CS207 (Discrete Structures) Problem set 4

Aug 21 2015

- Attempt all questions.
- Apart from things proved in lecture, you cannot assume anything as "obvious". Either quote previously proved results or provide clear justification for each statement.

1 Lattices

Let L be a lattice. For any two elements $x, y \in L$ we use $x \vee y$ to denote the least upper bound of $\{x, y\}$ and $x \wedge y$ to denote the greatest lower bound of $\{x, y\}$ (note that both these elements exist by the definition of a lattice).

- 1. Show the following properties for all $x, y, z \in L$,
 - (a) (commutative laws) $x \lor y = y \lor x$ and $x \land y = y \land x$
 - (b) (associative laws) $((x \lor y) \lor z) = (x \lor (y \lor z))$ and $((x \land y) \land z) = (x \land (y \land z))$.
 - (c) (absorption laws) $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$
 - (d) (idempotency laws) $x \vee x = x$ and $x \wedge x = x$.
- 2. Use the above to prove that every finite subset of a lattice must have a greatest lower bound and a least upper bound.
- 3. Conclude that every finite lattice must be complete.

2 Counting

- 1. Prove the following identities by counting the size of a suitably designed set in two different ways.
 - (a) $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$

- (b) $\sum_{k=1}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}$
- 2. Find the number of (i) all words (ii) four letter words that can be formed using the letters from the word "MISSISSIPPI".
- 3. Using ideas used for estimating n!, approximate the quantity $\sum_{i=1}^n \sqrt{i}$. Prove that $\frac{2}{3}(n^{3/2}-1)+1 \leq \sum_{i=1}^n \sqrt{i} \leq \frac{2}{3}(n^{3/2}-1)+\sqrt{n}$.
- 4. Let B(n) be the no. of bit strings of length n that contain the string 01.
 - (a) Write a recurrence relation for B(n).
 - (b) Determine the initial conditions.
 - (c) How many strings are there of length 7 are there that contain 01?
 - (d) Solve the recurrence to obtain an expression for B(n) in terms of n.
- 5. Consider a grid from (0,0) to (n,n). Starting from the point (0,0), we wish to take units steps ONLY in the direction of the positive X and Y axes (i.e., right and up), and reach the point (n,n). Find a recurrence relation for the number of ways of doing so, if we are not allowed to go above the line joining (0,0) and (n,n), i.e, the diagonal.
- 6. Find the number of integral solutions for $x_1 + x_2 + x_3 + x_4 + x_5 = 21$ with each $x_i \geq 2$. Next, generalize this to find the number of solutions for $\sum_{i=1}^k x_i = n$ with each $x_i \geq t$ and express it in a closed form involving n, t, and k.