Matemática atuarial

Aula 3-Juros e Inflação

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Juros e inflação

➤ Inflação

- ➤ Aumento médio de preços, ocorrido no período considerado, usualmente medido por um índice expresso como taxa percentual.
 - > FIPE
 - > FGV
 - **→** DIEESE
- É a elevação generalizada dos preços de uma economia.
 - > Excesso de gastos
 - > Aumento de salários mais rápido do que da produtividade
 - > Aumento dos lucros
 - ➤ Aumento nos preços das matérias primas
 - ▶...

Juros e inflação

- \triangleright Taxa real de juros (t_r)
 - Essa taxa elimina o efeito da inflação
 - ➤ Podem ser inclusive negativas

A relação entre a taxa de juros efetiva (i) a taxa de inflação no período (j) e a taxa real (t_r) é dada por:

$$(1+i) = (1+t_r)(1+j)$$

> EXEMPLO 1

Suponha que para o período de 1 ano, a inflação tenha sido de 15%. E a taxa nominal de juros que um banco cobra sobre um empréstimo (capitalizado mensalmente) seja de 36% ao ano. Qual é a taxa real de ganho do banco?

> EXEMPLO 1

Suponha que para o período de 1 ano, a inflação tenha sido de 15%. E a taxa nominal de juros que um banco cobra sobre um empréstimo (capitalizado mensalmente) seja de 36%. Qual é a taxa real de ganho do banco?

Resp.:

$$i = \left(1 + \frac{0,36}{12}\right)^{12} - 1$$

$$i = 42,58\% a. a.$$

$$(1+0.4258) = (1+t_r)(1+0.15)$$

$$t_r \approx 23,98\% a. a.$$

O ganho real do banco terá sido de 23,98% a. a.

Juros Compostos - Valor presente e Valor futuro

$$M = P(1+i)^n$$

 \triangleright O capital P também é chamado de <u>valor presente</u>, F_0 , (V.P.) e o montante M de <u>valor futuro</u>, F(V.P.), assim:

$$F = F_0(i+1)^n$$

Logo:

$$F_0 = \frac{1}{(1+i)^n} F$$

 $\succ FCC(i,n) = (1+i)^n$: fator de capitalização (O incremento no valor presente até se tornar valor futuro).

 $ightharpoonup FAC(i,n) = v^n = \frac{1}{(1+i)^n}$ é chamado de <u>fator de atualização do capital</u>, <u>ou fator de desconto</u> (O decremento no valor futuro até voltar ao valor presente).

➤ Série é a generalização do conceito de soma para uma **sequência** de **infinitos** termos.

$$S_n = \sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \cdots$$

 \blacktriangleright Se a é um número real diferente de zero, então a série infinita:

$$S = \sum_{i=0}^{\infty} ar^i = a + ar + ar^2 + \dots$$

É chamada, série geométrica de razão r

A sequência de elementos de uma série geométrica é chamada de progressão geométrica.

 \blacktriangleright A soma de n termos de um progressão geométrica é dada por S_n , tal que

$$S_n = \sum_{i=0}^{n-1} ar^i = \sum_{i=1}^n ar^{i-1} = \frac{a(1-r^n)}{1-r}$$

para $r \neq 1$

Demonstração:

$$S_n = a + ar + \dots + ar^{n-1} \tag{1}$$

Multiplicando-se pela razão *r* :

$$rS_n = ar + ar^2 + \dots + ar^n$$
 (2)

Subtraindo-se a (2) de (1), cancelando-se os termos repetidos:

$$S_n - rS_n = (a + ar + ... + ar^{n-1}) - (ar + ar^2 + ... + ar^{n-1} + ar^n)$$

 $S_n - rS_n = a - ar^n$
 $S_n(1 - r) = a(1 - r^n)$

$$S_n = \frac{a(1-r^n)}{(1-r)}$$

 \triangleright Depósitos em série um conjunto de n depósitos de valores $(R_{i,s})$ distribuídos ao longo do tempo.

Depósitos constantes e distintos.

 \succ O conjunto de depósitos ao longo dos n períodos, constitui-se num fluxo de caixa.

Fluxo Antecipado: Depósitos no início dos períodos, ou seja, iniciam-se na data zero.

