

ÖSTERREICHISCHES PATENTAMT

A-1200 Wien, Dresdner Straße 87

Kanzleigebühr € 12,00 Schriftengebühr € 52,00 REC'D 2 0 AUG 2004
WIPO PCT

Aktenzeichen A 948/2003

Das Österreichische Patentamt bestätigt, dass

die Firma LUMITECH Holding GmbH in A-8380 Jennersdorf, Technologiepark 10 (Burgenland),

am 18. Juni 2003 eine Patentanmeldung betreffend

"Verfahren zur Herstellung weißer LED's sowie weiße LED-Lichtquelle",

überreicht hat und dass die beigeheftete Beschreibung samt Zeichnung mit der ursprünglichen, zugleich mit dieser Patentanmeldung überreichten Beschreibung samt Zeichnung übereinstimmt.

> Österreichisches Patentamt Wien, am 23. Juli 2004

> > Der Präsident:

i. A.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

. •

(51) IPC:

AT PATENTSCHRIFT

(11) Nr.

ei der Anmeldung sind nu. (73) Patentinhaber	(bzw. –inhaber):		andele Felde,	r unbedingt au	sfülle
	Holding all				
	,				
(54) Titel der Anme	dunce				
Verfahren	7112 II.				
weiße LED	zur Herstellu Lichtquelle	ng weißer LI	ED's sowie		
61) Zusatz zu Patent	Nr				
(66) Umwandlung vo	n GM	. /			
62) gesonderte Anme	eldung aus (Teilung):	/			
Priorität(en):	rading aus (Teilung):	Α	/		
().					-
		·	<i>:</i>		
Erfinder:					
Anmeldetag, Akten	zeichen:			•	
2003 06 18	, A	,			
Abhängigkeit:	,	/			
Beginn der Patentda	ler·				
Längste mögliche Da					
Ausgabetag:	uoi.				
				•	
Entgegenhaltungen, die	fiir die Pout i				

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer weißen LED mit vorgegebener Farbtemperatur, bei dem eine blaue LED oder eine UV-LED mit einer Konversionsschicht, die blaues Licht bzw. UV-Licht absorbiert und Licht größerer Wellenlänge emittiert, beschichtet wird. Bei einer blauen LED wird ein Teil der blauen Emission in einen anderen Wellenlängenbereich konvertiert, so dass die Summe der emittierten Lichtkomponenten weißes Licht ergibt. Bei einer UV-LED muss die Konversionsschicht natürlich zumindest zwei verschiedene Farbkonversionspigmente enthalten, deren Emissionen zusammen weißes Licht ergeben. Die vorliegende Erfindung betrifft weiters eine weiße LED-Lichtquelle, die

blaue LED's oder UV-LED's aufweist, über denen eine Konver-

Die Farbkonversionsschicht besteht typisch aus anorganischen oder organischen Farbkonversionspigmenten, welche in einer organischen Kunststoffschicht verteilt sind.

sionsschicht aufgebracht ist.

Im Hinblick auf eine reproduzierbare Herstellung von weißen LEDs innerhalb enger Toleranzen des resultierenden Farbortes

20 muss beim Herstellungsprozess neben der Konzentration der Pigmente auch die Schichtdicke (und deren Form) exakt definiert sein.

Im Stand der Technik sind diesbezüglich verschiedene Prozesse bekannt:

- 25 1) Das Farbkonversionsmedium füllt den Reflektor-Cup, in welchen die LED eingesetzt wird, bündig aus;
 - 2) Das Farbkonversionsmedium wird in Tropfenform über dem LED-Chip aufgebracht (z.B. durch Dispensing);
- 3) Das Farbkonversionsmedium wird in die Klebeschicht zwi-30 schen der LED und einer Linse eingebracht;
 - 4) Das Farbkonversionsmedium wird in Schichtform definiert hergestellt und auf der LED befestigt;
 - 5) Die Farbkonversionsschicht wird direkt auf den LED-Chip gedruckt.
- Diese Methoden erfüllen die Anforderungen für viele Anwendungen, speziell für Beleuchtung, unzureichend. Die Herstel-

lungsmethode und deren Toleranzen sind wesentliche Gründe für die Abweichungen. Ein weiterer Grund ist der folgende:

Die Anregbarkeit der Farbkonversionsmittel hängt typischerweise stark von der Wellenlänge der anregenden LEDs ab. Speziell bei langwelligen blauen LEDs führt eine Wellenlängentoleranz von nur einigen Nanometern bereits zu signifikant unterschiedlichen Emissionsintensitäten bei den derzeitigen Farbkonversionsmitteln. Im Falle von UV-LEDs würde dies zu einer Intensitätsschwankung führen, im Falle von blauen LEDs darüber hinaus zu einer Farbverschiebung, da sich in diesem Fall das weiße Licht aus der blauen LED-Emission und der Emission des Farbkonversionsmittels zusammensetzt.

