𝑢Չ(៤) 的量子包络代数的基本环论性质

戚天成 ⋈

复旦大学 数学科学学院

2024年5月5日

这份笔记是我入门量子群的一个初步尝试——学习特殊线性 Lie 代数 $\mathfrak{sl}_2(\mathbb{k})$ 的量子包络代数 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ (最简单的一类量子包络代数) 的基本环论性质. 先前, 我学习了最简单的一类量子代数量子仿射空间的基本环论性质 (主要关心单参数场景), 这份笔记记录的许多结论从某种意义上说都是"平行的", 并且主要关心参数是单位根的场景. 这份笔记的主要参考文献是 [BG02] 和 [Jan96], 主要起到对量子群有一个初步认识的作用.

目录

1	量子	-包络代数 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$	1
	1.1	基本结构	1
	1.2	泛参数量子包络代数 $\mathcal{U}_{\hbar}(\mathfrak{sl}_2(\Bbbk))$	5
	1.3	单位根处量子包络代数 $\mathcal{U}_{arepsilon}(\mathfrak{sl}_2(\Bbbk))$	6

1 量子包络代数 $U_q(\mathfrak{sl}_2(\mathbb{k}))$

本章主要记录 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的基本环论性质的证明细节, 尤其是其作为累次 Ore 扩张代数的实现 (见 [命题1.5], 由此得到它是仿射双边 Noether 整环) 以及具体参数的量子包络代数可由泛参数的量子包络代数 "特殊化"得到 (见 [命题1.12]). 当 q 是单位根时, 我们将看到 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 具有较大的中心, 进而是素 PI 代数.

1.1 基本结构

本节固定域 \mathbb{R} 以及 $q \in \mathbb{R}^{\times}$,并要求 $q \neq \pm 1$. 我们先介绍 $\mathfrak{sl}_2(\mathbb{R})$ 在 q 处的量子包络代数以及几个特殊子代数 (例如正 Borel 子代数) 的定义,随后证明 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{R}))$ 具有自然基 (见 [命题1.3]) 并且是仿射双边 Noether 整环 (见 [推论1.6],事实上它可实现为累次 Ore 扩张代数,见 [命题1.5]).

设 $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 是由生成元 E, F, K, K^{-1} 和关系

$$KEK^{-1} = q^{2}E, KFK^{-1} = q^{-2}F, EF - FE = \frac{K - K^{-1}}{q - q^{-1}}, KK^{-1} = K^{-1}K = 1$$

决定的 \mathbb{R} -代数, 称为 $\mathfrak{sl}_2(\mathbb{R})$ 的量子包络代数. 称 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{R}))$ 的由 E, K, K^{-1} 生成的 \mathbb{R} -子代数为 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{R}))$ 的 正 Borel 子代数, 记作 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{R}))$. 称由 F, K, K^{-1} 生成的 \mathbb{R} -子代数为负 Borel 子代数, 记作 $\mathcal{U}_q^{\leq 0}(\mathfrak{sl}_2(\mathbb{R}))$. 称由 E 生成的 \mathbb{R} -子代数为正幂零子代数, 记作 $\mathcal{U}_q^+(\mathfrak{sl}_2(\mathbb{R}))$. 称由 F 生成的 \mathbb{R} -子代数为负幂零子代数, 记作 $\mathcal{U}_q^-(\mathfrak{sl}_2(\mathbb{R}))$. 称 K, K^{-1} 生成的子代数 $\mathcal{U}_0 = \mathbb{R}[K, K^{-1}]$ 为 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{R}))$ 的 Cartan 子代数.

