On the Worst-Case Complexity of TimSort

Jan Kukowski, Szymon Wojtulewicz

Marzec 2024

On the Worst-Case Complexity of TimSort

```
https://drops.dagstuhl.de/storage/00lipics/
lipics-vol112-esa2018/LIPIcs.ESA.2018.4/LIPIcs.ESA.
2018.4.pdf
```

Geneza powstania

"Among Python users the most frequent complaint I've heard is that list.sort() isn't stable."

Geneza powstania

"Among Python users the most frequent complaint I've heard is that list.sort() isn't stable."

"I couldn't resist taking a crack at a new algorithm that might be practical, and have something you might call a non-recursive adaptive stable natural mergesort / binary insertion sort hybrid."

Geneza powstania

"Among Python users the most frequent complaint I've heard is that list.sort() isn't stable."

"I couldn't resist taking a crack at a new algorithm that might be practical, and have something you might call a non-recursive adaptive stable natural mergesort / binary insertion sort hybrid."

— Tim Peters

 $https://mail.\ python.\ org/pipermail/python-dev/2002-July/026837.\ html$

▶ 2002 - *TimSort* jest wynaleziony

- ▶ 2002 *TimSort* jest wynaleziony
- ▶ 2003 TimSort domyślnym algorytmem w pythonie

- ▶ 2002 *TimSort* jest wynaleziony
- ▶ 2003 TimSort domyślnym algorytmem w pythonie
- ▶ 2011 *TimSort* domyślnym algorytmem w *javie*

- ▶ 2002 *TimSort* jest wynaleziony
- ▶ 2003 TimSort domyślnym algorytmem w pythonie
- 2011 TimSort domyślnym algorytmem w javie
- ≥ 2015 odkryto, że *TimSort* zawiera błąd http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf

- 2002 TimSort jest wynaleziony
- ▶ 2003 TimSort domyślnym algorytmem w pythonie
- 2011 TimSort domyślnym algorytmem w javie
- ▶ 2015 odkryto, że *TimSort* zawiera błąd http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
- ► Grudzień 2015 preprint omawianej pracy i pierwszy dowód złożoności $\mathcal{O}(n \log n)$

- 2002 TimSort jest wynaleziony
- ▶ 2003 *TimSort* domyślnym algorytmem w *pythonie*
- 2011 TimSort domyślnym algorytmem w javie
- ≥ 2015 odkryto, że *TimSort* zawiera błąd http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
- Grudzień 2015 preprint omawianej pracy i pierwszy dowód złożoności $\mathcal{O}(n \log n)$
- ▶ 2018 publikacja pracy i dowód złożoności $\mathcal{O}(n + n \log \rho)$

Co pokażemy

▶ TimSort działa w czasie $\mathcal{O}(n \log n)$

Co pokażemy

- ▶ TimSort działa w czasie $\mathcal{O}(n \log n)$
- ► TimSort działa w czasie $O(n + n \log ρ)$

Co pokażemy

- ▶ TimSort działa w czasie $\mathcal{O}(n \log n)$
- ► TimSort działa w czasie $\mathcal{O}(n + n \log \rho)$

Oczywiście $\mathcal{O}(n + n \log \rho)$ implikuje $\mathcal{O}(n \log n)$

Czym jest ρ

[12] [987] [8] [123456]

Czym jest ρ

Algorytm opiera się na podziale danych wejściowych na monotoniczne podciągi/runs.

Czym jest ρ

- Algorytm opiera się na podziale danych wejściowych na monotoniczne podciągi / runs.
- ightharpoonup
 ho to liczba tych podciągów.

Schemat działania

```
R_1
```

Pseudokod

4

5 6

7

8

9 10

```
Input: A sequence S to sort
   Result: The sequence S is sorted into a single run, which remains on the stack.
   Note: At any time, we denote the height of the stack \mathcal{R} by h and its i^{th} top-most
           run (for 1 \le i \le h) by R_i. The size of this run is denoted by r_i.
1 runs \leftarrow the run decomposition of S
   \mathcal{R} \leftarrow \text{an empty stack}
   while runs \neq \emptyset do
                                                            // main loop of TimSort
        remove a run r from runs and push r onto R
                                                                                     // #1
        while true do
              if h \ge 3 and r_1 > r_3 then merge the runs R_2 and R_3
                                                                                    // #2
              else if h \ge 2 and r_1 \ge r_2 then merge the runs R_1 and R_2
                                                                                    // #3
              else if h \ge 3 and r_1 + r_2 \ge r_3 then merge the runs R_1 and R_2 // #4
              else if h \ge 4 and r_2 + r_3 \ge r_4 then merge the runs R_1 and R_2
                                                                                    // #5
              else break
11 while h \neq 1 do merge the runs R_1 and R_2
```

Każdy element otrzymuje 2 ◊-tokeny i 1 ♡-token, gdy jest wstawiany na stos w #1, oraz za każdym razem gdy zmniejsza się jego wysokość w stosie

Każdy element otrzymuje 2 ◊-tokeny i 1 ♡-token, gdy jest wstawiany na stos w #1, oraz za każdym razem gdy zmniejsza się jego wysokość w stosie

▶ #2 Każdy element R_1 oraz R_2 płaci $1 \diamondsuit$ -token. Wystarczy tokenów ponieważ $r_3 < r_1$, więc $r_2 + r_3 \le r_1 + r_2$

Każdy element otrzymuje 2 \diamond -tokeny i 1 \heartsuit -token, gdy jest wstawiany na stos w #1, oraz za każdym razem gdy zmniejsza się jego wysokość w stosie

- #2 Każdy element R₁ oraz R₂ płaci 1 ◊-token. Wystarczy tokenów ponieważ r₃ < r₁, więc r₂ + r₃ ≤ r₁ + r₂
- ▶ #3 Każdy element R_1 płaci 2 \diamondsuit -tokeny. Wystarczy tokenów ponieważ $r_2 \le r_1$, więc $r_2 + r_1 \le 2r_1$

Każdy element otrzymuje 2 \diamond -tokeny i 1 \heartsuit -token, gdy jest wstawiany na stos w #1, oraz za każdym razem gdy zmniejsza się jego wysokość w stosie

- #2 Każdy element R_1 oraz R_2 płaci $1 \diamondsuit$ -token. Wystarczy tokenów ponieważ $r_3 < r_1$, więc $r_2 + r_3 \le r_1 + r_2$
- ▶ #3 Każdy element R_1 płaci 2 \diamondsuit -tokeny. Wystarczy tokenów ponieważ $r_2 \le r_1$, więc $r_2 + r_1 \le 2r_1$
- ▶ #4 i #5 Każdy element R_1 płaci 1 \diamondsuit -token, a każdy element R_2 płaci 1 \heartsuit -token. Wydajemy dokładnie $r_1 + r_2$ tokenów

Każdy element otrzymuje 2 \diamond -tokeny i 1 \heartsuit -token, gdy jest wstawiany na stos w #1, oraz za każdym razem gdy zmniejsza się jego wysokość w stosie

- ▶ #2 Każdy element R_1 oraz R_2 płaci 1 ♦-token. Wystarczy tokenów ponieważ $r_3 < r_1$, więc $r_2 + r_3 \le r_1 + r_2$
- ▶ #3 Każdy element R_1 płaci 2 \diamondsuit -tokeny. Wystarczy tokenów ponieważ $r_2 \le r_1$, więc $r_2 + r_1 \le 2r_1$
- ▶ #4 i #5 Każdy element R_1 płaci 1 \diamondsuit -token, a każdy element R_2 płaci 1 \heartsuit -token. Wydajemy dokładnie $r_1 + r_2$ tokenów

Lemma (4)

W każdym obrocie głównej pętli zachowujemy nieujemny bilans ♦-tokenów i ♥-tokenów

Lemma (5)

W każdym obrocie głównej pętli zachodzą 4 niezmienniki:

1.
$$r_i + r_{i+1} < r_{i+2}$$
 dla $i \in \{3, ..., h-2\}$

- 2. $r_2 < 3r_3$
- 3. $r_3 < r_4$
- 4. $r_2 < r_3 + r_4$

Dowód.

