Storage: HDFS vs S3

컴퓨터공학과 2018110646 김연수

Contents

1, HDFS

Concept / Architecture / Replication / High-Availability

2, S3

concept

3, HDFS vs S3

Scalability / Durability / Persistence / Price / Read Performance

1. HDFS

1. Concept What is Hadoop?

Hadoop is an open source, Java based framework, used for distributed storage and processing big data.

- Storage : HDFS
- Programming model : MapReduce
 - https://velog.io/@kimdukbae/MapReduce

1. Concept What is HDFS?

- Store very large files in commodity hardware
- Data access patterns : Streaming
- Data integrity : write-once, read-many-times
- Failure recovery

2. Architecture

Replica Policy

- Client
- other rack
- o other rack and other datanode

High availability

- Secondary NameNode
- Active-standby configuration

2. S3

1. Concept What is \$3?

- S3 : Simple Storage Service
- Object Storage
 - Object
 - Bucket
- version control

3. HDFS vs S3

1. Scalability

Scaling: Ability to handle a growing amount of work in a capable manner

- Scale up: the ability to grow by using stronger hardware
- Scale out: the ability to grow by adding more hardware

1. Scalability

trait where a software solution can handle increased loads of work.

HDFS

- scales horizontally.
- This is **feasible**, but more **complicated** than S3.

- scales **vertically**
- automatic: without any need for action on your part.
- **infinite** amount of space available.
- S3 is better than HDFS in Scalability

2. Durability

ability to keep your information intact long-term in cloud data storage, without suffering bit rot or corruption.

HDFS

- No support for multiple writers or for modification

Probability of losing a block on a large (4000 nodes) cluster	
In the next 24 hours	5.7×10 ⁻⁷
In the next 365 days	2.1×10 ⁻⁴

- Using checksum and CRC
- durability of 99.9999999% of objects per year.
- This means that a single object could be lost per 10,000,000 objects once every 10,000 years
- S3 is more durable than HDFS.

- data doesn't persist when stopping EC2 or EMR instances.

- data is always persistent in S3—simple as that.
- If you want to access the data anytime and from anywhere, use S3

4, Price

HDFS

- costs **\$103**/month for 1TB of data.
- Why expensive? preserve data integrity, HDFS stores three copies of each block of data by default. So, HDFS requires **triple the amount of storage** space for your data—and therefore triple the cost.

- costs \$23/month for 1TB of data.
- Why cheap? pay for only the storage that you actually need.
- S3 also supports storing **compressed** files, which can help slash your storage costs.
- storage cost alone, S3 is 5X cheaper than HDFS.

$$T(n) = a \cdot n + b$$

- T(n): total time to access
- n: number of data
- a: throughput
- b: latency

1) throughput

HDFS

- **Block**: parallel processing
- High throughput: 3GB/node local read throughput (e.g. i2.8xl, roughly 90MB/s per core)
- on a per node basis, HDFS can yield 6X higher read throughput than S3

- Object
- Not high as HDFS: 600MB/s read throughput on i2.8xl (roughly 20MB/s per core)

2) Latency HDFS

< Locality >

- A: data local

- B: rack local

- C: off local

S3

- Why latency is high? all reads need to transfer data across the network

3) conclusion

S3: cloud service

- network bandwidth is low (bottleneck)
- not suitable for handling bigdata
- solution : use HDFS for data locality > high bandwidth, low cost

3) conclusion

	HDFS on Ephemeral Storage	Amazon S3
Read	350 mbps/node	120 mbps/node
Write	200 mbps/node	100 mbps/node

HDFS

- HDFS performance is excellent.
- Because data is stored and processed on the same machines, access and processing speed are lightning-fast.

- S3 doesn't perform as well as HDFS. The latency is obviously higher and the data throughput is lower.
- **W** HDFS is strong all-round performance.

Thank You ③