

Arbori minimi de acoperire

Arbori minimi de acoperire

Algoritmul lui Kruskal (1956)

```
tree Kruskal(G) {
    sort(G.E); // sort by weight
    A = \{\};
    for each (node in G.V)
        Make set(node);
    for each ((u, v) in G.E) {
        if (Find set(u) != Find set(v)) {
            A = A \cup \{(u, v)\};
            Union(Find set(u), Find_set(v));
    return A;
```


Complexitate?

```
tree Kruskal(G) {
    sort(G.E); // sort by weight
    A = \{\};
    for each (node in G.V)
        Make set(node);
    for each ((u, v) in G.E) {
        if (Find set(u) != Find set(v)) {
            A = A \cup \{(u, v)\};
            Union(Find set(u), Find_set(v));
    return A;
```


Complexitate?

Flux maxim

Graf capacitate

În general valoarea de pe muchie reprezintă o distanță.

O distanță mai mare face muchia mai greu de parcurs.

Valoarea muchiei poate reprezenta o capacitate.

- Similar apei/curentului, cu cât capacitatea e mai mare cu atât e mai ușor de parcurs.
- Şoselele au și distanță și capacitate (număr benzi/viteză max)

Flux maxim Algoritmul Ford-Fulkerson

- c capacitate muchie
- f flow muchie. Capacitate folosită
- $c_f(u,v) = c(u,v) f(u,v)$ diferența de capacitate
- G_f graful cu muchii c_f

```
FORD-FULKERSON (G, s, t)

for each edge (u, v) \in G. E

(u, v). f = 0

while there exists a path p from s to t in the residual network G_f

c_f(p) = \min\{c_f(u, v): (u, v) \text{ is in } p\}

for each edge (u, v) in p

if (u, v) \in G. E

(u, v). f = (u, v). f + c_f(p)

else

(v, u). f = (v, u). f - c_f(p)
```


Flux maxim Algoritmul Ford-Fulkerson (1956)

- c capacitate muchie
- f flow muchie. Capacitate folosită
- $c_f(u,v) = c(u,v) f(u,v)$ diferența de capacitate
- G_f graful cu muchii c_f

Complexitate?

```
FORD-FULKERSON (G, s, t)

for each edge (u, v) \in G. E

(u, v). f = 0

while there exists a path p from s to t in the residual network G_f

c_f(p) = \min\{c_f(u, v): (u, v) \text{ is in } p\}

for each edge (u, v) in p

if (u, v) \in G. E

(u, v). f = (u, v). f + c_f(p)

else

(v, u). f = (v, u). f - c_f(p)
```


Complexitate?

FORD-FULKERSON (G, s, t)for each edge $(u, v) \in G.E$

$$(u, v). f = 0$$

while there exists a path p from s to t in the residual network G_f

 $c_f(p) = \min\{c_f(u, v): (u, v) \text{ is in } p\}$

for each edge (u, v) in p

if
$$(u, v) \in G.E$$

$$(u, v). f = (u, v). f + c_f(p)$$

else

$$(v,u).f = (v,u).f - c_f(p)$$

Dacă alegem p random $O(E|f^*|)$

Algoritmul Edmonds-Karp (1972)

Dacă alegem p folosind BFS

 $O(VE^2)$

Există și algoritmi cu complexitate mai bună: $O(V^3)$ și O(VE)

Alte considerente grafuri

Se pot schimba în timp.

LineGraph – Pentru un graf non-direcțional muchiile devin noduri și nodurile muchii.

Use case grafuri – Granițe

Use case grafuri – Grafică calculator

Use caser grafuri – utilități

Use case grafuri – Code

Use case grafuri – Reprezentare Jocuri

Use case grafuri - Internet

Use case grafuri – Circuite electrice

Use case grafuri – Circuite logice

Use case grafuri – Grafuri sociale

Use case-uri – Knowledge graph

Use case-uri – Organigrame

