Logica computazionale

Esame scritto, Gennaio 2024

Risultati

Matricola	Voto
234995	30 e lode
226840	30 e lode
231119	30 e lode
218821	30
209449	30
227839	29
226793	28
230287	28
227665	28
227629	27
226755	27
226791	26
228097	26
231770	21
228055	19
209929	15
227306	14
226746	11
227114	11
218337	11

Soluzioni

TOTALE: 36pt durata 100 minuti

1. Teoria ambiguità (2pt)

Indicare quali delle seguenti affermazioni riguardanti il processo di modellazione sono VERE (una o più):

- 1. Data una rappresentazione analogica c'è sempre una sola rappresentazione linguistica che la descrive **(Falsa)**
- 2. Due rappresentazioni mentali che la stessa persona fa della stessa rappresentazione del mondo, ad esempio in momenti diversi, non sono necessariamente identiche (**Vera**)
- 3. Un modello è una rappresentazione analogica del mondo (Vera)

SOLUZIONE: VEDI MATERIALE DIDATTICO

2. Teoria Logic (4pt)

Indicare quali delle seguenti affermazioni sulle logiche, e loro componenti, sono VERE (una o più):

- 1. Un modello è un sottoinsieme del dominio di interpretazione (Vera)
- 2. La funzione di interpretazione associa uno ed uno solo elemento del dominio ad ogni formula del linguaggio (Vera)
- 3. Un dominio è l'insieme di tutti i possibili fatti che vengono utilizzati per rappresentare analogicamente il mondo (Vera)
- 4. Per ogni fatto contenuto nel dominio di interpretazione, deve esserci nel linguaggio almeno una formula che lo descrive **(Falsa)**
- 5. La relazione di conseguenza logica (|=) della logica LoE è riflessiva (Vera)

SOLUZIONE: VEDI MATERIALE DIDATTICO

3. WFF su tutte le logiche (3 punti)

Indicare quali delle seguenti formule (una o più) sono ben formate ("well formed formulas") nelle logiche indicate, ovvero logica delle entità (LOE), logica delle descrizioni (LOD), la logica delle basi di conoscenza (LODE), la logica descrittiva (LOD).

- 1. La formula Sposata(Sara) è ben formata in linguaggio LOE
- 2. La formula ¬ Sposata(Sara, Antonio) è ben formata in linguaggio LOE
- 3. La formula ∃Sposata.Persona ⊓ Persona è ben formata in linguaggio LOD
- 4. La formula **Nipote ≡ ∃Figlio.Persona** □ **Persona** è ben formata in linguaggio LOD
- 5. La formula Madre

 ∃Figlio.(¬Veicolo) è ben formata in linguaggio LODE
- 6. La formula ¬Veicolo(Sara) è ben formata in linguaggio LODE
- 7. La formula Sposata(Sara) è ben formata in linguaggio LOP
- 8. La formula Sposata_Sara è ben formata in linguaggio LOP
- 9. La formula **Sposata** □ **Femmina** è ben formata in linguaggio LOP

SOLUZIONE:

Facendo riferimento alle BNF di ciascun linguaggio, si evince che:

- La (1) è vera. Qui "Sposata" va inteso come etype.
- La (2) è falsa perché LOE non prevede la negazione.
- La (3) è vera. In LOD abbiamo asserzioni complesse che sono AND di due asserzioni atomiche.
- La (4) è vera perché è una formula complessa, ovvero una definizione.
- La (5) è falsa perché in LODE il target di un quantificatore deve necessariamente essere un etype o un dtype (mentre qui è presente una negazione).
- La (6) è vera perché LODE (a differenza di LOE) permette formule che rappresentano la negazione di fatti.
- La (7) è falsa perché Sposata(Sara) non è una proposizione.
- La (8) è vera perché è una proposizione atomica.
- La (9) è falsa perché l'AND si rappresenta col simbolo ∧ (non col simbolo □)

4. Passare da un KG alla formalizzazione in LOE (6 punti)

Sia dato il grafo di conoscenza ("knowledge graph"), sotto rappresentato, che riporta informazioni sui luoghi di lavoro e abitazione e sull'età di due persone. L'età è espressa in anni, ovvero numeri interi. Indicare per quali dei domini D = <E, {C}, {R}> della Logica delle Entità ("Logic of Entities") sotto riportati, esiste una funzione di interpretazione che formalizza correttamente i contenuti del grafo. Si assuma che tutte le etichette presenti nel grafo indichino elementi del dominio diversi.

