# CIS6930/4930 – Probability for Computer Systems and Machine Learning

## Introduction

Jan. 06, 2022

Prof. Ye Xia

# **Objectives**

- Introduce probability specifically to CS students in terms of
  - selection of material
  - assumption of students' background
- Some distinctive features:
  - emphasize probability calculations so that it is usable
  - will do some measure theory: to be elaborated
- Expected outcomes: students can
  - do non-obvious probability calculations when thinking through system designs
  - do discrete event simulation
  - understand probability aspects in many areas of CS
  - read advanced literature

#### What the Course is and is not

- It is mainly a course on probability.
- Will draw examples/motivations from computer systems and machine learning (ML) areas.
- It should be broadly useful to many areas of computer science.
- There is much interest in ML. This is not a course on ML. But, it will be useful to study/understand (statistical) ML properly.
- I will try to draw more examples from ML.
- There will be no neural networks.

#### **Related Courses**

- CAP6610 Machine Learning: covers many machine learning methods, not just probabilistic ones. I'd think this course complements it.
- CAP6617 Advanced Machine Learning: more specialized; requires very good understanding of probability and other mathematics.
- CAP4621 Artificial Intelligence: slightly related
- COT5615 Math for Intelligent Systems: probability is one of the several components. The coverage will be different from this course.
- Probability courses in other departments: They do overlap with this course. The courses differ in material selection and assumptions on background.

# Logistics

- Lectures will be recorded and posted on Canvas.
- Prerequisites: calculus, linear algebra and statistics at the level of MAC2313, MAS3114 and STA3032.
- Homework (75%): around five assignments
- Project (25%): simple discrete event simulation.

  I will provide the C code for priority queue. If you use another language, you can search for similar code or implement your own priority queue.
- No exams
- Follow the assignments, due dates and other schedules on Canvas.

# **Example from Computer Systems: Cache**



- There are N files (e.g., web page objects), originally residing in far-away Internet (origin) servers. N is large.
- Users make requests for the files.

- There is a cache server nearby the users. A user request goes to the cache first.
- If the cache does not have the file, the request goes to the origin server. The requested file goes to the cache first and is cached, and then to the user.
- File i has a size  $S_i$  and a popularity rating  $p_i$ .
- $p_i$  is the probability that a request is for i.
- Suppose the resource limitation is at the access link (in-bound direction). Its bandwidth is denoted  $C_a$ , a constant.
- The institution network bandwidth is  $C_i$ , a constant.
- Assume the propagation time within the institution network is 0.
- The one-way propagation time between the institution network and the origin server(s) is D, a constant (alternatively, random).

# **Project: Evaluate Cache Replacement Policies**

- The cache storage capacity is  $S_c$ , with  $S_c < \sum_{i=1}^N S_i$ .
- Replacement Policies: Oldest First; Least-Popular First; others?
- Performance metric: average response time experienced by the users
- What are random: The file requests follow a Poisson process with rate  $\lambda$ .
- Each file size  $S_i$  is a sample drawn from a Pareto distribution (heavy tail).
- The popularity  $p_i$  is drawn from another Pareto distribution.
- It may be possible to analyze this system, but it won't be easy.
- Will study this by discrete event simulation your project.

## **Example from Machine Learning**

- Much of ML can be brought under statistical decision theory.
- $X \in \mathbb{R}^p$ : random input vector
- $Y \in \mathbb{R}$ : random output scalar
- P(X,Y): joint distribution, which we don't really know
- We observes realizations of (X, Y) or the training data:  $(x_1, y_1), \ldots, (x_N, y_N)$ . We wish to learn:
  - P(X,Y). Example: clustering. If so, we know everything except that there is uncertainty in the knowledge due to limited data.
  - More often, we like to think X and Y are functionally related by Y = f(X), which isn't necessarily true, but can be useful for prediction or classification. In this case, we wish to learn about f.

- If we have f, given another input vector  $x_0$ , we can predict the output  $\hat{y}_0 = f(x_0)$ .
- $\hat{y}_0$  is usually not the same as the true output  $y_0$ . We need to worry about how good the prediction is.

