ЭВМ

Лектор: к.т.н., доцент, Попов Алексей Юрьевич

Цель дисциплины:

•получить знания и навыки, необходимые для проектирования и эффективного использования современных аппаратных вычислительных средств.

Задачами дисциплины является изучение:

- •принципов организации ЭВМ;
- •методики проектирования ЭВМ и устройств, их составляющих.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. СПб.: Питер, 2004. 668 с.: ил.
- 2. Угрюмов Е. П. Цифровая схемотехника: Учеб. Пособие для вузов. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2004. 800 с.: ил.

План проведения теоретических и практических занятий:

Семестр	Теоретические	Лабораторные	Семинарские	Вид
	занятия	работы	занятия	отчетности
6	•Введение •Принципы построения и архитектура ЭВМ •Средства проектирование цифровых устройств с использованием ПЛИС •Организация памяти ЭВМ	 Проектирование систем на кристалле [1-4 неделя] Проектирование цифровых устройств на основе ПЛИС [5-10 неделя] (Защита домашнего задания 1. Проектирование цифровых автоматов) Проектирование устройств управления на основе ПЛИС [11-14 неделя] (Защита домашнего задания 2. Проектирование устройств управления с жесткой логикой) Организация памяти конвейерных суперскалярных электронных вычислительных машин [15-16 неделя] 	 Проектирование ЦУ на основе ПЛИС Языки описания аппаратных устройств Параллельные и последовательные операторы VHDL Описание примитивов устройств на VHDL Проектирование цифровых автоматов Проектирование устройств управления 	РК1. Основы построения ЭВМ (8 неделя) РК2. Язык VHDL (12 неделя) РК3. Организация памяти ЭВМ (16 неделя) Зачет

I. Введение

- Поколения электронных вычислительных машин.
- Классификация ЭВМ.
- Основные характеристики ЭВМ.

Поколения электронных вычислительных машин

Первое поколение ЭВМ (с конца 30-х до середины 50-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программи-рова ния	Программное обеспечение	Средства связи с пользователем
I (с конца 30-х до середины 50-х)	Электро-магнит ные реле; электронные лампы	Линии задержки на электронные лучевых трубках, Ферритовые сердечники (~2 ¹² -2 ¹⁶)	Калькуляторы (ABC, <u>ENIAC</u>), Большие ЭВМ (MARK I, EDVAC, UNIVAC, <u>БЭСМ,</u> МЭСМ, Стрела, Минск, IAS)	Ручная коммутация, Машинные коды	Ассемблер	Индикаторы, Пульт управления, Перфокарты

3BM ENIAC

3BM MARK I

Ферритовые сердечники

Второе поколение ЭВМ (с середины 50-х до середины 60-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программиров ания	Программное обеспечение	Средства связи с пользователем
II (с середины 50-х до середины 60-х)	Транзисторы	Ферритовые сердечники (до 2 ¹⁹)	Малые и средние ЭВМ (<u>БЭСМ-4,</u> Урал-14, Минск-2, Днепр), Большие ЭВМ(TRADIAC, <u>IBM 7030,</u> IBM 7090, TX-O, <u>БЭСМ-2,3</u>)	Фортран, Алгол, Кобол	Компиляторы, автоматизирова нные системы управления, диспетчеры	Индикаторы, Пульт управления, Перфокарты, Перфоленты

ЭВМ БЭСМ-4

Третье поколение ЭВМ (с середины 60-х до середины 70-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программи- рования	Программное обеспечение	Средства связи с пользователем
III (с середины 60-х до середины 70-х)	Интегральные схемы малой и средней степени интеграции	Полупроводни-ковые ЗУ на интегральных схемах (до 2 ²⁵)	Мини и микро-ЭВМ (Мир-1, М220), Средние и большие универсальные ЭВМ (ILLIAC IV, <u>CDC6600</u> , CDC7600, IBM 360, EC ЭВМ, CM ЭВМ, <u>БЭСМ-6</u>)	Фортран, Алгол, В, С	ОС (UNIX, IBM), СУБД, САПР, Пакеты прикладных программ	Алфавитно-цифр овые дисплеи

