Logika prvog reda. Semantika. Metod rezolucije.

Danijela Petrović

May 3, 2016

Sematika

• Semantika daje značenje

Sematika

- Semantika daje značenje
- U stilu Tarskog

\mathcal{L} -struktura \mathcal{D}

Za datu signaturu \mathcal{L} , \mathcal{L} -struktura \mathcal{D} je par $(D, I^{\mathcal{L}})$ gde je D skup, a $I^{\mathcal{L}}$ funkcija i pri tome važi:

ullet D je neprazan skup i to je domen

\mathcal{L} -struktura \mathcal{D}

Za datu signaturu \mathcal{L} , \mathcal{L} -struktura \mathcal{D} je par $(D, I^{\mathcal{L}})$ gde je D skup, a $I^{\mathcal{L}}$ funkcija i pri tome važi:

- *D* je neprazan skup i to je *domen*
- svakom simbolu konstante iz \mathcal{L} funkcija $I^{\mathcal{L}}$ pridružuje jedan element iz domena $c_{I} \in \mathcal{D}$

\mathcal{L} -struktura \mathcal{D}

Za datu signaturu \mathcal{L} , \mathcal{L} -struktura \mathcal{D} je par $(D, I^{\mathcal{L}})$ gde je D skup, a $I^{\mathcal{L}}$ funkcija i pri tome važi:

- *D* je neprazan skup i to je *domen*
- svakom simbolu konstante iz \mathcal{L} funkcija $I^{\mathcal{L}}$ pridružuje jedan element iz domena $c_l \in \mathcal{D}$
- svakom funkcijskom simbolu f, ar(f) = n iz \mathcal{L} funkcija $I^{\mathcal{L}}$ pridružuje funkciju $f_I: D^n \to D$

$\overline{\mathcal{L}\text{-}struktur}a \mathcal{D}$

Za datu signaturu \mathcal{L} , \mathcal{L} -struktura \mathcal{D} je par $(D, I^{\mathcal{L}})$ gde je D skup, a $I^{\mathcal{L}}$ funkcija i pri tome važi:

- *D* je neprazan skup i to je *domen*
- svakom simbolu konstante iz \mathcal{L} funkcija $I^{\mathcal{L}}$ pridružuje jedan element iz domena $c_l \in \mathcal{D}$
- svakom funkcijskom simbolu f, ar(f) = n iz \mathcal{L} funkcija $I^{\mathcal{L}}$ pridružuje funkciju $f_I: D^n \to D$
- svakom predikatskom simbolu p, ar(p) = n iz \mathcal{L} funkcija $I^{\mathcal{L}}$ pridružuje funkciju $p_I : D^n \to \{0,1\}$

Valuacija

 ${\it Valuacija}\ {\it v}\ {\it za}\ {\it skup}\ {\it promenljivih}\ {\it V}\ {\it i}\ {\it domen}\ {\it D}\ {\it je}\ {\it preslikavanje}\ {\it koje}\ {\it svakom}\ {\it elementu}\ {\it iz}\ {\it V}\ {\it dodeljuje}\ {\it vrednost}\ {\it iz}\ {\it D}.$

$$v(x_j)=d_j$$

Valuacija

 $Valuacija\ v\ za\ skup\ promenljivih\ V\ i\ domen\ D\ je\ preslikavanje\ koje\ svakom\ elementu\ iz\ V\ dodeljuje\ vrednost\ iz\ D.$

$$v(x_j)=d_j$$

- •
- par (\mathcal{D}, v) određuje $interpretaciju, I_v$

Vrednost TERMA t u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

• ako je t jednako promeljivoj x, onda $I_v(t) = v(x)$

Vrednost TERMA t u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

- ako je t jednako promeljivoj x, onda $I_v(t) = v(x)$
- ako je t jednako konstanti c, onda $I_{\nu}(t) = c_{I}$

$Vrednost\ TERMA\ t\ u\ interpretaciji\ I_{\mathsf{v}}\ određenoj\ sa\ (\mathcal{D},\mathsf{v})$

