# Quantum Computing: Solutions to (some) Exercises

## Paolo Zuliani

Dipartimento di Informatica Universita di Roma "La Sapienza"

0) Verify that the tensor product is *not* commutative by computing, for example,  $|0\rangle \otimes |1\rangle$  and  $|1\rangle \otimes |0\rangle$ .

Solution: We have that

$$|0\rangle \otimes |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |01\rangle$$

while

$$|1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = |10\rangle$$

thus  $|01\rangle \neq |10\rangle$ .

1) Let q be the quantum bit state  $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ . Compute the tensor product  $q \otimes q \otimes q$  and its norm (it should be 1).

Solution:

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) =$$

$$\frac{1}{2\sqrt{2}}[(|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)] =$$

$$\frac{1}{2\sqrt{2}}[(|00\rangle + |01\rangle + |10\rangle + |11\rangle) \otimes (|0\rangle + |1\rangle)] =$$

$$\frac{1}{2\sqrt{2}}(|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle) + |110\rangle + |111\rangle)$$

where as usual we have omitted the tensor sign  $\otimes$  in the basis states (e.g.,  $|010\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle$ ).

The norm of the product vector is  $\sqrt{8\cdot(\frac{1}{2\sqrt{2}})^2}=\sqrt{8\cdot\frac{1}{4\cdot 2}}=1.$ 

2) Consider measuring a qubit in the state  $\frac{1}{3}|0\rangle+\frac{\sqrt{8}}{3}|1\rangle$ : what are the probabilities of obtaining  $|0\rangle$  and  $|1\rangle$ ? Do they sum to 1?

### Solution:

Prob("measure 
$$|0\rangle$$
") =  $(\frac{1}{3})^2 = \frac{1}{9}$   
Prob("measure  $|1\rangle$ ") =  $(\frac{\sqrt{8}}{3})^2 = \frac{8}{9}$   
Their sum is 1.

- 3) Consider two qubits in the state  $\left[\frac{1}{4}(|00\rangle+|01\rangle)+i\frac{\sqrt{28}}{8}(|10\rangle+|11\rangle)\right]$ . They are now measured. Compute:
  - a. the probability of each of the four 2-qubit basis states and verify that their sum is 1;
  - b. the probability that the first qubit (starting from left) is  $|0\rangle$ ;
  - c. the probability that the two qubits are anticorrelated (e.g., one  $|0\rangle$  and the other  $|1\rangle$ ).

#### Solution:

- a. Prob( "measure  $|00\rangle$ " ) = Prob( "measure  $|01\rangle$ " ) =  $(\frac{1}{4})^2 = \frac{1}{16}$ , while Prob( "measure  $|10\rangle$ " ) = Prob( "measure  $|11\rangle$ " ) =  $(\frac{\sqrt{28}}{8})^2 = \frac{28}{64}$ . Their sum is 1.
- b. Prob("measure  $|00\rangle$ " or "measure  $|01\rangle$ ") =  $2 \cdot \frac{1}{16} = \frac{1}{8}$
- c. Prob("measure  $|01\rangle$ " or "measure  $|10\rangle$ ") =  $\frac{1}{16} + \frac{28}{64} = \frac{1}{2}$

4) Consider two qubits in the state  $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$  (this is an entangled state). Which basis states are measurable with non-zero probability? What is it?

**Solution**: Only  $|00\rangle$  and  $|11\rangle$  are measurable with non-zero probability, which is  $\frac{1}{2}$  for both.

5) Apply the CNOT gate to two qubits in the state  $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ : what is the resulting state? Is it entangled?

Solution:

$$\begin{split} &\mathsf{CNOT}(\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)) = \frac{1}{\sqrt{2}}\mathsf{CNOT}(|00\rangle + |11\rangle) = \\ &\frac{1}{\sqrt{2}}[\mathsf{CNOT}(|00\rangle) + \mathsf{CNOT}(|11\rangle)] = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) = \\ &\frac{1}{\sqrt{2}}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |0\rangle) = \frac{1}{\sqrt{2}}[(|0\rangle + |1\rangle) \otimes |0\rangle] \end{split}$$

This is not entangled since it is the tensor product of two single-qubit states.

