Mathematik 1

SKRIPT ZUM MODUL MATHEMATIK 1 FÜR INF, SWT UND MSV

Simon König

INHALTSVERZEICHNIS

I	Grundlagen 3							
1	Logik 1.1 Logische Junktoren	4 4 4 5 5						
2	Grundlegende Rechenmethoden 2.1 Summen- und Produktzeichen	6 6						
3	Beweise 3.1 Direkter Beweis	9 9 9						
4	4.1 Mengen	10 10 11 12 12 12						
5	······································	14 15						
II	Lineare Algebra	16						
1	Verknüpfungen 1							
2	Algebraische Strukturen 18							
3	Vektorräume							
4	Lineare Abbildungen4.1 Matrizen							
5	Matrizenrechnung	30						

Grundlagen

1: LOGIK

Definition 1.1: Aussage

Eine Aussage ist ein Satz, von dem es Sinn macht, zu fragen, ob er wahr oder falsch ist.

1.1 Logische Junktoren

Wir verknüpfen mehrere Aussagen zu größeren aussagelogischen Formeln mithilfe von logischen Junktoren:

NEGATION: $\neg A$

Konjuktion: $A \wedge B$ Disjunktion: $A \vee B$

Mit diesen grundlegenden Junkoren kann man alle Verknüpfungen darstellen. Um Schreibarbeit zu sparen gibt es verkürzende Schreibweisen:

 $\textbf{IMPLIKATION:} \quad A \Rightarrow B \equiv \neg (A \land \neg B)$

ÄQUIVALENZ: $A \Leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$

					$A \Rightarrow B$	$A \Leftrightarrow B$
f	f	w	f	f w w	W	W
f	W	w	f	W	W	f
W	, f	f	f	W	f	f
W	w	f	W	W	W	W

1.2 Prädikatenlogik und Quantoren

 $\label{lem:continuous} Ein \ Pr\"{a}dikat \ ist \ ein \ Ausdruck, \ der \ die \ Form \ einer \ Aussage \ hat, \ aber \ Variablen \ enth\"{a}lt. \ Eine \ Aussage \ wird \ daraus \ erst, \ wenn \ wir \ angeben, \ f\"{u}r \ welche \ m \ das \ Pr\"{a}dikat \ gelten \ soll.$

Sei M eine Menge und P(m) für jedes $m \in M$ eine Aussage. Wir beschreiben die Aussage mit dem Allquantor:

$$\forall m \in M : P(m)$$

d.h. P(m) soll für \emph{jedes} Element m aus M gelten.

Mit dem Existenzquantor bekommt das Prädikat eine andere Bedeutung:

$$\exists m \in M : P(m)$$

d.h. es soll mindestens ein $m \in M$ existieren, für das P(m) gilt.

BEISPIEL $M=\mathbb{N}, P(m)$: "m ist eine gerade Zahl." $(\forall m\in M: P(m))$ ist falsch.

 $(\exists m \in M : P(m))$ ist jedoch wahr.

1.2.1 Verneinung von Aussagen

Verneinung von quantifizieren Prädikat-Aussagen: "Prädikat verneinen und Quantoren tauschen."

$$\neg(\forall m \in M : P(m)) \equiv \exists m \in M : \neg P(m)$$

1.2.2 Reihenfolge der Quantoren

Bei Quantoren kommt es auf die Reihenfolge an:

$$\begin{split} \forall n \in \mathbb{N} & \exists m \in \mathbb{N} : m \geq n \quad \text{ist wahr} \\ \exists n \in \mathbb{N} & \forall m \in \mathbb{N} : m \geq n \quad \text{ist falsch} \end{split}$$

2: Grundlegende Rechenmethoden

2.1 Summen- und Produktzeichen

$$\sum_{k=-m}^{n} a_k := a_m + a_{m+1} + \ldots + a_n$$

Bei der Summe ist k der Summationsindex, m die untere und n die obere Summationsgrenze

$$\prod_{k=m}^{n} a_k := a_m \cdot a_{m+1} \cdot \ldots \cdot a_n$$

BEMERKUNG:

- Ist die obere Summationsgrenze kleiner als die untere, so handelt es sich um eine *leere Summe*, ihr Wert ist 0.
- Entsprechend ist der Wert des leeren Produkts 1.

2.2 Teilbarkeit und Primzahlen

Definition 2.1: Teilbarkeit

Seien $n\in\mathbb{Z}, m\in\mathbb{N}$. Die Zahl m heißt ein Teiler von n, in Zeichen $k\cdot m=n$, wenn es ein $k\in\mathbb{Z}$ gibt, so dass $k\cdot m=n$. In diesem Fall heißt n auch teilbar durch m. Die Zahl 0 ist durch alle $m\in\mathbb{Z}$ teilbar

Falls $m|n_1$ und $m|n_2$, dann folgt $m|n_1 + n_2$.

Definition 2.2: Größter gemeinsamer Teiler

Sei $a \in \mathbb{Z}$, die Menge aller Teiler von a ist $\mathcal{D}(a) \coloneqq \{d \in \mathbb{N} \mid d \mid a\}$. Die Menge aller gemeinsamer Teiler von a und b mit $a,b \in \mathbb{Z} \setminus \{0\}$ ist $\mathcal{D}(a,b) = \mathcal{D}(a) \cap \mathcal{D}(b)$. Die Zahl $\operatorname{ggT}(a,b) = \max(\mathcal{D}(a,b))$ heißt größter gemeinsamer Teiler von a und b. Da eine ganze Zahl (außer der 0) nur endlich viele Teiler hat, existiert ggT(a,b).

Satz 2.1: Teilung mit Rest

Seien $a,b\in\mathbb{N}$ mit a>b. Dann gibt es Zahlen $q\in\mathbb{N},r\in\mathbb{N}_0$ mit

$$0 \leq r < B$$
 Rest kleiner als der Teiler $a = q \cdot b + r$

Mit diesem Satz folgt das Lemma, auf dem der Euklidische Algorithmus basiert:

Lemma 2.1:

Seien $a, b, q, r \in \mathbb{N}$, so dass $a = q \cdot b + r$. Dann gilt

$$\mathcal{D}(a,b) = \mathcal{D}(b,r)$$

Insbesondere gilt:

$$ggT(a, b) = ggT(b, r)$$

Beweis:

Wir beweisen die Gleichheit der beiden Mengen, indem wir die beiden Inklusionen nachweisen:

- "⊆" Sei $d \in \mathcal{D}(a,b)$ d.h. $d|a \wedge d|b$. Wegen $a=q \cdot b + r \Leftrightarrow r=a-q \cdot b$ folgt, dass d auch r teilt. Es folgt also $d \in \mathcal{D}(b,r)$.
- " \supseteq " Sei $d \in \mathcal{D}(b,r)$ d.h. $d|b \wedge d|r$, dann folgt aus $a=q \cdot b + r$, dass d auch a teilt, womit $d \in \mathcal{D}(a,b)$ folgt.

$$\mathcal{D}(a,b) = \mathcal{D}(b,r)$$

Dieses Lemma liefert die Idee für einen Algorithmus zur Bestimmung des größten gemeinsamen Teilers zweier natürlicher Zahlen.

