Ejercicios

Análisis Numérico

Joaquin Cavieres G.

Matrices

Una matriz es un arreglo (estructura) rectangular de números reales, por tanto, una matriz $X_{m\times n}$ es un arreglo rectangular de números escalares tal que:

$$\boldsymbol{X}_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

con m filas y n columnas y se le suele llamar de $orden \ m \times n$. Se puede decir que \boldsymbol{X} tiene dimensiones m y n y algunas veces tambien se puede denotar como $\boldsymbol{X}=(x_{ij})$. Por ejemplo, $\boldsymbol{X}=\begin{bmatrix}1 & 2 & 3\\ 4 & 5 & 6\end{bmatrix}$

es una matriz de 2×3 . La notación para x_{ij} indican los componentes o elementos de X. Otro tipo de caracteristicas de una matriz son:

- Se dice que una matriz es una matriz cuadrada cuando m=n (mismo número de filas y columnas).
- Una matriz con elementos '0' es denotada como $\mathbf{0}$, por ejemplo si $x_{ij}=0$, entonces $\boldsymbol{X}=\mathbf{0}$.
- Una matriz se dice que es simétrica si $X = X^T$.
- Una matriz cuadrada con los elementos fuera de la diagonal iguales a 0 es una matriz diagonal, por ejemplo $x_{ij} = 0$ para todos los $i \neq j$ (y $x_{ii} \neq 0$ para al menos un i).
- Una matriz diagonal con 1's en la diagonal y 0's en los demas elementos es denotada como I_n . A esta matriz se le conoce como matriz identidad.

$$m{I}_n = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix}$$

Resumen de comandos en R para matrices:

- Acceder a la columna de una matrix U, el valor $j esimo \Rightarrow U[, j]$
- Acceder a un subconjunto de filas de una matrix $U \Rightarrow \mathtt{U}[\mathtt{i}_1 : \mathtt{i}_2,]$
- Acceder a un subconjunto de columnas de una matrix $U \Rightarrow U[, j_1 : j_2]$
- Acceder a un submatriz de una matrix $U \Rightarrow \mathtt{U}[\mathtt{i}_1 : \mathtt{i}_2, \mathtt{j}_1 : \mathtt{j}_2]$
- lacktriangledown Suma de $oldsymbol{U}+oldsymbol{V}\Rightarrow \mathtt{U}+\mathtt{V}$
- lacktriangledown Resta de $oldsymbol{U} + oldsymbol{V} \Rightarrow \mathtt{U} \mathtt{V}$
- \bullet Multiplicación de $UV \Rightarrow \mathtt{U}\,\% *\,\%\mathtt{V}$
- Hadamard multiplicación $U \odot V \Rightarrow \mathtt{U} * \mathtt{V}$
- Kronecker multiplicación $U \otimes V \Rightarrow \mathtt{U} \% \mathtt{x} \% \mathtt{V}$
- ullet Transpuesta de $oldsymbol{U}^T\Rightarrow {\sf t}({\tt U})$
- lacktriangledown Matrix producto-vectorial $oldsymbol{U}^Toldsymbol{V} \Rightarrow exttt{crossprod}(exttt{U}, exttt{V})$
- Inversa U^{-1} , solve(U)
- Determinante de U, det(A) o tambien denotada como $|U| \Rightarrow det(A)$
- Diagonal de una matriz $U \Rightarrow \text{diag}(\mathtt{U})$
- lacktriangle Union de matrices por columnas $m{U}$ y $m{V} \Rightarrow \mathtt{cbind}(\mathtt{U}, \mathtt{V})$
- ullet Union de matrices por filas $oldsymbol{U}$ y $oldsymbol{V}\Rightarrow\mathtt{rbind}(\mathtt{U},\mathtt{V})$
- Largo de un vector $x \Rightarrow length(x)$
- Dimensión de una matriz $U \Rightarrow dim(U)$

```
Ejemplos:
```

```
A = matrix(rep(0,9), nrow = 3, ncol = 3) # Matriz nula de 3x3
Α
## [,1] [,2] [,3]
## [1,] 0 0
## [2,] 0 0
       0 0 0
## [3,]
B = matrix(c(1,2,3, 5,6,7), nrow = 2, byrow=T)
         # Matriz que los elementos se van incorporando por filas
## [,1] [,2] [,3]
## [1,] 1
## [2,] 5 6
# Declarar primero las filas
x = 1:3
y = seq(1,2, by = 0.5)
z = rep(8, 3)
X
## [1] 1 2 3
У
## [1] 1.0 1.5 2.0
Z
## [1] 8 8 8
# ncol no es necesario declararlo
C = matrix(c(x,y,z), nrow = length(x))
       [,1] [,2] [,3]
##
## [1,] 1 1.0 8
## [2,] 2 1.5
                  8
## [3,] 3 2.0 8
# Construir la matriz por filas (rbind) o por columnas (cbind)
u = seq(1,2, by = 0.1)
v = seq(5,10, by = 0.5)
```

```
rbind(u, v)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
       1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
                                                 1.9
## v
       5 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
                                                 9.5
                                                        10
cbind(u, v)
##
       u
## [1,] 1.0 5.0
## [2,] 1.1 5.5
## [3,] 1.2 6.0
## [4,] 1.3 6.5
## [5,] 1.4 7.0
## [6,] 1.5 7.5
## [7,] 1.6 8.0
## [8,] 1.7 8.5
## [9,] 1.8 9.0
## [10,] 1.9 9.5
## [11,] 2.0 10.0
Acceder a elementos de una matriz
A = matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=F)
B = matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=T)
##
       [,1] [,2] [,3]
## [1,]
         1
               3
                    5
## [2,]
       2
                    6
               4
В
       [,1] [,2] [,3]
## [1,]
               2
          1
## [2,]
          4
               5
                    6
A[1,] # Accede a la primera fila de A
## [1] 1 3 5
B[2, ] # Accede a la segunda fila de B
```