 \blacktriangleright Ao fazer n depósitos, o primeiro depósito começa na data 0, e o último é feito na data n-1

- \succ O conjunto de depositos ao longo dos n períodos, constitui-se num fluxo de caixa.
 - Fluxo Postecipado: Pagamentos (ou recebimentos) no final dos períodos, ou seja, os depósitos iniciam a data 1.
 - \blacktriangleright Ao fazer n depósitos, o primeiro depósito começa na data 1, e o último é feito na data n.

>EXEMPLO 2:

Faz-se n depósitos mensais iguais a R em uma conta poupança que remunera a uma taxa de juros mensal igual a i. Qual é o montante **após o último depósito**? Considere o fluxo antecipado.

Data0	R				
Data1		R			
Data2			R		
Data3				R	
Data(n-1)	$R(1+i)^{n-1}$	$R(1+i)^{n-2}$	$R(1+i)^{n-3}$	$R(1+i)^{n-4}$	R
	$R(1+i)^n$	$R(1+i)^{n-1}$	$R(1+i)^{n-2}$	$R(1+i)^{n-3}$	R(1+i)

$$S = F_0 + F_2 + F_3 + \dots + F_{n-1} = \sum_{j=0}^{n-1} F_j$$

$$S = R(1+i)^n + R(1+i)^{n-1} + R(1+i)^{n-2} + \dots + R(1+i) = \sum_{j=1}^n R(1+i)^j$$

$$S = \sum_{j=1}^{n} R(1+i)^{j} = (1+i) \sum_{j=1}^{n} R(1+i)^{j-1}$$

 $\sum_{j=1}^{n} R(1+i)^{j-1}$ corresponde a soma de n elementos de uma progressão geométrica, o termo inicial é igual a R e a razão é igual a (1+i). Assim:

$$S = \frac{R[1 - (1+i)^n]}{[1 - (1+i)]} (1+i)$$

$$S = -\frac{R[1 - (1+i)^n](1+i)}{i}$$

Como

$$S = -\frac{R[1 - (1+i)^n](1+i)}{i}$$

Logo:

$$S = \frac{R(1+i)[(1+i)^n - 1]}{i}$$

- ➤ No caso de depósitos variáveis tem-se que (fluxo antecipado *).
 - Fluxo antecipado porém o modelo considera depósito no mês de resgate, dai é um fluxo genérico na verdade.
- \triangleright Após o primeiro mês o primeiro depósito (F_0) montara á:

$$F_1 = R_0(1+i) + R_1$$

 \blacktriangleright Após o segundo mês o primeiro depósito (F_0) acrescido de R_1 montara á:

$$F_2 = F_1(1+i) + R_2$$

Sucessivamente temos que:

$$F_3 = F_2(1+i) + R_3$$

$$F_4 = F_3(1+i) + R_4$$

...

➤ Note também que:

$$F_{1} = R_{0}(1+i) + R_{1}$$

$$F_{2} = F_{1}(1+i) + R_{2} = [R_{0}(1+i) + R_{1}](1+i) + R_{2}$$

$$F_{2} = R_{0}(1+i)^{2} + (1+i)R_{1} + R_{2}$$

$$F_{3} = F_{2}(1+i) + R_{3} = [R_{0}(1+i)^{2} + (1+i)R_{1} + R_{2}](1+i) + R_{3}$$

$$F_{3} = R_{0}(1+i)^{3} + (1+i)^{2}R_{1} + (1+i)R_{2} + R_{3}$$

$$F_{4} = F_{3}(1+i) + R_{4} = [R_{0}(1+i)^{3} + (1+i)^{2}R_{1} + (1+i)R_{2} + R_{3}](1+i) + R_{4}$$

$$F_{4} = R_{0}(1+i)^{4} + (1+i)^{3}R_{1} + (1+i)^{2}R_{2} + (1+i)R_{3} + R_{4}$$

 \blacktriangleright No tempo n, lembrando o resgate é feito após o último depósito, assim R_n não é depositado.

$$S = \sum_{j=0}^{n-1} (1+i)^{n-j} R_j$$

> Fluxo Antecipado

$$S = \sum_{j=0}^{n-1} (1+i)^{n-j} R_j$$

> Fluxo Postecipado

$$S = \sum_{j=1}^{n} (1+i)^{n-j} R_j$$

	Fluxo Antecipado	Fluxo Postecipado
Depósito de valor fixo	$S = \frac{R(1+i)[(1+i)^n - 1]}{i}$	$S = \frac{R[(1+i)^n - 1]}{i}$
Depósito de valor variável	$S = \sum_{j=0}^{n-1} (1+i)^{n-j} R_j$	$S = \sum_{j=1}^{n} (1+i)^{n-j} R_j$

> EXEMPLO 3:

Faz-se um depósito mensal de \$100,00 em uma conta de poupança que paga juros de 0,6% a.m. Qual é o montante na conta ao fim de três meses? Considere o fluxo Antecipado e também Postecipado.

