Team notebook

HCMUS-IdentityImbalance

October 28, 2022

\mathbf{C}	ontents			4	1	11
1	Algorith	ams	1			11 11
	1.1 Mo's	s algorithm on trees	1		4.3 euler path	12
		s algorithm	1		1	12
		llel binary search	1		0	13
	P				9	13
2	Data str	ructures	2			13
	2.1 dsu	with undo	2		1	14
			2		1 01 ()	14
		fenwick tree update	2		4.10 two sat	14
		table	3	5	Math	15
			$\frac{3}{3}$			15
		ry light decomposition			5.2 cumulative sum of divisors	15
		optimization	4		5.3 fft	15
		container	4		5.4 fibonacci properties	16
	2.8 orde	er statistic tree	4		5.5 gauss	16
		istent array	4		5.6 others	16
	2.10 pers	istent seg tree	5		1 0	16
	2.11 pers	istent segment (v2)	5		0	17
	2.12 pers	istent trie	6		5.9 system different constraints	17
	2.13 segn	nent tree	6		D. T	1 =
	2.14 spar	se table	7	6		17 17
	2.15 trie		7		0.1 matrix	11
				7	Misc	18
3	Geometr	ry	7		7.1 dates	18
	3.1 cent	er 2 points + radious	7		7.2 fast input	18
		est pair problem	8		7.3 fast knapsack	18
		vex diameter	8			
		theorem	9	8	3	18
	•	res	9			18
			1			19
	_	plate	10		1	19
	3.7 triar	$_{\mathrm{ngles}}$	11		8.4 discrete logarithm	19

	8.5	ext euclidean					
	8.6	highest exponent factorial					
	8.7	miller rabin					
	8.8	mod integer					
	8.9	mod inv					
	8.10	mod mul					
		mod pow					
	8.12	number theoretic transform					
	8.13	pollard rho factorize					
	8.14	primes					
		totient sieve					
	8.16	totient					
9	Strings						
	9.1	hashing codeforces					
	9.2	kmp					
	9.3	mancher					
	9.4	minimal string rotation					
	9.5	suffix array					
	9.6	suffix automaton					
		z algorithm					

1 Algorithms

1.1 Mo's algorithm on trees

/ *
Problem:

https://www.spoj.com/problems/COT2/

Given a tree with N nodes and Q queries. Each node has an integer weight.

Each query provides two numbers u and v, ask for how many different integers weight of nodes there are on path from u to v.

```
Modify DFS:
For each node u, maintain the start and the end DFS
    time. Let's call them ST(u) and EN(u).
=> For each query, a node is considered if its
     occurrence count is one.
Query solving:
Let's query be (u, v). Assume that ST(u) \le ST(v).
    Denotes P as LCA(u, v).
Case 1: P = u
Our query would be in range [ST(u), ST(v)].
Case 2: P != u
Our query would be in range [EN(u), ST(v)] +
     [ST(p), ST(p)]
void update(int &L, int &R, int qL, int qR){
   while (L > qL) add(--L);
   while (R < qR) add(++R);
   while (L < qL) del(L++);</pre>
   while (R > qR) del(R--);
}
vector <int> MoQueries(int n, vector <query> Q){
   block_size = sqrt((int)nodes.size());
   sort(Q.begin(), Q.end(), [](const query &A,
        const query &B){
       return (ST[A.1]/block_size !=
            ST[B.1]/block size)?
            (ST[A.1]/block size <
            ST[B.1]/block_size) : (ST[A.r] <
            ST[B.r]):
   }):
   vector <int> res:
   res.resize((int)Q.size());
   LCA lca:
   lca.initialize(n);
   int L = 1, R = 0;
   for(query q: Q){
       int u = q.1, v = q.r;
       if(ST[u] > ST[v]) swap(u, v); // assume that
            S[u] \leftarrow S[v]
       int parent = lca.get(u, v);
       if(parent == u){
           int qL = ST[u], qR = ST[v];
```

```
update(L, R, qL, qR);
}else{
    int qL = EN[u], qR = ST[v];
    update(L, R, qL, qR);
    if(cnt_val[a[parent]] == 0)
        res[q.pos] += 1;
}

res[q.pos] += cur_ans;
}
return res;
}
```

1.2 Mo's algorithm

```
https://www.spoj.com/problems/FREQ2/
vector <int> MoQueries(int n, vector <query> Q){
   block size = sart(n):
   sort(Q.begin(), Q.end(), [](const query &A,
        const query &B){
      return (A.1/block size != B.1/block size)?
           (A.1/block size < B.1/block size) :
           (A.r < B.r):
   vector <int> res:
   res.resize((int)Q.size());
   int L = 1, R = 0;
   for(query q: Q){
      while (L > q.1) add(--L);
      while (R < q.r) add(++R);
      while (L < q.1) del(L++);
      while (R > q.r) del(R--);
      res[q.pos] = calc(1, R-L+1);
   }
   return res;
```

1.3 parallel binary search

```
int lo[N], mid[N], hi[N];
vector<int> vec[N];

// Reset
void clear() { memset(bit, 0, sizeof(bit)); }
```

```
// Apply ith update/query
void apply(int idx) {
   if (ql[idx] <= qr[idx])</pre>
       update(ql[idx], qa[idx]), update(qr[idx] +
            1, -qa[idx]);
   else {
       update(1, qa[idx]);
       update(qr[idx] + 1, -qa[idx]);
       update(ql[idx], qa[idx]);
// Check if the condition is satisfied
bool check(int idx) {
   int rea = read[idx]:
   for (auto &it : owns[idx]) {
       req -= pref(it);
       if (req < 0)
           break;
   if (req <= 0)
       return 1;
   return 0;
void work() {
   for (int i = 1; i <= q; i++)</pre>
       vec[i].clear();
   for (int i = 1; i <= n; i++)</pre>
       if (mid[i] > 0)
           vec[mid[i]].push_back(i);
   clear():
   for (int i = 1: i <= a: i++) {
       apply(i);
       for (auto &it : vec[i]) // Add appropriate
            check conditions
           if (check(it))
              hi[it] = i:
           else
              lo[it] = i + 1;
void parallel_binary() {
   for (int i = 1; i <= n; i++)
       lo[i] = 1, hi[i] = q + 1;
   bool changed = 1;
   while (changed) {
       changed = 0;
       for (int i = 1; i <= n; i++) {
           if (lo[i] < hi[i]) {</pre>
               changed = 1:
```

2 Data structures

2.1 dsu with undo

```
* Author: Lukas Polacek, Simon Lindholm
 * Date: 2019-12-26
 * License: CCO
 * Source: folklore
 * Description: Disjoint-set data structure with
     undo.
 * If undo is not needed, skip st, time() and
     rollback().
 * Usage: int t = uf.time(); ...; uf.rollback(t);
 * Time: O(log(N))
#pragma once
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
 int find(int x) { return e[x] < 0 ? x :
      find(e[x]); }
 int time() { return sz(st): }
 void rollback(int t) {
   for (int i = time(); i --> t;)
     e[st[i].first] = st[i].second:
   st.resize(t):
 bool join(int a, int b) {
   a = find(a), b = find(b);
   if (a == b) return false:
   if (e[a] > e[b]) swap(a, b):
   st.emb(a, e[a]); st.emb(b, e[b]);
   e[a] += e[b]; e[b] = a;
   return true;
};
```

2.2 dsu

```
class DSU{
public:
   vector <int> parent;
   void initialize(int n){
       parent.resize(n+1, -1);
   int findSet(int u){
       while(parent[u] > 0)
          u = parent[u];
      return u;
   void Union(int u, int v){
       int x = parent[u] + parent[v];
       if(parent[u] > parent[v]){
          parent[v] = x;
          parent[u] = v;
       }else{
          parent[u] = x:
          parent[v] = u:
   }
};
```

2.3 fake fenwick tree update

```
vector <int> fake_bit[MAXN];
void fake_update(int x, int y, int limit_x){
   for(int i = x; i < limit_x; i += i\&(-i))
       fake_bit[i].pb(y);
void fake get(int x, int v){
   for(int i = x; i >= 1; i -= i\&(-i))
       fake bit[i].pb(v):
vector <int> bit[MAXN]:
void update(int x. int v. int limit x. int val){
   for(int i = x: i < limit x: i += i&(-i)){
       for(int j = lower_bound(fake_bit[i].begin(),
           fake_bit[i].end(), y) -
            fake_bit[i].begin(); j <</pre>
            fake_bit[i].size(); j += j\&(-j))
           bit[i][j] = max(bit[i][j], val);
int get(int x, int y){
```

```
int ans = 0:
   for(int i = x; i \ge 1; i = i&(-i)){
       for(int j = lower_bound(fake_bit[i].begin(),
            fake_bit[i].end(), y) -
            fake_bit[i].begin(); j >= 1; j -=
            i&(-i))
           ans = max(ans, bit[i][j]);
   return ans:
int main(){
   int n: cin >> n:
   vector <int> Sx. Sv:
   for(int i = 1: i <= n: i++){
       cin >> a[i].fi >> a[i].se;
       Sx.pb(a[i].fi):
       Sy.pb(a[i].se);
   compress(Sx);
   compress(Sy);
   // unique all value
   for(int i = 1; i <= n; i++){</pre>
       a[i].fi = lower_bound(Sx.begin(), Sx.end(),
            a[i].fi) - Sx.begin();
       a[i].se = lower_bound(Sy.begin(), Sy.end(),
            a[i].se) - Sy.begin();
   // do fake BIT update and get operator
   for(int i = 1: i <= n: i++){
       fake get(a[i].fi-1, a[i].se-1):
       fake_update(a[i].fi, a[i].se,
            (int)Sx.size()):
   for(int i = 0; i < Sx.size(); i++){</pre>
       fake_bit[i].pb(INT_MIN); // avoid zero
       sort(fake bit[i].begin(), fake bit[i].end());
       fake bit[i].resize(unique(fake bit[i].begin().
            fake_bit[i].end()) -
            fake_bit[i].begin());
       bit[i].resize((int)fake_bit[i].size(), 0);
   // real update, get operator
   int res = 0:
   for(int i = 1; i <= n; i++){</pre>
       int maxCurLen = get(a[i].fi-1, a[i].se-1) +
       res = max(res, maxCurLen);
       update(a[i].fi, a[i].se, (int)Sx.size(),
            maxCurLen):
   }
```

2.4 hash table

```
/*

* Micro hash table, can be used as a set.

* Very efficient vs std::set

*

*/

const int MN = 1001;
struct ht {
   int _s[(MN + 10) >> 5];
   int len;
   void set(int id) {
    len++;
    _s[id >> 5] |= (1LL << (id & 31));
}
bool is_set(int id) {
   return _s[id >> 5] & (1LL << (id & 31));
}
};
```

