Distribution-free Uncertainty Quantification: Impossibility and Possibility

Part II

Shuo Li

Based on:

Distribution-free binary classification: prediction sets, confidence intervals and calibration

Distribution-free inference for regression: discrete, continuous, and in between.

Achieving asymptotic calibration via binning

- As shown in *part I*, it is impossible for an injective post-hoc calibration algorithm to be distribution-free asymptotically calibrated.
- However, many parametric calibration schemes are injective. These schemes include Platt scaling, temperature scaling, and beta calibration.
- How do we obtain finite partitions? Binning!

Important concepts in binning

- Suppose we have a fixed partition of $\mathcal X$ into B regions $\{\mathcal X_b\}_{b\in [B]}$, and let $\pi_b=\mathbb E\left[Y\mid X\in \mathcal X_b\right]$ be the expected label probability in region $\mathcal X_b$.
- Denote the partition-identity function as $\mathcal{B}: \mathcal{X} \to [B]$ where $\mathcal{B}(x) = b$ if and only if $x \in \mathcal{X}_b$.

Important concepts in binning

• Given a calibration set $\{(X_i,Y_i)\}_{i\in[n]}$, let

$$N_b := |\{i \in [n] : \mathcal{B}(X_i) = b\}|$$

be the number of points from the calibration set that belong to region \mathcal{X}_b .

Define

$$\widehat{\pi}_b := \frac{1}{N_b} \sum_{i: \mathcal{B}(X_i) = b} Y_i \quad \text{ and } \quad \widehat{V}_b := \frac{1}{N_b} \sum_{i: \mathcal{B}(X_i) = b} \left(Y_i - \widehat{\pi}_b \right)^2$$

as the empirical average and variance of the Y values in a partition.

Asymptotic calibration can be achieved via binning

Theorem

For any $\alpha \in (0,1)$, with probability at least $1-\alpha$,

$$|\pi_b - \widehat{\pi}_b| \leqslant \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b},$$

simultaneously for all $b \in [B]$.

• As $N_b \to \infty$, $|\pi_b - \hat{\pi}_b| \to 0$ in bin b.

Theorem

(Partial statement of Audibert et al.) Let X_1,\ldots,X_n be i.i.d. random variables bounded in [0,s], for some s>0. Let $\pi=\mathbb{E}\left[X_1\right]$ be their common expected value. Consider the empirical mean \bar{X}_n and variance V_n defined respectively by

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}, \quad \text{and} \quad V_n = \frac{\sum_{i=1}^n \left(X_i - \bar{X}_n\right)^2}{n}.$$

Then for any $\delta \in (0,1)$, with probability at least $1-\delta$,

$$\left|\bar{X}_n - \pi\right| \leqslant \sqrt{\frac{2V_n \log(3/\delta)}{n} + \frac{3s \log(3/\delta)}{n}}.$$

- Let $E_{\mathcal{B}(x)}$ be a partition of the calibration set: $(\mathcal{B}(X_1),\ldots,\mathcal{B}(X_n))=(\mathcal{B}(x_1),\ldots,\mathcal{B}(x_n))$. The Y_i -s in each bin represent independent Bernoulli random variables that share the same mean $\pi_b=\mathbb{E}\left[Y\mid X\in\mathcal{X}_b\right]$.
- By setting $\delta = \alpha/B$ and s=1 in the above theorem, we obtain that:

$$P\left(|\pi_b - \widehat{\pi}_b| > \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \leqslant \alpha/B.$$

Applying a union bound over all regions, we get that:

$$P\left(\forall b \in [B] : |\pi_b - \widehat{\pi}_b| \leqslant \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \ge 1 - \alpha$$

- Let $E_{\mathcal{B}(x)}$ be a partition of the calibration set: $(\mathcal{B}(X_1),\ldots,\mathcal{B}(X_n))=(\mathcal{B}(x_1),\ldots,\mathcal{B}(x_n)).$ The Y_i -s in each bin represent independent Bernoulli random variables that share the same mean $\pi_b=\mathbb{E}[Y\mid X\in\mathcal{X}_b].$
- By setting $\delta = \alpha/B$ and s=1 in the above theorem, we obtain that:

$$P\left(|\pi_b - \widehat{\pi}_b| > \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \leqslant \alpha/B.$$

Applying a union bound over all regions, we get that:

$$P\left(\forall b \in [B]: |\pi_b - \widehat{\pi}_b| \leqslant \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \ge 1 - \alpha.$$

- Let $E_{\mathcal{B}(x)}$ be a partition of the calibration set: $(\mathcal{B}(X_1),\ldots,\mathcal{B}(X_n))=(\mathcal{B}(x_1),\ldots,\mathcal{B}(x_n)).$ The Y_i -s in each bin represent independent Bernoulli random variables that share the same mean $\pi_b=\mathbb{E}[Y\mid X\in\mathcal{X}_b].$
- By setting $\delta=\alpha/B$ and s=1 in the above theorem, we obtain that:

$$P\left(|\pi_b - \widehat{\pi}_b| > \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \leqslant \alpha/B.$$

