Status of Black Rockfish ($Sebastes\ melanops$) off Oregon and federal waters in 2023

 $\begin{array}{c} \text{by} \\ \text{Jason M. Cope}^1 \\ \text{Alison D. Whitman}^2 \end{array}$

¹Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

 $^{^2{\}rm Oregon}$ Department of Fish and Wildlife, 2040 Southeast Marine Science Drive, Newport, Oregon 97365

 $\ensuremath{{\mathbb O}}$ Pacific Fishery Management Council, 2022 Correct citation for this publication: Cope, J.M., A.D. Whitman. 2022. Status of Black Rockfish (Sebastes melanops) off Oregon and federal waters in 2023. Pacific Fishery Management Council, Portland, Oregon. 11 p.

Contents

\mathbf{E}_{2}	xecut	tive su	mmary	i			
	Stoc	k		i			
	Cate	ches .		i			
	Data	a and a	ssessment	ii			
	Stoc	k biom	ass and dynamics	ii			
	Reci	ruitmer	nt	ii			
	Exp	loitatio	n status	iii			
	Ecos	system	considerations	iii			
	Refe	erence p	points	iii			
	Mar	nageme	nt performance	iii			
	Unr	esolved	problems and major uncertainties	iii			
	Deci	ision ta	ble and projections	iv			
	Scie	ntific u	ncertainty	V			
	Rese	earch a	nd data needs	V			
1	Intr	roduct	ion	1			
	1.1	Basic	Information	1			
	1.2	Life H	listory	1			
	1.3	Ecosy	stem Considerations	1			
	1.4	Histor	rical and Current Fishery Information	1			
	1.5	Summ	nary of Management History and Performance	1			
	1.6	Foreig	m Fisheries	1			
2	Data						
	2.1	1 Fishery-Dependent Data					
	2.2	2 Fishery-Independent Data					
		2.2.1	AFSC Slope Survey	2			
		2.2.2	California Collaborative Fisheries Research Program	2			
		2.2.3	AFSC/NWFSC West Coast Triennial Shelf Survey	3			
		2.2.4	NWFSC West Coast Groundfish Bottom Trawl Survey	3			

2022 iii

	2.3	Biolog	rical Data	6
		2.3.1	Natural Mortality	6
		2.3.2	Maturation and Fecundity	6
		2.3.3	Sex Ratio	6
		2.3.4	Length-Weight Relationship	6
		2.3.5	Growth (Length-at-Age)	6
		2.3.6	Ageing Precision and Bias	6
	2.4	Enviro	onmental and Ecosystem Data	6
3	Ass	essmei	nt Model	6
	3.1	Summ	nary of Previous Assessments and Reviews	6
		3.1.1	History of Modeling Approaches (not required for an update assessment)	6
		3.1.2	Most Recent STAR Panel and SSC Recommendations (not required for an update assessment)	6
		3.1.3	Response to Groundfish Subcommittee Requests (not required in draft)	6
	3.2	Model	Structure and Assumptions	6
		3.2.1	Model Changes from the Last Assessment (not required for an update assessment)	6
		3.2.2	Modeling Platform and Structure	6
		3.2.3	Model Parameters	7
		3.2.4	Key Assumptions and Structural Choices	7
	3.3	Base I	Model Results	7
		3.3.1	Parameter Estimates	7
		3.3.2	Fits to the Data	7
		3.3.3	Population Trajectory	7
		3.3.4	Reference Points	7
	3.4	Model	Diagnostics	7
		3.4.1	Convergence	8
		3.4.2	Sensitivity Analyses	8
		3.4.3	Retrospective Analysis	8
		3.4.4	Likelihood Profiles	8
		3.4.5	Unresolved Problems and Major Uncertainties	8

2022 iv

4	Maı	Management						
	4.1	Reference Points	8					
	4.2	Unresolved Problems and Major Uncertainties	8					
	4.3	Harvest Projections and Decision Tables	8					
	4.4	Evaluation of Scientific Uncertainty	8					
	4.5	Research and Data Needs	8					
5	Ack	${ m cknowledgments}$						
6	References		9					
7	Tables Tables							
8	Figures		11					

2022 v

Executive summary

Stock

This assessment reports the status of Black Rockfish (*Scientific name*) off the US West coast using data through xxxx. The assessments described in this document apply to the black rockfish (Sebastes melanops) stocks that reside in the waters from Point Conception (34°27' N latitude) in the south to the U.S. boundary with Canada (approximately 48°30' N latitude). Following the consensus recommendations from a preliminary stock assessment workshop in April 2015 (PFMC 2015), the stock assessment team (STAT) decided to prepare separate geographic stock assessments that are spatially stratified with boundaries at the CA/OR border (42°00' N latitude) and OR/WA border (46°16' N latitude).

Black rockfish are also caught from the waters off British Columbia and Alaska, but there have not been any formal assessments of stock status for those areas.

Catches

Black rockfish are caught by a wide variety of gear types and in recent decades have been a very important target species for recreational charter-boats and private sport anglers in Washington and Oregon, and to a lesser extent in California. In recent years the recreational fishery has accounted for most of the black rockfish catches (Figure ES-1 to Figure ES-3). Black rockfish can also be an important component of nearshore commercial fisheries, either as incidental catch by the troll fishery for salmon or as directed catch by jig fisheries for groundfish. Further, in California and Oregon there are nearshore fisheries that catch and sell fish live for the restaurant trade. Washington closed nearshore commercial fisheries in state water in late 1990s and never allowed the live-fish fishery to develop. In all states there have been almost no trawl-caught landings of black rockfish in recent years (Table ES-1), but trawl landings in the past were substantial (Figure ES-1 to Figure ES-3).

Detailed reports of commercial landings of black rockfish are generally unavailable prior to 1981, when the Pacific Fishery Information Network (PacFIN) database began. The catch series prior to 1981 for these assessments were derived by applying available estimates or assumed values for the proportion of black rockfish landings in reported landings of rockfish. Observer data, which are available only for the past decade, indicate low levels of discarding of black rockfish, generally less than 2% of total catch.

Because of their nearshore distribution and low abundance compared to other rockfish species, black rockfish are unlikely to have ever comprised a large percentage of rockfish landings, but it seems quite certain that they have been more than a trivial component for many years. Black rockfish were one of only four rockfish species mentioned by scientific name in reports of rockfish landings in Oregon during the 1940s, and they were one of only six rockfish species mentioned by scientific name in reports of rockfish landings in California during the same period. Mentions of black rockfish extend back before the year 1900 in Washington.

Data and assessment

The last stock assessments for black rockfish were conducted in 2007 for areas north and south of Cape Falcon (45°46' North latitude). The current assessments assume three areas instead of two, delineated by the state lines as was agreed upon at a pre-assessment and data workshop in March 2015. The prior assessments used Stock Synthesis 2, while the current assessments use Stock Synthesis

. The Washington base assessment includes a dockside and tag-based CPUE series, but does not include the abundance estimate time series from that same tagging study which was included in the last assessment due to too many violations in the assumptions of abundance estimation. The same two commercial and single recreational fleets are used as in the last assessment for Washington. The Oregon assessment has three commercial fleets and two recreational fleets, while using five surveys and an additional research study for biological compositions. California also has three commercial fleets and 1 recreational fleet with three surveys of abundance, all based on recreational fisheries. All area models include age data as conditional age at lengths. Length compositions are also included in all models.

