Tutorial 1

Statistical Computation and Analysis
Spring 2025

Course Information

- The course is in English.
- The homework assignments need to be handed in in English.
- The course is in Python.
 - The codes for the examples in the lectures and tutorials will be made available on Moodle.
- Course grade:
 - Pre-lecture questions (5%)
 - Homework assignments (15%)
 - 5 assignments (3.6% per exercise)
 - Midterm quiz (10%, magen)
 - **6.5.25**
 - Open moodle except previous tests and quizzes
 - 1 hour
 - Exam (70%)
 - On computers on campus
 - Open moodle except previous tests and quizzes
 - 2 hours

Bayesian Analysis with Python

- 3rd edition
- Publisher's website
- Full text available
 - the library

Tutorial Outline

- Python
 - Libraries
 - Google colab

Practice Google Colab Notebook

Python basics

https://colab.research.google.com/github/cs231n/cs231n.github.io/blob/master/python-colab.ipynb

Code for this tutorial:

Moodle - Tutorial1_2025.ipynb

Data Types

- Integers
- Floating-point numbers
- Boolean

MATLAB	PYTHON
true	True
false	False
&	and
1	or
~	not
~=	!=

Data Types

Strings

- Concatenation: 'hello' + str(var) + '_' + 'world'
- fstring: f'hello{var }_world'

• Indexing:

MATLAB	PYTHON
Starts from 1	Starts from 0
array(1:3)	array[0:2]

Containers

- Lists: ordered sequences of elements. They can contain any combination of data types and are defined using square brackets, e.g., l = [1, 2, "three"].
- **Tuples:** similar to lists, but they are immutable (cannot be changed). They are defined using parentheses, e.g., t = (1, 2, "three").
- **Dictionaries:** used to store data values in key:value pairs. They are defined using curly brackets, e.g., d = {"brand": "Ford", "model":"Mustang"}.

For Loops

```
for i in range(5):
      print(i)
   Output:
   3
   4
```

For Loops

```
animals = ['cat', 'dog', 'monkey'] (list)
    for animal in animals:
        print(animal)
    Output:
    cat
    dog
    monkey
```

For Loops

for i, animal in enumerate(animals):

print(f"Number {i}, animal {animal}")

Output:

Number 0, animal cat

Number 1, animal dog

Number 2, animal monkey

Functions

- def function_name(input arguments):
- Defined before function call / separate code and imported.

Python Libraries

- NumPy: provides support for arrays, matrices, and mathematical operations on them.
- **Pandas:** provides tools for data manipulation and analysis, including data structures and functions for transforming, cleaning, and analyzing datasets.
- SciPy: builds on NumPy and provides additional functionality for scientific computing, including statistical functions.
- Matplotlib: data visualization.
- Seaborn: more data visualization.
- Math: math operations.

Python Libraries

Import libraries and external functions:

- import numpy as np (np.array([1, 2, 3])).
- from file_name import function_name
- from numpy import * imports all numpy functions, not recommended.

Matplotlib

Plots:

import matplotlib.pyplot as plt import numpy as np

x = np.arange(0, 3 * np.pi, 0.1)

```
y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
```

plt.legend(['Sine', 'Cosine'])

Pandas

- Provides two types of classes for handling data:
 - Series a 1D labelled array holding data of any type.
 - DataFrame a 2D data structure that holds data like a two dimension array or a table with rows and columns.

Xarray

- Enables working with multi-dimensional dataframes.
 - Coordinates: the coordinates at which the measurements were taken.
 - For example, x value, y value and times.
 - Lat and lon come from the words latitude and longitude, and are like the rows and the columns in a dataframe.
 - Here we have an additional dimension of time, for example.
 - There can be more dimensions.
 - Data variables: what was measured at the coordinates.
 - There can be one, or more than one.
 - Indexes: refer to the coordinate values used for efficient data selection.
 - In most cases they are created from the coordinates, but there are cases in which they differ.
 - Attributes: extra metadata about the dataset of the data variables.
 - Units
 - Sources

Xarray

- Extracting data
 - Label based
 - Position based

Homework Template

HomeworkTemplate.ipynb on the moodle