Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2017/2018 Corso di Laurea in Ingegneria Fisica

Esame di Analisi III, 7 febbraio 2018 - Prof. I. FRAGALÀ

ESERCIZIO 1. (8 punti) (indicare solo le risposte senza il procedimento seguito)

Sia

$$f(z) := \frac{z^2 + 4}{z(z^2 + 1)},$$

e sia γ la curva del piano complesso parametrizzata da $r(t) = 4e^{it}$, per $t \in [0, 2\pi)$.

- (a) Determinare le singolarità isolate di f e classificarle.
- (b) Determinare l'indice di γ rispetto a ciascuna di tali singolarità.
- (c) Calcolare $\int_{\gamma} f(z) dz$.

Soluzione.

- (a) $z_1 = 0$, $z_2 = i$, $z_3 = -i$, tutti poli semplici
- (b) $\operatorname{Ind}(\gamma, z_i) = 1 \text{ per } i = 1, 2, 3.$
- (c) $2\pi i$.

ESERCIZIO 2. (8 punti) (indicare solo le risposte senza il procedimento seguito) Siano f, g e h le funzioni definite su $[0, 2\pi]$ aventi serie di Fourier date rispettivamente da:

$$f(x): \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} \sin(nx), \qquad g(x): \sum_{n=1}^{+\infty} \frac{1}{n^2+1} \cos(nx) + \frac{1}{n^4} \sin(nx), \qquad h(x): \sum_{n=1}^{+\infty} \frac{1}{2^n} \cos(nx).$$

Per ciascuna delle seguenti affermazioni, stabilire se è vera o falsa.

- (a) $f \in L^2(0, 2\pi)$
- (b) $g \in \mathcal{C}^0(\mathbb{R})$, ma $g \notin \mathcal{C}^1(\mathbb{R})$
- (c) La serie di Fourier di \boldsymbol{h} converge uniformemente a \boldsymbol{h}
- (d) $||h||_{L^2(0,2\pi)}^2 = \pi \sum_{n=1}^{+\infty} \frac{1}{2^n}$

Soluzione.

- (a) **F**
- (b) **V**
- (c) **V**
- (d) **F**

ESERCIZIO 3. (8 punti) (indicare non solo le risposte ma anche il procedimento seguito)

Sia

$$u_n(x) := n^3 (x - n)^2 \chi_{[n - \frac{1}{\pi}, n + \frac{1}{\pi}]}, \quad \forall x \in \mathbb{R}.$$

- (a) Determinare il limite puntuale quasi ovunque della successione u_n .
- (b) Stabilire se la successione u_n converge uniformemente sui compatti di \mathbb{R} .
- (c) Stabilire se la successione u_n ammette limite in $L^{\infty}(\mathbb{R})$.
- (d) Stabilire per quali $p \in [1, +\infty)$ la successione u_n ammette limite in $L^p(\mathbb{R})$.

Soluzione.

- (a) Si ha $u_n(x) \to 0$ per ogni $x \in \mathbb{R}$. Infatti, per ogni fissato $x \in \mathbb{R}$, per n abbastanza grande si ha $x \notin [n \frac{1}{n}, n + \frac{1}{n}]$, e quindi $u_n(x) = 0$.
- (b) Se K è un sottoinsieme compatto di \mathbb{R} , per n abbastanza grande si ha $K \cap [n \frac{1}{n}, n + \frac{1}{n}] = \emptyset$, e quindi $u_n(x) \equiv 0$ su K. Quindi $u_n \to 0$ uniformemente su K.
- (c) La successione u_n non converge in $L^{\infty}(\mathbb{R})$, in quanto

$$u_n(n+\frac{1}{n}) = n^3(n+\frac{1}{n}-n)^2 = n \to +\infty.$$

(d) Se u_n ammette un limite in $L^p(\mathbb{R})$, tale limite deve coincidere con il limite puntuale. D'altra parte si ha

$$\int_{\mathbb{R}} |u_n|^p dx = n^{3p} \int_{n-\frac{1}{n}}^{n+\frac{1}{n}} (x-n)^{2p} dx = n^{3p} \int_{-\frac{1}{n}}^{\frac{1}{n}} y^{2p} dy = 2n^{3p} \int_{0}^{\frac{1}{n}} y^{2p} dy = \frac{2}{2p+1} \frac{n^{3p}}{n^{2p+1}} = \frac{2}{2p+1} n^{p-1}.$$

Quindi la successione non converge in $L^p(\mathbb{R})$ per nessun $p \in [1, +\infty)$.

TEORIA. (7 punti)

(a) Determinare la soluzione del seguente problema di Cauchy, per $u=u(x,t),\,x\in\mathbb{R},\,t\in\mathbb{R}_+$:

$$\begin{cases} u_t = u_{xx} & \forall (x,t) \in \mathbb{R} \times \mathbb{R}_+ \\ u(x,0) = \chi_{[0,1]}(x) & \forall x \in \mathbb{R} \,. \end{cases}$$

- (b) Enunciare il Teorema di Fubini.
- (c) Dimostrare che $u \in L^1(\mathbb{R}^n) \Rightarrow \hat{u} \in C^0(\mathbb{R}^n)$

Soluzione.

(a)
$$u(x,t) = \frac{1}{2\sqrt{\pi t}} \int_{x-1}^{x} e^{-\frac{y^2}{4t}} dy$$
.

(b)-(c) Si veda uno dei testi consigliati.