Kernel Methods for Regression

I. Santamaría, S. Van Vaerenbergh

GTAS, Universidad de Cantabria

February 10, 2020

Master Universitario Oficial Data Science

Contents

Linear regression

Linear SVR

Nonlinear SVR

Kernel Ridge Regression

Gaussian Processes

Conclusions

Problem formulation

Linear regression

•000000

► Input: $(\mathbf{x}_1, \dots, \mathbf{x}_n)$, $\mathbf{x}_i \in \mathcal{R}^d$

▶ Output: $(y_1, ..., y_n)$, $y_i \in \mathcal{R}$

▶ **Problem**: find $f(\cdot)$: $\mathbb{R}^d \to \mathbb{R}$ to fit (or predict) y from \mathbf{x}

Applications

Linear regression

000000

Typical applications are time-series prediction or nonlinear modeling

Before considering kernel methods, let us briefly review the linear case

Linear regression

Linear SVR

Linear regression

0000000

► To find the hyperplane $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$ that best fits the observations

Fitting criteria (loss function)

$$L_2 - norm : (y - f(\mathbf{x}))^2 \rightarrow \textbf{Least Squares}$$

 $L_1 - norm: |y - f(\mathbf{x})|$

 ϵ – insensitive : $\max(0, |y - f(\mathbf{x})| - \epsilon)$

Linear SVR

Least Squares

Linear regression

0000000

► If we redefine $\mathbf{x} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$, the linear function becomes

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \mathbf{x}^T \mathbf{w}$$

► Training data set $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ with $\mathbf{x}_i \in \mathcal{R}^d$ and $v_i \in \mathcal{R}$

$$y_i = \mathbf{x}_i^T \mathbf{w} + e_i, \qquad i = 1, \dots, n$$

 \blacktriangleright Overdetermined system (n > d) of linear equations

$$\underbrace{\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}}_{\mathbf{V}} = \underbrace{\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1d} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nd} \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}}_{\mathbf{W}} + \underbrace{\begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}}_{\mathbf{e}}$$

Linear regression

Least Squares [Gauss 1794]: Minimize the L_2 -norm of the error

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y_i - \mathbf{w}^T \mathbf{x}_i \right)^2 = \sum_{i=1}^{n} e_i^2 = \|\mathbf{e}\|_2^2 = \mathbf{e}^T \mathbf{e}$$
$$J(\mathbf{w}) = \mathbf{v}^T \mathbf{v} - 2 \mathbf{v}^T \mathbf{X} \mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}$$

<u>Pseudoinverse</u>

$$\hat{\mathbf{w}}_{LS} = \left(\mathbf{X}^T\mathbf{X}
ight)^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{X}^\sharp\mathbf{y}$$

 $\mathbf{X}^{\sharp} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}$ is the pseudoinverse or Moore-Penrose inverse of \mathbf{X}

It is the Maximum Likelihood (ML) estimator when the errors follow a Gaussian distribution $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Regularization

Linear regression

- Solution to overfitting or ill-conditioned problems
- Standard regularization approach: ridge regression or Tikhonov regularization

$$J(\mathbf{w}) = \sum_{i=1}^{n} e_i^2 + \lambda ||\mathbf{w}||^2$$

► The ridge regression (RR) solution is

$$\hat{\mathbf{w}}_{RR} = \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

► The same idea applied in the feature space leads to Kernel Ridge Regression (more on this later)

Other cost functions

- ► There are many different cost functions to penalize errors
- ► A common alternative is to use the L₁-norm instead of the L_2 -norm (more robust against outliers) \longrightarrow sparse solution
- No closed-form solution, but there are very efficient algorithms to solve the problem
- From a Bayesian perspective, the cost function to be used depends on the probability density function (pdf) of the errors or noise in the data

$$loss \propto -\log \left(p(f(\mathbf{x}_i)|(\mathbf{x}_i,y_i)) \right) = -\log \left(p(y_i - f(\mathbf{x}_i)) \right) = -\log \left(p(e_i) \right)$$

- Gaussian $\rightarrow loss = \sum_i e_i^2$
- Laplacian $\rightarrow loss = \sum_{i} |e_{i}|$

SVM for (linear) regression

Similar to the SVM for classification → Structural Risk Minimization (SRM) Principle

SVR (lineal)

Linear regression

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{n} \left| y_i - \mathbf{w}^T \mathbf{x}_i \right|_{\epsilon}$$

► The cost function for errors is the e-insensitive loss **function** (Vapnik's cost function)

$$|\textbf{\textit{e}}_i|_{\epsilon} = \begin{cases} 0 & \text{if } |\textbf{\textit{e}}_i| \leq \epsilon, \\ |\textbf{\textit{e}}_i| - \epsilon & \text{if } |\textbf{\textit{e}}_i| > \epsilon. \end{cases}$$

ϵ -insensitive loss function

Linear SVR

0000

Kernel Ridge Regression

- ▶ L_1 -norm penalty for errors larger than ϵ
- Symmetric cost function
- Avoids overfitting by not considering small errors

