Department of Mathematics PRELIMINARY EXAMINATION

August 10, 2010 8:45–11:45 am

Work all of the following problems, justifying your answers. The problems are weighted evenly. \mathbb{N} denotes the set of positive integers.

- 1. Negate each of the following statements in the most informative way possible (i.e., without using the words "no" or "not").
 - a. There is an integer x so that x + y is odd for each integer y.
 - b. If x is an odd integer, then xy is odd for every integer y.
 - c. Given $\varepsilon > 0$, there is $N \in \mathbb{N}$ so that whenever n > N, we have $\left| \frac{2+n}{1+n} 1 \right| < \varepsilon$.
- 2. a. State the binomial theorem.
 - b. Prove that $(x + y)^5 \equiv x^5 + y^5 \pmod{5}$.
 - c. Prove by mathematical induction that $(x + y)^{5^n} \equiv x^{5^n} + y^{5^n} \pmod{5}$ for every $n \in \mathbb{N}$.
- 3. Suppose $f: A \to B$ and $g: B \to C$ are functions. Prove or give a counterexample:
 - a. If f and g are injective (one-to-one), then $g \circ f$ is injective.
 - b. If $g \circ f$ is injective, then f and g are injective.
- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$.
 - a. Give the δ - ε definition of $\lim_{x \to a} f(x) = \ell$.
 - b. Determine the limit and use the definition to prove your answer:

$$\lim_{x \to 2} \frac{2x+1}{x^2+1} = ?$$

- 5. Prove that $\int_C (x^3 y^3) dx + (x^3 + y^3) dy \ge 0$ for every smooth, simple closed curve $C \subset \mathbb{R}^2$, oriented counterclockwise.
- 6. Find all the cube roots of -2 2i.
- 7. Let $A = \begin{bmatrix} 0 & 1 \\ 6 & -1 \end{bmatrix}$. Prove that A is diagonalizable and find a closed-form expression for $A^k \begin{bmatrix} 1 \\ 7 \end{bmatrix}, k \in \mathbb{N}$.
- 8. Suppose V and W are vector spaces and $T:V\to W$ is a linear transformation. Suppose $v_1,\ldots,v_k\in V$. Prove that if $T(v_1),\ldots,T(v_k)$ form a linearly independent set in W, then v_1,\ldots,v_k form a linearly independent set in V.
- 9. Prove that $x \frac{x^3}{3} \le \arctan x \le x$ for all $x \ge 0$.