Jeśli weszliśmy w #1, to żaden z warunków z #2 - #5 nie zachodził w \mathcal{S} . W szególności zachodzi $r_1 < r_2 < r_3$ oraz $r_2 + r_3 < r_4$. Po dodaniu nowego run mamy $\overline{r}_2 < \overline{r}_3 < \overline{r}_4$ co daje niezmienniki 2-4 oraz $\overline{r}_3 + \overline{r}_4 < \overline{r}_5$ co daje niezmiennik 1

Jeśli weszliśmy w jeden z #2 - #5, to $\overline{r}_2 = r_2 + r_3$ (dla #2) albo $\overline{r}_2 = r_3$ (dla #3 - #5). W takim razie $\overline{r}_2 \le r_2 + r_3$.

- 1. Spełniony bo $\overline{r}_i = r_{i+1}$ dla $i \ge 3$
- 2. $\overline{r}_2 \le r_2 + r_3 < r_3 + r_4 + r_3 < 3r_4 = 3\overline{r}_3$
- 3. $\overline{r}_3 = r_4 \le r_3 + r_4 < r_5 = \overline{r}_4$
- 4. $\overline{r}_2 \le r_2 + r_3 < r_3 + r_4 + r_3 < r_3 + r_5 < r_4 + r_5 = \overline{r}_3 + \overline{r}_4$

Lemma (6)

 $r_2/3 < r_3 < r_4 < r_5 < \cdots < r_h$ oraz dla $k \ge i \ge 3$ zachodzi $r_k > \sqrt{2}^{k-i-1} r_i$. Wobec tego, rozmiar stosu jest $\mathcal{O}(\log n)$

Lemma (6)

 $r_2/3 < r_3 < r_4 < r_5 < \cdots < r_h$ oraz dla $k \ge i \ge 3$ zachodzi $r_k > \sqrt{2}^{k-i-1} r_i$. Wobec tego, rozmiar stosu jest $\mathcal{O}(\log n)$

Dowód.

▶ Z niezmiennika 1. $r_i + r_{i+1} < r_{i+2}$ dla $i \in \{3, ..., h-2\}$, więc $r_{i+2} - r_{i+1} > r_i > 0$, czyli $r_4 < r_5 < \cdots < r_h$

Lemma (6)

 $r_2/3 < r_3 < r_4 < r_5 < \cdots < r_h$ oraz dla $k \ge i \ge 3$ zachodzi $r_k > \sqrt{2}^{k-i-1} r_i$. Wobec tego, rozmiar stosu jest $\mathcal{O}(\log n)$

Dowód.

- Z niezmiennika 1. $r_i + r_{i+1} < r_{i+2}$ dla $i \in \{3, ..., h-2\}$, więc $r_{i+2} r_{i+1} > r_i > 0$, czyli $r_4 < r_5 < \cdots < r_h$
- Z niezmiennikami 2. i 3. uzyskujemy $r_2/3 < r_3 < r_4 < r_5 < \cdots < r_h$

Lemma (6)

 $r_2/3 < r_3 < r_4 < r_5 < \cdots < r_h$ oraz dla $k \ge i \ge 3$ zachodzi $r_k > \sqrt{2}^{k-i-1} r_i$. Wobec tego, rozmiar stosu jest $\mathcal{O}(\log n)$

Dowód.

- ▶ Z niezmiennika 1. $r_i + r_{i+1} < r_{i+2}$ dla $i \in \{3, ..., h-2\}$, więc $r_{i+2} r_{i+1} > r_i > 0$, czyli $r_4 < r_5 < \cdots < r_h$
- Z niezmiennikami 2. i 3. uzyskujemy $r_2/3 < r_3 < r_4 < r_5 < \cdots < r_h$
- Otrzymujemy $r_{j+2} > 2r_j$, a więc $r_k > \sqrt{2}^{k-i-1}r_i$ i w takim razie ilość runs w stosie jest ograniczona $\mathcal{O}(logn)$


```
Input: A sequence S to sort
1 runs \leftarrow the run decomposition of S
   \mathcal{R} \leftarrow \text{an empty stack}
   while runs \neq \emptyset do
                                                             // main loop of TimSort
        remove a run r from runs and push r onto \mathcal{R}
                                                                                      // #1
4
        while true do
5
              if h \ge 3 and r_1 > r_3 then merge the runs R_2 and R_3
                                                                                      // #2
 6
              else if h \ge 2 and r_1 \ge r_2 then merge the runs R_1 and R_2 // #3
 7
              else if h \ge 3 and r_1 + r_2 \ge r_3 then merge the runs R_1 and R_2 // #4
 8
              else if h \ge 4 and r_2 + r_3 \ge r_4 then merge the runs R_1 and R_2
                                                                                      // #5
9
              else break
10
```

