COMP4211 Final Project Project 1

Jasper | Ryder | Yerke | Daniel

The Problem

What needs to be done?

Design Goals

- 1. Robust
- 2. Good Precision
- 3. Good Recall
- 4. Good F1 Score

Data Augmentation

The First Task - Overview

To build a CNN model using cross-entropy loss

Model Specifications

- ResNet50 Model
- Stochastic Gradient Descent:
 - Learning Rate = 0.001
 - Momentum = 0.9
- Uses cross-entropy loss function

$$L(x)_{CE} = -\sum_{j=1}^{n} t_j \log(p_j)$$
$$= -t_i \log(p_i)$$
$$= -\log(p_i)$$

Where $t_i :=$ the basis vector $e_i \in \mathbb{R}^n$ if the label of x is i.

Source: https://www.researchgate.net/figure/The-architecture-of-ResNet50-and-deep-learning-model-flowchart-a-b-Architecture-of_fig1_334767096

The First Task - Results

	Precision (%)	Recall (%)	F1 (%)
Class 1 (NIL)	86.14	76.37	80.29
Class 2 (Moderate)	64.51	92.76	75.54
Class 3 (Severe)	66.63	14.63	22.64

Model Specifications

- ResNet50 Model (same as Task 1)
- Uses LDAM loss function

$$\mathcal{L}_{ ext{LDAM}}((x,y);f) = -\lograc{e^{z_y-\Delta_y}}{e^{z_y-\Delta_y}+\sum_{j
eq y}e^{z_j}}$$
 where $\Delta_j=rac{C}{n_j^{1/4}}$ for $j\in\{1,\dots,k\}$

```
def ldam(out, label, C, n_j, drw_active):
 deltas = 1/n j # actually = 1/(n j)^0.25
 # for a given input x with corresponding label y and model-generated output
 # which is a vector (p_0, p_1, p_2) where p_i denotes the probability the
 # model believes x belongs to class i
 # we need to extract the necessary values into a B*1 vector z_y. Example:
 # (0.4, 0.32, 0.28) | 1
 # (0.8, 0.15, 0.05) | 2
 # (0.2, 0.6, 0.2) | 1
 z_y = out[range(out.shape[0]), label]
  # returns vector of size B*1
 # corresponding to z v of each element x in the current batch
 delta y = torch.zeros((label.shape[0],)).cuda() # let delta y be B*1
 for i in range(3): # since k=3. Flexible if k changes
   delta_y += torch.where(label+1==i+1, label+1, 0)*deltas[i]/(i+1)
 delta_y_copy = delta_y.clone() # used for DRW
  delta v *= C
 e_zyminusdeltay = torch.exp(z_y-delta_y)
 # since each value of label is in {0, 1, 2}
 z j 1 = out[range(out.shape[0]), (label+1)%3]
 z j 2 = out[range(out.shape[0]), (label+2)%3]
 e zj sum = torch.exp(z j 1) + torch.exp(z j 2)
 # compute L_LDAM((x,y);f)
 # for all x in the batch. Asked TA and he said it was nat log
 result = -torch.log(e zyminusdeltay/(e zyminusdeltay+e zj sum))
 # reweight LDAM via DRW if necessary via entrywise tensor multiplication
  renormalize factor = 0
  if drw active:
   n_y_reciprocal = torch.pow(delta_y_copy, 4)
   result = result * n y reciprocal
   renormalize_factor = torch.sum(n_y_reciprocal).item()
 # take average of the entries to get a real-valued result
 return torch.mean(result), renormalize_factor
```