2.5 heavy light decomposition

```
* Problem: Given a graph, there are 2 type of query
 * 1: update weight of vertex u
 * 2: find maximum weight of vertices from a to b
const int N = 2e5+5;
const int D = 19;
const int S = (1 << D);
int n, q, v[N];
vector<int> adj[N];
int sz[N], p[N], dep[N];
int st[S], id[N], tp[N];
void update(int idx, int val) {
       st[idx += n] = val:
       for (idx /= 2: idx: idx /= 2)
              st[idx] = max(st[2 * idx], st[2 *
                   idx + 1]):
}
int query(int lo, int hi) {
       int ra = 0, rb = 0;
       for (lo += n, hi += n + 1; lo < hi; lo /= 2,
           hi /= 2) {
              if (lo & 1)
                      ra = max(ra, st[lo++]);
              if (hi & 1)
```

```
rb = max(rb, st[--hi]);
       return max(ra, rb);
int dfs_sz(int cur, int par) {
       sz[cur] = 1:
       p[cur] = par;
       for(int chi : adi[cur]) {
              if(chi == par) continue;
              dep[chi] = dep[cur] + 1;
              p[chi] = cur:
              sz[cur] += dfs sz(chi. cur):
       return sz[cur]:
int ct = 1:
void dfs_hld(int cur, int par, int top) {
       id[cur] = ct++:
       tp[cur] = top;
       update(id[cur], v[cur]);
       int h_chi = -1, h_sz = -1;
       for(int chi : adj[cur]) {
              if(chi == par) continue;
              if(sz[chi] > h_sz) {
                     h_sz = sz[chi];
                     h_{chi} = chi;
       if(h chi == -1) return;
       dfs_hld(h_chi, cur, top);
       for(int chi : adi[cur]) {
              if(chi == par || chi == h_chi)
                  continue:
              dfs hld(chi, cur, chi):
       }
}
int path(int x, int y){
       int ret = 0;
       while(tp[x] != tp[y]){
              if(dep[tp[x]] < dep[tp[y]])swap(x,y);</pre>
              ret = max(ret,
                   query(id[tp[x]],id[x]));
              x = p[tp[x]];
       if(dep[x] > dep[y])swap(x,y);
       ret = max(ret, query(id[x],id[y]));
       return ret;
int main() {
       // input ...
```

```
dfs_sz(1, 1);
  dfs_hld(1, 1, 1);
  // query
}
```

2.6 hull optimization

```
* Author: hieplpvip
 * Date: 2020-10-17
 * License: CCO
 * Source: own work
 * Description: Add line in decreasing slope, query
     in increasing x
 * Time: O(\log N)
 * Status: untested
#pragma once
template <typename T = long long> struct MinHull {
   struct Line {
       Ta.b:
       Line(T a, T b) : a(a), b(b) {}
       T \operatorname{calc}(T x) \{ return a * x + b : \}
   vector<Line> dq;
   size_t seen;
   bool overlap(Line &p1, Line &p2, Line &p3) {
       return 1.0 * (p3.b - p1.b) / (p1.a - p3.a) <=
             1.0 * (p2.b - p1.b) / (p1.a - p2.a);
   void addLine(T a, T b) {
       Line newLine(a, b);
       while (dq.size() > seen + 1 &&
             overlap(dq[(int)dq.size() - 2],
                  dq.back(), newLine))
           dq.pop_back();
       dq.pb(newLine);
   T querv(T x) {
       // change >= to <= this to get MaxHull
       while (seen + 1 < dq.size() &&</pre>
            da[seen].calc(x) >= da[seen +
            11.calc(x))
           ++seen:
       return dq[seen].calc(x):
};
```

2.7 line container

```
/**
 * Author: Simon Lindholm
 * Date: 2017-04-20
 * License: CCO
 * Source: own work
 * Description: Container where you can add lines
      of the form kx+m, and query
 * maximum values at points x. Useful for dynamic
     programming (''convex hull
 * trick''). Time: O(\log N) Status: stress-tested
#pragma once
struct Line {
   mutable 11 k, m, p;
   bool operator<(const Line &o) const { return k</pre>
        < o.k: }
   bool operator<(ll x) const { return p < x: }</pre>
struct LineContainer : multiset<Line, less<>>> {
   // (for doubles, use inf = 1/.0, div(a,b) = a/b)
   static const 11 inf = LLONG MAX:
   ll div(ll a, ll b) { // floored division
       return a / b - ((a \hat{b}) < 0 \& a \% b):
   bool isect(iterator x, iterator v) {
       if (y == end())
           return x->p = inf, 0;
       if (x->k == y->k)
           x->p = x->m > y->m ? inf : -inf;
           x->p = div(y->m - x->m, x->k - y->k);
       return x->p >= y->p;
   void add(ll k, ll m) {
       auto z = insert(\{k, m, 0\}), y = z++, x = y;
       while (isect(v, z))
           z = erase(z);
       if (x != begin() && isect(--x, v))
           isect(x, y = erase(y));
       while ((y = x) != begin() \&\& (--x)->p >=
            y->p)
           isect(x, erase(y));
   11 querv(ll x) {
       assert(!empty());
       auto 1 = *lower bound(x):
       return 1.k * x + 1.m:
};
```

2.8 order statistic tree

```
/**
* Author: Simon Lindholm
* Date: 2016-03-22
* License: CCO
* Source: hackIT, NWERC 2015
* Description: A set (not multiset!) with support
     for finding the n'th
* element, and finding the index of an element.
* To get a map, change \texttt{null\_type}.
* Time: O(log N)
#pragma once
#include <bits/extc++.h> /** keep-include */
using namespace __gnu_pbds;
template <class T>
using Tree =
   tree<T, null_type, less<T>, rb_tree_tag,
        tree_order_statistics_node_update>;
void example() {
   Tree<int> t. t2:
   t.insert(8):
   auto it = t.insert(10).first:
   assert(it == t.lower bound(9)):
   assert(t.order_of_key(10) == 1);
   assert(t.order_of_key(11) == 2);
   assert(*t.find_by_order(0) == 8);
   t.join(t2); // assuming T < T2 or T > T2, merge
        t2 into t
```

2.9 persistent array

```
struct node {
   node *1, *r;
   int val;

   node(int x) : 1(NULL), r(NULL), val(x) {}
   node() : 1(NULL), r(NULL), val(-1) {}
};

typedef node *pnode;

pnode update(pnode cur, int 1, int r, int at, int
   what) {
   pnode ans = new node();

   if (cur != NULL) {
      *ans = *cur;
   }
}
```

```
if (1 == r) {
       ans->val = what:
       return ans;
    int m = (1 + r) >> 1;
   if (at <= m)</pre>
       ans->l = update(ans->l, l, m, at, what);
       ans->r = update(ans->r, m + 1, r, at, what):
    return ans:
}
int get(pnode cur, int 1, int r, int at) {
   if (cur == NULL)
       return 0:
    if (1 == r)
       return cur->val:
    int m = (1 + r) >> 1;
   if (at <= m)
       return get(cur->1, 1, m, at);
       return get(cur->r, m + 1, r, at);
```

2.10 persistent seg tree

```
/* Problem: https://cses.fi/problemset/task/1737/
* Your task is to maintain a list of arrays which
     initially has a single array. You have to
     process the following types of queries:
 * Query 1: Set the value a in array k to x.
 * Query 2: Calculate the sum of values in range
     [a,b] in array k.
 * Query 3: Create a copy of array k and add it to
     the end of the list.
 * Idea to create a persistent segment tree to save
     all version of array.
vector <int> a:
struct Node{
   int val:
   Node *left, *right;
   Node(){
       left = right = NULL;
       val = 0;
   Node(Node* 1, Node *r, int v){
       left = 1:
       right = r;
       val = v;
```

```
};
void build(Node* &cur, int 1, int r){
   if(1 == r){
       cur->val = a[1];
       return;
   int mid = (l+r) >> 1:
   cur->left = new Node():
   cur->right = new Node();
   build(cur->left, 1, mid):
   build(cur->right, mid+1, r):
   cur->val = cur->left->val + cur->right->val:
}
void update(Node* prev, Node* &cur, int 1, int r,
    int i. int val){
   if(i < 1 || r < i)
       return;
   if(1 == r && 1 == i){
       cur->val = val;
       return;
   int mid = (l+r) >> 1;
   if(i \le mid)
       cur->right = prev->right;
       cur->left = new Node();
       update(prev->left, cur->left, 1, mid, i,
            val):
   }else{
       cur->left = prev->left:
       cur->right = new Node();
       update(prev->right, cur->right, mid+1, r, i,
   cur->val = cur->left->val + cur->right->val:
}
int get(Node* cur, int 1, int r, int u, int v){
   if(v < 1 \mid | r < u)
       return 0;
   if(u <= 1 && r <= v){</pre>
       return cur->val;
   int mid = (l+r) >> 1;
   int L = get(cur->left, 1, mid, u, v);
   int R = get(cur->right, mid+1, r, u, v);
   return L + R;
}
Node* ver[MAXN]:
```

2.11 persistent segment (v2)

```
Find distinct numbers in a range (online query
        with persistent array)
struct Node{
   int lnode, rnode;
   int sum:
   Node(){
       lnode = rnode = sum = 0;
\ \rangle ver[MAXN * 120]:
int sz = 0:
int build new node(int 1, int r){
   int next = ++sz:
   if(1 != r){
       int mid = (l+r) >> 1:
       ver[next].lnode = build new node(1, mid):
       ver[next].rnode = build new node(mid+1, r):
   }
   return next:
}
int update(int cur, int 1, int r, int pos, int val){
   int next = ++sz:
   ver[next] = ver[cur];
   if(1 == r){
       ver[next].sum = val;
       return next;
   }
   else{
       int mid = (l+r) >> 1;
       if(pos <= mid)</pre>
           ver[next].lnode = update(ver[cur].lnode,
               1. mid. pos. val):
       else
           ver[next].rnode = update(ver[cur].rnode
                , mid+1, r, pos, val);
   ver[next].sum = ver[ver[next].lnode].sum +
        ver[ver[next].rnode].sum;
   return next:
int get(int cur, int 1, int r, int u, int v){
   if(r < u \mid | v < 1)
       return 0;
   if(u \le 1 && r \le v){
       return ver[cur].sum;
   int mid = (l+r) >> 1;
   return get(ver[cur].lnode, 1, mid, u, v) +
```

```
get(ver[cur].rnode, mid+1, r, u, v);
}
```

2.12 persistent trie

```
// both tries can be tested with the problem:
    http://codeforces.com/problemset/problem/916/D
// Persistent binary trie (BST for integers)
const int MD = 31;
struct node bin {
 node bin *child[2]:
 int val:
 node bin() : val(0) {
   child[0] = child[1] = NULL:
}:
typedef node_bin* pnode_bin;
pnode_bin copy_node(pnode_bin cur) {
  pnode_bin ans = new node_bin();
  if (cur) *ans = *cur;
  return ans;
pnode_bin modify(pnode_bin cur, int key, int inc,
     int id = MD) {
  pnode_bin ans = copy_node(cur);
  ans->val += inc:
  if (id >= 0) {
   int to = (key >> id) & 1;
   ans->child[to] = modify(ans->child[to], key,
        inc. id - 1):
  return ans;
int sum smaller(pnode bin cur. int kev. int id =
 if (cur == NULL) return 0:
 if (id < 0) return 0; // strictly smaller</pre>
  // if (id == - 1) return cur->val: // smaller or
      equal
  int ans = 0:
  int to = (key >> id) & 1;
  if (to) {
   if (cur->child[0]) ans += cur->child[0]->val;
   ans += sum_smaller(cur->child[1], key, id - 1);
```

```
} else {
   ans = sum_smaller(cur->child[0], key, id - 1);
 return ans;
// Persistent trie for strings.
const int MAX CHILD = 26:
struct node {
 node *child[MAX_CHILD];
 int val:
 node() : val(-1) {
   for (int i = 0: i < MAX CHILD: i++) {</pre>
     child[i] = NULL:
 }
}:
typedef node* pnode;
pnode copy_node(pnode cur) {
 pnode ans = new node();
 if (cur) *ans = *cur;
 return ans;
pnode set_val(pnode cur, string &key, int val, int
    id = 0) {
 pnode ans = copy_node(cur);
 if (id >= int(kev.size())) {
   ans->val = val:
 } else {
   int t = kev[id] - 'a':
   ans->child[t] = set_val(ans->child[t], key,
        val. id + 1):
 return ans;
pnode get(pnode cur, string &key, int id = 0) {
 if (id >= int(key.size()) || !cur)
   return cur;
 int t = kev[id] - 'a';
 return get(cur->child[t], key, id + 1);
```

