Problema de Manejo de Trenes en Ferrocarriles Trains don't vanish!

Ayudante: Alondra Rojas Ruz

Departamento de Informática Universidad Técnica Federico Santa María

4 de mayo de 2016

- Definición
- 2 Aplicaciones Prácticas
- 3 Parámetros
- 4 Función Objetivo Restricciones
- 5 Ejemplo de Solución
- 6 Problemas Relacionados
- Referencias

- Presentado en el desafío ROADEF/EURO 2014.
- Consiste en encontrar la mejor manera de gestionar trenes de distintas categorías entre sus llegadas y salidas, en estaciones terminales (plataformas).
- El objetivo es minimizar los costos totales, que corresponden a la suma ponderada de cada costo.

- Horizonte de tiempo: Es el tiempo en el que se desarrollarán las actividades. Se describe como: "d; hh: mm: ss".
- Llegadas: Es cuando los trenes ingresan en el sistema.
- Salidas: Es cuando los trenes salen del sistema.
- Trenes: El conjunto de trenes se divide en:
 - Trenes que están actualmente en el sistema.
 - Trenes que se asocian a una llegada.
- Atributos de los trenes inicialmente en el sistema:
 - res_t: recurso que está utilizando el tren.
 - remDBM_t
 - remTBM_t

- Categorías de trenes: Son características técnicas que tienen en común un grupos de trenes.
- Preferencia de reutilización: Se planean algunas acciones con anticipación, donde hay una preferencia de que un tren se asigne a una salida de una plataforma en particular.
- Llegadas y Salidas en conjunto: no se realizarán en las instancias dadas.
- Mantenimiento Los trenes deben pasar por un proceso de mantenimiento que sólo puede ser realizado en la infraestructura dedicada a esta operación.
 - DBM: Distancia que puede recorrer un tren antes de necesitar mantenimiento de tipo D (se asocia a la seguridad).
 - TBM: Tiempo que puede recorrer un tren antes de necesitar mantenimiento de tipo T (se asocia a la comodidad).

• Recursos de Infraestructura

Aplicaciones Prácticas

- MRT (medium sized mass rapid transit) de Singapur, donde se busca mejorar la comodidad de los pasajeros y a la vez minimizar los costos.
- En Reino Unido existen muchas empresas que operan los trenes de manera independiente y comparten la capacidad limitada de la red ferroviaria, con un único operador.
- El problema presentado, utiliza instancias basadas en datos reales de la SNCF (Sociedad Nacional de Ferrocarriles Franceses).

Parámetros

- revTime: Tiempo que demora el conductor al caminar hacia el otro extremo del tren.
- remDCost: El costo asociado con cada km de DBM que queda cuando se inicia un mantenimiento de tipo D en un tren.
- remTCost: El costo asociado con cada segundo de TBM que queda cuando se inicia un mantenimiento de tipo T en un tren.
- platAsgCost: Costo asociado cuando no se satisface una asignación a una plataforma con preferencias.

Parámetros

- dwellCost: Costo asociado con cada segundo de diferencia entre el tiempo ideal y el actual de permanencia en una plataforma (para llegadas y salidas).
- reuseCost: Costo asociado cuando no se satisface una preferencia de reutilización.
- minResTime: Mínima duración del uso de un recurso.
- maxDwellTime: Máxima duración del uso de una plataforma en ausencia de una llegada o salida.
- nbDays: número de días en el horizonte de tiempo.
- maxMaint: número máximo de mantenimientos diarios.

Función Objetivo - Restricciones

Función Objetivo: Minimizar la función f (costos)

- f^{uncov} : Costo de las salidas sin cubrir.
- 2 f^{over}: Costo del sobre-mantenimiento.
- f^{jun}: Costo de unir y separar trenes.
- f plat: Costo del uso de una plataforma.
- 6 f pref: Costo de no utilizar una plataforma con preferencia.
- 6 f^{reuse}: Costo de no reutilizar los trenes con sus preferencias.

