Huazhong University of Science and Technology

Mixed Integer Second Order Cone Programming Taking Appropriate Approximation for the UC in Hybrid AC-DC Grid

Bo Zhou

Smart Grid Operation & Control Center Huazhong Univ. Sci. & Tech.

zhoubo5@hust.edu.cn

Contents

- Background
- Line Based Power Flow Model
- MISOCP Formulation
- Case Study
- **5** Conclusions

Background

Engineering and Technology

- The transmission and consumption of large-scale wind power through VSC based HVDC links
- OPF and UC for the hybrid AC-DC grid

 Mixed integer second order cone programming considering power flow constraints and converter model

AC lines model

Variables about power flow

Power balance

$$\begin{cases} P_{Gi} - P_{Di} = \sum_{j=1}^{n_{IAC}} M_{PQAC}(i, j) P_{rACj} + \sum_{j=1}^{n_{IAC}} M_{IAC}(i, j) P_{lsACj} \\ Q_{Gi} - Q_{Di} = \sum_{j=1}^{n_{IAC}} M_{PQAC}(i, j) Q_{rACj} + \sum_{j=1}^{n_{IAC}} M_{IAC}(i, j) Q_{lsACj} - B_{ii} V_i^2 \end{cases}$$

Loss relation

$$\left\{\begin{array}{c} \frac{P_{rACj}^2 + Q_{rACj}^2}{V_{rACj}^2} X_{ljj} = Q_{lsACj} \\ \hline \frac{P_{rACj}^2 + Q_{rACj}^2}{V_{rACj}^2} R_{lACjj} = P_{lsACj} \end{array}\right\} \longrightarrow P_{lsACj} X_{ljj} = Q_{lsACj} R_{lACjj}$$

Can be replaced by a first order variable "W"

AC lines model

Voltage relation

Engineering and Technology

The real part>0 | Module
$$V_{sj}^2 - V_{rj}^2 = 2R_{lACjj}P_{rACj} + 2X_{ljj}Q_{rACj} + 2R_{lACjj}P_{lsACj} + 2X_{ljj}Q_{lsACj}$$

Actual power system [Imaginary part $V_{sj}V_{rj}\sin\theta_{srj} = X_{ljj}P_{rACj} - R_{lACjj}Q_{rACj}$]

Approximation $\sin\theta_{srj} \approx \theta_{srj} \ V_{sj}V_{rj} \approx 1$

$$\sin \theta_{srj} \approx \theta_{srj} \ V_{sj} V_{rj} \approx 1$$

$$\theta_{srj} = X_{ljj} P_{rACj} - R_{lACjj} Q_{rACj}$$

$$\Rightarrow \theta_{srj} = X_{ljj} P_{rACj} - R_{lACjj} Q_{rACj}$$
 Fundamental Circuit Matrix
$$\Rightarrow \sum_{k=1}^{n_C} C_{kj} X_{ljj} P_{rACj} - \sum_{k=1}^{n_C} C_{kj} R_{lACjj} Q_{rACj} = 0$$

DC lines model

Similar to AC lines

Power balance

$$P_{DCi} = -\sum_{j=1}^{n_{IDC}} M_{PDC}(i, j) P_{rDCj} - \sum_{j=1}^{n_{IDC}} M_{IDC}(i, j) P_{lossDCj}$$

Loss relation

$$\frac{P_{rDCj}^2}{V_{rDCj}^2} R_{lDCjj} = P_{lsDCj}$$

Voltage relation

$$V_{sDCi}^2 - V_{rDCi}^2 = 2P_{rDCi}R_{DCii} + P_{lsDCi}R_{DCii}$$

Converter station model

the inner structure of converter station was neglected only power flow of both sides are considered

Power transmission relation

Approximate loss relation

$$P_{DCi} = P_{cvi} + P_{lscvi}$$

$$P_{lscvi} = \beta |P_{cvi}| \qquad (\beta = 0.015)$$

Power balance at AC side

$$\begin{cases} P_{Gi} + P_{cvi} - P_{Di} = \sum_{j=1}^{n_{IAC}} M_{PQAC}(\mathbf{i}, \mathbf{j}) P_{rACj} + \sum_{j=1}^{n_{IAC}} M_{IAC}(i, j) P_{lsACj} \\ Q_{Gi} + Q_{cvi} - Q_{Di} = \sum_{j=1}^{n_{IAC}} M_{PQAC}(\mathbf{i}, \mathbf{j}) Q_{rACj} + \sum_{j=1}^{n_{IAC}} M_{IAC}(i, j) Q_{lsACj} - B_{ii} V_i^2 \end{cases}$$

MISOCP Formulation

SOC relaxation

Global optimal solution can be obtained

The correctness of SOC relaxation in distribution network has been validated. Here the SOC relaxation is extended to transmission network.

Numerical results will be used to validated the correctness.

MISOCP Formulation

SOCP formulation for OPF in hybrid AC-DC grid

$$X^{T} = \begin{bmatrix} P_{G}^{T} & Q_{G}^{T} & W_{AC}^{T} & P_{rAC}^{T} & Q_{rAC}^{T} & P_{lsAC}^{T} & Q_{lsAC}^{T} \\ P_{cv}^{T} & Q_{cv}^{T} & P_{lscv}^{T} & W_{DC}^{T} & P_{rDC}^{T} & P_{lsDC}^{T} \end{bmatrix}$$

$$Min(FX) = \sum_{i=1}^{n_G} b_i P_{Gi}$$

Subject to (all above equations)

$$P_{Gi} + P_{cvi} - \sum_{j=1}^{n_{IAC}} M_{PQAC}(\mathbf{i}, \mathbf{j}) P_{rACj} - \sum_{j=1}^{n_{IAC}} M_{I}AC(\mathbf{i}, \mathbf{j}) P_{lsACj} = P_{Di}$$

$$Q_{Gi} + Q_{cvi} - \sum_{j=1}^{n_{IAC}} M_{PQAC}(\mathbf{i}, \mathbf{j}) Q_{rACj} - \sum_{j=1}^{n_{IAC}} M_{I}AC(\mathbf{i}, \mathbf{j}) Q_{lsACj} + B_{ii} W_{DCi} = Q_{Di}$$

$$P_{cvi} + P_{lscvi} + \sum_{j=1}^{n_{IDC}} M_{PDC}(\mathbf{i}, \mathbf{j}) P_{rDCj} + \sum_{j=1}^{n_{IDC}} M_{IDC}(\mathbf{i}, \mathbf{j}) P_{lsDCj} = 0$$

$$R_{lACjj} P_{rACj}^2 + R_{lACjj} Q_{rACj}^2 - (1+\varepsilon) P_{lsACj} W_{rACj} \le 0$$

$$2R_{DCjj} P_{rDCj} + R_{DCjj} P_{lsDCj} - \sum_{i=1}^{n_{DDC}} M_{W_{DC}}(\mathbf{j}, \mathbf{i}) W_{DCi} = 0$$

$$2R_{DCjj} P_{rDCj} + R_{DCjj} P_{lsDCj} - \sum_{i=1}^{n_{DDC}} M_{W_{DC}}(\mathbf{j}, \mathbf{i}) W_{DCi} = 0$$

$$\begin{split} 2R_{lACjj}P_{rACj} + 2X_{ljj}Q_{rACj} + R_{lACjj}P_{lsACj} + X_{ljj}Q_{lsACj} - \sum_{i=1}^{n_{bAC}} M_{W_{AC}}(j,i)W_{ACi} &= 0 \\ \sum_{k=1}^{n_{C}} C_{kj}X_{ljj}P_{rACj} - \sum_{k=1}^{n_{C}} C_{kj}R_{lACjj}Q_{rACj} &= 0 \\ \beta^{2}P_{cvi}^{2} - (1+\varepsilon)P_{lscvi}^{2} &\leq 0 \\ Q_{Di} \qquad P_{cvi} + P_{lscvi} + \sum_{j=1}^{n_{DC}} M_{PDC}(\mathbf{i}, \mathbf{j})P_{rDCj} + \sum_{j=1}^{n_{DC}} M_{lDC}(i, \mathbf{j})P_{lsDCj} &= 0 \\ R_{lDCjj}P_{rDCj}^{2} - (1+\varepsilon)P_{lsDCj}W_{rDCj} &\leq 0 \\ 2R_{DCjj}P_{rDCj} + R_{DCjj}P_{lsDCj} - \sum_{i=1}^{n_{bDC}} M_{W_{DC}}(\mathbf{j}, i)W_{DCi} &= 0 \\ P_{Gi}^{2} + Q_{Gi}^{2} &\leq S_{\max Gi}^{2} \qquad P_{cvi}^{2} + Q_{cvi}^{2} &\leq S_{\max cvi}^{2} \\ P_{rAC}, Q_{rAC}, P_{G}, Q_{G}, W_{AC}, P_{cv}^{T}, Q_{cv}^{T}, W_{DC}^{T}, P_{rDC}^{T} \bot$$
下限

 $X_{lii}P_{lsACi} - R_{lACii}Q_{lsACi} = 0$

MISOCP Formulation

MISOCP formulation for UC in hybrid AC-DC grid

Added variables
$$\begin{bmatrix} PU_c^T & PD_c^T & U_c^T & C_{su}^T & C_{sd}^T \end{bmatrix}$$

$$\min \text{Cost} = \sum_{t=1}^{T} \sum_{i=1}^{N_G} [b_i P_{Git} + C_{suit} + C_{sdit}]$$

Subject to

all OPF constraints

Constraints about UC:

- 1) SOC power flow constraints;
- 2) System spinning and operating reserve requirements;
- 3) Generating unit capacity;
- 4) Ramping up/down limits;
- 5) Maximum power output at up/down;
- 6) Minimum up/down time limits.

