Homework#3

Raja Kantheti

November 19, 2024

1 Problem 14.3

Part A

• Mean:

Mean =
$$\frac{1}{n} \sum_{i=1}^{n} x_i = 29.87$$

• Median:

$$Median = 29.65$$

• Mode:

$$Mode = 29.65$$

• Variance:

Variance =
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \text{Mean})^2 = 1.41$$

• Standard Deviation:

Standard Deviation =
$$\sqrt{\text{Variance}} = 1.19$$

• Mean Absolute Deviation (MAD):

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |x_i - Mean| = 0.77$$

• Coefficient of Variation:

$$\label{eq:coefficient} \text{Coefficient of Variation} = \frac{\text{Standard Deviation}}{\text{Mean}} = 0.0398$$

Part B

2 Problem 14.12

Power law model: $A = 0.415W^{0.380}$

Predicted surface area for 95 kg: $2.34m^2$ Prediction interval: $2.31m^2$ to $2.37m^2$

Residuals vs Area Plot:

Figure 1: Residuals vs Weight

Surface area vs Weight plot:

Figure 2: Surface Area vs Weight

15.2

We are given the model:

$$y = \beta_1 x + \beta_2 x^2 + \epsilon$$

where y is the dependent variable, x is the independent variable, β_1 and β_2 are the coefficients we need to estimate, and ϵ is the error term.

The objective is to find the values of β_1 and β_2 that minimize the sum of the squared residuals (the differences between the observed and predicted values of y).

Least Squares Method

The least squares method minimizes the sum of the squared residuals:

$$S = \sum_{i=1}^{n} (y_i - (\beta_1 x_i + \beta_2 x_i^2))^2$$

Derivation of the Sum of Squared Residuals

Let's denote the residuals as:

$$r_i = y_i - (\beta_1 x_i + \beta_2 x_i^2)$$

Then, the sum of squared residuals is:

$$S = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - \beta_1 x_i - \beta_2 x_i^2)^2$$

Minimizing the Sum of Squared Residuals

taking the partial derivatives of S with respect to β_1 and β_2 and set them to zero.

Partial Derivative with Respect to β_1

$$\frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i \left(y_i - \beta_1 x_i - \beta_2 x_i^2 \right)$$

Setting this to zero:

$$\sum_{i=1}^{n} x_i y_i = \beta_1 \sum_{i=1}^{n} x_i^2 + \beta_2 \sum_{i=1}^{n} x_i^3$$

Partial Derivative with Respect to β_2

$$\frac{\partial S}{\partial \beta_2} = -2\sum_{i=1}^n x_i^2 \left(y_i - \beta_1 x_i - \beta_2 x_i^2 \right)$$

Setting this to zero:

$$\sum_{i=1}^{n} x_i^2 y_i = \beta_1 \sum_{i=1}^{n} x_i^3 + \beta_2 \sum_{i=1}^{n} x_i^4$$

Normal Equations

We now have two normal equations:

1.

$$\sum_{i=1}^{n} x_i y_i = \beta_1 \sum_{i=1}^{n} x_i^2 + \beta_2 \sum_{i=1}^{n} x_i^3$$

2.

$$\sum_{i=1}^{n} x_i^2 y_i = \beta_1 \sum_{i=1}^{n} x_i^3 + \beta_2 \sum_{i=1}^{n} x_i^4$$

Matrix Forms of these equations are:

$$\begin{bmatrix} \sum x_i^2 & \sum x_i^3 \\ \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}$$

These are of the form:

$$A\beta = b$$

where:

$$A = \begin{bmatrix} \sum x_i^2 & \sum x_i^3 \\ \sum x_i^3 & \sum x_i^4 \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \quad b = \begin{bmatrix} \sum x_i y_i \\ \sum x_i^2 y_i \end{bmatrix}$$

To find the coefficients β_1 and β_2 , we solve the system of linear equations $A\beta = b$. Mmade a python script to run the calculations and generate the plots. The script is available at: test.py

Here are the values of β_1 and β_2 : $beta_1=7.771024464831841$ $beta_2=0.11907492354740007$

Hrere is the plot of the data and the fitted curve:

Figure 3: Data and Fitted Curve

3 16.2

The temperature in a pond varies sinusoidally over the course of a year. We aim to fit the model:

$$y = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t) + e$$

to the given data. Using the fitted equation, we will determine the mean, amplitude, and the day and value of the maximum temperature.