- ako je t jednako promeljivoj x, onda $I_{\nu}(t) = \nu(x)$
- ako je t jednako konstanti c, onda $I_{\nu}(t) = c_{I}$
- ako je t jednako funkciskom simbolu $f(t_1, \ldots, t_n)$, ar(f) = n i ako važi $I_v(t_i) = d_i$ onda $I_v(f(t_1, \ldots, t_n)) = f_I(d_1, \ldots, d_n)$

Vrednost FORMULE A u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

• ako je \mathcal{A} jednako \perp , onda $I_{\nu}(\perp) = 0$

Vrednost FORMULE A u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

- ako je \mathcal{A} jednako \perp , onda $I_{\mathcal{V}}(\perp) = 0$
- ako je \mathcal{A} jednako \top , onda $I_{\mathcal{V}}(\top) = 1$

Vrednost FORMULE \mathcal{A} u interpretaciji I_{v} određenoj sa $(\mathcal{D}, \mathsf{v})$

- ako je \mathcal{A} jednako \perp , onda $I_{\mathcal{V}}(\perp) = 0$
- ako je \mathcal{A} jednako \top , onda $I_{\mathcal{V}}(\top) = 1$
- ako je \mathcal{A} atomička formula $p(t_1,\ldots,t_n)$, ar(p)=n i ako važi $I_{V}(t_{i}) = d_{i} \text{ onda } I_{V}(p(t_{1}, \ldots, t_{n})) = p_{I}(d_{1}, \ldots, d_{n})$

$Vrednost\ FORMULE\ \mathcal{A}\ u\ interpretaciji\ \mathsf{I}_\mathsf{v}\ određenoj\ sa\ (\mathcal{D},\mathsf{v})$

- ako je \mathcal{A} jednako \perp , onda $I_{\nu}(\perp) = 0$
- ako je \mathcal{A} jednako \top , onda $I_{\nu}(\top) = 1$
- ako je \mathcal{A} atomička formula $p(t_1,\ldots,t_n)$, ar(p)=n i ako važi $I_{\nu}(t_i)=d_i$ onda $I_{\nu}(p(t_1,\ldots,t_n))=p_I(d_1,\ldots,d_n)$
- ako je $\mathcal{A} = \neg \mathcal{B}$, onda

$$I_{\nu}(\neg \mathcal{B}) = \begin{cases} 0 & ako \ I_{\nu}(\mathcal{B}) = 1\\ 1 & ako \ I_{\nu}(\mathcal{B}) = 0 \end{cases}$$

$V rednost\ FORMULE\ \mathcal{A}\ u\ interpretaciji\ \emph{I}_{\emph{v}}\ određenoj\ sa\ (\mathcal{D},\emph{v})$

- ako je \mathcal{A} jednako \perp , onda $I_{\nu}(\perp) = 0$
- ako je \mathcal{A} jednako \top , onda $I_{\nu}(\top) = 1$
- ako je \mathcal{A} atomička formula $p(t_1,\ldots,t_n)$, ar(p)=n i ako važi $I_{\nu}(t_i)=d_i$ onda $I_{\nu}(p(t_1,\ldots,t_n))=p_I(d_1,\ldots,d_n)$
- ako je $A = \neg B$, onda

$$I_{\nu}(\neg \mathcal{B}) = \begin{cases} 0 & ako \ I_{\nu}(\mathcal{B}) = 1\\ 1 & ako \ I_{\nu}(\mathcal{B}) = 0 \end{cases}$$

ullet ako je $\mathcal{A}=\mathcal{B}_1\wedge\mathcal{B}_2$, onda

$$I_{\nu}(\mathcal{B}_1 \wedge \mathcal{B}_2) = \begin{cases} 1 & ako \ I_{\nu}(\mathcal{B}_1) = 1 \ i \ I_{\nu}(\mathcal{B}_2) = 1 \\ 0 & ina\check{c}e \end{cases}$$

Vrednost FORMULE A u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

ullet ako je $\mathcal{A}=\mathcal{B}_1ee\mathcal{B}_2$, onda

$$\textit{I}_{\textit{v}}(\mathcal{B}_1 \vee \mathcal{B}_2) = \left\{ \begin{array}{ll} 1 & \textit{ako } \textit{I}_{\textit{v}}(\mathcal{B}_1) = 1 \textit{ ili } \textit{I}_{\textit{v}}(\mathcal{B}_2) = 1 \\ 0 & \textit{ina} \check{\textit{e}} e \end{array} \right.$$

