Practical-5

AIM: Implementation of simple linear regression to predict weight by taking height as input using a student- created dataset (either randomly generated or collected from classmates). Implement multiple linear regression, polynomial regression, lasso, and ridge regression on the winequalityred.csv dataset. Part 1: Predict Weight Using Height

1. Import Libraries:

Import all necessary libraries like Pandas, NumPy, Matplotlib, Seaborn, and scikitlearn in one cell. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

- 2. Load the Height-Weight Dataset:
- o Use the given link to load the dataset into your environment. o Link:

weight-height.csv

df=pd.read_csv('/content/drive/MyDrive/dataset/weight-height.csv')

- 3. Check Data Information: o Use info(), describe() ,etc. methods to get a summary of the dataset (mean, min, max values) and also check data types.
 - o Use head() to display the first few rows of the data.

df.info() df.describe()

Data	columns	(total	3 column	s):
#	Column	Non-Nul	1 Count	Dtype
2223				
0	Gender	10000 n	on-null	object
			on-null	
	-		on-null	
			object(1)
memor	ry usage	: 234.5+	KB	
		Height	Me	eight
cou	nt 1000	0.000000	10000.00	00000
mea	i n 6	6.367560	161.44	10357
sto	ı	3.847528	32.10	08439
mir	1 5	4.263133	64.70	00127
25%	6 6	3.505620	135.8	18051
50%	6 6	6.318070	161.2	12928
75%	6 6	9.174262	187.16	89525
ma	. 7	8 998742	269 98	20600

Name: DHRUV SHERE Enrollment No: 23012022021

	Gender	Height	Weight
0	Male	73.847017	241.893563
1	Male	68.781904	162.310473
2	Male	74.110105	212.740856
3	Male	71.730978	220.042470
4	Male	69.881796	206.349801

4. Histogram and Skewness:

o Plot histograms for the Height and Weight columns. o Calculate and display the skewness for both columns to check data distribution.

plt.figure(figsize=(8, 6)) plt.hist(df['Height'], bins=20, color='skyblue', edgecolor='black') plt.xlabel('Height') plt.ylabel('Frequency') plt.title('Histogram of Height') plt.show() plt.figure(figsize=(8, 6)) plt.hist(df['Weight'], bins=20, color='salmon', edgecolor='black') plt.xlabel('Weight') plt.ylabel('Frequency') plt.title('Histogram of Weight') plt.show()

skewness_height = df['Height'].skew()

skewness_weight = df['Weight'].skew() print(f"Skewness

of Height: {skewness_height}") print(f"Skewness of

Weight: {skewness_weight}")

Name: DHRUV SHERE Enrollment No: 23012022021

```
Skewness of Height: 0.04936908937689031
Skewness of Weight: 0.03295450444592437
```

5. Check for Missing Values: o Use isnull().sum() to identify any missing values.

Df.isnull().sum()

	0
Gender	0
Height	0
Weight	0

6. Correlation Matrix: o Select the numerical columns and use a heatmap to display the correlation matrix.

```
numerical_df = df.select_dtypes(include=np.number) correlation_matrix = numerical_df.corr() plt.figure(figsize=(10, 8)) sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f") plt.title('Correlation Matrix of Numerical Features') plt.show()
```


7. Split Data into X and Y:

o Set Height as X and Weight as Y.

Name: DHRUV SHERE Enrollment No: 23012022021

o Split the dataset into training and testing sets, and display the shapes (number of

rows and columns) of both training and testing sets.

```
X = df['Height']
y = df['Weight']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape)

(8000,) (8000,)
(2000,) (2000,)
```

8. Simple Linear Regression: o Train a simple linear regression model using the training data. o Check the model's accuracy, coefficient, and intercept.

```
from sklearn.linear_model import LinearRegression from
sklearn.metrics import mean_squared_error, r2_score model =
LinearRegression()
X_train_reshaped
                               X_train.values.reshape(-1,
                                                              1)
model.fit(X_train_reshaped, y_train) X_test_reshaped =
X test.values.reshape(-1,
                                                 y_pred
                               1)
model.predict(X_test_reshaped) mse =
mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred)
print("Model Coefficients:", model.coef_)
Intercept:", model.intercept_) print("Mean Squared Error:", mse)
print("R-squared:", r2)
   Model Coefficients: [7.70218561]
   Model Intercept: -349.7878205824451
   Mean Squared Error: 149.00350418448127
   R-squared: 0.8577317777038499
```

