Raffinages-PageRank-EF03

THEVENET Louis

MORISSEAU Albin

Table des matières

1.	Introduction	. 1
2.	Liste des modules	. 1
3.	Raffinages	. 1
	3.1. Programme_Principal	. 1
	3.2. Module PageRank	
	3.3. Module PageRank_Pleine	. 5
	3.4. Module Lire Fichier Graphe	
	3.5. Module Résultat	. 7
4.	Grille d'évaluation des raffinages	. 9
5.	Module Matrices Pleines	10
	5.1. Description	10
	5.2. Raffinages	10
6.	Tests	10
	6.1. Traitement de la commande	10
	6.2. Test du Chapitre 5	11

1. Introduction

2. Liste des modules

- Programme_Principal
- Module PageRank
 - Module PageRank_Pleine

.

- Module Lire Fichier Graphe
- Module Résultat

3. Raffinages

3.1. Programme_Principal

3.1.1. Description

Le point d'entrée du programme, il traite les arguments et les transmet ensuite au Module PageRank. Il initialise les différentes variables à leurs valeurs par défaut :

 $\alpha := 0.85$

k := 150

 $\varepsilon \coloneqq 0.0$

Il traite ensuite les arguments en mettant à jour les variables si besoin.

Il vérifie finalement la conformité des valeurs à la spécification :

$$\alpha \in [0,1]$$

$$\varepsilon \geq 0$$

Un seul algorithme choisi (Creuse ou pleine)

Préfixe non vide

3.1.2. Raffinages

```
R0 : Répondre à l'appel au programme
2
   R1 : Comment "Répondre à l'appel au programme" ?
3
     Traiter les arguments
5
                Arguments: in,
                alpha : out,
6
7
                k : out,
                epsilon : out,
8
9
                creuse : out,
10
                pleine : out,
11
                prefixe : out,
                fichier_graphe : out
12
13
14
     Appeler le module PageRank
                alpha : in,
15
16
                k:in,
17
                epsilon : in,
                creuse : in,
18
                pleine : in,
19
20
                prefixe : in,
21
                fichier_graphe : in
22
   R2 : Comment "Traiter les arguments" ?
23
24
     Initialiser les variables
                alpha : out,
25
                k : out,
26
                epsilon : out,
27
                creuse : out,
28
29
                pleine : out,
30
                prefixe : out,
31
                fichier_graphe : out
32
33
     Pour tout couples (Nom_Argument, Argument) Faire
34
        Traiter argument
35
                Nom Argument : in out,
36
                Argument : in out,
                alpha : in out,
37
                k : in out,
38
39
                epsilon : in out,
                creuse : in out,
                pleine : in out,
41
42
                prefixe : in out,
43
                fichier_graphe : in out
     Fin Pour tout
44
     Tester validité des arguments
45
                alpha : in,
46
47
                k: in,
48
                epsilon : in,
```

```
creuse : in,
50
                pleine : in
                fichier graphe : in
51
52
53 R3 : Comment "Initialiser les variables"
    alpha := 0.85
55
     k := 150
56
     epsilon := 0.0
     creuse := true
57
58
     pleine := false
     prefixe := "output"
59
60
     fichier_graphe := ""
61
62 R3 : Comment "Traiter argument" ?
     Selon Nom Argument Dans
64
        "-A" => alpha := argument
        "-K" => k := argument
65
66
        "-E" => epsilon := argument
        "-P" => creuse := true
67
        "-C" => pleine := false
68
69
        "-R" => prefixe := argument
       Autres => Si fichier_graphe = "" Alors
70
71
                    fichier_graphe := argument
72
                  Sinon
73
                    Afficher "Cet argument n'existe pas"
74
                    Afficher Aide
75
                    Lever Erreur_Argument
76
   R4 : Comment "Tester validité des arguments"
77
78
     Si creuse = pleine Alors
       Afficher "Mode matrice pleine et mode matrice creuse activés"
79
       Lever Erreur_Argument
80
     Fin Si
81
82
83
     Si alpha <0 OU ALORS alpha >1 Alors
       Afficher "Alpha doit être compris entre 0 et 1 au sens large"
84
85
       Lever Erreur_Argument
   Si epsilon < 0 Alors
86
87
       Afficher "epsilon doit être positif"
        Lever Erreur Argument
88
     Fin Si
89
90
   Si k < 0 Alors
91
         Afficher "k doit être positif"
92
    Lever Erreur_Argument
93
94
     Fin Si
95
    Si fichier graphe = "" Alors
96
     Afficher "Il faut spécifier un fichier d'entrée"
97
98
      Lever Erreur_Argument
99 Fin Si
```

3.2. Module PageRank

3.2.1. Description

Le module PageRank est le module principal du programme, il appelle les différents modules en fonction des arguments passés au programme.

- Si le mode matrice pleine est activé, il appelle le module PageRank_Matrice_Pleine.
- Si le mode matrice creuse est activé, il appelle le module PageRank_Matrice_Creuse.
- Si aucun des deux modes n'est activé, il appelle le module PageRank_Matrice_Creuse.

