NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Ku Cheng Yeaw

solutions prepared by Tay Jun Jie

MA2108 Mathematical Analysis I

AY 2009/2010 Sem 1

Question 1

(a) Let M>0 be given and let $\delta=\min\Big\{\sqrt{\frac{2}{M}},2\Big\}$. If $|x+2|<\sqrt{\frac{2}{M}},$ then

$$\frac{1}{(x+2)^2} = \frac{1}{|x+2|^2} > \frac{M}{2}.$$

On the other hand, if |x+2| < 2, then

$$x^2 - 3x + 2 > 2.$$

Therefore, if $|x+2| < \delta$,

$$\Rightarrow \frac{1}{(x+2)^2} > \frac{M}{2} \quad \text{and} \quad x^2 - 3x + 2 > 2$$
$$\Rightarrow \frac{x^2 - 3x + 2}{(x+2)^2} > M$$

(b) Firstly we claim that if S is a set of positive real numbers such that $\sup S = K$, then $\inf \frac{1}{S} = \frac{1}{K}$ where the set $\frac{1}{S} := \left\{ \frac{1}{s} : s \in S \right\}$.

$$\Rightarrow K > 0 \quad \text{and} \quad s \le K \ \forall s \in S$$

$$\Rightarrow \frac{1}{s} \ge \frac{1}{K} \quad \forall s \in S$$

Hence $\frac{1}{K}$ is an lower bound of $\frac{1}{S}$. Now, let $\varepsilon > 0$ be given.

$$\Rightarrow 1 + \varepsilon K > 1$$

$$\Rightarrow \frac{K}{1 + \varepsilon K} < K$$

$$\Rightarrow K - \frac{K}{1 + \varepsilon K} > 0$$

$$\Rightarrow \exists s_0 \in S \text{ such that } s_0 > K - \left(K - \frac{K}{1 + \varepsilon K}\right)$$

$$\Rightarrow \frac{1}{s_0} < \frac{1 + \varepsilon K}{K} = \frac{1}{K} + \varepsilon$$

Thus proving the claim. Let $y_m := \sup \{x_n : 1 \le n \le m\}$ for each positive integer m.

$$\Rightarrow \lim_{m \to \infty} y_m = L$$

$$\Rightarrow \frac{1}{y_m} = \inf \left\{ \frac{1}{x_n} : 1 \le n \le m \right\} \text{ by the claim}$$

$$\Rightarrow \lim \inf \frac{1}{x_n} = \lim_{m \to \infty} \frac{1}{y_m} = \frac{1}{L}$$

Question 2

(a) (i) Since factorials grow faster then exponentials, $\exists N \in \mathbb{N}$ such that $2^{2n} \leq n! \ \forall n \geq N$.

$$\Rightarrow \sum_{n=N}^{\infty} \frac{n!+2^{2n}}{n^n} \leq 2 \sum_{n=N}^{\infty} \frac{n!}{n^n} \leq 2 \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Now, we shall perform the ratio test on $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

$$\lim_{n\to\infty}\left|\frac{(n+1)!}{(n+1)^{n+1}}\div\frac{n!}{n^n}\right|=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n=\frac{1}{e}<1$$

Hence $\sum_{n=N}^{\infty} \frac{n!+2^{2n}}{n^n}$ converges. We conclude that $\sum_{n=1}^{\infty} \frac{n!+2^{2n}}{n^n}$ converges absolutely.

(ii)

$$\sum_{n=1}^{\infty} \frac{n-1}{n\sqrt{n+1}-1} = \sum_{m=1}^{\infty} \frac{m}{(m+1)\sqrt{m+2}-1}$$

Note that $\frac{m}{(m+1)\sqrt{m+2}-1} > 0 \ \forall m \in \mathbb{N}$. We shall perform the limit comparison test with $\sum_{m=1}^{\infty} \frac{1}{\sqrt{m}}$.

$$\lim_{m \to \infty} \frac{m}{(m+1)\sqrt{m+2} - 1} \div \frac{1}{\sqrt{m}} = \lim_{m \to \infty} \frac{1}{\left(1 + \frac{1}{m}\right)\sqrt{1 + \frac{2}{m}} - \frac{1}{m\sqrt{m}}} = 1 > 0$$

Since $\sum_{m=1}^{\infty} \frac{1}{\sqrt{m}}$ diverges, we conclude that $\sum_{n=1}^{\infty} \frac{n-1}{n\sqrt{n+1}-1}$ diverges.

