PI práctica 4

jueves, 8 de diciembre de 2022

Pantalla Milford 4x20 BKP

- · Cómo escribimos en ella:
- 1) Serial3.write(0xFE)
- 2) Serial3.write(comando)

		Tabla de comandos	
Prefix	Command	Description	Execution time
-	-	Display Character Write (0x00 ~ 0xFF)	
0xFE	1	Clear Screen	10mS
0xFE	24	Scroll display one character left	
0xFE	28	Scroll display one character right	
0xFE	0	Home (and undo scrolling)	10mS
0xFE	16	Move cursor one character left	
0xFE	20	Move cursor one character right	
0xFE	14	Turn on underline cursor	
0xFE	13	Turn on blinking cursor	
0xFE	12	Turn off cursor	
0xFE	8	Blank the display (retaining data)	
0xFE	12	Restore the display (without cursor)	
0xFE	128 + address	Set display (DD) RAM address	
0xFE	64+address	Set character (CG) RAM address	

4x20 LCD
 line 3
 address:
 20
 21
 22
 23
 24
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178
 178<

Posicionarse en la línea 1: Serial3.write(0xFE); Posicionarse en la línea 2: Serial3.write(0xFE); Posicionarse en la línea 3: Serial3.write(0xFE); Posicionarse en la línea 4: Serial3.write(0xFE);

Memoria DS3232

Figure 1. Address Map for DS3232 Timekeeping Registers and SRAM

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT1	BIT 0 LSB	FUNCTION	RANGE
00h	0		10 Second	s		Secon	nds		Seconds	00-59
01h	0		10 Minutes	5		Minu	les		Minutes	00-59
02h	0	12,24	ÄM/PM 20 Hour	10 Hour		Hou	ır		Hours	1-12 + AM/P1 00-23
03h	0	0	0	0	0		Day		Day	1-7
04h	0	0	10	Date		Dat	B		Date	1-31
06h	Century	0	0	10 Month		Mon	th		Month/ Century	01-12 + Century
06h		10	Year			Yea	ır		Year	00-99
07h	A1M1		10 Second	s		Secon	nds		Alarm 1 Seconds	00-59
08h	A1M2		10 Minutes			Minu	les		Alarm 1 Minutes	00-59
09h	A1M3	12,024	AM/PM 20 Hour	10 Hour		Hou	at .		Alarm 1 Hours	1-12 + AM/P1 00-23
QAh	A1M4	DY/DT	40	10 Date		Da	y		Alarm 1 Day	1-7
UAN	A.1004	DY/DI	10	Liane		Dat	0		Alarm 1 Date	1-31
08h	A2M2		10 Minutes			Minut	ies	Alarm 2 Minutes	00-59	
0Ch	A2M3	12,24	AM/PM 20 Hour	10 Hour		Нос	at .		Alarm 2 Hours	1-12 + AM/PA 00-23
0Dh	A2M4	DY/DT		Date		Da	y		Alarm 2 Day	1-7
OUN	A2564	DY)DI	10	Liate		Dat	0		Alarm 2 Date	1-31
0Eh	EOSC	BBSQW	CONV	AS2	RS1	INTON	A21E	A1E	Control	-
0Fh	OSF	BB32kHz	CRATE1	CRATE0	EN32kHz	BSY	A2F	A1F	Control/Status	_
10h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	Aging Offset	_
11h	SIGN	DATA	DATA	DATA	DATA	DATA	DATA	DATA	MSB of Temp	-
12h	DATA	DATA	0	0	0	0	0	0	LSB of Temp	_
13h	0	0	0	0	0	0	0	0	Not used	Reserved for test
14h-0FFh	×	×	×	×	×	×	×	×	SRAM	00h-0FFh

MODO ESCRITURA

Menú:

- #*: Entrada modo configuración

					L	C	D		D		5	P	L	A	Y					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
nea 1				Г	П	S	E	Т	Т	П	N	G								
nea 2	1		н	0	U	R									4		D	A	Т	Ε
nea 3	2		A	L	1															
nea 4	3	٠.	A	L	2										5	ī	E	х	П	т

