

Fundamentos de Sistemas de Operação

LEI - 2023/2024

Vitor Duarte
Mª. Cecília Gomes

1

Aula 12

- Gestão de memória, atribuição de espaço livre
- Paginação a pedido
- OSTEP: cap. 14, 17-17.3, revisão AC: cap. 15, 18, 19

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁTI

* Níveis de gestão de memória

- SO
 - Gere a memória física existente, atribuindo-a aos processos e a si próprio
 - Gere o seu próprio espaço para os seus dados, código e pilha
 - Controla os espaços virtuais de cada processo, suas proteções e mapeando destes em memória real
 - Configura o MMU a cada troca de contexto:
 - A MMU resolve os endereços durante a execução das instruções
 - As instruções de alteração da MMU são priveligiadas
 - No estado do processo está a sua configuração (registos base e limite de segmentos, ou registos base e limite da tabela de páginas)
 - Gere a memória secundária (swap/paging) para oferecer memória virtual -> mais à frente

N V FACULDAD CIÊNCIAS DEPARTAME

Níveis de gestão de memória

- Processo
 - · Cada processo/programa gere o seu espaço virtual
 - Na compilação/ligação define dimensões dos segmentos lógicos para diferentes fins e suas permissões:
 - · Código, Pilha, Dados estáticos, Dados dinâmicos (heap)
 - Pede ao sistema o mapeamento do espaço virtual
 - · No início e durante o funcionamento
 - A zona de heap atribuída pelo SO é gerida pelo processo/programador:
 - normalmente usando o runtime da linguagem ou bibliotecas standard: malloc/free; new/delete; new/GC; ...
 - Outras zonas, explicitamente pelo programador:
 - mmap/munmap; ... → mais à frente

FACULDADE DE CIÊNCIAS E TEC DEPAREAMENTO D

Gestão interna ao processo

- Gestão do seu Heap, a cargo do processo
 - · em bibliotecas ou runtime da linguagem
 - exemplo: malloc/free, new/delete, etc...
- gerir memória atribuída em blocos livres e ocupados
 - pode precisar de pedir mais memória ao SO para o processo crescer
 - exemplo: malloc(size)
 - · atribui dos blocos livres, eventualmente do último no fim do heap, ou pede mais memória ao SO

• mas não pode compactar...

Estratégias para gestão de espaço

- As estratégias devem ser bastante eficientes em espaço e tempo
- Escolher de entre os espaços livres:
 - · estrategias para blocos de tamanho variável: best-fit, worst-fit, firstfit, etc
 - · atribuir tudo ou partir o bloco (spliting)
- Libertar espaço
 - Juntar aos espaços livres, com eventual fusão com os existentes (coalescing)
- · Combatendo a fragmentação
 - Mover blocos ocupados para compactar e juntar os blocos livres: possível pelo SO pois os endereços virtuais da arquitetura permitem mover os processos; dificil dentro do processo

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMA.

Gestão de memória pelo SO

- Endereçamento virtual por segmentos ou páginas permite multiprocessamento com proteção e isolamento
- Hardware de endereçamento (MMU) mais complicado e lento com páginas
 - mas usa a TLB para reduzir o problema
- Páginas não necessitam de estratégias de atribuição complicadas
 - Sempre best-fit
- Uso de páginas é mais flexível e poderoso
 - deixa de ter fragmentação externa (reduz a interna) não necessita de compactar
 - é fácil crescer e reduzir os processos
 - permite partilha de frames (memória partilhada entre processo)
 - poupa memória, novas funcionalidades, ...
 - e mais...

11

Gestão das páginas dos processos

- As páginas permitem maior eficiência na gestão da memória central e na criação de processos:
 - O novo processo começa com a mesma memória do pai
 - · Ocupa menos espaço real
 - · Na tabela, as páginas de código são marcadas como Exec, Read-Only e partilhadas
 - A copia da restante memória será "lazy": em ambas as tabelas, as áreas de dados e "stack" são marcadas como páginas Read-Only para COPY-on-WRITE

Copy-on-Write

- Só quando se tenta modificar a página partilhada é que se procede à sua duplicação (cópia)
 - Para a MMU a página não pode ser escrita
 - Quando se tenta um escrita (exemplo: mov para memória) é levantada uma interrupção pela MMU
 - O SO atende e atribui uma nova frame ao processo que toma o lugar da página que deu lugar à interrupção
 - copia conteúdo, se necessário
 - atualiza nas tabelas de páginas dos processos para leitura e escrita
- Esta técnica permite que o pai e o filho partilhem todas as páginas em memória (incluindo os dados e a pilha) que não sejam escritas.