Da LEDs gemäß dem Stand der Produktionstechnik eine relativ breite Wellenlängenverteilung aufweisen, weist eine typische Selektionsklasse eine Wellenlängentoleranz von mehr als 5 nm auf. Selbst bei sehr definierter Aufbringung der Farbkonversionsmittel (mit vernachlässigbarer Toleranz) resultiert hieraus eine Toleranz der Farbtemperatur weißer LEDs von mehr als ±300K. Dies ist für viele Anwendungen bereits zu hoch. Es 20 entspricht daher dem Stand der Technik, dass die Marktforderung nach enger spezifizierten weißen LEDs durch Selektionsverfahren realisiert wird.

15

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung weißer LEDs zu schaffen, welche geringere Toleranz der Farbtemperatur haben, als es dem Stand der Technik entspricht. Weiters soll eine weiße LED-Lichtquelle geschaffen werden, die eine geringere Toleranz der Farbtemperatur hat, die insbesondere also über der gesamten Emissionsfläche eine nahezu konstante Farbtemperatur hat.

30 Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die genaue Wellenlänge der LED ermittelt wird und das Farbkonversionsmittel über dieser LED in einer von der ermittelten Wellenlänge abhängigen Menge aufgebracht wird.

35 Diese Aufgabe wird weiters durch eine LED-Lichtquelle der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass die Menge der Konversionsschicht über jeder LED von der genauen Wellenlänge der LED abhängt.

Im Gegensatz zum Stand der Technik ist durch das erfindungsgemäße Verfahren eine Herstellung von weißen LEDs mit 5 definierter Farbtemperatur und definierter Toleranz möglich, ohne dass ein weiteres Selektionsverfahren notwenig wäre.

Der Herstellungsprozess kann grob folgendermaßen beschrieben werden:

LEDs werden in Wafern hergestellt. Es entspricht dem Stand der Technik, dass die einzelnen LEDs auf einem Wafer einzeln bezüglich Helligkeit und Wellenlänge ($\Delta\lambda$ < 1nm) vermessen werden (Wafer Mapping). Diese Daten werden in weiterer Folge dazu verwendet, die LEDs nach dem Vereinzeln in verschiedene Klassen zu selektieren.

In gegenständlicher Erfindung wird die Information des Wafer Mappings dazu benutzt, um auf jede LED selektiv eine spezielle Menge Farbkonversionsmittel aufzubringen. Die Menge an Farbkonversionsmittel ist hierbei selektiv z.B. durch entsprechende Wahl der Schichtdicke oder der Konzentration (bei verdünnten Systemen) auf die jeweilige LED abgestimmt.

Bei der Aufbringung des Farbkonversionsmittels gibt es folgende Möglichkeiten:

Selektives Dispensen oder Stempeln Selektives Inkjet Printing

25 Selektives Verdampfen durch Masken

Selektives nachträgliches Einstellen des Farbkonversionsmittels (z.B. durch Laser wie beim Widerstandstrimmen) Zur Vereinfachung werden die LEDs in Gruppen zusammengezo-

gen, z.B. jeweils im Bereich von 1 nm.

Anhand der beiliegenden Zeichnung wird die vorliegende Erfindung näher erläutert. Es zeigt: Fig. 1 LED's mit unter schiedlicher Menge von Binder, in dem sich das Farbkonversionsphorpigment befindet; Fig. 2 LED's mit gleichen Mengen von Binder, in dem sich das Farbkonversionsphosphorpig-

35 ment mit unterschiedlicher Konzentration befindet; und Fig. 3 zeigt eine Abwandlung der Ausführungsform gemäß Fig. 2.

Anwendungsbeispiele

I Farbkonversionsphosphorpigment dispergiert in organischem Binder mit konstanter Konzentration - Dispenser

In Fig. 1 ist eine Platine 1 gezeigt, auf der sich vier

5 LED-Dice 2a, 2b, 2c, 2d befinden. Diese LED-Dice 2a, 2b, 2c,
2d sind in Flip-Chip-Technologie aufgebracht, d.h. die Anschlüsse 3 befinden sich auf der Unterseite und sind mit Kontakt-Bumps 4 mit der Platine 1 verbunden. Über jedem LED-Dice
2a, 2b, 2c, 2d befindet sich ein Tropfen eines Binders 5, der
10 das Farbkonversionsphosphorpigment enthält.

