Evaluate Division: Graph BFS

Given a list b equations b form $\frac{a}{b} = \frac{1}{2}$ answer queries b form $\frac{a}{b} = \frac{1}{2}$

if no are possible / not enough into,

sample

 $\frac{2}{3} = 2$, $\frac{1}{5} = 3$ equations $\frac{2}{3} = ?$ $\frac{2}{3} = ?$

6, 0.5, -1, 1, -1 answers

(you'll not be asked quenes that will
force div yo

(ex) $\frac{a}{c} = 0$, $\frac{b}{c} = 2$ work ask

: néduloz

& create a graph from equations data a val o o hal

if val = 0, don't add /al edge

* write a function

f (single query) -> answer

* map f bo list of quenes

for f, if query is $\frac{x}{y} = ?$ ∱

> * If x or y & graph, return -1 * df x==y, return 1

* sherwise do its starting with x.

for each edge, maintain

parent [c]

parent = P

value

parent = P

value

child c

complexy analysis $f \leftarrow O(N)$ N = # Regulation graph 2N edges $\leq 2N$ restricts

so if 9 queres, O(pN)

improvements:

-s add query data to maph
sequentially? might in crease
complexity to bifs
shough

of query set is all pains to randables, build graph in steps

then process equebons involvy & or o 2 = 2 = 3 20 b at each step, arever all queries is leady adding a new variable a d a = a c d = a multiplicatione (what about 0 = ?...)

If $Q \leftarrow O(N^2)$, thus will $n \cdot O(N^2)$.

Prev approach $n \cdot O(N^3)$...