COMPLEMENTARITIES IN HIGH SCHOOL AND COLLEGE INVESTMENTS

John Eric Humphries (Yale University)

Juanna Schrøter Joensen (University of Chicago & SSE)

Gregory F. Veramendi (LMU Munich)

Dynamic Structural Econometrics 2021 University of Bonn August 19, 2021

Do Skills Beget Skills?

- Large literature on early childhood skill formation asking:
 - ▷ Are there complementarities between skills and investment?
 - ▶ Are dynamic complementarities important for understanding inequality?

Do Skills Beget Skills?

- Large literature on early childhood skill formation asking:
 - ▷ Are there complementarities between skills and investment?
 - ▷ Are dynamic complementarities important for understanding inequality?

This paper: Are complementarities important later in the life cycle?

- Focused on secondary and post-secondary investments
- Consider three components: ability, HS investments, and college investments
- Are investments specialized or heterogeneous?

1. We study complementarities in schooling investments in Sweden

- Construct a novel administrative dataset of \sim 100k males:
 - ▶ High quality ability measures from military enlistment data
 - ▶ Enrollment and grade data from centralized education system

 - Labor Market records

1. \	We study	complementarities in	schooling	investments in Sweden
------	----------	----------------------	-----------	-----------------------

2. Non-parametric evidence on complementarities between ability and schooling

- Estimate non-parametric or linear models with latent ability to show:
 - $\,\,\vartriangleright\,\,$ Absolute and differential sorting into HS track, college enrollment, and graduation
 - ▶ Non-parametric earnings variance decomposition: three components important but highly dependent
 - $\,\,\vartriangleright\,\,$ Strong complementarities between abilities and majors in earnings

1.	We study	complementarities in	schooling	investments in Sweden
----	----------	----------------------	-----------	-----------------------

2. Non-parametric evidence on complementarities between ability and schooling

3. Develop a Roy model of high school investment, college investments, and labor market outcomes

. The model:

- ▶ Jointly model a sequence of education decisions and long-run outcomes
- ⊳ Use modeled latent heterogeneity as well as choice-specific sources of exogenous variation

1. We study complementarities in schooling investments in Sweden

2. Non-parametric evidence on complementarities between ability and schooling

3. Develop a Roy model of high school investment, college investments, and labor market outcomes

- 4. Use the model to study complementarities between high school and college investments Literature
- Using the model, we find:
 - ▶ More challenging HS tracks increase college enrollment and graduation
 - ▷ Strong complementarities between HS track and abilities
 - ▶ Find both positive and negative dynamic complementarities between HS and college investments
 - P We consider two policies: Marginal incentives for more STEM courses and eliminating vocational tracks

Brief Review of the Literature

1. Quasi-experimental literature:

- ▷ College: Kirkebøen, Leuven, and Mogstad (2016); Hastings, Neilson, and Zimmerman (2013)
- High School: Altonji (1995), Levine and Zimmerman (1995), Rose and Betts (2004), Goodman (2012),
 Joensen and Nielsen (2009, 2016)

2. Structural Dynamic Discrete Choice Literature:

▶ Arcidiacono (2004), Beffy, Fougere and Maurel (2012), Kinsler and Pavan (2014)

3. Reduced-form literature:

▶ Berger (1988), Altonji (1993), see Altonji et al (2012, 2015) for review

4. Literature on non-cognitive abilities:

Heckman and Rubinstein (2001); Heckman et al. (2006); Lindqvist and Vestman (2011); Heckman et al. (2014); Weinberger (2014); Borghans et al. (2016); Deming (2017)

Data and Outcomes

Sample

• 96,949 Swedish males born in 1974-76 who graduated high school

Conscription Exam

• Measures of IQ, psychological aptitude, physical ability, and health

Education

- 9th grade, High school, college enrollment, credit and degree registers
- HS track categorized into three levels: Vocational, Non-STEM Academic, STEM.
- Majors are categorized into 12 choices for academic programs

 - 4+ year: Education; Humanities; Social Science; Science, Math, and Computer Science; Engineering;
 Medicine: Business: Law
- Initial major choice: First enrollment Figure
- Final major choice: major/level of last degree, last enrollment if no degree

Labor Market Outcomes

- Average wages 2010-2013 (34-39 years old)
- Present value of after-tax income

High School Investment

High School: Different tracks have different outcomes

College and Labor Market Outcomes by High School Track

	High School Track		
	Vocational	Academic	STEM
College Outcomes:			
Enroll College (academic)	0.15	0.53	0.82
Enroll 4-year STEM	0.15	0.13	0.46
Grad rate (4yr, cond on enroll)	0.52	0.60	0.67
Labor Market Outcomes:			
Monthly Wages at 36 (USD)	\$4,611	\$5,839	\$6,363

Notes: Authors' calculations using Swedish administrative data. Data include Swedish men born in 1974-1976.

High School: Different tracks invest in different skills

Curriculum of Academic High School Tracks

	High School Courses		
High School Track	Math/Sci/Tech	Social Sci	Languages/Arts
Academic non-STEM			
Business line	0.125	0.156	0.313
Social Science line	0.203	0.297	0.391
Humanities line	0.141	0.297	0.453
Academic STEM			
Technical line	0.563	0.109	0.219
Science line	0.406	0.172	0.313

Notes: The average fraction of time devoted to each set of courses in the core curricula over the 3 year duration of each academic high school line.

Ability Sorting in High School and College

Baseline Latent Ability Factors

- Estimate three 9th grade latent ability factors:

 - grit
- Based on military conscription exams and 9th grade educational outcomes
- Account for schooling and background in measurement system
- Identification based on an extension of Heckman, Hansen & Mullen (2004)
- Validate interpretation using auxiliary measures from survey data

Sorting into HS Track

Sorting into Final College Major

Earnings Equations

• Estimate earnings equations for 15 final schooling states:

$$Y_{isk} = oldsymbol{eta}_{sk}^{Y} oldsymbol{X}_{i} + oldsymbol{\lambda}_{sk}^{Y} oldsymbol{ heta}_{i} + \eta_{isk}.$$

- X are observables on demographics and family background
- θ latent abilities
- Parameter of interest: λ_{sk}^{γ}

Expected Earnings by Ability

Returns to Skill Across Majors: Log Wage Income

THE ECONOMETRIC MODEL

The Econometric Model

- Goal: Estimate model with dynamic complementarities
 - ▶ Requires causal inference of sequence of educational choices
 - Do not take a stand on optimization problem of agents. (ex post treatment effects)
 - ▷ Consider only policies that change educational choices
 - Description Characterize conditional choice probabilities and identify marginal individuals at decision nodes

The Econometric Model

- Goal: Estimate model with dynamic complementarities
 - ▶ Requires causal inference of sequence of educational choices
 - Do not take a stand on optimization problem of agents. (ex post treatment effects)

 - Characterize conditional choice probabilities and identify marginal individuals at decision nodes
- Develop Generalized Roy Model
 - \triangleright For each individual, there are 15 potential outcomes Y_{ks}
 - $\, \triangleright \, \, \text{Approximate educational decisions using observables, latent factors, and random effect} \,$
 - . Assumes that there is a function $f(\mathbf{X}, \boldsymbol{\theta}, \psi, \epsilon)$ that appoximates agents decisions and state space
 - Account for unobserved heterogeneity beyond latent factors
 - ▶ Estimation includes exclusion restrictions at each margin

Sequential Decision Model

Control Variables and Instruments Used in the Analysis

Variables	Measurement	Choice	Income
	Equations		
Mother's Education (indicators)	х	х	Х
Father's Education (indicators)	X	X	Х
Mother's Family Income (quadratic)	X	X	Х
Parent's Married	X	X	Х
Mother's age at childbirth	X	X	Х
Birth cohort ^a	x	X	Х
Strength	X	X	Х
Fitness	X	X	Х
9th grade and High School track	X	X	Х
High School GPA		X	
Enrollment Major		Х	
Instruments			
Within-School-Across-Cohort		Х	
College Distance		Х	
			-

CAUSAL EFFECT OF EDUCATION

The Effects of Education

- We use this model to generate mean treatment parameters
- ATE: average effect of the treatment

$$\Delta^{ATE} \equiv \int \int \mathbb{E}[Y_{s'} - Y_s | X = x, \theta = t] dF_{X,\theta}(x,t)$$

- We also estimate TT, TUT, AMTE
- TE by final schooling level compared to HS graduates
- Estimate heterogeneous TE depending on latent abilities

HIGH SCHOOL TRACK

Treatment Effect on College Graduation by HS Track

Treatment effect on Wage by HS Track

Complementarities between HS Track and Final Schooling State

Conclusions

Conclusions:

- Find strong complementarities between abilities, HS investments and college investments
 - ▷ Specialization of investments can lead to positive and negative dynamic complementarities

Conclusions

Conclusions:

- Find strong complementarities between abilities, HS investments and college investments
 - ▷ Specialization of investments can lead to positive and negative dynamic complementarities
- Implications for Policy
 - ▶ Policies that target specific populations likely have highest returns
 - ▷ e.g. Joensen and Nielsen (2009) and Joensen and Nielsen (2016)

Conclusions

Conclusions:

- Find strong complementarities between abilities, HS investments and college investments
 - ▷ Specialization of investments can lead to positive and negative dynamic complementarities
- Implications for Policy
 - ▶ Policies that target specific populations likely have highest returns
 - ▶ e.g. Joensen and Nielsen (2009) and Joensen and Nielsen (2016)
- Implications for broader secondary and post-secondary literature
 - ▷ Sequential choice model changes interpretion of LATE and RD designs
- Current work: adding college application process to model

The Econometric Model: Schooling

- · Students choose from among hundreds of programs
- Preferences are likely heterogeneous by geographic region and scholastic aptitude
- Students list up to 12 major-college alternatives on their applications

$$egin{aligned} D_i^1(\mathcal{L}_i) &= arg\max_{l \in \mathcal{L}_i^1} \{l_{il}\} \ D_i^2(\mathcal{L}_i) &= arg\max_{l \in \mathcal{L}_i^2} \{l_{il}\} \end{aligned}$$

where $\mathcal{D}_i^j(\mathcal{L}_i)$ denotes individual i's jth ranked choice given their choice set \mathcal{L}_i^j

• Goal: Estimate exploded nested logit model where latent utility of choice *l* is:

$$I_{il} = f_k(\mathbf{x}_i, \mathbf{z}_i, \boldsymbol{\theta}_i) + \delta_{il} + \varepsilon_{il}.$$

Nested Logit of College Choices

• Choice probability can be decomposed into marginal and conditional probabilities

$$P\left[D_{i}^{1}=l\right]=P\left[D_{i}^{1}=l|D_{i}^{1}\in B_{ik}\right]P\left[D_{i}^{1}\in B_{ik}\right],$$

where

$$P\left[D_{i}^{1} \in B_{ik}\right] = \frac{e^{f_{k}(\mathbf{x},\mathbf{z},\boldsymbol{\theta}) + \lambda_{k}H_{ik}}}{\sum_{j=1}^{K} e^{f_{j}(\mathbf{x},\mathbf{z},\boldsymbol{\theta}) + \lambda_{j}H_{ij}}}$$
(1)

$$P\left[D_{i}^{1}=l\middle|D_{i}^{1}\in\mathcal{B}_{ik}\right] = \begin{cases} \frac{e^{\delta_{il}/\lambda_{k}}}{\sum_{j\in\mathcal{B}_{ik}}e^{\delta_{ij}/\lambda_{k}}} & \text{if } l\in\mathcal{L}_{i} \\ 0 & \text{otherwise} \end{cases}$$
 (2)

where $H_{ik} = \ln \sum_{j \in B_{ik}} e^{\delta_{ij}/\lambda_k}$ is the scaled expected utility of nest k and $\lambda_k \in (0, 1]$ is a parameter that describes the amount of correlation between ε_{il} within nest k.

Nested Logit of College Choices

- Assumption 1: Individuals in geographic-GPA bin (g_i) have same preferences within nest: $\delta_{il} \equiv \delta_l(g_i)$ and $H_{ik} \equiv H_k(g_i, GPA_i)$
- Assumption 2: Consideration set depends on individual GPA_i : $B_{ik} \equiv B_k(GPA_i)$
- The expected utility:

$$\begin{split} H_k\big(g_i,\mathit{GPA}_i\big) &= \ln \sum_{j \in \mathcal{B}_k(\mathit{GPA}_i)} e^{\delta_j(g_i)/\lambda_k} \\ &= \ln \left[\left(\sum_{j \in \mathcal{B}_k} e^{\delta_j(g_i)/\lambda_k} \right) \frac{\sum_{j \in \mathcal{B}_k(\mathit{GPA}_i)} e^{\delta_j(g_i)/\lambda_k}}{\sum_{j \in \mathcal{B}_k} e^{\delta_j(g_i)/\lambda_k}} \right] \\ &= \ln \left[\left(\sum_{j \in \mathcal{B}_k} e^{\delta_j(g_i)/\lambda_k} \right) \left(P\left[D_i^1 \in \mathcal{B}_k(\mathit{GPA}_i) \middle| D_i^1 \in \mathcal{B}_k, g_i \right] \right) \right] \\ &= H_k\big(g_i\big) + \ln \left(P\left[D_i^1 \in \mathcal{B}_k(\mathit{GPA}_i) \middle| D_i^1 \in \mathcal{B}_k, g_i \right] \right). \end{split}$$

Exploded Nested Logit of College Choices

- Once a student adds program l to list it must be removed from choice set
- For example, second choice $H_k^2(g_i, GPA_i)$ after choosing l' in nest k' is

$$H_k^2(g_i, \mathit{GPA}_i) = \left\{ \begin{array}{cc} H_k(g_i, \mathit{GPA}_i) & \text{if} \quad k \neq k' \\ H_k(g_i, \mathit{GPA}_i) + \ln\left(1 - P\left[D_i^1 = l'|D_i^1 \in B_{k'}(\mathit{GPA}_i), g_i\right]\right) & \text{if} \quad k = k' \end{array} \right.$$

- Given are assumptions, we can estimate $P\left[D_i^1=l'|D_i^1\in B_{k'}\left(\textit{GPA}_i\right),g_i\right]$ non-parametrically outside the model
- Finally, we can use the geographic-GPA specific program shares to estimate the outer nest only
 - \triangleright Expected utility $H_k(g_i)$ is estimated non-parametrically using indicators

Motivation for Model of Education Choices

Following Aguirregabiria and Mira(2010), consider the model where students observe state variable
 s_t and choose d_t to maximize expected utility:

$$\mathbb{E}\left[\sum_{k=0}^{T-k}\beta^k \textit{U}\big(\textit{d}_{t+k}, \textbf{s}_{t+k} \mid \textit{d}_t, \textbf{s}_t\big)\right]$$

• The student's dynamic programming problem can then be written as:

$$V(\mathbf{s}_t) = \max_{d_t \in D_t} \left(U(d_t, \mathbf{s}_t) + \beta \int V(\mathbf{s}_{t+1}) dF(\mathbf{s}_{t+1} \mid d_t, \mathbf{s}_t) \right).$$

• The choice-specific value function is given by

$$v(d_t, \mathbf{s}_t) = U(d_t, \mathbf{s}_t) + \beta \int V(\mathbf{s}_{t+1}) dF(\mathbf{s}_{t+1} \mid d_t, \mathbf{s}_t).$$

- Assume $\mathbf{s}_t = \{\mathbf{x}_t, \theta, \boldsymbol{\epsilon}_t\}$, where \mathbf{x}_t observed by researcher, θ is a set of persistent state variables known by the student but unobserved by researcher, and $\boldsymbol{\epsilon}_t$ are transient shocks observed by students at time t, but unobserved by researcher.
- Other observable outcomes (e.g. earnings): $y_t = Y(d_t, \mathbf{s}_t)$.

Model of Education Choices

- Assumptions common in the dynamic discrete choice literature:
 - ightharpoonup Unobservables are iid over time and across students ($\epsilon \in G_{\epsilon}$).
 - ▶ Transition of state variables depends on decisions and lagged state variables

$$F_{x}(\mathbf{x}_{t+1}|\mathbf{x}_{t},\theta,\boldsymbol{\epsilon}) = F_{x}(\mathbf{x}_{t+1}|\mathbf{x}_{t},\theta)$$

Given these assumptions

$$F(\mathbf{x}_{t+1}, \boldsymbol{\epsilon}_{t+1} | d_t, \mathbf{x}_t, \boldsymbol{\epsilon}_t, \theta) = F_{\mathbf{x}}(\mathbf{x}_{t+1} | d_t, \mathbf{x}_t, \theta) G_{\epsilon}(\boldsymbol{\epsilon}_{t+1})$$