Stock biomass and dynamics

Spawning stock outputs are all at or above limit reference points (Table ES-2. Only California shows declines significantly below this reference point at any point in the time series. California and Washington stocks show a declining population through most of the 20th Century, with stronger declines in the 1980s, and recoveries beginning in the mid-1990s. Oregon stocks follow this pattern, but with a decline in the most recent period. California (33%) is below the target biomass reference point with an increasing biomass trend (Figures ES-4 and ES-5). The Oregon stock dropped after the quick ramp up of catches in the late 1970s and continued a steady decline until around year 2000, settling in at a stock status around 60% of initial conditions. The Washington stock, currently 43%, dropped below the target biomass by in the early 1980s, then risen above since the late 1990s and has fluctuated above that point through 2014 (Figures ES-8 and ES-9).

Recruitment

The California model shows a few extraordinarily high recruitment events that are supported by the length composition data, index data and on-the-water reports (Table ES-3; Figure ES-10). Oregon recruitment is highly uncertain (Table ES-3; Figure ES11). Washington recruitment is dynamic, but also shows the most informed recruitment time series, which is consistent with the extent of length and age compositions available to that assessment (Table ES-3; Figure ES12). Both California and Washington support elevated recruitment in the late 2000s.

Exploitation status

California and Washington models indicate that current fishing practices are near or above the SPR rate fishing intensity target, while the Oregon model is quite a bit above the target (table ES-4, compare to SPR=0.5; Figure ES-13 to Figure ES-18), though the steepness value (0.773) indicates a much lower value of SPR for sustainable removals. Fishing rates have been above the target in California in nearly all years since the 1980s, but have dropped considerably in recent years. Oregon fishing rates have been consistently high in recent years. Washington shows a dramatic decline in fishing intensity since the late 1990s and has fluctuated mostly below the target since.

Ecosystem considerations

Ecosystem considerations were not explicitly included in these models, though growth deviations were considered in the Washington model. While no mechanisms have been put forth for these time-varying changes in growth, an environmental component is possible. Limited data in Oregon and California also suggest the possibility that growth has changed over time.

Reference points

Reference points were based on the rockfish FMSY proxy (SPR50%), target relative biomass (40%) and model-estimated selectivity for each fleet. California is below the target biomass reference point, but above the limit reference biomass (25%). Oregon is well above the target biomass. Washington relative biomass is above the target biomass. California and Washington yield values are lower than the previous assessment for similar reference points due to lower overall natural mortality values (Table ES-5). The proxy MSY values of management quantities are the most conservative compared to the estimated MSY and MSY relative to 40% biomass for both California and Washington (Table ES-5). The equilibrium estimates of yield relative to biomass are provided in Figure ES-19 to Figure ES-21.

Management performance

Removals have been below the equivalent ABC-ACL since the prior assessment (Table ES-6), but those specified ABCs from the 2007 assessments are higher than those coming from the current assessment models. Removals over the last few years have or may have exceeded the newly estimated ABC-ACL values in some years. The differences in the treatment of natural mortality between the previous and current assessments are the biggest reason for this discrepancy.

Unresolved problems and major uncertainties

The most significant uncertainty for all models is the treatment and value of natural mortality and the form of fleet selectivity (e.g., length-based asymptotic vs. age-based dome-shaped

selectivity). Data-driven selection between the extreme "kill" (using a ramping of M) or "hide" hypotheses are not currently resolvable. The current California and Washington base models instead use a form of the "kill" hypothesis by not implementing the age-based selectivity ("hide" hypothesis) and estimating female and male natural mortality, thus avoiding a fixing natural mortality as was necessary in the Oregon model. The Oregon model also contained a step in female natural mortality, a specification not used in the California or Washington models. Another important issue is the highly uncertain historical time-series of removals in all states, which needs further consideration. The development of fishery-dependent indices of abundance still requires further attention. Steepness, while fixed, is still highly uncertain for rockfishes and currently is mismatched to the MSY proxy. And while the steepness profile shows low sensitivity in several derived quantities, steepness strongly defines the yield capacity of stocks, and therefore could cause major uncertainty in the recommended management quantities. Stock structure and its relationship to the current political/management boundaries are also not fully understood, both within U.S. jurisdiction and between the U.S. and Canada. While this is a common challenge faced in most west coast stock assessments, further improvement on this topic will likely rely on black rockfish-specific data.