9. Predict and Evaluate: o Predict Weight using the test set, and calculate the root mean squared error

(RMSE). o Plot the predicted and actual values for comparison. rmse

```
= np.sqrt(mse) print("Root Mean Squared Error (RMSE):", rmse)
plt.figure(figsize=(10, 6))
```

Name: DHRUV SHERE Enrollment No: 23012022021

```
plt.scatter(X_test, y_test, color='blue', label='Actual Weight')
plt.scatter(X_test, y_pred, color='red', label='Predicted
Weight') plt.xlabel('Height') plt.ylabel('Weight')
plt.title('Actual vs. Predicted Weight')
plt.show()
```


10. Model Performance Metrics:

o Compare the adjusted R-squared, mean absolute error, mean squared error, and R-squared using built-in methods.

```
from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_test, y_pred) print("Mean Absolute Error:", mae) n = len(y_test) p = 1 adjusted_r2 = 1 - (1 - r2) * (n - 1) / (n - p - 1) print("Adjusted Rsquared:", adjusted_r2) print("\nModel Evaluation Metrics:") print("------") print("R-squared:", r2) print("Adjusted R-squared:", adjusted_r2) print("Mean Squared Error:", mse) print("Root Mean Squared Error (RMSE):", rmse) print("Mean Absolute Error:", mae)
```

Name: DHRUV SHERE Enrollment No: 23012022021

11. Plot Actual vs Predicted Errors: o Draw a graph to show the difference

between actual and predicted values.

Part 2: Wine Quality Prediction Using Multiple Regressions

12. Load the Wine Quality Dataset:

o winequality-red.csv df1=pd.read_csv('/content/drive/MyDrive/dataset/winequality-red.csv',
delimiter=';')

13. Check Dataset Information:

o Use head(), info(), and describe() to explore the dataset (similar to part 1).

df1.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

df1.info() df1.describe()

Name: DHRUV SHERE Enrollment No: 23012022021

2CEIT506: MACHINE LEARNING

PRACTICAL-5

CTas	s 'pandas.core.frame	.DataFrame'>									-	
Range	Index: 1599 entries,	0 to 1598										
Data	columns (total 12 co	lumns):										
#	Column	Non-Null Coun	t Dtype									
	fixed acidity	1599 non-null										
	volatile acidity	1599 non-null	float64									
	citric acid	1599 non-null	float64									
	residual sugar	1599 non-null	float64									
	chlorides	1599 non-null	float64									
	free sulfur dioxide	1599 non-null	float64									
	total sulfur dioxide		float64									
	density	1599 non-null	float64									
	pH	1599 non-null 1599 non-null	float64									
	sulphates alcohol		float64									
	auconoi qualitv	1599 non-null 1599 non-null	float64 int64									
	quality s: float64(11), int6		111104									
	v usage: 150.0 KB	4(1)										
	fixed acidity vo	latile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	Hq	sulphates	alcohol	quality
coun	t 1599 000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mear	n 8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983	5.636023
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668	0.807569
	4.600000	0.120000	0.000000	0.900000	0.040000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000	3.000000
min	1.300000	0.120000	0.000000	0.900000	0.012000	1.000000	0.000000	0.550070	2.740000	0.330000	0.400000	3.000000
min 25%		0.390000	0.000000	1.900000	0.012000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.000000
	7.100000											
25%	7.100000 7.900000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000	5.000000
25% 50%	7.100000 7.900000 9.200000	0.390000 0.520000	0.090000 0.260000	1.900000 2.200000	0.070000 0.079000	7.000000 14.000000	22.000000 38.000000	0.995600 0.996750	3.210000 3.310000	0.550000 0.620000	9.500000 10.200000	5.000000 6.000000

14. Correlation Matrix and Heatmap:

o Calculate the correlation between columns and visualize it with a heatmap.

