- 1. The electrostatic potential at a point 10 cm away from a point charge of +2 microcoulomb in air is:
- (a) $1.8 \times 10^5 \text{ V}$
- (b) $2.4 \times 10^5 \text{ V}$
- (c) $3.6 \times 10^5 \text{ V}$
- (d) $4.5 \times 10^5 \text{ V}$

Answer: (a) $1.8 \times 10^5 \text{ V}$

Explanation:

Potential V = $(9 \times 10^9) \times (2 \times 10^{-6}) / 0.1 = 1.8 \times 10^5 \text{ V}$

- 2. Which of the following statements is correct for electrostatic potential?
- (a) It is a scalar and always positive
- (b) It is a scalar and can be positive or negative
- (c) It is a vector and always negative
- (d) It is a vector and can be positive

Answer: (b) It is a scalar and can be positive or negative

Explanation:

Electrostatic potential is a scalar quantity. Its sign depends on the nature of the source charge.

- 3. The electrostatic potential inside a charged conducting sphere is:
- (a) Zero
- (b) Constant and equal to surface potential
- (c) Varies linearly with radius
- (d) Varies inversely with square of radius

Answer: (b) Constant and equal to surface potential

Explanation:

Inside a conductor, the electric field is zero, so potential remains constant and equal to that on the surface.

- 4. A parallel plate capacitor is charged and disconnected from the battery. If the plates are pulled apart, the potential difference between the plates:
- (a) Increases
- (b) Decreases

- (c) Remains constant
- (d) First increases then decreases

Answer: (a) Increases

Explanation:

Since charge remains constant and capacitance decreases, potential increases using V = Q / C.

- 5. A capacitor is connected to a battery. If the separation between the plates is increased, then:
- (a) Capacitance increases
- (b) Charge remains same
- (c) Energy stored decreases
- (d) Potential difference increases

Answer: (c) Energy stored decreases

Explanation:

Battery keeps potential constant. As distance increases, capacitance decreases, so energy $U = 0.5 \times C \times V^2$ decreases.

- 6. A spherical conductor of radius R is given a charge Q. The electric potential at its surface is:
- (a) Q / $(4 \times pi \times epsilon_0 \times R)$
- (b) Q / $(4 \times pi \times epsilon_0 \times R^2)$
- (c) $Q^2 / (4 \times pi \times epsilon_0 \times R)$
- (d) Q / $(2 \times pi \times epsilon_0 \times R)$

Answer: (a) Q / (4 \times pi \times epsilon_0 \times R)

Explanation:

For a point outside or on the surface of a charged sphere, $V = (1 / 4 \times pi \times epsilon_0) \times Q / R$

- 7. The unit of electric potential is:
- (a) Newton
- (b) Joule
- (c) Volt
- (d) Coulomb

Answer: (c) Volt

Explanation:

Electric potential is work done per unit charge: V = W / Q.

So its unit is Joule / Coulomb = Volt.

8. If a 4 microfarad capacitor is charged to 300 volts, the energy stored in it is:

- (a) 0.09 J
- (b) 0.18 J
- (c) 0.36 J
- (d) 0.54 J

Answer: (a) 0.18 J Explanation:

Energy U = $0.5 \times C \times V^2 = 0.5 \times 4 \times 10^{-6} \times (300)^2 = 0.18 \text{ J}$

9. If two capacitors of capacitance 3 microfarad and 6 microfarad are connected in series, the equivalent capacitance is:

- (a) 9 microfarad
- (b) 4.5 microfarad
- (c) 2 microfarad
- (d) 1 microfarad

Answer: (c) 2 microfarad

Explanation:

 $1/C_{eq} = 1/3 + 1/6 = (2 + 1)/6 = 3/6 \rightarrow C_{eq} = 2 \text{ microfarad}$

10. The work done in moving a charge of 2 microcoulomb through a potential difference of 12 V is:

- (a) 12 microjoule
- (b) 24 microjoule
- (c) 6 microjoule
- (d) 2 microjoule

Answer: (b) 24 microjoule

Explanation:

 $W = q \times V = 2 \times 10^{-6} \times 12 = 24 \times 10^{-6} J = 24 \text{ microjoule}$

- 11. Two charges +4 microcoulomb and -4 microcoulomb are placed 2 cm apart. The electric potential at the midpoint is:
- (a) Zero
- (b) $1.8 \times 10^6 \text{ V}$
- (c) $9 \times 10^6 \text{ V}$
- (d) Infinite

Answer: (a) Zero Explanation:

Equal and opposite charges placed symmetrically cancel each other's potential at midpoint: $V = V_1 + V_2 = 0$

- 12. A 10 microfarad capacitor is charged to 100 V. It is then connected to an uncharged 30 microfarad capacitor. The final potential across both is:
- (a) 25 V
- (b) 50 V
- (c) 75 V
- (d) 100 V

Answer: (a) 25 V Explanation:

Total charge = $C_1 \times V_1 = 10 \times 100 = 1000$ microC

Total capacitance = 10 + 30 = 40 microF

Final V = Total Q / Total C = 1000 / 40 = 25 V

- (✓ Correction: Answer is (a) 25 V.
- 13. The energy stored in a capacitor is proportional to:
- (a) Square of capacitance
- (b) Square of potential difference
- (c) Inverse of capacitance
- (d) None of these

Answer: (b) Square of potential difference

Explanation:

 $U = 0.5 \times C \times V^2 \rightarrow \text{directly proportional to } V^2$

14. The dielectric constant of a medium is 4. What will be the capacitance of a capacitor filled with this medium
compared to the vacuum?
(a) 1/4 times
(b) Same
(c) 4 times
(d) 16 times
Answer: (c) 4 times
Explanation:
$C = K \times C_0 \rightarrow Capacitance$ increases K times if dielectric constant is K
15. Which of the following quantities remain unchanged when a dielectric slab is inserted between plates of an isolated charged capacitor?
(a) Capacitance
(b) Charge
(c) Potential
(d) Energy
Answer: (b) Charge
Explanation:
In an isolated capacitor, total charge remains constant. Capacitance increases, potential decreases.
16. The potential at a distance r from a point charge Q is V. What will be the potential at a distance 2r?
(a) V
(b) V/2
(c) V/4
(d) 2V
Answer: (b) V/2
Explanation:
$V = kQ / r \rightarrow At 2r, V' = kQ / 2r = V / 2$

17. A capacitor of capacitance 5 μF is connected to a 10 V battery. The energy stored in the capacitor is:

(a) 0.25 mJ (b) 0.5 mJ (c) 1.0 mJ (d) 2.5 mJ
Answer: (b) 0.25 mJ Explanation: $U = 0.5 \times C \times V^2 = 0.5 \times 5 \times 10^{-6} \times (10)^2 = 0.25 \times 10^{-3} \text{ J} = 0.25 \text{ mJ}$
18. Two point charges +Q and –Q are placed 2a distance apart. The potential at the midpoint is:
(a) Zero (b) Infinite (c) 2kQ/a (d) kQ/a
Answer: (a) Zero Explanation: At midpoint, the potentials due to $+Q$ and $-Q$ cancel each other \rightarrow Net $V=0$
19. Capacitance of a parallel plate capacitor is directly proportional to:
(a) Distance between plates(b) Square of distance(c) Area of plates(d) None of these
Answer: (c) Area of plates Explanation: $C = \epsilon_0 A \ / \ d \ \rightarrow \ Capacitance \ increases \ with \ plate \ area \ A$
20. What happens to the energy stored in a capacitor when a dielectric is inserted, keeping the charge constant?
(a) Increases (b) Decreases

(c) Remains same(d) Becomes zero

Answer: (b) Decreases

Explanation:

 $U = Q^2 / (2C)$. Capacitance increases due to dielectric \rightarrow energy decreases

21. A capacitor is charged and then disconnected from the battery. What happens if the plates are pulled apart?

- (a) Capacitance increases
- (b) Voltage decreases
- (c) Voltage increases
- (d) Charge increases

Answer: (c) Voltage increases

Explanation:

Q = constant, C = decreases \rightarrow V = Q / C \rightarrow V increases

22. What is the equivalent capacitance of three 6 μF capacitors connected in parallel?

- (a) 6 μF
- (b) 2 μF
- (c) 18 µF
- (d) 12 μF

Answer: (c) 18 μF

Explanation:

 $C_eq = C_1 + C_2 + C_3 = 6 + 6 + 6 = 18 \mu F$

23. The SI unit of capacitance is:

- (a) Volt
- (b) Coulomb
- (c) Farad
- (d) Henry

Answer: (c) Farad Explanation:

Capacitance is charge per unit potential difference → SI unit is Farad (F)

24. What is the potential energy of a system of two equal point charges +Q placed a distance r apart?
(a) Zero
(b) kQ^2/r
(c) $-kQ^2/r$
(d) $2kQ^2/r$
Answer: (b) kQ²/r
Explanation:
$U = kQ_1Q_2 / r = kQ^2 / r \text{ (both charges are +Q)}$
25. Which combination gives the least capacitance?
(a) Parallel
(b) Series
(c) Mixed
(d) Cannot say
Answer: (b) Series
Explanation:
In series: $1/C_eq = 1/C_1 + 1/C_2$ so equivalent capacitance is less than smallest capacitor.
26. Which of the following factors does not affect the capacitance of a parallel plate capacitor?
(a) Area of plates
(b) Distance between plates
(c) Dielectric constant
(d) Charge on plates
Answer: (d) Charge on plates
Explanation:
Capacitance depends on geometry and material, not on the charge stored.
27. A capacitor blocks:
(a) DC only

(b) AC only (c) Both (d) Neither
Answer: (a) DC only Explanation: Capacitor offers infinite resistance to DC → it blocks DC current.
28. What is the work done in moving a 1 μ C charge between two points with potential difference of 5 V?
(a) 1 μJ (b) 5 μJ (c) 10 μJ (d) 0 μJ
Answer: (b) 5 μ J Explanation: $W = q \times V = 1 \times 10^{-6} \times 5 = 5 \ \mu$ J
29. A capacitor is said to be fully charged when:
(a) Voltage across it is zero(b) Current is maximum(c) Voltage equals battery EMF(d) Electric field becomes zero
Answer: (c) Voltage equals battery EMF Explanation: Charging stops when capacitor voltage = battery voltage
30. What is the effect of inserting a conductor between plates of a capacitor (without touching plates)?
(a) Capacitance increases (b) Capacitance decreases

Answer: (a) Capacitance increases

(d) Capacitance becomes zero

(c) No effect

Explanation:

Conductor acts like a grounded shield and redistributes field, increasing effective capacitance.

- 31. Two capacitors of 4 μ F and 6 μ F are connected in series. What is the equivalent capacitance?
- (a) $2.4 \mu F$
- (b) 10 μF
- (c) 5 μF
- (d) $24 \mu F$

Answer: (a) 2.4 μF

Explanation:

$$1/C \text{ eq} = 1/4 + 1/6 = (3 + 2)/12 = 5/12$$

 $C_{eq} = 12/5 = 2.4 \mu F$

- 32. The energy stored per unit volume in the electric field of a capacitor (energy density) is given by:
- (a) $\frac{1}{2} \epsilon_0 E^2$
- (b) $\epsilon_0 E^2$
- (c) $E^2/2\epsilon_0$
- (d) Q² / 2CV

Answer: (a) $\frac{1}{2} \epsilon_0 E^2$

Explanation:

Energy density (u) = U / volume = $(\frac{1}{2} \text{ CV}^2)$ / (Ad)

Since V/d = E, we get $u = \frac{1}{2} \epsilon_0 E^2$

- 33. The potential of a conductor is 200 V and it carries a charge of 10 μ C. What is its capacitance?
- (a) 2 μF
- (b) 5 μF
- (c) $20 \mu F$
- (d) $0.5 \mu F$

Answer: (b) 5 μ F

Explanation:

 $C = Q / V = (10 \times 10^{-6}) / 200 = 5 \times 10^{-6} F = 5 \mu F$

- 34. A parallel plate capacitor has plates of area A and separation d. If both area and separation are doubled, what happens to its capacitance?
- (a) Remains same
- (b) Doubles
- (c) Becomes half
- (d) Becomes one-fourth

Answer: (a) Remains same

Explanation:

 $C = \varepsilon_0 A/d \rightarrow New C = \varepsilon_0(2A)/(2d) = \varepsilon_0 A/d (same)$

- 35. The capacitance of a spherical capacitor with inner radius R_1 and outer radius R_2 is:
- (a) 4πε₀R₁
- (b) 4πε₀R₂
- (c) $4\pi\epsilon_0 R_1 R_2 / (R_2 R_1)$
- (d) $\epsilon_0 A / d$

Answer: (c) $4\pi\epsilon_0R_1R_2/(R_2-R_1)$

Explanation:

This is the standard formula for spherical capacitor.

- 36. Which one is a correct statement about equipotential surfaces?
- (a) They are always spherical
- (b) Electric field is tangential to them
- (c) Electric field is always perpendicular to them
- (d) No work is done when moving along normal to the surface

Answer: (c) Electric field is always perpendicular to them

Explanation:

Equipotential surfaces are at constant potential. No work is done moving along the surface, hence E \(\perp\) surface

37. When a dielectric slab is fully inserted into a charged isolated capacitor, what happens to the energy stored?

(b) Decreases
(c) Remains constant
(d) Becomes zero
Answer: (b) Decreases
Explanation:
$U = Q^2 / 2C \rightarrow C$ increases $\rightarrow U$ decreases
38. What is the net electric field inside a conductor in electrostatic equilibrium?
(a) Infinite
(b) Maximum
(c) Zero
(d) Depends on shape
Answer: (c) Zero
Explanation:
In electrostatic equilibrium, electric field inside a conductor is always zero
39. Which of the following arrangements has maximum capacitance using three capacitors: 1 μ F, 2 μ F, 3 μ F?
(a) Series
(b) Parallel
(c) Any order gives same result
(d) Not possible to compare
Answer: (b) Parallel
Explanation:
C_eq (parallel) = $C_1 + C_2 + C_3 = 6 \mu F$
In series, C_eq is always less than the smallest $ ightarrow$ Parallel gives max capacitance
40. What will be the capacitance if a dielectric constant K is inserted fully between plates of vacuum capacitor
of capacitance C?
(a) C/K
(b) K/C
(c) C × K

(a) Increases

(d) C + K
Answer: (c) C × K
Explanation:
C_new = K × C (dielectric increases capacitance K times)
41. The main purpose of a capacitor in an electronic circuit is to:
(a) Store charge
(b) Produce current
(c) Block AC
(d) Reduce resistance
Answer: (a) Store charge
Explanation:
Capacitors are used to store and release electrical energy in circuits
42. Two capacitors 5 μF and 10 μF are charged to same potential. Which stores more energy?
(a) 5 μF
(b) 10 μF
(c) Both same
(d) Cannot say
Answer: (b) 10 μF
Explanation:
U = ½ CV 2 \rightarrow If V is same, energy \propto C \rightarrow 10 μF stores more energy
43. The capacitance of a parallel plate capacitor is independent of:
(a) Area of plates
(b) Separation of plates
(c) Medium between plates
(d) Shape of plates
Answer: (d) Shape of plates
Explanation:
$C = c \cdot \Lambda/d \rightarrow D$ Depends on Λ/d and medium (c)

Not on shape if area is	fixed
-------------------------	-------

- 44. In a capacitor network, the charge on each capacitor in series is:
- (a) Same
- (b) Different
- (c) Zero
- (d) Depends on capacitance

Answer: (a) Same Explanation:

In series, all capacitors carry same charge because current is same in the path.

- 45. Which is correct regarding energy stored in capacitors?
- (a) Energy ∝ V
- (b) Energy ∝ 1/V
- (c) Energy $\propto V^2$
- (d) Energy independent of voltage

Answer: (c) Energy $\propto V^2$

Explanation:

 $U = \frac{1}{2} CV^2 \rightarrow$ Energy is directly proportional to square of voltage