ЭВМ БЭСМ-6

Четвертое поколение ЭВМ (с середины 70-х до середины 80-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программи- рования	Программное обеспечение	Средства связи с пользователем
IV (с середины 70-х до середины 80-х)	Интегральные схемы большой и сверхбольшой степени интеграции	Полупроводниковые ЗУ на сверх больших интегральных схемах (до 2 ²⁸)	Персональные компьютеры (Intellec8, IBM PC/XT/AT, Sinclair Spectrum), Средние и Большие ЭВМ (Cray, Эльбрус-1,2,3)	Пролог, Фортран, С, Паскаль	Графические ОС,Среды визуальной разработки, САПР, Системы программиров ания, Игры	Графические дисплеи, клавиатура, мышь

Intellec8 (Intel 8080)

Sinclair Spectrum

Пятое поколение ЭВМ (с середины 80-х)

Поколение ЭВМ	Элементная база	Тип основного запоминающего устройства	Представители классов ЭВМ	Языки программи- рования	Программное обеспечение	Средства связи с пользователем
V (с середины 80-х)	Интегральные схемы сверхбольшой степени интеграции	Полупроводниковые ЗУ на сверх больших интегральных схемах (до ~2^32)	ПК на универсальных конвейерных МП (IA 32, PowerPC), Средние большие ЭВМ с массовым параллелизмом (серия IBM Mainframes, Cray, HP, DEC)	Языки с ООП, Языки параллельн ого программир ования (MPI), Специализи рованные языки (VHDL, Perl, PHP, SQL и т.д.)	Мультимедиа, WWW	Графические дисплеи, клавиатура, мышь, звук

Классификация ЭВМ

Классификация ЭВМ по назначению: Общего назначения

- Супер ЭВМ
- Минисупер ЭВМ
- Мэйнфреймы
- Серверы
- Рабочие станции
- Персональные компьютеры
- Ноутбуки
- Портативные компьютеры
- ...

Специализированные

- - -

<u>Классификация ЭВМ по структуре:</u>

- Однопроцессорные
- Многопроцессорные

<u>Классификация ЭВМ по режимам</u> работы:

- Однопрограммные
- Мультипрограммные
- Мультипрограммные в составе систем
- ЭВМ в системах реального времени

<u>Классификация ЭВМ по количеству</u> <u>потоков команд и данных:</u>

- ЭВМ с одним потоком команд и одним потоком данных (ОКОД, SISD);
- ЭВМ с одним потоком команд и многими потоками данных (ОКМД, SIMD);
- ЭВМ с многими потоками команд и одним потоком данных (МКОД, MISD);
- ЭВМ с многими потоками команд и многими потоками данных (МКМД, МІМD).

ОКОД, SISD

ОКМД, SIMD

MKOД, MISD

MKMД, MIMD

Основные характеристики ЭВМ

- •Эффективность
- •Производительность
- •Надежность
- •Стоимость
- •Энергопотребление

Общий коэффициент эффективности

$$\ni := \frac{P}{C_{\ni BM} + C_{\ni \kappa c \pi J y a \tau a \downarrow \mu u}}$$

$$\exists' := \frac{P}{C_{\exists BM}}$$

$$\exists := \frac{P \cdot K_{\mathbf{u}}}{C_{\mathbf{SBM}} + C_{\mathbf{SKC}}}$$

Э'

- Эффективность без учета эксплуатационных издержек.

Эн

- Эффективность с учетом эксплуатационной надежности.

Производительность ЭВМ

$$P := \frac{\sum_{s=1}^{n} K_{s}}{\sum_{s=1}^{n} K_{s} \cdot t_{s}}$$

Ks

- Весовой коэффициент задачи S ,
- Время выполнения задачи S .

Единицы измерения производительности:

MIPs = 10⁶ целочисленных операций в секунду.

MFlops = 10⁶ операций с плавающей запятой в секунду.

Закон Мура

Число транзисторов на кристалле будет удваиваться каждые 24 месяца

CPU Transistor Counts 1971-2008 & Moore's Law

Список наиболее производительных ЭВМ (11.2014)

Параметры: Количество процессоров; Максимальная производительность Rmax (TFlops); Пиковая производительность Rpeak (TFlops); Рассеиваемая мощность (KW).

