SYSC5405 / BIOM5405

Term Project Launch 19 Nov 2019

Protein Lysine Methylation

- When a protein is methylated, it can change its function, structure, or stability.
 - An important way for the cell to respond to changes/signals in its environment.

Protein Lysine Methylation

- Predicting which lysine residue will be methylated is very difficulty
 - Examine local sequence window centred on lysine.
 - Derive numerical features/descriptors of that window
 - Train/test a pattern classification approach to distinguish methylated/non-methylated sites

The Dataset

- Each window/site has 29 descriptors
 - Computed using ProtDCal

(doi:10.1002/pro.3673)

The Dataset

- Actual class denoted by 'P' or 'N' in final column
- Two CSV data files provided:
 - csv_result-Descriptors_Calibration.csv, containing 4996 rows
 - csv_result-Descriptors_Training.csv, containing 19988 rows
 - Use these however you like...
- We have withheld 5150 rows as a blind test set.
 - The labels of these data will <u>never</u> be released.

Your Goal

 For a site with 29 descriptors, you must predict whether that site will be methylated ('P') or not ('N')

Additional Project Details

- You will be evaluated on:
 - 1) Prediction accuracy over test data set
 - as measured by maximum achievable recall at a precision of at least 50% (Re@Pr50)

$$Score_{Accuracy} = Re@Pr50$$

- 2) How close your predicted Re@Pr50 is to your actual test Re@Pr50
 - Provide a mean and standard deviation σ

$$Score_{precision} = p(x = Score_{actual}), \text{ if } p(x) \sim N(Score_{pred}, \sigma^2)$$

Project Proposal – 26 Nov

- A project proposal presentation detailing:
 - the pattern classification approach that you plan to use,
 - including a source for an implementation of your chosen method.
- This will be a 5 minute presentation with ~6 slides.
- You will be evaluated on the quality of your presentation and your progress to date (i.e. demonstrate that you've started working, have a software framework in place, understand the problem, etc.)

Project Pitch – 3 Dec

- The pitch consisting of a presentation with ~6 slides describing your approach, your predicted accuracy, and how you computed it. Each group will be given 5 minutes to pitch their method as being the best approach. At the conclusion of this class, all groups will be provided with the blind test data set. Slides should cover:
 - a) Quickly review method/implementation
 - b) Describe your experiment design
 - c) Describe any pre-processing of the data
 - d) Describe training/testing protocol
 - e) Describe your meta learning strategy (mandatory)
 - Provide your estimated Re@Pr50 (including the standard deviation of your estimate) and describe your methodology for estimating your "true" Re@Pr50

(i.e. the Re@Pr50 you should expect when applied to new test data).

Order of presentations 6 slides, 5 minutes each

#	Approach	Members	
1	Support vector machines	Pedro C, Daniel K, Eric M	8:38
2	Decision Forests	Andi H, Chanho K, David L	8:43
3	Linear discriminants	Kelly B, Pascale J, Shane S	8:48
4	Convolutional neural networks	Vishwaa B, Niyati D, Reeham H	8:53
5	K-nearest-neighbour	Prathmesh R, Puneet S, Abhinav Y	8:58
6	Recurrent neural networks	Joel MK, Maryam TE, Nidheesh V	9:03
7	Decision trees	Ben E, Mohamed H, Jason M, Ian S	9:08
8	Bayesian belief networks	Anchen L, Zuwen S, Hongzhi Z	9:13
9	Radial basis function networks	Anshumaan AA, Ramanjeet K, Navleen KS, Arjun K	9:18
10	Logistic regression	Mingfang H, Vishnu R, Yiying Z	9:23
11	Feed-forward neural networks	Tarim I, Hamza S, Nizamuddin MS	9:28
12	K-means clustering	Kristen B, Victor C, Matthew M	9:33
13	Probabilistic neural networks	Ash N, Mohamed Z, ???	9:38
14	Gradient-boosted decision trees	Bala PK, Swetha MN, Sreeram S	9:43

Schedule

GOOD LUCK!!!

 $\sqrt{}$

Tuesday 19 Nov: Competition announced.

Tuesday 26 Nov: Project proposal presentations

Tuesday 3 Dec: Pitch presentations given.

3pm Wednesday 4 Dec: Final classification of blind data submitted to instructor.

Thursday 5 Dec: Results announced. Winners glorified. Prizes distributed.

Monday 16 Dec: Final reports submitted electronically via CULearn.