Dynamic Programming

Hengfeng Wei

hfwei@nju.edu.cn

June 11 - June 19, 2017

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- 6 The Knapsack Problem
- Summary

What is DP?

 $\label{eq:DP} DP \approx \text{``brute force''} \\ DP \approx \text{``smart scheduling of subproblems''} \\ DP \approx \text{``shortest/longest paths in some DAG''}$

What is DP?

$$\label{eq:defDP} \begin{split} \mathsf{DP} \approx \text{``smarter brute force''} \\ \mathsf{DP} \approx \text{``smart scheduling of subproblems''} \\ \mathsf{DP} \approx \text{``shortest/longest paths in some DAG''} \end{split}$$

What is not DP?

 ${\sf Programming} = {\sf Planning}$

What is not DP?

 ${\sf Programming} = {\sf Planning}$

Programming \neq Coding (Richard Bellman, 1940s)

Steps for applying DP

- 1. Define subproblems
 - # of subproblems
- 2. Set the goal
- 3. Define the recurrence
 - ▶ larger subproblem ← # smaller subproblems
 - init. conditions
- 4. Write pseudo-code: fill "table" in topo. order
- 5. Analyze Time/Space complexity
- 6. Extract the optimal sulution

1D subproblems:

```
Input: x_1, x_2, \ldots, x_n (array, sequence, string) Subproblems: x_1, x_2, \ldots, x_i (prefix/suffix) #: \Theta(n)
```

1D subproblems:

```
Input: x_1, x_2, \ldots, x_n (array, sequence, string)
```

Subproblems: x_1, x_2, \ldots, x_i (prefix/suffix)

 $\#: \Theta(n)$

Examples: Fib, Maximum-sum subarray, Longest increasing subsequence, Highway restaurants, Text justification

2D subproblems:

```
1. Input: x_1, x_2, ..., x_m; y_1, y_2, ..., y_n
Subproblems: x_1, x_2, ..., x_i; y_1, y_2, ..., y_j
#: \Theta(mn)
```

2D subproblems:

```
1. Input: x_1, x_2, ..., x_m; y_1, y_2, ..., y_n
Subproblems: x_1, x_2, ..., x_i; y_1, y_2, ..., y_j
#: \Theta(mn)
```

Examples: Edit distance, Longest common subsequence

2D subproblems:

```
1. Input: x_1, x_2, \ldots, x_m; y_1, y_2, \ldots, y_n
Subproblems: x_1, x_2, \ldots, x_i; y_1, y_2, \ldots, y_j
#: \Theta(mn)
```

Examples: Edit distance, Longest common subsequence

```
2. Input: x_1, x_2, \dots, x_n
Subproblems: x_i, \dots, x_j
\#: \Theta(n^2)
```

2D subproblems:

```
1. Input: x_1, x_2, \ldots, x_m; y_1, y_2, \ldots, y_n
Subproblems: x_1, x_2, \ldots, x_i; y_1, y_2, \ldots, y_j
#: \Theta(mn)
```

Examples: Edit distance, Longest common subsequence

```
2. Input: x_1, x_2, \dots, x_n
Subproblems: x_i, \dots, x_j
\#: \Theta(n^2)
```

Examples: Matrix chain multiplication, Optimal BST

3D subproblems:

► Floyd-Warshall algorithm

$$\mathsf{d}(i,j,k) = \min \{ \mathsf{d}(i,j,k-1), \mathsf{d}(i,k,k-1) + \mathsf{d}(k,j,k-1) \}$$

3D subproblems:

► Floyd-Warshall algorithm

$$\mathsf{d}(i,j,k) = \min\{\mathsf{d}(i,j,k-1),\mathsf{d}(i,k,k-1) + \mathsf{d}(k,j,k-1)\}$$

DP on graphs:

1. On rooted tree

Subproblems: rooted subtrees

2. On DAG

Subproblems: nodes after/before in the topo. order

3D subproblems:

► Floyd-Warshall algorithm

$$\mathsf{d}(i,j,k) = \min\{\mathsf{d}(i,j,k-1),\mathsf{d}(i,k,k-1) + \mathsf{d}(k,j,k-1)\}$$

DP on graphs:

1. On rooted tree

Subproblems: rooted subtrees

2. On DAG

Subproblems: nodes after/before in the topo. order

Knapsack problem:

▶ Subset sum problem, change-making problem

And Others . . .

Recurrences in DP

Make choices by asking yourself the right question:

- 1. Binary choice
 - whether . . .
- 2. Multi-way choices
 - ▶ where to ...
 - which one . . .

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- 5 DP on Graphs
- 6 The Knapsack Problem
- Summary

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1 \text{ (Problem 7.2)}$$

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1$$
 (Problem 7.2)

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

S(i): minimum number of steps taking i to 1

$$f^{(S(n))} = 1$$

$$f^{(S(n))} = 1$$
 (Problem 7.2)

$$f(n) = \begin{cases} n-1 & \text{if } n \in \mathbb{Z}^+ \\ n/2 & \text{if } n\%2 = 0 \\ n/3 & \text{if } n\%3 = 0 \end{cases}$$

S(n): minimum number of steps taking n to 1.

