CS 487 - HW 7

Cyrus Baker April 24, 2020

Datasets:

- Iris UCI Repository
- faulty-steel-plates UCI Repository

Charts

These charts are used to determine the optimal number of clusters for the KMEANS clusterer.

These charts are used to determine the optimal number of min_samples and eps for the DBSCAN clusterer.

Results

Clusterer	Dataset	Iris	Faulty
KMEANS	Error Score	561	16348
	Homogeneity Score	0.7465	0.2933
	Completeness Score	0.5230	0.2902
	V-Measurement Score	0.6151	0.2917
SCIPY HEIRARCHICAL	Error Score	100	5574209
	Homogeneity Score	-4.548	0.3631
	Completeness Score	1	0.3191
	V-Measurement Score	-9.095	0.3397
SKLEARN HEIRARCHICAL	Error Score	297	37462
	Homogeneity Score	0.5922	0.0024
	Completeness Score	0.8431	0.1303
	V-Measurement Score	0.6958	0.0046
DBSCAN	Error Score	142	37677
	Homogeneity Score	0.5225	0.0013
	Completeness Score	0.6134	0.0642
	V-Measurement Score	0.5643	0.0026

Analysis

I found that my results improved for the faults dataset after I standardized the X values. However I know that something is wrong because the values for homogeneity, completeness, and v-measurement scores should range between 0 and 1 (higher is better). The erros score is the mean of the sum squared errors and a lower score is better. For the Iris dataset the Scipy clusterer can be ruled out as a candidate because of the negative scores. I would guess that the Kmeans and the Sklearn Heirarchical clusterers would work well because of the high homogeneity, completeness, and v-measurement scores.

For the faulty steel plate the most reasonable clusterer was the Scipy heirarchical clusterer. But based on my results I think that my implementation was a little off.