BST TREES

- **4.4** Show that in a binary tree of N nodes, there are N+1 NULL links representing children.
- **4.5** Show that the maximum number of nodes in a binary tree of height h is $2^{h+1} 1$. Hint: Prove by induction.
- **4.32** Design a recursive linear-time algorithm that tests whether a binary tree satisfies the search tree order property at every node.
- **4.37** Write a function that takes as input a binary search tree, T, and two keys k_1 and k_2 , which are ordered so that $k_1 \le k_2$, and prints all elements X in the tree such that $k_1 \le key(X) \le k_2$. Do not assume any information abut the type of keys except that they can be ordered (consistently). Your program should run in $(O(K + \log N))$ average time, where K is the number of keys printed. Bound the running time of your algorithm.