3.2.2. Raffinage

```
R0 : Répondre à l'appel du programme principal
2
3
   R1 : Comment "Répondre à l'appel du programme principal" ?
            Paramètres du module :
4
                alpha : in,
5
                k: in,
6
                epsilon : in,
8
                creuse : in,
9
                pleine : in,
10
                prefixe : in,
11
12
        Lire fichier graphe (via module Fichier Graphe)
                fichier_graphe : in,
13
14
                H : out,
15
                taille_graphe : out
16
17
        Si pleine Alors
            Calculer la matrice de Google G via Matrices_Pleines
18
                    alpha : in,
19
                    H : in,
20
21
                    taille graphe : in,
22
23
            Initialiser Pi_transpose
24
                    taille_graphe : in,
25
                    Pi transpose : out
26
27
            Appliquer la relation de récurrence
28
                    Pi transpose : in out,
29
                    G : in,
30
                    taille_graphe : in
        Sinon
31
            Rien
32
33
        Trier le résultat
34
                resultat : in out,
35
        Enregistrer le resultat (via module Engresitrer Résultat)
36
37
            taille_graphe : in,
            k: in,
39
            alpha : in,
40
            indices : in,
41
            resultat : in,
            prefixe : in
42
43
44
```

```
R2 : Comment "Calculer la matrice de Google G" ?
     Si pleine Alors
46
       Appeler le module PageRank Matrice Pleine
47
48
            alpha : in,
49
            H : in,
            taille_graphe : in,
50
51
     Sinon
52
        Appeler le module PageRank_Matrice_Creuse -- A faire plus tard
53
     Fin Si
54
55
   R2 : Comment "Initialiser Pi_transpose" ?
56
57
     Si pleine Alors
        Appeler le module PageRank_Matrice_Pleine
58
59
            alpha : in,
60
            H : in,
            taille graphe : in,
61
62
            Pi transpose : out,
63
     Sinon
        Appeler le module PageRank Matrice Creuse -- A faire plus tard
65
     Fin Si
66
67
     R2 : Comment "Appliquer la relation de récurrence" ?
68
     Si pleine Alors
69
        Appeler le module PageRank_Matrice_Pleine
70
            Pi transpose : in out,
71
            G: in,
72
            taille_graphe : in,
73
        Appeler le module PageRank_Matrice_Creuse -- A faire plus tard
74
75
     Fin Si
```

3.3. Module PageRank_Pleine

3.3.1. Description

Ce module permet de calculer le PageRank d'un graphe en utilisant des matrices pleines.

3.3.2. Raffinage

```
R0 : Calculer la matrice de Google G
2
3
   R1 : Comment "Calculer la matrice de Google G" ?
     Calculer la matrice S
4
5
              alpha : in,
              taille_graphe : in,
6
7
              H : in,
              S : out
8
9
10
11
     Calculer la matrice G
12
              alpha : in,
13
              taille_graphe : in,
              S : in,
14
              G : out
15
16
```

```
17
18
   R2 : Comment "Calculer la matrice S" ?
19
     S := H
20
     Pour i de 1 à taille_graphe Faire
       est_nul := true
21
       Tant que est_nul Faire
22
          est_nul := est_nul ET (S(i,j)=0)
23
24
       Fin Tant que
25
       Si est nul Alors
26
27
          Pour j de 1 à taille_graphe Faire
            S(i,j) := 1/taille_graphe
28
          Fin Pour
       Fin Si
30
31
32
     Fin Pour
33
34
   R2 : Comment "Calculer la matrice G" ?
     G = alpha * S
35
     Pour i de 1 à taille_graphe Faire
36
37
       Pour j de 1 à taille_graphe Faire
38
          G(i,j) := G(i,j) + (1-alpha)/taille_graphe
39
        Fin Pour
40
     Fin Pour
```

```
1 R0 : "Initialiser Pi_transpose" ?
2
3 R1 : Comment "Initialiser Pi_transpose" ?
4    Pi_transpose = new tableau (1..taille_graphe) DE Double
5    Pour i allant de 1..taille_graphe Faire
6    Pi_transpose(i) := 1/taille_graphe
7    Fin Pour
```

```
1 R0 : "Appliquer la relation de récurrence" ?
2
   R1 : Comment "Appliquer la relation de récurrence" ?
     Pour i allant de 1..k Faire
4
5
       Calculer Pi_transpose
             Pi_transpose : in out
6
7
             G: in
     Fin Pour
8
9
   R2 : Comment "Calculer Pi_transpose" ?
     Pour j allant de 1..taille_graphe Faire
11
12
       tmp := 0
13
       Pour i allant de 1..taille_graphe Faire
14
         tmp := tmp + Pi_transpose(i) * G(i, j)
       Fin Pour
15
       Pi_transpose(j) := tmp
16
17
     Fin Pour
```

3.4. Module Lire Fichier Graphe

3.4.1. Description

Ce module permet de lire un fichier contenant un graphe et de le stocker dans une matrice pleine ou creuse.

