Results are obtained with h_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS CALIBRATED WITH RESPECT TO MSE									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018	
$\omega \ extbf{ci} \ extbf{median}$	$1.0488e - 07$ $(\pm 1.1918e - 07)$ $2.2987e - 09$	$5.8246e - 07$ $(\pm 2.7459e - 07)$ $3.5700e - 09$	$2.5115e - 07$ $(\pm 1.6081e - 07)$ $2.2122e - 09$	$1.6648e - 07$ $(\pm 1.2717e - 07)$ $1.4531e - 09$	$2.3430e - 07 (\pm 1.2450e - 07) 1.0411e - 09$	$7.7768e - 08$ $(\pm 7.2313e - 08)$ $7.7909e - 10$	$1.1626e - 07$ $(\pm 7.6717e - 08)$ $1.1251e - 09$	$8.2065e - 08$ $(\pm 9.0031e - 08)$ $4.5039e - 10$	$7.6453e - 08$ $(\pm 9.2380e - 08)$ $1.0650e - 09$	
lpha ci median	$8.4165e - 06$ $(\pm 1.8472e - 06)$ $6.5997e - 06$	$4.4508e - 06$ $(\pm 6.8046e - 07)$ $3.6480e - 06$	$2.8014e - 06$ $(\pm 4.0029e - 07)$ $2.6366e - 06$	$2.5121e - 06$ $(\pm 4.0132e - 07)$ $1.9850e - 06$	$2.5227e - 06$ $(\pm 6.1411e - 07)$ $1.9079e - 06$	$2.9788e - 06$ $(\pm 3.8023e - 07)$ $2.6174e - 06$	$2.2257e - 06$ $(\pm 2.5925e - 07)$ $2.0616e - 06$	$1.3120e - 06$ $(\pm 2.1788e - 07)$ $1.0858e - 06$	$1.4577e - 06$ $(\pm 2.0309e - 07)$ $1.2525e - 06$	
$egin{array}{c} eta \ ext{ci} \ ext{median} \end{array}$	0.6871 (± 0.0385) 0.7084	0.5490 (± 0.0619) 0.5939	$0.7000 \ (\pm 0.0383) \ 0.7252$	0.7605 (± 0.0353) 0.7904	0.6585 (± 0.0512) 0.7367	0.5583 (± 0.0338) 0.5896	0.5809 (± 0.0380) 0.5806	0.6908 (± 0.0413) 0.7114	$0.6496 \ (\pm 0.0369) \ 0.6620$	
γ^* ci median	$197.5895 (\pm 21.8025) 176.5536$	347.0532 (± 58.0979) 255.3032	349.9407 (± 50.7796) 302.3136	$311.1355 (\pm 43.7591) 257.6042$	$419.7989 (\pm 63.6310) 339.5965$	397.9111 (± 35.5315) 384.7057	$439.0339 (\pm 31.7446) 405.3039$	$454.7184 (\pm 57.8372) 469.6117$	502.6705 (± 36.8364) 475.7176	
h_0^Q ci median	$1.2420e - 04 (\pm 2.1495e - 05) 1.0022e - 04$	$1.7303e - 04$ $(\pm 3.8214e - 05)$ $1.1400e - 04$	$7.7115e - 05$ $(\pm 8.4403e - 06)$ $6.7420e - 05$	$4.6121e - 05 (\pm 7.2599e - 06) 3.8509e - 05$	$4.3171e - 05 (\pm 1.0616e - 05) 3.0170e - 05$	$0.0001 \\ (\pm 1.3409e - 05) \\ 5.8680e - 05$	$6.1981e - 05 (\pm 1.3419e - 05) 4.0850e - 05$	$1.7690e - 05$ $(\pm 3.0904e - 06)$ $1.5496e - 05$	$6.7046e - 05$ $(\pm 1.6605e - 05)$ $4.5133e - 05$	
MSE	0.3344	0.4992	0.3164	0.1865	0.2756	0.4952	0.5942	0.8425	1.4562	
IVRMSE	0.0821	0.0916	0.1231	0.1047	0.1211	0.1351	0.1270	0.1390	0.1318	
MAPE	0.1024	0.1053	0.1555	0.1366	0.1616	0.1886	0.1722	0.2196	0.1849	
OptLL	207.0992	216.2553	244.4436	345.9152	369.4851	433.9732	544.1547	617.0931	679.5187	