지능시스템 Intelligent Systems

Lecture 3 – Monte-Carlo and Temporal Difference Prediction and Evaluation

Today's Contents

- Revision of Value / Action-Value functions
- Revision of Bellman Equation
- Concept of Learning V and Q
- Learning Methodologies
- Monte-Carlo Algorithm
- Temporal-Difference Algorithm

Reinforcement Learning Methodologies

Model-free Does not require the transition probability

Model-based Requires environment's transition probability

Some Popular Algorithms

Value-based Method

- Finding Optimal Values / Action-value is the key in RL!
- Knowing which state is good, the policy can simply be set to gradually lead the agent to the good state.
- This is called Value-based method.

- 1. Start with an **Initial Policy**, π_0 , that is random.
- 2. Collect a **Sample Trajectory**
- 3. Use the collected sample to **compute Values** of the states the agent has visited.
- 4. Update the policy; $\pi_1 \leftarrow UPDATE(\pi_0)$
- 5. Repeat until convergence

- 1. Start with an **Initial Policy**, π_0 , that is random.
- 2. Collect a **Sample Trajectory**
- 3. Use the collected sample to **compute Values** of the states the agent has visited.
- 4. Update the policy; $\pi_1 \leftarrow UPDATE(\pi_0)$
- 5. Repeat until convergence

- 1. Start with an **Initial Policy**, π_0 , that is random.
- 2. Collect a **Sample Trajectory**
- 3. Use the collected sample to **compute Values** of the states the agent has visited.
- 4. Update the policy; $\pi_1 \leftarrow UPDATE(\pi_0)$
- 5. Repeat until convergence

- 1. Start with an **Initial Policy**, π_0 , that is random.
- 2. Collect a Sample Trajectory
- 3. Use the collected sample to **compute Values** of the states the agent has visited.
- 4. Update the policy; $\pi_1 \leftarrow UPDATE(\pi_0)$
- 5. Repeat until convergence

$\pi_0(Red\ cell) =$	UP	DOWN	LEFT	RIGHT
$n_0(\text{New cett}) =$	25%	25%	25%	25%
- (Dad aall)	UP	DOWN	LEFT	RIGHT
$\pi_1(Red\ cell) =$	0%	100%	0%	0%

Value-based Algorithm

- 1. Start with an **Initial Policy**, π_0 , that is random.
- 2. Collect a **Sample Trajectory**
- 3. Use the collected sample to **compute Values** of the states the agent has visited.
- 4. Update the policy; $\pi_1 \leftarrow UPDATE(\pi_0)$
- 5. Repeat until convergence

Value-based Algorithm

Example Algorithm for a Value-based Method:

- 1. Start with an **Initial Policy**, π_0 , that is random.
- 2. Collect a **Sample Trajectory**
- Use the collected sample to compute
 Values of the states the agent has visited.

For the second update and onwards, we take an incremental mean

4. Update the policy; $\pi_1 \leftarrow UPDATE(\pi_0)$

Typically use $oldsymbol{arepsilon}$ —**Greedy** update for exploration

5. Repeat until convergence

Monte-Carlo Policy Evaluation

Goal: Learn V_{π} from sample trajectories under policy π

$$s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_H \sim \pi$$

Recall that

$$V^{\pi}(s_t) = \mathbb{E}_{\tau_{a_t:a_H} \sim p_{\pi}(\tau|s_t)}[G_t|s_t]$$

Since we use samples instead of the distribution function, we use an **empirical mean**:

$$V^{\pi}(s_t) \cong \frac{1}{N} \sum_{i=1}^{N} G_{t,i}(s_t)$$

N denotes the number of samples.

Incremental Mean

The mean μ_1, μ_2, \dots of a sequence x_1, x_2, \dots can be computed incrementally,

$$\mu_{k} = \frac{1}{k} \sum_{i=1}^{k} x_{i}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{i=1}^{k-1} x_{i} \right)$$

$$= \frac{1}{k} (x_{k} + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1})$$

Incremental Monte-Carlo Updates

Update V_{π} incrementally after an episode.

