Statistical Thinking for Forensic Practitioners

Quiz on Part 6: Inference

1 Sample size calculations

Collecting data can be expensive and time-intensive. As such, we may want to know how large a sample needs to be to accomplish the goals of an analysis. Consider the following situations and determine which sample size calculation is needed to accomplish the goals of the analysis. (Note: the 4 sample size calculation methods discussed in lecture can be found on slides 37-45 and slide 93. As some of these exercises involve applying formulas, it may be useful to perform your calculations in Excel. In particular, the NORM.S.INV function will be useful. Remember that for a confidence level of $(1-\alpha)$, we need to consider the $(1-\frac{\alpha}{2})$ standard normal quantile in calculating critical values.)

1.	A bloodstain pattern researcher is interested in the average identifying the average diameter of a droplet in a
	stain caused by a firearm. Based on a previous study, they initially estimate the average diameter to be 1.43
	mm with standard deviation .36 mm. They would like to estimate the true average diameter to within 5% with
	90% confidence. (Note: remember for a $(1-\alpha)$ % confidence level to consider a critical value of $z_{1-\alpha/2}$.)

2. An examiner receives 40 individual fibers recovered from a crime scene to analyze using a time-intensive X-ray fluorescence microanalysis procedure. Rather than considering all of these fibers, the examiner would like to know how many fibers they need to analyze to conclude with 95% certainty that at least 70% of the 40 fibers match, assuming 2 of the fibers sampled turn out to be non-matches. (Source)

3. A statistician working for the U.S. Department of Justice is interested in estimating the proportion of 2020 criminal cases for which the defendant is sentenced to prison that involve a firearm. In particular, they want to estimate this proportion with a 99% confidence level. Using an estimate from 2016 that 21% of all state and federal prisoners reported that they possessed or carried a firearm when they committed the offense for

which they are serving time, the statistician wants their margin of error to be .07. How many cases should the statistician consider to achieve the desired goals? (Source)

4. Glass analysts are interested in performing a hypothesis tests to determine whether the average concentration of Calcium in building float glass is different than in vehicle float glass. They want to detect an effect size of .5 (ppm) with 85% power and 95% confidence. How many samples of glass of each type should they consider?

2 Comparing proportions

We will practice hypothesis testing procedures to answer questions about population proportions. As some of these exercises involve applying formulas, it may be useful to perform your calculations in Excel. You may even want to work through the Part 6 lab prior to completing these exercises to practice using Excel to perform hypothesis tests. Slides 108-120 will be useful to reference.

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is a risk assessment tool that predicts how likely a defendant is to recitivate (reoffend). In particular, a numerical score quantifying the "risk of recidivism" is assigned to a defendant. It has been used by some jurisdictions to inform parole decisions. A 2016 ProPublica article criticized the tool for categorically assigning a higher risk to Black defendants compared to White defendants (in fact, they go even further and argue that the tool misclassifies Black defendants as being higher risk based on follow-up recidivism data). We will analyze the findings in this article using hypothesis testing procedures. We will use a significance level of $\alpha = .05$.

The article authors aggregated the scores into "low risk" and "high risk" classifications. We will first consider whether the proportion of Black defendants classified as high risk is different from the proportion of all defendants classified as high risk (note: we are considering "different" from rather specifically "greater than" to be careful about the fact that we didn't formulate our research question until after collecting/observing the data). In a sample of 3,696 Black defendants, 2,174 were classified as high risk. Assume that the sample is representative of all Black defendants for whom COMPAS assigned a score. Also assume that 46% of all defendants were classified as high risk. Let π_1 be the proportion of all Black defendants that would be classified as high risk.

1. Formulate the null and alternative hypotheses H_0 and H_a using similar notation as used on slide 109 of the lecture slides.

2.	Calculate \hat{p}_1 , the estimate of the π_1 . Why can't we claim $\hat{p}_1 = \pi_1$?
3.	Calculate the standard error $SE_{\hat{p}_1}$ of \hat{p}_1 calculated above.
4.	Calculate the z statistic for this hypothesis test. Explain why a z statistic is used here instead of a t statistic.
5.	Calculate the critical value for this z-test assuming $\alpha = .05$.
6.	Do you reject or fail to reject H_0 ? Explain what your decision means in the context of the problem.
7.	Calculate the p -value associated with the z statistic calculated above. (Note: the NORM.S.DIST function with cumulative set to TRUE should be useful. This Excel function returns specifically the area under the normal curve on the interval $(-\infty,z]$ where z is the z -statistic. We desire either the area under the normal curve on $[z,\infty)$ or, by symmetry of the normal distribution, on $(-\infty,-z]$ for the value of z calculated in question 4. Keep this in mind when performing your calculations).

8.	Explain what a Type I and Type II error would be in the context of the problem.
9.	Construct a 95% confidence interval for the proportion of Black defendants classified as high risk.
N	ow consider that of the 2,454 White defendants sampled, 854 were classified as high risk.
	Perform a hypothesis test to determine whether the proportion of Black defendants classified as high risk, π_1 still, is different from the proportion of White defendants classified as high risk, π_2 say. In your answer, include null and alternative hypotheses, a test statistic, a critical value, a p -value, and a conclusion of rejecting/failing to reject the null and what this means in the context of the problem. Use $\alpha = .05$ as a critical value. (Note: We shouldn't z test here as we don't assume knowledge of a population proportion. Refer to slides 113-117.)

	Now suppose data were also collected on Hispanic defendants. We would be interested in determining whether proportions among the three groups of defendants differ.
11.	How many hypothesis tests would we need to perform to fully compare the three groups?
12.	If we were to naively assume a Type I error rate of $\alpha = .05$ for each hypothesis tests, what would be the family-wise confidence level of all 3 hypothesis tests? (Hint: refer to slide 118)
13.	If we were to apply a Bonferroni correction to control the family-wise confidence level of all 3 hypothesis tests,
	what should be the corrected Type I Error rate per test? (Hint: refer to slide 119)