如果直接按照 $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 生成元的关系进行计算表达式通常会很复杂, 所以我们引入一些量子群理论中的标准记号. 对整数 a, 记

$$[a] = \frac{q^a - q^{-a}}{q - q^{-1}}, [K; a] = \frac{Kq^a - K^{-1}q^{-a}}{q - q^{-1}}.$$

那么 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 中 [E,F]=[K;0]. 在新的记号下, [1]=1,[0]=0 且可直接计算验证对任何整数 a,b,c 有

$$[b+c][K;a] = [b][K;a+c] + [c][K;a-b].$$

而 $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 生成元的前两个关系可以写作 [K;a]E=E[K;a+2] 以及 [K;a]F=F[K;a-2]. 下面我们说明在 $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 中 $\{F^iK^jE^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 是 \mathbb{k} -线性无关的. 特别地, $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 的 Cartan 子代数 $U_0\cong\mathbb{k}[x,x^{-1}]$. 记 $\mathscr{A}=\mathbb{k}[x,y,z,z^{-1}]$ 是多项式代数 $\mathbb{k}[x,y,z]$ 关于 z 生成的乘法幺半群的局部化,不难看出 $\{y^iz^jx^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 是 \mathscr{A} 的 \mathbb{k} -基. 现在定义 \mathscr{A} 上 \mathbb{k} -线性变换 \hat{F},\hat{K},\hat{E} 为

$$\hat{F}(y^iz^jx^k) = y^{i+1}z^jx^k, \hat{K}(y^iz^jx^k) = q^{-2i}y^iz^{j+1}x^k, \hat{E}(y^iz^jx^k) = q^{-2j}y^iz^jx^{k+1} + [i]y^{i-1}\frac{q^{1-i}z - q^{i-1}z^{-1}}{q - q^{-1}}z^jx^k.$$

不难看出 \hat{K} 在 $\operatorname{End}_{\mathbf{k}}\mathscr{A}$ 中有逆 $\hat{K}^{-1}(y^iz^jx^k)=q^{2i}z^{j-1}x^k$. 并且通过直接计算验证得到在 $\operatorname{End}_{\mathbf{k}}\mathscr{A}$ 中有

$$\hat{K}\hat{E} = q^2\hat{E}\hat{K}, \hat{K}\hat{F} = q^{-2}\hat{F}\hat{K}, [\hat{E}, \hat{F}] = \frac{\hat{K} - \hat{K}^{-1}}{q - q^{-1}}.$$

因此我们得到从 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 到 $\operatorname{End}_{\mathbb{k}}\mathscr{A}$ 的标准 \mathbb{k} -代数同态 $\pi:\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))\to\operatorname{End}_{\mathbb{k}}\mathscr{A}$ 满足

$$\pi(E) = \hat{E}, \pi(F) = \hat{F}, \pi(K) = \hat{K},$$

下面借助 π 来得到 $\{F^iK^jE^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 的 \mathbb{R} -线性无关性. 注意到

$$\hat{E}^{k}(1) = x^{k}, \hat{K}^{j}(x^{k}) = z^{j}x^{k}, \hat{F}^{i}(z^{j}x^{k}) = y^{i}z^{j}x^{k}, \forall i, k \in \mathbb{N}, j \in \mathbb{Z},$$

所以 $\hat{F}^i\hat{K}^j\hat{E}^k$ 作为 \mathscr{A} 上线性变换在常值多项式 1 上的作用是 $y^iz^jx^k$. 于是由 $\{y^iz^jx^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 在 \mathscr{A} 中的 \mathbb{R} -线性无关性立即得到 $\{F^iK^jE^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 在 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{R}))$ 中 \mathbb{R} -线性无关性. 将前面的讨论总结为

Proposition 1.1. 在 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 中, $\{F^iK^jE^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 是 \mathbb{k} -线性无关集且 \mathcal{U}_0 是 Laurent 多项式代数.

我们通过下面的 [引理1.2] 来说明 $\{F^iK^jE^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 是 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的 \mathbb{k} -基 (见 [命题1.3]).

Lemma 1.2. 设 i, k 是正整数, 那么在 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 中有

$$EF^{i} = F^{i}E + [i]F^{i-1}[K; 1-i]$$
 以及 $FE^{k} = E^{k}F - [k]E^{k-1}[K; k-1].$

Proof. 先对正整数 i 作归纳证明 $EF^i = F^iE + [i]F^{i-1}[K;1-i]$. 当 i = 1 时,由 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的生成关系便知结论成立.如果对 $i \geq 2$ 有 $EF^{i-1} = F^{i-1}E + [i-1]F^{i-2}[K;2-i]$,那么

$$EF^{i} = F^{i-1}EF + [i-1]F^{i-2}[K; 2-i]F$$

$$\begin{split} &=F^{i-1}(FE+[K;0])+[i-1]F^{i-1}[K;-i]\\ &=F^{i}E+F^{i-1}([1][K;0]+[i-1][K;-i])\\ &=F^{i}E+F^{i-1}([i][K;1-i])\\ &=F^{i}E+[i]F^{i-1}[K;1-i]. \end{split}$$

所以对正整数 i 有明 $EF^i = F^iE + [i]F^{i-1}[K;1-i]$. 下面对正整数 k 作归纳. 同样 k=1 时结论来自 $\mathcal{U}_g(\mathfrak{sl}_2(\mathbb{k}))$ 的生成关系, 假设结论对 $k-1(k\geq 2)$ 成立, 即 $FE^{k-1}=E^{k-1}F-[k-1]E^{k-2}[K;k-2]$. 那么

$$\begin{split} FE^k = & E^{k-1}FE - [k-1]E^{k-2}[K;k-2]E \\ = & E^kF - E^{k-1}[K;0] - [k-1]E^{k-1}[K;k] \\ = & E^kF + E^{k-1}([-1][K;0] - [k-1][K;k]) \\ = & E^kF - [k]E^{k-1}[K;k-1]. \end{split}$$

因此对每个正整数 k 也有 $FE^k = E^k F - [k]E^{k-1}[K; k-1]$.

由 [引理1.2] 以及 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 作为代数可由 E, F, K, K^{-1} 生成立即得到 $\{F^i K^j E^k | i, k \in \mathbb{N}, j \in \mathbb{Z}\}$ 可 \mathbb{k} -线性生成 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$. 再结合 [引理1.1] 我们便得到

Proposition 1.3. $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 作为 \mathbb{k} -线性空间有基 $\{F^iK^jE^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}.$

Remark 1.4. 同样由 [引理1.2] 不难看出 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 作为 \mathbb{k} -线性空间可由 $\{E^iK^jF^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 生成. 可以类似之前的讨论证明 $\{E^iK^jF^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 也是 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的 \mathbb{k} -基, 之后我们用累次 Ore 扩张说明 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 是 Noether 整环时也同样能够导出该集合是 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的 \mathbb{k} -基 (见 [命题1.5]).

在 [命题1.1] 中我们看到 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 的 Cartan 子代数 $\mathcal{U}_0 = \Bbbk[K,K^{-1}]$ 就是 Laurent 多项式代数. 通过定义 $\tau_1(z) = q^{-2}z$ 可确定 $\Bbbk[z,z^{-1}]$ 上 \Bbbk -代数自同构 $\tau_1: \Bbbk[z,z^{-1}] \to \Bbbk[z,z^{-1}]$, 由此得到 Ore 扩张 $\Bbbk[z,z^{-1}][x;\tau_1]$. 下面我们构造 Ore 扩张代数 $\Bbbk[z,z^{-1}][x;\tau_1]$ 上的某个代数自同构 τ_2 和 τ_2 导子 δ_2 使之满足 $\Bbbk[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2] \cong \mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$. 进而可应用 Ore 扩张的工具得到 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 基本的环论性质.

考察 \mathbb{R} -代数同态 $\xi: \mathbb{R}[z,z^{-1}] \to \mathbb{R}[z,z^{-1}][x;\tau_1], f(z,z^{-1}) \mapsto f(q^2z,q^{-2}z^{-1}),$ 因为在 $\mathbb{R}[z,z^{-1}][x;\tau_1]$ 中有 $xz=q^{-2}zx$, 所以由 Ore 扩张的泛性质, 存在唯一的 \mathbb{R} -代数自同态 $\tau_2: \mathbb{R}[z,z^{-1}][x;\tau_1] \to \mathbb{R}[z,z^{-1}][x;\tau_1]$ 使得

