Universidade Federal do Cariri

CENTRO DE CIÊNCIAS AGRÁRIAS E DA BIODIVERSIDADE – EDITAL N.º 01/2019/PRPI – CHAMADA PIICT/FUNCAP –

PLANO DE TRABALHO DO BOLSISTA

1. Título do Plano de Trabalho

Adaptabilidade comparativa das espécies de *Macrophomina* causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense

2. Objetivos

2.1. Objetivo Geral

- Comparar a adaptabilidade das espécies de *Macrophomina* causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense.

2.2. Objetivos Específicos

- Comparar a adaptabilidade biológica e patogênica das espécies de *Macrophomina* causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense sob diferentes condições de temperatura, pH, salinidade, potencial hídrico, fungicida e planta hospedeira;
- Redigir artigo científico abordando as informações geradas pelo estudo;
- Divulgar os resultados em evento científico nacional.

3. Metodologia

Os experimentos propostos nesse plano de trabalho serão desenvolvidos no Laboratório de Fitopatologia do Centro de Ciências Agrárias – CCAB, Campus Crato, da Universidade Federal do Cariri - UFCA.

Serão utilizados 10 (dez) isolados de cada uma das três espécies de *Macrophomina* causadoras da podridão cinzenta do feijão-caupi na região do Cariri Cearense, previamente identificados por iniciadores específicos (artigo em fase de redação). A adaptabilidade das espécies será comparada sob diferentes condições de temperatura, pH, salinidade, potencial hídrico, fungicida e planta hospedeira.

3.1.1. Efeito da temperatura

Discos de micélio (5 mm de diâmetro) serão retirados da margem da colônia de cada isolado com sete dias de crescimento em BDA e transferidos para o centro de placas de Petri contendo BDA. Três placas de cada isolado serão colocadas em incubadoras com temperaturas controladas a 10, 15, 20, 25, 30, 35 e 40 °C no escuro. O delineamento experimental será inteiramente casualizado, em arranjo fatorial, com três repetições (placas) por combinação de isolado e temperatura. O diâmetro das colônias será mensurado aos dois dias de incubação em duas direções perpendiculares e obtida a média (mm).

3.1.2. Efeito pH

Discos de micélio (5 mm de diâmetro) serão retirados da margem da colônia de cada isolado com sete dias de crescimento em BDA e transferidos para o centro de placas de Petri contendo BDA ajustado para pH 4, 5, 6, 7, 8 e 9 pelo uso de soluções 1M de NaOH e HCl. As placas serão incubadas no escuro a 25°C. O delineamento experimental será inteiramente casualizado, em arranjo fatorial, com três repetições (placas) por combinação de isolado e nível de pH. O diâmetro das colônias será avaliado como descrito anteriormente (item 3.1.1).

3.1.3. Efeito da salinidade

Discos de micélio (5 mm de diâmetro) serão retirados da margem da colônia de cada isolado com sete dias de crescimento em BDA e transferidos para o centro de placas de Petri contendo BDA suplementado com 1, 2, 4, 5, 6, 7 e 8% (peso/volume) de NaCl. As placas serão incubadas no escuro a 25°C. O delineamento experimental será inteiramente casualizado, em arranjo fatorial, com três repetições (placas) por combinação de isolado e nível de salinidade. O diâmetro das colônias será avaliado como descrito anteriormente (item 3.1.1).

3.1.4. Efeito do potencial hídrico (Ψs)

Discos de micélio (5 mm de diâmetro) serão retirados da margem da colônia de cada isolado com sete dias de crescimento em BDA e transferidos para o centro de placas de Petri contendo BDA suplementado com KCl para obter os valores de potencial hídrico (Ψs) de -1.0, -2.0,-3.0, -4.0 e -5.0 Mpa, conforme Michel e Radcliffe (1995). As placas serão incubadas no escuro a 25°C. O delineamento experimental será inteiramente casualizado, em arranjo fatorial, com três repetições (placas) por combinação de isolado e nível de potencial hídrico. O diâmetro das colônias será avaliado como descrito anteriormente (item 3.1.1).

3.1.5. Efeito de fungicidas

Serão utilizadas formulações comerciais dos fungicidas azoxistrobina, carbendazin, fluazinan, fludioxonil, pentacloronitrobenzeno, piraclostrobina e tebuconazole, testados em nível mundial para o controle da podridão cinzenta do caule em várias culturas. A sensibilidade dos isolados será avaliada em relação à inibição do crescimento micelial. Os fungicidas serão dissolvidos em água e adicionados ao meio BDA fundente (45°C) para alcançar as concentrações a concentração final de 5 µg i.a./mL. Discos de micélio (5 mm de diâmetro) serão retirados da margem da colônia de cada isolado com 10 dias de crescimento em BDA e

transferidos para o centro de placas de Petri contendo BDA suplementado com o fungicida. Placas contendo BDA sem fungicida serão utilizadas como testemunhas. Os fungicidas serão avaliados separadamente e para cada fungicida o delineamento experimental será inteiramente casualizado, com três repetições (placas) por isolado. As placas serão incubadas no escuro a 25°C. O diâmetro das colônias será avaliado como descrito anteriormente (item 3.1.1). A porcentagem de inibição do crescimento micelial (ICM) será calculada com a fórmula ICM=[(C – N)/T]x100, onde C é o diâmetro da colônia da testemunha (sem fungicida) e N é o diâmetro da colônia para o tratamento com o fungicida.

