Accelerator ML Living Review

Summary Statistics

per_year: 11 per_category: 16 per_venue/journal: 47 per_keyword: 14 monthly_trends: 74

Papers

Machine learning as a service system for particle accelerator and its application in CSNS Mei, Hao, Zhang, Yuliang, Peng, Na, Cheng, Sinong, He, Yongcheng, Xue, Kangjia, Wang, Lin, Li, Mingtao, Wu, Xuan, Zhu, Peng (2025)
Radiation Detection Technology and Methods

A generative adversarial network to improve integrated mode proton imaging resolution using paired proton-carbon data.

Simard M, Fullarton R, Volz L, Schuy C, Chung S, Baker C, Graeff C, Fekete CC. (2025) Med Phys

A Time-Series Approach for Machine Learning-Based Patient-Specific Quality Assurance of Radiosurgery Plans

Buzzi S, Mancosu P, Bresolin A, Gallo P, La Fauci F, Lobefalo F, Paganini L, Pelizzoli M, Reggiori G, Franzese C, Tomatis S, Scorsetti M, Lenardi C, Lambri N. (2025) Bioengineering (Basel)

A Supervised Machine Learning Framework for Multipactor Breakdown Prediction in High-Power Radio Frequency Devices and Accelerator Components: A Case Study in Planar Geometry

Asif Iqbal, John Verboncoeur, Peng Zhang (2025) arXiv

Geoff: The Generic Optimization Framework & Frontend for Particle Accelerator Controls Penelope Madysa, Sabrina Appel, Verena Kain, Michael Schenk (2025) arXiv

Towards Agentic AI on Particle Accelerators

Antonin Sulc, Thorsten Hellert, Raimund Kammering, Hayden Hoschouer, Jason St. John (2025) arXiv

Acceleration of Multi-Scale LTS Magnet Simulations with Neural Network Surrogate Models Louis Denis, Julien Dular, Vincent Nuttens, Mariusz Wozniak, Benoît Vanderheyden, Christophe Geuzaine (2025) arXiv

Application Of Large Language Models For The Extraction Of Information From Particle Accelerator Technical Documentation

Qing Dai, Rasmus Ischebeck, Maruisz Sapinski, Adam Grycner (2025) arXiv

Predictive Hydrodynamic Simulations for Laser Direct-drive Implosion Experiments via Artificial Intelligence

Zixu Wang, Yuhan Wang, Junfei Ma, Fuyuan Wu, Junchi Yan, Xiaohui Yuan, Zhe Zhang, Jie Zhang (2025) arXiv

Towards Foundation Models for Experimental Readout Systems Combining Discrete and Continuous Data

James Giroux, Cristiano Fanelli (2025) arXiv

Towards generalizable deep ptychography neural networks

Albert Vong, Steven Henke, Oliver Hoidn, Hanna Ruth, Junjing Deng, Alexander Hexemer, Apurva Mehta, Arianna Gleason, Levi Hancock, Nicholas Schwarz (2025) arXiv

FusionMAE: large-scale pretrained model to optimize and simplify diagnostic and control of fusion plasma

Zongyu Yang, Zhenghao Yang, Wenjing Tian, Jiyuan Li, Xiang Sun, Guohui Zheng, Songfen Liu, Niannian Wu, Rongpeng Li, Zhaohe Xu, Bo Li, Zhongbing Shi, Zhe Gao, Wei Chen, Xiaoquan Ji, Min Xu, Wulyu Zhong (2025) arXiv

A Surrogate model for High Temperature Superconducting Magnets to Predict Current Distribution with Neural Network

Mianjun Xiao, Peng Song, Yulong Liu, Cedric Korte, Ziyang Xu, Jiale Gao, Jiaqi Lu, Haoyang Nie, Qiantong Deng, Timing Qu (2025) arXiv

Machine Learning approach to classifying quench antenna signals

Plebani, Alberto, Barzi, Emanuela, Teyber, Reed (2025)

Thesis

Machine Learning for superconducting magnets application

Stabilini, Elisa (2025)

Thesis

Developing Machine Learning Models for Proton Computed Tomography and LHCb Particle Tracking

Ackernley, Thomas (2025)

Thesis

Batch spacing optimization by reinforcement learning

Remta, Matthias, Velotti, Francesco, Rezagholi, Sharwin (2025) Phys.Rev.Accel.Beams

Road map for the tuning of hadronic interaction models with accelerator-based and astroparticle data

Albrecht, J., Becker Tjus, J., Behling, N., Blazek, J., Bleicher, M., Boelhauve, J., Cazon, L., Conceicao, R., Dembinski, H., Dietrich, L., Ebr, J., Ellbracht, J., Engel, R., Fedynitch, A., Fieg, M., Garzelli, M.V., Gaudu, C., Graziani, G., Gutjahr, P., Haungs, A., Huege, T., Hymon, K., Hünnefeld, Mirco, Kampert, K.-H., Kardum, L., Kolk, L., Korneeva, N., Kröninger, K., Maire, A., Menjo, H., Morejon, L., Ostapchenko, S., Paakkinen, P., Pierog, T., Plotko, P., Prosekin, A., Pyras, L., Pöschl, T., Rautenberg, Julian, Reininghaus, M., Rhode, W., Riehn, F., Roth, M., Sandrock, A., Sarcevic, I., Schmelling, M., Sigl, G., Sjöstrand, T., Soldin, D., Unger, M., Utheim, M., Vícha, J., Werner, K., Windau, M.E., Zhukov, V. (2025)

Self-supervised physics-informed generative networks for phase retrieval from a single X-ray hologram

Yang, Xiaogang, Hailu, Dawit, Kulvait, Vojt**■**ch, Jentschke, Thomas, Flenner, Silja, Greving, Imke, Campbell, Stuart I., Hagemann, Johannes, Schroer, Christian G., Wong, Tak Ming, Moosmann, Julian (2025)

Opt.Express

A Supervised Machine Learning Framework for Multipactor Breakdown Prediction in High-Power Radio Frequency Devices and Accelerator Components: A Case Study in Planar Geometry

Iqbal, Asif, Verboncoeur, John, Zhang, Peng (2025) arXiv

Analysis note: measurement of thrust in $e^{+}e^{-}$ collisions at $\operatorname{s}= 91$ GeV with archived ALEPH data

Badea, Anthony, Baty, Austin, Bossi, Hannah, Chen, Yu-Chen, Chen, Yi, Zhang, Jingyu, Innocenti, Gian Michele, Maggi, Marcello, McGinn, Chris, Peters, Michael, Sheng, Tzu-An, Mikuni, Vinicius, Avaylon, Matthew, Komiske, Patrick, Metodiev, Eric, Thaler, Jesse, Nachman, Benjamin, Lee, Yen-Jie (2025)

arXiv

Machine learning application for particle accelerator optimization-a review

Isti Dian Rachmawati, Nazrul Effendy, Taufik Taufik (2025)

IAES International Journal of Artificial Intelligence

Machine Learning for Particle Accelerators

Elena Fol, Auralee Edelen (2025)

Unknown Venue

FORT-GCN: A Fault-tolerant and Adaptive Accelerator Design for Efficient Graph Convolutional Network Inference

Ke Wang, Yingnan Zhao, Ahmed Louri (2025)

ACM Transactions on Embedded Computing Systems

(Invited) Analog Signal Processing Technologies for Power-Efficient Neural Network Inference and Training

Bert Jan Offrein (2025)

Meeting abstracts/Meeting abstracts (Electrochemical Society, CD-ROM)

Machine learning based parametrization of the resolution function for the first experimental area of the n_TOF facility at CERN

Petar Žugec, Marta Sabaté-Gilarte, Michael Bacak, Vasilis Vlachoudis, Adria Casanovas, Francisco García-Infantes (2025)

Nuclear Science and Techniques

-Diagnosis of Nasopalatine Duct and Nasopalatine Duct Cyst in CBCT Images: A Radiomics-Based Machine Learning Approach

