

Dpto. Teoría de la Señal, Telemática y Comunicaciones E.T.S. Ingeniería Informática y de Telecomunicación

C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES. Enero 2019

Apellidos y nombre:	Grupo:
---------------------	--------

NOTAS: Cada 3 respuestas incorrectas del test restan 1 respuesta correcta del test. Las preguntas tipo test se evalúan con 3 puntos sobre 6 del total.

- En una red, un modelo de referencia 1.
 - a. Garantiza el intercambio transparente de información
 - b. Define un protocolo para cada capa
 - c. Define un conjunto de funcionalidades que maximizan el flujo de información entre capas
 - d Ninguna de las anteriores
- 2. Las normas estandarizadas en Internet
 - Se aprueban en la Internet Engineering Document Force
 - Se publican en documentos RFCs
 - c. Se aprueban en la Internet Engineering Standard Force
 - d. Se publican en documentos IEFCs
- 3. El modelo de referencia OSI está formado por las siguientes capas (en modo ascendente):
 - Capa física, capa de enlace de datos, capa de transporte, capa de red, capa de sesión, capa de presentación y capa de aplicación.
 - b. Capa física, capa de enlace de datos, capa de red, capa de presentación, capa de sesión y capa de aplicación.
 - Capa física, capa de enlace de datos, capa de red, capa de transporte, capa de sesión, capa de presentación y capa de aplicación.
 - d. Capa física, capa de datos, capa de red, capa de transporte, capa de presentación y capa de aplicación.
- 4. La capa o nivel de transporte de OSI
 - a. Involucra entidades salto a salto
 - Involucra entidades extremo a extremo
 - c. Ofrece el servicio de control de transporte extremo a extremo
 - d. Ofrece el servicio de control de flujo salto a salto
- 5. En el modelo TCP/IP
 - a. Exige una red subyacente orientada a conexión
 - b. Se exige una red subvacente no orientada a conexión
 - c. No se necesita red subvacente
 - (d) Ninguna de las anteriores
- 6. Una arquitectura de red
 - a. Está totalmente definida por un conjunto de servicios y sus protocolos
 - (b) Está totalmente definida por un modelo de referencia y sus protocolos
 - c. Está totalmente definida por un modelo de entidades pares y sus protocolos
 - d. Ninguna de las anteriores

- 7. Los retardos de propagación salto a salto
 - a. Dependen de la distancia y del tamaño del paquete
 - b. Dependen de la distancia y de la velocidad en bits por segundo
 - (c) Dependen de la distancia
 - d. Dependen del retardo en la cola más el acceso al medio más el procesamiento salto a salto
- 8. Un servicio orientado a conexión
 - (a) Es más fiable que un servicio no orientado a conexión
 - b. Implica menos tiempo que un servicio no orientado a conexión
 - c. No exige simultaneidad temporal de las entidades
 - d. Ninguna de las anteriores
- 9. Un operador Tier-1
 - a. Siempre obtiene una contraprestación económica por cursar tráfico en sus infraestructuras
 - b) Obtiene una contraprestación económica por cursar tráfico en sus infraestructuras mediante acuerdos de tránsito
 - c. Puede alcanzar cualquier IP sólo con acuerdos de tránsito
 - d. Obtiene una contraprestación económica por cursar tráfico en sus infraestructuras mediante acuerdos de peering
- 10. Para direccionar entidades de aplicación en Internet
 - a El URL es suficiente
 - b. El URL y el puerto son suficientes
 - c. El URL, el puerto y la dirección IP son suficientes
 - d. El URL, el puerto, la dirección IP y las direcciones MAC son suficientes.
- 11. El modelo cliente-servidor
 - a. Exige simultaneidad temporal entre entidades y conocer la IP del cliente y del servidor
 - b. No exige simultaneidad temporal entre entidades ni conocer la IP del cliente
 - c. Exige simultaneidad temporal entre entidades y conocer la IP del servidor
 - d. No exige simultaneidad temporal entre entidades ni conocer la IP del servidor
- 12. Un socket
 - a. Define si la transmisión usará los servicios de IP ó ICMP en el campo "Servicio", la familia de protocolos (PF_INET, PF_UNIX, etc) en el campo "Familia" y las direcciones IP y puertos local y remotos
 - b. Define si la transmisión usará los servicios de TCP ó UDP
 - c. Es una variable tipo estructura que define direcciones IP, puertos y MAC (Ethernet)
 - d. Es una variable tipo puntero a una estructura que define direcciones MAC (Ethernet)
- 13. Un protocolo in-band
 - a. Usa la misma conexión para enviar datos y cabeceras
 - **b** Usa la misma conexión para enviar datos e información de control
 - c. Usa más conexiones que un protocolo out-of-band
 - d. Usa distintas conexiones para enviar datos y cabeceras
- 14. Todo nombre de dominio
 - Siempre es conocido por el correspondiente servidor genérico de primer nivel
 - Es conocido por el correspondiente servidor genérico de primer nivel si este ha delegado la autoridad y tiene la cache actualizada
 - Es conocido por el correspondiente servidor genérico de primer nivel si este no ha delegado la autoridad
 - d. Es conocido por correspondiente servidor genérico de primer nivel si el servidor de nombres local le ha delegado la autoridad

