Contents

1	Disc	laimer		4
2	Top	ics		5
	2.1		delige sandsynlighedsfelt	5
		2.1.1	Hændelser	5
	2.2	Ved ko	nstant ssh funktion	6
		2.2.1	Termer	6
	2.3		nerelle sandsynlighedsfelt	6
		2.3.1	Definition af sandsynlighedsfelt	6
			Indikator funktion	7
		2.3.3	Regneregler for sandsynlighedsmål P (sætning 1.3.4) .	7
	2.4		ede sandsynligheder og uafhængighed	8
		2.4.1	Den betingede sandsynlighed af B giver A skrevet $P(B \mid B)$	
			A), er defineret ved (definition $1.4.1$	8
		2.4.2	Regneregler for betingede sandsynligheder	8
		2.4.3	Omvendingsformel - simpel bayes'	8
		2.4.4	Bayes' formel	8
	2.5	Stokast	tisk Uafhængighed	9
		2.5.1	Definition af uafhængighed	9
		2.5.2	Regler for indbyrdes uafhængighed	9
		2.5.3	forenings mængdens uafhængighed	9
	2.6	Fordeli	nger på endelige mængder	10
		2.6.1	Centrale begreber	10
	2.7	Flerdin	nensionale stokastiske variable, uafhængighed	11
		2.7.1	Polynomial fordelingen	11
		2.7.2	Poisson fordelingen	11
		2.7.3	Generelle diskrete fordelinger	11
	2.8	Middel	værdi	11
	2.9		S	12
		2.9.1	Normalfordelingen	12
	2.10	Transfe	ormationer	13
	2.11	Fler di	mensionelle kontinuerte fordelinger	13
		2.11.1	Uafhængighed	13
		2.11.2	Transformation af kontinuerte variable	13
		2.11.3	Middelværdi, Varians og Kovarians	14
		2.11.4	Kontinuerte betingede fordelinger	14
	2.12		lfordelingsteori	15
3	Lect	ures		15

3.1	Øvelse	1													15
	3.1.1	Opgave	1.1												15
	3.1.2	Opgave	1.4												16
	3.1.3	Opgave	1.17												16
	3.1.4	Opgave	1.24												19
	3.1.5	Opgave	1.13												20
3.2	Øvelse	2													21
	3.2.1	1.6													21
	3.2.2	Opgave	1.7												21
	3.2.3	Opgave	1.9												22
	3.2.4	Opgave	1.15												23
	3.2.5	Opgave	1.18												24
	3.2.6	Opgave	1.28												25
	3.2.7	Opgave	1.30												26
	3.2.8	Opgave													26
3.3	Øvelse	3													27
	3.3.1	Opgave	2.1												27
	3.3.2	Opgave	2.3												28
	3.3.3	Opgave	В.1												29
	3.3.4	Opgave													31
	3.3.5	Opgave	В.3												32
3.4	Øvelse	4													32
	3.4.1	Opgave	B.4												32
	3.4.2	Opgave	2.4												33
	3.4.3	Opgave	2.5												34
	3.4.4	Opgave	2.9												35
3.5	Øvelse	5													36
	3.5.1	Opgave	C.1												36
	3.5.2	Opgave	C.2												37
	3.5.3	Opgave	C.3												38
	3.5.4	Opgave	3.20												39
	3.5.5	Opgave	3.24												41
	3.5.6	Opgave	3.27												42
	3.5.7	Opgave	3.2												43
3.6	Øvelse	6													43
	3.6.1	Opgave	C.4												44
	3.6.2	Opgave	1 .												45
3.7	Øvelse	7													48
	3.7.1	Opgave	3.4												48
	3.7.2	Opgave	3.13												49
	373	Ongave	3 14												50

	3.7.4	Opgave 4.5	51
	3.7.5		52
	3.7.6		52
3.8	Øvelse	- ,	53
	3.8.1		53
	3.8.2		55
	3.8.3		57
3.9	Øvelse		57
	3.9.1	Opgave 5.2	57
	3.9.2	Opgave 5.3	58
	3.9.3	Opgave 5.7	59
	3.9.4	Opgave U41.1	31
	3.9.5	Opgave U41.2	32
3.10	Øvelse	10	3
	3.10.1	Opgave 5.1	33
	3.10.2	Opgave 5.5	34
	3.10.3	Opgave 5.13	66
	3.10.4	Opgave 5.15	38
		10	70
	3.10.6	Opgave U41.4	70
3.11			71
	3.11.1	Opgave U43.1.1	71
		10	73
		10	74
	3.11.4	Opgave U43.1.4	76
3.12			79
		10	79
		10	30
		10	32
		10	34
	3.12.5	10	34
	3.12.6	Opgave 6.4	34
	3.12.7	10	35
3.13	Øvelse		36
		10	36
	3.13.2	10	38
	3.13.3	10	39
		10	91
3.14	Øvelse		95
		10	96
	3.14.2	Opgave 44.2.2	97

	3.14.3	Opgave	44.2.3												101
3.15	Øvelse	15													102
	3.15.1	Opgave	U45.1												102
	3.15.2	Opgave	U45.2												105
	3.15.3	Opgave	U45.3												107
	3.15.4	Opgave	U45.4												108
3.16	Øvelse	16													109
	3.16.1	Opgave	U45.5												109
	3.16.2	Opgave	U45.6												110
	3.16.3	Opgave	U45.7												112

1 Disclaimer

Disse noter blev udarbejdet i forbindelse med jeg underviste i kurset **Sandsynlighedsteori og statistik** udbudt af Økonomisk Institut, Københavns Universitet.

Dette er ikke blevet gennemlæst, rettet eller på anden måde redigeret af en tredje person, som ville kunne fange evt. fejl og mangler. Derfor **forvent** at der er fejl i dette dokument. Forhold dig kritisk til resultaterne, og hvis du er sikker på der er en fejl, så tag udgangspunkt i det.

Dokumentet indeholder rettevejledninger til øvelsesseddlerne forbundet med faget. Der er et tilhørende github-repository:

https://github.com/JakartaLaw/statistik2018.

Lecture Notes

Jeppe Johansen

November 2, 2018

2 Topics

readings: Sørensen 1.2-1.3

2.1 Det endelige sandsynlighedsfelt

Et endelig sandsynlighedsfelt har følgende egenskaber:

- $\bullet \,$ En endelig mængde $E = \{e_1, e_2, \ldots, e_j\}$
- \bullet En funktion p fra E ind i intervallet [0,1]
- Summen af samtlige sandsynligheder skal være 1:

$$\sum_{j=1}^{k} p(e_j) = 1 \tag{1}$$

2.1.1 Hændelser

A er en hændelse:

$$A \subseteq E \tag{2}$$

Sandsynligheden for A:

$$P(A) = \sum_{x \in A} p(x) \tag{3}$$

Sandsynligheden for to disjunkte mængder A, B:

$$P(A \cup B) = P(A) + P(B), \qquad P(A) \cap P(B) = \emptyset \tag{4}$$

2.2 Ved konstant ssh funktion

ssh. for hændelse =
$$\frac{\text{\# gunstige udfald}}{\text{\# mulige udfald}}$$
 (5)

2.2.1 Termer

- ullet Udfald de enkelte elementer i E
- Hændelse en delmængde
- Sandsynlighedsfunktionen er $p(\cdot)$
- punktsandsynligheden for e_j er $p(e_j)$
- disjunkte er to mængde som har den tomme mængde som fællesmængde
- Sandsynlighedsmål er funktionen P fra klassen af delmængder af E. (har ekstra krav, se p. 14 i Sørensen)
- # antal elementer i et sæt

2.3 Det generelle sandsynlighedsfelt

Hvis mængden er u
endelig stor, (både tællelig og utællelig) kigger man på delintervaller af
 ${\cal E}.$

Under antagelse af ligefordeling:

$$P(I) = c|I| \tag{6}$$

|I| betegner længden af linjestykket på den reelle akse.

2.3.1 Definition af sandsynlighedsfelt

- \bullet Et udfaldsrum E
- En klasse \mathcal{E} af delmængder fra E

- En funktion P fra \mathcal{E} ind i [0,1]
- \mathcal{E} skal indeholde både E og \emptyset
- \bullet P skal opfylde

$$P(E) = 1 \tag{7}$$

$$P(A \cup B) = P(A) + P(B), \quad A \cap B = \emptyset$$
 (8)

 \mathcal{E} er kun en klasse af pæne delmængder. Dette er ikke et problem på dette kursus (eller andre på økonomisk institut).

2.3.2 Indikator funktion

En indikator funktion kan tage en af de to værdier $\{0,1\}$. $\mathbb{1}_A(x)=1$ hvis $x\in A$, ellers 0

2.3.3 Regneregler for sandsynlighedsmål P (sætning 1.3.4)

1. regler hvis $B \subseteq A$:

$$P(A \setminus B) = P(A) - P(B) \tag{9}$$

$$P(B) \le P(A) \tag{10}$$

2. regler for den komplementære hændelse til B. i.e. $E \setminus B$

$$P(E \setminus B) = 1 - P(B) \tag{11}$$

3.

$$P(\emptyset) = 0 \tag{12}$$

4.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{13}$$

5.

$$P(A) + P(B) \le P(A) + P(B) \tag{14}$$

ligning 14 kan udvides til vilkårligt mange mængder. Det bliver en lighed hvis samtlige vilkårlige mængder er disjunkte.

readings: Sørensen 1.4-1.5

2.4 Betingede sandsynligheder og uafhængighed

2.4.1 Den betingede sandsynlighed af B giver A skrevet $P(B \mid A)$, er defineret ved (definition 1.4.1

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \tag{15}$$

2.4.2 Regneregler for betingede sandsynligheder

 $A_1, A_2, \cdots A_n$ være n
 hændelser, hvor $P(A_1 \cap A_2 \cap \cdots A_{n-1} > 0$. Da:

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = \tag{16}$$

$$P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1})$$
 (17)

Endnu en regneregel

Hvis $A_1, A_2, \dots A_n$ er n disjunkte hændelser, hvor at $E = \bigcup_{i=1}^n A_i$ samt $P(A_i) > 0$, da gælder for en vilkærlig hændelse B:

$$P(B) = \sum_{j=1}^{n} P(B \mid A_j) P(A_j)$$
 (18)

2.4.3 Omvendingsformel - simpel bayes'

$$P(A \mid B) = P(B \mid A) \frac{P(A)}{P(B)}$$
(19)

2.4.4 Bayes' formel

 $A_1, A_2, \dots A_n$ er n disjunkte hændelser, hvor at $E = \bigcup_{i=1}^n A_i$ samt $P(A_i) > 0$. For en hændelse B med P(B) > 0, da gælder for en enhver hændelse k:

$$P(A_k \mid B) = \frac{P(B \mid A_k)P(A_k)}{\sum_{j=1}^{n} P(B \mid A_j)P(A_j)}$$
(20)

2.5 Stokastisk Uafhængighed

Uafhængighed tænkes oftest som:

$$P(A \mid B) = P(A) \tag{21}$$

Altså at sandsynligheden for A ikke er påvirket af udfaldet af B.

2.5.1 Definition af uafhængighed

hændelse A og B er uafhængige siges at være stokastisk uafhængige når (definition 1.5.1) :

$$P(A \cap B) = P(A) \cdot P(B) \tag{22}$$

Dette udsagn kan let udvides til n hændelser (se p.34 **definition 1.5.4**)

2.5.2 Regler for indbyrdes uafhængighed

Tegn for uafhængighed \perp .

A, B og C er indbyrdes uafhængige hændelser. Følgende gælder:

- 1. $A \setminus B \perp \!\!\! \perp C$
- $2. A \cap B \perp \!\!\! \perp C$
- 3. $A \cup B \perp \!\!\! \perp C$
- 4. $E \setminus A, B \perp C$

2.5.3 forenings mængdens uafhængighed

A, B, C er hændelser. A og B er betinget afhængige givet C hvis:

$$P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C) \tag{23}$$

denne kan generaliseres (se p. 37 definition 1.5.7)

2.6 Fordelinger på endelige mængder

2.6.1 Centrale begreber

Adskiller sig fra diskrete fordelinger, som ikke er på endelige mængder, men fx. alle de positive tal

Binomialfordelingen sandsynlighedsfunktion er givet ved

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x} \tag{24}$$

$$\binom{n}{x} = \frac{n!}{x!((n-x)!} \tag{25}$$

Transformation af fordelinger

Middelværdi

$$E(X) = \sum_{i=1}^{k} a_i p(a_i)$$
(26)

Varians

$$Var(X) = E([X - E(X)]^2)$$
(27)

$$Var(X) = E(X^2) - (E(X))^2$$
 (28)

Kovarians

$$Cov = E((X - E(X))(Y - E(Y)))$$
(29)

$$Cov = E(XY) - E(X)E(Y)$$
(30)

Korrelation

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$
(31)

2.7 Flerdimensionale stokastiske variable, uafhængighed

readings: Sørensen 3.5, 4.1, 4.4

2.7.1 Polynomial fordelingen

2.7.2 Poisson fordelingen

$$p(x) = \frac{\lambda^x}{x!} e^{-x}, x \in N_0 \tag{32}$$

2.7.3 Generelle diskrete fordelinger

- Fordelinger på uendelige tællelige mængder
- $\bullet \ \sum_{i=1}^{\infty} p(x_i) = 1$
- Kontinuert fordeling af 1 dimension
- middelværdi
- varians
- normalfordelingen
- transformationer
- χ^2 fordeling

2.8 Middelværdi

X har en middelværdi hvis:

$$\int_{-\infty}^{\infty} |x| p(x) dx < \infty \tag{33}$$

Middelværdien for X er:

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx < \infty \tag{34}$$

2.9 Varians

Variansen ekstisterer hvis:

$$\int_{-\infty}^{\infty} x^2 p(x) dx < \infty \tag{35}$$

Variansen er:

$$Var(X) = E([X - E(X)]^2)$$
(36)

2.9.1 Normalfordelingen

Standard normalfordeling:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \qquad x \in \mathbb{R}$$
(37)

Fordelingsfunktionen (CDF)

$$\Phi(x) = \int_{-\infty}^{x} \phi(y)dy \tag{38}$$

Den generelle statndard normalfordeling:

$$Y = \mu + \sigma X$$

$$p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$
 (39)

med middelværdi μ og varians σ^2

2.10 Transformationer

$$q(y) = \begin{cases} p(t^{-1}(y)) |\frac{d}{dy} t^{-1}(y)|, & y \in (v, h) \\ 0, & y \notin (v, h) \end{cases}$$
(40)

hvor $v = \inf t(I), h = \sup t(I)$ og I er intervallet (a, b)

2.11 Fler dimensionelle kontinuerte fordelinger

Man har p(x, y) og $A \in \mathbb{R}$

$$P(X \in A) = P((X, Y) \in A \times \mathbb{R}) \tag{41}$$

Hvilket kan skrives som:

$$q(x) = \int_{\mathbb{R}} p(x, y) dy \tag{42}$$

Altså man kan integrere irrelevante variable ud!

2.11.1 Uafhængighed

 $X_1, X_2, \cdots X_n$ er uafhængige. Dette betyder:

$$p(x_1, x_2, \dots, x_n) = p(x_1) \cdot p(x_2) \cdot \dots \cdot p(x_n)$$

$$\tag{43}$$

Sætning:

Hvis vi ikke kan finde en produktmængde $T_1 \times T_2$, sæledes at (X_1, X_2) er koncentreret på $T_1 \times T_2$, og således at $p(x_1, X_2) > 0$ for alle $(x_1, x_2) \in T_1 \times T_2$ så kan X_1, X_2 ikke være uafhængige

2.11.2 Transformation af kontinuerte variable

Kig **6.3.2**, **6.3.5**, **6.3.6**, **6.3.7** for eksempler på to dimensionelle transformationer. (X + Y), (X / Y) og lignende.

Sætning 6.3.10 viser sandsynlighedstætheden for $q(y_1, y_2) = q(t_1(x_1, x_2), t_2(x_1, x_2))$. Hvor transformationen er på formen $Y_1 = aX_1 + bX_2$ og $Y_2 = cX_1 + dX_2$

Generelt:

sætning 6.3.11

$$Y = AX \tag{44}$$

hvor at $\det(A) \neq 0$ og A er en $n \times n$ matrice og Y er n-dimensionel. da er Y's tæthed:

$$q(y) = \frac{p(A^{-1}y)}{|\det(A)|} \tag{45}$$

2.11.3 Middelværdi, Varians og Kovarians

Resultater vist for diskrete stokastiske fordelinger er de samme som for kontinuerete (integraler i stedet for summer)

$$E(X_1 + X_2 + \dots X_n) = E(X_1) + E(X_2) \dots + E(X_n)$$
(46)

Hvis de er uafhængige, da:

$$E(X_1 \cdot X_2 \cdot \ldots \cdot X_n) = E(X_1) \cdot E(X_2) \cdot \ldots \cdot E(X_n) \tag{47}$$

2.11.4 Kontinuerte betingede fordelinger

Situation hvor man vil betinge på at X = x:

$$q(y) = p(x, y)/p_1(x)$$
 (48)

hvor $p_1(x)$ bare er hvor y er integreret ud af p(x, y).

2.12 Normalfordelingsteori

 χ^2 fordelingens tæthed med k-frihedsgrader

$$p(x) = \frac{x^{\frac{k}{2}}e^{-x/2}}{2^{k/2}c_k} \tag{49}$$

Kig nærmere i bogen for den 2-dimensionelle normalfordeling!

3 Lectures

3.1 Øvelse 1

10/09/2018, opgaver: 1.1, 1.4, 1.17, 1.24 (og 1.13 hvis der er tid)

3.1.1 Opgave 1.1

- en fair mønt
- 3 kast

Udfaldsrummet E har 2^3 udfald:

$$E = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), ((1,1,0), (1,1,1)\}$$

SSH for 1 mønt=krone:

$$p((1,1,1)) = \frac{\text{Gunstige udfald}}{\text{mulige udfald}} = \frac{1}{8}$$
 (50)

SSH for mindst 1 mønt=krone.

brug den komplementere sandsynlighed: $p((0,0,0)) = \frac{1}{8}$. Kald denne hændelse B.

$$P(E \setminus B) = 1 - \frac{1}{8} = \frac{7}{8} \tag{51}$$

SSH for præcis et kast viser mønt=krone

Vi definere 3 hændelser

- $A = \{ \text{Det første kast bliver krone} \},$
- $B = \{ \text{Det andet kast bliver krone} \},$
- $C = \{ \text{Det tredje kast blive krone} \}$

Undersøg om dette er korrekt:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) = 3 \times \frac{1}{8} = \frac{3}{8}$$
 (52)

spørgsmål: hvorfor kan vi ignorere fællesmængden: denoted $A \cup B \cup C$? =¿ Den er disjunkt. Kig i opgave 1.13 for at se hvordan man skulle have inkluderet fællesmængderne

3.1.2 Opgave 1.4

- $3 \text{ slag med terninger } \{1, 2, 3, 4, 5, 6\}$
- Ssh summen er 10
- 1) Vi ser at summen kan antage alle hele tal mellem 3 og 18.
- 2) Vi kan se det ikke er en ligefordeling af summer: dvs. summen 3 er ikke så hyppig som summen 10.
- 3) Det samlede antal udfald er 6^3
- 4) Via computer fandt jeg det gunstige antal udfald:

$$\frac{\text{antal gunstige udfald}}{\text{antal mulige udfald}} = \frac{27}{6^3} = \frac{27}{216}$$
 (53)

3.1.3 Opgave 1.17

- 1 sort terning
- 1 hvid terning

del 1) Hvad er den betingede ssh. for at summen er 12 givet summen er mindst 11

Brug reglen for betingede sandsynligheder

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \tag{54}$$

Lad A være sandsynligheden for summen er 12.

Lad B være sandsynligheden for summen er mindst 11.

$$P(A) = p((6,6)) = \frac{1}{36}$$
 (55)

$$P(B) = P(\{(6,6), (5,6), (6,5)\}) = \frac{3}{36}$$
 (56)

vi ser at $A \subset B \Rightarrow P(A \cap B) = P(A)$

$$P(A \mid B) = \frac{P(A)}{P(B)} = \frac{\frac{1}{36}}{\frac{3}{36}} = \frac{1}{3}$$
 (57)

Del 2) Hvad er den betingede SSH for at de to terninger viser det samme, givet summen er 7:

A er hændelsen for begge er terninger viser det samme.

B er hændelsen summer af terningerne er 7.

$$A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

$$B = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

Vi ser at $P(A \cap B) = \emptyset$

Man husker $P(\emptyset) = 0$ Givet fra definitioner af sandsynlighedsmål.

$$P(A \mid B) = 0 \tag{58}$$

Del 3) Ssh for den hvide terning viser 3, givet den sorte viser 5

A: er hændelsen at den hvide terning er 3.

B: er hændelsen den sorte terning er 5.

Hændelserne er uafhængige!

$$A = \{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}\tag{59}$$

$$B = \{(1,5), (2,5), \cdots, (6,5)\}\tag{60}$$

Vi ser: $P(A \cup B) = P\{(3,5)\} = \frac{1}{6^2}$.