► The solution (optimal hyperplane) admits a linear expansion in terms of the support vectors

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$$

 The coefficients α_i are obtained by solving the following Quadratic Programming (QP) problem

$$\max_{\alpha} \sum_{i=1}^{n} y_{i} \alpha_{i} - \epsilon \sum_{i=1}^{n} |\alpha_{i}| - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$
s.t.
$$\sum_{i} \alpha_{i} = 0,$$

$$|\alpha_{i}| \leq C, \quad \forall i$$

• $\alpha_i \neq 0$ only for points outside the ϵ -tube

► For a new input (test) point **x**, the output is

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{x}_i^T \mathbf{x}$$

► The kernel is linear

$$\mathbf{x}_i^T \mathbf{x} = \langle \mathbf{x}_i, \mathbf{x} \rangle = k(\mathbf{x}_i, \mathbf{x}_j)$$

therefore

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^n \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

► The **kernel trick** allow us to extend this result to nonlinear regression

Support Vector Regression (SVR)

- ► The problem formulation as well as the solution are based on inner products between input data points
- Kernel trick: A linear regressor in the transformed (feature) space becomes a nonlinear regressor in the input space

► Substitute the linear kernel $\mathbf{x}_i^T \mathbf{x}_i$ by a nonlinear kernel

$$k(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)$$

► Polynomial (parameters *p* and *c*)

$$k(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^T \mathbf{x}_i + c)^p$$

▶ Gaussian (parameter σ^2 or $\gamma = \frac{1}{2\sigma^2}$)

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

or

$$k(\mathbf{x}_i, \mathbf{x}_i) = \exp\left(-\gamma \|\mathbf{x}_i - \mathbf{x}_i\|^2\right)$$

- ▶ The QP problem remains the same changing $\mathbf{x}_i^T \mathbf{x}_i$ by $k(\mathbf{x}_i,\mathbf{x}_i)$
- ▶ Defining the $n \times n$ kernel matrix **K**, with elements $k(\mathbf{x}_i, \mathbf{x}_i)$, the problem is

$$\max_{\alpha} \quad \mathbf{y}^{T} \alpha - \epsilon |\alpha| - \frac{1}{2} \alpha^{T} \mathbf{K} \alpha$$
s.t.
$$\alpha^{T} \mathbf{1} = 0,$$

$$|\alpha_{i}| \leq C, \quad \forall i$$

Its solution can again be expressed as

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

SVR with Gaussian kernel

Kernel Ridge Regression

SVR: Parameter fitting

- C: Regularization parameter
 - ▶ $C \downarrow$ less penalty for errors \rightarrow simple models
 - $C \uparrow$ more penalty for errors \rightarrow complex models, overfitting risk
- ▶ *ϵ*: Loss function parameter
 - $ightharpoonup \epsilon \downarrow$ small errors are penalized \rightarrow complex models, overfitting risk
 - $\epsilon \uparrow$ only large errors are penalized \rightarrow simple models

Example: $C = 10^3$, $\gamma = \frac{1}{2\sigma^2} = 0.1$

Kernel Ridge Regression

Example: $\epsilon = 0.1$, $\gamma = \frac{1}{2\sigma^2} = 10$

Kernel Ridge Regression

- \blacktriangleright Map data to a higher dimensionality, probably ∞ , feature space: $\mathbf{x}_i \to \Phi(\mathbf{x}_i)$
- Solve a linear ridge regression problem in the feature space

$$\underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

Representer Theorem: The solution of the regularized problem admits the following expansion

$$f(\mathbf{x}) = \sum_{j=1}^{n} \alpha_{j} k(\mathbf{x}_{j}, \mathbf{x})$$

Quadratic error term

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) \right)^2 = \|\mathbf{y} - \mathbf{K}\boldsymbol{\alpha}\|_2^2$$

Regularization term

$$\lambda \|f\|_{\mathcal{U}}^2 = \lambda \boldsymbol{\alpha}^T \mathbf{K} \boldsymbol{\alpha}$$

Dual problem (in terms of the α coefficients)

$$\min_{\alpha} \underbrace{\|\mathbf{y} - \mathbf{K}\alpha\|_{2}^{2} + \lambda \alpha^{T} \mathbf{K}\alpha}_{J(\alpha)}$$

$$J(lpha) = lpha^T \mathbf{K}^2 lpha - 2lpha^T \mathbf{K} \mathbf{y} + \|\mathbf{y}\|_2^2 + \lambda lpha^T \mathbf{K} lpha$$

► Taking derivatives and equating to zero

$$2\mathbf{K}^2\alpha - 2\mathbf{K}\mathbf{y} + \lambda\mathbf{K}\alpha = \mathbf{0}$$

► The solution for the coefficients is

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

KRR Summary

Linear regression

Given $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$, the kernel function $k(\cdot, \mathbf{x})$, and the regularization parameter $\lambda > 0$:

- 1. Build the $n \times n$ kernel matrix **K** with elements $k(\mathbf{x}_i, \mathbf{x}_i)$
- 2. Obtain the expansion coefficients

