Mini-batch & distributed SAGA Incremental Gradient Methods

Michaël Defferrard[†], Soroosh Shafieezadeh Abadeh[†]

† Ecole Polytechnique Federale de Lausanne

 $\begin{array}{c} {\sf Student\ Presentation} \\ 3^{\sf rd\ June} \end{array}$

Introduction

Problem:
$$\min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(x) + h(x)$$

SAGA

Given a learning rate γ , the value of x^k and of each $f'_i(\phi^k_i)$ at the end of iteration k, the updates for iteration k+1 are given by:

- \blacksquare Pick a j uniformly at random.
- 2 Take $\phi_j^{k+1} = x^k$, and store $f_j'(\phi_j^{k+1})$ in the table.
- Update x:

$$w^{k+1} = x^k - \gamma \left[f'_j(\phi_j^{k+1}) - f'_j(\phi_j^k) + \frac{1}{n} \sum_{i=1}^n f'_i(\phi_i^k) \right],$$
$$x^{k+1} = \operatorname{prox}_{\gamma}^h(w^{k+1}).$$

Improvements

- Memory-efficiency → mini-batch SAGA
- lacktriangle Time-efficiency o **distributed** SAGA

Mini-batch SAGA

- $\textbf{1} \ \, \text{Pick a} \,\, i \,\, \text{uniformly at random in} \,\, [1, \textstyle \frac{n}{m}].$
- 2 Take $\phi_j^{k+1} = x^k \ \forall \ j \in \mathcal{B}_i$, and store $\frac{1}{m} \sum_{j \in \mathcal{B}_i} f_j'(\phi_j^{k+1})$ in the table.
- 3 Update x:

$$w^{k+1} = x^k - \gamma \left[\frac{1}{m} \sum_{j \in \mathcal{B}_i} f_j'(\phi_j^{k+1}) - \frac{1}{m} \sum_{j \in \mathcal{B}_i} f_j'(\phi_j^k) + \frac{1}{n} \sum_{i=1}^m \sum_{j \in \mathcal{B}_i} f_j'(\phi_j^k) \right],$$
$$x^{k+1} = \operatorname{prox}_{\gamma}^h(w^{k+1}).$$

Results

Variant I

Variant II

Comparison

