1. SR Latch (Q+=S+R'Q)

Delay: 20 s

Result:

	Qb	Q	R	S
	1	0	1	0
	0	1	0	1
	0	1	0	0
	0	1	0	1
// SR=1, undefined	0	0	1	1
	0	0	0	0
	1	0	1	0

The result corresponds to the characteristic table.

- S R Operation
- 0 0 No change
- 0 1 Reset
- 1 0 Set
- 1 1 Undefined

2. D-type Negative-Edge Trigger Flip-Flop

Propagation delay time: 30

每次 negative edge 往後推 30 秒可以找到對應的 Q 值 例如: 在 120 秒時 D 為 0,對應到 150 秒時的 Q 為 0; 在 160 秒時 D 為 1,對應到 190 秒時的 Q 為 1。

3. Mealy-Type Synchronous Sequential Circuit

Present	Next	State	Out	put
State	x=0	x=1	x=0	x=1
So	S_1	S ₄	0	0
S_1	S ₁	S_2	0	0
S_2	S ₃	S_4	1	0
S_3	S_6	S ₂	0	0
S_4	S ₅	S_4	0	0
S ₅	S_6	S_2	0	0
S_6	S_6	S_6	0	0

表 1:序列識別器之狀態表

Table 1: The state table of the sequence recognizer.

	Present		Next State					Outp	Output		
	State			x=0)		x=1		x=0	x=1	
Α	В	С	A+	B+	C+	A+	B+	C+	Z	Z	
0	0	0	0	0	1	1	0	0	0	0	
0	0	1	0	0	1	0	1	0	0	0	
0	1	0	0	1	1	1	0	0	1	0	
0	1	1	1	1	0	0	1	0	0	0	
1	0	0	1	0	1	1	0	0	0	0	
1	0	1	1	1	0	0	1	0	0	0	
1	1	0	1	1	0	1	1	0	0	0	

AB\CX	00	01	11	10	AB\CX	00	01	11	10
00	0	1	0	0	00	0	0	1	0
01	0	1	0	1	01	1	0	1	1
11	1	1	X	X	11	1	1	X	X
10	1	1	0	1	10	0	0	1	1
DA = C'X + AX' + BCX'					DB = AB + BX' + CX + AC				
AB\CX	00	01	11	10	AB\CX	00	01	11	10
00	1	0	0	1	00	0	0	0	0
01	1	0	0	0	01	1	0	0	0
11	0	0	Х	x	11	0	0	Х	Х
10	1	0	0	0	10	0	0	0	0

$$DC = A'B'X' + A'C'X' + B'C'X'$$

$$z = A'BC'X'$$

Z1 is (i) state-diagram-based model's output z.

Z2 is (ii) structural model's output z.

```
initial fork
   reset = 0;
                                                  initial begin
   #2 reset = 1;
   #87 reset = 0;
                                                      clock = 0;
   #89 reset = 1;
                                                      forever #5 clock = ~clock;
                                                  end
   #10 x = 0;
   #20 x = 1;
                        // output 1
   #30 x = 0;
   #40 x = 1;
                        // output 1
   #50 x = 0;
   #60 x = 0;
   #70 x = 1;
   #80 x = 0;
                        // output 0
   #86 x = 1;
   #100 x = 0;
   #110 x = 1;
   #120 x = 0;
                        // output 1
   #130 x = 1;
   #140 x = 1;
    #150 x = 1;
join
```

Clock 每五秒跳一次,在 5 的倍數時為 positive edge. State 會讀取新的數據。 波型圖上的輸出 z1,z2 皆在 30, 50, 120 秒時輸出 1 80 秒時不會輸出 1 是因為在 60 秒時出現 100 87 秒時 reset 將 state 設為 s0,因此在後面又有機會出現 1。

心得感想:

這次的 Lab 範圍剛好是在我最不熟悉的第五章,在做之前還是有些不懂 latch 和 flipflop 的操作過程,但透過這次的 lab 又再複習了一遍這裡的範圍,有更熟悉概念及實作。前兩題因為 delay 的時間不太會算導致觀察結果觀察了很久,第三題因為 testbench 剛開始設計不良導致結果不太符合預期,但在不斷修正後有得到想要的結果。這學期的三個 Lab 都讓我受益良多。