

TESTE INTERMÉDIO DE MATEMÁTICA

12.º Ano de Escolaridade

(Decreto-Lei n.º 74/2004, de 26 de Março)

Duração da Prova: 90 minutos 15/Março/2007

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação da prova.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete itens de escolha múltipla.
- O Grupo II inclui quatro itens de resposta aberta, alguns subdivididos em alíneas, num total de seis.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal \, maior \times Diagonal \, menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; q - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a \cdot cos b + sen b \cdot cos a$$

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \, = \, \sqrt[n]{\rho} \, \cos \frac{\theta + 2 \, k \, \pi}{n} \, \; , \, k \in \{0,..., \, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x o +\infty} rac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- · Escreva na sua folha de respostas apenas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- Indique o conjunto dos números reais que são soluções da inequação $e^{-x}>rac{1}{e}$ 1.
 - **(A)** $]-\infty, -1[$

(B) $]-\infty,1[$

(C) $]-1, +\infty[$

- **(D)** $]1, +\infty[$
- 2. Seja a um número real maior do que 1. Indique o valor de $\log_a \left(a \times \sqrt[3]{a} \right)$

 - (A) $\frac{5}{4}$ (B) $\frac{4}{3}$ (C) $\frac{5}{3}$

- 3. Seja q uma função de domínio \mathbb{R}^+ Sabe-se que a recta de equação $\ y=2\,x+3\$ é assimptota do gráfico de $\ g$ Indique o valor de

$$\lim_{x \to +\infty} \, \left[\, \frac{g(x)}{x} \; \times \; \left(\, g(x) - 2 \, x \right) \, \, \right]$$

- **(A)** 0
- **(B)** 5
- **(C)** 6

4. Na figura está representada, em referencial xOy, parte do gráfico de uma função f, de domínio $\,]-\infty,\,1\,[$, contínua em todo o seu domínio.

Tal como a figura sugere, tem-se:

- ullet o gráfico de f contém a origem do referencial;
- as rectas de equações y=0 e x=1são assimptotas do gráfico de f.

Em qual das opções seguintes poderá estar representada, em referencial xOy, parte do gráfico de $\frac{1}{f}$?

(A)

(B)

(C)

(D)

5. Um saco contém vinte bolas, numeradas de 1 a 20.

Ao acaso, extraem-se simultaneamente três bolas do saco e anotam-se os respectivos

Qual é a probabilidade de o maior desses três números ser 10 ?

- (A) $\frac{24}{^{20}C_3}$ (B) $\frac{28}{^{20}C_3}$ (C) $\frac{32}{^{20}C_3}$ (D) $\frac{36}{^{20}C_3}$

6. Seja $\,\Omega\,$ o espaço de resultados associado a uma certa experiência aleatória e sejam $\,A\,$ e B dois acontecimentos ($A\subset\Omega$ e $B\subset\Omega$), ambos com probabilidade não nula. Sabe-se que $P(A \cup B) = P(A) + P(B)$

Qual é o valor da probabilidade condicionada P(A|B) ?

- **(A)** 0
- **(B)** 1
- (C) P(A) (D) $\frac{P(A)}{P(B)}$
- **7**. O Jorge tem seis moedas no bolso. Ele retira, simultaneamente e ao acaso, duas dessas seis moedas. Seja $\, X \,$ a quantia, em cêntimos, correspondente às duas moedas retiradas. Sabe-se que a tabela de distribuição de probabilidades da variável aleatória $\, X \,$ é

x_i	20	30	40	60	70
$P(X=x_i)$	$\frac{3}{{}^6C_2}$	$\frac{6}{{}^{6}C_{2}}$	$\frac{1}{{}^{6}C_{2}}$	$\frac{3}{{}^{6}C_{2}}$	$\frac{2}{{}^{6}C_{2}}$

Quais poderiam ser as seis moedas que o Jorge tinha inicialmente no bolso?

(B) (D)

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exacto.

1. Considere a função f, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} \frac{x^2 + 2x}{x^3 + x} & se \ x < 0 \\ 2 & se \ x = 0 \\ \frac{3x^2 - x \ln(x+1)}{x^2} & se \ x > 0 \end{cases}$$

($\ln \text{ designa logaritmo de base } e$)

Utilizando métodos exclusivamente analíticos, averigúe se a função $\,f\,$ é contínua em $x=0.\,$ Justifique a sua resposta.

2. A acidez de uma solução é medida pelo valor do seu pH, que é dado por

$$pH = -\log_{10}(x)$$

onde x designa a concentração de iões H_3O^+ , medida em mol/dm^3 .

Sem recorrer à calculadora, a não ser para efectuar eventuais cálculos numéricos, resolva as duas alíneas seguintes:

2.1. Admita que o pH do sangue arterial humano é 7,4.

Qual é a concentração (em mol/dm^3) de iões H_3O^+ , no sangue arterial humano?

Escreva o resultado em notação científica, isto é, na forma $a \times 10^b$, com b inteiro e a entre 1 e 10. Apresente o valor de a arredondado às unidades.

2.2. A concentração de iões $\,H_3O^+\,$ no café é tripla da concentração de iões $\,H_3O^+\,$ no leite.

Qual é a diferença entre o $\,pH\,$ do leite e o $\,pH\,$ do café? Apresente o resultado arredondado às décimas.

Sugestão: comece por designar por l a concentração de iões H_3O^+ no leite e por exprimir, em função de l, a concentração de iões H_3O^+ no café.

- **3.** Considere, num referencial o. n. xOy,
 - a curva $\,C$, que representa graficamente a função $\,f$, de domínio $\,[{\bf 0},{\bf 1}]\,,\,$ definida por $\,f(x)=e^x+3x\,$
 - a recta $\,r$, de equação $\,y=5\,$
 - **3.1.** Sem recorrer à calculadora, justifique que a recta $\,r\,$ intersecta a curva $\,C\,$ em pelo menos um ponto.
 - **3.2.** Recorrendo às capacidades gráficas da sua calculadora, visualize a curva C e a recta r, na janela $[0,1] \times [0,7]$ (janela em que $x \in [0,1]$ e $y \in [0,7]$).

Reproduza, na sua folha de teste, o referencial, a curva $\,\,C\,\,$ e a recta $\,\,r,\,$ visualizados na calculadora.

Assinale ainda os pontos O, P e Q, em que:

- *O* é a origem do referencial;
- P é o ponto de coordenadas (0, e);
- Q é o ponto de intersecção da curva $\ C$ com a recta $\ r$; relativamente a este ponto, indique, com duas casas decimais, a sua abcissa, que deve determinar com recurso à calculadora.

Desenhe o triângulo [OPQ] e **determine a sua área**. Apresente o resultado final arredondado às décimas. Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

4. Seja c um número real maior do que 1.

Na figura está representada uma parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x)=e^x-c$.

Tal como a figura sugere

- A é o ponto de intersecção do gráfico de f com o eixo Ox
- B é o ponto de intersecção do gráfico de f com o eixo Oy

Se o declive da recta AB é c-1, então c=e

FIM

COTAÇÕES

	l
	Cada resposta certa
	Cada questão não respondida ou anulada
	II
24	1
42	2
	2.1 2.2.
	3
	3.1 3.2
24	4