KHAI THÁC DỮ LIỆU VÀ ỨNG DỤNG

Association Rules Report

Bộ môn Khoa học Máy tính Khoa Công nghệ thông tin Đai học Khoa học tư nhiên TP HCM

Mục lục

1	Thông tin nhóm	3
2	Apriori	4
3	FP-Growth	6
4	Tập phổ biến đóng và tập phổ biến tối đại	9
5	Các đô đo lý thú	10

1 Thông tin nhóm

MSSV	Họ Tên	Email
1512203	Nguyễn Quốc Huy	1512203@student.hcmus.edu.vn
1512262	Võ Anh Khoa	1512262@student.hcmus.edu.vn

2 Apriori

Các bước tìm các frequent itemsets với minsup = 60% (min.count >= 4):

Buớc 1:

C1	Support
Bia	3
Bánh mì	4
Hành	4
Sữa	4
Khoai	5
tây	

L1	Support
Sữa	4
Hành	4
Bánh mì	4
Khoai tây	5

Bước 2

C2	Support
Sữa, Hành	2
Sữa, Bánh mì	2
Sữa, Khoai tây	3
Hành, Bánh mì	3
Khoai tây, Hành	4
Khoai tây, Bánh	4
mì	

L2	Support	
Khoai tây, Hành	4	
Khoai tây, Bánh	4	
mì		

<u>Bước 3</u>

C3	Support
Khoai tây, Hành, Bánh mì	3

: Các itemsets có support < minsup

Các frequent itemsets:

{Sữa}, {Khoai tây}, {Hành}, {Bánh mì}, {Khoai tây, Hành}, {Khoai tây, Bành mì}

Buóc 4: Tính confident, min conf = 80%

Assocication Rules	Support(A,B)	Support(A)	Confidence
Bánh mì => Khoai tây	4	4	100%
Hành => Khoai tây	4	4	100%
Khoai tây => Bánh mì	4	5	80%
Khoai tây => Hành	4	5	80%

Vậy ta tìm được 4 luật kết hợp thỏa mãn minsup >= 60% và minconf >= 80%:

R1: Khoai tây => Hành (support = 67%, confidence = 80%)

R1: Hành => Khoai tây (support = 67%, confidence = 100%)

R1: Khoai tây => Bánh mì (support = 67%, confidence = 80%)

R1: Bánh mì => Khoai tây (support = 67%, confidence = 100%)

3 FP-Growth

3.1 Mô tả source code

Class FPTreeOperationContainer dùng để quản lý FP-Tree:

```
class FPTreeOperationContainer {
 private:
    // tao nút mới
    static FPTreePNode newFPTreeNode(int itemID, FPTreePNode parent = NULL);
    // từ nút p trên cây, tìm nút con của p mà có ID của item là itemID
    FPTreePNode findBranchToGo(FPTreePNode p, int itemID);
    // từ nút p trên cây, tìm nút con của p mà có ID của item là itemID, nếu không tồn tại thì
tạo ra nút mới
    FPTreePNode makeNewConnection(int itemID, FPTreePNode p);
    // sinh ra conditional FPTree cho item có ID là itemID
    FPTreeOperationContainer* unblockConditionalFPTree(int itemID);
    // gốc cây
    FPTreePNode root;
    // Số item, số transaction
    int nItems, nTransactions;
    // danh sách các item được sắp xếp với tần số giảm dần
    int *itemOrdered;
    // danh sách các nút của cây (quản lý theo từng item)
    std::vector<FPTreePNode> *headList;
 public:
    FPTreeOperationContainer(int _nItems, int* _itemOrdered);
    ~FPTreeOperationContainer();
    // thêm một transaction (biết tần số)
    void insertTransaction(const std::vector<int> &transaction, int freq = 1);
    // sinh tập phổ biến từ cây (biết nguồng min support)
    std::vector< std::vector<int> > findConditionalFrequentSet(double threshold);
```

};

Mã giả sinh tập phổ biến từ cây FP:

```
Sinh-Tập-Phổ-Biến(Cây-fp, minSup) {
  K\hat{e}t-quå = {}
                    // Rỗng
  Xét các item iid theo thứ tự tần số tăng dần {
     C\hat{a}y-Cfp = Sinh-conditional-FP-Tree(C\hat{a}y-fp, iid)
     Nếu Số-transaction(C\hat{a}y-Cfp) < minSup {
        continue;
     T\hat{a}p\text{-}con = \text{Sinh-T}\hat{a}p\text{-Ph}\hat{o}\text{-Bi}\hat{e}n(C\hat{a}y\text{-}Cfp, minSup);
     T\hat{q}p\text{-}con = T\hat{q}p\text{-}con \cup \{\{\}\}\}
     Với mọi phần tử itemset thuộc tập con {
        itemset = itemset \cup \{iid\}
        K\hat{e}t-qu\dot{a} = K\hat{e}t-qu\dot{a} \cup \{itemset\}
  return Kết-quả
Sinh-conditional-FP-Tree(Cây-fp, iid) {
  Count[i] = 0 với mọi i thuộc \{0, ..., Sô-item(Cây-fp)-1\}
  Với mọi nút p của Cây-fp có itemID bằng iid {
     itemlist = Danh sách item khi duyệt đường đi từ p lên Nút-gốc(C\hat{a}y-fp)
     Với moi i thuộc itemlist {
        Count[Item-ID(i)] += Frequency(i)
  }
  C\hat{a}y-k\hat{e}t-qu\dot{a}=C\hat{a}y-R\hat{o}ng()
  Với mọi nút p của Cây-fp có itemID bằng iid {
     itemlist = Danh sách item khi duyệt đường đi từ p lên Nút-gốc(C\hat{a}y-fp)
     Sắp xếp lại itemlist theo Count giảm dần
     Chèn-transaction(C\hat{a}y-k\hat{e}t-qu\hat{a}, itemlist, Frequency(i))
  }
  return Cây-kết-quả
```

}

3.2 So sánh thuật toán Apriori và FP-Growth

Apriori	FPTree
Phải sinh tập ứng viên (candidate set) lớn	Không phải sinh tập ứng viên (candidate set) lớn
Phải duyệt lại database nhiều lần	Chỉ phải duyệt database ban đầu 1 lần
Chỉ phải tốn bộ nhớ để lưu CSDL và tập ứng viên	Phải phát sinh conditional tree một cách đệ quy -> tốn bộ nhớ

4

Tập phổ biến đóng và tập phổ biến tối đại

4.1 Tập phổ biến đóng

Tập phổ biến đóng là tập phổ biến mà không có tập nào bao nó có cùng độ phổ biến.

$$F = X | X \subseteq I \land \sup(X) \ge minsup$$

- Với F là tập hợp gồm tất cả tập phổ biến.
- Gọi C là tập hợp gồm tất cả tập phổ biến đóng.

$$C = \{X \mid X \in F \land \nexists Y \supset X, \sup(X) = \sup(Y)\}$$

4.2 Tập phổ biến tối đại

Tập phổ biến tối đại là tập phổ biến mà không có tập nào bao nó là phổ biến.

$$C = \{X \mid X \in F \land \nexists (Y \supset X \mid Y \in F)\}$$

4.3 Tập phổ biến đóng và tối đại cho bài 1

Tập phổ biến đóng:

{Sữa}, {Khoai tây}, {Khoai tây, Hành}, {Khoai tây, Bánh mì}.

Tập phổ biến tối đại:

{Sữa}, {Khoai tây, Hành}, {Khoai tây, Bánh mì}.

5 Các độ đo lý thú

5.1 Công thức tính các độ đo confidence, lift, conviction, leverage

Độ đo Confidence trình bày mức độ thường xuyên của tính đúng đắn của luật

Độ đo của luật $X \Rightarrow Y$, ứng theo tập hợp giao tác T là tỉ lệ giao tác có chứa X và Y so với giao tác chỉ chứaa X.

