Machine Learning

Answer Sheet for Homework 8

Da-Min HUANG

R04942045

Graduate Institute of Communication Engineering, National Taiwan University

January 20, 2016

Problem 1

1. Forward:

$$(A+1) \times B + (B+1) \times 1 = (A+2)B+1 \tag{1}$$

2. Backward:

$$\delta_1^{(L)} = -2 \left(y_n - s_1^{(L)} \right) x_i^{(L-1)}$$
 counts and

$$\frac{\partial e_n}{\partial w_{ij}^{(\ell)}} = \delta_j^{(\ell)} x_i^{(\ell-1)} \text{ for } 0 \le i \le d^{(\ell-1)} \text{ and } 1 \le j \le d^{(\ell)}$$
(2)

with

$$\delta_j^{(\ell)} = \sum_k \left(\delta_k^{(\ell+1)} \right) \left(w_{jk}^{(\ell+1)} \right) \left(\tanh' \left(s_j^{\ell} \right) \right) \tag{3}$$

So one backward counts

$$\underbrace{(B+1)\times 1}_{\text{output layer}} + \underbrace{B\times (A+1)}_{\text{hidden layer}} + \underbrace{B}_{\text{hidden layer}} \delta_{j}^{(\ell)} = (A+3)B+1 \tag{4}$$

Hence, total number of operations required in a single iteration of backpropagation is

$$((A+2)B+1) + ((A+3)B+1) = (2A+5)B+2$$
(5)

Problem 2

Suppose we have k hidden layers, which means L = k + 1, with $d^{(1)}, d^{(2)}, \ldots, d^{(k)}$ units $(x_0^{(\ell)})$ is not counted here) in each layer. The number of total weights is

$$\sum_{i=0}^{k-1} (d^{(i)} + 1) d^{(i+1)} + (d^{(k)} + 1) \times 1 = \sum_{i=0}^{k-1} d^{(i)} d^{(i+1)} + \sum_{j=1}^{k} d^{(j)} + (d^{(k)} + 1) := N_w$$
 (6)

with

$$\sum_{j=1}^{k} (d^{(j)} + 1) = \left(\sum_{j=1}^{k} d^{(j)}\right) + k = 36 \text{ and } d^{(0)} = 9$$
 (7)

So we have

$$N_w = (37 - k) + 9d^{(1)} + \left(\sum_{i=1}^{k-1} d^{(i)} d^{(i+1)}\right) + d^{(k)}$$
(8)

Since $d^{(\ell)} \ge 1$ for $0 \le \ell \le k+1$, so we have $1 \le k \le 18$.

Claim: k = 18 minimizes N_w .

Proof of Claim:

If k = 18, we have 2 units in each hidden layer (one is $x_0^{(\ell)}$, not counted in $d^{(\ell)}$), so

$$N_w|_{k=18} = (37 - 18) + 9 \times 1 + \left(\sum_{i=1}^{17} 1 \times 1\right) + 1 = 46$$
 (9)

If k = 18 - m, $m \in \mathbb{N}$ and $1 \le m \le 17$, we have

$$N_w|_{k=18-m} = (19+m) + 9d'^{(1)} + \left(\sum_{i=1}^{17-m} d'^{(i)}d'^{(i+1)}\right) + d'^{(18-m)}$$
(10)

$$\geq (19+m) + 9 + (17-m) + 1 \tag{11}$$

$$= 19 + 9 + 17 + 1 = N_w|_{k=18} \tag{12}$$

where $d'^{(\ell)}$ is the new number of each hidden layer if k=18-m and (11) holds due to $d'^{(i)}d'^{(i+1)} \ge 1$ and $d'^{(i)} \ge 1$, $\forall i$ (by definition).

Hence, we have $N_w \geq 46$.

Problem 3

Following the setting of Problem 2.

Claim: k = 2 with 21 units (not included $x_0^{(1)}$) in $d^{(1)}$ and 13 units (not included $x_0^{(2)}$) in $d^{(2)}$ maxmizes N_w .

<u>Proof of Claim</u>:

If k=2 with 21 units (not included $x_0^{(1)}$) in $d^{(1)}$ and 13 units (not included $x_0^{(2)}$) in $d^{(2)}$, we have

$$N_w|_{k=2} = (37-2) + 9 \times 21 + (21 \times 13) + 13 = 510$$
 (13)

Consider following cases,

1. If k = 2 with 34 - m units (not included $x_0^{(1)}$) in $d^{(1)}$ and m units (not included $x_0^{(2)}$) in $d^{(2)}$, where $m \in \mathbb{N}$ and $1 \le m \le 33$, we have

$$N_w|_{k=2} = (37-2) + 9 \times (34-m) + ((34-m) \times m) + m = -(m-13)^2 + 510$$
(14)

Hence, m = 13 maximize $N_w|_{k=2}$.