Vrednost FORMULE A u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

ullet ako je $\mathcal{A}=\mathcal{B}_1ee\mathcal{B}_2$, onda

$$I_{\nu}(\mathcal{B}_1 \vee \mathcal{B}_2) = \left\{ egin{array}{ll} 1 & ako \ I_{\nu}(\mathcal{B}_1) = 1 \ ili \ I_{\nu}(\mathcal{B}_2) = 1 \\ 0 & ina\check{c}e \end{array} \right.$$

ullet ako je $\mathcal{A}=\mathcal{B}_1\Rightarrow\mathcal{B}_2$, onda

$$I_{\nu}(\mathcal{B}_1 \Rightarrow \mathcal{B}_2) = \left\{ egin{array}{ll} 0 & ako \ I_{\nu}(\mathcal{B}_1) = 1 \ i \ I_{\nu}(\mathcal{B}_2) = 0 \ 1 & ina\check{c}e \end{array}
ight.$$

Vrednost FORMULE A u interpretaciji I_{v} određenoj sa (\mathcal{D}, v)

ullet ako je $\mathcal{A}=\mathcal{B}_1ee\mathcal{B}_2$, onda

$$I_{\nu}(\mathcal{B}_1 \vee \mathcal{B}_2) = \left\{ egin{array}{ll} 1 & ako \ I_{\nu}(\mathcal{B}_1) = 1 \ ili \ I_{\nu}(\mathcal{B}_2) = 1 \\ 0 & ina\check{c}e \end{array} \right.$$

ullet ako je $\mathcal{A}=\mathcal{B}_1\Rightarrow\mathcal{B}_2$, onda

$$I_{\nu}(\mathcal{B}_1 \Rightarrow \mathcal{B}_2) = \left\{ egin{array}{ll} 0 & \textit{ako } I_{\nu}(\mathcal{B}_1) = 1 \; \textit{i } I_{\nu}(\mathcal{B}_2) = 0 \\ 1 & \textit{ina\check{c}e} \end{array}
ight.$$

ullet ako je $\mathcal{A}=\mathcal{B}_1\Leftrightarrow\mathcal{B}_2$, onda

$$I_{\nu}(\mathcal{B}_1 \Leftrightarrow \mathcal{B}_2) = \left\{ egin{array}{ll} 1 & ako \ I_{\nu}(\mathcal{B}_1) = I_{\nu}(\mathcal{B}_2) \\ 0 & ina\check{c}e \end{array} \right.$$

$Vrednost\ FORMULE\ \mathcal{A}\ u\ interpretaciji\ I_{\mathsf{v}}\ određenoj\ sa\ (\mathcal{D},\mathsf{v})$

• ako je $\mathcal{A} = (\exists x)\mathcal{B}$, onda $I_{\nu}(\mathcal{A}) = 1$ ako postoji valuacija ν takva da je $w \sim_{\mathsf{x}} \nu$ i $I_{\mathsf{w}}(\mathcal{B}) = 1$; inače $I_{\nu}(\mathcal{A}) = 0$

podsetnik: $w \sim_x v$ ako za svako $y \neq x$ važi w(y) = v(y)

$Vrednost\ FORMULE\ \mathcal{A}\ u\ interpretaciji\ I_{\mathsf{v}}\ određenoj\ sa\ (\mathcal{D},\mathsf{v})$

- ako je $\mathcal{A} = (\exists x)\mathcal{B}$, onda $I_{\nu}(\mathcal{A}) = 1$ ako postoji valuacija ν takva da je $w \sim_{x} \nu$ i $I_{w}(\mathcal{B}) = 1$; inače $I_{\nu}(\mathcal{A}) = 0$
 - **podsetnik:** $w \sim_x v$ ako za svako $y \neq x$ važi w(y) = v(y)
- ako je $\mathcal{A}=(\forall x)\mathcal{B}$, onda $I_{\nu}(\mathcal{A})=0$ ako postoji valuacija ν takva da je $w\sim_{\times} \nu$ i $I_{w}(\mathcal{B})=0$; inače $I_{\nu}(\mathcal{A})=1$

