New characterizations of partial sums of the Möbius function

Maxie Dion Schmidt

Georgia Institute of Technology School of Mathematics

Sunday 20th June, 2021

Abstract

The Mertens function, $M(x) := \sum_{n \le x} \mu(n)$, is defined as the summatory function of the classical Möbius function for $x \ge 1$. The inverse sequence $\{g^{-1}(n)\}_{n\ge 1}$ taken with respect to Dirichlet convolution is defined in terms of the strongly additive function $\omega(n)$ that counts the number of distinct prime factors of any integer $n \ge 2$ without considering multiplicity. For large x and $n \le x$, we associate a natural combinatorial significance to the magnitude of the distinct values of the function $g^{-1}(n)$ that depends directly on the exponent patterns in the prime factorizations of the integers in $\{2,3,\ldots,x\}$ viewed as multisets.

We prove an Erdős-Kac theorem analog for the distribution of the unsigned sequence $|g^{-1}(n)|$ over $n \le x$ with a central limit theorem tendency towards normal as $x \to \infty$. For all $x \ge 1$, discrete convolutions of the summatory function $G^{-1}(x) := \sum_{n \le x} \lambda(n) |g^{-1}(n)|$ with the prime counting function $\pi(x)$ determine exact formulas and new characterizations of asymptotic bounds for M(x). In this way, we prove another concrete link to the distribution of $L(x) := \sum_{n \le x} \lambda(n)$ with the Mertens function and connect these classical summatory functions with an explicit normal tending probability distribution at large x. The proofs of the resulting combinatorially motivated new characterizations of M(x) are rigorous and unconditional.

Keywords and Phrases: Möbius function; Mertens function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting function; Dirichlet generating function; Erdős-Kac theorem; strongly additive function.

Math Subject Classifications (MSC 2010): 11N37; 11A25; 11N60; 11N64; and 11-04.

Article Index

No	1 Introduction 1.1 Preliminaries 1.2 A concrete new approach to characterizing $M(x)$ 2 Initial elementary proofs of new results 2.1 Establishing the summatory function properties and inversion identities 2.2 Proving the characteristic signedness property of $g^{-1}(n)$ 2.3 Results on the distribution of exceptional values of $\omega(n)$ and $\Omega(n)$ 3 Auxiliary sequences related to the inverse function $g^{-1}(n)$ 3.1 Definitions and properties of triangular component function sequences 3.2 Relating the function $C_{\Omega(n)}(n)$ to exact formulas for $g^{-1}(n)$ 3.3 Another combinatorial connection to the distribution of the primes 4 The distributions of $C_{\Omega(n)}(n)$ and $ g^{-1}(n) $ 4.1 Analytic proofs extending bivariate DGF methods for additive functions 4.2 Average orders of the unsigned sequences 4.3 Analogs to the Erdős-Kac theorem for the distributions of the unsigned sequences 2		2
1	Intr	roduction	5
	1.1	Preliminaries	6
	1.2	A concrete new approach to characterizing $M(x)$	7
2	Init	ial elementary proofs of new results	11
	2.1	Establishing the summatory function properties and inversion identities	11
	2.2	Proving the characteristic signedness property of $g^{-1}(n)$	12
	2.3	Results on the distribution of exceptional values of $\omega(n)$ and $\Omega(n)$	14
3	Aux	kiliary sequences related to the inverse function $g^{-1}(n)$	16
	3.1	Definitions and properties of triangular component function sequences	16
	3.2	Relating the function $C_{\Omega(n)}(n)$ to exact formulas for $g^{-1}(n)$	16
	3.3	Another combinatorial connection to the distribution of the primes	17
4	The	e distributions of $C_{\Omega(n)}(n)$ and $ g^{-1}(n) $	19
	4.1	Analytic proofs extending bivariate DGF methods for additive functions	19
	4.2	Average orders of the unsigned sequences	24
	4.3	Analogs to the Erdős-Kac theorem for the distributions of the unsigned sequences	26
	4.4	Probabilistic interpretations	29
5	Nev	v formulas and limiting relations characterizing $M(x)$	30
	5.1	Establishing initial asymptotic bounds on the summatory function $G^{-1}(x)$	30
	5.2	Bounding $M(x)$ by asymptotics for $G^{-1}(x)$	31
6	Con	nclusions	34
\mathbf{A}	App	pendix: Asymptotic formulas	38
В	Tah	the Dirichlet inverse function $a^{-1}(n)$	41

Notation and conventions

The next listing provides a glossary of common notation, conventions and abbreviations used throughout the article.

Symbol	Definition
≈,~	We write that $f(x) \approx g(x)$ if $ f(x) - g(x) = O(1)$ as $x \to \infty$. Two arithmetic functions $A(x), B(x)$ satisfy the relation $A \sim B$ if $\lim_{x\to\infty} \frac{A(x)}{B(x)} = 1$.
$\mathbb{E}[f(x)]$	We use the expectation notation of $\mathbb{E}[f(x)] = h(x)$ to denote that f has an average order of $h(x)$. This means that $\frac{1}{x} \times \sum_{n \leq x} f(n) \sim h(x)$.
$\chi_{\mathbb{P}}(n)$	The indicator function of the primes equals one if and only if $n \in \mathbb{Z}^+$ is prime, and is zero-valued otherwise.
$C_k(n), C_{\Omega(n)}(n)$	The sequence is defined recursively for integers $n \ge 1$ and $k \ge 0$ as follows:
	$C_k(n) := \begin{cases} \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$
	It represents the multiple (k-fold) convolution of the function $\omega(n)$ with itself.
$[q^n]F(q)$	The coefficient of q^n in the power series expansion of $F(q)$ about zero when $F(q)$ is treated as the ordinary generating function (OGF) of some sequence, $\{f_n\}_{n\geq 0}$. Namely, for integers $n\geq 0$ we define $[q^n]F(q)=f_n$ whenever $F(q)\coloneqq \sum_{n\geq 0}f_nq^n$.
arepsilon(n)	The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) := \delta_{n,1}$, defined such that for any arithmetic function f we have that $f * \varepsilon = \varepsilon * f = f$ where the operation $*$ denotes Dirichlet convolution (see definition below).
f * g	The Dirichlet convolution of f and g is denoted by $(f * g)(n) := \sum_{d n} f(d)g\left(\frac{n}{d}\right)$ where the sum is taken over the divisors of any $n \ge 1$.
$f^{-1}(n)$	The Dirichlet inverse f^{-1} of any arithmetic function f exists if and only if $f(1) \neq 0$. The Dirichlet inverse of any f such that $f(1) \neq 0$ is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}(n/d)$ for $n \geq 2$ with
	$f^{-1}(1) = 1/f(1)$. When it exists, this inverse function is unique and satisfies the characteristic relations that $f^{-1} * f = f * f^{-1} = \varepsilon$.
≫,≪,≍	For functions A, B , the notation $A \ll B$ implies that $A = O(B)$. Similarly, for $B \ge 0$ the notation $A \gg B$ implies that $B = O(A)$. When we have that $A, B \ge 0$, $A \ll B$ and $B \ll A$, we write $A \times B$.
$g^{-1}(n), G^{-1}(x)$	The Dirichlet inverse function, $g^{-1}(n) = (\omega+1)^{-1}(n)$ with corresponding summatory function $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$.
$[n=k]_{\delta},[\mathtt{cond}]_{\delta}$	The symbol $[n = k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if $n = k$, and is zero otherwise. For boolean-valued conditions, cond, the symbol $[\operatorname{cond}]_{\delta}$ evaluates to one precisely when cond is true, and to zero otherwise. This notation is called <i>Iverson's convention</i> .

Symbol Definition $\lambda(n), L(x)$ The Liouville lambda function is the completely multiplicative function defined by $\lambda(n) := (-1)^{\Omega(n)}$. Its summatory function is defined by $L(x) := \sum_{n \le x} \lambda(n)$. The Möbius function defined such that $\mu^2(n)$ is the indicator function $\mu(n), M(x)$ of the squarefree integers $n \ge 1$ where $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree. The Mertens function is the summatory function defined for all integers $x \ge 1$ by $M(x) := \sum_{n \le x} \mu(n)$. For $z \in \mathbb{R}$, we define the CDF of the standard normal distribution to $\Phi(z)$ be $\Phi(z) := \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$. The valuation function that extracts the maximal exponent of p in $\nu_p(n)$ the prime factorization of n, e.g., $\nu_p(n) = 0$ if p + n and $\nu_p(n) = \alpha$ if $p^{\alpha}||n|$ (that is, when p^{α} exactly divides n) for $p \geq 2$ prime, $\alpha \geq 1$ and $n \ge 2$. $\omega(n),\Omega(n)$ We define the strongly additive function $\omega(n) := \sum_{p|n} 1$ and the completely additive function $\Omega(n) := \sum_{p^{\alpha}||n} \alpha$. This means that if the prime factorization of $n \ge 2$ is given by $n := p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ with $p_i \ne p_j$ for all $i \neq j$, then $\omega(n) = r$ and $\Omega(n) = \alpha_1 + \cdots + \alpha_r$. By convention we set $\omega(1) = \Omega(1) = 0.$ $\pi_k(x), \widehat{\pi}_k(x)$ For integers $k \ge 1$, the prime counting function variant $\pi_k(x)$ denotes the number of $2 \le n \le x$ with exactly k distinct prime factors: $\pi_k(x) :=$ $\#\{2 \le n \le x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) := \#\{2 \le n \le n\}$ $x: \Omega(n) = k$ for $x \ge 2$ and fixed $k \ge 1$. P(s)For complex s with Re(s) > 1, we define the prime zeta function to be the Dirichlet generating function (DGF) $P(s) = \sum_{n\geq 1} \frac{\chi_{\mathbb{P}}(n)}{n^s} =$ $\sum_{k\geq 2} \frac{\mu(k)}{k} \log \zeta(ks).$ Q(x)For $x \ge 1$, we define Q(x) to be the summatory function indicating the number of squarefree integers $n \le x$. That is, $Q(x) := \sum_{n \le x} \mu^2(n)$. W(x)For $x, y \in \mathbb{R}_{\geq 0}$, we write that x = W(y) if and only if $xe^x = y$. This function denotes the principal branch of the multi-valued Lambert Wfunction defined on the non-negative reals. $\zeta(s)$ The Riemann zeta function is defined by $\zeta(s) := \sum_{n>1} n^{-s}$ when

Re(s) > 1, and by analytic continuation on the rest of the complex plane with the exception of a simple pole at s = 1 of residue one.

1 Introduction

The $M\ddot{o}bius\ function$ is defined to be the signed indicator function of the squarefree integers in the form of [25, A008683]

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^{\omega(n)}, & \text{if } \omega(n) = \Omega(n) \land n \ge 2; \\ 0, & \text{otherwise.} \end{cases}$$

The Mertens function, or summatory function of $\mu(n)$, is defined on the positive integers as

$$M(x) = \sum_{n \le x} \mu(n), x \ge 1.$$

The first several values of this summatory function begin as follows [25, A002321]:

$$\{M(x)\}_{x\geq 1} = \{1,0,-1,-1,-2,-1,-2,-2,-2,-1,-2,-2,-3,-2,-1,-1,-2,-2,-3,-3,-2,-1,-2,\ldots\}.$$

The Mertens function is related to the partial sums of the Liouville lambda function, $\lambda(n) = (-1)^{\Omega(n)}$, denoted by $L(x) := \sum_{n \le x} \lambda(n)$ for any $x \ge 1$, via the relation [6, 12]

$$L(x) = \sum_{d \le \sqrt{x}} M\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), x \ge 1.$$

The main interpretation to take away from the article is our new characterization of M(x) using two auxiliary sequences and their summatory functions. This characterization is formed by constructing combinatorially motivated sequences related to the distribution of the primes by convolutions of strongly additive functions. The methods in this article stem from a curiosity about an under utilized elementary identity from the list of exercises in [1, §2; cf. §11]. In particular, the indicator function of the primes is given by Möbius inversion as the Dirichlet convolution $\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu$. We form partial sums of $(\omega + 1) * \mu(n)$ over $n \le x$ for any $x \ge 1$ and then apply classical style inversion theorems to relate M(x) to the partial sums of $g^{-1}(n) := (\omega + 1)^{-1}(n)$.

There is a natural relationship of $g^{-1}(n)$ with the auxiliary function $C_{\Omega(n)}(n)$ that we prove by elementary methods in Section 3. These identities inspire the deep connection between the unsigned inverse function and additive prime counting combinatorics we find in Section 3.3. In this sense, the new results stated within this article diverge from the proof templates typified by previous methods to bound M(x) cited in the references. The function $C_{\Omega(n)}(n)$ was considered under alternate notation in the work of Fröberg (circa 1968) on the series expansions of the prime zeta function, P(s), e.g., the prime sums defined as the Dirichlet generating function (DGF) of $\chi_{\mathbb{P}}(n)$. The clear interpretation of the function in connection with M(x) is unique to our work to establish the properties of this auxiliary sequence stated in the next sections. References to uniform asymptotics for restricted partial sums of $C_{\Omega(n)}(n)$ and the features of the limiting distribution of this function are missing in surrounding literature.

We cite the modern results in [13, §7.4; §2.4] applying traditional analytic methods to formulate limiting asymptotics and to directly prove an Erdős-Kac theorem for the completely additive function $\Omega(n)$. Adaptations of the key ideas from the exposition in the reference provide a foundation for analytic proofs of several limiting properties of, asymptotic formulae for restricted partial sums involving, and a limiting Erdős-Kac type theorem for $C_{\Omega(n)}(n)$ and $|g^{-1}(n)|$. The sequence $g^{-1}(n)$ and its partial sums defined by $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ are linked to canonical examples of strongly and completely additive functions, e.g., to $\omega(n)$ and $\Omega(n)$, respectively. The definitions of the sequences we define, and the proof methods given in the spirit of Montgomery and Vaughan's work, allow us to reconcile the property of strong additivity with the signed partial sums of a multiplicative function. We leverage the connection of $C_{\Omega(n)}(n)$ and $|g^{-1}(n)|$ with the canonical number theoretic additive functions to obtain the results proved in Section 4.

Since we prove that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$ for all $n \geq 1$, we have a probabilistic perspective from which to express our intuition about features of the distribution of $G^{-1}(x)$. The partial sums defined by $G^{-1}(x)$ are precisely related to the properties of $|g^{-1}(n)|$ and asymptotics for L(x). The new results in this article then relate the distribution of L(x), an explicitly identified normal tending probability distribution, and M(x) as $x \to \infty$. Formalizing the properties of the distribution of L(x) is still typically viewed as a problem that is equally as difficult as understanding the properties of M(x) well at large x or along infinite subsequences. Our characterizations of M(x) by the summatory function of the signed inverse sequence, $G^{-1}(x)$, is suggestive of new approaches to bounding the Mertens function. These results motivate future work to state upper (and possibly lower) bounds on M(x) in terms of the additive combinatorial properties of the repeated distinct values of the sign weighted summands of $G^{-1}(x)$. We also expect that an outline of the method behind the collective proofs we provide with respect to the Mertens function can be generalized to identify associated additive functions with the same role of $\omega(n)$ in this article to express asymptotics for partial sums of other signed multiplicative functions.

1.1 Preliminaries

A conventional approach to evaluating the limiting asymptotic behavior of M(x) for large $x \to \infty$ considers an inverse Mellin transformation of the reciprocal of the Riemann zeta function. In particular, since

$$\frac{1}{\zeta(s)} = \prod_{p} \left(1 - \frac{1}{p^s} \right) = s \times \int_1^{\infty} \frac{M(x)}{x^{s+1}} dx, \operatorname{Re}(s) > 1,$$

we obtain that

$$M(x) = \lim_{T \to \infty} \frac{1}{2\pi i} \times \int_{T - i\infty}^{T + i\infty} \frac{x^s}{s\zeta(s)} ds.$$

The previous two representations lead us to the exact expression of M(x) for any x > 0 given by the next theorem.

Theorem 1.1 (Titchmarsh). Assuming the Riemann Hypothesis (RH), there exists an infinite sequence $\{T_k\}_{k\geq 1}$ satisfying $k\leq T_k\leq k+1$ for each integer $k\geq 1$ such that for any real x>0

$$M(x) = \lim_{k \to \infty} \sum_{\substack{\rho: \zeta(\rho) = 0 \\ 0 < |\operatorname{Im}(\rho)| < T_k}} \operatorname{Re}\left(\frac{x^{\rho}}{\rho \zeta'(\rho)}\right) - 2 + \sum_{n \ge 1} \frac{(-1)^{n-1}}{n(2n)! \zeta(2n+1)} \left(\frac{2\pi}{x}\right)^{2n} + \frac{\mu(x)}{2} \left[x \in \mathbb{Z}^+\right]_{\delta}.$$

A historical unconditional bound on the Mertens function due to Walfisz (circa 1963) states that there is an absolute constant $C_1 > 0$ such that

$$M(x) \ll x \times \exp\left(-C_1 \log^{\frac{3}{5}}(x) (\log \log x)^{-\frac{3}{5}}\right).$$

Under the assumption of the RH, Soundararajan and Humphries, respectively, improved estimates bounding M(x) from above for large x in the following form for any fixed $\epsilon > 0$ [26, 6]:

$$M(x) \ll \sqrt{x} \exp\left((\log x)^{\frac{1}{2}} (\log \log x)^{14}\right),$$

$$M(x) = O\left(\sqrt{x} \exp\left((\log x)^{\frac{1}{2}} (\log \log x)^{\frac{5}{2} + \epsilon}\right)\right).$$

The RH is equivalent to showing that $M(x) = O\left(x^{\frac{1}{2}+\epsilon}\right)$ for any $0 < \epsilon < \frac{1}{2}$. There is a rich history to the original statement of the *Mertens conjecture* which asserts that

$$|M(x)| < C_2 \sqrt{x}$$
, for some absolute constant $C_2 > 0$.

The conjecture was first verified by Mertens himself for $C_2 = 1$ and all x < 10000 without the benefit of modern computation. Since its beginnings in 1897, the Mertens conjecture was disproved by computational methods with non-trivial simple zeta function zeros with comparatively small imaginary parts in the famous paper by Odlyzko and te Riele [18]. More recent attempts at bounding M(x) naturally consider determining the rates at which the function $q(x) := M(x)x^{-\frac{1}{2}}$ grows with or without bound along infinite subsequences, i.e., considering the asymptotics of q(x) in the limit supremum and limit infimum senses.

It is verified by computation that [21, cf. §4.1] [25, cf. A051400; A051401]

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} > 1.060 \qquad \text{(now } \ge 1.826054),$$

and

$$\liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} < -1.009 \qquad \text{(now } \le -1.837625\text{)}.$$

Based on the work by Odlyzko and te Riele, it is likely that each of these limits evaluates to $\pm \infty$, respectively [18, 10, 11, 7]. A conjecture due to Gonek asserts that in fact M(x) satisfies [17]

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}(\log \log \log x)^{\frac{5}{4}}} = O(1).$$

1.2 A concrete new approach to characterizing M(x)

1.2.1 Summatory functions of Dirichlet convolutions of arithmetic functions

We prove the next inversion theorem by matrix methods in Section 2.1.

Theorem 1.2 (Summatory functions of Dirichlet convolutions). Let $f, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $f(1) \neq 0$. Suppose that $F(x) := \sum_{n \leq x} f(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of f and h, respectively, and that $F^{-1}(x) := \sum_{n \leq x} f^{-1}(n)$ denotes the summatory function of the Dirichlet inverse of f for any $x \geq 1$. We have the following exact expressions for the summatory function of the convolution f * h for all integers $x \geq 1$:

$$\pi_{f*h}(x) \coloneqq \sum_{n \le x} \sum_{d \mid n} f(d)h\left(\frac{n}{d}\right)$$

$$= \sum_{d \le x} f(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$= \sum_{k=1}^{x} H(k)\left[F\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - F\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right].$$

Moreover, for all $x \ge 1$

$$H(x) = \sum_{j=1}^{x} \pi_{f*h}(j) \left[F^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - F^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right]$$
$$= \sum_{k=1}^{x} f^{-1}(k) \pi_{f*h} \left(\left\lfloor \frac{x}{k} \right\rfloor \right).$$

Two key consequences of Theorem 1.2 as it applies to the summatory function M(x) are stated as the next corollaries.