H Duyan Yüksel, B Büyük, B Evlice (2025)

Dentomaxillofacial Radiology

Integration of Machine Learning-Based Plasma Acceleration Simulations into Geant4: A Case Study with the PALLAS Experiment

A. Sytov, K. Cassou, V. Kubytskyi, M. Lenivenko, A. Huber (2025) arXiv

Optimisation of the Accelerator Control by Reinforcement Learning: A Simulation-Based Approach

Anwar Ibrahim, Denis Derkach, Alexey Petrenko, Fedor Ratnikov, Maxim Kaledin (2025) arXiv

Physics-Informed Super-Resolution Diffusion for 6D Phase Space Diagnostics

Alexander Scheinker (2025)

arXiv

Optimizing Beam-Plasma Interactions Through Jitter Analysis Using Start-to-End Simulations

Robin Hwang (2024)

arXiv

Virtual Pulse Reconstruction Diagnostic for Single-Shot Measurement of Free Electron Laser Radiation Power

Till Korten, Vladimir Rybnikov, Peter Steinbach, Najmeh Mirian (2024)

Harnessing Machine Learning for Single-Shot Measurement of Free Electron Laser Pulse Power

Till Korten, Vladimir Rybnikov, Mathias Vogt, Juliane Roensch-Schulenburg, Peter Steinbach, Najmeh Mirian (2024)

arXiv

Data-Driven Gradient Optimization for Field Emission Management in a Superconducting Radio-Frequency Linac

Steven Goldenberg, Kawser Ahammed, Adam Carpenter, Jiang Li, Riad Suleiman, Chris Tennant (2024)

arXiv

Data-Driven Discovery of Beam Centroid Dynamics

Liam A. Pocher, Irving Haber, Thomas M. Antonsen Jr., Patrick G. O'Shea (2024) arXiv

Design and development of advanced Al-Ti-V alloys for beampipe applications in particle accelerators

Kamaljeet Singh, Kangkan Goswami, Raghunath Sahoo, Sumanta Samal (2025) arXiv

Machine Learning for Reducing Noise in RF Control Signals at Industrial Accelerators

M. Henderson, J. P. Edelen, J. Einstein-Curtis, C. C. Hall, J. A. Diaz Cruz, A. L. Edelen (2024) arXiv

Surrogate Models studies for laser-plasma accelerator electron source design through numerical optimisation

G. Kane, P. Drobniak, S. Kazamias, V. Kubytskyi, M. Lenivenko, B. Lucas, J. Serhal, K. Cassou, A. Beck, A. Specka, F. Massimo (2024) arXiv

Beamline Steering Using Deep Learning Models

Dexter Allen, Isaac Kante, Dorian Bohler (2024) arXiv

Beam-based Identification of Magnetic Field Errors in a Synchrotron using Deep Lie Map Networks

Conrad Caliari, Adrian Oeftiger, Oliver Boine-Frankenheim (2024) arXiv

Linac_Gen: integrating machine learning and particle-in-cell methods for enhanced beam dynamics at Fermilab

Abhishek Pathak (2024) arXiv

Automated Anomaly Detection on European XFEL Klystrons

Antonin Sulc, Annika Eichler, Tim Wilksen (2024) arXiv

Accelerator beam phase space tomography using machine learning to account for variations in beamline components

Andrzej Wolski, Diego Botelho, David Dunning, Amelia E. Pollard (2024) arXiv

Large Language Models for Human-Machine Collaborative Particle Accelerator Tuning through Natural Language

Jan Kaiser, Annika Eichler, Anne Lauscher (2024) arXiv

Accelerating Cavity Fault Prediction Using Deep Learning at Jefferson Laboratory

Monibor Rahman, Adam Carpenter, Khan Iftekharuddin, Chris Tennant (2024) arXiv

Anomaly Detection of Particle Orbit in Accelerator using LSTM Deep Learning Technology

Zhiyuan Chen, Wei Lu, Radhika Bhong, Yimin Hu, Brian Freeman, Adam Carpenter (2024) arXiv

Machine-learning approach for operating electron beam at KEK \$e^-/e^+\$ injector Linac

Gaku Mitsuka, Shinnosuke Kato, Naoko lida, Takuya Natsui, Masanori Satoh (2024)

Cheetah: Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations

Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia (2024) arXiv

Beyond PID Controllers: PPO with Neuralized PID Policy for Proton Beam Intensity Control in Mu2e

Chenwei Xu, Jerry Yao-Chieh Hu, Aakaash Narayanan, Mattson Thieme, Vladimir Nagaslaev, Mark Austin, Jeremy Arnold, Jose Berlioz, Pierrick Hanlet, Aisha Ibrahim, Dennis Nicklaus, Jovan Mitrevski, Jason Michael St. John, Gauri Pradhan, Andrea Saewert, Kiyomi Seiya, Brian Schupbach, Randy Thurman-Keup, Nhan Tran, Rui Shi, Seda Ogrenci, Alexis Maya-Isabelle Shuping, Kyle Hazelwood, Han Liu (2023) arXiv

Robust Errant Beam Prognostics with Conditional Modeling for Particle Accelerators

Kishansingh Rajput, Malachi Schram, Willem Blokland, Yasir Alanazi, Pradeep Ramuhalli, Alexander Zhukov, Charles Peters, Ricardo Vilalta (2024) arXiv

Machine Learning For Beamline Steering

Isaac Kante (2023)

arXiv

Variational Autoencoders for Noise Reduction in Industrial LLRF Systems

J. P. Edelen, M. J. Henderson, J. Einstein-Curtis, C. C. Hall, J. A. Diaz Cruz, A. L. Edelen (2023) arXiv

Resilient VAE: Unsupervised Anomaly Detection at the SLAC Linac Coherent Light Source

Ryan Humble, William Colocho, Finn O'Shea, Daniel Ratner, Eric Darve (2023)

Time-drift Aware RF Optimization with Machine Learning Techniques

R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley (2023) arXiv

Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance

Steven Goldenberg, Malachi Schram, Kishansingh Rajput, Thomas Britton, Chris Pappas, Dan Lu, Jared Walden, Majdi I. Radaideh, Sarah Cousineau, Sudarshan Harave (2023) arXiv

Learning to Do or Learning While Doing: Reinforcement Learning and Bayesian Optimisation for Online Continuous Tuning

Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia, Oliver Stein, Erik Bründermann, Willi Kuropka, Hannes Dinter, Frank Mayet, Thomas Vinatier, Florian Burkart, Holger Schlarb (2023)

arXiv

From Compact Plasma Particle Sources to Advanced Accelerators with Modeling at Exascale

Axel Huebl, Remi Lehe, Edoardo Zoni, Olga Shapoval, Ryan T. Sandberg, Marco Garten, Arianna

Formenti, Revathi Jambunathan, Prabhat Kumar, Kevin Gott, Andrew Myers, Weiqun Zhang, Ann Almgren, Chad E. Mitchell, Ji Qiang, David Grote, Alexander Sinn, Severin Diederichs, Maxence Thevenet, Luca Fedeli, Thomas Clark, Neil Zaim, Henri Vincenti, Jean-Luc Vay (2023) arXiv

Forecasting Particle Accelerator Interruptions Using Logistic LASSO Regression Sichen Li, Jochem Snuverink, Fernando Perez-Cruz, Andreas Adelmann (2023) arXiv

Learning Electron Bunch Distribution along a FEL Beamline by Normalising Flows Anna Willmann, Jurjen Couperus Cabada■, Yen-Yu Chang, Richard Pausch, Amin Ghaith, Alexander Debus, Arie Irman, Michael Bussmann, Ulrich Schramm, Nico Hoffmann (2023) arXiv

Physics-constrained 3D Convolutional Neural Networks for Electrodynamics Alexander Scheinker, Reeju Pokharel (2023) arXiv

