# PERANCANGAN DAN REALISASI ANTENA MULTIELEMEN PADA *USER EQUIPMENT* 10.5 *INCH* UNTUK APLIKASI 5G

### PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek Tingkat

oleh:

**SEPTIAN JAPAR 6705184075** 



D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

## **Latar Belakang**

Pada saat ini tengah disiapkan teknologi 5G yang akan menggantikan teknologi sebelumnya yaitu 4G. Teknologi 5G ini memiliki kecepatan akses data yang sangat cepat dengan kecepatan minimal 1 Gbps. Untuk mendukung hal tersebut maka harus didukung dari berbagai aspek seperti perangkat yang akan digunakan pada arsitektur 5G salah satunya yaitu antena. Antena yang digunakan pada teknologi 5G ini adalah antena yang memiliki spesifikasi yang dapat menunjang teknologi 5G ini, salah satunya yaitu tersedianya *bandwidth* yang lebar.

Oleh karena itu, antena mikrostrip array ini dapat digunakan untuk mendukung teknologi 5G karena teknik array dapat mengatasi kekurangan antena mikrostrip yang memiliki *bandwidth* yang sempit. Selain dapat memperlebar *bandwidth*, teknik array juga dapat meningkatkan nilai *gain*. Untuk membuat antena 5G ini dibutuhkan metode-metode agar mendapatkan *bandwidth* yang lebar. Pada proyek tingkat ini akan digunakan metode *Defected Ground Structure* (DGS) untuk meningkatkan *bandwidth* pada antena multielemen yang dibuat. Antena yang digunakan untuk mendapatkan *bandwidth* yang lebar untuk teknologi 5G sebagian besar dirancang dengan frekuensi diatas 27 GHz.

Jadi pada proyek akhir ini akan dilakukan perancangan antena multielemen pada *user equipment* untuk aplikasi 5G pada frekuensi 28GHz dengan konsep dasar antena mikrostrip *patch* persegi panjang sebagai referensi untuk perbandingan.

## Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

| No | Judul Penelitian /Karya Ilmiah        | Tahun | Keterangan                                                                 |
|----|---------------------------------------|-------|----------------------------------------------------------------------------|
| 1. | Perancangan Antena MIMO 2×2 Array     | 2017  | Pada paper ini dibahas tentang perancangan antena mikrostrip               |
|    | Rectangular Patch dengan U-Slot untuk |       | menggunakan patch persegi dengan slot berbentuk U yang dibuat menjadi      |
|    | Aplikasi 5G [1]                       |       | antena larik 1×2, kemudian disusun menjadi antena MIMO dua elemen.         |
|    |                                       |       | Penambahan slot bertujuan untuk meningkatkan lebar-pita kerja dari antena, |
|    |                                       |       | antena larik 1×2 untuk mencapai gain lebih besar dari 9 dB, serta susunan  |
|    |                                       |       | antena MIMO untuk mengurangi dampak pudaran akibat kanal dan               |
|    |                                       |       | meningkatkan laju data kirim                                               |
| 2. | Meningkatkan Bandwidth Antena         | 2018  | Penelitian ini bertujuan untuk meningkatkan bandwidth antena mikrostrip    |
|    | Mikrostrip Bentuk Lingkaran untuk     |       | dengan menggunakan metode DGS untuk aplikasi antena 5G pada frekuensi      |
|    | Aplikasi Antena 5G dengan             |       | kerja 28 GHz.                                                              |
|    | Menggunakan Metode DGS [2]            |       |                                                                            |
| 3. | PENGEMBANGAN ANTENA                   | 2008  | Tulisan ini membahas antena mikrostrip susun dua elemen yang               |
|    | MIKROSTRIP SUSUN DUA ELEMEN           |       | dikembangkan dengan menerapkan defected ground structure (DGS) bentuk      |
|    | DENGAN PENERAPAN DEFECTED             |       | trapesium. DGS ini diletakkan pada bidang pentanahan dari substrat dengan  |
|    | GROUND STRUCTURE BERBENTUK            |       | posisi diantara kedua elemen antena susun.                                 |
|    | TRAPESIUM [3]                         |       |                                                                            |