1. (F) Il dominio D è così composto

E = {Stefano, Silvia, Bari, Trani, trenta, cinquantaquattro},

{C} = {Persona, entity, integer, dtype}

{R} = {abita, lavora, età}

2. (V) Il dominio D è così composto

E = {Stefano, Silvia, Bari, Trani, 30, 54}

{C} = {Persona, Città, entity, integer, dtype}

{R} = {abita, lavora, età}

3. (V) Il dominio D è così composto

E = {Stefano, Silvia, Bari, Trani, 30, 54}

{C} = {Persona, entity, integer, dtype}

{R} = {abita, lavora, età}

4. (V) Il dominio D è così composto

E = {Stefano, Silvia, Bari, Trani, 30, 35, 38, 40, 45, 54}

{C} = {Persona, entity, integer, dtype}

{R} = {abita, lavora, età}

5. (F) Il dominio D è così composto

```
E = {Stefano, Silvia, Bari, 30, 54}
{C} = {Persona, integer, entity, dtype}
{R} = {abita, lavora, età}
6. (V) Il dominio D è così composto
```

E = {Stefano, Silvia, Bolzano, Trento, 30, 54}

{C} = {Persona, integer, entity, dtype}

{R} = {abita, lavora, età}

7. (F) Il dominio D è così composto

```
E = {Stefano, Silvia, Bari, 30, 54}
{C} = {Persona, abita, integer, entity, dtype}
{R} = {lavora, età}
```

8. (F) Il dominio D è così composto

```
E = {Stefano, Silvia, Bari, Trani, 30, 54}, {C} = {Persona, integer, entity, dtype}
```

SOLUZIONE

- La (1) è falsa perché in E le età si devono rappresentare come interi (integer), dove nome e valore devono coincidere; questo è vero per tutti i data value.
- La (2) è vera perché va bene aggiungere in D più elementi rispetto a quelli rappresentati nel grafo (un modello è un sottoinsieme del dominio), ovvero nel caso specifico "Città" come etype inteso anche se non esplicitamente rappresentato nel grafo; da notare che entity e dtype vanno sempre messi in {C}.
- La (3) è vera perché le città qui sono rappresentate come elementi dell'insieme entity, ossia dell'insieme che contiene tutte le entità.
- La (4) è vera perché il dominio può avere anche più entità in E rispetto al grafo.
- La (5) è falsa perché manca in E un elemento per Trani; un dominio deve avere tutti gli elementi menzionati nel linguaggio, altrimenti non è possibile definire la corrispondente interpretazione.
- La (6) è vera perché la funzione di interpretazione non deve necessariamente preservare i nomi. Ad esempio, basta quindi mappare Bolzano con Bari e Trento con Trani.
- La (7) è falsa perché, dato quanto rappresentato nel grafo, "abita" non può essere un etype.
- La (8) è falsa perché non è una definizione di modello, in quanto la formalizzazione del dominio non è completa; mancano le R.

5. Esercizio I2F NL a LOD (3 punti)

Indicare quali delle seguenti affermazioni circa la corrispondenza tra linguaggio naturale e loro formalizzazione nella logica delle descrizioni ("Logic of Descriptions", LOD) sono VERE (una o più):

La formalizzazione di "I vegetariani sono uomini che non mangiano carne" è
 Vegetariano

☐ Uomo
☐ ¬ ☐ mangia.T (F)

2. La formalizzazione di "I professori onorari sono professori in pensione che insegnano almeno un corso" è

ProfessoreOnorario ⊆ Professore ¬ Pensionato ¬ ∀ insegna.Corso (F)

