(riterian: want $\frac{M_{01}}{M_{2}}$ as low as possible

Remarks:

ivi)
$$e^{n=2}$$
, $\frac{M_{01}}{ML} \approx 54$) large gam $e^{n=3}$, $\frac{M_{01}}{ML} \approx 37$

in) From
$$n=4$$
 to $n=60$

$$34 \leq \frac{M_{01}}{ML} \leq 30 \quad \text{Small gains}$$

e) All the same for
$$\frac{un}{uc} = 6$$

Note: Still based on "similar" stages

Return to (#1)

$$\frac{Un}{Uc} = n \ln \frac{\xi}{\xi(\xi-1)+1}$$

Replace
$$\zeta = \left(\frac{M_{01}}{M_{e}}\right)^{\frac{1}{2}}$$

$$\frac{U_{n}}{U_{c}} = n \ln \frac{\left(\frac{M_{0}}{M_{c}}\right)^{\gamma_{n}}}{\left(\frac{M_{0}}{M_{c}}\right)^{\gamma_{n}} + 1} \left(\frac{A}{A}\right)$$

plot to study effect of n upon
$$\frac{u_n}{u_c}$$

pick $\xi=0.1$, use $\frac{M_{01}}{M_L}$ as param.

Tig 10.9

Remarks

§ 4.3 optimization of mass distribution

How best to partition Structural 1 propular+ masses across stages (Appendix 8 in book)

For all the following cases: y=0=0, Pe=Pa -> ue=uez

Find: $\lambda_i = \frac{M_0(i+1)}{M_{0i} - M_0(i+1)}$ for i=1...n

that maximize un

At each Stage, $\Delta u_i = \text{Ueln } R_i = \text{Ueln } \frac{1+\lambda i}{2+\lambda i}$ -> Over N stages: $\frac{Un}{Ue} = \sum_{i=1}^{n} \frac{\Delta u_i}{ue} = \sum_{i=1}^{n} \frac{1+\lambda i}{2+\lambda i} = \sum_{i=1}^{n} F(\lambda i)$

Recall
$$\frac{M_{\ell}}{M_{0}} = \prod_{i=1}^{n} \frac{\lambda_{i}}{1+\lambda_{i}}$$

$$\ln \frac{M_{\ell}}{M_{0}} = \ln \prod_{i=1}^{n} \frac{\lambda_{i}}{1+\lambda_{i}} = \sum_{z=1}^{n} \ln \frac{\lambda_{i}}{1+\lambda_{i}} = \sum_{i=1}^{n} \ln(\lambda_{i})$$

this type of problem belongs to the field of "Calculus of variations"

Simplest procedure:

maximize new function
$$L(\lambda i) = F(\lambda i) + \alpha G(\lambda i)$$

at its unknown const. Called Lagrange multiplier

Thus, cook for $\frac{\partial L}{\partial \lambda i} = 0$ trust RB that it is a max

$$\frac{\partial \mathcal{L}}{\partial \lambda_{i}} = \frac{\partial \mathcal{F}}{\partial \lambda_{i}} + \alpha \frac{\partial \mathcal{G}}{\partial \lambda_{i}}$$

$$= \frac{\partial}{\partial \lambda_{i}} \left(\ln \frac{1 + \lambda_{i}}{2 + \lambda_{i}} \right) + \alpha \frac{\partial}{\partial \lambda_{i}} \left(\ln \frac{\lambda_{i}}{1 + \lambda_{i}} \right)$$

$$= \frac{2 + \lambda_{i}}{1 + \lambda_{i}} \cdot \frac{1 \cdot (5 + \lambda_{i}) - (1 + \lambda_{i}) \cdot 1}{(5 + \lambda_{i})^{2}} + \alpha \frac{1 + \lambda_{i}}{\lambda_{i}} \cdot \frac{1 \cdot (1 + \lambda_{i}) - \lambda_{i} \cdot 1}{(1 + \lambda_{i})^{2}} = 0$$
5eT