Applying a union bound over all regions, we get that:

$$P\left(\forall b \in [B]: |\pi_b - \widehat{\pi}_b| \leqslant \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \ge 1 - \alpha.$$

- Let $E_{\mathcal{B}(x)}$ be a partition of the calibration set: $(\mathcal{B}(X_1),\ldots,\mathcal{B}(X_n))=(\mathcal{B}(x_1),\ldots,\mathcal{B}(x_n)).$ The Y_i -s in each bin represent independent Bernoulli random variables that share the same mean $\pi_b=\mathbb{E}[Y\mid X\in\mathcal{X}_b].$
- By setting $\delta = \alpha/B$ and s=1 in the above theorem, we obtain that:

$$P\left(|\pi_b - \widehat{\pi}_b| > \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \leqslant \alpha/B.$$

• Applying a union bound over all regions, we get that:

$$P\left(\forall b \in [B]: |\pi_b - \widehat{\pi}_b| \leqslant \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \mid E_{\mathcal{B}(x)}\right) \ge 1 - \alpha.$$

The length is controlled by the partition

Let $b^* = \arg\min_{b \in [B]} N_b$ denote the index of the region with the minimum number of calibration examples.

Corollary

For $\alpha \in (0,1)$, the function $h_n(\cdot) := \widehat{\pi}_{\mathcal{B}(\cdot)}$ is distribution-free (ε,α) -calibrated with

$$\varepsilon = \sqrt{\frac{2\widehat{V}_{b^{\star}} \ln(3B/\alpha)}{N_{b^{\star}}} + \frac{3\ln(3B/\alpha)}{N_{b^{\star}}}}$$

Thus, $\{h_n\}_{n\in\mathbb{N}}$ is distribution-free asymptotically calibrated for any α .

ullet For each bin, we construct an (1-lpha)-confidence interval via

$$C_n(b) = \left[\widehat{\pi}_b - \left(\sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b}\right), \widehat{\pi}_b + \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b}\right], b \in [B].$$

• By Part I, we can convert this confidence interval to (ϵ, α) -calibrated with

$$\varepsilon = \sup_{b \in [B]} |C(b)|/2 = \sqrt{\frac{2\widehat{V}_{b^*} \ln(3B/\alpha)}{N_{b^*}}} + \frac{3\ln(3B/\alpha)}{N_{b^*}}$$

 \bullet For each bin, we construct an $(1-\alpha)\text{-confidence}$ interval via

$$C_n(b) = \left\lceil \widehat{\pi}_b - \left(\sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \right), \widehat{\pi}_b + \sqrt{\frac{2\widehat{V}_b \ln(3B/\alpha)}{N_b}} + \frac{3\ln(3B/\alpha)}{N_b} \right\rceil, b \in [B].$$

• By Part I, we can convert this confidence interval to (ϵ, α) -calibrated with

$$\varepsilon = \sup\nolimits_{b \in [B]} |C(b)|/2 = \sqrt{\frac{2\widehat{V}_{b^\star} \ln(3B/\alpha)}{N_{b^\star}}} + \tfrac{3\ln(3B/\alpha)}{N_{b^\star}}.$$

• Let $\min_{b \in [B]} P(\mathcal{B}(X) = b) = \tau > 0$. By Hoeffding's inequality, we have, with probability $1 - \alpha/B$,

$$N_b \ge n\tau - \sqrt{\frac{n\ln(B/\alpha)}{2}}.$$

• Taking a union bound, we have with probability $1-\alpha$, simultaneously for every $b \in [B]$,

$$N_b \ge n\tau - \sqrt{\frac{n\ln(B/\alpha)}{2}} = \Omega(n)$$

and in particular $N_{b^{\star}} = \Omega(n)$ where $b^{\star} = \arg\min_{b \in [B]} N_b$

• Let $\min_{b \in [B]} P(\mathcal{B}(X) = b) = \tau > 0$. By Hoeffding's inequality, we have, with probability $1 - \alpha/B$,

$$N_b \ge n\tau - \sqrt{\frac{n\ln(B/\alpha)}{2}}.$$

• Taking a union bound, we have with probability $1-\alpha$, simultaneously for every $b\in [B]$,

$$N_b \ge n\tau - \sqrt{\frac{n\ln(B/\alpha)}{2}} = \Omega(n).$$

and in particular $N_{b^*} = \Omega(n)$ where $b^* = \arg\min_{b \in [B]} N_b$.

• Given that

$$\varepsilon = \sqrt{\frac{2\widehat{V}_{b^\star} \ln(3B/\alpha)}{N_{b^\star}}} + \frac{3\ln(3B/\alpha)}{N_{b^\star}},$$

and $N_{b^*} = \Omega(n)$, we have

$$\varepsilon_n = O\left(\sqrt{n^{-1}}\right) = o(1).$$

This concludes the proof.

Discussion

- ullet Any finite partition of ${\mathcal X}$ leads to asymptotic calibration.
- \bullet However, the finite sample guarantee of the Corollary can be unsatisfactory if the sample-space partition is chosen poorly, since it might lead to small $N_{b^\star}.$
- This paper presents a data-dependent partitioning scheme that provably guarantees that $N_{b^{\star}}$ scales as $\Omega(n/B)$ with high probability.

This work proposes to construct the partition $\{\mathcal{X}_b\}_{b\in[B]}$ through binning, which uses a sample splitting strategy to learn the partition of \mathcal{X} .

- The labeled data is split at random into a training set \mathcal{D}_{tr} and a calibration set \mathcal{D}_{cal} .
- Then $\mathcal{D}_{\mathsf{tr}}$ is used to train a scoring function $g: \mathcal{X} \to [0,1]$.
- The scoring function g usually does not satisfy a calibration guarantee out-of-the-box but can be calibrated using binning.

Then, uniform-mass binning is used to guarantee that each region \mathcal{X}_b contains approximately equal numbers of calibration points. This is done by estimating the empirical quantiles of g(X).

- First, the calibration set $\mathcal{D}_{\sf cal}$ is randomly split into two parts, $\mathcal{D}^1_{\sf cal}$ and $\mathcal{D}^2_{\sf cal}$.
- For $j \in [B-1]$, the (j/B)-th quantile \widehat{q}_j of g(X) is estimated from $\left\{g\left(X_i\right), i \in \mathcal{D}^1_{\mathrm{cal}}\right\}$.
- Then, the bins are defined as

$$I_1 = [0, \hat{q}_1), I_i = [\hat{q}_{i-1}, \hat{q}_i], i = 2, \dots, B-1 \text{ and } I_B = (\hat{q}_{B-1}, 1]$$

Then, uniform-mass binning is used to guarantee that each region \mathcal{X}_b contains approximately equal numbers of calibration points. This is done by estimating the empirical quantiles of g(X).

- First, the calibration set $\mathcal{D}_{\sf cal}$ is randomly split into two parts, $\mathcal{D}^1_{\sf cal}$ and $\mathcal{D}^2_{\sf cal}$.
- $\bullet \ \, \text{For} \,\, j \in [B-1] \text{, the} \,\, (j/B) \text{-th quantile} \,\, \widehat{q}_j \,\, \text{of} \,\, g(X) \,\, \text{is estimated from} \,\, \left\{ g\left(X_i\right), i \in \mathcal{D}^1_{\text{cal}} \,\, \right\}.$
- Then, the bins are defined as

$$I_1 = [0, \hat{q}_1), I_i = [\hat{q}_{i-1}, \hat{q}_i], i = 2, \dots, B-1 \text{ and } I_B = (\hat{q}_{B-1}, 1].$$

Then, uniform-mass binning is used to guarantee that each region \mathcal{X}_b contains approximately equal numbers of calibration points. This is done by estimating the empirical quantiles of g(X).

- First, the calibration set $\mathcal{D}_{\sf cal}$ is randomly split into two parts, $\mathcal{D}^1_{\sf cal}$ and $\mathcal{D}^2_{\sf cal}$.
- For $j\in [B-1]$, the (j/B)-th quantile \widehat{q}_j of g(X) is estimated from $\left\{g\left(X_i\right), i\in \mathcal{D}^1_{\mathrm{cal}}\right\}$.
- Then, the bins are defined as:

$$I_1 = \left[0, \widehat{q}_1\right), I_i = \left[\hat{q}_{i-1}, \hat{q}_i\right], i = 2, \dots, B-1 \text{ and } I_B = \left(\hat{q}_{B-1}, 1\right].$$

Theorem

Fix $g:\mathcal{X} \to [0,1]$ and $\alpha \in (0,1)$. There exists a universal constant c such that if $\left|\mathcal{D}^1_{\mathsf{cal}}\right| \geqslant c B \ln(2B/\alpha)$, then with probability at least $1-\alpha$,

$$N_{b^{\star}} \geqslant \left| \mathcal{D}_{cal}^2 \right| / 2B - \sqrt{\left| \mathcal{D}_{cal}^2 \right| \ln(2B/\alpha) / 2}.$$

Thus even if $\left|\mathcal{D}_{\operatorname{cal}}^1\right|$ does not grow with n, as long as $\left|\mathcal{D}_{\operatorname{cal}}^2\right|=\Omega(n)$, uniform-mass binning is distribution-free $(\widetilde{O}(\sqrt{B\ln(1/\alpha)}/n),\alpha)$ -calibrated, and hence distribution-free asymptotically calibrated for any α .

