ANALITICA DE DATOS CON INTELIGENCIA ARTIFICIAL

Conceptos de estadistica y analitica

Universidad de los Andes

2025

Juan Carlos Vega, M.Sc.

🗸 📌 Introducción a la selección y extracción de características

En problemas de **aprendizaje automático y modelado predictivo**, no todas las variables disponibles aportan información útil. Algunas pueden ser **irrelevantes**, **redundantes o incluso introducir ruido**, lo cual afecta la capacidad del modelo para generalizar.

Por eso existen dos enfoques fundamentales:

- Selección de características (Feature Selection): consiste en elegir un subconjunto de las variables originales que mejoran el rendimiento del modelo sin perder información esencial.
 - Ejemplos: RFE (Recursive Feature Elimination), búsqueda exhaustiva, regularización con Lasso.
- Extracción de características (Feature Extraction): consiste en transformar las variables originales en nuevas representaciones más compactas y útiles, preservando la información más relevante.
 Ejemplos: PCA (Análisis de Componentes Principales), Autoencoders.

Estos métodos ayudan a:

- Reducir la dimensionalidad y el costo computacional.
- Evitar el overfitting.
- Mejorar la interpretabilidad del modelo.
- Destacar la información más relevante de los datos.

En este capítulo veremos técnicas clave como RFE, búsqueda exhaustiva, regresión Lasso y Ridge, analizando cómo funcionan, sus ventajas, limitaciones y cuándo conviene aplicarlas.

Description PCA vs LCA

Característica	PCA (Principal Component Analysis)	LCA (Late
Tipo de técnica	Reducción de dimensionalidad (análisis factorial, método lineal).	Modelado probabilístico (clasificación n
Objetivo principal	Encontrar combinaciones lineales de variables (componentes principales) que expliquen la mayor varianza.	Identificar clases/categorías ocultas (r
Datos de entrada	Variables numéricas continuas, preferiblemente correlacionadas.	Variables categóricas (aunque también :
Salida	Nuevas variables continuas (componentes), ordenadas por importancia (varianza explicada).	Probabilidades de pertenencia de cada
Supuesto clave	Las relaciones importantes se capturan en la varianza lineal de los datos.	Los individuos pertenecen a un número
Interpretación	Difícil: cada componente es combinación de muchas variables.	Más interpretativo: cada clase suele corı
Aplicaciones típicas	- Reducción de dimensionalidad antes de ML. - Compresión de imágenes. - Análísis de señales o genómica. - Eliminar colinealidad.	 - Psicología y ciencias sociales. - Segmentación de clientes. - Educación (perfiles de estudiantes). - Epidemiología (subpoblaciones).
Cuándo usarlo	Cuando tienes muchas variables continuas y quieres resumirlas en menos dimensiones sin perder demasiada información.	Cuando sospechas que existen subgrur

En resumen:

PCA → te da nuevas variables continuas (componentes) que resumen la información.

LCA → te da clases ocultas (clusters probabilísticos) a las que cada individuo pertenece con cierta probabilidad.

👉 Si quieres reducir dimensionalidad de features, usa PCA. 👉 Si quieres segmentar la población en perfiles ocultos, usa LCA.

Comparación de tipos de correlación

Tipo de correlación	Qué mide	Datos apropiados	Rango/Salida	Supues
Pearson (r)	Fuerza y dirección de la relación lineal entre dos variables.	Continuas, distribuidas aproximadamente normal.	-1 a +1	Linealidad, homocedastici
Spearman (ρ)	Relación monótona (creciente o decreciente), basada en rangos.	Continuas u ordinales (no requiere normalidad).	-1 a +1	Relación monótona (no ne
Kendall (τ)	Concordancia de rangos entre dos variables.	Ordinales o continuas con pocos datos.	-1 a +1	Similar a Spearman pero m

Tipo de correlación	Qué mide	Datos apropiados	Rango/Salida	Supues
Phi (φ)	Asociación entre dos variables dicotómicas (binarias).	Categóricas binarias.	-1 a +1	Tablas 2x2.
Cramer's V	Asociación entre variables categóricas nominales (más de 2 clases).	Categóricas nominales.	0 a 1	Basado en chi-cuadrado.
Point-Biserial (r_pb)	Correlación entre una variable continua y una binaria.	Continua + binaria.	-1 a +1	Variable binaria codificada

Resumen rápido:

- Pearson: datos continuos, relación lineal.
- Spearman / Kendall: datos ordinales o no normales, relación monótona.
- Phi / Cramer's V: datos categóricos.
- Point-Biserial: una continua + una binaria.

