Variable-Geometry Throat Example: Design an isotropic CD inlet, with a variable geometry throat for design mach number $M_d=3.3$

- 1. inlet design contraction ratio $\frac{A_1}{A_{th}}$
- 2. percent opening of throat to start the inlet
- 3. throat mach number after starting shock is swallowed

A:

1. First get $\frac{A}{A^*}$ for M-3.3.

$$[M, Tr, Pr, \neg, Ar] = flowisentropic(1.4, 3.3, 'mach'); -> 5.6286$$

$$\frac{A_1}{A_{th}} = 5.629$$
 From normal shock function

With the new mach number we go back to the instrompic function to find the $\frac{A}{A_{th}}$

$$\frac{A_1}{A_{th}} = 1.4256$$
 We can do this because A_{th} is chocked so it corresponds to A^*

2.
$$\frac{A_{th}`-A_{th}}{A_{th}}\times 100 = \frac{\frac{A_{th}`-A_{th}}{A_1}}{\frac{A_{th}}{A_1}}\times 100 = \frac{\frac{1}{1.425}`-\frac{1}{5.629}}{\frac{1}{5.629}}\times 100 \rightarrow \boxed{\frac{\Delta A_{th}}{A_{th}} = 295\%}$$

3.
$$\frac{A_{th}'}{A^*} = \frac{A_{th}'}{A_1} / \frac{A^*}{A_1} = \frac{1}{1.425} / \frac{1}{5.629} = 3.95$$

$$M_{th}$$
 ' = 2.927

Example of K-D Inlet: Design a self starting CD inlet for $M_D = 2.65$. Calculate...

- 1. inlet contraction ratio $\frac{A_1}{A_{th}}$
- 2. maximum total pressure recovery (at best back-pressure)

A:

1. From the normal shock relations at $M_D=2.65$

From isotropic relations at $M_1 = 0.4996$

$$\frac{A_1}{A^*} = 1.3406$$

2. Next need to find throat Mach number after th
r shock sweeps through. Using instropic relations at $M=2.65\,$

$$\frac{A_{th}}{A^*} = \frac{A_1}{A^*} / \frac{A_1}{A^t h} = 3.0359 / 1.3406 = 2.2646$$
 using the isentropic table where M¿1.

the best back pressure places the shook at the throat

```
1 [M0,T,P,rho,M1,P0,P1] = flownormalshock(1.4,2.3353)-> P0=0.5678
```

Best Back Pressure = 0.5678