# 6-3.1 Estimation of Parameters in Multiple Regression

The method of least squares may be used to estimate the regression coefficients in the multiple regression model, equation 6-3. Suppose that n > k observations are available, and let  $x_{ij}$  denote the *i*th observation or level of variable  $x_i$ . The observations are

$$(x_{i1}, x_{i2}, \ldots, x_{ik}, y_i)$$
  $i = 1, 2, \ldots, n > k$ 

It is customary to present the data for multiple regression in a table such as Table 6-4.

Table 6-4 Data for Multiple Linear Regression

| у     | $x_1$                  | $x_2$                  |         | $x_k$    |
|-------|------------------------|------------------------|---------|----------|
| $y_1$ | <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> |         | $x_{1k}$ |
| $y_2$ | $x_{21}$               | $x_{22}$               | • • • • | $x_{2k}$ |
| :     | :                      | :                      |         | :        |
| $y_n$ | $x_{n1}$               | $x_{n2}$               |         | $x_{nk}$ |

# 6-3.1 Estimation of Parameters in Multiple Regression

• The least squares function is given by

$$L = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2$$

• The least squares estimates must satisfy

$$\left. \frac{\partial L}{\partial \beta_0} \right|_{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k} = -2 \sum_{i=1}^n \left( y_i - \hat{\beta}_0 - \sum_{j=1}^k \hat{\beta}_j x_{ij} \right) = 0$$

and

$$\frac{\partial L}{\partial \beta_j}\bigg|_{\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \sum_{j=1}^k \hat{\beta}_j x_{ij}\right) x_{ij} = 0 \quad j = 1, 2, \dots, k$$

# 6-3.1 Estimation of Parameters in Multiple Regression

• The least squares normal equations are

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1}^{2} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{i1} x_{ik} = \sum_{i=1}^{n} x_{i1} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{ik} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{ik} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{ik} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik}^{2} = \sum_{i=1}^{n} x_{ik} y_{i}$$

• The solution to the normal equations are the **least squares estimators** of the regression coefficients.

#### EXAMPLE 6-7 Wire Bond Pull Strength

In Chapter 1, we used data on pull strength of a wire bond in a semiconductor manufacturing process, wire length, and die height to illustrate building an empirical model. We will use the same data, repeated for convenience in Table 6-5, and show the details of estimating the model parameters. Scatter plots of the data are presented in Figs. 1-11a and 1-11b. Figure 6-17 shows a matrix of two-dimensional scatter plots of the data. These displays can be helpful in visualizing the relationships among variables in a multivariable data set.

Table 6-5 Wire Bond Pull Strength Data for Example 6-7

| Observation<br>Number | Pull Strength y | Wire Length $x_1$ | Die Height x <sub>2</sub> | Observation<br>Number | Pull Strength y | Wire Length $x_1$ | Die Height x <sub>2</sub> |
|-----------------------|-----------------|-------------------|---------------------------|-----------------------|-----------------|-------------------|---------------------------|
| 1                     | 9.95            | 2                 | 50                        | 14                    | 11.66           | 2                 | 360                       |
| 2                     | 24.45           | 8                 | 110                       | 15                    | 21.65           | 4                 | 205                       |
| 3                     | 31.75           | 11                | 120                       | 16                    | 17.89           | 4                 | 400                       |
| 4                     | 35.00           | 10                | 550                       | 17                    | 69.00           | 20                | 600                       |
| 5                     | 25.02           | 8                 | 295                       | 18                    | 10.30           | 1                 | 585                       |
| 6                     | 16.86           | 4                 | 200                       | 19                    | 34.93           | 10                | 540                       |
| 7                     | 14.38           | 2                 | 375                       | 20                    | 46.59           | 15                | 250                       |
| 8                     | 9.60            | 2                 | 52                        | 21                    | 44.88           | 15                | 290                       |
| 9                     | 24.35           | 9                 | 100                       | 22                    | 54.12           | 16                | 510                       |
| 10                    | 27.50           | 8                 | 300                       | 23                    | 56.63           | 17                | 590                       |
| 11                    | 17.08           | 4                 | 412                       | 24                    | 22.13           | 6                 | 100                       |
| 12                    | 37.00           | 11                | 400                       | 25                    | 21.15           | 5                 | 400                       |
| 13                    | 41.95           | 12                | 500                       |                       |                 |                   |                           |

#### EXAMPLE 6-7

Fit the multiple linear regression model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

where Y = pull strength,  $x_1 = \text{wire length}$ , and  $x_2 = \text{die height}$ .