Man stimmt die Tropfenmenge auf die Wellenlänge der LEDDice 2a, 2b, 2c, 2d ab. Gemäß der ermittelten Wellenlänge der
einzelnen LED-Dice 2a, 2b, 2c, 2d wird die Tropfenmenge erhöht für langwellige LED-Dice 2b, 2c, während diese für kurzwellige LED-Dice 2d reduziert wird. Da die Viskosität und
Thixotropie der Paste von der Konzentration des Farbkonversionspigmentes abhängt, kann auch eine Veränderung der Tropfenform erzielt werden (bei einer volumetrischen Dosierung).

Mit diesen Methoden konnte durch eine Variation des Dis20 pens-Volumens zwischen 0,02 und 0,03 cm³ auf Dice mit einer
Wellenlängenvariation zwischen 460 und 475 nm weißes Licht
mit einer Farbtemperatur von 6500 ± 300 K realisiert werden.

II Farbkonversionphosphorpigment dispergiert in organischem Binder mit variabler Konzentration - Dispensen

Gemäß der Wellenlänge der einzelnen LED-Dice 2a, 2b, 2c, 2d (siehe Fig. 2) wird die Konzentration der Phosphorpigmente im Binder 6 in der Matrix adaptiert. Dies wird bevorzugt durch das Verwenden von mehreren Dispens- oder Stempelbehältern mit unterschiedlichen Konzentrationen der Phosphorpigmente er-

30 reicht. Die unterschiedliche Konzentration ist in Fig. 2 durch Schraffen mit unterschiedlichem Abstand angedeutet.

Optional kann nach dem Dispens- oder Stempelvorgang ein Druckvorgang angeschlossen werden, um eine ebene und definierte Form des Farbkonversionsmediums zu erreichen (siehe

35 Fig. 3). Hierzu wird über der LED-Anordnung eine Maske aufgelegt, in deren Ausnehmungen dispensed wird. Abschließend wird

mittels eines Rakels das über die Maske herausstehende Material entfernt.

Mit diesen Methoden konnte durch eine Variation des Phosphorpigmentes in der organischen Matrix zwischen 10 und

30 Masse-% auf Dice mit einer Wellenlängenvariation zwischen
460 und 475 nm weißes Licht mit einer Farbtemperatur von
6500 ± 200 K realisiert werden.

Die Methoden I und II werden bevorzugt für LED-Dice eingesetzt, die Face Down (Elektrode nach unten) auf Trägermaterialien (Halbleiterträger oder PCB) angeordnet sind, da es bei einer Face Up Montage schwierig ist, die Elektroden frei von der Farbkonversionspaste zu halten. Die derart montierten LEDs werden in einem Mapping-Verfahren einzeln bezüglich der Wellenlänge vermessen und mit diesen Daten wird der Dispenser programmiert. Die einzelnen LEDs können nachfolgend entlang von Trennlinien 7 separiert und zu LED-Lampen verarbeitet werden bzw. auch als LED-Modul eingesetzt werden.

III Farbkonversionsphosphorpigment dispergiert in organischem Binder - Inkjet Printing

Das Inkjet Printing stellt eine Verfeinerung der Dispensmethoden I-II dar. Hierzu sind feinkörnige Pigmente (im Bereich von höchstens einigen Mikrometern Durchmesser) notwendig.

Die individuelle Einstellung der Farbkonversion pro LED kann derart mittels der Anzahl der gesetzten Inkjettropfen (=volumetrisch) oder der Konzentration durch Einsatz verschiedener Inkjet-Tinten (aus verschiedenen Kartuschen) oder deren Kombination erfolgen.

IV Farbkonversion aus der Gasphase

25

Gemäß dem Stand der Technik sind einige Materialien

30 (ZnS:Mn) bekannt, die sich zur Farbkonversion basierend auf

LEDs eignen und welche mittels Gasphasenmethoden abgeschieden

werden können.

Einer der Vorteile dieser Methoden ist, dass die Elektroden der LEDs selektiv abgedeckt werden können und daher diese Methode auch für Face Up montierte LEDs sehr gut geeignet ist. (Man kann die Kontaktflächen einfach abdecken.)

