Problemas del Tema 1 Primera parte

- 1.- Considera dos aplicaciones diferenciables $u,v:I\longrightarrow\mathbb{R}^3,\ u(t)=(u_1(t),u_2(t),u_3(t)),\ v(t)=(v_1(t),v_2(t),v_3(t)),\ donde\ I$ es un intervalo abierto de \mathbb{R} . Denota $u'(t)=(u'_1(t),u'_2(t),u'_3(t)),\ v'(t)=(v'_1(t),v'_2(t),v'_3(t)),\ \langle\ ,\ \rangle$ el producto escalar usual y \times el producto vectorial respecto a la orientación usual. Prueba
 - (a) $\frac{d}{dt}\langle u(t), v(t)\rangle = \langle u'(t), v(t)\rangle + \langle u(t), v'(t)\rangle,$
 - (b) Como aplicación, si para $w \in \mathbb{R}^3$ fijo, se tiene $u'(t) \perp w$, para todo $t \in I$, y $u(t_0) \perp w$, donde $t_0 \in I$, entonces $u(t) \perp w$, para todo $t \in I$.
 - (c) $\frac{d}{dt}(u(t) \times v(t)) = u'(t) \times v(t) + u(t) \times v'(t),$
 - (d) Como aplicación, si u'(t) = a u(t) + b v(t) y v'(t) = c u(t) a v(t), para $a, b, c \in \mathbb{R}$, entonces $u(t) \times v(t)$ no depende de t; es decir, es un vector constante de \mathbb{R}^3 .
- 2.- Obtén una parametrización de cada una de las siguientes cónicas de \mathbb{R}^2 :
 - (a) La circunferencia de centro el punto (3,2) y radio 9.
 - (b) La elipse de ecuación $4x^2 + \frac{y^2}{9} = 1$ (respecto del sistema referencia ortonormal usual).
 - (c) La rama de la hipérbola de ecuación $x^2 y^2 = 5$ que contiene al punto (3,2).
 - (d) La parábola de ecuación $2x^2 y + 4 = 0$.
- **3.-** Considera un punto $c \in \mathbb{R}^2$ y un número real r(>0).
 - (a) Prueba que la circunferencia de centro c y radio r admite una parametrización de la forma $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$, con $\alpha(t) = c + r \cos\left(\frac{t}{r}\right) v_1 + r \sin\left(\frac{t}{r}\right) v_2$, donde (v_1, v_2) es una base ortonormal positivamente orientada.
 - (b) Calcula las ecuaciones de Frenet de α y la curvatura de α en cada t.
 - (c) Calcula las rectas tangente y normal a α en t=0.
- **4.-** (Espiral logarítmica) Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (e^t \cos t, e^t \sin t)$, para todo $t \in \mathbb{R}$.
 - (a) Comprueba que es regular.
 - (b) Calcula la función longitud de arco desde $t_0 = 0$.
 - (c) Reparametrízala por la longitud del arco.

- (d) Calcula, según la orientación usual de \mathbb{R}^2 , el ángulo orientado $\sphericalangle(\alpha(t), \alpha'(t))$.
- (e) Calcula su función curvatura. Estudia su comportamiento cuando $t\to -\infty$ y cuando $t\to \infty$. Interprétalos geométricamente.
- **5.-** Sea $\alpha: I \longrightarrow \mathbb{R}^2$ una curva regular. Si ocurre que $k(t) \neq 0$, para todo $t \in I$, se define su evoluta como la curva $\beta: I \longrightarrow \mathbb{R}^2$ dada por $\beta(t) = \alpha(t) + \frac{1}{k(t)} e_2(t)$, para todo $t \in I$ (se llama a $\frac{1}{|k(t)|}$ el radio de curvatura de α en t).
 - (a) Prueba que $\beta'(t) = -\frac{k'(t)}{k(t)^2} e_2(t)$ y da una condición necesaria y suficiente para que la evoluta de α sea regular.
 - (b) Cuando $k'(t_0) \neq 0$, prueba que la recta tangente a β en t_0 es la recta normal a α en t_0 .
 - (c) Considera la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, \cosh t)$, para todo $t \in \mathbb{R}$, (catenaria). Prueba que es regular, que su curvatura es $k(t) = \frac{1}{\cosh^2 t}$ y calcula su evoluta.
- **6.-** Sean $\alpha, \gamma: I \longrightarrow \mathbb{R}^2$ dos curvas parametrizadas por la longitud de arco cuyas funciones curvatura cumplen $k_{\alpha}(t) = -k_{\gamma}(t)$, para todo $t \in I$. Prueba que existe un único movimiento rígido inverso F de \mathbb{R}^2 de manera que $\gamma = F \circ \alpha$ ¿Quien es F si $\alpha(t) = (\cos t, \sin t)$, $\gamma(t) = (\sin t, \cos t)$, para todo $t \in \mathbb{R}$?
- 7.- Considera una curva regular $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$, $\epsilon > 0$ o $\epsilon = \infty$. Define $\beta: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$ por $\beta(t) = \alpha(-t)$, para todo $t \in (-\epsilon, \epsilon)$.
 - (a) Comprueba explícitamente que β también es regular.
 - (b) ¿Qué relación hay entre las funciones curvaturas de ambas curvas?
 - (c) Particulariza lo anterior al caso de la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (a\cos t, b\sin t)$, con a, b > 0 (elípse).
- 8.- Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, t^2)$, para todo $t \in \mathbb{R}$.
 - (a) Comprueba que es regular.
 - (b) Prueba que $k(t) = \frac{2}{(1+4t^2)^{3/2}}$ y que, en particular, k(t) = k(-t) para todo $t \in \mathbb{R}$.
 - (c) Observa que $\operatorname{Im}(\alpha)$ es simétrica respecto de la recta normal a α en el punto que se obtiene para t=0.
 - (d) Motivado por lo anterior, si $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$, $\epsilon > 0$ o $\epsilon = \infty$, es una curva regular cuya curvatura cumple k(t) = k(-t) para todo $t \in (-\epsilon, \epsilon)$; Podemos afirmar que $\operatorname{Im}(\alpha)$ es simétrica respecto de la recta normal a α en t = 0?

- 9.- Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, t^3)$, para todo $t \in \mathbb{R}$.
 - (a) Comprueba que es regular.
 - (b) Prueba que $k(t) = \frac{6t}{(1+9t^4)^{3/2}}$ y que, en particular, k(t) = -k(-t) para todo $t \in \mathbb{R}$.
 - (c) Observa que $\operatorname{Im}(\alpha)$ es simétrica respecto del punto $\alpha(0)$ (es decir, que el giro de centro $\alpha(0)$ y ángulo π deja a $\operatorname{Im}(\alpha)$ invariante).
 - (d) Motivado por lo anterior, si $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$, $\epsilon > 0$ o $\epsilon = \infty$, es una curva regular cuya curvatura cumple k(t) = -k(-t) para todo $t \in (-\epsilon, \epsilon)$, ¿podemos afirmar que Im(α) es simétrica respecto del punto $\alpha(0)$?
- 10.- Una curva regular $\alpha: I \longrightarrow \mathbb{R}^2$ tiene la propiedad de que todas sus rectas tangentes pasan por un punto fijo. Prueba que su traza es un segmento de recta.
- 11.- Una curva regular $\alpha: I \longrightarrow \mathbb{R}^2$ tiene la propiedad de que todas las rectas normales pasan por un punto fijo. Prueba que su traza es un arco de circunferencia.
- 12.- Prueba que la traza de una curva (parametrizada por la longitud de arco) es un segmento de recta o un arco de circunferencia si y sólo si todas las rectas tangentes equidistan de un punto fijo del plano.