6) Compute  $CNOT(\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle))$ .

Solution:

$$\begin{split} &\mathsf{CNOT}(\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)) = \\ &\frac{1}{2}[\mathsf{CNOT}(|00\rangle) + \mathsf{CNOT}(|01\rangle) + \mathsf{CNOT}(|10\rangle) + \mathsf{CNOT}(|11\rangle)] = \\ &\frac{1}{2}(|00\rangle + |01\rangle + |11\rangle + |10\rangle) = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) \end{split}$$

7) Let  $I_n$  be the  $n \times n$  identity matrix. Verify that  $I_2 \otimes I_2 = I_4$ , that is, the tensor product of the  $2 \times 2$  identity matrices is the  $4 \times 4$  identity matrix.

Solution: Recall that:

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad 0_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Now:

$$I_2 \otimes I_2 = \begin{pmatrix} 1 \cdot I_2 & 0 \cdot I_2 \\ 0 \cdot I_2 & 1 \cdot I_2 \end{pmatrix} = \begin{pmatrix} I_2 & 0_2 \\ 0_2 & I_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I_4$$

## 8) Verify that the circuit



results in the state  $\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle).$ 

**Solution**: Let us denote by  $q_1$  and  $q_2$  the two qubits so that the initial state is  $q_1 \otimes q_2 = |01\rangle$ . We now proceed:

$$\begin{split} &|0\otimes 1\rangle & \text{apply $H$ on $q_1$} \\ &\Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |1\rangle & \text{refactoring} \\ &= \frac{1}{\sqrt{2}}(|01\rangle + |11\rangle) & \text{apply $\mathsf{CNOT}(q_1,q_2)$} \\ &\Rightarrow \mathsf{CNOT}(\frac{1}{\sqrt{2}}(|01\rangle + |11\rangle)) & \text{linearity of $\mathsf{CNOT}$} \\ &= \frac{1}{\sqrt{2}}(\mathsf{CNOT}(|01\rangle) + \mathsf{CNOT}(|11\rangle)) & \text{definition of $\mathsf{CNOT}$} \\ &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) & \end{split}$$

9) Compute the output of the following three-qubit circuit:



**Solution**: Let us denote by  $q_1, q_2$  and  $q_3$  the three qubits, from top to bottom. Note that the rightmost CNOT gate in the circuit acts on qubits  $q_1$  and  $q_3$ .

$$\begin{array}{l} q_1 \otimes q_2 \otimes q_3 = |0 \otimes 0 \otimes 0\rangle & \text{apply $H$ on $q_1$} \\ \Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes |0\rangle \otimes |0\rangle & \text{refactoring} \\ = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \otimes |0\rangle & \text{apply $C\text{NOT}(q_1, q_2)$} \\ \Rightarrow \text{$C\text{NOT}(\frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)) \otimes |0\rangle} & \text{linearity of $C\text{NOT}$} \\ = \frac{1}{\sqrt{2}}(\text{$C\text{NOT}(|00\rangle) + \text{$C\text{NOT}(|10\rangle)$}}) \otimes |0\rangle & \text{definition of $C\text{NOT}$} \\ = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \otimes |0\rangle & \text{refactoring} \\ = \frac{1}{\sqrt{2}}(|000\rangle + |110\rangle) & \text{apply $C\text{NOT}(q_1, q_3)$}; $q_2$ is left untouched} \\ \Rightarrow \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) & \text{apply $C\text{NOT}(q_1, q_3)$}; $q_2$ is left untouched} \end{array}$$

This is the Greenberger–Horne–Zeilinger (GHZ) state. It is clearly entangled.