# Introducción a la genómica en la nube con



Dr. Matthieu J. Miossec (@RealMattJM)

Bioinformatics analyst @ Wellcome Centre for human genetics





### Programa Unidad 9

■ 17 de mayo (lunes) – Introducción a la genómica en la nube

- 19 de mayo (miércoles) Introducción a la plataforma Terra
- 24 de mayo (lunes) Otras herramientas en Terra



- A primera vista, una plataforma diseñada para investigación biomédica que permite trabajar en la nube.
- En realidad, ofrece mucho más:
  - Recursos: Una librería completa de datos y métodos.
     (inc. todos los workflows GATK, automatizado de punto a punto!)
  - Compartimiento: <u>Todo</u> (datos, nuevo métodos [Docker], espacios de trabajo Terra) es compartible (con algunos colaboradores o con toda la comunidad Terra).
  - Análisis en tiempo real: Los resultados de un análisis pueden ser organizados y manipulados desde Terra usando el Jupyter notebook.

### La ArquitecTerra



#### Workspace

- Corresponde a un espacio de trabajo bien delineado.
  - Se adjunta a un proyecto de facturación cuando se crea.
  - Se puede compartir con otros investigadores, como dueño tengo la posibilidad de restringir el acceso otorgado:
    - (Project) Owner → Dueño: Todos los derechos sobre un 'workspace'.
    - Writer → Escritor: Puede crear/modificar metadata, configuración de métodos..
    - Reader → Lector: Puede ver el contenido de un 'workspace' pero no modificarlo
  - 2 opciones: Permiso para ejecutar y permiso para compartir

### Google Bucket

- Cada 'workspace' tiene su 'Google bucket'
   Google) dedicado en el cual...
  - Subimos nuestros datos iniciales (ej. FASTQ, BAM/BAI).
  - Los datos generados a través de la ejecución de herramientas en el workspace están almacenados.
  - Podemos descargar datos del Cubo Google...por un precio (típicamente pequeño).

(El costo de almacenamiento esta cubierto por el proyecto de facturación destacado al 'workspace')

# Datos de Referencia (sin costo de almacenamiento!)

- Los datos de referencia que se usan comúnmente durante el análisis de secuencias genómicas...
  - Genoma humano de referencia (hg19/b37 o hg38, .fasta)
  - Las variantes de las base de datos dbSNP/1000G/GnomAD...(.vcf)
- ...Están proporcionados por la plataforma Terra!
  - No tiene ningún costo de almacenamiento para nosotros!
  - Es crucial <u>no gastar recursos</u> subiendo lo que ya esta disponible.
- Esto vale también por algunos archivos test que existen para probar la plataforma.

https://cloud.google.com/life-sciences/docs/resources/public-datasets

## Datos y Metadatos: Estructuración de los datos



### Workflow Description Language



- Un lenguaje simple para describir 'workflows'.
- Reúne datos de entrada/salida, herramientas y comandos
- Interpretado y ejecutado por Cromwell.



```
task task_A {
                                                               workflow myWorkflowName {
    File ref
                                                                    File my ref
                                                                    File my input
    String id
                                                                    String name
   command {
                                                                  call task A {
    do_stuff -R ${ref} -I ${in} -O ${id}.ext
                                                                    input: ref= my_ref, in= my_input, id= name
  runtime {
                                                                  call task B {
   docker: "my_project/do_stuff:1.2.0"
                                                                    input: ref= my_ref, in= task_A.out
   output {
    File out= "${id}.ext"
                                                               task task A
                                                               task task B
```

### Organización de Tareas en WDL

- Existen tres maneras de organizar nuestras tareas.
  - Cadena lineal o con input/output múltiples.

```
call stepA (out) in stepB out in stepC out call stepA (all stepB { input: in=stepA.out } call stepC { input: in=stepB.out }
```

Scatter-gather (Dispersar-Reunir)

```
in stepA out in stepB outl out2
inl in2 stepC out

call stepC { input :
    in1=stepB.out1,
    in2=stepB.out2 }
```

```
oneFile 1 in stepA out

oneFile ... in stepA out

oneFile n in stepA out
```

```
Array[File] inputFiles

scatter(oneFile in inputFiles) {
    call stepA { input: in=oneFile }
}

call stepB { input: files=stepA.out }
```

#### Referirse a un 'container' en WDL

- Simple! Una vez el 'container' Docker listo, lo ponemos en línea a través del **Google Container Repository** (acceso privado/público) o **Docker Hub** (público).
- En el WDL, nos referimos al 'container' Docker en el cuerpo de **runtime** con una línea.

docker: "my\_project/do\_stuff:1.2.0"

docker: "broadinstitute/gatk:4.1.2.0" →