CSE 101 Discussion Section Week 7

February 19 - February 26

Statement. Find the number of strings of length n that consist of digits/characters 0, 1, 2 and 3 and that do not contain strings 01, 10 and 23 as substrings.

Statement. Find the number of strings of length n that consist of digits/characters 0, 1, 2 and 3 and that do not contain strings 01, 10 and 23 as substrings.

Examples.

▶ n = 1: 0, 1, 2, 3. The answer is 4.

Statement. Find the number of strings of length n that consist of digits/characters 0, 1, 2 and 3 and that do not contain strings 01, 10 and 23 as substrings.

Examples.

- n = 1: 0, 1, 2, 3. The answer is 4.
- ▶ n = 2: 00, 02, 03, 11, 12, 13, 20, 21, 22, 30, 31, 32, 33. The answer is 13.

Statement. Find the number of strings of length n that consist of digits/characters 0, 1, 2 and 3 and that do not contain strings 01, 10 and 23 as substrings.

Examples.

- n = 1: 0, 1, 2, 3. The answer is 4.
- ▶ n = 2: 00, 02, 03, 11, 12, 13, 20, 21, 22, 30, 31, 32, 33. The answer is 13.
- 021203 is a valid string.

Statement. Find the number of strings of length n that consist of digits/characters 0, 1, 2 and 3 and that do not contain strings 01, 10 and 23 as substrings.

Examples.

- n = 1: 0, 1, 2, 3. The answer is 4.
- ▶ n = 2: 00, 02, 03, 11, 12, 13, 20, 21, 22, 30, 31, 32, 33. The answer is 13.
- 021203 is a valid string.
- ▶ 021**23**3 is not a valid string.

Solution.

Let T(n) be the number of valid strings of length n.

Solution.

- Let T(n) be the number of valid strings of length n.
- ▶ In order to compute T(n) we will use auxiliary function f(i, n)
 - the number of valid strings of length n that end with digit i, $i \in \{0, 1, 2, 3\}$

Solution.

- Let T(n) be the number of valid strings of length n.
- In order to compute T(n) we will use auxiliary function f(i, n) the number of valid strings of length n that end with digit i,
 - the number of valid strings of length n that end with digit $i \in \{0, 1, 2, 3\}$
- We can see that T(n) = f(0, n) + f(1, n) + f(2, n) + f(3, n).

Now, let's find values for f(i, n) for n > 0:

▶ f(0,n) = f(0,n-1) + f(2,n-1) + f(3,n-1). We take all valid strings of length n-1 that do not end with 1 and add 0 to them at the end.

Now, let's find values for f(i, n) for n > 0:

- ▶ f(0,n) = f(0,n-1) + f(2,n-1) + f(3,n-1). We take all valid strings of length n-1 that do not end with 1 and add 0 to them at the end.
- ▶ f(1, n) = f(1, n 1) + f(2, n 1) + f(3, n 1). We take all valid strings of length n 1 that do not end with 0 and add 1 to them at the end.

Now, let's find values for f(i, n) for n > 0:

- ▶ f(0,n) = f(0,n-1) + f(2,n-1) + f(3,n-1). We take all valid strings of length n-1 that do not end with 1 and add 0 to them at the end.
- ▶ f(1,n) = f(1,n-1) + f(2,n-1) + f(3,n-1). We take all valid strings of length n-1 that do not end with 0 and add 1 to them at the end.
- ▶ f(2,n) = f(0,n-1) + f(1,n-1) + f(2,n-1) + f(3,n-1). We take all valid strings of length n-1 and add 2 to them at the end.

Now, let's find values for f(i, n) for n > 0:

- ▶ f(0, n) = f(0, n 1) + f(2, n 1) + f(3, n 1). We take all valid strings of length n 1 that do not end with 1 and add 0 to them at the end.
- ▶ f(1,n) = f(1,n-1) + f(2,n-1) + f(3,n-1). We take all valid strings of length n-1 that do not end with 0 and add 1 to them at the end.
- ▶ f(2, n) = f(0, n 1) + f(1, n 1) + f(2, n 1) + f(3, n 1). We take all valid strings of length n 1 and add 2 to them at the end.
- ▶ f(3, n) = f(0, n 1) + f(1, n 1) + f(3, n 1). We take all valid strings of length n 1 that do not end with 2 and add 3 to them at the end.

So we have:

$$f(0,n) = f(0,n-1) + f(2,n-1) + f(3,n-1)$$

$$f(1,n) = f(1,n-1) + f(2,n-1) + f(3,n-1)$$

$$f(2,n) = f(0,n-1) + f(1,n-1) + f(2,n-1) + f(3,n-1)$$

$$f(3,n) = f(0,n-1) + f(1,n-1) + f(3,n-1)$$

Base case:

$$f(0,0) = f(1,0) = f(2,0) = f(3,0) = 1$$

The answer is:

$$T(n) = f(0, n) + f(1, n) + f(2, n) + f(3, n)$$

Both the time complexity and the space complexity of the solution is $\mathcal{O}(n)$.

Can we optimize it further?

Both the time complexity and the space complexity of the solution is $\mathcal{O}(n)$.

Can we optimize it further?

The value f(i,n) only depends on values f(x,n-1). If we consider f(i,n) as a two dimensional array, then the values at column n depend only on values at column n-1. Thus, there is no need to store all the values in the array to find f(i,n). We only need values for the previous column.

