Relational Algebra The Theory behind Relational Databases

© 2023 Bahram Zahir & Ernst Henle

UNIVERSITY of WASHINGTON

Relational Algebra: What and Why

➤ Ted Codd introduced relational algebra to databases and created the <u>relational model</u>

Relational algebra provides a theoretical foundation for <u>relational databases</u>, and particularly for <u>query languages</u> like <u>SQL</u>

Relational Algebra: What and Why

- >Why do you want a theoretical foundation?
 - If you want to optimize a query or a database
 - If you are thinking about using NOSQL, then you should be aware of the limitations and advantages of NOSQL data management.
 - > In other words, relational algebra assists in comparing <u>SQL</u> with <u>NOSQL</u> (<u>NO</u>T-SQL, <u>Not-Only-SQL</u>, <u>KNO</u>W-SQL,
 - http://www.youtube.com/watch?v=sh1YACOK_bo)

Relational Algebra: What and Why

- >Why is relational algebra important for a data scientist?
 - Even without using SQL?
- > What do machine learning algorithms use as their primary structure?
- >If ETL & Data Preparation take up the bulk of time,
 - How can you be more efficient?
- >If Data comes in tables,
 - How can you manipulate the data?

New Terminology (1)

Term	Comments
<u>Table</u>	Part of a database
Relation	A table where rows are unique Operand in Relational Algebra/Calculus
<u>Tuple</u>	sing <u>le, double, triple, qudruple, quintuple,</u> sex <u>tuple;</u> Like a row in a table
Arity	un <u>ary</u> , bin <u>ary</u> , tern <u>ary</u> , quatern <u>ary</u>
Closure	Operation on a type produces a value of that same type: Natural Numbers have closure under + and * $3 * 5 = 15$ Natural Numbers don't have closure under - or / $3 - 5 = -2$

New Terminology (2)

_	
Term	Comments
<u>Procedural</u>	Step-by-step solution to solving problem or achieving goal. I will drive to Bellevue, enter the classroom and listen to the lecture. (Relational Algebra is procedural or imperative)
<u>Declarative</u>	Stating what one wants in non-ambiguous terms without describing how one is to achieve one's goal. Example: I want to know what was said in class last week. I don't care if you use the slide deck, your memory, or the recording to get me that information. (SQL is declarative)
Relational Algebra	The algebra that describes relations as operands and results
Relational Calculus	The calculus that uses relations as operands and results (SQL)

New Terminology (3)

Operation	Symbols	Comments
<u>Selection</u>	σ (sigma); $σ_{φ}(R)$;	SELECT * FROM WHERE Column1 = 1
<u>Projection</u>	π (pi); π _{c1, c2,,} cn(R)	SELECT <u>Column1, Column 2</u> FROM
<u>Rename</u>	P (rho)	as
<u>Union</u>	U	AUB; A={1,2,3, 5}; B={0,2}; {1,2,3, 5}U{0,2}={0,1,2,3,5}
Intersection	\cap	A \cap B; A={1,2,3, 5}; B={0,2}; {1,2,3, 5} \cap {0,2}= {2}
<u>Difference</u>	-,	$B\A = B-A; \{0,2\} - \{1,2,3,5\} = \{0\}$

New Terminology (4)

Operation	Symbols	Comments
<u>Product</u>	X	AXB A={1,2,3,5}; B={0,2}; {1,2,3, 5}X{0,2}= {{1,0}, {2,0}, {3,0}, {5,0}, {1,2}, {2,2}, {3,2}, {5,2}}
<u>Join</u>	×φ	$B\bowtie_{\phi}A$; φ: $A > B$; $A=\{1,2,3,5\}$; $B=\{0,2\}$; $\{1,2,3,5\}\bowtie_{\phi}\{0,2\} = \{\{1,0\},\{2,0\},\{3,0\},\{3,2\},\{5,0\},\{5,2\}\}$
<u>Division</u>	•	A÷B = C; Project to show me the columns in A that are not in B; Select to show me the tuples in A that are a superset of a tuple in B.

