LARGEST SMITH NUMBER

MARLON TRIFUNOVIC

ABSTRACT. We find large Smith numbers by explicitly calculating digit sums through several methods relying on computer programs. This paper explicitly constructs a Smith number with 59,421,998,357 digits, exceeding previous record of 32,066,910 digits.

Contents

1.	Introduction	1
2.	Notation and Basic Facts	1
3.	An update on Costello 2002	1
4.	Best by adding coefficients	3
5.	Best by overlapping coefficients	3
References		3

1. Introduction

A Smith number is defined by A. Wilanksy as "a composite number the sum of whose digits is the sum of all digits of all its prime factors" [5].

2. NOTATION AND BASIC FACTS

The following notation and basic facts are taken from Patrick Costello [3]. For any positive integer n, let S(n) denote the sum of the digits of n. For any positive integer n, let $S_p(n)$ denote the sum of digits of the prime factorization of n. For example, S(12) = 1 + 2 = 3 and $S_p(12) = S_p(2 \cdot 2 \cdot 3) = 2 + 2 + 3 = 7$.

3. An update on Costello 2002

Patrick Costello was able to construct a 32,066,910 digit Smith number by using the known prime repunit R_{1031} and Chris Caldwell's large palindromic prime $M = 10^{28572} + 8 \cdot 10^{14286} + 1$. I will briefly go through the similar steps as Costello with more recently verified primes to construct a new largest Smith number.

Firstly, two facts are necessary

Fact 1 (Lewis [??]). If you multiply $9R_n$ by any natural number less than $9R_n$, then the digit sum is 9n, i.e., $S(M \cdot 9R_n) = 9M = S(9R_n)$ when $M < 9R_n$.

Fact 2 (Wayland, Oltikar [??]). If $S(u) > S_p(u)$ and $S(u) = S_p(u) \pmod{7}$, then $10^k \cdot u$ is a Smith number, where $k = \frac{S(u) - S_p(u)}{7}$.

Date: June 9, 2022.

Chris Caldwell's list of large proven primes[?] lists the prime $M = 3 \cdot 10^{665829} + 1$. It additionally lists the large prime repunit R_{49081} discovered and proven by Paul Underwood[??]. Notice that M is not palindromic and requires different method for bounding coefficients than Costello's 2002 paper.

For a power t, the term M^t can be represented as a sum of coefficients multiplied by powers of 10^{665829} .

$$M^t = \sum_{k=0}^{t} c_k 10^{665829k}, \quad c_k = {t \choose k} 3^k$$

Theorem 3.1. Let $k_0 = \lceil \frac{3t-1}{4} \rceil$, then $c_{k_0} \ge c_k$ for $0 \le k \le t$.

Proof. Define the ratio of coefficients $r_k = \frac{c_{k+1}}{c_k}$, then

$$b_k = \frac{c_{k+1}}{c_k}$$

$$= \frac{\binom{t}{k+1}3^{k+1}}{\binom{t}{k}3^k}$$

$$= \frac{3\frac{1}{(k+1)!(t-(k+1))!}}{\frac{1}{k!(t-k)!}}$$

$$= \frac{3(t-k)}{k+1}$$

Notice that b_k is a decreasing function with $b_0 > 1$ and $b_{t-1} < 1$. Let $k_0 = \lceil \frac{3t-1}{4} \rceil$, then k_0 is the minimal integer so that $b_{k_0} < 1$. Therefor, c_{k_0} is the coefficient with largest value.

Theorem 3.2. Suppose $N = 9R_{49081}M^t$ for a power $t \le 81525$, then for all $0 \le k \le t$, $c_k < 9R_{49081}$ and $9R_{49081}c_k < 10^{665829}$.

Proof. Let $t_0 = 81525$, then by explicity calculation, $c_k^{t_0} < 9R_{49081}$ while $c_{k_0}^{t_0+1} \ge 9R_{49081}$.

$$\begin{aligned} c_k &\leq c_{k_0} \\ &\leq \binom{t}{k_0} 3^{k_0} \\ &\leq \binom{t}{\left\lceil \frac{3t-1}{4} \right\rceil} 3^{\left\lceil \frac{3t-1}{4} \right\rceil} \end{aligned}$$

Define that last line as f(t), an increasing function. By explicit calculation,

$$f(81525) < 9R_{49081} < f(81526)$$

Now suppose $N=9R_{49081}M^t$ for a power $t\leq 81525$. We know each coefficient $c_k<9R_{49081}$ and $9R_{49081}c_k<10^{665829}$. The latter constraint means the digit sum of N is the sum of the digit sums of $9R_{49081}c_k$. The first constraint allows us to apply fact 1 to prove the digit sum of $9R_{49081}c_k$ is $9\cdot 49081$. Since k varies from $0\leq k\leq t$, then

$$S(N) = (t+1) \cdot 9 \cdot 49081$$

The prime factorization of N is simply $3 \cdot 3 \cdot R_{49081} \cdot M^t$. Keeping in mind S(M) = 4, then

$$S_p(N) = 3 + 3 + 49081 + 4t$$

Note that $S(N) > S_p(N)$ and

$$S(N) - S_p(N) = (t+1) \cdot 9 \cdot 49081 - (3+3+49081+4t)$$

$$= 441725t + 392642$$

$$= 4t+5 \pmod{7}$$

$$= 4(t+3) \pmod{7}$$

Fix t=81519, then $t\equiv 4\pmod 7$ and $t\leq 81525$. By above, $S(N)-S_p(N)\equiv 0\pmod 7$. Calculate k

$$k = \frac{S(N) - S_p(N)}{7} = \frac{441725t + 392642}{7} = 5144196131$$

then Fact 2 to proves $10^k N$ is a Smith number. This Smith number has 59,421,998,357 digits.

4. Best by adding coefficients

z = 1105923

5. Best by overlapping coefficients

REFERENCES

- [1] Amin Witno, Another Simple Construction of Smith Numbers, Missouri Journal of Mathematical Sciences 22 (2010), no. 2, 97 101, DOI 10.35834/mjms/1312233139.
- [2] Patrick Costello, Smith Numbers From Primes with Small Digits, Missouri Journal of Mathematical Sciences 27 (2015), no. 1, 10 15, DOI 10.35834/mjms/1449161363.
- [3] Patrick Costello, A new largest Smith number, The Fibonacci Quarterly 40 (2002).
- [4] Kathy Sharon Lewis, Smith numbers: an infinite subset of N, Eastern Kentucky University, 1994.
- [5] A. Wilansky, Smith Numbers, The Two-Year College Mathematics Journal 13 (1982), no. 1, 21-21, DOI 10.1080/00494925.1982.11972573.