COMS3261: Computer Science Theory

Spring 2013

Mihalis Yannakakis

Lecture 3, 9/11/13

Nondeterministic Finite Automaton

- $A = (Q, \Sigma, \delta, q_0, F)$
- Only difference that transition function δ : Q × Σ → 2^Q = P(Q) i.e., for each q in Q, a in Σ, δ(q,a) ⊆ Q is a set of 0, 1 or more states
- Alternatively (equivalently), can represent it as a *transition* relation $R = \{(q,a,p) \mid p \in \delta(q,a) \}$
- Transition Diagram:

Nodes = States

Labeled edges = tuples of transition relation

Transition table representation

Computations, Acceptance

- Computation (run) of NFA on input x = a₁ ... a_n:
 sequence of states (not necessarily distinct) starting with
 initial state: q₀ q₁ ... q_n such that q_i ∈δ(q_{i-1},a_i), for all i=1,...,n
 = path in transition diagram starting from q₀ with label x
 (label of path = sequence of labels of the edges)
- Accepting computation (run, path) = path from start state qo to a state in F.
- Input string x is accepted by A iff there is an accepting computation on input x, i.e. there is a path from qo to a node in F labeled by x.
- Language of A, L(A) = { x ∈ Σ* | x is accepted by A }
 set of labels of all accepting paths

Example NFA: Substring

• L = set of inputs that contain 101 as a substring

Example NFA: Substrings

L = set of inputs that contain as a substring
 00 or 011 or 101

Extension of transition function to strings

Can extend δ to a function δ[^] from Q×Σ* to 2^Q:
 Inductive definition:

Basis: $\delta^{(q,\epsilon)} = \{q\}$

Induction: $\delta^{(q,xa)} = \bigcup_{p \in \delta^{(q,x)}} \delta(p,a)$, for $x \in \Sigma^*$, $a \in \Sigma$ i.e., if $\delta^{(q,x)} = \{p_1, ..., p_k\}$ then $\delta^{(q,xa)} = \delta(p_1,a) \cup ... \cup \delta(p_k,a)$

Note: $\delta^{(q,x)}$ = set of states p such that there is a path from q to p labeled x

(Can prove formally by induction from the definitions)

Language L(A) = { $x \in \Sigma^* | \delta \land (q_0, x) \cap F \neq \emptyset$ }

Implementation of NFA

- · Cannot implement nondeterminism directly.
- To test if an input x is in the language of NFA A
 Scan x keeping track of set of states S the NFA is in.

Initialize: S={q₀}

while input is not finished

{ read next symbol, say a;

update set S of states: $S = \bigcup_{q \in S} \delta(q,a)$ }

if final set $S \cap F \neq \varnothing$ then accept else reject

Complexity: time O($|x| |Q|^2$), space O(|Q|)

Equivalence of NFA and DFA

- Theorem: For every NFA N there is an equivalent DFA D, i.e., one that accepts the same language: L(N) = L(D)
- Constructive proof: Subset Construction
- Given NFA N = $(Q_N, \Sigma, \delta_N, q_0, F_N)$, Construct DFA D = $(Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$
- Q_D = 2^{Q_N} = set of subsets of Q_N
- $\delta_D(S,a) = \bigcup_{q \in S} \delta_N(q,a)$ [extension of δ to sets of states]
- $F_D = \{ S \in Q_D \mid S \cap F_N \neq \emptyset \}$

Reachable NFA

- Some states may be useless: We only need the states that are reachable from the start state {q₀}.
- Can construct the DFA incrementally (as in graph search) from start state {q₀}.

Proof of NFA → DFA translation

Show by induction on the length of an input string *w* the following

• Claim:
$$\hat{\delta}_N(q_0, w) = \hat{\delta}_D(\lbrace q_0 \rbrace, w)$$

The claim implies the correctness of the translation:

For every string w, w is accepted by the NFA N iff

$$\begin{split} \hat{\delta}_{\scriptscriptstyle N}(q_{\scriptscriptstyle 0},w) &\cap F_{\scriptscriptstyle N} \neq \varnothing \\ \Leftrightarrow \hat{\delta}_{\scriptscriptstyle D}(\left\{q_{\scriptscriptstyle 0}\right\},w) &\cap F_{\scriptscriptstyle N} \neq \varnothing \\ \Leftrightarrow \hat{\delta}_{\scriptscriptstyle D}(\left\{q_{\scriptscriptstyle 0}\right\},w) &\in F_{\scriptscriptstyle D} \\ \Leftrightarrow w \text{ is accepted by the DFA D} \end{split}$$

Proof of Claim $\hat{\delta}_N(q_0, w) = \hat{\delta}_D(\{q_0\}, w)$

- Basis: $w = \varepsilon$. By definition of extension of δ functions to strings: both sides = $\{q_0\}$.
- Induction step: w =xa for some $\mathbf{x} \in \Sigma^*$, $\mathbf{a} \in \Sigma$ Induction hypothesis says: $\hat{\delta}_N(q_0, x) = \hat{\delta}_D(\left\{q_0\right\}, x)$ $\hat{\delta}_N(q_0, xa) = \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a)$ extension of δ_N to strings $= \delta_D(\hat{\delta}_N(q_0, x), a)$ definition of δ_D $= \delta_D(\hat{\delta}_D(\left\{q_0\right\}, x), a)$ Induction hypothesis $= \hat{\delta}_D(\left\{q_0\right\}, xa)$ extension of δ_D to strings

Complexity of construction

- #states of DFA ≤ 2^(#states of NFA)
- Exponential: in general it could be that D could include all the subsets of states of N, even if we do the incremental construction.
- Could it be that another construction avoids exponential blowup always?
- No:
- Theorem: There are NFA such that the smallest equivalent DFA has exponentially larger size (#states) than the NFA

Complexity of NFA to DFA conversion

- Theorem: There are NFA such that the smallest equivalent DFA has exponentially larger size (#states)
- Example: Language Ln: set of binary strings such that the n-th symbol from the end is 1.
- Accepted by NFA with n+1 states

Fact: Any DFA that accepts the same language Ln must have at least 2ⁿ states

(Try the incremental subset construction for n=3 and verify that this is the case; This does not prove it in itself: must argue this holds for *every equivalent DFA*.)

Proof of exponential blowup

Any DFA that accepts the same language Ln must have at least 2ⁿ states

Intuition: must remember the last n symbols \Rightarrow 2ⁿ states

- Formally: Let DFA A accept Ln, consider all 2ⁿ strings of length n.
- We will show that A is in different states after any two such strings,

which implies that A has at least 2ⁿ states by

• Pidgeonhole principle: If p pidgeons have less than p holes, then some pidgeons must share a hole.

Proof of exponential blowup

DFA A is in different states after any two strings of length n.

Proof by contradiction: Suppose that A is in same state after reading two (different) such strings x , y.

We'll show A makes an error on some input.

- Let i be a position in which x, y differ, say x has 1, y has 0
- Append i-1 symbols, say 0's, at the end of x and y to get strings $x' = x0^{i-1}$, $y' = y0^{i-1}$
- The DFA A is in the same state after reading x and y, and the suffix from then on same ⇒ same final state ⇒ A either accepts both x',y' or rejects both x',y'
- But x' ∈ Ln while y' ∉ Ln ⇒ A makes incorrect decision on either x' or y'