Structure of a Relation

Operand

Relational Algebra

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Relational Algebra: Relation

Relational Algebra: Relation

Relation is like a table except that each row must be unique like in a set

	<u>Name</u>	<u>Age</u>	<u>Home</u>
	Blackbur	5	None
	Kobayas	21	Rent
	Menchú	31	Rent
	Alvarez	42	Rent
	Tagore	50	Own

Relation

Relational Algebra: Attribute

Name	<u>Age</u>	<u>Home</u>	
Blackbu	5	None	
Kobayas	21	Rent	
Menchú	31	Rent	
Alvarez	42	Rent	
Tagore	50	Own	
Attribute			

Relational Algebra: Attribute

<u>Name</u>		<u>Age</u>		<u>Home</u>	
Blackbu	_	5		None	
Kobayas		21		Rent	
Menchú		31		Rent	
Alvarez		42		Rent	
Tagore		50		Own	
Attribute					

Attribute:

Must be of the same data type. Have a name

Relational Algebra: Tuple

	<u>Name</u>	<u>Age</u>	<u>Home</u>	
_	Blackbur	5	None	
	Kobayas	21	Rent	tuple
	Menchú	31 Rent		
	Alvarez	42	Rent	
	Tagore	50 Own	Own	

Relational Algebra: Tuple

tuple from: single, double, triple,quadruple, quintuplearity from: unary, binary, ternary

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

tuple with arity of 3

Relational Algebra: Operands and Simple Operations

- >Operand
 - –Relation (Table)
- >Operations
 - **-UNION**
 - -INTERSECT
 - -PROJECT
 - -SELECT
 - -PRODUCT
 - -DIVISION

Union Operation

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Combine Relations

Name	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

SQL Statement:

SELECT * FROM MyTableR UNION SELECT * FROM MyTableS

Relational Algebra Union:

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Relational Algebra Union:

Intersect Operation

	<u>Name</u>	<u>Age</u>	<u>Home</u>
	Blackbur	5	None
	Kobayas	21	Rent
,	Menchú	31	Rent
	Tagore	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Tagore	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Tagore	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

	<u>Name</u>	<u>Age</u>	<u>Home</u>
	Blackbur	5	None
	Kobayas	21	Rent
/	Menchú	31	Rent
	Tagore	50	Own

SQL Statement:
SELECT * FROM MyTableR
INTERSECT
SELECT * FROM MyTableS

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

NameAgeHomeBlackbur5NoneKobayas21RentMenchú31RentTagore50Own

Name	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Same Rows

NameAgeHomeMenchú31RentTagore50Own

Relational Algebra Intersection: $R \cap S$

Relational Algebra: Examples

-R **u** S

>SELECT * FROM MyTableR UNION SELECT * FROM MyTableS

-SELECT * FROM MyTableS UNION SELECT * FROM MyTableR

> RUS or SUR

 $-R \cap S$

>SELECT * FROM MyTableR INTERSECT SELECT * FROM MyTableS

-SELECT * FROM MyTableS INTERSECT SELECT * FROM MyTableR

 $>R \cap S$ or $S \cap R$

Relational Algebra: Examples

-In General:

- >An operation with **u** or **n** produces a relation
- >RUS=SUR
- $>R \cap S = S \cap R$
- $>(R \cup S) \cap T = (R \cap T) \cup (S \cap T)$
- $>(R \cap S) \cup T = (R \cup T) \cap (S \cup T)$

Relational Algebra Operations

So far:

- Union
- Intersect

Coming up:

- Project
- Select
- Product
- Join
- Division

Project Operation

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbu	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Vertical partition

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbu	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Vertical partition

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home

R: MyTable

SQL Statement: SELECT Age, Home FROM MyTable

Name	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

Vertical partition

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home

R: MyTable

ING EDUCATION

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own
	<u> </u>	

<u>Age</u>	<u>Home</u>
5	None
21	Rent
31	Rent
42	Rent
50	Own

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home R: MyTable

ING EDUCATION

	<u>Name</u>		<u>Age</u>	<u>Home</u>
	Blackbu		5	None
	Kobayas	,	21	Rent
	Menchú		31	Rent
	Alvarez		42	Rent
	Tagore		50	Own

<u>Age</u>	<u>Home</u>	
5	None	
21	Rent	
31	Rent	
42	Rent	
50	Own	

The result of a projection is a relation with 0 to n attributes where n is the number of attributes in the operand

Relational Algebra Project:

$$\pi_{c1, c2, ..., cn}(R)$$
 where

c1, c2, ..., cn: Age, Home

R: MyTable

ING EDUCATION

Select Operation

Relational Algebra: Examples

- $o \pi_{Age,Home}(R)$
 - >SELECT Age, Home FROM MyTable

- o $\sigma_{\text{Home="Rent"}}(R)$
 - >SELECT * FROM MyTable WHERE Home = "Rent"

