Exemple : AFD \longrightarrow expression régulière

Soit $L = \{w \in \{a,b\}^* : |w| \equiv 2 \pmod{3}\}$ et soit $M = (\{q_0,q_1,q_2\},\delta,q_0,\{q_2\})$ l'AFD avec $\delta(q_i,x) = q_{(i+1)\pmod{3}}$ pour $i \in [3]$ et $x \in \{a,b\}$. On voit facilement (preuve?) que L = L(M). On va construire une expression régulière R_L telle que $L(R_L) = L$ à partir de M même si on en a une très simplement $-(a+b)^2((a+b)^3)^*$ (ici on utilise des raccourcis, la vraie expression régulière est $(((a+b)\cdot(a+b))\cdot((a+b))\cdot(((a+b)\cdot(a+b))\cdot((a+b)))^*$.) Rappelons que l'on construit R_{ij}^k pour $i,j \in [3]$ et $-1 \le k \le 2$ par récurrence sur k, en commençant par R_{ij}^{-1} . Rappellons également qu'en général, R_{ij}^k est une expression régulière dont le langage consiste des mots qui permettent de passer de q_i à q_j en ne passant que par des états numérotés $0, \ldots, k$, i.e. $L(R_{ij}^k) = \{w = a_1 \ldots a_n \in \Sigma^* : \hat{\delta}(q_i,w) = q_j \text{ et } \hat{\delta}(q_i,a_1,\ldots,a_m) \in \{q_0,\ldots,q_k\}$ pour $1 \le m < n\}$. Dans notre cas, la fonction δ et décrite par ce tableau :

	a	b
q_0	q_1	q_1
q_1	q_2	q_2
q_2	q_0	q_0

Les expression régulières R_{ij}^k seront construites dans le tableau suivant.

	-1	0	1	2
00				
01				
02				
10				
11				
12				
20				
21				
22				

One le remplit colonne par colonne, en mettant dans la case (ij,k) l'expression régulière $R_{ij}^k = R_{ij}^{k-1} + R_{ik}^{k-1} \cdot (R_{kk}^{k-1})^* \cdot R_{kj}^{k-1}$. Pour mieux visualiser, notons [ij,k] le contenu de la case (ij,k). On a alors

$$[ij,k] = [ij,k-1] + [ik,k-1][kk,k-1]^*[kj,k-1]$$

où on a omis les paranthèses pour une meilleur lisibilité. Avec ceci, on obtient les tableaux suivants (en se rappellant que $[ij,-1]=R_{ij}^{-1}=x_1+x_2+\ldots+x_t$ tels que $\delta(q_i,x_\ell)=q_j$ pour $\ell=1,\ldots,t$).

Sans simplification.

	1	0	1	0
	-1	0	1	2
00	ε			
01	(a+b)			
02	Ø			
10	Ø			
11	ε			
12	(a+b)			
20	(a+b)			
21	Ø			
22	ε			

	-1	0	1	2
00	ε	$\varepsilon + \varepsilon \cdot \varepsilon^* \cdot \varepsilon$		
01	(a+b)	$(a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)$		
02	Ø	$\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset$		
10	Ø	$\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon$		
11	ε	$\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)$		
12	(a+b)	$(a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset$		
20	(a+b)	$(a+b) + (a+b) \cdot \varepsilon^* \cdot \varepsilon$		
21	Ø	$\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)$		
22	ε	$\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset$		

