[ЦПМ, кружок по математике]
 Невидимый И. Журин

 [2024-2025]
 группа
 10-геом
 29 апреля

Бесполезные свойства коник

Один из общих принципов, который стоит помнить, взаимодействуя с эллипсами и гиперболами (и параболами тоже, но там дело обстоит немного хитрее) - это то, что это две грани одной и той же сущности, и почти любое геометрическое свойство эллипса имеет аналог для гиперболы, отличающийся, возможно, тем, что часть картинки «вывернется наизнанку». Сегодня вы неоднократно в этом убедитесь.

Определение. Эллипсом с фокусами F_1 и F_2 называется ГМТ точек с фиксированной суммой расстояний до F_1 и F_2 .

- **1.** (Оптическое свойство эллипса) Пусть прямая l касается эллипса с фокусами F_1 и F_2 в точке P. Тогда прямая l это внешняя биссектриса угла F_1PF_2 .
- **2. (Эллипс и изогонали)** Пусть касательные к эллипсу с фокусами F_1 и F_2 пересекаются в точке R. Тогда
 - (a) Точки F_1 и F_2 лежат на изогоналях относительно угла PRQ.
 - **(б)** F_1R биссектриса угла PF_1Q , а F_2R биссектриса угла PF_2R .

Определение. Гипербола (из древнегреческого: «переход; чрезмерность, избыток; преувеличение») — стилистическая фигура явного и намеренного преувеличения с целью усиления выразительности и подчёркивания сказанной мысли.

- **3.** (Оптическое свойство гиперболы) Пусть прямая l касается гиперболы с фокусами F_1 и F_2 в точке P. Тогда прямая l это внутренняя биссектриса угла F_1PF_2 .
- **4.** (Гипербола и изогонали) Пусть касательные к гиперболе с фокусами F_1 и F_2 пересекаются в точке R. Тогда
 - (a) Точки F_1 и F_2 лежат на изогоналях относительно угла PRQ.
 - **(б)** F_1R биссектриса угла PF_1Q , а F_2R биссектриса угла PF_2R .
- **5.** Докажите, что эллипс и гипербола, у которых совпадают фокусы, пересекаются под прямым углом (углом между двумя кривыми в точке их пересечения называется угол между касательными к ним в данной точке их пересечения).
- 6. (Как представлять себе разные описанные четырёхугольники?) Пусть даны точки F₁ и F₂. Выберем произвольные точки A и C. Пусть прямые F₁A и F₂C пересекаются в точке B, а прямые F₁C и F₂A в точке D. Докажите, что окружность, вписанная в ломаную ABCD, существует тогда и только тогда, когда существует эллипс или ветвь гиперболы с фокусами F₁ и F₂, проходящая через A и C, и тогда и только тогда, когда существует эллипс или ветвь гиперболы с фокусами F₁ и F₂, проходящая через B и D. Нарисуйте разные картинки для разных коник и расположений точек. Что случится, если одна из точек окажется на прямой F₁F₂? Какое утверждение получится, если отметить не две, а три точки на одной и той же конике с фокусами F₁ и F₂?
- 7. (Мне сказали, что окружность из пункта а называется директором эллипса)
 - (а) Прямая F_1F_2 пересекает эллипс с фокусами F_1 и F_2 в точках P и Q. Пусть Γ окружность, построенная на PQ как на диаметре. Пусть точка X выбрана на Γ . Докажите, что перпендикуляр, восставленный к F_1X в точке X, касается исходного эллипса.
 - **(б)** Пусть теперь окружность Γ просто касается нашего эллипса в двух точках (эллипс лежит

- внутри неё). Докажите, что существует окружность, проходящая по двум точкам касания Γ с эллипсом, F_1 , F_2 и центру Γ .
- **(в)** Докажите, что существует ориентированный угол ϕ такой, что для любой точки $R \in \Gamma$ прямая, проведённая в точке R под углом ϕ к F_1R , касается исходного эллипса.
- **(r)** Сформулируйте аналог предыдущих пунктов для гиперболы. Он доказывается в точности так же, но если не верите я не смогу помешать вам это проверить.
- 8. (Заядлые читатели паблика "Олимпиадная геометрия" вспомнят словосочетание "Лемма Фусса для коник", периодически там упоминаемое. Так вот, это НЕ она!) Пусть даны две окружности α и β , пересекающиеся в точках X и Y, и в "дольку" их пересечения вписан эллипс, дважды касающийся каждой из окружностей. Прямая l_X касается эллипса, отделяет от него точку X и пересекает "дольку" в двух точках. Также прямая l_X пересекает окружность α вне дольки в точке α 1, и пересекает окружность α 3 вне дольки в точке α 4, и пересекает окружность α 5 вне дольки в точке α 6. Аналогично выберем прямую α 7 и определим точки α 8 и α 9. Докажите, что α 6 на α 8 на α 9 на
- 9. Наверняка вы уже сталкивались с утверждением, что если две окружности пересекаются в точках P и Q, то можно запустить из точки P двигающиеся по ним с равными угловыми скоростями точки A и B, и прямая AB всегда будет проходить через точку Q. Пусть теперь стартовые положения точек A и B произвольные где-то на этих окружностях. Опишите кривую, которой будет касаться прямая AB.
- **10. Что такое изогональное сопряжение?** Вспомните, что вы знаете о парах изогонально сопряжённых в треугольнике и четырёхугольнике точек (существование, условие, когда они существуют, педальная окружность). Докажите, что точки *P* и *Q* изогонально сопряжены в треугольнике/четырёхугольнике тогда и только тогда, когда существует коника с фокусами в этих точках, касающаяся всех сторон треугольника/четырёхугольника. Выведите отсюда все базовые свойства изогонально сопряжённых точек, которые вы вспомнили.
- **11.** Пусть в правильный 2n-угольник вписан эллипс с фокусом F. Покрасим стороны много-угольника в шахматном порядке. Докажите, что сумма углов, под которыми видны чёрные стороны из F, равна 180° .
- **12.** Пусть хорды AB и CD эллипса проходят через его фокусы F_1 и F_2 соответственно, а прямые AC и BD пересекаются в точке Y. Докажите, что Y лежит на биссектрисе угла между AB и CD.
- **13.** (Гигагармонический четырёхугольник) Докажите следующие свойства четырёхугольника ABCD, для которого $AB \cdot CD = BC \cdot DA$:
 - (a) (Некоторые из вас уже сталкивались с этим утверждением на сборах в листке на инверсию) Общие внешние касательные к окружностям ABC и CDA пересекаются на прямой BD.
 - (6) Существует коника с фокусами на диагоналях AC и BD, касающаяся всех четырёх сторон AB, BC, CD и DA. А как выглядят фокусы этой коники для обычного гармонического четырёхугольника?
 - **(в)** Инверсия в любой точке плоскости оставит гигагармонический четырёхугольник гигагармоническим.
 - (г) (очень сложная, но уж больно в тему) Пусть в таком четырёхугольнике существует точка P такая, что $\angle BAP = \angle PCD$ и PBC = PDA. Докажите, что тогда точка P имеет изогонально сопряжённую в четырёхугольнике ABCD.