Distribution-free calibration in the online setting

- We have considered the batch setting with a fixed calibration set of size n.
- In the online setting, previous methods are no longer valid.
- The calibration set size n is not know before hand; data points are observed sequentially.

Distribution-free calibration in the online setting

- For some value of n, let the calibration data be given as $\mathcal{D}_{cal}^{(n)}$.
- Let $\left\{\left(X_i^b, Y_i^b\right)\right\}_{i \in \left[N_b^{(n)}\right]}$ be examples from the calibration set that fall into the partition \mathcal{X}_b .
- Let the empirical label average and cumulative (unnormalized) empirical variance be denoted as

$$\widehat{V}_b^+ = 1 \vee \sum_{i=1}^{N_b^{(n)}} \left(Y_i^b - \bar{Y}_{i-1}^b \right)^2, \text{ where } \bar{Y}_i^b := \frac{1}{i} \sum_{j=1}^i Y_j^b \text{ for } i \in \left[N_b^{(n)} \right]$$

Distribution-free calibration in the online setting

The following theorem constructs confidence intervals for $\{\pi_b\}_{b\in[B]}$ that are valid uniformly for any value of n.

Theorem

For any $\alpha \in (0,1)$, with probability at least $1-\alpha$,

$$|\pi_b - \widehat{\pi}_b| \leqslant \frac{7\sqrt{\widehat{V}_b^+ \ln\left(1 + \ln \widehat{V}_b^+\right)} + 5.3 \ln\left(\frac{6.3B}{\alpha}\right)}{N_b^{(n)}},$$

simultaneously for all $b \in [B]$ and all $n \in \mathbb{N}$.

Summary

- This work proposes to utilize binning to obtain non-injective calibration algorithm.
- Using binning, distribution-free asymptotic calibration can be achieved.
- This work recommends some form of binning as the last step of calibrated prediction.

Distribution-free inference for regression: discrete, continuous, and in between

Yonghoon Lee and Rina Foygel Barber

Problem recap

Given an i.i.d. training data

$$(X_1, Y_1), \cdots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P = P_X \times P_{Y|X}$$

and a new test point X_{n+1} , we want to do

- estimation : estimate $\pi_P(X_{n+1}) = \mathbb{E}[Y_{n+1} \mid X_{n+1}].$
- inference : quantify the uncertainty of the estimator e.g. confidence interval.

Confidence interval definition

This paper aims at constructing a confidence interval $\hat{C}_n(x)$ for $\pi_P(x)$ that satisfies the following property:

Definition

An algorithm \widehat{C}_n provides a distribution-free $(1-\alpha)$ -confidence interval for the conditional mean if it holds that

$$\mathbb{P}_{\left(X_{i},Y_{i}\right)\overset{\text{iid}}{\sim}P}\left\{\pi_{P}\left(X_{n+1}\right)\in\widehat{C}_{n}\left(X_{n+1}\right)\right\}\geq1-\alpha$$

for all distributions P on $(X,Y) \in \mathbb{R}^d \times [0,1]$.

Findings from the last class

- Any distribution-free confidence interval for the mean has a non-vanishing length if P_X is nonatomic.
- By partitioning the feature space into finitely many sets (e.g., via binning), the confidence interval can have a vanishing length.

Important definitions

• For any distribution P_X on $X \in \mathbb{R}^d$, we first define the effective support size as

$$M_{\gamma}\left(P_{X}\right)=\left(\min\#\text{ of points needed to capture }\geq1-\gamma\text{ probability}\right)$$

• For any distribution P on $(X,Y) \in \mathbb{R}^d \times [0,1]$, we define $\sigma_{P,\beta}^2 =$ the β -quantile of $\mathrm{Var}_P(Y \mid X)$, under the distribution $X \sim P_X$.

Effective support size example

- Left: $X \sim \text{Unif}(\{1, 2, \dots, 10\}), M = 10, M_{0.05}(P_X) = 10.$

(Source: Yonghoon Lee's slides)

Main finding of this paper

- (Hard) $M_{\gamma}(P_X) \gg n^2$: distributional-free inference is as hard as the nonatomic case.
- (Easy) $M_{\gamma}(P_X) \ll n$: inference is trivial.
- (In-between) $n \ll M_{\gamma}(P_X) \ll n^2$: meaningful distributional-free inference is possible.

