

Projeto da Disciplina

Germano C. Vasconcelos Centro de Informática - UFPE

Objetivo

Realizar um estudo experimental sobre a aplicação de modelos de redes neurais em um problema do mundo real

Motivações

- Possibilitar ao aluno uma visão prática do uso de redes neurais na solução de problemas
- Consolidar os conhecimentos teóricos apresentados em sala de aula
- Permitir o contato com ferramentas do Github, Keras, Scikit-learn na Linguagem Python

Projeto – Análise de Risco de Crédito

- Classificação de padrões
 - Base real de instituição que vende a crédito
 - Base em larga escala: +- 400 mil registros para treinamento e +-130 mil registros para teste
 - Problema: com base no perfil de clientes, decidir a quem conceder crédito (risco de inadimplência)

Descrição do Projeto

- Conjunto de classificadores disponíveis
 - Perceptron multicamadas (MLP) (obrigatório)
 - Máquina de Vetores de Suporte (obrigatório)
 - Ensemble de MLPs (obrigatório)
 - Random Forest (usado para comparação)
 - Gradient Boosting (usado para comparação)
 - Ensemble de Classificadores (usado para comparação)
- Investigar diferentes topologias da rede e diferentes valores dos parâmetros (básico)
 - Número de camadas
 - Número de unidades intermediárias
 - Influência da taxa de aprendizagem no treinamento
 - Função de ativação
 - Método de amostragem (SMOTE)

Descrição do Projeto

- Parâmetros adicionais que podem ser explorados
 - Algoritmo de aprendizagem
 - Taxa de aprendizagem adaptativa
 - SMOTE Adaptado
 - Outros

Preparação de Dados: (divisão e balanceamento)

- Conjuntos de dados independentes
 - Treinamento
 - Validação
 - Teste (já está separado)
- Estatisticamente representativos e independentes
 - Não pode haver sobreposição

Preparação de Dados: (divisão e balanceamento)

Particionamento dos Dados – Primeira etapa

Preparação de Dados: (divisão e balanceamento)

Particionamento dos Dados – Segunda etapa

Preparação de Dados: (divisão e balanceamento) Centro (divisão e balanceamento)

Particionamento dos Dados – Terceira etapa

Preparação de Dados: (divisão e balanceamento) (divisão e balanceamento)

Particionamento dos Dados com Kfolds

K-fold Cross Validation

- Randomly divide your data into K pieces/folds
- Treat 1st fold as the test dataset. Fit the model to the other folds (training data).
- Apply the model to the test data and repeat k times.
- Calculate statistics of model accuracy and fit from the test data only.

OBS: use 1 fold para validação também em cada rodada

Análise de Desempenho

Classificação

- MSE (erro médio quadrado)
- Teste estatístico Kolmogorov-Smirnov -KS (principal)
- Matriz de confusão
- Auroc (Área sob a Curva Roc)
- Recall, Precision e F-Measure

Matriz de Confusão

		Actual classification	
		positive	negative
Hypothesis	positive	true positive (tp)	false positive (fp)
	negative	false negative (fn)	true negative (tn)

Curvas ROC

Curvas ROC: Exemplo

Experimentos Adicionais

- Replicação (oversampling) da Classe Minoritária com SMOTE
- Replicação (oversampling) da Classe Minoritária com SMOTE Adaptado

SMOTE (Synthetic Minority Oversampling Technique - Chawla et al)

Para a classe minoritária: Calcule k vizinhos mais próximos (da sua classe); Escolha 1 deles (x'); Crie um xnew=x + $(x'-x) * \delta$, Onde δ ε [0,1]

: exemplo minoritário

JNIVERSIDA EDERAL: Novo dado sintético

SMOTE (Synthetic Minority Oversampling Technique - Chawla et al)

: exemplo minoritário

: exemplo majoritário

UNIVERSIDA EDERAL: Novo dado sintético

Para a classe minoritária:

Calcule k vizinhos mais próximos

(de qualquer classe);

Escolha 1 deles (x');

Crie um xnew=x + $(x'-x) * \delta$,

Onde $\delta \epsilon [0,1]$ se x'for da classe minoritária

e δ ε [0,0.5] se x'for da classe majoritária

SMOTE (Adaptado)

: exemplo minoritário

: exemplo majoritário

INIVERSIDA EDERAL: Novo dado sintético

Ferramentas para o Projeto

- Código em Python
 - https://github.com/RomeroBarata/IF702-redesneurais
- Conjuntos de dados do problema
 - http://www.cin.ufpe.br/~gcv/web lci/intro.html

Resultados do Projeto

- Apresentação com todos do grupo com descrição do problema, divisão dos dados, estrutura experimental e interpretação dos resultados
- Entrega no final do semestre