Definition.

Definition (Exponential generating function).

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example.

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

$$1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example.

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

$$1 + 3x + 3^2 \frac{x^2}{2!} + 3^3 \frac{x^3}{3!} + \cdots$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

$$1 + 3x + 3^2 \frac{x^2}{2!} + 3^3 \frac{x^3}{3!} + \dots = e^{3x}$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^2 \frac{x^2}{2!} + 3^3 \frac{x^3}{3!} + \dots = e^{3x}$$

Example.

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$ Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!}$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

$$a_0 + a_1 x + a_2 x^2 + \dots = a_0 + (a_1 1!) \frac{x}{1!} + (a_2 2!) \frac{x^2}{2!} + \dots$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

$$(1+\frac{x}{1!}+\frac{x^2}{2!})$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Definition (Exponential generating function).

$$a_0 + a_1 x + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \cdots$$

Example. Sequence: $(1, 1, 1, \ldots,)$

Generating function:

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. Sequence: $(1, 3, 3^2, \ldots,)$

Generating function:

$$1 + 3x + 3^{2} \frac{x^{2}}{2!} + 3^{3} \frac{x^{3}}{3!} + \dots = e^{3x}$$

Example. Sequence: $(P_0^n, P_1^n, P_2^n, \dots, P_n^n)$

Generating function:

$$P_0^n + P_1^n x + P_2^n \frac{x^2}{2!} + P_3^n \frac{x^3}{3!} + \dots + P_n^n \frac{x^n}{n!} = (1+x)^n$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Example.

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution.

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \cdots$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$
$$(1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots)^2 = e^{2x}$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$
$$(1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots)^2 = e^{2x}$$

Answer: 2^n

Example.

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$
$$(1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots)^2 = e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2=e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution.

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2=e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$
$$(1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots)^2 = e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets (of preimages)

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2=e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets (of preimages)

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \cdots$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2=e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets (of preimages)

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2=e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets (of preimages)

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^m$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^2=e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets (of preimages)

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^m=e^{mx}$$

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$

Solution. Number of ways to "form a set":

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$
$$(1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots)^2 = e^{2x}$$

Answer: 2^n

Example. Number of functions from an n-element set to $\{1, \ldots, m\}$ for a fixed m.

Solution. Each function partitions the set into m subsets (of preimages)

$$1 + 1x + 1\frac{x^2}{2!} + 1\frac{x^3}{3!} + \dots = e^x$$

$$(1+1x+1\frac{x^2}{2!}+1\frac{x^3}{3!}+\cdots)^m=e^{mx}$$

Answer: m^n

Example. In how many ways can k balls chosen out of 2 red and 3 yellow be arranged?

Solution.

$$(1 + \frac{x}{1!} + \frac{x^2}{2!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!})$$

k! times the kth coefficient

Example. In how many ways can k balls chosen out of infinitely many red and yellow ones be arranged?

Solution.

$$(1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots)^2$$