Lecture 1 Introduction to Study design & R

Dr. Wendy R

Today

Here's the plan

Finish syllabus stuff + Slido poll	Create community guidelines and grading guidelines
Lecture	Data terms, types of variables, parameters vs. statistics, types of studies
R Markdown	Introduction to R Markdown documents

Slido poll

Join at **slido.com #2383 391**

Why statistics?

Statistics help us understand the world around us.

E.g., <u>Covid tracking</u>, misinformation, social justice movements, social media influence, and so much more!

What does a statistician do?

"Quantify uncertainty"

- define the problem, and formulate research questions
- design the sampling procedure or experiment for collecting the data
- 3. explore and analyze the data
- 4. formulate conclusions and communicate the results

Population

a collection of people, items, or events about which you want to make inferences

kitten I fostered last year

Sample

a subset of the population

e.g., 50 randomly sampled foster kittens

Probability vs.
Statistics

statistics vs. parameters

Parameter: value that describes an entire population

typically notated with a Greek letter

- *µ*
- 0
- \bullet β_0
- \bullet β_1
- p

Statistic: value that describes a sample

typically notated with a lowercase letter or hats

- 5
- $\widehat{\beta}_{0}$
- \bullet β_1
- p

SRS

simple random sample (srs): each case (observational unit) in the population has an equal chance of being included in the final sample

stratified sampling

stratified sampling: the population is divided into strata according to some variables that are thought to be related to the variable of interest; take an SRS from each group

cluster sampling

cluster sampling: the population is divided into clusters and a sample of clusters is taken

multistage sampling

multistage sampling: break up population into clusters, select a sample of clusters, and apply an srs within each chosen cluster

convenience sampling

convenience sampling: individuals who are easily accessible are more likely to be included in the sample

example

 sitting outside of the student union and asking students to answer your survey questions

voluntary response sample

voluntary response sample: non-probability sample made up of individuals who *volunteer* to be included in the sample

examples

- Mail-in survey
- Call survey
- Social media poll

mishaps in sampling

bias: occurs when a sample statistic under/overestimates a population parameter

sampling bias

the sampling frame was
non-random and does not
reflect the characteristics of
the population being tested
(i.e., they are not
representative of the
population)

voluntary response:
 observations are
self-selected volunteers

convenience: individuals who
 are easily accessible are
 sampled

types of studies

observational

observational units are not manipulated in any way that will affect the outcome of the study

experiment

where researchers
manipulate something
and measure the
effect of the
manipulation on some
outcome of interest

generalizability

relationships between variables

response (Y)

the outcome of interest dependent variable

explanatory (X)

the predictor of interest independent variable

relationships between variables

confounding variable (W)

a variable that is associated with the predictor of interest (X) and causally related to the outcome of interest (Y)

RStudio terms to know

R script

where you will type code and code only

R Markdown

where you can type code, text, and more!

console

where all the output goes when you run code

environment

where all your variables and data frames live

packages

"applications" containing special functions, datasets, and maybe more

plots/Viewer

where you can view plots and RMarkdown docs

R terms to know

variable

(in R) a named object that represents some sort of data

data frame

a rectangular dataset

assignment operator

how to save data as a variable

vector

a collection of similar types of data

types of variables

variable: any characteristic, number, or quantity that can be measured or counted

quantitative

consist of meaningful numeric values taken on each observational unit

discrete

counted (only integer values)

continuous

measured (any real number)

categorical

consist of categories or group names measured on an observational unit

ordinal

categories have a logical ordering

nominal

do not necessarily have a logical ordering

types of variables in R

quantitative

num (numeric)

discrete

int: integer

continuous

dbl: double

categorical

fct: factor

ordinal

fct: factor

nominal

fct: factor

text

chr: character
(a single letter/special character)

string

string (made up of characters)

logical

TRUE/FALSE

types of objects in R

data frame

rectangular dataset

matrix

2-dimensional array

vector

sequence of a similar type of data

list

can contain heterogeneous data types