- 15. Si el servidor de nombres local no conoce un nombre de dominio
 - a. Analiza sintácticamente el nombre de dominio y consulta al servidor del dominio genérico correspondiente.
 - /b) Consulta al servidor raíz
 - c. Analiza sintácticamente el nombre de dominio y al servidor primario correspondiente.
 - d. Consulta al servidor autoridad correspondiente.
- 16. HTTP
 - (a) Es persistente y no persistente en el puerto 80
 - b. Es state-full y por eso usa cookies
 - c. Usa TCP ó UDP en el puerto 80
 - d. No es state-less y por eso usa cookies
- 17. El método GET de HTTP
 - a. Es una solicitud al servidor (puede ser condicional) para que acepte y subordine a la URI especificada los datos incluidos en la solicitud.
 - b. Solicita que se publique un recurso
 - c. Es una solicitud condicional al servidor de un recurso
 - Es una solicitud al servidor de un recurso (puede ser condicional)
- 18. Los campos en la cabecera de HTTP
 - a. Son comunes para peticiones y respuestas
 - b. Están presentes solo en las solicitudes, la respuesta es código numérico seguida de texto explicativo
 - c. Están presentes solo en las respuestas, la solicitudes incluyen la línea de estado
 - d Hay algunas comunes para peticiones y respuestas
- 19. Un proxy en HTTP siempre
 - a. Reduce el tiempo de propagación para obtener el recurso
 - b. Reduce el tiempo involucrado en servir un recurso
 - c. Reduce el consumo de tráfico para obtener el recurso
 - Minguna de las anteriores
- 20. SMTP
 - a. Es un protocolo de entrega de correo no orientado a conexión, es in-band y es state-less
 - b. Es un protocolo para acceder al buzón de correo no orientado a conexión, es *out-band* y es *state-full*
 - c. Es un protocolo de entrega de correo orientado a conexión, es in-band y es state-full
 - d. Es un protocolo para acceder al buzón de correo orientado a conexión, es *out-band* y es *state-less*
- 21. En un envío y recepción de correo entre dos usuarios
 - a. Siempre hay 2 MUAs y 2 MTAs
 - Al menos hay una MTA
 - c. Al menos hay una MUA
 - d. Ninguna de las anteriores
- 22. Las extensiones MIME
 - a. Se usan exclusivamente para mejorar y extender el correo
 - b. Se usan para extender la funcionalidad de las MTAs
 - c. Sirven para gestionar los proxys de HTTP
 - Sirven para incluir ficheros en los correos
- 23. El protocolo IMAP
 - (a) A diferencia de POP gestiona directorios y asocia un estado a los correos en el buzón
 - b. Al igual que POP puede transportar mensajes HTTP para el servicio WebMail
 - c. A diferencia de POP puede transportar mensajes HTTP para el servicio WebMail
 - d. Al igual que POP gestiona directorios y asocia un estado a los correos en el buzón

