Intergralen

Defenition

$$I[f(x)] = D^{-1}[f(x)]$$

Betekningar

Primitive function: I[f(x)], If(x), $\int f(x)dx$, F(x)

Räkneregler

Partiell integration

Om
$$f(x) = a(x) \cdot b(x)$$
 då är det möjligt att göra följande $I[f(x)] = a(x) \cdot B(x) - I[a'(x) \cdot b(x)]$

Variabelsubstitution

$$I[f(x)], x = u(y) \Rightarrow y = v(x), x \rightarrow y$$

 $I[f(y) \cdot v'(y)]$

Funktion	Intergral
x^a , $a \neq -1$	$\frac{x^{a+1}}{a+1} + C$
$\frac{1}{x}$	$\ln x + C$
$\frac{1}{x^2}$	$-\frac{1}{x}+C$
$\frac{1}{x-a}$	$\ln x-a +C$
$\sin(x)$	$-\cos(x) + C$
$\sin(kx)$	$\frac{-\cos(kx)}{k} + C$
$\cos(x)$	$\sin(x) + C$
$\cos(kx)$	$\frac{\sin(kx)}{k} + C$
$\sin^2(x)$	$\frac{x - \sin(x) \cdot \cos(x)}{2} + C$
$\cos^2(x)$	$\frac{x + \sin(x) \cdot \cos(x)}{2} + C$
$\frac{1}{1+x^2}$	$\arctan(x) + C$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x) + C$
e^x	$e^x + C$
e^{kx}	$\frac{e^{kx}}{k} + C$
$a^x = e^{xln(a)}$	$\frac{a^x}{\ln(a)} + C$
ln(x)	$x \cdot \ln(x) - x + C$