Data Warehousing and Data Mining - UNIT III

1. Data Marts

1.1 Definition

A **Data Mart** is a focused subset of a data warehouse designed for a specific business line or department, such as sales, finance, or marketing. It contains subject-specific data that helps users retrieve relevant information quickly without searching the entire data warehouse.

Example: A Sales Data Mart will include data relevant to sales transactions, customer purchases, and regional revenue breakdowns.

1.2 Characteristics / Features

- Subject-specific (e.g., Marketing, HR, Finance)
- · Faster access due to smaller size
- Easier to maintain and manage
- Improves decision-making for specific departments
- Can serve as building blocks for larger Data Warehouses

2. Types of Data Marts

2.1 Dependent Data Mart

- Created from a centralized data warehouse
- Data is first integrated into the warehouse, then fed to the data mart
- Ensures consistency and central control
- Common in enterprise-scale data architecture

2.2 Independent Data Mart

Standalone system created without a central data warehouse

- Pulls data directly from operational or external sources
- Easier and quicker to implement, but may lead to inconsistency
- · Suitable for small departments or early-stage businesses

2.3 Hybrid Data Mart

- Combines features of both dependent and independent data marts
- May extract data from both the central data warehouse and external sources
- Offers flexibility while maintaining some level of consistency

3. Metadata

3.1 Definition

Metadata is data that describes other data. It provides details such as data origin, structure, transformation rules, and business meaning. It plays a critical role in managing, maintaining, and utilizing a data warehouse.

3.2 Types

- Technical Metadata: Database structures, ETL mappings, schemas
- Business Metadata: Definitions, business rules, KPIs
- Operational Metadata: Data refresh times, audit logs, lineage

3.3 Importance

- Enables data understanding and usability
- Helps track data lineage
- Crucial for documentation, auditing, and compliance
- Facilitates ETL operations and BI tools

4. Data Transformation

4.1 Definition

Data Transformation is the process of converting extracted data from source systems into a format suitable for analysis and reporting in the data warehouse.

4.2 Steps in Data Transformation

- Selection: Choosing relevant data fields
- Cleansing: Removing inconsistencies and errors
- Integration: Merging data from multiple sources
- **Deduplication:** Removing duplicate records
- Standardization: Ensuring data is in a uniform format (e.g., date, currency)
- Encoding: Replacing values with standardized codes or keys
- Aggregation: Summarizing data for higher-level analysis

4.3 Importance

- Ensures data accuracy and integrity
- Prepares data for efficient querying
- Makes data analysis meaningful and reliable

5. Hardware Architecture

5.1 Process Hardware

- Supports data movement (ETL), transformation, and job scheduling
- Includes ETL engines and workflow managers
- Critical for automating and orchestrating data pipelines

5.2 Server Hardware

- Central component that hosts the data warehouse
- Requires high processing power, memory, and scalable storage

· Must support high availability and redundancy

5.3 Network Hardware

- Facilitates fast data transfer between data sources, servers, and clients
- Includes switches, routers, and load balancers
- Network bottlenecks can severely degrade performance

5.4 Client Hardware

- End-user devices used for accessing and analyzing warehouse data
- May include web-based tools, BI dashboards, or thick client applications

6. Database Concepts in Data Warehouse

6.1 Subject-Oriented

- Organized by business subjects (e.g., customer, product)
- · Simplifies data analysis and reporting

6.2 Integrated

- Combines data from heterogeneous sources into a unified view
- Requires data cleansing and transformation

6.3 Time-Variant

- Data is stored with timestamps
- Enables historical analysis and trend reporting

6.4 Non-Volatile

- Once data enters the warehouse, it is not updated or deleted
- Supports stable and consistent querying over time

7. Database Structures and Layout

7.1 Star Schema

- Central Fact Table connected to Dimension Tables
- · Simplified and optimized for read access

7.2 Snowflake Schema

- Normalized dimension tables (sub-divided)
- Reduces redundancy but increases complexity

7.3 Fact Constellation / Galaxy Schema

- Multiple Fact Tables sharing Dimension Tables
- Suitable for complex, multi-subject analysis

7.4 Additional Design Features

- Partitioning: Improves query performance by breaking large tables
- Indexing: Helps in fast data retrieval
- Materialized Views: Precomputed summaries for faster access
- OLAP Cubes: Multidimensional data structures for analytical queries

8. File Systems in Data Warehousing

8.1 Definition

A file system manages how data is stored, accessed, and retrieved on physical storage. In data warehousing, efficient file systems ensure reliable data storage and access.

8.2 Common File Systems

- NTFS: Secure, used in Windows servers
- EXT4: Linux-based, commonly used in open-source environments

• **HDFS:** Distributed system for big data storage (Hadoop)

8.3 Importance

- Determines performance, fault tolerance, and scalability
- Essential for supporting large-scale analytics
- Directly impacts backup, recovery, and replication capabilities