The failure of Selman's Theorem for hyperenumeration reducibility

Josiah Jacobsen-Grocott

University of Wisconsin—Madison Partially supported by NSF Grant No. DMS-2053848

University of Michigan logic seminar, November 30, 2022

- Computability
- 2 Turing reducibility and enumeration reducibility
- \bigcirc Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

- Computability
- 2 Turing reducibility and enumeration reducibility
- \bigcirc Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

Computable sets and functions

Definition

A function $f : \mathbb{N} \to \mathbb{N}$ is computable if there is a *computer program* P such that takes a natural number n as input and outputs f(n).

We say that a set $X \subseteq \mathbb{N}$ is computable if its characteristic function is computable.

Example

The set of primes is computable.

Computably enumerable sets

Definition

A set X is computably enumerable (c.e.) if it can be enumerated by a computer program. In other words if X = range(f) for some computable f.

Example

- Every computable set is c.e.
- The word problem for finitely presented groups is c.e.

A noncomputable c.e. set

- A set X is computable if and only if X and \overline{X} is computable.
- There is an effective listing of all programs $(P_e)_{e \in \omega}$.

Example

The halting set $K = \{e : P_e \text{ halts on input } e\}$ is a c.e. set.

Theorem (Turing 1936)

The halting set is not computable

- Computability
- 2 Turing reducibility and enumeration reducibility
- 3 Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

Turing reducibility

Give some set X we can consider programs that have access to X as an oracle. We can think of the characteristic function of X as being a built in function in our programming language. We consider what functions and sets become computable when we use X as an oracle.

Definition (Post 1944)

A set A is Turing reducible to B $(A \leq_T B)$ if there is the characteristic function of A is computable using B as an oracle.

Example

We always have $A \leq_{\mathcal{T}} \overline{A}$.

Enumeration reducibility

Definition (Friedberg and Rogers 1959)

A set A is enumeration reducible to a set B $(A \leq_e B)$ if there a program that transforms any enumeration of B into an enumeration of A.

In practice, we use that $A \leq_e B$ if and only if there is a c.e. set W such that

$$x \in A \iff \exists \langle x, u \rangle \in W[D_u \subseteq B]$$

where $(D_u)_{u\in\omega}$ is a listing of all finite sets by strong indices.

Example

 $K \leq_e A$ for any A since K is c.e.

 $\overline{K} \not\leq_e K$ since \overline{K} is not c.e.

Degree structures

 $\leq_{\mathcal{T}}$ and \leq_{e} are both transitive and reflexive. So they both gives us give us partial orders:

Definition

For $* \in \{T, e\}$ we define the following:

- $A \equiv_* B$ if $A \leq_* B$ and $B \leq_*$.
- $\deg_*(A) = \{B : B \equiv_* A\}.$
- $\deg_*(A) \leq \deg_*(B)$ if $A \leq_* B$.
- $\deg_*(A \oplus B) = \deg_*(A) \vee \deg_*(B)$. $A \oplus B = \{2n : n \in A\} \cup \{2n + 1 : n \in B\}$.
- $\mathcal{D}_* = \{ \deg_*(A) : A \subseteq \mathbb{N} \}.$
- $\mathcal{D}_{\mathcal{T}}$ is called the *Turing degrees* and has least element $0_{\mathcal{T}}$ consisting of all computable sets.
- \mathcal{D}_e is the *enumeration degrees* and has least element 0_e consisting of all c.e. sets.

Turing and enumeration operators

For a particular program P_e we can consider what it does when using different sets as oracles.

Definition

 $A = \Phi_e(B)$ if P_e outputs the characteristic function of A when using B as an oracle.

 $A \leq_T B$ if and only if there is some e such that $A = \Phi_e(B)$.

Definition

From a the listing of all programs $(P_e)_{e\in\omega}$ we obtain a listing of all c.e. sets $(W_e)_{e\in\omega}$. We define: $A=\Psi_e(B)$

$$x \in A \iff \exists \langle x, u \rangle \in W_e[D_u \subseteq B]$$

 $A \leq_e B$ if and only if there is some e such that $A = \Psi_e(B)$.

- Computability
- 2 Turing reducibility and enumeration reducibility
- 3 Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- A non-hypertotal e-pointed tree

Total and cototal sets

Definition

We say that a set A is *total* if $\overline{A} \leq_e A$. We say that A is cototal if $A \leq_e \overline{A}$. A degree is *total* (*cototal*) if it contains a total (cototal) set.

- If A is total then $B \leq_e A$ if and only if B is c.e. in A.
- For any set A we have that $A \oplus \overline{A}$ is both total and cototal.
- The Turing degrees embed as the total degrees via the map induced by $A \mapsto A \oplus \overline{A}$.
- The cototal degrees are a proper subclass of the enumeration degrees and the total degrees are a proper subclass of the cototal degrees.

Selman's Theorem

As we have seen, we can define Turing reducibility in terms of enumeration reducibility. Selman's theorem gives us a way of defining enumeration reducibility in terms of Turing reducibility.

Theorem (Selman's Theorem)

 $A \leq_e B$ if and only if, for all X if $B \leq_e X \oplus \overline{X}$ then $A \leq_e X \oplus \overline{X}$.

From the original definition of enumeration reducibility. We have that $A \leq_e B$ if every enumeration of B uniformly computes an enumeration of A. In this context, Selman's theorem shows that we can drop the uniformity in the definition.

Proof of Selman's Theorem

Proof.

Suppose that $B \nleq_e A$. We will build in stages a enumeration f of A that is not above B. At stage s given initial segment $\sigma_s \in \omega^{<\omega}$ we ask if there is $\tau \succeq \sigma_s$ and $n \notin B$ such that $n \in \Psi_s(\tau)$ and $\mathrm{range}(\tau) \subseteq A$. If there is such a τ then we set $\sigma_{s+1} = \tau$. If there is no such τ then let $k = \min(A \setminus \mathrm{range}(\sigma_s))$ and set $\sigma_{s+1} = \sigma_s \cap k$.

By construction we have that $f = \bigcup_s \sigma_s$ is an enumeration of A. Now suppose towards a contradiction that $B = \Psi_e(f)$ for some e. Then at stage e we must not have found any τ . So for all $\tau \succ \sigma_e$ with $\operatorname{range}(\tau) \subseteq A$ we have that $\Psi_e(\tau) \subseteq B$. So as $B = \Psi_e(f)$ we have:

$$n \in B \iff \exists \tau \succ \sigma_e[n \in \Psi_e(\tau) \land \operatorname{range}(\tau) \subseteq A]$$

Hence $B <_{e} A$.

- Computability
- 2 Turing reducibility and enumeration reducibility
- \bigcirc Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

$$\Sigma_1^0$$
 and Π_1^0

Definition

A set A is Σ^0_1 if there is a computable relation $R\subset \mathbb{N}^2$ such that

$$n \in A \iff \exists mR(n,m)$$

 $A \text{ is } \Pi^0_1 \text{ if } \overline{A} \text{ is } \Sigma^0_1. \ A \text{ is } \Delta^0_1 \text{ if } A \text{ is both } \Sigma^0_1 \text{ and } \Pi^0_1.$

Propersition

- A is Σ_1^0 if and only if A is c.e.
- A is Δ_1^0 if and only if A is computable.

Π^1_1 and Σ^1_1

Definition

A set A is Π^1_1 if there is a computable relation $R\subset \mathbb{N}^2 imes \omega^\omega$ such that

$$n \in A \iff \forall f \in \omega^{\omega} \exists m \in \mathbb{N} R(n, m, f)$$

 $A \text{ is } \Sigma^1_1 \text{ if } \overline{A} \text{ is } \Pi^1_1. \ A \text{ is } \Delta^1_1 \text{ if } A \text{ is both } \Sigma^1_1 \text{ and } \Pi^1_1.$

Example

- $\{e : P_e \text{ codes a well order on } \mathbb{N}\}$ is Π^1_1 but not Σ^1_1 .
- $K \oplus \overline{K}$ is Δ_1^1 .

Relativization

We can relativize all the notions above to some oracle B.

Definition

A set A is Σ_1^0 in B if there is a relation $R \leq_T B$ such that

$$n \in A \iff \exists mR(n,m)$$

Similarly we define $\Pi^0_1, \Delta^0_1, \Sigma^1_1, \Pi^1_1$ and Δ^1_1 in B.

Hyperarithmetic reducibility

Definition

 $A \leq_h B$ if A is Δ_1^1 in B.

Like with $\leq_{\mathcal{T}}, \leq_{e}$ we can define the hyper degrees \mathcal{D}_h with least element consisting of all Δ_1^1 sets.

Propersition

If $A \leq_T B$ or $A \leq_e B$ then $A \leq_h B$.

- Computability
- 2 Turing reducibility and enumeration reducibility
- \bigcirc Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- A non-hypertotal e-pointed tree

Hyperenumeration reducibility

Definition (Sanchis 1978)

We say that $A \leq_{he} B$ if there is a c.e. set W such that

$$n \in A \iff \forall f \in \omega^{\omega} \exists u \in \omega, x \prec f[\langle n, x, u \rangle \in W \land D_u \subseteq B]$$

- Like with enumeration reducibility this is a preorder and the equivalence classes give us the hyperenumeration degrees \mathcal{D}_{he} .
- From an effective listing of c.e. sets $(W_e)_{e\in\omega}$ we obtain an effective listing of hyperenumeration operators $(\Gamma_e)_{e\in\omega}$.

Hypertotal degrees.

Definition

We say that a set A is *hypertotal* if $\overline{A} \leq_{he} A$. We say that A is *hypercototal* if $A \leq_{he} \overline{A}$. A degree (in either \mathcal{D}_e or \mathcal{D}_{he}) is *hypertotal* (*hypercototal*) if it contains a hypertotal (hypercototal) set.

We have a similar relationship between the hypertotal degrees and the hyperarithmetic degrees as the relationship between the total and Turing degrees.

From the definition of \leq_{he} we have that if $A \leq_{he} B$ then A is Π^1_1 in B. It is not hard to show that if A is Π^1_1 in B then $A \leq_{he} B \oplus \overline{B}$. So $A \leq_h B \iff A \oplus \overline{A} \leq_{he} B \oplus \overline{B}$. The hyperarithmetic degrees embed onto the total degrees via the map induced by $A \mapsto A \oplus \overline{A}$.

Theorem (Sanchis)

There is a hyperenumeration degree that is not hypertotal.

Relating \leq_e and \leq_{he}

Sanchis proved an interesting result about the relationship between enumeration reducibility and hyperenumeration reducibility.

Theorem (Sanchis)

If $A \leq_e B$ then $A \leq_{he} B$ and $\overline{A} \leq_{he} \overline{B}$.

This means that if f is an enumeration of A then $A \oplus \overline{A} \leq_{he} f$. So when working with hyperenumeration redicibility we want a new notion of a hyperenumeration.

Hyperenumerations

Recall the definition of $A = \Gamma_e(B)$.

$$n \in A \iff \forall f \in \omega^{\omega} \exists u \in \omega, x \prec f[\langle n, x, u \rangle \in W_e \land D_u \subseteq B]$$

Now consider the tree $S_e \subseteq \omega^{<\omega}$ defined by

$$n \hat{\ } x \notin S_e \iff \exists y \leq x, u \leq |x| [\langle n, y, u \rangle \in W_{e,|x|} \land D_u \subseteq B]$$

We have that $S_e \leq_T B$ and $\overline{S_e} \leq_e B$. Define $S_{e,n} = \{x : n^{\smallfrown} x \in S_e\}$. We have that

$$n \in A \iff S_{e,n}$$
 is well founded

So $A \leq_{he} \overline{S_e}$. We call a tree which hyperenumerates A in the way that S_e does a hyperenumeration of A.

- Computability
- 2 Turing reducibility and enumeration reducibility
- 3 Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

E-pointed trees in Cantor space

Definition

A tree T is e-pointed if for every path $P \in [T]$ we have that T is c.e. in P. We say T is uniformly e-pointed if there is a single operator Ψ_e such that for all paths $P \in [T]$ we have $T = \Psi_e(P)$.

McCarthy studied e-pointed trees in Cantor space and was able to characterize their enumeration degrees.

Theorem (McCarthy)

If $T \subseteq 2^{<\omega}$ is uniformly e-pointed then T is cototal. Furthermore for a degree $a \in \mathcal{D}_e$ the following are equivalent:

- a is cototal.
- a contains an e-pointed tree $T \subseteq 2^{<\omega}$.
- a contains a uniformly e-pointed tree $T \subseteq 2^{<\omega}$ with no dead ends.

E-pointed trees in Baire space with dead ends

In Baire space we have the following characterization in terms of hypertotal sets.

Theorem (Goh, J-G, Miller, Soskova)

If $T \subseteq \omega^{<\omega}$ is uniformly e-pointed then T is hypercototal. Furthermore for a degree $a \in \mathcal{D}_e$ (or \mathcal{D}_{he}) the following are equivalent:

- a is hypercototal.
- a contains an e-pointed tree $T \subseteq \omega^{<\omega}$.
- a contains a uniformly e-pointed tree $T \subseteq \omega^{<\omega}$.

E-pointed trees in Baire space without dead ends

When we consider only e-pointed trees that do not have dead ends then things become more complex

Theorem (Goh, J-G, Miller, Soskova)

There is an arithmetic set that is not enumeration equivalent to any e-pointed tree $T\subseteq\omega^{<\omega}$ without dead ends.

Theorem (Goh, J-G, Miller, Soskova)

There is a uniformly e-pointed tree $T \subseteq \omega^{<\omega}$ without dead ends that is not of cototal enumeration degree.

Question

Is there an e-pointed tree $T\subseteq\omega^{<\omega}$ without dead ends that is not enumeration equivalent to any uniformly e-pointed tree $T\subseteq\omega^{<\omega}$ without dead ends.

Connection to Selman's theorem

Theorem (J-G)

There is a uniformly e-pointed tree with no dead ends that is not hypertotal.

This leads us to a contradition of Selman's theorem.

Corollary

There are sets A, B such that $B \nleq_{he} A$ and for any X, if $A \leq_{he} X \oplus \overline{X}$ then $B \leq_{he} X \oplus \overline{X}$.

Connection to Selman's theorem

Corollary

There are sets A, B such that $B \nleq_{he} A$ and for any X, if $A \leq_{he} X \oplus \overline{X}$ then $B \leq_{he} X \oplus \overline{X}$.

Proof.

We will have A=T and $B=\overline{T}$ where T is a uniformly e-pointed tree with no dead ends that is not hypertotal. Suppose that T is Π^1_1 in X. Since T has no dead ends there must be a path $P\in [T]$ such that $P\leq_h X$. So $T\leq_e P$ and by previous lemma we have $\overline{T}\leq_{he} \overline{P}\leq_h X$ So we get that $\overline{T}\leq_{he} X\oplus \overline{X}$.

- Computability
- 2 Turing reducibility and enumeration reducibility
- 3 Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- **7** Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

Admissible sets

The usual definition of a Π^1_1 set of natural numbers is a set of the form $m \in X \iff \forall f \in \omega^\omega \exists n [R(f,n,m)]$ where R is a computable relation. However admissibility gives us another definition in terms of $L_{\omega_1^{CK}}$ that is useful.

Definition

A set M is admissible is it is transitive, closed under union, pairing and Cartesian product as well as satisfying the following to properties:

 Δ_1 -comprehension: for every Δ_1 definable class $A\subseteq M$ and set $a\in M$ the set $A\cap a\in M$.

 Σ_1 -collection: for every Σ_1 definable class relation $R \subseteq M^2$ and set $a \in M$ such that $a \subseteq \text{dom}(R)$ there is $b \in M$ such that $a = R^{-1}[b]$.

Admissible sets

- The smallest admissible set is HF the collection of hereditarily finite sets. Looking at the Δ_1 and Σ_1 subsets of HF is one notion of computability. We have that the Δ_1 subsets of HF are computable sets and the Σ_1 subsets of HF are c.e. sets.
- We generalize this to an arbitrary admissible set M by calling a set $A \subseteq M$ M-computable if it is a Δ_1 subset of M and M-c.e. if it is a Σ_1 subset of M.
- The smallest admissible set containing ω as an element is $L_{\omega_1^{CK}}$. We have that the $L_{\omega_1^{CK}}$ -c.e. subsets of ω are precisely the Π_1^1 sets.