(iii) Firstly, observe that $\cos \frac{4}{\pi} \le \cos \frac{4}{n\pi} < 1 \ \forall n \in \mathbb{N}$.

$$\Rightarrow \frac{\cos\frac{4}{\pi}\sin\frac{n\pi}{4}}{\sqrt{n}} \le \frac{\cos\frac{4}{n\pi}\sin\frac{n\pi}{4}}{\sqrt{n}} < \frac{\sin\frac{n\pi}{4}}{\sqrt{n}}$$

Now $\left(\frac{1}{\sqrt{n}}\right)$ is a decreasing sequence with $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$ and the partial sums of $\sum_{n=1}^{\infty}\sin\frac{n\pi}{4}$ is bounded. By Dirichlet's Test, $\sum_{n=1}^{\infty}\frac{\sin\frac{n\pi}{4}}{\sqrt{n}}$ is convergent. Hence $\sum_{n=1}^{\infty}\frac{\cos\frac{4}{n\pi}\sin\frac{n\pi}{4}}{\sqrt{n}}$ converges. On the other hand, suppose $\sum_{n=1}^{\infty}\left|\frac{\cos\frac{4}{n\pi}\sin\frac{n\pi}{4}}{\sqrt{n}}\right|$ converges. Observe that

$$\left| \frac{\cos \frac{4}{n\pi} \sin \frac{n\pi}{4}}{\sqrt{n}} \right| = \frac{\cos \frac{4}{n\pi} \left| \sin \frac{n\pi}{4} \right|}{\sqrt{n}} \ge \frac{\cos \frac{4}{\pi} \left| \sin \frac{n\pi}{4} \right|}{\sqrt{n}} \ge 0$$

Since $\sum_{n=1}^{\infty} \left| \frac{\cos \frac{4}{n\pi} \sin \frac{n\pi}{4}}{\sqrt{n}} \right|$ converges, we have the absolute convergence of $\sum_{n=1}^{\infty} \frac{\left| \sin \frac{n\pi}{4} \right|}{\sqrt{n}}$. By rearranging $\sum_{n=1}^{\infty} \frac{\left| \sin \frac{n\pi}{4} \right|}{\sqrt{n}}$, we have the convergence of

$$\frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{1}{\sqrt{4k+1}} + \sum_{k=0}^{\infty} \frac{1}{\sqrt{4k+2}} + \frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{1}{\sqrt{4k+3}}.$$

However.

$$\sum_{k=0}^{\infty} \frac{1}{\sqrt{4k+2}} = \frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{1}{\sqrt{2k+1}} \ge \frac{1}{\sqrt{2}} \sum_{k=0}^{\infty} \frac{1}{k+1}.$$

Since $\sum_{k=0}^{\infty} \frac{1}{k+1}$ diverges, we arrived at a contradiction. In conclusion, $\sum_{n=1}^{\infty} \frac{\cos \frac{4}{n\pi} \sin \frac{n\pi}{4}}{\sqrt{n}}$ converges conditionally.

(iv) Firstly, observe that $\frac{1}{4^3} < 2\left(\frac{2}{3}\right)$ and $\frac{1}{4^2} < \left(\frac{2}{3}\right)^2$.

$$\Rightarrow \frac{1}{4^{2k+3}} < 2\left(\frac{2}{3}\right)^{2k+1} \quad \forall k \in \mathbb{Z}_{\geq 0}$$

Now, consider the absolute convergence of the series.

