Complete the timing diagram Assume the SP starts at 0x00 and the PC starts at 0x03 CSEG .ORG 0x03 3 LD R2,0x044 ADD R2,0x01S RET 6 PUSH R3 7 PUSH R4 & CALL Func RO, 0xFF q OR A LSR R1 ß BRNE end (Func: SUBC R3,

R3, R1

R1

v POP

€ RET

end: F

Address	Value
R0	0x32
R1 0704	0x44 0x
R2 0,00	0xD1 Ox
R3	Dx876x4
R4	0x0A
**	
R13	0x55
R14	0x23
R15	0xFA
R30	0x66
R31	0x11
Reg File	

Address	Value
0x00	0x07 0x0
0x01	0x4C
0x02	0x81
0x03	0x21
0x04	0xFF
0xFD	0x22
0xFE	0x51
0xFF	0x 29

Table 1: Fetch/Execute Cycles

Cycle	IR	PC_SEL	SCR_ADD_SEL	PC	SP	C_FLAG	Z_FLAG
F1	X	0	O	3	O	O_I DAG	O O
E1	LO 12, 0x04	0	1	4	0	0	O
F	A00 12,0x01	0		4	0	0	0
E	A00 PL, 0x01	0	0	5	O	Ö	
F	RET	0		2	0	2.24	0
E	RET	i	2	6	0		
+	PUSH R3	0	0	7		GEOMOSE V	
E	PUSH RY	0	3	8		1	
F	CALL Func	U	0	8	0		1
E	CALL FUNC	0	3	#9	0		E (1781/0720-0
F	LSR RI	0	0	(FF		
E	SUBC R3, R1	0	O	D	FF	I I	1
F	POPRI	O	0	P	FF	0	0
E	POP RI	0	a a	F	FF	0	O
F	RET	0	0	E	0	0	0
E	RET	1	2	F	0	0	v
4	AND RURO	0	o	A	1	0	0
E	ISR RI	0	0	B		0	0
F	BRNF end	0	0	B		01	0
E	BRNE end	G	0	W C	1	01	0
F	SUBC R3, 11	0	0	F			0
E	AND RO, RO	0	0	10	1	1	0
F	AND DU LO	0	0	10	1	0	D
F	AND, RUIRU	0	0	ii		0	0

Assume you add the enable interrupt instruction (SEI) to the start of the code as shown below and change the origin to 0x02 so all the other instructions remain at the same memory locations. Suppose an interrupt occurs during the execute cycle of the PUSH R4 instruction.

```
CSEG
.ORG 0x02
      SEI
      LD
            R2,0x04
            R2,0x01
      ADD
      RET
      PUSH R3
      PUSH R4
      CALL
            Func
      OR
            RO, OxFF
      LSR
            R2
      BRNE
            end
Func: SUBC R3, R1
      POP
            R4
      RET
end:
```

After the interrupt cycle completes:

a) What value do the shadow carry and shadow zero registers become?

b) What value does the stack pointer (SP) become and what value is stored on the stack?

c) What value does the PC become? Why?

d) What is missing from the code above to be able to service this interrupt?

Complete the timing diagram for the following code. Assume the SP starts at 0x01 and the PC starts at 0x08. Assume all registers contain the value of their register number (i.e. R0 = 0x00, R21 = 21, etc.)

decimal

\sim	C	ㅁ	~
◡	o	2	U

.ORG	0x08			
	8	ST	R15,	(R15)
	-	PUSH		
	10	PUSH	R21	
	16	POP	R1	
	12	WSP	R15	
	13	CALL	My_Fu	ınc
	14	POP	R1	
	15	WSP	R0	
	16	RET		
My_Fu	inc: 17		R1	
	18	RET		
		PCP	R2	
	20	POP	R3	

Cycle	Instruction	PC	SP
F	×	8	1
E	57 RIS RIS	9	1
F	PUSH R20	9	1
E	PUSH RZO	10	1
F	PUSH RZI	10	0
E	PUSH RZI	11	0
F	PUP RI	11	FF
E	POP PI	12	FF
F	WSP RIS	12	0
E	WSP RIS	13	0
F	CALL My-FUAC	13	15
E	CALL My-Func	14	15
F	909 Pl	17	14
E	POP R(12)	18	14
F	RET	18	15
E	RET	19	15
F	POP RZ	15	16
E	WSP RO	16	16
F	RET	16	0
E	RET	17	0
F	POP RI	20	1
E	Pup R3	21	1
F.	AND	21	2
Ę	AMO	22	2
F			
E			
F			
E	12		
F			
E			
F			
E			
F			
*			
E			