Por lo tanto el costo general es:

$$f = f^{uncov} + f^{over} + f^{jun} + f^{plat} + f^{pref} + f^{reuse}$$

10/16

Función Objetivo - Restricciones

Restricciones: Propiedades de los Schedules

- Cada agendamiento comienza con un evento EnterSystem y termina con un evento ExitSystem.
- Los usos de recursos están entre eventos (Enter/Exit)Resource
- Las transiciones de un recurso a otro recurso vecino
- Operaciones de mantenimiento están entre (Beg/End)Maintenance
- La duración del uso de los grupos de vías.
- Tiempo mínimo de reversa

Restricciones: Asignaciones

- A lo más un tren asignado por salida
- DBM requerido para una salida
- TBM requerido para una salida
- Compatibilidad entre categorías de trenes y salidas

Función Objetivo - Restricciones

Restricciones: Uso de recursos

- Compatibilidad entre categorías de trenes y recursos
- Capacidad de una vía simple
- Máxima duración del uso de una plataforma
- Mínimima duración del uso de un recurso.
- Consumos impuestos
- Largo de la vía
- Capacidad de los recursos de mantenimiento
- Orden de los trenes en vías simples
- Conflictos en los grupos de vías
- Capacidad de los estacionamientos

Ejemplo de Solución

La solución del problema está compuesta de un conjunto de *schedules*, cada uno denotado por *sched* $_t$, uno cada para tren $t \in \mathcal{T}$.

Train	Time	Event type	Resource	Gate	Complement
Train1	$d_2 06:45:00$	EnterSystem	TrGroup5		
Train1	$d_2 \ 06:45:00$	EnterResource	TrGroup5	A3	
Train1	d_2 06:49:00	ExitResource	TrGroup5	B1	
Train1	$d_2 \ 06:49:00$	EnterResource	Platform 12	A1	
Train1	d_2 06:49:00	Arrival	Platform 12		Arrival26
Train1	d_2 07:18:00	ExitResource	Platform 12	A1	
Train1	$d_2 07:18:00$	EnterResource	TrGroup6	B4	
Train1	$d_2 07:23:00$	ExitResource	TrGroup6	A3	
Train1	$d_2 07:23:00$	EnterResource	Yard5	A2	
Train1	d_2 07:35:00	BegJunction	Yard5		Train1
Train1	$d_2 07:38:00$	EndJunction	Yard5		Train1+Train9+Train12
Train1	d_2 09:02:00	ExitResource	Yard5	B3	
Train1	$d_2 09:02:00$	EnterResource	TrGroup7	B1	
Train1	$d_2 09:04:00$	ExitResource	TrGroup7	A2	
Train1	$d_2 09:04:00$	EnterResource	TrGroup8	A1	
Train1	$d_2 09:09:00$	ExitResource	TrGroup8	B2	
Train1	$d_2 09:09:00$	EnterResource	Facility 1	A1	
Train1	$d_2 09:09:00$	BegMaintenance	Facility1		D
Train1	d_2 11:09:00	EndMaintenance	Facility 1		D
Train1	d_2 11:45:00	ExitResource	Facility 1	A1	
Train1	d_2 11:45:00	EnterResource	TrGroup8	B3	
Train1	d_2 11:50:00	ExitResource	TrGroup8	A8	
Train1	d_2 11:50:00	EnterResource	Platform 14	A1	
Train1	d_2 12:20:00	Departure	Platform 14		Departure34
Train1	d_2 12:20:00	ExitResource	Platform14	A1	-
Train1	d_2 12:20:00	EnterResource	TrGroup9	A2	
Train1	d_2 12:25:00	ExitResource	TrGroup9	B2	
Train1	d_2 12:25:00	ExitSystem	TrGroup9		

Problemas Relacionados

Existen varios problemas relacionados con la gestión de trenes (*train scheduling*), con diferentes objetivos, como maximizar la comodidad de los pasajeros, minimizar costos o mejorar los tiempos de respuesta ante eventos inesperados. Algunos de ellos son:

- Train Scheduling Problem
- Multi-objective Train Schedule Optimization
- Rescheduling Trains under Disrupted Operations
- Train Timetabling Problem
- Train Departure Matching Problem

Referencias

Françoise Ramond and Nicolas Marcos

Trains don't vanish! ROADEF EURO 2014 Challenge Problem Description.

Jørgen Haahr and Simon Bull

A Math-Heuristic Framework for the ROADEF/EURO Challenge 2014 Technical report, DTU Management Engineering, 2014.

Hadrien Cambazard and Nicolas Catusse

ROADEF CHALLENGE 2014: A Modeling Approach, Rolling stock unit management on railway sites

Problema de Manejo de Trenes en Ferrocarriles Trains don't vanish!

Ayudante: Alondra Rojas Ruz

Departamento de Informática Universidad Técnica Federico Santa María

4 de mayo de 2016