Chapitre 5

Les nombres complexes

Voici quelques rappels du cours de terminale :

1. On note \mathbb{C} l'ensemble des nombres complexes, i.e. des éléments de la forme

$$a+ib, a,b \in \mathbb{R},$$

où i est un élément qui vérifie $i^2 = -1$.

2. Si $a, a', b, b' \in \mathbb{R}$, on a

$$a + ib = a' + ib' \iff a = a' \text{ et } b = b'.$$

- 3. Pour $a, b \in \mathbb{R}$ et $z = a + ib \in \mathbb{C}$, le réel a est la partie réelle de z, notée $\operatorname{Re}(z)$, et b est la partie imaginaire de z, notée $\operatorname{Im}(z)$.
- 4. L'addition et la multiplication dans \mathbb{C} sont définies par

$$\forall a, b, a', b' \in \mathbb{R}, (a+ib) + (a'+ib') = (a+a') + i(b+b'), (a+ib)(a'+ib') = (aa'-bb') + i(ab'+a'b).$$

Elles sont associatives et commutatives, et la multiplication est distributive sur l'addition.

- 5. On note $i\mathbb{R}$ l'ensemble des *imaginaires pures*, *i.e.* l'ensemble des nombres complexes de partie réelle nulle.
- 6. On rappelle que lorsque le plan euclidien usuel \mathcal{P} est rapporté à un repère orthonormal, on peut identifié \mathbb{C} à \mathcal{P} en associant à tout point M de coordonnées (a,b) son affixe a+ib.

Remarque.

Attention : l'équivalence du point 2 n'est vraie que si a, a', b, b' sont des réels. Par exemple si a=1, b=i, a'=b'=0, on a a+ib=a'+ib', mais $a\neq a'$ et $b\neq b'$.

Proposition 0.1 (Rappels)

Soient $z, z' \in \mathbb{C}$ et $\lambda \in \mathbb{R}$.

- 1. Re(z + z') = Re(z) + Re(z') et Im(z + z') = Im(z) + Im(z').
- 2. $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}(z)$ et $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}(z)$.

Remarque.

Attention : le point 2 de la proposition 0.1 est faux si λ n'est pas un réel.

1 Définitions

1.1 Conjugué et module

Définition 1.1 (Conjugué et module)

Soit $z \in \mathbb{C}$. On définit le conjugué de z par

$$\overline{z} = \text{Re}(z) - i\text{Im}(z),$$

et le module de z par

$$|z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2} = \sqrt{z\overline{z}}.$$

Proposition 1.2 (Conjugué d'une somme, d'un produit)

Soient $z, z' \in \mathbb{C}$. Alors

1. Si
$$\lambda \in \mathbb{R}$$
, $\overline{\lambda z} = \lambda \overline{z}$

$$2. \quad \overline{z+z'} = \overline{z} + \overline{z'}$$

3.
$$\overline{zz'} = \overline{z}\overline{z'}$$

4.
$$\overline{\overline{z}} = z$$
.

5. Si
$$z \neq 0$$
, $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$.

6. Si
$$z \neq 0$$
, alors $\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$.

Proposition 1.3 (Partie réelle et imaginaire)

Soit $z \in \mathbb{C}$. Alors

1.
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$

$$2. \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$$

$$3. \quad z \in \mathbb{R} \iff z = \overline{z}$$

4.
$$z \in i\mathbb{R} \iff z = -\overline{z}$$

Proposition 1.4 (Module d'un produit)

Soient $z, z' \in \mathbb{C}$. Alors

$$1. \quad |zz'| = |z||z'|$$

- 2. Soit $\lambda \in \mathbb{R}$. Alors $|\lambda z| = |\lambda| \cdot |z|$ où $|\lambda|$ est la valeur absolue de λ .
- 3. Pour tout $n \in \mathbb{N}$, $|z^n| = |z|^n$

Proposition 1.5 (Module et inverse)

Soient $z, z' \in \mathbb{C}$. Alors

- 1. Si $z \neq 0$, $\left| \frac{1}{z} \right| = \frac{1}{|z|}$
- 2. Si $z' \neq 0$, $\left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$.
- 3. Si $z \neq 0$, pour tout $n \in \mathbb{Z}$, $|z^n| = |z|^n$.

Méthode 1.6 (Calcul d'un module en factorisant un réel positif)

Si $\lambda \in \mathbb{R}_+^*$, et $z = \lambda a + i\lambda b$ $(a, b \in \mathbb{R})$, on a $|z| = \lambda \sqrt{a^2 + b^2}$. On ne fait **pas** le calcul $\sqrt{(\lambda a)^2 + (\lambda b)^2}$.

