What makes an object memorable?

Anonymous ICCV submission

Paper ID ****

Abstract

Recent work by Isola et. al. (2011) has demonstrated that memorability is an intrinsic property of images that is consistent across viewers and can be predicted accurately with current computer vision techniques. Despite progress, a clear understanding of the specific components of an image that drive memorability are still unknown. While previous studies such as Khosla et. al. (2012) have tried to investigate computationally the memorability of image regions within individual images, no behavioral study has systematically explored which memorability of image regions. Here we study which region from an image is memorable or forgettable. Using a large image database, we obtained the memorability scores of the different visual regions present in every image. In our task, participants viewed a series of images, each of which were displayed for 1.4 seconds. After the sequence was complete, participants similarly viewed a series of image regions and were asked to indicate whether each region was seen in the earlier sequence of full images.

0.64 0.64 0.18 0.18

Figure 1: Memorability of different objects. Memorability scores of objects for the image in the top row obtained from our pysophysics experiment.

1. Introduction

Consider the image and it's corresponding objects in Figure 1. Even though the person on the right is comparable in size to the left person, he is remembered far less by humans (indicated by their memorability scores of 0.18 and 0.64 respectively). People tend to remember the fish in the center and the person on the left, even after 30 minutes have passed (memorability score =0.64). Interestingly, despite vibrant colors and considerable size, the boat is also remembered far less by humans (memorability =0.18).

Just like aesthetics, interestingness, and other metrics of image importance, memorability quantifies something about the utility of a photograph toward our everyday lives. For many practical tasks, memorability is an especially desirable property to maximize. For example, this may be the case when creating educational materials, logos, advertisements, book covers, websites, and much more. Understanding memorability, and being able to automatically predict it,

lends itself to a wide variety of applications in each of these areas.rewrite this to draw attention of reviewer to importance of image memorability. Due to this, automatic prediction of intrinsic memorability of images using computer vision and machine learning techniques has received considerable attention in the recent years [4], [5], [3], [1], [6]. While these studies have shed light on what distinguishes the memorability of different images and the intrinsic and extrinsic properties that make those images memorable, the above example raises an interesting question: what exactly about an image is remembered? Despite progress in the computer vision literature on image memorability, a clear understanding of the memorability of the specific components of an image is still unknown. For example, not all objects in an image will be equally remembered by people and as the figure 1 seems to suggest, there exists significant and interesting differences in memorability of objects in an image. Furthermore, the memorability of complex images may be principally driven by the memorability of it's objects. Can specific objects inside images be memorable to

all us and how can we better understand what makes those objects more memorable?

In this paper, we systematically explore the memorability of objects within individual images and shed light on the various factors and properties that drive object memorability by augmenting both the images and object segmentations in the 850 existing images from PASCAL 2010 [2] dataset with memorability scores and class labels. By exploring the connection between object memorability, saliency, and image memorability, our paper makes several important contributions.

Firstly, we show that just like image memorability, object memorability is a property that is shared across subjects and objects remembered by one person are also likely to be remembered by others and vice versa. Secondly, we show that there exists a strong correlation between visual saliency and object memorability and demonstrate insights when can visual saliency directly predict object memorability and when does it fail to do so. While there have been have a few studies that explore the connection between image memorability and visual saliency [1], [7], our work is the first to explore the connection between object memorability and visual saliency. Third, we explore the connection between image memorability and object memorability and show that the most memorable object inside an image can be a strong predictor of image memorability in certain cases. Studying these questions, help not only understand visual saliency, image and object memorability in more detail, but it can also have important contributions to computer vision. For example, understanding which regions and objects in an image are memorable would enable us to modify the memorability of images which can have applications in advertising, user interface design etc. With this in mind, as shown in the section 4, our proposed dataset serves as a benchmark for evaluating object memorability model algorithms and can help usher in future algorithms that try to predict memorability maps.

1.1. Related works

References

- [1] Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva. Intrinsic and extrinsic effects on image memorability. *Vision research*, 2015. 1, 2
- [2] M. Everingham and J. Winn. The pascal visual object classes challenge 2010 (voc2010) development kit, 2010.
- [3] P. Isola, J. Xiao, D. Parikh, A. Torralba, and A. Oliva. What makes a photograph memorable? *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 36(7):1469–1482, 2014. 1
- [4] P. Isola, J. Xiao, A. Torralba, and A. Oliva. What makes an image memorable? In *Computer Vision and Pattern Recognition (CVPR)*, 2011 IEEE Conference on, pages 145–152. IEEE, 2011.

- [5] A. Khosla, J. Xiao, A. Torralba, and A. Oliva. Memorability of image regions. In *Advances in Neural Information Processing Systems*, pages 305–313, 2012. 1
- [6] J. Kim, S. Yoon, and V. Pavlovic. Relative spatial features for image memorability. In *Proceedings of the 21st ACM international conference on Multimedia*, pages 761–764. ACM, 2013.
- [7] M. Mancas and O. Le Meur. Memorability of natural scenes: the role of attention. In *ICIP*, 2013. 2