- *#: Salida modo configuración

					L	C	D		D	ı	s	P	L	A	Y					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Línea 1						1	3	:	5	4	:	2	8							
Línea 2	Α	L	Α	R	М										Т	=	+	2	3	С
Línea 3	0	6	:	3	0	•								D	D	M	М	М	Υ	Υ
Línea 4	0	7	:	3	0									2	7	N	0	٧	2	1

- #: Tecla enter *: Tecla backspace

Alarmas

ALARMA 1

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
07h	A1M1	-	10 Second:	S		Secon	nds		Alarm 1 Seconds	00-59
08h	A1M2		10 Minutes	3		Minut	tes		Alarm 1 Minutes	00-59
09h	A1M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 1 Hours	1-12 + AM/PM 00-23
0Ah	A1M4	DY/DT	40	Date		Day	у		Alarm 1 Day	1-7
UAN	AIM9	וטווט	101	Date		Dat	ie.		Alarm 1 Date	1-31

DY/DT	ALAR	M 1 REGISTER	R MASK BITS	(BIT 7)	ALARM RATE
01/01	A1M4	A1M3	A1M2	A1M1	ALAHM HATE
X	1	1	1	1	Alarm once per second
×	1	1	1	0	Alarm when seconds match
Х	1	1	0	0	Alarm when minutes and seconds match
×	1	0	0	0	Alarm when hours, minutes, and seconds match
0	0	0	0	0	Alarm when date, hours, minutes, and seconds match
1	0	0	0	0	Alarm when day, hours, minutes, and seconds match

ALARMA 2

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE	

Timers

TIMER3

Función: Actualizar información de la pantalla a partir de los datos suministrados por el RS3232 Modo: FAST PWM
TOP = OCR3A

N 1024 F = 1hz

$$f_{OC3PWM} = \frac{f_{clk}}{N \cdot (1 + TOP)} \Rightarrow TOP = \frac{f_{clk}}{f_{OC3PWM} \cdot N} - 1 = \frac{16 \cdot 10^6}{1 \cdot 1024} - 1 = 15624$$

TOP = OCR3A = 15624

TCCR3A = 000000<mark>11</mark> TCCR3B = 000<mark>11</mark>101

TIMSK3 |= (1 << TOIE3);

TIMER1

Función: Explorar el display y el teclado 4x3

Modo: CTC TOP = OCR1A N = 64 F = 100hz

TCCR1A = 000000<mark>00</mark> TCCR1B = 000<mark>01</mark>011

$$f_{OC1A} = \frac{f_{clk}}{2 \cdot N \cdot (1 + OCR1A)} \Rightarrow OCR1A = \frac{f_{clk}}{f_{OC1A} \cdot 2 \cdot N} - 1 = \frac{16 \cdot 10^6}{100 \cdot 2 \cdot 64} - 1$$

$$\boxed{OCR1A = 1249}$$

ISR(INT0_vect):

Interrupción externa, asociada al pin 21, que se activa cada vez que se produzca una alarma en el Chip DS3232

ALARMA 2

ADDRESS	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 LSB	FUNCTION	RANGE
0Bh	A2M2		10 Minutes			Minu	tes		Alarm 2 Minutes	00-59
0Ch	A2M3	12/24	AM/PM 20 Hour	10 Hour		Hou	ır		Alarm 2 Hours	1-12 + AM/PM 00-23
0Dh	A2M4	DY/DT	10	Date		Da	У		Alarm 2 Day	1-7
UUN	AZW4	וטווטו	10	Date		Dat	e		Alarm 2 Date	1-31

DY/DT	ALARM 2 F	REGISTER MASK E	BITS (BIT 7)	ALARM RATE
וטווטו	A2M4	A2M3	A2M2	ALAHM HATE
X	1	1	1	Alarm once per minute (00 seconds of every minute)
X	1	1	0	Alarm when minutes match
×	1	0	0	Alarm when hours and minutes match
0	0	0	0	Alarm when date, hours, and minutes match
1	0	0	0	Alarm when day, hours, and minutes match

Registro TCCR3A

17.11.2 TCCR3A - Timer/Counter 3 Control Register A

Bit	7	6	5	4	3	2	1	0	
(0x90)	COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	TCCR3A
Read/Write	R/W	R/W	RW	R/W	R/W	RW	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	
Initial Value	0	0	0	0	0	0	0	0	

The COMnA1:0, COMnB1:0, and COMnC1:0 control the output compare pins (OCnA, OCnB, and OCnC respectively) behavior.

