1. Se ha conseguido dividir un trozo de código en 5 tareas independientes que se pueden ejecutar en paralelo de 1s, 2s, 3s, 4s, y 5s. ¿Cuál sería el menor tiempo de ejecución paralela de este trozo de código usando 5 procesadores? (se desprecia sobrecarga)

**RESPUESTA:5** 

**2.** Se ha conseguido dividir un trozo de código en 5 tareas independientes que se pueden ejecutar en paralelo de 1s, 2s, 3s, 4s y 5s. ¿Qué número mínimo de procesadores utilizaría para conseguir un equilibrado de la carga perfecto? (se desprecia sobrecarga)

## **RESPUESTA: 3**



**3.** La siguiente expresión se usa para representar la Ley de Gustafson (ganancia escalable): f + (1-f)·p donde f es la fracción del tiempo de ejecución secuencial que supone la parte no paralelizable y p es el número de procesadores.

**RESPUESTA: FALSO** 

**4.** OpenMP es una herramienta de programación paralela basada en paso de mensajes.

**RESPUESTA: FALSO** 

**5.** OpenMP es una herramienta de programación paralela basada en directivas del compilador y funciones de una biblioteca.

**RESPUESTA: VERDADERO** 

**6.** OpenMP permite aprovechar el paralelismo de datos usando directivas.

**RESPUESTA: VERDADERO** 

7. OpenMP permite aprovechar el paralelismo a nivel de bucle usando directivas.

**RESPUESTA: VERDADERO** 

**8.** OpenMP permite aprovechar el paralelismo a nivel de tarea usando directivas.

**RESPUESTA: VERDADERO** 

**9.** OpenMP es una herramienta de programación paralela basada en variables compartidas.

**RESPUESTA: VERDADERO** 

10. OpenMP tiene implementada con una cláusula la función de comunicación colectiva de reducción.

**RESPUESTA: VERDADERO** 

11. La expresión que caracteriza la Ley de Amdahl es: p / (1+f(p-1)) donde f es la fracción del tiempo de ejecución secuencial que supone la parte no paralelizable y p es el número de procesadores.

12. La expresión que caracteriza la Ley de Amdahl es p/(1+f(1-p)) donde f es la fracción del tiempo de ejecución secuencial que supone la parte no paralelizable y p es la ganancia máxima que se podría obtener si se pudiera paralelizar todo el código distribuyendo por igual las cargas entre los procesadores disponibles.

**RESPUESTA: VERDADERO** 

13. La siguiente expresión se usa para representar la Ley de Gustafson (ganancia escalable): n(1-x) + n donde x es la fracción del tiempo de ejecución paralelo que tarda en ejecutarse la parte no paralelizable y n es el número de procesadores.

RESPUESTA: FALSO fracción secuencial del tiempo de ejecución en paralelo

**14.** ¿Qué función de comunicación colectiva se puede utilizar para calcular el producto escalar de dos vectores? (Escriba una palabra)

**RESPUESTA: Reducción** 

**15.** Reducción es una función de comunicación colectiva en la que los n flujos de instrucciones que colaboran en la ejecución paralela, Fj (j=0,...,n-1), envía datos (xj para Fi) y un único flujo de instrucciones, Fi, recibe el resultado de reducir los datos enviados (x0,x1,...,xn-1) a un único valor que usando una operación conmutativa y asociativa.

**RESPUESTA: VERDADERO** 

**16.** Reducción es una función de comunicación colectiva en la que los n flujos de instrucciones que colaboran en la ejecución paralela Fj (j=0, ..., n-1) envían datos xj y un único flujo de instrucciones Fi, recibe concatenados en memoria los datos enviados (x0, x1, ..., xn-1).

**RESPUESTA: FALSO** 

17. Para deducir la expresión que representa la ganancia escalable (o Ley de Gustafson) se usa un modelo de código secuencial en el que hay una parte no paralelizable y otra paralelizable que se puede repartir entre los procesadores disponibles de forma equilibrada y cuyo tiempo de ejecución secuencial se mantiene constante conforme se incrementa el número de procesadores.

**RESPUESTA: FALSO** 

**18.** Para deducir la expresión que representa la ganancia escalable (o Ley de Gustafson) se usa un modelo de código paralelo en el que hay (1) una parte no paralelizable y (2) otra paralelizable que se reparte entre los procesadores de forma equilibrada y cuyo tiempo de ejecución paralelo no va a cambiar conforme se incrementa el número de procesadores.

**RESPUESTA: VERDADERO** 

**19.** Todos dispersan es una función de comunicación colectiva en la que un flujo de instrucciones Fj reparte datos (x0, x1, ..., xn-1) entre los n flujos de instrucciones que colaboran en la ejecución paralela, de forma que al final xi acaba en Fi.

