Exámenes Parciales y ETS Topología I

Cristo Daniel Alvarado

20 de abril de 2024

Índice general

1.	Primer Examamen Parcial	2
	1.1. Ejercicios I	2
	1.2. Ejercicios II	3
2.	Segundo Examen Parcial	5
	2.1. Ejercicios I	5
	2.2. Ejercicios II	5
3.	Tercer Examen Parcial	6
	3.1. Ejercicios	6
4.	ETS Ordinario	7
	4.1. Ejercicios	7
	4.2. Resultados Preeliminares	8

Primer Examamen Parcial

1.1. Ejercicios I

Ejercicio 1.1.1

Sean $X = \mathbb{R}$ y $\tau = \{X, \emptyset\} \cup \{B_q\}_{q \in \mathbb{Q}}$, donde $B_q = (q, \infty) \cap \mathbb{Q}$. ¿Es (\mathbb{R}, τ) un espacio topológico? Demuestre su respuesta.

Solución:

Ejercicio 1.1.2

¿La familia $\{[a, b] | a, b \in \mathbb{Q}, a < b\}$ es base en (X, τ_S) ? Justifique su respuesta.

Solución:

Ejercicio 1.1.3

Sea (X, τ) un espacio topológico y R una relación de equivalencia sobre X, y $p: X \to X/R$ la función que a cada elemento $x \mapsto [x]$ lo asigna a su clase de equivalencia. Haga lo siguiente:

1. Demuestre que la colección de todos los conjuntos cerrados en $(X/R, \tau/R)$ es:

$$\left\{F\subseteq X/R\big|p^{-1}(F)\text{ es cerrado en }X\right\}$$

2. Demuestre que la colección de todos los conjuntos cerrados en $(X/R, \tau/R)$ es igual a la familia:

$$\left\{p(F)\subseteq X/R\big|F\text{ es cerrado en }(X,\tau)\ge p^{-1}(p(F))=F\right\}$$

Solución:

Ejercicio 1.1.4

En el espacio (X, τ_{cf}) y tomando A = (0, 1), obtener:

- 1. \mathring{A} .
- $2. \overline{A}.$

3. $\operatorname{Fr}(A)$.

4. Ext
$$(A) = \widehat{X - A}$$
.

Solución:

Ejercicio 1.1.5

Sea (X, τ) un espacio topológico, para cada $A \subseteq X$ definimos $\alpha(A) = \mathring{\overline{A}}$, y $\beta(A) = \mathring{\overline{A}}$. Demuestre o refute:

- 1. $\alpha(\alpha(A)) = \alpha(A)$, para cada $A \subseteq X$.
- 2. $\beta(\beta(A)) = \beta(A)$, para cada $A \subseteq X$.

Demostración:

1.2. Ejercicios II

Ejercicio 1.2.1

Sea $S = \{\mathbb{N}, \{1, 2\}, \{3, 4, 5\}, \{1, 4, 7\}\}$, Encuentre explícitamente los elementos de la topología τ menos fina definida sobre \mathbb{N} tal que $S \subseteq \tau$ y, además, encuentre una base para τ tal que $\mathcal{B} \neq \tau$.

Solución:

Ejercicio 1.2.2

Sean (X,τ) un espacio topológico, Y un conjunto y $f:X\to Y$ una función. Demuestre que el conjunto:

$$\tau_f := \left\{ U \subseteq Y \middle| f^{-1}(U) \in \tau \right\}$$

es una topología sobre Y y es la topología más fina definida sobre Y tal que la función $f:(X,\tau)\to (Y,\tau_f)$ es una función continua.

Demostración:

Ejercicio 1.2.3

Sea (\mathbb{N}, τ_{cf}) , donde τ_{cf} es la topología de los complementos finitos. Considere el conjunto

$$P = \left\{ n \in \mathbb{N} \middle| \exists k \in \mathbb{N} \text{ tal que } n = 2k \right\}$$

encuentre \overline{P} , \mathring{P} , P'.

