Sorin Istrail

September 18, 2014

• Developed in 1990 by Andy Clark

- Developed in 1990 by Andy Clark
- The phasing problem now is related to PCR ambiguity in diploid individuals

- Developed in 1990 by Andy Clark
- The phasing problem now is related to PCR ambiguity in diploid individuals
- For example, suppose that the two chromosomes are:

$$----$$
 \*  $----$  \*  $----$  mother  $----$  \*  $----$  father  $A_0/A_1$   $B_0/B_1$ 

• How can we resolve this ambiguity?



• If there are k ambiguous sites, there are an exponential (in k) number of possible explanations of the ambiguity

- If there are k ambiguous sites, there are an exponential (in k) number of possible explanations of the ambiguity
- Assume that all sites have at most two alleles (the infinite sites model)

- If there are k ambiguous sites, there are an exponential (in k) number of possible explanations of the ambiguity
- Assume that all sites have at most two alleles (the infinite sites model)
- Denote the two alleles present by 0 and 1.

```
Haplotypes: 1) 001010 \longrightarrow \quad \textit{Genotype}: 0(\frac{0}{1})10(\frac{0}{1})0 2) 011000
```

- If there are k ambiguous sites, there are an exponential (in k) number of possible explanations of the ambiguity
- Assume that all sites have at most two alleles (the infinite sites model)
- Denote the two alleles present by 0 and 1.

Haplotypes: 1) 001010 
$$\longrightarrow \quad \textit{Genotype}: 0(\frac{0}{1})10(\frac{0}{1})0$$
 2) 011000

• If we were given just the genotype, then there are two possible explanations (k = 2)



• Notation: A genotype will be a sequence of 0, 1, and 2's [ex. 012120]

- Notation: A genotype will be a sequence of 0, 1, and 2's [ex. 012120]
- '2' denotes ambiguous site

- Notation: A genotype will be a sequence of 0, 1, and 2's [ex. 012120]
- '2' denotes ambiguous site
- haplotype will be a sequences of 0 and 1's [ex. 0101010]

- Notation: A genotype will be a sequence of 0, 1, and 2's [ex. 012120]
- '2' denotes ambiguous site
- haplotype will be a sequences of 0 and 1's [ex. 0101010]
- An explanation of a genotype will be a pair of haplotypes

- Two easy cases:
  - Homozygous: genotype with only 0's and 1's. The mother and the father chromosome have the same composition.
  - Single heterozygote: genotype with a single '2'. The explanation will still be unique.

- Two easy cases:
  - Homozygous: genotype with only 0's and 1's. The mother and the father chromosome have the same composition.
  - Single heterozygote: genotype with a single '2'. The explanation will still be unique.
- Multiple heterozygote case: More than single '2's in the genotype [ex. 01212]

- Two easy cases:
  - Homozygous: genotype with only 0's and 1's. The mother and the father chromosome have the same composition.
  - Single heterozygote: genotype with a single '2'. The explanation will still be unique.
- Multiple heterozygote case: More than single '2's in the genotype [ex. 01212]
- Number of explanations for a genotype with k ambiguous sites is  $2^{k-1}$  [in this case 01010, 01011, 011110, 01111]

• Suppose that we are given 5 sites on 5 individuals

- Suppose that we are given 5 sites on 5 individuals
- Start with the easy cases, the homozygotes and single heterosygotes

- Suppose that we are given 5 sites on 5 individuals
- Start with the easy cases, the homozygotes and single heterosygotes

**Example.** Individuals: 01202, 20000, 12121, 00100, and 01000

- Suppose that we are given 5 sites on 5 individuals
- Start with the easy cases, the homozygotes and single heterosygotes

**Example.** Individuals: 01202, 20000, 12121, 00100, and 01000

 Starting with the 'easy' cases, we are able to resolve 3 of the 5 individuals:

- Suppose that we are given 5 sites on 5 individuals
- Start with the easy cases, the homozygotes and single heterosygotes

**Example.** Individuals: 01202, 20000, 12121, 00100, and 01000

 Starting with the 'easy' cases, we are able to resolve 3 of the 5 individuals:

> Individual Inferred Mate — Pair 20000 : 10000 — 00000 00100 : 00100 — 00100 01000 : 01000 — 01000