Inégalité triangulaire

Proposition 1.7

1.2

Soit $z \in \mathbb{C}$. Alors

$$|\operatorname{Re}(z)| \le |z|, \qquad |\operatorname{Im}(z)| \le |z|, \qquad |z| \le |\operatorname{Re}(z)| + |\operatorname{Im}(z)|.$$

Proposition 1.8 (Inégalité triangulaire)

Pour tout $z, z' \in \mathbb{C}$, on a

$$|z + z'| \leqslant |z| + |z'|,$$

avec égalité si et seulement s'il existe $\lambda \in \mathbb{R}_+$ tel que $z' = \lambda z$ ou $z = \lambda z'$.

Remarque.

Rappelons que si $a, b \in \mathbb{R}$, on a $|a| \leq b$ si et seulement si $a \leq b$ et $-a \leq b$.

Corollaire 1.9

Pour tous $z, z', z'' \in \mathbb{C}$, on a

$$|z - z''| \le |z - z'| + |z' - z''|,$$

 $||z| - |z'|| \le |z - z'|.$

Corollaire 1.10 (Inégalité triangulaire généralisée)

Soient $n \in \mathbb{N}^*$ et $z_1, \ldots, z_n \in \mathbb{C}$. Alors

$$\left| \sum_{k=1}^{n} z_k \right| \leqslant \sum_{k=1}^{n} |z_k|.$$

2 Argument d'un nombre complexe

2.1 Nombres complexes de module 1

Définition 2.1

On note \mathcal{U} l'ensemble des nombres complexes de module 1, i.e.

$$\mathcal{U} = \{ z \in \mathbb{C}, \ |z| = 1 \}.$$

Proposition 2.2

Soit $z \in \mathbb{C}$. Alors $z \in \mathcal{U}$ si et seulement si $z \neq 0$ et $\overline{z} = \frac{1}{z}$.

Définition 2.3

Soit $\theta \in \mathbb{R}$. On définit $e^{i\theta}$ par

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \in \mathcal{U}.$$

Proposition 2.4

Pour tout $k \in \mathbb{Z}$, on a

$$1 = e^{2ik\pi}, \qquad -1 = e^{i(\pi + 2k\pi)}, \qquad i = e^{i(\pi/2 + 2k\pi)}, \qquad -i = e^{i(-\pi/2 + 2k\pi)}.$$

En particulier:

$$1 = e^0, \qquad -1 = e^{i\pi}, \qquad i = e^{i\pi/2}, \qquad -i = e^{-i\pi/2}.$$

Proposition 2.5

Soit $z \in \mathcal{U}$. Alors il existe $\theta \in \mathbb{R}$ tel que

$$z = e^{i\theta},$$

ou encore

$$\mathcal{U} = \{ e^{i\theta} \mid \theta \in \mathbb{R} \}.$$

Proposition 2.6

Soient $\theta, \theta' \in \mathbb{R}$. Alors

$$e^{i\theta}e^{i\theta'} = e^{i(\theta+\theta')}, \qquad \overline{e^{i\theta}} = e^{i(-\theta)} = \frac{1}{e^{i\theta}}.$$

Remarques.

- 1. On définit alors $e^{-i\theta} = e^{i(-\theta)}$.
- 2. La première formule permet de retrouver rapidement les formules du cosinus et sinus de la somme de deux angles.

Proposition 2.7 (Résolution d'équations)

Soient $\theta, \theta' \in \mathbb{R}$. Alors

$$e^{i\theta} = 1 \iff \theta \equiv 0 \mod 2\pi,$$

et plus généralement,

$$e^{i\theta} = e^{i\theta'} \iff \theta \equiv \theta' \mod 2\pi.$$

Proposition 2.8 (Formule de Moivre)

Soient $n \in \mathbb{Z}$ et $\theta \in \mathbb{R}$. Alors

$$\left(e^{i\theta}\right)^n = e^{in\theta},$$

ou encore

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

Proposition 2.9 (Formules d'Euler)

Soit $\theta \in \mathbb{R}$. Alors

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}, \qquad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

2.2 Argument

Définition 2.10 (Argument, forme trigonométrique)

Soit $z \in \mathbb{C}^*$.

1. Un argument de z est un réel θ tel que

$$\frac{z}{|z|} = e^{i\theta}.$$

On note $arg(z) \equiv \theta \mod 2\pi$.

2. Si θ est un argument de z, l'écriture

$$z=|z|e^{i\theta}$$

est l'écriture exponentielle de z.

Remarque.

0 n'a pas d'argument.

Proposition 2.11

Si θ est un argument de $z \in \mathbb{C}^*$, alors les arguments de z sont $\theta + k2\pi$, $k \in \mathbb{Z}$. Deux arguments de z diffèrent donc d'un multiple de 2π .

Définition 2.12 (Argument principal)

L'argument principal de $z \in \mathbb{C}^*$ est l'unique argument de z dans l'intervalle $]-\pi,\pi].$

Proposition 2.13

Soient $z \in \mathbb{C}$, $r \in \mathbb{R}^*$ et $\theta \in \mathbb{R}$ tels que $z = re^{i\theta}$.

- 1. On a $arg(z) \equiv \theta \mod \pi$ et |z| = |r|.
- 2. L'écriture $z = re^{i\theta}$ est la forme trigonométrique de z si et seulement si $r \in \mathbb{R}_+^*$, et alors $\arg(z) \equiv \theta \mod 2\pi$.

3. Si r < 0, la forme trigonométrique de z est $-re^{i(\theta+\pi)}$, et $\arg(z) \equiv \theta + \pi \mod 2\pi$.

Méthode 2.14 (Calculer l'argument)

— Si z = a + ib est sous forme algébrique $(a, b \in \mathbb{R})$, on calcule $|z| = \sqrt{a^2 + b^2}$. Alors

$$\frac{z}{|z|} = \frac{a}{\sqrt{a^2 + b^2}} + i \frac{b}{\sqrt{a^2 + b^2}},$$

et on détermine θ tel que

$$\cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}}, \qquad \sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$$

(on peut s'aider du cercle trigonométrique).

— Si $z = re^{i\theta}$ avec $\theta \in \mathbb{R}$, on utilise la proposition 2.13, en faisant attention au signe de r.

Méthode 2.15

Voici des calculs qu'il faut savoir mener correctement. Ils sont très importants.

1. Soit $a \in \mathbb{R}$. Alors

$$1 - e^{ia} = e^{i\frac{a}{2}} \left(e^{-i\frac{a}{2}} - e^{i\frac{a}{2}} \right) = -2i \sin\left(\frac{a}{2}\right) e^{i\frac{a}{2}} = 2\sin\left(\frac{a}{2}\right) e^{i\left(\frac{a}{2} + \frac{3\pi}{2}\right)},$$

donc

$$|1 - e^{ia}| = 2 \left| \sin \left(\frac{a}{2} \right) \right|$$
 et $\arg(1 - e^{ia}) \equiv \begin{cases} \frac{a}{2} + \frac{3\pi}{2} & \text{si } a \in]0, 2\pi[\mod 4\pi, \\ \frac{a}{2} + \frac{\pi}{2} & \text{sinon.} \end{cases}$

On peut bien entendu le faire avec $1 + e^{ia}$.

2. Si a et b sont deux réels, on a

$$e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right) = 2\cos\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}},$$

donc

$$|e^{ia} + e^{ib}| = 2\left|\cos\left(\frac{a-b}{2}\right)\right|,\,$$

et un argument de $e^{ia} + e^{ib}$ est, **modulo** π , (a+b)/2. De même, on a

$$e^{ia} - e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} - e^{-i\frac{a-b}{2}} \right) = 2i \sin\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}} = 2\sin\left(\frac{a-b}{2}\right) e^{i\left(\frac{a+b}{2} + \frac{\pi}{2}\right)},$$

donc

$$|e^{ia} - e^{ib}| = 2 \left| \sin \left(\frac{a-b}{2} \right) \right|,$$

et un argument de $e^{ia} - e^{ib}$ est, **modulo** π , $(a+b)/2 + \pi/2$.

La comparaison des parties réelles et imaginaires de ces formules permet de retrouver les formules donnant les sommes et différences de deux sinus et de deux cosinus.

Proposition 2.16 (Opération sur les arguments)

Soient $z, z' \in \mathbb{C}^*$ et $n \in \mathbb{Z}$. Alors

$$\arg(zz') \equiv \arg(z) + \arg(z') [2\pi], \qquad \arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z') [2\pi], \qquad \arg(z^n) \equiv n \arg(z) [2\pi],$$

$$\operatorname{avec} 0^0 = 1.$$

Proposition 2.17 (Résolution d'équations)

3

Soient $r, r' \in \mathbb{R}_+^*$ et $\theta, \theta' \in \mathbb{R}$. Alors

$$re^{i\theta} = r'e^{i\theta'} \iff \begin{cases} r = r' \\ \theta \equiv \theta \mod 2\pi \end{cases}$$

Application à la trigonométrie

On a déjà vu que certaines formules exponentielles permettent de retrouver les formules trigonométriques usuelles (prop 2.6). On va maintenant utiliser les formules d'Euler et de Moivre pour

- 1. **linéariser** des formules trigonométrique, *i.e.* les écrire sans puissances de sinus ou de cosinus, mais comme somme de $\cos(kx)$ et/ou $\sin(kx)$.
- 2. exprimer les cosinus et sinus de multiple d'un angle en fonction de cet angle, par exemple $\cos(3x) = 4\cos^3(x) 3\cos(x)$.

