Equilíbrio Tampão

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Sumário

1	Os t	Os tampões								
	1.1	A ação dos tampões	1							
	1.2	O planejamento de tampões	2							
	1.3	A capacidade tamponante	2							

1 Os tampões

O controle do pH é crucial para a capacidade de sobrevivência dos organismos — inclusive a nossa — porque até mesmo pequenas variações de pH podem provocar mudanças na forma das enzimas e perda de função. As informações deste tópico também são usadas na indústria para controlar o pH das misturas de reação e monitorar águas naturais. Na medicina e na biologia, essas informações são usadas para controlar as condições de culturas e células biológicas e manter o pH adequado do sangue. Na agricultura, elas são usadas para manter o solo no pH ótimo para o crescimento das culturas. Em laboratório, elas são úteis para interpretar a variação de pH de uma solução durante uma titulação.

1.1 A ação dos tampões

Os cálculos no Tópico 2I mostram como estimar o pH de uma solução de um ácido ou de uma base fracos. Contudo, suponha que um sal desse ácido ou dessa base também esteja presente. Como o sal afeta o pH da solução? O principal ponto deste tópico é que, segundo a teoria de Brønsted-Lowry, os íons gerados por um sal também podem ser ácidos ou bases, afetando o pH.

Para ilustrar a situação, suponha que você tenha uma solução diluída de ácido clorídrico e adicione uma concentração apreciável de cloreto de sódio, que contém a base conjugada do HCl, o íon ${\rm Cl}^-$. Como o HCl é um ácido forte, sua base conjugada é um receptor de prótons muito fraco e sua presença não afeta o pH consideravelmente. O pH de uma solução $0,10\,{\rm mol}\,{\rm L}^{-1}$ de HCl é 1, mesmo após a adição de $0,1\,{\rm mol}\,{\rm de}\,{\rm NaCl}$ a um litro da solução.

Suponha, agora, que a solução seja de ácido acético e que adicionemos uma certa quantidade de acetato de sódio. Como o $\mathrm{CH_3CO_2}^-$, base conjugada do $\mathrm{CH_3COOH}$, é uma base fraca em água, sua presença eleva o pH da solução. De modo análogo, suponha que o cloreto de amônio seja adicionado a uma solução de amônia. O íon $\mathrm{NH_4}^+$ é um ácido fraco em água e, consequentemente, sua presença fará diminuir o pH da solução. Você verá que essas *soluções mistas*, nas quais um ácido fraco ou uma base fraca e um de seus sais estão presentes, permitem estabilizar o pH de soluções em água como o plasma sanguíneo, a água do mar e as misturas de reação.

Um **tampão** é o tipo de solução mista em que o pH tende a permanecer o mesmo após a adição de pequenas quantidades de ácidos ou bases fortes. O tampão é uma solução, em água, de um ácido fraco e sua base conjugada na forma de sal ou uma solução,

em água, de uma base fraca e seu ácido conjugado na forma de sal. Exemplos são uma solução de ácido acético e acetato de sódio e uma solução de amônia e cloreto de amônio. Os tampões são usados na calibração de medidores de pH, na cultura de bactérias e no controle do pH de soluções nas quais ocorrem reações químicas. Eles também são administrados, na forma intravenosa, a pacientes hospitalares. Nosso plasma sanguíneo é tamponado em pH = 7, 4. O oceano é tamponado em pH = 8, 4, aproximadamente, por um processo tamponante complexo, que depende da presença de hidrogenocarbonatos e silicatos.

Quando uma gota de ácido forte é adicionada à água, o pH muda significativamente. Quando a mesma quantidade, porém, é adicionada a um tampão, o pH praticamente não muda. Para entender melhor, examine o equilíbrio dinâmico entre um ácido fraco e sua base conjugada em solução em água que contém quantidades semelhantes de um ácido (CH_3COOH) e seu sal (NaCH_3CO_2):

