

Vorlesung 8 | 20.11.2020 | 14:15–16:00 via Zoom

Handzettel

In der letzten Vorlesungen haben wir gesehen: Beschränkung eines σ-Algebra, Bedingte W-keiten.

Definition 1. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum, $A, B \in \mathcal{F}$ zwei Ereignisse. Für B s.d. $\mathbb{P}(B) > 0$, definieren wir

$$\mathbb{P}(A \mid \mathbf{B}) = \mathbb{P}_B(A) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)},$$

die bedingte W-keit von A gegeben B.

Satz 2. Sei $B \in \mathcal{F}$ mit $\mathbb{P}(B) > 0$. Dann

a) Die bedingte W-keit $\mathbb{P}_B(\cdot) = \mathbb{P}(\cdot|B)$ definiert ein W-maß auf (B, \mathcal{F}_B) , wobei

$$\mathscr{F}_B = \mathscr{F} \cap B := \{A \cap B \mid A \in \mathscr{F}\} \subseteq \mathscr{F}.$$

- b) Sei $(B_n)_{n\in\mathbb{N}}$ eine Folge von paarweise disjunkt Mengen in \mathcal{F} , s.d.
 - 1. $\bigcup_{n\in\mathbb{N}}B_n=\Omega$
 - 2. $\mathbb{P}(B_n) > 0$ für alle $n \in \mathbb{N}$.

Dann, $\forall A \in \mathcal{F}$,

$$\mathbb{P}(A) = \sum_{n \in \mathbb{N}} \mathbb{P}(A|B_n) \mathbb{P}(B_n).$$

Heutigen Vorlesung.

Lemma 3. (Bayes'sche Formel) Seien $A, B \in \mathcal{F} \mathbb{P}(A) > 0$, $\mathbb{P}(B) > 0$. Dann

$$\mathbb{P}(A|B) = \mathbb{P}(B|A) \frac{\mathbb{P}(A)}{\mathbb{P}(B)}.$$

Definition 4. Zwei Ereignisse $A, B \in \mathcal{F}$ mit $\mathbb{P}(A) > 0$ und $\mathbb{P}(B) > 0$ heißen unabhängig, falls

$$\mathbb{P}(A|B) = \mathbb{P}(A) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Allgemeiner, heißen n Ereignisse A_1, \ldots, A_n (mit $\mathbb{P}(A_k) > 0$ für $k = 1, \ldots, n$) unabhängig, falls $\forall m \leq n$, $1 \leq i_1 \leq \cdots \leq i_m \leq n$,

$$\mathbb{P}\left(\cap_{k=1}^{m}A_{i_{k}}\right)=\Pi_{k=1}^{m}\mathbb{P}\left(A_{i_{k}}\right).$$

Definition 5. Sei (Ω, \mathcal{F}) ein Messraum, $X: \Omega \to \mathbb{R}$ eine Z.V.. Definiere $\sigma(X)$ die **kleinste** unter- σ -Algebra von \mathcal{F} s.d. X bzg. $\sigma(X)$ messbar ist. $\sigma(X)$ hei β t die von X erzeugte σ -Algebra.

Definition 6. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum und X_1, X_2 zwei Z.V. X_1 und X_2 heißen unabhängig, falls $\forall A \in \sigma(X_1), B \in \sigma(X_2)$ mit $\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$, gilt

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$
.

Lemma 7. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum, X_1, X_2 unab. Z.V. Seien g_1, g_2 messbare Funktionen von $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ nach $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mit

$$\int_{\Omega} |g_i(X_i)| d\mathbb{P} < \infty, \qquad i = 1, 2.$$

Dann,

$$\int_{\Omega} g_1(X_1)g_2(X_2) d\mathbb{P} = \left(\int_{\Omega} g_1(X_1) d\mathbb{P}\right) \left(\int_{\Omega} g_2(X_2) d\mathbb{P}\right).$$

Definition 8. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum. X_1, X_2 Z.V. heißen unkorreliert, falls

$$\int X_1 X_2 d\mathbb{P} = \int X_1 d\mathbb{P} \int X_2 d\mathbb{P}.$$

Notierung.

$$\mathbb{E}(X) \coloneqq \int X d\mathbb{P}, \qquad (Erwartungswert)$$

$$Var(X) := \mathbb{E}[(X - \mathbb{E}(X))^2], \quad (Varianz)$$

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))].$$
 (Covarianz)

 $\Rightarrow X, Y \text{ Unkorreliert} \Leftrightarrow \text{Cov}(X, Y) = 0.$

Definition 9.

•

$$\Omega = \Omega_1 \times \Omega_2 = \{ \omega = (\omega_1, \omega_2) | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2 \}$$

heißt das Produktraum von Ω_1 und Ω_2 .

• $\mathscr{F} = \mathscr{F}_1 \otimes \mathscr{F}_2$ ist die kleinste σ -Algebra, die alle Menge der Form $C = A \times B$, $A \in \mathscr{F}_1$, $B \in \mathscr{F}_2$ enthält. $\mathscr{F} = \mathscr{F}_1 \otimes \mathscr{F}_2$ heißt die Produkt σ -Algebra von \mathscr{F}_1 und \mathscr{F}_2 .

Lemma 10. Es gilt

- a) $\forall C \in \mathcal{F}_1 \otimes \mathcal{F}_2, x \in \Omega_1, y \in \Omega_2 \ dann, C_x \in \mathcal{F}_2, C^y \in \mathcal{F}_1$
- b) $\forall f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ messbar dann, $\forall x \in \Omega_1, y \in \Omega_2$ $f_x: (\Omega_2, \mathcal{F}_2) \to \mathbb{R}$, $f^y: (\Omega_1, \mathcal{F}_1) \to \mathbb{R}$ messbar sind.

Satz 11. Seien \mathbb{P}_1 , \mathbb{P}_2 W-masse auf $(\Omega_1, \mathcal{F}_1)$ und $(\Omega_2, \mathcal{F}_2)$

a) $\exists ! \ \mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2 \ W$ -masse auf $(\Omega, \mathcal{F}_1 \otimes \mathcal{F}_2) \ s.d.$

$$(\mathbb{P}_1 \otimes \mathbb{P}_2)(A \times B) = \mathbb{P}_1(A)\,\mathbb{P}_2(B) \qquad \forall A \in \mathcal{F}_1, B \in \mathcal{F}_2.$$

b) Falls $C \in \mathcal{F}_1 \otimes \mathcal{F}_2$, dann

$$\mathbb{P}_1 \otimes \mathbb{P}_2(C) = \int_{\Omega_1} \mathbb{P}_2(C_x) d\mathbb{P}_1(x) = \int_{\Omega_2} \mathbb{P}_1(C^y) d\mathbb{P}_2(y).$$