Устройства приема и преобразования сигналов (УП и ПС)

Лекции – Жаркова Надежда Алексеевна

Семинары: Ефремов Владимир Александрович, РЛ1-72,74 Жаркова Надежда Алексеевна, РЛ1-71,73,79

Лабораторные работы:

УЛК – Ефремов Владимир Александрович, Венгржановский Виталий Владиславович.

РТ – Жаркова Надежда Алексеевна, Рыжов Владимир Сергеевич.

Основная рекомендуемая литература

- 1. Розанов Б.А. Приемники радиосистем. Конспект лекций по курсу «Радиоприемные устройства». Ч.1: Учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2000.-56 с. (эл.версия)
- 2. Розанов Б.А. Приемники радиосистем. Конспект лекций по курсу «Радиоприемные устройства». Ч.2: Учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2003.-152 с.: ил. (эл.версия)
- 3. Жаркова Н.А., Кузьмина Е.К. Эскизный расчет радиоприемника: Учеб. пособие.- М.: МГТУ, 2007. 25 с.; ил. (эл.версия)
- 4. Ефремов В.А., Кузьмина Е.К., Мыкольников Я.В. Методические указания к лабораторным работам по курсу «Устройства приема и преобразования сигналов»/Под ред. И.Б.Власова. М.: МГТУ, 2012. 28с.;ил. (эл.версия)
- 5. Розанов Б.А., Соловьев Г.Н., Кузьмина Е.К. Техника оптимальной фильтрации: Учеб. пособ. М.: МГТУ им. Н.Э. Баумана, 1988. 50 с.

- 6. Радиоприемные устройства: Учебник для вузов /Н.Н.Фомин, Н.Н. Буга, О.В.Головин и др.; Под ред. Н.Н.Фомина.-3-е издание, стереотип. М.: Горячая линия Телеком, 2007.- 520с.;ил.
- 7. Буга Н.Н. и др.Радиоприемные устройства: Учебник для вузов / Н.Н. Буга, А.И. Фалько, Н.И. Чистяков; Под ред. Н.И. Чистякова.- М.: Радио и связь, 1996.- 512с.;ил.
- 8. Сборник задач и упражнений по курсу «Радиоприемные устройства». Учебное пособие для вузов./Ю.Н. Антонов-Антипов, В.П. Васильев, В.Д. Разевич; Под ред. В.И.Сифорова. М.: Радио и связь, 1984. 224с.; ил.
- 9. Радиоприемные устройства: Учеб. пособие для радиотехнических вузов /Ю.Т. Давыдов, Ю.С.Данич, А.П. Жуковский и др. Под ред.А.П. Жуковского. М.: Высш. шк., 1989.- 342с.; ил.
- 10. Радиоприемные устройства / Под ред. Л.Г. Барулина. М.: Радио и связь, 1984. 272 с.
- 11. Побережский Е.С. Цифровые радиоприемные устройства. М.: Радио и связь, 1987. 184с.; ил.

Содержание курса и последовательность изложения.

- Обзор функций и характеристик радиоприемных устройств и структурных схем основных типов приемников.
- Шумы приемника и антенны, характеристики приемника определяющие его чувствительность.
- Принципы построения малошумящих входных устройств и малошумящих усилителей.
- Приемники шумовых излучений радиометров.
- Изучение типовых звеньев приемных схем и особенностей прохождения сигналов через эти устройства (резонансные усилители, преобразователи частоты, гетеродины, детекторы).

Принятые сокращения

РПрУ, РПерУ – радиоприемные и радиопередающие устройства

АМ, ЧМ, ФМ, ИМ - амплитудная, частотная, фазовая, импульсная модуляция

АД, ЧД, ФД, ИД –амплитудный, частотный, фазовый, импульсный детектор

АПЧ, ФАПЧ – автоматическая и фазовая автоматическая подстройка частоты

АТТ – аттенюатор

АЦП, ЦАП – анагово-цифровой и цифро-аналоговый преобразователи

АЧХ, ФЧХ – амплитудно- и фазочастотная характеристики

ВАХ, ВФХ – вольтамперная и вольтфарадная характеристики 26.11.2020

 Γ – генератор, Γ Т - гетеродинный тракт (вспомогательный генератор)

ДБШ, ТБШ – диод, транзистор с барьером Шоттки

ДГ – диод Ганна

ДВ, СВ, КВ, УКВ - длинные, средние, короткие, ультракороткие волны

ДМВ, СМВ, ММВ – дециметровые, сантиметровые, миллиметровые волны

НЧ, ПЧ, ВЧ, СВЧ, - низкие, промежуточные, высокие, сверхвысокие частоты

ДУ, ОУ – дифференциальный, операционный усилители

МП- микропроцессор

МШУ – малошумящий усилитель

МПС – микрополосковая линия

ОАВ, ПАВ –объемные, поверхностные акустические волны

ОС, ООС, ПОС -обратная связь, отрицательная и положительная

ПТ, БПТ, - полевой, биполярный транзисторы

СМ – смеситель

УРЧ, УВЧ, УПЧ, УНЧ– радиочастоты, усилители высокой, промежуточной, низкой частоты

