MATH 131B practice final

Nathan Solomon

December 12, 2024

Problem 0.1.

- (a) Let E be a subset of a compact metric space (X, d_X) . Show that if E is open in X, then $E^c := X \setminus E$ is compact.
- (b) Let $f: X \to Y$, where (X, d_X) and (Y, d_Y) are metric spaces. Suppose f is bijective and continuous, and (X, d_X) is compact. Show that f is an open map (that is, for any $E \subset X$ open, $f(E) \subset Y$ is open).
- (a) Since E is open, its complement is closed. Any closed subset of a compact space is compact, so E^c is compact.
- (b) Since E is open, E^c is compact. Because f is continuous, that also means $f(E^c)$ is compact, and since f is bijective, $f(E^c) = f(E)^c$. Every compact space is closed, so $f(E)^c$ is closed, which means f(E) is open.

Problem 0.2. Consider $(\mathbb{R}^2, d_{\ell^2})$.

- (a) What is $B_{(\mathbb{R}^2,d_{e^2})}((0,0),1)$ as a set?
- (b) Denote $B = B_{(\mathbb{R}^2, d_{\ell^2})}((0, 0), 1)$. Let $f : \mathbb{R}^2 \to \mathbb{R}, f(x) = \inf\{d(x, y) | y \in B\}$. Show that f is continuous (with respect to the ℓ^2 metric on \mathbb{R}^2 and the standard metric on \mathbb{R}).
- (a) The set of points distance less than one from the origin can be written as

$$B := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$$

(b) f can be written as $g \circ h$, where $h((x,y)) = ||(x,y)|| = \sqrt{x^2 + y^2}$ and $g(x) = \max(0, x - 1)$. Since g and h are both continuous, so is f.

This is not a rigorous proof, a better way to do this would be to use the triangle inequality to show that for any $\varepsilon > 0$, $(x, y) \in \mathbb{R}^2$, there exists some $\delta > 0$ such that $f(B((x, y), \delta)) \subset B(f((x, y)), \varepsilon)$. But I won't write that whole thing out because it's annoying to do.

Problem 0.3. Let (X, d_X) be a metric space. Suppose for any collection of closed subsets $\{S_{\alpha}\}_{{\alpha}\in A}$ (i.e., for every ${\alpha}\in A$, S_{α} is a closed subset of X) such that $\cap_{{\alpha}\in F}S_{\alpha}\neq\emptyset$ for any finite subset F of A, we have that $\cap_{{\alpha}\in A}S_{\alpha}\neq\emptyset$. Show that X is compact.

Suppose X is not compact. Let $\{T_{\alpha}\}_{\alpha\in A}$ be any open cover of X. There is no finite subcover of that, so for any finite subset $F\subset A$, $\bigcup_{\alpha\in F}T_{\alpha}\neq X$, which means $\bigcap_{\alpha\in F}T_{\alpha}^c\neq\emptyset$. Then $\bigcap_{\alpha\in A}T_{\alpha}^c\neq 0$, which means $\bigcup_{\alpha\in A}T_{\alpha}\neq X$, so $\{T_{\alpha}\}_{\alpha\in A}$ does not cover X. This is a contradiction, so X must be compact.

Problem 0.4. Let $(f_n)_{n=1}^{\infty}$ be a sequence of Riemann-integrable functions from [a,b] to \mathbb{R} , and $f:[a,b]\to\mathbb{R}$ another Riemann-integrable function. Suppose $(f_n)_{n=1}^{\infty}$ converges uniformly to f on [a,b].

- (a) Show that $\lim_{n\to\infty} \int_{[a,b]} f_n = \int_{[a,b]} f$.
- (b) For every n, define $F_n:[a,b]\to\mathbb{R}$, $F_n(x)=\int_{[a,b]}-[a,x]f_n$ and $F:[a,b]\to\mathbb{R}$, $F(x)=\int_{[a,b]}f$. Show that F_n converges uniformly to F on [a,b].

Problem 0.5.

- (a) Let $f: E \to \mathbb{R}$ where $E \subset \mathbb{R}$ and $a \in \text{int}(E)$ (interior of E). State the definition of f being real analytic at x = a.
- (b) Now let $f(x) = \operatorname{arccot}(x)$ (inverse cotangent, where $\cot(x) := \cos(x)/\sin(x)$). Show that f'(x) is real analytic at x = 0 using the geometric series formula

$$\sum_{k=0}^{\infty} cr^k = \frac{c}{1-r}.$$

Find the radius of convergence R for the power series expansion for f'(x) at x = 0.

(c) Show that f(x) is real analytic at x = 0 (you can use $f(x) = \pi/2 + \int_{[0,x]} f'$ for all $x \in \mathbb{R}$).

Problem 0.6.

- (a) State the Fourier theorem for $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$.
- (b) Let f be a function in $C(\mathbb{R}/\mathbb{Z},\mathbb{C})$. For $n \in \mathbb{Z}_{\geq 0}$, let

$$a_n = 2 \int_0^1 f(x) \cos(2\pi nx) dx,$$

$$b_n = 2 \int_0^1 f(x) \sin(2\pi nx) dx.$$

Use the Fourier series of f to show that the series

$$\frac{a_0}{2 + \sum_{n=1}^{\infty} \left[a_n \cos(2\pi nx) + b_n \sin(2\pi nx) \right]}$$

converges to f in the L^2 metric.

Problem 0.7.

- (a) Let $(f_n)_n \subset C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$, and $f, g \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$ and $f_n \to f$ uniformly on \mathbb{R} . Show that $f_n * g \to f * g$ pointwise and uniformly.
- (b) Let $(f_n)_n \subset C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$, and $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$. Suppose for each n, f_n is a periodic $(\frac{1}{n}, \frac{1}{2n})$ approximation to the identity. Show that $f_n * f \to f$ uniformly.

There was a typo on this question???

Problem 0.8. Let $f \in C(\mathbb{R}/\mathbb{Z}, \mathbb{C})$ and g be a trigonometric polynomial. Show that $\hat{f} * g(n) = \hat{f}(n)\hat{g}(n)$ for all $n \in \mathbb{Z}$.

Problem 0.9. Let $f \in C(\mathbb{R}/\mathbb{Z},\mathbb{C})$. For each $N \in \mathbb{N}$, let $F_N = \sum_{n=-N}^N \hat{f}(n)e_n$, and S_n be the collection of trigonometric polynomial $p = \sum_{n=-N}^N c_n e_n$ where $\sum_{n=-N}^N |c_n|^2 \le 1$ (recall $e_n(x) := e^{2\pi i n x}$ is the character with frequency n). For each N, show that $|\langle f, p \rangle| \le ||F_N||$ for all $p \in S_n$. Find an element $p \in S_N$ such that equality holds.