

Chem sem papers

Chemistry (SRM Institute of Science and Technology)

Scan to open on Studocu

b. Demonstrate the periodic trends for any two properties with suitable examples. 29. a. Derive Gibbs-Helmholtz equation and apply it to explain any two uses. (OR) b. Compare structural isomerism with stereo isomerism by taking suitable examples. (OR) b. Explain the E ₂ mechanism with suitable example. 5 4 5,6 4 (OR) b. Explain in detail the different types of isomerisms exhibited by transition metal complexes.	28. a.	Discuss on the principle, instrumentation of X-ray photo electron spectroscopy.	10	3	3,6	1,4
 b. Demonstrate the periodic trends for any two properties with suitable examples. 29. a. Derive Gibbs-Helmholtz equation and apply it to explain any two uses. 10 3 4,6 1 (OR) b. Compare structural isomerism with stereo isomerism by taking suitable examples. 30. a.i. Explain the E₂ mechanism with suitable example. 5 4 5,6 4 ii. Illustrate with an example the Dieckmann condensation reaction. 5 3 5,6 4 (OR) b. Explain in detail the different types of isomerisms exhibited by transition 10 4 5,6 4 		(OR)				
b. Compare structural isomerism with stereo isomerism by taking suitable examples. 30. a.i. Explain the E_2 mechanism with suitable example. 5 4 5,6 4 ii. Illustrate with an example the Dieckmann condensation reaction. 5 3 5,6 4 (OR) b. Explain in detail the different types of isomerisms exhibited by transition	b.	Demonstrate the periodic trends for any two properties with suitable	10	3	3,6	1,4
 b. Compare structural isomerism with stereo isomerism by taking suitable examples. 30. a.i. Explain the E₂ mechanism with suitable example. 5 4 5,6 4 ii. Illustrate with an example the Dieckmann condensation reaction. 5 3 5,6 4 6 (OR) b. Explain in detail the different types of isomerisms exhibited by transition 10 4 5,6 4 	29. a.	Derive Gibbs-Helmholtz equation and apply it to explain any two uses.	10	3	4,6	1,4
 b. Compare structural isomerism with stereo isomerism by taking suitable examples. 30. a.i. Explain the E₂ mechanism with suitable example. 5 4 5,6 4 ii. Illustrate with an example the Dieckmann condensation reaction. 5 3 5,6 4 6 (OR) b. Explain in detail the different types of isomerisms exhibited by transition 10 4 5,6 4 		(OR)				
ii. Illustrate with an example the Dieckmann condensation reaction. 5 3 5,6 4 (OR) b. Explain in detail the different types of isomerisms exhibited by transition 10 4 5,6 4	b.	Compare structural isomerism with stereo isomerism by taking suitable	10	4	4,6	1,6
(OR) b. Explain in detail the different types of isomerisms exhibited by transition 10 4 5,6 4	30. a.i.	Explain the E_2 mechanism with suitable example.	5	4	5,6	4
b. Explain in detail the different types of isomerisms exhibited by transition 10 4 5,6 4	ii.	Illustrate with an example the Dieckmann condensation reaction.	5	3	5,6	4
	b.	Explain in detail the different types of isomerisms exhibited by transition	10	4	5,6	4

* * * * *

Reg. No.