Identification of Magnetic Field Errors in Synchrotrons based on Deep Lie Map Networks Conrad Caliari, Adrian Oeftiger, Oliver Boine-Frankenheim (2023) arXiv

Data-driven Science and Machine Learning Methods in Laser-Plasma Physics Andreas Döpp, Christoph Eberle, Sunny Howard, Faran Irshad, Jinpu Lin, Matthew Streeter (2023) arXiv

Applications of Differentiable Physics Simulations in Particle Accelerator Modeling Ryan Roussel, Auralee Edelen (2022) arXiv

Prior-mean-assisted Bayesian optimization application on FRIB Front-End tunning Kilean Hwang, Tomofumi Maruta, Alexander Plastun, Kei Fukushima, Tong Zhang, Qiang Zhao, Peter Ostroumov, Yue Hao (2022) arXiv

Fault Prognosis in Particle Accelerator Power Electronics Using Ensemble Learning Majdi I. Radaideh, Chris Pappas, Mark Wezensky, Pradeep Ramuhalli, Sarah Cousineau (2022) arXiv

Machine learning-based analysis of experimental electron beams and gamma energy distributions

M. Yadav, M. Oruganti, S. Zhang, B. Naranjo, G. Andonian, Y. Zhuang, Ö. Apsimon, C. P. Welsch, J. B. Rosenzweig (2023) arXiv

Review of Time Series Forecasting Methods and Their Applications to Particle Accelerators Sichen Li, Andreas Adelmann (2022) arXiv

Automatic setup of 18 MeV electron beamline using machine learning

Francesco Maria Velotti, Brennan Goddard, Verena Kain, Rebecca Ramjiawan, Giovanni Zevi Della Porta, Simon Hirlaender (2022) arXiv

Diagnostics for Linac Optimization With Machine Learning

R. Sharankova, M. Mwaniki, K. Seiya, M. Wesley (2022) arXiv

Transverse phase space tomography in the CLARA accelerator test facility using image compression and machine learning

Andrzej Wolski, Mark A. Johnson, Matthew King, Boris L. Militsyn, Peter H. Williams (2022) arXiv

Using Kernel-Based Statistical Distance to Study the Dynamics of Charged Particle Beams in Particle-Based Simulation Codes

Chad E. Mitchell, Robert D. Ryne, Kilean Hwang (2022) arXiv

Neural Network Solver for Coherent Synchrotron Radiation Wakefield Calculations in Accelerator-based Charged Particle Beams

Auralee Edelen, Christopher Mayes (2022) arXiv

Adaptive Machine Learning for Time-Varying Systems: Towards 6D Phase Space Diagnostics of Short Intense Charged Particle Beams

Alexander Scheinker, Spencer Gessner (2022) arXiv

Differentiable Preisach Modeling for Characterization and Optimization of Accelerator Systems with Hysteresis

R. Roussel, A. Edelen, D. Ratner, K. Dubey, J. P. Gonzalez-Aguilera, Y. K. Kim, N. Kuklev (2022) arXiv

Mixed Diagnostics for Longitudinal Properties of Electron Bunches in a Free-Electron Laser J. Zhu, N. M. Lockmann, M. K. Czwalinna, H. Schlarb (2022) arXiv

A Neural Network Model of a Quasi-Periodic Elliptically Polarizing Undulator in Universal Mode

Ryan Sheppard, Cameron Baribeau, Tor Pedersen, Mark Boland, Drew Bertwistle (2022) arXiv

Physics-informed neural network method for modelling beam-wall interactions Kazuhiro Fujita (2022)

arXiv

Anomaly Detection in Particle Accelerators using Autoencoders

Jonathan P. Edelen, Nathan M. Cook (2021)

Input Beam Matching and Beam Dynamics Design Optimization of the IsoDAR RFQ using Statistical and Machine Learning Techniques

Daniel Koser, Loyd Waites, Daniel Winklehner, Matthias Frey, Andreas Adelmann, Janet Conrad (2021)

arXiv

Neural Networks for ID Gap Orbit Distortion Compensation in PETRA III

Bianca Veglia, Ilya Agapov, Joachim Keil (2024) arXiv

Time-Delayed Koopman Network-Based Model Predictive Control for the FRIB RFQ

Jinyu Wan, Shen Zhao, Wei Chang, Yue Hao (2024) arXiv

Uncertainty Aware ML-based surrogate models for particle accelerators: A Study at the Fermilab Booster Accelerator Complex

Malachi Schram, Kishansingh Rajput, Karthik Somayaji Peng Li, Jason St. John, Himanshu Sharma (2022)

arXiv

Quantifying Uncertainty for Machine Learning Based Diagnostic

Owen Convery, Lewis Smith, Yarin Gal, Adi Hanuka (2021) arXiv

Uncertainty Quantification for Virtual Diagnostic of Particle Accelerators

Owen Convery, Lewis Smith, Yarin Gal, Adi Hanuka (2021)

Adaptive Latent Space Tuning for Non-Stationary Distributions

Alexander Scheinker, Frederick Cropp, Sergio Paiagua, Daniele Filippetto (2021) arXiv

Adaptive deep learning for time-varying systems with hidden parameters: Predicting changing input beam distributions of compact particle accelerators

Alexander Scheinker, Frederick Cropp, Sergio Paiagua, Daniele Filippetto (2021) arXiv

Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets Maciej Wielgosz, Andrzej Skocze■, Matej Mertik (2017) arXiv

Coincident Learning for Beam-based RF Station Fault Identification Using Phase Information at the SLAC Linac Coherent Light Source

Jia Liang, William Colocho, Franz-Josef Decker, Ryan Humble, Ben Morris, Finn H. O'Shea, David A. Steele, Zhe Zhang, Eric Darve, Daniel Ratner (2025) arXiv

Using Convolutional Neural Networks to Accelerate 3D Coherent Synchrotron Radiation Computations

Christopher Leon, Petr M. Anisimov, Nikolai Yampolsky, Alexander Scheinker (2025) arXiv

Explainable physics-based constraints on reinforcement learning for accelerator controls Jonathan Colen, Malachi Schram, Kishansingh Rajput, Armen Kasparian (2025) arXiv

Accelerator system parameter estimation using variational autoencoded latent regression Mahindra Rautela, Alan Williams, Alexander Scheinker (2024) arXiv

Long Short-Term Memory Networks for Anomaly Detection in Magnet Power Supplies of Particle Accelerators

Ihar Lobach, Michael Borland (2024) arXiv

Leveraging Prior Mean Models for Faster Bayesian Optimization of Particle Accelerators Tobias Boltz, Jose L. Martinez, Connie Xu, Kathryn R. L. Baker, Zihan Zhu, Jenny Morgan, Ryan Roussel, Daniel Ratner, Brahim Mustapha, Auralee L. Edelen (2025) arXiv

Optimizing Dynamic Aperture Studies with Active Learning

D. Di Croce, M. Giovannozzi, E. Krymova, T. Pieloni, S. Redaelli, M. Seidel, R. Tomás, F. F. Van der Veken (2024) arXiv

Neural Network Prior Mean for Particle Accelerator Injector Tuning

Connie Xu, Ryan Roussel, Auralee Edelen (2022)

Applications of object detection networks at high-power laser systems and experiments Jinpu Lin, Florian Haberstroh, Stefan Karsch, Andreas Döpp (2022) arXiv

A Neural Network approach to reconstructing SuperKEKB beam parameters from beamstrahlung

S. Di Carlo, G. Bonvicini, N. A. Althubiti, R. Ayad, E. De La Cruz-Burelo, I. Domínguez, B. O. El Bashir, H. Farhat, J. Flanagan, R. Gillard, S. Izaguirre Gamez, K. Kanazawa, K. Kumara, D. Liventsev, P. L. M. Podesta-Lerma, D. Ricalde-Herrmann, D. Rodriguez Perez, G. Tejeda-Muñoz,

M. Tobiyama I. Heredia de la Cruz (2022) arXiv

Optimizing a Superconducting Radiofrequency Gun Using Deep Reinforcement Learning David Meier, Luis Vera Ramirez, Jens Völker, Bernhard Sick, Jens Viefhaus, Gregor Hartmann (2022)

Uncertainty aware anomaly detection to predict errant beam pulses in the SNS accelerator Willem Blokland, Pradeep Ramuhalli, Charles Peters, Yigit Yucesan, Alexander Zhukov, Malachi Schram, Kishansingh Rajput, Torri Jeske (2021) arXiv

Adaptive Machine Learning for Time-Varying Systems: Low Dimensional Latent Space Tuning

Alexander Scheinker (2021) arXiv

arXiv

Fast, efficient and flexible particle accelerator optimisation using densely connected and invertible neural networks

Renato Bellotti, Romana Boiger, Andreas Adelmann (2021) arXiv

Invertible Surrogate Models: Joint surrogate modelling and reconstruction of Laser-Wakefield Acceleration by invertible neural networks

Friedrich Bethke, Richard Pausch, Patrick Stiller, Alexander Debus, Michael Bussmann, Nico Hoffmann (2021) arXiv

Improving Surrogate Model Accuracy for the LCLS-II Injector Frontend Using Convolutional Neural Networks and Transfer Learning

Lipi Gupta, Auralee Edelen, Nicole Neveu, Aashwin Mishra, Christopher Mayes, Young-Kee Kim (2021) arXiv

A Novel Approach for Classification and Forecasting of Time Series in Particle Accelerators Sichen Li, Mélissa Zacharias, Jochem Snuverink, Jaime Coello de Portugal, Fernando Perez-Cruz, Davide Reggiani, Andreas Adelmann (2021) arXiv

Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster Jason St. John, Christian Herwig, Diana Kafkes, Jovan Mitrevski, William A. Pellico, Gabriel N. Perdue, Andres Quintero-Parra, Brian A. Schupbach, Kiyomi Seiya, Nhan Tran, Malachi Schram, Javier M. Duarte, Yunzhi Huang, Rachael Keller (2021) arXiv

Surrogate Modeling of the CLIC Final-Focus System using Artificial Neural Networks J. Ogren, C. Gohil, D. Schulte (2021) arXiv

Physics-Based Deep Neural Networks for Beam Dynamics in Charged Particle Accelerators Andrei Ivanov, Ilya Agapov (2020) arXiv

Introduction to Machine Learning for Accelerator Physics

Daniel Ratner (2020) arXiv

Machine learning for design optimization of storage ring nonlinear dynamics Faya Wang, Minghao Song, Auralee Edelen, Xiaobiao Huang (2019)

arXiv

Studies in Applying Machine Learning to LLRF and Resonance Control in Superconducting RF Cavities

Jorge Alberto Diaz Cruz, Sandra Biedron, Manel Martinez-Ramon, Salvador Sosa, Reza Pirayesh (2019)

arXiv

The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization

Maciej Wielgosz, Matej Mertik, Andrzej Skocze**■**, Ernesto De Matteis (2017) arXiv

Machine learning for analysis of plasma driven lon source

N. Joshi, O. Meusel, H. Podlech (2018) arXiv

First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

A. L. Edelen, S. G. Biedron, S. V. Milton, J. P. Edelen (2016) arXiv

Neural Networks for Modeling and Control of Particle Accelerators

A. L. Edelen, S. G. Biedron, B. E. Chase, D. Edstrom, S. V. Milton, P. Stabile (2016) arXiv

Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators

Kishansingh Rajput, Malachi Schram, Auralee Edelen, Jonathan Colen, Armen Kasparian, Ryan Roussel, Adam Carpenter, He Zhang, Jay Benesch (2024) arXiv

BOOSTR: A Dataset for Accelerator Control Systems

Diana Kafkes, Jason St. John (2021) arXiv

Model-free and Bayesian Ensembling Model-based Deep Reinforcement Learning for Particle Accelerator Control Demonstrated on the FERMI FEL

Simon Hirlaender, Niky Bruchon (2022) arXiv

Autonomous Control of a Particle Accelerator using Deep Reinforcement Learning

Xiaoying Pang, Sunil Thulasidasan, Larry Rybarcyk (2020)

Al-Assisted Transport of Radioactive Ion Beams

Sergio Lopez-Caceres, Daniel Santiago-Gonzalez (2025) arXiv

Bayesian Optimization Algorithms for Accelerator Physics

Ryan Roussel, Auralee L. Edelen, Tobias Boltz, Dylan Kennedy, Zhe Zhang, Fuhao Ji, Xiaobiao Huang, Daniel Ratner, Andrea Santamaria Garcia, Chenran Xu, Jan Kaiser, Angel Ferran Pousa, Annika Eichler, Jannis O. Lubsen, Natalie M. Isenberg, Yuan Gao, Nikita Kuklev, Jose Martinez, Brahim Mustapha, Verena Kain, Weijian Lin, Simone Maria Liuzzo, Jason St. John, Matthew J. V. Streeter, Remi Lehe, Willie Neiswanger (2024) arXiv

SPIRAL2 Cryomodules Models: a Gateway to Process Control and Machine Learning

Adrien Vassal, Adnan Ghribi, François Millet, François Bonne, Patrick Bonnay, Pierre-Emmanuel Bernaudin (2021)

arXiv

Predicting Beam Transmission Using 2-Dimensional Phase Space Projections Of Hadron Accelerators

Anthony Tran, Yue Hao, Brahim Mustapha, Jose L. Martinex Marin (2022)

Machine Learning for Orders of Magnitude Speedup in Multi-Objective Optimization of Particle Accelerator Systems

Auralee Edelen, Nicole Neveu, Yannick Huber, Mattias Frey, Christopher Mayes, Andreas Adelmann (2020)

arXiv

Machine learning assisted non-destructive transverse beam profile imaging

Zhanibek Omarov, Selcuk Haciomeroglu (2021)

arXiv

GAIA: A General AI Assistant for Intelligent Accelerator Operations

Frank Mayet (2024)

arXiv

Al-Enabled Operations at Fermi Complex: Multivariate Time Series Prediction for Outage Prediction and Diagnosis

Milan Jain, Burcu O. Mutlu, Caleb Stam, Jan Strube, Brian A. Schupbach, Jason M. St. John, William A. Pellico (2025)

arXiv

Automated GI tract segmentation using deep learning

Manhar Sharma (2023)

arXiv

Domain Adaptation of Automated Treatment Planning from Computed Tomography to Magnetic Resonance

Aly Khalifa, Jeff Winter, Inmaculada Navarro, Chris McIntosh, Thomas G. Purdie (2022) arXiv

Superconducting radio-frequency cavity fault classification using machine learning at Jefferson Laboratory

Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin (2020)

arXiv

Generative Adversarial Networks (GAN) for compact beam source modelling in Monte Carlo simulations

David Sarrut, Nils Krah, Jean-Michel Létang (2019) arXiv

Machine learning applied to single-shot x-ray diagnostics in an XFEL

A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O'Grady, J-E. Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, J. P. Marangos (2016) arXiv

Action-Attentive Deep Reinforcement Learning for Autonomous Alignment of Beamlines Siyu Wang, Shengran Dai, Jianhui Jiang, Shuang Wu, Yufei Peng, Junbin Zhang (2024) arXiv

Image Segmentation using U-Net Architecture for Powder X-ray Diffraction Images

Howard Yanxon, Eric Roberts, Hannah Parraga, James Weng, Wenqian Xu, Uta Ruett, Alexander Hexemer, Petrus Zwart, Nickolas Schwarz (2023) arXiv

Closing the loop: Autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments

Linus Pithan, Vladimir Starostin, David Mare ek, Lukas Petersdorf, Constantin Völter, Valentin Munteanu, Maciej Jankowski, Oleg Konovalov, Alexander Gerlach, Alexander Hinderhofer, Bridget Murphy, Stefan Kowarik, Frank Schreiber (2023) arXiv

