A Robust and Efficient Ensemble of Diversified Evolutionary Computing Algorithms for Accurate Robot Calibration: Supplementary File

Tinghui Chen, Shuai Li, Senior Member, IEEE, Yan Qiao, Senior Member, IEEE, and Xin Luo, Senior Member, IEEE

This is the supplementary file for this paper. Additional tables and figures regarding the symbol appointment, model structure and experimental results are placed here.

I. ADDITIONAL TABLES

|--|

TABLE S.I. SYMBOL APPOINTMENT.						
Symbol	Explanation					
A	Transformation matrix.					
a, d, α, θ	Link length, link offset, link twist angle, joint angle.					
$c\theta_i, s\theta_i$	$\cos\theta$ and $\sin\theta$.					
$dA, \delta A$	Holomorphic differential matrix, error matrix.					
dx, dy, dz	Differential translations.					
δx , δy , δz	Differential rotations.					
ΔS	Position error vector of the end-effector.					
$\Delta \alpha, \Delta a, \Delta d, \Delta \theta$	Vector of the D-H parameter deviations					
$L, L\widetilde{Y}$						
N	Measured length of the cable, nominal length of the cable.					
N £	The total number of samples.					
$\int\limits_{S_{ heta_2}}\!$	Objective function.					
S ₀ , S	Fixed position of the cable encoder on the ground and nominal position.					
$egin{array}{c} f_c \ \hat{c} \end{array}$	Perceived magnitude.					
c	Sensory modality coefficient.					
â	Power exponent.					
t	Current iteration.					
n	Size of a population.					
\hat{d}	Dimension of the position vector.					
P_{Mk}^{t}	Population of the \bar{k} -th expert's output value at t -th iteration.					
k	Expert algorithm index.					
g^*	Best position vector.					
r, r_1, r_2	Random number.					
\tilde{p}	Switching probability.					
cumsum	Cumulative sum.					
Iter	Max round of iteration.					
\widetilde{r}	The number of 0 or 1.					
$l_{a,i}, l'_{b,i}, l'_{b}$	Lower limit of ALO.					
$u_{a,i}, u_{b,i}^{t}, u_{b}^{t}$	Upper limit of ALO.					
I	Unit vector.					
$\stackrel{\prime}{R_{ u}}$	Radius of random walks of ants.					
$A'_{d,i}$	Positions vector of the <i>j-th</i> antlion at the <i>t-th</i> iteration.					
	Random walks.					
$B_{I,i}^{t}, B_{2,i}^{t}, B_{3,i}^{t}, B_{4,i}^{t}, B_{5,i}^{t}, C_{j}, Z_{i}^{t} O_{i}^{t}$	Vectors of DA.					
$B_{1,i}, B_{2,i}, B_{3,i}, B_{4,i}, B_{5,i}, C_j, Z_i C_i$ b_1, b_2, b_3, b_4, b_5	Weights of separation, alignment, cohesion, food, natural enemy and inertia for the dragonfly algorithm.					
Lévy(·)	Lévy flight.					
Levy()	Inertia.					
$ ilde{lpha}, ilde{oldsymbol{eta}}, ilde{\eta}$	Leader wolves.					
	An individual in the rest wolves.					
E D Ñ Ñ	Euclidean distance.					
$D, \dot{D}, \dot{D}_{best}$	Absolute value of a number					
-						
γ , μ	Coefficient vectors.					
e^t	Convergence factor at <i>t-th</i> iteration.					
R_i^t	Radius.					
$\ \cdot\ _2$	L_2 norm of a vector.					
<u>, </u>	Neighbors of $P'_{M4,i-DLH}$					
Й, c'	Constant.					
κ	A parameter of the I-WOA.					
w, w_1, w_2	Nonlinear variable, maximum of w, minimum of w. Distance between the right and left antennas.					
$\underline{\underline{m}}$	Distance between the right and left antennas.					
\overline{d}	Random unit vector.					
$\operatorname{sign}(\cdot)$	Sign function.					
χ_t	Exploration step.					
υ	Constant.					
$Sort\{\cdot\}$	Self-defined function of the non-inferior sort rule.					
U_{Mk}^{ϵ}	The set is based on the result of the $Sort\{\cdot\}$ function.					
$Intercept\{\cdot\}$	Self-defined function for intercepting the selected agents.					
$G_{\min}\{\cdot\}$ $\Gamma^{ t}_{\mathrm{Mk}}$ P^0	Self-defined function to select the best agent.					
$\Gamma_{ m Mk}^{ m t}$	Contribution factor.					
P^0	Initial D-H parameters.					
q_i	Rotation angle.					
ω	Dimension of q_i					
K	Total number of expert algorithms.					