Note: If X and Y are truly related through P(X,Y), then given  $X=x_0, Y$  is a random variable fully described by the conditional probability  $P(Y|X=x_0)$ . The prediction using  $\hat{y}_0=f(x_0)$  is a drastic simplification.

- The first problem: Oftentimes, there is P(X,Y), but not necessarily f.
  - Sometimes, X and Y may be related by  $Y = f(X) + \varepsilon$ , where  $\varepsilon$  is random; but in general, not even that.
  - Even when  $Y = f(X) + \varepsilon$ , it is incorrect to say Y = f(X).
  - We shall write  $\hat{Y} = f(X)$ , where  $\hat{Y}$  is the **predicted output**.

## **Square Error Loss**

- If we insist of predicting Y based on input X, i.e.,  $\hat{Y} = f(X)$ , what will be f? We need a **loss function** L(Y, f(X)).
- It is common to use the square error loss  $L(Y, f(X)) = (Y f(X))^2$ .
- The expected loss (or expected prediction error EPE) is  $EPE(f) = E[L(Y, f(X))] = E[(Y f(X))^2].$
- The expectation is taken with respect to P(X, Y), which is assumed known at this point. To be clear, we can write  $E_{X,Y}$ .

# What f minimizes EPE(f) above?

Answer: the conditional expectation E[Y|X], which is a function of X.

$$EPE(f) = E_{X,Y}[(Y - f(X))^2] = E_X E_{Y|X}[(Y - f(X))^2|X]$$

- Here, when computing the expectation  $(Y f(X))^2$  with respect to the joint distribution of (X, Y), we do the usual trick of 'conditioning on something first'. Here, we first condition on X and compute the expectation  $(Y f(X))^2$  with respect to the conditional distribution of Y given X. We are left with a function of X,  $h(X) \triangleq E[(Y f(X))^2 | X]$ ; h(X) is random.
- We then compute the expectation of h(X) with respect to the distribution of X.

# What f minimizes EPE(f) above?

At each X = x,

$$E_{Y|X}[(Y - f(X))^2 | X = x] = E_{Y|X}[(Y - f(x))^2 | X = x],$$

We'd like to know what f(x) (which will be a number for the fixed x) minimizes the above expectation.

Suppose the minimum is denoted by  $f^*(x)$ . Then, the function  $f^*$  must minimize  $E_{X,Y}[(Y-f(X))^2]$  since

$$E_{X,Y}[(Y - f^*(X))^2] = E_X E_{Y|X}[(Y - f^*(X))^2 | X]$$

$$\leq E_X E_{Y|X}[(Y - f(X))^2 | X]$$

$$= E_{X,Y}[(Y - f(X))^2].$$

Why the inequality: For two functions h and g with  $h \leq g$ , we have

$$E[h(X)] \le E[g(X)],$$

because expectation is a weighted sum, or in general, an integral.

Now, at X=x, f(x) is a number. To minimize  $E_{Y|X}[(Y-f(x))^2|X=x]$  over f at X=x is the same as saying  $\min_c E_{Y|X}[(Y-c)^2|X=x]$ .

$$E_{Y|X}[(Y-c)^{2}|X=x] = E_{Y|X}[Y^{2} - 2cY + c^{2}|X=x]$$
$$= E_{Y|X}[Y^{2}|X=x] - 2cE_{Y|X}[Y|X=x] + c^{2}.$$

By taking the derivative with respect to c, we see that the minimum c is equal to  $E_{Y|X}[Y|X=x]$ , the conditional expectation of Y given X=x. We then have  $f^*(x)=E_{Y|X}[Y|X=x]$ .

**Conclusion:** We see that the function f(X) that minimizes EPE(f) is equal to E[Y|X], the conditional mean or expectation.

E[Y|X] is the 'weighted' average of Y for each given X, where the weight is the conditional distribution P(Y|X).

Recall that here we assume P(X, Y) is given.