	1	2
00	$(\varepsilon + \varepsilon \cdot \varepsilon^* \cdot \varepsilon) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon)$	
01	$((a+b)+\varepsilon\cdot\varepsilon^*\cdot(a+b))+((a+b)+\varepsilon\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))$	
02	$(\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)$	
10	$(\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon) + (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon)$	
11	$(\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) + (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))$	
12	$((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset) + (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)$	
20	$((a+b)+(a+b)\cdot\varepsilon^*\cdot\varepsilon)+(\emptyset+(a+b)\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot(\emptyset+\emptyset\cdot\varepsilon^*\cdot\varepsilon)$	
21	$(\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))$	
22	$(\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)$	

```
((\varepsilon + \varepsilon \cdot \varepsilon^* \cdot \varepsilon) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon)) +
00
                                                           ((\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset) \cdot ((a+b) + \emptyset \cdot ((a+b) + \emptyset \cdot \emptyset) \cdot ((a+b) + \emptyset \cdot \emptyset) \cdot ((a+b) + \emptyset \cdot \emptyset) \cdot ((a+b) + \emptyset \cdot ((a+b) + \emptyset \cdot \emptyset) \cdot ((a+
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                             (((a+b)+(a+b)\cdot\varepsilon^*\cdot\varepsilon)+(\emptyset+(a+b)\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot(\emptyset+\emptyset\cdot\varepsilon^*\cdot\varepsilon))
                              ((a+b)+\varepsilon\cdot\varepsilon^*\cdot(a+b))+((a+b)+\varepsilon\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))+
01
                                                        (((\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) \cdot (((\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot (a+b) + \emptyset \cdot 
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                   (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))
                                                       ((\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) +
02
                                                          ((\emptyset + \varepsilon \cdot \varepsilon^* \cdot \emptyset) + ((a+b) + \varepsilon \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))
                                        ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                                  (\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)
                                                                                     ((\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon) + (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\emptyset + \emptyset \cdot \varepsilon^* \cdot \varepsilon)) +
10
                                                          (((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset)+(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset))\cdot
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                             (((a+b)+(a+b)\cdot\varepsilon^*\cdot\varepsilon)+(\emptyset+(a+b)\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot(\emptyset+\emptyset\cdot\varepsilon^*\cdot\varepsilon))
                                                       ((\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) + (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)) +
11
                                                          (((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset)+(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset))\cdot
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                              ((\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)))
12
                                                       (((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset)+(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset))+
                                                          (((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset)+(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset))\cdot
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                             ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))
                      (((a+b)+(a+b)\cdot\varepsilon^*\cdot\varepsilon)+(\emptyset+(a+b)\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot((a+b)+\emptyset\cdot\varepsilon^*\cdot\emptyset))+
20
                                          ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) \cdot
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                             (((a+b)+(a+b)\cdot\varepsilon^*\cdot\varepsilon)+(\emptyset+(a+b)\cdot\varepsilon^*\cdot(a+b))\cdot(\varepsilon+\emptyset\cdot\varepsilon^*\cdot(a+b))^*\cdot(\emptyset+\emptyset\cdot\varepsilon^*\cdot\varepsilon))
                        ((\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) +
21
                                          ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) \cdot
                                          ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                              ((\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b)))
                                        ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset)) +
22
                                          ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))
                                         ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))^*
                                             ((\varepsilon + (a+b) \cdot \varepsilon^* \cdot \emptyset) + (\emptyset + (a+b) \cdot \varepsilon^* \cdot (a+b)) \cdot (\varepsilon + \emptyset \cdot \varepsilon^* \cdot (a+b))^* \cdot ((a+b) + \emptyset \cdot \varepsilon^* \cdot \emptyset))
```

En simplifiant $(\varepsilon \varepsilon^* = \varepsilon, R \cdot \emptyset = \emptyset \cdot R = \emptyset)$; en fait on remplace une expression régulière R par une autre R', équivalente, i.e. t.q. L(R) = L(R') et ces équivalences, parfois évidentes, devraient être prouvées...) on a des tableaux un peu plus clairs. Voici le tableau après les simplifications. Conseil : essayer de le refaire vous-même.

	-1	0	1	2
00	ε	arepsilon	ε	$((a+b)^3)^*$
01	(a+b)	(a+b)	(a+b)	$(a+b)((a+b)^3)^*$
02	Ø	Ø	$(a+b)^2$	$(a+b)^2((a+b)^3)^*$
10	Ø	Ø	Ø	$(a+b)^2((a+b)^3)^*$
11	ε	ε	ε	$((a+b)^3)^*$
12	(a+b)	(a+b)	(a+b)	$(a+b)((a+b)^3)^*$
20	(a+b)	(a+b)	(a+b)	$(a+b)((a+b)^3)^*$
21	Ø	$(a+b)^2$	$(a+b)^2$	$(a+b)^2((a+b)^3)^*$
22	ε	ε	$(\varepsilon + (a+b)^2)$	$((a+b)^3)^*$

Le langage de M est donc $L(R_{02}^2) = L((a+b)^2((a+b)^3)^*)$, comme prédit au début.