Bond Quotes

TABLE 1.1 Selected Treasury Bond Prices for Settlement on February 15, 2001

Coupon	Maturity	Price	
7.875%	8/15/01	101-123/4	
14.250%	2/15/02	108-31+	
6.375%	8/15/02	102-5	
6.250%	2/15/03	$102-18^{1}/_{8}$	
5.250%	8/15/03	100-27	

 The price of coupon bonds are quoted as a percentage of the principal value, using a price tick of one-32nd of a percentage point:

$$101-12\frac{3}{4} = 101 + \frac{12.75}{32} = 101.3984$$

More on Quote Prices

TABLE 1.1 Selected Treasury Bond Prices for Settlement on February 15, 2001

Coupon	Maturity	Price
7.875%	8/15/01	101-123/4
14.250%	2/15/02	108-31+
6.375%	8/15/02	102-5
6.250%	2/15/03	102-18 ¹ / ₈
5.250%	8/15/03	100-27

• "+" means 0.5

• The actual tick size can be $\frac{1}{32} \times \frac{1}{8} = \frac{1}{256}$

More on Quote Prices

So

$$108-31+=108+\frac{31.5}{32}=108.9843$$

$$102-18\frac{1}{8} = 102 + \frac{18.125}{32} = 102.5664$$

ACCRUED INTEREST

- Consider an investor who purchases \$10,000 face amount of the U.S. Treasury 3½s of August 15, 2019 on May 29, 2010 (for T+1 settlement).
- The quote price of the 3\%s is 102-26, meaning $100 + \frac{26}{32} = 102.8125$.
- The transaction price = quote price+accured
 Interest (AI).

ACCRUED INTEREST, cont'd

• The seller of the bond deserves the coupon value accrued from 2/15 to 6/1.

ACCRUED INTEREST

For \$100 notional, the coupon value is

$$\frac{3.625}{2} = 1.8125$$

The accrued value from 15/2 to 6/1 is

$$\frac{106}{181} \times 1.8125 = 1.0615$$

ACCRUED INTEREST, cont'd

So the *Transaction Price* of the bond per 100 face amount is

102.8125+1.0615=103.8740.

 For \$10,000 face amount, the invoice price is 100*\$103.8740=\$10,387.40.

ACCRUED INTEREST, cont'd

- Denoting
 - —the flat price by p,
 - -accrued interest by AI,
 - -the present value of the cash flows by PV,
 - —and the full price by P,

Then,

$$P = p + AI = PV$$

Market Jargons

- The flat price is also called
 - Clean price
 - Quote price
- Full price is also called
 - Invoice price
 - Transaction price
 - Dirty price

Advantage to Quote using Flat Price

The full price jump across a coupon date

Day-Count Conventions

- There are a number of conventions for day count.
 - Actual/actual (government bonds)
 - Actual/360: the actual number of days between two dates divided by 360 (money markets, floating-leg of swaps)
 - 30/360: assume 30 days in any month (corporate bonds and fixed-leg of swaps)
 - Ex: the no. of days b/w June 1 and August 15 is 74 (29 days left in June, 30 days in July, and 15 days in August)

DISCOUNT FACTORS

- The *discount factor* for a particular term gives the value today, or the *present value*, of one unit of currency to be received at the end of that term.
- Denote the discount factor for t years by d(t).
- Let d(.5) = 0.99925, then the PV of \$1 to be received in six months is 99.925 cents.
- The present value of the cash flow \$1,050,000 in six month is

 $0.99925 \times \$1,050,000 = 1,049,213.$

Bootstrapping the Discount Factors

- A coupon bond can be considered as a portfolio of zero-coupon bonds.
- Given the prices of coupon bonds of consecutive maturities with six months gap, one can bootstrap the prices of zero-coupon bonds

Mid-Prices of Selected Bonds

TABLE 1.2 Selected U.S. Treasury Bond Prices as of May 28, 2010

Coupon	upon Maturity	
$1\frac{1}{4}\%$	11/30/2010	100.550
$4\frac{7}{8}\%$	5/31/2011	104.513
$4\frac{1}{2}\%$	11/30/2011	105.856
$4\frac{3}{4}\%$	5/31/2012	107.966
$3\frac{3}{8}\%$	11/30/2012	105.869
$3\frac{1}{2}\%$	5/31/2013	106.760
2%	11/30/2013	101.552
$2\frac{1}{4}\%$	5/31/2014	101.936
$2\frac{1}{8}\%$	11/30/2014	100.834

Bootstrapping the Discount Factors

 Each row of Table 1.2 implies an equation for discount factors:

$$100.550 = \left(100 + \frac{1\frac{1}{4}}{2}\right)d(.5) \rightarrow d(.5) = .99925$$

$$104.513 = \frac{4\frac{7}{8}}{2} \times d(.5) + \left(100 + \frac{4\frac{7}{8}}{2}\right) d(1) \rightarrow d(1) = .99648$$

$$105.856 = \frac{4\frac{1}{2}}{2} \times d(.5) + \frac{4\frac{1}{2}}{2} \times d(1) + \left(100 + \frac{4\frac{1}{2}}{2}\right) d(1.5)$$

$$\to d(1.5) = .99135$$

Discount Factors

Coupon	Maturity	Price	Discount Factors
1.250%	"11/30/2010"	100.55	0.999254658
4.8750%	"5/31/2011"	104.513	0.996483873
4.500%	"11/30/2011"	105.856	0.991350497
4.75%	"5/31/2012"	107.966	0.985315395
3.3750%	"11/30/2012"	105.869	0.975199189
3.500%	"5/31/2013"	106.76	0.96414441
2%	"11/30/2013"	101.552	0.946933188
2.25%	"5/31/2014"	101.936	0.931718009
2.1250%	"11/30/2014"	100.834	0.915836248

<u>Table 1.2</u>

THE LAW OF ONE PRICE

- Consider another U.S. bond, the ¾s of November 30, 2011, which is NOT included in Table 1.2. How should it be priced?
- Using the discount factors just obtained, we can present value the cash flow:

```
.375 \times .99925 + .375 \times .99648 + 100.375 \times .99135 = 100.255
```

- But, the market price is 100.19!
- An opportunity!

Market Prices vs. Fair Prices

Table 1.4: Market Prices for Three U.S. Treasury Notes as of May 28, 2010

Bond	%s 5/31/11	³ / ₄ s 11/30/11 ³ / ₄ s 5/31/12		
PV	100.521	100.255	100.022	
Price	100.549	100.19	99.963	
PV-Price	028	0.065	0.059	
rich		cheap		

ARBITRAGE TRADE

TABLE 1.5 The Replicating Portfolio of the $\frac{3}{4}$ s of November 30, 2011, with Prices as of May 28, 2010

	(1)	(2)	(3)	(4)	(5)	(6)
(i)	Coupon	$1\frac{1}{4}$ s	4 7 / ₈ s	$4\frac{1}{2}$ s		$\frac{3}{4}$ S
(ii)	Maturity	11/30/10	5/31/11	11/30/11	Portfolio	11/30/11
(iii)	Face Amount	- 1.779	- 1.790	98.166		100
	Date			Cash Flows		
(iv)	11/30/10	-1.790	044	2.209	.375	.375
(\mathbf{v})	5/31/11		-1.834	2.209	.375	.375
(vi)	11/30/11			100.375	100.375	100.375
(vii)	Price	100.550	104.513	105.856		100.190
(viii)	Cost	-1.789	-1.871	103.915	100.255	100.190
(ix)	Net Proceeds	.065				

Construction Procedure

• Let the face values of $1\frac{4}{3}$, $4\frac{8}{3}$ and $4\frac{8}{3}$ be F_1 , F_2 and F_3 , respectively. Then,

$$0 \times F^{1} + 0 \times F^{2} + \left(1 + \frac{4\frac{1}{2}\%}{2}\right) \times F^{3} = 100 + \frac{\frac{3}{4}}{2}$$

$$0 \times F^{1} + \left(1 + \frac{4\frac{7}{8}\%}{2}\right) \times F^{2} + \left(\frac{4\frac{1}{2}\%}{2}\right) \times F^{3} = \frac{\frac{3}{4}}{2}$$

$$\left(1 + \frac{1\frac{1}{4}\%}{2}\right) \times F^{1} + \left(\frac{4\frac{7}{8}\%}{2}\right) \times F^{2} + \left(\frac{4\frac{1}{2}\%}{2}\right) \times F^{3} = \frac{\frac{3}{4}}{2}$$

Working with Spreadsheet

The solutions are

$$F_3 = 98.166, F_2 = -1.790, F_1 = -1.779$$

Go check out the spread sheet <u>Table 1.5</u>.

21

Profit and Loss

- If you
 - Long the ¾s at the market price of 100.19 for the face value of 100
 - -Short the portfolio of the three bonds at their market prices with face value F_1 , F_2 and F_3 , at the cost of 100.255
- You make a profit of \$0.065, or \$6.5
- Congratulations, but

P&L

However, if you trade \$500m face value, then

$$P\&L = \$500,000,000 \times \frac{0.065}{100} = \$325,000$$

That is likely to be exciting.

Law of One Price

- This example introduces the law of one price:
 - Absent complicating factors (e.g., liquidity, financing, taxes, credit risk), identical sets of cash flows should sell for the same price.
- Violation of the law means an arbitrage opportunity.
- In an efficient market, arbitrage opportunities disappear quickly.