

ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC

XÂY DỰNG HỆ THỐNG PHÁT HIỆN ÂM THANH BẤT THƯỜNG SỬ DỤNG AUTOENCODERS

Sinh viên thực hiên: Nguyễn Minh Hiếu

Lớp Điện tử 03 – K60

Giảng viên hướng dẫn: TS. Nguyễn Thị Kim Thoa

TS. Hàn Huy Dũng

Hà Nội, tháng 7/2020

Nội dung 1 Giới thiệu chung 2 Mô hình hệ thống 3 Các mô hình mạng neural được sử dụng Thí nghiệm và kết quả 5 Kết luận

Giới thiệu chung

Nhu cầu về giám sát hiện nay

SPARC

Giám sát nhà máy

Giám sát nhà ở

- Giám sát giúp theo dõi hoạt động, đảm bảo an ninh, cảnh báo nguy hiểm
- · Các hệ thống giám sát được sử dụng ở nhiều nơi

15/07/2020

Signal Processing and Radio Communications Lab

Tổng quan hệ thống giám sát

Hệ thống giám sát

- Chi phí tốn kém

Giám sát bằng âm thanh

- ✓ Không hạn chế phạm vi giám sát
- Chi phí thấp hơn
- Không trực quan

SPARC

Hệ thống kết hợp giám sát bằng video và âm thanh

Hệ thống phát hiện âm thanh bất thường

15/07/2020

Signal Processing and Radio Communications Lab

SPARC

Decoder

Phân phối lớp ẩn

Kiến trúc VAE

Encoder

Biểu diễn lớp ẩn bằng phân phối chuẩn $\mathcal{N}(\mu, \sigma^2)$ thay vì bằng lớp neural cố định như AE Kì vọng (μ) và độ lệch chuẩn (σ) được tính toán dưới dạng các neurons Lỗi tái tạo: $\mathcal{L}(x, x') = \frac{1}{N} (\|x - x'\|_2^2 + D_{KL})$ N: Tổng số mẫu huấn luyện **D**_{KL}: Kulback-Leibler Divergence Loss D_{KL} thể hiện mất mát do sự xấp xỉ phân phối lớp Lớp đầu

Signal Processing and Radio Communications Lab

[7] D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," in International Conference on Learning Representations, Banff, Canada, April 2014

Variational Autoencoder (VAE)

ẩn với phân phối thực sự của nó

15/07/2020

 $D_{KL} = -\frac{1}{2}(1 - \mu^2 - \sigma^2 + \log \sigma^2) [7]$

Thí nghiệm và kết quả

Tập dữ liệu

Tập dữ liệu MIMII [8]

	Máy bơm	Thanh ray trượt	
Tập huấn luyện	816 segments bình thường	871 segments bình thường	
Tập xác thực	90 segments bình thường	97 segments bình thường	
Tập kiểm tra	143 segments bất thường,	356 segments bất thường,	
	100 segments bình thường	100 segments bình thường	

Các tham số đánh giá

F-score (F1)

$$F1 = \frac{2TP}{2TP + FP + FN}$$

ROC AUC

$$TPR = \frac{TP}{TP + FN}; FPR = \frac{FP}{FP + TN}$$

Các tham số thống kê trung gian

	Nhãn	Dự đoán
True positive (TP)	Bất thường	Bất thường
False positive (FP)	Bình thường	Bất thường
True negative (TN)	Bình thường	Bình thường
False negative (FN)	Bất thường	Bình thường

AUC

O

FPR

Dường cong ROC

SPARC

[8] H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Suefusa and Y. Kawaguchi, "MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection," in Detection and Classification of Acoustic Scenes and Events 2019, New York, USA, October 2019

15/07/2020

Signal Processing and Radio Communications Lab

15

Đặc trưng MFBs của tiếng máy

MFBs cho tiếng thanh ray trượt

- MFBs của âm thanh bình thường cho tiếng máy không có độ biến động cao theo thời gian
- MFBs của âm thanh bình thường là khác so với âm thanh bất thường

15/07/2020

Signal Processing and Radio Communications Lab

16

Kết luận

Kết luận chung

- Autoencoder và các biến thể hoạt động hiệu quả trong phát hiện âm thanh bất thường
- CRAE có thể được áp dụng để giải quyết bài toán phát hiện âm thanh bất thường
- Độ hiệu quả của phát hiện bất thường được cải thiện theo độ phức tạp của mô hình
- Đối với tập dữ liệu MIMII, CRAE hoạt động hiệu quả nhất

Hướng phát triển

- Thử nghiệm thêm các mô hình khác, điển hình là Convolutional Variational Autoencoder (CVAE)
- Thí nghiệm trên tập những dữ liệu khác (âm thanh đường phố, âm thanh trong phòng)
- Úng dụng phát hiện âm thanh bất thường thời gian thực bằng thiết bị Voice-IP

15/07/2020

Signal Processing and Radio Communications Lab

1

CẢM ƠN CÁC THẦY VÀ CÁC BẠN ĐÃ CHÚ Ý LẮNG NGHE!

15/07/2020

Signal Processing and Radio Communications Lab

21