S(i): minimum number of steps taking i to 1

$$S(i) = 1 + \min\{S(i-1), S(i/2) (\text{if } n\%2 = 0), S(i/3) (\text{if } n\%3 = 0)\}$$

$$S(1) = 0$$

$$f^{(S(n))} = 1$$

Collatz (3n+1) conjecture:

$$f(n) = \begin{cases} n/2 & \text{if } n\%2 = 0\\ 3n+1 & \text{if } n\%2 = 1 \end{cases}$$
$$f^*(n) = 1?$$

$$f^{(S(n))} = 1$$

Collatz (3n+1) conjecture:

$$f(n) = \begin{cases} n/2 & \text{if } n\%2 = 0\\ 3n+1 & \text{if } n\%2 = 1 \end{cases}$$
$$f^*(n) = 1?$$

"Mathematics may not be ready for such problems."

— Paul Erdős

Longest increasing subsequence (Problem 7.3)

- Given an integer array $A[1 \dots n]$
- ► To find (the length of) a longest increasing subsequence.

$$5, 2, 8, 6, 3, 6, 9, 7 \implies 2, 3, 6, 9$$

Subproblem: L(i) : the length of the LIS of $A[1 \dots i]$ Goal: L(n)

Subproblem: L(i): the length of the LIS of $A[1 \dots i]$

Goal: L(n)

Make choice: whether $A[i] \in LIS[1 \dots i]$?

Recurrence:

$$L(i) = \max\{L(i-1), 1 + \max_{j < i \land A[j] \le A[i]} L(j)\}$$

Subproblem: L(i): the length of the LIS of A[1...i]

Goal: L(n)

Make choice: whether $A[i] \in LIS[1 \dots i]$?

Recurrence:

$$L(i) = \max\{L(i-1), 1 + \max_{j < i \land A[j] \le A[i]} L(j)\}$$

Init:

$$L(0) = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Longest path distance in the DAG!

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- ightharpoonup To find (the sum of) a maximum-sum subarray of A

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- lacktriangle To find (the sum of) a maximum-sum subarray of A

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Subproblem: MSS[i]: sum of an MS[i] of $A[1 \cdots i]$

Goal: mss = MSS[n]

Maximum-sum subarray (Google Interview)

- ightharpoonup Array $A[1\cdots n], a_i>=<0$
- lacktriangle To find (the sum of) a maximum-sum subarray of A

$$A[-2, 1, -3, 4, -1, 2, 1, -5, 4] \implies [4, -1, 2, 1]$$

Subproblem: MSS[i]: sum of an MS[i] of $A[1 \cdots i]$

Goal: mss = MSS[n]

Make choice: Is $a_i \in MS[i]$?

Recurrence:

$$\mathsf{MSS}[i] = \max\{\mathsf{MSS}[i-1], ???\}$$

Subproblem: MSS[i]: sum of an MS[i] ending with a_i

 $\mathsf{Goal} \colon \mathsf{mss} = \max_{1 \leq i \leq n} \mathsf{MSS}[i]$

Subproblem: MSS[i]: sum of an MS[i] ending with a_i

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: Where does the MS[i] start?

Recurrence:

 $MSS[i] = \max\{MSS[i-1] + a_i, a_i\}$ (Proof!)

Subproblem: MSS[i]: sum of an MS[i] ending with a_i

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: Where does the MS[i] start?

Recurrence:

$$MSS[i] = \max\{MSS[i-1] + a_i, a_i\}$$
 (Proof!)

Init:

$$\mathsf{MSS}[0] = 0$$

Subproblem: MSS[i]: sum of an MS[i] ending with a_i

Goal: $mss = \max_{1 \le i \le n} MSS[i]$

Make choice: Where does the MS[i] start?

Recurrence:

$$MSS[i] = \max\{MSS[i-1] + a_i, a_i\}$$
 (Proof!)

Init:

$$\mathsf{MSS}[0] = 0$$

Time: $\Theta(n)$

Ulf Grenander $O(n^3) \implies O(n^2)$

Ulf Grenander $O(n^3) \implies O(n^2)$ Michael Shamos $O(n \log n)$, onenight

Ulf Grenander $O(n^3) \Longrightarrow O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$

Ulf Grenander $O(n^3) \Longrightarrow O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$ Michael Shamos Carnegie Mellon seminar

Ulf Grenander $O(n^3) \Longrightarrow O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$ Michael Shamos Carnegie Mellon seminar Jay Kadane O(n),

Ulf Grenander $O(n^3) \Longrightarrow O(n^2)$ Michael Shamos $O(n\log n)$, onenight Jon Bentley Conjecture: $\Omega(n\log n)$ Michael Shamos Carnegie Mellon seminar Jay Kadane O(n), ≤ 1 minute

Maximum-product subarray

Maximum-product subarray (Problem 7.4)

- ▶ Array $A[1 \dots n]$
- lacktriangle Find maximum-product subarray of A
- (1) $a_i \in \mathbb{N}$
- (2) $a_i \in \mathbb{Z}$
- (3) $a_i \in \mathbb{R}$

Maximum-product subarray

Maximum-product subarray (Problem 7.4)