• I_{ν} zadovoljava formulu A ako $I_{\nu}(A) = 1$

- I_{ν} zadovoljava formulu A ako $I_{\nu}(A) = 1$
- ullet Formula ${\mathcal A}$ je $ta\check{c}na$ u interpretaciji I_{v} ako $I_{v}({\mathcal A})=1$

- I_V zadovoljava formulu A ako $I_V(A) = 1$
- Formula \mathcal{A} je $ta\check{c}na$ u interpretaciji I_{ν} ako $I_{\nu}(\mathcal{A})=1$
- ullet Formula ${\mathcal A}$ je zadovojiva ako postoji valuacija v takva da $I_v({\mathcal A})=1$

- I_{ν} zadovoljava formulu A ako $I_{\nu}(A) = 1$
- Formula \mathcal{A} je $ta\check{c}na$ u interpretaciji I_{ν} ako $I_{\nu}(\mathcal{A})=1$
- ullet Formula ${\cal A}$ je zadovojiva ako postoji valuacija v takva da $I_{oldsymbol{
 u}}({\cal A})=1$
- Formula *kontradiktorna* ako nije zadovoljiva.

- I_{ν} zadovoljava formulu \mathcal{A} ako $I_{\nu}(\mathcal{A})=1$
- Formula \mathcal{A} je $ta\check{c}na$ u interpretaciji I_{ν} ako $I_{\nu}(\mathcal{A})=1$
- ullet Formula ${\cal A}$ je zadovojiva ako postoji valuacija v takva da $I_{oldsymbol{
 u}}({\cal A})=1$
- Formula *kontradiktorna* ako nije zadovoljiva.
- Formula \mathcal{A} je valjana ako u svakoj valuaciji v važi $I_v(\mathcal{A})=1$ Tada kazemo da je \mathcal{D} model za formulu \mathcal{A} .

- I_{ν} zadovoljava formulu A ako $I_{\nu}(A) = 1$
- ullet Formula ${\cal A}$ je $ta\check{c}na$ u interpretaciji $I_{
 u}$ ako $I_{
 u}({\cal A})=1$
- ullet Formula ${\cal A}$ je zadovojiva ako postoji valuacija v takva da $I_{oldsymbol{
 u}}({\cal A})=1$
- Formula *kontradiktorna* ako nije zadovoljiva.
- Formula \mathcal{A} je valjana ako u svakoj valuaciji v važi $I_v(\mathcal{A})=1$ Tada kazemo da je \mathcal{D} model za formulu \mathcal{A} .
- Ako formula nije valjana onda je poreciva

Term dobijen ZAMENOM (SUPSTITUCIJOM) promenljive x termom t_x , $t[x \rightarrow t_x]$

• ako je t konstanta $t[x \rightarrow t_x] = t$

Term dobijen ZAMENOM (SUPSTITUCIJOM) promenljive x termom t_x , $t[x \rightarrow t_x]$

- ako je t konstanta $t[x \rightarrow t_x] = t$
- ako je t=x onda $t[x \to t_x] = t_x$

Term dobijen ZAMENOM (SUPSTITUCIJOM) promenljive x termom t_x , $t[x \rightarrow t_x]$

- ako je t konstanta $t[x \rightarrow t_x] = t$
- ako je t=x onda $t[x \to t_x] = t_x$
- ako je t = y i $y \neq x$ onda $t[x \rightarrow t_x] = t$

Term dobijen ZAMENOM (SUPSTITUCIJOM) promenljive x termom t_x , $t[x \rightarrow t_x]$

- ako je t konstanta $t[x \rightarrow t_x] = t$
- ullet ako je t=x onda $t[x o t_x]=t_x$
- ako je t = y i $y \neq x$ onda $t[x \rightarrow t_x] = t$
- ako je $t = f(t_1, \dots, t_n)$ onda $t[x \to t_x] = f(t_1[x \to t_x], \dots, t_n[x \to t_x])$

Formulu dobijnu ZAMENOM (SUPSTITUCIJOM) promenljive x termom t_x , $t[x \rightarrow t_x]$

