Vadique Myself

PHYSICS of ELASTIC CONTINUA

CONTENTS

Chapter 6 Thermoelasticity	1
§ 1. The first law of thermodynamics	1
§ 2. The second law	3
§ 3. Constitutive equations	5
§ 4. Heat equation	5
§ 5. Linear thermoelasticity	6
§ 6. Equations for displacements	6
§ 7. Thermal stress	6
§ 8. Variational formulations	6
List of publications	8

THERMOELASTICITY

In this chapter only the momentless model is considered.

§1. The first law of thermodynamics

Hitherto modeling was limited to mechanics only. It is widely known, however, that a change in temperature causes a deformation. Temperature deformation and stress often play the primary role and can lead to a breakage.

So effective in mechanics, the principle of virtual work is not applicable to thermomechanics*. Considering thermal effects, it's possible to lean on the two laws of thermodynamics.

The first, discovered by Joule, Mayer, and Helmholtz — this is the adapted version of the balance of energy: rate of internal energy change \dot{E} is equal to the sum of power of external forces $P^{(e)}$ and rate of heat supply \dot{Q} $\dot{E} = P^{(e)} + \dot{Q}$ (1.1)

Internal energy E is the sum of the kinetic and the potential energies of the particles. For any finite volume of a material continuum

$$E = \int_{\mathcal{V}} \rho \left(\frac{1}{2} \, \mathbf{\dot{r}} \cdot \mathbf{\dot{r}} + e \right) d\mathcal{V}. \tag{1.2}$$

With the balance of mass $dm = \rho d\mathcal{V} = \rho' d\mathcal{V}'$, $m = \int_{\mathcal{V}} \rho d\mathcal{V} = \int_{\mathcal{V}'} \rho' d\mathcal{V}'$ and

 $\Psi = \int_{\mathcal{V}} \rho \psi \, d\mathcal{V} = \int_{\mathcal{V}'} \rho' \psi \, d\mathcal{V}' \Rightarrow \dot{\Psi} = \int_{\mathcal{V}} \rho \dot{\psi} \, d\mathcal{V} = \int_{\mathcal{V}'} \rho' \dot{\psi} \, d\mathcal{V}',$

it's easy to get the time derivative of internal energy

$$\dot{E} = \int_{\mathcal{V}} \rho \left(\ddot{r} \cdot \dot{r} + \dot{e} \right) d\mathcal{V}. \tag{1.3}$$

^{*} Analogue of the principle of virtual work will be presented below in $\S 8$.

The power of the external forces for some finite volume of a momentless continuum

$$P^{(e)} = \int_{\mathcal{V}} \rho \mathbf{f} \cdot \mathbf{\dot{r}} \, d\mathcal{V} + \oint_{O(\partial \mathcal{V})} \mathbf{n} \cdot \mathbf{\tau} \cdot \mathbf{\dot{r}} \, dO = \int_{\mathcal{V}} \left(\rho \mathbf{f} \cdot \mathbf{\dot{r}} + \nabla \cdot (\mathbf{\tau} \cdot \mathbf{\dot{r}}) \right) d\mathcal{V} =$$

$$= \int_{\mathcal{V}} \left(\left(\nabla \cdot \mathbf{\tau} + \rho \mathbf{f} \right) \cdot \mathbf{\dot{r}} + \mathbf{\tau} \cdot \nabla \mathbf{\dot{r}}^{\mathsf{S}} \right) d\mathcal{V}. \quad (1.4)$$

As before (chapter ??), $\boldsymbol{\tau}$ is Cauchy stress tensor, \boldsymbol{f} is mass force (without inertial part $-\boldsymbol{\ddot{r}}$, which is included in $\boldsymbol{\dot{E}}$), $\boldsymbol{n} \cdot \boldsymbol{\tau}$ is surface force. The symmetry of $\boldsymbol{\tau}$ is used for expanding $\nabla \cdot (\boldsymbol{\tau} \cdot \boldsymbol{\dot{r}})$:

$$oldsymbol{ au}^{\mathsf{T}} = oldsymbol{ au} = oldsymbol{ au}^{\mathsf{S}} \ \Rightarrow \ oldsymbol{ au} oldsymbol{\cdot} oldsymbol{\dot{r}}^{\mathsf{T}} = oldsymbol{ au} oldsymbol{\cdot} oldsymbol{\dot{r}}^{\mathsf{T}}, \ oldsymbol{
au} oldsymbol{\cdot} oldsymbol{(au \cdot \dot{r})} = oldsymbol{(
au \cdot \dot{r})} = oldsymbol{(
au \cdot \dot{r})} oldsymbol{\cdot} oldsymbol{\dot{r}} oldsymbol{\cdot} oldsymbol{\dot{r}} + oldsymbol{ au} oldsymbol{\cdot} oldsymbol{\dot{r}}^{\mathsf{T}} = oldsymbol{
au \cdot \dot{r}} oldsymbol{\cdot} oldsymbol{\dot{r}} oldsymbol{\cdot} oldsymbol{\dot{r}}^{\mathsf{T}}.$$

