

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

Gren. Per. 113.

Re 1996 C.56

MEMOIRS

OF THE

NATIONAL ACADEMY OF SCIENCES.

VOLUME I.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1866.

MEMOIRS

OF THE

NATIONAL ACADEMY OF SCIENCES.

CONTENTS.

- Reduction of the Observations of the Fixed Stars made by Joseph Le Paute D'Agelet, at Paris, during the years 1783-1785, with a Catalogue of the corresponding Mean Places referred to the Equinox of 1800.0: by B. A. Gould. Read January 8, 1864.
- 2. On the Saturnian System: by BENJAMIN PEIRCE. Read January 8, 1864.
- 3. On Shooting Stars: by H. A. NEWTON. Read August 6, 1864.
- 4. On the distribution of certain important diseases in the United States: by Augustus A. Gould. Read August 5, 1864.
- 5. On Rifled Guns: by W. H. C. BARTLETT. Read August 25, 1865.

REDUCTION

OF THE

OBSERVATIONS FIXED STARS OF

MADE

By JOSEPH LEPAUTE D'AGELET, AT PARIS, IN 1783-1785,

WITH A

CATALOGUE OF THE CORRESPONDING MEAN PLACES, REFERRED TO THE EQUINOX OF 1800.0,

BENJAMIN APTHORP GOULD.

§ 1. PRELIMINARY.

The Histoire Céleste Française of LALANDE, published in 1801, contains, on pages 481-566, a copy of the rough notes or day-book of observations of fixed stars made by the astronomer D'AGELET at the Military School of Paris, between the 18th February and the 25th September, 1783. LALANDE had previously published, in the Memoirs' of the French Academy of Sciences for 1789, a series of similar observations made by D'AGELET between March 22 and October 2, 1784; and in the Memoirs⁹ for 1790 another series still, comprising observations made between October 6, 1784, and April 29, 1785; and he states that when p'Agelet left Paris in June, 1785, with the unfortunate expedition of LA PÉROUSE, he deposited with him the original manuscripts on bidding farewell, obtaining at the same time a promise that they should be published in case their author should not return.

In various places LALANDE farther informs us that a large number of observations of fixed . stars had been made between 1778 and 1780, and that D'AGELET had begun to observe small stars, previously too much neglected by astronomers, in the month of September, 1782. But although the last page of the Histoire Céleste contains a promise of a subsequent publication of observations made prior to those contained in that volume, it is stated on page 479 that 1783, February 18, the earliest date there given, was the first day of regular observations upon small stars. It seems, therefore, beyond reasonable doubt that the three series, referred to, contain all the observations of small stars made by D'AGELET, and this is rendered more certain by Lalande's declaration that he had fulfilled his promise of publishing these observations.

¹ Mém. de l'Acad., 1789, pp. 641-662. ³ Mém. de l'Acad., 1790, pp. 633-658.

³ Conn. d. Temps, An. VI, p. 446.

⁴ Conn. d. Temps, An. VI, pp. 442-3. ⁵ Histoire Céleste, p. 479.

Mém. de l'Acad., 1784, p. 74.

Although the zone-observations of LALANDE have been reduced and rendered conveniently accessible to astronomers—thanks to the suggestions of Bessel, the tables of Hansen and Nissen, the liberal grants of the British Association, the industrious zeal of Baily, and the thorough accuracy of Fedorenko—still the observations of d'Agelet, though made at a date anterior to any stellar observations of the modern school, save those of the incomparable Bradley, have remained in their crude and almost useless form until the present day. I know of no astronomer, excepting Argelander, who seems to have made use of them for more than three-quarters of a century, and it was by this eminent astronomer that my attention was first directed, more than twelve years ago, to the relatively high value of these ancient observations.

An examination of the originals soon convinced me that, if by any process the instrumental errors could be eliminated, we should have in these observations the best existing means of determining proper motions for almost all the stars not observed by Bradley. Indeed, Argelander, in his *Positiones Mediæ*, has in several instances availed himself of D'Ageler's observations for this purpose, doubtless by some differential process; for the present discussion of the original records has shown the determination of the instrumental corrections to be a work of such difficulty, that I can hardly imagine any other mode of procedure for isolated stars.

To the peculiar irregularities of these corrections, arising chiefly from a distortion of the limb of the quadrant, I attribute the fact that these valuable observations have so long remained in the crude state of ore, without any known attempts to extract the precious metal which they contain. And, impelled by a strong desire to contribute to the Academy at its first scientific session some memoir in the domain of practical astronomy, although destitute of any access to astronomical instruments, I have thought that this could in no way be better accomplished than by a discussion of the observations of D'AGELET, and the construction from them of a catalogue; hoping that the work of rendering ancient observations available might not prove much less serviceable than the attainment of new ones.

Those portions of the computations which I have not made in person have been made at my expense, and I desire to express my thanks to my pupils and assistants, Messrs. John N. Stockwell, Erving Winslow, William H. Palmer, S. C. Chandler, jr., and S. S. Eastwood, for their valuable aid. Mr. Winslow has taken part in all the computations from the beginning.

The catalogue contains 6497 observations of 2907 stars situated between the parallels of 50° north and $35\frac{1}{4}^{\circ}$ south declination.

§ 2. HISTORICAL.

The greater part of what we know of the astronomer to whom these observations are due we derive from notices given by LALANDE, and any attempt at a scientific biography of D'AGELET can result in little more than a digest of what we there find, with such additional facts as may be discovered by following up the clues there given. In spite of this circumstance it seems desirable to give a summary of what is known concerning this zealous and devoted follower of science.

JOSEPH LEPAUTE D'AGELET was born at Thonne la Long, near Montmédi, near the frontier of Luxemburg, and in the present department of the Meuse, on the 25th of November, 1751, the son of Pierre Lepaute and Martine de Mouzon, and the nephew of the two Lepautes so eminent as makers of chronometers and astronomical clocks. Madame Lepaute, whose astronomical computations and services as assistant to Lalande are so well known, was the wife of the elder of these brothers, and invited her nephew, the young d'Agelet, soon after the completion of his sixteenth year, to come to Paris as the pupil of Lalande, who was then at the observatory of the Collège Mazarin. Here he remained for five years, winning the respect, confidence, and attachment of Lalande by his talent, fidelity, and amiable character, until in March, 1773, he was appointed astronomer to the southern naval expedition of Kerguelen. On this expedition he made extensive observations of longitudes, tides, magnetic variations, and collected many valuable specimens of natural history, but was disappointed in the want of opportunity for further astronomical and geographical determinations. In August, 1774, he returned to Paris and resumed his astronomical pursuits.

In 1777 p'AGELET was appointed Professor of Mathematics at the École Militaire. His predecessor, JEAURAT, had, in 1768, prevailed upon the Duc de CHOISEUL, Minister of War, to establish an Observatory at this institution; and a large wall had been built, adapted for the possible reception of a mural quadrant. LALANDE states that he exerted himself for a long time in vain, to obtain an appropriation for the purchase of the desired instrument. disais ce que la loi dit de la pierre d'attente, perpetuo clamans, et je ne m'y suis pas trompé. Apres avoir fait des efforts inutiles auprès des ministres les plus célèbres et les plus savants, MALESHERBES et TURGOT, pour avoir son mural, je l'obtins en 1774 de BERGERET, receveurgeneral des finances. On voit dans l'Evangile que le publicains fit honte au pharisien." The instrument was ordered of BIRD, in London, and seems to have been essentially a copy of the one which he had made for BRADLEY a quarter of a century before. The instrument was mounted 1778, August 23, and D'AGELET began at once a series of regular observations, both planetary and stellar. In 1780 he had already 1,600 observations of planets, and a much larger number of fixed stars, of which, at LALANDE's instance, he proposed preparing an extensive catalogue. In April, 1782, he received the second nomination to the Academy of Sciences, and in January, 1785, was unanimously elected a member. Observations of planets made by him with the quadrant may be found in the Memoirs of the Academy for 1784, 1785, 1786. The fourth volume of LALANDE'S Astronomy, published in 1781, and the eighth volume of his Ephemerides, published in 1783, contain a large number; and LALANDE alleges that no one in Europe was then doing so much for astronomy as D'AGELET.

In 1782 he commenced observing faint stars, although, as before mentioned, his earliest published observations of this sort date from February, 1783.

When, in 1785, King Louis XVI formed the plan of a French scientific expedition round the world, analogous to those of Cook, La Pérouse was placed in command, and no pains were spared to obtain the best men that could be found. D'AGELET was the youngest astrono-

¹ Conn. des Temps, An VI, 441; Hist. Cél., p. ii, Mém. de l'Acad., 1789, p. 187.
² Conn. des Temps, An VI, 442.

mer of the Academy; he had experience as a navigator, and was naturally selected as astronomer to the expedition. He accepted the position with great reluctance, as his naval experience had not left agreeable recollections; he desired to continue the observations for his projected catalogue of stars; and he was about to be married. Still, he listened to the solicitations of the Minister and of the Academy, and on the 23d of June, 1785, eight weeks after the last date of his published observations, he left Paris, never to return.

The history of La Pérouse's expedition is well known. With the two ships, Astrolabe and Boussole, he visited Madeira and Brazil, passed around Cape Horn to Chili, touched at the Sandwich Islands, coasted along the west coast of America, and remained for a time at Monterey, in California. Leaving this port in September, 1786, he sailed for Manila, and thence in the following spring passed to the northeastern coast of Asia, exploring the shores of Japan and Kamtchatka. He left Petropaulowsk in September, 1787, and after visiting the Navigators' and Friendly Islands, reached Botany Bay in February, 1788. From this point came the last tidings of the expedition. La Pérouse next contemplated an exploration of the Polynesian groups; but all traces of the explorers vanished here. Unwearying searches proved fruitless, and it was not until after the lapse of nearly forty years that their fate was discovered. The two ships were wrecked in a storm upon a coral reef on the southwesterly coast of the island Malicollo, one of the New Hebrides islands; and all on board perished, together with all their scientific observations and collections, except the few journals which had been previously sent home from Kamtchatka, and which possessed high geographical value.

D'AGELET had been interdicted by his commander from sending home any of his observations, and all were thus lost forever, excepting such geographical determinations as had been transmitted by La Pérouse himself. We know that he established an astronomical observatory at every port at which the vessel stopped; that he made observations at each upon the variation and dip of the needle, the tides, and the pendulum. The excellence of his longitude determinations is frequently commented upon by LA PÉROUSE, inasmuch as his results, by lunar distances and by chronometers, agreed within less than the probable errors of the lunar tables. From Kamtchatka he wrote that since leaving Manila they had explored and surveyed with great exactness more than six hundred marine leagues of unknown coast, fixing all the geographical positions with precision; and that he and his assistant, D'ARBAUD, had become so accustomed to observations of lunar distances that they used them for verifying their chronometers without uncertainty. His last letter was dated in March, 1788. A little rocky island in the Japan sea still bears his name, given it by LA PÉROUSE, and transmits, through our maps and charts, the memory of this gifted and deserving scientist, whose valuable observations have passed almost unheeded for more than eighty years. Those of Lefrançais DE LALANDE and BURKHARDT, subsequently made for LALANDE with the same instrument and certainly not greater precision, have proved so valuable, that it seems more than strange that D'AGELET's results in initiation of the work which they continued should have remained almost unregarded till now. From Monterey he wrote in 1786 that he found the savages both

virtuous and humane, and that his experience in such regions, least frequented and nearest to a primitive condition, indicated that the human race is naturally kindly. It probably did not occur to him that the first publication of a catalogue formed from his observations would be due to the representatives of that region, when its coast should be white with canvas and its cliffs noisy with the echo of hammers and the hum of commerce.

In J. Bernouilli's Nouvelles Litteraires de divers Pays, Cahier I, p. 35, may be found an article by D'AGELET in commemoration of M. DE MERSAIS, a young astronomer who accompanied him in the Kerguelen expedition.

§ 3. INSTRUMENT.

The instrument which was used by D'AGELET in these observations was the same which was subsequently employed by Lalande in his zones, and to which we probably owe observations of a larger number of stars than to any other instrument known to astronomical history previous to Bessel's zone-observations. Yet its peculiarities seem to have been little studied, owing to the rough methods of reduction employed by Lalande himself, and to the circumstance that all the observations reduced by Bailly and Fedorenko were made in zones, each of which was differentially treated, independently of the rest.

It was a mural quadrant, constructed by BIRD, in 1775-8, having a radius of 7½ French feet, and an aperture of 32 lines.¹ In dimensions and construction it seems to have been similar to that of Lemonnier, and apparently a copy of the celebrated quadrant of Bradley. Lalande, on page viii of the *Histoire Céleste*, says it has been described in his astronomy,² and better still in one of the Cahiers des Arts of the Academy, published in 1774, by Lemonnier, under the title, "Description des Principaux Instruments de l'Astronomie." Since the paper of Lemonnier was actually published before the instrument of D'AGELET and Lalande was made,³ it may reasonably be inferred that the latter was intended as an exact duplicate of that one to which the description originally referred.

The limb of the quadrant was furnished with two independent graduations, the one being into 90 degrees, and each degree into 12 parts of 5' each; the other being into 96 divisions, and each of these into 16 subdivisions, each of which corresponded, therefore, to an arc of

¹ Mém. de l'Acad. 1789-191.

⁹ 3d edit. II, 588, 684.

In a note to the first page of the preface of the British Association's catalogue of Lalande's stars, an apparent contradiction is alluded to, as follows: "At page ix, Lalande, after mentioning an improved mode of supporting the telescope, says: 'J'ai oui dire autrefois que l'arc de ce quart de cercle avait été rompu chez Lemonnier, mais il a été parfaitement rétabli.' Hence one would suppose that the quadrant of the École Militaire was identical with Lemonnier's. This, however, is distinctly contradicted by Lalande elsowhere, for, in speaking of the quadrant of the École Militaire, he says: 'M. Bergeret, receveur-general, le fit faire à ma sollicitation par Bird des 1775, et en 1778, le confia à M. d'Agelet,' (Mém. de l'Acad. 1789,) while Lemonnier's quadrant was made for him in 1753, at the expense of Louis XV. It would seem that Lemonnier's quadrant was ultimately transferred to the Royal Observatory." The text of Lalande, although certainly rather ambiguous, does not seem to me to imply such a contradiction. A few lines above he says that Méchain, having seen a contrivance for relieving the center of the weight of the telescope, had engaged Lenoir to make this addition to the mural of the observatory. Then, after describing the arrangement of the counterpoise, he makes the remark above cited concerning "this quadrant," manifestly referring to the mural quadrant of the Paris observatory, which Lemonnier had described, and not to the quadrant of the École Militaire, used first by D'AGELET and then by Lalande. To this same note I am indebted for the title of the work in which Lemonnier's description is published, but which I have not been able to find.—"Description des Arts et Metiers, faites on approart's par MM. de l'Academie Royale des Sciences Paris, 1761-89."

3' 30".94. The readings were made for each system by means of verniers, which indicated one-twentieth of each interval, or 15", for the first-named; and one-sixteenth of each interval, or a little more than 13".18, for the second. Farther precision was attained by estimation in the first system, and by a micrometer indicating seconds of arc in the second. Unlike the zone observations of Lalande, those of D'AGELET give in most cases the readings according to both systems, the two thus serving to check each other for the detection of large errors, and their mean giving more accurate results than could be afforded by either alone. The reticule was provided with three vertical metallic wires, at intervals of about 23s. of equatorial time.

The defects of the limb of the quadrant, by which it deviated from a plane, have often been referred to, and Lalande has in various places given different tables for the correction to be applied to times of transit at different altitudes. These tables, however, are not accordant with one another, are quite rough, and by no means correct. Indeed, Lalande himself says of them, that they are only approximate, and that to determine properly the position of an unknown star, it is necessary to calculate the right-ascensions of one or two known stars, observed nearly in the same parallel.

I have endeavored to elicit the nature and magnitude of the deviation from a vertical plane, and thus to form a general table applicable to all of D'AGELET'S observations. It is greatly to be regretted that we have no notes or memoranda on the subject from D'AGELET himself, inasmuch as the care and assiduity, with which all his observations were evidently made, forbid any doubt that this important point was made a subject of investigation. The nature of the distortion now discovered being such as to excite suspicions that constant errors due to the same irregularities might exist in the readings of zenith distance, the accuracy of the limb in this respect also has been tested, and the suspicions are found to have been correct. The detailed results of these investigations are given in the present memoir.

§ 4. OBSERVATIONS.

The published observations in the *Histoire Céleste* are given in ten columns. The first shows the name of the star when known; the second, the magnitude for perhaps one-half the stars observed; and the third, the approximate right-ascension to minutes of time, for a sufficient number to allow of ready identification. Columns 4, 5, and 6 give the times of transit across three wires, no attempt being made to observe more closely than to quarters of a second—the decimals, .2, .5, and .7 being the only ones which occur. During the period of most of the observations the clock indicated approximate mean time, and even after it was changed to a sidereal rate it was not made to indicate sidereal time, but whenever it was stopped for any reason it was always put in motion again without touching the hands.² Columns 7 and 8 contain the two readings of the limb. Column 9, entitled "Reduction,"

¹ Hist. Cél., pp. xi, 480; Mém. de l'Acad., 1785, p. 268—1789, p. 642.

⁸ Hist. Cél., p. 480.

Mém. de l'Acad. 1789, p. 643.

gives the translation of the second reading into degrees, minutes, and seconds; and the last, or 10th, column contains remarks or memoranda made at the time, often records of the thermometer and barometer, and occasionally remarks upon the estimated rate of the clock. This column is wanting in the observations published by the Academy, and the few notes and the meteorological observations are to be found in the first column.

The printed records have proved to be seriously affected with errors. Many of these are probably typographical, but the large number of other kinds show that no steps were taken to insure correctness of the copy. The manuscripts deposited by D'AGELET must have been the rough originals, which had apparently received neither revision since the moment of observation nor any addition, unless the column of reduction for the second reading was subsequently formed. I suspect, however, that these values were also written in at the time of observation, on account both of the hasty way in which the translation must have been made, and of the peculiar character of many of the errors. The printed pages were evidently set up from these rough notes, without scrutiny or criticism.

Consequently, instead of a reference to the originals as printed, and of a long catalogue of *Corrigenda*, it has seemed preferable to prepare the observations in some such form as their author would probably have given them, had his life been spared, correcting such errors as have been rendered manifest or probable by the processes of reduction. The principle has nevertheless been rigorously followed of making no change, however slight, in any of the immediate results of observation, without recording it in a marginal note. The correction of errors in computation requires, of course, no such record.

§ 5. THREAD-INTERVALS.

The distances of the three wires from their mean have been determined from 140 observations of transits over all three, taken in two groups of 70 each, the one near the beginning of the series of observations, and the other near the end. The resulting values for the equatorial intervals are:

from the first group,
$$I = +22s.903$$
, $II = +0s.137$, $III = -23s.041$
from the second group, $22s.889$, $0s.119$, $23s.007$

their mean, which has been adopted, being

$$I = +22s.896$$
, $II = +0s.128$, $III = -23s.024$

which are not likely to be erroneous by the hundredth part of a second.

From these was constructed the following table, which has been employed in the reductions:

ζ	I	II	III	ζ	I	II	III
- 1 0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	+ 36.27 35.52 34.80 34.11 33.47 32.86 32.39 31.75 31.23 30.74 30.27 29.83 29.40 28.99 28.61 28.25 27.90 27.57 27.25 26.95 26.40 26.4	** + 0.21	36. 48 35. 71 34. 99 34. 31 33. 67 33. 06 32. 48 31. 92 31. 40 30. 91 30. 44 29. 99 29. 56 29. 15 28. 77 28. 41 28. 06 27. 72 27. 41 26. 82 26. 55 26. 29 26. 04 25. 81 25. 59 25. 37 24. 98 24. 81 24. 64	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	+ 23, 48 23, 39 23, 24 22, 17 23, 11 23, 06 22, 98 22, 98 22, 98 22, 99 22, 90 22, 90 22, 90 22, 91 22, 93 22, 96 22, 93 22, 93 22, 96 22, 91 22, 93 22, 96 22, 96 23, 66 23, 76 24, 76 25, 76 26, 76 26, 76 26, 76 26, 76 26, 76 27, 76 28, 76	** + 0.13	23. 62 23. 52 23. 44 23. 37 23. 30 23. 24 23. 19 23. 15 23. 04 23. 03 23. 04 23. 03 23. 04 23. 06 23. 04 23. 12 23. 16 23. 20 23. 25 23. 39 23. 47 23. 55 23. 74 23. 64 23. 74 23. 74 23. 74 23. 79 24. 10
20 29 30 31 32 33 4 + 35	24. 34 24. 19 24. 05 23. 92 23. 80 23. 69 23. 58	.14 .14 .14 .13 .13 .13 .13	24. 04 24. 48 24. 33 24. 19 24. 06 23. 94 23. 82 — 23. 72	67 68 69 70 71 72 73	24. 90 24. 24 24. 39 24. 55 24. 72 24. 90 + 25. 09	.14 .14 .14 .14 .14 .14 .14	24, 10 24, 23 24, 37 24, 53 24, 69 24, 86 25, 04 — 25, 23

Reductions to the mean of wires.

§ 6. REFRACTIONS.

Readings of the thermometer and barometer were unfortunately not made by D'AGELET with desirable regularity or frequency. On many dates they were omitted altogether; very rarely were they made more than once on any night; and the time of the readings was not noted. Indeed, no clue is found to the time of observation of the meteorological instruments other than the place in the printed column at which they appear, and this place seems to have been dictated, in many cases at least, by the convenience or taste of the printer.

Earnest endeavors to obtain a meteorological register for Paris, during the years 1783-5, have proved unsuccessful, and for those dates on which no note of the temperature or of the barometer is recorded I have been reduced to the necessity of adopting arbitrary values for the coefficient of refraction, having regard, of course, to the hour of the night and to the season of the year, and being guided by the tables of mean temperature at Paris.

In computing the refractions, the tables prepared by Prof. Coffin, and published in the appendix to the Washington observations for 1845, have been employed. These are expanded

from BESSEL's tables, after reduction to the standard temperature of 100° F., and to the barometric pressure of 29 English inches. For this purpose 0.00885 is added to all the logarithms of the barometric factor, 0.04153 to all those depending on the external thermometer, and 0.00264 to those depending on the temperature of the quicksilver, a corresponding subtraction being made from the logarithm of the mean refraction. Of course, the application of the same quantities to the tables constructed for Réaumur's scale and the old French barometer enables us to use Coffin's value of log R.

Since D'AGELET made no record of the attached thermometer, we must assume that its indications would have been the same as those of the external thermometer, and BESSEL'S tables of $\log \gamma$ and $\log T$ [Coffin's T and t] may therefore be combined in one. The following tables are formed in this manner, being Bessel's $\log \gamma + \log T + 0.04417$ for Réaumur's scale, and log B + 0.00885 for old French inches and lines:

Thermometric coefficients for Réaumur's scale.

nometric coefficients for Réaumur's scale.	Barometric coefficients for old French scale.
	•

			1	
	0		0	
- 10	0	0.07978	+ 7	0.04440
9	•	. 07762	8	. 04240
1	3	.07547	9	. 04041
7	7	. 07334	10	. 03843
(6	. 07121	11	. 03645
	5	.06910	12	. 03449
-	4	. 06699	13	. 03253
:	3	. 06489	14	. 03058
) :	2	.06280	15	. 02864
— :	1	. 06072	16	. 02670
	0	. 05865	17	. 02477
+	1	. 05659	18	. 02285
	2	. 05454	19	. 02094
	3	. 05250	20	.01904
	4	. 05046	21	.01714
1	5	. 04843	22	. 01525
	6	0.04641	23	0.01337

			i	
•	n l		in l	
26	3	— 0.01560	27 8	+ 0.00723
ŀ	4	. 01422	9	. 00853
	5	. 01285	10	.00983
1	6	. 01148	11	. 01113
	7	.01012	28 0	.01243
	8	.00876	1	.01372
	9	. 00740	2	. 01501
ł	10	. 00605	3	. 01629
}	11	. 00470	4	. 01757
27	0	. 00336	5	.01885
1	1	.00202	6	. 02012
l	2	0.00069	7	. 02139
İ	3	+ 0.00064	8	. 02265
1	4	. 00197	9	. 02391
Į	5	. 00329	10	. 02517
	6	.00461	11	. 02642
27	7	+ 0.00592	29 0	+ 0.02767

The indications of the thermometer and barometer, as recorded by D'AGELET, are here collected, the time appended being the supposed sidereal time of observation. The last column, entitled log TB, gives the corresponding logarithm to be applied to the log R taken from Coffin's tables.

(9)

Data for computing refractions.

March April 1 1 1 1	6 4 1 18 5 12 4 5 12 9 14 7 16 5 18 13 18 13	0 4 3 3 3 2 6 5 4 10 11 12 11	in 28 28 28 28 28 27 26 28 28 28 28	5 4 4 4 4 5 10 6 5 1	0. 06931 .07071 .07007 .07007 .07211 .05036 .04232 .06653 :06995	1784 March 26 June 4 5 8 16 21 July 4 14 Sept. 9	h 71 5 5 5 5 21 41 5	7 20 19 1 16 18 18 18	27 28 28 28 28 28 28 28 28	7 3½ 2 4 4 0¾ 3	0, 05032 . 03629 . 03500 . 04427 . 04042 . 03625 . 04493
Feb. 1 March April 1 1 1 1 1 1 1 1	18 5 11 19 11 12 12 12 15 15 15 12 12 14 7 14 16 5 12 14 7 14 16 5 12 14 7 14 16 5 12 18 13 13 18 13 13 18 13 13 18 13 13 18 13 13 18 13 18 13 18	3 3 2 6 5 4 10 11 12	28 28 28 28 28 27 26 28 28 28 28	5 41 4 4 4 51 104 51 51	.07071 .07007 .07007 .07211 .05036 .04232 .06653 :06995	March 26 June 4 5 8 16 21 July 4 14	71 5 5 5 5 21 41	20 19 1 16 18 18 18	27 28 28 28 28 28 28 28 28	7 3½ 2 4 4 0¾ 3	. 03629 . 03500 . 04427 . 04042 . 03625 . 04493
March April 1 1 1 1	11 19 11 10 11 26 13 1 1 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 2 6 5 4 10 11 12	28 28 28 28 27 26 28 28 28 27	4 4 4 4 5 10 6 5 1	.07071 .07007 .07007 .07211 .05036 .04232 .06653 :06995	June 4 5 8 16 21 July 4 14	5 5 5 2 4	20 19 1 16 18 18 18	28 28 28 28 28 28 28	38 2 4 4 08 3	. 03629 . 03500 . 04427 . 04042 . 03625 . 04493
March April 1 1 1 1	19 11 121 22 26 131 55 6 41 18 5 12 4 5 12 94 14 7 14 16 5 13 18 13 13 18 13 18 13 18 13 18	3 3 2 6 5 1 6 4 10 11	28 28 27 26 28 28 28 28	4 4 4 5 1 10 1 6 5 1 5 1	. 07007 . 07007 . 07211 . 05036 . 04232 . 06653 . 06995	5 8 16 21 July 4 14	5 5 5 21 41	19 1 16 18 18 18	28 28 28 28 28 28	2 4 4 4 04 3	. 03500 . 04427 . 04042 . 03625 . 04493
March April 1 1 1 1	124 26 134 1 54 6 44 18 5 12 54 12 94 14 74 16 54 18 134	3 2 6 5 1 6 4 10 11 12	28 28 27 26 28 28 28 28	4 4 5 1 10 1 6 5 1 5 1	. 07007 . 07211 . 05036 . 04232 . 06653 . 06995	8 16 21 July 4 14	5 5 21 41	16 18 18 18	28 28 28 28	4 4 0 2 3	. 04427 . 04042 . 03625 . 04493
March J April 1 1 1	26 131 1 51 6 41 18 5 12 12 4 5 12 91 14 71 16 51 18 131	2 6 5 1 6 4 10 11 12	28 27 26 28 28 28 28	4 51 104 6 51 51	. 07211 . 05036 . 04232 . 06653 . 06995	16 21 July 4 14	5 2 1 4 1	18 18 15	28 28 28	4 0 <u>\$</u> 3	. 04042 . 03625 . 04493
March J April 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 5 1 6 4 10 11 12	27 26 28 28 28 28 27	5 1 10 <u>4</u> 6 5 <u>1</u> 5 <u>1</u>	. 05036 . 04232 . 06653 . 06995	21 July 4 14	21 41	18 15	28 28	0 <u>\$</u> 3	. 03625 . 04493
April 1	6 4 1 18 5 12 4 5 12 9 14 7 16 5 18 13 18 13	5 1 6 4 10 11 12	26 28 28 28 27	104 6 51 51	. 04232 . 06653 . 06995	July 4 14	41	15	28	3	. 04493
April 1 1 1 1 1	18 5 12 14 5 12 9½ 14 7½ 16 5½ 18 13½	6 4 10 11 12	28 28 28 27	6 51 51	. 06653 : 06995	14					
April 1	12 4 5 12 9 1 14 7 1 16 5 1 18 13 1	10 11 12	28 28 27	51 51	. 06995		5	, ,	98		
1 1 1	4 5 12 94 14 74 16 54 18 134	10 11 12	28 27	51		Sept. 9				5	. 04170
1 1 1	12 9 1 14 7 1 16 5 1 18 13 <u>1</u>	11 12	27	51	05791		23	20	28	5	. 03789
1 1	14 7 1 16 5 1 18 13 1	12	27			15	18 1	18	28	24	. 03850
1	14 7 1 16 5 1 18 13 1		0.0	114	. 04824	16	184	16	28	3	. 04299
	16 5 1 18 13 1	1 11 1	28	4	. 05206	17	16	17	28	3	. 04106
	18 13 į	1 11 1	28	4	. 05403	18	23	17	28	2	. 03978
		124	28	51	.05300	20	12	17	27	2 8	. 03200
1	19 64	13	28	31	. 04946	24	61	13	28	ĭ	. 04625
	25 101	10	28	3 <u>i</u> 1 <u>‡</u>	.05305	28	19	15	28	ō	. 04107
-	16	8	28	2	. 05741	30	23 4	81	$\tilde{28}$	žį	. 05705
9	28 7	13	28 28	21	.04818	Oct. 1	214	9 9	$\widetilde{28}$	4	.05798
ິດ	29 9	13	28	2	. 04754	2	22	10	28	61	.05918
	4 13	124	28	Ã1		2	6	9	28	6	. 06053
may ,	13 20	13	28	01	. 04659			11	28	2	. 05147
		15	28	3	. 04625 . 04493	6 8	171	8	28 28	ő	. 05483
			28 28	3			4.				
	17 121	15	28 28	1	. 04236	9	71	7	28	0.	. 05683
July	9 15	211	28	1	. 02992	13	71	8	28	3	. 05869
_	224	10	28	1	. 05215	1	7+	71	28	2	. 05841
	10 13	251	28	1	. 02244	14	181	8	28	2	. 05592
	12 23	19	28	14	. 03530	15	181	8	28	14	. 05709
	19 231	18	28	2	. 03786		71	5	28	15	. 06312
	20 20	21	28 28	11	. 03112	16	181	81	28	2	. 05691
2	23 16	18	28	0	. 03528	Nov. 17	$2\frac{1}{3}$	9	28	1	. 05413
	24	16	28 28	3	. 04299	23	$22\frac{1}{4}$	51	28	3	. 06371
	26 0 4	17	2 8	01	. 03784	28	21	5	28	21	. 06376
2	27 18]	20	27	11	. 03017	Dec. 28	18 1	- 3	27	1	. 06287
	0₹	19	27	10	. 03077	ll .	$23\frac{1}{2}$	 -4	27	11	. 07812
	20 3	17	28	14	. 03913	1785	_	1			
-	21 1]	174	2 8	14	. 03817	March 14	5∤	2	28	11	. 06890
Sept. 1	15 2	15	28	0 <u>1</u>	. 04172	21	4 <u>1</u>	6	28	3	. 06270
	17 01	161	28	21	. 04138	23	41	2	28	34	. 07179
	2 <u>į</u>	15	28	0 1	. 04172	30	13	01	27	10 1	06777
	4	17	28	14	. 03913	April 5	51	5	28	4	. 06600
1784	-			•	•	9	15	54	28	51	. 06659
March 2	22 0	2	28	0	. 06697	10	124	6	28	7	. 06780
	23 ŏ	4	27	10 l	0.06029	l îi	7	l š l	$\widetilde{2}\widetilde{8}$	71	0.06442

Inasmuch as the thermometer was generally read to even degrees only, never more closely than to half degrees, and the barometer was seldom read more closely than to half lines, errors of half a degree and half a line may easily be apprehended, corresponding to an uncertainty of about 0.00165 in log TB. The aggregates of the nicer corrections, b, t', &c., are under no circumstances likely to attain so large a value as 0.0023 ρ , and are so much less than those due to the errors of reading the meteorological instruments that they have been disregarded.

From the data already given, and a study of the tables of meteorological means for Paris, deduced from observations in more recent years, the following table has been empirically constructed and used for computing all the refractions. It presents, to three decimal places, those values for the meteorological factor which seem most probable, after taking into account the estimated diurnal changes of temperature and probable fluctuations of the barometer.

Adopted correction of log R for times of observation.

Date and sid	. time	Log TB	Date and sid.	time	Log TB	Date an	d sid	. time	Log TB	Date and	l sid	. time	Log T
1783	h		1783	h		178	3	h		1784		h	
Feb. 18	4	0.068		10	0.047	July	29	23	0. 034	_	20		0.040
	6 8	. 069 . 070		13	. 050	A	30		0.032	_	24		0.043
	10	.071	-		0. 047 0. 045	Aug.	17 20	17	0.038	i	26	::	0.049
	12	.072		12	0.046		20	17 22	0.033 .036		2 8	19	0.04
19	11	0.070		16	.048	1		3	. 039			23 3	. 043
	13	.070	9	7	0.044		21	214	0. 034		3 0	23	0.055
26	6	0.066		10	. 045			23i	. 036			2	. 057
	10	. 069		13	. 046	١	_	14	. 038			5	. 059
March 1	14	. 072 0, 051		13	0.045	Sept.	2	17	0, 032	Oct.	1	19	0.050
6	4	0.042	13	16	. 047 0. 042	İ	6	21 174	. 035			22	. 058
•	6	. 044		15	. 044		U	194	0, 033 0, 034		2	221	0.059
	8	. 046		191	. 046		7	17	0.033	İ		21 61	.06
9		0,050	15		0.042		•	21	. 034		6	16	0.05
17	•:	0.060		16	. 044	l	9		0.041	l	·	22	05
18	6	0.066		20	. 046	1	โ5	21	0.036	1		4	. 05
21	11 1 6	. 070 0. 066		.9	0.044			2	. 041		8	0	0.05
	10	. 067		11 1 14	. 045		17	01	0.041		_	4.	. 05
29		0.064		161	. 046 . 047			21 41	. 042		9	171	0.05
April 2	8	0.062	3.00		0.043		25	42	. 042 0. 042			0 1 7∰	. 05
-	12	. 066		ii	0.042		~~	••	0.042		13	7	0.05
	10	0.058]	15	.044	1784	4				13	41	0.05
	12	.060		14	0.042	March	ı 22	0	0.067			71	0.05
	14	. 062		18	. 044			4	. 068		14		0.05
4	16 5	. 064 0. 058		111	0.037			.8	. 069		15	18	0.05
	10	.061		141 171	. 039		23	.0	0.060			1	. 06
	15	.064		201	. 041 . 043	1		4 8	. 062 . 063	l	16	8	0.06
5	5	0.050		ĩi l	0.039		26		0.059	1	10	18 21	0.05 .06
	10	. 055		14	. 041	May	25	:	0.038			0	.06
8	7	0.049	3	11	0.039	June	4		0.036	Nov.	17	20	0.05
	11	. 053		14	. 041		5		0.035		-	0	. 05
9	6	0.048		17	. 044			9	. 039			4	. 05
12	12	. 054 0. 049		14	0, 031			13	. 043		23	21	0.06
13	·;	0.048		17 20	. 033 . 036		٥	17	. 047		00	.0	. 06
	12	. 051	8		0.030		8	5 10	0.044		28	18 22	0.06
14	8	0.052		17	. 032			15	. 048 . 0 52	Dec.	28	22 18	. 06 0, 06
	11	. 054		20	. 034		16	5	0.041	Doc.	~	0	.07
	14	. 056	9	15	0.030			10	. 045			Ū	
16	51	0.054		17	. 033			15	. 049	1785			
	101 151	. 057		19	. 038		21	21	0.036				
18	-	. 061 0. 053		21 23	. 044			41	. 038	March	14	5 1	0.06
19	6	0.049	10		. 051 0. 022	1	99	61	. 040		10	8] 5]	07
	11	. 051		14	. 025	July	22 4	41	0. 039 0. 045		19	8 1	0.06 .07
	16	. 053		17	0.031	July	-	71	. 040		21	4	0.06
21	::	0.051	!	20	.033	1	14	5	0.042			7	.06
	10	0.053		23	. 035			8	. 039	1		10	.06
	13 16	. 055	14	00	0.029	Sept.	7	19	0.036		23	4	0.07
26	7	. 057 0. 051	19	20 131	. 033		n	22	. 038	1		8	.07
	10	. 053		184	0.028 .033		9	174 184	0.039		30	12	0.06
	13	. 055		23	.037		14		. 041 0. 040		30	11 13	0.06 .06
27	10	0.051			0. 031	ł	~ 7	16	.043	April	5	5	0.06
	13	. 053	23	16	0.034	1		21	. 045		•	10	.07
410	16	. 055		20	. 038		15	184	0.045	1	9	8	0.06
28	7	0.047		24	. 042			221	. 047			12	.06
	11 15	. 049	26		0.025	1	10	24	. 049	1		16	.06
	19	. 051 . 053		17	. 029	1	16	19	0.044	1	10	8	0.06
29	74	0.046	'	21 1	.034 .038	l		23	. 047	ł	11	12	.06
	101	.048	27		0.031	ĺ	17	161	. 049 0. 041	1	11	7 1 101	0.06 .06
	134	. 051		211	. 032			201	. 045		26	7	0.06
30	5	0.044	ì	01	.034			01	.049			12	.06
	9	. 047		13	0.028		18	20	0.042		29	10	0.06
	13	. 050		18	. 031	r		231	. 044	1		12	. 06

67. BASIS OF REDUCTION.

A very cursory examination of the original observations will suffice to show the hopelessness of any attempt at reduction by other methods than purely differential ones. Not only is the quadrant an instrument ill adapted, at the best, for the determination of right-ascensions, but D'AGELET'S quadrant proves to have been peculiarly irregular in form. The simplest essays at determining the azimuth of its plane show the futility of any such attempt by ordinary methods; and the observations, being isolated and independent, preclude the facilities which zone-reductions afford. No record is to be found of any endeavors by D'AGELET himself to determine the position of his quadrant with reference either to the meridian or the nadir-point. A few scattered notes, mentioning the apparent index-error, or the approximate correction to the time of transit, as given by some particular star, constitute the sum total of the explicit information recorded on these subjects.

A means of obtaining the requisite data for a differential reduction was at hand in the "Time-Star List," prepared by me for the use of the U. S. Coast Survey, and of which a revised and improved edition was published in 1862. This list contains 132 stars, well adapted for use in determining time by observers in the northern hemisphere; and gives the right-ascensions and proper motions deduced by the method of least squares from the best recorded observations, after referring them to the equinoctial points of Argelander's Åbo Catalogue, slightly modified to conform to Peters's value of the nutation. Since the publication of this list of right-ascensions, I have computed the declinations in a similar manner, and thus the data for an accurate determination of the positions at the time of D'Agelet's observations were before me.

Of these stars, not only were 112 found among those observed by D'AGELET, but, most happily, a considerable number prove to have been observed by him on almost every night; there being but one date when any fixed stars were observed without some one of these occurring among them, and an ample number being found on all those dates when a large number of stars were observed. On about one-half of the nights the number of standard stars was not less than six, and on two-thirds of them it was not less than four.³

The dates of observation and the standard stars available for the reduction are exhibited in the following table, in which the stars are designated by their respective numbers in the Time-Star List.

¹ Standard Mean Right-Ascensions of Circumpolar and Time Stars.—Washington, 1862.

⁹ DLX Stellarum Fixarum Positiones Mediæ, incunte anno 1830.—Helsingfors, 1835.

³The observations of the 22d June, 1784, are not counted, having continued for less than ten minutes, and comprising but four stars.

Dates of observation, and standard stars observed.

Date.	Stars.	Date.		Stars.
1783.		1783.		
Feb. 18	15, 22, 24, 25, 26, 27, 29, 32, 33, 34, 35, 49, 50, 51, 53, 54, 58.	-	29 30	67, 69, 71, 74, 78, 85, 92, 98, 106, 112, 129.
19 2 6	58, 62, 63, 66, 67. 32, 33, 34, 35, 38, 39, 40, 41, 42, 49, 51, 52, 53, 54, 56,		2 0	129, 1, 2. 90, 98, 101, 106, 129, 1, 2, 7, 9, 10, 13, 15.
Mar. 1	58, 60, 63, 67, 68. 32.	Sept.	21 2	129, 1, 2, 7. 90, 92, 98, 112.
6 9	22, 28, 32, 33, 34, 35, 38, 39, 42. 32, 33.		6 7	92, 93, 94, 98. 92, 98.
17 18	25, 26, 27, 28, 30, 32, 33. 25, 26, 27, 28, 30, 32, 33, 35, 63.		9 15	19,21,22,25,26,27. 118,120,1,2,5,8,9,10.
21 29	25, 26, 30, 32, 33, 35, 49, 50, 51. 49, 50, 51, 52, 53.		17 25	5, 7, 9, 10, 13, 14, 16, 18, 19. 33, 34, 35, 39.
Apr. 2	49, 50, 51, 52, 54, 56, 58. 54, 56, 58, 59, 60, 62, 63, 67, 68, 74, 81.	1784.		0.00.00.40.41
4	26, 27, 28, 32, 33, 34, 35, 38, 40, 41, 42, 49, 50, 51, 52, 62, 63, 67, 68.		23	34, 35, 38, 40, 41. 22, 25, 26, 27, 34, 35, 39, 40.
5 7	27, 28, 32, 34, 40, 42, 49, 51, 52, 53, 54. 32, 67.	May	26 25	34, 35, 36, 39, 40. 68, 69, 71.
9	39, 41, 49, 51, 54. 15, 22, 27, 30, 32, 33, 34, 35, 39, 40, 41, 67.	June	5 8	25, 26, 71. 25, 71, 72.
12 13	51, 60, 51, 52, 54, 59, 60.	H	16 21	25, 26, 35, 51, 69, 70, 71, 73. 15, 22.
14 16	39, 40, 41, 51, 67. 32, 34, 35, 41, 51, 52, 56, 58, 67.		4 14	22, 25, 26, 25, 26, 106.
18 19	67, 71, 74. 35, 40, 41, 52, 58, 59, 60, 82, 85, 86.	Sept.	9	105, 106, 109, 112, 114, 118, 121, 122. 98.
21 25	71, 76. 56, 62, 66, 67.		14 15	105, 106, 107, 108, 109, 112, 118, 121. 106, 112, 1, 2, 4.
26 27	39, 40, 41, 45, 50, 51, 56. 56, 70, 71, 78, 79, 81.	H	16 17	103, 106, 112, 118, 120, 123, 1, 2, 4. 83, 85, 105, 106, 112, 128, 1.
28	35, 40, 41, 50, 51, 67, 73, 75, 77, 79, 81, 92, 93, 95, 98, 103, 105, 106, 107, 112.	1	18 20	111, 116, 118, 1. 26, 28, 31.
29 30	35, 39, 40, 41, 47, 49, 50, 51, 52, 56, 58, 59, 60, 67. 25, 26, 27, 32, 34, 35, 39, 40, 41, 47, 49, 50, 51.	il	24 26	34, 35. 51.
May 1	53, 63, 66. 47, 50, 51.		28 30	115, 1, 2. 1, 2, 10, 13, 15, 17, 20.
3 4	39, 40, 41, 51, 52, 56. 67, 76, 83.	Oct.	1 2	96, 105, 106 111, 112, 120. 127, 128, 1, 2, 15, 17, 22, 24, 25, 26, 27, 28, 32, 33,
9 12	39, 40, 41, 51, 52, 53, 54, 62, 66, 67, 81. 67, 78.		6	34, 35, 39, 40, 41. 92, 120, 122, 123, 5, 15, 17.
13 15	60, 73, 77, 81, 89, 92, 105, 106, 107, 112. 35, 67, 77, 81, 87, 89, 98, 103, 105, 106, 107.		8 9	5, 7, 17. 92, 98, 112, 120, 10, 12, 13, 15, 17, 22, 21, 24, 25,
16 17	47, 49, 51, 52, 58, 60, 76, 83, 85, 86. 67, 68, 70, 92, 93.		12	26, 27, 30, 33, 34, 35, 36, 38, 39, 40. 38, 39, 40.
20 29	60, 62, 67, 70, 71, 75. 78, 79, 84, 90, 92, 93.	ll	13 14	20, 22, 25, 26, 28, 30, 34, 35, 36, 38, 40.
June 2 3	60, 67, 71, 85, 90, 92, 98, 100, 111, 112. 60, 65, 67, 71.	ll .	15 16	98, 102, 112, 114, 116, 13, 15, 25, 26, 27, 28, 35, 38. 98, 106, 112, 116, 122.
July 5	60, 65, 67, 71, 89. 67, 71, 85, 100, 106, 107.		23	106, 115. 116, 118, 126.
8	71, 73, 75, 76, 78, 79, 85, 87, 98, 106, 107. 76, 78, 79, 80, 85, 106, 107, 110, 111, 112, 118, 122.		28 28	98, 106, 107, 112, 115. 98, 130.
10	51,60, 67, 69, 71, 73, 74, 76, 78, 79, 80, 83, 98, 106,	1785		20. 22. 24. 25. 20. 44
12	107, 112. 92, 94, 98, 103, 105, 106, 109, 112, 114, 116, 128.		19	30, 33, 34, 35, 38, 44. 34, 35, 38, 41. 30, 35, 36, 37, 39, 30, 32, 34, 34
14 19	78, 106, 69, 71, 73, 74, 78, 79, 80, 82, 85, 92, 101, 103, 105, 106, 107, 109, 119, 114, 116, 117, 199, 196, 198, 199, 1, 9	li	21 23	22, 25, 26, 27, 28, 30, 33, 34, 38, 22, 26, 38, 52.
20	107, 109, 112, 114, 116, 117, 122, 126, 128, 129, 1, 2, 25, 26.	April	30 5	35, 67. 28, 30, 35, 40, 41, 51.
23 26	112. 85, 86, 92, 112, 117, 122, 125, 126, 2. 67, 71, 73, 74, 75, 76, 70, 80, 83, 85, 86, 82, 90, 99, 98		9 10	51.
27	67, 71, 73, 74, 75, 76, 79, 80, 83, 85, 86, 88, 90, 92, 98, 106, 107, 112, 114, 116, 5.	[11 26	41, 44, 51. 40, 51.
21	97, 98, 99, 103, 106, 112, 116, 128, 5.		29	53.

The adopted mean places for 1783.0 are presented in the annexed table, together with the logarithmic constants for reduction to apparent places.

Mean Places and Constants for Standard Stars.

No.	Name	178	33. 0	Toma	Tomb	T	Tond	Tom of	T om b/	Toma!	T on di
140.	маше	а	δ	Log a	Log b	Log c	Log d	Log a'	Log b'	Log c'	Log d'
1 2 4 5 7 8 9 10 12 13 14 15 16 17 18 19 20 21	a Andromedæ. γ Pegasi a Cassiopeæ . e Piscium . η Piscium . ο Piscium . λ Arietis a Arietis . c Ceti c Arietis . a Persei . δ Porsei . η Tauri . γ Persei . γ Tauri . γ Tauri . γ Tauri . γ Tauri . ε Tauri .	0 2 4.85 32 41.34 51 41.72 1 19 53.92 33 57.27 42 41.32 54 58.76 2 32 4.45 50 57.29 3 2 27.69 8 55.47 27 33.42 34 37.11 40 31.94 47 54.79 4 7 27.85 15 58.01	+19 44 20.7 +22 25 37.8 + 2 18 40.4 + 3 13 39.1 +20 13 38.1 +49 4 21.0 +47 4 34.3 +23 25 9.3 +31 13 24.0 -14 8 18.2 +15 5 16.1 +18 40 56.7	0. 48763 0. 47776 0. 49215 0. 50329 0. 49776 0. 51565 0. 52323 0. 49189 0. 53436 0. 62354 0. 62354 0. 57230 0. 44526	7. 93740 8. 33360 8. 38241 7. 32642 7. 44113 8. 23502 8. 71776 8. 64588 8. 23334 8. 36367 77. 96160 7. 92756	8. 83694 8. 84428 8. 81576 8. 81049 8. 79066	8. 17649 8. 37096 8. 42872 8. 48691 8. 54012 8. 61378 8. 65625 8. 70562 8. 87335 8. 88666 8. 76730 8. 80588 8. 76077 8. 78453	1. 30235 1. 29793 1. 29123 1. 27543 1. 26475 1. 25723 1. 24525 1. 19879 1. 16833 1. 14714 1. 13427 1. 09278 1. 07517 1. 05952 1. 03873 0. 97588	8. 08609 n7. 95811 n9. 15273 n9. 34959 n9. 53353 n9. 60050 n9. 63671 n9. 68206 n9. 78952 n9. 851165 n9. 85411 n9. 86575 n9. 89588 n9. 90605 n9. 91407 n9. 92349 n9. 94540 n9. 95363	9. 60746 9. 52750 9. 57276 9. 41885 9. 33814 9. 61162 9. 59685 9. 20501 n9. 43175 n9. 44795 8. 89332 n8. 73239 9. 79650 9. 27854	9, 38294 9, 51214 9, 05704 9, 36344 9, 10918 9, 48344 9, 524318 8, 50216 9, 38344 9, 71014 9, 65514 9, 37204 9, 37204
22 24 25 26 27 28 29 30 31 32 33 34	Aldebaran 11 Orionis . Capella . Rigel . β Tauri . δ Orionis . α Leporis . ε Orionis . α Columbæ α Orionis . μ Geminorum . γ Geminorum .	23 29. 27 52 10. 93 5 0 41. 28 4 6. 99 12 35. 28 20 55. 59 23 9. 76 25 12. 55 31 47. 67 43 25. 69 6 9 49. 70 25 10. 29	+16 3 22.5 +15 5 4.7 +45 45 18.0 - 8 28 0.1 +28 24 18.9 - 0 28 29.6 -17 59 28.8 - 1 21 21.5 - 34 12 3.1 + 7 20 59.4 +22 36 24.7 +16 34 0.9	0.53425 0.53343 0.64326 0.45898 0.57730 0.48566 0.42190 0.48276 0.34569 0.51089 0.55951 0.53983	7. 89451 7. 71933 8. 24348 n7. 37947 7. 86956 n5. 97161 n7. 53969 n6. 37761 n7. 72139 6. 79330 n7. 07556 n7. 33722	8, 45268 8, 30394 8, 38833 8, 21146 8, 19220 8, 05356 8, 04992 8, 00366 7, 98816 7, 68631 n7, 49081 n7, 88215	8. 80149 8. 81984 8. 96552 8. 81563 8. 87025 8. 81759 8. 84005 8. 81900 8. 89580 8. 82635 8. 85822 8. 83969	0, 91386 0, 76717 0, 71047 0, 68516 0, 61496 0, 53200 0, 50661 0, 48200 0, 39142 0, 16119 ng, 93456 no, 34220	n9, 96030 n9, 98070 n9, 98529 n9, 98696 n9, 99064 n9, 99437 n9, 99437 n9, 99469 n9, 99866 n9, 99960 n9, 99737	9, 21601 9, 23104 n9, 59051 9, 75760 n8, 92262 9, 64570 9, 66029 9, 95522 9, 48138 8, 22401 9, 12287	9, 0533; 8, 8802; 9, 2632; n8, 5508; 8, 9898; n7, 1476; n8, 6940; n7, 5535; n8, 8222; 7, 9658; n8, 2169; n8, 4948
35 36 38 39 40 41 42 44 45 47	Sirius	50 5.93 7 7 8.83 20 43.36 27 55.93 32 0.68 40 11.30 8 35 16.18 44 15.68	+7128.7	0, 58727 0, 50458 0, 57285 0 56775 0, 50545 0, 52666		n8. 43249 n8. 39860 n8. 47208 n8. 50195 n8. 62451 n8. 65891	8. 87033 8. 83897 8. 86995 8. 79345 8. 84417 8. 83235 8. 71896 8. 71875	n0. 63856 n0. 76299 n0. 83772 n0. 87486 n0. 89430 n1. 92908 n1. 09953 n1. 11988	n9. 99474 n9. 98954 n9. 98109 n9. 97281 n9. 96734 n9. 96402 n9. 95711 n9. 89161 n9. 87735 n9. 81493	9. 92914 8. 57031 n9. 13287 9. 52988 n876555 n8. 47590 9. 52247 9. 31660	9. 0174 n9. 0409 n9. 2637 n8. 5745 n9. 2710
49 50 51 52 53 54 56 58 59 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 23.22 56 47.79 10 7 58.89 21 22.15 37 50.06 11 2 32.42 16 46.41	+13 1 12.7 +20 55 53.8 +10 25 2.6 +11 41 17.1 +21 42 34.1 + 4 2 56.8 + 0 22 21.8	0.53918 0.50906 0.51992 0.50148 0.50073 0.50550 0.48973 0.48739	n8. 39236 n8. 44532 n8. 12194 n8. 35248 n8. 04685 n8. 11113 n8. 41016 n7. 66614 n6. 63308 n8. 27314	n8. 78798 n8. 76920 n8. 79948 n8. 78960 n8. 80449 n8. 84205 n8. 81722 n8. 81908	8. 63164 8. 54455 8. 52524 8. 45147 8. 37818 8. 25047 8. 09798 7. 99566 7. 82260	n1. 21625 n1. 23634 n1. 24829 n1. 26084 n1. 27385 n1. 28857 n1. 29459 n1. 29753 n1. 30036	·	9, 10310 9, 48799 9, 37610 9, 54597 9, 54900 9, 62304 9, 63664 9, 5929	n9. 5265 n9. 5712 n9. 2867 n9. 4989 n9. 2157 6 n9. 2781 n9. 5542 n8. 8411 n7. 8091 2 n9. 4325
62 63 65 66 67 68 69 70 71 72 73	o Virginis	12 8 48. 45 45 50. 92 58 43. 82 13 13 47. 00 23 38. 86 38 58. 01 44 20. 98 14 5 46. 08 17 48. 38	+ 0 31 8.5 +50 24 7.9 +19 29 31.7	0. 48714 0. 45506 0. 49086 0. 49766 0. 48660 0. 37905 0. 45673 0. 44904 0. 31628	n8. 73120 7. 69325 8. 04831 n6. 75186 n8. 86447 n8. 32623 n8. 32350 n8. 86083	n8, 82361 n8, 92772 n8, 81076 n8, 80769 n8, 79434 n8, 97768 n8, 80286 n8, 78286 n8, 95929	n7, 40851 n8, 23470 n8, 22910 n8, 33083 n8, 37652 n8, 64123 n8, 49272 n8, 56919 n8, 79565	n1. 30205 n1. 29362 n1. 28796 n1. 27947 n1. 27276 n1. 26056 n1. 25570 n1. 23341 n1. 21861	2 9. 29824 5 9. 40392 7 9. 50024 8 9. 55252 5 9. 62173 9 0. 64318 9 0. 71737 9 0. 75260	9. 63790 9. 66400 9. 61650 9. 57100 9. 6408 9. 7775 9. 7450 9. 76950 9. 8531	5 np. 2369 5 n7. 9746 8 np. 7947 0 8. 8681 5 9. 2177 2 n7. 9279 7 np. 8449 4 np. 4716 1 np. 8177 8 np. 5628

Mean Places and Constants for Standard Stars-Continued.

27.	N	1783, 0	7	Tank	T	Τ	T/	T /	T/	T 41
No.	Name	a d	Log a	Log b	Log c	Log d	Log a'	Log b'	Log c'	Log d'
74 75 76 77 78 79 80 81 82 83	μ' Bootis a Coronæ Bor. a Serpentis . ε Serpentis . ε Coronæ Bor. δ Scorpii	16 17.56 +38 8 25 30.23 +27 27 33 35.48 + 7 7 40 0.63 + 5 8 48 36.37 +27 31 47 32.00 -21 59	44.7 0.51873 18.6 0.35482 12.8 0.50736 49.1 0.35728 18.3 0.40271 13.3 0.4673 37.9 0.47304 0.9 0.39536 18.1 0.41647	n8. 14181 n8. 62794 7. 84113 n8. 53534 n8. 33486 n7. 69594 n7. 53671 n8. 27502 n8. 17627 7. 24993	n8. 80878 n8. 66788 n8. 74456 n8. 67113 n8. 60270 n8. 58423 n8. 61038 n8. 59542	n8, 78517 n8, 68818 n8, 80652 n8, 76860 n8, 73187 n8, 73904 n8, 80039 n8, 78097	n1. 16334 n1. 14147 n1. 11867 n1. 09770 n1. 07780 n1. 06093 n1. 03670 n1. 03984	9, 83736 9, 85940 9, 87826 9, 89280 9, 90460 9, 91337 9, 92434 9, 92302	9. 89199 9. 50715 9. 90748 9. 87241 9. 72447 9. 70399 9. 88828 9. 85760	n9. 30258 n9. 68012 9. 01235 n9. 66708 n9. 45907 n8. 86868 n8. 71105 n9. 39898 n9. 31821 8. 42538
84 85 86 87 88 89 90 92 93	T Herculis Antares	13 13.70 +46 50 16 7.84 -25 55 25 13.60 -10 6 35 27.78 +39 20 47 24.44 + 9 43 53 36.20 +33 53 17 4 45.53 +14 39 24 52.10 +12.43 37 58.42 +27 51 51 52.38 -30 24	59. 0 0. 56293 44. 3 0. 51705 40. 6 0. 31129 31. 8 0. 45525 33. 9 0. 34430 3. 3 0. 43630 53. 5 0. 44278 32. 4 0. 37417	n8. 50396 8. 15213 7. 67917 n8. 29458 n7. 55134 n8. 10702 n7. 61915 n8. 36175 n7. 52910 7. 14206	n8. 51132 n8. 43476 n8. 49251 n8. 32363 n8. 36066 n8. 21612 n8. 01854 n7. 85950	n8. 82378 n8. 79247 n8. 90530 n6. 80805 n8. 88630 n8. 82552 n8. 82960 n8. 87540	n0, 94369 n0, 90642 n0, 85934 n0, 79580 n0, 75824 n0, 68023 n0, 48619 n0, 28446	9, 95378 9, 96176 9, 96976 9, 97785 9, 98151 9, 98726 9, 99488 9, 99799	n7. 43933 9. 42591 9. 96712 9. 76969 9. 95172 9. 82325 9. 80700	8. 84847 n9. 35905 n8. 72113 n9. 20223 n8. 78089 n8. 52702 n8. 65169
95 97 98 99 100 101 102 103 105	Aquilæ Vega $β$ Lyræ $σ$ ² Sagittarii . $ζ$ Aquilæ	23 23.95 8 22 29 35.53 +38 35 42 4.21 +33 7 41 48.08 -26 32 55 26.35 +13 33 19 4 55.68 -19 19 14 33.33 + 2 41	45. 4 0. 51408 30. 0 0. 30361 18. 4 0. 34488 49. 3 0. 57143 19. 0. 44052 20. 5 0. 44065 45. 5 0. 47868 52. 0 0. 45529		7, 83682 8, 04073 8, 16227 8, 13089 8, 21557 8, 29551 8, 32901 8, 43976	n8, 85397 n8, 82631 n8, 92732 n8, 89356 n8, 86504 n8, 82335 n8, 83142 n8, 80100 n8, 79147 n8, 78561	8. 82639 0. 31061 0. 41215 0. 56372 0. 56096 0. 68176 0. 74879 0. 80699 0. 91144 0. 92910	0.00000 9.99773 9.99637 9.99264 9.99274 9.98273 9.97661 9.96078 9.95711	9, 45411 9, 98134 9, 95463 n8, 70910 9, 81263 8, 96384 9, 67966	8, 74926 n8, 96609 8, 17699 8, 85288
107 108 109 110 111 112 114 115 116	π Capricorni . ε Delphini . a Cygni ν Cygni 61¹ Cygni	44 39.14 + 5 52 53 32.04 + 6 40 20 6 0.06 - 13 12 14 52.81 - 18 54 22 50.69 + 10 34 34 2.28 + 44 30 49 5.39 + 40 20 57 11.42 + 37 41 21 3 42.52 + 29 20 12 3.17 + 18 53	40.8 0.47655 12.9 0.52350 34.8 0.53802 37.4 0.45754 45.3 0.30997 20.8 0.34832 41.1 0.36759	7. 83678 n7. 91235 n8. 10305 7. 86132 8. 61076 8. 58074 8. 55624 8. 43020	8, 77125 8, 55364 8, 59240 8, 59754 8, 76501 8, 76963 8, 76991 8, 73995	n8. 77924 n8. 50390 n8. 76632 n8. 76800 n8. 68425 n8. 86425 n8. 81103 n8. 78004 n8. 72589 n8. 67334	0. 94674 1. 24675 1. 02046 1. 04677 1. 06856 1. 09661 1. 13017 1. 14673 1. 15877 1. 17354	9, 95305 9, 67703 9, 93077 9, 92000 9, 90954 9, 89348 9, 86920 9, 85449 9, 84234 9, 82540		
118 120 121 122 123 125 126 127 128 129	η Aquarii	20 7.30 6 30 33 31.59 8 53 41 26.53 -14 33 54 37.92 1 21 22 5 22.18 8 51 24 12.10 1 13 30 38.66 9 42 41 17.15 8 43 45 37.23 -30 46 53 57.78 +14 2 23 16 57.95 + 5 11	17.6 0.46918 51.4 0.51429 59.6 0.4895 44.7 0.50112 48.6 0.48886 11.8 0.47474 46.9 0.49689 4.0 0.52172 26.5 0.47356	7. 76616 7. 92262 n8. 15385 n7. 13311 n7. 95980 n7. 11684 8. 02300 n7. 98404 n8. 57544 8. 20371 7. 77434	8, 73367 8, 75337 8, 75553 8, 77237 8, 78490 8, 79628 8, 80282 8, 86652 8, 81880	n8. 63452 n8. 60476 n8. 59276 n8. 54015 n8. 50997 n8. 43245 n8. 35626 n8. 39344 n8. 29066 n8. 09676	1. 18682 1. 20688 1. 21764 1. 23387 1. 24562 1. 26327 1. 26849 1. 27623 1. 27908 1. 28409	9.75466 9.71612 9.68085 9.60845 9.57988 9.52730 9.50363 9.45358	9. 71691 9. 44284 9. 62490 9. 55036 9. 62871 9. 69196 9. 57749 9. 32195	n8, 93944 9, 09346 n9, 31575 8, 30908 n9, 13068 n8, 29284 9, 19283 n9, 15505 n9, 68564 9, 36662 8, 94865

My friend Professor Winlock, Superintendent of the American Ephemeris, has kindly furnished me with the logarithmic day-numbers for the period over which these observations extend. They are taken from the extensive and valuable series of tables now preparing under his direction, and are here appended. Like those of the *Tabulæ Regiomontanæ*, they hold good for the beginning of the sidereal day of the fictitious year.

Logarithmic day-numbers.

Dat	te	Log A	Log B	Log C	Log D	E
1783	3.					,,
Jan.	0	n 7.5011	n 0.9346	n 0,5141	1.3038	- 0.001
	10	8.5491	# 0.9395	n 0.8112	1.2830	
	20	8,8570	n 0.9472	n 0,9766	1. 2465	1
	30	9. 0240	n 0.9562	n 1.0854	1. 1917	
Feb.	9	9, 1346	n 0,9654	n 1, 1610	1. 1133	
	19	9. 2145	n 0.9739	n 1.2134	1,0009	+ 0.003
Mar.	1	9.2759	n 0.9805	n 1.2478	0. 8305	
	11	9. 3257	n 0.9846	n 1.2672	0, 5222	
	21	9.3685	n 0.9859	n 1.2730	n 9,2860	
A1	31	9.4075	n 0.9842 n 0.9797	n 1.2658 n 1.2455	n 0.5669	1 0 001
April	20	9. 4448 9. 4818	n 0.9730	# 1.2455 # 1.2108	n 0,8486 n 1,0087	+ 0, 001
	30	9.5190	n 0.9647	n 1.1596	n 1.1152	i
Morr	10	9.5567	n 0.9556	n 1. 1336	n 1.1132	
May	20	9. 5943	n 0.9468	n 0.9864	n 1.2430	i
	30	9.6314	n 0.9392	n 0.3832	n 1.2790	+ 0.003
June	9	9.6673	n 0.9337	# 0.5915	n 1.3009	7 0.000
o uno	19	9.7014	n 8, 9309	n 9.9119	n 1.3101	
	29	9. 7332	n 0.9311	0, 3597	n 1.3073	1
July	9	9.7623	n 0.9342	0.7269	n 1.2922	1
J 41.J	19	9.7885	n 0.9397	0.9154	n 1,2641	+ 0.010
	29	9.8118	n 0.9470	1.0377	n 1.2209	' "."
Aug.	8	9, 8323	n 0,9551	1. 1234	x 1. 1591	
	18	9.8502	n 0.9630	1. 1848	x 1,0723	İ
	28	9.8658	n 0.9698	1. 2279	n 0.7473	
Sept.	7	9.8796	n 0.9747	1. 2559	n 0.7510	+ 0.011
	17	9, 8922	n 0.9771	1.2704	s 0.3500	
	27	9.9042	n 0.9767	1.2722	0, 0945	+ 0.011
	i	1				
1784						1
Mar.	11	9.5079	n 0.9574	n 1.2672	0.5222	+ 0.019
	21	9.5363	n 0.9575	# 1. 2730	x 9. 2859	
	31	9.5629	n 0.9544	* 1.2658	# 0.5669	
April		9.5891	n 0.9483	n 1.2455	n 0.8486	+ 0.017
	20	9.6157	n 0.9397	n 1 2108	# 1.0087	
W	30	9, 6432	n 0,9293	n 1, 1596	# 1.1152 # 1.1001	
May	10 20	9.6715 9.7005	n 0.9181 n 0.9071	n 1.0876 n 0.9864	n 1, 1901 n 1, 2430	
	30	9.7296	n 0.8973	n 0.8382	n 1.2790	+ 0.019
June	9	9, 7583	n 9.8897	n 0.5914	n 1.3009	+ 0.013
o ano	19	9. 7859	n 0.8852	n 9.9118	n 1.3101	ŀ
	29	9. 8121	n 0.8839	0.3598	n 1, 3073	ł.
July	9	9, 8363	n 0,8859	0.7269	n 1.2922	i
	19	9.8583	n 0.8906	0.9154	n 1.2641	+ 0.026
	29	9.8781	n 0.8973	1.0377	n 1,2209	'
Aug.	8	9, 8955	n 0.9049	1, 1234	n 1.1591	
-	18	9. 9109	n 0.9124	1.1848	x 1.0723	1
_	28	9, 9243	n 0.9187	1.2279	n 0.9473	
Sept.	7	9. 9363	n 0.9228	1. 2559	# 0.7510	+0.027
	17	9. 9472	n 0.9242	1.2704	n 0.3500	Į.
_	27	9. 9575	n 0.9224	1.2722	0.0945	1
Oct.	7	9, 9678	n 0.9172	1.2612	0.6728	l
	17	9.9785	n 0.9088	1.2364	0.9060	
NT	27	9.9899	n 0.8978	1, 1959	1.0483	+ 0.025
Nov.	6	0.0022	n 0.8848	1.1362	1. 1454	
	16	0,0155	n 0.8711	1.0507	1, 2139	l
Dec.	26 6	0. 0296 0. 0442	n 9.8581 n 0.8471	0. 9262 0. 7294	1, 2614 1, 2920	l
⊅ 00.	16	0.0442	n 0.8394	0. 7294	1.3078	+ 0.029
	26	0.0737	# 0.8357	n 0.0810	1.3096	0.020
	36	0.0877	n 0.8364	* 0.6522	1.2977	
1785			ļ	ľ		
	- I	9, 6230	n 0.8773	n 1.2672	0,5222	+ 0.034
	11 21	9, 6230	# 0.8773 # 0.8759	# 1.2072 # 1.2730	n 9. 2857	T 0. 034
	31	9, 6648	* 0.8708	* 1.2658	n 0.5669	
	10	9. 6852	n 0.8620	n 1. 2455	n 0.8486	+ 0.032
	20	9.7062	* 0.8501	n 1.2108	# 1,0087	1 0.002
	30	9. 7282	* 0.8358	n 1. 1596	* 1.1153	+ 0.032
						,

Instrumental errors affecting the right-ascensions.