Artifact Identification in X-ray Diffraction Data using Machine Learning Methods

Howard Yanxon, James Weng, Hannah Parraga, Wenqian Xu, Uta Ruett, Nicholas Schwarz (2022) arXiv

An efficient search-and-score algorithm for ancestral graphs using multivariate information scores

Nikita Lagrange, Herve Isambert (2024) arXiv

Loss function to optimise signal significance in particle physics

Jai Bardhan, Cyrin Neeraj, Subhadip Mitra, Tanumoy Mandal (2024) arXiv

Efficient Compression of Sparse Accelerator Data Using Implicit Neural Representations and Importance Sampling

Xihaier Luo, Samuel Lurvey, Yi Huang, Yihui Ren, Jin Huang, Byung-Jun Yoon (2024) arXiv

Variable Rate Neural Compression for Sparse Detector Data

Yi Huang, Yeonju Go, Jin Huang, Shuhang Li, Xihaier Luo, Thomas Marshall, Joseph Osborn, Christopher Pinkenburg, Yihui Ren, Evgeny Shulga, Shinjae Yoo, Byung-Jun Yoon (2024) arXiv

Inverse Surrogate Model of a Soft X-Ray Spectrometer using Domain Adaptation

Enrico Ahlers, Peter Feuer-Forson, Gregor Hartmann, Rolf Mitzner, Peter Baumgärtel, Jens Viefhaus (2025)

arXiv

Online tuning and light source control using a physics-informed Gaussian process Adi A. Hanuka, J. Duris, J. Shtalenkova, D. Kennedy, A. Edelen, D. Ratner, X. Huang (2019) arXiv

Deep-learning real-time phase retrieval of imperfect diffraction patterns from X-ray free-electron lasers

Sung Yun Lee, Do Hyung Cho, Chulho Jung, Daeho Sung, Daewoong Nam, Sangsoo Kim, Changyong Song (2024) arXiv

A Two-Stage Machine Learning-Aided Approach for Quench Identification at the European XFFI

Lynda Boukela, Annika Eichler, Julien Branlard, Nur Zulaiha Jomhari (2024) arXiv

Beam Detection Based on Machine Learning Algorithms

Haoyuan Li, Qing Yin (2023)

arXiv

Weakly supervised learning for pattern classification in serial femtosecond crystallography Jianan Xie, Ji Liu, Chi Zhang, Xihui Chen, Ping Huai, Jie Zheng, Xiaofeng Zhang (2023) arXiv

SpeckleNN: A unified embedding for real-time speckle pattern classification in X-ray single-particle imaging with limited labeled examples

Cong Wang, Eric Florin, Hsing-Yin Chang, Jana Thayer, Chun Hong Yoon (2023) arXiv

Accurate and confident prediction of electron beam longitudinal properties using spectral virtual diagnostics

A. Hanuka, C. Emma, T. Maxwell, A. Fisher, B. Jacobson, M. J. Hogan, Z. Huang (2020) arXiv

TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning Francesco Capuano, Davorin Peceli, Gabriele Tiboni, Raffaello Camoriano, Bed■ich Rus (2023)

arXiv

A Start To End Machine Learning Approach To Maximize Scientific Throughput From The LCLS-II-HE

Aashwin Mishra, Matt Seaberg, Ryan Roussel, Fred Poitevin, Jana Thayer, Daniel Ratner, Auralee Edelen, Apurva Mehta (2025) arXiv

Combined track finding with GNN & CKF

Lukas Heinrich, Benjamin Huth, Andreas Salzburger, Tilo Wettig (2024) arXiv

Improved selective background Monte Carlo simulation at Belle II with graph attention networks and weighted events

Boyang Yu, Nikolai Hartmann, Luca Schinnerl, Thomas Kuhr (2023) arXiv

Towards Reliable Neural Generative Modeling of Detectors

Lucio Anderlini, Matteo Barbetti, Denis Derkach, Nikita Kazeev, Artem Maevskiy, Sergei Mokhnenko (2022) arXiv

Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction

Cenk Tüysüz, Carla Rieger, Kristiane Novotny, Bilge Demirköz, Daniel Dobos, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant, Richard Forster (2021) arXiv

Graph Generative Models for Fast Detector Simulations in High Energy Physics

Ali Hariri, Darya Dyachkova, Sergei Gleyzer (2021) arXiv

Beyond 4D Tracking: Using Cluster Shapes for Track Seeding

Patrick J. Fox, Shangqing Huang, Joshua Isaacson, Xiangyang Ju, Benjamin Nachman (2021) arXiv

Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks

Artem Maevskiy, Denis Derkach, Nikita Kazeev, Andrey Ustyuzhanin, Maksim Artemev, Lucio Anderlini (2019)

arXiv

Accelerating the BSM interpretation of LHC data with machine learning

Gianfranco Bertone, Marc Peter Deisenroth, Jong Soo Kim, Sebastian Liem, Roberto Ruiz de Austri, Max Welling (2016) arXiv

Radar Pulse Deinterleaving with Transformer Based Deep Metric Learning

Edward Gunn, Adam Hosford, Daniel Mannion, Jarrod Williams, Varun Chhabra, Victoria Nockles (2025)

arXiv

Deep Spectrum Cartography: Completing Radio Map Tensors Using Learned Neural Models Sagar Shrestha, Xiao Fu, Mingyi Hong (2022) arXiv

Radar Emitter Classification with Attribute-specific Recurrent Neural Networks

Paolo Notaro, Magdalini Paschali, Carsten Hopke, David Wittmann, Nassir Navab (2019)

Prediction of Infinite Words with Automata

Tim Smith (2016) arXiv

Learning topological defects formation with neural networks in a quantum phase transition Han-Qing Shi, Hai-Qing Zhang (2023) arXiv

A Conceptual Development of Quench Prediction App build on LSTM and ELQA framework Matej Mertik, Maciej Wielgosz, Andrzej Skocze■ (2016) arXiv

High-Precision Inversion of Dynamic Radiography Using Hydrodynamic Features Maliha Hossain, Balasubramanya T. Nadiga, Oleg Korobkin, Marc L. Klasky, Jennifer L. Schei, Joshua W. Burby, Michael T. McCann, Trevor Wilcox, Soumi De, Charles A. Bouman (2021) arXiv

Physical knowledge improves prediction of EM Fields

Andrzej Dulny, Farzad Jabbarigargari, Andreas Hotho, Laura Maria Schreiber, Maxim Terekhov, Anna Krause (2025) arXiv

Plasma Surrogate Modelling using Fourier Neural Operators

Vignesh Gopakumar, Stanislas Pamela, Lorenzo Zanisi, Zongyi Li, Ander Gray, Daniel Brennand, Nitesh Bhatia, Gregory Stathopoulos, Matt Kusner, Marc Peter Deisenroth, Anima Anandkumar, JOREK Team, MAST Team (2024) arXiv

