Applied (Financial) Econometrics

Panel data

Monique de Haan (monique.dehaan@uva.nl)

- Some U.S. states have enacted 'shall-issue' laws which allow citizens to carry concealed weapons.
- We are going to investigate the effect of shall-issue laws on violent crime rates.
- In this exercise we use the data set Guns dta
- This is a balanced panel of data on 50 US states, plus the District of Columbia for the years 1977 – 1999.
- There are a total of 51 states × 23 years = 1173 observations.
- These data were provided by Professor John Donohue of Stanford University.
- Data were used in the: "Shooting Down the 'More Guns Less Crime' Hypothesis" Stanford Law Review (2003)

Variable Definitions

3

Variable	Definition
vio	violent crime rate (incidents per 100,000 members of the population)
rob	robbery rate (incidents per 100,000)
mur	murder rate (incidents per 100,000)
shall	= 1 if the state has a shall-carry law in effect in that year
	= 0 otherwise
incarc_rate	incarceration rate in the state in the previous year (sentenced
	prisoners per 100,000 residents; value for the previous year)
density	population per square mile of land area, divided by 1000
avginc	real per capita personal income in the state, in thousands of dollars
pop	state population, in millions of people
pm1029	percent of state population that is male, ages 10 to 29
pw1064	percent of state population that is white, ages 10 to 64
pb1064	percent of state population that is black, ages 10 to 64
stateid	ID number of states (Alabama = 1, Alaska = 2, etc.)
year	Year (1977-1999)

Data

. sum vio mur rob shall incarc_rate pb1064 pw1064 pm1029 pop avginc density stateid year

Variable	Obs	Mean	Std. Dev.	Min	Max
vio	1173	503.0747	334.2772	47	2921.8
mur	1173	7.665132	7.52271	.2	80.6
rob	1173	161.8202	170.51	6.4	1635.1
shall	1173	.2429668	.4290581	0	1
incarc_rate	1173	226.5797	178.8881	19	1913
pb1064	1173	5.336217	4.885688	.2482066	26.97957
pw1064	1173	62.94543	9.761527	21.78043	76.52575
pm1029	1173	16.08113	1.732143	12.21368	22.35269
pop	1173	4.816341	5.252115	.402753	33.14512
avginc	1173	13.7248	2.554543	8.554884	23.64671
density	1173	.3520382	1.355472	.0007071	11.10212
stateid	1173	28.96078	15.68352	1	56
year	1173	88	6.636079	77	99

2 . regress ln vio shall, robust

Linear regression

1 . gen ln vio=ln(vio)

Number of obs = 1173 F(1, 1171) = 86.86 Prob > F = 0.0000 R-squared = 0.0866 Root MSE = .61735

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
shall _cons	4429646 6.134919	.0475283	-9.32 317.81	0.000	5362148 6.097045	3497144 6.172793

- The coefficient equals -0.44, which suggests that shall-issue laws reduce the violent crime rate by 44%.
- This is a large effect.
- Are there threats to the internal validity of the estimated regression model?

. regress ln_vio shall incarc_rate density avginc pop pb1064 pw1064 pm1029, robust

Linear regression

Number of obs = 1173 F(8, 1164) = 95.67 Prob > F = 0.0000 R-squared = 0.5643 Root MSE = 42769

6

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
shall	3683869	.0347879	-10.59	0.000	436641	3001329
incarc_rate	.0016126	.0001807	8.92	0.000	.0012581	.0019672
density	.0266885	.0143494	1.86	0.063	0014651	.054842
avginc	.0012051	.0072778	0.17	0.869	013074	.0154842
qoq	.0427098	.0031466	13.57	0.000	.0365361	.0488836
pb1064	.0808526	.0199924	4.04	0.000	.0416274	.1200778
pw1064	.0312005	.0097271	3.21	0.001	.012116	.0502851
pm1029	.0088709	.0120604	0.74	0.462	0147917	.0325334
cons	2.981738	.6090198	4.90	0.000	1.786839	4.176638

 Are there still omitted variables that might cause omitted variable bias?

Part 4&5

(1) Regression without control variables:

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
shall	4429646	.0475283	-9.32	0.000	5362148	3497144
_cons	6.134919	.0193039	317.81		6.097045	6.172793

(2) Regression with control variables

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
shall	3683869	.0347879	-10.59	0.000	436641	3001329

- The coefficient in (1) is $\widehat{\beta}_{shall} = -0.443$; in (2) it is $\widehat{\beta}_{shall} = -0.369$. Both are highly statistically significant.
- Adding the control variables results in a small drop in the estimated coefficient.
- Possible omitted variables that vary between states but not over time: Attitudes towards guns and crime, quality of police and other crime-prevention programs.

