Challenging the Brain and Lungs: Impacts of acute stress on the brain, cortisol, and inflammatory responses in asthma

Estelle Higgins

First-Year Project

November 10, 2023

OVERALL ROADMAP

Background Methods Results Conclusions

OVERALL ROADMAP

Background Methods Results Conclusions

BACKGROUND

BACKGROUND

stress

Asthma-Related Inflammation

Initial evidence:

Stress/Emotion
 Neurocircuitry

Th2 & Th17 Pathways

BACKGROUND: MOTIVATION

Hypotheses

Background Methods Results Conclusions

STUDY DESIGN

[4wk between randomized stress/control visit order]

** Airway inflammation measured (daily)

EXPERIMENTAL MANIPULATIONS DAY

** Airway inflammation measured (daily)

ANALYSES

- N = 28 (18 F); within-subject
 - Target N = 50 not reached due to COVID-19

PRIMARY OUTCOMES	MODERATORS	COVARIATES
TH2 Inflammation: Sputum & Eosinophils (EOS) Fraction of Exhaled Nitric Oxide (FeNO) TH17 Inflammation: Interleukin (IL)-17, IL-1R1, IL-23A mRNA expression	Perceived Stress Cortisol Area Under the Curve (AUC)	Antigen Dose
Brain Glucose Metabolism Whole-brain and regions of interest		

Background Methods Results Conclusions

ACUTE STRESS DOES NOT SIGNIFICANTLY INCREASE AIRWAY INFLAMMATION

MODEL: Imer(IL17 ~ time.c*condition.c + (1 + time.c*condition.c | subid))

GLUCOSE METABOLISM:

STRESS INCREASES CEREBELLUM

STRESS DECREASES MOTOR CORTEX

ACUTE STRESS INCREASES CORTISOL

CORTISOL RESPONSE TO STRESS IS ASSOCIATED WITH WIDESPREAD BRAIN ACTIVITY

p < .05 corrected

STRESS-INDUCED CORTISOL CORRELATES WITH IL-23A MRNA EXPRESSION

MODEL: Imer(IL23A ~ time.c*cortisol AUCg + allergen.dose + (1 + time.c | subid) in stress condition only

STRESS-RELATED SALIENCE NETWORK ACTIVITY PREDICTS IL-23A MRNA Expression

AMYGDALA

ANTERIOR CINGULATE

p < .05 corrected

Mean Glucose Metabolism (Stress > Control)

Background Methods Results Conclusions

CONCLUSIONS

Acute stress did not significantly alter airway inflammatory response

 Psychosocial stress caused greater glucose metabolism in the cerebellum and less in the motor cortex

• Stress-evoked cortisol was associated with glucose metabolism across the brain, including in the salience network

• Stress-related salience network activity predicted IL-23A mRNA expression

Conclusions

Asthma-Related Inflammation

CONCLUSIONS

* first-year project committee

GRATITUDE

Work supported by NHLBI (R01 HL123284)

Melissa Rosenkranz, PhD *

Richard Davidson, PhD *

Lyn Abramson, PhD

John Curtin, PhD *

Stephane Esnault, PhD

William Busse, PhD

Danika Klaus, RN

...and many more!

REFERENCES - UPDATE!!

- Higgins, E. T., Davidson, R. J., Busse, W. W., Klaus, D. R., Bednarek, G. T., Goldman, R. I., Sachs, J., & Rosenkranz, M. A. (2022). Clinically relevant effects of Mindfulness-Based Stress Reduction in individuals with asthma. Brain, Behavior, & Immunity Health, 25, 100509. https://doi.org/10.1016/j.bbih.2022.100509
- Rosenkranz, M. A., Esnault, S., Christian, B. T., Crisafi, G., Gresham, L. K., Higgins, A. T., Moore, M. N., Moore, S. M., Weng, H. Y., Salk, R. H., Busse, W. W., & Davidson, R. J. (2016). Mind-body interactions in the regulation of airway inflammation in asthma: A PET study of acute and chronic stress. Brain, Behavior, and Immunity, 58, 18–30. https://doi.org/10.1016/j.bbi.2016.03.024
- Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), Article 3. https://doi.org/10.1038/nrn2994
- Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061

ALTERNATIVE EXPLANATIONS

Alternative explanations:

Less robust acute stress response

Sympathetic Nervous System moderation

Stress

Control

 Acute stress does not prime inflammatory response to allergen challenge in those with moderate chronic stress

DEMOGRAPHICS

TH17 CELLS

- Adaptive (Humoral) Immune System [autoimmune disease] → IL-17 (neutrophils)
 - Associated with depression
- Differentiation: requires IL-6 and TGFβ; promoted by TNF-a, IL-1β, IL-21, IL-23
- Stress $\rightarrow \uparrow$ IL-1 β

Asthma:

- IL-17 in severe asthma ... role in mild asthma?
- Modulates Th2 responses
- EOS release IL-1 β \rightarrow IL-17 expression

PET

- Brain Glucose Metabolism: fluoro-18-deoxyglucose (FDG)-Positron Emission Tomography (PET)
 - Venous FDG injection → [uptake time: TSST] → Scan

ANALYSES: STRESS NEUROCIRCUITRY

Whole-Brain

+

- a priori ROIs
 - amygdala, infula/frontal opercular cortex (IFOC), dorsal anterior cingulate cortex (dACC)
- Paired t-tests with FSL's randomise
- Regressions with FSL's randomise
 - PET image with cortisol and inflammatory biomarkers

PET PROCESSING

- Processing pipeline optimized for PET-T1 co-registration
 - FSL's FEAT; AFNI; ANTs

Study-specific T1 template

Example co-registration

• 2 subjects missing T1; co-registered to PET template in MNI space

PET template in MNI space

PET PROCESSING

- 4D scaled, smoothed PET images co-registered to T1 template in MNI space: merge by condition
- Stress minus Control

ALLERGEN CHALLENGE

FEV₁: Forced Expiratory Volume (1s) = Lung Function

FeNO: Fraction of Exhaled Nitric Oxide = Airway Inflammation

ALLERGEN CHALLENGE DOSE CONVERSION

- For safety, dose varied by challenge and by person
 - Ragweed Pollen (n = 5); Cat (n = 12); or Dust Mite (n = 12)

 Nonlinear least squares to extract optimal parameters used in conversion equation

PROXIMAL & DISTAL MEASURES

• Distal Mechanism: brain [glucose metabolism]

In-Between Mechanisms: brainstem

- Proximal Mechanisms:
 - HPA Axis
 - Sympathetic Nervous System
 - Neurogenic Inflammation (Sensory Neuropeptides)

Power: Stress Neurocircuitry

- Sensitivity Power Analysis:
 - For 80% power (N = 27) at α = .05:
 - Medium Effect Size d = .56

PRIOR EVIDENCE

- Psychosocial Stressor → Increased Cortisol, associated with Airway Inflammation
 Biomarkers
 - Th17 path (IL-17A, IL-1R1)

• Th2 path (EOS) moderated by chronic stress

PRIOR EVIDENCE

- Psychosocial Stressor → Stress Neurocircuitry Activation associated with Airway Inflammation Biomarkers
 - Th2 pathway (FeNO) & Th17 cell mRNA (IL23A, IL1R1)

Cortisol

ACUTE STRESS DOES NOT SIGNIFICANTLY INCREASE AIRWAY INFLAMMATION

