

Universidad Nacional Mayor de San Marcos Facultad de Ciencias Matemáticas — E.P. Investigación Operativa

Simulación de Sistemas

Pruebas estadísticas para la comprobación de números aleatorios

Docente: Carlos Guerrero M.

ALUMNO:

Solari Morales, Gabriel José

Cuando se aplica la simulación de sistemas es necesario crear datos a través de variables aleatorias que sigan las características del comportamiento del sistema, por lo que debemos comprobar la aleatoriedad de estas.

Entre muchas pruebas de comprobación de números aleatorios tenemos a las pruebas de uniformidad como es la de Ji Cuadrada y Kolgomorov-Smirnov, también existen las pruebas de independencia de variables entre las que encontramos a la prueba de corridas ascendentes y descendentes, series y póker.

Para el desarrollo de las pruebas estadísticas utilizaremos como ejemplo práctico la generación de los siguientes números aleatorios:

Sea $x_0 = 7$ y el generador $x_{n+1} = 7^5x_n mod(2^{31} - 1)$

		Serie	
i	Semilla	generada	serie/m
1	7	117649	0,00003
2	117649	1977326743	0,46038
3	1977326743	2768608186	0,64462
4	2768608186	322108072	0,07500
5	322108072	2011574404	0,46836
6	2011574404	2843429083	0,66204
7	2843429083	3706473811	0,86298
8	3706473811	499694797	0,11634
9	499694797	1709391454	0,39800
10	1709391454	705931123	0,16436
11	705931123	1884715471	0,43882
12	1884715471	1029120472	0,23961
13	1029120472	594475939	0,13841
14	594475939	1263178603	0,29411
15	1263178603	219441436	0,05109
16	219441436	3070275742	0,71485
17	3070275742	2387313664	0,55584
18	2387313664	4291248253	0,99913
19	4291248253	1918570531	0,44670
20	1918570531	3095430952	0,72071
21	3095430952	4264133224	0,99282
22	4264133224	1462811398	0,34059
23	1462811398	1078369606	0,25108
24	1078369606	3690950437	0,85937
25	3690950437	1591352974	0,37052
26	1591352974	1108088053	0,25800
27	1108088053	657715651	0,15314
28	657715651	3276096322	0,76278
29	3276096322	4165129249	0,96977
30	4165129249	3950314033	0,91975

31	3950314033	1323506521	0,30815
32	1323506521	538477642	0,12537
33	538477642	697638529	0,16243
34	697638529	4245008848	0,98837
35	4245008848	2161971091	0,50337
36	2161971091	824810737	0,19204
37	824810737	2734595794	0,63670
38	2734595794	4201453258	0,97823
39	4201453258	267610111	0,06231
40	267610111	892377712	0,20777
41	892377712	166411444	0,03875
42	166411444	853430263	0,19870
43	853430263	2706632236	0,63019
44	2706632236	2369369107	0,55166
45	2369369107	3344789404	0,77877
46	3344789404	3343556068	0,77848
47	3343556068	4089714391	0,95221
48	4089714391	3468147652	0,80749
49	3468147652	2156426719	0,50208
50	2156426719	2129831023	0,49589

Para la resolución de cada prueba de comprobación utilizaremos el programa MATLAB, por consiguiente, en ese documento solo se mostrarán los resultados de compilar el programa y la conclusión a la que se llega, que solo pueden ser dos:

 H_0 = La muestra sigue una secuencia aleatoria.

 H_1 = La muestra no sigue una secuencia aleatoria.

A continuación, presentaremos a cada prueba y el procedimiento a seguir para llegar al resultado deseado.

I. Pruebas de Uniformidad

1.1. Prueba de Ji-cuadrada

Es la prueba de uniformidad más comúnmente usada, esta prueba realiza comparación entre las frecuencias observadas con las frecuencias esperadas.

Para poder desarrollar esta prueba necesitamos los siguientes datos:

m: Número de intervalos o clases

Oi: Frecuencia observada Ei: Frecuencia esperada

n: Cantidad total de números

$$x_{calculado}^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Procedimiento:

1º Generar la muestra de números aleatorios de tamaño n.