Méthode 3.1 (Linéarisation de $\cos^p(x)\sin^q(x)$)

Si $x \in \mathbb{R}$, on exprime $\cos(x)$ et $\sin(x)$ à l'aide des formules d'Euler et de Moivre. On développe alors un produit d'exponentielles, que l'on regroupe par puissances opposées pour faire apparaître des cosinus et sinus. On a par exemple

$$\sin(x)^3 = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 = \frac{i}{8}\left(e^{i3x} - 3e^{ix} + 3e^{-ix} - e^{-i3x}\right) = \frac{3}{4}\sin(x) - \frac{1}{4}\sin(3x).$$

On va maintenant linéariser $\cos^3(x)\sin^4(x)$ de trois façons différentes. On fixe $x \in \mathbb{R}$.

— On écrit que

$$\cos^{3}(x)\sin^{4}(x) = (\cos(x)\sin(x))^{3}\sin(x) = \frac{1}{2^{3}}(\sin^{3}(2x))\sin(x)$$
$$= \frac{1}{2^{3}}\left(\frac{e^{i2x} - e^{-2ix}}{2i}\right)^{3}\left(\frac{e^{ix} - e^{-ix}}{2i}\right),$$

et on développe. Cette méthode est la plus efficace, car elle réduit le nombre de calculs dans le produit du développement des formules d'Euler.

— On écrit que

$$\cos^3(x)\sin^4(x) = \cos^3(x)(1-\cos^2(x))^2 = \cos^3(x) - 2\cos^5(x) + \cos^7(x),$$

ce qui revient à ajouter des linéarisations de puissances de cosinus. Ne sert que si la puissance du sinus est paire. Permet d'éviter le produit des développement des formules d'Euler.

— La méthode la plus classique :

$$\cos^{3}(x)\sin^{4}(x) = \left(\frac{e^{ix+e^{-ix}}}{2}\right)^{3} \left(\frac{e^{ix}-e^{-ix}}{2i}\right)^{4},$$

et on développe.

Faîtes les calculs avec $\cos^3(x)\sin^5(x)$. Ce genre de calcul est utile pour calculer des primitives.

Méthode 3.2 (Expression de $\cos(nx)$ et $\sin(nx)$ en fonction de $\cos(x)$ et $\sin(x)$)

Il s'agit ici d'utiliser la formule de Moivre, puis de comparer les parties réelles et imaginaires après développement. Par exemple, on a

$$\cos(3x) + i\sin(3x) = (\cos(x) + i\sin(x))^3 = \cos^3(x) + 3i\cos^2(x)\sin(x) - 3\cos(x)\sin^2(x) - i\sin^3(x),$$
ce qui permet d'écrire

$$\cos(3x) = \cos^3(x) - 3\cos(x)\sin^2(x) = 4\cos^3(x) - 3\cos(x)$$

$$\sin(3x) = 3\cos^2(x)\sin(x) - \sin^3(x) = (4\cos^2(x) - 1)\sin(x).$$

Méthode 3.3 (Expression de tan(nx) en fonction de tan(x))

On utilise les formules précédentes : on en fait le quotient, et on divise le numérateur et le dénominateur par $\cos^n(x)$. Par exemple, on a

$$\tan(3x) = \frac{3\cos^2(x)\sin(x) - \sin^3(x)}{\cos^3(x) - 3\cos(x)\sin^2(x)} = \frac{3\tan(x) - \tan^3(x)}{1 - 3\tan^2(x)}.$$

Méthode 3.4 (Calcul d'une somme de cosinus/sinus)

On considère un réel x et un entier n > 0. On veut calculer par exemple $S = \sum_{n=1}^{\infty} \cos(kx)$. On écrit

que S est la partie réelle d'une somme d'exponentielles : $S = \operatorname{Re}\left(\sum_{i=1}^{n} e^{ikx}\right)$. On calcule donc tout d'abord

$$\sum_{k=0}^{n} e^{ikx} = \sum_{k=0}^{n} \left(e^{ix} \right)^{k},$$

qui est la somme des termes d'ne suite géométrique de raison e^{ix} . Or, si $x \equiv 0$ [2 π], cette somme vaut

$$\sum_{k=0} 1 = n+1. \text{ Sinon, } e^{ix} \neq 1 \text{ et on a}$$

$$\sum_{k=0}^{n} e^{ikx} = \frac{e^{i(n+1)x} - 1}{e^{ix} - 1} = \frac{e^{ix\frac{n+1}{2}}}{e^{i\frac{x}{2}}} \frac{e^{ix\frac{n+1}{2}} - e^{-ix\frac{n+1}{2}}}{e^{i\frac{x}{2}} - e^{-i\frac{x}{2}}} = e^{i\frac{nx}{2}} \frac{\sin\left(\frac{x(n+1)}{2}\right)}{\sin\left(\frac{x}{2}\right)}.$$

Exponentielle complexe

Définition 4.1 (Exponentielle complexe)

