Série 9 (Corrigé)

Exercice 1

(a) Soit A une matrice 5×6 . Si dim Ker (A) = 3, quel est le rang de A?

Sol.: On considère l'application linéaire associée: $\mathbb{R}^6 \to \mathbb{R}^5$. Le théorème du rang donne

$$\operatorname{rg}(A) + \dim \operatorname{Ker}(A) = 6 \Rightarrow \operatorname{rg}(A) = 3.$$

(b) Soit A une matrice 7×3 . Quel est le rang maximum de A? Quelle est la dimension minimum de Ker (A)? Même question si A est une matrice 3×7 .

Sol.:

Si A est de taille 7×3 , alors $\operatorname{rg}(A) + \dim \operatorname{Ker}(A) = 3$. Le rang maximum est 3 et la dimension minimum du noyau est 0.

Si A est de taille 3×7 , le rang maximum est 3. Comme $\operatorname{rg}(A) + \dim \operatorname{Ker}(A) = 7$, la dimension minimale du noyau est 4.

- (c) Soit A une matrice $n \times n$. Donner une condition sur rg (A) pour que A^T soit inversible? **Sol.:** A^T est inversible $\Leftrightarrow A$ est inversible \Leftrightarrow rg (A) = n.
- (d) Soit $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}^3$ une transformation linéaire telle que $\mathcal{T} \circ \mathcal{T} \circ \mathcal{T} = \mathcal{I}_3$ (application identité). Quelle est la dimension de Ker \mathcal{T} ?

Sol.: On a

$$3 = \operatorname{rg}(\mathcal{I}_3) = \operatorname{rg}(\mathcal{T} \circ \mathcal{T} \circ \mathcal{T}).$$

Ainsi, Ker $(\mathcal{T} \circ \mathcal{T} \circ \mathcal{T}) = \{0\}$. Comme

$$v \in \text{Ker}(\mathcal{T}) \Rightarrow v \in \text{Ker}(\mathcal{T} \circ \mathcal{T} \circ \mathcal{T})$$

on obtient dim Ker $(\mathcal{T}) = 0$.

Exercice 2

Soit
$$B = \{b_1, b_2\}$$
 et $C = \{c_1, c_2\}$ deux bases de \mathbb{R}^2 . On suppose $b_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, c_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, c_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.

(a) Donner la matrice de changement de base (matrice de passage) de la base C vers la base B.

Sol.: Par définition, $P_{B\leftarrow C}$ est la matrice dont les colonnes sont les coordonnées de c_1 et c_2 dans la base B. Ainsi, $P_{B\leftarrow C}$ est la solution de

$$(b_1, b_2)P_{B \leftarrow C} = (c_1, c_2).$$

Pour résoudre ce système linéaire, on réduit la matrice (b_1, b_2) augmentée avec les vecteurs c_1 et c_2 :

$$(b_1 \quad b_2|c_1 \quad c_2) = \begin{pmatrix} 3 & 1 & 4 & 4 \\ 2 & 1 & 3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 4 \\ 0 & 1 & 1 & -8 \end{pmatrix}.$$

Ainsi, la matrice de passage cherchée est $P_{B\leftarrow C} = \begin{pmatrix} 1 & 4 \\ 1 & -8 \end{pmatrix}$.

(b) Donner la matrice de changement de base (matrice de passage) de la base B vers la base C.

Sol.: On a $P_{C \leftarrow B} = P_{B \leftarrow C}^{-1}$, d'où la matrice cherchée $P_{C \leftarrow B} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{12} & -\frac{1}{12} \end{pmatrix}$.

(c) Si $v \in \mathbb{R}^2$ est tel que $[v]_B = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, calculer $[v]_C$.

Sol.:
$$[v]_C = P_{C \leftarrow B} \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ \frac{1}{4} \end{pmatrix}$$
.

(d) À présent, si $[v]_C = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$ calculer $[v]_B$.

Sol.:
$$[v]_B = P_{B \leftarrow C} \begin{pmatrix} 9 \\ 1 \end{pmatrix} = \begin{pmatrix} 13 \\ 1 \end{pmatrix}$$
.

Exercice 3

(a) Montrer que les matrices $A = \begin{pmatrix} 1 & 3 & 4 & 0 \\ 0 & 1 & 2 & 4 \\ 1 & 2 & 0 & 3 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & 0 & -19 \\ 0 & 1 & 0 & 11 \\ 0 & 0 & 1 & -\frac{7}{2} \end{pmatrix}$ sont équivalentes.

Sol.: En réduisant la matrice A par des opérations élémentaires sur les lignes, on obtient la matrice B.

(b) Calculer $\operatorname{rg}(A)$, $\dim \operatorname{Ker}(A)$, $\operatorname{rg}(B)$, $\dim \operatorname{Ker}(B)$.

Sol.: La matrice B est sous forme échelonnée réduite, on peut donc lire $\operatorname{rg}(B) = 3$ (trois pivots) et $\dim \operatorname{Ker}(B) = 1$. Comme A et B sont équivalentes d'après a), on a $\operatorname{rg}(A) = \operatorname{rg}(B) = 3$ et $\dim \operatorname{Ker}(A) = \dim \operatorname{Ker}(B) = 1$.

2

(c) Trouver une base de Ker(A) et Ker(B).

Sol.: Comme B est la forme échelonnée réduite de A, on a $\operatorname{Ker}(A) = \operatorname{Ker}(B)$, et une base de $\operatorname{Ker}(A)$ est aussi une base de $\operatorname{Ker}(B)$. $\operatorname{Ker}(B)$ est l'espace des solutions

de
$$Bx = 0$$
, de dimension 1. On obtient ainsi la base $\left\{ \begin{pmatrix} 19 \\ -11 \\ \frac{7}{2} \\ 1 \end{pmatrix} \right\}$.

Exercice 4

Soit A une matrice de taille $m \times n$ et B une matrice de taille $n \times p$ telles que

$$\operatorname{Ker}(A) \cap \operatorname{Col}(B) = \{0\}.$$

Soit $\mathcal{B} = \{b_1, \dots, b_k\}$ une base de $\operatorname{Col}(B)$. Montrer que $\{Ab_1, \dots, Ab_k\}$ est une base de $\operatorname{Col}(AB)$.

Sol.: Méthode 1: Soit $T_A : \mathbb{R}^n \to \mathbb{R}^m$ l'application linéaire associée à la matrice A. On considère la restriction $T_{A_{|Col(B)}}$ au sous-espace Col(B):

$$T_{A_{|\operatorname{Col}(B)}}:\operatorname{Col}(B)\to\mathbb{R}^m$$

Comme Ker $(A) \cap \operatorname{Col}(B) = \{0\}$, cette application est injective. De plus l'image de cette application est $T_A(\operatorname{Col}(B)) = \operatorname{Col}(AB)$. L'application T_A réalise donc une bijection entre $\operatorname{Col}(B)$ et $\operatorname{Col}(AB)$. Par conséquent, la matrice A transforme toute base de $\operatorname{Col}(B)$ en une base de $\operatorname{Col}(A)$.

Méthode 2: Montrons d'abord que la famille $\{Ab_1, \dots, Ab_k\}$ est indépendante. Soit $c_1, \dots, c_k \in \mathbb{R}$ tels que

$$c_1Ab_1 + c_2Ab_2 + \dots + c_kAb_k = 0$$

$$alors \ A(c_1b_1 + \dots + c_kb_k) = 0$$

$$ainsi \ c_1b_1 + \dots + c_kb_k \in \text{Ker} (A).$$

Or le vecteur $c_1b_1 + \cdots + c_kb_k$ appartient à $\operatorname{Col}(B)$ comme combinaison linéaire des $b_j \in \operatorname{Col}(B)$. Mais $\operatorname{Ker}(A) \cap \operatorname{Col}(B) = \{0\}$, ainsi $c_1b_1 + \cdots + c_kb_k = 0$. \mathcal{B} étant une base, \mathcal{B} est indépendante, d'où $c_1 = c_2 = \ldots = c_k = 0$.

Montrons maintenant que la famille $\{Ab_1, \dots, Ab_k\}$ engendre Col(AB). Soit $x \in Col(AB)$. Il existe $y \in \mathbb{R}^p$ tel que x = ABy. Comme $By \in Col(B)$, on peut décomposer le vecteur By dans la base \mathcal{B} : il existe des scalaires $\alpha_1, \dots, \alpha_k$ tels que

$$By = \alpha_1 b_1 + \dots \alpha_k b_k.$$

Ensuite, on a:

$$x = ABy = A(\alpha_1b_1 + \dots + \alpha_kb_k) = \alpha_1Ab_1 + \dots + \alpha_kAb_k.$$

Tout vecteur $x \in \text{Col}(AB)$ peut donc se décomposer comme combinaison linéaire de Ab_1, \dots, Ab_k . La famille $\{Ab_1, \dots, Ab_k\}$ est donc une base.

Exercice 5

Soit
$$B = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$$

(a) Vérifier que B est une base de \mathbb{P}_2 .

Sol.: Écrivons la matrice dont les colonnes sont les coordonnées des vecteurs de B dans la base canonique $\{1, t, t^2\}$:

$$P = \left(\begin{array}{ccc} 1 & 2 & 1\\ 0 & 1 & 2\\ -3 & -5 & 0 \end{array}\right).$$

Cette matrice de déterminant 1 est inversible. Les trois vecteurs de B sont linéairement indépendant et la dimension de \mathbb{P}_2 est 3. Par conséquent, B est une base. Cette matrice est en fait la matrice de passage de la base B vers la base canonique.

(b) Déterminer la matrice de passage de la base B vers la base canonique $\{1, t, t^2\}$.

Sol.: La matrice P du a).

(c) Écrire t^2 comme combinaison linéaire des vecteurs de B.

Sol.: Les coordonnées de t^2 dans la base canonique sont $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Par définition de la

 $matrice\ de\ passage\ P\ du\ b),\ les\ coordonn\'ees\ de\ t^2\ dans\ la\ base\ B\ sont\ donc\ la\ solution\ du\ système$

$$P\left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right).$$

On résout: x = 3, y = -2, z = 1.

Exercice 6

Montrer que la dimension de \mathbb{P} (espace des polynômes à coefficients réels) est infinie.

Sol.: Méthode 1: L'espace \mathbb{P} contient le sous-espace \mathbb{P}_n de dimension n pour tout n. Par conséquent, la dimension de \mathbb{P} est plus grande ou égale à n pour tout n donc infinie.

Méthode 2: Supposons par l'absurde que la dimension de \mathbb{P} soit finie, égale à n. Il existe une base $\{p_1, p_2, \cdots, p_n\}$. Soit $M = \max_{i=1,\dots,n} deg(p_i)$ le maximum des degrés des polynômes de cette base. On constate que le polynôme t^{M+1} n'est pas une combinaison linéaire des p_1, \dots, p_n , ainsi $t^{M+1} \notin \mathbb{P}$ d'où la contradiction.

4

Exercice 7

On considère la matrice $A=\left(\begin{array}{ccc} -15 & 1 & -9\\ 0 & 6 & 0\\ 4 & 1 & 3 \end{array}\right).$

(a) Est-ce que $\lambda = 6$ est une valeur propre de A?

Sol.: En calculant A-6I, on obtient une matrice dont la seconde ligne est nulle, donc une matrice non-inversible. Par conséquent, $Ker(A-6I) \neq \{0\}$ et 6 est une valeur propre.

(b) Même questions avec $\lambda = 1$ et $\lambda = -9$.

Sol.: On calcule:

$$A - I = \begin{pmatrix} -16 & 1 & -9 \\ 0 & 5 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \qquad A + 9I = \begin{pmatrix} -6 & 1 & -9 \\ 0 & 15 & 0 \\ 4 & 1 & 12 \end{pmatrix}.$$

Le déterminant de ces matrices (en développant par rapport à la seconde ligne) sont respectivement $5 \cdot (-16 \cdot 2 + 4 \cdot 9)$ et $15 \cdot (-6 \cdot 12 + 4 \cdot 9)$. Ils sont non nuls, par conséquent, ces matrices sont inversibles, et ni 1 ni -9 ne sont des valeurs propres.

Exercice 8

Soit

$$A = \begin{pmatrix} 4 & 1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & 2 \\ 0 & 4 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} -1 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{pmatrix},$$

$$et E = \begin{pmatrix} 3 & 2 & 1 & 0 \\ 0 & 4 & 17 & 1 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Calculer le polynôme caractéristique, les valeurs propres et les vecteurs propres de chacune de ces matrices A, B, C, D, E.

Sol.:

- A. Le polynôme caractéristique de A est $\lambda^2 5\lambda + 5$. Les valeurs propres de A sont $\left\{\frac{5+\sqrt{5}}{2}, \frac{5-\sqrt{5}}{2}\right\}$. Les vecteurs propres correspondants sont $\left\{\begin{pmatrix} \frac{-3-\sqrt{5}}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} \frac{-3+\sqrt{5}}{2} \\ 1 \end{pmatrix}\right\}$.
- B. Le polynôme caractéristique de B est $(\lambda 4)^2$. Les valeurs propres de B sont $\{4,4\}$. (Il y a une seule valeur propre 4 de multiplicité 2). Vecteurs propres correspondants: $\left\{\begin{pmatrix}1\\0\end{pmatrix}\right\}$.