- 24. Si entre A y B se envía M | K^{+B}(K^{-A}(H(M))) usando certificados digitales expedidos por una autoridad reconocida
 - a. Se garantiza confidencialidad, autenticación y no repudio
 - **b** No se garantiza confidencialidad, pero si integridad
 - c. No se garantiza confidencialidad ni integridad pero si autenticación y no repudio
 - d. Ninguna de las anteriores
- 25. El protocolo DHCP
 - a. Es un protocolo de configuración que opera en el nivel de red
 - b. Es un protocolo de configuración que opera sobre UDP ó TCP
 - c. Es un protocolo de configuración que puede informar sobre el servidor de nombres y sobre el servidor HTTP
 - Es un protocolo de configuración para asignar a un host una IP
- 26. La cabecera UDP
 - a. Cambia salto a salto en los routers hasta llegar al destino
 - [b.] Incluye información que depende de la IP origen y destino
 - c. Incluye información que detecta y corrige errores
 - d. Incluye información que identifica la IP origen y destino

27. TCP

- a. Es orientado a conexión, full-duplex y sirve para comunicaciones fiables multicast
- b. Es orientado a conexión, full-duplex y no sirve para comunicaciones fiables multicast
- c. Es no orientado a conexión, full-duplex y no sirve para comunicaciones fiables multicast
- d. Ninguna de las anteriores
- 28. En una conexión TCP
 - Los datos llegan a la aplicación sin errores y siempre ordenados
 - b. Los datos llegan a la entidad par sin errores y siempre ordenados
 - c. Los datos llegan a la aplicación sin errores y en ocasiones desordenados
 - Los datos llegan a la entidad par sin errores y en ocasiones desordenados
- 29. En una aplicación estandarizada sobre TCP
 - a. El servidor siempre está en la misma IP y puerto
 - **(b)** El servidor suele estar en el mismo puerto
 - c. El servidor y cliente siempre están en las mismas IPs y puertos
 - d. El cliente siempre está en el mismo puerto
- 30. En el establecimiento de conexión TCP para una aplicación estandarizada, tras un intento fallido, seleccione la respuesta más probable
 - a. El número de secuencia en el emisor es el mismo
 - b. El número de secuencia en el receptor es el mismo
 - c. El número de secuencia en el emisor y el receptor son los mismos
 - (d.) El número de secuencia en el emisor y el receptor son diferentes
- 31. En TCP
 - a. Todos los segmentos enviados incrementan el número de secuencia
 - b. Sólo los segmentos de datos incrementan el número de secuencia
 - c. Cuando no hay datos no se incrementa el número de secuencia
 - d Ninguna de las anteriores
- 32. En el cierre de la conexión TCP
 - a. Cuando las dos entidades envían FIN ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
 - b. Cuando las dos entidades envían ACK ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
 - C Cuando en las dos entidades envían FIN y reciben ACKs ya no se pueden recibir más segmentos
 - d. Ninguna de las anteriores

- 33. En el control de errores en TCP
 - a. Una confirmación ACK siempre confirma al último segmento enviado
 - b. Una confirmación ACK puede confirmar a varios segmentos enviados no consecutivos
 - c. Una confirmación ACK puede confirmar a varios segmentos enviados consecutivos
 - d. Una confirmación ACK siempre confirma al primer segmento enviado
- 34. Al recibir un segmento en TCP
 - a. Cuando las dos entidades envían FIN ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
 - b. Cuando las dos entidades envían ACK ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
 - c. Cuando en las dos entidades envían FIN y reciben ACKs ya no se pueden recibir más segmentos
 - d. Ninguna de las anteriores
- 35. En un conexión TCP los bytes a enviar permitidos
 - a. Los determina el tamaño de la ventana de congestión
 - b. Los determina el tamaño de la ventana del receptor (control de flujo).
 - c.) El mínimo de la ventana de congestión y el tamaño de la ventana del receptor (control de flujo).
 - d. El máximo de la ventana de congestión y el tamaño de la ventana del receptor (control de flujo).
- 36. De acuerdo con lo especificado en la RFC 791, qué característica NO es propia del Protocolo IPv4:
 - a. Interconexión de redes y direccionamiento en Internet.
 - b. Retransmisión salto a salto entre hosts y routers
 - C.) Orientado a conexión y fiable: máximo esfuerzo ("best-effort")
 - d. IP gestiona la "fragmentación".
- 37. En una subred con 510 hosts y un router, ¿qué máscara de red se debería usar?:
 - a. /20
 - b. /21
 - (c.) /22
 - d. Ninguna de las anteriores.
- 38. En una tabla de encaminamiento IP
 - a. La entrada por defecto es obligatoria.
 - b. La entrada por defecto tiene la máscara más explícita (larga).
 - Si se quiere evitar la accesibilidad a una red destino en particular, la entrada por defecto no debe estar.
 - d. Si se quiere evitar la accesibilidad a una red destino en particular, la entrada por defecto debe estar.
- 39. Para ensamblar los fragmentos de un datagrama IP
 - a. Se hace uso de los campos offset y protocol.
 - b. Se hace uso de los campos protocol e identificación.
 - c. Se hace uso de los campos offset, identificación y TTL.
 - (d) Se hace uso de los campos offset, identificación.
- 40. El protocolo ARP
 - Usa como destino la dirección de broadcast (FF-FF-FF-FF-FF) para obtener la IP correspondiente a una MAC
 - Usa como destino la dirección de broadcast (FF-FF-FF-FF-FF) para obtener la MAC correspondiente a una IP
 - c. Usa como destino la dirección MAC la IP correspondiente a una MAC
 - d. Ninguna de las anteriores.

