Credit Card Churn Prediction Based on Spending Behaviors

0. Setup Google Drive Environment and Get Data

```
!pip install -U -q PyDrive

from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials

auth.authenticate_user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get_application_default()
drive = GoogleDrive(gauth)

file = drive.CreateFile('id':'INWnmneo12ApYRv18uBYtFsNNbSDVWiz6'}) # replace the id with id of file you want to access
file.GetContentFile('data.csv')

import pandas as pd
import numpy as np

df = pd.read_csv('data.csv')

df.head()
```

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Statu
0	768805383	Existing Customer	45	М	3	High School	Marrie
1	818770008	Existing Customer	49	F	5	Graduate	Singl
2	713982108	Existing Customer	51	М	3	Graduate	Marrie
3	769911858	Existing Customer	40	F	4	High School	Unknow
4	709106358	Existing Customer	40	М	3	Uneducated	Marrie

5 rows × 23 columns

1. Data Overview

 ${\tt df.\,info}\,()$

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10127 entries, 0 to 10126
Data columns (total 23 columns):
                                                                                                                                            Non-Nul
# Column
0 CLIENTNUM
                                                                                                                                            10127 n
     Attrition_Flag
                                                                                                                                            10127 n
     Customer_Age
                                                                                                                                            10127 n
                                                                                                                                            10127 n
     Gender
                                                                                                                                            10127 n
     Dependent count
     Education_Level
                                                                                                                                            10127 n
                                                                                                                                            10127 n
     Marital Status
     Income_Category
                                                                                                                                            10127 n
     Card_Category
                                                                                                                                            10127 n
     Months_on_book
                                                                                                                                            10127 n
 10 Total_Relationship_Count
                                                                                                                                            10127 n
     Months_Inactive_12_mon
                                                                                                                                            10127 n
     Contacts_Count_12_mon
                                                                                                                                            10127 n
 13 Credit_Limit
                                                                                                                                            10127 n
 14 Total Revolving Bal
                                                                                                                                            10127 n
                                                                                                                                            10127 n
 15 Avg_Open_To_Buy
     Total_Amt_Chng_Q4_Q1
                                                                                                                                            10127 n
 16
                                                                                                                                            10127 n
 17 Total_Trans_Amt
 18
     Total_Trans_Ct
                                                                                                                                            10127 \ n
 19
    Total_Ct_Chng_Q4_Q1
                                                                                                                                            10127 n
 20 Avg_Utilization_Ratio
                                                                                                                                            10127 n
     Naive\_Bayes\_Classifier\_Attrition\_Flag\_Card\_Category\_Contacts\_Count\_12\_mon\_Dependent\_count\_Education\_Level\_Months\_Inactive\_12\_mon\_1
                                                                                                                                           10127 n
```

22 Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2 10127 n dtypes: float64(7), int64(10), object(6) memory usage: 1.8+ MB

df.nunique() CLIENTNUM 10127 Attrition Flag Customer_Age 45 Gender Dependent_count ${\tt Education_Level}$ Marital_Status Income_Category Card_Category Months_on_book Total Relationship Count 6 Months Inactive 12 mon ${\tt Contacts_Count_12_mon}$ 6205 Credit Limit Total_Revolving_Bal 1974 Avg_Open_To_Buy 6813 Total_Amt_Chng_Q4_Q1 1158 5033 Total_Trans_Amt Total_Trans_Ct 126 Total Ct Chng Q4 Q1 830 Avg_Utilization_Ratio 964 $Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1$ 1704 Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2 640

As shown above, this data set has 10127 rows and 22 columns from 4 categories:

(1).Demographic Information

CLIENTNUM: Unique identifier for each customer.

Customer_Age: Age of customer.

Gender: Gender of customer.

Dependent_count: Number of dependents that customer has.

Education_Level: Education level of customer.

Marital_Status: Marital status of customer.

Income_Category: Income category of customer.

(2). Relationship with Card Provider

Card_Category: Type of card held by customer.

Months_on_book: How long customer has been on the books.

Total_Relationship_Count: Total number of relationships customer has with the credit card provider.

Months_Inactive_12_mon: Number of months customer has been inactive in the last twelve months.

Contacts_Count_12_mon: Number of contacts customer has had in the last twelve months.

Credit_Limit: Credit limit of customer.

(3). Spending Behavior

Total_Revolving_Bal: Total revolving balance of customer.

Avg_Open_To_Buy: Average open to buy ratio of customer.

 $Total_Amt_Chng_Q4_Q1: Total\ amount\ changed\ from\ quarter\ 4\ to\ quarter\ 1.$

Total_Trans_Amt: Total transaction amount.

Total_Trans_Ct: Total transaction count.

Total_Ct_Chng_Q4_Q1: Total count changed from quarter 4 to quarter 1.

Avg_Utilization_Ratio: Average utilization ratio of customer.

(4).Information for Prediction

Attrition_Flag: Flag indicating whether or not the customer has churned out.

Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon:

Naive Bayes classifier for predicting whether or not someone will churn

2. Spending Behavior Preprocessing

Pick out spending behavior features from data

df_sp = df[['Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', 'Avg_df_sp.head()

	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	Total_Trans_Amt	Total_Trans_Ct Tot
0	777	11914.0	1.335	1144	42
1	864	7392.0	1.541	1291	33
2	0	3418.0	2.594	1887	20
3	2517	796.0	1.405	1171	20
4	0	4716.0	2.175	816	28