(Source: YongHoon Lee's slides)

A lower bound on the length of \hat{C}_n

Theorem

Fix any $\alpha>0$, and let \widehat{C}_n be a distribution-free $(1-\alpha)$ -confidence interval. Then for any distribution P on $\mathbb{R}^d\times\mathbb{R}$, for any $\beta>0$ and $\gamma>\alpha+\beta$

$$\mathbb{E}\left[\left|\widehat{C}_{n}\left(X_{n+1}\right)\right|\right] \geq \frac{1}{3}\sigma_{P,\beta}^{2}\left(\gamma - \alpha - \beta\right)^{1.5} \cdot \min\left\{\frac{\left(M_{\gamma}\left(P_{X}\right)\right)^{1/4}}{n^{1/2}}, 1\right\}$$

where the expected value is taken over data points $(X_i,Y_i) \stackrel{\text{iid}}{\sim} P$, for $i=1,\ldots,n+1$.

To show (length of $\widehat{C}_n\left(X_{n+1}\right)$) $> \epsilon$,

ullet Construct a perturbation \tilde{P} of P such that

$$\pi_P(X) - \pi_{\tilde{P}}(X) \simeq \epsilon$$

and $d_{TV}\left(P^n, \tilde{P}^n\right)$: small

- $\widehat{C}_n\left(X_{n+1}\right)$ should cover the mean under both P^n and \widetilde{P}^n .
- Then $\widehat{C}_n\left(X_{n+1}\right)$ should cover both $\pi_P\left(X_{n+1}\right)$ and $\pi_{\tilde{P}}\left(X_{n+1}\right)$ with substantial probability.

By
$$\pi_{P}(X) - \pi_{\tilde{P}}(X) \simeq \epsilon$$
, length of $\widehat{C}_{n}(X_{n+1}) > \epsilon$.

Proof sketch (more detail)

- Define $\mathcal{X}_1 = \left\{x \in \mathbb{R}^d : \mathbb{P}_{P_X}\{X = x\} > \frac{1}{M_{\gamma}(P_X)}\right\}$; partition \mathbb{R}^d to $\mathcal{X}_2 \cup \mathcal{X}_3 \cup \ldots$; write $p_m = \mathbb{P}_{P_X}\{X \in \mathcal{X}_m\}$.
- For $\epsilon \in (0, 0.5]$, $a = (a_1, a_2, \ldots)$ of signs $a_1, a_2, \cdots \in \{\pm 1\}$, define P_a as follows:

$$Y \mid X = x \sim \left\{ \begin{array}{ll} P_{Y \mid X = x}, & \text{if } x \in \mathcal{X}_1 \\ (0.5 + a_m \epsilon) \cdot P_{Y \mid X = x}^1 + (0.5 - a_m \epsilon) \cdot P_{Y \mid X = x}^0, & \text{if } x \in \mathcal{X}_m \text{ for } m \geq 2 \end{array} \right.$$

• Define P_{mix} as the distribution over $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\mathsf{iid}}{\sim} P_A$.

Proof sketch (more detail)

• We have

$$\pi_{P_a}(x) = \pi_P(x) + a_m \epsilon \Delta(x)$$

$$\mathbf{d}_{\text{TV}}\left(P_{\text{mix}}, P^n\right) \le 2n \sqrt{\sum_{m \ge 1} \epsilon_m^4 p_m^2} = 2n \sqrt{\sum_{m \ge 2} \epsilon^4 p_m^2} \le \frac{2\epsilon^2 n}{\sqrt{M_{\gamma}\left(P_X\right)}}$$

• For a confidence interval of P_{mid} , we have

$$\begin{split} & \mathbb{P}_{P_{\mathsf{mix}} \times P_{X}} \left\{ \left\{ _{P} \left(X_{n+1} \right) \pm \epsilon \Delta \left(X_{n+1} \right) \right\} \cap \widehat{C}_{n} \left(X_{n+1} \right) \neq \emptyset \right\} \geq \gamma - \alpha \\ & \mathbb{P}_{P^{n} \times P_{X}} \left\{ \left\{ _{P} \left(X_{n+1} \right) \pm \epsilon \Delta \left(X_{n+1} \right) \right\} \cap \widehat{C}_{n} \left(X_{n+1} \right) \neq \emptyset \right\} \geq \gamma - \alpha - \frac{2\epsilon^{2}n}{\sqrt{M_{\gamma} \left(P_{X} \right)}} \end{split}$$

Proof sketch (more detail)

• Finally, we can write the length of the confidence interval as

$$\begin{split} &\operatorname{Leb}\left(\widehat{C}_{n}\left(X_{n+1}\right)\right) = \int_{t \in \mathbb{R}} \mathbb{I}\left\{t \in \widehat{C}_{n}\left(X_{n+1}\right)\right\} \mathrm{d}t \\ &\geq 2\sigma_{P,\beta}^{\epsilon_{0}} \int_{\epsilon=0}^{\epsilon_{0}} \mathbb{I}\left\{\sigma_{P}^{2}\left(X_{n+1}\right) \geq \sigma_{P,\beta}^{2} \text{ and } \left\{{_{P}\left(X_{n+1}\right) \pm \epsilon\Delta\left(X_{n+1}\right)}\right\} \cap \widehat{C}_{n}\left(X_{n+1}\right) \neq \emptyset\right\} \mathrm{d}\epsilon, \end{split}$$

• The first term on the right hand size is propotional to $\pi_P(X) - \pi_{P_{\mathrm{mix}}}(X)$; the second term is the probability that the confidence interval covers both $\pi_P(X)$ and $\pi_{P_{\mathrm{mix}}}(X)$.