2º Determinar el número de intervalos

$$m = \sqrt{n}$$

3° Subdividir el intervalo [0,1] en m subintervalos.

4º Para cada subintervalo contamos cuantos números hay, el resultado es la frecuencia observada Oi.

5º Para cada subintervalo calculamos la frecuencia esperada

$$E_i = \frac{n}{m}$$

6° Calcular el estadístico de prueba

$$x_{calc.}^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

7º Comparar el valor calculado $x_{calc.}^2$ contra el valor tabulado de la distribución x^2 , con (m-1) grados de libertad y una significancia α

			Т	ABLA DE FRECUI	ENCI	AS		
In	nterval	los	- 1	F.Observada	- 1	F.Esperada	- 1	Error
0.000	_	0.125	- 1	6	- 1	6.2500	- 1	0.0100
0.125	_	0.250	- 1	9	- 1	6.2500	- 1	1.2100
0.250	_	0.375	- 1	6	- 1	6.2500	- 1	0.0100
0.375	_	0.500	- 1	6	- 1	6.2500	- 1	0.0100
0.500	_	0.625	- 1	4	- 1	6.2500	- 1	0.8100
0.625	_	0.750	- 1	6	- 1	6.2500	- 1	0.0100
0.750	_	0.875	- 1	6	- 1	6.2500	- 1	0.0100
0.875	_	1.000	- 1	7	- 1	6.2500	- 1	0.0900
	TOTAL	L	- 1	50		ERROR	- 1	2.1600
						TOLERANCIA	- 1	14.0671

FIGURA 1.- Resultado de compilar en MATLAB el método de Ji-Cuadrada

Se observa que el valor calculado $x_{calc.}^2=2.1600$ es menor que el valor tabulado de la distribución $x^2=14.0671$ por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

1.2. Prueba de Kolmogorov – Smirnov

Esta prueba es similar a la anterior vista, la única limitante es que solo se puede aplicar en análisis de variables continuas.

Procedimiento:

- 1. Generar una muestra de números aleatorios uniformes de tamaño n.
- 2. Ordenar dichos números en orden ascendente.
- 3. Calcular la distribución acumulada de los números generados

$$F_n(x) = \frac{i}{n}$$

Donde i= posición que ocupa el número aleatorio

4. Calcular el estado de prueba

$$D_n = m\acute{a}x |F_n(x_i) - x_i| para x_i$$

5. Si D_n es menor que $d_{\alpha,n}$ entonces no se puede rechazar la hipótesis de que los números generados son uniformes.

i	1	Ordenado	1	i/n	1	E. de Prueba
1	1	0.00003	1	0.02000	1	0.01997
2	- 1	0.03875	-1	0.04000	1	0.00125
3	- 1	0.05109	-1	0.06000	1	0.00891
4	-1	0.06231	-1	0.08000	- 1	0.01769
5	- 1	0.07500	-1	0.10000	- 1	0.02500
6	- 1	0.11634	-1	0.12000	- 1	0.00366
7	- 1	0.12537	-1	0.14000	- 1	0.01463
8	- 1	0.13841	-1	0.16000	- 1	0.02159
9	- 1	0.15314	-1	0.18000	- 1	0.02686
10	-1	0.16243	-1	0.20000	- 1	0.03757
11	-1	0.16436	-1	0.22000	- 1	0.05564
12	- 1	0.19204	-1	0.24000	- 1	0.04796
13	- 1	0.19870	-1	0.26000	- 1	0.06130
14	- 1	0.20777	-1	0.28000	- 1	0.07223
15	- 1	0.23961	-1	0.30000	- 1	0.06039
16	-1	0.25108	-1	0.32000	- 1	0.06892
17	- 1	0.25800	-1	0.34000	- 1	0.08200
18	- 1	0.29411	-1	0.36000	- 1	0.06589
19	- 1	0.30815	-1	0.38000	- 1	0.07185
20	- 1	0.34059	-1	0.40000	- 1	0.05941
21	- 1	0.37052	-1	0.42000	- 1	0.04948
22	- 1	0.39800	-1	0.44000	- 1	0.04200
23	- 1	0.43882	-1	0.46000	- 1	0.02118
24	- 1	0.44670	-1	0.48000	- 1	0.03330
25	- 1	0.46038	-1	0.50000	- 1	0.03962
26	-1	0.46836	-1	0.52000	- 1	0.05164
27	-1	0.49589	-1	0.54000	- 1	0.04411
28	-1	0.50208	-1	0.56000	- 1	0.05792
29	-1	0.50337	-1	0.58000	- 1	0.07663
30	-1	0.55166		0.60000		0.04834