 $TABLE\ XI\ S.II.\ CALIBRATION\ ACCURACY\ OF\ THE\ HOEs-TEST-BASED\ MODELS\ AND\ THEIR\ INVOLVED\ EXPERT\ ALGORITHMS\ (M1-8\ AND\ M'1-7)\ ON\ D1-3.$

Algorithm -	D1			D2			D3		
Aigorium	RMSE/mm	Mean/mm	Max/mm	RMSE/mm	Mean/mm	Max/mm	RMSE/mm	Mean/mm	Max/mm
M1	$0.791_{\pm 2.1E-2}$	$0.692_{\pm 1.8E-2}$	1.496 _{±4.7E-2}	0.689 _{±3.1E-2}	$0.579_{\pm 2.6E-2}$	1.681 _{±4.1E-2}	$0.642_{\pm 3.1E-2}$	$0.553_{\pm 3.7E-2}$	$1.421_{\pm 5.1E-2}$
M2	$0.767_{\pm 1.1E-2}$	$0.679_{\pm 9.5E-3}$	$1.375_{\pm 3.0E-2}$	$0.632_{\pm 4.6E-2}$	$0.533_{\pm 3.1E-2}$	$1.403_{\pm 5.1E-2}$	$0.553_{\pm 5.1E-2}$	$0.536_{\pm 4.0E-2}$	$1.337_{\pm 6.6E-2}$
M3	$1.060_{\pm 7.4E-2}$	$0.930_{\pm 7.4 E-2}$	$1.740_{\pm 5.1E-2}$	$0.661_{\pm 8.3E-2}$	$0.560_{\pm 7.1E-2}$	$1.537_{\pm 8.6E-2}$	$0.675_{\pm 7.3E-2}$	$0.576_{\pm 6.1E-2}$	$1.526_{\pm 8.2E-2}$
M4	0.673+3 3F=2	$0.583_{\pm 4.6E-2}$	$1.100_{\pm 8.7E-2}$	$0.525_{\pm 2.1E-2}$	$0.422_{\pm 8.6E-3}$	$1.196_{\pm 1.8E-2}$	$0.525_{\pm 5.5E-2}$	$0.482_{\pm 3.2E-2}$	$0.826_{\pm 65E-2}$
M5	$0.652_{\pm 3.5E-2}$	$0.560_{\pm 6.5E-2}$	$1.031_{\pm 9.5E-3}$	$0.461_{\pm 3.3E-2}$	$0.372_{\pm 2.7E-2}$	$1.143_{\pm 6.1E-2}$	$0.505_{\pm 3.7 \text{E-}2}$	$0.472_{\pm 2.9E-2}$	$0.791_{\pm 7.3E-2}$
M6	$0.905_{\pm 6.7E-3}$	$0.803_{\pm 6.0E-3}$	$1.629_{\pm 1.8E-2}$	$0.702_{\pm 6.1E-2}$	$0.565_{\pm 5.5E-2}$	$1.752_{\pm 2.2E-2}$	$0.635_{\pm 1.1E-2}$	$0.566_{\pm 8.5E-3}$	$1.481_{\pm 1.2E-2}$
M7	$1.012_{\pm 6.0E-2}$	$0.896_{\pm 2.2E-2}$	$1.844_{\pm 4.9E-2}$	$0.591_{\pm 7.3E-2}$	$0.492_{\pm 3.1E-2}$	$1.283_{\pm 5.1E-2}$	$0.993_{\pm 5.3E-2}$	$0.961_{\pm 2.5E-2}$	$1.373_{\pm 7.3E-2}$
M8	$0.867_{\pm 2.6F_{-2}}$	0.768 _{+1.6F-2}	$1.543_{\pm 3.10E-2}$	$0.633_{\pm 5.1E-2}$	$0.533_{\pm 2.1E-2}$	1.425 _{+6 1F-2}	$0.622_{\pm 6.1E-2}$	$0.556_{\pm 3.1E-2}$	$1.283_{\pm 6.1E-2}$