- ▶ Array $A[1 \dots n]$
- ightharpoonup Find maximum-product subarray of A
- (1) $a_i \in \mathbb{N}$
- (2) $a_i \in \mathbb{Z}$
- (3) $a_i \in \mathbb{R}$

sum vs. product

Maximum-product subarray

Subproblem: MaxP[i], MinP[i]

		$\frac{1}{2}$	4	-2	5	$-\frac{1}{5}$	8
MaxP[i]	1	$\frac{1}{2}$	4	-2	5	8	64
MinP[i]	1	$\frac{1}{2}$	2	-8	-40	-1	-8

$$\begin{aligned} \mathsf{MaxP}[i] &= \max\{\mathsf{MaxP}[i-1] \cdot a_i, \mathsf{MinP}[i-1] \cdot a_i, a_i\} \\ \mathsf{MinP}[i] &= \min\{\mathsf{MaxP}[i-1] \cdot a_i, \mathsf{MinP}[i-1] \cdot a_i, a_i\} \end{aligned}$$

Reconstructing string (Problem 7.9)

- ▶ String $S[1 \cdots n]$
- ▶ Dict for *lookup*:

$$dict(w) = \begin{cases} \text{ true } & \text{if } w \text{ is a valid word} \\ \text{false } & \text{o.w.} \end{cases}$$

▶ Is $S[1 \cdots n]$ valid (reconstructed as a sequence of valid words)?

Subproblem: V[i]: Is $S[1 \cdots i]$ valid?

Goal: V[n]

Subproblem: V[i]: Is $S[1 \cdots i]$ valid?

Goal: V[n]

Make choice: Where does the last word start?

Recurrence:

$$V[i] = \bigvee_{j=1...i} (V[j-1] \wedge \operatorname{dict}(S[j\cdots i]))$$

Subproblem: V[i]: Is $S[1 \cdots i]$ valid?

Goal: V[n]

Make choice: Where does the last word start?

Recurrence:

$$V[i] = \bigvee_{j=1...i} (V[j-1] \wedge \operatorname{dict}(S[j\cdots i]))$$

Init:

$$V[0] = \mathsf{true}$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Hotel along a trip (Problem 7.15)

- ▶ Hotel sequence (distance): $a_0 = 0, a_1, \dots, a_n$
- $ightharpoonup a_0 \leadsto a_n$
- Stop at only hotels
- ► Cost: $(200 x)^2$
- ► To minimize overall cost

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Make choice: What is the last but one hotel a_j to stop?

Recurrence:

$$C[i] = \min_{0 \le j < i} \{ C[j] + (200 - (a_i - a_j))^2 \}$$

Subproblem: C[i]: minimum cost when the destination is a_i

Goal: C[n]

Make choice: What is the last but one hotel a_j to stop?

Recurrence:

$$C[i] = \min_{0 \le j < i} \{ C[j] + (200 - (a_i - a_j))^2 \}$$

Init:

$$C[0] = 0$$

Time:

$$O(n^2) = \Theta(n) \cdot O(n)$$

Highway restaurants

Highway restaurants (Problem 7.16)

- ▶ Locations: $L[1 \dots n]$
- ▶ Profits: $P[1 \dots n]$
- ▶ Any two hotels should be $\geq k$ miles apart
- To maximize the total profit

```
Subproblem: T[i]: max profit achievable using only L[1 \dots i] Goal: T[n]
```

Highway restaurants

Highway restaurants (Problem 7.16)

- ▶ Locations: $L[1 \dots n]$
- ▶ Profits: $P[1 \dots n]$
- ▶ Any two hotels should be $\geq k$ miles apart
- ► To maximize the total profit

Subproblem: T[i]: max profit achievable using only $L[1 \dots i]$

Goal: T[n]

Make choice: Whether to open a restaurant at L_i ?

Recurrence:

$$T[i] = \max\{T[i-1], P_i + T[\mathsf{prev}(i)]\}$$

$$\mathsf{prev}(i) = \max\{j \mid j < i \land L_i - L_j \ge k\}$$

Highway restaurants

Highway restaurants (Problem 7.16)

- ▶ Locations: $L[1 \dots n]$
- ▶ Profits: $P[1 \dots n]$
- ▶ Any two hotels should be $\geq k$ miles apart
- ► To maximize the total profit

```
Subproblem: T[i]: max profit achievable using only L[1 \dots i]
```

Goal: T[n]

Make choice: Whether to open a restaurant at L_i ?

Recurrence:

$$T[i] = \max\{T[i-1], P_i + T[\mathsf{prev}(i)]\}$$

$$\mathsf{prev}(i) = \max\{j \mid j < i \land L_i - L_j \ge k\}$$

Weighted interval/class scheduling (Problem 7.14)

- ► Classes: $C = \{c_1, c_2, \cdots, c_n\}$ $c_i \triangleq \langle g_i, s_i, f_i \rangle$
- ► Choosing non-conflicting classes to maximize your grades

sort C by finishing time.

Greedy algorithms fail:

2

1

By finishing time.

Greedy algorithms fail:

2

1

By finishing time.

1

1

1

By weights.

Subproblem: G[i]: the maximal grades obtained from $\{c_1,c_2,\cdots,c_i\}$ Goal: G[n]

Subproblem: G[i]: the maximal grades obtained from $\{c_1,c_2,\cdots,c_i\}$ Goal: G[n]

Make choice: Choose c_i or not?

