

STUDENT ID NO										
										i
										i
			1			ŀ				

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2016/2017

EMG2016 - ELECTROMAGNETIC THEORY

(BE, RE, TE)

30 MAY 2017 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 7 pages excluding cover page with 4 questions only.
- 2. Attempt ALL 4 questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the answer booklet provided.
- 4. Please tear off and attach your completed Smith Chart in the answer booklet.

a) A load of $100 + j150 \Omega$ is connected to a 75 Ω lossless line. Find the following on a Smith Chart:

i)	Reflection coefficient, Γ	
ii)	Standing wave ratio, SWR	[4 marks]
,		[2 marks]
iii)	The load admittance, Y _L	[3 marks]
iv)	The locations of V_{max} and V_{min} with respect to the load.	
v)	Z(d) at 0.4λ from the load	[3+3 marks]
vi)	Z_{in} at the generator, if the line is 0.6 λ long	[5 marks]
ŕ		[5 marks]

Continued...

SS

- a) Explain
 - i) Faraday's Law
 - ii) Ampere's Law
 - iii) Lenz Law

[3+3+3 marks]

- b) Given a sliding bar shown in Figure 2.1, find the following:
 - i) If the sliding bar is fixed to create a square loop with sides of 25cm, and a time varying magnetic field $\vec{B} = \hat{z}10\cos 10^3 t$ (T) is applied, find the V_{emf} induced.

[6 marks]

ii) If the sliding bar moves at a velocity of $u = \hat{y}5$ m/s, and a static magnetic field $\vec{B} = \hat{z}10$ (T) is applied, find the V_{emf} induced.

[5 marks]

iii) In part (ii), does the wire other than the sliding bar contribute to the V_{emf} induced? Explain.

Figure 2.1

c) Calculate the displacement current on a parallel plate capacitor with plate area of 4cm^2 and plate separation of 2mm with a voltage $10\sin(10^3t)$ V applied to its plates. Assume $\epsilon = 2\epsilon_0$

Hint: Displacement current density, $J_d = \frac{\varepsilon}{d} \cdot \frac{\partial V}{\partial t}$

[3 marks]

Continued...

a) Given an electric field $\vec{E}^i = \hat{y} \cdot 10\cos(3 \times 10^8 t - z)$ V/m in air is incident normally on a lossless, nonmagnetic dielectric medium with $\varepsilon = 3\varepsilon_o$. Find the following:

i) The total electric field in region 1 (air)
 [7 marks]
 ii) The total electric field in region 2 (dielectric medium)
 [6 marks]
 iii) The time average power in region 1
 [3 marks]
 iv) The time average power in region 2
 [3 marks]

b) A sinusoidal electric wave is travelling in negative y direction in a lossless medium of $\varepsilon = 3\varepsilon_o$, $\mu = 2\mu_o$. The wave is polarized in \hat{x} with maximum amplitude of 10 V/m and frequency of 10 GHz. Find the expression of \vec{E}

[6 marks]

Continued...

SS

3/7

- a) A rectangular waveguide has dimensions a=1 cm and b=0.5 cm and is filled with a nonmagnetic medium with relative permittivity $\varepsilon_r = 9$.
 - i) What are the modes that can be propagated if the operating frequency is at 11 GHz?

[8 marks]

ii) What is the dominant mode? Explain.

[3 marks]

- b) A rectangular air-filled resonant cavity will resonate at 12 GHz in TE₁₀₁ mode and at 24 GHz in TE₁₁₀ mode. If given a=2b, find the dimension of the resonant cavity.

 [6 marks]
- c) Describe the propagation of TEM, TE and TM waves.

[6 marks]

d) Find the propagation mode of the wave below which propagates in an air filled waveguide.

$$E_z = 10 \sin\left(\frac{2\pi}{a}x\right) \sin\left(\frac{\pi}{b}y\right) \cos(20\pi \times 10^9 t - 3z) V/m$$
[2 marks]

Hint:

$$f_{c,mn} = \frac{1}{2\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$
$$f_{r,mnp} = \frac{1}{2\sqrt{\mu\varepsilon}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{p}{c}\right)^2}$$

Continued...

Appendix: Physical constants

Constant	Symbol	Value
Speed of light in vacuum	С	3x10 ⁸ m/s
Permittivity of free space	ε ₀	8.8542x10 ⁻¹² F/m
Permeability of free space	μο	$1.2567 \times 10^{-6} \text{ N/A}^2$
Intrinsic impedance of free space	ηο	377Ω

Continued...

SS 5/7

The Complete Smith Chart

Black Magic Design

Continued...

EMG2016

The Complete Smith Chart

Black Magic Design

End of Paper

SS