$$\frac{1}{4^{1}} + \frac{2^{1}}{3^{0}} + \frac{1}{4^{3}} + \frac{2^{3}}{3^{2}} + \frac{1}{4^{5}} + \frac{2^{5}}{3^{4}} + \frac{1}{4^{7}} + \frac{2^{7}}{3^{6}} + \frac{1}{4^{9}} + \frac{2^{9}}{3^{8}} + \cdots$$

$$< \frac{1}{4} + 2\left(\frac{2}{3}\right)^{0} + 2\left(\frac{2}{3}\right)^{1} + 2\left(\frac{2}{3}\right)^{2} + 2\left(\frac{2}{3}\right)^{3} + 2\left(\frac{2}{3}\right)^{4} + \cdots$$

$$= \frac{1}{4} + 2\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{n}$$

Since $\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$ converges, we conclude that the series converges absolutely.

(b) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. By the Alternating series test, it is convergent. Now consider the following rearrangement.

$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{41} - \frac{1}{4} + \dots$$

This rearrangement is achieved by adding consecutive odd terms till the sum is at least the next positive integer, then the next even term is added. For example, 1 is the first positive integer and the first odd term is also 1, then the first even term $-\frac{1}{2}$ is added. Continuing, the next positive integer is 2 and we add consecutive odd terms till the sum is at least 2, then the next even term $-\frac{1}{4}$ is added. Hence, the partial sums of the rearranged series will be unbounded above. In conclusion, the rearranged series diverges.

Question 3

- (a) (i) In particular, $\frac{m^2}{1+2m} \in S \ \forall m \in \mathbb{N}$. Since $\lim_{m\to\infty} \frac{m^2}{1+2m} = \infty$, we cannot have S bounded. Hence $\sup S$ does not exist.
 - (ii) Let $m_0 \in \mathbb{N}$ be fixed.

$$\frac{m_0 n}{m_0 + n + 1} = m_0 - \frac{m_0 (m_0 + 1)}{m_0 + n + 1}$$

$$\geq m_0 - \frac{m_0 (m_0 + 1)}{m_0 + 1 + 1}$$

$$= \frac{m_0}{m_0 + 2}$$

$$= 1 - \frac{2}{m_0 + 2}$$

$$\geq 1 - \frac{2}{1 + 2}$$

$$= \frac{1}{3}$$

Since m_0 is arbitrary, we have $s \ge \frac{1}{3} \ \forall s \in S$. Furthermore, by choosing m = n = 1, we have $\frac{1}{3} \in S$. Therefore inf $S = \frac{1}{3}$.

(b) Let $x \in \mathbb{Q} \setminus \{0\}, y \in \mathbb{R} \setminus \mathbb{Q}$.

$$\Rightarrow \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x}$$
 does not exists

Hence f is not continuous at 0. Let $a \in \mathbb{R}$ such that $a \neq 0$ and $a \neq \pm 1$.

$$\Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} \frac{1}{x} = \frac{1}{a} \neq a = \lim_{y \to a} y = \lim_{y \to a} f(y).$$

Thus f is not continuous on $\mathbb{R}\setminus\{\pm 1\}$. Now, let $\varepsilon>0$ be given and let $\delta=\min\{\frac{1}{2},\frac{\varepsilon}{2}\}$. If $|x-1|<\delta$,

$$\Rightarrow \frac{2}{3} < \frac{1}{x} < 2.$$

If $x \in \mathbb{Q}$,

$$\Rightarrow |f(x)-f(1)| = \left|\frac{1}{x}-1\right| = \frac{|x-1|}{|x|} = \frac{|x-1|}{x} < 2\left|x-1\right| < 2\delta \le 2\frac{\varepsilon}{2} = \varepsilon.$$

On the other hand, if $x \in \mathbb{R} \setminus \mathbb{Q}$,

$$\Rightarrow |f(x) - f(1)| = |x - 1| < \delta \le \frac{\varepsilon}{2} < \varepsilon.$$

That is, $\forall x \in \mathbb{R}, |x-1| < \delta \Rightarrow |f(x)-f(1)| < \varepsilon$. Therefore f is continuous at 1. Similarly, if $|x-(-1)| < \delta$,

$$\Rightarrow \frac{1}{|x|} < 2$$

If $x \in \mathbb{Q}$,

$$\Rightarrow |f(x) - f(-1)| = \left| \frac{1}{x} - (-1) \right| = \frac{|x+1|}{|x|} < 2|x+1| < 2\delta \le 2\frac{\varepsilon}{2} = \varepsilon.$$

