Some basic definition and concepts from Graph Theory used in Graphical Model Theory

Guillaume Obozinski

Swiss Data Science Center

African Masters of Machine Intelligence, 2018-2019, AIMS, Kigali

Graphs

Graph defined as a pair G = (V, E)

- \bullet V is a finite set of nodes
- \bullet E is a set of edges

- ◆ロト ◆御ト ◆恵ト ◆恵ト - 恵 - 釣९©

Graphs 2/15

Graphs

Graph defined as a pair G = (V, E)

- V is a finite set of nodes
- E is a set of edges

Edges in directed graphs are directed

Directed edges are couples of nodes $(u, v) \in E \subset V \times V$

Graphs 2/15

Graphs

Graph defined as a pair G = (V, E)

- V is a finite set of nodes
- E is a set of edges

Edges in directed graphs are directed

Directed edges are couples of nodes $(u, v) \in E \subset V \times V$

Edges in undirected graphs are undirected

Directed edges are pairs of nodes $\{u,v\} \in E \subset \binom{V}{2}$

Clearly $(u, v) \neq (v, u)$ and $\{u, v\} = \{v, u\}$.

Graphs

Remarks on graph definitions

Remark In this course we will only consider graphs with no self-edges $(\{v, v\} \text{ or } (v, v))$

Graphs 3/15

Outline

Undirected graphs

2 Directed graphs

- ◆ロト ◆御ト ◆注ト ◆注ト - 注 - かへの

Concepts in undirected graphs: Neighbors and cliques

Neighbors $\mathcal{N}(u)$ of a node u

$$\mathcal{N}(u) = \{ v \in V \mid \{u, v\} \}$$

Graphs 5/15

Concepts in undirected graphs: Neighbors and cliques

Neighbors $\mathcal{N}(u)$ of a node u

$$\mathcal{N}(u) = \{ v \in V \mid \{u, v\} \}$$

Clique

A totally connected subset of nodes.

10/10/12/12/2/2/2/

Graphs 5/15

Concepts in undirected graphs: Neighbors and cliques

Neighbors $\mathcal{N}(u)$ of a node u

$$\mathcal{N}(u) = \{ v \in V \mid \{u, v\} \}$$

Clique

A totally connected subset of nodes.

Maximal clique

A clique that is not contained in a larger clique.

◆ロ → ◆昼 → ◆ き → ◆ き → りへぐ

Graphs 5/18

Concepts in undirected graphs: Paths and cycles

Path

A sequence of distinct nodes (v_0, v_1, \dots, v_k) s.t. $\forall i, \{v_{i-1}, v_i\} \in E$.

Graphs 6/15

Concepts in undirected graphs: Paths and cycles

Path

A sequence of distinct nodes (v_0, v_1, \dots, v_k) s.t. $\forall i, \{v_{i-1}, v_i\} \in E$.

Cycle

A sequence of nodes $(v_0, v_1, \dots, v_{k-1}, v_0)$ s.t. $(v_0, v_1, \dots, v_{k-1})$ is a path and $\{v_{k-1}, v_0\} \in E$.

Graphs 6/15

Concepts in undirected graphs: Connectedness

The relation $a \sim_G b$ defined by "there exists a path between a and b" is an equivalence relation¹.

Graphs 7/15

¹A binary relation which is reflexive, symmetric and transitive = + = = 999

Concepts in undirected graphs: Connectedness

The relation $a \sim_G b$ defined by "there exists a path between a and b" is an equivalence relation¹.

Concepts in undirected graphs: Connected component

The connected components of G are the equivalence classes of the relation \sim .

Graphs 7/15

¹A binary relation which is reflexive, symmetric and transitive = > = > 000

Concepts in undirected graphs: Connectedness

The relation $a \sim_G b$ defined by "there exists a path between a and b" is an equivalence relation¹.

Concepts in undirected graphs: Connected component

The connected components of G are the equivalence classes of the relation \sim .

Connected graph

A graph is connected iff it has a single connected component.

Graphs 7/15

¹A binary relation which is reflexive, symmetric and transitive () () () () ()

Other concepts in undirected graph

Induced graph

If G = (V, E) is a graph. The induced graph on $A \subset V$ is the graph

$$G|_A := (A, E \cap A \times A).$$

Graphs 8/15

Other concepts in undirected graph

Induced graph

If G = (V, E) is a graph. The induced graph on $A \subset V$ is the graph

$$G|_A := (A, E \cap A \times A).$$

Separation

Let A, B, S three disjoint subsets of V.

S separates A from B iff

- all paths from $a \in A$ to $b \in B$ go through S
- equivalently: any connected component K the graph induced on $V \setminus S$ is such that either $K \cap A = \emptyset$ or $K \cap B = \emptyset$

Graphs 8/15

Outline

1 Undirected graphs

2 Directed graphs

4 ロ ト 4 間 ト 4 耳 ト 4 耳 ・ り Q の

Graphs 9/15

Directed Acyclic Graph (DAG)

A directed graph is called acyclic if if contains no (directed) cycle.