3. La formalizzazione di "Il cane guida è sempre e solo un cane addestrato che aiuta una persona cieca" è

CaneGuida ≡ Cane □ Addestrato □ ∃ aiuta.(PersonaCieca) (V)

4. La formalizzazione di "I docenti a contratto sono impiegati che insegnano almeno un corso ma non supervisionano studenti" è

```
DocenteAContratto ⊑ Impiegato □ ∃ insegna.Corso □ ¬∃ supervisiona.Studente (V)
```

5. La formalizzazione di "I serpenti sono animali che non hanno zampe" è

Serpente

Animale

¬ ∀ possiede.Zampa (F)

SOLUZIONE:

- 1. La (1) è falsa perché al posto del top (⊤) andava messo carne.
- 2. La (2) è falsa perché per formalizzare che insegnano almeno un corso bisogna utilizzare il quantificatore esistenziale (∃).
- 3. La (3) è vera.
- 4. La (4) è vera.
- 5. La (5) è falsa perché nella traduzione corretta è necessario il quantificatore esistenziale ∃.

6. Esercizio NL a LOP (3 punti)

Supponiamo di rappresentare in logica delle proposizioni ("Logic of Propositions", LOP) le seguenti frasi in lingua italiana.

P = "piove"

Q = "Maria è ammalata"

S = "Giovanni usa l'ombrello"

Indicare quali delle seguenti formalizzazioni in logica delle proposizioni sono corrette (una o più).

- 1. La frase "Piove e Giovanni usa l'ombrello" si traduce come P ∧ S
- 2. La frase "Se piove, allora Maria è ammalata" si traduce come P ∧ ¬Q
- 3. La frase "Giovanni usa l'ombrello, ma non piove" si traduce come $\neg P \supset S$
- 4. La frase "Uno solo tra Giovanni e Maria è ammalato" si traduce come S + Q
- 5. La frase "Giovanni usa l'ombrello indipendentemente dal fatto che piova o meno" si traduce come S

SOLUZIONE:

- La (1) è palesemente vera.
- La (2) è falsa perché la frase indica che stiamo deducendo che Maria è ammalata dal fatto che piove. Di conseguenza va scritta come $P \supset Q$
- La (3) è falsa perché il "ma" va inteso come congiunzione, e quindi la formalizzazione corretta è S ∧ ¬P
- La (4) è falsa perché con le proposizioni a disposizione non possiamo rappresentare il fatto che Giovanni sia malato o meno.
- La (5) è vera perché P non influenza il valore di verità di S; quindi non è necessario inserirle P nella formalizzazione.

7. Semantica di LOP e LODE (4pt)

Sia dato un linguaggio della logica LODE e un linguaggio della logica LOP, dove il secondo è il linguaggio delle proposizioni circa le formule del linguaggio LODE. Nel seguito della domanda, sia nel caso di logiche LODE e LOP, per teorie si intendono sotto-insiemi non vuoti del linguaggio. Indicare quali delle seguenti affermazioni sono vere (una o più):

- 1. **(Vera)** Per ogni asserzione nel linguaggio LODE c'e' una una sola proposizione nel corrispondente linguaggio LOP.
- 2. **(Vera)** La legge del terzo escluso ("Law of excluded middle") non vale per nessuna teoria LODE ma vale per tutte le teorie LOP.
- 3. **(Vera)** Una formula di LOP, atomica o complessa, deve avere sempre uno ed uno solo valore di verità.
- (Vera) L'interpretazione I(A □ B) della formula "A □ B", con I(A)= T ed I(B)=T è I(A □ B) = T.
- 5. (Falsa) In LOP non esistono teorie che non hanno modelli.

SOLUZIONE: VEDI MATERIALE DIDATTICO

8. Esercizio Truth tables e entailment in LOP (6 punti)

Date le seguenti due formule

$$F = \neg(\neg p \land \neg q \land \neg r) \land (\neg p \lor q \lor r)$$

$$G = q \vee r$$

verificare quali delle seguenti affermazioni sono vere (suggerimento: utilizzare le tabelle di verità).