#### **Side Note**

- Formula:  $E_{X,Y}[g(X,Y)] = E_X E[g(X,Y)|X]$ .
- Proof for discrete random variables: Suppose  $p_{X,Y}$  is the joint probability mass function and  $p_X$  is the marginal probability mass function for X.

$$E_{X,Y}[g(X,Y)] = \sum_{x,y} g(x,y) p_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} g(x,y) p_{Y|X}(y|x) p_{X}(x)$$

$$= \sum_{x} E_{Y|X}[g(x,Y)|X = x] p_{X}(x)$$

$$= E_{X} E_{Y|X}[g(X,Y)|X].$$

### Random Sample

In reality, we do not know P(X, Y). We observe the training data  $(x_1, y_1), \ldots, (x_N, y_N)$ .

Each  $(x_i, y_i)$  is drawn from the distribution P(X, Y). Different  $(x_i, y_i)$ 's are drawn independently from each other.

That is,  $(x_1, y_1), \ldots, (x_N, y_N)$  is realization of the underlying IID random variables  $(X_1, Y_1), \ldots, (X_N, Y_N)$ , each distributed as P(X, Y)

We call  $(X_1, Y_1), \ldots, (X_N, Y_N)$  a **random sample**, or simply a **sample**.

We often abuse the notation and use  $(x_1, y_1), \ldots, (x_N, y_N)$  to represent the random sample.

Key: Whatever we will learn or compute from the sample  $(x_1, y_1), \ldots, (x_N, y_N)$  is random. We can talk about the mean and variance of the learned result.

# **Supervised Learning**

Now, we insist on predicting Y based on X, i.e.,  $\hat{Y} = f(X)$ , and we know that in principle the best prediction function is f(X) = E[Y|X] (assuming the goal is to minimize the square error loss).

**Question**: How do we figure out such f based on a sample?

**Answer**: We will do 'hackish' things (many learning algorithms), and maybe later, try to improve or say something more definitive.

Much of statistical learning is about improvement and/or saying something more definitive.

The 'supervised' part: We observe a set of input-output pairs, the training data, based on which we learn f. That is, we learn based on known examples.

#### **One Route: Parametric Models**

We consider a class of functions indexed by a set of parameters,  $\beta$  (in general a vector),  $\{g_{\beta}\}_{{\beta}\in\Theta}$ , where  $\Theta$  is the set of allowed parameters.

We assume  $f = g_{\beta}$  for some  $\beta$  and will find the best  $\beta$  based on the training data.

Such  $\beta$  must be computed based on the training data  $(x_1, y_1), \ldots, (x_N, y_N)$ . Therefore,  $\beta$  can be viewed as being random.

Now, suppose the original X is a p-dimensional vector and we write  $X = (X_1, \dots, X_p)^T$ . Each  $X_j$  is a component of X instead of a sample.

Therefore, each  $x_i$  is a p-dimensional vector. Y and  $y_i$  are scalars.

# **Example - Linear (Affine) Functions**

Suppose we have scalars  $z_1, \ldots, z_p$  and  $\beta_0, \ldots, \beta_p$ .

For convenience, we define  $z=(z_1,\ldots,z_p)^T$ ,  $\bar{z}=(1,z_1,\ldots,z_p)^T$  and  $\beta=(\beta_0,\beta_1,\ldots,\beta_p)^T$ .

A function of the form  $\bar{z}^T \beta = \beta_0 + \sum_{j=1}^p z_j \beta_j$  is affine in z and linear in  $\beta$ . We will see the linearity in  $\beta$  is more important.

The family of functions are  $g_{\beta}(z) = \bar{z}^T \beta$ , where  $\beta \in \Theta = \mathbb{R}^{p+1}$ .

But, if E[Y|X=z] indeed has the form  $\bar{z}^T\beta$ , then, we need to find  $\beta$  to minimize  $E_{X,Y}[(Y-\bar{X}^T\beta)^2]$ , where  $\bar{X}=(1,X_1,\ldots,X_p)^T$ .

We can approximate  $E[(Y - \bar{X}^T \beta)^2]$  using the training data and then minimize over  $\beta$ . That is,

$$\min_{\beta} \sum_{i=1}^{N} (y_i - (\beta_0 + \sum_{j=1}^{p} x_{ij}\beta_j))^2.$$
 (1)

This is the method of **least squares**.

Consider the special case where X and Y are related by  $Y = h(X) + \varepsilon$  for some function h, and the random error  $\varepsilon$  is independent of X and has  $E[\varepsilon] = 0$ . Then,  $f(X) \triangleq E[Y|X] = h(X)$ .