Decision table and projections

Black rockfish assessments for California and Washington have a preliminary distinction as category 1 stock assessments, thus harvest projections and decision tables are based on using P=0.45 and sigma=0.36, resulting in a multiplier on the OFL of 0.956. The Oregon black rockfish assessment is a category 2 assessment, with a P=0.45 and sigma = 0.72 with a multiplier of 0.913 applied to the OFL. These multipliers are also combined with the rockfish MSY proxy of FSPR=50% MSY and the 40-10 harvest control rule to calculate OFLs, ABCs and ACLs. Projections for each state are provided in Table ES-7 to Table ES-9.

Uncertainty in management quantities for the base model of each state was characterized by exploring various model specifications in a decision table. Initial exploration included natural mortality and steepness values, and uncertainty in historical trawl catches for the WA and CA models. OR explored the scale factor coming from the value of the tagging catchability (Q) parameter, as well as M values. For the CA and WA models, there was very little sensitivity to steepness and trawl catches, but natural mortality produced sensitive results of predicted population scale and status. Discussion with the STAR panel resulted in high and low states of nature +/- 0.03 from the base case natural mortality values for females and males. High and low catch streams (rows) were determined by the forecasts, as described above, for each state of nature. Thus the low catch stream is based on the forecast from the low state of nature. The OR model demonstrated little sensitivity to M, but high sensitivity to the tagging survey Q. High and low states of nature, respectively, were based on a fixed tag of Q = 0.125 and Q estimated by the model. Resultant decision tables are provided in Table ES-10 to Table ES-12.

Scientific uncertainty

Replace text with the sigma value and the basis for its calculation.

Research and data needs

Recommended avenues for research to help improve future black rockfish stock assessments:

- 1. Further investigation into the movement and behavior of older (> age 10) females to reconcile their absence in fisheries data. If the females are currently inaccessible to fishing gear, can we find where they are?
- 2. Appropriate natural mortality values for females and males. This will help resolve the extent to which dome-shaped age-based selectivity may be occurring for each.
- 3. All states need improved historical catch reconstructions. The trawl fishery catches in particular require particular attention. Given the huge historical removals of that fleet in each state, the assessment is very sensitive to the assumed functional form of selectivity. A synoptic catch reconstruction is recommended, where states work together to resolve cross-state catch issues as well as standardize the approach to catch recommendations.
- 4. Identifying stanzas or periods of uncertainty in the historical catch series will aid in the exploration of catch uncertainty in future assessment sensitivity runs.
- 5. The ODFW tagging study off Newport should be continued and expanded to other areas. To provide better prior information on the spatial distribution of the black rockfish stock, further work should be conducted to map the extent of black rockfish habitat and the densities of black rockfish residing there.
- 6. An independent nearshore survey should be supported in all states to avoid the reliance on fishery-based CPUE indices.
- 7. Stock structure for black rockfish is a complicated topic that needs further analysis. How this is determined (e.g., exploitation history, genetics, life history variability, biogeography, etc.) and what this means for management units needs to be further refined. This is a general issue for all nearshore stocks that likely have significant and small scale stock structure among and within states, but limited data collections to support small-scale management.

1 Introduction

1.1 Basic Information

This assessment reports the status of Black Rockfish (*Scientific name*) off the US West coast using data through xxxx.

1.2 Life History

Replace text.

1.3 Ecosystem Considerations

Replace text.

1.4 Historical and Current Fishery Information

Replace text.

1.5 Summary of Management History and Performance

Replace text.

1.6 Foreign Fisheries

Replace text.

2 Data

Data comprise the foundational components of stock assessment models. The decision to include or exclude particular data sources in an assessment model depends on many factors.