Podział na sekwencje

Podział na sekwencje

Liczba porównań w trakcie sekwencji startowych jest $\mathcal{O}(n)$

ightharpoonup Kładziemy na stos $run\ R$ o długości $r\stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

Liczba porównań w trakcie sekwencji startowych jest $\mathcal{O}(n)$

- ightharpoonup Kładziemy na stos *run R* o długości $r \stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

ightharpoonup Kładziemy na stos *run R* o długości $r \stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

$$\triangleright S = (R_1, \dots, R_h) \xrightarrow{R} \overline{S} = (R, R_1, \dots, R_h)$$

ightharpoonup Kładziemy na stos *run R* o długości $r \stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

$$\triangleright S = (R_1, \dots, R_h) \xrightarrow{R} \overline{S} = (R, R_1, \dots, R_h)$$

 $\mathcal{C} = (k-1)r_1 + (k-1)r_2 + (k-2)r_3 + \ldots + r_k \leq \sum_{i=1}^k (k+1-i)r_i.$

Kładziemy na stos *run R* o długości $r \stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

$$\triangleright S = (R_1, \dots, R_h) \xrightarrow{R} \overline{S} = (R, R_1, \dots, R_h)$$

- $\mathcal{C} = (k-1)r_1 + (k-1)r_2 + (k-2)r_3 + \ldots + r_k \leq \sum_{i=1}^k (k+1-i)r_i.$
- $ightharpoonup ... #2 \implies r > r_k$

Kładziemy na stos *run R* o długości $r \stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

$$\triangleright S = (R_1, \dots, R_h) \xrightarrow{R} \overline{S} = (R, R_1, \dots, R_h)$$

- $\mathcal{C} = (k-1)r_1 + (k-1)r_2 + (k-2)r_3 + \ldots + r_k \leq \sum_{i=1}^k (k+1-i)r_i.$
- $ightharpoonup \dots \#2 \implies r > r_k$
- ► Z części $\mathcal{O}(n \log n)$: $r \ge r_k \ge \sqrt{2}^{k-i} r_i / 3$

Kładziemy na stos *run R* o długości $r \stackrel{?}{\Longrightarrow} \mathcal{O}(r)$ porównań.

$$\triangleright S = (R_1, \dots, R_h) \xrightarrow{R} \overline{S} = (R, R_1, \dots, R_h)$$

- $\mathcal{C} = (k-1)r_1 + (k-1)r_2 + (k-2)r_3 + \ldots + r_k \leq \sum_{i=1}^k (k+1-i)r_i.$
- $ightharpoonup \dots \#2 \implies r > r_k$
- ► Z części $\mathcal{O}(n \log n)$: $r \ge r_k \ge \sqrt{2}^{k-i} r_i / 3$

$$\mathcal{C}/r \leq 3\sum_{i=1}^k (k+1-i)/\sqrt{2}^{k-i} \leq 3\sqrt{2}\sum_{i\geq 0} i/\sqrt{2}^i = \gamma$$

Liczba porównań w trakcie sekw. końcowych jest $\mathcal{O}(n\log\rho)$

$$\kappa = \lceil 2\log_2\rho \rceil$$

Globalna pula 24*n*♣ tokenów

Liczba porównań w trakcie sekw. końcowych jest $\mathcal{O}(n\log\rho)$

Lemma (10)

Merge podczas sekwencji końcowej, gdzie wysokość stosu $h \ge \kappa$, kosztuje co najwyżej $24n/\rho$ porównań.

Liczba porównań w trakcie sekw. końcowych jest $\mathcal{O}(n \log \rho)$

Lemma (10)

Merge podczas sekwencji końcowej, gdzie wysokość stosu $h \ge \kappa$, kosztuje co najwyżej $24n/\rho$ porównań.

Dowód.

Mamy $r_2 < 3r_3$ (Lemma 5) i $r_1 < 3r_2$. Merge R_1 z R_2 lub R_2 z R_3 kosztuje co najwyżej $6r_3$ porównań.

$$r_h \ge \sqrt{2}^{h-4} r_3 \implies 6r_3 \le 24\sqrt{2}^{-h} r_h \le 24n\sqrt{2}^{-\kappa} \le 24n/\rho$$

Liczba porównań w trakcie sekw. końcowych jest $\mathcal{O}(n \log \rho)$

Lemma (10)

Merge podczas sekwencji końcowej, gdzie wysokość stosu $h \ge \kappa$, kosztuje co najwyżej $24n/\rho$ porównań.

