

outline

- Discriminative vs. Generative Classifiers
- Image representation and recognition models
 - Bag of Words Model
 - Part-based Model
 - Constellation Model
 - Pictorial Structures Model
 - Spatial Pyramid Matching (SPM)
 - ObjectBank

Discriminative vs Generative Classifiers

Training classifiers involves estimating f: $X \rightarrow Y$, or P(Y|X)

- Discriminative classifiers (e.g. logistic regression, SVM):
 - We want to model P(Y|X)
 - Assume some functional form for P(Y|X)
 - Estimate parameters of P(Y|X) directly from training data

- Generative classifiers (e.g. naïve bayes):
 - We want to model P(X, Y)
 - Assume some functional form for P(X|Y), P(X)
 - Estimate parameters of P(X|Y), P(X) directly from training data
 - Use Bayes rule to calculate $P(Y|X=x_i)$

Discriminative vs Generative Classifiers

- Advantages of discriminative classifiers:
 - Typically faster at making predictions
 - Tend to have better performance
 - Direct modeling of what we want to optimize
- Advantage of generative classifiers:
 - Can handle missing/partially labeled data
 - A new class (Y+1) can be added incrementally without training the complete model
 - Can generate samples from the training distribution

[Ulusoy & Bishop, 2005]

Bag of Words

Weakly Spatial Models

SpatialPyramidMatching

Object-Bank

Part-based

- Constellation Model
- Pictorial Structure

No spatial info.

Spatial Specificity of Parts

Very strong but sparse

Fei-Fei Li TA Section - 4 5 22-Nov-11

Bag of Words

No spatial info.

Spatial Specificity of Parts

Very strong but sparse

Bag-of-words Representation

Fei-Fei Li TA Section - 4 7 22-Nov-11

Fei-Fei Li TA Section - 4 8 22-Nov-11

Fei-Fei Li TA Section - 4 9 22-Nov-11

Generative probabilistic model (2)

Foreground model

Gaussian shape pdf

Gaussian part appearance pdf

Prob. of detection

Clutter model

Uniform shape pdf

Gaussian background appearance pdf

Uniform relative scale pdf

Poission pdf on # detections

Fei-Fei Li TA Section - 4 11 22-Nov-11

Pictorial Structures

- Basic idea:
 - We would like to represent an object by
 - a collection of parts
 - arranged in a deformable configuration

Pictorial Structures

- Local model of appearance with non-local geometric or spatial constraints
- Simultaneous use of appearance and spatial information
 - Simple part models alone are not discriminative
- The model needs to solve the tasks:
 - determine whether an object is visible in an image
 - determine where an object is in the image

Pictorial Structures

• Model is represented as an undirected graph structure G=(V,E), where V are the vertices and E are the edges

Fei-Fei Li TA Section - 4 15 22-Nov-11

Start with Pyramid Matching Kernel for BoW Models

[Grauman & Darrell, 2005]

Pyramid Matching Kernel

- How do we build a discriminative classifier using the set representation?
- Kernel-based methods (e.g. SVM) are appealing for efficiency and generalization power.
- But what is an appropriate kernel?
 - Each instance is an unordered set of vectors
 - Varying number of vectors per instance

Pyramid Matching Kernel

 We can compare sets by computing a partial matching between their features

Approximate partial match similarity

Pyramid Matching Kernel (Example)

Pyramid Matching Kernel (Example)

Pyramid Matching Kernel

optimal partial matching between sets of features

$$\sum_{i=0}^{L} \frac{1}{2^{i}} \left(\mathcal{I}(H_{i}(\mathbf{X}), H_{i}(\mathbf{Y})) - \mathcal{I}(H_{i-1}(\mathbf{X}), H_{i-1}(\mathbf{Y})) \right)$$

difficulty of a match at level i

number of new matches at level i

Spatial Pyramid Matching

- Pyramid Match Kernel (Grauman & Darrell)
 Pyramid in feature space, ignore location
- Spatial Pyramid (Lazebnik et al)
 Pyramid in image space, quantize features

Strong (SIFT)

Fei-Fei Li TA Section - 4 22 22-Nov-11

Spatial Pyramid Matching

Fei-Fei Li TA Section - 4 23 22-Nov-11

Spatial Pyramid Matching

Fei-Fei Li TA Section - 4 25 22-Nov-11

Event: "Sailing"

High level tasks

Object Bank

High Level Objects based

Sailboat, water, sky, tree, ...

Image representation

Semantic Gap

Low level feature

HoG, Gist, SIFT, Color, Texture, Bag of Words (BoW), Spatial Pyramid (SPM)

Li et al. 2010

Li et al. 2010

Object Bank representation

Object Bank representation

Object size variance

Small

Median

Large

Li et al. 2010

Object Bank representation

Implementation details

- ~ 200 object detectors
- Felzenswalb et al. 2008
- Hoeim et al. 2005
- 3-level spatial pyramid
- for each grid: max of each object

Object Bank representation

A word about Q2 in PS4

- We'd like you to understand the differences between BoW, SPM, and ObjectBank
- We'd like you to use what you've learned so far, be creative, and come up with interesting ways of encoding image information for an image recognition task
- Extra credits are given especially to innovation and good performances