시스템 아키텍처 설계 소개

차진규 기술사(chajinkyu@korea.com)

목차

- 1. 아키텍처의 환경
- 2. 시스템 아키텍처의 이해
- 3. 시스템 아키텍처 구축 프로세스
- 4. 설계단계 전략포인트
- 5. 구축단계 전략포인트
- 6. 운영단계 전략포인트

∨ 아키텍처 구축 대상은 개발환경, Pilot환경, 운영환경, 전산센터 운영설비가 있으며, 실 운영환경에 대한 설계는 중앙집중/분산환경 설계, 어플리케이션 아키텍처에 따른 논리적 설계, 물리적 설계로 구분됨.

아키텍처 설계 고려사항

업무처리 형태 사용자 및 조직의 지역적인 위치 시스템 관리능력/환경 구축 비용 네트워크 환경

시스템 아키텍처 유형

집중 / 분산구조	· 중앙집중형 구조 · 권역별/지역별 분산구조
이 아 구조	・호스트 중심 시스템 구조 ・클라이언트/서버 시스템 구조 ・웹 시스템 구조

✓ 시스템 분산유형은 업무환경 및 기반환경 등 다양한 요소를 고려하여 중앙 집중형 구조, 지역별 분산구조, 업무별 선택적인 분산/ 집중한 혼합형 구조 중 최적의 유형을 선정하여야 함.

구 분	중앙 집중형 구조	지역별 분산 구조
구성도	통합센터 Server 사용자	본사 Server 사용자 DB 사용자
특징	∨ 통합센터에 시스템과 데이터 저장 및 관리 ∨ 대용량 서버에 통합 DB를 구축	 ✓ 지역별 시스템 및 응용시스템 분산 운영 ✓ 지역별 데이터 관리 ✓ 중소형 서버로 구성 ✓ 기준 데이터의 중복관리
장점	 ✓ 시스템 구성이 비교적 간단함 ✓ 통합 DB구성으로 데이터의 무결성 보장 ✓ 단일 장소에 시스템 집중으로 관리의 편리성 ✓ 시스템장애 대응 신속 	✓ 시스템 및 사용자 분산으로 부하분산 효과✓ 장애 발생 시 지역적인 업무 중단
		∨ DB구성 시 기준 데이터 무결성 관리 ∨ 시스템 구성 및 관리의 복잡성

∨ 어플리케이션 기능 위치에 따른 아키텍처 설계는 호스트 중심 구조, 클라이언트/서버 시스템 구조, 웹 시스템 구조로 나누어 지며 이는 업무특성 및 규모와 사용자 환경에 따라 선정하게 됨.

구 분	호스트 중심 구조	클라이언트/서버 구조	웹 시스템 구조
구성도	시비 1계층 · Data Mgt. (데이타관리) 2계층 · Data I/O Logic · Business Logic 3계층 · GUI Logic · Uindow Mgt.	시비 1계층 2계층 • Data Mgt. • Data I/O Logic (데이타관리) • Business Logic • Window Mgt.	시비 1계층 · Data Mgt. (데이타관리) 2계층 · Data I/O Logic · Business Logic N계층 · GUI Logic · Window Mgt. =라이언트 N계층 · Internet Explorer · Window Mgt.
특징	✔ 어플리케이션 기능 모두 호스트에 집중되어 있으며, 클라이언트는 더미단말기나 PC에 애뮬레이트를 통하여 호스트에 접속함	✓ 어플리케이션의 각 기능들을 서버와 클라이언트에 조합 위치 시킴. 업무 규모와 환경에 따라 조합을 선택함	∨ 서버에 어플리케이션 기능을 두고 클라이언트는 Internet Explorer를 설치하여 서버에 접속함
장점	∨ 프로그램 개발 및 관리, 시스템 구조가 단순함 ∨ 개발도구외 별도의 S/W가 없음	 ✓ 미들웨어를 통한 안정적인 성능보장 ✓ 업무규모에 따라 C/S모델 선택개발 ✓ 그래픽 화면 구성 ✓ 서버 프로그램 재사용 가능 	✓ 미들웨어를 통한 안정적인 성능보장✓ 서버 프로그램 재사용 가능✓ 인터넷환경
단점	∨ 화면설계가 단조로움 CUI ∨ 프로그램의 재사용이 어려움	✓ 개발이 복잡함✓ 별도의 미들웨어, 기타 S/W필요✓ 구성이 복잡하고 관리가 어려움✓ 네트워크 부하발생	✓ 개발이 복잡함✓ 별도의 미들웨어, 기타 S/W필요✓ 구성이 복잡하고 관리가 어려움

▼ 클라이언트/ 서버 시스템의 모델은 데이터관리, 비즈니스 프로세스, 프리젠테이션 영역을 어디에 위치 하는가에 따라 5가지 모델로 구분됨.

Client/Server Computing

∨ WEB환경의 구축하기 위한 기본적인 인프라 구성요소들에 대한 기술아키텍처 H/W 구성도임.

[H/W 구성]

장비	H/W 기능		
	서버 응용 프로그램을 운영하는 하드웨어 플랫폼으로 성능을 기준으로 소형 서버, 중형 서버, 대형 서버로 구분되며, 탑재되는 주요 어플리케이션에 따라 크게 다음과 같은 기능을 가진 서버로 구분		
	web 서버	사용자에게 웹 브라우저를 통하여 서버와 통신할 수 있는 기본 플랫폼 환경을 제공하는 서버	
서버	AP 서버	어플리케이션이 수행되어지는 서버, 일반적으로 TP-monitor 나 WAS(Web Application Server)가 탑재	
	DB 从出	DBMS가 탑재되어 어플리케이션이 필요로 하는 데이타를 보관하는 서버	
	인증서버	Authentication을 구현하고자 할 때 사용하는 전자서명(Digital Certificate)를 발행하는 서버	
	LDAP 서버	사용자에 관한 기본적인 정보를 표준화된 디렉토리 형태로 통합하여 저장, 관리하는 서 버	
SAN스위치	Storage와 Server간의 접속방법을 SAN 방식으로 연결할 때 사용하는 장비로서 Server와 Storage 또는 Tape library간의 억세스 경로를 제공하고, port 단위의 zoning(보안), monitoring 기능을 제공		
Storage	처리용량에 따라 Enterprise, midrange 스토리지 분류하며, 스토리지는 대용량 저장공간을 제공하고 일반 적인 디스크 어레이에 비해 고성능과 고가용성을 제공		
Tape Library	백업드라이버(LTO,DLT)를 장착하고 Robot Arm을 통해 테이프 탈착에 대한 자동화 기능을 제공함. 서버의 데 이터를 테이프로 저장하고, 보관하는 역할을 수행		

▼ WEB환경의 구축하기 위한 기본적인 인프라 구성요소들에 대한 기술아키텍처 S/W 구성도임.

[S/W 구성]

S/W	S/W 기능		
0S	운영체제는 응용 플랫폼을 운영하고 관리하며, 응용프로그램과 플랫폼간의 인터페이스를 제공하는 핵심 서비스로 정의한다. 운영체제를 클라이언트 OS와 서버 OS로 분류할 수 있으며 대표적인 서버OS는 Unix계열(Solaris,HP-UX,AIX)와 NT계열이 있다.		
Cluster	클러스터는 시스템에 오류가 발생했을 경우 대체 옵션을 제공하여 가용성을 향상 시킨다. 클러스터링은 다중의 독립 컴퓨터 시스템이 함께 작동하는 시스템이다. 두 개 이상의 컴퓨터를 마치 하 나의 컴퓨터처럼 행동하도록 서로 연결함으로써, 병렬 처리나, 부하 배분 및 고장 대비 등의 목적에 사용 한다.		
WebServer	HTTP를 사용하여 웹 페이지가 들어 있는 파일을 사용자들에게 제공한다. 사용자에게 static HTML을 제공하고, servelet 엔진에서 동적으로 만들어진 HTML을 제공하는 역할을 한다.		
	WAS	데이터베이스 조회나 비즈니스 로직에 대한 처리를 위한엔진으로 컴포넌트 개발과 사용, 어플리케이션 개발, 웹, 분산 객체, 보안, IED, 시스템 관리, 레거시 시스템과의 연동을 지원한다.	
Middleware	TP 모니터	분산 트랜잭션 처리를 지원하고, 일반적인 TP 모니터 제품들은 UNIX 환경 표준화 단체인 X/Open 이 정한 DTP(Distributed Transaction Processing) 모델을 준수한다.	
DBMS	DBMS란 구조적(술, 질의 언어를	인 데이터의 접근과 수정을 위하여 데이터베이스의 종류와 유형, 데이터베이스 관리 기 제공한다.	

