NOMBRE: Matías Duhalde

SECCIÓN: 1

Nº LISTA: 34

PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 6 – Respuesta Pregunta 1

Parte 1

Las funciones se pueden modelar como relaciones. Si trabajamos sobre las funciones crecientes $f: \mathbb{N} \to \mathbb{N}$, tenemos que la relación $f \subseteq \mathbb{N} \times \mathbb{N}$, y el conjunto \mathcal{C} se define como:

$$\mathcal{C} = \{ f \subseteq \mathbb{N} \times \mathbb{N} \mid \forall n, m \in \pi_1(f). \ n < m \implies f(n) < f(m) \}$$

Notar que $f(n), f(m) \in \pi_2(f)$

Sea g(n) una función tal que $g(n): \mathbb{N} \to \mathcal{C}$. Para demostrar que \mathcal{C} no es numerable, se debe demostrar que no existe ninguna función g(n) biyectiva.

Por contradicción, supongamos que existe una función g(n), tal que esta es biyectiva. De esta manera, se pueden listar los pares (g_i, j) tal que $g_i(j) = a_{ij}$, con $i, j \in \mathbb{N}$:

$g_i \setminus j$	1	2	3	4	
g_1	a_{11}	a_{12}	a_{13}	a_{14}	
g_2	a_{21}	a_{22}	a_{23}	a_{24}	
g_3	a_{31}	a_{32}	a_{33}	a_{34}	
g_4	a_{41}	a_{42}	a_{43}	a_{44}	

Con $g(i) = g_i$ para todo $i \ge 1$. Por el argumento de diagonalización de Cantor, podemos formar una nueva función usando la diagonal de la tabla.

$$g_k(n) = \begin{cases} a_{11} & n = 1 \\ a_{nn} & n > 1 \text{ y } g_k(n-1) < a_{nn} \\ a_{(n-1)(n-1)} + 1 & n > 1 \text{ y } g_k(n-1) \ge a_{nn}, \text{ o si } a_{nn} \text{ no est\'a definido} \end{cases}$$

Notar que se cumple que esta función es creciente, es decir, si $n, m \in \mathbb{N}$ y n < m, entonces $g_k(n) < g_k(m)$. Al ser creciente, tenemos que $g_k \in \mathcal{C}$. Sin embargo, por otro lado, no existe ningún $i \in \mathbb{N}$ tal que $g_i = g_k$. En otras palabras, no existe ningún $n \in \mathbb{N}$ tal que $g(n) = g_k$. Esto significa que la función g(n) no puede ser bivectiva.

Finalmente, llegamos a una contradicción, lo que implica que no puede existir una función $g(n): \mathbb{N} \to \mathcal{C}$ que sea biyectiva. Por lo tanto, el conjunto \mathcal{C} no es numerable.

Parte 2

Por contradicción, supongamos que existe una función biyectiva $f(x): \mathbb{N} \to B$. Tomemos un subconjunto no numerable A de B. Dado que A no es numerable, no existe ninguna función $g(x): \mathbb{N} \to A$ tal que g(x) sea biyectiva. Sin embargo, habíamos definido una función f biyectiva sobre B. Dado que $A \subseteq B$, f también debería aplicar sobre A, pero como no puede existir una función biyectiva sobre A, llegamos a una contradicción.

Por lo tanto, si B es numerable, entonces A debe ser también numerable, o equivalentemente, si A es no numerable, entonces B es no numerable.

Usando este mismo argumento, podemos elaborar los siguiente:

Sea N el conjunto de las funciones crecientes e inyectivas. Usando el mismo procedimiento de la pregunta 1.1, se puede concluir que el conjunto N es no numerable. Además, tenemos que $N \subseteq \mathcal{F}$. Usando el hecho de que si un conjunto A es no numerable, entonces un conjunto B tal que $A \subseteq B$ tampoco lo es, se concluye que el conjunto \mathcal{F} es no numerable.