УПТ, УЧМ— усилители постоянного тока и частоты модуляции ФНЧ, ФВЧ, ФПЧ - фильтры низкой, высокой, промежуточной частот

ФСС, ФСИ – фильтр сосредоточенной селекции, избирательности

Классификация приемных устройств

- по назначению: радиовещательные, телевизионные, связные, радиолокационные, радиотелеметрические, радионавигационные, разведывательные, радиоизмерительные, радиоастрономические и т.п.;
- по месту установки и эксплуатации: стационарные, бортовые (корабельные, самолетные, автомобильные, приемники, устанавливаемые на борту КА и ракет и прочее);
- **по особенностям схемы:** детекторные, прямого усиления, гетеродинные, супергетеродинные, регенеративные, сверхрегенеративные, радиометрические и прочее.
- по методу обработки сигнала: аналоговые, аналогоцифровые и цифровые РПрУ

в) *по виду модуляции* принимаемых сигналов - приемник непрерывных или импульсных сигналов, АМ-,ЧМ-, ФМ- приемники, приемники кодово-импульсной модуляции или манипуляции, шумовых излучений и пр.;

Mod

г) *по диапазону принимаемых волн*, согласно отечественной классификации, различают приемники длинноволновые, средневолновые, КВ, УКВ, СВЧ, ММ-диапазона, перестраиваемые и не перестраиваемые

Стандарты частотных диапазонов

Основные функции радиоприемных устройств

РПУ является частью РТ системы передачи информации.

Для приема полезного сигнала необходимо:

- усиление ЭДС, наводимой в антенне радиоволнами,
- отделение полезного сигнала от помех
- преобразование его в вид, удобный для использования в оконечном устройстве.

Структурная схема РПУ имеет вид.

Оконечное устройство:

- телефон или громкоговоритель,
- электронно-лучевая трубка,
- самопишущий прибор,
- телемеханическое устройство,
- МП, компьютер и пр., т.е. самостоятельный прибор, использующий принятое сообщение.

<u>Антенна:</u> - генератор ЭДС с определенным $Z_{\text{вых}}$, зависящей от напряженности Э-М поля радиоволн вблизи антенны.

Детектирование

На выходе А <u>всегда</u> ВЧ модулированный сигнал с законом модуляции, определяемым характером передаваемого сообщения и видом модуляции.

На вход оконечного устройства подается НЧ или видео напряжение, представляющее модулирующую функцию принятого ВЧ сигнала.

Отсюда следует необходимость осуществления в радиоприемнике процесса <u>демодуляции</u> или <u>демектирования</u> Эта функция осуществляется специальным <u>демекторным каскадом (ДК)</u> приемника.

Усиление.

ВЧ усиление обеспечивает:

- - эффективную работу детектора
- - отделение сигнала от помех до детектора.

НЧ усиление обеспечивает:

• - согласование с нагрузкой

К [дБ]=10
$$\lg(P_{\text{вых}}/P_{\text{вх}})$$
 или К [дБ]=20 $\lg(U_{\text{вых}}/U_{\text{вх}})$.

Общее усиление приемниках достигает 120-160 дБ $(10^6 - 10^8$ по напряжению или $10^{12} - 10^{16}$ - по мощности).

Избирательность или фильтрация.

Отвение сигнала от помех, сопутствующих приему.

Основные виды внешних помех:

- Помехи от радиостанций, любых устройств, предназначенных для генерирования и излучения радиоволн.
- Промышленные помехи
- Атмосферные помехи
- Помехи космического происхождения. Вызваны различными излучениями космического пространства. Космические шумы.
- Организованные помехи умышленно создаваемые в условиях военных действий. Представляют один из наиболее труднопреодолимых видов помех.

Эффекты вызываемые внешними помехами

Сигнал приходит на фоне значительных (одной и нескольких) внешних помех, при этом возникают :

<u>Перекрестная модуляция</u> — перенос модуляции помехи на полезный сигнал. Ухудшает соотношение С/Ш.

<u>Сжатие</u> амплитуды сигнала — нарушение линейной зависимости $U_{\text{вых}}$ от $U_{\text{вх}}$, возникает в режиме большого полезного сигнала

 ${\it \underline{Enokupobahue}}$ — тоже нарушение линейной зависимости $U_{\rm вых}$ от $U_{\rm вx}$, но от действия сильных помех отличных по частоте.

<u>Интермодуляция</u> — при воздействии внешней помехи на НЭ усилительного тракта приемника на частотах $f_1, f_2, f_3 \dots$, выходе НЭ возникают составляющие с частотами $m f_1 \pm n f_2 \pm p f_3 \dots$, которые могут совпадать с частотой настройки приемника.

Основные источники внутренних помех или шумов

- 1) *Флуктуационные* шумовые процессы присутствуют во всех элементах приемника.
- 2) Контактные шумы и трески, вызванные нарушением прохождения тока в цепях приемника в результате плохого качества контактов.
- 3) Помехи, вызванные возбуждением и паразитной модуляцией отдельных каскадов приемника, например, микрофонный эффект, наводки питающего напряжения.
- 4) Помехи от вспомогательных сигналов в приемнике: гармоники гетеродина, калибровочные сигналы и пр.
- **Флуктуационные** помехи или **шумы** присущи всем цепям приемников. Для их уменьшения применяют малошумящие усилители (МШУ) во входных каскадах приемников.