Solución:

Ejercicio 1.2.4

Sean (X, τ) y (Y, τ') espacios topológicos tales que (Y, τ') es un espacio topológico Hausdorff. Sean $A \subseteq X$ y $f: (A, \tau_A) \to (Y, \tau')$ una función continua tal que existen $g_i: (\overline{A}, \tau_{\overline{A}}) \to (Y, \tau')$, $i \in \{1, 2\}$ funciones continuas que cumplen:

$$g_1(a) = g_2(a), \quad \forall a \in A$$

demuestre que $g_1 = g_2$.

Demostración:

Sea $a \in \overline{A}$. Debemos probar que $g_1(a) = g_2(a)$. Se tienen dos casos:

- 1. $a \in A$, en cuyo caso se sigue de hipótesis que $g_1(a) = g_2(a)$.
- 2. Suponga que $a \notin A$. Si $g_1(a) \neq g_2(a)$, como el espacio (Y, τ') es Hausdorff, existen dos abiertos $M, N \in \tau'$ tales que

$$g_1(a) \in M \quad g_2(a) \in N \quad M \cap N = \emptyset$$

por ende, los conjuntos $V = g_1^{-1}(M)$ y $U = g_2^{-1}(N)$ son dos abiertos en $(\overline{A}, \tau_{\overline{A}})$ tales que

$$a \in V \cap U$$

como $a \in \overline{A}$, existe pues $a' \in A$ tal que $a' \in U \cap V$, es decir:

$$a' \in g_1^{-1}(M) \cap g_2^{-1}(N) \Rightarrow g_1(a') \in M \quad \text{y} \quad g_2(a') \in N \Rightarrow g_1(a') = g_2(a') \in M \cap N$$

pues, $a' \in A$. Por tanto, $M \cap N \neq \emptyset \#_c$. Así, $g_1(a) = g_2(a)$.

Por ambos incisos, se sigue que $g_1 = g_2$.

Segundo Examen Parcial

2.1. Ejercicios I

Ejercicio 2.1.1

Sean $S = \{(x,y) \in \mathbb{R}^2 | 1 \le x^2 + y^2 \le 4\}$ y $P = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 = 1 \text{ y } 0 \le z \le 1\}$. Los espacios (S, τ_{u_S}) y (P, τ_{u_P}) son homeomorfos? Demuestre que su respuesta es correcta.

Ejercicio 2.1.2

Sea β un número irracional arbitrario pero fijo. Demuestre que el conjunto

$$G = \left\{ a\beta + b \middle| a \in \mathbb{N}, b \in \mathbb{Z} \right\}$$

es denso en (\mathbb{R}, τ_u) .

Ejercicio 2.1.3

Considere los espacios topológicos (\mathbb{R}, τ_{cf}) y (\mathbb{R}, τ'_{cf}) donde τ_{cf} y τ'_{cf} son la topología de los complementos finitos en \mathbb{R} y \mathbb{R}^2 , respectivamente. ¿Es cierto que $\tau_{cf} \times \tau_{cf} = \tau'_{cf}$? Demuestre su respuesta.

Ejercicio 2.1.4

Sea $n \mapsto r_n$ una biyección de \mathbb{N} sobre $\mathbb{Q} \cap [0,1]$. Definimos la función $f:([0,1],\tau_{u_{[0,1]}}) \to (\mathbb{R},\tau_u)$ como sigue; para cada $x \in [0,1]$ tomamos

$$f(x) = \sum_{n \in \mathcal{N}(x)} \frac{1}{2^n}$$

donde $\mathcal{N}(x) = \left\{ n \in \mathbb{R}^n \middle| x < r_n \right\}$. Demuestre que la reestricción de f al conjunto B de todos los números irracionales x en [0,1] es continua.

2.2. Ejercicios II

Tercer Examen Parcial

3.1. Ejercicios

Ejercicio 3.1.1

ETS Ordinario

4.1. Ejercicios

Ejercicio 4.1.1

Sea $A = \{ \sin n | n \in \mathbb{N} \}$. Pruebe que $\overline{A} = [-1, 1]$ en (\mathbb{R}, τ_u) .

