Číslicový měřicí systém se sběrnicí IEEE 488

Jakub Dvořák

11. října 2021

Úkol měření

- a) Seznamte se s propojením přístrojů při měření převodní charakteristiky převodníku U→f podle obr. 1.
- b) Seznamte se s programem, který řídí automatické měření charakteristiky. Jeho blokové schéma je na obr. 2.
- c) Změřte charakteristiku převodníku pro vstupní napětí do 5 V. Zjistěte vliv doby ustálení převodníku na měřené hodnoty.
- d) Určete maximální absolutní odchylku změřené převodní charakteristiky od charakteristiky ideální (převodní konstanta 10 kHz/1 V). Dále určete maximální relativní odchylku vztaženou k jmenovité převodní konstantě. Pro výpočty využijte MS Excel.
- e) Pro hodnotu vstupního napětí 5 V určete skutečnou převodní konstantu převodníku.

Schéma zapojení

Obr. 1 Sestava měřicího pracoviště

1 Teoretický úvod

V této úloze jsou měřicí přístroje zapojené paralelně do sběrnice IEEE 488. Každý z přístrojů má přiřazenou pětibitovou adresu, pomocí které komunikujeme s danou jednotkou. Nastavování probíhá přes PC. Posloupnost úkonů je následující: Vynulování přístrojů \rightarrow postupné nastavení napětí $0-5 \text{ V} \rightarrow$ na programovatelném zdroji \rightarrow odečítání napětí na vstupu U-f převodníku. Data následně zpracujeme v programu MS Excel.

2 Naměřené hodnoty

Nastavené napětí	Naměřené napětí	Naměřený kmitočet	Odchylka absolutní	Odchylka relativní
00,5000	00,5001	4957,0000	00,0001	00,0002
01,0000	01,0000	9903,0000	00,0000	00,000
01,5000	01,4999	14850,0000	00,0001	00,0001
02,0000	01,9997	19800,0000	00,0003	00,0002
02,5000	02,4991	24730,0000	00,0009	00,0004
03,0000	02,9991	29670,0000	00,0009	00,0003
03,5000	03,4985	34620,0000	00,0015	00,0004
04,0000	03,9983	39560,0000	00,0017	00,0004
04,5000	04,4980	44500,0000	00,0020	00,0004
05,0000	04,9979	49440,0000	00,0021	00,0004
05,5000	05,4975	54380,0000	00,0025	00,0005
06,0000	05,9973	59320,0000	00,0027	00,0005
06,5000	06,4969	64280,0000	00,0031	00,0005
07,0000	06,9967	69230,0000	00,0033	00,0005
07,5000	07,4963	74160,0000	00,0037	00,0005
08,0000	07,9956	79100,0000	00,0044	00,0005

Tabulka 1: Tabulka naměřených a vypočtených hodnot hodnot

3 Zpracování naměřených hodnot

Grafy jsou zobrazené níže.

4 Závěrečné vyhodnocení

Z naměřených hodnot je zřejmé, že maximální absolutní odchylka charakteristiky je 56,16 Hz. Maximální relativní odchylka vztažená k převodní konstantě 10 kHz/1 V je 0,05 %. Skutečná převodní konstanta je je 9896 Hz/V

Obrázek 1: Závislost měřené odchylky na vstupním napětí

Obrázek 2: Závislost frekvence na měřeném napětí

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze