Facultad de Ciencias Programa FOGEC ÁLGEBRA LINEAL 2do. semestre 2021 Prof. Mario Marotti

CLASE No. 23

Diagonalización de matrices

¿Siempre es posible diagonalizar una matriz, esto es, encontrar una base donde la transformación asociada tenga matriz diagonal? La respuesta es NO, como veremos en algunos ejemplos a continuación.

Ejemplo 1:

Comencemos con un ejemplo sencillo. ¿Es diagonalizable la matriz A? En caso afirmativo, ¿en qué base?

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$

Solución:

Armemos el polinomio característico de la matriz e igualémoslo a cero.

$$\det(\mathbf{A} - \lambda \cdot \mathbf{I}) = \mathbf{0}$$

$$\det\left[\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right] = 0$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)(2 - \lambda) - 6 = 0$$

$$\lambda^2 - 3\lambda - 4 = 0$$

$$\lambda_1 = 4 \quad 0 \quad \lambda_2 = -1$$

Si
$$\lambda_1 = 4$$
:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{\mathbf{v}} = \vec{\mathbf{o}} \qquad \Leftrightarrow \qquad \begin{pmatrix} -3 & 2 \\ 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

El sistema es

$$\begin{cases} -3x + 2y = 0 \\ 3x - 2y = 0 \end{cases}$$

Se obtiene:

$$\binom{x}{y} = \alpha \cdot \binom{2}{3}$$

Es un subespacio vectorial de \mathbb{R}^2 de base $\{(2,3)\}$

Para el **valor propio** $\lambda = 4$, el **vector propio** es $\overrightarrow{v_{p1}} = \langle 2, 3 \rangle$

Si
$$\lambda_2 = -1$$
:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{\mathbf{v}} = \vec{\mathbf{o}} \qquad \Leftrightarrow \qquad \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

El sistema es

$$\begin{cases} 2x + 2y = 0 \\ 3x + 3y = 0 \end{cases}$$

Se obtiene:

$$\binom{x}{y} = \alpha \cdot \binom{-1}{1}$$

Es un subespacio vectorial de \mathbb{R}^2 de base $\{(-1,1)\}$

Para el **valor propio** $\lambda = -1$, el **vector propio** es $\overrightarrow{v_{p1}} = \langle -1,1 \rangle$

A es una matriz cuadrada 2×2 con dos valores propios distintos.

Teorema:

Si una matriz tiene **todos sus valores propios distintos**, entonces es diagonalizable. El teorema recíproco no es cierto. Existen matrices diagonalizables que no tienen sus valores propios distintos.

La matriz diagonal D la obtenemos como en la clase pasada donde la matriz de pasaje P es la matriz de los vectores propios como columnas.

$$D = P^{-1} \cdot A \cdot P$$

$$D = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{2}{5} \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$$

La transformación es diagonalizable en la base {(2,3),(-1,1)} y su matriz diagonal es:

$$D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}$$

Ejemplo 2:

¿Es diagonalizable la matriz A? En caso afirmativo, ¿en qué base?

$$A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

Solución:

$$\begin{vmatrix} 3 - \lambda & -1 & 0 \\ -1 & 3 - \lambda & 0 \\ 1 & 1 & 2 - \lambda \end{vmatrix} = 0$$
$$(\lambda - 2)^{2}(\lambda - 4) = 0$$

Tenemos entonces $\lambda = 2$ con **orden de multiplicidad algebraico 2** (se repite dos veces).

Si $\lambda_1 = 2$:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{\mathbf{v}} = \vec{\mathbf{o}} \qquad \Leftrightarrow \qquad \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

El sistema es:

$$\begin{cases} x - y = 0 \\ x + y = 0 \end{cases}$$

Para el **valor propio** $\lambda = 2$, el **vector propio** es $\overrightarrow{v_{p1}} = \langle 0,0,1 \rangle$. El valor propio $\lambda = 2$ que tiene **orden de multiplicidad algebraico 2**, genera un solo vector propio, por tanto su **orden de multiplicidad geométrico es 1**.