▼ WEB환경의 구축하기 위한 기본적인 네트워크 구성요소들에 대한 기술아키텍처 N/W 구성도임.

[N/W 구성]

장비	N/W 기능
라우터	0SI 7layer 중 Layer3(Network layer)의 장치로, IP 주소와 같은 Layer3 정보를 기초로 라우팅 알고 리즘에 따라 네트워크 간 패킷을 최적경로로 전송하는 역할을 수행함
백본 스위치	IAN 구성의 중심이 되는 스위치로 주로 Layer3 스위치를 사용하여 구성함
I4 스위치	동일 서비스를 제공하는 장비들에 대하여 설정된 알고리즘에 따라 부하분산(Load Balancing)을 하는 역할을 수행함
L2 스위치	주로 네트워크 포트를 확장하는 용도로 사용되는 Layer2(Datalink layer)의 장비로 패킷의 MAC정 보를 이용하여 같은 네트워크 내로 데이터를 전송하는 역할을 수행함
방화벽	가장 많이 사용되는 보안 시스템으로, 내/외부 네트워크를 분리하며 정책에 따라 허가된 데이터는 통과시키고 그렇지 않은 데이터는 폐기하거나 거절해 통과시키지 않음으로 내부네트워크를 보호 함
IDS	단순 접근제어기능 수준 이상으로 네트워크나 시스템의 사용을 실시간 모니터링 하여 침입을 탐지 함

∨ 시스템 아키텍처란?

- I 광의의 정의
 - § 어떤 하나의 산업을 유지하기 위하여 필요한 기반 산업을 총칭하는 용어
- I 협의의 정의
 - § 컴퓨터와 사용자를 연결하는데 사용되는 물리적인 H/W 및 S/W를 통칭
- I 일반적인 정의
 - § 경영 전략의 달성을 위해 필요한 업무 프로세스의 원활한 지원과 효율적 처리를 위해 필요한 H/W, 시스템 S/W, DBMS, N/W 및 보안으로 구성된 전산 시스템의 기반이 되는 환경

∨ 시스템 아키텍트의 역할

- I 시스템의 구조 파악(신규 or Legacy), Capacity Planning
- I 다양한 시스템 구성요소/Layer의 상호 작용 정의
- I 툴 및 프로토콜(토폴로지), 인터페이스의 정의
- I 이 기종 시스템간의 상호 운영성 확보
- I 신규/Legacy의 응용 및 데이터의 연결성 확보
- I 아키텍쳐 설계/분석 단계의 방향성 유지
- I 아키텍쳐 설계/분석시의 성능을 발휘할 수 있도록 구성
- 요소기술 별 개선적 도출 및 보완

∨ 시스템 아키텍쳐의 구성요소

∨ 시스템 아키텍쳐 구성 기술

- I 시스템 Platform
 - § M/F, Unix서出, Windows NT서出
- I OS 및 기타 소프트웨어
 - **§ Web서버 S/W, 미들웨어, 메일 S/W, 시스템관리 S/W 등**
- I Storage 기술
 - § RAID, DAS, NAS, SAN
- I 이중화/부하분산 기술
 - § HA, RAC, WAS Cluster, L4 Switch

