Lin Gui

5747 S. Ellis Avenue, Jones 203/204, Chicago, IL, 60637 Email: ybnbxb@gmail.com; Website: https://gl-ybnbxb.github.io/

EDUCATION

Ph. D. in Statistics, The University of Chicago, Chicago, USA
M.S. in Statistics, The University of Chicago, Chicago, USA
B.S. in Statistics, University of Science and Technology of China, Hefei, China
2018-2020
2014-2018

RESEARCH INTERESTS

- Statistical Inference and Multiple Testing
- Generative Models
- Causal Inference and Machine Learning
- Biostatistics

PUBLICATIONS

• Aggregating Dependent Signals with Heavy-Tailed Combination Test

Lin Gui, Yuchao Jiang, Jingshu Wang *Preprint*

• Concept Algebra for Score-Based Conditional Models

Zihao Wang, Lin Gui, Jeffrey Negrea, Victor Veitch *NeurIPS 2023*

• Causal Estimation for Text Data with (Apparent) Overlap Violations

Lin Gui, Victor Veitch ICLR 2023

• Detecting Multiple Replicating Signals using Adaptive Filtering Procedures

Jingshu Wang, Lin Gui, Weijie J. Su, Chiara Sabatti, Art B. Owen *The Annals of Statistics* 50 (4), 1890-1909

RESEARCH

- A Theoretical and Practical Analysis of the Heavy-Tailed Combination Test for Global Test With Correlated Hypotheses
- Undertook comprehensive theoretical evaluations to decipher the intricacies of the state-of-theart Cauchy combination test and its expansion, termed the heavy-tailed combination test, tailored for the global test with correlated hypotheses.
- Conducted empirical studies, offering a general practical guideline for the Cauchy/heavy-tailed combination test
- Enhanced the heavy-tailed combination test into a multiple testing procedure adept at controlling the family-wise error rate (FWER) and introduced a shortcut for this closed testing procedure.
- Implemented the method on genetic data to address real-world challenges.
- Gene Transcription Mechanism in 3D Genome
- Designed a statistical tool aimed at identifying gene pairs with a high likelihood of cotranscription due to shared enhancers (close to each other). A core challenge is accommodating the 3D dynamic structures of chromosomes. Thus, spatial details of gene pairs must be analyzed using 3D genome data, such as Hi-C data.

CONFERENCES AND PRESENTATIONS

• ICML 2023 Workshop SPIGM and SCIS	Jul. 2023
- Concept Algebra for Score-Based Conditional Models	
• ICLR 2023	May. 2023
- Causal Estimation for Text Data with (Apparent) Overlap Violations	
• 2021 Joint Statistical Meetings	Aug. 2021
 Detecting Multiple Replicating Signals Using Adaptive Filtering Procedures 	

CODING SKILLS

- R, Python, MATLAB, SQL
- PyTorch, Numpy, Pandas

HONORS & AWARDS

• Nominee, The 37th. Guo Moruo Scholarship (The highest honor at USTC)	2017
Winner, Outstanding Student Scholarship, USTC	2016-2017
Winner, China National Scholarship, USTC	2015