Si $\lambda_2 = 4$:

$$(\mathbf{A} - \lambda \cdot \mathbf{I}) \cdot \vec{\mathbf{v}} = \vec{\mathbf{o}} \qquad \Leftrightarrow \qquad \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 1 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

El sistema es:

$$\begin{cases} x + y - 2z = 0 \\ x - y = 0 \end{cases}$$

Para el **valor propio** $\lambda=4$, el **vector propio** es $\overrightarrow{v_{p2}}=\langle 2,2,1\rangle$

Tenemos una matriz cuadrada 3×3 con solamente dos vectores propios. **No es diagonalizable.**

Ejemplo 3:

¿Es diagonalizable la matriz B? En caso afirmativo, ¿en qué base?

$$B = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & -4 \\ 0 & 0 & 3 \end{pmatrix}$$

Solución:

$$\begin{vmatrix} 1-\lambda & 2 & 4\\ 2 & 1-\lambda & -4\\ 0 & 0 & 3-\lambda \end{vmatrix} = 0$$

$$(\lambda - 3)^2(\lambda + 1) = 0$$

Raíces: $\{3,3,-1\}$

Si
$$\lambda_1 = 3$$
:
$$\begin{pmatrix} -2 & 2 & 4 \\ 2 & -2 & -4 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Tenemos un sistema con dos grados de libertad. Los vectores propios serán:

$$(1,1,0)$$
 $y(2,0,1)$

Para el valor propio $\lambda=3$, tiene orden de multiplicidad algebraico 2 y su orden de multiplicidad geométrico es también 2.

Si
$$\lambda_2 = -1$$
, el **vector propio** es $\overrightarrow{v_{p2}} = \langle 1, -1, 0 \rangle$.

Tenemos una matriz cuadrada 3×3 con tres vectores propios. Podemos armar la matriz de pasaje. **Es diagonalizable.**

Finalmente:

$$D = P^{-1} \cdot B \cdot P$$

$$D = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & -4 \\ 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Matrices semejantes

Definición:

Dos matrices A y B tales que existe una matriz P (**invertible**, o sea det $B \neq 0$) que cumple:

$$B = P^{-1} \cdot A \cdot P$$

se llaman semejantes.

Propiedades de las matrices semejantes:

- 1. Tienen el mismo rango.
- 2. Tienen el mismo determinante.
- 3. Tienen la misma traza (la suma de los elementos de la diagonal principal). En el ejemplo anterior ...

$$tr D = 3 + 3 - 1 = 5$$

 $tr A = 1 + 1 + 3 = 5$

4. Tienen el mismo polinomio característico.

Ejercicios:

1. Determinar valores y vectores propios de la matrices A, B y C, y diagonalizarlas de ser posible:

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

2. Para cada una de las siguientes transformaciones lineales encontrar la matriz *A* asociada en las bases canónicas correspondientes y determinar para cada una los valores y vectores propios. Decidir si la matriz *A* es o no diagonalizable. En caso afirmativo, diagonalizarlas.

(a) T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 definida por: $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4x + 2y \\ 3x + 3y \end{pmatrix}$

(b) T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 definida por: $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2y + z \\ x + 3y - z \\ -z \end{pmatrix}$

(c) T: $P^2(x) \rightarrow P^2(x)$ definida por:

$$T(ax^2 + bx + c) = (2a + b + c)x^2 + (2a + b - 2c)x - (a + 2c)$$

3. Diagonalizar la matriz

$$S = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

¿Qué tipo de simetría representa dicha transformación en el espacio vectorial \mathbf{R}^2 ? ¿Qué condición debe cumplir una matriz 2 x 2 para estar asociada a una isometría en \mathbf{R}^2 ?

4. Dada la aplicación lineal

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y \\ -x + 3y + z \\ y + z \end{pmatrix}$$

estudiar si existe una base B en ${\bf R}^3$ en la cual la matriz asociada de la transformación sea una matriz diagonal.

5. Encontrar la matriz A correspondiente a las siguientes transformaciones lineales, decidir si es posible diagonalizarla y hacerlo en caso de serlo.

T:
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 tal que $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y \\ x - 3z \end{pmatrix}$

6. Teorema espectral

Comprobar trabajando con la matriz

$$A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$$

que si A es una matriz asociada a una transformación T: $R^2 \to R^2$ con valores propios α y β distintos entonces puede escribirse,

$$T(\overrightarrow{v}) = \alpha(\overrightarrow{v_1}.\overrightarrow{v})\overrightarrow{v_1} + \beta(\overrightarrow{v_2}.\overrightarrow{v})\overrightarrow{v_2}$$