Correlación vs. Correlación Cruzada

Concepto	Definición	
Correlación (clásica)	Mide el grado de relación (lineal, monótona, ordinal) entre dos variables en un mismo instante o conjunto de observaciones.	Esta
Correlación cruzada	Extiende la correlación considerando desplazamientos temporales (lags) entre dos series. Evalúa cómo se relaciona una serie con otra en diferentes retardos.	Ser

Detalles clave de la correlación cruzada

- Se calcula como: [C_{xy}(k) = \sum_t x(t) \cdot y(t+k)] donde (k) es el desplazamiento temporal (lag).
- Si el valor máximo ocurre en (k=+3), significa que la serie (x) se adelanta 3 pasos respecto a (y).
- Es muy usada para:
 - Identificar relaciones de causa/efecto temporal.
 - o Alinear señales (ej. en sismología o procesamiento de audio).
 - Predecir variables con rezago (ej. series económicas).

Resumen rápido

- Correlación simple: mide la relación instantánea entre dos variables.
- Correlación cruzada: mide la relación cuando una variable puede estar desfasada en el tiempo respecto a la otra.
- ← Usa correlación simple si tus datos no tienen orden temporal.
- 👉 Usa correlación cruzada si trabajas con series temporales o señales y sospechas que la dependencia aparece con retraso.

Autocorrelación

Concepto	Definición	Uso principal	
Autocorrelación	Es la correlación de una serie consigo misma en diferentes desplazamientos temporales (lags).	Detectar patrones repetitivos o dependencias temporales.	Ver si la dema

Detalles clave

- Matemáticamente es un caso especial de la **correlación cruzada** donde (x = y).
- Se calcula como: [R_{xx}(k) = \sum_t x(t) \cdot x(t+k)]
- Útil para:
 - Identificar estacionalidad o periodicidad en series (ej. patrones diarios, semanales, anuales).
 - Ver cuánto dura la "memoria" de una serie (ej. procesos AR en estadística).
 - o Diagnóstico en modelos de series temporales (ej. usar ACF y PACF en ARIMA).

Relación con otros conceptos

- Correlación simple: compara dos variables al mismo tiempo.
- Correlación cruzada: compara dos series en diferentes retardos.
- Autocorrelación: compara una sola serie consigo misma en distintos retardos.

Resumen rápido

- Si quieres saber cómo dos variables se relacionan → usa correlación.
- Si quieres saber si una variable "influye con retraso" en otra ightarrow usa $\operatorname{\textbf{correlación cruzada}}$.
- Si quieres saber si una variable depende de su propio pasado ightarrow usa $\operatorname{autocorrelaci\'on}$.

Correlación parcial

* Definición

La correlación parcial mide la relación entre dos variables controlando el efecto de una o más variables adicionales.

Es decir, evalúa cuánto se relacionan dos variables de forma **directa**, eliminando la influencia de terceras variables que puedan estar introduciendo dependencia.

Diferencia con la correlación simple

- Correlación simple: mide la asociación total entre X e Y (incluyendo efectos de otras variables).
- Correlación parcial: mide solo la asociación residual, después de eliminar el efecto de otras variables Z.

Ejemplo:

Si medimos ejercicio (X) y peso corporal (Y), puede que estén correlacionados.

Pero al controlar por **ingesta calórica (Z)**, la correlación parcial entre ejercicio y peso podría ser menor, mostrando que la dieta explica gran parte de la relación.

📌 En series temporales

En análisis de series, la función de autocorrelación parcial (PACF) es fundamental:

- ACF (Autocorrelación): muestra la correlación de una serie consigo misma en diferentes retardos, pero incluye efectos indirectos.
- PACF (Autocorrelación parcial): muestra la correlación directa entre la serie y su retardo, eliminando la influencia de retardos intermedios.
- 👉 Por eso, en modelos **AR(p)** se usa la PACF para identificar el orden (p).

