

In the name of Allah, the Most Merciful, the Most Kind

Date: 10-11-2021

BCS 103 Digital Logic & Computer Architecture

Lecture 29 and 30

IN THE LAST LECTURE

We have discussed

Subtractor

- Half Subtractor
- Full Subtractor

Parallel Binary Subtractor

TODAY'S LECTURE

Today we will discuss about:

- **Decoder** (2x4)
- Decoder (3x8)
- Encoder (4x2)
- Decimal to BCD Encoder

2 to 4 line Decoder

Decoder

- A decoder is a combinational circuit.
- A decoder accepts a set of inputs that represents a binary number and activates only that output corresponding to the input number. All other outputs remain inactive.
- Fig. 1 shows the block diagram of decoder with 'N' inputs and 'M' outputs.
- There are 2^N possible input combinations, for each of these input combination only one output will be HIGH (active) all other outputs are LOW
- Some decoder have one or more ENABLE (E) inputs that are used to control the operation of decoder.

BLOCK DIAGRAM OF DECODER

Only one output is High for each input

2 to 4 Line Decoder:

- Block diagram of 2 to 4 decoder is shown in fig. 2
- \triangleright A and B are the inputs. (No. of inputs =2)
- \triangleright No. of possible input combinations: $2^2=4$
- No. of Outputs : $2^2=4$, they are indicated by D_0 , D_1 , D_2 and D_3
- ➤ From the Truth Table it is clear that each output is "1" for only specific combination of inputs.

TRUTH TABLE

INP	UTS	OUTPUTS						
A	В	D_0	D_1	D_2	D_3			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

BOOLEAN EXPRESSION:

From Truth Table

$$D_0 = \overline{A} \, \overline{B} \qquad \qquad D_1 = \overline{A} \, B$$

$$D_2 = A \overline{B}$$
 $D_3 = AB$

LOGIC DIAGRAM:

3 to 8 line Decoder

3 to 8 Line Decoder:

- ➤ Block diagram of 3 to 8 decoder is shown in fig. 4
- \triangleright A, B and C are the inputs. (No. of inputs =3)
- \triangleright No. of possible input combinations: $2^3=8$
- No. of Outputs: $2^3=8$, they are indicated by D_0 to D_7
- ➤ From the Truth Table it is clear that each output is "1" for only specific combination of inputs.

TRUTH TABLE FOR 3 X 8 DECODER:

IN	IPU7	ΓS	OUTPUTS								
A	В	С	D0	D1	D2	D3	D4	D5	D6	D7	
0	0	0	1	0	0	0	0	0	0	0	$D_0 = \overline{A} \overline{B} \overline{C}$
0	0	1	0	1	0	0	0	0	0	0	$D_1 = \overline{A} \overline{B} C$
0	1	0	0	0	1	0	0	0	0	0	$D_2 = \overline{A} B \overline{C}$
0	1	1	0	0	0	1	0	0	0	0	$D_3 = \overline{A} B C$
1	0	0	0	0	0	0	1	0	0	0	$D_4 = A \overline{B} \overline{C}$
1	0	1	0	0	0	0	0	1	0	0	$D_5 = A \overline{B} C$
1	1	0	0	0	0	0	0	0	1	0	$D_6 = A B \overline{C}$
1	1	1	0	0	0	0	0	0	0	1	$D_7 = ABC$

LOGIC DIAGRAM OF 3 X 8 DECODER:

- An Encoder is a combinational logic circuit.
- It performs the inverse operation of Decoder.
- The opposite process of decoding is known as Encoding.
- An Encoder converts an active input signal into a coded output signal.
- Block diagram of Encoder is shown in Fig. 10. It has 'M' inputs and 'N' outputs.
- An Encoder has 'M' input lines, only one of which is activated at a given time, and produces an N-bit output code, depending on which input is activated.

- Encoders are used to translate the rotary or linear motion into a digital signal.
- The difference between Decoder and Encoder is that Decoder has Binary Code as an input while Encoder has Binary Code as an output.
- Encoder is an Electronics device that converts the analog signal to digital signal such as BCD Code.
- Types of Encoders
- Priority Encoder
- Decimal to BCD Encoder
- iii. Octal to Binary Encoder
- iv. Hexadecimal to Binary Encoder

M=4

 $M=2^{2}$

 $M=2^N$

'M' is the input and

Decimal to BCD Encoder

DECIMAL TO BCD ENCODER:

- It has ten inputs corresponding to ten decimal digits (from 0 to 9) and four outputs (A,B,C,D) representing the BCD.
- The block diagram is shown in fig.18 and Truth table in fig.19

Fig. 18

Truth Table

INPUTS									BCD OUTPUTS				
0	1	2	3	4	5	6	7	8	9	A	В	С	D
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

DECIMAL TO BCD ENCODER

- From Truth Table it is clear that the output A is HIGH when input is 8 OR 9 is HIGH
 - Therefore A=8+9
- The output B is HIGH when 4 OR 5 OR 6 OR 7 is HIGH Therefore B=4+5+6+7
- The output C is HIGH when 2 OR 3 OR 6 OR 7 is HIGH Therefore C=2+3+6+7
- Similarly D=1+3+5+7+9
 Logic Diagram is shown in fig.20

DECIMAL TO BCD ENCODER

Thanks