Predobdelava podatkov

Linearna funkcija

Vhodni podatki so v obliki $X(x_1)$ in Y, napovedujemo pa funkcijo $y = b_0 + b_1x_1$. Predobdelava podatkov X v tem primeru ni potrebna.

Polinomska funkcija

Vhodni podatki so v obliki $X(x_1)$ in Y, napovedujemo pa funkcijo $y = b_0 + b_1x_1 + b_2x_2 + ... b_nx_n$.

Predobdelava podatkov X **je potrebna**. Sami matriki X moramo dodati stolpce za vsako stopnjo do stopnje *n* ter jim moramo izračunati vrednosti.

Primer: predvidevamo, da imamo polinom 4 stopnje.

Vhodni podatki:

X₁

X po obdelavi:

$$X_1^1$$
 X_1^2 X_1^3 X_1^4
4 16 64 256

Funkcija z več neodvisnimi spremenljivkami

Vhodni podatki so v obliki X (x_1 , x_2 , x_3 , ..., x_n) in Y, napovedujemo pa funkcijo $y = b_0 + b_1x_1 + b_2x_2 + ... + b_nx_n$. Predobdelava podatkov X v tem primeru ni potrebna.

Linearna regresija (Metoda najmanjših kvadratov)

Najprej izvedete centriranje podatkov, kar pomeni, da za vsak stolpec X ter Y izračunate povprečje ter vsaki vrednosti v matrikah X in Y odštejete povprečje stolpca kateremu pripada.

Pridobljene matrike uporabite v naslednjem izračunu:

$$\mathbf{b} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Matrika **b** nam predstavlja koeficiente, matrika X razlagalne spremenljivke in y ciljno.

Izvedete matrično množenje transponirane X matrike z originalno ter zatem naredite inverz rezultata. Za računanje inverzne matrike lahko uporabite poljubno knjižnico! Zatem izvedete še preostala množenja matrik iz te enačbe.

Kot rešitev pridobite koeficiente b_1 , b_2 , ..., b_n , Izračunati pa morate še koeficient $\mathbf{b_0}$. Izračunate ga tako, v enačbo vstavite za vsak vzorec podatkov $\mathbf{x_1}$, $\mathbf{x_2}$, ..., $\mathbf{x_n}$ vrednosti ter Y in tako pridobite $\mathbf{b_0}$ za vsak vzorec. Le tem vrednostim potem samo poiščete povprečje in tako dobite $\mathbf{b_0}$ enačbe.