Лабораторная работа 6. 1. Исследование резонансного поглощения γ -квантов (эффект Мессбауэра)

Лось Денис (группа 618)

26 октября 2018

Цель работы: с помощью метода доплеровского сдвига мессбауэровской линии поглощения исследовать резонансное поглощение γ -квантов, испускаемых ядрами олова; определить положение максимума резонансного поглощения, его величину, а также экспериментальную ширину линии $\Gamma_{\rm экc}$; оценить время жизни возбуждённого состояния ядра олова.

Теоритическое введение

Ширина линии:

$$\Gamma \tau \cong \hbar \tag{1}$$

Условие резонансного поглощения:

$$2R \le \Gamma \tag{2}$$

Энергия отдачи для одиночного ядра олова:

$$R = \frac{E_{\gamma}^2}{2M_{\rm g}^2} \approx 2.5 \cdot 10^{-3} \, eV \tag{3}$$

Доплеровская ширина линии:

$$D = 2\sqrt{Rk_6T} \approx 1.5 \cdot 10^{-2} \, eV \tag{4}$$

Измерение спектра источника

Цель данной части работы — подобрать настройки анализатора имульсов так, чтобы детектировались только γ -кванты с энергией 23.8 кэВ, исходящие от источника.

Рис. 1: Спектр источника

Заметим, что 23.8 кэВ соответствует 5 В. Выберем значения порогов

$$U_{\text{нижн}} = 1 \,\text{B}$$

$$U_{\text{верх}} = 7 \,\text{B}$$

Регистрация мёссбауэровского спектра

Проведём регистрацию мёссбауэровского спектра для различных образцов.

Образец 1

Рис. 2: Мёссбауэровский спектр для образца 1

$\Gamma_{\text{эксп}}, \text{ мм/c}$	$\Gamma_{\text{эксп}} \cdot 10^{-8}, \text{эB}$	$\Delta E \cdot 10^{-8}, \mathrm{9B}$	v_p , mm/c
1.6	12.7	19.2	2.4

Образец 4

Рис. 3: Мёссбауэровский спектр для образца 4

$\Gamma_{\text{эксп}}, \text{ мм/c}$	$\Gamma_{\text{эксп}} \cdot 10^{-8}, \text{эВ}$	$\Delta E \cdot 10^{-8}, \mathrm{9B}$	v_p , mm/c
2.3	18.2	0	0

Образец 2

Рис. 4: Мёссбауэровский спектр для образца 2

$\Gamma_{\text{эксп}}, \text{ мм/c}$	$\Gamma_{\text{эксп}} \cdot 10^{-8}, \text{эB}$	$\Delta E \cdot 10^{-8}, \mathrm{9B}$	v_p , mm/c
1.1	8.7	17.6	2.2