• The choice specific value function can be written as

$$egin{aligned} v(d_t, \mathbf{s}_t) &= \mathit{U}(d_t, \mathbf{s}_t) + eta \int \int \mathit{V}(\mathbf{s}_{t+1}) dG_{\epsilon}(\epsilon_{t+1}) dF_{x}(\mathbf{x}_{t+1}|d_t, \mathbf{x}_t, heta) \ &= \mathit{U}(d_t, \mathbf{s}_t) + eta \int ar{\mathit{V}}(\mathbf{s}_{t+1}) dF_{x}(\mathbf{x}_{t+1}|d_t, \mathbf{x}_t, heta), \end{aligned}$$

where $\overline{V}(\mathbf{s}_{t+1})$ is the integrated value function.

Model of Education Choices

• We can write the probability than an individual chooses action $d_{t,i}$ in period t as

$$extit{Pr}ig(d_{j,t}| extbf{ extit{x}}_t, hetaig) = \int \mathbf{I}\left\{rg\max_{d_t}[extit{v}_t(d_t, extbf{ extit{x}}_t, heta) + \epsilon_t(d_t)] = d_{j,t}
ight\}dG_{\epsilon}ig(oldsymbol{\epsilon}_tig).$$

- Many economically relevant counterfactuals can be estimated through simulation w/o explicitly solving the dynamic program or functional form assumptions on utility
- Joint probability of a given set of states and set of actions can be written as:

$$Pr(d_0, (d_1, \mathbf{s}_1), ..., (d_T, \mathbf{s}_T) \mid \mathbf{s}_0) = Pr(d_T \mid \mathbf{s}_T)F_{\mathbf{s}}(\mathbf{s}_T \mid d_{T-1}, \mathbf{s}_{T-1})...Pr(\mathbf{d}_1 \mid d_0, \mathbf{s}_0)F_{\mathbf{s}}(\mathbf{s}_1 \mid d_0, \mathbf{s}_0)Pr(d_0 \mid \mathbf{s}_0)$$

• E.g. we can estimate how does d_t affect d_{t+j} ?

$$Pr(d_{T} \mid \mathbf{s}_{T})F_{\mathbf{s}}(\mathbf{s}_{T}|d_{T-1}, \mathbf{s}_{T-1})...Pr(\mathbf{d}_{t+1} \mid d_{t}, \mathbf{s}_{t})F_{\mathbf{s}}(\mathbf{s}_{t+1} \mid \text{fix } d_{t} = 1, \mathbf{s}_{t})$$

$$-Pr(d_{T} \mid \mathbf{s}_{T})F_{\mathbf{s}}(\mathbf{s}_{T}|d_{T-1}, \mathbf{s}_{T-1})...Pr(\mathbf{d}_{t+1} \mid d_{t}, \mathbf{s}_{t})F_{\mathbf{s}}(\mathbf{s}_{t+1} \mid \text{fix } d_{t} = 0, \mathbf{s}_{t})$$

Model of Education Choices

Model earnings as

$$Y_t = y_t (d_t, \mathbf{x}_t, \theta) + \eta_t$$
 and
$$\mathbb{E}[Y_t] = \int \int \int y_t (d_t, \mathbf{x}_t, \theta) dF_{\theta}(\theta) dF_{\epsilon}(\epsilon_t) dF_{\mathbf{x}_t}(\mathbf{x}_t),$$

We can estimate

$$\mathbb{E}[Y_t(d_{t-k}=1)] - \mathbb{E}[Y_t(d_{t-k}=0)]$$

where

$$\mathbb{E}[Y_t(d_{t-k}=1)] = \int \int \int y_t(d_t, \mathbf{x}_t, \theta) dF_{\theta}(\theta) dF_{\epsilon}(\epsilon_t) dF_{\mathbf{x}_t}(\mathbf{x}_t | \text{fix } d_{t-k}=1).$$
and
$$\mathbb{E}[Y_t(d_{t-k}=0)] = \int \int \int y_t(d_t, \mathbf{x}_t, \theta) dF_{\theta}(\theta) dF_{\epsilon}(\epsilon_t) dF_{\mathbf{x}_t}(\mathbf{x}_t | \text{fix } d_{t-k}=0).$$