Pour tout $z \in \mathbb{C}$, on définit l'exponentielle de z par

$$e^z = e^{\operatorname{Re}(z)} e^{i \operatorname{Im}(z)} = e^{\operatorname{Re}(z)} \left(\cos(\operatorname{Im}(z)) + i \sin(\operatorname{Im}(z)) \right).$$

Proposition 4.2

1. Pour tout $z \in \mathbb{C}$, on a

$$|e^z| = e^{\text{Re}(z)}, \quad \arg(e^z) \equiv \text{Im}(z) [2\pi], \quad e^z \neq 0.$$

2. Pour tout $z, z' \in \mathbb{C}$, on a

$$e^{z+z'} = e^z e^{z'}.$$

Proposition 4.3 (Équations avec l'exponentielle)

- 1. Soient $z, z' \in \mathbb{C}$. Alors $e^z = e^{z'}$ si et seulement si $z z' \in 2i\pi\mathbb{Z}$.
- 2. Tout nombre complexe non nul admet un antécédent par l'exponentielle, i.e.

$$\forall z \in \mathbb{C}^*, \ \exists \ x \in \mathbb{C}, \ z = e^x.$$

Proposition 4.4 (Dérivabilité de l'exponentielle complexe)

Soit $\varphi: \mathbb{R} \longrightarrow \mathbb{C}$ une fonction dérivable, et f la fonction définie sur \mathbb{R} par

$$f(t) = e^{\varphi(t)}.$$

Alors f est dérivable sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \ f'(t) = \varphi'(t)e^{\varphi(t)}.$$

Remarques.

1. Une fonction $f: \mathbb{R} \longrightarrow \mathbb{C}$ est dérivable si et seulement si ses parties réelles et imaginaires le sont et alors

$$f' = \operatorname{Re}(f)' + i\operatorname{Im}(f)'.$$

2. En particulier, si $u \in \mathbb{C}$, la fonction $t \longrightarrow e^{ut}$ est dérivable et a pour dérivée $t \longrightarrow ue^{ut}$.

5 Équations dans \mathbb{C}

5.1 Définition

Définition 5.1 (Racines de l'unité)

Soit $n \in \mathbb{N}^*$. Une racine $n^{\grave{e}me}$ de l'unité est un nombre complexe z tel que

$$z^n = 1$$
.

On note \mathcal{U}_n l'ensemble des racines $n^{\text{ème}}$ de l'unité.

Théorème 5.2 (Description des racines de l'unité)

Soit $n \in \mathbb{N}^*$. Il y a exactement n racines $n^{\text{ème}}$ de l'unité distinctes qui sont les complexes

$$\omega_k = e^{\frac{2ik\pi}{n}}, \quad k = 0, \dots, n - 1.$$

On a en plus pour tout $k = 0, \dots, n - 1$,

$$\omega_k = \omega_1^k$$
.

Remarque.

On peut prendre dans la proposition 5.2 k = 1, ..., n, ou tout intervalle de longueur n.

Définition 5.3 (j)

On définit le nombre complexe j par $j = e^{\frac{2i\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

Proposition 5.4

On a
$$j^3 = 1$$
, $\bar{j} = j^2$, $1 + j + j^2 = 0$.

Proposition 5.5

Soient $n, m \in \mathbb{N}$. Alors $j^n = j^m \iff n \equiv m \mod 3$. En particulier, si m est le reste de la division euclidienne de n par $3, j^n = j^m$.

Proposition 5.6 (Racines carrées, troisièmes et quatrièmes de l'unité)

- 1. Les racines carrées de 1 sont ± 1 .
- 2. Les racines troisièmes de 1 sont 1, j et \overline{j} .
- 3. Les racines quatrièmes de 1 sont ± 1 et $\pm i$.

5.2 Propriétés

Proposition 5.7

Soit $n \in \mathbb{N}^*$, et $z \in \mathcal{U}_n$.

- 1. $\overline{z} \in \mathcal{U}_n$.
- 2. $-z \in \mathcal{U}_n$ si et seulement si n est pair.

Proposition 5.8

Avec les notations de la proposition 5.2, on a :

- 1. Si $k \in \{1, \ldots, n-1\}$, $\overline{\omega}_k = \omega_{n-k}$.
- 2. $\omega_0 = 1$.
- 3. Si n est pair, $\omega_{n/2} = -1$.

Méthode 5.9 (Placer les racines n-ème sur le cercle trigonométrique)

On se rappelle des points suivants :

- 1 est toujours racine n-ème de 1.
- -- 1 ne l'est que si n est pair.
- Dès qu'une racine n-ème est placée, on place son conjugué (symétrique par rapport à l'axe Ox.