31	-1	0.55584	- 1	0.62000	-1	0.06416
32	-1	0.63019	- 1	0.64000	- 1	0.00981
33	-1	0.63670	- 1	0.66000	- 1	0.02330
34	-1	0.64462	- 1	0.68000	- 1	0.03538
35	-1	0.66204	- 1	0.70000	- 1	0.03796
36	- 1	0.71485		0.72000	1	0.00515
37	- 1	0.72071	- 1	0.74000	1	0.01929
38	- 1	0.76278	- 1	0.76000	- 1	0.00278
39	- 1	0.77848	- 1	0.78000	- 1	0.00152
40	- 1	0.77877	- 1	0.80000	- 1	0.02123
41	- 1	0.80749	- 1	0.82000	- 1	0.01251
42	- 1	0.85937	- 1	0.84000	- 1	0.01937
43	- 1	0.86298	- 1	0.86000	- 1	0.00298
44	- 1	0.91975	- 1	0.88000	- 1	0.03975
45	- 1	0.95221	- 1	0.90000	- 1	0.05221
46	- 1	0.96977	- 1	0.92000	- 1	0.04977
47	- 1	0.97823	- 1	0.94000	- 1	0.03823
48	- 1	0.98837	- 1	0.96000	- 1	0.02837
49	- 1	0.99282	- 1	0.98000	- 1	0.01282
50	- 1	0.99913	- 1	1.00000	- 1	0.00087
				ERROR	- 1	0.08200
				TOLERANCIA	- 1	0.18842

FIGURA 2.- Resultado de compilar en MATLAB la prueba de Kolmogorov.

Se observa que el valor calculado $x_{calc.}^2=0.08200$ es menor que el valor tabulado de la distribución $x^2=0.18842$ por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

II. Pruebas de aleatoriedad o independencia

2.1. Prueba de corridas ascendentes y descendentes

Si tenemos una secuencia de números de tal manera que a cada uno de los números siga otro mayor la secuencia será ascendente (arriba).

Si por el contrario a cada número le siga uno menor la secuencia será descendente (abajo).

Para n>20 es posible aproximarse a la distribución del número de corridas mediante una distribución normal como presentamos a continuación.

Procedimiento:

- 1. Generar la muestra de tamaño n de números aleatorios
- 2. Asignar un signo + o a cada número de la secuencia según el siguiente criterio:

Si $r_i < r_{i+1}$ entonces asignar el signo "-".

Si $r_i > r_{i+1}$ entonces asignar el signo "+".

3. Hallar la media con la siguiente fórmula:

$$\mu_a = \frac{2N-1}{3}$$

Donde: N = Cantidad de números de la serie

4. Hallar la desviación estándar dada por:

$$\sigma_a^2 = \frac{16N - 29}{90}$$

5. Hallar la región de aceptación, necesitamos: ∝= nivel de significancia

6. Hallar el Z calculado:

$$Z = \frac{a - \mu_a}{\sigma_a}$$

Donde: a = Cantidad de corridas

7. Se observa si el Z calculado se encuentra dentro de la región de aceptación.

Corridas : 32
Numero de Signos positivos : 24
Numero de Signos negativos : 25

mu : 33.00
sigma : 2.927
Z : 0.342

FIGURA 3.- Resultado de compilar en MATLAB la prueba de Corridas según Taylor.

