ChIP-seq

NGS Course 14th March 2012

> Remco Loos Myrto Kostadima

Next generation sequencing course

Next generation sequencing course

ChIP-seq Applications

- Protein-DNA interaction: Transcription factor binding locations, core transcriptional machinery
- Nucleosome positioning, histone modifications
- Chromatin states, DNA methylation

Chromatin ImmunoPrecipitation

- Transcription factors
- Nuclear receptors
- Polymerase
- Histones

- PCR with gene specific primers
- Hybridization on microarrays
- Sequencing

Lab procedures

	Transcription factor binding location	Map nucleosome positions or histone modifications
Crosslinking	Formaldehyde	Usually not
Fragmentation	Sonication (200-600bp)	MNase treatment
Immunoprecipitation	Antibody specific to protein of interest	Antibody specific for histone modification

Library construction

- Size selection ~150-300bp
- Adapter ligation
- Cluster generation (amplification)
- Sequence by synthesis

Chromatin ImmunoPrecipitation followed by Sequencing

- One of the early applications of NGS
- First studies published in 2007
 - Johnson et al (Science) NRSF
 - Barski et al (Cell) histone methylation
 - Robertson et al (Nature Methods) STAT1
 - Mikkelsen et al (Nature) histone modification
- Over 500 publications currently in PubMed

Historical slide: ChIP-chip vs ChIP-seq

	ChIP-chip	ChIP-seq
Resolution	Array-specific	High - single nucleotide
Coverage	Limited by sequences on the array	Limited by "alignability" of reads to the genome, increases with read length
Repeat elements	Masked out	Many can be covered (40% of human genome is repetitive but 80% is uniquely mappable)
Cost	400-800\$ per array (1-6M probes), multiple arrays needed for human genome	Around 1000\$ per lane; 20-30M reads
Source of noise	Cross hybridization	Sequencing bias, GC bias, sequencing error
Amount of ChIP DNA required	High, few micrograms	Low 10-50ng
Dynamic range	Lower detection limit and saturation at high signal	Not limited
Multiplexing	Not possible	Possible

Overview of ChIP-seq experiment

Park J, 2009

Main Challenge - Bioinformatics

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Antibody quality

- Antibody quality a sensitive and specific antibody will give a high level of enrichment
 - Limited efficiency of antibody is the main reason for failed ChIPseq experiments
 - Check your antibody ahead if possible. Western blotting to check the reactivity of the antibody with unmodified and non-histone proteins.

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Why we need a control sample

- Open chromatin regions are fragmented more easily than closed regions.
- Repetitive sequences might seem to be enriched (inaccurate repeats copy number in the assembled genome).
- Uneven distribution of sequence tags across the genome
- A ChIP-seq peak should be compared with the same region in a matched control

Rozowsky, Nature Biotechnology, 2009

Control type

- Input DNA
- Mock IP DNA obtained from IP without antibody
 - Very little material can be pulled down leading to inconsistent results of multiple mock IPs.
- Nonspecific IP using an antibody against a protein that is not known to be involved in DNA binding
- There is no consensus on which is the most appropriate
- Sequencing a control can be avoided when looking at:
 - time points
 - differential binding pattern between conditions

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Depth of sequencing

- More prominent peaks are identified with fewer reads, whereas weaker peaks require greater depth
- Number of putative target regions continues to increase significantly as a function of sequencing depth
- GA1 generated 4-6M reads, GA2
 12-15M reads, GA2X 18-30M,
 HiSeq & SOLiD up to 100 M
- With current sequencing technologies, one lane is usually sufficient

Saturation: MACS "diag" table

FC	# peaks	90%	80%	70%	60%	50%	40%	30%	20%
0-20	31530	75.01	55.98	39.58	26.01	15.35	7.43	2.64	0.51
20-40	5481	99.62	97.7	92.52	80.46	61.34	36.75	14.61	2.81
40-60	235	100	100	100	100	99.57	90.21	68.51	28.09
60-80	40	100	100	100	100	100	100	95	62.5
80-100	7	100	100	100	100	100	100	100	85.71
100-120	2	100	100	100	100	100	100	100	100
120-140	5	100	100	100	100	100	100	100	100
160-180	1	100	100	100	100	100	100	100	100

