Redes Neuronales

Aprendizaje supervisado I carlos.andres.delgado@correounivalle.edu.co

Septiembre de 2022

Contenido

1 Preceptrón multicapa (MLP)

2 Algoritmo de propagación hacia atrás (BP)

3 Métricas de MLP

Contenido

1 Preceptrón multicapa (MLP)

2 Algoritmo de propagación hacia atrás (BP)

3 Métricas de MLP

Definición

- Está compuesta por capas de entrada, capas ocultas y capas de salida
- La señal de entrada se propaga hacia adelante entre las distintas capas
- Es una generalización del perceptrón de una capa
- Pueden solucionar problemas más complejos
- El algoritmo más común de entrenamiento de el algoritmo de propagación hacia atrás (back-propagation) que se basa en la regla de entrenamiento de corrección del error

Entrenamiento

- **Paso hacia adelante:** La señal de entrada es aplicada y se propaga capa a capa
- **2 Paso hacia atrás:** Se ajustan los pesos de cada capa utilizando la regla de corrección de error.

Características

- Señal de activación: Debe ser derivable, ya que en el calculo del error, debemos trabajar con la derivada de la función de activación. Las que se utilizan son función lineal y sigmoide.
- 2 Capas ocultas Pueden ser un o más capas ocultas, las cuales no están conectadas a las entradas y salidas directamente
- 3 Conectividad Está determinada por los pesos de las conexiones entre cada capa

Características

Figura: Arquitectura de MLP [Haykin, 1998]

Características

- La computación de las entradas se puede expresar como una señal continua no lineal
- 2 La computación de un gradiente, es necesario para propagar el error a través de toda la red (regla de aprendizaje) y así ajustar los pesos

Contenido

1 Preceptrón multicapa (MLP)

2 Algoritmo de propagación hacia atrás (BP)

3 Métricas de MLP

Algoritmo BP

Descripción

- Debe calcularse inicialmente la salida de la red neuronal y. Forward step.
- Para iniciar el proceso de propagación hacia atrás, en el que vamos a tomar el error como entrada de la red desde la capa de salida hacia la de entrada.
- Este proceso requiere hacer derivadas parciales en términos del error (buscando minimizarlo), por lo que la función de activación debe ser derivable.

Algoritmo BP

Descripción

■ La entrada neta que recibe una neurona en una capa oculta

$$e_j(n) = t_j(n) - y_j(n)$$

 Se toma como error de una capa c como el error cuadrático medio

$$\eta(n) = \frac{1}{2} \sum_{j \in c} e_j^2(n)$$

Capa de salida

 Se busca el error mínimo, mediante el gradiente descendiente

$$\frac{\partial E_j}{\partial w_{ij}}$$

Realizamos los cálculos respectivos y obtenemos:

$$\frac{\partial E_j}{\partial w_{ij}} = -(t - y)f'(Neta) * O_j$$

Donde f' es la derivada de la función de activación, *Neta* es la entrada de la neurona y O_j es la salida de la neurona de la capa anterior ligada al peso que se está derivando.

Capa de salida

■ El proceso de entrenamiento buscar modificar el peso w_{ij} de acuerdo al error calculado de la siguiente forma:

$$w_{ij}(n+1) = w_{ij}(n) + \eta(-\frac{\partial E_j}{\partial w_{ij}})$$

De aquí se obtiene

$$w_{ij}(n+1) = w_{ij}(n) + \eta(t-y)f'(Neta) * O_j$$

Capa de salida

Si la función de activación es lineal, se obtiene que la derivada es 1, por lo que la variación del peso será:

$$w_{ij}(n+1) = w_{ij}(n) + \eta(t-y) * O_j$$

■ Si es la función sigmoide $s = \frac{1}{1 + e^{-neta}}$

$$w_{ij}(n+1) = w_{ij}(n) + \eta(t-y)s(1-s) * O_j$$

$$\frac{1}{1+e^{-x}} \stackrel{?}{=} (1+e^{-x})^{-\frac{1}{2}}$$

$$-(1+e^{-x})^{\frac{1}{x}} - e^{-\frac{1}{x}} = e^{-\frac{x}{2}}$$

$$(1+e^{-x})^{\frac{1}{x}} (1+e^{-x})^{\frac{1}{2}}$$

$$\frac{e^{-\frac{x}{2}}}{1+e^{-x}} \stackrel{?}{=} (x) = (a - \frac{6}{1+e^{-x}})^{\frac{1}{2}} (x)$$

$$\frac{e^{-\frac{x}{2}}}{1+e^{-x}} \stackrel{?}{=} (x) = (a - \frac{6}{1+e^{-x}})^{\frac{1}{2}} (x)$$

$$\frac{e^{-\frac{x}{2}}}{1+e^{-x}} \stackrel{?}{=} (x) = (a - \frac{6}{1+e^{-x}})^{\frac{1}{2}} (x)$$

$$\frac{e^{-\frac{x}{2}}}{1+e^{-x}} \stackrel{?}{=} (x)$$

Capa oculta

- La actualización de los pesos depende del error de las capas ocultas siguientes y de salida
- El error de la capa oculta h y se tiene el conjunto C neuronas en la siguiente capa.