<u>Избирательностью или селективностью</u> называют способность приемника выделять сигнал из помех.

Сигнал отличатся от помех

- - направлением прихода,
- - поляризацией,
- - временем появления, амплитудой и др..

- Селекция антенной.
- Селекция в оконечном устройстве (ОУ).
- - видом частотного спектра, Селекция приемником.

В помехозащищенных приемниках - одновременная селекция.

Частотная избирательность. Способность отделять полученный сигнал от помех, отличающихся от сигнала своим спектром.

Осуществляется в частотно избирательных цепях (фильтрах), Частотная избирательность возможна по ВЧ (до детектора) и по ₂₆НЧобросле детектора).

Основные характеристики приемников

<u>Чувствительность</u> - способность принимать слабые сигналы.

В ДВ, СВ, КВ, МВ диапазонах <u>чувствительность</u> приемника характеризуется величиной минимальной ЭДС сигнала в антенне E_{Amin} или минимальным напряжением на входе $U_{\rm Bx\ Muh}$, при которых приемник развивает нормальную выходную мощность при заданном превышении сигнала над уровнем <u>собственных шумов приемника</u>.

Если считать, что приемник согласован с антенной,

$$R_{\rm A} = R_{\rm BX\Pi p}$$

$$U_{\rm Bx\;min} = E_{\rm Amin}/2$$

Poпт(xls)

Poпт(docx)

На СВЧ чувствительность оценивают в единицах мощности, поступающей на вход приемника $P_{\rm A~min}$ Зная величины $R_{\it ex~np}$ и $R_{\it A}$

 $E_{
m A~min}$ и $P_{
m A~min}$ легко можно пересчитать друг в друга...

При согласование ($R_{ex\ np} = R_A$):

$$P_{A min} = I U_{ex min} = (E_{A min} / 2R_{BX IIP}) (E_{A min} / 2)$$

$$P_{A min} = E_{A min}^2 / 4R_{\text{BX IIP}}$$

Предельная чувствительность приемника $P_{\text{пред}}$ — называется мощность сигнала на его входе, при которой мощность полезного сигнала на выходе линейной части приемника (на входе детектора) равна мощности собственных шумов системы антенны и приемника, т.е отношению сигнал/шум $\gamma=1$.

Реальная чувствительность приемника P_{pean} — называется мощность на входе приемника, при которой мощность сигнал на выходе превышает мощность собственных шумов в заданное число раз γ (отношение сигнал/шум).

$$P_{
m pean} = \gamma P_{
m пред}$$

Единицы измерения чувствительности [Вт], [В], [дБ], [дБм]:

$$P_{A min} = 10^{-14} \dots 10^{-12} \text{ Bt.}$$

$$S [дБ] = 10 lg(P_{A min}/P_{Bblx}) = -140 дБ...-120 дБ.$$

$$S[дБм] = -110дБм...-90 дБм = (S [дБ] + 30) дБм$$

Пример:

Чувствительность задана: S = -116 дБм.

Соответствует:

S= -146 дБ

$$P_{\text{A min}} = \frac{1}{10^{14.6}} = 2,51 \cdot 10^{-15}$$
 $P_{\text{A min}} = 2,51 \cdot 10^{-15} \text{ BT}$

на $R_{\rm BX}$ =50 Ом по закону Ома

$$U = \sqrt{P \cdot R_{\text{BX}}} = \sqrt{2,51 \cdot 10^{-15} \cdot 50} = 0,35 \cdot 10^{-6} \,\text{B}$$

 $U_{\rm px} = 0.35 \ 10^{-6} \, \rm B$

 $E_{A min} = 0.7 \ 10^{-6} \ \mathrm{B}$

 Частотная
 избирательность,
 оценивается
 формой

 резонансной
 характеристики
 приемника
 (кривой

 избирательности)
 или
 зависимостью
 K(f) усилением

 высокочастотных
 каскадов
 приемника
 на
 несущей
 частоте

 сигнала.
 сигнала
 сигна
 сигна
 сигна
 сигна
 сигна</t

 $\gamma(f) = K(f)/K_0$ - нормированная характеристика

 K_0 - коэффициент усиления на центральной f_0 настройки приемника.

Принято строить в логарифмическом масштабе по уровню γ напряжения или мощности.

Полоса пропускания, соответствует спаду усиления на -3 дБ, или 0,5 раз по P или 0,707 по U.

$$\Pi_{0.707} = \Pi_{0.7} = \Pi.$$

-3 -20 -40 -60

Коэффициент прямоугольности.

$$K_{\mathbf{n}\gamma} = \mathbf{\Pi}_{\gamma} / \mathbf{\Pi}_{0.7}$$
.

 Π_{γ} определяют по уровню $\gamma = 0,1,0,01,0,001$ (раз) по напряжению, что соответствует -20, -40, -60 дБ.

Для большинства сигналов идеальная $\gamma(f)$, имеет прямоугольную форму и $K_{\eta\gamma}=1$

Коэффициент прямоугольности определяет степень подавления соседних паразитных каналов.

Подавление по соседней станции (соседнего канала) σ_{cc} .

