# Parsing

# Compiler



# Lexical analyzer:

 Recognizes the lexemes of the input program file:

```
Keywords (if, then, else, while,...),
Integers,
Identifiers (variables), etc
```

•It is built with DFAs (based on the theory of regular languages)

#### Parser:

 Knows the grammar of the programming language to be compiled

•Constructs derivation (and derivation tree) for input program file (input string)

# Example Parser

```
PROGRAM → STMT_LIST
STMT_LIST -> STMT; STMT_LIST | STMT;
STMT→ EXPR | IF_STMT | WHILE_STMT
              { STMT LIST }
EXPR → EXPR + EXPR | EXPR - EXPR | ID
IF_STMT→ if (EXPR) then STMT
         if (EXPR) then STMT else STMT
WHILE_STMT -> while (EXPR) do STMT
```

# The parser finds the derivation of a particular input file



#### derivation

#### derivation tree





Derivation trees are used to build Intermediate code

# A simple (exhaustive) parser

# We will build an exhaustive search parser that examines all possible derivations



# Example: Find derivation of string aabb



#### Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

Phase 1:

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow \lambda$$

Find derivation of aabb

All possible derivations of length 1

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

#### Phase 1:

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow \lambda$$

Find derivation of aabb

Cannot possibly produce aabb

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

In Phase 2, explore the next step of each derivation from Phase 1

 $S \rightarrow SS \mid aSb \mid bSa \mid \lambda$ 

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

#### Phase 1

 $S \Rightarrow SS \Rightarrow bSaS$ 

$$S \Rightarrow SS$$
  $S \Rightarrow SS \Rightarrow S$ 

Find derivation of aabb

$$S \Rightarrow aSb$$

 $S \Rightarrow aSb \Rightarrow aSSb$ 

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

Find derivation of aabb

In Phase 3 explore all possible derivations

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow S$$

Find derivation of 
$$aabb$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

A possible derivation of Phase 3

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

#### Final result of exhaustive search



# Time Complexity

Suppose that the grammar does not have productions of the form

$$A \rightarrow \lambda$$
 ( $\lambda$ -productions)

$$A \rightarrow B$$
 (unit productions)

## Since there are no $\lambda$ -productions



For any derivation of a string of terminals  $w \in L(G)$ 

$$S \Rightarrow X_1 \Rightarrow X_2 \Rightarrow \cdots \Rightarrow X_k \Rightarrow W$$

it holds that  $|X_i| \leq |W|$  for all i

### Since there are no unit productions



1. At most |w| derivation steps are needed to produce a string  $x_j$  with at most |w| variables

2. At most |w| derivation steps are needed to convert the variables of  $x_j$  to the string of terminals W

Therefore, at most 2 | w | derivation steps are required to produce W



The exhaustive search requires at most 2 | w | phases

# Suppose the grammar has k productions

Possible derivation choices to be examined in phase 1: at most k

Choices for phase 2: at most 
$$k \times k = k^2$$

Choices of Number of phase 1 Productions

#### In General



## Total exploration choices for string w:



Exponential to the string length Extremely bad!!!

# Faster Parsers

# There exist faster parsing algorithms for specialized grammars



Each pair of variable, terminal  $(X,\sigma)$  appears once in a production  $X \to \sigma w$ 

(a restricted version of Greinbach Normal form)

$$S \rightarrow aS$$

$$S \rightarrow bSS$$

$$S \rightarrow c$$

## Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

### For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Steps for a phase: 1

Total steps for parsing string w : |w|

## For general context-free grammars:

Next, we give a parsing algorithm that parses a string w in time  $O(|w|^3)$ 

(this time is very close to the worst case optimal since parsing can be used to solve the matrix multiplication problem)

# The CYK Parsing Algorithm

- Input:
- Arbitrary Grammar G in Chomsky Normal Form
- String w

Output: Determine if  $w \in L(G)$ 

Number of Steps:  $O(|w|^3)$ 

Can be easily converted to a Parser

#### Basic Idea

Consider a grammar G In Chomsky Normal Form

Denote by F(w) the set of variables that generate a string  ${\it W}$ 

$$X \in F(w)$$
 if  $X \Longrightarrow w$ 

# Suppose that we have computed F(w)

Check if 
$$S \in F(w)$$
:

YES  $\longrightarrow w \in L(G)$   $(S \Rightarrow w)$ 

NO  $\longrightarrow w \notin L(G)$ 

### F(w) can be computed recursively:

$$\begin{array}{ccc} & & & & \\ & & & \\ \text{Write} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

If 
$$X \in F(u)$$
 and  $Y \in F(v)$ 

$$* (X \Rightarrow u)$$

$$(Y \Rightarrow v)$$

and there is production  $H \rightarrow XY$ 

Then 
$$H \in F(w)$$

$$(H \Rightarrow XY \Rightarrow uY \Rightarrow uV = w)$$

# Examine all prefix-suffix decompositions of w

Length Set of Variables that generate 
$$w$$

$$w = u_1 v_{|w|-1} \quad 2$$

$$w = u_2 v_{|w|-2} \quad H_2$$

$$\vdots \quad |w|-1$$

$$W = u_{|w|-1} v_1 \quad H_{|w|-1}$$

Result: 
$$F(w) = H_1 \cup H_2 \cup \cdots \cup H_{|w|-1}$$

# At the basis of the recursion we have strings of length 1

$$F(\sigma) = \{ \text{Variables that generate symbol } \sigma \}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad X \to \sigma$$

Very easy to find

#### Remark:

The whole algorithm can be implemented with dynamic programming:

First compute F(w') for smaller substrings w' and then use this to compute the result for larger substrings of w

## Example:

• Grammar  $G\colon S \to AB$   $A \to BB \mid a$   $B \to AB \mid b$ 

• Determine if  $w = aabbb \in L(G)$ 

# Decompose the string aabbb to all possible substrings

Length

a

b

b

aa

aab

ab

abb

bb

bbb

bb

3

4

5

aabb

aabbb

abbb

$$S \to AB$$
,  $A \to BB \mid a$ ,  $B \to AB \mid b$ 

$$F(\sigma)$$
 a a b b b  $F(\sigma)$   $A$   $A$   $B$   $B$ 

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

$$S \rightarrow AB$$
,  $A \rightarrow BB \mid a$ ,  $B \rightarrow AB \mid b$ 

aabb abbb

aabbb

$$S \to AB$$
,  $A \to BB \mid a$ ,  $B \to AB \mid b$ 

$$F(aa)$$
 prefix  $aa$  suffix  $F(a) = \{A\}$   $F(a) = \{A\}$ 

There is no production of form  $X \rightarrow AA$ Thus,  $F(aa) = \{\}$ 

$$F(ab)$$
 prefix  $ab$  suffix  $F(a) = \{A\}$   $F(b) = \{B\}$ 

There are two productions of form  $X \to AB$  $S \to AB$ ,  $B \to AB$ 

Thus, 
$$F(ab) = \{S, B\}$$

 $S \to AB$ ,  $A \rightarrow BB \mid a, \quad B \rightarrow AB \mid b \mid$ b a {B} {*A*} {*A*} {B} {B} bb bb ab aa {S,B} {*A*} {*A*} aab abb bbb {S,B} {*A*} {S,B} aabb abbb

aabbb

$$S \to AB$$
,  $A \to BB \mid a$ ,  $B \to AB \mid b$ 

F(aab)

# Decomposition 1

prefix 
$$aab$$
 suffix  
 $F(a) = \{A\}$   $F(ab) = \{S, B\}$ 

There is no production of form  $X \to AS$ There are 2 productions of form  $X \to AB$ 

$$S \to AB$$
,  $B \to AB$ 

$$H_1 = \{S, B\}$$

$$S \to AB$$
,  $A \to BB \mid a$ ,  $B \to AB \mid b$ 

F(aab)

# Decomposition 2

prefix aab suffix
$$F(aa) = \{\}$$

$$F(b) = \{B\}$$

There is no production of form  $X \rightarrow B$ 

$$H_2 = \{ \}$$

$$F(aab) = H_1 \cup H_2 = \{S, B\} \cup \{\} = \{S, B\}$$

Since
$$S = AB, \quad A \rightarrow BB \mid a, \quad B \rightarrow AB \mid b$$

$$\{A\} \quad \{A\} \quad \{B\} \quad \{B\}$$

### Approximate time complexity:



Number of substrings

Number of
Prefix-suffix
decompositions
for a string