0.1 H20 数学必修

$$\boxed{1} (1) \det A = \begin{vmatrix} 1 & a & 1 \\ a & 1 & a^2 \\ 1 & a^2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & a & 1 \\ a & 1 & a^2 \\ 0 & a^2 - a & 0 \end{vmatrix} = -(a^2 - a) \begin{vmatrix} 1 & 1 \\ a & a^2 \end{vmatrix} = -a^2(a - 1)^2$$

 $(2)a \neq 0,1$ なら det $A \neq 0$ より A は正則で、rank A = 3

$$a = 1$$
 のとき、 $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ より $\operatorname{rank} A = 1$ $a = 0$ のとき、 $A = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}$ より $\operatorname{rank} A = 2$

$$(3) \operatorname{rank} A = 2 \, \, \sharp \, \, b \, \, a = 0 \, \, \mathfrak{S} \, \, \mathfrak{S} \, . \, \, g_A(t) = \begin{vmatrix} 1 - t & 0 & 1 \\ 0 & 1 - t & 0 \\ 1 & 0 & 1 - t \end{vmatrix} = (1 - t) \begin{vmatrix} 1 - t & 1 \\ 1 & 1 - t \end{vmatrix} = (1 - t)((1 - t)^2 - 1) = (1 - t$$

t(t-2)(1-t) より固有値は 0,1,2 である.

固有値 0 に対する固有ベクトルは $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ 固有値 1 に対する固有ベクトルは $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ 固有値 2 に対する固有ベ

クトルは $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$

 $\boxed{2}$ (1) $[a]_n, [b]_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ とする。それぞれ乗法に関する逆元 $[a]_n^{-1}, [b]_n^{-1}$ が存在して $[a]_n^{-1}, [b]_n^{-1} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ である。よって $([a]_n[b]_n)([b]_n^{-1}[a]_n^{-1}) = [1]_n$ より $[a]_n[b]_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ である。

よって $(\mathbb{Z}/n\mathbb{Z})^{\times}$ は乗法について閉じている.

 $[1]_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ より単位元を持ち、結合律は $(\mathbb{Z}/n\mathbb{Z})$ が環であることから成り立つ。逆元の存在もあきらか。

(2)n と互いに素な a について $ak+n\ell=1$ となる k,ℓ が存在する。 $[a]_n[k]_n=[1-n\ell]_n=[1]_n$ より $[a]_n\in(\mathbb{Z}/n\mathbb{Z})^{\times}$ である。逆に $[a]_n\in(\mathbb{Z}/n\mathbb{Z})^{\times}$ なら $[a]_n[b]_n=[1]_n$ なる b が存在する。すなわち ab=1+nk なる k が存在する。これは a,n が互いに素であることを意味するから $(\mathbb{Z}/n\mathbb{Z})^{\times}=\left\{[a]_n\in(\mathbb{Z}/n\mathbb{Z})\mid a$ と n は互いに素 である。

 $(3)\pi(c+d)=([c+d]_m,[c+d]_n)=([c]_m+[d]_m,[c]_n+[d]_n)=([c]_m,[c]_n)+([d]_m,[d]_n)=\pi(c)+\pi(d),\pi(cd)=([cd]_m,[cd]_n)=([c]_m[d]_m,[c]_n[d]_n)=([c]_m,[c]_n)([d]_m,[d]_n)=\pi(c)\pi(d),\pi(1)=([1]_m,[1]_n)$ より π は環準同型である.

 $[a]_m \in (\mathbb{Z}/m\mathbb{Z})^{\times}, [b]_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ を任意にとる. n, m が互いに素であるから, $nk + m\ell = 1$ なる k, ℓ が存在する. $c = ank + bm\ell$ とおくと, $[c]_m = [ank]_m = [1]_m, [c]_n = [bm\ell]_n = [1]_n$ より $\pi(c) = ([a]_m, [b]_n)$ であるから, π は全射準同型である.

 $\pi(c)=0$ とすると、 $c\in m\mathbb{Z}\cap n\mathbb{Z}$ であり、m,n が互いに素であるから $m\mathbb{Z}\cap n\mathbb{Z}=mn\mathbb{Z}$ である.よって $\mathbb{Z}/mn\mathbb{Z}\cong \mathbb{Z}/m\mathbb{Z}\times \mathbb{Z}/n\mathbb{Z}$ である.

 $(4)[c]_{mn} \in \mathbb{Z}/mn\mathbb{Z}$ が可逆であることと, $\pi(c)$ が可逆であることは同値である.したがって $\pi: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ によって誘導される同型写像 $\tilde{\pi}: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ から写像 $\tilde{\pi}: (\mathbb{Z}/mn\mathbb{Z})^{\times} \to (\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})^{\times}$ が誘導される.これが群同型写像であることは明らか.

- $([a]_m,[b]_n)\in (\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z})^{ imes}$ は $[a]_m\in (\mathbb{Z}/m\mathbb{Z})^{ imes},[b]_n\in (\mathbb{Z}/n\mathbb{Z})^{ imes}$ と同値であるから、 $(\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z})^{ imes}\in (\mathbb{Z}/m\mathbb{Z})^{ imes}$
 - $(5)144 = 9 \cdot 16$ で 9,16 は互いに素であるから、 $(\mathbb{Z}/144\mathbb{Z})^{\times} \cong (\mathbb{Z}/9\mathbb{Z})^{\times} \times (\mathbb{Z}/16\mathbb{Z})^{\times}$ である.
- $|(\mathbb{Z}/9\mathbb{Z})^{\times}|$ は 9 と互いに素な 9 以下の自然数の個数であるから, $|(\mathbb{Z}/9\mathbb{Z})^{\times}| = 6$ である. $|(\mathbb{Z}/16\mathbb{Z})^{\times}|$ は 16 と互いに素な 16 以下の自然数の個数であるから, $|(\mathbb{Z}/16\mathbb{Z})^{\times}| = 8$ である.