Требование обеспечения подавления на частоте отстоящей от центральной частоты настройки приемника на $\Delta f = \Pi$.

Диапазон принимаемых частот

Определяет интервалы частотного диапазона, где приемник должен обеспечивать нормальный прием полезных сигналов.

Различают приемники с настройкой на фиксированную частоту и с плавной перестройкой частоты.

Последние характеризуются коэффициентом перекрытия диапазона частот.

$$\alpha = f_{\max} / f_{\min},$$

где f_{\max} и f_{\min} - максимальная и минимальная частоты рабочего диапазона.

Выходная мощность или выходное напряжение приемника

определяются как мощность или напряжение, развиваемые выходным каскадом приемника на заданной нагрузке

Характеристики качества воспроизведения

Определяются искажениями вносимыми элементами приемника в принятый сигнал в процессе усиления, детектирования и избирательности.

- амплитудно-частотные,
- фазо-частотные,
- нелинейные,
- искажения динамического диапазона.

<u>Амилитудно-частотные искажения</u> вызваны зависимостью K=f(F) от частоты модуляции и характеризуются кривой верности воспроизведения.

Кривая верности воспроизведения это нормированная зависимость уровня выходного сигнала РПрУ $U_{\rm вых}$ от частоты модуляции F при неизменном уровне входного модулированного сигнала $E_{\rm A}{=}{\rm const}$ и заданных параметрах модуляции.

Фазочастотные искажения

возникают за счет нелинейности фазо-частотной характеристики $\phi = f(F)$ приемника. На слух не воспринимаются.

Разные составляющие спектра по-разному сдвигаются во времени.

Идеальная ФЧХ линейная, при которой все составляющие спектра задерживаются на $\Delta t = \Delta \phi / \Delta \omega$.

Амплитудно- и фазо-частотные искажения создаются всеми каскадами приемника и представляют собой *линейные* искажения.

Нелинейные искажения

проявляются в возникновении на выходе гармоник и комбинационных частот спектральных составляющих модулирующего сигнала и характеризуются коэффициентом гармоник

$$K_{\Gamma} = \frac{\sqrt{U_2^2 + U_3^2 + \dots}}{U_1},$$

Ui — амплитуда i-гармоники частоты модуляции

Динамический диапазон (ДД)

Способность приемника обнаруживать слабый входной сигнал, и обрабатывать сигналы большого уровня без искажения.

ДД =
$$10\lg(P_{\text{мах}}/P_{\text{мин}}) = 20\lg(U_{\text{мах}}/U_{\text{мин}})$$

<u>Искажения динамического</u> диапазона определяются по амплитудной характеристике приемника.

При разработке РПУ задаются характеристиками регуляторов:

- ручной регулировки громкости,
- ручной и автоматической регулировки усиления (APY),
- ручной и автоматической регулировки полосы, частоты $(\underline{A\Pi Y})$.

Характеристики электромагнитной совместимости (ЭМС)

Возможность работать РПУ совместно с комплексом радиоэлектронной аппаратуры.

26.11.2020 32

<u>Дополнительные требования по:</u>

- точности частотной настройки,
- уровню просачивающейся в антенну мощности гетеродина,
- подавлению комбинационных помех от гетеродинов приемника и др.
- устойчивость, механическая прочность, габариты, вес и надежность работы.
- экономичность питания, удобство управления, стоимость.

Структурные схемы основных типов радиоприемников.

Детекторный приемник

А.С. Попов 7 мая 1895

Детектор

Между А и детектором включают LC-контур, настроенный на $f_{\rm c}$ и выполняющий роль согласующих трансформаторов между антенной и детектором

После усовершенствования удалось осуществлять прием радиотелеграфных (1896) и радиотелефонных (1899) сигналов.

устройство

(наушники)

26.11.2020

Входная

цепь

Введение в приемник гетеродина существенно повысило чувствительность радиотелеграфного приема.

Приемник с гетеродином приобрел свойство частотной избирательности. Итальянский изобретатель Гульельмо Маркони установил связь через Атлантический океан (1901)

Подобные простейшие приемники называемые <u>детекторными</u>, используются и в настоящее время.

Приемники АРМСТРОНГА

- Диод Джон Амброз Флеминг 1904 г., Англия
- Триод Ли Де Форест 1906 г., США
- Автогенератор Александр Мейсснер 1913 г., Австрия
- Регенеративный приемник Эдвин Армстронг 1913 г.,
 США

Регенеративный приемник АРМСТРОНГА

Эквивалентная схема по BЧ (fc)

Эквивалентная схема по НЧ (Fм)

Достоинства. Схема обладает высокой чувствительностью и избирательностью.

Недостатки. Является очень неустойчивой.

Сверхрегенеративный приемник АРМСТРОНГА

В 1922 г. Э. Армстронг усовершенствовал схему, введя в нее $E_{\rm BCII}$ с частотой $f_{\rm BCII}$. $F_{\rm M} << f_{\rm BCII} << f_{\rm c}$.