```
\label{eq:y} \begin{array}{lll} y &=& df['Attrition\_Flag'] \\ y.replace(\{'Existing Customer': 0, 'Attrited Customer': 1\}, inplace=True) \\ y.head() \end{array}
```

Name: Attrition_Flag, dtype: int64

We can see that features in spending behaviors are all described by numeric values. Let's take a look at them.

df_sp.isnull().sum()

 Total_Revolving_Bal
 0

 Avg_Open_To_Buy
 0

 Total_Amt_Chng_Q4_Q1
 0

 Total_Trans_Amt
 0

 Total_Trans_Ct
 0

 Total_Ct_Chng_Q4_Q1
 0

 Avg_Utilization_Ratio
 0

 dtype: int64

df_sp.describe()

	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	Total_Trans_Amt	Total_Trans_Ct
count	10127.000000	10127.000000	10127.000000	10127.000000	10127.000000
mean	1162.814061	7469.139637	0.759941	4404.086304	64.858695
std	814.987335	9090.685324	0.219207	3397.129254	23.472570
min	0.000000	3.000000	0.000000	510.000000	10.000000
25%	359.000000	1324.500000	0.631000	2155.500000	45.000000
50%	1276.000000	3474.000000	0.736000	3899.000000	67.000000
75%	1784.000000	9859.000000	0.859000	4741.000000	81.000000
max	2517.000000	34516.000000	3.397000	18484.000000	139.000000

```
import matplotlib.pyplot as plt
import seaborn as sns

df_plt = df_sp.join(y)
```

df_plt.head()

	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	Total_Trans_Amt	Total_Trans_Ct Tot
0	777	11914.0	1.335	1144	42
1	864	7392.0	1.541	1291	33
2	0	3418.0	2.594	1887	20
3	2517	796.0	1.405	1171	20
4	0	4716.0	2.175	816	28

```
# boxplot
_,axss = plt.subplots(2, 4, figsize=[20,10])
sns.boxplot(x='Attrition_Flag', y ='Total_Revolving_Bal', data=df_plt, ax=axss[0][0])
sns.boxplot(x='Attrition_Flag', y ='Avg_Open_To_Buy', data=df_plt, ax=axss[0][1])
sns.boxplot(x='Attrition_Flag', y ='Total_Amt_Chng_Q4_Q1', data=df_plt, ax=axss[0][2])
sns.boxplot(x='Attrition_Flag', y ='Total_Trans_Amt', data=df_plt, ax=axss[0][3])
sns.boxplot(x='Attrition_Flag', y ='Total_Trans_Ct', data=df_plt, ax=axss[1][0])
sns.boxplot(x='Attrition_Flag', y ='Total_Ct_Chng_Q4_Q1', data=df_plt, ax=axss[1][1])
sns.boxplot(x='Attrition_Flag', y ='Avg_Utilization_Ratio', data=df_plt, ax=axss[1][2])
```


We can see that there are a lot of outliers in the data. Let's drop all the outliers and fill them with the median value of corresponding features.

```
def iqr_outlier_rm(dt_input):
           1q, uq=np. percentile(dt_input, [25, 75])
           lower_1=lq - 1.5*(uq-lq)
           upper_l = uq + 1.5*(uq-lq)
           return dt_input[(dt_input >= lower_l) & (dt_input <= upper_l)]</pre>
df_sp_ws = iqr_outlier_rm(df_sp)
#df_plt_ws.dropna(axis = 0, how = 'any', inplace = True)
df_sp_ws.info()
                <class 'pandas.core.frame.DataFrame'>
               RangeIndex: 10127 entries, 0 to 10126
              Data columns (total 7 columns):
                # Column
                                                                                       Non-Null Count
                                                                                                                               Dtype
                                                                                       10127 non-null
                 0
                           Total_Revolving_Bal
                                                                                                                                 int64
                           Avg_Open_To_Buy
                                                                                        5662 non-nu11
                                                                                                                                  float64
                           Total\_Amt\_Chng\_Q4\_Q1
                                                                                        10127 non-null
                                                                                                                                 float64
                 3
                           {\tt Total\_Trans\_Amt}
                                                                                        6470 non-null
                                                                                                                                  float64
                           Total_Trans_Ct
                                                                                        10127 non-null
                                                                                                                                int64
                           Total_Ct_Chng_Q4_Q1
                                                                                        10127 non-null
                                                                                                                                 float64
                                                                                     10127 non-null
                           Avg_Utilization_Ratio
                                                                                                                                 float64
              dtypes: float64(5), int64(2)
              memory usage: 553.9 KB
\label{lem:continuous} $$ df_sp_ws['Avg_0pen_To_Buy']. fillna(df_sp_ws['Avg_0pen_To_Buy']. median(), inplace = True) $$ $$ (Avg_0pen_To_Buy'). The substitution of t
df_sp_ws['Total_Trans_Amt'].fillna(df_sp_ws['Avg_Open_To_Buy'].median(), inplace = True)
df sp ws.info()
                <class 'pandas.core.frame.DataFrame'>
               RangeIndex: 10127 entries, 0 to 10126
               Data columns (total 7 columns):
                           Column
                                                                                       Non-Null Count
                                                                                       10127 non-null
                           Total_Revolving_Bal
                           Avg_Open_To_Buy
                                                                                        10127 non-null
                                                                                                                                 float64
                                                                                        10127 non-null float64
                           Total_Amt_Chng_Q4_Q1
```

3 Total_Trans_Amt 10127 non-null float64 Total_Trans_Amt 10127 non-null float64
Total_Trans_Ct 10127 non-null int64
Total_Ct_Chng_Q4_Q1 10127 non-null float64 6 Avg_Utilization_Ratio 10127 non-null float64

dtypes: float64(5), int64(2) memory usage: 553.9 KB

 ${\tt df_sp_ws.\,describe}\,()$

	Total_Revolving_Bal	Avg_Open_To_Buy	${\tt Total_Amt_Chng_Q4_Q1}$	Total_Trans_Amt	Total_Trans_Ct
count	10127.000000	10127.000000	10127.000000	10127.000000	10127.000000
mean	1162.814061	1585.645463	0.759941	2237.537286	64.858695
std	814.987335	840.005231	0.219207	1050.033500	23.472570
min	0.000000	3.000000	0.000000	510.000000	10.000000
25%	359.000000	1324.500000	0.631000	1438.300000	45.000000
50%	1276.000000	1438.300000	0.736000	1658.000000	67.000000
75%	1784.000000	1521.500000	0.859000	3050.000000	81.000000
max	2517.000000	4391.000000	3.397000	4391.000000	139.000000

3. Model Training and Evaluation

(1) Preparation

Split data to train set and test set

from sklearn import model_selection

 $x_train, \quad x_test, \quad y_train, \quad y_test = model_selection. \\ train_test_split(df_sp_ws, \quad y, \quad test_size=0.25, \quad stratify = y, \quad random_state=1)$ #I want to generate the same report everytime I run this colab x_train_temp = x_train.copy() x_train.head()

	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	Total_Trans_Amt	Total_Trans_Ct
9440	1583	1438.3	0.824	1438.3	112
959	1434	4127.0	1.423	1820.0	42
7737	2505	111.0	0.828	2576.0	42
7175	0	1438.3	0.809	2600.0	44
5844	0	1438.3	0.622	4333.0	84

Standarlize data sets

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(x_train)

 $x_{train} = pd.DataFrame(scaler.transform(x_train))$

x_test = pd.DataFrame(scaler.transform(x_test))

x_train.columns = df_sp.columns x_test.columns = df_sp.columns

x_train.head()

	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	Total_Trans_Amt	Total_Trans_Ct T	ľot
0	0.518958	-0.167468	0.292157	-0.761188	2.014456	
1	0.336068	3.037316	3.018093	-0.397718	-0.974368	
2	1.650670	-1.749538	0.310360	0.322175	-0.974368	
3	-1.424100	-0.167468	0.223895	0.345029	-0.888973	
4	-1.424100	-0.167468	-0.627106	1.995260	0.818926	

(2)Random Forest model

Train model

Use Grid Search to Find Optimal Hyperparameters Using Cross Validation(CV)