📌 Interpretación en PACF

- Si el PACF muestra un corte abrupto después del lag (p) → sugiere un modelo AR(p).
- Si el PACF decae gradualmente → el proceso puede ser más complejo (ej. mixto ARMA).

En resumen

- Correlación parcial: mide la relación directa entre dos variables controlando otras.
- PACF en series: herramienta clave para seleccionar el número de retardos en modelos AR/ARIMA.
- Complementa a la ACF, que muestra las correlaciones totales (directas + indirectas).

```
Requirement already satisfied: statsmodels in /usr/local/lib/python3.12/dist-packages (0.14.5)
Requirement already satisfied: numpy<3,>=1.22.3 in /usr/local/lib/python3.12/dist-packages (from statsmodels) (2.0.2)
Requirement already satisfied: scipy!=1.9.2,>=1.8 in /usr/local/lib/python3.12/dist-packages (from statsmodels) (1.16.1)
Requirement already satisfied: pandas!=2.1.0,>=1.4 in /usr/local/lib/python3.12/dist-packages (from statsmodels) (2.2.2)
Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.12/dist-packages (from statsmodels) (1.0.1)
Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.12/dist-packages (from statsmodels) (25.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.12/dist-packages (from pandas!=2.1.0,>=1.4->statsmocent Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas!=2.1.0,>=1.4->statsmodels) (202
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->pandas!=2.1.0,>=1.4->statsmodels) (2
Requirement already satisfied: six>=1.5 in /usr/local/lib/pyt
```

```
import numpy as np
import pandas as pd

# Semilla para reproducibilidad
rng = np.random.default_rng(42)

# Serie AR(2): y_t = 0.6 y_{t-1} - 0.3 y_{t-2} + ruido
n = 500
y = np.zeros(n)
noise = rng.normal(0, 1, size=n)
for t in range(2, n):
    y[t] = 0.6*y[t-1] - 0.3*y[t-2] + noise[t]

# Si ya tienes tu serie como pandas.Series, usa:
# y = tu_serie.values.astype(float)
```

calculo numerico de ACF y PACF

```
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

# ACF AUTOCORRELACION
fig1 = plot_acf(y, lags=nlags, zero=False)
plt.title("ACF")
plt.show()

# PACF AUTOCORRELACION PARCIAL
fig2 = plot_pacf(y, lags=nlags, zero=False, method='yw')
plt.title("PACF")
plt.show()
```



```
lags = np.arange(-max_lag, max_lag+1)
    corrs = []
    x = (x - x.mean())/x.std()
   y = (y - y.mean())/y.std()
    for k in lags:
        if k < 0:
           corrs.append(np.corrcoef(x[-k:], y[:len(y)+k])[0,1])
           corrs.append(np.corrcoef(x[:len(x)-k], y[k:])[0,1])
            corrs.append(np.corrcoef(x, y)[0,1])
    idx = int(np.nanargmax(np.abs(corrs)))
    return lags[idx], corrs[idx], lags, np.array(corrs)
# Demo con la misma y + ruido desplazada
y2 = np.roll(y, 3) + 0.1*np.random.randn(len(y)) # y adelantada 3 pasos
best_lag, best_corr, lags, corrs = xcorr_lag(y, y2, max_lag=24)
print(f"Mejor lag: {best_lag} | correlación: {best_corr:.3f}")
Mejor lag: 3 | correlación: 0.997
```

Descomposición y pruebas de estacionariedad en series temporales

Descomposición de series

La descomposición consiste en separar una serie temporal en sus componentes básicos:

- 1. **Tendencia (T)** → movimiento de largo plazo (creciente, decreciente o estable).
- 2. Estacionalidad (S) → patrones que se repiten en intervalos fijos (diario, semanal, anual).
- 3. Componente aleatoria o residual (R) → variaciones no explicadas (ruido).

Se expresa como:

· Modelo aditivo:

$$[Yt = Tt + St + Rt]$$

Modelo multiplicativo:

👉 Sirve para entender la estructura de la serie y elegir mejor el modelo de predicción.

* Estacionariedad

Una serie es estacionaria cuando sus propiedades estadísticas no cambian en el tiempo:

- · Media constante.
- · Varianza constante.
- Autocorrelación estable en todos los periodos.

Por qué importa:

- · Modelos clásicos como AR, MA, ARIMA requieren estacionariedad para funcionar correctamente.
- La estacionariedad permite que las relaciones pasadas sean válidas para el futuro.

