[03-60-231] Assignment 1

$\begin{array}{c} {\rm Stephen~Nusko} \\ 103693282 \end{array}$

September 30, 2013

1 Question 1

1.1 Part b

Construct a truth table for $(((p\Rightarrow q)\Rightarrow (r\Rightarrow p))\Rightarrow (r\Rightarrow p))$

p	q	r	$(p \Rightarrow q)$	$(r \Rightarrow p)$	$((p \Rightarrow q) \Rightarrow (r \Rightarrow p))$	$(r \Rightarrow p)$	$((p \Rightarrow q) \Rightarrow (r \Rightarrow p) \Rightarrow (r \Rightarrow p))$
F	F	F	Τ	Т	T	Т	T
F	F	Т	Τ	F	F	F	T
F	Т	F	Т	Т	Т	Т	T
F	Т	Т	Т	F	F	F	T
T	F	F	F	Т	Т	Т	T
T	F	Т	F	Т	Т	Т	T
T	Т	F	Т	Т	Т	Т	T
Т	Т	Т	Т	Т	Т	Т	T

2 Question 3

2.1 Part f

Prove that $(\alpha \Rightarrow \beta) \lor (\beta \Rightarrow \alpha)$ Solution: (direct proof)

1. $(\alpha \vee \neg \alpha)$	Axiom
2. $(\alpha \vee \neg \alpha) \vee \beta$	1, I1
3. $(\neg \alpha \lor \alpha) \lor \beta$	2, E10
4. $\neg \alpha \lor (\alpha \lor \beta)$	3, E12
5. $\neg \alpha \lor (\beta \lor \alpha)$	4, E10
6. $((\neg \alpha \lor \beta) \lor \alpha)$	5, E12
7. $((\neg \alpha \lor \beta) \lor \alpha) \lor \neg \beta$	6, I1
8. $(\neg \alpha \lor \beta) \lor (\alpha \lor \neg \beta)$	7, E12
9. $(\neg \alpha \lor \beta) \lor (\neg \beta \lor \alpha)$	8, E10
10. $(\alpha \Rightarrow \beta) \lor (\neg \beta \lor \alpha)$	9, E18
11. $(\alpha \Rightarrow \beta) \lor (\beta \Rightarrow \alpha)$	10, E18
Hence, $\vdash ((\alpha \Rightarrow \beta) \lor (\beta \Rightarrow \alpha))$	

2.2 Part n

Prove that $((\alpha \lor \beta) \land (\alpha \Rightarrow \gamma)) \Rightarrow (\gamma \lor \beta)$ Solution: (direct proof)

1. $((\alpha \lor \beta) \land (\alpha \Rightarrow \gamma))$	Hypothesis
2. $(\alpha \vee \beta)$	1, I2
3. $(\neg \neg \alpha \lor \beta)$	1, E15
4. $(\neg \alpha \Rightarrow \beta)$	3, E18
5. $(\neg \beta \Rightarrow \neg \neg \alpha)$	4, E19
6. $(\neg \beta \Rightarrow \alpha)$	5, E15
7. $((\alpha \Rightarrow \gamma) \land (\alpha \lor \beta))$	1, E9
8. $(\alpha \Rightarrow \gamma)$	7, I2
9. $(\neg \beta \Rightarrow \gamma)$	6, 8, 15
10. $(\neg \neg \beta \lor \gamma)$	9, E18
11. $(\beta \lor \gamma)$	10, E15
12. $(\gamma \vee \beta)$	11, E10
Hence, $\vdash ((\alpha \lor \beta) \land (\alpha \Rightarrow \gamma)) \Rightarrow (\gamma \lor \beta)$	

3 Question 4

3.1 Part IV

Prove that $(\alpha \Leftrightarrow \beta) \land (\beta \Leftrightarrow \gamma) \Rightarrow (\alpha \Leftrightarrow \gamma)$ Solution: (direct proof)

1. $(\alpha \Leftrightarrow \beta) \land (\beta \Leftrightarrow \gamma)$	Hypothesis
2. $(\alpha \Leftrightarrow \beta)$	1, I2
3. $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$	2, E20
4. $(\alpha \Rightarrow \beta)$	3, I2
5. $(\beta \Rightarrow \alpha) \land (\alpha \Rightarrow \beta)$	3, E9
6. $(\beta \Rightarrow \alpha)$	5, I2
7. $(\beta \Leftrightarrow \gamma) \land (\alpha \Leftrightarrow \beta)$	1, E9
8. $(\beta \Leftrightarrow \gamma)$	7, I2
9. $(\beta \Rightarrow \gamma) \land (\gamma \Rightarrow \beta)$	8, E20
10. $(\beta \Rightarrow \gamma)$	9, I2
11. $(\gamma \Rightarrow \beta) \land (\beta \Rightarrow \gamma)$	9, E9
12. $(\gamma \Rightarrow \beta)$	11, I2

13.
$$(\alpha \Rightarrow \gamma)$$
 4, 10, I5

14. $(\gamma \Rightarrow \alpha)$ 12, 6, I5

15. $(\alpha \Rightarrow \gamma) \land (\gamma \Rightarrow \alpha)$ 13, 14, I6

16. $(\alpha \Leftrightarrow \gamma)$ 15, E20

Hence, $\vdash (\alpha \Leftrightarrow \beta) \land (\beta \Leftrightarrow \gamma) \Rightarrow (\alpha \Leftrightarrow \gamma)$

