

Subash Khanal^{1,2*}, Benjamin Brodie¹, Xin Xing^{1,2}, Ai-Ling Lin², Nathan Jacobs¹

Department of Computer Science, University of Kentucky, Lexington, KY

Department of Radiology, University of Missouri, Columbia, MO

Overview:

- Decisions of a black-box neural network are usually explained through a post-hoc explainer.
- Explainers trained in the post-hoc scheme might be learning different feature representations than the black-box model. This raises concerns regarding the faithfulness of post-hoc explanations.
- As an alternative to post-hoc explainers, we propose to build an inherently explainable model that identifies the input regions having the most causal impact on the model's decision.

Causality for Explaining CV model:

- Any black-box model that consumes a set of input features to produce the task-related outputs can be represented as a structural causal model (SCM).
- There exists a causal relationship between the input space and the output space.

Black-box as a Structural Causal Model [1]

- ➤ By simulating the breakage of this causality, the top-k input regions contributing to the black-box's decision can be identified.
- Panda et al.[1] propose to explain a black-box model (B) through a selector network (E) trained to produce a categorical distribution from which a fixed set of features (s) is sampled.
- For a given input image (X) of class y, a set of patches (s) selected by E, and the black-box model B, the loss function to train E is:

$$L_{\text{sel}} = \sum_{y=1}^{C} P(y|X)log(P(y|X_{\bar{s}}))$$

where, $X_{\bar{s}}$ is the input image where the patches selected by E are zeroed out. P(y|X) and $P(y|X_{\bar{s}})$ are distributions across C classes, obtained from the B for inputs X and $X_{\bar{s}}$, respectively.

Inherently Explainable Vision Transformer:

- ➤ We bring the causal feature selection into the training of a vision transformer (ViT), hence making it an inherently explainable transformer (expViT).
- ➤ The attention mechanism of expViT leverages the relationship between the image patches.
- The continuous subset sampler of expViT uses an additional learnable token (sel) to sample the top *k* patches having a strong causal relationship with the model's output.

$$Loss = \lambda * CE + (1 - \lambda) * L_{sel}$$

Evaluation metrics:

1. Post-hoc accuracy (PA):

$$PA = \frac{1}{|X_T|} \sum_{x \in X_T} \mathbb{1} \left(\underset{y}{\operatorname{argmax}} (P(y|x) = \underset{y}{\operatorname{argmax}} (P(y|x_s)) \right)$$

2. Average Causal Effect (ACE):

$$ACE = \frac{1}{|X_T|} \sum_{x \in X_T} (P(y|x_s) - P(y|x_{random}))$$

Results:

 Post-hoc ViT vs. expViT on MNIST [3,8]

 Methods
 post-hoc
 expViT

 frac
 PA
 ACE
 PA
 ACE
 ACC

 0.05
 0.744
 0.215
 0.936 0.422 0.968

 0.1
 0.891
 0.332
 0.953 0.430 0.983

 0.25
 0.952
 0.302
 0.969 0.415 0.982

 0.5
 0.969 0.196
 0.968
 0.318 0.986

*Black-box ACC=0.993

Post-	hoc ViT	vs. expV	iT on CIF	FAR [bird	d, truck
Methods	post-hoc		expViT		
frac	PA	ACE	PA	ACE	ACC
0.05	0.702	0.095	0.700	0.171	0.825
0.1	0.779	0.122	0.808	0.280	0.832
0.25	0.774	0.134	0.820	0.275	0.830
0.5	0.778	0.130	0.832	0.269	0.847
0.1 0.25	0.779 0.774	0.122 0.134	0.808 0.820	0.280 0.275	0.83

^{*}Black-box ACC=0.895

Post-hoc ViT vs. expViT on FMNIST [t-shirt, shoe]										
Methods	post-hoc		expViT							
frac	PA	ACE	PA	ACE	ACC					
0.05	0.871	0.308	0.970	0.462	0.997					
0.1	0.992	0.389	0.991	0.472	0.997					
0.25	0.995	0.195	0.992	0.449	0.994					
0.5	0.986	0.033	0.987	0.316	0.992					

*Black-box ACC=0.999

Conclusion

- Our inherently explainable model mostly performs better than the post-hoc explainer on two explainability metrics.
- ➤ However, there is a trade-off between explainability and the true accuracy of the model with full input (ACC)
- https://github.com/mvrl/CAT-XPLAIN

References

[1] Panda Pranoy et al. Instance-wise causal feature selection for model interpretation. In Causality in Vision CVPR 2021.