Started on	
	Tuesday, 18 March 2025, 11:25 AM
State	Finished
Completed on	Tuesday, 18 March 2025, 11:38 AM
Time taken	12 mins 54 secs
Marks	7.00/10.00
Grade	70.00 out of 100.00
Question 1	
Complete	
Mark 1.00 out of 1.00	
a. (2^h - 1) b. (h^2) c. (h log h)	
b. (h^2)c. (h log h)d. (2^{h+1} - 1)	
b. (h^2)c. (h log h)	
 b. (h^2) c. (h log h) d. (2^{h+1} - 1) Question 2	

Consider the following pseudo-code for a function `func(Node root)` applied to a binary tree. What does it compute? Function func(Node root): if root is NULL: return 0 return 1 + func(root.left) + func(root.right)

- a. Sum of all node values
- b. Number of nodes in the tree
- oc. Maximum depth of the tree
- d. Height of the tree

Question $\bf 3$

Complete

Mark 1.00 out of 1.00

Which of the following is always true for a full binary tree with `n` nodes?

- a. The tree is always balanced
- b. Every node has either 0 or 2 children
- \bigcirc c. Every level is completely filled
- Od. The height of the tree is always 'log n'

/18/25, 11:40	AM Quiz-DS: Attempt review
Question 4	
Complete	
Mark 1.00 ou	nt of 1.00
<i>C</i> : ,	
Given a l	BST, which of the following elements will always be found in the left subtree of a node with value `x`?
a.	Elements less than `x`
O b.	Elements equal to 'x'
O c.	All elements in the tree
O d.	Elements greater than `x`
Question 5	
Complete	
Mark 1.00 ou	rt of 1.00
Wark 1.00 Ou	
	the output of the following function when applied to a BST? Function findMin(Node root): if root is NULL: return NULL if root.left is
NULL: re	turn root.data return findMin(root.left)
a.	The minimum value in the BST
	The maximum value in the BST
	The sum of all nodes
	The height of the BST
Question 6	
Complete	
Mark 0.00 ou	r of 1.00
man old da	
What is t	the worst-case time complexity of deleting a node in an unbalanced BST with `n` nodes?
vviiatis	the worst case time complexity of deleting a flode in an unbalanced but with it flodes:
○ a.	O(log n)
O b.	O(n)
	O(n log n)
O d.	
Question 7	
Complete	
Mark 0.00 ou	rt of 1.00
VAZILA	
Which of	f the following statements is true for Dijkstra's Algorithm?
О а.	It works correctly with negative-weight cycles
O b.	It works only for graphs with non-negative weights
c.	It finds the shortest path between all pairs of nodes
O d.	It guarantees the shortest path in all cases

18/25, 11:40 AM	Quiz-DS: Attempt review		
Question 8			
Complete			
Mark 0.00 out of 1.00			
What is the time complexity of Depth-First Search (DFS) on a grap	h with 'V' vertices and 'E' edges using an adjacency matrix?		
○ a. O(V + E)			
○ b. O(V)			
\bigcirc d. $O(V^2)$			
Question 9			
Complete			
Mark 1.00 out of 1.00			
Which traversal method should be used to determine if a directed graph contains a cycle?			
a. Depth-First Search (DFS) with recursion stack			
b. Breadth-First Search (BFS)			
c. Dijkstra's Algorithm			
od. Kruskal's Algorithm			
Question 10			
Complete			
Mark 1.00 out of 1.00			

What is the output of the following function when applied to an undirected graph represented as an adjacency list? Function fun(Node start): Queue Q Add start to Q While Q is not empty: Node u = Q.dequeue() print u For each neighbor v of u: If v is not visited: Mark v as visited Add v to Q

- a. Depth-First Traversal
- b. Detection of cycles
- c. Breadth-First Traversal
- \bigcirc d. Finding the minimum spanning tree