13

Paginação a pedido (on-demand)

- O SO pode seguir também a abordagem "lazy" no carregamento da nova imagem do programa
- Carrega o novo programa por paginação a pedido:
 - Cada página virtual tem associada um bit de presença (poderá ser o de validade ou não)
 - só é mapeada em memória física (ou seja, só lhe é atribuído um *frame*) quando é referenciada
 - O hardware notifica a falta de página (page fault) por interrupção; passa ao SO o problema...
 - Se válida, o SO obtém um frame livre e inicia-o
 - por exemplo, com o conteúdo do respectivo ficheiro executável (dados ou código)

Atribuição de frames

- O SO mantém numa tabela de frames se estão ocupadas/livres
- Quando é necessário, atribuir uma frame a uma página de um processo:
 - · porque está em copy-on-write
 - porque é paginação a pedido
 - porque o processo pediu mais memória e pode pedir
- Obtém uma na tabela de livres
 - se encontra, marca ocupada, atualiza o seu conteúdo e a tabela do processo, que continua
- Se não? O que fazer?
 - guardar em disco uma frame ocupada e atribuir-la a esta página
 - semelhante às tecnicas das caches, mas agora entre RAM e disco
- Memória Virtual, por extensão da memória central para memória secundária

17

Tratamento de interrupções da MMU

- Acesso a um endereço numa página que não está em memória ou não é válida, é uma exceção e o SO intervém:
 - Se página inválida (fora da imagem atribuída ao processo) ⇒ aborta o programa (ex: SIGSEGV - "Segmentation Fault").
 - Se acesso inválido para as permissões ⇒ verifica se copy-on-write, se não aborta
 - Se válida mas falta a página ⇒ trata a falta de página
- Tratamento de falta de página (page fault):
 - Obtém uma "frame" livre. Se não houver, liberta uma usando uma política de substituição → guarda-a em disco (swap out)
 - Carrega a página nesse "frame" (a zeros ou swap in)
 - Atualiza a tabela de páginas (nº frame e presente/válida)
- Retoma à instrução que provocou a interrupção

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE INFORMÁ:

SO com Paginação a pedido

- O SO só mapeia a página para memória quando é referenciada (quando é pedida). Se o conteúdo já está num frame (ex: uma página de outro processo) tenta partilhar
 - Menos I/O (em principio)
 - · Menos RAM utilizada
 - · Tempo de resposta menor
 - · Mais programas em RAM
- No caso do código, está sempre no ficheiro executável
 - É como se o ficheiro esteja mapeado em memória
 - A memória tem uma cópia do ficheiro, possivelmente parcial (como uma "cache" do ficheiro)
- Permite-se que o SO guarde frames em disco (swap out) quando tem falta de memória física
 - A paginação a pedido volta a carregar quando necessário

21

Memória virtual com paginação a pedido

- Permite memória virtual de dimensão arbitrária:
 - Usa o disco para "estender" a memória real
 - Gere a memória real como uma cache para todas as imagens dos processos/ficheiros em disco
- Memória virtual (VM) separação da memória lógica (virtual) da memória física
 - MV definida pelo espaço de endereçamento lógico (ou virtuais)
 - Só parte da imagem do processo precisa de estar em memória
 - Um processo pode ter mapa de memória > memória física
 - É possível ter memória física < soma das imagens de todos os processos
 - Todas as páginas dos processos podem ser guardadas em memória secundária, tipicamente chamado disco/ficheiro de paginação ou
 - As páginas em swap só voltam para memória central quando são novamente referenciadas

FACULDADE DE CIÊNCIAS E TECNOLOGIA DEPAREMENTO DE INFORMÁTICA