$$CH_3COOH(aq) + H_2O(1) \Longrightarrow H_3O^+(aq) + CH_3CO_2^-(aq)$$

Quando algumas gotas de um ácido são adicionadas a esta solução, os íons $\rm H_3O^+$ recém-chegados transferem prótons para os íons $\rm CH_3CO_2^-$ para formar moléculas de $\rm CH_3COOH$ e $\rm H_2O$. Como os íons $\rm H_3O^+$ adicionados são removidos pelos íons $\rm CH_3CO_2^-$, o pH se mantém quase inalterado, mesmo quando o ácido adicionado é forte. Na verdade, os íons acetato agem como um $\rm \it ralo$ para os prótons. Se, ao contrário, uma pequena quantidade de base for adicionada, os íons $\rm OH^-$ da base removem os prótons das moléculas de $\rm CH_3COOH$ para produzir íons $\rm CH_3CO_2^-$ e moléculas de $\rm H_2O$. Neste caso, as moléculas de ácido acético agem como fontes de prótons. Como os íons $\rm OH^-$ foram removidos pelas moléculas de $\rm CH_3COOH$, a concentração de íons $\rm OH^-$ permanece praticamente inalterada. Consequentemente, a concentração de $\rm H_3O^+$ (e o pH) também se mantém quase constante, mesmo se a base for forte.

Efeito semelhante ocorre em uma solução tampão contendo quantidades semelhantes de uma base (NH_3) e seu sal (NH_4Cl):

$$NH_3(aq) + H_2O(1) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$

Quando algumas gotas de uma solução de base forte são adicionadas, os íons OH^- recém-chegados removem prótons dos íons NH_4^+ para produzir moléculas de NH_3 e H_2O . Se algumas gotas de ácido forte são adicionadas, os prótons que chegam ligam-se às moléculas de NH_3 para formar íons NH_4^+ e, consequentemente, são removidos da solução. Nos dois casos, o pH se mantém praticamente constante, mesmo se o ácido e a base forem fortes.

PONTO PARA PENSAR

Uma solução de glicina, $^{-}O_{2}CCH_{2}NH_{3}^{+}$, que contém grupos ácido e base, em água, funciona como um tampão?

Um tampão é uma mistura de um par conjugado ácido fraco-base fraca que estabiliza o pH de uma solução, fornecendo uma fonte de prótons e um ralo para prótons.

^{*}Contato: gabriel.braun@pensi.com.br, (21)99848-4949

1.2 O planejamento de tampões

Suponha que você precise preparar um tampão com um determinado pH. Seria o caso, se você estivesse, por exemplo, cultivando bactérias e precisasse manter um pH preciso e constante para sustentar seu metabolismo. Para escolher o sistema de tampão mais apropriado, você precisa conhecer o valor do pH no qual um determinado tampão estabiliza a solução. Uma mistura de ácido fraco e seu sal age como um tampão em pH < 7 e é conhecido como tampão ácido. Uma mistura de base fraca e seu sal age como um tampão em pH > 7 e é conhecido como tampão básico (ou *tampão alcalino*). Para encontrar o valor preciso do pH em que uma solução mista de composição conhecida age como um tampão, você precisa calcular o equilíbrio, de modo semelhante ao que fizemos no Tópico 2I.

EXEMPLO 1 Cálculo do pH de uma solução tampão

Considere uma solução 0,04 mol $\rm L^{-1}$ de NaCH $_3$ CO $_2$ e 0,08 mol $\rm L^{-1}$ de CH $_3$ COOH em 25 °C.

Calcule o pH da solução.

• $K_a(CH_3COOH) = 1.8 \times 10^{-5}$

Etapa 1. Calcule a concentração de H_3O^+ usando a equação do K_a

De
$$[H_3O^+] = K_a \times \frac{[CH_3COOH]}{[CH_3CO_2^-]}$$

$$[H_3O^+] = 1.8 \times 10^{-5} \times \frac{0.08}{0.04} = 3.6 \times 10^{-5}$$

Etapa 2. Calcule o pH.

 $De pH = -\log H_3O^+$

$$pH = -\log(3.6 \times 10^{-5}) = \boxed{4.4}$$

O pH no qual uma mistura atua como tampão ácido pode ser reduzido adicionando-se mais ácido fraco. O mesmo efeito é obtido adicionando-se um ácido forte para converter parte da base conjugada do ácido fraco. Para elevar o pH no qual uma solução atua como tampão ácido, a concentração da base conjugada deste ácido pode ser elevada adicionando-se mais sal (o que introduz mais base A^-). Alternativamente, um pouco de base forte poderia ser usado para converter um pouco do ácido no sal.