- Computability
- 2 Turing reducibility and enumeration reducibility
- \bigcirc Selman's Theorem and relationship between D_T and D_e
- 4 Higher computability
- 5 Hyperenumeration reducibility
- 6 E-pointed trees
- 7 Computability in $L_{\omega_1^{CK}}$
- 8 A non-hypertotal e-pointed tree

The forcing partial order

Let $\{T_\sigma: \sigma \in \omega^{<\omega}\}$ be an effective listing of all finite trees in $\omega^{<\omega}$ where for each $\sigma \in \omega^{<\omega}$ sequence $T_{\sigma^\smallfrown 0}, T_{\sigma^\smallfrown 1}, \ldots$ lists each finite tree that contains T_σ infinitely often.

Definition

A condition p is a pair $(T^p, L^p : T^p \times T^p \to \omega_1^{CK}) \in L_{\omega_1^{CK}}$ such that:

- **1** $T^p \subseteq \omega^{<\omega}$ is a well founded tree.
- ② For each $\sigma \in T^p$ we have that $T_{\sigma} \subseteq T^p$.
- **3** $L^p(\sigma, \tau) = 0$ if and only if $\sigma \in T_\tau$.
- **5** For each $\tau \in T^p$ and $n < \omega$ the set $\{\sigma : L^p(\sigma, \tau) \le n\}$ is finite.

For two conditions p and q we say $p \leq q$ if $T^q \leq T^p$ and $L^q \subseteq L^p$.

Tools

Lemma

The set of conditions is $L_{\omega_1^{CK}}$ -c.e. and the relation \leq on conditions is $L_{\omega_1^{CK}}$ -computable.

Lemma

Let $A \subseteq \omega^{<\omega}$ be a set such that for all $\sigma \cap i \in A$ we have $\sigma \in T^p$ and $\{\tau : L^p(\tau, \sigma) \leq 1\} \subseteq T_{\sigma \cap i} \subseteq T^p \cup A$. For such an A we can define a condition q = p[A] with $T^q = T^p \cup A$ such that q is a valid condition. If we also have that $T^p \preceq T^p \cup A$ then $q \leq p$.

Corollary

If G is a sufficiently generic filter then T^{G} is a uniformly e-pointed tree with no dead ends.

The forcing relation

Definition

For a condition p we define $S_e^p \subseteq \omega^\omega$ to be the tree where

$$n^\smallfrown x \notin S_e^p \iff \exists y \prec x, u \leq |x| [\langle n, y, u \rangle \in W_{e,|x|} \land D_u \subseteq T^p]$$

For a filter \mathcal{G} we define $S_e^{\mathcal{G}} \bigcap_{p \in \mathcal{G}} S_e^p$.

We define $p \Vdash \operatorname{rank}(S_{e,x}^{\mathcal{G}}) \leq \alpha$ if $\operatorname{rank}(S_{e,x}^{p}) \leq \alpha$.

So by definition of Γ_e we have $\Gamma_e(T^{\mathcal{G}}) = \{n : S_{e,n}^{\mathcal{G}} \text{ is well founded}\}$. From this definition it is clear that if $p \Vdash \operatorname{rank}(S_{e,x}^{\mathcal{G}}) \leq \alpha$ then for any $\mathcal{G} \ni p$ we have that $\operatorname{rank}(S_{e,x}^{\mathcal{G}}) \leq \alpha$.

Lemmas

Lemma

Fix a condition p. Suppose that for each $i \in \omega, r \leq p$ there is $q \leq r$ such that $q \Vdash \operatorname{rank}(S_{e,x^{\frown}i}^{\mathcal{G}}) \leq \beta$ for some $\beta < \omega_1^{CK}$ then there is $\hat{p} \leq p$ and $\alpha < \omega_1^{CK}$ such that $\hat{p} \Vdash \operatorname{rank}(S_{e,x}^{\mathcal{G}}) \leq \alpha$.

Lemma

If for all $q \leq p$ and $\alpha < \omega_1^{\mathsf{CK}}$ we have $q \nvDash \mathrm{rank}(S_{\mathsf{e},\mathsf{x}}^{\mathcal{G}}) \leq \alpha$ then $p \Vdash S_{\mathsf{e},\mathsf{x}}^{\mathcal{G}}$ is ill founded. Formally, for all sufficiently generic filters $\mathcal{G} \ni p$ we have that $S_{\mathsf{e},\mathsf{x}}^{\mathcal{G}}$ contains an infinite path.

Main result

Theorem (J-G)

There is a uniformly e-pointed tree in $T^{\mathcal{G}} \subseteq \omega^{<\omega}$ with no dead ends such that $T^{\mathcal{G}}$ is not hypertotal.

Proof.

We say $p \Vdash \overline{T^{\mathcal{G}}} \neq \Gamma_e(T^{\mathcal{G}})$ if there is $\sigma \in T^p$ and $\alpha < \omega_1^{\mathcal{C}K}$ such that $p \Vdash \operatorname{rank}(S_{e,\langle\sigma\rangle}^{\mathcal{G}}) \leq \alpha$, or if there is $\sigma \notin T^p$ such that the initial segment of σ in T^p is not a leaf and $p \Vdash S_{e,\langle\sigma\rangle}^{\mathcal{G}}$ is ill founded. To show that $T^{\mathcal{G}}$ is not hypertotal it is enough for us the show that the sets $\{p: p \Vdash \overline{T^{\mathcal{G}}} \neq \Gamma_e(T^{\mathcal{G}})\}$ are dense for each e.

Main result

Proof continued.

Suppose towards a contradiction, that $\{p : p \Vdash \overline{T^{\mathcal{G}}} \neq \Gamma_{e}(T^{\mathcal{G}})\}$ is not dense. Let p be such that for all q < p we have $q \not\Vdash \overline{T^{\mathcal{G}}} \neq \Gamma_{e}(T^{\mathcal{G}})$. Consider some leaf $\sigma \in T^p$ and let i, i be such that $T_{\sigma \cap i} = T_{\sigma \cap i} = \{\rho : L^p(\rho, \sigma) \leq 1\}$. Now consider $q = p[\{\sigma \cap i\}]$; this is well defined by previous lemma. By assumption on p we have that $q \nvDash S_{e,(\sigma^{\smallfrown}i)}^{\mathcal{G}}$ is ill founded, so by previous lemma there is $r < q, \alpha < \omega_1^{CK}$ such that $r \Vdash \operatorname{rank}(S^{\mathcal{G}}_{\sigma(\sigma^{\frown}i)}) \leq \alpha$. Now consider $r' = r[\{\sigma^{\frown}j\}]$. Since $\sigma^{\frown}i \in T^r$ we have $\{\rho: L^r(\rho,\sigma) \leq 1\} \subseteq T_{\sigma \cap i} = T_{\sigma \cap i}$ and thus the condition r' is a valid condition. Since $r \leq p$ and σ is a leaf in T^p we have that $r' \leq p$. But we have $S_e^r \supseteq S_e^{r'}$ so $r' \Vdash \operatorname{rank}(S_{e,\langle\sigma^{\frown}i\rangle}^{\mathcal{G}}) \leq \alpha$ a contradiction. So we have that the set $\{p: p \Vdash \overline{T^{\mathcal{G}}} \neq \Gamma_{\mathcal{E}}(T^{\mathcal{G}})\}$ is dense. So for sufficiently generic \mathcal{G} we have that $T^{\mathcal{G}}$ is uniformly e-pointed without dead ends and for all e we have $\overline{T^{\mathcal{G}}} \neq \Gamma_{e}(T^{\mathcal{G}})$, and thus $\overline{T^{\mathcal{G}}} \nleq_{he} T^{\mathcal{G}}$.

Questions

Question

We proved that notion of hyperenumeration reducibility in terms of operators does not match up with a definition in terms of hyperenumerations, but is possible to define a different reducibility in terms of hyperenumerations. Does a version of Selman's theorem hold for this reducibility?

Question

We know there is an *he*-degree that is not a hypertotal degree. Is there an *he*-degree that is not a hypercototal degree?

Question

Are the hypertotal degrees definable in \mathcal{D}_{he} ? How complex is the theory of \mathcal{D}_{he} ?

Thank you

Thank You