Denominating the rate of deformation tensor as $\mathcal{D} \equiv \nabla \dot{r}^{\mathsf{S}}$

$$P^{(e)} = \int_{\mathcal{V}} ((\nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{f}) \cdot \boldsymbol{\dot{r}} + \boldsymbol{\tau} \cdot \boldsymbol{\mathcal{D}}) d\mathcal{V}.$$
 (1.4')

Heat arrives in a volume of continuum by two ways. The first is a surface heat transfer (heat conduction, thermal conductivity, convection, diffusion), occurring via matter, upon a contact of two media. This can be described by heat flux vector \boldsymbol{q} . Through an infinitesimal area in the current configuration towards normal vector \boldsymbol{n} per unit of time passes heat flux $\boldsymbol{q} \cdot \boldsymbol{n} dO$. For a surface with finite dimensions this expression needs to be integrated. It's usually assumed

$$\boldsymbol{q} = -^2 \boldsymbol{k} \cdot \boldsymbol{\nabla} \Theta, \tag{1.5}$$

where Θ is temperature (temperature field); ${}^{2}\mathbf{k}$ is thermal conductivity tensor as property of the material, for isotropic material ${}^{2}\mathbf{k} = k\mathbf{E}$ and $\mathbf{q} = -k\nabla\Theta$.

The second way is a volume heat transfer (thermal radiation). Solar energy, flame of a campfire, a microwave oven are familiar examples of pervasive heating by radiation. Thermal radiation occurs via electromagnetic waves and doesn't need an interjacent medium. Heat is radiated (emitted) by any matter (with temperature above the absolute zero 0 K). The rate of heat transfer by radiation per mass unit b or per volume unit $B = \rho b$ is assumed as known.

Therefore, the rate of heat supply for a finite volume is

$$\dot{Q} = -\oint_{O(\partial \mathcal{V})} \mathbf{n} \cdot \mathbf{q} \, dO + \int_{\mathcal{V}} \rho b \, d\mathcal{V} = \int_{\mathcal{V}} \left(-\nabla \cdot \mathbf{q} + \rho b \right) d\mathcal{V}. \tag{1.6}$$

Applying (1.3), (1.4') and (1.6) to formulation (1.1) gives the equality of integrals over a volume

$$\int_{\mathcal{V}} \rho \left(\ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}} + \dot{\boldsymbol{e}} \right) d\mathcal{V} = \int_{\mathcal{V}} \left(\left(\nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{f} \right) \cdot \dot{\boldsymbol{r}} + \boldsymbol{\tau} \cdot \cdot \cdot \boldsymbol{D} - \nabla \cdot \boldsymbol{q} + \rho \boldsymbol{b} \right) d\mathcal{V}.$$

And since volume \mathcal{V} is random, integrands are equal too

$$\rho \, \ddot{\boldsymbol{r}} \cdot \dot{\boldsymbol{r}} + \rho \, \dot{\boldsymbol{e}} = (\nabla \cdot \boldsymbol{\tau} + \rho \boldsymbol{f}) \cdot \dot{\boldsymbol{r}} + \boldsymbol{\tau} \cdot \boldsymbol{\mathcal{D}} - \nabla \cdot \boldsymbol{q} + \rho \, b.$$

With the balance of momentum

$$\nabla \cdot \boldsymbol{\tau} + \rho \left(\boldsymbol{f} - \boldsymbol{\ddot{r}} \right) = \mathbf{0} \ (??, \S??.??)$$

this simplifies to

$$\rho \dot{\mathbf{e}} = \boldsymbol{\tau} \cdot \boldsymbol{D} - \boldsymbol{\nabla} \cdot \boldsymbol{q} + \rho b \tag{1.7}$$

— the local (differential) version of the balance of energy.

...

§ 2. The second law

The following concept of laws of thermodynamics is widespread: change in internal energy dE is equal to the sum of work of external forces $\partial W^{(e)}$ and supplied heat ∂Q

$$dE = \partial W^{(e)} + \partial Q.$$

Work $\partial W^{(e)}$ and heat ∂Q are inexact differentials*, but quotient $\partial Q/\Theta$ becomes the exact differential — differential dS of the entropy.

Further, processes are divided into reversible ones, for which $dS = \partial Q/\Theta$, and irreversible ones with characteristic Clausius inequality $dS \geq \partial Q/\Theta$.

But how to adapt this for a continuum with an inhomogeneous temperature field?

* Because work and heat depend on the path of the process (are path functions), they can't be full (exact) differentials, contrasting with the idea of the exact differential, expressed via the gradient of another function and therefore path independent.

Sometimes a process in an infinitesimal volume is thought of as reversible, then the equality like

$$\rho \Theta \dot{s} = -\nabla \cdot q + \rho b \tag{2.1}$$

is proposed (s is entropy per mass unit and \dot{s} is the time derivative of it, that is the rate of entropy change).

However, there's always heat dissipation — an irreversible process, and therefore (2.1) looks disputable.

