2-2 Treasure Hunting

(Monday, April 2, 2018 ~ Saturday, April 7, 2018)

Hengfeng Wei

hfwei@nju.edu.cn

April 2, 2018

1 / 7

Problem of the Week (Monday, April 2, 2018 \sim Saturday, April 7, 2018)

- (a) Given an array $A[0\cdots n-1]$, to determine whether there is a value that occurs more than $\lfloor n/k \rfloor$ times in $\Theta(n\lg k)$ time and $\Theta(k)$ extra space.
- (b) Prove that the *lower bound* of this problem is $\Theta(n \lg k)$.

(Monday, April 2, 2018)

Take k=2.

 $\Theta(n)$ time $\& \Theta(1)$ space

(Tuesday, April 3, 2018)

Definition (k-simplified Multiset)

Consider a multiset \mathcal{M} . A k-simplified multiset for \mathcal{M} is a multiset derived from \mathcal{M} by repeating deleting k distinct elements from it until no longer possible.

Theorem

If a value occurs more than $\lfloor n/k \rfloor$ times in $\mathcal M$ of n elements, then it is in a k-simplified multiset for $\mathcal M$.

Prove this theorem. Take k=2 again. Design an $\Theta(n)$ algorithm for k=2. Generalize it to an algorithm for general k (ignoring $\Theta(n\lg k)$ for now).

(Wednesday, April 4, 2018)

Today, you have an efficient data structure T for a multiset:

We denote a multiset by $\mathcal{M} = \{(v_i, c_i)\}$, where c_i is the number of times v_i occurs in \mathcal{M} . The number of distinct values in \mathcal{M} is denoted by $d = |\{v_i\}|$.

The data structure T for \mathcal{M} contains d nodes, each being a pair (v_i, c_i) . It supports INSERT, DELETE, and SEARCH in $\Theta(\lg d)$.

Use this data structure (you are not required to implement it) in your algorithm to achieve the time complexity of $\Theta(n \lg k)$.

(Thursday, April 5, 2018)

Definition (r-multiset)

Let $r=\lfloor n/k \rfloor$. An r-multiset is a multiset of n values such that each of the values $0,1,\cdots,\lfloor n/r \rfloor-1$ occurs r times and the value $\lfloor n/r \rfloor$ occurs $(n \mod r)$ times.

Lemma

There are at least $(k/e)^n$ different r-multisets.

Theorem

Executing these r-multisets on a decision tree will follow different paths.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn