0

n

e

S

Teoría de Algoritmos

Capitulo 4: Programación Dinámica

Tema 12: Aplicaciones

- Otras aplicaciones de la P.D.
 - Multiplicación encadenada de matrices
 - El Problema de la Secuencia de Máxima longitud
 - El problema del "play-off"

El Problema de la Multiplicación encadenada de matrices

- Dadas n matrices $A_1, A_2, ..., A_n$ con A_i de dimensión $d_{i-1} \times d_i$
- Determinar el orden de multiplicación para minimizar el numero de multiplicaciones escalares.
- Suponemos que la multiplicación de una matriz p x q por otra q x r requiere pqr multiplicaciones escalares

El Problema de la Multiplicación encadenada de matrices

- Un producto de matrices se dice que esta completamente parentizado si esta constituido por una sola matriz, o por el producto completamente parentizado de dos matrices, cerrado por paréntesis.
- La multiplicación de matrices es asociativa, y por tanto todas las parentizaciones producen el mismo resultado.

0

n

El Problema de la Multiplicación encadenada de matrices

- El producto A_1 A_2 A_3 A_4 puede parentizarse completamente de 5 formas distintas
 - $(A_1 (A_2(A_3A_4)))$
 - $(A_1((A_2A_3)A_4))$
 - $((A_1 A_2)(A_3 A_4))$
 - $((A_1 (A_2 A_3))A_4)$
 - $(((A_1 A_2)A_3)A_4)$

$$A = A_1$$
 A_2 A_3 A_4
 10×20 20×50 50×1 1×100

a

0

n

e

El Problema de la Multiplicación encadenada de matrices

Orden 1 $A_1 \times (A_2 \times (A_3 \times A_4))$ $Costo(A_3 \times A_4) = 50 \times 1 \times 100$ $Costo(A_2 \times (A_3 \times A_4)) = 20 \times 50 \times 100$ $Costo(A_1 \times (A_2 \times (A_3 \times A_4))) = 10 \times 20 \times 100$ Costo total = 125000 multiplicaciones

Orden 2 $(A_1 \times (A_2 \times A_3)) \times A_4$ $Costo(A_2 \times A_3) = 20 \times 50 \times 1$ $Costo(A_1 \times (A_2 \times A_3)) = 10 \times 20 \times 1$ $Costo((A_1 \times (A_2 \times A_3)) \times A_4) = 10 \times 1 \times 100$ Costo total = 2200 multiplicaciones 0

n

El Problema de la Multiplicación encadenada de matrices

Principio de Optimalidad

- Si $(A_1 \times (A_2 \times A_3)) \times A_4$ es optimal para $A_1 \times A_2 \times A_3 \times A_4$,
- Entonces $(A_1 \times (A_2 \times A_3))$ es optimal para $A_1 \times A_2 \times A_3$
- · Razón:
- Si hubiera una solución mejor para el subproblema, podriamos usarla en lugar de la anterior, lo que seria una contradicción sobre la optimalidad de $(A_1 \times (A_2 \times A_3)) \times A_4$

Recuento del numero de parentizaciones

La enumeración de todas las parentizaciones posibles no proporciona un método eficiente.

Notemos el numero de parentizaciones de una sucesión de n matrices por P(n).

Como podemos dividir una sucesión de n matrices en dos (las k primeras y las k+1 siguientes) para cualquier k = 1,2,...,n-1, y entonces parentizar las dos subsucesiones resultantes independientemente, obtenemos la recurrencia:

a

0

n

e

S

Recuento del numero de parentizaciones

La solución de esa ecuación es la sucesión de los Números de Catalan (Eugène Charles Catalan, 1814-1894)

$$P(n) = C(n-1)$$

Donde

$$C(n) = (n+1)^{-1}C_{2n,n} = \frac{\binom{2n}{n}}{\binom{n+1}{n+1}}$$

es
$$\Omega(4^{n}/n^{3/2})$$

Por tanto el numero de soluciones es exponencial en n y, consiguientemente, el método de la fuerza bruta es una pobre estrategia para determinar la parentización optimal de una cadena de matrices.

a

0

n

e

S

La Parentización optimal

• Si la parentización optimal de $A_1 \times A_2 \times ... \times A_n$ se parte entre $A_k y A_{k+1}$, entonces

parentización optimal para
$$A_1 \times A_2 \times ... \times A_n$$

parentización optimal para $A_1 \times ... \times A_k$ parentización optimal para $A_{k+1} \times ... \times A_n$

Lo unico que no conocemos es el valor de k

Podemos probar con todos los valores posibles de k, y auqel que devuelva el minimo, es el que escogemos.

S

La Parentización optimal

- Suponemos que

 A₁ tiene dimension p₀ x p₁
 A₂ tiene dimension p₁ x p₂
 A_i tiene dimension p_{i-1} x p_i
- $A_i \dots A_j$ tiene una solución $p_{i-1} \times p_j$
- Sea m[i, j] el minimo numero de operaciones escalares para $A_i \dots A_j$
- La solución que buscamos es m[1,n]

a

0

n

e

S

Estructura de los sub-problemas

$$(A_1 \ A_2 \ A_3 \ A_4 \ A_5 \ A_6)$$

$$m[1,3] \ m[4,6]$$
 $(A_1 \ A_2 \ A_3) \ (A_4 \ A_5 \ A_6)$

$$p_0 \times p_3 \ p_3 \times p_6$$

$$m[1,3] + m[4,6] + p_0p_3p_6$$

n

Estructura de los sub-problemas

$$(A_1 A_2 A_3 A_4 A_5 A_6)$$

$$m[1,6] = ?$$

$$((A_1)(A_2 A_3 A_4 A_5 A_6))$$

$$((A_1 A_2)(A_3 A_4 A_5 A_6))$$

$$((A_1 A_2 A_3)(A_4 A_5 A_6))$$

$$((A_1 A_2 A_3 A_4)(A_5 A_6))$$

$$((A_1 A_2 A_3 A_4)(A_5 A_6))$$

$$((A_1 (A_2 A_3 A_4 A_5)(A_6))$$

$$m[1,6] = min de...$$

a

0

n

e

S

Formulación Recursiva

Las anteriores expresiones nos llevan a que

$$m[i,j] = \begin{cases} 0 & (i = j) \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & (i \le j) \end{cases}$$

- Donde
- $m[i, k] = Costo optimo de A_i \times ... \times A_k$
- $m[k+1, j] = Costo optimo de A_{k+1} \times ... \times A_{j}$
- $p_{i-1}p_kp_j = Costo de(A_i \times ... \times A_k) \times (A_{k+1} \times ... \times A_j)$

a

0

n

e

S

Formulación Recursiva

```
Matrices-Encadenadas-Recursivo (p,i,j)
If i = 1
Then Return 0
m[i,j] = \infty
For k = 1 to j - 1 do
  q = Matrices-Encadenadas-Recursivo (p,i,k) +
       + Matrices-Encadenadas-Recursivo (p,k+1,j)
       + p_{i-1} \cdot p_k \cdot p_i
  If q < m[i,j]
  Then m[i,j] = q
Return m[i,j]
```

a

C

0

n

e

S

Eficiencia del algoritmo

$$\begin{split} m[i,j] &= \min_{i \leq k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} \\ T(n) &= \sum_{k=1}^{n-1} (T(k) + T(n-k) + O(1)) \\ &= \Omega(2^n) \end{split}$$

Inaceptable

Muchos sub-problemas se solapan

0

n

e

Eficiencia del algoritmo

· la anterior ecuacion puede reescribirse como

$$T(n) = 2 \cdot \sum_{i=1..n-1} T(i) + n$$

· Ahora bien, como

$$T(1) \ge 1 = 2^{\circ}$$

inductivamente para n ≥2 tenemos

$$T(n) = 2 \cdot \sum_{i=1..n-1} 2^{i-1} + n \ge 2 \cdot \sum_{i=0..n-1} 2^{i} + n \ge 2(2^{n-1} - 1) + n = 2(2^{n} - 2) + n \ge 2^{n-1}$$

· Con lo que se demuestra que el tiempo es al menos exponencial en n.