Em muitas situações, é conveniente fazer uma estimativa rápida do pH do tampão empregando uma forma da expressão de K_a que dá o pH diretamente para qualquer composição da mistura. Para o equilíbrio da reação A, rearranje a expressão para K_a , obtendo

$$[H_3O^+]=K_a\times\frac{[HA]}{[A^-]}$$

a partir da qual temos, tomando os logaritmos negativos de ambos os lados, que

$$\overbrace{-log\left[H_{3}O^{+}\right]}^{pH} = \overbrace{-K_{a}}^{pK_{a}} - log\left[\frac{[HA]}{[A^{-}]}\right]$$

Então, de $\log x = -\log(1/x)$

$$pH = pK_a - log \frac{[HA]}{[A^-]} = pK_a + log \frac{[A^-]}{[HA]}$$

Como vimos, [HA] pode ser considerado igual a $[HA]_{inicial}$ (que escreveremos como $[acido]_{inicial}$) e $[A^-]$ por $[A^-]_{inicial}$ (que escreveremos como $[base]_{inicial}$); o resultado é a **equação de Henderson-Hasselbalch**:

$$pH = pK_a + log \frac{[base]_{inicial}}{[acido]_{inicial}} \tag{1} \label{eq:phase}$$

Para um tampão ácido acético/acetato, a expressão toma a forma

$$pH = pK_{a,CH_3COOH} + log \frac{[CH_3CO_2^{-}]_{inicial}}{[CH_3COOH]_{inicial}}$$

A Equação 1 também pode ser usada para um tampão básico, com pK_a igual ao do ácido conjugado da base. Por exemplo, no caso de um tampão de amônia, o pK_a de NH_4^+ seria usado, identificando base com NH_3 e com NH_4^+ . Portanto, para o tampão amônia/amônio, escreva

$$pH = pK_{a,NH_4}{}^{+} + log \frac{\left[NH_3\right]_{inicial}}{\left[NH_4{}^{+}\right]_{inicial}}$$

Se somente pK_b for conhecido, pK_a será calculado usando a Equação $pK_a + pK_b = pK_w$.

$$pH = (14 - pK_{b,NH_3}) + log \frac{\left[NH_3\right]_{inicial}}{\left[NH_4^+\right]_{inicial}}$$

Os tampões são frequentemente preparados com concentrações iguais de ácido e de base conjugada, porque existe um fornecimento adequado de espécies *fonte* e *ralo* que podem estabilizar o pH contra mudanças nas duas direções. O pH dessas soluções equimolares, isto é, soluções com concentrações molares de soluto idênticas ([base] = [acido]), é fácil de predizer:

$$pH = pK_a + log \underbrace{\frac{1}{[base]_{inicial}}}_{[acido]_{inicial}} = pK_a$$
 (2)

Esse resultado muito simples torna fácil a escolha inicial de um tampão. Basta selecionar um ácido cujo pK_a seja igual ao pH desejado e preparar uma solução equimolar com sua base conjugada.

O pH de uma solução tampão é próximo do pK_a do ácido fraco quando o ácido e a base têm concentrações semelhantes.

1.3 A capacidade tamponante

Assim como uma esponja só pode absorver uma certa quantidade de água, um tampão também só pode tamponar uma certa quantidade de prótons. As *fontes* e os *ralos* de prótons se esgotam quando quantidades muito grandes de ácidos ou bases fortes são adicionadas à solução. A capacidade tamponante é a quantidade máxima de ácido ou de base que pode ser adicionada sem que o tampão perca sua capacidade de resistir à mudança do pH. Um tampão com grande capacidade pode manter a ação tamponante na presença de uma quantidade maior de ácido forte ou de base forte do que um tampão com pequena capacidade. O tampão se exaure quando a maior parte da base fraca é convertida em ácido ou quando a maior parte do ácido fraco é convertida em base. Um tampão mais concentrado tem maior capacidade do que o mesmo tampão mais diluído.

A capacidade do tampão também depende das concentrações relativas do ácido fraco e da base fraca. De um modo geral, o que se verifica experimentalmente é que o tampão tem alta capacidade de estabilização contra a adição de um ácido quando a quantidade de base fraca presente é, pelo menos, cerca de 10% da quantidade de ácido. Se isso não acontece, a base é rapidamente consumida quando um ácido forte é adicionado. De forma semelhante, o tampão tem alta capacidade de estabilização contra a adição de

base quando a quantidade de ácido presente é, pelo menos, cerca de 10% da quantidade de base. Se isso não acontece, o ácido é rapidamente consumido quando uma base forte é adicionada.