n_j: number of samples in training set who have label j, if 591 samples have label 0, 839 have label 1, 324 have label 2

```
deltas = [1/(591^{0.25}), 1/(839^{0.25}), 1/(324^{0.25})]
```

```
def ldam(out, label, C, n_j, drw_active):
 deltas = 1/n_j # actually = 1/(n_j)^0.25
 # for a given input x with corresponding label y and model-generated output
 # which is a vector (p_0, p_1, p_2) where p_i denotes the probability the
 # model believes x belongs to class i
 # we need to extract the necessary values into a B*1 vector z_y. Example:
  # (0.4, 0.32, 0.28) | 1
 # (0.8, 0.15, 0.05) | 2
  # (0.2, 0.6, 0.2) | 1
 z_y = out[range(out.shape[0]), label]
  # returns vector of size B*1
 # corresponding to z_y of each element x in the current batch
 delta y = torch.zeros((label.shape[0],)).cuda() # let delta y be B*1
 for i in range(3): # since k=3. Flexible if k changes
   delta_y += torch.where(label+1==i+1, label+1, 0)*deltas[i]/(i+1)
 delta_y_copy = delta_y.clone() # used for DRW
  delta y *= C
 e_zyminusdeltay = torch.exp(z_y-delta_y)
 # since each value of label is in {0, 1, 2}
 z_j_1 = out[range(out.shape[0]), (label+1)%3]
 z j 2 = out[range(out.shape[0]), (label+2)%3]
 e zj sum = torch.exp(z j 1) + torch.exp(z j 2)
 # compute L_LDAM((x,y);f)
 # for all x in the batch. Asked TA and he said it was nat log
 result = -torch.log(e zyminusdeltay/(e zyminusdeltay+e zj sum))
 # reweight LDAM via DRW if necessary via entrywise tensor multiplication
  renormalize factor = 0
  if drw active:
   n_y_reciprocal = torch.pow(delta_y_copy, 4)
   result = result * n y reciprocal
   renormalize_factor = torch.sum(n_y_reciprocal).item()
 # take average of the entries to get a real-valued result
 return torch.mean(result), renormalize_factor
```

n_j: number of samples in training set who have label j, if 591 samples have label 0, 839 have label 1, 324 have label 2

deltas =
$$[1/(591^{0.25}), 1/(839^{0.25}), 1/(324^{0.25})]$$

$$\mathcal{L}_{ ext{LDAM}}((x,y);f) = -\log rac{e^{z_y - \Delta_y}}{e^{z_y - \Delta_y} + \sum_{j
eq y} e^{z_j}}$$
 where $\Delta_j = rac{C}{n_j^{1/4}}$ for $j \in \{1, \dots, k\}$

Consider some input x whose model output is (0.4, 0.32, 0.28)Let y = 1 be x's corresponding label.

So z_y just finds (0.4, 0.32, 0.28)[1] = 0.32 Do this for every input x...

delta_y just finds C/(n_y)^0.25 for every x

```
def ldam(out, label, C, n_j, drw_active):
 deltas = 1/n_j # actually = 1/(n_j)^0.25
 # for a given input x with corresponding label y and model-generated output
 # which is a vector (p_0, p_1, p_2) where p_i denotes the probability the
 # model believes x belongs to class i
 # we need to extract the necessary values into a B*1 vector z_y. Example:
  # (0.4, 0.32, 0.28) | 1
 # (0.8, 0.15, 0.05) | 2
 # (0.2, 0.6, 0.2) | 1
 z_y = out[range(out.shape[0]), label]
  # returns vector of size B*1
 # corresponding to z_y of each element x in the current batch
 delta y = torch.zeros((label.shape[0],)).cuda() # let delta y be B*1
 for i in range(3): # since k=3. Flexible if k changes
   delta_y += torch.where(label+1==i+1, label+1, 0)*deltas[i]/(i+1)
 delta y copy = delta y.clone() # used for DRW
  delta v *= C
 e_zyminusdeltay = torch.exp(z_y-delta_y)
 # since each value of label is in {0, 1, 2}
 z_j_1 = out[range(out.shape[0]), (label+1)%3]
 z_j_2 = out[range(out.shape[0]), (label+2)%3]
 e zj sum = torch.exp(z j 1) + torch.exp(z j 2)
 # compute L_LDAM((x,y);f)
  # for all x in the batch. Asked TA and he said it was nat log
 result = -torch.log(e zyminusdeltay/(e zyminusdeltay+e zj sum))
 # reweight LDAM via DRW if necessary via entrywise tensor multiplication
 renormalize_factor = 0
  if drw active:
   n_y_reciprocal = torch.pow(delta_y_copy, 4)
   result = result * n y reciprocal
   renormalize_factor = torch.sum(n_y_reciprocal).item()
 # take average of the entries to get a real-valued result
 return torch.mean(result), renormalize_factor
```

$$\mathcal{L}_{ ext{LDAM}}((x,y);f) = -\log rac{e^{z_y - \Delta_y}}{e^{z_y - \Delta_y} + \sum_{j
eq y} e^{z_j}}$$
 where $\Delta_j = rac{C}{n_j^{1/4}}$ for $j \in \{1, \dots, k\}$