- \circ $\pi_{Age,Home}(\sigma_{Home="Rent"}(R))$ or $\sigma_{Home="Rent"}(\pi_{Age,Home}(R))$
 - >SELECT Age, Home FROM MyTable WHERE Home
 - = "Rent"

Relational Algebra: Examples

-In General:

- >An operation with σ produces a relation
- >An operation with π produces a relation
- $> \sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R))$
- > $\pi_{[c1]}(\pi_{[c2]}(R)) \neq \pi_{[c2]}(\pi_{[c1]}(R))$ (except if c1 = c2 because c1 \subset c2 and c2 \supset c1)
- $>\pi_{[c]}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{[c]}(R))$ (only if columns in φ are also in [c])

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackbur	5	None
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Tagore	50	Own

	<u>Name</u>	<u>Age</u>	<u>Home</u>
_	Blackbur	5	None
	Kobayas	21	Rent
	Menchú	31	Rent
	Alvarez	42	Rent
L	Tagore	50	Own

Horizontal partition

Relational Algebra Select: $\sigma_{\phi}(R)$ where

φ: Home = "Rent"

R: MyTable

SQL Statement:
SELECT * FROM MyTable WHERE
Home = "Rent"

	<u>Name</u>	<u>Age</u>	<u>Home</u>
	Blackbur	5	None
	Kobayas	21	Rent
	Menchú	31	Rent
	Alvarez	42	Rent
	Tagore	50	Own

Horizontal partition

Relational Algebra Select: $\sigma_{\phi}(R)$ where

φ: Home = "Rent"

R: MyTable

	<u>Name</u>	<u>Age</u>	<u>Home</u>
	Blackbur	5	None
	Kobayas	21	Rent
	Menchú	31	Rent
	Alvarez	42	Rent
	Tagore	50	Own

<u>Name</u>	Age Home	
Kobayas	21	Rent
Menchú	31	Rent
Alvarez	42	Rent

The result of a selection is a relation with 0 to n tuples where n is the number of tuples in the operand

Relational Algebra Select: $\sigma_{\phi}(R)$ where

φ: Home = "Rent"

R: MyTable

Product Operation

SQL Statement: SELECT * FROM TableR, TableS

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION

WASHINGTON

	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5	Menchú	Rent
	Blackbur	5	Alvarez	Rent
	Blackbur	5	Tagore	Own
ì				
	Kobayas	21	Menchú	Rent
	Kobayas	21	Alvarez	Rent
	Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION

WASHINGTON

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION
WASHINGTON

RXS

Combine Rows

<u>Name</u>	<u>Age</u>	
Blackbur	5	
Kobayas	21	

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

NAL & CONTINUING EDUCATION
WASHINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

Combine Rows

The result of a product is a relation with n*m tuples where n and m are the number of tuples in the operands. The arity of the result is i + j where i and j are the arities of the operands.

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Tagore	Own

Relational Algebra Product: R X S

Kobayas

Combine Rows

The result of a product is a relation with n*m tuples where n and m are the number of tuples in the operands. The arity of the result is i + j where i and j are the arities of the operands.

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

21

Relational Algebra Product: R X S

Tagore

Own

Join Operation

>A Join is a Product with a select statement

> Product followed by Select

- >SELECT * FROM TableR, TableS WHERE Home = "Rent"
- $> \sigma_{\varphi}(R \times S)$ where φ : Home = "Rent"

-JOIN

- >SELECT * FROM TableR JOIN TableS ON Home = "Rent"
- > R \bowtie_{ω} S where φ : Home = "Rent"

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Tagore	Own

Relational Algebra Product with Select: $\sigma_{\phi}(R \ X \ S \)$ where ϕ : Home = "Rent" Relational Algebra Join:

R \bowtie_{φ} S where φ : Home = "Rent"

& CONTINUING EDUCATION
HINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

•	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5	Menchú	Rent
	Kobayas	21	Menchú	Rent
	Blackbur	5	Alvarez	Rent
	Kobayas	21	Alvarez	Rent
	Blackbur	5	Tagore	Own
	Kobayas	21	Tagore	Own

Relational Algebra Product with Select: $\sigma_{\phi}(R \ X \ S \)$ where ϕ : Home = "Rent" Relational Algebra Join:

R \bowtie_{σ} S where φ : Home = "Rent"