Name: DHRUV SHERE Enrollment No: 23012022021

15. Pairplot: o Create a pairplot of the dataset, using the quality

column as the hue. sns.pairplot(df1, hue='quality') plt.show()

Name: DHRUV SHERE Enrollment No: 23012022021

16. Split Data into X and Y: o Set X as all columns except quality, and Y as the quality column. o Split the data into training and testing sets.

```
X = df1.drop('quality', axis=1) y
= df1['quality']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

17. Linear Regression Model: o Train a linear regression model on the training data (without polynomial features). o Check the model's score and calculate the RMSE.

```
\label{eq:n_features} \begin{split} & \text{n\_features} = X\_\text{train.shape}[1] \ \ \text{desired\_columns} \\ & = 10 \\ & X\_\text{train\_reshaped} = X\_\text{train.values.reshape}(X\_\text{train.shape}[0], \quad \text{-1}) \\ & X\_\text{test\_reshaped} = X\_\text{test.values.reshape}(X\_\text{test.shape}[0], \text{-1}) \end{split}
```

o Create a dataframe to display the actual and predicted values side by side.

```
import pandas as pd import numpy as np from
sklearn.linear_model import LinearRegression from
sklearn.model_selection import train_test_split from
sklearn.metrics import mean_squared_error, r2_score model
= LinearRegression() model.fit(X_train, y_train) y_pred =
model.predict(X_test) mse = mean_squared_error(y_test,
y_pred) rmse = np.sqrt(mse) r2 = r2_score(y_test, y_pred)
print("Model Score (Rsquared):", r2)
print("Root Mean Squared Error (RMSE):", rmse)
comparison_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) print(comparison_df)
```

Name: DHRUV SHERE Enrollment No: 23012022021

```
Model Score (R-squared): 0.40318034127962254
Root Mean Squared Error (RMSE): 0.6245199307980126
     Actual Predicted
        6 5.346664
803
         5 5.056313
        6 5.664470
5 5.464515
350
682
1326
          6 5.725185
. . .
        . . .
      6 5.688153
5 5.232255
5 5.280535
6 6.272466
1259
1295
1155
963
704 4 5.197072
[320 rows x 2 columns]
```

18. Polynomial Regression:

o Use polynomial features with degree 2 to transform X, then split the dataset. o Train a new linear regression model on the transformed data and compare the RMSE and score with the previous model.

```
from sklearn.preprocessing import PolynomialFeatures poly =
PolynomialFeatures(degree=2)
X_train_poly
                      poly.fit_transform(X_train_reshaped)
X_{test_poly} = poly.transform(X_{test_reshaped}) model_poly
= LinearRegression() model_poly.fit(X_train_poly, y_train)
y_pred_poly = model_poly.predict(X_test_poly) mse_poly =
mean_squared_error(y_test, y_pred_poly) rmse_poly =
np.sqrt(mse\ poly) r2\ poly = r2\ score(y\ test,\ y\ pred\ poly)
print(r2_poly)
                  print(rmse poly)
                                         print("\nModel
                  print("----") print("Linear
Comparison:")
Regression:") print("R-squared:", r2) print("RMSE:", rmse)
print("Polynomial Regression:") print("R-squared:", r2_poly)
print("RMSE:", rmse_poly)
```

```
0.22018748469533955
0.7138711704261158
```

```
Model Comparison:
Linear Regression:
```

R-squared: 0.40318034127962254

RMSE: 0.6245199307980126 Polynomial Regression:

R-squared: 0.22018748469533955

RMSE: 0.7138711704261158

Name: DHRUV SHERE Enrollment No: 23012022021

19. Lasso Regression:

o Train a Lasso regression model on the original dataset. o Display the model's score, RMSE, weights, and intercept.

