Making it easier to be tidy

Session 8

Kieran Healy Statistical Horizons, April 2021

Load the packages, as always

```
library(here)
                   # manage file paths
## here() starts at /Users/kjhealy/Documents/courses/data wrangling
library(socviz)
                 # data and some useful functions
###
## Attaching package: 'socviz'
## The following object is masked from 'package:kjhutils':
##
###
       %nin%
library(tidyverse) # your friend and mine
                                                                – tidyverse 1.3.0 —
## — Attaching packages -
## √ ggplot2 3.3.3
                   √ purrr 0.3.4
## \checkmark tibble 3.1.1 \checkmark dplyr 1.0.5
## √ tidyr 1.1.3 √ stringr 1.4.0
## √ readr 1.4.0
                   \checkmark forcats 0.5.1
## -- Conflicts --
                                                           tidyverse conflicts() —
## x dplyr::filter() masks stats::filter()
## x purrr::is null() masks testthat::is null()
## x dplyr::lag()
                      masks stats::lag()
## x dplyr::matches() masks tidyr::matches(), testthat::matches()
library(haven)
                   # for Stata, SAS, and SPSS files
library(broom)
                   # tidy model summaries
```

MOVINE ahead

Some helpful things

The RStudio Community

The reprex package

Reference

Articles ▼

Overview

Prepare reprexes for posting to GitHub issues, StackOverflow, in Slack messages or snippets, or even to paste into PowerPoint or Keynote slides. What is a reprex? It's a reproducible example, as coined by Romain François.

Given R code on the clipboard, selected in RStudio, as an expression (quoted or not), or in a file ...

- runitvia rmarkdown::render(),
- with deliberate choices re: render() arguments, knitr options, and Pandoc options.

Get resulting runnable code + output as

- Markdown, suitable for GitHub or Stack Overflow or Slack, or as
- R code, augmented with commented output, or as
- Plain HTML or (experimental) Rich Text

The result is returned invisibly, written to a file and, if possible, placed on the clipboard. Preview an HTML version in RStudio viewer or default browser.

Installation

Links

Download from CRAN at

https://cloud.r-project.org/

package=reprex

Browse source code at

https://github.com/tidyverse/reprex/

Report a bug at

https://github.com/tidyverse/reprex/

issues

License

Full license

MIT + file LICENSE

Community

Contributing guide

Code of conduct

Developers

Best demonstrated live

When asking for help, make a reproducible example

8 Coruscant Human

10 Kashyyyk Wookiee

... with 48 more rows

Kaminoan

9 Kamino

2 2.30

2 2.30

2 2.30

```
library(reprex)
library(tidyverse)
starwars %>%
  count(homeworld, species) %>%
  mutate(pct = n / sum(n) * 100) %>%
  arrange(desc(pct))
## # A tibble: 58 x 4
     homeworld species
                          n pct
                      <int> <dbl>
     <chr>
              <chr>
   1 Tatooine Human
                          8 9.20
   2 Naboo
                      5 5.75
              Human
              Human
                      5 5.75
   3 <NA>
   4 Alderaan Human
                      3 3.45
   5 Naboo
              Gungan
                          3 3.45
   6 <NA>
              Droid
                          3 3.45
   7 Corellia Human
                        2 2.30
```

The usethis package

usethis 2.0.1.9000

Setup Re

Reference Articles ▼

News ▼

Search...

usethis

usethis is a workflow package: it automates repetitive tasks that arise during project setup and development, both for R packages and non-package projects.

Installation

Install the released version of usethis from CRAN:

install.packages("usethis")

Or install the development version from GitHub with:

install.packages("devtools")
devtools::install_github("r-lib/usethis")

Usage

Most use_*() functions operate on the *active project*: literally, a directory on your computer. If you've just used usethis to create a new package or project, that will be the active project. Otherwise, usethis verifies that current working directory is or is below a valid project directory and that becomes the active project. Use proj_get() or proj_sitrep() to manually query the project and read more in the docs.

A few usethis functions have no strong connections to projects and will expect you to provide a path.

