Solución de Problemas con Programación (TC-1017)

In-class activity 03 - Control Flow II

Name:			
Student ID:		Date : 17 de febrero de 2019	
Note: this activity may scare you at and you may have questions. If the	• .	•	der than any other activity we've done so far hesitate to ask.
1. Conditionals a	nd Loops	I	
Solve the operations and an	swer correctly.	You can use MATLAB	/Octave.
1. Describe the set A by	extension, if A =	$= \{n : n \in \mathbb{N}, n \le 10\}$	
2. Let $x = \langle 2, 5, 45, 17, 10, $			
	$\int 2x_i,$	$\begin{array}{l} \text{si } x_i \text{ es igual a 2} \\ \text{si } x_i < 11 \text{ y } x_i \mod \\ \text{si } 11 < x_i < 20 \\ \text{si } 20 \leq x_i \leq 100 \text{ o bid} \\ \text{de lo contrario} \end{array}$	
	$\int_{-2}^{3x_i}$	$\mathbf{si} \ x_i < 11 \ \mathbf{y} \ x_i \mod 20$	5 = 0
	$y(x_i) = \begin{cases} x_i, \\ x_i, \end{cases}$	$\sin 11 < x_i < 20$ $\sin 20 < x_i < 100$ o bio	en si $x_i \ge 200$
	$\left(0,\right)$	de lo contrario	. —
<u>a</u>) $f(x_1) =$			
<u>b</u>) $f(x_2) =$			
a) $f(x_1) =$ b) $f(x_2) =$ c) $f(x_3) =$ d) $f(x_4) =$ e) $f(x_5) =$ f) $f(x_6) =$ g) $f(x_7) =$			
<u>e</u>) $f(x_5) =$			
$f(x_6) = $			
$f(x_i) = 1$			
m=100			
3. $\sum_{i=1}^{n=100} i =$			
i=1			
4. $\sum_{i=1}^{n=10} 2i + 3 =$			
4 > 21 + 3 =			

5. $\prod_{i=1}^{n=6} i =$

2. Conditionals and Loops II

Before implementing in MATLAB/Octave the instructions of the previous section, we need to formulate some questions:

For exercise 2 of previous section:	
 How many parameter does f(xi) have? How many different return values does it have? What happens if we evaluate f(xi = 11)? What happens if we evaluate f(xi = 255)? 	
■ For exercise 3 of previous section:	
1. How many numbers are we adding?2. Is there a faster way to do this procedure?	
■ For exercise 4 of previous section:	
 How many times is the procedure repeated? Is there a faster way to do this procedure? 	
■ For exercise 5 of previous section:	
 How many different values does i take? Is there a faster way to do this procedure? Can I do this procedure using a condition to stop instead values for i? 	nd of using a certain number of

3. Commands

Write the symbols and MATLAB/Octave commands that you consider useful to remember what we saw in class, and a brief description of each:

In accordance with the Tecnológico de Monterrey Student Code of Honor, my performance in this activity will be guided by academic honesty.