Sei a>b. Teilt b die Zahl a ohne Rest, so ist b der $\operatorname{ggT}(a,b)$. Ansonsten ermittle den Rest bei der Teilung von a durch b und suche statt $\operatorname{ggT}(a,b)$ den $\operatorname{ggT}(b,r)$.

Nach dem Satz zur Teilung mit Rest sind b und r beide kleiner als a, also kommt das Verfahren nach endlich vielen Schritten zum Ende.

Definition 2.3: Primzahl

Eine natürliche Zahl heißt *Primzahl*, wenn sie genau zwei Teiler besitzt, nämlich 1 und die Zahl selbst.

$$p \in \mathbb{N} \text{ mit } |\mathcal{D}(p)| = 2$$

Satz 2.2: Primfaktorzerlegung

Jede natürliche Zahl $n \in \mathbb{N} \land n \ge 2$ ist ein Produkt aus Primzahlen (1 ist das leere Produkt).

Beweis:

A(n): "Jede natürliche Zahl kleiner oder gleich n ist das Produkt von Primzahlen."

- **IA** A(2) ist wahr, denn 2 ist selbst eine Primzahl.
- **IS** Fallunterscheidung:

1.
$$n+1$$
 ist prim. Dann ist $A(n+1)$ wahr.

2. n+1 ist nicht prim. Dann gibt es natürliche Zahlen 1 und m, sodass $n+1=l\cdot m$, wobei l,m< n+1.

Nach Induktionsvoraussetzung sind somit l und m Produkte von Primzahlen, somit auch n+1.

3: BEWEISE

Wir wollen eine Aussage $A\Rightarrow B$ beweisen. Dazu gibt es mehrere Ansätze, diese werden am Beispiel gezeigt:

$$A \equiv |x - 1| < 1$$
$$B \equiv x < 2$$

3.1 Direkter Beweis

A wird als wahr angenommen, und daraus muss $B\equiv x<2$ gefolgert werden. Fallunterscheidung:

•
$$(x-1) \ge 0 \rightsquigarrow x-1 < 1 \Leftrightarrow x < 2$$

•
$$(x-1) < 0 \rightsquigarrow x < 1$$

3.2 Indirekter Beweis (Kontraposition)

Wir zeigen, dass $\neg B \Rightarrow \neg A$. Gelte also $\neg B$:

$$x \ge 2 \Rightarrow |x - 1| = x - 1 \ge 1 \Leftrightarrow x \ge 2$$

3.3 Widerspruchsbeweis

Wir zeigen, dass $\neg(A\Rightarrow B)$ bzw. $A\wedge \neg B$ auf einen Widerspruch führt. Angenommen, es gelte |x-1|<1 und $x\geq 2$ daraus folgt:

$$|x-1| = x-1 < 1 \Leftrightarrow x < 2$$
 Widerspruch!

4: MENGEN, RELATIONEN UND ABBILDUNGEN

4.1 Mengen

Eine Menge ist eine wohldefinierte Gesamtheit von Objekten, den Elementen der Menge.

$$\mathsf{z.B.}\,\mathbb{Q} = \left\{\frac{p}{q} \,\middle|\, p \in \mathbb{Z}, q \in \mathbb{N}\right\}$$

Definition 4.1: Teilmenge

Eine Menge M_1 ist *Teilmenge* von M, wenn

$$\forall x \in M_1 : x \in M$$
$$\Rightarrow M_1 \subseteq M$$

Für jede Menge M gilt $\varnothing \subseteq M$ und $M \subseteq M$.

Gilt $M_1\subseteq M$ und $M_1\neq M$ ist M_1 eine echte Teilmenge von M, d.h. $M_1\subset M$ oder $M_1\subsetneq M$

POTENZMENGE $\mathcal{P}(M) = \text{Pot}(M)$ ist die Menge aller Teilmengen von M.

Schnittmenge $M_s = M_1 \cap M_2; \quad M_s \coloneqq \{m \in M_1 \mid m \in M_2\}$

VEREINIGUNG $M_v = M_1 \cup M_2; \quad M_v \coloneqq \{m \mid m \in M_2 \lor m \in M_2\}$

DIFFERENZ $M_1 \setminus M_2 := \{ m \in M_1 \mid m \notin M_2 \}$

Kartesisches Produkt $M_1 \times M_2 \coloneqq \{(m_1, m_2) \mid m_1 \in M_1 \land m_2 \in M_2\}$

Zwei Mengen M_1 und M_2 heißen disjunkt, falls $M_1\cap M_2=\varnothing$

4.2 Relationen

Definition 4.2: Relation

Eine Relation zwischen zwei Mengen M und N ist eine Teilmenge von $M \times N$.

$$R \subseteq M_1 \times M_2$$

ist $(x, y) \in R$, steht x mit y in Relation $\to x \sim y$.

 $R\subseteq M\times M$ heißt:

REFLEXIV falls $\forall x \in M : (x, x) \in R$

SYMMETRISCH falls $\forall x, y \in M : (x, y) \in M \Rightarrow (y, x) \in R$

ANTISYMMETRISCH falls $\forall x, y \in R : (x, y) \in M \land (y, x) \in R \Rightarrow x = y$

TRANSITIV falls $\forall x,y,z\in M:(x,y)\in R \land (y,z)\in R \Rightarrow (x,z)\in R$

Definition 4.3: Äquivalenzrelation

Eine Relation heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.

Definition 4.4: Ordnungsrelation

Eine Relation heißt Ordnungsrelation, wenn sie reflexiv, antisymmetrisch und transitiv ist.