•
$$\perp [x \rightarrow t_x] = \perp$$

 $Formulu\ dobijnu\ ZAMENOM\ (SUPSTITUCIJOM)\ promenljive$

 $x \ termom \ t_x, \ t[x \rightarrow t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\bullet \ \top[x \to t_x] = \top$

$Formulu\ dobijnu\ ZAMENOM\ (SUPSTITUCIJOM)\ promenljive$

$x \ termom \ t_x, \ t[x \rightarrow t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\top[x \to t_x] = \top$
- $p(t_1,\ldots,t_n)[x \to t_x] = p(t_1[x \to t_x],\ldots,t_n[x \to t_x])$

$Formulu\ dobijnu\ ZAMENOM\ (SUPSTITUCIJOM)\ promenljive$

$x \ termom \ t_x, \ t[x \rightarrow t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\top[x \to t_x] = \top$
- $p(t_1,\ldots,t_n)[x\to t_x]=p(t_1[x\to t_x],\ldots,t_n[x\to t_x])$
- $\bullet \ (\neg \mathcal{A})[x \to t_x] = \neg (\mathcal{A}[x \to t_x])$

Formulu dobijnu ZAMENOM (SUPSTITUCIJOM) promenljive

- $x \ termom \ t_x, \ t[x \rightarrow t_x]$
 - $\perp [x \rightarrow t_x] = \perp$
 - $\top[x \to t_x] = \top$

 - $\bullet \ (\neg \mathcal{A})[x \to t_x] = \neg (\mathcal{A}[x \to t_x])$
 - $(A \wedge B)[x \to t_x] = A[x \to t_x] \wedge B[x \to t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\top[x \to t_x] = \top$
- $\bullet \ (\neg \mathcal{A})[x \to t_x] = \neg (\mathcal{A}[x \to t_x])$
- $(A \wedge B)[x \to t_x] = A[x \to t_x] \wedge B[x \to t_x]$
- $(A \lor B)[x \to t_x] = A[x \to t_x] \lor B[x \to t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\top[x \to t_x] = \top$
- $\bullet \ (\neg \mathcal{A})[x \to t_x] = \neg (\mathcal{A}[x \to t_x])$
- $(A \wedge B)[x \to t_x] = A[x \to t_x] \wedge B[x \to t_x]$
- $(A \lor B)[x \to t_x] = A[x \to t_x] \lor B[x \to t_x]$
- $(A \Rightarrow B)[x \to t_x] = A[x \to t_x] \Rightarrow B[x \to t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\top[x \to t_x] = \top$
- $\bullet \ (\neg \mathcal{A})[x \to t_x] = \neg (\mathcal{A}[x \to t_x])$
- $(A \wedge B)[x \to t_x] = A[x \to t_x] \wedge B[x \to t_x]$
- $(A \lor B)[x \to t_x] = A[x \to t_x] \lor B[x \to t_x]$
- $(A \Rightarrow B)[x \to t_x] = A[x \to t_x] \Rightarrow B[x \to t_x]$
- $(\mathcal{A} \Leftrightarrow \mathcal{B})[x \to t_x] = \mathcal{A}[x \to t_x] \Leftrightarrow \mathcal{B}[x \to t_x]$

- $\perp [x \rightarrow t_x] = \perp$
- $\bullet \ \top[x \to t_x] = \top$
- $\bullet \ (\neg \mathcal{A})[x \to t_x] = \neg (\mathcal{A}[x \to t_x])$
- $(A \wedge B)[x \to t_x] = A[x \to t_x] \wedge B[x \to t_x]$
- $(A \lor B)[x \to t_x] = A[x \to t_x] \lor B[x \to t_x]$
- $(A \Rightarrow B)[x \to t_x] = A[x \to t_x] \Rightarrow B[x \to t_x]$
- $(\mathcal{A} \Leftrightarrow \mathcal{B})[x \to t_x] = \mathcal{A}[x \to t_x] \Leftrightarrow \mathcal{B}[x \to t_x]$
- $\bullet \ (\exists x \mathcal{A})[x \to t_x] = (\exists x \mathcal{A})$