• For the unresolved chromosomes (01202, 12121), we have two possible explanations for each:

| Individual | Explanation 1 | Explanation 2 |
|------------|---------------|---------------|
| 01202 :    | 01101         | 01001         |
|            | 01000         | 01100         |
| 12121 :    | 10101         | 11101         |
|            | 11111         | 10111         |

Now, if we look at the possible explanations together, we see that there is overlap between the inferred mate-pairs from the simple cases and the possible explanations for the ambiguous cases.

| Individual | Inferred Mate – Pair |
|------------|----------------------|
| 20000:     | 10000 - 00000        |
| 00100:     | 00100 - 00100        |
| 01000 :    | 01000 - 01000        |
|            |                      |

| Individual | Explanation 1 | Explanation 2 |
|------------|---------------|---------------|
| 01202 :    | 01101         | 01001         |
|            | 01000         | 01100         |
| 12121 :    | 10101         | 11101         |
|            | 11111         | 10111         |

- Notation:  $G = H \oplus H'$  denotes that haplotype pair (H,H') is an explanation for G
- Notation: 'H  $\longrightarrow$   $^C$  G' denotes G can be resolved using  $H \in C$ , i.e., there exists H' s.t.  $G = H \oplus H'$ , and we call H' the *inferred haplotype*
- Example: For G=02112:

 $G: \begin{array}{c} \textit{Possible Mate} - \textit{Pairs} \\ 00110 \oplus 01111 \\ 01110 \oplus 00111 \end{array}$ 

#### Clark Algorithm

- Find all homozygotes and single heterozygotes and make a list of all of the haplotypes involved in the unique explanations.
- While there are remaining genotypes that are unresolved, attempt to find a haplotype from the list that helps resolve some unresolved genotype. If such a haplotype exists, add the corresponding mate-pair to the list of haplotypes and label the genotype as resolved.

#### Clark Algorithm

- Find all homozygotes and single heterozygotes and make a list of all of the haplotypes involved in the unique explanations.
- While there are remaining genotypes that are unresolved, attempt to find a haplotype from the list that helps resolve some unresolved genotype. If such a haplotype exists, add the corresponding mate-pair to the list of haplotypes and label the genotype as resolved.

Example: If the genotype is 12121, then 10101 is the *mate-pair* of 11111 in the explanation of genotype 12121

• If we are able to find a haplotype in the list and thus explain the ambiguous haplotype, we have inferred a uniquely inferred additional haplotype, that of the mate-pair.

• Drawbacks to the Clark Methods:

- Drawbacks to the Clark Methods:
  - Possible that a genotype can be resolved in multiple ways from the list, thus yielding multiple explanations. Which one do you choose? (Associated problem: anomalous genotypes i.e., explanations that are not correct)

- Drawbacks to the Clark Methods:
  - Possible that a genotype can be resolved in multiple ways from the list, thus yielding multiple explanations. Which one do you choose? (Associated problem: anomalous genotypes i.e., explanations that are not correct)
  - Possible that unresolved genotypes are all incompatible with haplotypes in list. Then the algorithm will stop and leave behind "orphan", or unresolved genotypes

- Drawbacks to the Clark Methods:
  - Possible that a genotype can be resolved in multiple ways from the list, thus yielding multiple explanations. Which one do you choose? (Associated problem: anomalous genotypes i.e., explanations that are not correct)
  - Possible that unresolved genotypes are all incompatible with haplotypes in list. Then the algorithm will stop and leave behind "orphan", or unresolved genotypes
  - If there are no homozygotes or single heterozygotes, then the algorithm cannot start.

- Drawbacks to the Clark Methods:
  - Possible that a genotype can be resolved in multiple ways from the list, thus yielding multiple explanations. Which one do you choose? (Associated problem: anomalous genotypes i.e., explanations that are not correct)
  - Possible that unresolved genotypes are all incompatible with haplotypes in list. Then the algorithm will stop and leave behind "orphan", or unresolved genotypes
  - If there are no homozygotes or single heterozygotes, then the algorithm cannot start.
  - The order in which you resolve the haplotypes matters. A different ordering may produce a different haplotype list.