**RESPUESTA: VERDADERO** 

**20.** Con asignación estática, el coste en tiempo de la penalización (sobrecarga) es menor que con una asignación dinámica.

**21.** Con asignación estática la asignación de tareas a flujos de instrucciones puede cambiar en distintas ejecuciones, aunque no varíe el número de procesadores ni el de tareas.

**RESPUESTA: FALSO** 

**22.** Con asignación dinámica la asignación de tareas a flujos de instrucciones puede cambiar en distintas ejecuciones, aunque no varíe el número de procesadores ni el de tareas.

**RESPUESTA: VERDADERO** 

**23.** Una herramienta de programación paralela podría realizar la asignación de la carga de trabajo a los flujos de instrucciones usando una asignación estática.

**RESPUESTA: VERDADERO** 

**24.** La eficiencia permite evaluar en qué medida las prestaciones que se consiguen al paralelizar usando p procesadores se acercan a las prestaciones máximas que cabría esperar con p procesadores.

**RESPUESTA: VERDADERO** 

**25.** Se dispone de un computador con dos procesadores distintos, P1 Y P2. El tiempo secuencial de un programa es de 1s si se usa P1 y 0.5s si se usa P2. Calcular qué fracción de código se tiene que asignar a cada uno de los procesadores para obtener el menor tiempo de ejecución teniendo en cuenta que la sobrecarga es despreciable, y que el código se puede partir sin limitaciones. Escribir la fracción para P1 (Formato: numerador/denominador, sin espacios en blanco al principio, al final, ni entre los números y "/") [PREGUNTA CON CÁLCULOS EN FOLIO]

**RESPUESTA: 1/3** 

TP1 = 1s ---> TP1 = 2TP2 ---> x·0.5 = (1-x) --> 1.5·x = 1 --> x = 2/3 para P2. TP2 = 0.5s 33% a P1 - 66% a P2

**26.** La difusión (broadcast) implica comunicación colectiva de todos-con-todos.

**RESPUESTA: FALSO** 

27. La difusión (broadcast) implica comunicación colectiva de todos-a-todos.

**RESPUESTA: FALSO** 

28. La dispersión (scatter) implica comunicación colectiva todos-con-todos.

**RESPUESTA: FALSO** 

29. La dispersión (scatter) implica comunicación colectiva de todos-a-uno.

**RESPUESTA: FALSO** 

**30.** La reducción implica comunicación colectiva todos-a-uno.

**RESPUESTA: VERDADERO** 

**31.** La acumulación (gather) implica comunicación colectiva todos-con-todos.

**RESPUESTA: FALSO** 

**32.** En la comunicación colectiva all-scatter todos los procesadores reciben información de todos, Cosa que también OCURRE en la comunicación gossiping.

## **RESPUESTA: VERDADERO**

**33.** En la comunicación colectiva de tipo gossiping todos los procesadores envían información, pero no todos los procesadores reciben.

**RESPUESTA: FALSO** 

**34.** OpenMP es una biblioteca que permite hacer programas paralelos con el paso de mensajes.

**RESPUESTA: FALSO** 

35. MPI es una biblioteca de paso de mensajes.

**RESPUESTA: VERDADERO** 

**36.** El tiempo de sincronización entre procesos forma parte del overhead de un programa paralelo.

**RESPUESTA: VERDADERO** 

- **37.** El tiempo de comunicación entre procesos forma parte del overhead de un programa paralelo. **RESPUESTA: VERDADERO**
- **38.** La asignación de carga dinámica no tiene nunca ningún coste en el momento de la ejecución. **RESPUESTA: FALSO**
- **39.** La asignación de carga dinámica AFECTA al tiempo de overhead del programa paralelo. **RESPUESTA: VERDADERO**
- **40.** En la asignación de carga estática se asigna el trabajo que va a realizar cada procesador, antes de la ejecución.

RESPUESTA: VERDADERO

**41.** Para equilibrar la carga asociada a los procesadores interesa asignar más carga a los procesadores más rápidos.

**RESPUESTA: VERDADERO** 

**42.** En un multicomputador con 4 procesadores (P0 a P3), mediante la comunicación de recorrido (scan) prefijo paralelo, el procesador P2 recibe información de los procesadores P0, P1, y del propio P2 (aparte de otras posibles comunicaciones).

**RESPUESTA: VERDADERO** 

**43.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a 0, un grado de paralelismo igual a n y un tiempo de overhead igual a 0 es igual a p para p<n.

**RESPUESTA: VERDADERO** 

**44.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a 0, un grado de paralelismo igual a n y un tiempo de overhead igual a p es Ts/((Ts/n)+n), para p=n.

**45.** La falta de equilibrado de la carga es una de las causas de que haya tiempo de sobrecarga u overhead en los programas paralelos.

**RESPUESTA: VERDADERO** 

**46.** La expresión para la ley de Gustafson es S=(1-f)+p\*f, donde f es la fracción no paralelizable del tiempo de ejecución paralelo y p es el número de procesadores que intervienen.

**RESPUESTA: FALSO** 

**47.** En un multicomputador con 4 procesadores (P0 a P3), mediante la permutación de rotación, el procesador P0 envía información al procesador P1 y recibe del P2 (aparte de otras posibles comunicaciones).

**RESPUESTA: FALSO** 

**48.** Un programa secuencial tarda 40 ns en ejecutarse en un procesador y durante 10 ns de esos 40 ns el programa no es paralelizable. El valor de la f de la ley de Amdahl para ese programa es igual a 0.75.

**RESPUESTA: FALSO** 

**49.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a f, un grado de paralelismo ilimitado y un tiempo de overhead igual a 0 - p/(1+f(p-1)).

**RESPUESTA: VERDADERO** 

**50.** Un programa paralelo tarda 20 ns. Durante 10 ns solo puede ser ejecutado por un procesador y durante los otros 10 ns intervienen 5 procesadores (todos ellos igual de cargados). La sobrecarga se considera despreciable. El valor de la ganancia de velocidad es 4.

**RESPUESTA: FALSO** 

**51.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a 0, un grado de paralelismo ilimitado y un tiempo de overhead igual a p^2 es Ts/((Ts/p)+p^2).

**RESPUESTA: VERDADERO** 

Nota: A partir de aquí es posible que haya alguna pregunta repetida.

52. OpenMP es una biblioteca que permite hacer programas paralelos con paso de mensajes.

**RESPUESTA: FALSO** 

**53.** MPI es una biblioteca de paso de mensajes.

**RESPUESTA: VERDADERO** 

**54.** El tiempo de comunicación entre procesos forma parte del overhead de un programa paralelo.

**RESPUESTA: VERDADERO** 

**55.** El tiempo de sobrecarga u overhead es un componente del tiempo de procesamiento paralelo junto con el tiempo de comunicación

## **RESPUESTA: FALSO**

- **56**. La asignación de carga dinámica afecta al tiempo de overhead del programa paralelo **RESPUESTA: VERDADERO**
- **57.** La asignación de carga dinámica se realiza antes de la ejecución del programa paralelo **RESPUESTA: FALSO**
- **58.** La asignación de carga dinámica no tiene ningún coste en el momento de la ejecución **RESPUESTA: FALSO**
- **59.** En la asignación de carga estática se asigna el trabajo que ca a realizar cada procesador, antes de la ejecución

**RESPUESTA: VERDADERO** 

**60.** Para equilibrar la carga asignada a los procesadores interesa asignar más carga a los procesadores más rápidos.

**RESPUESTA: VERDADERO** 

**61.** La falta de equilibrado de la carga es una de las causas de que haya tiempo de sobrecarga u overhead en los programas paralelos

**RESPUESTA: VERDADERO** 

**62.** En la comunicación colectiva all-scatter todos los procesadores reciben información de todos, cosa que no ocurre en la comunicación gossiping

**RESPUESTA: FALSO** 

**63.** En la comunicación colectiva all-scatter todos los procesadores reciben información de todos, cosa que también ocurre en la comunicación gossiping

RESPUESTA: VERDADERO

**64.** En la comunicación colectiva de tipo gossiping todos los procesadores envían información, pero no todos los procesadores reciben

**RESPUESTA: FALSO** 

- **65.** La acumulación (gather) implica comunicación colectiva de todos-con-todos **RESPUESTA: FALSO**
- **66.** La acumulación (gather) es un modo de comunicación colectiva en el que todos los procesadores envían información a uno de ellos

**RESPUESTA: VERDADERO** 

67. La difusión (broadcast) implica comunicación colectiva de todos-con-todos

**RESPUESTA: FALSO** 

68. La dispersión (scatter) implica comunicación colectiva todos-con-todos

**RESPUESTA: FALSO** 

69. La dispersión (scatter) implica comunicación colectiva todos-a-uno

**RESPUESTA: FALSO** 

**70.** Tanto la difusión (broadcast) como la dispersión (scatter) implican comunicación de un procesador a todos los demás

**RESPUESTA: VERDADERO** 

71. La reducción implica comunicación colectiva todos-a-uno

**RESPUESTA: VERDADERO** 

**72.** En un multicomputador con 4 procesadores (P0 a P3), mediante la permutación de rotación, el procesador P0 envía información al procesador P1 y recibe del P2 (aparte de otras posible comunicaciones)

