CS234 Problem Session

Week 3: Jan 27

1) [Breakout Rooms] Q-learning Practice

Consider an unknown MDP with three states (A, B, C) and two actions $(\leftarrow, \rightarrow)$. Suppose the agent chooses actions according to some policy π in the unknown MDP, collecting a dataset consisting of samples (s, a, s', r) representing taking action a in state s resulting in a transition to state s' and a reward of r.

\overline{s}	a	s'	r
\overline{A}	\rightarrow	B	2
C	\leftarrow	B	2
B	\rightarrow	C	-2
\boldsymbol{A}	\rightarrow	B	4

You may assume a discount factor of $\gamma = 1$.

Recall the update function of Q-learning is:

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot (r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

$$\tag{1}$$

Assume that all Q-values are initialized to 0, and use a learning rate of $\alpha = \frac{1}{2}$.

(a) Run Q-learning on the above experience table and fill in the following Q-values:

$$Q(A, \rightarrow) = ?$$

$$Q(B, \rightarrow) = ?$$

(b) After running Q-learning and producing the above Q-values, you construct a policy π_Q that maximizes the Q-value in a given state: $\pi_Q(s) = argmax_aQ(s,a)$.

What are the actions chosen by the policy in states A and B?

(c) Compute the MLE MDP model estimates of the transition function $\hat{P}(s, a, s')$ and reward function $\hat{R}(s, a, s')$.

Write down the following quantities. You may write N/A for undefined quantities.

$$\hat{P}(A, \to, B) = ?$$

$$\hat{P}(B, \to, A) = ?$$

$$\hat{P}(B, \leftarrow, A) = ?$$

$$\hat{R}(A, \to, B) = ?$$

$$\hat{R}(B, \to, A) = ?$$

$$\hat{R}(B, \leftarrow, A) = ?$$

2) [Breakout Rooms] Value Functions

Prove that the following two definitions of the state-value function are equivalent:

$$V^{\pi}(s) = \mathbf{E}[G_t|S_t = s, \pi]$$

$$V^{\pi}(s) = \mathbf{E}[G|S_0 = s, \pi]$$
(2)

$$V^{\pi}(s) = \mathbf{E}[G|S_0 = s, \pi] \tag{3}$$

3) [Breakout Rooms] Negative Reward MDP

Consider a finite MDP with bounded rewards, where all rewards are negative. That is, $R_t < 0$ always. Let $\gamma = 1$. The MDP is finite horizon, with horizon L, and also has a deterministic transition function and initial state distribution (rewards may be stochastic). Let $H_{\infty} = (S_0, A_0, R_0, S_1, A_1, R_1, ... S_{L-1}, A_{L-1}, R_{L-1})$ be any history that can be generated by a deterministic policy pi. Prove that the sequence $V^{\pi}(S_0), V^{\pi}(S_1), ... V^{\pi}(S_{L-1})$ is strictly increasing.