Universidade Federal de Santa Maria - UFSM

Centro de Tecnologia - CT

Curso de Engenharia de Computação

ELC1147 - Inteligência Artificial Aplicada ao Processamento de Sinais

Biomédicos

IDENTIFICAÇÃO DE ATIVIDADE FÍSICA ATRAVÉS DE MODELOS DE INTELIGÊNCIA ARTIFICIAL NO PROCESSAMENTO DE SINAIS DE ECG

Luis Felipe de Deus – felipe.deus@ecomp.ufsm.br Leonardo Ferreira - leonardoferreira@mail.ufsm.br Tiago Knorst – tiago.knorst@ecomp.ufsm.br

Agenda

- Introdução
- Objetivo
- Metodologia
- Desenvolvimento
- Resultados
- Conclusões

Introdução

Derivações Eletrocardiográficas

- Conforme o tipo de informação clínica necessária;
 Seis periféricas;
 Seis precordiais.

Introdução

Característica do sinal ECG

- Tipo de ondas;
- Intervalo R-R;
- Derivação I utilizada; Posicionamento dos eletrodos.

Fonte: Revista brasileira de cardiologia v17 n3.

Objetivo

- Detectar se um indivíduo está, ou não, em atividade física;
- Classe 1: Atividade;
- Classe o: Repouso.

Objetivo

Fluxograma de execução do projeto.

Hardware Utilizado

- Shield Olimex;
- Arduino Uno; Raspberry PI 3 model B+.

Método de Hamilton & Tompkins:

Método de Hamilton & Tompkins:

Método de Elgendi:

Fonte: (Elgendi, 2013).

Método de Elgendi:

Features utilizadas:

- Somente no domínio do tempo;
- Tempo de amostra;
- Custo computacional.

	Tabela de <i>Features</i> Utilizadas
Mean	Média do intervalo R-R
SDNN	Desvio Padrão do intervalo R-R
RMSSD	Raiz quadrada média do intervalo R-R
Median	Mediana do intervalo R-R
Var	Variância do intervalo R-R
Range	Maior variação do intervalo R-R
CVSD	Coeficiente de variação do intervalo R-R

Algoritmos de Aprendizado de Máquina Supervisionado:

- K-Nearest Neighbors (KNN);
- Random Forest.

K-Nearest Neighbors (KNN):

- Calcula para cada dado a ser classificado, a distância até os pontos do conjunto de treino;
- Elege à classe do novo dado por votação entre os K vizinhos;
- Utilizada a distância Euclidiana;
- K = 3 vizinhos.

Random Forest:

- Conjunto (*Ensemble*) de árvores de decisão;
- Utilizadas 100 árvores;
- Adiciona aleatoriedade ao modelo;
- Evita ou minimiza Overfitting.

Protocolo:

- 1 minuto de repouso;
- 2 minutos atividade física intensa;
- 2 minutos de recuperação.

Data Frame: Sete sinais de ECG obtidos dos autores

Extração de features:

- Janela móvel no sinal HRV;
- 1° ao 10° s1 | 2° ao 11° s2 | 3° ao 12° s3 ...

Frame de dados utilizado nos classificadores

Features	s1	s2	s3	sn	s3342
mean	0.777346	0.784846	0.785846		0.800180
sdnn	0.092493	0.081944	0.080988		0.027652
rmssd	0.074407	0.069519	0.067096		0.016400
sdsd	0.073906	0.069464	0.067039		0.016269
median	0.802513	0.802513	0.802513		0.802513
var	0.008555	0.006715	0.006559		0.000765
range	0.440007	0.345006	0.345006		0.100002
cvsd	0.095719	0.088577	0.085381		0.020496
activity	0	0	0		1

Exemplo de execução do *Random Forest* em Raspberry PI

```
RUNNING RANDOM FOREST ####
 ---- Accuracy: 0.980059820538
[[106 10]
  10 877]]
True Positive:
False Positive: 10
True Negative:
               106
False Negative:
                 10
              precision
                          recall f1-score
                                              support
        0.0
                  0.91
                             0.91
                                       0.91
                                                  116
                  0.99
                             0.99
                                       0.99
        1.0
                                                  887
    accuracy
                                       0.98
                                                 1003
  macro avg
                  0.95
                             0.95
                                       0.95
                                                 1003
weighted avg
                  0.98
                             0.98
                                       0.98
                                                 1003
AUC: 0.996
```

Exemplo de execução do KNN em Raspberry PI

	pi@raspberrypi: -	/Desktop/dev/ر	processing	_ = ×
### RUNNING K	(NN ####			4
Accuracy	/: 0.97906281	1565		
[[126 9]				
[12 856]]				
True Positive	e: 856			
False Positiv	/e: 9			
True Negative	e: 126			
False Negativ	/e: 12			
	precision	recall	f1-score	support
0.0	0.91	0.93	0.92	135
1.0	0.99	0.99	0.99	868
accuracy			0.98	1003
macro avg	0.95	0.96	0.96	1003
weighted avg	0.98	0.98	0.98	1003
AUC: 0.989				

Primeira análise:

- · Utilização de todas as features;
- · Janela de 10 pontos por amostra.