Se observa que el valor calculado $Z_{calc.}=0.342$ es menor que el valor tabulado de la distribución Limite=1.960 por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

Otra forma de resolver es la siguiente:

Limite : 1.960

Procedimiento:

- 1. Generar la muestra de tamaño n de números aleatorios.
- 2. Generar una sucesión binaria basándonos en el siguiente criterio Si $r_j \le r_{j+1}$ entonces asignarle a r_j el símbolo 0. Si $r_j > r_{j+1}$ entonces asignarle a r_j el símbolo 1.
- 3. Calcular la frecuencia esperada

$$FE_i = \frac{2|(i^2 + 3i + 1)n - (i^3 + 3i^2 - i - 4)|}{(i+3)!}$$

- 4. Hallar la frecuencia observada
- 5. Calcular

$$\frac{(FE - FO)^2}{FE}$$

 Comparar el valor obtenido con el valor de la tabla de Ji- cuadrada, si es menor no se puede rechazar la independencia de números aleatorios.

Longitud de Corrida (i		DE FRECUI		F.Esperada		Error
1	1	19	i	20.91667	1	0.17563
2	1	9	1	8.93333	1	0.00050
3 a más	1	4	1	2.50833	1	0.88707
1	ERROR TOLERANCIA		06320 99146			

FIGURA 4.- Resultado de compilar en MATLAB la prueba de Corridas.

Se observa que el valor calculado $x_{calc.}^2=1.06320$ es menor que el valor tabulado de la distribución $x^2=5.99146$ por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

2.2. Prueba de corridas ascendentes y descendentes con respecto a la media

En esta prueba nos fijaremos si el número aleatorio es mayor o menor respecto a la media obtenida, entonces se irán obteniendo rachas ascendentes o descendientes.

Para n>20 es posible aproximarse a la distribución del número de corridas mediante una distribución normal como presentamos a continuación.

Procedimiento:

- 1. Generar la muestra de tamaño n de números aleatorios
- 2. Asignar un signo + o a cada número de la secuencia según el siguiente criterio:

Si $r_i < media$ entonces asignar el signo "-".

Si $r_i > media$ entonces asignar el signo "+".

3. Hallar la media con la siguiente fórmula:

$$\mu_b = \frac{2n_1n_2}{n_1 + n_2} + 1$$

Donde:

 n_1 = número de signos positivos

 n_2 = número de signos negativos

4. Hallar la desviación estándar dada por:

$$\sigma_b^2 = \frac{2n_1n_2(2n_1n_2 - N)}{N^2(N-1)}$$

Donde:

$$N=n_1+n_2$$

5. Hallar la región de aceptación, necesitamos:∝= nivel de significancia

6. Hallar el Z calculado:

$$Z = \frac{b - \mu_b}{\sigma_b}$$

Donde: b = Cantidad de corridas

7. Se observa si el Z calculado se encuentra dentro de la región de aceptación.

```
Corridas : 19
Numero de Signos positivos : 23
Numero de Signos negativos : 27

mu : 25.84
sigma : 3.476
Z : 1.968
Limite : 1.960
```

FIGURA 5.- Resultado de compilar en MATLAB la prueba de Corridas respecto a la media según Taylor.

Se observa que el valor calculado $Z_{calc.}=1.968~$ es mayor que el valor tabulado de la distribución Limite=1.960~ por lo tanto se acepta la hipótesis $H_1=$ La muestra no sigue una secuencia aleatoria.

Otra forma de resolver es la siguiente:

Procedimiento:

- 1. Generar la muestra de tamaño n de números aleatorios.
- 2. Generar una sucesión binaria basándonos en el siguiente criterio Si $r_j \leq media$ entonces asignarle a r_j el símbolo 0. Si $r_j > media$ entonces asignarle a r_j el símbolo 1.
- 3. Calcular la frecuencia esperada

$$FE_i = \frac{(n-i+3)}{2^{i+1}}$$

- 4. Hallar la frecuencia observada
- 5. Calcular

$$\frac{(FE - FO)^2}{FE}$$

 Comparar el valor obtenido con el valor de la tabla de Ji- cuadrada, si es menor no se puede rechazar la independencia de números aleatorios.

	TABL	A DE FRE	CUENCIAS			
Longitud de Corrida (i)	F.	.Observa	da	F.Esperada	- 1	Error
1	1	5	1	13.00000	1	4.92308
2	1	7	1	6.37500	1	0.06127
3	1	4	1	3.12500	1	0.24500
4	1	1	1	1.53125	1	0.18431
7	1	1	1	0.17969	1	3.74490
8	I	1	1	0.08789	1	9.46567
ER	ROR	1 :	18.62424			
TO	LERANCIA	1 :	11.07050			

FIGURA 6.- Resultado de compilar en MATLAB la prueba de Corridas respecto a la media.

