ME731 - Métodos em Análise Multivariada - Distribuição Normal Multivariada I -

Prof. Carlos Trucíos ctrucios@unicamp.br ctruciosm.github.io

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas

Aula 04

Agenda I

- Introdução
- 2 Definição
- 3 Propriedades
- Apêndice

Introdução

Introdução

- Várias das técnicas que serão vistas nesta disciplina baseiam-se na suposição de Normalidade Multivariada.
- Em alguns casos, a distribuição Normal Multivariada é uma boa aproximação do fenômeno em estudo.
- O Teorema Central do Limite (TCL) permitirá obter distribuições aproximadas de estatísticas multivariadas.

Distribuição Normal Multivariada

Seja $\mathbf{X}=(X_1,X_2,\cdots,X_p)'$ um vetor aleatório p-dimensional. \mathbf{X} tem distribuição Normal Multivariada com vetor de medias μ e matriz de covariância $\Sigma>0$, denotado por $\mathbf{X}\sim N_p(\mu,\Sigma)$, se sua função de densidade é dada por

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)/2},$$

$$com -\infty < x_i < \infty, \forall i = 1, \cdots, p.$$

Distribuição Normal Multivariada

Seja $\mathbf{X}=(X_1,X_2,\cdots,X_p)'$ um vetor aleatório p-dimensional. \mathbf{X} tem distribuição Normal Multivariada com vetor de medias μ e matriz de covariância $\Sigma>0$, denotado por $\mathbf{X}\sim N_p(\mu,\Sigma)$, se sua função de densidade é dada por

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)/2},$$

$$com -\infty < x_i < \infty, \forall i = 1, \cdots, p.$$

Para ver uma ilustração do caso bivariado entre aqui. —

Teorema

Seja $\mathbf{X} \sim N_p(\mu, \Sigma)$ e seja $\Sigma^{1/2}$ a matriz raiz quadrada de Σ . Então $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \mu) \sim N_p(0, I)$ e Y_1, \cdots, Y_p são v.a independentes $\sim N(0, 1)$.

Teorema

Seja $\mathbf{X} \sim N_p(\mu, \Sigma)$ e seja $\Sigma^{1/2}$ a matriz raiz quadrada de Σ . Então $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \mu) \sim N_p(0, I)$ e Y_1, \cdots, Y_p são v.a independentes $\sim N(0, 1)$.

•
$$\mathbf{y} = \mathbf{\Sigma}^{-1/2}(\mathbf{x} - \mu) \rightarrow \mathbf{x} = u(\mathbf{y}) = \mathbf{\Sigma}^{1/2}\mathbf{y} + \mu.$$

Teorema

Seja $\mathbf{X} \sim N_p(\mu, \Sigma)$ e seja $\Sigma^{1/2}$ a matriz raiz quadrada de Σ . Então $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \mu) \sim N_p(0, I)$ e Y_1, \cdots, Y_p são v.a independentes $\sim N(0, 1)$.

•
$$\mathbf{y} = \mathbf{\Sigma}^{-1/2}(\mathbf{x} - \mu) \rightarrow \mathbf{x} = u(\mathbf{y}) = \mathbf{\Sigma}^{1/2}\mathbf{y} + \mu.$$

•
$$\mathbf{J} = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}'} \right| = \left| \frac{\partial \Sigma^{1/2} \mathbf{y} + \mu}{\partial \mathbf{y}'} \right| = \left| \Sigma^{1/2} \right| = |\Sigma|^{1/2}$$

Teorema

Seja $\mathbf{X} \sim N_p(\mu, \Sigma)$ e seja $\Sigma^{1/2}$ a matriz raiz quadrada de Σ . Então $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \mu) \sim N_p(0, I)$ e Y_1, \cdots, Y_p são v.a independentes $\sim N(0, 1)$.

•
$$\mathbf{y} = \mathbf{\Sigma}^{-1/2}(\mathbf{x} - \mu) \rightarrow \mathbf{x} = u(\mathbf{y}) = \mathbf{\Sigma}^{1/2}\mathbf{y} + \mu$$
.