**Solution.** From the data in Table 6-5 we calculate

$$n = 25, \sum_{i=1}^{25} y_i = 725.82, \sum_{i=1}^{25} x_{i1} = 206, \sum_{i=1}^{25} x_{i2} = 8,294$$

$$\sum_{i=1}^{25} x_{i1}^2 = 2,396, \sum_{i=1}^{25} x_{i2}^2 = 3,531,848$$

$$\sum_{i=1}^{25} x_{i1}x_{i2} = 77,177, \sum_{i=1}^{25} x_{i1}y_i = 8,008.47, \sum_{i=1}^{25} x_{i2}y_i = 274,816.71$$

#### EXAMPLE 6-7

For the model  $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$ , the normal equations 6-43 are

$$n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^n x_{i1} + \hat{\beta}_2 \sum_{i=1}^n x_{i2} = \sum_{i=1}^n y_i$$

$$\hat{\beta}_0 \sum_{i=1}^n x_{i1} + \hat{\beta}_1 \sum_{i=1}^n x_{i1}^2 + \hat{\beta}_2 \sum_{i=1}^n x_{i1} x_{i2} = \sum_{i=1}^n x_{i1} y_i$$

$$\hat{\beta}_0 \sum_{i=1}^n x_{i2} + \hat{\beta}_1 \sum_{i=1}^n x_{i1} x_{i2} + \hat{\beta}_2 \sum_{i=1}^n x_{i2}^2 = \sum_{i=1}^n x_{i2} y_i$$

Inserting the computed summations into the normal equations, we obtain

$$25\hat{\beta}_0 + 206\hat{\beta}_1 + 8,294\hat{\beta}_2 = 725.82$$
$$206\hat{\beta}_0 + 2,396\hat{\beta}_1 + 77,177\hat{\beta}_2 = 8,008.47$$
$$8,294\hat{\beta}_0 + 77,177\hat{\beta}_1 + 3,531,848\hat{\beta}_2 = 274,816.71$$

#### EXAMPLE 6-7

The solution to this set of equations is

$$\hat{\beta}_0 = 2.26379, \, \hat{\beta}_1 = 2.74427, \, \hat{\beta}_2 = 0.01253$$

Using these estimated model parameters, the fitted regression equation is

$$\hat{y} = 2.26379 + 2.74427x_1 + 0.01253x_2$$

**Practical interpretation:** This equation can be used to predict pull strength for pairs of values of the regressor variables wire length  $(x_1)$  and die height  $(x_2)$ . This is essentially the same regression model given in equation 1-6, Section 1-3. Figure 1-13 shows a three-dimentional plot of the plane of predicted values  $\hat{y}$  generated from this equation.

# 6-3.1 Estimation of Parameters in Multiple Regression

#### Variance Estimate

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - p} = \frac{SS_E}{n - p}$$
 (6-45)

#### Adjusted Coefficient of Multiple Determination (R<sup>2</sup><sub>Adjusted</sub>)

The **adjusted coefficient of multiple determination** for a multiple regression model with k regressors is

$$R_{\text{Adjusted}}^2 = 1 - \frac{SS_E/(n-p)}{SS_T/(n-1)} = \frac{(n-1)R^2 - k}{n-p}$$
 (6-46)

#### 6-3.2 Inferences in Multiple Regression

#### **Test for Significance of Regression**

#### Testing for Significance of Regression in Multiple Regression

$$MS_R = \frac{SS_R}{k}$$
  $MS_E = \frac{SS_E}{n-p}$ 

Null hypothesis:  $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$ 

Alternative hypothesis:  $H_1$ : At least one  $\beta_i \neq 0$ 

Test statistic:  $F_0 = \frac{MS_R}{MS_E}$  (6-47)

P-value: Probability above  $f_0$  in the  $F_{k,n-p}$  distribution

Rejection criterion for a

fixed-level test:  $f_0 > f_{\alpha,k,n-p}$ 

#### 6-3.2 Inferences in Multiple Regression

#### **Inference on Individual Regression Coefficients**

#### Inferences on the Model Parameters in Multiple Regression

1. The test for  $H_0$ :  $\beta_i = \beta_{i,0}$  versus  $H_1$ :  $\beta_i \neq \beta_{i,0}$  employs the **test statistic** 

$$T_0 = \frac{\hat{\beta}_j - \beta_{j,0}}{se(\hat{\beta}_j)} \tag{6-48}$$

and the null hypothesis is rejected if  $|t_0| > t_{\alpha/2,n-p}$ . A *P*-value approach can also be used. One-sided alternative hypotheses can also be tested.

2. A  $100(1 - \alpha)\%$  CI for an individual regression coefficient is given by

$$\hat{\beta}_j - t_{\alpha/2, n-p} se(\hat{\beta}_j) \le \beta_j \le \hat{\beta}_j + t_{\alpha/2, n-p} se(\hat{\beta}_j)$$
 (6-49)

•This is called a **partial** or marginal test

#### 6-3.2 Inferences in Multiple Regression

# **Confidence Intervals on the Mean Response and Prediction Intervals**

#### Confidence Interval on the Mean Response in Multiple Regression

A  $100(1-\alpha)\%$  CI on the mean response at the point  $(x_1=x_{10},x_2=x_{20},\ldots,x_k=x_{k0})$  in a multiple regression model is given by

$$\hat{\mu}_{Y|x_{10},x_{20},...,x_{k0}} - t_{\alpha/2,n-p} se(\hat{\mu}_{Y|x_{10},x_{20},...,x_{k0}}) \leq \mu_{Y|x_{10},x_{20},...,x_{k0}} 
\leq \hat{\mu}_{Y|x_{10},x_{20},...,x_{k0}} + t_{\alpha/2,n-p} se(\hat{\mu}_{Y|x_{10},x_{20},...,x_{k0}})$$
(6-52)

where  $\hat{\mu}_{Y|x_{10},x_{20},...,x_{k0}}$  is computed from equation 6-51.

#### 6-3.2 Inferences in Multiple Regression

# **Confidence Intervals on the Mean Response and Prediction Intervals**

#### Prediction Interval on a Future Observation in Multiple Regression

A  $100(1 - \alpha)\%$  PI on a future observation at the point  $(x_1 = x_{10}, x_2 = x_{20}, \dots, x_k = x_{k0})$  in a multiple regression model is given by

$$\hat{y}_0 - t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 + \left[ se(\hat{\mu}_{Y|x_{10}, x_{20}, \dots, x_{k0}}) \right]^2} \le Y_0$$

$$\le \hat{y}_0 + t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 + \left[ se(\hat{\mu}_{Y|x_{10}, x_{20}, \dots, x_{k0}}) \right]^2} \quad (6-54)$$

where  $\hat{y}_0 = \hat{\mu}_{Y|x_{10},x_{20},...,x_{k0}}$  is computed from equation 6-53.

#### 6-3.2 Inferences in Multiple Regression

# **Confidence Intervals on the Mean Response and Prediction Intervals**

Table 6-7 Minitab Output

| Predicted Values for New Observations |                             |                     |                              |                              |  |  |  |  |  |
|---------------------------------------|-----------------------------|---------------------|------------------------------|------------------------------|--|--|--|--|--|
| New Obs                               | Fit<br>32.889               | SE Fit<br>1.062     | 95.0% CI<br>(30.687, 35.092) | 95.0% PI<br>(27.658, 38.121) |  |  |  |  |  |
| New Obs                               | Fit                         | SE Fit              | 95.0% CI                     | 95.0% PI                     |  |  |  |  |  |
| 2<br>Values of Pred                   | 16.236<br>ictors for New Ob | 0.929<br>servations | (14.310, 18.161)             | (11.115, 21.357)             |  |  |  |  |  |
| New Obs                               | Wire Ln<br>11.0             | Die Ht<br>35.0      |                              |                              |  |  |  |  |  |
| New Obs<br>2                          | Wire Ln<br>5.00             | Die Ht<br>20.0      |                              |                              |  |  |  |  |  |