Proposition 5.10 (Somme des racines $n^{\text{\'e}me}$ de l'unit\'e)

Soient $n \in \mathbb{N}^*$, ω une racine $n^{\text{ème}}$ de l'unité différente de 1, et $\omega_k = e^{2ik\pi/n}$. Alors

$$1. \quad \sum_{k=0}^{n-1} \omega^k = 0.$$

$$2. \quad \sum_{k=0}^{n-1} \omega_k = 0.$$

Remarque.

Si
$$\omega = 1$$
, on a $\sum_{k=0}^{n-1} w^k = n$.

Proposition 5.11

Soient $n, m \in \mathbb{N}$, et z une racine n-ème de 1. Si n divise m, alors z est une racine m-ième de l'unité.

.3 Racines d'un nombre complexe

Proposition 5.12

Soient $a = re^{i\alpha} \in \mathbb{C}^*$ $(r \in \mathbb{R}_+^*, \alpha \in \mathbb{R})$, et $n \in \mathbb{N}^*$. Alors l'équation

$$z^n = a$$

admet exactement n solutions distinctes, qui sont

$$\sqrt[n]{r}e^{i\frac{\alpha+2k\pi}{n}}, \quad k=0,\ldots,n-1.$$

Ce sont les racines $n^{\text{ème}}$ de a. De plus, si z_0 est une racine $n^{\text{ème}}$ de a, alors les solutions de cette équation s'écrivent aussi

$$z_0\omega_k, \quad k=0,\ldots,n-1.$$

Proposition 5.13

Soient $a \in \mathbb{C}^*$, $n \in \mathbb{N}^*$, et ω une racine n-ème de a.

- 1. $\overline{\omega}$ est racine *n*-ème de \overline{a} .
- 2. $\overline{\omega}$ est racine *n*-ème de *a* si et seulement si $a \in \mathbb{R}$.
- 3. $-\omega$ est une racine n-ème de a si et seulement si n est pair.

Méthode 5.14 (Calculer les racines *n*-ième)

On souhaite déterminer les racines n-ième de $a \in \mathbb{C}^*$.

- 1. On met a sous forme exponentielle $a=re^{i\alpha}$ $(r\in\mathbb{R}_+^*)$ et on détermine une racine n-ième $z_0=\sqrt[n]{r}e^{i\alpha/n}$ de a.
- 2. On détermine les racines *n*-ième $\omega_0, \ldots, \omega_{n-1}$ de 1.
- 3. Les racines *n*-ième de *a* sont alors $z_0, \omega_1 z_0, \ldots, \omega_{n-1} z_0$

- 4. Si a est réel, les conjugués des racines sont encore des racines. Cela permet de n'en calculer que la moitié.
- 5. Si n est pair, les opposés des racines n-ièmes sont encore des racines n-ièmes. Cela permet de n'en calculer que la moitié.
- 6. Si $a \in \mathbb{R}_+^*$, $z_0 = \sqrt[n]{a}$ convient.

5.4 Racines carrées et équations du second degré

Méthode 5.15 (Racines carrées d'un complexe sous forme algébrique)

Voici comment calculer les racines carrées de $a \in \mathbb{C}^*$ dont on ne connait pas la forme trigonométrique. Alors si $x, y \in \mathbb{R}$, le nombre complexe x + iy est une racine carrée de a si et seulement si

$$\begin{cases} x^2 - y^2 = \text{Re}(a) \\ x^2 + y^2 = |a| \\ \text{signe}(xy) = \text{signe}(\text{Im}(a)) \end{cases}.$$

Remarques.

- 1. Cette proposition est uniquement utile lorsqu'on ne connaît pas la forme trigonométrique de a.
- 2. Rechercher les racines carrées de a donné sous forme algébrique "brutalement" mène à de longs calculs...

Proposition 5.16 (Équations du second degré)

Soient $a,b,c\in\mathbb{C}$ avec $a\neq 0$. On considère l'équation d'inconnue $x\in\mathbb{C}$

$$ax^2 + bx + c = 0, (\star)$$

et $\Delta = b^2 - 4ac$ son discriminant. Alors

1. Si $\Delta = 0$, l'équation (*) admet une racine double

$$-\frac{b}{2a}$$
.

2. Si $\Delta \neq 0$, et si δ est une racine carrée de Δ , alors (\star) admet deux racines distinctes qui sont

$$\frac{-b+\delta}{2a}$$
, $\frac{-b-\delta}{2a}$.

Dans le cas où $a, b, c \in \mathbb{R}$, rappelons que

1. Si $\Delta > 0$, (*) admet deux racines réelles distinctes qui sont

$$\frac{-b+\sqrt{\Delta}}{2a}, \qquad \frac{-b-\sqrt{\Delta}}{2a}.$$

2. Si $\Delta = 0$, (*) admet une racine double réelle qui est

$$-\frac{b}{2a}$$
.