Dpto. Teoría de la Señal, Telemática y Comunicaciones

E.T.S. Ingeniería Informática y de Telecomunicación C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES. Enero 2019

Apellio	dos y non	nbre:Grupo:
	NOTA	S: Cada 3 respuestas incorrectas del test restan 1 respuesta correcta del test.
		Las preguntas tipo test se evalúan con 3 puntos sobre 6 del total.
1.	Fl model	o de referencia OSI está formado por las siguientes capas (en modo ascendente):
1,0		Capa física, capa de enlace de datos, capa de transporte, capa de red, capa de sesión, capa de
		presentación y capa de aplicación.
	b.	Capa física, capa de enlace de datos, capa de red, capa de presentación, capa de sesión y capa
		de aplicación.
	C.	Capa física, capa de enlace de datos, capa de red, capa de transporte, capa de sesión, capa de
	c.	presentación y capa de aplicación.
	d.	Capa física, capa de datos, capa de red, capa de transporte, capa de presentación y capa de
		aplicación.
2. En el mo		delo TCP/IP
		Exige una red subvacente orientada a conexión
		Se exige una red subyacente no orientada a conexión
		No se necesita red subyacente
		Ninguna de las anteriores
3,	-	nivel de transporte de OSI
		Involucra entidades salto a salto
	100	Involucra entidades extremo a extremo
		Ofrece el servicio de control de transporte extremo a extremo
		Ofrece el servicio de control de flujo salto a salto
4.		ed, un modelo de referencia
		Garantiza el intercambio transparente de información Define un protocolo para cada capa
		Define un conjunto de funcionalidades que maximizan el flujo de información entre capas
		Ninguna de las anteriores
5.	Δ .	as estandarizadas en Internet
		Se aprueban en la Internet Engineering Document Force
	-	Se publican en documentos RFCs
		Se aprueban en la Internet Engineering Standard Force

d. Se publican en documentos IEFCs

a. Es más fiable que un servicio no orientado a conexión

c. No exige simultaneidad temporal de las entidades

b. Implica menos tiempo que un servicio no orientado a conexión

Un servicio orientado a conexión

d. Ninguna de las anteriores

6.