交换并且 $\tau_2(x)=x$. 结合 $\tau_2(z)=q^2z$ 可知 τ_2 是 \mathbb{R} -线性同构. 因此 τ_2 是 $\mathbb{R}[z,z^{-1}][x;\tau_1]$ 上代数自同构. 记 $R=\mathbb{R}[z,z^{-1}]$, 要定义出 τ_2 -导子 $\delta_2:R[x;\tau_1]\to R[x;\tau_1]$, 首先考察下述 \mathbb{R} -代数同态 $\eta:R\to \mathrm{M}_2(R[x;\tau_1])$:

$$\eta(a) = \begin{pmatrix} \tau_2(a) & 0 \\ 0 & a \end{pmatrix}, a \in R.$$

注意到 $\tau_2\tau_1(a) = a, \forall a \in R$, 所以可直接计算得到对 $Y = \begin{pmatrix} \tau_2(x) & (z^{-1} - z)/(q - q^{-1}) \\ 0 & x \end{pmatrix} \in \mathcal{M}_2(R[x; \tau_1])$ 有

$$Y\eta(a) = \eta(\tau_1(a))Y, \forall a \in R.$$

这说明存在唯一的 \mathbb{R} -代数同态 $\overline{\eta}: R[x; \tau_1] \to \mathrm{M}_2(R[x; \tau_1])$ 满足 $\overline{\eta}(x) = Y$ 且下图交换:

根据 η 的构造, 存在唯一的 k-线性变换 $\delta_2: R[x; \tau_1] \to R[x; \tau_1]$ 使得

$$\delta_2(h) = \begin{pmatrix} \tau_2(h) & \delta_2(h) \\ 0 & h \end{pmatrix}, \forall h \in R[x; \tau_1].$$

这说明 δ_2 是 $R[x;\tau_1]$ 上的 τ_2 -导子. 于是我们得到累次 Ore 扩张代数 $\mathbb{E}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2]$. 注意 τ_2 -导子 δ_2 满足 $\delta_2(R)=0$ 且 $\delta_2(x)=(z^{-1}-z)/(q-q^{-1})$.

下面说明量子包络代数 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 到 $\mathbb{k}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2]$ 的自然的代数同构将 K 对应到 z, E 对应 到 x 并把 F 对应到 y. 首先在累次 Ore 扩张代数 $\mathbb{k}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2]$ 中,有 $xz=q^{-2}zx,yz=q^2zy$ (注意前面已经指出 $\delta_2(z)=0$) 以及 $xy-yx=-\delta_2(x)=(z-z^{-1})/(q-q^{-1})$. 所以我们得到标准 \mathbb{k} -代数同态 $\varphi:\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))\to \mathbb{k}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2]$ 满足 $\varphi(K)=z,\varphi(E)=x,\varphi(F)=y$. 另一方面,由于 $\{z^ix^jy^k|i\in\mathbb{Z},j,k\in\mathbb{N}\}$ 是次 Ore 扩张代数 $\mathbb{k}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2]$ 的 \mathbb{k} -基,由 $\{K^iE^jF^k|j,k\in\mathbb{N},i\in\mathbb{Z}\}$ 可 \mathbb{k} -线性生成 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ (回忆 [引理1.2]),便知 φ 是 \mathbb{k} -线性同构。我们把前面的讨论总结为

Proposition 1.5. 设 $\mathbb{k}[z,z^{-1}]$ 是域 \mathbb{k} 上 Laurent 多项式代数. 那么

- (1) 存在唯一的 \mathbb{R} -代数自同构 $\tau_1: \mathbb{R}[z, z^{-1}] \to \mathbb{R}[z, z^{-1}]$ 使得 $\tau_1(z) = q^{-2}z$.
- (2) 存在唯一的 \mathbb{R} -代数自同构 $\tau_2: \mathbb{R}[z, z^{-1}][x; \tau_1] \to \mathbb{R}[z, z^{-1}][x; \tau_1]$ 使得 $\tau_2(z) = q^2 z, \tau_2(x) = x$.
- (3) 对 (2) 中的代数自同构 τ_2 , 存在唯一的 τ_2 -导子 $\delta_2: \mathbb{k}[z,z^{-1}][x;\tau_1] \to \mathbb{k}[z,z^{-1}][x;\tau_1]$ 使得

$$\delta_2(z) = 0, \delta_2(x) = \frac{z^{-1} - z}{q - q^{-1}}.$$

(4) 对 (3) 给出的累次 Ore 扩张代数 $\mathbb{k}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2]$, 有 \mathbb{k} -代数同构 $\varphi:\mathbb{k}[z,z^{-1}][x;\tau_1][y;\tau_2,\delta_2] \to \mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 满足对任何自然数 j,k 和正整数 i 有 $\varphi(z^ix^jy^k)=K^iE^jF^k$.