Graphs 10/1

Directed Acyclic Graph (DAG)

A directed graph is called *acyclic* if if contains no (directed) cycle.

Counter example:

Graphs 10/1

Parent and Child

u is a parent of v iff v is a child of u iff $(u,v) \in E$

Parent and Child

u is a parent of v iff v is a child of u iff $(u, v) \in E$

Path (or directed path)

A sequence of distinct nodes (v_0, v_1, \dots, v_k) s.t. $\forall i, (v_{i-1}, v_i) \in E$.

Parent and Child

u is a parent of v iff v is a child of u iff $(u, v) \in E$

Path (or directed path)

A sequence of distinct nodes (v_0, v_1, \ldots, v_k) s.t. $\forall i, (v_{i-1}, v_i) \in E$.

Trail

A sequence of distinct nodes (v_0, v_1, \ldots, v_k) s.t.

$$\forall i$$
, either $(v_{i-1}, v_i) \in E$ or $(v_i, v_{i-1}) \in E$.

Parent and Child

u is a parent of v iff v is a child of u iff $(u, v) \in E$

Path (or directed path)

A sequence of distinct nodes (v_0, v_1, \dots, v_k) s.t. $\forall i, (v_{i-1}, v_i) \in E$.

Trail

A sequence of distinct nodes (v_0, v_1, \ldots, v_k) s.t.

$$\forall i$$
, either $(v_{i-1}, v_i) \in E$ or $(v_i, v_{i-1}) \in E$.

Some more definitions in a DAG

Ancestor

u is a ancestor of v ($u \leq_G v$) iff there is a directed path from u to v. u is strict ancestor if in addition $u \neq v$.

Graphs 12/18

Some more definitions in a DAG

Ancestor

u is a ancestor of v ($u \leq_G v$) iff there is a directed path from u to v. u is strict ancestor if in addition $u \neq v$.

Descendant

v is a (strict) descendant of u iff u is a (strict) ancestor of v.

Graphs 12/1

Topological order for a DAG

A topological order is a total order \prec on V compatible with the partial order \prec_G in the sense that

$$u \prec_G v \Rightarrow u \prec v$$

In other words, if v_1, v_2, \ldots, v_n are in topological order the ancestors of v_i are among $(v_j)_{j \leq i}$.

Graphs 13/1

Topological order for a DAG

A topological order is a total order \prec on V compatible with the partial order \prec_G in the sense that

$$u \prec_G v \Rightarrow u \prec v$$

In other words, if v_1, v_2, \ldots, v_n are in topological order the ancestors of v_i are among $(v_j)_{j \leq i}$.

Proposition

A topological order always exists.

Proof: Induction by removing a maximal element.

◆ロト ◆御 ト ◆注 ト 注 り へ ②

Graphs 13/2

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Directed tree

An directed tree is a (connected) DAG in which each node has a single parent.

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Directed tree

An directed tree is a (connected) DAG in which each node has a single parent.

Remarks:

• This definition is the one used in graphical model theory. (Not universally used in CS)

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Directed tree

An directed tree is a (connected) DAG in which each node has a single parent.

Remarks:

- This definition is the one used in graphical model theory. (Not universally used in CS)
- A directed tree is not an undirected tree with any orientation of the edges

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Directed tree

An directed tree is a (connected) DAG in which each node has a single parent.

Remarks:

- This definition is the one used in graphical model theory. (Not universally used in CS)
- A directed tree is *not* an undirected tree with any orientation of the edges
- Sometimes called a *rooted tree* because edges must be oriented away from a root.

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Directed tree

An directed tree is a (connected) DAG in which each node has a single parent.

Remarks:

- This definition is the one used in graphical model theory. (Not universally used in CS)
- A directed tree is *not* an undirected tree with any orientation of the edges
- Sometimes called a *rooted tree* because edges must be oriented away from a root.
- A DAG whose underlying undirected graph is a tree is called a polytree (or an oriented tree).

Undirected tree

An undirected tree is a (connected) undirected graph without cycle

Directed tree

An directed tree is a (connected) DAG in which each node has a single parent.

Remarks:

- This definition is the one used in graphical model theory. (Not universally used in CS)
- A directed tree is *not* an undirected tree with any orientation of the edges
- Sometimes called a *rooted tree* because edges must be oriented away from a root.
- A DAG whose underlying undirected graph is a tree is called a polytree (or an oriented tree).

Forest vs trees, etc

- In graph theory, a forest is a disjoint union of trees (both in the directed and undirected case)
- In this course, we will often not make the distinction and use the word tree even for a graph which is a forest, because the same theory applies to both.
- More generally, when a graph has several connected components, we will be able to treat one component at a time for all relevant task of graphical model theory.

Graphs 15/