Программный комплекс для исследования маятника

Денис Максимов, Даниил Фомин 01.06.2023

1 Нелинейный маятник

Мы погружаемся в изучение удивительной темы дифференциальных уравнений и динамических систем. Во многом мотивация для изучения динамических систем приходит из рассмотрения реальных объектов и процессов, чьё поведение зависит от времени, при этом будучи подчинённым определённым законам. Про тиакие процессы говорят, что они детерминированные.

Мы рассмотрим пример динамической системы, задаваемой дифференциальным уравнением, а именно физический маятник.

Рис. 1: Физический маятник

Пусть наш маятник — малый груз массы m, подвешенная на плечо длины l. Мы пренебрегаем массой плеча, а также размерами груза (будем считать его материальной точкой). Обозначим за φ угол отклонения от

положения равновесия. Тогда, считая приращение угла $\Delta \varphi$ малым, движение маятника можно представить как прямолинейное движение по касательной к окружности. Вспомним второй закон Ньютона, записанный в дифференциальном виде:

$$F = m\frac{d^2x}{dt^2}$$

где F — сила, m — масса тела.

Запишем второй закон Ньютона в проекции на касательную:

$$m\frac{d^2x}{dt^2} = -mg\sin\varphi$$

Пусть Δx - длина дуги окружности, примерно равная малой части касательной. Тогда $\Delta x = l\Delta \varphi + o(\Delta \varphi)$. Пренебрегая бесконечно малыми членами, запишем уравнение колебаний.

$$ml\frac{d^2\varphi}{dt^2} = -mg\sin\varphi$$

Другой способ вывода уравнения В выводе уравнения маятника мы использовали второй закон Ньютона. Однако, можно обойтись и без него, если использовать закон сохранения энергии. Приведем альтернативный вывод уравнения, основанный на лагранжевой механике.

Кинетическая энергия маятника равна $-\frac{m(l\dot{\varphi})^2}{2}$, потенциальная энергия равна $mgl\cos\varphi$. Функция Лагранжа (кинетическая энергия минус потенциальная энергия, выраженные в переменных координата-скорость) для маятника тогда имеет вид $L=\frac{ml^2\dot{\varphi}^2}{2}+mgl\cos\varphi$. Для консервативной системы справедиво уравнение движения Лагранжа:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x}$$

Подставляя сюда функцию Лагранжа для маятника, получаем точно такое же уравнение физического маятника.

$$ml^2\ddot{\varphi} = -mgl\sin\varphi$$

Исследование уравнения Мы получили уравнение, исходя из физических соображений. Дальнейшее исследование является чисто математическим. Мы собираемся узнать, как устроено пространство состояний маятника, оно же фазовое пространство, какие траектории являются допустимыми и какому виду движения они отвечают.

Теперь сведем уравнение к системе из двух уравнений первого порядка заменой $\dot{\varphi}=\psi$:

$$\begin{cases} \dot{\varphi} = \psi \\ \dot{\psi} = -\omega^2 \sin \varphi \end{cases}$$

Ясно, что фазовое пространство данной системы является двумерным (поскольку имеется две зависимые переменные - φ и ψ), поэтому для точного решения нам необходимо фиксировать два начальных условия, отвечающих координате и скорости. Близкие положения системы должны быть близки и в фазовом пространстве, поэтому на оси φ мы склеим точки π , $-\pi$, чтобы маятник мог делать «солнышко» и его фазовая траектория не была разрывной. Более формально, введем факторпространство по отношению эквивалентности $(\varphi, \psi) \sim (\varphi + 2\pi k, \psi)$). Получаем, что фазовое пространство топологически эквивалентно цилиндру.

Теперь решим систему. Поделив одно уравнение на другое, получаем

$$\frac{d\psi}{d\varphi} = -\frac{\omega^2 \sin \varphi}{\psi}$$

Полная энергия равна константе: $E=\frac{m\psi^2}{2}+\frac{mg}{l}(1-\cos\varphi)$. Выражая отсюда угол, имеем.

$$\varphi = \pm \sqrt{\frac{2}{m} \left(h - \frac{mg}{l} (1 - \cos \varphi) \right)}$$

Функция $F(\varphi) = \frac{mg}{l}(1-\cos\varphi)$ сохряняется вдоль фазовых траекторий, так как $\frac{dF}{dt} = 0$. Её изолинии (то есть уровни постоянной энергии) - одномерные торы (окружнсоти). Из анализа фазовых траекторий можно выяснить, что период колебаний растет по мере увеличения энергии. Также есть два состояния равновесия: верхнее (неустойчивое) и нижнее (устойчивое).