

Representación y Aritmética

REPRESENTACIÓN Y ARITMÉTICA

- Introducción
 - Representaciones alfanuméricas y numéricas
 - Operador y estructura de la ALU
- Representación en coma fija
 - Binario sin signo
 - Complemento a 2
 - Complemento a 1
 - Signo-magnitud
 - Exceso a M
- Representación en coma flotante
 - Definición, rango y resolución
 - Normalización y bit implícito
 - Suma y resta
 - Redondeo y bits de guarda
 - Estándar IEEE 754

BIBLIOGRAFÍA

- Fundamentos de los computadores. Pedro de Miguel. Editorial Paraninfo, 9ª edición, 2004.
- Estructura y diseño de computadores. Patterson-Hennessy. Editorial Reverté, 2000
- Organización y arquitectura de computadores. Stallings. Prentice Hall, 7ª edición, 2006
- Computer Arithmetic Systems. Omondi. Prentice Hall International, 1994
- Estructura de computadores: Problemas resueltos. García Clemente y otros. RAMA, 2006

REPRESENTACIÓN DE LA INFORMACIÓN (1)

INFORMACIÓN QUE LLEGA AL COMPUTADOR

- Datos e Instrucciones definidos por:
 - Símbolos (letras, números, caracteres ...)
 - Ideas (operaciones, movimientos, modificaciones ...)

REPRESENTACIÓN DE LA INFORMACIÓN (2)

CONDICIONANTES DEL COMPUTADOR

- Circuitos integrados del Computador:
 Utilización del Sistema Binario
- El computador es Finito:
 Las representaciones son Acotadas
- Diseño de sus unidades funcionales:
 Existen Tamaños Privilegiados (byte, palabra, ..)

MODOS DE REPRESENTACIÓN

- Representaciones Alfanuméricas
- Representaciones Numéricas
- Representaciones Redundantes
- Representaciones Gráficas
- Representaciones Etiquetadas

REPRESENTACIONES ALFANUMÉRICAS (1)

REPRESENTAN:

- Las 26 letras del alfabeto (Mayúsculas y minúsculas)
- Los 10 dígitos decimales
- Un conjunto de caracteres especiales (+ , = < ...)
- Un conjunto de caracteres de control (no visibles)

CARACTERÍSTICAS:

- Facilidad para comprobar un carácter numérico
 - ASCII: desde H'30 hasta H'39
- Fácil equivalencia Mayúsculas y minúsculas
 - ASCII: desde H'41 (A) hasta H'5A (Z)
 - ASCII: desde H'61 (a) hasta H'7A (z)
- Fácil comprobación si es carácter de control
 - ASCII: desde H'00 (NUL) hasta H'1F (US)
 - ASCII: excepción H'7F (DEL)

TABLA DE CÓDIGOS ASCII

Carácter más significativo

						_			
.vo	HEX	0	1	2	3	4	5	6	7
	0	NUL	DLE	Space	0	@	P	,	p
	1	SOH	DC1	!	1	A	Q	a	ď
	2	STX	DC2	"	2	В	R	b	r
	3	ETX	DC3	#	3	C	ន	С	ល
at	4	EOT	DC4	\$	4	D	T	đ	t
Ėi	5	ENQ	NAK	%	5	E	υ	е	u
Carácter menos significativo	6	ACK	SYN	&	6	F	v	£	v
	7	Bell	ETB	ı	7	G	W	g	w
	8	BS	CAN	(8	н	х	h	x
	9	HT	EM)	9	I	Y	i	У
	A	LF	SUB	*	•	J	Z	j	Z
	В	VT	ESC	+	;	K	[k	{
Ca.	С	FF	FS	,	<	L	\	1	
	D	CR	GS	-	=	M]	m	}
	E	SO	RS	•	^	N	^	n	2
	F	si	ບຣ	/	?	0	_	0	DEL
					-	-		-	

REPRESENTACIONES ALFANUMÉRICAS (2)

ASCII 8 bits:

- Norma ISO que añade la representación de caracteres no presentes en inglés.
- á es el 0xE1 é es el 0xE9. Á es el 0xC1 y É es el 0xC9.