The first attempts at determining the clock correction, Δt , disclosed large discordances between the indications of the different stars, as well as the fact that these were not due to any error of adjustment, but must arise from a distortion of the limb of the quadrant. The only course open was to determine the clock-rate by observations of the same stars made on different nights, and then to investigate the nearly constant differences between the values of Δt , as given by different stars. By means of a table of these differences, the transit of each star may be reduced to an arbitrarily assumed plane parallel with the meridian; and from their discussion a first approximation was obtained to the amount and character of the distortion of the quadrant. The locus of these special constant corrections, arranged according to the zenith distances of stars, indicated some great indentation or flexure in the vicinity of 37° 20' of zenith distance, corresponding to about $11\frac{1}{2}$ ° of declination, and a decided distortion of the limb of the quadrant in the same direction both above and below. The inference is irresistible to my mind that the limb, along which the eye-end of the telescope moved, and to which it seems to have been confined by clamp-rollers, had experienced some severe blow, and that this not only injured its figure in the region above named, but had really bent the whole limb.

To determine the precise amount and law of this deviation from a plane, in the path described by the line of collimation, no direct means are available. Only the assumption of an approximately correct value for the transit-error due to this cause, in the case of each standard star, can guide to a knowledge of the azimuthal deviation of the plane of the quadrant. But without some determination of the azimuth it is uncertain what portion of the discordances between the results given by different stars is due to error of adjustment, and what to irregularity of form. Furthermore, some plane must be arbitrarily assumed to represent the normal plane of the quadrant; and to this the corrections to be deduced for the several standard stars must reduce them.

The best plane for adoption, as that of the quadrant, seems to be that one for which the sum of the squares of the constant errors is a minimum. And this, although not absolutely attained, is nearly approximated by the indirect process to which I have had recourse.

After applying the best attainable values of the corrections due the time of transit of the several standard stars, which correction is denoted by q, so that

$$a - T = \Delta t + m_0 + n \operatorname{tg} \delta + q$$

where T represents the sidereal time of transit, reduced by the use of the clock-rate to a fixed epoch; Δt being the clock-correction at that epoch, and $m_{\bullet} = m - q$; the equations of condition

$$a - T - q = (\Delta t + m) + n \operatorname{tg} \delta$$

were solved, by the method of least squares, for every date.

The several outstanding residuals thus afford new values of q for each star, which being then combined by weights, depending on the apparent accuracy of the observations, and upon the total number of determining stars on the respective nights, afforded a means of repeating the process with advantage. Thus each successive series of solutions gave a closer

approach to the true values of q, and to a determination of the azimuth of that normal plane to which the employment of these values reduced the observed transits. And this plane being inferred from the entire series of dates, and by the use of least squares on each individual date, cannot be far from the truth. This process was repeated so long as the individual values of the residuals, and the various determinations of n, were found to be rendered more accordant; and the present reduction is based upon the results of the sixth successive series of solutions. The accordance of the values of n thus attained yields a strong corroboration of the trustworthiness of the result.

After various attempts to deduce a correction proportionate to the secant of the declination, I have concluded that this is impracticable, and that any error due to the motion of the line of collimation in a small circle is thoroughly merged with the values of q.

The values of the correction q for each standard star being carefully charted, a curve was obtained by graphical means which represents the observations within the limit of probable error in the whole range of observations, excepting for the zone contained between 9° and 13° of north declination. For this region the distortion appears to have been so great, and the errors of observation so large, as to render the results less trustworthy than the rest.

Only after the work of reduction and the construction of the catalogue had been entirely completed in all other respects, was the investigation of the distortion within these limits resumed. The success of this special research has been greater than I had anticipated, and the results have now been modified to conform to the new determination.

For this special investigation the best attainable places were deduced for every star observed by D'AGELET within the above-named limits. For stars whose proper motion was found capable of approximate determination, this has been used to refer the right-ascensions to the date of D'AGELET'S observations. Some of the stars occur in ARGELANDER'S catalogue, but for the great majority of them PIAZZI, and BAILY'S reduction of LALANDE, furnished the places, and a comparison of these with later observations, the proper motion. All these adopted places were of course referred to the fundamental equinoctial points by special tables, originally deduced for the construction of the standard lists.

These residuals, when charted, soon made manifest the existence of two independent curves; one belonging to observations made by D'AGELET previous to some date in May, 1783, and the other, for which the corrections were decidedly smaller, holding good for subsequent observations. No note or memorandum exists by which the date may be indicated, but from internal evidence I am inclined to believe that it must have been on the 9th, and have accordingly assumed the change to have taken place on that day.

Observations before this date give reasonably accordant results, as also do those subsequent; and I cannot resist the strong conviction that D'AGELET, being aware of the great defect in the limb, employed some mechanical means on the 9th May to remedy it. The attempt was successful, in so far as the errors were decidedly reduced in magnitude within the region of their greatest influence; but was by no means successful in removing them, or indeed in diminishing them outside of the limits already named, for which they remain essentially the same throughout the period of D'AGELET'S observations.

The accompanying chart I. shows the value of q for different declinations; the dotted line (18)

showing the values for dates after the 9th May, 1783. A glance will suffice to suggest the nature of the distortion, and it will be remarked that its maximum falls at precisely the same declination for each curve.

It seems evident that previous to D'AGELET'S first observations some severe blow must have fallen upon the instrument near the place of maximum distortion, bending and deflecting the whole limb. And that at or about the time already named, efforts were made to remedy the difficulty, although without dismounting the quadrant, and without a knowledge of the real magnitude and extent of the injury which had been incurred.

The sidereal times of all transits observed by D'AGELET have accordingly been corrected by the values given in the tables here appended, the argument of the principal table being the approximate zenith-distance as read from the limb.

In the second table, entitled "Values of q between + 9° and + 13°," the argument is the mean declination for 1800.0, since this was by far the least laborious form for construction; and the possible loss of accuracy incurred is quite small in comparison with the probable error of observations in this region of greatest distortion. The right-ascensions of all stars between the limits of 36° 0' and 39° 40' of zenith distance (corresponding nearly to the limits of + 12° 15' and + 9° 11' of declination) are affected by the special discussion.

(19)

Values of the correction q.

ζ		q	٠ ,	q	ζ	q	ζ	q	ζ	q
						_				
87	40	*. + 3.53	ი 14	0' + 1.34	30 20	, s. - 1.34	49 40	*. + 0.66	66 0	s . + 1.63
88	70	.50		0 7 .37	40		50 0	.80	20	7 1.60
1	20	. 47		0 .38	31 (.40	20	0, 90	40	.56
i	40	. 42		0 .39	20		40	1.01	67 0	. 52
89	0	.38		.40	40		51 0	. 10	20	. 49
1	20 40	.33 .28		$\begin{bmatrix} 0 & .40 \\ 0 & .40 \end{bmatrix}$	32 (20 40	. 20	68 0	. 46 . 42
0	0	.20		$\begin{bmatrix} 0 \\ 20 \end{bmatrix}$ $\begin{bmatrix} .40 \\ .39 \end{bmatrix}$	40		52 0	. 37	20	.42
1	20	. 14		0 39	33		20	.44	40	~ .40
ì	40	3, 07		0 .38	20		40	.53	69 0	.42
1	0	2.98	2	.36	40		53 0	.60	20	.44
	20	.89		0 .32	34 (20	. 67	40	. 47
١ ۵	40	.80		0 .29	20		40	.71	70 0	. 49
2	0 2 0	.70 .58		20 .26 10 .21	35		54 0 20	.76 .79	20 40	. 53 . 59
1	40	. 46		$\begin{bmatrix} 10 & .21 \\ 0 & .17 \end{bmatrix}$	35 2		40	.82	71 0	.65
3	0	.33		$ \bullet\rangle$ = $ \bullet\rangle$	40		55 0	.84	20	. 72
-	20	.20		1.05		1.81	20	.86	40	. 81
1	40	2,06		0 0.92	"		40	.87	72 0	1.93
4	0	1.92		0 .79	39 40		56 0	. 87	20	2.03
	20	.80		.66		.60	20	.88	40	. 15
5	40	.72 .66		0 .50	20		40	.88	73 0	.27
9	0 20	. 59		20 .39	41	$\begin{array}{c c} 0 & .41 \\ .33 \end{array}$	57 0 20	.87	20 40	.55
1	40	. 54		0 .14	41 20		40	.86	74 0	.70
6	0	.50		+ 0.03	40		58 0	.84	20	2,90
1	20	. 47		0.06		1 11	20	. 82	40	3.08
	40	. 44		0 .15	20		40	.80	75 0	. 22
7	0	.41		.24	4		59 0	.79	20	.40
	20	.39		10 .33		.90	20	.76	40	.58
8	40	.37		0 .42 .52	20		60 0	.73	76 0 20	.70 3,84
°	20	.33		60		63	20	68	40	4.00
	40	32		0 .69	2		40	.65	77 0	. 10
9	ő	. 30		20 .76	4		61 0	.63	20	.27
1	20	. 29		10 .82		.41	20	.61	40	.41
١.,	40	.28	26	0 .88	20		40	.60	78 0	. 55
10	0	.28		93	40		62 0	.58	20	.68
	2 0 4 0	.27 .27	27	0.99 0 1.03	46	0 .26	20 40	.57	79 0	. 80 4. 90
111	0	.27		20 1.03	4	13	63 0	58	79 0	5.00
**	20	.27		10 11		6 :08	20	.59	40	.08
	40	.27	28	0 .16	2	-0.01	40	. 60	80 0	. 15
12	0	.28		20 . 19	4	0 + 0.04	64 0	. 61	20	. 20
	20	.30		10 .22		.12	20	. 63	40	. 25
1 10	40	.30	29	0 .24	2		40	. 64	81 0	.27
13	0 2 0	.31 .32		20 .27	49	0 .30	65 0 20	. 67 . 67	20 40	.29
	40	.33	30	0 32	49 2		40	65	82 0	+5.30
14		+ 1.34		0 - 1.34	a 4		66 0	+ 1.63	3	' 5.50
		' ' '		1]	! '		'		

(20)

8		7	ð	q		δ.	q	
	Before May 9	After May 9		Before May 9	After May 9		Before May 9	After May 9
+ 9 0 7 5 10 15 20 25 30 35 40 45 55 10 0 5 10 15 10 20	s1.66 1.69 1.73 1.80 1.89 2.00 2.16 2.38 2.63 2.89 3.17 3.41 3.58 3.68 3.77 3.85 -3.91	s. — 1.65 1.68 1.72 1.76 1.80 1.85 1.91 1.97 2.04 2.11 2.17 2.23 2.29 2.34 2.40 2.51	10 20 25 30 35 40 45 50 55 11 0 5 10 15 20 25 30 35 11 40	*	2. 51 2. 56 2. 62 2. 67 2. 71 2. 75 2. 79 2. 83 2. 87 2. 90 2. 94 2. 98 3. 00 3. 01 3. 01 2. 98 — 2. 92	11 40 45 50 55 12 0 5 10 15 20 25 30 35 40 45 55 13 0	3. 4. 78 4. 63 4. 49 4. 38 4. 25 4. 11 3. 96 3. 80 3. 62 3. 40 3. 12 2. 81 2. 48 2. 13 1. 94 1. 83 — 1. 77	2. 92 2. 84 2. 76 2. 68 2. 59 2. 48 2. 38 2. 27 2. 18 2. 10 2. 02 1. 96 1. 90 1. 83 1. 80 1. 77 — 1. 75

Values of q between + 9° and + 13.°

Finally, the computed and adopted values of n, $m + \Delta t$, and the clock-rate, for the epoch T, are here presented in tabular form.

On nine dates, easily recognized from the table of dates and stars, the number of standard stars observed was not sufficiently numerous to afford an adequate determination of m and n, which in these cases were subsequently deduced by employing, in place of standard stars, the mean resultant positions of such others as had been observed by D'AGELET on several occasions. For convenience and to avoid needless complication, the results of these determinations are incorporated in the preceding table, although they were not obtained till after the completion of the remainder of the work.

The constancy of the deviation n affords gratifying and encouraging evidence of the stability of the quadrant, and of the accuracy of the deduced correction q, large as it is.

GOULD-REDUCTION OF D'AGELET'S OBSERVATIONS.

Corrections for adjustment of Quadrant and Clock.

Date		T	n	Adopted n	No. of stars	Clock correction	Rate	Adopted rate
1783		h	8 0001	8	10	m 8	8	3
February	18 19 26	7 10 10	- 3, 871 4, 403 4, 162	- 4.20 4.15 4.1	16 5 20	- 2 26.403 2 27.632 2 40.059	- 1.092 1.775	- 1.44 1.44 1.68
March	1 6	7 6	4, 714	4. 1 4. 05	9	2 43. 80 2 52. 658	1.555	1.68 1.92
	9 17	6 51	4. 0 3. 301	4. 0 4. 0	2 6	3 1.635 3 10.004	2.992 1.046	2.40 0.96
	18 21	8 8	3. 970 4, 029	4. 0 4. 0	9 9	3 10.789 3 11.836	0.710 _ 0.349	0.72 - 0.24
April	29 2	9	4. 108 3. 947	4. 0 4. 0	5 7	3 10.530 3 9.648	+ 0.163 0.218	+ 0.24 0.48
	3 4	12 10	3. 332 3. 671	4. 0 4. 0	11 18	3 9.614 3 9.001	0.031 0.669	0. 48 0. 48
	5 7	8 10	4, 096 1, 735	4.0 4.0 4.0	11 2	3 8.617 3 6.650	0. 419 0. 944	0.72 0.96
	8 9	9 8	4, 722 4, 004	3. 95 3. 95	5 12	3 5.712 3 4.186	0. 979 1. 592	1. 20 1. 44
	12 13	11 10	3. 8 3. 723	3, 9	2 5	3 0.107 2 59.463	1. 305 0. 672	0.96 0.72
	14 16	10 10 10	3.928	3, 85 3, 85	5 9	2 58.563	0, 900 0, 685	0.72 0.72 0.72
	18 19	14	3.768 3.055	3.8 3.78	2 10	2 54.960	1. 032 0. 749	0.96
	21	11 14	3. 659 1. 093	3.75 3.7	2	2 54, 305 2 52, 710	0.751 0.540	0.72 0.48
	25 26	13 10	4, 151 3, 655	3. 68 3. 67	6	2 50, 573 2 50, 234	0. 386 1. 099	0.48 0.72
	27 28	13 13	5, 630 3, 932	3, 65 3, 63	6 19	2 48, 998 2 48, 280	0.718 1.095	0.96 0.96
3.5	29 30	10 9	3.861 - 3.491	3. 62 3. 6	12 13	2 47. 322 2 46. 318	1. 048 1. 327	0.96 1.20
May	1 2	12 11	+0.201 -3.687	3.58 3.6	3	2 44, 825 2 43, 606	1. 272 1. 157	1.20 1.20
	3 4 9	9	3.541 3.6	3. 62 3. 63	6 3	2 42,546 2 41,420	0.932 0.715	0.96 0.72
	12 13	11 14	3.678 2.671	3. 7 3. 93	11 2	2 37, 934 2 35, 950	0. 635	0.72 0.48
	15	16 13	3. 978 3. 993	3.96 3.98	10 11	2 36, 439 2 35, 341	0. 586 0. 845	0.48 0.72
	16 17	13	3. 440 2. 095	3.98 3.98	10 3	2 34, 496 2 33, 510	0. 986 0. 523	0.96 0.72
	20 29	13 16	3, 953 3, 018	3.95 3.75	6 5	2 31.942 2 28.638	0.362 0.600	0.48 0.48
June	31 2	16 13	3. 829 3. 6	3. 8 3. 65	10 3	2 27, 438 2 26, 160	0. 682 0. 655	0.72 0.72
July	3 5	14 16	3, 509 3, 7	3.6 3.75	5	2 25, 477 2 10, 392	1. 264	0.72 1.20
	8	17 19	3, 963 4, 454	3. 85 3. 9	11 12	2 6.549 2 4.700	1,707 1,198	1.44
	10 12	15 20	3, 641 4, 045	3, 95 4, 0	15 11	2 3.702 1 58,990	2. 134 1. 699	1. 68 1. 92
	14 19	18 21	4, 263 4, 2	4. 05 4. 1	2 26	1 55, 734 1 48, 144	1. 481 1. 344	1.68 1.44
	20 23	20 20	4. 258	4. 1 4. 1	8	1 46.8 1 43.005	1. 265 0. 874	1. 20 1. 20
	26 27	19 22	4. 078 4. 179	4, 12 4, 14	20 7	1 40.431 1 38.874	1. 384 1. 412	1. 20 1. 44
	29 30	17 20	4.218	4. 2 4. 2	2	1 36.344 1 34.530	1.613	1. 44 1. 68
August	17 20	23 22	3, 136 4, 257	4. 22 4. 25	3 12	1 15. 257 1 12. 353	0. 982 1. 339	0.96 1.20
September	21 2 6	23 19	3, 428 4, 507	4. 28 4. 4	4 4	1 10.957 0 57.723	1. 118 0. 757	1. 44 0. 72
•	7	18 19	4. 391 4. 805	4, 38 4, 4	2	0 54.727 0 54.390	0. 324 Clock changed	0. 48 0. 48
	9 15	4 23	3. 924 4. 465	4. 4 4. 3	5 8	1 42, 322 - 0 22, 556	13. 773 13. 544	13. 68 13. 44
	17 25	2 6	2.615 - 3.879	4.1 - 3.95	6 4	$\begin{array}{cccc} + & 0 & 6.225 \\ + & 1 & 42.690 \end{array}$	+ 11.813	13.20 + 11.76

(22)

Corrections for adjustment of Quadrant and (Nock-Continued.

Date		T	n	Adopted n	No. of stars	Clock correction	Rate	Adopted rate
1784 March	22 23 26 25	k 8 6 7	- 2, 672 3, 811 3, 525 3, 223	- 3.72 3.68 3.65 3.3	5 6 3 2	m s - 0 21.130 0 18.823 - 0 11.963 + 0 29.175	+ 2.517 2.256	+ 2.64 2.40 2.16 3.60
June	5 8 16 21	10 10 10 4	3. 620 3. 082 3. 381 3. 753	3. 35 3. 38 3. 42 3. 5	2 2 7 2	- 0 47.630 - 0 34.860 + 0 4.367 - 0 38.910	3. 986 4. 257 4. 903 Clock changed 3. 312	4. 08 4. 32 3. 60 3. 36
July September	4 14 7 9 14	5 12 21 18 20	3. 446 3. 750 3. 204 3. 505	3, 6 3, 66 3, 3 3, 3 3, 26	3 2 8 1 6	+ 0 4.310 - 0 15.500 0 19.965 - 0 13.640 + 0 4.334	3, 905 3, 372 1, 831	3. 60 3. 84 3. 84 3. 84 3. 84
	15 16 17 18	22 22 20 22	3, 275 3, 476 3, 979 3, 128	3, 25 3, 25 3, 23 3, 22	5 8 6 3	0 8.478 0 12.537 0 16.348 0 19.910	3. 826 4. 059 4. 157 3. 288 1. 954	4. 08 4. 08 3. 36 2. 16
	20 24 26 28 30	6 6 5 22 2	3, 956 3, 056 2, 635 3, 0	3. 2 3. 2 3. 18 3. 15 3. 2	3 2 1 3 6	0 24, 470 0 36, 195 0 41, 060 0 45, 137 0 49, 714	2. 931 2. 484 2. 387 2. 113	2. 64 2. 64 2. 40 2. 16 2. 16
October	1 2 6 8 9	20 3 22 2	2. 944 2. 965 3. 459 4. 632	3. 18 3. 18 3. 2 3. 22	5 19 6 3 21	0 51.549 + 0 54.426 - 0 56.780 0 51.687	2, 447 2, 227 2, 319 2, 445 2, 336	2. 16 2. 16 2. 40 2. 40
	12 13 14 15	7 6 19	3, 283 3, 955 3, 438 3, 037	3. 23 3. 32 3. 34 3. 36 3. 4	3 10 1 13	0 49.448 2 52.613 2 50.479 2 49.050 2 45.930	Clock changed 2, 227 0, 926 2, 416	2. 40 2. 16 2. 40 2. 40 2. 64
November	16 17 23 28	20 23 22 20	3. 440 4. 271 3. 4 3. 346	3. 42 3. 86 3. 75 3. 55	5 2 3 5	2 43. 640 1 53. 510 1 42. 630 1 35. 386	2. 892 1. 826 1. 473	2. 88 1. 92 1. 68 1. 44
December 1785	28	21	2. 841	3. 2	2	1 14.230	0.704	0,72
March	14 19 21 23	7 7 7 7	4. 227 3. 816 3. 214 4. 106	3. 6 3. 62 3. 65 3. 7	4 4 9 4	1 43.402 1 32.188 1 29.447 — 1 26.312	2. 243 1. 370 1. 567 Clock changed	2. 16 1. 92 1. 44 1. 44
A p r il	30 5 9 10 11	10 8 12 10 9	7.500 3.661 - 1.330	3, 85 3, 87 3, 9 3, 9 3, 9	2 6 ! 3	+ 1 0.005 1 7.122 1 15.250 1 17.510 1 19.444	1. 202 2. 018	1, 20 1, 92 2, 16 2, 16 2, 40
	26 29	10 11	+ 1.748	-3.9	2 1	1 59.550 + 2 7.980	2. 666 + 2. 772	+ 3. 12

§ 9. INSTRUMENTAL ERRORS AFFECTING THE DECLINATIONS.

The character of the deviations of the quadrant-limb from a plane naturally gave rise to the suspicion that so serious a distortion might also have affected the indications of zenith-distance; and a careful examination showed that this suspicion was not unfounded. By a process analogous to that employed for determining the deviations n and the correction q, a series of solutions by least squares yielded values for the equatorial point on each day, and for a correction q', constant for each star, but varying with the declination. The results of this investigation are given in the accompanying tables. The first, "Corrections to equatorial point," contains the combined effect of the corrections for zenith-point and for error of latitude; and the second,

"Values of q'," indicates the systematic errors of the graduation, whether originally existing, or produced by the injury already spoken of. The latter corrections are delineated on the small chart II., accompanying this memoir, and their relation to those previously found for the right-ascensions is easily recognizable from the curve.

Corrections to equatorial point.

Date	Eq. point	Date	Eq. point	Date	Eq. point	Date	Eq. point
1783. Feb. 18 19 26 Mar. 1 6 9 17 18 21 29 April 2 3 4 5	+ 1 46. 27 44. 24 42. 54 44. 4 47. 13 46. 30 47. 45 48. 30 50. 36 40. 62 44. 97 41. 10 42. 83 39. 34	1783. May 1 2 3 4 9 12 13 15 16 17 20 29 31 June 2	+ 1 49.53 47.83 46.78 47.83 48.57 47.15 46.81 45.49 48.48 45.60 50.13 45.46 45.38	1783. Aug. 21 Sept. 2 6 7 9 15 17 25 1784. Mar. 22 23 26 May 25	+ 1 49.40 48.72 47.70 47.90 47.88 50.17 49.37 + 1 47.53 + 1 44.34 47.20 45.05 39.50	1784. Sept. 26 28 30 Oct. 1 2 6 8 9 12 13 14 15 16 Nov. 17	+ 1 43.00 35.45 37.05 39.27 38.65 41.80 39.47 38.56 41.40 39.54 40.30 40.64 43.34 43.00
9 12 13 14 16 18 19 21 25 26 27 28 29 30	33. 80 41. 02 41. 35 38. 90 40. 36 40. 72 39. 67 42. 45 44. 57 40. 00 40. 65 45. 64 42. 83 41. 53 48. 47 + 1 50. 28	July 5 8 9 10 12 14 19 20 23 26 27 29 30 Aug. 17	46, 95 45, 32 47, 00 45, 95 45, 75 44, 09 47, 35 46, 42 47, 90 44, 81 48, 71 47, 97 46, 69 46, 47 + 1 48, 68	June 5 8 16 21 22 22 July 4 Sept. 7 9 14 15 16 17 18 20 24	44. 25 43. 25 43. 07 43. 40 43. 4 42. 13 39. 40 40. 06 38. 20 41. 28 41. 38 38. 35 42. 35 35. 90 41. 87 + 1 42. 00	23 28 Dec. 28 1785. Mar. 14 19 21 23 30 April 5 9 10 11 26 29	+ 1 38.95 + 1 40.20 + 1 38.95 34.38 38.12 33.38 36.20 38.32 34.70 38.90 37.43 40.70 + 1 40.80

Values of q'.

Decl.	q'	Decl.	q'	Decl.	q'	Decl.	q'	Decl.	q'	Decl.	g'
+ 50 49 48 47 46 45 44 43 42 41 40 39 38 37 + 36	" + 5.7 5.6 5.5 5.4 5.3 5.1 4.9 4.5 4.3 4.1 3.9 3.7 3.5 + 3.3	0 + 35 33 33 33 31 30 29 28 27 26 25 24 23 22 + 21	" + 3.1 2.9 2.7 2.5 2.2 1.9 1.6 1.3 1.0 0.7 + 0.4 - 0.0 - 0.5 - 0.8	0 + 20 19 18 17 16 15 14 13 12 11 10 9 8 7 + 6	" - 1.1 1.3 1.5 1.7 1.8 1.9 2.0 2.0 1.9 1.8 1.7 1.6 - 1.5	0 + 54 32 + 10 - 12 3 4 4 5 6 7 8 9	" - 1.4 1.3 1.2 1.0 0.9 0.8 0.7 0.6 0.6 0.5 0.5 0.4 - 0.4	0 — 10 11 12 13 14 15 16 16 19 20 21 22 23 — 24	" - 0.4 0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.8 1.0 1.2 1.5 - 1.8	0 - 25 26 27 28 29 30 31 32 33 34 - 35	" - 2.2 2.6 3.2 3.8 4.6 5.5 6.4 7.3 8.2 9.1 -10.2

It is manifest that these present reductions, being purely differential, can lead to no determination of the latitude of the place of observation. This has been used throughout as 48° 51′ 5″, and any error in this assumption is merged with such other corrections in declination as were constant for the date.

§ 10. OBSERVATIONS.

The crude observations printed by LALANDE are given in the present memoir in their reduced form, as already stated. The first column, entitled T, shows the clock-time of transit over the mean of the three wires; the second, entitled "Sidereal times," gives the sidereal time corresponding, or (for those dates when the clock was running at sidereal rate, but with very large error) the time T, increased or diminished by a constant amount representing the approximate correction. Next follow the values of the corrections $m + \Delta t$, $n \text{ tg } \delta$, q, from data presented in § 8; their sum when applied to T giving the apparent right-ascension.

Column 8 gives the approximate apparent declination obtained by subtracting the supposed latitude, 48° 51' 5", from the mean of the recorded zenith-distances, and is followed by the corrections for refraction and q'. The "equatorial point," or index-error to be used, is printed at the beginning of the observations for each date, and when summed with the other corrections and applied to $\zeta - \varphi$ yields the apparent declination. All these quantities have been computed in duplicate, and the errors of calculation must, I think, be very few.

The observations of sun, moon, and planets are omitted from the subsequent discussion. The data given render their reduction easy; but it has seemed hardly advisable to carry the computation farther at present. I was not without hopes of finding some observations of *Neptune*, but none have been discovered.

A very considerable number of marginal notes will be found accompanying the reduced observations. These relate in most instances to assumptions of errors in the original record. To decide what alterations are requisite, what warrantable, and what inadmissible, is always a matter of delicacy, and owing to the peculiar circumstances of the present case, has here been more difficult than usual. The existence of a large number of errors of press and pen being indisputable, I have felt justified in making a liberal use of probable conjectures, so long as the rule was strictly followed that no change, however slight, be made in the original, without a corresponding record on the same page. This rule does not apply to manifest errors in the column of the original entitled "reduction," where the readings of the division into 96 parts and its subdivisions are translated into the sexagesimal notation. These reductions have been made afresh, without use of the originals, which were found both imperfect and untrustworthy.

One remarkable kind of error is that where both the recorded readings of the limb agree in giving an erroneous result, precisely as though one reading had been erroneously made, and the other subsequently constructed to agree with it. Fortunately three-quarters of these cases are for stars which are well known, and whose names are given, and the others were fortunately observed on other dates, so that the assumptions made seem fully justified.

À.

Among the cases of this sort are the following:

```
1783, April 3, 104 Virginis.

8, 34 Leonis.

9, a Persei.

13, T = 8h. 59m. 18s.

14, 11 Leonis.

18, 3 Libræ.

19, T = 13h. 0m. 48s.

1783, April 25, 449 Mayer.

25, T = 11h. 33m. 44s.

30, T = 9h. 17m. 20s.

July 27, 51 Piscium.

1784, Sept. 30, 79 Pegasi.

Oct. 15, 140 Tauri.
```

In 23 instances observations have been found so discordant, and apparently so erroneous, that no plausible assumption could be made, so that it became necessary to reject the transit over one thread, or one reading of the zenith-distance. For 10 stars, whose zenith-distance was not observed, it was requisite in reducing to assume the declinations; but the close agreement of the resultant right-ascensions has seemed in every case to justify the assumption. All of these cases are fully specified in the notes. In a few cases, not exceeding six or eight, the discordance between the transits over different threads has left it uncertain which was erroneous; and for these the mean has been used.

Throughout the reductions it has become manifest that those observations for which only the full minute was recorded are uncertain by two or three minutes, both in the transits and the zenith-distances. The failure to detect this usage at first has occasioned much fruitless labor.

§ 11. THE CATALOGUE.

The equinox, to which the mean places of the catalogue should be referred, was fixed as that of 1800.0, after much hesitation. The selection of this equinox was due to no want of appreciation of the importance of referring the mean places to the mean equator of a date near that at which the observations were made, but to the apparently greater advantages of the epoch adopted. Excepting the circumpolar stars of Lalande, reduced by Fedorenko to the mean equinox of 1790.0, all the observations of the last century, since the time of Bradley, have been reduced to this fundamental epoch; and the facility which the use of this epoch affords for comparing d'Agelet's results with those of Piazzi and Lalande is too great to be lightly disregarded. The mean places of the catalogue are, therefore, referred to the equinox of 1800.0, but the actual date of every observation is given, and no correction for proper motion has in any instance been applied; so that the place recorded is always that at which the star was actually observed.

For reducing to the mean equinox, day-numbers were computed from the A, B, C, D, E, already given, (§ 7.) It may be well to record these also.

Constants for reducing stars from their apparent places to the mean equinox of 1800.

Dat	e		G	H	!	Log g	Log h	Log i	f	Date		G	Н	Log g Log h	Log i	f
1783 Feb.	3 14 19 24	181	35 36 37	306 301 296	31	2, 5292 . 5288 . 5285	1. 2858 . 2827 . 2799	n0, 8273 . 8510 . 8703			20 25 30	0 / 181 29 28 27	208 59 204 25 199 55	2. 4928 1. 301 . 4923 . 303 . 4918 . 305	. 5579	" 713. 81 713. 04 712. 25
Mar.	1 6 11 16 21 •26 31	181	37 38 38 39 39 39	290 285 280 274 269 264 258	35 12 49 25 2	2. 5281 . 5278 . 5275 . 5273 . 5270 . 5267 . 5264	1. 2775 . 2755 . 2741 . 2733 . 2730 . 2734 . 2743	n0, 8854 . 8968 . 9048 . 9094 . 9106 . 9088 . 9034	774. 31 773. 77 773. 25 772. 73 772. 23 771. 74 771. 25] 1 1	4 9 14 19 24	181 27 26 26 26 25 25 25	195 28 191 3 186 39 182 17 177 56 173 34	2. 4913 1. 3070 . 4908 . 3090 . 4903 . 3090 . 4897 . 3100 . 4891 . 3100 . 4886 . 3100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	711. 42 710. 56 709. 70 708. 83 707. 95 707. 08
April	5 10 15 20 25 30	181	38	253 248 242 237 232 227	9 59 53 52	2, 5261 . 5258 . 5255 . 5252 . 5249 . 5245	.2779 .2803 .2830 .2859	. 8484 . 8251	770. 73 770. 20 769. 64 769. 06 768. 45 767. 80	1 1	4 9 14 19 24	181 25 26 26 27 28 29	169 11 164 47 160 21 155 52 151 20 146 45	2. 4881 1. 309 . 4876 . 307 . 4871 . 306 . 4866 . 303 . 4861 . 301 . 4856 . 298	7 + 2.31 0.4703 0.5530 0.6198	706. 21 705. 35 704. 51 703. 70 702. 91 702. 16
Мау	5 10 15 20 25 30	181	33 32 31 31	223 218 213 208 204 199	18 36 59 25	2.5241 .5237 .5232 .5228 .5223 .5219	. 2954 . 2983 . 3011 . 3036		767. 11 766. 40 765. 67 764. 91 764. 11 763. 28	1 1 2	8	31 32 33	142 5 137 21 132 33 127 40 122 42 117 40	2. 4852 1. 2956 . 4848 2923 . 4844 . 2894 . 4840 . 2863 . 4836 . 2833 . 4832 . 2806	0.7217 .7610 1.7944 3.8224 3.8460	701. 44 700. 75 700. 68 699. 43 698. 83 698. 26
June	9 14 19 24 29	181	29 29 29 29 29 29 29	195 191 186 182 177 173	3 39 17 56	2. 5214 . 5209 . 5204 . 5199 . 5194 . 5189	.3090 .3099 .3104	$ \begin{array}{r} -2.35 \\ 1.70 \\ 1.03 \\ -0.36 \\ +0.32 \end{array} $	762. 45 761. 60 760. 73 759. 85 758. 97 758. 09	1	7 2 7 2	181. 34 35 35 35 35 35 35	112 33 107 22 102 8 96 51 91 32 86 12	2. 4829 1. 278 . 4826 . 276 . 4822 . 2744 . 4819 . 273 . 4816 . 273 . 4813 . 273	. 8935 6 . 9024 6 . 9080 . 9105	697, 70 697, 17 696, 67 696, 19 695, 69 695, 19
July	4 9 14 19 24 29	181	30 30 31 32	169 164 160 155 151 146	47 21 52 20	2.5184 .5179 .5174 .5170 .5165 .5161	. 3077 . 3060 . 3038	. 5530 . 6198	757. 22 756. 37 755. 53 754. 71 753. 92 753. 15	1 1 2 2	7 2 7 2 7 7 7	181 34 34 33 32 31 30	75 32 70 14 64 57 59 43 54 33	2. 4810 1. 273: .4807 . 275: .4804 . 277: .4800 . 279: .4796 . 281: .4793 . 284:	8 .8988 9 .8882 8 .8740 9 .8559 9 .8335	694, 69 694, 19 693, 66 693, 11 692, 54 691, 95
Aug.	3 8 13 18 23 28	181	35 36 37 37	142 137 132 127 122 117	21 33 40 42		. 2925 . 2894	.7610 .7944 .8224 .8460	752, 42 751, 72 751, 04 750, 38 749, 78 749, 20	1 1 2 2	6 1 6 1 6 6	181 29 28 27 25 24 23	44 24 39 24 34 29 29 37 24 48	2. 4789 1. 288 . 4784 . 2914 . 4780 . 2948 . 4775 . 2976 . 4770 . 3007 . 4765 . 3034	7738 .7349 .6883 .6322 .5638	691. 32 690. 66 689. 95 689. 20 688. 44 687. 64
Sept.	7 12 17 22 27	181	40 40 40	112 107 102 96 91 86	22 8 51 32	.5129 .5126 .5123	. 2762	. 8935 . 9024 . 9080 . 9105	748. 65 748. 12 747. 60 747. 09 746. 59 746. 09	1 1 2	1 6 1 16 21	20 20 20 19 19	15 19		. 3670 " + 1.63	686, 80 685, 93 685, 08 684, 21 683, 31 682, 40
Mar.	21 26 31	181	39 39 39 38	269 264 258 253	2 41	. 4969 . 4966	. 2734 . 2743	n0, 9106 . 9088 . 9034 n0, 8949	721. 10 720. 62 720. 13	1785 Mar. 1	31	20 181 29 29 28	351 57 280 12 274 49 269 25		- 1.24 n0.9048 .9094	681. 49 671. 56 671. 07 670. 58
April	5 10 15 20 25 30	101	37	203 248 242 237 232 227	9 59 53 52	. 4960 . 4957 . 4953 . 4949	. 2779 . 2803 . 2830	. 8831	719, 61 719, 07 718, 52 717, 95 717, 33 716, 68	April 1	5 10	28 28 181 27 26	264 2 258 41 253 23 248 9	. 4653 . 273 . 4650 . 274 2. 4647 1. 275 . 4643 . 277	9088 9034 900. 8949 9 8831	670. 09 669. 59 669. 09 668. 57
Мау	5 10 15	181	33 31 30	223 218 213	18	. 4937	1. 2922 . 2954 . 2983	n0.7643 .7252 .6789	716. 02 715. 33 —714. 58	2	50 25 30	24 23	242 59 237 53 232 52 227 56	. 4639 . 280 . 4636 . 283 . 4632 . 285 . 4628 . 289	.8484 .8251	668, 04 667, 49 666, 89 666, 26

The arrangement of the catalogue requires little comment. After the running numbers for reference, which have been so arranged as to avoid separating different observations of the same star, the second column contains the names. These are not those recorded by D'AGELET, but are those obtained by identification of the stars. So far as possible, Flamsteed's numbers and Bayer's letters have been given; and in default of these, the reference-numbers from Mayer's, Bradley's (Bessel's) Piazzi's, and other standard catalogues, in order of seniority. But since an easy recognition, rather than a systematic nomenclature, has been aimed at, this rule may sometimes have been inadvertently violated. The references for Flamsteed's, Lacaille's, and Lalande's observations are to their numbers in Bailly's reductions; those for Bessel's and Argelander's zones, to the respective numbers in Weisse's and Oeltzen's reductions, as is also indicated by the appended initials.

The magnitudes are those recorded by D'AGELET, and are omitted when not given by him. In the column "date" the year is indicated by its last digit, thus: 3, 4, 5, instead of 1783, 1784, 1785. The columns "reduction" contain the reduction from the apparent equinox of date to the mean equinox of 1800.0.

§ 12. ACCURACY OF THE RESULTS.

The catalogue contains 6,497 observations of 2,907 stars; so that the average number of observations for each star is about $2\frac{1}{4}$. Actually, 38 stars were observed more than ten times; 65 from seven to ten times, inclusive; 140 five or six times; 183 four times; 336 three times; 740 twice; and 1405 only once.

A comparison of the several positions of each star with each other, or with their mean, affords an opportunity for estimating the precision of the results; and from discussion of the several determinations of all those stars which have been observed more than three times we derive the following values for the mean deviations from the mean:

Mean error of a single observation.

Declinations	In a		In δ	
Decinations	Mean error	No. obs.	Mean error	No. obs.
+ 50 to + 45 45 45 45 35 35 36 30 25 25 20 15 15 13 9 + 5 + 5 0 - 5 10 10 15 15 20 25 20 25 30 - 30 - 35	8. ± 0.313 .284 .275 .276 .314 .331 .310 .342 .314 .284 .388 .319 .255 .235 .493 .286 0.298	77 136 142 139 319 346 348 114 162 163 100 108 35 42 22 29	上 2.94 2.73 2.08 2.35 1.99 1.91 2.20 2.15 2.62 2.43 2.91 2.69 3.43 2.92 5.20	82 135 145 144 315 362 375 188 228 173 111 114 36 48 25 21

Of the 2907 stars of this catalogue, 274 occur in Argelander's Positiones Mediæ; and a comparison of their several places as here given, with those derived from Argelander's catalogue, using his precession and proper-motion excepting for our standard stars, but making the slight corrections requisite for reducing to Peters's nutation, furnishes the annexed results for the mean values of the difference of Argelander — D'Agelet, after rejecting 12 cases in R. A., and 6 in Declination. The average discordances are the means of the differences, disregarding signs.

Declinations	Δα	No. obs.	No stars	Δδ	No. obs.	No. stars	Average di	scordance
	·	!	,				In a	In 8
0 0	s. ·	1		" "			8.	"
+50 to +45	— 0. 125	32	10	+ 1.17	38	11	0.185	2. 35
45 40	+ 0.035	55	13	+ 0.94	57	14	0, 155	1.87
40 35	+0.027	111	34	- 0.04	118	35	0. 167	2.21
35 3 0	- 0.111	59	14	— 2.09	63	15	0, 229	3.96
30 25	+ 0.079	123	30	+ 0.01	124	30	0.211	1.32
.25 20	+ 0. 181	106	30	+ 0.46	109	30	0.218	1.17
20 15	+ 0.023	, 94	32	- 0.09	103	32	0. 167	1.53
15 13	— 0. 103	37	10	+ 1.14	39	10	0.144	2.08
13 9	+ 0.089	38	10	+ 1.89	44	11	0. 153	1.92
9 + 5	+ 0.005	104	15	+0.66	107	15	0, 103	1.05
+ 5 0	+0.037	78	25	- 0.97	90	26	0.192	2.21
0 - 5	- 0.014	24	8	— 0.58	26	8	0, 162	1.43
- 5 10	— 0.200	44	10	+ 1.64	49	10	0, 287	3, 20
10 15	- 0.009	29	4	<u> </u>	30	4	0.081	1. 15
15 20	— 0.097	50	13	-0.85	52	13	0, 165	2.18
-20 - 25	- 0.172	6	4	+0.33	6	4	0.218	1.57

Comparison with Argelander's Positiones Media.

The resultant differences ARGELANDER - D'AGELET are-

 $\Delta a = +$ 0s.015 by 262 stars; $\Delta \delta = -$ 0".070 by 268 stars; = + 0 .013 by 990 observations; = + 0 .098 by 1,055 observations.

Similarly a comparison of more than 1800 stars common to this catalogue and the second catalogue of Piazzi has yielded the following results, after applying the proper-motion for seventeen years to the places of those few stars for which its existence and amount are well established, and rejecting 31 cases. Inasmuch as Piazzi's observations extended over the whole interval between 1792 and 1813, and the dates of the observations can only be deduced from the *Storia Celeste* by dint of great labor, this approximation has seemed to me sufficient; and although the residual discordances must somewhat exceed the true differences obtainable by the use of better values of the proper-motion than were at Piazzi's disposal, still the errors thus incurred will be very small, and for the most part susceptible of elimination.

It became manifest from the first that the differences of the two catalogues, especially in declination, varied greatly with the right-ascensions, and that the dividing lines between two distinct groups were not very remote from the equinoctial colures. In the appended table of comparisons I have assorted the differences Piazzi — D'AGELET, for each zone of declination in two groups, bounded by even hours of right-ascension, arbitrarily selected. The discrepancies do not appear to be chiefly due to the apparent proper-motions occasioned by the motion of our system, although this vera causa must exert an influence; but they are apparently the result of intrinsic peculiarity of Piazzi's catalogue.

Declinations	No. obs.	No. stars	Δα	Δδ	a	No. obs.	No. stars	Δα	Δδ
	A. 10 83 11 98 12 146 12 155 12 297 14 435 14 478 12 214 11 144 13 175 15 150 14 61 12 35 14 19 6 18	32 49 69 64 109 150 171 34 72 44 53 42 48 23 6	s. + 0.171 + 0.179 + 0.241 + 0.001 + 0.156 + 0.266 + 0.119 + 0.050 + 0.151 + 0.013 - 0.013 - 0.105 - 0.114 - 0.029 - 0.172 + 0.155	" + 0.13 - 1.76 - 3.36 - 2.43 - 0.94 - 1.59 - 2.03 + 0.42 - 0.06 - 1.57 - 1.53 - 1.10 - 0.37 + 1.89 - 2.13 + 1.55	h, 22 12 23 13 22 13 23 13 23 15 23 15 23 15 23 15 23 14 23 15 23 16 0 15 23 16 0 15 23 17 20	62 130 189 124 280 190 189 90 130 123 81 36 30 90 52	31 46 71 48 92 73 77 28 41 47 72 36 18 16 54	s. - 0.163 + 0.090 + 0.020 - 0.013 + 0.158 + 0.347 + 0.099 + 0.288 + 0.104 + 0.025 - 0.046 + 0.137 + 0.049 - 0.073 - 0.092 - 0.098	" + 2. 15 + 1. 33 + 0. 96 + 1. 86 + 1. 86 + 0. 82 + 1. 53 + 0. 71 + 1. 14 + 2. 12 + 1. 71 + 0. 95 + 1. 65 + 2. 58 + 1. 25 - 1. 31 + 1. 12 + 3. 46

The resultant differences PIAZZI-D'AGELET are-

s.
 s.

$$\Delta a = +0.119$$
 $\Delta \delta = -1.36$ by 2,719 observations in first group;

 $= +0.121$
 $= -1.42$ by 983 stars in first group;

 $= +0.087$
 $= +1.25$ by 1,945 observations in second group;

 $= +0.079$
 $= +1.22$ by 807 stars in second group;

 $= +0.106$
 $= -0.27$ by 4,664 observations in all;

 $= -0.23$ by 1,790 stars in all.

Those stars which occur in Piazzi's catalogue have not been collated with Lalande, but for the others an analogous comparison has been instituted with Bailly's reductions of the *Histoire Celeste*. The results of this collation for about 850 stars, after applying a few proper-motions and rejecting the differences in right-ascension for 26, and in declinations for 14 stars, are as follows:

Comparison with Lalande.

D 1::			.	· .			Aver. disc	cordance
Declinations	Δα.	No. obs.	No. stars	Δδ.	No. obs.	No. stars	In a	In d
0 0 + 50 to + 45	s. - 0, 251	68	40	+ 1.27	70	41	s. 0. 474	// •
+ 50 to + 45 45 40	+0.006	173	87	+0.95	166	41 88	0.474	3, 15 3, 29
40 35	+0.028	156	86	$\begin{array}{c} + 0.33 \\ + 0.43 \end{array}$	160	87	0.307	2.67
35 30	-0.020	135	88	+ 0.69	146	97	0.328	2.79
30 25	- 0.093	148	89	1.18	148	87	0.314	3, 16
25 20	+ 0.029	201	116	+ 1.36	204	117	0. 330	3, 20
20 15	-0.043	179	109		178	110	0. 294	3.54
. 15 13	- 0.049	35	26	$+1.69 \\ +3.38$	32	25	0, 321	4.71
13 9	+ 0.170	63	45	+3.99	67	48	0.357	4.43
9 + 5	+ 0.068	40	30	+ 1.34	41	30	0.280	2.98
+ 5 0	- 0.098	67	43	+2.57	65	41	0, 323	4.32
0 - 5	- 0.082	24	16	+1.26	23	15	0. 327	3.83
- 5 . 10	— 0.026	18	15	1.09	18	15	0.244	5. 42
10 15	— 0.113	15	13	+1.09	15	13	0.319	3.89
15 20	+ 0.039	11	10	- 2.78	12	10	0. 223	6. 14
20 25	— 0.177	7	6 ₁	— 2.44	8	7	0.311	4.72
- 25 to - 30	— 0.27	. 1	1	- 5.5	1	1 1	0.27	5, 5
		l	1	1	·			

(30)

The resultant differences LALANDE-D'AGELET are-

```
\Delta a = -0s.029 by 820 stars; \Delta \delta = +1''.29 by 832 stars; = -0.031 by 1,341 observations; = +1.27 by 1,354 observations.
```

There remain 206 stars, of which all but 16 have been identified as observed by other astronomers, viz: 110 in Bessel's zones; 14 in Johnson's Radcliffe catalogue; 10 in Argelander's northern zones; 2 in Argelander's southern zones; 10 in Rumker's catalogue; 33 in Argelander's Durchmusterung; 7 in Lacaille only, and 4 in other places. The examination of the average differences between the positions of the present catalogue and those of the authorities above named has only been extended to these few stars, but gives entirely satisfactory results.

Thus the difference, Weisse's Bessel-D'Agelet appears to be-

```
Between 0h and 13h. \Delta a = + 0s.15 by 38 observations. \Delta \delta = - 4".19 by 37 observations. 13 and 23 = 0.00 60 " = - 1.57 64 " Mean of all = + 0.06 98 " = - 2.53 101 "
```

The number of unrecognized stars amounted originally to 55; and in my uncertainty regarding them, I applied to my friend Mr. Ferguson, Assistant Astronomer at the Washington Observatory, who in the kindest manner responded to my appeal, and together with Prof. Asaph Hall, of the same institution, examined with the great equatorial of the observatory the regions in which D'Agelet's observations placed each of these 55 stars. The aid thus rendered by these experienced observers has enabled me to make plausible assumptions for the greater part of the cases, and has reduced the numbers of stars now missing or discordant, by an amount not susceptible of explanation, to 16. A list of these will be given below, and notes concerning 12 others will be found at the end of the catalogue. These 28 stars are indicated by a dagger (†) against their respective numbers.

§ 13. GENERAL REMARKS.

Since the observations of D'AGELET are the earliest, excepting BRADLEY'S, of all the observations belonging to the more accurate class, we may reasonably rely upon the proper-motions deduced by comparing them with recent determinations. One of the earliest cases to attract attention was the well known "Argelander's star," or 1830 Groombridge, which was observed three times by D'AGELET, thus enabling us now to deduce a yet closer value for its proper-motion.* There are in the present catalogue about 1400 well recognized stars, which do not occur in the Fundamenta Astronomiæ, but have been observed in recent years, and for the most of these the proper-motions hence deduced promise to be more trustworthy than any others now attainable, unless some large number of modern observations of high character permits the application of the method of least squares.

The differential character of the reduction does not militate with this view, inasmuch as the places and proper-motions of the standard stars on which the determination rests may apparently be relied on to a degree far within the mean error of a quadrant-observation in 1783. A gratifying indication of the general trustworthiness of the catalogue is afforded by some of the dates already mentioned, on which the number of standard stars proved inadequate

^{*}The most probable value which I have found is +0s. 3430 in a, and -5". 7923 in δ ; the mean place of the star for 1800.0 being 11h. 41m. 24s.20, $+39^{\circ}$ 9' 10".47.

for the determination of Δt and n, but on which several stars of Argelander's catalogue occur. The clock-error and quadrant-deviation being calculated independently by means of Argelander's stars, and by means of positions derived from stars observed by D'Agelet on other dates, the two determinations agreed so closely that it was entirely insignificant which should be used, the differences being only in the second decimal. For the sake of consistency the results from our catalogue have been employed.

In concluding these introductory remarks, I will place together the positions of those stars which have defied attempts at identification, or whose discordances are too great to be lightly disposed of by a conjecture. Among them are, not improbably, places of planets and of variable stars, but the greater part of them must, I am inclined to believe, owe their place in the catalogue to some error in the original record.

No.	Mag.	a 1800, 0	ð 1800. 0	Date
710 1078 1615 1798 1893 1967 2733 2985 3174 3239 4290 4290 45364 5593 5594	6 . 7	h. m. s. 3 56 53.7 6 23 54.6 8 41 50.0 9 21 18.9 9 38 38.9 9 52 58.3 11 41 18.4 12 23 20.5 12 59 7.5 13 13 26.6 16 19 42.4 17 50 22.4 20 6 26.2 20 40 46.3 20 41 16.3 32 9 6.5	+ 21 50 30.1 + 22 15 46.9 + 6 4 58.3 + 15 25 36.2 + 25 30 7.8 - 9 9 55.9 + 11 46 59.7 - 15 26 44.2 - 13 21 17.0 - 3 18 38.0 + 37 49 47.6 + 1 26 + 26 21 17.8 + 39 40 41.0 + 25 21 57.3	1784, October 2 1783, March 17 1785, March 21 1785, March 21 1783, Feb. 26 1783, April 10 1783, April 10 1783, May 17 1783, May 31 1783, May 31 1783, July 29 1784, Sept. 7 1784, Sept. 7 1783, July 30 1783, July 30 1783, July 30

In addition to the motives already mentioned as having prompted me to undertake this reduction and catalogue, an especial incentive was found in the experience which it would afford and make available for a much more extended work which has long been a cherished project, the recomputation of Piazzi's observations, and the formation from them of a new catalogue. This is an enterprise far too extensive for the powers of a private individual, but I look forward with much hopefulness to the possibility of obtaining the requisite means at some future time. The elaborate publication of the originals by Prof. Littrow, in the annals of the Vienna Observatory, will much facilitate this undertaking, and I have already completed the preliminary tables to a considerable extent. It is upon the observations of Piazzi that the reduction of Lalande's zones is based, and to them the astronomer of to-day is continually compelled to resort for his knowledge of a large proportion of the "landmarks of the heavens." No astronomical labor promises richer usefulness than this; and if the great work of reducing anew the observations of Bradley be carried out by a combination of the astronomers of Europe, as is now proposed, nothing seems more appropriate for the astronomers of the New World than to render a similar service by a new reduction of the Storia Celeste.

REDUCTION OF D'AGELET'S OBSERVATIONS.

Values of q, the correction to observed time of transit.

Values of q', the correction to observed declination.

REDUCTION

OF

D'AGELET'S OBSERVATIONS.

5

REDUCTION OF D'AGELET'S OBSERVATIONS.

			1783 F	EBRUARY	7 18		Ze	ero corr. = +	1′ 46″.
Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζφ	Refr.	q'
	•	h m s	h m ·s	m s	8	8	0 / //	, ,,	,
a Persei	2	5 17 16.0	3 11 23.36	_ 2 26, 17	- 4.84	+ 3.26	+ 49 2 44.8	_ 0 0.2	+ 5.
a Tauri	ĩ	6 31 39.5	4 25 58.58	2 26.23	1.21	- 1.49	+ 16 2 24.6	38.5	- i.
11 γ ¹ Orionis	5	7 0 16.2	54 40, 50	2 26, 27	1, 13	- 1.57	+ 16 2 24.6 + 15 4 7.2	40.0	_ î.
04 m Tauri	6	7 2 43.8	4 57 9, 16	2 26.28	1, 39	- 1.36	+ 18 19 9.2	35.3	- i.
)	7.8	7 8 35.3	5 3 1.00	2 26.28	4.30	+2.27			1
Capella .	1	8 45.3	3 10.97	2 26, 28	 4.3 0	+2.27	+ 45 43 48.3	0 3.2	+ 5.
•	7	11 7.1	5 33, 16	2 26, 29		+ 1.87	8 25 16.3	1 32.8	- 0.
Rigel		12 6.0	6 32.22	2 26, 29		+1.87	8 28 13.3	1 33.0	 0.
β Tauri	_ '	20 36.0	15 3,62	2 26.30	- 2.27	+0.73	+28234.5	0 22.3	+ 1.
24 γ Orionis	2	21 31.2	15 58, 97	2 26.30	0.45	-0.96	+6726.0	55.2	<u> </u>
25 χ Aurigæ	1	26 37.8	21 6.41	2 26, 31	- 2.62	+1.38	+ 31 59 24.9	0 18.1	+ 2.
11 a Leporis	1	31 5.2	25 34.54	2 26.31	+ 1.36	+ 1.54	— 17 58 57.0	2 18.8	- 0.
50 ζ Orionis	•	37 44.7	32 15.14	2 26, 31	0.15	+ 1.08	+ 2 4 52.2	1 13.7	- 0.
13 γ ¹ Leporis 58 α Orionis		43 18.3 7 51 22.2	37 49.65 5 45 54.87	2 26, 32 2 26, 33	+1.74 -0.54	+1.72 -1.23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 55.5 0 52.8	- 1. - 1.
68 Orionis		8 7 5.2	6 1 40.46	2 26.34	1,51	-1.23		33.2	-i
7η Geminorum .		9 41.1	4 16.78	2 26.35	1.74	-0.93	+ 19 48 10.4 + 22 31 57.2	29.6	- 0
10 "	7.8	13 33.9	8 10.22	2 26.35	1.84	- 0.74	+ 23 38 55.0	28.2	- 0.
13 μ		17 43.2	12 20.20	2 26, 35	1.74		+ 22 35 17.2	29, 6	— 0.
184 ξ LC	6.7	20 11.0	14 48.40	2 26, 36	1.83	- 0.76	+23 31 29.5	28,4	- 0.
Uranus		23 4.5	17 42.38	2 26.36	1.84	- 0,72	+ 23 42 55.9	28.1	- v.
		32 30.0	27 9.43	2 26.37	1.85	— 0.72	+ 23 44 56.5	28.0	— 0.
24 γ Geminorum .			00 10 70	0.00.00			+ 16 33 3.5	37.8	- 1.
26 "		37 36.3	32 16.57	2 26:38	1.35	— 1.40	+ 17 49 22.4	36. 1	- 1.
WIE		38 23.7	33 4.10	2 26.38	- 1.98	- 0.31	+ 25 18 27.4	0 26.1	+ º.
Sirius	ŀ	8 43 18.3	6 37 59.51	2 26.38	+ 1.24	+ 1.67	-16 25 30.7 +22 12 52.8	2 9.5	- o.
43 γ Cancri		10 38 12.8 46 25.0	8 33 12.88 41 26.43	2 26.50 2 26.50	- 1.71 1.21	- 0.99 - 1.48	+ 22 12 32.6 + 16 7 28.2	0 30.1 38.5	$\begin{bmatrix} - & 0. \\ - & 1. \end{bmatrix}$
16ζ "		51 22.0	46 24.24	2 26, 51	0, 50	-1.08	+ 16 7 28.2 + 6 44 44.5	54.1	_ i.
65 a ² ''		10 54 3.9	49 6.59	2 26.51	0. 94	— 2.41	+ 12 40 10.0	43.8	_ 2.
l κ Leonis	ŀ	11 19 22.0	9 14 28.84	2 26.54	2. 15	$+\ \tilde{0}.24$	¥ 27 4 55, 1	24.0	+ ĩ.
2ω "	ŀ	24 13.6	19 21, 24	2 26.55	0.74	- 3.55	9 58 29.8	48.4	- i.
5ξ "	ł	27 38.9	22 47.10	2 26.55	0.91	- 3.81	+ 12 13 56.6	44.6	— 2.
10 "		33 5.5	28 14.60	2 26, 55	0.57	1.32	÷ 7 47 0.6	52. 1	- 1.
14 0 "		36 56.7	32 6.43	2 26.55	0.81	4.26	10 51 12.0	46.9	— 1.
17 e "	ł	40 50, 1	36 0.47	2 26.56		— 0.46	+ 24 44 29.5	26.9	+ 0.
24 μ "		47 41.7	42 53.20	2 26.56	2.14	+0.21	+ 26 59 43.6	23.8	+ 1.
) 90 ~ ''	8.9	52 8.4	47 20.63	2 26.57	1.18	- 1.51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.2	- <u>1</u> .
60 K		11 56 1.4 12 2 45.8	51 14.26	2 26.57	0.67 1.35	-1.71 -1.40	+ 9 3 38.9	49, 9 36, 2	- 1. - 1.
Regulus		4 4.8	57 59.78 9 59 18.99	2 26.58 2 26.59	-0.97	- 1.40 - 1.79	+ 17 47 36.9 + 13 0 5.9	0 43, 4	Z 2.
18 Sextantis .		7 19.5	10 2 34.22	2 26.59	+0.54	+ 1.88	+ 13 0 3.9 - 7 21 37.0	1 29.6	_ õ.
22 "	l	14 1.3	9 17. 12	2 26.59	0.52	1.87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 28.3	-0.
• •	7.8	22 33.3	17 50, 52	2 26.60		+ 1.78	— 5 20 12.3	1 23.1	- ŏ.
	6.7	26 21.8	21 39, 65	2 26, 60		+ 0.22	+ 0 27 29.0	1 7.5	- 0.
47 ρ Leonis		28 37.1	23 55, 32	2 26, 61	— 0.77	— 3.95	+ 10 23 59.2	0 47.8	- 1.
2 φ'Hydræ	1	35 7.3	30 26.58	2 26, 61	+ 1.19	+ 1.64	— 15 45 2.0	2 6.0	- 0.
52 κ Leonis	1	42 5.3	37 25.73	3 26, 62		- 1.55	+ 15 18 56.9 + 11 40 12.0	0 39.9	— 1.
53 <i>l</i> "	~	45 3.3	40 24.22	2 26, 62	0.87	4.75	+ 11 40 12.0	0 45.6	- 2.
EQ J 11	7	51 38.8	47 0.80	2 26, 63		- 0.08	+ 1 52 37.5	1 4.2	<u> </u>
61 "	8	12 56 27.4 13 0 43.3	51 50.19	2 26, 63 2 26, 63		-0.61	+ 4 45 47.4 - 1 21 16.4	0 58.1 1 12.0	- 1. - 0.
ee	"	2 54.4	56 6.79 10 58 18.25	2 26.63	+0.10	-0.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 12.0	_ i.
69 "		9 42.0	11 5 6.97	2 26, 64		+ 0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 6.1	— 0.
73 n "		11 35.7	7 0.98	2 26, 64		- 1.61	14 28 7.7	0 41.2	— 2 .
77 σ "		17 0.3	12 26, 47	2 26, 65	0, 53	- 1.19	7 11 57.6	0 53, 4	— Ĩ.
79 "							+ 2 35 1.8	1 2.7	— 1.
84 τ "		23 48.4	19 15, 68	2 26, 66	0.30	— 0.45	+ 4 2 3.6	0 59.6	— 1.
89		30 16.2	25 44.55	2 26, 67	0.31	- 0.50 - 1.89	+ 4 14 55.8	59. 2	- 1.
1 ω Virginis		34 17.5	29 46.49	2 26.67	0.69		+ 9 18 57.4	0 49.7	- 1.
5β "	1	13 46 21.8	11 41 52.79	— 2 26.6 8	— 0.22	-0.28	+ 2 58 21.7	— 1 2. 0	— 1 .
	ľ		!		!				1

			1783 F	EBRUAR	¥ 19	-	. Z	ero corr. = +	1' 44". 9
. Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ φ	Refr.	q'
58 d Leonis	9. 10	h m s 12 52 32.0 56 48.1 12 59 0.0 13 5 47.2	h m s 10 51 50.71 56 7.51 58 19.77 11 5 8.08	m s - 2 27.68 2 27.69 2 27.70 2 27.70	- 0.34 + 0.10 - 0.22 0.08	- 0.61 + 0.86 - 0.30 + 0.06	+ 4 45 47.6 - 1 21 00.0 + 3 6 59.2 + 1 5 43.9 + 16 35 32.9	- 0 58.0 1 11.9 1 1.4 1 6.0 0 37.9	— 0.
73 π " - 77 σ " - 79 "	7 7 9	7 40.7 13 5.0 16 0.6 19 53.3 30 22.2 39 50.2 42 26.2 46 58.2 51 52.0 13 57 12.7 14 1 34.1 2 0.6 5 45.0 10 30.8 31 45.8 25 28.4 28 30.1 33 33.4 44 56.0 47 33.0 51 19.1 14 5.8	7 1.89 12 27.06 15 23.16 19 16.50 25 45.56 29 47.12 39 16.68 41 53.10 46 25.84 51 20.45 11 56 42.03 12 1 4.14 1 30.71 5 15.72 10 2.32 11 17.52 25 2.37 28 4.57 33 8.70 44 33.17 47 10.60 50 57.32 12 58 59.73	2 27.70 2 27.71 2 27.71 2 27.72 2 27.72 2 27.73 2 27.73 2 27.74 2 27.74 2 27.75 2 27.76 2 27.76 2 27.76 2 27.76 2 27.78 2 27.78 2 27.78 2 27.78 2 27.78 2 27.78 2 27.80 2 27.80 2 27.80	0.18 0.29 0.31 0.68 0.69 0.21 0.70 0.34 0.72 0.22 0.51 0.04 + 0.60 0.33 0.02 + 0.17 - 0.33 0.19 + 0.70	- 0.28 - 2.55 - 0.63 - 3.44 - 0.30 - 1.15 + 0.20 + 1.88 + 1.69 + 1.17 - 0.56 + 1.24 + 1.81	+ 14 28 9.1 + 7 11 58.4 + 2 35 0.2 + 4 2 4.2 + 4 14 57.5 + 9 18 59.4 + 9 25 56.9 + 2 58 23.0 + 9 37 56.4 + 4 50 56.4 + 4 50 56.4 + 4 50 52.6 + 0 33 13.2 + 6 59 52.6 + 0 31 40.2 - 8 15 31.0 - 4 38 31.8 - 4 38 53.5 - 2 22 53.8 + 4 33 50.9 - 2 38 53.5 - 9 34 50.2	41. 1 0 53. 2 1 2. 6 0 59. 5 59. 1 49. 6 0 49. 3 1 1. 9 0 48. 5 1 1. 6 0 53. 6 1 7. 2 1 32. 4 1 20. 8 1 9. 1 1 14. 5 0 58. 4 1 15. 2 1 37. 4	- 2. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 0. - 0.
51 θ " 67 a "	8	15 1 31.1 12 34.9 15 16 31.1	13 1 11.00 12 16.62 13 16 13.46	2 27.81 2 27.82 - 2 27.83	0. 33 0. 65 + 1. 43	+ 1.64 + 1.86 + 1.79	- 4 23 7.2 - 8 51 55.0 - 10 1 38.3	1 20.1 1 34.7 — 1 39.0	- 0.
	·		1783 F	EBBUAR	¥ 96		Ze	ro corr. = +	1′ 42″.5
58 a Orionis	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	7 20 8.2 27 38.2 33 9.2 38 27.5 42 50.8 46 29.3 49 20.7 51 20.0 7 57 41.2 8 1 4.7 15 7.2 20 36.3 23 56.5 24 20.5 28 46.8 31 33 49.3 37 25.7 42 7.5 43 49.3 37 25.7 42 63 46.8 31 50 37.3 52 46.2 8 53 38.0	5 46 8. 17 53 39. 40 5 59 11. 31 6 4 30. 48 8 54. 50 12 33. 60 15 25. 47 17 25. 10 23 48. 38 27 54. 11 33 13. 20 41 16. 20 46 46. 20 50 6. 95 50 31. 02 54 58. 05 6 58 11. 58 7 0 1. 38 3 35. 37 8 20. 94 9 53. 09 12 57. 59 16 52. 13 19 1. 38 7 19 53. 32	- 2 39.75 2 39.77 2 39.78 2 39.78 2 39.78 2 39.80 2 39.80 2 39.81 2 39.83 2 39.83 2 39.83 2 39.83 2 39.84 2 39.85 2 39.85 2 39.85 2 39.85 2 39.85 2 39.86 2 39.87 2 39.87	1. 76 1. 67 1. 69 1. 77 1. 70 1. 63 1. 80 1. 68 1. 22 - 1. 22 + 1. 21 - 1. 65 0. 93 1. 19 1. 73 2. 42 2. 42 1. 25 1. 68 1. 95 2. 21	- 0.99 - 0.98 - 0.92 - 1.05 - 0.72 - 1.47 - 1.47 - 1.47 - 1.48 - 1.48 - 1.48 - 1.48 - 1.48 - 1.48 - 1.48 - 1.726 - 1.72	+ 7 20 13.2 + 23 14 16.0 + 22 11 18.6 + 22 31 58.8 + 23 19 25.6 + 22 35 17.2 + 21 43 43.6 + 23 43 7.0 + 22 15 24.0 + 16 33 56.1 - 16 25 29.7 + 21 58 50.0 + 12 49 36.0 + 16 12 20.0 + 16 20 42.7 + 22 55 31.6 + 30 27 30.0 + 16 29 35.9 + 16 53 56.6 + 22 20 42.0 + 25 20 42.0 + 25 20 42.0 + 25 20 42.0 + 26 20 42.7 + 28 25 53 1.6 + 30 27 35.9 + 16 53 56.6 + 22 20 42.0 + 25 20 42.0 + 26 20 42.7 + 27 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0 + 28 20 42.0	37. 7 37. 2 29. 6 25. 8 31. 9	- 1. - 0. - 0. - 0. - 0. - 0. - 0. - 1. - 0. - 1. - 0. - 1. - 1. - 0. - 1. - 0. - 1. - 0. - 0. - 1. - 0. - 0.
T. II assumed as 56m. Hour assumed as 12; Transits over Ts. II abeen recorded over T g g assumed as 39 32';	not 13 nd III as s. I and 1	sumed to have	f Div. assumed	39° 13′ 9″; no l as 57; not 574 las recorded o n jected. 32° 17′ 11″; n	4. ver T. II;	reading j	T. II assumed as 18° :	20s.; not 30s 23";; not 18°	18".

Name	Mag.	T	App. sid. time	Clock corr.	# tan o	q	ζφ	Refr.	q'
		h m s	k m s	77h S	8	8	0 / //	, ,,	,
66 a "		8 57 10.2	7 23 26.10	— 2 39.88	- 2.59	+ 1.39	+ 32 19 26.5 + 27 20 25.3 + 5 45 14.5	+ 0 17.7	+ 2.
69 v · · · ·		8 58 59.0	25 15, 21	2 39, 88	2, 12	+ 0.33	+ 27 20 25.3	23, 5	+ 1.
Procyon	i	9 4 21.5	30 38, 59	2 39.89	0.41	_ 0.87	4 5 45 14.5	55.6	_ 1.
Companion .		5 0.9	31 18.10	2 39.89					
78 β Geminorum .		8 26.2	34 43, 96	2 39, 89	2, 23	+ 0.79	+ 28 30 44.6	22. 1 23. 6 23. 8	+ 1.
83 • "		16 36.1	42 55.20	2 39.90		+0.32	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23, 6	+ 1
ω,	8.9	16 50.7	43 9.84	2 39, 90	2.09	14 0.24	÷ 27 5 53.0	23.8	+ 1
1 Cancri	7	21 3.8	47 23, 63	2 39, 90	1.20	_ 1.48	i 16 20 14.6	38,0	_ 1
2ωι		24 9.7	50 30, 04	2 39.91	1, 99	- 0.11	+ 16 20 14.6 + 25 57 0.8 + 28 21 53.5 + 23 13 15.4	25. 2	
6 "		26 32.4	52 53, 13	2 39, 91	2. 21	+0.73	+282153.5	22. 3	,+ J.
$9\mu^{1}$ "		29 47.8	56 9,05	2 39, 92	1.76	-0.82	+ 23 13 15.4	2ਵ. 6	- 0
$10 \mu^3$ "		31 21.0	7 57 42.52	2 39.92	1.67	0.99	+ 22 10 38.6	29.9	_ O.
$14 \psi^2$ "		33 43, 3	8 0 5.22	2 39, 92	2, 01	0.07	+26744.9	24.9	+ 0
16 \(\xi \)		36 7.2	2 29.52	2 39, 92	1.35	_ 1.37	i 18 16 9.6	35, 2	J.
329 Mayer	8	38 6.7	4 29.35	2 39.92	1.36	- 1.37 - 3.17	+ 23 13 13.4 + 22 10 38.6 + 26 7 44.9 + 18 16 9.6 + 18 17 55.2 + 9 49 30.1	35, 2	- 1 - 1
17 β Cancri	_	9 41 6.5	8 7 29.64	2 39.93	0.71	_ 3.17	+ 9 49 33.8	48.5	
10 Leonis		11 1 52.0	9 28 28.41	2 40, 02	0.56	- 1.01	+ / 4/ 0.1	51.8	1
	9	4 44.9	31 21.77	2 40.03	0.67	-1.80	+ 9 14 4.0	49.4	- 1
140 "							+ 10 51 12.0	46.6	
· · ·	7	9 1.2	35 38 77	2 40.03	1.86	0.54	+ 24 26 31.3	27.1	- 0.
17ε "	•	9 36, 4	36 14.07	2 40, 03	1.89	- 0.46	+ 24 44 29.2 + 24 37 9.0	26.7	+ 0
	6.7	11 8.4	37 46.32	2 40.03	1.88	- 0.50	+ 24 37 9.0	26. 8	+ 0
	6	13 46, 5	40 24.85	2 40.04	1.96			25.7	+ 0
21 "	6	15 14.1	41 52.69	2 40.04	0, 93	-0.23 -1.93	+ 20 55 20.2 + 12 49 47.1 + 11 58 8.0	43. 4 44. 8	_ 2
	7.8	73 9.0	49 48.89	2 40, 05		4.27	i 11 58 8.0	44.8	_ 2
30 η "		31 32, 2	58 13, 47	2 40.06		_ 1.40	+ 17 47 39.8 + 13 0 11.4 + 14 24 2.4 + 17 11 17.3	36.0	- 1
Regulus		32 51.0	9 59 32.48	2 40.06	0.95	- 1.40 - 1.79	+ 13 0 11.4	43. 2	_ 2
34 Leonis	7	35 59.6	10 2 41.60	2 40.06		— 1.62	+ 14 24 2.4	41. 2	_ 2
438 Mayer	•	38 46.5	5 28.96	2 40.07	1.27	_ 1 42	+ 17 11 17.3	36, 8	- 1
35 Leonis	7	40 30, 4	7 13, 15	2 40.07	1, 87	- 0.51	+ 24 33 00.0 + 24 28 9.3 + 20 54 41.4 + 16 2 35.1		+ 0
36 ζ "	•	40 36.7	7 19. 47	2 40.07	1, 87	- 0.53	+ 24 28 9.3	37. 1	+ 0
41 y "		44 0.7	10 44.03	2 40,07	1.57	- 1.15	+ 20 54 41.4	31.8	- 0
42 "	7	46 10.1	12 53.78	2 40.07	1.18	- 1.49	+ 16 2 35.1	38.5	J
44 "	6.7	49 49.8	16 34.08	2 40.08	0.71	-3.27	+ 3 01 01.4	48.4	_ 1
	6.7	50 10.2	16 54.54	2 40.08	0.71	- 3.27	+ 9 51 16.4	48.4	- 1
49 ρ "	J	11 57 23, 6	24 9.13	2 40.09	0,76	— 3.95	+ 95116.4 + 10242.0	47.4	1
		12 3 13, 1	29 59.58	2 40.09	1.27	- 1.42	+ 17 13 55.0	36.9	- 1.
50	10	6 1,2	32 48.14	2 40.00		- 1.57	15 5 14.0	40.0	— J.
52 κ "	•	10 52, 1	37 39.84	2 40.10	1. 12	- 1.57 - 1.54	+ 15 19 0.9 + 11 40 19.1	39, 6	- 1
53 <i>l</i> "	l	13 49.7	40 37.93	2 40.11	0, 85		i 11 40 19.1	42 9	_ 2
54 "	4.5	19 45.2	46 34.40	2 40, 11	1.99	— 0.15	+ 25 52 42.9	25. 4	+ 0.
PO 3 44		25 13.4	52 3.50	2 40.12	0.34	- 0.61	4 45 53.4	0 57.9	1
60 = 14		28 21.2	55 11, 82	2 40.12	0.08	+ 0.11	1 9 9.4	1 5.8	— 0.
63 χ "		29 42.2	56 33, 04	2 40, 13	0, 61	- 1.50	i∔ 8 29 22.8 l	0 50.8	1.
64 "	6	31 53.9	10 58 45, 10	2 40, 13	1.87	- 0.53	i∔ 24 28 13.8 l	27.2	+ 0
68 8 "		38 25.2	11 5 17.47	2 40.13	1.63	- 1.05	+ 21 41 14.6	30, 8	- 0
73 s "		40 22, 3	7 14.88	2 40, 14	1.06	- 1.61	+ 14 28 10.0	0 41.0	_ 2
75 "	1	41 55.9	8 48.74	2 40, 14	0.23	- 0.31	+ 11 40 19.1 + 25 52 42.9 + 4 45 53.4 + 1 9 9.4 + 8 29 22.8 + 24 28 13.8 + 21 41 14.6 + 14 28 10.0 + 3 11 18.4 + 24 9 33.0	1 1.1	1
76 "	1	43 35, 5	10 28.61	2 40.14	0. 20	- 0.26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2.0	1
77 σ "		45 46.7	12 40, 17	2 40.14		- 1.19		0 53.1	
79 . "		48 30, 0	15 23.92	2 40.15		- 4.69	+ 11 42 17.0	45. 4	_ 2
83 "	8	51 34.0	18 28.42	2 40. 15		- 0.49	4 10 47.5	59. 1	1
84 τ "	"	52 34, 4	19 28.98	2 40. 15	0. 29	- 0.45	+ 4 2 9.1	59.5	- 1
88 "	7	56 21. 4	23 16, 60	2 40, 16	1.14	- 1.52	+ 15 33 9.3	39.4	_ 1
90 "	6	12 59 13.2	26 8.87	2 40.16		- 1.39	+ 15 33 9.3 + 17 58 23.5		1
1 / Virginia	U	13 3 3.7	30 0.00	2 40. 16	0.67	1.39	III 9 19 4.0 I	35. 9 49. 5	_ 1
1 ω Virginis	6	5 17.4	32 14.07	2 40.17		- 0.93	+ 22 31 59.4	29.7	_ 0
92 Leonis	U	9 52.2	36 49, 62	2 40, 17	0.68	- 2.08	+ 9 26 45.8	49.3	_ 1
2 ζ Virginis	l	12 33, 2	39 31.06	2 40.17	1.61		+ 21 24 3.0	31. 2	_ 0.
93 Leonis	İ	13 45.5	40 43.56	2 40.18	1.16	- 1.51	+ 15 45 49.1	0 39.1	_ 1
υ μ	[15 7.5	11 42 5.78	2 40.18		- 0.28	+ 15 45 49.1 + 2 58 26.6 + 3 6 11.2	1 1.9	i
) 5 β Virginis	1		12 1 16.92	2 40.10		- 0, 30	¥ 3 6 11.2	1 1.6	_ 1
10 r "	ļ	34 15.5 38 8.0	5 10.06	2 40.20		- 5.53	+ 11 27 6.0	0 45.9	_ 1.
1~'	1	13 43 12.2	12 10 15.09	-240.21	_ 0.03	+ 0.23	+ 0 24 28.7	+17.5	_ 0
13 n "	1	10 40 12.2	12 10 10,03	- 20 40.21	- 0.00	1 0.20	, , , , , , , , ,		, ,

Name	Mag.	, T	App. sid. time	Clock corr.	n tan δ	q	ζφ	Refr.	q'
15 η Virginis		h m s	h m s 12 11 30, 29	m s 2 40, 21	<i>s</i> 0, 04	+ 0.20	+ 0 31 40.2		_ "
	6 7	47 9.8	14 13, 33	2 40.21	0.47	 1.04	+62951.4	0 54.6	₁ — 1.
) 29 γ ''	6.7	13 54 29.1 14 6 15.2	21 33.83 33 21.86	2 40, 22 2 40, 24		-1.50 + 0.45	+ 15 49 52.8 - 0.16 6.5	0 39.1 1 9.1	- 1. - 0.
$32 d^2 \cdots$		10 15.8	37 23.15	2 40.24	- 0.64	— 1.6 0	+ 8.50 42.4	0 50.3	- 1.
37 " 43 δ " .	6	16 9.2 20 14.2	43 17.52 47 23.19	2 40, 25 2 40, 26	-0.30	-0.50 -0.56	+ 4 13 29.6 + 4 33 53.9	59.3 0 58.5	- 1. - 1.
44 κ "		24 0.2	51 9.81	2 40.26	+ 0.19	+ 1.24	2 38 52.7	1 15.4	— 0.
47 ε " 49 g "		26 59.7 32 1.3	54 9.70 12 59 12.22	2 40, 26 2 40, 27	-0.89	-4.05 + 1.81	+ 12 6 31.0 $- 9 34 44.8$	0 44.9 1 37.6	-2.
56 "	7.8	38 51.2	13 6 3, 25	2 40.28	0,67	+ 1.84	- 9 13 5.6	1 36.1	$ \overset{\circ}{0}$.
67 a "		49 12.3	16 26.05	2 40, 29	+0.72	+ 1.79	— 10 1 37.2	1 39.2	- 0.
70 "	6	53 18.6 56 7.0	20 23.05 23 21.88	2 40, 29 2 40, 30	-1.09 + 0.37	- 1.58 + 1.76	+ 14 55 18.5 - 5 8 15.8	0 40.6 1 22.5	- 1. - 0.
79 ζ "		14 59 5.2	26 20.57	2 40, 30	- 0.04	+0.20	+ 0 30 26.4	1 7.3	- 0.
81 " 82 m "	6.7	15 1 38.0 5 37.5	28 53,79 32 53,95	2 40, 30 2 40, 31	+0.49	+ 1.87	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 27.6 1 30.7	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
86 "		9 46.3	37 3.43	2 40.31	0.82	+ 1.69	— 11 20 3.1	1 44.4	— 0.
90 p "		15 18 57.1	13 46 15.74	- 2 40.32	+ 0.03	+ 0.52	- 0 26 25.1	— 1 9.7	- 0.
	!	-	1783	MARCH	1	· · 	Zei	ro corr. = +	1′ 44″
53 κ Orionis		7 2 23.9	5 40 10.63	_ 2 43, 80	+ 0.71	+ 1.80	9 45 52,0	_ 1 33,7	_ o.
$54 \chi^1$ ".		6 31.9	44 19, 31	2 43.80	- 1.51	-1.22 -1.23	+ 20 11 58.3	0 31.4	— 1.
58 a "		8 24.2 21 25.4	46 11.92 5 59 15.26	2 43.80 2 43.82	0.53	-1.23 -0.99	+ 7 20 13.6 $+$ 22 11 22.7	50.7 28.8	-1.
7 η Geminorum .		7 26 43.2	6 4 33, 93	- 2 43.82	- 1.70		$+$ $\frac{22}{22}$ $\frac{31}{57}$.2	- 0 28.4	- 0.
	!	1	178	3 MARCH	 [<u></u>	· Zer	ro corr. = +	1' 47".:
		1 7 00 10 0	1 22 24 22	0.53.50		1			Π.
87 a Tauri 94 τ "	1	5 29 10.6 5 34 54.9	4 26 24.78 4 32 10.03	- 2 52, 53 2 52, 54	- 1.18 - 1.70	- 1.49 - 0.93	+ 16 2 18.8 + 22 30 18.1	-036.3	$-\frac{1}{0}$
34 d Orionis	6	6 26 24.6	5 23 48, 19	2 52.61	+ 0.04	+ 0.53	— 0 29 9.2	1 5.5	- 0.
23 ζ Tauri 50 ζ Orionis		30 12.9 35 15.7	27 37.11 32 40.74	2 52.62 2 52.62	-1.57 +0.15	-1.15 + 1.08	+205823.5 -2456.7	0 29.9 1 9.3	- 0. - 0.
12 Leporis		38 31.0	35 56, 57	2 52.63	1.70	+ 1.72	— 22 28 34.0	2 44.9	_ i.
13 γ "		40 49.3 47 22.8	38 15, 25 44 49, 83	2 52.63	+1.70 + 1.56	+ 1.73	- 22 30 56.4 - 20 53 55.8	2 45.3	- 1.
58 a Orionis		48 53.6	46 20.88	2 52.64 2 52.64	-0.53	+ 1.48 - 1.23	$\begin{array}{c} -20 \ 53 \ 55.8 \\ +7 \ 20 \ 10.4 \\ +23 \ 14 \ 16.7 \end{array}$	2 31.6 0 49.8	- 1. - 1.
1 H Geminorum.		6 56 23.6	5 53 52, 11	2 52.65	1.76	-0.81	+ 23 14 16.7	27.0	- 0.
235 Mayer 7 n Geminorum .	7.8	7 1 54.3	5 59 23,72 6 4 42,79	2 52.66 2 52.67	1.65	-0.99 -0.93	+ 22 11 16.4 + 22 31 54.8	28.4 28.0	
13 μ ''		15 14.7	12 46, 31	2 52.68	1.69	-0.94	+ 22 35 13.2	28.0	- 0.
Uranus	. 8	19 49. 1 24 9. 7	17 21.46 21 42.77	2 52.68 2 52.69		-0.71	+ 23 43 2.2 + 17 32 2.4	26. 5 34. 4	- 0. 1.
258 Mayer	7	27 45.8	25 19.46	2· 52. 70					
24 γ Geminorum.		30 32.8	28 6.92	2 52.71	1.20	- 1.47	+ 16 20 21.6 + 16 32 58.8	35.7	- <u> </u> :
262 Mayer 27 ε Geminorum .		35 7.2 35 55.3	32 42.07 33 30.30	2 52.71	1.30 - 1.91	-1.40 -0.27	+ 17 49 17.7 + 25 18 26.8	34,0	+ 0.
Sirius		40 50.1	38 25.91	2 52.71	+1.19	+ 1.67	— 16 25 42.8	2 2.0	- 0.
38 ε Geminorum . 42 ω ¹ "		47 43.8 54 29.4	45 20.74 52 7.45	2 52.72 2 52.73	- 0.96 1.84	-1.72 -0.53	+ 13 25 10.4 + 24 29 13.3	0 40.3 25.6	-2.
43 5 "		7 56 32.0	54 10.39	2 52.73	1.54	- 1. 16	+ 20 51 8.2	30.1	— 0.
	67	8 1 11.0	58 50, 15 6 58 51, 75	2 52.74	1.19	1.47	+ 16 26 30.0	36.0 36.1	- 1.
45 a "	6.7	1 12.6 3 11.4	7 0 50.87	2 52.74 2 52.74	1.18 2.08	+0.27	+ 16 14 36.2 + 27 10 24.6 + 26 4 18.0	36. 1 22. 5	- 1. + 1.
45 <i>o</i> " 47 "							1 00 4 10 0		
	7.8	8 6 40.9	2 23. 12 7 4 20. 94	$ \begin{array}{r} 2 52.74 \\ - 2 52.74 \end{array} $	-1.98 -1.90	-0.08	+ 26 4 18.0 + 25 13 25.8	-024.8	+ 0.

(38)

			1783 MAI	RCH 6C•	ntinued		Zei	o corr. = +	1′ 47″.1
Name	Mag.	. T	App. sid. time	Clock corr.	n tan δ	q.	ζ-φ	Refr.	q'
54 λ Geminorum - 55 δ " 57 A " 66 a " 69 v " 71 γ² " 75 σ " 82 " 83 φ " 1 Cancri 2 ω' " 4 ω² " 8 " 13 ψ¹ " 16 ζ " 17 β " 19 λ " 20 d¹ " 20 d¹ " 20 d¹ " 21 φ¹ " 22 φ¹ " 31 θ " 31 θ "	9 7 6 7 6	h. m. s. 8 10 52. 9 12 24. 1 15 28. 7 25 56. 2 27 44. 6 30 10. 4 34 54. 6 36 31. 0 40 44. 52. 2 45 36. 1 48 9. 2 49 48. 0 52 55. 6 53 45. 5 55 17. 8 8 58 7. 4 9 2 11. 5 4 52. 3 9 51. 2 12 12. 1 12 42. 3 16 0. 6 18 18. 5 9 24 16. 5	A. m. s. 7 8 33.65 10 5.10 13 10.20 23 39.42 25 28.12 27 54.32 32 39.30 34 16.06 38 30.46 43 7.62 43 22.55 45 56.07 47 35.14 50 43.25 51 33.29 53 5.84 7 55 55.91 8 0 0.68 2 41.92 7 41.64 10 2.93 10 33.21 13 52.05 16 10.33 8 22 9.31	m. s. 2 52.75 2 52.75 2 52.75 2 52.75 2 52.77 2 52.78 2 52.78 2 52.78 2 52.80 2 52.80 2 52.81 2 52.81 2 52.81 2 52.81 2 52.82 2 52.82 2 52.82 2 52.83 2 52.83 2 52.84 2 52.84 2 52.85	\$. -1.22 1.66 1.92 2.56 2.09 2.84 2.28 1.88 1.77 2.06 1.51 1.19 1.97 1.94 2.18 2.02 1.34 0.70 1.82 1.85 1.39 2.20 1.34	- 0.26 + 1.39 + 1.38 + 1.38 + 1.08 - 0.41 - 0.73 + 0.24 - 1.17 - 0.20 + 0.21 - 0.73 - 1.69 + 0.02 - 1.37 - 0.58 - 0.56 - 0.58	+ 16 53 51.6 + 22 20 44.6 + 25 25 45.8 + 32 19 25.2 + 27 20 26.0 + 25 25.4 + 29 22 8.4 + 29 22 8.4 + 24 52 50.7 + 23 38 33.0 + 27 17 21.0 + 27 5 50.2 + 20 25 18.3 + 25 38 58.0 + 28 21 53.5 + 26 26 43.0 + 28 21 53.5 + 26 26 43.0 + 18 16 3.4 + 29 49 27.7 + 24 40 11.8 + 18 59 46.2 + 28 34 21.2 + 18 47 41.1	- 0 35. 3 26. 3 26. 6 21. 0 32. 9	- 1. - 0. + 0. + 1. + 1. + 1. + 1. - 1.
•			1783	MARCH	9		Zer	o corr. = +	1′ 46″.3
58 a Orionis	7.8 7.8 8 7.8	6 37 14.6 41 8.2 44 44.5 47 23.0 55 33.5 6 57 31.0 7 3 35.7 6 5.0 7 8 7.6	5 46 29.63 50 23.87 54 0.76 5 56 39.69 6 4 51.53 6 49.35 12 55.05 15 24.76 6 17 27.70	- 3 1.61 3 1.62 3 1.63 3 1.63 3 1.64 3 1.65 3 1.66 - 3 1.66	0.52 1.68 1.72 1.75 1.66 1.76 1.66 1.74 1.76	- 1.23 - 0.88 - 0.81 - 0.74 - 0.93 - 0.70 - 0.92 - 0.76 - 0.71	+ 7 20 10.4 + 22 51 0.8 + 23 14 14.4 + 23 37 15.6 + 22 31 56.8 + 23 46 36.8 + 22 35 15.4 + 23 31 25.6 + 23 43 7.0	- 0.50.6 28.0 27.5 27.0 28.4 26.8 28.3 27.2 - 0 26.9	- 1. - 0. - 0. 0. - 0. 0. 0. 0.
			1783	MARCH 1	17		Zei	ro corr. = +	1′ 47″
Capella	7.8 7 7.8	5 26 39. 1 35 9. 7 41 26. 5 43 26. 8 47 43. 0 5 52 18. 0 6 5 56. 3 13 25. 5 24 14. 4 26 11. 8 32 16. 5 34 47. 34 47. 34 47. 3 44 20. 1 6 45 18. 1	5 7 14.96 15 46.96 22 4.79 24 5.42 28 22.32 32 58.07 46 38.64 5 54 9.04 6 4 59.72 6 57.44 13 3.14 15 34.69 22 8.22 6 20 6.87	- 3 9.99 3 9.99 3 9.99 3 10.00 3 10.01 3 10.01 3 10.02 3 10.02 3 10.03 3 10.04 3 10.04 3 10.05 - 3.10.05	+ 0.60 - 2.16 + 1.53 0.03 0.09 + 0.15 - 0.52 1.76 1.66 1.76 1.64 - 1.64	+6.70 -0.92 -0.78 -0.72 -0.97	+ 45 43 51.0 - 8 28 16.6 + 28 23 2.7 - 20 55 58.0 - 0 29 5.7 - 1 21 55.4 - 2 4 53.7 + 7 20 9.2 + 23 14 14.0 + 23 46 33.0 + 23 24 31.3 + 23 24 31.3 + 23 24 58.5 + 22 18 5.0 + 22 15 12.0	- 0 3.2 1 31.1 0 21.9 2 37.9 1 8.1 1 10.2 1 12.0 0 51.8 28.1 29.0 27.4 28.9 27.5 29.3 - 0.29.4	_ 1.
a Name assur b & assumed a	ned as «, 18 24° 25	not β, Gemino '; not 24° 35'. 2"; not 26° 0'	rum.		1	e Div	. assumed as 61; n . assumed as 74.6; III assumed as 19s.	not 74.7.	

(39)

			1783	MARCH	18		Zei	ro corr. == +	1' 45". 3.
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζφ	Refr.	q
		h m s	h m s	m s	8		0 / 1/	, ,,	"
Capella		5 19 23.2	5 3 54.42	— 3 10.70		+2.27	+ 45 43 47.8	- 0 3.2	+ 5.5
Rigel		22 44.2	7 15.97	3 10,71	+0.60	+1.87	8 28 17.4	1 32.4	- 0.
112 3 Tauri		31 14.9	15 48.07	3 10.71		+ 0.73	+ 28 23 2.0	0 22.2	+ 1.4
		39 31.5	24 6.03	3 10.71	+ 0.03	+0.53	- 0 29 10.0	1 9.1	- 0.
34 δ Orionis		43 47.7	28 22, 93	3 10.71	0.10	+ 0.86	_ 1 21 57.4	1 11.2	- 0.
40 6						1.00		1 13.0	- 0.
50 ζ "		5 48 23,0	32 58.98	3 10.72	+ 0.15	+ 1.08	2 4 55.0		
58 a "		6 2 0.4	46 38, 62	3 10.72	-0.52	— 1.23	+ 7 20 10.4	0 52.6	- 1.
1 HGeminorum.		9 30, 5	5 54 9.95	3 10.73	1.72	- 0.81	+ 23 14 14.5	28.5	— 0.
7η "		20 19.7	6 5 0.93	3 10.73	1.66	- 0.93	+223156.2	29.4	0.
9" "	7	22 16, 8	6 58, 35	3 10.73	1.76	- 0.70	+ 23 46 31.4	27.9	0.
13 μ "	•	28 21.3	13 3,85	3 10,74	1.66	-0.91	+ 22 35 14.2	29.4	- 0.
	7	30 51.7	15 34.66	3 10,74	1.74	- 0.76	+ 23 31 26.6	28. 2	0.
184 ξ LC	'	32 59.3	17 42.61	3 10.74	1.76	-0.71	+ 23 42 57.8	27.9	0.
Uranus	- 0					-0.98	+ 22 15 11.3	29. 9	_ ŏ.
	7.8	39 33, 3	24 17.69	3 10.74	1.64				0.
	7	43 8.7	27 53, 68	3 10.74	1.76	-0.70	+ 23 44 56.2	27.9	
27 ε Geminorum.	· ·	49 2.4	33 48.35	3 10.75	- 1.89	— 0.30	+ 25 18 25.4	0 26.0	+ 0.
Sirius	[6 53 57.2	6 38 43.96	3 10.75	+ 1.18	+ 1.67	— 16 25 37.8	2 8.3	- 0.
2 51 Virginis.	ľ	11 51 44.7	11 37 20,38	3 10.90	<u> </u>	_ 2.08	+ 9 26 40.8	0 49.3	 - 1.
4 52	7	54 24.2	40 0.31	3 10, 90	0.67	-2.05	+ 9 25 50.0	0 46.9	- 1.
$5\dot{\beta}$ "	•	11 56 59.8	42 36, 34	3 10, 90	0, 21	-0.28	+ 2 58 22.5	1 1.9	1.
υρ	10	12 0 9.6	45 46.66	3 10.90	0.69	-2.97	+ 9 45 35.0	0 48.9	- i.
64 "	10				0.68	-2.57	+ 9 37 53.4	49.0	_ j.
0.4	_	1 32.2		3 10.90				58. 1	
492 Mayer	7	4 42.3	50 20, 10	3 10,90	0.33	-0.59	+ 4 40 24.0	0 57.8	
7 b Virginis	7	6 26.4	11 52 4.48	3 10.91	0.34	- 0.63	+ 4 50 50.0		
12 1	1	25 4.3	12 10 45, 44	3 10, 91	0.02	+0.23	+ 0 24 24.7	1 7.5	– 0.
15η "		26 19.5	12 0.85	3 10, 92	0.04	+0.20	+ 0 31 40.2	1 7.2	- 0.
17 "		12 29 2.4	12 14 44.20	— 3 10.92	- 0.46	- 1.04	+ 6 29 49.8	- 0 54.6	- 1.
Capella	7	5 7 36.7 10 57.2 32 0.8 50 12.8 5 57 43.3 6 8 32.8 16 34.7 21 18.5 31 21.7 37 15.5 6 42 10.2 9 39 41.9 41 13.4 9 46 33.6 10 2 56.2	5 3 55.64 7 16.69 28 23.75 46 38.74 5 54 10.47 6 5 1.75 13 4.97 17 49.55 27 54.40 33 49.17 6 38 44.68 9 36 45.54 38 17.29 9 43 38.37 10 0 3.66	- 3 11. 81 3 11. 81 3 11. 81 3 11. 81 3 11. 82 3 11. 82 3 11. 82 3 11. 82 3 11. 82 3 11. 82 3 11. 85 3 11. 85	- 4.10 + 0.60 + 0.10 - 0.52 1.72 1.66 1.76 - 1.89 + 1.18 - 1.84 1.83 - 0.92	+ 2. 27 + 1. 87 + 0. 86 - 1. 23 - 0. 93 - 0. 92 - 0. 72 - 0. 71 - 0. 46 - 0. 48 + 0. 20 - 1. 79	+ 45 43 50.3 - 8 28 21.2 - 1 22 0.0 + 7 20 7.0 + 23 14 13.2 + 22 31 54.8 + 22 35 13.5 + 23 42 53.2 + 23 44 55.8 - 16 25 43.4 + 24 44 26.1 + 24 37 8.6 + 23 6.6 + 26 13 0 2.6	- 0 3.2 1 32.4 2 1 11.2 5 28.5 5 29.4 5 27.9 2 25.9 2 26.6 8 23.8 - 0 43.8 0	+ 5. - 0. - 1. - 0. - 0. - 0. - 0. + 0. + 0. + 1. - 2.
			1783			1	_	ro corr. = +	
67 ρ Cancri		8 26 2.0	8 54 25.97	- 3 10.53		+ 0.86	+ 28 43 18.9	- 0 21.7	+ 1.
.91 "	8.9	32 1.1 25 12 1	9 0 26,06	3 10.53	1.15	— 1.49	+ 16 5 27.3	38.0	- 1. - 1.
0174		35 13.1	3 38, 59	3 10.53	1.13	- 1.50	+ 15 50 35.6	38.5	
0.2		38 3.1	6 29.06	3 10.53	1.13	-1.50	+ 15 48 45.8	38.6	- <u> </u> .
		41 39.8	10 6.35	3 10.53	1.35	- 1.34	+ 18 35 42.5	34.5	- 1.
402 Mayer	ļ	46 15.7	14 43.01	3 10.53		+ 0.14	+ 26 49 5.0	23.9	+ 1.
1 k Leonis		46 45.8	15 13.19	3 10.53		+0.24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.7	+ 1.
2ω "		51 38.2	20 6, 39	3 10,53	0.70	— 3, 55	+ 9 58 33.8	47.8	- 1.
4λ "		54 4.3	22 32, 89	3 10.53	1.77	- 0.68	+ 23 53 39.9	27.5	0.
	8.9	8 58 3.4	9 26 32,65	- 3 10,53	- 1.07	- 1.57	+ 15 1 00.0	— 0 39.7	— 1.
			· · ·			1			
a 'T. II, III assumed as 3 45.2s., respectively. b & assumed as 39° 25′ 1	•			4.5s. and 9.5s.,	, respective	ly. I	ssumed as 35° 2' 21" Div. assumed as 35; ssumed as 22° 2' 0";	not 33.	•

(40)

	Name	Mag.	T	App. sid. time	Clock corr.	n tan δ q	ζ-φ	Refr.	q'
	7 Leonis	8.9	h m s 8 58 46. 1 9 4 21. 2 8 13. 6 12 23. 2 15 5. 4 17 28. 1 21 14. 4	h m s 9 27 15.47 32 51.49 36 44.53 40 54.81 43 37.45 46 0.54 49 47.46	m s - 3 10.53 3 10.52 3 10.52 3 10.52 3 10.52 3 10.52 3 10.52	-1.09 -1.54 0.77 -4.26 1.84 -0.46 1.63 -0.96 2.04 +0.26 1.92 -0.18 0.96 -1.75	3 + 10 51 16.0 4 24 44 31.2 4 22 9 43.5 6 + 26 59 50.8 6 + 25 38 20.2 7 20.6	29.7 23.7 25.4 42.1	- 1.9 - 1.9 + 0.5 + 1.0 + 0.6 - 2.0
i) i)	431 Mayer	7	28 35.0 30 9.6 31 29.3 37 24.2 39 14.4 42 37.7	57 9.24 9 58 44.11 10 0 4.03 5 59.90 7 50.40 11 14.26	3 10, 52 3 10, 52 3 10, 52 3 10, 52 3 10, 52 3 10, 52	1. 21 — 1. 45 1. 28 — 1. 40 0. 92 — 1. 75 1. 24 — 1. 42 1. 82 — 0. 53 1. 53 — 1. 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49. 3 37. 1 35. 8 42. 8 36. 5 26. 9 31. 4 38. 2	- 1.8 - 1.8 - 2.6 - 1.8 - 0.8 - 1.8
	42 "	7.8	44 47.3 47 31.1 50 51.2 56 1.4 9 58 15.1	13 24. 22 16 8. 47 19 29. 12 24 40. 17 10 26 54. 24	3 10.52 3 10.52 3 10.52 3 10.52 - 3 10.52	1. 15 — 1. 49 0. 82 — 4. 76 0. 76 — 4. 26 0. 73 — 3. 96 — 0. 69 — 2. 94	$\begin{array}{c} + 11 & 39 & 51.4 \\ + 10 & 50 & 47.6 \\ + 10 & 24 & 7.7 \end{array}$	44.9 46.2 47.0 — 0 48.1	— 2.6 — 1.5 — 1.6 — 1.6
				1783	APRIL 9	3	Ze	ro corr. = + 1	45″. 0.
;) ()	17 β Cancri	9. 10 9 10. 11	7 25 7.4 25 51.2 30 8.0 30 11.4 34 40.7	8 9 7.57 9 51.49 14 8.99 14 12.40 18 42.44	- 3 9.69 3 9.69 3 9.69 3 9.69 3 9.69	- 0. 69 - 3. 19 0. 69 - 3. 06 1. 38 - 1. 31 1. 36 - 1. 33 1. 36 - 1. 33	+ 9 47 40.0 + 18 59 45.6 + 18 47	- 0 47.8 47.8 33.8	— 1. i — 1. i — 1. i
	36 c ¹ Cancri	8.9	44 31.2 45 30.1 48 30.5	28 34, 55 29 33, 61 32 34, 58	3 9.69 3 9.69 3 9.69	0. 73 — 3. 94 0. 73 — 3. 90 1. 50 — 1. 18	¥ 18 55 13 8	46.8 47.0 31.6 29.5 34.0	- 1. - 1. - 0. - 0. - 1.
•	372 Mayer 55 σ ² Cancri 60 α ¹ "	6.7	7 57 31.2 8 2 37.0 3 12.0 7 56.3 9 6.9	41 36, 68 46 43, 32 47 18, 44 52 3, 50 53 14, 29	3 9.68 3 9.68 3 9.68 3 9.68 3 9.68	1. 42 — 1. 26 2. 67 + 1. 35 0. 88 — 3. 35 2. 19 + 0. 86 1. 89 — 0. 35	2 + 33 42 29.4 2 + 12 25 32.8 6 + 28 43 17.9 2 + 25 16 21.8	43. 4 21. 6 25. 7	- 1. + 2.3 - 2.6 + 1.5 + 0.5
f)	78 Cancri 83 "	10 10 7.8 8.9 7	11 14.3 13 10.5 15 56.1 20 18.6 25 54.6	55 22.04 8 57 18.56 9 0 4.61 4 27.83 10 4.75	3 9.68 3 9.68 3 9.68 3 9.67 3 9.67	1. 90 0. 26 1. 29 1. 36 1. 32 1. 36 0. 81 5. 31 1. 35 1. 34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25. 5 35. 2 34. 8 45. 0 34. 4	+ 0.5 - 1.5 - 1.5 - 2.6 - 1.6
7) i)	2 ω Leonis	9 7 6.7	28 38.8 30 30.9 31 0.8 34 3.7 35 51.6	12 49, 41 14 41, 82 15 11, 80 18 15, 20 20 3, 40	3 9.67 3 9.67 3 9.67 3 9.67 3 9.67	1. 65	3 + 26 48 59.6 3 + 27 4 56.8 4 + 15 12 58.0 + 9 58 27.5	23.6 39.3 47.6	
	4 λ "	8 8	38 19.7 43 1.4 45 10.4 48 6.7 49 46.2	22 31, 91 27 14, 38 29 23, 73 32 20, 51 34 0, 28	3 9.67 3 9.67 3 9.67 3 9.67 3 9.66	1.77 — 0.68 1.09 — 1.54 1.09 — 1.55 2.02 + 0.14 2.40 + 1.30	+ 15 19 9.0 + 15 17 57.4 + 26 52 4.0 + 30 56 18.0	27. 5 39. 2 39. 2 23. 9 19. 1	$\begin{array}{c} 0.0 \\ - 1.9 \\ - 1.9 \\ + 1.0 \\ + 2.9 \\ - 0.0 \end{array}$
	17 ε " 22 G " 24 μ " 27 ν "	7.8	51 53.7 52 29.0 54 0.5 58 30.4 8 59 20.7 9 5 29.6	36 8, 13 36 43, 53 38 15, 27 42 45, 91 43 36, 35 49 46, 26	3 9.66 3 9.66 3 9.66 3 9.66 3 9.66	1.82 — 0.54 1.84 — 0.45 1.83 — 0.45 1.90 — 0.25 2.04 + 0.20 0.95 — 1.72	+ .24 44 30.2 + 24 37 11.1 + 25 23 26.7 + 26 59 50.2	26, 4 26, 5 25, 6	+ 0. + 0. + 0. + 1. - 2.
)	~	9	7 40.4 9 10 52.7	51 57.42 9 55 10.25	3 9.66 - 3 9.66	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 9 3 39.6	49. 2 - 0 32. 6	- 1. 1 - 1. 1

			1783 AP	RIL 9—Co	ntinued		Ze	ro corr. = + 1	45". 0
Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
431 Mayer 30 η Leonis	7	h m s 0 12 49.3 14 24.8	h m s 0 57 7.17 9 58 42.93	<i>m s</i> - 3 9.66 3 9.65	- 1.21 1.28	- 1.44 - 1.40	+ 16 47 5.2 + 17 47 36.9	- 0 37.0 35.6	— 1. — 1.
Regulus 33 Leonis 34 "	7,8	15 43, 5 17 52, 5 18 52, 4	10 0 1.84 2 11.19 3 11.25	3 9.65 3 9.65 3 9.65	0.92 1.20 1.03	- 1.79 - 1.45 - 1.62	+ 13 0 4.2 + 16 44 55.0 + 14 23 58.2	42.7 37.1 40.7	- 2. - 1. - 2.
438 Mayer 36 ζ Leonis 41 γ "	7.8	21 39.5 23 29.2 26 53.2	5 58, 81 7 48, 81 11 13, 37	3 9.65 3 9.65 3 9.65	1.23 1.82 1.53	- 1.42 - 0.53 - 1.16	+ 17 11 15.8 + 24 28 6.0 + 20 54 36.6	36.5 26.8 31.3	- 1. + 0. - 0.
44 "	8.9	32 42.1 33 1.6	17 3, 23 17 22, 78	3 9.65 3 9.65	0.70 0.70	- 3, 30 - 3, 29	+ 9 51 47.8 + 9 51 10.0 + 15 13 31.6	48.0 48.0	- 1.
46 i Leonis	8	39 27.9 42 29.1 44 57.8	23 50.14 26 51.84 29 20.95	3 9.65 3 9.64 3 9.64	1.09 0.69 1.33	- 1.56 - 2.93 - 1.36	1 0 44 50 2	39. 4 48. 1 34. 8	- 1 - 1 - 1
50 Leonis	10 7.8	46 5.8 48 6.5 50 57.1	30 29.14 32 30.17 35 21,24	3 9.64 3 9.64 3 9.64	1.24 1.45 1.41	- 1.42 - 1.23 - 1.28	+ 18 22 48.8 + 17 13 50.0 + 19 57 58.0 + 19 25 35.0 + 20 0 33.0	36. 4 32. 7 33. 4	- 1. - 1. - 1.
51 m Leonis 53 l " 48 "	7	53 31.7 9 56 42.6 10 1 41.2	37 56.26 41 7.68	3 9.64 3 9.64 3 9.64	1.46 0.83	- 1.23 - 4.75 + 0.06	+ 20 0 33.0 + 11 40 12.5 + 26 37 0.2	32.6 44.9 24.2	- 1 - 2 + 0
54 "	'	2 37.4 8 6.5	47 3, 45 52 33, 45	3 9.64 3 9.63	1.94 0.33	- 0. 14 - 0. 61	+ 25 52 46.4 + 4 45 48.8	25. 1 57. 2	$+ {0 \atop 1}$
66 " 68 d "	8	12 34.8 16 51.5 21 18.2	10 57 2.48 11 1 19.88 5 47.31	3 9.63 3 9.63 3 9.63	-0.60 + 0.01 - 1.59	-1.49 $+0.40$ -1.05	+ 8 29 19.4 - 0 10 19.4 + 21 41 13.9	0 50.3 1 8.0 0 30.4	- 1 - 0 - 0
74 ¢ "		24 18.6 26 28.0 28 39.2	8 48.21 10 57.96 13 9.52	3 9.63 3 9.63 3 9.63	+ 0.17 - 0.19 0.50	+1.20 -0.26 -1.19	- 2 28 43.6 + 2 49 23.3 + 7 11 58.6 + 11 42 14.9	1 13.7 1 1.1 0 52.6	
78 i " 80 " 84 7 "		31 22.5 33 22.2 35 27.3	15 53.26 17 53.29 19 58.73	3 9.63 3 9.63 3 9.63	0.83 0.35 0.28	- 4.69 - 0.68 - 0.46	+ 11 42 14.9 + 5 2 14.5 + 4 2 5.4	44.9 56.8 0 58.8	$-rac{2}{1}$
87 6 "	8	37 51.8 41 7.2	22 23, 63 25 39, 56	3 9.63 3 9.62	+0.13 -0.26	+1.01 -0.39	- 1 49 9.6 + 3 40 56.0	1 12.2 0 59.5	- 0 - 1
1 ω Virginis		45 56.7 52 45.2 55 25.3 10 57 59.8	30 29.85 37 19.47 40 0.01 11 42 34.93	3 9.62 3 9.61 3 9.61 — 3 9.61	0.65 0.66 1.57 — 0.21		+ 9 18 58.4 + 9 26 44.8 + 21 24 11.0 + 2 54 24.4	48.9 48.8 0 30.8 — 1 1.0	— 1. — 1. — 0. — 1.
			1783	APRIL	3		Zer	o corr. = + 1	ı' 41 ".
		h. m. s.	h. m. s.	m. s.	s.	s.	0 / //	, ,,	,
) 42 Leonis 44 "	8.9	9 25 6.6 28 46.3 29 7.2	10 13 23.04 17 3.34 17 24.30	- 3 9.65 3 9.65 3 9.65	- 1. 15 0. 69 0. 69	-1.49 -3.30 -3.29	+ 16 2 37.7 + 9 51 48.4 + 9 51 11.4	- 0 37.7 47.3 47.3	1. 1. 1.
45 " 46 " 48 "		31 8.6 35 31.7 38 22.7	19 26.03 23 49.85 26 41.32	3 9.65 3 9.65 3 9.65	0.77 1.09 0.56	- 4.26 - 1.56 - 1.37	+ 9 51 11.4 + 10 50 43.2 + 15 13 32.6 + 8 2 56.7	45. 6 38. 8 50. 4	- 1. - 1. - 1.
50 "	9 6.7 8.9	39 38. 2 42 10. 0 42 51. 2	27 57.03 30 29.25 31 10.56	3 9.64 3 9.64 3 9.64	0.57 1.24 1.23		+ 8 8 36.8 + 17 13 57.4 + 17 7 25.6	50. 1 35. 9 36. 1	- 1.
) 51 m "	7.8	47 1.3 49 35.2	35 21.34 37 55.66	3 9, 64 3 9, 64	1.41 1.46	- 1.28 - 1.23 - 1.54	+ 19 25 40.5 + 20 0 35.0 + 15 19 57.3	33. 0 32. 1 38. 6	- i. - i. - i.
53 1 "	7.8	51 25.6 52 46.0 56 35.0	39 46.36 41 6.98 44 56.61	3 9.64 3 9.64 3 9.64	1. 10 0. 83 2. 07	- 4.75 + 0.33	+ 11 40 15.5 + 27 20 3.1	44.3 23.0	-2.
54 " 58 d "	8	9 58 41.5 10 1 51.6 4 6.7	47 3.46 50 14.08 52 29.55	3 9.64 3 9.64 3 9.64	1. 94 1. 53 0. 33	- 0. 15 - 1. 17 - 0. 61	+ 25 52 45.6 $+ 20 45 34.4$ $+ 4 45 50.4$	31. 1 56. 4	+ 0. - 0. - 1.
63 χ "	8.9	7 13.7 10 8 38.7	55 37.06 10 57 2.29	3 9.64 - 3 9.64	- 0. 61 - 0. 60	— 1.56 — 1.49	+ 8 43 50.8 + 8 29 20.7	— 0 49.2 — 0 49.6	— 1. — 1.
Div. assumed as 41, 1 Name assumed as 93 The mean a deduced	Leonis, n	ot 94 β.	rould power with t	c & assu d Div. s	med as 32°	48' 28", no 31; not 34.	st 32º 47' 58".	this stay To	TenA
harmonize with T the a resulting fro	. III and m the me	each other on the	supposition that ransits differs 3s.6	the thread-inte	erval for 44	∘ 5⁄ Z.D. is	26s.5, (its true amor observations. T.	ount being 23	8.1,) a

⁽⁴²⁾

			1783 AF	BIL 3—Co	ntinuod		Ze	ro corr. = +	1′ 41″.1
Name	Mag.	т	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
CW T		k. m. s.	h. m. s.	m. s.	s. 1 00	s.	0 / "	, ,,	,,,
67 Leonis)68 8 "	i	10 11 58.5 17 21.6	11 0 22.64 5 46.62	- 3 9.63 3 9.63	- 1.93 1.59	- 0.16 - 1.05	+ 25 48 23.3 + 21 41 14.2	- 0 24.8 30.0	+ 0.7 - 0.0
	9	18 50.5	7 15.76	3 9.63	1.16		+ 16 16 25.0	0 37.4	— 1.
76 "		22 32.7	10 58.57	3 9.63	0, 20	- 0.26	+ 2 49 24.2	1 0.3	- i.
77 σ "	1	24 43.5	13 9.73	3 9.63	0.50	- 1.19	+ 7 11 57.2	0 51.8	- 1.
78		27 26.6	15 53.28	3 9.63	0.83	- 4.69	+ 11 42 14.9	44.3	 2.
83 "	8.9	30 31.1	18 58.28	3 9.63	0.29	- 0.49	+ 4 10 45.0	57.7	
84 τ "	7.8	31 31.0 36 54.8	19 58.44 25 23.03	3 9.63 3 9.63	0.28	- 0.46 - 0.55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58.0 57.1	_ i:
89 "	1.0	37 59.2	26 27.61	3 9.63	0.30	-0.50	+ 4 14 54.2	0 57.6	Ξ i.
91 v "		40 33, 1	29 1.93	3 9.62	0.02		+ 0 21 37.5	1 6.0	- ô.
92 "	1	44 13.6	32 43.03	3 9.62	1.66	- 0.93	+ 22 32 2.8	0 29,0	— 0.
2 51 Virginis	1 .	48 48.7	37 18,88	3 9.62	0.67	 2.08	+ 9 26 45.8	48. 1	— 1.
		52 11.6	40 42.34	3 9.62	1.11		+ 15 28 9.2	38.5	— 1.
94 β Leonis		52 42.1	41 12.92	3 9.62	1.13	- 1.50	+ 15 45 51.1	0 38.1	- 1.
$5 \beta \text{ Virginis}$.	9. 10	57 14.6	45 46, 17	3 9,62	0.69	_ 2.83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.3 0 47.5	- 1. - 1.
6 A Virginis	0.10	10 58 37, 1	47 8.90	3 9.62	0.68	- 2.57	+ 9 45 55.0 $+$ 9 37 55.2	47.8	二 i:
492 Mayer	6.7	11 1 47.0	50 19, 32	3 9.62	0.33	-0.59	+ 4 40 29.2	56.7	— î.
7 b Virginis		3 30.5	52 3, 10	3 9.61	0.34			56. 4	— 1.
90 "	1	8 51.1	11 57 24.58	3 9.61	0.70	- 3.44	+ 4 50 54.2 + 9 55 14.7	0 47.3	- 1.
10 r "		13 12.5	12 1 46.70	3 9.61	0.22	-0.29	+ 3 6 7.2	1 0.0	-].
10. "	1	13 38,8 17 5.0	2 13.07	3 9.61 3 9.61	0.49		+ 6 59 52.0	0 52.3	- 1. - 1.
12 6	8	17 5.0 17 6.3	5 39.83 5 41.13	3 9.61	0.81	- 5.56 - 4.77	+ 11 27 4.0 $+ 11 14 53.0$	44.8 0 45.2	_ i:
13 * "	"	22 9.0	10 44.66	3 9.61	0.03	+ 0.23	+ 0 24 27.7	1 6.0	- ö.
15 η "		23 24.2	12 0.06	3 9.61	0.04		+ 0 31 38.8	1 5.7	— 0.
17 "	6	26 7.2	14 43.54	3 9.61	0.46	- 1.04	+ 6 29 50.4	0 53.4	— 1.
	9. 10	31 12.8	19 49.96	3 9.61	0.94	- 1.76	+ 13 17 0.4	42.0	— 2.
90 44	8.9	33 26.1	22 3.63	3 9.60	1.13	-1.50	+ 15 49 51.8	38.1	- 1.
20 "	7	36 43.2 42 23.1	25 21.27 31 2.10	3 9.60 3 9.60	-0.81 -0.02	- 5.76	+ 11 28 32.6 + 0 19 43.0	0 44.8 1 6.1	- 1. - 0.
20 ~ "		45 12, 2	33 51.66		+0.02	+0.25 +0.45	- 0 16 7.8	1 7.5	二 ö.
29 γ "		49 13.2	37 53, 32	3 9.60	0.62	- 1.60	$+\ 8\ 50\ 41.2$	0 49.1	_ i.
34 "		50 51.9	39 32.29	3 9.60	0.93	- 1.78	+ 13 7 42.5	42.5	- 2.
36 "		52 35.1	41 15.77	3 9.60	1.09	- 1.55	+ 15 17 24.2	38.9	1.
37 " 38 "		55 6.1	43 47.18	3 9.60	- 0.30	- 0.50	+ 4 13 29.4	0 57.7	- 1.
		56 34.5	45 15.82 47 52.95	3 9.60 3 9.60	+ 0.17	+ 0.16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 12.9	- 0. - 1.
44 44		11 59 11.2 12 2 57.6	51 39.97	3 9.60 3 9.60	-0.32 +0.18	-0.56 + 1.24	0.00 55 4	0 57.1 1 13.5	
44 k		5 56.6	12 57 39, 46	3 9.59	_ 0.86	4.04	-23655.4 $+12634.5$	0 43.8	- 2.
67 a "	1	28 9.6	13 16 56.11	3 9.59	+ 0.71	+ 1.79	— 10 1 41.2	1 36.9	— 0.
70 "		32 16, 2	21 3.39	3 9.59	- 1.07	 1.58	+ 14 55 20.0	0 39.5	- 1.
795 "		38 2.2	26 50.34	3 9.59	- 0.04	+0.20	+ 0 30 19.7	1 5.8	- 0.
81 " 82 m		40 35.2 44 34.7	29 23.76 33 23.92	3 9.58 3 9.58	+ 0.48 0.53	+ 1.87 + 1.88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25. 6 28. 2	$\begin{bmatrix} -0. \\ -0. \end{bmatrix}$
549 Mayer	6.7	46 58.0	35 47.61	3 9.58	0.33	+ 1.66	— 4 24 31.0	18.4	<u> </u>
20 p Virginis		12 57 54.0	46 45.41	3 9.58	0.03	+ 0.52	- 0 26 27.6	8. 1	- ŏ.
	7	13 2 53.2	51 45.43	3 9.58	0. 17	1.20	— 2 29 48.6	13. 2	 0.
94 "		9 4.8	57. 58. 05	3 9.57	0.55	1 - 1.88	 7 51 22.0	29. 2	<u></u> − 0.
95 "	1	9 31.7	13 58 25.02	3 9.57	0.58	+ 1.88 + 1.83	- 8 16 37.5	30.5	<u>⊸</u> ٥٠
96 " 97 "		11 44.7 15 16.1	14 0 38.38 4 10.33	3 9.57 3 9.57	0. 65 0. 62	1.83	- 9 18 5.0 - 8 52 38.1	34. 3 33. 2	- 0. - 0.
98 κ "	1	15 34.9	4 29.21	3 9.57	0.65	+ 1.86	- 9 15 38.9	34. 5	二 ö.
564 Mayer	7	17 18.9	6 13.49	3 9.57	0.35	+ 1.83 + 1.73	- 4 56 25.5	20.4	_ ŏ.
99 ι Virginis		18 53.8	7 48.65	3 9.57	0.35	+1.73 + 1.62	— 4 58 0.3	20.6	— 0.
100 λ "		21 37.2	10 32.50	3 9.57	0.88	+ 1.62	— 12 21 54.8	46.7	— 0.
103 vs "	1	25 3.5	13 59.36	3 9.57	0.07	+0.73 + 1.76	- 0 59 59.9	9.7	— 0.
104 " 105 ø "	1	30 15.0 31 16.6	19 11.71 20 13.48	3 9.57 3 9.57	0.36	1.70	- 5 8 30.4 - 1 15 30.0	21.0 1 10.4	- 0. - 0.
27 y Bootis		37 36.3	26 34.22	3 9.56	+0.08 -3.27	+0.83 + 1.28	+ 39 14 0.0	0 10.4	+ 3.
,	7.8	41 6.5	30 5.00	3 9.56	2. 16	1 0.75	+ 28 24 40.2	22.0	+ 1.
	6	13 44 35.6	14 33 34.67	- 3 9.56	- 1.03	<u> </u>	+ 14 27 13.0	— 0 40.5	<u> </u>
	<u> </u>	l	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Div. assumed as 1 59	; not 15 ?	7	assumed as 39	0° 24′; not 39° !	25′.	g T. I	I assumed as 13m.	16a.; not 13m	ı. 6s.
		20/	s 🎖 assumed as 48				ssumed as 53° 59′ 3		KOJ 480

		1783 APRI	L 3—Conti	uned		Ze	ro corr. = + 1'	41".1
Mag.	т	App. sid. time	Clock corr.	n tan ô	q	ζ — φ	Refr.	q'
4.5 7	A. m. s. 13 45 2.0 49 29.7 50 38.9 53 3.2 56 45.6 13 59 8.6 14 1 17.6	h. m. s. 14 34 1.14 38 29.57 39 38.96 42 3.66 45 46.66 48 10.05 50 19.40	78. 8. 	0.78 0.74	+ 1.71 + 1.75	0 / " + 14 38 44.1 + 2 48 7.2 + 2 56 25.8 - 15 7 39.4 - 11 0 21.4 - 10 31 35.9 - 10 15 55.9 - 10 3 23.6	1 41.3 — 39.4 — 38.3 —	- 1.9 - 1.9 - 1.9 - 0.9 - 0.9 - 0.9
7.8 8.9 5.6 6.7 4.5 6.7 5.6 6.8 8.9 6.7 7.8	4 36, 8 7 51, 5 11 34, 2 18 5, 2 22 49, 5 25 52, 4 31 53, 8 34 33, 7 36 11, 0 39 48, 5 45 16, 6 48 55, 8 53 53, 7 56 5, 9 14 59 59, 4 15 2 37, 5 8 6, 4 11 22, 5	53 39. 15 14 56 54. 38 15 0 37. 69 7 9. 76 11 54. 84 14 58. 24 21 0. 63 23 40. 97 25 24. 55 26 18. 70 28 56. 64 34 25. 64 34 25. 64 43 4. 16 45 16. 72 49 10. 86 51 49. 39 15 57 19. 19 16 0 35. 83	9.55 9.555 9.555 9.555 9.555 9.555 9.555 9.555 9.555 9.554 9.554 9.554 9.554 9.554 9.554 9.554	- 0.82 1.40 1.76 1.57 1.93 2.81 3.29 1.21 1.20 1.33 3.05 1.30 1.40 2.08 1.33 0.99 -	4.99 -1.30 -0.71 1.09 -0.19 +1.33 +1.29 -1.45 -1.35 +1.27 -1.39 -1.59 -1.50 -1.30 +0.37 -1.35 -1.67	- 7 29 8.1 + 11 34 18.0 + 19 15 59.4 + 23 46 20.8 + 21 21 2.2 + 25 43 18.2 + 35 4 11.0 + 39 26 56.4 + 16 44 64 7.0 + 16 44 0.0 + 16 42 50.0 + 37 19 1.1 + 17 55 59.8 + 14 42 51.0 + 15 55 59.0 + 19 14 35.3 + 27 29 19.0 + 18 23 9.8 + 13 54 20.6	1 28. 4	- 0 2 1. 0 0 3 3 1 1 1 1 1 1
7	15 17 46.4	16 7 0.78	— 3 9,53 APBIL 4	— 2.06 -	+ 0.28	+ 27 12 41.0		- 1. ·
	4 24 22, 6 25 16, 9 32 39, 7 36 28, 1	5 15 46, 19 16 40, 54 24 4, 65 27 53, 67	- 3 9.10 3 9.09 3 9.09 3 9.09 3 9.09	- 0.43 - + 0.03 -	0, 96 0, 53 -	-0295.2 +205828.8	0 2J.8 + 0 53.9 - 1 7.8 - 0 30.9 -	0.1 1.4 1.5 0.6
	41 31.2 4 55 8.3 5 13 27.3 21 29.2 36 47.3 42 10.2	32 57. 60 5 46 36. 94 6 4 58. 95 13 2. 17 28 22. 78 33 46. 56	3 9.09 3 9.08 3 9.08 3 9.07 3 9.07	- 0.52 1.66 1.67 1.19 - 1.89	- 1.23 - 0.93 - 0.92 - 1.47 - 0.30	- 2 4 53.3 + 7 20 13.4 + 22 31 58.7 + 22 35 22.2 + 16 33 2.1 + 25 18 30.4	1 11.7 — 0 51.5 — 28.9 — 28.8 — 36.9 — 0 25.5 +	0.7 0.7 1.6 0.3 0.3
	6 2 46.7 18 39.1 39 21.6 43 26.2 44 59.2 51 35.8	6 54 26. 46 7 10 21. 47 31 7. 37 35 12. 64 36 45. 89 43 23. 58	3 9.07 3 9.06 3 9.05 3 9.05 3 9.05 3 9.05	1. 52 - 1. 64 - 0. 40 - 2. 17 - 1. 38 - 2. 06 - 1	- 1. 16 - 0. 96 - 0. 87 - 0. 79 - 1. 31 - 0. 32	+ 20 51 14.2 + 22 20 46.6 + 5 45 11.8 + 28 30 47.4 + 19 0 21.8 + 27 17 26.5	0 31.1 29.1 54.6 21.7 33.6 23.2	0. 5 0. 6 0. 4 1. 5 1. 5 1. 1
	59 9.9 6 59 44.5 7 4 21.6 6 21.2 7 56.2 11 1.1	50 58, 92 51 33, 61 56 11, 47 58 11, 40 7 59 46, 66 8 2 52, 07 4 57, 61	3 9.05 3 9.05 3 9.05 3 9.05 3 9.04 3 9.04 3 9.04	1. 95 - 1. 29 - 0. 97 - 1. 63 - 1. 01 - 2. 33 -	- 0.11 - 1.40 - 1.69 - 0.99	± 25 57 1.5 l	24.8 + 35.2 - 41.2 - 29.4 - 40.5 - 19.7 +	0.7 1.5 2.0 0.5 2.0 2.0
	4.5 7 7.8895.67 6.7 6.7 6.7 6.7 6.7 6.7 7.8	** ** ** ** ** ** ** ** ** ** ** ** **	A. m. s. A. m. s. A. m. s. A. m. s. 13 45 2.0 14 34 1.14 49 29.7 38 29.57 7 50 38.9 39 38.96 53 3.2 42 3.66 56 45.6 45 46.66 13 59 8.6 48 10.05 7.8 4 36.8 53 39.15 8.9 7 51.5 14 56 54.38 5.6 11 34.2 7 9.76 6.7 18 5.2 7 9.76 6.7 22 49.5 11 54.84 6.7 31 53.8 21 0.63 6.7 34 33.7 23 40.97 5.6 37 11.0 26 18.70 39 48.5 28 56.64 4 45 16.6 34 25.64 4 8 55.8 38 5.44 8.9 53 53.7 43 4.16 6 14 59 59.4 49 10.86 8 6 5.9 45 16.72 6 14 59 59.4 49 10.86 15 2 37.5 6 6 14 59 59.4 16 0 35.83 7 15 46.4 8 6.4 15 57 19.19 16 0 35.83	A. m. s. h. m. s. m. s. 4.5 49 29.7 38 29.57 3 9.56 7 50 38.9 39 38.96 3 9.56 56 45.6 45 46.66 3 9.56 13 59 8.6 48 10.05 3 9.56 13 59 8.6 48 10.05 3 9.56 7.8 4 36.8 53 39.15 3 9.55 8.9 7 51.5 14 56 54.38 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 18 5.2 7 9.76 3 9.55 6.7 31 53.8 21 0.63 3 9.55 6.7 34 33.7 23 40.97 3 9.55 5.6 36 17.0 25 24.55 3 9.55 6.7 34 35.7 34 35.7 3 9.54 45 16.6 34 25.44 3 9.54	A. m. s. A. m. s. A. m. s. m. s. 3 9.56 -1.04	A. m. s. A. m. s. A. m. s. m. s. 3 9.56 -1.04 -1.60	A. m. s. A. m. s. A. m. s. m. s. s. s. s. o. //	

(44)