- $\perp [x \rightarrow t_x] = \perp$
- $\bullet \ \top[x \to t_x] = \top$

- $(A \wedge B)[x \to t_x] = A[x \to t_x] \wedge B[x \to t_x]$
- $(A \lor B)[x \to t_x] = A[x \to t_x] \lor B[x \to t_x]$
- $(A \Rightarrow B)[x \to t_x] = A[x \to t_x] \Rightarrow B[x \to t_x]$
- $\bullet \ (\mathcal{A} \Leftrightarrow \mathcal{B})[x \to t_x] = \mathcal{A}[x \to t_x] \Leftrightarrow \mathcal{B}[x \to t_x]$
- $\bullet \ (\exists x \mathcal{A})[x \to t_x] = (\exists x \mathcal{A})$
- $\bullet \ (\forall x \mathcal{A})[x \to t_x] = (\forall x \mathcal{A})$

Formulu dobijnu ZAMENOM (SUPSTITUCIJOM) promenljive x termom t_x , $t[x \rightarrow t_x]$

• ako je $x \neq y$ i neka je z promenljiva koja se ne pojavljuje ni u \mathcal{A} , ni u t_x , onda $(\exists y \mathcal{A})[x \to t_x] = (\exists z) \mathcal{A}[y \to z][x \to t_x]$

- ako je $x \neq y$ i neka je z promenljiva koja se ne pojavljuje ni u \mathcal{A} , ni u t_x , onda $(\exists y \mathcal{A})[x \to t_x] = (\exists z) \mathcal{A}[y \to z][x \to t_x]$
- ako je $x \neq y$ i neka je z promenljiva koja se ne pojavljuje ni u \mathcal{A} , ni u t_x , onda $(\forall y \mathcal{A})[x \to t_x] = (\forall z) \mathcal{A}[y \to z][x \to t_x]$

Supstitucija (uopštena zamena, uopštena supstitucija) σ

Supstitucija σ je skup zamena $[x_1 \to t_1], \ldots, [x_n \to t_n]$ gde su x_i promenljive, a t_i termovi.

ullet efekat supstitucije σ na izraz E zapisujemo $E\sigma$

Supstitucija (uopštena zamena, uopštena supstitucija) σ

Supstitucija σ je skup zamena $[x_1 \to t_1], \dots, [x_n \to t_n]$ gde su x_i promenljive, a t_i termovi.

- ullet efekat supstitucije σ na izraz E zapisujemo $E\sigma$
- Idempotenta supstitucija $E\sigma = (E\sigma)\sigma$; ni jedan od termova t_i ne sadrži neku od promenljivih x_j

(primeri iz udžbenika)

$$\sigma = [x \rightarrow f(y)], s = g(a, x), s\sigma = ?$$

PRENEX normalna forma

Kažemo da je formula u prenex normalnoj formi ako je oblika

$$Q_1x_1Q_2x_2\dots Q_nx_nA$$

pri čemu je Q neki kvantifikator (*exists* ili *forall*) i \mathcal{A} nema drugih kvantifikatora.

 Svaka zatvorena formula može biti transformisana u svoju prenex normalnu formu.

PRENEX algoritam

$$\bullet \ \mathcal{A} \Rightarrow \mathcal{B} \equiv \neg \mathcal{A} \vee \mathcal{B}$$

PRENEX algoritam

- $\mathcal{A} \Rightarrow \mathcal{B} \equiv \neg \mathcal{A} \vee \mathcal{B}$
- $\mathcal{A} \Leftrightarrow \mathcal{B} \equiv (\mathcal{A} \Rightarrow \mathcal{B}) \wedge (\mathcal{B} \Rightarrow \mathcal{A})$

PRENEX algoritam

- $\mathcal{A} \Rightarrow \mathcal{B} \equiv \neg \mathcal{A} \vee \mathcal{B}$
- $\mathcal{A} \Leftrightarrow \mathcal{B} \equiv (\mathcal{A} \Rightarrow \mathcal{B}) \wedge (\mathcal{B} \Rightarrow \mathcal{A})$
-

(primer iz udžbenika)

Konjuktivna normalna forma

Formula bez kvantifikatora je u konjuktivnoj normalnoj formi ako je oblika

$$A_1 \wedge A_2 \wedge \dots A_n$$

gde je A_i disjunkcija literala.