Essas percentagens podem ser usadas para expressar a faixa ótima de ação do tampão em termos do pH da solução. A equação de Henderson-Hasselbalch mostra que, quando o ácido é 10 vezes mais abundante do que a base, o pH da solução é

$$pH = pK_a + log \, \frac{[base]}{[acido]} = pK_a + log \, \frac{1}{10} = pK_a - 1 \eqno(3a)$$

Da mesma maneira, quando a base é 10 vezes mais abundante do que o ácido, o pH é

$$pH = pK_a + log \frac{[base]}{[acido]} = pK_a + log 10 = pK_a + 1 \qquad (3a)$$

Logo, a faixa de concentração determinada experimentalmente corresponde a uma faixa de pH igual a pK $_a \pm 1$. Isto é, o tampão age mais efetivamente dentro de uma faixa de ± 1 unidade de pK $_a$. Por exemplo, como o pK $_a$ de $H_2PO_4^-$ é 7,21, um tampão K H_2PO_4/K_2IPO_4 deve ser mais eficaz entre pH = 6,2 e pH = 8,2.

A composição do plasma sanguíneo, no qual a concentração de íons $\mathrm{HCO_3}^-$ é cerca de 20 vezes maior do que a de $\mathrm{H_2CO_3}$, parece estar fora da faixa ótima de ação de tamponamento. Entretanto, os metabólitos principais das células vivas são ácidos carboxílicos, como o ácido láctico. O plasma, com sua concentração relativamente alta de $\mathrm{HCO_3}^-$, pode absorver quantidade significativa de íons hidrogênio desses ácidos carboxílicos. A alta proporção de $\mathrm{HCO_3}^-$ também ajuda a suportar distúrbios que levam ao aumento da acidez, como doenças e choques devido a queimaduras

A capacidade de um tampão é determinada por sua concentração e pH. Um tampão mais concentrado pode reagir com mais ácido ou base adicionados do que um menos concentrado. Uma solução tampão é, geralmente, mais efetiva na faixa de p $K_a\pm 1$.

Problemas

PROBLEMA 1

Considere uma solução tampão $0.15 \, \text{mol} \, L^{-1}$ em HNO_2 e $\pi 0.20 \, \text{mol} \, L - 1$ em NaNO_2 .

Assinale a alternativa que mais se aproxima do pH da solução.

A 3,5

B 4,6

c 6,0

D 7.8

E 10

Dados

• $K_a(HNO_2) = 4.3 \times 10^{-4}$

PROBLEMA 2

Considere uma solução tampão 0,015 mol $\rm L^{-1}$ em HCN e 0,030 mol $\rm L^{-1}$ em NaCN.

Assinale a alternativa que mais se aproxima do da concentração de ${\rm H}_3{\rm O}^+$ na solução.

A $2,6 \times 10^{-11} \, \text{mol} \, L^{-1}$

B $8.0 \times 10^{-11} \, \text{mol} \, \text{L}^{-1}$

c $2.5 \times 10^{-10} \, \text{mol} \, \text{L}^{-1}$

D $7.8 \times 10^{-10} \, \text{mol} \, \text{L}^{-1}$

E $2.4 \times 10^{-9} \, \text{mol L}^{-1}$

Dados

• $K_a(HCN) = 4.9 \times 10^{-10}$

PROBLEMA 3

Considere uma solução tampão 0,04 mol \cdot L-1 em NH $_4$ Cl e 0,03 mol \cdot L-1 em NH $_3$.

Assinale a alternativa que mais se aproxima do pH da solução.

A 2,4

B 3,4

c 4,7

D 6,5

E 9,1

Dados

• $K_b(NH_3) = 1.8 \times 10^{-5}$

PROBLEMA 4

Considere uma solução tampão 0,12 mol \cdot L-1 em NH $_2$ NH $_2$ e 0,12 mol \cdot L-1 em NH $_2$ NH $_3$ Br.

Assinale a alternativa que mais se aproxima do da concentração de ${\rm H}_3{\rm O}^+$ na solução.

