CS698C: Sketching and Sampling for Big Data Analysis

Exercises: SVD 4

Note: All questions pertain to real matrices.

1. Find all the entries in the SVD of a rank 1 matrix.

$$\begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ 0 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T$$

(*Hint:* Find the eigenvalues and eigenvectors of $A^T A$ or AA^T .)

2. Find the SVD of A whose eigenvector decomposition is given below.

- 3. Let $A = U\Sigma V^T$ be an SVD decomposition. Are U and V unique? Σ ? Give reasons/arguments.
- 4. (a) Give examples of matrices for which eigenvalues equal singular values.
 - (b) Give examples of matrices for which the singular values are the absolute values of the corresponding eigen values.
 - (c) Give examples of matrices for which the eigenvalues are the squares of the singular values.

Now show the following.

- (a) Singular values and eigenvalues coincide for positive semi-definite matrices.
- (b) For symmetric matrices, the singular values are the absolute values of eigen values.
- (c) For all general matrices, the singular values are the positive square roots of the eigenvalues of $A^T A$ or AA^T .
- 5. Prove or disprove. Let A be an n by n symmetric matrix whose eigenvector decomposition is $A = U\Lambda U^T$, where, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. The singular values of A are $|\lambda_1|, |\lambda_2|, \ldots, |\lambda_n|$ and the SVD of A is

$$A = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} |\lambda_1| & & \\ & \ddots & \\ & & |\lambda_n| \end{bmatrix} \begin{bmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_n^T - \end{bmatrix}$$

where, $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ and

$$v_i = \begin{cases} u_i & \text{if } \lambda_i \ge 0\\ -u_i & \text{otherwise.} \end{cases}$$

6. Suppose A has columns $[w_1 \ w_2 \ \cdots \ w_n]$ where, the w_i 's are orthonormal (i.e., $w_i^T w_j = 0$ if $i \neq j$ and $1 \leq i, j \leq n$) and have lengths $\sigma_1, \sigma_2, \ldots, \sigma_n$, that is, $||w_i|| = \sigma_i$, for $i = 1, 2, \ldots, n$. What is $A^T A$, and what is the SVD $A = U \Sigma V^T$.

1

- 7. Suppose an m by n matrix A has SVD $A = U\Sigma V^T$. Find unit vectors w and x such that $||Ax||_2 = \max_{\|v\|_2=1} ||Av||_2$ and $||Aw||_2 = \min_{\|v\|_2=1} ||Av||_2$.
- 8. Show the following properties of SVD decomposition.
 - (a) If A is invertible, then $A^{-1} = A^{-}$ (the inverse of A is the pseudo-inverse).
 - (b) If A is square, then $|\det A| = \text{product of the singular values of } A$.
 - (c) Suppose A is a positive definite matrix and $A = U\Lambda U^T$ be its eigen decomposition, then it is also its SVD. This holds for positive semi-definite matrix also. (Positive definite and semi-definite matrices are always symmetric).
 - (d) Suppose A is a symmetric matrix with eigen decomposition $A = U\Lambda U^T$. Its singular values are the absolute values of its eigenvalues.
 - (e) If U is an m by m orthogonal matrix and A is an m by n matrix, then A and UA have the same singular values.
- 9. Suppose A is symmetric. Then the eigenvalues of A + I are $\lambda_i + 1$, where, $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. What can be said about the SVD of A + I?
- 10. Use the rank 1 decomposition of the SVD of $A = U\Sigma V^T = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_r u_r v_r^T$.
 - (a) Let c be an arbitrary unit vector in \mathbb{R}^m . Suppose c = Vd or $d = V^Tc$. Show that

$$Ac = \sigma_1 d_1 u_1 + \sigma_2 d_2 u_2 + \dots + \sigma_r d_r u_r$$

and

$$||Ac||_2^2 = (\sigma_1 d_1)^2 + \dots + (\sigma_r d_r)^2 = (\sigma_1 (v_1^T c))^2 + \dots + (\sigma_r (v_r^T c))^2$$
.

