Dynamic Programming

- Algorithm design technique, usually for optimization and counting problems.
- Useful when solution can be expressed recursively, but the same subproblems appear in different recursive calls.
- Strategy: solve subproblems and store results.
 Large problems are still decomposed into
 subproblems, but solutions to subproblems are
 "looked up".
 - Typical Approach
 - -Find recursive description of optimal cost.
 - Tabulate subproblems of subproblems
 - Tabulate how opt. soln. was generated
 - -construct solution.

Example: Fibonacci Numbers

$$egin{aligned} F_0 &= 0 \ F_1 &= 1 \ F_n &= F_{n-1} + F_{n-2} \end{aligned}$$

Compute F_n ?

Recursive strategy:

```
\mathsf{F}(n) if n=0 then return 0 else if n=1 then return 1 else return \mathsf{F}(n-1) + \mathsf{F}(n-2)
```

Computation tree for F(5):

Dynamic Programming Strategy

$$\mathsf{F}(n)$$
 $ightharpoonup \mathsf{uses local}\ A[1..n]$ $A[0] := 0; \quad A[1] := 1;$ $\mathsf{for}\ i = 2\ \mathsf{to}\ n\ \mathsf{do}$ $A[i] := A[i-1] + A[i-2]$ $\mathsf{return}\ A[n]$

Recursive strategy takes time

≥ number of nodes in tree

$$\geq F_n \in \Omega((1.6)^n).$$

Dynamic programming strategy takes time $\Theta(n)$

Multiplying a Sequence of Matrices

$$egin{array}{ccccc} C & \leftarrow & A & \cdot & B \ m imes p & m imes n & n imes p \end{array}$$

requires mnp scalar mults. by usual alg.

Multiplication of matrices is **associative**:

$$(AB)C = A(BC)$$

However, # of scalar mults. may be different.

Example - Multiply: ABC

$$(AB)C$$
 vs. $A(BC)$?

In computing product of a sequence of matrices, how to associate to minimize the number of scalar multiplications?

Need product:

$$A_1 \cdot A_2 \cdot A_3 \cdot \cdots \cdot A_n$$

where A_i is $d_{i-1} imes d_i$

Given: d_0, d_1, \ldots, d_n

Goal: minimize number of scalar multiplications

Think top-down. Which is best?

$$(A_1)(A_2\cdots A_n)$$
 $(A_1A_2)(A_3\cdots A_n)$
 $(A_1\cdots A_3)(A_4\cdots A_n)$
 \vdots
 $(A_1\cdots A_{n-1})(A_n)$

$$M(i,j) =$$
 min. $\#$ of scalar mults. to compute: $A_i \cdot A_{i+1} \cdot \cdots \cdot A_j$

Then the min. # of mults. if split at k:

$$(A_i \cdots A_k) \ (A_{k+1} \cdots A_j)$$

is:

$$M(i,k) + M(k+1,j) + d_{i-1}d_kd_j$$
 (*)

So, for i < j:

 $oldsymbol{M}(i,j)$ is the minimum of (*)

over all k: i < k < j-1

For i = j:

$$M(i,i)=0$$

Now have recurrence ...

... but don't compute recursively!

Dynamic programming to compute M(1,n)

for
$$i \leftarrow 1$$
 to n do $M[i,i] \leftarrow 0$

for $i \leftarrow n-1$ downto 1 do

for
$$j \leftarrow i+1$$
 to n do $M[i,j] \leftarrow \min_{i \leq k \leq j-1} \{M[i,k] + M[k+1,j] + d_{i-1}d_kd_j\}$

Total time: $\Theta(n^3)$

In computing M[i,j], save in S[i,j] the value of k where the minimum is achieved:

Memoizing

Initialize table with a special symbol, say #.

Use $\mathbf{recursive}$ version of program \mathbf{except} - when M[i,j] to be called recursively:

- ullet check if M[i,j]=#.
- if not, return value, else
- make recursive call; store result

See text for memoized version of matrix chain multiplication.