- Drawbacks to the Clark Methods:
  - Possible that a genotype can be resolved in multiple ways from the list, thus yielding multiple explanations. Which one do you choose? (Associated problem: anomalous genotypes i.e., explanations that are not correct)
  - Possible that unresolved genotypes are all incompatible with haplotypes in list. Then the algorithm will stop and leave behind "orphan", or unresolved genotypes
  - If there are no homozygotes or single heterozygotes, then the algorithm cannot start.
  - The order in which you resolve the haplotypes matters. A different ordering may produce a different haplotype list.
- What is the probability of the algorithm stopping prematurely or not being able to start?



- How can we estimate the number of 2's?
- Population model: Infinite Sites Model (at most one mutation can happen at any site on the chromosome)

- How can we estimate the number of 2's?
- Population model: Infinite Sites Model (at most one mutation can happen at any site on the chromosome)
- Neutral Model of Evolution [

- How can we estimate the number of 2's?
- Population model: Infinite Sites Model (at most one mutation can happen at any site on the chromosome)
- Neutral Model of Evolution [
- expected number of mismatches of a DNA sequence:

$$\Theta = L\Theta_{nt}$$

#### where

- *L* = length of the sequence
- $\Theta_{nt} = 4N\mu$
- $\bullet$  N = the effective population size
- ullet  $\mu$  is the mutation rate per nucleotide per generation



• For example, in Drosophila,  $\Theta = .005L$ .

$$Pr(2 \text{ sequences have m mismatches}) = \frac{1}{\theta+1} \left(\frac{\theta}{\theta+1}\right)^m$$

In the infinite sites model,

$$Prob(2 \text{ genes identical}) = \frac{1}{1+\theta}(m=0)$$

Probability of two different genes is

$$1 - Prob(2 \text{ genes identical}) = \frac{\theta}{1 + \theta}$$



Now, if we have N diploid individuals,
 Pr(No homozygotes) [i.e., Pr(algorithm won't start)]
 is obtained using Ewing's Sampling Lemma

Now, if we have N diploid individuals,
 Pr(No homozygotes) [i.e., Pr(algorithm won't start)]
 is obtained using Ewing's Sampling Lemma

$$Pr(No\ Homozygotes) = \frac{\theta^3 + 4\theta^2 + 2\theta}{(1+\theta)(2+\theta)(3+\theta)}$$

Now, if we have N diploid individuals,

Pr(No homozygotes) [i.e., Pr(algorithm won't start)] is obtained using *Ewing's Sampling Lemma* 

$$Pr(No\ Homozygotes) = \frac{\theta^3 + 4\theta^2 + 2\theta}{(1+\theta)(2+\theta)(3+\theta)}$$

$$Pr(Single \ site \ Heterozygote) = \frac{\theta}{(1+\theta)^2}$$

Now, if we have N diploid individuals,

Pr(No homozygotes) [i.e., Pr(algorithm won't start)] is obtained using *Ewing's Sampling Lemma* 

$$Pr(No\ Homozygotes) = \frac{\theta^3 + 4\theta^2 + 2\theta}{(1+\theta)(2+\theta)(3+\theta)}$$

$$Pr(Single \ site \ Heterozygote) = \frac{\theta}{(1+\theta)^2}$$

$$Pr(Algorithm \ won't \ start) = \left[1 - rac{1}{1+ heta} - rac{ heta}{(1+ heta)^2}
ight]^N$$



Now, if we have N diploid individuals,

Pr(No homozygotes) [i.e., Pr(algorithm won't start)] is obtained using *Ewing's Sampling Lemma* 

$$Pr(No\ Homozygotes) = \frac{\theta^3 + 4\theta^2 + 2\theta}{(1+\theta)(2+\theta)(3+\theta)}$$

$$Pr(Single \ site \ Heterozygote) = \frac{\theta}{(1+\theta)^2}$$

$$Pr(Algorithm \ won't \ start) = \left[1 - rac{1}{1+ heta} - rac{ heta}{(1+ heta)^2}
ight]^N$$

Thus, if  $\Theta > 0.5$ , Clark's algorithm will work well.



- How can we deal with the 'orphan' genotypes? What is the probability of not finishing?
- The answer depends on the algorithm implementation and the order in which you resolve the haplotypes.