4.3 Abbildungen

Definition 4.5: Abbildung

Seien M und N zwei Mengen. Eine Zuordnungsvorschift, die jedem Element $x \in M$ ein Element $f(x) \in N$ zuweist, heißt Abbildung oder Funktion von M nach N.

$$f: M \to N, x \mapsto f(x)$$

M: Definitionsbereich, N: Wertebereich

Definition 4.6: Bild und Urbild

Sei $f:M\mapsto N$ eine Abbildung. Wir definieren

- $\operatorname{für} x \in M$ heißt $f(x) \in N$ das Bild von x
- für eine Teilmenge $A \subseteq M$ heißt $f(A) = \{f(x) \mid x \in A\}$ das Bild der Teilmenge A
- für eine Teilmenge $B \subseteq N$ heißt $f^{-1}(B) = \{x \in M \mid f(x) \in B\}$ das *Urbild* von B

Definition 4.7: Graph einer Abbildung

Sei $f:M\to N$ eine Abbildung. Der Graph von f ist eine Teilmenge des Werte- und Definitionsbereichs

$$Graph(f) = \{(x, f(x)) \mid x \in M\} \subseteq M \times N$$

Fasst man eine Funktion als eine Relation auf, so ist der Graph das selbe wie R.

$$Graph(f) = R \subseteq M \times N$$

BEMERKUNG: Für Funktionen $f: \mathbb{R} \to \mathbb{R}$ ist der Graph eine Teilmenge der Ebene \mathbb{R}^2 .

Definition 4.8: Verkettung

Seien $f:M\to N$ und $g:N\to P$ Abbildungen. Dann ist die Verkettung:

$$g \circ f : M \to P$$
$$g \circ f(x) \coloneqq g(f(x))$$

Definition 4.9: Identität

Für jede Menge M ist

$$id_M: M \to M, x \mapsto x$$

die identische Abbildung auf M.

4.3.1 Abbildungseigenschaften

Sei $f:M\to N$ eine Abbildung. Dann heißt f:

INJEKTIV wenn jedes Element $y \in N$ höchstens ein Urbild hat.

SURJEKTIV wenn jedes Element $y \in N$ mindestens ein Urbild hat. $\forall y \in N \; \exists x \in M : f(x) = y$

BIJEKTIV wenn jedes Element $y \in N$ genau ein Urbild hat. $\forall y \in N \ \exists ! x \in M : f(x) = y$

BEMERKUNG:

1. Bijektivität gilt genau dann, wenn es eine Umkehrabbildung f^{-1} gibt:

$$f:M\to N \qquad \qquad f^{-1}:N\to M$$

$$f\left(f^{-1}(x)\right)\quad \text{mit }x\in N \qquad \qquad f^{-1}\left(f(x)\right)=x\quad \text{mit }x\in M$$

2. Man kann jede Abbildung surjektiv machen, indem man den Wertebereich durch das Bild von f ersetzt: $N\coloneqq f(M)$

4.4 Mächtigkeit von Mengen

Die Mächtigkeit einer Menge ist die Anzahl ihrer Elemente. Man schreibt |M| für die Mächtigkeit von M.

Zwei Mengen A und B sind gleich mächtig, wenn es eine bijektive Abbildung $f:A\to B$ gibt. Eine Menge heißt *abzählbar unendlich*, falls $|A|=|\mathbb{N}|$ d.h. falls es eine bijektive Abbildung $f:A\to\mathbb{N}$ gibt.

Sie heißt *überabzählbar unendlich*, falls $|A| > |\mathbb{N}|$.

Es gilt immer auch für unendliche Mengen, dass |M| < |Pot(M)|.

Für endliche Mengen gilt $|Pot(M)| = 2^{|M|}$

4.5 Zahlenmengen

Definition 4.10: Natürliche Zahlen

Die natürlichen Zahlen sind eine Menge $\mathbb N$, auf der eine Abbildung $f:\mathbb N\to\mathbb N$ erklärt ist, die folgende Eigenschaften hat, wobei f(n) der Nachfolger von n heißt.

 $\mathbb{N}1$ Es gibt genau ein Element in \mathbb{N} , das nicht Nachfolger eines anderen Elements ist.

 $\mathbb{N}2$ f ist injektiv

 $\mathbb{N}3$ Ist $M\subseteq\mathbb{N}$ eine Teilmenge, die folgende Eigenschaften hat:

1. $1 \in M$

2. Falls $m \in M$ und $f(m) \in M$

Dann gilt: $M = \mathbb{N}$

$$\mathsf{D.h.}\ M\subseteq\mathbb{N}: 1\in M\land (m\in M\Rightarrow f(m)\in M)\Rightarrow M=\mathbb{N}$$

Man kann zeigen, dass die natürlichen Zahlen durch diese Eigenschaften (die Peano-Axiome) gekennzeichnet sind. Das heißt, dass es im wesentlichen nur eine solche Menge mit einer solchen Abbildung f gibt, nämlich $\mathbb N$.

Das Axiom $\mathbb{N}3$ heißt auch Induktionsaxiom. Aus ihm folgt:

Satz 4.1: Vollständige Induktion

Sei A(n) für jede natürliche Zahl $n \in \mathbb{N}$ eine Aussage, für die gilt:

- ullet A(1) ist wahr
- $\forall n \in \mathbb{N} : A(n) \Rightarrow A(n+1)$

dann ist A(n) für alle $n \in \mathbb{N}$ wahr.

5: KOMPLEXE ZAHLEN

Wir definieren \mathbb{C} als Menge $\mathbb{C} \coloneqq \mathbb{R} \times \mathbb{R}$, d.h. wir definieren die komplexen Zahlen als zusammengesetzte Zahlen, also als die Menge der geordneten Paare von reellen Zahlen. Wobei wir folgende Abbildungen mit $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ auf \mathbb{C} festlegen:

Addition
$$(a,b) + (c,d) := (a+b,c+d)$$

$$\textbf{Multiplikation} \ \ (a,b) \cdot (c,d) := (ac-bd,ad+bc)$$

BEMERKUNG: Die Menge der reellen Zahlen kann als Teilmenge von $\mathbb C$ aufgefasst werden. $\mathbb R\subset\mathbb C$ indem man die injektive Abbildung $\mathbb R\to\mathbb C, a\mapsto(a,0)$ benutzt. Die oben definierten Verknüpfungen schränken sich dann auf die Verknüpfungen in $\mathbb R$ ein:

- (a,0) + (b,0) = (a+b,0)
- $(a,0) \cdot (b,0) = (a \cdot b 0, a \cdot 0 + b \cdot 0) = (a \cdot b,0)$

In diesem Sinne ist \mathbb{C} eine *Erweiterung* des Körpers \mathbb{R} .