Consider some input x whose model output is (0.4, 0.32, 0.28)Let y = 1 be x's corresponding label.

e_zj_sum just finds e^(z_j) for every incorrect label for x and adds them

Since only 3 labels: {0, 1, 2}

Then the incorrect labels can always be found by (y+1) mod 3 and (y+2) mod 3

Do this for every input x...

Then just plug in yellow and light blue terms into LDAM function

```
def ldam(out, label, C, n_j, drw_active):
 deltas = 1/n_j # actually = 1/(n_j)^0.25
 # for a given input x with corresponding label y and model-generated output
 # which is a vector (p_0, p_1, p_2) where p_i denotes the probability the
 # model believes x belongs to class i
 # we need to extract the necessary values into a B*1 vector z_y. Example:
 # (0.4, 0.32, 0.28) | 1
 # (0.8, 0.15, 0.05) | 2
  \# (0.2, 0.6, 0.2) \mid 1
 z_y = out[range(out.shape[0]), label]
  # returns vector of size B*1
 # corresponding to z_y of each element x in the current batch
 delta y = torch.zeros((label.shape[0],)).cuda() # let delta y be B*1
 for i in range(3): # since k=3. Flexible if k changes
   delta_y += torch.where(label+1==i+1, label+1, 0)*deltas[i]/(i+1)
 delta_y_copy = delta_y.clone() # used for DRW
  delta y *= C
 e_zyminusdeltay = torch.exp(z_y-delta_y)
 # since each value of label is in {0, 1, 2}
 z_j_1 = out[range(out.shape[0]), (label+1)%3]
 z_j_2 = out[range(out.shape[0]), (label+2)%3]
 e zj sum = torch.exp(z j 1) + torch.exp(z j 2)
 # compute L_LDAM((x,y);f)
  # for all x in the batch. Asked TA and he said it was nat log
  result = -torch.log(e zyminusdeltay/(e zyminusdeltay+e zj sum))
  # reweight LDAM via DRW if necessary via entrywise tensor multiplication
  renormalize_factor = 0
  if drw active:
   n_y_reciprocal = torch.pow(delta_y_copy, 4)
   result = result * n y reciprocal
   renormalize_factor = torch.sum(n_y_reciprocal).item()
 # take average of the entries to get a real-valued result
 return torch.mean(result), renormalize_factor
```

- Hyperparameters to tweak:
 - (
 - Learning rate
 - Momentum term
 - alpha (regularization)
 - Batch size
- Calculating the optimal set of hyperparameters is infeasible
- Solution: exact grid search
 - Try every possible combination of parameters
 - Too many combinations...
- Instead, opt to fix some values: use industry standard for batch size (64) momentum (0.9) and learning rate (0.001)
- alpha = (0.001, **0.01**, 0.1, 1), C = (-2, **-0.25**, 0.25, 2)

```
def ldam(out, label, C, n_j, drw_active):
 deltas = 1/n_j # actually = 1/(n_j)^0.25
 # for a given input x with corresponding label y and model-generated output
 # which is a vector (p_0, p_1, p_2) where p_i denotes the probability the
 # model believes x belongs to class i
 # we need to extract the necessary values into a B*1 vector z_y. Example:
 # (0.4, 0.32, 0.28) | 1
 # (0.8, 0.15, 0.05) | 2
 # (0.2, 0.6, 0.2) | 1
 z_y = out[range(out.shape[0]), label]
 # returns vector of size B*1
 # corresponding to z_y of each element x in the current batch
 delta y = torch.zeros((label.shape[0],)).cuda() # let delta y be B*1
 for i in range(3): # since k=3. Flexible if k changes
   delta_y += torch.where(label+1==i+1, label+1, 0)*deltas[i]/(i+1)
 delta_y_copy = delta_y.clone() # used for DRW
  delta v *= C
 e_zyminusdeltay = torch.exp(z_y-delta_y)
 # since each value of label is in {0, 1, 2}
 z_j_1 = out[range(out.shape[0]), (label+1)%3]
 z_j_2 = out[range(out.shape[0]), (label+2)%3]
 e zj sum = torch.exp(z j 1) + torch.exp(z j 2)
 # compute L_LDAM((x,y);f)
 # for all x in the batch. Asked TA and he said it was nat log
 result = -torch.log(e zyminusdeltay/(e zyminusdeltay+e zj sum))
 # reweight LDAM via DRW if necessary via entrywise tensor multiplication
 renormalize_factor = 0
  if drw active:
   n_y_reciprocal = torch.pow(delta_y_copy, 4)
   result = result * n y reciprocal
   renormalize_factor = torch.sum(n_y_reciprocal).item()
 # take average of the entries to get a real-valued result
 return torch.mean(result), renormalize_factor
```