UTF-8:

- Codificación de un carácter con varios bytes.
 - Codificación es de un byte: carácter es ASCII de 7 bits.
 - Codificación es de dos bytes: carácter pertenece a lenguas romances y otras.
 - 110000xx 10xxxxxx: xxxxxxxx es el carácter ISO de 8 bits. á es 0xC3 0xA1
 - Codificación es de tres bytes: carácter es de lenguas asiáticas.
 - Codificación es de cuatro bytes: otros.

REPRESENTACIONES NUMÉRICAS

LIMITACIONES DE UNA REPRESENTACIÓN

Número finito de representaciones:

RANGO DE REPRESENTACIÓN

- Intervalo entre el mayor y el menor número representables
- Número finito de bits para la representación:

RESOLUCIÓN

- Diferencia entre dos valores representables consecutivos
- Operaciones con resultados no representables:

DESBORDAMIENTO

Cuando un resultado está fuera del rango de representación)

SISTEMAS POSICIONALES CON BASE

b = base = nº natural > 1

Rep(X) =
$$(... x_2 x_1 x_0 x_{-1} x_{-2} ...)$$
 con xi $\in \{b-1, b-2, ..., 1, 0\}$

$$V(X) = \sum_{i=-\infty}^{i=\infty} x_i b^i = \sum_{i=0}^{i=\infty} x_i b^i + \sum_{i=1}^{i=\infty} x_{-i} b^{-i}$$

CAMBIO DE BASE (1)

• Parte Entera = ... $x_2 b^2 + x_1 b^1 + x_0 b^0$

Dividiendo la Parte Entera por b se obtiene:

- Cociente = ... $x_2 b^1 + x_1 b^0$
- Resto = x_0
- Parte Fraccionaria = ..., x_{-1} b⁻¹ + x_{-2} b⁻² + x_{-3} b⁻³ + ... Multiplicando la Parte Fraccionaria por b se obtiene:
 - Parte Entera = x₋₁
 - Parte Fraccionaria = ..., $x_{-2}b^{-1} + x_{-3}b^{-2} + ...$
- Relación b=2^K. Cada K bits de la representación binaria de un número constituyen un dígito en su representación en base b.
- Conversión de base b=2^K a decimal:

$$010101,1010_{(2} = 2^4 + 2^2 + 2^0 + 2^{-1} + 2^{-3} = 21,625_{(10)}$$

$$A27,8C_{(16)} = 10 \times 16^2 + 2 \times 16^1 + 7 \times 16^0 + 8 \times 16^{-1} + 12 \times 16^{-2} = 2599,546875_{(10)}$$

CAMBIO DE BASE (2)

Ejemplo: Expresar N = 2202,735₍₁₀₎ en base 16, 8 y 2.

2202 =
$$16 \times 137 + 10 \rightarrow x_0 = 10$$
 (A)

$$137 = 16 \times 8 + 9 \rightarrow x_1 = 9 \text{ y } x_2 = 8$$

$$0.735 \times 16 = 11.760 \rightarrow x-1 = 11$$
 (B)

$$0.760 \times 16 = 12,160 \rightarrow x-1 = 12$$
 (C)

Seguir hasta obtener el número de dígitos deseado

$$N = 89A,BC..._{(16)}$$

Expandiendo cada dígito hexadecimal en 4 bits:

$$N = 1000 \ 1001 \ 1010, \ 1011 \ 1100 \ \dots$$
₍₂₎

Agrupando cada 3 bits en un dígito octal:

$$N = 100\ 010\ 011\ 010,\ 101\ 111\ 00?_{(2} = 4232,57\ ..._{(8)}$$

OPERADOR Y ESTRUCTURA DE LA ALU

- Operador: circuito que realiza una operación
- Registro de estado (SR). Los flags más usuales son: Acarreo (C), Cero (Z), Signo (S), Desbordamiento (V), Paridad (P), Resta (N), Acarreo BCD (H)
- Estructura de la ALU (modelo de ejecución Registro-Memoria)

OPERACIONES DE LA ALU (1)