Given Data

Determine ω_0

Since the period is 365 days, the angular frequency ω_0 is:

$$\omega_0 = \frac{2\pi}{365} \approx 0.0172 \text{ rad/day}$$

Design Matrix

For each given day $t \cos(\omega_0 t)$ and $\sin(\omega_0 t)$ are as sfollows:

$t ext{ (days)}$					135					315	345
$\cos(\omega_0 t)$	0.967	0.716	0.275	-0.230	-0.667	-0.954	-0.721	-0.309	0.204	0.646	0.946
$\sin(\omega_0 t)$	0.255	0.697	0.961	0.973	0.745	0.299	-0.693	-0.951	-0.979	-0.763	-0.329

Calculate the Necessary Sums

$$\sum \cos(\omega_0 t) = 0.173$$

$$\sum \sin(\omega_0 t) = 0.215$$

$$\sum \cos^2(\omega_0 t) = 5.927$$

$$\sum \sin^2(\omega_0 t) = 4.073$$

$$\sum \cos(\omega_0 t) \sin(\omega_0 t) = -0.218$$

$$\sum T = 125.3$$

$$\sum T \cos(\omega_0 t) = -3.075$$

$$\sum T \sin(\omega_0 t) = 4.338$$

Using the sums calculated, we set up the normal equations:

$$\begin{bmatrix} 11 & 0.173 & 0.215 \\ 0.173 & 5.927 & -0.218 \\ 0.215 & -0.218 & 4.073 \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ B_1 \end{bmatrix} = \begin{bmatrix} 125.3 \\ -3.075 \\ 4.338 \end{bmatrix}$$

Usedd the python sccript to solve the normal equations and calculate the coefficients. The script is available at: test.py
The plot shows the equation fits the data well.

Figure 4: Data and Fitted Curve

4 17.2

Given Data,

Selected Points Around x = 3.5

$$\begin{array}{c|ccccc} x & 2.5 & 3 & 4.5 & 5 \\ \hline y & 7.3516 & 7.5625 & 8.4453 & 9.1875 \end{array}$$

Finite Divided Differences

1. First-order divided differences:

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

$$f[2.5, 3] = \frac{7.5625 - 7.3516}{3 - 2.5} = \frac{0.2109}{0.5} = 0.4218$$

$$f[3, 4.5] = \frac{8.4453 - 7.5625}{4.5 - 3} = \frac{0.8828}{1.5} = 0.5885$$

$$f[4.5, 5] = \frac{9.1875 - 8.4453}{5 - 4.5} = \frac{0.7422}{0.5} = 1.4844$$

2. Second-order divided differences:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$
$$f[2.5, 3, 4.5] = \frac{0.5885 - 0.4218}{4.5 - 2.5} = \frac{0.1667}{2} = 0.08335$$
$$f[3, 4.5, 5] = \frac{1.4844 - 0.5885}{5 - 3} = \frac{0.8959}{2} = 0.44795$$

3. Third-order divided differences:

$$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}] = \frac{f[x_{i+1}, x_{i+2}, x_{i+3}] - f[x_i, x_{i+1}, x_{i+2}]}{x_{i+3} - x_i}$$
$$f[2.5, 3, 4.5, 5] = \frac{0.44795 - 0.08335}{5 - 2.5} = \frac{0.3646}{2.5} = 0.14584$$

Newton Interpolating Polynomial

The Newton interpolating polynomial is given by:

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$
Using the points (2.5, 7.3516), (3, 7.5625), (4.5, 8.4453), and (5, 9.1875):

$$P(x) = 7.3516 + 0.4218(x - 2.5) + 0.08335(x - 2.5)(x - 3) + 0.14584(x - 2.5)(x - 3)(x - 4.5)$$

Evaluate the Polynomial at x = 3.5

```
P(3.5) = 7.3516 + 0.4218(3.5 - 2.5) + 0.08335(3.5 - 2.5)(3.5 - 3) + 0.14584(3.5 - 2.5)(3.5 - 3)(3.5 - 4)(3.5 - 3)(3.5 - 4)(3.5 - 3)(3.5 - 4)(3.5 - 3)(3.5 - 4)(3.5 - 3)(3.5 - 4)(3.5 - 3)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5 - 4)(3.5
```

So, estimated value of y at x = 3.5 is approximately 7.6692.