	Name	Mag.	T.	App. sid. time	Clock corr.	n tan ô	g	ζφ	Refr.	q'
_			h m s	h m s	m s		s	0 / "	, ,,	"
	331 Mayer	7	7 17 7.0	8 8 58.96	- 3 9.04	- 0.67	- 2.21	+ 9 30 29.5	- 0 48.1	- 1.
	19 λ Cancri.	Ì	18 56.7	10 48.97	3 9.04	1.84	- 0.56	+ 24 40 16.8	26. 3 33. 7	$+ 0. \\ - 1.$
)	20 d ¹ "	i	22 14.9	14 7.71 16 25.79	3 9.04 3 9.04	1.38 2.18	-1.31 +0.80	+ 18 59 48.6 + 28 34 21.2	21.7	+ 1.
	$22 \phi^1$ " 23 ϕ^3 "	1	24 32.6 24 57.0	16 50.26	3 9.04	2.09	¥ 0.42		22.8	∓ î.
	28 v ³ "		27 1.6	18 55.20	3 9.04	1.85	0.42	+ 24 49 52.0	26. 1	 + 0.
	341 Mayer		28 2.6	19 56.37	3 9.04	1.87	- 0.39	+ 25 1 57.0	25.9	 + 0.
	31 θ Cancri		30 31.4	22 25.58	3 9.04	1.36	- 1.32	+ 18 47 47.1	33. 9	- 1.
	36 c ¹ "		36 38.7	28 33, 89	3 9.04	0.73	- 3.94	+ 10 22 56.2 + 29 11 44.4	46.6	- 1: + 1:
	40 0	7.8	43 39.8	35 36, 14 36 43, 01	3 9.03 3 9.03	2. 24 2. 26	+ 1.05 + 1.10	+ 29 31 6.5	21.0 20.6	‡ i:
	48 · Cancri	7.8	44 46.5 47 32.0	39 28.96	3 9.03	2.75	I 1.37	¥ 34 29 13.0	15. 0	∔ 2.
	51 σ¹ "	1.0	50 22.7	42 20. 13	3 9.03	2.62	+ 1.37 + 1.40	+ 33 15 3.4	16. 4	 ∔ 2.
		7	53 15.2	45 13.10	3 9.03	2.04	十 0.21	+ 27 0 50.0	23. 5	+ 1.
)		7	54 40.8	46 38.94	3 9.03	1.89	— 0.30	+ 25 14 48.4	25. 6	+ 0.
	66 of "	7	7 59 16.6	51 15.50	3 9.03 3 9.03	2.61 1.89	+ 1.40 - 0.30	+ 33 3 53.0 + 25 16 24.0	16. 6 25. 6	+ 2. + 0.
	00 /		8 1 14.6 6 8.0	53 13.82 58 8.02	3 9.03	2.36	+1.26	+ 33 3 53.0 + 25 16 24.0 + 30 29 30.4	19.5	+ 2.
,	72 7	6.7	7 11.0	8 59 11.19	3 9.02	2.08	+0.39	+ 27 29 38.6	22.9	+ ĩ.
	80 "	"	10 56.7	9 2 57.51	3 9.02	1.37	— 1.32	+ 27 29 38.6 + 18 54 10.8	33.8	— 1.
	82 "	1	14 25.8	6 27.18	3 9.02	1.13	- 1.50	+ 15 48 45.9	38.0	- <u>1</u> .
)	83 "	70	18 2.0 20 31.8	10 3.97 12 34.18	3 9.02 3 9.02	1.35 1.26	- 1.34 - 1.41	+ 18 35 47.2 + 17 29 36.0	34. 2 35. 7	- 1. - 1.
	400 Marror	7.8	20 31.8 22 38.1	12 34.16	3 9.02	2.02	+ 0.13	+ 26 49 0.0	23. 8	+ i
	402 Mayer 1 κ Leonis		23 8.9	15 11.71	3 9.02	2, 04	+ 0.24	+ 27 5 1.6	23.4	+ 1.
	I K Dooms	7.8	26 11.1	18 14.41	3 9.02	1.09	- 1.56	+ 15 13 3.0	39.0	— 1.
	3 "	6	28 4.1	20 7.72	3 9.02	0.64	- 1.72	+ 9 6 35.3	48.8	— 1.
	4λ "		30 27.5	22 31.51	3 9.02	1.77	- 0.68	23 53 39.9	27.3	0.
	7 "	1	35 8.7	27 13, 48 32 20, 62	3 9.02 3 9.01	1. 09 2. 02	-1.54 +0.14	+ 15 19 15.0 + 26 52 8.0	38. 9 23. 7	- 1: + 1:
	13 " · · · · · · · · · · · · · · · · · ·	1	40 15.0 43 0.7	35 6.77	3 9.01	1.07	T 1.57	+ 26 52 8.0 + 14 59 14.6	39. 4	Γi.
	17 ε "		44 37.1	36 43.43	3 9.01	1.84	- 0.45	+ 24 44 34.7	26. 2	+ 0.
		7.8	46 8.2	38 14.78	3 9.01	1.83	- 0.50	+ 24 37 14.0	26.4	+ O.
	20 "		48 47.4	40 54.42	3 9.01	1.63	- 0.99	+ 22 9 44.5 + 26 59 51.5	29. 4 23. 6	- 0. + 1.
	24 μ "	0.10	9 51 28.4 9 2 51.2	43 35, 86 55 0, 53	3 9.01 3 9.01	2. 04 0. 65	+0.20 -1.82		48. 5	二 ii
	431 Mayer	9, 10	4 57.0	57 6.67	3 9.01	1.21	1 45	+ 9 15 15.0 + 16 47 6.2 + 17 47 40.1	36, 7	_ î.
	30 n Leonis		6 32.6	58 42.53	3 9.01	1.28	- 1.40 - 1.79 - 1.79	17 47 40.1	35.3	— 1 .
)	-	8.9	7 41.3	9 59 51.42	3 9.00	0.92	— 1.79	1 1		1
	Regulus .		7 51.5	10 0 1.65	3 9,00	0.92	— 1.79	+ 13 0 8.4	42.5	$-\frac{2}{2}$
	34 Leonis	7	11 0.0	3 10.67 7 42.31	3 9.00 3 9.00	1.03 1.83	-1.62 -0.51	+ 14 24 0.7	40. 3 26. 5	工 8
	35 " 36 ζ "	1	15 30.9 15 36.8	7 48.23	3 9.00	1.82	-0.51	+ 24 33 10.0 + 24 28 10.3	26.7	+ 0. + 0.
١	41 γ " · ·		19 0.8	11 12.79	3 9.00	1.53	- 1.15	+ 20 54 40.7	31.2	— 0.
•	42 "		21 10.1	13 22.34	3 9.00	1.15	- 1.49	+ 16 2 38.2	37.9	- 1.
	43 "	7	22 38.8	14 51.38	3 9.00	0, 53	- 1.28 - 2.28	+ 7 37 20.0 + 9 51 54.2	51.4	
	44 "	6~	9 24 49.4	10 17 2.34 11 50 18.72	3 8.99 3 8.99	0,70	- 3.30 - 0.59	+ 9 51 54.2 + 4 40 29.4	47.6 57.2	1
)	492 Mayer 90 Virginis .	6.7	10 57 50.5 11 4 54.9	11 50 16.72	3 8.96	0.70		+ 9 55 14.7	47.6 0 52.3 1 0.3	_ î
,	on Amanin .	9, 10		12 0 9.93	3 8.96	0.51	- 1.20	+ 7 13 40.0	0 52.3	 - 1 .
	10 <i>r</i>	1	9 15.5	1 45.59	3 8.96	0. 22	- 0.30	4 3 6 7.7		
	~ ~	9. 10		4 25.54	3 8.96	0.50	- 1. 16 - 0. 35	+ 7 3 56.6 + 25 7 42.6	0 52.6 0 25.9	
	7 Comæ		16 2.7 18 12.0	8 33, 92 10 43, 57	3 8.96 3 8.96	1, 88 0, 03	+ 0.23	+ 0 24 34.5	1 6.4	+ 0.
	13 n Virginis . 15 η "	1	19 27.8	11 59.58	3 8.96	0.03	+ 0.20	Li 0 31 38.2 l	1 6.1	- ŏ
	17 "		22 10.5	14 42, 73	3 8.96	0.46	— 1.04	+ 6 29 50.5	0 53.5	— 1.
		7	29 29. 8	22 3.23	3 8.96	1.13	- 1.50	+ 6 29 50.5 + 15 49 50.2 + 11 28 36.1	38.4	- <u>1</u> .
	20	6	32 46.6	25 20.56	3 8.96	0.81	- 5.73 - 3.56	11 28 36.1	45. 1 47. 6	
	97 "	6	36 49.0 41 20.2	29 23, 63 33 55, 41	3 8.95 3 8.95	0.70 0.82	- 3. 30 - 4. 87	+ 9 58 30.2 + 11 36 0.0 + 11 24 55.6	47.0 45.0	
١	27 " 30 ρ "		11 41 35.3	12 34 10.71	— 3 8.95	- 0.81	-5.27	+ 11 24 55.6	-0.45.2	- î
,						1	l	l	<u> </u>	1

(45)

		,	1783 AP	RIL 4—Con	tinued		Ze	го согт. = +	1′ 42″. 8.
Name	Mag.	T	App. sid. time.	Clock corr.	s tan đ	q	ζφ	Refr.	q'
31 d' Virginis . 34	8 7.8 7.6 6 5.6 6.7 8 7.8 9 6 4 6 8.9 7 8.9 6 4 6 8.9 7	# # # # # # # # # # # # # # # # # # #	h m s 12 37 52.52 39 31.69 41 15.27 43 46.28 47 52.85 49 34.93 51 39.47 55 54.47 12 59 41.89 13 1 33.70 3 28.31 6 32.91 9 14.85 12 53.18 14 26.30 16 55.51 22 16.99 26 50.14 29 22 66 33 23.52 38 47.30 41 15.31 46 45.11 51 45.43 56 2.12 13 58 23.91 14 0 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 4 10.16 7 48.56 10 37.78 11 58 21.30 38 57.76 43 12.16 44 16.53 49 39.61 54 22.78 14 58 21.33 15 0 37.00 3 13.93 15 6 15.43	# 3 8.95 3 8.95 3 8.95 3 8.95 3 8.95 3 8.95 3 8.994 3 8.94 3 8.94 3 8.94 3 8.94 3 8.994 3 8.993 3 8.993 3 8.993 3 8.992 3 8.992 3 8.992 3 8.992 3 8.992 3 8.992 3 8.992 3 8.992 3 8.991 3 8.991 3 8.991 3 8.990 3 8.990 3 8.990	- 0.62 - 0.93 1.09 0.32 - 0.18 - 0.66 - 0.66 - 0.66 - 0.28 - 0.71 - 0.58 - 0.58 - 0.36 -	1. 60 1. 77 1. 55 0. 1. 77 1. 55 0. 21 1. 20 1. 24 1. 1. 84 1. 1. 84 1. 1. 84 1. 1. 82 1. 1. 88 1. 1. 65 1. 1. 65 1. 1. 60 1. 76 1. 1. 60 1. 76 1. 60 1. 75 1. 60 1. 0 / " + 8 50 39.7 + 13 7 43.1 + 15 17 24.0 + 4 13 24.6 + 4 13 25.6 - 2 38 55.0 - 2 38 55.0 - 2 38 15.2 - 9 34 53.7 - 9 10 22.7 - 10 4 5.5 - 9 24 13.4 + 4 4 14.8 + 6 16 49.4 - 10 1 39.4 - 5 21 12.4 + 0 30 23.7 - 7 36 30.2 - 16 45 58.1 - 7 36 30.2 - 16 45 58.1 - 7 36 30.2 - 16 45 58.1 - 7 36 30.2 - 16 45 58.1 - 1 2 29 47.1 - 8 12 51.4 - 8 16 37.0 - 1 2 29 47.1 - 8 12 51.4 - 8 16 37.0 - 1 2 21 56.5 - 0 59 58.6 - 5 8 37.0 - 1 15 32.8 + 14 27 16.5 + 14 27 16.5 + 14 28 24 36.6 + 14 27 16.5 + 14 38 44.6 + 10 33 51.8 + 23 54 56.4 + 12 354 56.4 + 12 354 56.4 + 17 58 6.0 + 19 15 54.4 + 25 29 0.0 + 20 4 0.0	- 0 49, 4 42, 5 39, 2 587, 5 1 1, 6 14, 0 13, 5 35, 8 34, 1 37, 4 37, 4 34, 3 1 35, 2 0 58, 4 1 1 37, 4 21, 7 6, 1 28, 8 2 9, 2 2 11, 0 1 8, 5 30, 9 31, 1 33, 4 20, 8 47, 3 33, 4 20, 8 47, 3 31, 0 21, 2 21, 0 40, 6 40, 4 49, 9 46, 7 27, 6 27, 7 35, 6 31, 2	1.2.09	
			1785	APRIL (5		Ze	ro corr. = +	1′39″.3.
112 \(\beta \) Tauri \(\cdots \) 34 \(\delta \) Orionis \(\cdots \) 58 \(a \) \(\cdots \) 24 \(\gamma \) Geminorum \(\cdots \) 10 \(\lefta \) 10 \(\rho^2 \) 112 \(\beta \) 112 \(\delta \) 12 \(\delta \) 13 \(\delta \) 14 \(\delta \) 15 \(\delta \) 16 \(\delta \) 17 \(\delta \) 18 \(\delta \) 19 \(\delta \) 10 \(\rho^2 \) 10 \(\delta \) 11 \(\delta \) 12 \(\delta \) 13 \(\delta \) 14 \(\delta \) 15 \(\delta \) 16 \(\delta \) 17 \(\delta \) 18 \(\delta \) 19 \(\delta \) 10 \(\rho^2 \) 10 \(\delta \) 11 \(\delta \)	7	4 20 26. 4 28 43. 4 4 51 11. 8 5 32 50. 8 6 35 25. 2 47 39. 6 50 27. 5 55 13. 7 6 57 36. 1 7 0 24. 7 7 2 24. 3	5 15 45, 90 24 4.26 5 46 36, 36 6 28 22, 20 7 31 6.88 43 23, 29 46 11.65 50 58, 63 53 21.42 56 10.48 7 58 10.41		- 2.16 + 0.03 - 0.52 1.19 0.40 2.06 1.49 1.94 2.16 0.97 - 1.63	+ 0.74 + 0.53 - 1.23 - 1.47 - 0.87 + 0.31 - 1.20 - 0.13 + 0.73 - 1.69 - 0.99	+ 28 23 8.8 - 0 29 5.0 + 7 20 13.6 + 16 33 4.1 + 5 45 13.0 + 27 17 26.6 + 20 25 25.2 + 25 57 4.5 + 28 21 59.5 + 13 42 21.0 + 22 10 41.0	- 0 21.4 1 6.6 0 50.6 36.3 53.6 22.7 31.1 21.6 40.6 - 0 29.0	+ 1.4 - 0.8 - 1.6 - 1.7 - 1.5 + 1.6 - 0.9 + 1.4 - 2.6 - 0.5
a T II assumed as 38s.; b & assumed as 49° 17′ 3 c & assumed as 58° 9′ 10°	3"; not 4	19° 17′ 43″ .	d gassumed as a c T. I rejected. f gassumed as 2			A 61	assumed as 28°; no assumed as 20° 27′; i, l Hour assumed	not 20° 57′.	<u> </u>

			1783 API	RIL 5—Con	IIIRHOA	,	,	ro corr. = +	1' 39", 3.
Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
20 d ¹	. 8.9 8	h m s 7 4 30.2 7 9.8 12 9.3 13 18.9 14 2.6 18 18.6 19 29.6 20 36.3 26 0.9 27 30.6 30 11.5 38 2.8 46 20.3 50 44.7 53 21.0 7 59 25.1	A m s 8 0 16.66 2 56.69 7 57.01 9 6.80 9 50.62 14 7.32 15 18.51 16 25.39 21 50.88 23 20.82 26 2.16 33 54.76 42 13.63 46 38.76 49 15.49 53 13.14 55 20,58	## # # # # # # # # # # # # # # # # # #	- 1. 99 1. 32 0. 69 0. 69 0. 69 1. 38 0. 80 2. 18 1. 85 1. 48 1. 63 1. 20 1. 89 1. 85 1. 89	+ 0. 01 - 1. 36 - 3. 18 - 3. 18 - 3. 19 - 1. 31 - 4. 88 + 0. 81 - 0. 44 - 0. 44 - 1. 21 - 0. 98 - 0. 31 - 0. 44 - 0. 26	0 ' " + 26 26 51.5 + 18 16 11.4 + 9 49 34.3 + 9 48 32.0 + 9 47 47.0 + 18 59 51.2 + 11 18 11.3 + 28 34 23.7 + 24 46 47.0 + 20 18 18.4 + 22 13 1.4 + 16 46 41.6 + 25 14 49.8 + 24 46 21.7 + 25 16 29.8 + 25 26 8.0	7 23.8 34.1 46.8 46.8 46.8 33.1 44.4 21.3 25.8 31.4 28.9 36.1 25.2 25.8 25.2 25.1	- 1. - 1. + 0. + 0. - 1. - 0. - 1. + 0. + 0.
77 5 " 80 " 82 " 83 6 Leon. M 1 & Leonis 2 \(\tilde{\pi} \) 4 \(\tilde{\pi} \) 4 \(\tilde{\pi} \) 13 " 16 \(\pi \) " 17 \(\epsilon \) " 29 \(\pi \) " 428 Mayer 30 \(\epsilon \) Leonis Regulus 34 Leonis 35 "	8 8 8 8 8 8 8 8 8 9	8 1 58.7 4 17.5 7 0.2 10 29.2 11 7.4 14 5.8 18 10.1 19 12.4 24 4.1 26 31.2 30 29.8 31 12.2 33 112.2 33 18.2 39 4.7 40 40.1 42 40.1 42 40.1 45 41.1 53 41.0 55 51.4 8 59 10.9 9 2 36.2 3 54.8 7 3.4 11 34.9	8 57 54.60 9 0 13.78 2 56.93 6 26.50 7 4.80 10 3.69 14 8.66 15 11.13 20 3.63 22 31.13 26 30.38 27 12.90 29 29.96 32 19.74 35 6.70 36 42.36 38 14.71 42 44.35 49 45.40 51 56.19 9 58 42.05 10 0 0.86 3 9.98 7 42.24	3 8.59 3 8.59 3 8.59 3 8.59 3 8.58 3 8.58 3 8.58 3 8.58 3 8.57 3 8.57 3 8.57 3 8.57 3 8.57 3 8.57 3 8.56 3 8.56 3 8.56 3 8.56 3 8.56 3 8.56 3 8.56 3 8.56	2. 20 2. 35 1. 37 1. 13 1. 14 1. 35 2. 05 0. 70 1. 77 1. 09 1. 09 1. 09 1. 83 1. 90 0. 96 0. 64 0. 67 1. 28 0. 92 1. 03 1. 83	+ 0.92 + 1.25 - 1.32 - 1.50 - 1.50 - 1.50 - 1.34 - 0.68 - 1.57 - 1.54 - 1.55 - 0.15 - 1.57 - 0.45 - 0.27 - 1.62 - 1.62 - 1.62 - 1.62 - 1.62 - 1.62 - 1.62 - 1.62 - 1.62	+ 28 50 37.5 + 30 24 16.1 + 22 50 50.9 + 18 54 20.4 + 15 48 51.4 + 15 52 57.6 + 18 35 49.6 + 26 4 43.7 + 27 5 5.8 + 9 58 35.6 + 23 53 41.9 + 10 38 49.1 + 15 19 19.0 + 15 18 4.8 + 26 52 12.0 + 14 59 19.8 + 24 44 40.7 + 24 37 18.6 + 25 23 36.0 + 13 27 23.0 + 13 27 23.0 + 14 24 8.4 + 13 0 14.5 + 14 24 8.4 + 24 33 10.0	21. 1 19. 3 28. 2 33. 3 37. 6 37. 5 33. 7 24. 3 23. 1 46. 7 26. 9 26. 9 26. 9 26. 9 26. 1 41. 1 48. 2 41. 9 39. 7 26. 9	+ 1. + 2. - 0. - 1. - 1. + 1. - 1. - 1. - 1. + 1. - 1. + 0. + 1. - 1. + 1. - 1. + 1. - 1. - 1. - 1. - 1. - 1. - 1. - 1. -
36 \(\cdots \) 41 \(\gamma \) 42 \(\cdots \) 44 \(\cdots \) 46 \(\cdots \) 47 \(\cdots \) 35 Sextanti 53 \(l \) Leonis.		11 41.0 15 4.4 17 13.6 20 53.5 23 17.4 27 38.6 28 27.7 34 17.1 39 4.6 9 44 53.4	7 48. 36 11 12. 32 13 21. 87 17 2. 37 19 26. 66 23 48. 58 24 37. 81 30 28. 17 35 16. 46 10 41 6. 22	3 8.55 3 8.55 3 8.55 3 8.55 3 8.55 3 8.55 3 8.54 3 8.54 3 8.54 3 8.54	1. 82 1. 53 1. 15 0. 69 0. 77 1. 08 0. 73 1. 24 0. 41	- 0.53 - 1.15 - 1.49 - 3.30 - 4.27 - 1.55 - 3.95 - 1.42	+ 24 33 10.0 + 24 28 17.2 + 20 54 48.7 + 16 2 45.0 + 9 51 59.0 + 10 50 49.4 + 15 13 41.4 + 10 24 8.7 + 17 14 J.4 + 5 52 3.2 + 11 40 21.1	26.3 30.8 37.3 47.0 45.3	+ 0. - 0. - 1. - 1. - 1. - 1. - 1.
•			1783	APRIL :	Y 		Zer	ro corr. = +	1′ 34″.8
l) 123 ζ Tauri . 50 ζ Orionis 58 a " . 62 Virginis 67 a " .		4 24 37.5 29 41.2 4 43 18.5 12 7 34.4 12 12 22.8	5 27 51, 18 32 55, 32 46 34, 86 13 12 3, 74 13 16 52, 93		- 1.53 + 0.15 - 0.52 + 0.72 + 0.71	- 1.14 + 1.08 - 1.23 + 1.79 + 1.79	+ 20 58 32.5 - 2 4 52.2 + 7 20 17.8 - 10 9 44.8 - 10 1 34.9	- 0 30.3 1 10.4 0 50.6 1 34.9 - 1 34.6	- 0. - 1. - 0.

			1783 AP	BIL 7—Co	atimuod		Ze	ro corr. = + 1	l′ 34″. 8
Name	Mag.	т	App. sid. time	Clock corr.	n tan ô	q	ζ-φ	Refr.	q'
71 Virginis	6.7 6	h m s 12 19 52.6 24 47.8 30 46.4 35 30.4 43 58.8 47 55.0 53 19.2 55 57.4 12 59 48.9 13 3 7.7 9 18.0 15 29.2 30 2.3	h m s 13 24 23.96 29 19.97 35 19.55 40 4.33 48 34.12 52 30.97 13 57 56.06 14 0 34.69 4 26.82 7 46.16 13 57.47 20 9.69 34 45.18	m s - 3 6.51 3 6.51 3 6.50 3 6.50 3 6.49 3 6.49 3 6.49 3 6.48 3 6.48 3 6.48	+ 0.47 - 0.32 + 0.40 - 0.15 - 0.26 + 0.55 0.65 0.35	+ 1.58 + 1.87 - 0.58 + 1.81 - 0.12 - 0.39 + 1.83 + 1.83 + 1.73 + 0.74 + 0.83 + 1.70	+ 11 55 53, 1 - 14 14 19.5 + 4 45 56.6 - 6 45 53, 1 - 15 20 2.0 + 4 38 10.2 - 14 40 4.2 - 5 45 14.3 - 17 2 19.1 - 0 26 19.5 + 2 35 21.9 - 7 51 9.5 - 9 18 5.2 - 9 18 5.2 - 9 18 5.2 - 4 57 51.0 - 0 59 54.0 - 1 15 23.0 - 4 42 45.1	, , , , , , , , , , , , , , , , , , ,	
1) 108 "		13 32 53.4	14 37 36.75	3 6.47 — 3 6.47	— 0, 11	_ 0.03	+ 1 37 51.6 + 2 56 21.2	1 1.8 - 0 59.1	— 1. — 1.
20 0		4 14 00 0							
66 a Geminorum 77 κ 78 β 9 2 ω Cancri 6 10 μ 11 μ 15 ψ 17 β 18 19 λ		6 16 23.8 26 58.1 27 38.8 43 22.7 45 44.7 48 33.7 50 33.4 6 55 13.5 7 0 19.3 2 23.8	7 23 52.01 34 28.05 35 8.86 50 55.34 53 17.73 56 7.19 7 58 7.22 8 2 48.09 7 54.73 9 59.58	3 5.79 3 5.78 3 5.77 3 5.77 3 5.77 3 5.76 3 5.76 3 5.76 3 5.76	1. 92 2. 14 0. 96 1. 61 2. 30 0. 68 2. 09	$\begin{array}{c} -0.41 \\ +0.79 \\ -0.12 \\ +0.73 \\ -1.69 \\ -0.99 \\ +1.22 \\ -3.19 \\ +0.52 \end{array}$	+ 32 19 25.0 + 24 52 56.0 + 28 30 47.8 + 25 57 3.8 + 28 21 57.8 + 13 42 18.2 + 14 14 34.5 + 30 16 14.2 + 9 49 34.3 + 27 53 8.0 + 24 40 18.8	21. 2 24. 2 21. 4 40. 3 28. 7 39. 5 19. 2 46. 3 21. 9 25. 7	+ 2. + 0. + 1. + 2. - 0. - 2. + 1. - 1. + 1.
20 d ¹ "	6	6 27.9 7 38.7 9 9.2 12 1.7 14 10.4 15 39.6 18 20.5 18 45.4 21 52.4 24 50.6 26 11.7 27 28.2	14 4. 34 15 15. 33 16 46. 08 19 39. 05 21 48. 10 23 17. 54 25 58. 58 26 23. 85 29 31. 41 32 30. 05 33 51. 37 35 8. 08	3 5.75 3 5.75 3 5.75 3 5.75 3 5.75 3 5.74 3 5.74 3 5.74 3 5.74 3 5.74 3 5.74 3 5.74	1, 06 1, 82 1, 82 1, 46 1, 48 0, 70 1, 48	- 0. 44 - 1. 21 - 1, 19 - 3, 90 - 1, 18	+ 18 59 50.6 + 11 18 11.3 + 27 36 35.4 + 14 53 58.7 + 24 46 43.6 + 24 47 20.9 + 20 18 17.0 + 20 29 19.0 + 10 18 21.4 + 20 36 56.8 + 22 13 4.6 + 31 26 54.3 + 29 31 6.9	38. 5 25. 6 25. 6 31. 2 30. 9 45. 7 30. 8 28. 7 18. 0	+ 2.3
48 t ¹ "	7 7 6	28 59. 5 30 30. 4 34 28. 8 36 50. 8 38 57. 2 40 54. 0 45 27. 1 50 20. 5 7 57 16. 1 8 0 41. 1	36 39 63 38 10.78 42 9.83 44 32.22 46 38.97 48 36.12 9.94 5 6 4.14 9 5 0.88 9 8 26.44	3 5.73 3 5.73 3 5.72 3 5.72 5 5.72 3 5.72 3 5.72 3 5.71 3 5.71	1. 19 2. 08 2. 64 1. 16 1. 86 2. 33 2. 82	- 1.80 - 1.45 + 0.46 + 1.39 - 1.47 - 0.31 + 1.26 + 1.32	+ 29 31 6.9 + 12 52 38.8 + 16 46 40.0 + 27 42 44.2 + 33 42 35.1 + 16 23 8.7 + 25 16 25.0 + 30 29 35.3 + 35 29 37.2 + 37 41 5.6	20. 1 41. 7 35. 9 22. 4 15. 5 36. 5 25. 0	$ \begin{array}{c} + 1.5 \\ - 2.5 \\ + 1.5 \\ + 2.5 \\ - 1.5 \\ + 2.5 \\ + 3.5 \\ \end{array} $
Ob'n of & rejected. Name assumed as 88 ginis. Div. assumed as 50; n	•	not 87 Vir-	and Div. ass 15 8. Div. assumed as	umed as 48 1 s 24 6 13; not 2	59; not 4 24611.	8 la fa i Tri	v. assumed as 36 14 ssumed as 24° 10′ 4 ansits over T.s I a orded over T.s II a III assumed as 41m.	6"; not 24° 11 nd II assumed nd III.	' 46". as re

•

	T	1	T	<u> </u>	ı ————		ī	1	ī
Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ φ	Refr.	q'
40 Lyncis . 6 Leon. Min. 2 ω Leonis . 3 " 4 λ " 6 λ " 7 "	6 7	h m s 8 3 10.3 6 19.2 8 36.5 12 13.1 12 16.4 14 40.1 15 43.5 19 21.4	h m s 9 10 56.05 14 5.47 16 23.15 20 0.38 20 3.65 22 27.75 23 31.32 27 9.82	m s - 3 5.71 3 5.70 3 5.70 3 5.71 3 5.69 3 5.69 3 5.69	0.70 0.64 1.75 0.74 1.08	+ 1.33 - 0.09 + 1.27 - 3.56 - 1.70 - 0.68 - 4.04 - 1.54	+ 35 16 28.4 + 26 4 41.7 + 37 21 44.0 + 9 58 35.0 + 9 6 35.3 + 23 53 37.0 + 10 38 44.8 + 15 19 14.0	- 0 13.8 24.0 11.7 46.1 47.6 26.7 45.2 38.1	+ 3. + 0. + 3. - 1. - 1. - 1. - 1.
8 " 13 Leon. Min. 17 e Leonis	6 7.8 7 7.8	20 23.8 24 54.1 26 28.6 28 49.1 30 0.3 31. 3.9 33 6.9 34 49.9	28 12, 39 32 43, 43 34 18, 19 36 39, 07 37 50, 46 38 54, 23 40 57, 57 42 40, 85	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1. 82 0. 89 0. 88 1. 88 1. 88	- 1.41 + 1.30 + 1.32 - 0.45 - 2.02 - 2.90 - 0.24 - 0.28	+ 17 22 57. 2 + 36 3 4.2 + 35 40 52. 0 + 24 44 35. 0 + 12 46 57. 9 + 12 32 48. 0 + 25 32 28. 0 + 25 23 31. 2 + 13 27 12. 7	35. 2 13. 1 13. 5 25. 7 41. 9 42. 2 24. 7 25. 0	- 1. + 3. + 0. - 2. - 2. + 0.
29 π " 30 η " Regulus 34 Leonis 33 λ Ursæ Maj 39 Leonis 40 "	8.9	41 49.7 44 0.7 47 3.2 50 44.8 52 3.7 55 12.5 8 59 11.8 9 0 30.3 3 8.0	49 41,80 51 53,16 54 56,16 58 38,37 9 59 57,49 10 3 6,81 7 6,76 8 25,48 11 3,60	3 5.67 3 5.66 3 5.66 3 5.66 3 5.66 3 5.66 3 5.65	0. 94 0. 63 0. 64 1. 26 0. 91 1. 02 3. 81 1. 77 1. 48	- 1.72 - 1.68 - 1.82 - 1.40 - 1.79 - 1.62 + 1.68 - 0.60 - 1.19	+ 9 3 44.6 + 9 15 17.5 + 17 47 38.0 + 13 0 10.4 + 14 24 1.4 + 43 57 47.0 + 24 9 59.9	40.8 47.8 47.5 34.6 41.5 40.3 4.9 26.4 30.9	- 2. - 1. - 1. - 2. - 2. + 4. 0. - 0.
27 Leon. Min. 28 " :	6 4.5 7 5 5.6 6 4.5	5 45.9 6 50.2 8 37.8 13 14.2 16 14.6 19 2.3 21 50.5 25 8.7 28 54.4	13 41.93 14 46.41 16 34.31 21 11.47 24 12.36 27 0.52 29 49.18 33 7.92 36 54.24	3 5.65 3 5.65 3 5.64 3 5.64 3 5.64 3 5.64 3 5.64 3 5.63	2.76 2.74 2.76 3.02 2.88 3.02 3.19 2.54 2.45	+ 1.34 + 1.35 + 1.34 + 1.27 + 1.30 + 1.27 + 1.28 + 1.40 + 1.38	+ 20 32 44.0 + 34 58 20 0 + 34 47 4.4 + 34 52 10.0 + 37 21 28.2 + 36 4 29.2 + 37 25 13.0 + 39 0 35.4 + 32 48 7.2 + 31 47 47.5	14. 3 14. 4 14. 3 11. 7 13. 1 11. 7 10. 0 16. 6 17. 7	+ 3. + 3. + 3. + 3. + 3. + 2. + 2.
53 l "	8	33 3.2 38 57.9 44 36.0 48 55.2 50 53.9 56 7.8 57 41.7	40 59, 39 52 38, 42 56 58, 33 10 58 57, 36 11 4 12, 12 11 5 46, 28	3 5.63 3 5.62 3 5.62 3 5.62 3 5.62 3 5.61 3 5.61	0.82 1.92 0.50 0.59 0.22 0.06	+ 1.35 - 4.75 - 0.14 - 1.21 - 1.49 - 0.30 + 0.14 + 0.06	+ 31 47 47.3 + 11 40 16.0 + 25 52 47.8 + 7 14 52.2 + 8 29 17.2 + 3 7 0.0 + 0 45 13.0 + 1 5 43.4 + 24 15 11.9	43.6 24.4 50.9 48.9 0 58.9 1 4.0 1 3.3 0 26.3	+ 2. + 2. + 0. - 1. - 1. - 0. + 0.
	<u>' </u>		1783	APBIL	•			Zero corr. =	+ 1' 41"
a Persei		2 1 17.7 3 15 41.1 4 4 38.3 17 11.3 4 35 23.7 5 1 44.7 17 2.7 5 27 20.3 6 12 25.9	3 12 0.56 4 26 36 18 5 15 41.42 28 16.48 5 46 31,87 6 12 57.20 28 17.71 6 38 37.00 7 23 50.01	3 4.32 3 4.30 3 4.28	1. 14 — 2. 14 + 0. 10 — 0. 51 1. 64 — 1. 18	+ 3.26 - 1.49 + 0.74 + 0.86 - 1.23 - 0.91 - 1.47 + 1.67 + 1.39	+ 49 2 41.8 + 16 2 25.8 + 28 23 7.6 - 1 21 53.4 + 7 20 13.9 + 22 35 19.2 + 16 33 4.1 - 16 25 40.6 + 32 19 30.0	- 0 0.2 36.6 0 21,2 1 8.0 0 50.3 28,1 0 36.1 2 3.0 0 16.9	+ 5. - 1. + 1. - 0. - 1. - 0. - 1. - 2.
Procyon . 78 β Geminorum 2 ω^1 Cancri 6 " 15 ψ^3 " 17 β "		19 37. 0 23 41. 3 39 24. 9 41 47. 4 51 16. 2 6 56 22. 4	31 2.29 35 7.26 50 53,44 7 53 16,33 8 2 46.69 8 7 53.73	3 4.21 3 4.21 3 4.20 3 4.20 3 4.19 — 3 4.18	0. 40 2. 14 1. 92 2. 14	$ \begin{array}{r} -0.87 \\ +0.79 \\ -0.12 \\ +0.73 \\ +1.22 \end{array} $	+ 5 45 13, 0 + 28 30 51, 2 + 25 57 3, 0 + 28 21 58, 5 + 30 16 10, 2 + 9 49 30, 3	53, 1 21, 1 24, 1 21, 3 19, 1 — 0 46, 2	- 1. + 1. + 0. + 1. - 1.

7

Digitized by Google

(49)

			1783 APB	IL 9-Cont	inned		Zer	o corr. = + 3	1′ 41″.4.
Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ — φ	Refr.	q'
31 Lyncis 32 " - 33 " - 33 " - 34 "	6.7	h m s 6 59 31.6 7 10 57.3 12 17.7 16 15.3 7 17 53.0 12 4 28.7 10 22.2 14 55.1 17 26.0 20 6.8 22 52.0 26 44.0 32 48.5 12 36 52.0	h m s 8 11 3. 45 22 31. 03 23 51. 65 27 49. 90 8 29 27. 87 13 16 50. 65 22 45. 12 27 18. 77 29 50. 08 32 31. 31 35 16. 96 39 9. 60 45 15. 10 13 49 19. 27	" * * * * * * * * * * * * * * * * * * *	** - 3.79 2.99 2.59 2.62 - 2.61 + 0.70 0.13 + 0.30 - 0.24 - 0.32 + 0.38 - 1.26 - 1.20	+ 1.80 $- 1.40$	0 / " + 43 50 33.2 + 37 8 4.6 + 37 7 33.6 + 33 31 18.8 + 33 27 23.1 - 10 1 42.6 - 1 56 19.6 - 9 2 50.3 - 4 17 41.2 + 3 28 49.2 + 3 15 36.0 - 5 37 11.4 + 17 47 14.9 + 16 56 6.0	7	# 4.9 + 3.5 + 3.5 + 2.7 - 0.4 - 0.6 - 1.5 - 1.5 - 1.5
			1783	APBIL 1	9		Ze	ro corr. = +	1′ 38″.9.
78	8 7 6 6.7 6 6.7 7.8 7.8 6	1 34 9.3 8 25 7.3 30 9.0 36 15.2 44 26 45 15.6 47 19.3 48 20.4 56 35.2 8 59 59.0 9 2 50.2 10 31.6 13 37.8 30 1.7 34 40.2 36 25.4 39 36.1 42 6.5 51 53.6 53 736.5 9 59 24.7 10 0 43.6 2 37.0 13 10.4 17 9.7 10 20 29.7	2 56 37. 36 9 48 42.87 53 45. 39 9 59 52.60 10 8 5. 24 8 54. 47 10 58. 51 11 59. 77 20 15. 93 23 40. 29 26 31. 96 34 14. 62 37 21. 33 53 47. 92 10 58 27. 18 11 0 12. 67 3 23. 89 5 54. 70 7 34. 67 15 43. 41 17 21. 38 21 27. 25 23 15. 75 24 34. 86 26 28. 57 37 3. 70 41 3. 66 11 44 24. 21	- 3 0, 42 3 0, 16 3 0, 15 3 0, 15 3 0, 15 3 0, 15 3 0, 14 3 0, 14 3 0, 14 3 0, 14 3 0, 13 3 0, 11 3 0, 11 3 0, 11 3 0, 11 3 0, 11 3 0, 10 3 0, 10 3 0, 10 3 0, 09	- 1. 18 1. 51 1. 65 0. 90 1. 03 1. 50 1. 46 1. 47 1. 08 1. 06 0. 55 0. 13 0. 15 1. 52 1. 96 1. 89 1. 09 1. 16 1. 16 1. 16 1. 34 1. 36 1. 26 1. 28 1. 10 - 1. 54	- 1. 44 - 1. 11 - 0. 86 - 1. 79 - 1. 59 - 1. 13 - 1. 18 - 1. 55 - 1. 38 - 0. 10 - 0. 12 - 0. 16 - 1. 50 - 1. 46 - 1. 61 - 4. 69 - 1. 41 - 1. 46 - 1. 32 - 1. 30 - 1. 39 - 1. 39 - 1. 59 - 1. 09	+ 16 49 30, 0 + 21 10 40, 9 + 22 58 4, 2 + 13 0 11, 9 + 14 47 8, 1 + 20 32 40, 0 + 20 36 10, 0 + 15 25 41, 8 + 15 13 34, 4 + 8 3 0, 3 + 1 58 45, 0 + 2 7 59, 0 + 26 41 2, 4 + 25 48 26, 9 + 15 33 28, 0 + 16 35 35, 5 + 14 28 11, 7 + 11 42 16, 5 + 17 37 38, 4 + 16 35 28, 0 + 17 37 38, 4 + 16 35 35, 5 + 14 28 11, 7 + 11 42 16, 5 + 17 37 38, 4 + 16 55 35, 0 + 19 10 40, 0 + 17 58 27, 0 + 15 26 53, 7 + 15 45 54, 4 + 21 35 40, 0	- 0 35.8 30.0 27.7 41.3 38.6 30.1 30.8 30.7 37.7 38.0 0 49.2 1 0.9 1 0.6 0 29.3 24.3 37.5 36.1 39.2 43.4 34.6 36.1 32.9 32.6 34.2 7 37.2 - 0 29.3	1.7
		··	1783	APBIL 1	3		·	ro corr. = +	1′ 40″.4.
77 \$ Cancri . 79	.	7 32 31.0 33 30.5 35 23.7 38 52.6 42 29.2 46 33.5 49 58.5 53 9.1 56 27.6 7 58 10.2	8 59 54. 48 9 0 54. 14 2 47. 65 6 17. 12 9 54. 32 13 59. 29 17 24. 85 20 35. 97 23 55. 01 9 25 37. 86	- 2 59. 49 2 59. 49 2 59. 49 2 59. 49 2 59. 49 2 59. 49 2 59. 48 2 59. 48 - 2 59. 48	1. 32 1. 09 1. 30 1. 88 4. 06 2. 66 2. 94	- 0.87 - 0.88 - 1.32 - 1.50 - 0.08 + 2.58 + 1.37 + 1.27 + 1.29	+ 22 53 35.0 + 22 50 47.0 + 18 54 15.0 + 15 48 47.9 + 18 35 46.4 + 26 4 45.7 + 46 30 54.2 + 34 34 31.4 + 37 19 36.2 + 36 45 29.9	37.1	- 1.8 - 1.4 + 0.7 + 5.4 + 3.6 + 3.5

(50)

Name	Mag.					1			
	mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ φ	Refr.	q'
		h m s	h m s	m s	s	8	c / //	, ,,	"
12 Leon. Min.	1 1	8 2 21.3	9 29 49.68	— 2 59.4 8	— 2.82	+ 1.30	+ 36 16 54.0	— 0 12.7	+ 3.3 + 3.3
13 "		5 8.1	32 36.94	2 59.48	2.80	+ 1.30	+ 36 3 8.4	13.0	+ 3.
16ψ Leonis		7 27.7	34 56.92	2 59.48	1.03	- 1.57	+ 14 59 15.2	38.4	- 1.
20 " 26 "	6.7	13 12, 5 21 54, 1	40 42.66 49 25.69	2 59.47 2 59.47	1.57 1.12	- 0.99 - 1.48	+ 22 9 42.8 + 16 13 48.8 + 16 47 12.8 + 13 0 9.6	28.6 36.5	- 0. - 1.
431 Mayer	7.6	29 23.6	56 56.42	2 59.46	1.16	- 1.45 - 1.45	+ 16 47 12.8	35.7	_ i.
Regulus .		32 18.2	9 59 51.50	2 59.46	0.89	1 70	+ 13 0 9.6	41.2	— 2.
33 λ Ursæ Maj.	1	39 25.7	10 7 0.17	2 59.46	3.71	+1.68	+ 43 57 49.0	4.9	+ 4.
41 γ Leonis		43 27.7	11 2.83	2 59.46	1.47	- 1.15	+ 20 54 38.7	30.3	— 0.
28 Leon. Min.	ا نے ا	47 4.0	14 39.72	2 59.46	2.68	+ 1.35	+ 13 0 9.0 + 43 57 49.0 + 20 54 38.7 + 34 47 6.8 + 34 52 10.0 + 4 39 1.2	14.4	+ 3.
30 "	5 7.8	48 52.2	16 28.21 19 18.78	2 59.45 2 59.45	2.68 0.31	+1.34 -0.59	+ 34 52 10.0	14.3	+ 3. - 1.
31 Sextantis .	7.0	51 42.3 54 42.5	22 19.48	2 59, 45	0.31	-0.39	+ 3 14 45.4	55.4 58.3	_ i:
or beatunitie.	7.8	8 59 18.1	26 55.84	2 59.45	0. 22	- 0.34	+ 3 18 19.6	58, 9	_ i.
457 Mayer	7	9 3 46.1	31 24.57	2 59, 45	0, 67	-3.51	+ 9 57 5.0	46.1	- 1.
	7	6 19.3	33 58.19	2 59, 45	0.78	- 5, 66	+ 11 28 10.4	43.6	- 1.
52 κ Leonis		10 18.6	37 58.15	2 59, 44	1.06	- 1.54	+ 15 19 1.4 + 11 40 18.1	37.9	- į.
	i	13 17.5	40 57.54 46 53.71	2 59.44 2 59.44	0.79 1.86	- 4.75	+ 11 40 18.1 + 25 52 47.8	43.4	- 2.
54 " 59 c "		19 12.7 24 50.4	52 32, 34	2 59.44	0.49	-0.14 -1.21	+ 7 14 51.2	24.3 0 50.5	+ 0. - 1.
62 g "		27 48.5	55 30.93	2 59.43	0.07	+ 0.05	+ 1 9 7.4	1 2.6	$\begin{bmatrix} -1 \\ -0 \end{bmatrix}$
65 "		31 8.5	10 58 51.48	2 59.43	0.21	0.30	+ 3 6 58.6	0 58.5	_ i.
	6.7	35 40.3	11 3 24.03	2 59, 43	1.06	- 1.52	→ 15 33 27.4	37.6	— 1.
70 θ " · · ·	1	38 9.7	5 53.84	2 59.43	1.14	— 1.46	+ 16 35 34.1	36. 1	- 1.
53 ξ Ursæ Maj.	1 .	41 52.1	9 36.85	2 59.43	2.48	+ 1.40	+ 32 43 20.2	16.6	
78 <i>i</i> Leonis	1	47 58.3 53 40.3	15 44.05	2 59.43 2 59.42	0.80	- 4.69 - 1.47	+ 11 42 16.4	43. 4 36. 2	- 2. - 1.
85 " 90 Leonis		9 58 40.1	21 26.98 26 27.59	2 59.42	1.14	- 1. 39	+ 16 35 26.8	0 34.3	
91 v "		10 1 3.4	28 51.28	2 59. 42	0.02	1 0 05	+ 17 58 27.0 + 0 21 36.5	1 4.6	
	7.8	4 29.6	32 18.04	2 59.42	0.13	0, 12	+ 2 8 24.2	1 0.6	
	6.7	9 13.7	37 2.92	2 59.42	1.06	- 1.53	+ 15 26 52.2	0 37.8	 - 1.
	6.7	12 42.4	40 32, 19	2 59.41	1.06	- 1.52	+ 15 28 11.0	37.8	
94 β Leonis 6 Λ Virginis .	l	13 13.2 19 7.5	41 3.07 46 58.34	2 59, 41 2 59, 41	1.08 0.64	- 1.51 - 2.56	+ 15 45 53,8	37.3 46.8	
7 b		10 24 0.8	11 51 52.45	-259.41	- 0.32	- 0.63	+ 0 21 30.3 + 2 8 24.2 + 15 26 52.2 + 15 28 11.0 + 15 45 53.8 + 9 37 57.0 + 4 50 53.7	- 0 55.2	
	<u>'</u>	<u> </u>	178	3 APBIL	14	<u> </u>	Ze	ro corr. = +	1′ 40″. 7
66 a Geminorum Procyon .		5 52 40.5 5 59 51.4	7 23 44. 13 30 56. 21	2 58.64 2 58.64	- 1.43 0.39	+ 1.39 - 0.87	+ 32 19 32.6 + 5 45 12.4	- 0 17.1 53,7	- 2. - 1.
78 β Geminorum		6 3 56.6	7 35 2.08	2 58.63	2,09	LL 0 70	28 30 48.8	21.3	
17β Cancri	1	36 36.4	8 7 47.25	2 58.62	0.66	3.18	79 49 33.0	46.7	— 1.
39 "	1	6 59 24.0	30 38, 59	2 58.61	1.46	- 3. 18 - 1. 17	+ 52 19 52.0 + 5 45 12.4 + 28 30 48.8 + 9 49 33.0 + 20 44 32.0 + 22 13 1.2	30.8	— 0.
$\frac{43}{48}\frac{\gamma}{\mu}$	1.	7 2 29.7	33 44.80	2 58.61	1.57	- 0.98	+ 22 13 1.2	28.8	 0 .
,	1	5 17.6 8 28.6	36 33.16 39 44.68	2 58.61 2 58.60	1. 18 0. 91	+ 1.10	+ 29 31 0.0	20.2 41.1	
370 Mayer 371 "	l	10 7.7	41 24.05	2 58.60		-1.74	+ 13 19 8.4 + 18 46 46.8	33, 3	
61 Cancri	1	16 29.7	47 47.10	2 58.60	2. 31	-1.33 + 1.31	+ 18 46 46.8 + 31 1 51.8		+ 2
62 o ¹ "	1	16 53.0	48 10, 47	2 58.60	1, 11	- 1.49 - 1.47	+ 31 1 51.8 + 16 7 24.0 + 16 23 7.0 + 25 16 28.5 + 15 33 25.0 + 22 50 49.5 + 15 50 33.2 + 12 23 2.6 + 19 38 54.5 + 18 36 49.6 + 9 58 34.1	37.0	
63 03 "	1	17 11.1	48 28.62	2 58.60	1. 13		+ 16 23 7.0	36.6	- 1
) 69 v "		21 44.5	53 2.78	2 58.60	1.81	- 0.31	+ 25 16 28.5	25.2	+ 0
79 "	6.7	27 50.7 29 34.5	8 59 9.87 9 0 54.06	2 58, 59 2 58, 59	1.07 1.62	- 1.52 - 0.88	10 33 20.0	37.8 28.2	
81 π "		32 5.9	3 25.87	2 58.59	1.02	-1.50	+ 15 50 33 2	37.5	
) 398 Mayer	6.7	37 47.4	9 8.31	2 58.59	0.85		+ 12 23 2.6	42.7	
	8.9	41 16.2	12 37.68	2 58.59	1.37	- 1.26	+ 19 38 54.5	32. 3	- 1
:	8	44 14.3	15 36.27	2 58.59	1.29		+ 18 36 49.6	33.7	— 1 .
2 ω Leonis	İ	48 30.6	19 53.27	2 58.59			+ 9 58 34.1	46.4	
4 λ '' 410 Mayer	7	50 57.7 54 51.0	22 20.77 26 14.71	2 58.58 2 58.58		-0.68	十 23 53 39.9	26.9 40.8	
) 11 Leonis.	'	7 57 48.2		2 58.58			+ 9 58 34.1 + 23 53 39.9 + 13 35 42.8 + 15 18 6.6	- 0 38.3	
a T II assumed as 48 b Min. assumed as 51r	n.; not 49)m.	d Micr. corr. as	sumed as — 5; r T.s II and I	not + 5,	and f	assumed as 36° 28' assumed as 33° 32'	2". 7; not 36	2, 38,,

			1750 AFI	4IL 14—Ce			Zer	o corr. = +1	
Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
10.7		h m s	h m s	m s		8	0 / "	, ,,	,
	1						+ 14 59 17.2		— 1. — 2.
	i						12 32 46.5		_ 2.
23 "		10 52.7			0.96	- î. 65	+ 14 3 18.2	40.1	$-\tilde{2}$.
423 Mayer	7.8	14 11.4	45 38, 28	2 58.57	0.61	 1.6 8	+ 9 4 29.9	48.0	- 1.
10 Sextantis .	6.7								— <u>1</u> .
									— 2. — 1.
23 π	8								$-\overset{1}{0}$.
430 Mayer	ğ	25 9.1	56 37.77	2 58.57	- 0.61	- i.68	+ 9 1 8.5	0 48.0	— ĭ.
30 n Leonis		27 2.2	58 31.18	2 58, 56	1.23	— 1.4 0	+ 17 47 41.3	34.8	1.
Regulus .	1							41.7	— 2.
									— 2. — 1.
									_ i:
441 "		38 20.2	9 51.05	2 58, 56	0.93	- 1.69	+ 13 41 2.5	40.6	— 2.
445 "	7.8	42 19.8	13 51.31	2 58, 56	0.68	— 3.64	+10 2 3.5	46.4	- 1.
44 Leonis		45 20.7	16 52.70	2 58.56	0.67	- 3.21	+ 9 51 56.5	46.8	— į.
40 6									— 1. — 1.
.	9					- 1.37 - 1.35	+ 0 2 59.0 + 18 99 59 5		— i. — i.
						- 1. 42 - 1. 42	I 17 14 1.2		- î.
458 Mayer	6	9 3 31.7	35 6.70	2 58.55	0.39	— 0.9 0	+ 5 51 59.8	53.9	- 1.
35 Sextantis .	8.9	5 39.7	37 15.05	2 58.55	0.58	— 1.53	+ 8 38 10.0	48.8	— 1 .
	8.7						+ 7 28 16.3		1.
	~						+ 4 45 55.4		— 1. — 1.
65 Leonis	1						1 3 7 5.2		— i. — i.
66 "						+ 0.40	<u> </u>		- ö.
70 θ "		34 13.4	5 53.28	2 58.53	— 1.14	— 1.46 l	+ 16 35 40.4	0 36.5	— 1.
14 Y			8 37.09		+0.17	+1.20			— ŷ.
Double .					+ 0.09	+0.53			- 0.
80 Leonia	6.7				0.09	$\frac{+0.01}{-0.68}$	+ 1 10 37.3 + 5 9 91 0		— 0. 1
	6					-1.04	+62951.4		_ i.
	7.8	46 5.1	17 56.94	2 58.49	0, 21	— 0.32	+ 3 13 51.2	58.9	- ī.
	8	50 0.3	21 52.79	2 58.49	1.09	— 1.50	+ 15 49 53.6	37.6	— 1. :
20 "						- 5.73	+ 11 28 39.2		- 1.
						- 3.50 3.60	+ 9 58 34.1		- 1.5 - 1.5
					+ 0.03	- 0.96 ∤	1 39 42 4		_ i.
35 Virginis .	6.7	7 54.5	39 49.94	2 58.48	0.32	- 0.61	+ 4 44 46.2	0 56.0	– i.
Ŭ	6	11 40.3	43 36.36	2 58.48	- 0, 28	- 0.50	+ 4 13 30.0	57.1	- 1.3
43 o Virginis .						- 0.56	+ 4 33 54.0		- <u>1</u> .
	67				+ 0.18	+ 1.24 1.90			- 0. i
4 0	0.7				0.64	T 1.80	- 9 34 52 4		— 0.7 — 0.4
54 "	! !	32 50.9	13 4 50.42	2 58.47	1.23	+ 1.58 F	— 17 39 49.8	2 12.2	_ 0.
	6	41 33.4	13 34.35	2 58, 47	0.91	+ 1.58 k	— 13 16 30.6	1 49.0	– 0. :
			16 45.37	2 58.46	+ 0.68 ⅓	+ 1.79 ⊦	— 10 1 41.6	1 35.6	- 0.
71 "		49 32.4	21 34.66 26 10.51	2 55.46 9 50 40	- 0.81 h	— 4.35	+ 11 55 49.5 + 4 45 51.4 + 4 37 37.7	0 43.6 -	- 2.4 - 1.4
		11 54 7.5 12 3 7.0	35 11.49	2 58 46	0.32 - 0.31 -	- 0. 57	4 40 51.4		- 1.4 - 1.4
754 O ''		6 31.5	38 36.55	2 58.46	+ 1.15	+ 1.00 -	In 4n 4U.2 I	2 7.2 -	- 0.3
84 o "			48 25, 96	2 58.45	- 0. 14 - 0. 25	- 0. 12 - 0. 39	+ 2 6 22.0 + 3 43 18.0 -	1 1.6 -	- 1.
		16 19.3						- 0 58.0 -	
	16 ψ Leonis	16 ψ Leonis	16 ψ Leonis	16 ψ Leonis	16 ψ Leonis	16 ψ Leonis	16 ψ Leonis	16 \(\psi \) Leonis 8 3 31,5 9 34 56,63 2 258,57 1,03 1,57 14 59 17.2 18	16

Name	Man	T	App. sid. time	Clock corr.	n tan o		ζ-φ	Refr.	g'
Name	Mag.	1	App. sid. time	Clock coll.	# tall 0	q	ζ-φ	nen.	4
		h m s	h m s	m s	8	8	0 / //	/ //	,
Venus	ł	1 38 49.6 4 7 45.2	3 17 4.65 5 46 24.72	- 2 57.39 2 57.32	- 1.26 0.49	- 1.35 - 1.23	+ 1821 3.6 + 72015.6	- 0 34.0 51.1	- 1. - 1.
58 a Orionis . 24 y Geminorum	ł	49 24.3	6 28 10.66	2 57.32	- 1.13	- 1.23 - 1.47	+ 16 33 2.4	0 36.6	⊏ ί:
Sirius	1	4 59 42.0	6 38 30, 05	2 57.30	+ 1.12	+ 1.67	1695959	2 4.8	- ō.
78 β Geminorum		5 56 3.2	7 35 0.51	2 57.27	- 2.06	+ 0.79	+ 28 30 50.0	0 21.5	+ 1.
17β Cancri . :	1	6 28 43.2	8 7 45.88	2 57.25	0.66	- 3. 19	+ 9 49 34.8	47.0	 1.
31θ "	ļ	43 7.8	22 12.85	2 57.24	1.29	- 1.32	+ 18 47 51.5	33.6	- 1.
43 γ " · · · · · · · · · · · · · · · · · ·		54 35.6 6 56 13.2	33 42.53 35 20,40	2 57.23 2 57.23	1, 56 1, 30	-0.99 -1.32	+ 22 13 U.1 + 18 55 17 8	29. 0 33. 4	
$55 \rho^3$ "		7 3 29,7	42 38.09	2 57.23	2, 12	+ 1.03	+ 28 30 50.0 + 9 49 34.8 + 18 47 51.5 + 22 13 0.1 + 18 55 17.8 + 29 7 33.1	20.8	+ i.
43 a1 "	i	7 56.7	47 5.82	2 57.23	0,84	— 3. 31	+ 12 25 39.0 + 33 13 37.9 + 16 6 50.0	42.8	├ 2.
64 σ³ "		10 1.0	49 10.46	2 57.23	2.48	+1.40	+ 33 13 37.9	16.2	+ 2
78 "	7.8	18 8.7	57 19.49	2 57.22	1. 10 1. 26	- j.48	+ 16 6 50.0	37.2	- <u>1</u> .
19 Ursæ Maj.	7	20 40.7 25 40.3	8 59 51, 91 9 4 52, 32	2 57, 22 2 57, 22	2.71	-1.36	+ 18 19 11.7 + 35 29 38.0	34. 3 13. 7	$-\frac{1}{3}$
38 Lyncis.	1	29 5.3	8 17.88	2 57, 22	2, 94	$\begin{array}{c} -1.30 \\ +1.32 \\ +1.27 \end{array}$	+ 37 41 9.1	11.5	+ 3 + 3
	6	31 7.8	10 20,72	2 57, 22	3,08	+ 1.28	+ 39 4 16.8	10.0	1+3
0	6	34 42.2	13 55.71	2 57, 22	2, 91	+ 1.28 + 1.27 + 1.27 + 1.37	+ 35 29 38.0 + 37 41 9.1 + 39 4 16.8 + 37 28 58.0 + 37 21 44.6	11.7	+ 3. + 2. + 3. + 3.
	6.7	37 0.8	16 14.69	2 57.22 2 57.21	2, 90 2, 61	+ 1.27	+ 37 21 44.6 + 34 28 0.0	11.8 14.9	+ 3,
7 Leonis Min.	6	40 31.3 41 19.0	19 45.77 20 33,60	2 57.21	2.62	+1.36	+ 34 28 0.0 + 34 34 32.4	14.8	I 3
9 ""	7	43 53.7	23 8.72	2 57, 21	2, 90	+ 1.27	+ 37 24 45.0	11.8	+ 3
10 "	4.5	44 37.6	23 52.74	2 57.21	2, 90	+1.27 $+1.29$	+ 37 19 34.1 + 36 45 28.2	11.8	+ 3.
11 "	6	46 20.2	25 35.62	2 57.21	2.84	+1.29	+ 36 45 28.2	12.5	+ 3.
12 "	6.7	50 2.3 50 31.5	29 18.33 29 47.61	2 57.21 2 57.21	2.78 2.78	+1.30	+361120.0 +361658.4	13. 1 13. 0	$\begin{array}{c c} + & 3 \\ + & 3 \end{array}$
13 "	6	53 18, 3	32 34.87	2 57.21	2.77	$\begin{array}{c} + 1.30 \\ + 1.30 \\ + 1.30 \end{array}$	+ 36 11 20.0 + 36 16 58.4 + 36 3 9.0 + 46 59 42.0 + 38 53 57.5 + 15 44 10.4	13. 2	I 3
15 "	6	7 58 14.3	37 31.68	2 57.20	4.07	+ 2.75	+ 46 59 42.0	1.9	+ 3. + 5.
	6.7	8 2 50.3	42 8.44	2 57.20	3.07	+1.28	+ 38 53 57.5	10.2	+ 3.
00 T	7.8	8 30.8	47 49.87	2 57.20	1.07	- 1.51	+ 15 44 10.4	37.9	- <u>1</u> .
29π Leonis 431 Mayer	7.8	12 24.4 17 33.7	51 44, 11 56 54, 26	2 57.20 2 57.20	0.61 1.15	- 1.68 - 1.45	+ 9 3 45.5 + 16 47 15.3	48. 3 36. 4	- 1: - 1:
Regulus .		20 28.6	9 59 49.64	2 57. 19	0.88	-1.79	+ 13 0 12.9	42.0	_ 2.
34 Leonis	7	23 36.7	10 2 58.25	2 57. 19	0.98	— 1.62	+ 14 24 7.4	39. 8	— 2 .
438 Mayer	8	26 24.2	5 46.21	2 57.19	1.17	- 1.42	+ 17 11 23.2	35.8	— <u>]</u> .
39 Leonis 41γ "	1	28 55.4 31 37.6	8 17.82 11 0.46	2 57. 19 2 57. 19	1.70 1.45	0.60 1.15	+ 24 10 3.8 + 20 54 44.2	26.7 30.8	0.
28 Leonis Min.	1	35 15.0	14 38.46	2 57. 19	2.64	⊥ 1.35	+ 34 47 15.0		+ 3.
30 "	6	37 2.4	16 26. 15	2 57.19	2, 65	$\begin{array}{c} + 1.34 \\ + 1.40 \\ + 1.27 \end{array}$	+ 34 52 16.1	14.6	+ 3.
33 "	5	43 5.3	22 30.04	2 57. 18	2.51	+1.40	+ 34 52 16.1 + 33 27 50.0 + 37 25 18.5	16.0	+ 2.
35 " 50 Leonis	7	47 26.1 50 52.0	26 51.55 30 18.01	2 57.18 2 57.18	2.91 1.18	+1.27 -1.42	+ 37 25 18.5 + 17 14 1.2	11.7 35.7	+ 3. - 1.
00 1300IIIs	8	55 42.1	35 8.90	2 57. 18	1.34	-1.28	¥ 19 25 44.0	32. 9	_ i.
51 m "	7	8 58 15.5	37 42.72	2 57. 17	1.38	— 1.23	÷ 20 0 41.6	32.0	— 1.
	6	9 2 22.7	41 50.60	2 57. 17	1.73	- 0.52	+ 24 31 44.5	26.3	+ 0.
48 Leonis Min.	7	6 25.3 8 18.5	45 53.86 47 47.37	2 57. 17 2 57. 17	1. 99 — 1. 91	+0.07 + 0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23. 4 0 23. 7	+ 0. + 0.
40 Leonis Bill.	7.8	12 26.3	51 55.85	2 57.17	+ 0.15	+ 1.15	2 19 18.7	1 12.0	⊥ ŏ.
	7	15 2.2	54 32.19	2 57.17	+0.16	+ 1.16	— 2 21 27.2	1 12.3	- 0.
	9. 10	18 51.7	10 58 22.32	2 57.16	— 1.51	 1.06	+ 21 37 59.5	0 29.9	— 0.
68 & Leonis		26 2.7	11 5 34.50 8 35.90	2 57. 16 2 57. 16	- 1.51 - 0.16	- 1.05	$+ 21 41 18.2 \\ - 2 28 41.4$	0 29.9 1 12.5	— 0. — 0.
74 ¢ "		29 3.6 36 20.0	15 53.49	2 57. 16	+ 0. 16 - 0. 17	+1.20 -0.21	+ 2 35 1.0	1 0.7	_ i.
84 τ "		40 11.9	19 46.03	2 57. 15	0.27	- 0.45	+ 4 2 11.0	0 57.7	— 1.
86 "	6	42 35.5	22 10.03	2 57. 15	1.35	1.27	+ 19351.21	32.7	— 1.
89 "	8	45 35.3	25 10.32 96 15 10	2 57.15	0.30	0.56 0.50	+ 4 32 47.0 + 4 15 3.5	56. 7 57. 3	— 1.
61 Ursæ Maj.	6	46 39.9 52 58.9	26 15.10 32 35.14	2 57. 15 2 57. 15	0.28 2.70	-0.50 + 1.32	+ 4 15 3.5 + 35 24 3.4	13.9	— 1. + 3.
62 "	7	55 31.3	35 7.95	2 57. 15	2.46	+1.32 + 1.40	+325633.0	16.6	+ 3. + 2.
3ν Virginis .	ا ـ ـ ا	9 58 6.1	37 43.18	2 57. 14	0.52	- 1.31	+ 7 43 41.2	50.7	— <u>I</u> .
4 ξ ⁿ Virginis .	5.6	10 0 10.2	11 39 47.61	 2 57.14	 0.63	- 2.04	+ 9262.2	- 0 47.9	— 1.
	!!				!			!	
% assumed as 30° 30° T. III assumed as 6.5	0.115. mot	200 201 40 115	Transits over T.				ssumed as 22°; not		

(53)

Nama	Man	T	Ann aid time	Clock com	m ton d		, , l	Refr.	ہ ا
Name	Mag.	1	App. sid. time	Clock corr.	n tan o	<i>q</i>	ζφ	Keir.	q'
05 - Taanin	7	h m s	h m s 11 47 31,67	m s 2 57.14	s — 1, 15	 1, 44	0 ' " + 16 50 6.0	, ,, 0 36,5	_ 1.
95 o Leonis $8 \pi \text{ Virginis}$.	•	10 7 53.0 13 6.5	52 46, 03	2 57. 13	0.52	-1.32		0 30.3 50.7	= i.
497 Mayer	7	16 0.5	55 40, 51	2 57. 13	0.45	- 1.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 52, 6	- î.
500 "	7	20 13.0	11 59 53,70	2 57, 13	0. 12	 0.07	+ 1 49 17.0	1 2.6	 - 1 .
10 r Virginis .	8	21 53.1 30 38.0	12 1 34.07 10 20.41	2 57.13 2 57.13	-0.20 + 0.51	-0.30 + 1.88	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 59.9 1 28.0	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$
14 "	9	31 25.3	11 7.84	2 57, 13	+0.51	$\stackrel{+}{+} \stackrel{1.88}{1.88}$	- 7 42 47.0	1 28.0	
17 "		34 47.6	14 30, 69	2 57.13	· 0.43	— 1.04	+ 6 29 54.6	0 53.1	 1.
	7	38 22.8	18 6.48	2 57. 12	1. 17	— 1.43	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36. 1	- 1.
	7.8	10 42 52.1 11 22 36.3	12 22 36.52 13 2 27.24	2 57. 12 2 57. 10	-0.73 + 0.59	 4.32 1.85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 45.5 1 32.4	- 1 - 0
57 "		27 21.5	7 13. 23	2 57.10	1, 29	+ 1.85 + 1.46	— 18 46 27.8	2 20. 9	
	4	32 56, 0	12 48.65	2 57.10	1.26	+1.51	— 18 20 18.4	2 17.8	- 0
67 a "		36 50, 6	16 43.88	2 57.10	0.67	+ 1.79	- 10 1 36.0	1 36.5	- 0
72 l ¹ "		42 10.6 43 44.1	22 4.76 23 38.51	2 57.09 2 57.09	0.36 0.34	+1.78 + 1.76	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21. 0 20. 3	-0
80 l ³ "		47 17.7	27 12.69	2 57.09	0.98	⊥ 1 63	- 4 17 34.6	1 17.9	
	6.7	51 20, 2	31 15.85	2 57.09	1.04	+1.62 + 1.61	15 19 59.6	2 0.0	- 0
83 "		11 55 49.9	35 46.29	2 57.09	1.02	+ 1.61	- 15 4 39.8	1 58.6	- 0
89 "	9. 10	12 1 5.5 6 14.1	41 2.75 46 12.20	2 57.08 2 57.08	$+1.16 \\ -0.28$	+1.64 -0.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 9.8 0 57.7	-0
92 "	5, 10	8 26. 1	48 24.56	2 57.08	- 0. 14	- 0.12	¥ 2 6 18.7	1 2.1	— j
	6.7	11 34, 6	51 33.58	2 57.08	+0.17	+1.20	 22941. 8	12. 9	- 0
$93 au ext{ "} $	7	13 37.4	53 36.73 13 57 46.31	2 57.08	-0.17	- 0.21	+ 2 35 20.1 - 7 51 12.9	1.0 28.8	
96 "	5	17 46.3 20 24.6	14 0 25.04	2 57.07 2 57.07	$+0.52 \\ 0.62$	+1.88 + 1.83	- 7 51 12.9 - 9 18 9.5	33. 9	
	8	22 33, 4	2 34.19	2 57.07	0, 33	+ 1.73	- 4 56 55.0	19. 9	- 0
98 κ "	5	24 16.7	4 17.77	2 57.07	0.62	+ 1.83	- 9 15 34.9	33, 7	- 0
99 ι "		27 35.2 34 40.8	7 36.81 14 43.58	2 57.07 2 57.07	0. 33 0. 72	+ 1.73 + 1.74	- 4 57 55.3 - 10 42 59.9	20. 1 39. 2	
104 Virginis .		38 55.6	18 59.08	2 57.07		+1.76	- 5 8 18.0	1 20.3	
25 ρ Bootis		45 24.6	25 29, 15	2 57.06	-2.31	+ 1.33	+ 31 18 18.4	0 18.5	+ 2
28 σ "		48 9.4	28 14.40	2 57.06	2. 25	+ 1.27	+ 3 0 40 10.8	19. 2	+ 2
29π "	6	53 28, 4 12 56 48, 1	33 34.27 36 54.52	2 57.06 2 57.06	1. 19 1. 97	- 1.42 - 0.36	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35. 9 23. 0	
	7	13 0 26.5	40 33, 52	2 57.05	1.38	- 1. 23		32.4	_ i
	7	2 26.5	42 33, 85	2 57.05	1.41	— 1.20	+ 19 56 30.0 + 20 23 54.0	31.8	- 1
37 ξ '	7	4 17.8 6 26.6	44 25, 45 46 34, 60	2 57.05 2 57.05	1.38 1.38	-1.23 -1.23	+ 19 59 15.6 + 20 0 49.2	32. 4 32. 4	
	6.7	6 26.6 9 57.7	50 6.28	2 57.05 2 57.05	1.18	-1.42	+ 17 15 1.2	36. I	
	7.8	12 5.6	52 14, 55	2 57.05	1.77	0.37	+25 131.0	25. 9	+ 0
	7	14 1.2	54 10.45	2 57.05	1.60	-0.87	+ 22 53 25.2	28.6	- 0
45 c "	8	16 6.2 20 37.5	14 56 15.85 15 0 47.84	2 57.04 2 57.04	1.30 1.83	- 1.32 - 0.19	+ 22 53 25.2 + 18 48 50.8 + 25 41 54.6 + 25 55 22.5	34. 0 25. 1	<u> 1</u>
	6.7	21 59.4	2 9.96	2 57.04	1.85	-0.13	+ 25 55 22.5	24.8	+ 0
40 • 44	6	25 3.2	5 14.26	2 57, 04	1.36	— 1, 25	+ 19 46 47.0	32, 6	 1
49 8 "		29 34, 2 33 57, 7	9 46.00 14 10.22	2 57.04 2 57.04	2.57 2.23	+ 1.38 + 1.24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15. 4	$+ \frac{2}{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		35 57.7 37 2.2	14 10.22 17 15.22	2 57.04	2.23	+1.24		19.6 18.9	$\prod_{i=1}^{\infty} \frac{z_i^2}{2}$
3β "		41 40.0	21 53.78	2 57.03	- 2. 18	+ 1.31 + 1.17	i∔ 29 50 8.6 l	0 20.2	$ + \frac{2}{1}$
38 γ Librae		13 46 6.8	15 26 21.32	2 57.03	+ 0.95	+ 1.58	— 14 3 5.7	— 1 54.5	- o
			18/60	APBIL	18			то согт. = +	1/ 49/
 1	1		1,93	ACDIN.		ı	Z.ei		. 7 <i>6</i> 7.
Venus .	İ	1 40 44.8	3 26 53.27		1		+ 19 3 50.2	— 0 33.0	<u> - 1</u>
67 a Virginis .		11 28 56.7	13 16 41.80	- 2 54.99 9 54.00	+ 0.67	+ 1.79	- 10 1 48.0	1 35.2	- 0
70 "	7.8	33 3.2 37 1.8	20 49.00 24 48.23	2 54.99 2 54.98	-1.01 + 0.49	-1.58 + 1.88	+ 14 55 21.0 - 7 19 58.0	0 38, 8 1 25, 8	
	6.7	43 25.8	31 13, 28	2 54.98	1.03	+ 1.62	— 15 20 12.0	1 58.4	- ŏ
	7	11 50 31.1	13 38 19.74	2 54.97	+ 1.23	+ 1.52	— 18 9 27.2	- 2 14.7	- O
	!		<u> </u>	·	1				1
\$ assumed as 56° 33′ 5 Min. assumed as 22m. discordant.	// . not 5	60 32' 47".	d T. III assume	d as 12m. 31s.;	not 12m, 41	a f g	assumed as 62° 54'	13// not 629	54/ 43