The most appropriate expression of the second law of thermodynamics for a material continuum seems to be the Clausius–Duhem inequality

 $\left(\int_{\mathcal{V}} \rho s \, d\mathcal{V}\right)^{\bullet} \ge -\oint_{O(\partial \mathcal{V})} \frac{q}{\Theta} \cdot n \, dO + \int_{\mathcal{V}} \frac{\rho b}{\Theta} \, d\mathcal{V}. \tag{2.2}$

This inequality as the imbalance of entropy defines the rate of entropy production.

$$-\oint_{O(\partial \mathcal{V})} \mathbf{n} \cdot \mathbf{q} \Theta^{-1} dO = -\int_{\mathcal{V}} \nabla \cdot (\mathbf{q} \Theta^{-1}) d\mathcal{V}$$

$$-\nabla \cdot (\mathbf{q} \Theta^{-1}) = -(\nabla \cdot \mathbf{q}) \Theta^{-1} - \mathbf{q} \cdot (\nabla \frac{1}{\Theta})$$

$$-\nabla \frac{1}{\Theta} = \frac{1}{\Theta^{2}} \nabla \Theta$$

$$-\nabla \cdot (\mathbf{q} \Theta^{-1}) = -(\nabla \cdot \mathbf{q}) \Theta^{-1} + (\mathbf{q} \cdot \nabla \Theta) \Theta^{-2}$$

$$\rho \cdot \hat{\mathbf{s}} \ge (-\nabla \cdot \mathbf{q} + \rho b) \Theta^{-1} + (\mathbf{q} \cdot \nabla \Theta) \Theta^{-2}$$
(2.3)

The Clausius—Duhem inequality is also called the dissipation inequality. For a real matter, the dissipation is always greater than zero, it can never be negative and can't be zero whenever irreversible processes are present.

. . .

Helmholtz free energy per mass unit

$$a \equiv e - \Theta s, \tag{2.4}$$

$$\dot{a} = \dot{e} - \Theta \dot{s} - \dot{\Theta} s$$

§ 3. Constitutive equations

К балансу импульса, балансу момента импульса и законам термодинамики нужно добавить определяющие уравнения, выражающие свойства среды. Эти уравнения

...

Термоупругим называется материал, в котором свободная энергия a и энтропия s — функции деформации C и температуры Θ

$$a = a(C, \Theta)$$

$$\dot{a} = \frac{\partial a}{\partial C} \cdot \cdot \dot{C} + \frac{\partial a}{\partial \Theta} \dot{\Theta}$$

...

§4. Heat equation

In mathematical physics, a parabolic differential equation, similar to

$$k \triangle \Theta + B = c \dot{\Theta}, \tag{4.1}$$

is declared as a "heat equation". Here k is thermal conductivity, $B = \rho b$ is rate of heat transfer by radiation per volume unit, c is thermal capacity per volume unit. Boundary conditions most often are external temperature $\Theta_1^{(e)}$ on part O_1 of the surface and heat flux $q^{(e)}$ from the outside of part O_2 of the surface:

$$\Theta\big|_{O_1} = \Theta_1^{(e)}, \quad k \, \partial_n \Theta\big|_{O_2} = q^{(e)}.$$

Sometimes, flux $q^{(e)}$ is thought to be proportional to the difference between temperature $\Theta^{(e)}$ of the ambient and body temperature Θ

$$k \partial_n \Theta + \mathcal{K} \left(\Theta - \Theta^{(e)} \right) = 0.$$

If heat transfer coefficient k is infinitely large, it turns into the first condition $\Theta = \Theta^{(e)}$, and when $k \to 0$ — into condition $\partial_n \Theta = 0$ of thermal insulation.

But how is equation (4.1) related to fundamental principles of balance? Since there's no special "thermal energy", but there is internal energy, changing according to the first law of thermodynamics

...

...

$$e = a + \Theta s \implies \dot{e} = \dot{a} + \dot{\Theta} s + \Theta \dot{s}$$

$$\rho \dot{\mathbf{e}} = \rho \left(\dot{a} + \dot{\boldsymbol{\Theta}} s + \boldsymbol{\Theta} \dot{s} \right) = \rho \left(\underbrace{\frac{\partial a}{\partial \boldsymbol{C}} \cdot \cdot \dot{\boldsymbol{C}}}_{\overset{\cdot}{\boldsymbol{C}} + \underbrace{\frac{\partial a}{\partial \boldsymbol{\Theta}} \dot{\boldsymbol{\Theta}}}_{\overset{\cdot}{\boldsymbol{C}} + \underbrace{\frac{\partial a}{\partial \boldsymbol{\Theta}}}_{\overset{\cdot}{\boldsymbol{C}} +$$

. . .

§ 5. Linear thermoelasticity

Квадратичная аппроксимация свободной энергии наиболее естественна в линейной теории

. . .

§ 6. Equations for displacements

Полагая поле температуры известным

• • •

§ 7. Thermal stress

Это напряжение сто́ит рассмотреть детально, хотя оно и определяется очевидным образом полями смещений и температуры. For an equilibrium свободного тела без внешних нагрузок

...

§8. Variational formulations

Когда температура постоянна, уравнения термоупругости выглядят так же, как в механике.

. . .

Для переноса вариационного метода на термоупругость достаточно заменить in the (Lagrange) principle of minimum potential energy $\Pi(C)$ на Helmholtz free energy $A(C, \Theta)$, а в принципе Reissner'a–Hellinger'a заменить $\widehat{\Pi}(\tau)$ на Gibbs free enthalpy (Gibbs function) $G(\tau, \Theta)$.

The Gibbs free energy (the Gibbs energy or the Gibbs function or the free $enthalpy^*$) is a thermodynamic potential which measures the maximum of the reversible work produced with a constant temperature and pressure.

•••

Более сложные вариационные постановки для нестационарных задач можно найти, например, в книге [90].

Bibliography

Шириной и глубиной описания термоупругости выделяются книги W. Nowacki [40, 41], книга E. Melan'a и H. Parkus'a [34] и монография H. Parkus'a [46]. С. Truesdell [61] внёс большой вклад в создание и распространение новых взглядов на термодинамику сплошной среды. Чёткое изложение основных законов есть у С. Теоdosiu [57]. Методы расчёта температурных полей представлены у Н. М. Беляева и А. А. Рядно [90].

^{*} To distinguish it from the Helmholtz free energy.

LIST OF PUBLICATIONS

- 1. **Antman, Stuart S.** The theory of rods. In: Truesdell C. (editor) Mechanics of solids. Volume II. Linear theories of elasticity and thermoelasticity. Linear and nonlinear theories of rods, plates, and shells. Springer-Verlag, 1973. Pages 641–703.
- 2. **Алфутов Н. А.** Основы расчета на устойчивость упругих систем. Издание 2-е. М.: Машиностроение, 1991. 336 с.
- 3. **Артоболевский И. И.**, **Бобровницкий Ю. И.**, **Генкин М. Д.** Введение в акустическую динамику машин. «Наука», 1979. 296 с.
- 4. **Ахтырец Г. П.**, **Короткин В. И.** Использование МКЭ при решении контактной задачи теории упругости с переменной зоной контакта // Известия северо-кавказского научного центра высшей школы (СКНЦ ВШ). Серия естественные науки. Ростов-на-Дону: Издательство РГУ, 1984. № 1. С. 38–42.
- 5. **Ахтырец Г. П.**, **Короткин В. И.** К решению контактной задачи с помощью метода конечных элементов // Механика сплошной среды. Ростов-на-Дону: Издательство РГУ, 1988. С. 43–48.
- 6. **Бидерман В. Л.** Механика тонкостенных конструкций. М.: Машиностроение, 1977. 488 с.
- 7. **Вениамин И. Блох**. Теория упругости. Харьков: Издательство Харьковского Государственного Университета, 1964. 484 с.
- 8. Власов В. 3. Тонкостенные упругие стержни. М.: Физматгиз, 1959. $568~\mathrm{c}.$
- 9. **Гольденвейзер А. Л.** Теория упругих тонких оболочек. «Наука», 1976. 512 с.
- 10. **Гольденвейзер А. Л.**, **Лидский В. Б.**, **Товстик П. Е.** Свободные колебания тонких упругих оболочек. «Наука», 1979. 383 с.
- 11. **Gordon, James E.** Structures, or Why things don't fall down. Penguin Books, 1978. 395 pages. *Перевод:* **Гордон** Дж. Конструкции, или почему не ломаются вещи. «Мир», 1980. 390 с.

- 12. **Gordon, James E.** The new science of strong materials, or Why you don't fall through the floor. Penguin Books, 1968. 269 pages. *Перевод:* Гордон Дж. Почему мы не проваливаемся сквозь пол. «Мир», 1971. 272 с.
- 13. **Александр Н. Гузь**. Устойчивость упругих тел при конечных деформациях. Киев: "Наукова думка", 1973. 271 с.
- 14. *Перевод*: **Де Вит Р.** Континуальная теория дисклинаций. «Мир», 1977. 208 с.
- 15. **Джанелидзе Г. Ю.**, **Пановко Я. Г.** Статика упругих тонкостенных стержней. Л., М.: Гостехиздат, 1948. 208 с.
- 16. **Димитриенко Ю. И.** Тензорное исчисление: Учебное пособие для вузов. М.: "Высшая школа", 2001. 575 с.
- 17. **Dorin Ieşan**. Classical and generalized models of elastic rods. 2nd edition. CRC Press, Taylor & Francis Group, 2009. 369 pages
- 18. **Владимир В. Елисеев**. Одномерные и трёхмерные модели в механике упругих стержней. Диссертация на соискание учёной степени доктора физико-математических наук. ЛГТУ, 1991. 300 с.
- 19. **Eshelby, John D.** The continuum theory of lattice defects // Solid State Physics, Academic Press, vol. 3, 1956, pp. 79–144. *Перевод:* Эшелби Дж. Континуальная теория дислокаций. М.: ИИЛ, 1963. 247 с.
- 20. **Журавлёв В.Ф.** Основы теоретической механики. 3-е издание, переработанное. М.: ФИЗМАТЛИТ, 2008. 304 с.
- 21. **Зубов Л. М.** Методы нелинейной теории упругости в теории оболочек. Изд-во Ростовского ун-та, 1982. 144 с.
- 22. **Кац, Арнольд М.** Теория упругости. 2-е издание, стереотипное. Санкт-Петербург: Издательство «Лань», 2002. 208 с.
- 23. **Качанов Л. М.** Основы механики разрушения. «Наука», 1974. 312 с.
- 24. **Керштейн И. М.**, **Клюшников В. Д.**, **Ломакин Е. В.**, **Шестериков С. А.** Основы экспериментальной механики разрушения. Изд-во МГУ, 1989. 140 с.
- 25. Cosserat E. et Cosserat F. Théorie des corps déformables. Paris: A. Hermann et Fils, 1909. 226 p.
- 26. Cottrell, Alan. Theory of crystal dislocations. Gordon and Breach (Documents on Modern Physics), 1964. 94 р. Перевод: Коттрел А. Теория дислокаций. «Мир», 1969. 96 с.