| 4. | Broadband Printed Slot Antenna for the  | 2016 | Dalam makalah ini, diusulkan antena slot berbentuk elips broadband untuk               |  |
|----|-----------------------------------------|------|----------------------------------------------------------------------------------------|--|
|    | Fifth Generation (5G) Mobile and        |      | aplikasi nirkabel generasi kelima (5G) masa depan. Antena memiliki ukuran              |  |
|    | Wireless Communications [4]             |      | kompak $0.5\lambda~0 \times 0.5\lambda~0$ pada 30 GHz. Ini terdiri dari patch memancar |  |
|    |                                         |      | berbentuk melingkar yang diumpankan oleh garis mikrostrip 50-Ω melalui                 |  |
|    |                                         |      | teknik proximity-feed. Slot berbentuk elips diukir di bidang tanah untuk               |  |
|    |                                         |      | meningkatkan bandwidth antena.                                                         |  |
| 5. | The Analysis and Design of Microstrip   | 1995 | Antologi ini menggabungkan 15 tahun penelitian teknologi antena                        |  |
|    | Antennas and Arrays [5]                 |      | mikrostrip menjadi satu volume yang signifikan dan termasuk tutorial                   |  |
|    |                                         |      | pengantar khusus oleh rekan editor. Meliputi teori, teknik dan metode                  |  |
|    |                                         |      | desain dan pemodelan.                                                                  |  |
| 6. | Antenna Theory Analysis And Design [6]  | 1982 | Tujuan utama buku ini adalah untuk memperkenalkan, secara terpadu,                     |  |
|    |                                         |      | prinsip dasar teori antena dan menerapkannya pada analisis, desain, dan                |  |
|    |                                         |      | pengukuran antena.                                                                     |  |
| 7  | Broadband Dual Polarization Antenna     | 2019 | Penelitian ini menjelaskan sebuah array antena polarisasi ganda broadband              |  |
| /  | Array for 5G Millimeter Wave            |      | yang beroperasi pada pita gelombang milimeter (24-29 GHz) untuk                        |  |
|    | Applications [7]                        |      | komunikasi seluler 5G. Unit antena mencapai radiasi sisi lebar polarisasi              |  |
|    |                                         |      | ganda dan searah.                                                                      |  |
|    | Comparison of Grid Array and Microstrip | 2018 | Antena Array Grid gelombang milimeter untuk komunikasi generasi kelima                 |  |
|    |                                         | 2010 | (5G) disajikan. Struktur Antena Grid Array 20 sel, hampir belah ketupat, 40            |  |
|    | 1 aton 7 aray 7 antennas at 20 Griz [0] |      | × 40 mm 2 disimulasikan dan dibuat pada substrat Rogers RT / Duroid 5880               |  |
|    |                                         |      | dengan ketebalan 0,25 mm.                                                              |  |
|    |                                         |      | uchgan Ketebatan 0,23 illin.                                                           |  |

| 9  | A Design Study of 5G Antennas Optimized Using Genetic Algorithms [9]                                                                           | 2017 | Makalah ini menyajikan desain tiga antenna struktur minat untuk aplikasi 5G. Desain antenna termasuk: 1) patch pixelated, 2) patch dengan pin korslet dan 3) antena monopole. Setiap desain antena dioptimasi untuk beroperasi pada beberapa pita frekuensi yang diinginkan sambil mempertahankan gainnya.                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | ANTENA MIKROSTRIP SINGLE FEED DUAL BAND FREKUENSI 15 GHz DAN 28 GHz POLARISASI SIRKULAR PATCH PERSEGI DENGAN SLOT SILANG PADA JARINGAN 5G [10] | 2019 | Penelitian ini merancang antena mikrostrip single feed dengan dua frekuensikerja 15 GHz dan 28 GHz dengan polarisasi sirkular. Untuk perancangan ini,patch yang digunakan adalah bentuk rectangular, dengan slot ring rectangular dan slot silang. Patch antena diberi celah berbentuk silang untuk melebarkan bandwidth serta menurukan nilai axial ratio dan diberi slot ring rectangular untuk menghasilkan dual band. |
| 11 | A 28GHz-band highly integrated GaAs RF frontend Module for Massive MIMO in 5G [11]                                                             | 2018 | Modul ini mencakup penguat daya empat tahap, penguat kebisingan rendah (LNA) tiga tahap, dan sakelar. Dengan memanfaatkan unit antena RF termasuk modul frontend RF GaAs, uji coba transmisi spasial-multipleks 16 berkas dilakukan. Hasil uji coba menunjukkan efisiensi spektral 63,7bps / Hz dan kecepatan transmisi downlink 25,5Gbps.                                                                                |
| 12 | Handbook of Microstrip Antennas [12]                                                                                                           | 1989 | Pada buku ini menjelaskan bahwa antena mikrostrip adalah teknologi baru dan menarik. Diciptakan puluhan tahun yang lalu untuk aplikasi sebagai antena konformal pada rudal dan pesawat, antena mikrostrip semakin banyak digunakan karena dapat dibuat dengan teknik litografi di sirkuit monolitik.                                                                                                                      |

## Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan dan realisasi antena multielemen dengan metode DGS pada frekuensi 28GHz untuk aplikasi 5G yang terdiri dari sub bab model sistem, diagram alir perancangan sistem, proses perancangan pada *software* CST, proses pengukuran parameter antena, realisasi sistem dan skenario pengujian. Adapun model sistem *monitoring* yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.