M'1	$0.722_{+5.6F-2}$	$0.621_{+3.2F-2}$	$1.221_{\pm 1.7F_{-2}}$	$0.615_{\pm 3.1E-2}$	$0.523_{\pm 5.1F-2}$	$1.303_{+3.7F-2}$	$0.613_{\pm 3.0E-2}$	$0.546_{+5.3E-2}$	$1.229_{\pm 6.1E-2}$
M'2	0.681_{+2} RF ₋₂	$0.583_{\pm 1.6E-2}$	1.166 _{+2 8F-2}	$0.565_{+4.6F-2}$	$0.460_{+2.2F-2}$	$1.261_{\pm 1.1E-2}$	$0.591_{\pm 2.1E-2}$	$0.522_{+3.3E-2}$	$1.052_{\pm 3.6E-2}$
M'3	$0.632_{+3.7F_{-2}}$	$0.536_{+5.1F_{-2}}$	$0.965_{+6.2F-2}$	$0.512_{+3.2F-2}$	$0.412_{+3.9F-2}$	$1.186_{+4.0F-2}$	$0.521_{+5.3F_{-2}}$	$0.453_{+4.0E-2}$	$0.761_{\pm 5.3E-2}$
M'4	$0.579_{\pm 2.6E-2}$	$0.486_{\pm 2.6E-2}$	$0.896_{\pm 3.9E-2}$	$0.479_{\pm 2.3E-2}$	$0.383_{\pm 3.2E-2}$	$1.101_{\pm 5.5E-2}$	$0.502_{\pm 3.5E-2}$	$0.430_{\pm 3.6E-2}$	$0.736_{\pm 4.0E-2}$
M'5	$0.520_{\pm 9.7E-3}$	$0.431_{\pm 1.9E-2}$	$0.855_{\pm 2.0E-2}$	$0.412_{\pm 3.6 E-2}$	$0.331_{\pm 3.7E-2}$	$0.983_{\pm 3.5E-2}$	$0.472_{\pm 8.2E-3}$	$0.433_{\pm 7.5 E-3}$	$0.700_{\pm 1.1E-2}$
M'6	$0.520_{\pm 1.6E-2}$	$0.430_{\pm 1.9E-2}$	$0.851_{\pm 2.5E-2}$	$0.411_{\pm 3.0E-2}$	$0.330_{\pm 1.9E-2}$	$0.980_{\pm 3.2E-2}$	$0.472_{\pm 2.8E-2}$	$0.432_{\pm 2.5E-2}$	$0.696_{\pm 3.7E-2}$
M'7	$0.520_{\pm 1.3E-2}$	$0.432_{\pm 1.9E-2}$	$0.857_{\pm 1.9E-2}$	$0.411_{\pm 4.1E-2}$	$0.330_{\pm 3.1E-2}$	$0.982_{\pm 4.6E-2}$	$0.472_{\pm 5.8E-2}$	$0.433_{\pm 6.5 \text{E-}2}$	$0.701_{\pm 6.0E-2}$
M'7'	0.520 _{±1,3E-2}	$0.432_{\pm 2.0E-2}$	$0.857_{\pm 2.0 \text{E-}2}$	0.411 _{±4.2E-2}	$0.330_{\pm 3.2 \text{E-}2}$	$0.982_{\pm 4.8E-2}$	$0.472_{\pm 5.9E-2}$	$0.433_{\pm 6.5 \text{E-}2}$	$0.701_{\pm 6.1E-2}$

TABLE S.III. TOTAL TIME COSTS OF THE HOES-TEST-BASED MODELS AND THEIR INVOLVED EXPERT ALGORITHMS (M1-8 AND M'1-7) ON D1-3.