Questions on pseudo-inverse. Let $A = U\Sigma V^T$ be the SVD of A. The pseudo inverse of A is defined as $V\Sigma^-U^T$, where, Σ^- is an n by m matrix with all off-diagonal entries zeros and

$$\Sigma_{ii}^{-} = \begin{cases} \Sigma_{ii}^{-1} = \sigma_i^{-1} & \text{if } \sigma_i > 0\\ 0 & \text{Otherwise.} \end{cases}$$

In terms of the thin SVD, if A has rank r then $A = U_r \Sigma_r V_r^T$ is called the thin SVD, where, it is assumed that $U_r = \begin{bmatrix} u_1 & u_2 & \cdots & u_r \end{bmatrix}$ and $V_r = \begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix}$ are the first r columns of U and V respectively. These columns directly correspond to the singular values $\sigma_1, \ldots, \sigma_r$ which are all positive. All singular values σ_{r+1}, \ldots are zeros. Then,

$$A = U\Sigma V^T = U_r \Sigma_r V_r^T$$

The pseudo-inverse can be written as $A^- = V_r \Sigma_r^{-1} U_r^T$.

- 1. Show that $AA^- = U_rU_r^T$ is the projection matrix on the column space of A. (i.e., for any $x \in \mathbb{R}^m$, AA^-x is the projection of x onto the column space of A.
- 2. Show that $A^{-}A = V_rV_r^T$ is the projection matrix on the row space of A.
- 3. If r = m and $m \le n$, show that A^- is a right inverse.
- 4. If r = n and $m \ge n$, show that A^- is a left inverse.

- 5. If r = m = n, then $A^- = A^{-1}$.
- 6. Show that $(A^T)^- = (A^-)^T$.
- 7. Going back to full SVD $A = U\Sigma V^T$, can you find the projection matrix on to the nullspace of A?

1 Linear Regression

We are given an $m \times n$ matrix A and an m dimensional vector b; generally with $m \gg n$. The linear regression problem is $\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2$. The solution is obtained by projecting b onto the column space of A. Let x^* be a vector that minimizes $||b - Ax||_2^2$. Then, $b - Ax^*$ is orthogonal to the column space of A, that is, $A^T(b - Ax^*) = 0$, or

$$A^T A x^* = A^T b$$

This is called normal equations. Writing $A = U_r \Sigma_r V_r^T$ (thin SVD), we have,

$$V_r \Sigma_r U_r^T U_r \Sigma_r V^T x^* = V_r \Sigma_r U_r^T b$$

Since, $U_r^T U_r = I_r$, the equation is equivalent to

$$V_r \Sigma_r^2 V_r^T x^* = V_r \Sigma_r U_r^T b$$

Multiplying from the left by V_r^T , we get $V_r^T V_r = I_r$ on both sides, this gives

$$\Sigma_r^2 V_r^T x^* = \Sigma_r U_r^T b$$

Multiplying on the left by Σ_r^{-2} on both sides, we get

$$V_r^T x^* = \Sigma_r^{-1} U_r^T b .$$

Let W_{n-r} denote an orthogonal basis for the nullspace of A, that is,

$$V = \begin{bmatrix} V_r & W_{n-r} \end{bmatrix}$$

Any vector x can be uniquely written as a sum of two orthogonal vectors, $x = x_r + x_n$, where, $x_r = V_r y$ and lies in the rowspace of A and $x_n = W_{n-r} z$ that lies in the nullspace of A, for some $y \in \mathbb{R}^r$ and $z \in \mathbb{R}^{n-r}$. In this notation, we So we write $x^* = x_r^* + x_n^*$. Let

$$x^* = Vw^* = \begin{bmatrix} V_r & W_{n-r} \end{bmatrix} \begin{bmatrix} y^* \\ z^* \end{bmatrix}, \qquad y^* \in \mathbb{R}^r, z^* \in \mathbb{R}^{n-r}$$

Then,

$$V_r^T x^* = V_r^T (V_r y^* + W_{n-r} z^*) = y^* + V_r^T W_{n-r} z^* = y^*$$

since, V_r and W_{n-r} columns are orthogonal to one another (row space is orthogonal to nullspace). Going back to the equation we need to solve, $V_r^T x^* = \Sigma_r^{-1} U_r^T b$, and writing $x^* = V y^*$ as above, we have,

$$y^* = \Sigma_r^{-1} U_r^T b \ .$$

The space of all solutions is then

$$x^* = V_r y^* + W_{n-r} z, \qquad z \in \mathbb{R}^{n-r}$$

Further, since, the column spaces of V_r and W_{n-r} correspond to the rowspaces and nullspaces, respectively, of A, they are orthogonal and by Pythagoras theorem,

$$||x^*||_2^2 = ||V_r y_r^* + W_{n-r} z||_2^2 = ||V y^*||_2^2 + ||W_{n-r} z||_2^2 = ||y_r^*||_2^2 + ||z||_2^2$$
.