- Вспомогательный генератор рабочую точку перемещает с участка с большой крутизной (большое усиление) на участок с малой крутизной (малое усиление). Максимальная амплитуда периодически генерируемых импульсов оказывалась пропорциональной амплитуде принимаемого сигнала. Такой сверхрегенеративный каскад может давать усиление до 106 раз.
- Основными недостатками сверхрегенеративных приемников являются:
- - возможность получения большого усиления только при условии $F_{\rm M} << f_{\rm BCH} << f_{\rm c}$.
- - большие нелинейные искажения;
- - трудность перестройки в широком диапазоне частот
- - низкая избирательность.

Приемники прямого усиления.

Избирательность в приемнике прямого усиления осуществляется на частоте принимаемого сигнала.

Для обеспечения достаточной избирательности вводится несколько каскадов УВЧ с резонансными контурами.

<u>Достоинства</u>:

- высокая чувствительностью,
- большая выходная мощность,
- высокое качеством воспроизведения.

Недостатки

- трудно обеспечить высокую избирательность, особенно в перестраиваемых приемниках на высокой частоте.
- трудно получить большое устойчивое усиление на высокой частоте сигнала.

Получения узкой П приемника на ВЧ ограничено добротностью:

$$\Pi = \frac{f}{Q_2} = \frac{f}{Q \cdot \alpha_i(n)}$$

• где Q_3 - эквивалентная добротность фильтра, Q - добротность каждого контура, $\alpha_i(n)$ - коэффициент, зависящий от числа n - резонансных контуров и типа схемы УВЧ (индекс i).

<u>Пример</u>: f = 100 Мгц и $\Pi = 10$ кГц, когда $\alpha_{\mathbf{i}}(n) = 1$, необходима Q = 10000, на практике недостижимая.

Супергетеродинные приемники

Предложен в 1917-1918 г. Леви во Франции и Шотки в Англии. Реализована в 1918 г Э. Армстронгом.

Основное усиление до детектора осуществляется УПЧ на фиксированной частоте: $f_{\Pi} = |mf_{c} \pm nf_{\Gamma}|, n, m = 1,2,3,....$ (комбинационное преобразование)

$$f_{\Pi} = |f_{
m c} - f_{\Gamma}|$$
 - при $n = m = 1$,...($npocmoe npeoбразование$)

Основные достоинства супергетеродинного приемника:

- 1. Возможность получения <u>большого стабильного усиления</u> $K_{\Sigma} = K_{yвч} * K_{yпч} * K_{yнч}.$
- 2. <u>Высокая избирательность</u> так как может быть реализована необходимая добротность на f_{Π} : $\Pi = f/Q$ \mathfrak{I} f_{Π} фиксированная и f_{Π} << $f_{\mathfrak{C}}$.
- 3. Высокая чувствительность, как следствие п.п. 1 и 2.

Основные недостатки.

- 1. Относительная сложность.
- 2. Наличие паразитных каналов приема.

$$f_{\Pi} = | mf_{c} \pm nf_{\Gamma} |, \quad n, m = 1,2,3,...$$

$$\mathcal{A}_{\Pi} R P_{\Gamma} >> P_{c} \qquad f_{\Pi} = | f_{c} \pm nf_{\Gamma} |, \quad n = 1,2,3,...$$

$$n = 1 \qquad f_{\Pi} = | f_{c} - f_{\Gamma} |, \quad f_{\Pi} = | f_{3} - f_{\Gamma} |.$$

Паразитные каналы:

26.11.2020

$$1. f_{K} = |nf_{\Gamma} \pm f_{\Pi}|, \quad n = 1,2,3,...$$
 $npu \ n=1, ecnu \ f_{\Pi} = f_{c} - f_{\Gamma}, \text{ To } \quad f_{3} = f_{\Gamma} - f_{\Pi}$

 $2.f_{\Pi}$ – канал прямого прохождения

 $3. f_{cc}$ — соседняя станция

Сос Стан

45

Конт

Выбор промежуточной частоты супергетеродинного приемника

1 условие - f_{π} должна быть достаточно большой, чтобы обеспечить заданное ослабление зеркального канала при реализуемой добротности контуров преселектора.

2 условие - f_{π} должна быть достаточно малой, чтобы обеспечить достаточно узкую полосу приемника, для реализации высокого усиления и подавления помех по соседнему каналу

Определение ПЧ для заданного подавления $\sigma_{_{3K}}(1$ -е условие)

Подавление ЗК осуществляется контурами $\underline{npecenekmopa}$. Если выбрана схема из n контуров:

 $\gamma(\Delta f) = K(\Delta f)/K$, - нормированная (по амплитуде) АЧХ контура,

Для нормирования по частоте вводится понятие обобщенной расстройки:

$$a=2\Delta f/\Pi$$
, где $\Delta f=f-f_0$.

AЧХ одного контура: $\gamma(ja) = 1/(1+ja)$

Выражение для АЧХ справедливо только симметричных узкополосных $(\Pi << f_0)$ резонансных кривых.