Corollary 1.3 (Applications of Möbius inversion). Suppose that h is an arithmetic function such that $h(1) \neq 0$. Define the summatory function of the convolution of h with μ by $\widetilde{H}(x) := \sum_{n \leq x} (h * \mu)(n)$. Then the Mertens function is expressed by the sum

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} h^{-1}(j) \right) \widetilde{H}(k), \forall x \ge 1.$$

Corollary 1.4 (Key Identity). We have that for all $x \ge 1$

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]. \tag{1}$$

1.2.2 An exact expression for M(x) via strongly additive functions

Fix the notation for the Dirichlet invertible function $g(n) := \omega(n) + 1$ and define its inverse with respect to Dirichlet convolution by $g^{-1}(n)$ [25, A341444]. We can compute exactly that (see Table B on page 41)

$$\{g^{-1}(n)\}_{n\geq 1} = \{1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, \ldots\}.$$

There is not a simple direct recursion between the distinct values of $g^{-1}(n)$ that holds for all $n \ge 1$. The distribution of distinct sets of prime exponents is still clearly quite regular since $\omega(n)$ and $\Omega(n)$ play a crucial role in the repetition of common values of $g^{-1}(n)$. The following observation is suggestive of the quasi-periodicity of the distribution of distinct values of this inverse function over $n \ge 2$:

Observation 1.5 (Additive symmetry in $g^{-1}(n)$ from the prime factorizations of $n \le x$). Suppose that $n_1, n_2 \ge 2$ are such that their factorizations into distinct primes are given by $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_r^{\beta_r}$. If $\{\alpha_1, \ldots, \alpha_r\} \equiv \{\beta_1, \ldots, \beta_r\}$ as multisets of prime exponents, then $g^{-1}(n_1) = g^{-1}(n_2)$. For example, g^{-1} has the same values on the squarefree integers with exactly one, two, three (and so on) prime factors.

Proposition 1.6 (Characteristic properties of the inverse sequence). We have the following properties characterizing the Dirichlet inverse function $g^{-1}(n)$:

- (A) For all $n \ge 1$, $sgn(g^{-1}(n)) = \lambda(n)$;
- (B) For all squarefree integers $n \geq 2$, we have that

$$|g^{-1}(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \times m!;$$

(C) If $n \ge 2$ and $\Omega(n) = k$ for some $k \ge 1$, then

$$2 \le |g^{-1}(n)| \le \sum_{j=0}^{k} {k \choose j} \times j!.$$

The signedness property in (A) is proved precisely in Proposition 2.1. A proof of (B) follows from Lemma 3.1 stated on page 16.

The realization that the beautiful and remarkably simple combinatorial form of property (B) in Proposition 1.6 holds for all squarefree $n \ge 1$ motivates our pursuit of simpler formulas for the

inverse functions $g^{-1}(n)$ through the sums of auxiliary subsequences $C_k(n)$ with $k := \Omega(n)$ defined in Section 3. That is, we observe a familiar formula for $g^{-1}(n)$ on an asymptotically dense infinite subset of integers (with density $\frac{6}{\pi^2}$), e.g., that holds for all squarefree $n \ge 2$, and then seek to extrapolate by proving there are regular tendencies of the distribution of this sequence viewed more generally over any $n \ge 2$.

An exact expression for $g^{-1}(n)$ is given by

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega(d)}(d), n \ge 1,$$

where the sequence $\lambda(n)C_{\Omega(n)}(n)$ has DGF $(P(s)+1)^{-1}$ for Re(s) > 1 (see Proposition 2.1). The function $C_{\Omega(n)}(n)$ has been previously considered in [4] with its exact formula given by (cf. [8])

$$C_{\Omega(n)}(n) = \begin{cases} 1, & \text{if } n = 1; \\ (\Omega(n))! \times \prod_{p^{\alpha} || n} \frac{1}{\alpha!}, & \text{if } n \ge 2. \end{cases}$$

In Corollary 4.3, we use the result proved in Theorem 4.2 to show uniformly for $1 \le k \le 2 \log \log x$ that there is an absolute constant $A_0 > 0$ such that

$$\sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \sim \frac{4A_0\sqrt{2\pi}x}{(2k-1)} \cdot \frac{(\log\log x)^{k-\frac{1}{2}}}{(k-1)!}, \text{ as } x \to \infty.$$

In Proposition 4.5, we use an adaptation of the asymptotic formulas for the summations proved in the appendix combined with the form of *Rankin's method* from [13, Thm. 7.20] to show that

$$\mathbb{E}[C_{\Omega(n)}(n)] \sim \frac{2A_0\sqrt{2\pi}(\log n)}{\sqrt{\log\log n}}, \text{ as } n \to \infty.$$

In Corollary 4.6, we then prove that the average order of the unsigned inverse sequence is

$$\mathbb{E}|g^{-1}(n)| = \frac{12A_0}{\pi} \cdot \frac{(\log n)^2}{\sqrt{\log \log n}} (1 + o(1)), \text{ as } n \to \infty.$$

In Section 4.3, we prove a variant of the Erdős-Kac theorem that characterizes the distribution of the sequence $C_{\Omega(n)}(n)$. The theorem leads the conclusion of the following statement for any fixed Y > 0, with $\mu_x(C) := \log \log x - \log \left(4A_0\sqrt{2\pi}\right)$ and $\sigma_x(C) := \sqrt{\log \log x}$, that holds uniformly for any $-Y \le y \le Y$ as $x \to \infty$ (see Corollary 4.8):

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : |g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le y \right\} = \Phi\left(\frac{\frac{\pi^2 y}{6} - \mu_x(C)}{\sigma_x(C)}\right) + O\left(\frac{1}{\sqrt{\log \log x}}\right).$$

The regularity and quasi-periodicity we have alluded to in the remarks above are then quantifiable insomuch as $|g^{-1}(n)|$ tends to a predictable multiple of its average order with a normal tendency. If x > e is sufficiently large and if we pick any integer $n \in [2, x]$ uniformly at random, then the following statement holds:

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\left(\alpha\sigma_x(C) + \mu_x(C)\right)\right) = \Phi\left(\alpha\right) + o(1), \alpha \in \mathbb{R}.\tag{D}$$

It follows from the last property that as $n \to \infty$,

$$|g^{-1}(n)| \le \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)|(1+o(1)),$$

on an infinite set of the integers with asymptotic density one over the positive integers.

1.2.3 Formulas illustrating the new characterizations of M(x)

Let the summatory function $G^{-1}(x) := \sum_{n \le x} g^{-1}(n)$ for integers $x \ge 1$ [25, A341472]. We prove that (see Proposition 5.2)

$$M(x) = G^{-1}(x) + G^{-1}\left(\left\lfloor \frac{x}{2} \right\rfloor\right) + \sum_{k=1}^{\frac{x}{2}-1} G^{-1}(k) \left[\pi\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - \pi\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right], x \ge 1.$$
 (2)

This formula implies that we can establish asymptotic bounds on M(x) along infinite subsequences by sharply bounding the summatory function $G^{-1}(x)$ at those points. The observation of the regularity of $|g^{-1}(n)|$ is as such essential to our arguments that formally bound the growth of M(x)by its identification with $G^{-1}(x)$. A combinatorial approach to summing $G^{-1}(x)$ for large x based on the distribution of the primes is outlined by the remarks in Section 3.3.

Theorem 5.1 proves that for almost every sufficiently large x there exists some $1 \le t_0 \le x$ such that $t_0 \le t_0 \le x$

$$G^{-1}(x) = O\left(L(t_0) \times \mathbb{E}|g^{-1}(x)|\right).$$

If the RH is true, then for every $\epsilon > 0$ and all sufficiently large x we have that

$$G^{-1}(x) = O\left(\frac{\sqrt{x}(\log x)^2}{\sqrt{\log\log x}} \times \exp\left(\sqrt{\log x}(\log\log x)^{\frac{5}{2}+\epsilon}\right)\right).$$

In Corollary 5.4, we also prove that

$$M(x) = O\left(G^{-1}(x) + G^{-1}\left(\frac{x}{2}\right) + \frac{x}{\log x} \times \sum_{k \le \sqrt{x}} \frac{G^{-1}(k)}{k^2} + (\log x)^2 \sqrt{\log \log x}\right).$$

A complete discussion of the properties of the summatory functions $G^{-1}(x)$ motivates future work to extend the full range of possibilities for applying the new structure we connect to M(x).

¹By the terminology almost every large integer x, we mean that the result holds for all large x taken within an infinite subset of \mathbb{Z}^+ of asymptotic density one.

2 Initial elementary proofs of new results

2.1 Establishing the summatory function properties and inversion identities

We will offer a proof of Theorem 1.2 suggested by an intuitive construction through matrix based methods in this section. Related results on summations of Dirichlet convolutions and their inversion appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95]. It is similarly not difficult to prove the identity that

$$\sum_{n \le x} h(n)(f * g)(n) = \sum_{n \le x} f(n) \times \sum_{k \le \left|\frac{x}{a}\right|} g(k)h(kn).$$

Proof of Theorem 1.2. Let h, g be arithmetic functions such that $g(1) \neq 0$. Denote the summatory functions of h and g, respectively, by $H(x) = \sum_{n \leq x} h(n)$ and $G(x) = \sum_{n \leq x} g(n)$. We define $\pi_{g*h}(x)$ to be the summatory function of the Dirichlet convolution of g with h. We have that the following formulas hold for all $x \geq 1$:

$$\pi_{g*h}(x) := \sum_{n=1}^{x} \sum_{d|n} g(n)h(n/d) = \sum_{d=1}^{x} g(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right]H(i). \tag{3}$$

The first formula above is well known in the references. The second formula is justified directly using summation by parts as [19, §2.10(ii)]

$$\pi_{g*h}(x) = \sum_{d=1}^{x} h(d)G\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right].$$

We form the invertible matrix of coefficients \widehat{G} associated with this linear system defining H(j) for all $1 \le j \le x$ in (3) by setting

$$g_{x,j} \coloneqq G\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{j+1} \right\rfloor\right) \equiv G_{x,j} - G_{x,j+1},$$

where

$$G_{x,j} \coloneqq G\left(\left\lfloor \frac{x}{j} \right\rfloor\right), 1 \le j \le x.$$

Since $g_{x,x} = G(1) = g(1)$ and $g_{x,j} = 0$ for all j > x, the matrix \widehat{G} we have defined in this problem is lower triangular with a non-zero constant on its diagonals, and is hence invertible. If we let $\widehat{G} := (G_{x,j})$, then this matrix is expressed by applying an invertible shift operation as

$$(g_{x,j}) = \hat{G}(I - U^T).$$

The square matrix U of sufficiently large finite dimensions $N \times N$ has $(i, j)^{th}$ entries for all $1 \le i, j \le N$ that are defined by $(U)_{i,j} = \delta_{i+1,j}$ such that

$$\left[(I - U^T)^{-1} \right]_{i,j} = \left[j \le i \right]_{\delta}.$$

Observe that

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous property implies that

$$G\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - G\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} g\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
 (4)

We use the last property in (4) to shift the matrix \hat{G} , and then invert the result to obtain a matrix involving the Dirichlet inverse of g in the following forms:

$$\left[(I - U^T) \hat{G} \right]^{-1} = \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right)^{-1} = \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right).$$

In particular, our target matrix in the inversion problem is defined by

$$(g_{x,j}) = (I - U^T) \left(g\left(\frac{x}{j}\right)[j|x]_{\delta}\right) (I - U^T)^{-1}.$$

We can express its inverse by a similarity transformation conjugated by shift operators as

$$(g_{x,j})^{-1} = (I - U^T)^{-1} \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} g^{-1}(k) \right).$$

Hence, the summatory function H(x) is given exactly for any integers $x \ge 1$ by a vector product with the inverse matrix from the previous equation by

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} g^{-1}(j) \right) \times \pi_{g*h}(k).$$

We can prove another inversion formula providing the coefficients of the summatory function $G^{-1}(j)$ for $1 \le j \le x$ from the last equation by adapting our argument to prove (3) above. This leads to the following equivalent identity expressing H(x):

$$H(x) = \sum_{k=1}^{x} g^{-1}(x) \pi_{g*h} \left(\left\lfloor \frac{x}{k} \right\rfloor \right).$$

2.2 Proving the characteristic signedness property of $g^{-1}(n)$

Let $\chi_{\mathbb{P}}$ denote the characteristic function of the primes, let $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n (without multiplicity). We can easily prove using elementary methods that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{5}$$

In particular, since $\mu * 1 = \varepsilon$ and

$$\omega(n) = \sum_{p|n} 1 = \sum_{d|n} \chi_{\mathbb{P}}(d), n \ge 1,$$

the result in (5) follows by Möbius inversion. When combined with Corollary 1.3 this convolution identity yields the exact formula for M(x) stated in (1) of Corollary 1.4.

Proposition 2.1 (The signedness of $g^{-1}(n)$). Let the operator $\operatorname{sgn}(h(n)) = \frac{h(n)}{|h(n)| + [h(n) = 0]_{\delta}} \in \{0, \pm 1\}$ denote the sign of the arithmetic function h at integers $n \ge 1$. For the Dirichlet invertible function $g(n) := \omega(n) + 1$, we have that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$ for all $n \ge 1$.

Proof. The function $D_f(s) := \sum_{n\geq 1} f(n) n^{-s}$ defines the Dirichlet generating function (DGF) of any arithmetic function f(n) which is convergent for all $s \in \mathbb{C}$ satisfying $\operatorname{Re}(s) > \sigma_f$ with σ_f the abscissa of convergence of the series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for $\operatorname{Re}(s) > 1$. Then by (5) and the known property that whenever $f(1) \neq 0$, the DGF of $f^{-1}(n)$ is the reciprocal of the DGF of the arithmetic function f, we have for all $\operatorname{Re}(s) > 1$ that

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{(P(s)+1)\zeta(s)}. (6)$$

It follows that $(\omega+1)^{-1}(n)=(h^{-1}*\mu)(n)$ when we take $h:=\chi_{\mathbb{P}}+\varepsilon$. We first show that $\mathrm{sgn}(h^{-1})=\lambda$. This observation implies that $\mathrm{sgn}(h^{-1}*\mu)=\lambda$.

By the recurrence relation that defines the Dirichlet inverse function of any arithmetic function h such that h(1) = 1, we have that $[1, \S 2.7]$

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ -\sum_{\substack{d \mid n \\ d > 1}} h(d)h^{-1}\left(\frac{n}{d}\right), & n \ge 2. \end{cases}$$
 (7)

For $n \ge 2$, the summands in (7) can be indexed over only the primes p|n given our definition of h from above. We can inductively unfold these sums into nested divisor sums provided the depth of the expanded divisor sums does not exceed the capacity to index non-trivial summations over the primes dividing n. Namely, notice that for $n \ge 2$

$$h^{-1}(n) = -\sum_{p|n} h^{-1}\left(\frac{n}{p}\right), \qquad \text{if } \Omega(n) = 1;$$

$$= \sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} h^{-1}\left(\frac{n}{p_1 p_2}\right), \qquad \text{if } \Omega(n) = 2;$$

$$= -\sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} \sum_{p_3|\frac{n}{p_1 p_2}} h^{-1}\left(\frac{n}{p_1 p_2 p_3}\right), \qquad \text{if } \Omega(n) = 3.$$

Then by induction with $h^{-1}(1) = h(1) = 1$, we expand these nested divisor sums as above to the maximal possible depth as

$$\lambda(n) \times h^{-1}(n) = \sum_{p_1 \mid n} \sum_{p_2 \mid \frac{n}{p_1}} \times \dots \times \sum_{p_{\Omega(n)} \mid \frac{n}{p_1 p_2 \dots p_{\Omega(n)-1}}} 1, n \ge 2.$$
 (8)

Moreover, by a combinatorial argument related to multinomial coefficient expansions of the sums in (8), we recover exactly that $(cf. [4, \S 2])$

$$h^{-1}(n) = \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}, n \ge 2.$$
(9)

The last two expansions imply that $\operatorname{sgn}(h^{-1}(n)) = \lambda(n)$ for all $n \geq 1$. Since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d) = \lambda(n)$ for all divisors d|n when $n \geq 1$. We also know that $\mu(n) = \lambda(n)$ whenever n is squarefree, so that we obtain the following result:

$$g^{-1}(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, n \ge 1.$$

The conclusion of the proof of Proposition 2.1 in fact implies the stronger result that

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega(d)}(d).$$

We have adopted the notation that for $n \ge 2$, $C_{\Omega(n)}(n) = (\Omega(n))! \times \prod_{p^{\alpha}||n} (\alpha!)^{-1}$, where the same function, $C_0(1)$, is taken to be one for n = 1 (see Section 3).

2.3 Results on the distribution of exceptional values of $\omega(n)$ and $\Omega(n)$

The next theorems reproduced from [13, §7.4] characterize the relative scarcity of the distributions of $\omega(n)$ and $\Omega(n)$ for $n \leq x$ such that $\omega(n), \Omega(n) > \log \log x$. Since $\mathbb{E}[\omega(n)] = \log \log n + B_1$ and $\mathbb{E}[\Omega(n)] = \log \log n + B_2$ for $B_1, B_2 \in (0,1)$ absolute constants in each case, these results imply a regular tendency of these additive arithmetic functions towards their respective average orders.

Theorem 2.2 (Upper bounds on exceptional values of $\Omega(n)$ for large n). For $x \ge 2$ and r > 0, let

$$A(x,r) := \# \{ n \le x : \Omega(n) \le r \log \log x \},$$

 $B(x,r) := \# \{ n \le x : \Omega(n) \ge r \log \log x \}.$

If $0 < r \le 1$ and $x \ge 2$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}, \quad as \ x \to \infty.$$

If $1 \le r \le R < 2$ and $x \ge 2$, then

$$B(x,r) \ll_R x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem 2.3 is a special case analog to the celebrated Erdős-Kac theorem typically stated for the normally distributed values of the function $\omega(n)$ over $n \le x$ as $x \to \infty$ [13, cf. Thm. 7.21] [9, cf. §1.7].

Theorem 2.3. We have that as $x \to \infty$

$$\# \{3 \le n \le x : \Omega(n) \le \log \log n\} = \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right).$$

Theorem 2.4 (Montgomery and Vaughan). Recall that for integers $k \ge 1$ and $x \ge 2$ we have defined

$$\widehat{\pi}_k(x) \coloneqq \#\{2 \le n \le x : \Omega(n) = k\}.$$

For 0 < R < 2 we have uniformly for all $1 \le k \le R \log \log x$ that

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \left[1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right],$$

where we define

$$\mathcal{G}(z) \coloneqq \frac{1}{\Gamma(z+1)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, 0 \le |z| < R.$$

Remark 2.5. We can extend the work in [13] on the distribution of $\Omega(n)$ to find analogous results bounding the distribution of $\omega(n)$. In particular, we have for 0 < R < 2 that as $x \to \infty$

$$\pi_k(x) = \widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \left[1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right], \text{ uniformly for } 1 \le k \le R\log\log x.$$

$$\tag{10}$$

The analogous function to express these bounds for $\omega(n)$ is defined by $\widetilde{\mathcal{G}}(z) \coloneqq \widetilde{F}(1,z)/\Gamma(1+z)$ where we take

$$\widetilde{F}(s,z) := \prod_{p} \left(1 + \frac{z}{p^s - 1}\right)^{-1} \left(1 - \frac{1}{p^s}\right)^z, \operatorname{Re}(s) > \frac{1}{2}; |z| \le R < 2.$$

Let the functions

$$C(x,r) \coloneqq \#\{n \le x : \omega(n) \le r \log \log x\}$$
$$D(x,r) \coloneqq \#\{n \le x : \omega(n) \ge r \log \log x\}.$$

Then we have upper bounds on these functions given by

$$C(x,r) \ll x(\log x)^{r-1-r\log r}$$
, uniformly for $0 < r \le 1$,
$$D(x,r) \ll_R x(\log x)^{r-1-r\log r}$$
, uniformly for $1 \le r \le R < 2$.

3 Auxiliary sequences related to the inverse function $g^{-1}(n)$

The computational data given as Table B in the appendix section (refer to page 41) is intended to provide clear insight into why we eventually arrived at the stated formulas for $g^{-1}(n)$ proved in this section. The table provides illustrative numerical data by examining the approximate behavior at hand for the cases of $1 \le n \le 500$ with Mathematica [24]. In Section 4, we will use these relations between $g^{-1}(n)$ and $C_{\Omega(n)}(n)$ to prove an exact Erdős-Kac theorem analog that characterizes the distribution of the unsigned function $|g^{-1}(n)|$.

