Europäisches Patentamt European Patent Office Office européen des brevets

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:

 18.12.1996 Bulletin 1996/51
- (51) Int Cl.6: **C08G 65/48**, C08F 8/30, C08K 5/17
- (21) Application number: 92306008.1
- (22) Date of filing: 30.06.1992
- (54) Method for preparing reactive triazine-capped aromatic polymers Methode zur Darstellung reaktiver aromatischer Polymere mit Triazin-Endgruppen Méthode pour la préparation de polymères aromatiques, réactifs, coiffés par une triazine
- (84) Designated Contracting States: DE ES FR GB IT NL
- (30) Priority: 05.07.1991 US 726104
- (43) Date of publication of application: 13.01.1993 Bulletin 1993/02
- (73) Proprietor: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)
- (72) Inventors:
 - Brown, Sterling Bruce
 Schenectady, New York 12309 (US)

- Walles, Eric Wilhelm Lanesborough MA 01237 (US)
- (74) Representative: Szary, Anne Catherine et al London Patient Operation, GE international, Inc., Essex House.
 - 12-13 Essex Street London WC2R 3AA (GB)
- (56) References cited: EP-A- 0 347 539

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

25

26

50

55

This invention relates to the preparation of reactively capped aromatic polymers, especially polyphenylene ethers. More particularly, it relates to an improved method for their preparation in a mixed aqueous-organic system.

There has been considerable interest in recent years in developing methods for insertion of reactive groups into polymers, in order to make them capable of forming copolymers with other polymers normally incompatible therewith. For example, normally incompatible blends of polyphenylene ethers with polyamides, polyesters or olefin polymers can be compatibilized by incorporation therein of a copolymer of the polybenylendene other with the other polymer (in the case of olefin polymers, with a functionalized derivative thereof). Such copolymers may be formed by the reaction of groups in the other polymer such as carboxylic acid or amine groups with molettee reactive therewith in the polyphenylene other.

Various patent applications disclose functionalized aromatic polymers capable of forming such copolymer-containing compositions. For example, copending, commonly owned application Serial No. 07/351,905 describes the preparation of apportinazine-capaped polyphenylene eithers by the reaction of a polyphenylene either with an apoxy-substituted chilorotriazine. Said reaction may be conducted in a mixed aquicous-organic system using an inorganic base such as sodium hydroxide, or in a homogeneous organic system using a manne such as pyridine. A second copending, commonly owned application, Serial No. 07/554,443, discloses similar capping reactions involving triazines containing reactive substitutions such as allydin groups substituted with hall or disklytiohosphat moieties.

The known methods for preparing these capped polymers, while effective, suffer from certain disadvantages. For example, the homogeneous method employing privine is accompanied by sider carcions between by p-roductly hydrogen chloride and epoxy groups or other acid-reactive groups, resulting in loss of at least a portion of the functionality. In procedures utilizing an inorganic base such as sodium hydroxide, the capped product contains relatively high levels of residual sodium which may adversely effect the particle size of the product located from the capping reaction. When amines other than the relatively costly and toxic pyridine are employed, there is frequently a considerable decrease in yield of the capped polymer.

The present invention provides a method for introducing reactive triazine groups into hydroxy group-containing aromatic polymers in relatively high yield. Said method employs a mixed aqueous-organic system and at least one amine, which may be an amine which is readily available and-relatively non-toxic.

Therefore, the invention is a method for preparing a reactive triazine-capped polymer which comprises intimately contacting, under reactive conditions, at least one hydroxy group-containing aromatic polymer with at least one chlorotriazine containing reactive groups in the presence of water, a substantially non-polar organic liquid, a reaction-promoting amount of a phase transfer catalyst and at least one tertiary amine selected from the group consisting of:

(A) nitrogen-heterocyclic aromatic and bicycloaliphatic amines;

(B) trialkylamines of the formula

wherein Pl is an unsubstituted or substituted C₁₋₆ primary alkyl radical, Pl is an unsubstituted or substituted C₁₋₁₀ alkyl radical and Rl is an unsubstituted or substituted C₁₋₁₀ primary or secondary alkyl radical; and (C) heterocyclic amines of the formula

wherein R⁴ is a divalent aliphatic hydrocarbon or aza- or oxahydrocarbon radical and R⁵ is an unsubstituted or substituted C₁₋₆ primary or secondary alkyl radical;

the amount of water employed, based on aromatic polymer, being 2-30% by weight.

4

10

15

45

50

The polymers which may be capped by the method of this invention include all aronatic polymers containing hydroxy groups. Saidhydroxy groups may be present as end groups or as substitutes no aromatic rings in the polymer chain or attached thereto. Thus, the term "cappling" is employed in a very broad sense which includes reaction at positions along the polymer chain.

Suitable aromatic polymers include polyphenylene ethers and hydroxylated styrene polymers. The polyphenylene ethers, which are preferred, are known polymers comprising a plurality of structural units containing the formula

In each of said units independently, each Q³ is independently halogen, primary or secondary lower alkly (i.e., alkyl containing up to 7 carbon atoms), phenyl, haloalkyl, aminoalkyl, hydrocarbonoxy or halohydrocarbonoxy wherein at least two carbon atoms separate the halogen and oxygen atoms; and each Q² is independently hydrogen, halogen, primary or secondary lower alklyl, groups are methyl, ethyl, "n-propyl, n-buth, isobutyl, n-amyl; administration or Q. Examples of suitable primary lower alklyl groups are methyl, ethyl, "n-propyl, n-buth, isobutyl, n-amyl; administration," according to the corresponding helptyl groups. Examples of secondary lower alklyl groups are isopropyl, sec-obutyl and 3-pently). Preferably, any alkly radicales are straight chain rather than branch. Most often, each Q³ is alkyl or phenyl, especially C₁₋₄ alklyl, and each Q² is hydrogen. Suitable polyphenylene ethers are disclosed fin a large number of patents.

