\theta) = j_{c0} \left[1 - \left\{ 1 - \frac{P_0 - 2R_0 \cos \theta}{(\sqrt{2}P_0 - 2R_0) \cos \theta} \right\}^n \right]$$

joint these two equations of flux results the

$$j(r,\theta) = j_{c0} \left[1 - \left\{ 1 - \frac{P_0 - 2R_0 \cos \theta}{(\sqrt{2}P_0 - 2R_0) \cos \theta} \right\}^n \right] \times \left\{ 1 - \left(1 - \frac{2r_0 \cos \theta}{P_0 - 2R_0 \cos \theta} \right)^n \right\},$$

In a similar way, the void fraction distribution flow in the sub-channel can be defined as

$$\alpha(r,\theta) = \alpha_{c0} \left[1 - \left\{ 1 - \frac{P_0 - 2R_0 \cos \theta}{(\sqrt{2}P_0 - 2R_0)\cos \theta} \right\}^m \right] \times \left\{ 1 - \left(1 - \frac{2r_0 \cos \theta}{P_0 - 2R_0 \cos \theta} \right)^m \right\}.$$

the the comparisons of modeled $j/j_{\rm co}$ at a maximum point on the line B is

In order to obtain the complete C_{co} distribution, the Ishii's equation for boiling flow in a round pipe, is modified in order to take into account the flow channel geometry difference.

$$C_0 = \left\{ C_{0,\infty} - (C_{0,\infty} - 1) \sqrt{\rho_g/\rho_f} \right\} \left(1 - e^{A\langle \alpha \rangle}\right)$$
 (6)

The results obtained by the use of the results have been fitted to a equation with a similar function

$$C_0 = \begin{cases} \left(1.03 - 0.03\sqrt{\frac{P_g}{\rho_f}}\right) \left(1 - e^{-26.3\langle z\rangle^{0.780}}\right) \text{ for } & D_0/P_0 = 0.3 \\ \left(1.04 - 0.04\sqrt{\frac{P_g}{\rho_f}}\right) \left(1 - e^{-21.2\langle z\rangle^{0.762}}\right) \text{ for } & D_0/P_0 = 0.5 \\ \left(1.05 - 0.05\sqrt{\frac{P_g}{\rho_f}}\right) \left(1 - e^{-34.1\langle z\rangle^{0.925}}\right) \text{ for } & D_0/P_0 = 0.7 \end{cases} \tag{29}$$

Drift velocity

The drift velocity of a gas phase, v_{gi} , is he velocity of the gas phase, vg, with respect to the volume center to the mixture flux, j In this work, the expression developed by Ishii has been modified, considering the flow in the sub-channel, is given as

$$\langle\langle v_{gj}\rangle\rangle = B_{sf}\sqrt{2}\left(\frac{\sigma\Delta\rho g}{\rho_f^2}\right)^{1/4}(1-\langle\alpha\rangle)^{1.75},$$
 (30)

Results

Experimental data

- Using a Pitot tube and a double-sensor conductivity probe they obtain the flow parameters in liquid and gas phases;
- The high void fraction considered is 0.2
- The measurements were performed at 20 different locations in one of the sub-channels,

Experimental facility	Type	Length (m)	Rods (heated)	D _H (mm)	D ₀ (mm)	Axial power distribution		p (Mpa)	G (Kg/m ² s)	q (kW m ⁻²)		Measured parameters
Yun (1996)	BWR	1.7	9 (9)	18.4	8.2	Uniform	3.5-11	0.12	250-522	25-185	53	α , a_i , v_g , D_{Sm} , v_f

Results Distribution Parameter

Fig. 7. Comparison of distribution parameters and experimental data.

Results Drift Velocity

Fig. 8. Comparison of area-averaged drift velocity with experimental data.

Results Model

Prediction accuracy of drift-flux models.

Models	Averaged error C ₀	Averaged error $\langle\langle v_{gj}\rangle\rangle$	Averaged error ⟨α⟩
Disctribution parameter Eq. (29) with $D_0/P_0 = 0.5$	±8.01%	-	-
Drift velocity Eq. (30) with $B_{sf} = 1$ (Ishii's Eq.) Eq. (30)	-	±19.6% ±13.1%	-
Drift-flux model Eq. (29) with $D_0/P_0 = 0.5$ and Eq. (30) with B_{sf} Eq. (29) with $D_0/P_0 = 0.5$ and Eq. (30)	-1		±20.4% ±14.4%
Bestion (1990)	_	_	±23.8%
Inoue et al. (1993) Chexal-Lellouche (1992)	_	_	±35.1% ±38.6%
Maier and Coddington (1997)	-	-	±67.6%

Conclusions

- Distribution parameter: The averaged relative prediction error by the newly developed correlation presents a remarkable low prediction error of $\pm 8.01\%$.
- Drift velocity: the best prediction results are provided by the Ishii's correlation modified in order to take into account the wall effect with an averaged prediction error of $\pm 13.1\%$. If this effect is not considered the prediction error is $\pm 19.6\%$.