B.Tech. DEGREE EXAMINATION, JULY 2022

Second Semester

18CYB101J - CH	IEMISTRY
----------------	----------

Vote:		(For the candidates admitted fi	rom the d	academic year 2018-2019 to 2019-202	(0)							
(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40 th minute.											
(ii)	Pa	rt - B should be answered in answered	er bookle	et.								
ime:	2½ H	ours			Max	. Ma	arks:	: 75				
		PART – A (25 ×			Marks	BL	со	P				
1	***	Answer ALL	Questi	ons								
1	. wn	ich of the following is known a			1	1	1,6	1				
		$E = mc^2$	` '	$\lambda = h / p$								
	(C)	$\hat{H}\psi = E\psi$	(D)	$\frac{-\hbar^2}{2}\nabla^2$								
				2 <i>m</i> *								
2	. Two	o electrons occupying the sam	e orbita	al are distinguished by	1	1	1,6	1				
	_	Azimuthal	(B)	Spin								
	(C)	Magnetic		Orbital								
	(C)	equal to h/p $\geq h/4\pi$		equal to E-V ≥ E-V								
4.	Whi	ch of the following molecule is	NOT 1	nomanualase ⁹								
					1	2	16	1				
	(A)	H_2			1	2	1,6	4				
	(A) (C)	H_2	(B)		1	2	1,6	4				
5.	(A) (C)	H ₂ O ₂	(B) (D)	N ₂ NO	1							
5.	(A) (C) The	H_2	(B) (D) takes pl	No No lace according to	1	2	1,6					
5.	(A) (C) The (A)	H ₂ O ₂ filling up of Molecular orbital	(B) (D) takes pl (B)	N ₂ NO	1							
	(A) (C) The (A) (C)	H ₂ O ₂ filling up of Molecular orbital thuckel's rule Fajan's rule different types of energies a	(B) (D) takes pl (B) (D)	No lace according to Hund's rule CIP rule	1	1	1,6	1				
	(A) (C) The (A) (C) The ener	H ₂ O ₂ filling up of Molecular orbital thuckel's rule Fajan's rule different types of energies a	(B) (D) takes pl (B) (D)	No lace according to Hund's rule CIP rule ed within a molecule are	1	1	1,6	1				
	(A) (C) The (A) (C) The ener (A)	H ₂ O ₂ filling up of Molecular orbital and Huckel's rule Fajan's rule different types of energies agies. Electronic, vibrational and rotational	(B) (D) takes pl (B) (D) ssociated d (B)	No lace according to Hund's rule CIP rule ed within a molecule are	1	1	1,6	1				
	(A) (C) The (A) (C) The ener (A) (C)	H ₂ O ₂ filling up of Molecular orbital of Huckel's rule Fajan's rule different types of energies agies. Electronic, vibrational and rotational Potential and kinetic	(B) (D) takes pl (B) (D) ssociate d (B) (D)	No lace according to Hund's rule CIP rule ed within a molecule are Dissociation and potential	1	2	1,6	1				
6.	(A) (C) The (A) (C) The ener (A) (C) spec (A)	H ₂ O ₂ filling up of Molecular orbital of Huckel's rule Fajan's rule different types of energies agies. Electronic, vibrational and rotational Potential and kinetic is the region for s	(B) (D) takes pl (B) (D) ssociated (B) (D) tudying	No lace according to Hund's rule CIP rule ed within a molecule are Dissociation and potential Only kinetic energy	1	2	1,6	1				