a

0

n

e

S

PD: Solución del problema

- En lugar de calcular las soluciones de la recurrencia anterior de forma recursiva, resolveremos de acuerdo con la tercera etapa de la aplicacion de la tecnica de la PD.
- El siguiente algoritmo supone que A_i tiene dimensiones $p_{i-1} \cdot p_i$, para cualquier i = 1, 2, ..., n.
- El input es una sucesion $\{p_o, p_1, ..., p_n\}$ de longitud n+1, es decir leng[p] = n+1.
- · El procedimiento usa
 - una tabla auxiliar m[1..n,1..n] para ordenar los m[i,j] costos y
 - una tabla auxiliar s[1..n,1..n] que almacena que indice de k alcanza el costo optimal al calcular m[i,j].

a

0

n

e

S

PD: Solución del problema

```
Orden-Cadena-Matrices (p)
n = leng[p] - 1
For i = 1 to n do m[i,i] = 0
For I = 2 to n do
   For i = 1 to to n - l + 1 do
      j = i + | -1|
      m[i,j] = \infty
       For k = i \text{ to } j - 1 \text{ do}
        q = m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_j
        If q < m[i,j]
         Then m[i,j] = q; s[i,j] = k
Return mys.
```

Una simple inspeccion a la estructura encajada de los lazos en el anterior algoritmo demuestra que este tiene una eficiencia de O(n³), ya ya k que, en el peor caso, pueden llegar a tomar el valor n.

Construcción de una Solución Optima

- Aunque el anterior algoritmo determina el numero optimal de multiplicaciones, no explica como multiplicar las matrices.
- · La siguiente etapa de la tecnica de la PD es la de la construccion de una solucion optimal a partir de la informacion calculada.
- En nuestro caso, usamos la tabla s[1..n,1..n] para determinar la mejor forma de multiplicar las matrices. Cada elemento s[i,j] almacena el valor k tal que divide optimalmente la parentizacion de A_{i-1} x A_{i+1} x ... xA_j. Por tanto, sabemos que la multiplicacion optimal de matrices final para calcular A_{1..n} es A_{1..s[1,n]} x A_{s[1,n]+1..n}
 La anterior multiplicacion de matrices puede efectuarse
- La anterior multiplicacion de matrices puede efectuarse recursivamente, puesto que s[1,s[1,n]] determina la ultima multiplicacion de matrices al calcular A, y s[s[1,n]+1,n] la ultima multiplicacion de matrices al calcular $A_{1..s[1,n]}$.

Construcción de una Solución Optima

- El siguiente procedimiento recursivo calcula el producto encadenado de matrices A_i , dadas las matrices de la cadena $A = \{A_1, A_2, ..., A_n\}$, la tabla s calculada por el algoritmo Orden-Cadena-Matrices, y los indices i y j.
- El algoritmo usa el procedimiento clasico MULT (A,B) de multiplicación de dos matrices.

```
Multiplica-Cadena-Matrices (A,s,i,j)

If j > i

Then X = Multiplica-Cadena-Matrices (A,s,i,s[i,j])

Y = Multiplica-Cadena-Matrices (A,s,s[i,j]+1,j)

Return MULT (X,Y)

Else Return A<sub>i</sub>
```

a

0

n

S

Sacar ventajas del enfoque

- El enfoque de la PD,
 - 1. Naturaleza n-etápica del problema
 - 2. Verificación del POB
 - 3. Planteamiento de una recurrencia
 - 4. Calculo de la solución (enfoque adelantado o atrasado)
- sugiere un modo de abordar algunos problemas de alta dimensionalidad, que son planteables por medio de tablas de datos.
- La idea es aprovechar la estructura encajada de los subproblemas

0

n

a

El Problema de la Subsecuencia de Mayor Longitud (SML)

- · Tenemos dos secuencias: X, Y
- · ¿Cuál es la sub-secuencia comun a X e Y de longitud mayor?
- · Ejemplo Si

n

El Problema de la Subsecuencia de Mayor Longitud (SML)

- Es un problema de la maxima actualidad por sus aplicaciones en el proyecto del Genoma Humano, y en general en Bioinformática
- Secuencias identicas en distintos elementos pueden proporcionarnos una información muy relevante.
- El algoritmo de la fuerza bruta consume demasiado tiempo:
- Habria que contrastar 2^m subsecuencias de x contra los n elementos de y
- Eso daria un algoritmo de tiempo $O(n 2^m)$

a

0

n

e

S

El Problema de la Subsecuencia de Mayor Longitud (SML)