#### 6-3.2 Inferences in Multiple Regression

#### A Test for the Significance of a Group of Regressors

$$H_0: \beta_{r+1} = \beta_{r+2} = \cdots = \beta_k = 0$$

 $H_1$ : At least one of the  $\beta$ 's  $\neq 0$ 

we would use the test statistic

$$F_0 = \frac{\left[SS_E(RM) - SS_E(FM)\right]/(k-r)}{SS_E(FM)/(n-p)}$$

### 6-3.3 Checking Model Adequacy



Figure 6-18 Normal probability plot of residuals for wire bond empirical model.

### 6-3.3 Checking Model Adequacy



Figure 6-19 Plot of residuals against  $\hat{y}$  for wire bond empirical model.

#### 6-3.3 Checking Model Adequacy



Figure 6-20 Plot of residuals against  $x_1$  (wire length) for wire bond empirical model.

### 6-3.3 Checking Model Adequacy



Figure 6-21 Plot of residuals against  $x_2$  (die height) for wire bond empirical model.

### 6-3.3 Checking Model Adequacy

#### **Residual Analysis**

#### **Studentized Residuals**

The studentized residuals are defined as

$$r_i = \frac{e_i}{se(e_i)} = \frac{e_i}{\sqrt{\hat{\sigma}^2(1 - h_{ii})}}, i = 1, 2, \dots, n$$
 (6-58)

### 6-3.3 Checking Model Adequacy

#### **Influential Observations**



Figure 6-22 A point that is remote in x-space.

### 6-3.3 Checking Model Adequacy

#### **Influential Observations**

#### Cook's Distance Measure

$$D_i = \frac{r_i^2}{p} \frac{h_{ii}}{(1 - h_{ii})} \qquad i = 1, 2, \dots, n$$
 (6-59)

### 6-3.3 Checking Model Adequacy

Table 6-8 Influence Diagnostics for the Wire Bond Pull Strength Data

| Observations i | $h_{ii}$ | Cook's Distance Measure $D_i$ | Observations <i>i</i> | $h_{ii}$ | Cook's Distance Measure $D_i$ |
|----------------|----------|-------------------------------|-----------------------|----------|-------------------------------|
| 1              | 0.1573   | 0.035                         | 14                    | 0.1129   | 0.003                         |
| 2              | 0.1116   | 0.012                         | 15                    | 0.0737   | 0.187                         |
| 3              | 0.1419   | 0.060                         | 16                    | 0.0879   | 0.001                         |
| 4              | 0.1019   | 0.021                         | 17                    | 0.2593   | 0.565                         |
| 5              | 0.0418   | 0.024                         | 18                    | 0.2929   | 0.155                         |
| 6              | 0.0749   | 0.007                         | 19                    | 0.0962   | 0.018                         |
| 7              | 0.1181   | 0.036                         | 20                    | 0.1473   | 0.000                         |
| 8              | 0.1561   | 0.020                         | 21                    | 0.1296   | 0.052                         |
| 9              | 0.1280   | 0.160                         | 22                    | 0.1358   | 0.028                         |
| 10             | 0.0413   | 0.001                         | 23                    | 0.1824   | 0.002                         |
| 11             | 0.0925   | 0.013                         | 24                    | 0.1091   | 0.040                         |
| 12             | 0.0526   | 0.001                         | 25                    | 0.0729   | 0.000                         |
| 13             | 0.0820   | 0.001                         |                       |          |                               |

### 6-4.1 Polynomial Models

In Section 6-1 we observed that models with polynomial terms in the regressors, such as the second-order model

$$Y = \beta_0 + \beta_1 x_1 + \beta_{11} x_1^2 + \epsilon$$

are really linear regression models and can be fit and analyzed using the methods discussed in Section 6-3. Polynomial models arise frequently in engineering and the sciences, and this contributes greatly to the widespread use of linear regression in these fields.

