Extended Literature Review: Lightweight Emotion Detection from Text

2025-09-29 04:41 UTC

1. Task & "Lightweight" Scope

Emotion detection refers to identifying emotional categories from short texts. It is typically framed as a multi-label classification problem. The GoEmotions dataset (Demszky et al., 2020) is the dominant benchmark with 27 fine-grained emotion classes + neutral. By "lightweight," we refer to models that reduce: • Parameter count (e.g. <70M) • Inference latency (e.g. <15ms per batch) • Memory footprint This is particularly relevant for real-time applications (chatbots, mobile apps, on-device ML).

2. Datasets

Name	Description
GoEmotions	Reddit-based, 58k examples, 27 emotions + neutral (raw) or 6 + neutral (simplified)
dair-ai Emotion	Twitter dataset with 6 basic emotions
EmoContext	SemEval 2019 dataset for dialog-based emotion classification (3-turn chat data, 3 cla

3. Lightweight Models Considered

Model	Key Property	
DistilBERT	40% fewer parameters, ~60% faster than BERT	
ALBERT	Parameter sharing + factorized embeddings	
ModernBERT	Optimized encoders (e.g., TinyBERT, MiniLM, MobileBERT) (e	.g., TinyBERT, MiniLM,
Distilled GoEmotions Checkpo	inRre-trained student models available on Hugging Face	

4. Techniques for Lightweighting

Knowledge Distillation (KD)

Transfer knowledge from a large "teacher" model (e.g., BERT-base) to a small "student" model (e.g., DistilBERT). Improves performance without increasing size.

Recent paper: Hussain et al., 2025 — Optimized knowledge distillation for emotion detection in social media.

Quantization

Reduces weight precision (e.g., from float32 \rightarrow int8). Useful for hardware speedup with minimal performance drop.

Recent paper: Zhou et al., 2024 — Efficient emotion recognition via expansion quantization.

5. Evaluation Best Practices

- Report micro, macro, and weighted F1 scores to cover both frequent and rare emotion classes.
- Report latency using forward-pass timing (e.g., using `time` in PyTorch) for realistic batch sizes (e.g., 32 examples).
- Include model size (trainable parameters) and optionally memory footprint.
- Threshold tuning (e.g., sweeping 0.2–0.7) is often necessary to improve macro-F1 due to class imbalance.

• Evaluate both the raw (27-class) and simplified (6-class) schema to understand trade-offs between granularity and performance.

6. Recommended Setup

Component	Details
Baseline Models	DistilBERT, ALBERT, ModernBERT
Dataset	GoEmotions (raw + simplified), optionally EmoContext
Experiments	Train each model; run distillation & quantization variants
Metrics	F1 scores, latency, model size, label-wise performance

7. Related Work & Broader Context

Recent studies in NLP increasingly focus on balancing model efficiency and classification accuracy — especially for emotion detection tasks in constrained environments (e.g., chatbots, mobile UIs, multilingual assistants). While this review focuses on text-only models, some recent work also extends into multimodal and cross-lingual emotion detection, where lightweight models remain a critical need due to deployment constraints on edge devices or low-resource languages.