These factors often include, but are not limited to, the way in which data were collected (e.g., measurement method and consistency); the spatial and temporal coverage of the data; the quantity of data available per desired sampling unit; the representativeness of the data to inform the modeled processes of importance; timing of when the data were provided; limitations imposed by the Terms of Reference; and the presence of an avenue for the inclusion of the data in the assessment model. Attributes associated with a data source can change through time, as can the applicability of the data source when different modeling approaches are explored (e.g., stock structure or time-varying processes). Therefore, the specific data sources included or excluded from this assessment should not necessarily constrain the selection of data sources applicable to future stock assessments for Black Rockfish. Even if a data source is not directly used in the stock assessment they can provide valuable insights into biology, fishery behavior, or localized dynamics.

Data from a wide range of programs were available for possible inclusion in the current assessment model. Descriptions of each data source included in the model (Figure 1) and sources that were explored but not included in the base model are provided below. Data that were excluded from the base model were explicitly explored during the development of this stock assessment or have not changed since their past exploration in a previous Black Rockfish stock assessment. In some cases, the inclusion of excluded data sources were explored through sensitivity analyses (see Section 3).

2.1 Fishery-Dependent Data

2.2 Fishery-Independent Data

2.2.1 AFSC Slope Survey

The AFSC Slope Survey (Slope Survey) operated during the months of October to November aboard the R/V *Miller Freeman*. Partial survey coverage of the US west coast occurred during the years 1988-1996 and complete coverage (north of 34°30'S) during the years 1997 and 1999-2001. Typically, only these four years that are seen as complete surveys are included in assessments.

2.2.2 California Collaborative Fisheries Research Program

Since 2007, the California Collaborative Fisheries Research Program (CCFRP) has monitored several areas in California to evaluate the performance of Marine Protected Areas (MPAs) and understand nearshore fish populations (Wendt and Starr 2009; Starr et al. 2015). In 2017, the survey expanded beyond the four MPAs in central California (Año Nuevo, Point Lobos, Point Buchon, and Piedras Blancas) to include the entire California coast. Fish are

collected by volunteer anglers aboard commercial passenger fishing vessels (CPFVs) guided by one of the following academic institutions based on proximity to fishing location: Humboldt State University; Bodega Marine Laboratories; Moss Landing Marine Laboratories; Cal Poly San Luis Obispo; University of California, Santa Barbara; and Scripps Institution of Oceanography.

Surveys consist of fishing with hook-and-line gear for 30-45 minutes within randomly chosen 500 by 500 m grid cells within and outside MPAs. Prior to 2017, all fish were measured for length and release or descended to depth; since then, some were sampled for otoliths and fin clips.

2.2.3 AFSC/NWFSC West Coast Triennial Shelf Survey

The AFSC/NWFSC West Coast Triennial Shelf Survey (Triennial Survey) was first conducted by the Alaska Fisheries Science Center (AFSC) in 1977, and the survey continued until 2004 (Weinberg et al. 2002). Its basic design was a series of equally-spaced east-to-west transects across the continential shelf from which searches for tows in a specific depth range were initiated. The survey design changed slightly over time. In general, all of the surveys were conducted in the mid summer through early fall. The 1977 survey was conducted from early July through late September. The surveys from 1980 through 1989 were conducted from mid-July to late September. The 1992 survey was conducted from mid July through early October. The 1995 survey was conducted from early June through late August. The 1998 survey was conducted from early June through early August. Finally, the 2001 and 2004 surveys were conducted from May to July.

Haul depths ranged from 91-457 m during the 1977 survey with no hauls shallower than 91 m. Due to haul performance issues and truncated sampling with respect to depth, the data from 1977 were omitted from this analysis. The surveys in 1980, 1983, and 1986 covered the US West Coast south to 36.8°N latitude and a depth range of 55-366 m. The surveys in 1989 and 1992 covered the same depth range but extended the southern range to 34.5°N (near Point Conception). From 1995 through 2004, the surveys covered the depth range 55-500 m and surveyed south to 34.5°N. In 2004, the final year of the Triennial Survey series, the Northwest Fisheries Science Center (NWFSC) Fishery Resource and Monitoring Division (FRAM) conducted the survey following similar protocols to earlier years.