Recurrence:

$$G[i] = \max\{G[i-1], G[\mathsf{prev}(i)] + g_i\}$$
$$\mathsf{prev}(i) = \max\{j \mid j < i \land c_i \cap c_j = \emptyset\}$$

Subproblem: G[i]: the maximal grades obtained from $\{c_1, c_2, \cdots, c_i\}$

Goal: G[n]

Make choice: Choose c_i or not?

Recurrence:

$$G[i] = \max\{G[i-1], G[\mathsf{prev}(i)] + g_i\}$$

$$\mathsf{prev}(i) = \max\{j \mid j < i \land c_i \cap c_j = \emptyset\}$$

Init: G[0] = 0

Time: $O(n \log n) + T(p(i)) + O(n) \cdot O(1)$

Why is ordering necessary?

$$G[7] = \max\{G[6], G[\{1, 3, 5\}] + g_7\}$$

subproblems changed: all $O(2^n)$ subsets

What about sorting by starting time?

$$G[6] = \max\{G[5], G[\{2,3\}] + g_6\}$$

subproblems changed: all $O(2^n)$ subsets

Dynamic Programming

- Overview
- (2) 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- 6 The Knapsack Problem
- Summary

LCS: longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

(1) Find (the length of) an LCS of X and Y

$$X = \langle A, B, C, B, D, A, B \rangle$$
$$Y = \langle B, D, C, A, B, A \rangle$$
$$Z = \langle B, C, B, A \rangle$$

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_j$?

Recurrence: (Proof!)

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Subproblem: L[i,j]: the length of an LCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Make choice: Is $X_i = Y_i$?

Recurrence: (Proof!)

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$

Init:

$$L[0,j] = 0, \ 0 \le j \le n$$

$$L[i,0] = 0, \ 0 \le i \le m$$

Time: $\Theta(mn)$

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

$$L[i,j] = \left\{ \begin{array}{ll} L[i,j-1]+1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{array} \right.$$

Longest common subsequence (Problem 7.5)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

- (2) Allowing repetition of X
- (3) Allowing repetition $\leq k$ of X

$$L[i,j] = \begin{cases} L[i,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j], L[i,j-1]\} & \text{if } X_i \neq Y_j \end{cases}$$
$$X \implies X^{(k)} \triangleq X_1^{(k)} \cdots X_m^{(k)}$$

Longest common substring

What about longest common substring?

Shortest common supersequence (Problem 7.6)

$$X = X_1 \cdots X_m \quad Y = Y_1 \cdots Y_n$$

lacktriangle Find (the length of) a shortest common subsequence of X and Y

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \begin{cases} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{cases}$$

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m,n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \left\{ \begin{array}{ll} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{array} \right.$$

Init:

$$L[0, j] = j, \ 0 \le j \le n$$

 $L[i, 0] = i, \ 0 \le i \le m$

Subproblem: L[i,j]: the length of an SCS of $X[1\cdots i]$ and $Y[1\cdots j]$

Goal: L[m, n]

Make choice: Is $X_i = Y_i$?

Recurrence:

$$L[i,j] = \left\{ \begin{array}{ll} L[i-1,j-1] + 1 & \text{if } X_i = Y_j \\ \max\{L[i-1,j] + 1, L[i,j-1] + 1\} & \text{if } X_i \neq Y_j \end{array} \right.$$

Init:

$$L[0, j] = j, \ 0 \le j \le n$$

 $L[i, 0] = i, \ 0 \le i \le m$

Remark

$$\max(m, n) < L(m, n) < m + n$$

Variants of LCS

Variants of LCS (Problem 7.7)

Longest contiguous substring both forward and backward (Problem 7.8)

- ▶ String $T[1 \cdots n]$
- ► Find a longest contiguous substring (LCS) both forward and backward

dynamicprogrammingmanytimes

- lacktriangledown try subproblem L[i]: the length of an LCS in $T[1\cdots i]$
- lacktriangledown try subproblem L[i,j]: the length of an LCS in $T[i\cdots j]$

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_j

Goal: $\max_{1 \leq i \leq j \leq n} L[i, j]$

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_i

Goal: $\max_{1 \le i \le j \le n} L[i, j]$

Make choice: Is $T_i = T_j$?

Recurrence:

$$L[i,j] = \begin{cases} 0 & \text{if } T_i \neq T_j \\ L[i+1,j-1] + 1 & \text{if } T_i = T_j \end{cases}$$

Subproblem: L[i,j]: the length of an LCS starting with T_i and ending

with T_j

Goal: $\max_{1 \leq i \leq j \leq n} L[i, j]$

Make choice: Is $T_i = T_j$?

Recurrence:

$$L[i,j] = \begin{cases} 0 & \text{if } T_i \neq T_j \\ L[i+1,j-1] + 1 & \text{if } T_i = T_j \end{cases}$$

Init:

$$\begin{split} L[i,i] &= 0, \ 0 \leq i \leq n \\ L[i,i+1] &= \left\{ \begin{array}{ll} 1 & \text{if } T_i = T_{i+1} \\ 0 & \text{if } T_i \neq T_{i+1} \end{array} \right. \end{split}$$

Code: three ways of filling the table


```
for d = 2 to n-1
  for i = 1 to n-d
    j = i + d
    ...
return max {1 <= i <= j <= n} L[i,j]</pre>
```

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$ Goal: L[1,n]

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$

Goal: L[1, n]

Make choice: Is S[i] = S[j]?