- 1. F = G e non G = F
- 2. F ≡ G
- 3. ¬F ∨ G è valida
- 4. ¬F ∨ G è insoddisfacibile
- 5. La teoria $T = \{F, \neg G\}$ non è soddisfacibile
- 6. $M = \{p, q, r\}$ è un modello di $T = \{\neg F, \neg G\}$
- 7. $M = \{p\} \hat{e} \text{ un modello di } T = \{\neg F, \neg G\}$
- 8. Il modello minimo ("minimal model") di $T = {\neg F, \neg G}$ esiste ed è $M = {p}$

SOLUZIONE. Cominciare col calcolare la tabella di verità

р	q	r	¬(¬p ∧ ¬q ∧	(¬p ∨ q ∨ r)	F	G	¬F ∨ G	F \wedge \neg G	¬F∧¬
F	F	F	F	T	F	F	Т	F	Т
F	F	Т	Т	Т	Т	Т	Т	F	F
F	Т	F	Т	Т	Т	Т	Т	F	F
F	Т	Т	Т	Т	Т	Т	Т	F	F
Т	F	F	Т	F	F	F	Т	F	Т
Т	F	Т	Т	Т	Т	Т	Т	F	F
Т	Т	F	Т	Т	Т	Т	Т	F	F
Т	Т	Т	Т	Т	Т	Т	Т	F	F

Da cui si evince chiaramente che $F \equiv G$, e di conseguenza $F \models G \in G \models F$ sono entrambi vere. Quindi la (1) è falsa e la (2) è vera. La (3) è chiaramente vera perché tutti gli assegnamenti sono modelli per $\neg F \lor G$. Di conseguenza, la (4) è falsa.

Per verificare se $T = \{F, \neg G\}$ non è soddisfacibile occorre verificare che $F \land \neg G$ non abbia modelli. In effetti, tutti gli assegnamenti ritornano F e di conseguenza la (5) è vera.

Dalla tabella di verità si evince che i modelli di $T = \{\neg F, \neg G\}$ sono i modelli di $\neg F \land \neg G$, ovvero M1 = $\{\}$ e M2 = $\{p\}$. Si evince pertanto che la (6) è falsa, mentre la (7) è vera. Siccome la loro intersezione è l'insieme vuoto, la teoria T non ha un modello minimo. Di conseguenza, la (8) è falsa.

9. Esercizio DPLL (5 punti)

Data la seguente formula ϕ in logica delle proposizioni, indicare quali delle seguenti affermazioni sono vere:

$$(R \supset (P \lor Q)) \land (\neg P \supset (Q \lor R)) \land (Q \supset P) \land (\top \supset \neg P)$$

- 1. La formula ϕ è soddisfacibile
- 2. La formula ϕ è insoddisfacibile
- 3. ¬P, Q, R è una possibile sequenza di assegnamenti generati dall'applicazione del DPLL quando applicata per verificare se la formula ϕ è valida
- 4. $\neg P$, $\neg Q$, $\neg R$ è una possibile sequenza di assegnamenti generati dall'applicazione del DPLL quando applicata per verificare se la formula ϕ è valida
- 5. ¬P, Q, ¬R è una possibile sequenza di assegnamenti generati dall'applicazione del DPLL quando applicata per verificare se la formula ϕ è valida
- 6. ¬P, ¬Q, R è una possibile sequenza di assegnamenti generati dall'applicazione del DPLL quando applicata per verificare se la formula ϕ è valida

SOLUZIONE

Convertiamo la formula in CNF.