2.2.4 NWFSC West Coast Groundfish Bottom Trawl Survey

The NWFSC West Coast Groundfish Bottom Trawl Survey (WCGBTS) is based on a random-grid design; covering the coastal waters from a depth of 55-1,280 m (Bradburn, Keller, and Horness 2011). This design generally uses four industry-chartered vessels per year assigned to a roughly equal number of randomly selected grid cells and divided into two 'passes' of

the coast. Two vessels fish from north to south during each pass between late May to early October. This design therefore incorporates both vessel-to-vessel differences in catchability, as well as variance associated with selecting a relatively small number (approximately 700) of possible cells from a very large set of possible cells spread from the Mexican to the Canadian borders.

- 2.3 Biological Data
- 2.3.1 Natural Mortality
- 2.3.2 Maturation and Fecundity
- 2.3.3 Sex Ratio
- 2.3.4 Length-Weight Relationship
- 2.3.5 Growth (Length-at-Age)
- 2.3.6 Ageing Precision and Bias
- 2.4 Environmental and Ecosystem Data
- 3 Assessment Model
- 3.1 Summary of Previous Assessments and Reviews
- 3.1.1 History of Modeling Approaches (not required for an update assessment)
- 3.1.2 Most Recent STAR Panel and SSC Recommendations (not required for an update assessment)
- 3.1.3 Response to Groundfish Subcommittee Requests (not required in draft)
- 3.2 Model Structure and Assumptions
- 3.2.1 Model Changes from the Last Assessment (not required for an update assessment)
- 3.2.2 Modeling Platform and Structure

General model specifications (e.g., executable version, model structure, definition of fleets and areas)

3.2.3 Model Parameters

Describe estimated vs. fixed parameters, priors

- 3.2.4 Key Assumptions and Structural Choices
- 3.3 Base Model Results
- 3.3.1 Parameter Estimates
- 3.3.2 Fits to the Data
- 3.3.3 Population Trajectory
- 3.3.4 Reference Points
- 3.4 Model Diagnostics

Describe all diagnostics

- 3.4.1 Convergence
- 3.4.2 Sensitivity Analyses
- 3.4.3 Retrospective Analysis
- 3.4.4 Likelihood Profiles
- 3.4.5 Unresolved Problems and Major Uncertainties
- 4 Management
- 4.1 Reference Points
- 4.2 Unresolved Problems and Major Uncertainties
- 4.3 Harvest Projections and Decision Tables
- 4.4 Evaluation of Scientific Uncertainty
- 4.5 Research and Data Needs
- 5 Acknowledgments

Here are all the mad props!

6 References

- Bradburn, M. J., A. A Keller, and B. H. Horness. 2011. "The 2003 to 2008 US West Coast Bottom Trawl Surveys of Groundfish Resources Off Washington, Oregon, and California: Estimates of Distribution, Abundance, Length, and Age Composition." US Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service.
- Starr, R. M., D. E. Wendt, C. L. Barnes, C. I. Marks, D. Malone, G. Waltz, K. T. Schmidt, et al. 2015. "Variation in Responses of Fishes Across Multiple Reserves Within a Network of Marine Protected Areas in Temperate Waters." *PLoS One2* 10 (3): p.e0118502.
- Weinberg, K. L., M. E. Wilkins, F. R. Shaw, and M. Zimmermann. 2002. "The 2001 Pacific West Coast Bottom Trawl Survey of Groundfish Resources: Estimates of Distribution, Abundance and Length and Age Composition." {NOAA} {Technical} {Memorandum} NMFS-AFSC-128. U.S. Department of Commerce.
- Wendt, D. E., and R. M. Starr. 2009. "Collaborative Research: An Effective Way to Collect Data for Stock Assessments and Evaluate Marine Protected Areas in California." *Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science*. 1: 315–24.

7 Tables

8 Figures

Figure 1: Summary of data sources used in the base model.