Continuity

Def: A function & is continuous at a point a if

$$\lim_{x\to a} f(x) = f(a)$$
.

Note that for a function of be continuous at a, we are implicitly requiring three things:

1) a is in the domain of f.

Example:

Consider the function

$$TL(X) := number of primes$$
less than or equal
to X .

$$\pi(1) = 0$$
, $\pi(2) = 1$, $\pi(3) = 2$.

$$\pi(10) = 4$$
, because the primes ≤ 70 are $2,3,5,7$.

Where is the function TG(x) discontinuous?

х	$\pi(x)$
10	4
10 ²	25
10 ³	168
10 ⁴	1,229
10 ⁵	9,592
10 ⁶	78,498
10 ⁷	664,579
10 ⁸	5,761,455
10 ⁹	50,847,534
10 ¹⁰	455,052,511
10 ¹¹	4,118,054,813
10 ¹²	37,607,912,018
10 ¹³	346,065,536,839
10 ¹⁴	3,204,941,750,802
10 ¹⁵	29,844,570,422,669
10 ¹⁶	279,238,341,033,925
10 ¹⁷	2,623,557,157,654,233
10 ¹⁸	24,739,954,287,740,860
10 ¹⁹	234,057,667,276,344,607
10 ²⁰	2,220,819,602,560,918,840
10 ²¹	21,127,269,486,018,731,928
10 ²²	201,467,286,689,315,906,290
10 ²³	1,925,320,391,606,803,968,923
10 ²⁴	18,435,599,767,349,200,867,866
10 ²⁵	176,846,309,399,143,769,411,680
10 ²⁶	1,699,246,750,872,437,141,327,603
10 ²⁷	16,352,460,426,841,680,446,427,399
10 ²⁸	157,589,269,275,973,410,412,739,598
10 ²⁹	1,520,698,109,714,272,166,094,258,063

Types of discontinuity

A function f is discontinuous at a if it is not continuous at a, that is:

(*) $\lim_{x\to a} f(x) \neq f(a)$.

In this case, L*) is called a discontinuity.

There are several types of discontinuities, for example:

· Removable discontinuity:

$$g(x) := \begin{cases} f(x), & \text{if } x \neq \alpha, \\ L, & \text{if } x = \alpha. \end{cases}$$

when f is not defined at a but

lim f(x) = L.

It is removable because we can extend \$ to a continuous function g by simply "filling the gap".

This function is continuous and

lim g(x) = lim f(x)

x > b

for every b.

· Infinite discontinuity:

When f is not defined at a and has a ver hical assymptote at the line x=a.

· Jump discontinuity:

a is a jump discontinuity when f(a) exists but it is not equal to either lim f(x) or lim f(x).

Def:
$$f$$
 is right-continuous at a if
$$\lim_{x \to a^+} f(x) = f(a).$$

f is left-continuous at a if
$$\lim_{x\to a^{-}} f(x) = f(a).$$

(Note that a function f is continuous at a if and only if it is both left-continuous and right continuous at a.)

f is continuous on the interval (a,b)if it is continuous at every point

in the interval. That is, for

every c with a < c < b $\lim_{x \to c} f(x) = f(c)$.

Some theorems:

Theorem 4 in §2.5:

If f and g are continuous at a, and c is some constant, then the following functions are also continuous at a:

• c · ₽

Proof: Use the limit laws we saw in Lechre 2. For example, he show that h := f+g is continuous at a, we can use the Addition Law. Since $\lim_{x \to a} f(x) = f(a)$ and $\lim_{x \to a} g(x) = g(a)$ exist, we have that

 $\lim_{x \to a} h(x) = \lim_{x \to a} (f(x) + g(x))$

$$= \{(a) + g(a) = h(a).$$

Since $\lim_{x\to a} h(x) = h(a)$, we wonclude that the punction h = f + g is continuous at a.

Theorem 5 in § 2.5:

- Polynomial functions are continuous at every point in $(-\infty, \infty) = IR$.
- (b) Any rutional function is continuous on every point of its domain.

Theorem 7 in § 2.5:

The following types of functions are continuous at very point of their domain:

- · Polynomials. eg. X100 + 2x50 + x 5
- Rational functions eg. $\frac{x^3+x}{1+2x}$
- Root functions · e.g. ³√x
- · Trigonometric functions. eg. sinx, wsx, tanx, ...
- · Inverse trigonometric functions. sin'x, cos'x, tan'x,...
- · Exponential functions · eg. 2x, 3x, ex, ...
- · Logarithmic functions. e.g. logzx, logx,...

Theorem 9 in \$2.5:

The composition of continuous functions is continuous on their domain.

$$\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x)).$$

when f is continuous at b = g(a).

Example: Where is the function

$$f(x) = \frac{\ln x + \tan^{-1} x}{x^2 - 7}$$

continuous ?

Solution:

· We know hat In x is continuous everywhere on its domain, whic is

Domain
$$(0, \infty)$$
.

- · Similarly for $tan^{-1}x$, whose domain is Domain $(tan^{-1}x) = IR = (-\infty, \infty)$.
- · Thus, we have that

Domain (
$$\ln x + \tan^{-1} x$$
) = $(0, \infty)$.

• The function x^2-1 is a polynomial, so it is continuous everywhere.

Theorem 4 tells us that f is continuous at every point a>0 for which $a^2-1\neq0$.

· We conclude that f is continuous on the intervals

The closed interval

Ea, bJ denotes the

set of points r

such that

a

- r

- b

In particular, it

includes a and b.

IVT: Supose that f is continuous at every point of the closed interval [a,b], and let N be a point between f(a) and f(b), where $f(a) \neq f(b)$. Then, there exists a point $c \in [a,b]$ such that f(c) = N.

Limits at ∞

Def: Let f be some function defined on some interval (a, ∞) . We write

$$\lim_{x\to\infty} f(x) = L$$

to mean that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

Similarly for limits to -00.

Examples:

$$\lim_{x\to -\infty} e^x = 0$$

$$\lim_{x\to\infty} \tan^{-1} x = \frac{\pi}{2}.$$

Def: We say that f has a horizontal assymptote at the line y = L if either

$$\lim_{x\to\infty} f(x) = L$$
 or $\lim_{x\to-\infty} f(x) = L$.