Recurrence:

$$L[i,j] = \begin{cases} L[i+1,j-1] + 2 & \text{if } S[i] = S[j] \\ \max L[i+1,j], L[i,j-1] & \text{if } S[i] \neq S[j] \end{cases}$$

Longest palindrome subsequence

Longest palindrome subsequence (Problem 7.10)

(1) Find (the length of) a longest palindrome subsequence of $S[1\cdots n]$

Subproblem: L[i,j]: the length of an LSP of $S[i\cdots j]$

Goal: L[1, n]

Make choice: Is S[i] = S[j]?

Recurrence:

$$L[i,j] = \begin{cases} L[i+1,j-1] + 2 & \text{if } S[i] = S[j] \\ \max L[i+1,j], L[i,j-1] & \text{if } S[i] \neq S[j] \end{cases}$$

Init:

$$L[i, i] = 1, \ \forall 1 \le i \le n$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i\dots j]$ Goal: C[1,n]+1

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i \dots j]$

Goal: C[1, n] + 1

Make choice: Where is the first cut?

Recurrence:

$$C[i,j] = \left\{ \begin{array}{l} 0 \ \ \text{if} \ S[i \dots j] \ \ \text{is a palindrome} \\ \min_{i+1 \leq k \leq j-1} C[i,k] + 1 + C[k+1,j] \quad \ \text{o.w.} \end{array} \right.$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1\dots n]$ into minimum number of palindromes (# cuts)

Subproblem: C[i,j]: minimum number of cuts for string $S[i \dots j]$

Goal: C[1, n] + 1

Make choice: Where is the first cut?

Recurrence:

$$C[i,j] = \left\{ \begin{array}{l} 0 \ \ \text{if} \ S[i \dots j] \ \ \text{is a palindrome} \\ \displaystyle \min_{i+1 \leq k \leq j-1} C[i,k] + 1 + C[k+1,j] \quad \ \text{o.w.} \end{array} \right.$$

Init: C[i, i] = 0

Time: $O(n^3)$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1\cdots i]$

Goal: P[n]

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1\cdots i]$

Goal: P[n]

Make choice: Where does the last palindrome start from?

Recurrence:

$$P[i] = \min_{\substack{1 \leq k \leq i \\ S[k \dots i] \text{ is a palindrome}}} P[k-1] + 1$$

Palindrome splitting (Problem 7.10)

(2) Split a string $S[1 \dots n]$ into minimum number of palindromes

Subproblem: P[i]: minimum number of palindromes for $S[1\cdots i]$

Goal: P[n]

Make choice: Where does the last palindrome start from?

Recurrence:

$$P[i] = \min_{\substack{1 \leq k \leq i \\ S[k...i] \text{ is a palindrome}}} P[k-1] + 1$$

Init: P[0] = 1Time: $O(n^2)$

String splitting (Problem 7.11)

- ightharpoonup Split a string S into many pieces
- $ightharpoonup Cost |S| = n \implies n$
- ▶ Given locations of m cuts: $C_0, C_1, \cdots, C_m, C_{m+1}$
- lacktriangle Find the minimum cost of splitting S into m+1 pieces $S_0\cdots S_m$

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$

using cuts $C_{i+1} \cdots C_{j-1}$

Goal: C[0, m+1]

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$

using cuts $C_{i+1} \cdots C_{j-1}$

Goal: C[0, m+1]

Make choice: What is the first cut in $C_{i+1} \cdots C_{j-1}$?

Recurrence:

$$C[i,j] = \min_{i < k < j} (C[i,k] + C[k,j] + l(S_i \cdots S_{j-1}))$$

Subproblem: C[i,j]: the minimum cost of splitting substring $S_i \cdots S_{j-1}$ using cuts $C_{i+1} \cdots C_{i-1}$

Goal: C[0, m+1]

Make choice: What is the first cut in $C_{i+1} \cdots C_{i-1}$?

Recurrence:

$$C[i,j] = \min_{i < k < j} (C[i,k] + C[k,j] + l(S_i \cdots S_{j-1}))$$

Init: C[i, i+1] = 0

Subproblem:

Subproblem:

Goal:

Make choice:

Subproblem:

Goal:

Make choice:

Recurrence:

Init:

Time:

Dynamic Programming

- Overview
- (2) 1D DP
- 3 2D DP
- **4** 3D DP
- DP on Graphs
- 6 The Knapsack Problem
- Summary

Floyd-Warshall algorithm

(1) DP for Floyd-Warshall algorithm for APSP on directed graphs

Subproblem: dist[i, j, k]: the length of the shortest path from i to j via only nodes in $v_1 \cdots v_k$

Goal: $dist[i, j, n], \forall i, j$

Floyd-Warshall algorithm

(1) DP for Floyd-Warshall algorithm for APSP on directed graphs

Make choice: Is v_k on the ShortestPath[i, j, k]?