Definition 5.1: Imaginäre Einheit

Wir führen die imaginäre Einheit ein. i := (0, 1) damit gilt:

$$(0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, 0 \cdot 1 + 0 \cdot 1) = (-1,0) = i^2 = -1$$

Es gilt also $\mathfrak{i}^2=-1$, daher schreibt man auch $\mathfrak{i}=\sqrt{-1}$. Die Zahlen $(0,y)=y\cdot\mathfrak{i},y\in\mathbb{R}$ heißten imaginäre Zahlen. Wir können uns wegen $\mathbb{C}=\mathbb{R}\times\mathbb{R}$ komplexe Zahlen als Punkte bzw. Vektoren in der *Gauß'schen Zahlenebene* vorstellen.

Satz 5.1:

Für jede komplexe Zahl $(a, b) \in \mathbb{C}$ gilt:

$$(a,b) = a + b \cdot i$$

Beweis:

Durch Ausrechnen der rechten Seite:

$$\begin{aligned} a + b \mathbf{i} &= (a, 0) + (b, 0) \cdot (0, 1) \\ &= (a, 0) + (b \cdot 0 - 0 \cdot 1, b \cdot 1 + 0 \cdot 0) \\ &= (a, 0) + (0, b) = (a, b) \end{aligned}$$

BEMERKUNG: Wie man leicht nachrechnet, gelten wie in \mathbb{R} die Kommutativ-, Assoziativ- und Distributivgesetze.

Definition 5.2: Konjugiert komplexe Zahl

Sei $z=a+b\mathfrak{i}\in\mathbb{C}$. Dann heißt \overline{z} die konjugiert komplexe Zahl $\overline{z}=a-b\mathfrak{i}$ von z.

Satz 5.2: Eigenschaften der konjugiert komplexen Zahl

Seien $z,w\in\mathbb{C}$ dann gilt:

1.
$$\overline{z+w} = \overline{z} + \overline{w}$$

2.
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

3.
$$\frac{1}{2}(z+\overline{z})=\mathfrak{Re}(z)$$

4.
$$\frac{1}{2}(z-\overline{z})=\mathfrak{Im}(z)$$

5.
$$z \cdot \overline{z} > 0 \in \mathbb{R}$$
 falls $z \neq 0$

Definition 5.3: Betrag einer komplexen Zahl

Mit der komplexen Zahl $z=a+b\mathrm{i}$ und $a,b\in\mathbb{R}$ gilt für den Betrag von z:

$$\begin{aligned} |z| &= \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2} \\ |z| &= |\overline{z}| \end{aligned}$$

Insbesondere lässt sich das multiplikative Inverse wie folgt ausdrücken:

$$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}} = \frac{a - b \cdot \mathbf{i}}{a^2 + b^2}$$

5.1 Polarkoordinaten-Darstellung

1: VERKNÜPFUNGEN

Definition 1.1: Verknüpfung

Sei M eine Menge. Eine Abbildung $M \times M \to M, (a,b) \mapsto a \star b$ nennt man Verknüpfung.

- 1. Eine Verknüpfung heißt kommutativ, falls $a \star b = b \star a \quad \forall a, b \in M$ gilt.
- 2. Sie heißt assoziativ, falls $a\star(b\star c)=(a\star b)\star c \quad \forall a,b,c\in M$ gilt. Man kann auch $a\star b\star c$ schreiben.
- 3. Ein Element $e \in M$ heißt neutrales Element bezüglich der Verknüpfung \star , falls $a \star e = e \star a = a \quad \forall a \in M$ gilt.

Definition 1.2: Invertierbarkeit

Sei M eine Menge mit einer Verknüpfung \star , die ein neutrales Element e besitzt, ein Element $a \in M$ heißt invertierbar, falls es ein Element $a^{-1} \in M$ gibt, so dass gilt:

$$a \star a^{-1} = a^{-1} \star a = e$$

Definition 1.3: Homomorphismus

Seien (G,\star) und (H,*) Gruppen. Eine Abbildung $f:G\to H$ heißt (Gruppen-)Homomorphismus, falls gilt:

$$f(a \star b) = f(a) * f(b) \quad \forall a, b \in G$$

Lemma 1.1:

Ein Gruppenhomomorphismus $f:G\to H$ bildet stets das neutrale Element in G auf das neutrale Element in H ab.

Beweis:

Sei e das neutrale Element in G, dann folgt:

$$f(e) * f(g) = f(e \star g) = f(g)$$

Es folgt dann, dass f(e) das neutrale Element in H ist.

2: ALGEBRAISCHE STRUKTUREN

Definition 2.1: Magma

Eine Menge M mit einer Verknüpfung \star heißt Magma, falls sie unter dieser Verknüpfung abgeschlossen ist, das heißt:

$$\forall u, v \in M : u \star v \in M$$

Definition 2.2: Halbgruppe

Eine Menge M mit einer Verknüpfung \star heißt Halbgruppe, falls sie ein Magma ist und die Verknüpfung assoziativ ist:

HG1 $\forall u, v \in M : u \star v \in M$

HG 2 $\forall u, v, w \in M : u \star (v \star w) = (u \star v) \star w$

Definition 2.3: Monoid

Eine Menge M mit einer Verknüpfung \star heißt Monoid, falls sie eine Halbgruppe ist und ein neutrales Element bezüglich der Verknüpfung existiert:

M1 $\forall u, v \in M : u \star v \in M$

M 2 $\forall u, v, w \in M : u \star (v \star w) = (u \star v) \star w$

M3 $\exists e \in M \quad \forall u \in M : e \star u = u \star e = u$

Definition 2.4: Gruppe

Eine Menge G mit einer Verknüpfung \star heißt Gruppe, falls sie ein Monoid ist und zu jedem Element ein Inverses bezüglich der Verknüpfung exisitert:

- **G1** Die Verknüpfung assoziativ ist,
- **G 2** ein neutrales Element besitzt,
- **G 3** jedes Element invertierbar ist.

Falls die Verknüpfung zusätzlich kommutativ ist, nennt man die Gruppe eine *abel'sche Gruppe* oder auch kommutative Gruppe.

Definition 2.5: Ring

Sei M eine Menge mit zwei Verknüpfungen $(+,\cdot)$ und den folgenden Eigenschaften:

R1 (M,+) ist eine abel'sche Gruppe mit neutralem Element 0.