- If one or both of the COMnA1:0 bits are written to one, the OCnA output overrides the normal port functionality of the I/O pin it is connected to.
- If one or both of the COMnB1:0 bits are written to one, the OCnB output overrides the normal port functionality of the I/O pin it is connected to.
- If one or both of the COMnC1:0 bits are written to one, the OCnC output overrides the normal port functionality of the I/O pin it is connected to.
- However, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or OCnC pin must be set in order to enable the output driver.

Table 17-3. Compare Output Mode, non-PWM

COMnA1 COMnB1 COMnC1	COMnA0 COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected
0	1	Toggle OCnA/OCnB/OCnC on compare match
1	0	Clear OCnA/OCnB/OCnC on compare match (set output to low level)
1	1	Set OCnA/OCnB/OCnC on compare match (set output to high level)

Table 17-4 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast PWM mode.

COMnA1 COMnB1 COMnC1	COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected
0	11	WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected.
1.	0	Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at BOTTOM (non-inverting mode)
1	1	Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at BOTTOM (inverting mode

A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and COMnA1/COMnB1/COMnC1 to the case the compare match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode" on page 146. for more details.

Table 17-5 shows the COMrx1:0 bit functionality when the WGMn3:0 bits are set to the phase correct and fre-quency correct PWM mode.

are Output Mode, Phase Correct and Phase and Frequency Correct PWM

COMnA1 COMnB1 COMnC1	COMnB0 COMnC0	Description
0	0	Normal port operation, OCnA/OCnB/OCnC disconnected
0	1	WGM13:0 =9 or 11: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal por operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected
1	0	Clear OCnA/OCnB/OCnC on compare match when up-counting Set OCnA/OCnB/OCnC on compare match when downcounting
1	1	Set OCnA/OCnB/OCnC on compare match when up-counting Clear OCnA/OCnB/OCnC on compare match when downcounting

A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and COMnA1/COMnB1//COMnC1 is set. See "Phase Correct PVM Mode" on page 148, for more details.

Registro TCCR3B

17.11.8 TCCR5B - Timer/Counter 5 Control Register B

Bit 7 - ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is activated, the input from the Input Capture Pin (ICPn) is filtered. The filter function requires four successive equal valued samples of the ICPn pin for changing its output. The input capture is therefore delayed by four Oscillator cycles when the noise canceler is enabled.

. Bit 6 - ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture Pin (ICPn) that is used to trigger a capture event. When the ICESh bit is written to zero, a falling (negative) edge is used as trigger, and when the ICESh bit is written to one, a rising (positive) edge will trigger the capture.

EIMSK - External Interrupt Mask Register

								•	
Bit	7	6	5	4	3	2	1	0	
0x1D (0x3D)	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO	EIMSK
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	
									l

Modos de funcionamiento

Mode	WGMn3	WGMn2 (CTCn)	WGMn1 (PWMn1)	WGMn0 (PWMn0)	Timer/Counter Mode of Operation	ТОР	Update of OCRnx at	TOVn Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	стс	OCRnA	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit		воттом	TOP
6	0	1	1	0	0 Fast PWM, 9-bit		воттом	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICRn	воттом	воттом
9	1	0	0	1	PWM,Phase and Frequency Correct	OCRnA	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICRn	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCRnA	TOP	воттом
12	1	1	0	0	стс	ICRn	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICRn	воттом	TOP
15	1	1	1	1	Fast PWM	OCRnA	воттом	TOP

Tabla 2. Modos de funcionamiento del Timer 3

Interrupciones

Nombre	Flag de habilitación (TIMSK3)	Número de vector	Nombre del vector para ISR()
Capture	ICIE3	32	TIMER3_CAPT_vect
Compare match A	OCIE3A	33	TIMER3_COMPA_vect
Compare match B	OCIE3B	34	TIMER3_COMPB_vect
Compare match C	OCIE3C	35	TIMER3_COMPC_vect
Overflow	TOIE3	36	TIMER3 OVF vect

Tabla 1. Interrupciones del Timer 3

Los eventos (fuentes) que pueden generar una interrupción son:

- Flaco de subida o bajada en el pin Input Capture (ICP3)
- Igualdad (o match) entre el registro OCR3A y el registro del timer TCNT3
 Igualdad (o match) entre el registro OCR3B y el registro del timer TCNT3
- Igualdad (o match) entre el registro OCR3C y el registro del timer TCNT3 Overflow. Según el modo de funcionamiento, se produce en el: MAX, TOP o BOTTOM.

Registro TIMSK3

17.11.34 TIMSK3 - Timer/Counter 3 Interrupt Mask Registe

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the errupt is enabled. The corresponding Interrupt Vector (see "In Timer/Countern Input Capture in 101) is executed when the ICFn Flag, located in TIFRn, is set.

• Bit 3 - OCIEnC: Timer/Countern, Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding Interrupt Vector (see "Interr

Bit 2 – OCIEnB: Timer/Countern, Output Compare B Match Interrupt Enable
 When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding Interrupt Vector (see "Interrupts" on page 101) is executed when the OCFnB Flag, located in TIFRIn, is set.

Bit 1 – OCIEnA: Timer/Countern, Output Compare A Match Interrupt Enable
 When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding Interrupt Vector (see "Interrupts" on page 101) is executed when the OCF-nA Flag, located in TIFFIn, is set.

Bit 0 – TOIEn: Timer/Countern, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector (see "Interrupts" on page 101) is executed when the TOVn Flag, located in TIFRn, is set.

Modos de funcionamiento y frecuencias (timer 16 bits)

Modo	Frecuencias en salidas OC3A, OC3B y OC3C
Normal (toogle en salida)	F = 16 MHz / (2 x N x (1+TOP)) $TOP = MAX (0xFFFF)$
CTC (toogle en salida)	F = 16 MHz / (2 x N x (1+TOP)) TOP = OCR3A o ICR3 (0x0000-0xFFFF)
Fast PWM, rampa simple	F = 16 MHz / (N x (1+TOP)) TOP= 0x00FF, 0x01FF, 0x3FF, OCR3A o ICR3
Phase correct PWM, rampa doble	F = 16 MHz / (2 x N x TOP) TOP= 0x00FF, 0x01FF, 0x3FF, OCR3A o ICR3
Phase and frequency correct PWM, rampa doble	F = 16 MHz / (2 x N x TOP) $TOP = OCR3A o ICR3$

$$f_{clk-timer} = \frac{f_{cl}}{N}$$

17.11.8 TCCR5B - Timer/Counter 5 Control Register B

Bit	7	6	5	4	3	2	1	0	
(0x121)	ICNC5	ICES5	-	WGM53	WGM52	CS52	CS51	C950	TCCRSB
Read/Write	B/W	RW	R	RW	R/W	R/W	RW	RW	
Initial Value	0	0	0	0	0	. 0	0	0	

Bit 7 – ICNCn: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is activated, the input from the Input Capture Pin (ICPn) is filtered. The filter function requires four successive equal valued samples of the ICPn pin for changing its output. The input capture is therefore delayed by four Oscillator cycles when the noise canceler is enabled.

Bit 6 – ICESn: Input Capture Edge Select
 This bit selects which edge on the Input Capture Pin (ICPn) that is used to trigger a capture event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICRn is used as TOP value (see description of the WGMn3.0 bits located in the TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently the input capture function is disabled.

Bit 5 – Reserved Bit
 This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero when TCCRnB is written.

