Слова — Лексическая статистика

Квантитативный анализ текста

Кирилл Александрович Маслинский 07.02.2022 / 01

Институт русской литературы (Пушкинский Дом) РАН

Предисловие

WHEN IRISH MONKS BEGAN SEPARATING WORDS IN MANUSCRIPTS BY SPACES IN THE SEVENTH CENTURY, LITTLE COULD THEY KNOW THAT THEY WERE PERFORMING A CENTRAL TASK OF COMPUTATIONAL TEXT ANALYSIS.

ANDREW PIPER, ENUMERATIONS: DATA AND LITERARY STUDY (2018) P. 42

ЛЕКСИЧЕСКАЯ СТАТИСТИКА

- сколько разных слов в сообщении в мессенджере?
- на странице научной статьи?
- сколько новых слов на каждой следующей странице
- сколько новых слов во второй половине книги (по сравнению с первой)?
- сколько новых слов в книге по сравнению с другими книгами?
- когда наконец мы перестанем встречать новые слова?

- сколько разных слов в сообщении в мессенджере?
- на странице научной статьи?
- сколько новых слов на каждой следующей странице,
- сколько новых слов во второй половине книги (по сравнению с первой)?
- сколько новых слов в книге по сравнению с другими книгами?
- когда наконец мы перестанем встречать новые слова?

- сколько разных слов в сообщении в мессенджере?
- на странице научной статьи?
- сколько новых слов на каждой следующей странице,
- сколько новых слов во второй половине книги (по сравнению с первой)?
- сколько новых слов в книге по сравнению с другими книгами?
- когда наконец мы перестанем встречать новые слова?

- сколько разных слов в сообщении в мессенджере?
- на странице научной статьи?
- сколько новых слов на каждой следующей странице,
- сколько новых слов во второй половине книги (по сравнению с первой)?
- сколько новых слов в книге по сравнению с другими книгами?
- когда наконец мы перестанем встречать новые слова?

- сколько разных слов в сообщении в мессенджере?
- на странице научной статьи?
- сколько новых слов на каждой следующей странице,
- сколько новых слов во второй половине книги (по сравнению с первой)?
- сколько новых слов в книге по сравнению с другими книгами?
- когда наконец мы перестанем встречать новые слова?

- сколько разных слов в сообщении в мессенджере?
- на странице научной статьи?
- сколько новых слов на каждой следующей странице,
- сколько новых слов во второй половине книги (по сравнению с первой)?
- сколько новых слов в книге по сравнению с другими книгами?
- когда наконец мы перестанем встречать новые слова?

Лексическая статистика

Закон Ципфа

Частотность и состав лексикона

Размер и скорость роста словаря

Размер лексикона/Лексическое разнообразие

Практические следствия закона Ципфа

ЗАКОН ЦИПФА

Предсказывает частотность слова по его рангу в частотном списке:

$$f(w) = \frac{C}{r(w)^a} \tag{1}$$

f(w) — частотность слова w

r(w) — ранг слова w в частотном списке

С — константа

a — константа, близкая к 1.

ПРЕДСКАЗАНИЯ ЗАКОНА ЦИПФА

При a=1, C=60000 закон Ципфа предсказывает:

$$f(w) = \frac{C}{r(w)}$$

- самое частотное слово встретится f(w) = C/1 = 60000 раз
- второе по частотности слово C/2 = 30000 раз
- третье по частотности слово C/3 = 20000 раз
- сотое C/100 = 600 раз
- сто первое *C*/101 = 594, 06 раз (около 99% частотности сотого)
- и длинный хвост из 80000 слов с частотностью между 1,5 и 0,5.

ЛОГАРИФМИЧЕСКАЯ ФОРМА ЗАКОНА ЦИПФА

$$\log f(w) = \log(C) - a \log r(w) \quad (2)$$

Линейная функция:

$$y = kx + b$$

ЗАКОН ЦИПФА-МАНДЕЛЬБРОТА (1953)

$$f(w) = \frac{C}{(r(w) + b)^{\alpha}} \tag{3}$$

При C = 60000, a = 1, b = 1 предсказанная частотность самого частотного слова:

Закон Ципфа
$$\frac{C}{1} = \frac{60000}{1} = 60000$$

Закон Ципфа-Мандельброта $\frac{C}{r+b} = \frac{60000}{(1+1)} = 30000$

Объяснения закона Ципфа

- 1. Психолингвистическое (Ципф):
 - экономия усилий говорящего (меньше разных слов);
 - экономия усилий слушающего (больше разных слов).
- 2. Теоретико-информационное (Мандельброт):
 - минимизация средней стоимости передачи информации в тексте.
- 3. Процесс, приводящий к подобному распределению:
 - · новые слова с константной вероятностью (Simon 1955);
 - · «обезьяна и пишущая машинка» (Miller 1957).

СТЕПЕННОЕ РАСПРЕДЕЛЕНИЕ

Few Giants — Many dwarfs

Примеры

- частотности слов;
- размеры городов;
- распределение дохода (закон Парето).

Лексическая статистика

Закон Ципфа

Частотность и состав лексикона

Размер и скорость роста словаря

Размер лексикона/Лексическое разнообразие

Практические следствия закона Ципфа

Открытые и закрытые классы слов

Словарь языка незамкнут — всё время возникают новые слова.

Function words, closed-class Вершину частотного списка занимают служебные части речи (предлоги, союзы, местоимения). Все единицы перечислимы, пополняется очень медленно. В тексте выполняют прежде всего грамматическую функцию.

Content words, open-class Далее в частотном списке преобладают слова открытых классов (пополняемых), прежде всего существительные. В тексте выполняют прежде всего референтную функцию.

ПРИМЕР: ЧАСТОТНОСТЬ РУССКОЙ ЛЕКСИКИ

Единица измерения частотности:

ipm — вхождений на миллион / instances per million

-	1 36358.94	и misc	32600	1.04	мертветь verb
2	2 27792.36	в ргер	32601	1.04	сволочной adj
1	3 20689.51	не misc	32602	1.04	втыкаться verb
4	18942.62	он pron	32603	1.04	нахлебник noun
	16588.14	на ргер	32604	1.04	русоволосый adj
6	5 15631.11	я pron	32605	1.04	автопилот noun
7	7 12546.08	что misc	32606	1.04	иссечение noun
8	3 11398.44	тот adjpron	32607	1.04	бульдожий adj
9	11223.99	быть verb	32608	1.04	бренность noun
-	10 11150.72	2 c prep	32609	1.04	нездоровье noun
-	11 9808.61	a misc	32610	1.04	capracca noun
	12 000/ 72		22644	1 0/	

Лексическая статистика

Закон Ципфа

Частотность и состав лексикона

Размер и скорость роста словаря

Размер лексикона/Лексическое разнообразие

Практические следствия закона Ципфа

Скорость роста словаря

Чем дальше мы читаем текст, тем реже встречаем новые слова.

Оценка Гаральда Баайена (Baayen G):

$$G = \frac{V(1)}{N} \tag{4}$$

где:

V(1) — количество hapax legomena на N токенов текста

N — количество токенов текста.

Рост словаря

Чем дальше мы читаем текст, тем реже встречаем новые слова.

$$V = kN^{\beta} \tag{5}$$

V — размер словаря

N — размер корпуса

k — константа (обычно 10—100)

 β — константа 0 < β < 1 (обычно 0,4—0,6)

PROBABILITY TO SEE A WORD

Maximum Likelihood Estimation (MLE) — based on the observed frequency in the corpus:

$$P = \frac{f(w)}{N}$$

где

P − probability;

f(w) — word frequency w;

N − corpus size.

PROBABILITY TO SEE A WORD

Model Based Estimation (LNRE model) — based on the knowledge of the general properties of word distributions:

$$P = \frac{C}{(r(w) + b)^a}$$

P — probability;

f(w) — word rank w in a frequency list;

a, b − model parameters;

C — normalizing constant.

This is Zipf-Mandelbrot model

Лексическая статистика

Закон Ципфа

Частотность и состав лексикона

Размер и скорость роста словаря

Размер лексикона/Лексическое разнообразие

Практические следствия закона Ципфа

Коэффициент лексического разнообразия

Одна из первых и широко используемых мер сложности речи/текста.

$$TTR = \frac{V}{N} \tag{6}$$

V — размер словаря, число разных словоформ/лемм в тексте (types)

N — число словоформ в тексте

Обратная величина: средняя частотность слов в тексте

$$F_{mean} = \frac{N}{V} \tag{7}$$

Коэффициент лексического разнообразия

Одна из первых и широко используемых мер сложности речи/текста.

$$TTR = \frac{V}{N} \tag{6}$$

V — размер словаря, число разных словоформ/лемм в тексте (types)

N — число словоформ в тексте

Обратная величина: средняя частотность слов в тексте

$$F_{mean} = \frac{N}{V} \tag{7}$$

TTR: проблемы

Классические применения:

- определение авторства
- оценка сложности (детской) речи развития речи

Проблемы:

- зависит от длины текста, длиннее текст ниже TTR (r=0.99).
- зависит от способа выделения types (словоформы/леммы)

Нормализованная версия TTR:

 для сравнения используются фрагменты текста одинаковой длины.

Лексическая статистика

Закон Ципфа

Частотность и состав лексикона

Размер и скорость роста словаря

Размер лексикона/Лексическое разнообразие

Практические следствия закона Ципфа

ПРАКТИЧЕСКИЕ СЛЕДСТВИЯ ЗАКОНА ЦИПФА

- 1. Data sparseness в сколь угодно большом корпусе:
 - почти все слова встречаются очень редко;
 - небольшая группа частотных слов составляет значительную часть токенов корпуса;
 - LNRE Large Number of Rare Events.
- 2. Рост словаря даже очень большие корпуса не содержат всех слов языка:
 - искаженная оценка вероятности слова по частотности в корпусе;
 - нельзя использовать размер словаря для оценки степени лексического разнообразия текста.
- 3. Знания о распределении слов в любом тексте можно использовать для оптимизации и построения моделей.

ЗАКЛЮЧЕНИЕ

TAKEAWAYS

- Помни о словах, которые еще не встретились. Делай на них скидку.
- Никогда не суди о богатстве словаря автора по количеству разных слов в тексте.
- Откинув небольшое число самых частотных слов, можно резко сократить объем корпуса, сохранив большую часть смысловых слов.