CMPUT 655

A Short Review on Probability and Statistics Fall 2022

Outline

- Basic Probability
 - Probability Space
 - Random Variables
 - Expectation and Conditional Expectation
- Basic Statistical Inference
 - I.I.D. Random Sample
 - Bias and variance of an estimator

Useful Resources

- Chapter 2 of Martha's ML notes
 - https://marthawhite.github.io/mlbasics/notes.pdf
- For a more rigorous introduction, see Chapter 2 of Csaba's bandit book
 - https://tor-lattimore.com/downloads/book/book.pdf
- For more measure theory, see STAT 571 lecture notes
 - https://sites.ualberta.ca/~kashlak/data/stat571.pdf

Probability Space

- A probability space (Ω, \mathcal{F}, P) consists of:
 - a sample space Ω , which is a set of possible outcomes
 - Example: Flip a coin $\int_{\mathbb{R}^2} z \left\{ H_{1} \right\}$
 - an event space ${\mathscr F}$, which is a set of subsets of Ω

$$F = \{ \phi, \Lambda, \{H\}, \{7\} \}$$

- a probability measure P that assigns a probability for each element in ${\mathscr F}$

$$P(\phi) = 0$$
, $P(\Lambda) = 1$, $P(\xi H) = 0.6$

Event Space (σ-field)

- ${\mathscr F}$ is a set of subsets of Ω such that
 - $\emptyset, \Omega \in \mathcal{F}$
 - if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
 - For a countable collection of set $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_i A_i \in \mathcal{F}$

Probability Measure

- P is a function $P: \mathcal{F} \to [0,1]$ such that
 - $P(\emptyset) = 0$ and $P(\Omega) = 1$
 - For a countable pairwise disjoint collection of sets $A_1,A_2,\ldots\in\mathcal{F}$, then $P(\cup_i A_i)=\sum_i P(A_i)$

Examples of probability spaces

Discrete sample space

•
$$\Omega = \{1, \ldots, n\} \quad \mathcal{F} = \mathcal{P}(\mathcal{N})$$

•
$$\mathcal{F} = \{\emptyset, \{1\}, \{2\}, ..., \{n\}, \{1,2\}, ..., \{1,...,n\}\}$$

•
$$P(A) = |A|/n$$

•
$$P(A) = |A|/n$$
 $P(\{\{\}\}) = /N$

Continuous sample space

•
$$\Omega = [0,1]$$

$$F + P(\Lambda)$$

$$F \neq P(\Lambda) \qquad \begin{array}{c} + P(\Lambda) \\ 6 \\ 0 \\ 0 \end{array}$$

• $\mathscr{F} = B(\Omega)$, the smallest σ -field generated by the set of all open intervals (a, b) with $0 \le a < b \le 1$ 1F1/F2/1F2/

•
$$P((a,b)) = b - a$$

$$P(\{\chi\}) = 0$$

Random Variables

- A (real-valued) random variable X is a function $X:\Omega
 ightarrow \mathbb{R}$ $P(X \leq I) = 1/6 P(X \leq Z) = 2/6$ such that
 - (measurable): $\forall A \in B(\mathbb{R}), \{\omega \in \Omega : X(\omega) \in A\} \in \mathcal{F}$

- The law of X is $P_X(A) = P(\{\omega \in \Omega : X(\omega) \in A\})$
 - Any probabilistic question about X can be answered from $P_{_{Y}}$. We don't need to know the details of the underlying probability space!!!

CDF, PMF, and PDF

- $F_X(x) = P_X(X \le x)$ is called the cdf of X
- A discrete random variable X only takes a countable number of different values x_1, x_2, \ldots The pmf of X is $f_X(x_i) = P_X(X = x_i)$
- The pdf of a continuous random variable X is the function f_X that satisfies $F(x) = \int_{-\infty}^{x} f_X(t) dt$ for all x

Multi-arm Bandit Example

- We choose an arm A_1 from π_1 , and receive a reward R_1
- Repeat again, choose A_2 from π_2 and receive R_2
- A_1, R_1, A_2, R_2 are all random variables

Independence

• Two events $A,B\in \mathcal{F}$ are independent if $P(A\cap B)=P(A)P(B)$

- Back to our MAB example, R_1, R_2 are independent if
 - $P(R_1 = r_1, R_2 = r_2) = P(R_1 = r_1)P(R_2 = r_2)$ for all r_1, r_2
 - More formally, for any $A \in \sigma(R_1)$ and $B \in \sigma(R_2)$, A and B are independent
 - Question: is R_1, R_2 independent in our example?

