1. 证明: 范数 ||·|| 的对偶范数满足范数的定义

 $||z||_* = \sup\{z^T \mathbf{x} : ||x|| \le 1\} = \sup\{z^T \mathbf{x} : ||x|| = 1\}$

1. 证明: 1) 非负性,正定性: $\forall z=0, sup\{z^Tx\}=0$ so $||0||^*=0$ if $z\neq 0, \exists x, \ that z^Tx\neq 0$ so $\sup\{z^Tx: ||x||\leq 1\}\geq 0$

所以 $\forall x \in \mathbb{R}^n, ||x||_* \geq 0$

同时,如果 $||x||_* = 0, x = 0$

2) 齐次性: 我们需要证明 $\|\alpha z\|_* = \|\alpha\|\|z\|_*$

 $\|\alpha z\|_* = \sup\{(\alpha z)^T x : \|x\| \le 1\} = \sup\{\alpha z^T x : \|x\| = 1\}$

因为 α 是标量,所以可以将 α 提出到括号外,于是有

 $\|\alpha z\|_* = \sup\{\alpha z^T x : \|x\| = 1\} = \alpha \sup\{z^T x : \|x\| = 1\} = \alpha \|z\|_*$

齐次性成立

3) 三角不等式: 我们需要证明 $||z_1 + z_2||_* \le ||z_1||_* ||z_2||_*$

 $||z_1 + z_2||_* = \sup\{(z_1 + z_2)^T x : ||x|| = 1\} = \sup\{z_1^T x + z_2^T x : ||x|| = 1\}$ 根据上确界的性质,有 $\sup\{z_1^T x + z_2^T x : ||x|| = 1\} \le \sup\{z_1^T x : ||x|| = 1\} + \sup\{z_2^T x : ||x|| = 1\} = ||z_1||_* ||z_2||_*$

三角不等式证毕

综上,对偶范数满足范数的定义

- 2. 证明: $z^T \mathbf{x} \leq ||x|| ||z||$
- 2. 证明: 因为 $||z||_* = \sup\{z^T x : ||x|| \le 1\} = \sup\{z^T x : ||x|| = 1\}$

所以 $||z||_* \ge z^T \frac{x}{||x||}$ (当 z 与 x 同方向时, 取"=")

对等式两边同时乘 ||x|| 我们得到: $z^T x \leq ||x|| ||z||_*$ 证毕

- $3.f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = \log \sum_{i=1}^m \exp(a_i^T x + b_i),$ 其中 $a_1, a_2, \cdots \ a_m \in \mathbb{R}^n, \ b_1, b_2, \cdots \ b_m \in \mathbb{R}$
- 1). 求函数 f 的梯度 $\nabla f(x)$
- 2). 求函数 f 的二阶导数 $\nabla^2 f(x)$
- 3. 解: 1) 设 $u = \sum_{i=1}^{m} exp(a_i^T x + b_i)$ 则 $f(x) = logu, \nabla f(x) = \frac{1}{n} * \nabla u$

 $\nabla u = \sum_{i=1}^{m} \nabla exp(a_i^T x + b_i) = \sum_{i=1}^{m} exp(a_i^T x + b_i)a_i$

故 $\nabla f(x) = \frac{1}{\sum_{i=1}^{m} exp(a_i^T x + b_i)} \sum_{i=1}^{m} exp(a_i^T x + b_i) a_i$

2). $\nabla^2 f(x) = \frac{1}{u} \sum_{i=1}^m \exp(a_i^T x + b_i) a_i a_i^T - \frac{1}{u^2} \left(\sum_{i=1}^m \exp(a_i^T x + b_i) a_i \right) \left(\sum_{i=1}^m \exp(a_i^T x + b_i) a_i \right)^T$ where $u = \sum_{i=1}^m \exp(a_i^T x + b_i)$

4. \diamondsuit $A \in \mathbb{R}^m * n, B \in \mathbb{R}^p * n, b \in \mathbb{R}^m, d \in \mathbb{R}^p$ 集合

 $P = \{x \in \mathbb{R}^n : Ax \leq b \ Bx = d\}$ 是凸集吗? 为什么?

4. 解:集合 $P = \{x \in \mathbb{R}^n : Ax \le b \ Bx = d\}$ 是凸集,理由如下:

对于 x_1, x_2 满足 $Ax_1 \le b$ 并且 $Ax_2 \le b, \forall \lambda \in [0, 1], A(\lambda x_1 + (1 - \lambda)x_2) = \lambda Ax_1 + (1 - \lambda)Ax_2 \le \lambda b + (1 - \lambda)b = b$

故满足不等式约束的集合是凸集

对于 x_1, x_2 满足 $Bx_1 = d$ 并且 $Bx_2 = d$, $\forall \lambda \in [0, 1]$, $B(\lambda x_1 + (1 - \lambda)x_2) = \lambda Bx_1 + (1 - \lambda)Bx_2 =$

 $\lambda d + (1 - \lambda)d = d$

故满足等式约束的集合是凸集综上 P 是凸集

5. 证明: 最大值函数 $f(x) = max\{x_1, x_2, \dots, x_n\}, x = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$ 为凸函数

5. 证明: $\forall x, y \in \mathbb{R}^n, \forall \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) = \max\{\lambda x + (1 - \lambda)y\}$

根据最大值的性质, $max\{\lambda x + (1-\lambda)y\} \le max\{\lambda x\} + max\{(1-\lambda)y\} = f(\lambda x) + f((1-\lambda)y) = \lambda f(x) + (1-\lambda)f(y)$

 $\mathbb{E} F: f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

故 f(x) 是凸函数

6. 二次函数 $f(x) = \frac{1}{2}x^TQx + p^Tx + r, x \in \mathbb{R}^n$ 是否为凸函数? 是否为凹函数? 是否为严格凸函数? 是否为严格凹函数?

解: $\nabla^2 f(x) = Q$, 由凸函数的二阶判定得:

如果 Q 为对称半正定矩阵, f(x) 是凸函数;

如果 Q 为对称半负定矩阵, f(x) 是凹函数;

如果 Q 为对称正定矩阵, f(x) 是严格凸函数;

如果 Q 为对称负定矩阵, f(x) 是严格凹函数;

7. 对于凸优化问题

min f(x)

 $s.t. \ x \in X$

如果目标函数 f 是可微的,那么可行解 x^* 是最优解当且仅当 $\forall y \in X$ 有 $\nabla f(x^*)^T(y-x^*) \geq 0$ 解: \Leftarrow : 当 $\forall y \in X, \nabla^T f(x^*)(y-x^*) \geq 0$ 为最优解时,因为 f(x) 是凸函数,凸函数有 $\forall x, y \in X, f(y) \geq f(x) + \nabla^T f(x)(y-x)$

所以 $\forall y \in X, f(y) \geq f(x^*) + \nabla^T f(x^*)(y - x^*)$

 $\exists \exists \forall y \in X, f(y) - f(x^*) \ge \nabla^T f(x^*) (y - x^*) \ge 0$

即 $\forall y \in X, f(y) \geq f(x^*), x^*$ 为最优解

⇒: 若 x^* 是最优解,但不满足 $\forall y \in X, \nabla f(x^*)^T(y-x^*) \geq 0$ 即 $\exists y_0 \in X, \nabla f(x^*)^T(y-x^*) < 0$ 设 $z = \lambda x^* + (1-\lambda)y_0, \lambda \in [0,1]$,当 $\lambda = 0, z = y_0, \nabla f(x^*)^T(z-x^*) < 0$,那么 $\exists \lambda \in [0,1)$ that $f(z) = f(\lambda x^* + (1-\lambda)y_0) < f(x^*)$,这与 x^* 是最优解矛盾,所有假设不成立 综上,可行解 x^* 是最优解当且仅当 $\forall y \in X$ 有 $\nabla f(x^*)^T(y-x^*) \geq 0$

8. 证明 $x^* = (1, \frac{1}{2}, -1)^T$ 是如下优化问题的最优解 $min\frac{1}{2}x^TQx + p^Tx + r$

 $s.t. - 1 \le x_i \le 1, i = 1, 2, 3 \not \sqsubseteq \psi$,

$$P = \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}, q = \begin{bmatrix} -22 \\ -14.5 \\ 13 \end{bmatrix}, r = 1$$

8. 证明: 设 $f(x) = \frac{1}{2}x^{T}Qx + p^{T}x + r$, 则 $\nabla^{2}f(x) = P$

$$P = \begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix}$$

为正定矩阵,故 f(x) 为凸函数且可微,显然不等式限制函数也是凸函数,有 $\nabla f(x^*)^T = Px^* + q =$

$$\begin{bmatrix} 13 & 12 & -2 \\ 12 & 17 & 6 \\ -2 & 6 & 12 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{2} \\ -1 \end{bmatrix} + \begin{bmatrix} -22 \\ -14.5 \\ 13 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$

 $y - x^* =$

$$\left[\begin{array}{c} y_1+1\\y_2\\y_3-2\end{array}\right]$$

故 $\nabla f(x^*)^T (y - x^*) = 3 - y_1 + 2y_3 \ge 3 - 1 + 2 * 1 = 0$

由题 7 可知,当 x^* 满足 $\forall y \in X, \nabla^T f(x^*)(y-x^*) \geq 0$ 时 x^* 是最优解,故 $x^* = (1, \frac{1}{2}, -1)^T$ 是优化问题的最优解