MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2013 ROUND 7 TEAM QUESTIONS ANSWERS

A)								_ D)
B)	1	2	3	4	5	6	7	E)
C) .								_ F)

- A) The sides of a unique right triangle ABC are, in order of increasing magnitude,
 - $\left[\frac{x}{8}\right]$ -1, x -1 and x. The sides are integer lengths with no common factor (other than 1).

Compute the perimeter of this triangle.

Note: [N] denotes the greatest integer less than or equal to N.

For positive real numbers, the fractional part is truncated (dropped).

B) Definitions: $x \vee y = \frac{x+y}{2}$ (arithmetic average) and $x \wedge y = \frac{2xy}{x+y}$ (harmonic average).

Under which of the following condition(s) does the operation \bigvee distribute over the operation \diamondsuit , i.e. $a \bigvee (b \diamondsuit c) = (a \bigvee b) \diamondsuit (a \bigvee c)$, where a, b and c are non-negative integers for which both sides of the equality are defined. Circle your choice(s) above.

- 1) a = 0 2) b = 0 3) c = 0 4) a = b 5) a = c 6) b = c 7) none of the above
- C) A line \mathcal{L}_1 through the point Q(-2, 3) divides the circle P with equation $x^2 + y^2 8x + 10y 23 = 0$ into two congruent regions. A line \mathcal{L}_2 passes through the center of the circle perpendicular to \mathcal{L}_1 . Let R be the x-intercept of \mathcal{L}_1 and S be the y-intercept of \mathcal{L}_2 respectively. Compute the area of quadrilateral PROS, where O denotes the origin.
- D) For $10 \le x \le 10000$, define the function $f(x) = x^{4 \log_{10} x}$. Let M be the minimum value and N be the maximum value that f(x) may take on. Compute $\frac{M}{N}$.
- E) The area of a certain quadrilateral varies jointly as the distance D between two parallel sides and the sum S of the lengths of these parallel sides. Two such quadrilaterals are initially congruent and, therefore, have the same area. In the first quadrilateral, D is multiplied by a factor of $9n^2$ and S is unchanged. In the second quadrilateral, S is multiplied by a factor of 27n-20 and D is unchanged. Compute all possible values of n for which the areas of these quadrilaterals remain equal.
- F) A regular polygon has vertices $V_1, V_2, V_3, \dots, V_n$. 17 diagonals can be drawn from each vertex. Let P be the point of intersection between diagonal $\overline{V_i V_{i+3}}$ and $\overline{V_{i+1} V_{i+5}}$, where $1 \le i \le 10$. Compute $m \angle V_{i+1} P V_{i+3}$.