# Turbulence increases sediment transport

EGU General Assembly 2025 Session GM2.7 Measuring and Modelling Geomorphic Processes Across Scales

D. Rebai, K. Koll, A. Radice, J. Aberle, F. Ballio | April 30, 2025







## Introduction

#### Problem statement:

Fully developed flows over erodible beds <sup>1</sup>

$$[q_s] = f(\overline{\tau})$$

Presence of disturbances Homogeneous: regular vegetation or bedforms Non-homogeneous: scour at hydraulic structures

$$[q_s] = f(\overline{\tau},?)$$

#### Research questions:

- What is the effect of turbulent fluctuations on sediment flowrate?
- What is the effect of turbulent fluctuations on primary variables (concentration and velocity)?



<sup>&</sup>lt;sup>1</sup>Being other factors constant, such as sediment gradation, shape, etc.

## **Description of the experiments**

#### Controls

- We disturbed the flow using arrays of cylinders.
  To is the reference condition without cylinders.
- We tested different flowrates.

#### Asynchronous measurements

- Bedload: Particle Tracking Velocimetry
- Turbulence, Laser Doppler Anemometry
- Bed shear stress, Shear Plate





## De-coupling bed shear stress and turbulence

$$q_s = f(average, fluctuations) = f\left(\overline{ au}, rac{
ho \langle \overline{k}_t 
angle^{log}}{\overline{ au}}
ight)$$

Disturbances: T0, T6, T11, and T21







4/10

## **Proof of concept**

Concentration:  $\langle C \rangle$ 

Velocity: [F]

Average flow:  $\theta$ 

Fluctuations: *K* 

Separated modeling of concentration and velocity

$$[q_s] = d\overline{\langle C \rangle} [u_s]$$

The dimensionless counterpart of this equation is<sup>2</sup>:

$$[\Phi] = \overline{\langle C \rangle} [F]$$

Descriptive model:

$$\overline{\langle C \rangle} = a_C \cdot f_C(\theta) \cdot f_C(K)$$

$$[F] = a_F \cdot f_F(\theta) \cdot f_F(K)$$



5/10

<sup>&</sup>lt;sup>2</sup>Note that:  $[\Phi] = [q_s]/\sqrt{g\Delta d^3}$ ,  $[F] = [u_s]/\sqrt{g\Delta d}$ ,  $\Delta = (\rho_s - \rho)/\rho$ ,  $\theta = \overline{\tau}/(\rho_s - \rho)gd$  and  $K = \rho \langle \overline{k}_t \rangle^{log}/\overline{\tau}$ .

# **Descriptive model**

Concentration:  $\overline{\langle C \rangle}$ 

Univariate modelling

$$\overline{\langle \textit{C} \rangle} = \textit{a}_{\textit{C}} \cdot \textit{f}_{\textit{C}}(\theta)$$

$$[F] = a_F \cdot f_F(\theta)$$

Bivariate modelling for concentration

$$\overline{\langle C \rangle} = a_C \cdot f_C(\theta) \cdot f_C(K)$$

Bivariate modelling for velocity

$$[F] = a_F \cdot f_F(\theta) \cdot f_F(K)$$

Velocity: [F]





#### Average flow: $\theta$





#### Fluctuations: *K*







# **Argument**

Concentration:  $\overline{\langle C \rangle}$ 

Velocity: [F]

Average flow:  $\theta$ 

Fluctuations: *K* 

| Models comparison                                                                |               |                                                                                                         | Performance $\varepsilon$ |        |
|----------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------|---------------------------|--------|
|                                                                                  |               |                                                                                                         |                           |        |
| $\overline{\langle \textit{\textbf{C}}  angle}(	heta)$                           | $\rightarrow$ | $\overline{\langle 	extbf{	extit{C}} angle}(	heta,	extbf{	extit{K}})$                                   | 1.36 —                    | 0.81   |
| $[{\cal F}](	heta)$                                                              | $\rightarrow$ | [F](	heta,K)                                                                                            | 0.10 —                    | · 0.06 |
| $[\Phi](	heta)$                                                                  | $\rightarrow$ | $[\Phi](\theta, \textbf{\textit{K}})$                                                                   | 1.45 —                    | 0.85   |
|                                                                                  |               |                                                                                                         |                           |        |
| $\overline{\langle \textit{\textbf{C}}  angle}(	heta)[\emph{\textbf{F}}](	heta)$ | $\rightarrow$ | $\overline{\langle \textit{\textbf{C}}  angle}(	heta, \textit{\textbf{K}})[\textit{\textbf{F}}](	heta)$ | 1.45 —                    | · 0.86 |
|                                                                                  |               | $\overline{\langle C \rangle}(\theta, K)[F](\theta, K)$                                                 | 1.40 —                    | · 0.85 |
|                                                                                  |               |                                                                                                         |                           |        |
| $\overline{\langle m{C} angle}(	heta) [m{F}](	heta)$                             | $\rightarrow$ | $\overline{\langle m{C}  angle}(	heta)[m{F}](	heta,m{K})$                                               | 1.45 —                    | · 1.40 |
|                                                                                  |               | $\overline{\langle C \rangle}(\theta, K)[F](\theta, K)$                                                 | 0.86 —                    | · 0.85 |
| · / · / / / / / / / / / / / / / / / / /                                          |               |                                                                                                         |                           |        |

 $<sup>\</sup>frac{3}{\text{^3Logarithmic root mean square error: } \varepsilon^2 = \sum_{i=1}^N (\log X_m - \log X_c)^2/N}$ 



## Results

Concentration:  $\overline{\langle C \rangle}$ 

Velocity: [F]

Average flow:  $\theta$ 

Fluctuations: *K* 

$$\overline{\langle C \rangle} = a_C \cdot f_C(\theta)$$

$$\overline{\langle C \rangle} = a_C \cdot f_C(\theta) \cdot f_C(K)$$



$$[F] = a_F \cdot f_F(\theta)$$

$$[F] = a_F \cdot f_F(\theta) \cdot f_F(K)$$



$$[\Phi] = \overline{\langle C \rangle}(\theta) \cdot [F](\theta)$$

$$[\Phi] = \overline{\langle C \rangle}(\theta, K) \cdot [F](\theta, K)$$



## Results: separated modeling of sediment flowrate

Concentration:  $\overline{\langle C \rangle}$ 

Velocity: [F]

Average flow: 
$$\theta$$

Fluctuations: *K* 

$$[\Phi] = \overline{\langle C \rangle}(\theta, K) \cdot [F](\theta, K)$$
  
 $[\Phi] = \overline{\langle C \rangle}(\theta, K) \cdot [F](\theta)$ 

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$





Institut für Wasser und Umwelt



## **Conclusions**

## (1)

What is the effect of turbulent fluctuations on sediment flowrate?

For a given bed shear stress, if turbulent fluctuations increase, the sediment flowrate increases.

### (2)

What is the effect of turbulent fluctuations on primary variables (concentration and velocity)?

- Including the effect of turbulence improves the performance of concentration and velocity modeling.
- For sediment flowrate modeling, the effect of turbulent fluctuations on velocity is a second-order effect w.r.t its effect on concentration.













