Układy Równań Liniowych - algorytmy iteracyjne Metody Numeryczne

dr inż. Grzegorz Fotyga

Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Inżynierii Mikrofalowej i Antenowej

23 marca 2018

Plan prezentacji

- Algorytmy iteracyjne
- 2 Błędy
- 3 Jacobi
- 4 Gauss-Seidel
- Norma macierzy

Algorytmy iteracyjne (1)

- ullet Metody bezpośrednie (Gauss, LU) wymagają $\mathcal{O}(n^3)$ operacji. **Za dużo!**
- Metody iteracyjne tylko $\mathcal{O}(n^2)^{-1}$.
- Algorytmy **iteracyjne** rozwiązywania układów równań liniowych $\mathbf{A}\mathbf{x} = \mathbf{b}$ rozpoczynają się od zdefiniowania wektora początkowego $\mathbf{x}^{(1)}$, który jest przybliżeniem rozwiązania dokładnego \mathbf{x} . Wraz z kolejnymi iteracjami algorytmu $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$... $\mathbf{x}^{(m)}$ wektor przybliżony zbiega się do rozwiązania dokładnego.
- Istnieją setki metod iteracyjnych, wykorzystywanych w praktyce. W zależności od rodzaju macierzy systemowych mogą się one nie zbiegać, mogą wymagać zbyt dużej liczby iteracji itp.
- Opanowanie wiedzy z tej dziedziny pozwala na dobranie odpowiedniej metody do danego problemu i ew. poprawienie zbieżności poprzez dobranie odpowiednich parametrów.
- Omówimy dwie podstawowe metody iteracyjne: Jacobi'ego i Gaussa-Seidela.

¹pod warunkiem, że się zbiegają.

$$\bullet \ \mathbf{A} = \begin{bmatrix} 2.0 & 1.5 \\ 1.5 & 2.0 \end{bmatrix}$$

$$\bullet \ \mathbf{b} = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$$

•
$$\mathbf{x}^{(95)} = \begin{bmatrix} 0.0 & 2.00 \end{bmatrix}^T$$

 W 95 iteracji uzyskiwane jest rozwiązanie z zadowalającą dokładnością.

Algorytmy iteracyjne (3) - \mathbb{R}^3

$$\bullet \mathbf{A} = \begin{bmatrix} 1.5 & 1.1 & -0.3 \\ 1.1 & 1.5 & 1.1 \\ 0.3 & 1.1 & 2.0 \end{bmatrix}$$

$$\bullet \ \mathbf{b} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$$

•
$$\mathbf{x}^{(618)} = \begin{bmatrix} -4.025 & 5.825 & -2.10 \end{bmatrix}^T$$

- W 618 iteracji uzyskiwane jest rozwiązanie z zadowalającą dokładnością.
- **Podobnia** analiza dla przestrzeni \mathbb{R}^n .

Algorytmy iteracyjne (4) błędy

- Układ równań $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{n \times n}, \ \mathbf{b} \in \mathbb{R}^n, \mathbf{x} \in \mathbb{R}^n$
- Rozwiązanie przybliżone: x̃
- Błąd rozwiązania (również **wektor**): $\mathbf{e} = \mathbf{x} \widetilde{\mathbf{x}}$
- W praktyce nie jest możliwe wyznaczenia wektora e, ponieważ nie znamy rozwiązania dokładnego (x)
- W celu oszacowania błędu wnoszonego przez $\tilde{\mathbf{x}}$ stosuje się tzw. wektor residuum (z języka Łacińskiego: reszta):

$$\mathbf{r} = \mathbf{A}\widetilde{\mathbf{x}} - \mathbf{b} \tag{1}$$

- Jeżeli $\widetilde{\mathbf{x}} \to \mathbf{x}$ to $\mathbf{r} \to \mathbf{0}$.
- W niektórych przypadkach mała wartość normy residuum nie gwarantuje małej wartości normy błędu e.

Algorytmy iteracyjne (5) - normy wektorów

- Wygodniej jest przedstawiać błąd w postaci skalara.
- Norma jest funkcją, która przyporządkowuje każdemu wektorowi nieujemną liczbę rzeczywistą ($\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$)
- Norma wektora musi spełniać poniższe warunki (dla $\mathbf{e}, \mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$):
 - ullet Norma wektora jest **nieujemną** liczbą rzeczywistą $\|{f e}\|\geqslant 0$, $\|{f e}\|=0\Leftrightarrow {f e}=0$
 - Pomnożenie wektora przez liczbę mnoży jego normę przez wartość bezwzględną: $\|\alpha \mathbf{e}\| = |\alpha| \|\mathbf{e}\|$, $\alpha \in \mathbb{R}$
 - Norma sumy dwóch wektorów jest **nie większa** od sumy ich norm. Warunek ten nazywany jest **nierównością trójkąta**. $\|\mathbf{e}_1 + \mathbf{e}_2\| \le \|\mathbf{e}_1\| + \|\mathbf{e}_2\|$,
- ullet W praktyce często przedstawia się błąd aproksymacji $\widetilde{\mathbf{x}}$ jako normę z wektora residuum.

Algorytmy iteracyjne (6) - normy wektorów

Najczęściej stosowane normy (w praktyce): $p = 1,2,\infty$.

Okręgi jednostkowe: $\mathbf{e} \in \mathbb{R}^n$: $\|\mathbf{e}\| \leqslant 1$, n=2 sa zobrazowane poniżej:

$$\|\mathbf{e}\|_1 = \sum_{j=1}^n |e_j|$$

$$\|\mathbf{e}\|_2 = \sqrt{\sum_{j=1}^n e_j^2}$$

$$\|\mathbf{e}\|_{\infty} = \max_{1 \leq i \leq n} |e_j|$$

$$p = \infty$$

Algorytmy iteracyjne (7) - Sergel Plaza (Stockholm), Tables

Okrąg jednostkowy dla p = 4.

Algorytmy iteracyjne (8)

Badając normę p=2 wektora residuum, możemy w każdej iteracji algorytmu obliczyć jaki błąd wnosi wektor $\tilde{\mathbf{x}}$. Przeważnie jako kryterium stopu przyjmuje się normę z residuum o wartości mniejszej niż 10^{-6} .

- Jacobi, Gauss-Seidel, QMR odpowiednio: 618, 269 i 4 (!) iteracje, żeby osiągnąć normę z residuum na poziomie 1e-12.
- QMR metoda stworzona w 1991r. przez naukowców z MIT i CU Davis.

Algorytmy iteracyjne (9), dygresja - Teoplitz Matrix:

"Typical problems modelled by Toeplitz matrices are: the numerical solution of certain differential equations, and certain integral equations (regularization of inverse problems); the computation of spline functions; time series analysis; signal and image processing; Markov chains and queueing theory; polynomial and power series computations. Other problems involve Toeplitz-like matrices, or matrices having a displacement structure (Hankel, Cauchy, Hilbert, Loewner and Frobenius matrices)." https://www.scirp.org/journal/PaperInformation.aspx?PaperID=18880

Algorytmy iteracyjne (10) - Jacobi

 Rozpatrzmy układ 3 równań z 3 niewiadomymi (Ax = b) z niezerowymi elementami na diagonali:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Powyższy układ możemy przedstawić jako:

$$\begin{cases} x_1 = (b_1 - a_{12}x_2 - a_{13}x_3)/a_{11} \\ x_2 = (b_2 - a_{21}x_1 - a_{23}x_3)/a_{22} \\ x_3 = (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33} \end{cases}$$

• Załóżmy, że $\mathbf{x}^{(k)}$ jest przybliżeniem dokładnego rozwiązania $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$. Naturalnym sposobem na obliczenie kolejnego przybliżenia $\mathbf{x}^{(k+1)}$ jest:

$$\begin{cases} x_1^{(k+1)} = (b_1 - a_{12}x_2^{(k)} - a_{13}x_3^{(k)})/a_{11} \\ x_2^{(k+1)} = (b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k)})/a_{22} \\ x_3^{(k+1)} = (b_3 - a_{31}x_1^{(k)} - a_{32}x_2^{(k)})/a_{33} \end{cases}$$
(2)