Algorithm —	D1		I)2		D3
Algorithm —	Iteration	Time/s	Iteration	Time/s	Iteration	Time/s
M1	$57.0_{\pm 1.0}$	$63.9_{\pm 1.16}$	$45.3_{\pm 1.6}$	$50.39_{\pm 1.95}$	40.7 _{±2.5}	58.3 _{±2.83}
M2	$28.6_{\pm 1.5}$	$33.9_{\pm 1.66}$	$31.7_{\pm 1.5}$	$37.25_{\pm 0.97}$	$25.6_{\pm 1.2}$	$30.4_{\pm 0.83}$
M3	$16.3_{\pm 1.5}$	$14.5_{\pm 1.08}$	$20.6_{\pm 2.5}$	$18.79_{\pm 1.35}$	$15.3_{\pm 2.8}$	$13.5_{\pm 1.58}$
M4	$44.6_{\pm 4.1}$	$53.3_{\pm 3.99}$	$50.9_{\pm 3.6}$	$60.76_{\pm 3.21}$	$50.5_{\pm 4.6}$	$58.6_{\pm 3.97}$
M5	$73.3_{\pm 6.7}$	$43.0_{\pm 4.13}$	$68.3_{\pm 6.7}$	$40.67_{\pm 4.07}$	$68.9_{\pm 5.3}$	$45.67_{\pm 4.62}$
M6	$35.0_{\pm 4.6}$	$10.3_{\pm 0.50}$	$36.7_{\pm 5.3}$	$12.36_{\pm 0.67}$	$39.4_{\pm 5.4}$	$9.62_{\pm 0.68}$
M7	$30.3_{\pm 1.5}$	$23.6_{\pm 0.72}$	$45.6_{\pm 1.9}$	$25.05_{\pm 0.98}$	$52.5_{\pm 1.8}$	$26.9_{\pm 0.76}$
M8	$90.7_{\pm 3.1}$	$55.9_{\pm 1.61}$	$86.9_{\pm 2.9}$	$53.65_{\pm 0.93}$	$70.7_{\pm 2.6}$	$50.5_{\pm 2.69}$
M'1	$24.3_{\pm 5.1}$	$60.2_{\pm 0.96}$	$24.4_{\pm 1.4}$	$50.8_{\pm 2.62}$	$20.5_{\pm 1.3}$	$49.33_{\pm 1.49}$
M'2	$18.6_{\pm 4.2}$	42.3 _{±0.96}	$16.3_{\pm 3.2}$	$46.3_{\pm 3.21}$	$17.3_{\pm 2.7}$	$53.27_{\pm 2.29}$
M'3	$12.2_{\pm 3.5}$	$50.1_{\pm 0.96}$	$13.2_{\pm 2.0}$	$52.3_{\pm 2.52}$	$15.2_{\pm 2.3}$	$58.23_{\pm 1.23}$
M'4	$9.3_{\pm 2.1}$	$40.6_{\pm 0.96}$	$8.5_{\pm 1.3}$	$36.2_{\pm 3.22}$	$12.8_{\pm 1.2}$	$52.91_{\pm 1.22}$
M'5	$5.1_{\pm 0.2}$	$22.3_{\pm 0.96}$	$5.1_{\pm 2.2}$	$22.7_{\pm 4.42}$	$7.5_{\pm 1.3}$	$37.65_{\pm 1.22}$
M'6	$5.3_{\pm 1.2}$	$30.1_{\pm 0.96}$	$5.2_{\pm 1.0}$	$27.9_{\pm 1.12}$	$7.2_{\pm 3.6}$	$43.25_{\pm 1.35}$
M'7	$5.2_{\pm 1.8}$	$36.3_{\pm 0.96}$	$5.6_{\pm 1.5}$	$33.1_{\pm 1.80}$	$7.3_{\pm 0.6}$	$46.31_{\pm 1.32}$
M'7'	5.2 _{±1.7}	36.3 _{±0.93}	$5.6_{\pm 1.5}$	$33.1_{\pm 1.86}$	$7.3_{\pm 0.6}$	$46.31_{\pm 1.40}$

TABLE S.IV. CALIBRATION ACCURACY OF M9-17 ON D1-3.

