

מחלקה למדעי המחשב

י"ד באלול תשפ"ד 17/09/24

09:00-12:00

קריפטוגרפיה

מועד ב'

מרצה: ד"ר ירמיהו מילר.

תשפ"ד סמסטר ב'

השאלון מכיל 11 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

. אפורפים לשאלון, (A4 עמודים בפורמט B), מצורפים לשאלון.

אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - . יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות.
 - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
 - הסבירו היטב את מהלך הפתרון.

שאלה 1 (25 נקודות)

הוכיחו כי פונקצית ההצפנה ופונקצית הפענוח של צופן ה-RSA הן פונקציות הופכיות.

שאלה 2 (25 נקודות)

n=pq מספרים ראשוניים וכן p,q יהיו $\lambda:\mathbb{N} o \mathbb{N}$ תהי

$$\lambda(n) = \frac{(p-1)(q-1)}{\gcd(p-1, q-1)}$$
.

 $\phi(n)$ -ש הוא ש- RSA לבין הצופן החדש הוא ש- RSA. ההבדל היחיד בין צופן ה-RSA לבין הצופן החדש הוא ש- גדיר צופן החדש הוא ש- הוחלפה עם $\lambda(n)$ כך ש-

$$ab \equiv 1 \mod \lambda(n)$$

.RSA- אותם המספרים שמופיעים בההגדרה של צופן ה-bו- aראשר הוכיחו הם אותם הוכיחו הכלל מצפין והכלל מפענח של הצופן החדש הם פונקציות הופכיות.

שאלה 3 בעלת פונקצית הסתברות עקסט אלוי בעלת 15, תהי $X=\{\mathtt{s},\mathtt{t},\mathtt{u}\}$ עהי בעלת 25)

$$P_X(s) = \frac{1}{6}$$
, $P_X(t) = \frac{1}{4}$, $P_X(u) = \frac{7}{12}$.

תהי בעלי הסתברות מפתחות קבוצת אבוצת אווה. $K = \{k_1, k_2, k_3, k_4\}$ תהי $Y = \{\mathtt{A}, \mathtt{B}, \mathtt{C}\}$ תהי

$$e_{k_i}(x) = 2x + i \mod 3$$

 $i\in\{1,2,3,4\}$ כלל מצפין לכל $x\in\mathbb{Z}_{26}$ ולכל

(20) (א) (א)

מצאו את הפונקצית הסתברות של הטקסט מוצפן.

ב) (5 נקודות)

הוכיחו או הפריכו על ידי דוגמה נגדית: לקריפטו-מערכת זו יש סודיות מושלמת.

שאלה 4 (25 נקודות)

בוב צריך מפתח הסודי המתאים למפתח הציבורי הזה, כדי לפענח את הטקסט מוצפן אשר אליס שולחת.

א) (10 נקודות) חשבו את המפתח הסודי.

ב) (15 נקודות)

הטקסט המוצפן של ההודעה אשר בוב מקבל הוא (3,42). מצאו את הטקסט הגלוי של ההודעה.

שאלה 5 (25 נקודות)

בשאלה הזאת אין קשר בין הסעיפים.

(15 נקודות) (א

אליס שולחת לבוב הודעה.

 $.k = \begin{pmatrix} 4 & 2 & 3 & 1 \end{pmatrix}$ אליס הצפינה את ההודעה באמצעות צופן תמורה עם המפתח $.y = {\tt DOOGKUCL}$ הטקסט המוצפן של ההודעה אשר בוב מקבל הוא מצאו את הטקסט גלוי של ההודעה אשר אליס שלחה.

ב) (10 נקודות)

יהי \mathbb{Z}_{29} מפתח של צופן אפיני מעל k=(5,21) יהי

$$d_k(y) = ay + b$$

 $a,b\in\mathbb{Z}_{29}$ ו- $y\in\mathbb{Z}_{29}$ ו- מפענח של צופן האפיני הזה לכל מפענח של ווא הכלל מפענח של ווא הייני האם ווא הייני הא

פתרונות

שאלה 1 (25 נקודות)

א) (20 נקודות)

צופן RSA ניתן לפענח אומר ש-

$$d_k\left(e_k(x)\right) = x \qquad \Leftrightarrow \qquad$$
פענוח $(x) = x$.