•
$$\mathbf{J} = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}'} \right| = \left| \frac{\partial \Sigma^{1/2} \mathbf{y} + \mu}{\partial \mathbf{y}'} \right| = \left| \Sigma^{1/2} \right| = |\Sigma|^{1/2}$$

$$\bullet \ (\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu) = \mathbf{y}' \mathbf{y}$$

Teorema

Seja $\mathbf{X} \sim N_p(\mu, \Sigma)$ e seja $\Sigma^{1/2}$ a matriz raiz quadrada de Σ . Então $\mathbf{Y} = \Sigma^{-1/2}(\mathbf{X} - \mu) \sim N_p(0, I)$ e Y_1, \cdots, Y_p são v.a independentes $\sim N(0, 1)$.

•
$$\mathbf{y} = \mathbf{\Sigma}^{-1/2}(\mathbf{x} - \mu) \rightarrow \mathbf{x} = u(\mathbf{y}) = \mathbf{\Sigma}^{1/2}\mathbf{y} + \mu.$$

•
$$\mathbf{J} = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}'} \right| = \left| \frac{\partial \Sigma^{1/2} \mathbf{y} + \mu}{\partial \mathbf{y}'} \right| = \left| \Sigma^{1/2} \right| = |\Sigma|^{1/2}$$

$$\bullet (\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu) = \mathbf{y}' \mathbf{y}$$

•
$$f_{\mathbf{Y}}(\mathbf{y}) = |\mathbf{J}| f_{\mathbf{X}}(u(\mathbf{y})) = |\Sigma|^{1/2} \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\mathbf{y}'\mathbf{y}/2} = \frac{1}{(2\pi)^{p/2}} e^{-\mathbf{y}'\mathbf{y}/2}.$$

Demostração:

Para provar que Y_1, \dots, Y_p são N(0,1) indepententes, basta reescrever a densidade da normal multivariada.

Demostração:

Para provar que Y_1, \dots, Y_p são N(0,1) indepententes, basta reescrever a densidade da normal multivariada.

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{p/2}} e^{-\mathbf{y}'\mathbf{y}/2} = \frac{1}{(2\pi)^{p/2}} e^{-\sum_{i=1}^{p} y_i^2/2}$$

Demostração:

Para provar que Y_1, \dots, Y_p são N(0,1) indepententes, basta reescrever a densidade da normal multivariada.

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{p/2}} e^{-\mathbf{y}'\mathbf{y}/2} = \frac{1}{(2\pi)^{p/2}} e^{-\sum_{i=1}^{p} y_i^2/2}$$

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{p/2}} e^{-\sum_{i=1}^{p} y_i^2/2} = \prod_{i=1}^{p} \underbrace{\frac{1}{(2\pi)^{1/2}} e^{-y_i^2/2}}_{N(0,1)}$$

Demostração:

Para provar que Y_1, \dots, Y_p são N(0,1) independentes, basta reescrever a densidade da normal multivariada.

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{(2\pi)^{p/2}} e^{-\mathbf{y}'\mathbf{y}/2} = \frac{1}{(2\pi)^{p/2}} e^{-\sum_{i=1}^{p} y_i^2/2}$$

$$f_{\mathbf{Y}}(\mathbf{y}) = rac{1}{(2\pi)^{p/2}} e^{-\sum_{i=1}^{p} y_i^2/2} = \prod_{i=1}^{p} rac{1}{(2\pi)^{1/2}} e^{-y_i^2/2}$$

Logo, pelo Teorema da fatoração, Y_1, \cdots, Y_p são N(0,1) independentes.

Seja **X**
$$\sim N_p(\mu, \Sigma)$$
.

- **1** A distribuição é simétrica em torno de μ .
- 2 A distribuição tem um único máximo em μ .
- **3** $U = (\mathbf{X} \mu)' \Sigma^{-1} (\mathbf{X} \mu) \sim \chi_p^2$.
- \bullet $\mathbb{E}(\mathbf{X}) = \mu$ e $\mathbb{V}(\mathbf{X}) = \Sigma$.
- Qualquer combinação linear dos elementos de X tem distribuição normal univariada.
- Qualquer subconjunto de X tem distribuição Normal (multivariada).

Seja **X**
$$\sim N_p(\mu, \Sigma)$$
.