Special Cases: Uniform discrete features

If P_X is a uniform distribution over M points, then for any $\gamma>0$ the effective support size is $M_{\gamma}\left(P_X\right)=\lceil (1-\gamma)M\rceil$. Therefore, Theorem 1 implies that for any P with nonatomic marginal P_X ,

$$\mathbb{E}\left[|\widehat{C}_n(X_{n+1})|\right] \ge \frac{1}{3}\sigma_{P,\beta}^2(\gamma - \alpha - \beta)^{1.5}(1 - \gamma)^{0.25} \cdot \min\left\{\frac{M^{1/4}}{n^{1/2}}, 1\right\}$$

for any $\beta \in (0, \gamma - \alpha)$.

Special Cases: Uniform discrete features

$$\mathbb{E}\left[\left|\widehat{C}_{n}\left(X_{n+1}\right)\right|\right] \geq \frac{1}{3}\sigma_{P,\beta}^{2}(\gamma - \alpha - \beta)^{1.5}(1 - \gamma)^{0.25} \cdot \min\left\{\frac{M^{1/4}}{n^{1/2}}, 1\right\}$$

• $M\gg n^2$ implies a *constant* lower bound on:

$$\mathbb{E}\left[\left|\widehat{C}_n\left(X_{n+1}\right)\right|\right] \geq \frac{1}{3}\sigma_{P,\beta}^2(\gamma - \alpha - \beta)^{1.5}(1 - \gamma)^{0.25}.$$

• $M \ll n^2$ allows for the possibility of a vanishing length for $\mathbb{E}\left[|\widehat{C}_n\left(X_{n+1}\right)|\right]$.

If the response Y is known to be binary (i.e., $Y \in \{0,1\}$), we might relax the requirement of distribution-free coverage to only include distributions of this type, i.e., we require

$$\mathbb{P}_{\left(X_{i},Y_{i}\right)\overset{\text{iid}}{\sim}P}\left\{ \pi_{P}\left(X_{n+1}\right)\in\widehat{C}_{n}\left(X_{n+1}\right)\right\} \geq1-\alpha$$

for all distributions P on $\mathbb{R}^d \times \{0,1\}$.

- This condition is strictly weaker than the original definition.
- If we could construct a confidence interval \widehat{C}_n in the binary response case, then we could also construct a confidence interval the general case.

- Given data $(X_1, Y_1), \ldots, (X_n, Y_n), \ldots, (X_n, Y_n)$, for each $i = 1, \ldots, n$, draw a binary response $\tilde{Y}_i \sim \operatorname{Bernoulli}(Y_i)$.
- Then we clearly have n i.i.d. draws from a distribution on $(X, \tilde{Y}) \in \mathbb{R}^d \times \{0,1\}$, where

$$\mathbb{E}[\tilde{Y} \mid X] = \mathbb{E}[Y \mid X] = \pi_P(X)$$

• \widehat{C}_n on the new data $(X_1, \widetilde{Y}_1), \ldots, (X_n, \widetilde{Y}_n)$ satisfies the coverage property in the general case.

- Given data $(X_1, Y_1), \ldots, (X_n, Y_n), \ldots, (X_n, Y_n)$, for each $i = 1, \ldots, n$, draw a binary response $\tilde{Y}_i \sim \operatorname{Bernoulli}(Y_i)$.
- Then we clearly have n i.i.d. draws from a distribution on $(X, \tilde{Y}) \in \mathbb{R}^d \times \{0,1\}$, where

$$\mathbb{E}[\tilde{Y} \mid X] = \mathbb{E}[Y \mid X] = \pi_P(X).$$

• \widehat{C}_n on the new data $(X_1, \widetilde{Y}_1), \ldots, (X_n, \widetilde{Y}_n)$ satisfies the coverage property in the general case.

- Given data $(X_1, Y_1), \ldots, (X_n, Y_n), \ldots, (X_n, Y_n)$, for each $i = 1, \ldots, n$, draw a binary response $\tilde{Y}_i \sim \operatorname{Bernoulli}(Y_i)$.
- Then we clearly have n i.i.d. draws from a distribution on $(X, \tilde{Y}) \in \mathbb{R}^d \times \{0,1\}$, where

$$\mathbb{E}[\tilde{Y} \mid X] = \mathbb{E}[Y \mid X] = \pi_P(X).$$

• \widehat{C}_n on the new data $\left(X_1, \widetilde{Y}_1\right), \ldots, \left(X_n, \widetilde{Y}_n\right)$ satisfies the coverage property in the general case.