Die selektive Farbkonversion wird bei dieser Methode durch definierte Einstellung der aufgebrachten Menge des Farbkonversionsmaterials erreicht. Dies kann im einfachsten Fall durch Anbringen einer Maske (typisch Photomaske), die speziell auf den zu beschichteten LED Wafer (gemäß den Wafer Mapping Daten) abgestimmt ist, erfolgen. Derart wird eine LED mit der höchsten Wellenlänge (was normalerweise beste Anregbarkeit bewirkt) vollständig beschichtet, während bei LEDs mit geringerer Wellenlänge nur Teile der Oberfläche beschichtet werden.

V Trimmen der Farbkonversion

10

Das Einstellen der Farbkonversion bei vollflächig aufgebrachten Schichten (gleicher Konzentration) kann auch nachträglich erfolgen. Hierzu kann ein Verfahren angewandt werden, welches in der Halbleiter- und Drucktechnik eingesetzt
wird, um z.B. Widerstände definiert abzugleichen. Hierzu wird
die beschichtete LED derart getrimmt, dass ein Laser Farbkonversionsmaterial von der Oberfläche der LEDs definiert abführt (Laserablation), sodass die gewünschte Farbe durch die
definierte Menge an aufgebrachtem Farbkonversionsmaterial unabhängig von der Wellenlänge der LED erreicht wird.

Wien, den 18 Juni 2003

\$\int \text{0.00} \text{0.0} \tex

ZUSAMMENFASSUNG

Zur Herstellung einer weißen LED mit vorgegebener Farbtemperatur wird eine blaue LED (2a-2d) oder eine UV-LED mit einer Konversionsschicht (5), die blaues Licht bzw. UV-Licht absorbiert und Licht größerer Wellenlänge emittiert, beschichtet. Erfindungsgemäß wird dabei die genaue 5 Wellenlänge der LED (2a-2d) ermittelt und das Farbkonversionsmittel (5) über dieser LED (2a-2d) in einer von der ermittelten Wellenlänge abhängigen Menge aufgebracht. Dadurch kann die Toleranz der Farbtemperatur erheblich verringert werden. Das Farbkonversionsmittel kann mittels 10 Dispenser oder Stempel aufgebracht und die Menge und/oder die Konzentration in Abhängigkeit von der ermittelten Wellenlänge gewählt werden. Es ist aber auch Inkjet-Printing, Abscheiden aus der Gasphase oder selektives Entfernen durch einen Laser möglich. Die Erfindung betrifft auch nach diesem Verfahren 15 hergestellte Lichtquellen.

(Fig. 1)

Dr. Müllner Dipl.-Ing. Katschirka ເປີ້EG, ຂໍ້ສtentanwaltskanzlei

16/0/40413

5

25

948/2003

LUMITECH Holding GmbH A-8380 Jennersdorf (AT)

Patentansprüche:

- 1. Verfahren zur Herstellung einer weißen LED mit vorgegebener Farbtemperatur, bei dem eine blaue LED oder eine UVLED mit einer Konversionsschicht, die blaues Licht bzw.
 UV-Licht absorbiert und Licht größerer Wellenlänge emittiert, beschichtet wird, dadurch gekennzeichnet, dass die genaue Wellenlänge der LED ermittelt wird und das Farbkonversionsmittel über dieser LED in einer von der ermittelten Wellenlänge abhängigen Menge aufgebracht wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Farbkonversionsmittel mittels Dispenser oder Stempel aufgebracht wird und die Menge und/oder die Konzentration in Abhängigkeit von der ermittelten Wellenlänge gewählt wird.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
 das Farbkonversionsmittel durch Inkjet-Printing aufgebracht wird und die Menge und/oder die Konzentration in
 Abhängigkeit von der ermittelten Wellenlänge gewählt
 wird.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
 20 das Farbkonversionsmittel durch Abscheiden aus der Gasphase aufgebracht wird und die Menge in Abhängigkeit von
 der ermittelten Wellenlänge gewählt wird.
 - 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass eine Maske, insbesondere eine Photomaske, erstellt wird, deren Öffnungen in Abhängigkeit von der ermittelten Wellenlänge gewählt werden, und dass die Abscheidung durch diese Maske hindurch erfolgt.
 - 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Farbkonversionsmittel zunächst homogen aufgebracht

wird und danach durch einen Laser selektiv in Abhängigkeit von der ermittelten Wellenlänge entfernt wird.

7. Weiße LED-Lichtquelle, die blaue LED's oder UV-LED's aufweist, über denen eine Konversionsschicht aufgebracht ist, dadurch gekennzeichnet, dass die Menge der Konversionsschicht über jeder LED von der genauen Wellenlänge der LED abhängt.

Wien, den

5

18, Juni 2003

Fig. 1

Fig. 2

PCT/EP2004/051065