Algorithm	D1			D2			D3		
Aigorium	RMSE/mm	Mean/mm	Max/mm	RMSE/mm	Mean/mm	Max/mm	RMSE/mm	Mean/mm	Max/mm
Before	2.56	2.45	4.51	2.09	2.0	3.36	2.73	2.72	3.09
M9	$0.675_{\pm 0.0E-0}$	$0.589_{\pm 0.0E-0}$	$1.162_{\pm 0.0E-0}$	$0.503_{\pm 0.0 E-0}$	$0.416_{\pm 0.0E-0}$	$1.167_{\pm 0.0E-0}$	$0.523_{\pm 0.0E-0}$	$0.504_{\pm 0.0E-0}$	$0.796_{\pm 0.0E-0}$
M10	$1.213_{\pm 6.5E-2}$	$1.110_{\pm 5.6E-2}$	$2.232_{\pm 7.6E-2}$	$0.822_{\pm 5.1E-2}$	$0.728_{\pm 3.1E-2}$	$1.933_{\pm 7.1E-2}$	$1.375_{\pm 4.6E-2}$	$1.347_{\pm 3.5E-2}$	$2.461_{\pm 5.7E-2}$
M11	$1.383_{\pm 3.3E-2}$	$1.285_{\pm 3.8E-2}$	$2.621_{\pm 6.5E-2}$	$0.723_{\pm 5.1E-2}$	$0.635_{\pm 2.1E-2}$	$1.838_{\pm 6.8E-2}$	$1.302_{\pm 8.1E-2}$	$1.273_{\pm 6.1E-2}$	$2.235_{\pm 8.6E-2}$
M12	$0.981_{\pm 5.6E-2}$	$0.886_{\pm 5.0E-2}$	$1.820_{\pm 5.3E-2}$	$0.711_{\pm 3.3E-2}$	$0.578_{\pm 5.1E-2}$	$1.783_{\pm 3.9E-2}$	$1.648_{\pm 7.3E-2}$	$1.438_{\pm 8.3E-2}$	$1.887_{\pm 6.3E-2}$
M13	$0.836_{\pm 5.3E-2}$	$0.738_{\pm 3.8E-2}$	$1.632_{\pm 6.4E-2}$	$0.653_{\pm 3.9E-2}$	$0.552_{\pm 5.1E-2}$	$1.605_{\pm 6.1E-2}$	$0.972_{\pm 5.2E-2}$	$0.936_{\pm 4.0E-2}$	$1.502_{\pm 3.7E-2}$
M14	$0.557_{\pm 2.3E-2}$	$0.462_{\pm 2.1E-2}$	$0.897_{\pm 2.6E-2}$	$0.423_{\pm 5.2E-2}$	$0.348_{\pm 3.7E-2}$	$1.046_{\pm 5.0E-2}$	$0.506_{\pm 2.7E-2}$	$0.465_{\pm 2.1E-2}$	$0.757_{\pm 3.6E-2}$
M15	$0.526_{\pm 1.8E-2}$	$0.435_{\pm 9.2E-3}$	$0.858_{\pm 1.3E-2}$	$0.412_{\pm 5.7E-2}$	$0.325_{\pm 2.1E-2}$	$0.983_{\pm 1.1E-2}$	$0.473_{\pm 3.1E-2}$	$0.431_{\pm 2.6E-2}$	$0.713_{\pm 1.2E-2}$
M16	$0.563_{\pm 2.6E-2}$	$0.462_{\pm 1.5E-2}$	$0.891_{\pm 2.8E-2}$	$0.433_{\pm 3.1E-2}$	$0.353_{\pm 1.6E-2}$	$1.051_{\pm 2.2E-2}$	$0.512_{\pm 3.1E-2}$	$0.465_{\pm 1.1E-2}$	$0.751_{\pm 1.9E-2}$
M17	$0.520_{\pm 9.7E-3}$	$0.431_{\pm 1.9E-2}$	$0.855_{\pm 2.0E-2}$	$0.412_{\pm 3.6E-2}$	$0.331_{\pm 3.1E-2}$	$0.983_{\pm 3.5 \text{E-}2}$	$0.472_{\pm 8.2E-3}$	$0.433_{\pm 7.5E-3}$	$0.700_{\pm 1.1E-2}$

TABLE S.V. TOTAL TIME COSTS OF M9-17 ON D1-3.