Remarque: L'espace propre est de dimension seulement 1 alors que la valeur propre est de multiplicité 2: la matrice n'est pas diagonalisable.

C. Le polynôme caractéristique de C est $(\lambda - 4)(\lambda - 1)^2 = \lambda^3 - 6\lambda^2 + 9\lambda - 4$. Les valeurs propres de C sont $\{4, 1, 1\}$ c-à-d les coefficients diagonaux de la matrice triangulaire.

5

Les vecteurs propres correspondants sont $\left\{ \begin{pmatrix} -3\\2\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$.

D. Le polynôme caractéristique de D est $-\lambda^3 + 36\lambda = -\lambda(\lambda + 6)(\lambda - 6)$. Les valeurs propres de C sont donc $\{-6,0,6\}$. Les vecteurs propres correspondants sont

$$\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$$

E. Le polynôme caractéristique de E est $(\lambda-3)(\lambda-4)(\lambda-1)(\lambda-2) = \lambda^4 - 10\lambda^3 + 35\lambda^2 - 50\lambda + 24$. Les valeurs propres de E sont $\{3,4,1,2\}$ c-à-d les coefficients diagonaux de la matrice triangulaire. Les vecteurs propres correspondants sont

$$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 31\\-34\\6\\0 \end{pmatrix}, \begin{pmatrix} 113\\-60\\7\\1 \end{pmatrix} \right\}.$$

Exercice 9

Déterminer lesquelles des matrices suivantes sont diagonalisables:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}, D = \begin{pmatrix} -2 & 4 & -2 \\ 4 & -2 & -2 \\ -2 & -2 & 4 \end{pmatrix}.$$

Sol.:

- A. Oui car A est déjà diagonale.
- B. Oui. Les valeurs propres de B sont $\lambda_1 = 4$ et $\lambda_2 = 1$. Les valeurs propres de B sont distinctes, donc une famille avec un vecteur propre pour λ_1 et un vecteur propre pour λ_2 est indépendante, et constitue une base de \mathbb{R}^2 . Ainsi B est diagonalisable.
- C. Oui. Les valeurs propres de C sont 4,5,5 (obtenue par exemple en résolvant le polynôme caractéristique). Comme la valeur propre 5 est de multiplicité 2 il faut vérifier si la dimension de l'espace propre associé est aussi 2. On calcule:

$$C - 5I = \left(\begin{array}{rrr} -1 & 0 & -2 \\ 2 & 0 & 4 \\ 0 & 0 & 0 \end{array}\right).$$

Les colonnes 1 et 3 sont proportionnelles, et la colonne 2 est nulle, d'où rg (C-5I) = 1. Par conséquent dim Ker (C-5I) = 3-1=2, et la matrice C est diagonalisable.

D. Oui. Le polynôme caractéristique de D est

$$p(\lambda) = -\lambda^3 + 36\lambda = -\lambda(\lambda - 6)(\lambda + 6).$$

Les valeurs propres sont donc 0, -6, 6. Elles sont distinctes donc D est diagonalisable.

Remarque (plus tard dans le cours): Le théorème spectral stipule que toute matrice symétrique réelle est diagonalisable.

Exercice 10

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) La matrice A n'est pas inversible si et seulement si 0 est une valeur propre de A.
- b) Une matrice A carrée est inversible si et seulement si elle est diagonalisable.
- c) Les valeurs propres d'une matrice carrée sont sur sa diagonale.
- d) On trouve les valeurs propres de A en réduisant la matrice à sa forme échelonnée.

Sol.: Vrai: a). Faux: b), c), d).

Exercice 11

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si A et B sont deux matrices semblables, alors elles ont les mêmes valeurs propres.
- b) Pour qu'une matrice $n \times n$ soit diagonalisable il faut qu'elle ait au moins n valeurs propres distinctes.
- c) Si v_1 et v_2 sont deux vecteurs propres linéairement indépendants, alors leur valeurs propres associées sont différentes.
- d) Soient A, B et C trois matrices. Si A est équivalente à B, et B est équivalente à C, alors A est équivalente à C.

Sol.: Vrai: a), d). Faux: b), c).

Informations générales, séries et corrigés: cf. http://anmc.epfl.ch/Algebre.html. Les exercices de type vrai ou faux proviennent du livre: D.C. Lay. Algèbre linéaire: théorie, exercices et applications. De Boeck, Bruxelles, 2005.