rp-过程几个相关核素的半衰期测量

苏俊

2011-10

合作单位: 原子能院

近物所

北京大学

快速质子俘获(rp-)过程

快速质子俘获(rp-)过程是发生在丰质子核区的爆发性氢燃烧过程, rp-过程与r过程、s过程是宇宙中⁵⁶Fe以上元素产生的主要路径。rp-过程主要发生在以下天体环境中:

rp-过程路径

Experimental data?

- Mass known < 10 keV</p>
- Mass known > 10 keV
- Only half-life known
- seen

rp-过程涉及大量丰质子不稳

定核素。需要测量的物理量包括:

质量(质子分离能)

β衰变半衰期

质子俘获反应率

≥ 创新群体2011年度会议

实验目标

在中科院近代物理研究所RIBLL束流线上,通过⁵⁸Ni(⁵⁸Ni, x)反应产生Ni附近丰质子核素,对其半衰期进行测量。

								1 1			l	i 1				17 + N
Cu(Z=29)				49	50	51	52 ?	53 3.0 ⁻⁷	54 7.5 ⁻⁸	55 2.0 ⁻⁷	56 1.0 ⁻²	57 2.0 ⁻¹	58 3.2	59 8.2 ¹		
Ni(Z=28)			47	48	49 3.5 ⁻⁷	50 8.0 ⁻³	51 9.0-3	52 2.0-2	53 4.5 ⁻²	54 1.0 ⁻¹	55 1.9 ⁻¹	56 5.3 ⁵	57 1.3 ⁵	58 s		
Co(Z=27) 45			46	47	48 ?	49 3.5 ⁻⁸	50 1.0 ⁻²	51 2.0 ⁻²	52 2.0 ⁻²	53 2.6 ⁻¹	54 7.5-1	55 6.3 ⁴	56 6.8 ⁶	57 2.3 ⁷		
	Fe(Z=2	26)	43	44	45 3.5 ⁻⁷	46 1.0 ⁻²	47 1.0 ⁻²	48 3.0 ⁻²	49 7.5 ⁻²	50 1.0 ⁻¹	51 2.5 ⁻¹	52 3.0 ⁴	53 5.1 ²	54 9.8 ²⁹	55 8.5 ⁷	56 s
Mn(Z=	25)	41	42	43	44 1.1-7	45 7.0-8	46 1.5-2	47 3.0-2	48 3.0-2	49 3.8-1	50 7.6-1	51 2.8 ³	52 6.8 ⁴	53 1.2 ¹⁴	54 2.7 ⁷	55 s
=24)	39	40	41	42 1.5 ⁻²	43 1.5 ⁻²	44 3.0 ⁻²	45 5.0 ⁻²	46 2.6 ⁻¹	47 4.6 ⁻¹	48 7.84	49 2.5 ³	50 5.7 ²⁴	51 2.4 ⁶	52 s	53 s	54 s
37	38	39	40 ?	41 ?	42 1.5 ⁻²	43 3.5 ⁻²	44 9.0-2	45 4.0-1	46 4.2-1	47 2.0 ³	48 1.4 ⁶	49 2.9 ⁷	50 4.4 ²⁴	51 s	52 2.3 ²	53 9.6 ¹
					_				, I	$^{\prime}$						

测量方法

58Ni(58Ni, x)反应产生丰质子核素

RIBLL束流线对核素进行选择

 Δ E-TOF对核素鉴别

核素注入到DSSSD探测器中

核素衰变放出轻粒子

DSSSD对轻粒子进行测量

RIBLL束流线设置

动量接收度: 0.49%

磁铁优化在53Ni上

实验测量设置

DE-TOF鉴别重粒子 DSSSD探测重粒子注入位置、衰变放出的轻粒子 获取系统给每个粒子事件打时间标签,根据时间差得到半衰期

创新群体2011年度会议

注入深度模拟

Range distribution in DSSSD

 58 Ni (68.6 MeV/u) + Ni (147 μm),C (2e-2 mg/cm²); Settings on 53 Ni $^{28+}$ $^{28+}$ $^{28+}$ $^{28+}$; Config: DSWMDMDMMMMMMM dp/p=0.10%; Wedges: Al (314 μm); Brho(Tm): 2.0483, 1.8145, 1.8038, 1.7942

创新群体2011年度会议

T2靶室

衰变探测装置

ΔE-TOF刻度(58Ni主束)

DSSSD能量刻度

²⁴¹Am α源

²⁰⁷Bi β源

Clover能量刻度

特征γ射线刻度

数据处理方法

从ΔE-TOF谱上鉴别出重粒子

在重粒子后3000ms内找轻粒子

根据DSSSD注入位置减小干扰

 $T=T_b-T_h$ 得到衰变时间谱

拟合得到半衰期

△E-TOF粒子鉴别

重离子卡门

拟合公式

拟合公式: $A=A_0e^{-\lambda t}+B$

50Mn、51Fe衰变时间谱

52Co、53Co衰变时间谱

53Ni、54Ni衰变射间谱

结果与现有数据的比较

Isotopo	$T_{1/2}$	$_{2}$ (ms)			
Isotope	Present Work	NNDC			
⁵³ Ni	52±9	$55\pm0.7^{\mathrm{a}}$			
⁵⁴ Ni	111±7	104 ± 7			
⁵² Co	108±5	115 ±23			
⁵³ Co	240 ± 11	$240\pm9^{b}\ 247\pm12^{c}$			
⁵¹ Fe	295 ± 4	305 ± 5			
50 Mn	287 ± 6	283.3 ± 0.08			

a: 来源于 NPA792(2007)18

b: 53Co基态半衰期

c: ⁵³Co的3.19MeV同质异能态半衰期

误差来源

Tantono	T (ms)	误差来源(ms)						
Isotope	T _{1/2} (ms)	拟合	本底	卡门	BIN宽			
⁵³ Ni	52±9	7		0.4	5			
⁵⁴ Ni	111±7	5.9	1	0.5	3			
⁵² Co	108±5	4.2	1	0.5	3			
⁵³ Co	240±11	10	2.5	1	4			
⁵¹ Fe	295±4	3.7	0.6	0.2	1.3			
50 Mn	287 ± 6	5.3	2	0.5	0.5			

53Ni β延迟质子能谱

Present

$$I_p = 20 \pm 2\%$$

NPA 792(2007)18

$$I_p = 23.4 \pm 1\%$$

γ探测结果-52Co

NPA 613(1997)183

Table 3
Gamma rays assigned to the isotope ⁵²Co

E_{γ} (keV)	I_{γ} (%)
849.43 ± 0.10	100
1328.95 ± 0.25	63 ± 7
1535.27 ± 0.15	69 ± 6
1941.65 ± 0.40	46 ± 10
	Average

总结

▶ 利用中科院近物所RIBLL束流线产生了⁵³Ni等rp-过程相关核素,注入到 DSSSD探测器中对其衰变产生的轻粒子进行了测量,得到了这些核素 的半衰期,结果与现有数据符合,其中⁵²Co测量精度有所提高;

利用DSSSD测量到了⁵³Ni β延迟发射质子,能谱和质子衰变分支比与现有数据符合,利用CLOVER探测器测量到了部分核素的特征γ射线;

》 掌握了衰变测量实验技术以及数据分析方法,为下一步在国外(如日本理化研究所、法国GANIL)大型装置上开展此类实验打下了基础;

特别感谢

γ探测结果

束流在DSSSD上的分布

本底-58Ni衰变时间谱