因为 Laurent 多项式代数是 Noether 整区, 所以由 Ore 扩张代数的性质, [命题1.5] 表明

Corollary 1.6. 量子包络代数 $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 是仿射双边 Noether 整环并且有 \mathbb{k} -基 $\{E^iK^jF^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$.

因此 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的正 Borel 子代数 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 有 \mathbb{k} -基 $\{E^iK^j|i\in\mathbb{N},j\in\mathbb{Z}\}$. 负 Borel 子代数 $\mathcal{U}_q^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 有 \mathbb{k} -基 $\{F^iK^j|i\in\mathbb{N},j\in\mathbb{Z}\}$. 负 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 与 $\mathcal{U}_q^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 明显是仿射整环. 因为在 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 中有 $EK=q^{-2}KE$, 沿用 [命题1.5] 的记号,则有标准代数同态 $\theta:\mathbb{k}[z,z^{-1}][x;\tau_1]\to\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 满足 $\theta(z)=K,\theta(x)=E$. 而 $\{E^iK^j|i\in\mathbb{N},j\in\mathbb{Z}\}$ 是 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 的 \mathbb{k} -基,所以 θ 是 \mathbb{k} -线性同构. 于是 $\mathbb{k}[z,z^{-1}][x;\tau_1]\cong\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$. 类似地,可以得到代数同构 $\mathbb{k}[z,z^{-1}][y;\tau_1^{-1}]\cong\mathcal{U}_q^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$. 特别地,我们得到

Proposition 1.7. $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 的正 Borel 子代数和负 Borel 子代数均为仿射双边 Noether 整环.

Remark 1.8. 因为前面我们已经得到了 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 与 $\mathcal{U}_q^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 的自然基,所以我们可以通过自然基与局部化的泛性质定义证明 $\mathcal{U}_q^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 与 $\mathcal{U}_q^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 都可以实现为量子平面 $\mathcal{O}_{q^2}(\mathbb{k})$ 的局部化.

一个基本问题是 $\mathfrak{sl}_2(\mathbb{k})$ 的量子包络代数与泛包络代数有何联系?关于该问题的解答可参见 [BG02, p.28, I. Lemma 3.5], q=1 处的量子包络代数 $\mathcal{U}_1(\mathfrak{sl}_2(\mathbb{k}))$ 可以理解为 $\mathcal{U}(\mathfrak{sl}_2(\mathbb{k}))$ 的某种"非平凡形变".最后我们指出 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 上的两个标准代数自同构来结束本节.

Proposition 1.9. 在 $U_q(\mathfrak{sl}_2(\mathbb{k}))$ 上存在唯一的代数自同构 ω 满足 $\omega(E) = F, \omega(F) = E, \omega(K) = K^{-1}$.

Proof. 如果记 $\omega(E) = F, \omega(F) = E, \omega(K) = K^{-1}, \omega(K^{-1}) = K$,那么不难看到 $\omega(E), \omega(F), \omega(K), \omega(K^{-1})$ 满足 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 定义中的生成关系,所以满足条件的代数自同态存在,并且由 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 作为 \Bbbk -代数可由 E, F, K, K^{-1} 生成便知满足要求的 ω 唯一.下面只需说明 ω 是双射.根据 [推论1.6], $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 作为线性空间 有基 $\{E^iK^jF^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$,因此由 \Bbbk -线性变换 ω 满足 $\omega(E^iK^jF^k) = F^iK^{-j}E^k$.结合 [命题1.3] 可知 ω 是 \Bbbk -线性同构.由此得到 ω 是 $\mathcal{U}_q(\mathfrak{sl}_2(\Bbbk))$ 上代数自同构.

