Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 35

- 1. Пусть $z=\frac{3\sqrt{3}}{2}+\frac{3i}{2}$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{1-\sqrt{3}i}$ имеет аргумент $\frac{47\pi}{24}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-8-i) + y(5+13i) = 254 + 79i \\ x(5-13i) + y(12+10i) = 219 - 39i \end{cases}$$

- 3. Найти корни многочлена $-5x^6 35x^5 10x^4 210x^3 4885x^2 9355x + 14500$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 3 4i$, $x_2 = -5 + 2i$, $x_3 = 1$.
- 4. Даны 3 комплексных числа: 12+8i, -19+21i, -19+i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 4$, $z_2 = 4i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3+6i| < 1\\ |arg(z+1-3i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (5, -8, 3), b = (0, 7, -5), c = (3, -5, 2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(7,-7,-14) и плоскость P:16x-4y-6z-70=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(5,7,-9), $M_1(2,-4,7)$, $M_2(-10,2,7)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -2x + 24y - 6z - 270 = 0 \\ 14x + 10y - 10z + 88 = 0 \end{cases}$$

$$L_2: \begin{cases} -16x + 14y + 4z + 2450 = 0 \\ -4x - y + 9z + 452 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.