3.1 Definitions and properties of triangular component function sequences

We define the following sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$$
 (11)

The Dirichlet inverse $f^{-1}(n)$ of any arithmetic function f such that $f(1) \neq 0$ is computed exactly by an $\Omega(n)$ -fold convolution of f with itself. The motivation for considering the auxiliary sequence representing the k-fold Dirichlet convolution of $\omega(n)$ with itself follows from our definition of $g^{-1}(n) := (\omega + 1)^{-1}(n)$. We prove a few precise relations of the function $C_{\Omega(n)}(n)$ to the inverse sequence $g^{-1}(n)$ that result in the next subsections. In fact, $h^{-1}(n) \equiv \lambda(n)C_{\Omega(n)}(n)$ is the same function given by the formula in (9) of Proposition 2.1.

By recursively expanding the definition of $C_k(n)$ at any fixed $n \ge 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (11) inductively. By the same argument, we see that at fixed n, the function $C_k(n)$ is seen to be non-zero only for positive integers $k \le \Omega(n)$ whenever $n \ge 2$. A sequence of relevant signed semi-diagonals of the functions $C_k(n)$ begins as follows [25, A008480]:

$$\{\lambda(n)C_{\Omega(n)}(n)\}_{n\geq 1}=\{1,-1,-1,1,-1,2,-1,-1,1,2,-1,-3,-1,2,2,1,-1,-3,-1,-3,2,2,-1,4,1,2,\ldots\}.$$

We see that $C_{\Omega(n)}(n) \leq (\Omega(n))!$ for all $n \geq 1$ with equality precisely at the squarefree integers by (9).

3.2 Relating the function $C_{\Omega(n)}(n)$ to exact formulas for $g^{-1}(n)$

Lemma 3.1 (An exact formula for $g^{-1}(n)$). For all $n \ge 1$, we have that

$$g^{-1}(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d).$$

Proof. We first write the recurrence relation for the Dirichlet inverse as

$$g^{-1}(n) = -\sum_{\substack{d|n\\d>1}} (\omega(d) + 1)g^{-1}\left(\frac{n}{d}\right) \implies (g^{-1} * 1)(n) = -(\omega * g^{-1})(n). \tag{12}$$

We argue that for $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (12) in the form of $(g^{-1} * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m (C_m(-) * g^{-1})(n)$, so that

$$F_m(n) = -\begin{cases} \sum_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g^{-1}\left(\frac{n}{dr}\right), & 2 \le m \le \Omega(n), \\ \left(\omega * g^{-1}\right)(n), & m = 1. \end{cases}$$

By repeatedly expanding the right-hand-side of the previous equation, we find that when $m := \Omega(n)$ (e.g., with the expansions in the previous equation taken to a maximal depth) we get the relation

$$(g^{-1} * 1)(n) = (-1)^{\Omega(n)} C_{\Omega(n)}(n) = \lambda(n) C_{\Omega(n)}(n).$$
(13)

The formula then follows from (13) by Möbius inversion.

Corollary 3.2. For all positive integers $n \ge 1$, we have that

$$|g^{-1}(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega(d)}(d).$$
 (14)

Proof. By applying Lemma 3.1, Proposition 2.1 and the complete multiplicativity of $\lambda(n)$, we easily obtain the stated result. In particular, since $\mu(n)$ is non-zero only at squarefree integers and since at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, Lemma 3.1 implies

$$|g^{-1}(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega(d)}(d)$$

$$= \sum_{d|n} \mu^2\left(\frac{n}{d}\right) \lambda\left(\frac{n}{d}\right) \lambda(nd) C_{\Omega(d)}(d)$$

$$= \lambda(n^2) \times \sum_{d|n} \mu^2\left(\frac{n}{d}\right) C_{\Omega(d)}(d).$$

We see that that $\lambda(n^2) = +1$ for all $n \ge 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Since $C_{\Omega(n)}(n) = |h^{-1}(n)|$ using the notation defined in the the proof of Proposition 2.1, we can see that $C_{\Omega(n)}(n) = (\omega(n))!$ for all squarefree $n \ge 1$. A proof of part (B) of Proposition 1.6 follows as an immediate consequence.

Remark 3.3. Combined with the signedness property of $g^{-1}(n)$ guaranteed by Proposition 2.1, Corollary 3.2 shows that the summatory function of this sequence satisfies

$$G^{-1}(x) = \sum_{d \le x} \lambda(d) C_{\Omega(d)}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

Equation (5) implies that

$$\lambda(d)C_{\Omega(d)}(d)=(g^{-1}*1)(d)=(\chi_{\mathbb{P}}+\varepsilon)^{-1}(d).$$

We recover by inversion that

$$M(x) = G^{-1}(x) + \sum_{p \le x} G^{-1}\left(\left\lfloor \frac{x}{p} \right\rfloor\right), x \ge 1.$$
 (15)

3.3 Another combinatorial connection to the distribution of the primes

The combinatorial properties of $g^{-1}(n)$ are deeply tied to the distribution of the primes $p \leq n$ as $n \to \infty$. The magnitudes and dispersion of the primes $p \leq n$ certainly restricts the repeating of these distinct sequence values. Nonetheless, we can see that the following is still clear about the relation of the weight functions $|g^{-1}(n)|$ to the distribution of the primes: The value of $|g^{-1}(n)|$ is entirely dependent only on the pattern of the exponents (viewed as multisets) of the distinct prime factors of $n \geq 2$, rather than on the prime factor weights themselves (cf. Observation 1.5). This observation implies that $|g^{-1}(n)|$ has an inherently additive, rather than multiplicative, structure behind the distribution of its distinct values over $n \leq x$.

Example 3.4. There is a natural extremal behavior with respect to distinct values of $\Omega(n)$ corresponding to squarefree integers and prime powers. If for integers $k \geq 1$ we define the infinite sets M_k and m_k to correspond to the maximal (minimal) sets of positive integers such that

$$M_k := \left\{ n \ge 2 : |g^{-1}(n)| = \sup_{\substack{j \ge 2 \\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^+,$$

$$m_k := \left\{ n \ge 2 : |g^{-1}(n)| = \inf_{\substack{j \ge 2 \\ \Omega(j) = k}} |g^{-1}(j)| \right\} \subseteq \mathbb{Z}^+,$$

then any element of M_k is squarefree and any element of m_k is a prime power. Moreover, for any fixed $k \ge 1$ we have that for any $N_k \in M_k$ and $n_k \in m_k$

$$(-1)^k g^{-1}(N_k) = \sum_{j=0}^k {k \choose j} \times j!, \quad \text{and} \quad (-1)^k g^{-1}(n_k) = 2.$$

Remark 3.5 (Combinatorial properties). The formula for the function $h^{-1}(n) = (g^{-1} * 1)(n)$ defined in the proof of Proposition 2.1 implies that we can express an exact formula for $g^{-1}(n)$ in terms of symmetric polynomials in the exponents of the prime factorization of n. For $n \ge 2$ and $0 \le k \le \omega(n)$ let

$$\widehat{e}_k(n) \coloneqq [z^k] \prod_{p|n} (1 + z\nu_p(n)) = [z^k] \prod_{p^{\alpha}||n} (1 + \alpha z).$$

Then we can prove using (9) and (14) that we can expand exact formulas for the signed inverse sequence in the following form:

$$g^{-1}(n) = h^{-1}(n) \times \sum_{k=0}^{\omega(n)} {\Omega(n) \choose k}^{-1} \frac{\widehat{e}_k(n)}{k!}, n \ge 2.$$

The combinatorial formula for $h^{-1}(n) = \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} (\alpha!)^{-1}$ we discovered in the proof of the proposition from Section 2² suggests additional patterns and regularity in the contributions of the distinct sign weighted terms in the summands of $G^{-1}(x)$. A preliminary analysis suggests that bounds of this type will improve on those we are able to prove within this article for $G^{-1}(x)$ in Section 5.1.

²This sequence is also considered using a different motivation based on the DGFs $(1 \pm P(s))^{-1}$ in [4, §2].

4 The distributions of $C_{\Omega(n)}(n)$ and $|g^{-1}(n)|$

We suggested in the introduction that the relation of the component functions, $g^{-1}(n)$ and $C_{\Omega(n)}(n)$, to the canonical additive functions $\omega(n)$ and $\Omega(n)$ leads to the regular properties of these functions shown in the numerical data from Table B. Each of $\omega(n)$ and $\Omega(n)$ satisfies an Erdős-Kac theorem that provides a central limiting distribution for each of these functions over $n \leq x$ as $x \to \infty$ [3, 2, 20] (cf. [8]). In the remainder of this section, we use analytic methods in the spirit of [13, §7.4].

4.1 Analytic proofs extending bivariate DGF methods for additive functions

Theorem 4.1. Let the bivariate DGF $\widehat{F}(s,z)$ be defined in terms of the prime zeta function, P(s), for $\operatorname{Re}(s) \geq 2$ and $|z| < |P(s)|^{-1}$ by

$$\widehat{F}(s,z) \coloneqq \frac{1}{1 + P(s)z} \times \prod_{p} \left(1 - \frac{1}{p^s}\right)^z.$$

For $|z| < P(2)^{-1}$, the summatory function of the coefficients of $\widehat{F}(s,z)\zeta(s)^z$ corresponds to

$$\widehat{A}_z(x) \coloneqq \sum_{n \le x} (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}.$$

We have for all sufficiently large $x \ge 2$ and any $|z| < P(2)^{-1}$ that

$$\widehat{A}_z(x) = \frac{x\widehat{F}(2,z)}{\Gamma(z)} \times (\log x)^{z-1} + O_z\left(x(\log x)^{\operatorname{Re}(z)-2}\right).$$

Proof. We see from the proof of Proposition 2.1 that

$$C_{\Omega(n)}(n) = \begin{cases} 1, & n = 1; \\ (\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}, & n \ge 2. \end{cases}$$

We can then generate exponentially scaled forms of these terms through a product identity of the following form:

$$\sum_{n\geq 1} \frac{C_{\Omega(n)}(n)}{(\Omega(n))!} \cdot \frac{(-1)^{\omega(n)} z^{\Omega(n)}}{n^s} = \prod_{p} \left(1 + \sum_{r\geq 1} \frac{z^{\Omega(p^r)}}{r! p^{rs}}\right)^{-1} = \exp\left(-zP(s)\right), \operatorname{Re}(s) \geq 2 \wedge \operatorname{Re}(P(s)z) > -1.$$

This Euler-type product based expansion is similar in construction to the parameterized bivariate DGF defined by Montgomery and Vaughan in [13, §7.4]. By computing a termwise Laplace transform on the right-hand-side of the above equation, we obtain that

$$\sum_{n\geq 1} \frac{C_{\Omega(n)}(n)(-1)^{\omega(n)}z^{\Omega(n)}}{n^s} = \int_0^\infty e^{-t} \exp\left(-tzP(s)\right) dt = \frac{1}{1+P(s)z}, \operatorname{Re}(s) > 1 \wedge \operatorname{Re}(P(s)z) > -1.$$

It follows that

$$\sum_{n\geq 1} \frac{(-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}}{n^s} = \zeta(s)^z \times \widehat{F}(s,z), \operatorname{Re}(s) > 1 \wedge |z| < |P(s)|^{-1}.$$

Since $\widehat{F}(s,z)$ is an analytic function of s for all $\operatorname{Re}(s) \geq 2$ whenever the parameter $|z| < |P(s)|^{-1}$, if the sequence $\{b_z(n)\}_{n\geq 1}$ indexes the coefficients in the DGF expansion of $\widehat{F}(s,z)\zeta(s)^z$, then the series

 $\left| \sum_{n \ge 1} \frac{b_z(n)(\log n)^{2R+1}}{n^s} \right| < +\infty, \operatorname{Re}(s) \ge 2,$

is uniformly bounded for $|z| \le R < |P(s)|^{-1} < +\infty$. This fact follows by repeated termwise differentiation of the series $\lceil 2R+1 \rceil$ times with respect to s.

For fixed 0 < |z| < 2, let the sequence $d_z(n)$ be generated as the coefficients of the DGF

$$\zeta(s)^z = \sum_{n \ge 1} \frac{d_z(n)}{n^s}, \operatorname{Re}(s) > 1,$$

with corresponding summatory function defined by $D_z(x) := \sum_{n \le x} d_z(n)$. The theorem proved in the reference [13, Thm. 7.17; §7.4] shows that for any 0 < |z| < 2 and all integers $x \ge 2$

$$D_z(x) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O_z\left(x(\log x)^{\operatorname{Re}(z)-2}\right).$$

We set $b_z(n) := (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)}$, define the convolution $a_z(n) := \sum_{d|n} b_z(d) d_z\left(\frac{n}{d}\right)$, and take its summatory function to be $A_z(x) := \sum_{n \le x} a_z(n)$. Then we have that

$$A_{z}(x) = \sum_{m \leq \frac{x}{2}} b_{z}(m) D_{z}\left(\frac{x}{m}\right) + \sum_{\frac{x}{2} < m \leq x} b_{z}(m)$$

$$= \frac{x}{\Gamma(z)} \times \sum_{m \leq \frac{x}{2}} \frac{b_{z}(m)}{m^{2}} \times m \log\left(\frac{x}{m}\right)^{z-1} + O\left(\sum_{m \leq x} \frac{x|b_{z}(m)|}{m^{2}} \times m \log\left(\frac{2x}{m}\right)^{\operatorname{Re}(z)-2}\right). \tag{16}$$

We can sum the coefficients $b_z(m)/m$ for integers $m \le u$ with $u \ge 2$ taken sufficiently large as follows:

$$\sum_{m \le u} \frac{b_z(m)}{m} = (\widehat{F}(2, z) + O(u^{-2})) u - \int_1^u (\widehat{F}(2, z) + O(t^{-2})) dt = \widehat{F}(2, z) + O(u^{-1}).$$

Suppose that $0 < |z| \le R < P(2)^{-1} \approx 2.21118$. For large x, the error term in (16) satisfies

$$\sum_{m \le x} \frac{x|b_z(m)|}{m^2} \times m \log \left(\frac{2x}{m}\right)^{\text{Re}(z)-2} \ll x(\log x)^{\text{Re}(z)-2} \times \sum_{m \le \sqrt{x}} \frac{|b_z(m)|}{m} + x(\log x)^{-(R+2)} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} (\log m)^{2R}$$

$$= O_z \left(x(\log x)^{\text{Re}(z)-2}\right), 0 < |z| \le R.$$

When $m \le \sqrt{x}$ we have

$$\log\left(\frac{x}{m}\right)^{z-1} = (\log x)^{z-1} + O\left((\log m)(\log x)^{\operatorname{Re}(z)-2}\right).$$

The combined sum over the interval $m \le \frac{x}{2}$ corresponds to bounding the sum components when we take $0 < |z| \le R$ as follows:

$$\sum_{m \le \frac{x}{2}} b_z(m) D_z(x/m) = \frac{x}{\Gamma(z)} (\log x)^{z-1} \times \sum_{m \le \frac{x}{2}} \frac{b_z(m)}{m} + O_R \left(x (\log x)^{\text{Re}(z)-2} \times \sum_{m \le \sqrt{x}} \frac{|b_z(m)| \log m}{m} + x (\log x)^{R-1} \times \sum_{m > \sqrt{x}} \frac{|b_z(m)|}{m} \right) \\
= \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O_R \left(x (\log x)^{\text{Re}(z)-2} \times \sum_{m \ge 1} \frac{b_z(m) (\log m)^{2R+1}}{m^2} \right) \\
= \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O_R \left(x (\log x)^{\text{Re}(z)-2} \right). \qquad \Box$$

Theorem 4.2. For large x > e and integers $k \ge 1$, let

$$\widehat{C}_{k,*}(x) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_k(n)$$

Let the function $\widehat{G}(z) := \widehat{F}(2,z)/\Gamma(z+1)$ for $|z| < P(2)^{-1}$ where the function $\widehat{F}(s,z)$ is defined as in Theorem 4.1 for $\operatorname{Re}(s) > 1$. As $x \to +\infty$, we have uniformly for any $1 \le k \le 2\log\log x$ that

$$\widehat{C}_{k,*}(x) = -\widehat{G}\left(-\frac{k-1}{\log\log x}\right)\frac{x}{\log x} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log\log x)^2}\right)\right].$$

Proof. When k = 1, we have that $\Omega(n) = \omega(n)$ for all $n \le x$ such that $\Omega(n) = k$. The $n \le x$ that satisfy this requirement are precisely the primes $p \le x$. Thus we get that the formula is satisfied as

$$\sum_{p \le x} (-1)^{\omega(p)} C_1(p) = -\sum_{p \le x} 1 = -\frac{x}{\log x} \left[1 + O\left(\frac{1}{\log x}\right) \right].$$

Since $O((\log x)^{-1}) = O((\log \log x)^{-2})$ as $x \to \infty$, we obtain the required error term bound at k = 1. For $2 \le k \le 2 \log \log x$, we will apply the error estimate from Theorem 4.1 at $r := \frac{k-1}{\log \log x}$. At large x, the error from this bound contributes terms that are bounded from above by

$$x(\log x)^{-(r+2)}r^{-(k+1)} \ll \frac{x}{(\log x)^2} \cdot \frac{(\log\log x)^{k+1}}{(k-1)^{k+1}} \cdot \frac{1}{e^{k-1}} \ll \frac{x}{(\log x)^2} \cdot \frac{(\log\log x)^{k+1}}{(k-1)^{\frac{3}{2}}} \cdot \frac{1}{e^{2k}(k-1)!}$$
$$\ll \frac{x}{(\log x)^2} \cdot \frac{(\log\log x)^{k-1}}{(k-1)!} \ll \frac{x}{\log x} \cdot \frac{k(\log\log x)^{k-5}}{(k-1)!}.$$

We next find an asymptotically accurate approximation to the main term of the coefficients of the following contour integral for $r \in [0, z_{\text{max}}] \subseteq [0, P(2)^{-1})$:

$$\widetilde{A}_r(x) := \frac{(-1)^k x}{\log x} \times \int_{|v|=r} \frac{(\log x)^{-v} \zeta(2)^v}{\Gamma(1+v) v^k (1-P(2)v)} dv. \tag{17}$$

The main term for the sums $\widehat{C}_{k,*}(x)$ is given by $-\frac{x}{\log x} \times I_k(r,x)$, where we take

$$I_k(r,x) = \frac{(-1)^{k-1}}{2\pi i} \times \int_{|v|=r} \frac{\widehat{G}(-v)(\log x)^{-v}}{v^k} dv$$

=: $I_{1,k}(r,x) + I_{2,k}(r,x)$.

Taking $r = \frac{k-1}{\log \log x}$, the first of the component integrals in the last equation is defined to be

$$I_{1,k}(r,x) := \frac{(-1)^{k-1}\widehat{G}(-r)}{2\pi i} \times \int_{|v|=r} \frac{(\log x)^{-v}}{v^k} dv = \widehat{G}(-r) \times \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

The second component integral, $I_{2,k}(r,x)$, corresponds to error terms in our approximation that we must bound. This function is defined by

$$I_{2,k}(r,x) := \frac{(-1)^{k-1}}{2\pi i} \times \int_{|v|=r} (\widehat{G}(-r) - \widehat{G}(-v)) \times \frac{(\log x)^{-v}}{v^k} dv.$$

After integrating by parts [13, cf. Thm. 7.19; §7.4], we write that

$$I_{2,k}(r,x) := \frac{(-1)^{k-1}}{2\pi i} \times \int_{|v|=r} (\widehat{G}(-r) - \widehat{G}(-v) - \widehat{G}'(-r)(v+r)) (\log x)^{-v} v^{-k} dv.$$

Notice that

$$\left|\widehat{G}(-r)-\widehat{G}(-v)-\widehat{G}'(-r)(v+r)\right| = \left|\int_{-r}^{-v} (v+w)\widehat{G}''(-w)dw\right| \ll |v+r|^2.$$

With the parameterization $v = -re^{2\pi i\theta}$ for real $\theta \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ and with $r \coloneqq \frac{k-1}{\log\log x}$ we get that

$$|I_{2,k}(r,x)| \ll r^{3-k} \int_{-\frac{1}{2}}^{\frac{1}{2}} (\sin \pi \theta)^2 e^{(k-1)\cos(2\pi\theta)} d\theta.$$

Since $|\sin x| \le |x|$ for all |x| < 1 and $\cos(2\pi\theta) \le 1 - 8\theta^2$ whenever $-\frac{1}{2} \le \theta \le \frac{1}{2}$, we obtain bounds of the next forms by again setting $r = \frac{k-1}{\log\log x}$ for any $1 \le k \le 2\log\log x$.

$$\begin{split} |I_{2,k}(r,x)| &\ll r^{3-k}e^{k-1} \times \int_0^\infty \theta^2 e^{-8(k-1)\theta^2} d\theta \\ &\ll \frac{r^{3-k}e^{k-1}}{(k-1)^{\frac{3}{2}}} \ll \frac{(\log\log x)^{k-3}e^{k-1}}{(k-1)^{\frac{3}{2}}(k-1)^{k-3}} \ll \frac{k(\log\log x)^{k-3}}{(k-1)!}. \end{split}$$

Finally, we see that whenever $1 \le k \le 2 \log \log x$, we have

$$\widehat{G}\left(\frac{1-k}{\log\log x}\right) = \frac{1}{\Gamma\left(2 - \frac{k-1}{\log\log x}\right)} \cdot \frac{\zeta(2)^{(k-1)/\log\log x}}{\left(1 - \frac{(k-1)}{\log\log x}\right)^{-1}} \gg 1.$$

This implies the result of our theorem.

Corollary 4.3. We have for large x > e uniformly for $1 \le k \le 2 \log \log x$ that

$$\widehat{C}_k(x) := \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \sim \frac{4A_0\sqrt{2\pi}x}{(2k-1)} \cdot \frac{(\log\log x)^{k-\frac{1}{2}}}{(k-1)!},$$

for an absolute constant $A_0 \in (0, +\infty)$.

Proof. Suppose that h(t) and $\sum_{n \leq t} \lambda_*(n)$ are any sufficiently piecewise smooth and differentiable functions on \mathbb{R}^+ . We have integral formulas that result by applying Abel summation and integration by parts in the next equations.

$$\sum_{n \le x} \lambda_*(n) h(n) = \left(\sum_{n \le x} \lambda_*(n)\right) h(x) - \int_1^x \left(\sum_{n \le t} \lambda_*(n)\right) h'(t) dt \tag{18a}$$

$$\sim \int_{1}^{x} \frac{d}{dt} \left[\sum_{n \le t} \lambda_{*}(n) \right] h(t) dt \tag{18b}$$

Let the signed left-hand-side summatory function of our function $\lambda_*(n)$ in (18a) when $h(n) := C_{\Omega(n)}(n)$ be defined precisely for large x > e and any integers $1 \le k \le \log \log x$ by

$$\widehat{C}_{k,*}(x) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega(n)}(n)$$
$$\sim \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{1}{\log \log x}\right) \right].$$

The second equation above follows from the proof of Theorem 4.2 where we note that $\widehat{G}((1-k)/\log\log x) \sim e^{o(1)}$ as $x \to \infty$.

Set $L_*(x) := |\sum_{n \le 2\log\log x} (-1)^k \pi_k(x)|$ for $x \ge 1$. We can then transform our previous results for the partial sums over the signed sequences $(-1)^{\omega(n)} C_{\Omega(n)}(n)$ such that $\Omega(n) = k$ to approximate the same sum over only the unsigned summands $C_{\Omega(n)}(n)$. In particular, since $1 \le k \le 2\log\log x$

$$\widehat{C}_{k,*}(x) = \sum_{\substack{n \leq x \\ \Omega(n) = k}} (-1)^{\omega(n)} C_{\Omega(n)}(n) = \sum_{n \leq x} (-1)^{\omega(n)} \left[\omega(n) \leq 2 \log \log x\right]_{\delta} \times C_{\Omega(n)}(n) \left[\Omega(n) = k\right]_{\delta}.$$

The next argument is based on first approximating $L_*(t)$ for large t using the following uniform asymptotics for $\pi_k(x)$ that hold when $1 \le k \le \log \log x^3$:

$$\pi_k(x) = \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!} \left[1 + O\left(\frac{k}{(\log \log x)^2}\right) \right], \text{ as } x \to \infty.$$

We have by Lemma 4.4 that as $t \to \infty$ (cf. equation (21) in the next section)

$$L_{*}(t) := \left| \sum_{\substack{n \le t \\ \omega(n) \le 2 \log \log t}} (-1)^{\omega(n)} \right| \sim \left| \sum_{k=1}^{2 \log \log t} (-1)^{k} \pi_{k}(t) \right| \approx \frac{t}{\sqrt{\log \log t}} + O\left(\frac{t}{(\log \log t)^{\frac{3}{2}}} + E_{\omega}(t)\right). \tag{19}$$

The error term in (19) corresponds to the asymptotics of the following sum as $t \to \infty$ over the error term for $\pi_k(t)$ above. The error estimate is obtained from Stirling's formula, (33a) and (33c) from the appendix section, respectively, with $\widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log t}\right) \gg 1$ for all $1 \le k \le \log\log t$ as

$$E_{\omega}(t) \ll \frac{t}{\log t} \times \sum_{1 \leq k \leq \log \log t} \frac{(\log \log t)^{k-2}}{(k-1)!} = \frac{t\Gamma(\log \log t, \log \log t)}{\Gamma(\log \log t + 1)} \sim \frac{t}{\sqrt{2\pi}(\log \log t)^{\frac{3}{2}}}.$$

The main term for the reciprocal of the derivative of the main term approximation of this summatory function is then given by computation as follows for some absolute constant $A_0 > 0$:

$$\frac{1}{L'_{\star}(t)} \sim -2A_0 \sqrt{2\pi \log \log t}.$$

We apply the formula from (18b), to deduce that the unsigned summatory function variant satisfies the following relations as $x \to \infty$:

$$\widehat{C}_{k,*}(x) = \int_{1}^{x} L'_{*}(t) C_{\Omega(t)}(t) \left[\Omega(t) = k\right]_{\delta} dt \qquad \Longrightarrow$$

$$C_{\Omega(x)}(x) \left[\Omega(x) = k\right]_{\delta} \sim \frac{\widehat{C}'_{k,*}(x)}{L'_{*}(x)} \qquad \Longrightarrow$$

$$C_{\Omega(x)}(x) \left[\Omega(x) = k\right]_{\delta} \sim -2A_{0} \sqrt{2\pi \log \log x} \times \widehat{C}'_{k,*}(x) (1 + o(1)) =: \widehat{C}_{k,**}(x).$$

We have that

$$\widehat{C}_{k,**}(x) \sim 2A_0 \sqrt{2\pi \log \log x} \left[\frac{(\log \log x)^{k-1}}{(\log x)(k-1)!} \left(1 - \frac{1}{\log x} \right) + \frac{(\log \log x)^{k-2}}{(\log x)^2(k-2)!} \right].$$

$$\widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) = e^{o(1)} \xrightarrow{x\to\infty} 1.$$

³We can in fact show that for any $1 \le k \le x$, the function $\widetilde{\mathcal{G}}(z)$ defined in Remark 2.5 satisfies

Hence, integration by parts and Proposition A.2 (from the appendix) yield the next main term.

$$\sum_{\substack{n \leq x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \sim \int \widehat{C}_{k,**}(x) dx \tag{20}$$

$$\sim \frac{4A_0 \sqrt{2\pi} x (\log \log x)^{k - \frac{1}{2}}}{(2k - 1)(k - 1)!} + \frac{2A_0 \sqrt{2\pi} x \Gamma\left(k - \frac{1}{2}, \log \log x\right)}{(k - 1)!} - \frac{2A_0 \sqrt{2\pi} x \Gamma\left(k - \frac{3}{2}, \log \log x\right)}{(k - 1)!}$$

$$\sim \frac{4A_0 \sqrt{2\pi} x (\log \log x)^{k - \frac{1}{2}}}{(2k - 1)(k - 1)!}$$

4.2 Average orders of the unsigned sequences

Lemma 4.4. As $x \to \infty$, we have that

$$\left| \sum_{n \le x} (-1)^{\omega(n)} \right| \ll \frac{x}{\sqrt{\log \log x}}.$$

Proof. An adaptation of the proof of Lemma A.3 from the appendix shows that for any $a \in (1, 1.76322)$ we have that

$$\frac{x}{\log x} \times \left| \sum_{k=1}^{a \log \log x} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right| = \frac{\sqrt{ax}}{\sqrt{2\pi} (a+1) a^{\{a \log \log x\}}} \cdot \frac{(\log x)^{a-1-a \log a}}{\sqrt{\log \log x}} \left(1 + O\left(\frac{1}{\log \log x}\right) \right), \tag{21}$$

where $\{x\} = x - \lfloor x \rfloor$ is the fractional part of x. Suppose that we take $a := \frac{3}{2}$ so that $a - 1 - a \log a = \frac{1}{2} \left(1 - 3 \log \left(\frac{3}{2}\right)\right) \approx -0.108198$. We can write the summatory function

$$L_{**}(x) := \left| \sum_{n \le x} (-1)^{\omega(n)} \right| = \left| \sum_{k \le \log x} (-1)^k \pi_k(x) \right|.$$

By the uniform asymptotics for $\pi_k(x)$ as $x \to \infty$ when $1 \le k \le R \log \log x$ for $1 \le R < 2$ in the results from Remark 2.5, we have by Lemma A.3 (from the appendix) and (21) that at large x

$$L_{**}(x) \ll \frac{x}{\sqrt{\log \log x}} + \frac{x}{(\log x)^{0.108198} \sqrt{\log \log x}} + \#\left\{n \le x : \omega(x) \ge \frac{3}{2} \log \log x\right\} + O\left(\frac{x}{(\log \log x)^{\frac{3}{2}}}\right).$$

Similarly, by applying the second set of results stated in Remark 2.5, we see that

$$\#\left\{n \le x : \omega(x) \ge \frac{3}{2}\log\log x\right\} \ll \frac{x}{(\log x)^{0.108198}}.$$

Proposition 4.5. We have that as $n \to \infty$

$$\mathbb{E}\left[C_{\Omega(n)}(n)\right] \sim \frac{2A_0\sqrt{2\pi}(\log n)}{\sqrt{\log\log n}}.$$

Proof. We first compute the following summatory function by applying Corollary 4.3 and Lemma A.4 from the appendix:

$$\sum_{k=1}^{2\log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) = \frac{2A_0\sqrt{2\pi}x\log x}{\sqrt{\log\log x}} + O\left(\frac{x\log x}{(\log\log x)^{\frac{3}{2}}}\right). \tag{22}$$

We claim that

$$\frac{1}{x} \times \sum_{n \le x} C_{\Omega(n)}(n) = \frac{1}{x} \times \sum_{k \ge 1} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)$$

$$= \frac{1}{x} \times \sum_{k=1}^{2 \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)(1 + o(1)), \text{ as } x \to \infty.$$
(23)

To prove (23), by (22) it suffices to show that

$$\frac{1}{x} \times \sum_{k>2\log\log x} \sum_{\substack{n \le x \\ \Omega(n)=k}} C_{\Omega(n)}(n) = O\left((\log x)^{0.613706} \times (\log\log x)\right), \text{ as } x \to \infty.$$
 (24)

We proved in Theorem 4.1 that for all sufficiently large x

$$\sum_{n \le x} (-1)^{\omega(n)} C_{\Omega(n)}(n) z^{\Omega(n)} = \frac{x \widehat{F}(2, z)}{\Gamma(z)} (\log x)^{z-1} + O\left(x (\log x)^{\text{Re}(z) - 2}\right).$$

By Lemma 4.4, we have that the summatory function

$$\left| \sum_{n \le x} (-1)^{\omega(n)} \right| \ll \frac{x}{\sqrt{\log \log x}},$$

where $\frac{d}{dx} \left[\frac{x}{\sqrt{\log \log x}} \right] = \frac{1}{\sqrt{\log \log x}} + o(1)$. We can argue as in the proof of Corollary 4.3 using integration by parts with the Abel summation formula that whenever $1 < |z| < P(2)^{-1}$ and when x > e is large we have

$$\sum_{n \le x} C_{\Omega(n)}(n) z^{\Omega(n)} \ll \frac{x \widehat{F}(2, z)}{\Gamma(z)} \times \int_{e}^{x} \frac{\sqrt{\log \log t}}{t} \cdot \frac{\partial}{\partial t} \left[t(\log t)^{z-1} \right] dt$$

$$\ll \frac{x \widehat{F}(2, z)}{\Gamma(z)} \left[\frac{(\log x)^{z-1} (z + \log x)}{z} \sqrt{\log \log x} - \frac{\sqrt{\pi}}{2\sqrt{z-1}} \operatorname{erfi} \left(\sqrt{(z-1)\log \log x} \right) - \frac{\sqrt{\pi}}{2z^{\frac{3}{2}}} \operatorname{erfi} \left(\sqrt{z \log \log x} \right) \right]$$

$$\ll \frac{x \widehat{F}(2, z)}{\Gamma(1+z)} (\log x)^{z} \sqrt{\log \log x}. \tag{25}$$

As $|z| \to \infty$, the *imaginary error function*, erfi(z), has the following asymptotic expansion [19, §7.12]:

$$\operatorname{erfi}(z) := \frac{2}{\sqrt{\pi} \cdot i} \times \int_0^{iz} e^{t^2} dt = \frac{e^{z^2}}{\sqrt{\pi}} \left(z^{-1} + \frac{z^{-3}}{2} + \frac{3z^{-5}}{4} + \frac{15z^{-7}}{8} + O\left(z^{-9}\right) \right). \tag{26}$$

The omitted error term in (25) follows from the asymptotic series for erfi(z) in (26).

For large x and any fixed r > 0, we define

$$\widehat{B}(x,r) \coloneqq \sum_{\substack{n \le x \\ \Omega(n) \ge r \log \log x}} C_{\Omega(n)}(n).$$

We adapt the proof from the reference [13, cf. Thm. 7.20; §7.4] by applying (25) when $1 \le r < P(2)^{-1}$. Since $\widehat{F}(2,r) = \frac{\zeta(2)^{-r}}{1+P(2)r} \ll 1$ for $r \in [1,P(2)^{-1})$, and similarly since we have that $\frac{1}{\Gamma(1+r)} \gg 1$ for r taken within this same range, we find that

$$x\sqrt{\log\log x}(\log x)^r \gg \sum_{\substack{n \le x \\ \Omega(n) \ge r\log\log x}} C_{\Omega(n)}(n)r^{\Omega(n)} \gg \sum_{\substack{n \le x \\ \Omega(n) \ge r\log\log x}} C_{\Omega(n)}(n)r^{r\log\log x}, \text{ for } 1 \le r < 2.$$

This implies that for r := 2 we have

$$\widehat{B}(x,r) \ll x(\log x)^{r-r\log r} \sqrt{\log\log x} = O\left(x(\log x)^{0.613706} \times \sqrt{\log\log x}\right)$$
 (27)

We need to evaluate the limiting asymptotics of the sum

$$S_2(x) \coloneqq \frac{1}{x\sqrt{\log\log x}} \times \sum_{k \ge 2 \log\log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \ll \widehat{B}(x, 2).$$

We have proved that $S_2(x)\sqrt{\log\log x} = O\left((\log x)^{0.61306}(\log\log x)\right)$ as $x \to \infty$, as required to show that (24) holds.

Corollary 4.6. We have that as $n \to \infty$

$$\mathbb{E}|g^{-1}(n)| \sim \frac{12A_0}{\pi} \cdot \frac{(\log n)^2}{\sqrt{\log \log n}}.$$

Proof. We use the formula from Proposition 4.5 to sum $\mathbb{E}[C_{\Omega(n)}(n)]$ as $n \to \infty$. This result and (26) imply that for all sufficiently large $t \to +\infty$

$$\frac{1}{2\sqrt{2\pi}} \times \int \frac{\mathbb{E}[C_{\Omega(t)}(t)]}{t} dt = \pi \operatorname{erfi}\left(\sqrt{2\log\log t}\right) = \sqrt{\frac{\pi}{2}} \cdot \frac{(\log t)^2}{\sqrt{\log\log t}} (1 + o(1)).$$

The summatory function that counts the number of squarefree integers $n \le x$ satisfies [5, §18.6] [25, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O\left(\sqrt{x}\right), \text{ as } x \to \infty.$$

Therefore summing over the formula from (14) we find that

$$\mathbb{E}|g^{-1}(n)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega(d)}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega(d)}(d) \left[\frac{6}{d \cdot \pi^2} + O\left(\frac{1}{\sqrt{dn}}\right)\right]$$

$$= \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(n)}(n)] + \sum_{d \le n} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d}\right] + O(1).$$

4.3 Analogs to the Erdős-Kac theorem for the distributions of the unsigned sequences

Theorem 4.7 (Central limit theorem for the distribution of $C_{\Omega(n)}(n)$). For large x > e, let the mean and variance parameter analogs be defined by

$$\mu_x(C) := \log \log x - \log \left(4A_0\sqrt{2\pi}\right), \quad \text{and} \quad \sigma_x(C) := \sqrt{\log \log x}.$$

Let Y > 0 be fixed. We have uniformly for all $-Y \le z \le Y$ that

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{C_{\Omega(n)}(n) - \mu_x(C)}{\sigma_x(C)} \le z \right\} = \Phi(z) + O\left(\frac{1}{\sqrt{\log \log x}}\right), \text{ as } x \to \infty.$$

Proof. Fix any Y > 0 and set $z \in [-Y, Y]$. For large x and $2 \le n \le x$, define the following auxiliary variables:

$$\alpha_n := \frac{C_{\Omega(n)}(n) - \mu_n(C)}{\sigma_n(C)}, \quad \text{and} \quad \beta_{n,x} := \frac{C_{\Omega(n)}(n) - \mu_x(C)}{\sigma_x(C)}.$$

Let the corresponding densities be defined by the functions

$$\Phi_1(x,z) := \frac{1}{x} \times \#\{n \le x : \alpha_n \le z\},$$

and

$$\Phi_2(x,z) := \frac{1}{x} \times \#\{n \le x : \beta_{n,x} \le z\}.$$

We assert that it suffices to show that $\Phi_2(x,z) = \Phi(x) + O\left(\frac{1}{\sqrt{\log \log x}}\right)$ as $x \to \infty$ in place of considering the distribution of $\Phi_1(x,z)$ to obtain the conclusion. The normalizing terms $\mu_n(C)$ and $\sigma_n(C)$ hardly change over $\sqrt{x} \le n \le x$. Namely, for $n \in [\sqrt{x}, x]$ as $x \to \infty$ we see that

$$|\mu_n(C) - \mu_x(C)| \le \frac{\log 2}{\log x} + o(1),$$

and

$$|\sigma_n(C) - \sigma_x(C)| \le \frac{\log 2}{(\log x)\sqrt{\log \log x}} + o(1).$$

In particular, for $\sqrt{x} \le n \le x$ and $C_{\Omega(n)}(n) \le 2\mu_x(C)$ we can show using (27) that the following is true:

$$|\alpha_n - \beta_{n,x}| \xrightarrow{x \to \infty} 0.$$

Thus we can replace α_n by $\beta_{n,x}$ and estimate the limiting densities corresponding to these alternate terms as $x \to \infty$. The rest of our argument closely parallels the method from the proof of the related theorem in [13, Thm. 7.21; §7.4] from Montgomery and Vaughan. After a change of variable in our proof, we obtain the limiting central limit theorem type statement in analog to their analytic proof of the Erdős-Kac theorem for the distribution of $\Omega(n)$.

