Avalanche Disaster Inspection Tools

Pianificazione Automatica Distribuita delle missioni di una flotta di droni e robot mobili

Perché?

Motivazioni

Pericolosità

Numero medio di vittime maggiore di 20 all'anno, senza considerare feriti e dispersi.

Tempo di soccorso

Le probabilità che una persona sopravviva diminuiscono esponenzialmente col passare del tempo. Cambiamento climatico

L'innalzamento della temperatura aumenta il rischio di valanghe.

La Soluzione

L'obiettivo è quello di monitorare e controllare la presenza di eventuali vittime dopo l'episodio di una valanga. Per fare ciò utilizziamo un insieme di agenti (con agenti si intendono robot terrestri e droni).

I robot terrestri hanno una maggiore autonomia, ma possono riscontrare difficoltà nel muoversi, mentre i droni, pur avendo un'autonomia minore, sono molto più rapidi e agili.

Panoramica

Decentralizzazione

25% 25% 25%

Algoritmo K-Means

Si basa sul dividere i punti in gruppi (clusters) minimizzando la *varianza*.

Semplice

Converge

Efficace

Flessibile

Procedura

L'algoritmo può essere diviso in 4 passaggi chiave.

1. Generazione dei punti.

Con Distribuzione Gaussiana 2. Assegnazione ai clusters.

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2$$

3. Calcolo centroidi.

4. Spostamento verso il centroide.

Esempio

Algoritmo di Voronoi

Migliore di K-Means

L'algoritmo di Lloyd è una procedura iterativa per trovare delle aree di punti equidistanti in uno spazio, dividendo questo spazio in sezioni (di Voronoi).

Procedura

Possiamo dividere il compito di ogni agente in 3 passaggi.

1. Calcolo della cella di Voronoi.

2. Trovare il centroide della cella.

$$\begin{split} M_{V_i} &= \frac{1}{2} \sum_{k=0}^{N_i-1} (x_k y_{k+1} - x_{k+1} y_k) \\ C_{V_i,x} &= \frac{1}{6M_{V_i}} \sum_{k=0}^{N_i-1} (x_k + x_{k+1}) (x_k y_{k+1} - x_{k+1} y_k) \\ C_{V_i,y} &= \frac{1}{6M_{V_i}} \sum_{k=0}^{N_i-1} (y_k + y_{k+1}) (x_k y_{k+1} - x_{k+1} y_k). \end{split}$$

3. Spostarsi verso il baricentro

Esempio

Lloyd pesato

Quando l'utente segnala la/e zona/e in cui c'è una maggiore probabilità di trovare vittime, è più conveniente disporre i droni in modo tale che siano più concentrati in queste zone, e conseguentemente più rari man mano che ci allontaniamo dalla zona.

Servizio ROS2

E' il momento di unire tutte le parti, ossia l'algoritmo che si occupa della partizione dell'area, con la sezione relativa al controllo dei robot tramite scambio di messaggi.

Schema

Centralizzato vs Distribuito

- ✓ Calcoli e decisioni presi da una sola macchina
- ✓ Non ha bisogno di ricevere informazioni dall'ambiente
- ✓ Non c'è bisogno di comunicazione continua
- ✓ Strada probabilmente più **veloce** e calcolata a priori

- ✓ Partizione dell'area in maniera equa e veloce
- ✓ Non ha bisogno di coordinate conosciute
- ✓ Adattivo al terreno ed eventuali ostacoli
- ✓ Più resistente a malfunzionamenti
- ✓ La strada percorsa può essere modificata dinamicamente

Crescita e Innovazione.

Situazioni

La flessibilità permette di estendere questa tecnologia ad ambienti molto diversi tra loro.

Tipologie di robot

È possibile implementare diversi automi, come tecnologia acquatica o satellitare.

Intelligenza Artificiale

Concentrandoci sulla localizzazione, si può allenare un modello e migliorare il riconoscimento di persone.