PRJ - 22 - Projeto Conceitual de Aeronave Lab 04 Atividade Individual

Cap Eng **Ney** Rafael Secco ney@ita.br

1T Eng João A. **Dantas** de J. Ferreira dantas@ita.br

Instruções

- 1. Data de entrega: 26/09/2021, 23:59;
- 2. Todos devem enviar os relatórios através do Google Classroom enviar um aquivo compactado (.zip ou .rar) com o relatório e o código escrito o código deve ter comentários. Coloquem o nome do arquivo compactado como sendo "nome_número_do_lab.zip", com um nome curto (não coloquem o nome completo aqui). Dentro do arquivo do relatório, coloquem o nome completo;
- 3. Deduções por atraso: a cada dia, 2,0 pontos são descontados da nota final;
- 4. Todos devem entregar um pequeno relatório com os itens da seção "Exercício";
- 5. Podem discutir soluções com outros alunos, mas não podem compartilhar códigos.

1 Aerodinâmica

O módulo de aerodinâmica é responsável por utilizar a descrição tridimensional da aeronave para estimar uma polar de arrasto da forma:

$$C_D = C_{D0} + K \cdot C_L^2 \tag{1}$$

Esse módulo também deve estimar C_{Lmax} .

O arrasto parasita vai ser estimado baseando-se no coeficiente de fricção e na área molhada:

$$C_{D0} = C_{fe} \cdot \frac{S_{wet}}{S_{ref}},\tag{2}$$

E o arrasto induzido vai ser baseado no fator de Oswald (e):

$$K = \frac{1}{\pi \cdot AR_w \cdot e} \tag{3}$$

1.1 Inputs

Os inputs para esse módulo são:

- Parâmetros geométricos da asa: S_w , AR_w , $c_{r,w}$, λ_w , Λ_w , $(t/c)_{r,w}$, $(t/c)_{t,w}$, e b_w .
- Parâmetros geométricos da empenagem horizontal: S_h , $c_{r,h}$, λ_h , $(t/c)_{r,h}$, e $(t/c)_{t,h}$.
- Parâmetros geométricos da empenagem vertical: S_v , $c_{r,v}$, λ_v , $(t/c)_{r,v}$, e $(t/c)_{t,v}$.
- Parâmetros da fuselagem: L_f , e D_f .
- Parâmetros da nacele: L_n , e D_n .
- Parâmetros das condições de voo: M, e h.

- Parâmetros dos motores: n_{eng} , $n_{eng,w}$, e $n_{eng,f}$.
- Parâmetros do flap: δ_{flap} , $\delta_{flap,max}$, flap_type, c_{flap}/c_w , e b_{flap}/b_w .
- Parâmetros do slat: δ_{slat} , $\delta_{slat,max}$, slat_type, c_{slat}/c_w , e b_{slat}/b_w .
- Parâmetro do trem de pouso: lg_down.
- Parâmetro do efeito solo: h_{qround} .
- Parâmetro do arrasto de excrescência: k_{exc} .
- Parâmetro de peso: W_0 .

1.2 Outputs

Os outputs desse módulo são:

- Polar de arrasto: C_{D0} , K, e C_{Lmax} .
- Parâmetros da fuselagem: $S_{wet,f}$, $S_{wet,w}$, $S_{wet,h}$, $S_{wet,v}$, $S_{wet,n}$.

1.3 Função do módulo de Aerodinâmica

Cada aluno deve usar a função fornecida para calcular os coeficientes aerodinâmicos listados. A função é escrita como:

A variável aircraft é, mais uma vez, um dicionário. Os elementos desse dicionário são:

- As variáveis já definidas pela função default_aircraft; e
- Possíveis variáveis calculadas nos Labs anteriores.

O output da função é outro dicionário (aero) e o CL_{max} :

```
aero['CD0']
aero['K']
aero['Swet_f']
aero['Swet_w']
aero['Swet_h']
aero['Swet_n']
aero['Swet_v']
```

Esse dicionário **não** deve ser adicionado ao dicionário **aircraft**, já que os coeficientes variam com a situação: a polar de arrasto de pouso é significativamente diferente da polar de cruzeiro, por exemplo.

```
Os tipos de flaps podem ser: 'plain', 'slotted', 'fowler', 'double slotted' ou 'triple slotted'.
Os tipos de slats podem ser: 'fixed', 'flap', 'kruger' e 'slat'
```

1.4 Esquema geral do Código

Nós já temos uma função construída (geometry) no nosso arquivo design_tools.py. Note que alguns inputs necessários são outputs do Lab anterior.

Cada aluno irá, portanto, usar 3 arquivos .py: o arquivo com as ferramentas de projeto (design_tools.py - com todas as funções, incluindo as fornecidas), o script de análise (com as definições de variáveis e as chamadas de funções) e o que possui as funções auxiliares (fornecido). É recomendado que um arquivo adicional seja criado para cada exercício (pois alguns irão necessitar de diferentes análises).

1.5 Caso de testes

Considere um caso de testes com os inputs do Lab anterior e:

```
Mach = 0.3
altitude = 10.668000000000001
n_{engines_failed} = 1
flap_def = 0.3490658503988659
slat_def = 0.0
lg_down = 1
h_ground = 10.66800000000001
WO_guess = 422712.9
   Você deve obter os seguintes resultados:
 "CD0": 0.07528241667668555,
 "K": 0.04101373267784699,
 "Swet f": 295.7081245265254,
 "Swet w": 156.30901831103114,
 "Swet h": 37.30320910973085,
 "Swet n": 40.52654523130833,
 "Swet v": 30.66799999999999
CLmax = 2.544750781316997
```

1.6 Exercício

Modifique as seguintes variáveis do exemplo anterior:

```
altitude = 11000
n_engines_failed = 0
flap_def = 0.0
slat_def = 0.0
lg_down = 0
h_ground = 0
sweep_w = 20*np.pi/180
```

- 1. Gere um gráfico de pizza com as contribuições para a área molhada total.
- 2. Gere um plot de C_{D0} como função de M (número de Mach) para o intervalo 0, 6 < M < 0, 9. Então aumente o enflechamento da asa em intervalos de 5° até chegar em 40° e desenhe as novas curvas de arrasto no mesmo plot.
- 3. Calcule C_{Lmax} para os mesmos ângulos de enflechamento descritos acima e gere o plot de C_{Lmax} como função do enflechamento da asa.
- 4. Baseando-se nos dois plots anteriores, escolha um ângulo de enflechamento considerando que o Mach de cruzeiro da aeronave é 0,80. O que influenciou a sua decisão?
- 5. Redefina os valores para os de referência do caso de teste e calcule os coeficientes da polar de arrasto para as seguintes condições:
 - Cruzeiro:

```
Mach = 0.75
altitude = 11000
n_engines_failed = 0
flap_def = 0.0
slat_def = 0.0
lg_down = 0
h_ground = 0
```

• Decolagem:

```
Mach = 0.2
altitude = 0
n_engines_failed = 0
flap_def = 20*np.pi/180
slat_def = 0.0
lg_down = 1
h_ground = 10.67
```

• Pouso:

```
Mach = 0.2
altitude = 0
n_engines_failed = 0
flap_def = 40*np.pi/180
slat_def = 0.0
lg_down = 1
h_ground = 10.67
```

Use os coeficientes para desenhar polares de arrasto para essas três configurações no mesmo plot. Você pode usar $C_{Lmin} = -0.5$ como o limite mínimo para o coeficiente de sustentação nesse plot.

Resuma seus resultados em um documento em PDF.

A Construção do código

Para entender o funcionamento do código fornecido, acompanhe as seções a seguir:

A.1 Coeficiente de arrasto parasita

Nós vamos estimar o arrasto parasita baseado na razão entre a área molhada e a área de referência (geralmente, a área da asa).

Primeiro vamos calcular a área em planta exposta da asa (em relação à fuselagem) com:

$$S_{exp,w} = S_w - c_{r,w} \cdot D_f \tag{4}$$

Em seguida, calculamos a área molhada da asa com:

$$S_{wet,w} = 2 \cdot S_{exp,w} \cdot \left(1 + \frac{(t/c)_{r,w}}{4 \cdot (1 + \lambda_w)} \cdot \left(1 + \lambda_w \cdot \frac{(t/c)_{r,w}}{(t/c)_{t,w}} \right) \right)$$
 (5)

Agora repetimos o processo para a empenagem horizontal. Dessa vez, podemos considerar toda a área em planta da cauda como área exposta.

$$S_{exp,h} = S_h \tag{6}$$

Então computamos a área molhada da empenagem horizontal com:

$$S_{wet,h} = 2 \cdot S_{exp,h} \cdot \left(1 + \frac{(t/c)_{r,h}}{4 \cdot (1+\lambda_h)} \cdot \left(1 + \lambda_h \cdot \frac{(t/c)_{r,h}}{(t/c)_{t,h}} \right) \right)$$
 (7)

Podemos fazer isso mais uma vez para a empenagem vertical. A área exposta é:

$$S_{exp,v} = S_v \tag{8}$$

Então computamos a área molhada da empenagem vertical com:

$$S_{wet,v} = 2 \cdot S_{exp,v} \cdot \left(1 + \frac{(t/c)_{r,v}}{4 \cdot (1+\lambda_v)} \cdot \left(1 + \lambda_v \cdot \frac{(t/c)_{r,v}}{(t/c)_{t,v}} \right) \right)$$

$$\tag{9}$$

O próximo parâmetro que devemos calcular é a esbeltez da fuselagem:

$$\lambda_f = \frac{L_f}{D_f} \tag{10}$$

A área molhada da fuselagem é:

$$S_{wet,f} = \pi \cdot D_f \cdot L_f \cdot \left(1 - \frac{2}{\lambda_f}\right)^{2/3} \cdot \left(1 + \frac{1}{\lambda_f^2}\right)$$
(11)

Podemos estimar a área molhada das naceles com:

$$S_{wet,n} = n_{eng} \cdot \pi \cdot D_n \cdot L_n \tag{12}$$

A área molhada total será:

$$S_{wet} = S_{wet,w} + S_{wet,h} + S_{wet,r} + S_{wet,f} + S_{wet,n}$$

$$\tag{13}$$

Os próximos passos nos ajudarão a calcular o coeficiente de fricção C_{fe} . Se escolhermos a área da asa como nossa área de referência $(S_{ref} = S_w)$, então a razão de áreas é:

$$S_r = \frac{S_{wet}}{S_w} \tag{14}$$

A espessura média da asa é:

$$(t/c)_w = \frac{(t/c)_{r,w} + (t/c)_{t,w}}{2} \tag{15}$$

O fator de correção da espessura (τ) é (Howe Eq. 6.13b):

$$\tau = \frac{S_r - 2}{S_r} + \frac{1.9}{S_r} \cdot \left(1 + 0.526 \cdot (4 \cdot (t/c)_w)^3\right)$$
(16)

O coeficiente de fricção pode ser computado com (Howe Eq. 6.13a):

$$C_{fe} = 0.005 \cdot \left(1 - 2\frac{c_{lam}}{S_r}\right) \cdot \tau \cdot \left(1 - 0.2 \cdot M + 0.12 \cdot \left(\frac{M \cdot \sqrt{\cos \Lambda_w}}{A_f - (t/c)_w}\right)^{20}\right) \cdot T_f \cdot S_w^{-0.1}$$
(17)

Para aeronaves de transporte à jato podemos usar (Howe Tab. 6.4):

- fator do aerofólio: $A_f = 0.93$
- fator de desvio de forma: $T_f = 1.1$
- fração de escoamento laminar: $c_{lam} = 0.05$

O coeficiente de arrasto parasita pode, finalmente, ser calculado como:

$$C_{D0} = C_{fe} \cdot S_r \tag{18}$$

A.2 Coeficiente de Arrasto Induzido

Agora podemos concentrar no cálculo do coeficiente de arrasto induzido. Primeiro, precisamos calcular um parâmetro do afilamento:

$$f_{\lambda} = 0.005 \cdot (1 + 1.5 \cdot (\lambda_w - 0.6)^2) \tag{19}$$

então o fator de Oswald é (Howe Eq. 6.14):

$$e = \frac{1}{(1 + 0.12 \cdot M^6) \cdot \left(1 + \frac{0.142 + f_{\lambda} \cdot AR_w \cdot (10 \cdot (t/c)_w)^{0.33}}{(\cos \Lambda_w)^2} + 0.1 \cdot \frac{3 \cdot n_{eng,w} + 1}{(4 + AR_w)^{0.8}}\right)}$$
(20)

