CSC 226

Algorithms and Data Structures: II
Final Review
Tianming Wei
twei@uvic.ca
ECS 466

Final Review

- Friday, August 9 in ECS 123
- 2 p.m. to 5 p.m. (3 Hours)
- 10 Questions 10 marks each
- Question 1 Miscellaneous (5 parts)
- Question 2 Miscellaneous (5 parts)
- Question 3 Search Trees (2 parts)
- Question 4 MSTs (2 parts)
- Question 5 MSTs and Shortest Paths (2 parts)

Final Review

- Question 6 Shortest Paths (3 parts)
- Question 7 Network Flow (4 parts)
- Question 8 Longest Common Subsequence (2 parts)
- Question 9 Substring Search (2 parts)
- Question 10 Planar Graphs (2 parts)

- Lecture 1 Intro
 - ➤ Big-Oh, Big-Omega, Big-Theta, Little-oh, Little-omega definitions
 - ➤ Properties of Big-Oh and proofs
- Lecture 2 Sorting Review
 - Selection, Insertion, Bubble, Shell, Merge, Heap, Quick, Bucket, Radix
 - ➤ Best-, Expected-, Worst-cases

- Lecture 3 Counting
 - ➤ Rule of Sum
 - ➤ Rule of Product
 - > Permutations
 - Combinations, with and without repetition
 - ➤ The Binomial Theorem
- Lecture 4 More Discrete Math
 - The pigeonhole principle
 - **Posets**
 - Relations, Partial order, Hasse diagrams

- Lecture 5 Lower-bound on Comparisonbased sorting
 - $\triangleright \Omega(n \log n)$ proof, decision trees
- Lecture 6 2 3 Trees
 - ≥2-nodes, 3-nodes, 4-nodes
 - > Height property
 - Search and insertion algorithms
 - ➤ Splitting 4-nodes
 - \triangleright Proof height is $O(\log n)$

- Lecture 7 Red-black Trees
 - Left-leaning red-black tree properties
 - Left red nodes, black height
 - ➤ flipColors(h), rotateLeft(h), rotateRight(h), put(k,v) methods
- Lecture 8 More Red-black Trees
 - ightharpoonupRed-black tree = 2-3 tree proof
 - \triangleright Proof height is $O(\log n)$
 - >deleteMin() from 2-3 tree

- Lecture 9 Graph Theory
 - >Graph, digraph, vertex, edge, degree, etc.
 - ➤ Walk, trail, circuit, path, cycle
 - Connected, simple, complete
 - Reachable, strongly connected
 - > Dags
 - >Subgraph, spanning subgraph
 - Euler circuits, Euler trails
 - > Free trees, spanning trees

- Lecture 10 Minimum Spanning Trees
 - ➤ MST definition and applications
 - ➤ Brute-force vs. greedy approach
 - >Prims, Kruskals, Barouvkas examples
- Lecture 11 Prim's Implementation
 - >Cycle property, Cut property
 - >Correctness Prim's
 - ➤ Pseudocode vs. Java implementation

- Lecture 12 Kruskal's Implementation
 - ➤ Bottom-up heap construction
 - Recursive vs. in-place
 - \triangleright Edge-painting proof O(m)
- Lecture 13 Union-find
 - >find(), union(), makeSet()
 - ➤ Quick-find, quick-union, weighted quick-union
 - ➤ Union-by-size (or rank or height)
 - > Path compression
 - $\geq \log^* n$ vs. $\alpha(n)$ (pseudo-linear)

- Lecture 14 –Barouvka's implementation
 - >Implementation and runtimes

- Lecture 15 More about MSTs
 - > Proofs with Cycle Property
 - ➤ Proofs with Cut Property

• Lecture 16 – Midterm Review

- Lecture 17 Shortest Paths Dijkstra
 - ➤ Single-source shortest paths
 - >Runtime and correctness
 - > Implementation details
 - Indexed min-PQ
- Lecture 18 Shortest Paths Bellman-Ford
 - ➤ Algorithm implementation and runtime
 - **Correctness**
 - Simple dynamic program

- Lecture 19 All-Pairs Shortest Paths
 - Floyd-Warshall dynamic approach
 - >Run through of algorithm
- Lecture 20 Network Flow
 - >s,t-flow, source, sink, flow value
 - Maxlow, mincut problems
 - >Augmenting paths, residual graph
 - Ford-Fulkerson, Edmonds-Karp
 - ➤ Baseball elimination

- Lecture 21 Longest Common Subsequence
 - > Dynamic program example
 - > Determining length and sequence
- Lecture 22 Pattern Matching
 - ➤ Brute-force, backing up in text string
 - >Knuth-Morris-Pratt
 - DFA simulation
 - **≻**Boyer-Moore
 - ➤ Rabin-Karp

- Lecture 23 Planar Graphs
 - Complete, bipartite and complete bipartite graphs
 - ➤ Planar graphs, Kuratowski's theorem
 - Euler's theorem and corollaries
- Lecture 24 Final Review
 - ➤ Office hours next week
 - Course evaluation: ces.uvic.ca
 - Thanks for the term!