∨ 시스템 아키텍쳐 구성 기술 - Storage 기술(1/4)

RAID 0 (Striping)

RAID 1 (Mirroring)

RAID 5 (Parity)

RAID 0+1 (Striping & Mirroring)

∨ 시스템 아키텍쳐 구성 기술 - Storage 기술(2/4)

∨ 시스템 아키텍쳐 구성 기술 - Storage 기술(3/4)

∨ 시스템 아키텍쳐 구성 기술 - Storage 기술(4/4)

SAN (Storage Area Network)

∨ 시스템 아키텍쳐 구성 기술 - 이중화 기술(1/2)

HA (High Availability)

Network 상의 사용자들이 수행하는 작업에 대하여 시스템 자원의 연속적인 사용을 보장하기 위한 하드웨어/소프트웨어의 통합 구성체

∨ 시스템 아키텍쳐 구성 기술 - 이중화 기술(2/2)

- § WAS Clustering
 - WAS 서버들을 그룹으로 묶고, 그룹 지어진 서버들을 하나의 도메인처럼 작동하도록 하는 기능
- § L4 Switch를 이용한 부하 분산
 - 여러 대의 서버에 대한 부하를 분산 또는 서버장애 시 업무의 연속성을 확보할 수 있음

- I 현행 기반구조 설명서
- I <u>요구사항 정의서</u>
- I <u>아키텍쳐 설계서</u>
- l <u>시스템 용량산정</u>
- l 개발환경 정의서

- I 현행 기반구조 설명서
- I 요구사항 정의서
- I 아키텍쳐 설계서
- I 시스템 용량산정
- I 개발환경 정의서

- I 요구사항 정의서 (시스템 분야)
 - § ISP, RFP, 제안서 Review
 - § 고객 조직 정의
 - § 시스템의 비기능적 요구사항 정의
 - § 시스템 운영 시 요구사항 정의
 - § 교육 및 지원에 관한 요구사항 정의

- I 현행 기반구조 설명서
- I 요구사항 정의서
- I <u>아키텍쳐 설계서</u>
- I 시스템 용량산정
- I 개발환경 정의서

- I 아키텍쳐 설계서
 - § 하드웨어 설계
 - § 디스크 레이아웃 설계
 - § 백업 방안 설계
 - § 장애 대응 방안 설계
 - § 데이터베이스 구조 설계
 - § 시스템 연계 방안 설계
 - § 시스템 관리 아키텍쳐 설계

- I 현행 기반구조 설명서
- I 요구사항 정의서
- I 아키텍쳐 설계서
- l <u>시스템 용량산정</u>
- l 개발환경 정의서

- I 시스템 용량산정
 - § 구현될 응용 아키텍쳐를 확인 및 트랜잭션 처리 현황 분석
 - § CPU의 용량을 산정
 - § 메모리의 용량을 산정
 - § 디스크의 용량을 산정
 - § 용량 산정을 근거로 선정된 하드웨어 모델 검증

∨ 구축 시 주요 산출물

- I <u>전개 시나리오</u>
- I 설치확인서
- I 검수확인서
- l 운영자 가이드

∨ 구축 시 주요 산출물

- I 전개 시나리오
- I 설치확인서
- I 검수확인서
- Ⅰ 운영자 가이드

- └ 전개 시나리오
 - § 구축 상세 일정 및 체크리스트 작성
 - § 전개 대상 정의
 - § 전개 대상별 점검 항목 결정
 - § 전개 방법 결정
 - § 전개 팀 구성 및 담당자 결정
 - § 각 전개 대상별 작업 절차 개발

∨ 구축 시 주요 산출물

- I 전개 시나리오
- I 설치확인서
- I 검수확인서
- I 운영자 가이드

- I 운영자 가이드
 - § 시스템 운영에 필요한 항목 도출
 - § 서버 및 시스템 소프트웨어 기동/종료 스크립트 작성
 - § 장애 대응방안 수립
 - § 비상연락망 구성