	Random Forest: Resultado da primeira análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.80	0.79	0.80	0.9444	873	30	114	28		
1	0.97	0.97	0.97							

	KNN: Resultado da primeira análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.88	0.78	0.82	0.9511	874	34	120	17		
1	0.96	0.98	0.97							

Importância das *features* usando como base a primeira análise:

Segunda análise:

- Utilização de três features (Mean, SDNN, RMSSD);
- Janela de 10 pontos por amostra.

	Random Forest: Resultado da segunda análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.83	0.76	0.79		0.0405 070	26	445	24		
1	0.96	0.97	0.97	0.9425	870	36	115	24		

	KNN: Resultado da segunda análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.71	0.80	0.75	0.0204	000	20	100	4E		
1	0.97	0.95	0.96	0.9301	863	28	109	45		

• Overfitting?

Overfitting?

- Novo sinal de ECG de um 4º indivíduo;
- Protocolo:
 - 3 minutos de repouso;
 - 12 minutos de atividade física moderada;
 - 3 minutos de recuperação.

Terceira análise:

- Utilização de três features (Mean, SDNN, RMSSD);
- Janela de 10 pontos por amostra;
- Indivíduo de teste diferente dos de treino.

	Random Forest: Resultado da terceira análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.70	0.78	0.74	0.0265	4704	50	404	70		
1	0.97	0.96	0.96	0.9365	1724	50	181	79		

	KNN: Resultado da terceira análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.54	0.73	0.62	0.0007	4004	60	100	140		
1	0.96	0.92	0.94	0.8997	1661	62	169	142		

 Tamanho da janela aumenta ou diminui o desempenho?

Quarta análise:

- Utilização de três features (Mean, SDNN, RMSSD);
- Janela de 20 pontos por amostra;
- Indivíduo de teste diferente dos de treino.

	Random Forest: Resultado da quarta análise									
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN		
0	0.78	0.90	0.84	0.0614	4740	22	400	55		
1	0.99	0.97	0.98	0.9614	1748	23	198	55		

	KNN: Resultado da quarta análise										
Class	Precision	Recall	F1	Accuracy	TP	FP	TN	FN			
0	0.70	0.88	0.78	0.0450	4700	27	404	00			
1	0.98	0.95	0.97	0.9456	1720	27	194	83			

Curva AUC-ROC para Random Forest;

• AUC: 0.98.

Conclusões

- Trabalho propiciou o aprendizado sobre:
 - Área biomédica
 - Aquisição de sinais
 - Agrupamento de dados
 - Algoritmos de aprendizado de máquina
 - Métricas de desempenho
 - Metodologias de pesquisa

Conclusões

- Resultados obtidos:
 - Satisfatórios tanto para identificação de repouso quanto para a identificação de atividade
- Aplicabilidade em aplicações:
 - Desportivas
 - Médicas
- Trabalho futuro
 - Pesquisa por bases de dados que abrange pessoas de diferentes idades e condições de saúde

Referências

- [1] M. Elgendi, "Fast QRS Detection with an Optimized Knowledge-Based Method: Evaluation on 11 Standard ECG Databases," PLoS ONE, 2013.
- [2] S. Kotsiantis, "Supervised Machine Learning: A Review of Classification Techniques," 2007.
- [3] G. D. Clifford, "Signal Processing Methods for Heart Rate Variability," Ph.D. dissertation, 2002.
- [4] "Olimex," Olimex LTD. [Online]. Available: www.olimex.com.
- [5] S. Narkhede, "Understanding AUC ROC Curve Towards Data Science," 2018. [Online]. Available: https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5.

Obrigado pela Atenção!

Perguntas?

Luis Felipe de Deus – felipe.deus@ecomp.ufsm.br Leonardo Ferreira - leonardoferreira@mail.ufsm.br Tiago Knorst – tiago.knorst@ecomp.ufsm.br