

YEAR II

SEM III

CS 8351

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

UNIT NO. 2

2.8 DECODERS

Version: 1.0

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

DECODERS

 A decoder is a combinational circuit that converts binary information from _n' input lines to a maximum of _2n' unique output lines. The general structure of decoder circuit is _

- The encoded information is presented as _n' inputs producing _2n' possible outputs.
- The 2n output values are from 0 through 2n-1.
- A decoder is provided with enable inputs to activate decoded output based on data inputs.
- When any one enable input is unasserted, all outputs of decoder are disabled.

Binary Decoder (2 to 4 decoder):

- A binary decoder has _n' bit binary input and a one activated output out of 2n outputs.
- A binary decoder is used when it is necessary to activate exactly one of 2n outputs based on an n-bit input value.

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

2-to-4 Line decoder

Here the 2 inputs are decoded into 4 outputs, each output representing one of the minterms of _______ the two input

variables.

	Outputs					
Enable	Α	В	Y 3	Y 2	Y 1	Yo
0	X	X	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

- As shown in the truth table, if enable input is 1 (EN= 1) only one of the outputs (Y0 Y3), is active for a given input.
- The output
- Y0 is active, ie., Y0= 1 when inputs A = B = 0,
- Y1 is active when inputs, A=0 and B=1,

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

- Y2 is active, when input A=1 and B=0,
- Y3 is active, when inputs A = B = 1.

3-to-8 Line Decoder:

- A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y0- Y7). Based on the 3 inputs one of the eight outputs is selected.
- The three inputs are decoded into eight outputs, each output representing one of the minterms of the 3-input variables.
- This decoder is used for binary-to-octal conversion.
- The input variables may represent a binary number and the outputs will represent the eight digits in the octal number system.
- The output variables are mutually exclusive because only one output can be equal to 1 at any one time.
- The output line whose value is equal to 1 represents the minterm equivalent of the binary number presently available in the input lines.

	Outputs									
Α	В	C	Yo	Y ₁	Y ₂	Y 3	Y4	Y5	Ye	Y7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

3-to-8 line decoder

BCD to 7-Segment Display Decoder

- A seven-segment display is normally used for displaying any one of the decimal digits, 0 through 9.
- A BCD-to-seven segment decoder accepts a decimal digit in BCD and generates the corresponding seven-segment code.

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

- Each segment is made up of a material that emits light when current is passed through it.
- The segments activated during each digit display are tabulated as—

Digit	Display	Segments Activated
0	f b	a, b, c, d , e, f
1	 с	b, c
2	8 d	a, b, d, e, g
3	8 b	a, b, c, d, g
4	f 8 6	b, c, f, g
5	f g c	a, c, d, f, g

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

6	f g c	a, c, d, e, f, g
7	a b c	a, b, c
8	$ \begin{array}{c c} \hline a \\ f \\ g \\ e \\ \underline{d} \end{array} $	a, b, c, d, e, f, g
9	f g b	a, b, c, d, f, g

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

TRUTH TABLE:

	BCD code				7-Segment code						
Digit	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

Logic Diagra

Applications of decoders:

- Decoders are used in counter system.
- They are used in analog to digital converter.
- Decoder outputs can be used to drive a display system.