MATH3301 Tutorial 1

- 1. Explain the mathematical meaning of the underlined word(s) below: (i) a <u>map</u> from the set S to the set T, (ii) the <u>composition</u> $\psi \circ \phi$ of two maps ϕ and ψ , (iii) an <u>injective map</u>, (iv) a surjective map and a <u>bijective map</u>.
- 2. Let X, Y be two sets and $f: X \to Y$ be a function.
 - (a) Suppose f is surjective. Show that for any two functions $g: Y \to Z$ and $h: Y \to Z$, $g \circ f = h \circ f$ implies g = h.
 - (b) Suppose for any two functions $g: Y \to Z$ and $h: Y \to Z$, $g \circ f = h \circ f$ implies g = h. Show that f is surjective.
 - (c) Suppose for any set W and any function $g:W\to Y$, there exists a function h such that the following diagram commutes:

Must the function f be surjective? Justify your answer.

- 3. Let X, Y be two sets and $f: X \to Y$ be a function.
 - (a) Give an example of functions f, g, h such that f is injective, $g \circ f = h \circ f$ but $g \neq h$.
 - (b) Suppose for any two functions $g: Z \to X$ and $h: Z \to X$, $f \circ g = f \circ h$ implies g = h. Show that f is injective. Is the converse true?

- 4. (a) Explain the mathematical meaning of an equivalence relation.
 - (b) Explain whether the following relations are equivalence relations.
 - (i) Consider the set \mathbb{Z} of all integers and define the relation \sim on \mathbb{Z} as follows: for any $a, b \in \mathbb{Z}$, $a \sim b$ if $ab \geq 0$.
 - (ii) Consider the set C of all composite numbers (i.e. positive integers that are not primes) and define the relation \sim on C as follows: for any $a, b \in C$, $a \sim b$ if gcd(a, b) > 1.

5. Let $\{S_{\alpha}: \alpha \in \mathcal{A}\}$ be a family of non-empty sets, and $X = \bigcup_{\alpha \in \mathcal{A}} S_{\alpha}$. Assume $S_{\alpha} \cap S_{\beta} = \emptyset$ for any $\alpha \neq \beta \in \mathcal{A}$. Define the relation on X by

for any $x, y \in X$, $x \sim y$ if both x, y are belonged to the same S_{α} , for some $\alpha \in \mathcal{A}$.

- (a) Show that \sim is an equivalence relation on X. Describe, in terms of S_{α} , the equivalence classes [x] of elements $x \in X$.
- (b) Could we obtain the same result if the union is not disjoint? Justify your answer.
- (c) Write X/\sim for the quotient set of the equivalence relation, i.e. the set of all equivalence classes.
 - (i) Show that $\pi: X \to X/\sim$, $x \mapsto [x]$, is a well-defined surjective function.
 - (ii) If $f: X \to Z$ is a function that is constant on every S_{α} , i.e. for all $\alpha \in \mathcal{A}$, there exists $z_{\alpha} \in Z$ such that $f(x) = z_{\alpha}$ for all $x \in S_{\alpha}$, show that there is a unique function $\bar{f}: X/\sim \to Z$ such that the following diagram commutes:

(iii) Does the converse of Part (ii) hold?