МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ «КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

КАФЕДРА КЭВА

+

Домашнее задание №1

по курсу: «Автоматизация конструкторско-технологического проектирования ЭВА»

Выполнил: студент группы ДК-71 Феськов Д.А.

Проверил: доц. Лескин В.Ф.

В качестве исходной схемы взят фрагмент принципиальной схемы ДК71.711700.001ЭЗ курсового проекта по курсу «Физико-технологические основы конструирования электронных аппаратов» (Рисунок 1.1).

Рисунок 1.1 – Исходная принципиальная схема

																						I	Таблипа 2.1 – Матрипа 4	a 2.1.	- Мат	рипа	4
	C01 C	502	C02 C03 C04 C05 C06	£05	505	200	611	C ₁₂	621	C22 C31		C32	C41	C42	C ₅₁	C ₅₂ (C41 C42 C51 C52 C61 C62 C71 C72 C73 C74	62 C	71 6	2 67	3 67	4 C75	5 C81	C82 C83	1	684	Cas
v_1	1		in-contra	an a cellar										Г				-	H				I				
v 2		_	and the same	(Janes) Barrier																	1					_	
V3			_							-					-												
V.				_			_		-		-																
20	Marco Par			and the second	-																						1
v6						_		-					_														
27		J										-					-										
in the														-		-											
2º	g ande					e e	1											1				1		1			

																						1000	Табл	ица 2.	I аблица 2.2 – Матрица В	атриі	la B
	Cor	C02	C ₀₃	C ₀₄	C ₀₅	C ₀₆	c_{11}	C ₁₂	C ₂₁	C22	C31	C ₃₂	C41	C42	C ₅₁	C ₅₂ (195	562 (122	272 (73 C	74 6	75 CB	11 C8	2 Cg	3 C8.	CO1 CO2 CO3 CO4 CO5 CO6 C11 C12 C21 C22 C31 C32 C41 C42 C51 C62 C61 C62 C71 C72 C73 C74 C75 C81 C82 C83 C84 C85
X	I	1	1	1	1	1									_	Г			-				_				
X,							-	1																	_		
X2	1								1	1		j.	2			/						_		_			
X ₃											-	1															
X													1	1					-								
X5															1	1											
X									dir.			7					1	1									
$\sim x_7$																			7	2	-1	_	4				
Xo		-	1																_	_	_				-	_	-

Scanned by CamScanner

	c_{i1}	c_{i2}		Таблица 2	.3 – Матри
x_1	v_4		c_{i3}	c_{i4}	c_{i5}
x_2	v_4	v_6	0	0	0
x_3		v_3	0	0	0
<i>x</i> ₄	v_4	v_7	0	0	0
	v_6	v_8	0	0	0
<i>x</i> ₅	v_3	v_8	0	0	0
x_6	v_7	v_9	0	0	0
x_7	v_7		0	0	0
x_8	v_1	v_8	v_3	v_2	$v_{\mathbf{q}}$
	71	v_9	v_3	v_2	12-

Cos				Таблица 2.4	- Матрица TR
ν,	C ₀₂	C ₀₃	C ₀₄	C ₀₅	c ₀₆
	ν_2	v_3	v_4	v_5	v_6

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	a $2.5 - Ma$	v_9
x_1				1		1			9
x_2			1	1					
x_3				4			N		-
x_4						1		1/	
x_5			1/					1	
x_6							1/	-	-1
x_7		1	4				1	1/	1
<i>x</i> ₈	T.	1	1		1		-	·L	<u> </u>

$$S = \sum_{i=1}^{n} \sum_{j=1}^{m} g_{ij} - m = \sum_{i=1}^{8} \sum_{j=1}^{9} g_{ij} - 9 = 13.$$
 (2.1)

Таблица 2.6 – Матрица А x_3 x_0 x_1 x_2 x_3 x_4 x_6 x_7 x_8

$$S = \frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n} a_{ij} = \frac{1}{2} \sum_{i=0}^{8} \sum_{j=0}^{8} a_{ij} = \frac{66}{2} = 33.$$
 (2.2)

Scanned by CamScanner