## HW15

110077443

5/28/2022

Please note that all code in this document is presented in a grey box and the output reflected below each box

• The below code allows lengthy lines of comments to display neatly within the grey box (wrapping it)

```
knitr::opts_chunk$set(tidy.opts = list(width.cutoff = 60), tidy = TRUE)
```

## 1) Composite Path Models using PLS-PM

```
# Importing data
sec <- read.csv("security_data_sem.csv", header = TRUE)</pre>
```

- a) Create a PLS path model using SEMinR, with all the following characteristics:
- i) Measurement model all constructs are measured as composites:
  - 1. Trust in website (TRUST): items TRST1 TRST4
  - 2. Perceived security of website (SEC): items PSEC1 PSEC4
  - 3. Reputation of website (REP): items PREP1 PREP4
  - 4. Investment in website (INV): items PINV1 PINV3
  - 5. Perception of privacy policies (POL): items PPSS1 PPSS3
  - 6. Familiarity with website (FAML): item FAML1
  - 7. Interaction between REP and POL (use orthogonalized product terms)

ii) Structural Model – paths between constructs as shown in this causal model:

```
REP + INV + POL + FAML + (REP*POL) to SEC to TRUST
```

- b) Show us the following results in table or figure formats:
- i) Plot a figure of the estimated model:

Estimated Model



Figure 1: Estimated Model

## ii) Weights and loadings of composites:

```
# Weights
require(knitr) # Used for creating tables with kable function
kable(sec_pls$outer_weights |>
   round(2), caption = "Weights of Composites", align = "c") # Print table of weights
```

Table 1: Weights of Composites

|             | REP  | INV  | POL  | FAML | REP*POL | SEC  | TRUST |
|-------------|------|------|------|------|---------|------|-------|
| TRST1       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.28  |
| TRST2       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.28  |
| TRST3       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.29  |
| TRST4       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.28  |
| PSEC1       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.28 | 0.00  |
| PSEC2       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.31 | 0.00  |
| PSEC3       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.31 | 0.00  |
| PSEC4       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.29 | 0.00  |
| PREP1       | 0.22 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP2       | 0.33 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP3       | 0.35 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP4       | 0.29 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PPSS1       | 0.00 | 0.00 | 0.36 | 0    | 0.00    | 0.00 | 0.00  |
| PPSS2       | 0.00 | 0.00 | 0.39 | 0    | 0.00    | 0.00 | 0.00  |
| PPSS3       | 0.00 | 0.00 | 0.37 | 0    | 0.00    | 0.00 | 0.00  |
| FAML1       | 0.00 | 0.00 | 0.00 | 1    | 0.00    | 0.00 | 0.00  |
| PINV1       | 0.00 | 0.36 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PINV2       | 0.00 | 0.40 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PINV3       | 0.00 | 0.36 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP1*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.24    | 0.00 | 0.00  |
| PREP1*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.03    | 0.00 | 0.00  |
| PREP1*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.02    | 0.00 | 0.00  |
| PREP2*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.05    | 0.00 | 0.00  |
| PREP2*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | -0.10   | 0.00 | 0.00  |
| PREP2*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | -0.23   | 0.00 | 0.00  |
| PREP3*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | -0.34   | 0.00 | 0.00  |
| PREP3*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.09    | 0.00 | 0.00  |
| PREP3*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.11    | 0.00 | 0.00  |
| PREP4*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.44    | 0.00 | 0.00  |
| PREP4*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.38    | 0.00 | 0.00  |
| PREP4*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.27    | 0.00 | 0.00  |

```
# Loadings
kable(sec_pls$outer_loadings |>
    round(2), caption = "Loadings of Composites", align = "c") # Print table of Loading's
```

