

Programa del curso EE-6801

Sistemas de la aeronave

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica con énfasis en Aeronáutica

I parte: Aspectos relativos al plan de estudios

1. Datos generales

Nombre del curso: Sistemas de la aeronave

Código: EE-6801

Tipo de curso: Teórico

Obligatorio o electivo: Obligatorio

Nº de créditos: 3

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 5

Ubicación en el plan de estudios: Curso de 8^{vo} semestre en Ingeniería Electromecánica con énfasis

en Aeronáutica

Requisitos: Ninguno

Correquisitos: EE-0802 Máquinas eléctricas II

El curso es requisito de: Énfasis en Aeronáutica: EE-6901 Aviónica

Asistencia: Libre

Suficiencia: Sí

Posibilidad de reconocimiento: Sí

Aprobación y actualización del pro-

grama:

01/01/2026 en sesión de Consejo de Escuela 01-2026

2. Descripción general

El curso de *Sistemas de la aeronave* aporta en el desarrollo del siguiente rasgo del plan de estudios: gestionar el ciclo de vida de las aeronaves, optimizando su mantenimiento y eficiencia operativa.

Los aprendizajes que los estudiantes desarrollarán en el curso son: identificar los principales sistemas que integran una aeronave describiendo sus funciones dentro del conjunto del vehículo aéreo; analizar el principio de funcionamiento y los componentes fundamentales de los sistemas eléctricos, neumáticos e hidráulicos de una aeronave; evaluar el desempeño y operación de los sistemas de aire acondicionado, combustión y presurización en distintas fases de vuelo; y comprender los mecanismos de los sistemas de seguridad y protección de la aeronave, y su papel en la prevención de fallas y emergencias.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Elementos de máquinas, Sistemas térmicos, y Máquinas eléctricas I.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Aviónica, Gestión del ciclo de vida de la aeronave, e Infraestructura y servicios aeroportuarios.

3. Objetivos

Al final del curso la persona estudiante será capaz de:

Objetivo general

 Evaluar la estructura y funcionamiento de los sistemas que conforman una aeronave, mediante el estudio de sus componentes, principios de operación y su integración en el conjunto aeronáutico.

Objetivos específicos

- Identificar los principales sistemas que integran una aeronave describiendo sus funciones dentro del conjunto del vehículo aéreo.
- Analizar el principio de funcionamiento y los componentes fundamentales de los sistemas eléctricos, neumáticos e hidráulicos de una aeronave.
- Evaluar el desempeño y operación de los sistemas de aire acondicionado, combustión y presurización en distintas fases de vuelo.
- Comprender los mecanismos de los sistemas de seguridad y protección de la aeronave, y su papel en la prevención de fallas y emergencias.

4. Contenidos

En el curso se desarrollaran los siguientes temas:

- 1. Introducción a los sistemas de la aeronave
 - 1.1. Definición y clasificación de los sistemas aeronáuticos
 - 1.2. Principales sistemas a bordo
 - 1.3. Interdependencia entre sistemas
- 2. Sistemas eléctricos y electrónicos en aeronaves
 - 2.1. Componentes principales y funcionamiento

- 2.2. Fuentes de energía: generadores, baterías, alternadores
- 2.3. Distribución y protección eléctrica
- 2.4. Sistemas de control eléctrico
- 3. Sistemas neumáticos de la aeronave
 - 3.1. Principios del aire comprimido en aeronaves
 - 3.2. Componentes: compresores, válvulas, ductos
 - 3.3. Aplicaciones: frenos, instrumentos, sistemas de control
- 4. Sistema hidráulico de la aeronave
 - 4.1. Principios de hidráulica aplicados en la aeronave
 - 4.2. Bombas, actuadores, acumuladores
 - 4.3. Tipos de fluidos hidráulicos
 - 4.4. Aplicaciones: tren de aterrizaje, frenos, control de superficies
 - 4.5. Mantenimiento y detección de fallas
 - 4.6. Seguridad y redundancia
- 5. Sistema de combustión y combustible para aeronaves
 - 5.1. Tipos de combustible aeronáutico
 - 5.2. Sistema de almacenamiento y suministro de combustible
 - 5.3. Bombas, válvulas, sensores
 - 5.4. Combustión en motores de aviación
 - 5.5. Inyección, encendido, mezcla aire-combustible
 - 5.6. Control y monitoreo del sistema
- 6. Sistema de aire acondicionado y presurización para aeronaves
 - 6.1. Control ambiental en cabina
 - 6.2. Ciclo de aire acondicionado
 - 6.3. Intercambiadores de calor, ventiladores, compresores
 - 6.4. Sistema de presurización
 - 6.5. Control de temperatura y presión
 - 6.6. Riesgos por pérdida de presurización
- 7. Sistemas de protección y seguridad en aeronaves
 - 7.1. Alarmas, sistemas de detección de fuego y humo
 - 7.2. Extinción de incendios
 - 7.3. Detección de hielo y sistemas antihielo
 - 7.4. Evacuación y oxígeno de emergencia

