

Das Problem Punktkorrespondenz

Gegeben "Modell" (z.B. Referenz-Scan, kontinuierliche Kurve), welche Scanpunkte P'_i ("Datenpunkte") entsprechen Modell-Punkten P_i ?

Wieviele/welche haben überhaupt eine Entsprechung?

Und wenn – welche?

Beispiel: Messpunkte P_i nach Schätzung der Poseänderung überlagert einer Modellmenge (rot)

- Abstände minimieren?
- Überdeckung maximieren?
- (θ,T) minimieren?
- Sichtbarkeit berücksichtigen?

Vorarbeit für Korrespondenzbestimmung

Nicht alle Punkte aus Modell- und Datenmenge müssen überhaupt fürs Scanmatching herangezogen werden!

Beispiel: Reduziere Datenpunkte durch Reduktionsfilter

©linear in Menge der Datenpunkte

Korrespondenz I: Die Regel closest-point

- Geh die Punkte (ggf. gefiltert) der Datenmenge durch
- Wenn für Datenpunkt p_i in einer ϵ -Umgebung mindestens 1 Modellpunkt liegt, dann nimm den nächsten Modellpunkt dieser Umgebung als korrespondierenden Punkt; definiere dabei Nähe als Euklidischen Abstand. (Gibt es innerhalb der ϵ -Umgebung keinen Modellpunkt, hat p_i keinen korrespondierenden)
- Grundlage des Algorithmus ICP (Iterative Closest Points, Besl/McKay, 1992) (z.T. Iterative Corresponding Points)
- Analytisch: Konvergiert (gemeinsam mit Fehlergradientenabstieg) garantiert auf lokales Minimum von $E(\theta,T)$
- Empirisch: Kompensiert Translationsfehler gut, wenn Rotationsfehler gering

2D-Scanmatching mit ICP

Eingabe: Punktmenge M, Scan D.

Ausgabe: Transformation $T = (t_x, t_z, \theta)^T$, die D mit M registriert.

- 1: if Initiale Poseschätzung existiert then
- 2: Setze T gleich dem geschätzten Poseversatz
- 3: Transformiere D um T
- 4: **else**

5:
$$T = (t_x, t_z, \theta)^T = (0, 0, 0)^T$$

- 6: end if
- 7: repeat
- 8: Bestimme die Paarungen korrespondierender Punkte (z.B. mittels Icp-Regel)
- 9: Berechne ΔT durch Minimierung der Fehlerfunktion E wie in Folie 224 (Lu/Milios)

10:
$$m{T} = m{T} + egin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \Delta m{T}$$
 // Aktualisierung der Transformation

- 11: Transformiere D mit ΔT
- 12: until Transformations-Inkrement ΔT ist betragsmäßig unter einer Grenze.
- 13: return T

K II: Die Regel matching-range-point (Lu/Milios)

• Verwende die Datenpunkte in Polardarstellung (r, φ) (wie sie vom Scanner kommen)

• Sei $\Delta\theta$ die zuletzt ermittelte Änderung der Rotationsschätzung.

 $(\Delta\theta \text{ nimmt normalerweise ab über die Laufzeit des Scan-Matching.})$

Für Datenpunkt $p'=(r,\varphi)$ wähle, wenn vorhanden, den

Modellpunkt p als korrespondierenden, der in einem Winkelsegment $\varphi \pm B_{\Lambda\theta}$ liegt

und für den $(\|p\|-r)^2$

minimal ist

 $B_{\Delta\theta}$ Schranke für Winkelirrtum; sinkt über Iterationen des Algorithmus

Unterschied matching-range-I closest-point

Beispiele

closest point

schwarz: Daten;

grau: Modell

matching range

schwarz: Daten;

grau: Modell

matching range wählt Korrespondenzen in einheitlicher Rotationsrichtung

Sompensiert Rotationsfehler gut; übersieht Translationsfehler, solange B_{θ} noch hoch ist

IDC (Iterative Dual Correspondence)

- Ermittle Korrespondenzen je nach c-p- und nach m-r-p-Regel
- Berechne für beide Korrespondenzen jeweils optimale Poseschätzung (z.B. minimaler Restfehler, s.o.; maximale Kovarianz, s.u.)
- Ergebnis: Rotation aus m-r-p- und Translation aus c-p-Regel

Lokalisierung für schnelle Roboter

Kai Lingemann&al.:

High-Speed Laser Localization for Mobile Robots. J.RAS, 2005

... den Film kennen wir schon (#142)

HAYAI

Highspeed
And Yet Accurate
Indoor/outdoor
Tracking

速い

Joachim Hertzberg Robotik WS 2012/13

5. Lokalisierung in Karten5.3 Lokalisierungs-Algorithmen

Ideen zum schnellen Pose-Tracking

- Geh aus von Scanmatching (Rotation/Translation konsekutiver Scans)
- Betrachte lokale Merkmale (Extrema/Ableitung(en)=0 in geglätteten Daten)
- Arbeite in Polardarstellung (nutze Extrema-Reihenfolge in Scans)
- Translation&Rotation in geschlossener Form wie bei Scanmatching (keine Iteration)
- Füge nötigenfalls (merkmalsarme Scans) Information hinzu
 - Winkelhistogramme
 - EKF

HAYAI-Mathematik: Ansatz

Gegeben zwei Scans M, D. Finde Rotation \mathbf{R} und Translation \mathbf{t} , unter denen D "möglichst exakt" auf M abgebildet wird; Evaluation über zu minimierende Fehlerfunktion E:

Bei <u>paarweiser</u> Kongruenz von N Punkten aus M und D (benutze genau N extrahierte Merkmale, $N \ll |D|$):

$$E(\mathbf{R},\mathbf{t}) = \sum_{i=1}^{N} \left\| \mathbf{m}_{i} - (\mathbf{R}\mathbf{d}_{i} + \mathbf{t}) \right\|^{2}$$

→ berechnen wie in ICP/IDCs. Beweis Folie 225

Lokalisierung bei schneller Fahrt

- 1. HAYAI allein
- 2. ... plus EKF
- 3. ... plus Karte

- Erhöhtes Rauschen durch Vibrationen
- Höhere Differenz zwischen Scans durch Fahrgeschwindigkeit

"Karte" einer Rundfahrt

5.3.2 Lokalisierung an Linien

- Statt Punktmengen mit Punktmengen matche Linienmengen mit Linienmengen zur Lokalisierung
- Macht nur Sinn in überwiegend polygonalen Umgebungen!
- Modell-Linien kommen aus Karte oder vorherigem/n Scan/s
- Frage: Wie kommt man an Linien aus Laserscans?
- → Methode, Gerade durch Punktmenge zu legen
 s. Linien-Erkenner Folien 87–95!
 (z.B. online-Linienfinder, Regressionsgeraden, Hough-Transformation)

Linien zurück zu Punkten: Sampling (Folie 87)

Will man lieber Punkte als Linien matchen (ICP/IDC), kann Linienfinden zum Glätten der Daten dienen!

Einzellinienmatching

- Beschreibe Linie durch Mittelpunkt, Länge, Neigung: $L=\langle c,l,\phi\rangle$
- Ordne Linien mit nächsten Mittelpunkten einander zu; ggf. verwende Schwellen der Unterschiede von ϕ und l
- nimm z.B. IDC für korrespondierende Mittelpunkte zum Matchen aller Modelllinien mit allen Datenlinien
- ggf. justiere Daten-Linien einzeln nach (Werte c, ϕ)

Für Polylinien: s. Masterarbeit Rosemann!