Both homopolymer and copolymer polyphenylene eithers are included. Suitable homopolymers are those containing, for example, 2.6-dimsthyl-1,-4-phenylene either units. Suitable copolymers include random copolymers containing such units in combination with (for example) 2.3.6-trimsthyl-1,-4-phenylene either units. Many suitable random copolymers, as well as homopolymers, are disclosed in the patient literature.

Also included are polyphenylene ethers containing moieties which modify properties such as molecular weight, melt viscosity and/or impact strength. Such polymers are described in the patient literature and may be prepared by grafting onto the polyphenylene ether in known manner such viryl monomers as acyloristrie and virylaromatic compounds (e.g., styrene), or such polymers as polystyrenes and elastomers. The product typically contains both grafted and ungrafted moleties. Other suitable polymers are the coupled polyphenylene ethers in which the coupling agent is reacted in known manner with the hydroxy groups of two polyphenylene ethers have to produce a higher molecular weight polymer containing the reaction product of the hydroxy groups and the coupling agent, provided substantial proportions of free hydroxy groups remain present. Illustrative coupling agents are low molecular weight polymer consen, betrecycles and formals.

The polyphenylene ether generally has a number average molecular weight within the range of 3,000-40,000 and a weight average molecular weight within the range of 20,000-60,000, as determined by get permeation chromatography. Its intrinsic viscosity is most often in the range of 0.35-0.6 d.l/q, as measured in chloroform at 25°C.

The polyphenylene eithers are typically prepared by the oxidative coupling of at least one corresponding monohydroxyaromatic compound. Particularly useful and readily available monohydroxyaromatic compounds are 2.6 xylenol (wherein each Q¹ is methyl and each Q² is hydrogen), whereupon the polymer may be characterized as a poly(2,8-dimethyl-1,4-phenylene either), and 2,3,6-trimethylphenol (wherein each Q¹ and one Q² is methyl and the other Q² is hydrogen).

A variety of catalyst systems are known for the preparation of polyphenylene ethers by oxidative coupling. There is no particular limitation as to catalyst choice and any of the known catalysts can be used. For the most part, they contain at least one heavy metal compound such as a copper, manganese or cobalt compound, usually in combination with various other materials.

A lirst class of preferred catalyst systems consists of those containing a copper compound. Such catalysts are disclosed, for example, in U.S. Patents 3,306,874, 3,306,875, 3,914,266 and 4,028,341. They are usually combinations of cuprous or cupric ions, halide (i.e., chloride, bromide or iodide) ions and at least one amine. The catalyst systems which are often preferred contain more than one amine, and at least one of said amines is usually dimethyln-butylamine.

Catalyst systems containing manganese compounds constitute a second preferred class. They are generally alkaline systems in which division manganese is combined with such anions as halide, alkoxide or phenoxide. Most often, the manganese is present as a complex with one or more complexing and/or chelating agents such as dialitylamines, alkanolamines, alkylenediamines, chydroxyaromatic aldehydas, chydroxyazo compounds, or-hydroxyoximes (monomeric and polymeric), chydroxyaryl oximes and p-fuliscences. Also useful are known cobalt-containing catalyst systems. Suitable manganese and orbalt-containing catalyst systems for polyphenylene ether preparation are known in the art by reason of disclosure in numerous patents and publications.

Particularly useful polyphenylene ethers for the purposes of this invention are those which comprise molecules having at least one of the end groups of the formulas

$$(IV) \quad \begin{array}{c} Q^2 \\ Q^2 \\ C(R^6)_2 \\ OH \end{array}$$

and

10

15

20

25

30

50

55

$$(v) \quad -0 \xrightarrow{Q^1} \qquad \qquad Q^2 \quad Q^2 \qquad \qquad Q^1 \qquad \qquad OH$$

wherein Q^i and Q^2 are as previously defined; each R^β is independently hydrogen or alkyl, with the proviso that the total number of carbon atoms in both R^β radicals is G^i else; and each R^β is independently hydrogen or a $C_{1,0}$ primary alkyl radical. Preferably, each R^β is hydrogen and each R^β is alkyl, especially methyl or n-bulyl.

Polymers containing the aminoally-isubstituted end groups of formula IV may be obtained by incorporating an appropriate primary or secondary moncamine as one of the constituents of the oxidative coupling reaction mixture, especially when a copper- or manganese-containing catalyst is used. Such amines, especially the dialkylamines and preferably din-butylamine and dimethylamine, frequently become chemically bound to the polyphenylene ether, most often by replacing one of the c-yhdrogen atoms on one or more of radicals. The principal site of reaction is the Of radical adjacent to the hydroxy groups on the terminal unit of the polymer chain. During further processing and/or blending, the aminoally-isubstituted end groups may undergo various reactions, probably involving a quinone methide-type intermediate of the formula

with numerous beneficial effects often including an increase in impact strength and compatibilization with other blend components. Reference is made to U.S. Patents 4,054,553, 4,092,294, 4,477,649, 4,477,651 and 4,517,341, the dis-

closures of which are incorporated by reference herein.

5

10

30

35

40

45

50

Polymers with 4-hydroxybiphenyl end groups of formula V are typically obtained from reaction mixtures in which a by-product diphenoquinone of the formula

$$(VII) \qquad Q^1 \qquad Q^2 \qquad Q^2 \qquad Q^1$$

is present, especially in a copper-halide-secondary or tertiary amine system. In this regard, the disclosure of U.S. Patent 4.477.69 is gain partinent as are those of U.S. 4.247.05 and 4.482.697, which are also incorporated by reference herein. In mixtures of this type, the diphenoquinone is ultimately incorporated into the polymer in substantial proportions. Israely as an end group.

In many polyphenylene ethers obtained under the above-described conditions, a substantial proportion of the polymer molecules, typically constituting as much as about 90% by weight the polymer, contain end groups having one or frequently both of formulas IV and V. It should be understood, however, that other end groups may be present and that the invention in its broadest sense may not be dependent on the molecular structures of the polyphenylene ether end groups.

It will be apparent to those skilled in the art from the foregoing that the polyphenylene athers contemplated for use in the present invention include all those presently known, irrespective of variations in structural units or ancillary chamical features.

A wide variety of chlorotriazines containing reactive groups may be employed in the method of the invention. They include compounds of the formula

wherein Z is oxygen or sulfur, X^1 is alkyl, cycloalkyl or an aromatic radical, X^2 is an aromatic radical or a glycidyl group or a group having the formula

(IX)
$$-C \longrightarrow \begin{pmatrix} R^9 \\ 1 \\ -C \end{pmatrix}_{m-C-X^4} \begin{pmatrix} R^{10} \\ 1 \\ R^{11} \end{pmatrix}$$

wherein X4 is chlorine, bromine or has the formula

wherein Z is as previously defined and each Π^2 is a $C_{1,0}$ primary or secondary alkyl, cycloalkyl, aromatic or arallyl radical or both Π^{12} radicals together with the P and Z atoms form a cyclic structure, especially dialkylphosphate, each Π^2 is independently hydrogen, C_{14} primary or secondary alkyl; Π^{10} is a $C_{1,2}$ alkylphon radical which is unsubstituted or is substituted or is substituted or in the moleties selected from the group consisting of C_{14} primary and secondary alkyl radicals; each Π^{11} is independently Π^2 or X^1 in Ω or 1 and is 1?

Illustrative of the chlorotriazines which may be employed in the present invention are:

2-chloro-4.6-diphenoxytriazine,

5

15

20

2-chloro-4.6-bis(2.4.6-trimethylphenoxy)triazine.

2-chloro-4,6-diglycidoxy-1,3,5-triazine,

2-chloro-4-(n-butoxy)-6-glycidoxy-1,3,5-triazine,

2-chloro-4-(2,4,6-trimethylphenoxy)-6-glycidoxy-1,3,5-triazine (hereinafter "MGCC"),

2-chloro-4-(2-chloroethoxy)-6-(2.4.6-trimethylphenoxy)-1.3.5-triazine.

2-chloro-4-(2-bromoethoxy)-6-(2,4,6-trimethylphenoxy)-1,3,5-triazine,

2-chloro-4-(2-diethylphosphatoethoxy)-6-(2,4,6-trimethylphenoxy)-1,3,5-triazine,

2-chloro-4-(2-di-n-butylphosphatoethoxy)-6-(2,4,6-trimethylphenoxy)-1,3,5-triazine (hereinafter "PMCC"), and

2-chloro-4-(2-di-n-butylphosphatoethoxy)-6-(2,6-xylenoxy)-1,3,5-triazine.

Such compounds may be prepared by the reaction of cyanuric chloride (i.e., 2,4,6-trichlorotriazine) with the hydroxy or thic compound(s) corresponding to the substituent(s) on the heterocyclic ring.

Also employed in the method of this invention are water, a substantially non-polar organic liquid and a phase transfer catalyst. Suitable organic liquids include chlorinated aliphatic hydrocarbons such as methylene chloride and chlorotom (although methylene chloride should not be used with polyphenylene eithers since if loms a complex therewith) aromatic hydrocarbons such as toluene and xylene; and chlorinated aromatic hydrocarbons such as chlorobenzene and o-dichlorobenzene. The aromatic hydrocarbons and especially follower are usually preferred.

Any phase transfer catalyst which is stable and effective under the prevailing reaction conditions may be used; those skilled in the art will readily perceive which ones are suitable. Particularly preferred are the tetraalkylammonic chlorides wherein at least two alkyl groups per molecule, preferably two or three, contain about 4-20 carbon atoms.

The final reagent employed in the method is at least one tertiary amine. The useful amines fall into three classes, class A consisting of nitrogen-heterocyclic aromatic and bicycloaliphatic amines such as pyridine, 4-dimethylaminopy-ridine, N-methylpyrrole, N-ethylpyrrole, quinoline, isoquinoline, N-methylpyrrole, N-indica, 6-diazabicycloj(4.3.0)non-5-ene and 18-diazabicycloj(4.0) diveo-7-ene.

