Project 1 Notes

is a khammer

2020

Contents

1	Problem 1	2
2	Problem 2	:
3	References	4

1 Problem 1

Let normal matrices, those with diagonalization be on the form

$$A = U\Lambda U^H$$

Where Λ is a diagonal complex $n \times n$ matrix and U a unitary (complex) matrix such that $U^H U = I$ (recall that U^H is the complex conjugate of U^T).

Show that for any such matrix, one has $\|A\|_2 = \rho(A)$, where $\rho(A)$ is the spectral radius of A .

Proof. By the definition of a norm is

$$||A||_2^2 = \sup_{x \neq 0} \frac{\langle Ax, Ax \rangle}{\langle x, x \rangle}.$$

By taking advantage of the fact that $U^H U = I$, can we substitute Uy = x such that

$$\sup_{x\neq 0}\frac{\langle Ax,Ax\rangle}{\langle x,x\rangle}=\sup_{y\neq 0}\frac{\langle AUy,AUy\rangle}{\langle Uy,Uy\rangle}=\sup_{y\neq 0}\frac{\left\langle U^{H}A^{H}AUy,y\right\rangle}{\langle y,y\rangle}$$

Since $A^H A$ is unitary can we write $U^H A^H A U = diag(\mu_1, \mu_2, \dots, \mu_n)$ which results in

$$||A||_{2}^{2} = \sup_{y \neq 0} \frac{\sum_{i=1}^{n} \mu_{i} |y_{i}|^{2}}{\sum_{i=1}^{n} |y_{i}|^{2}} = \max_{i} (\mu_{i}) = \rho(A)^{2}.$$

Here is μ_i positive eigenvalues of $A^H A$

Kinda sketchy argument, given in Quartentoni page 41/664 In fact, I do not believe it is true to assume A is hermetian/unitary

2 Problem 2

Consider the $n\times n$ matrix A whise nonzero elements are located on its unit subdiagonal , i.e. $A_{ij+1,i}=1$ for $i=1,\dots,n-1$

$$A = \begin{bmatrix} 0 & \dots & \dots & 0 \\ 1 & 0 & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 1 & 0 \end{bmatrix}$$

- a) What are the eigen values of A? What would the Gershgorin theorem tell us about he location of the eigenvalues of A.
- b) Now construct the matrix \hat{A} by adding a small number ϵ in the (1, n)element of A (so that $\hat{A} = A + \epsilon e_1 e_n^T$. Show that

$$\rho\left(\hat{A}\right) = \epsilon^{\frac{1}{n}}$$

And fins an expression for the eigenvalues and eigenvectors of \hat{A} .

c) Derive an exact expression for the condition number $K_2\left(\hat{A}\right) = \|\hat{A}\|_2 = \|\hat{A}^{-1}\|_2$.

3 References