0.1 Prove that $3n^2 + 10n + 729 = O(n^2)$:

In order to prove so, we need to show that there exists n_0 and c such that $3n^2 + 10n + 729 \le cn^2$, for all $n > n_0$. In our case, we will use $n_0 = 9$ and c = 22. Since n > 1 we can upper bound 10n by $10n^2$ and thus we get:

$$3n^2 + 10n + 729 < 3n^2 + 10n^2 + 729 = 13n^2 + 729$$

Now we use the fact that for $n > n_0 = 9$ we have $9n^2 > 729$, thus:

$$13n^2 + 729 < 22n^2$$

Thus there exists n_0 and c such that $3n^2 + 10n + 729 \le n^2$, for all $n > n_0$

0.2 Prove that $3n^2 + 10n + 729 = O(n^3)$:

In order to prove so, we need to show that there exists n_0 and c such that $3n^2 + 10n + 729 \le cn^3$, for all $n > n_0$. In our case, we will use $n_0 = 3$ and c = 22. Since n > 1 we can upper bound $3n^2$ by $3n^3$ and 10n by $10n^3$ and thus we get:

$$3n^2 + 10n + 729 < 3n^2 + 10n^2 + 729 < 3n^3 + 10n^3 + 729 = 13n^3 + 729$$

Now we use the fact that for $n > n_0 = 3$ we have $9n^3 > 729$, thus:

$$13n^3 + 729 < 22n^3$$

Thus there exists n_0 and c such that $3n^2 + 10n + 729 \le n^3$, for all $n > n_0$

0.3 Prove that $3n^2 + 10n + 729 = \Omega(n)$:

In order to prove so, we need to show that there exists n_0 and c such that $3n^2 + 10n + 729 \ge cn$, for all $n > n_0$. In our case, we will use $n_0 = 1$ and c = 1. Since n > 1 we can lower bound $3n^2$ by 3n and thus we get:

$$3n^2 + 10n + 729 > 3n + 10n + 729$$

Now we use the fact that for $n > n_0 = 1$ we have 13n > n, thus:

$$3n + 10n + 739 > n$$

Thus there exists n_0 and c such that $3n^2 + 10n + 729 \ge n$, for all $n > n_0$

0.4 Prove that $3n^2 + 10n + 729 = \Omega(n^2)$:

In order to prove so, we need to show that there exists n_0 and c such that $3n^2 + 10n + 729 \ge cn^2$, for all $n > n_0$. In our case, we will use $n_0 = 1$ and c = 1. Since n > 1 we can lower bound 10n by 10 and thus we get:

$$3n^2 + 10n + 729 > 3n^2 + 10 + 729$$

Now we use the fact that for $n>n_0=1$ we have $3n^2>n^2$, thus:

$$3n^3 + 10 + 729 > n^2$$

Thus there exists n_0 and c such that $3n^2 + 10n + 729 \ge n^2$, for all $n > n_0$

0.5 Which is best for each:

I think $3n^2+10n+729=O(n^2)$ and $3n^2+10n+729=\Omega(n^2)$ are better for upper bound and lower bound because if you draw all the five lines $(f(n), O(n^2), O(n^3), \Omega(n), \Omega(n^2))$ in the x-y coordinate axis, you can see that when the n gets bigger, the $O(n^3)$ and $\Omega(n)$ start to go far from other 3 lines and this distance continues to grow bigger. If you give n a big enough value, $O(n^3)$ becomes much bigger than the other 4 and $\Omega(n)$ becomes much smaller than the other 4 so I think the best two are $O(n^2)$ and $\Omega(n^2)$.