

Проверил:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	·	Фундаментальные нау	/КИ		
КАФЕДРА _	Прикладная математика				
	Отчёт по лаб	бораторной раб	оте №3		
		ooparophon pao			
$Peшение\ задач\ интерполирования$					
Студент:	ФН2-52Б		А.И. Токарев		
эт <u>донт.</u>	(Группа)	(Подпись, дата)	(И. О. Фамилия)		
			Ю. А. Сафронов		

(Подпись, дата)

(Подпись, дата)

(И.О. Фамилия)

(И.О. Фамилия)

Оглавление

1.	Краткое описание алгоритмов	3
	1.1. Равномерная сетка	3
	1.2. Чебышевская сетка	3
	1.3. Задача интерполирования	3
	1.4. Многочлен Лагранжа	3
	1.5. Кубический сплайн	4
2.	Исходные данные	5
3.	Результаты расчетов	6
	3.1. Первый пункт	6
	3.2. Второй пункт	12
	3.3. Третий пункт	14
	3.4. Четвертый пункт	17
1	Kouthoulule Bounoch	91

1. Краткое описание алгоритмов

1.1. Равномерная сетка

Шаг равномерной сетки постоянный и вычисляется по формуле:

$$h = \frac{b-a}{n},$$

а сами узлы имеют координаты

$$x_i = a + h \cdot i = a + \frac{b - a}{n} \cdot i, \quad i = 0, 1, \dots, n$$

1.2. Чебышевская сетка

Узлы вычисляются, как корни многочлена Чебышева 1-го рода, то есть точки

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{(2i+1)\pi}{2(n+1)}, \quad i = 0, 1, \dots, n$$

1.3. Задача интерполирования

Задан отрезок [a,b]. Пусть точки $x_0 \dots x_n$ — узлы интерполяции, то есть точки, лежащие внутри этого отрезка. А значения $y(x_0) = y_0, \dots, y(x_n) = y_n$ — значения искомой функции в этих точках. Послодовательность $\{y_i\}_{i=0}^n$ будем называть сеточной функцией.

Таким образом, задача интреполирования заключается в построении такой функции f(x), которая будет принимать в узлах те же значения, что и y_i . Геометрически это можно интерпретировать, как построение кривой, проходящей через систему точек (x_i, y_i)

1.4. Многочлен Лагранжа

Многочлен *n*-степени вида

$$L_n(x) = \sum_{k=0}^n \alpha_k x_k,$$

называют интерполяционным многочленом, если

$$L_n(x_i) = y_i$$

Интерполяционный многочлен Лагранжа:

$$L_n(x) = \sum_{k=0}^{n} c_k(x) y_k, \quad i = 0, 1, \dots, n$$

В соответствии с определением интерполяционного полинома получаем:

$$\sum_{k=0}^{n} c_k(x_i) y_k = y_i, \quad c_k(x_i) = \begin{cases} 0 & i \neq k \\ 1 & i = k \end{cases}, \quad i = 0, 1, \dots, n$$

1.5. Кубический сплайн

Кубическим сплайном для функции y(x) называют функцию S(x), удовлетворяющую следующим условиям:

- 1. на каждом отрезке $[x_{i-1}, x_i]$ функция S(x) многочлен третьей степени;
- 2. функция S(x), ее первая и вторая производные непрерывны на отрезке $[x_0, x_n]$;
- 3. значения функции S(x) и исходной функции y(x) совпадают в узлах интерполяции.