- **R 2** die Verknüpfung \cdot ist assoziativ mit neutralem Element 1.
- R 3 es gelten die Distributivgesetze:

$$(a+b) \cdot c = ac + bc$$

 $c \cdot (a+b) = ca + cb$

R4 $0 \neq 1$

Dan heißt M ein Ring (genauer ein Ring mit Eins - unitärer Ring).

Ist zusätzlich auch die Multiplikation \cdot kommutativ und ist $M \setminus \{0\}$ eine Gruppe bezüglich \cdot (d.h. besitzt jedes Element ein Inverses bzgl. \cdot) so heißt M Körper.

Satz 2.1: Eindeutigkeit der neutralen Elemente

In einer Gruppe ist das neutrale Element stats eindeutig, d.h. ist e ein neutrales Element und gibt es ein Element:

$$a \in G, \forall g \in G: a \star g = g \star a = g$$

Dann ist a = e!

Beweis:

Gelte $a \star g = g$ für ein $g \in G$. Dann folgt:

$$(a \star g) \star g^{-1} = g \star g^{-1}$$

Mit G1 und G3 gilt:

$$a \star (g \star g^{-1}) = e$$

Dann folgt mit G3:

BEMERKUNG: Ähnlich dazu der Beweis, dass inverse Elemente eindeutig bestimmt sind.

Definition 2.6: Untergruppe

 $a \star e = e$ und damit a = e

Sei G eine Gruppe mit Verknüpfung \star und neutralem Element e. Eine nichtleere Teilmenge $U\subseteq G$ heißt *Untergruppe* von G, falls gilt:

UG 1 $\forall a, b \in U : a \star b \in U$ (Abgeschlossenheit)

$$\operatorname{UG}\mathbf{2}\ \forall a\in U: a^{-1}\in U$$

Immer gilt, dass der Kern eines Homomorphismus $f:G\to H$ d.h. $\mathrm{Kern}(f)=f^{-1}(\{e\})$ eine Untergruppe von G ist.

3: VEKTORRÄUME

BEISPIEL

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$$

$$\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$

$$\vdots$$

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}$$

Wir schreiben die Elemente von \mathbb{R}^n auch als sogenannte Spaltenvektoren:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 anstatt von (x_1, x_2, \dots, x_n)

Mit der komponentenweisen Addition, der Vektoraddition:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

wird \mathbb{R}^n zu einer abel'schen Gruppe mit dem Nullvektor als neutrales Element und dem negierten Vektor als inverses Element bezüglich der Addition.

In der Vektorrechnung nennt man Zahlen (z.B. Elemente aus $\mathbb{R}, \mathbb{C}, \mathbb{Q}$) Skalare, um Zahlen und Vektoren deutlich zu unterscheiden.

$$\text{Sei } x := \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R} \text{ und } \lambda \in \mathbb{R}. \text{ Dann ist die } \textit{skalare Multiplikation } x \cdot \lambda \text{ definiert durch } x \cdot \lambda \coloneqq \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

Die beiden Operationen Vektoraddition und skalare Multiplikation sind kennzeichnend für einen Vektorraum

Definition 3.1: Vektorraum

Sei K ein Körper, dessen neutrales Element bezüglich der Multiplikation mit 1_K bezeichnet wird. Sei V eine Menge mit einer Verknüpfung +, so dass (V,+) eine abel'sche Gruppe bildet.

Sei weiter eine Abbildung, genannt skalare Multiplikation $K \times V \to V$ gegeben, so dass folgende Bedingungen $\forall \alpha, \beta \in K; x, y \in V$ gelten:

V1
$$(\alpha \cdot \beta) \cdot x = \alpha \cdot (\beta \cdot x)$$
 (assoziativ)

V 2 $1_K \cdot x = x$ (neutrales Element des Körpers ist das neutrale bzgl \cdot)

V3
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
 (distributiv 1)

V 4
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$
 (distributiv 2)

Dann ist V ein V ein V ektorraum über dem Körper K. Kurz auch K-Vektorraum. Die Verknüpfung + wird Vektoraddition genannt. Für $K=\mathbb{R}$ bzw. $K=\mathbb{C}$ spricht man auch von einem reellen, bzw. komplexen Vektorraum.

Elemente von V nennt man Vektoren.

BEISPIELE

- $\mathbb{R}^2, \mathbb{R}^3, \dots$
- \bullet \mathbb{C}^2
- $\bullet \ \{0\} \ \text{ist ein Vektorraum für jeden K\"{o}rper} \\ K$
- Sei $V=\{f\,|\,f:\mathbb{R}\to\mathbb{R}\}$ die Menge der reellen Funktionen in einer Variable. Durch die punktweise Addition

$$(f+g)(x) = f(x) + g(x)$$

und die punktweise skalare Multiplikation

$$(\lambda f)(x) = \lambda \cdot f(x)$$

wird V zu einem Vektorraum.

Definition 3.2: Untervektorraum

Sei V ein K-Vektorraum. Eine nichtleere Teilmenge $U \subseteq V$ heißt Untervektorraum bzw. Teilvektorraum, falls gilt:

UV 1 Abschluss unter Vektoraddition:

$$\forall u, v : u, v \in U \Rightarrow u + v \in U$$

UV 2 Abschluss unter skalarer Multiplikation:

$$\forall u \in U, \lambda \in K : \lambda \cdot u \in U$$

BEISPIELE Die folgenden sind Untervektorräume von \mathbb{R}^2 :

•
$$U_1 \coloneqq \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die x -Achse)

•
$$U_2 \coloneqq \left\{ \begin{pmatrix} x \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\}$$
 (die Winkelhalbierende des 1. und 3. Quadranten)

Lemma 3.1:

Für alle $\lambda \in K, v \in V$ wobei V ein K-Vektorraum ist, gilt:

1.
$$0_K \cdot v = 0_V$$

2.
$$(-\lambda) \cdot v = -(\lambda \cdot v)$$

Beweis:

1. Es gilt:

$$\begin{aligned} 0 \cdot v &= (0+0) \cdot v \underset{\text{(V3)}}{=} 0 \cdot v + 0 \cdot v \\ 0 \cdot v + (-(0 \cdot v)) &= (0 \cdot v + 0 \cdot v) + (-(0 \cdot v)) \\ &= 0 \cdot v + (0 \cdot v + (-0 \cdot v)) \\ 0 &= 0 \cdot v + 0 = 0 \cdot v \end{aligned}$$

Definition 3.3: Linearkombination

Seien v_1,v_2,\ldots,v_k Vektoren aus dem K-Vektorraum V und seien $\lambda_1,\lambda_2,\ldots,\lambda_k\in K$. Dann heißt der Vektor

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_k v_k = \sum_{j=1}^k \lambda_j v_j$$

Linearkombination von den Vektoren v_1, v_2, \ldots, v_k . Die Skalare $\lambda_1, \lambda_2, \ldots, \lambda_k$ heißen *Koeffizienten* der Linearkombination.