2. If k = 1.

$$N_w|_{k-1} = (37-1) + 9 \times 35 + 35 = 386 < 510 \tag{15}$$

3. If k = 3 with $33 - n_1 - n_2$ units (not included $x_0^{(1)}$) in $d^{(1)}$, n_1 units (not included $x_0^{(2)}$) in $d^{(2)}$ and n_2 units (not included $x_0^{(3)}$) in $d^{(3)}$, where $n_1, n_2 \in \mathbb{N}$ and $1 \le n_1, n_2 \le 32$, we have

$$N_w|_{k=3} = (37-3) + 9 \times (33 - n_1 - n_2) + ((33 - n_1 - n_2) \times n_1 + n_1 \times n_2) + n_2$$

$$= -(n_1 - 12)^2 - 8n_2 + 475 \le -8n_2 + 475 \le 467 < 510$$
(17)

We can see that if we have no $d^{(3)}$ layer (which means $n_2 = 0$), then $N_w|_{k=3}$ can be larger.

4. If $18 \geq k = s \geq 4$ with with $(36 - s) - \sum_{i=1}^{s-1} n_i$ units (not included $x_0^{(1)}$) in $d^{(1)}$, n_1 units (not included $x_0^{(2)}$) in $d^{(2)}$, n_2 units (not included $x_0^{(3)}$) in $d^{(3)}$,..., n_{s-1} units (not included $x_0^{(s)}$) in $d^{(s)}$ where $n_i \in \mathbb{N}$ and $1 \leq n_i \leq (35 - s)$, $\forall i$, we have

$$N_w|_{k=s} = (37 - s) + 9 \times \left((36 - s) - \sum_{i=1}^{s-1} n_i \right) + \left(\left((36 - s) - \sum_{i=1}^{s-1} n_i \right) \times n_1 + \dots + n_{s-2} \times n_{s-1} \right) + n_{s-1}$$
 (18)

We can find that there is no n_1n_2 term, only n_2n_3 term exists and no other terms contains n_2 . We have

$$\frac{\partial N_w|_{k=s}}{\partial n_2} = n_3 = 0 \text{ as } N_w|_{k=s} \text{ reaches maximum}$$
 (19)

This implies $N_w|_{k=s}$ can be larger without $d^{(4)}$ layer. So $k=s\geq 4$ cannot maximize N_w .

Hence, we have $N_w \geq 510$.

Problem 4

$$\nabla_{\mathbf{w}}\operatorname{err}_{n}\left(\mathbf{w}\right) = \frac{\partial}{\partial \mathbf{w}} \left\| \mathbf{x}_{n} - \mathbf{w}\mathbf{w}^{T}\mathbf{x}_{n} \right\|^{2} = \frac{\partial}{\partial \mathbf{w}} \left(\mathbf{x}_{n} - \mathbf{w}\mathbf{w}^{T}\mathbf{x}_{n} \right)^{T} \left(\mathbf{x}_{n} - \mathbf{w}\mathbf{w}^{T}\mathbf{x}_{n} \right)$$
(20)

$$= \frac{\partial}{\partial \mathbf{w}} \left(\mathbf{x}_n^T - \mathbf{x}_n^T \mathbf{w}^T \mathbf{w} \right) \left(\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n \right) \tag{21}$$

$$= (-2\mathbf{x}_n^T \mathbf{w}) (\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n) + (\mathbf{x}_n^T - \mathbf{x}_n^T \mathbf{w}^T \mathbf{w}) (-2\mathbf{w} \mathbf{x}_n)$$
(22)

$$= -2 \left(\mathbf{x}_{n}^{T} \mathbf{w}\right) \mathbf{x}_{n} + 2 \left(\mathbf{x}_{n}^{T} \mathbf{w}\right) \mathbf{w} \left(\mathbf{x}_{n}^{T} \mathbf{w}\right)^{T} - 2 \left(\mathbf{x}_{n}^{T} \mathbf{w}\right) \mathbf{x}_{n} + 2 \mathbf{x}_{n}^{T} \left(\mathbf{w}^{T} \mathbf{w}\right) \mathbf{w} \mathbf{x}_{n}$$
(23)

$$= -4 \left(\mathbf{x}_n^T \mathbf{w}\right) \mathbf{x}_n + 2 \left(\mathbf{x}_n^T \mathbf{w}\right)^2 \mathbf{w} + 2 \mathbf{x}_n^T \left(\mathbf{w}^T \mathbf{w}\right) \mathbf{w} \mathbf{x}_n$$
 (24)

where we have used

$$(\mathbf{x}_n^T \mathbf{w}) \mathbf{w} (\mathbf{x}_n^T \mathbf{w})^T = \begin{pmatrix} (x_1 & x_2 & \cdots & x_n) \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} (\mathbf{x}_n^T \mathbf{w})^T$$
 (25)

$$= c \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} c = \begin{pmatrix} c^2 w_1 \\ c^2 w_2 \\ \vdots \\ c^2 w_n \end{pmatrix} = (\mathbf{x}_n^T \mathbf{w})^2 \mathbf{w}$$
 (26)

with $c := \sum_{i=1}^{n} x_i w_i$.

Problem 5

Problem 6	
Problem 7	
Problem 8	
Problem 9	
Problem 10	
Problem 11	
Problem 12	
Problem 13	

Problem 14	
Problem 15	
Problem 16	
Problem 17	
Problem 18	
Problem 19	
Problem 20	

Reference

[1] Lecture Notes by Hsuan-Tien LIN, Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.