

Welcome!

CSSE2010 / CSSE7201 Learning Lab 2

Logic Gates

http://responsewaresg.net

Session ID: CSSE2010EXT

School of Information Technology and Electrical Engineering
The University of Queensland

Today

Logic Gates

- Lecture revision√
- Introduction to Hardware/Simulation
- Circuit Schematics
- Circuit Building → Logisim

Logisim

What's the truth table for a 2 input XOR gate

Which of the following circuits is equivalent to ...

(A+B)(A+C) = A·A + A·C + B·A + B·C = A + A·B + A·C + B·C = A(1 + B+C) + B·C = Boolean Identities = A(1) + B·C = A+B·C (Reminder from lecture) (Reminder from lecture) (Reminder from lecture) AS - Ā+Ē

	Name	AND form	OR form
	Identity law V	$1A = A$ $1 \times S = S$	$0 + A = A \checkmark 0 + S = S$
	Null law 🗸	0A = 0 √	1 + A = 1
	Idempotent law	$AA = A\checkmark$	$A + A = A \checkmark$
	Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1\sqrt{}$
	Commutative law	AB = BA	A + B = B + A
	Associative law	$(AB)C = A(BC) \checkmark$	$(A + B) + C = A + (B + C)^{V}$
K	Distributative law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
	Absorption law	A(A + B) = A	$A + \underline{AB} = A \wedge \underline{ACI+B} = A$
	De Morgan's law	AB = A + B AS -> A+B	$\overline{A + B} = \overline{A}\overline{B} > \overline{A}_1\overline{B}$

Invert input), invert outputs, flip operation

Objective

Main objective today:

Verify the functionality of a simple logic circuit either using a hardware circuit constructed with logic ICs or using simulations in Logisim software

IN students: Use logic chips on your kit or use Logisim if you haven't got your kit yet

EX students: Use Logisim software (it is free)

Hardware Overview

- Breadboard with IO board
 - Be very careful with the USB connector ×
- USB cable
- Hookup wire
- Logic chip kit
- IC Extractor

Breadboard

Breadboard with IO board

Wire neatly!

Like this:

Not this: ×

Device Information

- See course Blackboard site for
 - Guide to circuit schematics
 - Examples coming up
 - Device pinouts

Circuit Schematic Diagram

- More than a logic diagram, a circuit schematic tells you how to **build** the circuit **//**
- You'll need to draw these for pracs and exams
- Schematics include
 - Labelled inputs ✓
 - Labelled outputs ✓
 - Labelled devices (logic chips & IO Board)

 - Logic chips: U1, U2 U3, ...
 Label gates within a chip (:A, :B, :C)
 IOBoard: IO1
 - Power supply connections for logic chips
 - Pin numbers ✓

CSSE2010

Circuit Schematic Example

Circuit Schematic Example

- Now wire this up or simulate in Logisim software & systematically determine truth table
- If you are testing on hardware, double check your circuit (especially power and ground) before you power it on

SSE2010

group terms and apply distribute

2 = (A+A) BC + (8+B) AC +

- True if at least two of the inputs (A,B,C) are true
 - Z=A.B+A.C+B.C
- Truth Table:

- Convert to NAND only circuit using Boolean algebra
- Draw circuit schematic inputs are <u>switches</u>, output is <u>LED</u>
- Wire up circuit/simulate in Logisim and determine truth table
- Repeat using AND and OR gates