COMPUTAÇÃO GRÁFICA Processamento Digital de Imagens

Prof. Moisés Henrique Ramos Pereira

Parte I

O que é uma Imagem?

- Definida por uma função bidimensional f(x,y) em que x e y são coordenadas espaciais e a amplitude de f em qualquer par de coordenadas (x,y) é chamada de intensidade ou nível de cinza da imagem naquele ponto.
- Quando os valores de x, y e intensidade são quantidades finitas e discretas, a imagem é digital.
- O Processamento Digital de Imagens se refere ao processamento de imagens digitais por meio de um computador.
- Pixel (picture element): cada elemento de uma imagem digital, com uma localização e um ou mais valores associados.

O que é uma Imagem?

Uma imagem é um arranjo retangular 2D de pixels.

Imagem continua

Imagem digital

O que é uma Imagem?

Um pixel é uma amostra, e não um pequeno quadrado!

Imagem continua

Imagem digital

Aquisição de Imagens

- Pixels são amostras de uma função contínua, f(x, y).
 - Células fotorreceptoras nos olhos;
 - Células do CCD em uma câmera digital;
 - Raios em uma câmera virtual.

Apresentação de Imagens

- Dispositivos de vídeo:
 - Tubo de raios catódicos (CRT)
 - Liquid crystal display (LCD)
 - Painéis de plasma
 - Light-emitting diodes (LED)

- Dispositivos hard-copy:
 - Impressoras jato de tinta
 - Impressoras laser
 - Gravador de filme
 - Plotter

Resolução de Imagens

- Resolução da intensidade
 - Um pixel possui bits de "profundidade" para cores e intensidade.
- Resolução espacial: uma imagem possui "largura" x "altura" pixels.
- Resolução temporal (domínio da frequência)
 - Um monitor atualiza (refresh) imagens a "taxa" Hz.

	Width x Height	Depth	Rate
NTSC	640 x 480	8	30
Workstation	1280 x 1024	24	75
Film	3000 x 2000	12	24
Laser Printer	6600 x 5100	1	-

Percepção de Cores

- Como percebemos cores?
 - Espectro eletromagnético da luz visível varia entre
 - vermelho = $4.3 \times 10-14 \text{ hertz}$ (700 nm)
 - violeta = $7.5 \times 1014 \text{ hertz } (400 \text{ nm})$

Percepção de Cores

- A cor da luz é caracterizada por
 - Tonalidade (*hue*) = a frequência dominante
 - Saturação (saturation) = razão entro o topo e o vale da curva
 - Luminância (*luminance*) = área sob a curva

Percepção de Cores

Funções de resposta espectral de cada um dos três tipos de cones presentes na retina humana.

Teoria das cores de Tristimulus.

Modelos de Cores

RGB

CIE XYZ

CMYK

HSV

Modelos de Cores

RGB

Cores são aditivas

Cubo RGB

Modelos de Cores

CYMK

Cores são subtrativas

Amostragem e Reconstrução

Amostragem

Reconstrução

Amostragem e Reconstrução

Amostragem

- Quantas amostras são necessárias para representar um dado sinal sem perda de informação?
 - Teorema de amostragem de Nyquist-Shannon: um sinal pode ser reconstruído a partir de suas amostras se o sinal original não possuir frequências acima de 1/2 da frequência de amostragem.

Amostragem

- O que acontece se usarmos poucas amostras (under-sampling)?
 - Aliasing.

Amostragem

- O que acontece se usarmos poucas amostras (under-sampling)?
 - Aliasing.

Under-sampling

Sampling OK

Operações com Pixel

- Ajuste de brilho
 - Basta escalar os valores de cada pixel

Original

Mais Brilho

Operações com Pixel

- Ajuste de Contraste
 - Calcule a luminância média L de todos os pixels da imagem
 - Luminância = 0.30 r + 0.59 g + 0.11 b

Original

Mais Contraste

Filtragem - Convolução

Convolução

• Fundamento matemático: operações entre matrizes menores.

 Cada pixel resultante é uma combinação linear dos pixels da vizinhança ponderados por pesos prescritos pelo filtro.

Filtragem - Convolução

- Ajuste de Blur
- Aplicar convolução com filtro cujas entradas tenham soma igual a 1
- Cada pixel se torna a média ponderada de todos os seus vizinhos

- Detecção de bordas
- Aplicar convolução com um filtro que encontra as diferenças entre pixels vizinhos.

Original

Detect edges

$$Filter = \begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

- Aguçar (sharpen)
- Aplicar convolução com um filtro que soma as bordas detectadas à imagem original.

Original

Sharpened

$$Filter = \begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

- Realce (emboss)
 - Aplicar convolução com um filtro que destaca gradientes em uma direção particular.
 - Gradiente: alteração no valor de uma quantidade por unidade de espaço.

Realce (emboss)

Original

Embossed

$$Filter = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- Filtros não-lineares
- Cada pixel de saída é resultado da aplicação de uma função nãolinear nos pixels da vizinhança (filtro depende da entrada).

Original

Oil

Stain Glass