Sind in der Linearkombination alle Koeffizienten gleich Null, handelt es sich um die *triviale Linearkombination*. Gibt es hingegen mindestens einen Koeffizienten $\lambda_j \neq 0$, handelt es sich um einee nichttriviale Linearkombination.

Definition 3.4:

Sei V ein K-Vektorraum, $M\subseteq V$ eine Teilmenge. Dann heißt die Menge aller Linearkombinationen

$$\{\lambda_1 v_1 + \ldots + \lambda_k v_k \mid v_1, v_2, \ldots, v_k \in M, \lambda_1, \lambda_2, \ldots, \lambda_k \in K\}$$

der Spann oder die lineare Hülle von M.

$$\mathrm{Span}(M) := \left\{ \sum_{j=1}^{k} \lambda_j v_j \,\middle|\, \lambda_j \in K, v_j \in M \right\}$$

BEISPIELE

•
$$v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 in $\mathbb{R}^3 \sim \operatorname{Span}(\{v\}) = \left\{ \begin{pmatrix} \lambda \\ \lambda \\ 0 \end{pmatrix} \middle| \lambda \in \mathbb{R} \right\}$

• Span
$$\left\{ \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \right\} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} \middle| x_1, x_2 \in \mathbb{R} \right\}$$
 $(x_1, x_2\text{-Ebene})$

Satz 3.1:

Sei V ein K-Vektorraum und $M \subseteq V$. Dann ist $\operatorname{Span}(M)$ ein Untervektorraum von V.

Beweis:

- 1. $\mathrm{Span}(M)$ ist nicht leer, da der Nullvektor als leere Linearkombination mindestens enthalten ist
- 2. Abschluss unter skalarer Multiplikation, sei $\lambda \in K$, $v \in \operatorname{Span}(M)$:

$$\begin{split} v &= \lambda_1 v_1 + \ldots + \lambda_k v_k \quad \text{wobei } v_1, \ldots, v_k \in M \\ \lambda v &= \lambda (\lambda_1 v_1 + \ldots + \lambda_k v_k) \\ &= \lambda (\lambda_1 v_1) + \ldots + \lambda (\lambda_k v_k) \\ &= (\lambda \lambda_1) v_1 + \ldots + (\lambda \lambda_k) v_k \end{split}$$

3. Abschluss unter Addition:

Definition 3.5: Erzeugendensystem

Gilt $V = \operatorname{Span}(M)$ für einen K-Vektorraum V und eine Teilmenge $M \subseteq V$, so sagt man M ist ein *Erzeugendensystem* von V.

Interessant ist die minimale Anzahl an Vektoren in einem Erzeugendensystem, bzw. ein *minimales Erzeugendensystem*.

Definition 3.6: Lineare Abhängigkeit

Eine Menge von Vektoren $M \subseteq V$ heißt *linear abhängig*, wenn es eine nichttriviale Linearkombination gibt, die den Nullvektor ergibt. Andernfalls heißt M *linear unabhängig*!

Satz 3.2:

Eine Menge von Vektoren ist genau dann linear abhängig, wenn einen Vektor $v \in M$ gibt, der sich als Linearkombination mit Vektoren aus $M \setminus \{v\}$ darstellen lässt.

" \Rightarrow " Angenommen, M ist linear abhängig. Dann gibt es Vektoren v_1,\ldots,v_n und Koeffizienten $\lambda_1,\ldots,\lambda_n\in K$, so dass die Linearkombination *nichttrivial* den Nullvektor ergibt. Dann folgt:

$$\lambda_j v_j = -\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_{j-1} v_{j-1} - \lambda_{j+1} v_{j+1} - \dots - \lambda_n v_n \quad |\lambda_j \neq 0$$

$$v_j = \frac{1}{\lambda_j} \cdot (-\lambda_1 v_1 - \lambda_2 v_2 - \dots - \lambda_{j-1} v_{j-1} - \lambda_{j+1} v_{j+1} - \dots - \lambda_n v_n)$$

Damit ist v_j als nichttriviale Linearkombination von Vektoren aus $M \setminus \{v_j\}$ dargestellt.

" \Leftarrow " Angenommen, es gibt einen Vektor $v \in M$ sowie Vektoren $v_1, \ldots, v_n \in M \setminus \{v\}$ und Koeffizienten $\lambda_1, \ldots, \lambda_n \in K$, so dass gilt:

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n$$

$$0 = \lambda_1 v_1 + \ldots + \lambda_n v_n - 1 \cdot v$$

Dies ist eine nichttriviale Linearkombination mit Vektoren aus M, die 0 ergibt.

Definition 3.7: Basis

Eine Teilmenge B eines Vektorraums V heißt Basis von V falls B ein linear unabhängiges Erzeugendensystem ist.

BEISPIELE Für jeden Körper K gibt es die Standardbasis bzw. die kanonische Basis $\{e_1, e_2, \ldots, e_n\}$ von K^n :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Diese sind linear unabhängig, nach der Folgerung zu Punkt 3. Die Standardbasis ist ein Erzeugendensystem, da

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

Im Allgemeinen gibt es verschiedene Basen von demselben Vektorraum.

Satz 3.3: Charakterisierungen von Basen

Für eine Teilmene $B\subseteq V$ eines Vektorraums sind folgene Sätze äquivalent:

- B ist eine Basis
- $\bullet\,$ Jeder Vektor in V lässt sich auf genau eine Weise als Linearkombination von Vektoren aus B schreiben.
- B ist ein minimales Erzeugendensystem von V.
- ullet B ist eine maximal linear unabhängige Teilmenge von V

BEMERKUNG: Jeder Vektorraum besitzt eine Basis, jede Basis hat gleich viele Elemente. (auch \varnothing oder $|B|=\infty$ möglich)

Definition 3.8: Dimension

Die Anzahl der Elemente der Basis B eines Vektorraums V nennt man Dimension

$$\dim(V) = |B|$$

4: LINEARE ABBILDUNGEN

Lineare Abbildungen sind Strukturerhaltende Abbildungen zwischen Vektorräumen, sie werden deshalb auch Vektorraumhomomorphismen genannt.