Klauzalna forma

Formula je u klauzalnoj formi ako je oblika

$$\forall x_1 \forall x_2 \dots \forall x_n \mathcal{A}$$

pri čemu je \mathcal{A} formula bez kvantifikatora koja je u *konjuktivnoj* normalnoj formi i nema slobodnih promenljivih osim, eventualno, x_1, x_2, \ldots, x_n

 Ne postoji za svaku rečenicu formula koja je u klauzalnoj formi:

$$(\exists x)p(x)$$

- Ne postoji za svaku rečenicu formula koja je u klauzalnoj formi: (∃x)p(x)
- Ali, za svaku rečenicu A postoji formula B koja je u klauzalnoj formi i važi da je A zadovoljiva ako i samo ako je B zadovoljiva. (slaba ekvivalencija.)

- Ne postoji za svaku rečenicu formula koja je u klauzalnoj formi: $(\exists x)p(x)$
- Ali, za svaku rečenicu A postoji formula B koja je u klauzalnoj formi i važi da je A zadovoljiva ako i samo ako je B zadovoljiva. (slaba ekvivalencija.)
- Menja se polazna signatura, eleminišu se egzistencijalni kvantifikatori.

- Ne postoji za svaku rečenicu formula koja je u klauzalnoj formi: (∃x)p(x)
- Ali, za svaku rečenicu A postoji formula B koja je u klauzalnoj formi i važi da je A zadovoljiva ako i samo ako je B zadovoljiva. (slaba ekvivalencija.)
- Menja se polazna signatura, eleminišu se egzistencijalni kvantifikatori.
- Skolemizacija izbacivanje egzistencijalnih kvantifikatora.

- Ne postoji za svaku rečenicu formula koja je u klauzalnoj formi: (∃x)p(x)
- Ali, za svaku rečenicu A postoji formula B koja je u klauzalnoj formi i važi da je A zadovoljiva ako i samo ako je B zadovoljiva. (slaba ekvivalencija.)
- Menja se polazna signatura, eleminišu se egzistencijalni kvantifikatori.
- Skolemizacija izbacivanje egzistencijalnih kvantifikatora.
- Uvode se novi funkcijski simboli: konstante (*skolemovane konstante*) i funkcijski simboli (*skolemovane funkcije*)

• $\exists y \mathcal{A}$ d – novi simbol konstante $\mathcal{A}[y \to d]$

- $\exists y \mathcal{A}$ d – novi simbol konstante $\mathcal{A}[y \to d]$
- $\forall x_1 \forall x_2 \dots \forall x_n \exists y A$ f – novi funkcijski simbol, ar(f) = n $\forall x_1 \forall x_2 \dots \forall x_n A[y \rightarrow f(x_1, x_2, \dots, x_n)]$

(primer iz udžbenika) – odrediti prenex ... nastavak primera

Unifikacija Problem unifikacije je problem ispitivanja da li postoji supstitucija koja čini dva izraza jednakim.

Ako su e_1 i e_2 izrazi i ako postoji supstitucija takva da važi $e_1\sigma=e_2\sigma$ onda kažemo da su e_1 i e_2 unifikabilni i da je supstitucija σ unifikator za ta dva izraza.

Najopštiji unifikator

Supstitucija σ je najopštiji unifikator za izraze e_1 i e_2 ako svaki njihov unifikator τ može biti predstavljen u obliku $\tau=\sigma\mu$ gde je μ neka supstitucija.

Primene: pre svega u metodi rezolucije

Algoritam najopštiji unifikator Dat je niz parova

$$(s_1, t_1)(s_2, t_2) \dots (s_n, t_n)$$

i traži se supstitucija σ tako da

$$s_1\sigma = t_1\sigma, s_2\sigma = t_2\sigma, \dots s_n\sigma = t_n\sigma$$

 factoring: ako ima jednakosti koje imaju više od jednog pojavljivanja obrisati sva osim jednog pojavljivanja Algoritam najopštiji unifikator Dat je niz parova

$$(s_1, t_1)(s_2, t_2) \dots (s_n, t_n)$$

i traži se supstitucija σ tako da

$$s_1\sigma = t_1\sigma, s_2\sigma = t_2\sigma, \dots s_n\sigma = t_n\sigma$$

- *factoring*: ako ima jednakosti koje imaju više od jednog pojavljivanja obrisati sva osim jednog pojavljivanja
- tautology: obrisati sve jednakosti oblika t = t