OPF in IEEE 9-BUS system

Compared with results of MATPOWER

variables	MatPower	SOC	Difference (%)
Cost (\$/h)	373.83	373.85	0.0054
$P_{G}(MW)$	324.8622	324.875	0.0039
$Q_G(Mvar)$	46.9145	46.7228	0.41
Q _{shant} (Mvar)	158.9155	159.179	0.17
$P_{loss}(MW)$	9.862	9.8752	0.13
$Q_{loss}(Mvar)$	90.83	90.9021	0.079

- All difference <1%
- Small error in cost and P_G
- the correctness get verified

output	bus	MatPower	SOC	Difference (%)
	1	10	10	0
Pg(MW)	2	44.86	44.88	0.045
	3	270	270	0
Qg(Mvar)	1	26.84	28.42	5.89
	2	7.66	7.00	8.62
	3	12.41	11.30	8.94

- Small error in P_G
- Relatively bigger error in Q_G
- Acceptable error
- Result from the approximation or the relaxation

OPF in IEEE 9-BUS system

$$V_{sj}e^{i\theta_{sj}} = V_{rj}e^{i\theta_{rj}} + \frac{P_{rACj} - iQ_{rACj}}{V_{rj}e^{-i\theta_{rj}}}(R_{lACjj} + iX_{ljj}) \qquad -\frac{1}{2}$$

line	Left side	Right side	Difference (%)
1	0.0058	0.0048	16.22
2	-0.0367	-0.0316	13.89
3	-0.2224	-0.1900	14.56
4	0.1582	0.1316	16.85
5	0.1389	0.1167	15.99
6	0.0284	0.0239	15.89
7	-0.0280	-0.0233	17.07
8	0.1281	0.1101	14.05
9	-0.0363	-0.0314	13.32

- Large error in imaginary part, between 10% and 20%
- approximation is one of the error sources.

Iine			71103		
Active power loss (MW)		line	Left side	Right side	Difference(%)
Active power 3 5.55E+00 5.55E+00 0.0010		1	7.50E-06	7.50E-06	0.0203
Active power 4 6.07E-04 6.07E-04 0.0007		2	2.68E-01	2.68E-01	0.0010
power loss (MW)	A otivo	3	5.55E+00	5.55E+00	0.0010
loss (MW) 6 1.32E-01 1.32E-01 0.0010 7 1.70E-06 1.70E-06 0.0006 8 1.80E+00 1.80E+00 0.0010 9 2.20E-01 2.20E-01 0.0010 1 4.32E-01 4.32E-01 0.0203 2 1.45E+00 1.45E+00 0.0010 3 2.42E+01 2.42E+01 0.0010		4	6.07E-04	6.07E-04	0.0007
(MW) 6 1.32E-01 1.32E-01 0.0010 7 1.70E-06 1.70E-06 0.0006 8 1.80E+00 1.80E+00 0.0010 9 2.20E-01 2.20E-01 0.0010 1 4.32E-01 4.32E-01 0.0203 2 1.45E+00 1.45E+00 0.0010 3 2.42E+01 2.42E+01 0.0010	-	5	1.90E+00	1.90E+00	0.0010
7 1.70E-06 1.70E-06 0.0006 8 1.80E+00 1.80E+00 0.0010 9 2.20E-01 2.20E-01 0.0010 1 4.32E-01 4.32E-01 0.0203 2 1.45E+00 1.45E+00 0.0010 3 2.42E+01 2.42E+01 0.0010		6	1.32E-01	1.32E-01	0.0010
9 2.20E-01 2.20E-01 0.0010 1 4.32E-01 4.32E-01 0.0203 2 1.45E+00 1.45E+00 0.0010 3 2.42E+01 2.42E+01 0.0010		7	1.70E-06	1.70E-06	0.0006
1 4.32E-01 4.32E-01 0.0203 2 1.45E+00 1.45E+00 0.0010 3 2.42E+01 2.42E+01 0.0010		8	1.80E+00	1.80E+00	0.0010
2 1.45E+00 1.45E+00 0.0010 3 2.42E+01 2.42E+01 0.0010		9	2.20E-01	2.20E-01	0.0010
3 2.42E+01 2.42E+01 0.0010		1	4.32E-01	4.32E-01	0.0203
Pagetive 3 2.42E+01 2.42E+01 0.0010		2	1.45E+00	1.45E+00	0.0010
	Reactive	3	2.42E+01	2.42E+01	0.0010
4 3.56E+01 3.56E+01 0.0007		4	3.56E+01	3.56E+01	0.0007
power 5 1.61E+01 1.61E+01 0.0010	-	5	1.61E+01	1.61E+01	0.0010
6 1.12E+00 1.12E+00 0.0010	loss (MW)	6	1.12E+00	1.12E+00	0.0010
7 1.07E+00 1.07E+00 0.0006		7	1.07E+00	1.07E+00	0.0006
8 9.08E+00 9.08E+00 0.0010		8	9.08E+00	9.08E+00	0.0010
9 1.87E+00 1.87E+00 0.0010		9	1.87E+00	1.87E+00	0.0010