If h is not a linear (or affine) function, then  $\bar{z}^T\beta$  may not be close to h(z) for any  $\beta$ . Then, there seems to be little reason that the method of least square will give us good prediction.

What do we even mean by that?

## **Linear Regression**

We will solve (1). Let  $\mathbf{y} = (y_1, \dots, y_N)^T$ .

Let **X** be the  $N \times (p+1)$  matrix based on the input vectors:

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{Np} \end{bmatrix}$$

The function to be minimize in (1) can be written as

$$RSS(\beta) \triangleq (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta),$$

where RSS stands for residual sum of squares.

Then, the gradient and Hessian of RSS are:

$$\frac{\partial RSS}{\partial \beta} = \nabla RSS(\beta) = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta)$$
$$\frac{\partial^2 RSS}{\partial \beta \partial \beta^T} = \nabla^2 RSS(\beta) = 2\mathbf{X}^T\mathbf{X}.$$

Let us assume **X** has full column rank and therefore  $\mathbf{X}^T\mathbf{X}$  is positive definite. Then,  $RSS(\beta)$  is convex. Its minimum is obtained by solving  $\nabla RSS(\beta) = 0$ . We get the unique solution:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}. \tag{2}$$

We now can define the prediction function  $\hat{f}$ . At any input vector  $x_0$ ,

$$\hat{f}(x_0) = (1, x_0^T)\hat{\beta}.$$

where  $(1, x_0^T)$  is the row vector by concatenating 1 with the  $x_0^T$ .

The predicted output is denoted by  $\hat{y}_0$ , where  $\hat{y}_0 = \hat{f}(x_0)$ .

# **Interpretations and Discussions**

- $\hat{\beta}$  is (2) depends entirely on the training data  $(x_1, y_1), \ldots, (x_N, y_N)$ .
- When the training data are viewed as a random sample, we can say  $\beta$  is a random vector. The distribution of the random sample is the joint distribution  $P((X_1, Y_1), \ldots, (X_N, Y_N))$ , where  $(X_i, Y_i)$ 's are IID, each distributed as (X, Y).
- ullet For simplicity, let  $\mathcal T$  denote the distribution of the training sample.
- At each input vector  $x_0$ , the predicted output  $\hat{y}_0 = \hat{f}(x_0)$  depends entirely on the training data and  $\hat{y}_0$  is random.
- We can ask the mean (vector) and covariance (matrix) of  $\hat{\beta}$ , and the mean and variance of  $\hat{y}_0$ .

- The true output  $Y_0$  is also random, with the distribution  $P(Y|X=x_0)$ , which can be computed from the joint distribution P(X,Y).
- We can ask about the bias in the prediction (aka estimate):  $E[Y_0 \hat{f}(x_0)|X = x_0]$ , where the expectation is over  $\mathcal{T}$  and  $P(Y|X = x_0)$ .

This is the difference between the mean of the estimate and the true mean.

The estimator/prediction is said **unbiased** if  $E[Y_0 - \hat{f}(x_0)|X = x_0] = 0$ .

• We can talk about the prediction error at  $x_0$ 

$$Err(x_0) = E[(Y_0 - \hat{f}(x_0))^2 | X = x_0].$$

#### **Bias and Variance of Estimator**

- Special Case:  $Y = f(X) + \varepsilon$ , where  $\varepsilon$  is an independent noise with 0 mean and variance  $\sigma^2$ .
- f is not necessarily linear. The estimator  $\hat{f}$  is not necessarily from the method of least squares.
- The bias is:  $E[Y_0 \hat{f}(x_0)|X = x_0] = f(x_0) E_{\mathcal{T}}[\hat{f}(x_0)].$
- Will show: The prediction error is the sum of an irreducible component  $\sigma^2$ , the squared bias and the variance of the estimate.
- There is often a trade-off between the bias and the variance in different estimates/models/prediction methods.