Demostración:

Notemos que $A = \sin(\mathbb{N})$. Sea $C = \sin(\mathbb{Z})$.

Es claro que $C \subseteq [-1,1]$ donde [-1,1] es un cerrado en (\mathbb{R}, τ_u) , por tanto $\overline{C} \subseteq [-1,1]$, veremos que se cumple la otra contención. Sea $x \in [-1,1]$,

- Si $x \in C$, es claro que $x \in \overline{C}$ ya que $C \subseteq \overline{C}$.
- Si $x \notin C$, como la función $t \mapsto \operatorname{sen} t$ de \mathbb{R} a [-1,1] es suprayectiva, entonces existe $\theta \in \mathbb{R}$ tal que $\sin \theta = x$.

Ahora, por la proposición 4.2.2, el conjunto

$$B = \left\{ a + 2\pi b \middle| a, b \in \mathbb{Z} \right\}$$

es denso en \mathbb{R} por ser 2π irracional. Entonces, para cada $n \in \mathbb{N}$ existe $\theta_n = a_n + 2\pi b_n \in B$ tal que $|\theta - \theta_n| < \frac{1}{n}$, es decir que la sucesión $\{\theta_n\}_{n=1}^{\infty}$ converge a θ . Como $t \mapsto \sin t$ es continua, entonces:

$$\lim_{n \to \infty} \left| \sin \theta - \sin \theta_n \right| = 0$$

$$\Rightarrow \lim_{n \to \infty} \left| x - \sin \left(a_n + 2\pi b_n \right) \right| = 0$$

pero,

$$\sin(a_n + 2\pi b_n) = \sin(a_n)\cos(2\pi b_n) + \cos(a_n)\sin(2\pi b_n)$$
$$= \sin(a_n)$$

pues $\cos(2\pi k) = 1$ y $\sin(2\pi k) = 0$, para todo $k \in \mathbb{Z}$. Luego,

$$\lim_{n\to\infty} \left| x - \sin a_n \right| = 0$$

es decir que para $\varepsilon > 0$ existe $n \in \mathbb{N}$ tal que $|x - \sin a_n| < \varepsilon$, donde $a_n \in \mathbb{Z}$.

Por los dos incisos anterioes, se sigue que lo que $\overline{C} \subseteq [-1,1] \Rightarrow \overline{C} = [-1,1]$, es decir que $\sin(\mathbb{Z})$ es denso en [-1,1], pero $t \mapsto \sin t$ es continua y periódica entre [-1,1], por tanto de la proposición 4.2.3 se sigue que $A = \sin(\mathbb{N})$ es denso en [-1,1].

Ejercicio 4.1.2

Para cada par de enteros positivos primos relativos $a, b \in \mathbb{N}$ definimos:

$$N_{a.b} = \left\{ a + kb \middle| k \in \mathbb{N}^* \right\}$$

- 1. Demuestre que la familia $B = \{N_{a,b} | a, b \in \mathbb{N} \text{ tales que } (a,b) = 1\}$ es base de una topología sobre \mathbb{N} .
- 2. $(\mathbb{N}, \tau(B))$ es Hausdorff (donde $\tau(B)$ representa a la topología generada por la base B).
- 3. Cualquier múltiplo de b pertenece a $\overline{N_{a,b}}$.

Ejercicio 4.1.3

Demuestre que una bola en $(\mathbb{R}^2, \tau_u|^{\mathbb{R}^2})$ no es igual al producto cartesiano de dos subconjuntos de $(\mathbb{R}, \tau_u|^{\mathbb{R}})$.

Ejercicio 4.1.4

Sea (X, τ) un espacio Hausdorff compacto. Si (X, τ) no tiene puntos aislados, demuestre que X no es a lo sumo numerable.

