METODY KOMPUTEROWE W SPALANIU CIŚNIENIE I TEMPERATURA SAMOZAPŁONU

JAKUB KALINOWSKI 321014

MECHANIKA I PROJEKTOWANIE MASZYN

SPRAWDZAJĄCY:

dr inż. Mateusz Żbikowski

WARSZAWA, 2024

SPIS TREŚCI

1.	Wprowadzenie	3
	Model	
	Model w języku Python	
	Badane mieszanki	
	Porównanie i omówienie wyników	
	Wnioski	
	Źródła i bibliografia	

1. Wprowadzenie

Celem poniżej opisanego badania jest porównanie parametrów samozapłonu takich jak ciśnienie i temperatura dla różnych mieszanek. Do wykonania ćwiczenia użyto języka Python z biblioteką Cantera, służącą do badania reakcji chemicznych na szeroką skalę.

2. Model

Model, użyty w ćwiczeniu, to tłok sprężający mieszankę w cylindrze który jest schematycznym uproszczeniem silnika tłokowego działającego dla poniższych parametrów:

Prędkość obrotowa silnika – n = $12\frac{1}{s}$

Objętość skuteczna silnika – $V = 25*10^{-4} \text{ m}^3$

Stopień sprężania - 18

Średnica tłoka - 0.1 m

3. Model w języku Python

W języku Python, model badanego cylindra z tłokiem został poprzez funkcję ct.Wall zamieniony na poruszającą się ścianę o polu powierzchni równemu polu tłoka. Zdefiniowano gaz poprzez funkcję ct.Solution umieszczoną w Canterze i podano warunki dla wlotu, wylotu, paliwa i otoczenia, które przedstawiono w tabeli poniżej.

	Wlot	Wylot	Otoczenie	Paliwo
Temperatura	300 K	300 K	300 K	300 K
Ciśnienie	1.3*10 ⁵ Pa	10⁵ Pa	1.2∗10⁵ Pa	17*10 ⁶ Pa

Tabela 1 - warunki brzegowe, otoczenia i paliwa

Skład otoczenia to O₂ i N₂ w stosunki 1:3.76.

Skład paliwa, według badanej mieszanki z punktu 4.

4. Badane mieszanki

Badaniu poddano trzy mieszanki paliwa, które poddano spalaniu w stosunkach 1:1:

Mieszanka 1 (Butanol) – $C_4H_7 + O_2 + 3,76N_2$

Mieszanka 2 (Cykloheksan) – $C_6H_{12} + O_2 + 3,76N_2$

Mieszanka 3 (Dodekan) – $C_{12}H_{26} + O_2 + 3,76N_2$

5. Porównanie i omówienie wyników

Porównano, 3 wymienione w poprzednim punkcie mieszanki i otrzymano wyniki przedstawione na zdjęciach poniżej.

Zdjęcie 1 – Temperatura i ciśnienie w mieszance 1 w zależności od kąta obrotu tłoka.

Zdjęcie 2 – Temperatura i ciśnienie w mieszance 2 w zależności od kąta obrotu tłoka.

Zdjęcie 3 – Temperatura i ciśnienie w mieszance 3 w zależności od kąta obrotu tłoka.

Jak widać, mieszanka C_6H_{12} , okazała się być niepalna. Charakter wykresów pozostałych dwóch mieszanek pokazuje, że zachodzi w nich do samozapłonu.

W tabeli poniżej zestawiono wartości ciśnień i temperatur samozapłonu obliczonych przez program i ich porównanie z wartościami z literatury.

Nr.	T wyliczona przez	T z literatury	p wyliczone przez	p z literatury
Mieszanki	program [K]	[K]	program [Pa]	[Pa]
1	956	618	71	57
3	793	473	52	45

Tabela 2 – porównanie T i p samozapłonu dla mieszanek palnych

6. Wnioski

Jak widać z wykresów i tabeli, temperatury samozapłonu w symulowanych warunkach się różnią od wartości z literatury. Jest to spowodowane przybliżeniami w modelu zadanymi w programie Python poprzez bibliotekę Cantera. Kąt obrotu tłoka, przy którym następuję samozapłon dla mieszanek 1 i 3, jest zbliżony, jednak dla tej pierwszej następuje po Górnym Martwym Położeniu, a w tej drugiej, przed nim. Mieszanka 2 jest mieszanką niepalną, co udowadnia nam kształt i charakter wykresu na rysunku 2.

7. Źródła i bibliografia

- 1 / Przykład kodu: https://cantera.org/examples/python/reactors/ic_engine.py.html
- 2 / Temperatury i ciśnienia samozapłonu: https://www.draeger.com/pl_pl/Substances/710