- 27. Kröner, Ekkehart (i) Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-Verlag, 1958. 180 pages. (ii) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen // Archive for Rational Mechanics and Analysis. Volume 4, Issue 1 (January 1959), pp. 273–334. Перевод: Крёнер Э. Общая континуальная теория дислокаций и собственных напряжений. «Мир», 1965. 104 с.
- 28. Augustus Edward Hough Love. A treatise on the mathematical theory of elasticity. Volume I. Cambridge, 1892. 354 p. Volume II. Cambridge, 1893. 327 p. 4th edition. Cambridge, 1927. Dover, 1944. 643 p. Перевод: Аугустус Ляв Математическая теория упругости. М.: ОНТИ, 1935. 674 с.
- 29. **Лурье А. И.** Нелинейная теория упругости. «Наука», 1980. 512 с. *Translation:* Lurie, A. I. Nonlinear Theory of Elasticity: translated from the Russian by K. A. Lurie. Elsevier Science Publishers B.V., 1990. 617 р.
- 30. **Лурье А. И.** Теория упругости. «Наука», 1970. 940 с. *Translation:* **Lurie, A. I.** Theory of Elasticity (translated by A. Belyaev). Springer-Verlag, 2005. 1050 р.
- 31. **Лурье А. И.** Пространственные задачи теории упругости. М.: Гостехиздат, 1955. 492 с.
- 32. **Лурье А. И.** Статика тонкостенных упругих оболочек. М., Л.: Гостехиздат, 1947. 252 с.
- 33. **George E. Mase**. Schaum's outline of theory and problems of continuum mechanics (Schaum's outline series). McGraw-Hill, 1970. 221 р. *Перевод:* Джордж Мейз. Теория и задачи механики сплошных сред. Издание 3-е. URSS, 2010. 320 с.
- 34. Ernst Melan, Heinz Parkus. Wärmespannungen infolge stationärer Temperaturfelder. Wein, Springer-Verlag, 1953. 114 Seiten. Перевод: Мелан Э., Паркус Г. Термоупругие напряжения, вызываемые стационарными температурными полями. М.: Физматгиз, 1958. 167 с.
- 35. **Меркин Д. Р.** Введение в механику гибкой нити. «Наука», 1980. 240 с.
- 36. **Меркин Д. Р.** Введение в теорию устойчивости движения. 3-е издание. «Наука», 1987. 304 с.

- 37. Mindlin, Raymond David and Tiersten, Harry F. Effects of couplestresses in linear elasticity // Archive for Rational Mechanics and Analysis. Volume 11, Issue 1 (January 1962), pp. 415–448. Перевод: Миндлин Р. Д., Тирстен Г. Ф. Эффекты моментных напряжений в линейной теории упругости // Механика: Сборник переводов и обзоров иностранной периодической литературы. «Мир», 1964. № 4 (86). С. 80–114.
- 38. **Морозов Н. Ф.** Математические вопросы теории трещин. «Наука», 1984. 256 с.
- 39. Naghdi P. M. The theory of shells and plates. In: Truesdell C. (editor) Mechanics of solids. Volume II. Linear theories of elasticity and thermoelasticity. Linear and nonlinear theories of rods, plates, and shells. Springer-Verlag, 1973. Pages 425–640.
- 40. Witold Nowacki. Dynamiczne zagadnienia termosprężystości. Warszawa: Państwowe wydawnictwo naukowe, 1966. 366 stron. Translation: Nowacki, Witold. Dynamic problems of thermoelasticity. Leyden: Noordhoff international publishing, 1975. 436 pages. Перевод: Витольд Новацкий. Динамические задачи термоупругости. «Мир», 1970. 256 с.
- 41. **Witold Nowacki**. Teoria sprężystości. Warszawa: Państwowe wydawnictwo naukowe, 1970. 769 stron. *Перевод:* **Новацкий Витоль**д. Теория упругости. «Мир», 1975. 872 с.
- 42. **Witold Nowacki**. Efekty elektromagnetyczne w stałych ciałach odkształcalnych. Państwowe wydawnictwo naukowe, 1983. 147 stron. *Перевод:* **Новацкий В.** Электромагнитные эффекты в твёрдых телах. «Мир», 1986. 160 с.
- 43. **Новожилов В. В.** Теория тонких оболочек. 2-е издание. Л.: Судпромгиз, 1962. 431 с.
- 44. Пановко Я.Г., Бейлин Е.А. Тонкостенные стержни и системы, составленные из тонкостенных стержней. В сборнике: Рабинович И.М. (редактор) Строительная механика в СССР 1917–1967. М.: Стройиздат, 1969. С. 75–98.
- 45. Пановко Я. Г., Губанова И. И. Устойчивость и колебания упругих систем. Современные концепции, парадоксы и ошибки. 4-е издание. «Наука», 1987. 352 с.
- 46. **Heinz Parkus**. Instationäre Wärmespannungen. Springer-Verlag, 1959. 176 Seiten. *Перевод:* Паркус Г. Неустановившиеся температурные напряжения. М.: Физматгиз, 1963. 252 с.