```
from sklearn.linear model import Lasso
X_train_reshaped =aX_train.values.reshape(-1, 1) if X_train.ndim == 1 else X_train
X_{\text{test\_reshaped}} = X_{\text{test.values.reshape(-1, 1)} \text{ if } X_{\text{test.ndim}} == 1 \text{ else } X_{\text{test}}
lasso_model = Lasso(alpha=1.0) lasso_model.fit(X_train_reshaped, y_train)
y_pred_lasso = lasso_model.predict(X_test_reshaped) lasso_score =
lasso_model.score(X_test_reshaped, y_test) lasso_rmse =
np.sqrt(mean_squared_error(y_test, y_pred_lasso))    print("Lasso Regression
Results:") print("-----") print(f"Model Score (R-squared):
{lasso score}") print(f"RMSE: {lasso rmse}") print(f"Weights:
{lasso_model.coef_}") print(f"Intercept:
{lasso model.intercept }")
   · Lasso Regression Results:
      ------
      Model Score (R-squared): 0.009014670905063582
      RMSE: 0.8047451268061234
     Weights: [ 0. -0. 0. 0. 0. -0.00397837 -0. -0. 0. 0.
                                                                  -0.
      Intercept: 5.809544459115708
```

20. Ridge Regression: o Train a Ridge regression model on the original

dataset and check the model's score, RMSE, weights, and intercept.

Name: DHRUV SHERE Enrollment No: 23012022021

21. Stepwise Regression (LassoLars): o Train a Stepwise regression amodel and check the score, RMSE, weights, and

intercept.