➤ Fluxo Antecipado:

$$S = \frac{100(1+0,006)[(1+0,006)^3 - 1]}{0,006} = \$303,6144$$

ou

$$S = \sum_{j=0}^{2} (1 + 0,006)^{3-j} 100 = 100(1,006)^3 + (1,006)^2 100 + (1,006) 100 = \$303,6144$$

➤ Fluxo Postecipado:

$$S = \frac{100[(1+0,006)^3 - 1]}{0,006} = \$301,8036$$

ou

$$S = \sum_{j=1}^{3} (1 + 0,006)^{3-j} 100 = (1,006)^{2} 100 + (1,006) 100 + 100 = \$301,8036$$

 Imagina agora que ao invés do interesse no montante ao fim de n depósitos, queremos saber o valor presente (VP) de todos esses depósitos.

Data0	R	$R\left(\frac{1}{1+i}\right)$	$R\left(\frac{1}{1+i}\right)^2$	$R\left(\frac{1}{1+i}\right)^3$	 $\left R\left(\frac{1}{1+i}\right)^{n-1}\right $
Data1		R			
Data2			R		
Data3				R	
•••					
Data(n-1)					R

$$VP = \sum_{i=0}^{n-1} R\left(\frac{1}{1+i}\right)^{j} = \frac{R(1-v^{n})}{1-v}$$

Em que
$$v = \frac{1}{1+i}$$

 \succ O valor presente de uma série de pagamentos representa por exemplo um valor de financiamento a uma taxa i que será pago em n prestações

	Fluxo Postecipado	
Pagamento Constante	$VP = \frac{R(1 - v^n)}{1 - v}$	$VP = \frac{Rv(1 - v^n)}{1 - v}$
Pagamento Variável	$VP = \sum_{j=0}^{n-1} v^j R_j$	$VP = \sum_{j=1}^{n} v^{j} R_{j}$

> EXEMPLO 4:

Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira <u>paga no ato da liberação dos recursos</u>, a uma taxa de 2% ao ano. Qual o valor da prestação?

> EXEMPLO 4:

Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira **paga no ato da liberação dos recursos**, a uma taxa de 2% ao ano. Qual o valor da prestação?

Resp.:

$$VP = \frac{R(1 - v^n)}{1 - v}$$

$$R = \frac{VP(1-v)}{1-v^n}$$

Como $v = \frac{1}{1+0.02}$ então

$$R = \frac{15000(1-v)}{1-v^4} = \$3862,11$$

Pagamento no ato da liberação dos recursos

$$VP = \sum_{j=0}^{n-1} v^{j} R_{j} = R + v R + v^{2} R + v^{3} R$$

$$R = \frac{VP}{\left[1 + \left(\frac{1}{1+i}\right) + \left(\frac{1}{1+i}\right)^{2} + \left(\frac{1}{1+i}\right)^{3}\right]} = \frac{15000}{1 + \frac{1}{1,02} + \frac{1}{1,0404} + \frac{1}{1,0612}} = $3862,11$$

> EXEMPLO 5:

Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira paga **1 ano após a liberação dos recursos**, a uma taxa de 2% ao ano. Qual o valor da prestação?

> EXEMPLO 5:

Uma empresa conseguiu um financiamento de \$15000,00 a ser liberado em 4 prestações, sendo a primeira **paga 1 ano após a liberação dos recursos**, a uma taxa de 2% ao ano. Qual o valor da prestação?

Resp.:

$$VP = \frac{Rv[1 - v^n]}{1 - v}$$

$$R = \frac{15000[1-v]}{v(1-v^4)} = \$3939,356$$

Pagamento 30 dias após a liberação dos recursos

$$VP = \sum_{i=1}^{n} \left(\frac{1}{1+i}\right)^{j} R_{j} = v R + v^{2}R + v^{3}R + v^{4}R$$

$$R = \frac{15000}{\left[\left(\frac{1}{1,02} \right) + \left(\frac{1}{1,02} \right)^2 + \left(\frac{1}{1,02} \right)^3 + \left(\frac{1}{1,02} \right)^4 \right]}$$

$$R = $3939,35$$