Continuous Mathematical Foundations: Week 2 - Set Theory

Dr. Georgios Stagakis

City College

October 2021

Introduction to Sets

2 Set Operations

Goals of the Week

What is a Set?

Set Definition

In mathematics, a set is a collection of elements.

Simply, it is something that is consisted from other components.

Set Notation

We use capital letters to notate sets, such as A,B,C, Γ , Ω .

We use the following notation in order to describe what are the components $a_1, a_2, ...$ of a set A.

$$A = \{a_1, a_2, ...\}$$

Set Components

What can a set contain?

Anything, i.e. numbers, words and Anything else you might imagine (abstract).

Examples,

- $A = \{1, 2, 3\}$,
- $B = \{4, \sqrt{12}\},\$
- $\Gamma = \{\frac{17}{7}, \text{ "apple"}, \text{ "disco"}\}.$

Abstract Set example

If the set Ω contains all the sets that don't contain their subsets, is Ω inside Ω ?

Why we need Sets?

Set Theory is highly used both in Computer Science and in Probability Theory as we will see next week.

In general, the probability of a set A in comparison with the all the possible outcomes Ω , is defined as

$$p = \frac{|A|}{|\Omega|},$$

where $|\cdot|$ returns the number of elements in a set.

Empty Set

By empty set \emptyset we mean a set that contains nothing.

Complementary Set

The complementary set A^c or A' of a set A in a space Ω is equal to the elements of Ω without the elements of A,

$$A^c = \Omega \setminus A$$
.

For complementary sets, Ω must contain A, or else A being a subset of Ω .

Number sets

Number sets are sets that contain only numbers.

Set equality

Two sets A, B are equal if and only if they have the same components,

$$A \equiv B$$
.

Set Comparison

A is a subset of B, if and only if B has all the components of A,

$$A \subseteq B$$
,

or

$$B\supseteq A$$
.

Set Comparison Properties

- If $A \equiv B$, then A is subset of B and B is subset of A.
- If A is subset of B and B is subset of A, then $A \equiv B$.
- If A has k components, then the number of subsets of A is 2^k .
- If A is not subset of B and B is not subset of A, then you can't compare them.

Cardinality

Cardinality of a set A, card(A), is the number of components of A.

Cardinality of infinite sets

- If $A \equiv B$, then A is subset of B and B is subset of A.
- If A is subset of B and B is subset of A, then $A \equiv B$.
- If A has k components, then the number of subsets of A is 2^k .
- If A is not subset of B and B is not subset of A, then you can't compare them.

Set Representation

Venn Diagrams

Funny Venn Diagrams

Intersection $A \cap B$

Union $A \cup B$

Complement $A \setminus B$

Complementary $A' = \Omega \setminus A$

Goals of the Week t-shirt

Goals of the Week

- Understand what sets are.
- Interpret Venn Diagrams.
- Being able to perform set operations.