The Second Task - Results

	Precision (%)	Recall (%)	F1 (%)
Class 1 (NIL)	87.51	67.84	75.45
Class 2 (Moderate)	60.19	94.66	72.90
Class 3 (Severe)	52.18	7.56	12.80

Issues With the Other Models

- Overfit to majority classes in the training set
- Doesn't perform well on the third class
- Lacking in recall / F1

Solution?

Try different models with different loss functions and see which one meets our design goals.

Source: https://xkcd.com/1838/

The Different Models We Tried

1

ResNet50 with Recall Loss

2

Wide ResNet50 2 with Recall Loss

3

ResNet50 with Focal Loss

$$L(x)_{Recall} = -\log\left(\frac{w_i e^{z_i}}{\sum_{j=1}^n e^{z_j}}\right)$$

Where w_i is the false negative rate of the model on class i on the current batch.

What can these models do better than the first two models?

$$FL(p_t) = -(1-p_t)^{\gamma} \log(p_t)$$
 Where $p_t = \begin{cases} p, & \text{if } y = 1 \\ 1-p, & \text{otherwise} \end{cases}$ And p is the models estimate for the class with label y , the class identifier.

Contender Model Results

1

ResNet50 with Recall Loss

	Precision (%)
NIL	87.08
MOD	68.34
SEV	46.03
	Recall (%)
NIL	74.08
MOD	75.15
SEV	54.50
	F1 (%)
NIL	79.60
MOD	71.03
SEV	48.32

2

Wide ResNet50 2 with Recall Loss

Precision (%)
87.30
65.73
53.49
Recall (%)
72.09
77.46
57.72
F1 (%)
78.04
70.47
54.85

_ 3

ResNet50 with Focal Loss

	Precision (%)
NIL	88.01
MOD	58.86
SEV	62.98
	Recall (%)
NIL	68.64
MOD	89.03
SEV	21.13
	F1 (%)
NIL	76.55
MOD	70.18
SEV	30.20
SEV	30.20

1

ResNet50 with Recall Loss

Precision (%)
87.08
68.34
46.03
Recall (%)
74.08
75.15
54.50
F1 (%)
79.60
71.03
48.32

2

Wide ResNet50 2 with Recall Loss

Precision (%)
87.30
65.73
53.49
Recall (%
72.09
77.46
57.72
F1 (%)
78.04
70.47
54.85

-3

ResNet50 with Focal Loss

	Precision (%)
NIL	88.01
MOD	58.86
SEV	62.98
	Recall (%)
NIL	68.64
MOD	89.03
SEV	21.13
	F1 (%)
NIL	76.55
MOD	70.18
SEV	30.20

Retrain the Chosen Model

Wide ResNet50 2 with Recall Loss

	Precision (%)	Recall (%)	F1 (%)
NIL	88.53	74.52	80.28
Moderate	69.91	79.44	73.65
Severe	53.59	59.79	55.58

The Final Model – What Could've Been Done Differently

- Ensemble techniques
 - Bootstrap aggregating (Bagging)
- More Models
 - DenseNet, AlexNet, etc.
 - In general, CNNs are not rotation invariant
 - Customised model with max pooling?
- Domain-specific knowledge

Related Works and Information

- Recall Loss: https://openreview.net/pdf?id=SlprFTIQP3
- Focal Loss: https://arxiv.org/pdf/1708.02002.pdf

Any Questions?