Bit 4:3 - WGMn3:2: Waveform Generation Mode

See TCCRnA Register description.

Bit 2:0 - CSn2:0: Clock Select

- sut 2: - Lonzill: Libox Select
The three clock select select the clock source to be used by the Timer/Counter, see Figure 17-10 and Figure 17-11 on page 152:

Table 17-6. Clock Select Bit Description

CSn2	CSn1	CSn0	Description
0	0	0	No clock source. (Timer/Counter stopped)
0	0	1	clk _{iO} /1 (No prescaling
0	1	0	clk _{tO} /8 (From prescaler)
0	11	.1	clk _{so} /64 (From prescaler)
1	0	0	clk _{kO} /256 (From prescaler)
1	0	1	clk _{sc/} 1024 (From prescaler)
1	1	0	External clock source on Tn pin. Clock on falling edge
1	1	1	External clock source on Tri pin. Clock on rising edge

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting.

Secuencia de teclas	Descripción
*#	Entrada en modo configuración (setting)
#*	Salida del modo de configuración. Retorno a la pantalla de visualización normal
#	Salvo en las dos primeras filas, la tecla # hace de "retorno de carro"
*	Salvo en las dos primeras filas, la tecla * hace de "delete"

Menúl (principal)	Menú2 (secundario)	Petición de datos	
l Ajustar hora	1 Hora: 2 Minuto 3 Segundo 4 Exit	Introducir hora: 13 Introducir min: 25 Introducir seg: 54	
2 Ajustar fecha	1 Día 2 Mes 3 Año 4 Exit	Introducir día: 13 Intruducir mes: 10 Introducir año: 2021	
3 Ajustar alarma 1			
4 Ajustar alarma 2			

Fast PWM, rampa simple	F = 16 MHz / (N x (1+TOP))
Past P w M, rampa simple	TOP= 0x00FF, 0x01FF, 0x3FF, OCR3A o ICR3
Phase correct PWM, rampa doble	F = 16 MHz / (2 x N x TOP)
Fliase correct F wivi , fampa doole	TOP= 0x00FF, 0x01FF, 0x3FF, OCR3A o ICR3
Phase and frequency correct	F = 16 MHz / (2 x N x TOP)
PWM, rampa doble	TOP= OCR3A o ICR3

$$f_{clk-timer} = \frac{f_{clk}}{N}$$

					L	C	D		D	ı	s	P	L	A	Y					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
nea 1						1	3	:	5	4		2	8							
nea 2	Α	L	Α	R	М										Т	=	٠	2	3	C
nea 3	0	6	:	3	0	٠								D	D	M	М	М	Υ	Υ
nea 4	0	7		3	0									2	7	N	0	v	2	1

Figura 2. Información a mostrar en pantalla LCD

Por criterios de homogeneidad, en la siguiente tabla se muestran los diferentes campos a visualizar en la pantalla LCD indicándose posición y posibles valores a visualizar:

Campo	Fila	Columna	Caracteres	Descripción
Hora	1	5	8	Hora en formato → hh:mm:ss
Etiqueta (fija)	2	0	5	Etiqueta: ALARM
Etiqueta (fija)	2	14	2	Etiqueta: T=
Temperatura (T)	2	16	3	Temperatura medida por el DS3232
Etiqueta (fija)	2	19	1	Etiqueta: C
ALARMA1	3	0	5	Hora de la ALARMA 1
ACTIVE1	3	5	1	*: Activa espacio: No activa
Etiqueta	3	13	7	Etiqueta: DDMMMYY
ALARMA2	4	0	5	Hora de la ALARMA 2
ACTIVE2	4	5	1	*: Activa espacio: No activa
Fecha	4	13	7	DDMMMYY MMM → JAN-FEB-MAR-APR-MAY-JUN-JUL-AUG- SEP-OCT-NOV-DEC

Tabla 1.- Campos de información de la pantalla LCD

TCCR3A: 0001011 TCCR3B: 00011010

100% = 10000= 5 ms \times % = \times = 2 ms 70P= 10000+