Thus among all the possible solutions that minimizes $||Ax - b||_2^2$, the value of x^* that has the smallest ℓ_2 norm is when z = 0. This gives the least norm solution among all vectors that minimizes $||Ax - b||_2^2$ to be

$$x^* = V_r y_r^* = V_r \Sigma_r^{-1} U_r^T b = A^- b$$

as per the definition of $A^- = V_r \Sigma_r^{-1} U_r^T$. This proves the property that $x^* = A^- b$ minimizes $||Ax - b||_2^2$ and among all such vectors, has the smallest norm. In general, the space of solutions to

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2$$

is given by

$$A^-b + W_{n-r}z, \qquad z \in \mathbb{R}^{n-r}$$
.

When do we have a unique solution? Iff A has nullspace $\{0\}$ or that r = n. This means that $A^T A$ is an $n \times n$ matrix and of rank n and hence, invertible. Going back to normal equations, we have,

$$A^T A x^* = A^T b$$
.

In this case (and only this case), $A^{T}A$ is invertible, and

$$x^* = (A^T A)^{-1} A^T b$$
.

Is this solution the same as $x^* = A^-b$? Let us check this. Writing as SVD

$$(A^{T}A)^{-1}A^{T}b = ((V_{r}\Sigma_{r}U_{r}^{T})U_{r}\Sigma_{r}V_{r}^{T})^{-1}V_{r}\Sigma_{r}U_{r}^{T}b = (V_{r}\Sigma_{r}^{2}V_{r}^{T})^{-1}V_{r}\Sigma_{r}U_{r}^{T}b .$$

Since r = n, $V_r = V$ is an orthogonal matrix and its inverse is V^T . This simplifies our calculation. Since, $(AB)^{-1} = B^{-1}A^{-1}$, when inverses do exist, we have,

$$(V_r^T)^{-1}(\Sigma_r^2)^{-1}(V_r)^{-1} = V_r \Sigma_r^{-2} V_r^T$$

Thus

$$(A^T A)^{-1} A^T b = V_r \Sigma_r^{-2} V_r^T V_r \Sigma_r U_r^T b = V_r \Sigma_r^{-1} U_r^T b = A^- b$$
.

Another way to view this is to recognize that the closest vector to b on the columnspace of A is $U_rU_r^Tb$. Thus, any solution to $Ax^* = U_rU_r^Tb$ is the one that minimizes $||Ax - b||_2^2$.

$$||Ax - b||_2^2 = ||Ax - U_r U_r^T b + (U_r U_r^T - I)b||_2^2 = ||Ax - U_r U_r^T b||_2^2 + ||(I - U_r U_r^T)b||_2^2$$

where, the last step follows from the fact that $Ax - U_rU_r^Tb = Ax - Ax^*$ is in the column space of A and $I - U_rU_r^T$ is the projection matrix in the space orthogonal to the colspace of A. Hence,

$$\min_{x} ||Ax - b||_{2}^{2} = \min_{x} ||A(x - x^{*})||_{2}^{2} + ||(I - U_{r}U_{r}^{T})b||_{2}^{2}.$$

The second term in the RHS is a constant and independent of x. Thus, the minimum occurs when $x = x^* + z$, where, z is in the null space of A. As discussed earlier, among all such solutions, the solution with the minimum norm occurs when z = 0. Thus,

$$\min_{x} ||Ax - b||_{2}^{2} = ||(I - U_{r}U_{r}^{T})b||_{2}^{2}$$

where, $Ax^* = U_r U_r^T b$. Calculating as before,

$$Ax^* = U_r \Sigma_r V_r^T x^* = U_r U_r^T b$$

and assuming x^* has no null space component, this gives $x^* = Vy^*$, and so,

$$y^* = \Sigma^{-1} U_r^T b$$
, or, $x^* = V_r \Sigma_r^{-1} U_r^T b = A^- b$.