2.13 segment tree

```
// Problem:
    https://codeforces.com/edu/course/2/lesson/4/1/practice/contest/273169/problem/B
struct SegmentTree {
```

```
#define m ((1 + r) >> 1)
#define lc (i << 1)
#define rc (i << 1 | 1)
   vector<int> mn:
   int n;
   SegmentTree(int n = 0) : n(n){
       mn.resize(4 * n + 1, 0);
   SegmentTree(const vector<int> &a) : n(a.size())
       mn.resize(4 * n + 1, 0):
       function<void(int, int, int)> build =
            [&](int i, int 1, int r){
          if (1 == r){
              mn[i] = a[1 - 1]:
              return:
          build(lc, l, m); build(rc, m + 1, r);
          mn[i] = min(mn[lc], mn[rc]);
       build(1, 1, n);
   }
   void update(int i, int l, int r, int p, long
        val){
       if (1 == r){}
          mn[i] = val:
          return:
       if (p <= m) update(lc, l, m, p, val);</pre>
       else update(rc, m + 1, r, p, val);
      mn[i] = min(mn[lc], mn[rc]);
   int get(int i, int l, int r, int u, int v){
       if (v < 1 || r < u) return INF:
       if (u <= 1 && r <= v) return mn[i]:
       return min(get(lc, l, m, u, v), get(rc, m +
           1, r, u, v));
   }
   void update(int p, long val){
       update(1, 1, n, p, val);
   int get(int 1, int r){
       return get(1, 1, n, l, r);
#undef m
#undef lc
#undef rc
```

```
// Problem: There are two operations:
// 1 l r val: add the value val to the segment from
// 2 l v: calculate the minimum of elements from l
struct LazySegmentTree {
#define m ((1 + r) >> 1)
#define lc (i << 1)
#define rc (i << 1 | 1)
   vector<int> mn, lazy;
   int n:
   LazvSegmentTree(int n = 0) : n(n){
       mn.resize(4 * n + 1.0):
       lazv.resize(4 * n + 1, 0):
   void push(int i, int 1, int r){
       if (lazy[i] == 0) return;
       mn[i] += lazy[i];
       if (1 != r){
          lazv[lc] += lazv[i];
          lazy[rc] += lazy[i];
       lazv[i] = 0;
   void update(int i, int l, int r, int u, int v,
        int val){
       push(i, 1, r);
       if (v < 1 \mid | r < u) return:
       if (u <= 1 && r <= v){
          lazv[i] += val:
           push(i, 1, r);
           return:
       update(lc, l, m, u, v, val); update(rc, m +
           1. r. u. v. val):
       mn[i] = min(mn[lc], mn[rc]);
   int get(int i, int l, int r, int u, int v){
       push(i, 1, r);
       if (v < 1 || r < u) return INF;</pre>
       if (u <= 1 && r <= v) return mn[i];</pre>
       return min(get(lc, l, m, u, v), get(rc, m +
           1, r, u, v));
   }
   void update(int 1, int r, int val){
       update(1, 1, n, l, r, val);
   int get(int 1, int r){
```

```
return get(1, 1, n, 1, r);
}
#undef m
#undef lc
#undef rc
};
```

2.14 sparse table

```
template <typename T, typename func =
    function<T(const T, const T)>>
struct SparseTable {
   func calc;
   int n;
   vector<vector<T>> ans;
   SparseTable() {}
   SparseTable(const vector<T>& a, const func& f)
        : n(a.size()), calc(f) {
       int last = trunc(log2(n)) + 1;
       ans.resize(n):
       for (int i = 0: i < n: i++){
          ans[i].resize(last):
       for (int i = 0: i < n: i++){
           ans[i][0] = a[i];
       for (int j = 1; j < last; j++){</pre>
          for (int i = 0; i \le n - (1 \le j); i++){
              ans[i][j] = calc(ans[i][j-1],
                   ans[i + (1 << (j - 1))][j - 1]);
       }
   }
   T query(int 1, int r){
       assert(0 <= 1 && 1 <= r && r < n);
       int k = trunc(log2(r - 1 + 1));
       return calc(ans[1][k], ans[r - (1 << k) +
            1][k]):
   }
};
```

2.15 trie

```
const int MN = 26; // size of alphabet
const int MS = 100010; // Number of states.
struct trie{
```

```
struct node{
   int c:
   int a[MN];
 node tree[MS];
 int nodes:
 void clear(){
   tree[nodes].c = 0:
   memset(tree[nodes].a, -1, sizeof tree[nodes].a);
   nodes++:
 }
 void init(){
   nodes = 0:
   clear();
 int add(const string &s, bool query = 0){
   int cur_node = 0;
   for(int i = 0; i < s.size(); ++i){</pre>
     int id = gid(s[i]);
     if(tree[cur_node].a[id] == -1){
       if(query) return 0;
       tree[cur_node].a[id] = nodes;
       clear();
     cur_node = tree[cur_node].a[id];
   if(!query) tree[cur_node].c++;
   return tree[cur node].c:
};
```

3 Geometry

3.1 center 2 points + radious

```
vector<point> find_center(point a, point b, long
    double r) {
    point d = (a - b) * 0.5;
    if (d.dot(d) > r * r) {
        return vector<point> ();
    }
    point e = b + d;
    long double fac = sqrt(r * r - d.dot(d));
    vector<point> ans;
    point x = point(-d.y, d.x);
    long double l = sqrt(x.dot(x));
    x = x * (fac / l);
```

```
ans.push_back(e + x);
x = point(d.y, -d.x);
x = x * (fac / 1);
ans.push_back(e + x);
return ans;
}
```

3.2 closest pair problem

```
struct point {
 double x, y;
 int id:
 point() {}
 point (double a, double b) : x(a), v(b) {}
double dist(const point &o, const point &p) {
  double a = p.x - o.x, b = p.y - o.y;
 return sqrt(a * a + b * b):
double cp(vector<point> &p, vector<point> &x,
     vector<point> &y) {
  if (p.size() < 4) {</pre>
   double best = 1e100;
   for (int i = 0; i < p.size(); ++i)</pre>
     for (int j = i + 1; j < p.size(); ++j)</pre>
       best = min(best, dist(p[i], p[j]));
   return best;
  int ls = (p.size() + 1) >> 1;
  double l = (p[ls - 1].x + p[ls].x) * 0.5;
  vector<point> xl(ls), xr(p.size() - ls);
  unordered set<int> left:
  for (int i = 0; i < ls; ++i) {</pre>
   xl[i] = x[i]:
   left.insert(x[i].id):
  for (int i = ls: i < p.size(): ++i) {</pre>
   xr[i - ls] = x[i]:
  vector<point> yl, yr;
  vector<point> pl, pr;
  yl.reserve(ls); yr.reserve(p.size() - ls);
  pl.reserve(ls); pr.reserve(p.size() - ls);
  for (int i = 0; i < p.size(); ++i) {</pre>
   if (left.count(y[i].id))
     vl.push_back(v[i]);
   else
     yr.push_back(y[i]);
```

```
if (left.count(p[i].id))
     pl.push_back(p[i]);
     pr.push_back(p[i]);
 double dl = cp(pl, xl, yl);
 double dr = cp(pr, xr, yr);
 double d = min(dl, dr);
 vector<point> yp; yp.reserve(p.size());
 for (int i = 0; i < p.size(); ++i) {</pre>
   if (fabs(v[i].x - 1) < d)
     yp.push_back(y[i]);
 for (int i = 0: i < vp.size(): ++i) {</pre>
   for (int j = i + 1; j < yp.size() && j < i + 7;</pre>
        ++i) {
     d = min(d, dist(vp[i], vp[j]));
 }
 return d;
double closest_pair(vector<point> &p) {
 vector<point> x(p.begin(), p.end());
 sort(x.begin(), x.end(), [](const point &a, const
      point &b) {
   return a.x < b.x:
 vector<point> y(p.begin(), p.end());
 sort(v.begin(), v.end(), [](const point &a, const
      point &b) {
   return a.y < b.y;</pre>
 }):
 return cp(p, x, y);
```

3.3 convex diameter

```
struct point{
   int x, y;
};

struct vec{
   int x, y;
};

vec operator - (const point &A, const point &B){
   return vec{A.x - B.x, A.y - B.y};
}
```

```
int cross(vec A, vec B){
   return A.x*B.v - A.v*B.x;
int cross(point A, point B, point C){
   int val = A.x*(B.y - C.y) + B.x*(C.y - A.y) +
        C.x*(A.y - B.y);
   if(val == 0)
       return 0: // coline
   if(val < 0)
       return 1; // clockwise
   return -1: //counter clockwise
}
vector <point> findConvexHull(vector <point>
    points){
   vector <point> convex;
   sort(points.begin(), points.end(), [](const
        point &A, const point &B){
       return (A.x == B.x)? (A.y < B.y): (A.x <
            B.x);
   }):
   vector <point> Up, Down;
   point A = points[0], B = points.back();
   Up.push_back(A);
   Down.push_back(A);
   for(int i = 0; i < points.size(); i++){</pre>
       if(i == points.size()-1 || cross(A,
            points[i], B) > 0){
           while(Up.size() > 2 &&
                cross(Up[Up.size()-2],
               Up[Up.size()-1], points[i]) <= 0)</pre>
               Up.pop_back();
           Up.push_back(points[i]);
       if(i == points.size()-1 || cross(A.
            points[i], B) < 0){
           while(Down.size() > 2 &&
                cross(Down[Down.size()-2].
               Down[Down.size()-1], points[i]) >=
               Down.pop_back();
           Down.push_back(points[i]);
   }
   for(int i = 0; i < Up.size(); i++)</pre>
        convex.push_back(Up[i]);
   for(int i = Down.size()-2; i > 0; i--)
        convex.push_back(Down[i]);
    return convex;
int dist(point A, point B){
```

```
return (A.x - B.x)*(A.x - B.x) + (A.y -
        B.v)*(A.v - B.v);
double findConvexDiameter(vector <point>
    convexHull){
   int n = convexHull.size();
   int is = 0, is = 0:
   for(int i = 1: i < n: i++){
       if(convexHull[i].y > convexHull[is].y)
       if(convexHull[is].v > convexHull[i].v)
           is = i:
   int maxd = dist(convexHull[is], convexHull[js]);
   int i, maxi, j, maxj;
   i = maxi = is;
   j = maxj = js;
       int ni = (i+1)%n, nj = (j+1)%n;
       if(cross(convexHull[ni] - convexHull[i],
            convexHull[nj] - convexHull[j]) <= 0){</pre>
           j = nj;
       }else{
          i = ni;
       int d = dist(convexHull[i], convexHull[j]);
       if(d > maxd){
          maxd = d:
           maxi = i:
          maxj = j;
   }while(i != is || j != js);
   return sqrt(maxd);
```

3.4 pick theorem

```
struct point{
    ll x, y;
};

//Pick: S = I + B/2 - 1

ld polygonArea(vector <point> &points){
    int n = (int)points.size();
    ld area = 0.0;
    int j = n-1;
    for(int i = 0; i < n; i++){</pre>
```