Table 6-9 The Acetylene Data

| Observation | Yield, Y | Temp., T | Ratio, R | Observation | Yield, Y | Temp., T | Ratio, R |
|-------------|----------|----------|----------|-------------|----------|----------|----------|
| 1           | 49.0     | 1300     | 7.5      | 9           | 34.5     | 1200     | 11.0     |
| 2           | 50.2     | 1300     | 9.0      | 10          | 35.0     | 1200     | 13.5     |
| 3           | 50.5     | 1300     | 11.0     | 11          | 38.0     | 1200     | 17.0     |
| 4           | 48.5     | 1300     | 13.5     | 12          | 38.5     | 1200     | 23.0     |
| 5           | 47.5     | 1300     | 17.0     | 13          | 15.0     | 1100     | 5.3      |
| 6           | 44.5     | 1300     | 23.0     | 14          | 17.0     | 1100     | 7.5      |
| 7           | 28.0     | 1200     | 5.3      | 15          | 20.5     | 1100     | 11.0     |
| 8           | 31.5     | 1200     | 7.5      | 16          | 29.5     | 1100     | 17.0     |

### 6-4.1 Polynomial Models

The second-order model in two regressors is

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \epsilon$$

$$Y = \beta_0 + \beta_1(T - 1212.5) + \beta_2(R - 12.444) + \beta_{12}(T - 1212.5)(R - 12.444) + \beta_{11}(T - 1212.5)^2 + \beta_{22}(R - 12.444)^2 + \epsilon$$

### 6-4.1 Polynomial Models

| Viold = $36.1 \pm 0.13$ | 4 Temp + 0.351 Ratio |         |                |       |       |
|-------------------------|----------------------|---------|----------------|-------|-------|
|                         | •                    |         | _              | _     |       |
| Predictor               | Coef                 | SE Coef | T              | P     | VIF   |
| Constant                | 36.1063              | 0.9060  | 39.85          | 0.000 |       |
| Temp                    | 0.13396              | 0.01191 | 11.25          | 0.000 | 1.1   |
| Ratio                   | 0.3511               | 0.1696  | 2.07           | 0.059 | 1.1   |
| S = 3.624               | R-Sq = 92.0%         | I       | R-Sq(adj) = 90 | 0.7%  |       |
| Analysis of Variance    |                      |         |                |       |       |
| Source                  | DF                   | SS      | MS             | F     | P     |
| Regression              | 2                    | 1952.98 | 976.49         | 74.35 | 0.000 |
| Residual Error          | 13                   | 170.73  | 13.13          |       |       |
| Total                   | 15                   | 2123.71 |                |       |       |

### 6-4.1 Polynomial Models

| The regression equat  |                      |         |                |       |       |
|-----------------------|----------------------|---------|----------------|-------|-------|
| Yield = $30.1 + 0.13$ | 4 Temp + 0.351 Ratio |         |                |       |       |
| Predictor             | Coef                 | SE Coef | T              | P     | VIF   |
| Constant              | 36.1063              | 0.9060  | 39.85          | 0.000 |       |
| Temp                  | 0.13396              | 0.01191 | 11.25          | 0.000 | 1.1   |
| Ratio                 | 0.3511               | 0.1696  | 2.07           | 0.059 | 1.1   |
| S = 3.624             | R-Sq = 92.0%         | ]       | R-Sq(adj) = 90 | 0.7%  |       |
| Analysis of Variance  |                      |         |                |       |       |
| Source                | DF                   | SS      | MS             | F     | P     |
| Regression            | 2                    | 1952.98 | 976.49         | 74.35 | 0.000 |
| Residual Error        | 13                   | 170.73  | 13.13          |       |       |
| Total                 | 15                   | 2123.71 |                |       |       |

### 6-4.1 Polynomial Models

$$H_0: \beta_{r+1} = \beta_{r+2} = \cdots = \beta_k = 0$$

 $H_1$ : At least one of the  $\beta$ 's  $\neq 0$ 

The test statistic for the above hypotheses was originally given in equation 6-56, repeated below for convenience:

$$F_0 = \frac{\left[SS_E(RM) - SS_E(FM)\right]/(k-r)}{SS_E(FM)/(n-p)}$$

### 6-4.2 Categorical Regressors

- Many problems may involve qualitative or categorical variables.
- The usual method for the different levels of a qualitative variable is to use **indicator** variables.
- For example, to introduce the effect of two different operators into a regression model, we could define an indicator variable as follows:

$$x_3 = \begin{cases} 0 \text{ if the car has an automatic transmission} \\ 1 \text{ if the car has a manual transmission} \end{cases}$$

