Problem: Minimize Motorola's total purchase and administrative cost for buying 8 products from 5 suppliers given list price, discount and quantity

Solution: Build a linear integer model to minimize the total purchase and administrative cost under the given constraints on suppliers and products

Inputs: in blue in spreadsheet,

- For each product the list price and required quantity
- For each product, supplier the discount percentage
- For each supplier, \$5,000 as the admin cost of setup for Motorola

Objective function: Min (Total Purchase and Admin cost) =

$$\min_{{m i} \in (1...8), \ {m j} \in (1...5)} (\sum (X{m i} * (P{m i} * (1 - D{m i}{m j}) * Q{m i})) + \sum (Y{m j} * C{m j}))$$
, where

- X_{ii} Quantity of product i supplied by supplier j
- P_i List price (\$) of product i
- Q_i Quantity required (demand) of product i
- **D**_{ij} Discount (%) offered on product i by supplier j
- Y_j Binary variable to decide whether supplier j is selected or not \in (0,1)
- C_i Fixed administrative cost (\$) of setting up supplier j for Motorola ∈ (5000)
- $i \in (1...8)$ for the 8 products
- $j \in (1...5)$ for the 5 suppliers

Decision variables:

- X_{ij} Quantity of product i supplied by supplier j
- Y_i Binary variable to decide whether supplier j is selected or not

Constraints:

- 1. $X_{ij} \le 0.8 \cdot Q_i$, a supplier cannot supply more than 80% of any products required quantity
- 2. $\sum_{i} Xij >= Q_i$ for all i, quantity supplied by all suppliers must meet demand for each product
- X_{ij} <= Y_j * M, where M ∈ (797)
 - To ensure that product i is supplied by supplier j only when it is selected, which forces the model to incur the fixed administrative cost of setting up supplier j
 - M maximum quantity required among all products
 - It could be any large no like 1,000 or 10,000, etc, but the result is the same
 - Smaller value will give sub-optimal result
- 3. $X_{ij} \in int$, only integer quantities must be supplied by each supplier
- 4. $X_{ij} \ge 0$, non-negativity constraint
- 5. $Y_i \in (0,1)$, as it is a binary decision variable
- 6. $\sum_{j} \mathbf{Y} \mathbf{j} >= \mathbf{2}$, we need at least 2 suppliers for each product as no supplier can supply more than 80% of each product quantity required

Result:

• Motorola's minimum total purchase and administrative cost is \$ 243,550.52