Conditional Probability

• Let $A, B \in \mathcal{F}$, the conditional probability is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \qquad A \qquad R$$

Back to our MAB example,

$$P(R_1 = r_1 | A_1 = a_1) = \frac{P(R_1 = r_1, A_1 = a_1)}{P(A_1 = a_1)}$$

Expectation

For a discrete random variable

$$\mathbb{E}[X] = \sum_{i} x_{i} P(X = x_{i})$$

For a continuous random variable

$$\mathbb{E}[X] = \int x f_X(x) dx$$

Back to our MAB example, $\mathbb{E}[R_1] = \sum_i r_i P(R_1 = r_i)$

Conditional Expectation

- For discrete random variables X, Y, $\mathbb{E}[X|Y=y] = \sum x_i P(X=x_i|Y=y)$
- 0.7 0.2 0.2 1
- Conditional expectation $\mathbb{E}[X|Y]:\Omega\to\mathbb{R}$ is a random variable given by $\mathbb{E}[X|Y](\omega) = \mathbb{E}[X|Y = Y(\omega)]$

$$\begin{array}{c} \mathbb{E}\left(\mathbb{E}\left[\mathbf{x}\mid\zeta\right)\right) = \mathbb{E}\left[\mathbf{x}\right] \\ \text{For continuous random variables, } \mathbb{E}[X\mid Y=y] = \int x f(x\mid y) dx \\ \bullet \text{ Back to our MAB example, } \frac{\mathbb{P}\left(\mathbb{R}_{|z|} = 0, \mathbb{R}_{|z|}\right)}{\mathbb{P}\left(\mathbb{R}_{|z|} = 1, \mathbb{R}_{|z|}\right)} = \underbrace{\int x f(x\mid y) dx}_{0 \in \mathbb{R}_{|z|} = 0} \\ \mathbb{E}\left[R_1\mid A_1 = a_1\right] = \sum_i r_i P(R_1 \neq r_i\mid A_1 = a_1) \\ \mathbb{P}\left(\mathbb{R}_{|z|} = 0, \mathbb{R}_{|z|} = 0, \mathbb{R$$

$$75.0 = (\frac{1}{5}) 20 + (\frac{1}{5}) = 0.27$$

Basic Statistical Inference

Random Sample from a distribution

• Let X_1, \ldots, X_n be i.i.d. (independent and identically distributed) random variables sampled from a distribution F

What does i.i.d. sample mean?

Random Sample from a distribution

- Let X_1, \ldots, X_n be i.i.d. (independent and identically distributed) random variables sampled from a distribution F
 - What does i.i.d. sample mean?

•
$$X_1, ..., X_n$$
 are mutually independent $= \bigcap_{z} \rho\left(\chi_{\bar{z}} \gamma_{\bar{x}}\right)$

• Each X_i has the same distribution F

Estimating the mean of the distribution

- Suppose the distribution has mean μ and variance σ^2 . Both are unknown. We want to estimate μ from the random sample X_1, \ldots, X_n .
 - What can we do?

$$\left\{ f(\chi;\theta): \theta \in \Theta \right\}$$

Estimating the mean of the distribution

- Suppose the distribution has mean μ and variance σ^2 . Both are unknown. We want to estimate μ from the random sample $X_1, ..., X_n$.
 - What can we do?
- The sample average estimate is $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - How good is the estimator?

Bias and Variance

• The bias of the estimator is defined as $\mathbb{E}[\bar{X}] - \mu$

$$\mathbb{E}[\bar{X}] - \mu = \mathbb{E}[\frac{1}{n} \sum_{i} X_{i}] - \mu = \frac{1}{n} \sum_{i} \mathbb{E}[X_{i}] - \mu = \frac{1}{n} \sum_{i} \mu - \mu = 0$$

- $ightarrow ar{X}$ is an unbiased estimator of μ
- The variance is defined as $\mathbb{V}(\bar{X}) = \mathbb{E}[(\bar{X} \mathbb{E}\bar{X})^2]$

$$\mathbb{V}(\bar{X}) = \frac{1}{n^2} \sum_{i} \mathbb{V}(X_i) = \frac{\sigma^2}{n} \qquad \text{MSE}(\bar{X})$$

$$\mathbb{V}(\bar{X}) = \mathbb{E}(\chi_i) = \mathbb{E}(\chi_$$

Questions?