Algorytmy iteracyjne (11)

- Równanie (2) definiuje schemat **Jacobi'ego** dla przypadku n = 3.
- W ogólności:

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii}$$
 (3)

- Jednak w powyższym schemacie nie są uwzględnione aktualne wartości części elementów wektora. Na przykład: $x_1^{(k)}$ jest używane do obliczenia $x_2^{(k+1)}$, chociaż $x_1^{(k+1)}$ jest już znane.
- ullet Jeżeli używamy **aktualnego** przybliżenia x_i , otrzymujemy:

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}\right) / a_{ii}$$
 (4)

Jest to schemat Gaussa-Seidela.

Iterative algorithms (12) - Jacobi idea

Jacobi idea - the vector from previous iteration is used to compute the elements of the vector in subsequent iteration $(x^{(k)})$ is used to compute $x^{(k+1)}$. Although, the $x_1^{(2)} \dots x_{i-1}^{(2)}$ are **already updated.**

Iterative algorithms (13) - Gauss-Seidel idea

Gauss-Seidel idea - use the **most recently available information** when computing $x_i^{(k+1)}$.

Algorytmy iteracyjne (14) A = -L - U + D

Podział macierzy A:

Uwaga L i **U** nie oznaczają tego samego, co **L** i **U** w faktoryzacji *LU*!

Algorytmy iteracyjne (15) - Jacobi

Jacobi w postaci macierzowej:

- Wyprowadzenie schematu iteracyjnego dla metody Jacobiego rozpoczynamy od przedstawienia macierzy $\bf A$ jako sumę 3 macierzy: $\bf A = -L U + D$, gdzie:
 - D jest to macierz diagonalna, zawierająca elementy z głównej diagonali macierzy A
 - L i U to są macierze odpowiednio trójkątna dolna i górna (zawierające elementy znajdujące się powyżej i poniżej głównej diagonali macierzy A).
- Otrzymujemy:

$$(-\mathsf{L}-\mathsf{U}+\mathsf{D})\mathsf{x}=\mathsf{b}$$

Przenosząc odpowiednie wyrazy na prawą stronę równania:

$$\mathbf{D}\mathbf{x} = (\mathbf{L} + \mathbf{U})\mathbf{x} + \mathbf{b}$$

ullet Przemnażając obustronnie przez $oldsymbol{D}^{-1}$ otrzymujemy:

$$\mathbf{x} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x} + \mathbf{D}^{-1}\mathbf{b}$$

• Ostatecznie otrzymujemy schemat iteracyjny:

$$\widetilde{\mathsf{x}}^{(n+1)} = \mathsf{D}^{-1}(\mathsf{L} + \mathsf{U})\widetilde{\mathsf{x}}^{(n)} + \mathsf{D}^{-1}\mathsf{b}$$

• Uwaga L i U nie oznaczają tego samego, co L i U w faktoryzacji LU!

Algorytmy iteracyjne (16) - Gauss - Seidel

Gauss-Seidel w postaci macierzowej:

 Wyprowadzenie schematu iteracyjnego metody Gaussa-Seidla rozpoczynamy (podobnie jak w metodzie Jacobiego) od:

$$(-L-U+D)x = b$$

- Przenosząc odpowiednie wyrazy na prawą stronę równania: $(\mathbf{D} \mathbf{L})\mathbf{x} = \mathbf{U}\mathbf{x} + \mathbf{b}$
- Przemnażając obustronnie przez $(\mathbf{D} \mathbf{L})^{-1}$ otrzymujemy: $\mathbf{x} = (\mathbf{D} \mathbf{L})^{-1}(\mathbf{U}\mathbf{x}) + (\mathbf{D} \mathbf{L})^{-1}\mathbf{b}$
- Ostatecznie otrzymujemy schemat iteracyjny: $\widetilde{\mathbf{x}}^{(n+1)} = (\mathbf{D} \mathbf{L})^{-1}(\mathbf{U}\widetilde{\mathbf{x}}^{(n)}) + (\mathbf{D} \mathbf{L})^{-1}\mathbf{b}$
- Uwaga L i U nie oznaczają tego samego, co L i U w faktoryzacji LU!