Descripción

- Se utiliza un conjunto de patrones para entrenar la red
- Se aplica la entrada a la red y se calcula la salida total
- Se calcula el error entre el valor deseado y la salida
- Se propaga el error hacia atrás, es decir que el error de la capa n se basa en el error de la capa n+1
- Se modifican los pesos de las capas ΔW . Este calculo depende de la capa siguiente.
- Se verifica la condición de parada

Algoritmo

- 1 Se inicializan los pesos del MLP entre [-1,1]
- 2 Mientras la condición de parada sea falsa se repiten los pasos 3 a 12
- 3 Se aplica la entrada
- f 4 Se calculan los valores de entrada netos para la capa oculta h

$$extit{Neta}^h = \sum_{i=1}^N w_{hj} y_h + \Theta_k$$

Se supone que la capa h tiene N neuronas

Algoritmo

5 Se calcula la salida de la capa oculta

$$y_h = f_h(Neta_h)$$

6 Calculamos los valores netos de entrada para la capa de salida

$$Neta = \sum_{j=1}^{L} w_{kj} y_h + \Theta_j$$

7 Calculamos la salida de la red

Algoritmo

- 8 Calculamos la salida de la red
- O Calculamos los términos de error para la capa de salida

$$E^o = (t_u - y_u)f'(Neta)$$

10 Estimamos el error para las capas ocultas

$$E^h = f'(Neta) \sum_{k=1}^{M} E_i^o w_{kj}$$

Como se puede observar, el error de la capa oculta depende de la siguiente capa

Algoritmo

10 Actualizamos los pesos en la capa de salida

$$w^o(n+1) = \eta E^o * O_j$$

Actualizamos los pesos en la capa(s) oculta(s)

$$w^h(n+1) = \eta E^h * O_j$$

Verificamos si el error global cumple la condición de finalizar (un error mínimo) o un número de iteraciones

$$E_p = \frac{1}{2P} \sum_{p=1}^{P} \sum_{k=1}^{M} (t - y)^2$$

Contenido

1 Preceptrón multicapa (MLP)

2 Algoritmo de propagación hacia atrás (BP)

3 Métricas de MLP

Métricas

Métricas durante el entrenamiento

- I Función de perdida (loss function): Es la diferencia entre el valor esperado y el valor obtenido, es una medida local patrón por patrón.
- 2 El error cuadrático medio, es una medida global considerando todos los patrones de entrenamiento

Métricas

Métricas después del entrenamiento

Para analizar el rendimiento del MLP contamos con varias métricas, las cuales las analizamos a partir de su pertenencia a la clase $0\ o\ 1.$

- Verdaderos positivos (Vp): Datos clasificados correctamente como clase 1
- Verdaderos negativos (Vn): Datos clasificados correctamente como clase 0
- Falsos positivos (Fp): Datos clasificados incorrectamente como clase 1
- Falsos negativos (Fn): Dados clasificados incorrectamente como clase 0

Esto se puede expandir a problemas de clasificación m-aria.

Métricas

Métricas después del entrenamiento

- Precisión: Porcentaje de los datos de prueba que son correctamente predecidos
- 2 Recall: Es la relación entre los verdaderos positivos y los falsos negativos, está dado por:

$$\frac{V_{p}}{V_{n+}F_{p}} \qquad \frac{V_{p}}{V_{p}+F_{n}} \qquad \frac{1}{0+10} = 0$$

Matriz de confusión: Nos permite observar como se predicen las clases.

Referencias I

Eduardo, C. and Jesus Alfonso, L. (2009).

Una aproximación práctica a las redes neuronales artificiales.

Colección Libros de Texto. Programa Editorial Universidad del Valle.

Haykin, S. (1998).

Neural Networks: A Comprehensive Foundation (2nd Edition).

Prentice Hall.

Widrow, B. and Winter, R. (1988). Neural nets for adaptive filtering and adaptive pattern recognition. Computer, 21(3):25–39.

◆ロト 4回ト 4 章 ト 4 章 ト 章 めなべ

¿Preguntas?

Próximo tema: Perceptrón multicapa II