Name:		
Roll Number:	_	

Practice Final Exam

$\operatorname{MTH302A}$ - Set Theory and Mathematical Logic

(Odd Semester 2021/22, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{6} \, + \, \mathbf{1}$ questions and is worth $\mathbf{60\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) If (L, \prec) is a linear ordering and L is uncountable, then there exists an infinite $X \subseteq L$ such that X is well-ordered by \prec .
- (ii) There exists a bijection $f: \mathbb{R}^7 \to \mathbb{R}^9$ satisfying: For every x, y in \mathbb{R}^7 , f(x+y) = f(x) + f(y).
- (iii) The set of all non-computable functions $f:\omega\to\omega$ has the same cardinality as the set of all real numbers.
- (iv) There exists a finite $F \subseteq TA$ such that $PA \cup F$ is a complete \mathcal{L}_{PA} -theory.
- (v) The theory DLO (dense linear orderings without end points) is decidable (as defined on Slide 188).

Page 3 MTH302A

Question 2. [10 Points]

- (a) [5 Points] Let \mathcal{F} be the set of all strictly increasing functions $f:\omega\to\omega$. Show that $|\mathcal{F}|=\mathfrak{c}$.
- (b) [5 Points] Let \mathcal{E} be the set of all countable subsets of ω_1 . Show that $|\mathcal{E}| = \mathfrak{c}$.

Page 4 MTH302A

Question 3. [10 Points]

Using transfinite recursion, construct a function $f:\mathbb{R}\to\mathbb{R}$ such that for every interval $(a,b)\subseteq\mathbb{R},$

$$\mathsf{range}(f \restriction (a,b)) = \mathbb{R}$$

Page 5 MTH302A

Question 4. [10 Points]

- (a) [4 Points] Suppose $(\mathbb{Q}, <)$ is the usual ordering on rationals and (M, \prec) is a countable dense linear ordering without end points. Suppose $x_1 \prec x_2 \prec \cdots \prec x_n$ are in M and $a_1 < a_2, \cdots < a_n$ are in \mathbb{Q} . Show that there is an isomorphism $f: (M, \prec) \to (\mathbb{Q}, <)$ such that $f(x_k) = a_k$ for every $1 \le k \le n$.
- (b) [6 Points] Use Tarski-Vaught criterion to show that $(\mathbb{Q},<)$ is an elementary submodel of $(\mathbb{R},<)$.

Page 6 MTH302A

Question 5. [10 Points]

(a) [5 Points] Let $W\subseteq \omega$ be an infinite c.e. set. Show that there is a computable injective function $f:\omega\to\omega$ such that $\operatorname{range}(f)=W$.

(b) [5 Points] Show that $True_{\mathcal{N}}$ (defined on Slide 199) is not c.e.

Page 7 MTH302A

Question 6. [10 Points]

Let $\mathcal{N}=(\omega,0,+,\cdot)$ be the standard model of PA.

- (a) [6 Points] Define $False_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \neg \psi \}$. Show that $False_{\mathcal{N}}$ is not definable in \mathcal{N} .
- (b) [4 Points] Show that there are \mathcal{L}_{PA} -sentences ϕ and ψ such that PA does not prove either one of the following four sentences.
 - (i) ϕ
 - (ii) $\neg \phi$
 - (iii) $\phi \implies \psi$
 - (iv) $\phi \implies (\neg \psi)$

Page 8 MTH302A

Bonus Question [5 Points]

Let X be an uncountable set and suppose \prec_1 and \prec_2 are two well-orders on X. Show that there is an uncountable $Y \subseteq X$ such that for every $a, b \in Y$,

$$a \prec_1 b \iff a \prec_2 b$$