### 6-4.2 Categorical Regressors

| The regression equation is                                 |         |             |        |              |       |  |  |  |  |
|------------------------------------------------------------|---------|-------------|--------|--------------|-------|--|--|--|--|
| Quality = 89.8 + 1.82  Foam - 3.38  Residue - 3.41  Region |         |             |        |              |       |  |  |  |  |
| Predictor                                                  | Coef    | SE C        | oef    | T            | P     |  |  |  |  |
| Constant                                                   | 89.806  | 2.9         | 990    | 30.03        | 0.000 |  |  |  |  |
| Foam                                                       | 1.8192  | 0.3         | 3260   | 5.58         | 0.000 |  |  |  |  |
| Residue                                                    | -3.3795 | 0.0         | 6858   | -4.93        | 0.000 |  |  |  |  |
| Region                                                     | -3.4062 | 0.9         | 9194   | -3.70        | 0.001 |  |  |  |  |
| S = 2.21643                                                | R-      | -Sq = 77.6% |        | R-Sq (adj) = | 74.2% |  |  |  |  |
| Analysis of Varia                                          | ance    |             |        |              |       |  |  |  |  |
| Source                                                     | DF      | SS          | MS     | F            | P     |  |  |  |  |
| Regression                                                 | 3       | 339.75      | 113.25 | 23.05        | 0.000 |  |  |  |  |
| Residual Error                                             | 20      | 98.25       | 4.91   |              |       |  |  |  |  |
| Total                                                      | 23      | 438.00      |        |              |       |  |  |  |  |

### 6-4.2 Categorical Regressors

| The regression eq  | uation is   |              |                |                    |                        |    |
|--------------------|-------------|--------------|----------------|--------------------|------------------------|----|
| Quality = 88.3 +   | 1.98 Foam - | 3.22 Residue | e – 1.71 Regio | on – 0.642 F ×     | $R + 0.43 R \times Re$ | es |
| Predictor          | Coef        | SE           | Coef           | T                  | P                      |    |
| Constant           | 88.257      |              | 4.840          | 18.24              | 0.000                  |    |
| Foam               | 1.9825      | 0            | .4292          | 4.62               | 0.000                  |    |
| Residue            | -3.2153     | 0            | .9525          | -3.38              | 0.003                  |    |
| Region             | -1.707      |              | 6.572          | -0.26              | 0.798                  |    |
| $F \times R$       | -0.6419     | 0            | .9434          | -0.68              | 0.505                  |    |
| $R \times Res$     | 0.430       |              | 1.894          | 0.23               | 0.823                  |    |
| S = 2.30499        | R-Sq =      | 78.2%        |                | R-Sq (adj) = 72.1% |                        |    |
| Analysis of Variar | nce         |              |                |                    |                        |    |
| Source             | DF          | SS           | MS             | F                  | P                      |    |
| Regression         | 5           | 342.366      | 68.473         | 12.89              | 0.000                  |    |
| Residual Error     | 18          | 95.634       | 5.313          |                    |                        |    |
| Total              | 23          | 438.000      |                |                    |                        |    |

#### 6-4.3 Variable Selection Procedures

Table 6-10 Minitab Best Subsets Regression for Shampoo Data

#### Best Subsets Regressions

| Respons | e is Quality |           |         |        |            |
|---------|--------------|-----------|---------|--------|------------|
|         |              |           |         |        | R          |
|         |              |           |         |        | e R        |
|         |              |           |         |        | SCse       |
|         |              |           |         |        | Fcoig      |
|         |              |           |         |        | o e ldi    |
|         |              |           | Mallows |        | a n o u o  |
| Vars    | R-Sq         | R-Sq(adj) | С-р     | S      | m tren     |
| 1       | 26.2         | 22.9      | 46.4    | 3.8321 | X          |
| 1       | 25.7         | 22.3      | 46.9    | 3.8455 | X          |
| 1       | 23.9         | 20.5      | 48.5    | 3.8915 | X          |
| 1       | 6.3          | 2.1       | 64.3    | 4.3184 | X          |
| 1       | 3.8          | 0.0       | 66.7    | 4.3773 | X          |
| 2       | 62.2         | 58.6      | 16.1    | 2.8088 | X X        |
| 2       | 50.3         | 45.6      | 26.7    | 3.2185 | X X        |
| 2       | 42.6         | 37.2      | 33.6    | 3.4589 | XX         |
| 2       | 40.9         | 35.3      | 35.2    | 3.5098 | X X        |
| 2       | 32.6         | 26.2      | 42.7    | 3.7486 | XX         |
| 3       | 77.6         | 74.2      | 4.2     | 2.2164 | X XX       |
| 3       | 63.1         | 57.6      | 17.2    | 2.8411 | X XX       |
| 3       | 62.5         | 56.9      | 17.7    | 2.8641 | X X X      |
| 3       | 52.9         | 45.9      | 26.4    | 3.2107 | X X X      |
| 3       | 51.8         | 44.6      | 27.4    | 3.2491 | X X X      |
| 4       | 79.9         | 75.7      | 4.1     | 2.1532 | X X X X    |
| 4       | 78.6         | 74.1      | 5.3     | 2.2205 | X  X  X  X |
| 4       | 64.8         | 57.4      | 17.7    | 2.8487 | X X X X    |
| 4       | 53.0         | 43.1      | 28.3    | 3.2907 | X X X X    |
| 4       | 51.4         | 41.2      | 29.7    | 3.3460 | X X X X    |
| 5       | 80.0         | 74.5      | 6.0     | 2.2056 | X X X X X  |

#### 6-4.3 Variable Selection Procedures

# **Backward Elimination**

Table 6-11 Stepwise Regression Backward Elimination for Shampoo Data: Quality versus Foam, Scent, Color, Residue, Region

| Backward eliminati  | ion. Alpha-to-Remo   | ve: 0.1    |       |
|---------------------|----------------------|------------|-------|
| Response is Quality | y on 5 predictors, w | ith N = 24 |       |
| Step                | 1                    | 2          | 3     |
| Constant            | 86.33                | 86.14      | 89.81 |
| Foam                | 1.82                 | 1.87       | 1.82  |
| T-Value             | 5.07                 | 5.86       | 5.58  |
| P-Value             | 0.000                | 0.000      | 0.000 |
| Scent               | 1.03                 | 1.18       |       |
| T-Value             | 1.12                 | 1.48       |       |
| P-Value             | 0.277                | 0.155      |       |
| Color               | 0.23                 |            |       |
| T-Value             | 0.33                 |            |       |
| P-Value             | 0.746                |            |       |
| Residue             | -4.00                | -3.93      | -3.38 |
| T-Value             | -4.93                | -5.15      | -4.93 |
| P-Value             | 0.000                | 0.000      | 0.000 |
| Region              | -3.86                | -3.71      | -3.41 |
| T-Value             | -3.70                | -4.05      | -3.70 |
| P-Value             | 0.002                | 0.001      | 0.001 |
| S                   | 2.21                 | 2.15       | 2.22  |
| R-Sq                | 80.01                | 79.89      | 77.57 |
| R-Sq (adj)          | 74.45                | 75.65      | 74.20 |
| Mallows C-p         | 6.0                  | 4.1        | 4.2   |

#### 6-4.3 Variable Selection Procedures

#### **Forward Selection**

Table 6-12 Stepwise Regression Forward Selection for Shampoo Data: Quality versus Foam, Scent, Color, Residue, Region