```
import statsmodels.api as sm
X_{train\_sm} = sm.add\_constant(X_{train}) X_{test\_sm}
= sm.add constant(X test)
stepwise_model = sm.OLS(y_train, X_train_sm).fit()
print(stepwise model.summary())
y_pred_stepwise = stepwise_model.predict(X_test_sm)
stepwise_score
= stepwise_model.rsquared
stepwise_rmse
                              np.sqrt(mean_squared_error(y_test,
y_pred_stepwise)) print("Stepwise Regression Results:")
print("-----") print(f"Model Score (R-squared):
{stepwise_score}") print(f"RMSE:
{stepwise_rmse}") print(f"Weights:
{stepwise_model.params}") print(f"Intercept:
{stepwise_model.params['const']}")
```

Name: DHRUV SHERE Enrollment No: 23012022021

	coet	std	err	t	P> t	[0.025	0.9/5]
const	14.3551	23	.705	0.606	0.545	-32.150	60.860
fixed acidity	0.0231	0	.029	0.801	0.423	-0.033	0.080
volatile acidity	-1.0013	0	.137	-7.283	0.000	-1.271	-0.732
citric acid	-0.1408	0	.168	-0.839	0.402	-0.470	0.188
residual sugar	0.0066	0	.017	0.391	0.696	-0.026	0.039
chlorides	-1.8065	0	457	-3.949	0.000	-2.704	-0.909
free sulfur dioxide	0.0056	0	.002	2.252	0.025	0.001	0.011
total sulfur dioxide	-0.0036	0	.001	-4.419	0.000	-0.005	-0.002
density	-10.3516	24	.192	-0.428	0.669	-57.812	37.109
pH	-0.3937	0	.215	-1.830	0.067	-0.816	0.028
sulphates	0.8412	0	.126	6.651	0.000	0.593	1.089
alcohol	0.2819	0	.030	9.465	0.000	0.223	0.340
======================================		.708	Dl-	in-Watson:		2.003	
The state of the s	3.5	P. P. Strand				W. T. O. (2) (2) (2) (2)	
Prob(Omnibus):		.000		ue-Bera (JB)	•	46.050	
Skew:		.192	Prob			1.00e-10	
Kurtosis:	3	.847	Cond	No.		1.12e+05	
Notes:		he co				s is correctly	v specifi
Notes: [1] Standard Errors as [2] The condition numb strong multicollinear; Stepwise Regression Re	ssume that t per is large ity or other	, 1.1	varian⊲ 2e+05.	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollineari Stepwise Regression Re	ssume that toer is large ity or other esults:	, 1.13 nume	varian 2e+05. rical ∣	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinear Stepwise Regression Re Model Score (R-squarec	ssume that toer is large ity or other esults:	, 1.13 nume	varian 2e+05. rical ∣	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollineari Stepwise Regression Re Model Score (R-squarec RMSE: 0.6245199307980	ssume that toer is large ity or other esults: d): 0.347992	, 1.13 nume	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinears Stepwise Regression Re Model Score (R-squarec RMSE: 0.62451993079803	ssume that toer is large ity or other esults: d): 0.347992	, 1.13 numer 619353	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollineari	ssume that toper is large the or other esults: d): 0.347992	, 1.1: nume: 61935: 14.35!	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinears Stepwise Regression Re Model Score (R-squarec RMSE: 0.62451993079803 Weights: const fixed acidity	ssume that toper is large lity or other esults: i): 0.347992 335 0.023085	, 1.1: numer 61935: 14.35!	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollineari Stepwise Regression Re- Model Score (R-squaree RMSE: 0.62451993079803 Weights: const fixed acidity volatile acidity citric acid	ssume that toper is large ity or other esults:	, 1.1: numer 61935: 14.35!	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinears Stepwise Regression Re Model Score (R-squarec RMSE: 0.6245199307980; Weights: const fixed acidity volatile acidity citric acid residual sugar	ssume that toper is large ity or other esults:	, 1.1: nume: 61935: 14.35!	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinear Stepwise Regression Re Model Score (R-squarec RMSE: 0.62451993079803 Weights: const fixed acidity volatile acidity	ossume that toper is large the or other esults: d): 0.347992 335 0.023085 -1.001304 -0.140821 0.006564	, 1.1: nume: 61935: 14.35	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinear Stepwise Regression Re	ssume that there is large ity or other esults:	, 1.1: nume: 61935: 14.35	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollineari Stepwise Regression Re- Model Score (R-squaree RMSE: 0.62451993079803 Weights: const fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide	ssume that toper is large ity or other esults:	, 1.1: nume: 61935: 14.35	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollineari Stepwise Regression Re- Model Score (R-squarec RMSE: 0.6245199307980; Weights: const fixed acidity volatile acidity citric acid residual sugar chlorides	ssume that toper is large ity or other esults:	, 1.1: numer 61935: 14.35	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	
Notes: [1] Standard Errors as [2] The condition numb strong multicollinears Stepwise Regression Re Model Score (R-squarec RMSE: 0.6245199307980; Weights: const fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density	### ssume that the ser is large ity or other esults:	, 1.1: numer 61935; 14.359	variand 2e+05. rical p 298575	ce matrix of This might	the error	s is correctl	

22. Bayesian Regression (Combination of Ridge and Lasso): o Train a Bayesian Ridge regression model and evaluate the score, RMSE, weights, and intercept.

```
from sklearn.linear_model import BayesianRidge bayesian_ridge_model = BayesianRidge() bayesian_ridge_model.fit(X_train_reshaped, y_train) y_pred_bayesian = bayesian_ridge_model.predict(X_test_reshaped) bayesian_score = bayesian_ridge_model.score(X_test_reshaped, y_test) bayesian_rmse = np.sqrt(mean_squared_error(y_test, y_pred_bayesian)) print("Bayesian Ridge Regression Results:") print("------") print(f"Model Score (R-squared): {bayesian_score}") print(f"RMSE: {bayesian_rmse}") print(f"Weights: {bayesian_ridge_model.coef_}")
```

```
Bayesian Ridge Regression Results:
------

Model Score (R-squared): 0.3976681363057878

RMSE: 0.6273973240399033

Weights: [ 2.06310753e-02 -1.01898939e+00 -1.63663095e-01  2.55978485e-04 -1.11598062e+00  5.69587774e-03 -3.54540924e-03 -9.16860682e-03 -3.61820193e-01  7.30247914e-01  2.98760717e-01]

Intercept: 3.823329283198931
```

Name: DHRUV SHERE Enrollment No: 23012022021