Supongamos que

$$X = \langle x_1, x_2, ..., x_m \rangle$$

 $Y = \langle y_1, y_2, ..., y_n \rangle$

y que la sub-secuencia comun de mayor longitud es

$$Z = \langle z_1, z_2, ..., z_k \rangle$$

- Si $x_m = y_n$ Entonces $z_k = x_m = y_n$ y z_{k-1} es una SML de x_{m-1} e y_{n-1}
- En otro caso o bien Z es una SML de X_{m-1} o una SML de X e Y_{n-1}

0 9 0

a

0

n

e

S

Dinámica

Una solución recursiva

$$x_i = y_j$$

 $SML(X,Y) = SML(X_{i-1},Y_{j-1}) + x_i$

$$x_i <> y_j$$

 $SML(X,Y) = SML(X_{i-1},Y_j)$
o
 $SML(X,Y) = SML(X_{i},Y_{j-1})$

a

0

n

e

S

Ejemplo

• Consideramos las secuencias

$$X = \langle 0, 1, 1, 0, 1, 0, 0, 1 \rangle$$

YY = <1, 1, 0, 1, 1, 0>

• Entonces disponemos una tabla inicial vacia como,

	j	0	1	2	3	4	5	6
i	50000	y_j	1	1	0	1	1	0
0	x_i							70
1	0							
2	1							
2 3	1							
4	0							
4 5 5	1							
5	0							
7	0							
8	1	[] [3						

a

C

0

n

e

S

La primera tabla

• En primer lugar completamos con ceros los bordes de la tabla.

- Si $x_i = y_j$ entonces ponemos \nwarrow en esa casilla, junto con el valor l(i-1, j-1) + 1
- En otro caso pondremos el mayor de los valores l(i 1, j) o l(i, j -1) en la casilla con la flecha apropiada.

a

0

n

e

S

La primera tabla

• Es facil calcular la primera fila, comenzando a partir de la posición (1, 1):

	j	0	1	2	3	4	5	6
i		y_j	1	1	O	1	1	0
0	x_i	O	0	0	0	0	0	0
1	0	0	↑ O	↑ O	$\sqrt{1}$	$\leftarrow 1$	$\leftarrow 1$	$\sqrt{1}$
2	1	0						
3	1	0						
4	0	0						
2 3 4 5 7	1	0						
5		О						
7	Ō	0						
8	1	0						

a

0

n

e

S

La primera tabla

 Despues de completar fila por fila, podemos alcanzar el array final:

	j	0	1	2	3	4	5	6
i		y_{j}	1	1	O	1	1	O
0	x_i	Ô	0	0	0	0	0	0
1 2 3	O	0	↑ O	↑ O	$\sqrt{1}$	$\leftarrow 1$	$\leftarrow 1$	$\sqrt{1}$
2	1	0	$\nwarrow 1$	\nwarrow 1	\uparrow 1	\ 2	_2	← 2 ← 3
	1	0	$\sqrt{1}$	$\sqrt{2}$	←2	√2	√ 3	← 3
4 5	O	0	1	↑ 2	←2 <u></u> <u></u> <u></u> 3	← 3	↑3	\(4
5	1	0	$\nwarrow 1$	↑2 ₹ 2	1 ↑ 3	× 4	₹ 4	† 4
6	0	O	† 1	↑2	× 3 × 3	† 4	† 4	√ 5
7	0	0	† 1	†2	× 3	† 4	† 4	₹ 5
8	1	0	† 1	↑2 ↑2 	↑3	\ 4	$\sqrt{5}$	↑5

a

0

n

e

S

Determinando la SML

- La SML puede encontrar (al contrario) trazando el camino de las flechas a partir de l(m, n). Cada flecha diagonal encontrada nos da un nuevo elemento de la SML.
- El algoritmo es O(m n), que es mucho mejor que los algoritmos de fuerza bruta, que estan en $O(n 2^m)$
- SML(8,6) = 5
- Procediendo de este modo encontramos que la SML es 11010
- Notese que si al final del algoritmo (donde tenemos una posibilidad de elegir libremente) hubieramos elegido de l(8, 6) a l(8, 5) habriamos encontrado una SML diferente: 11011