A $9.0 \times 10^{-11} \, \text{mol} \, L^{-1}$

B $2.6 \times 10^{-10} \, \text{mol} \, \text{L}^{-1}$

C $7.3 \times 10^{-10} \, \text{mol} \, L^{-1}$

D $2.1 \times 10^{-9} \, \text{mol} \, L^{-1}$

E $5.9 \times 10^{-9} \, \text{mol} \, L^{-1}$

Dados

• $K_b(NH_2NH_2) = 1.7 \times 10^{-6}$

PROBLEMA 5

Uma solução de concentrações molares iguais de ácido glicérico e glicerato de sódio tem pH 3,5.

Assinale a alternativa que mais se aproxima do pH de uma solução em que a concentração de ácido glicérico é o dobro da concentração de glicerato.

A 3,2

B 4,2

c 5,4

D 7,0

E 9,2

PROBLEMA 6

Uma solução de concentrações molares iguais de sacarina, um adoçante, e seu sal de sódio tem pH 3,1.

Assinale a alternativa que mais se aproxima do pH de uma solução em que a concentração de sacarina é um terço da concentração do sal.

A 1,6

B 2,1

c 2,7

D 3,6

E 4,7

PROBLEMA 7

Uma solução é preparada pela mistura de $40\,\mathrm{mL}$ de uma solução 0,03 mol L^{-1} de HCN com $60\,\mathrm{mL}$ de uma solução 0,05 mol L^{-1} de NaCN.

Assinale a alternativa que mais se aproxima do pH da solução resultante.

A 3,6

B 5,0

c 6,9

D 9,7

E 14

Dados

• $pK_a(HCN) = 9,3$

PROBLEMA 8

Uma solução é preparada pela mistura de 0,1 L de uma solução $0.05 \, \text{mol L}^{-1} \, \text{de} \, (\text{CH}_3)_2 \text{NH com } 0.28 \, \text{L} \, \text{de uma solução} \, 0.04 \, \text{mol L}^{-1}$

Assinale a alternativa que mais se aproxima do pH da solução resultante.

A 7,1

B 10

C 14

D 20

E 27

Dados

• $pK_b((CH_3)_2NH) = 3,3$

PROBLEMA 9

Considere uma solução $0.5 \text{ mol L}^{-1} \text{ em NaHSO}_4 \text{ e} 0.25 \text{ mol L}^{-1} \text{ em}$ Na₂SO₄.

Assinale a alternativa que mais se aproxima do pH da solução.

A 0,84

B 1,0

c 1,3

D 1,6

E 2,0

Dados

• $pK_{a2}(H_2SO_4) = 1,9$

PROBLEMA 10

Considere uma solução $0.25 \, \text{mol} \, \text{L}^{-1}$ em Na_2HPO_4 e $0.25 \, \text{mol} \, \text{L}^{-1}$ em Na₃PO₄.

Assinale a alternativa que mais se aproxima do pH da solução.

A 13

B 18

c 26

D 37

E 53

Dados

• $pK_{a1}(H_3PO_4) = 2,1$

• $pK_{a2}(H_3PO_4) = 7,2$

• $pK_{a3}(H_3PO_4) = 13$

PROBLEMA 11

O pH de uma solução 0.4 mol L^{-1} de HF é 1.9. Foram adicionados 0,356 g de fluoreto de sódio, NaF, em uma alíquota de 50 mL da solução.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

A 0,75

B 0,91

c 1,1

D 1,3

E 1,6

PROBLEMA 12

O pH de uma solução 0,5 mol $\rm L^{-1}$ de HBrO é 4,5. Foram adicionados 5,1 g de hipobromito de sódio, NaBrO, em uma alíquota de 100 mL da solução.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

A 3,1

B 4,1

c 5,4

D 7,2

9,5

PROBLEMA 13

Uma solução tampão de volume $100 \,\mathrm{mL}$ é $0.1 \,\mathrm{mol}\,\mathrm{L}^{-1}$ em $CH_3COOH e 0,1 \text{ mol } L^{-1} \text{ em NaCH}^3CO^2$. Foram adicionados 10 mLde uma solução 0,95 mol $\rm L^{-1}$ de NaOH à solução.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

