Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen and Jiaya Jia

CVPR 2019

Potential Applications

[1] Narita et al, PanopticFusion, arXiv, 2019

Preliminaries

What is Point Cloud?

A set of data points:

In 2D space

In 3D space

In 3D space (with color)

Preliminaries

How to Get Point Cloud?

Sensor

Data format

LiDAR

[x, y, z, reflectance]

N x 4

3D Camera

N x 6 [x, y, z, r, g, b]

Preliminaries

Deep Learning on Point Clouds

Multiview rendering images + 2D CNNs: loss of contextual information

Task

Input

Instance Labels

Semantic Labels

Previous Method

To learn the similarity matrix of a point cloud to get instance proposals.

Motivation

Q: how could instance and semantic segmentation networks reinforce each other to make more accurate predictions?

In fact, the two tasks conflict with each other in some respects.

Common grounds:

- Points of different classes must belong to different instances.
- Points of the same instance must belong to the same category.

Semantic Seg.

Instance Seg.

Two straightforward approaches:

- Given the semantic labels, we could run instance segmentation independently. on every semantic class.
- Given the instance labels, one could classify each instance and assign the predicted class label to each point of this instance.

Method

Method

Use Dscriminative Loss [1] to train the instance embeddings.

$$L = L_{var} + L_{dist} + \alpha \cdot L_{reg},$$

$$L_{var} = \frac{1}{I} \sum_{i=1}^{I} \frac{1}{N_i} \sum_{j=1}^{N_i} \left[\|\mu_i - e_j\|_1 - \delta_v \right]_+^2, \quad (2)$$

$$L_{dist} = \frac{1}{I(I-1)} \sum_{\substack{i_A=1 \ i_A \neq i_B}}^{I} \sum_{\substack{i_B=1 \ i_A \neq i_B}}^{I} \left[2\delta_{\mathsf{d}} - \|\mu_{i_A} - \mu_{i_B}\|_1 \right]_+^2, \quad (3)$$

$$L_{reg} = \frac{1}{I} \sum_{i=1}^{I} \|\mu_i\|_1, \tag{4}$$

Differences:

We adopt the class-agnostic instance embedding learning strategy while the loss used in [1] is class-specific.

(1)

We use L1 distance in our loss terms based on our practice on 3D case.

Method

Instance Seg. N_F E_{INS} E_{INS} N_E I_{INS} $I_$

: Element-wise addition

A) : Aggregation

- Semantic-aware Instance Segmentation
- Instance-fused Semantic Segmentation

Method

Semantic-aware Instance Segmentation

In semantic feature space, points are naturally positioned according to their categories.

$$F_{\text{SINS}} = F_{\text{INS}} + FC(F_{\text{SEM}}). \tag{5}$$

In this soft and learnable way, points belonging to different category instances are further repelled in instance feature space

Method

Instance-fused Semantic Segmentation

A point being assigned to one of the categories is because the instance containing that point belongs to that category.

Results

Evaluation on S3DIS Dataset

Backbone	Method	mCov	mWCov	mPrec	mRec			
	Test on Area 5							
PN	SGPN [35]	32.7	35.5	36.0	28.7			
	ASIS (vanilla)	38.0	40.6	42.3	34.9			
	ASIS	40.4	43.3	44.5	37.4			
PN++	ASIS (vanilla)	42.6	45.7	53.4	40.6			
	ASIS	44.6	47.8	55.3	42.4			
Test on 6-fold CV								
PN	SGPN [35]	37.9	40.8	38.2	31.2			
	ASIS (vanilla)	43.0	46.3	50.6	39.2			
	ASIS	44.7	48.2	53.2	40.7			
PN++	ASIS (vanilla)	49.6	53.4	62.7	45.8			
	ASIS	51.2	55.1	63.6	47.5			

Table 1:]	Instance	segmentation	results	on	S3DIS	dataset.
I thore I .	mountee	beginentation	ichaith	\sim 11		dutubet.

Backbone	Method	mAcc	mIoU	oAcc			
Buckeone			mice	0.100			
	Test on Area 5						
	PN (RePr)	52.1	43.4	83.5			
PN	ASIS (vanilla)	52.9	44.7	83.7			
	ASIS	55.7	46.4	84.5			
PN++	ASIS (vanilla)	58.3	50.8	86.7			
PN++	ASIS 60.9		53.4	86.9			
Test on 6-fold CV							
PN	PN [26]	-	47.7	78.6			
	PN (RePr)	60.3	48.9	80.3			
	ASIS (vanilla)	60.7	49.5	80.4			
	ASIS	62.3	51.1	81.7			
PN++	ASIS (vanilla)	69.0	58.2	85.9			
	ASIS	70.1	59.3	86.2			

Table 2: Semantic segmentation results on S3DIS dataset.

Results

Evaluation on S3DIS Dataset

Method	Infe	mWCov		
Wiethod	Overall	Network	Grouping	III W COV
SGPN	726	18	708	35.5
ASIS (vanilla)	212	11	201	41.4
ASIS	205	20	185	43.6
ASIS (vanilla.PN++)	150	35	115	45.7
ASIS (PN++)	179	54	125	47.8

Table 5: Comparisons of computation speed and performance. Inference time is estimated and averaged on Area 5, which is the time to process a point cloud with size 4096×9 . The instance segmentation results on Area 5 are reported.

Results

Figure 6: Qualitative results of ASIS on the S3DIS test fold.

Results

Evaluation on ShapeNet Dataset

Method	mIoU
PointNet [26]	83.7
PointNet (RePr)	83.4
PointNet++ [28]*	84.3
ASIS (PN)	84.0
ASIS (PN++)	85.0

Table 6: Semantic segmentation results on ShapeNet datasets. *RePr* is our reproduced PointNet. PointNet++* denotes the PointNet++ trained by us without extra normal information.

Figure 8: Qualitative results of ASIS on ShapeNet test split. (a) Instance segmentation results of ASIS. (b) Generated ground truth for instance segmentation. (c) Semantic segmentation results of ASIS. (d) Semantic segmentation ground truth.

Analysis

Ablative Analysis

Method	+IF	+SA	mIoU	mWCov
Baseline			49.5	46.3
	✓		50.0	47.0
		✓	49.8	47.4
	✓	✓	51.1	48.2

Table 3: Ablation study on the S3DIS dataset. IF refers to instance fusion; SA refers to semantic awareness.

Category-based Analysis

Figure 7: Per class performance changes. (a) Changes of instance segmentation performance compared to our baseline method. (b) Changes of semantic segmentation performance compared to our baseline method.

Contributions

- We propose a fast and efficient simple baseline for simultaneous instance segmentation and semantic segmentation on 3D point clouds.
- We propose a new framework, termed ASIS, to associate instance segmentation and semantic segmentation closely together.
- Our method largely outperforms the state-of-the-art method in 3D instance segmentation along with a significant improvement in 3D semantic segmentation.

Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen and Jiaya Jia

CVPR 2019

Code: https://github.com/wxinlong/asis

Contact: 1452405wxl@tongji.edu.cn