Remark 1.10. 由命题确定的代数自同构 ω 明显满足 $\omega^2 = id$.

Proposition 1.11. 在 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 上存在唯一的反代数自同构 τ 满足 $\tau(E) = E, \tau(F) = F, \tau(K) = K^{-1}$.

Proof. 记 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的反代数为 \mathcal{U}^{op} , 需要证明存在唯一的代数同构 $\tau: \mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k})) \to \mathcal{U}^{op}$ 满足 $\tau(E) = E, \tau(F) = F, \tau(K) = K^{-1}$. 其存在性的讨论与 [命题1.9] 一致, 唯一性明显. τ 是代数自同构来自 [推论1.6]. □

1.2 泛参数量子包络代数 $U_h(\mathfrak{sl}_2(\mathbb{k}))$

本节固定域 \mathbb{k} 并设 \hbar 是 \mathbb{k} 上未定元 (进而有 Laurent 多项式代数 $\mathbb{k}[\hbar, \hbar^{-1}]$), 依然取定 $q \in \mathbb{k}^{\times}$ 并要求 $q^2 \neq 1$. 在单参数量子仿射空间场景, 我们知道泛参数的量子仿射空间 $\mathcal{O}_{\hbar}(\mathbb{k}^n)$ 可 "特殊化" $\mathcal{O}_{\hbar}(\mathbb{k}^n)/(\hbar - q) \cong \mathcal{O}_q(\mathbb{k}^n)$ 来得到 q 处的量子仿射空间, 这使得当 $q = \varepsilon$ 是单位根时 $\mathcal{O}_{\varepsilon}(\mathbb{k}^n)$ 上有自然的 Poisson order 结构, 于是人们能够通过 Poisson 几何的工具来研究 $\mathcal{O}_{\varepsilon}(\mathbb{k}^n)$ 的表示理论. 下面我们对 $\mathfrak{sl}_2(\mathbb{k})$ 的量子包络代数作类似的讨论. 首先是定义泛参数的量子包络代数.

设 $\mathcal{U}_{\hbar}(\mathfrak{sl}_2(\mathbb{k}))$ 是由生成元生成元 E, F, K, K^{-1} 和关系

$$KEK^{-1} = \hbar^2 E, KFK^{-1} = \hbar^{-2} F, EF - FE = \frac{K - K^{-1}}{\hbar - \hbar^{-1}}, KK^{-1} = K^{-1}K = 1$$

生成的 $\mathbb{k}[\hbar, \hbar^{-1}]$ -代数, 称 $\mathcal{U}_{\hbar}(\mathfrak{sl}_{2}(\mathbb{k}))$ 是 \hbar 处的量子包络代数. 因为 $\mathcal{U}_{\hbar}(\mathfrak{sl}_{2}(\mathbb{k}))$ 和 $\mathcal{U}_{q}(\mathfrak{sl}_{2}(\mathbb{k}))$ 具有相同形式的 生成元和生成关系, 所以有标准 \mathbb{k} -代数同态 $\Phi: \mathcal{U}_{\hbar}(\mathfrak{sl}_{2}(\mathbb{k})) \to \mathcal{U}_{q}(\mathfrak{sl}_{2}(\mathbb{k}))$ 满足 $\Phi(\hbar) = q, \Phi(E) = E, \Phi(F) = F, \Phi(K) = K$, 即 Φ 是赋值 $\hbar = q$ 诱导的代数同态, 不难看出 Φ 是满射. 易见 $(\hbar - q) \subseteq \text{Ker}\Phi$, 下面说明 $(\hbar - q) = \text{Ker}\Phi$. 类似于 $\mathcal{U}_{q}(\mathfrak{sl}_{2}(\mathbb{k})), \mathcal{U}_{\hbar}(\mathfrak{sl}_{2}(\mathbb{k}))$ 作为 $\mathbb{k}[\hbar, \hbar^{-1}]$ -模可由 $\{E^{i}K^{j}F^{k}|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 生成. 任取

$$\sum_{i,j,k} f_{ijk}(\hbar, \hbar^{-1}) E^i K^j F^k \in \text{Ker}\Phi,$$

由 $\{E^i K^j F^k | i, k \in \mathbb{N}, j \in \mathbb{Z}\}$ 是 $\mathcal{U}_q(\mathfrak{sl}_2(\mathbb{k}))$ 的基得到 $f_{ijk}(q, q^{-1}) = 0$, 再注意到对任何 $g(\hbar, \hbar^{-1}) \in \mathbb{k}[\hbar, \hbar^{-1}]$, $g(\hbar, \hbar^{-1}) - g(q, q^{-1}) \in (\hbar - q)$ (注意 $\hbar^{-1} - q^{-1} = \hbar^{-1}(q - \hbar)q^{-1}$ 也在该理想内), 所以 $f_{ijk}(\hbar, \hbar^{-1}) \in (\hbar - q)$. 于是 $\text{Ker}\Phi \subseteq (\hbar - q)$, 我们得到 $(\hbar - q) = \text{Ker}\Phi$. 特别地, 得到

Proposition 1.12. 上述代数同态 Φ 诱导 \mathbb{R} -代数同构 $\mathcal{U}_{\hbar}(\mathfrak{sl}_2(\mathbb{R}))/(\hbar-q) \cong \mathcal{U}_q(\mathfrak{sl}_2(\mathbb{R})).$

Remark 1.13. 易见 $\hbar - q$ 是 $\mathcal{U}_{\hbar}(\mathfrak{sl}_2(\mathbb{k}))$ 中的中心正则元 (利用 $\mathcal{U}_{\hbar}(\mathfrak{sl}_2(\mathbb{k}))$ 的自然基以及代数同态 Φ 可得 $\mathcal{U}_{\hbar}(\mathfrak{sl}_2(\mathbb{k}))$ 有 \mathbb{k} -基 { $\hbar^{\ell}E^iK^jF^k|i,k\in\mathbb{N},j,\ell\in\mathbb{Z}$ }, 进而考察字典序下的首项可证得结论).

1.3 单位根处量子包络代数 $U_{\varepsilon}(\mathfrak{sl}_2(\mathbb{k}))$

本节固定域 \mathbb{R} 以及正整数 $\ell \geq 3$ (如果讨论 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{R}))$ 的表示理论通常会进一步假定 ℓ 是奇数), 并设 $\varepsilon \in \mathbb{R}^{\times}$ 是 ℓ 次本原单位根. 根据 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{R}))$ 的定义, 其生成元 E, F, K, K^{-1} 满足

$$KEK^{-1}=\varepsilon^2E, KFK^{-1}=\varepsilon^{-2}F, EF-FE=\frac{K-K^{-1}}{\varepsilon-\varepsilon^{-1}}, KK^{-1}=K^{-1}K=1.$$

特别地,由 $\varepsilon^{\ell}=1$ 立即得到 $K^{\ell}E=EK^{\ell}, E^{\ell}K=KE^{\ell}, K^{\ell}F=FK^{\ell}, F^{\ell}K=KF^{\ell}$ 以及 $[\ell]=0$. 所以由 [引理1.2] 可知 $EF^{\ell}=F^{\ell}E, FE^{\ell}=E^{\ell}F$. 总之,这让我们看到如果置 $\mathcal{Z}_0=\Bbbk[E^{\ell},K^{\pm\ell},F^{\ell}]$,那么 \mathcal{Z}_0 是 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\Bbbk))$ 的中心子代数. 根据 [推论1.6], $\{E^iK^jF^k|i,k\in\mathbb{N},j\in\mathbb{Z}\}$ 是 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\Bbbk))$ 的 \Bbbk -基,因此 $\Bbbk[E^{\ell},K^{\ell},F^{\ell}]\cong \Bbbk[x,y,z]$ 并且 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\Bbbk))$ 作为 \mathcal{Z}_0 上的模是以 $\{E^iK^jF^k|0\leq i,j,k\leq \ell-1\}$ 为基的自由模. 因此 $\mathrm{rank}_{\mathcal{Z}_0}\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\Bbbk))=\ell^3$. 类似地,对 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\Bbbk))$ 的正 Borel 子代数 $\mathcal{U}_{\varepsilon}^{\geq 0}(\mathfrak{sl}_2(\Bbbk))$,如果记 $\mathcal{Z}_0^{\geq 0}=\Bbbk[E^{\ell},K^{\pm\ell}]$,那么 $\mathcal{U}_{\varepsilon}^{\geq 0}(\mathfrak{sl}_2(\Bbbk))$ 是 $\mathcal{Z}_0^{\geq 0}$ 上 秩为 ℓ^2 的自由模. 相应地,负 Borel 子代数 $\mathcal{U}_{\varepsilon}^{\leq 0}(\mathfrak{sl}_2(\Bbbk))$ 是 $\mathcal{Z}_0^{\leq 0}=\Bbbk[F^{\ell},K^{\pm\ell}]$ 上秩为 ℓ^2 的自由模. 因此