+0,98

B +1,2

c +1,5

D +1,9

|E| +2,3

Dados

• $pK_a(CH_3COOH) = 4.8$

PROBLEMA 14

Uma solução tampão de volume 100 mL é 0,14 mol L⁻¹ em Na_2HPO_4 e 0,1 mol L⁻¹ em KH^2PO^4 . Foram adicionados 75 mL de uma solução 0,1 mol ${\rm L}^{-1}$ de NaOH à solução.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

+0,76

B + 0.93

| c | +1,1

D +1,4

|E| +1,7

Dados

• $pK_{a1}(H_3PO_4) = 2,1$

• $pK_{a2}(H_3PO_4) = 7,2$

• $pK_{a3}(H_3PO_4) = 13$

PROBLEMA 15

Uma solução tampão de volume 100 mL é 0,1 mol L⁻¹ em $CH_3COOH e 0,1 \text{ mol } L^{-1} \text{ em NaCH}^3CO^2$. Foram adicionados 20 mL de uma solução $0,1 \text{ mol } L^{-1}$ de HNO₃ à solução.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

A -0.099

B -0.13

-0.18

-0,24

-0,33

Dados

• $pK_a(CH_3COOH) = 4.8$

PROBLEMA 16

Uma solução tampão de volume $100\,\mathrm{mL}$ é $0,14\,\mathrm{mol}\,\mathrm{L}^{-1}$ em Na₂HPO₄ e 0,1 mol L⁻¹ em KH²PO⁴. Foram adicionados 10 mL de uma solução $0,5 \text{ mol } L^{-1}$ de HCl à solução.

Assinale a alternativa que mais se aproxima da variação de pH da solução.

-0.27 **B** -0.35 **C** -0.45 **D** -0.58 **E** -0.75

Dados

• $pK_{a1}(H_3PO_4) = 2,1$

• $pK_{a2}(H_3PO_4) = 7,2$

• $pK_{a3}(H_3PO_4) = 13$

PROBLEMA 17

Considere as soluções aquosas obtidas pela dissolução dos solutos em 1 L de água.

- 1. 1 mol de NaCH₃CO₂ e 1 mol de CH₃COOH.
- 2. 2 mol de NH₃ e 1 mol de HCl.
- 3. 1 mol de NaOH e 1 mol de HCl.
- 4. 1 mol de NH₄OH e 1 mol de CH₃COOH.

Assinale a alternativa que relaciona as soluções tampão.

- A 1 e 2
- **B** 1 e 4
- **c** 2 e 4

- D 1, 2 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 18

Considere as soluções aquosas obtidas pela dissolução dos solutos em 1 L de água.

- 1. 1 mol de NH₄OH e 1 mol de NH₄Cl.
- 2. 1 mol de CH₃COOH e 1 mol de NaOH.
- 3. 2 mol de CH₃COOH e 1 mol de NaOH.
- 4. 5 mol de NaOH e 2 mol de H₃PO₄.

Assinale a alternativa que relaciona as soluções tampão.

- A 1 e 3
- **B** 1 e 4
- **c** 3 e 4

- **D** 1, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 19

Assinale a alternativa com o sistema tamponante mais adequado para preparar um tampão com pH próximo de 5.

- A NaCH₃CO₂ e CH₃COOH
- B C₆H₅COOH e NaC₆H₅CO₂
- C K₂HPO₄ e K³PO⁴
- **D** K₂HPO₄ e KH²PO⁴
- NH₂OH e NaNH₃OH

Dados

- $pK_{a1}(H_3PO_4) = 2,1$
- $pK_{a2}(H_3PO_4) = 7,2$
- $\bullet \ pK_{a3}(H_3PO_4)=13$
- $pK_a(CH_3COOH) = 4,8$
- $pK_a(C_6H_5COOH) = 4,2$
- $pK_b(NH_2OH) = 8,0$

PROBLEMA 20

Assinale a alternativa com o sistema tamponante mais adequado para preparar um tampão com pH próximo de 10.