- same results on both sides
- relaxation is not error sources

OPF in Other IEEE Test system

Comparisons of results by MATPOWER, DC power flow model and proposed SOC power flow model in different systems

Test system		IEEE14	IEEE30	IEEE57
Cont	MatPower	5371.5	5927.6	25338.1
Cost	DC	5180	5668	25016
(\$/MW)	SOC	5370.3	5927	25309.3
Calculation time(s)	MatPower	0.09	0.13	0.16
	DC	0.01	0.01	0.01
	SOC	0.02	0.03	0.07

- Much higher accuracy than DC power flow model
- Less calculation time than MATPOWER
- ➤ the SOC power flow constraints are much more accurate than DC power flow constraints and are calculated faster than MatPower

OPF in IEEE 30-BUS system + DC lines

DC lines:

Capacity: 100MW, Resistance: 0.01p.u.

reference voltage: 320KV

DC bus voltage: 0.94~1.06p.u.

system	Pure AC	Hybrid AC-DC
Cost(\$)	5927	5836.87
$P_{G}(MW)$	296.35	291.84
$Q_{G}(MW)$	121.41	64.04
$Q_{shant}(MW)$	58.948	61.04
$P_{loss}(MW)$	12.95	4.22
$\mathbf{Q}_{\mathbf{loss}}(\mathbf{MW})$	54.16	16.05
$\mathbf{Q}_{\mathbf{cv}}(\mathbf{MW})$	0	17.16
$P_{lossDC}(MW)$	0	0.4357

DC bus	Voltage(p.u.)	Pcv(MW)	Qcv(MW)
1	1.060	-74.0640	3.7782
2	1.058	17.2914	2.9877
3	1.055	54.2877	15.9021
4	1.060	-54.4211	-18.6728
5	1.057	37.3359	9.8445
6	1.058	15.3434	3.3247

- Cost, P_G and P_{loss} decrease
- P_{cv} and P_{lossDC} exist
- the applicability in the hybrid AC-DC grid get verified.

UC in Modified IEEE 30-BUS system

Modification:

	Pclimb	Tmin	Psu/Psd	Csu(\$)	U0
G1	1%/min	2h	80MW	3000	0
G2	1%/min	2h	30MW	3500	\
G5	1%/min	2h	25MW	3500	\
G8	1%/min	2h	25MW	3000	\
G11	1%/min	2h	25MW	3000	\
G13	1%/min	2h	25MW	3500	\

results:

Model	Load	Output	Loss	Coal	Start-up	Total
Model ((MWh)	(MWh)	(MWh)	cost(\$)	cost (\$)	cost(\$)
SOC	4301	4411	110	89663	3000	92663
DC	4301	4301	0	87401	3000	90401

Number of time in one day		12	24	48	96
Calculation	SOC	13.88	22.67	78.33	202.98
time(s)	DC	0.022	0.14	0.359	1.349

- A little higher cost
- The same output curve trend
- Correctness of SOC power flow constraints in UC get verified
- Longer calculation time

S S 思构

UC in Modified IEEE 30-BUS system + DC lines

G1 on while G2 off at the beginning

System	Output (MWh)	Loss (MWh)	Coal cost(\$)	Start-up cost (\$)	Total cost(\$)
AC	4416	115	89193	3500	92693
AC-DC	4453	152	89053	0	89053

- output increase while cost decrease
- G1 can satisfy all the load demand
- Applicable for UC problem in the hybrid AC-DC grid

Conclusions

- A MISOCP formulation for the unit commitment in hybrid AC-DC power systems is proposed.
- The AC and DC power flow constraints are relaxed using SOC approximation.
- Power flow constraints in the hybrid AC-DC grid are considered in UC problem.
- Future work focuses on the robust unit commitment in hybrid AC-DC grid with wind power integrated.

Thank you for listening!

Welcome to Visit HUST!

Engineering and Technology

Working to engineer a better world

Thank you for listening!

Q & A