3.1.6. Efeito da planta hospedeira

Amostras de substrato serão infestadas com os isolados de *Macrophomina* e posteriormente plantadas com algodão, feijão-caupi, mamona, melão e sorgo, sendo duas cultivares de cada espécie vegetal. O inóculo de *Macrophomina* será preparado em frascos Erlenmeyer contendo substrato constituído de 100 g de arroz sem casca e 75 mL de água destilada. Após a esterilização em autoclave (120 °C, 1 atm, 20 minutos) e resfriamento, em cada frasco serão colocados cinco discos de 5 mm de diâmetro de cultura de *Macrophomina*, previamente cultivada em meio BDA durante sete dias. Os frascos serão incubados a 25 °C e fotoperíodo de 12 horas, sendo agitados diariamente para distribuição uniforme dos propágulos do fungo no substrato. Após 15 dias, o substrato colonizado será retirado dos frascos e acondicionado em sacos de papel para secagem a 35°C por 48 horas.

Em cada vaso plástico (2,5 kg de capacidade) contendo substrato (85% de solo e 15% de esterco bovino curtido) previamente autoclavado em dois dias consecutivos (120 °C, 1 atm, 30 minutos) serão perfuradas cinco covas e em cada cova serão depositados três grãos de arroz colonizados com *Macrophomina*. As testemunhas consistirão na deposição em cada cova de plantio de três grãos de arroz autoclavados e sem a colonização pelo fungo. Imediatamente após a infestação, em cada cova será plantada uma semente, previamente desinfestada em solução de NaClO a 1,5% por 2 minutos, lavada em água destilada esterilizada e seca por 30 minutos em câmara asséptica. As plantas hospedeiras serão avaliadas separadamente e para cada hospedeira o delineamento experimental será inteiramente casualizado, em arranjo fatorial, com cinco repetições (vasos). Os vasos serão mantidos em casa de vegetação e a partir do dia da inoculação, o regime de rega será alterado de um dia para dois dias de intervalo, visando introduzir estresse hídrico típico do clima predominante no Nordeste brasileiro, onde a podridão cinzenta é muito grave.

A avaliação será realizada aos 20 dias após a semeadura, pela estimativa da severidade da doença com o auxílio de uma escala de notas de 0 a 5, em que: 0 = ausência de sintomas; 1 = lesões limitadas aos tecidos cotiledonares; 2 = lesões radiculares, cotiledonares e/ou alcançando os tecidos do hipocótilo em aproximadamente 2,0 cm; 3 = lesões acima de 2,0 cm de comprimento na região do colo da planta; 4 = caule com todo o seu diâmetro colonizado pelo fungo e/ou com presença de picnídios; 5 = sementes não germinadas e tombamento de plântulas (LIMA, 2015). Com os dados será calculado o índice de severidade da doença (ID) por vaso, pela expressão: ID = $(\Sigma f(v)/N*X)*100$, onde f = número de plantas com um determinado nível da escala de notas, v = nível da escala observado, N = número total de plantas avaliadas e X = nível máximo da escala (MCKINNEY, 1923).

3.1.7. Análises estatísticas

Nos experimentos de temperatura, pH, salinidade e potencial hídrico os dados serão submetidos às análises de regressão linear e não-linear. Os níveis ótimos das variáveis que propiciaram os maiores crescimentos miceliais e os crescimentos miceliais máximos serão estimados usando os modelos de regressão e os sumários numéricos com o auxílio do programa

TableCurveTM 2D 5.01 (Systat Software Inc., Chicago, EUA). A escolha dos modelos será determinada pelo coeficiente de determinação (R²), distribuição dos resíduos e quadrado médio dos erros. As significâncias das regressões serão verificadas pelo teste F (P<0,05) e de seus parâmetros pelo teste t (P<0,05). Os valores das variáveis estimadas pelos modelos de regressão, bem como das variáveis dos experimentos de fungicidas e agressividade em plantas hospedeiras serão submetidos à análise de variância (ANOVA) e as médias comparadas pelo teste da diferença mínima significativa (LSD) de Fisher (P=0,05). As ANOVAs e as comparações de médias serão realizadas com auxílio do programa Statistix 9.0.

4. Cronograma de Atividades

Atividade	Tempo de Início do Projeto (Mês)											
	1	2	3	4	5	6	7	8	9	10	11	12
Análise comparativa da adaptabilidade das espécies de <i>Macrophomina</i> em diferentes temperaturas	•	•										
Análise comparativa da adaptabilidade das espécies de <i>Macrophomina</i> em diferentes níveis de pH		•	•									
Análise comparativa da adaptabilidade das espécies de <i>Macrophomina</i> em diferentes níveis de salinidade			•	•								
Análise comparativa da adaptabilidade das espécies de <i>Macrophomina</i> em diferentes níveis de potencial hídrico				•	•							
Análise comparativa da adaptabilidade das espécies de <i>Macrophomina</i> em diferentes fungicidas					•	•	•	•				
Análise comparativa da adaptabilidade das espécies de <i>Macrophomina</i> em diferentes plantas hospedeiras								•	•	•	•	•
Redação de artigo científico												•
Difusão das informações geradas												•