Vi ser: $P(B) = \frac{1}{6}$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$$
 (61)

Del 4) Ssh. for den mindste terning viser 2, givet den terning med det højeste andel højest viser 5

A: hændelsen at den mindste terning viser 2.

B: hændelsen at den terning med det højeste antal øjne viser 5.

$$A = \{(2, 2), (2, 3), \cdots, (2, 6), (3, 2), (4, 2), \cdots, (6, 2)\}$$

$$B = \bigcup_{i,j \in \{1,2,3,4,5\}} (i,j) = E \setminus \{(1,6), (2,6), \cdots, (5,6), (1,6), (2,6), \cdots, (5,6), (6,6)\}$$

Vi kan finde $A \cap B$:

$$A \cap B = (2,2), (2,3), (2,4), (2,5), (3,2), (4,2), (5,2)$$
 (62)

$$P(A \cap B) = \frac{7}{6^2} = \frac{7}{36} \tag{63}$$

$$P(B) = P(E) - P(\{(1,6), (2,6), \cdots, (5,6), (1,6), (2,6), \cdots, (5,6), (6,6)\})$$
(64)

$$=1-\frac{11}{36}=\frac{25}{36}\tag{65}$$

$$P(A \mid B) = \frac{\frac{7}{36}}{\frac{25}{36}} = \frac{7}{25} \tag{66}$$

Opgave 1.24 3.1.4

- 1 hvid terning
- 1 sort terning
 - $A = \{ den \ hvide \ terning \ viser \ 4 \}$
 - $B = \{ den sorte terning viser 1 \}$
 - C = {terningen med det højeste antal øjne viser 4 }
 - D = {summen af øjene er 5 }
 - $F = \{summen af øjnene er 7 \}$

hvilke par er indbyrdes uafhængige:

Husk uafhængighed er: $P(A \cap B) = P(A)P(B)$

$$P(A) = \frac{1}{6} = \frac{6}{36}$$

$$P(B) = \frac{1}{6} = \frac{6}{36}$$
(67)

$$P(B) = \frac{1}{6} = \frac{6}{36} \tag{68}$$

$$P(C) = P(\{(1,4), (2,4), (3,4), (4,4), (4,1), (4,2), (4,3)\}) = \frac{7}{36}$$
 (69)

$$P(D) = P(\{(1,4), (2,3), (3,2), (4,1) = \frac{4}{36}$$
(70)

$$P(F) = \{(1,6), (6,1)\} = \frac{1}{12} = \frac{3}{36}$$
 (71)

Elementer i hver fællesmængde:

A	В	С	D	F	set
6	1	4	1	1	A
1	6	1	1	1	В
4	1	7	2	2	\mathbf{C}
1	1	2	4	0	D
_1	1	2	0	6	F

Figure 1: opg. 1.24 - elementer i hver fællesmængde

A	В	С	D	F	set
0.167	0.028	0.111	0.028	0.028	A
0.028	0.167	0.028	0.028	0.028	В
0.111	0.028	0.194	0.056	0.056	\mathbf{C}
0.028	0.028	0.056	0.111	0.000	D
0.028	0.028	0.056	0.000	0.167	F

Figure 2: opg 1.24 - Sandsynlighed for fællesmængde

A	В	С	D	F	set
0.028	0.028	0.032	0.019	0.028	A
0.028	0.028	0.032	0.019	0.028	В
0.032	0.032	0.038	0.022	0.032	\mathbf{C}
0.019	0.019	0.022	0.012	0.019	D
0.028	0.028	0.032	0.019	0.028	\mathbf{F}

Figure 3: opg. 1.24 - Sandsynligheden for $P(A) \cdot P(B)$

De uafhængige par er: (A, B), (A, F), (B, F)

3.1.5 Opgave 1.13

$$P(A \cup B \cup C) = P(A) + P(B \cup C) - P(A \cap (B \cup C))$$

$$= P(A) + P(B) + P(C) - P(B \cup C) - P(A \cap (B \cup C))$$
(73)

Hvis vi ser nærmere på den sidste del Lav tegning af mængder! A, B, C har en intersektion.

$$P(A \cap (B \cup C) = P(A \cup B) + P(A \cup C) - P(A \cup B \cup C) \tag{74}$$

Man husker at der er minus foran denne mængde, sådan at:

$$P(A \cup B \cup C) = \tag{75}$$

$$P(A) + P(B) + P(C) - P(B \cup C)$$
 (76)

$$-\left(P(A \cup B) + P(A \cup C) - P(A \cup B \cup C)\right) \tag{77}$$

3.2 Øvelse 2

15/09/2018, opgaver: 1.6, 1.7, 1.9, 1.15, 1.18, 1.28 og 1.30 (og 1.12 hvis der er tid)

3.2.1 1.6

- 1 ternning
- 2 slag

Ssh for mindst 1 sekser

$$P(\{\text{mindst en sekser}\}) = \tag{78}$$

$$P(\{(1,6),(2,6),\cdots,(6,6),(6,1),\cdots,(6,5)) =$$
(79)

$$\frac{5+6}{36} = \frac{11}{36} \tag{80}$$

Ssh. for mindst 1 sekser eller mindst 1 toer

$$P(\{\text{mindst en sekser}\}) = \tag{81}$$

$$P(\{(1,6),(2,6),\cdots,(6,6),(6,1),\cdots,(5,6),$$
 (82)

$$(1,2), \cdots (5,2), (2,1)\cdots (2,5)\}) =$$
 (83)

$$\frac{6+5+5+4}{36} = \frac{20}{36} \tag{84}$$

3.2.2 Opgave 1.7

- 1 mønt
- 10 kast

Hvad er ssh. for mindst 2 plat

Find sandsynligheden for komplimenter hændelsen:

A: Er hændelsen for at få mindst 2 plat.

 A^{C} : Er Komplementær hændelsen - altså maks 1 plat:

$$A^C = \{ \text{slå 0 plat} \} \cup \{ \text{slå 1 plat} \}$$

$$\tag{85}$$

$$P(\{\text{slå 0 plat}\}) = \frac{1}{2^{10}}$$
 (86)

$$P(\{\text{slå 1 plat}\}) = \frac{10}{2^{10}} \tag{87}$$

Noter at $\{\text{slå 0 plat}\} \cap \{\text{slå 1 plat}\} = \emptyset$

$$P(A^C) = \frac{1}{2^{10}} + \frac{10}{2^{10}} = \frac{11}{2^{10}}$$
 (88)

$$P(A) = 1 - P(A^{C}) = 1 - \frac{11}{2^{10}} = \frac{1013}{2^{10}}$$
(89)

3.2.3 Opgave 1.9

- 1 spil kort (52 kort)
- 13 kort trækkes

Hvad er Ssh. for 0 billedkort eller esser

Antal billedkort og esser (kaldet billedkort fra nu): 4*4=16 Kig på komplementær hændelsen:

$$P(\{\text{kort 1 ikke billedkort}\}) = \frac{52 - 16}{52} \tag{90}$$

Vi har trukket 1 kort nu \implies 51 kort tilbage, men stadig 12 billedkort

$$P(\{\text{kort 2 er billedkort}\}) = \frac{51 - 16}{51} \tag{91}$$

$$P(\{\text{man trækker 0 billedkort}\}) = \prod_{i=0}^{12} \frac{52 - i - 16}{52 - i} = 0.0036$$
 (92)

Alternativt

$$#E = 52 \cdot 51 \cdots 40 = \frac{52!}{39!} \tag{93}$$

$$\#A = 36 \cdot 35 \cdots 24 = \frac{36!}{23!} \tag{94}$$

$$P(\{\text{man trækker 0 billedkort}\}) = \frac{\#A}{\#E} = 0.0036$$
 (95)

3.2.4 Opgave 1.15

- 4 slag med terning
- mindst 1 sekser
- demere mente $4 \times \frac{1}{6}$

Hvorfor tog han fejl?

Klasse diskussion:

Kig på komplementærhændelsen: Ingen seksere

$$P(\{\text{Ingen seksere}\}) = (\frac{5}{6})^4 = \frac{5^4}{6^4} = 0.49$$
 (96)

Da dette er komplementær hændelsen kan vi i stedet sige:

$$P(\{\text{mindst 1 sekser}\} = 1 - 0.49 = 0.51$$
 (97)

Ssh for en dobbelt sekser i 24 kast

- 24 kast
- mindst 1 dobbelt sekser

Sandsynligheden for 1 dobbelt sekser i et slag.

$$P(\{\text{En dobbelt sekser}\}) = \frac{1}{6} \frac{1}{6} = \frac{1}{36}$$
 (98)

Brug komplementær hændelsen: Dvs. ssh for ikke at få en dobbelt sekser i 24 slag:

$$P(\{\text{Ingen dobbelt sekser i 24 slag}\}) = (\frac{35}{36})^{24} = 0.509$$
 (99)

$$P(\{\mathbf{mindst\ en\ dobbelt\ sekser\ i\ 24\ slag}\}) = 1 - 0.509 = 0.491 \quad (100)$$

Så ikke langt fra!

3.2.5 Opgave 1.18

- 1 mønt
- 10 kast

Hvad er ssh. for at få krone den 10'ende gang givet 9 plat

Lad os definerer hændelserne:

A: Man har fået 9 plat på de første 9 slag af de 10 slag

B: Man får krone på det sidste slag ud af de 10 slag

Brug definition for betingede ssh(1.4.1):

$$P(A \mid B) = \frac{P(A \cap B)}{P(A)} \tag{101}$$

$$P(A \cap B) = (\frac{1}{2})^{10} = \frac{1}{2^{10}}$$
 (102)

$$P(A) = (\frac{1}{2})^9 = \frac{1}{2^9} \tag{103}$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{2^{10}}}{\frac{1}{2^9}} = \frac{1}{2}$$
 (104)

SSh for den 10 bliver krone, givet 9 af de 10 kast blive plat

Lad os definerer hændelserne:

A: Man har fået 9 plat ud af de 10 slag

B: Man får krone på det sidste slag ud af de 10 slag

$$P(A \cap B) = (\frac{1}{2})^{10} = \frac{1}{2^{10}} \tag{105}$$

$$P(A) = 10 \times (\frac{1}{2})^{10} = \frac{10}{2^{10}}$$
 (106)

$$P(B \mid A) = \frac{1}{10} \tag{107}$$

3.2.6 Opgave 1.28

- 1 terning
- 1 kast
- Hændelse A: kast er 1,2,3
- $\bullet\,$ Hændelse B: kast er 1 eller 4

Vis at A og B er uafhængige

Brug Definition 1.5.1:

$$P(A \cap B) = P(A)\dot{P}(B) \tag{108}$$

$$P(A) = \frac{1}{2} \tag{109}$$

$$P(B) = \frac{1}{3} \tag{110}$$

Hvad er fælles mængden af de to hændelser: at terningen bliver 1

$$P(A \cap B) = P(\{\text{Terningen bliver 1}\}) = \frac{1}{6} = P(A)\dot{P}(B)$$
 (111)

Og vi har herved vist, at hændelserne er uafhængige!

3.2.7 Opgave 1.30

Lad eleverne prøve!

- 3 hændelser: A, B, C
- \bullet $A \perp \!\!\! \perp B$
- \bullet $A \perp \!\!\! \perp C$

Kan man fra ovenstående slutte at: $A \perp \!\!\! \perp B \cup C$

$$A \perp \!\!\!\perp B \implies P(A) \cdot P(B) = P(A \cap B) \tag{112}$$

$$A \perp C \implies P(A) \cdot P(C) = P(A \cap C) \tag{113}$$

Bevis via. modeksempel

 $A = \{ Spar eller hjerter \}$

 $B = \{ Spar eller ruder \}$

 $C = \{ hjerter eller ruder \}$

$$P(A \cap B) = \frac{1}{4} = P(A)P(B)$$

$$P(A \cap C) = \frac{1}{4} = P(A)P(C)$$

$$P(A \cap (B \cup C)) = \frac{1}{2} \neq P(A)P(B \cup C) = \frac{1}{2}\frac{3}{4}$$

3.2.8 Opgave 1.12

- 1 slag
- 5 terninger

Sandsynligheden for at få mindst 1 sekser

Udregn ssh for komplementærhændelsen at få 0 seksere!

Definér hændelsen A: At få mindst 1 sekser

$$P(A^C) = P(\{\mathbf{0} \text{ seksere}\} = \left(\frac{5}{6}\right)^5 = 0.402$$
 (114)

$$1 - A^C = 0.598 (115)$$

3.3 Øvelse 3

17/9/2017, Opgaver: 2.1 og 2.3 fra Sørensen (2015) samt opgaverne B.1, B.2 og B.3

3.3.1 Opgave 2.1

- 1 rød terning
- 1 sort terning
- $Y := \min(r, s)$
- $Z := \max(r, s)$

Fordelingen for Y

TEGN TERNINGEMATRICEN

$$P(Y=1) = P(\{(1,1), (1,2), \dots, (1,6), (2,1), \dots, (6,1)\}) = \frac{11}{36}$$
 (116)

$$P(Y=2) = P(\{(2,2), (2,3), \dots (2,6), (3,2), \dots (6,2)\}) = \frac{9}{36}$$
 (117)

$$P(Y=3) = \dots = \frac{7}{36} \tag{118}$$

Den resterende fordeling for Y er: $P(Y=4) = \frac{5}{36}$, $P(Y=5) = \frac{3}{36}$, $P(Y=6) = \frac{1}{36}$.

Fordelingen for Z

TEGN TERNINGEMATRICEN

$$P(Z=1) = P(\{(1,1)\}) = \frac{1}{36}$$
(119)

$$P(Z=2) = P(\{(2,1), (2,2), (2,1) = \frac{3}{36}$$
 (120)

$$P(Z=3) = \dots = \frac{5}{36} \tag{121}$$

Den resterende fordeling for Z er $P(Z=4)=\frac{7}{36}, P(Z=5)=\frac{9}{36}, P(Z=6)=\frac{11}{36}$.

Den simultane fordeling er 3.3.1:

Y er vandret, Z lodret: Vi ved at det må være en øvre trekantsmatrice.

Til diagonalen: Vi ved at der er kun måde at min og maks kan være ens $min(T_1, T_2) = max(T_1, T_2) \implies T_1 = T_2$.

Til den øvre trekant: $Y=1, Z_2 \implies T_1=1, T_2=2 \lor T_1=2, T_2=1$. Dette kan gøres for alle elementer af den øvre trekant

Y = 1Y = 2Y = 3Y = 4Y = 5Y = 6Z = 11/362/362/362/362/362/36Z=20 1/362/362/362/362/36Z=30 1/362/362/362/36Z=40 0 0 1/362/362/36Z=52/360 0 0 1/36Z=60 0 0 0 1/36

Table 1: Simultan fordeling

3.3.2 Opgave 2.3

• Stokastisk variabel er beskrevet i bogen

$$Y = t(X)$$

$$P(Y=1) = P(X \in \{1, 2, 3\}) = 0.12 + 0.8 + 0.20 = 0.4$$
 (122)

$$P(Y=2) = P(X \in \{4, 5\}) = 0.11 + 0.19 = 0.30 \tag{123}$$

$$P(Y=3) = P(X \in \{6,7\}) = 0.14 + 0.06 = 0.20$$
(124)

$$P(Y=4) = P(X \in \{8\}) = 0.10 \tag{125}$$

Fordelingsfunktion (CDF):

$$P(Y \le 0) = 0 \tag{126}$$

$$P(Y \le 1) = 0.4 \tag{127}$$

$$P(Y \le 2) = 0.7 \tag{128}$$

$$P(Y \le 3) = 0.9 \tag{129}$$

$$P(Y \le 4) = 1.0 \tag{130}$$

3.3.3 Opgave B.1

- stokastiske variable X_1, X_2
- $X_1 = 1$ hvis der var en stor nyhed (ellers 0)
- $X_2 = 1$ hvis aktiemarkedet steg/faldt (0 hvis ikke)
- $P(X_1 = 1) = \frac{6}{10}$
- $P(X_2=1)=\frac{3}{10}$

Simultane fordeling under antagelse af uafhængighed!

Brug definition 2.4.1 (sørensen)

$$P(X_1 = 0, X_2 = 0) = P(X_1 = 0)P(X_2 = 0) = \frac{4}{10} \frac{7}{10} = \frac{28}{100}$$
 (131)

$$P(X_1 = 0, X_2 = 1) = P(X_1 = 0)P(X_2 = 1) = \frac{4}{10} \frac{3}{10} = \frac{12}{100}$$
 (132)

$$P(X_1 = 1, X_2 = 0) = P(X_1 = 1)P(X_2 = 0) = \frac{6}{10} \frac{7}{10} = \frac{42}{10}$$
 (133)

$$P(X_1 = 1, X_2 = 1) = P(X_1 = 1)P(X_2 = 1) = \frac{6}{10} \frac{3}{10} = \frac{18}{10}$$
 (134)

TEGN BI-MATRICE

DEL 2: Antag IKKE uafhængighed - Hvad er den simultane fordeling (X_1, X_2)

tegn bimatrice og fyld værdier i løbende!

$$P(X_2 = 1 \mid X_1 = 1) = \frac{4}{10} \tag{135}$$

Udvid **Definition 1.4.3**

$$P(B) = \sum_{j=1}^{n} P(B \mid A_j) P(A_j) = \sum_{j=1}^{n} P(B, A_j)$$
 (136)

$$P(X_2 = 1) = P(X_2 = 1 \mid X_1 = 0)P(X_1 = 0) + P(X_2 = 1 \mid X_1 = 1)P(X_1 = 1)$$
(137)

$$P(X_2 = 1) = P(X_2 = 1, X_1 = 0) + P(X_2 = 1, X_1 = 0)$$
(138)

Vi husker at $P(X_2) = \frac{3}{10}$

$$\frac{3}{10} = \underbrace{\frac{4}{10} \frac{6}{10}}_{P(X_1 = 1, X_2 = 1)} + P(X_2 = 1 \mid X_1 = 0)P(X_1 = 0) \tag{139}$$

$$\implies P(X_1 = 0, X_2 = 1) = \frac{6}{100} \tag{140}$$

Vi har allerede set at:

$$P(X_1 = 1, X_2 = 1) = \frac{24}{100} \tag{141}$$

Vi går videre:

$$P(X_1 = 1) = P(X_1 = 1, X_2 = 0) + P(X_1 = 1, X_2 = 1)$$
(142)

Vi indsætter de værdier vi kender:

$$\frac{6}{10} = P(X_1 = 1, X_2 = 0) + \frac{24}{100} \implies P(X_1 = 1, X_2 = 0) = \frac{36}{100}$$
 (143)

Vi mangler kun sidste værdi nu:

$$P(X_2 = 0) = P(X_2 = 0, X_1 = 0) + P(X_2 = 0, X_1 = 1)$$
(144)

Husker værdier: $P(X_2 = 0) = \frac{7}{10}$ og $P(X_1 = 1, X_2 = 0) = \frac{36}{100}$

$$\frac{7}{10} = \frac{36}{100} + P(X_1 = 0, X_2 = 0) \implies P(X_1 = 0, X_2 = 0) = \frac{34}{100}$$
 (145)

Ændrer fordelingen sig for X_1, X_2, X

Spørg klassen

De marginale distributioner er ens, De betingede og den simultane er forskellig

3.3.4 Opgave B.2

- Test for cancer
- Den gætter rigtig med 95 % ssh.
- 1 ud af 100.000 mennesker har denne kræft form

Lad X for cancer testen X=1 implicerer positiv test . Lad Y være en stokastisk variabel som angiver om man har kræft Y=1 betyder man har kræft.

Vi kan skitserer nogle sandsynligheder:

$$P(X = 1 \mid Y = 1) = 0.95, \quad P(X = 0 \mid Y = 1) = 0.05$$
 (146)

$$P(X = 0 \mid Y = 0) = 0.95, \quad P(X = 1 \mid Y = 0) = 0.05$$
 (147)

$$P(Y=1) = \frac{1}{100000} = 0.00001 \tag{148}$$

Brug bayes formel (sætning 1.4.7):

$$P(A_k \mid B) = \frac{P(B \mid A_k)P(A_k)}{\sum_{j=1}^n P(B \mid A_j)P(A_j)}$$
(149)

$$P(Y = 1 \mid X = 1) \tag{150}$$

$$= \frac{P(X=1 \mid Y=1)P(Y=1)}{P(X=1 \mid Y=1)P(Y=1) + P(X=1 \mid Y=0)P(Y=0)}$$
(151)

$$P(Y = 1 \mid X = 1) = \frac{0.95 \cdot 0.00001}{0.95 \cdot 0.00001 + 0.05 \cdot 0.99999} = 0.0001899$$
 (152)

3.3.5 Opgave B.3

Kig github!

3.4 Øvelse 4

21/9/2018, Øvelser: B.4 og 2.4, 2.5, og 2.9 fra Sørensen (2015)

3.4.1 Opgave B.4

Lav i klassen

- 1 mønt
- 1 terning
- X er stokastisk variabel med summen af antal øjne på terning + (0/1) (1 hvis krone).

$$T := \text{Ternings } \emptyset \text{ jne}, \qquad M := \text{M} \emptyset \text{nt}$$
 (153)

$$X := T + M \tag{154}$$

Del 4 - Find P(X > 3)

Definer hændelser:

$$A = \{X > 3\}$$

$$A^C = \{X \le 3\}$$

udfaldsrummet for den simultane fordeling af T of M $\{0,1\} \times \{1,2,3,4,5,6\}$

$$P(A^C) = \tag{155}$$

$$P(\{(M=0, T=1), (M=0, T=2), (M=0, T=3),$$
 (156)

$$(M = 1, T = 1), (M = 1, T = 2))$$
 (157)

Dette var kun komplementær hændelsen

$$P(A^C) = \frac{5}{12} \tag{158}$$

$$P(A) = \frac{7}{12} \tag{159}$$

Del 5 - SSh for ulige nummer

Definér hændelsen.

 $A = \{X \in \mathbf{Ulige\ numre}\}$

Disse er alle indbyrdes disjunkte hændelser $A = \{X = 1\} \cup \{X = 3\} \cup \{X = 5\} \cup \{X = 7\}$

$$P(A) = P(\{X=1\}) + P(\{X=3\}) + P(\{X=5\}) + P(\{X=7\}) \quad (160)$$

$$P(A) = \frac{1}{12} + \frac{2}{12} + \frac{2}{12} + \frac{1}{12} = \frac{1}{2}$$
 (161)

3.4.2 Opgave 2.4

L

- X er en stokastisk variabel som kan antage værdierne $\{1, 2, 3\}$
- $P(X = 1) = P(X = 2) = P(X = 3) = \frac{1}{3}$
- En stokastisk variabel Y = 1/X

Tegn fordelingsfunktionen for X og Y

Kig Github!

3.4.3 Opgave 2.5

Lav første del i klassen

- X_1, X_2 er stokastiske variable.
- begge har udfaldsrummet $\{0,1\}$
- X_1 marginale fordeling:

$$-P(X_1=0)=0.4$$

$$-P(X_1=1)=0.6$$

• X_2 marginale fordeling

$$-P(X_2=0)=0.3$$

$$-P(X_2 = 1) = 0.7$$

• Vi har en stokastisk vektor $X = (X_1, X_2)$

Del 1) Undersøg uafhængighed når den simultane fordeling af X er:

Table 2: Simultan fordeling af X

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	0.12	0.18
$X_2 = 1$	0.28	0.42

Se definition 2.4.1: Skriv den op på tavlen!

Vi tester for uafhængighed:

$$P(X_1 = 0)P(X_2 = 0) = 0.4 \cdot 0.3 = 0.12 \tag{162}$$

$$P(X_1 = 0)P(X_2 = 1) = 0.4 \cdot 0.7 = 0.28 \tag{163}$$

$$P(X_1 = 1)P(X_2 = 0) = 0.6 \cdot 0.3 = 0.18 \tag{164}$$

$$P(X_1 = 1)P(X_2 = 1) = 0.6 \cdot 0.7 = 0.42 \tag{165}$$

Vi ser at X_1 er uafhængig af X_2 .

Del 2) Undersøg uafhængighed når den simultane fordeling af X er:

Til klassen: Er dette overhovedet muligt - givet ovenstående resultat?

Table 3: Simultan fordeling af X

	$X_1 = 0$	$X_1 = 1$
$X_2 = 0$	0.15	0.15
$X_2 = 1$	0.25	0.45

Del 3) gør rede for at begge simulatane fordelinger er i overensstemmelse med de angivne marginale fordelinger

$$P(X_1 = 0) = P((0,0)) + P((0,1)) = 0.4$$
(166)

$$P(X_1 = 1) = P((1,0)) + P((1,1)) = 0.6$$
(167)

$$P(X_2 = 0) = P((0,0)) + P((1,0)) = 0.3$$
(168)

$$P(X_2 = 1) = P((0,1)) + P((1,1)) = 0.7$$
(169)

3.4.4 Opgave 2.9

Note brug min() og maks() som funktioner istedet for bogens notation.

- 2 terninger, T_1, T_2
- T_1, T_2 er ligefordelt på $\{1, 2, 3, 4, 5, 6\}$
- $Y = min(T_1, T_2)$
- $Z = max(T_1, T_2)$

Hvad er den simultane fordeling?

Y er vandret, Z lodret: Vi ved at det må være en øvre trekantsmatrice.

Til diagonalen: Vi ved at der er kun måde at min og maks kan være ens $min(T_1, T_2) = max(T_1, T_2) \implies T_1 = T_2$.

Til den øvre trekant: $Y = 1, Z_2 \implies T_1 = 1, T_2 = 2 \lor T_1 = 2, T_2 = 1$. Dette kan gøres for alle elementer af den øvre trekant

Er Y, Z uafhængige

Husk:

$$P(Y = A, Z = B) = P(Y = A)P(Z = B) \quad \forall A, B \in \{1, 2, 3, 4, 5, 6\} \quad (170)$$

Table 4: Simultan fordeling

	Y = 1	Y=2	Y=3	Y=4	Y = 5	Y = 6
Z=1	1/36	2/36	2/36	2/36	2/36	2/36
Z=2	0	1/36	2/36	2/36	2/36	2/36
Z=3	0	0	1/36	2/36	2/36	2/36
Z=4	0	0	0	1/36	2/36	2/36
Z=5	0	0	0	0	1/36	2/36
Z=6	0	0	0	0	0	1/36

Vi skal bare have et modeksempel. Eftersom: P(Y=1,Z=2)=0 kan vi konkluderer ikke uafhægighed. Overvej dette !

3.5 Øvelse 5

24/09/2018 - C.1, C.2, C.3 & 3.20, 3.24, 3.27 (optional 3.2) sørensen

3.5.1 Opgave C.1

- Basketball player
- 10 skud
- ssh for at ramme 0.5

Binomial fordeling

Hvad er SSh for at ramme 8 skud med ssh 0.5

$$p(x) = {10 \choose 8} 0.5^8 (1 - 0.5)^{10-8} = 0.04394$$
 (171)

Hvad er SSh for at ramme med ssh 0.6

$$p(x) = {10 \choose 8} 0.6^8 (1 - 0.6)^{10-8} = 0.1209$$
 (172)

Ssh på 0.5 - hvad er varians of middelværdi

$$E(X) = n \cdot p = 0.5 \cdot 10 = 5 \tag{173}$$

fra wikipedia

$$Var(X) = n \cdot p \cdot (1 - p) = 2.5 \tag{174}$$

3.5.2 Opgave C.2

- ullet X er stokastisk variabel
- diskret pdf $f(x) = \frac{x}{8}$
- $x \in \{1, 2, 5\}$

Hvad er E(X)

$$E(X) = \sum_{i=1}^{n} p_i \cdot x_i = 1 \cdot \frac{1}{8} + 2 \cdot \frac{2}{8} + 5 \cdot \frac{5}{8} = \frac{1+4+25}{8} = 3.75$$
 (175)

Hvad er Var(X)

$$Var(X) = E(X^2) - (E(X))^2$$
(176)

$$E(X^2) = 1^2 \cdot \frac{1}{8} + 2^2 \cdot \frac{2}{8} + 5^2 \cdot \frac{5}{8} = \frac{1+8+125}{8} = 16.75$$
 (177)

$$Var(X) = 16.75 - 3.75^2 = 16.75 - 14.0625 = 2.6875$$
 (178)

Hvad er E(2X+3)

Vi bruger:

$$E(a+bX) = a + bE(X) \tag{179}$$

Husk E(X) = 3.75

$$2 \cdot 3.75 + 3 = 7.5 + 3 = 10.5 \tag{180}$$

3.5.3 Opgave C.3

- \bullet Efterspørgsel for software er X
- købspris 10
- salgspris 35
- Ved årets ende er softwaren intet værd
- køber 4 kopier af software

Find $\mathbf{E}(X)$

$$E(X) = 0.1 \cdot 0 + 0.3 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 4 = 0.3 + 0.6 + 0.6 + 0.4 = 1.9$$
(181)

Find Var(X)

$$Var(X) = E(X^2) - (E(X))^2$$
(182)

$$E(X^2) = 0.1 \cdot 0 + 0.3 \cdot 1 + 0.3 \cdot 4 + 0.2 \cdot 9 + 0.1 \cdot 16 = 0.3 + 1.2 + 1.8 + 1.6 = 4.9$$
 (183)

$$Var(X) = 4.9 - 1.9^2 = 4.9 - 3.61 = 1.29$$
(184)

Efterspørgselsfunktion Y, samt $\mathbf{E}(Y)$ og $\mathbf{Var}(Y)$

man køber 4 stykker software $4\times 10.\,$ og sælger x af dem som er en realisation af $X.\,$

$$Y := 35X - 40 \tag{185}$$

husk

$$E(a+bX) = a + bE(X) \tag{186}$$

$$E(Y) = E(35X - 40) = 35 \cdot E(X) - 40 = 3.5 \cdot 1.9 - 40 = 26.5$$
 (187)

Normalt ville vi sige:

$$Var(X) = E(X^2) - (E(X))^2$$
(188)

Vi gør noget smartere her (kig bog s. 93):

$$Var(aX + b) = b^{2}Var(X)$$
(189)

$$Var(Y) = Var(35X - 40) = 35^2 \cdot Var(X) = 35^2 \cdot 1.29 = 1580.25$$
 (190)

3.5.4 Opgave 3.20

- \bullet en stokastisk variabel Xer ligefordelt på $\{1,2,3,4,5,6\}$ (en terning)
- $\bullet\,$ stokastisk variabel Y:=R+H,hvor er og R,Her terninger
- Z er stokastisk variabel som er for uniform på $\{1,2,3\cdots,n.$

Find middelværdi og varians for X

Man siger at $X := unif\{a, b\} = unif\{1, 6\}$

Middelværdi

$$E(X) = \sum_{i=1}^{6} \frac{1}{6}i = 3.5 \tag{191}$$

Fra wikipedia om diskrete uniform fordeling

https://en.wikipedia.org/wiki/Discrete_uniform_distribution Varians

Generelt er der gode informationer om distributioner på wiki!

$$Var(X) = \frac{(b-a+1)^2 - 1}{12}$$
 (192)

$$Var(X) = \frac{(6-1+1)^2 - 1}{12} = \frac{35}{12} = 2.92$$
 (193)

For Y

$$R, H := unif\{1, 6\}. \ Y = R + H$$

Vi ved at $R \perp \!\!\! \perp H$

brug Sætning 3.7.7 (s. 91) - (uafhængighed er ikke nødvendig)

$$E(Y) = E(R+H) = E(R) + E(H) = 3.5 + 3.5 = 7$$
 (194)

Grundet uafhængighed kan vi nu bruge sætning 3.8.8 (s. 101)

$$Var(X_1 + X_2 + \dots + X_n) = Var(X_1) + Var(X_2) \cdot \dots \cdot Var(X_n)$$
(195)

$$Var(Y) = Var(R) + Var(H) = 2.92 + 2.92 = 5.84$$
 (196)

Middelværdi og varians for Z

Vi kan definere den stokastiske variabel Z := unif(1, n)

$$E(Z) = \sum_{i=1}^{n} \frac{1}{n} i = \frac{1}{n} \sum_{i=1}^{n} i$$
 (197)

summen er $\frac{n(n+1)}{2}$. Vis gaus beviset: vi har n/2 gange (1+n). 1+50=51, 2+49=51 osv det kan vi gøre 25 gange.

$$E(Z) = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$
 (198)

Nu skal variansen udregnes!

$$Var(Z) = E(Z^{2}) - (E(Z))^{2}$$
(199)

I bogen har vi opgivet at:

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(2n+1)(n+1) \tag{200}$$

Vi ved derfor at:

$$E(Z^2) = \sum_{i=1}^{n} \frac{1}{n} i^2 = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1}{n} \frac{1}{6} n(2n+1)(n+1) = \frac{1}{6} (2n+1)(n+1)$$
 (201)

(Andel af udtrykket er $E(Z)^2$)

$$Var(Z) = \frac{1}{6}(2n+1)(n+1) - \frac{n+1}{2}\frac{n+1}{2}$$
 (202)

Vi ser udtrykket kan forkortes:

$$Var(Z) = \left(\frac{1}{6}(2n+1) - \frac{n+1}{2^2}\right)(n+1)$$
 (203)

3.5.5 Opgave 3.24

- $\bullet\,$ en stokastisk variabel X
- E(X) = 5
- Var(X) = 2

Find $E(7 + 8X + X^2)$

$$E(7 + 8X + X^{2}) = E(7) + E(8X) + E(X^{2})$$
(204)

Først ved vi at E(7) = 7.

Dernæst

$$E(8X) = 8 \cdot E(X) = 8 \cdot 5 = 40$$
 (205)

Til sidst

$$Var(X) = E(X^2) - E(X)^2$$
 (206)

Vi kender variansen og E(X):

$$2 = E(X^2) - 5^2 \implies E(X^2) = 2 + 5^2 = 27$$
 (207)

$$E(7 + 8X + X^2) = 7 + 40 + 27 = 74$$
(208)

3.5.6 Opgave 3.27

- 3 stokastiske variable
- \bullet X_1, X_2, X_3
- identiske og uafhængige

Vis at

$$Corr(X_1 + X_2, X_2 + X_3) = \frac{1}{2}$$
 (209)

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$
(210)

$$Cov(X, Y) = (X - E(X))(Y - E(Y))$$
 (211)

Indsæt vores stokastiske variable $X_1 + X_2$ og $X_2 + X_3$.

$$Cov(X_1 + X_2, X_2 + X_3) = (212)$$

$$(X_1 + X_2 - E(X_1) + E(X_2))(X_2 + X_3 - E(X_2) + E(X_3)) =$$
(213)

$$([X_1 - E(X_1)] + [X_2 - E(X_2)])([X_2 - E(X_2)] + [X_3 - E(X_3)]) = (214)$$

$$Cov(X_1, X_2) + Cov(X_1, X_3) + Cov(X_2, X_3) + Var(X_2)$$
 (215)

Vi ved at uafhængighed implicerer ar covariancen er lig 0. Det betyder:

$$Cov(X_1 + X_2, X_2 + X_3) = Var(X_2) = \sigma^2$$
 (216)

Brug sætning 3.8.8 (s. 101). Man kan splitte variansen op af ukorrelerede stokastiske variabler til en sum

$$Var(X_1 + X_2)Var(X_2 + X_3) =$$
(217)

$$(Var(X_1) + Var(X_2))(Var(X_2) + Var(X_3)) = (218)$$

(219)

Vi ved variansen er ens for alle stokastiske variable sådan at: $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2$

$$2\sigma^2 \cdot 2\sigma^2 \tag{220}$$

$$\sqrt{2\sigma^2 \cdot 2\sigma^2} = 2\sigma^2 \tag{221}$$

Vi har herved fundet det ønskede resultat!

$$Corr(X_1 + X_2, X_2 + X_3) = \frac{\sigma^2}{2\sigma^2} = \frac{1}{2}$$
 (222)

3.5.7 Opgave 3.2

- 5 Cola-smagere
- 2 Cola-mærker $\{C, P\}$
- \bullet med sandsynlighed p gætter de rigtigt
- ullet 4 ud af 5 gætte på cola P. 1 gættede C

Hvad er den betingede ssh for at det var cola C der blev serveret

Definér to stokastiske variable:

 $S := \{ \text{Hvilke cola der blev serveret} \}$

 $C := \{ \mathbf{hvilken} \ \mathbf{cola} \ \mathbf{der} \ \mathbf{blev} \ \mathbf{serveret} \}$

$$P(D) = \frac{1}{2}$$

 $P(S \mid D) \sim Bin(5, p)$

$$P(S = 4 \mid D = C) {5 \choose 4} p(1-p)^4$$
 (223)

3.6 Øvelse 6

28/09/2018 - C.4 & Opgave 1

3.6.1 Opgave C.4

- Poisson distribution
- Antal opkald kan modelleres med en stokastisk variabel kaldet $X := Poisson(\lambda)$.

Om Poisson fordelingen: En ventetidsfordeling! Citat wikipedia:

"[Poisson fordelingen] is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant rate and independently of the time since the last event." - Wikipedia

Den har den egenskab at: $E(X) = Var(X) = \lambda$

Om denne fordeling kan vi sige at sandsynligheden for et givent udfald er (pdf):

$$p(x) = \frac{\lambda^x}{x!} e^{-\lambda} \tag{224}$$

Lad dem regne selv

Ssh for præcis 7

$$p(7) = \frac{7^{10}}{7!}e^{-10} = 0.090079 \tag{225}$$

Ssh for max 7 opkald

$$P(X \le 7) = \sum_{i=0}^{7} \frac{i^{10}}{i!} e^{-10} = 0.22022$$
 (226)

$$P(3 \le X \le 7) = \sum_{i=3}^{7} \frac{i^{10}}{i!} e^{-10} = \sum_{i=0}^{7} \frac{i^{10}}{i!} e^{-10} - \sum_{i=0}^{2} \frac{i^{10}}{i!} e^{-10}$$
 (227)

Indsæt værdier udregnet i python

$$0.22022 - 0.002769 = 0.217451 \tag{228}$$

3.6.2 Opgave 1

- Værdi af cykel 4000 kr
- \bullet ssh for den bliver stjålet 5 %
- man kan tegne en cykel så den bliver erstattet for hele dens værdi

Del 1) Hvor meget er man villig til at betale for en sådan forsikring?

Spørg klassen - Intet rigtigt svar?

del 2) Udregn værdi af cykel (på et år)

Vi definerer X stokastiske variable:

 $X := \mathbf{Cykel} \ \mathbf{værdi}$

$$P(X = 0) = 0.05 \text{ og } P(X = 4000) = 0.95$$

Så ganger vi værdien på X bagefter.

$$E(X) = 0.95 \cdot 4000 = 3800 \tag{229}$$

del 3) Cykel forsikring!

$$Y :=$$
Værdi af cykel minus forsikring 1 (230)

$$(Y \mid X = 0) = 0 - 400 + 4000 = 3600 \tag{231}$$

$$(Y \mid X = 4000) = 4000 - 400 = 3600 \tag{232}$$

$$E(Y) = 0.95 \cdot 3600 + 0.05 \cdot 3600 = 3600 \tag{233}$$

Del 4) Forsikring med selvrisiko på 1000 kr!

 $pris = 150 \text{ årligt}, selvrisiko} = 1000.$

Z := Værdi af cykel minus forsikring 2

$$(Z \mid X = 0) = 0 - 150 - 1000 + 4000 = 2850$$
 (234)

$$(Z \mid X = 4000) = 4000 - 150 = 3850 \tag{235}$$

$$E(Z) = 0.05 \cdot 2850 + 0.95 \cdot 3850 = 3800 \tag{236}$$

Del 5) Sammenlign middel værdier

Klassediskussion

Del 6) Nytte af af X, Y, Z

nyttefunktion:

$$u(v) = 10v - 0.001v^2, v \in \{0, 1, \dots 4000\}$$
 (237)

Transformér de enkelte stokastiske variable først! X:

$$u(X \mid X = 0) = 0 (238)$$

$$u(X \mid X = 1) = 10 \cdot 4000 - 0.001 \cdot 4000^{2} = 24000 \tag{239}$$

transformation af Y:

$$u(Y \mid Y = 3600) = 10 \cdot 3600 - 0.001 \cdot 3600^2 = 23040$$
 (240)

(241)

Transformation af Z:

$$u(Z \mid Z = 3850) = 10 \cdot 3850 - 0.001 \cdot 3850^2 = 23677.5$$
 (242)

$$u(Z \mid Z = 2850) = 10 \cdot 2850 - 0.001 \cdot 2850^2 = 20377.5$$
 (243)

$$E(u(X)) = 0.95 \cdot 24000 + 0.05 \cdot 0 = 22800 \tag{244}$$

$$E(u(Y)) = 0.95 \cdot 23040 + 0.05 \cdot 23040 = 23040 \tag{245}$$

$$E(u(Z)) = 0.95 \cdot 23677.5 + 0.05 \cdot 20377.5 = 23512.5 \tag{246}$$

Del 7) Vis generelt udtryk for den forventede værdi af u(W)

$$u(v) = 10v - 0.001v^2, v \in \{0, 1, \dots 4000\}$$
 (247)

lad W være koncentreret på mængden T:

$$E(u(W)) = \sum_{w \in T} (10 \cdot w - 0.001w^2) p(w)$$
 (248)

$$E(u(W)) = \sum_{w \in T} (10 \cdot w) p(w) - \sum_{w \in T} (0.001w^2) p(w)$$
 (249)

$$E(u(W)) = 10 \cdot \sum_{w \in T} (w)p(w) - 0.001 \cdot \sum_{w \in T} (w^2)p(w)$$
 (250)

$$E(u(W)) = 10E(W) - 0.001 \cdot E(W^2)$$
(251)

Vi ved at:

$$Var(X) = E(X^2) - (E(X))^2 \implies Var(X) + (E(X))^2 = E(X^2)$$
 (252)

Vi bruger dette:

$$E(u(W)) = 10 \cdot E(W) - 0.001 \cdot (E(W))^2 + Var(W)$$
 (253)

Som var det ønskede udtryk

Del 8) Udregn variansen af X, Y, Z

Vi bruger formlen for den varians:

$$\sum_{x \in T} (x - \mathcal{E}(X))^2 p(x) \tag{254}$$

Varians af X

$$0.95 \cdot (3800 - 4000)^2 + 0.05 \cdot (0 - 4000)^2 = 760000 \tag{255}$$

Varians af Y: Den er Var(Y) = 0. Vi får altid udbetalt det samme! **Definition 3.7.13**

Varians af Z

$$0.95 \cdot (3850 - 3800)^2 + 0.05 \cdot (2850 - 3800)^2 = 47500 \tag{256}$$

3.7 Øvelse 7

Opgaver: 3.4, 3.13, 3.14, 4.5, 4.6, (4.14)

3.7.1 Opgave 3.4

• 5 terninger kastes

SSH for 3 seksere

Man kan bruge både binomial fordelingen og Polynomialfordelingen.

Vi bruger binomialfordelingen X := Binom(n = 5, p = 1/6)

$$p = \frac{1}{6} \tag{257}$$

VI har antalsparameter n = 5, og antal succeser x = 3

$$P(X=3) = {5 \choose 3} \left(\frac{1}{6}\right)^3 \left(1 - \frac{1}{6}\right)^{5-3} = 0.0321$$
 (258)

SSH for mindst 3 seksere

$$P(X \ge 3) = \sum_{i=3}^{n} {5 \choose i} \left(\frac{1}{6}\right)^{i} \left(1 - \frac{1}{6}\right)^{5-i} = 0.03549$$
 (259)

SSh for præcis 3 ens

Brug hvad vi har udregnet tidligere. SSH for præcis 3 seksere, kan vi gange med 6 for at finde det for alle!

$$P(Z=3) = 6 \cdot 0.0321 = 0.1929 \tag{260}$$

SSH for mindst 3 ens

Brug hvad vi regnede ud tidligere for mindst 3 seksere

$$P(Z=3) = 6 \cdot 0.03549 = 0.2129 \tag{261}$$

3.7.2 Opgave 3.13

- $X, Y \sim Uni(0, N)$
- $\bullet \ X \perp \!\!\! \perp Y$

Find P(X > Y)

Find middelværdien for X, Y.

Vi ser: $P(X > Y \mid Y = 0) = P(X > 0)$, $P(X > Y \mid Y = 1) = P(X > 1)$. Vi ved at Y, X er ligefordelt sådan at alle ting er lige sandsynlige. Dette implicerer $P(Y = y) = \frac{1}{N+1}, \forall y \in Y$.

Vi kender CDF af den diskrete uniforme fordeling:

$$P(Y \ge k) = \frac{k - a + 1}{n} \tag{262}$$

Sæt det hele sammen:

$$P(X \ge Y) = \frac{1}{N+1} \sum_{i=0}^{N} \frac{i-0+1}{N+1} = \frac{1}{N+1} \frac{1}{N+1} \sum_{i=0}^{N} i + 1$$
 (263)

Husk at summen fra 1 til N kan skrives som = (n+1)n/2. I vores tilfælde (n+1+1)(n+1)/2, grundet vi har i+1 i vores sum.

$$P(X \ge Y) = \frac{1}{(N+1)^2} \frac{(N+1)(N+1+1)}{2} = \frac{(N+2)}{2(N+1)}$$
 (264)

Find P(X = Y)

Der er N+1 udfald.

$$P(X = Y, Y = y) = \frac{1}{(1+N)^2}$$
 (265)

Dette er klart tænk på terninger ssh for 1 dobbelt sekser $1/6^2$.

Vi har 1 + N måder at dette kan ske på:

$$P(X=Y)(N+1)\frac{1}{(N+1)^2} = \frac{1}{N+1}$$
 (266)

Find P(Z) hvor $Z \sim max(X, Y)$

Vi ser at:
$$P(Z = 0) = P(X = 0, Y = 0)$$

Og at:
$$P(Z = 1) = P(X = 1, Y = 1) + P(Y = 1, X = 0) + P(X = 0, Y = 1)$$
.

Vi prøver at generaliserer observationen:

Find P(V) hvor $V \sim min(X, Y)$

DROP AT LAVE

Find P(W) hvor $W \sim |X - Y|$

DROP AT LAVE

3.7.3 Opgave 3.14

LAV I KLASSEN

- (X_1, X_2) er en stokastisk vektor
- SE OPLÆG for den simultane fordeling

SSH X_1 er et lige tal

Vi husker relationen mellem marginale, betingede og simultane fordelinger!

$$P(X_1 = k) = \sum_{i=1}^{n} P(X_1 = k, X_2 = x_i)$$
(267)

Vi ser at X_1 skal være et lige tal:

$$P(X_1 \in \mathbf{Lige\ tal}) = P(X_1 = 0) + P(X_1 = 2) + P(X_1 = 6) = 1 - P(X_1 = -1)$$
(268)

$$P(X_1 = -1) = P(X_1 = -1, X_2 = 3)$$
(269)

$$+P(X_1 = -1, X_2 = 1) (270)$$

$$+P(X_1 = -1, X_2 = -2) (271)$$

$$P(X_1 = -1) = 0 + \frac{2}{9} + \frac{1}{9} = \frac{3}{9}$$
 (272)

Vi finder den sandsynlighed vi ønskede fra start:

$$P(X_1 \in \mathbf{Lige\ tal}) = 1 - P(X_1 = -1) = 1 - \frac{3}{9} = \frac{6}{9}$$
 (273)

SSH, X_1X_2 er et ulige tal

Kravet er at produktet af de to stokastiske variable skal være et ulige tal. Dette vil implicere at $X_1 \in \{\mathbf{ulige\ tal}\}, X_2 \in \{\mathbf{ulige\ tal}\}.$

$$P(X_1 X_2 \in \{ \text{Ulige tal} \}) = P(X_1 = -1, X_2 = 3)$$
 (274)

$$+P(X_1 = -1, X_2 = 1) (275)$$

$$=\frac{2}{9}\tag{276}$$

SSH for $X_2 > 0$ og $X_1 \ge 0$

$$P(X_2 > 0, X_1 > 0) = P(X_2 = 3, X_1 = 2)$$
 (277)

$$+P(X_2=3, X_1=6) (278)$$

$$+P(X_2=1,X_1=2) (279)$$

$$+P(X_2=1,X_1=6) (280)$$

$$= \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{27} = \frac{13}{27}$$
 (281)

3.7.4 Opgave 4.5

Lav i klassen

- shh for sikring defekt 0.03
- køber pakke med 100 sikringer

SSH for at i en pakke med 100 sikringer maks 2 er er defekte

Brug sætning 4.1.2

VI lader altså vores antal parameter gå mod uendelig. Vi bruger nu en poisson fordeling!

Vi ser at $n \cdot p = \lambda = 100 \cdot 0.03 = 3$

Vi definerer vores stokastiske variabel $X \sim Poisson(\lambda = 3)$

$$P(X \le 2) = \sum_{i=0}^{2} \frac{\lambda^{i}}{i!} e^{-\lambda} = \sum_{i=0}^{2} \frac{3^{i}}{i!} e^{-3} \approx 0.42$$
 (282)

3.7.5 Opgave 4.6

• En terning kastes indtil den første sekser opnås

Hvad er ssh for at en sekser opnås inden 6 kast.

$$P(X < 6) = 1 - P(X \ge 5) = 1 - (1 - 1/6)^{5+1} = 0.665$$
 (283)

5+1 fordi 0 skal tælles med

Hvad er den største værdi af $i \in \mathbb{N}$ hvor $P(X > i) \ge \frac{1}{2}$

$$P(X > 0) = (1 - 1/6)^{1} = 0.8333$$
 (284)

$$P(X > 1) = (1 - 1/6)^2 = 0.6944 (285)$$

$$P(X > 2) = (1 - 1/6)^3 = 0.5787 (286)$$

$$P(X > 3) = (1 - 1/6)^3 = 0.4822 (287)$$

VI ser at i = 2 er det største!!

3.7.6 Optional (4.14)

- \bullet En stokastisk variabel X
- $X \sim Poisson(\lambda)$

Hvad er $E(2^X)$

 $Z=2^X$. VI har så at

$$p(z) = \frac{\lambda^{2^x}}{2^x!} e^{-\lambda} \tag{288}$$

$$E(Z) = \sum_{i=0}^{\infty} 2^{i} \frac{\lambda^{2^{i}}}{2^{i}!} e^{-\lambda}$$
 (289)

Vi kan trække en fra i nævneren da den bliver ganget på!

$$= \sum_{i=0}^{\infty} \frac{\lambda^{2^{i}}}{(2^{i}-1)!} e^{-\lambda}$$
 (290)

Man trækker et lambda fra tælleren ud foran sumtegnet!

$$= \lambda \sum_{i=0}^{\infty} \frac{\lambda^{2^{i-1}}}{(2^{i}-1)!} e^{-\lambda}$$
 (291)

Hvad er $E((1+X)^{-1})$

3.8 Øvelse 8

Opgaver: 4.4, opgave A, (Opgave H)

3.8.1 Opgave 4.4

- A står ved en lidet trafikkeret vej
- Antal taxaer pr. minut, er poisson fordelt med $\lambda = \frac{1}{30}$

Del 1) Hvad er ssh for A må vente mere end en halv time

Altså poisson fordelingen måler "antal observationer" som vores x. og vores λ som vores parameter. Vi bliver nødt til at gange lambda (det er på minut basis, og vi skal have det på halv time basis) t.

$$Y \sim Poisson(\lambda = 1/30t)$$

$$\lambda = 1/3 * 30$$

$$P(Y=0) = \frac{\lambda^x}{x!}e^{-1} = \frac{1^0}{0!}e^{-1} = 0.36787$$
 (292)

Del 2) Hvad er ssh for at vente 1 1/2 time.

 $\lambda = 1/30 * 90 = 3$

$$P(Y=0) = \frac{3^x}{x!}e^{-3} = \frac{3^0}{0!}e^{-3} = 0.04978$$
 (293)

Del 3) SSh for Y > 0 Taxa er der før 10 minutter

$$\lambda = 1/30 * 10 = 1/3$$

$$P(Y > 0) = 1 - P(Y = 0) = 1 - \frac{(1/3)^0}{0!}e^{-(1/3)} = 0.28346$$
 (294)

Del 4) Vis at ventetiden, afrundet nedad til helt minuttal, er geometrisk fordelt med $p = 1 - e^{1/30}$

Den geometriske fordeling:

Antal forsøg inden succes

$$pdf = (1-p)^k p (295)$$

Først ser vi at:

$$P(Y = y) = P(X_y > 0, X_{y-1} = 0)$$
(296)

Altså ventetiden må være sådan at man ikke har fået taxa i sidste minut, men har i dette minut.

Brug nu at en simultan fordeling kan skrives som en betinget fordeling

$$P(X_y > 0, X_{y-1} = 0) (297)$$

$$=P(X_{\nu}>0\mid X_{\nu-1}=0)P(X_{\nu-1}=0)$$
(298)

$$\stackrel{(*)}{=} (1 - P(X_{y=1} = 0))P(X_{y-1} = 0)$$
(299)

Vi har i (*) brugt at $P(X_y > 0 \mid X_{y-1} = 0)$ Svarer til $P(X_1 > 0)$ som svarer til $1 - P(X_1 = 0)$

Indsæt nødvendige tal:

$$\left(1 - \frac{(1/30)^0}{0!}e^{-1/30}\right) \left(\frac{((t-1)/30)^0}{0!}e^{-(t-1)/30}\right)$$
(300)

Vi ser at: $\frac{(t-1/30)^0}{0!} = \frac{1}{1} = 1$

Hvilket betyder:

$$\left(1 - \frac{(1/30)^0}{0!}e^{-1/30}\right) \left(\frac{((t-1)/30)^0}{0!}e^{-(t-1)/30}\right)$$
(301)

$$= (1 - e^{-1/30}) \left(e^{-(t-1)/30}\right) \tag{302}$$

$$\approx (1 - e^{-1/30}) \left(e^{-1/30 \cdot t} \right) \tag{303}$$

Vi skulle have i den geometriske fordeling: $p=1-e^{-1/30}$

$$(1-p)^k p = (1 - (1 - e^{-1/30}))^t (1 - e^{-1/30})$$
(304)

Vi forkorter

$$(1-p)^k p = e^{-1/30 \cdot t} (1 - e^{-1/30})$$
(305)

Vi har vist udtrykket!

3.8.2 Opgave A

Lav i klassen!!!

Cykelforsikring fortsat!

- udbetaling ved mistet cykel 4000
- ssh for cykel stjålet pr. år: 5%
- Maks en cykel stjålet om året
- forsikring pris 400

Del 1)

10 cyklister tegner forsikring:

$$Y \sim Binomial(n = 10, p = 0.05) \tag{306}$$

Del 2) Udregn Forventet antal stjålne cykler, samt forventet udgift

$$E(Y) = n \cdot p = 10 \cdot 0.05 = 0.5 \tag{307}$$

Forventet udgift:

$$E(Y) \cdot 4000 = 2000 \tag{308}$$

Del 3) SSh for mere end en cykel bliver stjålet

Få folk til at opskrive binomial koefficienter osv.

$$P(Y > 1) = 1 - P(Y = 1) - P(Y = 0) = 0.08613$$
 (309)

Del 4) Antag nu 100 cyklister

$$Z \sim Binomial(n = 100, p = 0.05)$$
 (310)

$$E(Z) = 100 \cdot 0.05 = 5 \tag{311}$$

Forventede indtægter:

$$400 \cdot 100 = 40000 \tag{312}$$

Forventede udgifter:

$$4000 \cdot E(Z) = 4000 \cdot 5 = 20000 \tag{313}$$

Del 5)Ssh for man udgifter overstiger indtægter

Udgifer overstiger indtægter når der er 11, som får stjålet sin cykel:

Med binomial (udregnet på com):

$$P(Z > 10) = 1 - \sum_{i=0}^{10} P(Z = i) = 0.01147$$
 (314)

Med poisson:

 $lambda = 100 \cdot 0.05 = 5$

$$P(Z > 10) = 1 - P(Z \le 10) = 0.013695 \tag{315}$$

Del 6) Antag nu nu n=200, Ssh udgifter over indtægter

Dette sker når der er 21 som får stjålet cyklen

 $lambda = 200 \cdot 0.05 = 10$

 $W \sim Poisson(10)$

$$P(W > 20) = 0.0015882 \tag{316}$$

Del 7)

Klasse diskussion!!!

3.8.3 (Optional) Opgave H

3.9 Øvelse 9

Opgaver: 5.2, 5.3, 5.7, U41.1, U41.2

3.9.1 Opgave 5.2

- X er en kontinuær stok var
- $p(x) = \alpha x^{-(\alpha+1)}$ for $x > 1, \alpha > 0$

Find fordelingsfunktionen for X

Vi ved at p(x) = F'(x) Hvis vi skulle finde sandsynligheden for et udfald ville vi bruge tætheden p(x) lad os sige vi ville finde ssh for at X er i intevallet a til b: da

$$\int_{a}^{b} p(x)dx \tag{317}$$

Fordelingsfunktionen er kendetegnen ved for intervallet $(-\infty, \infty)$:

$$\int_{-\infty}^{x} p(x)dx \tag{318}$$

Vi har dog intervallet $(1, \infty)$

Vi opskriver integralet:

$$\int_{1}^{x} \alpha x^{-(\alpha+1)} \tag{319}$$

$$\left[\frac{\alpha}{-\alpha+1-1}x^{-\alpha+1-1}\right]_{1}^{x} = \left[-x^{-\alpha}\right]_{1}^{x} = -x^{-\alpha} + 1 \tag{320}$$

3.9.2 Opgave 5.3

LAV I KLASSEN

fordelingsfunktionen fotr X er givet ved:

$$F(x) = \begin{cases} 0 & \text{for } x \le 0 \\ x/3 & \text{for } 0 < x \le 1 \\ (2x-1)/3 & \text{for } 1 < x \le 2 \\ 1 & \text{for } x > 2 \end{cases}$$

Find de følgende sandsynligheder

$$P(0.5 < X < 1) = F(1) - F(0.5) = \frac{1 - 0.5}{3} = \frac{1}{6}$$
 (321)

Vi kan ignorere punktsandsynligheden da denne er 0 (i forhold til \leq udtryk i oplæg).

$$P(1 \le X < 1.5) = F(1.5) - F(1) = \frac{3-1}{3} - \frac{1}{3} = \frac{1}{3}$$
 (322)

$$P(2/3 < X < 4/3) = F(4/3) - F(2/3) = \frac{2(4/3) - 1}{3} - \frac{2/3}{3}$$
 (323)

$$=\frac{8/3 - \frac{3}{3} - 2/3}{3} = \frac{3/3}{3} = \frac{1}{3}$$
 (324)

Redegør for kontinuitet

Vi viser kontinuæritet via et lille $\delta > 0$

Først se om: $F(0 + \delta) \to 0$ og $F(0 - \delta) \to 0$ for $\delta \to 0$. Man ser at for x/3 går mod 0, hvis x er tæt på 0. (Trivielt at se 0 går mod 0 for lille x).

Undersøg i en omegn af punktet x=1: $F(x\pm\delta)\to \frac{1}{3}$ for $\delta\to 0$. Det er klart da: $x/3\to \frac{1}{3}$, for $x=1-\delta$ og $(2x-1)/3\to \frac{1}{3}$, for $x=1+\delta$

Undersøg i en omegn af punktet x=2: $F(x\pm\delta)\to 1$ for $\delta\to 0$. man ser at $(2(2-\delta)-3)/3\to 1$ for $\delta\to 0$. (trivilt at 1 går mod 1)

Kontinuitet er vist. Vi noterer at fordelingsfunktionen overholder at $F : \mathbb{R} \mapsto [0,1]$ og at $F(x) \leq F(x+h)$, h > 0. Altså den er defineret på hele den reelle akse, samt at den er monotont voksende!

Find tæthedsfunktionen for X

Vi differentiere de enkelte udtryk og får:

$$p(x) = \begin{cases} 0 & x \le 0\\ \frac{1}{3} & 0 < x \le 1\\ \frac{2}{3} & 1 < x \le 2\\ 0 & x > 2 \end{cases}$$
 (325)

3.9.3 Opgave 5.7

LAV I KLASSEN!

$$p(x) = \beta x^{\beta - 1} \tag{326}$$

• $x \in [0, 1]$

Vis at 5.1.5 (i bogen) har middelværdi $\beta/(\beta+1)$

Vi behøver ikke at teste om middelværdien eksisterer!

Definition på middelværdi!

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx < \infty \tag{327}$$

$$E(X) = \int_{-\infty}^{\infty} x \beta x^{\beta - 1} = \int_{-\infty}^{\infty} \beta x^{\beta}$$
 (328)

Vi ved at x er koncentrerer på intervallet 0 til 1: $x \in (0,1)$

$$E(X) = \int_{-\infty}^{\infty} x \beta x^{\beta - 1} = \int_{-\infty}^{\infty} \beta x^{\beta}$$
 (329)

Vi har her et uendeligt integrale, men x er koncentreret på en mindre mængde. Vi bruger at $P(\emptyset) = 0$ og at vi må splitte integralerne op (indskudssætningen):

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx, \qquad \text{(Indskudssætningen)} \qquad (330)$$

Vi ser at integralerne i intervallet $(-\infty, 0[\text{ og }]1, \infty)$ er lig 0.

$$E(X)\int_0^1 \beta x^{\beta} = \left[\frac{\beta}{\beta+1} x^{\beta+1}\right]_0^1 = \frac{\beta}{\beta+1}$$
 (331)

Vi finder variansen

$$Var(X) = E(X^2) - E(X)^2$$
 (332)

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \beta x^{\beta - 1} = \int_{-\infty}^{\infty} \beta x^{\beta + 1}$$
 (333)

Analogt med før

$$E(X^2) = \left[\frac{\beta}{\beta + 2} x^{\beta + 2}\right]_0^1 = \frac{\beta}{\beta + 2}$$
(334)

Variansen findex:

$$Var(X) = \frac{\beta}{\beta + 2} - \left(\frac{\beta}{\beta + 1}\right)^2 \tag{335}$$

kan evt. forkortes

3.9.4 Opgave U41.1

- $X, Y \sim Uni(0, 1)$
- den uniforme fordeling er kontinuær

$$E(X) = E(Y) = \frac{1}{2}(a+b) = \frac{1}{2}(1+0) = \frac{1}{2}$$
(336)

Brug sætning 6.4.2 - man kan splitte forventinger op.

find E(6X + 32Y)

$$E(6X + 32Y) = \frac{6+32}{2} = 19 \tag{337}$$

Find $\mathbf{E}(X^3)$ og $\mathbf{E}(X^3 + Y^3)$

$$E(X^3) = \int_0^1 x^3 p(x) = \left[\frac{1}{4}x^4\right]_0^1 = \frac{1}{4}$$
 (338)

Vi har derfor selvfølgelig $\mathrm{E}(X^3+Y^3)=2\cdot\frac{1}{4}=\frac{1}{2}$

Find
$$Var(X) = E(X^2) - [E(X)]^2$$

Vi ved at
$$E(X)^2 = (\frac{1}{2})^2 = \frac{1}{4}$$

$$E(X^{2}) = \int_{0}^{1} x^{2} p(X) = \left[\frac{1}{3}x^{3}\right]_{0}^{1} = \frac{1}{3}$$
 (339)

Varians:

$$Var(X) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$
 (340)

Find tæthed for $Z = X - \frac{1}{2}$

$$p(z) = 1, \quad z \in [-0.5, 0.5]$$
 (341)

Find E(Z)

Brug sætning 5.2.5. lineær transformation.

$$E(Z) = E\left(X - \frac{1}{2}\right) = E(X) - \frac{1}{2} = 0$$
 (342)

Find F(Z)

$$F(Z) = z - \frac{1}{2}, \qquad z \in [-0.5, 0.5]$$
 (343)

3.9.5 Opgave U41.2

- \bullet stokastisk variabel X
- $p(x) = \lambda \exp(-\lambda x)$

Del 1 - A) Opskriv fordelingsfunktionen for X og vis at Y = F(X) er ligefordelt på [0,1]

$$F(x) = 1 - \exp(-\lambda x) \tag{344}$$

Vis at Y = F(X) er ligefordelt på [0, 1]

$$P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = P(X \le x) = F(X) = y$$
(345)

$$x = F^{-1}(y) = \ln\left(\frac{1}{1-\lambda}\right)/\lambda \tag{346}$$

t(X) = F(X) = y bruges i sidste led af ligningen!

