10

11

12

13

1

2

CLAIMS

-			
		01100	٠
	\mathbf{v}	aım	

M	1. On an integrated circuit, an interface block that provides an
$h \cdot \underline{N}$	/
. K	intenfece between of internal bur of the internated since it
2	interface between an internal bus of the integrated circuit and a socket of a
/	\
3/	logic block, the interface block comprising

a synchronization module that performs any needed synchronization between a clock domain of the internal bus and a clock domain of the socket of the logic block;

a translation module that, for data transferred between the internal
bus and the socket of the logic block, provides translation of block encoding of
the data;

a queue module, that buffers data flowing between the internal bus and the socket of the logic block; and,

a driver module that handles low level and electrical drive

- 2. An interface block as in claim 1 wherein the synchronization module can be implemented as one of:
- a null synchronization-block where no synchronization is required
 between the clock domain of the internal bus and the clock domain of the
 socket of the logic block;
- a ratio synchronization block where the clock domain of the internal
 bus is related to the clock domain of the socket of the logic block by a fixed
 multiplier ratio; and,

•

3

4

5

6

including:

9	a full synchronization block where there is no phase relationship
10	between the clock domain of the internal bus and the clock domain of the
11	socket of the logic block.

- 3. An interface block as in claim 1 additionally comprising a plurality of buffers used to pipeline the interface block, the plurality of buffers
- a first buffer between the synchronization module and the translation module;
- a second buffer between the translation module and the queue module; and,
- a third buffer between the queue module and the driver module.
- 4. A method for providing an interface between an internal bus of an integrated circuit and a socket of a logic block within the integrated circuit, the method comprising the steps of:
 - (a) performing any needed synchronization between a clock domain of the internal bus and a clock domain of the socket of the logic block within a synchronization module;
- (b) providing any required translation of block encoding of data
 transferred between the internal bus and the socket of the logic block using a
 translation module;
- 10 (c) buffering data flowing between the internal bus and the socket of 11 the logic block using a queue module; and,

6

7

12	(d) handling low level and electrical drive specifications of the internal
13	bus using a driver module.
1	5. A method as in claim 4 wherein step (a) comprises the following
2	substeps:
3	(a.1) using a null synchronization block where no synchronization is
4	required between the clock domain of the internal bus and the clock domain
5	of the socket of the logic block;
6	(a.2) using a ratio synchronization block where the clock domain of
7	the internal bus is related to the clock domain of the socket of the logic block
8	by a fixed multiplier ratio; and,
9	(a.3) using a full synchronization block where there is no phase
10	relationship between the clock domain of the internal bus and the clock
11	domain of the socket of the logic block.
1	6. A method as in claim 4-additionally comprising the following step:
2	(e) providing buffers between modules to allow pipelined operation.
•	
Al r	7. On an integrated circuit, an interface block that provides an
2 🖔	interface between an internal bus of the integrated circuit and a socket of a
/3	logic block, the interface block comprising:
4	a plurality of modules connected in series, where any needed
5	synchronization between a clock domain of the internal bus and a clock

domain of the socket of the logic block, any required translation of block

encoding of data, any buffering of data flowing between the internal bus and

- 9 specifications of the internal bus are performed by the plurality of modules
- 10 so that one module from the plurality of modules performs a single function.
- 8. An interface block as in claim 7 wherein a first module in the
- 2 plurality of modules is a synchronization module that performs any needed
- 3 synchronization between the clock domain of the internal bus and the clock
- 4 domain of the socket of the logic block.
- 9. An interface block as in claim 7 wherein one module in the
- 2 plurality of modules is a translation module that, for the data transferred
- 3 between the internal bus and the socket of the logic block, provides
- 4 translation of block encoding of the data.
- 1 10. An interface block as in claim 7 wherein one module in the
- 2 plurality of modules is a queue module, that buffers the data flowing
- 3 between the internal bus and the socket of the logic block.
- 1 11. An interface block as in claim 7 wherein one module in the
- 2 plurality of modules is a driver module that handles low level and electrical
- 3 drive specifications of the internal bus.
 - 12. An interface block as in claim 7 additionally comprising a plurality of buffers situated between modules in the plurality of modules, the buffers used to pipeline the interface block.