Universidade do Sul de Santa Catarina - UNISUL - Campus: Grande Florianópolis Curso: Sistemas de Informação - Disciplina: Programação Linear e Grafos - Prof. Aran - Folha 4 - 2019-B (Grafos de Euler e Grafos Hamiltonianos)

1. Uma empresa afirmou, que iria a asfaltar as estradas que várias as cidades. Para isso a empresa, utilizo um plano de obras, onde prometeu para não atrapalhar o trânsito das cidades, ia começar pela cidade 2 passar por todas as estradas uma vez e voltar a cidade. É possível realizar este trabalho?

2. Encontrar um caminho de Euler no grafo representado na matriz valorada.

	V0	V1	V2	V3	V4	V5
V0	0	1		1		2
V1	1	0	4		5	
V2		4	0		3	1
V3	1			0		3
V4		5	3		0	1
V5	2		1	3	1	0

3. Resolver o problema do Carteiro Chinês, considerando a matriz de distância inicial e final do grafo e a matriz de roteamento. Qual é a distância de caminho encontrado?

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9
V0	0	67	98							
V1	67	0		41			131			
V2	98		0	92						108
V3		41	92	0	41			131		
V4				41	0					73
V5						0	51	92		
V6		131				51	0			
V7				131		92		0	81	
V8								81	0	150
V9		108		73					150	0

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9
VO	0	67	98	108	149	249	198	239	320	206
V1	67	0	133	41	82	182	131	172	253	155
V2	98	253	0	92	133	315	264	223	258	108
V3	108	172	92	0	41	223	172	131	212	114
V4	149	131	133	41	0	264	213	172	223	73
V5	249	182	315	223	264	0	51	92	173	323
V6	198	131	264	172	213	51	0	143	224	286
V7	239	172	223	131	172	92	143	0	81	231
V8	320	253	258	212	223	173	224	81	0	150
V9	206	155	108	114	73	323	286	231	150	0

	V0	V1	V2	V3	V4	V5	V6	V7	V8	V9
V0	0	V1	V2	V1	V1	V1	V1	V1	V1	V2
V1	V1	0	V3	V3	V3	V6	V6	V3	V3	V3
V2	V2	V3	0	V3	V3	V3	V3	V3	V9	V9
V3	V1	V3	V3	0	V4	V7	V1	V7	V7	V4
V4	V1	V3	V3	V4	0	V3	V3	V3	V9	V9
V5	V1	V6	V3	V7	V3	0	V6	V7	V7	V7
V6	V1	V6	V3	V1	V3	V6	0	V5	V5	V1
V7	V1	V3	V3	V7	V3	V7	V5	0	V8	V8
V8	V1	V3	V9	V7	V9	V7	V5	V8	0	V9
V9	V2	V3	V9	V4	V9	V7	V1	V8	V9	0

4. Dada a matriz de adjacência de um grafo, determine todos os caminhos hamiltonianos. Determine todos os ciclos hamiltonianos.

	V ₀	V ₁	V ₂	V ₃	V ₄
V ₀	0	1	1	0	0
V ₁	1	0	1	1	0
V ₂	1	0	0	0	1
V ₃	1	0	1	0	1
V ₄	1	0	0	1	0

5. Utilizar a MA de um grafo e a matriz de caminhos de 3 passos, para calcular todos os caminhos hamiltonianos de 4 passos de: V_1 até V_2 e de V_5 até V_3 .

	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	1	1	0	1
V ₂	0	0	0	1	0
V ₃	0	1	0	0	1
V ₄	1	0	1	0	0
V ₅	1	0	0	1	0

P ₃	V ₁	V ₂	V ₃	V ₄	V ₅
V ₁	-		$V_1V_2V_4V_3$	$V_1V_3V_2V_4$	-
			$V_1V_5V_4V_3$	$V_1V_3V_5V_4$	
V ₂	-	-	$V_2V_4V_1V_3$	-	$V_2V_4V_1V_5$
					$V_2V_4V_3V_5$
V ₃	$V_3V_2V_4V_1$	$V_3V_5V_1V_2$	-	-	-
	$V_3V_5V_4V_1$				
V ₄	$V_4V_3V_5V_1$	$V_4V_1V_3V_2$	-	-	$V_4V_1V_3V_5$
V ₅	-	$V_5V_1V_3V_2$	$V_5V_4V_1V_3$	$V_5V_1V_2V_4$	-
		$V_5V_4V_1V_2$			
		$V_5V_4V_3V_2$			