- How can we deal with the 'orphan' genotypes? What is the probability of not finishing?
- The answer depends on the algorithm implementation and the order in which you resolve the haplotypes.
- Maximum Resolution Problem:

**Input:** A set of vectors, ambiguous (0,1,2) and resolved (0,1) [genotypes]

**Output:** Maximum number of ambiguous vectors that can be resolved by successive applications of Clark's Rule.

Equivalent to minimize the number of orphan genotypes



#### Theorem

The Maximum Resolution Problem is NP-complete.

#### Theorem

The Maximum Resolution Problem is NP-complete.

The proof for this theorem is based on a reduction to the satisfiability problem (SAT).

#### Proof.

- Let  $X_1$ ,  $X_2$ ,  $X_3$ , and  $X_4$  be variables, and let  $(x_1, \bar{x_1}, x_2, \bar{x_2}, x_3, \bar{x_3}, x_4, \bar{x_4})$  be literals. The satisfiability problem is
  - Input: Boolean function F
  - Output: Is there a truth assignment that makes F true? If so, find such an assignment.

#### Proof.

- Let  $X_1$ ,  $X_2$ ,  $X_3$ , and  $X_4$  be variables, and let  $(x_1, \bar{x_1}, x_2, \bar{x_2}, x_3, \bar{x_3}, x_4, \bar{x_4})$  be literals. The satisfiability problem is
  - Input: Boolean function F
  - Output: Is there a truth assignment that makes F true? If so, find such an assignment.
- We are going to attempt to create a 1-1 correspondence between the boolean logic and haplotypes using the above function F.

• To the function F, we associate a set of genotypes (corresponding to columns in the matrix). The number of rows in the matrix will be # variables  $+2 \times \#$ variables +#clauses +1 = 3V + C + 1.

- To the function F, we associate a set of genotypes (corresponding to columns in the matrix). The number of rows in the matrix will be # variables  $+2 \times \#$  variables +# clauses +1 = 3V + C + 1.
- We fill in rows  $C_1$ ,  $C_2$ ,  $C_3$  in the following manner: if  $X_i$  is absent from a clause, put '1' in both  $T_i$  and  $F_i$ . If  $X_i$  is present in a clause, place '1' in  $T_i$  and '0' in  $F_i$ . If  $\overline{X_i}$  is present in a clause, then place a '0' in  $T_i$  and a '1' in  $F_i$ .

- To the function F, we associate a set of genotypes (corresponding to columns in the matrix). The number of rows in the matrix will be # variables  $+ 2 \times \#$  variables + # clauses +1 = 3V + C + 1.
- We fill in rows  $C_1$ ,  $C_2$ ,  $C_3$  in the following manner: if  $X_i$  is absent from a clause, put '1' in both  $T_i$  and  $F_i$ . If  $X_i$  is present in a clause, place '1' in  $T_i$  and '0' in  $F_i$ . If  $\overline{X_i}$  is present in a clause, then place a '0' in  $T_i$  and a '1' in  $F_i$ .
- Fill in columns  $S_1 \rightarrow S_4$  by:

$$\begin{cases} '0' & \text{if } 00 \\ '1' & \text{if } 11 \\ '2' & \text{if } 01 \text{ or } 10 \end{cases}$$



• To fill in the  $C_1 \rightarrow C_3$  columns, we look at our function F.

- To fill in the  $C_1 \rightarrow C_3$  columns, we look at our function F.
- We see that  $x_1$  appears in both clause 2 and clause 3. So we place a '2' in both  $C_2$  and  $C_3$ .

- To fill in the  $C_1 \rightarrow C_3$  columns, we look at our function F.
- We see that  $x_1$  appears in both clause 2 and clause 3. So we place a '2' in both  $C_2$  and  $C_3$ .
- For the rows containing the literals  $(x_1\bar{x_1}, \text{ etc.})$   $x_1$  appears in  $C_2$  but no other clause.

- To fill in the  $C_1 \rightarrow C_3$  columns, we look at our function F.
- We see that  $x_1$  appears in both clause 2 and clause 3. So we place a '2' in both  $C_2$  and  $C_3$ .
- For the rows containing the literals  $(x_1\bar{x_1}, \text{ etc.})$   $x_1$  appears in  $C_2$  but no other clause.
- Place a '2' in  $C_2$ .  $\bar{x_1}$  appears in  $C_3$ , but no other clause. Place a '2' in  $C_3$ . etc. (Note: the rows  $x_1$  and  $\bar{x_1}$  should sum to the  $X_1$  row in the C columns.)

How do we fill in the bottom right corner of the table?

- We have a clause set  $C_1$ ...  $C_c$ , one for each clause. All will be ambiguous vectors
- For each K=1,2,...c the first v positions of the vector C<sub>k</sub> are zero except for position i such that either x<sub>i</sub> or x̄<sub>i</sub> appears in C<sub>k</sub>. We are blind to the actual truth value
- For the next 2v positions [the literals], place a zero except for any position v+2i-1 where  $x_i$  appears in clause  $C_k$  or position v+2i where  $\bar{x_i}$  appears in clause  $C_k$ . These positions are set to 2
- For each r from 1 to c, position 3v+r of  $C_k=0$  if and only if r=k [the diagonal].
- For  $r \neq k$  position 3v+r=2 if and only if clause k and r contain a variable in common [not necessarily a literal in common].
- Otherwise, position 3v+r=1. [This assignment captures the ambiguity related to the literals that are contained in multiple clauses. You may have both  $x_i$  and  $\bar{x}_i$  present in F]

We reduce SAT to MR. Start with a generic boolean formula F with C clauses and V variables  $X_1$  ...  $X_v$ . F takes a set of vectors V(F) that are ambiguous and resolved as input to the MR problem [the columns of out table drawn above]. We want to show that F has a satisfying truth assignment *iff* V(F) has the maximum number of ambiguous vectors explained by a series of Clark Rules. Recall that  $F = (x_2 \lor x_3 \lor \bar{x_4}) \land (x_1 \lor \bar{x_2} \lor x_4) \land (\bar{x_1} \lor \bar{x_3})$ .

How can we interpret resolution by the Clark Method?

• Suppose that you pick colum  $T_1$  to resolve one of the other columns; this is interpreted as setting the literal  $X_1$  to true.

How can we interpret resolution by the Clark Method?

- Suppose that you pick colum  $T_1$  to resolve one of the other columns; this is interpreted as setting the literal  $X_1$  to true.
- Suppose that we try to resolve column [haplotype]  $S_1$ .  $S_1$  can be resolved by using either the  $T_1$  or  $F_1$  columns. By picking one of the columns, we are fixing  $X_1$  as true or false.
- Using the haplotypes obtained in the resolution of the S columns along with the T and F columns, can we resolve the columns  $C_1 \rightarrow C_3$ ? (NO)

|                       | $T_1$ | <i>F</i> <sub>1</sub> | T <sub>2</sub> | F <sub>2</sub> | <i>T</i> <sub>3</sub> | F <sub>3</sub> | T <sub>4</sub> | F <sub>4</sub> | S <sub>1</sub> | S <sub>2</sub> | <i>S</i> <sub>3</sub> | S <sub>4</sub> | <i>C</i> <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> |
|-----------------------|-------|-----------------------|----------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|-----------------------|----------------|----------------|
| $X_1$                 | 1     | 1                     | 0              | 0              | 0                     | 0              | 0              | 0              | 1              | 0              | 0                     | 0              | 0                     | 2              | 2              |
| $X_2$                 | 0     | 0                     | 1              | 1              | 0                     | 0              | 0              | 0              | 0              | 1              | 0                     | 0              | 2                     | 2              | 0              |
| X <sub>3</sub>        | 0     | 0                     | 0              | 0              | 1                     | 1              | 0              | 0              | 0              | 0              | 1                     | 0              | 2                     | 0              | 2              |
| $X_4$                 | 0     | 0                     | 0              | 0              | 0                     | 0              | 1              | 1              | 0              | 0              | 0                     | 1              | 2                     | 2              | 0              |
| <i>x</i> <sub>1</sub> | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 0                     | 2              | 0              |
| $\bar{x_1}$           | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 0                     | 0              | 2              |
| x <sub>2</sub>        | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 2                     | 0              | 0              |
| $\bar{x_2}$           | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 0                     | 2              | 0              |
| x3                    | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 2                     | 0              | 0              |
| $\bar{x_3}$           | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 0                     | 0              | 2              |
| X4                    | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 0                     | 2              | 0              |
| $\bar{x_4}$           | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 2                     | 0              | 0              |
| $C_1$                 | 1     | 1                     | 1              | 0              | 1                     | 0              | 0              | 1              | 1              | 2              | 2                     | 2              | 0                     | 2              | 2              |
| $C_2$                 | 1     | 0                     | 0              | 1              | 1                     | 1              | 1              | 0              | 2              | 2              | 1                     | 2              | 2                     | 0              | 2              |
| C <sub>3</sub>        | 0     | 1                     | 1              | 1              | 0                     | 1              | 1              | 1              | 2              | 1              | 2                     | 1              | 2                     | 2              | 0              |
| $C_B$                 | 0     | 0                     | 0              | 0              | 0                     | 0              | 0              | 0              | 2              | 2              | 2                     | 2              | 1                     | 1              | 1              |