3.5 squares

```
typedef long double ld;
const ld eps = 1e-12;
int cmp(ld x, ld y = 0, ld tol = eps) {
   return ( x \le y + tol) ? (x + tol < y) ? -1 : 0
        : 1;
}
struct point{
 ld x, v;
 point(ld a, ld b) : x(a), y(b) {}
 point() {}
}:
struct square{
 ld x1. x2. v1. v2.
    a, b, c;
 point edges[4]:
 square(ld _a, ld _b, ld _c) {
   a = _a, b = _b, c = _c;
   x1 = a - c * 0.5:
   x2 = a + c * 0.5:
   v1 = b - c * 0.5;
   v2 = b + c * 0.5;
   edges[0] = point(x1, y1);
   edges[1] = point(x2, v1);
   edges[2] = point(x2, y2);
   edges[3] = point(x1, v2);
};
```

```
ld min_dist(point &a, point &b) {
 1d x = a.x - b.x,
    y = a.y - b.y;
 return sqrt(x * x + y * y);
bool point_in_box(square s1, point p) {
 if (cmp(s1.x1, p.x) != 1 && cmp(s1.x2, p.x) != -1
     cmp(s1.y1, p.y) != 1 \&\& cmp(s1.y2, p.y) != -1)
   return true:
 return false:
bool inside(square &s1, square &s2) {
 for (int i = 0: i < 4: ++i)
   if (point_in_box(s2, s1.edges[i]))
     return true;
 return false;
}
bool inside_vert(square &s1, square &s2) {
 if ((cmp(s1.y1, s2.y1) != -1 && cmp(s1.y1, s2.y2)
     (cmp(s1.y2, s2.y1) != -1 \&\& cmp(s1.y2, s2.y2)
          != 1))
   return true:
return false:
bool inside_hori(square &s1, square &s2) {
 if ((cmp(s1.x1, s2.x1) != -1 \&\& cmp(s1.x1, s2.x2))
      != 1) ||
     (cmp(s1.x2, s2.x1) != -1 \&\& cmp(s1.x2, s2.x2)
          !=1))
   return true:
return false:
ld min_dist(square &s1, square &s2) {
 if (inside(s1, s2) || inside(s2, s1))
   return 0:
 ld ans = 1e100;
 for (int i = 0: i < 4: ++i)
   for (int j = 0; j < 4; ++j)
     ans = min(ans, min_dist(s1.edges[i],
          s2.edges[i]));
 if (inside hori(s1, s2) || inside hori(s2, s1)) {
   if (cmp(s1.y1, s2.y2) != -1)
     ans = min(ans. s1.v1 - s2.v2):
```

```
else
  if (cmp(s2.y1, s1.y2) != -1)
    ans = min(ans, s2.y1 - s1.y2);
}

if (inside_vert(s1, s2) || inside_vert(s2, s1)) {
    if (cmp(s1.x1, s2.x2) != -1)
        ans = min(ans, s1.x1 - s2.x2);
    else
    if (cmp(s2.x1, s1.x2) != -1)
        ans = min(ans, s2.x1 - s1.x2);
}

return ans;
}
```

3.6 template

```
#define EPS 1e-6
const double PI = acos(-1.0):
double DEG TO RAD(double d) { return d * PI /
    180.0: }
double RAD_TO_DEG(double r) { return r * 180.0 /
    PI: }
inline int cmp(double a, double b) {
   return (a < b - EPS) ? -1 : ((a > b + EPS) ? 1
        : 0):
struct Point{
   double x, y;
   Point(){
       x = v = 0.0:
   Point(double x, double v): x(x), v(v) {}
   Point operator + (const Point& a) const {
        return Point(x+a.x. v+a.v): }
   Point operator - (const Point& a) const {
        return Point(x-a.x. v-a.v): }
   Point operator * (double k) const { return
        Point(x*k, y*k); }
   Point operator / (double k) const { return
        Point(x/k, y/k); }
   double dot(const Point& a) const { return x*a.x
        + y*a.y; } // dot product
   double cross(const Point& a) const { return
        x*a.y - y*a.x; } // cross product
```

```
int cmp(const Point& q) const {
       if (x != q.x) return ::cmp(x, q.x);
       return ::cmp(v, q.v);
   #define Comp(x) bool operator x (Point q) const
        { return cmp(q) x 0; }
   Comp(>) Comp(<) Comp(==) Comp(>=) Comp(<=)
        Comp(!=)
   #undef Comp
   double norm() { return x*x + v*v: }
   double len() { return sqrt(norm()): }
   // Rotate vector
   Point rotate(double alpha) {
       double cosa = cos(alpha). sina = sin(alpha):
       return Point(x * cosa - y * sina, x * sina +
           v * cosa);
};
istream& operator >> (istream& cin, Point& p) {
   cin >> p.x >> p.y;
   return cin;
}
ostream& operator << (ostream& cout, Point& p) {
   cout << p.x << ' ' << p.y;
   return cout;
struct Line{
   double a, b, c;
   Point A. B:
   Line(double a, double b, double c): a(a), b(b),
        c(c) {}
   Line(Point A. Point B): A(A), B(B) {
       a = B.y - A.y;
      b = A.x - B.x;
       c = -(a * A.x + b * A.y);
   // initialize a line with slope k
   Line(Point P, double k) {
       a = -k:
       b = 1;
       c = k * P.x - P.y;
   double f(Point A){
       return a * A.x + b * A.v + c:
};
```

```
bool areParallel(Line 11, Line 12) {
   return cmp(l1.a*l2.b, l1.b*l2.a) == 0;
bool areSame(Line 11, Line 12) {
   return areParallel(11, 12) && cmp(11.c*12.a,
        12.c*11.a) == 0
          && cmp(11.c*12.b, 11.b*12.c) == 0;
bool areIntersect(Line 11, Line 12, Point &p) {
   if (areParallel(11, 12))
       return false:
   double dx = 11.b*12.c - 12.b*11.c:
   double dv = 11.c*12.a - 12.c*11.a:
   double d = 11.a*12.b - 12.a*11.b:
   p = Point(dx / d, dy / d);
   return true;
// distance from p to line ab
double distToLine(Point p, Point a, Point b, Point
   Point ap = p - a, ab = b - a;
   double k = ap.dot(ab) / ab.norm();
   c = a + (ab * k);
   return (p - c).len();
// closest point from p in line 1.
void closestPoint(Line 1, Point p, Point &ans) {
   if (fabs(1.b) < EPS) {</pre>
       ans.x = -(1.c) / 1.a; ans.v = p.v;
       return:
   if (fabs(1.a) < EPS) {</pre>
       ans.x = p.x; ans.y = -(1.c) / 1.b;
   Line perp(1.b, -1.a, - (1.b*p.x - 1.a*p.y));
   areIntersect(1, perp, ans);
}
// reflect point p over line 1
void reflectionPoint(Line 1, Point p, Point &ans) {
   closestPoint(1, p, b);
   ans = p + (b - p) * 2;
```

3.7 triangles

Let a, b, c be length of the three sides of a triangle.

$$p = (a + b + c) * 0.5$$

The inradius is defined by:

$$iR = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

The radius of its circumcircle is given by the formula:

$$cR = \frac{abc}{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}$$

4 Graphs

4.1 bridges

```
vector<int> G[MAXN];
int cnt = 0;
int low[MAXN], num[MAXN];
int numChild[MAXN], criVertex[MAXN], bridgeCnt = 0;
void DFS(int u, int pre) {
   num[u] = ++cnt;
   low[u] = INT_MAX;
   for(int v: G[u]) {
       if(v == pre) continue:
       if(num[v]) {
           low[u] = min(low[u], num[v]);
           numChild[u]++:
           DFS(v. u):
           if(low[v] >= num[u]) criVertex[u] = 1:
           if(low[v] > num[u]) bridgeCnt++:
           low[u] = min(low[u], low[v]):
}
int main(){
   // input
   for(int i = 1; i <= n; i++)</pre>
       if(!num[i]) {
           DFS(i, 0);
           if(numChild[i] < 2)</pre>
```

4.2 delete on dsu

```
struct dsu save {
   int u. v:
   int par u. par v:
   dsu save() {}
   dsu_save(int _v, int _par_v, int _u, int _par_u)
       : v(_v), par_v(_par_v), u(_u), par_u(_par_u)
};
class dsu_rollback {
 public:
   vector<int> parent;
   int comps;
   stack<dsu_save> st_op;
   dsu_rollback(){};
   dsu_rollback(int n) {
       parent.resize(n + 1, -1);
       comps = n;
   int find_set(int u) {
       while (parent[u] > 0)
          u = parent[u];
       return u;
   bool Union(int u. int v) {
       int U = find set(u):
       int V = find_set(v);
       if (U == V)
          return false;
       st_op.push(dsu_save(U, parent[U], V,
            parent[V]));
       int x = parent[U] + parent[V];
       if (parent[U] > parent[V]) {
          parent[U] = V;
```

```
parent[V] = x;
       } else {
           parent[U] = x;
           parent[V] = U;
       return true;
   void rollback() {
       if (st_op.empty())
           return;
       dsu_save x = st_op.top();
       st_op.pop();
       comps++;
       parent[x.u] = x.par_u;
       parent[x.v] = x.par v:
   }
};
struct query {
   int u, v;
   bool united;
};
class QueryTree {
   vector<vector<query>> t;
   dsu_rollback dsu;
   int T;
 public:
   QueryTree(int _T, int n) {
       this \rightarrow T = T:
       this->dsu = dsu_rollback(n);
       t.resize(4 * T + 4):
   void add to tree(int id, int 1, int r, int u,
        int v, query q) {
       if (v < 1 | | r < u | | u > v)
           return:
       if (u <= 1 && r <= v) {
           t[id].push_back(q);
           return:
       int mid = (1 + r) >> 1;
       add_to_tree(2 * id, 1, mid, u, v, q);
       add_to_tree(2 * id + 1, mid + 1, r, u, v, q);
   }
   void add_query(query q, int 1, int r) {
        add_to_tree(1, 0, T - 1, 1, r, q); }
   void DFS(int id, int 1, int r, vector<int>
        &ans) {
       for (query &q : t[id])
```

```
q.united = dsu.Union(q.u, q.v);
       if (1 == r) {
           ans[1] = dsu.comps;
       } else {
          int mid = (1 + r) >> 1;
          DFS(2 * id, 1, mid, ans);
          DFS(2 * id + 1, mid + 1, r, ans);
       for (query &q : t[id])
           if (a.united)
              dsu.rollback():
   vector<int> compute() {
       vector<int> ans(T); // T query
       DFS(1, 0, T - 1, ans);
       return ans;
   }
};
```

4.3 euler path

```
struct DirectedEulerPath {
   int n;
   vector<vector<int>> g;
   vector<int> path;
   void init(int _n) {
       n = _n;
       g = vector < vector < int >> (n + 1.
            vector<int>());
       path.clear();
   void add edge(int u. int v) {
        g[u].push back(v): }
   void dfs(int u) {
       while (g[u].size()) {
           int v = g[u].back();
           g[u].pop_back();
           dfs(v);
       path.push_back(u);
   bool getPath() {
       int ctEdges = 0;
       vector<int> outDeg, inDeg;
       outDeg = inDeg = vector<int>(n + 1, 0);
```

```
for (int i = 1; i <= n; i++) {</pre>
           ctEdges += g[i].size();
           outDeg[i] += g[i].size();
           for (auto &u : g[i])
               inDeg[u]++;
       int ctMiddle = 0, src = 1:
       for (int i = 1; i <= n; i++) {</pre>
           if (abs(inDeg[i] - outDeg[i]) > 1)
               return 0;
           if (inDeg[i] == outDeg[i])
               ctMiddle++:
           if (outDeg[i] > inDeg[i])
               src = i:
       if (ctMiddle != n && ctMiddle + 2 != n)
           return 0:
       dfs(src):
       reverse(path.begin(), path.end());
       return (path.size() == ctEdges + 1);
   }
};
```

