11: Crafting Reports - Addie Navarro

Environmental Data Analytics | John Fay & Luana Lima | Developed by Kateri Salk

Spring 2022

LESSON OBJECTIVES

- 1. Describe the purpose of using R Markdown as a communication and workflow tool
- 2. Incorporate Markdown syntax into documents
- 3. Communicate the process and findings of an analysis session in the style of a report

USE OF R STUDIO & R MARKDOWN SO FAR...

- 1. Write code
- 2. Document that code
- 3. Generate PDFs of code and its outputs
- 4. Integrate with Git/GitHub for version control

BASIC R MARKDOWN DOCUMENT STRUCTURE

- 1. YAML Header surrounded by on top and bottom
 - YAML templates include options for html, pdf, word, markdown, and interactive
 - More information on formatting the YAML header can be found in the cheat sheet
- 2. R Code Chunks surrounded by "on top and bottom + Create usingCmd/Ctrl+Alt+I'
 - Can be named {r name} to facilitate navigation and autoreferencing
 - Chunk options allow for flexibility when the code runs and when the document is knitted
- 3. Text with formatting options for readability in knitted document

RESOURCES

Handy cheat sheets for R markdown can be found: here, and here.

There's also a quick reference available via the Help-Markdown Quick Reference menu.

Lastly, this website give a great & thorough overview.

THE KNITTING PROCESS

- The knitting sequence
- Knitting commands in code chunks:
- include = FALSE code is run, but neither code nor results appear in knitted file
- echo = FALSE code not included in knitted file, but results are

- eval = FALSE code is not run in the knitted file
- message = FALSE messages do not appear in knitted file
- warning = FALSE warnings do not appear...
- fig.cap = "..." adds a caption to graphical results

WHAT ELSE CAN R MARKDOWN DO?

See: https://rmarkdown.rstudio.com and class recording. * Languages other than R... * Various outputs...

WHY R MARKDOWN?

<Fill in our discussion below with bullet points. Use italics and bold for emphasis (hint: use the cheat sheets or Help →Markdown Quick Reference to figure out how to make bold and italic text).>

- it's more organized and sharable
- it's easy to see the output of the chunks
- it's transparent and easier to reproduce

TEXT EDITING CHALLENGE

Create a table below that details the example datasets we have been using in class. The first column should contain the names of the datasets and the second column should include some relevant information about the datasets. (Hint: use the cheat sheets to figure out how to make a table in Rmd)

Table 1: Table of Datasets

Data Sets	Description
EPA Air	EPA data on PM25 and Ozone
NTL_LTER Lake Nutrients	Nutrient data for Peter and Paul Lakes
Ozone Time Series	Ozone data over time
NC HUC8	Spatial data for NC watersheds

R CHUNK EDITING CHALLENGE

Installing packages

Create an R chunk below that installs the package knitr. Instead of commenting out the code, customize the chunk options such that the code is not evaluated (i.e., not run).

Setup

Create an R chunk below called "setup" that checks your working directory, loads the packages tidyverse, lubridate, and knitr, and sets a ggplot theme. Remember that you need to disable R throwing a message, which contains a check mark that cannot be knitted.

Load the NTL-LTER_Lake_Nutrients_Raw dataset, display the head of the dataset, and set the date column to a date format.

Customize the chunk options such that the code is run but is not displayed in the final document.

Data Exploration, Wrangling, and Visualization

Create an R chunk below to create a processed dataset do the following operations:

- Include all columns except lakeid, depth_id, and comments
- Include only surface samples (depth = 0 m)
- Drop rows with missing data

```
Nutrient_Data_processed <-
NTL_LTER %>%
select(!c(lakeid, depth_id, comments))%>%
filter(depth==0)%>%
na.omit()
```

Create a second R chunk to create a summary dataset with the mean, minimum, maximum, and standard deviation of total nitrogen concentrations for each lake. Create a second summary dataset that is identical except that it evaluates total phosphorus. Customize the chunk options such that the code is run but not displayed in the final document.

Create a third R chunk that uses the function kable in the knitr package to display two tables: one for the summary dataframe for total N and one for the summary dataframe of total P. Use the caption = " " code within that function to title your tables. Customize the chunk options such that the final table is displayed but not the code used to generate the table.

Lake Name	Mean	Min	Max	SD
Central Long Lake	690.0469	343.020	953.063	209.09341
Crampton Lake	362.6813	353.380	376.304	12.05748
East Long Lake	810.7834	380.620	2608.956	335.41457
Hummingbird Lake	1036.6695	779.053	1221.960	204.36889
Paul Lake	368.7564	45.670	628.625	106.34741
Peter Lake	561.8752	219.720	2048.151	305.64909
Tuesday Lake	423.5605	237.363	554.418	78.84522
West Long Lake	762.6017	303.170	2870.302	402.95992

Table 2: Summary Table for Total N

Table 3: Summary Table for Total P

Lake Name	Mean	Min	Max	SD
Central Long Lake	21.70981	8.190	37.270	7.076388
Crampton Lake	11.16033	5.803	15.555	4.946759
East Long Lake	29.28984	8.000	101.050	17.375710
Hummingbird Lake	36.21925	32.765	42.119	4.146717
Paul Lake	10.45606	1.222	36.070	4.805142

Lake Name	Mean	Min	Max	SD
Peter Lake	18.39153	0.000	64.383	10.976205
Tuesday Lake	11.71853	6.325	18.663	3.044289
West Long Lake	19.82981	2.690	63.243	10.541276

Create a fourth and fifth R chunk that generates two plots (one in each chunk): one for total N over time with different colors for each lake, and one with the same setup but for total P. Decide which geom option will be appropriate for your purpose, and select a color palette that is visually pleasing and accessible. Customize the chunk options such that the final figures are displayed but not the code used to generate the figures. In addition, customize the chunk options such that the figures are aligned on the left side of the page. Lastly, add a fig.cap chunk option to add a caption (title) to your plot that will display underneath the figure.

Figure 1: Total Nitrogen Over Time by Lake

Communicating results

Write a paragraph describing your findings from the R coding challenge above. This should be geared toward an educated audience but one that is not necessarily familiar with the dataset. Then insert a horizontal rule below the paragraph. Below the horizontal rule, write another paragraph describing the next steps you might take in analyzing this dataset. What questions might you be able to answer, and what analyses would you conduct to answer those questions?

Figure 2: Total Phosphorus Over Time by Lake

Through the above analysis and looking specifically at the Total Nitrogen and Total Phosphorus tables, we see find that Hummingbird lake has the highest mean total nitrogen at 1036.6695 ug and highest mean total phosphorus at 36.21925 ug. East Long Lake has the highest max total phosphorus of all the lakes at 101.050, but West Lake has the highest max total nitrogen at 2870.302 ug. Based on the above graphs, it would appear that total phosphorus was the highest for East Lake between 1996 and 1998. Total nitrogen was similarly highest for East and West Lakes between the same time period of 1996 to 1998.

The next steps I would take in analyzing this dataset would be to run spatial analysis to determine where the lakes are located in proximity to potential sources of nitrogen and phosphorus. I could also run further statistics tests to determine if the higher max total phosphorus and max total nitrogen for East and West Lakes, as well as the higher mean values for Hummingbird Lake are statistically significant.

KNIT YOUR PDF

When you have completed the above steps, try knitting your PDF to see if all of the formatting options you specified turned out as planned. This may take some troubleshooting.

OTHER R MARKDOWN CUSTOMIZATION OPTIONS

We have covered the basics in class today, but R Markdown offers many customization options. A word of caution: customizing templates will often require more interaction with LaTeX and installations on your computer, so be ready to troubleshoot issues.

Customization options for pdf output include:

- Table of contents
- Number sections
- Control default size of figures
- Citations
- Template (more info here)

pdf document:

toc: true

number_sections: true

fig_height: 3 fig width: 4

citation package: natbib

template: