Object Detection

——From RCNN to Faster-RCNN

Zhengxia Zou 10/14/2018

- Background
- RCNN
- SPPNet
- Fast-RCNN
- Faster-RCNN

Background

What is 'Object Detection'?

- -- Object bounding box: location and size
- -- Object category.

@NIPS15-Faster RCNN

发展历程

RCNN

R-CNN: Regions with CNN features (arXiv13, CVPR14)

Ross B. Girshick

R-CNN: Regions with CNN features

- Object Proposal+CNN features
- BB Reg.
- Fine tuning
- VOC07 mAP: $33.7 \rightarrow 58.5$

Time:

14s/image on a GPU

RCNN

R-CNN: Regions with CNN features (arXiv13, CVPR14)

- 训练是多阶段的,很繁琐;
- 训练耗时,占用的磁盘空间过大,特征文件动辄 几百**G**;
- 计算冗余(2000+候选区域), GPU每帧14s。

SPPNet: Spatial Pyramid Pooling (arXiv14, ECCV14)

Kaiming He et al.

• 共享计算

@He-eccv2014

- SPP→Roipooling (Fast和Faster 的基础)
- Fine tuning时只对全连接微调
- VOC07 mAP: $58.5 \rightarrow 59.2$

Time:

0.38s/image on a GPU

Regions on Feature Maps

image region

- Fixed-length features are required by fully-connected layers or SVM
- But how to produce a fixed-length feature from a feature map region?
- Solutions in traditional compute vision: Bag-of-words, SPM...

warp

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition". ECCV 2014.

@He-iccv2015 tutorial

Bag-of-words & Spatial Pyramid Matching

SIFT/HOG-based feature maps

figure credit: S. Lazebnik et al.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition". ECCV 2014.

SPPNet: Spatial Pyramid Pooling (arXiv14, ECCV14)

SPPNet: Spatial Pyramid Pooling (arXiv14, ECCV14)

- 训练依然是多阶段的;
- SPPNet在微调网络时,固定了卷积层的参数,只 对全连接层进行了微调。

Fast RCNN

Fast R-CNN (arXiv15, ICCV15)

Ross B. Girshick

@RBG-ICCV2015

- ROI Pooling
- Multi-task loss (Clc. + BB Reg.) Time:
- BP through RoI pooling layers
- VOC07 mAP: $58.5 \rightarrow 70.0$

0.32s/image on a GPU

Fast RCNN

Fast R-CNN (arXiv15, ICCV15)

- 不是端到端处理过程
- 需要事先使用Selective Search或Edge Boxes来提取目标后选框(速度瓶颈)。

Faster R-CNN (arXiv15, NIPS15)

Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun

- Region Proposal Network
- Detection Network
- Sharing Features
- VOC07 mAP: $70.0 \rightarrow 78.8$

Time: 17 fps on a GPU

@RBG-NIPS2015

Faster R-CNN (arXiv15, NIPS15)

Shaoqing Ren, Kaiming He, Ross B. Girshick, Jian Sun

Fast R-CNN 如何处理RPN中的多尺度问题?

Anchors (Multi-reference Detection)

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

Faster R-CNN (arXiv15, NIPS15)

- 没有结合多尺度特征
- 没有结合Context info
- Roi-pooling时仍然有计算冗余!

目标检测中的关键技术——多尺度检测

为了检测不同大小、不同长宽比的目标,早期算法大多采用"特征金字塔+滑窗",后期发展出一系列效率更高的方法。

自然图像目标检测算法多尺度检测方式一览

目标检测中的关键技术——包围框回归

包围框回归经历了从无到有,从"锦上添花,可有可无"到最后"必不可少,与模型融为一体"的发展历程。

弱										▶ 强	
	 VJ	HOG Detr.	DPM	RCNN	SPP /Fast	 Faster	YOLO	SSD	FPN	Retina -Net	
	2001	2006	2008	2013	2014	2015	2015	2015	2016	2017	
方式	 - 无包围框回归 -		包围框 →包围框								
 次数 			 単次 	 単次 	 単次 		 単次 	 単次 	 多次 	 単次 	
 效果			锦上添花,可有可无			必不可少,与模型融为一体					

自然图像目标检测中包围框回归发展一览

目标检测中的关键技术——加速策略

手工特征时期(早期)的算法的加速策略丰富多样,而深 度学习时期(后期)的加速模式较为固定。

	 VJ	HOG Detr.	DPM	RCNN	 SPP /Fast	 Faster 	YOLO	SSD	FPN	Retina -Net
	2001	2006	2008	2013	2014	2015	2015	2015	2016	2017
积分图特征	/	· •	×	*	×	×	×	×	×	X
Cascades	~	~	~	×	×	×	×	×	×	×
决策树	✓	/	✓	×	×	×	×	×	×	×
特征图共享	~	i •	/	*	/	/	~	✓	✓	i
一体化检测	/	 	/	 X	X	X	/	V	×	

自然图像目标检测算法加速策略一览