| Forward selection. Alpha-to-Enter: 0.25          |       |       |       |       |  |  |  |  |  |  |
|--------------------------------------------------|-------|-------|-------|-------|--|--|--|--|--|--|
| Response is Quality on 5 predictors, with N = 24 |       |       |       |       |  |  |  |  |  |  |
| Step                                             | 1     | 2     | 3     | 4     |  |  |  |  |  |  |
| Constant                                         | 76.00 | 89.45 | 89.81 | 86.14 |  |  |  |  |  |  |
| Foam                                             | 1.54  | 1.90  | 1.82  | 1.87  |  |  |  |  |  |  |
| T-Value                                          | 2.80  | 4.61  | 5.58  | 5.86  |  |  |  |  |  |  |
| P-Value                                          | 0.010 | 0.000 | 0.000 | 0.000 |  |  |  |  |  |  |
| Residue                                          |       | -3.82 | -3.38 | -3.93 |  |  |  |  |  |  |
| T-Value                                          |       | -4.47 | -4.93 | -5.15 |  |  |  |  |  |  |
| P-Value                                          |       | 0.000 | 0.000 | 0.000 |  |  |  |  |  |  |
| Region                                           |       |       | -3.41 | -3.71 |  |  |  |  |  |  |
| T-Value                                          |       |       | -3.70 | -4.05 |  |  |  |  |  |  |
| P-Value                                          |       |       | 0.001 | 0.001 |  |  |  |  |  |  |
| Scent                                            |       |       |       | 1.18  |  |  |  |  |  |  |
| T-Value                                          |       |       |       | 1.48  |  |  |  |  |  |  |
| P-Value                                          |       |       |       | 0.155 |  |  |  |  |  |  |
| S                                                | 3.83  | 2.81  | 2.22  | 2.15  |  |  |  |  |  |  |
| R-Sq                                             | 26.24 | 62.17 | 77.57 | 79.89 |  |  |  |  |  |  |
| R-Sq (adj)                                       | 22.89 | 58.57 | 74.20 | 75.65 |  |  |  |  |  |  |
| Mallows C-p                                      | 46.4  | 16.1  | 4.2   | 4.1   |  |  |  |  |  |  |

#### 6-4.3 Variable Selection Procedures

#### **Stepwise Regression**

Table 6-13 Stepwise Regression Combined Forward and Backward Elimination: Quality versus Foam, Scent, Color, Residue, Region

| Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15       |       |       |       |
|--------------------------------------------------|-------|-------|-------|
| Response is Quality on 5 predictors, with N = 24 |       |       |       |
| Step                                             | 1     | 2     | 3     |
| Constant                                         | 76.00 | 89.45 | 89.81 |
| Foam                                             | 1.54  | 1.90  | 1.82  |
| T-Value                                          | 2.80  | 4.61  | 5.58  |
| P-Value                                          | 0.010 | 0.000 | 0.000 |
| Residue                                          |       | -3.82 | -3.38 |
| T-Value                                          |       | -4.47 | -4.93 |
| P-Value                                          |       | 0.000 | 0.000 |
| Region                                           |       |       | -3.41 |
| T-Value                                          |       |       | -3.70 |
| P-Value                                          |       |       | 0.001 |
| S                                                | 3.83  | 2.81  | 2.22  |
| R-Sq                                             | 26.24 | 62.17 | 77.57 |
| R-Sq (adj)                                       | 22.89 | 58.57 | 74.20 |
| Mallows C-p                                      | 46.4  | 16.1  | 4.2   |

#### IMPORTANT TERMS AND CONCEPTS

Adjusted R<sup>2</sup>
All possible regressions
Analysis of variance
(ANOVA)
Backward elimination
Coefficient of
determination, R<sup>2</sup>

Confidence interval on mean response Confidence interval on regression coefficients Contour plot Cook's distance
measure,  $D_i$   $C_p$  statistic
Empirical model
Forward selection
Indicator variables
Influential observations

Interaction
Intercept
Least squares normal
equations
Mechanistic model
Method of least squares
Model

Model adequacy
Multicollinearity
Multiple regression
Outliers
Polynomial regression
Population correlation
coefficient, ρ
Prediction interval
Regression analysis

Regression coefficients
Regression model
Regression sum of
squares
Regressor variable
Residual analysis
Residual sum of squares
Residuals
Response variable

Sample correlation
coefficient, r
Significance of
regression
Simple linear regression
Standard errors of
model coefficients
Standardized residuals
Stepwise regression

Studentized residuals
t-tests on regression
coefficients
Unbiased estimators
Variance inflation factor