Gambar 1. Model Sistem Perancangan Antena Mikrostrip Array 4 Elemen

Antena multielemen dipasang di dalam tablet dan dapat bekerja sebagai *transmitter* atau pun *receiver* tergantung dari kondisi *uplink* atau *downlink*.

Spesifikasi antena yang diinginkan adalah:

a. Frekuensi kerja : 28 GHz

b. Bandwidth :  $\geq 500 \text{ MHz}$ 

c. VSWR  $:\leq 2$ 

d. Return Loss :  $\leq -10 \text{ dB}$ 

e. Gain :  $\geq 9 \text{ dB}$ 

f. Mutual Coupling  $: \le -20 \text{ dB}$ 

g. Impedansi :  $50 \Omega$ 

h. Ukuran antena :  $\leq 10.5$  inch

Dibawah ini merupakan proses tahapan yang akan dilakukan dalam perancangan antena multielemen hingga akhir yang akan di jelaskan pada diagram alir berikut :



Gambar 2. Diagram Alir Perancangan Antena

### Referensi

- [1] Kevin Jones A.S., M. Levy Olivia N., Budi Syihabuddin, "Perancangan Antena MIMO 2×2 Array *Rectangular Patch* dengan U-Slot untuk Aplikasi 5G," Universitas Telkom, JNTETI, Vol. 6, No. 1, Februari 2017.
- [2] Haidi. J, "Meningkatkan *bandwidth* antena mikrostrip betuk lingkaran untuk aplikasi antena 5G dengan menggunakan metode DGS," in seminar nasional inovasi teknologi dan aplikasi, Bengkulu, 2018. pp. 127-133.
- [3] Fitri Yuli Zulkifli, Eko Tjipto Rahardjo, Muhamad Asvial, dan Djoko Hartanto, "
  Pengembangan Antena Mikrostrip Susun Dua Elemen Dengan Penerapan *Defected Ground Structure* Berbentuk Trapesium," Departemen Teknik Elektro, Fakultas
  Teknik, Universitas Indonesia, MAKARA, TEKNOLOGI, VOL. 12, NO. 2,
  NOVEMBER 2008.
- [4] M. M. M. Ali, O. Haraz, S. Alshebeili, and A. Sebak, "Broadband Printed Slot Antenna for the Fifth Generation (5G) Mobile and Wireless Communications," IEEE, pp. 5–6, 2016.
- [5] David M. Pozar, Daniel H. Schaubert (1995), *The Analysis and Design of Microstrip Antennas and Arrays*.
- [6] Balanis, C. (1982). Antenna Theory Analysis And Design.
- [7] C. Zhao, Y. Liu, Y. Zhang, A. Ren and Y. Jia, "*Broadband Dual Polarization Antenna Array for 5G Millimeter Wave Applications*," 2019 International Symposium on Antennas and Propagation (ISAP), Xi'an, China, 2019, pp. 1-3.
- [8] Z. Ahmed, P. McEvoy and M. J. Ammann, "Comparison of Grid Array and Microstrip Patch Array Antennas at 28 GHz," 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, 2018.
- [9] V. Gjokaj, J. Doroshewitz, J. Nanzer and P. Chahal, "A Design Study of 5G Antennas Optimized Using Genetic Algorithms," 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, 2017.
- [10] GILANG DEWANGGA, "Antena Mikrostrip *Single Feed Dual Band* Frekuensi 15GHz dan 28 GHz Polarisasi Sirkular *Patch* Persegi Dengan Slot Silang Pada Jaringan 5G", Tugas Akhir, Universitas Telkom, Bandung, Indonesia, 2019

- [11] S. Shinjo et al., "A 28GHz-band highly integrated GaAs RF frontend Module for Massive MIMO in 5G," 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, 2018.
- [12] J.R. James and P.S. Hall, "Handbook of Microstrip Antennas", London: United Kingdom, 1989.

## Form Kesediaan Membimbing Proyek Tingkat





Tanggal: 09 Desember 2020

Kami yang bertanda tangan dibawah ini:

**CALON PEMBIMBING 1** 

Kode : DNN

Nama: Dwi Andi Nurmantis, S.T., M.T.