Special cases: nonatomic features

We now consider the setting where the marginal distribution of X is nonatomic. In this case, for any $\gamma>0$ the effective support size is $M_{\gamma}\left(P_{X}\right)=\infty$.

Special cases: nonatomic features

Therefore, Theorem 1 implies that for any P with nonatomic marginal P_X , for any $\beta \in (0,1-\alpha)$,

$$\mathbb{E}\left[\left|\widehat{C}_n\left(X_{n+1}\right)\right|\right] \ge \frac{1}{3}\sigma_{P,\beta}^2(1-\alpha-\beta)^{1.5}$$

- This lower bound does not depend on n.
- ullet The width of any distributionfree confidence interval is non-vanishing even for arbitrarily large sample size n.

Comparing to a similar Theorem in Part I

Theorem

For any nonatomic P, $len_{n,\alpha}(\hat{C}_n,P) \geq L_{\alpha}(P) > 0$ where

$$L_{\alpha}(P) = \inf_{a: \mathbb{R}^d \to [0, 1]} \{ \mathbb{E}_P[\ell(\pi_P(X), a(X))] : \mathbb{E}_P[a(X)] \le \alpha \}$$

with $\ell:[0,1] \to [0,1]$ fixed.

• An interesting question is to see which bound is tighter.

Special Cases: unbounded

Would it be possible for us to instead consider the general case, where P is an unknown distribution on $\mathbb{R}^d \times \mathbb{R}$? The following result shows that this more general question is not meaningful:

Proposition

Suppose an algorithm \widehat{C}_n satisfies

$$\mathbb{P}_{\left(X_{i},Y_{i}\right)\overset{iid}{\sim}P}\left\{ \pi_{P}\left(X_{n+1}\right)\in\widehat{C}_{n}\left(X_{n+1}\right)\right\} \geq1-\alpha$$

for all distributions P on $\mathbb{R}^d \times \mathbb{R}$. Then for all distributions P, for all $y \in \mathbb{R}$ it holds that

$$\mathbb{P}_{\left(X_{i},Y_{i}\right)\overset{iid}{\sim}P}\left\{y\in\widehat{C}_{n}\left(X_{n+1}\right)\right\}\geq1-\alpha$$

Special Cases: unbounded

$$\mathbb{P}_{\left(X_{i},Y_{i}\right)\overset{\text{iid}}{\sim}P}\left\{y\in\widehat{C}_{n}\left(X_{n+1}\right)\right\}\geq1-\alpha$$

This means that if we require \widehat{C}_n to have distribution-free coverage over distributions with unbounded response, then inevitably, every point in the real line is contained in the resulting confidence interval a substantial portion of the time.

To achieve the lower bound, this work proposes an algorithm that, for certain "nice" distributions P, can achieve a confidence interval length that matches the rate of the lower bound.

This algorithm requires two inputs:

- A hypothesized ordered support set $\left\{x^{(1)},x^{(2)},\ldots\right\}\subset\mathbb{R}^d$ for the marginal P_X .
- A hypothesized mean function $\hat{\pi}: \mathbb{R}^d \to [0,1]$.

The hypothesized support set $\left\{x^{(1)},x^{(2)},\ldots\right\}$ should aim to list the highest-probability values of X early in the list, while the hypothesized mean function $\hat{\pi}(\cdot)$ should aim to be as close to the true conditional mean π_P as possible.

Step 1 : estimate the effective support size.

We compute a probabilistic upper bound of the effective support size:

$$\widehat{M}_{\gamma} = \min\left\{m : \sum_{i=1}^{n} \mathbb{I}\left\{X_i \in \left\{x^{(1)}, \dots, x^{(m)}\right\}\right\} \ge (1 - \gamma)n + \sqrt{\frac{n \log(2/\delta)}{2}}\right\}.$$

The estimated effective support size satisfies

$$\mathbb{P}\left\{\widehat{M}_{\gamma} \ge M_{\gamma}\left(P_X\right)\right\} \ge 1 - \delta/2$$

Step 2: estimate error at each repeated X value.