На каждом из отрезков $[x_{i-1}, x_i]$ функция $S(x) = s_i$ ищется следующим образом

$$s_i = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 = a_i + b_ih_i + c_ih_i^2 + d_ih_i^3$$

где a_i, b_i, c_i, d_i – коэффициенты, подлежазие определению.

$$a_i = y_{i-1}$$

 $a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i$

Из условия непрерывности первой и второй производной получаем

$$S'(x_i - 0) = S'(x_i + 0)$$

$$S''(x_i - 0) = S''(x_i + 0), \quad i = 1, 2, \dots, n - 1,$$

тогда

$$b_i + 2c_i h_i + 3d_i h_i^2 = b_{i+1}$$
$$2c_i + 6d_i h_i = 2c_{i+1}$$

Положим $S''(x_0) = S''(x_n) = 0$, тогда

$$2c_1 = 0$$
$$2c_n + 6d_n h_n = 2c_{n+1} = 0$$

Введением вспомогательного параметра $g_i = \frac{y_i - y_{i-1}}{h_i}$ получаем систему

$$\begin{cases} c_1 = 0 \\ h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_ici + 1 = 3(g_i - g_i - 1) \\ c_{n+1} = 0, \end{cases}$$

которая является трехдиагональной и обладает диагональным преобладанием, поэтому для нахождения коэффициентов можно использовать метод прогонки.

Остальные коэффициенты находим по формулам

$$b_i = g_i - \frac{(c_{i+1} + 2c_i)h_i}{3}$$
$$d_i = \frac{c_{i+1} - c_i}{3h_i}, \quad i = 1, 2, \dots, n$$

2. Исходные данные

3. Результаты расчетов

3.1. Первый пункт

Рис. 1. Равномерная сетка, $n=2, ||f(x)-L_n(x)||_C=68.31.$

Рис. 2. Равномерная сетка, n = 8, $||f(x) - L_n(x)||_C = 64.25$.

Рис. 3. Равномерная сетка, n = 16, $||f(x) - L_n(x)||_C = 56.1911$.

Рис. 4. Равномерная сетка, n = 32, $||f(x) - L_n(x)||_C = 46.0322$.

Рис. 5. Равномерная сетка, n = 64, $||f(x) - L_n(x)||_C = 44.5913$.

Рис. 6. Равномерная сетка, $n=128, \|f(x)-L_n(x)\|_C=2.34923e+19.$

Рис. 7. Чебышевская сетка, $n=2, ||f(x)-L_n(x)||_C=2.40999.$

Рис. 8. Чебышевская сетка, n = 8, $||f(x) - L_n(x)||_C = 57.0232$.

Рис. 9. Чебышевская сетка, $n=16, \|f(x)-L_n(x)\|_C=441.702.$

Рис. 10. Чебышевская сетка, $n=32, \|f(x)-L_n(x)\|_C=1659.45.$

Рис. 11. Чебышевская сетка, $n=64, ||f(x)-L_n(x)||_C=567.$

Рис. 12. Чебышевская сетка, $n=128, \|f(x)-L_n(x)\|_C=351.303.$

3.2. Второй пункт

Рис. 13. Равномерная сетка, n=4, $||f(x)-L_n(x)||_C=0.00200401$.

Рис. 14. Равномерная сетка, $n=128, \|f(x)-L_n(x)\|_C=2.84368e+18.$

Рис. 15. Чебышевская сетка, $n=4, \|f(x)-L_n(x)\|_C=0.0761205.$

Рис. 16. Чебышевская сетка, $n=128, \|f(x)-L_n(x)\|_C=0.00192856.$

3.3. Третий пункт

Рис. 17. Равномерная сетка, $n=4, \|f(x)-L_n(x)\|_C=0.707014.$

Рис. 18. Равномерная сетка, $n=16, \|f(x)-L_n(x)\|_C=2.10702.$

Рис. 19. Равномерная сетка, n = 32, $||f(x) - L_n(x)||_C = 704.076$.

Рис. 20. Чебышевская сетка, $n=4, \|f(x)-L_n(x)\|_C=0.7503.$

Рис. 21. Чебышевская сетка, $n=16, \|f(x)-L_n(x)\|_C=0.0831194.$

Рис. 22. Чебышевская сетка, n = 32, $||f(x) - L_n(x)||_C = 0.0059259$.

3.4. Четвертый пункт

Рис. 23. Равномерная сетка, f(x) = x, n = 4.