4.4 karp min mean cycle

```
/**
 * Finds the min mean cycle, if you need the max
     mean cycle
 * just add all the edges with negative cost and
     print
 * ans * -1
 * test: uva, 11090 - Going in Cycle!!
const int MN = 1000:
struct edge {
   int v:
   long long w;
   edge() {}
   edge(int v. int w) : v(v), w(w) {}
long long d[MN][MN];
// This is a copy of g because increments the size
// pass as reference if this does not matter.
int karp(vector<vector<edge>> g) {
   int n = g.size();
   g.resize(n + 1); // this is important
   for (int i = 0; i < n; ++i)</pre>
```

```
if (!g[i].empty())
           g[n].push_back(edge(i, 0));
   for (int i = 0; i < n; ++i)
       fill(d[i], d[i] + (n + 1), INT_MAX);
   d[n - 1][0] = 0;
   for (int k = 1: k \le n: ++k)
       for (int u = 0; u < n; ++u) {
          if (d[u][k - 1] == INT MAX)
              continue;
           for (int i = g[u].size() - 1; i >= 0;
               --i)
              d[g[u][i].v][k] =
                   min(d[g[u][i].v][k], d[u][k - 1]
                   + g[u][i].w);
       }
   bool flag = true;
   for (int i = 0; i < n && flag; ++i)</pre>
       if (d[i][n] != INT_MAX)
           flag = false;
   if (flag) {
       return true; // return true if there is no a
            cvcle.
   double ans = 1e15:
   for (int u = 0: u + 1 < n: ++u) {
       if (d[u][n] == INT_MAX)
          continue:
       double W = -1e15:
       for (int k = 0: k < n: ++k)
          if (d[u][k] != INT MAX)
              W = max(W, (double)(d[u][n] -
                   d[u][k]) / (n - k);
       ans = min(ans, W);
   }
   // printf("%.21f\n", ans);
   cout << fixed << setprecision(2) << ans << endl;</pre>
   return false;
}
```

4.5 konig's theorem

In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover

4.6 matching

```
struct Hopcroft_Karp {
   static const int inf = 1e9;
   int n:
   vector<int> matchL, matchR, dist;
   vector<vector<int>> g:
   Hopcroft_Karp(int n)
       : n(n), matchL(n + 1), matchR(n + 1), dist(n
           + 1), g(n + 1) {}
   void addEdge(int u, int v) { g[u].push_back(v);
   bool bfs() {
       queue<int> q;
       for (int u = 1; u <= n; u++) {</pre>
          if (!matchL[u]) {
              dist[u] = 0;
              q.push(u);
          } else
              dist[u] = inf;
       dist[0] = inf;
       while (!q.empty()) {
          int u = q.front();
          a.pop():
           for (auto v : g[u]) {
              if (dist[matchR[v]] == inf) {
                  dist[matchR[v]] = dist[u] + 1:
                  q.push(matchR[v]);
          }
       }
       return (dist[0] != inf);
   bool dfs(int u) {
       if (!u)
           return true;
       for (auto v : g[u]) {
           if (dist[matchR[v]] == dist[u] + 1 &&
               dfs(matchR[v])) {
```

```
matchL[u] = v;
              matchR[v] = u:
              return true;
       }
       dist[u] = inf;
       return false;
   int max matching() {
       int matching = 0;
       while (bfs()) {
           for (int u = 1: u <= n: u++) {
              if (!matchL[u])
                  if (dfs(u))
                      matching++:
          }
       }
       return matching;
};
```

4.7 max flow min cost

```
struct edge {
   long long x, y, cap, flow, cost;
};
struct MinCostMaxFlow {
   long long n, S, T;
   vector<vector<long long>> a;
   vector<long long> dist, prev, done, pot;
   vector<edge> e;
   MinCostMaxFlow() {}
   MinCostMaxFlow(long long _n, long long _S, long
        long T) {
       n = _n;
       S = _S;
       T = _T;
       a = vector<vector<long long>>(n + 1):
       dist = vector < long long > (n + 1):
       prev = vector<long long>(n + 1):
       done = vector<long long>(n + 1);
       pot = vector<long long>(n + 1, 0);
   void addEdge(long long x, long long y, long
        long _cap, long long _cost) {
       edge e1 = \{x, y, \_cap, 0, \_cost\};
       edge e2 = \{y, x, 0, 0, -\_cost\};
       a[x].push_back(e.size());
```

```
e.push_back(e1);
   a[y].push_back(e.size());
   e.push_back(e2);
pair<long long, long long> dijkstra() {
   long long flow = 0. cost = 0:
   for (long long i = 1; i <= n; i++)
       done[i] = 0, dist[i] = oo:
   priority_queue<pair<long long, long long>> q;
   dist[S] = 0;
   prev[S] = -1:
   q.push(make_pair(0, S));
    while (!q.empty()) {
       long long x = q.top().second;
       q.pop();
       if (done[x])
           continue:
       done[x] = 1;
       for (int i = 0; i < int(a[x].size());</pre>
            i++) {
           long long id = a[x][i], y = e[id].y;
           if (e[id].flow < e[id].cap) {</pre>
              long long D = dist[x] +
                    e[id].cost + pot[x] - pot[y];
               if (!done[y] && D < dist[y]) {</pre>
                  dist[v] = D;
                  prev[y] = id;
                  q.push(make_pair(-dist[y],
                       y));
              }
           }
       }
   for (long long i = 1; i <= n; i++)</pre>
       pot[i] += dist[i]:
   if (done[T]) {
       flow = oo:
       for (long long id = prev[T]; id >= 0; id
            = prev[e[id].x])
           flow = min(flow, e[id].cap -
                e[id].flow);
       for (long long id = prev[T]; id >= 0; id
            = prev[e[id].x]) {
           cost += e[id].cost * flow:
           e[id].flow += flow;
           e[id ^ 1].flow -= flow;
       }
   return make_pair(flow, cost);
```

4.8 minimum path cover in DAG

Given a directed acyclic graph G = (V, E), we are to find the minimum number of vertex-disjoint paths to cover each vertex in V.

We can construct a bipartite graph $G' = (Vout \cup Vin, E')$ from G, where :

```
Vout = \{v \in V : v \text{ has positive out} - degree\} Vin = \{v \in V : v \text{ has positive } in - degree\} E' = \{(u, v) \in Vout \times Vin : (u, v) \in E\}
```

Then it can be shown, via König's theorem, that G' has a matching of size m if and only if there exists n-m vertex-disjoint paths that cover each vertex in G, where n is the number of vertices in G and m is the maximum cardinality bipartite mathching in G'.

Therefore, the problem can be solved by finding the maximum cardinality matching in G' instead.

NOTE: If the paths are note necessarily disjoints, find the transitive closure and solve the problem for disjoint paths.

4.9 planar graph (euler)

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded

by edges, including the outer, infinitely large region), then:

$$f + v = e + 2$$

It can be extended to non connected planar graphs with c connected components:

$$f + v = e + c + 1$$

4.10 two sat

```
* Given a set of clauses (a1 v a2)^(a2 v a3)....
 * this algorithm find a solution to it set of
     clauses.
 * test:
     http://lightoj.com/volume_showproblem.php?problem=1251
 **/
vector<int> G[MAXN]:
vector<int> Gv2[MAXN];
int low[MAXN], num[MAXN];
int cntTime = 0, cntSCC = 0, SCC[MAXN];
vector<int> inSCC[MAXN];
stack<int> st;
queue<int> q:
// storing topo order with queue instead of stack
// because we need to go from back to begin of topo
    order
void DFS(int u) {
   low[u] = num[u] = ++cntTime;
   st.push(u);
   for (int v : G[u])
       if (num[v])
          low[u] = min(low[u], num[v]);
       else {
          DFS(v):
          low[u] = min(low[u], low[v]):
       }
   if (low[u] == num[u]) {
       int v:
       cntSCC++;
       do {
          v = st.top();
          st.pop();
          SCC[v] = cntSCC;
          inSCC[cntSCC].push_back(v);
          low[v] = num[v] = INT_MAX;
       } while (u != v);
```

```
void DFS_topo(int u) {
   num[u] = 1;
   for (int v : Gv2[u])
       if (!num[v])
           DFS_topo(v);
   q.push(u);
}
int main() {
   int n. m:
   cin >> m >> n:
   auto getNot = [&](int u) -> int {
       if(u > n)
           return u - n:
       return u + n;
   }:
   while (m--) {
       char c1, c2;
       int u, v;
       cin >> c1 >> u >> c2 >> v;
       if (c1 == '-')
           u += n;
       if (c2 == '-')
           v += n;
       // add (-v -> u) and (-u -> v)
       G[getNot(u)].push_back(v);
       G[getNot(v)].push_back(u);
   }
   // using tarjan's algorithm to find SCC.
   for (int i = 1: i <= 2 * n: i++)
       if (!num[i])
           DFS(i):
   vector<int> notSCC(2 * n + 1);
   // check if exist u and -u are in the same
        component
   for (int i = 1; i <= n; i++)
       if (SCC[i] == SCC[i + n])
           return cout << "IMPOSSIBLE". 0:</pre>
       else {
           // store the opposite component.
           notSCC[SCC[i]] = SCC[i + n];
           notSCC[SCC[i + n]] = SCC[i];
   // build new graph
   for (int i = 1; i <= 2 * n; i++)
       for (int v : G[i])
           if (SCC[i] != SCC[v]) {
              Gv2[SCC[i]].push_back(SCC[v]);
```

```
}
// topological sort
fill(num + 1, num + 1 + 2 * n, 0);
for (int i = 1; i <= cntSCC; i++)</pre>
   if (!num[i])
       DFS_topo(i);
vector < int > ansSCC(2 * n + 1, -1):
vector<int> ans(2 * n + 1, 0):
while (!q.empty()) {
   int u = q.front();
   q.pop();
   if (ansSCC[u] == -1) { // not pick
       // if u = 1 then -u must be 0
       ansSCC[u] = 1:
       ansSCC[notSCC[u]] = 0:
   }
   // set value of all nodes in the current SCC
   for (int v : inSCC[u]) {
       ans[v] = ansSCC[u];
for (int i = 1; i <= n; i++)</pre>
   cout << ((ans[i]) ? '+' : '-') << ' ';
```

5 Math

5.1 Lucas theorem

For non-negative integers m and n and a prime p, the following congruence relation holds: :

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where:

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0,$$

and:

$$n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0$$

are the base p expansions of m and n respectively. This uses the convention that $\binom{m}{n} = 0$ if $m \le n$.