& CONTINUING EDUCATION HINGTON

Combine Rows

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	<u>Name</u> <u>2</u>	<u>Home</u>
Blackbur	5	Menchú	Rent
Kobayas	21	Menchú	Rent
Blackbur	5	Alvarez	Rent
Kobayas	21	Alvarez	Rent

Relational Algebra Product with Select: $\sigma_{\phi}(R \ X \ S \)$ where ϕ : Home = "Rent" Relational Algebra Join:

R \bowtie_{σ} S where φ : Home = "Rent"

Relational Algebra Operations

So far:

- Union
- Intersect
- Project
- Select
- Product
- Join

Coming up:

Division

Division Operation

This was a Product Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

A Division is sort of like the reverse of a Product

This was a Product Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

T		
Name 2	<u>Home</u>	
Menchú	Rent	
Alvarez	Rent	
Tagore	Own	

L	<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Е	Blackbur	5	Menchú	Rent
В	Blackbur	5	Alvarez	Rent
В	Blackbur	5	Tagore	Own
k	Kobayas	21	Menchú	Rent
k	Kobayas	21	Alvarez	Rent
k	Kobayas	21	Tagore	Own

A Division is sort of like the reverse of a Product

This was a Product Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own

This was a Product Operand

Relational Algebra Division: R ÷ S

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

NAL & CONTINUING EDUCATION

WASHINGTON

<u>Name</u>	<u>Age</u>	
Blackbur	5	
Kobayas	21	
→		

Relational Algebra Division: R ÷ S

[Menchú, Rent] is in the same tuple as [Blackbur, 5] and [Kobayas, 21]

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

<u> </u>		
Name 2	<u>Home</u>	
Menchú	Rent	
Alvarez	Rent	
Tagore	Own	

<u>Name</u>	<u>Age</u>	<u>Name</u> <u>2</u>	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

[Alvarez, Rent] is in the same tuple as [Blackbur, 5] and [Kobayas, 21]

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Tagore	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackbur	5	Menchú	Rent
Blackbur	5	Alvarez	Rent
Blackbur	5	Tagore	Own
Kobayas	21	Menchú	Rent
Kobayas	21	Alvarez	Rent
Kobayas	21	Tagore	Own
Sancar	54	Tagore	Own

[Tagore, Own] is in the same tuple as [Blackbur, 5] and [Kobayas, 21]

<u>Name</u>	<u>Age</u>
Blackbur	5
Kobayas	21

Name 2	Home	
Menchú	Rent	
Alvarez	Rent	
Tagore	Own	

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>	
Blackbur	5	Menchú	Rent	
Blackbur	5	Alvarez	Rent	
Blackbur	5	Tagore	Own	
Kobayas	21	Menchú	Rent	
Kobayas	21	Alvarez	Rent	
Kobayas	21	Tagore	Own	
Sancar	54	Tagore	Own	

The result of a division is a relation with n tuples of arity I where the dividend operand has at least n*m tuples of arity i + j and the divisor operand has exactly m tuples of arity j that are a subset of the dividend tuples.

	<u>Name</u>	<u>Age</u>		<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
	Blackbur	5		Blackbur	5	Menchú	Rent
	Kobayas	21		Blackbur	5	Alvarez	Rent
Г				Blackbur	5	Tagore	Own
	Name 2	<u>Home</u>	←	Kobayas	21	Menchú	Rent
	Menchú	Rent		Kobayas	21	Alvarez	Rent
	Alvarez	Rent		Kobayas	21	Tagore	Own
	Tagore	Own		Sancar	54	Tagore	Own

Relational Algebra: Resources

Links for definitions and concepts:

- http://en.wikipedia.org/wiki/Cartesian_product
- http://en.wikipedia.org/wiki/Commutative_property
- http://en.wikipedia.org/wiki/Associative_property
- http://en.wikipedia.org/wiki/Closure_(mathematics)
- http://en.wikipedia.org/wiki/Relational_calculus
- http://en.wikipedia.org/wiki/Relational_algebra
- http://en.wikipedia.org/wiki/Edgar_F._Codd
- http://en.wikipedia.org/wiki/Relational_model
- http://en.wikipedia.org/wiki/Relational_database
- http://en.wikipedia.org/wiki/Query_language

Summary

- Table = Part of a Database
- Relation = Table with unique rows
- Attribute = Column in a table relation
 - –Arity number of columns
- Tuple = Row in the table relation
- Math operations on a Relation
 - -Union, Intersect, Project, Select, Join
 - -Product, Division

Relational Algebra

The theory behind Relational Databases