TIPO B

- 7. 3Una arquitectura de red
 - a. Está totalmente definida por un conjunto de servicios y sus protocolos
 - Está totalmente definida por un modelo de referencia y sus protocolos
 - c. Está totalmente definida por un modelo de entidades pares y sus protocolos
 - d. Ninguna de las anteriores
- 8. Los retardos de propagación salto a salto
 - a. Dependen de la distancia y del tamaño del paquete
 - b. Dependen de la distancia y de la velocidad en bits por segundo
 - (c) Dependen de la distancia
 - d. Dependen del retardo en la cola más el acceso al medio más el procesamiento salto a salto
- 9. Un operador Tier-1
 - a. Siempre obtiene una contraprestación económica por cursar tráfico en sus infraestructuras
 - b. Obtiene una contraprestación económica por cursar tráfico en sus infraestructuras mediante acuerdos de tránsito
 - c. Puede alcanzar cualquier IP sólo con acuerdos de tránsito
 - d. Obtiene una contraprestación económica por cursar tráfico en sus infraestructuras mediante acuerdos de peering
- 10. El modelo cliente-servidor
 - a. Exige simultaneidad temporal entre entidades y conocer la IP del cliente y del servidor
 - b. No exige simultaneidad temporal entre entidades ni conocer la IP del cliente
 - C. Exige simultaneidad temporal entre entidades y conocer la IP del servidor
 - d. No exige simultaneidad temporal entre entidades ni conocer la IP del servidor
- 11. Un protocolo in-band
 - a. Usa la misma conexión para enviar datos y cabeceras
 - **(b)** Usa la misma conexión para enviar datos e información de control
 - c. Usa más conexiones que un protocolo out-of-band
 - d. Usa distintas conexiones para enviar datos y cabeceras
- 12. Un socket
 - a. Define si la transmisión usará los servicios de IP ó ICMP en el campo "Servicio", la familia de protocolos (PF_INET, PF_UNIX, etc) en el campo "Familia" y las direcciones IP y puertos local y remotos
 - b.) Define si la transmisión usará los servicios de TCP ó UDP
 - c. Es una variable tipo estructura que define direcciones IP, puertos y MAC (Ethernet)
 - d. Es una variable tipo puntero a una estructura que define direcciones MAC (Ethernet)
- 13. Todo nombre de dominio
 - a. Siempre es conocido por el correspondiente servidor genérico de primer nivel
 - b. Es conocido por el correspondiente servidor genérico de primer nivel si este ha delegado la autoridad y tiene la cache actualizada
 - Es conocido por el correspondiente servidor genérico de primer nivel si este no ha delegado la autoridad
 - d. Es conocido por correspondiente servidor genérico de primer nivel si el servidor de nombres local le ha delegado la autoridad
- 14. Para direccionar entidades de aplicación en Internet
 - El URL es suficiente
 - b. El URL y el puerto son suficientes
 - c. El URL, el puerto y la dirección IP son suficientes
 - d. El URL, el puerto, la dirección IP y las direcciones MAC son suficientes.

TIPO R

- 15. Si el servidor de nombres local no conoce un nombre de dominio
 - a. Analiza sintácticamente el nombre de dominio y consulta al servidor del dominio genérico correspondiente.
 - b. Consulta al servidor raíz
 - c. Analiza sintácticamente el nombre de dominio y al servidor primario correspondiente.
 - d. Consulta al servidor autoridad correspondiente.
- 16. Los campos en la cabecera de HTTP
 - a. Son comunes para peticiones y respuestas
 - b. Están presentes solo en las solicitudes, la respuesta es código numérico seguida de texto explicativo
 - c. Están presentes solo en las respuestas, la solicitudes incluyen la línea de estado
 - (d) Hay algunas comunes para peticiones y respuestas
- 17. Un proxy en HTTP siempre
 - a. Reduce el tiempo de propagación para obtener el recurso
 - b. Reduce el tiempo involucrado en servir un recurso
 - c. Reduce el consumo de tráfico para obtener el recurso
 - d. Ninguna de las anteriores
- 18. HTTP
 - Es persistente y no persistente en el puerto 80
 - b. Es state-full y por eso usa cookies
 - c. Usa TCP ó UDP en el puerto 80
 - d. No es state-less y por eso usa cookies
- 19. El método GET de HTTP
 - a. Es una solicitud al servidor (puede ser condicional) para que acepte y subordine a la URI especificada los datos incluidos en la solicitud.
 - b. Solicita que se publique un recurso
 - c. Es una solicitud condicional al servidor de un recurso
 - Es una solicitud al servidor de un recurso (puede ser condicional)
- 20. SMTP
 - a. Es un protocolo de entrega de correo no orientado a conexión, es in-band y es state-less
 - b. Es un protocolo para acceder al buzón de correo no orientado a conexión, es out-band y es state-full
 - (c.) Es un protocolo de entrega de correo orientado a conexión, es in-band y es state-full
 - d. Es un protocolo para acceder al buzón de correo orientado a conexión, es out-band y es state-less
- 21. En un envío y recepción de correo entre dos usuarios
 - a. Siempre hay 2 MUAs y 2 MTAs
- (b.) Al menos hay una MTA
 - c. Al menos hay una MUA
 - d. Ninguna de las anteriores
- 22. El protocolo IMAP
 - A diferencia de POP gestiona directorios y asocia un estado a los correos en el buzón
 - b. Al igual que POP puede transportar mensajes HTTP para el servicio WebMail
 - c. A diferencia de POP puede transportar mensajes HTTP para el servicio WebMail
 - d. Al igual que POP gestiona directorios y asocia un estado a los correos en el buzón
- 23. Si entre A y B se envía M | K+B (K-A (H(M))) usando certificados digitales expedidos por una autoridad reconocida
 - a. Se garantiza confidencialidad, autenticación y no repudio
 - (b.) No se garantiza confidencialidad, pero si integridad
 - c. No se garantiza confidencialidad ni integridad pero si autenticación y no repudio
 - d. Ninguna de las anteriores