- Партон В. З. Механика разрушения: от теории к практике. «Наука», 1990. 240 с.
- 48. **Партон В. З.**, **Кудрявцев Б. А.** Электромагнитоупругость пьезоэлектрических и электропроводных тел. «Наука», 1988. 472 с.
- 49. **Партон В. З.**, **Морозов Е. М.** Механика упругопластического разрушения. 2-е издание. «Наука», 1985. 504 с.
- 50. **Подстригач Я. С.**, **Бурак Я. И.**, **Кондрат В. Ф.** Магнитотермоупругость электропроводных тел. Киев: Наукова думка, 1982. 296 с.
- Поручиков В. Б. Методы динамической теории упругости. «Наука», 1986. 328 с.
- 52. Southwell, Richard V. An introduction to the theory of elasticity for engineers and physicists. Dover Publications, 1970. 509 pages. Перевод: Саусвелл Р.В. Введение в теорию упругости для инженеров и физиков. М.: ИИЛ, 1948. 675 с.
- Седов Л. И. Механика сплошной среды. Том 2. 6-е издание. «Лань», 2004. 560 с.
- 54. Ciarlet, Philippe G. Mathematical elasticity. Volume 1: Three-dimensional elasticity. Elsevier Science Publishers B. V., 1988. xlii + 452 pp. Перевод: Филипп Сьярле Математическая теория упругости. «Мир», 1992. 472 с.
- 55. Adhémar-Jean-Claude Barré de Saint-Venant. Mémoire sur la torsion des prismes, avec des considérations sur leur flexion ainsi que sur l'équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance à divers efforts s'exerçant simultanément. Memoires presentes par divers savants a l'Academie des sciences, t. 14, année 1856. 327 pages. Перевод на русский язык: Сен-Венан Б. Мемуар о кручении призм. Мемуар об изгибе призм. М.: Физматгиз, 1961. 518 страниц.
- 56. Adhémar-Jean-Claude Barré de Saint-Venant. Mémoire sur la flexion des prismes Journal de mathematiques pures et appliquees, publie par J. Liouville. 2me serie, t. 1, année 1856. Перевод на русский язык: Сен-Венан Б. Мемуар о кручении призм. Мемуар об изгибе призм. М.: Физматгиз, 1961. 518 страниц.
- 57. **Cristian Teodosiu**. Elastic models of crystal defects. Springer-Verlag, 1982. 336 pages. *Перевод:* **Теодосиу К.** Упругие модели дефектов в кристаллах. «Мир», 1985. 352 с.
- 58. **Тимошенко Степан П.** Устойчивость стержней, пластин и оболочек. «Наука», 1971. 808 с.

- 59. **Тимошенко Степан П.**, **Войновский-Кригер С.** Пластинки и оболочки. «Наука», 1966. 635 с.
- 60. Stephen P. Timoshenko and James N. Goodier. Theory of Elasticity. 2nd edition. McGraw-Hill, 1951. 506 pages. 3rd edition. McGraw-Hill, 1970. 567 pages. Перевод: Тимошенко Степан П., Джеймс Гудьер. Теория упругости. 2-е издание. «Наука», 1979. 560 с.
- 61. **Truesdell, Clifford A.** A first course in rational continuum mechanics. Volume 1: General concepts. 2nd edition. Academic Press, 1991. 391 pages. *Перевод:* **Трусделл К.** Первоначальный курс рациональной механики сплошных сред. «Мир», 1975. 592 с.
- 62. **Феодосьев В. И.** Десять лекций-бесед по сопротивлению материалов. 2-е издание. «Наука», 1975. 173 с.
- Перевод: Хеллан К. Введение в механику разрушения. «Мир», 1988.
 364 с.
- 64. *Перевод*: **Циглер Г.** Основы теории устойчивости конструкций. «Мир», 1971. 192 с.
- 65. **Черепанов Г. П.**. Механика хрупкого разрушения. «Наука», 1974. 640 с.
- Черны́х К.Ф. Введение в анизотропную упругость. «Наука», 1988.
 192 с.
- 67. **Шермергор Т. Д.** Теория упругости микронеоднородных сред. «Наука», 1977. 400 с.