Độ đo Confidence được định nghĩa như sau:

$$conf(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X)}$$

Độ đo Lift là tỷ lệ của sự hỗ trợ quan sát được đối với X và Y là độc lập

$$lift(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

Độ đo Conviction được định nghĩa:

$$conv(X \Rightarrow Y) = \frac{1 - supp(Y)}{1 - conf(X \Rightarrow Y)}$$

Độ đo Leverage được định nghĩa

$$leverage(X \Rightarrow Y) = supp(X \Rightarrow Y) - supp(X)supp(Y)$$

5.2 Tính các độ đo cho các luật kết hợp ở bài 1

	Lift	Conviction	Leverage
Khoai tây ⇒ Hành	1.2	1.67	0.11
Hành ⇒ Khoai tây	1.2	∞	0.11
Khoai tây ⇒ Bánh mì	1.2	1.67	0.11
Bánh mì ⇒ Khoai tây	1.2	∞	0.11

Đối với Luật : Khoai Tây ⇒ Hành

Trước hết ta ta tính supp(Khoai Tây), supp(Hành), $supp(Khoai Tây \cup Hành)$ Ta có :

$$supp(Khoai Tây) = \frac{5}{6}, supp(Hành) = \frac{2}{3}, supp(Khoai Tây \cup Hành) = \frac{2}{3}$$

$$\operatorname{conf}(Khoai \ T \hat{a}y \Rightarrow H \hat{a}nh) = \frac{\sup p(Khoai \ T \hat{a}y \cup H \hat{a}nh)}{\sup p(Khoai \ T \hat{a}y)} = \frac{\frac{2}{3}}{\frac{5}{6}} = \frac{4}{5}$$

$$\operatorname{lift}(Khoai\ T\hat{a}y \Rightarrow H\hat{a}nh) = \frac{\operatorname{supp}(Khoai\ T\hat{a}y \cup H\hat{a}nh)}{\operatorname{supp}(Khoai\ T\hat{a}y) \times \operatorname{supp}(H\hat{a}nh)} = \frac{\frac{2}{3}}{\frac{5}{6} \times \frac{2}{3}} = \frac{6}{5}$$

$$conv(Khoai T \hat{a}y \Rightarrow H \hat{a}nh) = \frac{1 - supp(H \hat{a}nh)}{1 - conf(Khoai T \hat{a}y \Rightarrow H \hat{a}nh)} = \frac{1 - \frac{2}{3}}{1 - \frac{4}{5}} = \frac{5}{3}$$

$$leverage(Khoai Tây \Rightarrow Hành)$$

=
$$supp(Khoai Tây \Rightarrow Hành) - supp(Khoai Tây)supp(Hành)$$

= $\frac{2}{3} - \frac{2}{3} \times \frac{5}{6} = \frac{1}{9}$

Đối với Luật : Hành ⇒ Khoai Tây

Trước hết ta ta tính supp(Khoai Tây), supp(Hành), $supp(Khoai\ Tây \cup Hành)$ Ta có :

$$\operatorname{supp}(\operatorname{Khoai} \operatorname{Tây}) = \frac{5}{6}, \operatorname{supp}(\operatorname{Hanh}) = \frac{2}{3}, \operatorname{supp}(\operatorname{Khoai} \operatorname{Tây} \cup \operatorname{Hanh}) = \frac{2}{3}$$

$$conf(Hanh) \Rightarrow Khoai Tây) = \frac{supp(Khoai Tây \cup Hanh)}{supp(Hanh)} = \frac{\frac{2}{3}}{\frac{2}{3}} = 1$$

lift(Hành
$$\Rightarrow$$
 Khoai Tây) = $\frac{supp(Khoai Tây \cup Hành)}{supp(Khoai Tây) \times supp(Hành)} = \frac{\frac{2}{3}}{\frac{5}{6} \times \frac{2}{3}} = \frac{6}{5}$

$$conv(\text{Hành} \Rightarrow \text{Khoai Tây}) = \frac{1 - supp(\text{Khoai Tây})}{1 - conf(\text{Hành} \Rightarrow \text{Khoai Tây})} = \frac{1 - \frac{5}{6}}{1 - 1} = \infty$$

leverage(Hành ⇒ Khoai Tây)
$$= supp(Hành ⇒ Khoai Tây) - supp(Khoai Tây)supp(Hành) = \frac{2}{3} - \frac{2}{3} \times \frac{5}{6}$$

$$= \frac{1}{9}$$

Đối với Luật : Khoai Tây ⇒ Bánh mì
 Trước hết ta ta tính supp(Khoai Tây), supp(Bánh Mì), supp(Khoai Tây ∪ Bánh Mì)
 Ta có :

