vision math for rapid react, 2022

table of variables

variable name	meaning of variable	value
y_{img}	distance from the bottom of the screen in px	$0 < y_{img} < 240$
x_{img}	distance from the center horizontally in px, right = positive and left = negative	$160 < x_{img} < 320$
f	focal length (horizontal)	284.772
h	height from camera to tape in feet	4.8125
z	straight line distance to the target in feet	z
θ	horizontal angle between robot and target	θ
ho	angle between robot and target, vertically	$arctan(\frac{h}{z}$
$z_{ heta}$	distance to target if it's angled	$z_{ heta}$
arphi	vertical tilt up of limelight camera in RADIANS	arphi
y_{i} ,	virtual y_{ima} , where it would be if the FOV is centered	y_v

no tilt in any direction

Assumptions: robot is aligned, limelight FOV is 60 degrees and it's exactly 30 degrees on each side (FOV is centered)

because of how a pinhole camera works, and since no tilt in any axis,

$$egin{aligned} x_{img} &= 0 \ &rac{y_{img}}{f} &= rac{h}{z} \ &z &= rac{hf}{y_{img}} \end{aligned}$$

alternatively,

$$ho = arctan(rac{y_{img}}{f}) = arctan(rac{h}{z})$$

tilt in the horizontal direction

Assumptions: FOV is still centered.

Since there is horizontal tilt, $x_{img} \neq 0$. So we have a right triangle with legs x_{img} , in non-camera verison, and z, and hypotenuse z_{θ} , where z_{θ} is actual distance to target and z is the distance to the target if it were aligned. We already know that

$$z=rac{hf}{y_{img}}$$

so we have that, by the pythagorean theorem,

$$z^2 + (\frac{x_{img}h}{y_{img}})^2 = z_\theta^2$$

solving for z_{θ} , we get

$$z_{ heta} = \sqrt{(rac{hf}{y_{img}})^2 + (rac{x_{img}h}{y_{img}})^2}$$

tilt in the vertical direction

Now the FOV is no longer centered. There is a tilt of φ radians up. For now, we will disregard horizontal tilt and assume we are aligned to the target.

Since $\theta = arctan(\frac{y_{img}}{f})$, we can get the vertical angle of the perceived target. Then since we are adding φ , the target appears further away than expected if φ is positive, so we take $tan(arctan(\frac{y_{img}}{f}) + \varphi)$ as the target is actually further up. Then finally, we take h divided by this to get the distance:

$$z_{arphi} = rac{h}{tan(arctan(rac{y_{img}}{f}) + arphi)}$$

We also get that $y_v = tan(arctan(rac{y_{img}}{f} + arphi)) \cdot f.$

all 3 axis together

So we have that

$$z_{ heta} = \sqrt{(rac{hf}{y_{img}})^2 + (rac{x_{img}h}{y_{img}})^2}$$

$$z_{arphi} = rac{h}{tan(arctan(rac{y_{img}}{f}) + arphi)}$$

When we derived \$z_\theta\$, we had an intermediate equation $z^2+(rac{x_{img}h}{y_{img}})^2=z_{ heta}^2$

Now we have that $z=z_{arphi}$ and that y_v is actually $tan(arctan(rac{y_{img}}{f})+arphi)\cdot f$

Plugging this in, we get

$$(rac{h}{tan(arctan(rac{y_{img}}{f})+arphi)})^2+(rac{x_{img}h}{tan(arctan(rac{y_{img}}{f})+arphi)\cdot f})^2={z_{ heta}}^2$$

Or, solving for z_{θ} :

$$z_{ heta} = \sqrt{(rac{h}{tan(arctan(rac{y_{img}}{f}) + arphi)})^2 + (rac{x_{img}h}{tan(arctan(rac{y_{img}}{f}) + arphi) \cdot f})^2}$$