

Attention and Transformers-I

Two Example Tasks

1. Machine Translation:

- Input: "He loved to eat"
- Output: "Er leibte zu essen" (German)

2. Image Captioning

- Input: Image
- Output: "Cat Sat Outside"
- Two Possible Steps
 - Encode the input information
 - Decode into the target modality/language

Encoder-Decoder: Auto encoders

- Encoder Decoder architecture
 - Use for compression
 - Or throw away the decoder after training use the compressed code for supervised learning tasks (particularly useful in problems with small training set)

Encoder-Decoder

Encoder-Decoder Models: Seq2Seq

Transformer: Encoder and Decoder

Encoder:

- Learn useful representation from the input
- Eg. BERT (encoder only)

Decoder:

- Decodes the learned representation along with any other inputs and predict the output
- Eg. GPT-3 (decoder only)

Encoder-Decoder:

 Eg. Sequence to Sequence Tasks, like Machine Translation

Modelling Inter Dependency of Elements/Patches

- 1. The animal did not cross the road because it was too tired.
- 2. The animal did not cross the road because it was too wide.

Seq2Seq

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

Seq2Seq with <u>attention</u>

The encoder passes a lot more data/information/hidden states to the decoder.

Strategy: Seq2Seq with Context

Decoder: $s_{t} = g_{t,t}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ **Output**: Sequence y₁, ..., y_T [STOP] comiendo estamos pan From final hidden state predict: У₁ Encoder: $h_t = f_W(x_t, h_{t-1})$ Initial decoder state s_0 Context vector c (often $c=h_{\tau}$) h_3 h_4 s_0 S_1 S_4 X_3 X_1 X_4 eating [START] we are bread estamos comiendo pan

Problem

- Input sequence is summarized (bottlenecked) through a fixed size fixed vector.
 - Not good for long sequences/inputs
- Solution:
 - Provide more detailed context to the decoder.
 - Use new context vector at each time step.

Improved Strategy: Computation with "Attention"

Compute (scalar) alignment scores $e_{t,i} = f_{aE}(s_{t-1}, h_i)$ (f_{aE} is an MLP)

> Normalize alignment scores to get **a<en0on weights** $0 < a_{t,i} < 1$ $\sum_i a_{t,i} = 0$

Compute context vector as linear combina\$ on of hidden states $c_t = \sum_i a_{t,i} h_i$

Use context vector in decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c_t)$

This is all differen0able! Do not supervise a < en0 on weights – backprop through everything

are

we

ea\$ng

bread

[STOP]

comiendo

pan

estamos

Attention in Translation (Seq2Seq)

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector "looks at" different parts of the input sequence

Attention Layer

Visualization

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order **Attention figures out** different word orders **Diagonal attention means** words correspond in order

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Image captioning with RNN and Attention

Image captioning with RNN and Attention

Blank Slide

Blank Slide

Query, Key and Value

Query, Key and Value

We project each embedding: Queries Keys Values Queries: "Here's what I'm looking for" $\mathbf{W}^{\mathcal{Q}} \in \mathbb{R}^{D \times d_k}$

Keys: "Here's what I have"

Values: "What gets communicated"

 $\mathbf{W}^V \in \mathbb{R}^{D \times d_v}$

 d_k is dimension of queries & keys, d_v is dimension of values

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^Q \in \mathbb{R}^{N \times d_k} \quad \mathbf{K} = \mathbf{X}\mathbf{W}^K \in \mathbb{R}^{N \times d_k} \quad \mathbf{V} = \mathbf{X}\mathbf{W}^V \in \mathbb{R}^{N \times d_v}$$

$$\mathbf{K} = \mathbf{X}\mathbf{W}^K \in \mathbb{R}^{N \times d_k}$$

$$\mathbf{V} = \mathbf{X}\mathbf{W}^V \in \mathbb{R}^{N \times d_v}$$

Query, Key and Value:

 Mimics the retrieval of a value v for a query q based on k in the database

K1	V1
K2	V2
К3	V3
K4	V4
K5	V5

A-i = Similarity (query, key-i)

V = weighted sum of A-i and V-i

$$att(q, k, v) = \sum_{i} s(q, k_i)v_i$$

We compare "Query" with "Key" and "Value" is returned.

What is "Query", "Key" and "Value"?