	reference in protein NMR spectroscop	s is frequently used as an internal	1	1 2	2,6	1			If our eyes travel in counter clockwise, direction from the functional group of highest priority to lowest priority, then the configuration is (A) R (B) S			1130	- 5	
	(A) TMS (C) DMF	(B) TNS (D) DMSO							(C) E (D) Z	ST I		-1		
9.	One of the following complex is he central metal ion.	aving "zero" oxidation state for the	1	2 2	2,6	4		19.	Which of the following compound would exhibit geometrical isomerism? (A) 2 - Butene (B) n-propyl iodide	1	2	4,6	1,3	i
	(A) $K_4 \left[Fe(CN)_6 \right]$	(B) $K_3 \left[Fe(CN)_6 \right]$						L	(C) Cyclopropane (D) Butanal	1	2	4,6	. 12	2
	(C) $\left[Ni(CO)_4\right]$	(D) $\left[Pt(NH_3)_4\right]Cl_2$						20.	Identify the hard acid from the following: (A) AlCl ₃ (B) N_2H_4	1	2	4,0	1,5	,
10.	The energy required to pair up the ele (A) Dissociation	ectrons is called (B) Pairing	1	2	2,6	1			(C) H_2O (D) OH^-	1	2	5,6	5 2,3	3
	(C) Crystal field stabilization energy		1	2	2 6	1			In gauche conformations, the methyl groups are (A) 60° apart (B) 90° apart (C) 100° apart					
11.	Minimum inter-planar spacing require (A) $\frac{\lambda}{4}$	red for Bragg's diffraction is (B) 4π	1	2	3,0	1			(C) 180° apart (D) 360° apart	1	2	5,6	5 1	l
	(C) $\lambda/2$	(D) 2λ						22.	$\left[Co(NH_3)_5 NO_2 \right] Cl_2$ and $\left[Co(NH_3)_5 ONO \right] Cl_2$ (A) Geometrical isomers (B) Optical isomers	-	_	5,0		
	/ 2	odified VanderWaals equation of state	1	2	3,6	1	2		(A) Geometrical isomers (B) Optical isomers (C) Linkage isomers (D) Co-ordination isomers					
	is (A) a/b	(B) n^2a/V^2						23.	Find the number of stereo isomers for CH ₃ -CH-CH=CH ₃	1	2	5,6	5 2	1
	(C) a/v	(D) $V-nb$							OH (A) 1 (B) 2					
13.	The Z _{eff} for 4s electron in potassium	atom (Z=19) is	1	2	3,6	1,2			(A) 1 (C) 3 (B) 2 (D) 4					
	(A) 16.8 (C) 6.8	(B) 10 (D) 2.20	1	2	3.6	1.2		24.	Which of the following act as an initiator in free radical mechanism? (A) H ₂ SO ₄ (B) Benzoyl peroxide	1	1	5,6	6 2	2
14.	The co-ordination number and oxid complex $\left[Co(NH_3)_5 Cl \right] Cl_2$ is	dation state for the cobalt atom in the and	•	2	5,0	-,-			(C) $KMnO_4$ (D) CrO_3	1	1	5,6	6 5	2
,	(A) 4; +2 (C) 6; +3	(B) 4; +3 (D) 6; +1						25	. An acceptor of pair of electrons is called (A) Nucleophile (B) Carbocation (C) Anion (D) Electrophile	1	1	3,0	3 2	٤
15.	The Bragg's equation for diffraction	of X-rays is (B) $n\lambda = 2d \sin \theta$	1	2	3,6	I			$\mathbf{D} \cdot \mathbf{D} = \mathbf{D} \cdot (\mathbf{S} \times 10 - 50 \mathbf{Mordes})$		-	- 0		
	(A) $n\lambda = 2d\cos\theta$ (C) $n\lambda^2 = 2d\sin\theta$	(D) $n\lambda = 2d^2 \sin \theta$							PART – B (5 × 10 = 50 Marks) Answer ALL Questions	Marks	s Bi	L CC	J P	U
16	. Chiral molecules which are non-s	uperimposable mirror images of each	1	1	4,6	1		26. a	. Derive time independent Schrodinger wave equation.	10	2	2 1,6	,6 1	1
	other are called (A) Diasteriomers	(B) Meso compounds						h	OR) Draw and explain the π-molecular orbital picture of 1,3-butadiene.	10	4	1,	,6 4	4
	(C) Racemic mixtune	(D) Enantiomers							a. With a neat sketch discuss on the crystal field splitting of d-orbitals for	r ¹⁰	3	3 2,	,6 1	ւ,4
17	. The plane which divides the molecuthe mirror image of the other half is	ale into 2 equal parts so that each half is called	1	1	4,6	1			Tetrahedral complexes. (OR)					
	(A) Centre of symmetry (C) Axis of symmetry	(B) Plane of symmetry(D) Improper axis of symmetry						b	c. Consider AB molecule to absorb in Microwave region and behaving like rigid rotor. Explicate the rotational spectra for this molecule and predict a which $\overline{v} cm^{-1}$, the signal is observed in the spectrum for a jump from $J =$	t	£	+ 2,	1,6 3	},4
									to $J = 1$.			- ساھ ھ ي		