- **1** A distribuição é simétrica em torno de μ .
- ② A distribuição tem um único máximo em μ .
- **3** $U = (\mathbf{X} \mu)' \Sigma^{-1} (\mathbf{X} \mu) \sim \chi_p^2$.
- \bullet $\mathbb{E}(\mathbf{X}) = \mu$ e $\mathbb{V}(\mathbf{X}) = \Sigma$.
- Qualquer combinação linear dos elementos de X tem distribuição normal univariada.
- Qualquer subconjunto de X tem distribuição Normal (multivariada).

Marginais Normais implicam em Normalidade Multivariada?

Marginais Normais implicam em Normalidade Multivariada? Não!

Marginais Normais implicam em Normalidade Multivariada? Não!

Seja (X, Y) um vetor aleatório com densidade

$$f(x,y) = \phi(x)\phi(y) + h(x)h(y), \quad (x,y) \in \mathbb{R}^2$$

em que
$$\phi(z)=rac{1}{\sqrt{2\pi}}\exp(-z^2/2)$$
 e $h(z)=(2\pi e)^{-1/2}z^3I_{[-1,1]}(z)$

Marginais Nor

Propriedades

Marginais Normais implicam em Normalidade Multivariada? Não!

Seja (X, Y) um vetor aleatório com densidade

$$f(x,y) = \phi(x)\phi(y) + h(x)h(y), \quad (x,y) \in \mathbb{R}^2$$

em que
$$\phi(z)=rac{1}{\sqrt{2\pi}}\exp(-z^2/2)$$
 e $h(z)=(2\pi e)^{-1/2}z^3I_{[-1,1]}(z)$

- f(x,y) é de fato densidade $(f(x,y) \ge 0 \text{ e } \int \int f(x,y) = 1)$ conjunta mas não é Normal Bivariada.
- mas não é Normal Bivariada. • $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \phi(x)$ e $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx = \phi(y)$

O vetor aleatório (X,Y) com densidade f(x,y) tem marginais N(0,1) mas não tem distribuição normal bivariada.

Marginais Nor

Propriedades

Marginais Normais implicam em Normalidade Multivariada? Não!

Seja (X, Y) um vetor aleatório com densidade

$$f(x,y) = \phi(x)\phi(y) + h(x)h(y), \quad (x,y) \in \mathbb{R}^2$$

em que
$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)$$
 e $h(z) = (2\pi e)^{-1/2} z^3 I_{[-1,1]}(z)$

• f(x,y) é de fato densidade $(f(x,y) \ge 0 \text{ e } \int \int f(x,y) = 1)$ conjunta mas não é Normal Bivariada.

mas não é Normal Bivariada.
•
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \phi(x)$$
 e $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx = \phi(y)$

O vetor aleatório (X, Y) com densidade f(x, y) tem marginais N(0, 1) mas não tem distribuição normal bivariada.

Para mais exemplos ver o capítulo 10 de Stoyanov (2013).

Distribuição condicional

Distribuição condicional

Seja
$$\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)' \in \mathbb{R}^p$$
 com $\mathbf{X}_1 \in \mathbb{R}^k$ e $\mathbf{X}_1 \in \mathbb{R}^{p-k}$ então

$$\mathbf{X}_1|\mathbf{X}_2 = x_2 \sim N_k(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}),$$

em que $\mu=(\mu_1,\mu_2)'$ e

$$\Sigma = \left(egin{array}{ccc} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{array}
ight) \quad e \quad |\Sigma_{22}| > 0.$$

Por definição

$$f_{\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2} = \frac{f_{\mathbf{X}}(\mathbf{x}_1,\mathbf{x}_2)}{f_{\mathbf{X}_2}(\mathbf{x}_2)} = \frac{|\Sigma|^{-1/2}(2\pi)^{-p/2}e^{-\frac{1}{2}(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)}}{|\Sigma_{22}|^{-1/2}(2\pi)^{-(p-k)/2}e^{-\frac{1}{2}(\mathbf{x}_2-\mu_2)'\Sigma_{22}^{-1}(\mathbf{x}_2-\mu_2)}}$$