1 . regress ln_vio shall incarc_rate density avginc pop pb1064 pw1064 pm1029 Dstate*, robust note: Dstate9 omitted because of collinearity

8

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
shall	0461415	.0199433	-2.31	0.021	0852721	0070109
incarc_rate	000071	.0000973	-0.73	0.466	0002619	.0001199
density	17229	.1048789	-1.64	0.101	3780724	.0334925
avginc	0092037	.0067335	-1.37	0.172	0224155	.004008
pop	.0115247	.0097044	1.19	0.235	0075162	.0305655
pb1064	.1042804	.0165552	6.30	0.000	.0717976	.1367633
pw1064	.0408611	.0053859	7.59	0.000	.0302935	.0514287
pm1029	0502725	.0077908	-6.45	0.000	0655588	0349863
Dstate1	-2.759404	1.004794	-2.75	0.006	-4.730905	7879023
Dstate2	-2.703439	1.005641	-2.69	0.007	-4.676602	7302757
Dstate3	-2.518992	.9965431	-2.53	0.012	-4.474305	5636793
Dstate4	-2.88668	1.00048	-2.89	0.004	-4.849718	9236416
Dstate5	-2.515163	1.063879	-2.36	0.018	-4.602595	427731
Dstate6	-2.86449	1.008317	-2.84	0.005	-4.842904	8860768
Dstate7	-2.854969	.9448351	-3.02	0.003	-4.708826	-1.001112
Dstate8	-2.661806	.9674257	-2.75	0.006	-4.559988	7636241
Dstate9	0	(omitted)				
Dstate10	-2.082257	1.005363	-2.07	0.039	-4.054877	1096381

Linear regression

Number of obs = 1,173 F(58, 1114) = 364.90 Prob > F = 0.0000 R-squared = 0.9411 Root MSE = .16072 9

	ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	shall	0461415	.0199433	-2.31	0.021	0852721	0070109
	incarc_rate	000071	.0000973	-0.73	0.466	0002619	.0001199
	density	17229	.1048789	-1.64	0.101	3780724	.0334925
	avginc	0092037	.0067335	-1.37	0.172	0224155	.004008
	рор	.0115247	.0097044	1.19	0.235	0075162	.0305655
	pb1064	.1042804	.0165552	6.30	0.000	.0717976	.1367633
	pw1064	.0408611	.0053859	7.59	0.000	.0302935	.0514287
	pm1029	0502725	.0077908	-6.45	0.000	0655588	0349863
	_Istateid_2	.0559649	.0788371	0.71	0.478	0987211	.2106508
	_Istateid_4	.2404116	.0872338	2.76	0.006	.0692506	.4115726
	_Istateid_5	1272758	.0714501	-1.78	0.075	2674677	.0129161
	_Istateid_6	.2442407	.2377303	1.03	0.304	2222089	.7106903
	_Istateid_8	1050866	.1180061	-0.89	0.373	3366259	.1264526
	_Istateid_9	0955652	.1412479	-0.68	0.499	3727071	.1815767
_	_Istateid_10	.0975979	.0824469	1.18	0.237	0641709	.2593666
-	_Istateid_11	2.759404	1.004794	2.75	0.006	.7879023	4.730905

:

1 . xtset state

panel variable: stateid (balanced)

2 . xtreg ln_vio shall incarc_rate density avginc pop pb1064 pw1064 pm1029, fe robust

Fixed-effects (within) regression Group variable: stateid	Number of obs = Number of groups =	1173 51
R-sq: within = 0.2178 between = 0.0033 overall = 0.0001	Obs per group: min = avg = max =	23 23.0 23
corr(u_i, Xb) = -0.3687	F(8,50) = Prob > F =	34.10 0.0000

(Std. Err. adjusted for 51 clusters in stateid)

ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
shall incarc_rate density avginc pop pb1064 pw1064 pm1029 _cons	0461415 000071 17229 0092037 .0115247 .1042804 .0408611 0502725 3.866017	.0417616 .0002504 .1376128 .0129649 .014224 .0326849 .0134585 .0206949	-1.10 -0.28 -1.25 -0.71 0.81 3.19 3.04 -2.43 5.02	0.275 0.778 0.216 0.481 0.422 0.002 0.004 0.019	1300222 0005739 4486935 0352445 0170452 .0386308 .0138289 0918394 2.319214	.0377392 .0004318 .1041135 .016837 .0400945 .16993 .0678932 0087057 5.41282
sigma_u sigma_e rho	.68024947 .16072287 .94712778	(fraction	of varian	ce due to	u_i)	

- The absolute value of the coefficient on shall falls to 0.046, a large reduction in the coefficient from 0.369 without fixed effects.
- Evidently there was important omitted variable bias in the specification without fixed effects.

11

- The estimate of the effect of shall issue laws on the violent crime rate is no longer statistically significantly different from zero
- The estimated coefficient on shall is identical in parts 6 and 7; within estimation and LSDV give identical estimates!

	shall	0279935	.0407168	-0.69	0.495	109775	7	.0537886	
	ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Int	erval]	
			(Std. Err.	. adjust	ed for	51 cluster	s in	stateid)	
corr(ı	ı_i, Xb)	= -0.2929			Prob >	F	=	0.0000	
					F(30,5	. ,	=		
	overall	= 0.0009				ma	x =	23	
		= 0.0419					g =	23.0	
R-sq:	within	= 0.4180			Obs pe	r group: min	=	23	
Group	variable:	stateid			Number	of groups	=	51	
		within) regre	ession			obs =		1173	
- 1 2			(-,		,	
vear			year incarc_ra -99 (na						10 101

COII(u_I, AD)	- 0.2323			1100 -	-	0.0000
		(Std. Err	. adjust	ed for	51 clusters in	n stateid)
ln_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	terval]
shall	0279935	.0407168	-0.69	0.495	1097757	.0537886
Iyear 78	.0585261	.0161556	3.62	0.001	.0260767	.0909755
_Iyear_79	.1639486	.0244579	6.70	0.000	.1148234	.2130738
_Iyear_80	.2170759	.0334184	6.50	0.000	.1499531	.2841987
_Iyear_81	.2172551	.0391956	5.54	0.000	.1385284	.2959819
_Iyear_82	.1946328	.0465743	4.18	0.000	.1010856	.28818
_Iyear_83	.158645	.0593845	2.67	0.010	.0393676	.2779223
_Iyear_84	.1929883	.0770021	2.51	0.015	.0383251	.3476515
_Iyear_85	.2444765	.0922217	2.65	0.011	.0592438	.4297091
_Iyear_86	.3240904	.1089181	2.98	0.004	.1053219	.5428589
_Iyear_87	.324365	.1249881	2.60	0.012	.0733189	.5754111
_Iyear_88	.3867412	.1397074	2.77	0.008	.1061305	.6673518
_Iyear_89	.4422142	.1535358	2.88	0.006	.1338286	.7505999
_Iyear_90	.5430478	.1960859	2.77	0.008	.1491976	.936898
_Iyear_91	.5959456	.2040685	2.92	0.005	.1860619	1.005829
_Iyear_92	.6275171	.2170306	2.89	0.006	.1915982	1.063436
_Iyear_93	.6497414	.2246177	2.89	0.006	.1985834	1.100899
_Iyear_94	.6354187	.2332437	2.72	0.009	.1669349	1.103903
_Iyear_95	.6276831	.2423607	2.59	0.013	.1408874	1.114479
_Iyear_96	.5713423	.2534067	2.25	0.029	.06236	1.080325

