CS 228 : Logic in Computer Science

S. Krishna

 $\Sigma = \{a, b\}$ . Consider the following languages  $L \subseteq \Sigma^*$ :



$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$ . Consider the following languages  $L \subseteq \Sigma^*$ :



$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$ . Consider the following languages  $L \subseteq \Sigma^*$ :



$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$ . Consider the following languages  $L \subseteq \Sigma^*$ :



$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$ . Consider the following languages  $L \subseteq \Sigma^*$ :

► Contains abb



 $\Sigma = \{a, b\}$ . Consider the following languages  $L \subseteq \Sigma^*$ :

► Contains abb



$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

# Verification through Model Checking





satisfy?

specification
good/bad properties

# Verification through Model Checking



System



specification

System Model

model-checking ⊨?

satisfy?

Spec Model

Logic formula  $\phi$ 

#### **DFA: Transition Function on Words**



- $\hat{\delta}(q, wa) = s = \delta(\hat{\delta}(q, w), a) = \delta(r, a)$
- $\hat{\delta}(q, wb) = t = \delta(\hat{\delta}(q, w), b) = \delta(r, b)$

S. Krishna IIT Bombay

# **DFA Acceptance**

- $w \in \Sigma^*$  is accepted iff  $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$  is rejected iff  $\hat{\delta}(q_0, w) \notin F$

### **DFA Acceptance**

- $w \in \Sigma^*$  is accepted iff  $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$  is rejected iff  $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string  $w \in \Sigma^*$  is either accepted or rejected by a DFA A

## **DFA Acceptance**

- $w \in \Sigma^*$  is accepted iff  $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$  is rejected iff  $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string  $w \in \Sigma^*$  is either accepted or rejected by a DFA A
- $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
- $\blacktriangleright \ \Sigma^* = L(A) \cup \overline{L(A)}$

#### Closer Look: DFA



- Blue state : ε, ab, ba, bb, aa, . . .
- ▶ Green state : a, b, aaa, aba, baa, bbb, bba, bab, . . .
- ightharpoonup All words in  $\Sigma^*$  reach a unique state from the initial state
- Words reaching a final state are accepted; all others are rejected

S. Krishna IIT Bombay

#### Closer Look: DFA



- ▶ state 1 : b\*
- state 2: b\*a, b\*aa\*, b\*aa\*(ba)\*
- state 3 : b\*ab, b\*aa\*b, b\*aa\*(ba)\*b
- state 4 : b\*abbΣ\*, b\*aa\*bbΣ\*, b\*aa\*(ba)\*bbΣ\*
- ▶ All words in  $\Sigma^*$  reach a unique state from the initial state
- Words reaching a final state are accepted; all others are rejected

S. Krishna IIT Bombay

#### **Closer Look: DFA**

- Each state is a bucket holding infinitely many words
- ▶ Thus we have good and bad buckets
- ▶ The buckets partition  $\Sigma^*$
- Good buckets determine the language accepted by the DFA
- Words that land in bad buckets are not accepted by the DFA



►  $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$ 



- ▶  $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$
- ▶ Show that for any  $w \in \Sigma^*$ ,
  - $\hat{\delta}(q_{00}, w) = q_{ij}$  with  $i, j \in \{0, 1\}$ , parity of i same as  $|w|_a$  and parity of j same as  $|w|_b$



► Prove by induction on |w|



- ► Prove by induction on |w|
- ▶ Base case : For  $|w| = \epsilon$ ,  $\hat{\delta}(q_{00}, \epsilon) = q_{00}$



- ► Prove by induction on |w|
- ▶ Base case : For  $|w| = \epsilon$ ,  $\hat{\delta}(q_{00}, \epsilon) = q_{00}$
- ▶ Assume the claim for  $x \in \Sigma^*$ , and show it for  $xc, c \in \{a, b\}$ .



$$\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$$



- $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$
- lacksquare By induction hypothesis,  $\hat{\delta}(q_{00},x)=q_{ij}$  iff
  - parity of *i* and  $|x|_a$  are the same
  - parity of j and  $|x|_b$  are the same



- ► Case Analysis: If  $|x|_a$  odd and  $|x|_b$  even, then i = 1, j = 0
  - $\delta(q_{10}, a) = q_{00}, \delta(q_{10}, b) = q_{11}$
  - ▶  $|xa|_a$  is even and  $|xa|_b$  is even
  - ▶  $|xb|_a$  is odd and  $|xb|_b$  is odd
- Other Cases : Similar
- $\hat{\delta}(q_{00},x) = q_{10}$  iff  $|x|_a$  odd and  $|x|_b$  even

### Recall: Bucket Analogy for DFA

- Finite states, infinite number of words
- ► Each state is a bucket holding (potentially) infinitely many words
- ▶ Thus we have good and bad buckets
- The buckets partition Σ\*
- Good buckets determine the language accepted by the DFA
- Words that land in bad buckets are not accepted by the DFA

# **Closure under Complementation**



# **Closure under Complementation**



