What we wanted to do

Insights

Improvement vs. Deterioration

Hotspots & Patterns

Further Analysis

How to improve GFP's tolerance towards mutations

Data analysis group project 2023

A presentation by Roman Kurley, Angela Ma, Lisa Duttenhöfer, Rebecca Ress

Our dataset

Does the position or new amino acid have a bigger influence on dms-scores?

Does the position or new amino acid have a bigger influence on dms-scores?

Amino acid properties

Unmutated sequence: ERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKG

AEVRFEG

AEVRFEG

Neighbourhood

	Mutation	Neighbourhood	Molecular Weight	Residue Weight	pKa1	pKb2	pl4	Н	VSC	P1	P2	SASA	NCISC
972	K113R	AEVRFEG	914.97	788.87	15.38	66.42	40.61	-0.64	443.5	63.3	1.069	12.219	0.337986
973	K113R-unmut	AEVKFEG	886.96	760.86	15.39	66.33	39.59	0.39	438.5	64.1	0.997	11.917	0.312107

Sequential Mutants

Epistasis

mutations can have different effects on their own than when they occur together

masking effect

in our case: interaction of amino acid residues within the protein

Structural Analysis

→ epistatic effects are stronger for buried amino acid residues

Chudakov, Dmitriy M et al. "Fluorescent proteins and their applications in imaging living cells and tissues." Physiological reviews vol. 90,3 (2010): 1103-63. doi:10.1152/physrev.00038.2009

Analysis of stabilzing mutations

Find mutations that have a positive epistatic effect on mutants

The impact of the amount of mutations

- Big impact of mutation count on protein fitness
- Mann Whitney U Test:
- → from seven mutations on protein is mostly non-functional
- Involve in further analysis

Ranking results

ranking3 score

V163A 388.828780 I171V 257.867360 S175G 219.571456 K113R 216.440643 I167V 212.858116

D117G 188.616871

K156R 187.935465

N144D 180.941018

K214E 180.634375

D129G 173.797917

K158R 172.884196

N105S 169.893861

I167T 168.779007

I123V 164.639468

T38A 164.520162

Formel

1

ranking5_score

V163A 5006189.732314

I171V 3284110.661276

S175G 3094377.775957

I167V 2866717.401939

K113R 2701526.013427

K214E 2389711.380513

K156R 2353862.372659

T38A 2150345.797784

D129G 2146870.162859

N144D 2143126.811354

D117G 2134821.905162

N105S 2095489.897094

I167T 2058640.353017

K158R 2051455.254767

I123V 2021080.178848

Formel 2

ranking5_score_weighted1

V163A 4430848.344827

I171V 4293815.100407

K214E 3983177.620595

F99L 3863113.192576

S175G 3802096.004937

T97A 3376546.402760

K158R 3332382.935368

K113R 3325591.957366

T43A 3237913.089066

N144D 3214758.885099

F223S 3133546.974888

K79R 3102521.890041

I167V 3059591.012304

M153V 3039109.402483

N121S 2976874.671938

Formel 3

How to define stabilzing mutations

- 1. Wie viel besser sind die fscores der Mutanten die die Mut beinhalten im Gegensatz zu den anderen?
- → Differenz = mean_aller_fscores_MIT mean_aller_fscores_OHNE
- → Wenn stabilsierend (positiver Effekt) → MIT > OHNE → Differenz > 0

- 2. Sehr unterschiedlich wie oft eine Mut im Datenset vorkommt
- → Einbeziehen (Anzahl der Vorkommnisse einer Mut im Datenset

Protein Stability

Thermodynamic stability

Relationship between $\Delta\Delta G$ and DMS Score

PyRosetta used as Prediciton Model

 $\Delta\Delta G$ = Difference between ΔG of the WT and Mutants

No correlation between $\Delta\Delta G$ and

Thanks for listening!