- Operaciones lógicas (NOT, OR, AND, XOR, ...)
 - Actúan sobre los operandos bit a bit:
 - (1001) XOR (0101) = 1100
- Desplazamientos
 - Lógicos: rellenan los huecos generados con ceros, ya sean a la derecha o a la izquierda
 - Aritméticos: realizan la multiplicación por 2 (a la izquierda) o división por 2 (a la derecha). Dependen de la representación:
 - Multiplicación en complemento a 2: Se rellena el hueco con 0 y hay desbordamiento si cambia de signo.
 - División en complemento a 2: Siendo $A=(a_{n-1} \dots a_1 a_0)$ y a=|A|, si A<0 resulta A/2= $2^{-1}(2^n-a)=(2^n-a/2)-2^{n-1}$, por lo que hay que poner un 1 en el hueco generado
 - Concatenados: entre registros y con biestables (acarreo)
 - Circulares o rotaciones

OPERACIONES DE LA ALU (2)

Extensión de signo

- Representa un dato de n bits con m bits, m>n
- Depende de la representación. En complemento a 2 con a=|A| siendo A<0, 2^m-a=(2ⁿ-a)+(2^m-2ⁿ) por lo que hay que rellenar con 1 los (m-n) bits añadidos

Cambio de signo

- Dado un número a, se obtiene –a.
- Depende del sistema de representación utilizado.

Suma/Resta

• Depende del sistema de representación utilizado.

BINARIO SIN SIGNO

$$Pep(X) = (x_{n-1} x_{n-2} \dots x_1 x_0)$$

$$V(X) = \sum_{i=0}^{n-1} x_i 2^i$$

- Rango = [0, 2ⁿ-1] Resolución = 1
- A-B = A+[$(2^n-1-B)+1$]- 2^n = S + C_{n-1} • 2^n 2^n
- Desbordamiento (OVF) con CY (biestable de acarreo)
 - SUMA: $C_{n-1} = 1 \text{ y S/R} = 0 \text{ (CY=1, carry = 1)}$
 - RESTA: C_{n-1} =0 y S/R =1 (CY=1, borrow =1)

ENTEROS EN COMPLEMENTO A 2 (1)

- Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - $X_{n-1} = 0$: $X \ge 0$, Igual que binario puro
 - $X_{n-1} = 1: X < 0, Rep(X) = 2^n |X|$
 - $Rep(X) + Rep(-X) = 2^n$

$$V(X) = -\chi_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} \chi_i 2^i$$

Ejemplo: n = 6, A = 7, B = 101110
A = 000111 -A = 1000000 - 000111 = 111001 = 111000 + 1
(-A se representa invirtiendo los bits de A y sumando 1)

$$|B| = 1000000 - 101110 = 010010 = 18$$
, B = -18
Valor máximo = 011111 = 2^5 -1 = 31
Valor mínimo = $1000000 = -2^5 = -32$

- Rango = [-2ⁿ⁻¹, -1]∪[0, 2ⁿ⁻¹-1] Resolución = 1
 - Rango de representación asimétrico
 - Representación del cero única

ENTEROS EN COMPLEMENTO A 2 (2)

- Suma y Resta: A B = A + (-B) = A + [2ⁿ 1 Rep(B)] + 1
- Análisis de OVF:

Α	В	A+B	C _{n-1}	OVF
а	b	a+b	0	S _{n-1} =1 C _{n-2} =1
2 ⁿ - a	2 ⁿ - b	2 ⁿ +2 ⁿ - (a+b)	1	S _{n-1} =0 C _{n-2} =0
a(>b)	2 ⁿ - b	2 ⁿ + (a-b)	1	NO C _{n-2} =1
a(<b)< td=""><td>2ⁿ- b</td><td>2ⁿ- (b-a)</td><td>0</td><td>NO C_{n-2}=0</td></b)<>	2 ⁿ - b	2 ⁿ - (b-a)	0	NO C _{n-2} =0

