LifLF – Théorie des langages formels

Sylvain Brandel 2019 – 2020

sylvain.brandel@univ-lyon1.fr

CM 4

AUTOMATES À ÉTATS FINIS DÉTERMINISATION

Elimination du non-déterminisme

Définition

2 automates finis (déterministes ou non) sont équivalents ssi L(M) = L(M').

Théorème

Pour tout automate non déterministe, il existe un automate déterministe équivalent, et il existe un algorithme pour le calculer

Cet algorithme est appelé déterminisation d'un automate.

- Soit M = (K, Σ , Δ , s, F) un automate non déterministe.
- Problème : M' = (K', Σ , δ ', s', F') ? (M' déterministe)
- Démarche
 - Méthode pour construire M'
 - Montrer
 - M' déterministe
 - M' équivalent à M

- L'idée est la suivante :
 - Pour toute lettre σ de Σ , on considère l'ensemble des états qu'on peut atteindre en lisant σ .
 - On rassemble ces états et on considère des états étiquetés par des parties de K (P(K))
 - L'état initial de M' est l'ensemble des états atteignables en ne lisant aucune lettre.
 - Les états finaux de M' sont les parties (atteignables) de P(K) contenant au moins un état final (de M).

a Exemple e q_1 h $q_0 \rightarrow^a q_0 (q_0 \rightarrow^e q_1 \rightarrow^a q_0)$ b $q_4 (q_0 \rightarrow^e q_1 \rightarrow^a q_4)$ $q_3 (q_0 \rightarrow^e q_1 \rightarrow^a q_4 \rightarrow^e q_3)$ $q_1 (q_0 \rightarrow^e q_1 \rightarrow^a q_0 \rightarrow^e q_1)$ $q_2 (q_0 \rightarrow^e q_1 \rightarrow^a q_0 \rightarrow^e q_1 \rightarrow^e q_2)$ $q_0 \rightarrow b \quad q_2 (q_0 \rightarrow b q_2)$ $q_4 (q_0 \rightarrow^e q_1 \rightarrow^e q_2 \rightarrow^b q_4)$ $q_3 (q_0 \rightarrow^e q_1 \rightarrow^e q_2 \rightarrow^b q_4 \rightarrow^e q_3)$

état initial : $\{q_0, q_1, q_2, q_3\}$

- Prise en compte des ε-transitions : ε-clôture
- Soit q ∈ K, on note E(q) l'ensemble des états de M atteignables sans lire aucune lettre :

$$E(q) = \{p \in K : (q, \varepsilon) \mid_{M}^{*} (p, \varepsilon)\}$$

E(q) est la clôture de {q} par la relation binaire {(p, r) | (p, ε , r) $\in \Delta$ }

Construction de E(q)

$$\begin{aligned} & E(q) := \{q\} \\ & \underline{tant\ que}\ il\ existe\ une\ transition\ (p,\ \epsilon,\ r) \in \Delta\ avec\ p \in E(q)\ et\ r \not\in E(q) \\ & E(q) := E(q) \cup \{r\} \end{aligned}$$

•
$$\rightarrow$$
 M' = (K', Σ , δ ', s', F')

avec K' = P (K)
 s' = E(s)
 F' = {Q \subset K : Q \cap F \neq Ø}
 δ ' = P (K) \times Σ \rightarrow P (K)

 \forall Q \subset K, \forall a \in Σ ,
 δ '(Q, a) = \cup {E(p) | \exists q \in Q : (q, a, p) \in Δ }

 $\delta'(Q, a)$: ensemble de tous les états (de M) dans lesquels M peut aller en lisant a (y compris ϵ)

Elimination du non-déterminisme

Exemple

b

Elimination du non-déterminisme Autre exemple

Elimination du non-déterminisme Généralisation

$$\Sigma = \{a_1, a_2, ..., a_n\}$$

$$\Sigma_1 = \Sigma - \{a_1\}$$

$$\sum_{i} = \sum - \{a_i\}$$

$$\rightarrow$$
 L(M) = $\cup_{i=1}^n \Sigma_i^*$