3. Si $\Delta < 0$, (\star) admet deux racines complexes non réelles conjuguées qui sont

$$\frac{-b+i\sqrt{-\Delta}}{2a}, \qquad \frac{-b-i\sqrt{-\Delta}}{2a}.$$

Proposition 5.17

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$. Soit $z \in \mathbb{C}$.

- 1. z est solution de l'équation $au^2 + bu + c = 0$ si et seulement si \overline{z} est solution de l'équation $\overline{a}u^2 + \overline{b}u + \overline{c} = 0$.
- 2. Si $a, b, c \in \mathbb{R}$ et $z \notin \mathbb{R}$ est solution de $au^2 + bu + c = 0$, alors les solutions de l'équation $au^2 + bu + c = 0$ sont z et \overline{z} .

Proposition 5.18

Soit $u \in \mathbb{C}$. Pour tout $z \in \mathbb{C}$, on a $(z - u)(z - \overline{u}) = z^2 - 2\text{Re}(u)z + |u|^2$.

Proposition 5.19

Soient $s, p \in \mathbb{C}$. Pour tous $r_1, r_2 \in \mathbb{C}$, $\begin{cases} r_1 + r_2 = s \\ r_1 r_2 = p \end{cases}$ si et seulement si r_1 et r_2 sont **les** solutions dans \mathbb{C} de l'équation du second degré $x^2 - sx + p = 0$.

Remarques.

- 1. Faîtes bien attention au "-" de "-sx".
- 2. Dans le cas de l'équation $aX^2 + bX + c = 0$ ($a \neq 0$), les solutions sont les solutions du système

$$\begin{cases} x+y = -\frac{b}{a} \\ xy = \frac{c}{a} \end{cases}.$$

6 Application à la géométrie

On munit le plan euclidien orienté \mathcal{P} d'un repère orthonormal direct $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j})$. Rappelons que les coordonnées dans \mathcal{R} d'un point $M \in \mathcal{P}$ sont deux réels (x, y) tels que

$$\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath},$$

et que la norme de \overrightarrow{OM} est le réel

$$\|\overrightarrow{OM}\| = \sqrt{x^2 + y^2}.$$

L'affixe de M est le nombre complexe z = x + iy. On a donc

$$\|\overrightarrow{OM}\| = |z|,$$

et si $M' \in \mathcal{P}$ a pour affixe $z' \in \mathbb{C}$, alors

$$M = M' \iff z = z'.$$

De plus, si $z = re^{i\theta}$ $(r \in \mathbb{R}_+, \theta \in \mathbb{R})$ est la forme trigonométrique de l'affixe de M et si $M \neq O$, alors

$$\frac{\overrightarrow{OM}}{r} = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|} = \cos(\theta)\overrightarrow{i} + \sin(\theta)\overrightarrow{j} \quad \text{donc} \quad (\overrightarrow{i}, \overrightarrow{OM}) \equiv \theta \ [2\pi].$$

Rappelons également que si $a, b \in \mathbb{C}$ sont les affixes des points A, B, le vecteur \overrightarrow{AB} a pour affixe b-a.

6.1 Généralités

Proposition 6.1

Soient $A,B,C,D\in\mathcal{P}$ d'affixes respectives $a,b,c,d\in\mathbb{C},$ et $\overrightarrow{u},\overrightarrow{v}$ deux vecteurs d'affixes respectives $z,z'\in\mathbb{C}.$ Alors

- 1. Le vecteur \overrightarrow{AB} a pour affixe b-a.
- 2. Pour tous réel λ, μ , le vecteur $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda z + \mu z'$.
- 3. Si $A \neq B$ et $C \neq D$,

$$\left(\overrightarrow{AB}, \overrightarrow{CD}\right) \equiv \arg\left(\frac{d-c}{b-a}\right) [2\pi].$$

Proposition 6.2 (CNS d'alignement et d'orthogonalité)

Soient A, B, M trois points du plan tels que $M \neq B$, d'affixes respectives $a, b, z \in \mathbb{C}$. Alors

1. A, B et M sont alignés si et seulement si

$$\frac{z-a}{z-b} \in \mathbb{R}.$$

2. \overrightarrow{AM} et \overrightarrow{BM} sont orthogonaux si et seulement si

$$\frac{z-a}{z-b} \in i\mathbb{R}.$$

6.2 Transformations du plan - Similitudes directes

Soit f une transformation du plan. On lui associe une application $g:\mathbb{C}\longrightarrow\mathbb{C}$ définie pour $z,z'\in\mathbb{C}$ par

$$g(z) = z' \iff f(M) = M',$$

où M a pour affixe z et M' a pour affixe z'. La fonction f est alors représentée dans le plan complexe par g. Deux transformations du plan sont égales si et seulement si leurs représentations complexes sont égales.

Définition 6.3

- 1. Soit \overrightarrow{u} un vecteur du plan. La translation de vecteur \overrightarrow{u} est l'application qui à un point M associe l'unique point M' tel que $\overrightarrow{MM'} = \overrightarrow{u}$.
- 2. Soit Ω un point du plan et $k \in \mathbb{R}$. L'homothétie de centre Ω , de rapport k, est l'application qui à un point M associe l'unique point M' tel que $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$.
- 3. Soit Ω un point du plan et $\theta \in \mathbb{R}$. La rotation de centre Ω , de mesure d'angle θ , est l'application qui à un point M du plan associe lui-même si $M = \Omega$, et sinon l'unique point M' tel que $\Omega M' = \Omega M$ et $(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'}) \equiv \theta \mod 2\pi$.

Proposition 6.4

1. La translation de vecteur \overrightarrow{u} d'affixe b est représentée par l'application

$$z \longmapsto z + b$$
.

2. L'homothétie de rapport $k \in \mathbb{R}^*$ et de centre Ω d'affixe $\omega \in \mathbb{C}$ et représentée par l'application

$$z \longmapsto \omega + k(z - \omega).$$

3. La rotation de centre Ω d'affixe $\omega \in \mathbb{C}$ et de mesure d'angle $\theta \in \mathbb{R}$ est représentée par l'application

$$z \longmapsto \omega + e^{i\theta}(z - \omega).$$

Définition 6.5 (Similitudes directes)

Les similitudes directes sont les transformations du plan représentées dans le plan complexe par les fonctions $z \longmapsto az + b$, où $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$.

Remarque.

Les translations, homothéties de rapport non nul et les rotations sont donc des similitudes directes.

Proposition 6.6 (Reconnaître une homothétie et une rotation)

Soient $a \in \mathbb{C}^*$, $b \in \mathbb{C}$ et f la similitude directe représentée par $z \longmapsto az + b$.

- 1. Si a = 1, f est une translation.
- 2. Si $a \in \mathbb{R} \setminus \{1\}$, f est une homothétie de rapport a.
- 3. Si $a \in \mathcal{U} \setminus \{1\}$, f est une rotation de mesure d'angle $\arg(a)$.

Proposition 6.7 (Point fixe d'une similitude directe)

Soient $a \in \mathbb{C}^*$, $b \in \mathbb{C}$ et f la similitude directe représentée par $z \longmapsto az + b$. Alors f admet un unique point fixe si et seulement si $a \neq 1$, *i.e.* si et seulement si f n'est pas une translation.

Définition 6.8 (Centre d'une similitude directe)

Soient $a \in \mathbb{C}^* \setminus \{1\}$, $b \in \mathbb{C}$ et f la similitude directe représentée par $z \longmapsto az + b$. L'unique point fixe de f s'appelle le *centre* de f, et f est une silitude directe à centre.

Proposition 6.9 (Décomposition d'une similitude directe à centre)

Soient $a \in \mathbb{C}^* \setminus \{1\}$, $b \in \mathbb{C}$, f la similitude directe à centre représentée par $z \longmapsto az + b$, et Ω son centre. Alors f est la composée commutative de l'homothétie de centre Ω et de rapport |a|, et de la rotation de centre Ω et de mesure d'angle $\arg(a)$.

Proposition 6.10 (Unicité d'une décomposition en produit d'une rotation et d'une homothétie)

Soient h (resp. h') une homothétie de rapport > 0 et r (resp. r') une rotation de même centre que h (resp. h'), telles que $r \circ h = r' \circ h'$. Alors r = r' et h = h'.

Remarque.

Il est implicite dans l'énoncé que les quatre applications sont différentes de l'identité puisqu'on parle de leurs centres. Mais la proposition reste valable dans les cas identité.

Définition 6.11 (Rapport, angle et décomposition canonique d'une similitude à centre)

Soit f une similitude directe représentée par $z \longmapsto az + b$, avec $a \neq 0, 1$ et $b \in \mathbb{C}$, *i.e.* une similitude directe qui n'est pas une translation. Alors f est une similitude directe à centre, |a| est son rapport et arg(a) est son angle, et la décomposition de la proposition 6.9(2) est la forme canonique de f.

Remarque.

Cette définition est non ambiguë grâce à la proposition 6.10.

Proposition 6.12

- 1. Deux similitudes directes à centre commutent si et seulement elles ont même centre.
- 2. Une similitude directe à centre et une translation différente de l'identité ne commutent pas.

Proposition 6.13

La composée de deux homothéties, ou d'une homothétie et d'une translation, est soit une homothétie, soit une translation.

Remarque.

Le centre (si $k_1k_2 \neq 1$) n'est pas évident, puisqu'il a pour affixe $((k_2b_1 + b_2)/(1 - k_1k_2)$.

Proposition 6.14 (Conservation des angles orientés - Multiplication des distances)

Une similitude directe conserve les angles orientés et les rapports des distances.