E o coeficiente de arrasto induzido é:

$$K = \frac{1}{\pi \cdot AR_w \cdot e} \tag{21}$$

O efeito solo pode mudar o coeficiente de arrasto induzido. Para o nosso código, assumiremos que só precisamos considerar o efeito solo se $h_{ground} > 0$. Se $h_{ground} > 0$ devemos calcular:

$$GE = 33 \cdot \left(\frac{h_{ground}}{b_w}\right)^{1.5} \tag{22}$$

$$K_{GE} = \frac{GE}{1 + GE} \tag{23}$$

Então substituímos o coeficiente de arrasto induzido com (Raymer Eq. 12.61):

$$K = K \cdot K_{GE} \tag{24}$$

A.3 Coeficiente de Sustentação Máximo e dispositivos hipersustentadores

Por agora, vamos estimar o coeficiente de sustentação máximo da asa limpa com:

$$C_{Lmax,clean} = 0.9 \cdot CL_{max_{airfoil}} \cdot \cos \Lambda_w \tag{25}$$

Os seguintes passos vão calcular as contribuições dos flaps e slats para o coeficiente de sustentação máximo e o coeficiente de arrasto parasita. Note que essas equações só serão necessárias se $\delta_{flap,max} > 0$ e $\delta_{slat,max} > 0$.

Primeiro, vamos recalcular a corda na ponta da asa com:

$$c_{t,w} = \lambda_w \cdot c_{r,w} \tag{26}$$

A contribuição do flap para o arrasto parasita é (Raymer Eq. 12.37):

$$C_{D0,flap} = 0.0023 \cdot (b_{flap}/b_w) \cdot \frac{180 \cdot \delta_{flap}}{\pi}$$

$$(27)$$

em que δ_{flap} está em radianos.

Agora nós precisamos calcular o enflechamento da asa na fração de corda correspondente à articulação do flap (which is located at $2 - c_{flap}/c_w$). Você pode usar a função auxiliar geo_change_sweep do arquivo aux_tools.py para isso. Para converter o enflechamento no quarto de corda (Λ_w) para o enflechamento na articulação do flap, podemos usar:

sweep_flap = geo_change_sweep(0.25, 2-c_flap_c_wing, sweep_w, b_w/2, cr_w, ct_w)

Podemos calcular o aumento de sustentação com (Raymer Eq. 12.21):

$$\Delta C_{Lmax,flap} = \Delta c_{lmax,flap} \cdot (b_{flap}/b_w) \cdot \cos \Lambda_{flap} \cdot \frac{\delta_{flap}}{\delta_{flap,max}}$$
(28)

O aumento 2D da sustentação depende do tipo de flap:

- plain flap: $\Delta c_{lmax,flap} = 0.9$
- slotted flap: $\Delta c_{lmax,flap} = 1.3$
- Fowler flap: $\Delta c_{lmax,flap} = 1.3 \cdot c_{flap}/c_w$
- double-slotted flap: $\Delta c_{lmax,flap} = 1.6 \cdot c_{flap}/c_w$
- triple-slotted flap: $\Delta c_{lmax,flap} = 1.9 \cdot c_{flap}/c_w$

Seguimos um procedimento similar para dispositivos de bordo de ataque (que iremos nos referir, genericamente, como slats).

A contribuição para o arrasto parasita é (Raymer Eq. 12.37):

$$C_{D0,slat} = 0.0023 \cdot (b_{slat}/b_w) \cdot \frac{180 \cdot \delta_{slat}}{\pi}$$
(29)

onde δ_{slat} está em radianos.

Agora precisamos calcular o enflechamento da asa na fração de corda correspondente à articulação do slat (que é localizada em c_{slat}/c_w-1). Você pode usar a função auxiliar (geo_change_sweep) para isso. Para converter o enflechamento no quarto de corda (Λ_w) para o enflechamento na articulação do slat nós podemos usar:

sweep_slat = geo_change_sweep(0.25, c_slat_c_wing-1, sweep_w, b_w/2, cr_w, ct_w)

Podemos calcular o aumento de sustentação com (Raymer Eq. 12.21):):

$$\Delta C_{Lmax,slat} = \Delta c_{lmax,slat} \cdot (b_{slat}/b_w) \cdot \cos \Lambda_{slat} \cdot \frac{\delta_{slat}}{\delta_{slat,max}}$$
(30)