Base case:

$$f(0,0) = f(1,0) = f(2,0) = f(3,0) = 0$$

Updated formulas (n > 0):

$$f(0, n \bmod 2) = f(0, (n-1) \bmod 2) + f(2, (n-1) \bmod 2) + f(3, (n-1) \bmod 2) + f(3, (n-1) \bmod 2) + f(2, (n-1) \bmod 2) + f(3, (n-1) \bmod 2) + f(3, (n-1) \bmod 2) + f(3, (n-1) \bmod 2) + f(1, (n-1) \bmod 2) + f(2, (n-1) \bmod 2) + f(2, (n-1) \bmod 2) + f(3, (n-1) \bmod 2)$$

The answer is $f(0, n \mod 2) + f(1, n \mod 2) + f(2, n \mod 2) + f(3, n \mod 2)$.

Now our solution has $\mathcal{O}(n)$ time complexity and $\mathcal{O}(1)$ space complexity.

The knapsack problem where we can take each item once has the following formula:

$$f(i,k) = max(f(i-1,k), f(i-1,k-w_i) + p_i)$$

In a similar way we can optimize the space complexity by only storing values f(i-1,k) (for all k) to compute values f(i,k).

You are given a sequence of n integer numbers $A = (a_1, a_2, ..., a_n)$. Find a sub-sequence A' of the sequence A, such that the sum of all elements in A' is maximized and A' can't contain any neighboring elements at the same time.

Solution. Let's define two functions f(n) and g(n):

▶ f(n) – is the sum of the optimal sub-sequence A' in sequence A if element a_n is included to A'.

Solution. Let's define two functions f(n) and g(n):

- ▶ f(n) is the sum of the optimal sub-sequence A' in sequence A if element a_n is included to A'.
- ▶ g(n) is the sum of the optimal sub-sequence A' in sequence A if element a_n is not included to A'.

Solution. Let's define two functions f(n) and g(n):

- ▶ f(n) is the sum of the optimal sub-sequence A' in sequence A if element a_n is included to A'.
- ▶ g(n) is the sum of the optimal sub-sequence A' in sequence A if element a_n is not included to A'.
- ▶ Base case: $f(1) = a_1$, g(1) = 0

For n > 1:

▶ $f(n) = g(n-1) + a_n$. We know that we must include a_n to the sub-sequence A', so we add its value. Then, if a_n is in the sub-sequence, we can't have a_{n-1} there. So we find the optimal sub-sequence of a sequence that consists of first n-1 elements and doesn't include element a_{n-1} .

For n > 1:

- ▶ $f(n) = g(n-1) + a_n$. We know that we must include a_n to the sub-sequence A', so we add its value. Then, if a_n is in the sub-sequence, we can't have a_{n-1} there. So we find the optimal sub-sequence of a sequence that consists of first n-1 elements and doesn't include element a_{n-1} .
- ▶ g(n) = max(f(n-1), g(n-1)). We can't add a_n to the optimal sub-sequence. There are no more restrictions except this. Thus, we find the optimal sub-sequence among the first n-1 elements.

For n > 1:

- ▶ $f(n) = g(n-1) + a_n$. We know that we must include a_n to the sub-sequence A', so we add its value. Then, if a_n is in the sub-sequence, we can't have a_{n-1} there. So we find the optimal sub-sequence of a sequence that consists of first n-1 elements and doesn't include element a_{n-1} .
- ▶ g(n) = max(f(n-1), g(n-1)). We can't add a_n to the optimal sub-sequence. There are no more restrictions except this. Thus, we find the optimal sub-sequence among the first n-1 elements.

The answer is max(f(n), g(n)).

So we have (n > 1):

$$f(n) = g(n-1) + a_n$$

 $g(n) = max(f(n-1), g(n-1))$

Base case:

$$f(1) = a_1$$
$$g(1) = 0$$

So we have (n > 1):

$$f(n) = g(n-1) + a_n$$

 $g(n) = max(f(n-1), g(n-1))$

Base case:

$$f(1) = a_1$$
$$g(1) = 0$$

Right now, both the time complexity and space complexity of the solution is $\mathcal{O}(n)$. We can optimize it in a similar way to Problem 1.

After the optimization we get (n > 1):

$$f(n \mod 2) = g((n-1) \mod 2) + a_n$$

 $g(n \mod 2) = max(f((n-1) \mod 2), g((n-1) \mod 2))$

Base case:

$$f(1) = a_1$$
$$g(1) = 0$$

After the optimization we get (n > 1):

$$f(n \mod 2) = g((n-1) \mod 2) + a_n$$

 $g(n \mod 2) = max(f((n-1) \mod 2), g((n-1) \mod 2))$

Base case:

$$f(1) = a_1$$
$$g(1) = 0$$

The answer is $max(f(n \mod 2), g(n \mod 2))$.

After the optimization we get (n > 1):

$$f(n \mod 2) = g((n-1) \mod 2) + a_n$$

 $g(n \mod 2) = \max(f((n-1) \mod 2), g((n-1) \mod 2))$

Base case:

$$f(1) = a_1$$
$$g(1) = 0$$

The answer is $max(f(n \mod 2), g(n \mod 2))$.

Now, the time complexity is $\mathcal{O}(n)$ and the space complexity is $\mathcal{O}(1)$.