$$supp(Khoai Tây) = \frac{5}{6}, supp(Bánh Mì) = \frac{2}{3}, supp(Khoai Tây \cup Bánh Mì) = \frac{2}{3}$$

$$conf(Khoai Tây \Rightarrow Bánh mì) = \frac{supp(Khoai Tây \cup Bánh Mì)}{supp(Khoai Tây)} = \frac{\frac{2}{3}}{\frac{5}{6}} = \frac{4}{5}$$

$$lift(Khoai Tây \Rightarrow Bánh mì) = \frac{supp(Khoai Tây \cup Bánh Mì)}{\frac{2}{3}} = \frac{2}{3}$$

$$\operatorname{lift}(Khoai\ T\hat{a}y \Rightarrow B\acute{a}nh\ m\grave{i}) = \frac{\sup (Khoai\ T\hat{a}y \cup B\acute{a}nh\ M\grave{i})}{\sup (Khoai\ T\hat{a}y) \times \sup (B\acute{a}nh\ M\grave{i})} = \frac{\frac{2}{3}}{\frac{5}{6} \times \frac{2}{3}} = \frac{6}{5}$$
$$\operatorname{conv}(Khoai\ T\hat{a}y \Rightarrow B\acute{a}nh\ M\grave{i}) = \frac{1 - \sup (B\acute{a}nh\ M\grave{i})}{1 - \operatorname{conf}(Khoai\ T\hat{a}y \Rightarrow B\acute{a}nh\ M\grave{i})} = \frac{1 - \frac{2}{3}}{1 - \frac{4}{5}} = \frac{5}{3}$$

$$leverage(Khoai Tây \Rightarrow Bánh Mì)$$

= $supp(Khoai Tây \Rightarrow Bánh Mì) - supp(Khoai Tây)supp(Bánh Mì)$
= $\frac{2}{3} - \frac{2}{3} \times \frac{5}{6} = \frac{1}{9}$

Đối với Luật : Bánh Mì ⇒ Khoai Tây

Trước hết ta ta tính supp(Khoai Tây), supp(Bánh Mì), $supp(Khoai Tây \cup Bánh Mì)$ Ta có :

$$\operatorname{lift}(\operatorname{Bánh}\operatorname{M}) \Rightarrow \operatorname{Khoai}\operatorname{Tây}) = \frac{\sup p(\operatorname{Khoai}\operatorname{Tây} \cup \operatorname{Bánh}\operatorname{M})}{\sup p(\operatorname{Khoai}\operatorname{Tây}) \times \sup p(\operatorname{Bánh}\operatorname{M})} = \frac{\frac{2}{3}}{\frac{5}{6} \times \frac{2}{3}} = \frac{6}{5}$$
$$\operatorname{conv}(\operatorname{Bánh}\operatorname{M}) \Rightarrow \operatorname{Khoai}\operatorname{Tây}) = \frac{1 - \sup p(\operatorname{Khoai}\operatorname{Tây})}{1 - \operatorname{conf}(\operatorname{Bánh}\operatorname{M}) \Rightarrow \operatorname{Khoai}\operatorname{Tây})} = \frac{1 - \frac{5}{6}}{1 - 1} = \infty$$

$$leverage(Bánh Mì \Rightarrow Khoai Tây)$$

= $supp(Bánh Mì \Rightarrow Khoai Tây) - supp(Khoai Tây)supp(Bánh Mì)$
= $\frac{2}{3} - \frac{2}{3} \times \frac{5}{6} = \frac{1}{9}$

5.3 Nhận xét

Các độ đo này có sự khác biệt, vì ý nghĩa của chúng có sự khác biệt.

Confidence: Confidence cho biết tỉ lệ phần trăm một luật tìm được là đúng.

Lift: Lift cho biết độ độc lập giữa 2 transaction. Nếu lift xấp xỉ với 1 thì A và B độc lập. Nếu lift > 1, giá trị của nó cho ta biết mức độ phụ thuộc giữa 2 transaction, và dẫn đến tăng tính hữu ích. Thường hiệu quả với những item có support nhỏ.

Conviction: Tương tự như Lift, nhưng khắc phục được nhược điểm của lift là không phân biệt được chiều của luât.

Leverage: Leverage cho biết mức độ độc lập giữa 2 items. Thường hiệu quả với những item có support lớn.