Links

Download from CRAN at https://cloud.r-project.org/package=usethis

Browse source code at https://github.com/r-lib/usethis/

Report a bug at https://github.com/r-lib/usethis/issues

License

Full license

MIT + file LICENSE

Community

Contributing guide

Code of conduct

Developers

Hadley Wickham

Author (D)

Jennifer Bryan

Author, maintainer (i)

Malcolm Barrett

The packages that made these slides

Never paste tables into a slide again!

```
# Never .kjh-orange[copy and paste] code to a slide again!
.pull-left[
![:scale 100%](img/xaringan-sample.png)
.pull-right[
```{r}
Oh no, its the GSS
gss_sm %>%
 count(bigregion, religion)
```

religion	Northeast	Midwest	South	West
Protestant	158	325	650	238
Catholic	162	172	160	155
Jewish	27	3	11	10
None	112	157	170	180
Other	28	33	50	48
NA	1	5	11	1

The **gtsummary** package is very powerful. There are a number of other very good tidy table-making options too.

```
library(gtsummary)
trial
A tibble: 200 x 8
 age marker stage grade response death ttdeath
 trt
##
 <chr> <dbl> <dbl> <fct> <fct>
 <int> <int>
 <dbl>
 1 Drug A
 23 0.16 T1
 II
 24
 1.11 T2
 2 Drug B
 24
 3 Drug A
 31 0.277 T1
 24
 4 Drug A
 NA 2.07 T3
 III
 17.6
 5 Drug A
 51 2.77 T4
 III
 16.4
 6 Drug B
 39 0.613 T4
 15.6
 7 Drug A
 37 0.354 T1
 II
 24
 8 Drug A
 32 1.74 T1
 18.4
 31 0.144 T1
 9 Drug A
 TT
 24
10 Drug B
 34 0.205 T3
 10.5
... with 190 more rows
```

The **gtsummary** package is very powerful. There are a number of other very good tidy table-making options too.

```
trial %>%
 tbl_summary(
 by = trt, # split table by group
 missing = "no" # don't list missing data separately
) %>%
 add_n() %>% # add column with total number of non-missing observations
 add_p() %>% # test for a difference between groups
 modify_header(label = "**Variable**") %>% # update the column header
 bold_labels()
```

### Tables, tables

Variable	N	<b>Drug A, N = 98</b> <sup>1</sup>	<b>Drug B, N = 102</b> <sup>1</sup>	p-value <sup>2</sup>	
Age	189	46 (37, 59)	48 (39, 56)	0.7	
Marker Level (ng/mL)	190	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)	0.085	
T Stage	200			0.9	
T1		28 (29%)	25 (25%)		
T2		25 (26%)	29 (28%)		
T3		22 (22%)	21 (21%)		
T4		23 (23%)	27 (26%)		
Grade	200			0.9	
I		35 (36%)	33 (32%)		
II		32 (33%)	36 (35%)		
III		31 (32%)	33 (32%)		
<b>Tumor Response</b>	193	28 (29%)	33 (34%)	0.5	
Patient Died	200	52 (53%)	60 (59%)	0.4	
<b>Months to Death/Censor</b>	200	23.5 (17.4, 24.0)	21.2 (14.6, 24.0)	0.14	
<ul> <li><sup>1</sup> Median (IQR); n (%)</li> <li><sup>2</sup> Wilcoxon rank sum test; Pearson's Chi-squared test</li> </ul>					

#### gtsummary() straight out of the box:

```
gss_sm %>%
 select(race, degree, marital) %>%
 drop_na() %>%
 tbl_summary(
 by = race, # split table by group
 missing = "no" # don't list missing data separately
) %>%
 add_n() %>% # add column with total number of non-missing observations
modify_header(label = "**Variable**") %>% # update the column header
 bold_labels()
```

Variable	N	White, N = 2,096 <sup>1</sup>	Black, N = 487 <sup>1</sup>	Other, N = 276 <sup>1</sup>
degree	2,859			
Lt High School		197 (9.4%)	60 (12%)	71 (26%)
High School		1,057 (50%)	292 (60%)	112 (41%)
Junior College		166 (7.9%)	33 (6.8%)	17 (6.2%)
Bachelor		426 (20%)	71 (15%)	39 (14%)
Graduate		250 (12%)	31 (6.4%)	37 (13%)
marital	2,859			
Married		979 (47%)	121 (25%)	110 (40%)
Widowed		196 (9.4%)	35 (7.2%)	18 (6.5%)
Divorced		363 (17%)	93 (19%)	39 (14%)
Separated		55 (2.6%)	27 (5.5%)	20 (7.2%)
Never Married		503 (24%)	211 (43%)	89 (32%)
<sup>1</sup> n (%)				

#### Tables, tables

#### With a bit more work ...

Characteristic	<b>Drug A, N = 98</b>	<b>Drug B, N = 102</b>
Age		
N	91	98
Mean (SD)	47 (15)	47 (14)
Median (IQR)	46 (37, 59)	48 (39, 56)
Range	6, 78	9, 83
Marker Level (ng/mL)		
N	92	98
Mean (SD)	1.02 (0.89)	0.82 (0.83)
Median (IQR)	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)
Range	0.00, 3.87	0.00, 3.64

#### Similar to earlier, but simpler:

```
library(gapminder)
Fit as a function, for clarity
fit_ols <- function(df) {</pre>
 lm(lifeExp ~ log(gdpPercap), data = df)
out le <- gapminder %>%
 filter(continent %nin% "Oceania") %>%
 group by(continent) %>%
 nest() %>%
 mutate(model = map(data, fit ols),
 mod sum = map(model, glance),
 mod_terms = map(model, tidy, conf.int = TRUE),
) %>%
 unnest(cols = c(mod terms))
```

```
A tibble: 8 x 11
Groups: continent [4]
 continent data
##
 model mod sum term estimate std.error statistic
 p.value
<fct>
 t> t
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>
1 Asia
 <tibbl... <lm> <tibble... (Int...
 9.58
 2.71
 3.54 4.46e- 4
 <tibbl... <lm>
排 2 Asia
 <tibble... log(...
 6.25
 0.331
 18.9 3.73e- 57
3 Europe <tibbl... <lm>
 <tibble... (Int...
 13.0
 1.92
 6.76 5.52e- 11
 6.31
 0.205
4 Europe
 <tibbl... <lm>
 <tibble... log(...
 30.8 8.06e-103
排 5 Africa
 <tibbl... <lm>
 <tibble... (Int...
 7.60
 2.63
 2.89 4.03e- 3
6 Africa
 <tibbl... <lm>
 <tibble... log(...
 5.69
 0.361
 15.8 1.86e- 47
 -19.1
7 Americas <tibbl... <lm>
 <tibble... (Int...
 4.82
 -3.95 9.65e- 5
8 Americas <tibbl... <lm>
 <tibble... log(...
 9.72
 0.558
 17.4 2.51e- 47
... with 2 more variables: conf.low <dbl>, conf.high <dbl>
```

out\_le

The printy package is by T.J. Mahr

#### text\_ready

```
A tibble: 8 x 5
Groups: continent [4]
 continent term
##
 estimate se
 сi
 <fct>
##
 <chr>
 <chr>
 <chr> <glue>
1 Asia
 (Intercept)
 9.58
 2.706 [4.26, 14.90]
2 Asia
 log(gdpPercap) 6.25
 0.331 [5.60, 6.90]
3 Europe
 (Intercept)
 12.97
 1.917 [9.19, 16.74]
4 Europe
 log(gdpPercap) 6.31
 0.205 [5.91, 6.71]
5 Africa
 (Intercept)
 7.60
 2.632 [2.43, 12.77]
6 Africa
 log(gdpPercap) 5.69
 0.361 [4.98, 6.40]
7 Americas (Intercept)
 -19.07
 4.824 [-28.56, -9.58]
8 Americas log(gdpPercap) 9.72
 0.558 [8.62, 10.82]
```

#### Now ...

```
stats <- text_ready %>%
 mutate(term = janitor::make_clean_names(term)) %>%
 printy::super_split(continent, term) # Thanks again, TJ Mahr
```

#### Why are we doing this?

```
stats
$Africa
$Africa$intercept
A tibble: 1 x 5
Groups: continent [1]
 continent term estimate se ci
<fct> <chr> <chr
1 Africa intercept 7.60 2.632 [2.43, 12.77]
##
$Africa$log_gdp_percap
A tibble: 1 x 5
Groups: continent [1]
 continent term
 estimate se
 сi
 <fct> <chr> <chr
1 Africa log_gdp_percap 5.69 0.361 [4.98, 6.40]
##
##
$Americas
$Americas$intercept
A tibble: 1 x 5
Groups: continent [1]
....
```

```
The Intercept term for Africa was 'r stats$Africa$intercept$estimate' 'r stats$Africa$intercept$ci'.

For Europe it was 'r stats$Europe$intercept$estimate' 'r stats$Europe$intercept$ci'
```

The Intercept term for Africa was 7.60 [2.43, 12.77].

For Europe it was 12.97 [9.19, 16.74].

For more, see this post by TJ Mahr:

https://www.tjmahr.com/lists-knitr-secret-weapon/