Por definição

$$f_{\mathbf{X}_{1}|\mathbf{X}_{2}=\mathbf{x}_{2}} = \frac{f_{\mathbf{X}}(\mathbf{x}_{1}, \mathbf{x}_{2})}{f_{\mathbf{X}_{2}}(\mathbf{x}_{2})} = \frac{|\Sigma|^{-1/2}(2\pi)^{-p/2}e^{-\frac{1}{2}(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)}}{|\Sigma_{22}|^{-1/2}(2\pi)^{-(p-k)/2}e^{-\frac{1}{2}(\mathbf{x}_{2}-\mu_{2})'\Sigma_{22}^{-1}(\mathbf{x}_{2}-\mu_{2})}}$$

Por propriedade de determinantes

$$|\Sigma|^{-1/2} = |\Sigma_{22}|^{-1/2} |\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}|^{-1/2}$$

Por definição

$$f_{\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2} = \frac{f_{\mathbf{X}}(\mathbf{x}_1,\mathbf{x}_2)}{f_{\mathbf{X}_2}(\mathbf{x}_2)} = \frac{|\Sigma|^{-1/2}(2\pi)^{-p/2}e^{-\frac{1}{2}(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)}}{|\Sigma_{22}|^{-1/2}(2\pi)^{-(p-k)/2}e^{-\frac{1}{2}(\mathbf{x}_2-\mu_2)'\Sigma_{22}^{-1}(\mathbf{x}_2-\mu_2)}}$$

Por propriedade de determinantes

$$|\Sigma|^{-1/2} = |\Sigma_{22}|^{-1/2}|\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}|^{-1/2}$$

Assim,

$$\frac{|\Sigma|^{-1/2}(2\pi)^{-p/2}}{|\Sigma_{22}|^{-1/2}(2\pi)^{-(p-k)/2}} = |\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}|^{-1/2}(2\pi)^{-k/2}$$

$$e^{-rac{1}{2}[(\mathsf{x}-\mu)'\mathbf{\Sigma}^{-1}(\mathsf{x}-\mu)-(\mathsf{x}_2-\mu_2)'\mathbf{\Sigma}_{22}^{-1}(\mathsf{x}_2-\mu_2)]}$$

$$e^{-\frac{1}{2}[(\mathbf{x}-\mu)'\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)-(\mathbf{x}_2-\mu_2)'\mathbf{\Sigma}_{22}^{-1}(\mathbf{x}_2-\mu_2)]}$$

Seja
$$C_{11}=(\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})^{-1}$$
, então $(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)=$

$$e^{-\frac{1}{2}[(\mathbf{x}-\mu)'\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)-(\mathbf{x}_2-\mu_2)'\mathbf{\Sigma}_{22}^{-1}(\mathbf{x}_2-\mu_2)]}$$

Seja
$$C_{11} = (\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})^{-1}$$
, então $(\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu) =$

$$\begin{pmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{pmatrix}' \begin{pmatrix} C_{11} & -C_{11}\Sigma_{12}\Sigma_{22}^{-1} \\ -\Sigma_{22}^{-1}\Sigma_{21}C_{11} & \Sigma_{22}^{-1} + \Sigma_{22}^{-1}\Sigma_{21}C_{11}\Sigma_{12}\Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{pmatrix} =$$

$$e^{-\frac{1}{2}[(\mathbf{x}-\mu)'\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu)-(\mathbf{x}_2-\mu_2)'\mathbf{\Sigma}_{22}^{-1}(\mathbf{x}_2-\mu_2)]}$$

Seja
$$C_{11} = (\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})^{-1}$$
, então $(\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu) =$

$$\begin{pmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{pmatrix}' \begin{pmatrix} C_{11} & -C_{11}\Sigma_{12}\Sigma_{22}^{-1} \\ -\Sigma_{22}^{-1}\Sigma_{21}C_{11} & \Sigma_{22}^{-1} + \Sigma_{22}^{-1}\Sigma_{21}C_{11}\Sigma_{12}\Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{pmatrix} =$$

$$\begin{aligned} &(\mathbf{x}_{1} - \mu_{1})' C_{11}(\mathbf{x}_{1} - \mu_{1}) - (\mathbf{x}_{2} - \mu_{2})' \Sigma_{22}^{-1} \Sigma_{21} C_{2} 2(\mathbf{x}_{1} - \mu_{1}) - \\ &(\mathbf{x}_{1} - \mu_{1})' C_{11} \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \mu_{2}) + (\mathbf{x}_{2} - \mu_{2})' \Sigma_{22}^{-1} (\mathbf{x}_{2} - \mu_{2}) + \\ &(\mathbf{x}_{2} - \mu_{2})' \Sigma_{22}^{-1} \Sigma_{21} C_{11} \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \mu_{2}) \end{aligned}$$