2.10

1.80

1.51

0.37

-0.74

.5501153

.4932905

.4328777

-.0915549

.000076

_Iyear_97

_Iyear_98

_Iyear_99

density

incarc_rate

.2613516

.2746546

.2862198

.0002079

.1238622

0.040

0.079

0.137

0.716

0.463

.0251751

-.0583696

-.1420116

-.0003416

-.3403395

1.075056

1.044951

1.007767

.0004935

.1572297

- The absolute value of the coefficient on shall falls further to 0.028, the coefficient is not significantly different from zero.
- The time effects are jointly statistically significant, so this regression seems better specified than the regression in part 7.

```
. test _Iyear_78= _Iyear_79= _Iyear_80= _Iyear_81= _Iyear_82= _Iyea
> r 83= Iyear 84= Iyear 85= Iyear 86= Iyear 87= Iyear 88= Iye
> ar 89= Iyear 90= Iyear 91= Iyear 92= Iyear 93= Iyear 94= Iy
> ear 95= Iyear 96= Iyear 97= Iyear 98= Iyear 99=0
 (1) Iyear 78 - Iyear 79 = 0
      _Iyear_78 - _Iyear_80 = 0
 (2)
      Iyear 78 - Iyear 81 = 0
 (3)
      Iyear 78 - Iyear 82 = 0
 (5)
      Iyear 78 - Iyear 83 = 0
      Iyear 78 - Iyear 84 = 0
 (6)
      Iyear 78 - Iyear 85 = 0
 (7)
      Iyear 78 - Iyear 86 = 0
 (8)
      _Iyear_78 - _Iyear_87 = 0
 (9)
      _Iyear_78 - _Iyear_88 = 0
 (10)
      Iyear 78 - Iyear 89 = 0
 (11)
 (12)
      Iyear 78 - Iyear 90 = 0
      _Iyear_78 - _Iyear_91 = 0
 (13)
 (14)
      Iyear 78 - Iyear 92 = 0
      Iyear 78 - Iyear 93 = 0
 (15)
      _{1year_78} - _{1year_94} = 0
 (16)
      Iyear 78 - Iyear 95 = 0
 (17)
      Iyear 78 - Iyear 96 = 0
 (18)
 (19)
      _Iyear_78 - _Iyear_97 = 0
      Iyear 78 - Iyear 98 = 0
 (20)
      Iyear 78 - Iyear 99 = 0
 (21)
 (22)
      Iyear 78 = 0
      F(22,
               50) =
                        21.62
           Prob > F =
                         0.0000
```

. **part 9
. esttab vio_eq*, b(3) se(3) compress title(Logarithm of violent crime rate)

Logarithm of violent crime rate

	(1)	(2)	(3)	(4)
	ln_vio	ln_vio	ln_vio	ln_vio
shall	-0.443***	-0.368***	-0.046	-0.028
	(0.048)	(0.035)	(0.042)	(0.041)
incarc_r~e		0.002***	-0.000	0.000
		(0.000)	(0.000)	(0.000)
density		0.027	-0.172	-0.092
		(0.014)	(0.138)	(0.124)
avginc		0.001	-0.009	0.001
		(0.007)	(0.013)	(0.016)
рор		0.043***	0.012	-0.005
		(0.003)	(0.014)	(0.015)
pb1064		0.081***	0.104**	0.029
		(0.020)	(0.033)	(0.050)
pw1064		0.031**	0.041**	0.009
		(0.010)	(0.013)	(0.024)
pm1029		0.009	-0.050*	0.073
		(0.012)	(0.021)	(0.052)
_Iyear_78				0.059***
				(0.016)
_Iyear_79				0.164***
				(0.024)
_Iyear_80				0.217***
_				(0.033)

Part 10&11

Dependent variable is ln(rob)								
	(1)	(2)	(3)	(4)				
shall	-0.773***	-0.529***	-0.008	0.027				
	(0.069)	(0.051)	(0.055)	(0.052)				
Control variables	-	yes	yes	yes				
State fixed effects	-	-	yes	yes				
Time fixed effects	-	-	-	yes				
Dependent variable is In(mur)								
	(1)	(2)	(3)	(4)				
shall	-0.473***	-0.313***	-0.061	-0.015				
	(0.049)	(0.036)	(0.037)	(0.038)				
Control variables	-	yes	yes	yes				
State fixed effects	-	-	yes	yes				
Time fixed effects	-	-	-	yes				

The results are similar to the results using violent crimes:

- There is a large estimated effect of concealed weapons laws in specifications (1) and (2).
- This effect is however due to omitted variable bias because the effect disappears when state and time effects are added.

Remaining threats to internal validity:

Omitted variables: There might be important variables that vary between states and over time that are omitted from the regression model. For example other policy measures that are related to the implementation of shall issue laws and that affect crime rates.

Simultaneous causality: If there are many violent crimes this may induce policy makers to change concealed weapons laws.

Serial correlation: There might be variables in the error term that are correlated over time. Will this result in a bias in the estimated effect of the variable shall?

Conclusion

- The most credible results include both state fixed effects and time fixed effects.
- These results indicate that there is no significant effect of concealed weapon laws on the violent crime rate, the robbery rate nor on the murder rate.