Recurrence:

$$\mathsf{dist}[i,j,k] = \min\{\mathsf{dist}[i,j,k-1],\mathsf{dist}[i,k,k-1] + \mathsf{dist}[k,j,k-1]\}$$

Floyd-Warshall algorithm

(1) DP for Floyd-Warshall algorithm for APSP on directed graphs

Make choice: Is v_k on the ShortestPath[i, j, k]?

Recurrence:

$$\mathsf{dist}[i,j,k] = \min\{\mathsf{dist}[i,j,k-1], \mathsf{dist}[i,k,k-1] + \mathsf{dist}[k,j,k-1]\}$$

Init:

$$\mathsf{dist}[i,j,0] = \left\{ \begin{array}{ll} 0 & i=j \\ w(i,j) & (i,j) \in E \\ \infty & \text{o.w.} \end{array} \right.$$

Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table for Floyd-Warshall algorithm

```
\begin{split} \text{for all } k \leftarrow 1 \dots n \text{ do} \\ \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{for all } j \leftarrow 1 \dots n \text{ do} \\ \text{if } \operatorname{dist}[i,j] > \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \text{ then} \\ \operatorname{dist}[i,j] \leftarrow \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \end{split}
```

Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table for Floyd-Warshall algorithm

```
\begin{split} \text{for all } k \leftarrow 1 \dots n \text{ do} \\ \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{for all } j \leftarrow 1 \dots n \text{ do} \\ \text{if } \operatorname{dist}[i,j] > \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \text{ then} \\ \operatorname{dist}[i,j] \leftarrow \operatorname{dist}[i,k] + \operatorname{dist}[k,j] \\ \operatorname{Go}[i,j] \leftarrow \operatorname{Go}[i,k] \end{split}
```

Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table

```
for all i \leftarrow 1 \dots n do
      for all i \leftarrow 1 \dots n do
            \mathsf{dist}[i,j] \leftarrow \infty
            Go[i, j] \leftarrow Nil
for all (i, j) \in E do
     \mathsf{dist}[i,j] \leftarrow w(i,j)
     Go[i,j] \leftarrow j
for all i \leftarrow 1 \dots n do
     \mathsf{dist}[i,i] \leftarrow 0
      Go[i, j] \leftarrow Nil
```


Floyd-Warshall algorithm (Problem 6.25)

(2) Routing table

$$\begin{array}{l} \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{ for all } j \leftarrow 1 \dots n \text{ do} \\ \text{ dist}[i,j] \leftarrow \infty \\ \text{ Go}[i,j] \leftarrow \text{Nil} \\ \\ \text{for all } (i,j) \in E \text{ do} \\ \text{ dist}[i,j] \leftarrow w(i,j) \\ \text{ Go}[i,j] \leftarrow j \\ \\ \text{for all } i \leftarrow 1 \dots n \text{ do} \\ \text{ dist}[i,i] \leftarrow 0 \\ \text{ Go}[i,j] \leftarrow \text{Nil} \\ \end{array}$$

```
\begin{array}{c} \textbf{procedure} \ \operatorname{PATH}(i,j) \\ \textbf{if} \ \operatorname{Go}[i,j] = \operatorname{Nil} \ \textbf{then} \\ \operatorname{Output} \ \text{``No Path.''} \end{array}
```

```
Output "i" while i \neq j do i \leftarrow \operatorname{Go}[i,j] Output "i"
```

3-D DP

Floyd-Warshall algorithm (Problem 6.29)

(3) Find minimum-weighted cycle of directed graph (w(e) > 0)

$$\mathsf{dist}[i,i] \leftarrow 0 \implies \mathsf{dist}[i,i] \leftarrow \infty$$

3-D DP

Floyd-Warshall algorithm (Problem 6.29)

(3) Find minimum-weighted cycle of directed graph (w(e) > 0)

$$\mathsf{dist}[i,i] \leftarrow 0 \implies \mathsf{dist}[i,i] \leftarrow \infty$$

$$\exists i : \mathsf{dist}[i,i] < 0$$

$$\forall i: \mathsf{dist}[i,i] \geq 0$$

Shortest paths on undirected graphs

Finding shortest paths in undirected graphs with possibly negative edge weights

The book "Algorithms" by Robert Sedgewick and Kevin Wayne hinted that (see the quote below) there are efficient algorithms for finding shortest paths in undirected graphs with possibly negative edge weights (not by treating an undirected edge as two directed one which means that a single negative edge implies a negative cycle). However, no references are given in the book. Are you aware of any such algorithms?

Q. How can we find shortest paths in undirected (edge-weighted) graphs?

A For positive edge weights, Dijkstra's algorithm does the job. We just build an EdgeWeightedDigraph corresponding to the given EdgeWeightedGraph (by adding two directed edges corresponding to each undirected edge, one in each direction) and then run Dijkstra's algorithm. If edge weights can be negative (emphasis added), efficient algorithms are available, but they are more complicated than the Bellman-Ford algorithm.

https://cs.stackexchange.com/q/76578/4911

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- **5** DP on Graphs
- 6 The Knapsack Problem
- Summary

Minimum vertex cover on trees [Problem: 2.2.18]

- ▶ Undirected tree T = (V, E); No designated root!
- ightharpoonup Compute (the size of) a minimum vertex cover of T

Rooted T at any node r.

Rooted T at any node r.

