Lösning till MVE 015 Analys i en variabel I, 5 p, 06 12 17.

Förkortningar

KE står för karakteristisk ekvation,

KK står för kvadratkomplettering,

PBU står för partialbråksuppdelning,

PI står för partiell integration.

1. (a)

$$\int x \cos x \, dx = \{ PI \} = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C$$

Svar: $x \sin x + \cos x + C$, där C är en godtycklig konstant.

(b)

$$\int_0^1 \frac{t \, dt}{\sqrt{1 - t^4}} = \{s = t^2, \, ds/2 = t \, dt\} = \frac{1}{2} \int_0^1 \frac{ds}{\sqrt{1 - s^2}} = \frac{1}{2} [\arcsin s]_0^1 = \frac{1}{2} (\frac{\pi}{2} - 0) = \frac{\pi}{4}.$$

Svar: $\frac{\pi}{4}$

2. (a) Den integrerande faktorn är e^{x^2} , eftersom $D(x^2) = 2x$. Multiplikation med denna ger $D(ye^{x^2}) = (2x+1)e^{x^2+x}$, som integreras till

$$ye^{x^2} = \int (2x+1)e^{x^2+x} dx = e^{x^2+x} + C$$

Vi löser ut y och får $y = e^x + Ce^{-x^2}$. Men y(0) = 0 ger nu C = -1.

Svar: $y = e^x - e^{-x^2}$.

(b) Den homogena ekvationen har den karaktäristiska ekvationen $0 = r^2 + 2r + 1 = (r+1)^2$, som har dubbelroten -1. Detta ger $y_h = (Ax + B)e^{-x}$.

För att finna en partikulärlösning görs först substitutionen $y=ze^x$ som insatt i ekvationen ger $(z''+4z'+4z)e^x=(x+1)e^x$, eller z''+4z'+4z=x+1. Vi ansätter $z_p=ax+b$ och ser genom insättning att vi ska ha a=1/4 och b=0. Detta ger $z_p=x/4$ och $y_p=xe^x/4$.

Allmänna lösningen till ekvationen i uppgiften är $y = y_h + y_p$.

Svar: $y = (Ax + B)e^{-x} + xe^{x}/4$, där A och B är godtyckliga konstanter.

3. Vi sätter

$$a_n = \frac{2^{n-1}}{n(2n+1)}x^n$$

och har då

$$\left| a_{n+1} \cdot \frac{1}{a_n} \right| = |x| \cdot 2 \cdot \frac{n(2n+1)}{(n+1)(2n+3)} \to 2|x|,$$

när $n \to \infty$.

Alltså är potensserien konvergent när 2|x|<1, dvs när |x|<1/2, och divergent när |x|>1/2.

Vi undersöker

$$p(1/2) = \sum_{n=1}^{\infty} \frac{1}{2n(2n+1)}.$$

Men

$$0 \le \frac{1}{2n(2n+1)} \le \frac{1}{n \cdot n} = \frac{1}{n^2}$$

och $\sum_{n=1}^{\infty} 1/n^2$ är känd som konvergent. Därför konvergerar p(1/2) enligt jämförelsekriteriet.

Vi undersöker

$$p(-1/2) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n(2n+1)},$$

som är alternerande. Eftersom 1/(2n(2n+1)) avtar mot 0 när $n \to \infty$ är p(-1/2) konvergent enligt kriteriet för alternerande serier.

Svar: Potensserien är konvergent när $-1/2 \le x \le 1/2$.

4. En skiss av situationen ges i följande figur:

Vi löser ekvationen 2x(2-x)=x och får x=0 och x=3/2. Med hjälp av rörformeln får vi kroppens volym som

$$2\pi \int_0^{3/2} x(2x(2-x) - x) dx = 2\pi \int_0^{3/2} (3x^2 - 2x^3) dx =$$

$$= 2\pi \left[x^3 - \frac{x^4}{2} \right]_0^{3/2} = \frac{2\pi \cdot 3^3}{2^2} (1 - \frac{3}{4}) = \frac{27\pi}{16}.$$

Svar: $27\pi/16$.

5. Vi har $e^t = 1 + t + t^2/2 + t^3/3! + \cdots$, $\sin t = t - t^3/3! + t^5/5! + \cdots$ och $\cos t = 1 - t^2/2! + t^4/4! + \cdots$

Detta ger att

$$f(t) = \frac{t(t^3 - t^9/3! + t^{15}/5! + \cdots)}{(1 + t^2 + t^4/2 + t^6/3! + \cdots)(1 - t^2/2! + t^4/4! + \cdots) - 1 + at^2} = \frac{t^4(1 - t^6/3! + \cdots)}{(a + 1/2)t^2 + (1/4! - 1/2! + 1/2!)t^4 + (-1/6! + 1/4! - (1/2!)^2 + 1/3!)t^6 + \cdots}.$$

Om $a+1/2 \neq 0$ ser vi efter förkortning med t^2 att gränsvärdet blir 0/(a+1/2) = 0 när $t \to 0$.