4 Question 6

4.1 Part c

Prove that $(((p \land q) \Rightarrow r) \land ((p \lor q) \Rightarrow u) \land (r \Rightarrow \neg u)) \Rightarrow (p \Rightarrow \neg q)$ Solution: (direct proof)

1. $p \land q \Rightarrow r$	P1
$2. \ p \lor q \Rightarrow u$	P2
3. $r \Rightarrow \neg u$	P3
$4. \ p \land q \Rightarrow \neg u$	1, 3, I5
$5. \ \neg u \Rightarrow \neg (p \lor q)$	2, E19
6. $p \land q \Rightarrow \neg (p \lor q)$	4, 5, I5
7. $\neg (p \land q) \lor \neg (p \lor q)$	6, E18
8. $(\neg p \lor \neg q) \lor \neg (p \lor q)$	7, E16
9. $(\neg p \lor \neg q) \lor (\neg p \land \neg q)$	8, E17
10. $((\neg p \lor \neg q) \lor \neg p) \land ((\neg p \lor \neg q) \lor \neg q)$	9, E14
11. $((\neg p \lor \neg q) \lor \neg p)$	10, I2
12. $((\neg q \lor \neg p) \lor \neg p)$	11, E10
13. $(\neg q \lor (\neg p \lor \neg p))$	12, E12
14. $(\neg q \lor \neg p)$	13, E4
15. $(\neg p \lor \neg q)$	14, E10
16. $p \Rightarrow \neg q$	15, E18
Hence, $\vdash ((p \land q \Rightarrow r) \land (p \lor q \Rightarrow u) \land (r \Rightarrow \neg u)) \Rightarrow (p \Rightarrow \neg q)$	

4.2 Part i

Prove that $((p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow s) \land (\neg r)) \Rightarrow (r \lor s)$ Solution: (direct proof)

1. $p \lor q$	P1
$2. p \Rightarrow r$	P2
3. $q \Rightarrow s$	P3
$4. \ \neg r$	P4
5. $\neg \neg p \lor q$	1, E15
6. $\neg p \Rightarrow q$	5, E18
7. $\neg r \Rightarrow \neg p$	2, E19
8. $\neg r \Rightarrow q$	7, 6, I5
9. $\neg r \Rightarrow s$	8, 3, I5
10. $\neg \neg r \lor s$	9, E18
11. $r \vee s$	10, E15
Hence, $\vdash ((p \lor q) \land (p \Rightarrow r) \land (q \Rightarrow s) \land (\neg r)) \Rightarrow (r \lor s)$	

5 Question 7

5.1 Part c

Let c be the contract is satisfied.

Let b be the building is completed by November 30th.

Let e be the electrical subcontractor be done by November 10th.

Let m be the bank loses money.

Prove that $((c \Leftrightarrow b) \land (e \Leftrightarrow b) \land (m \Leftrightarrow \neg c)) \Rightarrow (e \Leftrightarrow \neg m)$ Solution: (direct proof)

1. ($(c \Leftrightarrow b)$	P1
2. ($(e \Leftrightarrow b)$	P2
3. ($(m \Leftrightarrow \neg c)$	Р3
4. ($(c\Rightarrow b)\wedge(b\Rightarrow c)$	1, E20
5. ($(c\Rightarrow b)$	4, I2
6. ($(b\Rightarrow c)\wedge(c\Rightarrow b)$	4, E9
7. ($(b\Rightarrow c)$	6, I2
8. ($(e\Rightarrow b)\wedge(b\Rightarrow e)$	2, E20
9. ($(e\Rightarrow b)$	9, I2
10. ($(b\Rightarrow e)\wedge(e\Rightarrow b)$	9, E9

11. $(b \Rightarrow e)$	12, I2
12. $(m \Rightarrow \neg c) \land (\neg c \Rightarrow m)$	3, E20
13. $(m \Rightarrow \neg c)$	15, I2
14. $(\neg c \Rightarrow m) \land (m \Rightarrow \neg c)$	15, E9
15. $(\neg c \Rightarrow m)$	18, I2
16. $(c \Rightarrow \neg m)$	16, E19
17. $(\neg m \Rightarrow c)$	19, E19
18. $(e \Rightarrow c)$	9, 7, I5
19. $(c \Rightarrow e)$	5, 11, I5
20. $(e \Rightarrow \neg m)$	18, 16, I5
21. $(\neg m \Rightarrow e)$	17, 19, I5
22. $(e \Rightarrow \neg m) \land (\neg m \Rightarrow e)$	20, 21, I6
23. $(e \Leftrightarrow \neg m)$	$22,\mathrm{E}20$

Hence, $\vdash ((c \Leftrightarrow b) \land (e \Leftrightarrow b) \land (m \Leftrightarrow \neg c)) \Rightarrow (e \Leftrightarrow \neg m)$ Hence, the electrical subcontractor completes his work by November 10 if and only if the bank does not lose money.