Class B consists of aliphatic amines of formula I, in which RI^{1,3} are as previously defined. In the preferred amines of this type, all of RI^{1,3} are primary alkyl radicals, illustrative amines within this class are dimetryl-in-butylamine, metryl-in-poctylamine and triethylamine.

Class C consists of heterocyclic amines of formula II, in which R⁴ is a divalent aliphatic hydrocarbon radical and R⁸ is a radical of the type previously defined for R³. Such amines include h. methylopientidine, N-methylopientidine, Internatival N-methylopie

The method of this invention requires intimate contact, most often involving vigorous stirring or other agitation, between the aromatic polymer, chlorotriazine and other reagents under reactive conditions. Such conditions usually include temperatures in the range of 20-100° and preferably 40-80°C, and the employment of 0.5-2.0% by weight phase transfer catalyst, based on aromatic polymer.

Water is employed in the amount of 2-30% and preferably 5-25% by weight, based on aromatic polymer. The amount of organic liquid is not critical but is most often 2-3 ml, per gram of aromatic polymer.

The ratio of equivalents of chlorotriazine to polyphenylene ether (based on non-hydrogen bonded hydroxy groups in the polyphenylene ether) is at least 1.5:1. Of course, it may sometimes be advantageous to employ higher proportions

EP 0 522 767 B1

of chlorotriazine (e.g., ratios up to 4,25:1) in order to maximize the yield of the capped product.

The proportion of armine employed is generally 1.5-3.5 squivalents per equivalent of aromatic polymer. (For the purposes of this invention, the equivalent weight of an amine is its molecular weight divided by the number of amino nitrogen atoms therein, except in the case of 4-dimethylaminopyridine and analogous compounds which behave chemically as though only one amino group is present.) As previously noted, some of said amine as well as some water is frequently present in the polymer as a result of its proparation. When this is the case, it is only necessary to add further water and/or amine and/or phase transfer catalyst in the amount necessary to bring the total content thereof to the desired level. The method of the invention is particularly advantageous by reason of its employment of amines in routine use in the preparation of polyphenylene eithers.

Under the preferred conditions described hereinabove, capping of the aromatic polymer is frequently very fast. It often reaches completion in the time required to mix the reactants. This is particularly true when a polyphenylene ether is being caped.

It is believed that the advantageous results afforded by the method of this invention are attributable to a resocion of the chlorotriazine with the tertiary amine to form a triazine-substituted quaternary ammonium chloride, which is thought to be an essential intermediate in the capping process described herein. Evidence for the formation of such a salt includes the disappearance of MGCC from the liquid chromatograph of the product obtained by treating MGCC with DMBA in follower solution in the absence of Water.

Addition of said solution to a solution of sodium self of polyphenylene ether and phase transfer catelyst in toluene does not, however, afford the desired capped polyphenylene ether. It is believed that this is the result of dealitylation of the qualternary ammonium sall, with loss of an alkyl group to form a tortiary amine, prior to reaction of the friezine moiety thereon with the polyphenylene ether salt. When water is present, a substantial proportion of the quaternary ammonium salt apparently migrates to the aqueous phase before dealitylation can occur, and is available for use in the capping process.

This hypothesis also explains the effectiveness of the capping reaction in an all-organic medium when pyridine employed as the amine. The resulting quartensy ammonium sall contains no allylig roups (the amine nitrogen and being part of an aromatic ring system) and thus cannot be dealthylated. It is not necessarly therefore, for water to be present to suppress dealthylation in such instances, although the presence of water may be advantageous.

Examples 1-4

20

50

55

Solutions of various amounts of DMBA in 50 ml of tollene were combined with water (41 grams in Examples 1-3, 82 grams in Example 4) and various amounts of MGC, the latter being added as a 0.96 M solution in toluene. The resulting mixtures were stirred vigorously for 2 minutes and were then added at 70-75°C. In a nitrogen atmosphere, to solutions in toluene of 200 grams (11.8 mmol.) of PPE and 2 grams of phase transfer catalyst. The mixtures were recipitated with methano, filtered and childred.

The results are given in Table I, in comparison with various controls. In Control 1, no water or phase transfer catalyst was employed, in Controls 2-4, no water was employed; and in Control 5, 41 grams of water but no phase transfer catalyst was present.

TA	DI	

Example	Toluene in PPE soln., ml.	Ratio of equivs.		Percent capped (NMR)
		MGCC:PPE	DMBA:PPE	
1	1000	1.85	1.45	52
2	550	2.04	3.0	76
3	550	2.04	3.0	81
4	550	2.04	3.0	71
Control 1	550	2.04	1.5	10
Control 2	550	2.04	1.5	. 7
Control 3	550	2.04	3.0	6
Control 4	550	4.08	3.0	18
Control 5	550	2.04	1.5	10

It is apparent that the degree of capping is substantially higher according to the method of this invention than when no water and/or no phase transfer catalyst is employed.

Examples 5-16

The procedure of Example 2 was repeated, substituting various amines for the DMBA in a ratio of equivalents to PPE of 2:1. The percentages of capped polymer are listed in Table II.

