```
In [1]:
ns=6 \#n(S)=\{1,2,3,4,5,6\}
na=1 #n(A)={3}
pa=na/ns
print("probility of getting 3 is:",pa)
probility of getting 3 is: 0.16666666666666666
In [2]:
# prbility of atleast getting one head when a coin is tossed thrice
ns=(8) #n(s)=\{HHH,HHT,HTH,THH,TTT,TTH,THT,HTT\}
na=(7) \#n(A)=\{HHT,HHT,HTH,THH,TTH,THT,HTT\}
pa=na/ns
print("probility of getting head is:",pa)
probility of getting head is: 0.875
In [3]:
# A glass jar contain 5 red ,3 blue and 2 green jelly beans.
ns=10 \ \#n(S)=\{R,R,R,R,R,B,B,B,G,G,G,G\}
na=7
pa=na/ns
print("prboility of ")
prboility of
In [4]:
p=0.7*0.5
print("prboililty that they will be alive after 20 year is:",p)
prboililty that they will be alive after 20 year is: 0.35
In [5]:
def event probability(n,s):
    return n/s
In [6]:
# A fair die is tossed twice.find the prboility of getting
# a 4 or 5 on the first toss and a 1,2 or 3 in the second toss.
pa=event_probability(2,6)
```

print("probability of getting a 4 or 5 on the first toss and a 1,2,or 3 in the second toss

pb=event_probability(3,6)

p=pa*pb

```
In [7]:
```

```
def event_probability(n,s):
    return n/s
pw=event_probability(5,10)
pb=event_probability(3,9)
pg=event_probability(2,8)
p=pw*pb*pg
print("probability of obtaining white,black,and green in tha order :",p)
```

In [8]:

```
#sample space
cards=52
heart=13
clubs=13
heart_or_club=event_probability(heart,cards)+event_probability(clubs,cards)
print(heart_or_club)
```

0.5

In [9]:

```
ace=4
king=4
queen=4
ace_king_or_queen=event_probability(ace,cards)+event_probability(king,cards)+event_probabil
print(ace_king_or_queen)
```

0.23076923076923078

In [10]:

```
cards=52
ace=4
heart=13
ace_of_hearts=1
heart_or_ace=event_probability(heart,cards)+event_probability(ace,cards)-event_probability(
print(heart_or_ace)
```

0.3076923076923077

In [11]:

```
cards=52
ace=4
heart=13
ace_of_hearts=1
event_probability(heart,cards)+event_probability(ace,cards)-event_probability(ace_of_hearts
print(round(heart_or_ace,3))
```

0.308

```
In [12]:
```

```
red=26
facecard=12
red_facecard=6
r=event_probability(red,cards)+event_probability(facecard,cards)-event_probability(red_face
print(round(r,2))
```

0.62

In [13]:

```
ns=6
na=1
pa=1-na/ns
print("probility of getting 5 is:",pa)
```

probility of getting 5 is: 0.8333333333333334

In [14]:

```
card=52
j=4
ace=4
pj=event_probability(j,52)
pa=event_probability(ace,51)
pa_given_j=(pj*pa)/pj
print(pa_given_j)
```

0.0784313725490196

In [15]:

```
import pandas as pd
import numpy as np #conditional probability
df=pd.read_csv("C:/Users/MSCIT/Downloads/student-mat - student-mat (1).csv")
df.head(3)
```

Out[15]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	fre
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 4	
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	

3 rows × 33 columns

In [16]:

len(df)

Out[16]:

395

In [17]:

```
df['grade_A']=np.where(df['G3']*5>=80,1,0)
df
```

Out[17]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 freetime
(GP	F	18	U	GT3	Α	4	4	at_home	teacher	 :
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 3
2	: GP	F	15	U	LE3	Т	1	1	at_home	other	 3
3	GP	F	15	U	GT3	Т	4	2	health	services	 2
4	GP GP	F	16	U	GT3	Т	3	3	other	other	 3
390	MS	М	20	U	LE3	Α	2	2	services	services	 ŧ
391	MS	М	17	U	LE3	Т	3	1	services	services	 ۷
392	. MS	М	21	R	GT3	Т	1	1	other	other	 ŧ
393	MS MS	М	18	R	LE3	Т	3	2	services	other	 ۷
394	MS	М	19	U	LE3	Т	1	1	other	at_home	 2

395 rows × 34 columns

In [18]:

```
df['high_absences']=np.where(df['absences']>=10,1,0)
df
```

Out[18]:

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 goout
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 4
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 3
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 2
3	GP	F	15	U	GT3	Т	4	2	health	services	 2
4	GP	F	16	U	GT3	Т	3	3	other	other	 2
390	MS	М	20	U	LE3	Α	2	2	services	services	 4
391	MS	М	17	U	LE3	Т	3	1	services	services	 5
392	MS	М	21	R	GT3	Т	1	1	other	other	 3
393	MS	М	18	R	LE3	Т	3	2	services	other	 1
394	MS	М	19	U	LE3	Т	1	1	other	at_home	 3

395 rows × 35 columns

In [19]:

```
df['count']=1
df
```

Out[19]:

		school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	•••	Dalc	٧
_	0	GP	F	18	U	GT3	Α	4	4	at_home	teacher		1	
	1	GP	F	17	U	GT3	Т	1	1	at_home	other		1	
	2	GP	F	15	U	LE3	Т	1	1	at_home	other		2	
	3	GP	F	15	U	GT3	Т	4	2	health	services		1	
	4	GP	F	16	U	GT3	Т	3	3	other	other		1	
	390	MS	М	20	U	LE3	Α	2	2	services	services		4	
	391	MS	М	17	U	LE3	Т	3	1	services	services		3	
	392	MS	М	21	R	GT3	Т	1	1	other	other		3	
	393	MS	М	18	R	LE3	Т	3	2	services	other		3	
	394	MS	М	19	U	LE3	Т	1	1	other	at_home		3	

395 rows × 36 columns

In [20]:

```
df=df[['grade_A','high_absences','count']]
df.head()
```

Out[20]:

	grade_A	high_absences	count
0	0	0	1
1	0	0	1
2	0	1	1
3	0	0	1
4	0	0	1

In [21]:

```
df=df[['grade_A','high_absences','count']]
df.head(395)
```

Out[21]:

	grade_A	high_absences	count
0	0	0	1
1	0	0	1
2	0	1	1
3	0	0	1
4	0	0	1
390	0	1	1
391	1	0	1
392	0	0	1
393	0	0	1
394	0	0	1

395 rows × 3 columns

In [22]:

```
final=pd.pivot_table(
    df,
    values='count',
    index=['grade_A'],
    columns=['high_absences'],
    aggfunc=np.size,
    fill_value=0
)
print(final)
```

```
high_absences 0 1 grade_A 0 277 78 1 35 5
```

In [27]:

```
total=final.iloc[0,0]+final.iloc[0,1]+final.iloc[1,0]+final.iloc[1,1]
p_a=(final.iloc[1,0]+final.iloc[1,1])/total
p_a
```

Out[27]:

0.10126582278481013

```
In [34]:
total=final.iloc[0,0]+final.iloc[0,1]+final.iloc[1,0]+final.iloc[1,1]
p_b=(final.iloc[0,1]+final.iloc[1,1])/total
p_b
Out[34]:
0.21012658227848102
In [36]:
p_c=(final.iloc[1,1])/total
p_c
Out[36]:
0.012658227848101266
In [37]:
p_d=p_c/p_b
p_d
Out[37]:
0.060240963855421686
In [ ]:
```