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Multiplexing

- Number of reads per run continue to increase
- The ability to sequence multiple samples at the same time becomes important, especially for small genomes
- Different barcode adaptors are ligated to different samples

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Paired-end sequencing

- Reads are sequenced from both ends
- Increase "mappability" especially in repetitive regions
- Costs twice as much as single end reads

 For ChIP-seq, usually not worth the extra cost, unless you have a specific interest in repeat regions

Analysis - Overview

Sequencing

Sequence by synthesis

Image analysis

Raw reads - fastq file

```
@HWI-EAS225_30EJMAAXX:6:1:1300:1234
GAAAATCACGGAAAATGAGAAATACACACTTTAGGA
;;;;;;;;;;;;;;;;;;;;888666
@HWI-EAS225 30EJMAAXX:6:1:330:1573
GGATACAACAGAAGATCTCGGGAACGGACTCAGAAG
;;;;;;;;1;;;;1;;;;488884
@HWI-EAS225 30EJMAAXX:6:1:1079:806
GGCTTAGTAGTCCACCCTGGAGTTATGGATTGTGAA
;;48;4;84.4;;47;8;887;;49;;.4;8.1&8+
@HWI-EAS225 30EJMAAXX:6:1:1775:216
GTTCAAGGTCACAGGAGATCCTGTCTCAAAACCACC
;88;;48;;;;8;2;4;;;44;8)8;4+4++%8.4
@HWI-EAS225 30EJMAAXX:6:1:703:1984
GAAGGTCTTCTCAGCCACGCCCCTGCCTCCTGCTCC
;;;;;;;;;;;;;;;6;;7887876
@HWI-EAS225 30EJMAAXX:6:1:1109:1520
GTGAGATGTTCAGGTAGAGACTAATGTAAGCGGTGA
;;;;;;;;7:;;;64;::;1;:::786716
@HWI-EAS225 30EJMAAXX:6:1:999:1416
GTTAGACGCAGCTCATTAGGGAAAAACCTATCCCAT
;;;;;;;;;;1;;;(9;;866886
```


Fastq format

```
@HWUSI-EAS100R:6:73:941:1973#0/1

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65
```

```
6 - Flowcell lane
```

73 - Tile number

941,1973 - 'x','y'-coordinates of the cluster within the tile

#0 - index number for a multiplexed sample (0 for no indexing)

/1 - the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Phred quality scores

Phred quality score	Probability that the base is called wrong	Accuracy of the base call
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

A Phred score of a base: Q phred = -10 * log10(\$e) where \$e is the estimated probability of a base being wrong.

For example: If a base is estimated to have a 0.1% chance of being wrong, it gets a Phred score of 30.

Analysis - Overview

Mappability

- Not all of the genome is 'available' for mapping
- Align your reads to the unmasked genome

	Nonrepetitive seque		etitive sequence	ence Mappable sequence	
Organism	Genome size (Mb)	Size (Mb)	Percentage	Size (Mb)	Percentage
Caenorhabditis elegans	100.28	87.01	86.8%	93.26	93.0%
Drosophila melanogaster	168.74	117.45	69.6%	121.40	71.9%
Mus musculus	2,654.91	1,438.61	54.2%	2,150.57	81.0%
Homo sapiens	3,080.44	1,462.69	47.5%	2,451.96	79.6%

^{*}Calculated based on 30nt sequence tags

Rozowsky, 2009

- For ChIP-seq, usually short reads are used (36bp)
- Limited gain in using longer reads (again, unless you have a specific interest in repeat regions)