Definition 4.1: Lineare Abbildungen

Seien V und W Vektorräume über dem selben Körper K. Eine Abbildung $f:V\to W$ heißt linear , falls

L1
$$\forall u, v \in V : f(u+v) = f(u) + f(v)$$
 (Additivität)

L 2
$$\forall v \in V, \lambda \in K : f(\lambda v) = \lambda \cdot f(v)$$
 (Homogenität)

BEMERKUNG: L1 ist dazu äquivalent, dass f ein Gruppenhomomorphismus zwischen den abel'schen Gruppen (V,+) und (W,+) ist.

BEISPIELE

- Für alle $\lambda \in K$ ist $f: V \to V, v \mapsto \lambda v$ eine Lineare Abbildung
- Insbesondere sind die identische Abbildung

$$\mathrm{id}_V:V\to V,v\mapsto v$$

und die Nullabbildung

$$n_V: V \to V, v \mapsto 0$$

linere Abbildungen.

• $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ ist *nicht* linear, denn

$$4 = f(2) = f(1+1) \neq f(1) + f(1) = 2$$

4.1 Matrizen

Allgemein lassen sich lineare Abbildungen durch sog. Matrizen darstellen. Sei A eine $m \times n$ -Matrix, d.h. ein rechteckiges Zahlenschema mit m Zeilen und n Spalten:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix} = ((a_{ij}))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Dann ist durch

$$f(x_1, x_2, \dots, x_n) := A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

eine lineare Abbildung $f:K^n\to K^m$ gegeben.

BEMERKUNG: Jede lineare Abbildung $f:K^n \to K^m$ lässt sich auf diese Weise mit einer $m \times n$ -Matrix mit Einträgen in K darstellen.

Satz 4.1:

Sei B eine Basis des K-Vektorraums V und sei W ein weiterer K-Vektorraum. Sei eine Abbildung $g:B\to W$ gegeben. Dann gibt es genau eine lineare Abbildung $f:V\to W$, die g in dem Sinne fortsetzt, dass $f(b)=g(b) \quad \forall b\in B$ gilt.

Beweis:

Sei v ein beliebiger Vektor aus V. Dann kann man diesen durch Linearkombination der Basisvektoren $b_1, \ldots, b_k \in B$ darstellen:

$$v = \lambda_1 b_1 + \ldots + \lambda_k b_k$$

Angenommen, f sei eine lineare Abbildung $f: V \to W$, dann gilt:

$$f(v) = f(\lambda_1 b_1 + \dots + \lambda_k b_k)$$

$$= f(\lambda_1 b_1) + \dots + f(\lambda_k b_k)$$

$$= \lambda_1 f(b_1) + \dots + \lambda_k f(b_k)$$

$$= \lambda_1 g(b_1) + \dots + \lambda_k g(b_k)$$

Damit ist der Wert von f(v) bestimmt, dies zeigt die Eindeutigkeit.

Um die Existenz einer solchen Abbildung zu zeigen, bemerken wir, dass die Linearkombination von v mit B eindeutig ist, da B eine Basis von V ist. Dies zeigt, dass $f:V\to W$ wohldefiniert ist, wenn wir die Formel von f(v) als Definition von f verwenden. Es ist noch zu zeigen, dass die so definierte Abbildung linear ist.

Seien zwei Vektoren $u, v \in V$ gegeben.

Dann gibt es $\lambda_1, \ldots, \lambda_k, \mu_1, \ldots, \mu_l, v_1, \ldots, v_k$ und w_1, \ldots, w_l so dass gilt:

$$u = \lambda_1 v_1 + \ldots + \lambda_k v_k$$
$$v = \mu_1 v_1 + \ldots + \mu_l w_l$$

Insbesondere gibt es Vektoren $b_1,\ldots,b_m\in B$ und Skalare $\alpha_1,\ldots,\alpha_m\in K$, $\beta_1,\ldots,\beta_m\in K$ so dass

$$u = \alpha_1 b_1 + \ldots + \alpha_m b_m$$
$$v = \beta_1 b_1 + \ldots + \beta_m b_m$$

Dann folgt mit unserer Definition:

$$f(u+v) = f(\alpha_1 b_1 + \ldots + \alpha_m b_m + \beta_1 b_1 + \ldots + \beta_m b_m)$$

$$= f((\alpha_1 \beta_1) b_1) + \ldots + f((\alpha_m \beta_m) b_m)$$

$$= (\alpha_1 \beta_1) g(b_1) + \ldots + (\alpha_m \beta_m) g(b_m)$$

$$= f(u) + f(v)$$

Damit ist die Additivität gezeigt.

Um die Homogenität zu zeigen, bemerken wir, falls $v = \lambda_1 b_1 + \ldots + \lambda_k b_k$ und $\mu \in K$:

$$f(\mu \cdot v) = f(\mu(\lambda_1 b_1 + \ldots + \lambda_k b_k)) = \mu \cdot f(v)$$

4.2 Darstellende Matrix

Wenn wir nun annehmen, dass V und W endlich dimensional sind, d.h es gibt endlich viele Basisvektoren v_1,\ldots,v_n von V und w_1,\ldots,w_m von W. Dann genügt es, dass man zu jedem Basisvektor v_j die eindeutig bestimmte Darstellung des Vektors $f(v_j)$ bezüglich der Basis $\{w_1,\ldots,w_m\}$ kennt.

Seien also durch

$$f(v_j) = a_{1j}w_1 + \ldots + a_{mj}w_m$$

die Einträge einer Matrix mit Koeffizietn $a_{ij} \in K$ gegeben:

$$A = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

Dann ist in der Matrix die gesamte Information über die lineare Abbildung f enthalten. Umgekehrt ist durch eine beliebige $m \times n$ -Matrix (m Zeilen, n Spalten) mit Einträgen aus K eine lineare Abbildung $V \to W$ bezüglich der Basen $\{v_1, \dots, v_n\}$ und $\{w_1, \dots, w_m\}$ gegeben. Die Matrix A heißt arstellende arstelle

Definition 4.2: Darstellende Matrix

Seien $m,n\in\mathbb{N}_0$. Die Menge der $m\times n$ -Matrizen mit Einträgen aus K wird mit $\mathrm{M}(m,n,K)$ bezeichnet. Seien v_1,\ldots,v_n und w_1,\ldots,w_m jeweils eine Basis des K-Vektorraums V bzw. W. Und sei $f:V\to W$ eine lineare Abbildung. Dann nennt man

$$A = ((a_{ij})) \in \mathcal{M}(m, n, K)$$

die darstellende Matrix von f bezüglich den Basen v_1, \ldots, v_n und w_1, \ldots, w_m von V bzw. W, falls

$$f(v_j) = a_{1j}w_1 + \ldots + a_{mj}w_m \quad \forall j \in \{1, \ldots, n\}$$

MERKREGEL Die Spalten der darstellenden Matrix sind die Bilder der Basisvektoren.