Oscillations and waves

- 68. Timoshenko, Stephen P.; Young, Donovan H.; William Weaver, jr. Vibration problems in engineering. 5th edition. John Wiley & Sons, 1990. 624 pages. *Перевод:* Тимошенко Степан П., Янг Донован Х., Уильям Уивер. Колебания в инженерном деле. М.: Машиностроение, 1985. 472 с.
- 69. **Бабаков И. М.** Теория колебаний. 4-е издание. «Дрофа», 2004. 592 с.
- 70. **Бидерман В. Л.** Теория механических колебаний. М.: Высшая школа, 1980. 408 с.
- 71. **Болотин В. В.** Случайные колебания упругих систем. «Наука», 1979. 336 с.
- 72. **Гринченко В. Т.**, **Мелешко В. В.** Гармонические колебания и волны в упругих телах. Киев: Наукова думка, 1981. 284 с.

- Whitham, Gerald B. Linear and nonlinear waves. John Wiley & Sons, 1974. 636 pages. Перевод: Уизем Дж. Линейные и нелинейные волны. «Мир», 1977. 624 с.
- 74. **Kolsky, Herbert**. Stress waves in solids. Oxford, Clarendon Press, 1953. 211 р. 2nd edition. Dover Publications, 2012. 224 р. *Перевод:* **Кольский Г.** Волны напряжения в твёрдых телах. М.: ИИЛ, 1955. 192 с.
- 75. **Энгельбрехт Ю. К.**, **Нигул У. К.** Нелинейные волны деформации. «Наука», 1981. 256 с.
- Слепян Л. И. Нестационарные упругие волны. Л.: Судостроение, 1972. 376 с.
- 77. **Григолюк Э. И.**, **Селезов И. Т.** Неклассические теории колебаний стержней, пластин и оболочек. (Итоги науки и техники. Механика твёрдых деформируемых тел. Том 5.) М.: ВИНИТИ, 1973. 272 с.

Composites

- 78. **Christensen, Richard M.** Mechanics of composite materials. New York: Wiley, 1979. 348 р. *Перевод:* **Кристенсен Р.** Введение в механику композитов. «Мир», 1982. 336 с.
- 79. **Кравчук А. С.**, **Майборода В. П.**, **Уржумцев Ю. С.** Механика полимерных и композиционных материалов. Экспериментальные и численные методы. «Наука», 1985. 304 с.
- 80. **Победря Б. Е.** Механика композиционных материалов. Изд-во Моск. ун-та, 1984. 336 с.
- 81. **Черепанов Г. П.** Механика разрушения композиционных материалов. «Наука», 1983. 296 с.
- 82. **Бахвалов Н. С.**, **Панасенко Г. П.** Осреднение процессов в периодических средах. Математические задачи механики композиционных материалов. «Наука», 1984. 352 с.
- 83. Bensoussan A., Lions J.-L., Papanicolaou G. Asymptotic analysis for periodic structures. Amsterdam: North-Holland, 1978. 700 p.

The finite element method

84. **Зенкевич О.**, **Морган К.** Конечные элементы и аппроксимация. «Мир», 1986. 318 с.

85. **Шабров Н. Н.** Метод конечных элементов в расчётах деталей тепловых двигателей. Л.: Машиностроение, 1983. 212 с.

$Mechanics,\ thermodynamics,\ electromagnetism$

- 86. Feynman, Richard Ph. Leighton, Robert B. Sands, Matthew. The Feynman Lectures on Physics. New millennium edition. Volume II: Mainly electromagnetism and matter. Basic Books, 2011. 566 pages. Online: The Feynman Lectures on Physics. Online edition.
- 87. Goldstein, Herbert; Poole, Charles P.; Safko, John L. Classical Mechanics. 3rd edition. Addison–Wesley, 2001. 638 pages. Перевод: Голдстейн Г., Пул Ч., Сафко Дж. Классическая механика. URSS, 2012. 828 с.
- 88. Pars, Leopold A. A treatise on analytical dynamics. London: Heinemann, 1965. 641 pages. Перевод: Парс Л. А. Аналитическая динамика. «Наука», 1971. 636 с.
- 89. **Ter Haar, Dirk**. Elements of hamiltonian mechanics. 2nd edition. Pergamon Press, 1971. 201 pages. *Перевод:* **Tep Xaap** Д. Основы гамильтоновой механики. «Наука», 1974. 223 с.
- 90. **Беляев Н. М.**, **Рядно А. А.** Методы теории теплопроводности. М.: Высшая школа, 1982. В 2-х томах. Том 1, 328 с. Том 2, 304 с.
- 91. **Бредов М. М.**, **Румянцев В. В.**, **Топтыгин И. Н.** Классическая электродинамика. «Наука», 1985. 400 с.
- 92. **Феликс Р. Гантмахер** Лекции по аналитической механике. Издание 2-е. «Наука», 1966. 300 с.
- 93. **Ландау Л. Д.**, **Лифшиц Е. М.** Краткий курс теоретической физики. Книга 1. Механика. Электродинамика. «Наука», 1969. 271 с.
- 94. **Лойцянский Л. Г.**, **Лурье А. И.** Курс теоретической механики: В 2-х томах. «Дрофа», 2006. Том 1: Статика и кинематика. 9-е издание. 447 с. Том 2: Динамика. 7-е издание. 719 с.
- 95. **Лурье А. И.** Аналитическая механика. М.: Физматгиз, 1961. 824 с.
- 96. **Ольховский И. И.** Курс теоретической механики для физиков. 3-е издание. Изд-во МГУ, 1978. $575~\mathrm{c}$.
- 97. **Тамм И. Е.** Основы теории электричества. 11-е издание. М.: Физматлит, 2003. 616 с.