Al-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider C. Fanelli, Z. Papandreou, K. Suresh, J. K. Adkins, Y. Akiba, A. Albataineh, M. Amaryan, I. C. Arsene, C. Ayerbe Gayoso, J. Bae, X. Bai, M. D. Baker, M. Bashkanov, R. Bellwied, F. Benmokhtar, V. Berdnikov, J. C. Bernauer, F. Bock, W. Boeglin, M. Borysova, E. Brash, P. Brindza, W. J. Briscoe, M. Brooks, S. Bueltmann, M. H. S. Bukhari, A. Bylinkin, R. Capobianco, W. -C. Chang, Y. Cheon, K. Chen, K. -F. Chen, K. -Y. Cheng, M. Chiu, T. Chujo, Z. Citron, E. Cline, E. Cohen, T. Cormier, Y. Corrales Morales, C. Cotton, J. Crafts, C. Crawford, S. Creekmore, C. Cuevas, J. Cunningham, G. David, C. T. Dean, M. Demarteau, S. Diehl, N. Doshita, R. Dupre, J. M. Durham, R. Dzhygadlo, R. Ehlers, L. El Fassi, A. Emmert, R. Ent, R. Fatemi, S. Fegan, M. Finger, M. Finger Jr., J. Frantz, M. Friedman, I. Friscic, D. Gangadharan, S. Gardner, K. Gates, F. Geurts, R. Gilman, D. Glazier, E. Glimos, Y. Goto, N. Grau, S. V. Greene, A. Q. Guo, L. Guo, S. K. Ha, J. Haggerty, T. Hayward, X. He, O. Hen, D. W. Higinbotham, M. Hoballah, T. Horn, A. Hoghmrtsyan, P. -h. J. Hsu, J. Huang, G. Huber, A. Hutson, K. Y. Hwang, C. Hyde, M. Inaba, T. Iwata, H. S. Jo, K. Joo, N. Kalantarians, G. Kalicy, K. Kawade, S. J. D. Kay, A. Kim, B. Kim, C. Kim, M. Kim, Y. Kim, Y. Kim, E. Kistenev, V. Klimenko, S. H. Ko, I. Korover, W. Korsch, G. Krintiras, S. Kuhn, C. -M. Kuo, T. Kutz, J. Lajoie, D. Lawrence, S. Lebedev, H. Lee, J. S. H. Lee, S. W. Lee, Y. -J. Lee, W. Li, W. B. Li, X. Li, X. Li, X. Li, X. Li, Y. T. Liang, S. Lim, C. -h. Lin, D. X. Lin, K. Liu, M. X. Liu, K. Livingston, N. Liyanage, W. J. Llope, C. Loizides, E. Long, R. -S. Lu, Z. Lu, W. Lynch, D. Marchand, M. Marcisovsky, P. Markowitz, H. Marukyan, P. McGaughey, M. Mihovilovic, R. G. Milner, A. Milov, Y. Miyachi, A. Mkrtchyan, P. Monaghan, R. Montgomery, D. Morrison, A. Movsisyan, H. Mkrtchyan, A. Mkrtchyan, C. Munoz Camacho, M. Murray, K. Nagai, J. Nagle, I. Nakagawa, C. Nattrass, D. Nguyen, S. Niccolai, R. Nouicer, G. Nukazuka, M. Nycz, V. A. Okorokov, S. Oresic, J. D. Osborn, C. O'Shaughnessy, S. Paganis, S. F. Pate, M. Patel, C. Paus, G. Penman, M. G. Perdekamp, D. V. Perepelitsa, H. Periera da Costa, K. Peters, W. Phelps, E. Piasetzky, C. Pinkenburg, I. Prochazka, T. Protzman, M. L. Purschke, J. Putschke, J. R. Pybus, R. Rajput-Ghoshal, J. Rasson, B. Raue, K. F. Read, K. Roed, R. Reed, J. Reinhold, E. L. Renner, J. Richards, C. Riedl, T. Rinn, J. Roche, G. M. Roland, G. Ron, M. Rosati, C. Royon, J. Ryu, S. Salur, N. Santiesteban, R. Santos, M. Sarsour, J. Schambach, A. Schmidt, N. Schmidt, C. Schwarz, J. Schwiening, R. Seidl, A. Sickles, P. Simmerling, S. Sirca, D. Sharma, Z. Shi, T. -A. Shibata, C. -W. Shih, S. Shimizu, U. Shrestha, K.

Slifer, K. Smith, D. Sokhan, R. Soltz, W. Sondheim, J. Song, J. Song, I. I. Strakovsky, P. Steinberg, P. Stepanov, J. Stevens, J. Strube, P. Sun, X. Sun, V. Tadevosyan, W. -C. Tang, S. Tapia Araya, S. Tarafdar, L. Teodorescu, A. Timmins, L. Tomasek, N. Trotta, R. Trotta, T. S. Tveter, E. Umaka, A. Usman, H. W. van Hecke, C. Van Hulse, J. Velkovska, E. Voutier, P. K. Wang, Q. Wang, Y. Wang, Y. Wang, D. P. Watts, N. Wickramaarachchi, L. Weinstein, M. Williams, C. -P. Wong, L. Wood, M. H. Wood, C. Woody, B. Wyslouch, Z. Xiao, Y. Yamazaki, Y. Yang, Z. Ye, H. D. Yoo, M. Yurov, N. Zachariou, W. A. Zajc, W. Zha, J. Zhang, Y. Zhang, Y. X. Zhao, X. Zheng, P. Zhuang (2022) arXiv

A Realistic Collimated X-Ray Image Simulation Pipeline

Benjamin El-Zein, Dominik Eckert, Thomas Weber, Maximilian Rohleder, Ludwig Ritschl, Steffen Kappler, Andreas Maier (2024) arXiv

Online Electron Reconstruction at CLAS12

Tyson, Richard, Gavalian, Gagik (2025) EPJ Web Conf.

Symplectic machine learning model for fast simulation of space-charge effects

Wan, Jinyu, Qiang, Ji, Hao, Yue (2025) Phys.Rev.Accel.Beams

Application of quantum machine learning using variational quantum classifier in accelerator physics

Yin, He-Xing, Hu, Zhi-Yuan, Zeng, Huan-Huan, Guan, Jia-Bao, Wang, Ji-ke (2025) arXiv

Laser wakefield electron acceleration simulation using physics-informed diffusion probabilistic models

Jech, Matej, Kovalenko, Alexander, Lazzarini, Carlo Maria, Grittani, Gabriele Maria (2025) Proc.SPIE Int.Soc.Opt.Eng.

Geoff: The Generic Optimization Framework & Frontend for Particle Accelerator Controls Madysa, Penelope, Appel, Sabrina, Kain, Verena, Schenk, Michael (2025) SoftwareX

A Start To End Machine Learning Approach To Maximize Scientific Throughput From The LCLS-II-HE

Mishra, Aashwin, Seaberg, Matt, Roussel, Ryan, Poitevin, Fred, Thayer, Jana, Ratner, Daniel, Edelen, Auralee, Mehta, Apurva (2025) arXiv

Using a neural network model to guide protection heater design in Nb\$_{3}\$Sn accelerator magnets

Bakrani Balani, Shahriar, Salmi, Tiina (2025) Supercond.Sci.Technol.

Particle identification in the GlueX detector with machine learning

Habjan, Eric, Dube, Richard, McIntyre, James, Edo, Mezmur, Jones, Richard (2025) arXiv

Prediction of Radio-quiet Gamma-Ray Pulsar Distances Using the Fundamental Plane Relation

Angüner, Ekrem O**■**uzhan (2025) Astrophys.J.

Graph Neural Networks for particle tracking in NA62 Experiment

Plini, L., Tinti, G., Spadaro, T., Galasso, F. (2025) Nuovo Cim.C

Reinforcement Learning for Charged Particle Beam Control to Minimize Injection Mismatch in Particle Accelerators

Balasooriya, Thilina, Yoo, Shinjae, Schoefer, Vincent, Tseng, Huan-Hsin, Gao, Yuan, Lin, Weijian, Silva, Chanaka De (2025)

Journal

Outlook towards deployable continual learning for particle accelerators

Rajput, Kishansingh, Lin, Sen, Edelen, Auralee, Blokland, Willem, Schram, Malachi (2025) Mach.Learn.Sci.Tech.

An advanced pulse-avalanche stochastic model of long gamma-ray burst light curves

Maistrello, Manuele, Ferro, Lisa, Bazzanini, Lorenzo, Maccary, Romain, Guidorzi, Cristiano (2025) Astron. Astrophys.

