2025 年春· 线性代数作业

截止日期: 2025 年 3 月 18 日 (含)

手写扫描/导出为 PDF 或用 LaTeX 排版编译为 PDF 并发送至: wangyupei@mail.bnu.edu.cn

1. 思考并回答下面关于线性组合的问题:

- 图1展示了 $\frac{1}{2}v + \frac{1}{2}w$ 的终点. 请在图中分别画出 $\frac{3}{4}v + \frac{1}{4}w$; $\frac{1}{4}v + \frac{1}{4}w$; v + w 三者的终点;
- 画出 -v + 2w 以及其他所有使得 c + d = 1 成立的线性组合 cv + dw 的终点. 这些点组成了什么图形?
- 画出 $\frac{1}{3}v + \frac{1}{3}w$ 和 $\frac{2}{3}v + \frac{2}{3}w$ 的终点位置. 线性组合 cv + cw 表达了一条什么样的直线?
- 当限制 $0 \le c \le 1$ 和 $0 \le d \le 1$ 时, 把所有线性组合 cv + dw 的结果涂灰;
- 当限制 $c \ge 0$ 和 $d \ge 0$ 时, 画出所有 $c\mathbf{v} + d\mathbf{w}$ 构成的锥形.

图 1: 第一题图: 平面向量的线性组合

2. 考虑向量 $v_1 = (1,2,0)$ 和 $v_2 = (2,3,0)$. 回答下列问题:

- 它们是线性无关的吗? 为什么?
- 它们是某个空间的基吗? 为什么?
- 它们张成的空间 V 是什么样的?
- V 的维数是多少? 为什么?
- 符合什么条件的矩阵 A 的列空间是 V?
- 描述能与 v_1 , v_2 一起构成 \mathbb{R}^3 的基的向量 v_3 应该满足的条件.

3. 考虑矩阵 W:

$$W = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

- 写出这个矩阵的三个列向量 c_1, c_2, c_3 ;
- 这三个向量是线性相关的还是线性无关的?
- 写出至少两组满足 $y_1c_1 + y_2c_2 + y_3c_3 = 0$ 的 (y_1, y_2, y_3) 的具体数值;
- 矩阵 W 的列向量组的最大线性无关组中的向量数量是多少?
- 矩阵 W 的行向量组的最大线性无关组中的向量数量是多少?
- 这个矩阵的秩是多少?
- **4.** 将 2x + 3y + z + 5t = 8 写成矩阵形式,即用矩阵 A (思考一下应该有多少行?) 乘以一个列向量

$$x = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$
 来得到 b 的形式. 方程的解 x 所处的空间是什么样的? 维数又是多少?

5. 存在三个不同的向量 b_1 , b_2 , b_3 . 如何构造一个矩阵 A, 使得方程 $Ax = b_1$ 和 $Ax = b_2$ 有解,但 方程 $Ax = b_3$ 无解? 这时 b_1 , b_2 , b_3 需满足什么条件?

6. 计算题:

• 矩阵 $A \ge 3 \times 5$ 的, 矩阵 $B \ge 5 \times 3$ 的, 矩阵 $C \ge 5 \times 1$ 的, 矩阵 $D \ge 3 \times 1$ 的, 每个矩阵中的所有位置都是 1. 请问下面计算中合法的有哪些? 结果分别是什么?

$$BA$$
 AB ABD DC $A(B+C)$

- 假设下面的计算都合法,那么各算式中矩阵的哪些行或列参与了下面各对象的计算(本问各矩阵和上一问无关,各小问之间的矩阵也无关):
 - (1) AB 的第二列
 - (2) AB 的第一行
 - (3) AB 的第三行第五列的元素
 - (4) CDE 中第一行第一列的元素

•
$$\stackrel{\omega}{=} A = \begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix},$$

- (1) 计算 AB + AC 并和 A(B + C) 比较结果;
- (2) 计算 A(BC) 并和 (AB)C 比较结果.
- 当 $A = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$. 计算 A^2 和 A^3 . 猜一下 A^5 和 A^n 的结果. 如果 $A = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$ 呢?
- 验证: $(A+B)^2$ 不等于 $A^2+2AB+B^2$, 当

$$A = \left[\begin{array}{cc} 1 & 2 \\ 0 & 0 \end{array} \right], \qquad B = \left[\begin{array}{cc} 1 & 0 \\ 3 & 0 \end{array} \right].$$

写下正确的公式: $(A+B)(A+B) = A^2 + \underline{\hspace{1cm}} + B^2$.

- 7. 考虑矩阵 $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$:
 - 求矩阵 A 的特征值 λ_1, λ_2 及其对应特征向量;
 - 求矩阵 A^2 的特征值和特征向量;
 - 求矩阵 A^{-1} 的特征值和特征向量;
 - 求矩阵 A + 4I 的特征值和特征向量;
 - 方形矩阵的**迹 (trace)** 指的是其对角线上元素之和,即 $\operatorname{tr}(A) = a_{11} + ... + a_{nn} = \sum_{i=1}^{n} a_{ii}$ (其中 a_{ii} 代表矩阵的第 i 行 i 列上的元素的值). 求矩阵 A 的迹,并指出其和 $\lambda_1 + \lambda_2$ 的关系;
 - 计算矩阵 A 的行列式,并指出其和 $\lambda_1 \cdot \lambda_2$ 的关系.