ENTEROS EN COMPLEMENTO A 1

- Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - $X_{n-1} = 0$: $X \ge 0$, Igual que binario puro
 - $X_{n-1} = 1: X \le 0, Rep(X) = 2^n 1 |X|$
 - $Rep(X) + Rep(-X) = 2^{n} 1$

$$V(X) = \chi_{n-1}(1-2^{n-1}) + \sum_{i=0}^{n-2} \chi_i 2^i$$

Ejemplo: n = 6, A = 7, B = 101110
A = 000111 -A = 111111 - 000111 = 111000
(-A se representa invirtiendo los bits de A)

$$|B| = 111111 - 101110 = 010001 = 17$$
, B = -17
Valor máximo = 011111 = $2^5 - 1 = 31$
Valor mínimo = $1000000 = -011111 = -(2^5 - 1) = -31$

- Rango = [-(2ⁿ⁻¹-1), 0]∪[0, 2ⁿ⁻¹-1] Resolución = 1
 - Rango de representación simétrico
 - Doble representación del cero: 000...000 y 111...111

ENTEROS EN SIGNO-MAGNITUD

- Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - X _{n-1} = bit de signo
 - $X_{n-1} = 0$: $X \ge 0$ y $X_{n-1} = 1$: $X \le 0$

$$V(X) = (1 - 2 \cdot x_{n-1}) \cdot \sum_{i=0}^{n-2} x_i 2^i$$

- Rango y resolución igual que en complemento a 1
- Suma A+B=(-1)^S×M, siendo A=(-1)^{SA}×MA y B=(-1)^{SB}×MB y utilizando un sumador en binario sin signo:
 - 1. Si SA=SB ir a 5
 - 2. Si MA<MB ir a 4
 - 3. S=SA, M=MA-MB, FIN
 - 4. S=SB, M=MB-MA, FIN
 - 5. S=SA=SB, M=MA+MB, si CY=1 hay OVF, FIN

ENTEROS EN EXCESO A "M"

- Rep(X) = $(x_{n-1} x_{n-2} x_1 x_0)$
 - $\operatorname{Rep}(X) = V(X) + M$
 - Normalmente M=2ⁿ⁻¹ ó M=2ⁿ⁻¹-1(el usado en el estándar IEEE)

Ejemplo: n = 6, M=32, A = 7, B = 001110

$$A = 7+32 = 39 = 100111$$
 $B = 001110 - 32 = 14-32 = -18$
Valor máximo = 111111 = 63 - 32 = 31
Valor mínimo = 000000 = 0 - 32 = -32

Rango = [-M, -1]∪[0, 2ⁿ-1-M] Resolución = 1

BIESTABLES DE ESTADO (1)

- El sumador-restador para operandos de 4 bits incorpora una lógica para generar 8 señales que se almacenan en los biestables de estado, que podrán utilizarse como condiciones en las instrucciones de salto. Deducir el significado de cada biestable, al realizar la operación A-B, considerando que:
 - Los operandos están en aritmética sin signo
 - Los operandos están en aritmética de complemento a dos

BIESTABLES DE ESTADO (2)

Binario sin signo

- B0=1 \rightarrow Carry=1 y S=1 \rightarrow No hay OVF y positivo \rightarrow A>B
- B1=1 → La operación es Resta
- B2=1 → Resta y C=1 → Borrow =1 → A<B
- B3, B4, B5 y B7 no tienen sentido
- B6=1 \rightarrow Z=1 \rightarrow A=B

Complemento a 2

- B0 no indica nada
- B1 = N = flag de resta, B2 = C = flag de acarreo, B3 = V = flag de OVF
- B4=1 → OVF ⊕ Signo = 1 → A<B
 - Si no hay OVF el signo es negativo → Resultado real negativo
 - Si hay OVF el signo es positivo → Resultado real negativo
- B6 = Z =flag de cero, B7 = S = flag de signo

REPRESENTACIÓN EN COMA FLOTANTE (1)

- V(X) = M⋅r E (notación científica)
 - M = mantisa o fracción (p bits)
 - r = base o radix
 - E = exponente o característica (q bits)
- Rep(X) = $(e_{q-1} e_{q-2} \dots e_1 e_0 m_{p-1} m_{p-2} \dots m_1 m_0)$
- CARACTERÍSTICAS:
 - Normalmente $r = 2^k$ (r = 2, 8, 16)
 - Mantisa: coma fija con signo y base r
 - Exponente: Entero y base 2