TARLE II

IADLE II				
Example	Amine	Percent capped (NMR)		
5	Trimethylamine	69		
6	Triethylamine	63		
7	Tri-n-butylamine	20		
8	Diisopropylethylamine	26		
9	Di-n-butylmethylamine	66		
10	Tetraethylethylenediamine	65		
11	Triethanolamine	37		
12	Dimethylethanolamine	35		
13	Pyridine	52		
14	4-Dimethylaminopyridine	58		
15	N-Methylimidazole	47		
16	N-Methylmorpholine	66		

Example 17

10

15

20

25

35

50

The procedure of Examples 5-16 was repeated, employing DMBA as the amine and substituting 2-chloro-4,6-diphenoxytriazine for the MGCC. The product was 72% capped (FTIR).

Example 18

The procedure of Examples 5-16 was repeated, employing DMBA as the amine and substituting 2-chloro-4,6-bis (2,4,6-trimethylphenoxy)triazine for the MGCC. The product was 92% capped (FTIR).

Example 19

A solution of 200 grams of PPE and 2 grams of phase transfer catalyst in 962 ml. of toluene was combined with 77 grams of water and PMCC in a ratio of equivalents to PPE of 2:1. DMBA was added at 70-75°C in a ratio of equivalents to PPE of 2:1, and the mixture was stirred under nitrogen for 30 minutes. The product was isolated as described in Example 1; percent capping was 82% (FTIR) and 90% (MMR).

40 Example 20

The procedure of Example 19 was repeated, employing a ratio of equivalents of PMCC to PPE of 1.5:1. Percent capping was 73% (FTIR) and 77% (NMR).

45 Example 21

The procedure of Example 1 was repeated except that 100 grams of PPE, 400 ml. of toluene, 0.5 gram of phase transfer catalyst, 37 grams of water and DMBA in a ratio of equivalents to PPE of 2.1 were employed, and the MGCC was replaced by PMCC in a ratio of equivalents to PPE of 2.1. The percent capping was 90% (MMR).

Example 22

The PPE employed was in the form of a stream obtained directly from the synthesis facility as a solution in toluene containing 29.3% solids (i.e., PPE), 4.1% water, 0.32% DMBA and about 0.1% phase transfer catalyst. A portion thereof containing 125 grams of PPE was combined at 75°C with 1.25 grams of additional phase transfer catalyst, 35 grams of additional water and MGCC in a ratio of equivalents to PPE of 2:1. The mixture was stirred for 30 minutes and worked up as described in Example 1. The percent capping was 95% (FTFI) and 61% (NIMF).

Example 23

The procedure of Example 22 was repeated, except that no additional water and phase transfer catalyst were added. The percent capping was 49% (FTIR) and 26% (NMR).

Example 24

5

15

35

40

45

50

55

A PPE synthesis stream was employed which contained 35% solids (PPE having an intrinsic viscosity of 0.37 and having 0.09% non-hydrogen bonded hydroxy end groups), 3.9% water, 0.35% DMBA and about 0.1% phase transfer catalyst. A portion thereof containing 355.6 grams of PPE was combined at 70°C with 1.78 grams of additional phase transfer catalyst, 6.1 mi. of additional water and PMCC in a ratio of equivalents to PPE of 1.85.1. Upon workup as in Example 1, a product was obtained in which the percent according was 73% (FITI) and 60% (NMR).

Example 25

There were combined, at 65°C, 5.1.48 tg, of the synthesis stream of Example 24.0.18 kg, of phase transfer catalyst, 3.3 liters of water and an additional 14 grams of DMBA. The mixture was stirred for 30 minutes and there was added 3.693 liters of 14.052 M solution of PMCC in toluren. Samples were taken for analysis at 1 minute, 20 minutes, 40 minutes and 1 hour. After 1 hour of stirring, the product was worked up as in Example 1 and was shown to be 95% capped (NMB7). The percentage capping after 1 minute was 91%, and after 20 minutes was 95%.

Example 26

A procedure similar to that of Example 25 was employed, except that all the DMBA was replaced by methyldinoctylamine. The approximate percentage capping after 45 minutes was 33%. In a similar experiment employing trinoctylamine, no capping was observed.

Claims

- A method for preparing a reactive triazine-capped polymer which comprises contacting, under reactive conditions, at least one hydroxy group-containing aromatic polymer with at least one chiorotriazine containing reactive groups in the presence of water, a substantially non-polar organic liquid, a reaction-promoting amount of a phase transfer catalyst and at least one tertiary amine selected from the group consisting of:
 - (A) nitrogen-heterocyclic aromatic and bicycloaliphatic amines;
 (B) trialkylamines of the formula

wherein \mathbb{R}^1 is an unsubstituted or substituted $C_{1,0}$ primary alkyl radical, \mathbb{R}^2 is an unsubstituted or substituted $C_{1,0}$ alkyl radical and \mathbb{R}^3 is an unsubstituted or substituted $C_{1,10}$ primary or secondary alkyl radical; and (O) heterocyclic amines of the formula

wherein R4 is a divalent aliphatic hydrocarbon or aza- or oxahydrocarbon radical and R5 is an unsubstituted

or substituted C1-6 primary or secondary alkyl radical;

the amount of water employed, based on aromatic polymer, being 2-30% by weight.

2. A method according to claim 1 wherein the chlorotriazine has the formula

10

15

20

25

30

35

40

wherein Z is oxygen or sulfur, X1 is alkyl, cycloalkyl or an aromatic radical, X2 is an aromatic radical or a glycidyl group or a group having the formula

$$(IX) = \begin{bmatrix} (R^9)_{3-n} \\ -C \end{bmatrix}_{R^{10}} \begin{bmatrix} R^{11} \\ -C \end{bmatrix}_{R}$$

wherein X4 is chlorine, bromine or has the formula

wherein Z is as previously defined and each R12 is a C1-30 primary or secondary alkyl, cycloalkyl, aromatic or aralkyl radical or both R12 radicals together with the P and Z atoms form a cyclic structure; each R9 is independently hydrogen, C₁₋₄ primary or secondary alkyl; R¹⁰ is a C₁₋₃ alkylene radical which is unsubstituted or is substituted with moleties selected from the group consisting of C1.4 primary and secondary alkyl radicals; each R11 is independently R9 or X4; m is 0 or 1 and n is 1-3

- 3. A method according to Claim 1 or Claim 2 wherein the amine is a trialkylamine of formula 1.
- 4. A method according to any one of Claims 1 to 3 wherein the organic liquid is an aromatic hydrocarbon.
 - 5. A method according to any preceding claim wherein the phase transfer catalyst is a tetraalkylammonium chloride wherein at least two alkyl groups per molecule contain 4-20 carbon atoms.
- 6. A method according to any preceding claim wherein the reaction temperature is in the range of 20-100°C.
 - 7. A method according to any preceding claim Wherein the proportion of amine employed is 1.5-3.5 equivalents per equivalent of aromatic polymer.
- 55 8. A method according to any preceding claim wherein the proportion of chlorotriazine employed is 1.5-4.25 equivalents per equivalent of aromatic polymer.
 - 9. A method according to any preceding claim wherein Z is oxygen, X1 an aromatic radical and X2 is a glycidyl group

or a group having the formula

10

15

20

25

30

35

40

45

50

(IX)
$$-C = \begin{bmatrix} (R^9)_{3-n} & R^{11} \\ (R^{10})_n & C - X^4 \\ R^{11} \end{bmatrix}$$

wherein X4 is chlorine, bromine or has the formula

wherein each Pl^2 is a $\mathrm{C}_{1,20}$ primary or secondary alkyl, cycloalkyl, aromatic or aralkyl radicals or both Fl^2 radicals together with the P and Z atoms from a cyclic structure; each Pl^0 is independently hydrogen, $\mathrm{C}_{1,4}$ primary or secondary alkyl; Rl^0 is a $\mathrm{C}_{1,3}$ alkylene radical which is unsubstituted or is substituted with moieties selected from the group consisting of $\mathrm{C}_{1,4}$ primary and secondary alkyl radicals; each Rl^{11} is independently Rl^0 or Xl^4 ; mis 0 or 1 and nis 1-3.

- A method according to any preceding claim wherein the chlorotriazine is 2-chloro-4-(2,4,6-trimethylphenoxy)-6-gly-cidoxy-1,3-f-triazine, 2-chloro-4-(2,6-xylenoxy)-6-gly-cidoxy-1,3-f-triazine, 2-chloro-4-(2-dientylphosphatoetho-xy)-6-(2,4,6-trimethylphenoxy)-1,3-f-triazine, 2-chloro-4-(2-di-h-butylphosphatoethoxy)-6-(2,4,6-trimethylphenoxy)-1,3-f-triazine
- 11. A method according to any preceding claim wherein the aromatic polymer is a polyphenylene ether.
- 12. A method according to any preceding claim wherein the amine is dimethyl-n-butylamine.
- A method according to Claim 11 wherein the polyphenylene ether is a poly(2.6-dimthyl-1.4-phenylene ether).

Patentansprüche

- 1. Verfahren zur Herstellung eines reaktionsfähigen Triezin-verkappten Polymeren, welches umfaßt: das in Kontaktbringen unter reaktiven Bedingungen von wenigstens einem Hydroxygruppen-haltigen aromatischen Polymeren mit wenigstens einer Chlotriazin enthaltenden reaktionsfähigen Gruppe in Anwesenheit von Wasser, einer im wesentlichen nicht-polaren organischen Fibissigkeit, einer reaktionsbeschleunigenden Menge eines Phasenübergangskalalysators und wenigstens einem erinfären Amin, ausgewählt aus der Gruppe bestehend aus:
 - (A) stickstoffhaltigen heterozyklischen aromatischen und bicycloaliphatischen Aminen;
 - (B) Trialkylaminen der Formel

$$(z) = \sum_{n=0}^{R^{1}} (z)$$

worin \mathbb{R}^1 ein unsubstituierter oder substituierter C_{1-6} primärer Alkylrest ist, \mathbb{R}^2 ein unsubstituierter oder substituierter C_{1-10} Alkylrest und \mathbb{R}^3 ein unsubstituierter oder substituierter C_{1-10} primärer oder sekundärer Alkylrest ist und

(C) heterozyklischen Aminen der Formel

5

10

15

20

35

40

45

50

55

25 worin R⁴ ein zweiwertiger alliphatischer Kohlenwasserstoff oder Aza- oder Oxahydro-Kohlenstoffrest und R⁵ ein unsubstituierter oder substituierter C₁₋₆ primärer oder sekundärer Alkylrest ist;

die Menge des verwendeten Wassers, bezogen auf das aromatische Polymer, 2 - 30 Gew.-Prozent ist.