$$Err(x_0) = E[(Y_0 - \hat{f}(x_0))^2 | X = x_0]$$

$$= E[(Y_0 - f(x_0) + f(x_0) - \hat{f}(x_0))^2 | X = x_0]$$

$$= E[(\varepsilon + f(x_0) - \hat{f}(x_0))^2 | X = x_0]$$

$$= E[\varepsilon^2 + 2\varepsilon (f(x_0) - \hat{f}(x_0)) + (f(x_0) - \hat{f}(x_0))^2 | X = x_0]$$

$$= \sigma^2 + E[(f(x_0) - \hat{f}(x_0))^2]$$

$$= \sigma^2 + E[(f(x_0) - E\hat{f}(x_0) + E\hat{f}(x_0) - \hat{f}(x_0))^2]$$

$$= \sigma^2 + (f(x_0) - E\hat{f}(x_0))^2 + E(E\hat{f}(x_0) - \hat{f}(x_0))^2$$

$$- 2(f(x_0) - E\hat{f}(x_0)) E[E\hat{f}(x_0) - \hat{f}(x_0)]$$

$$= \sigma^2 + \text{Bias}^2(\hat{f}(x_0)) + \text{Var}(\hat{f}(x_0)).$$

Starting from (3), the expectation is taken with respect to  $\mathcal{T}$ .

## **Example -** *k***-Nearest Neighbor**

Again, consider the special case  $Y = f(X) + \varepsilon$ .

Recall the least-squares method. Instead of the optimal predictor f(X) = E[Y|X], we use a function of the form  $\hat{f}(X) = \bar{X}^T \beta$  as a predictor, with an appropriately chosen  $\beta$ .

 $\beta$  is chosen by minimizing an estimate of the expected prediction error  $EPE(\hat{f}) = E_{X,Y}(Y - \hat{f}(X))^2$ .

That is, we use the sum of squares from the training data as an estimate of  $EPE(\hat{f})$  and minimize over  $\beta$ .

$$\min_{\beta} \sum_{i=1}^{N} (y_i - (1, x_i^T)\beta)^2.$$

The optimal  $\hat{\beta}$  uses information from all the training data.

The bias at 
$$X = x_0$$
 is  $E[Y_0 - (1, x_0^T)\hat{\beta}|X = x_0] = f(x_0) - E[(1, x_0^T)\hat{\beta}].$ 



If f is significantly different from any linear function, the least-squares predictor will have significant bias at different input vectors, and hence, possibly significant prediction error.

We will consider the k-nearest-neighbor predictor/estimator.

$$\hat{f}(x_0) = \text{Ave}(y_i | x_i \in N_k(x_0)).$$

 $N_k(x_0)$ : the set containing k input vectors (in the sample) closest to  $x_0$ ;

Ave: the average.



 $\hat{f}(x_0)$  is used to approximate  $E[Y|X=x_0]$ :

- expectation is approximated by averaging over the training data
- conditioning on a point  $x_0$  is relaxed to conditioning on some region 'close' to  $x_0$ .

If all the input vectors in  $N_k(x_0)$  are very close to  $x_0$ , taking the average of the corresponding outputs should approximate  $E[Y|X=x_0]$  well.

If the input has high dimensional, the input vectors in  $N_k(x_0)$  are usually not close to  $x_0$  at all  $\to$  the 'curse of dimensionality'.

# **Linear Models vs.** k-Nearest Neighbor

- For simplicity of discussion, suppose  $Y = f(X) + \varepsilon$ .
- We wish to approximate f by constructing some  $\hat{f}$  based on the training data, which can be viewed as a noisy representation of f.
- In the linear models,  $\hat{f}(z)$  is found in the class  $(1, z^T)\beta$  by the method least squares.
- If f(z) is far from linear, none of the of linear functions  $(1, z^T)\beta$  may approximate f well.
- Least squares and linear model use the training data in 'global' fashion.
- When f(z) is complex looking, the k-nearest-neighbor method may adapt to f(z) better.
- It uses the training data in a local fashion.

• But, it has problems in dealing with high-dimensional input; may require a large amount of training data; the resulting  $\hat{f}$  lacks smoothness.



Figure 1: Cure of Dimensionality

- Many popular learning methods are variants of the above two methods. They often address the issues in either method.
- Examples: kernel methods, local regression, basis expansion.