Nota sobre a resolução de Sistema de Equações Lineares com R

Theo Antunes* Rafael de Acypreste[†]

17/01/2021

Contents

1	Equações a diferenças			1
	1.1	Equações lineares a diferenças de 1 ^a ordem		
		1.1.1	Equação homogênea	2
		1.1.2	Equação não homogênea	4
1.2	1.2	Equações lineares a diferenças de 2ª ordem		(
		1.2.1	Polinômio com duas raízes reais distintas	•
		1.2.2	Duas raízes iguais	1(
		1.2.3	Duas raízes complexas	1

1 Equações a diferenças

Para essa nota, precisaremos dos seguintes pacotes instalados e carregados:

```
library(tidyverse)
library(limSolve)
library(MASS)

options(scipen = 99)
```

^{*}Doutor em Economia pela Universidade de Brasília. Pode ser contatado em theosantunes@gmail.com.

 $^{^\}dagger Doutorando em Economia pela Universidade de Brasília. Pode ser contatado em rafaelde
acyprestemr@g mail.com.$

1.1 Equações lineares a diferenças de 1^a ordem

1.1.1 Equação homogênea

A equação homogênea é indicada pela forma a seguir, em que y_t é uma variável em função do tempo:

$$y_{t+1} + ay_t = 0 (1)$$

que pode ser resolvida conhecendo-se o valor inicial y_0 . Assim, temos:

$$y_1 = -ay_0$$

 $y_2 = -ay_1 = (-a)^2 y_0$
 \vdots
 $y_t = (-a)^t y_0$ (2)

Diante disso, podemos visualizar o comportamento de alguns exemplos, variando os sinais e os módulos:

```
## # A tibble: 6 x 7
    `a=3` `a=-3` `a=1` `a=-1` `a=0.5` `a=-0.5`
    <dbl> <dbl> <dbl> <dbl> <
                               <dbl>
                                        <dbl> <int>
            0.6 -0.2
## 1 -0.6
                        0.2 - 0.1
                                      0.1
## 2 1.8
            1.8 0.2
                        0.2 0.05
                                      0.05
                                                 2
## 3 -5.4
          5.4 -0.2 0.2 -0.025
                                      0.025
                                                 3
## 4 16.2
          16.2 0.2
                        0.2 0.0125
                                      0.0125
                                                 4
          48.6 -0.2 0.2 -0.00625 0.00625
## 5 -48.6
                                                 5
## 6 146.
           146.
                  0.2
                        0.2 0.00312 0.00312
                                                 6
```

que podemos manipular para o formato adequado e demonstrar os gráficos na figura abaixo.

Pode-se perceber que a dinâmica da função y(t) depende da constante a, com ponto de partida indicado pela condição inicial. Constantes positivas indicam trajetórias oscilatórias. Quando |a| < 1, a função converge para um equilíbrio y*=0 ao longo do tempo. Quando a=-1, a função é constante. Já com a=1, a função oscila entre $\pm y_0$. Por fim, quando |a|>1 a função não é convergente.

1.1.2 Equação não homogênea

Quando a equação a diferença está no formato $y_{t+1} + ay_t = g(t)$, em que g(t) é uma função qualquer que depende do tempo, a solução geral é dada pela solução da equação homogênea y_t^h e de uma solução particular y_t^p :

$$y_t = y_t^h + y_t^p \tag{3}$$

em que podemos encontrar a solução homogênea como na seção 1.1.1. A solução particular pode ser encontrada supondo uma equação arbitrária no formato da g(t) que satisfaz o equilíbrio do sistema, isto é, $y_{t+1} = y_t$.

1.1.2.1 g(t) é uma função constante: quando g(t) = b, uma alternativa é supor uma solução particular na forma de uma constante $y_t = \mu$, de modo que:

$$\mu + a\mu = b$$

$$(1+a)\mu = b$$

$$\mu = \frac{b}{1+a}$$
(4)

para $a \neq -1$ — nesse caso, podemos tentar uma solução do tipo $y*=\mu t$, de modo que $y_t^p=bt$. Portanto, a solução geral do sistema é:

$$y_t = (-a)^t y_0 + \frac{b}{1+a} \tag{5}$$

Diante disso, a dinâmica pode ser representada na Figura 1:

1.1.2.2 g(t) é um polinômio de grau n: quando $g(t) = b_0 + b_1 t$, uma alternativa é supor uma solução particular na forma de uma constante $y_t = \mu_0 + \mu_1 t$, de modo que:

$$\mu_{0} + \mu_{1}(t+1) + a[\mu_{0} + \mu_{1}t] = b_{0} + b_{1}t$$

$$[(1+a)\mu_{0} + \mu_{1}] + (1+a)\mu_{1}t = b_{0} + b_{1}t$$

$$\Leftrightarrow \qquad (6)$$

$$(1+a)\mu_{0} + \mu_{1} = b_{0}$$

$$(1+a)\mu_{1} = b_{1}$$

para $a \neq -1$ — nesse caso, podemos tentar uma solução de um polinômio de grau superior. Portanto, a solução geral do sistema é:

Figure 1: Elaboração própria.

$$y_t = (-a)^t y_0 + \mu_0 + \mu_1 t \tag{7}$$

Diante disso, a dinâmica pode ser representada na Figura 2.

Figure 2: Elaboração própria.

1.2 Equações lineares a diferenças de 2ª ordem

A equação geral a diferenças em segunda ordem é indicada pela forma a seguir, em que y_t é uma variável em função do tempo. Nesse caso, o problema de valor inicial demandará conhecer **duas** condições iniciais. Desta vez, as variáveis serão tratadas de maneiras defasadas, apenas para fins didáticos. Todo tratamento matemático continua o mesmo:

$$y_t + a_1 y_{t-1} + a_2 y_{t-2} = g(t) (8)$$

cuja solução ainda envolve encontrar uma solução para a equação homogênea e outra particilar. De toda forma, uma equação a diferenças de 2^a ordem pode ser resolvida por uma função do tipo λ^t , em que λ é uma constante que depende dos parâmetros da equação, conforme Gandolfo (2005). A equação homogênea é tal que:

$$\begin{split} \lambda_t + a_1 \lambda_{t-1} + a_2 \lambda_{t-2} &= 0 \\ \lambda_{t-2} (\lambda^2 + a_1 \lambda + a_2) &= 0 \end{split} \tag{9}$$

Para além da solução trivial $\lambda=0$, os valores possíveis de lambda demandam a resolução do polinômio característico da equação $\lambda^2+a_1\lambda+a_2=0$. Pode-se ter, portanto, três situações:

- 1. Duas raízes reais distintas ($\Delta > 0$);
- 2. Duas raízes reais iguais ($\Delta = 0$); ou
- 3. Duas raízes complexas ($\Delta < 0$).

Em que $\Delta = \sqrt{a_1^2 - 4a_2}$ se dá na na seguinte fórmula:

$$\lambda_1, \lambda_2 = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2}}{2} = \frac{-a_1 \pm \sqrt{\Delta}}{2} \tag{10}$$

1.2.1 Polinômio com duas raízes reais distintas

No caso de duas raízes reais distintas, a solução geral é formada por:

$$y(t) = A_1 \lambda_1^t + A_2 \lambda_2^t + y_t^p \tag{11}$$

As condições de estabilidade dependem da análise dos dois valores de λ . Os casos podem ser:

- 1. Trajetória amortecida: $|\lambda_1| < 0$ e $|\lambda_2| < 0$;
- 2. Trajetória explosiva: $|\lambda_1| > 0$ ou $|\lambda_2| > 0$.

Por fim, a trajetória será oscilatória se $\lambda_1<0$ ou $\lambda_2<0$ (rever, porque se o termo negativo for convergente, pode ter problema). Alguns exemplos podem ser vistos na Figura 3.

1.2.1.1 Cálculo das raízes e das constantes O processo de cálculo das raízes do polinômio característico e das constantes podem ser calculados de maneira automatizada. Como exemplo, podemos resolver a equação $y_t-3y_{t-1}+2y_{t-2}=0$, com as seguintes condições iniciais: $y_0=2\ e\ y_1=3$.

Em primeiro lugar, cria-se uma tabela com o vetor de resultados da equação diferencial (já com os valores dados) e de tempo:

Figure 3: Elaboração própria.

```
y <- tibble(y = rep(0,20),

t = 1:20)

y[1,"y"] <- 2 # y_0

y[2,"y"] <- 3 # y_1

head(y,3)
```

```
## # A tibble: 3 x 2
## y t
## <dbl> <int>
## 1 2 1
## 2 3 2
## 3 0 3
```

Em seguida, pode-se resolver o polinômio característico:

```
a_0 <- 1
a_1 <- -3
a_2 <- 2
coeficientes <- c(a_2,a_1,a_0)

raizes <- polyroot(coeficientes)
raizes <- Re(raizes)
raizes# imprime a parte real (parte imaginária = 0)</pre>
```

[1] 1 2

Já as constantes arbitrárias podem ser determinadas, considerando as condições iniciais dadas, pelo seguinte sistema de equações:

$$A_{1} + A_{2} = y_{0}$$

$$A_{1}\lambda_{1} + A_{2}\lambda_{2} = y_{1}$$

$$\vdots$$

$$\begin{bmatrix} 1 & 1 \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \begin{bmatrix} A_{1} \\ A_{2} \end{bmatrix} = \begin{bmatrix} y_{0} \\ y_{1} \end{bmatrix}$$

$$\begin{bmatrix} A_{1} \\ A_{2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \lambda_{1} & \lambda_{2} \end{bmatrix}^{-1} \begin{bmatrix} y_{0} \\ y_{1} \end{bmatrix}$$

$$(12)$$

que pode ser resulvido no \mathbf{R} por:

```
matriz <- matrix(c(1,raizes[1],1,raizes[2]),ncol = 2)
iniciais <- c(2,3)</pre>
```

```
cte <- solve(Re(matriz))%*%iniciais
cte</pre>
```

```
## [,1]
## [1,] 1
## [2,] 1
```

Por fim, pode-se representar graficamente por:

Figure 4: Elaboração própria.

1.2.2 Duas raízes iguais

Para o caso de $\Delta=0$, têm-se duas raízes reais iguais tais que $\lambda_1=\lambda_2=\frac{-a_1}{2}$. Nesse caso, pode-se tentar uma solução do tipo

$$y(t) = A_1 \lambda^t + A_2 t \lambda^t + y_t^p \tag{13}$$

Nesse caso, a condição para a estabilidade é que $|\lambda|<1$. Ademais, se $\lambda<0$, a trajetória será oscilatória. Os gráficos podem ser feitos de maneira semelhante ao caso de duas raízes reais distintas.

1.2.3 Duas raízes complexas

Quando $\Delta < 0$, as raízes são dadas por um par de números complexos conjugados na forma c + di, em que $c, d \in \mathbb{R}$. A solução pode ser escrita por:

$$y(t) = A'(c+di)^{t} + A''(c+di)^{t} + y_{t}^{p}$$
(14)

Note também que um número complexo pode ser reescrito como $r(\cos \omega + i \sin \omega)$, em que $r \cos \omega = c$, $r \sin \omega = d$ e $r^2 = c^2 + d^2$. Tem-se, após manipulações explicadas em Gandolfo (2005), que o sistema pode ser resolvido na forma:

$$y(t) = r^t (A_1 \cos \omega t + A_2 \operatorname{sen} \omega t) + y_t^p \tag{15}$$

de onde o sistema será estável se |r|<1. Como $r^2=a_2$, a condição de estabilidade também pode ser tomada como $a_2<1$. Vale notar que sempre haverá ciclos. Como exemplo, pode-se resolver a equação $y_t-\sqrt{3}y_{t-1}+y_{t-2}=0$ por:

```
y \leftarrow tibble(y = rep(0,100),
             t = 1:100)
y[1,"y"] <- 0
               # y_0
y[2,"y"] \leftarrow 100 \# y_1
a 0 <- 1
a_1 <- -sqrt(3)
a 2 <- 1
coeficientes <- c(a_2,a_1,a_0)
raizes <- polyroot(coeficientes)</pre>
r <- Mod(raizes[1])
omega <- Arg(raizes[1])</pre>
A 1 <- v[1, "v"]
A_2 \leftarrow (y[2,"y"]-r*y[1,"y"]*cos(omega))/(r*sin(omega))
for(t in 3:100){
  y[t,"y"] <- r^t*(A_1*cos(omega*t) + A_2*sin(omega*t))
}
#Gráfico
```


Figure 5: Elaboração própria.

References

Gandolfo, G. (2005). Economic Dynamics. Springer US, New York - USA, study edition.