(54)

			1783 API	BIL 18C•	ntinned		Zer	ro corr. = + 1	l' 42 '. 4 .
Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζφ	Refr.	-q'
) 89 Virginis	5. 6 7 7 6	h m s 11 53 12.3 12 0 32.5 5 43.4 9 58.0 13 25.3 18 45.4 20 52.4	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	m s 	+ 1.15 - 0.13 0.17 1.91 1.78 0.94 - 1.39	+0.29 -1.65	- 17 2 30.0 + 2 6 15.2 + 2 35 14.8 + 26 50 51.5 + 25 19 5.6 + 13 57 51.6 + 20 17 44.2	1 1.1 1 0.2 0 23.3 25.2	-1.1 $+1.0$ $+0.5$ -2.0
) 3 Librae 4 "	7 7 6 6 6	27 35 45.8 41 49.8 45 39.5 48 37,9	15 23 41, 88 29 46, 88 33 37, 21 36 36, 10	2 54.94 2 54.94 2 54.94 2 54.94	+ 1.60 1.69 1.69 1.54	+ 1.88 + 2.23 + 2.22 + 1.66	- 15 6 17.0 - 23 1 58.9 - 24 3 30.6 - 24 2 27.2 - 22 12 31.0 - 15 7 41.6	1 57.3 2 53.9 3 5.1	- 0.5 - 1.5 - 1.8 - 1.8
14 ") 19 δ " 20 γ Libræ 595 Mayer 33 ξ Libræ) 606 Mayer	6.7 7 7.8 7	12 59 46.2 13 4 18.3 12 6.3 15 30.3 18 41.4 32 9.2 34 59.4	47 46.23 52 19.07 0 8.34 3 32.90 6 44.52 20 14.53 23 5.20	2 54.93 2 54.92 2 54.92 2 54.92 2 54.91 2 54.90	1.60 1.62 1.49 1.13 1.29	+ 1.93 + 1.55 + 1.66 + 1.45		40. 4 6. 0 2 19. 8	- 0.8 - 2.0 - 1.8 - 1.8 - 0.8 - 0.8
38 y Libræ		13 38 13.5	15 26 19.83 1783	- 2 54, 90 APBIL 1	<u> </u>	+ 1.58		- 1 52.1 pro corr. = +	
Venus Sirius	7 8 7 8 6.5 8 9 9 8 7 6 11 10 7 8 7.8 7.8	1 41 45, 2 4 47 51, 6 5 40 8, 3 5 44 25, 5 6 42 45, 5 6 44 23, 4 7 39 23, 8 41 46, 7 46 54, 7 49 41, 5 51 24, 2 56 48, 2 7 58 56, 1 8 3 37, 3 14 20, 4 16 13, 7 19 27 5, 9 30 55, 7 33 47, 0 35 13, 2 41 1, 3 46 38, 9 53 25, 4 56 27, 4 8 58 41, 9	3 31 50, 39 6 38 27, 36 7 30 52, 65 7 34 57, 52 8 33 40, 14 8 35 18, 31 9 30 27, 74 32 34, 89 35 51, 53 37 59, 88 40 47, 14 42 30, 12 45 34, 62 47 55, 00 50 3, 25 54 45, 22 9 57 55, 14 10 5 30, 69 7 23, 69 10 57, 67 13 46, 63 15 57, 67 12 4 59, 69 10 24 59, 87 24 59, 69 10 57, 67 13 46, 63 15 7, 67 18 17, 67 22 8, 10 24 59, 87 24 59, 87 44 41, 48 45 51, 49 49 58, 86 10 52 27, 17	- 2 54, 44 2 54, 41 2 54, 41 2 54, 41 2 54, 35 2 54, 35 2 54, 35 2 54, 34 2 54, 34 2 54, 34 2 54, 34 2 54, 33 2 54, 31 2 54, 31 2 54, 31	+ 0.35 - 0.03 0.54 0.53 1.36 1.03 1.90 1.94 1.88	- 0.98 - 1.32 - 4.29 - 0.54 - 0.28 - 1.68 - 3.48 - 1.67 - 0.98 - 1.67 - 0.98 - 1.35 - 1.15 - 1.36 + 1.76 + 0.22 - 1.41 - 1.38 - 1.54 + 0.12 + 0.33 + 0.06 - 1.17	+ 19 24 35, 8 - 16 25 45, 8 + 5 5 45, 8 + 28 30 48, 0 + 22 13 1, 6 + 18 55 13, 8 + 14 15 50, 8 + 10 51 10, 0 + 24 26 35, 0 + 24 37 12, 6 + 25 23 33, 7 + 9 4 25, 4 + 9 56 10, 0 + 11 58 3, 0 + 9 15 14, 0 + 13 48 55, 5 + 22 13 30, 0 + 14 3 13, 0 + 18 47 37, 6 + 20 54 40, 2 + 10 2 1, 0 + 11 3 48 55, 5 + 22 13, 0 + 18 47 37, 6 + 20 54 40, 2 + 10 2 1, 0 + 11 3 48 55, 5 + 22 13, 0 + 15 18 57, 9 + 26 45, 0 + 19 57 58, 0 + 15 18 57, 9 + 26 45 50, 0 + 27 20 8, 0 + 26 37 4, 2 + 26 37 53, 3 + 20 45 29, 4	28. 7 33. 0 39. 4 44. 8 26. 0 25. 8 24. 9 47. 8 46. 3 43. 4 40. 2 28. 7 3 30. 3 46. 1 0 43. 4 1 19. 1 1 4. 3 0 49. 1 49. 3 23. 2 22. 6 23. 2 22. 6 23. 4	- 1.5 + 1.5 - 0.5 - 1.5 - 1.5 + 0.5 + 0.5 + 0.5 - 1.6

			1783 APR	IL 19—Con	tin ned		Zer	o corr. = +	1′ 44″.6
· Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζφ	Refr.	q'
63 χ Leonis . 81 " - 84 τ " - 480 Mayer . 91 υ Leonis . 484 Mayer . 94 β Leonis . 491 Mayer .	8.9 6 7 - - 8 - 7.8	h m s 9 4 4.2 5 29.2 14 23.5 20 40.0 25 54.2 28 21.4 32 26.3 33 34 7.3 37 22.5 42 35.0 45 48.3 49 32.2 9 55 47.9	h m s 10 55 22.05 10 56 47.28 11 5 43.04 12 0.57 17 15.63 19 43.23 23 48.80 25 30.08 28 45.81 33 59.16 37 12.99 40 57.50 47 14.23	m s	\$ -0.58 0.56 0.61 1.26 -0.26 +0.34 +0.35 -0.02 0.38 0.54 1.06	** 1.56	- 0 / " + 8 43 51.2 + 8 29 16.0 + 9 13 36.8 + 17 37 33.1 + 4 1 59.0 - 5 16 49.8 - 5 21 3.0 + 0 21 32.4 + 5 55 51.4 + 8 13 5.5 + 15 45 50.8 + 2 17 27.5	7	
8 π Virginis 95 '' - 98 κ '' - 99 ι '' - 29 π Bootis - 34 '' - 37 ξ '' -	7.8 8 - 6 8	10 1 16.1 12 6 22.1 12 25.9 15 44.3 32 31.2 41 37.2 44 57.5 48 36.5 52 26.9 54 34.5	52 43. 34 13 58 9. 89 14 4 14. 69 7 33. 63 20 8. 49 24 23. 29 33 30. 78 36 51. 63 40 31. 33 44 22. 26 46 30. 21	2 54, 28 2 54, 22 2 54, 21 2 54, 20 2 54, 20 2 54, 20 2 54, 20 2 54, 19 2 54, 19 2 54, 19	- 0.52 + 0.54 0.61 + 0.32 - 1.06 1.26 1.17 1.95 1.36 1.36		+ 7 48 23.2 - 8 16 45.6 - 9 15 33.6 - 4 58 7.8 + 15 42 50.0 + 18 35 23.5 + 17 20 0.2 + 27 25 52.4 + 19 56 27.6 + 19 59 5.4 + 20 0 40.0	0 49, 9 1 28, 6 31, 9 1 18, 6 0 37, 6 33, 7 35, 3 22, 6 31, 8 31, 8	- 1. - 0. - 0. - 1. - 1. - 1. - 1. - 1.
45 c " .	7 7.8 7 6 8 7 7.8 alis	12 57 2.0 13 0 48.2 3 30.9 8 47.0 10 8.9 13 26.2 17 18.3 20 2.1 22 7.6	48 58.32 52 44.94 14 55 28.09 15 0 45.04 2 7.16 5 25.00 9 17.74 12 1.99 14 7.83	2 54, 19 2 54, 19 2 54, 19 2 54, 18 2 54, 18 2 54, 18 2 54, 18 2 54, 18 2 54, 18	1. 03 1. 06 1. 14 1. 80 1. 82 1. 60 1. 86 2. 31 2. 18	- 1.54 - 1.51 - 1.43 - 0.19 - 0.13 - 0.83 0.00 + 1.37 + 1.24	+ 15 18 38.2 + 15 40 57.5 + 16 53 20.0 + 25 41 48.0 + 25 55 15.0 + 23 6 56.0 + 26 25 37.0 + 31 36 39.0 + 31 32 2.0	38. 1 37. 8 35. 9 24. 7 24. 4 27. 8 23. 8 17. 9 19. 3	- 1. - 1. + 0. + 0. - 0. + 2. + 2.
2 n "	6.7	25 11.5 29 49.5 33 7.0 37 15.7 45 53.3 48 45.1 51 23.7 55 10.2 13 58 18.7 14 1 40.4	17 12.24 21 51.00 25 9.04 29 18.42 37 57.44 40 49.71 43 28.75 47 15.86 50 24.88 53 47.13	2 54. 18 2 54. 17 2 54. 17 2 54. 17 2 54. 17 2 54. 16 2 54. 16 2 54. 16 2 54. 16	2.26 2.15 - 1.12 + 0.92 2.00 1.75 1.72 0.94 1.51	+ 1.31 + 1.17 - 1.45 + 1.57 + 4.08 + 2.65 + 2.47 + 1.58 + 1.62 + 2.26	+ 31 3 8.4 + 29 50 3.3 + 16 46 46.4 - 13 47 18.7 - 28 3 52.5 - 25 3 14.6 - 24 38 34.2 - 14 10 53.0 - 21 58 32.8 - 24 5 30.2	18.5 19.9 0 36.1 1 50.8 4 2.2 3 16.8 3 11.6 1 52.9 2 44.1 3 5.5	+ 2. + 1. - 1. - 0. - 3. - 2. - 2. - 0. - 1.
8 β " . 644 Mayer . Antares 13 ζ Ophiuchi	6	6 33.5 3 36.6 11 12.4 15 48.0 21 44.1 26 49.0 14 35 55.2	58 41.03 15 55 43.65 16 3 20.70 7 57.06 13 54.14 18 59.87 16 28 7.56	2 54, 16 2 54, 16 2 54, 15 2 54, 15 2 54, 15 2 54, 15 — 2 54, 14	2. 38 2. 61 2. 09	+ 1.89 + 1.42 + 5.28 + 5.30 + 4.55 + 3.12 + 1.79	- 23 4 26.6 - 19 11 19.6 - 32 22 19.0 - 34 50 6.2 - 29 8 13.0 - 25 54 30.0 - 10 7 7.0	2 54, 3 2 22, 0 5 54, 5 7 55, 7 4 23, 2 3 27, 6 — 1 35, 5	- 1. - 0. - 7. -10. - 4. - 2. - 0.
			1793	APBIL 2	1		Zero	corr. = +	1′ 40″.(
82 m "		11 29 32, 0 33 31, 8 36 5, 7 41 22, 2 11 48 42, 8	13 29 6.84 33 7.31 35 41.63 40 59.00 13 48 20.81	- 2 52.72 2 52.72 2 52.72 2 52.72 2 52.72 - 2 52.71	+ 0.44 0.49 0.99 + 1.13 - 0.13	+ 1.87 + 1.88 + 1.61 + 1.64 - 0.12	- 6 46 3.7 - 7 36 33.8 - 15 4 44.5 - 17 2 28.4 + 2 6 18.0	- 1 23.6 26.4 1 56.8 2 7.4 - 1 0.9	- 0. - 0. - 0. - 0. - 1.
assumed as 57° 7 assumed as 58° 6 Div. assumed as	' 50"; not 5' ' 39"; not 5 61 15 12; n	ot 61 15 13.	g assumed as 33 Div. assumed g assumed as 31 Div. assumed as 31	as 35 6 1; not 30 57'; not 310 5	35 5 15. 52'.	g T.	nsits over T.s II an orded over T.s I and II assumed as 29m. 32 '. III assumed as 29	l II. 2s. ; not 29m. :	26s., a

(56)

Name)	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
18 Boo 22 f 25 ρ 28 σ	turus - tis	7 6 6 6 6.7 5 6.7 6 7 8 7.8	h m s 11 52 38.9 11 59 27.0 12 3 47.1 6 56.2 9 2.0 12 2.1 163 36.8 25 40.7 28 24.7 31 34.6 37 4.3 44 33.5 48 33.5 48 37.7 51 2.7 52 27.4 57 37.8 12 58 16.3 13 2 8 823.2	h m s 13 52 17.56 13 59 6.78 14 3 27.59 6 37.21 8 43.35 11 43.94 16 19.89 19 19.88 25 24.78 28 9.23 31 6.71 33 30.00 36 50.25 44 20.68 48 21.54 50 50.95 52 15.88 57 26.53 14 58 5.74 15 1 58.98 15 8 14.30	m s - 2 52.71 2 52.71 2 52.71 2 52.71 2 52.71 2 52.71 2 52.70 2 52.70 2 52.70 2 52.70 2 52.70 2 52.70 2 52.70 2 52.69 2 52.69 2 52.69 2 52.69 2 52.69	2. 19 1. 28 1. 15 1. 92 1. 35 2. 21 1. 82 1. 80 1. 96 1. 94 — 1. 89	** 0.39	0 / " + 3 43 15.0 + 17 59 29.2 + 26 6 4.2 + 13 57 50.3 + 20 17 45.5 + 13 59 36.8 + 26 18 13.8 + 20 11 18.8 + 31 18 17.2 + 30 40 8.5 + 19 13 45.0 + 17 20 11.2 + 27 25 58.4 + 19 59 12.2 + 30 55 35.0 + 26 10 38.0 + 27 54 43.0 + 27 46 58.0 + 27 46 58.0 + 27 46 58.0 - 8 34 40.6	- 0 57.6 34.4 24.1 40.1 31.3 40.0 23.9 31.4 18.2 18.9 32.7 35.2 22.5 31.7 12.6 24.0 24.3 22.0 22.1 0 22.1	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1
		ļ		1783	APBIL 2	5			o corr. = +	
42 "" 17 Ursa 51 " 67 Leor 53 ξ Ursa 56 "" 57 "" 90 Leor 59 Ursa 61 "" 62 Leor 3 ν Virg 8 π Virg 9 0 "" 11 ε ""	er	7 8.9 5 8 5.6 7 7 7.8	8 1 56.6 5 18.4 8 42.3 11 58.4 15 14.7 19 9.3 21 48.8 35 17.9 40 25.5 40 25.5 40 38.2 45 9.0 48 20.6 50 32.6 54 32.5 55 47.7 8 58 50.4 9 4 48.3 5 17.1 11 20.3 14 39.6 17 29.7 20 1.4 22 35.8 25 52.2 28 11.4 31 47.7 34 29.7 37 36.5 42 2.6 9 46 49.2	10 16 43. 57 20 5. 93 23 30. 39 26 47. 03 30 3. 87 33 59. 11 36 39. 05 50 10. 37 55 18. 81 10 55 31. 55 11 0 3. 09 3 15. 21 5 27. 56 9 28. 12 10 43. 51 13 46. 71 19 45. 59 20 14. 47 26 18. 66 29 38. 50 32 29. 07 35 1. 19 37 36. 01 40 52. 95 43 12. 53 46 49. 42 49 31. 87 6. 01 12 1 53. 39	2 50. 63 2 50. 63 2 50. 63 2 50. 63 2 50. 62 2 50. 62 2 50. 62 2 50. 61 2 50. 61 2 50. 61 2 50. 61 2 50. 61 2 50. 61 2 50. 61 2 50. 61 2 50. 61 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60 2 50. 60	1. 91 2. 28 3. 27 3. 02 3. 02 1. 78 1. 02 1. 46 2. 36 2. 48 3. 64 3. 13 3. 14 1. 19 3. 68 2. 61 2. 39 0. 51 0. 62 0. 52 0. 52 0. 75 0. 75 0. 75	+ 0.36 + 1.38 + 1.39 + 1.29 + 1.29 - 0.16 - 1.52 - 1.40 + 1.35 + 1.33 - 1.40 + 1.31 - 1.01 - 1.31 - 1.01 - 1.31 - 1.33 - 1.40 - 1.31 - 1.33 - 1.40 - 1.31 - 1.33 - 1.40 - 1.31 - 1.40 - 1.31 - 1.33 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.32 - 1.40 - 1.33 - 1.40 - 1.31 - 1.40 - 1.31 - 1.40 - 1.31 - 1.33 - 1.40 - 1.31 - 1.40 - 1.31 - 1.31 - 1.40 - 1.31 -	+ 9 51 50.0 + 15 25 44.2 + 15 13 33.4 + 3 18 25.0 + 27 26 14.8 + 31 47 53.4 + 41 33 29.4 + 39 23 20.0 + 25 48 26.0 + 15 33 27.4 + 21 41 16.4 + 32 43 22.5 + 33 58 58.8 + 44 38 32.0 + 40 30 12.2 + 17 58 28.3 + 44 47 54.2 + 37 43 39.7 + 6 22 54.2 + 17 59 34.6 + 12 59 34.6 + 12 59 34.6 + 9 37 56.2 + 8 10 5.0 + 7 48 25.9 + 7 48 25.9 + 7 48 25.9 + 9 40 50 52.8	22. 6 17. 7 7. 4 9. 6 9. 6 24. 5 37. 9 29. 6 16. 7 15. 3 4. 2 8. 5 8. 5 4. 0 13. 8 16. 4 50. 3 52. 7 41. 7 47. 1 49. 9 50. 3 50. 3 50. 3 50. 3 50. 3 60. 8 60. ++++++++++++++++++++++++++++++++++++++	
51 θ " 56 " 61 "		7	10 46 20.5 50 58.8 53 41.2 10 56 31.6	13 1 34.47 6 13.53 8 56.37 13 11 47.23	2 50.57 2 50.57	0,60 -	+ 1.64 - + 1.84 - + 1.82 - + 1.79 -	- 4 23 8.2 - 9 13 13.1 - 9 24 11.4 - 10 9 46.8	1 17.2 1 32.6 1 33.2 - 1 36.1	— .0. — 0. — 0. — 0.

Mag. T R 11 0 6.4 1 20.8 7 54.5 7 10 28.8 7 14 18.2 19 44.3 23 16.7 6.7 27 5.2 7.8 31 2.7 8 47 3.6 8 47 57.6 8 47 57.6 8 47 57.6 8 47 57.5 8 11 59 11.0 12 0 26.6 9 55.2 8.7 10 22.4 12 39.8 6.7 15 35.1 17 58.6 6 24 56.4 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 38 31.7 39 58.4 42 30.3 45 7.5	App. sid. time h m s 13 15 22 62 16 37 22 25 46 74 29 36 78 35 3 78 38 36 76 42 25 88 46 24 03 13 59 4 60 14 2 27 56 3 22 01 5 54 53 7 29 90 9 29 94 14 36 95 15 52 76 25 22 92 25 50 19 28 7 97 31 3 75 33 27 63 36 48 08 40 26 58 43 31 99 46 31 98 49 59 95 54 4 18 55 31 05 14 58 3 37 15 0 41 00 17 18 3 37 16 0 41 00 17 18 3 37 17 18 3 37 18 3 37 19 41 00 10 11 12 13 11 12 13 12 13 13 13 14 15 14 15 13 13 15 14 15 13 13 16 17 17 17 17 18 18 18 18 18 18 19 18 18 19 18 18 10 18 18 11 18 18 12 18 18 13 18 14 18 18 15 18 18 16 18 18 17 18 18 18 18 18 19 18 18 19 18 18 10 18 10	m s 2 50. 57 2 50. 57 2 50. 57 2 50. 56 2 50. 56 2 50. 56 2 50. 56 2 50. 56 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 55 2 50. 54	+ 0.63 - 0.49 - 0.23 - 0.30 + 0.56 - 0.42 - 0.98 1.12 - 1.19 + 0.32 0.32 0.32 0.32 0.32 1.17 0.70 + 2.25 2.18 1.28 1.19 1.33 2.08 1.14 1.55 1.78 1.94	# 1.80 + 1.80 + 1.79 + 1.88 - 0.36 - 0.58 - 1.58 - 1.58 - 1.43 + 1.75 + 1.75 + 1.75 + 1.75 + 1.75 + 1.74 + 1.32 + 1.32 + 1.30 - 1.42 - 1.42 - 0.87 - 1.42 - 0.15 + 0.47	σ , σ , σ , σ , σ , σ , σ , σ , σ , σ ,	19. 1 33. 0 35. 6 22. 8 32. 1	- 0 - 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
8	13 15 22. 62 16 37. 22 23 12. 02 25 46. 74 29 36. 78 38 36. 76 38 36. 76 42 25. 88 46 24. 03 49 6. 07 13 59 4. 60 14 2 27. 56 3 22. 01 5 54. 53 7 29. 90 9 29. 94 14 36. 95 15 52. 92 25 50. 19 28 7. 97 31 3. 76 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	- 2 50, 57 2 50, 57 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53	+ 0.63 0.65 1.16 + 0.49 - 0.23 - 0.30 + 0.56 - 0.42 0.98 1.12 - 1.19 + 0.32 0.32 1.17 0.70 + 0.69 - 2.23 2.18 1.28 1.14 1.33 2.08 1.14 1.55 1.78 1.94	+ 1.59 + 0.36 - 0.58 + 1.81 - 1.05 - 1.44 - 1.43 + 1.73 + 1.75 + 1.76 + 1.74 + 1.33 + 1.32 + 1.32 - 1.42 + 1.30 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.43 - 1.58	- 9 44 16.0 - 10 1 38.4 - 17 35 51.6 - 7 30 16.6 + 3 25 55.0 + 4 37 41.7 - 8 37 13.2 + 6 33 54.0 + 14 53 25.0 + 16 56 1.4 + 17 59 24.4 - 4 57 6 20.0 - 4 56 21.0 - 4 56 21.0 - 4 57 59.3 - 17 41 43.4 - 10 43 4.6 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 5.0 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 22 53 56.8	- 1 34.5 1 35.6 2 11.9 1 26.8 0 58.7 0 56.3 1 30.5 0 52.6 39.1 36.1 0 34.7 1 20.0 19.6 20.4 1 19.3 2 12.9 1 38.5	
7 7 54.5 7 10 28.8 7 10 28.8 10 28.8 11 18.2 19 44.3 7 23 16.7 7.8 31 2.7 8 43 41.3 8 47 57.9 8 50 30.0 52 5.1 6 7.8 11 59 11.0 7.8 12 0 26.6 9 55.2 10 22.4 12 39.8 6.7 15 35.1 17 58.6 6 21 18.5 7.8 24 56.4 6.7 38 31.7 7 31 0.8 6 34 28.2 6 39 58.4 12 39.8 6 34 28.2 7 38 31.7 7 39 58.4 42 30.3	16 37, 22 23 12, 02 25 46, 74 29 36, 78 35 3, 78 38 36, 76 42 25, 88 46 24, 03 49 6, 07 13 59 4, 56 14 2 27, 56 3 22, 01 5 54, 53 7 29, 90 9 29, 94 14 36, 95 15 52, 76 25 22, 92 25 50, 19 28 7, 97 31 3, 75 33 27, 63 36 48, 08 40 26, 58 43 31, 98 49 59, 95 54 4, 18 55 31, 05 14 58 3, 37	2 50, 57 2 50, 57 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 55 2 50, 53	1. 16 + 0. 49 + 0. 23 - 0. 30 + 0. 56 - 0. 98 1. 12 - 1. 19 + 0. 33 0. 12 0. 32 1. 17 0. 70 + 2. 25 2. 18 1. 28 1. 19 1. 33 2. 08 1. 14 1. 55 1. 78 1. 79	+ 1.59 + 0.36 - 0.58 + 1.81 - 1.05 - 1.44 - 1.43 + 1.73 + 1.75 + 1.76 + 1.74 + 1.33 + 1.32 + 1.32 - 1.42 + 1.30 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.43 - 1.58	- 10 1 38.4 - 17 35 51.6 - 7 35 51.6 - 7 35 51.6 + 3 24 55.0 + 4 37 41.7 - 8 37 13.2 + 6 33 54.0 + 14 53 25.0 + 16 56 1.4 + 17 59 24.4 - 4 57 1.0 - 4 56 21.0 - 4 56 21.0 - 4 56 21.0 - 4 57 59.3 - 17 41 43.6 - 10 43 4.6 - 10 43 4.6 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 5.0 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	1 35. 6 2 11. 9 1 26. 3 1 30. 5 0 52. 6 39. 1 36. 1 0 34. 7 1 20. 0 1 9. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 6 1 38.	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 54.5 7 10 28.8 14 18.2 19 44.3 7 23 16.7 6.7 27 5.2 7.8 31 34.7 8 47 57.9 8 47 57.9 8 50 30.0 52 5.1 6 54 4.8 7.8 11 59 11.0 7.8 12 0 26.6 9 55.2 8.7 10 22.4 12 39.8 6.7 15 35.1 17 58.6 6 21 18.5 7 31 0.8 6.7 38 31.7 6 34 28.2 6.7 38 31.7 9 55.2	23 12. 02 25 46. 74 29 36. 78 35 3. 78 38 36. 76 42 25. 88 46 24. 03 13 59 4. 60 14 2 27. 56 3 22. 01 5 54. 53 7 29. 90 9 29. 94 14 36. 75 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 57 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 53 2 50, 53 2 50, 53	1. 16 + 0. 49 + 0. 23 - 0. 30 + 0. 56 - 0. 98 1. 12 - 1. 19 + 0. 33 0. 12 0. 32 1. 17 0. 70 + 2. 25 2. 18 1. 28 1. 19 1. 33 2. 08 1. 14 1. 55 1. 78 1. 79	+ 1.59 + 0.36 - 0.58 + 1.81 - 1.05 - 1.44 - 1.43 + 1.73 + 1.75 + 1.76 + 1.74 + 1.33 + 1.32 + 1.32 - 1.42 + 1.30 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.43 - 1.58		2 11. 9 1 26. 8 0 58. 3 1 30. 5 0 52. 6 39. 1 36. 1 0 34. 7 1 20. 0 19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38.	- 0 1 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7	29 36.78 35 3.78 38 36.76 42 25.88 46 24.03 49 6.07 13 59 4.60 14 2 27.56 3 22.01 5 54.53 7 29.90 9 29.94 14 36.95 15 52.76 25 22.92 25 50.19 28 7.97 31 3.75 33 27.63 36 48.08 40 26.58 43 31.99 46 31.98 49 59.95 54 4.18 55 31.05 14 58 3.37	2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 55 2 50, 53 2 50, 53 2 50, 53	- 0.23 - 0.30 + 0.56 - 0.42 0.98 1.19 + 0.32 0.33 0.12 0.70 + 0.69 - 2.25 2.18 1.28 1.14 1.33 2.08 1.14 1.55 1.78 1.94	- 0.36 - 0.58 + 1.05 - 1.58 - 1.43 + 1.75 + 1.75 + 1.75 + 1.75 + 1.75 + 1.33 + 1.32 + 1.32 + 1.27 - 1.42 - 1.42 - 1.42 - 1.42 - 1.42 - 1.036 - 1.23 - 1.10 - 1.58	+ 3 25 55.0 + 4 37 41.7 - 8 37 13.2 + 6 33 54.0 + 14 53 25.0 + 16 56 1.4 + 17 59 24.0 - 4 57 1.0 - 5 6 20.0 - 4 57 59.3 - 17 41 43.8 - 10 43 4.6 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.0 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 25 50 56.8	0 58. 7 0 56. 3 1 30. 5 0 52. 6 39. 1 36. 1 1 20. 0 19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 1 18. 5 19. 1 33. 0 35. 6 22. 8 32. 1 35. 7 20. 4 31. 0 35. 7 28. 4 31. 0	- 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7	35 3.78 38 36.76 42 25.88 46 24.03 49 6.07 13 59 4.60 14 2 27.56 3 22.01 5 54.53 7 29.90 9 29.94 14 36.95 15 52.76 25 22.92 25 50.19 28 7.97 31 3.75 33 27.63 36 48.08 40 26.58 43 31.98 49 59.95 54 4.18 55 31.05 14 58 3.37	2 50, 56 2 50, 56 2 50, 56 2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 53 2 50, 53 2 50, 53	- 0.30 + 0.56 - 0.42 0.98 1.12 - 1.19 + 0.32 0.32 0.32 0.32 0.70 + 2.25 2.18 1.28 1.14 1.33 2.08 1.14 1.55 1.78	- 0.58 + 1.81 - 1.058 - 1.44 - 1.43 + 1.73 + 1.75 + 1.06 + 1.73 + 1.58 + 1.75 + 1.74 + 1.33 + 1.32 + 1.32 - 1.42 + 0.36 - 1.23 - 1.42 - 1.10 - 1.42 - 1.23 - 1.42 - 1.58	+ 4 37 41.7 - 8 37 13.2 + 6 33 54.0 + 14 53 25.0 + 16 56 1.4 + 17 59 24.4 - 4 57 1.0 - 5 6 20.0 - 4 56 21.0 - 4 57 59.3 - 17 41 43.6 - 10 43 4.6 - 10 43 4.6 - 10 40 45.8 + 31 11 5.0 + 31 11 5.0 + 31 11 5.0 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	0 56. 3 1 30. 5 0 52. 6 39. 1 36. 1 0 34. 7 1 20. 0 1 19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 0 18. 4 18. 5 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 6 22. 8	
6.7 27 5.2 7.8 31 2.7 8 33 44.2 8 47 57.9 8 50 30.0 52 5.1 6 7.8 11 59 11.0 7.8 6 6.7 17 58.6 6 6.7 17 58.6 6 6.7 31 0.8 6 6.7 33 58.4 6.7 33 58.4 42 30.3	42 25. 88 46 24. 03 49 6. 07 13 59 4. 60 14 2 27. 56 3 22. 01 5 54. 53 7 29. 90 9 29. 94 14 36. 95 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 56 2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	- 0.42 0.98 1.12 - 1.19 + 0.32 0.32 1.17 0.70 + 2.25 2.18 1.28 1.14 1.91 1.33 2.08 1.14 1.55 1.78 1.94		- 8 37 13.2 + 6 33 54.0 + 14 53 25.0 + 16 56 1.4 + 17 59 24.4 - 4 57 1.0 - 4 56 21.0 - 4 56 21.0 - 4 57 59.3 - 17 41 43.8 - 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	0 52.6 39.1 0 34.7 1 20.0 19.6 20.4 1 19.3 2 12.9 1 38.5 1 38.5 0 18.4 18.5 19.1 33.0 35.6 22.8 32.1 20.4 31.0 35.7 28.4 24.7	
7.8 31 2.7 33 44.3 7 43 41.2 8 47 57.9 8 50 30.0 52 5.1 54 4.8 7.8 11 59 11.0 7.8 12 0 26.5 2 10 22.4 12 39.8 6.7 15 35.1 17 58.6 6 21 18.5 7.8 24 56.4 6.7 38 31.7 39 58.4 42 30.3	46 24. 03 49 6. 07 13 59 4. 60 14 2 27. 56 3 22. 01 5 54. 53 7 29. 90 9 29. 94 14 36. 95 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 56 2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 55 2 50, 55 2 50, 55 2 50, 53 2 50, 53 2 50, 53	0.98 1.12 1.19 1.032 0.33 0.12 0.32 1.17 0.70 1.069 1.28 2.23 2.18 1.28 1.14 1.91 1.33 2.08 1.14 1.55 1.78	- 1.58 - 1.44 - 1.73 + 1.75 + 1.06 + 1.75 + 1.75 + 1.32 + 1.32 + 1.32 + 1.27 - 1.42 + 0.36 - 1.23 - 1.42 - 0.87	+ 14 53 25.0 + 16 56 1.4 + 17 59 24.4 - 4 57 1.0 - 5 6 20.0 - 4 56 21.0 - 4 57 59.3 - 17 41 43.8 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	39. 1 36. 1 0 34. 7 1 20. 0 19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 0 18. 4 18. 5 19. 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 31. 7 28. 4 24. 7	
8 33 44.3 7 43 41.2 8 47 3.6 8 47 57.9 8 50 30.0 52 5.1 6 7.8 11 59 11.0 7.8 12 0 26.6 9 55.2 8.7 10 22.4 12 39.5 6.7 15 35.1 17 58.6 6 21 18.5 7.8 1.3 7 31 0.8 6.7 38 31.7 7 38 31.7 39 58.4 42 30.3	49 6.07 13 59 4.60 14 2 27.56 3 22.01 5 54.53 7 29.90 9 29.94 14 36.95 15 52.76 25 22.92 25 50.19 28 7.97 31 3.75 33 27.63 36 48.08 40 26.58 43 31.98 49 59.95 54 4.18 55 31.05 14 58 3.37	2 50, 56 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54	1. 12 - 1. 19 + 0. 32 0. 33 0. 12 0. 32 1. 17 0. 70 + 2. 25 2. 23 2. 18 1. 28 1. 14 1. 33 2. 08 1. 14 1. 55 1. 78 1. 78	- 1.44 - 1.43 + 1.73 + 1.76 + 1.06 + 1.73 + 1.58 + 1.74 + 1.33 + 1.32 + 1.27 - 1.42 + 0.36 - 1.23 - 1.10 - 1.42 - 0.87 - 0.87	+ 16 56 1.4 + 17 59 24.4 - 4 57 1.0 - 5 6 20.0 - 4 56 21.0 - 4 57 59.3 - 17 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 5.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 5.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	36. 1 0 34. 7 1 20. 0 19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 0 18. 4 18. 5 19. 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	
8 47 3.6 8 57.9 8 502 5.1 6 7.8 11 59 11.0 7.8 12 0 26.4 12 39.8 6.7 10 22.4 12 39.8 6.7 17 58.6 6 21 18.5 7.8 24 56.3 7 31 0.8 6.7 38 31.7 6 34 28.2 6.7 39.58.4 42 30.3	14 2 27. 56 3 22. 01 5 54. 53 7 29. 90 9 29. 94 14 36. 95 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	+ 0.32 0.33 0.12 0.32 1.17 0.70 + 0.69 - 2.25 2.23 2.18 1.28 1.14 1.91 1.33 2.08 1.14 1.55 1.78 1.78	+ 1.73 + 1.75 + 1.06 + 1.73 + 1.58 + 1.75 + 1.32 + 1.32 + 1.27 - 1.42 + 0.36 - 1.23 + 1.10 - 1.42 - 1.50 - 1.50 - 1.50 - 1.50	- 4 57 1.0 - 5 6 20.0 - 4 56 21.0 - 4 57 59.3 - 17 41 43.8 - 10 43 4.6 - 10 43 4.6 + 31 18 16.7 + 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	1 20. 0 19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 0 18. 4 18. 5 19. 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	
8	3 22. 01 5 54. 53 7 29. 90 9 29. 94 14 36. 95 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	0.12 0.32 1.17 0.70 + 0.69 - 2.25 2.23 2.18 1.28 1.14 1.91 1.33 2.08 1.14 1.55 1.78	+ 1.06 + 1.73 + 1.75 + 1.74 + 1.32 + 1.32 - 1.42 + 0.36 + 0.36 + 1.10 - 1.17 - 1.42 - 0.87	- 5 6 20.0 - 4 56 21.0 - 4 57 9.3 - 17 41 43.8 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2 + 25 50 56.8	19. 6 20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 0 18. 4 18. 5 19. 1 33. 0 35. 6 22. 8 22. 8 31. 0 35. 7 28. 4 31. 0	
8 50 30.0 52 5.1 54 4.8 7.8 11 59 11.0 7.8 12 0 26.6 9 55.2 8.7 10 22.4 8 15 35.1 17 58.6 6 21 18.5 7.8 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 38 31. 0.8 6 6.7 38 31. 0.8 6 34 28.2 6.7 38 58.4 42 30.3	5 54. 53 7 29. 90 9 29. 94 14 36. 95 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 55 2 50, 55 2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	0.12 0.32 1.17 0.70 + 0.69 - 2.25 2.23 2.18 1.28 1.14 1.91 1.33 2.08 1.14 1.55 1.78	+ 1.06 + 1.73 + 1.75 + 1.74 + 1.32 + 1.32 - 1.42 + 0.36 + 0.36 + 1.10 - 1.17 - 1.42 - 0.87	- 4 56 21.0 - 4 57 59.3 - 17 41 43.6 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.8	20. 4 1 19. 3 2 12. 9 1 38. 5 1 38. 5 0 18. 4 18. 5 19. 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	
6 7.8 11 59 11.0 6 9 55.2 8.7 10 22.4 12 39.8 6.7 17 58.6 6 21 18.5 7.8 24 56.4 6.7 28 1.3 39.58 6 34 28.2 6.7 39 58.2 4 230.3	9 29, 94 14 36, 95 15 52, 76 25 22, 92 25 50, 19 28 7, 97 31 3, 75 33 27, 63 36 48, 08 40 26, 58 43 31, 99 46 31, 98 49 59, 95 54 4, 18 55 31, 05 14 58 3, 37	2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	1. 17 0. 70 + 0. 69 - 2. 25 2. 23 2. 18 1. 28 1. 14 1. 91 1. 33 2. 08 1. 39 1. 14 1. 55 1. 78 1. 94	+ 1.58 + 1.75 + 1.74 + 1.33 + 1.32 + 1.27 - 1.42 + 0.36 - 1.23 + 1.10 - 1.17 - 1.42 - 0.87	- 17 41 43.8 - 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 55 0 56.8	2 12.9 1 38.5 1 38.5 0 18.4 18.5 19.1 33.0 35.6 22.8 32.1 20.4 31.0 35.7 28.4 24.7	
7.8 11 59 11.0 7.8 12 0 26.6 9 55.2 8.7 10 22.4 10 23.9 6.7 15 35.1 17 58.6 6 21 18.5 7 31 0.8 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 39 58.4 42 30.3	14 36. 95 15 52. 76 25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 55 2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	0.70 + 0.69 - 2.25 2.23 2.18 1.28 1.14 1.33 2.08 1.39 1.14 1.55 1.78	+ 1.75 + 1.74 + 1.33 + 1.32 + 1.27 - 1.30 - 1.42 + 0.36 + 1.10 - 1.17 - 1.42 - 0.87	- 10 43 4.6 - 10 40 45.8 + 31 18 16.7 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 56.8	1 38.5 1 38.5 0 18.4 18.5 19.1 33.0 35.6 22.8 32.1 20.4 31.0 35.7 28.4 24.7	
8.7 10 22.4 12 39.8 6.7 15 35.1 17 58.6 6 21 18.5 7.8 24 56.3 7 31 0.8 6 34 28.2 6.7 38 31.7 39 58.4 42 30.3	25 22. 92 25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 55 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	2. 23 2. 18 1. 28 1. 14 1. 91 1. 33 2. 08 1. 39 1. 14 1. 55 1. 78 1. 94	+ 1.32 + 1.27 - 1.30 - 1.42 + 0.36 - 1.23 + 1.10 - 1.17 - 1.42 - 0.87 - 0.15	- 10 40 45.8 + 31 18 16.7 + 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 53 24.2	1 38.5 0 18.4 18.5 19.1 33.0 35.6 22.8 32.1 20.4 31.0 35.7 28.4 24.7	++++-
8.7 10 22.4 12 39.8 6.7 15 58.6 6 21 18.5 7.8 24 56.4 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 39 58.4 42 30.3	25 50. 19 28 7. 97 31 3. 75 33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53 2 50, 53	2. 23 2. 18 1. 28 1. 14 1. 91 1. 33 2. 08 1. 39 1. 14 1. 55 1. 78 1. 94	+ 1.32 + 1.27 - 1.30 - 1.42 + 0.36 - 1.23 + 1.10 - 1.17 - 1.42 - 0.87 - 0.15	+ 31 11 53.0 + 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 22 50 56.8	18. 5 19. 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	+++-
12 39.8 6.7 15 35.1 17 58.6 6 21 18.5 7.8 24 56.4 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 38 31.7 39 58.4 42 30.3	28 7.97 31 3.75 33 27.63 36 48.08 40 26.58 43 31.99 46 31.98 49 59.95 54 4.18 55 31.05 14 58 3.37	2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	2.18 1.28 1.14 1.91 1.33 2.08 1.39 1.14 1.55 1.78 1.94	+ 1.27 - 1.30 - 1.42 + 0.36 - 1.23 + 1.10 - 1.42 - 0.87 - 0.15	+ 30 40 11.2 + 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 25 50 56.8	19. 1 33. 0 35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	+ + +
6 21 18.5 7.8 24 56.4 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 38 31.7 39 58.4 42 30.3	33 27. 63 36 48. 08 40 26. 58 43 31. 99 46 31. 98 49 59. 95 54 4. 18 55 31. 05 14 58 3. 37	2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	1.28 1.14 1.91 1.33 2.08 1.39 1.14 1.55 1.78 1.94	- 1.30 - 1.42 + 0.36 - 1.23 + 1.10 - 1.17 - 1.42 - 0.87 - 0.15	+ 19 13 42.4 + 17 20 6.0 + 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 25 50 56.8	35. 6 22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	1+1+1
6 21 18.5 7.8 24 56.4 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 38 31.7 39 58.4 42 30.3	36 48.08 40 26.58 43 31.99 46 31.98 49 59.95 54 4.18 55 31.05 14 58 3.37	2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53 2 50, 53	1.91 1.33 2.08 1.39 1.14 1.55 1.78 1.94	+ 0.36 - 1.23 + 1.10 - 1.17 - 1.42 - 0.87 - 0.15	+ 27 25 57.4 + 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 25 50 56.8	22. 8 32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	+-+-
7.8 24 56.4 6.7 28 1.3 7 31 0.8 6 34 28.2 6.7 38 31.7 39 58.4 42 30.3	40 26, 58 43 31, 99 46 31, 98 49 59, 95 54 4, 18 55 31, 05 14 58 3, 37	2 50, 54 2 50, 54 2 50, 54 2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	1.33 2.08 1.39 1.14 1.55 1.78 1.94	- 1.23 + 1.10 - 1.17 - 1.42 - 0.87 - 0.15	+ 19 56 36.4 + 29 29 44.8 + 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 25 50 56.8	32. 1 20. 4 31. 0 35. 7 28. 4 24. 7	+ (
7 6 31 0.8 34 28.2 38 31.7 39 58.4 42 30.3	46 31.98 49 59.95 54 4.18 55 31.05 14 58 3.37	2 50. 54 2 50. 54 2 50. 53 2 50. 53 2 50. 53 2 50. 53	1.39 1.14 1.55 1.78 1.94	- 1. 17 - 1. 42 - 0. 87 - 0. 15	+ 20 45 49.9 + 17 14 55.6 + 22 53 24.2 + 25 50 56.8	31. 0 35. 7 28. 4 24. 7	├ ─ (
6 34 28.2 38 31.7 39 58.4 42 30.3	49 59.95 54 4.18 55 31.05 14 58 3.37	2 50, 54 2 50, 53 2 50, 53 2 50, 53 2 50, 53	1.14 1.55 1.78 1.94	- 1.42 - 0.87 - 0.15	+ 17 14 55.6 + 22 53 24.2 + 25 50 56.8	35.7 28.4 24.7	
6.7 38 31.7 39 58.4 42 30.3	54 4.18 55 31.05 14 58 3.37	2 50, 53 2 50, 53 2 50, 53 2 50, 53	1.55 1.78 1.94	- 0.87 - 0.15	+ 22 53 24.2 + 25 50 56.8	28. 4 24. 7	
42 30.3	14 58 3.37	2 50, 53 2 50, 53	1.94				<u> - 9</u>
		2 50.53					‡ °
			1.77	$\frac{-}{0.19}$	+ 25 41 52.2	24.9	+ (
7 46 29.6 8 49 6.6	2 3.20	2 50.53	1.79	- 0.13	+ 25 55 22.0	24. 6 30. 9	+9
8 49 6.6 52 43.9	4 40.74 8 18.65	2 50, 53 2 50, 53	1. 40 2, 12	-1.16 + 1.18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 19.9	+
6 12 57 17.3	12 52.80	2 50.53	0.10	— 0. 01	+ 1 30 8.2	1 2.9	- (
8 13 1 48.5 7.6 3 3.0	17 24.73 18 39.43	2 50,53 2 50,53	0.77 1.06	- 4.57 - 1.48	+ 11 45 28.4 + 16 10 50.8	0 13.9 37.2	
7 6 32.0	22 9.00	2 50.53	1, 13	— 1.42	1 17 7 34.8	35.9	<u> -</u> :
7 9 28.0 6.7 10 23.0		2 50, 52 2 50, 52	1.10 1.10	- 1.45	+ 16 46 49.3	36. 4 36. 5	
6.7 10 23.0 7.8 15 16.2	26 0.63 30 54.63	2 50.52	2, 19	-1.45 +1.28	+ 16 44 5.4 + 30 41 35.0	19.1	1+ 9
6.7 17 41.7	33 20,53	2 50.52	2.62	+ 1.32	+ 35 21 48.4	14.0	J+ 3
20 53, 0 23 26, 0		2 50.52 2 50.52	1.87	+ 0.17 - 1.49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.3 37.4	+
5.6 26 13.2	41 53, 43	2 50, 52	1.25	- 1.32	+ 18 48 1.4	33.7	<u> </u>
6.7 30 20.7					+ 13 52 2.3		
			2.80	+1.27	+ 37 14 15.6	12.0	+
7.8 41 17.6	15 57 0.33	2 50.51	1.22	- 1.35	+ 18 23 20.0	34.2	
			2.38	+1.40	+32491.6	16.8	+
6 51 2.3		2 50.51	2.76	¥ 1.28	+ 36 57 50.6	12.2	+
			2.52	+1.37	+ 34 23 18.8		+ :
13 59 30.5		2 50.51	1.31	1.28	+ 19 39 7.1	32.6	<u>+</u>
. 14 2 33.2	16 18 19.42	- 2 50, 51	- 0.95	— 1.61	+ 14 31 31.6	- 0 39.8	-
	5.6 26 13.2 30 20.7 33 40.0 6.7 38 9.4 7.8 41 17.6 7.8 47 45.3 6 51 2.3 42.1 7 56 27.4 13 59 30.5	5.6 26 13.2 41 53.43 6.7 30 20.7 46 1.61 33 40.0 49 21.46 6.7 38 9.4 53 51.61 7.8 41 17.6 15 57 0.33 7 44 30.1 16 0 13.36 7.8 47 45.3 3 29.09 6 51 2.3 6 46.63 7 56 27.4 12 12.62 13 59 30.5 15 16.22	5. 6 26 13.2 41 53.43 2 50.52 6. 7 30 20.7 46 1.61 2 50.52 33 40.0 49 21.46 2 50.52 6. 7 38 9.4 53 51.61 2 50.52 7. 8 41 17.6 15 57 0.33 2 50.51 7 44 30.1 16 0 13.36 2 50.51 7. 8 47 45.3 3 29.09 2 50.51 51 2.3 6 46.63 2 50.51 53 42.1 9 26.87 2 50.51 7 56 27.4 12 12.62 2 50.51 13 59 30.5 15 16.22 2 50.51	5.6 26 13.2 41 53.43 2 50.52 1.25 6.7 30 20.7 46 1.61 2 50.52 0.91 33 40.0 49 21.46 2 50.52 2.80 7.8 41 17.6 15 57 0.33 2 50.51 1.22 7 44 30.1 16 0 13.36 2 50.51 2.38 7.8 47 45.3 3 29.09 2 50.51 2.38 6 51 2.3 6 46.63 2 50.51 2.76 7 53 42.1 9 26.87 2 50.51 2.52 7 56 27.4 12 12.62 2 50.51 2.33 13 59 30.5 15 16.22 2 50.51 1.31	$ \begin{bmatrix} 5.6 \\ 6.7 \\ 33 \\ 40.0 \\ 38 \\ 9.4 \\ 53 \\ 51.61 \\ 6.7 \\ 7.8 \\ 41 \\ 17.6 \\ 15 \\ 52 \\ 20.52 \\ 1.08 \\ 49 \\ 21.46 \\ 25 \\ 0.52 \\ 25 \\ 0.52 \\ 2.80 \\ + 1.27 \\ - 1.35 \\ 25 \\ 0.52 \\ 2.80 \\ + 1.27 \\ - 1.35 \\ - 1.47 \\ 25 \\ 0.55 \\ 2.80 \\ + 1.27 \\ - 1.35 \\ - 1.47 \\ 25 \\ 0.51 \\ 2.80 \\ + 1.27 \\ - 1.35 \\ - 1.47 \\ - 1.35 \\ - 1.47 \\ - 1.35 \\ - 1.47 \\ - 1.35 \\ - 1.40 \\ - 1.47 \\ - 1.35 \\ - 1.40 \\ - 1.47 \\ - 1.35 \\ - 1.40 \\ - 1.47 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 \\ - 1.37 \\ - 1.35 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(58)

			1783	APBIL 2	6		Zer	o corr. = + 1	′ 45″. 6									
Name	Mag.	Т	App. sid. time	Clock corr.	n tan o	q	ζ-φ	Refr.	q'									
Venus a Geminorum Procyon . 78 β Geminorum 17 β Cancri 9 α Ursæ Maj. 40 Lyncis . 1 α Leonis . 9 Leon. Min. 14 α Leonis 24 α "	6	h m s 1 49 12.8 5 5 21.0 12 32.3 16 37.1 5 49 16.3 6 28 40.5 52 8.3 6 56 18.8 7 4 26.8 13 53.0 24 38.7 27 59.8	A m s 4 6 55.10 7 23 35.52 30 48.00 7 34 53.47 8 7 38.07 8 47 8.92 9 10 40.40 14 51.58 23 0.70 32 28.64 43 16.10 46 37.75	m s 2 50, 38 2 50, 31 2 50, 31 2 50, 30 2 50, 27 2 50, 26 2 50, 26 2 50, 25 2 50, 25 2 50, 24 2 50, 24	- 1. 45 2.33 0.37 1.99 0.63 4.20 2.59 1.88 2.81 0.70 1.87 2.42	- 1.09 + 1.39 - 0.87 + 0.79 - 3.19 + 3.22 + 1.33 + 0.24 + 1.27 - 4.29 + 0.20 + 1.40	+ 21 35 0.5 + 32 19 28.4 + 5 45 9.6 + 28 30 46.2 + 9 49 29.0 + 48 51 4.5 + 35 16 29.2 + 27 5 2.1 + 37 24 55.0 + 10 51 11.5 + 26 59 51.5 + 33 22 49.2	7 " " 0 29. 6 17. 0 53. 6 21. 3 46. 8 0. 0 13. 9 23. 0 11. 6 45. 0 23. 1 16. 1	- 0. + 2. - 1. + 1. - 1. + 5. + 3. + 1. + 3. - 1. + 2.									
19 " " 21 " " 30 \$\epsilon\$ Leonis Regulus . Leon. Min. 23 22 Leon. Min. 23 25 " " " 31 " " " 32 " " " 34 " " " 36 " " " " 47 Ursæ Maj. 51 Leon. Min. 53 53 \$\epsilon\$ Ursæ Maj. 54 \$\epsilon\$ " " 81 Leonis	7 5 6 7 7 7 6 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7	38 48. 1 39 42. 5 41 1. 8 46 47. 8 48 3. 7 50 21. 6 57 21. 8 7 59 26. 8 1 33. 4 1 32. 5 9 39. 7 10 35. 8 31 21. 8 36 6. 0 37 43. 2 41 12. 8 46 19. 5 46 36. 9 50 45. 1 51 51. 2 54 53. 2 54 53. 2 51 51. 2 52 32. 7 5 32. 1 8 21. 8 36 6. 0 37 43. 2 41 12. 8 46 19. 5 46 36. 9 9 2 32. 7 5 32. 1 8 21. 3 1 31. 5 1 8 3. 5 25 33. 0 27 43. 2 1 8 21. 3 4 1 12. 8 4 1 13. 8 4 1 14. 8 4 1	57 27. 63 58 22. 37 9 59 42. 89 10 5 28. 84 6 44. 95 8 47. 38 10 53. 52 16 4. 57 18 9. 91 20 16. 86 23 56. 56 28 24. 49 29 20. 75 32 52. 33 50 10. 16 54 55. 14 10 56 32. 60 11 0 2. 77 5 10. 31 5 27. 16 9 27. 42 9 36. 64 10 42. 93 13 45. 79 17 11. 09 21 26. 19 24 26. 08 27 16. 34 32 8. 74 36 59. 53 44 30. 26 46 38. 61 52 5. 70 53 57. 40 11 54 20. 16 12 0 . 90 2 42. 04 7 17. 30 11 8. 83 13 12. 27	2 50. 24 2 50. 23 2 50. 23 2 50. 23 2 50. 23 2 50. 23 2 50. 23 2 50. 23 2 50. 22 2 50. 22 2 50. 22 2 50. 22 2 50. 21 2 50. 21 2 50. 21 2 50. 20 2 50. 20 2 50. 20 2 50. 20 2 50. 20 2 50. 19 2 50. 19 2 50. 19 2 50. 19 2 50. 18 2 50. 18 2 50. 18 2 50. 17 2 50. 17 2 50. 17 2 50. 17	2. 69 1. 17 0. 84 2. 19 3. 41 2. 71 2. 808 2. 67 2. 59 2. 39 2. 36 2. 25 1. 82 1. 43 1. 43 6. 2. 50 2. 47 2. 122 1. 22 1. 22 1. 22 1. 23 1. 61 4. 04 3. 58 3. 58 3. 59 3. 61 3. 61 4. 04 3. 58 3. 59 3. 59 3. 61 3. 61 4. 04 3. 58 3. 59 3. 61 50 50 50 50 50 50 50 50 50 50 50 50 50	+ 1. 30 - 1. 40 - 1. 79 + 1. 39 + 1. 50 + 1. 30 + 1. 31 + 1. 30 + 1. 33 + 1. 33 + 1. 33 + 1. 40 + 1. 40 + 1. 40 + 1. 39 + 1. 105 - 1. 105 + 1. 38 + 1. 38 + 1. 38 + 1. 38 + 1. 38 + 1. 38 + 1. 40	+ 42 3 15.6 + 36 16 10.6 + 17 36 16 10.6 + 17 3 0 5.4 + 32 30 47.5 + 30 21 41.0 + 28 28 10.9 + 36 29 53.6 + 37 47 12.2 + 40 0 11.2 + 40 3.4 + 35 10 22.2 + 33 4 24.3 + 32 48 8.0 + 41 33 27.2 + 26 54 52.2 + 26 54 52.2 + 26 54 52.2 + 26 20 58.0 + 21 17 31.8 + 21 41 14.6 + 32 43 27.2 + 33 48 25.0 + 41 38 31.6 + 17 37 33.5 + 41 38 31.6 + 17 37 35.5 + 19 10 36.6 + 19 3 2.8 + 2 8 19.3 + 44 4 1.6 + 47 49 14.0 + 44 18 15.0 + 44 17 42.0 + 44 17 42.0 + 44 17 42.0 + 44 17 36.0 + 44 17 36.0 + 41 29 25.0	6.9 12.9 34.7 41.6 16.9 19.3 21.4 6.0 12.7 11.3 9.0 16.3 16.6 23.2 23.9 24.5 35.0 15.3 4.2 35.0 18.5 1.1 29.6 47.5 1.1 1.2 3.1 4.7 8.1 7.9 0.5	+ 4.3. + 2.2. + 2.2. + 3.3. + 4.3. + 4.3. + 4.3. + 4.3. + 4.4. + 4.5. + 5.5. + 5.5. + 6.5. + Can. Ven. 6 " " " " " " " " " " " " " " " " " "	6.7 6 7 5 7 7.8 6.7 6	56 56.7 9 58 58.9 10 4 16.2 7 15.1 10 55.7 15 47.8 19 48.2 24 20.4 10 32 12.2	15 59. 12 18 1. 65 23 19. 82 26 19. 21 30 0. 42 34 53. 22 38 54. 38 43 27. 32 12 51 20. 41	2 50. 17 2 50. 16 2 50. 16 2 50. 16 2 50. 16 2 50. 16 2 50. 15 2 50. 15	3.51 3.10 3.16 3.36 3.07 3.94 0.46 — 0.27 + 0.17	+ 1.63 + 1.32 + 1.35 + 1.47 + 1.30 + 2.75 - 1.17 - 0.50 + 1.24	+ 46 41 29.0 + 43 43 0.2 + 40 11 44.2 + 40 45 15.0 + 42 30 32.0 + 39 51 20.6 + 47 2 20.6 + 7 7 30.3 + 4 13 22.8 + 4 33 49.4 - 2 12 40.0	5. 3 8. 8 8. 1 6. 4 9. 2 1. 9 51. 5 57. 2 0 56. 4 1 12. 7 — 1 11. 5	+ 5. + 4. + 4. + 4. + 5. - 1. - 0. - 0.

