Statistical Methods for Computer Science

Assignment 2 — STU33009

1. (a) The sample space is the set of all possible outcomes. A six-sided die has a sample space of 6 elements. A six-sided die rolled three times would have a sample space of size $6 \cdot 6 \cdot 6 = 6^3$:

$$6^3 = 216$$

(b) In order to calculate this, we can first calculate the number of outcomes in which no 2 is rolled. We can now only pick from 5 possibilities in each of the three rolls:

$$5^3 = 125$$

We can now subtract this quantity from the total size of the sample space to get the number of outcomes in which at least a 2 is rolled:

$$216 - 125 = 91$$

The probability that at least one 2 is rolled is the following:

$$\frac{91}{216} = 0.4212962963$$

```
(c) iters = 100000;
  outcomes = randi([1,6],[1,3,iters]);
  count = 0;

for i = 1:iters
    if any(outcomes(:,:,i) == 2)
        count = count + 1;
    end
end

probability = count/iters

>>
Probability =
    0.4222
```

(d) If all of the rolls resulted in a 6, the sum would be 18. Since we want the sum to be 17, a single roll must be a 5 and the rest 6. However, this 5 could be outcome of any one of the three rolls:

$$\binom{1}{3} = 3$$

Therefore, there are 3 possible outcomes in which the sum can be 17. The probability of one of these outcomes occurring would be:

$$\frac{3}{216} = 0.01388888889$$

(e) We can calculate this by calculating the probability that the remaining die rolls add up to 11. There are two remaining die rolls, therefore the sample space now becomes:

$$6^2 = 36$$

In order for 2 die rolls to add up to an 11, one of the die rolls should be a 5, there are 2 ways this can happen. Therefore, the probability that the three rolls sum to 12 given that the first roll is a 1 would be:

$$\frac{2}{36} = 0.0555555556$$

2. (a) There are two ways in which the second die can roll a 5. In one case, the first die could roll a 1, which would result in a second six-sided die to be rolled, which can roll a 5. The probability of the first die rolling a 1 would be ¹/₆ and the probability of the second die rolling a 5 would also be ¹/₆. The probability of this case would be:

$$\frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

In the second case, the fist die could roll a number other than 1. The probability of this would be $\frac{5}{6}$. Hence, the subsequent throw would be of a 20-sided die which would need to roll a 5. The probability of this happening would be $\frac{1}{20}$. The probability of this case would be:

$$\frac{5}{6} \cdot \frac{1}{20} = \frac{5}{120} = \frac{1}{24}$$

We can then add the probability of these cases to obtain the probability of any of them happening:

$$\frac{1}{36} + \frac{1}{24} = \frac{5}{72} = 0.06944444444$$

(b) In order for the second roll to be a 15, the first roll mustn't be a 1. the probability of the first roll not being a 1 is $\frac{5}{6}$. Subsequently, the probability of the second roll being a 15 is $\frac{1}{20}$. The probability of both happening would be:

$$\frac{5}{6} \cdot \frac{1}{20} = \frac{5}{120} = \frac{1}{24} = 0.04166666667$$

3. Let E be the event that the suspect is guilty.

Let F be the event that the suspect possesses the found characteristic.

We know that the probability of the suspect being guilty is 0.6, (i.e. P(E) = 0.6). We also know that the probability that a person from the general population, including a suspect that isn't guilty, possesses the characteristic is 0.2, (i.e. $P(F|E^c) = 0.2$). We also know that the probability that a guilty suspect possesses the characteristic is 1, (i.e. P(F|E) = 1).

Using Bayes' Rule, we get:

$$P(E|F) = \frac{P(F|E)P(E)}{P(F)} = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|E^c)P(E^c)}$$
$$P(E|F) = \frac{1 \cdot 0.6}{(1 \cdot 0.6) + (0.2 \cdot 0.4)} = 0.882353$$

4. Let E_i be the probability that the user is in cell i. Let F be the probability of observing two bars from the cell tower Let n be the number of cells in the map.

We know that the probability that the user is in cell i before observing a signal from the cell tower is 0.05, (i.e. $P(E_i) = 0.05$). We also know that the probability of observing a signal from the cell tower given that the user is in cell i is 0.75, (i.e. $P(F|E_i) = 0.75$).

Bayes' Rule tells us the following:

$$P(E_i|F) = \frac{P(F|E_i)P(E_i)}{P(F)}$$

We can calculate P(F) using marginalisation. The probability of observing a signal from the cell tower would be equal to the sum of the probabilities of observing a signal at each cell i. From this we get:

$$P(F) = \sum_{i=0}^{n} P(F|E_i)P(E_i)$$

Plugging in the values, we get:

$$P(F) = (0.75)(0.05) + (0.95)(0.1) + (0.75)(0.05) + (0.05)(0.05)$$

$$+(0.05)(0.05) + (0.75)(0.1) + (0.95)(0.05) + (0.75)(0.05)$$

$$+(0.01)(0.05) + (0.05)(0.05) + (0.75)(0.1) + (0.95)(0.05)$$

$$+(0.01)(0.05) + (0.01)(0.05) + (0.05)(0.1) + (0.75)(0.05)$$

$$= 0.504$$

Plugging each cell into the formula, we can form the following matrix:

(0.75)(0.05)	(0.95)(0.1)	(0.75)(0.05)	(0.05)(0.05)
0.504	0.504	0.504	0.504
(0.05)(0.05)	(0.75)(0.1)	(0.95)(0.05)	(0.75)(0.05)
0.504	0.504	0.504	0.504
(0.01)(0.05)	(0.05)(0.05)	(0.75)(0.1)	(0.95)(0.05)
0.504	0.504	0.504	0.504
(0.01)(0.05)	(0.01)(0.05)	(0.05)(0.1)	(0.75)(0.05)
0.504	0.504	0.504	0.504

This would simplify to:

Here is the Matlab program:

>>

P_Es_given_F = 0.0744 0.1885 0.0744 0.0050 0.0050 0.1488 0.0942 0.0744 0.0010 0.0050 0.1488 0.0942 0.0010 0.0010 0.0099 0.0744