Notes and exercises from Abstract Algebra

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter I

Section 4

In addition to Propositions 4.9 and 4.10, the following is useful (see for example the proof of Theorem II.9.12):

Proposition. Let G be a group, $N \subseteq G$ and $N \subseteq H, K \subseteq G$. Then H and K are conjugate in G if and only if H/N and K/N are conjugate in G/N.

Chapter II

Section 5

The argument used in the proof of Proposition 5.10 is essentially Frattini's:

Proposition (Frattini). *Let* G *be a finite group,* $H \subseteq G$, and P a Sylow p-subgroup of H. Then $G = HN_G(P)$.

Proof. If $g \in G$, then $gPg^{-1} \subseteq gHg^{-1} = H$ since $P \subseteq H \subseteq G$. But gPg^{-1} is also a Sylow p-subgroup of H, and all Sylow p-subgroups of H are conjugate in H (Theorem 5.7), so there is $h \in H$ with

$$hgP(hg)^{-1} = h(gPg^{-1})h^{-1} = P$$

Therefore $hg \in N_G(P)$, $g \in HN_G(P)$, and $G = HN_G(P)$.

The key observation is that since all conjugates of P in G are contained in H, they are also conjugate in H. Proposition 5.10 follows as a corollary:

Corollary. Let G be a finite group, P a Sylow p-subgroup of G, and $N_G(P) \subseteq H \subseteq G$. Then $N_G(H) = H$.

Proof. Note $N_G(H)$ is finite, $H \subseteq N_G(H)$, and P is a Sylow p-subgroup of H, so $N_G(H) = HN_{N_G(H)}(P) \subseteq HN_G(P) \subseteq HH = H$ by Frattini.

Section 9

Remark. In the proof of Lemma 9.11, $G = N \times A = N \times B$ (Proposition 11.2). In particular, each $b \in B$ can be expressed uniquely in $N \times A$ in the form b = ua with $u \in N$ and $a \in A$. Then $u = u_a$ in Grillet's notation, and $u_{aa'} = u_a(au_{a'}a^{-1})$ follows from the multiplication rule in $N \times A$. In this way, N acts as a "bridge" between A and B.

Section 10

Commutator subgroups satisfy the following universal mapping property:

Proposition. Let G be a group, $H \subseteq G$, and K = [G, H] the subgroup of G generated by commutator elements $[x, y] = xyx^{-1}y^{-1}$ with $x \in G$ and $y \in H$. Then $K \subseteq G$. If $\pi : G \to G/K$ is the canonical projection, then $\pi(H) \subseteq Z(\pi(G))$, and if $\varphi : G \to L$ is a homomorphism with $\varphi(H) \subseteq Z(\varphi(G))$, then φ factors uniquely through π ; that is, there exists $\psi : G/K \to L$ unique such that $\varphi = \psi \circ \pi$:

Proof. By the universal mapping property for quotient groups (Theorem I.5.1), since $K \subseteq \ker \varphi$.

This is a generalization of the universal mapping property noted in Section 9, where H = G (see Proposition 9.1 and Exercise 9.7). It is implicit in the proofs of Propositions 10.1 and 10.3.

Chapter IV

Section 5

Remark. In Proposition 5.1(2), if *K* is finite then m = 0 and *q* is separable.

References

[1] Grillet, Pierre A. Abstract Algebra, 2nd ed. Springer, 2007.