כאשר k=(p,q,a,b) רושמים לכל מפתח (דף הנוסחאות). RSA שלב וכלל המצפין וכלל המצפין וכלל את כלל מפתח (דף הנוסחאות). איניים, a,b שלמים נגדיר p,q

$$\left. \begin{array}{ll} e_k(x) &= x^b \mod n \\ d_k(y) &= y^a \mod n \end{array} \right\} \qquad n = pq \ , \qquad ab \equiv 1 \mod \phi(n) \ .$$

שלב 2) צריך להוכיח כי

$$d_k(e_k(x)) = x \qquad \Leftrightarrow \qquad d_k(x^b \mod n) = x \qquad \Rightarrow \qquad (x^b)^a \equiv x \mod n$$

 $\left(x^{b}\right)^{a}\equiv x\mod n$ -שאנחנו רוצים להוכיח היא איי הטענה שאנחנו רוצים אייא

שלב p,q (3 שלב

$$\phi(n) \stackrel{\mathsf{Tr}}{=} (p-1)(q-1)$$
 .

מכאן

$$ab \equiv 1 \mod \phi(n) \quad \Rightarrow \quad ab \equiv 1 \mod (p-1)(q-1)$$

לכן קיים שלם

$$ab - 1 = t(p-1)(q-1)$$
.

שלב 4)

$$x^{ab-1} = x^{t(p-1)(q-1)} = y^{p-1}$$

 $.y^{p-1}\equiv 1\mod p$ לכל p שלם ולכל y שלם נוסחאות (דף נוסחאות) ברמה (דף משפט פרמה . $y=x^{t(q-1)}$ לפיכך

$$y^{p-1} \equiv 1 \mod p \quad \Rightarrow \quad x^{ab-1} \equiv 1 \mod p \ .$$

שלב 5)

$$x^{ab-1} = x^{t(p-1)(q-1)} = z^{q-1}$$

 $z=x^{t(p-1)}$ כאשר

ראשוני לכן q

$$z^{q-1} \equiv 1 \mod q \quad \Rightarrow \quad x^{ab-1} \equiv 1 \mod q \ .$$

המכללה האקדמית להנדסה סמי שמעון

שלב 6) מכיוון ש-p,q ראשוניים אז

$$\left. \begin{array}{ll} x^{ab-1} & \equiv 1 \mod p \\ x^{ab-1} & \equiv 1 \mod q \end{array} \right\} \quad \Rightarrow \quad x^{ab-1} \equiv 1 \mod pq$$

לפיכד

$$x^{ab-1} \equiv 1 \mod n \quad \Rightarrow \quad \left(x^b\right)^a \equiv x \mod n$$

כנדרש.

שאלה 2 (25 נקודות)

שלב 1) רושמים את הצופן:

$$\left. \begin{array}{ll} e_k(x) &= x^b \mod n \\ d_k(y) &= y^a \mod n \end{array} \right\} \qquad n = pq \ , \qquad ab \equiv 1 \mod \lambda(n) \ .$$

שלב 2) נתון כי p' שלם כך $d=\gcd(p-1,q-1)$ ז"א שקיים p' שלם כך ש-

$$p-1=p'd \quad \Leftrightarrow \quad \frac{p-1}{d}=p' \quad \Leftrightarrow \quad d=\frac{p-1}{p'} \ .$$
 (#1)

-באותה מידה קיים q^\prime שלם כך ש

$$q-1=q'd \quad \Leftrightarrow \quad \frac{q-1}{d}=q' \quad \Leftrightarrow \quad d=\frac{q-1}{q'} \; .$$
 (#2)

שלב 3)

$$\lambda(n) = \frac{(p-1)(q-1)}{\gcd(p-1, q-1)} = \frac{(p-1)(q-1)}{d}.$$

$$\lambda(n) \stackrel{\text{\tiny (\#1)}}{=} \frac{(p-1)(q-1)}{\left(\frac{p-1}{p'}\right)} = p'(q-1) \ . \quad \Leftrightarrow \quad d = \frac{p-1}{p'} \ . \tag{1*}$$

$$\lambda(n) \stackrel{\text{(\#2)}}{=} \frac{(p-1)(q-1)}{\left(\frac{q-1}{q'}\right)} = q'(p-1) \ . \quad \Leftrightarrow \quad d = \frac{p-1}{p'} \ . \tag{2*}$$

-שלב t שלב (נתון) לכן קיים $ab\equiv 1 \mod \lambda(n)$

$$ab = 1 + t\lambda(n) \stackrel{\text{(2*)}}{=} 1 + t(p-1)q'$$
.