Se observa que el valor calculado $x_{calc.}^2=18.62424$ es mayor que el valor tabulado de la distribución $x^2=11.07050$ por lo tanto se acepta la hipótesis $H_1=$ La muestra no sigue una secuencia aleatoria.

Observación:

Cuando agrupamos las corridas en menos intervalos, se observa que el error obtenido es mucho menor que el visto anteriormente.

		TABL	A DE FREC	UENCIAS			
Longitud de Corr	ida (i)	F	.Observad	la	F.Esperada		Error
1		L	5	1	13.00000	I.	4.92308
2		Î	7	Î.	6.37500	Ĭ.	0.06127
3		L	4	I,	3.12500	L	0.24500
4 a	más	l	3	1	1.79883	1	0.18431
	ERROR	t] 5	.41366			
	TOLER	ANCIA		.81473			

FIGURA 7.- Resultado de compilar en MATLAB la prueba de Corridas respecto a la media, pero con menos intervalos.

Se observa que el valor calculado $x_{calc.}^2=5.41366$ es menor que el valor tabulado de la distribución $x^2=7.81473$ por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

2.3. Prueba de series

Mide la correlación entre elementos adyacentes en una secuencia de números aleatorios.

Se suele formar parejas de números, las cuales son consideradas como coordenadas en un cuadro unitario dividido en n^2 .

Es decir, se forman parejas aleatorias entre U_i y U_{i+1} , el número de intervalos sería n-1, como podemos observar en el siguiente gráfico:

Procedimiento:

- 1. Generar una muestra de n números aleatorios.
- 2. Agrupar los números aleatorios en parejas, se obtienen n-1 parejas, estas parejas son como coordenadas (x,y).
- 3. Se determina cuantas clases queremos utilizar, dividimos el intervalo [0,1] entre el número de clases.
- 4. Graficamos el plano cartesiano colocando los intervalos obtenidos en el paso anterior.
- 5. Vamos ubicando cada coordenada en la celda del plano.
- 6. Contabilizamos cuantas coordenadas están ubicadas en cada celda, así se obtiene la FO.
- 7. Calcular la frecuencia esperada $FE = \frac{Total \ de \ celdas}{n-1}$
- 8. Calcular el estadístico de $X_0 = \frac{n^2}{N-1} \sum_{i=1}^n \sum_{j=1}^n (fo_{ij} \frac{N-1}{n^2})^2$ prueba:

- 9. Calcular el grado de liberad = n° de intervalos 1
- 10. Comparar el valor obtenido con el valor de la tabla de Ji- cuadrada, si es menor no se puede rechazar la independencia de números aleatorios.

Coordenada X	1	Coordenada Y
0.00003	1	0.46038
0.46038	1	0.64462
0.64462	1	0.07500
0.07500	1	0.46836
0.46836	1	0.66204
0.66204	1	0.86298
0.86298	1	0.11634
0.11634	1	0.39800
0.39800	1	0.16436
0.16436	1	0.43882
0.43882	1	0.23961
0.23961	1	0.13841
0.13841	1	0.29411
0.29411	1	0.05109
0.05109	i	0.71485
0.71485	1	0.55584
0.55584	1	0.99913
0.99913	1	0.44670
0.44670	i	0.72071
0.72071	1	0.99282
0.99282	1	0.34059
0.34059	1	0.25108
0.25108	i	0.85937
0.85937	1	0.37052
0.37052	1	0.25800
0.25800	i	0.15314
0.15314	i	0.76278
0.76278	i	0.96977
0.96977	1	0.91975
0.91975	i	0.30815
0.30815	i	0.12537
0.12537	i	0.16243
0.16243	i	0.98837
0.98837	i	0.50337
0.50337	i	0.19204
0.19204	Ĭ.	0.63670
0.63670	1	0.97823
0.97823	L	0.06231
0.06231	L	0.20777
0.20777	1	0.03875
0.03875	1	0.19870
0.19870	1	0.63019
0.63019	L	0.55166
0.55166	1	0.77877
0.77877	1	0.77848
0.77848	L	0.95221
0.95221	L	0.80749
0.80749	Ĺ	0.50208
0.50208	Î	0.49589