Algorytmy iteracyjne (17) - przykład

Filtr działający na b.w.cz. Dyskretyzacja rówań Maxwella. CG i PCG-Jacobi w tym przypadku **nie zbiegają się**.

dr eng. Adam Dziekoński *Optymalizacja wydajności obliczeniowej metody elementów skończonych w architekturze CUDA*, PhD, 2015.

Algorytmy iteracyjne (18) - przykład

Filtr działający na b.w.cz. Dyskretyzacja rówań Maxwella. PCG-V (z Jacobim) w tym przypadku **zbiega się**.

dr eng. Adam Dziekoński *Optymalizacja wydajności obliczeniowej metody elementów skończonych w architekturze CUDA*, PhD, 2015.

Algorytmy iteracyjne (19)

Uwagi na koniec:

- Zbieżność obu metod (oraz innych metod iteracyjnych) zależy od własności macierzy A
- Gauss-Seidel zbiega się, jeżeli:
 - A jest symetryczna, dodatnio określona,
 - ullet A jest diagonalnie dominująca $(|a_{ii}|>\sum_{j
 eq i}|a_{ij}|)$
- Jakobi zbiega się, jeżeli:
 - promień spektralny macierzy $\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$ jest mniejszy niż 1,
 - A jest diagonalnie dominująca.
- Metoda Gaussa-Seidla przeważnie potrzebuje mniejszej liczby iteracji, niż metoda Jacobiego, żeby zbiec się do założonego poziomu błędu.
- Która metoda jest szybsza???

Algorytmy iteracyjne (20)

Uwagi na koniec:

 Przykład macierzy diagonalnie dominującej (dyskretyzacja równań różniczkowych!):

$$\begin{bmatrix} 3 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & 3 \end{bmatrix}$$

- **UWAGA** dużym błędem jest jawne odwrócenie czynnika $\mathbf{D} \mathbf{L}$, ponieważ operacja ta jest czasochłonna, powoduje duży błąd numeryczny i znaczny wzrost zapotrzebowania na pamięć RAM. Należy zastosować podstawienie wprzód (ang. forward substituttion).
- Pojawiający się często we wzorach zapis inv(A)b lub A⁻¹b oznacza rozwiązanie układu równań dowolną metodą (Gauss, Jacobi, CG, GMRES, BiCG, forward/backward substitution...), czyli wyznaczenie wektora x. Zapis ten nigdy nie oznacza jawnego odwrócenia macierzy A.

Algorytmy iteracyjne (21) - Norma macierzy

- **1** Norma macierzowa musi spełniać poniższe warunki (dla $A, B \in \mathbb{R}^{n \times n}, \alpha \in \mathbb{R}$):
 - ullet Norma macierzy jest **nieujemną** liczbą rzeczywistą $\|\mathbf{A}\|\geqslant 0$, $\|\mathbf{A}\|=0\Leftrightarrow \mathbf{A}=0$
 - Pomnożenie macierzy przez liczbę mnoży jego normę przez wartość bezwzględną: $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|, \ \alpha \in \mathbb{R}$
 - Norma sumy dwóch macierzy jest **nie większa** od sumy ich norm. Warunek ten nazywany jest **nierównością trójkąta**. $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$,
- Norma Frobeniusa:

$$\|\mathbf{A}\|_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$$
 (5)

Odpowiada wektorowej normie dla p=2, jeżeli ułożymy kolumny (wiersze) macierzy **A** w jeden wektor.