Por outro lado, precisamos calcular

$$e^{-\frac{1}{2}[(\mathsf{x}-\mu)'\Sigma^{-1}(\mathsf{x}-\mu)-(\mathsf{x}_2-\mu_2)'\Sigma_{22}^{-1}(\mathsf{x}_2-\mu_2)]}$$

Seja
$$C_{11} = (\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})^{-1}$$
, então $(\mathbf{x} - \mu)'\Sigma^{-1}(\mathbf{x} - \mu) =$

$$\begin{pmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{pmatrix}' \begin{pmatrix} C_{11} & -C_{11}\Sigma_{12}\Sigma_{22}^{-1} \\ -\Sigma_{22}^{-1}\Sigma_{21}C_{11} & \Sigma_{22}^{-1} + \Sigma_{22}^{-1}\Sigma_{21}C_{11}\Sigma_{12}\Sigma_{22}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 - \mu_1 \\ \mathbf{x}_2 - \mu_2 \end{pmatrix} =$$

$$\begin{aligned} &(\mathbf{x}_{1} - \mu_{1})' C_{11}(\mathbf{x}_{1} - \mu_{1}) - (\mathbf{x}_{2} - \mu_{2})' \Sigma_{22}^{-1} \Sigma_{21} C_{2} 2(\mathbf{x}_{1} - \mu_{1}) - \\ &(\mathbf{x}_{1} - \mu_{1})' C_{11} \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \mu_{2}) + (\mathbf{x}_{2} - \mu_{2})' \Sigma_{22}^{-1} (\mathbf{x}_{2} - \mu_{2}) + \\ &(\mathbf{x}_{2} - \mu_{2})' \Sigma_{22}^{-1} \Sigma_{21} C_{11} \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_{2} - \mu_{2}) \end{aligned}$$

=
$$[(\mathbf{x}_1 - \mu_1) - \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2)]'C_{11}[(\mathbf{x}_1 - \mu_1) - \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2)]$$

Carlos Trucíos (IMECC/UNICAMP)

Então,
$$f_{\mathbf{X}_1|\mathbf{X}_2=\mathbf{x}_2}(\mathbf{x}_1,\mathbf{x}_2) = \frac{1}{(2\pi)^{k/2}|C_{11}|^{1/2}}e^{-\frac{1}{2}[(\mathbf{x}_1-\mu_1)-\Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2-\mu_2)]'C_{11}[(\mathbf{x}_1-\mu_1)-\Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2-\mu_2)]}$$
 que é a densidade de uma $N_k(\mu_1+\Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2-\mu_2),C_{11})$

Decomposição espectral

Toda matriz simétrica $A_{p \times p}$ pode ser escrita como

$$A = P\Lambda P' = \sum_{i=1}^{p} \lambda_i \mathbf{e}_i \mathbf{e}_i',$$

em que

$$\Lambda = diag(\lambda_1, \cdots, \lambda_p)$$

com $\lambda_1, \cdots, \lambda_p$ sendo os autovalores e

$$P=(\mathbf{e}_1,\cdots,\mathbf{e}_p)$$

é uma matriz ortonormal com os autovetores (associados os seus respectivos autovalores) de A.