המכללה האקדמית להנדסה סמי שמעון

לכן

$$ab - 1 = t(p-1)q'.$$

מכאן

$$x^{ab-1}x^{tq'(p-1)}=y^{p-1}\stackrel{\mathsf{ergn}}{\equiv} 1\mod p$$

כאשר אפיכך מספר שני. לפיכך מתקיים בגלל ש- $y=x^{tq'}$ כאשר כאשרי.

$$x^{ab-1} \equiv 1 \mod p \ .$$

-שלב t שלם כך שלם (נתון) מ $b\equiv 1 \mod \lambda(n)$

$$ab = 1 + t\lambda(n) \stackrel{\text{(1*)}}{=} 1 + t(q-1)p'$$
.

לכן

$$ab - 1 = t(q-1)p'.$$

מכאן

$$x^{ab-1}x^{tp'(q-1)}=z^{q-1}\stackrel{\text{erg}}{\equiv} 1\mod q$$

כאשר $z=x^{tp'}$ מספר השוויון השני מתקיים בגלל ש- כאשר כאשוני.

$$x^{ab-1} \equiv 1 \mod q \ .$$

שלב 6) מכיוון ש- p,q ראשוניים אז

$$\left. \begin{array}{ll} x^{ab-1} & \equiv 1 \mod q \\ x^{ab-1} & \equiv 1 \mod q \end{array} \right\} \quad \Rightarrow \quad x^{ab-1} \equiv 1 \mod pq$$

לפיכד

$$x^{ab-1} \equiv 1 \mod n \quad \Rightarrow \quad \left(x^b\right)^a \equiv x \mod n$$

כנדרש.

שאלה 3 (25 נקודות)

(N

	s	t	u
k_1	В	A	С
k_2	С	В	A
k_3	A	С	В
k_4	В	А	С

(2

$$P(Y = y) = \sum_{k \in K} P(K = k) P(X = d_k(y))$$
.

$$P_{Y}(A) = \sum_{k \in k_{1}, k_{2}, k_{3}, k_{4}} P(K = k_{i}) P(X = d_{k_{i}}(A))$$

$$= P\left(K = k_1\right) P\left(X = d_{k_1}(\mathbb{A})\right) + P\left(K = k_2\right) P\left(X = d_{k_2}(\mathbb{A})\right) + P\left(K = k_3\right) P\left(X = d_{k_3}(\mathbb{A})\right) + P\left(K = k_4\right) P\left(X = d_{k_4}(\mathbb{A})\right) \\ = P\left(K = k_1\right) P\left(X = \mathbb{E}\right) + P\left(K = k_2\right) P\left(X = \mathbb{E}\right) + P\left(K = k_3\right) P\left(X = \mathbb{E}\right) + P\left(K = k_4\right) P\left(X = \mathbb{E}\right) \\ = \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{7}{12} + \frac{1}{4} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{4} \\ = \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{7}{12} + \frac{1}{4} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{4}$$

$$\begin{split} &P_{Y}\left(\mathbf{B}\right) = \sum_{k \in k_{1}, k_{2}, k_{3}, k_{4}} P\left(K = k_{i}\right) P\left(X = d_{k_{i}}(\mathbf{B})\right) \\ &= P\left(K = k_{1}\right) P\left(X = d_{k_{1}}(\mathbf{B})\right) + P\left(K = k_{2}\right) P\left(X = d_{k_{2}}(\mathbf{B})\right) + P\left(K = k_{3}\right) P\left(X = d_{k_{3}}(\mathbf{B})\right) + P\left(K = k_{4}\right) P\left(X = d_{k_{4}}(\mathbf{B})\right) \\ &= P\left(K = k_{1}\right) P\left(X = \mathbf{s}\right) + P\left(K = k_{2}\right) P\left(X = \mathbf{t}\right) + P\left(K = k_{3}\right) P\left(X = \mathbf{u}\right) + P\left(K = k_{4}\right) P\left(X = \mathbf{s}\right) \\ &= \frac{1}{4} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{7}{12} + \frac{1}{4} \cdot \frac{1}{6} \end{split}$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | חייג: ≋⊠ספםס

