Algèbre Linéaire 2 - Série 4

Matrices III - L'espace vectoriel \mathbb{R}^n I

- 1. (a) Soit la matrice $A = \begin{pmatrix} 2 & 10 & 8 \\ 1 & \alpha & 4 \\ \beta & 15 & 12 \end{pmatrix}$. Déterminer s'il existe des valeurs de $\alpha, \beta \in \mathbb{R}$ pour lesquelles le rang de A soit respectivement 0, 1, 2, ou 3.
 - (b) Soit la matrice $A=\left(\begin{array}{ccc} k & k-1 & k \\ 0 & 2k-2 & 0 \\ 1 & k-1 & 2-k \end{array}\right)$ pour $k\in\mathbb{R}.$
 - (i) Calculer le rang de A pour toutes les valeurs possibles de k.
 - (ii) Pour quelles valeurs de k la matrice A est-elle inversible ?
 - (iii) Calculer A^{-1} si k = -1.
- 2. Résoudre le système

$$\begin{cases} x + y + z + u = 1 \\ 4x - 2y - z - u = 6 \\ 3x + 4y - 5z = 0 \\ 2x + y + u = 3 \end{cases}$$

en inversant la matrice des coefficients. Vérifier votre solution numériquement.

- 3. (a) Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de \mathbb{R}^n . Interpréter les produits matriciels $\overrightarrow{u}^T\overrightarrow{v}$ et $\overrightarrow{u}^T\overrightarrow{u}$.
 - (b) Déterminer l'intersection de la droite d passant par P(-1, -4, 0, 3, 0) et Q(0, -1, -3, 3, 1) avec la sphère Σ de centre C(0, -1, 1, 3, -2) et de rayon r = 5.