Verfahren nach Anspruch 1, worin das Chlortriazin die Formel

aufweist, worin Z Sauerstoff oder Schwefel ist, X1 Alkyl, Cycloalkyl oder ein aromatischer Rest ist, X2 ein aromatischer Rest oder eine Glycidylgruppe oder eine Gruppe mit der Formel

ist, worin X4 Chlor, Brom oder die Formel

EP 0 522 767 B1

hat, worin Z die vorstehend gegebene Definition besitzt und jedes RI¹² ein C₁₋₃₀ primäres oder sekundäres Alkyl, Cycloalkyl, aromatischer oder Alkylrest ist oder beide RI¹² Reste zusammen mit der P. - und Z-Alomen ein av zylische Struktur blidon; jedes RP unabhängig Wasserstott, Z₁₋₄ primäres oder sekundäres Alkyl ist, RI¹⁰ ein C₁₋₃ Alkylenrest ist, der ungesättigt ist oder substituiert ist mit Anteillen, die ausgewählt sind aus der Gruppe bestehend aus C₁₋₄ orimären und sekundären Alkylresten: iedes RI¹¹ unabhändin B¹ door EY sits in O oder 1 ist und n. 1-3 carstellt

- 3. Verfahren nach Anspruch 1 oder Anspruch 2, worin das Amin ein Trialkylamin mit der Formel 1 ist
- Verfahren nach einem der Ansprüche 1 bis 3, worin die organische Flüssigkeit ein aromatischer Kohlenwasserstoff ist.
- Verfahren nach einem der vorhergehenden Ansprüche, worin der Phasenübergangskatalysator ein Tetraalkylammoniumchlorid ist, worin wenigstens zwei Alkylgruppen pro Molekül 4 - 20 Kohlenstoffatome enthalten.
 - Verfahren nach einem der vorhergehenden Ansprüche, worin die Reaktionstemperatur im Bereich von 20 100°C liegt.
- Verlahren nach einem der vorhergehenden Ansprüche, worin der Anteil des verwendeten Amins 1,5 3,5 Äquivalente pro Äquivalent des aromatischen Polymeren beträgt.
 - Verfahren nach einem der vorhergehenden Ansprüche, worin der Anteil des verwendeten Chlortriazins 1,5 4,25 Äquivalente pro Äquivalent des aromatischen Polymeren beträgt.
 - Verlahren nach einem der vorhergehenden Ansprüche, worin Z Sauerstoff ist, X¹ ein aromatischer Rest ist und X² eine Glycidylgruppe oder eine Gruppe mit der Formel

$$(IX) \qquad -C \qquad \qquad \begin{bmatrix} (X_{10})^{1-\alpha} & X_{11} \\ (X_{10})^{1-\alpha} & X_{11} \\ X_{11} & X_{12} \end{bmatrix}$$

ist, worin X4 Chlor, Brom oder die Formel

10

15

30

35

40

45

50

hat, worn jedes \mathbb{H}^2 ein $C_{1,20}$ primäres oder sekundäres Alkyl, Cyclosikyl, aromalischer oder Aralkylrest ist oder beide \mathbb{H}^2 Reste zusammen mit den \mathbb{P} - und Z-Alomen eine zyklische Struktur bilden; jedes \mathbb{R}^9 unabhängig Wasserstoff ist $C_{1,24}$ primäres oder sekundäres Alkyl ist; \mathbb{H}^9 ein $\mathbb{C}_{1,25}$ Alkylenrest ist, der unsubstituierl oder substituiert ist mit Anteilen, die ausgewählt sind aus der Gruppe bestehend aus $\mathbb{C}_{1,4}$ primären und sekundärenAlkylresten; jedes \mathbb{H}^{11} unbähängi \mathbb{H}^9 oder \mathbb{H}^1 ist und \mathbb{H}^1 ist und \mathbb{H}^1 is it und \mathbb{H}^1 ist und \mathbb{H}^1 is und \mathbb{H}^1 ist und $\mathbb{H$

EP 0 522 767 B1

- Verfahren nach einem der vorhergehanden Ansprüche, worin das Chlortriazin 2-Chlor-4-(2.4,6-trimethylphenoxy)-6-glycidoxy-1,3,5-triazin.
 2-Chlor-4-(2.6-xylenoxy)-1,3-5-triazin.
 2-Chlor-4-(2-dienbylphenoxy)-1,3-5-triazin.
 2-Chlor-4-(2-dienbylphenoxy)-1,3-5-triazin ider.
 3-5-triazin oder 2-Chlor-4-(2-dienbylphosphatellnoxy)-6-(2,6-yylenoxy)-1,3-5-triazin ider.
- 11. Verfahren nach einem der vorhergehenden Ansprüche, worin das aromatische Polymer ein Polyphenylenäther ist,
- 12. Verfahren nach einem der vorhergehenden Ansprüche, worin das Amin Dimethyl-n-butylamin ist.
- 10 13. Verfahren nach Anspruch 11, worin der Polyphenylenäther ein Poly(2,6-dimethyl-1,4-phenylenäther) ist.