For each state, s_t , with return, G_t

 $N(s_t)$ is the number of visits of the state, s_t

$$N(s_t) \leftarrow N(s_t) + 1$$

$$V(s_t) \leftarrow V(s_t) + \frac{1}{N(s_t)} (G_t - V(s_t))$$

In many complicated cases, it is usually unnecessary to count the number of visits. We fix the fraction term to a small constant value, which we call it the "Learning Rate"

$$V(s_t) \leftarrow V(s_t) + \alpha(G_t - V(s_t))$$

ε-Greedy Policy Update

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- There are two doors in front of you
- You open the left door and get reward 0
 - V(left) = 0
- You open the right door and get reward +1
 - V(right) = 1
- You open the right door and get reward +2
 - V(right) = 1.5
- You open the right door and get reward +3
 - V(right) = 2.25
- Are you sure you have chosen the best door?
 - What if the left door provides a reward of 0 with only 10% of chance and provides a reward of 10 with 90% of chance?
 - We need to Explore more in order to estimate a solid state transition probability.

ε-Greedy Policy Update

- Simplest idea for ensuring continual exploration is the epsilon-greedy exploration.
- All m actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability ε choose an action at random

$$\pi(a|s) = \begin{cases} \frac{\varepsilon}{m} + (1 - \varepsilon) & \text{if } a^* = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a) \\ \frac{\varepsilon}{m} & \text{otherwise} \end{cases}$$

For an ε -greedy policy with $\varepsilon=0.1$

$\pi_0(Red\ cell) =$	UP	DOWN	LEFT	RIGHT
n_0 (New cett) —	25%	25%	25%	25%
- (D. J 11)	UP	DOWN	LEFT	RIGHT
$\pi_1(Red\ cell) =$	2.5%	92.5%	2.5%	2.5%

Monte-Carlo Algorithm

- 1. Start with an **Initial Policy**, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)

$$S_0, a_0, r_0, S_1, a_1, r_1, \dots, S_H$$

3. Compute **mean returns** for each state

$$G_t \cong \frac{1}{k} \sum_{i=1}^k G_{t,i}$$

4. Update the Value function

$$V(s_t) \leftarrow V(s_t) + \alpha(G_t - V(s_t))$$

- 5. Update the ε-greedy policy
- 6. Repeat until convergence

Problems with Monte-Carlo Algorithm

- The samples must be a full trajectory. An episode must be terminated.
 - What if the environment does not have a terminal state?
 - Even when the terminal states exist;
 - Computationally inefficient to run a full episode (CPU)
 - Computationally heavy to compute the return at every states (GPU)
- MC has high variance.
 - The return at each state depends on many random actions, transitions and rewards.

Monte-Carlo Algorithm

- 1. Start with an **Initial Policy**, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)

$$S_0, a_0, r_0, S_1, a_1, r_1, \dots, S_H$$

3. Compute **mean returns** for each state

$$G_t \cong \frac{1}{k} \sum_{i=1}^k G_{t,i}$$

4. Update the **Value function**

$$V(s_t) \leftarrow V(s_t) + \alpha(G_t - V(s_t))$$

- 5. Update the ε -greedy policy
- 6. Repeat until convergence

We often do not want to collect a full trajectory.

But we need a full trajectory to compute the return.

Is there a way to estimate the return(or value) without reaching the terminal state?

Temporal Difference (TD)

We use the Bellman Equation to predict a value of the current step, V_t , by using the estimated value of the next step, V_{t+1} .

Bellman Equation of Value for one step bootstrapping

$$V^{\pi}(s_t) = \mathbb{E}_{a_t \sim \pi(a_t | s_t), s_{t+1} \sim p(s_{t+1} | s_t, a_t)} [r_t + \gamma V^{\pi}(s_{t+1}) | s_t]$$

We can write a simplified version of the above Bellman equation as follows;

$$V(s_t) \cong r_t + \gamma V(s_{t+1})$$

Note that we have depreciated the expectation symbol since in the upcoming case, we are only considering a single step

Temporal Difference (TD) Algorithm

Temporal Difference Algorithm

- 1. Start with an **Initial Policy**, π_0
- 2. Collect a Sample Step

$$S_t, a_t, r_t, S_{t+1}$$

3. Compute **Temporal Difference Target** at the state

$$r_t + \gamma V(s_{t+1})$$

4. Update the Value function

$$V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$$

- 5. Update the ε -greedy policy
- 6. Repeat until convergence

Unlike MC, here we do not have to run the environment until the terminal state. Just 1 step is enough!

