Raphael Gaedtke, Paul Neumann

University of Bonn

January 10, 2025



Representation Theory

- 1 Representation Theory
- 2 Finite abelian groups
- 3 Formalization
- 4 Mathlib
- 5 Future work



Representation Theory

For a group G and a field k, a **representation** of G over k is a pair  $(V, \rho)$  where V is a vector space over k and  $\rho : G \to GL(V)$  is an action of G on V.

Representation Theory

For a group G and a field k, a representation of G over k is a pair  $(V, \rho)$  where V is a vector space over k and  $\rho: G \to GL(V)$  is an action of G on V.

Convention: V has finite dimension, unless explicitly stated otherwise.

#### Definition

 $\dim(V)$  is the **dimension** or **degree** of  $(V, \rho)$ .



$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$



$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$



Representation  $\rho: D_{2n} \to \mathsf{GL}(\mathbb{R}^3)$  with

- $\rho(a)$  as rotation about the Z-axis
- ullet  $\rho(b)$  as a rotation about a suitable axis in the XY-plane



Representation Theory

Let V be a representation and  $U \subseteq V$  a subspace. U is an invariant subspace if  $gu \in U$  for  $\forall u \in U, g \in G$ .



## Invariant subspaces, Irreducibility

## Definition

Let V be a representation and  $U \subseteq V$  a subspace. U is an invariant subspace if  $gu \in U$  for  $\forall u \in U, g \in G$ .

## Example



## Invariant subspaces, Irreducibility

## Definition

Representation Theory

Let V be a representation and  $U \subseteq V$  a subspace. U is an invariant subspace if  $gu \in U$  for  $\forall u \in U, g \in G$ .

### Example



The XY-Plane is an invariant subspace.

Representation Theory

A representation V is **irreducible** provided  $V \neq 0$  and the only invariant subspaces are 0 and V.

Representation Theory

A representation V is **irreducible** provided  $V \neq 0$  and the only invariant subspaces are 0 and V.

#### Definition

For representations V and W, a **homomorphism** is a linear map  $\theta: V \to W$  with  $\theta(gv) = g\theta(v)$  for  $\forall g \in G, v \in V$ .



Representation Theory

A representation V is irreducible provided  $V \neq 0$  and the only invariant subspaces are 0 and V.

### Definition

For representations V and W, a homomorphism is a linear map  $\theta: V \to W$  with  $\theta(gv) = g\theta(v)$  for  $\forall g \in G, v \in V$ .

- $\blacksquare$  Im( $\theta$ ) and Ker( $\theta$ ) are invariant subspaces
- If V and W are irreducible, then  $\theta: V \to W$  is 0 or bijective.



## Main theorem formalized in this project

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

Representation Theory

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

#### $\mathsf{Theorem}$

Representation Theory

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k.

Let  $\rho: G \to GL(V)$  be a representation.

This theorem is listed on the "Missing undergraduate mathematics in mathlib"-page.

#### $\mathsf{Theorem}$

Representation Theory

Let G be a finite abelian group.

Let V be a non-null vector space over an algebraically closed field k. Let  $\rho: G \to GL(V)$  be a representation.

Then  $\rho$  is irreducible if and only if  $\dim_k(V) = 1$ .



Representation Theory

 $\rho$  is irreducible if and only if  $\dim_k(V) = 1$ .



Representation Theory

 $\rho$  is irreducible if and only if  $\dim_k(V) = 1$ .

"

is trivial.

Representation Theory

 $\rho$  is irreducible if and only if  $\dim_k(V) = 1$ .

For "⇒", we use the following two lemmas:

#### Lemma

For all  $g \in G$ ,  $\rho(g)$  is a Representation Endomorphism.



Representation Theory

 $\rho$  is irreducible if and only if  $\dim_k(V) = 1$ .

"

is trivial.

For "⇒", we use the following two lemmas:

#### Lemma

For all  $g \in G$ ,  $\rho(g)$  is a Representation Endomorphism.

#### Lemma

Every Representation Endomorphism is given by multiplication with a scalar.



With these two lemmas, we can prove the following fact:

#### Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

With these two lemmas, we can prove the following fact:

#### Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.



## Proof of the theorem

With these two lemmas, we can prove the following fact:

#### Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

Now, we can use proof by contradiction:

**1** Assume dim(V) > 1.

Mathlih

## Proof of the theorem

With these two lemmas, we can prove the following fact:

#### Lemma

Every one-dimensional subspace of V is an invariant subspace.

- 2 Then, V has a proper subspace with dimension 1.



With these two lemmas, we can prove the following fact:

#### Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

- $\mathbf{2}$  Then, V has a proper subspace with dimension 1.
- f 3 So V has a proper invariant subspace.



## Proof of the theorem

With these two lemmas, we can prove the following fact:

#### Lemma

Representation Theory

Every one-dimensional subspace of V is an invariant subspace.

- **2** Then, V has a proper subspace with dimension 1.
- $\blacksquare$  So V has a proper invariant subspace.
- 4 This is a contradiction to the irreducibility of V.