Pruebas de estacionariedad

Las más usadas son:

- ADF (Augmented Dickey-Fuller): HO = la serie tiene raíz unitaria (no es estacionaria).
- KPSS (Kwiatkowski-Phillips-Schmidt-Shin): H0 = la serie es estacionaria.
- Phillips-Perron: variante robusta para correlación serial y heterocedasticidad.
- ← Lo ideal es usar más de una prueba para confirmar.

🖈 Relación entre ambos pasos

- · La descomposición te da una idea visual de qué parte de la serie se debe eliminar o modelar (tendencia/estacionalidad).
- Las **pruebas de estacionariedad** te dicen si después de quitar esas partes (o aplicar transformaciones como diferenciación) tu serie queda lista para modelarse.

En resumen

- **Descomposición** → entender la estructura (tendencia, estacionalidad, ruido).
- Pruebas de estacionariedad → confirmar si la serie puede ser modelada directamente o requiere transformaciones (ej. diferenciación).
- Ambos pasos son la base para decidir entre usar modelos estadísticos (ARIMA/ETS) o más flexibles como LSTM/Transformers.

Selección y extracción de características (Feature Selection & Extraction)

1) Conceptos clave

- Selección de características: eliges un subconjunto de variables originales (no las transformas).
- Extracción de características: transformas las variables para crear nuevas representaciones (ej. PCA, Autoencoders).

2) Mapa rápido de técnicas (qué son y cuándo usarlas)

Tecnica	Tipo	Idea central	Pros
RFE (Recursive Feature Elimination)	Wrapper	Entrena un modelo, elimina las características menos importantes y repite hasta quedarte con k	Buena para modelos lineales/árboles; s
Búsqueda exhaustiva (Best Subset)	Wrapper	Prueba todas las combinaciones y elige la mejor según CV/AIC/BIC	Óptimo global (según criterio)

Técnica	Tipo	Idea central	Pros
Forward/Backward/Stepw	ise Wrapper	Agrega (forward) o elimina (backward) de a una feature	Mucho más rápido que exhaustiva
Lasso (L1)	Embedded	Penaliza	coef
Ridge (L2)	Embedded	Penaliza	coef
PCA	Extracción	Componentes lineales que maximizan varianza	Reduce dimensión, quita colinealidad
Autoencoders	Extracción	Reducción no lineal aprendida	Capta patrones complejos

3) RFE — Recursive Feature Elimination

Qué hace: usa un modelo base (p.ej. LinearRegression), (LogisticRegression), (RandomForest)) para puntuar features, elimina las peores y repite hasta llegar a n_features_to_select).

Ventajas: resultado interpretable (subset real), aprovecha conocimiento del modelo.

Cuidado: data leakage → haz RFE dentro de un Pipeline y valida con CV.

Ejemplo (scikit-learn):

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import RFE
from sklearn.linear_model import Lasso
from sklearn.model_selection import cross_val_score, KFold

pipe = Pipeline([
    ('scaler', StandardScaler()),
        ('rfe', RFE(estimator=Lasso(alpha=0.01, max_iter=10000), n_features_to_select=10)),
        ('model', Lasso(alpha=0.01, max_iter=10000))
])

cv = KFold(n_splits=5, shuffle=True, random_state=42)
scores = cross_val_score(pipe, X, y, cv=cv, scoring='neg_mean_squared_error')
print("MSE CV:", -scores.mean())
```

4) Búsqueda exhaustiva / Secuencial

Exhaustiva (Best Subset): evalúa todas las combinaciones. Ideal si P es pequeño y buscas "lo mejor" según un criterio (AIC/BIC/CV). Alternativa práctica: Forward/Backward/Stepwise con SequentialFeatureSelector (scikit-learn).

Ejemplo (Forward Selection con CV):

