ANALISIS DE ALGORITMOS

Nombre: Lady Robalino

TALLER

- Dado: $(f(n) = n^3 + 9n^2\log(n) \text{ y } g(n) = n^2\log(n)$
 - Comprobar $f(n) \in O(g(n))$
 - Comprobar $f(n) \notin O(n^2)$
- Demostrar formalmente si existe relación de pertenencia entre f(n) y O(g(n)) y también entre g(n) y O(f(n)) considerando $f(n) = 2^n$ y $g(n) = 2^{2n}$
- 1. Comparación entre $f(n) = n^3 + 9n^2 \log n$ y $g(n) = n^2 \log n$
- a) Comprobar si $f(n) \in O(g(n))$

Queremos determinar si existen constantes c > 0 y n_0 tales que para todo $n \ge n_0$:

$$f(n) = n^3 + 9n^2 \log n \le c \cdot g(n) = c \cdot n^2 \log n$$

Reescribimos f(n) como:

$$f(n) = n^3 + 9n^2 \log n = n^2 \log n \cdot (n / \log n + 9)$$

Para valores grandes de n, el término $n/\log n$ domina la expresión ($n/\log n + 9$), y crece sin estar limitado.

Por lo tanto, no existe un c finito que satisfaga la desigualdad para todo n suficientemente grande.

Conclusión: $f(n) \notin O(g(n))$

b) Comprobar si $f(n) \in O(n^2)$

Queremos ver si existen constantes c > 0 y n_o tales que:

$$n^3 + 9n^2 \log n \le c \cdot n^2$$
, para todo $n \ge n_0$

Dividimos entre n²:

$$n + 9 \log n \le c$$

El lado izquierdo crece sin límite cuando $n \to \infty$, por lo que no existe un c que cumpla la desigualdad.

Conclusión: $f(n) \notin O(n^2)$

2. Relaciones de pertenencia para funciones exponenciales

Sea:

$$f(n) = 2^n y g(n) = 2^{2n} = 4^n$$

a) $delta f(n) \in O(g(n))$?

Buscamos constantes c, n_o tales que:

 $2^n \le c \cdot 4^n$, para todo $n \ge n_0$

Esto es equivalente a:

$$(2^n)/(4^n) = (1/2)^n \le c$$

Como $(1/2)^n \rightarrow 0$ cuando $n \rightarrow \infty$, existe un n_0 tal que para todo $n \ge n_0$: $(1/2)^n \le 1$

Podemos elegir c = 1 y cualquier n_0 .

Conclusión: $f(n) \in O(g(n))$

b) $\lg(n) \in O(f(n))$?

Buscamos c, n_o tales que:

 $4^n \le c \cdot 2^n$, para todo $n \ge n_0$

Esto equivale a:

$$4^{n} / 2^{n} = 2^{n} \le c$$

Pero $2^n \to \infty$ cuando $n \to \infty$, por lo que no existe un c finito que acote 2^n para todo n grande.

Conclusión: $g(n) \notin O(f(n))$