**RESPUESTA: FALSO** 

**73.** En un multicomputador con 4 procesadores (P0 a P3), mediante la comunicación de recorrido (scan) prefijo paralelo, el procesador P2 recibe información de los procesadores P0, y del propio P2 (aparte de otras posible comunicaciones)

**RESPUESTA: VERDADERO** 

**74.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a 0, un grado de paralelismo igual a n y un tiempo de overhead igual a 0 es igual a p para p<n

**RESPUESTA: VERDADERO** 

**75.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a f, un grado de paralelismo ilimitado y un tiempo de overhead igual a 0 es p/(1+f(p-1))

**RESPUESTA: VERDADERO** 

**76.** Un programa paralelo tarda 20 ns. Durante 10 ns solo puede ser ejecutado por un procesador y durante los otros 10 ns intervienen 5 procesadores (todos ellos igual de cargados). El valor de la f de la ley de Gustafson es 0.5.

**RESPUESTA: VERDADERO** 

77. La expresión para la ley de Gustafson es S=f+p\*(1-f), donde f es la fracción no paralelizable del tiempo de ejecución paralelo y p es el número de procesadores que intervienen.

RESPUESTA: VERDADERO

**78.** La expresión para la ley de Gustafson es S=(1-f)+p+f, donde f es la fracción no paralelizable del tiempo de ejecución paralelo y p es el número de procesadores que intervienen.

**RESPUESTA: FALSO** 

**79.** Un programa paralelo tarda 20 ns. Durante 10 ns solo puede ser ejecutado por un procesador y durante los otros 10 ns intervienen 5 procesadores (todos ellos igual de

cargados). La sobrecarga se considera despreciable. El valor de la ganancia de velocidad es 3. **RESPUESTA: VERDADERO** 

- **80.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a 0, un grado de paralelismo ilimitado y un tiempo de overhead igual a p^2 es Ts/((Ts/p)+p^2). **RESPUESTA: VERDADERO**
- **81.** La ganancia de velocidad que consiguen p procesadores en un código secuencial que tarda un tiempo Ts en ejecutarse en un procesador, con una fracción no paralela de Ts igual a 0, un grado de paralelismo igual a n y un tiempo de overhead igual a p es Ts/((Ts/n)+n), para p=n. **RESPUESTA: VERDADERO**
- **82.** Un programa paralelo tarda 20 ns. Durante 10 ns solo puede ser ejecutado por un procesador y durante los otros 10 ns intervienen 5 procesadores (todos ellos igual de cargados). La sobrecarga se considera despreciable. El valor de la ganancia de velocidad es 4 **RESPUESTA: FALSO**
- **83.** Un programa secuencial tarda 40 ns en ejecutarse en un procesador y durante 10 ns de esos 40 ns el programa no es paralelizable. El valor de la f de la ley de Amdahl para ese programa es igual a 0.75.

**RESPUESTA: FALSO** 

**84.** En la expresión de la ganancia de velocidad, S=T\_s/T\_P, el tiempo de computación paralelo, T\_P, se obtiene sumando el tiempo de cálculo paralelo más el tiempo de sobrecarga u overhead, más el tiempo de comunicación.

**RESPUESTA: FALSO** 

- **85.** Un programa paralelo tarda 50 ns. Durante 10 ns solo puede ser ejecutado por un procesador y durante los otros 40 ns intervienen 6 procesadores (todos ellos igual de cargados). La sobrecarga se considera despreciable. El valor de la ganancia de velocidad es 5 **RESPUESTA: VERDADERO**
- **86.** En un multicomputador con 4 procesadores (P0 a P3), mediante la comunicación de recorrido (scan) sufijo paralelo, el procesador P2 envía información los procesadores P0, P1, y al propio P2 (aparte de otras posibles comunicaciones)

**RESPUESTA: VERDADERO** 

- **87.** La expresión para la ley de Gustafson es S=f+p\*(1-f), donde f es la fracción no paralelizable del tiempo de ejecución secuencial y p es el número de procesadores que intervienen. **RESPUESTA: FALSO**
- **88.** Un programa paralelo tarda 40 ns en ejecutarse en un procesador y durante 10 ns de esos 40 ns el programa no es paralelizable, mientras que en el resto del tiempo paralelo intervienen cinco procesadores cargados por igual. El valor de la f de la ley de Gustafson para ese programa es igual a 0 25

**89.** En un multicomputador con 4 procesadores (P0 a P3), mediante la permutación de rotación el procesador P3 envía información al procesador P0 y recibe del P1 (aparte de otras posibles comunicaciones)

**RESPUESTA: FALSO**