

Macroeconomics & Markets

Exploring the relationship between financial markets and economic data.

Project Overview

- Utilizing macroeconomic data and machine learning techniques to improve decision making throughout the investment process.
- To create sophisticated, data-driven investment models that are readily available for less technical investors.
- Democratize "Wall Street" quality research for those who may not have the money to hire a professional, nor time to research on their own.

Dataset & Preprocessing Overview:

- Macroeconomic variables such as GDP, unemployment rate, interest rates, inflation etc.
- Asset class returns.
- Time period: 1985 to 2024.

Preprocessing:

- Ensuring there were no null values
- Converting asset class returns to percentages
- Create new variables with lags and rolling means
- Converting data to datetime

ECONOMIC INDCATORS

• The economy has many moving parts. Rarely do they all move in unison.

Similarly, asset classes don't move in lockstop either.

• Unique characteristics & economic influences create dispersion, and thus, opporutnity.

Building out the Model

• Combines Time Series, Regression Analysis, and Ensemble Learning (Random Forest)

-5.0

Performance Metrics for Stock Model:

MSE: 0.02727208180461559

R-squared: 0.9380803867363957

MAE: 0.12000243105986258 RMSE: 0.16514261050563417

Performance Metrics for Bond Model:

MSE: 0.02922386385630614

R-squared: 0.9051356186208226

MAE: 0.1288274153275489 RMSE: 0.1709498869736571

Using the model forecast to make the Asset Allocation decision

Month	60_40	ST0CKS	BONDS	Best_Allocation
1	0.236776	0.317939	0.117219	ST0CKS
2	-0.460797	-0.631493	-0.204576	BONDS
3	-0.478272	-0.545499	-0.377543	BONDS
4	1.144141	1.803437	0.154729	ST0CKS
5	1.132160	1.613454	0.410956	ST0CKS
6	0.344953	0.947756	-0.560296	ST0CKS
7	0.210712	0.783573	-0.647290	ST0CKS
8	-0.339238	0.007169	-0.858254	ST0CKS
9	0.266542	1.063294	-0.928453	ST0CKS

0.746374 -0.799472

ST0CKS

According to the model, we want to remain allocated in stocks next month.

By tactically shifting the portfolio allocation, the model is able to produce higher returns with less risk.

Sharpe Ratio:

- Measure of Risk vs.
 Reward of an investment.
- Sharpe > 1 = reward is greater than risk.

Next Steps

Gather more data for additional Macro factors.

 Add more asset classes to the model & resulting portfolio allocations.

• Build easy-to-use dashboard with monthly allocation decisions.

Thank You!