Vi ser at $P(Y \leq y) = y$ Hvor vi ved at y er fordelingsfunktionen for en uniform fordeling!

Del 2)

3.10 Øvelse 10

12/10/2018, Opgaver: 5.1, 5.5, 5.13, 5.15, U41.3 og U41.4

3.10.1 Opgave 5.1

- $X \sim exponential(\lambda)$
- pdf: $\lambda e^{-\lambda x}$

Find P(X > x), for alle x > 0

Vi ved at fordelingsfunktion F(x) svarer til P(X < x) hvilket betyder at P(X > x) = 1 - F(x).

Kommentar: vi bruger lille x i fordelingsfunktionen. hvorfor? fordi det er en funktion der tager et tal (en realisation) af X

Vi kan se på wikipedia at exponential fordelingens fordelingsfunktionen CDF er:

$$F(x) = 1 - e^{\lambda x} \tag{347}$$

Så vi har at:

$$P(X > x) = 1 - (1 - e^{\lambda x}) = e^{\lambda x}$$
(348)

SSH P(1 < X < 2), hvor $\lambda = 1$

brug (hvor lambda er 1):

$$F(x) = 1 - e^{1x} (349)$$

$$P(1 < X < 2) = F(2) - F(1) = (1 - e^{2}) - (1 - e^{1}) = 0.2325$$
 (350)

3.10.2 Opgave 5.5

Lav i klassen!

- Laplace-fordelingen
- ullet defineret på hele $\mathbb R$
- funktionsforskrift:

$$f(x) = \frac{1}{2}e^{-|x|}, \qquad x \in \mathbb{R}$$
(351)

Find fordelingsfunktionen F

Fordelingsfunktionen er: $F(k) = \int_{-\infty}^{k} f(x)dx$

Vi ser, vi må skære integralet op i to dele på grund af normerings operatoren på x.

Først x < 0

$$F(a) = \int_{-\infty}^{a} \frac{1}{2}e^{x} = \left[\frac{1}{2}e^{x} + k\right]_{-\infty}^{a} = \left(\frac{1}{2}e^{a} + k\right) - \left(\frac{1}{2}e^{-\infty} + k\right) = \frac{1}{2}e^{a}$$
(352)

Nu $x \ge 0$

$$F(a) = \int_{-\infty}^{0} \frac{1}{2}e^{x} + \int_{0}^{a} \frac{1}{2}e^{-x} = \frac{1}{2} + \left[\frac{1}{-1}\frac{1}{2}e^{-x}\right]_{0}^{a} = \frac{1}{2} + \left[-\frac{1}{2}e^{-x}\right]_{0}^{a}$$
(353)

$$F(a) = \frac{1}{2} + \left(-\frac{1}{2}e^{-a}\right) - \left(-\frac{1}{2}e^{0}\right) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2}e^{-a} = 1 - \frac{1}{2}e^{-a}$$
 (354)

Vi kan opskrive fordelingsfunktionen!

$$F(x) = \begin{cases} \frac{1}{2}e^x, & x < 0\\ 1 - \frac{1}{2}e^{-x}, & x \ge 0 \end{cases}$$
 (355)

Del 2) Find middelværdi

Vi behøver ikke at vise middelværdi og varians eksisterer!

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$
 (356)

Vi splitter intergralet op i intervallerne $(-\infty, 0)$ og $[0, \infty)$:

(man har her brugt reglen for partiel integration - kig Thomas note/formelsamling) f(x) = exp(x), g(x) = x:

for integralet i intervallet $(-\infty, 0)$:

$$\int \frac{1}{2}xe^x dx = \frac{1}{2}(x-1)e^x \tag{357}$$

for integralet i intervallet $[0, \infty)$

$$\int \frac{1}{2}xe^{-x}dx = -\frac{1}{2}(x+1)e^{-x} \tag{358}$$

vi ved at:

$$\int_{-\infty}^{\infty} x \frac{1}{2} e^{-|x|} dx = \int_{-\infty}^{0} \frac{1}{2} x e^{x} dx + \int_{0}^{\infty} \frac{1}{2} x e^{-x} dx$$
 (359)

Vi sætter integralernes grænser ind i stamfunktioner udledt ovenfor:

$$\int_{-\infty}^{0} \frac{1}{2} x e^x dx = \left(\frac{1}{2} (0 - 1) e^0\right) - \left(\frac{1}{2} (-\infty - 1) e^{-\infty}\right) = -\frac{1}{2} - 0 = -\frac{1}{2}$$
 (360)

$$\int_0^\infty \frac{1}{2} x e^{-x} dx = \left(-\frac{1}{2} (\infty + 1) e^{-\infty} \right) - \left(-\frac{1}{2} (0+1) e^0 \right) = 0 + \frac{1}{2} = \frac{1}{2}$$
 (361)

Så vi har at:

$$E(X) = -\frac{1}{2} + \frac{1}{2} = 0 \tag{362}$$

Find variansen Var(X)

VI ved at E(X) = 0 det betyder at $Var(X) = E(X^2)$. Husk på formlen for varians.

$$Var(X) = E(X^2) - E(X)^2 = E(X^2) = \int_{-\infty}^{\infty} x^2 p(x) dx$$
 (363)

vi deler igen integralet op. og bruger reglerne for partiel integration. Vi ender med at få integralet fra før som et del element.

I intervallet $(-\infty, 0)$:

$$\frac{1}{2} \int_{-\infty}^{0} x^2 e^x dx = \left[\left(\frac{1}{2} x^2 - x + 1 \right) e^x \right]_{-\infty}^{0} = 1 - 0 = 1$$
 (364)

I intervallet $[0, \infty)$:

$$\frac{1}{2} \int_0^\infty x^2 e^{-x} dx = \left[-\left(\frac{1}{2}x^2 + x + 1\right) e^{-x} \right]_0^\infty = 0 - (-1) = 1$$
 (365)

Vi har at:

$$Var(X) = \frac{1}{2} \int_{-\infty}^{0} x^{2} e^{x} dx + \frac{1}{2} \int_{0}^{\infty} x^{2} e^{-x} dx = 1 + 1 = 2$$
 (366)

3.10.3 Opgave 5.13

LAV I KLASSEN

- X er en kontinuær stokastisk variabel i intervallet (a,b)
- X har en kontinuer sandsynlighedstæthed p på (a, b)

Vi bruger sætning 5.4.1

$$q(y) = \begin{cases} p(t^{-1}(y)) | \frac{d}{dy} t^{-1}(y) |, & y \in (v, h) \\ 0, & y \notin (v, h) \end{cases}$$
(367)

hvor $v = \inf t(I), h = \sup t(I)$ og I er intervallet (a, b)

Til de kommende opgaver kan der siges generalt at: $x = t^{-1}(y)$

Og der skippes ofte (y) fra notation, således at: $\frac{d}{dy}t^{-1}(y)$ bliver til $\frac{d}{dy}t^{-1}$

Del 1) Find tætheden for exp(X)

vi har vores transformation givet som $t = exp(\cdot)$ som implicerer at $t^{-1} = ln(\cdot)$.

Vi finder den afledte af vores inverse transformation

$$\frac{d}{dy}t^{-1}(y) = \frac{d}{dy}ln(y) = \frac{1}{y}$$
 (368)

Vi opskriver:

$$q(y) = \begin{cases} p(\ln(y)) \cdot \left| \frac{1}{y} \right|, & y \in (e^a, e^b) \\ 0, & \text{ellers} \end{cases}$$
 (369)

Man ser at faktisk $y \in \mathbb{R}_+ \forall y \in Y$, hvilket betyder, man ikke ville behøve at lave normeringstegnet

Antag resten af opgaven at a > 0

Del 2) Find tætheden for \sqrt{X}

Vi finder transformationens inverse $t^{-1} = y^2$. og herfra den afledte: $\frac{d}{dy}t^{-1} = 2y$.

$$q(y) = \begin{cases} p(y^2) \cdot 2y, & y \in (\sqrt{a}, \sqrt{b}) \\ 0, & \text{ellers} \end{cases}$$
 (370)

Vi bemærker at y ikke kan antage værdier under 0, grundet a > 0.

Del 3) Find tætheden for $\frac{1}{X}$

Vi finder transformationens inverse $t^{-1} = \frac{1}{u}$

den inverse transformations afledte: $\frac{d}{dy}t^{-1} = -\frac{1}{y^2}$. Det huskes at man tager den absolutte værdi \implies man fjerner minuset

$$q(y) = \begin{cases} p\left(\frac{1}{y}\right) \frac{1}{y^2} & y \in \left(\frac{1}{a}, \frac{1}{b}\right) \\ 0, & \text{ellers} \end{cases}$$
 (371)

Del 4) Find tætheden for X^2

Vi finder den inverse transformation: $t^{-1} = \sqrt{y}$

Den afledte af den inverse transformation: $\frac{d}{dy}t^{-1}=\frac{1}{2}y^{-1/2}$

$$q(y) = \begin{cases} p(\sqrt{y})\frac{1}{2}y^{-1/2}, & (a^2, b^2) \\ 0, & \text{ellers} \end{cases}$$
 (372)

3.10.4 Opgave 5.15

- $X \sim N(\mu, \sigma^2)$
- $Y = \exp(X)$

Del 1) Find sandsynlighedstætheden for Y

tæthedsfunktionen for normal fordlingen:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (373)

Vi finder den inverse transformation: $x = t^{-1}(y) = ln(y)$

Den inverse transformations afled te mht y: $\frac{d}{dy}t^{-1}(y) = \frac{1}{y}$

læg mærke til ln(y) ind i udtrykket

$$q(y) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln(y)-\mu)^2}{2\sigma^2}\right) \cdot \frac{1}{y}, & y \in (0,\infty) \\ 0, & \text{ellers} \end{cases}$$
(374)

Del 2) Vis at $Y = \beta X$ er scala invariant

Vi finder den inverse transformation $x = t^{-1}(\beta y) = \ln(\beta y)$. Vi husker at: $\ln(\beta y) = \ln(\beta) + \ln(y)$

Den inverse transformations afledte mht y:

$$\frac{d}{dy}t^{-1}(\beta y) = \frac{d}{dy}ln(y) + ln(\beta) = \frac{1}{y}$$
(375)

Vi indsætter de fundne værdier

$$q(y) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln(\beta) + \ln(y) - \mu)^2}{2\sigma^2}\right) \cdot \frac{1}{y}, & y \in (0, \infty) \\ 0, & \text{ellers} \end{cases}$$
(376)

Vi ser den transformerede fordeling stadig er logaritmisk normalfordelt!

Del 3

Vi husker en detalje: $\int_{-\infty}^{\infty} p(x)dx = 1$. Dette betyder, at hvis vi kan skabe det ovenstående integrale, og få det resterende ud foran integralet, så har vi fundet resultatet!

Husk q(y) er 0 når ikke $y \in (0, \infty)$

$$\int_{-\infty}^{\infty} q(y)dy = \int_{0}^{\infty} q(y)dy \tag{377}$$

$$E(Y) = \int_0^\infty yq(y)dy \tag{378}$$

$$E(Y) = \int_0^\infty y \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(\ln(y) - \mu)^2}{2\sigma^2}\right) \cdot \frac{1}{y}$$
 (379)

Vi ser at ygår ud med $\frac{1}{y}$ Vi indsætter $\mu=0, \sigma=1$ som angivet i opgaveteksten.

$$E(Y) = \int_0^\infty \frac{1}{\sqrt{2\pi}} exp\left(-\frac{(\ln(y))^2}{2}\right)$$
 (380)

Det bagerste udtryk manipuleres:

$$exp\left(-\frac{\ln(y)^2}{2}\right) = exp\left(-\frac{\ln(y)\ln(y)}{2}\right) = exp\left(-\frac{1}{2}\right)exp\left(\ln(y)\ln(y)\right)$$
(381)

Går i stå her!

3.10.5 Opgave U41.3

• X er ligefordelt på (0,1).

Del 1) $S = \mathbb{1}_{(0,0.25)}$ **Find** P(S = 1)

$$P(X \in (0, 0.25)) = F(0.25) = \frac{1}{4}$$
(382)

Del 2) $S = \mathbb{1}_{(0,p)}$. Find P(S = 1)

$$P(X \in (0, p)) = F(p) = p \tag{383}$$

Del 3) Beskriv hvordan du kan simulere en trækning fra en stokastisk variabel Y

$$P(Y=1) = \frac{1}{9} \text{ og } P(Y=2) = \frac{8}{9}$$

Vi ved at fordelingsfunktionen $F: \mathbb{R} \mapsto [0,1]$. Det betyder at den inverse $F^{-1}: [0,1] \mapsto \mathbb{R}$. Overvej dette.

Vi kan altså sample fra intervallet [0, 1] og mappe det til en real værdi gennem den inverse fordelingsfunktion:

Vi har implicit givet fordelingsfunktionen ovenfor:

$$F(y) = \begin{cases} 0, & y < 1\\ \frac{1}{9}, & 1 \le y < 2\\ 1, & 2 \le y \end{cases}$$
 (384)

Tegn fordelingsfunktionen og den inverse fordelingsfunktion

Det betyder at vi kunne sample således:

$$Y = 1 \text{ når } x \in \left(0, \frac{1}{9}\right).$$

$$Y = 2 \text{ når } x \in \left(\frac{1}{9}, 1\right)$$

3.10.6 Opgave U41.4

•
$$X \sim N(\mu, \sigma^2)$$

Del 1) Hvad er fordelingen af $Y = (X - \mu)/\sigma$

Denne er let, da dette bare er en tilbage skalering af normalfordelingen! Dvs. en standard normalfordeling:

$$Y \sim N(0,1) \tag{385}$$

Del 2) Hvad er fordelingen af $Z = (X - \mu)^2/\sigma^2$

Vi ser dette er:

$$Z = \frac{(X - \mu)^2}{\sigma^2} = \left(\frac{X - \mu}{\sigma}\right)^2 \tag{386}$$

Dette svarer altså til den kvadrerede standard normalfordeling: χ^2 -fordelingen.

3.11 Øvelse 11

22/10/2018, opgaver: U43.1.1, U43.1.2, U43.1.3 U43.1.4

3.11.1 Opgave U43.1.1

- \bullet X, Y er ligefordelt på A
- $A = [0,1] \times [0,1]$
- $p(x,y) = 1_A(x,y)$

Tegn 2-D sketch af definitionsmængden

Del 1) Udregn P(X < 0.1, Y < 0.6)

$$P(X < 0.1, Y < 0.6) = \int_0^{0.6} \int_0^{0.1} \mathbb{1}_A(x, y) dx dy$$
 (387)

$$= \int_0^{0.6} [x]_0^{0.1} \mathbb{1}_A(y) dy \tag{388}$$

$$= [x]_0^{0.1} [y]_0^{0.6} (389)$$

$$= (0.1 - 0) \cdot (0.6 - 0) \tag{390}$$

$$= 0.1 \cdot 0.6 = 0.06 \tag{391}$$

Del 2) Udregn P(0.25 < X < 0.75, 0.4 < Y < 0.6)

Analogt med før - opskrivningen er ikke nødvendig:

$$P(0.25 < X < 0.75, 0.4 < Y < 0.6) = 0.5 \cdot 0.2 = 0.1$$
 (392)

Del 3) Udregn P(X < 0.1)

Her bruges at man kan integrere irrelevante variable ud: sætning 6.1.3

$$q(x) = \int_{\mathbb{R}} p(x, y) dy \tag{393}$$

dvs:

$$q(x) = \mathbb{1}_{[1,0]}(x) \tag{394}$$

Vi finder nu det ønskede udtryk

$$P(X < 0.1) = \int_0^{0.1} \mathbb{1}_{[0,1]}(x) = [x]_0^{0.1} = 0.1$$
 (395)

Del 4) Find den marginale fordeling for X

Igen bruges sætning 6.1.3

$$q(x) = \int_{\mathbb{R}} p(x, y) dy \tag{396}$$

dvs:

$$q(x) = \mathbb{1}_{[0,1]}(x) \tag{397}$$

Altså vi svarede indirekte på det problem før!

 $p_x(x)=\mathbbm{1}_{[0,1]}(x)$ og lige så $p_y(y)=\mathbbm{1}_{[0,1]}(y)$ Vi ser altså nu at $p(x,y)=p_x(x)\cdot p_y(y)$

3.11.2 Opgave U43.1.2

- \bullet X, Y er uafhængige
- $\bullet~X,Y$ er ligfordelte på intervallet [0,1]
- $\bullet \ Y* = 2Y$

Find E(Y*), V(Y*)

Brug sætning **6.3.2** som viser at hvis $X \perp\!\!\!\perp Y \implies X \perp\!\!\!\perp \phi(Y)$

Vi har uafhængighed hvilket implicerer:

$$p(x, y*) = p(x)p(y*)$$
(398)

Nu integreres X ud:

$$p(y*) = p(y*) \int_{\mathbb{R}} p(x)dx = p(y*)$$
 (399)

Vi finder den forventede værdi:

2 er den øvre grænse, 0 er den nedre grænse for Y.

$$E(Y*) = 2 \cdot E(Y) = 2 \cdot 0.5 = 1$$
 (400)

Variansen findes ved: $Var(aX) = a^2Var(X)$.

$$Var(Y) = \frac{1}{12}(0-1)^2 = \frac{1}{12}$$
(401)

$$Var(Y^*) = 2^2 Var(Y) = 4 \cdot \frac{1}{12} = \frac{1}{3}$$
 (402)

Del 2) Tætheden for Y*

Tætheden er:

tætheden for en uniform (kontinuær) distribution er: $p(x) = \frac{1}{b-a} \mathbb{1}_{x \in [a,b]}(x)$

Vi bruger dette:

$$p(y*) = \frac{1}{2-0} \mathbb{1}_{x \in [0,2]}(y*)$$
(403)

Del 3) Z = X + Y* Find tætheden for Z, q(z)

Vi bruger **korollar 6.3.2** (få en studerende til at læse op).

$$q(z) = \int_{-\infty}^{\infty} p_1(x)p_2(z-x)dx$$
 (404)

$$p_x(x)p_{y*}(z-x) = \mathbb{1}_{[0,1]\times[0,2]}\frac{1}{2}(x)(z-x) = \frac{1}{2}(xz-x^2)$$
 (405)

Nu integreres denne:

$$q(z) = \int_{\mathbb{R}} \frac{1}{2} (xz - x^2) dx \tag{406}$$

$$=\frac{1}{2}\int_{\mathbb{R}}(xz-x^2)dx\tag{407}$$

$$= \left[\frac{1}{2}\frac{1}{2}x^2z - \frac{1}{2}\frac{1}{3}x^3\right]_0^1 = \frac{1}{4}z - \frac{1}{6}$$
 (408)

NOGET ER GALT

3.11.3 Opgave U43.1.3

- $X, Y \in [5, 10] \times [3, 7]$
- $p(x,y) = \frac{1}{20} \mathbb{1}_{[5,10] \times [3,7]}(x,y)$

Skitser definition mængden.

Del 1) Forklar hvorfor p(x,y) er en tæthedsfunktion

notér at $(10-5) \times (7-3) = 20$, således at den samlede areal under kurven er 1.

