EE224

Course Project

Arin Weling: 22BI230

Chiransh Somani: 22BI202

Sathvik Reddy: 22B3946

Tanish Raghute: 22B3974

EE 224 PROJECT DESIGN DOCUMENT - FSM x shows marporg baldage male xalous) maying dalage nationalist and SUB(R) MUL (R) ADD (R) (I) I dA codeples (the agree mentioned here eve set a of 1, other S1 S1 MEM S1 D MAM S1 tabacts 51 Apr (cope) It ALV (select lun) MA_M3/1 1- 20-79 52 52 52 - wadan 39 S2 7W_39T REWES RE L A_ULA 2-10_72 10 10 10 93 W So an \$3 a room with mov \$3,00 C 53 8-ULA E- 2+ AND (R) CRACR) IMP(R) MATERIAL SI (Was) = SI 51 to will set whow of 82 82 53) 53 LW(I) SW(I) BEQ(I) (I) III SIF JW- CT S1 51 SE_SELSO 3 SE (solest up) -> lo SZ JW ST 52 54 S6000)09A S3 11-21 -55 ALULA - tue EL JLR (I) JAL (I) ALUJA - of - 51 51 87 87 58

Flowcharts & Controls

S1: Fetch instruction, update Program Counter, store updated program counter value in temporary register Tpc (cas well

Elewchert:

"111" → RF_A1

RF_D1 → MEM_Add

MEM_DataOut → IR

RF_D1 → ALU_A

+2 → ALU_B

ALU_C \longrightarrow TPC ALU_C \longrightarrow RF_D3

111' -> RF_A3

Controls: (the mentioned here eve set to 1, of

MEM_R 3 MEMORY

ADD (0000) 3 ALU (select lines)

TPC-WE & TPC

RF_WE & RF

enabled by Ra combinational function of the distinction of the distinc

= (RF_WE) AND ((A3(2)) AND (NOT AN)

S2 PStore operands for CRI type instructions in T1 and T2, update the nature of Tpc, which will then hold PC+24 IMM*2 if it is an (I) type instruction

Flowchart:

IR q-11 - RF_A1

IR -8 - RF_A2

RF_D1 -> T1

RF_D2 -> T2

IR -- SE_in

SE_out -> LS_in

LS_out -> ALU_B

Tpc -> ALU_A

ALU_C -> Tpc

Controls:

T1-WE 3 T1

T2-WE 3T2

SE_Sel =0 3 SE (select line) - left poolding

TPC-WE 3 TPC

ADD (0000) & ALU (select lines)

53. The enecution phase, fox all (R) type instructions, BERCI) and ADICI, the updating of registers and operands in the ALU are controlled by ADI, BEB, and Z hits, mas select time thereof Muxes or combinational functions of fed to a RF-WE (write enable) Flowchart: IRO-5 -> SE-IN St Enla (0) 3 St Cooled They TI -> ALU-A RF_WE BEQ + Z.BEQ & RF if (ADI == '1') then SE-Sel='0' } SE (select lines) SELOUT -> ALU-B A IR (copocode) & ALL (select lines) else li T2 -> ALU_B if(z == '1') then IRON - RELAS Tpc -> RF_D3 else URF ALU-C -> RF_D3 if (Z==6' and ADI == 6') then IR₃₋₅ -> RF_A3 storyoth to and storest Read Were the Merony. elsif (Z== 'o' and ADI == '1') then IR6-8-1 RF_A3 elsif (Z == 1' and ADI == 0') then | 10 30 1111 -> RF_A3 with the best of S4: For HI, HI instructions, this state involves soleft entending or right extending immediate is in (F) type metructions, and updating on Reg A with the value. Flowehart Controls: $IR_{0-8} \rightarrow SE_{-in}$ SE_Sel = FE IR(12) 'SE SE_out -> RF_D3 RF_WE JRF no bush in ALT & MAT IN GOOD IN IRQ-11 -> RF_A3 amount value in enother voyers in RF M 79 6-111 IRG - PR-A3

55. This state involves computation of the Address in Load instruction and occurry the momenty to update the value in 18the RF.

Flowchart:

IRO-5 -> SE_in

SE_out -> ALU_B

T2 -> ALU_A

ALU_C -> MEM_Add

MEM_PateOut -> RF_D3

IRquy -> RF_A3

Controls:

SE-Sel = '0' } SE

ADD ('cccc') & ALU (select times)

MEM_R & MEMORY

RF-WE & RF

S6: This state, in the store instruction computes the daddress using Reg B value stored in T2 and storesthe Reg A value in the Memory.

Flowchart.

IROS -> SE-in

SELOUT -> ALU-B

T2 -> ALU_A

ALU-C -> MEM_Add

T1 -> MEM_DataIn

Controls:

SE_Sel = (0) 3 SEO = TOA kno (2) = 5)

ADD (0000) 3 Afe Cselect lines) EA 3

of in (2) the interestions, and updating a ROA

lef (=== (0' and AD == "5") then

MEM-W 3 MEMORY

ST: Used in JAL & JLR instructions, this state stores the instructions counter value in another register in RF.

Flowchert:

1111 --- RF_A1

RF_D1 - RF_D3

IRqui RF_A3

Controls:

REWE YRF

58: For the JAL instruction, we use the value PC+2+Immx2 stored in the PC+ 2+Immx2 stored in the RF.

21

Flouchart:

IRO-5 SE-in

SEOUT -> LS-in

IS-out -> ALU_B

Tpc -> ALU-A

ALU-C -> RF_D3

111' -> RF-A3

Controls:

P SE-Sel = 'c' & SE

ADD (2000) & ALV (gelect lines)

RF-WE & RF

59: For the JLR instruction, we directly update PC with the value stored in Reg B.

Flowchart:

IR,-8-> RF_A2

RF_D2 -> RF_ P3

1111 - RP_A3

Controls:

RF-WEZRA

* control lists corresponding to the Muxes at each input of the components once made clear from the component diagrams, and the data flourcharts indicating which input is taken.

Register file

ALU

Memory

Temporary Registers

Left Shifter

89gm-Extender (S.E)

Component Diagrams

Tuesday, 14 November 2023 9:52 PM

Only connecti ons shown here)	STATES	51	52	53	54	\$5	\$6	\$7	\$8	\$9	510
INPUT											
A		RF_D1	TPC	T1	-	x	T2	T2	Х	RF_D1	X
В		000000 000000 01	SE(6- 16)	ADI MUX	÷	Х	SE(6- 16)	SE(6- 16)	Х	SE(6- 16)	х
SEL		ADD (0000)	ADD (0000)	IR(15 down to 12)	2	X	ADD (0000)	ADD (0000)	x	ADD (0000)	X
OUTPUT S											
С		TPC, RF_D3 RF_W	TPC	Z MUX (0)	ā	×	Mem_A dd	Mem_A dd	х	RF_D3	X