On the other hand, if $x \in \mathbb{R} \setminus \mathbb{Q}$,

$$\Rightarrow |f(x) - f(-1)| = |x - (-1)| < \delta \le \frac{\varepsilon}{2} < \varepsilon.$$

That is, $\forall x \in \mathbb{R}, |x-1| < \delta \Rightarrow |f(x)-f(-1)| < \varepsilon$. Therefore f is continuous at -1. In conclusion, f is continuous at ± 1 only.

(c) Let $\lambda \in \mathbb{R}$ and (x_n) be a sequence on \mathbb{R} such that $x_n \to 1$. Hence (λx_n) is a sequence in \mathbb{R} such that $\lambda x_n \to \lambda$.

$$\Rightarrow \lim_{n \to \infty} f(\lambda x_n) = \lim_{n \to \infty} x_n f(\lambda) = f(\lambda) \lim_{n \to \infty} x_n = f(\lambda)$$

Hence, f is continuous on \mathbb{R} .

Question 4

(a) (i) Let $x_n = \frac{1}{n+1}$ and $y_n = \frac{1}{(n+1)^2}$ where $n \in \mathbb{N}$. Now, (x_n) and (y_n) are sequences in $(0, \infty)$ with

$$\lim_{n \to \infty} (x_n - y_n) = 0.$$

However,

$$|f(x_n) - f(y_n)| = \left| \ln \frac{1}{n+1} - \ln \frac{1}{(n+1)^2} \right| = |\ln(n+1)| \ge \ln 2$$

Hence f is not uniformly continuous on $(0, \infty)$.

(ii) For $x \in [0,1]$, $x \le 1$ and $x^2 + 1 \ge 1$. Hence $|f(x)| \le 1 \ \forall x \in [0,1]$. On the other hand, for $x \in (1,\infty)$, $x < x^2 < x^2 + 1$. Thus $|f(x)| < 1 \ \forall x \in (1,\infty)$. Henceforth, $|f(x)| \le 1 \ \forall x \in [0,\infty)$. Now, let $\varepsilon > 0$ be given and let $\delta = \frac{\varepsilon}{2}$. Suppose $|x - y| < \delta$ where $x, y \in [0,\infty)$.

$$|f(x) - f(y)| = \left| \frac{x}{x^2 + 1} - \frac{y}{y^2 + 1} \right|$$

$$= |x - y| \frac{|1 - xy|}{(x^2 + 1)(y^2 + 1)}$$

$$\leq |x - y| \frac{1 + |xy|}{(x^2 + 1)(y^2 + 1)} \quad \text{by triangle inequality}$$

$$\leq |x - y| \left(1 + \left| \frac{x}{x^2 + 1} \right| \left| \frac{y}{y^2 + 1} \right| \right)$$

$$\leq |x - y| (1 + 1)$$

$$< \varepsilon$$

Therefore f is uniformly continuous on $[0, \infty)$.

(b) Recall that if g is continuous on $[b, \infty)$ with $\lim_{x\to\infty} f(x)$ existing, then g is uniformly continuous on $[b, \infty)$. As a consequence of the definition of f, we have

$$\lim_{x \to a^+} f(x) = \inf \left\{ f(x) \, : \, x \in I \right\} = L \in \mathbb{R} \quad \text{and} \quad \lim_{x \to \infty} f(x) = \sup \left\{ f(x) \, : \, x \in I \right\} \in \mathbb{R}$$

Let $\varepsilon > 0$ be given. Hence $\exists K > a$ such that $x \in (a, K) \Rightarrow |f(x) - L| < \varepsilon$. Firstly, since $K \in I$, f fulfils the above condition and thus f is uniformly continuous on $[K, \infty)$. So $\exists \delta_1 > 0$ such that $\forall x, y \in [K, \infty)$,

$$|x - y| < \delta_1 \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (1)

Secondly, since f is continuous at K, $\lim_{x\to K^-} f(x)$ exist. As a result,

f is continuous on
$$(a, K)$$
 with $\lim_{x \to a+} f(x)$ and $\lim_{x \to K^{-}} f(x)$ existing.