よって $|(\mathbb{Z}/144\mathbb{Z})^{\times}| = |(\mathbb{Z}/9\mathbb{Z})^{\times}||(\mathbb{Z}/16\mathbb{Z})^{\times}| = 48$

- $\boxed{3}$ (1)U が次の 3条件を満たすとき, (X,U) を位相空間という.
- 1. $\emptyset, X \in \mathcal{U}$
- 2. Uの任意個の元の和集合が Uに属する
- 3. Uの有限個の元の共通部分が Uに属する
- $(2)\emptyset = Y \cap \emptyset \in \mathcal{U}_Y, Y = Y \cap X \in \mathcal{U}_Y$ である. $\bigcup_{\lambda \in \Lambda} (Y \cap \mathcal{U}_\lambda) = Y \cap \bigcup_{\lambda \in \Lambda} \mathcal{U}_\lambda \in \mathcal{U}_Y$ である. $\bigcap_{i=1}^n (Y \cap \mathcal{U}_i) = Y \cap \bigcap_{i=1}^n \mathcal{U}_i \in \mathcal{U}_Y$ である. よって位相を与える.
- (3)(i) 真. $y,y'\in Y\subset X$ に対して、 $y\in U,y'\in V,U,V\in U,U\cap V=\emptyset$ なる U,V が存在する.このとき $y\in Y\cap U,y'\in Y\cap V,(Y\cap U)\cap (Y\cap V)=\emptyset$ であるから Y はハウスドルフ.
- (ii) 偽. 位相空間 X を $\mathbb R$ に標準の位相を入れたものとし, $Y=[0,1]\cup[2,3]$ とする.X は連結であるが,Y は連結でない.
- (iii) 偽 X=[0,1] に \mathbb{R} の部分位相をいれたものとすると,X は有界閉集合であるからコンパクトである. Y=(0,1) とすればこれは $U_n=(0,1-1/n)$ として有限部分被覆を持たない開被覆 $\{U_n\mid n=2,3,\dots\}$ を持つからコンパクトでない.
- $\boxed{4}\ (1)x = 0\ \mathcal{O}$ とき、 $f(0) = \lim_{n \to \infty} e^{-n0} = 1\ \text{である}.\ x \neq 0\ \mathcal{O}$ とき、 $f(x) = \lim_{n \to \infty} e^{-nx} = 0\ \text{である}.$ $\sup_{x \in [0,1]} |e^{-nx} f(x)| = \sup_{x \in (0,1]} e^{-nx}\ \text{であり},\ x = 1/n\ \mathcal{O}$ とき $e^{-nx} = e^{-1}\ \text{であるから},\ \sup_{x \in (0,1]} e^{-nx} \geq e^{-1}\ \text{である}.$ よって $\lim_{n \to \infty} \sup_{x \in [0,1]} |e^{-nx} f(x)| \geq e^{-1}\ \text{より一様収束しない}.$
- $(2)x_0\in[0,1]$ を一つ固定すると,実数列 $\{f_n(x_0)\}_{n=1}^\infty$ を得る.任意の ε に対してある $N\in\mathbb{N}$ が存在して任意の n,m>N に対して $|f_n(x_0)-f_m(x_0)|\leq \sup_{x\in[0,1]}|f_n(x)-f_m(x)|<\varepsilon$ が成り立つ.すなわち $\{f_n(x_0)\}_{n=1}^\infty$ はコーシー列である.よって $\lim_{x\in[0,1]}f_n(x_0)$ は収束する.
- (3) 任意の ε に対してある N_x が存在して $n \geq N_x$ ならば $|f_n(x) f(x)| < \varepsilon$ である. よって $\sup_{x \in [0,1]} |f_n(x) f(x)| \leq \sup_{x \in [0,1]} (|f_n(x) f_{N_x+N}(x)| + |f_{N_x+N}(x) f(x)|) \leq \sup_{x \in [0,1]} |f_{N_x+N}(x) f(x)| + \varepsilon < 2\varepsilon \quad (n > N)$ である. よって f_n は f に一様収束する.

 $|f(x+h)-f(x)| \leq |f(x+h)-f_n(x+h)| + |f_n(x+h)-f_n(x)| + |f_n(x)-f(x)|$ である。任意の ε に対して $n \geq N_{x+h}$ で $|f(x+h)-f_n(x+h)| < \varepsilon$ であり, $n \geq N_x$ で $|f_n(x)-f(x)| < \varepsilon$ である。任意の n について f_n の連続性からある δ_n が存在して $|h| < \delta_n$ ならば $|f_n(x+h)-f_n(x)| < \varepsilon$ である。よって $M = N_{x+h} + N_x$ と すれば $|h| < \delta_M$ に対して $|f(x+h)-f(x)| < 3\varepsilon$ とできる。すなわち f は連続である。