

RF Test Report:

Zinwave ORU 47CFR74

FCC ID: UPO302-1107

SC_TR_180_C

Contents

1	Revis	ion History3	
2	Purpo	se3	
3	Refer	ence Documents3	
4	Test 1	nformation4	
	4.1	Client and manufacturer 4	
	4.2	Test Locations 4	
	4.3	Test sample 4	
5	Test (
	5.1	t Configuration	
	5.2	• • • • •	
	5.3	Equipment arrangement 6	
	5.4	Supported Services6	
6	Sumr	nary of Tests performed7	
7	Pass	oand gain8	
	7.1	Gain across whole band8	
	7.1.1	Test method – whole band of operation	
	7.1.2	Measurement result 8	
	7.2	Gain across individual service bands9	
	7.2.1	Test method – service band9	
8	Trans	mit Power	
9	Occup	oied Bandwidth11	
	9.1	Test method	
	9.2	Test results	
1	0 Spuri	ous Emissions	
	10.1	Dual channel	
	10.2	Single channel	
1	1 Test	equipment	
		Tables	
Ta	able 1: E	quipment under test5	
		Support Equipment5	
		Summary of tests performed7	
		ain variance within service bands9	
		Maximum transmit power within service bands10	
Ta	able 6: T	est Equipment	
		Figures	
	-	Test configuration – single channel6	
	_	Test configuration – dual channel6	
Fi	gure 3:	gain variance within service bands9	

1 Revision History

Revision	Originator	Date	Comment	Signature
Α	C Blackham	10 Jan	1 st release	
	Director, Sulis Consultants Ltd	2015	015	
В	C Blackham	28 Jan	Additional	
	Director, Sulis Consultants Ltd	2015	clarification	
С	C Blackham	07 Feb	Typos	11 -10
	Director, Sulis Consultants Ltd	2016	corrected	Clubble

2 Purpose

This document details the testing performed on Zinwave Optical Remote Unit, ORU, model number 302-1107 against requirements of FCC 47CFR90.

3 Reference Documents

[1]	47 CFR90	Title 47 Code of Federal Regulations Part 90: Private Land Mobile Radio Services
[2]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[3]	KDB 935210 D05 V01	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for Industrial and Non-consumer signal booster, repeater and amplifier devices
[4]	KDB971168 DO1 v02r02	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for certification of licensed digital transmitters.
[5]	RSS-139 Issue 3	Industry Canada Spectrum Management and Telecommunications Radio Standards Specification Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz
[6]	RSS-Gen Issue 4 (November 13, 2014)	Industry Canada Spectrum Management and Telecommunications Radio Standards Specification General Requirements for Compliance of Radio Apparatus

SC_TR_180_C Page 3 of 15

4 Test Information

4.1 Client and manufacturer

Zinwave Ltd

Harston Mill

Harston

Cambridge

CB22 7GG

UK

4.2 Test Locations

Testing was performed by Charlie Blackham of Sulis Consultants Ltd on 5th January 2016 at Zinwaye's offices detailed in section 4.1

4.3 Test sample

The results herein only refer to sample detailed in section 5

SC_TR_180_C Page 4 of 15

5 Test Configuration

5.1 Test sample and Operating mode

The equipment under test (EUT) was:

Manufacturer	Name	Model Number	Serial Number
Zinwave	ORU	302-1107	310400000022

Table 1: Equipment under test

Modifications during test: None

5.2 Support equipment

The following equipment shall be used, configured as shown in Figure 1:

Name	Part Number	Label	Serial Number			
Zinwave UNIhub (Primary Hub)						
Chassis		302-1001	00-17-68-00-09-B7			
RF Service module		SM 1/6	030370002050			
Optical module		OM 1/6	050750002036			
Zinwave UNIhub (Secondary Hub)						
Chassis		302-1001	00-17-68-00-09-67			
Input Optical module		OM 5/6	50750002039			
Optical module		OM 3/6	50750002010			

Table 2: Support Equipment

SC_TR_180_C Page 5 of 15

5.3 Equipment arrangement

Figure 2: Test configuration – dual channel

Notes - additional connections not shown:

- 1. For dual channel measurements, IQ output from Signal Generator #1 connected to IQ input of signal generator #2
- 2. 10 MHz Ref Clock output of FSV Signal Analyser connected to Ref Clock inputs of the two signal generators

5.4 Supported Services

Frequency Band (MHz)	Service	Modulation	Channel Bandwidth	Emission designator
470 - 608	P25	C4FM (QPSK)	12.5kHz	11K2G1E
614 – 698	P25	C4FM (QPSK)	12.5kHz	11K2G1E

SC_TR_180_C Page 6 of 15

6 Summary of Tests performed

This report contains results for the following tests:

Test	47 CFR Part	Section	Result
Passband gain and Determination of f ₀	N/A	7	N/A
Transmit Power	74.861(e)(1)(ii)	8	Pass
Occupied Bandwidth	74.861(e)(5)	9	Pass
Conducted Spurious Emissions	74.861(e)(6)	10	Pass

Table 3: Summary of tests performed

SC_TR_180_C Page 7 of 15

7 Pass band gain

7.1 Gain across whole band

7.1.1 Test method – whole band of operation

- 1. Connect a signal generator to the input of the Spectrum Analyser.
- 2. Configure a swept CW signal with the following parameters:
 - a. Frequency range = \pm 250 % of the passband from the centre of the passband.
 - b. Set power so that the received level to be -5dB.
 - c. Dwell time = 50 ms
 - d. Number of points = SPAN/(RBW/2).
- 3. Set the span of the spectrum analyser to the same as the frequency range of the signal generator.
- 4. Set the detector to Peak Max-Hold and wait for the spectrum analyser's spectral display to fill.
- 5. Record trace.
- 6. Connect Signal Generator to RF service module or Primary Hub
- 7. Connect a spectrum analyser to the output of the EUT using appropriate attenuation.
- 8. Set the detector to Peak Max-Hold and wait for the spectrum analyser's spectral display to fill.
- 9. Record trace.
- 10.Calculate and report Gain, which is difference between input and output signal.

7.1.2 Measurement result

SC_TR_180_C Page 8 of 15

7.2 Gain across individual service bands

7.2.1 Test method – service band

Test method is similar to 8.1.1 except that the frequency range is limited to the lower and upper band edges of the relevant service band.

All measurements performed with Signal Generator set to -5dBm. Exact power fed into Hub shown on plot as "input power" and resultant output shown as "output power". Gain calculated as "output power – input power" (as input power is –ve)

Freq range (MHz)	Maximum gain (MHz)	Frequency f ₀
470 - 608	23.97	566 MHz
614 - 698	23.92	654 MHz

Table 4: gain variance within service bands

Figure 3: gain variance within service bands

SC_TR_180_C Page 9 of 15

8 Transmit Power

The Maximum transmit power is determined from the maximum output power determined using a CW signal in section 7

Freq range (MHz)	Maximum conducted transmit power (dBm)	Maximum permitted
470 - 608	19.07	250 mW / 24.0 dBm
614 - 698	18.84	250 mW / 24.0 dBm

Table 5: Maximum transmit power within service bands

SC_TR_180_C Page 10 of 15

9 Occupied Bandwidth

9.1 Test method

For a single channel amplifier, the 99% emission bandwidth shall be measured under the conditions described in section 4.3.2 and the spectrum analyser plots submitted in the test report.

Set the resolution bandwidth of the spectrum analyser from 1% to 3% of the 99% emission bandwidth and set the video bandwidth to 3 times the resolution bandwidth. Record both the amplifier input and set the video bandwidth to 3 times the resolution bandwidth. Record both the amplifier input and output signals.

The plot was also compared against the mask in 74.861(e)

9.2 Test results

Measurement was made at fo for each band

SC_TR_180_C Page 11 of 15

SC_TR_180_C Page 12 of 15

10 Spurious Emissions

10.1 Dual channel

Measurement performed using RMS detector and sweep averaging method as for Transmit Power.

CW signal

SC_TR_180_C Page 13 of 15

10.2 Single channel

The level of Harmonic emissions from transmit frequencies at bottom, middle and top channels for each band were investigated.

The table accompanying each plot shows the level of worst case harmonic for each mode.

Measurement performed using RMS detector and sweep averaging method as for Transmit Power.

SC_TR_180_C Page 14 of 15

11 Test equipment

Description	Manufacturer	Model	Serial Number	Calibration
Signal Analyser	Rohde & Schwarz	FSV 7	Zinwave asset 000073	R&S 20-516458 Due 14 Nov 16
Signal Generator	Hewlett Packard	ESG-D3000A	US37231547	Cert: Testwall 73435 Due: 18 Sept 16
Cable	Utiflex	BUA01G	FA210A0009M30309	ABEX UK. Ref: green bua01g Due 08 Oct 17
Signal Generator	Rohde & Schwarz	SMJ100A	100156	
Signal Generator	Rohde & Schwarz	SM300	100320	
Attenuator	Mini-circuits	VAT 10	3 0433	
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120274	Varified as part
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120295	Verified as part of system test
2-way splitter (input)	Mini-circuits	ZN2PD2-63- S+	UU21401232	
Low pass filter DC-600 MHz	Mini-circuits	SLP-600+	R8636400710	
Low pass filter DC-1000 MHz	Mini-circuits	15542	UU14401231	

Table 6: Test Equipment

Measurement uncertainty for test equipment

Analyser ±0.5 dB

SC_TR_180_C Page 15 of 15