2017-2018 学年第一学期考试试题

课程名称 线性代数

任课教师签名

出题教师签名 题库出题

审题教师签名

考试方式

(闭)卷

适用专业 工科本科 40 学时

考试时间

(120

)分钟

题号	_	=	Ξ	四	五	六	七	总分
得分								
评卷人								

- 一、选择题(本题满分16分. 共4个小题,每小题4分. 在每小题的选项中,只 有一项符合要求, 把所选项前的字母填在题中括号内)
- 1. 设A 是n 阶方阵,A 经过若干次初等行变换变成B,则(
- (A) 存在可逆阵 P, 使 AP = B; (B) 存在可逆阵 Q, 使 A = QB;
- (C) 存在可逆阵 \mathbf{O} , 使 $\mathbf{A} = \mathbf{BO}$;
 - (D) 以上结论都不对.
- 2. 设 \mathbf{A} . \mathbf{B} 都是 \mathbf{n} 阶方阵,则必有 ().
- (A) |A + B| = |A| + |B|;
- (B) AB = BA;
- (C) $(A+B)^{-1} = A^{-1} + B^{-1}$;
- (D) |AB| = |BA|.
- 3. 设有两个n维向量组(I): a_1, a_2, \dots, a_r 和(II): $a_1, a_2, \dots, a_r, a_{r+1}, \dots, a_m$, 其中m > r ≥ 1,则下列结论正确的是(
- (A) 向量组(I) 线性相关时,向量组(II) 线性相关:
- (B) 向量组(I) 线性无关时,向量组(II) 线性无关;
- (C) 向量组(Ⅱ)线性相关时,向量组(I)线性相关;
- (D) 以上结论都不对.

- (A) 0:(B) 0.1:(C) 10: (D) -10.
- 二、填空题(本题满分16分. 共4个小题,每小题4分.)

- 2. 设 A^* 是三阶可逆方阵A的伴随矩阵,|A|=2,则 $(A^*)^*=$ __A.
- 3. 若 A 是三阶方阵,且 A 的特征值为 6 , 8 , 11 ,则 |A-5E|=______.
 - 4. 设 $A \neq m \times 3$ 的矩阵, 且R(A) = 1, 若非齐次线性方程组Ax = b 的三个解向量

 η_1, η_2, η_3 满 足 $\eta_1 + \eta_2 = (1, 2, 3)^T, \eta_2 + \eta_3 = (6, -1, 1)^T, \eta_2 + \eta_3 = (5, 1, 0)^T$ 则 Ax = b 的通解为

三、计算题(本题满分30分.共5个小题,每小题6分.)

2. 计算行列式
$$D = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}$$
 $(abc \neq 0)$.

3. 验证
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ 是 R^3 的一个基,并求 $\mathbf{a} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ 在该基下的

坐标.

4. 设线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0, \\ x_1 + \mu x_2 + x_3 = 0, 没有非零解,问 λ , μ 应满足什么条件?
$$x_1 + 2\mu x_2 + x_3 = 0 \end{cases}$$$$

5.
$$\[\text{∂A} = \begin{pmatrix} 1 & -2 & -4 \\ -2 & x & -2 \\ -4 & -2 & 1 \end{pmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -4 \end{bmatrix} \]$$
 $\[\text{$d A$} = \begin{pmatrix} 1 & -2 & -4 \\ -2 & x & -2 \\ 0 & 0 & -4 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix} \]$

四、解答题(本题满分8分.)

已知
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & -1 & 1 & 0 \\ 0 & 2 & 2 & -8 & 8 \\ -4 & 5 & 1 & 9 & -9 \\ 1 & 0 & 1 & -7 & 8 \end{pmatrix}$$
, 求 $R(\mathbf{A})$ 及 \mathbf{A} 的列向量组的一个极大无关

组,并将其余列向量用该极大无关组线性表示.

五、解答题(本题满分8分.)

求方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0, \\ x_1 + 2x_2 + 3x_3 + 3x_4 + 5x_5 = 0, \\ 3x_1 + 2x_2 + x_3 + x_4 - x_5 = 0, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 + x_5 = 0 \end{cases}$$
的基础解系及通解.

六、解答题(本题满分10分.)

求一个正交变换 $\mathbf{x} = \mathbf{P}\mathbf{y}$,将二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$ 化为标准形.

七、证明题(本题满分12分. 共2个小题,每小题6分.)

- 1. 设A 是n 阶方阵, 若对任何n 维列向量b, 方程Ax = b 都有解, 则R(A) = n.
- 2. 设 λ 是实正交矩阵 A 的一个实特征值,试证: $\lambda^2 = 1$.