CS5610 Assignment 2

Gautam Singh CS21BTECH11018

1) The given equation is

$$x^2 - 1 = 0, \ x \in \mathbb{Z}_n. \tag{1}$$

Factoring n into its prime divisors 17 and 19, and considering (1) modulo these primes yields the equation

$$x^2 - 1 = 0, \ x \in \mathbb{Z}_p, \ p \in \{17, 19\}.$$
 (2)

By Lagrange's Theorem in \mathbb{Z}_p , (2) may be rewritten as

$$(x+1)(x-1) = 0, (3)$$

giving $x \in \{1, p-1\}$ for both values of p. Consider the bijection

$$f: \mathbb{Z}_n \to \mathbb{Z}_{17} \times \mathbb{Z}_{19}, \ f(x) = (x \bmod 17, x \bmod 19). \tag{4}$$

Thus, any solution to (1) will also satisfy

$$x \equiv \pm 1 \bmod 17 \tag{5}$$

$$x \equiv \pm 1 \bmod 19. \tag{6}$$

Using the Chinese Remainder Theorem gives us four solutions (one for each combination of signs) $x \in \{1, 18, 305, 322\}.$

2) The equation is $x^7 = 2$ in \mathbb{Z}_{11} . Clearly, x = 0 is not a solution, thus $x \in \mathbb{Z}_{11}^*$. Fermat's Little Theorem gives $x^{10} = 1$. Since $\gcd(7, 10) = 1$, we use Euclid's Algorithm to find integers a, b such that

$$7a + 10b = 1. (7)$$

One such solution is (a, b) = (3, -2). Thus, we have

$$x = x^{7(3)+10(-2)} = (x^7)^3 = 2^3 = 8.$$
 (8)

Hence, the unique solution is x = 8.

3) Clearly, a=0 is not a solution to $a^d=1$ in \mathbb{Z}_p . Let g be a generator of the multiplicative group \mathbb{Z}_p^* . Letting $a=g^k$ for some $k\in\mathbb{Z}$, we can rewrite the equation as

$$g^{kd} = g^0 = 1. (9)$$

Hence, we must have kd = n(p-1) for some $n \in \mathbb{Z}$. Since $d \mid p-1$, we obtain $k = \frac{n(p-1)}{d}$. Thus, $a = (g^n)^{\frac{p-1}{d}}$. Since g generates \mathbb{Z}_p^* and $n \in \mathbb{Z}$, the set of solutions to the given equation is $\left\{a^{\frac{p-1}{d}} : a \in \mathbb{Z}_p^*\right\}$, as required.

4) a) Define $g \triangleq \gcd(d, n)$. Then, by Bezout's Lemma, there exist integers a and b such that

$$da + nb = q. (10)$$

Multiplying throughout by k and taking residues modulo n, as well as applying the condition that $dk \equiv 0 \mod n$, we get

$$adk + nbk = gk \implies gk \equiv 0 \mod n \implies k = \frac{nm}{g}, \ m \in \mathbb{Z}.$$
 (11)

1

However, we have $0 \le k < n$. Thus, $0 \le m < g$. Hence,

$$|\{0 \le k \le n - 1 : dk \equiv 0 \bmod n\}| = \gcd(d, n). \tag{12}$$

b) We know that for an integer a and positive integers m, n, we have

$$\gcd(a^m - 1, a^n - 1) = a^{\gcd(m,n)} - 1. \tag{13}$$

Consider the polynomials $f(x) = x^d - 1$ and $g(x) = x^{p-1} - 1$ in $\mathbb{Z}_p[x]$. Since Euclid's algorithm works in \mathbb{Z}_p , (13) holds in $\mathbb{Z}_p[x]$. By Fermat's Little Theorem, all elements of \mathbb{Z}_p^* are roots of g(x). Hence, any root of f(x) will also be a root of $\gcd(f(x),g(x)) = x^{\gcd(d,p-1)} - 1$, as x = 0 is clearly not a root of f(x).

We also know that $x^k - 1$ has k roots if $k \mid p - 1$. Taking $k = \gcd(d, p - 1)$, there are $\gcd(d, p - 1)$ roots of f(x) in \mathbb{Z}_p .

5) Consider in \mathbb{Z}_7 the equation

$$x^{2} - 4 = (x - 2)(x + 2) = 0. (14)$$

Using Lagrange's Theorem in \mathbb{Z}_7 , we see that the roots of (14) are $x = \pm 2$ or x = 2, 5. Now consider (14) in \mathbb{Z}_{7^2} . Any solution must be of the form $x = 7k \pm 2$. Substituting and working in \mathbb{Z}_{7^2} , we get

$$(7k \pm 2)^2 - 4 = 0 \implies \pm 28k = 0 \implies k = 0.$$
 (15)

Thus, the solutions in \mathbb{Z}_{7^2} are $x=\pm 2$ or x=2,47. Again, any solution to (14) in \mathbb{Z}_{7^3} must be of the form $x=7^2k\pm 2$. Substituting and working in \mathbb{Z}_{7^3} ,

$$(7^2k \pm 2)^2 - 4 = 0 \implies \pm 196k = 0 \implies k = 0.$$
 (16)

Therefore, the solutions of (14) in \mathbb{Z}_{343} are x = 2,341.