Machine Learning for Model Hamiltonian

Jingyu Yao, Zhanghuan Li, Haohao Sheng

Contents

- Ising Model
- Monte Carlo
- Convolution Neural Networks
- Results
- Reference

Ising Model

• Ising model:

$$H = -\sum_{\langle i,j \rangle} J_{ij} S_i^z S_j^z - h \sum_i S_i^z$$

- $J_{ij} > 0$: ferromagnetism,
- $J_{ij} < 0$: antiferromagnetism
- 2D Ising model critical temperature (h=0)^{[1],[2]}: $k_B T = \frac{2J}{\ln(1+\sqrt{2})} \approx 2.269J$

Monte Carlo

- Metropolis Monte Carlo
- Equilibrium condition:

$$\frac{d}{dt}P_a = \sum_b w_{b\to a}P_b - w_{a\to b}P_a = 0$$

• Boltzmann distribution $P_a \propto e^{-\beta E_n}$:

$$w_{a o b} = \left\{egin{array}{ll} e^{eta \Delta E_{ab}} & (E_b > E_a) \ 1 & (E_b \leq E_a) \end{array}
ight.$$

$$w_{b
ightarrow a} = \left\{egin{array}{ll} 1 & (E_b > E_a) \ e^{-eta \Delta E_{ab}} & (E_b \leq E_a) \end{array}
ight.$$

Monte Carlo Result

Size = 32×32 , J = 1.0, h = 0.0

$$T = 1.0$$

$$T = 2.0$$

$$T = 3.0$$

Convolution Neural Networks

• $input \rightarrow Feature\ Extraction \rightarrow Classification\ (Regression)$

CNN: Convolution

- Input: Usually, input data are $n1 \times n1 \times n2$, 3D array.
- In our case, n1=32(size of lattice), n2 = 29 (selected from 1000 micro states)

A convolution with multi-channel

CNN: Pooling

• Pooling: reduce dimension, extract feature

CNN: Classification or Regression

Flatten and MLP

Results

- Data set D: 30000
- Training data T: 22500
- Testing data S: 7500
- $D = T \cup S$, $T \cap S = \emptyset$

Results

• Input: Ensemble sampling, Label: phase, accuracy=0.994, J = 1.0

• Label: $1 \rightarrow ferromagnetism, 0 \rightarrow paramagnetic$

Testing set	Label	Number in testing set	Number of prediction	Accuracy
ferromagnetism	1	1377	1361	0.9887
paramagnetic	0	6123	6122	0.9998

Results

• Input: Ensemble sampling, Label: T, accuracy=0.901

Reference

- [1] Introduction to Statistical Mechanics Wei Cai Stanford University Win 2011
- [2] Phys. Rev. 65, 117, 1943

Thanks!