3.4.2. Raffinages

```
R0 : Lire fichier_graphe
2
   R1 : Comment "Lire le fichier_graphe" ?
     taille_graphe := Lire Entier dans fichier_graphe
     H := Initialiser_Matrice();
5
6
7
     Remplir la matrice H
8
           h : in out
9
     Pondérer la matrice H
           H : in out
10
11
12 R2 : Comment "Remplir la matrice H" ?
     Pour chaque ligne de fichier graphe Faire
13
14
       A := Lire Entier dans fichier_graphe
       B := Lire Entier dans fichier graphe
15
16
       H(A,B) := 1
     Fin Pour
17
18
   R2 : Comment "Pondérer la matrice H" ?
19
20
     Pour i de 1 à taille graphe Faire
21
       total := 0
       Pour j de 1 à taille_graphe Faire
23
         total := total + H(i,j)
       Fin Pour
24
25
26
       Si total != 0 Alors
         Pour j de 1 à taille graphe Faire
27
28
           H(i,j) := H(i,j) / total
          Fin Pour
29
       Sinon
30
31
          Rien
32
     Fin Pour
```

3.5. Module Résultat

3.5.1. Description

Ce module permet d'interagir avec le résultat. Notamment l'action de trier des pages selon leur poids.

```
1 N : Entier est générique
2
3 Type T_Resultat EST enregistrement
4    Taille : Entier;
5    Poids : tableau de flottants de taille N
6    Indices : tableau d'indices de taille N
7    end enregistrement
```

Il fournit ces opérations:

- Initialiser
- Norme_Au_Carre
- Combi Lineaire
- Trier
- Enregistrer

3.5.2. Raffinages

```
type T_Resultat EST ENGREGISTREMENT
Taille : Integer;
Poids est tableau (1..taille_graphe) DE Flottants
Indices est tableau (1..taille_graphe) DE Entier
Fin ENREGISTREMENT
```

```
1 R0 : Calculer la combinaison linéaire
             A,B : in tableau de flottants de taille N
             lambda. mu : Flottants
3
5 R1 : Comment "Calculer la combinaison linéaire" ?
   Resultat : tableau de flottants de taille N
    Initialiser(Resultat);
8
    Pour i allant de 1 à Result. Taille Faire
9
       Resultat. :=
10
    fin Pour
11
    retour Resultat;
12
```

```
1 R0 : Enregistrer le résultat
2
3 R1 : Comment "Enregistrer le résultat" ?
4 Produire le fichier PageRank
5 indices : in,
```

```
prefixe : in
8
     Produire le fichier Poids
9
       resultat : in,
10
      prefixe : in,
11
      taille_graphe : in,
12
       k:in,
13
       alpha : in
14
^{15} R2 : Comment "Produire le fichier PageRank" ?
16
   Pour i de 1..taille_graphe Faire
17
       Ecrire indices(i) dans le fichier prefixe.pr
18
     Fin Pour
19
20 R2 : Comment "Produire le fichier Poids" ?
21
    Ecrire taille_graphe alpha k dans le fichier prefixe.prw
     Pour i de 1..taille graphe Faire
23
       Ecrire resultat(i) dans le fichier prefixe.prw
24
     Fin Pour
```

4. Grille d'évaluation des raffinages

		Eval. étudiant	Justif./Comm.	Eval. enseignant
Forme	Respect de la syntaxe	ТВ		
	Ri : Comment « une action complexe » ? des actions combinées avec des structures de controle Rj :			
	Verbe à l'infinitif pour les actions complexes	ТВ		
	Nom ou équivalent pour expressions complexes	ТВ		

	Tous les Ri sont écrits contre la marge et espacés	ТВ	
	Les flots de données sont définis	ТВ	
	Pas trop d'actions dans un raffinage (moins de 6)	В	
	Bonne présentation des structures de contrôle	ТВ	
Fond	Le vocabulaire est précis	ТВ	
	Le raffinage d'une action décrit complètement cette action	ТВ	
	Les flots de données sont cohérents	ТВ	
	Pas de structure de contrôle déguisée	ТВ	
	Qualité des actions complexes	ТВ	

5. Module Matrices Pleines

5.1. Description

Ce module permet de manipuler des matrices pleines. Il fournit ces opérations :

- Initialiser
- Modifier
- Obtenir l'élément d'indice (i,j)

5.2. Raffinages

6. Tests

6.1. Traitement de la commande

On utilise le fichier exemple-fichier.txt.

- α < 0
 - ./programme_principal -P -A -0.90 -K 20 ./exemple-fichier.txt
- $\alpha > 1$
 - ./programme_principal -P -A 1.90 -K 20 ./exemple-fichier.txt
- *K* < 0
 - ./programme_principal -P -K -20 ./exemple-fichier.txt
- $\varepsilon < 0$
 - ./programme_principal -P -E -20.0 ./exemple-fichier.txt
- Creuse = Pleine
 - ./programme_principal -P -C ./exemple-fichier.txt
- Pas de fichier d'entrée ./programme_principal -P -C

• Mauvais fichier d'entrée ./programme_principal -P ./exemple-fichier-qui-existe-pas.txt Le programme affiche bien des erreurs dans tous ces cas.

6.2. Test du Module Matrices Pleines