Subproblem: I(u): the size of an MVC of subtree T_u rooted at u

Goal: I(r)

Rooted T at any node r.

Subproblem: I(u): the size of an MVC of subtree T_u rooted at u

Goal: I(r)

Make choice: Is u in MVC[u]?

Recurrence:

$$I(u) = \min\{\# \text{ children of } u + \sum_{v: \text{ grandchildren of } u} I(v)\}$$

$$1 + \sum_{v: \text{ grandchildren of } u} I(v)\}$$

v: children of u

Rooted T at any node r.

Subproblem: I(u): the size of an MVC of subtree T_u rooted at u

Goal: I(r)

Make choice: Is u in MVC[u]?

Recurrence:

$$I(u) = \min\{\# \text{ children of } u + \sum_{v: \text{ grandchildren of } u} I(v)$$

$$1 + \sum_{v: \text{ children of } u} I(v)\}$$

Init: I(u) = 0, if u is a leave

DFS on T from root r:

when u is "finished": if u is a leave then $I(u) \leftarrow 0$ else $I(u) \leftarrow \dots$

DFS on T from root r:

when u is "finished": if u is a leave then $I(u) \leftarrow 0$ else

 $I(u) \leftarrow \dots$

Greedy algorithm:

Theorem

There is an MVC which contains no leaves.

Longest path in DAG (Problem 7.17)

▶ Direction: \downarrow OR \rightarrow

► Score: >=< 0

Longest path in DAG (Problem 7.17)

- ▶ Direction: \downarrow OR \rightarrow
- ▶ Score: >=<0
- 1. digraph G
- 2. node weight \rightarrow edge weight
- 3. adding an extra sink s
- 4. $G \rightarrow G^T$

Longest path in DAG (Problem 7.17)

- ▶ Direction: \downarrow OR \rightarrow
- ▶ Score: >=<0
- 1. digraph G
- 2. node weight \rightarrow edge weight
- 3. adding an extra sink \boldsymbol{s}
- 4. $G \rightarrow G^T$

Compute a longest path from s in DAG

Subproblem: $\operatorname{dist}[v]$: longest distance from s to v

 $\mathsf{Goal} \colon \operatorname{dist}[v], \forall v \in V$

Subproblem: dist[v]: longest distance from s to v

Goal: $\operatorname{dist}[v], \forall v \in V$

Make choice:

Recurrence:

$$\mathsf{dist}[v] = \max_{u \to v} \left(\mathsf{dist}[u] + w(u \to v) \right)$$

Subproblem: dist[v]: longest distance from s to v

Goal: $\operatorname{dist}[v], \forall v \in V$

Make choice:

Recurrence:

$$\mathsf{dist}[v] = \max_{u \to v} \left(\mathsf{dist}[u] + w(u \to v) \right)$$

Init: $\operatorname{dist}[s] = 0$

Subproblem: dist[v]: longest distance from s to v

Goal: $\operatorname{dist}[v], \forall v \in V$

Make choice:

Recurrence:

$$\mathsf{dist}[v] = \max_{u \to v} \left(\mathsf{dist}[u] + w(u \to v) \right)$$

Init: $\operatorname{dist}[s] = 0$

Compute dist[v] in topo. order

Bitonic tour

Bitonic tour (Problem 7.18)

Bitonic tour

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- 5 DP on Graphs
- 6 The Knapsack Problem
- Summary

The change-making problem (Problem 7.12)

- ightharpoonup Coins values: $x_1 \dots x_n$
- ► Amount: v
- \blacktriangleright Is it possible to make change for v?

The change-making problem (Problem 7.12(2), Problem 7.1 (Subset sum)) (2) Without repetition (0/1)

The change-making problem (Problem 7.12(2), Problem 7.1 (Subset sum)) (2) Without repetition (0/1)

Subproblem: C[i, w]: Possible to make change for w using only $x_1 \dots x_n$? Goal: C[n, v]

The change-making problem (Problem 7.12(2), Problem 7.1 (Subset sum)) (2) Without repetition (0/1)

Subproblem: C[i, w]: Possible to make change for w using only $x_1 \dots x_n$?

Goal: C[n,v]

Make choice: Using x_i or not?

Recurrence:

$$C[i, w] = C[i-1, w] \lor (C[i-1, w-x_i] \land w \ge x_i)$$

The change-making problem (Problem 7.12(2), Problem 7.1 (Subset sum)) (2) Without repetition (0/1)

Subproblem: C[i, w]: Possible to make change for w using only $x_1 \dots x_n$? Goal: C[n, v]

Make choice: Using x_i or not?

Recurrence:

$$C[i,w] = C[i-1,w] \lor (C[i-1,w-x_i] \land w \ge x_i)$$

Init:

$$\begin{split} C[i,0] &= \mathsf{true} \\ C[0,w] &= \mathsf{false}, \mathsf{if} \ w > 0 \\ C[0,0] &= \mathsf{true} \end{split}$$

Time: O(nv)

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

Subproblem: C[i, w]: Possible to make change for w using only $x_1 \dots x_n$? Goal: C[n, v]

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

Subproblem: C[i, w]: Possible to make change for w using only $x_1 \dots x_n$?

Goal: C[n,v]

Make choice: Using x_i or not?

