Билинейность геометрического произведения для решения задачи декодирования

Панченко Святослав

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

> Москва, 2021 г.

Цель исследования

Задача

Имея пару синхронизированных временных рядов, требуется построить предсказательную модель, восстанавливающую значения второго ряда по известным значениям первого.

Проблема

Классические методы решения задачи декодирования, такие как high-order PLS, не учитывают геометрическую связь между траекториями временных рядов.

Решение

Предлагается построить предсказательную модель с использованием методов геометрической алгебры, которые позволят использовать скрытую алгебро-геометрическую структуру рядов для снижения размерности и повышения качества предсказания.

Spatio-Temporal Ordinaity Networks для временных рядов

Задача предсказания значений временного ряда

Spatio-Temporal Ordinality Networks

Примеры конфигураций STON в 2D

- (a) Простейшая линейная конфигурация, 3 узла
 - -1 -1
- (b) Кольцевая конфигурация, 5 узлов

(c) Полносвязная круговая конфигурация, 10 узлов

Образы узлов графа

Каждый узел исходно характеризуется набором координат $\vec{x_i} \in \mathbb{R}^3, i=1,...,u.$ Сопоставим узлу следующий 4-вектор:

$$N_i = x_i^{(1)} \wedge x_i^{(2)} \wedge x_i^{(3)} \wedge x_i^{(4)},$$

где

$$\mathbf{x}_i = \vec{x}_i + \frac{1}{2}\vec{x}_i^2e_{\infty} + e_0$$
 – конформный образ центра узла $\mathbf{x}^{(1)} = re_1 + \frac{1}{2}(re_1)^2e_{\infty} + e_0$, $\mathbf{x}_i^{(1)} = \mathbf{x}_i + \mathbf{x}^{(1)}$ $\mathbf{x}^{(2)} = re_2 + \frac{1}{2}(re_2)^2e_{\infty} + e_0$, $\mathbf{x}_i^{(2)} = \mathbf{x}_i + \mathbf{x}^{(2)}$ $\mathbf{x}^{(3)} = re_3 + \frac{1}{2}(re_3)^2e_{\infty} + e_0$, $\mathbf{x}_i^{(3)} = \mathbf{x}_i + \mathbf{x}^{(3)}$ $\mathbf{x}^{(4)} = -re_1 + \frac{1}{2}(-re_1)^2e_{\infty} + e_0$, $\mathbf{x}_i^{(4)} = \mathbf{x}_i + \mathbf{x}^{(4)}$

Формирование признаков: Supreme Hyperfield

Формирование гиперполя V

Формирование признаков: Emergent Hyperfields

Вспомогательные гиперполя - аналоги производных:

$$S_{1,t} = \frac{1}{L_1} \sum_{i=1}^{L_1} (V_t - V_{t-i})$$
$$S_{2,t} = S_{1,t} - S_{1,t-1}$$

$$S_{3,t} = \frac{1}{2L_1} \sum_{i=1}^{2L_1} (V_t - V_{t-i})$$

Для каждого из гиперполей (мультивекторов геометрической алгебры) находим его величину $||V_t||, ||S_{i,t}||$ — сумму коэффициентов в разложении поля по базису алгебры. Итого, имеем четверку $(||V_t||, ||S_{1,t}||, ||S_{2,t}||, ||S_{3,t}||)$ — признаковое описание ряда на момент времени t. Символ нормы далее опускаем.

Гиперполя, пример

Датасет Monthly Sunspots и построенные для него гиперполя

Предлагаемое решение задачи предсказания

Вопрос: как построить предсказание на 1 шаг вперед для X_{t+1} , не зная X_t ? Ответ: сформируем подпоследовательность: ..., X_{t-2u+1} , ..., X_{t-3} , X_{t-2} , X_{t-1} , X_t , X_{t+1} , ... верхний индекс w=2 (шаг подпосл-ти) аналогичный набор признаков $(V_{t+1}^2, S_{1,t+1}^2, S_{2,t+1}^2, S_{3,t+1}^2)$

Аналогично, предсказание для
$$X_{t+1}$$
: $\widehat{X}_{t+1} = f^2_{ heta}ig(V^2_{t+1}, S^2_{1,t+1}, S^2_{2,t+1}, S^2_{3,t+1}ig)$

Эксперимент: датасет Monthly Sunspots

Задача декодирования

STON для задачи декодирования

Предлагаемое решение для задачи декодирования

Эксперимент: датасет Occupancy Detection

Сравнение предсказаний, полученных без и с использованием значений второго ряда

Итоги

- Полученный результат: подтверждена принципиальная применимость описанного метода для задачи декодирования. Сильная сторона метода – возможность снижения размерности пространства от сколь угодно длинных участков траектории до 4 (12) значений.
- Планы на дальнейшее исследование:
 - Обогатить вычислительный эксперимент: датасеты с синхронизированными временными рядами (показатели акселерометра), сравнение с другими предсказательными моделями, подробный анализ ошибки.
 - Исследовать влияние структуры графа STON на результат решения задачи декодирования для рядов разного вида.
 - Исследовать возможность генерации информативных признаков, содержащих информацию о структуре одновременно обоих синхронизированных временных рядов.

Литература

- Clifford Algebra to Geometric Calculus. A Unified Language for Mathematics and Physics, David Hestenes, Garret Eugene Sobczyk, May 1985, American Journal of Physics
- Applications of Clifford's Geometric Algebra, Eckhard Hitzer, Tohru Nitta and Yasuaki Kuroe, May 24, 2013
- Geometric Algebra, Introduction, Eric Chisolm, May 29, 2012
- Geometric Computing with Clifford Algebra, Hestenes et al (2000), in G. Sommer (ed.), Springer Verlag
- Geometric Algebra with Applications in Engineering, Christian Perwass, January 2009
- Estimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra, Robert Jan Valkenburg, Leo Dorst, January 2011