PROBLEM SET 2

AFS-1, TOPOLOGY

Problem 1. Suppose (X, d) is a metric space. Show that the following metrics are equivalent to d

- (1) $\rho = 2d$
- $(2) \ \rho = \frac{d}{1+d}.$

Problem 2. Show that the metric $d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$ on $(0,\infty)$ is equivalent to the standard metric on $(0,\infty)$.

Problem 3. Construct an example of a countable family of open dense sets in a complete metric space whose intersection is not open.

Problem 4. For any subset A of a topological space X, prove the following.

- $(1) \inf(A) = (\overline{A^c})^c,$
- (2) $\partial A = \overline{A} \setminus \operatorname{int}(A)$,
- (3) $int(A \setminus int(A)) = \emptyset$.

In part (b), ∂A denotes the boundary of A, and is defined as $\overline{A} \cap \overline{A}^c$.

Problem 5. Show that the following are equivalent for a function $f:(X,\tau)\to (Y,\tau_1)$ between topological spaces.

- (1) f is continuous.
- (2) For any open set $\mathcal{O} \subset Y$, $f^{-1}(\mathcal{O})$ is open in X.
- (3) For any subset A of X, $f(\overline{A}) \subset f(A)$.
- (4) For any closed set $C \subset Y$, $f^{-1}(C)$ is closed in X.

Problem 6. The set of accumulation points of a subset $A \subset X$ is called its *derived set*. Show that if X is Hausdorff, the derived set is closed.

Problem 7. If A is a dense subset of a topological space X, then show that $\mathcal{O} \subset \overline{\mathcal{O} \cap A}$ holds for every open set $\mathcal{O} \subset X$.

Problem 8. If $\{\mathcal{O}_i\}_{i\in I}$ is an open cover for a topological space X, show that a set $A\subset X$ is closed if and only if $A\cap\mathcal{O}_i$ is closed in \mathcal{O}_i for all $i\in I$.

Problem 9. In a Hausdorff topological space X, show that

- (1) Every finite subset of X is closed.
- (2) Every sequence converges to at most one point.

Problem 10. For a function $f:(X,\tau)\to (Y,\tau_1)$ show the following.

- (1) If τ is the discrete topology, then F is continuous.
- (2) If τ is the indiscrete topology and τ_1 is a Hausdorff topology, then f is continuous if and only if it is a constant function.

Problem 11. Let $f, g: (X, \tau) \to (Y, \tau_1)$ be two continuous functions and suppose Y is Hausdorff. Suppose there is a dense subset $A \subset X$ such that f(x) = g(x). The, f = g on X.

Problem 12. Suppose $f:(X,\tau)\to (Y,\tau_1)$ and $g:(Y,\tau_1)\to (Z,\tau_2)$ are continuous functions. Then, show that $g\circ f$ is continuous.

Date: December 8, 2017.

1