Présentation stage

Clément Legrand

July 2, 2018

Capacitated Vehicle Routing Problem

Notations

Instance I : n clients et 1 dépôt

Solution Sol: k tournées

La demande d_i du client i, une capacité C

Règles

- $\forall i > 0 \in I$, $\exists ! R_j \in Sol$, $i \in R_j$;
- Chaque tournée doit partir et s'arrêter au dépôt;
- $\forall R_j \in Sol, \sum_{i \in R_i} d_i \leq C$.

Objectif

Déterminer Sol tel que:

$$Sol = argmin_{Sol} \sum_{R_i \in Sol} \sum_{i=0}^{|R_i|-1} dist(R_j[i], R_j[i+1]) = argmin_{Sol} cost(Sol)$$

Exemple

Instance A-n37-k06:

Représentation instance

Meilleure solution connue

Objectif

Intégrer de la connaissance lors du calcul d'une solution

Idée

Prédire les arêtes optimales en apprenant à partir de solutions initiales de bonne qualité

Problèmes

- Comment construire une solution initiale de bonne qualité ?
- Quelle heuristique utiliser ?
- Comment extraire la connaissance ?
- Comment intégrer la connaissance dans l'heuristique ?

Algorithme Clarke & Wright (CW)

 $CW^1 \rightarrow Algorithme glouton.$

Définition saving

Calcul du saving de i et j avec:

$$s(i,j) = c_{i0} + c_{0j} - \lambda c_{ij} + \mu |c_{i0} - c_{0j}| + \nu \frac{d_i + d_j}{\overline{d}}$$

 (λ, μ, ν) sont des paramètres à déterminer

Fonctionnement

Tant que $\max_{(i,j)} s(i,j) > 0$:

- $(i,j) \leftarrow argmax_{(i,j)}s(i,j)$;
- Les tournées qui contiennent i et j sont fusionnées (si possible);
- $s(i,j) \leftarrow 0$.

¹IK. Altinel and T. Öncan, A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem (2005) → ★ ■ →

Exécution pour $(\lambda, \mu, \nu) = (1, 1, 1)$

Choix de (λ, μ, ν) ?

Bilan

Difficile de prévoir l'influence des paramètres

Heuristique Arnold & Sörensen

```
Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSal ← Sal
   while Pas d'améliorations depuis 3 min do
        Calcul de la pire arête
         NewSol \leftarrow EiectionChain_{BI-O}
 5
         NewSol \leftarrow LinKernighan_{BI-O}
 6
         NewSol \leftarrow CrossExchange_{BI-O}
 7
         NewSol \leftarrow LinKernighan_{BI-O}
 8
        if cost(NewSol) < cost(Sol) then
 q
              Sol \leftarrow NewSol
10
```

11 return Sol

Pire arête

Pire arête

La pire arête du graphe est l'arête (i,j) qui maximise la fonction:

$$b(i,j) = \frac{\left[\gamma_w w(i,j) + \gamma_c c(i,j)\right] \left[\frac{d(i,j)}{\max_{k,l} d(k,l)}\right]^{\frac{\gamma_d}{2}}}{1 + p(i,j)}$$

Opérateurs locaux

Ejection-chain

Déplacer / clients sur des tournées.

Cross-exchange

Échanger deux séquences de clients entre deux tournées.

Figure 2: Illustration of the ejection chain with two relocations.

Figure 1: Illustration of the CROSS-exchange with sequences of two customers.

Opérateurs locaux

Lin-Kernighan

- Utilisé en général pour TSP;
- Optimisation intra-tournée (chaque tournée est améliorée indépendamment des autres).

Heuristique utilisée (H_c)

```
1 Sol \leftarrow CW(\lambda, \mu, \nu)
   NewSol ← Sol
   while La dernière amélioration date de moins de n/3 min do
        Calcul de la pire arête
        NewSol \leftarrow EjectionChain_{FI-RD}
 5
        NewSol \leftarrow LinKernighan_{BI-O}
 6
        NewSol \leftarrow CrossExchange_{FI-RD}
 7
        NewSol \leftarrow LinKernighan_{BI-O}
 8
        if cost(NewSol) < cost(Sol) then
 9
             Sol \leftarrow NewSol
10
        if Pas d'améliorations depuis n/2 itérations then
11
              NewSol \leftarrow Sol
12
```

13 return Sol

Validation

	,	4-n37-k0	6	1	\- n65-k0	9	P-n101-k04			
Ajout	Best	Mean	Time	Best	Mean	Time	Best	Mean	Time	
Rien	950	957	195	1197	1215	395	722	736	783	
Divers	950	969	200	1200	1230	350	698	706	1500	

Conclusion

Diversification plus intéressante pour des grandes instances

Exemples

Protocole

Questions

- Combien de solutions dans l'échantillon ?
- Combien de solutions pour apprendre ?
- Comment choisir les arêtes à conserver ?

Protocole

Combien de solutions dans l'échantillon ?

- Considérer tous les (λ, μ, ν) ;
- Tirer $N(\lambda, \mu, \nu)$ aléatoirement;

Quelles solutions pour apprendre ?

- Tout l'échantillon (Tout);
- x% des meilleures solutions : quantité privilégiée (Quan_x);
- Solutions avec coût inférieur à $c_{min} + (c_{max} c_{min}) \frac{x}{100}$: qualité privilégiée (Qual_x);

Comment choisir les arêtes à conserver ?

Pour chaque arête (i,j), on incrémente la valeur de MAT[i][j];

- Conserver $(i,j) \Leftrightarrow MAT[i][j] > seuil$ (Seuil);
- Conserver les rg premières arêtes dans la matrice (Rang).

		Quan ₁₀				Qual	Tout					
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	34	21	0.5	L _{1b} /2	33	21	0.50	25	23	15	0.35
	4	23	14	0.33	3L _{1b} /4	17	12	0.28	38	10	7	0.16
100	5	30	21	0.5	L _{1b} /2	31	23	0.55	50	24	17	0.40
	8	16	15	0.36	3L _{1b} /4	17	14	0.33	75	6	6	0.14
500	25	32		0.57	107	31	22	0.52	250	22	15	0.36
	38	15	14	0.33	3L _{1b} /4	20	16	0.38	375	7	7	0.18
8000	400	33	24	0.57	L _{1b} /2	30	23	0.55	4000	25	16	0.38
	600	15	14	0.33	3L ₁₆ /4	18	16	0.38	6000	9	6	0.14

	Ç	uan:	10	(Qual ₁	LO	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	10	6	0.14	10	6	0.14	10	7	0.16	
	20	13	0.31	20	13	0.32	20	13	0.31	
	18	12	0.28	18	13	0.3	18	12	0.28	
100	10	9	0.21	10	9	0.21	10	10	0.24	
	20	16	0.38	20	16	0.38	20	15	0.36	
	18	13	0.3	18	13	0.3	18	12	0.29	
500	10	9	0.21	10	10	0.24	10	9	0.21	
	20	16	0.38	20	16	0.38	20	15	0.36	
	18	13	0.3	18	13	0.3	18	12	0.28	
8000	10	8	0.19	10	9	0.21	10	7	0.17	
	20	14	0.33	20	14	0.33	20	14	0.33	
	18	12	0.29	18	12	0.29	18	12	0.29	

		Qua	n ₁₀			Qual		Tout				
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	34	21	0.5	L _{1b} /2	33	21	0.50	25	23	15	0.35
	4	23	14	0.33	3L _{1b} /4	17	12	0.28	38	10	7	0.16
100	5	30	21	0.5	L _{1b} /2	31	23	0.55	50	24	17	0.40
	8	16	15	0.36	3L _{1b} /4	17	14	0.33	75	6	6	0.14
500	25	32		0.57	107	31	22	0.52	250	22	15	0.36
	38	15	14	0.33	3L _{1b} /4	20	16	0.38	375	7	7	0.18
8000	400	33	24	0.57	L _{1b} /2	30	23	0.55	4000	25	16	0.38
	400	15	14	0.33	3L _{1b} /4	18	16	0.38	4000	9	6	0.14

	Ç	uan:	10		Qual ₁₀)	Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop	
50	3	34	21	0.5	L _{1b} /2	33	21	0.50	25	
	4	23	14	0.33	3L _{lb} /4	17	12	0.28	38	
100	5	30	21		L _{1b} /2	31	23	0.55	50	
	8	16	15	0.36	3L _{lb} /4	17	14	0.33	75	
500	25	32	24	0.57	L _{1b} /2	31	22	0.52	250	
	38	15	14	0.33	3L _{lb} /4	20	16	0.38	375	
8000	400	33	24	0.57	L _{1b} /2	30	23	0.55	4000	
	400	15	14	0.33	$3L_{lb}/4$	18	16	0.38	4000	

		Qua	n ₁₀			Qual		Tout				
	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop	Seuil	Arêtes	Corr	Prop
50	3	34	21	0.5	L _{1b} /2	33	21	0.50	25	23	15	0.35
	4	23	14	0.33	3L _{1b} /4	17	12	0.28	38	10	7	0.16
100	5	30	21	0.5	L _{1b} /2	31	23	0.55	50	24	17	0.40
	8	16	15	0.36	3L _{1b} /4	17	14	0.33	75	6	6	0.14
500	25	32		0.57	107	31	22	0.52	250	22	15	0.36
	38	15	14	0.33	3L _{1b} /4	20	16	0.38	375	7	7	0.18
8000	400	33	24	0.57	L _{1b} /2	30	23	0.55	4000	25	16	0.38
	400	15	14	0.33	3L _{1b} /4	18	16	0.38	4000	9	6	0.14

	Ç	uan:	10		Qual	10		Tout			
	Rang	Corr	Prop	Rang	Corr	Prop	Rang	Corr	Prop		
50	10	6	0.14	10	6	0.14	10	7	0.16		
	20	13	0.31	20	13	0.32	20	13	0.31		
	18	12	0.28	18	13	0.3	18	12	0.28		
100	10	9	0.21	10	9	0.21	10	10	0.24		
	20	16	0.38	20	16	0.38	20	15	0.36		
	18	13	0.3	18	13	0.3	18	12	0.29		
500	10	9	0.21	10	10	0.24	10	9	0.21		
	20	16	0.38	20	16	0.38	20	15	0.36		
	18	13	0.3	18	13	0.3	18	12	0.28		
8000	10	8	0.19	10	9	0.21	10	7	0.17		
	20	14	0.33	20	14	0.33	20	14	0.33		
	18	12	0.29	18	12	0.29	18	12	0.29		

Description

Conclusion

Ajouter de la diversification dans l'apprentissage