$$\begin{split} & \mathsf{CNF}((\mathsf{R} \supset (\mathsf{P} \lor \mathsf{Q})) \, \land \, (\neg \mathsf{P} \supset (\mathsf{Q} \lor \mathsf{R})) \, \land \, (\mathsf{Q} \supset \mathsf{P}) \, \land \, (\tau \supset \neg \mathsf{P})) \\ & \mathsf{CNF}(\mathsf{R} \supset (\mathsf{P} \lor \mathsf{Q})) \, \land \, \mathsf{CNF}(\neg \mathsf{P} \supset (\mathsf{Q} \lor \mathsf{R})) \, \land \, \mathsf{CNF}(\mathsf{Q} \supset \mathsf{P}) \, \land \, \mathsf{CNF}(\tau \supset \neg \mathsf{P}) \\ & \mathsf{CNF}(\neg \mathsf{R}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{P} \lor \mathsf{Q})) \, \land \, (\mathsf{CNF}(\neg \mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q} \lor \mathsf{R})) \, \land \, (\mathsf{CNF}(\neg \mathsf{Q}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{P})) \, \land \\ & \mathsf{CNF}(\neg \mathsf{P}) \\ & \mathsf{CNF}(\neg \mathsf{R}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q}))) \, \land \, (\mathsf{CNF}(\neg \mathsf{P}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{Q}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{R})))) \, \land \, (\mathsf{CNF}(\neg \mathsf{Q}) \, \mathsf{X}) \\ & \mathsf{CNF}(\neg \mathsf{R}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q}))) \, \land \, (\mathsf{CNF}(\neg \mathsf{P}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{Q}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{R})))) \, \land \, (\mathsf{CNF}(\neg \mathsf{Q}) \, \mathsf{X}) \\ & \mathsf{CNF}(\neg \mathsf{R}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q}))) \, \land \, (\mathsf{CNF}(\neg \mathsf{P}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{Q}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{R})))) \, \land \, (\mathsf{CNF}(\neg \mathsf{Q}) \, \mathsf{X}) \\ & \mathsf{CNF}(\neg \mathsf{R}) \, \mathsf{X} \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q}))) \, \land \, (\mathsf{CNF}(\neg \mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q}))) \, \land \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q})) \, \land \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{Q}))) \, \land \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{P}))) \, \land \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \, \mathsf{CNF}(\mathsf{P})) \, \land \, (\mathsf{CNF}(\mathsf{P}) \, \mathsf{X} \,$$

$$CNF(\neg R) \times (CNF(P)) \times CNF(Q))) \wedge (CNF(\neg P) \times (CNF(Q) \times CNF(R)))) \wedge (CNF(\neg Q) \times (CNF(P))) \wedge CNF(\neg P)$$

$$(\neg \mathsf{R}\;\mathsf{X}\;(\mathsf{P}\;\mathsf{X}\;\mathsf{Q}))\;\wedge\;(\neg \mathsf{P}\;\mathsf{X}\;(\mathsf{Q}\;\mathsf{X}\;\mathsf{R}))\;\wedge\;(\neg \mathsf{Q}\;\mathsf{X}\;\mathsf{P})\;\wedge\;\neg \mathsf{P}$$

$$(\neg R \ X \ (P \lor Q)) \land (\neg P \ X \ (Q \lor R)) \land (\neg Q \lor P) \land \neg P$$

$$(\neg R \lor P \lor Q) \land (\neg P \lor Q \lor R) \land (\neg Q \lor P) \land \neg P$$

$$(\neg R \lor P \lor Q) \land (P \lor Q \lor R) \land (\neg Q \lor P) \land \neg P$$

Applichiamo quindi il DPLL a: {{¬R, P, Q}, {P, Q, R}, {P, ¬Q}, {¬P}}.

Osserviamo la presenza di una unit clause che possiamo propagare:

Osserviamo la presenza di una unit clause che possiamo propagare:

$$\{\{\neg R, Q\}, \{Q, R\}, \{\neg Q\}\}\}$$

 $\{\{\neg R, \bot\}, \{\bot, R\}, \{\top\}\}\}$
 $\{\{\neg R\}, \{R\}\}\}$

Osserviamo la presenza di una unit clause che possiamo propagare, scegliendo R (o in alternativa ¬R):

$$\{\{\neg R\}, \{R\}\}$$

 $\{\{\bot\}, \{\top\}\}$

Otteniamo un empty set. Di conseguenza, la procedura restituisce false e la formula ϕ è insoddisfacibile.

Di conseguenza sono vere la (2), la (4) e la (6).