

a) Rang d'energies possible: E>Uo

f'energia de la molècula d'amoniac no pot ser
inferior a Uo, ja que, tenint en compte que:

Emec = Ecinet + U(x)

si Emec < U. => Ecinet <0 (No té sentit

b) Si E=Uo, la partícula es troba a X10 be' a X2 (punts d'equilibri estables). No es pot trobar en cap altre punt de l'eix X. Punt d'equilri DF=0, i com que E=Uo D V=0

La particula oscillarà entre X3 i X4 o lé entre X5 i X6. Que estigni oscillant en una Zona o en l'altra depen de les condicions inicials.

 X_3, X_4, X_5 i X_6 soon punts de retorn. En ells E = U(x) = 0 v = 0, però la força é $\neq 0$ i per tant, la particula té acceleració.

En X1 i X2 la força és Zero.

al voltant de x_1 , la força sobre la partícula va dirigida cap a x_1 i al voltant de x_2 , la força va dirigida cap a x_2 .

 $F(x_1) = 0$, $F(x_2) = 0$

Quan la particula passa per X1 (0 lé X2), l'energia potencial és minima & Ecinètica maxima. Deprés la velocitat va dirminuint fins que avriba a un punt de retorn amb v = 0 i la particula gira, ja que F 70.

d) Si E=U1, hi ha un punt d'equilibri inertable (x=0). Si la particula estroba a x=0 => v=0, F(0)=0, particula aturada. La zona on es pot trobar la particula es entre X7 i X8 (punts de retorn), però quan avriba a x=0 (correspon al màxim d'U(x)), la particula es queda aturada (v=0, F(0)=0). Al voltant del màxim, les forces van diriquides allunyant-se del màxim una petita perturbació pot ser allunyan la particula del màxim (punt d'equilibri inertable).

Si E>U1, podem trobar la particula entre X9 i X10 (punts de retorn)

a
$$x_1$$
, x_2 i x_2 o, le x_2 o, je que x_1 od x_2 is x_2 in x_3 of x_4 of x_4 in x

Quan la perticula es troba a x_1 o lé x_2 , la velocitat es màxima, després va disminuint i α x=0, la velocitat té un minim relative, metatre que a x_1 i x_2 la velocitat é zero.

5)
$$u(x) = -\frac{a}{x^6} + \frac{b}{x^{12}} \quad amb \quad x > 0$$

a) Representació gráfica d'U(x):

Funció umetrica: U(x)= U(-x), encara que nomes considererem ×>0

- Talls amb l'eix de les x:

$$U(x)=0 \Rightarrow 0 -\frac{a}{x^{6}} + \frac{b}{x^{12}} = 0 \Rightarrow 0 - x^{6}a + b = 0$$

$$x^{6} = \frac{b}{a}$$

$$x = 1 + \frac{b}{a}$$

- Maxims i minims:

$$\frac{du(x)}{dx} = \frac{6a}{x^7} - \frac{12b}{x^{13}} = 0$$

$$6ax^6 = 12b \Rightarrow x^6 = \frac{2b}{a}$$

$$X_1 = \sqrt{\frac{2a}{b}}$$

X₁ = $\sqrt{\frac{2a}{b}}$ Noméi considerem et rigne + ja que segons l'enunciar

Veuren si estracta d'un màxim o un minim:

$$\frac{d^2U(x)}{dx^2} = \frac{-42\alpha}{X^8} + \frac{156b}{X^{14}}$$

$$\frac{d^2 U(x)}{dx^2} = 36a \left(\frac{a}{2b}\right)^{4/3} > 0$$

Valor d'U(x) en el minim:

$$U(x_1) = -\frac{a}{2b} + \frac{b}{\left(\frac{2b}{a}\right)^2} = -\frac{a^2}{4b}$$

- b) Quan l'energia mecànica de la particula es igual a $-\frac{a^2}{4b}$ hi ha un punt d'equilieri estable a $x_1 = \sqrt{\frac{2b}{a}}$. La particula momés es pot trobar a x_1 . $F(x_1) = 0$
- c) J'energia de la particula ha de ser $E > \frac{-\alpha^2}{4b}$. Si l'energia mecanica fos menora $-\frac{\alpha^2}{4b}$,
 que es el minim d'U(x), com que:

 $E = \frac{1}{2}mv^2 + u(x)$

si U(x) > E => Ecinet <0 (Noté sentit)
Estudiarem els possibles movement, de
la partícula per digerents valors de l'energia
mecànica.

= $E = -\frac{a^2}{4b}$ Punt d'equilieri estable $a \times_1 = \sqrt{\frac{2b}{a}}$. La particula es troba ateirada en aquest punt $(v=0, F(x_1)=0)$ = $\frac{-a^2}{4b}$ \ E < 0 Oscillació al voltant del minim, entre dos punts de retorn x 2 i x 3

Quan la particula passa per X1, l'energia potencial és minima i l'Ecinet màxima. Les forces sobre la particula van dirigides Cap al minim i en el minim $F(X_1)=0$ Quan la particula avriba a un punt de retorn $I \times z \ o \times 3$), la seva velocitat es zero (E = U(x)), però la forca no es zero i la particula gira.

= E>0

La particula o s'en va directament cap a l'infinit o va cap a un punt de retorn, gira i ma cap a l'infinit.