TIPO B

24. Las extensiones MIME

- a. Se usan exclusivamente para mejorar y extender el correo
- b. Se usan para extender la funcionalidad de las MTAs
- c. Sirven para gestionar los proxys de HTTP
- d.) Sirven para incluir ficheros en los correos

25. TCP

- a. Es orientado a conexión, full-duplex y sirve para comunicaciones fiables multicast
- b. Es orientado a conexión, full-duplex y no sirve para comunicaciones fiables multicast
- c. Es no orientado a conexión, full-duplex y no sirve para comunicaciones fiables multicast
- d. Ninguna de las anteriores

26. En una conexión TCP

- Los datos llegan a la aplicación sin errores y siempre ordenados
- b. Los datos llegan a la entidad par sin errores y siempre ordenados
- c. Los datos llegan a la aplicación sin errores y en ocasiones desordenados
- d. Los datos llegan a la entidad par sin errores y en ocasiones desordenados

27. En una aplicación estandarizada sobre TCP

- a. El servidor siempre está en la misma IP y puerto
- b.) El servidor suele estar en el mismo puerto
- c. El servidor y cliente siempre están en las mismas IPs y puertos
- d. El cliente suele estar en el mismo puerto

28. El protocolo DHCP

- a. Es un protocolo de configuración que opera en el nivel de red
- b. Es un protocolo de configuración que opera sobre UDP ó TCP
- Es un protocolo de configuración que puede informar sobre el servidor de nombres y sobre el servidor HTTP
- d.) Es un protocolo de configuración para asignar a un host una IP

29. La cabecera UDP

- a. Cambia salto a salto en los routers hasta llegar al destino
- b. Incluye información que depende de la IP origen y destino
- c. Incluye información que detecta y corrige errores
- d. Incluye información que identifica la IP origen y destino
- 30. En el establecimiento de conexión TCP para una aplicación estandarizada, tras un intento fallido, seleccione la respuesta más probable
 - a. El número de secuencia en el emisor es el mismo
 - b. El número de secuencia en el receptor es el mismo
 - c. El número de secuencia en el emisor y el receptor son los mismos
 - d. El número de secuencia en el emisor y el receptor son diferentes

31. En el control de errores en TCP

- a. Una confirmación ACK siempre confirma al último segmento enviado
- b. Una confirmación ACK puede confirmar a varios segmentos enviados no consecutivos
- Una confirmación ACK puede confirmar a varios segmentos enviados consecutivos
 - d. Una confirmación ACK siempre confirma al primer segmento enviado

32. Al recibir un segmento en TCP

- a. Cuando las dos entidades envían FIN ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
- b. Cuando las dos entidades envían ACK ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
- c. Cuando en las dos entidades envían FIN y reciben ACKs ya no se pueden recibir más segmentos
- d. Ninguna de las anteriores

