flood loads, 21–25, 415–423	government buildings (federal), 471
combinations including, 7, 9	Govoni, J.W., 455
consensus standards/other referenced	grab bar system, 13, 14, 409
documents, 25	grade plane, 59
debris object weight, 420–421	grandstands, 409–410
debris velocity, 421	Grange, H.L., 428
definitions, 21, 415–416	Granstrom, S., 378
design requirements, 21–22, 416	Greatorex, A., 426
load combinations including, 389	greenhouses, 429
loads during flooding, 22–25, 23t	Griffis, L.G., 580
floor diaphragms, 474	Gringorten, L., 455
floors	ground motion procedures
basement, 12	design acceleration parameters, 208–209
uplift on, 398	design response spectrum, 208
-	
fluid load, 7, 8, 388	ground motion hazard analysis, 207–208,
foundations, 489	209f
design, 98–100	maximum considered earthquake geometric
foundation modeling, 480	mean peak ground acceleration, 209
overturning, 98	site response analysis, 207
quality assurance, 360	ground motion values, 476
seismic design/detailing, 130	ground snow loads, 29, 34–35f
seismic load determination, 88	ground-to-roof factors, 429
ties, 99	guardrail system, 13, 14, 409
uplift on, 12, 398	Gurley, K., 519
frames	gust effect factor, 254, 519-524, 542t-543t
drift, 365, 580–581	gust effects, 254–255
types of, 59	guys, ice-covered, 48, 49, 461
freeboard, 415	
Freeman, S.A., 580	Haehnel, R., 419, 422
free roof, 243, 290f	Hair, J.R., 570
freezing rain, 47, 48, 49, 456–457	Hall, E.K., 455
friction clip, 59, 115, 484–485	Hamburger, R.O., 481
Fritz, W.P., 576	handrail system, 13, 14, 409
, ,	Harris, M.E., 410
gable roof, 283f, 322, 336f-338f, 340f, 345f, 435	Harris, R.I., 547
Galambos, T.V., 387, 388, 389, 579, 580	Haussler, R.W., 447
general collapse, 378	Hazard and Operability (HAZOP) studies, 383
geologic hazards, 68–69	heavy live loads, 410
geotechnical investigation, 68–69	Heinzerling, J.E., 447
Ginger, J.D., 563	helipad, 13, 409
girders, rigidity of, 494	Hendricks, L.T., 428
	high-deformability element, 58
Gland, H., 458	·
glass, 116, 119, 485	high-frequency base balance model, 575
glaze, 47, 48	highly toxic substance, 1, 5–6, 382–384
glazed curtain wall, 59	hill, 243
glazed storefront, 59	hip roof, 283f, 322f, 337f, 345f
glazing, 243, 257, 485	Ho, E., 516, 559
Glover, N.J., 378	Ho, T.C.E., 576
Goel, R.K., 520	hoarfroast, 47, 457
Golden Valley Electric Association, 455	Holmes, J.D., 563, 571
Golikova, T.N., 461	horizontal irregularity, 81, 83t
Goodwin, E.J., 455	horizontal seismic load effect, 85-86
Gouze, S.C., 456	Hoskins, J.R.M., 460