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5- 2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
8	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301

Список наиболее производительных ЭВМ (11.2014, продолжение)

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
22	Moscow State University - Research Computing Center Russia	T-Platform A-Class Cluster, Xeon E5-2697v3 14C 2.6GHz, Infiniband FDR, Nvidia K40m T-Platforms	37,120	1,849.0	2,575.9	
58	Moscow State University - Research Computing Center Russia	Lomonosov - T-Platforms T-Blade2/1.1, Xeon X5570/X5670/E5630 2.93/2.53 GHz, Nvidia 2070 GPU, PowerXCell 8i Infiniband QDR T-Platforms	78,660	901.9	1,700.2	2,800
81	St. Petersburg Polytechnic University Russia	Polytechnic RSC Tornado - RSC Tornado, Xeon E5-2697v3 14C 2.6GHz, Infiniband FDR RSC Group	19,936	658.1	829.3	320
133	Joint Supercomputer Center Russia	MVS-10P - RSC Tornado, Xeon E5-2690 8C 2.900GHz, Infiniband FDR, Intel Xeon Phi SE10X RSC Group	28,704	375.7	523.6	222.7
189	Lobachevsky State University of Nizhni Novgorod Russia	Lobachevsky - GPU Blade Cluster, Intel Xeon E5-2660v2 10C 2.2GHz, Infiniband FDR, NVIDIA K20 Niagara Computers, Supermicro	5,310	289.5	348.7	
190	South Ural State University Russia	RSC Tornado SUSU - RSC Tornado, Xeon X5680 6C 3.330GHz, Infiniband QDR, Intel Xeon Phi SE10X RSC Group	28,032	288.2	473.6	294
337	IT Services Provider Russia	Cluster Platform 3000 BL460c Gen8, Intel Xeon E5-2680v2 10C 2.8GHz, 10G Ethernet Hewlett-Packard	13,180	189.3	295.2	
390	St. Petersburg Polytechnic University Russia	RSC PetaStream - RSC PetaStream, Xeon E5-2697v3 14C 2.6GHz, Infiniband FDR, Intel Xeon Phi 5120D RSC Group	22,528	170.5	572.9	71
457	IT Services Provider Russia	Cluster Platform 3000 BL460c Gen8, Xeon E5-2660 8C 2.200GHz, Gigabit Ethernet Hewlett-Packard	18,032	160.9	317.4	

INSTALLATION TYPE

Application Area / Systems June 2011

Processor Family / Systems
June 2011

Operating system Family / Systems June 2011

Device democracy

Интернет вещей - IoT (Internet of Things)

концепция вычислительной сети физических объектов («вещей»), оснащённых встроенными технологиями для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и операций необходимость участия человека.

Демократия устройств - Device Democracy

Концепция построения сети физических объектов, которым предоставлены полномочия самостоятельного и коллегиального принятия решений о дальнейшем поведении.

IBM Global Business Services Executive Report

Electronics

IBM Institute for Business Value

Device democracy

Saving the future of the Internet of Things

In the emerging device-driven democracy, power in the IoT will shift from the center to the edge.

As devices compete and trade in real-time, they will create liquid markets out of the physical world.

In the IoT of hundreds of billions of devices, connectivity and intelligence will be a means to better products and experiences, not an end.

является непрерывным рядом

блоков, которая содержит в себе полную историю операций. Каждый из этих блоков может содержать любой тип данных, которые разработчик счёл необходимыми в него включить.

организована таким образом, что

транзакции не подтверждаются, пока не будут коллективными усилиями сети упакованы в последовательность блоков. Блок представляет собой запись последних транзакций, которые ещё не были записаны в предыдущие блоки. Он делится на заголовок и список транзакций. Заголовок блока включает в себя свой хеш SHA-256, хеш предыдущего блоктивными усилиями сети упакованы в последовательность блоков. Блок представляет собой запись последних транзакций. В предыдущие блоков блоков включает в себя свой хеш SHA-256, хеш предыдущего блоктивными усилиями сети упакованы в последовательность блоков. Блок представляет собой запись последних транзакций, которые ещё не были записаны в предыдущего ваголовок и список транзакций. В предыдущего блоков блоков включает в себя свой хеш SHA-256, хеш предыдущего блоков. В предыдущего в