REPRESENTACIÓN EN COMA FLOTANTE (2)

Rango Exponente = [-64, 63]

	Exceso 64		Signo-magnitud
S	EXPONENTE		MANTISA
1	7	,	8

Rango Mantisa:

- Rango = $\pm [2^{-8} \cdot 2^{-64}, (1-2^{-8}) \cdot 2^{63}] \cup 0$
- Resolución = 2⁻⁸ · 2^E
- A = H'C63C = 1 1000110 ,00111100

A = -,00111100·2⁶ = -15₍₁₀
A = -,01111000·2⁵ = -15₍₁₀
$$\rightarrow$$
 A = H' C578
A = -,11110000·2⁴ = -15₍₁₀ \rightarrow A = H' C4F0

REPRESENTACIÓN EN COMA FLOTANTE (3)

Normalización

Un número en coma flotante está con su mantisa normalizada si al desplazar la mantisa un dígito a la izquierda y decrementar el exponente en 1 cambia el valor del número

	Exceso 64	Signo-mag. Normalizada
S	EXPONENTE	MANTISA
1	7	8

Rango Mantisa:

- Rango = $\pm [2^{-1} \cdot 2^{-64}, (1-2^{-8}) \cdot 2^{63}]$
- Problemas de la normalización:
 - Resultados de operaciones no normalizados
 - El cero no es representable

REPRESENTACIÓN EN COMA FLOTANTE (4)

Bit Implícito

A un número en coma flotante con r=2 y su mantisa en signo magnitud y normalizada, puede dejarse el bit más significativo como implícito ya que tiene que ser un 1

	Exceso 64		Signo-mag. con Bit implícito
S	EXPONENTE		MANTISA
1	7	į,	8

Rango Mantisa:

• Rango = $\pm [2^{-1} \cdot 2^{-64}, (1-2^{-9}) \cdot 2^{63}]$

SUMA Y RESTA EN COMA FLOTANTE (1)

Solución analítica:

$$A = MA \times r^{EA}$$
 $B = MB \times r^{EB}$
 $r = 2^{k}$; Las mantisas MA y MB normalizadas

- EA > EB siendo d = EA - EB
A
$$\pm$$
 B = (MA \pm MB \times r $^{-d}$) \times r EA

- EA < EB siendo d = EB - EA
A
$$\pm$$
 B = (MA \times r^{-d} \pm MB) \times r^{EB}

Pasos a seguir:

- 1. Comparar exponentes
- 2. Desplazar mantisa de exponente menor
- 3. Sumar / Restar mantisas
- 4. Detectar resultado cero
- 5. Normalizar (si redondeo postnormalizar)
- 6. Corregir exponente
- 7. Detectar desbordamiento

SUMA Y RESTA EN COMA FLOTANTE (2)

Esquema del sumador/restador en coma flotante:

SUMA Y RESTA EN COMA FLOTANTE (3)

1. Comparar exponentes

- Identificar mantisa a desplazar
- Determinar el número de desplazamientos = |EA-EB|
- Utiliza un restador (puede haber OVF en esta resta)

2. Desplazar mantisa de exponente menor

- Desplaza |EA-EB| dígitos
- Desplazamientos aritméticos

3. Sumar / Restar mantisas

- Depende de la representación de las mantisas
- Depende del operador que se utilice
- Puede haber OVF* → hay que normalizar
- La resta no es conmutativa

4. Detectar resultado cero

- Se detecta con el flag, Z=1
- Se devuelve la representación definida para el cero

SUMA Y RESTA EN COMA FLOTANTE (4)

- 5. Normalización (mantisa signo y p bits de magnitud)
 - OVF*=1: desplaza dcha. M' y E ← E+1
 - OVF*=0: desplaza izda. M' y E ← E+x (x=0,1,...,p-1)
 - N=1,0,-1,...,-(p-1)=cantidad a sumar al exponente mayor
 - Si redondeo y postnormalización : desplaza dcha. M' y E ← E+1
- 6. Corregir exponente
 - Seleccionar el exponente mayor
 - Sumar N (de la fase de normalización)
 - Sumar 1 si hay postnormalización tras el redondeo
- Detectar desbordamiento
 - Si E > Exponente mayor, hay overflow (OVF)
 - Si E < Exponente menor, hay underflow (UDF)