Proposition 1.14. $U_{\varepsilon}(\mathfrak{sl}_2(\mathbb{k}))$ 以及 $U_{\varepsilon}^{\geq 0}(\mathfrak{sl}_2(\mathbb{k})), U_{\varepsilon}^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 都是 \mathbb{k} 上仿射模有限整环. 特别地, 为素 PI 环.

并且根据前面的讨论我们立即看到 PI-deg $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{k})) \leq \ell^{3/2}$, PI-deg $\mathcal{U}_{\varepsilon}^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$, PI-deg $\mathcal{U}_{\varepsilon}^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 特别地, 当 \mathbb{k} 是代数闭域时, 标准的 PI 代数理论表明 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{k}))$ 在 \mathbb{k} 上的不可约表示维数不超过 $\ell^{3/2}$.

最后讨论 \mathbb{R} 是代数闭域时 \mathcal{Z}_0 的极大谱以及每个极大理想 \mathfrak{m} 对应的纤维代数 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{R}))/\mathfrak{m}\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{R}))$ 的线性维数来结束本节. 首先确定 \mathcal{Z}_0 的极大谱, 只需注意到 \mathcal{Z}_0 是多项式代数 $\mathcal{Z}_0^{>0}$ 关于 K^{ℓ} 生成的乘法幺半群的局部化, 再由 Hilbert 零点定理和局部整体性质便知 \mathcal{Z}_0 的每个极大理想形如

$$\mathfrak{m} = (E^{\ell} - c, F^{\ell} - b, K^{\ell} - \alpha), b, c \in \mathbb{k}, \alpha \in \mathbb{k}^{\times}.$$

因为之前已经说明 $\{E^iK^jF^k|0\leq i,j,k\leq\ell-1\}$ 是 $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{k}))$ 作为 \mathcal{Z}_0 -模的基, 所以由 $\mathbb{k}\cong\mathcal{Z}_0/\mathfrak{m}$ 得到

$$\dim_{\mathbb{R}} \mathcal{U}_{\varepsilon}(\mathfrak{sl}_{2}(\mathbb{R}))/\mathfrak{m}\mathcal{U}_{\varepsilon}(\mathfrak{sl}_{2}(\mathbb{R})) = \ell^{3}.$$

类似地, $\mathcal{U}_{\varepsilon}(\mathfrak{sl}_2(\mathbb{k}))$ 的正负 Borel 子代数 $\mathcal{U}_{\varepsilon}^{\geq 0}(\mathfrak{sl}_2(\mathbb{k}))$, $\mathcal{U}_{\varepsilon}^{\leq 0}(\mathfrak{sl}_2(\mathbb{k}))$ 关于中心子代数 $\mathcal{Z}_0^{\geq 0}$, $\mathcal{Z}_0^{\leq 0}$ 的极大理想对应 的纤维代数的 \mathbb{k} -线性维数都是 ℓ^2 .

参考文献

[BG02] K.A. Brown and K.R. Goodearl. Lectures on algebraic quantum groups. Springer Basel AG, 2002.

[Jan96] J.C. Jantzen. Lectures on quantum groups, volume 6. American Mathematical Soc., 1996.