

SuperBigBite DAQ update

Bryan Moffit Jefferson Lab

SBS DOE Review - November 2015

Outline

- SBS requirements
 - Data Event Flow
- Fastbus Readout
 - Event Switching
- FADC HCAL readout
- GEM readout
- Timeline
- Manpower

G_E^p DAQ requirements

- Focal Plane Polarimeter
 - Front tracker
 - Back tracker GEM 128 K channels
 - 288 channels HCAL on FADC (10 samples)
- Electron detector
 - 1800 channels ECAL
 - CDet 2152 Channels (TDC)

G_E^p event size (after deconvolution)

Detector	Channels	Single rate Hz	Occupancy 75 ns in %	Channels firing	Event size (bytes)	Data rate 5 KHz MB/s
Front tracker	41,000	3.3e9	18.1	7430	136,000	90
Back tracker	128,000	3.36e9	22.4	12600	230,000	150
HCal	288	_	100	288	7,200	36
ECAL	1800 + 225	_	100	2025	8,100	45
CDET	2152	_	10	216	864	4.3
Total						325.3 MB/s

Includes geometrical matching

HCAL and ECAL occupancies need to be evaluated: using 100 % for now

G_E^n , G_M^n DAQ requirements

Bigbite

- GEM 128 K channels
- Shower 189 blocks (ADC)
- Preshower 54 blocks (ADC)
- Scintillator 180 bars 360 PMTs (ADC/TDC)
- Cerenkov 550 PMTs (TDC)
- Neutron detector
 - 288 channels HCAL (FADC + high res TDC)
 - CDet 2152 Channels (TDC)

G_E^n , G_M^n event size (after deconvolution)

Arm	Detector	Channels	Single rate Hz	Occup ancy 100 ns in %	Channels firing	Event size (bytes)	Data rate 5 KHz MB/s
BigBite	GEM	112,640	2.6e9	8.7	5248	62,976	300
	Lead glass	243	_	100	243	1003	5
	Scintillators	360	_	100	360	1485	7.4
	Cerenkov	550	_	100	550	2269	11.34
Neutron	HCal	288	_	100	288	7,200	36
	HCAL time	288	_	100	288	1170	5.85
	CDET	2152	_	10	216	864	4.3

Total at 5 KHz 370 MB/s Max

Fastbus update

- Use new CODA 3.0 TI and TS
 - More flexibility in programming
 - Event blocking
 - Absolute timestamp for synchronization check
 - Trigger partitioning capability only use a subset of modules
- Asked for modified firmware to DAQ group in May 2015 (William Gu and Bryan Moffit)
- Firmware being developed and tested

Fastbus update

• Have sufficient TDCs, ADCs, crates, SFI, aux. cards

have 236 have 113 have 30 have 21 have 15 (20 being made) need 124 need 94 need 21 need 30

- Making FB faster
 - sparsification works
 - event blocking works
 - event switching being tested
 - merging with pipelining VME to be tried
- Three large Fastbus systems assembled in the test lab.

G_E^p DAQ Configuration / both arms

HallA SBS Trigger block diagram

Single Crate vs. Trigger Switching

Readout trigger rate ~ 5 kHz

Buffer Level = 4

8ADC - (reading pedestals on 6 channels in each ADC)

HCAL

- All FADC 16 delivered
- 2 VXS crates delivered
- 2 Intel Concurrent CPU delivered

- Readout tested
- Development of trigger using HPS firmware and GTP
- New VTP ordered

HCAL FADC electronics

data:Iteration\$ {Iteration\$<150&&Iteration\$>100}

- Cosmics from calorimeter block
- Will test later with HCAL module

Hadron Arm - HCAL DAQ: proton trigger

HCal Signals to FADC inputs

- 2 VME switched Serial (VXS)
 Crates
- •JLAB FADC250, a 16-channel 12-bit FADC sampling at 250 MHz
 - •16 FADC in VXS Crate 1
 - 2 FADC in VXS Crate 2
 - If signal pass threshold
 - Integrates signal and subtracts pedestal
 - Sends time frame info

- VTP (Crate Trigger Processor)
 - Located in VXS crates
 - Collects integrated signal and timing from FADC channels
 - Sends data to the second VTP for clustering

HCAL trigger development

- HPS firmware installed on FADC and GTP
- FADC readout tested with cosmics
- Testing triggering capability

- Need
 - implement decoder for analysis
 - Test using 2 crates and new VTP

GEM MPD readout

- INFN MPD used for several years using custom C++ package
- Package ported to intel CPU
- New C library written for easy integration into CODA
- (Bryan Moffit, Evaristo Cisbani, Danning Di)
- CODA configuration running
- Debugging module initialization

GEM optical link readout

- Aurora protocol based
 - Implemented by Paolo Musico. To be tested.
- 2 Gbit optical link
 - 250 MB/s per link
- Readout up to 32 MPD in parallel
 - 8 GB/s bandwidth compared to ~100 MB/s using VME
- SSP library
 - Readout routines Completed.
 - MPD configuration routines In progress
- Link from MPD to SSP module
 - Implemented by Ben Raydo. Works.

Timeline

4 th quarter 2015	1 st quarter 2016	2 st quarter 2016	Future
 Finish MPD CODA readout – debug Finish Fastbus Readout – debug 	 Implement new HCAL Trigger module 	 GEM installed on BigBite for tritium experiment 	 Tritium experiment Parasitic test: Fastbus and
 Small scale setup 200 KHz L1 5 kHz coinc Fastbus, MPD, and HCAL FADC 	HCAL cosmicsGEM cosmics with MPD	 ECal cosmics DVCS experiment Parasitic test: Fastbus and 	FADC setup
Cdet Fastbus	 Test GEM readout with optical link in 	FADC setup	
 Analysis software : check synchronization 	high background at UVA		
 Test MPD optical readout (SSP) 	 Develop GEM analysis software 		
HCAL trigger ordered			

Manpower

Fastbus

JLAB: Dasuni Adikaram, Mark Jones,
 Robert Michaels, Bryan Moffit, William Gu

MPD

- INFN: Evaristo Cisbani, Paolo Musico
- UVA: Danning Di, Kondo Gnanvo, Nilanga Liyanage
- JLAB : Ben Raydo, Bryan Moffit
- Stony Brook : Seamus Riordan

HCAL

 JLAB : Alexandre Camsonne, Ben Raydo, Bryan Moffit

Conclusion

- Fastbus event flipping works well
 - Preliminary results show acceptable dead time in experiment conditions
 - Need to develop software and check synchronization
- HCAL:
 - FADC ready
 - trigger implemented and being tested
- MPD:
 - CODA readout implemented
 - Debugging of the software driver
 - Optical readout in progress
- Small scale test setup in a few weeks