We use the formula proved in Corollary 4.3 to estimate the densities claimed within the ranges bounded by z as $x \to \infty$. Let $k \ge 1$ be a natural number such that $k := t_x + \mu_x(C)$ where $t_x := \frac{t\sqrt{\log\log x}}{(\log x)}$. For fixed large x, we define the small parameter $\delta_{t,x} := \frac{t_x}{\mu_x(C)}$ for some target PDF parameter $t \in \mathbb{R}$. When $|t| \le \frac{1}{2}\mu_x(C)$, we have by Stirling's formula that

$$\frac{1}{x} \times \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n) \sim \frac{4A_0\sqrt{2\pi}(\log\log x)^{k - \frac{1}{2}}}{(2k - 1)(k - 1)!} \\
\sim \frac{(\log x)}{\sqrt{2\pi\log\log x}\sigma_x(C)\left(1 - \frac{1}{2k}\right)} \times e^{t_x}(1 + o(1))^{k - \frac{1}{2}} \times (1 + \delta_{t,x})^{-\mu_x(C)(1 + \delta_{t,x}) - \frac{1}{2}}.$$

Notice that

$$\frac{1}{1 - \frac{1}{2k}} \sim \sum_{m \ge 0} \frac{1}{(2\mu_x(C))^m (1 + \delta_{t,x})^m} \sim 1 + \frac{1}{2\mu_x(C)} \left(1 + \delta_{t,x} + O(\delta_{t,x}^2) \right)$$

$$= 1 + o_{\delta_{t,x}}(1), \text{ for } \delta_{t,x} \approx 0 \text{ as } x \to \infty.$$

We have the uniform estimate that $\log(1 + \delta_{t,x}) = \delta_{t,x} - \frac{\delta_{t,x}^2}{2} + O(|\delta_{t,x}|^3)$ whenever $|\delta_{t,x}| \le \frac{1}{2}$. Then we can expand the factor involving $\delta_{t,x}$ from the previous equation as follows:

$$(1+\delta_{t,x})^{-\mu_x(C)(1+\delta_{t,x})-\frac{1}{2}} = \exp\left(\left(\frac{1}{2} + \mu_x(C)(1+\delta_{t,x})\right) \times \left(-\delta_{t,x} + \frac{\delta_{t,x}^2}{2} + O(|\delta_{t,x}|^3)\right)\right)$$

$$= \exp\left(-t_x - \frac{t_x + t_x^2}{2\mu_x(C)} + \frac{t_x^2}{4\mu_x(C)^2} + O\left(\frac{|t_x|^3}{\mu_x(C)^2}\right)\right).$$

For both $|t| \le \mu_x(C)^{\frac{1}{2}}$ and $\mu_x(C)^{\frac{1}{2}} < |t| \le \mu_x(C)^{\frac{2}{3}}$, we can see that

$$\frac{t}{\mu_x(C)} \ll \frac{1}{\sqrt{\mu_x(C)}} + \frac{|t|^3}{\mu_x(C)^2}.$$

Similarly, for both $|t| \le 1$ and |t| > 1, we have that

$$\frac{t^2}{\mu_x(C)^2} \ll \frac{1}{\sqrt{\mu_x(C)}} + \frac{|t|^3}{\mu_x(C)^2}.$$

Let the corresponding error terms in x and t be denoted by

$$\widetilde{E}(x,t) \coloneqq O\left(\frac{1}{\sigma_x(C)} + \frac{|t|^3}{\mu_x(C)^2}\right).$$

Combining these estimates with the previous computations, we deduce uniformly for $|t| \le \mu_x(C)^{\frac{2}{3}}$ that

$$\frac{4A_0\sqrt{2\pi}(\log\log x)^{k-\frac{1}{2}}}{(2k-1)(k-1)!} \sim \frac{\log x}{\sqrt{2\pi\log\log x}\sigma_x(C)} \times \exp\left(-\frac{t_x^2}{2\sigma_x(C)^2}\right) \times \left[1 + \widetilde{E}(x,t_x)\right].$$

It follows that uniformly for $1 \le k \le 2 \log \log x$ we have

$$f(k,x) \coloneqq \frac{1}{x} \times \sum_{\substack{n \le x \\ \Omega(n) = k}} C_{\Omega(n)}(n)$$

$$\sim \frac{(\log x)}{\sqrt{2\pi \log \log x} \sigma_x(C)} \times \exp\left(-\frac{(k - \mu_x(C))^2 \sqrt{\log \log x}}{2(\log x) \sigma_x(C)^2}\right) \times \left[1 + \widetilde{E}\left(x, \frac{|k - \mu_x(C)| \sqrt{\log \log x}}{(\log x)}\right)\right].$$

Since our target probability density function approximating the PDF (in t) of the normal distribution is given here by

$$\frac{f(k,x)\sqrt{\log\log x}}{(\log x)} \to \frac{1}{\sqrt{2\pi} \cdot \sigma_x(C)} \times \exp\left(-\frac{t^2}{2\sigma_x(C)^2}\right),$$

we perform the change of variable $t\mapsto \frac{t\sqrt{\log\log x}}{(\log x)}$ to obtain the form of our theorem stated above.

By the same argument given in the proof of Proposition 4.5, we see that the contributions of these summatory functions for $k \le \mu_x(C) - \mu_x(C)^{\frac{2}{3}}$ is negligible. We also restrict to $k \le 2 \log \log x$ for all large x as required by Theorem 4.2. We then sum over a corresponding range of

$$\mu_x(C) - \mu_x(C)^{\frac{2}{3}} \le k \le \mu_x(C) + z\sigma_x(C),$$

to approximate the stated normalized densities. As $x \to \infty$ the three terms that result (one main term and two error terms, respectively) can be considered to each correspond to a Riemann sum for an associated integral whose limiting formula corresponds to a main term given by the standard normal CDF, $\Phi(z)$.

Corollary 4.8. Suppose that $\mu_x(C)$ and $\sigma_x(C)$ are defined as in Theorem 4.7 for large x > e. Let Y > 0. For Y > 0 and we have uniformly for all $-Y \le y \le Y$ that as $x \to \infty$

$$\frac{1}{x} \cdot \# \left\{ 2 \le n \le x : |g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le y \right\} = \Phi \left(\frac{\frac{\pi^2 y}{6} - \mu_x(C)}{\sigma_x(C)} \right) + o(1).$$

Proof. We claim that

$$|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \sim \frac{6}{\pi^2} C_{\Omega(n)}(n)$$
, as $n \to \infty$.

As in the proof of Corollary 4.6, we obtain that

$$\frac{1}{x} \times \sum_{n \le x} |g^{-1}(n)| = \frac{6}{\pi^2} \left[\mathbb{E}[C_{\Omega(x)}(x)] + \sum_{d < x} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d} \right] + O(1).$$

Let the backwards difference operator with respect to x be defined for $x \ge 2$ and any arithmetic function f as $\Delta_x(f(x)) := f(x) - f(x-1)$. We see that for large n (cf. last lines in the proof of Corollary 4.6)

$$|g^{-1}(n)| = \Delta_n(n \cdot \mathbb{E}|g^{-1}(n)|) \sim \frac{6}{\pi^2} \Delta_n \left(\sum_{d \le n} C_{\Omega(d)}(d) \cdot \frac{n}{d} \right)$$

$$= \frac{6}{\pi^2} \left[C_{\Omega(n)}(n) + \sum_{d < n} C_{\Omega(d)}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega(d)}(d) \frac{(n-1)}{d} \right]$$

$$\sim \frac{6}{\pi^2} \left(C_{\Omega(n)}(n) + \mathbb{E}|g^{-1}(n-1)| \right), \text{ as } n \to \infty.$$

Since $\mathbb{E}|g^{-1}(n-1)| \sim \mathbb{E}|g^{-1}(n)|$ for all sufficiently large n, the result finally follows by a normalization of Theorem 4.7.

4.4 Probabilistic interpretations

Lemma 4.9. Let $\mu_x(C)$ and $\sigma_x(C)$ be defined as in Theorem 4.7. For all x sufficiently large, if we pick any integer $n \in [2, x]$ uniformly at random, then each of the following statements holds:

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2} \mu_x(C)\right) = \frac{1}{2} + o(1)$$
(A)

$$\mathbb{P}\left(|g^{-1}(n)| - \frac{6}{\pi^2}\mathbb{E}|g^{-1}(n)| \le \frac{6}{\pi^2}\left(\alpha\sigma_x(C) + \mu_x(C)\right)\right) = \Phi\left(\alpha\right) + o(1), \alpha \in \mathbb{R}.$$
 (B)

Proof. Each of these results is a consequence of Corollary 4.8. The result in (A) follows since $\Phi(0) = \frac{1}{2}$ by taking

$$y = \frac{6}{\pi^2} \left(\alpha \sigma_x(C) + \mu_x(C) \right),$$

in Corollary 4.8 for $\alpha = 0$.

As $\alpha \to +\infty$, we get that the right-hand-side of (B) in Lemma 4.9 tends to one for large $x \to \infty$. It follows from Lemma 4.9 and Corollary 4.6 that

$$\lim_{x \to \infty} \frac{1}{x} \times \# \left\{ n \le x : |g^{-1}(n)| \le \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)| (1 + o(1)) \right\} = 1.$$

That is, for almost every sufficiently large integer n we recover that

$$|g^{-1}(n)| \le \frac{6}{\pi^2} \mathbb{E}|g^{-1}(n)|(1+o(1)).$$

5 New formulas and limiting relations characterizing M(x)

5.1 Establishing initial asymptotic bounds on the summatory function $G^{-1}(x)$

Let $L(x) := \sum_{n \le x} \lambda(n)$ for $x \ge 1$. A recent upper bound on L(x) (assuming the RH) is proved by Humphries. It is stated in the following form [6]:

$$L(x) = O\left(\sqrt{x} \times \exp\left((\log x)^{\frac{1}{2}} (\log\log x)^{\frac{5}{2} + \epsilon}\right)\right), \text{ for any } \epsilon > 0, \text{ as } x \to \infty.$$
 (28)

Theorem 5.1. We have that for almost every sufficiently large x, there exists $1 \le t_0 \le x$ such that

$$G^{-1}(x) = O\left(L(t_0) \times \mathbb{E}|g^{-1}(x)|\right).$$

If the RH is true, then for any $\epsilon > 0$ and all large integers x > e we have that

$$G^{-1}(x) = O\left(\frac{\sqrt{x}(\log x)^2}{\sqrt{\log\log x}} \times \exp\left(\sqrt{\log x}(\log\log x)^{\frac{5}{2}+\epsilon}\right)\right).$$

Proof. We write the next formulas for $G^{-1}(x)$ at almost every large x > e by Abel summation and applying the mean value theorem:

$$G^{-1}(x) = \sum_{n \le x} \lambda(n) |g^{-1}(n)|$$

$$= L(x) |g^{-1}(x)| - \int_{1}^{x} L(x) \frac{d}{dx} |g^{-1}(x)| dx$$

$$= O\left(L(t_0) \times \mathbb{E}|g^{-1}(x)|\right), \text{ for some } t_0 \in [1, x].$$
(29)

The proof of this result appeals to the last few results we used to establish the probabilistic interpretations of the distribution of $|g^{-1}(n)|$ as $n \to \infty$ in Section 4.4.

We need to bound the sums of the maximal extreme values of $|g^{-1}(n)|$ over $n \le x$ as $x \to \infty$ to prove the second claim. We know by a result of Robin that [22]

$$\omega(n) \ll \frac{\log n}{\log \log n}$$
, as $n \to \infty$.

Recall that the values of $|g^{-1}(n)|$ are locally maximized when n is squarefree with

$$|g^{-1}(n)| \leq \sum_{j=0}^{\omega(n)} {\omega(n) \choose j} \times j! \ll \Gamma(\omega(n)+1) \ll \left(\frac{\log n}{\log \log n}\right)^{\frac{\log n}{\log \log n} + \frac{1}{2}}.$$

Since we deduced that the set of $n \le x$ on which $|g^{-1}(n)|$ is substantially larger than its average order is asymptotically thin at the end of the last section, we find the largest possible bounds asserting that

$$\left| \int_{x-o(1)}^{x} L'(t)|g^{-1}(t)|dt \right| \ll \int_{x-o(1)}^{x} \left(\frac{\log t}{\log \log t} \right)^{\frac{\log t}{\log \log t} + \frac{1}{2}} dt = o\left(\left(\frac{\log x}{\log \log x} \right)^{\frac{\log x}{\log \log x} + \frac{1}{2}} \right)$$
$$\ll o\left(\frac{x}{(\log x)^{m - \frac{1}{2}} (\log \log x)^{r}} \right), \text{ for any } m, r = o\left(\frac{\log \log \log x}{\log \log x} \right), \text{ as } x \to \infty.$$

Indeed, we can see that the limit

$$\lim_{x \to \infty} \frac{1}{x} \left(\frac{\log x}{\log \log x} \right)^{\frac{\log x}{\log \log x} + \frac{1}{2}} (\log x)^{m - \frac{1}{2}} (\log \log x)^r \ll \lim_{x \to \infty} x^{-\frac{\log \log \log x}{\log \log x}} (\log x)^{m + r}$$

$$= \lim_{x \to \infty} \exp\left((m+r) \log x - (\log x) \frac{\log \log \log x}{\log \log x} \right) = \lim_{t \to \infty} e^{-t} = 0.$$

For large x, let $\mathcal{R}_x := \{t \leq x : |g^{-1}(t)| \gg \mathbb{E}|g^{-1}(t)|\}$ such that $|\mathcal{R}_x| = o(1)$ (as we argued before). The formula from (18a) then implies that for large x and any $m, r = o\left(\frac{\log\log\log x}{\log\log x}\right)$

$$G^{-1}(x) = O\left(\int_{1}^{x} L'(x)|g^{-1}(x)|dx\right) = O\left(\mathbb{E}|g^{-1}(x)| \times \int_{1}^{x} L'(x)dx + \int_{x-|\mathcal{R}_{x}|}^{x} |L'(t)| \times |g^{-1}(t)|dt\right)$$

$$= O\left(\mathbb{E}|g^{-1}(x)| \times |L(x)| + o\left(\frac{x}{(\log x)^{m-\frac{1}{2}}(\log\log x)^{r}}\right)\right).$$

If the RH is true, by applying Humphries' result in (28) with Corollary 4.6, then for any $\epsilon > 0$, $m, r = o\left(\frac{\log\log\log x}{\log\log x}\right)$ and large integers x > e we have that

$$G^{-1}(x) = O\left(\frac{\sqrt{x}(\log x)^2}{\sqrt{\log\log x}} \times \exp\left(\sqrt{\log x}(\log\log x)^{\frac{5}{2}+\epsilon}\right) + o\left(\frac{x}{(\log x)^{m-\frac{1}{2}}(\log\log x)^r}\right)\right).$$

To obtain the conclusion in the second result, we take limits as $x \to \infty$ to see that the dominant term is given by the leftmost term in the last bound.

5.2 Bounding M(x) by asymptotics for $G^{-1}(x)$

Proposition 5.2. For all sufficiently large x, we have that the Mertens function satisfies

$$M(x) = G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} G^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right]. \tag{30}$$

Proof. We know by applying Corollary 1.4 that

$$M(x) = \sum_{k=1}^{x} g^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]$$

$$= G^{-1}(x) + \sum_{k=1}^{\frac{x}{2}} g^{-1}(k) \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right)$$

$$= G^{-1}(x) + G^{-1} \left(\left\lfloor \frac{x}{2} \right\rfloor \right) + \sum_{k=1}^{\frac{x}{2} - 1} G^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k + 1} \right\rfloor \right) \right].$$

The upper bound on the sum is truncated to $k \in [1, \frac{x}{2}]$ in the second equation above due to the fact that $\pi(1) = 0$. The third formula above follows directly by (ordinary) summation by parts.

Lemma 5.3. For sufficiently large x, integers $k \in [1, \sqrt{x}]$ and $m \ge 0$, we have that

$$\frac{x}{k \log^m \left(\frac{x}{k}\right)} - \frac{x}{(k+1) \log^m \left(\frac{x}{k+1}\right)} \approx \frac{x}{(\log x)^m k (k+1)},\tag{A}$$

and

$$\sum_{k=\sqrt{x}}^{\frac{x}{2}} \frac{x}{k(k+1)} = \sum_{k=\sqrt{x}}^{\frac{x}{2}} \frac{x}{k^2} + O(1).$$
 (B)

Proof. To prove (A), we first notice that for any $k \in [1, \sqrt{x}]$

$$\frac{\log\left(\frac{x}{k}\right)}{\log\left(\frac{x}{k+1}\right)} = \frac{1 - \frac{\log k}{\log x}}{1 - \frac{\log k}{\log x} + O\left(\frac{1}{k \log x}\right)} = 1 + O\left(\frac{1}{k \log x \left(1 - \frac{\log k}{\log x}\right)}\right) = 1 + o(1), \text{ as } x \to \infty.$$

Then for any $m \ge 0$ and k within these bounds, we see that

$$\frac{x}{k \log^m \left(\frac{x}{k}\right)} - \frac{x}{(k+1) \log^m \left(\frac{x}{k+1}\right)} = \frac{x}{\log^m \left(\frac{x}{k+1}\right)} \left[\frac{(1+o(1))^m}{k} - \frac{1}{k+1} \right]$$
$$\approx \frac{x}{(\log x)^m} \left[\frac{1}{k(k+1)} + o\left(\frac{1}{k}\right) \right],$$

where for any $k \in [1, \sqrt{x}]$ we have that $o(k^{-1}) = o(1)$ for all large $x \to \infty$.

To prove (B), notice that

$$\frac{x}{k(k+1)} - \frac{x}{k^2} = -\frac{x}{k^2(k+1)}.$$

Then we see that

$$\left| \int_{\sqrt{x}}^{\frac{x}{2}} \frac{x}{t^2(t+1)} dt \right| \le \left| \int_{\sqrt{x}}^{\frac{x}{2}} \frac{x}{t^3} dt \right| = O(1).$$

Corollary 5.4. We have that as $x \to \infty$

$$M(x) = O\left(G^{-1}(x) + G^{-1}\left(\frac{x}{2}\right) + \frac{x}{\log x} \times \sum_{k \le \sqrt{x}} \frac{G^{-1}(k)}{k^2} + (\log x)^2 \sqrt{\log \log x}\right).$$

Proof. We need to first bound the prime counting function differences in the formula given by Proposition 5.2. We will require the following known bounds on the prime counting function due to Rosser and Schoenfeld for all sufficiently large x > 59 [23, Thm. 1]:

$$\frac{x}{\log x} \left(1 + \frac{1}{2\log x} \right) \le \pi(x) \le \frac{x}{\log x} \left(1 + \frac{3}{2\log x} \right). \tag{31}$$

The bounds in (31) together with Lemma 5.3 implies that for $\sqrt{x} \le k \le \frac{x}{2}$

$$\pi\left(\left\lfloor \frac{x}{k}\right\rfloor\right) - \pi\left(\left\lfloor \frac{x}{k+1}\right\rfloor\right) = O\left(\frac{x}{k^2 \log\left(\frac{x}{k}\right)}\right). \tag{32}$$

We will rewrite the intermediate formula from the proof of Proposition 5.2 as a sum of two components with summands taken over disjoint intervals. For large x > e, let

$$S_1(x) \coloneqq \sum_{1 \le k \le \sqrt{x}} g^{-1}(k) \pi\left(\frac{x}{k}\right)$$
$$S_2(x) \coloneqq \sum_{\sqrt{x} < k \le \frac{x}{k}} g^{-1}(k) \pi\left(\frac{x}{k}\right).$$

We then assert by the asymptotic formulas for the prime counting function that

$$S_1(x) = O\left(\frac{x}{\log x} \times \sum_{k \le \sqrt{x}} \frac{G^{-1}(k)}{k^2}\right).$$

To bound the second sum, we perform summation by parts as in the proof of the proposition and apply (32) above for the difference of the summand functions to obtain that

$$S_{2}(x) = O\left(G^{-1}\left(\frac{x}{2}\right) + \int_{\sqrt{x}}^{\frac{x}{2}} \frac{G^{-1}(t)}{t^{2}\log\left(\frac{x}{t}\right)} dt\right)$$

$$= O\left(G^{-1}\left(\frac{x}{2}\right) + \max_{\sqrt{x} < k < \frac{x}{2}} \frac{|G^{-1}(k)|}{k} \times \int_{\sqrt{x}}^{\frac{x}{2}} \frac{dt}{t\log\left(\frac{x}{t}\right)}\right)$$

$$= O\left(G^{-1}\left(\frac{x}{2}\right) + (\log\log x) \times \max_{\sqrt{x} < k < \frac{x}{2}} \frac{|G^{-1}(k)|}{k}\right).$$

The rightmost maximum term in the previous equation satisfies $\frac{|G^{-1}(k)|}{k} \ll \mathbb{E}|g^{-1}(k)|$ as $k \to \infty$. The conclusion follows since the average order of $|g^{-1}(n)|$ is increasing for sufficiently large n by Corollary 4.6.

6 Conclusions

We have identified a new sequence, $\{g^{-1}(n)\}_{n\geq 1}$, that is the Dirichlet inverse of the shifted strongly additive function, $g := \omega + 1$. As we discussed in the remarks in Section 3.3, it happens that there is a natural combinatorial interpretation to the distribution of distinct values of $|g^{-1}(n)|$ for $n \leq x$ involving the distribution of the primes $p \leq x$ at large x. In particular, the magnitude of $|g^{-1}(n)|$ depends only on the pattern of the exponents of the prime factorization of n. The signedness of $g^{-1}(n)$ is given by $\lambda(n)$ for all $n \geq 1$. This leads to a familiar dependence of the summatory functions $G^{-1}(x)$ on the distribution of the summatory function L(x). Section 5 provides equivalent characterizations of the limiting properties of M(x) by exact formulas and asymptotic relations involving $G^{-1}(x)$ and L(x).

We emphasize that our new work on the Mertens function proved within this article is significant in providing a new window through which we can view bounding M(x). The computational data generated in Table B suggests numerically that the distribution of $G^{-1}(x)$ may be easier to work with than those of M(x) or L(x). The remarks given in Section 3.3 about the direct combinatorial relation of the distinct (and repetition of) values of $|g^{-1}(n)|$ for $n \leq x$ are suggestive towards bounding main terms for $G^{-1}(x)$ along infinite subsequences in future work.