[1] 4 5 6

```
A[1, 3]
          # Accede al elemento de la fila 1 y de la columna 3
## [1] 5
B[2, 3]
          # Accede al elemento de la fila 2 y de la columna 3
## [1] 6
Calculos en matrices:
A + B
        [,1] [,2] [,3]
##
## [1,]
           2
                5
                      8
## [2,]
           6
                9
                    12
A - B
        [,1] [,2] [,3]
## [1,]
           0
                1
## [2,]
          -2
               -1
2*B
        [,1] [,2] [,3]
##
```

Nota: Si A y B son matrices, y queremos realizar la multiplicación de A y B, sólo se puede hacer cuando el número de columnas de A es igual el número de filas de B. Por ejemplo, si A es de dimensión $m \times n y B$ es de dimensión $n \times p$, el producto AB puede ser calculado pero no el de BA

t(A) # Transpuesta de A

2

8

4

10

6

12

```
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
## [3,] 5 6
```

[1,]

[2,]

t(A)%*%B # Multiplica transpuesta de A por B

```
## [,1] [,2] [,3]
## [1,] 9 12 15
## [2,] 19 26 33
## [3,] 29 40 51
```

Inversa de una matriz:

```
#Creamos una matriz cuadrada
library(matlib)
A = \text{matrix}(c(5, 1, 0, 3, -1, 2, 4, 0, -1), \text{nrow}=3, \text{byrow}=\frac{\text{TRUE}}{2})
# Si la determinante de A !=0, entonces la inversa existe
det(A)
## [1] 16
# Solo las matrices no singulares tienen una inversa
# (matriz singular ==> el determinante de una matriz cuadrada es nulo)
(AI = inv(A))
##
           [,1]
                    [,2]
                           [,3]
## [1,] 0.0625 0.0625 0.125
## [2,] 0.6875 -0.3125 -0.625
## [3,] 0.2500 0.2500 -0.500
```