Application of ensemble machine learning algorithms and filtering techniques in slow orbit feedback systems of electron storage rings

Fan, Jiaqi, Liu, Weibin, Wang, Jiuqing, Wei, Yanru, Wei, Yuanyuan, Ji, Daheng (2025) Phys.Rev.Accel.Beams

Integration of Machine Learning-Based Plasma Acceleration Simulations into Geant4: A Case Study with the PALLAS Experiment

Sytov, A., Cassou, K., Kubytskyi, V., Lenivenko, M., Huber, A. (2025) arXiv

Optimisation of the Accelerator Control by Reinforcement Learning: A Simulation-Based Approach

Ibrahim, Anwar, Derkach, Denis, Petrenko, Alexey, Ratnikov, Fedor, Kaledin, Maxim (2025) arXiv

Explainable physics-based constraints on reinforcement learning for accelerator controls Colen, Jonathan, Schram, Malachi, Rajput, Kishansingh, Kasparian, Armen (2025) arXiv

femto-PIXAR: a self-supervised neural network method for reconstructing femtosecond X-ray free electron laser pulses

Goetzke, Gesa, Plumley, Rajan, Hartmann, Gregor, Maxwell, Tim, Decker, Franz-Josef, Lutman, Alberto, Dunne, Mike, Ratner, Daniel, Turner, Joshua J. (2025) Opt.Express

Deep Lie Map Networks: A novel Approach to Infer Nonlinear Synchrotron Optics from Beam Oscillations

Caliari, Conrad (2025)

Thesis

Reconstructing time-of-flight detector values of angular streaking using machine learning

Meier, David, Viefhaus, Jens, Hartmann, Gregor, Helml, Wolfram, Otto, Thorsten, Sick, Bernhard (2025)

Phys.Rev.Accel.Beams

Software Upgrades for the High-Luminosity LHC

Shope, David Richard (2025)

PoS

Al-Enabled Operations at Fermi Complex: Multivariate Time Series Prediction for Outage Prediction and Diagnosis

Jain, Milan, Mutlu, Burcu O., Stam, Caleb, Strube, Jan, Schupbach, Brian A., John, Jason M.St., Pellico, William A. (2025) arXiv

Machine Learning Methods for Tau Lepton Identification and Search for the Supersymmetric Partner of the Tau Lepton Using CMS Run 2 Data

Shchedrolosiev, Mykyta (2025)

Thesis

Artificial intelligence for advancing particle accelerators

Ghribi, Adnan, Cassou, Kevin, Dalena, Barbara, Eichler, Annika, Guler, Hayg, Mistry, Andrew K., Oeftiger, Adrian, Shea, Thomas, Valentino, Gianluca, Welsch, Carsten P. (2025) Europhys.News

Electron neutrino selection with deep neural networks for the ICARUS experiment

Koh, Dae Heun (2025)

Thesis

Real-Time event reconstruction for Nuclear Physics Experiments using Artificial Intelligence Gavalian, Gagik (2025)

EPJ Web Conf.

Machine Learning for Optimized Polarization at Jefferson Lab

Jeske, Torri, Kasparian, Armen, Lawrence, David, Britton, Thomas, Schram, Malachi, Moran, Patrick, Fanelli, Cristiano, Guo, Jiawei, Jarvis, Naomi, Maxwell, James, Keith, Chris (2025) EPJ Web Conf.

Applying the machine learning methods to determine the linear optics parameters in the ThomX collector ring

Klekots, D., Bezshyyko, O., Golinka-Bezshyyko, L., Kubytskyi, V., Chaikovska, I. (2024) Nucl. Phys. Atom. Energy

Deep learning framework for fault detection in accelerators

Piekarski, Michal (2024)

JACoW

Optimizing Beam-Plasma Interactions Through Jitter Analysis Using Start-to-End Simulations

Hwang, Robin (2024)

arXiv

Machine Learning Applications for Improving Accelerator Operations

Lin, Lucy (2024)

Thesis

Virtual pulse reconstruction diagnostic for single-shot measurement of free electron laser radiation power

Korten, Till, Rybnikov, Vladimir, Steinbach, Peter, Mirian, Najmeh (2024)

Phys.Rev.Accel.Beams

Assessing the Performance of Deep Learning Predictions for Dynamic Aperture of a Hadron Circular Particle Accelerator

Di Croce, Davide, Giovannozzi, Massimo, Montanari, Carlo Emilio, Pieloni, Tatiana, Redaelli, Stefano, Van der Veken, Frederik F. (2024)

Instruments

Machine learning

Snuverink, Jochem (2024)

CERN Yellow Rep. School Proc.

Harnessing Machine Learning for Single-Shot Measurement of Free Electron Laser Pulse Power

Korten, Till, Rybnikov, Vladimir, Vogt, Mathias, Roensch-Schulenburg, Juliane, Steinbach, Peter, Mirian, Najmeh (2024)

Journal

Data-driven gradient optimization for field emission management in a superconducting radio-frequency linac

Goldenberg, Steven, Ahammed, Kawser, Carpenter, Adam, Li, Jiang, Suleiman, Riad, Tennant, Chris (2024)

Phys.Rev.Accel.Beams

Third-integer Resonant Extraction Regulation System for Mu2e

Narayanan, Aakaash (2024)

InspireHEP

Harnessing the power of gradient-based simulations for multi-objective optimization in particle accelerators

Rajput, Kishansingh, Schram, Malachi, Edelen, Auralee, Colen, Jonathan, Kasparian, Armen, Roussel, Ryan, Carpenter, Adam, Zhang, He, Benesch, Jay (2024) Mach.Learn.Sci.Tech.

Machine learning-based non-destructive measurement of bunch length at FRIB

Wan, Jinyu, Plastun, Alexander, Ostroumov, Peter (2024) JACoW

Beam emittance and Twiss parameters from pepper-pot images using physically informed neural nets

Knight, Ian, Mustapha, Brahim (2024) JACoW

Advancements in backwards differentiable beam dynamics simulations for accelerator design, model calibration, and machine learning

Roussel, Ryan, Edelen, Auralee, Gonzalez-Aguilera, Juan Pablo, Lehe, Remi, Huebl, Axel, Kaiser, Jan, Santamaria Garcia, Andrea, Xu, Chenran, Eichler, Annika, Charleux, Grégoire (2024) JACoW

Advanced algorithms for linear accelerator design and operation

Ong, Ysabella Kassandra, Bellan, Luca, Pisent, Andrea, Comunian, Michele, Fagotti, Enrico, Bortolato, Damiano, Montis, Maurizio, Giacchini, Mauro, Carletto, Osvaldo (2024) JACoW

Adaptive machine learning with hard physics constraints and generative diffusion for 6D phase space diagnostics

Scheinker, Alexander (2024) JACoW

Data-Driven Discovery of Beam Centroid Dynamics

Pocher, Liam A., Haber, Irving, Antonsen, Thomas M., O'Shea, Patrick G. (2024) arXiv

Signal model parameter scan using Normalizing Flow

Saito, Masahiko, Morinaga, Masahiro, Kishimoto, Tomoe, Tanaka, Junichi (2024) PoS

Towards Agentic AI on Particle Accelerators

Sulc, Antonin, Hellert, Thorsten, Kammering, Raimund, Houscher, Hayden, St. John, Jason (2024) Journal

Machine learning for reducing noise in RF control signals at industrial accelerators

Henderson, M., Edelen, J.P., Einstein-Curtis, J., Hall, C.C., Cruz, J.A. Diaz, Edelen, A.L. (2024) JINST

Continuous data-driven control of the GTS-LHC ion source at CERN

Kain, Verena, Rodriguez Mateos, Borja, Bruchon, Niky, Hirlaender, Simon, Küchler, Detlef (2024) JACoW

Surrogate Models studies for laser-plasma accelerator electron source design through numerical optimisation

Kane, G., Drobniak, P., Kazamias, S., Kubytskyi, V., Lenivenko, M., Lucas, B., Serhal, J., Cassou, K., Beck, A., Specka, A., Massimo, F. (2024) arXiv

Beamline Steering Using Deep Learning Models

Allen, Dexter, Kante, Isaac, Bohler, Dorian (2024)

Beam-based identification of magnetic field errors in a synchrotron using deep Lie map networks

Caliari, Conrad, Oeftiger, Adrian, Boine-Frankenheim, Oliver (2024) Phys.Rev.Accel.Beams

Towards efficient machine-learning-based reduction of the cosmic-ray induced background in X-ray imaging detectors: increasing context awareness

Poliszczuk, Artem, Wilkins, Dan, Allen, Steven W., Miller, Eric D., Chattopadhyay, Tanmoy, Schneider, Benjamin, Darve, Julien Eric, Bautz, Marshall, Falcone, Abe, Foster, Richard, Grant, Catherine E., Herrmann, Sven, Kraft, Ralph, Morris, R. Glenn, Nulsen, Paul, Orel, Peter, Schellenberger, Gerrit, Stueber, Haley R. (2024) Proc.SPIE Int.Soc.Opt.Eng.