• orientation: x - promenljiva, t - term koji nije promenljiva zameniti sve t=x sa x=t

- orientation: x promenljiva, t term koji nije promenljiva zameniti sve t=x sa x=t
- decomposition: $s = \phi(t_1, \ldots, t_n)$ i $v = \phi(k_1, \ldots, k_n)$ i s = v izbrisati s = v i dodati $t_1 = k_1 \ldots t_n = k_n$

- orientation: x promenljiva, t term koji nije promenljiva zameniti sve t=x sa x=t
- decomposition: $s = \phi(t_1, ..., t_n)$ i $v = \phi(k_1, ..., k_n)$ i s = v izbrisati s = v i dodati $t_1 = k_1 ... t_n = k_n$
- *collision*: ukoliko s = v, a s i v su bilo kog drugog oblika, vrati **neuspeh**

primeri: jedan term konstante, drugi nije razlikuju se njihovi vodeći funkcijski (predikatski) simboli različite su arnosti

cycle: x - promenljiva; t - term koji sadrži x i imamo x = t
 vrati neuspeh

- cycle: x promenljiva; t term koji sadrži x i imamo x = t
 vrati neuspeh
- application: x promenljiva; t term koji ne sadrži x i imamo x=t primeni supstituciju $[x \to t]$ na sve druge jednakosti

- cycle: x promenljiva; t term koji sadrži x i imamo x = t
 vrati neuspeh
- application: x promenljiva; t term koji ne sadrži x i imamo x=t primeni supstituciju $[x \to t]$ na sve druge jednakosti
- ako nije moguće ništa od ovoga vrati tekući skup kao rešenje

Korektnost algoritma najopštiji unifikator

Algoritam Najopštiji unifikator zadovoljava sledeće uslove:

• zaustavlja se

Algoritam nije efikasan, postoje bolji.

Korektnost algoritma najopštiji unifikator

Algoritam Najopštiji unifikator zadovoljava sledeće uslove:

- zaustavlja se
- ako vrati supstituciju onda je ona najopštiji unifikator za dati niz jednakosti

Algoritam nije efikasan, postoje bolji.

Korektnost algoritma najopštiji unifikator

Algoritam Najopštiji unifikator zadovoljava sledeće uslove:

- zaustavlja se
- ako vrati supstituciju onda je ona najopštiji unifikator za dati niz jednakosti
- ako se završi neuspehom onda ne postoji unifikator za dati niz parova izraza

Algoritam nije efikasan, postoje bolji.

(zadaci iz udžbenika)

Naći najopštiji unifikator za sledeće parove formula:

- f(a, g(x, y)), f(z, g(a, z)) x, y i z su simboli promenljivih, a a je simbol konstante
- (g(x,h(y,z),g(u,x)),(f(x),f(h(c,v))),(g(z,u),g(y,u)) (nema konstanti)

Postupak ispitivanja nezadovoljivosti skupa klauza iskazne logike.

- Postupak ispitivanja nezadovoljivosti skupa klauza iskazne logike.
- U iskaznoj logici primenjuje se na formule koje su u konjuktivnoj normalnoj formi

- Postupak ispitivanja nezadovoljivosti skupa klauza iskazne logike.
- U iskaznoj logici primenjuje se na formule koje su u konjuktivnoj normalnoj formi
- U logici prvog reda primenjuje se na formule koje su u klauzalnoj formi

Metod rezolucije za iskaznu logiku

$$\frac{C' \vee I \quad C'' \vee \overline{I}}{C' \vee C''}$$

Teorema

Metod rezolucije *se zaustavlja* za svaku iskaznu formulu i u završnom skupu klauza postoji prazna klauza ako i samo ako je polazna formula nezadovoljiva.

Metod rezolucije za logiku prvog reda

$$\frac{\Gamma' \vee A' \quad \Gamma'' \vee \neg A''}{\Gamma' \vee \Gamma''} \circ$$

 σ je najopštiji unifikator za A' i A''.

Teorema

Ako je Γ nezadovoljiv skup klauza, onda se iz njega metodom rezolucije može izvesti prazna klauza.