```
from sklearn.model selection import GridSearchCV
# helper function for printing out grid search results
print ("Best parameters set:")
       best_parameters = gs.best_params_
       for param_name in sorted(best_parameters.keys()):
             print(param_name + ':' + str(best_parameters[param_name]))
parameters = {
       'n_estimators' : [60,80,100],
       'max_depth': [1, 5, 10]
Grid_RF = GridSearchCV(RandomForestClassifier(), parameters, cv=5)
Grid_RF.fit(x_train, y_train)
print_grid_search_metrics(Grid_RF)
     Best score: 0.9324555628703095
    Best parameters set:
    max_depth:10
    n_estimators:80
# best random forest model
best_RF_mode1 = Grid_RF.best_estimator_
best_RF_model.score(x_test, y_test)
    0.9293048973143759
```

ROC & AUC Evaluation of Random Forest Model

```
from sklearn.metrics import roc_curve
from sklearn import metrics

y_pred_rf = best_RF_model.predict_proba(x_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k-') # the diagnol
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve - RF model')
plt.legend(loc='best')
plt.show()
```


metrics.auc(fpr_rf,tpr_rf)

0. 9672276340511635

Feature importance of Random Forest Model

```
importances = best_RF_model.feature_importances_
indices = np.argsort(importances)[::-1]

# Print the feature ranking
print("Feature importance ranking by Random Forest Model:")
for ind in range(len(indices)):
    print ("{0} : {1}".format(x_train_temp.columns[indices[ind]], round(importances[indices[ind]], 4)))

    Feature importance ranking by Random Forest Model:
    Total_Trans_Ct : 0.2391
    Total_Trans_Amt : 0.1989
    Total_Ct Chng_Q4_Q1 : 0.1659
    Total_Revolving_Bal : 0.1568
    Total_Amt_Chng_Q4_Q1 : 0.1015
    Avg_Utilization_Ratio : 0.0986
    Avg_Open_To_Buy : 0.0392
```

permutation Importance of Random Forest Model

	PI_mean	PI_std
Total_Trans_Ct	0.074092	0.003458
Total_Trans_Amt	0.050474	0.002907
Total_Revolving_Bal	0.049131	0.006401
Total_Amt_Chng_Q4_Q1	0.015008	0.001172
Total_Ct_Chng_Q4_Q1	0.013586	0.003743
Avg_Utilization_Ratio	0.010664	0.002902
Avg_Open_To_Buy	0.002212	0.001134

```
\label{eq:plt_plt_plt} $$ plt_PI = sns.barplot(x="Pl_mean", y=Pl_res.index, data=Pl_res) $$ plt_PI.figure.set_size_inches(12, 9) $$
```


(3)K Nearest Neighbor model

Train model

Use Grid Search to Find Optimal Hyperparameters Using Cross Validation(CV)

ROC & AUC Evaluation of K Nearest Neighbor Model

```
y_pred_rf = best_KNN_model.predict_proba(x_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--') # the diagnol
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve - RF model')
plt.legend(loc='best')
plt.show()
```


metrics.auc(fpr_rf, tpr_rf)
0.9502078335019513

(4)Logistic Regression Model

Train model

```
from sklearn.linear_model import LogisticRegression classifier_LR = LogisticRegression() classifier_LR.fit(x_train, y_train) classifier_LR.score(x_test, y_test)  
0.8783570300157978
```

Use Grid Search to Find Optimal Hyperparameters Using Cross Validation(CV)

ROC & AUC Evaluation of Logistic Regression Model

```
y_pred_rf = best_LR_model.predict_proba(x_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--') # the diagnol
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve - RF model')
plt.legend(loc='best')
plt.show()
```


metrics.auc(fpr_rf, tpr_rf)

0.8555502240208123