Find $P(6 \le X \le 10, 4 \le Y \le 6)$

$$P(6 \le X \le 10, 4 \le Y \le 6) = \int_{6}^{10} \int_{4}^{6} \frac{1}{20} \mathbb{1}_{[5,10] \times [3,7]}(x,y) dy dx$$
 (409)

$$= \frac{1}{20} \int_{6}^{10} \int_{4}^{6} \mathbb{1}_{[5,10] \times [3,7]}(x,y) dy dx \qquad (410)$$

$$= \frac{1}{20} \int_{6}^{10} \mathbb{1}_{[5,10]}(x) [y]_{4}^{6} dx \tag{411}$$

$$= \frac{1}{20} \int_{6}^{10} \mathbb{1}_{[5,10]}(x)(6-4)dx \tag{412}$$

$$= \frac{2}{20} \int_{6}^{10} \mathbb{1}_{[5,10]}(x) dx \tag{413}$$

$$=\frac{2}{20}\left[x\right]_{6}^{10}\tag{414}$$

$$=\frac{2}{20}(10-6)=\frac{8}{20}\tag{415}$$

Del 3) Find de marginale fordelinger

$$p(x) = \frac{1}{20} \int_{3}^{7} \mathbb{1}_{[5,10] \times [3,7]}(x,y) dy = \frac{4}{20} \mathbb{1}_{[5,10]}(x,y)$$
 (416)

Omvendt for Y:

$$p(y) = \frac{5}{20} \mathbb{1}_{[3,7]}(x,y) \tag{417}$$

Del 4) Find E(X)

For en ligefordeling har man middelværdi ved (a og b er enderne):

$$E(X) = \frac{a+b}{2} \tag{418}$$

Vi bruger dette

$$E(X) = \frac{5+10}{2} = 7.5 \tag{419}$$

3.11.4 Opgave U43.1.4

- $X, Y \in [0, \infty)$
- $p(x,y) = 6 \exp(-2x 3y)$

Praktisk at vide:

$$\int \exp(-bx)dx = -\frac{\exp(-bx)}{b} \tag{420}$$

 $\mathbf{Del}\ \mathbf{1-a)}\ \mathbf{find}\ P(X\leq 2,Y\leq 4)$

$$P(X \le 2, Y \le 4) = \int_0^2 \int_0^4 6 \exp(-2x - 3y) dy dx \tag{421}$$

$$= \int_0^2 \int_0^4 6 \exp(-2x) \exp(-3y) dy dx \tag{422}$$

$$= 6 \int_0^2 \exp(-2x) \left(\int_0^4 \exp(-3y) dy \right) dx$$
 (423)

$$= 6 \int_0^2 \exp(-2x) \left(\left[-\frac{\exp(-3y)}{3} \right]_0^4 \right) dx \tag{424}$$

Vi løser det indre problem:

$$\left[-\frac{\exp(-3y)}{3} \right]_0^4 = \left(-\frac{\exp(-12)}{3} \right) - \left(-\frac{1}{3} \right) \tag{425}$$

$$= \frac{1}{3} + \frac{\exp(-12)}{3} \tag{426}$$

$$=\frac{1-\exp(-12)}{3}\tag{427}$$

Vi indsætter dette!

$$6\int_0^2 \exp(-2x) \left(\frac{1 - \exp(-12)}{3}\right) dx = 6\left(\frac{1 - \exp(-12)}{3}\right) \int_0^2 \exp(-2x) dx$$

$$= 6\left(\frac{1 - \exp(-12)}{3}\right) \left[-\frac{\exp(-2x)}{2}\right]_0^2$$

$$(428)$$

Vi udregner det inderste:

$$\left[-\frac{\exp(-2x)}{2} \right]_0^2 = \left(-\frac{\exp(-2\cdot 2)}{2} \right) - \left(-\frac{1}{2} \right) \tag{430}$$

$$=\frac{1}{2} - \frac{\exp(-4)}{2} \tag{431}$$

$$=\frac{1-\exp(-4)}{2} \tag{432}$$

Dette indsættes:

$$6\left(\frac{1-\exp(-12)}{3}\right)\left(\frac{1-\exp(-4)}{2}\right) = (1-\exp(-12))(1-\exp(-4))$$
(433)

Del 1 - b) find $P(X > 1, Y \le 3)$

Lav i klassen! Efter samme opskrift som ovenfor:

Resultat:

$$P(X > 1, Y \le 3) = \exp(-2)(1 - \exp(9)) \tag{434}$$

Find de marginale fordelinger $p_y(y), p_x(x)$

Man integrere den ene variabel ud: dvs, integrer y ud, hvis man ønsker at finde $p_x(x)$, og vice versa.

$$p_y(y) = \int_{\mathbb{R}} p(x, y) dx = \int_{\mathbb{R}} 6 \exp(-2x - 3y) dx$$
 (435)

$$=6\exp(-3y)\int_{\mathbb{R}}\exp(-2x)dx\tag{436}$$

$$=6\exp(-3y)\cdot\frac{1}{2}\tag{437}$$

$$= 3\exp(-3y) \tag{438}$$

Hvor man har udnyttet at $\int_{\mathbb{R}} \exp(-2x) dx = \frac{1}{2}$

Lad klassen lave anden halvdel!

Resultatet er analogt for Y, bare hvor

$$p_x(x) = \int_{\mathbb{R}} p(x, y) dy = \frac{1}{3} \cdot 6 \exp(-2x) = 2 \exp(-2x)$$
 (439)

Del 3) Find fordelingsfunktionen for X

Jeg udskifter $x \mod a$ for ikke at gøre notationen forvirrende!

$$F(a) \int_0^a p(x)dx = \int_0^a 2\exp(-2x)dx$$
 (440)

$$=2\left[-\frac{-\exp(-2x)}{2}\right]_0^a\tag{441}$$

$$= 2(1) - 2\left(-\frac{\exp(-2a)}{2}\right) \tag{442}$$

$$=1-\exp(-2a)\tag{443}$$

Dette indsættes:

$$F(x) = 1 - \exp(-2x) \tag{444}$$

Medianen findes

$$0.5 = 1 - \exp(-2x) \Leftrightarrow 0.5 = \exp(-2x)$$
 (445)

$$\Leftrightarrow ln(0.5) = -2x \tag{446}$$

$$\Leftrightarrow -\frac{\ln(0.5)}{2} = x \tag{447}$$

Del 4) Vis uafhængighed

Vi ser at p(x)p(y) = p(x,y) - Dette er sætning **6.2.1**

$$(2\exp(-2x))(3\exp(-3y)) = 6\exp(-2x - 3y) \tag{448}$$

3.12 Øvelse 12

26/10/2018, opgaver: U43.2.1, U43.2.2, U43.2.3, U43.2.4, U43.2.5 fra bogen: 6.4, 6.21

3.12.1 Opgave U43.2.1

- $A = \{x, y \mid x^2 + y^2 < 1\}$
- $p(x,y) = \frac{1}{\pi} \mathbb{1}_A(x,y)$

Del 1) Tegn p(x,y)

- Tegn på tavlen en tredimensionel enhedscirkel. Højden: $\frac{1}{\pi}\approx\frac{1}{3}$

Del 2) Find den marginale tæthed for X

For at finde den marginale tæthed skal man integrere Y ud af udtrykket p(x,y)

Først noteres at:

$$X^2 + y^2 \le 1 \Leftrightarrow y \le \sqrt{1 - x^2} \tag{449}$$

$$p_X(x) = \int_{\mathbb{R}} \frac{1}{\pi} \mathbb{1}_A(x, y) dy \tag{450}$$

$$=2\frac{1}{\pi}\int_{0}^{\sqrt{1-x^2}}\mathbb{1}_A(x,y)dy\tag{451}$$

$$=2\frac{1}{\pi}\left(\left(\sqrt{1-x^2}\right) - (0)\right) \tag{452}$$

$$=\frac{2\sqrt{1-x^2}}{\pi}\tag{453}$$

2-tallet kommer fra at y både kunne have været positivt og negativt!!!

Del 2) Find den marginale tæthed

Kig på github!

3.12.2 Opgave U43.2.2

- $A = \{x, y \mid x \in [1, 2], y \in [1, 2]\}$
- $p(x,y) = \mathbb{1}_A p(x,y)$

Del 1) Tegn p(x,y)

Gør på tavlen. 3-dimensionel tegning.

Del 2) Find de marginale tætheder p_Y, p_X

$$p_X(x) = \int_{\mathbb{R}} \mathbb{1}_A(x, y) dy = \int_1^2 \mathbb{1}_A(x, y) dy = \mathbb{1}_{[1, 2]}(x) \int_1^2 \mathbb{1}_A(y) dy = \mathbb{1}_{[1, 2]}(x)$$
(454)

Analogt for $p_Y(y) =$

$$p_Y(y) = \mathbb{1}_{[1,2]}(y) \tag{455}$$

Del 3) Definér Z = X + Y. Find $\mathbf{E}(Z), \mathbf{Var}(Z)$

Vi ser at $X \perp \!\!\! \perp Y$

Det implicerer at:

$$E(Z) = E(X) + E(Y) = \frac{3}{2} + \frac{3}{2} = 3$$
 (456)

Hvor man har udnyttet at $E(X) = E(Y) = \frac{a+b}{2} = \frac{1+2}{2} = \frac{3}{2}$. Man husker at $\frac{a+b}{2}$ er middelværdien for den uniforme fordeling!

Variansen findes:

VI husker de er uafhængige hvilket gør vi kan sige - Fundet på wikipedia - generelt er wikipedia bedre til egenskaber end bogen - bogen er meget rodet opbygget:

$$Var(Z) = Var(X) + Var(Y) = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$
 (457)

Vi finder variansen af X:

$$Var(X) = \frac{1}{12}(a-b)^2 = \frac{1}{12}$$
(458)

Find tætheden q(z) for Z

Vi bruger Korollar 6.3.2

$$p(x, x - z) = 1(1 \le x \le 2)1(1 \le z - x \le 2) \tag{459}$$

$$= 1(2 \le z \le 3)1(1 \le x \le z - 1) \tag{460}$$

$$+1(3 \le z \le 4)1(z - 2 \le x \le 2) \tag{461}$$

Kig github for illustration!

Vi bruger dette:

$$q(z) = \int_{\mathbb{R}} \mathbb{1}(2 \le z \le 3) \mathbb{1}(1 \le x \le z - 1) + \mathbb{1}(3 \le z \le 4) \mathbb{1}(z - 2 \le x \le 2) dx$$

$$(462)$$

$$= \int_{\mathbb{R}} \mathbb{1}(2 \le z \le 3) \mathbb{1}(1 \le x \le z - 1) dx + \int_{\mathbb{R}} \mathbb{1}(3 \le z \le 4) \mathbb{1}(z - 2 \le x \le 2) dx$$

$$(463)$$

$$= \mathbb{1}(2 \le z \le 3) \int_{1}^{z-1} \mathbb{1} dx + \mathbb{1}(3 \le z \le 4) \int_{z-2}^{2} \mathbb{1} dx$$

$$(464)$$

Indsætter i stamfunktionen giver:

$$q(z) = \mathbb{1}(2 \le z \le 3)(z - 2) + \mathbb{1}(3 \le z \le 4)(4 - z) \tag{465}$$

del 4) Benyt q(z) til at udregne E(z)

$$\int_{\mathbb{R}} zq(z)dz = \int_{\mathbb{R}} \mathbb{1}(2 \le z \le 3)(z^2 - 2z) + \mathbb{1}(3 \le z \le 4)(4z - z^2)dz \quad (466)$$

$$= \int_{2}^{3} (z^{2} - 2z)dz + \int_{3}^{4} (4z - z^{2})dz$$
 (467)

$$= \left[\frac{1}{3}z^3 - z^2\right]_2^3 + \left[\frac{1}{2}z^2 - \frac{1}{3}z^3\right]_3^4 \tag{468}$$

$$=3\tag{469}$$

Del 5) Udregn Cov(X, Z)

$$Cov(X, Z) = Cov(X, X + Y)$$
(470)

$$= \operatorname{Cov}(X, X) + \operatorname{Cov}(X, Y) \tag{471}$$

$$=\operatorname{Var}(X) = \frac{1}{12} \tag{472}$$

Vi husker at X, Y er uafhængige

Vi husker at variansen af X er fundet tidligere

3.12.3 Opgave U43.2.3

- $p_X(x) = \exp(-x)$
- $p_Y(y) = \exp(-y)$
- \bullet $X \perp \!\!\! \perp Y$
- X, Y er defineret på \mathbb{R}_+

Del 1) Find tætheden p(x,y)

Grundet uafhængighed mellem X, Y ved vi at: $p(x, y) = p_X(x)p_Y(y)$

Vi bruger dette:

$$p(x,y) = \exp(-x)\exp(-y) \tag{473}$$

Del 2) find tætheden for Z = X + Y

Vi gør som tidligere:

$$p(x, z - x) = 1(0 < x < z - x) \exp(-x) \exp(-(z - x))$$
(474)

$$= 1(0 < x < z - x) \exp(-x) \exp(x) \exp(-z)$$
(475)

$$= 1(0 < x < z - x) \exp(-z) \tag{476}$$

udtrykket ·1 er kun for at understrege der altid står 1.

$$q(z) = \int_0^z \exp(-z) dx = \exp(-z) \int_0^z \mathbb{1} dx = z \exp(-z)$$
 (477)

Del 3) Find tætheden for Z = X - Y

Vi bruger korollar 6.3.2 og indser at: $Z = X - Y \implies Y = X - Z$

$$p(x, x - z) = \mathbb{1}(0 < z < x) \exp(-x) \exp(-(x - z))$$

$$= \mathbb{1}(0 < z < x) \exp(-2x) \exp(-z)$$

$$(478)$$

$$(479)$$

Vi finder tætheden q(z)

$$q(z) = \int_{\mathbb{R}} \mathbb{1}(0 < z < x) \exp(-2x) \exp(-z) dx$$
 (480)

$$= \exp(-z) \int_0^\infty \exp(-2x) dx \tag{481}$$

$$= \exp(-z) \left[-\frac{\exp(-2x)}{2} \right]_0^{\infty} \tag{482}$$

$$=\frac{1}{2}\exp(-z)\tag{483}$$

VI husker at i anden nederste ligning skal kun x indsættes i square brackets.

3.12.4 Opgave U43.2.4

- $\bullet~X_1,X_2,X_3,X_4$ er identiske og uafhængige
- $E(X_i) = 5, Var(X_i) = 9$
- $Y = X_1 + 2X_2 X_4$

$$E(Y) = 5 + 2 \cdot 5 - 5 = 10 \tag{484}$$

Man husker de stokastiske variable er uafhængige

$$Var(Y) = Var(X_1 + 2X_2 - X_4) = Var(X_1) + 2^2 Var(X_2) + Var(X_4) = 6 \cdot 9 = 54$$
(485)

3.12.5 Opgave U43.2.5

Drop denne opgave! Tidspres gør det umuligt at nå!

3.12.6 Opgave 6.4

• Man har p(x, y) givet ved:

$$p(x,y) = \begin{cases} 3xy^{-2}, & x \in (0,1), y \in (1,3) \\ 0 & \text{ellers} \end{cases}$$
 (486)

Find de marginale fordelinger for X, Y og vis uafhængighed!

Lad
$$A = \{x, y \mid x \in (0, 1), y \in (1, 3)\}$$

$$p_X(x) = \int_{\mathbb{R}} \mathbb{1}_A(x, y) 3xy^{-2} dy$$
 (487)

$$= \mathbb{1}_{[0,1]}(x)x \int_{1}^{3} 3y^{-2} dy \tag{488}$$

$$= \mathbb{1}_{[0,1]}(x)x \left[3 \cdot \frac{1}{-1}y^{-1} \right]_{1}^{3} \tag{489}$$

$$= \mathbb{1}_{[0,1]}(x)x \left[\frac{-3}{y} \right]_{1}^{3} \tag{490}$$

$$= \mathbb{1}_{[0,1]}(x)x(-1+3) \tag{491}$$

$$= \mathbb{1}_{[0,1]}(x)x \cdot 2 \tag{492}$$

$$=2x, \quad x \in (0,1)$$
 (493)

Det samme gøres for y

$$p_Y(y) = \int_{\mathbb{R}} \mathbb{1}_A(x, y) 3xy^{-2} dy$$
 (494)

$$= \mathbb{1}_{[1,3]}(y)y^{-2} \cdot 3 \int_0^1 x dx \tag{495}$$

$$= \mathbb{1}_{[1,3]}(y)y^{-2} \cdot 3\left(\frac{1}{2}\right) \tag{496}$$

$$=\frac{3}{2}y^{-2}, \qquad y \in (1,3) \tag{497}$$

Vi tester for uafhængighed:

$$p_X(x) \cdot p_Y(y) = \frac{3}{2}y^{-2}2x \tag{498}$$

$$=3y^{-2}x$$
 (499)

$$= p(x, y) \tag{500}$$

Hvilket viser uafhængighed.

3.12.7 Opgave 6.21

• $X \sim Uni(-1,1)$

•
$$Y = X^2$$

Vis at Corr(X, Y) = 0

$$Corr = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$
(501)

Vi finder Covariansen:

$$Cov(X, Y) = E(X - E(X))E(Y - E(Y)) = E(XY) - E(X)E(Y)$$
 (502)

Vi ser hurtigt at E(X) = E(Y) = 0. (evt - tegn for at overbevise klasse).

$$E(X \cdot Y) = \int_{-1}^{-1} x \cdot x^2 dx = \left(\frac{1}{4}\right) - \left(\frac{1}{4}\right) = 0$$
 (503)

Herfra ser vi let at:

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0 - 0 = 0$$
 (504)

De er ikke uafhængige! Kan vises formelt, men bedre med intuition ved at tegne!

Vis github!

3.13 Øvelse 13

28/10/2018, opgaver: 44.1.1, 44.1.2, 44.1.3 44.1.4

3.13.1 Opgave 44.1.1

- to terninger (stokastiske variable) X_1, X_2
- $(X_1, X_2) \in \{1, 2, 3, 4, 5, 6\}^2 = \{x_{1,i}\} \times \{x_{2,j}\}, \quad i, j \in \{1, 2, 3, 4, 5, 6\}$
- $Z = X_1 + X_2$

Den vigtige regel:

$$p_x(x) = \int_y p_{x,y}(x,y) dy = \int_y p_{x|y}(x \mid y) p_y(y) dy$$
 (505)

Find $P(X_1 = i \mid Z \ge 4)$

Vi noterer først vi ikke har kontinuerte stokastiske variable!

Man får en god idé

$$P(X_1 = i \mid Z \ge 4) = \frac{P(X_1 = i, Z \ge 4)}{P(Z \ge 4)}$$
 (506)

(skits summen af to terninger på tavlen)

Vi indser hurtigt at $P(Z \ge 4) = \frac{33}{36}$

Vi indser også at:

$$P(X_1 = i \mid Z \ge 4) = \frac{P(X_1 = i, X_1 + X_2 \ge 4)}{33/36} = \frac{P(X_1 = i, X_2 \ge 4 - i)}{33/36}$$
(507)

Vi indser at i er en konstant og vi nu har uafhængighed i den simultane sandsynlighed således at:

$$P(X_1 = i)P(X_2 \ge 4 - i) \tag{508}$$

Husk at $P(X_1 = i) = \frac{1}{6}$

Vi kan opskrive det hele i et samlet udtryk:

$$P(X_1 = i)P(X_2 \ge 4 - i) = \frac{1}{6}P(X_2 \ge 4 - i)$$
 (509)

$$P(X_1 = i)P(X_2 \ge 4 - i) = \frac{1}{6} \cdot \frac{4 - 1 + i}{6} \quad i < 4$$
 (510)

over i siger man bare $1/6 \times 1/6$

$$P(X_1 = i)P(X_2 \ge 4 - i) = \frac{3+i}{36} \quad i < 4$$
 (511)

Vi husker at dele med 33/36

$$P(X_1 = i \mid Z \ge 4) = \begin{cases} 4/33 & i = 1\\ 5/33 & i = 2\\ 6/33 & i \ge 3 \end{cases}$$
 (512)

Find $E(X_1 = i \mid Z \ge 4)$

vi ved at $P(X_1 = i) = \frac{1}{36}$. VI kan derfor sige:

$$\sum_{i=1}^{6} i \cdot \min\left(\frac{3+i}{33}, \frac{6}{33}\right) = \frac{4 \cdot 1 + 5 \cdot 2 + (3+4+5+6) \cdot 6}{33}$$
 (513)

3.13.2 Opgave 44.1.2

- $Z \in \{1, 2\}$ angiver kommune
- $V \in \{0,1\}$ angiver om man er velhavende
- $P(V = 1 \mid Z = 1) = 0.8 = 1 P(V = 0 \mid Z = 0)$
- $P(V = 1 \mid Z = 2) = 0.1$

Udregn
$$\mathbf{E}(V \mid Z=1)$$
 og $\mathbf{E}(V \mid Z=2)$

Udtrykkene er udtryk for sandsynligheden for at være velhavende betinget på hvilken kommune man kommer fra.

$$E(V \mid Z = 1) = 0 \cdot P(V = 0 \mid Z = 0) + 1 \cdot (V = 1 \mid Z = 1) = 0.2 \cdot 0 + 0.8 \cdot 1 = 0.8$$
(514)

For kommune 2:

$$E(V \mid Z = 2) = 1 \cdot P(V = 1 \mid Z = 2) + 0 \cdot P(V = 0 \mid Z = 2) = 0.1$$
 (515)

Vis udtrykket:

$$E(V \mid Z = z) = f(z) = 0.8 \cdot 1(z = 1) + 0.2 \cdot 1(Z = 2)$$
 (516)

Man ser at hvis $z = 1 \implies E(V \mid Z = 1) = 0.8$

og omvendt: $z = 2 \implies E(V \mid Z = 2) = 0.1$

Hvad udtrykker $E(V \mid Z = z)$

Det betyder at vores forventning er afhængig af realization af z.

Del 4)

Man definerer nu den stokastiske variabel Den betingede middelværdi af V qivet Z.

$$E(V \mid Z) = f(z) \tag{517}$$

Vis at:

$$E(f(z)) = E(E(V \mid Z)) = 0.8P(Z = 1) + 0.1P(Z = 2)$$
(518)

Det følger næsten naturligt:

$$E(f(z)) = E(0.8 \cdot 1(z = 1) + 0.1 \cdot 1(z = 2))$$
(519)

Herfra følger det da $V \in \{0, 1\}$

$$E(f(z)) = 0.8 \cdot P(Z=1) + 0.1 \cdot P(Z=2)$$
(520)

3.13.3 Opgave 44.1.3

• X er ligefordelt på A = [0, 10]

Del 1) Opskriv tætheden p(x) for X og vis $P(X) > 5 = \frac{1}{2}$

Tegn tæthedsfunktionen.

Man ved at $F(x) \to 1$ for $x \to \infty$. nærmere bestemt ved man at F(10) = 1. Man ved at $\int \mathbbm{1}_A(x)$ vil være x, så man skal gange en konstant på for at få F(10) = 1. Hel konkret $10 \cdot c = 1 \implies c = 1/10$

$$p(x) = \frac{1}{10} \mathbb{1}_A(x) \tag{521}$$

$$P(X > 5) = \int_0^5 \frac{1}{10} \mathbb{1}_A(x) = \frac{1}{10} \int \mathbb{1}_A(x) = \frac{1}{10} [x]_0^5 = \frac{1}{10} (5 - 0) = 0.5 \quad (522)$$

Del 2) Find E(X)

$$E(x) = \int_{-\infty}^{\infty} p(x)x \tag{523}$$

Vi ved at indikator funktionen kun er defineret i intervallet [0, 10]. så vi kan skrive:

$$E(X) = \int_0^{10} \frac{1}{10} x \cdot \mathbb{1}_A(x)$$
 (524)

$$=\frac{1}{0}\int_{0}^{10}x$$
 (525)

$$=\frac{1}{10} \left[\frac{1}{2} x^2 \right]_0^{10} \tag{526}$$

$$= \frac{1}{10} \cdot \frac{1}{2} \cdot 10^2 = 5 \tag{527}$$

Vis at tætheden for $X \mid X > 5$ kan skrive som:

Skitser det givne på en tegning!

$$q(x) = \frac{2}{10} \mathbb{1}(5 < x < 10) \tag{528}$$

Man indser hurtigt at: $X \in [0,5] \cap X \in (5,10] = \emptyset$. Vi kan altså herfra konkludere at $X \mid X > 5$ kun er defineret på intervallet (5,10].

 $X \mid X > 5$ er stadig uniformt fordelt, og vi kan derfor sige at: $q(x) = c \cdot \mathbb{1}(5 < x \le 10)$. Igen ved vi også at Q(10) = 1. Vi kan hurtige udlede at $c = \frac{1}{5}$. hvormed det ønskede resultat er vist.

Del 4) Er
$$E(X \mid X > 5) = 7.5$$
?

Først se på tegningen. Herfra burde det fremgår tydeligt. Mere formelt:

$$E(X \mid X > 5) = \int_{-\infty}^{\infty} x \cdot \frac{1}{5} \mathbb{1}(5 < x < 10)$$
 (529)

$$= \frac{1}{5} \int_{5}^{10} x \cdot \mathbb{1}(5 < x < 10) \tag{530}$$

$$=\frac{1}{5} \left[\frac{1}{2} x^2 \right]_5^{10} \tag{531}$$

$$=\frac{1}{5}\frac{1}{2}(10^2-5^2)\tag{532}$$

$$= \frac{1}{5} \frac{1}{2} \cdot 75 \tag{533}$$

$$=7.5\tag{534}$$

3.13.4 Opgave 44.1.4

- X angiver ratingen fra 0 til 1
- Y angiver værdipapirets værdi i 1000 \$
- \bullet X, Y er ligefordelt på mængden B
- $B = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 1, 0.5 + 2x \le y \le 2.5 + 2x\}$

Lad os starte med at tegne B. Kig github!

Find tæthedsfunktionen $f_{X,Y}(x,y)$ for den simultane fordeling for (X,Y)

Vi hurtigt indser at de marginale fordelinge må blive 1. Den hurtigste måde at konstanten c på (tænk simultan fordeling $f(x, y) = c \mathbb{1}_B(x, y)$). er at finde arealet af B.

$$\frac{1}{c} = h \cdot l = 1 \cdot 2 = 2 \implies c = \frac{1}{2} \tag{535}$$

tæthedsfunktionen er:

$$f_{x,y}(x,y) = \frac{1}{2} \mathbb{1}_B(x,y)$$
 (536)

Del 2) Find P(Y > 2)

Tegn på tegningen hvad det egentlig medfører. Altså på mængden B.

Først og fremmest ved vi at vi må integrere X ud af tætheden.

$$p_y(y) = \int_{\mathbb{R}} \frac{1}{2} \mathbb{1}_B(x, y) dx \tag{537}$$

Vi lavet et trick og skærer mængden B ud i to mængder M_1 , M_2 .

$$M_1 = \{x, y \mid 0 < x < 1, 0.5 + 2x < y < 2.5\}$$
(538)

$$M_2 = \{x, y \mid 0 < x < 1, 2.5 < y < 2.5 + 2x\} \tag{539}$$

$$p_Y(y) = \frac{1}{2} \int_{\mathbb{R}} \mathbb{1}_{M_1}(x, y) dx + \frac{1}{2} \int_{\mathbb{R}} \mathbb{1}_{M_2}(x, y) dx$$
 (540)

Vi håndterer først M_1 :

Vi ser at vi skal differentiere x ud. Mængden er er altså defineret i y-intervallet [0.5, 2.5]. Vi isolerer x som en funktion af y:

NOTE: Tegn diagrammet på tavlen og forklar intuitionen!

$$y = 0.5 + 2x \implies \frac{1}{2}(y - 0.5) = x$$
 (541)

Hvor vi husker at: $y \in [0.5, 2.5]$

Vi kan nu finde at arealet for M_1 :

$$\int_{0}^{\frac{1}{2}(y-0.5)} 1dx = \left[x\right]_{0}^{\frac{1}{2}(y-0.5)} = \frac{1}{2}y - 0.25 \tag{542}$$

Analogt for M_2 :

(KIG PÅ TAVLESKITSE)

$$y = 2.5 + 2x \implies \frac{1}{2}(y - 2.5)$$
 (543)

$$\int_{\frac{1}{2}(y-2.5)}^{1} 1 dx = [x]_{\frac{1}{2}(y-2.5)}^{1} = 1 - \left(\frac{1}{2}y - 1.25\right) = 2.25 - \frac{1}{2}y$$
 (544)

hvor vi husker at $y \in (2.5, 4.5]$

Vi opskriver $p_Y(y)$. Man husker at gange konstanten $\frac{1}{2}$ på.

$$p_Y(y) = \begin{cases} \frac{1}{2} \left(2.25 - \frac{1}{2}y \right) & , y \in (2.5, 4.5] \\ \frac{1}{2} \left(\frac{1}{2}y - 0.25 \right) & , y \in [0.5, 2.5] \end{cases}$$
 (545)

Vi kan opskrive $P(Y > 2) = 1 - P(Y \le 2) = 1 - \int_{0.5}^{2} \frac{1}{2} \left(\frac{1}{2}y - 0.25\right) dy$

$$1 - \int_{0.5}^{2} \frac{1}{2} \left(\frac{1}{2} y - 0.25 \right) dy = 1 - \frac{1}{4} \int_{0.5}^{2} y - 0.5 dy$$
 (546)

$$=1 - \frac{1}{4} \left[\frac{1}{2} y^2 - 0.5y \right] \tag{547}$$

$$=1-\frac{1}{4}\left(\left(\frac{1}{2}2^2-\frac{1}{2}\cdot 2\right)-\left(\frac{1}{2}0.5^2-0.5\cdot 0.5\right)\right) \tag{548}$$

$$=1-\frac{1}{4}(2-1)+\frac{1}{4}\left(\frac{1}{8}-\frac{1}{4}\right) \tag{549}$$

$$=1-\frac{1}{4}-\frac{1}{4}\frac{1}{8}\tag{550}$$

$$= 0.71875 (551)$$

Del 4) Angiv den betingede fordeling af X givet Y = 1

Vi skal finde $p_{X|Y=1}(x)$

Vi kan altså bruge vores regel:

$$p_{X|Y}(x)p_Y(y) = p(x,y) \implies p_{X|Y} = \frac{p(x,y)}{p_Y(y)}$$
 (552)

Vi ved at Y = 1. Vi bruger dette:

$$p_Y(1) = \frac{1}{2} \left(\frac{1}{2} (1) - 0.25 \right) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8}$$
 (553)

Vi indsætter Y=1 i den øverste del af brøken. Vi ved vi er i den nederste mængde M_1 . Dette implicerer:

$$0.5 + 2x < y \land y = 1 \implies 0.5 + 2x < 1 \implies x < \frac{1}{4}$$
 (554)

Vi kan herfra konkludere at:

$$p_{X|Y=1}(x) = \frac{1}{2} \frac{\mathbb{1}_{[0,0.25]}(x)}{1/8} = 4 \cdot \mathbb{1}_{[0,0.25]}(x)$$
 (555)

Del 5) udregn forventede rating når Y = 1 og når Y = 2

Vi kender formlen for forventningen af en ligefordeling: $E(x) = \frac{a+b}{2}$

Vi har svaret for $E(X \mid Y = 1) = \frac{0 + 0.25}{2} = \frac{1}{8}$

Vi skal nu analogt finde den betingede tæthed når Y=2

$$p_Y(2) = \frac{1}{2} \left(\frac{1}{2} (2) - 0.25 \right) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$
 (556)

Vi ser igen på mængden M_2 :

$$0.5 + 2x < y \land y = 2 \implies 0.5 + 2x < 2 \implies x < \frac{3}{4}$$
 (557)

Vi kan herfor konkluderer at den betingede fordeling for $X \mid Y = 2$ må være:

$$p_{X|Y=2}(x) = \frac{1}{2} \frac{\mathbb{1}_{\left[0,\frac{3}{4}\right]}(x)}{\frac{3}{8}} = \frac{4}{3} \cdot \mathbb{1}_{\left[0,\frac{3}{4}\right]}$$
 (558)

Vi finder forventningen som må være:

$$E(X \mid Y = 2) = \frac{1}{2} \frac{3}{4} = \frac{3}{8}$$
 (559)

Del 6) Find variansen $Var(X \mid Y = 1 \text{ og } Var(X \mid Y = 2)$

I stedet for at bruge hintet kigger vi på distributionen og bruger regnereglen for ligefordelinger:

$$Var(X) = \frac{1}{12}(a-b)^2$$
 (560)

$$Var(X \mid Y = 1) = \frac{1}{12} \left(0 - \frac{1}{4} \right)^2 = \frac{1}{16} \frac{1}{12} = \frac{1}{192}$$
 (561)

$$Var(X \mid Y = 2) = \frac{1}{12} \left(0 - \frac{3}{4} \right)^2 = \frac{1}{12} \frac{9}{16} = \frac{9}{192}$$
 (562)

Hvornår er den betingede varians størst - dvs. variansen af ratingen betinget på prisen

Kig på tegningen: Det rigtige svar må være Y = 2500.

Man overvejer følgende:

$$Var(X) = \frac{1}{12}(a-b)^2$$
 (563)

I intervallet $y \in [0.5, 2.5]$ ved vi at:

$$Var(X \mid Y = y) = \frac{1}{12}(0 - a)^{2}$$
(564)

Hvor at er øvre grænse:

$$0.5 + 2x < y \implies x = \frac{1}{2}(y - 0.5) \tag{565}$$

er monotont stigende med højere i y i intervallet [0.5, 2.5).

Vi kan derfor sige at:

I intervallet [0.5, 2.5) finder vi den højeste varians ved Y = 2.5.

Analogt kan man den højeste varians i i intervallet [2.5, 4.5] til at være Y = 2.5

Illustrer på tavle!

3.14 Øvelse 14

01/11/2018, opgaver: 44.2.1, 44.2.2, 44.2.3

3.14.1 Opgave 44.2.1

- $U, V \sim N(0, 1)$
- \bullet $U \perp \!\!\! \perp V$
- derudover er følgende variable defineret:

$$X = \alpha_1 + \beta_1 U \tag{566}$$

$$Y = \alpha_2 + \beta_2 U + \delta_2 V \tag{567}$$

Del 1) Udregn P(0.1 < U < 0.5)

Kig github! Gjort i python, så det er let tilgængeligt for alle online.

$$P(0.1 < U < 0.5) = 1 - F_U(0.1) - (1 - F_U(0.5)) = -F_U(0.1) + F_U(0.5) = 0.15163$$
(568)

Del 2) Udregn E(X), E(Y) samt V(X), V(Y)

$$E(X) = E(\alpha_1 + \beta_1 U) = E(\alpha_1) + \beta_1 E(U) = \alpha_1$$
(569)

$$E(Y) = E(\alpha_2 + \beta_2 U + \delta_2 V) = \alpha_2 \tag{570}$$

Igen fordi at E(U) = E(V) = 0 eftersom vi har standard normalt fordelte stokastiske variable U, V

Variansen kan nu findes:

Man husker at standard normalt fordelte stokastiske variable har egenskaben: $\sigma^2 = \sigma = 1$.

$$Var(X) = Var(\alpha_1 + \beta_1 U) = \beta_1^2 Var(U) = \beta_1^2$$
(571)

$$Var(Y) = Var(\alpha_2 + \beta_2 U + \delta_2 V) = Var(\beta_2 U + \delta_2 V)$$
(572)

Vi husker at når $V \perp U \implies Var(V + U) = Var(V) + Var(U)$

$$Var(\beta_2 U + \delta_2 V) = Var(\beta_2 U) + Var(\delta_2 V)$$
(573)

$$= \beta_2^2 \text{Var}(U) + \delta^2 \text{Var}(V) \tag{574}$$

$$=\beta_2^2 + \delta_2^2 \tag{575}$$

Del 3) Udregn $E(X \cdot Y)$ og Cov(X, Y)

$$E(X \cdot Y) = E\left[(\alpha_1 + \beta_1 U)(\alpha_2 + \beta_2 U + \delta_2 V) \right]$$
(576)

$$= \alpha_1 \alpha_2 + \beta_1 \beta_2 \mathcal{E}(U^2) \tag{577}$$

$$=\alpha_1\alpha_2+\beta_1\beta_2\tag{578}$$

Dette er klart da $E(V) = E(U) = 0 \land V \perp U \implies E(V \cdot U) = 0$

Covariansen findes:

$$Cov(X,Y) = E(X \cdot Y)E(X)E(Y) = (\alpha_1\alpha_2 + \beta_1\beta_2) - (\alpha_1\alpha_2) = \beta_1\beta_2 \quad (579)$$

Del 4) Hvad skal α_1, β_1 sættes til for at E(X) = 10, Var(X) = 4

Vi har tidligere fundet: $E(X) = \alpha_1$, $Var(X) = \beta_1^2$.

Vi kan derfor hurtigt konkluderer at: $\alpha_1 = 10 \implies E(X) = 10$ og at $\beta_1^2 = 2 \implies Var(X) = 4$

Del 5)

Find $\alpha_1, \alpha_2 + \beta_1 \beta_2, \delta_2$ for at Cov(X, Y) = 4

Vi kan hurtigt konkludere at: $Cov(X, Y) = \beta_1\beta_2$, betyder at vi kan sige $\beta_1 = \beta_2 = 2 \implies Cov(X, Y) = 4$. De resterende parametre kan sættes tilfældigt.

3.14.2 Opgave 44.2.2

- Y_1 Er timeløn i periode 1
- Y_2 Er timeløn i periode 2
- $Y_1 \sim N(\mu, \sigma^2)$

- $Y_2 \sim \alpha + \beta Y_1 + U$
- $U \sim N(0, v^2)$
- \bullet $Y \perp \!\!\! \perp U$

Del 1) lad $\mu = 350$ **og** $\sigma^2 = 12365$

- \bullet Del A) Udregn Ssh for timelønnen i periode 1 er højst 275
- Del B) Udregn Ssh for timelønnen i periode 1 er mindst 425

Kig i Github!

$$P(Y_1 < 275) = F_{Y_1}(275) = 0.25 (580)$$

$$P(Y_1 > 425) = 1 - F_{Y_1}(425) \tag{581}$$

Del 2) Udregn middelværdi og varians af Y_2

$$E(Y_2) = E(\alpha + \beta Y_1 + U) = E(\alpha) + \beta E(Y_1) + E(U)$$
(582)

Vi husker $\mathrm{E}(U)=0$ (U var fordelt omkring 0). Derudover husker vi at $\mathrm{E}(Y_1)=\mu$

$$E(Y_2) = \alpha + \beta \mu \tag{583}$$

Vi finder variansen.

$$Var(Y_2) = Var(\alpha + \beta Y_1 + U)$$
(584)

$$= \operatorname{Var}(\beta Y_1 + U) \tag{585}$$

$$= \beta^2 \operatorname{Var}(Y_1) + \operatorname{Var}(U) \tag{586}$$

$$=\beta^2 \sigma^2 + v^2 \tag{587}$$

Hvor vi har udnyttet at man kan splitte variansen op til en sum af to uafhængige stokastisk variable.

Del 3) er $Y_1 \perp \!\!\! \perp Y_2$

Nej! Dette kan ses uden yderligere udregninger, da Y_2 er en transformation af Y_1 .

Note: Dette afhænger af den Strukturalle kausale model er *faithful*, hvilket vi kan se i dette tilfælde den er. (Læs mere i Jonas Peters bog om causality hvis man er interesseret)

Del 4) Angiv den betingede middelværdi og varians af Y_2 betinget på $Y_1 = y_1$

$$p_{Y_2|Y_1=y_1}(y_2) = \alpha + \beta y_1 + U \tag{588}$$

Vi kan hermed sige at:

$$E(Y_2 \mid Y_1 = y_1) = E(\alpha + \beta y_1 + U) = \alpha + \beta y_1$$
 (589)

Inden variansen findes, da overvej: $Var(\beta y_1) = 0$. Da y_1 er en realisation of derfor ikke har noget stokastisk element.

Variansen er:

$$Var(Y_2 \mid Y_1 = y_1) = Var(\alpha + \beta y_1 + U) = Var(U) = v^2$$
 (590)

Del 5)

Antagelser

- $\mu = 350$
- $\sigma^2 = 12365$
- $\alpha = 350(1 \beta)$
- $v^2 = 12365(1 \beta^2)$
- (ikke i opgaven men nødvendigt) $|\beta| < 1$

Angiv de marginale fordelinger af Y_1 og Y_2

Man ser hurtigt at:

$$Y_1 := N(350, 12365) \tag{591}$$

Den marginale fordeling for Y_2 :

$$Y_2 := \alpha + \beta Y_1 + U \tag{592}$$

$$= 350(1 - \beta) + \beta Y_1 + U \tag{593}$$

$$= 350(1 - \beta) + \beta N(350, 12365) + N(0, 12365(1 - \beta^2))$$
 (594)

(595)

Vi kan se at $E(350(1-\beta) + \beta N(350, 12365) + N(0, 12365(1-\beta^2))) = 350$. Fra $\beta 350 + (1-\beta)350 = 350$

For variansen ser vi følgende: Husk $k^2 \text{Var}(X) = \text{Var}(kX)$. Det vil sige: $\beta N(350, 12365) = N(350, \beta^2 12365)$. Variansen for 2 ukorrelerede stokastiske variable: Var(X) + Var(Y) = Var(X + Y). Hvilker betyder at variansen i dette tilfælde er:

$$Var(N(350, \beta^2)) + Var(N(0, 12365(1 - \beta^2))) = 12365(\beta^2 + (1 - \beta^2)) = 12365$$
(596)

Antag nu $\beta > 0$. Vis at $E(Y_2 | Y_1 = 275) < E(Y_2)$

Vi kan se at $E(Y_2) = 350$. læs ovenfra:

Vi kan se at:

$$E(Y_2 \mid Y_1 = 275) = E(350(1 - \beta) + \beta 275 + N(0, 12365(1 - \beta^2))$$
 (597)

Hvilket betyder:

$$E(Y_2 \mid Y_1 = 275) = 350(1 - \beta) + \beta 275 < 350$$
 (598)

Del C)

Lad nu $\beta = 0.90$

NOGET GÅR GALT

- $P(Y_1 \le 275, Y_2 \le 275) \approx 0.193$
- $P(Y_1 \le 275, Y_2 \le 425) \approx 0.250$

Vi ved at $P(A, B) = P(A \mid B)P(B)$

Så vi kan sige:

$$P(Y_2 \le 275 \mid Y_1 \le 275) = \frac{P(Y_1 \le 275, Y_2 \le 275)}{P(Y_1 \le 275)} = \frac{0.193}{0.25} = 0.772 \quad (599)$$

3.14.3 Opgave 44.2.3

- \bullet (X,Y) er en todimensionel stokastiske vektor
- $f_{X,Y} = 6 \exp(-2x 3y)$ $x, y \in [0, \infty)$
- $A = \{(x,y) : 0 \le x + y < 1, x > 0, y > 0\}$

Del 1) Hvorfor er $X \perp \!\!\! \perp Y$

Lavet i en tidligere ugeseddel. Kan splittes op i to tæthedsfunktioner:

$$f_X(x) = 2\exp(-2x), \quad f_Y(y) = 3\exp(-3y)$$
 (600)

Disse kan ganges sammen til $f_{X,Y}$

Del 2) Udregn $P((X,Y) \in A)$

Først tegn A: Kig github!