One topic that we do not touch on in the article is to consider what correlation (if any) exists between $\lambda(n)$ and the unsigned sequence of $|g^{-1}(n)|$ with the limiting distribution proved in Corollary 4.8. Much in the same way that variants of the famous Erdős-Kac theorem are historically established by defining random variables related to $\omega(n)$, we also suggest an analysis of the summatory function $G^{-1}(x)$ by scaling the explicitly distributed $|g^{-1}(n)|$ for $n \le x$ as $x \to \infty$ by its signed weight of $\lambda(n)$ using an initial heuristic along these lines for future work.

Another experiment illustrated in the online computational reference [24] suggests that for many sufficiently large x we may consider replacing the summatory function with other summands weighted by $\lambda(n)$. These alternate sums can be seen to average these sequences differently while still preserving the original asymptotic order of $|G^{-1}(x)|$ heuristically. For example, each of the following three summatory functions offer a unique interpretation of an average of sorts that non-routinely "mixes" the values of $\lambda(n)$ with the unsigned sequence $|g^{-1}(n)|$ over $1 \le n \le x$:

$$G_{*}^{-1}(x) \coloneqq \sum_{n \le x} \frac{1}{2\gamma - 1 + \log n} \times \sum_{d \mid n} \lambda \left(\frac{n}{d}\right) |g^{-1}(d)|$$

$$G_{**}^{-1}(x) \coloneqq \sum_{n \le x} \frac{1}{2\gamma - 1 + \log n} \times \sum_{d \mid n} \lambda \left(\frac{n}{d}\right) g^{-1}(d)$$

$$G_{***}^{-1}(x) \coloneqq \sum_{n \le x} \frac{1}{2\gamma - 1 + \log n} \times \sum_{d \mid n} g^{-1}(d).$$

Then based on preliminary numerical results, a large proportion of the $y \le x$ for large x satisfy

$$\left| \frac{G_{*}^{-1}(y)}{G^{-1}(y)} \right|^{-1}, \left| \frac{G_{**}^{-1}(y)}{G^{-1}(y)} \right|, \left| \frac{G_{***}^{-1}(y)}{G^{-1}(y)} \right| \in (0, 3].$$

Variants of this type of summatory function identity exchange are similarly suggested for future work to extend the topics and new results proved in this article.

Acknowledgments

We thank the following professors that offered discussion, feedback and correspondence while the article was written: Paul Pollack, Steven J. Miller, Gergő Nemes and Bruce Reznick. The work on

the article was supported in part by funding made available within the School of Mathematics at the Georgia Institute of Technology in 2020 and 2021. Without this combined support, the article would not have been possible.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. Billingsley. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [3] P. Erdős and M. Kac. The guassian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [4] C. E. Fröberg. On the prime zeta function. BIT Numerical Mathematics, 8:87–202, 1968.
- [5] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [6] P. Humphries. The distribution of weighted sums of the Liouville function and Pólya's conjecture. J. Number Theory, 133:545–582, 2013.
- [7] G. Hurst. Computations of the Mertens function and improved bounds on the Mertens conjecture. *Math. Comp.*, 87:1013–1028, 2018.
- [8] H. Hwang and S. Janson. A central limit theorem for random ordered factorizations of integers. *Electron. J. Probab.*, 16(12):347–361, 2011.
- [9] H. Iwaniec and E. Kowalski. *Analytic Number Theory*, volume 53. AMS Colloquium Publications, 2004.
- [10] T. Kotnik and H. te Riele. The Mertens conjecture revisited. Algorithmic Number Theory, 7th International Symposium, 2006.
- [11] T. Kotnik and J. van de Lune. On the order of the Mertens function. Exp. Math., 2004.
- [12] R. S. Lehman. On Liouville's function. Math. Comput., 14:311–320, 1960.
- [13] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [14] G. Nemes. The resurgence properties of the incomplete gamma function II. Stud. Appl. Math., 135(1):86–116, 2015.
- [15] G. Nemes. The resurgence properties of the incomplete gamma function I. Anal. Appl. (Sin-gap.), 14(5):631–677, 2016.
- [16] G. Nemes and A. B. Olde Daalhuis. Asymptotic expansions for the incomplete gamma function in the transition regions. *Math. Comp.*, 88(318):1805–1827, 2019.
- [17] N. Ng. The distribution of the summatory function of the Móbius function. *Proc. London Math. Soc.*, 89(3):361–389, 2004.
- [18] A. M. Odlyzko and H. J. J. te Riele. Disproof of the Mertens conjecture. *J. Reine Angew. Math.*, 1985.
- [19] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
- [20] A. Renyi and P. Turan. On a theorem of Erdős-Kac. Acta Arithmetica, 4(1):71–84, 1958.
- [21] P. Ribenboim. The new book of prime number records. Springer, 1996.

- [22] G. Robin. Estimate of the Chebyshev function θ on the k^{th} prime number and large values of the number of prime divisors function $\omega(n)$ of n. Acta Arith., 42(4):367–389, 1983.
- [23] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. *Illinois J. Math.*, 6:64–94, 1962.
- [24] M. D. Schmidt. SageMath and Mathematica software for computations with the Mertens function, 2021. https://github.com/maxieds/MertensFunctionComputations.
- [25] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2021. http://oeis.org.
- [26] K. Soundararajan. Partial sums of the Möbius function. J. Reine Angew. Math., 2009(631):141–152, 2009.
- [27] E. C. Titchmarsh. The theory of the Riemann zeta function. Clarendon Press, 1951.

A Appendix: Asymptotic formulas

We thank Gergő Nemes from the Alfréd Rényi Institute of Mathematics for his careful notes on the limiting asymptotics for the sums identified in this section. We have adapted the communication of his proofs to establish the next few lemmas.

Facts A.1 (The incomplete gamma function). The (upper) incomplete gamma function is defined by [19, §8.4]

$$\Gamma(a,z) = \int_{z}^{\infty} t^{a-1} e^{-t} dt, a \in \mathbb{R}, |\arg z| < \pi.$$

The function $\Gamma(a,z)$ can be continued to an analytic function of z on the universal covering of $\mathbb{C}\setminus\{0\}$. For $a\in\mathbb{Z}^+$, the function $\Gamma(a,z)$ is an entire function of z. The following properties of $\Gamma(a,z)$ hold [19, §8.4; §8.11(i)]:

$$\Gamma(a,z) = (a-1)!e^{-z} \times \sum_{k=0}^{a-1} \frac{z^k}{k!}, \text{ for } a \in \mathbb{Z}^+, z \in \mathbb{C};$$
 (33a)

$$\Gamma(a,z) \sim z^{a-1}e^{-z}$$
, for fixed $a \in \mathbb{C}$, as $z \to +\infty$. (33b)

Moreover, for real z > 0, as $z \to +\infty$ we have that [14]

$$\Gamma(z,z) = \sqrt{\frac{\pi}{2}} z^{z-\frac{1}{2}} e^{-z} + O\left(z^{z-1} e^{-z}\right),\tag{33c}$$

If $z, a \to \infty$ with $z = \lambda a$ for some $\lambda > 1$ such that $(\lambda - 1)^{-1} = o(\sqrt{|a|})$, then [14]

$$\Gamma(a,z) = z^a e^{-z} \times \sum_{n \ge 0} \frac{(-a)^n b_n(\lambda)}{(z-a)^{2n+1}},$$
(33d)

where the sequence $b_n(\lambda)$ satisfies the characteristic relation that $b_0(\lambda) = 1$ and⁴

$$b_n(\lambda) = \lambda(1-\lambda)b'_{n-1}(\lambda) + \lambda(2n-1)b_{n-1}(\lambda), n \ge 1.$$

Proposition A.2. Let a, z, λ be positive real parameters such that $z = \lambda a$. If $\lambda \in (0,1)$, then as $z \to +\infty$

$$\Gamma(a,z) = \Gamma(a) + O_{\lambda} \left(z^{a-1} e^{-z} \right).$$

If $\lambda > 1$, then as $z \to +\infty$

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\lambda^{-1}} + O_{\lambda}(z^{a-2}e^{-z}).$$

If $\lambda > 0.567142 > W(1)$ where W(x) denotes the principal branch of the Lambert W-function for $x \ge 0$, then as $z \to +\infty$

$$\Gamma(a, ze^{\pm \pi i}) = -e^{\pm \pi i a} \frac{z^{a-1}e^z}{1 + \lambda^{-1}} + O_{\lambda}(z^{a-2}e^z).$$

The first two asymptotic estmates are only useful when λ is bounded away from the transition point at 1. We cannot write the last expansion above as $\Gamma(a, -z)$ directly unless $a \in \mathbb{Z}^+$ as the incomplete gamma function has a branch point at the origin with respect to its second variable. This function becomes a single-valued analytic function of its second input by continuation on the universal covering of $\mathbb{C} \setminus \{0\}$.

$$b_n(\lambda) = \sum_{k=0}^n \left| \left\langle n \right\rangle \right| \lambda^{k+1}.$$

⁴An exact formula for $b_n(\lambda)$ is given in terms of the second-order Eulerian number triangle [25, A008517] as follows:

Proof. The first asymptotic estimate follows directly from the following asymptotic series expansion that holds as $z \to +\infty$ [16, Eq. (2.1)]:

$$\Gamma(a,z) \sim \Gamma(a) + z^a e^{-z} \times \sum_{k>0} \frac{(-a)^k b_k(\lambda)}{(z-a)^{2k+1}}.$$

Using the notation from (33d) and [15], we have that

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\lambda^{-1}} + z^a e^{-z} R_1(a,\lambda).$$

From the bounds in $[15, \S 3.1]$, we get that

$$|z^a e^{-z} R_1(a,\lambda)| \le z^a e^{-z} \times \frac{a \cdot b_1(\lambda)}{(z-a)^3} = \frac{z^{a-2} e^{-z}}{(1-\lambda^{-1})^3}$$

Note that the main and error terms in the previous equation can also be seen by applying the asymptotic series in (33d) directly.

The proof of the third equation above follows from the following asymptotics [14, Eq. (1.1)]

$$\Gamma(-a,z) \sim z^{-a}e^{-z} \times \sum_{n\geq 0} \frac{a^n b_n(-\lambda)}{(z+a)^{2n+1}},$$

by setting $a \mapsto ae^{\pm \pi i}$ and $z \mapsto ze^{\pm \pi i}$ with $\lambda = \frac{z}{a} > 0.567142 > W(1)$. The restriction on the range of λ over which the third formula holds is made to ensure that the last formula from the reference is valid at negative real a.

Lemma A.3. For $x \to +\infty$, we have that

$$S_1(x) := \frac{x}{\log x} \times \left| \sum_{1 \le k \le \lfloor \log \log x \rfloor} \frac{(-1)^k (\log \log x)^{k-1}}{(k-1)!} \right| = \frac{x}{2\sqrt{2\pi \log \log x}} + O\left(\frac{x}{(\log \log x)^{\frac{3}{2}}}\right).$$

Proof. We have for $n \ge 1$ and any t > 0 by (33a) that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = -e^{-t} \times \frac{\Gamma(n, -t)}{(n-1)!}.$$

Suppose that $t = n + \xi$ with $\xi = O(1)$ (e.g., so we can formally take the floor of the input n to truncate the last sum). By the third formula in Proposition A.2 with the parameters $(a, z, \lambda) \mapsto (n, t, 1 + \frac{\xi}{n})$, we deduce that as $n, t \to +\infty$.

$$\Gamma(n, -t) = (-1)^{n+1} \times \frac{t^n e^t}{t+n} + O\left(\frac{nt^n e^t}{(t+n)^3}\right) = (-1)^{n+1} \frac{t^n e^t}{2n} + O\left(\frac{t^{n-1} e^t}{n}\right). \tag{34}$$

Accordingly, we see that

$$\sum_{1 \le k \le n} \frac{(-1)^k t^{k-1}}{(k-1)!} = (-1)^n \frac{t^n}{2n!} + O\left(\frac{t^{n-1}}{n!}\right).$$

By the variant of Stirling's formula in [19, cf. Eq. (5.11.8)], we have

$$n! = \Gamma(1+t-\xi) = \sqrt{2\pi}t^{t-\xi+\frac{1}{2}}e^{-t}\left(1+O(t^{-1})\right) = \sqrt{2\pi}t^{n+\frac{1}{2}}e^{-t}\left(1+O(t^{-1})\right).$$

Hence, as $n \to +\infty$ with $t := n + \xi$ and $\xi = O(1)$, we obtain that

$$\sum_{k=1}^{n} \frac{(-1)^{k} t^{k-1}}{(k-1)!} = (-1)^{n} \frac{e^{t}}{2\sqrt{2\pi t}} + O\left(e^{t} t^{-\frac{3}{2}}\right).$$

The conclusion follows by taking $n \coloneqq \lfloor \log \log x \rfloor$, $t \coloneqq \log \log x$ and applying the triangle inequality to obtain the result.

Lemma A.4. For $x \to +\infty$, we have that

$$S_3(x) \coloneqq \sum_{1 \le k \le \lfloor 2 \log \log x \rfloor} \frac{(\log \log x)^{k - \frac{1}{2}}}{(2k - 1)(k - 1)!} = \frac{\log x}{2\sqrt{\log \log x}} + O\left(\frac{\log x}{(\log \log x)^{\frac{3}{2}}}\right).$$

Proof. For $n \ge 1$ and any t > 0, let

$$\widetilde{S}_n(t) := \sum_{1 \le k \le n} \frac{t^{k-1}}{(2k-1)(k-1)!}.$$

By the formula in (33a) and a change of variable, we get that

$$\widetilde{S}_{n}(t) = \int_{0}^{1} \left(\sum_{k=1}^{n} \frac{(s^{2}t)^{k-1}}{(k-1)!} \right) ds$$

$$= \frac{1}{(n-1)!} \times \int_{0}^{1} e^{s^{2}t} \Gamma(n, s^{2}t) ds$$

$$= \frac{1}{2t^{\frac{1}{2}}(n-1)!} \times \int_{0}^{t} \frac{e^{u}}{\sqrt{u}} \times \Gamma(n, u) du.$$

Integration by parts performed once with

$$\left\{ \begin{array}{ll} u_x = \Gamma(n,x) & v_x' = \frac{e^x}{\sqrt{x}} dx \\ u_x' = -x^{n-1} e^{-x} dx & v_x = \sqrt{\pi} \operatorname{erfi}\left(\sqrt{x}\right) \end{array} \right\},\,$$

implies that

$$\widetilde{S}_n(t) = \frac{1}{2(n-1)!} \sqrt{\frac{\pi}{t}} \times \Gamma(n,t) \operatorname{erfi}\left(\sqrt{t}\right) + \frac{1}{2(n-1)!} \sqrt{\frac{\pi}{t}} \times \int_0^t u^{n-1} e^{-u} \operatorname{erfi}\left(\sqrt{u}\right) du.$$
 (35)

For the remainder of the proof, we assume that $t = \frac{n}{2} + \xi$ where $\xi = O(1)$. By [19, Eq. (7.12.1)] and (26), we find that as $t \to +\infty$

$$e^{-t}\operatorname{erfi}\left(\sqrt{t}\right) = \frac{1}{\sqrt{\pi t}} + O\left(t^{-\frac{3}{2}}\right) = O\left(t^{-\frac{1}{2}}\right).$$

Consequently, we see that as $t \to +\infty$

$$\frac{1}{2(n-1)!}\sqrt{\frac{\pi}{t}} \times \int_0^t u^{n-1}e^{-u}\operatorname{erfi}\left(\sqrt{u}\right)du = O\left(\frac{t^{n-2}}{(n-1)!}\right).$$

Applying the first estimate in Proposition A.2 with the parameters $(a, z, \lambda) \mapsto (n, t, \frac{1}{2} + \frac{\xi}{n})$, we find that

$$\Gamma(n,t) = \Gamma(n) + O(t^{n-1}e^{-t}), \text{ as } t \to +\infty.$$

Thus, as $t \to +\infty$ we have that

$$\widetilde{S}_n(t) = \frac{e^t}{2t} + O\left(\frac{e^t}{t^2} + \frac{t^{n-2}}{(n-1)!}\right).$$

By applying [19, Eq. (5.11.8)] we have

$$(n-1)! = \Gamma(2t-2\xi) = O\left((2t)^{2t-2\xi-\frac{1}{2}}e^{-2t}\right) = O\left(e^{-t}t^{n-\frac{1}{2}}\left(\frac{4}{e}\right)^{t}\right).$$

Whence, with $t := \frac{n}{2} + O(1)$ as $n \to +\infty$, we find

$$\widetilde{S}_n(t) = \frac{e^t}{2t} + O\left(e^t t^{-2}\right).$$

The conclusion follows taking $n = \lfloor 2 \log \log x \rfloor$, $t = \log \log x$ and mulitplying $\widetilde{S}_n(t)$ by a factor of $\sqrt{\log \log x}$.

Table: The Dirichlet inverse function $g^{-1}(n)$ \mathbf{B}

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
1	1^1	Y	N	1	0	1.0000000	1.000000	0.000000	1	1	0
2	2^1	Y	Y	-2	0	1.0000000	0.500000	0.500000	-1	1	-2
3	3^1	Y	Y	-2	0	1.0000000	0.333333	0.666667	-3	1	-4
4	2^2	N	Y	2	0	1.5000000	0.500000	0.500000	-1	3	-4
5	5^1	Y	Y	-2	0	1.0000000	0.400000	0.600000	-3	3	-6
6	$2^{1}3^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	2	8	-6
7	7^1	Y	Y	-2	0	1.0000000	0.428571	0.571429	0	8	-8
8	2^3	N	Y	-2	0	2.0000000	0.375000	0.625000	-2	8	-10
9	3^2	N	Y	2	0	1.5000000	0.444444	0.555556	0	10	-10
10	$2^{1}5^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	5	15	-10
11	11^{1}	Y	Y	-2	0	1.0000000	0.454545	0.545455	3	15	-12
12	$2^{2}3^{1}$	N	N	-7	2	1.2857143	0.416667	0.583333	-4	15	-19
13	13^{1}	Y	Y	-2	0	1.0000000	0.384615	0.615385	-6	15	-21
14	$2^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-1	20	-21
15	$3^{1}5^{1}$	Y	N	5	0	1.0000000	0.466667	0.533333	4	25	-21
16	2^4	N	Y	2	0	2.5000000	0.500000	0.500000	6	27	-21
17	17^1	Y	Y	-2	0	1.0000000	0.470588	0.529412	4	27	-23
18	$2^{1}3^{2}$	N	N	-7	2	1.2857143	0.444444	0.555556	-3	27	-30
19	19^{1}	Y	Y	-2	0	1.0000000	0.421053	0.578947	-5	27	-32
20	$2^{2}5^{1}$	N	N	-7	2	1.2857143	0.400000	0.600000	-12	27	-39
21	$3^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-7	32	-39
22	$2^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-2	37	-39
23	23^{1}	Y	Y	-2	0	1.0000000	0.434783	0.565217	-4	37	-41
24	$2^{3}3^{1}$	N	N	9	4	1.5555556	0.458333	0.541667	5	46	-41
25	5^2	N	Y	2	0	1.5000000	0.480000	0.520000	7	48	-41
26	$2^{1}13^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	12	53	-41
27	3^3	N	Y	-2	0	2.0000000	0.481481	0.518519	10	53	-43
28	$2^{2}7^{1}$	N	N	-7	2	1.2857143	0.464286	0.535714	3	53	-50
29	29^{1}	Y	Y	-2	0	1.0000000	0.448276	0.551724	1	53	-52
30	$2^{1}3^{1}5^{1}$	Y	N	-16	0	1.0000000	0.433333	0.566667	-15	53	-68
31	31^{1}	Y	Y	-2	0	1.0000000	0.419355	0.580645	-17	53	-70
32	2^{5}	N	Y	-2	0	3.0000000	0.406250	0.593750	-19	53	-72
33	$3^{1}11^{1}$	Y	N	5	0	1.0000000	0.424242	0.575758	-14	58	-72
34	$2^{1}17^{1}$	Y	N	5	0	1.0000000	0.441176	0.558824	-9	63	-72
35	$5^{1}7^{1}$	Y	N	5	0	1.0000000	0.457143	0.542857	-4	68	-72
36	$2^{2}3^{2}$	N	N	14	9	1.3571429	0.472222	0.527778	10	82	-72
37	37^{1}	Y	Y	-2	0	1.0000000	0.459459	0.540541	8	82	-74
38	$2^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	13	87	-74
39	$3^{1}13^{1}$	Y	N	5	0	1.0000000	0.487179	0.512821	18	92	-74
40	$2^{3}5^{1}$	N	N	9	4	1.5555556	0.500000	0.500000	27	101	-74
41	41^{1}	Y	Y	-2	0	1.0000000	0.487805	0.512195	25	101	-76
42	$2^{1}3^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	9	101	-92
43	43^{1}	Y	Y	-2	0	1.0000000	0.465116	0.534884	7	101	-94
44	2^211^1	N	N	-7	2	1.2857143	0.454545	0.545455	0	101	-101
45	$3^{2}5^{1}$	N	N	-7	2	1.2857143	0.444444	0.555556	-7	101	-108
46	$2^{1}23^{1}$	Y	N	5	0	1.0000000	0.456522	0.543478	-2	106	-108
47	47^{1}	Y	Y	-2	0	1.0000000	0.446809	0.553191	-4	106	-110
48	2^43^1	N	N	-11	6	1.8181818	0.437500	0.562500	-15	106	-121

Table B: Computations involving $g^{-1}(n) \equiv (\omega + 1)^{-1}(n)$ for $1 \le n \le 500$.

- ▶ The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled Sqfree and PPower, respectively, list inclusion of n in the sets of squarefree integers and the prime powers.
- ▶ The next three columns provide the explicit values of the inverse function $g^{-1}(n)$ and compare its explicit
- value with other estimates. We define the function $\widehat{f}_1(n) := \sum_{k=0}^{\omega(n)} {\omega(n) \choose k} \times k!$.

 The last columns indicate properties of the summatory function of $g^{-1}(n)$. The notation for the densities of the sign weight of $g^{-1}(n)$ is defined as $\mathcal{L}_{\pm}(x) := \frac{1}{n} \times \#\{n \le x : \lambda(n) = \pm 1\}$. The last three columns than show the explicit components to the sign f(n) is $f(n) := \int_{-1}^{\infty} {\omega(n) \choose k} \times k!$. then show the explicit components to the signed summatory function, $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$, decomposed into its respective positive and negative magnitude sum contributions: $G^{-1}(x) = G_+^{-1}(x) + G_-^{-1}(x)$ where $G_+^{-1}(x) > 0$ and $G_-^{-1}(x) < 0$ for all $x \geq 1$. That is, the component functions $G_\pm^{-1}(x)$ displayed in the last two columns of the table correspond to the summatory function $G^{-1}(x)$ with summands that are positive and negative, respectively.

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
49	7 ²	N	Y	2	0	1.5000000	0.448980	0.551020	-13	108	-121
50	$2^{1}5^{2}$	N	N	-7	2	1.2857143	0.440000	0.560000	-20	108	-128
51	$3^{1}17^{1}$	Y	N	5_	0	1.0000000	0.450980	0.549020	-15	113	-128
52	$2^{2}13^{1}$ 53^{1}	N Y	N	-7	2	1.2857143 1.0000000	0.442308	0.557692 0.566038	-22	113	-135
53	$2^{1}3^{3}$	N Y	Y N	-2 9	4		0.433962	0.555556	-24	113	-137
54 55	$5^{1}11^{1}$	Y	N N	5	0	1.5555556 1.0000000	0.444444 0.454545	0.545455	-15 -10	$\frac{122}{127}$	-137 -137
56	$2^{3}7^{1}$	N	N	9	4	1.5555556	0.464286	0.535714	-10	136	-137 -137
57	$3^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	4	141	-137
58	$2^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	9	146	-137
59	59 ¹	Y	Y	-2	0	1.0000000	0.474576	0.525424	7	146	-139
60	$2^23^15^1$	N	N	30	14	1.1666667	0.483333	0.516667	37	176	-139
61	61^{1}	Y	Y	-2	0	1.0000000	0.475410	0.524590	35	176	-141
62	$2^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	40	181	-141
63	3^27^1	N	N	-7	2	1.2857143	0.476190	0.523810	33	181	-148
64	2^{6}	N	Y	2	0	3.5000000	0.484375	0.515625	35	183	-148
65	$5^{1}13^{1}$	Y	N	5	0	1.0000000	0.492308	0.507692	40	188	-148
66	$2^{1}3^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	24	188	-164
67	67^{1}	Y	Y	-2	0	1.0000000	0.477612	0.522388	22	188	-166
68	$2^{2}17^{1}$	N	N	-7	2	1.2857143	0.470588	0.529412	15	188	-173
69	$3^{1}23^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	20	193	-173
70	$2^{1}5^{1}7^{1}$ 71^{1}	Y	N	-16	0	1.0000000	0.471429	0.528571	4	193	-189
71	$2^{3}3^{2}$	Y	Y	-2	0	1.0000000	0.464789	0.535211	2	193	-191
72 73	73 ¹	N Y	N Y	-23 -2	18 0	1.4782609 1.0000000	0.458333 0.452055	0.541667 0.547945	-21 -23	193 193	-214 -216
74	$2^{1}37^{1}$	Y	N	5	0	1.0000000	0.452055	0.547945	-23 -18	193	-216 -216
75	$3^{1}5^{2}$	N	N	-7	2	1.2857143	0.453333	0.546667	-25	198	-223
76	$2^{2}19^{1}$	N	N	-7	2	1.2857143	0.447368	0.552632	-32	198	-230
77	$7^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-27	203	-230
78	$2^{1}3^{1}13^{1}$	Y	N	-16	0	1.0000000	0.448718	0.551282	-43	203	-246
79	79^{1}	Y	Y	-2	0	1.0000000	0.443038	0.556962	-45	203	-248
80	2^45^1	N	N	-11	6	1.8181818	0.437500	0.562500	-56	203	-259
81	3^4	N	Y	2	0	2.5000000	0.444444	0.555556	-54	205	-259
82	$2^{1}41^{1}$	Y	N	5	0	1.0000000	0.451220	0.548780	-49	210	-259
83	83 ¹	Y	Y	-2	0	1.0000000	0.445783	0.554217	-51	210	-261
84	$2^{2}3^{1}7^{1}$	N	N	30	14	1.1666667	0.452381	0.547619	-21	240	-261
85	$5^{1}17^{1}$	Y	N	5	0	1.0000000	0.458824	0.541176	-16	245	-261
86	$2^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-11	250	-261
87	$3^{1}29^{1}$ $2^{3}11^{1}$	Y	N	5	0	1.0000000	0.471264	0.528736	-6	255	-261
88	89 ¹	N Y	N	9	4	1.5555556	0.477273	0.522727	3	264	-261
89 90	$2^{1}3^{2}5^{1}$	N Y	Y N	-2 30	0 14	1.0000000 1.1666667	0.471910 0.477778	0.528090 0.522222	1 31	264 294	-263 -263
91	$7^{1}13^{1}$	Y	N	5	0	1.0000007	0.477778	0.522222	36	299	-263
92	$2^{2}23^{1}$	N	N	-7	2	1.2857143	0.483310	0.521739	29	299	-270
93	$3^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	34	304	-270
94	$2^{1}47^{1}$	Y	N	5	0	1.0000000	0.489362	0.510638	39	309	-270
95	$5^{1}19^{1}$	Y	N	5	0	1.0000000	0.494737	0.505263	44	314	-270
96	$2^{5}3^{1}$	N	N	13	8	2.0769231	0.500000	0.500000	57	327	-270
97	97^{1}	Y	Y	-2	0	1.0000000	0.494845	0.505155	55	327	-272
98	$2^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	48	327	-279
99	3^211^1	N	N	-7	2	1.2857143	0.484848	0.515152	41	327	-286
100	$2^{2}5^{2}$	N	N	14	9	1.3571429	0.490000	0.510000	55	341	-286
101	101 ¹	Y	Y	-2	0	1.0000000	0.485149	0.514851	53	341	-288
102	$2^{1}3^{1}17^{1}$	Y	N	-16	0	1.0000000	0.480392	0.519608	37	341	-304
103	103^{1} $2^{3}13^{1}$	Y	Y	-2	0	1.0000000	0.475728	0.524272	35	341	-306
104	$3^{1}5^{1}7^{1}$	N	N N	9	4	1.5555556 1.0000000	0.480769	0.519231	44	350	-306
105 106	$2^{1}53^{1}$	Y Y	N N	-16 5	0	1.0000000	0.476190 0.481132	0.523810 0.518868	28 33	350 355	-322 -322
106	$\frac{2}{107^1}$	Y	Y	5 -2	0	1.0000000	0.481132	0.518868	33	355 355	-322 -324
107	$2^{2}3^{3}$	N	N	-2 -23	18	1.4782609	0.470030	0.525304 0.527778	8	355	-324 -347
109	109^{1}	Y	Y	-23 -2	0	1.0000000	0.472222	0.5321110	6	355	-349
110	$2^{1}5^{1}11^{1}$	Y	N	-16	0	1.0000000	0.463636	0.536364	-10	355	-365
111	$3^{1}37^{1}$	Y	N	5	0	1.0000000	0.468468	0.531532	-5	360	-365
112	2^47^1	N	N	-11	6	1.8181818	0.464286	0.535714	-16	360	-376
113	113^{1}	Y	Y	-2	0	1.0000000	0.460177	0.539823	-18	360	-378
114	$2^{1}3^{1}19^{1}$	Y	N	-16	0	1.0000000	0.456140	0.543860	-34	360	-394
115	$5^{1}23^{1}$	Y	N	5	0	1.0000000	0.460870	0.539130	-29	365	-394
116	$2^{2}29^{1}$	N	N	-7	2	1.2857143	0.456897	0.543103	-36	365	-401
117	$3^{2}13^{1}$	N	N	-7	2	1.2857143	0.452991	0.547009	-43	365	-408
118	$2^{1}59^{1}$	Y	N	5	0	1.0000000	0.457627	0.542373	-38	370	-408
119	$7^{1}17^{1}$	Y	N	5	0	1.0000000	0.462185	0.537815	-33	375	-408
120	$2^{3}3^{1}5^{1}$	N	N	-48	32	1.3333333	0.458333	0.541667	-81	375	-456
121	11^2	N	Y	2	0	1.5000000	0.462810	0.537190	-79 74	377	-456
122	$2^{1}61^{1}$ $3^{1}41^{1}$	Y	N	5	0	1.0000000	0.467213	0.532787	-74	382	-456
123 124	$3^{1}41^{1}$ $2^{2}31^{1}$	Y N	N N	5 -7	0 2	1.0000000	0.471545 0.467742	0.528455 0.532258	-69 -76	387 387	-456 -463
124	۵1 ک	l IN	īN	-7	۷	1.2857143	0.407742	0.002208	-76	301	-403

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
125	53	N	Y	-2	0	2.0000000	0.464000	0.536000	-78	387	-465
126	$2^{1}3^{2}7^{1}$	N	N	30	14	1.1666667	0.468254	0.531746	-48	417	-465
127	127^{1}	Y	Y	-2	0	1.0000000	0.464567	0.535433	-50	417	-467
128	2 ⁷	N	Y	-2	0	4.0000000	0.460938	0.539062	-52	417	-469
129	$3^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-47	422	-469
130	$2^{1}5^{1}13^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-63	422	-485
131	131 ¹	Y	Y	-2	0	1.0000000	0.458015	0.541985	-65	422	-487
132	$2^{2}3^{1}11^{1}$	N	N	30	14	1.1666667	0.462121	0.537879	-35	452	-487
133	$7^{1}19^{1}$	Y	N	5	0	1.0000000	0.466165	0.533835	-30	457	-487
134	$2^{1}67^{1}$ $3^{3}5^{1}$	Y	N	5	0	1.0000000	0.470149	0.529851	-25	462	-487
135	$2^{3}17^{1}$	N	N	9	4	1.555556	0.474074	0.525926	-16	471	-487
136	137^{1}	N	N		4	1.5555556	0.477941	0.522059	-7	480	-487
137 138	$2^{1}3^{1}23^{1}$	Y Y	Y N	-2 -16	0	1.0000000	0.474453 0.471014	0.525547 0.528986	-9 25	480	-489
139	2 3 23 139 ¹	Y	Y	-16 -2	0	1.0000000 1.0000000	0.471014	0.532374	-25 -27	480 480	-505 -507
140	$2^{2}5^{1}7^{1}$	N N	N	30	14	1.1666667	0.467626	0.532574 0.528571	3	510	-507 -507
141	$3^{1}47^{1}$	Y	N	5	0	1.0000007	0.471429	0.524823	8	515	-507
142	$2^{1}71^{1}$	Y	N	5	0	1.0000000	0.478873	0.524623	13	520	-507
143	$11^{1}13^{1}$	Y	N	5	0	1.0000000	0.482517	0.517483	18	525	-507
144	$2^{4}3^{2}$	N	N	34	29	1.6176471	0.486111	0.517489	52	559	-507
145	$5^{1}29^{1}$	Y	N	5	0	1.0000000	0.489655	0.510345	57	564	-507
146	$2^{1}73^{1}$	Y	N	5	0	1.0000000	0.493151	0.506849	62	569	-507
147	$3^{1}7^{2}$	N	N	-7	2	1.2857143	0.489796	0.510204	55	569	-514
148	$2^{2}37^{1}$	N	N	-7	2	1.2857143	0.486486	0.513514	48	569	-521
149	149^{1}	Y	Y	-2	0	1.0000000	0.483221	0.516779	46	569	-523
150	$2^{1}3^{1}5^{2}$	N	N	30	14	1.1666667	0.486667	0.513333	76	599	-523
151	151 ¹	Y	Y	-2	0	1.0000000	0.483444	0.516556	74	599	-525
152	$2^{3}19^{1}$	N	N	9	4	1.5555556	0.486842	0.513158	83	608	-525
153	3^217^1	N	N	-7	2	1.2857143	0.483660	0.516340	76	608	-532
154	$2^{1}7^{1}11^{1}$	Y	N	-16	0	1.0000000	0.480519	0.519481	60	608	-548
155	$5^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	65	613	-548
156	$2^23^113^1$	N	N	30	14	1.1666667	0.487179	0.512821	95	643	-548
157	157^{1}	Y	Y	-2	0	1.0000000	0.484076	0.515924	93	643	-550
158	$2^{1}79^{1}$	Y	N	5	0	1.0000000	0.487342	0.512658	98	648	-550
159	$3^{1}53^{1}$	Y	N	5	0	1.0000000	0.490566	0.509434	103	653	-550
160	$2^{5}5^{1}$	N	N	13	8	2.0769231	0.493750	0.506250	116	666	-550
161	$7^{1}23^{1}$	Y	N	5	0	1.0000000	0.496894	0.503106	121	671	-550
162	$2^{1}3^{4}$	N	N	-11	6	1.8181818	0.493827	0.506173	110	671	-561
163	163 ¹	Y	Y	-2	0	1.0000000	0.490798	0.509202	108	671	-563
164	$2^{2}41^{1}$	N	N	-7	2	1.2857143	0.487805	0.512195	101	671	-570
165	$3^{1}5^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	85	671	-586
166	$2^{1}83^{1}$	Y	N	5	0	1.0000000	0.487952	0.512048	90	676	-586
167	167^{1}	Y	Y	-2	0	1.0000000	0.485030	0.514970	88	676	-588
168	$2^{3}3^{1}7^{1}$	N	N	-48	32	1.3333333	0.482143	0.517857	40	676	-636
169	13^{2}	N	Y	2	0	1.5000000	0.485207	0.514793	42	678	-636
170	$2^{1}5^{1}17^{1}$	Y	N	-16	0	1.0000000	0.482353	0.517647	26	678	-652
171	$3^{2}19^{1}$	N	N	-7	2	1.2857143	0.479532	0.520468	19	678	-659
172	$2^{2}43^{1}$	N	N	-7	2	1.2857143	0.476744	0.523256	12	678	-666
173	173^{1}	Y	Y	-2	0	1.0000000	0.473988	0.526012	10	678	-668
174	$2^{1}3^{1}29^{1}$	Y	N	-16	0	1.0000000	0.471264	0.528736	-6	678	-684
175	$5^{2}7^{1}$	N	N	-7	2	1.2857143	0.468571	0.531429	-13	678	-691
176	2 ⁴ 11 ¹	N	N	-11	6	1.8181818	0.465909	0.534091	-24	678	-702
177	$3^{1}59^{1}$	Y	N	5	0	1.0000000	0.468927	0.531073	-19	683	-702
178	$2^{1}89^{1}$	Y	N	5	0	1.0000000	0.471910	0.528090	-14	688	-702
179	179^1 $2^23^25^1$	Y	Y	-2 74	0	1.0000000	0.469274	0.530726	-16	688	-704
180	181 ¹	N	N	-74	58	1.2162162	0.466667	0.533333	-90	688	-778 780
181	$2^{1}7^{1}13^{1}$	Y	Y	-2 16	0	1.0000000	0.464088	0.535912	-92 108	688	-780 706
182	$3^{1}61^{1}$	Y	N	-16	0	1.0000000	0.461538	0.538462	-108	688	-796
183	$2^{3}23^{1}$	Y N	N N	5 9	0	1.0000000	0.464481	0.535519	-103 -04	693 702	-796 -796
184 185	$5^{1}37^{1}$	N Y	N N	5	4	1.5555556	0.467391 0.470270	0.532609	-94 -89	702 707	-796 -796
185	$2^{1}3^{1}31^{1}$	Y Y	N N		0	1.0000000	0.470270 0.467742	0.529730	-89 -105	707 707	-796 -812
186	$11^{1}17^{1}$	Y Y	N N	-16		1.0000000 1.0000000	0.467742	0.532258 0.529412		707	
187	$2^{2}47^{1}$	Y N	N N	5 -7	$0 \\ 2$	1.2857143	0.470588	0.529412 0.531915	-100 -107	$712 \\ 712$	-812 -819
189	$3^{3}7^{1}$	N	N	9	4	1.5555556	0.408085	0.529101	-98	712	-819 -819
190	$2^{1}5^{1}19^{1}$	Y	N N	-16	0	1.0000000	0.470899	0.529101 0.531579	-98 -114	721	-819 -835
191	191 ¹	Y	Y	-10 -2	0	1.0000000	0.465969	0.531379	-114	721	-837
191	$2^{6}3^{1}$	N N	Y N	-2 -15	10	2.3333333	0.463542	0.534031	-116 -131	721	-837 -852
192	193^{1}	Y	Y	-15 -2	0	1.0000000	0.463542	0.536458 0.538860	-131 -133	721	-852 -854
193	2^{193}	Y	N	5	0	1.0000000	0.461140	0.536082	-133 -128	726	-854 -854
194	$3^{1}5^{1}13^{1}$	Y	N	-16	0	1.0000000	0.463918	0.538462	-128	726	-854 -870
195	$2^{2}7^{2}$	N N	N N	-16 14	9	1.3571429	0.461538	0.538462 0.535714	-144 -130	740	-870 -870
196	$\frac{27}{197^1}$	Y	Y	-2	0	1.0000000	0.464286	0.535714 0.538071	-130 -132	740	-870 -872
197	$2^{13}^{2}11^{1}$	N N	Y N	30	14	1.1666667	0.461929	0.535354	-132 -102	740 770	-872 -872
198	$\frac{2}{199}^{1}$	Y	Y	-2	0	1.0000000	0.464646	0.537688	-102 -104	770 770	-872 -874
200	$2^{3}5^{2}$	N N	Y N	-2 -23	18	1.4782609	0.462312	0.540000	-104 -127	770	-874 -897
200	- 0	- 1	-11	1 20	10	1.1102003	1 0.100000	0.040000	1 ***	110	001