Attention

Query, Key and Value

We project each embedding: Queries Keys Values Queries: "Here's what I'm looking for" $\mathbf{W}^{\mathcal{Q}} \in \mathbb{R}^{D \times d_k}$

Keys: "Here's what I have"

Values: "What gets communicated"

 $\mathbf{W}^V \in \mathbb{R}^{D \times d_v}$

 d_k is dimension of queries & keys, d_v is dimension of values

$$\mathbf{Q} = \mathbf{X}\mathbf{W}^Q \in \mathbb{R}^{N \times d_k} \quad \mathbf{K} = \mathbf{X}\mathbf{W}^K \in \mathbb{R}^{N \times d_k} \quad \mathbf{V} = \mathbf{X}\mathbf{W}^V \in \mathbb{R}^{N \times d_v}$$

$$\mathbf{K} = \mathbf{X}\mathbf{W}^K \in \mathbb{R}^{N \times d_k}$$

$$\mathbf{V} = \mathbf{X}\mathbf{W}^V \in \mathbb{R}^{N \times d_v}$$

Towards Scalable and More Generic

Notation change: ! to ", and # to \$

Towards Scalable and More Generic

Query vector: Q (Shape: $N_Q \times D_Q$)

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_O)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Computation:

Key vectors: $K = XW_1$ (Shape: $N_{"} \times D_{!}$)

Value Vectors: $V = XW_* (Shape: N_* \times D_*)$

Similarities: $E = \frac{!)!}{\sqrt{\$}} (Shape: N_! \times N_!), E_{\%} = (Q_{\%} K_!)/\sqrt{D_{()}}$

Attention weights: A = softmax(E, dim = 1) (Shape: $N_! \times N_"$)

Output vectors: $Y = AV \left(Shape: N_! \times D_" \right) Y_{\%} = \sum A_{\%} V$

Changes:

- Use scaled dot product for similarity
- Multiple query vectors
- Separate key and value

Blank Slide

Blank Slide

Self Attention

Self Attention

- Self attention learns the relationship between elements in a sequence.
 - say between words in a sentence

Self Attention

- 1. The animal did not cross the road because it was too tired.
- 2. The animal did not cross the road because it was too wide.

Blank Slide

Self Attention: Step 1

Self Attention: Step 2

Input	Thinking	Machines
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	$q_1 \cdot k_2 = 96$
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12

Self Attention: Step 3

Self Attention: Matrix View

Matrix View

Self Attention

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_O$)

Key matrix: $W_K(Shape: D_X \times D_Q)$

Value matrix: $W_V(Shape: D_X \times D_V)$

Query matrix: $\mathbf{W}_{\mathbf{O}}$ (Shape: $\mathbf{D}_{\mathbf{O}} \times D_{\mathbf{O}}$)

Computation:

Query Vectors $Q = XW_!$

Key vectors: $K = XW_1$ (Shape: $N_{"} \times D_{!}$)

Value Vectors: $V = XW_* (Shape: N_* \times D_*)$

Similarities: $E = \frac{! " !}{\sqrt{\$} "} (Shape: N_{"} \times N_{"}) E_{\%} = (Q_{\%} K_{"}) / \sqrt{D_{()}}$

Attention weights: $A = softmax(E, dim = 1) (Shape: N_{"} \times N_{"})$

Output vectors: $Y = AV (Shape: N_{"} \times D_{*})Y_{\%} = \Sigma A_{\%} V$

Self Attention Layer

CNN with Attention

Self Attention Module

Blank Slide

Self Attention: Comments

- Self attention learns the relationship between elements in a sequence.
 - say between words in a sentence
- Self Attention Vs Convolution
 - Filters are dynamically calculated instead of static filters
 - SA is invariant to changes in the input points
 - SA can operate on irregular inputs
- SA allows to learn global and local features
 - Hierarchical feature learning by cascading

Where we want to go?

The Transformer

Transformer Block:

Input: Set of vectors x

Output: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

Conceptual Comparison

Recurrent Neural Network

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

1D Convolution

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Self-Attention

Works on **Sets of Vectors**

- (-) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

Transformers

Transformer Encoder Five key ideas Lx **Compute-heavy blocks Optimisation blocks MLP** Multi-Layer Perceptron **Residual Connections** Allows embeddings to Help gradients flow Norm "think" independently Layer Normalisation Multi-Head **Multi-Head Attention** Attention Stabilise learning Allows embeddings to communicate Norm

Embedded

Patches

Positional Embeddings

Allows transformer to

identify embeddings

References/Image credits

Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR (2021) Credit for "communicate/think" metaphor - Andrej Karpathy

47

Thanks!!

Questions?