Рис. 24. Равномерная сетка, f(x) = x, n = 32.

Рис. 25. Чебышевская сетка, f(x) = x, n = 4.

Рис. 26. Чебышевская сетка, f(x) = x, n = 32.

Рис. 27. Равномерная сетка, $g(x) = x^2$, n = 4.

Рис. 28. Равномерная сетка, $g(x) = x^2, n = 32.$

Рис. 29. Чебышевская сетка, $g(x) = x^2$, n = 4.

Рис. 30. Чебышевская сетка, $g(x) = x^2, \, n = 32.$

4. Контрольные вопросы

- 1. Определите количество арифметических операций, требуемое для интерполирования функции в некоторой точке многочленом Лагранжа (включая построение самого многочлена) на сетке с числом узлов, равным n. Для того, чтобы посчитать коэффициент $c_k(x)$ и умножить его на y_k , нужно n операций. Для подсчета суммы всех произведений $k = \overline{1, ..., n}$ нужно $n \cdot n = n^2$ операций.
- 2. Определите количество арифметических операций, требуемое для интерполирования функции в некоторой точке кубическим сплайном (включая затраты на вычисление коэффициентов сплайна) на сетке с числом узлов, равным n. Для подсчета g_i нужно n операций. Для прогонки потребуется 5n операций. Далее для подсчета коэффициентов b_i и d_i нужно 3n+2n=5n операций. Итог: n+5n+5n=11n.

3. Функция $f(x) = e^x$ интерполируется многочленом Лагранжа на отрезке [0,2] на равномерной сетке с шагом h = 0.2. Оцените ошибку экстраполяции в точке x = 2.2, построив многочлен Лагранжа и подставив в него это значение, а также по формуле для погрешности экстраполяции.

Построение полинома Лагранжа

```
f[x_{-}] := e^{x};
       x = Table[i, {i, 0, 2, 0.2}]
            таблица значений
Out[0]= {0., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2.}
ln[-]:= n = Length@x
            Ідлина
Out[ • ]= 11
ln[\cdot]:= y = Table[f[x[[i]]], \{i, 1, n\}]
            таблица значений
Out[*]= {1., 1.2214, 1.49182, 1.82212, 2.22554,
        2.71828, 3.32012, 4.0552, 4.95303, 6.04965, 7.38906}
\ln[\cdot] := \mathsf{coeff}[k_-, xx_-] := \prod_{j=1}^{k-1} \left( \frac{xx - \mathsf{x}[[j]]}{\mathsf{x}[[k]] - \mathsf{x}[[j]]} \right) * \prod_{j=k+1}^{n} \left( \frac{xx - \mathsf{x}[[j]]}{\mathsf{x}[[k]] - \mathsf{x}[[j]]} \right);
ln[\cdot]:= Lagrange[xx_{-}] := \sum_{k=1}^{n} coeff[k, xx] * y[[k]];
       Lagrange[2.2]
       9.025013436781308
In[*]:= f[2.2]
       9.025013499434122`
In[*]:= Print["Misclosure = ", Abs[Lagrange[2.2] - f[2.2]]]
       печатать
                                         абсолютное значение
       Misclosure = 6.26528 \times 10^{-8}
In[@]:= Print["Evaluation(formula) = ", 0.2" e<sup>2.2</sup>]
       Evaluation(formula) = 1.84832 \times 10^{-7}
```

Рис. 31. Полином Лагранжа для функции Exp[x]. Нахождение значения этого полинома в точке x=2.2. Сравнение с оценочной формулой

- 4. Выпишите уравнения для параметров кубического сплайна, если в узлах x_0 и x_n помимо значений функции y_0 и y_n заданы первые производные $y'(x_0)$ и $y'(x_n)$.
- 5. Каковы достоинства и недостатки сплайн-интерполяции и интерполяции многочленом Лагранжа?
- 6. Какие свойства полиномов Чебышева и чебышевских сеток Вам известны?