1. Finding the Optimal Hyperplane

Consider the following dataset with two classes:

Point (x ₁ , x ₂)	Class (y)
(2, 3)	+1
(3, 4)	+1
(1, 1)	-1
(2, 1)	-1

- (a) Find the equation of the optimal hyperplane assuming a hard margin SVM.
- (b) Determine the support vectors.

2. Margin Calculation

Given a separating hyperplane equation:

$$3x_1 + 4x_2 - 12 = 0$$

Calculate:

- (a) The perpendicular distance from the point (2,3) to the hyperplane.
- (b) The margin if the support vectors are at distances ± 2.5 from the hyperplane.

3. Soft Margin SVM with Slack Variables

For a dataset, an SVM classifier with a soft margin is trained. The loss function includes slack variables ξ_i , and you are given:

- ullet Two misclassified points have slack variables $\xi_1=1.5$ and $\xi_2=2.5$
- The regularization parameter C=10.

Compute the penalty contribution from these misclassified points to the loss function.

4. Kernel Trick: Polynomial and RBF Kernel

Given two points:

- (a) Compute the polynomial kernel $K(A,B)=(x^Ty+1)^2.$
- (b) Compute the RBF kernel with $\gamma=0.5$ using:

$$K(A,B)=e^{-\gamma ||x-y||^2}$$

5. Lagrange Multipliers and Dual Formulation

Given a simple dataset and the Lagrangian function for SVM, the support vectors have Lagrange multipliers:

$$lpha_1=0.5,\quad lpha_2=0.7,\quad lpha_3=0$$

- (a) Find the weight vector w for the classifier if the support vectors are (1,2) and (3,4).
- (b) Compute the bias term b.

6. Hard Margin SVM Numerical Question

You are given the following linearly separable dataset:

Point (x ₁ , x ₂)	Class (y)
(2, 3)	+1
(3, 3)	+1
(2, 1)	-1
(3, 1)	-1

Tasks:

- (a) Find the equation of the optimal separating hyperplane $w_1x_1+w_2x_2+b=0$.
- (b) Calculate the margin width.
- (c) Identify the support vectors.

7. Soft Margin SVM Numerical Question

You are given a dataset that is **not linearly separable** due to some overlap in points:

Point (x ₁ , x ₂)	Class (y)	Slack Variable ξ
(1, 2)	+1	0
(2, 3)	+1	1.2
(3, 3)	+1	0
(1, 1)	-1	0
(2, 1)	-1	1.5

The regularization parameter is given as C=5.

Tasks:

- (a) Find the total penalty contribution to the loss function from the misclassified points.
- (b) Compute the margin width assuming the weight vector w = (2,3).