- 7.5. Sistemas de monitoreo y control de fallas
- 7.6. Caja negra y registro de datos
- 8. Integración de sistemas en la aeronave
 - 8.1. Ejemplos de integración: fly-by-wire, buses de datos
 - 8.2. Consideraciones de diseño y mantenimiento integrado
 - 8.3. Diagnóstico de fallas multicomponente
 - 8.4. Casos reales de fallos en sistemas
 - 8.5. Análisis de causas raíz
 - 8.6. Evaluación de impacto operacional

Il parte: Aspectos operativos

5. Metodología

En este curso, se utilizará el enfoque sistémico-complejo para la ejecución de las sesiones magistrales y se integrará la investigación práctica aplicada para las asignaciones extraclase. Esta última se implementará mediante técnicas como el estudio de casos, el aprendizaje basado en proyectos, el modelado y la simulación.

Las personas estudiantes podrán desarrollar actividades en las que:

- Recibirán clases magistrales con material audiovisual y discusión en grupo sobre conceptos de sistemas de la aeronave.
- Analizarán los requisitos del sistema de una aeronave en función de su ciclo de vida.
- Evaluarán distintas configuraciones de sistemas para optimizar el rendimiento y seguridad.
- Aplicarán metodologías de gestión de mantenimiento para aeronaves.
- Desarrollarán estrategias para la optimización de costos operativos y mantenimiento.

Este enfoque metodológico permitirá a la persona estudiante evaluar la estructura y funcionamiento de los sistemas que conforman una aeronave, mediante el estudio de sus componentes, principios de operación y su integración en el conjunto aeronáutico

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Pruebas parciales: evaluaciones formales que miden el nivel de comprensión y aplicación de los conceptos clave del curso. Generalmente cubren una parte significativa del contenido visto hasta la fecha y pueden incluir problemas teóricos y prácticos.
- Pruebas cortas: evaluaciones breves y frecuentes que sirven para comprobar el dominio de temas específicos. Suelen ser de menor peso en la calificación final y permiten reforzar el aprendizaje continuo.
- Act. aprendizaje activo: actividad diseñada para que los estudiantes se involucren de manera directa y práctica en la construcción de su conocimiento, a través de la resolución de problemas, la discusión y la aplicación de conceptos teóricos en contextos reales o simulados.

Pruebas parciales (2)	60 %
Pruebas cortas (5)	25 %
Act. aprendizaje activo (4)	15 %
Total	100 %

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante tiene derecho a presentar un examen de reposición si su nota luego de redondeo es 60 o 65.

7. Bibliografía

- [1] I. Moir y A. Seabridge, Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration, 4th. Wiley, 2023.
- [2] M. Tooley y D. Wyatt, Aircraft Electrical and Electronic Systems, 2nd. Routledge, 2022.
- [3] S. Farokhi, Aircraft Propulsion, 3rd. Wiley, 2021.
- [4] R. Langton, C. Clark, M. Hewitt y L. Richards, Aircraft Hydraulic Systems. Wiley, 2020.
- [5] M. A. Davis y J. Scull, Aircraft Environmental Control Systems: Cabin Pressure and Temperature Control. SAE International, 2019.

8. Persona docente

8. Persona do- El curso será impartido por:

M.Sc. Víctor Julio Hernández

Máster en ciencias con especialización explotación técnica de aviones y motores. Instituto de Kiev de los Ingenieros de Aviación Civil. Ucrania.

Ingeniero aeronáutico. Instituto de Kiev de los Ingenieros de Aviación Civil. Ucrania.

Correo: vhernandezg@itcr.ac.cr Teléfono: 0

Oficina: 11 Escuela: Ingeniería Electromecánica Sede: Cartago

Mag. Oscar Monge Ruiz

LLENAR

Correo: omonge@itcr.ac.cr Teléfono: 0

Oficina: 0 Escuela: Ingeniería Electromecánica Sede: Cartago