Mapping Challenges

- Enormous amount of reads to align
- Done against large genome needs pre-indexing structure and large memory
- Shorter reads length
- Mismatches
 - Sequencing errors higher error rates than conventional sequencing methods
 - SNPs, insertion/deletions
- Repetitive regions
- Has to be fast and memory efficient

Mapping Softwares

- BLAST have been developed for conventional sequencing methods, do not take into account the shorter read lengths and the higher error rate.
- Therefore new programs have been developed, which deal with these new challenges.
- Each program usually addresses the problem slightly different
 - gapped versus un-gapped alignment
 - taking the quality value of each base into account.
 - How to treat non-unique reads
 - trim reads at the 3' end
 - find a balance between accuracy and speed of mapping
- Each program might be applicable for different applications and/or sequencing technologies.

Mapping Softwares

- ELAND provided with Illumina sequencer
 - Limited reads length
 - Allow 2 substitutions
- MAQ (Li et al 2008)
 - Uses quality values
 - Integrate consensus calling
- Bowtie
 - Ultra fast
 - Can work on workstations with < 2Gb memory

Many others: BWA, Novoalign, BFAST,...

36-mers single-end reads mapped with Maq software

Analysis - Overview

ChIP-seq

34

Strand specific profile

Kharchenko, Nature Biotechnology, 2008

ChIP-seq

Peak Calling

- Basic regions are scored by the number of tags in a window of a given size.
 Then assess by enrichment over control and minimum tag density.
- Advanced take advantage of the directionality of the reads.
- Advanced methods make more assumptions, making them less appropriate in certain cases

Peak Calling - Challenges

- Adjust for sequence alignability regions that contain repetitive elements have different expected tag count
- Different ChIP-seq applications produce different type of peaks. Most current tools have been designed to detect sharp peaks (TF binding, histone modifications at regulatory elements)
- Alternative tools exist for broader peaks (histone modifications that mark domains - transcribed or repressed), e.g. SICER

Park J, Nature Reviews Genetics, 2009

MACS tool

- Model the shift size between +/strand tags
 - Scan the genome to find regions with tags more than mfold enriched relative to random tag distribution
 - Randomly sample 1000 of these (high quality peaks) and calculate the distance between the modes of their +/- peaks
 - Shift all the tags by d/2 toward the 3' end.

MACS - Peak detection

- Remove duplicate tags (in excess of what can be expected by chance)
- Slide window across the genome to find candidate peaks with a significant tag enrichment (Poisson distribution, global background, pvalue 10e-5)
- Merge overlapping peaks, and extend each tag d bases from its center
- Also looks at local background levels and eliminates peaks that are not significant with respect to local background
- Uses the control sample to eliminates peaks that are also present there

Non-peak based analysis

- Can be more appropriate for non-specific binding sites
- Does not involve calling significant peaks, and discarding the rest of the signal as noise
- Instead, the whole signal is used for analysis
- Global analysis, e.g. looking for enrichment at TSS
- Tools include CEAS and EpiChip

Analysis - Overview

Analysis downstream to peak calling

- Visualization genome browser: Ensembl, UCSC, IGB
- Peak Annotation finding interesting features surrounding peak regions:
 PeakAnalyzer
- Correlation with expression data
- Discovery of binding sequence motifs
 - Split peaks
 - Fetch summit sequences
 - Run motif prediction tool
- Gene Ontology analysis on genes that bind the same factor or have the same modification
- Correlation with SNP data to find allele-specific binding

Visualization in a genome browser

Motif Analysis

GAATCCCACA TTTGCATAACAAAG ACTCCTGGTG
CAGCTGCTCT TCTGCATAACAAAGG GTGGCCCTGC
CCGGTTTTTC TTTGCATAACAATAA GATCTGGCTA
TTATTCTCAC TTTGCATAGGAATGG GGCAGTTAGA
CACAGCCACA TTTGCATAACAGAAG CCGAGCCCGC
CTTGGGTGAA TTTGCAAGACAAAGG ACAATGATCA

