Correction DM7

Exercice 1 (D'après DS chaptal 2020). Pour tout $n \in \mathbb{N}$ on définit I_n

$$I_n = \int_0^{\frac{\pi}{2}} \cos^{2n}(t) dt$$

- 1. Montrer que $I_0 = \frac{\pi}{2}$.
- 2. En utilisant une intégration par parties, démontrer que pour tout entier $n \ge 1$ on a :

$$I_n = \frac{2n-1}{2n} I_{n-1}$$

(on pourra utiliser que $\cos^{2n}(t) = \cos^{2n-1}(t)\cos(t)$)

3. En déduire que

$$I_n = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$

Correction 1.

1. Calculons I_0

$$I_0 = \int_0^{\frac{\pi}{2}} \cos^0(t) dt = \int_0^{\frac{\pi}{2}} 1 dt = [t]_0^{\frac{\pi}{2}} = \frac{\pi}{2}$$

2. On utilise l'intégration par partie proposée dans l'indication :

$$I_n = \int_0^{\frac{\pi}{2}} \cos(t) \cos^{2n-1}(t) dt$$

on pose $u'(t)=\cos(t)$ et $v(t)=\cos^{2n-1}(t)$. On a $u(t)=\sin(t)$ et $v'(t)=-(2n-1)\sin(t)\cos^{2n-2}(t)$. On obtient alors :

$$I_n = \left[\sin(t)\cos^{2n-1}(t)\right]_0^{\frac{\pi}{2}} + (2n-1)\int_0^{\frac{\pi}{2}}\sin^2(t)\cos^{2n-2}(t)dt$$

Le crochet $\left[\sin(t)\cos^{2n-1}(t)\right]_0^{\frac{\pi}{2}}$ est nul et on utilise la relation $\cos^2(t)+\sin^2(t)=1$ pour l'intégrale de droite : $\int_0^{\frac{\pi}{2}}\sin^2(t)\cos^{2n-2}(t)dt=\int_0^{\frac{\pi}{2}}\cos^{2(n-1)}(t)-\cos^{2n}(t)dt=I_{n-1}-I_n$ Grâce au calcul précédent on obtient :

$$I_n = (2n - 1)(I_{n-1} - I_n)$$

soit encore $2nI_n = (2n-1)I_{n-1}$ ce qui donne le résultat voulu en divisant par 2n.

3. On peut prouver le résultat par récurrence. La formule est vraie au rand 0 d'après la question 1. On la suppose vraie à un rang n fixé. D'après la question précédente, on a :

$$I_{n+1} = \frac{2n+1}{2(n+1)}I_n$$

Par hypothèse de récurrence, $I_n = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$, donc

$$I_{n+1} = \frac{2n+1}{2(n+1)} \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$

Enfin, en multipliant en haut et en bas par (2n+2) on obtient :

$$\begin{split} \frac{2n+1}{2(n+1)} \frac{(2n)!}{2^{2n}(n!)^2} &= \frac{2n+2}{2n+2} \frac{2n+1}{2(n+1)} \frac{(2n)!}{2^{2n}(n!)^2} \\ &= \frac{(2(n+1))!}{2*2(n+1)^2(2^{2n}(n!)^2)} \\ &= \frac{(2(n+1))!}{2^{2n+2}((n+1)!)^2} \end{split}$$

La formule est donc vérifiée au rang (n+1); par principe de récurrence la formule est vraie pour tout $n \in \mathbb{N}$.

Exercice 2. Le but de cet exercice est de déterminer toutes les fonctions x dérivable sur \mathbb{R} telles que pour tout $t \in \mathbb{R}$:

$$x(t) > 0$$
 et $x'(t) + e^t f(t)x(t)^2 + x(t) = 0$

où
$$f(t) = \frac{t}{t^2 + 1}$$
.

Cette équation n'est PAS linéaire et ne rentre pas dans le cadre du cours.

- 1. (a) Justifier que la fonction f admet des primitives sur \mathbb{R} et déterminer l'unique primitive qui s'annule en 0 qu'on notera F_0 .
 - (b) Montrer que F_0 admet un minimum m et calculer sa valeur.
- 2. Pour cette question, on fixe une fonction x solution du problème et on pose y = 1/x.
 - (a) Montrer que y est solution d'une équation différentielle linéaire à déterminer.
 - (b) Résoudre l'équation différentielle obtenue à la question précédente. On pourra chercher une solution particulière de la fome $t \mapsto \lambda(t)e^t$, où λ est une fonction à déterminer.
- 3. En déduire que toutes les solutions du problème sont de la forme :

$$x: t \mapsto \frac{e^{-t}}{C + \frac{1}{2}\ln(t^2 + 1)}$$

où C est une constante telle que C > -m.

Correction 2.

1. (a) f est continue sur \mathbb{R} donc admet des primitives. Les primitives de f sont de la formes $F(t) = \frac{1}{2} \ln(t^2 + 1) + C$. L'unique primitive qui s'annule en 0 est donc

$$F_0(t) = \frac{1}{2}\ln(t^2 + 1)$$

- (b) La dérivée de F_0 est la fonction f qui est positive sur \mathbb{R}_+ et négative sur \mathbb{R}_- . Donc F_0 admet un minimum en 0 qui vaut 0.
- 2. (a) On a $x = \frac{1}{y}$ donc $x' = -\frac{y'}{y'^2}$ Ainsi l'équation différentielle devient :

$$-\frac{y'}{y^2} + e^t f(t) \frac{1}{y^2} + \frac{1}{y} = 0$$

En multipliant par y^2 on obtient :

$$y' + y = -e^t f(t)$$

(b) Les solutions de l'équation homogéne associée sont

$$\mathcal{S}_h = \{ t \mapsto Ce^t \, | \, C \in \mathbb{R} \}$$

Cherchons une solution particulière de la forme $C(t)e^t$ comme le sujet nous le suggère. On a alors

$$-C'(t)e^t - C(t)e^t + C(t)e^t = -e^t f(t)$$

Donc

$$C'(t) = f(t)$$

D'où

$$C(t) = \frac{1}{2}\ln(t^2 + 1) + C$$

où C est un nombre réel. Comme on recherche une solution particulière on peut prendre $C(t) = F_0(t) = \frac{1}{2} \ln(t^2 + 1)$

Donc les solutions de $-y' + y = -e^t f(t)$ sont

$$S = \{t \mapsto Ce^t + \frac{1}{2}\ln(t^2 + 1)e^t \mid C \in \mathbb{R}\}$$

3. On obtient alors les solutions de l'équation (E) en revenant à la variable $x = \frac{1}{y}$ on doit vérifier que y est bien différent de 0 et même strictement positif car l'énoncé stipule x(t) > 0. Or $y(t) = Ce^t + \frac{1}{2}\ln(t^2 + 1)e^t$ est positif pour tout C > 0, ainsi

$$x(t) = \frac{1}{Ce^t + \frac{1}{2}\ln(t^2 + 1)e^t} = \frac{e^{-t}}{C + \frac{1}{2}\ln(t^2 + 1)}$$

avec C > 0

Les solutions sont bien :

$$S = t \mapsto \frac{e^{-t}}{C + \frac{1}{2}\ln(t^2 + 1)} |C > 0$$