По определению : $Q_{\rm эвч} = f_0 / \Pi$, ($\Pi = f_0 / Q_{\rm эвч}$) тогда

$$a = \frac{2\Delta f}{\Pi} = \frac{2\Delta f Q_{3B^{4}}}{f_{0}} \qquad |\gamma(ja)| = \gamma(a) = \frac{1}{\sqrt{1+a^{2}}}$$

Для преселектора состоящего из n-контуров:

$$\gamma^{(n)}(a) = \left(\frac{1}{\sqrt{1+a^2}}\right)^n = (1+a^2)^{-n/2}.$$

σ_{зк} - ослабление зеркального канала это число показывающее, во сколько раз коэффициент передачи преселектора на частоте настройки (т.е. на частоте fc), больше коэффициента передачи на частоте зеркального канала

$$f_{\Pi} \qquad f_{\Pi}$$

$$f_{\sigma} \qquad f_{\sigma} \qquad f_{\sigma} = f_{\sigma}$$

$$\Delta f = 2f_{\Pi}$$

$$\sigma_{_{3K}} = \frac{1}{\gamma^{(n)}(a)}$$

$$\sigma_{_{3K}} = \left(\frac{1}{\sqrt{1+a^2}}\right)^{-n} = \left(1+a^2\right)^{n/2}.$$

$$a = \frac{2\Delta f Q_{\ni BY}}{f_0} \qquad \Delta f = 2f_{\text{I}}$$

$$\sigma_{_{3K}} \ge \left(1 + \left(\frac{4f_{_{\Pi}}Q_{_{9}}}{f_{_{c}}}\right)^{2}\right)^{n/2}$$

$$f_{\Pi} \ge \frac{f_c}{4Q_{\text{ary}}} \sqrt{\sigma_{\text{3K}}^{2/n} - 1} = A$$

<u> 1 условие</u> выбора (ПЧ):

$$f_{\Pi(1)} \ge \frac{f_c}{4Q_{_{\mathrm{ЭВЧ}}}} \sqrt{\sigma_{_{_{3\mathrm{K}}}}^{2/n} - 1} = \mathrm{A.}$$

2- условие определяется для заданной добротности контура на ПЧ и заданной полосы приемника.

Должно выполняться неравенство:

$$f_{\Pi(2)} < \Pi Q_{\mathbf{y}\Pi\mathbf{q}} \Psi(n) = \mathbf{B},$$

 $Q_{
m yn u}$ - эквивалентная добротность контуров, настроенных на ПЧ Π –полоса приемника

 $\Psi(n)$ – коэффициент, зависящий от типа резонансной системы и числа каскадов (n) схемы УПЧ и смесителя. Полагаем $\Psi(n) = 1$.

$$f_{\Pi(2)}$$
 < $\Pi Q_{\mathbf{y}\Pi\mathbf{q}}$ = \mathbf{B}

Для выполнения 1 и 2 условия промежуточная частота:

$$(A < f_{\Pi} < B)$$

Если выполняется неравенство:

 $f_{\Pi(2)} > f_{\Pi(1)}$, (В>А), то приемник имеет одно преобразование и

одну ПЧ.

Если это неравенство не выполняется и В<А, то приемник должен иметь две и более ПЧ.

В 1/ом преселекторе подавление 1-го зеркального канала

В канале $f_{\Pi 1}$ подавление 2-го зеркального канала.

В канале $f_{\Pi 2}$ формирование $\Pi_{\Pi p}$ и ослабление соседней станции.

Инфрадин.

В приемнике возможно преобразование на частоту $f_{\rm n} > f_{\rm c}$

<u>Достоинство</u> - высокое подавлении побочных каналов за счет высокой избирательности входных цепей и простоте настройки.

Недостатки:

- высокие требования в стабильности частоты гетеродина,
- возможность перегрузки усилительных элементов широкополосных входных устройств посторонними мешающими сигналами.

Применяются в системах подвижной связи и в других широкополосных приемниках беспоисковой настройкой.

Не перестраиваемые широкополосные инфрадиные приемники (ШИП) СВЧ применяются для преобразования сигналов в широких, близкорасположенных или стыкующихся между собой полосах частот.

Инфрадины используются для переноса частоты. Такие задачи возникают в измерительной технике.

Структурная схема когерентного ШПУ СВЧ

Куприянов

Приемник прямого преобразования (синхродин, гомодин).

Если $f_{\Gamma} = f_{c}$, то происходит преобразование на «нулевую частоту».

 $f_{\scriptscriptstyle \Gamma}$ должна с точностью до фазы совпадает или очень близка $f_{\rm c}.$

На выходе смесителя (синхронного детектора), установлен ФНЧ. Граничная частота ФНЧ соответствует $F_{_{\rm M\ Make}}$.

<u>Достоинство</u> – простота и отсутствие ряда побочных каналов приема.

<u>Недостатки</u> – необходимость фазовой автоподстройки частоты (ФАПЧ) и повышенные требования к линейности тракта.

Без ФАПЧ может быть реализован на основе двухканальных синхродинов с использованием квадратурных колебаний от общего гетеродина.

Особенности построения цифровых приемников (ЦП)

Преимущества ЦП.

- 1. Большое число каналов связи за счет
- лучшей фильтрации
- реализации разнообразных типов модуляции, манипуляции и кодирования информации
- 2. Лучшее качество передачи информации
- 3. Высокие эксплуатационные характеристики. Высокая степень повторяемости и идентичность создаваемых устройств
- 4. Возможность реализации на одном устройстве большого числа режимов работы за счет изменения программы управления
 - 5. Возможность автоматического проектирования и математического моделирования.
 - 6. Малогабаритность и низкая стоимость.