- 33. En TCP
 - a. Todos los segmentos enviados incrementan el número de secuencia
 - b. Sólo los segmentos de datos incrementan el número de secuencia
 - c. Cuando no hay datos no se incrementa el número de secuencia
 - d. Ninguna de las anteriores
- 34. En el cierre de la conexión TCP
 - a. Cuando las dos entidades envían FIN ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
 - b. Cuando las dos entidades envían ACK ya no se pueden recibir más segmentos y por tanto se cierra en ese instante la conexión.
 - Cuando en las dos entidades envían FIN y reciben ACKs ya no se pueden recibir más segmentos
 - d. Ninguna de las anteriores
- 35. En un conexión TCP los bytes a enviar permitidos
 - a. Los determina el tamaño de la ventana de congestión
 - b. Los determina el tamaño de la ventana del receptor (control de flujo).
 - El mínimo de la ventana de congestión y el tamaño de la ventana del receptor (control de flujo).
 - d. El máximo de la ventana de congestión y el tamaño de la ventana del receptor (control de flujo).
- 36. De acuerdo con lo especificado en la RFC 791, qué característica NO es propia del Protocolo IPv4:
 - a. Interconexión de redes y direccionamiento en Internet.
 - b. Retransmisión salto a salto entre hosts y routers
 - Orientado a conexión y fiable: máximo esfuerzo ("best-effort")
 - d. IP gestiona la "fragmentación".
- 37. En una subred con 510 hosts y un router, ¿qué máscara de red se debería usar?:
 - a. /20
 - b. /21
 - (c.) /22
 - d. Ninguna de las anteriores.
- 38. El protocolo ARP
 - Usa como destino la dirección de broadcast (FF-FF-FF-FF-FF) para obtener la MAC correspondiente a una IP
- Usa como destino la dirección de broadcast (FF-FF-FF-FF-FF) para obtener la IP correspondiente a una MAC
 - c. Usa como destino la dirección MAC la IP correspondiente a una MAC
 - d. Ninguna de las anteriores.
- 39. En una tabla de encaminamiento IP
 - a. La entrada por defecto es obligatoria.
 - b. La entrada por defecto tiene la máscara más explícita (larga).
 - (c) Si se quiere evitar la accesibilidad a una red destino en particular no debe estar.
 - d. Si se quiere evitar la accesibilidad a una red destino en particular debe estar.
- 40. Para ensamblar los fragmentos de un datagrama IP
 - a. Se hace uso de los campos offset y protocol.
 - b. Se hace uso de los campos protocol e identificación.
 - c. Se hace uso de los campos offset, identificación y TTL.
 - d Se hace uso de los campos offset, identificación.

PROBLEMAS

- 1. (1.5 ptos) Al inicio de una conexión TCP, en una línea sin congestión con 30 ms de tiempo de propagación y 1 Gbps de velocidad de transmisión, ¿cuánto tiempo se emplea en enviar y recibir confirmación de 50 KB con las siguientes asunciones (añada cualquier asunción adicional que crea conveniente)? Realice el diagrama de tiempos de la transmisión.
 - a) Ventana ofertada de control de flujo de 10 KB continuada
 - b) Inicio lento configurado para comenzar a 2MSS
 - c) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - d) Umbral de congestión de 16 KB
 - e) Respuesta ACK retardada en el receptor de acuerdo a la teoría.

$$V_{c} = 5USS \quad Umbrol = 8USS \quad T_{p} = 30 \text{ us}$$

$$T_{t} = \frac{2.1024.8}{10^{9}} = 0.0164 \text{ us} \quad \frac{50}{2} = 25 \text{ segmentos}$$

$$V_{c} = 2USS \quad CT_{t} \quad C_{w} \ge 2T_{t} + 2T_{p}?$$

$$Nunca$$

Desperienos Cabeceras

VP= NOKB= SMSS

Etat = 116+14 bp + 500 cms = 920 ms

2. (1.5 ptos) En la red mostrada en el gráfico siguiente:

a) (1 pto) Señale las subredes que encuentre en la topología mostrada y asigne las direcciones privadas que considere necesario para poder interconectar todos los dispositivos de la red. Asigne una dirección pública a la red hacia internet.

b) (0.5 ptos) Especifique la tabla de encaminamiento para el Router R1 y R8 de forma tal que se minimicen el número de entradas en la misma.

NOTA: la solución de este ejercicio no es única. Las tablas de encaminamiento vendrán determinadas por las asignaciones realizadas en el apartado a).

R1

Red Destino	Mascara	Siguiente Salto
192.168.0.0	/24	
200.200.200.0	/30	
192.168.0.0	/22	192.168.0.2 (R2)
192.168.4.0	/24	192.168.0.3 (R3)
192.168.8.0	/22	192.168.0.4 (R4)
0.0.0.0	/0	200.200.200.2

R8

Red Destino	Mascara	Siguiente Salto
192.168.8.0	/24	
192.168.11.0	/24	
0.0.0.0	/0	192.168.8.1 (R4)