5.2 cumulative sum of divisors

```
/*
The function SOD(n) (sum of divisors) is defined
as the summation of all the actual divisors of
an integer number n. For example,

SOD(24) = 2+3+4+6+8+12 = 35.

The function CSOD(n) (cumulative SOD) of an integer
    n, is defined as below:

csod(n) = \sum_{{i = 1}^{n}} sod(i)

It can be computed in O(sqrt(n)):
*/

long long csod(long long n) {
  long long ans = 0;
  for (long long i = 2; i * i <= n; ++i) {
    long long j = n / i;
    ans += (i + j) * (j - i + 1) / 2;
    ans += i * (j - i);
  }
  return ans;
}</pre>
```

5.3 fft

```
/**
 * Fast Fourier Transform.
 * Useful to compute convolutions.
 * computes:
 * C(f star g)[n] = sum_m(f[m] * g[n - m])
 * for all n.
 * test: icpc live archive, 6886 - Golf Bot
 * */

using namespace std;
#include <bits/stdc++.h>
#define D(x) cout << #x " = " << (x) << endl
#define endl '\n'

const int MN = 262144 << 1;
int d[MN + 10], d2[MN + 10];

const double PI = acos(-1.0);

struct cpx {
    double real, image;</pre>
```

```
cpx(double _real, double _image) {
   real = _real;
   image = _image;
 cpx(){}
cpx operator + (const cpx &c1, const cpx &c2) {
 return cpx(c1.real + c2.real, c1.image +
      c2.image):
cpx operator - (const cpx &c1, const cpx &c2) {
 return cpx(c1.real - c2.real, c1.image -
      c2.image):
cpx operator * (const cpx &c1, const cpx &c2) {
 return cpx(c1.real*c2.real - c1.image*c2.image,
      c1.real*c2.image + c1.image*c2.real);
int rev(int id, int len) {
 int ret = 0;
 for (int i = 0; (1 << i) < len; i++) {
  ret <<= 1:
   if (id & (1 << i)) ret |= 1;</pre>
 return ret;
cpx A[1 << 20];
void FFT(cpx *a, int len, int DFT) {
 for (int i = 0; i < len; i++)</pre>
   A[rev(i, len)] = a[i];
 for (int s = 1: (1 << s) <= len: s++) {
   int m = (1 << s):
   cpx wm = cpx(cos( DFT * 2 * PI / m), sin(DFT *
        2 * PI / m));
   for(int k = 0; k < len; k += m) {</pre>
     cpx w = cpx(1, 0);
     for(int j = 0; j < (m >> 1); j++) {
       cpx t = w * A[k + j + (m >> 1)];
       cpx u = A[k + j];
       A[k+i] = u+t;
       A[k + j + (m >> 1)] = u - t;
       w = w * wm;
   }
 if (DFT == -1) for (int i = 0; i < len; i++)
      A[i].real /= len, A[i].image /= len;
 for (int i = 0; i < len; i++) a[i] = A[i];</pre>
```

```
cpx in[1 << 20];
void solve(int n) {
 memset(d, 0, sizeof d);
 for (int i = 0; i < n; ++i) {</pre>
   cin >> t:
   d[t] = true:
  int m:
  cin >> m:
  vector<int> q(m);
  for (int i = 0; i < m; ++i)</pre>
  cin >> a[i]:
  for (int i = 0: i < MN: ++i) {</pre>
   if (d[i])
     in[i] = cpx(1, 0);
     in[i] = cpx(0, 0);
  FFT(in, MN, 1);
  for (int i = 0; i < MN; ++i) {</pre>
   in[i] = in[i] * in[i];
  FFT(in, MN, -1);
 int ans = 0:
  for (int i = 0; i < q.size(); ++i) {</pre>
  if (in[q[i]].real > 0.5 || d[q[i]]) {
     ans++:
  cout << ans << endl:
int main() {
 ios_base::sync_with_stdio(false);cin.tie(NULL);
 while (cin >> n)
   solve(n);
 return 0;
```

5.4 fibonacci properties

Let A, B and n be integer numbers.

$$k = A - B \tag{1}$$

$$F_A F_B = F_{k+1} F_A^2 + F_k F_A F_{A-1} \tag{2}$$

$$\sum_{i=0}^{n} F_i^2 = F_{n+1} F_n \tag{3}$$

ev(n) = returns 1 if n is even.

$$\sum_{i=0}^{n} F_i F_{i+1} = F_{n+1}^2 - ev(n) \tag{4}$$

$$\sum_{i=0}^{n} F_i F_{i-1} = \sum_{i=0}^{n-1} F_i F_{i+1}$$
 (5)

5.5 gauss

```
const int inf = 1e9:
const double eps = 1e-6:
* Input:
       a: the coefficients of the system
       ans: storing answer
 * Output:
       The number of roots
int gauss(vector <vector <double>> a, vector
     <double> &ans){
   int n = (int)a.size();
   int m = (int)a[0].size() - 1;
   vector <int> where(m, -1);
   for(int col = 0, row = 0; col < m && row < n;
        col++){
       // Choosing the pivot row is done with
            heuristic:
       // choosing maximum value in the current
            column
       int pivot = row:
       for(int i = row; i < n; i++)</pre>
           if(abs(a[i][col]) > abs(a[pivot][col]))
               pivot = i;
       for(int i = col; i <= m; i++)</pre>
           swap(a[pivot][i], a[row][i]);
       where[col] = row;
       for(int i = 0; i < n; i++)</pre>
           if(i != row){
               double c = a[i][col] / a[row][col];
```

```
for(int j = col; j <= m; j++)</pre>
                   a[i][i] -= a[row][i] * c;
           }
       row++;
    ans.assign(m, 0);
   for(int i = 0; i < m; i++)</pre>
       if(where[i] != -1)
           ans[i] = a[where[i]][m] / a[where[i]][i]:
   // calculate the number of roots by re-checking
         the system of equations.
   for(int i = 0; i < n; i++){</pre>
       double sum = 0:
       for(int i = 0: i < m: i++)</pre>
           sum += ans[j] * a[i][j];
       if(abs(sum - a[i][m]) > eps)
           return 0;
   }
   for(int i = 0; i < m; i++)</pre>
       if(where[i] == -1)
           return inf;
   return 1;
}
```

5.6 others

Approximate factorial

$$n! = \sqrt{2.\pi \cdot n} \cdot \left(\frac{n}{e}\right)^n \tag{6}$$

5.7 polynomials

```
// TODO: what's this ?
const double pi = acos(-1);
struct poly {
  deque <double> coef;
  double x_lo, x_hi;

  double evaluate(double x) {
    double ans = 0;
    for (auto it : coef)
      ans = (ans * x + it);
    return ans;
}

double volume(double x, double dx=1e-6) {
    dx = (x_hi - x_lo) / 1000000.0;
```

```
double ans = 0;
for (double ix = x_lo; ix <= x; ix += dx) {
   double rad = evaluate(ix);
   ans += pi * rad * rad * dx;
}
return ans;
}
};</pre>
```

5.8 sigma function

the sigma function is defined as:

$$\sigma_x(n) = \sum_{d|n} d^x$$

when x = 0 is called the divisor function, that counts the number of positive divisors of n.

Now, we are interested in find

$$\sum_{d|n} \sigma_0(d)$$

if n is written as prime factorization:

$$n = \prod_{i=1}^{k} P_i^{e_k}$$

we can demonstrate that:

$$\sum_{d|n} \sigma_0(d) = \prod_{i=1}^k g(e_k + 1)$$

where q(x) is the sum of the first x positive numbers:

$$q(x) = (x * (x + 1))/2$$

5.9 system different constraints

Solution

```
We construct a n-vertex graph (vertext i represents
     variable x_i). For each inequation x_j - x_i
     <= w_ij,
we add an edge from i to j with weight w_ij.
If the graph has negative cycle, there's no
     solution.
Else, create a virtual vertex s, add edge with
     weight 0 from s to every x i.
the solution is the shortest path from s to n
     vertices.
typedef long long 11;
struct edge{
   int u. v. c:
    check if negative cycle
bool bellman_ford(int n, vector <edge> edges){
   int m = (int)edges.size();
   vector <1l> dist(n+1);
   for(int i = 1; i < n; i++)</pre>
       for(int j = 0; j < m; j++){</pre>
           int u = edges[j].u;
           int v = edges[j].v;
           int c = edges[i].c:
           if(dist[v] > dist[u] + c)
               dist[v] = dist[u] + c:
       }
   for(int i = 0: i < m: i++){</pre>
       int u = edges[j].u;
       int v = edges[j].v;
       int c = edges[i].c:
       if(dist[v] > dist[u] + c)
           return true:
   return false;
void solve(int n, int m){
   vector <edge> edges;
   while(m--){
       char t:
       cin >> t:
       if(t == 'P'){
           int u, v, c;
           cin >> u >> v >> c;
           edges.push_back({u, v, c});
           edges.push back({v. u. -c}):
       }else{
           int u, v: cin >> u >> v:
```

```
edges.push_back({v, u, -1});
}
if(bellman_ford(n, edges))
    cout << "Unreliable" << '\n';
else cout << "Reliable" << '\n';
}</pre>
```

6 Matrix

6.1 matrix

```
const int dim = 10:
struct matrix {
   vector<vector<long long>> a;
   matrix() {
       a.resize(dim);
       for (int i = 1; i < dim; i++)</pre>
           a[i].resize(dim, 0);
   }
}:
matrix Identity() {
   matrix A:
   for (int i = 1: i < dim: i++)</pre>
       A.a[i][i] = 1:
   return A:
}
matrix operator*(const matrix &A, const matrix &B) {
   matrix mul:
   for (int k = 1; k < dim; k++)
       for (int i = 1; i < dim; i++)</pre>
           for (int j = 1; j < dim; j++)</pre>
               mul.a[i][j] += A.a[i][k] * B.a[k][j];
    return mul;
}
matrix fastPow(matrix A, long long b) {
   if (b == 0)
       return Identity();
   if (b == 1)
       return A:
   matrix t = fastPow(A, b / 2):
   t = t * t:
   if (b % 2 == 1)
       t = t * A:
   return t:
}
```

7 Misc

7.1 dates

```
11
// Time - Leap years
11
// A[i] has the accumulated number of days from
     months previous to i
const int A[13] = \{ 0, 0, 31, 59, 90, 120, 151, 
     181, 212, 243, 273, 304, 334 };
// same as A, but for a leap year
const int B[13] = \{ 0, 0, 31, 60, 91, 121, 152, \dots \}
     182, 213, 244, 274, 305, 335 }:
// returns number of leap years up to, and
     including, y
int leap vears(int v) { return v / 4 - v / 100 + v
    / 400: }
bool is_leap(int y) { return y % 400 == 0 || (y % 4
     == 0 && v % 100 != 0): }
// number of days in blocks of years
const int p400 = 400*365 + leap_years(400);
const int p100 = 100*365 + leap vears(100):
const int p4 = 4*365 + 1;
const int p1 = 365;
int date_to_days(int d, int m, int y)
 return (y - 1) * 365 + leap_years(y - 1) +
      (is_leap(y) ? B[m] : A[m]) + d;
void days_to_date(int days, int &d, int &m, int &y)
 bool top100; // are we in the top 100 years of a
      400 block?
 bool top4; // are we in the top 4 years of a
      100 block?
 bool top1; // are we in the top year of a 4
      block?
 top100 = top4 = top1 = false:
 v += ((days-1) / p400) * 400;
 d = (days-1) \% p400 + 1;
 if (d > p100*3) top100 = true, d = 3*p100, v +=
 else y += ((d-1) / p100) * 100, d = (d-1) % p100
      + 1:
 if (d > p4*24) top4 = true, d -= 24*p4, y += 24*4;
  else y += ((d-1) / p4) * 4, d = (d-1) % p4 + 1;
```

7.2 fast input

```
inline char gc() { // like getchar()
    static char buf[1 << 16];
    static size_t bc, be;
    if (bc >= be) {
        buf[0] = 0, bc = 0;
        be = fread(buf, 1, sizeof(buf), stdin);
    }
    return buf[bc++]; // returns 0 on EOF
}
int readInt() {
    int a, c;
    while ((a = gc()) < 40);
    if (a == '-') return -readInt();
    while ((c = gc()) >= 48) a = a * 10 + c - 480;
    return a - 48;
}
```

7.3 fast knapsack

```
* Author: Mrten Wiman
 * License: CCO
 * Source: Pisinger 1999, "Linear Time Algorithms
     for Knapsack Problems with
* Bounded Weights" Description: Given N
     non-negative integer weights w and a
 * non-negative target t. computes the maximum S <=
     t such that S is the sum of
 * some subset of the weights. Time: O(N \max(w i))
     Status: Tested on
 * kattis:eavesdropperevasion, stress-tested
#pragma once
int knapsack(vi w, int t) {
   int a = 0, b = 0, x;
   while (b < sz(w) && a + w[b] <= t)
       a += w[b++]:
   if (b == sz(w))
```

8 Number theory

8.1 convolution

```
typedef long long int LL:
typedef pair<LL, LL> PLL;
inline bool is_pow2(LL x) { return (x & (x - 1)) ==
    0; }
inline int ceil_log2(LL x) {
   int ans = 0;
   --x;
   while (x != 0) {
      x >>= 1:
      ans++;
   }
   return ans:
/* Returns the convolution of the two given vectors
    in time proportional to
* n*log(n). The number of roots of unity to use
     nroots unity must be set so
* that the product of the first proots unity
     primes of the vector
* nth_roots_unity is greater than the maximum
     value of the convolution. Never
* use sizes of vectors bigger than 2^24, if you
     need to change the values of
* the nth roots of unity to appropriate primes for
     those sizes.
vector<LL> convolve(const vector<LL> &a, const
    vector<LL> &b,
```

```
int nroots_unity = 2) {
int N = 1 << ceil_log2(a.size() + b.size());</pre>
vector<LL> ans(N, 0), fA(N), fB(N), fC(N);
LL modulo = 1:
for (int times = 0; times < nroots_unity;</pre>
    times++) {
   fill(fA.begin(), fA.end(), 0);
   fill(fB.begin(), fB.end(), 0);
   for (int i = 0: i < a.size(): i++)</pre>
       fA[i] = a[i]:
   for (int i = 0; i < b.size(); i++)</pre>
       fB[i] = b[i]:
   LL prime = nth roots unitv[times].first:
   LL inv modulo = mod inv(modulo % prime.
        prime):
   LL normalize = mod inv(N. prime):
   ntfft(fA, 1, nth_roots_unity[times]);
   ntfft(fB, 1, nth_roots_unity[times]);
   for (int i = 0; i < N; i++)
       fC[i] = (fA[i] * fB[i]) % prime;
   ntfft(fC, -1, nth_roots_unity[times]);
   for (int i = 0; i < N; i++) {</pre>
       LL curr = (fC[i] * normalize) % prime;
       LL k = (curr - (ans[i] % prime) + prime)
            % prime;
       k = (k * inv_modulo) % prime;
       ans[i] += modulo * k;
   modulo *= prime;
return ans:
```

8.2 crt

```
/**
  * Chinese remainder theorem.
  * Find z such that z % x[i] = a[i] for all i.
  * */
long long crt(vector<long long> &a, vector<long
  long> &x) {
  long long z = 0;
  long long n = 1;
  for (int i = 0; i < x.size(); ++i)
      n *= x[i];

  for (int i = 0; i < a.size(); ++i) {
    long long tmp = (a[i] * (n / x[i])) % n;
    tmp = (tmp * mod_inv(n / x[i], x[i])) % n;
    z = (z + tmp) % n;
}</pre>
```

```
return (z + n) % n;
}
```

8.3 diophantine equations

```
long long gcd(long long a, long long b, long long
    &x, long long &y) {
   if (a == 0) {
       x = 0;
       y = 1;
       return b:
   long long x1, y1;
   long long d = gcd(b \% a, a, x1, y1);
   x = y1 - (b / a) * x1;
   y = x1;
   return d:
}
bool find_any_solution(long long a, long long b,
    long long c, long long &x0,
                    long long &vO. long long &g) {
   g = gcd(abs(a), abs(b), x0, y0);
   if (c % g) {
       return false;
   x0 *= c / g;
   v0 *= c / g;
   if (a < 0)
       x0 = -x0;
   if (b < 0)
       y0 = -y0;
   return true;
void shift_solution(long long &x, long long &y,
    long long a, long long b,
                  long long cnt) {
   x += cnt * b:
   v -= cnt * a:
long long find_all_solutions(long long a, long long
    b, long long c,
                          long long minx, long long
                              maxx, long long miny,
                          long long maxy) {
   long long x, y, g;
   if (!find_any_solution(a, b, c, x, y, g))
       return 0;
   a /= g;
```

```
b /= g;
long long sign_a = a > 0 ? +1 : -1;
long long sign_b = b > 0 ? +1 : -1;
shift_solution(x, y, a, b, (minx - x) / b);
if (x < minx)
   shift_solution(x, y, a, b, sign_b);
if (x > maxx)
   return 0:
long long lx1 = x;
shift_solution(x, y, a, b, (maxx - x) / b);
if (x > maxx)
   shift_solution(x, y, a, b, -sign_b);
long long rx1 = x:
shift_solution(x, y, a, b, -(miny - y) / a);
if (y < miny)</pre>
   shift_solution(x, y, a, b, -sign_a);
if (y > maxy)
   return 0;
long long 1x2 = x;
shift_solution(x, y, a, b, -(maxy - y) / a);
if (y > maxy)
   shift_solution(x, y, a, b, sign_a);
long long rx2 = x;
if (1x2 > rx2)
   swap(1x2, rx2):
long long lx = max(lx1, lx2):
long long rx = min(rx1, rx2);
if (lx > rx)
   return 0:
return (rx - lx) / abs(b) + 1:
```

8.4 discrete logarithm

```
aj = (aj * a) % n;
}
long long coef = mod_pow(a, n - 2, n);
coef = mod_pow(coef, m, n);
// coef = a ^ (-m)
long long gamma = b;
for (int i = 0; i < m; ++i) {
    if (M.count(gamma)) {
        return i * m + M[gamma];
    } else {
        gamma = (gamma * coef) % n;
    }
}
return -1;
}</pre>
```

8.5 ext euclidean

8.6 highest exponent factorial

```
int highest_exponent(int p, const int &n) {
    int ans = 0;
    int t = p;
    while (t <= n) {
        ans += n / t;
        t *= p;
    }
    return ans;
}</pre>
```

8.7 miller rabin

```
const int rounds = 20;
```

```
// checks whether a is a witness that n is not
    prime, 1 < a < n
bool witness(long long a, long long n) {
   // check as in Miller Rabin Primality Test
        described
   long long u = n - 1;
   int t = 0:
   while (u % 2 == 0) {
      t++:
       u >>= 1:
   long long next = mod pow(a, u, n):
   if (next == 1)
       return false:
   long long last:
   for (int i = 0: i < t: ++i) {
      last = next:
       next = mod_mul(last, last, n);
       if (next == 1) {
          return last != n - 1;
       }
   }
   return next != 1;
// Checks if a number is prime with prob 1 - 1 / (2)
     ^ it)
// D(miller rabin(999999999999997LL) == 1):
// D(miller rabin(999999999971LL) == 1):
// D(miller rabin(7907) == 1):
bool miller_rabin(long long n, int it = rounds) {
   if (n <= 1)
       return false:
   if (n == 2)
       return true:
   if (n % 2 == 0)
       return false:
   for (int i = 0: i < it: ++i) {</pre>
       long long a = rand() \% (n - 1) + 1;
       if (witness(a, n)) {
          return false;
       }
   }
   return true;
```

8.8 mod integer

```
template <class T, T mod> struct mint_t {
   T val;
   mint_t() : val(0) {}
```

```
mint_t(T v) : val(v % mod) {}

mint_t operator+(const mint_t &o) const {
    return (val + o.val) % mod; }

mint_t operator-(const mint_t &o) const {
    return (val - o.val) % mod; }

mint_t operator*(const mint_t &o) const {
    return (val * o.val) % mod; }

};

typedef mint_t<long long, 998244353> mint;
```

8.9 mod inv

```
long long mod_inv(long long n, long long m) {
  long long x, y, gcd;
  ext_euclid(n, m, x, y, gcd);
  if (gcd != 1)
    return 0;
  return (x + m) % m;
}
```

8.10 mod mul

```
// Computes (a * b) % mod
long long mod_mul(long long a, long long b, long
long mod) {
long long x = 0, y = a % mod;
while (b > 0) {
    if (b & 1)
        x = (x + y) % mod;
    y = (y * 2) % mod;
    b /= 2;
}
return x % mod;
}
```

8.11 mod pow

```
// Computes ( a ^ exp ) % mod.
long long mod_pow(long long a, long long exp, long
   long mod) {
   long long ans = 1;
   while (exp > 0) {
      if (exp & 1)
            ans = mod_mul(ans, a, mod);
      a = mod_mul(a, a, mod);
}
```

```
exp >>= 1;
}
return ans;
}
```

8.12 number theoretic transform

```
typedef long long int LL;
typedef pair<LL, LL> PLL;
/* The following vector of pairs contains pairs
     (prime, generator)
 * where the prime has an Nth root of unity for N
     being a power of two.
 * The generator is a number g s.t g^(p-1)=1 (mod p)
 * but is different from 1 for all smaller powers */
vector<PLL> nth_roots_unity{{1224736769,
     330732430}, {1711276033, 927759239},
                         {167772161, 167489322},
                              {469762049.
                              343261969}.
                         {754974721, 643797295}.
                              {1107296257,
                              883865065}}:
PLL ext_euclid(LL a, LL b) {
   if (b == 0)
       return make_pair(1, 0);
   pair<LL, LL> rc = ext_euclid(b, a % b);
   return make_pair(rc.second, rc.first - (a / b)
        * rc.second):
// returns -1 if there is no unique modular inverse
LL mod inv(LL x. LL modulo) {
   PLL p = ext_euclid(x, modulo);
   if ((p.first * x + p.second * modulo) != 1)
       return -1:
   return (p.first + modulo) % modulo;
// Number theory fft. The size of a must be a power
void ntfft(vector<LL> &a, int dir, const PLL
    &root unity) {
   int n = a.size();
   LL prime = root_unity.first;
   LL basew = mod_pow(root_unity.second, (prime -
        1) / n, prime);
   if (dir < 0)
       basew = mod_inv(basew, prime);
   for (int m = n; m >= 2; m >>= 1) {
```

```
int mh = m >> 1;
LL w = 1;
for (int i = 0; i < mh; i++) {
    for (int j = i; j < n; j += m) {
        int k = j + mh;
        LL x = (a[j] - a[k] + prime) % prime;
        a[j] = (a[j] + a[k]) % prime;
        a[k] = (w * x) % prime;
    }
    w = (w * basew) % prime;
}
basew = (basew * basew) % prime;
}
int i = 0;
for (int j = 1; j < n - 1; j++) {
    for (int k = n >> 1; k > (i ^= k); k >>= 1)
    ;
    if (j < i)
        swap(a[i], a[j]);
}</pre>
```

8.13 pollard rho factorize

```
long long pollard_rho(long long n) {
   long long x, y, i = 1, k = 2, d;
   x = y = rand() % n;
   while (1) {
       ++i:
       x = mod_mul(x, x, n);
       x += 2;
       if (x >= n)
          x -= n;
       if (x == y)
          return 1:
       d = \_gcd(abs(x - y), n);
       if (d != 1)
          return d:
       if (i == k) {
          y = x;
          k *= 2:
       }
   }
   return 1;
// Returns a list with the prime divisors of n
vector<long long> factorize(long long n) {
   vector<long long> ans;
   if (n == 1)
       return ans;
   if (miller_rabin(n)) {
```

```
ans.push_back(n);
} else {
    long long d = 1;
    while (d == 1)
        d = pollard_rho(n);
    vector<long long> dd = factorize(d);
    ans = factorize(n / d);
    for (int i = 0; i < dd.size(); ++i)
        ans.push_back(dd[i]);
}
return ans;
}</pre>
```