- A NaNO₂ e HNO₂
- B HCOOH e NaHCO₂
- c Na₂CO₃ e NaHCO³
- D (CH₃)₃NHCl e (CH₃)₃NH2
- E C₅H₅N e C₅H₅NHCl

Dados

- $pK_{a1}(H_2CO_3) = 6.4$
- $pK_{a2}(H_2CO_3) = 10$
- $pK_a(HCOOH) = 3.8$
- $pK_a(HNO_2) = 3,4$
- $pK_b(C_5H_5N) = 8.8$
- $pK_b((CH_3)_3N) = 4,2$

PROBLEMA 21

Uma solução tampão de íons acetato e de ácido acético tem p ${\rm H}=5.25$

Assinale a alternativa que mais se aproxima da razão entre a concentração de íons acetato e de ácido acético na solução.

- **A** 3,2
- **B** 4,2
- **c** 5,4
- **D** 7,0
- **E** 9,2

Dados

• $pK_a(CH_3COOH) = 4,8$

PROBLEMA 22

Uma solução tampão de íons benzoato e de ácido bonzóico tem pH = 3.5

Assinale a alternativa que mais se aproxima da razão entre a concentração de íons benzoato e de ácido benzóico na solução.

- **A** 0,15
- **B** 0,2
- **c** 0,27
- **D** 0,36
- **E** 0,48

Dados

• $pK_a(C_6H_5COOH) = 4,2$

PROBLEMA 23

O hipoclorito de sódio, NaClO, é o igrediente ativo de muitos alvejantes. Uma solução de alvejante teve seu pH ajustado para 6,5 com um ácido forte.

Assinale a alternativa que mais se aproxima da razão entre a concentração de íons hipoclorito e de ácido hipocloroso na solução.

- **A** 3.3×10^{-2}
- **B** 4.7×10^{-2}
- **c** $6,6 \times 10^{-2}$

- **D** 9.3×10^{-2}
- **E** 1.3×10^{-1}

Dados

• $K_a(HClO) = 3 \times 10^{-8}$

PROBLEMA 24

A aspirina, ácido acetilsalicílico, é um produto da reação do ácido salicílico com anidrido acético. Uma solução de aspirina teve seu pH ajustado para 4,13.

Assinale a alternativa que mais se aproxima da razão entre a concentração de íons acetilsalicilato e de ácido acetilsalicílico na solução.

- A 4,4
- **B** 5,8
- **c** 7,8
- **D** 10
- 0 **E** 14

Dados

• $K_a(aspirina) = 3.2 \times 10^{-4}$

PROBLEMA 25

Uma alíquota de 25 mL de ácido acético, CH_3OOH , 0,1 mol L^{-1} foi titulada com NaOH 0,1 mol L^{-1} .

Assinale a alternativa que mais se aproxima do pH após a adição de 10 mL da solução de NaOH.

A 1,9

B 2,6

c 3,5

D 4,6

E 6,1

Dados

• $pK_a(CH_3COOH) = 4.8$

PROBLEMA 26

Uma alíquota de 30 mL de ácido benzoico, C_6H_5COOH , $0,12\,mol\,L^{-1}$ foi titulada com KOH $0,2\,mol\,L^{-1}$.

Assinale a alternativa que mais se aproxima do pH após a adição de 5 mL da solução de KOH.

A 1,3

B 1,7

c 2,2

D 2,9

E 3,8

Dados

• $pK_a(C_6H_5COOH) = 4,2$

PROBLEMA 27

Uma amostra de 4,25 g de um ácido monoprótico fraco desconhecido foi dissolvida em água. A titulação desta solução com uma solução $0,35 \, \text{mol} \, \text{L}^{-1}$ de NaOH exigiu $52 \, \text{mL}$ para atingir o ponto estequiométrico. Após a adição de $26 \, \text{mL}$, o pH da solução era 3,8.

Assinale a alternativa que mais se aproxima do pK_a do ácido.

A 1,3

B 1,7

c 2,2

D 2,9

E 3,8

PROBLEMA 28

Uma amostra de 0,48 g de um ácido monoprótico fraco desconhecido foi dissolvida em água. A titulação desta solução com uma solução $0,25 \text{ mol L}^{-1}$ de NaOH exigiu 40 mL para atingir o ponto estequiométrico. Após a adição de 10 mL, o pH da solução era 3,1.

Assinale a alternativa que mais se aproxima do pK_a do ácido.

A 1,2

B 1,6

c 2,1

D 2,7

E 3,6

PROBLEMA 29

Uma alíquota de 25 mL de ácido acético, $\rm CH_3OOH, 0,1~mol\,L^{-1}$ foi titulada com NaOH 0,1 mol $\rm L^{-1}$.