Revendications

5

20

25

30

35

45

50

55

- 75 1. Procédé de préparation d'un polymère coiffé par une triazine réactive, qui comprend la mise en contact, dans des conditions de réaction, d'au moins un polymère aromatique contenant un groupe hydroxyle avec au moins une chiorotriazine contenant des groupes réactits, enprésence d'eau, d'un liguide organique pratiquement non polaire, d'une quantité lavorisant la réaction d'un catalyseur de transfert de phase et d'au moins une amine tertiaire choisie dans le oruque constitué de :
 - (A) les amines hétérocycliques, aromatiques ou bicycloaliphatiques, à hétérocycle azoté; (B) les trialkylamines de formule;

dans laquelle R¹ représente un groupe alkyle primaire en C₁ à C₆, substitué ou non substitué, R² représente un groupe alkyle en C₁ à C_{1,0}, substitué ou non substitué, et R³ représente un groupe alkyle primaire ou secondaire, en C₁ à C_{1,0} substitué ou non substitué ; et (C) les amines héférocycliques de formule :

- dans laquelle R⁴ représente un groupe hydrocarboné aliphatique divalent ou un groupe aza- ou oxahydrocarboné, et R⁵ représente un groupe alkyle primaire ou secondaire, en C₁ à C₆, substitué ou non substitué;
- la proportion d'eau utilisée représentant 2 à 30 % en polds par rapport au polymère aromatique.
- 2. Procédé selon la revendication 1, dans lequel la chlorotriazine répond à la formule :

dans laquelle Z représente un atome d'oxygène ou de soufre, X¹ représente un groupe alkyle, cycloalkyle ou aromatique, et X² représente un groupe aromatique, un groupe glyciglyle ou un groupe de formule :

$$(IX) \qquad -C = \begin{bmatrix} (R^{9})_{3-n} \\ -C \end{bmatrix}_{n} \begin{bmatrix} R^{11} \\ -C \end{bmatrix}_{n}$$

15 dans laquelle X⁴ représente un atome de chlore ou de brome ou un groupe de formule :

- 28 dans laquelle Z est tel que défini précédemment et chaque R12 représente un groupe alkyle primaire ou secondaire, cycloalkyle, aromatique ou aralkyle, en C₁ à C₃₀, ou bien les deux groupes R12 forment avec l'atome P et les atomes Z une structure evclique.
 - chaque \mathbb{P}^q représente indépendamment un atome d'hydrogène ou un groupe altyle primaire ou secondaire en \mathbb{C}_i , a \mathbb{C}_q , au est non substitué ou substitué par des substituants choissi parmi les groupes altyles primaires ou secondaires en \mathbb{C}_i à \mathbb{C}_q , chaque \mathbb{R}^{11} représente in dépendamment \mathbb{R}^q ou \mathbb{X}^4 m at de dai à 0 ou 1 et ne st écal à 1 à 3.
 - 3. Procédé selon la revendication 1 ou 2, dans lequel l'amine est une trialkylamine de formule 1.
- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le liquide organique est un hydrocarbure aromatique.
 - Procédé selon l'une quelconque des revendications précédentes, dans lequel le catalyseur de transfert de phase est un chiorure de tétraalkylammonium dans lequel au moins deux groupes alkyles par molécule contiennent 4 à 20 alormes de cathone.
 - Procédé selon l'une quelconque des revendications précédentes, dans lequel la température de réaction est comprise dans l'intervalle allant de 20°C à 100°C.
- 75 7. Procédé selon l'une quelconque des revendications précédentes, dans lequel la proportion d'amine utilisée est de 1,5 à 3,5 équivalents par équivalent de polymère aromatique.
 - Procédé selon l'une quelconque des revendications précédentes, dans lequel la proportion de chlorotriazine utilisée est de 1,5 à 4,25 équivalents par équivalent de polymère aromatique.
 - Procédé selon l'une quelconque des revendications précédentes, dans lequel Z représente un atome d'oxygène, X¹ représente un groupe aromatique et X² représente un groupe glycidyle ou un groupe de formule ;

50

5

10

20

30

an

dans laquelle X4 représente un atome de chlore ou de brome ou un groupe de formule :

10

15

20

25

35

45

50

dans laquelle chaque R^{12} représente un groupe alkyle primaire ou secondaire, cycloalkyle, aromatique ou aralkyle, en C_1 à C_{20} , ou bien les doux groupes R^{12} forment avec l'atome P et les atomes Z une structure cyclique, chaque R^{12} représente indépendamment un atome d'hydrogène ou un groupe alityle primaire ou secondaire en C_1 à C_4 , R^{10} représente un groupe alkylène en C_1 à C_3 , qui est non substitué ou substitué par des substituants choisis parmi les groupes alkylène primaires ou secondaires en C_1 à C_4 , chaque R^{11} représente indépendamment R^{0} ou X^{0} , mes técal à 0 ou 1 et ne stoqual à 1 à 3.

- Procédé selon l'une quelconque des revendications précédentes, dans lequel la chirorinizzine est la 2-chioro-4. (2.4,6-triméthylphénoxy)-6-glycidoxy-1,3.5-triazine, la 2-chioro-4-(2.6-xylénoxy)-9-glycidoxy-1,3.5-triazine, la 2-chioro-4-(2-diritylphosphatodithoxy)-6-(2.4,6-triméthylphénoxy)-1,3.5-triazine, la 2-chioro-4-(2-diritylphosphatodithoxy)-6-(2,6-xylénoxy)-1,3.5-triazine, ou la 2-chioro-4- (2-diritylphosphatodithoxy)-6-(2,6-xylénoxy)-1,3.5-triazine
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le polymère aromatique est un poly-(oxyde de phénylène).
 - 12. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'amine est la diméthyl-n-butylamine,
- 13. Procédé selon la revendication 11, dans lequel le poly(oxyde de phénylène) est un poly(oxyde de 2,6-diméthyl-0 1,4-phénylène).