TD target

TD error

Temporal Difference (TD) Algorithm

Temporal Difference Algorithm Terminology

TD Target Value
$$r_t + \gamma V(s_{t+1})$$

TD Target Error
$$\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

$$V(s_t) \leftarrow V(s_t) + \alpha(r_t + \gamma V(s_{t+1}) - V(s_t))$$

Is equivalent to:

$$V(s_t) \leftarrow V(s_t) + \alpha \delta_t$$

Policy Structure

An example of a policy in a maze environment

$$\pi_0(Red\ cell) = egin{array}{c|cccc} & UP & DOWN & LEFT & RIGHT \\ \hline 25\% & 25\% & 25\% & 25\% \\ \hline \pi_1(Red\ cell) = & & UP & DOWN & LEFT & RIGHT \\ \hline 2.5\% & 92.5\% & 2.5\% & 2.5\% \\ \hline \end{array}$$

This is an informal way of defining the policy.

Formally, we define a Greedy(deterministic) Policy as;

$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

Note that this is not a probability function anymore for a deterministic policy.

Considering the policy structure, it makes more sense to predict Q values instead of V

Monte-Carlo Algorithm – Q

- 1. Start with an **Initial Policy**, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)

$$S_0, a_0, r_0, S_1, a_1, r_1, \dots, S_H$$

3. Compute **mean returns** for each state

$$G_t \cong \frac{1}{k} \sum_{i=1}^k G_{t,i}$$

4. Update the **Q function**

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (G_t - Q(s_t, a_t))$$

- 5. Update the ε -greedy policy
- 6. Repeat until convergence

Bellman Equation for Q

Bellman Equation of Q for one step bootstrapping

$$Q^{\pi}(s_t, a_t) = r_t + \mathbb{E}_{a_t \sim \pi(a_t|s_t), s_{t+1} \sim p(s_{t+1}|s_t, a_t)} [\gamma Q^{\pi}(s_{t+1}, a_{t+1})|s_t, a_t]$$

We can write a simplified version of the above Bellman equation as follows;

$$Q(s_t, a_t) \cong r_t + \gamma Q(s_{t+1}, a_{t+1})$$

Note that we have depreciated the expectation symbol since in the upcoming case, we are only considering a single step

SARSA

$$Q(s_t, a_t) \cong r_t + \gamma Q(s_{t+1}, a_{t+1})$$
Next

state

 $s_t, \alpha_t, r_t, s_{t+1}$

Data of 1 step

A usual 1 step sample is not enough! We need the next action.

We can easily obtain the next action by using out policy!

We call the algorithm that uses this information a **SARSA**

action

SARSA Algorithm

SARSA Algorithm

- 1. Start with an **Initial Policy**, π_0
- 2. Collect a Sample Step

$$S_t$$
, a_t , r_t , S_{t+1}

- 3. Evaluate the current policy at state, s_{t+1}
- 4. Compute **Temporal Difference Target** at the state

$$r_t + \gamma Q(s_{t+1}, a_{t+1})$$

5. Update the **Q function**

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))$$

- 6. Update the ε -greedy policy
- 7. Repeat until convergence

SARSA Algorithm

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

From David Silver's lecture of Reinforcement Learning https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

Monte-Carlo Update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (G_t - Q(s_t, a_t))$$

TD/SARSA Update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)\right)$$

MC VS TD

Monte Carlo (MC)

Good:

- Zero Bias
- Good convergence properties (even with function approximation)
- Not very sensitive to initial value
- Very simple to understand and use

Bad:

- High Variance
- Must wait until an episode terminates
- Cannot be used for environments with no terminal states.

Temporal Difference (TD)

Good:

- Low Variance
- Usually more efficient than MC
- No need for terminal states.

Bad:

- Some Bias
- Does converge to the optimal V or Q (but not always with function approximation)
- More sensitive to initial value

Blackjack Example

- States (200 of them)
 - Current sum (12 ~ 21)
 - Dealer's showing card (ace ~ 10)
 - Do I have a "useable" ace? (yes or no)
- Action
 - Hit: take another card without replacement
 - Stick: Stop receiving cards and terminate
- Rewards for stick
 - +1 if my sum > dealer's sum
 - 0 if my sum = dealer's sum
 - -1 if my sum < dealer's sum
- Rewards for hit
 - -1 if my sum > 21 and terminate
 - 0 otherwise
- Transitions: automatically hit if my sum < 12

Blackjack Example

Q		Dealer showing 6								
	12	13	14	15	16	17	18	19	20	21
Hit	0.9	0.8	0.7	0.7	0.6	0	0	0	0	0
Stick	0.5	0.6	0.7	0.8	0.9	1	1	1	1	1

Q		Dealer showing 10								
	12	13	14	15	16	17	18	19	20	21
Hit	0.95	0.95	0.95	0.9	0.8	0.7	0.5	0.4	0.3	0
Stick	-0.95	-0.9	-0.9	-0.8	-0.7	0.2	0.5	0.7	0.8	1

MC for Blackjack

- 1. Start with an Existing Policy, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)

States				
Dealer's Card	10	10	10	10
My Card Sum	13	15	18	20
Usable ace?	No	No	No	No
Action Chosen	Hit	Hit	Hit	Stick
Reward	0	0	0	+1

MC for Blackjack

- 1. Start with an Existing Policy, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)
- 3. Compute **mean returns** for each state

States				
Dealer's Card	10	10	10	10
My Card Sum	13	15	18	20
Usable ace?	No	No	No	No
Action Chosen	Hit	Hit	Hit	Stick
Reward	0	0	0	+1

MC for Blackjack

States				
Dealer's Card	10	10	10	10
My Card Sum	13	15	18	20
Usable ace?	No	No	No	No
Action Chosen	Hit	Hit	Hit	Stick
Reward	0	0	0	+1

- 1. Start with an **Existing Policy,** π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)
- 3. Compute **mean returns** for each state
- 4. Update the **Q function**

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (G_t - Q(s_t, a_t))$$

G([10,13,No]) = +1
G([10,15,No]) = +1
G([10,18,No]) = +1
G([10,20,No]) = +1

Q		Dealer showing 10								
	12	13	14	15	16	17	18	19	20	21
Hit	0.95	0.95	0.95	0.9	0.8	0.7	0.5	0.4	0.3	0
Stick	-0.95	-0.9	-0.9	-0.8	-0.7	0.2	0.5	0.7	0.8	1
Q				D	ealer sh	owing 1	L O			
	12	13	14	15	16	17	18	19	20	21
Hit	0.95	0.95	0.95	0.9	0.8	0.7	0.5	0.4	0.3	0
Stick	-0.95	-0.88	-0.9	-0.78	-0.7	0.2	0.5	0.7	0.8	1

SARSA for Blackjack

Monte-Carlo Algorithm for Blackjack

Start with an **Existing Policy**, π_0

SARSA for Blackjack

- 1. Start with an **Existing Policy**, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)
- 3. Compute **Temporal Difference Target** at the state

$$r_t + \gamma Q(s_{t+1}, a_{t+1})$$

Q		Dealer showing 10								
	12	13	14	15	16	17	18	19	20	21
Hit	0.95	0.95	0.95	0.9	0.8	0.7	0.5	0.4	0.3	0
Stick	-0.95	-0.9	-0.9	-0.8	-0.7	0.2	0.5	0.7	0.8	1

$$Q([10,13,No],Hit) = 0 + 0.9 * Q([10,15,No],Hit)$$

 $Q([10,13,No],Hit) = 0 + 0.9 * 0.9 = 0.81$

States		
Dealer's Card	10	10
My Card Sum	13	15
Usable ace?	No	No
Action Chosen	Hit	Hit
Reward	0	

SARSA for Blackjack

- 1. Start with an Existing Policy, π_0
- 2. Collect a Sample Trajectory(that is until the terminal step)
- 3. Compute **Temporal Difference Target** at the state
- 4. Update the **Q function** $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$

Q		Dealer showing 10								
	12	13	14	15	16	17	18	19	20	21
Hit	0.95	0.95	0.95	0.9	0.8	0.7	0.5	0.4	0.3	0
Stick	-0.95	-0.9	-0.9	-0.8	-0.7	0.2	0.5	0.7	0.8	1
Q				D	ealer sh	owing 1	.0			
	12	13	14	15	16	17	18	19	20	21
Hit	12 0.95	13 0.95	14 0.95	15 0.9	16 0.8	17 0.7	18 0.5	19 0.4	20 0.3	21 0

$$Q([10,13,No],Hit) = 0.81$$

Blackjack Example

Blackjack Example

On-Policy VS Off-Policy

On-Policy

- "Learn on the job"
- Learn about a policy from experiences sampled from that policy.

Off-Policy

- "Look over someone's shoulder"
- Learn about a policy from experiences sampled from other policies.

Next Lecture

Q-Learning

Introduction to Deep Learning