REDONDEO

- A= ±M×2^E donde M está representada por 6 bits. Se ha obtenido un resultado de 10 bits M=,100100 1011 que ha de ajustarse a 6 bits mediante técnicas de redondeo:
 - Truncamiento: Suprimir los bits sobrantes. M=,100100. Error absoluto ε_a <2-6 siempre por defecto
 - Forzado a 1: Truncamiento dejando siempre a 1 el bit menos significativo. M=100101. Mismo error absoluto que en truncamiento, pero por defecto y por exceso
 - Redondeo al más próximo: Ajustar al extremo M_{i-1} =,100100 ó al M_i =,100101 más próximo sumando la mitad del intervalo, ½(M_i - M_{i-1}) = 000000 1000. M=,100101. Error absoluto $\epsilon_a \le 2^{-7}$ por defecto y por exceso
 - Redondeos a cero, a +∞ y a -∞ : Ajustar al extremo M_i ó M_{i-1} que corresponda en la dirección (M a 0), (M a +∞) y (M a -∞), respectivamente

DÍGITOS DE GUARDA Y BIT RETENEDOR (1)

- Dígitos de guarda: dígitos añadidos a la mantisa para obtener la precisión máxima. En el caso de mantisa en signo-magnitud se necesitarían dos bits de guarda, uno para normalizar el resultado y otro para redondeo
- Bit retenedor: bit que se añade para propagar el borrow en la resta. Al realizar los desplazamientos en la mantisa de menor exponente en la operación suma/resta, el bit retenedor se pone a 1 en el momento que pase un 1 y permanece ese valor independientemente de los bits que pasen después
- Ejemplo: mantisa normalizada en signo magnitud (1 bit de signo y 6 de magnitud) y exponente de 5 bits en exceso a 16.

$$A = ,100001 \times 2^7$$
 $B = ,100101 \times 2^3$,

realizar A-B usando todos los bits necesarios para absorber todos los desplazamientos, con dos bits de guarda y con los dos bits de guarda más bit retenedor

DÍGITOS DE GUARDA Y BIT RETENEDOR (2)

Resultado con 4 bits adicionales:

```
A = ,100001 0000 \times 2^{7}
B = ,000010 0101 \times 2^{7}
A-B = ,011110 1011 \times 2^{7}
Nor. ,111101 011 \times 2^{6}
Red. + 1
A-B = ,111101 \times 2^{6} = D'61
```

Resultado con 2 bits de guarda:

```
A = ,100001 00 \times 2^{7}
B = ,000010 01 \times 2^{7}
A-B = ,011110 11 \times 2^{7}
Nor. ,111101 1 \times 2^{6}
Red. + 1
A-B = ,111110 \times 2^{6} = D'62
```


DÍGITOS DE GUARDA Y BIT RETENEDOR (3)

Resultado con 2 bits de guarda y bit retenedor:

```
A = ,100001 00 0 \times 2^{7}
B = ,000010 01 1 \times 2^{7}
A-B = ,011110 10 1 \times 2^{7}
Nor. ,111101 01 \times 2^{6}
Red. + 1
A-B = ,111101 \times 2^{6} = D'61
```

Resultado exacto y errores:

```
A = ,100001 \times 2^7 = D'66 B = ,100101 \times 2^6 = D'4,625 A-B = D'61,375
```

- Error con 2 bits de guarda = |61,375-62|=0,625
- Error con bit retenedor = |61,375-61|=0,375

ESTÁNDAR IEEE 754 DE COMA FLOTANTE (1)

Simple precisión

Exceso 127 Signo-mag. con Bit implícito

S	EXPONENTE	MANTISA
1	8 i,	23

ESTÁNDAR IEEE 754 DE COMA FLOTANTE (2)

Rango de representación:

- Precisión:
 - 3 Bits adicionales (2 de guarda y 1 retenedor)
 - Redondeos al más próximo, a +∞, a -∞ y truncamiento