# Lecture 9: Point Level Models - Model Fitting, cont..

## **Class Intro**

### **Intro Questions**

• Describe the process for finding the BLUP in this situation:



## **Intro Questions**

- For Today:
  - More Model Fitting

# Model Fitting

#### **BLUP**

• It turns out that the solution for the vector *l* is

$$l = \Gamma^{-1} \left( \gamma_0 + \frac{(1 - \mathbf{1}^T \Gamma^{-1} \gamma_0)}{\mathbf{1}^T \Gamma^{-1} \mathbf{1}} \mathbf{1} \right),$$

where  $\Gamma$  is an  $n \times n$  matrix with entries  $\Gamma_{ij} = \gamma_{ij}$  and  $\gamma_0$  is the vector of  $\gamma_{0i}$  values.

- Then the Best Linear Unbiased Predictor is  $l^T Y$
- This BLUP also requires an estimate of  $\gamma(h)$

### **Kriging Solution**

```
# Create Gamma Matrix
x <- krige.dat$x
y <- krige.dat$y
D <- dist(x, upper=T, diag=T) %>% as.matrix()
Gamma = 1 - exp(-D/3)

# Create gamma_0 for both s1* and s2*
d1 <- sqrt((4 - x)^2)
d2 <- sqrt((6 - x)^2)
gamma.01 <- 1 - exp(-d1/3)
gamma.02 <- 1 - exp(-d2/3)</pre>
```

#### **Kriging Solution**

# **Kriging Solution**



# Kriging with Gaussian Processes

#### A Gaussian Process

- The BLUP does not contain a distributional assumptions, but rather comes from an optimization framework.
- Now assume that

$$Y = \mu \mathbf{1} + \boldsymbol{\epsilon}$$
, where  $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \Sigma)$ 

- With no nugget, let  $\Sigma = \sigma^2 H(\phi)$ , where  $(H(\phi))_{ij} = \rho(\phi; d_{ij})$ , where  $d_{ij}$  is the distance between  $s_i$  and  $s_j$ .
- A nugget can be included by modifying  $\Sigma$  to be  $\Sigma = \sigma^2 H(\phi) + \tau^2 I$

#### Minimizing Mean-Square Prediction Error

• **Goal:** find h(y) that minimizes

$$E[(Y(s_0) - h(y))^2 | y]$$

• 
$$E[(Y(s_0) - h(y))^2 | y] = E[(Y(s_0) - h(y) \pm E[(Y(s_0 | y))]^2 | y]$$

• = 
$$E\{(Y(s_0) - E[(Y(s_0)|y])^2|y\} + \{E[(Y(s_0)|y] - h(y)\}^2$$

#### Minimizing Mean-Square Prediction Error: Part 2

- As  $\{E[(Y(s_0)|y] h(y)\}^2 \ge 0$
- we have  $E[(Y(s_0) h(y))^2 | y] \ge E\{(Y(s_0) E[(Y(s_0)|y])^2 | y\}$
- Hence to minimize  $E[(Y(s_0) h(y))^2 | y]$ , we set ...
- $h(y) = E[(Y(s_0)|y]$
- Hence, h(y) that minimizes the error is the conditional expectation of  $Y(s_0)$
- Note this is also the *posterior mean* of  $Y(s_0)$

#### Multivariate Normal Theory

• For consider partioning a multivariate normal distribution into two parts

$$\begin{pmatrix} \mathbf{Y_1} \\ \mathbf{Y_2} \end{pmatrix} = N \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{pmatrix}, \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \end{pmatrix},$$
 where  $\Omega_{12} = \Omega_{21}^T$ 

#### Conditional Multivariate Normal Theory

- The conditional distribution,  $p(Y_1|Y_2)$  is normal with:
- $E[Y_1|Y_2] = \mu_1 + \Omega_{12}\Omega_{22}^{-1}(Y_2 \mu_2)$
- $Var[Y_1|Y_2] = \Omega_{11} \Omega_{12}\Omega_{22}^{-1}\Omega_{21}$
- Thus with  $Y_1 = Y(s_0)$  and  $Y_2 = y$   $\Omega_{11} = \sigma^2 + \tau^2$ ,  $\Omega_{12} = (\sigma^2 p(\phi; d_{01})), \dots, p(\phi; d_{0n}))$  $\Omega_{22} = \sigma^2 H(\phi) + \tau^2 I$

## Gaussian Process Exercise:

#### Overview

- Similar to the previous exercise, we will simulate data from a 1D process and make predictions at unobserved locations which is the interval [0,10].
- In this situation, please plot the mean of the distribution as well as some uncertainty metric.
- You do not need to estimate  $\sigma^2$ ,  $\tau^2$ , and  $\phi$  but can use the known values in the R code.

### **Data Overview**



## **Conditional Expectation**



## **Conditional Expectation and Intervals**



#### Follow up Questions

- Consider the conditional expectation,  $E[Y_1|Y_2] = \mu_1 + \Omega_{12}\Omega_{22}^{-1}(Y_2 \mu_2)$  How is this resultant expectation impacted by  $\Omega_{12}\Omega_{22}^{-1}$ ? How is this resultant expectation impacted by  $(Y_2 \mu_2)$ ?
- Similarly, how does the conditional variance  $Var[Y_1|Y_2] = \Omega_{11} \Omega_{12}\Omega_{22}^{-1}\Omega_{21}$  change as a function of  $\Omega_{12}\Omega_{22}^{-1}\Omega_{21}$ ?
- If we add a nugget to the previous example, how do the predictions change?
- How does the scenario change if  $\mu_1$  and  $\mu_2$  are not zero, but rather say  $\mu_1 = X_1\beta$  and  $\mu_2 = X_2\beta$ ?

### 2D Kriging

Discuss how the spatial range could be extended to  $\mathcal{R}^2$  rather than  $\mathcal{R}^1$ . What changes in this situation?

### Functions in R for 2D kriging

• The krige function in gstat contains a function for kriging; however, this requires a known variogram.

## [using ordinary kriging]



#### Universal Kriging

- When covariate information is available for inclusion in the analysis, this is often referred to as *universal kriging*
- Now we have

$$Y = X\beta + \epsilon$$
, where  $\epsilon \sim N(0, \Sigma)$ 

- The conditional distributions are very similar to what we have derived above, watch for HW question.
- In each case, kriging or universal kriging, it is still necessary to estimate the following parameters:  $\sigma^2$ ,  $\tau^2$ ,  $\phi$ , and  $\mu$  or  $\beta$ .
- This can be done with least-squares methods or in a Bayesian framework.

### About those other parameters

#### We still need

- to choose an appropriate covariance function (or semivariogram)
- and estimate parameters in that function