Ejercicio 4.1.5

Sean

$$\begin{split} X &= \left\{ (x,z) \in \mathbb{R}^2 \middle| x = 0, 0 \le z \le 1 \right\} \\ Y &= \left\{ (x,z) \in \mathbb{R}^2 \middle| x^2 + \left(z - \frac{1}{4}\right)^2 = \frac{1}{16}, x \ge 0 \right\} \\ Z &= \left\{ (x,z) \in \mathbb{R}^2 \middle| x^2 + \left(z - \frac{3}{4}\right)^2 = \frac{1}{16}, x \ge 0 \right\} \\ B &= X \cup Y \cup Z \\ O &= \left\{ (x,z) \in \mathbb{R}^2 \middle| \left(x - \frac{1}{2}\right)^2 + \left(z - \frac{1}{2}\right)^2 = \frac{1}{4} \right\} \end{split}$$

¿Son los espacios $(B, \tau_{u_B}|^{\mathbb{R}^2})$ y $(O, \tau_{u_O}|^{\mathbb{R}^2})$ homeomorfos? En caso de que su repuesta sea sí, construya explícitamente una función biyectiva y continua $f: B \to O$ y también exhiba su inversa mostrando también que es continua.

En caso de que su respuesta sea negativa, justifique detalladamente porque no son homeomorfos.

4.2. Resultados Preeliminares

Proposición 4.2.1

Considere al grupo aditivo $(\mathbb{R}, +)$. Entonces todo subgrupo H de éste es denso en la topología (\mathbb{R}, τ_u) ó es cíclico.

Demostración:

Se tienen que probar dos cosas:

1. Suponga que G es denso. Se probará que G no puede ser cíclico. En efecto, si G fuera cíclico, existiría $g \in G$ tal que

$$G = \langle g \rangle$$

es claro que $g \neq 0$, pues en caso contrario se tendría que $G = \{0\}$, que no puede suceder ya que G es denso en \mathbb{R} , así g > 0; además, existe $h \in G$ tal que 0 < h < g ya que el conjunto [0, g[es abierto en \mathbb{R} .

Como $G = \langle g \rangle$ existe entonces $n \in \mathbb{N}$ tal que g = hn (por ser h, g > 0), es decir que $g \leq h \#_c$, pues h < g. Por tanto, G no es cíclico.

2. Suponga que G no es denso. Probaremos que G es cíclico, sea

$$g = \inf \left\{ x \in G \middle| x > 0 \right\}$$

Se tienen dos casos. Afirmamos que g > 0. En efecto, suponga que g = 0, sea $U \subseteq \mathbb{R}$ abierto no vacío y, $x \in \mathbb{R}$ y $\varepsilon > 0$ tales que $]x - \varepsilon, x + \varepsilon[\subseteq U]$. Como g = 0, existe $g_{\varepsilon} \in G$ tal que $0 < g_{\varepsilon} < \varepsilon$, sea ahora $k \in \mathbb{Z}$ tal que:

$$kg_{\varepsilon} \le x < (k+1)g_{\varepsilon}$$

es claro que $kg_{\varepsilon} \in G$, y además:

$$0 \le x - kg_{\varepsilon}$$

$$< (k+1)g_{\varepsilon} - kg_{\varepsilon}$$

$$= g_{\varepsilon}$$

$$< \varepsilon$$

es decir, $|x - kg_{\varepsilon}| < \varepsilon$ y por ende $kg_{\varepsilon} \in U$. Por tanto, G es denso en $\mathbb{R}\#_c$. Por tanto, g > 0. Veamos ahora que $g \in G$.

Suponga que $g \notin G$, entonces existen $h_1, h_2 \in G$ positivos tales que:

$$q < h_1 < h_2 < 2q$$

(por propiedades del ínfimo), luego $h_2 - h_1 \in G$ y son tales que $0 < h_2 - h_1 < g \#_c$, pues g es el ínfimo. Luego, $g \in G$.