Lineare Abbildungen sind wegen der Additivität Insbesondere Gruppenhomomorphismen bezüglich der Addition. Analog wie für Gruppenhomomorphismen gilt:

Satz 4.2:

Bild und Kern einer linearen Abbildung $f:V\to W$ sind jeweils Untervektorräume von V bzw. W.

Beweis:

• $\operatorname{Bild}(f)$ ist ein Untervektorraum von W:

Wegen $f(0) \in Bild(f)$ ist Bild(f) nicht leer.

Seien außerdem $f(u), f(v) \in Bild(f)$, dann gilt:

$$f(u) + f(v) = f(u+v) \in Bild(f)$$

und ebenso

$$\lambda f(v) = f(\lambda \cdot v) \in \text{Bild}(f) \quad \forall \lambda \in K$$

• $\operatorname{Kern}(f)$ ist ein Untervektorraum von V:

Es gilt für jede lineare Abbildung, dass das neutrale Element eines Vektorraums auf das neutrale Element des Zielvektorraums abgebildet wird, d.h. f(0)=0. Also ist $\mathrm{Kern}(f)$ nicht leer

Seien $u, v \in \text{Kern}(f)$, dann folgt:

$$f(u+v) = f(u) + f(v) = 0 + 0 = 0 \in \text{Kern}(f)$$

und ebenso

$$f(\lambda \cdot v) = \lambda f(v) = \lambda \cdot 0 = 0 \in \text{Kern}(f) \quad \forall \lambda \in K$$

Definition 4.3:

Eine lineare Abbildung $f: V \to W$ heißt

 $\label{eq:def-poisson} \mbox{Vektorraum-} \left\{ \begin{aligned} &\mbox{Monomorphismus, falls } f \mbox{ injektiv ist} \\ &\mbox{Epimorphismus, falls } f \mbox{ bijektiv ist} \\ &\mbox{Isomorphismus, falls } W = V \end{aligned} \right.$

Automorphismus, falls f ein bijektiver Endomorphismus ist

BEMERKUNG:

- $\bullet \;$ Die Automorphismen ${\rm Aut}(V)$ eines Vektorraums V bilden eine Gruppe mit der Verkettung als Verknüpfung.
- ullet Die Menge der Endo- bzw. Automorphismen wird mit $\mathrm{End}(V)$ bzw. $\mathrm{Aut}(V)$ bezeichnet.
- Die Menge der linearen Abbildungen $V \to W$ mit $\operatorname{Hom}(V, W)$.

Definition 4.4: Rang einer Abbildung

Die Dimension des Bildes einer linearen Abbildung f heißt auch Rang von f (engl. rank).

$$\operatorname{rk}(f) := \dim(\ker f)$$

Satz 4.3: Dimensionsformel für lineare Abbildungen

Für lineare Abbildungen $f:V\to W$ gilt, falls V endlich dimensional ist, die *Dimensionsformel für lineare Abbildungen*:

$$\dim(V) = \operatorname{rk}(f) + \dim(\ker f)$$
$$= \dim(\operatorname{im} f) + \dim(\ker f)$$

Lemma 4.1:

Eine lineare Abbildung $f:V \to W$ ist genau dann injektiv, wenn ihr Kern trivial ist.

5: MATRIZENRECHNUNG

Sei M(m, n, K) die Menge der $m \times n$ -Matrizen mit Einträgen aus K.

Matrizen, deren Zeilenzahl mit der Spaltenzahl übereinstimmen nennt man *quadratisch*. Wir beschreiben sie mit M(n,K) := M(n,n,K).

Für eine Matrix $A \in M(n, K)$ schreibt man:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix} = ((a_{ij}))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

Definition 5.1: Matrizenaddition

Die Addition zweier Matrizen $A=(a_{ij}), B=(b_{ij})\in M(m,n,K)$ gleicher Zeilen- und Spaltenzahl ist komponentenweise definiert:

$$C := A + B$$
 wobei $c_{ij} = a_{ij} + (b_{ij} \quad \forall 1 \le i \le m, 1 \le j \le n$

Definition 5.2: Skalare Multiplikation

Die skalare Multiplikation einer Matrix $A=(a_{ij}\in M(m,n,K) \text{ mit } \lambda\in K \text{ ist definiert durch:}$ $\lambda A\coloneqq \lambda(a_{ij}) \quad \forall 1\leq i\leq m, 1\leq j\leq n \text{ (wiederum komponentenweise)}$

BEMERKUNG: Mit diesen beiden Operationen wird M(m,n,K) zu einem K-Vektorraum. Dieser ist isomorph zu $K^{m\cdot n}$. D.h. es gibt einen Vektorraumisomorphismus $M(m,n,K)\to K^{m\cdot n}$.

$$M(m, n, K) \stackrel{\sim}{=} K^{m \cdot n}$$

Deswegen sieht man auch die Bezeichnung $K^{m \cdot n}$ für M(m, n, K).

Definition 5.3: Matrixprodukt

Seien $A \in M(l, \mathbf{m}, K), B \in M(\mathbf{m}, n, K)$ d.h. stimmen die Spaltenzahl von A mit der Zeilenzahl von B überein.

Dann ist das Matrixprodukt:

$$A \cdot B = C \in M(l, n, K)$$

definiert durch:

$$C = (c_{ij}) = \left(\sum_{k=1}^{m} a_{ik} \cdot a_{kj}\right)$$

MERKREGEL Zeile mal Spalte

Wir werden sehen, dass das Matrixprodukt der Verkettung zweier linearer Abbildungen $K^n \to K^m$ und $K^m \to K^l$ entspricht.

BEMERKUNG:

- Die Matrixmultiplikation ist *nicht* kommutativ!
- ullet Spezialfall: Anwenden einer Matrix auf einen Spaltenvektor: Man fasst Spaltenvektoren aus K^n als n imes 1-Matrizen auf.