Dowód.

Mamy $r_2 < 3r_3$ (Lemma 5) i $r_1 < 3r_2$. Merge R_1 z R_2 lub R_2 z R_3 kosztuje co najwyżej $6r_3$ porównań.

$$r_h \ge \sqrt{2}^{h-4} r_3 \implies 6r_3 \le 24\sqrt{2}^{-h} r_h \le 24n\sqrt{2}^{-\kappa} \le 24n/\rho$$

Ponieważ liczba merge'y opłacanych przez Φ jest ograniczona przez ρ to przyznaliśmy wystarczającą liczbę tych tokenów.

Błąd w implementacji w Javie

4

5 6

7

8

9 10

```
Input: A sequence S to sort
   Result: The sequence S is sorted into a single run, which remains on the stack.
   Note: At any time, we denote the height of the stack \mathcal{R} by h and its i^{th} top-most
           run (for 1 \le i \le h) by R_i. The size of this run is denoted by r_i.
 1 runs \leftarrow the run decomposition of S
   \mathcal{R} \leftarrow \text{an empty stack}
   while runs \neq \emptyset do
                                                             // main loop of TimSort
        remove a run r from runs and push r onto \mathcal{R}
                                                                                     // #1
        while true do
              if h \ge 3 and r_1 > r_3 then merge the runs R_2 and R_3
                                                                                    // #2
              else if h \ge 2 and r_1 \ge r_2 then merge the runs R_1 and R_2 // #3
              else if h \ge 3 and r_1 + r_2 \ge r_3 then merge the runs R_1 and R_2 // #4
              else if h \ge 4 and r_2 + r_3 \ge r_4 then merge the runs R_1 and R_2 // #5
              else break
11 while h \neq 1 do merge the runs R_1 and R_2
```

Błąd w implementacji w Javie

Pomijając warunek #5 nie otrzymujemy niezmiennika $r_i + r_{i+1} < r_{i+2}$

									#1		#1	
								#1	8	#2	1	
							#1	4	4	8	8	
		#1				#1	6	6	6	10	10	
	#1	50	#2		#1	20	20	20	20	20	20	
#1	18	18	50	#3	28	28	28	28	28	28	28	
24	24	24	42	92	92	92	92	92	92	92	92	

Błąd w implementacji w Javie

Co więcej, błąd może się powtarzać na kilku indeksach z rzędu

					#1						
				#1	26	#2				#1	
			#1	7	7	26	#2		#1	27	#2
		#1	8	8	8	15	26	#2	2	2	27
	#1	16	16	16	16	16	31	26	26	26	28
#1	25	25	25	25	25	25	25	56	56	56	56
#1 83	83	83	83	83	83	83	83	83	83	83	83
109 109	109	109	109	109	109	109	109	109	109	109	109

Oś czasu

- 2002 TimSort jest wynaleziony
- ▶ 2003 *TimSort* domyślnym algorytmem w *pythonie*
- 2011 TimSort domyślnym algorytmem w javie
- 2015 odkryto, że TimSort zawiera błąd http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
- ► Grudzień 2015 preprint omawianej pracy i pierwszy dowód złożoności $\mathcal{O}(n \log n)$
- ightharpoonup 2018 publikacja pracy i dowód złożoności $\mathcal{O}(n+n\log\rho)$

Oś czasu

- 2002 TimSort jest wynaleziony
- ▶ 2003 *TimSort* domyślnym algorytmem w *pythonie*
- 2011 TimSort domyślnym algorytmem w javie
- 2015 odkryto, że TimSort zawiera błąd http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
- ► Grudzień 2015 preprint omawianej pracy i pierwszy dowód złożoności $\mathcal{O}(n \log n)$
- ightharpoonup 2018 publikacja pracy i dowód złożoności $\mathcal{O}(n+n\log\rho)$
- 2022 wraz z pythonem 3.11 TimSort przestaje być domyślnym algorytmem dla tego języka :((

Dziękujemy za uwagę!