$$\begin{split} &P_{Y}\left(\mathtt{C}\right) = \sum_{k \in k_{1}, k_{2}, k_{3}, k_{4}} P\left(K = k_{i}\right) P\left(X = d_{k_{i}}(\mathtt{C})\right) \\ &= P\left(K = k_{1}\right) P\left(X = d_{k_{1}}(\mathtt{C})\right) + P\left(K = k_{2}\right) P\left(X = d_{k_{2}}(\mathtt{C})\right) + P\left(K = k_{3}\right) P\left(X = d_{k_{3}}(\mathtt{C})\right) + P\left(K = k_{4}\right) P\left(X = d_{k_{4}}(\mathtt{C})\right) \\ &= P\left(K = k_{1}\right) P\left(X = \mathtt{u}\right) + P\left(K = k_{2}\right) P\left(X = \mathtt{s}\right) + P\left(K = k_{3}\right) P\left(X = \mathtt{t}\right) + P\left(K = k_{4}\right) P\left(X = \mathtt{u}\right) \\ &= \frac{1}{4} \cdot \frac{7}{12} + \frac{1}{4} \cdot \frac{1}{6} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{7}{12} \\ &= \frac{19}{48} \; . \end{split}$$

$$.P_{Y}\left(\mathtt{A}\right)+P_{Y}\left(\mathtt{B}\right)+P_{Y}\left(\mathtt{C}\right)=\frac{5}{16}+\frac{7}{24}+\frac{19}{48}=1$$
 בדיקה:

ג) מתקיים. תנאי משלמת אם התנאי P(Y=y|X=x) = P(Y=y) מתקיים. תנאי השקול לקריפטו-מערכת ש סודיות מושלמת אם התנאי P(X=x|Y=y) = P(X=x)

$$.P(Y=y|X=x) = \sum\limits_{\substack{k \in K \\ x = d_k(y)}} P(K=k_i)$$
:בדף נוסחאות:

לכן

$$P(Y = A|X = s) = \sum_{\substack{k \in \{k_1, k_2, k_3, k) \neq k_3 \\ s = d_{k_i}(A)}} P(K = k_i) = P(K = k_3) = \frac{1}{4}.$$

$$P(Y = A) = \frac{5}{16} .$$

. מושלמת מושלמת אין אין לקריפטו-מערכת ל $\frac{1}{4}=P\left(Y=\mathtt{A}|X=\mathtt{s}\right)\neq P\left(Y=\mathtt{A}\right)=\frac{5}{16}$ הרי

שאלה 4

(N

$$\beta = \alpha^a \mod p = 12^{10} \mod 47 \ .$$

מכיוון ש- 8+2 ניתן להשתמש בשיטית הריבועים:

$$12^2 \mod 47 = 3$$
.

$$12^4 \mod 47 = 3^2 \mod 47 = 9 \mod 47 \qquad = 9 \ .$$

$$12^8 \mod 47 = 9^2 \mod 47 = 81 \mod 47 = 34$$
.

לכן

$$12^{10} \mod 47 = (3)(34) \mod 47 = 102 \mod 47 = 8.$$

$$.\beta = 8$$
 א"ז

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | חיי**ג: ≋סחפוס**

(1

:1 שיטה

$$x=(y_1^a)^{-1}\cdot y_2\mod p=(3^{10})^{-1}\cdot 42\mod 47$$

$$(3^{10})^{-1}\mod 47\overset{\text{ergs}}{=}3^{47-1-10}\mod 47=3^{36}\mod 47 \ .$$

$$3^{2}\mod 47\qquad \qquad =9\ ,$$

$$3^{4}\mod 47=81\mod 47\qquad \qquad =34\ ,$$

$$3^{8}\mod 47=81^2\mod 47=6561\mod 47=28\ ,$$

$$3^{16}\mod 47=28^2\mod 47=784\mod 47=32\ ,$$

$$3^{32}\mod 47=32^2\mod 47=1024\mod 47=37\ .$$

$$3^{36}\mod 47=(37)(34)\mod 47=1258\mod 47=36$$

 $x = (y_1^a)^{-1} \cdot y_2 \mod p = (3^{10})^{-1} \cdot 42 \mod 47 = (36)(42) \mod 47 = 1512 \mod 47 = 8$