Table 2: Loadings of Composites

|             | REP  | INV  | POL  | FAML | REP*POL | SEC  | TRUST |
|-------------|------|------|------|------|---------|------|-------|
| TRST1       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.90  |
| TRST2       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.91  |
| TRST3       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.90  |
| TRST4       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.84  |
| PSEC1       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.81 | 0.00  |
| PSEC2       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.87 | 0.00  |
| PSEC3       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.87 | 0.00  |
| PSEC4       | 0.00 | 0.00 | 0.00 | 0    | 0.00    | 0.81 | 0.00  |
| PREP1       | 0.80 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP2       | 0.91 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP3       | 0.91 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP4       | 0.72 | 0.00 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PPSS1       | 0.00 | 0.00 | 0.87 | 0    | 0.00    | 0.00 | 0.00  |
| PPSS2       | 0.00 | 0.00 | 0.89 | 0    | 0.00    | 0.00 | 0.00  |
| PPSS3       | 0.00 | 0.00 | 0.91 | 0    | 0.00    | 0.00 | 0.00  |
| FAML1       | 0.00 | 0.00 | 0.00 | 1    | 0.00    | 0.00 | 0.00  |
| PINV1       | 0.00 | 0.90 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PINV2       | 0.00 | 0.92 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PINV3       | 0.00 | 0.85 | 0.00 | 0    | 0.00    | 0.00 | 0.00  |
| PREP1*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.58    | 0.00 | 0.00  |
| PREP1*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.51    | 0.00 | 0.00  |
| PREP1*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.51    | 0.00 | 0.00  |
| PREP2*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.51    | 0.00 | 0.00  |
| PREP2*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.42    | 0.00 | 0.00  |
| PREP2*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.34    | 0.00 | 0.00  |
| PREP3*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.24    | 0.00 | 0.00  |
| PREP3*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.55    | 0.00 | 0.00  |
| PREP3*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.47    | 0.00 | 0.00  |
| PREP4*PPSS1 | 0.00 | 0.00 | 0.00 | 0    | 0.90    | 0.00 | 0.00  |
| PREP4*PPSS2 | 0.00 | 0.00 | 0.00 | 0    | 0.84    | 0.00 | 0.00  |
| PREP4*PPSS3 | 0.00 | 0.00 | 0.00 | 0    | 0.86    | 0.00 | 0.00  |

## iii) Regression coefficients of paths between factors

```
sec_sum <- summary(sec_pls) # Variable for summary

# Coefficients
kable(sec_sum$paths |>
    round(2), caption = "Coefficients of Paths", align = "c") # Print table of Coefficients
```

Table 3: Coefficients of Paths

|          | SEC  | TRUST |
|----------|------|-------|
| R^2      | 0.42 | 0.37  |
| $AdjR^2$ | 0.41 | 0.37  |
| REP      | 0.25 | NA    |
| INV      | 0.18 | NA    |

|         | SEC   | TRUST |
|---------|-------|-------|
| POL     | 0.34  | NA    |
| FAML    | 0.01  | NA    |
| REP*POL | -0.10 | NA    |
| SEC     | NA    | 0.61  |

iv) Bootstrapped path coefficients: t-values, 95% CI

```
# Variables for Bootstrapped model & coefficients
boot_pls <- bootstrap_model(sec_pls, nboot = 1000)</pre>
boot_pls_sum <- summary(boot_pls)</pre>
boot_pls_sum$bootstrapped_paths[, 4:6]
                       T Stat.
                                   2.5% CI 97.5% CI
## REP
                     4.3297173 0.13429009 0.3550873
           SEC
## INV
       ->
           SEC
                     3.2043944 0.07335112 0.2945384
                     6.3324306 0.22917828 0.4456917
## POL
       -> SEC
## FAML -> SEC
                     0.1827396 -0.09703474 0.1283667
## REP*POL -> SEC -0.8271601 -0.19632041 0.1919901
## SEC -> TRUST
                    17.2429811 0.53803679 0.6747854
# Print table of Bootstrapped Path Coefficients: t-values,
# 95% CI
kable(boot_pls_sum$bootstrapped_paths[, c(1, 4:6)] |>
   round(2), caption = "Coefficients of Paths", align = "c")
```

Table 4: Coefficients of Paths

|                                                | Original Est. | T Stat. | 2.5% CI | 97.5% CI |
|------------------------------------------------|---------------|---------|---------|----------|
| $\overline{\text{REP}} \rightarrow \text{SEC}$ | 0.25          | 4.33    | 0.13    | 0.36     |
| $INV \rightarrow SEC$                          | 0.18          | 3.20    | 0.07    | 0.29     |
| $POL \rightarrow SEC$                          | 0.34          | 6.33    | 0.23    | 0.45     |
| $FAML \rightarrow SEC$                         | 0.01          | 0.18    | -0.10   | 0.13     |
| $REP*POL \rightarrow SEC$                      | -0.10         | -0.83   | -0.20   | 0.19     |
| $SEC \rightarrow TRUST$                        | 0.61          | 17.24   | 0.54    | 0.67     |