**Input:** A set of unresolved genotypes

Output: Maximum number of ambiguous vectors that can be

resolved by successive applications of Clark's Rule.

**Input:** A set of unresolved genotypes

**Output:** Maximum number of ambiguous vectors that can be resolved by successive applications of Clark's Rule.

• Recall the notation  $R \to^{\mathcal{C}} A$  where R = resolved haplotype and A = ambiguous haplotype.

**Input:** A set of unresolved genotypes

**Output:** Maximum number of ambiguous vectors that can be resolved by successive applications of Clark's Rule.

- Recall the notation  $R \to^{\mathcal{C}} A$  where R = resolved haplotype and A = ambiguous haplotype.
- If we call A[i] the i-th site of A and R[j] the j-th site in R then the notation means that if A[i] = 0 or 1 then R[i] = 0 or 1 and R[i] = A[i].

Further explanation of the NP-completeness proof: For a more full presentation, see Dan Gusfield's paper

Inference of Haplotypes from Samples of Diploid Populations: Complexity and Algorithms, J. Computational Biology August 2001.

#### Remarks (Table Setup)

- For every variable, there are two columns T and F
- A column of selectors exists for each random variable
- A column exists for each clause
- The first V rows are associated with the random variables
- The next set of rows are associated with the literals
- The final set of rows corresponds to clauses, including the mysterious (for a little while longer anyways)  $C_b$
- $T_1, F_1, ..., T_4, F_4$  are all *resolved* columns while the rest are *unresolved*

#### Remarks (General Properties)

- $T_i \rightarrow^C S_i$  or  $F_i \rightarrow^C S_i$  but  $T_i \not\rightarrow^C S_j$  and  $F_i \not\rightarrow^C S_j$ . i.e. Column  $T_i$  can be applied by Clark Rule to column  $S_i$  but to no other selector column.
- At most one T or F can be applied to any S. i.e. set  $X_1$  to either T or F, but not both!
- We interpret as follows: if  $T_i o^C S_i$  as ' $X_i = \text{true}$ '; if  $F_i o^C S_i$  as ' $X_i = \text{false}$ '. Suppose  $T_1 o^C S_1$   $F_2 o^C S_2$   $F_3 o^C S_3$   $T_4 o^C S_4$ , so the *inferred* vectors are  $R_1 = S_1 \ominus T_1$ ,  $R_2 = S_2 \ominus F_2$ ,  $R_3 = S_3 \ominus F_3$ ,  $R_4 = S_4 \ominus T_4$
- $R_1, R_2, R_3, R_4$  can be applied only to  $C_1, C_2$  and  $C_3$ . [Consider the Blocking Clause  $C_b$ ] The last entry of  $R_1$  to  $R_4$  will be a 1
- No T or F can be applied to the C vectors [Because of the Blocking Clause,  $C_b$ ]
- $T_i \to^C S_i$ , then  $R_k \to^C C_k$  iff the literal  $x_i$  appears in  $C_k$ . Similarly,  $F_i \to^C S_i$  then  $R_k \to^C C_k$  iff the literal  $\bar{x}_i$  appears in  $C_k$ .