

FACT: A Full-body Ad-hoc Collaboration Testbed for Modeling Complex Teamwork

Gopika Ajaykumar, Annie Mao, Jeremy Brown, and Chien-Ming Huang Johns Hopkins University

Background

Full-body Ad-hoc Collaboration Testbed (FACT) is a testbed we developed to support investigation of complex teamwork.

FACT contrasts with previous testbeds used for human-robot collaboration research, which have primarily involved:

- Prescribed scenarios
- Dyadic interactions
- Tasks that can easily be completed individually without teaming

FACT

PVC Bunk Bed

Collaborative assembly scenario affords opportunities for participants to engage in *natural*, large scale, and emergent collaborations

Head- & Chest-Mounted

Egocentric Views

Data Collection

Network of sensors enables collection of dynamic egocentric and full-body data

Preliminary Exploration

Study of large scale ad-hoc collaboration using FACT with three one-person teams, two two-person teams, one three-person team, and one-four person team

Participants frequently worked on different sub-tasks in parallel and formed into two-person sub-teams.

Multimodal Communication

Participants employed multimodal behaviors (gaze, gestures, speech) to communicate and coordinate.

Teamwork improved task efficiency and reduced task through teaming collaborative and parallelism.

Future Directions

We aim for FACT to be an initial resource that supports a more holistic investigation complex, ad-hoc human-robot collaborations. As part of this goal, our future work will focus on developing:

- A shared dataset that includes egocentric and full-body manipulation collected from team-based collaborations using FACT
- A set of evaluation metrics to capture aspects of human-robot interaction ad-hoc specific human-robot to collaboration, such as dynamic subteam formation
- A simulation counterpart to FACT in which virtual agents can be deployed to minimize limitations research restrictions due to complexities of physical manipulation and interaction using real-world robots

Acknowledgments

This work is partially supported by the National Science Foundation Graduate Research Fellowship Program under Grant DGE-1746891 the No. and Nursing/Engineering joint fellowship from Johns Hopkins University.