EXERCISE DESIGN A 9's COMPLEMENT GENERATOR FOR A BCD DIGIT:

Read the following notes before starting the exercise!!!

BINARY CODED DECIMAL: B.C.D.

- ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS
- USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS

IN **BCD EACH** NUMBER IS DEFINED BY A BINARY CODE OF **4 BITS**.

*** 8-4-2-1 MOST COMMON CODE

8-4-2-1 CODE INDICATES THE WEIGHT OF EACH BIT $2^3-2^2-2^1-2^0$

E.G. $934 = 1001 \ 0011 \ 0100$

FOR **EACH** DIGIT A **BINARY** [NORMAL] **CODE** IS ALLOCATED.

OHER REPRESENTATION FORMS ARE **2-4-2-1** AND **EXCESS-3**

BINARY	8-4-2-1	2-4-2-1	EXCESS-3
0000	0	0	NOT USED
0001	1	1	NOT USED
0010	2	2	NOT USED
0011	3	3	0
0100	4	4	1
0101	5	NOT USED	2
0110	6	NOT USED	3
0111	7	NOT USED	4
1000	8	NOT USED	5
1001	9	NOT USED	6
1010	NOT USED	NOT USED	7
1011	NOT USED	5	8
1100	NOT USED	6	9
1101	NOT USED	7	NOT USED
1110	NOT USED	8	NOT USED
1111	NOT USED	9	NOT USED

☐ WE WILL USE 8-4-2-1 BCD

□ DECIMAL NUMBERS > 9 MAY BE OBTAINED WHEN ADDING **TWO** DECIMAL DIGITS (**RANGE**: 0-18) **I.E.** $0 + 0 \div 9 + 9$. **ONLY** $0 \rightarrow 9$ HAVE THE CORRECT BCD CODE.

☐ WE NEED TO **CORRECT** THE OTHERS

DECIMAL	UNCORECTED	CORRECTED		
	BCD SUM	BCD SUM		
	$C'_{3}S'_{5}S'_{2}S'_{1} = 0$	$C_N S_3 S_2 S_1 S_0$		
0	0 0 0 0	0 0 0 0		
:	• •	:		
9	1 0 0 1	1 0 0 1		
10	1 0 1 0	1 0 0 0 0		
11	1 0 1 1	1 0 0 0 1		
12	1 1 0 0	1 0 0 1 0		
13	1 1 0 1	1 0 0 1 1		
14	1 1 1 0	1 0 1 0 0		
15	1 1 1 1	1 0 1 0 1		
16	1 0 0 0 0	1 0 1 1 0		
17	1 0 0 0 1	1 0 1 1 1		
18	1 0 0 1 0	1 1 0 0 0		
19	1 0 0 1 1	1 1 0 0 1		

• 0→9 ONLY LEGAL CODES

E.G. 19 = 1 9 = 0001 1001 = 11001

THUS, FOR SUMS BETWEEN $10 \rightarrow 18 \,$ MUST SUBTRACT $10 \,$ AND PRODUCE A CARRY

SUBTRACT $10 = 1010_2 \gg ADD$ 2's COMPLEMENT = 0110

4-BIT BCD ADDER

TO ADD TWO DIGITS

FOR SUMS >9 WE NEED TO ADD 2's COMPLEMENT of 10_{10} TO THE UNCORRECTED RESULT (S'3 S'2 S'1 S'0)

CORRECTION IS **ALSO** NEEDED WHEN A **CARRY OUT** (C'₃) IS GENERATED [NUMBERS $16 \rightarrow 18$]

>>>> A DECODER IS REQUIRED TO DETECT WHEN CARRY OUT (C_N) TO THE NEXT STAGE IS NEEDED

K-MAP FOR C_N

$$S_{1}S_{0}$$
 $S_{3}S_{2}$
 00
 01
 11
 10
 00
 0
 1
 3
 2
 01
 4
 5
 7
 6
 11
 12
 13
 15
 14
 10
 8
 9
 11
 10

$$>>> C_N = C'_3 + S'_3S'_2 + S'_3S'_1$$

TO IMPLEMENT A 4_BIT BCD ADDER WE NEDD TWO 4-BIT FULL ADDERS, ONE TO ADD TWO 4-BIT BCD NUMBERS AND THE OTHER FULL ADDER TO ADD 2's COMPLEMENT OF 10_{10} TO THE RESULT IF $C_N = 1$

ALSO WE NEED 2 AND GATES AND ONE OR GATE TO GENERATE C_N

- ADD 0110 WHEN $C_N=1$
- ADD 0000 WHEN $C_N=0$

BCD SUBTRACTION

9's COMPLEMENT

THE 9's COMPLEMENT OF A DECIMAL NUMBER IS FOUND BY SUBTRACTING EACH DIGIT IN THE NUMBER FROM 9

DECIMAL DIGIT	9's COMPLEMENT
0	9
1	8
2	7
I .	!
9	0

E.G. 9's COMPLEMENT of
$$28 = 99 - 28 = 71$$

SUBTRACTION OF A SMALLER DECIMAL NUMBER FROM A LARGER ONE CAN BE DONE BY ADDING THE 9's COMPLEMENT OF THE SMALLER NUMBER TO THE LARGER NUMBER AND THEN ADDING THE CARRY TO THE RESULT (END AROUND CARRY).

WHEN SUBTRACTING A LARGER NUMBER FROM A SMALLER ONE THERE IS NO CARRY AND THE RESULT IS IN 9's COMPLEMENT FORM AND NEGTIVE.

EXAMPLES:

(c) 15 15
$$+71 \triangleleft 9$$
's COMP. OF 3 $-13 \longrightarrow -13$

NO CARRY >>> NEGATIVE RESULT

$$86 - 99 = -13$$

BCD SUBTRACTION

RECALL FOR DECIMAL SUBTRACTION:

A - B = A + [9's COMPLEMENT OF B]

SIMILARLY FOR BCD

RULES:

- (a) ADD 9's COMP. OF B TO A
- (b) IF RESULT > 9, CORRECT BY ADDING 0110
- (c) IF MOST SIGNIFICANT CARRY
 IS PRODUCED [i.e. =1] THEN
 THE RESULT IS POSITIVE AND
 THE END ARROUND CARRY MUST
 BE ADDED.
- (d) IF MOST SIGNIFICANT CARRY
 IS 0 [i.e. NO CARRY] THEN THE
 RESULT IS NEGATIVE AND WE
 GET THE 9's COMP. OF THE RESULT

E.G.
$$8-3 = 8 + [9]$$
's COMP. OF 3]
 $= 8 + 6$
 1000
 0110
 $1110 \rightarrow INVALID (>9)$
 $0110 \rightarrow CORRECTION$
(1) 0100
 $\longrightarrow 1 \rightarrow END AROUND CARRY$
 $0101 = 5$

(b)
$$3 - 8 = -5$$
 0011 0001 0100

NO CARRY >>> **NEGATIVE 9's COMP**. OF 0100 =**0101**=**-5**

(c)
$$87-39 >>> 87 + [9's COMP OF 39]$$

0001 1000
0010 0111
0011 1111
$$\rightarrow$$
 NO CARRY NEGATIVE
0001 0110 CORRECTION
4 5 = -54

OUTPUT IS A **NEGATIVE** NUMBER >> THE RESULT IS IN **9's COMP.** FORM

(e)
$$65-12 >>> 65+[87]$$

SIGN: 0 POSITIVE 1 NEGATIVE

9's COMPLEMENT

9's COMPLEMENT OF A NUMBER = 9 - NUMBER

BUT SUBTRACTORS ARE NOT WIDELY AVAILABLE >>> WE GENERATE THE 9's COMPLEMENT BY ADDING 1010 TO THE INVERTED NUMBER

BCD DIGIT	DIGIT	DIGIT + 1010 = 9's COMP
0.0.0	1 1 1 1	$\begin{array}{c c} C_3 C_2 C_1 C_0 \\ \hline \end{array}$
0 0 0 0	1111	1 0 0 1
0 0 0 1	1 1 1 0	1 0 0 0
0 0 1 0	1 1 0 1	0 1 1 1
0 0 1 1	1 1 0 0	0 1 1 0
0 1 0 0	1011	0 1 0 1
0 1 0 1	1010	0 1 0 0
0 1 1 0	1 0 0 1	0 0 1 1
0 1 1 1	1000	0 0 1 0
1000	0 1 1 1	0 0 0 1
1 0 0 1	0 1 1 0	0 0 0 0

WE IGNORE THE CARRY OUT