Недостатки

- 1. Ограничение по частоте. Совершенствование технологии цифровых устройств ведет к снижению ограничения.
- 2. Появление дополнительных помех. Шумы квантования, дискретизации, наличие вспомогательный генераторов, ошибки при цифровой обработке т.д.

<u>Приемник как часть радиотехнической системы передачи</u> информации

Аналогово-цифровая радиотехническая система передачи информации

1- схема. ЦП на частоте сигнала

2 – схема. ЦП на промежуточной частоте

SDR Трансивер Flex-3000

КВ диапазона для радиолюбительской связи. Программноопределяемая радиосистема Software Define Radio (SDR)

- Частотный диапазон 1,8...54 МГц
- R_A = 17...150 Ом
- Чувствительность -120 дБм или 0,22 мкВ
- P_{вых}= 100 Вт (передатчика)
- Полоса обзора 96 кГц

Структурная схема трансивера Flex-3000

<u>Автоматический антенный тюнер</u> обеспечивающий согласование с антенной в широкой полосе частот. Схема состоит из LC-контуров, включенных таким образом, что позволяет изменять сопротивление в больших пределах. КСВ при этом меняется в несколько раз.

<u>Переключатель RX\TX</u> – режима работы прием\передача. Управление всеми аудио потоками осуществляется специальной микросхемой TCD2210 цифровой части схемы.

Приемная часть.

<u>Фильтр НЧ</u> - 7-го порядка, выполнен по традиционной Побразной схеме.

<u>Предусилитель и АТТ</u> могут быть зашунтированы, в зависимости от режима работы. Микросхема малошумящего усилителя GALI-74 специально разработана для входных каскадов.

69

ДПФ диапазонные полосовые фильтры. Блок из 3-х контурных ДПФ с гибридной связью обеспечивает хорошую селективность. Катушки ПФ выполнены на высококачественных стандартных индуктивностях фирмы Coilcraft. Переключение производится с помощью п/п коммутаторов.

Смеситель SQD. Квадратурный балансный смеситель на высокоскоростных аналоговых ключах. Использована схемотехника быстрого квадратурного мультиплексирования на основе микросхемы 74CBT3253PW.

На выходах присутствуют квадратурные сигналы имеющие сдвиг фазы 90°, которые подаются на два канала АЦП.

Цифровая схемотехника SQD имеет максимальную энергоотдачу и максимальный КПД преобразования. Параметры такого смесителя близки к идеальным.

Передающая часть.

ФНЧ – аналогичный приемной части.

Оконечный каскад выполнен на мощных полевых транзисторах RD70HHF1. Включен по двухтактной схеме, работает режиме AB, что так же способствует подавлению синфазных помех.

<u>Предварительный усилитель</u> (драйвер) выполнен на полевых транзисторах средней мощности RD16HHF1.

<u>Смеситель SQE</u> работает в режиме модулятора. Аналогичен SQD приемной части, построен на мультеплексоре. Аналоговый сигнал поступает с выхода ЦАП.

Гетеродин.

Гетеродин необходим для преобразования в SQD и SQE. Используется DDS-синтезатор (Direct Digital Synthesis) Цифровое устройство выполнено на принципе математического построения синусоиды. В DDS отсутствуют частотозадающие LC цепочки. Стабильность частоты определяет внешний высокоточный КГ. Перестройка с шагом в доли Герца. Выполнен на одной микросхеме с минимум внешних элементов. Управление частотой от ПК

Управление режимами и связь с РС

Интерфейс связи с компьютером реализован на чипе TSB41AB2 установленном в контролере FireWire (высокоскоростная шина IEEE 1394).

Управление всеми аудио потоками осуществляется специальной микросхемой TCD2210, включающей в себя 32-битный ARM-процессор.

Примеры современных приемных модулей

Разработчик модулей Круглов Геннадий Валерьевич

В настоящее время для создания приемных устройств различного назначения: систем связи, дистанционного управления, контроля т.п. разработаны микросхемы (МС).

MC – многофункциональны, включают в себя узлы аналоговой и цифровой обработки сигнала, имеют цепи для подключения внешних устройств для управления и контроля.

На основе этих МС изготавливаются радиочастотные модули.

Модули включают в себя МС, всю необходимую обвязку и часто – антенну на печатной плате.

К модулю достаточно подвести питание и необходимые цифровые линии.

26 11 2020

Это упрощает разработку и удешевляет производство устройств с необходимой функциональностью.

Производитель (модулей) обладает лицензией на производство радиоаппаратуры и может предоставить необходимые сертификаты.

Беспроводная передача данных включает в себя решение следующих задач:

- -диапазоны частот, частоты каналов внутри полосы, виды модуляции, мощность передатчиков и чувствительность приемников;
- протоколы передачи данных, порядок взаимодействия устройств между собой, обеспечение стабильной работы в условиях загруженности диапазона.

В настоящее времея сложились два направления развития модулей, различающиеся по скорости передачи, времени автономной работы.