Recurrence:

$$C[i, w] = C[i - 1, w] \lor (C[i, w - x_i] \land w \ge x_i)$$

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

Subproblem: C[i, w]: Possible to make change for w using only $x_1 \dots x_n$?

Goal: C[n,v]

Make choice: Using x_i or not?

Recurrence:

$$C[i, w] = C[i - 1, w] \lor (C[i, w - x_i] \land w \ge x_i)$$

Init:

$$\begin{split} C[i,0] &= \mathsf{true} \\ C[0,w] &= \mathsf{false}, \mathsf{if} \ w > 0 \\ C[0,0] &= \mathsf{true} \end{split}$$

Time: O(nv)

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

```
The change-making problem (Problem 7.12(1)) (1) Unbounded repetition (\infty)
```

```
Subproblem: C[w]: Possible to make change for w? Goal: C[v]
```

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

Subproblem: C[w]: Possible to make change for w?

Goal: C[v]

Make choice: Suppose x_i is used.

Recurrence:

$$C[w] = \bigvee_{i: \ x_i \le w} C[w - x_i]$$

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

Subproblem: C[w]: Possible to make change for w?

Goal: C[v]

Make choice: Suppose x_i is used.

Recurrence:

$$C[w] = \bigvee_{i: x_i \le w} C[w - x_i]$$

Time: O(nv)

The change-making problem (Problem 7.12(1))

(1) Unbounded repetition (∞)

Subproblem: C[w]: Possible to make change for w?

Goal: C[v]

Make choice: Suppose x_i is used.

Recurrence:

$$C[w] = \bigvee_{i: \ x_i \le w} C[w - x_i]$$

Time: O(nv)

 $\mathsf{Q} \colon C[i,w]$ vs. C[w]

The change-making problem (Problem 7.12(3))

(3) Unbounded repetition with $\leq k$ coins

The change-making problem (Problem 7.12(3))

(3) Unbounded repetition with $\leq k$ coins

Subproblem: C[i, w, l]: Possible to make change for w with $\leq l$ coins of

 $x_1 \dots x_i$?

Goal: C[n, v, k]

The change-making problem (Problem 7.12(3))

(3) Unbounded repetition with $\leq k$ coins

Subproblem: C[i, w, l]: Possible to make change for w with $\leq l$ coins of $x_1 \dots x_i$?

Goal: C[n, v, k]

Make choice: Using x_i or not?

Recurrence:

$$C[i, w, l] = C[i-1, w, l] \lor (C[i, w-x_i, l-1] \land w \ge x_i)$$

The change-making problem (Problem 7.12(3))

(3) Unbounded repetition with $\leq k$ coins

Subproblem: C[i, w, l]: Possible to make change for w with $\leq l$ coins of $x_1 \dots x_i$?

Goal: C[n, v, k]

Make choice: Using x_i or not?

Recurrence:

$$C[i, w, l] = C[i-1, w, l] \lor (C[i, w - x_i, l-1] \land w \ge x_i)$$

Init:

$$\begin{split} C[0,0,l] &= \mathsf{true}, \quad C[0,w,l] = \mathsf{false}, \mathsf{if} \ w > 0 \\ C[i,0,l] &= \mathsf{true}, \quad C[i,w,0] = \mathsf{false}, \mathsf{if} \ w > 0 \end{split}$$

Dynamic Programming

- Overview
- 2 1D DP
- 3 2D DP
- 4 3D DP
- DP on Graphs
- 6 The Knapsack Problem
- Summary

More DPs ...

Algorithms that use dynamic programming [edit|edit source]

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged ar how and when to remove this template message)

- Recurrent solutions to lattice models for protein-DNA binding
- . Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems
- Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems
- Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring. Levenshtein distance (edit distance)
- . Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.
- . The Cocke-Younger-Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar
- . Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text
- . The use of transposition tables and refutation tables in computer chess
- The Viterbi algorithm (used for hidden Markov models)
- The Earley algorithm (a type of chart parser)
- . The Needleman-Wunsch algorithm and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction
- Floyd's all-pairs shortest path algorithm
- . Optimizing the order for chain matrix multiplication
- Pseudo-polynomial time algorithms for the subset sum, knapsack and partition problems
- . The dynamic time warping algorithm for computing the global distance between two time series
- The Selinger (a.k.a. System R) algorithm for relational database query optimization
- . De Boor algorithm for evaluating B-spline curves
- . Duckworth-Lewis method for resolving the problem when games of cricket are interrupted
- . The value iteration method for solving Markov decision processes
- . Some graphic image edge following selection methods such as the "magnet" selection tool in Photoshop
- · Some methods for solving interval scheduling problems
- Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g., via the bitonic tour)
- * Come meaners for sorring the date and successful problem, earlier exactly (in experience and of approximately (e.g. via the bronic lear)
- Recursive least squares method
- Beat tracking in music information retrieval
- Adaptive-critic training strategy for artificial neural networks
- . Stereo algorithms for solving the correspondence problem used in stereo vision
- . Seam carving (content-aware image resizing)
- . The Bellman-Ford algorithm for finding the shortest distance in a graph
- Some approximate solution methods for the linear search problem
- . Kadane's algorithm for the maximum subarray problem