		I		I		$\sum_{i} C_{\alpha_i \alpha_i}(d)$	I		l .		
n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_+^{-1}(n)$	$G_{-}^{-1}(n)$
201	3 ¹ 67 ¹	Y	N	5	0	1.0000000	0.462687	0.537313	-122	775	-897
202	$2^{1}101^{1}$	Y	N	5	0	1.0000000	0.465347	0.534653	-117	780	-897
203	$7^{1}29^{1}$	Y	N	5	0	1.0000000	0.467980	0.532020	-112	785	-897
204	$2^23^117^1$	N	N	30	14	1.1666667	0.470588	0.529412	-82	815	-897
205	$5^{1}41^{1}$	Y	N	5	0	1.0000000	0.473171	0.526829	-77	820	-897
206	$2^{1}103^{1}$	Y	N	5	0	1.0000000	0.475728	0.524272	-72	825	-897
207	$3^{2}23^{1}$	N	N	-7	2	1.2857143	0.473430	0.526570	-79	825	-904
208	$2^4 13^1$	N	N	-11	6	1.8181818	0.471154	0.528846	-90	825	-915
209	$11^{1}19^{1}$ $2^{1}3^{1}5^{1}7^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	-85	830	-915
210 211	$2\ 3\ 5\ 7$ 211^{1}	Y Y	N Y	65 -2	0	1.0000000	0.476190 0.473934	0.523810	-20 -22	895	-915 -917
211	2^{11} $2^{2}53^{1}$	N N	N	-2 -7	2	1.0000000 1.2857143	0.473934	0.526066 0.528302	-22 -29	895 895	-917 -924
213	$3^{1}71^{1}$	Y	N	5	0	1.0000000	0.471098	0.525822	-24	900	-924 -924
214	$2^{1}107^{1}$	Y	N	5	0	1.0000000	0.474178	0.523364	-19	905	-924
215	$5^{1}43^{1}$	Y	N	5	0	1.0000000	0.479070	0.520930	-14	910	-924
216	$2^{3}3^{3}$	N	N	46	41	1.5000000	0.481481	0.518519	32	956	-924
217	$7^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	37	961	-924
218	$2^{1}109^{1}$	Y	N	5	0	1.0000000	0.486239	0.513761	42	966	-924
219	3^173^1	Y	N	5	0	1.0000000	0.488584	0.511416	47	971	-924
220	$2^25^111^1$	N	N	30	14	1.1666667	0.490909	0.509091	77	1001	-924
221	$13^{1}17^{1}$	Y	N	5	0	1.0000000	0.493213	0.506787	82	1006	-924
222	$2^{1}3^{1}37^{1}$	Y	N	-16	0	1.0000000	0.490991	0.509009	66	1006	-940
223	223^{1}	Y	Y	-2	0	1.0000000	0.488789	0.511211	64	1006	-942
224	$2^{5}7^{1}$	N	N	13	8	2.0769231	0.491071	0.508929	77	1019	-942
225	$3^{2}5^{2}$	N	N	14	9	1.3571429	0.493333	0.506667	91	1033	-942
226	$2^{1}113^{1}$	Y	N	5	0	1.0000000	0.495575	0.504425	96	1038	-942
227	227^1 $2^23^119^1$	Y	Y	-2	0	1.0000000	0.493392	0.506608	94	1038	-944
228 229	$2^{-3^{-1}9^{-1}}$ 229^{1}	N Y	N Y	30	14	1.1666667	0.495614 0.493450	0.504386	124	1068	-944
230	$2^{1}5^{1}23^{1}$	Y	Y N	-2 -16	0	1.0000000 1.0000000	0.493450	0.506550 0.508696	122 106	1068 1068	-946 -962
231	$3^{1}7^{1}11^{1}$	Y	N	-16 -16	0	1.0000000	0.491304	0.510823	90	1068	-902 -978
231	$2^{3}29^{1}$	N	N	9	4	1.5555556	0.483177	0.508621	99	1003	-978
233	233^{1}	Y	Y	-2	0	1.0000000	0.489270	0.510730	97	1077	-980
234	$2^{1}3^{2}13^{1}$	N	N	30	14	1.1666667	0.491453	0.508547	127	1107	-980
235	$5^{1}47^{1}$	Y	N	5	0	1.0000000	0.493617	0.506383	132	1112	-980
236	2^259^1	N	N	-7	2	1.2857143	0.491525	0.508475	125	1112	-987
237	3^179^1	Y	N	5	0	1.0000000	0.493671	0.506329	130	1117	-987
238	$2^{1}7^{1}17^{1}$	Y	N	-16	0	1.0000000	0.491597	0.508403	114	1117	-1003
239	239^{1}	Y	Y	-2	0	1.0000000	0.489540	0.510460	112	1117	-1005
240	$2^43^15^1$	N	N	70	54	1.5000000	0.491667	0.508333	182	1187	-1005
241	241^{1}	Y	Y	-2	0	1.0000000	0.489627	0.510373	180	1187	-1007
242	$2^{1}11^{2}$	N	N	-7	2	1.2857143	0.487603	0.512397	173	1187	-1014
243	3^{5}	N	Y	-2	0	3.0000000	0.485597	0.514403	171	1187	-1016
244	$2^{2}61^{1}$	N	N	-7	2	1.2857143	0.483607	0.516393	164	1187	-1023
245	$5^{1}7^{2}$	N	N	-7	2	1.2857143	0.481633	0.518367	157	1187	-1030
246	$2^{1}3^{1}41^{1}$	Y	N	-16	0	1.0000000	0.479675	0.520325	141	1187	-1046
247	$13^{1}19^{1}$	Y	N	5	0	1.0000000	0.481781	0.518219	146	1192	-1046
248	$2^{3}31^{1}$	N	N	9	4	1.5555556	0.483871	0.516129	155	1201	-1046
249	$3^{1}83^{1}$ $2^{1}5^{3}$	Y	N	5	0	1.0000000	0.485944	0.514056	160	1206	-1046
250 251	$2^{-}5^{\circ}$ 251^{1}	N Y	N Y	9 -2	4 0	1.5555556 1.0000000	0.488000 0.486056	0.512000	169 167	1215 1215	-1046 -1048
251	$2^{2}3^{1}$ $2^{2}3^{2}7^{1}$	N Y	Y N	-2 -74	58	1.2162162	0.486056	0.513944 0.515873	93	1215	-1048 -1122
253	$\frac{2}{11^{1}23^{1}}$	Y	N	5	0	1.0000000	0.484127	0.513873	98	1213	-1122 -1122
254	$2^{1}127^{1}$	Y	N	5	0	1.0000000	0.488189	0.513834	103	1225	-1122
255	$3^{1}5^{1}17^{1}$	Y	N	-16	0	1.0000000	0.486275	0.513725	87	1225	-1138
256	28	N	Y	2	0	4.5000000	0.488281	0.511719	89	1227	-1138
257	257^{1}	Y	Y	-2	0	1.0000000	0.486381	0.513619	87	1227	-1140
258	$2^{1}3^{1}43^{1}$	Y	N	-16	0	1.0000000	0.484496	0.515504	71	1227	-1156
259	$7^{1}37^{1}$	Y	N	5	0	1.0000000	0.486486	0.513514	76	1232	-1156
260	$2^{2}5^{1}13^{1}$	N	N	30	14	1.1666667	0.488462	0.511538	106	1262	-1156
261	3^229^1	N	N	-7	2	1.2857143	0.486590	0.513410	99	1262	-1163
262	$2^{1}131^{1}$	Y	N	5	0	1.0000000	0.488550	0.511450	104	1267	-1163
263	263 ¹	Y	Y	-2	0	1.0000000	0.486692	0.513308	102	1267	-1165
264	$2^{3}3^{1}11^{1}$	N	N	-48	32	1.3333333	0.484848	0.515152	54	1267	-1213
265	5 ¹ 53 ¹	Y	N	5	0	1.0000000	0.486792	0.513208	59	1272	-1213
266	$2^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.484962	0.515038	43	1272	-1229
267	$3^{1}89^{1}$ $2^{2}67^{1}$	Y	N	5	0	1.0000000	0.486891	0.513109	48	1277	-1229
268	$2^{2}67^{1}$ 269^{1}	N	N V	-7	2	1.2857143	0.485075	0.514925	41	1277	-1236
269 270	269^{4} $2^{1}3^{3}5^{1}$	Y N	Y N	-2 -48	0	1.0000000	0.483271	0.516729	39	1277	-1238 -1286
270	$2^{-3}^{-5}^{-5}$ 271^{1}	Y Y	N Y	-48 -2	32 0	1.3333333 1.0000000	0.481481 0.479705	0.518519 0.520295	-9 -11	1277 1277	-1286 -1288
271	2^{11} $2^{4}17^{1}$	N Y	Y N	-2 -11	6	1.8181818	0.479705	0.520295 0.522059	-11 -22	1277	-1288 -1299
273	$3^{1}7^{1}13^{1}$	Y	N	-11 -16	0	1.0000000	0.477941	0.523810	-22 -38	1277	-1299 -1315
274	$2^{1}137^{1}$	Y	N	5	0	1.0000000	0.478102	0.523810	-33	1282	-1315 -1315
275	5^211^1	N	N	-7	$\frac{\sigma}{2}$	1.2857143	0.476364	0.523636	-40	1282	-1322
276	$2^{2}3^{1}23^{1}$	N	N	30	14	1.1666667	0.478261	0.521739	-10	1312	-1322
277	277^{1}	Y	Y	-2	0	1.0000000	0.476534	0.523466	-12	1312	-1324
1		t .							1		

278 2 ² 190 ⁴	$G_{-}^{-1}(n)$
226 2 ² / ₃ 1 ⁻¹ N N N	-1324
281 Y	-1331
222 2 ¹ / ₂ 4 ¹ / ₁ Y N N -16	-1379
284 2*71	-1381
284 2 ² 71 ¹ N	-1397
285 24 24 27 27 28 28 27 28 28 27 28 28	-1399
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1406
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1422
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1438
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1438
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1485
201 3 ¹ 9 ⁷	-1485
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1501 -1501
293 294 2 377 N N N N N N N N N N N N N N N N N N	-1501
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1510 -1510
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1510
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1510
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1510
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1510
$ \begin{array}{c} 299 & 13^1 23^1 \\ 300 & 2^2 3^3 b^2 \\ 301 & 7^1 43^2 \\ 302 & 2^1 51^3 \\ 310^1 & Y & N & 5 \\ 0 & 1.0000000 \\ 0.47681 & 0.529064 \\ -192 & 140^2 \\ 303 & 3^1 101^3 \\ Y & N & 5 \\ 0 & 1.0000000 \\ 0.476821 & 0.524917 \\ -187 & 1397 \\ -187 & 1393 \\ -187 & 1392 \\ -187 &$	-1510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1584
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1584
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1595
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1595
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1595
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1597
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1597
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1597 -1613
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1615
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1663
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1665
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1665
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1665
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1672
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1674
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1690
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1690
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1705
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1705
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1721
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1721
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1721
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1728 -1728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1728 -1728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1730
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1737
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1744
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1746
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1753
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1753 -1755
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1755 -1755
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1733 -1771
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1771
348 2 ² 3 ¹ 29 ¹ N N 30 14 1.1666667 0.488506 0.511494 71 1844	-1773
1	-1773
0 1.000000 0.407100 0.012034 09 1844	-1775
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1775

1.50	n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\sum_{d n} C_{\Omega(d)}(d)$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
1.00							g ⁻¹ (n)					
S534 27 27 27 27 28 1.0000000 0.480005 0.500015 110 1806 -1773 150 1			1									
Section Sect			1									
305			1									
1.56			1									
1975 37-71-71												
\$36			1									
3500 2 ¹ 3 ² 3 ²			1									
360 2 ¹ / ₂ 9 ¹ / ₆ N			1									
361 10 ² N			1									
1962 2 ¹ 181 ²			1									
363 3 1 2			1									
364 2-7 13 N N N 30			1									
366			1									
366 2-13-61-1												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
388 2 ¹ 24 ¹ N N N -11 6			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		397^{1}	Y	Y								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
			1									
			1									
424 2 ³ 53 ¹ N N 9 4 1.5555556 0.488208 0.511792 23 2424 -2401			1									
			1									
-1.920 0.17 1 N N -7 2 1.2857145 1.0.487059 0.512941 1 15 2424 -2408	425	5^217^1	N	N	-7	2	1.2857143	0.487059	0.512941	16	2424	-2408

n	Primes	Sqfree	PPower	$g^{-1}(n)$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
426	$2^{1}3^{1}71^{1}$	Y	N	-16	0	$\frac{ g^{-1}(n) }{1.0000000}$	0.485915	0.514085	0	2424	-2424
427	$7^{1}61^{1}$	Y	N	5	0	1.0000000	0.487119	0.512881	5	2429	-2424
428	2^2107^1	N	N	-7	2	1.2857143	0.485981	0.514019	-2	2429	-2431
429	$3^111^113^1$	Y	N	-16	0	1.0000000	0.484848	0.515152	-18	2429	-2447
430	$2^{1}5^{1}43^{1}$	Y	N	-16	0	1.0000000	0.483721	0.516279	-34	2429	-2463
431	4311	Y	Y	-2	0	1.0000000	0.482599	0.517401	-36	2429	-2465
432	$2^{4}3^{3}$	N	N	-80	75	1.5625000	0.481481	0.518519	-116	2429	-2545
433	433 ¹	Y	Y	-2	0	1.0000000	0.480370	0.519630	-118	2429	-2547
434	$2^{1}7^{1}31^{1}$ $3^{1}5^{1}29^{1}$	Y	N	-16	0	1.0000000	0.479263	0.520737	-134	2429	-2563
435 436	3529 $2^{2}109^{1}$	Y N	N N	-16 -7	0 2	1.0000000 1.2857143	0.478161 0.477064	0.521839 0.522936	-150 -157	2429 2429	-2579 -2586
436	$19^{1}23^{1}$	Y	N	5	0	1.0000000	0.477064	0.522930 0.521739	-157 -152	2429	-2586 -2586
438	$2^{1}3^{1}73^{1}$	Y	N	-16	0	1.0000000	0.477169	0.521733	-168	2434	-2602
439	439^{1}	Y	Y	-2	0	1.0000000	0.476082	0.523918	-170	2434	-2604
440	$2^35^111^1$	N	N	-48	32	1.3333333	0.475000	0.525000	-218	2434	-2652
441	3^27^2	N	N	14	9	1.3571429	0.476190	0.523810	-204	2448	-2652
442	$2^{1}13^{1}17^{1}$	Y	N	-16	0	1.0000000	0.475113	0.524887	-220	2448	-2668
443	443^{1}	Y	Y	-2	0	1.0000000	0.474041	0.525959	-222	2448	-2670
444	$2^{2}3^{1}37^{1}$	N	N	30	14	1.1666667	0.475225	0.524775	-192	2478	-2670
445	$5^{1}89^{1}$	Y	N	5	0	1.0000000	0.476404	0.523596	-187	2483	-2670
446	$2^{1}223^{1}$	Y	N	5	0	1.0000000	0.477578	0.522422	-182	2488	-2670
447	$3^{1}149^{1}$ $2^{6}7^{1}$	Y	N	5	0	1.0000000	0.478747	0.521253	-177	2493	-2670
448 449	449^{1}	N Y	N Y	-15 -2	10 0	2.3333333 1.0000000	0.477679 0.476615	0.522321 0.523385	-192 -194	$\frac{2493}{2493}$	-2685 -2687
449	$2^{1}3^{2}5^{2}$	N Y	Y N	-2 -74	58	1.2162162	0.475556	0.523385 0.524444	-194 -268	2493 2493	-2687 -2761
450	$11^{1}41^{1}$	Y	N	5	0	1.0000000	0.476718	0.523282	-263	2493	-2761
452	2^2113^1	N	N	-7	2	1.2857143	0.475664	0.524336	-270	2498	-2768
453	$3^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.523179	-265	2503	-2768
454	$2^{1}227^{1}$	Y	N	5	0	1.0000000	0.477974	0.522026	-260	2508	-2768
455	$5^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.476923	0.523077	-276	2508	-2784
456	$2^{3}3^{1}19^{1}$	N	N	-48	32	1.3333333	0.475877	0.524123	-324	2508	-2832
457	457^{1}	Y	Y	-2	0	1.0000000	0.474836	0.525164	-326	2508	-2834
458	$2^{1}229^{1}$	Y	N	5	0	1.0000000	0.475983	0.524017	-321	2513	-2834
459	$3^{3}17^{1}$ $2^{2}5^{1}23^{1}$	N	N	9	4	1.5555556	0.477124	0.522876	-312	2522	-2834
460 461	461 ¹	N Y	N Y	30 -2	14 0	1.1666667 1.0000000	0.478261 0.477223	0.521739 0.522777	-282 -284	$2552 \\ 2552$	-2834 -2836
462	$2^{1}3^{1}7^{1}11^{1}$	Y	N	65	0	1.0000000	0.477223	0.521645	-219	2617	-2836
463	463 ¹	Y	Y	-2	0	1.0000000	0.477322	0.522678	-221	2617	-2838
464	2^429^1	N	N	-11	6	1.8181818	0.476293	0.523707	-232	2617	-2849
465	$3^{1}5^{1}31^{1}$	Y	N	-16	0	1.0000000	0.475269	0.524731	-248	2617	-2865
466	$2^{1}233^{1}$	Y	N	5	0	1.0000000	0.476395	0.523605	-243	2622	-2865
467	467^{1}	Y	Y	-2	0	1.0000000	0.475375	0.524625	-245	2622	-2867
468	$2^{2}3^{2}13^{1}$	N	N	-74	58	1.2162162	0.474359	0.525641	-319	2622	-2941
469	$7^{1}67^{1}$	Y	N	5	0	1.0000000	0.475480	0.524520	-314	2627	-2941
470	$2^{1}5^{1}47^{1}$	Y	N	-16	0	1.0000000	0.474468	0.525532	-330	2627	-2957
471	$3^{1}157^{1}$ $2^{3}59^{1}$	Y	N	5	0	1.0000000	0.475584	0.524416	-325	2632	-2957
472 473	$11^{1}43^{1}$	N Y	N N	9	4 0	1.5555556	0.476695 0.477801	0.523305 0.522199	-316	2641	-2957 -2957
473	$2^{1}3^{1}79^{1}$	Y	N	5 -16	0	1.0000000 1.0000000	0.477801	0.522199 0.523207	-311 -327	2646 2646	-2937 -2973
475	5^219^1	N	N	-7	2	1.2857143	0.475789	0.524211	-334	2646	-2980
476	$2^{2}7^{1}17^{1}$	N	N	30	14	1.1666667	0.476891	0.523109	-304	2676	-2980
477	$3^{2}53^{1}$	N	N	-7	2	1.2857143	0.475891	0.524109	-311	2676	-2987
478	$2^{1}239^{1}$	Y	N	5	0	1.0000000	0.476987	0.523013	-306	2681	-2987
479	479^{1}	Y	Y	-2	0	1.0000000	0.475992	0.524008	-308	2681	-2989
480	$2^{5}3^{1}5^{1}$	N	N	-96	80	1.6666667	0.475000	0.525000	-404	2681	-3085
481	$13^{1}37^{1}$	Y	N	5	0	1.0000000	0.476091	0.523909	-399	2686	-3085
482	$2^{1}241^{1}$	Y	N	5	0	1.0000000	0.477178	0.522822	-394	2691	-3085
483	$3^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	-410	2691	-3101
484	$2^{2}11^{2}$ $5^{1}97^{1}$	N	N	14	9	1.3571429	0.477273	0.522727	-396	2705	-3101
485	$2^{1}3^{5}$	Y	N N	5	0	1.0000000 2.0769231	0.478351 0.479424	0.521649	-391 -378	2710	-3101 -3101
486 487	487^{1}	N Y	N Y	13 -2	8	1.0000000	0.479424 0.478439	0.520576 0.521561	-378 -380	2723 2723	-3101 -3103
488	$2^{3}61^{1}$	N N	N	9	4	1.5555556	0.478439	0.521501 0.520492	-371	2732	-3103 -3103
489	$3^{1}163^{1}$	Y	N	5	0	1.0000000	0.479308	0.520492	-366	2737	-3103 -3103
490	$2^{1}5^{1}7^{2}$	N	N	30	14	1.1666667	0.481633	0.518367	-336	2767	-3103
491	491^{1}	Y	Y	-2	0	1.0000000	0.480652	0.519348	-338	2767	-3105
492	$2^23^141^1$	N	N	30	14	1.1666667	0.481707	0.518293	-308	2797	-3105
493	$17^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	-303	2802	-3105
494	$2^{1}13^{1}19^{1}$	Y	N	-16	0	1.0000000	0.481781	0.518219	-319	2802	-3121
495	$3^{2}5^{1}11^{1}$	N	N	30	14	1.1666667	0.482828	0.517172	-289	2832	-3121
496	$2^{4}31^{1}$	N	N	-11	6	1.8181818	0.481855	0.518145	-300	2832	-3132
497	$7^{1}71^{1}$ $2^{1}3^{1}83^{1}$	Y	N	5	0	1.0000000	0.482897	0.517103	-295	2837	-3132
498	$2^{1}3^{1}83^{1}$ 499^{1}	Y	N Y	-16 -2	0	1.0000000	0.481928	0.518072	-311 -313	2837 2837	-3148 -3150
499 500	$2^{2}5^{3}$	N Y	Y N	-2 -23	0 18	1.0000000 1.4782609	0.480962 0.480000	0.519038 0.520000	-313 -336	2837 2837	-3150 -3173
500	۵ ک	N	1N	-23	10	1.4/02009	0.460000	0.020000	-330	2031	-3173