Matrizes particionadas

Sejam
$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix}$$
, $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ e $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ então:

- $X' = (X'_1, X'_2)$
- $\mathbf{X}'A = [\mathbf{X}'_1A_{11} + \mathbf{X}'_2A_{21} \quad \mathbf{X}'_1A_{12} + \mathbf{X}'_2A_{22}]$
- $\bullet \ \ \mathbf{X}'A\mathbf{X} = \mathbf{X}_1'A_{11}\mathbf{X}_1 + \mathbf{X}_2'A_{21}\mathbf{X}_1 + \mathbf{X}_1'A_{12}\mathbf{X}_2 + \mathbf{X}_2'A_{22}\mathbf{X}_2$
- $\bullet \ AB = \left(\begin{array}{cc} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{array} \right)$
- Se A for simétrica e quadrada $|A| = |A_{22}||A_{11} A_{12}A_{22}^{-1}A_{21}|$

Matrizes particionadas

Se
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 for simétrica e quadrada,

$$A^{-1} = \left(\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array} \right),$$

com

•
$$C_{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$$
,

•
$$C_{12} = -C_{11}A_{12}A_{22}^{-1}$$
,

•
$$C_{21} = -A_{22}^{-1}A_{21}C_{11}^{-1}$$
 e

•
$$C_{22} = A_{22}^{-1} + A_{22}^{-1} A_{21} C_{11} A_{12} A_{22}^{-1}$$

Matriz raíz guadrada

Seja $A_{k imes k} > 0$ com decomposição especral. A matriz raíz quadrada de A, denotada por $A^{1/2}$ é dada por

$$A^{1/2} = \sum_{i=1}^k \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i' = P \Lambda^{1/2} P'.$$

Observação: $A^{1/2}A^{1/2} = A$ e $A^{1/2}A^{-1/2} = I$.

Matriz raíz guadrada

Seja $A_{k \times k} > 0$ com decomposição especral. A matriz raíz quadrada de A, denotada por $A^{1/2}$ é dada por

$$A^{1/2} = \sum_{i=1}^k \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i' = P \Lambda^{1/2} P'.$$

Observação: $A^{1/2}A^{1/2} = A$ e $A^{1/2}A^{-1/2} = I$.

De fato, podemos definir qualquer potência da matriz A como

$$A^{\alpha} = P \Lambda^{\alpha} P'$$
.

Distâncias

Sejam $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$. A distância $d : \mathbb{R}^{2p} \to \mathbb{R}_+$ tal que:

- d(x,y) > 0, $\forall x \neq y$
- d(x, y) = 0, sss x = y
- $d(x,y) \leq d(x,z) + d(y,z), \forall x,y,z.$

A distância Euclidiana entre dois pontos \mathbf{x} e \mathbf{y} é definida como

$$d^2(\mathbf{x},\mathbf{y}) = (\mathbf{x} - \mathbf{y})' \mathbf{I}(\mathbf{x} - \mathbf{y})$$

A distância de Mahalanobis entre dois pontos \mathbf{x} e \mathbf{y} é definida como

$$d^{2}(\mathbf{x},\mathbf{y}) = (\mathbf{x} - \mathbf{y})' \Sigma^{-1}(\mathbf{x} - \mathbf{y}),$$

em que Σ é a matriz comum de covariância.

Teorema de Sklar

Seja F uma função distribuição p-dimensional com marginais F_{X_1}, \cdots, F_{X_p} . Então, existe uma cópula p-dimensional C, tal que $\forall \mathbf{x} \in \mathbb{R}^p$:

$$F(x_1, \dots, x_p) = C\{F_{X_1}(x_1), \dots, F_{X_p}(x_p)\}. \tag{1}$$

Se F_{X_1}, \dots, F_{X_p} são todas contínuas, então C é unica.

Por outro lado, se C é uma cópula e F_{X_1}, \cdots, F_{X_p} são funções distribuição, então F definida por (1) é uma função distribuição p-dimensional com marginais F_{X_1}, \cdots, F_{X_p} .

Referências

Referências

- Härdle, W. K., & Simar, L. (2019). Applied Multivariate Statistical Analysis. Fifth Editon. Springer Nature. Capítulo 4.
- Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis. Sixth Edition. Pearson Prentice Hall. Capítulo 4.
- Mardia, K. V., Kent, J. T., & Bibby, J, M. (1979). Multivariate Analysis. Academic Press. Capítulo 2.
- Stoyanov, J. M. (2013). Counterexamples in Probability. Third Edition. Dover. Capítulo 10.