		1110000	TOTAL TIME COSTS	71 1(1) 1 (O.) B1 D1		
Algorithm —	Ε	D1		02	D	3
	Iteration	Time/s	Iteration	Time/s	Iteration	Time/s
M9	$58.0_{\pm 0.00}$	$36.5_{\pm 0.28}$	$53.0_{\pm 0.00}$	$34.69_{\pm0.15}$	$50.3_{\pm 0.00}$	$30.9_{\pm 0.12}$
M10	$13.0_{\pm 0.00}$	$13.6_{\pm 0.03}$	$10.0_{\pm 0.00}$	$10.67_{\pm 0.06}$	$12.7_{\pm 0.00}$	$13.5_{\pm 0.16}$
M11	$15.2_{\pm 1.23}$	$15.5_{\pm 1.86}$	$12.6_{\pm 1.50}$	$13.96_{\pm 1.90}$	$14.1_{\pm 1.63}$	$15.5_{\pm 1.57}$
M12	$11.7_{\pm 1.10}$	$29.2_{\pm 2.35}$	$9.5_{\pm 1.60}$	$19.98_{\pm 3.20}$	$10.2_{\pm 1.72}$	$22.3_{\pm 3.56}$
M13	$62.6_{\pm 3.05}$	$46.5_{\pm 1.61}$	$64.2_{\pm 2.95}$	$49.65_{\pm 0.93}$	$67.3_{\pm 3.67}$	$46.5_{\pm 2.69}$
M14	$5.3_{\pm 0.67}$	$35.1_{\pm 1.81}$	$5.5_{\pm 0.97}$	$40.92_{\pm 3.28}$	$7.9_{\pm 0.62}$	$50.2_{\pm 3.67}$
M15	$5.6_{\pm 0.30}$	$35.0_{\pm 2.07}$	$5.3_{\pm 0.46}$	$39.75_{\pm 2.50}$	$7.6_{\pm 0.75}$	$49.6_{\pm 4.60}$
M16	$5.1_{\pm 0.17}$	$26.2_{\pm 0.86}$	$5.2_{\pm 0.22}$	$30.86_{\pm 1.30}$	$8.2_{\pm 0.37}$	$38.7_{\pm 2.53}$
M17	5.1 _{±0.23}	$22.3_{\pm 0.96}$	5.1 _{±0.33}	$22.7_{\pm 1.60}$	$7.5_{\pm 0.31}$	$37.65_{\pm 2.20}$

 $TABLE\ S.VI.\ \underline{\underline{THE\ RESULTS\ of\ THE\ WILCOXON\ SIGNED-RANKS\ TEST\ on\ RMSE/Mean/Max\ of\ Table\ XIII.}$

Comparison	R+	R-	p-value
M17 vs. M9	45	0	0.002
M17 vs. M10	45	0	0.002
M17 vs. M11	45	0	0.002
M17 vs. M12	45	0	0.002
M17vs. M13	45	0	0.002
M17 vs. M14	45	0	0.002
M17 vs. M15	45	0	0.002
M17 vs. M16	45	0	0.002

^{*}The highlighted significance level of acceptance is 0.05.

 $TABL\underline{E\ S.VII.\ The\ calibration\ results\ of\ the\ D-H\ parameters\ deviations\ on\ D1-3.}$

Dataset	Joint i	$\Delta \alpha_i / \circ$	$\Delta a_i/mm$	$\Delta d_i/mm$	$\Delta heta_i / \!\!\! \circ$
	1	-0.1960	-0.3615	0.6391	0.1698
	2	-0.5361	-2.3644	-0.5903	-0.5987
D1	3	0.6073	3.7962	-0.1826	0.3161
DI	4 5	-0.0618	0.6569	3.8435	0.3668
	5	0.1094	-0.5389	0.1258	0.0396
	6	0.1205	-0.1536	-0.7375	0.9631
	1	0.2364	-5.3984	4.3259	-0.2366
	2	0.0035	-3.2165	-2.7589	-0.2698
D2	3	-0.7653	-0.3962	4.8632	-0.0659
DZ	4	-0.8320	-0.2326	2.3654	-0.0836
	5	-0.0165	-4.2658	1.2369	-0.1265
	6	-0.3658	-0.2354	2.3698	-0.3659
	1	0.0562	-1.9678	2.3698	-0.0863
	2	0.0369	-0.0697	-1.5066	0.0532
D3	3	-0.1698	-2.9634	-0.5436	-0.0221
	4	0.0756	-1.2691	0.5396	0.5132
	5	-0.2689	1.7369	-0.1963	-0.1256
	6	-0.0235	-3.2692	0.2365	-0.3658