FIGURA 7.- Coordenadas .Resultado de compilar en MATLAB

	TABLA DE FRECUENCIAS												
Posición	- 1	F.Observada	-1	F.Esperada	- 1	Error							
1	1	9	1	5.44444	1	6.96599							
2	1	6	1	5.44444	1	0.17007							
3	1	4	1	5.44444	1	1.14966							
4	1	6	1	5.44444	1	0.17007							
5	1	4	1	5.44444	1	1.14966							
6	1	5	1	5.44444	1	0.10884							
7	1	3	1	5.44444	1	3.29252							
8	1	6	1	5.44444	1	0.17007							
9	- 1	6	1	5.44444	1	0.17007							
TOTAL	- 1	50		ERROR	1	13.3469							
				TOLERANCIA	1	15.5073							

FIGURA 8.- Resultado de compilar en MATLAB I prueba de Series.

Se observa que el valor calculado $x_{calc.}^2=4.3800$ es menor que el valor tabulado de la distribución $x^2=15.5073$ por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

FIGURA 9.- Gráfico de la ubicación de cada coordenada en el plano.

2.4. Prueba de Póker

Se utiliza para analizar la frecuencia con la que se repiten los dígitos en cada número aleatorio, para determinar si se cumple o no la propiedad de uniformidad e independencia.

Para esta prueba los números aleatorios necesitan tener solo 5 decimales, si fuese mayor se redondea al próximo mayor, entonces se clasifican de la siguiente manera:

Procedimiento:

- 1. Generar la muestra de tamaño n de números aleatorios.
- 2. Determinar la categoría de cada número
- 3. Contabilizar los números de la misma categoría para obtener la frecuencia observada FO.
- 4. Calcular el estadístico de prueba

$$\frac{(FE - FO)^2}{FE}$$

5. Comparar el valor calculado $x_{calc.}^2$ contra el valor tabulado de la distribución x^2

(malares entre 0 m 1)	1	Catagoria
(valores entre 0 y 1)	1	Categoria
0.00003	1	Es un poker
0.46038	1	Todos son diferentes
0.64462	i i	Son dos pares
0.07500	1	Es un tercia
0.46836	1	Es un par
0.66204	1	Es un par
0.86298	1	Es un par
0.11634	1	Es un par
0.39800	1	Es un par
0.16436	1	Es un par
0.43882	1	Es un par
0.23961	1	Todos son diferentes
0.13841	1	Es un par
0.29411	1	Es un par
0.05109	1	Es un par
0.71485	1	Todos son diferentes
0.55584	1	Es un tercia
0.99913	1	Es un tercia
0.44670	1	Es un par
0.72071	1	Es un par
0.99282	1	Son dos pares
0.34059	1	Todos son diferentes
0.25108	1	Todos son diferentes
0.85937	1	Todos son diferentes
0.37052	1	Todos son diferentes
0.25800	1	Es un par
0.15314	- 1	Es un par
0.76278	- 1	Es un par
0.96977	I	Son dos pares
0.91975	I	Es un par
0.30815	I	Todos son diferentes
0.12537	I	Todos son diferentes
0.16243	I	Todos son diferentes
0.98837	- 1	Es un par
0.50337		Es un par
0.19204	- 1	Todos son diferentes
0.63670	- 1	Es un par
0.97823	- 1	Todos son diferentes
0.06231	- 1	Todos son diferentes
0.20777	- 1	Es un tercia
0.03875	-1	Todos son diferentes
0.19870	-1	Todos son diferentes
0.63019	1	Todos son diferentes
0.55166	1	Son dos pares
0.77877		Es un poker
0.77848	i	Son dos pares
0.95221	i.	Es un par
0.80749	- i	Todos son diferentes
0.50208	- 1	Es un par
0.49589		Es un par
0.19309	1	rs an har

FIGURA 10.- Resultado de compilar en MATLAB la prueba de Póker, clasificación de los números aleatorios respecto a cada categoría.