Algorytmy iteracyjne (22) - indukowana norma macierzy

1 Rozpatrzmy macierz $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ i trzy wektory: $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^2$ o normie $\|\mathbf{a}_i\|_2 = 1$:

$$\bullet \ \mathbf{A} = \begin{bmatrix} 1 & 4 \\ -3 & 2 \end{bmatrix}$$

$$\bullet \ \mathbf{a}_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$$

$$\bullet$$
 $\mathbf{a}_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$

•
$$\mathbf{a}_2 = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}^T$$

• $\mathbf{a}_3 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$

•
$$\mathbf{a}_3 = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

2 Przemnażając wektory \mathbf{x}_i przez macierz \mathbf{A} , otrzymujemy:

•
$$\mathbf{b}_1 = \mathbf{A}\mathbf{x}_1 = \begin{bmatrix} 1 & -3 \end{bmatrix}^T$$

•
$$\mathbf{b}_2 = \mathbf{A}\mathbf{x}_2 = \begin{bmatrix} 3.53553 & -0.70711 \end{bmatrix}^T$$

•
$$\mathbf{b}_3 = \mathbf{A}\mathbf{x}_3 = \begin{bmatrix} 4 & 2 \end{bmatrix}^T$$

Normy wektorów y₁ wynoszą:

•
$$\|\mathbf{b}_1\|_2 = 3.1623$$

•
$$\|\mathbf{b}_2\|_2 = 3.6056$$

•
$$\|\mathbf{b}_3\|_2 = 4.4721$$

Algorytmy iteracyjne (23)

Trzy wektory: $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \in \mathbb{R}^2 \ (\|\mathbf{a}_i\|_2 = 1)$

Algorytmy iteracyjne (24)

Wektory a_1, a_2, a_3 przemnożone przez A:

Algorytmy iteracyjne (23)

Działanie macierzy **A** na okrąg jednostkowy (z wykorzystaniem 2-normy):

Algorytmy iteracyjne (24)

Działanie macierzy ${\bf B}=[1\ 4;\ -3\ -2]$ na okrąg jednostkowy (z wykorzystaniem 2-normy):

Algorytmy iteracyjne (25)

Działanie macierzy $\mathbf{C} \in \mathbb{R}^{3 \times 3}$ na *kulę* jednostkową (unit sphere)

Algorytmy iteracyjne (25)

Indukowana norma macierzy

$$\|\mathbf{A}\|_2 = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \neq 0}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$$
 (6)

 $\|\mathbf{A}\|_2$ jest to supremum wartości $\|\mathbf{A}\mathbf{x}\|_2/\|\mathbf{x}\|_2$ dla wszystkich wektorów \mathbf{x} z przestrzeni \mathbb{R}^n . Innymi słowy - jest to maksymalna wartość o jaką \mathbf{A} może rozciągnąć wektor \mathbf{x} .

Algorytmy iteracyjne (26) - dla AMBITNYCH

Korelacja między wektorem residuum a błędem rzeczywistym:

$$\frac{\|\mathbf{e}\|_{2}}{\|\mathbf{x}\|_{2}} \leq \|\mathbf{A}^{-1}\|_{2} \|\mathbf{A}\|_{2} \frac{\|\mathbf{r}\|_{2}}{\|\mathbf{b}\|_{2}}$$
 (7)

gdzie $\kappa = \|\mathbf{A}^{-1}\|_2 \|\mathbf{A}\|_2$ jest współczynnikiem uwarunkowania macierzy (condition number of a matrix) \mathbf{A} i ma wartość nie mniejszą, niż 1. Jeżeli znamy współczynnik uwarunkowania oraz residuum w danej iteracji, możemy z dużą dokładnością oszacować wartość normy wektora błędu \mathbf{e} .

Algorytmy iteracyjne (26) - dla AMBITNYCH

Korelacja między wektorem residuum a błędem rzeczywistym:

$$\frac{\|\mathbf{e}\|_{2}}{\|\mathbf{x}\|_{2}} \leq \|\mathbf{A}^{-1}\|_{2} \|\mathbf{A}\|_{2} \frac{\|\mathbf{r}\|_{2}}{\|\mathbf{b}\|_{2}}$$
(8)

Algorytmy iteracyjne (28)

Dziękuję