『LTspice で動作を見ながら OP アンプ回路を理解する 一基本的な活用から実用に必須な理論まで一』 正誤表

2023年4月27日時点

頁	行	誤	正
101	本文下から 7行目		異なる数値(たとえば Ver. 17.0.32.0 で
			は 5.33 × 10 ⁻¹⁵ V)。
			現時点では執筆時の転記ミスか LTspice
		$2.60 \times 10^{-18} \mathrm{V}$	のバージョン・アップでの計算精度/アル
		関連してそれ以降の「図(a) の 1.83 ×	ゴリズム変更による差異が原因か判別で
		1016 倍です」	きません。いずれにしても本来は数値と
			してゼロになるもので、本文のように
			「LTspice の計算誤差の範囲」とご理解
			ください。
116	コラム下か	千分の 1 (1×10 ⁻⁵ A)	千分の 1 (1×10 ⁻¹⁵ A)
	ら2行目		- 1 5 が正しいです。

		OP アンプの入力端子が、上が非反転	この図は間違いでキャプションにも「反
119	図 1.30 (b)	入力 (+)、下が反転入力 (一) にな	転増幅回路」とあるように、上が反転入
		っています。	力 (一)、下が非反転入力 (+) になる
			のが正しいです。
	図 5.6	OP アンプのシンボルの中央に記載し	容量 C _T が抵抗のシンボルになっているの
239		ている容量 C _T が抵抗のシンボルにな	は間違いで、本来は容量(コンデンサ)
		っています。	のシンボルが正しいです。
		回路図中の素子定数が図 7.19 と同じ	図 7.19(チェビシェフ LPF)は正しく、
	図 7.21	になっています。	図 7.21(ベッセル LPF)は以下(次ペー
308			ジ) の図の素子定数が正しいものとなり
308			ます。なお GitHub に登録してあるシミュ
			レーション・ファイルは正しいものにな
			っています。

Т

Г

Т

		図 1.14 の C1 が 470pF では、図 1.15	執筆時に使用していたバージョン(記録
		の波形にならない。	を失念したため、バージョン番号自体は
			不明)での ADA4077-2 の SPICE モデルと
			2023 年 4 月 27 日時点でのバージョン
			(17.0.36.0) のモデルとで、モデルのパ
332	2, 図 1.14		ラメータが異なっているようで、このよ
333	3 図 1.15		うに異なる結果になってしまっていま
			す。常識的に考えても、C1 が 470 pF 程
			度で十分に動作が不安定になることが予
			想されます。そのため確認時点のバージ
			ョン・アップされた SPICE モデルが不適
			切である可能性があります。
		式の分子部分が V _{RTN} になっている。	以下の図 1.46 の誤記と合わせて、以降の
359	到 式(1.15)		頁の図 1.49、図 1.52 でのラベルに統一す
			る意味から、V _{IN} を正しいとします。
	•		·

		下のラベルが VRTN になっている。	上記の式(1.15)の誤記と合わせて、以降の
360			頁の図 1.49、図 1.52 でのラベルに統一す
	図 1.46		る意味から、VIN を正しいとします。
			GitHub のファイル fig-03-01-46.*も VIN に
			修正しました。
		CC が 1.56 pF になっている	これは 1.65 pF が正しいです。図 3.15、
			図 3.16 のようにゲイン・ピーキングを
			3dB に設定するのが、定数決定の趣旨で
402	図 3.6		あるため。GitHub のファイル fig-03-03-
			06.asc も 1.65 pF に修正しました。これに
			より図 3.7 下の波形のオーバ・シュート
			も若干小さくなります。
402	図 3.6 キャプシ	C _C = 1.56 pF	C _C = 1.65 pF
	ョン		
404	本文下から 9 行	安定化容量 Cc = 1.56 pF	安定化容量 C _C = 1.65 pF
404	目		

404	本文下から 4 行	60 pF + 1. <mark>56</mark> pF	60 pF + 1.65 pF
404	目		
404	本文下から2行	1 M Ω \times 1.56 pF) = 102 kHz	1 M Ω × 1.65 pF) = 96.5 kHz
	目		
405	図 3.9	E1 の(s/641e3)の部分	(s/606e3)
405	図 3.9	E2 の(s/16244)の部分	(s/16221)
405	図 3.9	E3 の(s/641e3) /(s/16244)の部分	(s/606e3) /(s/16221)
	図 3.9、図 3.10		ここまでの 3 点の誤記($C_C = 1.56$ pF \rightarrow
			$C_C = 1.65 \text{pF}$)について、GitHub のファイ
405			ル fig-03-03-9.asc も修正しました。また
403			図 3.10 の中央(NUMERATOR)と下
			(FUNCALL)のゼロによる位相進みの周波数
			も若干低下します。
408	本文上から 11	安定化容量 C _C = 1.56 pF	安定化容量 C _C = 1.65 pF
	行目		
			•

		CCが 1.56pF になっている	1.65pF。GitHub のファイル fig-03-03-
408	図 3.13		13.asc も 1.65 pF に修正しました。これに
			より図 3.14 のプロットも若干変化しま
			す。
409	図 3.14	V(vout)/V(vrtn)というラベルが図の上	これは誤記ではなく、 G_{OL} を示していま
		部にある。	す。
419	本文上から 1 行	図 3.26 と同じ 70 kHz あたり	図 3.26 に近い 60 kHz あたり
419	目		
420	図 3.28	図 3.26 と同じ 70 kHz あたり	図 3.26 に近い 60 kHz あたり