Categoría	1	Probabilio	lad			
Todos son diferentes	1	0.3024				
Es un par	- 1	0.5040				
Son dos pares	- 1	0.1080				
Es una tercia	- 1	0.0720				
Es un full	- 1	0.0900				
Es un poker	- 1	0.0450				
Es una quintilla	1	0.0100				
						
		TABLA DE FREC				
Categoría	I	F.Observada	ı	F.Esperada	I	Error
Todos son diferentes	1	17	1	15.1200	1	0.23376
Es un par	- 1	22	- 1	25.2000	1	0.40635
Son dos pares	- 1	5	- 1	5.4000	1	0.02963
Es una tercia	- 1	4	- 1	3.6000	- 1	0.04444
Es un full	- 1	0	- 1	4.5000	1	4.50000
Es un poker	-1	2	-1	2.2500	- 1	0.02778
Es una quintilla	- 1	0	- 1	0.5000	- 1	0.50000
TOTAL	-1	50		ERROR	- 1	5.74196
				TOLERANCIA	- 1	12.59159

FIGURA 11.- Resultado de compilar en MATLAB la prueba de Póker.

Se observa que el valor calculado $x_{calc.}^2=5.74196$ es menor que el valor tabulado de la distribución $x^2=12.59159$ por lo tanto se acepta la hipótesis $H_0=$ La muestra sigue una secuencia aleatoria.

ANEXO Nº 1:

ಌ	0.995	0.990	0.975	0.950	0.500	0.050	0.25	0.010	0.005
1	0.00+	0.00+	0.00+	0.00+	0.45	3.84	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	1.39	5.99	7.38	9.21	10.60
3	0.07	0.11	0.22	0.35	2.37	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	3.36	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	4.35	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	5.35	12.59	14.45	.1681	18.55
7	0.99	1.24	1.69	2.17	6.35	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	7.34	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	8.34	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	9.34	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	10.34	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	11.34	21.03	23.34	26.22	28.30
13:	3.57	4.11	5.01	5.89	12.34	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	13.34	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	14.34	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	15.34	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	16.34	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9,39	17.34	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	18.34	30.14	32.85	36.19	38.56
20	7.43	8.26	9.59	10.85	19.34	31.41	34.17	37.57	40.00
25	10.52	11.52	13.12	14.61	24.34	37.65	40.65	44.31	46.93
30	13.79	14.95	16.79	18.49	20.34	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	39.34	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	49.33	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	59.33	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	69.33	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	79.33	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	89.33	113.14	118.14	124.12	128.30
00	67.33	70.06	74.22	77.93	99.33	124.34	129.56	135.81	140.17

TABLA 1.- Distribución x^2 (Ji- Cuadrada)

Tamaño muestral	•					Tamaño		nivel de significancia (~)				
(N)	0.20	0.15	0.10	0.05	0.01	(N)	0.20	0.15	0.10	0.05	0.01	
1	0.900	0.925	0.950	0.975	0.995	14	0.274	0.292	0.314	0.349	0.418	
2	0.684	0.726	0.776	0.842	0.929	15	0.266	0.283	0.304	0.338	0.404	
3	0.565	0.597	0.642	0.708	0.828							
4	0.494	0.525	0.564	0.624	0.733	16	0.258	0.274	0.295	0.328	0.392	
5	0.446	0.474	0.510	0.556	0.669	17	0.250	0.266	0.286	0.318	0.381	
						18	0.244	0.259	0.278	0.309	0.371	
6	0.410	0.436	0.470	0.521	0.617	19	0.237	0.252	0.272	0.301	0.363	
7	0.381	0.405	0.438	0.486	0.577	20	0.231	0.246	0.265	0.294	0.356	
8	0.358	0.381	0.411	0.457	0.543							
9	0.339	0.360	0.388	0.432	0.514	25	0.21	0.22	0.24	0.27	0.32	
10	0.322	0.342	0.368	0.410	0.490	30	0.19	0.20	0.22	0.24	0.29	
							mas de					
11	0.307	0.326	0.352	0.391	0.468	35	1.07	1.14	1.22	1.36	1.63	
12	0.295	0.313	0.338	0.375	0.450							
13	0.284	0.302	0.325	0.361	0.433							

TABLA 2.- Tabla de Kolmogorov – Smirnov