2022 年 10 月第 7 周学习汇总——宋世淼

集成算法

• 目的: 让学习效果更好

• Bagging: 训练多个分类器取平均 $f(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$

• Boosting: 从弱学习器开始加强,通过加权来进行训练 $F_m(x) = F_{m-1}(x) + argmin_h \sum_{i=1}^n L(y_i, F_{m-1}(x_i)) + h(x_i) \text{ (加入一颗树,要比原来强)}$

• Stacking:聚合多个分类或回归模型(可以分阶段来做)

• 集成基本思想:

。 训练时用多种分类器一起完成同一份任务

。 测试时对待测样本分别通过不同的分类器, 汇总最后的结果

实验

• 投票策略: 硬投票与软投票

• 硬投票:直接用类别值,少数服从多数

· 软投票: 各自分类器的概率值进行加权平均 (要求必须各个分类器都能得出概率值)

。 实验结果:

分类器选择逻辑回归(LR),随机森林(RF),支持向量机(SVM),以及三者集成

	LR	RF	SVM	Voting(Hard)	Voting(Soft)
Accuracy	0.864	0.896	0.896	0.912	0.920

• Bagging 策略

- 。 首先对训练数据集进行多次采样,保证每次得到的采样数据都是不同的
- 分别训练多个模型,例如树模型
- 预测时需得到所有模型结果再进行集成
- 。 实验结果:

选择单个决策树模型(DecisionTree),以及多个树模型集成

	DecisionTree	Bagging(DecisionTree)	
Accuracy	0.856	0.904	

。 决策边界

• 随机森林

。 特征重要性: 对于分类任务, 数据集的各个特征对分类结果的影响比重

。 鸢尾花数据集特征重要性

	sepal length (cm)	sepal width (cm)	petal length (cm)	pental width (cm)
Importance	0.108	0.022	0.436	0.434

o Mnist 数据集特征重要性热度图

• Boosting 提升策略

AdaBoost

○ Gradient Boosting 梯度提升策略

不同参数对训练的影响

。 训练次数越多,效果不一定越好,找到效果最好的那次,提前停止