II. ADDITIONAL FIGURES START /* Memory system*/ **Input:** Initial D-H parameter vector P^0 , population number n, cable measured length L, fixed position of the cable encoder on the ground S_0 , rotation angle q_i , and the max round of iteration *Iter*. Store the initialized population in the memory system as the first generation memory population, $Y^0 = (y^0_{M0,1}, y^0_{M0,2}, ..., y^0_{M0,n}) = P^0_{M0}$ /* Initialization */ P^0_{M0} Initialize the population $P^0_{M0}=(P^0_{M0,1},$ Merge P_{Mk}^{t} and Y^{t} with (43), $P^{0}_{M0,2}, ..., P^{0}_{M0,n}$) based on $P^{0}, \Gamma^{t}_{M0}=0$. $U_{Mk}^{t} = \{P_{Mk}^{t} Y^{t}\} = \{U_{Mk,1}^{t}, U_{Mk,2}^{t}, ..., U_{Mk,2n}^{t}\}.$ /* Transmission System */ Calculate the fitness of U_{Mk}^{t} , and sort it with (44), Update the population by the following Experts at t-th iteration. $\tilde{U}_{Mk}^{t} = Sort\{f(U_{Mk,1}^{t}), f(U_{Mk,2}^{t}), ..., f(U_{Mk,2n}^{t})\},\$ **BOA** Expert: Update P'_{M1} ALO Expert: Update P_{M2}^{t} **DA** Expert: Updating P'_{M3} ={ $f(\tilde{U}^t_{Mk,1}), f(\tilde{U}^t_{Mk,2}), ..., f(\tilde{U}^t_{Mk,2n})$ }. with (12) and (13). with (19). based on (22) and (23). ${P^t}_{M1} \!\!=\!\! {P^t}_{Input|M2}$ **Intercept** the first *n* agents to update the external population Y'_{Mk} with (45), /* Punishment System */ Y'=Intercept{ $\tilde{U}^t_{Mk,1}$, $\tilde{U}^t_{Mk,2}$, ..., $\tilde{U}^t_{Mk,2n}|_{1\sim n}$ }, Dismiss the experts who have no contribution for five contribution iterations. $=\{y_1^t, y_2^t, ..., y_n^t\}$ Output P^t_{Mk} Compute the minimum Input **P'**_{Mk} individual's fitness of P'_{Mk} with (43) to obtain $G_{min}(\mathbf{P}^{t}_{Mk}).$ The result converges This expert is

 $P^{t}_{M5,i}=P^{t}_{Input|M6}$

BAS Expert: Updating P_{M6}^{t}

based on (39).

Output the calibrated

parameters $(P_{best} = y_1^t)$

END

Fig. S.1. The flowchart of the HOEs model.

 $P^t_{M3} = P^t_{Input|M4}$

I-GWO Expert: Update P'_M4

with (32).

 $P^t_{M4} = P^t_{Input|M5}$

I-WOA Expert: Update P'_{M5}

with (24), (33), (35) and (36).

Fig. S.2. Proof sketch of HOEs model's convergence.

Fig. S.3. The industrial robot calibration process.

Fig. S.4. Calibration accuracy and total time cost of the HOEs-test-based models and its involved expert algorithms on D1.

Fig. S.5. Training curves of the HOEs-test-based models and its involved expert algorithms (M1-8, M'1-7) on D1.

Fig. S.6. Calibration accuracy of several state-of-the-art algorithms (M9-13) and the proposed HOEs model and its variant models (M14-17) on D1.

Fig. S.7. Training curves and total time costs of several state-of-the-art algorithms (M9-13) and the proposed HOEs model and its variant models (M14-17) on D1.

Fig. S.8. The robot positioning errors after calibration through several state-of-the-art algorithms (M9-13) and the proposed HOEs model and its variant models (M14-17) on D1. It shows that the proposed model achieves the lowest calibration error.