Assinale a alternativa que mais se aproxima do pH no ponto estequiométrico.

A 6,3

B 8,7

c 12

D 17

E 23

Dados

• $pK_a(CH_3COOH) = 4.8$

PROBLEMA 30

Uma alíquota de 25 mL de ácido benzóico, C_6H_5COOH , $0,12\,mol\,L^{-1}$ foi titulada com NaOH $0,023\,mol\,L^{-1}$.

Assinale a alternativa que mais se aproxima do pH no ponto estequiométrico.

A 8,2

B 11

c 16

D 22

E 30

Dados

• $pK_a(C_6H_5COOH) = 4,2$

PROBLEMA 31

Uma alíquota de 15 mL de amônia, NH_3 , 0,15 mol L^{-1} foi titulada com HCl 0,1 mol L^{-1} .

Assinale a alternativa que mais se aproxima do pH após a adição de 15 mL da solução de HCl.

A 3,3

B 4,7

c 6,5

D 9,0

E 13

Dados

• $pK_b(NH_3) = 4.8$

PROBLEMA 32

Uma alíquota de 50 mL de metilamina, CH_3NH_2 , 0,25 mol L^{-1} foi titulada com HCl 0,35 mol L^{-1} .

Assinale a alternativa que mais se aproxima do pH após a adição de 15 mL da solução de HCl.

A 3,9

B 5,5

c 7,8

D 11

E 15

Dados

• $pK_b(CH_3NH_2) = 3,4$

PROBLEMA 33

Uma alíquota de 15 mL de amônia, NH $_3$, 0,15 mol L $^{-1}$ foi titulada com HCl 0,1 mol L $^{-1}$.

Assinale a alternativa que mais se aproxima do pH no ponto estequiométrico.

A 1,7

B 2,3

c 3,1

D 4,2

E 5,7

Dados

• $pK_b(NH_3) = 4.8$

PROBLEMA 34

Uma alíquota de 30 mL de morfina, $C_{17}H_{19}O_3N$, 0,0172 mol L^{-1} foi titulada com HCl 0,016 mol L^{-1} .

Assinale a alternativa que mais se aproxima do pH no ponto estequiométrico.

A 5,1

B 6,8

c 9,2

D 12

E 17

Dados

• $pK_b(C_{17}H_{19}O_3N) = 5.8$

PROBLEMA 35

Uma solução 0,2 mol $\rm L^{-1}$ de ácido acético foi titulada com NaOH 0,2 mol $\rm L^{-1}.$

Considere os indicadores e suas respectivas faixas de pH da mudança de cor.

- 1. Alaranjado de metila (1,2 para 2,8).
- 2. Tornassol (5,0 para 8,0).
- 3. Azul de timol (8,0 para 9,6).
- 4. Fenoftaleína (8,2 para 10).

Assinale a alternativa que relaciona os indicadores adequados para a titulação.

A 3

B 4

C 3 e 4

D 1, 3 e 4

E 2, 3 e 4

Dados

• $pK_a(CH_3COOH) = 4.8$

PROBLEMA 36

Uma solução 0,2 mol $\rm L^{-1}$ de ácido acético foi titulada com NaOH 0,2 mol $\rm L^{-1}$.

Considere os indicadores e suas respectivas faixas de pH da mudança de cor.

- 1. Verde de bromocresol (3,8 para 5,4).
- 2. Vermelho de metila (4,8 para 6,0).
- 3. Vermelho de fenol (6,6 para 8,0).
- 4. Azul de timol (8,0 para 9,6).

Assinale a alternativa que relaciona os indicadores adequados para a titulação.

A 1

B 2

C 1 e 2

D 1, 2 e 3

E 1, 2 e 4

Dados

• $pK_b(NH_3) = 4.8$

Gabarito

Problemas

1.	Α	2.	C	3.	E	4.	E	5.	A	6.	D
7.	D	8.	В	9.	D	10.	A	11.	C	12.	В
13.	C	14.	A	15.	C	16.	В	17.	D	18.	D
19.	A	20.	C	21.	A	22.	В	23.	D	24.	A
25.	D	26.	E	27.	E	28.	E	29.	В	30.	A
31.	D	32.	D	33.	E	34.	Α	35.	C	36.	C