2017-09-20

\mathbf{DNA}

- The G-C bond has three hydrogen bonds
 - This is more strong than the A-T bond, which only has two
- Reannealing/Rehybridization = the reformation of hydrogen bonds after heating DNA

5' to 3'

- We always write single strained DNA/RNA in 3' -> 5' notation
 - Meaning, when you write complementary strands, you need to flip it

Use of Alternate Isotopes

- In biochemistry, alternate isotopes of elements can be used to track how and where substances are used throughout the cells
 - -e.g
 - * ${}^{1}H(\text{normal}), {}^{2}H(\text{heavy}), \text{ and } {}^{3}H(\text{radioactive})$
 - * Carbon-12, Carbon-14
- Examples
 - Distinguishing between nucliec acid and protein
 - * DNA has Phospohorus, while protein does not
 - * Proteins have Sulfur, while DNA does not
 - Figuring out whether DNA replication was semiconservative, conservative, etc
 - * Heavy nitrogen used in initial nucleic acids
 - * After replication, examine content of new double helices

Specifics of replication

- Eukaryotic cells have linear chromosomes
- Prokaryotic cells have a circular chromosome
- Origin of replication(ori) = the place at which replication begins
- Since Prokaryotic cells have smaller genomes and faster replication, it can simply copy it all in one go
 - $-\,$ In other words, there is only one ori
- Since Eukaryotic cells have much, much larger genomes and slower replication, it must copy at many places in parallel
 - In other words, there are many ori's
- **Histone** = a protein structure that DNA wraps around to increase density
- Template-driven polymerization = using the complement strand

- Add in dATP, dTTP, dGTP, and dCTP
 - * Whichever base pairs with the existing template, **DNA poly**merase will eject a **pyrophosphate** and forms the backbone

Additional Detail

- 1. DNA Helicase creates a replication fork by splitting the double strand
 - Since DNA replication happens from 3' to 5'(or, equivalently, the complement is synthesized from 5' to 3'), the two single strands cannot be replicated the same way
 - Leading strand = the strand where DNA-polymerase can continue to synthesize the complement as the replication fork moves
 - Lagging strand = the strand where DNA-polymerase is working in the opposite direction of the growth of the replication fork
- 2. Single-strand binding protein(SSBP) binds to each strand to prevent reformation of hydrogen bond
- 3. **DNA polymerase** needs a **primer** in order to bind to the strand
 - **Primer** = a short stretch of RNA/DNA that allows DNA polymerase to bind to the strand
 - In leading strand, the replication can take place with just one primer
 - In lagging strand, the replication has to take place with many primers
 - Ribonuclease/RNAse goes over the strand and removes the primers
 - Then, DNA polymerase uses DNA in between the empty primers as primers and fills in the gaps
 - * But, DNA polymerase cannot fill in the last base pair; **DNA Ligase** does that
- 4. As DNA Helicase unzips, it twists remainder of strand so that it gets harder and harder to unzip
 - Topoisomerase comes and "cuts" the DNA to relieve that tension, and then reattaches the DNA so that Helicase can continue its job

2017-09-22

Proofreading in DNA Replication

- DNA Polymerase has an exonuclease that can correct the prior-inserted base
 - But can *only* correct previously placed base
- Base excision repair
 - Base pair is broken, nucleotide is "pivoted" away from double helix, and base is replaced

- Nucleotide excision repair
 - When UV light hits adjacent Thymines, a covalent bond happens, forming a "thymind dimer"
 - The surrounding bases are removed, and new DNA is laid down
 - Xeroderma pigmentosum = an autosomal recessive genetic disease that is caused by a defect in the genes that code for proteins involved in nucleotide excision repair

Telomeres

- **Telomeres** = the tips of chromosomes that fail to get replicated typically
 - This is a consequence of the fact that DNA polymerase needs a primer in order to start adding DNA
 - \ast On 3' end, primer is laid down at very end, so that primer will never be overwritten with DNA
 - · Because you cannot put down a primer after the strand ends
 - * **Telomerase** = an enzyme that can actually fill in RNA primers
 - · Important in stem cells and gametes

Transcription

- Faithful transcription of DNA is less important than in replicating DNA
 - This is because many, many mRNA transcripts are produced, so it's likely that enough will get it correct
- RNA actually have the freedom to form more interesting shapes
 - Unlike DNA
- In eukaryotes, transcription takes place in nucleus, in prokaryotes, in nucleolus
- Steps
 - 1. Instead of RNA polymerization starting at a primer, RNA Polymerase binds to a **promoter**
 - Promoter = a non-coding section of DNA that is used as a origin for transcriptiont
 - RNA polymerase actually has a helicase built in as well
 - Only the "template" strand of the double-stranded DNA is ever transcribed
 - Only about 1.5% of DNA actually codes for proteins; the rest is control information
 - A lot of DNA sequences are involved giving information as to where transcription should happen
 - * e.g. TATA box
 - 2. RNA polymerase continues to add nucleotides and backbone is synthesized

3. Eventually, RNA polymerase breaks hydrogen bond between itself and the DNA

2017-09-25

Transcription

Before transcription

- Transcriptome = the set of all RNA molecules in a cell
- Prior to transcription, the DNA is wound up in the chromosome
 - Histones are very positive proteins, and DNA phosphates are negative, which is why DNA wraps around them
 - Chromatin = the histones and DNA in one bundled matrix
 - Two ways to modify chromatin
 - 1. **Acetylation** = add an acetyl group onto Lysine
 - * Upregulation = increases activity of transcription
 - * Forms **Heterochromatin**
 - 2. **Methylation** = add a methyl group onto certain bases
 - * **Downregulation** = decreases activity of transcription
 - * Forms **euchromatin** ### After transcription
- 5' capping = a modification to the 5' end
 - The 5' terminal nucleotide actually maintains it's three phosphates
 - * Because RNA polymerase doesn't attach first nucleotide to a primer, the triphosphate stays intact
 - This process happens soon after transcription begins
 - \ast Because the 5' end will be left in cytoplasm as the rest of the mRNA is synthesized
- 3' polyadenylation = a modification to the 3' end
 - First, mRNA is cleaved at a poly(A) site
 - Then, a few hundred adenines are added to the end of the 3' end
 - * Called a Poly-A Tail
 - $\ast\,$ This is because degradation of the 3' end will happen naturally over time
 - · This process will make it so the degredation will only damage non-coding regions for a while
 - * The poly-A tail is used as a marker for nuclear export
- Splicing = the removal of segments(called introns) from pre-mRNA
 - Intron = non-coding region of pre-mRNA
 - **Exon** = coding region of pre-mRNA