数列

等差数列

- 一般項 (定数名も)
- 和
 - 初項と末項がわかる
 - 初項と末項がわからない

等比数列

- 一般項 (定数名も)
- 和

和の記号シグマ 🕥

- $\bullet \sum_{k=1}^{n} c$ $\bullet \sum_{k=1}^{n} k$ $\bullet \sum_{k=1}^{n} k^{2}$

1.
$$\sum_{k=1}^{n} k^3 - 3k^2 + 3^k$$

分数数列の和

- 例題 -

- 1. $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ 2. $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)}$

等差数列×等比数列

$$S = 1 + 2 \cdot 2 + 3 \cdot 2^2 + \dots + n \cdot 2^{n-1}$$

階差数列

数列 a_n は階差 b_n を持つとき。

漸化式

- $\bullet \ a_{n+1} = a_n + d$
- $\bullet \ a_{n+1} = ra_n$

 $\bullet \ a_{n+1} = a_n + f(n)$

数 BC 311

ベクトル

平行四辺形 OACB において $\vec{OA} = \vec{a}, \vec{OB} = \vec{b}$ とする

 \bullet \vec{OC}

 \bullet \vec{AB}

 \bullet \vec{AC}

ベクトルの内積

三角形の面積

内分, 外分

2点 $\mathbf{A}(\vec{a}),\!\mathbf{B}(\vec{b})$ を m:n に内分または外分する点

直線上にある

2点 A(\vec{a}),B(\vec{b}) を結ぶ直線上にある点 P(\vec{p})

複素数平面

共役な複素数

- $z = \bar{z}$ ならば
- $z = -\bar{z}$ かつ $z \neq 0$ ならば

複素数平面

z=a+bi を平面上に表せ

y

↑ |z|= |z|= $|z\bar{z}|=$

極形式

z =

 $z_1=r_1(\cos\theta_1+i\sin\theta_1), z_2=r_2(\cos\theta_2+i\sin\theta_2)$ の時 (絶対値、偏角)

- \bullet $z_1z_2 =$
- \bullet $\frac{z_1}{z_2} =$

ド・モアブルの定理

 $(\cos\theta + i\sin\theta)^n =$

- 例題 - $z^6=1$

- 複素数平面と図形のポイント -

点のまわりの回転

- \bullet z を原点中心に θ 回転させた点 w
- z_1 を中心に z_2 を θ 回転させた点 γ

半直線のなす角

右図で、 $\mathbf{C}(\gamma)$ は $\mathbf{B}(\gamma)$ を点 $\mathbf{A}(\alpha)$ を中心に θ 回転させて k 倍した点とする。このとき成り立つ等式

また、 $\angle BAC =$

A,B,C が一直線上ならば

AB と AC が垂直ならば

複素数と図形

- 直線
 - 原点と点 m を結ぶ直線に平行で、点 α を通る直線
 - 原点と点 m を結ぶ直線に垂直で、点 α を通る直線
 - 異なる点 lpha,eta を通る直線上の点 z
- 円
 - 定点 α を中心とする半径 r の円
 - 定点 α, β を直径とする円