Note: $\int e^{bx} dx = \frac{e^{bx}}{b}$

Vi ser $x + y = 1 \implies y - 1 = x$. Og y = x - 1

$$P((X,Y) \in A) = \int_0^1 \int_0^{1-y} 6\exp(-2x - 3y) dx dy$$
 (601)

$$= \int_0^1 \int_0^{1-y} 6 \exp(-2x) \exp(-3y) dx dy$$
 (602)

$$=6\int_{0}^{1} \exp(-3y) \int_{0}^{1-y} \exp(-2x) dx dy$$
 (603)

$$= [-\exp(-2x)]_0^1 - 2\exp(-3)[\exp(x)]_0^1$$
 (605)

$$= [1 - \exp(-2)] - 2\exp(-3)[\exp(1) - 1]$$
 (606)

$$\approx 0.6935 \tag{607}$$

Find tætheden for (X,Y) givet $(X,Y) \in A$

$$p(x,y \mid (X,Y) \in A) = \frac{p(x,y,(X,Y) \in A)}{P((X,Y) \in A)}$$
(608)

$$=\frac{p(x,y)\mathbb{1}_A(x,y)}{0.6935} \tag{609}$$

$$= 6\exp(-2x - 3y)/0.6935 \qquad 0 < x + y < 1 \quad (610)$$

Kig Thomas rettevejledning for integrale show!

Del 4) Er $X \perp \!\!\!\perp Y \mid A$

Nej! A er ikke en produkt mængde!

Del 5) Find $E(X \mid (X,Y) \in A \text{ og ligeledes for } Y$

3.15 Øvelse 15

5/11/2018, opgaver: U45.1, U45.2, U45.3, U45.4

3.15.1 Opgave U45.1

$$\bullet \ \, X \sim N(\mu,\sigma^2)$$

Vis at $Y = \frac{1}{\sqrt{\sigma^2}}(X - \mu)$ er standard normal fordelt N(0,1)

Vi kan starte med at opskrive den parametriske form op for tætheden af en normalfordeling med mu og $sigma^2$ som henholdsvis middelværdi og varians

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (611)

Vi husker et par regneregler:

Vi ved at $E(X) = \mu$.

Det vil sige at:

$$E[Y] = E\left[\frac{1}{\sqrt{\sigma^2}}(X - \mu)\right] = \frac{1}{\sqrt{\sigma^2}}E\left[(X - \mu)\right]$$
 (612)

Som sagt: $E(X) = \mu$.

$$\frac{1}{\sqrt{\sigma^2}} E[(X - \mu)] = \frac{1}{\sqrt{\sigma^2}} (E[X] - E[\mu]) = \frac{1}{\sqrt{\sigma^2}} (\mu - \mu) = 0 = E[Y] \quad (613)$$

Vi finder variansen. Man husker at $Var(aX) = a^2Var(X)$

Vi ved at $Var(X) = \sigma^2$

$$Var(Y) = Var\left(\frac{1}{\sqrt{\sigma^2}}X\right)$$
 (614)

Vi ignorerer μ da dette er en konstant

$$\operatorname{Var}\left(\frac{1}{\sqrt{\sigma^2}}X\right) = \frac{1}{\sigma^2}\operatorname{Var}(X) = \frac{1}{\sigma^2}\sigma^2 = 1 = \operatorname{Var}(Y) \tag{615}$$

Og vi har nu vidst at $Y \sim N(0,1)$

Del 2) (X,Y) er en 2-dimensionel stokastisk vektor med middelværdi mu og covarians matrice = Ω

Vis at $Z = \frac{1}{\sqrt{\sigma_X^2}}(X - \mu_X)$ er standard normalfordelt

$$\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} \qquad \Omega = \begin{pmatrix} \sigma_Y^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_X^2 \end{pmatrix}$$
 (616)

Samme argument som før!

Lad (X,Y) være som i spørgsmål 2, men med $\mu=(0,0)^T$. Vis at $Z=Y-\beta X$ er normaltfordelt med $N(0,\sigma^2)$

Hvor σ^2 er

$$\sigma^2 = \sigma_Y^2 - \beta \sigma_{XY} \tag{617}$$

og β er:

$$\beta = \sigma_{X,Y}/\sigma_Y^2 \tag{618}$$

Vi husker at summen af to normalfordelte stokastiske variable er normalfordelt. Dvs: $Y - \beta X$ nødvendigvis må være normalfordelt!

Vi finder middelværdien først:

$$E[Z] = E[Y - \beta X] = E[Y] - \beta E[X] = 0 - \beta \cdot 0 = 0$$
 (619)

Nu finder vi variansen:

$$Var(Z) = Var(Y - \beta Z) \tag{620}$$

Vi husker der er covarians mellem X og Y.

Det vil sige:

$$Var(Z) = Var(Y - \beta x) \tag{621}$$

$$= \operatorname{Var}(Y) + \beta^{2} \operatorname{Var}(X) + 2\operatorname{Cov}(Y, -\beta X)$$
 (622)

$$= \operatorname{Var}(Y) + \beta^{2} \operatorname{Var}(X) - 2\beta \operatorname{Cov}(Y, X)$$
 (623)

$$= \sigma_V^2 + \beta^2 \sigma_X^2 - 2\beta \sigma_{X,Y} \tag{624}$$

$$= \sigma_Y^2 + (\sigma_{X,Y}/\sigma_X^2)^2 \sigma_X^2 - 2(\sigma_{X,Y}/\sigma_X^2)\sigma_{X,Y}$$
 (625)

$$= \sigma_Y^2 + \frac{\sigma_{X,Y}^2}{\sigma_Y^2} - 2\frac{\sigma_{X,Y}^2}{\sigma_Y^2}$$
 (626)

$$=\sigma_Y^2 - \frac{\sigma_{X,Y}^2}{\sigma_Y^2} \tag{627}$$

Hvilket var det vi ønskede at vise:

$$Z \sim N(0, \sigma^2) = N\left(0, \sigma_Y^2 - \frac{\sigma_{X,Y}^2}{\sigma_X^2}\right)$$
 (628)

Del 4)

Vis at:

$$E((Y - \beta X)X) = 0 \tag{629}$$

Hvilket betyder at Z og X er uafhængige!

$$E((Y - \beta X)X) = E(YX - \beta X^2)$$
(630)

$$= E(YX) - \beta E(X^2) \tag{631}$$

(632)

Her ser man at $E(X) = E(Y) = 0 \implies E(XY) = \sigma_{XY}$ og at $E(X) = 0 \implies E(X^2) = \sigma_X^2$

$$E(YX) - \beta E(X^2) = \sigma_X Y - \beta \sigma_X^2$$
(633)

$$= \sigma_{XY} - (\sigma_{X,Y}/\sigma_X^2)\sigma_X^2 \tag{634}$$

$$=0 (635)$$

For at afgøre om de er uafhængige definerer vi først fejlleddet ϵ :

$$\epsilon = Y - \beta X \tag{636}$$

$$Cov(\epsilon, X) = E(\epsilon X) - E(\epsilon)E(X) = E(\epsilon X) = 0$$
 (637)

Det betyder at ϵ er ukorreleret med X. Og da både X og ϵ er normalfordelte kan vi konkludere de er uafhængige!

3.15.2 Opgave U45.2

Laves i klassen!

- stokastisk vektor (X, Y)
- distribueret med $N(m,\Omega)$

$$m = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \Omega = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \tag{638}$$

Del 1) Hvad er E(X) og Var(X)

Vi kan direkte aflæse svarene E(X) = 1 og Var(X) = 1.

Del 2) Hvordan er Y fordelt:

Aflæses i m og Ω

$$Y \sim N(0,1) \tag{639}$$

Del 3) Hvad er Cov(X, Y)

Dette kan aflæses i kovarians-matricen off-diagonal elementer: $\sigma_{XY}=\rho$

Del 4) Hvad er $E(Y \mid X = x)$

Fra Rahbeks note (property G.3) finder vi formlen:

$$E(Y \mid X = x) = \mu_{Y|X} = \mu_Y + \omega(x - \mu_X)$$
 (640)

Hvor $\omega = \sigma_{YX}/\sigma_X^2$

Hvilket implicerer at:

$$E(Y \mid X = x) = \mu_{Y|X} = \mu_Y + (\sigma_{YX}/\sigma_X^2)(x - \mu_X)$$
 (641)

Vi finder de passende værdier i kovarians-matricen: $\mu_X=1,\,\mu_Y=0,\,\sigma_X^2=1$ og $\sigma_{XY}=\rho$

$$E(Y \mid X = x) = 0 + \left(\frac{\rho}{1}\right)(x - 1) = \rho(x - 1) \tag{642}$$

Del 5) Hvad er $E(X \mid Y = y)$

Vi bruger samme formel som før, bare hvor: $\omega = \sigma_{YX}/\sigma_Y^2$

$$E(X | Y = y) = \mu_x + \omega(y - \mu_Y) = 1 + \rho y \tag{643}$$

Del 6) Hvad er $Var(Y \mid X = x)$

Vi kigger igen i Rahbeks note (property G.3).

Finder formlen:

$$\operatorname{Var}(Y \mid X = x) = \sigma_Y^2 - \omega \sigma_{XY} = \sigma_Y^2 - \frac{\sigma_{XY}^2}{\sigma_X^2}$$
(644)

Og vi har stadig $\omega = \sigma_{YX}/\sigma_Y^2$. Altså samme ω som i del 5.

Vi har de passende værdier: $\sigma_X^2 = 1$, $\sigma_Y^2 = 1$ og $\sigma_{XY} = \rho$

$$Var(Y \mid X = x) = \sigma_Y^2 - \frac{\sigma_{XY}^2}{\sigma_X^2} = 1 - \frac{\rho^2}{1} = 1 - \rho^2$$
 (645)

Del 7) Hvad gælder for (X,Y) hvis $\rho = 0.9$ og $\rho = 0$

Hvis $\rho = 0.9$ er X, Y stærkt positivt korrelerede. Det vil sige en høj realisering af Y implicerer en høj realisering X.

Omvendt $\rho = 0$ implicerer X og Y er ukorrelerede! Da de begge er normalt fordelte er de nødvendigvis også uafhængige!

3.15.3 Opgave U45.3

• (X,Y) er stokastisk vektor med som er normalfordelt med $N(\mu,\Omega)$

$$\mu = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \qquad \Omega = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} \tag{646}$$

Opskriv tætheden p(x, y)

Kig formlen på s.237 Sørensen (ligning 8.3.6)

$$p(x,y) = \frac{1}{2\pi} \frac{1}{\sqrt{\det(\Omega)}} \exp\left(-\frac{1}{2}(x - \mu_X, y - \mu_Y)\Omega^{-1} \begin{pmatrix} x - \mu_X \\ y - \mu_Y \end{pmatrix}\right)$$
(647)

Hvis det ser uklart ud, da kan vi hurtigt lige definerer vektoren $K=(x-\mu_X,y-\mu_Y)$

Hvilket forsimpler utrykket til (Gøres for klargøre at det er en vektor K man "opløfter i 2"):

$$p(x,y) = \frac{1}{2\pi} \frac{1}{\sqrt{\det(\Omega)}} \exp\left(-\frac{1}{2}K\Omega^{-1}K^T\right)$$
 (648)

Vi finder de to centrale ting:

$$\det(\Omega) = 1^2 - 0.5^2 = 0.75 \tag{649}$$

Kig i Sørensen s.237

$$\Omega^{-1} = \frac{1}{1 - \rho^2} \begin{pmatrix} 1 & -0.5 \\ -0.5 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{4}{3} \end{pmatrix}$$
 (650)

Og vi har fundet tætheden!

3.15.4 Opgave U45.4

- $\bullet~Y$ er afkast på amerikansk aktie (Microsoft)
- X er et aktie-indeks (SP500)
- $Y := \beta X + \epsilon$
- $\epsilon \sim N(0, \sigma^2)$

Del 1) Fortolkning af β

 β er relateret til kovariansen mellem X og Y og angiver altså samvariansen mellem en given aktie og hvordan hele markedet bevæger sig. En aktie med negativ β vil altså kunne reducerer volatiliteten i en portfølje da den er modsat korreleret med de andre aktier.

$$\beta = \frac{\sigma_{XY}}{\sigma_X^2} \tag{651}$$

Står beskrevet i Rahbeks Note s. 10

Del 2) En anden model blev repræsenteret

$$Y := \epsilon_Y, \qquad X := \epsilon_X \tag{652}$$

hvor $\epsilon_Y \sim N(0, \sigma_Y^2)$ og $\epsilon_X \sim N(0, \sigma_X^2)$

Forklar hvordan denne kan stemme overens med modellen præsenteret ovenfor

$$E(Y) = 0 (653)$$

Modellen ovenfor var implicit en betinget model for Y:

$$E(Y \mid X) = E(\beta X + \epsilon \mid X) \tag{654}$$

$$= \beta X \tag{655}$$

Da $E(\epsilon \mid X) = 0$

Altså så før så vi på en betinget model, men nu er det to marginale modeller, som er opstillet!

Man bruger altså i den betingede model information om hvordan en aktie samvarierer med markedet

3.16 Øvelse 16

9/11/2018, opgaver: 45.5, 45.6, 45.7

3.16.1 Opgave U45.5

Lav i klassen!

- \bullet (Y, X) er en 2-dimensionel stokastisk vektor
- (X,Y) er fordelt med $N(\mu,\Omega)$
- Vi ved at:

$$E(Y \mid X) = X \qquad Var(Y \mid X) = 1 \tag{656}$$

• derudover ved vi:

$$E(X) = 0 \qquad Var(X) = 1 \tag{657}$$

Vi kan først konkludere at:

husk at $\omega = \sigma_{YX}/\sigma_X^2$

$$E(Y \mid X) = \mu_Y + \omega(X - \mu_X) \tag{658}$$

$$= E(\mu_Y + \omega X) \tag{659}$$

$$= E(\mu_Y + (\sigma_{XY}/\sigma_X^2)X) \tag{660}$$

$$= E(\mu_Y + \sigma_{XY}X) \tag{661}$$

$$= E(\mu_Y) + \sigma_{XY} E(X) \tag{662}$$

Fra det kan vi konkludere at: $E(\mu_Y) + \sigma_{XY} E(X) = X \implies \mu_Y = 0$ og $\sigma_{XY} = 1$.

Vi udnytter dette:

$$Var(Y \mid X) = \sigma_Y^2 - \omega \sigma_{XY} \tag{663}$$

$$=\sigma_Y^2 - \frac{\sigma_{YX}}{\sigma_X^2} \sigma_{XY} \tag{664}$$

$$=\sigma_Y^2 - \frac{1^2}{1^2} \tag{665}$$

$$= \sigma_Y^2 - 1 = 1 \tag{666}$$

Hvorfra vi kan konkludere at $\sigma_Y^2=2$

Vi kan herfra opskrive den funktionelle form:

$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Omega = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \tag{667}$$

3.16.2 Opgave U45.6

- $Z_1 \perp \!\!\! \perp Z_2$
- $Z_1, Z_2 \sim N(0, 1)$
- VI har følgende to stokastiske variable:

$$Y := 2Z_1 + Z_2 \tag{668}$$

$$X := 3Z_1 \tag{669}$$

Del 1) Hvordan er (Y, X) fordelt

Denne opgave følger eksemplet i Sørensen 8.3.3 meget tæt

Husk
$$E(Z_1) = E(Z_2) = 0$$
 og $Var(Z_1) = Var(Z_2) = 1$

Vi ser hurtigt:

$$E(Y) = E(2Z_1 + Z_2) = 2E(Z_1) + E(Z_2) = 0 + 2 \cdot 0 = 0$$
 (670)

$$E(X) = E(3Z_1) = 3E(Z_1) = 0$$
 (671)

Variansen af de to er:

$$Var(Y) = Var(2Z_1 + Z_2) = 2^2 Var(Z_1) + Var(Z_2) = 4 + 1 = 5$$
 (672)

$$Var(X) = Var(3Z_1) = 3^2 Var(Z_1) = 9$$
 (673)

Nu skal kovariansen findes mellem X og Y:

Kig formlen på s. 236 Sørensen. Her ser vi at:

$$Cov(X,Y) = ab (674)$$

hvor a og b er de konstanter der ganget på den stokastiske variabel som er går igen i udtrykket for henholdsvis X og Y. Altså i vores tildælde 2 for Y, og 3 for X.

$$Cov(X, Y) = 2 \cdot 3 = 6$$
 (675)

Vi har med andre ord (Y, X) er distribueret med $N(\mu, \Omega)$, hvor:

$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Omega = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix} \tag{676}$$

Del 2) Find $E(Y \mid Z_1)$

$$E(Y \mid Z_1) = E(2Z_1 + Z_2 \mid Z_1)$$
(677)

$$= 2E(Z_1 \mid Z_1) + E(Z_2 \mid Z_1)$$
(678)

$$=2Z_1\tag{679}$$

Del 3) Find $E(X \mid Z_2)$

$$E(X \mid Z_2) = E(3Z_1 \mid Z_2)$$
 (680)

$$=0 (681)$$

Del 4) Find $E(Y \mid X)$

Husk $\omega = \sigma_{XY}/\sigma_X^2$

$$E(Y \mid X) = \mu_Y + \omega(X - \mu_X) \tag{682}$$

$$= 0 + \frac{\sigma_{XY}}{\sigma_X^2} (X - 0) \tag{683}$$

$$= \frac{6}{9}X = \frac{2}{3}X\tag{684}$$

3.16.3 Opgave U45.7

- X er diskret ligefordelt på $\{-1,0,1\}$
- Y er kontinuært ligefordelt på intervallet (-1, 1).

Del 1) Find $\mathbf{E}(X)$, $\mathbf{Var}(X)$, P(X > 0)

Find relevante formler på wiki

$$E(X) = (a+b)/2 = (-1+1)/2 = 0$$
(685)

$$Var(X) = \frac{(b-a+1)^2 - 1}{12} = \frac{(1-(-1)+1)^2 - 1}{12} = \frac{8}{12} = \frac{3}{4}$$
 (686)

$$P(X > 0) = \frac{\text{\# Gunstige}}{\text{\# Mulige}} = \frac{1}{3}$$
 (687)

Del 2) Find $E(X \mid X > 0)$

$$E(X \mid X > 0) = 1 \tag{688}$$

klart da $X \mid X > 0$ kun kan antage værdien 1.

 $\mathbf{Del} \ \mathbf{3)} \ \mathbf{Find} \ \mathbf{E}(Y) \ \mathbf{og} \ \mathbf{Var}(Y) \ \mathbf{samt} \ P(Y>0)$

$$E(Y) = (a+b)/2 = (-1+1)/2 = 0$$
(689)

$$Var(Y) = \frac{(b-a)^2}{12} = \frac{((1-(-1))^2}{12} = \frac{4}{12} = \frac{1}{3}$$
 (690)

$$P(Y > 0) = \int_0^1 \frac{1}{2} \mathbb{1}_{(-1,1)}(x) dx = \frac{1}{2} \left((1) - (0) \right) = \frac{1}{2}$$
 (691)

Del 4) Find $\mathbf{E}(Y \mid Y > 0)$

husk $P(X,Y) = P(X \mid Y)P(Y)$ - hvor X,Y er arbitrære navne for at illustrere matematikken.

$$E(Y \mid Y > 0) = \int_{-\infty}^{\infty} y \frac{P(Y, Y > 0)}{P(Y > 0)} dy$$
 (692)

$$= \int_{-\infty}^{\infty} y \frac{\frac{1}{2} \mathbb{1}_{(-1,1)}(y) \mathbb{1}_{(0,1)}(y)}{\frac{1}{2}} dy$$
 (693)

$$= \int_{0}^{1} y \mathbb{1}_{(0,1)}(y) \tag{694}$$

$$= \left[\frac{1}{2}y^2\right]_0^1 = \frac{1}{2} \tag{695}$$