8.14 primes

```
namespace primes {
const int MP = 100001:
bool sieve[MP]:
long long primes[MP];
int num_p;
void fill_sieve() {
   num p = 0:
   sieve[0] = sieve[1] = true;
   for (long long i = 2; i < MP; ++i) {</pre>
       if (!sieve[i]) {
           primes[num_p++] = i;
           for (long long j = i * i; j < MP; j += i)
              sieve[i] = true;
   }
}
// Finds prime numbers between a and b, using basic
    primes up to sqrt(b)
// a must be greater than 1.
vector<long long > seg_sieve(long long a, long long
   long long ant = a;
   a = max(a, 3LL);
   vector<bool> pmap(b - a + 1);
   long long sqrt_b = sqrt(b);
   for (int i = 0; i < num_p; ++i) {</pre>
       long long p = primes[i];
       if (p > sqrt_b)
           break:
       long long j = (a + p - 1) / p;
       for (long long v = (j == 1) ? p + p : j * p;
            v \le b; v += p) {
           pmap[v - a] = true;
   }
   vector<long long> ans;
```

```
if (ant == 2)
       ans.push_back(2);
   int start = a % 2 ? 0 : 1;
   for (int i = start, I = b - a + 1; i < I; i +=</pre>
       if (pmap[i] == false)
           ans.push_back(a + i);
   return ans;
vector<pair<int, int>> factor(int n) {
   vector<pair<int, int>> ans;
   if (n == 0)
       return ans:
   for (int i = 0; primes[i] * primes[i] <= n;</pre>
        ++i) {
       if ((n % primes[i]) == 0) {
           int expo = 0;
           while ((n % primes[i]) == 0) {
               expo++;
              n /= primes[i];
           ans.emplace_back(primes[i], expo);
   if (n > 1) {
       ans.emplace_back(n, 1);
   return ans;
} // namespace primes
```

8.15 totient sieve

```
for (int i = 1; i < MN; i++)
    phi[i] = i;

for (int i = 1; i < MN; i++)
    if (!sieve[i]) // is prime
        for (int j = i; j < MN; j += i)
            phi[j] -= phi[j] / i;</pre>
```

8.16 totient

```
long long totient(long long n) {
  if (n == 1)
    return 0;
  long long ans = n;
```

9 Strings

9.1 hashing codeforces

```
/**
 * Author: Simon Lindholm
 * Date: 2015-03-15
* License: CCO
 * Source: own work
 * Description: Various self-explanatory methods
     for string hashing.
 * Use on Codeforces, which lacks 64-bit support
     and where solutions can be
 * hacked.
*/
#pragma once
static int C: // initialized below
// Arithmetic mod two primes and 2^32
    simultaneously.
// "typedef uint64_t H;" instead if Thue-Morse does
    not apply.
template <int M. class B> struct A {
   int x:
   B b:
   A(int x = 0) : x(x), b(x) {}
   A(int x, B b) : x(x), b(b) {}
   A operator+(A o) {
       int y = x + o.x;
       return \{y - (y >= M) * M, b + o.b\};
   A operator-(A o) {
       int y = x - o.x;
       return \{y + (y < 0) * M, b - o.b\};
   A operator*(A o) { return {(int)(1LL * x * o.x
        % M), b * o.b; }
```

```
explicit operator ull() { return x ^ (ull)b <<</pre>
        21: }
   bool operator==(A o) const { return (ull) *
        this == (ull)o: }
   bool operator<(A o) const { return (ull) * this</pre>
        < (ull)o; }
typedef A<1000000007, A<1000000009, unsigned>> H;
struct HashInterval {
   vector<H> ha, pw;
   HashInterval(string &str) : ha(sz(str) + 1),
        pw(ha) {
       pw[0] = 1;
       rep(i, 0, sz(str)) ha[i + 1] = ha[i] * C +
            str[i].
                               pw[i + 1] = pw[i] *
                                    C:
   H hashInterval(int a, int b) { // hash [a, b)
       return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string &str, int length) {
   if (sz(str) < length)</pre>
       return {};
   H h = 0, pw = 1;
    rep(i, 0, length) h = h * C + str[i], pw = pw *
   vector<H> ret = {h}:
   rep(i, length, sz(str)) {
       ret.pb(h = h * C + str[i] - pw * str[i -
            length]):
   }
    return ret;
H hashString(string &s) {
   H h{}:
   for (char c : s)
       h = h * C + c;
    return h;
}
#include <sys/time.h>
int main() {
   timeval tp;
    gettimeofday(&tp, 0);
   C = (int)tp.tv_usec; // (less than modulo)
   assert((ull)(H(1) * 2 + 1 - 3) == 0);
    // ...
}
```

9.2 kmp

```
* Author: Johan Sannemo
 * Date: 2016-12-15
 * License: CCO
 * Description: pi[x] computes the length of the
     longest prefix of s that ends
 * at x, other than s[0...x] itself (abacaba ->
     0010123). Can be used to find
 * all occurrences of a string.
 * Time: O(n) Status:
#pragma once
vi pi(const string &s) {
   vi p(sz(s));
   rep(i, 1, sz(s)) {
       int g = p[i - 1];
       while (g && s[i] != s[g])
           g = p[g - 1];
       p[i] = g + (s[i] == s[g]);
   return p;
void compute_automaton(const string &s, vector<vi>
    &aut) {
   vi p = pi(s):
   aut.assign(sz(s), vi(26));
   rep(i, 0, sz(s)) rep(c, 0, 26) if (i > 0 &&
        s[i] != 'a' + c) aut[i][c] =
       aut[p[i - 1]][c];
   else aut[i][c] = i + (s[i] == 'a' + c);
vi match(const string &s, const string &pat) {
   vi p = pi(pat + ^{1}\0, res;
   rep(i, sz(p) - sz(s), sz(p)) if (p[i] ==
        sz(pat)) res.emb(i - 2 * sz(pat));
   return res;
```

9.3 mancher

```
*/
#pragma once
array<vi, 2> manacher(const string &s) {
   int n = sz(s);
   array\langle vi, 2 \rangle p = \{vi(n + 1), vi(n)\};
   rep(z, 0, 2) for (int i = 0, 1 = 0, r = 0; i <
        n: i++) {
       int t = r - i + !z:
       if (i < r)
           p[z][i] = min(t, p[z][1 + t]);
       int L = i - p[z][i], R = i + p[z][i] - !z;
       while (L >= 1 \&\& R + 1 < n \&\& s[L - 1] ==
            s[R + 1]
           p[z][i]++, L--, R++;
       if (R > r)
           1 = L, r = R:
   return p;
```

9.4 minimal string rotation

```
// Lexicographically minimal string rotation
int lmsr() {
   string s;
   cin >> s:
   int n = s.size();
   vector<int> f(s.size(), -1);
   int k = 0:
   for (int j = 1; j < 2 * n; ++j) {
       int i = f[j - k - 1];
       while (i != -1 && s[i] != s[k + i + 1]) {
          if (s[i] < s[k + i + 1])
              k = j - i - 1;
          i = f[i];
       }
       if (i == -1 \&\& s[j] != s[k + i + 1]) {
          if (s[j] < s[k + i + 1]) {
              k = j;
          f[j - k] = -1;
       } else {
          f[j - k] = i + 1;
   }
   return k;
```

9.5 suffix array

const int MAXN = 200005;

```
const int MAX_DIGIT = 256;
void countingSort(vector<int> &SA, vector<int> &RA,
    int k = 0) {
   int n = SA.size();
   vector<int> cnt(max(MAX_DIGIT, n), 0);
   for (int i = 0; i < n; i++)</pre>
       if (i + k < n)
           cnt[RA[i + k]]++;
       else
           cnt[0]++:
   for (int i = 1; i < cnt.size(); i++)</pre>
       cnt[i] += cnt[i - 1]:
   vector<int> tempSA(n);
   for (int i = n - 1; i >= 0; i--)
       if (SA[i] + k < n)
           tempSA[--cnt[RA[SA[i] + k]]] = SA[i];
           tempSA[--cnt[0]] = SA[i];
   SA = tempSA;
}
vector<int> constructSA(string s) {
    int n = s.length();
   vector<int> SA(n);
   vector<int> RA(n):
   vector<int> tempRA(n);
   for (int i = 0; i < n; i++) {
       RA[i] = s[i];
       SA[i] = i;
   for (int step = 1; step < n; step <<= 1) {</pre>
       countingSort(SA, RA, step);
       countingSort(SA, RA, 0):
       int c = 0;
       tempRA[SA[O]] = c:
       for (int i = 1: i < n: i++) {
           if (RA[SA[i]] == RA[SA[i - 1]] &&
               RA[SA[i] + step] == RA[SA[i - 1] +
                   stepl)
               tempRA[SA[i]] = tempRA[SA[i - 1]];
               tempRA[SA[i]] = tempRA[SA[i - 1]] +
       RA = tempRA;
       if (RA[SA[n-1]] == n-1)
           break:
   }
    return SA;
```

```
vector<int> computeLCP(const string &s, const
     vector<int> &SA) {
   int n = SA.size();
   vector<int> LCP(n), PLCP(n), c(n, 0);
   for (int i = 0; i < n; i++)</pre>
       c[SA[i]] = i;
   int k = 0:
   for (int j, i = 0; i < n - 1; i++) {
       if (c[i] - 1 < 0)
           continue:
       i = SA[c[i] - 1]:
       k = max(k - 1, 0):
       while (i + k < n \&\& j + k < n \&\& s[i + k] ==
            s[i + k])
           k++:
       PLCP[i] = k:
   for (int i = 0; i < n; i++)</pre>
       LCP[i] = PLCP[SA[i]];
   return LCP;
```

9.6 suffix automaton

```
* Suffix automaton:
 * This implementation was extended to maintain
      (online) the
 * number of different substrings. This is
     equivalent to compute
 * the number of paths from the initial state to
     all the other
 * states.
 * The overall complexity is O(n)
 * can be tested here:
     https://www.urionlinejudge.com.br/judge/en/problems/v
struct state {
   int len. link:
   long long num_paths;
   map<int, int> next;
const int MN = 200011;
state sa[MN << 1];
int sz, last;
long long tot_paths;
```

```
void sa_init() {
   sz = 1:
   last = 0;
   sa[0].len = 0;
   sa[0].link = -1;
   sa[0].next.clear();
   sa[0].num_paths = 1;
   tot_paths = 0;
}
void sa_extend(int c) {
   int cur = sz++:
   sa[cur].len = sa[last].len + 1;
   sa[cur].next.clear():
   sa[cur].num_paths = 0;
   for (p = last; p != -1 && !sa[p].next.count(c);
        p = sa[p].link) {
       sa[p].next[c] = cur;
       sa[cur].num_paths += sa[p].num_paths;
       tot_paths += sa[p].num_paths;
   if (p == -1) {
       sa[cur].link = 0;
   } else {
       int q = sa[p].next[c];
       if (sa[p].len + 1 == sa[q].len) {
           sa[cur].link = q;
       } else {
          int clone = sz++;
           sa[clone].len = sa[p].len + 1;
          sa[clone].next = sa[q].next;
          sa[clone].num_paths = 0;
```

9.7 z algorithm

```
using namespace std;
#include <bits/stdc++.h>

vector<int> compute_z(const string &s) {
   int n = s.size();
   vector<int> z(n, 0);
   int l, r;
   r = l = 0;
   for (int i = 1; i < n; ++i) {
      if (i > r) {
        l = r = i;
        while (r < n and s[r - l] == s[r])
        r++;
      z[i] = r - l;
      r--;</pre>
```

```
} else {
           int k = i - 1;
           if (z[k] < r - i + 1)
               z[i] = z[k];
           else {
               1 = i;
               while (r < n \text{ and } s[r - 1] == s[r])
               z[i] = r - 1;
               r--;
       }
   return z;
int main() {
   // string line;cin>>line;
   string line = "alfalfa";
   vector<int> z = compute_z(line);
   for (int i = 0; i < z.size(); ++i) {</pre>
       if (i)
           cout << " ";
       cout << z[i];
   cout << endl;</pre>
   // must print "0 0 0 4 0 0 1"
   return 0;
```