Packet-switching networks Outline

- Context/overview
- Basic approaches to operating a packet-network: datagrams and virtual circuits
- Network layer functions: Routing and forwarding
- Overview of Network layer: data plane and control plane
- Network layer: The Data Plane
 - What's inside a router
 - The Internet Protocol (IPv4, DHCP, NAT, IPv6)
 - Generalized Forward and SDN
- Network layer: The Control Plane
 - Overview of routing in packet networks
 - The SDN control plane
 - ICMP: The Internet Control Message Protocol

Input port functions

data link layer:

e.g., Ethernet

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Generalized Forwarding and SDN

Each router contains a *flow table* that is computed and distributed by a *logically centralized* routing controller

OpenFlow data plane abstraction

- flow: defined by header fields (for link, network, transport layers)
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Actions: for matched packet: drop, forward, modify the packet or send it to controller
 - Priority: disambiguate overlapping patterns
 - Counters: #bytes and #packets

Flow table in a router (computed and distributed by controller) define router's match+action rules

*: wildcard

- 1. src=1.2.*.*, $dest=3.4.5.* \rightarrow drop$
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$

OpenFlow: Flow Table Entries

Destination-based forwarding:

Examples

Switch	MAC	2	MAC	Eth	VLAN	IP	IP	IP	TCP	ТСР	Action
Port	src		dst	type	ID	Src	Dst	Prot	sport	dport	Action
*	*	*		*	*	*	51.6.0.8	*	*	*	port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Switch	MAC)	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Forward
Port	src		dst	type	ID	Src	Dst	Prot	sport	dport	roiwaiu
*	*	*		*	*	*	*	*	*	22	drop
			do i	not forw	vard (b	lock) al	l datag	rams d	estined	to TCP	port 22

Switch Port	MA(src	2	MAC dst		VLAN ID	IP Src			TCP sport	TCP dport	Forward
*	*	*		*	*	128.119.1.1	*	*	*	*	drop

do not forward (block) all datagrams sent by host 128.119.1.1

Destination-based layer 2 (switch) forwarding:

Switch Port	MAC src	MAC dst		VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	22:A7:23: 11:F1:02	*	*	*	*	*	*	*	port3

layer 2 frames with dest. MAC address 22:A7:23:11:E1:02 should be forwarded to output port 3

OpenFlow abstraction

- match + action: unifies different kinds of devices
- Router
 - match: longest destination IP prefix
 - action: forward out a link
- Switch
 - match: destination MAC address
 - action: forward or flood

- Firewall
 - match: IP addresses and TCP/UDP port numbers
 - action: permit or deny
- NAT
 - match: IP address and port
 - action: rewrite address and port

OpenFlow example

match action

IP Src = 10.3.*.* forward(3)

IP Dst = 10.2.*.* forward(3)

Example: datagrams from hosts h5 and h6 should be sent to h3 or h4, via s1 and from there to s2 (avoiding s2-s3 link)

Host h3 10.2.0.3

match	action
ingress port = 1 IP Src = 10.3.*.* IP Dst = 10.2.*.*	forward(4)

match	action
ingress port = 2 IP Dst = 10.2.0.3	forward(3)
ingress port = 2 IP Dst = 10.2.0.4	forward(4)

Question: How do forwarding tables (destination-based forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (Recall: Interplay between routing and forwarding).

Packet-switching networks Outline

- Context/overview
- Basic approaches to operating a packet-network: datagrams and virtual circuits
- Network layer functions: Routing and forwarding
- Overview of Network layer: data plane and control plane
- Network layer: The Data Plane
 - What's inside a router
 - The Internet Protocol (IPv4, DHCP, NAT, IPv6)
 - Generalized Forward and SDN
- Network layer: The Control Plane
 - Overview of routing in packet networks
 - The SDN control plane
 - ICMP: The Internet Control Message Protocol

Routing Algorithm classification

Global or decentralized information?

Global:

- all routers have complete topology, link cost info
- "link state" protocols

Decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" protocols

Static or dynamic?

Static:

routes change slowly over time

Dynamic:

- routes change more quickly
 - o periodic update
 - in response to link cost changes

Hierarchical Routing

scale: with billions of destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network
- Aggregate routers into regions known as "autonomous systems" (AS) (a.k.a. domains).
- An autonomous system (AS) is a collection of routers under the same administrative and technical control.
- Routers in the same AS run (typically) same routing protocol
 - intra-AS routing protocol
 - Routers in different AS can run different intra-AS routing protocol
- Between AS's: inter-AS routing protocol
- Gateway router: Direct link(s) to router(s) in other AS'es.