För att få ett gränsvärde $\neq 0$ ska vi alltså ha a=-1/2. I detta fall ger förkortning med t^4 att

$$f(t) = \frac{1 - t^6/3! + \cdots}{(1/4! - 1/2! + 1/2!) + (-1/6! + 1/4! - (1/2!)^2 + 1/3!)t^2 + \cdots} \to \frac{1}{1/4!} = 24,$$

när $t \to 0$.

Svar: a = -1/2 och gränsvärdet blir då 24.

6. Vi ser av figuren i uppgiften att h(t) kan beskrivas som h(t) = (1-t)(1-u(t-1)) = 1-t+(t-1)u(t-1).

Av tabell framgår att $1\supset 1/s,\ t\supset 1/s^2$ och att $(t-1)u(t-1)\supset e^{-s}/s^2.$

Detta ger oss $h(t) \supset 1/s - 1/s^2 + e^{-s}/s^2$ och $u(t-2)h(t-2) \supset e^{-2s}/s - e^{-2s}/s^2 + e^{-3s}/s^2$.

Vi sätter $y\supset \tilde{y}$ och har då $y'\supset s\tilde{y}$ samt $y''\supset s^2\tilde{y}$. Laplacetransformering av ekvationen ger därför

$$(s^{2} + s - 2)\tilde{y} = e^{-2s}/s - e^{-2s}/s^{2} + e^{-3s}/s^{2}.$$

Eftersom $s^2 + s - 2 = (s - 1)(s + 2)$ har vi efter division

$$\tilde{y} = e^{-2s} \frac{1}{s(s-1)(s+2)} + e^{-2s} \frac{1}{s^2(s-1)(s+2)} + e^{-3s} \frac{1}{s^2(s-1)(s+2)}$$

Vi gör en partialbråksuppdelning av första kvoten i uttrycket med handpåläggning:

$$\frac{1}{s(s-1)(s+2)} = -\frac{1}{2} \cdot \frac{1}{s} + \frac{1}{3} \cdot \frac{1}{s-1} + \frac{1}{6} \cdot \frac{1}{s+2} \subset \\ \subset -\frac{1}{2} + \frac{e^t}{3} + \frac{e^{-2t}}{6}.$$

Vi multiplicerar den tidigare kvoten med 1/s och gör fortsatt partialbråksuppdelning:

$$\begin{split} \frac{1}{s^2(s-1)(s+2)} &= -\frac{1}{2} \cdot \frac{1}{s^2} + \frac{1}{3} \cdot \frac{1}{s(s-1)} + \frac{1}{6} \cdot \frac{1}{s(s+2)} = \\ &= \frac{1}{2} \cdot \frac{1}{s^2} + \frac{1}{3} \left(-\frac{1}{s} + \frac{1}{s-1} \right) + \frac{1}{6} \left(\frac{1}{2} \cdot \frac{1}{s} - \frac{1}{2} \cdot \frac{1}{s+2} \right) = \\ &= -\frac{1}{4} \cdot \frac{1}{s} + \frac{1}{2} \cdot \frac{1}{s^2} + \frac{1}{3} \cdot \frac{1}{s-1} - \frac{1}{12} \cdot \frac{1}{s+2} \subset \\ &\subset -\frac{1}{4} + \frac{t}{2} + \frac{e^t}{3} - \frac{e^{-2t}}{12}. \end{split}$$

Med detta och fördröjningsregeln får vi nu

$$\tilde{y} \subset u(t-2)(-3/4 + (t-2)/2 + 2e^{t-2}/3 + e^{-2(t-2)}/12) + u(t-3)(-1/4 + (t-3)/2 + e^{t-3}/3 - e^{-2(t-3)}/12) = y.$$

Svar:

$$y(t) = u(t-2)(-7/4 + t/2 + 2e^{t-2}/3 + e^{-2(t-2)}/12) + u(t-3)(-7/4 + t/2e^{t-3}/3 - e^{-2(t-3)}/12).$$

7. (c) Med $x(t)=t^3,\ y(t)=t^2$ har vi $x'(t)=3t^2,\ y'(t)=2t$ så båglängden ges av

$$\int_0^1 |(x'(t), y'(t))| dt = \int_0^1 \sqrt{9t^4 + 4t^2} dt = \int_0^1 t \sqrt{9t^2 + 4} dt =$$

$$= (1/3)(1/9) \left[(9t^2 + 4)^{3/2} \right]_0^1 = (1/27)(13\sqrt{13} - 8).$$

Svar: $(1/27)(13\sqrt{13}-8)$.