Course Introduction

SWEN 304
Database System Engineering
Trimester 2, 2017

Coordinator: Dr Hui Ma

Lecturer: Dr Pavle Mogin

Engineering and Computer Science

- Lecturer and course coordinator:
 - Dr. Hui Ma
 - CO 259
 - Ph: (ext) 5657
 - Hui.Ma@ecs.vuw.ac.nz
- Lecturer:
 - Dr. Pavle Mogin
 - CO 230
 - Ph: (ext) 5352
 - pavle.mogin@ecs.vuw.ac.nz
- Lecturer:
 - TBA

- Tutors:
 - Alexandre Sawczuk da Silva
 - Chen Wang
 - Qurrat Ul Ain
 - Mansour Javaher
- School office: CO358, Ph. 463 5341
- Class representative: please nominate

Three lectures per week (2 lectures + 1 tutorial)

Day	Time	Where
Monday	15:10 16:00	HU LT323
Tuesday	15:10 16:00	HU LT323
Thursday	15:10 16:00	HU LT323

- Slides will be posted on the course website
- Expected workload: 10 12 hours a week

Tutorials and Help Desks

- Lectures and tutorials will not be strictly divided
- In principle, Thursday time slot will be for tutorials
- What:
 - Stuff from lectures,
 - Extending stuff from lectures,
 - Assignments, and
 - Projects
- Help desks will be offered from week 3 in the labs (CO238 or CO219) to help you with your assignments and projects
 - Details will be posted on the course website and announced in the lectures

Assessment:

Assignment 1: 5%
Assignment 2: 5%
Assignment 3: 5%
Assignment 4: 5%
Project 1: 10%
Project 2: 10%
Final examination 60%

To Pass the Course

- Mandatory Requirements:
 - at least 40% of all marks for projects and assignments.
- To pass the course
 - meet the mandatory requirements
 - at least a **D** grade for the final exam
 - at least a C- grade overall

 Slides and other information will be posted on the course website:

https://ecs.victoria.ac.nz/Courses/SWEN304 2017T2/

Discussion Forum:

http://ecs.victoria.ac.nz/cgi-bin/yabb/YaBB.pl?board=SWEN304 2017T2

Assignments and Projects

- Helpful Links:
 - PostgreSQL documentation,
 - Java Tutorial Manual

General Information

Prerequisite:
 COMP 261 (or SWEN 221),
 ENGR 123 (or MATH 161)

Textbook:

ElMasri, Navathe: **Fundamentals of Database Systems,** Sixth Edition, Addison Wesley

 An ebook is available on the Internet (google it), e.g.,

http://www.cvauni.edu.vn/imgupload_dinhkem/file/CSDL/Funda mentals_of_Database_Systems,_6th_Edition.pdf

Why Learn Database Systems?

- Databases and database systems are essential components of everyday life
 - Traditional database applications: student records, census data, bank accounts, etc.
 - Multimedia databases: images, audio, video streams
 - Geographic information systems (GIS): maps, weather data, satellite images
 - Data warehouses and online analytical processing (OLAP)
 - Real-time and Active Databases
 - Cloud Databases and NoSQL databases like Cassandra and MongoDB (SWEN 432)
 - Many other applications

Why Learn Database Systems?

- Databases play a critical role in almost all areas where computes are used, e.g. business, e-commerce, engineering, medicine, government, education
- Efficiency of an application depends on the quality of (logical and physical) data organization
- Databases is a matured area with a sound theoretical foundation and great practical knowledge
- We need to understand fundamentals of database technology
- This course is an introduction to database systems and database system engineering

An Example

- UNIVERSITY database
 - Information concerning students, courses, and grades in a university environment

Data records

- STUDENT
- COURSE
- GRADES
- Specify structure of records of each file by specifying data type for each data element
 - String of alphabetic characters
 - Integer, etc.

- Construct UNIVERSITY database
 - Store data to represent each student, course, and grade report as a record in appropriate file
- Relationships among the records
- We can query and update the database

An Example (cont'd.)

• Examples of queries:

- Retrieve the transcript
- List the names of students who took the 'SWEN304' course and their grades
- List the prerequisites of the 'SWEN304' course

• Examples of updates:

- Change the major of 'Smith' to 'SWEN'
- Create a new course 'WISE'
- Enter a grade of 'A' for 'Smith' in the 'SWEN304'

An Example (cont'd.)

- Phases for designing a database:
 - Requirements specification and analysis
 - Conceptual design
 - Logical design
 - Physical design

An Example (cont'd.)

STUDENT				
ld	Lname	Fname	Major	
300111	Smith	Susan	COMP	
300121	Bond	James	MATH	
300132	Smith	Susan	COMP	

Course				
Course_id	Cname	Points	Dept	
SWEN304	DB sys	15	Engineering	
COMP301	softEng	20	Engineering	
MATH214	DisMat	15	Mathematics	

GRADES				
ld	Course_id	Grade		
300111	SWEN304	A+		
300111	COMP301	A		
300111	MATH214	Α		
300121	COMP301	В		
300132	COMP301	С		
300121	SWEN304	B+		
300132	SWEN304	C+		

Actors on the Scene

- Database administrators (DBA) are responsible for:
 - Authorizing access to the database
 - Coordinating and monitoring its use
 - Acquiring software and hardware resources
- Database designers are responsible for:
 - Identifying the data to be stored
 - Choosing appropriate structures to represent and store this data
- End users: people whose jobs require access to the database
 - e.g., Casual users, Naïve or parametric users, sophisticated users, standalone users

Actors on the Scene (cont'd.)

System analysts

Determine requirements of end users

Application programmers

Implement these specifications as programs

Workers behind the Scene

DBMS system designers and implementers

 Design and implement the DBMS modules and interfaces as a software package

Tool developers

Design and implement tools

Operators and maintenance personnel

 Responsible for running and maintenance of hardware and software environment for database systems

Victoria UNIVESTIVO PRELINGUO TE WHATE Winangu o to Eu Dook oo te lina a Maia TOPICS

- Introduction to Database Systems (basic terms and concepts),
- Relational data model (RDM) and database management system (DBMS),
- Structured Query Language (SQL),
- Query optimization
- Stored procedures, Triggers, and User Defined Functions

- Database Design
 - ER Data Model
 - Update Anomalies
 - Lossless Join
 - Functional Dependencies
 - Normal Forms and Normalization
- Transaction processing, concurrency control, and recovery

Plan for next lecture

- Databases (DB) and data
- Database management systems (DBMS)
- Database systems (DBS)

- Reading:
 - Chapter 1 of the textbook