## Representations in Mathlib

Representations are already defined in Mathlib:

abbrev Representation := 
$$G \rightarrow * V \rightarrow_1 [k] V$$

end

Representations are already defined in Mathlib:

abbrev Representation := 
$$G \rightarrow * V \rightarrow_1[k] V$$

#### end

Representation Theory

Apart from that, the definitions introduced in the beginning of this presentation are missing in Mathlib.



```
/-- A predicate for a subspace being invariant -/
def IsInvariantSubspace {k G V : Type*} [CommSemiring k]
    [Monoid G] [AddCommMonoid V] [Module k V]
  (U : Submodule k V) (\rho : Representation k G V) :=
  \forall g : G, \forall u : U, \rho g u \in U
/-- defines degree of a representation as rank of its
    module -/
def degree {k G V : Type*} [CommSemiring k] [Monoid G]
    [AddCommMonoid V] [Module k V]
  (\rho : Representation k G V) : Cardinal := (Module.rank k
    V)
```

## Representation Homomorphisms

### Definition

For representations V and W, a **homomorphism** is a linear map  $\theta: V \to W$  with  $\theta(gv) = g\theta(v)$  for  $\forall g \in G, v \in V$ .

Representation Theory

For representations V and W, a **homomorphism** is a linear map  $\theta: V \to W$  with  $\theta(gv) = g\theta(v)$  for  $\forall g \in G, v \in V$ .

```
/-- Definition of Homomorhpisms between Representations -/ @[ext] class RepresentationHom {k G V W : Type*} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W]  (\rho : \text{Representation k G V}) \ (\psi : \text{Representation k G W})  extends LinearMap (RingHom.id k) V W where reprStructure : \forall g : G, \forall v : V, toLinearMap (\rho g v) = \psi g (toLinearMap v)
```



```
/-- Coercions of RepresentationHom to Function and Linear Map-/ instance {k G V W : Type*} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W] {\rho : Representation k G V} {\psi : Representation k G W} : CoeFun (RepresentationHom \rho \psi ) (fun _ \mapsto V \rightarrow_1[k] W) where coe := by intro \theta use \langle \theta.toFun, ?_\rangle simp; intro x y; simp
```

## Registering Instances

#### Lemma

Representation Theory

For all  $g \in G$ ,  $\rho(g)$  is a Representation Endomorphism.

### Lemma

Representation Theory

For all  $g \in G$ ,  $\rho(g)$  is a Representation Endomorphism.

```
instance repr_yields_reprHom_commMonoid {k G V : Type*}
    [CommSemiring k] [CommMonoid G] [AddCommMonoid V]
    [Module k V]
    (ρ : Representation k G V) (g : G) : (RepresentationHom ρ ρ) where
    toFun := ρ g
    map_add' := by intro x y; simp
    map_smul' := by intro m x; simp
    reprStructure := sorry
```

## Representation Theory in Mathlib

## Things already contained in Mathlib:

- Definition of Representations, basic properties, duality
- Category Theory
- Characters

Representation Theory



## Representation Theory in Mathlib

## Things already contained in Mathlib:

- Definition of Representations, basic properties, duality
- Category Theory
- Characters

## Things not contained in Mathlib:

- Subrepresentations, Homomorphisms, Irreducibility
- Direct sums, reducibility, Maschke for Representations
- . . . .



A representation  $(V, \rho)$  can be "translated" to a module over a k-algebra kG:

A representation  $(V, \rho)$  can be "translated" to a module over a k-algebra kG:

Take a k-module with basis  $\{g|g \in G\}$  and multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\cdot \left(\sum_{h\in G}\mu_h h\right) = \sum_{g,h\in G}\lambda_g \mu_h(gh)$$

A representation  $(V, \rho)$  can be "translated" to a module over a k-algebra kG:

Take a k-module with basis  $\{g|g \in G\}$  and multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\cdot \left(\sum_{h\in G}\mu_h h\right) = \sum_{g,h\in G}\lambda_g \mu_h(gh)$$

with action

Representation Theory

$$kG \times V \to V, \left(\sum_{g \in G} \lambda_g g, v\right) \mapsto \sum_{g \in G} \lambda_g(gv).$$



Irreducibility of representations translates to simplicity of modules.

Irreducibility of representations translates to simplicity of modules. Things like the theorem of Maschke are not formulated for Representations, but for modules over algebras.

Irreducibility of representations translates to simplicity of modules. Things like the theorem of Maschke are not formulated for Representations, but for modules over algebras.

- Representation.asModule translates Representation to algebra
- Representation.ofModule translates algebra to Representation



Formalization

Mathlib

Future work

## Future work

■ Connect Algebras and Representations: Irreducibility, ...

- Connect Algebras and Representations: Irreducibility, . . .
- Formulate theorem of Maschke for Representations

- Connect Algebras and Representations: Irreducibility, ...
- Formulate theorem of Maschke for Representations
- Add additional theorems about Representation Theory of finite groups
- . . . .



# Questions?