Sea $x \in G$, entonces existe $k \in \mathbb{Z}$ tal que

$$kq \le x < (k+1)q$$

Así, $kg \in G$ lo cual implica que $x - kg \in H$, por ende:

$$0 \le x - kg$$

$$< (k+1)g - kg$$

$$= g$$

al ser g el ínfimo, debe suceder que x - kg = 0, es decir que x = kg. Por tanto, $G = \langle g \rangle$.

por los dos incisos anteriores, se sigue que G es denso ó es cíclico.

Proposición 4.2.2

Sea $\alpha \in \mathbb{R}$. Entonces el conjunto:

$$A = \left\{ a + b\alpha \middle| a, b \in \mathbb{Z} \right\}$$

es denso en \mathbb{R} con la topología usual.

Demostración:

Afirmamos que A es un subgrupo de \mathbb{R} el cual no es cíclico, por tanto, de la proposición anterior, se sigue que A es denso en \mathbb{R} con la topología usual.

Es claro que A es subgrupo de $(\mathbb{R}, +)$, pues si $a_1 + b_1 \alpha, a_2 + b_2 \alpha \in A$, se tiene que el elemento $(a_1 - a_2) + (b_1 - b_2)\alpha \in A$ ya que $a_1 - a_2, b_1 - b_2 \in \mathbb{Z}$.

Ahora, supongamos que A es cíclico, entonces existiría $a+b\alpha\in A$ positivo (lo podemos elegir positivo y no puede ser cero ya que $\alpha\in A$) tal que $A=\langle a+b\alpha\rangle$. En particular, $\alpha\in A$, por tanto, existe $m\in\mathbb{Z}$ tal que

$$\alpha = m(a + b\alpha)$$

$$\Rightarrow (1 - mb)\alpha = ma$$

entonces, mb=1, lo cual implica que $m=b=\pm 1$ (en caso contrario, un lado de la ecuación sería irracional y el otro entero), y que a=0. Por tanto, $A=\langle\alpha\rangle=\langle-\alpha\rangle$, pero esto no puede suceder pues el elemento $1+2\alpha\notin\langle\alpha\rangle$, pero $1+2\alpha\in A\#_c$.

Por tanto, A no es cíclico. Luego, de la proposición anterior, se sigue que A es denso en \mathbb{R} con la topología usual.

Proposición 4.2.3

Sea $f : \mathbb{R} \to [-1,1]$ función continua y periódica de período T > 0. Entonces, si $f(\mathbb{Z})$ es denso en (\mathbb{R}, τ_u) , entonces $f(\mathbb{N})$ también lo es.

Demostración:

Si T es racional, entonces $f(\mathbb{Z}) = T$ el cual no es denso en [-1, 1], por tanto, T debe ser irracional. Como f es continua y acotada, entonces es uniformemente continua en \mathbb{R} .

Sea $x \in [-1, 1]$ y $\varepsilon > 0$, entonces existe $m \in \mathbb{Z}$ tal que $|f(m) - x| < \frac{\varepsilon}{2}$. Como f es uniformemente continua, existe $\delta > 0$ tal que si $|u - v| < \delta$ entones $|f(u) - f(v)| < \frac{\varepsilon}{2}$.

Si $m \in \mathbb{N}$, se tiene el resultado. Suponga que $m \leq 0$. Existen $p, q \in \mathbb{N}$ tales que

$$|p - Tq| < \delta$$

donde p>-m y $q>1/\delta$, esto pues el conjunto $]T,\infty[\cap\mathbb{Q}$ es denso en $[T,\infty[$. Entonces:

$$\begin{aligned} \left| f(m+p) - \alpha \right| &\leq \left| f(m+p) - f(m) \right| + \left| f(m) - \alpha \right| \\ &\leq \left| f(m+(p-Tq)) - f(m) \right| + \left| f(m) - \alpha \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \end{aligned}$$

$$= \varepsilon$$

con $p + m \in \mathbb{N}$. Luego $f(\mathbb{N})$ es denso en [-1, 1].