Hence f is uniformly continuous on (a, K). So $\exists \delta_2 > 0$ such that $\forall x, y \in (a, K)$,

$$|x - y| < \delta_2 \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (2)

Lastly, again by the continuity at K, $\exists \delta_3 > 0$ such that

$$x \in (K - \delta_3, K + \delta_3) \Rightarrow |f(x) - f(K)| < \frac{\varepsilon}{2}.$$
 (3)

Let $\delta = \min \{\delta_1, \delta_2, \delta_3\}$. Let $x, y \in I$ with $|x - y| < \delta$.

Case 1 $x, y \in [K, \infty)$

By (1),
$$|f(x) - f(y)| < \varepsilon$$
.

Case 2 $x, y \in (a, K)$

By (2),
$$|f(x) - f(y)| < \varepsilon$$
.

Case 3 $x \in (a, K)$ and $y \in [K, \infty)$

$$\Rightarrow x, y \in (K - \delta_3, K + \delta_3)$$

$$\Rightarrow |f(x) - f(K)| < \frac{\varepsilon}{2} \quad \text{and} \quad |f(y) - f(K)| < \frac{\varepsilon}{2} \quad \text{by (3)}$$

$$\Rightarrow |f(x) - f(y)| \le |f(x) - f(K)| + |f(y) - f(K)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Case 4 $y \in (a, K)$ and $x \in [K, \infty)$ Similar to Case 3.

Therefore, f is uniformly continuous on I.

Question 5

(a) Suppose f is continuous on I. By Extreme Value Theorem, $\exists m_1 \in I$ such that $f(m_1) \leq f(x) \ \forall x \in I$. By definition, $\exists m_2, m_3 \in I, m_2 \neq m_1, m_2 \neq m_3, m_1 \neq m_3$ such that $f(m_1) = f(m_2) = f(m_3)$. WLOG, assume $m_1 < m_2 < m_3$. Now let $f(m_1) = M$ and let $x_1, x_2 \in I$ such that $m_1 < x_1 < m_2 < x_2 < m_3$.

$$\Rightarrow M < f(x_1)$$
 and $M < f(x_2)$

Let $L = \min \{f(x_1), f(x_2)\}$. Then $M < \frac{M+L}{2} < L$. By Intermediate Value Theorem, $\exists y_1, y_2, y_3, y_4 \in I$ such that $m_1 < y_1 < x_1 < y_2 < m_2 < y_3 < x_2 < y_4 < m_3$ with

$$f(y_1) = f(y_2) = f(y_3) = f(y_4) = \frac{M+L}{2}$$

Hence there is a contradiction and we conclude that f is not continuous on I.

(b) Let $\varepsilon > 0$ be given.

$$\Rightarrow \exists N \in \mathbb{N} \text{ such that } |x_k - c| < \frac{\varepsilon}{2} \ \forall k \geq N$$

By Archimedean Principle,

$$\exists M \in \mathbb{N} \text{ such that } \frac{\sum_{k=1}^{N}|x_k-c|}{n} < \frac{\varepsilon}{2} \; \forall n \geq M$$

Now, let $K = \max\{M, N\}$. If $n \ge K$,

$$|a_n - c| = \left| \frac{\sum_{k=1}^n x_k}{n} - c \right|$$

$$= \left| \frac{\sum_{k=1}^n (x_k - c)}{n} \right|$$

$$\leq \sum_{k=1}^n \frac{|x_k - c|}{n} \quad \text{by triangle inequality}$$

$$= \sum_{k=1}^N \frac{|x_k - c|}{n} + \sum_{k=N+1}^n \frac{|x_k - c|}{n}$$

$$< \frac{\varepsilon}{2} + \frac{n-N}{n} \cdot \frac{\varepsilon}{2}$$

$$< \varepsilon$$

Therefore, $\lim_{n\to\infty} a_n = c$.