Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Практическое задание №2 по дисципение Теория Автоматов Минимизация абстрактных автоматов

Вариант 11

Студент: Саржевский Иван

Группа: Р3302

Преподаватель: Тропченко Александр Ювенальевич

г. Санкт-Петербург $2020 \ {\rm r}.$

Цель

Овладение навыками минимизации полностью определенных абстрактных автоматов (на примере автомата Мура).

Постановка задачи

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Эквивалентные автоматы могут иметь различное число состояний. В связи с этим возникает задача нахождения минимального (с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов. Для минимизации абстрактного автомата использовать алгоритм, предложенный Ауфенкампом и Хоно. Основная идея алгоритма состоит в разбиении всех состояний исходного абстрактного автомата на попарно не пересекаемые классы эквивалентных состояний. После разбиения происходит замена каждого класса эквивалентности одним состоянием. Получившийся в результате минимальный абстрактный автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются состояния исходного абстрактного автомата.

Исходный граф

Исходный автомат задается следующей таблицей переходов:

λ	w_1	w_2	w_2	w_1	w_2	w_2	w_2	w_1
δ	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
z_1	a_5	a_7	a_8	a_5	a_5	a_4	a_6	a_2
$\overline{z_2}$	a_2	a_4	a_8	a_2	a_6	a_2	a_3	a_1

Графический вид:

Минимизация исходного автомата

По таблице выходов найдем классы одноэквивалентных состояний.

$$\begin{split} B_1 &= \{a_1, a_4, a_8\} \\ B_2 &= \{a_2, a_3, a_5, a_6, a_7\} \\ P_1 &= \{B_1, B_2\} \end{split}$$

	B_1			B_2					
	a_1	a_4	a_8	a_2	a_3	a_5	a_6	a_7	
z_1	B_2	B_2	B_2	B_2	B_1	B_2	B_1	B_2	
z_2	B_2	B_2	B_1	B_1	B_1	B_2	B_2	B_2	

$$C_1 = \{a_1, a_4, a_5, a_7\}$$

$$C_2 = \{a_2, a_8\}$$

$$C_3 = \{a_3\}$$

$$C_4 = \{a_6\}$$

$$P_2 = \{C_1, C_2, C_3, C_4\}$$

 $C_1 = \{a_1, a_4, a_5, a_7\}$ $C_2 = \{a_2, a_8\}$ $C_3 = \{a_3\}$ $C_4 = \{a_6\}$ $P_2 = \{C_1, C_2, C_3, C_4\}$ $P_1 \neq P_2$ - продолжаем минимизацию.

	C_1				C_2		C_3	C_4
	a_1	a_4	a_5	a_7	a_2	a_8	a_3	a_6
			C_1	C_4	C_1	C_2	C_2	C_1
z_2	C_2	C_2	C_4	C_3	C_1	C_1	C_2	C_2