SIMULATING MLB AT-BATS

THE GOAL

Build a tool that takes in a statistical picture of a hitter and a pitcher, along with some environmental factors, and returns a distribution of possible outcomes of that interaction.

BACKGROUND: APPROACH

- Idea of an interaction
- What statistics can be used to judge players?
- Can players be described by a statistical matrix?

https://tht.fangraphs.com/can-we-predict-hitters-change-based-on-how-pitchers-approach-them/

BACKGROUND: THE DATA

- Extensive player data
- Play by play with play outcomes over a large sample sheet
- Good news: Baseball data is everywhere!
- Retrosheet, MLB.com, Baseball Savant
- Formatting, extracting had difficult formatting, R required
- Working with text data difficult
- The community can help
- About 900k events

```
play, 1, 1, abrej003, 32, *B*BFFBX, E6/FO/G. 2-H (E6/TH) (UR) (NR); 1-2
play, 1, 1, castw002, 32, CBF*BFBB, W.2-3; 1-2
com, "Mound Visit"
play, 1, 1, moncy001, 22, FBFBFX, D8/F+.3-H(UR); 2-H; 1-3
play, 1, 1, jimee001, 12, CSBS, K
play, 1, 1, alony 001, 01, CX, 3/G
play, 1, 1, rondj002, 11, FBX, 9/L+
play, 2, 0, beckt001, 01, CX, 53/G
play, 2, 0, narvo001, 11, CBX, S8/L
play, 2, 0, healr001, 22, BCFBS, K
play, 2, 0, voged001, 02, CCX, 6/P
play, 2, 1, engea001, 10, BX, D7/L+
play, 2, 1, garc1004, 32, BBBCLX, S1/BG.2-3
play, 2, 1, andet001, 11, *BFB, SB2
play, 2, 1, andet001, 21, *BFB.X, S8/G.3-H; 2-H
play, 2, 1, abrej003, 12, CBSX, S9/G.1-3
play, 2, 1, castw002, 00, X, 64(1)3/GDP.3-H(NR)
play, 2, 1, moncy001, 02, FFS, K
play, 3, 0, gordd002, 30, BBBB, W
com, "Mound Visit"
play, 3, 0, smitm007, 31, BBB11CC, SB2
play, 3, 0, smitm007, 32, BBB11CC.B, W
com, "Mound Visit"
play, 3, 0, hanim001, 11, BCX, 8/F.2-3; 1-2
play, 3, 0, santd002, 00, X, 63/G.3-H; 2-3
play, 3, 0, brucj001, 32, C*BBF*BC, K
play, 3, 1, jimee001, 01, CX, 63/G
```

	pitcher_name	batter_name	inning_side	inning	stand	p_throws	event	date	season	away_team	home_team	pitcher_team
0	Johnny Cueto	Mike Trout	top	1	R	R	Strikeout	2013-04-01	2013	ana	cin	cin
1	Johnny Cueto	Erick Aybar	top	1	L	R	Lineout	2013-04-01	2013	ana	cin	cin
2	Johnny Cueto	Albert Pujols	top	1	R	R	Groundout	2013-04-01	2013	ana	cin	cin
3	Jered Weaver	Shin-Soo Choo	bottom	1	L	R	Hit By Pitch	2013-04-01	2013	ana	cin	ana
4	Jered Weaver	Brandon Phillips	bottom	1	R	R	Strikeout	2013-04-01	2013	ana	cin	ana
5	Jered Weaver	Joey Votto	bottom	1	L	R	Flyout	2013-04-01	2013	ana	cin	ana

BACKGROUND: NEW AGE V OLDER DATA

- What player data is necessary to judge players?
- Outcomes based: Fangraphs
- Physical-based: Statcast
- When does the data stabilize?
- What sample size is required

https://www.coverfoursports.com/post/working-with-data-getting-statcast-data-in-r

EDA: SIGNIFICANT DATA

- Pure bias variance trade-off
- Informative input vector vs. future use
- What can be included that is also reproducible?
- Accounting for year over year baseline change

EDA: FEATURES TO CONSIDER

Brl/PA%

95+ mph %

Avg FB dist

Avg EV: GB

Avg HR dist

Max dist

- Use correlation to see what features are predictive for each outcome
- Use previous studies done by analytics websites like Fangraphs, Hardball Times

LD baseline: 0	0.936942	2				
1 0.063058						
Name: event, dty						
Most predictive	variables					
hLD%		0.030303				
panglesweetspotp	ercent	0.027653				
pLD%		0.024726				
hMed%		0.023338				
hanglesweetspotp	ercent	0.019761				
h1B		0.017787				
hOppo%		0.016141				
pSIERA		0.015805				
hSH		0.015049				
pavg_distance		0.014597				
dtype: float64						
HR baseline: 0	0.967077	7				
1 0.032923						
Name: event, dty						
Most predictive	variables	for HR:				
hISO	0.084815					
hHR/FB	0.080653					
hbrl_pa	0.076712					
pHR/9	0.075470					
hbrl_percent	0.074908					
hHR	0.074633					
hSLG	0.071157					
hbarrels	0.067352					
pHR/FB	0.062387					
hfbld	0.062117					
dtype: float64						
*						

Strength of Relationship, Across Years Statcast Metric y1 → y2 Avg EV: FB & LD 0.82 Max EV 0.81 Brl/BBE % 0.79 Avg EV: all 0.78 Avg dist 0.75

0.74

0.73

0.64

0.61

0.56

0.47

SOURCE: Statcast

FITTING THE MODEL: NEURAL NET

- 'Softmax' best for multiclass classification
- Data leakage is OK here!
- Due to time constraints, different configurations were done by hand
- Room for improvement
- Never going to be able to improve all that much above percentage of highest class
- .24 K v .28 accuracy

CLASSIFYING VS. DISTRIBUTION

- Want the probabilities of softmax, not predictions
- Dealing with issues of unbalanced classes difficult
- Using Categorical Accuracy, TopKCategorical Accuracy
- Struggles to assess situations with lower chances of major outcomes

FUNCTIONALIZE MODEL

- Define the simAB function
- In take pitcher/hitter names and seasons to pull stats from
- Options to change batter/pitcher handedness
- Construct input array into shape required for the neural network
- Return output into easily distilled format

DISTRIBUTION

INDIVIDUAL RESULTS

STATS OVER A NUMBER OF PA

In [980]: simAB('Shane Bieber','Miguel Sano',output=('statline',600))
Out[980]:

	PA	BA	HR	2B	SLG	OBP	oPS	BABIP	K	BB	pIP	pWHIP
0	600	0.214	33	14	0.426	0.288	0.714	0.257	185	59	140.2	1.23

FURTHER AREAS OF SEARCH

- Baseball Wise:
- Customize ballpark
- Customize weather
- Add pitcher fatigue, runners on base, other game contexts
- Include MAP estimate builder within function
- Batted Ball Dilemma, Statcast Data
- Computation Wise:
- Fit more neural networks
- Attempt to further correct unbalanced classes issues
- Compress outcomes

NEXT STEPS: GAME SIMULATION

- Roughly 300 conditional statements/loops
- Feed in lineup of hitters and pitchers
- Situations very rough
- No sac bunting, stealing, base running complexity
- Extra conditionals required for relief pitcher specification

SimAB(next hitter in lineup array, pitcher)

A BIG THANK YOU