Definición de la Inversa

La inversa de uuna matriz A se puede definir como A^{-1} que multiplica a A para dar como resultado la matriz identidad.

```
# Creamos una matriz cuadrada
B = matrix(c(4, 3, 0,
             2,-1, 2,
             2, 0,-2), nrow=3, byrow=TRUE)
det(B)
## [1] 32
(BI = inv(B))
          [,1]
                  [,2]
##
                          [,3]
## [1,] 0.0625 0.1875 0.1875
## [2,] 0.2500 -0.2500 -0.2500
## [3,] 0.0625 0.1875 -0.3125
# Nos debe dar la matriz identidad
BI %*% B
       [,1] [,2] [,3]
##
## [1,]
         1
               0
## [2,]
         0
               1
                     0
## [3,]
        0
```

Dimensión y largo de los vectores en matrices:

```
U = matrix(c(1,2,3,4,5,6),2,3)
```

```
dim(U)  # Dimensión de U

## [1] 2 3
dim(t(U))  # Dimensión de la transpuesta de U

## [1] 3 2
length(U)  # Largo de los elementos en U

## [1] 6

dim(U)  # Dimensión de U

## [1] 2 3
dim(t(U))  # Dimensión de la transpuesta de U

## [1] 3 2
```

Si \boldsymbol{A} es una matriz cuadrada $m \times m$, diag (\boldsymbol{A}) construye una matriz diagonal. Esta función también nos permite extraer la diagonal de una matriz.

I = diag(1, m) es la matriz identidad de dimensión $m \times m$ y D = diag(diag(A)) es una matriz diagonal con la diagonal de la matriz A.

```
# Matriz diagonal
A = diag(c(2,1,4))
Α
        [,1] [,2] [,3]
## [1,]
           2
                 0
## [2,]
           0
                 1
                      0
## [3,]
           0
                 0
# Extraer la diagonal
diag(A)
## [1] 2 1 4
\# Matriz diagonal de orden m x m
m = 3
I = diag(1, m)
```

```
[,1] [,2] [,3]
##
## [1,]
        1
              0
## [2,]
         0
              1
                   0
## [3,]
       0
            0
                   1
# Matriz diagonal, con la diagonal de A
D = diag(diag(A))
# diag(1, n, m) = Matriz n x m, con 1's en las entradas a_{ii}
Z = diag(1, 3, 4)
##
       [,1] [,2] [,3] [,4]
## [1,]
        1
              0
                 0
## [2,]
                  0
         0
              1
## [3,]
       0 0 1
```

Operaciones por fila:

```
A = matrix(c(2, 3,5, 6, 1, 2, 4, 5, 7), nrow = 3, byrow=TRUE)

## [,1] [,2] [,3]

## [1,] 2 3 5

## [2,] 6 1 2

## [3,] 4 5 7
```

```
A[c(1,3),] = A[c(3,1),] # Cambiamos Fila 1 por Fila 3

## [,1] [,2] [,3]

## [1,] 4 5 7

## [2,] 6 1 2

## [3,] 2 3 5
```

```
A[3,] = A[2,] - A[3,2]/A[2,1]*A[3,] # Fila 3 - elemento a_{32}/a_{21}*Fila 3
```

Funciones aplicadas a matrices:

```
apply()
A = matrix(1:9, nrow=3)
A
```

```
[,1] [,2] [,3]
##
## [1,]
## [2,]
           2
                5
                      8
## [3,]
           3
                6
                      9
# suma_filas = vector con las sumas de las filas
suma_filas = apply(A, 1, sum)
# sum_col = vector con las sumas de las columnas
suma_col
           = apply(A, 2, sum)
```

Ejemplo

Se le pide calcular las notas promedio de alumnos presentadas en la siguiente tabla:

Nombre	P1	P2	P3	P4
Cesar	52	44	21	61
Jose Miguel	38	52	33	60
Gonzalo	33	55	35	33
Rene	25	31	55	34

Calcule el promedio final de cada alumno considerando que cada nota vale un $25\,\%$ y luego agregue el promedio a la tabla.