1. Let function f be defined by the polynomial below:

$$f(x) = -2x^4 + 4x^3 - 3x^2 - 8x - 6$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
f(−x) •	$2x^4 - 4x^3 + 3x^2 + 8x + 6$
-f(x) ●	$-2x^4-4x^3-3x^2+8x-6$
-f(-x) ●	$2x^4 + 4x^3 + 3x^2 - 8x + 6$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x) 5	g(x)	h(x)
1	5	6	4
2	7	1	3
3	4	3	1
4	3	9	2
5	2	7	9
6	9	2	5
7	6	5	8
8	8	4	6
9	1	8	7

3. Evaluate g(4).

$$g(4) = 9$$

4. Evaluate $f^{-1}(2)$.

$$f^{-1}(2) = 5$$

5. By filling more rows of the table, it is possible to make function f odd. If that were done, what would be the value of f(-3)?

If function f is odd, then

$$f(-3) = -4$$

6. By filling more rows of the table, it is possible to make function h even. If that were done, what would be the value of h(-8)?

If function h is even, then

$$h(-8) = 6$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} + 1$$
$$p(-x) = -x^{2} + 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 + 1)$$

 $-p(-x) = x^2 - 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 8x - 5$$

a. Evaluate f(11).

step 1: multiply by 8 step 2: subtract 5

$$f(11) = 8(11) - 5$$
$$f(11) = 83$$

b. Evaluate $f^{-1}(11)$.

step 1: add 5 step 2: divide by 8

$$f^{-1}(x) = \frac{x+5}{8}$$
$$f^{-1}(11) = \frac{(11)+5}{8}$$
$$f^{-1}(11) = 2$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(3).

$$b(3) = 2$$

b. Evaluate $b^{-1}(8)$.

$$b^{-1}(8) = 7$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	-3	3	3	-3
-1	7	-7	-7	7
0	0	0	0	0
1	-7	7	7	-7
2	3	-3	-3	3

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.