O aumento 2D da sustentação depende do tipo de dispositivo de bordo de ataque:

• slot (fixo): $\Delta c_{lmax,slat} = 0.2$

• leading edge flap: $\Delta c_{lmax,slat} = 0.3$

• Kruger flap: $\Delta c_{lmax.slat} = 0.3$

• moving slat: $\Delta c_{lmax,slat} = 0.4 \cdot c_{slat}/c_w$

O máximo coeficiente de sustentação pode ser calculado como:

$$C_{Lmax} = C_{Lmax,clean} + \Delta C_{Lmax,flap} + \Delta C_{Lmax,slat}$$
(31)

E o coeficiente de arrasto parasita pode ser atualizado como:

$$C_{D0} = C_{D0} + C_{D0,flap} + C_{D0,slat} (32)$$

A.4 Componentes adicionais e arrasto de excrescência

Se o trem de pouso está acionado (lg_down = 1), podemos calcular sua contribuição para o arrasto parasita com (ESDU):

$$C_{D0,lg} = 0.001 \cdot \left(0.57 - 0.26 \cdot \frac{\delta_{flap}}{\delta_{flap,max}}\right) \cdot \left(\frac{W_0}{g}\right)^{0.785} \cdot \frac{1}{S_w}$$
 (33)

em que g é a aceleração da gravidade. Não existe necessidade de calcular essa contribuição se o trem de pouso estiver retraído ($lg_down = 0$).

Se tivermos motores inoperantes, podemos calcular o aumento do arrasto devido aos efeitos de windmilling (Raymer Eq. 12.41).

$$C_{D0,windmill} = n_{eng,f} \cdot 0.3 \cdot \frac{\pi}{4} \cdot \frac{D_n^2}{S_w} \tag{34}$$

Podemos atualizar o coeficiente de arrasto parasita mais uma vez com:

$$C_{D0} = C_{D0} + C_{D0,lg} + C_{D0,windmill} (35)$$

Nós podemos, finalmente, aplicar um fator de arrasto de excrescência para considerar vazamentos e protuberâncias:

$$C_{D0} = \frac{C_{D0}}{1 - k_{exc}} \tag{36}$$

 k_{exc} é, geralmente, entre 0,03 e 0,06.

A.5 Arrasto de Onda

O arrasto de onda só deve ser estimado se a aeronave está voando em condições transônicas (ou seja, acima de um certo valor de número de Mach - vamos considerar 0,5 como esse número de Mach).

Vamos adaptar a equação de Korn para estimar o arrasto de onda. Vamos assumir que o C_L de voo deve satisfazer L=W.

Primeiro usamos a função atmosphere fornecida nos arquivos auxiliares para calcular as propriedades do ar na altitude de voo:

T,p,rho,mi = atmosphere(altitude, 288.15)

Use a temperatura para calcular a velocidade do som com:

$$a = \sqrt{\gamma \cdot R \cdot T} \tag{37}$$

para o ar temos $\gamma=1.4$ eR=287. Podemos encontrar a velocidade de voo com:

$$V = M \cdot a \tag{38}$$

Agora podemos estimar o coeficiente de sustentação baseado na relação $L=W_0$:

$$C_L = \frac{2 \cdot W_0}{\rho \cdot V^2 \cdot S_w} \tag{39}$$

Então calculamos o número de Mach de divergência com:

$$M_{dd} = \frac{0.95}{\cos \Lambda_w} - \frac{(t/c)_w}{(\cos \Lambda_w)^2} - \frac{C_L}{10 \cdot (\cos \Lambda_w)^3}$$
(40)

O número de Mach crítico é:

$$M_c = M_{dd} - \left(\frac{0.1}{80}\right)^{1/3} \tag{41}$$

Se o número de Mach de voo é acima do número de Mach crítico (ou seja, $M>M_c$):

$$C_{D,wave} = 20 \cdot \left(M - M_c\right)^4 \tag{42}$$

do contrário:

$$C_{D,wave} = 0 (43)$$

Por agora, podemos inserir o arrasto de onda no coeficiente de arrasto parasita:

$$C_{D0} = C_{D0} + C_{D,wave} (44)$$

Note que forçamos $L=W_0$ para calcular o C_L usado na Eq. 40, mas a equação de Korn pode ser usada para outros valores de C_L .