**CALON PEMBIMBING 2** 

Kode: PRAK-2

Nama : Dr. Ir. Yuyu Wahyu, M.T.

Menyatakan bersedia menjadi dosen pembimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705184075

Nama : Septian Japar

Prodi / Peminatan : D3TT/ \_\_(contoh: MI / SDV)

Calon Judul PA

PERANCANGAN DAN REALISASI ANTENA MULTIELEMEN PADA

USER EQUIPMENT 10.5 INCH UNTUK APLIKASI 5G

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing

( Dwi Andi Nurmantis, S.T., M.T. )

NIP: 14850075

Calon Pembimbing 2

( Dr. Ir. Yuyu Wahyu, M.T. ) NIP: 196202101991031008

#### CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja



**Telkom University**Jl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

#### **DAFTAR NILAI HASIL STUDI MAHASISWA**

NIM (Nomor Induk Mahasiswa)

: 6705184075

Dosen Wali

: HPT / HASANAH PUTRI

Nama

: SEPTIAN JAPAR

Program Studi : D3 Teknologi Telekomunikasi

## Mata Kuliah yang Lulus

| Semester | Kode Mata Kuliah | Mata Kuliah                                 | Nama Mata Kuliah B.<br>Inggris                   | SKS | Nilai |
|----------|------------------|---------------------------------------------|--------------------------------------------------|-----|-------|
| 1        | DTH1F3           | DASAR SISTEM<br>TELEKOMUNIKASI              | BASIC<br>TELECOMMUNICATIONS<br>SYSTEM            | 3   | С     |
| 1        | DTH1C3           | DASAR TEKNIK<br>KOMPUTER DAN<br>PEMROGRAMAN | BASIC COMPUTER<br>ENGINEERING AND<br>PROGRAMMING | 3   | АВ    |
| 1        | DTH1A2           | K3 DAN<br>LINGKUNGAN HIDUP                  | K3 AND ENVIRONMENT                               | 2   | А     |
| 1        | DUH1A2           | LITERASI TIK                                | ICT LITERACY                                     | 2   | AB    |
| 1        | DTH1B3           | MATEMATIKA<br>TELEKOMUNIKASI I              | MATHEMATICS<br>TELECOMMUNICATIONS<br>I           | 3   | А     |
| 1        | HUH1A2           | PENDIDIKAN AGAMA<br>DAN ETIKA - ISLAM       | RELIGIOUS EDUCATION<br>AND ETHICS - ISLAM        | 2   | AB    |
| 1        | DTH1D3           | RANGKAIAN LISTRIK                           | ELECTRICAL CIRCUITS                              | 3   | С     |
| 1        | DTH1E2           | BENGKEL<br>MEKANIKAL DAN<br>ELEKTRIKAL      | MECHANICAL AND<br>ELECTRICAL<br>WORKSHOP         | 2   | А     |
| 2        | LUH1B2           | BAHASA INGGRIS I                            | ENGLISH I                                        | 2   | А     |
| 2        | DMH1A2           | OLAH RAGA                                   | SPORT                                            | 2   | AB    |
| 2        | DTH1G3           | MATEMATIKA<br>TELEKOMUNIKASI II             | MATHEMATICS<br>TELECOMMUNICATIONS<br>II          | 3   | А     |
| 2        | DTH1H3           | TEKNIK DIGITAL                              | DIGITAL TECHNIQUES                               | 3   | В     |
| 2        | DTH1I3           | ELEKTRONIKA<br>ANALOG                       | ANALOG ELECTRONIC                                | 3   | AB    |
| 2        | DTH1J2           | BENGKEL<br>ELEKTRONIKA                      | ELECTRONICS<br>WORKSHOP                          | 2   | ВС    |
| 2        | DTH1K3           | ELEKTROMAGNETIKA                            | ELECTROMAGNETIC                                  | 3   | С     |
| 2        | HUH1G3           | PANCASILA DAN<br>KEWARGANEGARAAN            | PANCASILA AND<br>CITIZENSHIP                     | 3   | А     |
| 3        | DTH2G3           | SISTEM<br>KOMUNIKASI OPTIK                  | OPTICAL<br>COMMUNICATION<br>SYSTEMS              | 3   | В     |
|          |                  | Jumple CVC                                  |                                                  | 0.1 | 2.40  |