Define

$$Z = \sum_{\substack{m=1,2,\dots\\\text{s.t. } n_m > 2}} (n_m - 1) \cdot \left(\left(\bar{y}_m - \left(\hat{\pi}(x^{(m))} \right) \right)^2 - n_m^{-1} s_m^2 \right)$$

where

$$\begin{split} n_m &= \sum_{i=1}^n \mathbb{I}\left\{X_i = x^{(m)}\right\}, \bar{y}_m = \frac{1}{n_m} \sum_{i=1}^n Y_i \cdot \mathbb{I}\left\{X_i = x^{(m)}\right\} \\ s_m^2 &= \frac{1}{n_m - 1} \sum_{i=1}^n \left(Y_i - \bar{y}_m\right)^2 \cdot \mathbb{I}\left\{X_i = x^{(m)}\right\}. \end{split}$$

Note:
$$\mathbb{E}\left[\left(\bar{y}_{m}-\left(\hat{\pi}(x^{(m)})\right)\right)^{2}-n_{m}^{-1}s_{m}^{2}\right]=\left(\left(\hat{\pi}(x^{(m)})\right)-\pi_{P}\left(x^{(m)}\right)\right)^{2}$$

Step 3: construct the confidence interval

Let

$$\widehat{\Delta} = \sqrt{\frac{2\widehat{M}_{\gamma} + n}{n(n-1)}} \cdot \sqrt{4Z_{+} + 4\sqrt{N_{\geq 2} \cdot 2/\delta} + 16/\delta},$$

where

$$N_{\geq 2} = \sum_{n=1}^{\infty} \mathbb{I}\{n_m \geq 2\} \text{ and } Z_+ = \max\{Z, 0\},$$

and define

$$\widehat{C}_n(x) = \left[\max \left\{ 0, \widehat{\pi}(x) - \frac{\widehat{\Delta}}{\alpha - \delta - \gamma} \right\}, \min \left\{ 1, \widehat{\pi}(x) + \frac{\widehat{\Delta}}{\alpha - \delta - \gamma} \right\} \right].$$

Theorem 2

Theorem

The confidence interval constructed by the above algorithm is a distribution-free $(1-\alpha)$ -confidence interval.

Theorem 3

Theorem

Suppose the distribution P on $(X,Y) \in \mathbb{R}^d \times \mathbb{R}$ has marginal P_X that is supported on $\left\{x^{(1)},\dots,x^{(M)}\right\}$ and satisfies $\mathbb{P}_{P_X}\left\{X=x^{(m)}\right\} \leq \eta/M$ for all m, and suppose that P has conditional mean $\pi_P:\mathbb{R}^d \to \mathbb{R}$ that satisfies $\mathbb{E}_{P_X}\left[(\pi_P(X)-\hat{\pi}(X))^2\right] \leq \operatorname{err}_{\hat{\pi}}^2$. Then the confidence interval constructed in step 3 satisfies

$$\mathbb{E}\left[\left|\widehat{C}_n\left(X_{n+1}\right)\right|\right] \le c\left(\operatorname{err}_{\hat{\pi}} + \frac{M^{1/4}}{n^{1/2}}\right)$$

where c depends only on the parameters $\alpha, \delta, \gamma, \eta$.

Theorem 3

• There exists a setting where a distribution-free confidence interval satisfies

$$\mathbb{E}\left[\operatorname{Leb}\left(\widehat{C}_n\left(X_{n+1}\right)\right)\right] \le c\left(\operatorname{err}_{\hat{\pi}} + \frac{M^{1/4}}{n^{1/2}}\right)$$

- i.e., the lower bound can be achieved.
- If $M \ll n^2$, it is possible to have a confidence interval of vanishing length.

Theorem 3 Example

- If $\hat{\pi}$ is constructed via logistic regression, and the distribution P follows this model, then we have $\operatorname{err}_{\hat{\pi}} = \mathcal{O}(\sqrt{d/n})$.
- In a k-sparse regression setting where we use logistic lasso we might instead obtain $\operatorname{err}_{\hat{\pi}} = \mathcal{O}(\sqrt{k \log(d)/n})$.
- If $x \mapsto \pi_P(x)$ is β -Hölder smooth, then we have $\operatorname{err}_{\hat{\pi}} = \mathcal{O}\left(n^{-\beta/(\beta+d)}\right)$.

Conclusion

This work derives a lower bound for the confidence interval:

$$\mathbb{E}\left[\left|\widehat{C}_{n}\left(X_{n+1}\right)\right|\right] \geq \frac{1}{3}\sigma_{P,\beta}^{2}(\gamma - \alpha - \beta)^{1.5} \cdot \min\left\{\frac{\left(M_{\gamma}\left(P_{X}\right)\right)^{1/4}}{n^{1/2}}, 1\right\}.$$

- M_γ(P_X) ≫ n²: distribution-free confidence interval does not have vanishing length.
- $n \ll M_{\gamma}(P_X) \ll n^2$: distribution-free confidence interval can have vanishing length.
- \bullet This work proposes an algorithm to construct an $(1-\alpha)$ confidence interval that can achieve the length lower bound.

(Source: YongHoon Lee's slides)

Thank you!