

Uniswap Tick Spacing and $\sqrt{(1.0001)}$

Uniswap v3 uses **ticks** spaced by 0.01% price changes: each tick moves the price by a factor of $\sqrt{(1.0001)}$ 1. In other words, the ratio between adjacent ticks is $\sqrt{(1.0001)}$ (\approx 1.00004999987). We found no historical reference explicitly linking the fraction **10202/101** to $\sqrt{(1.0001)}$. In fact, using that fraction requires an extra adjustment: ((10202/101)–1)/100 \approx 1.00009901, which is about 0.005% above $\sqrt{(1.0001)}$. This slight error (\approx 0.0049%) suggests 10202/101 is not an obvious simple approximation to $\sqrt{(1.0001)}$. We did not find any mathematical source or blockchain literature associating 10202/101 with Uniswap ticks.

Galileo's 1615 notebook shows an example of an early square-root approximation: he computes "179 * 57 = 10202" and then writes " $\sqrt{10202}$ = 101" 2 . In other words, Galileo effectively used 101 as the square root of 10202 (since 10202/101 \approx 101.0099). This yields an approximation error of about 0.005% for $\sqrt{10202}$. However, this is not related to $\sqrt{(1.0001)}$; it's simply an historical example of hand-computed square roots. There is no evidence Galileo (or others) used the ratio 10202/101 to approximate $\sqrt{(1.0001)}$ specifically. In summary, aside from such isolated computations (like Galileo's), we found no mention of 10202/101 being used as an approximation to $\sqrt{(1.0001)}$.

Rational Approximations of $\sqrt{(1.0001)}$

No classic text or table seems to record a special rational approximation for $\sqrt{(1.0001)}$. In general, $\sqrt{(1+\epsilon)}$ can be approximated by binomial expansion or continued-fraction techniques. For very small ϵ =0.0001, the binomial series gives $\sqrt{(1.0001)} \approx 1 + 0.0001/2 - (0.0001)^2/8 + ... \approx 1.00004999987$. One could form rational approximations via continued fractions, but simple ratios like 10202/101 (\approx 101.0099 as a multiplier) do not directly approximate 1.00005 unless one divides by 100 as above. We did not find any historical record of a simple fraction (such as p/q) being used for $\sqrt{(1.0001)}$ in mathematics literature. Modern computation (as in Uniswap's smart contracts) simply calculates $\sqrt{(1.0001)}$ rather than relying on a fixed rational.

1

Historical Logarithm Bases Less Than 2

Throughout history, several logarithm systems used bases smaller than 2. Notable examples include:

- Napier's original logarithms (1614): Napier's "logarithms" were defined so that antilogarithms grow by a factor of e^{-1} per unit. Equivalently, Napier's tables can be viewed as using base $e^{-1} \approx 0.3679$ 3 . (He scaled values so that N = $(e^{-1})^L$, where L is Napier's logarithm.) Although $e^{-1}<1$, it illustrates an early non-integer base choice for logarithms.
- Jost Bürgi's "progress tables" (1620): Independently of Napier, Jost Bürgi tabulated powers of B = 1.0001 up to very high precision 4 . In his tables, each successive entry is 0.01% larger than the previous (multiply by 1.0001 each step). Thus Bürgi was effectively using **base 1.0001** for his computations. (Byrgi's tables reached the "whole red number" N \approx 23027.0022, showing 1.0001^20027.0022 = 10 $^{-5}$.)
- John Wallis / Byrgius (Antilogarithms to base (1.0001)^(1/10)): The 1911 Encyclopædia Britannica notes that "Byrgius gives antilogarithms to base (1.0001)^(1/10)" 3. In other words, he tabulated values of (1.0001)^(n/10), i.e. antilogs to the base \approx 1.000009999. This is another example of a very small-growth base (<2) used in early log tables.
- **Golden-ratio base** ($\phi \approx 1.618$): In the 20th century a "base- ϕ " (phi) positional system was studied, using the golden ratio ϕ as the base 6 . Although not a conventional logarithm in use today, base ϕ is an irrational base <2 used for numeral representation. Correspondingly, one can define log base ϕ , e.g. relating to Fibonacci scaling. (For example, in a phi-based system any real number can be expressed in "base ϕ " 6 .)

Other common bases like 2, 10 or e are \geq 2, so the above examples cover most historically noted cases of bases between 1 and 2. In summary, early log tables and numeral systems did experiment with unusual small bases – for instance, Napier's base e^{-1} , Bürgi's base 1.0001^{-4} , Byrgius's base $(1.0001)^{\wedge}(1/10)^{-3}$, and the golden ratio φ (\approx 1.618) e^{-1} 0 but we found **no reference** to $\sqrt{(1.0001)}$ 0 specifically being linked to 10202/101 in any mathematical or historical source.

Sources: Authoritative documentation of Uniswap ticks ¹; 1911 *Encyclopædia Britannica* on Napier and Bürgi ³ ⁴; galilean manuscript images ²; modern descriptions of golden-ratio base ⁶.

1 TickMath | Uniswap

https://docs.uniswap.org/contracts/v3/reference/core/libraries/TickMath

² Overview of Folio Page 185 r

https://www.mpiwg-berlin.mpg.de/Galileo_Prototype/HTML/F185_R/F185_R.HTM

3 5 1911 Encyclopædia Britannica/Logarithm - Wikisource, the free online library

 $https://en.wikisource.org/wiki/1911_Encyclop\%C3\%A6dia_Britannica/Logarithm$

4 sam.math.ethz.ch

https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2012/2012-43_fp.pdf

6 Golden ratio base - Wikipedia

https://en.wikipedia.org/wiki/Golden_ratio_base