Jumlah SKS

3.49

| Semester   | Kode Mata Kuliah | Mata Kuliah                                 | Nama Mata Kuliah B.<br>Inggris                    | SKS | Nilai |
|------------|------------------|---------------------------------------------|---------------------------------------------------|-----|-------|
| 3          | DTH2E3           | SISTEM<br>KOMUNIKASI                        | COMMUNICATIONS<br>SYSTEMS                         | 3   | А     |
| 3          | DTH2B3           | KOMUNIKASI DATA<br>BROADBAND                | BROADBAND DATA<br>COMMUNICATIONS                  | 3   | А     |
| 3          | DTH2C2           | BENGKEL INTERNET<br>OF THINGS               | INTERNET OF THINGS<br>WORKSHOP                    | 2   | АВ    |
| 3          | DTH2A2           | BAHASA INGGRIS<br>TEKNIK I                  | ENGLISH TECHNIQUE I                               | 2   | А     |
| 3          | DTH2D3           | APLIKASI<br>MIKROKONTROLER<br>DAN ANTARMUKA | MICROCONTROLLER<br>APPLICATIONS AND<br>INTERFACES | 3   | АВ    |
| 3          | DTH2F3           | TEKNIK TRANSMISI<br>RADIO                   | RADIO TRANSMISSION<br>TECHNIQUES                  | 3   | А     |
| 4          | DMH1B2           | PENGEMBANGAN<br>PROFESIONALISME             | PROFESSIONAL<br>DEVELOPMENT                       | 2   | А     |
| 4          | DTH2M3           | SISTEM<br>KOMUNIKASI<br>SELULER             | CELLULAR<br>COMMUNICATION<br>SYSTEMS              | 3   | АВ    |
| 4          | DTH2L3           | TEKNIK ANTENNA<br>DAN PROPAGASI             | ANTENNA TECHNIQUES<br>AND PROPAGATION             | 3   | А     |
| 4          | DTH2K3           | ELEKTRONIKA<br>TELEKOMUNIKASI               | ELECTRONICS<br>TELECOMMUNICATIONS                 | 3   | AB    |
| 4          | DTH2J2           | TEKNIK TRAFIK                               | TRAFFIC ENGINEERING                               | 2   | А     |
| 4          | DTH2I3           | DASAR KOMUNIKASI<br>MULTIMEDIA              | BASIC<br>COMMUNICATION<br>MULTIMEDIA              | 3   | АВ    |
| 4          | DMH2A2           | KERJA PRAKTEK                               | INTERSHIP                                         | 2   | А     |
| 4          | DTH2H3           | JARINGAN DATA<br>BROADBAND                  | BROADBAND DATA<br>NETWORK                         | 3   | AB    |
| Jumlah SKS |                  |                                             |                                                   |     | 3.49  |

## Mata Kuliah yang Belum Lulus

| Semester | Kode Mata Kuliah | Mata Kuliah                             | Nama Mata Kuliah B.<br>Inggris      | SKS | Nilai |
|----------|------------------|-----------------------------------------|-------------------------------------|-----|-------|
| 3        | VTI2G3           | PENGOLAHAN<br>SINYAL<br>INFORMASI       | INFORMATION<br>SIGNAL<br>PROCESSING | 3   |       |
| 4        | UKI2C2           | BAHASA<br>INDONESIA                     | INDONESIAN<br>LANGUAGE              | 2   |       |
| 4        | VTI2K3           | JARINGAN<br>TELEKOMUNIKASI<br>BROADBAND | BROADBAND DATA<br>NETWORKS          | 3   |       |
| 4        | VTI2H2           | BAHASA INGGRIS<br>TEKNIK II             | ENGLISH<br>TECHNIQUES II            | 2   |       |
| 5        | VTI3D3           | KEAMANAN<br>JARINGAN                    | NETWORK<br>SECURITY                 | 3   |       |
| 5        | UWI3E1           | HEI                                     | HEI                                 | 1   |       |
| 5        | UWI3A2           | KEWIRAUSAHAAN                           | ENTREPRENEURSHIP                    | 2   |       |
|          | Jum              | 16                                      |                                     |     |       |

| Jumlah SKS  | : <b>81 SKS</b> |             | IPK: 3.49  |
|-------------|-----------------|-------------|------------|
| Tingkat III | : 81 SKS        | Belum Lulus | IPK : 3.49 |
| Tingkat II  | : 81 SKS        | Belum Lulus | IPK : 3.49 |
| Tingkat I   | : 41 SKS        | Belum Lulus | IPK: 3.27  |
|             |                 |             |            |

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 10 Desember 2020 12:29:52 oleh SEPTIAN JAPAR