:2 שיטה

$$.A = 3^{10} = 59049, B = 47$$

$$r_0 = A = 3^{10} = 59049 , \qquad r_1 = B = 47 ,$$

$$s_0 = 1 , \qquad s_1 = 0 ,$$

$$t_0 = 0 , \qquad t_1 = 1 .$$

$q_1 = 1256$	$t_2 = 0 - 1256 \cdot 1 = -1256$	$s_2 = 1 - 1256 \cdot 0 = 1$	$r_2 = 59049 - 1256 \cdot 47 = 17$	i=1 שלב
$q_2 = 2$	$t_3 = 1 - 2 \cdot (-1256) = 2513$	$s_3 = 0 - 2 \cdot 1 = -2$	$r_3 = 47 - 2 \cdot 17 = 13$:i=2 שלב
$q_3 = 1$	$t_4 = -1256 - 1 \cdot (2513) = -3769$	$s_4 = 1 - 1 \cdot (-2) = 3$	$r_4 = 17 - 1 \cdot 13 = 4$:i=3 שלב
$q_4 = 3$	$t_5 = 2513 - 3 \cdot (-3769) = 13820$	$s_5 = -2 - 3 \cdot (3) = -11$	$r_5 = 13 - 3 \cdot 4 = 1$:i=4 שלב
$q_5 = 4$	$t_6 = -3769 - 4 \cdot (13820) = -59049$	$s_6 = 3 - 4 \cdot (-11) = 47$	$r_6 = 4 - 4 \cdot 1 = 0$:i=5 שלב

המכללה האקדמית להנדסה סמי שמעון

$$gcd(A, B) = r_5 = 1$$
, $x = s_5 = -11$, $y = t_5 = 13820$.

$$Ax + By = 3^{10}(-11) + 47(13820) = 1$$
.

מכאן

$$-11(3^{10}) = 1 - 47(13820)$$
 \Rightarrow $-11(3^{10}) \equiv 1 \mod 47$ \Rightarrow $\left(3^{10}\right)^{-1} = -11 \mod 47 = 36 \mod 47$.

 $x = (3^{10})^{-1} \cdot 42 \mod 47 = (36)(42) \mod 47 = 1512 \mod 47 = 8$.

שאלה 5 (25 נקודות)

א"ז , $\pi = (4231)$ (א

$$\pi = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array}\right)$$

ומכאן

$$\pi^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{array}\right) .$$

$x \in P$	D	0	0	G	K	U	С	L
$x \in \mathbb{Z}_{26}$	3	14	14	6	10	20	2	11
$y = d_k(x)$	6	14	14	3	11	20	2	10
$y \in C$	g	0	0	d	1	u	С	k

מכאך מכאך .
$$e_k(x)=5x+21 \mod 29$$
 (ב $x=5^{-1} \, (y-21)$

נחשב את האיבר ההופכי של \mathbb{Z}_{29} ב- \mathbb{Z}_{29} באמצעות של אוקליד:

$$29 = 5(5) + 4$$

$$5 = 1(4) + 1$$

$$4 = 4(1) + 0$$

$$1 = 5 - 4$$

$$= 5 - (29 - 5(5))$$

$$= 6(5) - 29$$

$$= 6(5) + (-1)(29)$$

 $.5^{-1} \mod 29 = 6$ מכאן

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

לכן

$$x = 5^{-1}y - 5^{-1}(21) \mod 29 = 6y - 6(21) \mod 29 = 6y - 126 \mod 29 = 6y + 19 \mod 29$$

לפיכך

$$d_k(y) = 6y + 19 \mod 29$$
,

$$.b = 19$$
 , $a = 6$ ז"א