```
from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.linear_model import Ridge
from sklearn.model_selection import TimeSeriesSplit # si es serie temporal

est = Ridge(alpha=1.0)
sfs = SequentialFeatureSelector(
    est, n_features_to_select=12, direction='forward', scoring='neg_mean_squared_error', cv=5
)
sfs.fit(X, y)

mask = sfs.get_support()
selected_features = X.columns[mask] # si X es DataFrame
print(selected_features)
```

Guía de decisión rápida

Pocas features (P < 25) y quieres rigor → Exhaustiva (o Stepwise bien hecho).

Muchas features y quieres subset interpretable → RFE (con un buen estimador) o Lasso.

Colinealidad fuerte → Ridge (estabilidad) o Elastic Net (si además quieres selección).

Modelo final es árbol/boosting → muchas veces no necesitas selección explícita; usa feature importance y/o max_depth, min_child_weight, etc.

Series temporales → usa TimeSeriesSplit, evita fuga temporal y no mezcles futuro en el escalado/selección.

Selección vs Extracción

RECETARIO

```
# Ejemplo: PCA+Lasso en pipeline con TimeSeriesSplit
from sklearn.decomposition import PCA
from sklearn.linear_model import LassoCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline # Import Pipeline
from sklearn.model_selection import TimeSeriesSplit # Import TimeSeriesSplit
import numpy as np # Import numpy for creating dummy data
# Define tscv
tscv = TimeSeriesSplit(n_splits=5)
# Create dummy data for X and y
X = np.random.rand(100, 10) # 100 samples, 10 features
y = np.random.rand(100) # 100 samples
pipe_pca_lasso = Pipeline([
    ('scaler', StandardScaler()),
    ('pca', PCA(n_components=0.95)),
    ('lasso', LassoCV(cv=tscv, n_jobs=-1, max_iter=10000))
pipe_pca_lasso.fit(X, y)
print("n comps PCA:", pipe_pca_lasso.named_steps['pca'].n_components_)
print("alpha* Lasso:", pipe_pca_lasso.named_steps['lasso'].alpha_)
n comps PCA: 10
alpha* Lasso: 0.0512146679472811
```

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
import statsmodels.api as sm
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LassoCV
from sklearn.model selection import TimeSeriesSplit
# Reusa tu pipe y tscv ya definidos
# pipe_pca_lasso = Pipeline([...])
# tscv = TimeSeriesSplit(n_splits=5)
# Toma la última partición temporal como "validación final"
splits = list(tscv.split(X))
train_idx, val_idx = splits[-1]
pipe pca lasso.fit(X[train idx], y[train idx])
y_val_pred = pipe_pca_lasso.predict(X[val_idx])
def diag_plot(y_true, y_pred, title="Diagnóstico"):
   resid = y_true - y_pred
    fig, ax = plt.subplots(1, 3, figsize=(15, 4))
   ax[0].scatter(y_true, y_pred, s=10)
   ax[0].plot([y\_true.min(), y\_true.max()], [y\_true.min(), y\_true.max()], 'k--')
   ax[0].set_title("Real vs Pred")
   ax[1].hist(resid, bins=30, density=True)
   ax[1].set_title("Hist residuales")
    sm.qqplot(resid, line='s', ax=ax[2])
   ax[2].set_title("Q-Q residuales")
   plt.suptitle(title)
   plt.tight_layout()
   plt.show()
diag_plot(y[val_idx], y_val_pred, title="Diagnóstico (TimeSeriesSplit 00S)")
```


1. Real vs Pred (izquierda)

Qué muestra: los valores reales (y_true) en el eje X contra las predicciones (y_pred) en el eje Y.

La línea negra es la bisectriz (y = x), donde caerían los puntos si el modelo predijera perfecto.

Interpretación del gráfico:

Tus predicciones están casi todas alrededor de un valor constante → parece que el modelo no está capturando la variabilidad real.

En proyecto: aquí señalas si el modelo "se ajusta bien" o si tiende a subestimar/sobreestimar.

2. Histograma de residuales (centro)

Qué muestra: distribución de los errores (resid = y_true - y_pred).

Lo ideal: que sea simétrica, centrada en 0, sin sesgos fuertes.

Interpretación del gráfico:

Los residuales no parecen centrados exactamente en 0 (se concentran entre -0.4 y -0.2).

Eso indica un sesgo sistemático: el modelo tiende a equivocarse hacia un lado.

3. Q-Q plot de residuales (derecha)

Qué muestra: compara la distribución de los residuales contra una normal teórica.

Lo ideal: los puntos deberían caer cerca de la línea roja → significa que los errores son aproximadamente normales.

Interpretación del gráfico:

**Hay curvatura clara: **los residuales no siguen bien una normal.

Esto sugiere que el supuesto de normalidad no se cumple (algo esperable si el modelo no está ajustando bien).

→ ¿Qué es PCA + Lasso en pipeline?

1. PCA (Principal Component Analysis)

- Qué hace: reduce la dimensionalidad, condensando la información de muchas variables en unas pocas componentes principales
 que capturan la mayor parte de la varianza.
- · Para qué sirve:
 - Quita colinealidad entre variables.
 - Reduce ruido.
 - · Acelera el entrenamiento.

2. Lasso (L1 Regularization)

- Qué hace: es una regresión penalizada que fuerza algunos coeficientes a cero → actúa como selección automática de características.
- · Para qué sirve:
 - · Evita sobreajuste (overfitting).
 - · Identifica qué variables son realmente importantes.
 - · Hace que el modelo sea más interpretable.

3. El pipeline completo

```
pipe_pca_lasso = Pipeline([
    ('scaler', StandardScaler()),  # estandariza (necesario para PCA y Lasso)
    ('pca', PCA(n_components=0.95)),  # conserva 95% de la varianza
    ('lasso', LassoCV(cv=tscv))  # selecciona alpha óptimo y elimina ruido
])
```

Flujo:

Datos crudos → escalado → reducción de dimensionalidad (PCA) → selección y regularización (Lasso).

Validación: usar TimeSeriesSplit, que es lo correcto en series temporales (no mezclas futuro en entrenamiento).

☑ ¿Por qué es una "receta ganadora"?

Porque combina extracción (PCA) y selección (Lasso).

Quita redundancia y ruido antes de entrenar.

Se adapta bien a datasets con muchas variables correlacionadas y series temporales.

El alpha* que devuelve Lasso y el n_components que devuelve PCA son interpretables: puedes decir cuántas dimensiones y qué nivel de regularización resultaron óptimos.

Recetas ganadoras para predicción / forecast en series temporales

1) Feature Engineering + Regularización

- Receta: crear features rezagadas (lags), medias móviles, diferencias y variables de calendario (hora, día, mes, festivo, etc.).
- Modelo: Ridge / Lasso / ElasticNet.
- Cuándo usarla: cuando hay mucha correlación temporal pero también estacionalidad.
- Extra: usar TimeSeriesSplit o WalkForwardValidation.

2) RFE + Árboles (RandomForest o Gradient Boosting)

- Receta: usar RFE (Recursive Feature Elimination) o feature importance de árboles para reducir features → entrenar con XGBoost / LightGBM / CatBoost.
- Cuándo usarla: datasets grandes con muchas variables exógenas (clima, economía, sensores).
- Ganancia: árboles capturan relaciones no lineales y manejan outliers sin problema.

3) PCA/Autoencoders + Red Neuronal

- Receta: compresión de alta dimensión (PCA lineal o Autoencoder no lineal) → luego LSTM, GRU o Transformer.
- · Cuándo usarla: cuando hay muchísimas variables correlacionadas (ej. datos energéticos, financieros, sensores IoT).
- · Ganancia: menos ruido y entrenamiento más estable.

4) Ensembling (Combinación de modelos)

- Receta: combinar modelos lineales + árboles + redes.
 Ejemplo: promedio ponderado de ARIMA, XGBoost y LSTM.
- Cuándo usarla: cuando un solo modelo no domina; útil en competiciones Kaggle.
- Ganancia: reduce varianza, mejora robustez.

5) Modelos clásicos + ML híbrido

- Receta: ajustar un ARIMA / ETS para capturar tendencia y estacionalidad → usar ML (XGBoost, NN) sobre los residuales.
- Cuándo usarla: cuando la serie tiene patrón clásico + señales no lineales en los residuales.
- Ganancia: cada parte del modelo ataca un componente distinto.

6) Clustering + Forecast

- Receta: agrupar series similares (ej. k-means sobre perfiles normalizados) → entrenar un modelo por clúster.
- Cuándo usarla: paneles de series (ej. múltiples clientes, estaciones meteorológicas).
- · Ganancia: modelos más específicos y precisos.

7) Deep Learning puro

- · Opciones:
 - LSTM / GRU: para dependencias largas.
 - Temporal Convolutional Networks (TCN): capturan dependencias temporales con convoluciones.
 - Transformers (Attention): muy potentes para multivariadas largas.
- Cuándo usarla: gran cantidad de datos, relaciones no lineales y dependencias largas.
- Ganancia: precisión SOTA en forecasting complejo.

8) Stacking con metamodelo

- Receta: entrenar varios modelos base (ARIMA, XGB, LSTM) → sus predicciones se usan como input de un metamodelo (ej. Ridge o NN pequeña).
- Cuándo usarla: datasets ricos y tiempo de cómputo disponible.
- Ganancia: saca lo mejor de cada modelo.

Estrategias para predicción y forecast — Comparativa

Estrategia	Descripción	Venta
Feature Engineering + Regularización (Ridge/Lasso/ElasticNet)	Crear lags, medias móviles, estacionalidad y ajustar un modelo lineal regularizado.	Simple, interpretable, evita sobreajus
RFE + Árboles (RandomForest, XGBoost, LightGBM, CatBoost)	Selección de variables (RFE o feature importance) y luego boosting/bagging.	Maneja no linealidad, robusto a outlic
PCA/Autoencoder + LSTM/GRU	Reducir dimensionalidad con PCA/Autoencoder y alimentar a una red recurrente.	Quita ruido y colinealidad, capta dep
Ensembling (promedio/ponderado)	Combinar varios modelos y promediar sus predicciones.	Reduce varianza, mejora robustez, si
Híbrido ARIMA + ML en residuales	ARIMA para tendencia/estacionalidad, ML para residuales.	Aprovecha fortalezas de ambos mun
Clustering + Forecast	Agrupar series similares (ej. k-means) y entrenar por clúster.	Modelos más específicos y precisos,
Deep Learning (LSTM, GRU, TCN, Transformers)	Redes recurrentes, convolucionales o basadas en atención.	Capturan dependencias largas y no l
Stacking con metamodelo	Entrenar varios modelos base y combinar con un metamodelo (ej. Ridge).	Saca lo mejor de cada modelo, flexib

```
# Instalar graphviz (si no está)
!apt-get -qq install graphviz
!pip install graphviz
from graphviz import Digraph
dot = Digraph(comment="Receta de Estrategia Forecast")
dot.attr(rankdir='TB', size='8')
# Nodos principales
dot.node('A', '¿Cantidad de datos disponibles?')
dot.node('B', 'Pocos (<1000 obs)\n→ Modelos clásicos')</pre>
dot.node('C', 'Muchos (>1000 obs)\n→ Modelos avanzados')
dot.edge('A', 'B', label='Pocos')
dot.edge('A', 'C', label='Muchos')
# Rama Modelos clásicos
dot.node('B1', 'ARIMA/ETS\n(patrón lineal y estacionalidad)')
dot.node('B2', 'Lasso/Ridge\n(si hay variables exógenas)')
dot.edge('B', 'B1')
dot.edge('B', 'B2')
# Rama Modelos avanzados
dot.node('D'. ':Muchas variables exógenas correlacionadas?')
```

```
dot.edge('C', 'D')
\verb|dot.node('E', 'PCA o Autoencoder + LSTM/GRU')| \\
dot.node('F', '¿Relaciones no lineales fuertes?')
dot.edge('D', 'E', label='Sí')
dot.edge('D', 'F', label='No')
dot.node('G', 'XGBoost / LightGBM / CatBoost')
dot.node('H', 'Ridge/Lasso con\nlags y medias móviles')
dot.edge('F', 'G', label='Sí')
dot.edge('F', 'H', label='No')
dot.node('I', '¿Quieres aún más precisión?')
dot.edge('G', 'I')
dot.node('J', 'Stacking / Ensembling')
dot.edge('I', 'J', label='Sí')
# Rama Deep Learning largo
dot.node('K', '¿Serie muy larga y compleja?')
dot.edge('E', 'K')
\verb|dot.node('L', 'Transformers / TCN')|\\
dot.node('M', 'LSTM / GRU')
dot.edge('K', 'L', label='Si')
dot.edge('K', 'M', label='No')
# Nodo final común
\verb|dot.node('Z', 'Diagn\'ostico de residuales \verb| (Asegurar buen ajuste)'||
for n in ['B1','B2','H','M','L','J']:
     dot.edge(n, 'Z')
# Mostrar en colab
dot.render('forecast_recipe.gv', view=True)
```