A Two-Stage Machine Learning-Aided Approach for Quench Identification at the European XFFL

Boukela, Lynda, Eichler, Annika, Branlard, Julien, Jomhari, Nur Zulaiha (2024) arXiv

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning

Kaiser, Jan, Xu, Chenran, Eichler, Annika, Santamaria Garcia, Andrea, Stein, Oliver, Bründermann, Erik, Kuropka, Willi, Dinter, Hannes, Mayet, Frank, Vinatier, Thomas, Burkart, Florian, Schlarb, Holger (2024) Sci.Rep.

Machine learning-based extraction of longitudinal beam parameters in the LHC

Iliakis, Konstantinos, Karlsen-Bæck, Birk Emil, Trad, Georges, Timko, Helga, Zampetakis, Michail, Argyropoulos, Theodoros (2024) JACoW

High fidelity numerical modelling and condition monitoring applied to septum magnets at CERN

Kawa, Krzysztof, Szumlak, Tomasz, Kokkinos, Charilaos, Lackner, Friedrich (2024) JACoW

Updates to Xopt for online accelerator optimization and control

Roussel, Ryan, Kennedy, Dylan, Boltz, Tobias, Baker, Kathryn, Mayes, Christopher, Edelen, Auralee (2024) JACoW

Breaking new ground in data-intensive science: first insights from the LIV.INNO center for doctoral training

Welsch, Carsten (2024) JACoW

The reinforcement learning for autonomous accelerators collaboration

Santamaria Garcia, Andrea, Eichler, Annika, Xu, Chenran, Kaiser, Jan, Scomparin, Luca, Schenk, Michael, Pochaba, Sabrina, Hirlaender, Simon (2024) JACoW

Machine learning-based particle accelerator modeling

Emmanuel Goutierre (2024)

Laboratoire Interdisciplinaire des Sciences du Numérique

Modelization of an Injector With Machine Learning

Mathieu Debongnie, Maud Baylac, Frédéric Bouly, Nicolas Chauvin, Angélique Gatera, Tomas Junquera, Didier Uriot (2019)

10th International Particle Accelerator Conference

Field-Reliability Predictions Based on Statistical System Lifecycle Models

Lukas Felsberger, Dieter Kranzlmüller, Benjamin Todd (2018)

2nd International Cross-Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE)

A Machine Learning Technique for Dynamic Aperture Computation

Barbara Dalena, Mehdi Ben Ghali (2021)

12th International Particle Accelerator Conference

Surrogate Model for Linear Accelerator: A fast Neural Network approximation of ThomX's simulator

Emmanuel Goutierre, Christelle Bruni, Johanne Cohen, Hayg Guler, Michèle Sebag (2023) IPAC 2023 - 14th International Particle Accelerator Conference

Physics-aware modelling of an accelerated particle cloud

Emmanuel Goutierre, Christelle Bruni, Johanne Cohen, Hayg Guler, Michèle Sebag (2023) MLPS 2023 - Machine Learning and the Physical Sciences Workshop 23023 - At the 37th conference on Neural Information Processing Systems (NeurIPS)

Closing the loop: Autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments

Linus Pithan, Vladimir Starostin, David Mare ek, Lukas Petersdorf, Constantin Völter, Valentin Munteanu, Maciej Jankowski, Oleg Konovalov, Alexander Gerlach, Alexander Hinderhofer, Bridget Murphy, Stefan Kowarik, Frank Schreiber (2023)

Leveraging Subgraph Extraction for Performance Portable Programming Frameworks on DL Accelerators

Xiao Zhang, Huiying Lan, Tian Zhi (2018)

15th IFIP International Conference on Network and Parallel Computing (NPC)

From Compact Plasma Particle Sources to Advanced Accelerators with Modeling at Exascale

Axel Huebl, Remi Lehe, Edoardo Zoni, Olga Shapoval, Ryan T Sandberg, Marco Garten, Arianna Formenti, Revathi Jambunathan, Prabhat Kumar, Kevin Gott, Andrew Myers, Weiqun Zhang, Ann Almgren, Chad E Mitchell, Ji Qiang, David Grote, Alexander Sinn, Severin Diederichs, Maxence Thevenet, Luca Fedeli, Thomas Clark, Neil Zaim, Henri Vincenti, Jean-Luc Vay (2022) 20th Advanced Accelerator Concepts Workshop (AAC'22)

3D deep convolutional neural network segmentation model for precipitate and porosity identification in synchrotron X-ray tomograms

S. Gaudez, M. Ben Haj Slama, A. Kaestner, Manas Vijay Upadhyay (2022) Journal of Synchrotron Radiation

Leveraging Serial MRI Radiomics and Machine Learning to Predict Risk of Radiation Necrosis in Patients with Brain Metastases Managed with Stereotactic Radiation and Immunotherapy

H. Elhalawani, L.A. Hammoudeh, D.N. Cagney, J.M. Qian, A. Martin, J. Zgrabik, J. Meyers, K.J. Pataki, K. Martin, Y. Khouj, C. Verry, W.L. Bi, O. Arnaout, S.M. Christ, B. Alexander, S. Tanguturi, R. Rahman, D. Haas-Kogan, A.A. Aizer (2022) 64th ASTRO Annual Meeting

Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data

Victor Poline, Ravi Raj Purohit Purushottam Raj Purohit, Pierre Bordet, Nils Blanc, Pauline Martinetto (2024)

Journal of Applied Crystallography

Understanding error propagation in deep learning neural network (DNN) accelerators and applications

Guanpeng Li, Siva Kumar Sastry Hari, Michael B. Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel Emer, Stephen W. Keckler (2017)

Unknown Venue

Survey and Benchmarking of Machine Learning Accelerators

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, Jeremy Kepner (2019)

Unknown Venue

A Survey of Accelerator Architectures for Deep Neural Networks

Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, Tianqi Tang (2020) Engineering

RBF neural net based classifier for the AIRIX accelerator fault diagnosis

J. C. Ribes, G. Delaunay, J. Delvaux, E. Merle, M. Mouillet (2000) arXiv

Railway Wheel Impact Force and Alert Prediction Using Machine Learning Models

Gajendra Malviya, Shripad Salsingikar (2025)

AIRO Springer Series

RadiSimCLIP: A Radiology Vision-Language Model Pretrained on Simulated Radiologist Learning Dataset for Zero-Shot Medical Image Understanding

Minhui Tan, Qingxia Wu, Boyang Zhang, Genqiang Ren, Jianlong Nie, Zhong Xue, Xiaohuan Cao, Dinggang Shen (2025)

Lecture Notes in Computer Science

Machine Learning for Precision Dental Diagnosis: Real-Time X-Ray Detection and Patient Record Integration—SmiloScope

M. S. Padmini, Asha Rani Mahadeva, Madhu Nagaraj, Namratha Gopinath (2025) Information Systems Engineering and Management