Interconnected ASes

- forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-As sets entries for external dests

Intra-AS Routing

- □ also known as Interior Gateway Protocols (IGP)
- most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First (IS-IS protocol essentially same as OSPF)
 - EIGRP (Cisco): Enhanced Interior Gateway Routing Protocol

Inter-AS Routing

Inter-AS routing protocol in today's Internet:

BGP: Border Gateway Protocol

Packet-switching networks Outline

- Context/overview
- Basic approaches to operating a packet-network: datagrams and virtual circuits
- Network layer functions: Routing and forwarding
- Overview of Network layer: data plane and control plane
- Network layer: The Data Plane
 - What's inside a router
 - The Internet Protocol (IPv4, DHCP, NAT, IPv6)
 - Generalized Forward and SDN
- Network layer: The Control Plane
 - Overview of routing in packet networks
 - The SDN control plane
 - ICMP: The Internet Control Message Protocol

Software defined networking (SDN)

- Internet network layer: historically has been implemented via distributed, per-router approach
 - monolithic router contains switching hardware, runs proprietary implementation of Internet standard protocols (IP, RIP, IS-IS, OSPF, BGP) in proprietary router OS (e.g., Cisco IOS)
 - different "middleboxes" for different network layer functions: firewalls, load balancers, NAT boxes, ..
- ~2005: renewed interest in rethinking network control plane

Recall: per-router control plane

Individual routing algorithm components in each and every router interact with each other in control plane to compute forwarding tables

Recall: logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables

Software defined networking (SDN)

Why a logically centralized control plane?

- Easier network management: avoid router misconfigurations, greater flexibility of traffic flows
- Table-based forwarding (recall OpenFlow API) allows "programming" routers
 - centralized "programming" easier (orchestration): compute tables centrally and distribute
 - distributed "programming: more difficult: compute tables as result of distributed algorithm (protocol) implemented in each and every router
- Open (non-proprietary) implementation of control plane

Analogy: mainframe to PC evolution

Vertically integrated Closed, proprietary Slow innovation Small industry

Traffic engineering: difficult

<u>Q:</u> what if network operator wants to split u-to-z traffic along uvwz <u>and</u> uxyz (load balancing)?

<u>A:</u> can't do it using current (traditional) protocols based on shortest-path computation (or need a new routing algorithm)

Q: what if 'w' wants to route blue and red traffic differently?

<u>A:</u> can't do it (with destination based forwarding, and LS, DV routing)

Software defined networking (SDN)

Layers in SDN architecture

Network-control apps

- "brains" of control: implement control functions using lower-level services, API provided by SDN controller
- use network state information provided by SDN controller
- unbundled: can be provided by 3rd party: distinct from routing vendor, or SDN controller

SDN controller (network OS)

- maintains network state information, statistics, and flow tables
- (often) implemented as distributed system for performance and faulttolerance

Data plane switches

- fast, simple, commodity switches
- implementing generalized data-plane forwarding in hardware
- communicate with controller (using protocols such as 'OpenFlow') to provide state information and receive flow tables

Components of SDN controller

Interface layer to network control apps: abstractions API

Network-wide state management layer: state of networks links, switches, services: a distributed database

communication layer:

communicate between SDN controller and controlled switches

Example controllers: OpenDaylight (ODL) controller, ONOS controller, etc.

SDN: control/data plane interaction example

- 1 S1, experiencing link failure using OpenFlow port status message to notify controller
- 2 SDN controller receives OpenFlow message, updates link status info
- 3 Dijkstra's routing algorithm application has previously registered to be called when ever link status changes. It is called.
- Dijkstra's routing algorithm access network graph info, link state info in controller, computes new routes
- 5 link state routing app interacts with flow-table-computation component in SDN controller, which computes new flow tables needed
- 6 Controller uses OpenFlow to install new tables in switches that need updating

Observation: SDN is primarily for networks under the same administrative control.

Packet-switching networks Outline

- Context/overview
- Basic approaches to operating a packet-network: datagrams and virtual circuits
- Network layer functions: Routing and forwarding
- Overview of Network layer: data plane and control plane
- Network layer: The Data Plane
 - What's inside a router
 - The Internet Protocol (IPv4, DHCP, NAT, IPv6)
 - Generalized Forward and SDN
- Network layer: The Control Plane
 - Overview of routing in packet networks
 - The SDN control plane
 - ICMP: The Internet Control Message Protocol

ICMP: Internet Control Message Protocol

Ping, Traceroute: use ICMP

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- □ ICMP message: type, code plus first 8 bytes of IP datagram causing error

	<u>Type</u>	<u>Code</u>	description
	0	0	echo reply (ping)
	3	0	dest. network unreachable
	3	1	dest host unreachable
	3	2	dest protocol unreachable
	3	3	dest port unreachable
	3	6	dest network unknown
	3	7	dest host unknown
	4	0	source quench (congestion
			control - not used)
	8	0	echo request (ping)
	9	0	route advertisement
	10	0	router discovery
,	/11	0	TTL expired
/	12	0	bad IP header

Traceroute and ICMP

Traceroute uses ICMP and UDP

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When nth datagram arrives to nth router:
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router& IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- Destination returns ICMP "port unreachable" packet (type 3, code 3)
- When source gets this ICMP, stops.

^{*} Learn about other network tools such as 'netstat', 'tcpdump', 'ifconfig' (or 'ipconfig'), ... (Lab1)