- 1. Большие объемы данных, достаточно высокое потребление энергии (время автономной работы единицы-десятки часов). К этой области относятся Wi-Fi, WiMax, BlueTooth, Wireless USB. Рабочие диапазоны единицы гигагерц: 2.4 ГГц, 5ГГц (до 60ГГц).
- 2. Малые объемы данных, низкое и сверхнизкое потребление энергии (время автономной работы дни, месяцы, годы). Эта область предназначена для различных датчиков и устройств автоматизации, активных датчиков RFID, систем безопасности (в том числе автомобильных), игрушек, медицинского оборудования пр.

Рассмотрим модули для второй области применения.

Рабочие диапазоны частот (при небольших мощностях) не требующие лицензирования.

Диапазон	Число каналов	Полоса канала
315 МГц: 310.24 — 319.75	95	100 кГц
433 МГц: 430.24 — 439.75	95	100 кГц
868 МГц: 860.48 — 879.51	190	100 кГц
915 МГц: 900.72 — 929.27	285	100 кГц

Наиболее распространенные микросхемы (МС) для этой области применения имеют радиочастотные цепи и цифровую систему управления.

К МС подключается антенная система и цифровой интерфейс, настройка всех параметров производится программно.

В зависимости от области применения, МС может включать цепи (блоки) для организации беспроводной сети, а также микроконтроллер (МК).

Микросхема MAX1472 (передатчик)

- Диапазон 300-450 МГц,
- Скорость передачи данных 100 кБит/с.
- Модуляция ASK/OOK (Amplitude Shift Keying/On-Off Keyed).
- Корпус SOT-23 8 pin, 3х3 мм.

Микросхема обеспечивает простые функции физического уровня.

MAX1472

Модуль на основе МАХ1472

Микросхема MICRF002 (приемник)

Экономичный приемник производства фирмы MICREL для систем беспроводного управления, выполненный по технологии QwikRadioTM.

Микросхема работает в диапазоне 300-440 МГц.

Передача данных обеспечивается со скоростью до 10 кБит/с с помощью ASK-модуляции (амплитудная манипуляция).

Чувствительность -95 дБм.

Корпус - SO-16,

Потребление тока -2.2 мА в активном режиме.

 $U_{\text{пит}} = 4,75 \text{ B...5,5 B},$

Температура окр.среды=-40...+85°C

Микросхема обеспечивает простые функции физического уровня. На выходе индикатор наличия-отсутствия сигнала.

Модуль на основе MICRF002

315MHz 800bps On-Off Keyed Receiver

Трансивер TRC101

transceiver (transmitter — передатчик и receiver — приёмник)

Трансивер TRC101 производства RF Monolitics.

МС работает в любом из диапазонов 315, 433, 868, 915 МГц.

Передача данных со скоростью до 256 кБит/с.

Чувствительность 105 дБм ($P_{\text{мин.пред}} = 3,2 \times 10^{-14}$).

Ток потребления -8...15 мА (sleep-режим: I=0.2 мкА).

Рабочее напряжение от 2.2 до 5.4 В.

Встроены радиочастотные цепи:

- -АПЧ,
- -генератор ВЧ,
- -выходной усилитель РЧ с программируемой мощностью,
- -входной усилитель с программируемой чувствительностью,
- -система автоматической настройки на антенну,
- -программируемая полярность FSK.

- Система восстановления входных данных (модем с программируемой скоростью обмена) и их распознавания.
- Имеются раздельные буферы FIFO на прием и передачу.
- Система детектирования уровня входного сигнала.
- Генератор для кварцевого резонатора 10 МГц и конденсаторы программируемой емкости для резонатора.

Цифровой интерфейс — SPI с дополнительными выводами прерываний. Дополнительные возможности: детектор разряда батареи, программируемый выход частоты для внешнего контроллера, программируемый Wake-up таймер. Корпус — TSSOP16.

Микросхема обеспечивает физический уровень передачи данных. Все задачи транспортного уровня возложены на внешний контроллер. Соответственно, микросхема применима для соединений «точка-точка» и небольших простых сетей.

Трансивер TRC101

Широкодиапазонный RF модуль на основе трансивера TRC101

Один недорогой кварцевый резонатор на 10МГц и управляющий микроконтроллер образуют полностью законченную систему передачи данных.

Благодаря наличию режима экономии энергии удается значительно снизить потребление и продлить срок службы батарей.

Области применения: беспроводные игрушки, системы безопасности, автоматические измерительные системы, промышленная и домашняя автоматизация, медицинское оборудование, беспроводные модули.

Трансивер СС1100

Трансивер CC1100 производства Texas Instruments.

Частотный диапазон: в любом 315, 433, 868, 915 МГц. Скорость передачи данных до 500 кБит/с.

Чувствительность -110 дБм ($P_{пред}$ =10-14).

Передатчик с программируемой Р_{вых} до +10 дБм.

Поддерживает модуляции: OOK, ASK, FSK, GFSK, MSK.

Имеет встроенный модем с функцией коррекции ошибок.

МС предназначена для беспроводных сетей имеет блоки:

- организации обмена пакетами,
- буферизации данных (по 64 байта FIFO на прием и передачу),
- передачи нескольких пакетов,
- проверки незанятости канала,
- выхода из sleep-режима по появлению сигнала.
- модуль измерения уровня входного сигнала.
- анадоговый датчик температуры.

Трансивер СС1100

Корпус – 4х4 QLP, 20 выводов.

Модуль на основе СС1100