# 2) Common-Factor Models using CB-SEM

- a) Create a common factor model using SEMinR, with the following characteristics:
- i) Respecifying all the constructs using the as.reflective() function

```
multi_items("PREP", 1:4)), reflective("POL", multi_items("PPSS",
    1:3)), reflective("FAML", single_item("FAML1")), reflective("INV",
    multi_items("PINV", 1:3)), interaction_term("REP", "POL",
    orthogonal) # Orthogonalized Interaction term
)
```

ii) Use the same structural model as before

- b) Show us the following results in table or figure formats
- i) Plot a figure of the estimated model

```
require("semPlot") # Used to plot CB-SEM model
plot(sec_cf_pls, title = "Common Factor Model")
```



## NULL

#### ii) Loadings of composites

```
sec_cf_sum <- summary(sec_cf_pls) # Variable for summary

# Loadings of Composites
kable(sec_cf_sum$loadings$coefficients |>
    round(2), caption = "Loadings of Composites", align = "c") # Print table of Loading's
```

Table 5: Loadings of Composites

|       | TRUST | SEC  | REP  | POL  | FAML | INV  |
|-------|-------|------|------|------|------|------|
| TRST1 | 0.88  | NA   | NA   | NA   | NA   | NA   |
| TRST2 | 0.89  | NA   | NA   | NA   | NA   | NA   |
| TRST3 | 0.87  | NA   | NA   | NA   | NA   | NA   |
| TRST4 | 0.76  | NA   | NA   | NA   | NA   | NA   |
| PSEC1 | NA    | 0.73 | NA   | NA   | NA   | NA   |
| PSEC2 | NA    | 0.82 | NA   | NA   | NA   | NA   |
| PSEC3 | NA    | 0.82 | NA   | NA   | NA   | NA   |
| PSEC4 | NA    | 0.73 | NA   | NA   | NA   | NA   |
| PREP1 | NA    | NA   | 0.76 | NA   | NA   | NA   |
| PREP2 | NA    | NA   | 0.92 | NA   | NA   | NA   |
| PREP3 | NA    | NA   | 0.89 | NA   | NA   | NA   |
| PREP4 | NA    | NA   | 0.57 | NA   | NA   | NA   |
| PPSS1 | NA    | NA   | NA   | 0.81 | NA   | NA   |
| PPSS2 | NA    | NA   | NA   | 0.83 | NA   | NA   |
| PPSS3 | NA    | NA   | NA   | 0.87 | NA   | NA   |
| FAML1 | NA    | NA   | NA   | NA   | 1    | NA   |
| PINV1 | NA    | NA   | NA   | NA   | NA   | 0.85 |
| PINV2 | NA    | NA   | NA   | NA   | NA   | 0.93 |
| PINV3 | NA    | NA   | NA   | NA   | NA   | 0.74 |

## iii) Regression coefficients of paths between factors, and their p-values

```
# Regression Coefficients
kable(sec_cf_sum$paths$coefficients[, 1:2] |>
    round(2), caption = "Coefficients of Paths", align = "c") # Print table of Coefficients
```

Table 6: Coefficients of Paths

|             | SEC   | TRUST |
|-------------|-------|-------|
| R^2         | 0.54  | 0.5   |
| REP         | 0.30  | NA    |
| INV         | 0.21  | NA    |
| POL         | 0.38  | NA    |
| FAML        | -0.01 | NA    |
| $REP_x_POL$ | 0.01  | NA    |
| SEC         | NA    | 0.7   |

# # P-values kable(sec\_cf\_sum\$paths\$pvalues |> round(8), caption = "p-values", align = "c") # Print table of p-values

Table 7: p-values

|           | SEC       | TRUST |
|-----------|-----------|-------|
| REP       | 0.0000382 | NA    |
| INV       | 0.0035345 | NA    |
| POL       | 0.0000000 | NA    |
| FAML      | 0.8996836 | NA    |
| REP_x_POL | 0.8516847 | NA    |
| SEC       | NA        | 0     |