El problema del Play Off

- Supongamos dos equipos A y B que juegan una final en la que se quiere saber cual sera el primero en ganar n partidos, para cierto n particular, es decir, deben jugar como mucho 2n-1 partidos.
- El problema del play off es tal final cuando el numero de partidos necesarios es n = 4.
- Se puede suponer que ambos equipos son igualmente competentes y que, por tanto, la probabilidad de que A gane algun partido concreto es 1/2.

a

0

n

e

S

El problema del Play Off

- Sea P(i,j) la probabilidad de que sea A el ganador final si A necesita i partidos para ganar y B j.
- · Antes del primer partido, la probabilidad de que gane A es P(n,n).
- P(0,i) = 1 cuando $1 \le i \le n$ y P(i,0) = 0 cuando $1 \le i \le n$. P(0,0) no esta definida.
- Finalmente, como A puede ganar cualquier partido con probabilidad 1/2 y perderlo con identica probabilidad

$$P(i,j) = [P(i-1,j) + P(i,j-1)]/2, i \ge 1, j \ge 1$$

es decir,
 $P(i,i) = 1$ si $i = 0$

· y podemos calcular P(i,j) recursivamente.

a

0

n

e

El problema del Play Off

- Sea T(k) el tiempo necesario en el peor de los casos para calcular P(i,j), con i + j = k.
- · Con este metodo recursivo tenemos que,

$$T(1) = c$$

 $T(k) = 2T(k-1) + d, k > 1$

- · donde c y d son constantes.
- T(k) consume un tiempo en $O(2^k) = O(4^n)$, si i = j = n
- No es un metodo demasiado práctico cuando se supone un n grande.
- Intentamos sacar ventaja de la estructura encajada de los sub-problemas (enfoque matricial)

0

n

e

S

El problema del Play Off

· Otra forma de calcular P(i,j) es rellenando una tabla.

$$P(i,j) = \begin{cases} 1 & si \ i = 0 \ y \ j > 0 \\ 0 & si \ i > 0 \ y \ j = 0 \\ [P(i-1,j)+P(i,j-1)]/2 & si \ i > 0 \ y \ j > 0 \end{cases}$$

- La ultima fila son todos ceros y la ultima columna todos unos por la definicion de las dos primeras lineas de P(i,j).
- Cualquier otra casilla de la tabla es la media de la casilla anterior y la que esta a su derecha.

e

El problema del Play Off

 Una forma valida de rellenar la tabla es proceder en diagonales, comenzando por la esquina sureste y procediendo hacia arriba a la izquierda a lo largo de las diagonales, que representan casillas con valores constantes de i+j

1/2	21/32	13/16	15/16	1	4
11/32	1/2	11/16	7/8	1	3
3/16	5/16	1/2	3/4	1	2
1/16	1/8	1/4	1/2	1	1
0	0	0	0	XXX	0
4	3	2	1	0	

$$P(1,1) = (P(0,1) + P(1,0))/2 = (1+0)/2 = 1/2$$

La siguiente funcion realiza estos calculos,

a

0

n

e

S

El problema del Play Off

```
Algoritmo PlayOff

Begin

For s := 1 to i+j do begin

P[0,s] = 1.0;

P[s,0] = 0.0;

For k = 1 to s-1 do

P[k,s-k] = (P[k-1,s-k] + P[k,s-k-1])/2.0

end;

Return (P[i,j])

End;
```

El lazo mas externo se lleva un tiempo $O(\Sigma s)$, para s = 1,2,...,n, es decir, un tiempo en $O(n^2)$ cuando i+j=n.

Por tanto, el uso de la PD supone un tiempo O(n), muy inferior al del metodo directo.

0

n

Bioinformática: Futuro de la PD

- · Hay muchas definiciones:
 - La Bioinformatica trata la gestion y el consiguiente uso de la información biologica, con especial enfasis en la información genetica.
 - La Ciencia de la Información aplicada a la Biologia produce el campo que se denomina Bioinformática.
 - La Bioinformática trata de la organización y el analisis de los datos biologicos.
- Bioinformatica vs. Biologia
 Computacional vs. Bio-computación