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

3. The output for a new input data **x** is (out-of-sample regression)

$$f(\mathbf{x}) = \sum_{j=1}^{n} \alpha_{j} k(\mathbf{x}_{j}, \mathbf{x})$$

Discussion

- ► The matrix $(\mathbf{K} + \lambda \mathbf{I})$ is always invertible
- ▶ With a Gaussian kernel and $\lambda = 0$ we are interpolating the data
- ► The computational cost to calculate $(\mathbf{K} + \lambda \mathbf{I})^{-1}$ grows as n^3
- SVR and KRR have identical functional form: f(x) = ∑_{j=1}ⁿ α_jk(x_j, x), but the expansion coefficients are different
 - 1. SVR: sparse solution, many $\alpha_i = 0$
 - 2. KRR: non-sparse solution, $\alpha_i \neq 0, \forall i$
- ► Both SVR and KRR are batch algorithms: How can the regressors/models be updated when a new sample (**x**_{n+1}, y_{n+1}) arrives?

Example

Introduction

Linear regression

 A limitation of SVR and KRR is that they do not provide any information about the uncertainty or confidence interval of the predictions

► Gaussian Processes or GPs are state-of-the-art
Bayesian methods for regression that overcome this
limitation of kernel methods

Conclusions

GPs are known in geostatistics as kriging

Bayes Theorem

Linear regression

- ▶ **Prior distribution**: What a priori knowledge do we have about the function we want to estimate $f(\mathbf{x})$?
- ► Likelihood: What information about f(x) do the observations provide? → Noise distribution
- ▶ Bayes Theorem: How to combine the prior with the likelihood to yield a posterior distribution for f(x)

► GPs: the prior distribution and the noise distribution (likelihood) are both Gaussian ⇒ the posterior is also Gaussian

Linear regression

Prior: a zero-mean Gaussian with covariance matrix **K** (kernel matrix): $f(\mathbf{x}) \sim \mathcal{GP}(0, \mathbf{K})$

$$k(x_1, x_2) = \exp\left(\frac{-(x_1 - x_2)^2}{2\sigma^2}\right)$$

$$k(x_1, x_2) = \exp\left(\frac{-|x_1 - x_2|}{\sigma^2}\right)$$

Likelihood: a zero-mean Gaussian with variance σ_e^2 :

 $\textbf{\textit{e}}_{\textit{i}} \sim \mathcal{N}(\textbf{0}, \sigma_{\textit{e}}^{2})$

Posterior: Given a new test point \mathbf{x} , the posterior distribution for the latent function (GP output) is a Gaussian: $\mathcal{N}(f(\mathbf{x}), \sigma^2)$

► Mean

Linear regression

$$f(\mathbf{x}) = \mathbf{k}^T [\mathbf{K} + \sigma_e^2 \mathbf{I}]^{-1} \mathbf{y},$$

same expression as a KRR with regularization parameter $\lambda = \sigma_0^2!!$

▶ Variance

$$\sigma^2 = k(\mathbf{x}, \mathbf{x}) - \mathbf{k}^T [\mathbf{K} + \sigma_e^2 \mathbf{I}]^{-1} \mathbf{k}$$

where $\mathbf{k} = [k(\mathbf{x}_1, \mathbf{x}), \dots, k(\mathbf{x}_n, \mathbf{x})]^T$, and \mathbf{K} is the kernel matrix with elements $k(\mathbf{x}_i, \mathbf{x}_i)$

Example

- ► GP with Gaussian kernel
- ▶ Hyperparameters: kernel size σ^2 and noise variance σ^2

Fixed kernel size ($\sigma^2 = 0.2$)

$$\sigma_e^2 = 0.2$$

$$\sigma_{\rm e}^2 = 0.02$$

Fixed noise variance ($\sigma_e^2 = 0.2$)

$$\sigma^2 = 0.02$$

$$\sigma^2 = 1$$

Typically we use the Maximum Likelihood estimates of the hyperparameters: $\hat{\sigma}^2 \approx 0.04$ y $\sigma_e^2 \approx 0.135$

Software

Linear regression

Matlab:

GPML software package: http://www.gaussianprocess.org/gpml/code/matlab/doc/

Python:

- ► GPy: http://sheffieldml.github.io/GPy/
- ▶ GPs via TensorFlow: https://github.com/GPflow/GPflow

scikit-learn includes a simple version

Conclusions

Linear regression

► SVR

- Based on the SRM principle
- ▶ Loss function: ϵ -insensitive \rightarrow Sparse solution
- ▶ QP problem
- ► Hyperparameter estimation: Cross-validation

▶ KRR

- Regularized LS in the feature space
- Loss function: L₂-norm → Non-sparse solution
- Inversion of the regularized kernel matrix
- ► Hyperparameter estimation: Cross-validation

► GPs

- ► Bayesian approximation
- Provides confidence intervals
- ► Mean value of the posterior = KRR
- ▶ Hyperparameter estimation: Maximum Likelihood