- 98. **McConnell, Albert Joseph**. Applications of tensor analysis. New York: Dover Publications, 1957. 318 pages. *Перевод:* Мак-Коннел А. Дж. Введение в тензорный анализ с приложениями к геометрии, механике и физике. М.: Физматгиз, 1963. 412 с.
- 99. **Schouten, Jan A.** Tensor analysis for physicists. 2nd edition. Dover Publications, 2011. 320 pages. *Перевод:* **Схоутен Я. А.** Тензорный анализ для физиков. «Наука», 1965. 456 с.
- 100. Sokolnikoff, I. S. Tensor analysis: Theory and applications to geometry and mechanics of continua. 2nd edition. John Wiley & Sons, 1965. 361 pages. Перевод: Сокольников И. С. Тензорный анализ (с приложениями к геометрии и механике сплошных сред). «Наука», 1971. 376 с.
- 101. **Рашевский П. К.** Риманова геометрия и тензорный анализ. Издание 3-е. «Наука», 1967. 664 с.

Variational methods

- 102. Karel Rektorys. Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL (Státní nakladatelství technické literatury), 1974. 593 s. *Translation:* Rektorys, Karel. Variational Methods in Mathematics, Science and Engineering. Second edition. D. Reidel Publishing Company, 1980. 571 р. *Перевод:* Ректорис К. Вариационные методы в математической физике. «Мир», 1985. 590 с.
- 103. Washizu, Kyuichiro. Variational methods in elasticity and plasticity. 3rd edition. Pergamon Press, Oxford, 1982. 630 радев. Перевод: Васидзу К. Вариационные методы в теории упругости и пластичности. «Мир», 1987. 542 с.
- 104. **Бердичевский В. Л.** Вариационные принципы механики сплошной среды. «Наука», 1983. 448 с.
- 105. **Михлин С. Г.** Вариационные методы в математической физике. Издание 2-е. «Наука», 1970. 512 с.

Perturbation methods (asymptotic methods)

- 106. **Cole, Julian D.** Perturbation methods in applied mathematics. Blaisdell Publishing Co., 1968. 260 pages. *Перевод:* **Коул Дж.** Методы возмущений в прикладной математике. «Мир», 1972. 274 с.
- 107. **Nayfeh, Ali H.** Introduction to perturbation techniques. Wiley, 1981. 536 pages. *Перевод*: **Найфэ Али X.** Введение в методы возмущений. «Мир», 1984. 535 с.
- 108. Nayfeh, Ali H. Perturbation methods. Wiley-VCH, 2004. 425 pages.
- 109. **Боголюбов Н. Н.**, **Митропольский Ю. А.** Асимптотические методы в теории нелинейных колебаний. «Наука», 1974. 504 с.
- 110. **Васильева А. Б.**, **Бутузов В. Ф.** Асимптотические методы в теории сингулярных возмущений. М.: Высшая школа, 1990. 208 с.
- 111. **Зино И. Е.**, **Тропп Э. А.** Асимптотические методы в задачах теории теплопроводности и термоупругости. Изд-во ЛГУ, 1978. 224 с.
- 112. **Моисеев Н. Н.** Асимптотические методы нелинейной механики. 2-е издание. «Наука», 1981. 400 с.
- 113. **Товстик П. Е.** Устойчивость тонких оболочек: асимптотические методы. «Наука», 1995. 319 с.

Other topics of mathematics

- 114. Collatz, Lothar. Eigenwertaufgaben mit technischen Anwendungen. 2. Auflage. Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1963. 500 Seiten. Перевод: Коллатц Л. Задачи на собственные значения (с техническими приложениями). «Наука», 1968. 504 с.
- 115. **Dwight, Herbert Bristol**. Tables of integrals and other mathematical data. 4th edition. The Macmillan Co., 1961. 336 pages. *Перевод:* Двайт Г. Б. Таблицы интегралов и другие математические формулы. Издание 4-е. «Наука», 1973. 228 с.
- 116. **Kamke, Erich**. Differentialgleichungen, Lösungsmethoden und Lösungen. Bd. I. Gewöhnliche Differentialgleichungen. 10. Auflage. Teubner Verlag, 1977. 670 Seiten. *Перевод:* **Камке Э.** Справочник по обыкновенным дифференциальным уравнениям. 6-е издание. «Лань», 2003. 576 с.

- 117. **Korn, Granino A.** and **Korn, Theresa M.** Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Revised edition. Dover Publications, 2013. 1152 pages. *Перевод:* **Корн Г.**, **Корн Т.** Справочник по математике для научных работников и инженеров. «Наука», 1974. 832 с.
- 118. **Лаврентьев М. А.**, **Шабат Б. В.** Методы теории функций комплексного переменного. 4-е издание. «Наука», 1973. 736 с.
- 119. **Погорелов А. В.** Дифференциальная геометрия. Издание 6-е. «Наука», 1974. 176 с.