MATH. - NATURWISS. FAKULTÄT Fachbereich informatik Kognitive Systeme · Prof. A. Zell

Artificial Intelligence Assignment 3

Assignment due by: 16.11.2016, Discussion: 22.11.2016

<u>Tutors</u>: Yann Berquin (yann.berquin@uni-tuebingen.de), Isabel Patiño (isabel.patino@uni-tuebingen.de) and Hauke Neitzel (hauke.neitzel@uni-tuebingen.de).

Question 1 Greedy best-first search (6 points)

For this question use the tree search version of greedy best-first search.

Table 1.						
n	h(n)	n	h(n)			
\overline{a}	15	h	3			
$\stackrel{a}{b}$	14	i	4			
c	10	i	1			
d	7	\ddot{k}	0			
e	11	l	2			
f	12	m	1			
g	5	n	2			

Table 2.						
n	h(n)	n	h(n)			
a	17	h	4			
b	16	i	7			
$\overset{c}{d}$	12	j	3			
d	9	k	1			
$\stackrel{\circ}{e}$	13	l	2			
f	14	m	0			
a	8	n	1			

Table 3.							
n	h(n)	n	h(n)				
\overline{a}	17	h	7				
\widetilde{b}	15	i	4				
c	11	$egin{array}{c} h \ i \ j \ k \end{array}$	$ar{2}$				
d	9	\ddot{k}	$\bar{2}$				
e	13	l	0				
f	15	m	2				
\ddot{g}	9	n	5				

- (a) Using the heuristic function shown in Table 1, is it possible to find a path between the node ${\bf a}$ and the target ${\bf k}$? Is the path optimal? Justify your answer.
- (b) Using the heuristic function shown in Table 2, is it possible to find a path between the node d and the target m? Is the path optimal? Justify your answer.
- (c) Using the heuristic function shown in Table 3, is it possible to find the path from b to l? Is the path optimal? What can you conclude about the Greedy best-first search algorithm? Justify your answer.

Question 2 Pathfinding with A* (6 points)

- (a) Find the shortest path between the node a and the target node h using A^* by hand for the left graph. Detail each intermediate step and indicate the f-values. Is there a unique shortest path?
- (b) Using the right graph, try to find the shortest path between the node ${\bf a}$ and the target node ${\bf h}$ using A* by hand. Discuss your results.
- (c) Construct a graph with five nodes, where A* changes the f-value for the target node at least three times. Can you make it change four times?

Question 3 Programming in LISP (1+4+3=8 points)

Download the file graphsearch-astar.lisp, which contains a graph of German cities and the distances between them, as well as the coordinates of each city and some functions to access that information: (expand city) returns a list of all the cities connected to city, (get-distance city1 city2) returns the distance between two adjacent cities in km (or nil if they are not adjacent) and (get-coordinates city) returns the xy position (in km) of city relative to a flat coordinate system. The file also contains function stubs for the different parts of this exercise.

- (a) Implement an admissible heuristic function for A* route planning based on the geographical data available for the graph. (h(n) = 0 is not an acceptable answer).
- (b) Implement A* graph search in LISP. The function you implement should return the total length of the path that was found, the path itself and a list of all the cities visited by the algorithm. You do not need to use efficient data-structures for priority-queues or sets when implementing this graph search algorithm (e.g. use simple sorted or unsorted list).
- (c) Calculate the shortest path from any city to Hamburg and fill in a list of pairs $(c_i, distance(c_i, Hamburg))$ for all cities c_i , sorted in ascending order by distance. What would be the most efficient way to calculate this?