(59)

		,	1	RIL 26-Co	1		<u> </u>		T
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ φ	Refr.	q'
48 Virgini 49 g 50 56	7.8 8.9 7.8	h m s 10 36 26.0 40 12.7 43 58.6 47 2.2 49 44.5 53 22.5 10 56 18.2	h m s 12 55 34, 90 12 59 22, 22 13 3 8.74 6 12.84 8 55, 58 12 34, 18 13 15 30, 36	m s	+ 0.16 0.62 0.65 0.59 + 0.60 - 0.26 - 0.25	+ 1.20 + 1.81 + 1.79 + 1.84 + 1.82 - 0.46 - 0.41	- 2 30 16.2 - 9 34 58.7 - 9 10 27.0 - 10 4 8.9 - 9 13 17.0 - 9 24 19.0 + 4 4 8.5 + 3 50 1.0	7 " — 1 12.2 34.1 32.6 35.6 32.6 1 33.3 0 57.3 — 0 57.9	- 0. - 0. - 0. - 0. - 0. - 0. - 1. - 1.
			<u> </u>	APRIL :) 3 7			o corr. = + 1	1′ 42″. 8
29 Leon. l 32 Flamst 35 Leon. l 36 "	6.7 7 7.8	7 53 25.0 57 37.0 7 58 32.9 8 0 39.8 4 3.3 5 42.3 10 10.2	10 16 3.68 20 16.37 21 12.42 23 19.67 26 43.73 28 23.00 32 51.63	- 2 49.11 2 49.11 2 49.10 2 49.10 2 49.10 2 49.10	- 2.70 3.06 3.08 3.10 2.79 2.58 2.35 2.26	+ 1.31 + 1.32 + 1.27 + 1.33 + 1.40	+ 36 29 53.8 + 40 0 13.7 + 40 6 16.3 + 40 18 28.8 + 37 25 15.8 + 35 10 25.0 + 32 48 8.5 + 31 47 45.5	8.9	+ 3. + 4. + 4. + 3. + 2. + 2.
42 " 50 " 51 Leon. I 52 " 53 "	" 6 6 7 7 7 8 7 . 8	13 55.8 24 55.2 27 31.6 30 4.6 32 9.7 33 46.8 35 30.2 37 15.7	36 37. 85 47 39. 06 50 15. 89 52 49. 30 54 54. 75 56 32. 11 10 58 15. 80 11 0 1. 58	2 49.09 2 49.09 2 49.08 2 49.08 2 49.08 2 49.08 2 49.08 2 49.08 2 49.08 2 49.08	1.82 2.78 2.19 1.86 1.80 1.83 1.76 2.64	+ 0.06 + 1.27 + 1.30 + 0.17 - 0.02	+ 26 37 55.3 + 37 13 45.2 + 31 0 26.8 + 26 54 57.2 + 26 21 0.8 + 26 40 59.5 + 25 48 26.4	23. 4 11. 8 18. 5 23. 1 23. 8 23. 4 24. 4 13. 2	+ 0. + 3. + 2. + 1. + 0. + 0. + 3.
) 68 δ Leonis) 53 ξ Ursæ I	Min. 7 8.9 7 7.8 8	40 36. 6 42 39. 4 46 39. 3 50 55. 5 55 44. 8 8 58 48. 2 9 1 30. 0 4 24. 1	3 23.03 5 26.17 9 26.73 13 43.63 18 33.72 21 37.62 24 19.86 27 14.44	2 49.08 2 49.07 2 49.07 2 49.07 2 49.07 2 49.06 2 49.06	1. 45 2. 34 3. 21 3. 98 3. 62 2. 58 1. 26 2. 38	- 1.05 + 1.40 + 1.38 + 2.88 + 1.87 + 1.33 - 1.31 + 1.40	+ 35 56 18.8 + 21 41 15.8 + 32 43 20.2 + 41 20 6.2 + 47 27 43.6 + 44 44 24.4 + 35 13 23.4 + 19 3 2.0 + 33 3 29.6	29. 5 16. 6 7. 6 1. 4 4. 1 13. 9 32. 9 16. 3	+ 0. + 2. + 4. + 5. + 5. + 3. - 1.
62 Ursæ l	6.7 6 7 7.8 7.6 7.6	6 38.5 10 15.4 12 7.6 18 23.0 20 25.3 22 31.8 24 46.5 26 1.2	29 29. 21 33 6.70 34 59. 21 41 15. 64 43 18. 11 45 25. 12 47 40. 19 48 55. 09	2 49, 06 2 49, 05 2 49, 05 2 49, 05 2 49, 05 2 49, 05 2 49, 05 2 49, 05	2. 36 2. 36 2. 66 2. 98 3. 30 3. 26 3. 24	+ 1.40 + 1.40 + 1.30 + 1.28 + 1.43 + 1.41 + 1.39	+ 32 55 16.2 + 32 56 33.5 + 36 6 37.0 + 39 14 48.7 + 42 5 41.0 + 41 49 45.9 + 41 31 34.9	16. 4 16. 4 13. 0 9. 7 6. 8 7. 1 7. 4	+ 2. + 2. + 3. + 4. + 4. + 4.
67 "	" 8 6 7.8 7 7 7.8	29 10.7 31 1.8 37 3.7 39 44.7 44 18.0 48 11.4 50 14.6	52 5.11 53 56.52 11 59 59.41 12 2 40.85 7 15.80 11 8.94 13 12.48	2 49.04 2 49.04 2 49.04 2 49.04 2 49.03 2 49.03	3, 75 3, 55 3, 16 3, 17 4, 10 3, 22 3, 87	+ 2.31 + 1.73 + 1.36 + 1.37 + 3.09 + 1.39 + 2.64	+ 45 48 27.2 + 44 13 17.7 + 40 50 12.2 + 41 4 16.2 + 48 17 35.6 + 41 29 20.6 + 46 41 29.4	7. 4 2. 2	+ 5. + 4. + 4. + 5. + 5.
4 Can. 7	Ven. 5 6 7.8 7 5 7.8	52 59. 4 55 2. 1 9 59 28. 6 10 0 19. 2 3 18. 0 5 6. 9	15 57.73 18 0.77 22 28.00 23 18.74 26 18.03 28 7.23	2 49.03 2 49.03 2 49.02 2 49.02 2 49.02 2 49.02	3. 49 3. 08 3. 11 3. 14 3. 34 3. 16	+ 2.64 + 1.63 + 1.32 + 1.33 + 1.35 + 1.47 + 1.36	+ 43 43 0.8 + 40 11 45.6 + 40 25 32.0 + 40 45 17.6 + 42 30 35.5 + 40 51 11.0 + 39 51 23.6	5.2 8.8 8.5 8.2 6.4 8.1 9.1	+ 4. + 4. + 4. + 4. + 4. + 4.
9 '' 524 Mayer	7 7.8 6.7 6.7	6 58.4 11 51.1 16 10.6 10 19 52.8	29 59.04 34 52.54 39 12.75 12 42 55.56	2 49.02 2 49.02 2 49.01 — 2 49.01	3. 05 3. 92 - 1. 10 + 0. 59	+ 1.30 + 2.75 - 1.45 + 1.84	+ 42 2 30.4 + 47 2 21.0 + 16 45 36.1 - 9 9 40.2		

(60)

	1	Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζ φ	Refr.	q'
				h m s	h m s	m s	8	s	0 / "	, ,,	"
	40 ψ	Virginis -		10 22 50.7	12 45 53.95	- 2 49.01 2 49.01	+ 0.54	+1.87 -0.56	- 8 21 53.8 ' + 4 33 51.2 '	- 1 29.3 0 56.0	$\begin{bmatrix} -0.\\ -1. \end{bmatrix}$
	43 ð		7.6	24 29.4 27 16.0	47 3 2.92 50 19.95	2 49.01 2 49.00	-0.29	+ 0.58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 10.1	= 0.
	46	"	7.0	29 11.8	52 16.07	2 49.00	0, 14	+ 1.12	— 2 12 35.9	11.2	— 0.
	48	"	_	32 29.5	12 55 34.31	2 49.60	0. 16	+ 1.20	- 2 30 15.2	11.9	- 0.
	E 9	44	6	36 58, 3 40 14, 7	13 0 3.85 3 20.78	2 49.00 2 49.00	0.50	+ 1.88 + 1.61	- 7 49 31.9 - 15 1 19.6	27.4 57.0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
)	53 56		5	40 14.7 43 5.8	6 12.35	2 48.99	0.60	+ 1.84	9 13 12.1	32. 2	_ 0.
	•		6.7	45 47.4	8 54.39	2 48.99	0.61	+ 1.82	9 24 14.0	32.8	 - 0.
	62	"	6.7	48 38.8	11 46.26 14 54.78	2 48.99	0.66 0.24	+1.79 $+1.53$	- 10 9 54.8 - 3 47 40.3	35. 6 15. 4	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	65 66		6.5	51 46.8 10 52 57.6	16 5.77	2 48.99 2 48.99	0.24	1.58	- 4 2 6.3	16.1	
	•	• •	9	11 0 4.2	23 13, 54	2 48.98	0.59	+ 1.84	- 9 8 25.0	31.9	<u> </u>
	76 h	"		1 12.7	24 22.23	2 48.98	+ 0.58	+ 1.85	9 2 51.6		<u> </u>
			6.7	4 51.2 8 19.1	28 1.33 31 29.80	2 48.98 2 48.98	- 0.01 1.28	+0.30 -1.28	+ 0 10 24.4 + 19 21 9 6	1 5.5 0 32.7	$-\frac{0}{1}$.
	1	Bootis	6.7	10 1.3	33 12.28	2 48.98	1.40	— 1. 13	1 21 2 11.8	30.5	_ ö.
				13 11.7	36 23.2 0	2 48.97	1.61	- 0.70	+ 19 21 9.6 + 21 2 11.8 + 23 46 36.0	27.0	0.
	4 τ 7	"		16 38.7 22 31.7	39 50.77 45 44.74	2 48.97 2 48.97	1, 22 1, 26	- 1.34 - 1.31	+ 183121.0 + 185911.6	33.8 33.2	- 1. - 1.
	8 7	"		24 1.6	47 14.88	2 48.97	1.29	_ 1.27	T 19 28 7.0	32.5	-i
	9"	"	-	26 18.3	49 31.96	2 48.97	1.98	+ 0.79	+283214.3	21.4	+ 1.
	10 6	"	7	28 8.5	51 22.46	2 48.96	1.53	- 0.89	+ 22 44 17.0	28.3	- 0.
	11		8	30 58.2 33 16.0	54 12.63 13 56 30.81	2 48.96 2 48.96	1.98 1.98	+0.74 $+0.79$	+ 28 24 55.2 + 28 32 6.2 + 35 47 25.6	21.5	‡ i:
			7.8	36 56.7	14 0 12.12	2 48.96	2.64	+ 1.31	+ 35 47 25.6	13.4	+ 3.
	12 d	"	1	40 7.7	3 23.64	2 48.96	1.78	- 0.08	+ 20 0 2.8	24. 1	+ 0.
	14			43 16.5	6 32.96 8 40.11	2 48.96 2 48.95	0.90	- 1.65 - 1.21	+ 135749.6 + 201744.5	40.3 31.5	— 2. — 1.
	18	Arcturus . Bootis	ĺ	45 23.3 48 23.0	11 40.30	2 48.95	0.91	- 1.65	 ↓ 13 59 35.7	40.2	— 2 .
		20045	7.8	52 16.6	15 34.54	2 48, 95	2, 14	+1.23	+ 30 20 30.6	19.3	+ 2.
	22f	"	l _	55 57.3	19 15.84	2 48.95	1.35	-1.22	+ 20 11 15.5 + 26 48 15.4	31.6	
3	26	44	7	11 58 37.2 12 2 14.7	21 56.18 25 34.28	2 48.95 2 48.94	1.84	+0.12 -0.82	+ 20 48 15.4 + 23 11 59.0	23. 4 27. 7	+ 1. - 0.
,	20	. •	7	5 52.2	29 12.38	2 48.94	1.64	- 0.60	÷ 24 10 40.0	26.5	Ö.
			6	7 42.2	31 2.68	2 48.94	1.28	-1.30	+ 19 13 40.0	32.9	- 1.
	30 Z	Bootis	6	9 54.2 10 20.4	33 15.04 33 41.30	2 48.94 2 48.94	0. 94 0. 95	- 1.62 - 1.60	+ 14 27 12.5 + 14 38 50 1	39.6 39.3	-2.
	35 0	"		14 39.7	38 1.30	2 48, 93	1, 17	- 1.40	+ 14 38 50.1 + 17 52 10.9	34.8	- i.
l)			7	15 18.1	38 39.81	2 48.93	1.16	- 1.40	+ 17 41 55.0	35.0	 - 1 .
		Comantia	6.7	23 3.8 25 54.2	46 26.78 49 17.64	2 48, 93 2 48, 92	1.33	-1.23 +0.16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 31.8	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$
	1 2	Serpentis .	6.7	30 10.2	53 34.34	2 48.92	0.04	7 0. 16	+ 0 42 51.9	1 4.5	-0.
			7.8	34 7.4	14 57 32.19	2 48, 92	1.38	- 0.18	+ 20 40 26.0	0 31.0	— 0.
	45 c 46	Bootis	1	37 14.4 38 36.4	15 0 39.70 2 1.92	2 48.92 2 48.92	1.76	- 0. 19 - 0. 13	+ 25 41 50.6 + 25 55 18.8	24.3	± 0.
	40	• •	6.7	45 44.1	9 10.79	2 48.91	3,50	+ 1.66	43 49 34.0		+ 4.
			7	50 20.2	13 47.64	2 48.91	3.83	+ 2.53	+ 43 49 34.0 + 46 22 54.9	2.5	+ 5.
)			8	52 59.1	16 26.98	2 48.91 2 48.90	3, 83	+2.54 + 1.87	+ 46 25 8.6 + 44 44 20.9	2.5	+ 5. + 5.
			8	12 58 22.2 13 2 31.2	21 50.96 26 0.64	2 48.90	2.78	+ 1.87	+ 37 20 3.3	11.8	+ 5. + 3.
	5 a	Cor. Bor	l	4 53.5	28 23, 33	2 48.90	1.90	+ 0.35	+ 27 25 38.5	22.7	+].
			8	11 3.0	34 33.84	2 48.90	0.54	- 1.50	+ 8 30 21.0 + 7 6 4.2 + 16 5 24.3	49.0	— 1.
	24 a 28 β	Serpentis .		12 56.7 15 32.7	36 27.86 39 4.29	2 48.89 2 48.89	0.46 1.06	- 1. 17 - 1. 49	T 16 5 94 3	51.4 37.2	- 1. - 1.
	ωp	• •	7	20 3.2	43 35.53	2 48, 89	1.04	- 1.50	+ 15 46 54.6	37.8	— 1.
			7	22 29.0	46 1.73	2 48.89	1.18	- 1.38	+ 18 2 14.6	34.6	— 1.
	19 -	Cor Por	6	25 18.1 27 55 8	48 51.29	2 48.89 2 48.89	1.28 1.90	-1.29	+ 19 14 40.8 + 27 29 21.6	33.0	
	13 6	Cor. Bor	7	27 55.8 34 39.0	51 29.42 15 58 13.72	2 48.88	2.76	+0.38 + 1.27	+ 37 12 29.4		+ 1. + 3.
)	48	Serpentis .		40 57.6	16 4 33.36	2 48.88	1.12	- 1.42	+ 37 12 29.4 + 17 12 57.8	35.7	- 1.
		-	7.8	46 36.6	16 10 13.29	2 48.87	1.28	-1.28	+ 19 22 14.3	32.8	
			7	13 31 27.9	15 55 2.10	2 48.88	- 2.30	+ 1.39	+ 32 9 40.0	- 0 17.4	j+ 2.

(61)

78 \$\beta\$ Geminorum 1 x Leonis 5 8 43.4				1783 API	RIL 27—Co	ntinued	Ze	oro corr. = +	1′ 42″.8.
15 ρ Cor. Bor. 6, 7 37 16, 6 16 0 51.76 2 48, 89 - 2, 46 + 1.59 + 33 56 18, 4 - 0 15, 5 + 2.9 3, 6 - 1.9 3, 7 3, 7 3, 7 3, 7 3, 7 3, 7 3, 7 3,	Name.	Mag.	T	App. sid. time	Clock corr.	$n \tan \delta$ q	ζ — φ	Refr.	q'
Sirius	24 ω Herculis	6 6.7 7 6.7 6.7 6.7 6.7 6.5	13 32 3.8 37 16.6 45 9.3 49 56.4 54 40.2 13 58 56.3 14 4 14.6 6 16.2 9 19.0 11 13.1 14 45.9 17 21.1	15 55 38.10 16 0 51.76 8 45.75 13 33.63 18 18.22 22 35.02 27 54.19 29 56.12 32 59.42 34 53.83 38 27.22 41 2.84	- 2 48. 89 2 48. 83 2 48. 87 2 48. 87 2 48. 86 2 48. 86 2 48. 86 2 48. 85 2 48. 85 2 48. 85 2 48. 85	- 2. 46 + 1. 35 1. 50 - 0. 95 1. 28 - 1. 22 1. 44 - 1. 06 0. 94 - 1. 61 2. 38 + 1. 42 2. 19 + 1. 30 0. 97 - 1. 55 1. 50 - 0. 94 1. 72 - 0. 3 1. 06 - 1. 45 0. 90 - 1. 65	0 + 33 56 18.4 1 + 22 23 32.5 0 + 19 20 39.6 1 + 21 38 36.0 1 + 14 31 22.2 1 + 33 9 46.0 1 + 14 54 23.0 1 + 22 25 30.6 1 + 25 15 46.2 2 + 13 58 4.2 1 + 13 37 54.0	- 0 15.5 28.9 32.8 29.9 39.6 16.3 18.8 25.3 37.2 40.6 40.9	+ 2.9 - 0.4 - 1.2 - 0.6 - 1.9 + 2.7 + 2.2 - 0.4 + 0.5 - 1.8 - 2.0
Procyon . 78 β Geninorum 1 x Leonis				1783	APRIL 2	88	Z	его согт. = +	1′ 41″.5.
9	Procyon . 78 β Geminorum 1 κ Leonis 14 ο " 24 μ " 17 Leon Min. 29 π Leons 21 Leon Min. 30 η Leonis Regulus 22 Leon Min. 23 " 24 " 25 " 34 μ Ursæ Maj. 42 Leon Min. 46 " 47 " 48 b) 47 " 49 trsæ Maj.	6.76 6.76 6.76 6.76 6.77 6.77 77 8.78 6.77 6.97	5 4 38.6 5 8 43.4 6 48 25.7 7 5 57.5 20 6.3 30 54.6 31 49.6 33 8.6 38 55.2 40 10.5 44 18.7 45 38.7 45 38.7 45 31.0 49 31.8 7 56 47.8 8 0 21.2 3 21.2 6 13.4 9 59.0 10 1.0 10 33.2 17 20.2 19 3.8 23 35.1 28 20.0 42 42.5 43 57.7 46 58.7 51 48.8 8 57 33.0 9 0 56.2 1 53.2 6 18.3 8 11.1 10 35.5 14 26.2 16 28.3	7 30 46. 12 7 34 51. 59 9 14 50. 27 32 24. 95 46 36. 07 51 35. 99 57 26. 15 58 21. 30 9 59 40. 52 10 5 28. 07 6 43. 57 10 52. 45 12 12. 67 12 4. 95 16 6. 41 20 53. 99 23 23. 60 26 57. 58 29 58. 07 32 50. 74 36 36. 96 36 38. 96 37 11. 25 43 59. 36 45 43. 24 50 15. 28 10 55 0. 96 11 9 25. 82 10 41. 22 13 42. 72 18 33. 62 21 34. 72 18 33. 63 21 48. 77 27 42. 53 28 39. 69 34 58. 63 37 23. 43 41 14. 96 41 43. 84 43 17. 20	2 48.50 2 48.50 2 48.50 2 48.42 2 48.44 2 48.40 2 48.49 2 48.39 2 48.39 2 48.39 2 48.39 2 48.39 2 48.38 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} -0.36 \\ +0.36 \\ +0.75 \\$	7 + 5 45 11.2 + 28 30 46.6 1 + 27 5 5 2.1 2 + 26 59 51.2 + 33 22 55 13.2 1 + 36 16 10.0 2 + 36 16 10.0 3 37.2 3 47.5 3 47.5 4 + 30 21 39.5 4 + 30 21 39.5 4 + 42 54 16.0 5 + 42 33 28.4 5 + 42 17 53.8 6 + 42 17 53.8 6 + 42 17 53.8 6 + 43 13 33.7 7 + 47 38 25.6 6 + 31 44 20.0 6 + 31 47 23.0 6 + 31 47 23.0 7 + 31 43.6 8 + 35 19 49.0 8 + 35 29 49.0 8 + 35 29 49.0 8 + 35 29 49.0 8 + 35 31 47 23.8 8 + 41 20 3.8 8 + 41 20 4.6 8 + 43 37 58 57 19.8 8 + 41 20 4.6 8 + 41 20 4.6 8 + 41 20 4.6 8 + 41 20 4.6 8 + 41 20 4.6 8 + 42 57 19.8 8 + 43 57 2.0 9 + 35 59 13.8 9 + 35 57 19.8 9 + 35 58 13.0 9 + 35 58 13.0 9 + 36 58 13.0	0 53. 1 21. 1 22. 8 15. 8 47. 4 12. 7 34. 3 16. 7 19. 1 19. 3 6. 6 15. 3 11. 6 7. 4 1. 2 0. 9 16. 5 17. 5 17. 5 17. 5 17. 5 17. 5 17. 5 17. 5 17. 6 18. 9 19. 1 19. $\begin{array}{c} -1.55 \\ +1.50 \\ -1.10 \\$	

(62)

			1783 API	RIL 28—Ce	ntinucd		Ze	ro corr. = + 1	41". 5.
Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζ-φ	Refr.	q'
2) 67 Ursæ Maj. c) d)	8 6.7 8.9 7 9.8 7.8 7	M m s 9 20 50.2 22 4.2 25 13.3 27 4.8 27 28.0 32 18.3 33 7.6 35 48.2 39 27.8	h m s 11 47 39.82 48 54.03 52 3.64 53 55.45 54 18.71 59 9.80 11 59 59.23 12 2 40.27 6 20.47	m s - 2 48. 33 2 48. 33 2 48. 32 2 48. 32 2 48. 32 2 48. 32 2 48. 32 2 48. 32 2 48. 31	3. 53 3. 54 3. 14 3. 16 4. 06	+ 1.73 + 1.75 + 1.36 + 1.37 + 3.08	0 / " + 41 49 43.0 + 41 31 35.0 + 45 48 29.2 + 44 13 13.0 + 44 16 11.6 + 40 50 11.6 + 41 4 16.8 + 48 13 20.0	4.7 4.7 4.7 8.0 7.8	+ 4.5 + 4.4 + 5.3 + 4.9 + 4.9 + 4.3 + 5.5
7)) 4 Can. Ven. 15 c Comse	7 7.8 7 6.7	39 46. 2 40 22. 8 44 14. 7 46 17. 4 49 2. 6 50 12. 1 52 3. 1 55 38. 7 55 22. 1	6 38, 92 7 15, 62 11 8, 16 13 11, 20 15 56, 85 17 6, 54 18 57, 84 19 33, 54 22 27, 81 23 17, 54	2 48. 31 2 48. 31 2 48. 31 2 48. 31 2 48. 31 2 48. 31 2 48. 31 2 48. 31 2 48. 31 2 48. 30	4. 07 3. 22 3. 85 3. 47 3. 51 2. 05 2. 04 3. 09	+ 3.08 + 3.09 + 1.39 + 2.64 + 1.63 + 1.09 + 1.07 + 1.33 + 1.35	+ 48 17 31.0 + 41 29 18.0 + 46 41 30.6 + 43 42 59.8 + 44 1 35.2 + 29 27 3.2 + 29 17 17.5 + 40 25 33.0 + 40 45 11.0	7. 4 2. 2 5. 2 4. 8 20. 2 20. 4	+ 5.5 + 4.3 + 5.4 + 4.8 + 1.7 + 1.7 + 4.1 + 4.3
8 Can. Ven. 30 Comæ 43 δ Virginis .	8 8 7 7 6.5 6	9 59 20.9 10 1 10.5 3 2.1 5 28.2 7 54.8 10 48.8 14 35.3 18 31.3 20 32.5	26 16.84 28 6.74 29 58.64 32 25.14 34 52.14 37 46.62 41 33.74 45 30.39 47 31.92	2 48. 30 2 48. 30 2 48. 30 2 48. 30 2 48. 30 2 48. 30 2 48. 29 2 48. 29 2 48. 29 2 48. 29	3. 33 3. 14 3. 04 2. 57 3. 90	+ 1. 47 + 1. 36 + 1. 30 + 1. 32 + 2. 75 + 2. 61 + 0. 86 - 0. 77 - 0. 56	+ 42 30 31.2 + 40 51 15.5 + 39 51 23.6 + 35 19 55.5 + 47 2 19.8 + 46 35 54.3 + 28 42 39.8 + 46 33 46.4	6. 4 8. 1 9. 1 13. 8 1. 8 2. 2	+ 4.6 + 4.3 + 3.1 + 5.4 + 1.6 - 1.4
46 "	6 7 6	23 19.6 25 15.0 28 32.3 32 19.5 36 18.4 39 9.0 41 50.7 47 9.3 10 49 30.8	50 19. 48 52 15. 19 55 33. 04 12 59 20. 86 13 3 20. 41 6 11. 48 8 53. 62 14 13. 09 13 16 34, 98	2 48. 29 2 48. 28 2 48. 28 2 48. 28 2 48. 28 2 48. 28 2 48. 28 2 48. 27 2 48. 27 2 48. 27	+ 0.11 0.14 0.16 0.62 0.98 0.60 0.61 1.08	+ 0.99 + 1.12 + 1.20 + 1.81 + 1.61 + 1.84 + 1.83 + 1.66 + 1.79	1 44 24.2 2 12 42.2 2 30 17.8 9 35 1.2 15 1 25.6 9 13 15.1 9 24 18.5 16 35 30.2 10 1 46.5	1 9.6 10.7 11.3 33.0 55.9 31.5 1 32.2 2 4.5 1 34.6	- 0.3 - 0.3 - 0.4 - 0.4 - 0.4 - 0.4 - 0.5
30 ζ Bootis	7 5 6 6	12 6 23.8 11 5.3 13 6.8 16 57.7 19 7.2 21 58.0 26 12.8 27 28.0	14 33 40.60 38 22.87 40 24.70 44 16.23 46 26.09 49 17.36 53 32.86 54 48.27	2 48. 22 2 48. 21 2 48. 21 2 48. 21 2 48. 21 2 48. 21 2 48. 20 2 48. 20	0. 95 1. 93 1. 32 1. 32 1. 32 0. 04 0. 04 0. 18	$\begin{array}{c} -1.60 \\ +0.57 \\ -1.23 \\ -1.23 \\ -1.23 \\ +0.16 \\ +0.16 \\ -0.27 \end{array}$	+ 14 38 48.1 + 27 58 14.6 + 19 56 25.1 + 19 59 8.7 + 20 0 41.4 + 0 42 11.4 + 0 42 50.6 + 2 56 19.9	0 39.0 21.8 31.7 31.6 0 31.6 1 4.0 1 4.0 0 59.2	- 1.9 + 1.3 - 1.1 - 1.1 - 0.9 - 0.9 - 1.9
42 β Bootis	7.8 6.7 7	29 18.9 32 9.3 35 31.5 41 47.3 46 23.6 50 3.8 51 46.2 54 25.6	56 39. 47 14 59 30. 33 15 2 53.08 9 9.91 13 46.97 17 27.77 19 10. 45 21 50. 28	2 48.20 2 48.20 2 48.19 2 48.19 2 48.19 2 48.19 2 48.19 2 48.19	3. 81 3. 08 2. 84 3. 60	- 0.25 + 1.66 + 2.53 + 1.32 + 1.27 + 1.87	+ 41 13 22.3 + 48 28 14.4 + 25 29 5.0 + 43 49 42.0 + 46 22 58.6 + 40 19 58.5 + 38 6 56.0 + 44 44 19.6	0.4 24.8 5.0 2.5 8.6 10.9 4.1	+ 4.9 + 5.3 + 4.1 + 3.7 + 5.0
20 χ "	7.8 6 6.7	55 55. 2 12 58 34. 7 13 1 56. 9 5 22. 0 7 1. 5 9 0. 3 11 36. 4 13 14 23. 7	23 20, 14 26 0.07 29 22.82 32 48.48 34 28.25 36 27, 38 39 3.91 15 41 51.67	2 48. 18 2 48. 18 2 48. 18 2 48. 18 2 48. 18 2 48. 18 2 48. 17 — 2 48. 17	2. 98 2. 76 1. 10 0. 83 0. 88 0. 44 1. 05 — 1. 24	+ 1.29 + 1.27 - 1.44 - 2.11 - 1.71 - 1.17 - 1.49 - 1.32	+ 39 27 3.1 + 37 20 3.0 + 16 49 3.0 + 12 44 50.4 + 13 32 6.2 + 7 6 8.5 + 16 5 24.5 + 18 48 0.0	9.5 11.7 35.9 41.9 40.7 51.1 36.9 — 0 33.3	$egin{array}{c} + 4.0 \\ + 3.5 \\ - 1.7 \\ - 2.0 \\ - 2.0 \\ - 1.6 \\ - 1.8 \\ - 1.3 \end{array}$
T. III assumed as 22nd T. I assumed as 40s. 5 \$\frac{2}{3}\$ assumed as 4\circ 34'; 1 \$\frac{2}{3}\$ assumed as 4\circ 34'; 53 \$\frac{2}{3}\$ assumed as 8\circ 0' 53	; not 20s. not 4° 38′. not 4° 39′.	. 5.	g Min. assumed :	om foll. star. as 46; not 45. as 5 7 10; not :		k & & C	assumed as 58° 26′ 8′ III assumed as 13s I assumed as 58m.	8"; not 58° 26 5; not 22s. 5. ; not 57m.	38".

(63)

Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ-φ	Refr.	9
	-								
	6.7	h m s 13 16 6.7	h m s	m 8	s — 1,03	8	+ 15 46 54.8	_ 0 37,4	_ ,
	6.7	18 32.1	15 43 34.95 46 0.75	- 2 48.17 2 48.17	1.18	-1.50 -1.38	+ 18 2 21.1	34.3	_ i
	6	21 21.1	48 50.21	2 48.17	1.27	-1.29	+ 19 14 37.3	32.7	- 1
13 e Cor. Bor	1	23 58.8 27 30.8	51 28, 34 55 0, 92	2 48, 17 2 48, 16	1.88 2.28	+0.38 + 1.39	+ 27 29 22.6	22. 5 17. 2	
	6	30 42.6	15 58 13.25	2 48. 16	2. 75	+ 1.27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.2	+
40 0	6	33 20.2	16 0 51.28	2 48.16	1,50	- 0.95	+ 22 23 32.2	28.6	
48 Serpentis .	6	37 1.2 39 8.0	4 32, 88 6 40, 03	2 48, 16 2 48, 16	1.13 1.87	-1.42 + 0.28	$\begin{array}{c} + 17 & 13 & 0.0 \\ + 27 & 12 & 41.6 \end{array}$	35. 4 22. 8	+
16 Herculis .	1	41 12.3	8 44.67	2 48, 15	1. 27	-1.29	+ 19 20 42.2	32.5	_
	7.8	42 40.1	10 12.71	2 48, 15	1.28	— 1.28	+ 19 22 15.0	32, 5	-
51 Serpentis .	6	45 59.5 50 43.8	13 32.66 18 17.74	2 48.15 2 48.15	1.44 0.94	- 1.06 - 1.61	+ 21 38 40.8 + 14 31 25.2	29. 6 39. 4	<u> </u>
26 Herculis .	7	54 59, 9	22 34.54	2 48. 15			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16. I	+
)	6	13 56 26.4	24 1.27	3 48, 14	1, 39	— 1. 15	+ 20 56 25, 4	30.7	<u> </u>
	7.8 7.6	14 0 17.9 2 19.4	27 53.41 29 55.24	3 48. 14 3 48. 14	2. 18 0. 97	+1.28 -1.58	$\begin{array}{c} + 30 56 10.4 \\ + 14 54 21.2 \end{array}$	18. 6 38. 7	+
	7.6	5 22.5	32 58, 84	3 48.14	1.50	— 0.94	+ 22 25 31.8	28.6	_
	6	7 16.8	34 53.45	3 48. 14 3 48. 13	1.72	-0.30	+ 25 15 47.8	25.1	+
49 Herculis .	7	10 49.2 17 27.2	38 26.43 45 5.52	2 49.13	1.05 1.00	- 1.48 - 1.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36. 9 38. 0	_
	6	21 54.7	49 33, 75	2 48.13	3.40	+1.54	+ 43 10 18.8	5.7	+ -
	6 8	25 14.8 26 54.0	52 54.40	2 48, 13 2 48, 12		+2.93	+ 47 40 43.8	1.2	+ 1
	6.7	29 58.4	54 33.88 16 57 38.78	2 48.12	3. 98 3. 38	+2.93 $+1.52$	+473851.9 + 43043.4	1.2 5.9	+
	6	33 40.7	17 1 21,69	2 48.12	3.51	+ 1.70	+ 44 4 48.6	4.8	+ 4
65 8 "	7.8	36 10, 4 41 17, 2	3 51, 80 8 59, 44	2 48. 12 2 48. 11	4.03 1.70	+3.01 -0.35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0, 9 25, 4	+ { + (
67π "		41 17.2	0 33,44	2 40.11	- 1.70	- 0.30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 12.1	Ŧ :
	4	53 18.2	21 2.41		+ 1.80 '	+ 3.18	26 3 17.6	3 29.6	<u> </u>
55 a Ophiuchi.	6.5	57 43.1 14 59 59.6	25 28.04 27 44.91	2 48. 10 2 48. 10	- 0.78 0.82	- 4.09 - 2.22	+12 4 51.5	0 43.0 42.0	— ; — ;
•	7	15 3 31.0	31 16, 89	2 48. 10	0.83	— 1.81	+ 12 51 31.5	41.9	<u> </u>
60.0 "	7.6	6 16.1	34 2.44	2 48. 10	0.28	- 0.54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56, 1	—] —]
60β " 86μ Herculis .		7 49.6 13 2.0	35 36, 20 40 49, 45	2 48. 10 2 48. 09	0, 29 1, 92	-0.59 + 0.50	+ 4 39 29.0 + 27 49 54.1	55.8 22.1	— + :
•	7.6	17 15.5	45 3, 64	2 48.09	— 1.0 0	— 1.54	+ 15 22 13.3	0 38.1	- :
64 ν Ophiuchi . 1484 L.C	3	22 4.7 26 4.6	49 53, 63 53 54, 19	2 48.09 2 48.08	+ 0.62 2.05	+1.80	- 4 47 33.4 - 29 31 19.0	1 18.1 4 30.9	— (— {
1401 2.0	4.5	30 11.2	17 58 1.47	2 48.08	1. 12	+1.63	— 17 9 36.9	2 8.3	_ (
13 μ¹ Sagittarii .	_	35 43.5	18 3 34.68	2 48.08	1.40	+ 1.49	21 4 58.4	2 35.8	— į
198"	6	38 23.9 41 57.7	6 15.52 9 49.91	2 48.08 2 48.07	2.08	+ 4.81	- 33 21 56.7 - 29 50 59.6	6 35.0 - 4 38.6 -	{ {
	6	44 49.7	12 42.38	2 48.07	0.94	+ 1.59	— 14 28 19.0	1 54.1	- (
59 d Serpentis .	5.6	47 51.8 51 2.2	15 44.98 18 55.90	2 48.07 - 2 48.07	+ 0.46 0.00	+ 1.87 · + 0.34 ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26.0 - 1 5.7 -	<u> </u>
oo a berpenus .	5.6	55 33.7	23 28. 15	2 48.06	– 1.5 9 -	-0.72	+ 0 4 6.2 + 23 42 27.4 + 32 4 26.2	0 27.1	•
	7	15 57 57.3	25 52.14	2 48.06	2.28	+ 1.39	+ 32 4 26.2	17.4	+ 8
	6.7 6.7	16 1 13.7 2 19.5	29 9.08 30 15.06	2 48.06 2 48.06	2. 47 2. 47	$+$ 1.38 \cdot	+ 34 15 40.0 + 34 15 42.3	15. 0 - 15. 0 -	+ 2 + 2
a Lyrse	ı	4 30.6	32 26.52	2 48.06	2.89	+ 1.27 -	+ 38 33 30.2	10.5	∔ 3
•	6	10 53.7	38 50.67	2 48.05	2.67	+ 1.30 -	+ 36 18 43.7 [12.8	+ 3
112 Herculis .	6.5 5	14 20, 4 17 54, 1	42 17.94 45 52.23	2 48.05 2 48.05	1. 25 - 1. 41 -	+ 1,30 · 1,31 · 1,11 ·	+ 19 4 31.4 + 21 9 7.6	33. 0 - 30. 3 -	- 1 - 0
63θ Serpentis .		20 17.9	48 16.43	2 48.05 -	- 0, 25 -	 0,43 ·	+ 3 55 16.2	0 57.4 -	- 1
39 o Sagittarii .	3	26 27.9	54 27.44	2 48. 04 -	1.47	+ 1.64 -	-22 124.8	2 44.5	- 1
Saturn 30 & Aquilæ .	.	28 50.6 49 19.9	18 56 50, 53 19 17 23, 19		+ 1.48 - - 0.17 -	+1.66 -0.23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 46.0 - 0 59.0 -	- 1 - 1
6 β Cygni	1	16 56 44.3	19 24 48.81	- 2 48.02 -		+ 0.37	27 29 18.3		_ í

a T. III assumed as 56m.; not 57m.
b T. II assumed as 17s.; not 7s.
c Transits direcordant.
d & assumed as 44° 22′ 42″; not 44° 22′ 32″.
c The name and transits and Mag. of this star (if a supposition be made that the minutes recorded should be 21 and 22 instead of 22 and 23) indicate it as 64 \(\nu\) Ophluchi; but the declination is that of a star (P. XVII. 307) following 64 \(\nu\) by 58s. As the right-

ascension can only be reduced harmoniously with the catalogue place of 64 ν Ophluchi, the assumption of the error in minuterecord is made, and observations of α of one star and δ of the other are separately entered in the Catalogue.

f Div. assumed as 83 15 0; not 83 15 1.

pliv. assumed as 82 0 9; not 52 0 8.

T. I rejected; others discordant.

β assumed as 46° 10′; not 46° 11′.

Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ-φ	Refr.	q'
			h m s				0 / "	, ,,	
50 γ Aquilæ .		h m s 17 10 43.0	19 38 49, 81	2 48, 01	- 0, 65	- 3.69	+ 10 4 42.6	- 0 46.3	<u> </u>
18 o Cygni		12 55.4	41 2.57	2 48.01		+ 1.81		4.3	+ 5
53 a Aquilæ -		14 55.2	43 2.70	2 48.01	0, 53	- 1.44	+ 44 34 24.8 + 8 17 28.4	49. 3	1
60 β		17 19 21.4	19 47 29.61	2 48.01	0.37	- 0.90	+ 5 51 46.6	53.7	- 1
a Cygni		18 8 36.5	20 36 52.80	— 2 47.98	- 3, 30	+ 1.79	+ 44 28 37.4	— 0 4.4 ————	+ 4
			1783	APRIL 2	39 		Zer	ro corr. = + 1	l′ 4 8″.
Sirius		4 8 25.0	6 38 19.84	2 47.48	+ 1.07	+ 1.67	— 16 25 45.8	- 2 2.5	- o
a Geminorum	}	4 53 30, 2 5 0 41, 9	7 23 32, 45 30 45, 33	2 47.43 2 47.42	- 2.29 0.36	+ 1.39 - 0.87	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 16.9 53.0	$+\frac{2}{1}$
Procyon . β Geminorum	l	5 4 46.2	7 34 50.30	2 47.42	1.96	+ 0.79	+ 5 45 8.6 + 28 30 43.6	21. 1	+ 1
1 k Leonis	1	6 44 28.7	9 14 49.18	2 47.35		+ 0.24	+ 27 4 58.6	0 22.8	+ î
a Hydræ .							— 744 9.8	1 26.0	 0
o Leonis		7 2 4.0	32 27.37	2 47.35	0, 69	- 4.29	+ 10 51 10.2	0 44,5	- 1
ε "		12 48.7	43 13, 84	2 47, 33	1, 84	+ 0.20	+ 24 44 30.4 + 26 59 47.4	25.5 22.8	+ 0
19 Leon. Min.	5.6	12 46. 7 16 45. 4	43 13.84 47 11.19	2 47.33	3.27	+ 1.43	+ 20 59 47.4 + 42 3 11.1	6. 8	+ 4
29 π Leonis		21 8.3	51 34.81	2 47.33	0. 57	— 1.67	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.4	- 1
21 Leon. Min.	5	26 57.8	57 25.27	2 47.32	2.66	+1.30	+ 36 16 5.0	12.7	+ 3
30 η Leonis		27 52.4	58 20.00	2 47. 32	1.17	- 1.40	+ 17 47 33.4	34. 3	- 1
Regulus .	70	29 11.6	9 59 39.42	2 47.32	0.83	— 1.79	+ 13 0 3.9	41.1	— 2
34 Leon. Min. 36 ζ Leonis	7.8	32 19.8 36 51.2	10 2 48, 14 7 20, 28	2 47, 32 2 47, 32	0. 93 1. 66	- 1.62 - 0.51	+ 13 0 3.9 + 14 23 57.5 + 24 33 5.0 + 24 28 8.3	39. 0 25. 7	- 2 + 0
		36 56.9	7 26.00	2 47.32	1.65	-0.51	¥ 24 28 8.3	25. 8	7 0
41 γ "		40 20.8	10 50.46	2 47.32	1.39	— 1. 15	+ 2 0 54 36.6	30. 2	_ ŏ
43 "	6	43 58.4	14 28.66	2 47. 31	0.48	 1.28	+ 7 37 12.7	49.8	- 1
44 "	~ ^	46 9.1	16 39.72	2 47.31	0.63	— 3.31	+ 9 51 42.5	46. 1	- 1
45 "	7.8	46 29.2 48 32.9	16 59, 88 19 3, 92	2 47.31	0.63 0.68	- 2.99 - 4.26	L 10 50 29 A	44 E	
31 Sextantia .	7	46 32.9 51 35.7	19 3.92 22 7.22	2 47.31 2 47.31	0.08	- 4.20 - 0.33	+ 10 50 38.0 + 3 14 36.5	44. 5 58. 0	- 1 - 1
48 Leonis	5.6	55 46.5	26 18.70	2 47. 31	0.51	-1.38	+ 8 2 50.0	49.0	— î
	8	57 2.2	27 34.60	2 47.30	0.51	1, 40	+ 8 8 28.2	48.9	- 1
	7.8	7 59 37.5	30 10.33	2 47.30	2.92	+1.28	+ 38 56 24.5	10.0	+ 3
52 κ Leonis	8	8 2 21.7	32 54.97	2 47.30	0.98	— 1.57 — 1.54	+ 15 5 10.2 + 15 18 54.4 + 30 32 3.8 + 44 18 40.6	38.2	<u> </u>
43 Leon. Min.		7 12.2 9 12.7	37 46, 26 39 47, 09	2 47, 30 2 47, 30	0. 99 2. 12	-1.54 + 1.26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37. 8 18. 9	-1 + 2
45 ω Ursæ Maj.		13 42.0	44 17.13	2 47.30	3, 53	+ 1.75	+ 44 18 40.6	4.5	$+ \frac{2}{4}$
46 "		15 55.3	46 30.80	2 47.29	2.50	+ 1.36	+ 34 38 5.6	14.5	+ 3
49 "		20 52.3	51 28.61	2 47.29	3.08	+1.36 + 1.32	+ 40 20 44.2	8.5	+ 4
	6.7	24 15.7	10 54 52.57	2 47.29	1.84	+ 0.17	+ 26 54 48.4	23.0	+ 1
	6	29 24.7 33 4.6	11 0 2.42 3 42.92	2 47.28 2 47.28	1.21 1.75	- 1.35 - 0.16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33. 7 24. 3	一 1 上 0
68 & Leonis	'	34 45.3	5 23.89	2 47.28	1. 73	- 0.16 - 1.05	+ 18 21 34.2 + 25 48 8.0 + 21 41 9.8 + 34 14 55.0	24. 3 29. 3	+ 0
54 v Ursæ Maj.		38 54.7	9 33.97	2 47.28	2.47	+1.38	+ 34 14 55.0	14.9	+ 2
77 σ Leonis		42 7.5	12 47.30	2 47.27	0.46	— 1 . 19	+ 7 11 48.6	50.6	- 1
79 "	5.6	45 3.4	15 43.68	2 47.27	0. 16	-0.21	+ 2 34 48.4	59. 5	- 1
83 "	7	47 55.0	18 35.75	2 47.27	0.26	0, 49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56. 3	- 1
09 4		48 55.0 52 42.2	19 35.91 23 23.73	2 47, 27 2 47, 27	0. 25 1. 01	— 0.45 — 1.52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56.5 37.5	- 1 - 1
90 " : :		55 33.5	26 15, 50	2 47.27	1.17	-1.32 -1.39	+ 15 33 0.2 + 17 58 18.2	0 34.1	_ i
91 v "		8 57 56.8	28 39.19	2 47.26	0, 02	+0.25		1 4.5	- ô
92 "		9 1 37.3	32 20, 29	2 47.26	1.50	— 0.93	+ 22 32 0.2	0 28.3	- 0
63 Ursæ Maj.		6 39.8	37 23.62	2 47.26	4.13	+3.24	+ 48 57 2.0	0.1	+ 5
94 β Leonis		10 6.1	40 50.48	2 47.25	1.03	-1.51	+ 15 45 45.6 - 9 58 14 7	37. 2	-]
5β Virginis . 65 Ursæ Maj.	6	11 27.4 15 51.3	42 12.00 46 36.62	2 47, 25 2 47, 25	0.17 3.97	-0.28 + 2.92	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58.8 1.1	-1 + 5
1 Comse	7	22 41.3	53 27.74	2 47.25	1.56	-0.80	+ 47 39 12.5 + 23 16 44.0	27.4	I 0
2 "		25 13.9	56 0.78	2 47.24	1.51	-0.91	+ 22 38 37.4	28, 1	— ŏ
	8.9	29 0.5	11 59 48,00	2 47.24	0.46	— 1.20	+ 7 13 38.9	50.6	- 1
3 "		9 31 30.9	12 2 18.81	— 2 47.24	— 1.18	1.39	+ 17 59 42.8	— 0 34.1	 - 1
	·								<u> </u>

	Name	Mag.	T	App. sid. time	Clock corr. n tai	n of q	ζ φ	Refr.	q'
	6 "	7 8 6.7 6 7 7 7 8 6.5 8	h m s 9 37 1.7 46 8.7 46 50. 4 50 50. 3 54 23. 8 54 23. 8 55 27. 7 9 58 41. 6 10 2 39. 7 2 55. 6 7 21. 2 14 13. 1 14 57. 2 37 20. 6 38 30. 8 40 45. 1 44 19. 8 45 33. 6 49 40. 7 53 34. 6 10 58 31. 2	h m s 12 7 50, 52 10 58, 03 17 40, 83 21 41, 39 25 15, 48 25 23, 90 26 19, 55 29 33, 98 33 32, 74 33 48, 60 45 8, 03 12 45 52, 25 13 8 19, 33 9 29, 72 11 44, 39 15 19, 68 16 33, 68 20 41, 46 24 36, 00 13 29 33, 41		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 16 5 9.7 - 7 42 58.2 + 5 23 9.4 + 15 49 48.5 + 9 7 47.0 + 8 51 20.0 + 11 35 54.5 + 11 24 46.0 - 10 44 8.6 - 7 53 25.0 - 8 21 55.2 + 7 38 24.0 - 10 9 58.2 - 13 16 10.0 - 10 1 50.2 - 1 18 59.5 + 3 28 43.2	7 7 7 8 8 1 26.2 2 0 54.2 37.2 47.5 47.9 47.8 43.6 43.6 0 45.0 1 27.0 1 28.8 0 50.1 0 52.0 1 35.2 1 48.0 0 38.6 1 8.6 — 0 58.1	- 1 0 1 1 0 1 0 1 0 0
				1783	APRIL 30		Ze	ero corr. = +	1′ 50″
i)	Capella Rigel	8 665.776778666677	2 29 54. 6 33 15. 5 41 46. 2 2 58 54. 0 3 12 31. 7 3 54 10. 6 4 4 28. 1 49 33. 3 4 56 44. 7 6 17 20. 6 40 31. 2 6 58 6. 2 7 1 59. 7 8 51. 7 15 0. 2 17 11. 2 20 58. 3 23 55. 3 23 51. 6 32 22. 1 41 48. 5 43 39. 8 48 53. 6 52 27. 4 55 27. 5 59 4. 5 7 69 32. 5 8 3 52. 2 5 11. 7 11 9. 8 15 41. 1 20 26. 0 8 24 52. 2	5 3 29.82 6 51.27 15 23.37 32 33.98 5 46 13.92 6 27 59.66 6 38 18.85 7 23 31.46 30 44.04 7 34 49.11 8 51 33.18 9 14 47.79 19 40.39 32 25.48 36 19.61 43 12.74 49 22.25 51 33.61 55 21.33 55 21.33 55 21.33 10 6 47.00 16 14.95 18 6.55 20 52.00 23 21.21 26 55.69 29 56.19 33 33.78 34 1.86 38 22.27 39 45.30 43 42.65 45 41.07 50 13.72	2 46. 52 → 0. 2 46. 50 → 1. 2 46. 49 → 0. 2 46. 49 → 0. 2 46. 44 + 1. 2 46. 39 2 46. 39 2 46. 33 → 0. 2 46. 33 - 1. 2 46. 29 2 46. 29 2 46. 29 1. 2 46. 29 2 46. 29 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 27 0. 2 46. 25 2. 2 46. 25 2. 2 46. 25 2. 2 46. 25 2. 2 46. 25 3. 2 46. 24 3. 2 46. 24 3. 2 46. 24 3. 2 46. 23 2. 2 46. 23 2. 2 46. 23 2. 2 46. 23 2. <td>53 + 1.87 94 + 1.08 1.08 1.08 1.09 1.47 1.66 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.68 1.72 1.69 1.72 1.69 1.72 1.69 1.72 1.69 1.73 1.74 1.39 1.75 1.</td> <td>+ 45 43 47.3 - 8 28 19.8 + 28 22 59.7 - 2 5 0.4 + 7 20 5.5 - 16 32 56.9 - 16 25 48.6 + 32 19 25.0 + 5 45 6.2 + 28 30 43.6 + 47 58 26.8 + 27 4 58.0 - 7 44 11.6 - 10 51 10.5 + 24 44 27.4 + 26 59 46.2 + 13 27 9.8 + 9 3 32.2 + 12 39 0.2 + 17 47 33.2 + 13 27 9.8 + 3 32.2 + 13 30 3.2 + 17 47 38.0 - 18 40.0 + 3 40.0 + 47 18 50.5 + 40 51 19.6 + 47 18 35.0 + 47 18 50.5 + 40 51 19.6 + 47 18 35.0 + td>53.0 21.0 0.9 0.22.8 1 26.0 0 44.5 22.9 40.6 47.4 41.7 34.4 41.2 4.9 11.6 7.4 11.2</td> <td>- 5 0 1 0 1 0 1 0 1 0 1 1</td>	53 + 1.87 94 + 1.08 1.08 1.08 1.09 1.47 1.66 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.68 1.72 1.69 1.72 1.69 1.72 1.69 1.72 1.69 1.73 1.74 1.39 1.75 1.	+ 45 43 47.3 - 8 28 19.8 + 28 22 59.7 - 2 5 0.4 + 7 20 5.5 - 16 32 56.9 - 16 25 48.6 + 32 19 25.0 + 5 45 6.2 + 28 30 43.6 + 47 58 26.8 + 27 4 58.0 - 7 44 11.6 - 10 51 10.5 + 24 44 27.4 + 26 59 46.2 + 13 27 9.8 + 9 3 32.2 + 12 39 0.2 + 17 47 33.2 + 13 27 9.8 + 3 32.2 + 13 30 3.2 + 17 47 38.0 - 18 40.0 + 3 40.0 + 47 18 50.5 + 40 51 19.6 + 47 18 50.5 + 40 51 19.6 + 47 18 50.5 + 40 51 19.6 + 47 18 50.5 + 40 51 19.6 + 47 18 35.0 + 47 18 50.5 + 40 51 19.6 + 47 18 35.0	53.0 21.0 0.9 0.22.8 1 26.0 0 44.5 22.9 40.6 47.4 41.7 34.4 41.2 4.9 11.6 7.4 11.2	- 5 0 1 0 1 0 1 0 1 0 1 1

(66)

1′ 50′′.3	ero corr. = +	z		ntinned	BIL 39—Co.	1783 APE						
q'	Refr.	ζφ	q	n tan ô	Clock corr.	App. sid. time	T	Mag.		Name		
+ 3.5 + 3.5 + 2.9 + 4.4 + 4.5 + 5.6 + 3.7	, " — 0 11.5 11.0 14.9 15.1 7.3 7.5 1.4 4.1	+ 37 27 21.4 + 38 2 28.8 + 34 14 56.2 + 33 58 52.3 + 41 35 35.0 + 41 20 5.2 + 47 27 39.5 + 44 44 23.2 + 37 59 16.2	+ 1.39 + 1.38 + 2.87 + 1.87 + 1.27	2. 76 2. 82 2. 45 2. 43 3. 20 3. 17 3. 92 3. 57 2. 81	78 - 2 46. 22 2 46. 21 2 46. 21 2 46. 21 2 46. 21 2 46. 21 2 46. 20 2 46. 20 2 46. 20 2 46. 20	h m s 11 0 10.04 3 7.32 9 32.47 10 38.05 12 30.86 13 40.16 18 32.06 21 34.86 25 11.75	h m s 8 25 36, 4 28 33, 2 34 57, 3 36 2, 7 37 55, 2 39 4, 3 43 55, 4 46 57, 7 50 34, 0	7 7,8 6 8 7 9,10 7 6,7	Мај.	Ursæ	54 ν	a)
+1.6 $+3.2$ $+2.7$ $+0.4$ $+3.3$	20, 8 13, 7 16, 3 25, 4 13, 0 13, 1	+ 28 57 12.0 + 35 23 54.1 + 32 56 25.4 + 24 53 58.4 + 36 6 33.2 + 35 58 5	$\begin{array}{c} + 0.96 \\ + 1.32 \\ + 1.40 \\ - 0.41 \end{array}$	1. 99 2. 56 2. 33 1. 67 2. 62 2. 61	2 46. 19 2 46. 19 2 46. 19 2 46. 19 2 46. 18 2 46. 18	27 40, 56 32 24, 63 34 56, 65 38 34, 54 41 12, 57 41 41, 85	53 2.4 8 57 45.7 9 0 17.3 3 54.6 6 32.2 7 1.4	6.7 6 9		"	62	
+ 4.5 + 4.4 + 5.2 + 4.9 + 4.9 + 4.3 + 5.4 + 5.5	6.8 7.0 7.4 3.0	+ 42 5 37.2 + 41 49 39.0 + 41 31 29.4 + 45 48 26.2 + 44 13 14.0 + 44 17 40.0 + 47 27 45.0 + 40 50 4.3 + 40 50 4.3 + 48 13 20.0	+ 1.44 + 1.41 + 1.39 + 2.32 + 1.73 + 1.75	3. 25 3. 22 3. 19 3. 70 3. 51 3. 51 3. 92 3. 11	2 46. 18 2 46. 18 2 46. 18 2 46. 17 2 46. 17 2 46. 17 2 46. 17 2 46. 17 2 46. 17 2 46. 16	45 21. 85 47 36. 72 48 52. 33 52 1. 85 53 53. 35 54 16. 51 58 5. 84 11 59 56. 54 12 2 38. 08 6 18. 38	10 40, 8 12 55, 3 14 10, 7 17 19, 7 19 10, 9 19 34, 0 23 22, 7 25 13, 1 27 54, 2 31 33, 9	7.8 7.6 8 6 7 9 8.9 7.8		66	67	b) c)
+ 5.5 + 4.3 + 5.4 + 4.6 + 4.1 + 4.3	0.6 7.4 2.2 5.2 6.4 8.5 8.1 6.4	+ 48 17 34.0 + 41 29 22.0 + 46 41 28.0 + 43 42 58.6 + 42 31 34.3 + 40 45 15.0 + 42 30 29.5	+ 3.09 + 1.39 + 2.64 + 1.63 + 1.47 + 1.33 + 1.35	4. 04 3. 18 3. 82 3. 44 3. 30 3. 07 3. 10 3. 30	2 46. 16 2 46. 16 2 46. 16 2 46. 15 2 46. 15 2 46. 15 2 46. 15 2 46. 15	7 12. 43 11 5. 57 13 8. 71 15 54. 66 19 42. 68 22 25. 3 15. 46 26 15. 05	32 27.8 36 20.3 38 23.1 41 8.6 44 56.0 47 38.2 48 28.2 51 27.3	8 8 7 7 8 7 5	Ven.	Can.	4 8	d) :)
+ 4.3 + 4.5 + 3.1 + 5.4 + 1.5	8. 1 6. 9 14. 3 2. 2 — 0 21. 0	+ 40 51 9.5 + 42 2 26.0 + 34 51 30.5 + 46 35 52.0 + 28 42 36.1	+ 1.36 + 1.43 + 1.34 + 2.61	3. 12 3. 24 2. 51 3. 81	2 46. 14 2 46. 14 2 46. 14 2 46. 14 — 2 46. 13	28 3.65 31 8.55 34 36.62 37 44.83 12 41 31.45	53 15.6 56 20.0 9 59 47.5 10 2 55.2 10 6 41.2	8.9 7 6.7 6.5 7		" Comæ	9	'
1′ 49″.5.	ro corr. = +	Ze		<u> </u>	3 MAY 1	178	· · · · · · · · · · · · · · · · · · ·		·········			
— 1.9 — 1.8 — 1.2 — 1.7 + 5.4 + 4.3	35. 0 1. 6 1. 6 8. 0	+ 37 47 9.1 + 11 14 26.5 + 10 23 50.6 + 3 18 15.0 + 17 13 57.0 + 47 18 35.0 + 47 18 47.0 + 40 51 15.0	+ 2.84 + 1.36	3, 88 3, 09	- 2 44.91 2 44.91 2 44.91 2 44.90 2 44.90 2 44.90 2 44.90	10 18 5. 48 20 33. 28 24 12. 88 26 41. 59 30 4. 44 33 32. 31 34 0. 59 38 20. 70	7 39 42.8 42 10.2 45 49.2 48 17.5 51 39.8 55 7.1 55 35.3 7 59 54.7	5. 6 7. 8 7 7 6. 5 7	٠ ا	Leon. Mayer Leonis		
+ 2.7 + 2.9 + 3.1 + 3.0 + 3.5 + 4.1 + 5.1 + 5.2	15.0 13.7	+ 33 8 44.1 + 34 6 45.6 + 35 21 13.0 + 35 9 43.0 + 34 38 4.9 + 37 13 38.9 + 40 20 47.0	+ 1.40 + 1.38 + 1.32 + 1.33 + 1.36 + 1.27	2. 42 2. 54 2. 52 2. 47 2. 72	2 44. 89 2 44. 89 2 44. 89 2 44. 89 2 44. 89 2 44. 88	41 13.77 43 22.22 43 55.71 45 40.00 46 28.33 50 11.74	8 2 47.3 4 55.4 5 28.8 7 12.8 8 1.0 11 43.8	8 5.6 6 6.7	44	Leon. '' Ursæ	46 47 46 49	7)
+ 5.1 + 5.1 + 5.2 - 0.8	3. 4 3. 6 3. 2 — 0 29. 7	+ 45 28 9.7 + 45 15 14.8 + 45 38 33.8 + 21 17 27.4	+ 2.18 + 2.08 + 2.25 - 1.10	3. 61 3. 66	2 44.88 2 44.88 2 44.87 — 2 44.87	54 7.58 10 57 15.39 11 0 13.17 11 5 4.67	15 39.0 18 46.3 21 43.6 8 26 34.3	7.8 8 6		" Mayer	52 ψ 469	

(67)

			1783 M.	AY 1—Cont	inued		Ze	ro corr. = + 1	L' 49". 5.
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζφ	Refr.	q'
81 Leonis 86 '' 4 ξ ² Virginis - 493 Mayer - 13 n Virginis - 15 η '' 43 δ '' 43 δ ''	7 6.7 7 7 6 7 8 7 7 6.7 6.7 7 7 8 8	h m s 8 27 12.1 36 32.7 38 32.8 43 24.4 8 55 29.9 9 0 57.9 3 59.2 12 6.3 31 38.8 32 53.6 39 11.4 43 41.0 46 37.7 47 33.7 47 33.7 50 14.2 52 19.9 54 41.5 9 59 26.8 10 0 8.6 1 27.6 4 25.3 8 9.4 17 26.2 22 39.5 27 18.2	h m s 11 5 42.57 15 4.91 17 5.14 21 57.54 34 5.03 39 33.93 42 35.73 11 50 44.15 12 10 19.86 11 34.87 17 53.70 22 24.04 25 21.22 26 17.37 28 58.31 31 4.35 33 26.34 38 12.42 38 54.35 40 13.57 43 11.76 46 56.47 47 27.75 51 57.29 12 56 14.74 13 1 28.95 6 8.41	# \$	** 1. 39	- 1. 11 - 1. 36 - 1. 41 - 1. 27 - 0. 37 - 2. 04 - 1. 72 - 0. 05 + 0. 14 + 0. 20 - 1. 43 - 1. 60 - 1. 62 - 1. 62 - 1. 72 - 0. 45 - 4. 17 - 3. 85 - 4. 172 - 0. 49 - 1. 88 + 1. 88 + 1. 88 + 1. 84	+ 21 11 + 18 18 30.0 + 17 37 31.0 + 19 34 49.2 + 3 32 51.0 + 9 25 46.0 + 1 43 17.0 + 0 24 16.0 + 0 31 27.6 + 0 31 27.6 + 10 53 58.0 + 8 51 22.0 + 8 54 52.0 + 8 54 52.0 + 8 54 52.0 + 10 44 5.0 + 10 14 1.0 + 10 16 36.6 + 10 14 5.0 + 10 16 36.6 + 22 26.0 + 4 12 33 45.0 - 7 56 6.0 - 7 24 4.0 - 7 24 4.0 - 7 24 19.8 - 9 13 20.5	- 0 33.7 34.6 32.0 57.5 46.9 0 40.6 1 1.3 4.2 1 4.0 0 35.4 44.6 47.9 47.7 0 46.1 1 17.9 1 5.8 0 44.9 45.6 45.6 47.1 565.7 1 27.2 25.6 16.5 531.6	- 1.5 - 1.5 - 1.5 - 1.6 - 0.5 - 1.6 - 1.6 - 0.5 - 1.6 - 0.5 - 1.6 -
65 "		34 52.1 10 35 58.6	13 43, 55 13 14 50, 23	2 44.76 — 2 44.76	0.22 + 0.24	+ 1.84 + 1.45 + 1.52	- 3 32 10.0 - 3 47 49.0	14. 2 — 1 15. 0 — ro corr. = +1	- 0.6 - 0.6
30 a Hydræ 24 μ Leonis	6 7.8 7 6.5 5	6 37 28.7 7 0 57.1 9 16.4 16 1.3 17 20.0 30 38.6 34 18.1 38 13.1 44 19.5 47 42.0 51 30.6 54 10.2	9 19 37.70 43 9.96 51 30.62 58 16.63 9 59 35.55 10 12 56.34 16 36.44 20 31.98 26 39.48 30 2.53 33 51.76 36 31.80 36 33.80	- 2 43. 69 2 43. 66 2 43. 66 2 43. 64 2 43. 64 2 43. 63 2 43. 63 2 43. 63 2 43. 63 2 43. 63	+ 0.49 - 1.83 0.57 1.16 0.83 1.03 0.63 0.72 0.21 1.12 1.87 2.23 2.23	+ 1.88 + 0.20 - 1.68 - 1.40 - 1.79 - 1.49 - 0.33 - 4.77 - 0.33 - 1.42 + 1.38 + 1.37	- 7 44 8.0 + 26 59 47.4 + 9 3 35.0 + 17 47 35.0 + 13 0 5.6 + 16 2 34.2 + 9 51 47.0 + 11 14 29.8 + 3 18 17.0 + 17 13 53.0 + 27 26 9.4 + 31 47 43.5 + 31 47 43.5 + 31 44 24.0	- 1 26. 0 0 22. 8 47. 3 34. 3 41. 1 36. 6 46. 1 43. 8 58. 0 35. 0 22. 3 17. 5	- 0.5 + 1.0 - 1.5 - 2.0 - 1.8 - 1.9 - 1.9 + 1.1 + 2.5 + 2.5
46	7.8 6 8 7.8 7 8 8 7 6 7.8 7	7 58 50.7 8 1 31.6 4 4.3 9 18.5 14 11.2 15 15.2 27 58.4 29 21.4 31 27.2 34 36.5 39 27.4 40 29.7 41 49.6 44 40.1 51 44.8 8 54 21.3	41 13.06 43 54.40 46 27.52 51 42.58 56 36.08 10 57 40.26 11 10 25.55 11 48.78 13 54.92 17 4.74 21 56.44 22 58.91 24 19.03 27 9.99 34 15.85 11 36 52.98	2 43, 62 2 43, 62 2 43, 61 2 43, 61 2 43, 60 2 43, 60 2 43, 59 2 43, 59 2 43, 59 2 43, 58 2 43, 58 2 43, 58	1.20 1.21 1.14 1.28 1.23 1.25 1.24	+ 1.40 + 1.32 + 1.36 + 1.15	+ 33 8 47.8 + 35 21 12.9 + 34 38 3.6 + 2 19 39.1 + 8 29 12.0 + 8 17 10.0 + 18 28 34.0 + 18 36 13.0 + 18 36 13.0 + 17 37 33.6 + 19 37 33.7 + 19 10 3 1.4 + 19 25 21.3 + 21 4 26.2	15. 9 13. 7 0 14. 4 1 10. 5 0 48. 2 48. 7 33. 4 33. 2 34. 5 31. 9 32. 7 32. 4 32. 1 — 0 30. 0	+ 2.

(68)

			1783 M	AY 9—Cont	inwed		Ze	ro corr. = + 1	l' 47 ". 8.
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζφ	Refr.	q'
6 A Virginis - 8 π " 17 " 43 δ " 38 Comæ 39 " 42 "	668.889766666	h m s 8 56 0.6 9 0 2.2 2 47.4 4 9.2 6 51.2 9 58.2 17 9.2 21 23.7 31 39.5 35 14.3 38 58.5 42 40.3 43 36.7 9 50 45.2 10 4 44.2 10 29.8 15 49.8 10 19 28.5	h m s 11 38 32.35 42 34.61 45 20.26 46 42.28 49 24.72 52 32.23 11 59 44.41 12 3 59.61 14 17.10 17 52.50 21 37.31 25 19.71 26 16.26 33 25.93 47 27.23 53 13.78 12 58 34.66 13 2 13.96	m s — 2 43. 57 2 43. 57 2 43. 57 2 43. 57 2 43. 56 2 43. 56 2 43. 55 2 43. 54 2 43. 54 2 43. 53 2 43. 53 2 43. 53 — 2 43. 51 — 2 43. 51	-1.67 0.86 0.62 0.61 0.52 0.49 0.46 0.45 0.41 1.10 1.03 -0.757 -0.02 -0.29 1.19 1.48 -1.22	- 4.43 - 1.63 + 0.45 - 0.56 - 1.36 - 0.97	0 / " + 24 54 1.0 + 13 27 50.0 + 9 45 35.0 + 9 37 55.2 + 8 10 4.0 + 7 48 22.6 + 7 13 40.4 + 7 3 59.4 + 6 29 47.0 + 15 49 50.5 + 11 51 25.0 + 8 55 + 11 51 25.0 + 8 15 + 8	7	
			179	S MAY 3		<u> </u>		ro corr. = +:	l' 46". 8.
66 a Geminorum Procyon 78 \(\beta \) Geminorum Regulus 36 \(\zeta \) Leonis 51 m 55	6 6 8.9 7	4 37 41.7 44 53.3 4 48 57.6 7 13 23.2 21 8.8 24 32.6 7 51 10.7 8 0 57.1 11 48.6 13 34.0 16 45.3 18 57.1 23 38.7 25 24.7 8 30 39.5	7 23 27.58 30 40.36 7 34 45.33 9 59 34.66 10 7 21.53 10 45.89 37 28.37 47 16.37 58 9.66 10 59 55.35 11 3 7.17 5 19.33 10 1.70 11 48.00 11 17 3.66	- 2 42.61 2 42.61 2 42.50 2 42.50 2 42.50 2 42.48 2 42.47 2 42.47 2 42.46 2 42.46 2 42.46 - 2 42.45	- 2. 29 0. 36 1. 96 0. 83 1. 65 1. 39 1. 32 0. 12 1. 82 1. 75 1. 01 1. 44 2. 97 1. 21 - 1. 15	- 1.79 - 0.53 - 1.15 - 1.23 - 0.08 + 0.08 - 0.16 - 1.52 - 1.28 - 1.34	+ 32 19 20.7 + 5 45 9.4 + 28 30 42.4 + 13 0 5.9 + 24 28 7.6 + 20 54 37.4 + 20 0 34.5 + 1 53 + 26 40 56.0 + 25 48 22.6 + 15 33 23.9 + 21 41 14.2 + 39 20 43.2 + 39 20 43.2 + 18 28 35.0 + 17 37 35.0	0 16.8 52.9 21.0 40.9 25.7 30.1 31.2 23.1 24.1 37.2 29.1 9.5 33.3 0 34.4	+ 2.5 - 1.5 - 2.0 + 0.1 - 0.8 - 1.1 + 0.9 + 0.6 - 1.8 - 1.6
			178	83 MAY 4			Zei	ro corr. = + 1	. 47".8.
39 Come	6.7 6 7.8 9 6.7 7.8	10 2 16.9 7 55.7 11 34.7 14 38.7 16 19.2 21 42.5 25 48.6 31 42.2 34 56.8 42 53.0 48 4.2 48 56.1 53 35.0 10 57 25.0 11 2 35.0 7 52.7 9 22.7 13 14.7 11 16 33.4	12 52 52.65 12 58 32.38 13 2 11.98 5 16.80 6 57.25 12 21.30 16 28.20 22 22.77 25 37.90 33 35.40 38 47.45 39 39.49 44 19.15 48 9.78 53 20.67 13 58 39.23 14 0 9.48 4 2.12 14 7 21.36	- 2 41. 45 2 41. 45 2 41. 45 2 41. 44 2 41. 44 2 41. 44 2 41. 43 2 41. 43 2 41. 43 2 41. 43 2 41. 42 2 41. 42 2 41. 42 2 41. 42 2 41. 42 2 41. 42 2 41. 42	- 0.38	- 0.97 - 1.33 + 1.46 + 0.92 + 1.79 + 1.05 + 1.88 - 0.90 + 1.80 - 0.08	+ 5 30 46.4 + 22 17 48.2 + 18 39 27.6 - 18 46 55.0 - 18 46 45.0 + 5 57 11.7 - 10 1 54.5 - 14 50 42.6 - 1 56 25.9 - 7 30 33.8 + 5 51 29.0 - 5 37 26.0 - 5 45 31.4 + 1 53 9.0 + 2 35 4.8 - 9 17 20.0 - 9 18 24.4 - 9 15 50.7 - 4 58 6.8	- 0 53, 5 28, 4 0 33, 1 2 16, 9 2 16, 9 0 52, 5 1 33, 9 54, 3 9, 5 1 25, 2 0 53, 0 1 19, 3 19, 9 0, 9 1 0, 3 3 1 31, 1 31, 3 31, 0 - 1 17, 7	1.4 -0.5 -1.4 -0.7 -1.5 -0.7 -0.5 -0.5 -1.0 -

(69)

Name 104 Virginis - 106 "	Mag.	T	l		1	1			1
106 "			App. sid. time	Clock corr.	n tan d	q	ζφ	Refr.	q'
106 "	8	h m s 11 18 29.0 27 54.1	h m s 14 9 17. 28 18 43. 93	m s - 2 41.42 2 41.41	+ 0.31 0.32	+ 1.69 + 1.76	- 4 58 17.6 - 5 9	, , ,, — 1 17.7	_ ″.
		29 7. 8	19 57.83	2 41.41	0.37	+1.83	— 5 55 42.2	20.3	— 0. 5
	6.7	34 5.0 38 20.8	24 55, 84 29 12, 34	2 41.41 2 41.41	0.37 0.29	+ 1.83 + 1.69	- 5 55 1.0 - 4 36 29.0	20.3 16.6	- 0. - 0.
4 Libræ	0.7	42 31.2	33 23. 42	2 41.41	1. 62	+ 2.23	— 24 2 37.7	3 2.1	_ ĭ.
5 "	-	45 50.3	36 43.06	2 41.40	0.93	+1.59	- 14 32 12.6 - 27 1 7.5	1 52.8 3 41.3	- 0. - 3.
6 "	5	49 20.7 53 32.4	40 14.03 44 26.42	2 41.40 2 41.40	1.84 1.60	+3.65 + 2.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 58.8	□ ί.
14 "	i	11 56 38.7	47 33.23	2 41.40	1.66	4 2.46	— 24 32 9.0	3 7.5	— 2.
198 "	l	12 1 10.5 2 16.3	52 5.78 53 11.76	2 41.39 2 41.39	0. 49 0. 47	+1.88 + 1.88	- 7 39 24.7 - 7 29 15.7	1 25.8 25.2	-0.
21 1 "	l	6 18.3	57 14.42	2 41.39	1.00	+ 1.63	— 15 24 13.5	1 57.3	- ō.
$22 v^2$ " $24 \iota^1$ "	ļ	6 29.6 11 37.8	14 57 25.75 15 2 34.79	2 41.39 2 41.39	1.02 1.25	+ 1.63 + 1.44	— 15 38 — 18 57 11.6	2 18.4	— 0.
25 i ³ "		12 43.1	3 40.27	2 41.39	1.24	+ 1.46	18 48 47.0	2 17.5	— ö.
27 β "		17 4.6	8 2.48	2 41.39	0.54	+ 1.87	 8 34 45.8	1 28.8 54.1	- 0. - 0.
$29 o^1 " $		20 38.3 24 9.8	11 36,77 15 8,85	2 41.38 2 41.38	0, 96 0, 62	+1.60 + 1.82	— 14 45 14.6 — 9 32 14.6	1 32.4	
$32 \zeta^1$ "	1	27 44.5	18 44, 14	2 41, 38	1.04	+ 1.65	— 15 56 44.5	2 0.3	- o.
34 ζ^4	6	32 22.2 35 5.2	23 22.60 26 6.05	2 41.38 2 41.38		+1.67 $+1.58$	— 16 6 10.7 — 14 3 18.3	2 1.1 1 50.9	- 0. - 0.
41 "	"	38 6.4	29 7.75	2 41.38	1.22	+ 1.48	- 18 34 5.8	2 15.9	- 0.
43 ĸ "	7.8	41 7.4	32 9.25 35 37.11	2 41.37 2 41.37	1.25 1,21	+1.44 + 1.51	— 18 57 19.7 — 18 24 17.5	18.5 2 14.9	$\begin{bmatrix} -0. \\ -0. \end{bmatrix}$
	7.0	44 34.7 47 32.2	38 35, 10	2 41.37			8 48 10 8	1 29.9	— ö.
45 λ "		52 23.2	43 26.89	2 41.37	1.28	+ 1.40	— 19 29 47.4	2 22.4	- 0.
49 "	6	55 59.2 12 59 46.9	47 3, 49 50 51, 81	2 41, 37 2 41, 36	0. 92 1. 03	+ 1.58 + 1.65	— 14 10 56.0 — 15 52 46.1	1 51.6 2 0.0	- 0. - 0.
51 £ "		13 4 2.9	15 55 8.51	2 41.36	+0.68	+ 1.73	- 15 52 46.1 - 10 46 5.2	1 37.0	- 0.
1 & Ophiuchi .	5	9 47.0 13 14 34.4	16 0 53.55 16 5 41.74	2 41.36 2 41.36	-0.25 + 0.20	- 0.45 + 1.37	+4124.8 -3810.5	056.5 -112.9	- 1. - 0.
	1		17	83 MAY 9)		Zei	ro corr. = +	 1′ 48″.6
		1			l	1			1
66 a Geminorum Procyon .	2	4 14 1.7 21 13.0	7 23 23, 03 30 35, 51	2 38.04 2 38.04	- 2.34 0.37	+ 1.39 - 0.87	+ 32 19 22.0 + 5 45 5.4	- 0 16.8 52.7	+ 2. - 1.
78 β Geminorum	1	25 17.7	7 34 40.88	2 38, 03	2.01	+ 0.79	$\pm 28 30 41.6$	20.9	+ 1.
30 η Leonis		6 48 23.7 6 49 42.9	9 58 10.39 9 59 29.81	2 37.96 2 37.96	1, 19 0, 85	- 1.40 - 1.79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34. 0 40. 8	- 1. - 2.
Regulus .		7 0 52.0	10 10 40.74	2 37.96	1.41	1 1 1 2	1 00 54 35 6	30.0	— õ.
47 ρ "		14 14.5	24 5.44	2 37.95	0.68	- 3.95	+ 20 34 35.0 + 10 23 53.2 + 33 4 19.4	44. 9 16. 0	- 1. + 2.
37 Leon. Min.		19 16.6 24 23.9	29 8.37 34 16.51	2 37.95 2 37.95	2.41	+ 1.40 - 0.57	+ 33 4 19.4 + 24 17 44.8	25. 9	Ŧ ő.
53 l Leonis		30 41.0	40 34.64	2 37, 94	0.76	4.75	+ 11 40 5	0 43.0	├ ─ 2.
55 "	5.6 6.7	37 17.1 7 53 14.1	10 47 11.62 11 3 11.44	2 37.94 2 37.93	0. 12 - 2. 68	+ 1.311	+ 1 52 26.9 + 35 56 11.2	1 0.6 0 13.0	— 1. + 3.
Double .	".	8 1 0.1	10 58.72	2 37.93	+ 0.03	+ v. 55	— 0 28 35.0	1 5.8	├ 0.
		1 42.7 4 49.1	11 41.44 14 48.35	2 37.93 2 37.93	- 1.25 2.93	-1.34 + 1.27	+ 18 28 33.6 + 38 23 44.6	0 33.3 10.5	— 1. + 3.
	6	11 13, 2	21 13,50	2 37.92	2, 24	+ 1.32	+ 31 8 42.0	18. 1	 + 2.
	~	12 51.9	22 52.47 24 13 20	2 37.92	1.27 1.29	I— 1. 32 I	+ 18 55 28.1 I	32. 7 32. 3	- 1. - 1.
	6	14 12.6 17 30.0	24 13.39 27 31.33	2 37.92 2 37.92	2.05	+ 0.95	+ 19 10 35.0 + 28 57 12.2 + 32 55 11.0	20. 6	+ 1.
62 Ursæ Maj.	6.7	22 53.7	32 55.91	2 37.92	2, 40	+ 1.40	+ 32 55 11.0	16.2	+ 2 .
	7.8	24 45.6 32 24.7	34 48, 12 42 28, 48	2 37.92 2 37.91	2, 40 0, 89	i — 1.40 I	 .52 .50 25.2	16, 2 40, 3	+ 2. - 2.
	7.8	32 56.4	43 0.27	2 37.91	0, 85	- 1.79	+ 13 27 47.0 + 12 59 34.0	41.0	— 2.
65 "	7	36 22.0 39 41.8	46 26.43 49 46.78	2 37.91 2 37.91	4.06 0.30	+ 2.93 - 0.59	+473913.5 +44023.6	1, 2 54, 9	+ 5. - 1.
492 Mayer 7 b Virginis .	7	8 41 25.0	11 51 30.26	-237.91	0.31		4 50 48.4	— 0 54.6	- i.
g assumed as 54° 46′ 8 Micr. corr. assumed a	<u> </u>	J	d fassumed as 7		<u> </u>		s, Il and III assum	-3 10 ~	<u> </u>

(70)

			1783 M	AY 9—Con	tinued		Z	ero corr. = +	1′ 48″
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ-φ	Refr.	q'
9 o Virginis .		h. m. s. 8 46 45.7	h, m. s. 11 56 51,84	m. s. — 2 37.91	s . - 0, 65	s . — 3, 44	o / // + 955 8.1	, , ,, 0 45.8	_ '
) 10 r		51 7.2	12 1 14.06	2 37.90	0.20	- 0.30	+ 3 6 0.0	1 0.1	- 1.
4 Comæ.	~	53 23.2	3 30.43	2 37.90	1.89	+0.21 + 3.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 22.6 0.5	+ 1. + 5.
)	7.8	56 57.2 8 59 36.9	7 5, 02 9 45, 16	2 37.90 2 37.90	4. 14 1. 32	+ 3.06 - 1.26	+ 19 37 10.3	31.7	二 ï.
16 c Virginis .	1.0	9 1 51.8	12 0.41	2 37.90	0.29	- 0.55	+ 4 30 17.4	55. 4	- 1.
17 "		4 1.7	14 10,67	2 37.90	0.42	1.04	+ 6 29 43.8	51.5	- <u>!</u> .
Ell Warren	8 7	7 26.6 9 45.5	17 36. 13 19 55. 41	2 37.89 2 37.89	0. 21 0. 36	- 0.32 - 0.83	+ 3 13 43.9 + 5 34 56.4	57. 9 53. 2	- 1 - 1
511 Mayer	7.8	15 3.7	25 14.48	2 37.89	0.35	- 0.76	÷ 5 24 9.0	53.7	_ i
	7	16 34.7	26 45.73	2 37.89	0.56	- 1.54	+ 8 37 36.0	47.8	- 1
	6.7	18 40.4	28 51.77	2 37.89	0, 65	- 3.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45.7 45.7	
33 Virginis -	7	22 25.8 27 52.4	32 37, 79 38 5, 28	2 37.89 2 37.88	0.70	- 3.60 - 3.69	+ 10 0 17.8 + 10 44 8.6	45.0	— i
31 Comæ.	1	33 34.0	43 47.82	2 37.88	2.03	+ 0.86	+ 28 41 53.8	20.8	+ 1
45 d Virginis -	l	37 6.3	47 20.70	2 37.88	- 0.30	- 0.56	+ 4 33 47.3	0 55.1	- 1
44 K "	6	40 52.7 45 6.7	51 7.72 12 55 22,41	2 37.88 2 37.88	+ 0.17 0.16	+1.25 $+1.20$	- 2 39 4.8 - 2 30 16.8	1 11.0 10.9	- 0 - 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	9 51 5.0	13 1 21, 69	2 37.87		+ 1.65	_ 4 23 17.3	15.7	- č
	7.8	10 4 51.7	15 10.65	2 37.86	0, 64	+ 1.81	9 44 11.0	32.6	- Q
67 a "		6 5.2	16 24.35	2 37.86	0.65	+ 1.79	- 10 1 51.5 - 14 50 36.8	33.7 54.1	- 0
69 "		13 50.4	24 10.83	2 37.86	+ 0.59	+ 1.85	- 9 2 56.9	1 30.1	_ 0
	6	19 51.7	30 13.12	2 37.86	— 1.02	 1.54	+ 15 23 31.4	0 37.5	- 1
	7.8	22 37.9	32 59.87	2 37.86	1.37	- 1.21	$\begin{array}{c} + 20 & 17 & 5.2 \\ + 23 & 46 & 32.0 \end{array}$	30.9	- 1
00 11	6.7	25 49.4 29 12.8	36 11.79 39 35.75	2 37.86 2 37.85	-1.63 + 0.37	- 0.70 + 1.81	+ 23 40 32.0 - 5 45 30.6	0 26.5 1 19.7	_ 0
88 "	7.8	33 37.7	44 1, 38	2 37.85	0.63	+ 1.81	- 9 36 35	32.2	- č
	7	36 37.4	47 1.57	2 37.85	+ 0.57	+ 1.86	8 41 38.5	1 29.0	- 0
10 e Bootis		40 46.4	51 10.85	2 37.85	- 1.55	- 0.90	+ 22 44 14.9 + 23 0 38.8	0 27.9 0 27.5	$\begin{bmatrix} -0 \\ -0 \end{bmatrix}$
94 Virginis .	7 7	43 11.8 47 1.2	53 37, 05 13 57 27, 08	2 37.85 2 37.85	- 1.57 + 0.51	-0.85 +1.88	+ 23 0 38.8 - 7 51 27.2	1 26.2	
or inguis.	6.7	55 15.0	14 5 42.23	2 37.84	0.32	+ 1.88 + 1.73	- 4 56 25.0	17. 3	- 0
99 4 "	1	56 49.5	7 16.99	2 37.84	0.32	+ 1.74	- 4 58 7.6	17.4	- 0
100 λ "	7	10 59 32.9 11 2 58.6	10 0.84 13 27.10	2 37.84 2 37.84	+0.81	+1.62 + 0.73	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.9 1 7.0	
103 v ² "	7.6	5 35.2	16 4.13	2 37.84		0.03	+ 26 18 11.3	0 23.6	+ 0
22 f Bootis		8 34.0	19 3, 42	2 37.84	1.36	- 1.22	+ 20 11 11.5	31.0	— 1
-	7	19 3.1	29 34.24	2 37, 83 2 37, 83	2.00 1.50	+ 0.76 - 1.01	+ 28 24 39.8 + 22 2 18.6	21.1 28.7	+ 1
35 0 "	7	24 10.7 27 17.2	34 42, 68 37 49, 70	2 37.83 2 37.83	1. 19	1.40	¥ 17 52 5.9	34. 1	_ i
	7.8	27 55.1	38 27.70	2 37.83	1.18	- 1.40	+ 17 41 53.0	34. 4	- 1
	7.8	29 41.5	40 14.40	2 37.82	1.34	- 1.23	+ 19 56 24.0	31.3 30.8	
	8 8	32 5.5 34 22.5	42 38.79 44 56.17	2 37.82 2 37.82	1.38	- 1.20 - 1.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29. 8	$\sqsubseteq \dot{c}$
	6.7	38 7.5	48 41.79	2 37.82	1.01	- 1.54	+ 15 18 39.0	37.6	— i
	8.9	41 53.7	52 28.61	2 37.82	1.04	- 1.51	+ 15 41 3.4	37.2	- <u>!</u>
	7.8 6	44 37.0 49 30.3	14 55 12, 35 15 0 6, 45	2 37.82 2 37.81	1. 12 1. 29	- 1.44 - 1.29	+ 16 53 19.0 + 19 15 54.6	35, 4 32, 2	
	6.7	54 17. 4	4 54.33	2 37.81	1.33	-1.25	+ 19 46 38.7	31.6	_ i
	7	11 55 7.3	5 44.37	2 37.81	1.35	— 1.23	+20 4 3.2	31. 2	- <u>!</u>
	6	12 0 45.3	11 23.33	2 37.81	1.45	- 1.09 - 1.26	+ 21 21 1.4 + 19 40 29.9	29. 6 31. 7	
	7.8 6	5 4.4 8 11.3	15 43, 14 18 50, 55	2 37.81 2 37.80	1. 32 1. 37	- 1.26 - 1.22	+ 20 13 42.8	31.7	
	6.7	11 16.3	21 56.06	2 37.80	1. 14	- 1.42	+ 17 7 34.2	35. 1	- 1
12 τ^1 Serpentis .	6	14 12.5	24 52.70	2 37.80	1.12	- 1.45	+ 16 46 48.0	35.6	- <u>1</u>
	8.9 7.8	23 41.2 26 18.3	34 22.97 37 0.50	2 37.80 2 37.79	0.55 0.78	- 1.50 - 4.32	+ 8 30 18.0 + 11 56 31.5	48. 1 42. 7	
28β "	4.5	28 11.0	38 53,50	2 37.79	1.07	- 1.49	+ 16 5 22.8	36.6	_ î
35 x "	5	30 58.4	41 41.36	2 37.79	1.26	- 1.32	+ 18 47 54.4	32.9	- <u>!</u>
	7.8	34 1.2	44 44.66	2 37.79	1.05 1.29	- 1.50 - 1.29	+ 15 52 56.0 + 19 14 32.0	36. 8 32. 3	- 1 - 1
13 e Cor. Bor	'	37 55.6 40 33.7	48 39.70 51 18.26	2 37.79 2 37.79	1.92	+ 0.38	+ 27 29 18.0		+i
	1	12 44 41.4	15 55 26.62	2 37.79		+ 1.25	+ 30 26 21.2	— 0 18.9	 ∔ 2
14 "	1		20 00 20.02	1 2 31111			[• • • • • • • • • • • • • • • • • • •		1

	,		1783 MAY 19						l' 47". 2.
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζφ	Refr.	q'
Virginia		h m s 9 29 13,5	h m s 12 51 16,28	m s _ 2 35, 97	_ 0.83	- 2.6 8	0 ' " + 11 49 17.0	, ,, 0 42,8	
Virginis .		32 1.5	54 4.74	2 35, 97	- 0.85	$\frac{2.00}{2.43}$	+ 12 6 30.5	0 42.4	$=$ $\tilde{\mathbf{z}}$.
_	6	37 47.3	12 59 51.49	2 35, 97	+0.54	+ 1.88	— 7 49 41.0	1 25.8	— 0.
)	7.8	44 7.0 46 29.4	13 6 12.23 8 35.02	2 35.97 2 35.97	0.71	+1.79 $+1.77$	- 10 12 20.3 - 10 20 31.8	34. 1 34. 7	- 0. - 0.
67 a "	'	54 16.6	16 23.50	2 35.96	0.69	+1.79	- 10 1 55.0	33.4	_ ŏ.
69 "		9 56 23.4	18 30, 64	2 35.96	1.04	$+1.60 \\ +1.85$	— 14 50 44.4	53.8	- o.
76 "	6	10 2 2.2 8 3.8	24 10.37 30 12.96	2 35.96 2 35.96	+0.63 -1.09	+ 1.85 - 1.53	-9259.6	1 29.9	- 0.
5 ν Bootis		19 31.6	41 42.65	2 35.96	1. 19	— 1.44	+ 15 23 + 16 51 27.3	0 35.4	_ 1.
	6	22 37.1	44 48.66	2 35.96	1.26	- 1,40	+ 17 47 6.8 + 16 19 46.2 + 16 55 57.6	34.1	- 1.
	7.8	24 44.8 26 40.5	46 56.71 48 52.73	2 35.95 2 35.95	1.15 1.20	- 1.48 - 1.44	+ 16 19 46.2 $+$ 16 55 57.6	36. 1 35. 2	- 1. - 1.
	6.7	31 24.2	53 37.21	2 35.95	1.67	- 0, 85	+ 23 U 36.U	27.5	— 0.
	7.8	34 5.2	56 18.65	2 35.95	2.14	+ 0.79	+ 28 31 58.7 + 35 47 26.2	21.0	+ 1.
	7.8	37 45.7 41 32.7	13 59 59.75 14 3 47.15	2 35, 95 2 35, 95	2.83	+1.31 + 1.41	+ 41 46 40.2	13.2 7.0	+ 3. + 4.
	7	43 19.3	5 34.25	2 35.95	3.71	+1.56	+ 43 20 8.2	5.5	+ 4.
	8 6.7	45 59.8 48 6.1	8 15.19 10 21.83	2 35, 95 2 35, 95	4. 13 4. 14	+2.54 + 2.60	+ 46 24 50.1 + 46 32 36.9	2. 4 2. 3	+ 5. + 5.
	7	50 8.1	12 24. 16	2 35.95	4. 47	+ 3.18	L 48 58 40 0	0.2	I+ 5.
	7.8	53 43.3	15 59.95	2 35.94	2.60	+1.40 + 0.73	$\begin{array}{c} + 33 & 28 & 36.0 \\ + 28 & 22 & 41.0 \\ \end{array}$	15.6	+ 2.
	6	54 45.8 57 1.7	17 2.62 19 18.89	2 35.94 2 35.94	2. 13 3. 22	+ 0.73	+ 28 22 41.0 + 39 21 1.5	21. 1 9. 5	+ 1. + 3.
	6.7	10 59 15.8	21 33.36	2 35.94	3.54	+ 1.29 + 1.42	+ 41 58 28.6	6.8	+ 4.
	6.7	11 1 26.1		2 35.94	3.63	+ 1.49	+ 42 45 2.0	6.1	+ 4.
	7	3 24.8 6 41.2	25 43.05 29 0.00	2 35.94 2 35.94	3.84 1.76	+1.75 -0.60	+ 44 19 3.6 + 24 10 35.7	4.5 26.0	+ 4.
	6	8 31.5	30 50, 60	2 35.94	1.37	1 30	+ 19 13 32.8	32. 2	_ ĭ.
	6	10 52.8	33 12.28	2 35.94	1.66	- 0.87	⊥⊥ 99 53 17 9	27 7	- O.
35 o Comæ	7.6	12 48.1 15 28.6	35 7.89 37 48.83	2 35, 94 2 35, 94	1.10 1.27	-1.51 -1.40	+ 15 37 10.0 + 17 52 5.0	37. 2 34. 0	- 1. - 1.
oo o comac	7	16 7.1	38 27.44	2 35.94	1.25	- 1.40	+ 17 41 47.1	34.3	- 1.
	6	19 6.2 21 24.2	41 27.03 43 45.41	2 35.94 2 35.94	1.85 1.73	-0.31 -0.70	+ 25 14 57.4	24.8	+ 0.
	8 7.6	23 52.8	46 14. 42	2 35.93	1.43	-1.23	+ 20 0 40.1	26.5 31.3	- 1
)	9	26 46.1	49 7.99	2 35.93	1.27	-1.39	+ 23 47 27.5 + 20 0 40.1 + 17 58 5.0 + 22 24 55.0	34.0	- <u>1</u> .
	6.7	27 36.4 29 36.4	49 58.63 51 58.96	2 35.93 2 35.93	1.62 1.90	- 0.95 - 0.13	+ 22 24 54.3 + 25 53 50.0	28. 2 24. 0	+ 0.
	7	31 27.6	53 50.46	2 35.93	1.66	-0.87	+ 22 53 21.5	27.7	 0 .
43 ψ Bootis	•	35 26.1 38 3.5	14 57 49.61 15 0 27.44	2 35.93 2 35.93	2.07 1.89	+ 0.47 $- 0.19$	+ 27 46 27.4 + 25 41 45.0	21.9	+ 1.
45 e "	6	39 25.3	1 49.46	2 35.93	1.90	- 0. 13	+ 25 55 14.8	24.3 24.0	T ŏ
	6	42 29.5	4 54.16	2 35.93	1.41	1 95	+ 19 46 40.7	31.6	— 1.
48 χ " - · · 49 δ Bootis . ·		45 39.4 47 0.2	8 4.58 9 25.60	2 35.93 2 35.93	2. 27 2. 66	+ 1.18 + 1.38	+ 29 57 1.8 + 34 6 13.4	19.5 14.9	1 2
TO O DOUGH	8	49 28.0	11 53.81	2 35.93	2.68	+ 1.37	+ 34 21 58.7	14.7	+ 1. + 2. + 2.
	7	53 27.8 11 57 0.8	15 54.27 19 27.85	2 35, 92 2 35, 92	3.96 4.07	+2.06	+ 45 11 44.6 + 46 0 42.1 + 39 27 2.1	3.6 2.8	+ 5. + 5. + 4
	8	12 0 41.2	23 8.85	2 35.92		+ 2.39 + 1.29	+ 39 27 2.1	9.4	
5 a Cor. Bor	1	5 42.0	28 10.47	2 35.92	2.04	+ 0.36	+ 27 25 39.0	22.3	+ 1.
19 τ ³ Serpentis .	7	9 56.0 11 13.6	32 25.17 33 42.98	2 35.92 2 35.92	1.20	- 1.43 - 1.45	+ 17 0 11.0 + 16 42 43.6 + 33 10 49.4	35. 3 35. 7	
9π Cor. Bor		15 36.8	38 6.91	2 35, 92	2.57	1 1 40	+ 33 10 49.4	16.0	+ 2
10 4 "	6	18 18.5	40 49, 05	2 35.92	1.01	1.62	+ 14 27 3.5	39.0	— 2
10 δ " 11 κ "		20 39. 4 23 13. 1	43 10.34 45 44.46	2 35.92 2 35.91	1.98 2.88	+0.09 +1.30	¥ 36 18 31.4	23. 1 12. 7	+ 1.
	7.8	30 56.8	53 29.43	2 35.91	0.97	- 1.67	+ 13 52 23.0	39.9	2.
6 v Herculis .	7.8	31 55.3	54 28.09 15 58 44.49	2 35.91 2 35.91	0. 99 4. 16	-1.62 + 2.61	+ 14 3 58.0 + 46 36 40.8	39.5	
48 Serpentis.		12 41 47.0	16 4 21.41	_ 2 35.91	_ 1.22	1.42	+ 14 27 3.5 1 + 26 42 55.1 + 36 18 31.4 + 13 52 23.0 + 14 3 58.0 + 46 36 40.8 + 17 12 50.5	- 0 35.1	I i
•	1	I	1	1	1	1	1	1	1

			178	3 MAY 13	:		Ze	ro corr. == + 1	l' 46". 9
Name	Mag.	T	App. sid. time	Clock corr.	# tan ð	g	ζφ	Refr.	q'
		k m s 8 7 6,5	h m s 11 32 52, 34	m s 2 36.54	_ 3. 61	+ 1.46	0 / / + 42 24 48.4	, ,, — 0 6.3	+ 4.
94 β Leonis.	6	14 52.7 21 4.7	40 39, 82 46 52, 84	2 36.53 2 36.52	1. 12 1. 99	-1.50 +0.09	+ 15 45 44.6 + 26 42 19.2	36.7 22.9	├ 1.
	6	23 48.3	49 36, 89	2 36.52	2.62	+ 1.40	+ 33 27 31.2	15. 5	 + 2.
	6	27 22.2 29 16.2	53 11.38 55 5.69	2 36.52 2 36.52	3. 01 2. 37	+1.27 $+1.29$	+ 37 13 42.2 + 30 51 48.0	11.6 18.3	+ 3. + 2.
	8	33 14.4	11 59 4.54	2 36.52	1.78	— 0.59	+ 24 13 36.0	25. 8	0.
	6 7.8	36 32.7 41 12.7	12 2 23.38 7 4.15	2 36.52 2 36.52	2. 15 4. 45	+ 0.78 + 3.10	+ 28 27 52.0	20.9 0.5	+ 1. + 5.
8 Comme	1.0	45 9.2	7 4.15 11 1.30	2 36.52	1.78	 0.59	+ 48 17 33.0 + 24 13 0.0	25.8	0.
12 "	÷	48 22.2 50 11.3	14 14.83	2 36.51	2.02	$+0.21 \\ +0.30$	+27133.4	22.5	+ 1.
13 f "	7	50 11.3 53 30.7	16 4.23 19 24.17	2 36.51 2 36.51	- 2.04 + 0.93	_ 1 5× 1	+ 27 16 39.7 - 13 15 9.4	0 22.3 1 45.8	+ 1. - 0.
512 Mayer	7	55 36.5	21 30.31	2 36.51	0.86	+1.63	- 12 11 43.2	41.3	- 0.
	6 7	8 59 1.5 9 1 20.3	24 55.87 27 15.05	2 36.51 2 36.51	0.81 0.76	+1.67 $+1.72$	— 11 38 29.8 — 10 52 52.8	39. 0 36. 1	
26 χ Virginis .	5	4 44.4	30 39.71	2 36.51	0.47	∔ 1.87	— 6 48 37.2	22. 1	— 0.
28 "	7.8	7 25.5 9 45.2	33 21.25 35 41.33	2 36.51 2 36.51	0.44 + 0.11	+1.85 $+0.96$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.6 1 8.1	
	7	16 3,6	42 0.77	2 36.51	0 59	1 94	+ 7 29 39.6	0 49.6	- 1
	6.7	19 7.0 21 43.2	45 4.67 47 41.30	2 36.50 2 36.50	$+0.21 \\ 0.26$	+ 1.34 + 1.50	- 3 3 13.3 - 3 41 55.0	1 11.7 13.3	
	7	9 23 19.3	12 49 17.66	2 36.50	0.97	+ 1.50 + 1.57 + 1.74	— 13 48 44.2	48.5	— 0.
2 Libræ 574 Mayer	6.7	10 49 26.7 53 21.2	14 15 39.21 19 34.35	2 36.48 2 36.48	0.75 + 0.63	+1.74 $+1.85$	- 10 41 2.1 - 9 1 55.0	35.4 1 29.6	
26 Boötis	'	10 59 8.2	25 22, 30	2 36.48	1.69	-0.82	+ 23 11 52.2	0 27.2	- O
	6.7	11 2 45.0 4 35.1	28 59.69 30 50.09	2 36.48 2 36.48	1.77 1.38	- 0.60 - 1.30	+ 24 10 36.0 + 19 13 33.6	25. 9 32. 1	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$
	6	6 56.9	33 12, 28	2 36, 48	1.67	- 0.88	+ 225316.6	27.6	- o
34		10 18.2 11 54.8	36 34.13 38 11.00	2 36.48 2 36.48	1.97 2.10	+0.36 + 0.55	+ 27 25 53.4 $+$ 27 58 14 3	21.9 21.6	+ 1 + 1
	7	15 56.8	42 13, 66	2 36, 47	1.47	— 1.2 0	+ 27 58 14.3 + 20 23 44.0	30.6	- 1
37 6 "	7.8	18 38, 1 19 56, 5	44 55, 40 46 14, 02	2 36.47 2 36.46	1.53 1.44	— 1.11 — 1.23	+ 21 9 57.2 + 20 0 39.1 + 15 18 36.8 + 14 53 36.8 + 15 40 57.4	29.7 31.1	-0.1
07 5	6	22 22.9	48 40.82	2 36.46	1.08	- 1.54	+ 15 18 36.8	37.5	- i.
	8	24 24.7 26 9.1	50 42.95 52 27.64	2 36, 46 2 36, 46	1.04 1.11	-1.58 -1.51	+ 14 53 36,8 + 15 40 57 4	38. 1 37. 0	
41ω "	-	28 58.1	55 17.10	2 36, 46	1.92	— 0, 15	+ 20 00 00,0	24.0	+ 0.
) 43	8.9	30 50, 1 81 30, 3	57 9.41 14 57 49.72	2 36, 46 2 36, 46	2.01 2.09	+0.52 $+0.47$	+ 27 54 45.0 + 27 46 30.2	22. 0 21. 8	1
40 W	7	34 26.4	15 0 46.30	2 36, 46	3, 02	+1.27	+ 37 16 4.4	11.6	+ 1
•	6.7	38 11.7 41 32.7	4 32.22 7 53.77	2 36, 46 2 36, 46	2.66 2.53	+1.39 $+1.39$	+ 33 52 45.7 + 32 34 38.0	15. 1 16. 5	+ 2 + 2
49 8 "		43 4.9	9 26.22	2 36, 46	2.70	+1.38	+ 34 6 10.4	14.9	+ 2
	6.7	45 31.2 47 3.3	11 52.92 13 25.27	2 36, 46 2 36, 45	2.71 2.60	+1.37 $+1.40$	+ 34 6 10.4 + 34 21 58.4 + 33 16 50.0	14. 6 (5. 7	+3 + 2
2 η Cor. Bor	5.6	50 32.1	16 54, 64	`2 36, 45	2.38	+ 1.31	+3137.8	18. 2	$+\frac{2}{3}$
51 μ Boötis	9	52 36.2 55 15.2	18 59.08 21 38.52	2 36, 45 2 36, 45	3, 11 3, 92	1.87	+ 38 6 55, 8 + 44 44 27, 5	10.7	+ 3 + 5
	7	11 58 3.8	24 27.58	2 36.45	4, 39	4 3, 00	+ 47 55 15.7	0.9	+ 5 + 4
6μ Cor. Bor	6	12 0 18.2 3 34.2	26 42.35 29 58.89	2 36, 45 2 36, 45	3.51 3.29	+1.40 $+1.30$	+ 41 36 40.0 + 39 42 27.3 + 35 21 40.0 + 26 57 53.4	7. 2 9. 1	+ 4
•	6	6 41.2	33 6.40	2 36, 45	2.81	$\frac{7}{1.32}$	+ 35 21 40.0	13.6	+ 3
8γ " 28β Serpentis .		9 53. 2 12 26. 8	36 18.93 38 52.95	2 36, 45 2 36, 45	2.01 1.14	+ 0.17 - 1.49	+ 26 57 53.4 + 16 5 17.3	22.7 36.3	+ 1
29 °		12 40.9	39 7.09	2 36.45	1.14	— 1.48	+ 16 11 15.0	36. 2	— 1.
38 ρ Ophiuchi .	7	17 58.9 19 21.8	44 25, 96 45 49, 09	2 36.44 2 36.44	1.56 1.29	- 1.06 - 1.38	+213654.81	29. 1 33. 7	- 0. - 1.
41 y Serpentis .	1	22 40.5	49 8, 33	2 36, 44	1 16	1 47	+ 18 2 14.1 + 16 21 28.5	36, 1	— 1.
13 c Cor. Bor	5	24 48.5 27 9.1	51 16.68 53 37.67	2 36, 44 2 36, 44	2.06 3.01	+0.38	+ 27 29 18.0 $+$ 37 14 16 9	22. 1 11. 6	士 is
	6.7	29 26.1	55 55.02	2 36, 44	3. 30	+ 0.38 + 1.27 + 1.30	+ 27 29 18.0 + 37 14 16.2 + 39 45 43.2	9.0	+ 1. + 3. + 4.
	8	12 30 40.7	15 57 9.82	— 2 36.44	3.39	+ 1.34	+ 40 35 59.7	— 0 8.2	+ 4.
s & assumed as 51° 54 & assumed as 27° 41	; not 51°	14'.				d & 2	assumed as 20°; no assumed as 32° 45′ 46	t 21°.	1

•						1783 MA	7 13—Conti		Zero corr. = + 1' 46".			
		Name		Mag.	T	App. sid. time	Clock corr.	s tan đ	q	ζ φ	Refr.	g'
					h m s	h m s	m s			0 / "	, ,,	"
		v Herculi		6	12 32 15.0 37 51.3	15 58 44.38 16 4 21.60	 2 36.44	4.20	+ 2.61	+ 46 36 42.9	- 0 2.2 34.8	+ 5. - 1.
	48	Serpent	45 -	6.74		16 4 21.60 6 28.06	2 36.44 2 36.44	1.23 2,03	+ 0.28	+ 27 12 36.0	22.4	二 i.
		σ Cor. Bo			42 42.7	9 13.81	2 36, 44	2.71	+0.28 + 1.37	+ 46 36 42.9 + 17 12 52.0 + 27 12 36.0 + 34 23 15.4	14.6	+ 1. + 3. + 0.
	19	Herculi	8 -	6.7	45 33.5 48 38.7	12 5.08 15 10.79	2 36, 43 2 36, 43	1.97 3.35	0.00 + 1.32	+ 26 24 29.7 + 40 12 13.5	23. 4 8. 6	+ 4.
				7	52 58.0	19 30, 80	2 36.43	1. 17	1.47	+ 16 27 0.6	36.0	1.
				7.8 6	55 28.7 12 57 16.4	22 1.91 23 49.91	2 36, 43 2 36, 43	1.33 1.51	- 1.47 - 1.32 - 1.15 + 1.30 + 1.50 + 2.75	+ 16 27 0.6 + 18 51 22.6 + 20 56 21.8	32.7 30.0	- 1. - 0.
	32	Comæ.		6.7	13 1 8.5	27 42.65	2 36.43	2, 38	+1.30	¥ 30 56 7.0	16.3	+ 2 .
	35	σ Herculi	в.	_	3 13.6	29 48.09	2 36, 43	3.67	+1.50	+ 30 56 7.0 + 42 51 32.6	6.0	+ 4.
				6 8	5 58.5 19 50.7	32 33.44 46 27.92	2 36, 43 2 36, 42	4. 25 4. 25	+2.75 +2.74	+ 47 1 27.2 + 46 59 19.0 + 43 10 19.8	1.8	+ 5. + 5.
				7	22 44.7	49 22, 40	2 36.42	3,72	1.54	+ 43 10 19.8		
	59	a " .	!	8 6	26 4.7 29 37.4	52 42.95 56 16.23	2 36, 42 2 36, 42	4. 35 2. 66	+ 2.94 + 1.39	+ 47 40 46.6 + 33 51 42.6	1. 2 15. 2	+ 5. + 2.
		- •	٠,	8	. 32 10.7	16 58 49.95	2 36, 42	2.14	+ 0.73	+ 28 22 15.9	21.2	+ i.
			- 1	7	34 30.5 37 35.5	17 1 10.13	2 36.42	3.84	+1.70	+ 44 4 51.0 + 48 38 52.7	4.7	+ 4. + 5.
				7.8	41 20.6	4 15.64 8 1.36	2 36.42 2 36.41	4.50 4.05	+ 3.15 + 2.21	l⊥ 45 33 30.2	3.2	+ 5. + 5.
	68		-	6	45 17.3	11 58.71	2 36.41	2.60	1.40	± 33 18 46.8	15.7	+ 2.
	72	w ".	•	6.7	48 31.3 50 35.8	15 13,24 17 18,07	2 36.41 2 36.41	2. 54 3. 34	+1.40	+ 32 43 35.3 + 40 9 50.4	16.4 8.6	± 2.
			- 1	7	13 58 13.2	24 56.72	2 36, 41	1.21	+1.32 -1.43	+ 40 9 50.4 + 16 58 26.2	35. 2	二 i.
		a Ophiuch			14 0 49.7	27 33.65	2 36, 41	0.89	— 1.88	14 12 42 33 8	41.4	— 2 .
	7 9	Herculia	۱ - ۱	6	4 31.2 8 6.5	31 15.76 34 51.65	2 36, 41 2 36, 41	1, 80 1, 81	0. 54 0. 49	+ 24 25 24.4 + 24 36 !5.7	25.8	+ 0. + 0.
	83	".	-	6.7	9 30, 4	36 15,78	2 36, 41	1.82	- 0.48	+ 24 39 29.4	25.5	+ 0.
	84	".	-	6	10 22.2 13 29.1	37 7.72	2 36.41	1.79	- 0.54	+ 24 24 24.5	25.8	+ θ.
				6.7	15 17.1	40 15.13 42 3.43	2 36.41 2 36.40	1.26 1.38	- 1.40 - 1.29	+ 17 45 55.8 + 19 18 44.8	34. 1 32. 1	— 1. — 1.
			-	7.8	17 34,7	44 21.41	2 36.40	1.63	096	L 99 91 46 8	28.2	0.
	91 (9 11		8.9	21 25.8 24 41.7	48 13, 14 51 29, 58	2 36.40 2 36.40	2. 33 3. 02	+1.24 + 1.27	+ 30 23 42.4 + 37 15 24.6	18.9 11.6	+ 2. + 3.
			٠,	8	27 17.0	54 5.30	2 36.40	3,74	+ 1.57	+ 43 24 35.0	5.4	+ 4.
				8 8	28 55, 3 33 31, 4	17 55 43.87 18 0 20.73	2 36.40	3.71	-	+ 43 24 35.0 + 43 12 54.0	5.6	+ 4.
			İ	7.8	35 52, 1	18 0 20.73 2 41.81	2 36, 40 2 36, 40	3. 33 1. 83	+ 1.31 - 0.40	+ 40 2 35.5 + 24 54 53.2	8. 8 25. 2	+ 4. + 0.
1	04 .	A " .		_	39 33.8	6 24. 12	2 36.40	2.41	+ 1.34	+ 31 19 57.1	17. 9 10. 2	+ 2.
			ŀ	7 7	41 40.6 44 43.7	8 31.27 11 34.87	2 36, 40 2 36, 40	3. 17 3. 57	+ 1.28 + 1.43	+384123.5 +4235.2	10.2	+ 3. + 4.
			į	8.9	48 2.5	14 54.21	2 36, 39	4. J5	4 2 49 1	46 17 30.6	2.6	+ 5.
			İ	6	51 47.7 55 25.8	18 40.03 22 18.73	2 36, 39 2 36, 39	4.55 4.42	+ 3.25 + 3.06	+ 48 58 55.3 + 48 8 28.7	0. 2 0. 7	+ <u>5</u> .
				7	14 58 21.2	25 14.61	2 36.39	1.57	+ 3.06 - 1.05	+ 21 44 1.9	29.0	Τő.
			- 1	6.7	15 0 47.0 3 13.2	27 40.81	2 36, 39	1.46	- 1.20	+ 20 17 6.2	30.8	— 1.
	•	_		7	12 36.6	30 7.41 39 32.35	2 36, 39 2 36, 39	1.58 2.57	-1.02 + 1.40	+ 21 54 49.0 + 32 56 36.0 + 31 29 46.0	28.7 16.1	— 0. ∔ 2.
	•	. T		6.7	15 29, 3	42 25.52	2 36, 38	2. 43	+ 1.40 + 1.36 + 1.39		16. 1 17. 7 16. 9 12. 2	‡ 2 .
	9 1 11 d	Lyrse	:	6	17 30.3 21 51.9	44 26.85 48 49.17	2 36, 38 2 36, 38	2.50 2.94	+ 1.39 + 1.90	+ 32 16 48.8 + 36 40 41.0	. 16.9 19.9	+ 2. ·
	12 d	ja " _	-	Ĭ	22 36.8	49 34.19	2 36.38	2.94	+ 1.39 + 1.29 + 1.29	+ 36 36 5.4	12. 3	+ 3.
	13 6	Aquilæ Saturn .	•	l	25 29,8 29 8,2	52 27.66 56 8 66	2 36.38	J. U4L I-	- 1.09 1	+ 36 36 5.4 + 14 45 45.6	0 38.3 - 2 43.8 -	- 1.
	41 ,	. Sagittari r Sagittari	i [l	32 27.7	56 6.66 18 59 26.71	2 36, 38	+ 1.62 - 1.54 -	1.51	- 22 15 4.4 - 21 20 17.2	9 25 0	1 (
	20	Aquilæ	-	_	36 30.5	19 3 30, 17	2 36.38	+ 0.58	+ 1.67 + 1.51 + 1.88	— 8 17 38.6 [1 27.6	- 0.5
	، 25	յւ " _		6 5	39 50. 1 43 19. 2	6 50.32 10 19.99	2 36.38 - 2 36.38	- 0.79 0.78	— 3.00 þ	+ 11 19 59.6 + 11 11 44.2	0 43.6 43.8 37.2	- 1.9 - 1.9
		_		6	49 40, 4	16 42, 23	2 36.37	1.09	- 1.52	+ 15 34 57.6 + 19 39 15.4	37.2	- i.8
	4	Vulpecu	lee	6	52 23.3 15 51 37.2	19 25.57 19 18 39.33	2 36.37	1.41	- 1.26 ·	+ 19 39 15.4	— 0 31.8 	 1. 1
	-	, arbeca	ا تعد	١	10 01 01.2	40 10 05.00 -	- 2 36.37	- 1.39	- 1.28	+ 19 22	į.	

			1783 MAJ	7 13 – Conti	uued .		- Zer	o corr. = + 1	1′ 46″.
Name	Mag.	T	App. sid. time	Clock corr.	s tan đ	q	ζ — φ	Refr.	q
6 Vulpeculse 8 50 γ Aquilse 18 δ Cygni 53 α Aquilse 60 β Jupiter α Cygni	7	\$ m s 15 55 18.3 15 55 31.1 16 11 '32.6 13 45.7 15 45.5 20 11.8 16 54 14.7 17 9 26.8	h m s 19 22 21.06 22 33.90 38 38.03 40 51.49 42 51.62 19 47 18.65 20 21 27.14 20 36 41.74	2 36, 37 2 36, 37 2 36, 37 2 36, 36 2 36, 36 2 36, 36 2 36, 35 — 2 36, 35		- 0.59 - 0.56 - 2.34 + 1.81 - 1.44 - 0.90 + 1.41 + 1.79	+ 24 12 37.4 + 24 18 26.0 + 24 18 26.0 + 10 4 34.0 + 44 34 21.3 + 8 17 18.8 + 5 51 34.0 - 19 58 28.8 + 44 28 38.4	48. 5 0 52, 9 2 25, 3	0, + 0, - 1, + 5, - 1, - 0, + 5,
1	,	`	178	3 MAY 16	5 .	·	Zer	ro earr. = + 1	.' 45°.
Sirius	1	3 5 18.8 9 14 48.2	6 38 8.18 12 48 38.28	- 2 35, 53 2 35, 35	+ 1.17 0.54	+ 1.67 + 1.88	— 16 25 46.6 — 7 44 30.0	- 2 0.9 1 25.0	_ 0. _ 0.
49 g Virginis -) 56 " 62 " 67 a " 78 "	8 7.8 7 6 6.7	25 16. 2 28 43. 5 32 6. 2 34 48. 2 37 38. 6 42 27. 5 51 51. 0 57 18. 6	12 59 8.00 13 2 35.87 5 59.13 8 41.57 11 32.43 16 22.12 25 47.17 31 15.67	2 35. 34 2 35. 34 2 35. 34 2 35. 34 2 35. 34 2 35. 33 2 35. 33 2 35. 33	0.65 0.71	+ 1.88 + 1.81 + 1.83 + 1.84 + 1.79 + 1.79 - 0.60 - 1.28	9 21 52.8 9 21 52.8 9 13.27.2 9 24 25.8 10 10 0.6 10 1 54.5 14 45 41.0 19 21 4.0	31.3 30.5 29.9 30.5 33.2 1 32.8 0 54.3 31.8	
2 Boötis	6.7 6.7	9 59 28.9 10 2 11.7 4 43.2	33 26, 33 36 9, 57 38 41, 48	2 35, 33 2 35, 32 2 35, 32	1.72 — 1.74 — 0.39	0.75 0.71 + 1.80	+ 23 34 33.4 + 23 46 30.7 - 5 37 31.3	26, 6 0 26, 4 1 18, 6	_ 0 _ 0
92 Virginis . 1211 Lacaille - 41 ω Boötis 43 ψ "	6 7 7.8 4 7 7.8 7.8	8 11.7 14 3.5 16 20.5 10 40 58.2 11 15 47.4 21 5.5 23 37.0 28 37.7 30 18.3	42 10.55 48 3.31 13 50 20.69 14 15 2.44 49 57.36 55 16.33 14 57 48.24 15 2 49.76 4 30.64	2 35. 32 2 35. 33 2 35. 33 2 35. 29 2 35. 28 2 35. 28 2 35. 28 2 35. 28	- 0. 46 0. 15 - 1. 25 + 1. 75 - 1. 64 1. 93 2. 10 2. 69	- 1.06 - 0.12 - 1.41 + 2.14 - 0.95 - 0.15 + 0.48 + 1.38	+ 6 33 43.4 + 2 6 11.2 + 17 26 43.2 - 23 47 41.0 + 22 24 56.9 + 25 50 55.6 + 27 46 34.7 + 34 4 15.0 + 33 52 49.8 + 32 34 41.6	0 51.2 59.6 0 34.4 2 57.9 0 28.1 23.9 21.7 14.9 15.1	- 1. - 1. - 1. - 0. + 1. + 2. + 2.
49 δ	6.7 7 8.9	33 39.9 35 11.7 37 38.5 39 35.8 42 39.4 44 43.2 47 22.9	7 52. 79 9 24. 84 11 52. 04 13 49. 66 16 53. 76 18 57. 90 21 38. 03	2 35, 28 2 35, 27 2 35, 27 2 35, 27 2 35, 27 2 35, 27 2 35, 27	2. 40 3. 12	$\begin{array}{c} + 1.36 \\ + 1.37 \\ + 1.24 \\ + 1.31 \\ + 1.27 \end{array}$	+ 34 0 13.4 + 34 21 59.4 + 30 23 4.0 + 31 3 6.8 + 38 6 55.8 + 44 44 25.2	14. 9 14. 5 18. 8 18. 1 10. 7 4. 1	+ 2 2 2 2 2 2 3 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6
52 ν ¹ " 6 μ Cor. Bor 8 γ " "	7 6 7	50 10.7 52 25.2 55 41.1 11 58 48.7 12 2 0.3	24 26, 29 26 41, 16 29 57, 60 33 5, 71 36 17, 84	2 35. 27 2 35. 27 2 35. 27 2 35. 26 2 35. 26	3, 53 3, 30 2, 83	$\begin{array}{c c} + 1.40 \\ + 1.30 \\ + 1.32 \end{array}$	+ 47 55 16.7 + 41 36 38.0 + 39 42 27.0 + 35 21 39.6	7. 2 9. 1 13. 6	+ 5. + 4. + 4. + 3. + 1.
28 \$\beta\$ Serpentis	6	4 33. 3 4 48. 0 7 20. 7 10 5. 8 14 47. 2 16 55. 5 19 16. 7	38 51.26 39 6.00 41 39.12 44 24.67 49 6.84 51 15.49 53 37.09	2 35, 26 2 35, 26 2 35, 26 2 35, 26 2 35, 26 2 35, 26 2 35, 26	1. 14 1. 15 1. 35 1. 57 1. 17 2. 07	$ \begin{array}{c c} -1.32 \\ -1.06 \\ -1.47 \\ +0.38 \\ +1.27 \end{array} $	+ 26 57 54.2 + 16 5 19.3 + 16 11 25.0 + 18 47 54.2 + 21 36 58.0 + 16 21 25.5 + 27 29 16.5 + 37 14 14.9	36. 3 36. 1 32. 7 29. 1 36. 1 22. 1	
6 v Herculis	9 9 6.7 6.7 7 7 7.6	21 32 6 22 47 7 24 21 0 26 36 3 27 18 8 29 58 1 32 4 8 34 49 6	55 53, 36 57 8, 66 15 58 42, 21 16 0 57, 88 1 40, 50 4 20, 23 6 27, 28 9 12, 53	2 35, 25 2 35, 25 2 35, 25 2 35, 25 2 35, 25 2 35, 25 2 35, 25 2 35, 25 2 35, 25	3. 31 3. 41 4. 21 1. 27 1. 27 1. 23 2. 04	+ 1.30 + 1.34 + 2.61 - 1.40 - 1.40 - 1.42 + 0.28 -	+ 39 45 46. 0 + 40 35 58. 0 + 46 36 41. 0 + 17 36 44. 0 + 17 46 8. 0 + 17 12 54. 2 + 27 12 37. 0 + 34 23 15. 9	9. 0 8. 2	+ 4. + 4. + 1. - 1. - 1.

(75)

			Na	me			Mag.	T	App. sid. time	Clock corr.	ni tan s	q	ζ - - φ	Refr.	q'
_		_						h m s	h m s	770. 8		,	0 / "	"	,,
	_	_	. <i>.</i>			- 1	6	12 40 45.5	16 15 9.41	- 2 35.24	— 3.36	+ 1.32	+ 40 12 14.0	-0 8.6	+ 4.
	Z	Uν	, C	or. I	sor.	*	7.8	42 27.4 45 5.2	16 51.62 19 29.85	2 35.24 2 35.24	2.72 1.17	+ 1.38 - 1.47	+ 34 17 23.0 + 16 27 6.8	14.7 35.9	+ 2. - 1.
						- 1	7	47 35.7	22 0.76	2 35.24	1.35	1.32		32.7	_ 1.
		2		[erct	lis		8	53 15.5	27 41.49	2 35.24	2.39	+1.30 +1.50	+ 30 56 5.0	18.3	+ 2.
	3	5 a	,	**	•		6	55 21.0	29 47.33 32 32.58	2 35. 24 2 35. 24	3.69	+ 1.50 + 2.75	+ 42 51 33.8	5.9	+ 4.
	4	0 ζ	•	"	_	_	0	12 58 5.8 13 1 18.6	35 45.91	2 35.24	4.28 2.48	i 1 38	+47130.7 +315831.5	1.8	+ 5. + 2.
		4 ;		"				3 39.8	38 7.50	2 35, 23	3, 25	+ 1.28 + 1.60	+ 39 18 41.6	9.5	 + 3.
							7	6 36.0	41 4.17	2 35.23	3.79	+ 1.60		5.2	1-4.
)							7 8.9	10 43.0 11 57.2	45 A1.85 46 26.26	2 35.23 2 35.23	2.58 4.27	+ 1.40 + 2.74	+ 32 53 59.5 + 46 59 24.0	16.1 1.8	+ 2. + 5.
ŧ							8.9	14 51.5	49 21.03	2 35, 23	3, 73	1.54	43 9 42, 4	5.6	+ 4.
							8	18 12.0	52 42.08	2 35.22	4, 37	+1.54 + 2.93	+ 47 40 46.8	1.2	+ 5.
	5	9 4	l	••	•	•	6	21 44.7 24 17.3	56 15.36	2 35, 22 2 35, 23	2, 67 2, 15	+ 1.39 + 0.73	+ 46 59 24.0 + 43 9 42.4 + 47 40 46.8 + 33 51 41.6 + 28 22 17.9	15. 1 21. 1	+ 2. + 1.
							7.8	26 37.6	16 58 48.38 17 1 9.06	2 35, 22 2 35, 22	3.85	1.70	+ 44 4 49.6	4.7	4
)							8	29 42.8	4 14.76	2 35, 22	4.52	+ 1.70 + 3.17 + 2.21	+ 48 38 56.8	0.2	+ 5.
			_	"			7.8	33 27.8	8 0.38	2 35, 22	4.06	+ 2.21	+ 45 33 27.4	3.3	+ 5. + 3.
		17 1 18 1		44	•		6.5	35 36.3 37 24.4	10 9.23 11 57.63	2 35, 22 2 35, 22	3.00 2.62	+ 1.27 + 1.40	+ 37 1 53.1 + 33 18 47.5	11.9 15.7	+ 3.
)		2		**	•	•	6	40 37.9	15 11.64	2 35, 21	2.56	+ 1.40	¥ 32 43 37.3	16.3	+ 2
)							7	42 42.3	17 16.40	2 35, 21	3.36	+ 1.32	+ 32 43 37.3 + 40 10 1.1 + 38 45 21.0 + 34 51 23.0	8.6	+ 4
							8 7.8	44 48.5 47 2.9	19 22.95 21 37.72	2 35.21 2 35.21	3, 19 2, 78	+ 1.28 + 1.34	+ 38 45 21.0	10. 1 14. 1	+ 3
	7	76 2	λ	44			1.0	50 2.6	24 37.91	2 35.21	1.96	T 0.04	+ 26 15 26.7	23.6	+ 3 + 3 + 0
							9.10	51 34.1	26 9.56	2 34, 21	1.20	1.44	+ 16 54 45.0	35. 2	} ─ 1.
		79		44			7.8 6.7	52 50.8	27 26.57	2 34.21	1.18	1.46	+ 34 51 25.0 + 26 15 26.7 + 16 54 45.0 + 16 38 23.5 + 24 25 25.0 + 24 39 28.1 + 24 39 28.1 + 24 24 24.0 + 17 45 55.8 + 19 18 44.6 + 22 21 51 1	35.6	- 1
	•	•			•	•	7.6	13 56 38.2 14 0 13.5	31 14.59 34 50.48	2 34, 21 2 34, 20	1.81	-0.54 -0.50	+ 24 25 25.0 + 24 36 15.7	25.7 25.5	I 0
		33		66			7	1 37.4	36 14.61	2 34, 20	1.83	- 0.48	+ 24 39 28.1	25.5	+ 0.
	8	34		"	•	•	7	2 29.7	37 7.05	2 34.20	1.81	- 0.55	+ 24 24 24.0	25.7	+ O.
							6 7.8	5 35.7 7 24.4	40 13.56 42 2.55	2 34.20 2 34.20	1.27	-1.40 -1.29	+ 17 45 55.8 + 19 18 44 6	34. 2 32. 1	
)							7.8	9 41.6	44 20, 13	2 34, 19	1.63	-0.96	+ 22 21 51.1	28. 2	- 0
							9	13 32.8	48 11.96	2 34, 19	2.34	+1.24	+ 30 23 41.8	18.9	+ 2
	•	91 (,	••	•	•	8,9	16 49.0 19 24.3		2 34, 19 2 34, 19	3.03 3.76	+1.27 +1.57	+ 37 15 21.1 + 43 24 35.0		11 4
							8	21 2.5		2 34, 19	3.73	1.54	+ 43 12 54.4		+ 4
							8	25 38.3	18 0 19.45	2 34, 19	3.34	+1.31	+ 40 2 32.2	8.8	+ 4
)	10	04 .	4	44			7.8 5.6	27 59. 2 31 40. 4	2 40.74 6 22,55	2 34.19 2 34.19	1.84 2.42	-0.40 +1.34	+ 24 54 56.0 + 31 19 54.4	95.2 17.9	+ 0
	•		4		•	•	6.7	33 47.3		2 34, 19	3. 18	1.28	+ 38 41 23.5	10.2	∓ 3
							7	36 50.7	11 33.70	2 34.18	3, 59	+ 1.43	+ 42 3 34.7	6.7	+ 4
							. 9	40 10.0		2 34, 18 2 34, 18	4. 17	+ 2.51	+ 46 17 32.1	2.5 0,2	 + 5
							9	43 54.4 47 33.0	22 17,76	2 34, 18	4.58	+ 3.25 + 3.06	+ 48 58 52.8 + 48 8 27.0		- ∔ 5
		_	_				18	55 58.7	30 44.84	2 34, 18	3, 18		→ 38 41 38.0	10, 2	+ 3
		3	ė]	Lyra	•	•	7	14 57 28.4 15 0 25.6	32 14.79 35 12.48	2 34, 17 2 34, 17	3. 17 3. 42	+ 1.28 + 1.27 + 1.35	+ 38 33 28.2 + 40 42 43.0	0.1	li ₄
٠,)						7	3 54.3	38 41.75		3. 42	1 - 2.00	+ 40 42 43.0	8.1 9.8	+ 4
)	•	4	E	44		•		5 1.7	39 49.33	2 34, 17	3.27	1.29	39 25 9.6	9.4	 3
		•		"			6.7	7 36. 1			2.44		+ 31 29 48.0	17.7	+ 2
		9 11		"	•	•	7	9 36.8			2. 52 2. 96	+1.39 +1.29	$+32\ 16\ 52.0$ $+36\ 40\ 41.0$	16.9 12,2	
		12		44	:	:	1	14 44.7		2 34, 17	2.96	¥ 1.29	→ 36 36 4.7	1 14.0	+ 3
		13		Aqui		•		17 36. 3		2 34.16	- 1.05	— 1.59	+ 14 45 52.6	0 38.3	<u> </u>
		41		Satu: Sagit			1	19 56.9 24 34.7			+ 1.63 1.55	+ 1.67	- 22 15 26.9 - 21 20 15.9		
)			a 1	-œR1	rough Al	• •	5.6				0.89		12 37 54.7		
8							6.7	32 9.9	7 1.81	2 34, 16	+ 0.64	+ 1.85	9 3 39.2	30. 1	- 0
							6	15 35 9.6	19 10 2.17	2 34.16	0.00	+ 0.35	+ 0 1 47.0	1 4.6	- O
_	_						<u> </u>	<u> </u>		1	1	1	1		

(76)

			1783 M.	AW 15-Co	atinued		Zei	o corr. = + 1	45".5.
Name	Mag.	T	App. sid. time	Clock corr.	π tan δ	q	ζ—φ	Refr.	q'
24 Aquilæ . 30 δ " 5 a Sagittarii . 52 γ Aquilæ . 18 δ Cygni . 53 a Aquilæ . 60 β "	6 6 6.7 6.7	h m s 15 35 29 0 38 55 4 42 17 2 45 10 0 46 59 3 54 28 8 15 58 7 0 16 3 40 1 5 52 8 7 52 5 16 12 18 8	\$\begin{align*} \begin{align*} \begi	m s - 2 34. 16 2 34. 15 2 34. 15 2 34. 15 2 34. 15 2 34. 15 2 34. 14 2 34. 14 2 34. 14 2 34. 14 - 2 34. 14	0.00 + 0.05 - 0.19 0.17 0.17 2.62 1.25 0.71 3.92 0.58 - 0.41	+ 0.36 + 0.60 - 0.23 - 0.19 - 0.19 + 1.40 - 1.41 - 2.35 + 1.81 - 1.44 - 0.90	C , " 0 3 14.1 0 39 39.1 + 2 40 56.0 + 2 29 22.6 + 2 27 15.8 + 33 17 52.2 + 17 30 16.7 + 10 4 44.0 + 44 34 24.8 + 8 17 29.6 + 5 51 41.9	, , , , , , , , , , , , , , , , , , ,	" 0.8 - 0.7 - 1.1 - 1.1 + 2.7 - 1.6 - 1.8 + 5.0 - 1.7
			178	3 MAY 1	6	<u> </u>	Zer	o corr. = + 1	′ 48 ″. 5.
30 a Hydræ 1) 18 ε Leonis . 36 ζ " 41 γ Leonis . 1) 84 τ " 87 ε " 1) 40 Virginis . 94 β Leonis . 5 β Virginis . 10 Can. Ven. 30 Comæ . 31 " 564 " 99 ι Virginis . 564 " 99 ι Virginis . 103 ν² " 103 ν² " 103 ν² " 103 ν² " 103 ν² " 103 ν² " 105 φ "	1 23766.58 589 7 88 77.86.78 67.88 7 66 9	5 42 17. 2 5 58 53. 2 6 29 53. 8 22 8. 6 6 33 17. 9 7 41 52. 2 44 17. 6 48 30. 4 7 52 21. 2 8 3 2. 4 9 15. 0 11 57. 7 19 55. 7 19 55. 7 19 55. 7 19 55. 7 24 43. 2 28 40. 3 30 47. 9 33 11. 3 39 17. 0 43 0. 3 42 56. 2 43 40. 6 51 11. 3 55 11. 3 55 9 36. 8 9 3 35. 3 5 59. 2 9 19 47. 8 9 19 47. 8 10 6 3. 7 14 3. 0 15 17. 5 19 51. 2 24 13. 3 25 7. 9 27 9 15. 8 32 58. 8 35 24. 1 37. 7 10 49 18. 5	9 19 28. 91 9 36 7. 64 10 7 13. 33 9 59 26. 86 10 10 37. 99 11 19 23. 56 21 49. 36 26 2. 86 29 54. 29 40 26. 86 49 33. 80 51 24. 90 53 9. 49 55 2. 90 11 57 33. 31 12 21. 60 6 19. 35 8 27. 29 10 53. 9. 49 55 2. 20 11 57 33. 31 12 21. 60 6 19. 35 8 27. 29 10 53. 9. 49 55 22. 76 28 44. 01 30 57. 79 20 41. 70 20 31. 57 22 48. 04 25 22. 76 28 44. 01 30 57. 98 37 20. 93 41 20. 08 43 44. 38 12 57 35. 25 13 43 58. 75 51 59. 35 53 14. 05 13 37 48. 53 14 2 11. 32 3 6. 07 5 38. 26 13 23. 96 19 38. 26 13 23. 96 19 38. 26 11 27 20. 64	2 34. 64 2 34. 61 2 34. 61 2 34. 61 2 34. 56 2 34. 56 2 34. 56 2 34. 56 2 34. 55 2 34. 55 2 34. 54 2 34. 54 2 34. 54 2 34. 54 2 34. 54 2 34. 53 2 34. 53 2 34. 53 2 34. 52 2 34. 54 2 34. 46	+ 0.68 - 0.27 - 0.18 + 0.58 0.35 0.36 0.35 0.09 0.07	+ 1.88 - 0.45 - 1.79 - 1.15 - 1.39 - 1.80 - 1.39 - 1.40 - 1.30 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.33 + 1.35 + 1.36 - 0.22 + 0.98 - 0.86 - 1.57 - 1.57 - 1.57 - 1.77 - 0.84 + 1.77 - 0.74 + 0.74 + 0.74 + 0.55	- 7 44 11.0 + 24 44 28.1 + 24 28 5.8 + 13 0 1.3 + 20 54 34.4 + 4 1 53.5 + 17 58 17.7 + 9 18 52.7 + 17 58 12.7 + 18 54 542.5 + 2 58 12.7 + 26 42 17.0 + 33 27 31.7 + 35 12 48.2 2 7 51.3 + 30 51 45.6 + 24 23 27 51.7 + 40 31 18.8 + 40 46 14.2 + 41 29 20.5 + 17 55 45.1 + 25 27 28.1 + 18 15 50.7 + 28 42 40.1 + 28 41 50.7 + 28 42 40.1 + 28 41 50.7 + 28 42 40.1 + 28 41 50.7 + 28 42 50.7 + 28 42 40.1 + 28 41 50.0 - 4 56 39.0 - 4 56 30.0 - 4 57 12.0 - 5 6 39.0 - 4 58 10.6 - 1 16 8.6 - 1 16 8.6 - 1 15 39.2 - 4 24 33.0	34. 0 24. 9 22. 7 24. 2 24. 5 33. 5 28. 4 8. 4 20. 8	- 0.5

Refr. q'
5 - 2 58.6 - 1. 2 43.4 - 1. 9 1 46.6 - 0. 4 2 8.3 - 0. 6 3 7.2 - 2.
4
6 2 4.0 — 0. 1 59.5 — 0. 2 0.6 — 0. 2.5 — 0. 2.0 — 0. 4 245.7 — 1. 4 23.4 — 4. 6 9.3 — 8. 0 3 9.1 — 2.
0 3 20.6 - 2. 2 2 17.5 - 0. 2 2 17.8 - 0. 2 1 12.7 - 0. 3 13.7 - 2. 0 31.8 - 1. 7 3 25.2 - 2. 7 1 41.3 - 0.
$ \begin{vmatrix} 1 & 34 & 1 & & & 0 \\ 2 & 0 & 55 & 2 & & & 1 \\ 4 & & 47 & 3 & & & & 1 \\ & & 0 & 49 & 8 & & & 1 \end{vmatrix} $
Zero corr. = + 1' 45". 6
6 - 0 34.0 - 1. 0 43.2 - 1. 47.0 - 1. 45.5 - 1. 0 45.4 - 1.
8 0 55,5 — 1. 8 1 27,2 — 0. 25,2 — 0. 25,8 — 0.
1 54.4 — 0. 0 58.8 — 1. 2 5.4 — 0. 1 33.0 — 0. 3 1 — 0. 1 47.8 — 0.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2886004160606923

(78)

				1783	MAY 90			Zer	то согт. = +	1′ 50″.1.
	Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ φ	Refr.	q'
a) b) c) d)	30 ρ	2 7 7 6.7 6.5 7 6.5 7 7 7 8 7.8	7 47 16. 7 7 59 0. 5 8 3 24. 7 10 2. 3 14 33. 7 22 35. 3 27 45. 3 29 19. 4 39 50. 0 40 4. 6 44 17. 0 50 12. 7 8 59 31. 9 9 5 48. 9 6 33. 1 8 29. 3 19. 36. 8 22 44. 3 31 31. 4 35 45. 8 39 45. 8 42 28. 5 45 36. 5 45 36. 5 45 36. 5 45 36. 5 10 2 12. 4 6 5. 8 9 24. 1 14 40. 7 17 1. 2 50 11. 0 55 52. 5 10 59 55. 7 11 6 30. 8 12 40. 2 11 9 52. 3 11 9 52. 3	\$\begin{align*} \begin{align*} \begi	m s 2 31. 97 2 31. 97 2 31. 96 2 31. 96 2 31. 96 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 95 2 31. 94 2 31. 94 2 31. 94 2 31. 94 2 31. 93 2 31. 93 2 31. 93 2 31. 93 2 31. 93 2 31. 93 2 31. 93 2 31. 93 2 31. 93 2 31. 92 2 31. 92 2 31. 92 2 31. 92 2 31. 92 2 31. 92 2 31. 92 2 31. 92 2 31. 92 2 31. 90 2 31. 90 2 31. 90 2 31. 90 2 31. 90 2 31. 90 2 31. 90 2 31. 90 2 31. 90 2 31. 90	- 1. 12	- 1. 51 - 1. 32 + 0. 30 - 0. 34 + 0. 30 - 0. 18 - 2. 97 - 1. 33 + 0. 41 + 0. 88 + 1. 33 + 1. 79 - 0. 19 - 0. 75 - 1. 31 - 1. 42 - 1. 42 - 1. 42 - 0. 87 - 1. 16 - 0. 71 - 1. 16 - 0. 71 - 1. 124	0		" 1. 2 2 1. 1. 2 2 1. 2 2 1. 2 2 2 2 2 2
	1 o Cor. Bor			4860	MAY 29		(Zei	ro corr. = +	1' 45".5.
		6.7	9 49 32.4	14 18 40.00	- 2 28.67	<u>- 0.62</u>	_ 1.81	+ 9 20 44.7	— 0 46.3	- 1.8
i)	25 ρ Boötis	7	55 52.0 9 58 37.0 10 3 26.0 4 23.2 7 31.0	25 0.63 27 46.08 32 35.87 33 33,23 36 41.55	2 28.67 2 28.67 2 28.67 2 28.67 2 28.67	2. 28 2. 22 0. 66 0. 60 0. 56	+ 1.34 + 1.28 - 2.23 - 1.70 - 1.53	+ 31 18 17.7 + 30 40 8.8 + 9 53 59.2 + 9 4 44.8 + 8 36 31.8	17. 8 18. 7 45. 5 46. 8 47. 4	+ 2.2 + 2.3 - 1.8 - 1.8
j)	,	6 9 6	12 7.7 14 25.5 16 34.8 10 18 37.1	41 19.01 43 37.19 45 46.84 14 47 49.48	2 28.66 2 28.66 2 28.66 — 2 28.66	1.77 1.66 1.12 — 2.42	- 0.31 - 0.70 - 1.47 + 1.40	+ 25 15 4.4 + 23 47 36.0 + 16 34 39.0 + 32 52 45.2	24. 6 26. 3 35. 6 — 0 16. 1	+ 0. 0 - 0. 0 - 1. 1 + 2.
ь.	Div. assumed as 25 4 T. H assumed as 51s. § assumed as that of a place differs 4' 15":	; not 41s	se Catalogue	f THassumed	8° 53'; not 58° 25° 57'; not 25° as 30.5s.; not 33 d as 5.5s.; not 1	58'. 27'. 3.5a.	i 2	II assumed as 22.5c assumed as 18° 10′; assumed as 25° 3′ 20	not 18° 20'.	39".

Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	5	Refr.	q'
	\ <u></u>	h m s	h m s	m s			0 / 1/	, ,,	
	7	10 21 29.0	14 50 41.85	 2 28.66	1.80	- 0.24	+ 25 31 39.8	- 0 24.3	+ 0.
AE - Destin	9	27 58.3	14 57 12.21	2 28.66	1.41		+ 20 40 23.2	30.1	- 0.
45 c Boötis	6	31 5.0 32 26.8	15 0 19.41 1 41.43	2 28.66 2 28.66	1.80 1.88	- 0. 19 - 0. 13	+ 25 41 51.6 + 25 55 20.2	24. 1 23. 8	+ 0. + 0.
	6.7	35 44.5	4 59.67	2 28.66	1.60	_ 0.84	+23 7 0.7	27.3	_ 0.
	6.7	37 13.9	6 29.31	2 28.66	1,65	-0.71	1 02 46 04 4	26.5	0.
	7	42 20.5	11 36.75	2 28.65	2.31	+1.37 + 1.32	+ 31 36 43.9	17.5	+ 2. + 4.
	6	47 52, 2 49 24, 4	17 9.36 18 41.81	2 28.65 2 28.65	3, 18 1, 39	+ 1.32 - 1.22	+ 31 36 43.9 + 40 20 1.0 + 20 13 45.8 + 32 0 39.9 + 27 25 42.2 + 17 0 14.8 + 16 42 49.6	8.5 30.7	二言:
	6	54 50.8	24 9.10	2 28.65	2.34	+1.38	+ 32 0 39.9	17.0	+ 2
5 a Cor. Bor	۱ ـ	10 58 44.1	28 3.04	2 28,65	1.95	I+ 0.36	+ 27 25 42.2	22, 1	+ 2. + 1.
10 of Companie	7	11 2 58.4	32 18.04 33 34.85	2 28.65	1.15	- 1.43	+ 17 0 14.8	35. 0	 1 .
19 73 Serpentis . 24 a "		4 15.0 6 48.5	36 8.77	2 28.65 2 28.65	1. 12 0. 46	- 1.45 - 1.17	+ 10 42 49.0	35. 4 50. 1	
28β "	l .	9 24.6	88 45.30	2 28.65	1.08	- 1.49	+ 16 5 23.8	36. 2	- i
35 κ "····	l	12 11.2	41 32.36	2 28.64	1.29	- 1.32	+ 7 6 4.5 + 16 5 23.8 + 18 47 59.2 + 21 36 59.0	32, 7	- 1.
38 p "	ł	14 56.6	44 18.21	2 28.64 2 28.64	1.49	- 1.06 - 1.76	+ 21 36 59.0	29.0	- 0.
40 '' 1 χ Herculis .		17 23, 2 21 23, 0	46 45.21 50 45.67	2 28.64	0.61 3.51	+ 1.54	+ 43 10 24.7	46, 7 5, 6	- 1. + 4.
5r "	1	24 40.7	54 3.92	2 28.64	1.24	— 1.35	+ 9 12 44.6 + 43 10 24.7 + 18 24 31.2 + 46 36 47.2 + 17 36 50.0	33. 2	 1 ,
6 v "	1	29 12.1	15 58 36.06	2 28.64	3.97	+ 2.61	+ 46 36 47.2	2. 2	+ 5.
	· ·	31 26.8 34 48.7	16 0 51.13 4 13.58	2 28.64 2 28.64	1. 19 1. 17	- 1.40 - 1.49	+ 17 36 50.0 + 17 19 50 A	34.0 34.9	- 1 - 1
48 Serpentis . 12 Herculis .		37 20.0	6 45.29	2 28.64	0.55	- 1.42 - 1.46	8 93 58 8	34.9 48.0	
18 v Cor. Bor	1	41 9.9	10 35.82	2 28.64	2.14	+ 1.14	+ 29 40 16.2 + 46 48 15.2 + 37 52 1.4 + 21 56 53.4 + 33 57 35.8 + 7 32 34.0	19.6	+ 1.
22 τ Herculis .	l	46 20.3	15 47.07	2 28.63	3.98	+ 2.69	+ 46 48 15.2	2,0	+ 5.
25 "		50 46.2 53 59.6	20 13.70	2 28.63	2.91	+1.27 -1.02	+ 37 52 1.4	11.0 28.6	+ 3.
27 ß "	Ì	56 26.2	23 27.63 25 54.64	2 28.63 2 28.63	1.51 2.53	+ 1.39	+ 33 57 35.8		- 0. + 2.
33 " •	l	11 59 23.5	28 52.41	2 28.63	0.50	- 1.29	+ 7 32 34.0	49.4	- j
36 "	′	12 2 52.0	32 21.48	2 28.63	0.30	- 0.58	+ 4 37 38.4	54.7	- 1.
37 " · · · · · · · · · · · · · · · · · ·	,	2 55.7 5 51.4	32 25. 19 35 21. 37	2 28.63 2 28.63	0. 30 1. 94	- 0.58	+ 4 37 38.4 + 4 38 + 27 19 13.4	22. 3	L.,
19 Ophiuchi .	ŀ	9 15.0	38 45.53	2 28.63	0. 16	+0.32 -0.19	+ 2 27 15.0	59. 1	+ 1:
48 Herculis .	l	13 50.1	43 21.38	2 28.62	2. 19	1+1.23	LL 20 10 13 0 ⋅	18.9	+ 2
50 "	ŀ	15 11.8	44 43.30	2 28.62	2, 18	+1.21	+ 30 9 39.0 + 26 3 57.1 + 31 13 44.5	19. 1	 + 1.
56 " 58 e "		19 10.1 24 58.5	48 42.25 54 31.60	2 28.62 2 28.62	1.83 2.28	-0.09 + 1.32	+ 26 3 57.1	93.7 17.9	+ 0. + 2.
60 "	l	28 19.0	16 57 52.65	2 28.62	0,87	1.79	+ 13 1 52.6	40.6	_ 2.
62 "	ŀ	32 34.2	17 2 8.55	2 28, 62	1.72	- 0.45	+ 24 45 19.5	25. 2	+ 0.
64 a 44	1	37 44.2	7 19.40	2 28.62	0.98	- 1.60	+ 14 37 45.8	38.4	- 1. - 1.
66 ω " 49 σ Ophiuchi .	1	41 24. l 48 40. l	10 59.90 18 17.09	2 28.61 2 28.61	0.73	- 2.90 - 0.52	+ 13 1 52.6 + 24 45 19.5 + 14 37 45.8 + 11 5 30.9 + 4 19 37.2 + 48 24 54.5	43, 7 55, 4	
77 K Herculis .	l	53 54.5	23 32.35	2 28.61	4.22	+ 3.12	48 24 54.1	0.4	+ 5
55 a Ophiuchi.	l	12 57 47.2	27 25.69	2 28, 61	0.84	- 1.04	T 16 46 01.0	41.3	— 2 .
82 y Herculis .		13 3 50.1	33 29.58	2 28.61	4.26	+ 3.18	+ 48 41 6.0	0.2	+ 5.
85 ι " · · ·	l	6 12.8 10 50.1	35 52.68 40 30.75	2 28.61 2 28.60	3.88 1.98	1 0.49	+ 46 5 43.0 + 27 49 51.6 + 47 39 37.2 + 48 25 30 4	2, 7 21, 7	+ 5. + 1.
•	7.8	19 9.5	43 50.70	2 28,60	4. 12	+ 2.93	+ 47 39 37.2	1.2	 + 5 .
88 ¢ "···		17 13.9	46 55.60	2 28.60	4.22	+ 3.12	+ 48 25 30.4 + 30 11 23.0	0.4	+ n
94 υ "		13 23 1.5	17 52 44.16	— 2 28.60	_ Z. 15	+ 1.21	+ 30 11 23.0	— 0 19.1	T 1.
		•	178	3 MAY 31	l		Zer	ro corr. = +	1' 45". (
94 β Leonis	2	7 3 57.2	11 40 30.69	- 2 27.57	- 1.07	- 1.51	+ 15 45 45.1	- 0 36.2	- 1.
5β Virginis . 2ϵ Corvi	l	5 19.4 24 48.8	11 41 53, 11 12 1 25, 71	2 27.57 2 27.56	一 0.20 ⊥ 1.49	-0.28	+ 2 58 13.4 - 21 24 13.6	0 57.3 2 33.3	
$\tilde{7}_{\gamma}$ "		30 28.6	7 6.44	2 27.56	+ 1.49	+1.52 + 1.67	- 21 24 13.6 - 16 20 14.8	1 59.5	- 0.
16 a Comse		41 58, 3	18 38, 03	2 27.00	I— Z. UZ	+0.58	+ 28 0 14.4	0 21.2	+ 1.
29 γ Virginis . 32 d ²	1	7 56 27.3 8 0 27.9	33 9.41 12 37 10.67	2 27.54 - 2 27.54	+0.02 -0.59	+0.44 -1.60	- 0 16 16.1 + 8 50 36.1	1 4.0 0 46.6	- 0. - 1.
U. 4" · ·		0 0 21.9	12 01 10,01	2 21.04	0.03	- 1.00	T 0 00 00.1	- 0 40,0	.
& assumed as 31° 50′; Div. assumed as 34°1	not 310	497.	c Name not 22 7	Herculis.		4 2	assumed as 0° 9′ 59	7: not 0° 9/ 9	9″.

-

	Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
										-
	90 Comm		h m s	h m s	m 8	8 1 04	3 55	0 / "	0 36.9	"
	29 Comme	!	8 3 50.4 15 38.3	12 40 33,72 12 52 23,56	- 2 27.54 2 27.53	- 1.04 2.37	-1.55	+ 15 17 21.0 + 31 55 55 9		-1.
	20 Can. Ven.	l	33 31, 5	13 10 19,70	2 27, 52	-3.33	1.40	+ 31 55 55.9 + 41 41 24.0	0 7.0	 4.
)	67 a Virginis .	ļ	39 24.7	16 13,87	2 27.52	+0.67	+ 1.79	— 10 1 54.5	1 31.9	— 0.
	542 Mayer	7	43 46.7	20 36.59			+ 0.43	— 0 14 50.2	1 4.2	— 0.
		6	48 11.8	25 2.42	2 27.52	- 1.80	-0.26 -0.19	+ 25 27 15.0	0 24.1	+ %
		6 8.9	52 26.7 54 23.4	29 18.02 31 15.04	2 27.51 2 27.51	1.83		+ 25 42 1.4 + 25 12 57.6	23. 9 24. 3	+ 0.
	2 Boötis	8	56 25.9	33 17.87	2 27, 51		-0.75	¥ 23 34 35.4	26. 3	0.
		6	8 59 9.5	36 1,92	2 27.51	- 1.67	— 0.71	+ 23 46 31.4	0 26.1	0.
	00 17: 1 1	7	9 1 40.8	38 33.63		+0.38		- 5 37 31.0	1 17.9	- 0.
	88 Virginis .	6.7	2 32.3 4 49.0	39 25, 27 41 42, 35	2 27.51 2 27.51	+0.38 -2.02		-54533.9 +28243.0	1 18.2	- 0.
		6	8 56.5	45 50, 53	2 27.51	2. 17	+0.59 $+1.14$	+ 28 2 43.0 + 29 41 46.6		+ 1. + 1.
		7	11 50.2	48 44.71	2 27.50	2. 17	+ 1.14	+ 29 42 52.0	19.4	+ i.
		7	16 53.7	13 53 49.04	2 27.5 0	1.29	- 1.33	+ 18 42 21.8	32, 4	- 1.
	Anatoma	7	27 39.3	14 4 36.41	2 27, 50 2 27, 49	1.51	- 1.06	+ 21 38 48.0	28.7	-0.1
	Arcturus .	1	31 21, 1 33 15, 5	8 18,82 10 13,53		1.41 - 4.02	-1.21 $+2.59$	+ 20 17 41.6 + 46 32 37.0	0 2.2	+ 5
		7	36 4,0	13 2.49	2 27, 49	+ 0.47	+ 1.87	7 6 1.0	1 22.4	_ j
		6	38 55.3	15 54.26	2 27, 49	1.88	- 0.03	+ 26 18 12.8	0 23.2	
	22 f Boötis .	~	41 54.8	18 54.25	2 27.49	1.40	- 1.22	+ 20 11 8.9	30.5	- 1
		7 6.7	44 24.3 46 35.6	21 24, 16 23 35, 82	2 27, 49 2 27, 49	3. 42 3. 51	+ 1.42 + 1.49	+415832.4 $+42456.2$	6.7	+ 4
		8	48 33, 3	25 33, 84	2 27, 49	3, 71	+ 1.76	→ 44 19 4.3	4.4	4
		6	51 49.3	28 50, 38	2 27.48	1.70	- 0,60	+ 24 10 40.8	25. 6	
		7	56 29.2	33 31.05	2 27.48	2.31	+1.34	+ 31 21 3J.1	17.6	
	34 Boöiis	7	56 39.4 9 59 22.4	33 41.28 14 36 24.72	2 27.48 2 27.48	2. 32 1. 97	+1.34 + 0.36	+ 31 26 5.0 + 27 25 55.1	17.5 0 21.9	+ 2
	or Doors	6	10 58 15.2	15 35 27. 19	2 27.45		¥ 3.77	± 27 20 11.2	3 42.9	+ 1. - 3.
	$6 \pi \text{ Libræ}$	"	11 10 57.5	48 11.58	2 27.44	1.80	+3.77 $+2.88$	— 25 27 0.0		_ 2.
	8 β Scorpii	_	18 3.0	15 55 18.25	2 27.44	1.32	十 1.42	— 19 11 24.4	2 17.5	
	13 c ² 641 Mayer	5	24 7.3 30 0.2	16 1 23.55 7 17.42	2 27.44 2 27.44	1.96 2.02	+3.77 +4.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 42, 3 54, 5	
	20 σ Scorpii.		33 10, 1	10 27, 84	2 27, 43	1.77	+2.64	-25 1 58.2	3 10.6	
	5 g Ophiuchi .	6	37 44.3	15 2.77	2 27.43	1,61	+1.85	— 22 54 53.4	2 47.6	
	Antares .		41 14.7	18 33.75	2 27.43	1.85	+ 3.12	-255437.0	3 21.9	
	29 h Herculis .	6	43 58.0 47 41.5	21 17.49 25 1.60	2 27.43 2 27.43	+0.22 -0.80	+ 1.40 - 2.62	- 3 16 59.6 + 11 56 48.2	1 11.9 0 42.1	
	25 % Hercuits .	7	52 54.5	30 15. 46		+ 0.61	+ 1.84	-9624.8	1 29.0	
	14 Ophiuchi .	6	55 52.2	33 13, 65	2 27.42	- 0.11	— 0.03	+ 1 35 47.0		— ī.
	41 Herculis .	6	11 59 36.2	36 58.26	2 27.42	0.43	— 1.04 ¹	+ 6302.0	0 51.0	
	45 ¢ "		12 2 14.7 5 32.7	39 37, 19 42 55, 73	2 27, 42 2 27, 42	0.38 0.11	- 0.84 - 0.02	+ 5 37 59.5 $+$ 1 35 8.2	0 52.5 1 0.4	<u> </u>
	49 Herculis .		7 21.1	44 44.43	2 27.42	1.04		$+ 1358.2 \\ + 151949.8$		二 í:
	54 "		10 58.8	48 22.73	2 27.41	1.29		+ 18 46 9.2	32.5	
		7.8	12 36.2	50 0.39	2 27.41	1.28		+ 18 33 44.6	32.7	<u>ا</u> اِ
	60 "	6.7	16 56, 6 20 26, 3	54 21.50 16 57 51.77	2 27.41 2 27.41	1.61 0.88		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27. 2 40. 5	_ 0.
	62 "	7.8	24 41.4	17 2 7.57	2 27.41			+24 45 17.0	25. 1	
		7	27 10.0	4 36.58	2 27.41	1.73	— 0, 53	+ 24 29 19.4	25.4	+ 0.
	64 a "	ا ۾	29 51.4	7 18.42		- 0.99	— 1,6 0	+ 14 37 47.4	0 38, 1	— 2.
	70 "	8	33 54.8 37 1.6	11 22.49 14 29.80	2 27.40 2 27.40	+0.01 -1.75	$\frac{+0.39}{-0.47}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4.2 0 25.1	_ 0.
	73 "		40 6.0	17 34,70	2 27.40	1.62	-0.83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.0	— 0.
	54 Ophiuchi .		49 25.6	26 55.83	2 27.39	0.90	— 1.75	+ 13 18 5.0	40.1	- 2.
	55 α ''	ا ۽ ڀ	49 54.4	27 24.71	2 27.39	0.86	- 1.87 ;	+ 12 42 40.9	40.9	— 2 .
	82 y Herculis .	7.8	55 51.7 55 58.0	33 22, 99 33 29, 32	2 27.39 2 27.39	4. 32 4. 32	+ 3. 18 + 3. 18	+ 48 41 2.8	0.2	+ 5.
	85 <i>i</i>	•	12 58 20.8	35 52.51	2 27.39	3. 94	+ 2.43 ±	+ 46 5 45.7		+ 5.
	62 γ Ophiuchi .	ļ	13 1 59.2	39 31.51	2 27.39	0.18	_ 0. 25	$\begin{array}{c} + 24719.9 \\ + 254049.4 \end{array}$	58.1	— 1.
	87 Herculis .	ļ	5 0.4	42 33, 21	2 27.39	1.83	- 0.20	+ 25 40 49.4	24.0	+ 0.
	89 "	i	11 38.0 13 14 17.0	49 11.90 17 51 51.33	-227.38 -227.38	1.86 2.13		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.6 - 0 20.0	1
	• • •	- 1	-0 11.0	01 01.00	~ ~	~. 10	1- 1.00	, ~~ 10 ~1.0	J 20.0	T **

				\Y 31-Con				o corr. = +	
Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ-φ	Refr.	q'
95 Herculis . 98 " 104 A " 105 " 3 a Lyræ 9) 34 σ Sagittarii . Saturn 40 τ Sagittarii . 41 π " 22 Aquilæ . 9) 3 Vulpeculæ 6 " 8 Cygni 10 22 " 11 22 " 12 24 " 15 25 " 16 27 b¹ Cygni 17 28 b³ " 18 22 Vulpeculæ 11 ρ Capricorni Jupiter . 2 ε Delphini . 9 a " 2 α Cygni	8 6 7 8 7 7 6 7 7 8 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7 7 6 7 7 8 7 8	A m s 13 17 15. 4 21 50. 6 28 38. 6 34 27. 9 35 9. 0 37 59. 4 41 13. 5 47 22. 3 50 27. 3 52 56. 6 54 26. 0 13 57 40. 9 14 3 40. 7 6 30. 0 10 3. 3 13 37. 2 18 2. 8 21 32. 7 25 48 20. 3 33 16. 4 38 40. 7 41 10. 2 44 23. 3 44 36. 2 48 23. 3 51 50. 8 54 35. 1 56 34. 1 14 58 47. 4 15 1 10. 0 4 24. 4 15 1 10. 0 7 30. 7 11 29. 8 14 19. 8 17 8. 0 19 48. 1 19 8 17 8. 0 19 48. 2 25 2. 8 25 56. 7 30 42. 8 40 56. 2 42 49. 2 47 24. 3 54 4. 6 15 58 31. 7	h m s 17 54 50. 22 17 59 26. 17 18 6 15. 29 12 5. 55 12 46. 76 15 37. 63 18 52. 26 25 2. 07 28 7. 58 30 37. 29 32 6. 93 35 22. 36 41 23. 15 44 12. 91 47 46. 79 51 21. 28 55 47. 61 18 59 18. 08 19 3 34. 58 8 17. 15 11 3. 70 16 28. 89 18 58. 80 22 12. 43 22 25. 37 26 13. 09 29 41. 16 32 25. 91 34 25. 24 36 38. 91 39 1. 90 42 16. 83 44 17. 76 45 23. 64 49 23. 39 52 13. 86 8 39. 52 19 57 43. 36 20 0 48. 26 8 39. 54 18 54. 62 20 47. 93 25 23. 78 325 23. 78 325 23. 78	# \$ 2 27. 38 2 27. 37 2 27. 37 2 27. 37 2 27. 36 2 27. 38 2 27. 33	1.89 1.59 1.59 2.02 1.48 + 0.85 - 0.62 1.84 1.71 1.72 2.56 3.369 4.32 3.80 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98	- 0.82 + 0.30 + 2.48 + 1.27 + 1.28 + 1.27 + 1.360 + 1.68 + 1.66 - 1.76 - 0.15 - 0.59 - 0.57 + 1.39 + 1.172 + 1.27 + 1.27 + 1.27 + 1.27 + 1.27 + 1.27 + 1.27 + 1.27 + 1.27 + 1.30 - 0.88 + 1.30 - 0.88 + 1.41	+ 21 35 5.8 + 22 11 12.4 + 31 20 2.0 + 24 20 30.0 + 23 9 44.3 + 27 15 39.2 + 46 15 12.9 + 38 39 14.2 + 38 41 47.0 + 38 8 35.1 + 38 8 35.1 + 26 51 16.2 - 26 31 9.0 - 22 46 58.2 - 22 20 3.6 - 27 55 53.4 - 21 20 8.9 - 12 37 5.6 + 9 13 12.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 37 5.6 + 24 12 38 5.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 31 58 32.0 + 32 12 18 35.0 + 33 58 33.0 + 34 59 13.0 + 35 21 14.5 + 36 10 46.4 + 37 50 53.2 + 38 8 31.3 + 38 24 6.9 + 37 51 6.8 + 37 51 6.8 + 38 21 14.5 + 36 10 46.4 + 22 49 53.6 - 18 30 26.4 - 20 3 40.0 + 10 33 30.2 + 15 8 14.2 + 16 39.2 + 17 58 14.5 + 18 30 26.4 - 20 3 40.0 + 10 33 30.2 + 15 8 14.2 + 38 14.2 + 38 14.2	- 0 29. 0 28. 2 17. 7 25. 6 27. 0 22. 2 2. 5 6 27. 0 22. 2 10. 2 10. 3 0 10. 6 3 36. 2 3 31. 4 4 2 47. 3 1 3 53. 8 2 34. 5 2 0 55. 8 25. 7 15. 0 7. 5 6 0. 1 3. 8 7. 5 11. 0 10. 6 1	
53 ε "		16 1 54.6	20 39 56.47	- 2 27.30 83 JUNE	2.48	+ 1.40	+ 33 8 15.6 - Ze	- 0 15, 9	+ 2.
94 β Leonis 5 β Virginis . 4 γ Corvi 16 a Comæ . 8 Can. Ven. 27 Comæ . 41 Virginis . Cor. Caroli. 42 Comæ . 15 Can. Ven. 66 Virginis .	2	6 56 4.0 7 22 35.6 34 4.8 41 21.8 7 53 43.7 8 0 51.3 3 43.3 17 17.1 17 55.4 8 31 2.2	11 40 29, 32 · 12 7 5, 28 18 36, 37 25 54, 57 38 18, 50, 45 27, 27 12 48 19, 74 13 1 56, 37 2 34, 17 13 15 43, 13	2 26. 20 2 26. 19 2 26. 18 2 26. 18 2 26. 16 2 26. 16 2 26. 16 2 26. 16	- 1.03 + 1.07 - 1.94 3.35 1.16 0.88 3.01 1.23 - 3.02	- 1.51 + 1.67 + 0.58 + 1.47 - 1.40 - 1.70 + 1.29 - 1.33 + 1.58	+ 15 45 45.4 + 2 58 13.0 - 16 20 15.6 + 28 0 14.4 + 42 30 35.5 + 17 44 35.0 + 13 34 48.4 + 39 27 43.0 + 18 39 30.5 + 39 37 40.8 - 4 2 18.8	- 0 36.5 0 57.6	- 1. - 1. - 0. + 1.

(82)

			1783 JUI	VE 2—Continued	Zero corr. = + 1' 47".			
Name.	Mag.	T	App. sid. time	Clock corr. n tan o	q	ζ — φ	Refr.	q'
67~a~ Virginis $542~$ Mayer $$	7 7.8 7.8 7.8 7 6 7.8 7 6.7 7	h m s 8 31 31.7 35 53.4 40 58.8 42 55.7 49 20.4 52 11.5 54 45.8 57 21.2 8 56 41.5 9 3 57.1 6 50.2 11 31.0 16 38.7	h m s 13 16 12.71 20 35.13 25 41.37 27 38.59 34 4.23 36 55.91 39 30.63 42 6.45 41 26.64 48 43.33 51 37.00 13 56 18.57 14 1 27.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 0.30 + 2.85 + 2.60 + 1.44 + 1.57 + 1.53 + 1.14	0 ' '' - 10 1 53.5 - 0 14 51.0 + 0 47 15.8 + 0 10 16.0 + 47 21 14.0 + 46 35 11.2 + 42 0 8.8 + 43 23 52.2 + 43 6 35.0 + 29 42 50.5 + 26 51 4.8 - 35 11 3.2 - 15 16 12.0	, " — 1 32. 4 4.5 2. 3 1 3.6 0 1.5 2.2 6.6 5.3 5.6 19.5 0 22.6 8 5.6 1 54.9	- 0. - 0. - 0. + 5. + 5. + 4. + 4. + 1. - 10.
Arcturus . 569 Mayer	7	22 18.8 23 27.6 9 28 46.7	7 8.14 8 17.13 14 13 37.10	2 26. 13 — 1. 54 2 26. 13 — 1. 35 — 2 26. 12 + 0. 43	- 0.88 - 1.21 + 1.87	$\begin{array}{c} + 22 52 9.2 \\ + 20 17 44.9 \\ - 6 46 21.8 \end{array}$	0 27.4 0 30.6 1 21.7	- 0.9 - 1. - 0.
	· .	<u>'</u>	178	3 JUNE 3	1	Z	ero cort. = -	+ 1′ 47″
2) 94 β Leonis	7 6 6 6 7 7.8 6.7	6 52 7.4 7 38 1.8 44 37.4 49 47.4 7 59 47.3 8 3 48.4 9 29.9 9 43.5 8.6 25 6.4 8 27 35.2 9 8 36.5 9 8 36.5 11 38 17.2 46 28.8 46 48.9 55 29.5 11 59 59.2 12 4 17.8 6 52.2 20 44.0 12 23 26.0	11 40 28, 63 12 26 30, 57 33 7, 25 38 18, 10 48 19, 64 52 21, 40 58 3, 84 12 58 17, 77 13 2 33, 27 13 42, 90 16 12, 11 13 57 20, 15 14 8 16, 44 16 27 25, 44 35 38, 39 35 58, 55 40 54, 16 44 40, 58 49 11, 02 53 30, 33 16 55, 15 17 9 59, 23 17 12 41, 67	- 2 25. 55	+ 1.29 + 1.38 + 0.71 + 1.29 - 0.99 + 1.79 + 0.14 + 1.02 - 1.01 + 1.60 + 1.21 + 1.54	+ 15 45 47. 1 + 23 48 10. 1 - 0 16 15. 2 + 17 44 36. 8 + 39 27 59. 2 + 31 55 58. 2 + 36 56 8. 0 + 23 45 36. 16 + 6 16 44. 8 - 10 1 54. 5 + 26 50 43. 4 + 20 17 45. 0 - 1 51 37. 0 + 21 59 37. 0 + 22 3 + 23 43 35 28. 0 + 30 9 32. 0 + 43 10 20. 4 + 42 49 24. 2 + 43 45 148. 0 + 37 1 55. 5 + 37 29 43. 6	- 0 36. 4	- 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
			178:	JULY 5		Zer	corr. = +	1′ 45″.3.
67 a Virginis - Arcturus - 11 κ Cor. Bor 41 γ Serpentis - 12 λ Cor. Bor	7 6 6.7 7 8 6.7 8 6.7 8 6.3,4	6 21 31.2 7 13 27.0 8 50 27.6 53 51.2 55 17.6 8 58 12.3 9 1 28.7 4 50.1 8 34.2 9 29.6 11 57.9 15 17.7 18 0.2 9 19 50.3	13 15 57. 29 14 8 1. 62 15 45 18. 16 48 42. 32 50 8. 95 53 4. 13 56 21. 07 15 59 43. 02 16 3 27. 73 4 23. 28 6 51. 99 10 12. 34 12 55. 28 16 14 45. 68	- 2 10, 53 + 0, 66 2 10, 49 - 1, 39 2 10, 40 2, 76 2 10, 40 2, 99 2 10, 40 0, 92 2 10, 40 1, 24 2 10, 39 3, 88 2 10, 39 2, 10, 39 2 10, 38 - 2, 10, 38 2 10, 38 - 1, 49 - 2 10, 38 + 1, 59	+ 1.79 + 1.30 - 1.47 + 1.27 - 1.35 + 1.30 + 2.36 + 2.35 + 1.51 + 1.27 - 1.06 + 1.84	- 10 1 55.1 + 20 17 47.2 + 36 18 46.0 + 16 21 34.8 + 38 33 18.0 + 13 52 36.0 + 18 23 19.4 + 39 43 23.8 + 45 55 56.1 + 45 53 57.0 + 42 54 38.6 + 37 4 33.8 + 21 38 40.0 - 22 54 58.4	- 1 30.5 0 29.9 12.2 35.1 10.0 38.5 32.4 8.8 2.8 2.8 5.7 11.5 0 28.3 - 2 44.5	- 0.4 - 1.1 + 3.3 - 1.8 + 2.0 - 1.5 + 4.0 + 5.3 + 4.7 + 3.5 - 1.5

(83)

_				1783 J	ULY 5—Co	ntinued		Zero	o corr. = + 1	45".
Nan	10	Mag.	Т	App. sid. time	Clock corr.	n tan d	q	ζ — φ	Refr.	q'
23 τ Sec Sut 34 Sut 38 ζ 39 σ 767 Ma 42 ψ Sut 46 υ 53 α Aq 60 β 13 χ Sut 16 ε 17 Vu	urn . yittarii . yer yittarii . yer yet yet	7 6 8 7.8 6.7 7.8 7.8	## ## ## ## ## ## ## ## ## ## ## ## ##	h m s 16 18 16.76 16 24 32.17 18 40 43.49 50 54.66 18 53 50.64 19 1 40.22 4 22.46 7 24.26 11 26.43 19 51.30 24 51.92 27 17.72 31 6.95 33 15.20 36 21.61 42 26.61 46 53.44 52 31.06 55 32.56 55 47.70 57 47.53 19 59 49.36 20 8 34.39		* + 1.83 1.97 1.56 2.17 1.52 1.52 1.80 1.10 + 0.49 - 1.40 1.39 1.36 1.51 0.55 0.38 1.14 1.19 1.21 1.32 - 1.59	+ 3.95 + 1.74 + 4.88 + 1.63 + 1.67 + 1.67 + 1.67 + 1.21 - 0.22 - 1.21 - 1.21 - 1.44 - 0.90 - 1.44 - 1.40 - 1.40 - 1.88 - 1.88 - 1.88 - 1.95 - 1.88 - 1.95 -	0 / " - 25 54 39, 0 - 27 43 2.0 - 22 33 22.4 - 26 31 2.2 - 30 7 17.6 - 22 1 29.2 - 20 15 9 2.6 - 25 35 7.6 - 16 19 50.9 - 16 20 26.9 - 16 20 26.9 - 17 28 46.5 + 20 27 39.6 + 25 34 41.6 + 20 17 4.2 + 21 58 5.8 + 8 17 34.1 + 5 51 47.2 + 16 55 1.5 + 17 40 52.0 + 17 53 5.0 + 19 21 34.5 + 22 58 41.4 + 20 47 40.2	7	
					3 JULY 8	<u> </u>			o corr. = +1	ļ
27 γ Boo 30 ε β 36 ε β 20 γ Lith 42 β Boo 24 ι Lith 5 a Coo 44 η Lith 24 a Ser 28 β Coo 6 π 6	tre	2. 3 7 6 6. 7 7. 8 9. 10 6 7. 8 9. 10 5. 6	7 55 27. 7 8 0 56. 2 2 23. 4 21 5. 7 27 23. 8 29 9. 8 36 58. 5 41 11. 3 47 19. 7 49 37. 4 52 59. 0 56 42. 9 8 57 38. 1 9 0 6. 6 3 26. 6	32 59, 13 37 40, 80 53 29, 09 14 55 57, 50 15 1 58, 87 7 28, 28 8 55, 72 27 41, 09 34 0, 23 35 46, 52 43 36, 50 47 49, 99 53 59, 40 56 17, 48	2 6.58	1.01 - 2.05 - 1.74 - 3.38 + 1.32 + 0.58 - 2.60 - 1.99 + 1.03 - 0.48 + 1.11 + 1.83 - 0.96 1.28 3.19 3.98 3.58 2.90 - 1.38 + 1.87 + 0.05	$\begin{array}{c} -1.60 \\ +0.57 \\ +2.37 \\ +2.37 \\ +1.38 \\ +1.48 \\ +1.87 \\ +1.38 \\ +0.36 \\ +1.60 \\ -1.17 \\ +1.66 \\ -1.33 \\ +1.30 \\ +2.36 \\ +2.35 \\ +1.51 \\ +1.27 \\ -1.26 \\ +3.12 \\ +3.95 \\ +0.66 \end{array}$	+ 20 17 45.2 - + 39 14 16.3 + 14 38 49.8 + 27 58 22.2 - + 41 13 33.9 - 18 57 18.0 - 8 34 49.2 + 34 6 22.7 - 9 32 18.6 + 27 25 46.4 - 14 58 13.2 + 7 6 6.5 - 25 27 14.6 + 13 56 - 25 27 14.6 + 18 23 19.4 + 45 53 57.0 + 42 54 37.1 + 45 53 57.0 + 42 54 37.1 + 45 53 57.0 + 42 54 37.1 + 45 53 57.0 + 21 38 41.2 + 19 39 6.6 0 - 27 43 10.9 - 0 47 49.0 + 13 58 45.8 + 39 18 59.7	37. 2 0 20. 9 2 59. 2 0 7. 4 2 13. 2 1 25. 6 0 21. 5 1 51. 0 0 35. 3 1 56. 5 3 58. 7 3 11. 5 2. 8 2. 8 2. 8 2. 8 3 30. 7 3 17. 8 3 44. 9	+ 5. + 5. + 4. + 3.

			1783 JUI	Y 8—Conti	inned		Zei	o corr. = +	1′ 47″. 0.
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ— φ	Refr.	q'
105 Herculis . 107 t " . 109 " . 2 μ Lyræ . 3 a Lyræ . Saturn . a) 35 ν² Sagittarii . b) 38 ζ " . c) 40 τ " .	8 7.8 9	h m s 11 5 24.2 7 41.2 9 36.2 12 13.2 16 59.7 20 42.3 23 12.1 24 41.3 32 36.8 36 58.5 43 42.0 48 17.4	h m s 18 12 26, 57 14 43, 95 16 39, 27 19 16, 70 24 3, 98 27 47, 19 30 17, 40 31 46, 84 39 43, 64 44 6, 06 50 50, 67 55 26, 82	m s 2 6.48 2 6.47 2 6.47 2 6.46 2 6.46 2 6.46 2 6.45 2 6.44 2 6.44 2 6.43	- 1.74 2.12 1.53 3.16 3.72 3.08 - 3.07 + 1.61 1.63 2.23 2.04	+ 1.29 + 1.70 + 1.27 + 1.28 + 1.27 + 1.74 + 1.83 + 4.89 + 4.04	+ 24 20 37.2 + 28 45 8.4 + 21 39 37.8 + 39 22 9.4 + 44 5 35.8 + 38 39 21.0 + 38 41 56.5 + 38 33 48.9 - 22 34 36.2 - 22 54 29.8 - 30 7 27.2 - 27 56 3.2	9.9 0.25, 1 20, 1 28, 3 9, 2 4, 6 9, 9 9, 9 0 10, 0 2 41, 9 2 44, 9 4 33, 5 3 48, 9	" + 0.1 + 1.6 - 0.6 + 3.9 + 4.9 + 3.8 + 3.8 - 1.4 - 5.5 - 3.8
53 a Aquilæ d) 60 β "	8 8.9 8.9 7 6.7 7.8 7		18 58 58 30 19 31 2.96 33 11.11 36 17.52 42 22.92 46 49.65 50 6.39 52 27.07 55 29.07 55 44.41 19 57 43.74 20 2 27.01	2 6.43 2 6.40 2 6.40 2 6.39 2 6.38 2 6.38 2 6.37 2 6.37 2 6.37	+ 1.50 - 1.42 1.40 1.55 0.56 0.39 1.13 1.17 1.22 1.25 - 1.35	+ 1.51 - 1.21 - 1.23 - 1.01 - 1.44 - 0.90 - 1.48 - 1.44 - 1.41 - 1.40	- 21 20 20.6 + 20 16 5×.9 + 19 57 53.6 + 8 17 29.5 + 5 51 44.2 + 16 11 45.4 + 16 54 55.0 + 17 40 49.0 + 17 53 7.2 + 19 21 33.9 - 13 14 18.9	2 31.2 0 30.0 30.4 27.9 47.2 51.4 35.4 34.4 33.4 33.1 0 31.3	- 1.0 - 1.1 - 0.5 - 1.7 - 1.5 - 1.8 - 1.7 - 1.6 - 1.3 - 0.3
Jupiter .		12 59 38.5	20 6 59.66		+ 1.47	+ 1.47	— 20 52 47.6	- 2 28, 1 corr. = +1	- 1.0 46".0.
27 β Librae	2 7 8 7.8 6 7 88 7	7 56 58. 4 8 4 3.7 10 32. 0 17 8. 4 25 12. 3 27 48. 4 29 51. 5 31 35. 9 34 58. 8 37 13. 8 44 20. 2 50 18. 4 50 23. 1 53 12. 4 8 59 26. 5 9 2 52. 2 5 54. 1 7 31. 2 9 28. 4 13 45. 3 17 18. 6 20 7. 6 20 26. 1 9 34 11. 7 12 18 27. 1 20 35. 6 22 16. 9 25 4. 6 28 30. 3 29 40. 1 31 8. 4 12 35 0. 1	15	2 4.93 2 4.92 2 4.90 2 4.90 2 4.90 2 4.89 2 4.89 2 4.89 2 4.88 2 4.88 2 4.88 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.86 2 4.85 2 4.85	+ 0.66 - 2.24 - 2.02 - 1.12 + 0.19 - 1.85 1.36 2.05 2.02 1.81 1.38 1.26 1.90 2.05 1.24 - 1.82 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	+ 0.36 - 1.17 + 1.28 - 0.69 + 4.28 + 2.88 + 2.88 + 1.42 + 4.00 + 3.77 + 2.58 + 2.63 + 1.54 + 3.16 + 3.95 + 1.58 + 1.62 - 0.38 - 1.49 - 1.43 - 0.50 - 1.49 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.50 - 0.38	- 8 34 50.0 - 9 32 17.8 + 29 50 17.6 + 27 25 47.6 + 7 6 5.0 + 16 5 28.0 - 2 46 1.2 + 5 7 34.0 - 28 32 0.8 - 25 27 17.3 - 19 11 35.1 - 20 15 42.2 - 27 48 27.0 - 27 19 14.9 - 24 53 30.8 - 17 56 47.9 - 27 19 30 34.0 - 17 56 47.9 - 27 43 12.4 - 17 45 58.4 - 17 18 20.0 + 25 0 33.9 + 15 58 4.6 + 16 57 55.2 + 21 58 4.6 + 24 35 22.2 + 24 50 10.0 + 8 17 32.4 - 6 34	0 18.8 21.5 48.7 0 35.2 1 8.9 0 52.3 3 58.7 2 15.1 2 22.3 3 45.8 37.9 2 17.2 2 17.2 3 17.9 19.7 3 44.6 2 6.1 2 3.5 5 5.5 2 4.3 3 5.8 3 5.8 3 5.8 3 7.9 3 19.7 4 19.7 4 19.7 4 19.7 5 19.	+1.16 -1.6
2 & assumed as 71° 45° 34 b & assumed as 78° 58′ 31 c & assumed as 76° 47′ 8′ d & assumed as 42° 59′ 20	".5; not "; not 76"; not 76".5; not	71° 45′ 44″.5. 8° 58′ 41″. 6° 47′ 18″. 42° 59′ 50″.5.	T. I assumed	d as 43m.; not 19° 0′ 48"; not as 56s.; not 51 73° 44′ 36".5; 1	. 29° 0′ 18″. s.	jΙ	ficr. corr. assumed Div. assumed as 34		

			1783 JU	LY 9—Con	tinued		Zero	o corr. = + 1	.′ 46″. 0.
Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζφ	Refr.	q'
60 β Aquilæ . 11 Sugittæ . 23 χ	6 8 7.8	h m s 12 35 34.7 36 50.6 41 10.6 41 16.3 44 12.6	h m 8 19 46 48.46 50 4.90 52 25.28 52 31.00 55 27.78	m 8 - 2 4.65 2 4.65 2 4.65 2 4.65 2 4.65	- 0.40 1.14 1.19 1.19 1.24	- 0.90 - 1.48 - 1.43 - 1.43 - 1.41	+ 5 51 44.4 + 16 11 51.2 + 16 54 59.0 + 17 0 35.0 + 17 40 52.4	- 0 51.9 35.8 34.8 34.6 33.8	" - 1.5 - 1.8 - 1.7 - 1.6 - 1.5
64 Aquilæ . a) 65 θ Antinoi . Jupiter . 10 π Capricorni . 2 ε Delphini	7.8	44 27.7 47 40.1 50 56.9 12 55 10.2 13 5 39.2 13 41.0	55 42.92 19 58 55.85 20 2 13.19 6 27.18 16 57.90 25 1.02	2 4.64 2 4.64 2 4.63 2 4.62 2 4.61	- 1.26 + 0.09 0.17 1.49 + 1.34 - 0.73	- 1.40 + 0.85 + 0.89 + 1.48 + 1.45 - 2.67 - 1.66	+ 17 53 9.8 - 1 17 58.8 - 1 27 45.0 - 20 54 31.9 - 18 53 59.2 + 10 33 38.2 + 13 55 5.4	0 33.5 1 6.8 1 6.9 2 30.2 2 15.6 0 44.2 39.2	- 1.0 - 0.7 - 1.0 - 0.7 - 1.9 - 2.0
6 β " 9 a " 50 a Cygni 12 γ Delphini	8	15 59.8 18 12.2 20 23.2 22 52.2 24 49.8 27 23.1	27 20:20 29 32:96 31 44:32 34 13:73 36 11:65 38 45:36	2 4.61 2 4.61 2 4.61 2 4.61 2 4.60 2 4.60	0.97 0.96 1.05 3.89 3.83 1.07 1.21	- 1.67 - 1.56 + 1.93 + 1.79 - 1.54 - 1.42	+ 13 39 57.5 + 13 49 57.5 + 15 8 18.2 + 44 52 33.6 + 44 28 54.2 + 15 20 2.6 + 17 12 29.8	39. 3 37. 4 3. 8	- 2.0 - 1.9 + 5.1 + 4.9 - 1.9
b) 32 q Vulpeculæ 1 Equulei . 22 η Capricorni	6.7 6.7 6.7 6.7 8.9	33 19.0 36 4.5 38 57.8 42 42.3 46 52.5 50 9.7 53 49.0	44 42.24 47 28.19 50 21.96 54 7.08 20 58 17.96 21 1 35.70 5 15.66	2 4.60 2 4.59 2 4.59 2 4.59 2 4.58 2 4.58 2 4.57	2.01 - 0.23 + 1.47 + 0.11 - 2.19 3.30	+ 0.28 - 0.36 + 1.46 + 0.95 + 1.07 + 1.32	+ 17 12 25.0 + 27 13 5.0 + 3 27 36.7 - 20 41 9.8 - 1 38 11.5 + 29 18 47.2 + 40 16 31.5	22. 4 0 56. 8 2 29. 2 1 8. 1 0 19. 9 8. 6	- 1.0 - 1.2 - 0.9 - 0.7 + 1.6
1 ε Pegasi	8.9	56 42, 0 13 59 52, 6 14 2 45, 3 5 37, 0 10 43, 0 15 29, 3	8 9. 19 11 20. 19 14 13. 36 17 5. 53 22 12. 37 26 59. 46	2 4.57 2 4.57 2 4.56 2 4.56 2 4.56 2 4.55	3.30 3.48 1.33 - 1.84 + 0.44 + 1.45	+ 1.32 + 1.40 - 1.32 - 0.32 + 1.86 + 1.44	+ 40 13 31.3 + 41 45 7.2 + 18 51 51.6 + 25 13 33.8 - 6 31 14.5 - 20 24 46.8	8.6 7.1 32.6 0 24.7 1 21.5 2 26.7	+ 4.1 + 4.5 - 1.3 + 0.4 - 0.5 + 3.8
77 Cygni d)	7 6 6 7 8.9 7.8 8.9	21 42.8 24 17.1 25 1.1 28 16.9 31 27.5 34 48.6 38 21.0	33 14.00 35 48.71 36 32.83 39 49.18 43 0.30 46 21.95 21 49 54.93	2 4.55 2 4.54 2 4.54 2 4.54 2 4.54 2 4.53 2 4.53	- 3. 10 3. 28 3. 28 3. 51 3. 28 2. 02 2. 10	+ 1.27 + 1.31 + 1.32 + 1.43 + 1.31 + 0.32 + 0.69	+ 38 30 38.2 + 40 3 56.3 + 40 8 33.2 + 42 2 4.4 + 40 6 54.7 + 27 18 31.7 + 28 15 53.2	0 10.2 8.7 8.6 6.8 8.6 22.4 0 21.3	+ 4.1 + 4.1 + 4.5 + 1.0 + 1.3
34 a Aquarii . 48 y '' 923 Mayer 55 ζ Aquarii .	6.7	54 26.7 14 57 26.0 15 0 55.4 3 51.9 8 7.0	22 6 3.27 9 3.06 12 33.03 15 30.01 19 45.77	2 4.51 2 4.51 2 4.51 2 4.50 2 4.50	- 1. 12 + 0. 09 0. 17 0. 16 + 0. 08	- 1.49 + 0.85 + 1.20 + 1.15 + 0.79	1 22 28.8 + 16 6 26.2 - 1 19 13.6 - 2 28 51.7 - 2 17 18.8 - 1 7 52.1	1 8.0 0 36.6 1 8.0 11.0 10.5 1 7.8	- 0.7 - 1.8 - 0.7 - 0.7 - 0.7 - 0.7
e) 10 Lacertse - 44 7 Pegasi	6. 5 7 7 7 5. 6	12 0.7 14 32.1 15 26.7 18 14.4 20 1.4 23 18.2	23 40.11 26 11.93 27 6.68 29 54.84 31 42.00 34 59.48	2 4.50 2 4.49 2 4.49 2 4.49 2 4.49 2 4.49	- 2.11 3.24 3.23 3.47 3.04	+ 0.74 + 1.29 + 1.29 + 1.40 + 1.27	+ 28 24 45.7 + 39 40 46.0 + 39 37 55.7 + 41 39 34.7 + 37 53 53.4 + 29 4 1.8	0 21.3 9.2 9.2 7.2	- 1.4 + 4.6 + 4.6 + 3.7 + 1.6
Fomalhaut 1 ο Andromedæ 53 β Pegasi.	6	25 55.3 35 53.8 42 22.7 15 43 40.7	37 37.01 47 37.16 54 7.14 22 55 25.36	2 4.48 2 4.48 2 4.47 — 2 4.46	- 2.19 + 2.32 - 3.40 - 1.98	+1.07 $+5.05$	+ 29 18 16.0 - 30 42 33.5 + 41 8 6.1 + 26 53 11.5	0 20.3 4 59.9 7.8 — 0 23.1	+ 1.6
			178	3 JULY	10		Zer	o corr. = +	1′ 45″.8.
Regulus . 94 \(\beta \) Leonis . 67 \(a \) Virginis . 85 \(\text{Urse Maj.} \) Arcturus .	1 1 1	2 45 22.6 4 26 16.4 6 1 44.7 26 55.6 6 53 40.6	9 58 55.97 11 40 6.35 13 15 50.33 13 41 5.37 14 7 54.77	- 2 4.06 2 3.94 2 3.82 2 3.79 - 2 3.76	- 0.91 - 1.11 + 0.70 - 4.76 - 1.46	-1.51 + 1.79 + 3.45	+ 13 0 8.4 + 15 45 49.5 - 10 1 57.2 + 50 22 22.0 + 20 17 47.4	- 0 38.8 0 35.0 1 29.0 0 1.4 - 0 29.4	- 2.0 - 1.8 - 0.4 + 5.7 - 1.1
a gassum b gassum c gassum	ed as 50° ed as 31° ed as 8° ;	; not 51°. 38′ 38″; not 31° 34′; not 8° 39′.	58′ 58″.		SI	uned as 20°	ns 37m.; not 36m.: a 2 35′ 11″; not 20° 35′ ns 20; not 22.	nd & as- 21".	

(86)

			1783 JUI	X 10-Con	tin wod		Zero corr. := + 1' 45". 8			
Name	Mag.	т	App. sid. time	Clock corr.	n tan o	q	ζ— φ	Refr.	q'	
27 γ Bootis	5.7.8 7.6.7	h m s 7 11 11.0 18 38.1 23 18.8 26 38.3 39 4.3 7 53 1.2 8 6 34.6 13 10.9 21 14.7 27 38.6 39 7.3 44 53.2 50 31.2 53 23.2 8 58 37.3 9 3 33.7 6 17.0 12 35.5 19 53.5	h m s 14 25 28.05 32 56.37 37 37.84 40 57.89 14 53 25.93 15 7 25.12 21 0.75 27 38.13 35 43.25 42 8.20 53 38.79 15 59 25.63 16 5 4.56 7 57.03 13 11.99 18 9.20 20 52.95 27 12.49 34 31.69	2 3.74 2 3.73 2 3.73 2 3.72 2 3.71 2 3.69 2 3.66 2 3.65 2 3.63 2 3.63 2 3.62 2 3.61 2 3.60 2 3.59	1. 03 - 2. 10 + 1. 06 1. 79 + 0. 60 - 2. 24 0. 49 0. 35 1. 31 - 0. 72 + 0. 21 - 0. 84 - 0. 10 + 0. 55 + 0. 49 0. 0. 49 0. 0. 84 - 0. 10 - 0. 10 - 0. 13 - 0. 13 - 0. 13 - 0. 10 - 0. 13 - 0. 13 - 0. 13 - 0. 13 - 0. 14 - 0. 15 - 0. 13 - 0. 16 -	$\begin{array}{c} +\ 0.56 \\ +\ 1.61 \\ +\ 1.87 \\ +\ 1.87 \\ +\ 1.17 \\ +\ 0.36 \\ -\ 1.37 \\ -\ 0.73 \\ -\ 1.35 \\ -\ 2.61 \\ +\ 1.36 \\ -\ 0.01 \\ +\ 1.88 \\ +\ 0.08 \\ +\ 0.30 \\ -\ 0.30 \\ \end{array}$	0	9.2 36.8 0.20.7 1.50.2 2.50.2 2.50.2 1.24.4 0.18.6 21.3 48.1 51.7 31.8 0.42.9 1.9.1 0.40.6 0.58.7 1.22.3 1.19.9 0.58.0	+ 3. - 1. + 1. - 0. - 1. - 0. + 1. - 1. - 1. - 1. - 2. - 1. - 0.	
62 γ Ophiuchi 63 " 90 f Herculis 57 ζ Serpentis 96 Herculis		9 20 7.4 10 24 19.0 28 45.8 33 32.4 36 15.4 40 24.1	34 45.63 17 39 7.78 43 35.31 48 22.69 51 6.14 55 15.50	2 3.59 2 3.52 2 3.51 2 3.50 2 3.50 2 3.50	4.60 - 0.19 + 1.82	+ 3.30 - 0.24 + 2.55 + 1.31 + 1.49 - 1.16	+ 49 19 46.3 + 2 47 18.9 - 24 48 17.6 + 40 1 51.4 - 3 40 16.6 + 20 49 25.2	0.5 0 56.1 3 2.8 0 8.5 1 10.9 0 29.0	+ 5. - 1. - 2. + 4. - 0. - 0.	
71 f Ophiuchi . 73 q	7.8 7 8	44 12.5 46 1.6 57 15.2 10 59 46.2 11 1 40.7 5 10.0 11 2.4 15 16.8	17 59 4.52 18 0 53.92 12 9.36 14 40.77 16 35.59 20 5.46 26 17.85 30 13.92	2 3.49 2 3.49 2 3.48 2 3.47 2 3.47 2 3.47 2 3.46 2 3.46	0.60 0.27 0.22 2.16 1.57 1.95 1.25 3.16	- 1.55 - 0.44 - 0.33 + 0.88 - 1.06 - 0.03 - 1.41 + 1.28	+ 8 42 8.6 + 3 57 21.0 + 3 16 45.7 + 28 45 13.5 + 21 39 42.4 + 26 18 23.9 + 17 33 30.8 + 38 41 55.3	45. 8 54. 1 55. 5 20. 0 28. 0 22. 6 33. 1 9. 8	- 1 - 1 - 1 + 1 - 0 + 1	
3 a Lyrse	1 7 6	16 45.7 20 20.4 24 4.5 28 7.3 29 3.1	31 43.06 35 18.35 39 3.06 43 6.52 44 2.47	2 3.45 2 3.45 2 3.45 2 3.44 2 3.44	- 3.15 + 1.64 1.64 1.68	+ 1.27 + 1.75 + 1.75 + 1.87 + 1.84	+ 38 33 50.2 - 22 35 14.2 - 22 35 26.8 - 22 58 43.0 - 22 54 31.8 + 14 32 26.7	0 9.9 2 40.0 40.0 43.8 2 43.0	+ 3 + 3 - 1 - 1 - 1	
13 ε Aquilæ .	6.7 7.8	34 27. 4 36 54. 6 41 31. 0	49 27.66 51 55.26 18 56 32.42	2 3.43 2 3.43 2 3.43	- 1.02 1.04 1.51	- 1.61 - 1.59 - 1.15	+ 14 45 59.6 + 20 56 15.8	0 37.2 36.8 28.8	- J - 1 - 0	
18 ι Lyræ	6.7	46 39. 2 51 16. 0 53 26. 4 11 55 54. 3	19 1 41.46 6 19.02 8 29.78 10 58.09	2 3.42 2 3.42 2 3.41 2 3.41	3. 32 3. 16 3. 05	+ 1.31 + 1.31 + 1.28 + 1.27	+ 35 44 38.2 + 40 2 59.6 + 38 45 17.4 + 37 43 43.4	12.7 8.5 9.7 10.7	+ 3 + 4 + 3 + 3	
38 μ Aquilæ . 44 σ " 47 χ "	6.7	12 8 30.3 10 31.2 15 29.2 19 23.0	23 36. 16 25 37. 39 30 36. 29 34 30. 65	2 3.39 2 3.39 2 3.39 2 3.38	0.49 0.48 0.34 0.79	- 1. 15 - 1. 13 - 0. 64 - 3. 00	+ 7 1 37.0 + 6 54 58.6 + 4 54 6.8 + 11 18 36.0 + 21 58 5 6	48.7 48.9 52.5 42.0	- 1 - 1 - 1	
53 a "	7.8 10 7.8	21 6.7 23 43.4 25 42.1 27 10.7	36 14.64 38 51.77 40 50.80 42 19.64	2 3.38 2 3.38 2 3.37 2 3.37	1.60 1.72 1.83 0.58	- 1.01 - 0.75 - 0.42	+ 21 58 5.6 + 23 33 25.0 + 24 50 8.0 + 8 17 32.6 + 6 34 7.0	27.7 25.8 24.4 46.7	$-0 \\ 0 \\ +0 \\ -1$	
60 β "	6.7	31 2.4	42 19.04 46 11.98	2 3.37	0. 46	- 1.45 - 1.05	+ 6 34 7.0 + 5 51 43.0	49. 6 50. 8	- i	
11 Sagittae .	7 7.8 7	34 52.8 35 20.1 40 14.5 12 40 29.1	50 3.01 50 30.38 55 25.58 19 55 40.22	2 3.36 2 3.36 2 3.36 — 2 3.36			+ 16 11 49.0 + 15 54 4.1 + 17 40 50.5 + 17 53 7.8	35. 0 35. 4 33. 0 - 0 32. 7	- 1 - 1 - 1 - 1	

<sup>Transits of star marked "Preceding" assumed as belonging to 42
Herculis, and those recorded for 42 as belonging to the preceding
star, the differences of the threads having been applied by
d'Agelet with the wrong sign.
Div. assumed as 56 0; not 56 6.
\$ assumed as 34° 18′ 39″.5; not 34° 18′ 9″.5.</sup>

<sup>d The two observations of this star, July 10 and 19, agree closely, both measures of ξ being recorded for each night. But on examining the conversion of divisions into are we find in each date a result differing by 10' from the true value which is correctly recorded in the column of zenith distance in arc. Div. assumed as 13 12 13; not 13 15 11.
ε ξ assumed as 8° 45' 4".5; not 8° 45' 34".5.</sup>

Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζφ	Refr.	q'
64 Aquilse 65 θ Antinoi . Jupiter	7.8 7 7 7 8.9 9	h m s 12 43 42.9 46 59.1 50 41.9 54 23.0 12 56 46.1 13 2 45.7 5 32.4 8 8.8 12 2.1 14 14.2 16 25.1 20 52.4 29 21.5 13 32 6.6	h m s 19 58 54, 55 20 2 11, 29 5 54, 70 9 36, 40 11 59, 89 18 0, 48 20 47, 64 23 24, 47 27 18, 41 29 30, 87 31 42, 13 36 10, 16 44 40, 65 20 47 26, 20	m s 3.35 2 3.35 2 3.35 2 3.34 2 3.33 2 3.33 2 3.32 2 3.32 2 3.32 2 3.30 — 2 3.30	0.00 - 0.75 0.93 1.39 1.43 0.98 0.97	- 1.77 - 1.28 - 1.24 - 1.66 - 1.67 - 1.56 + 1.79 - 1.42	0 ' " - 1 18 1.2 - 1 27 42.2 - 20 56 12.1 - 0 1 57.3 + 10 46 53.2 + 13 11 54.8 + 19 22 56.8 + 19 51 46.6 + 13 55 6.6 + 13 50 0.0 + 15 8 19.9 + 44 28 54.0 + 17 12 23.3 + 27 13 4.8	33.7	- 0 - 0 - 1 - 0 - 1 - 2 - 1 - 2 - 1 + 5 - 1 + 1
	<u> </u>	'	178:	3 JULY 1	2)		Zer	o corr. = + 1	l' 44".
55 a Ophiuchi 58 D 62 γ 71 62 γ 71 5 Sagittarii 10 γ 716 Mayer 19 δ Sagittarii 22 λ 728 Mayer 730 3 a Lyrse 32 ν Sagittarii 35 ν² 37 ξ 7 14 g Aquilse 15 λ 10 μ 11 μ 11 μ 12 μ 13 μ 14 μ 15 μ 16 Vulpeculse 17 μ 18 μ 19 μ 19 μ 10 μ 10 μ 11 μ 11 μ 12 μ 13 μ 14 μ 15 μ 16 Vulpeculse 17 μ 18 μ 19 μ 19 μ 10 μ 10 μ 11 μ 11 μ 12 μ 13 μ 14 μ 15 μ 16 Vulpeculse 17 μ 18 μ 19 μ 19 μ 10 μ 11 μ 12 μ 13 μ 14 μ 15 μ 16 Vulpeculse 17 μ 18 μ 19 μ 19 μ 19 μ 10 μ 10 μ 11 μ 11 μ 12 μ 13 μ 14 μ 15 μ 16 Vulpeculse 17 μ 18 μ 19 μ 19 μ 19 μ 10 μ	6 7 6 6 7 8 6 6 8 7 8 8 8 8 8 8 8 8 8 8	10	32 25, 89	1 59. 11 1 59. 10 1 59. 09 1 59. 09 1 59. 08 1 59. 08 1 59. 06 1 59. 06 1 59. 06 1 59. 04 1 59. 04 1 59. 04 1 59. 01 1 59. 02 1 59. 01	- 0. 19 + 1. 84 2. 34 2. 16 2. 29 + 1. 36 + 1. 34 - 3. 20 + 1. 67 1. 69 1. 57 0. 28 + 0. 30 - 0. 19 + 0. 23 - 0. 19 - 0. 24 - 0. 34 0. 80 0. 71 0. 58 - 1. 70 - 1. 49 - 1. 81 - 1. 70 - 1. 49 - 1. 81 - 1. 70 - 1. 70 - 1. 49 - 2. 31 - 1. 69 - 1. 70	+ 2.55 + 2.30 + 4.96 + 4.26 + 4.81 + 2.90 + 1.49 + 1.27 + 1.75 + 1.64 + 1.51 + 1.57 + 1.64 + 1.31 + 0.23 + 1.33 - 0.64 - 0.41 - 0.41 - 0.57 - 1.666 - 1.56 - 1.56 - 1.56	+ 12 42 43.2 21 32 57.4 + 2 47 18.6 24 48 15.0 24 13 37.0 30 21 38.8 28 25 40.6 29 51 26.8 29 57.4 18 50 25.0 18 31 34.7 + 38 33 52.4 22 36 2.5 8 40.5 22 54 30.0 21 21 40.0 4 44 16.5 4 0 23.0 4 20 49.6 +- 0 18 30.2 +- 40 2 59.9 +- 37 43 46.8 +- 2 40 57.4 3 14 9.9 +- 3 14 9.9 +- 4 54 11.1 +- 11 18 39.0 +- 4 54 11.1 +- 11 18 39.0 +- 4 54 11.1 +- 11 18 39.0 +- 4 54 11.1 +- 11 18 39.0 +- 4 54 11.1 +- 11 18 39.0 +- 4 54 11.1 +- 11 18 39.0 +- 4 54 11.1 +- 11 18 39.0 +- 1 35 25.7 0 13 28.6 +- 24 19 7.0 1 31 28.6 1 45 35 25.7 0 13 28.6 1 45 35 25.7 0 13 28.6 1 45 35 25.7 0 13 28.6 1 45 35 59.4 1 35 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0 1 36 59.5 1 55 8 26.0	2 41.9 45.3 44.5 2 31.2 1 14.4 12.4 1 10.8 1 10.8 0 57.2 1 10.4 0 49.2 1 6.9 0 52.9 42.4 44.3 0 25.2 26.7 0 29.8 1 43.2 1 43.4 0 9.0 38.6 9 36.8	- 2 1 1 2 2 4 5 6 1 1 1 1 1 1 1

				1783 JU	L¥ 12–Ce	ntinued		Ze	ro corr. = +	1′ 44″.1.
	Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ-φ	Refr.	q'
	56 Cygni	6	h m s 13 21 15.2 27 57.0 31 17.1 36 1.8 42 30.9 13 47 48.0	h m s 20 44 26.15 51 9.05 54 29.70 20 59 15.18 21 5 45.35 11 3.32	m s 1 58.93 1 58.92 1 58.92 1 58.91 1 58.90 1 58.90	- 3.76 3.40 4.24 3.09 2.25 - 2.70	+ 1.54 + 1.32 + 2.63 + 1.27 + 1.07 + 1.39	0 / " + 43 13 12.3 + 40 18 42.2 + 46 38 59.8 + 37 39 55.8 + 29 19 15.0 + 33 58 3.0	- 0 5.4 8.3 2.1 10.9 19.6 0 14.7	+ 4.7 + 4.1 + 5.4 + 3.6 + 1.6 + 2.9
a)	39 e Capricorni 12 Pegasi . 13	7 6 6.7 6.7 8.9 7.8	14 3 35.6 7 46.2 14 50.7 18 33.8 20 6.7 22 55.5 26 13.0	26 53.52 31 4.80 38 10.45 41 54.16 43 27.31 46 16.57 49 34.61	1 58, 88 1 58, 87 1 58, 86 1 58, 85 1 58, 85 1 58, 85 1 58, 84	+ 1.49 - 3.16 1.61 1.17 1.36 - 2.07 + 0.38	+ 1.44 + 1.27 - 1.02 - 1.48 - 1.32 + 0.31 + 1.78	- 20 24 45.0 + 38 19 14.0 + 21 56 6.0 + 16 15 58.2 + 18 47 53.7 + 27 18 26.7 - 5 23 31.2	2 24.3 0 10.3 28.0 35.3 32.0 0 21.8 1 16.5	- 0.9 + 3.7 - 0.5 - 1.8 - 1.4 - 1.1 - 0.5
	28 Aquarii	7 6.7 7.8 8.9 8 10 8 7.8	28 37.5 32 15.7 35 50.2 38 39.7 40 43.2 42 22.0 45 7.8 48 4.5 51 9.7 55 45.4	51 59.51 55 38.31 21 59 13.40 22 2 3.37 4 7.21 5 46.28 8 32.54 11 29.72 14 35.43 19 11.89	1 58.84 1 58.83 1 58.83 1 58.82 1 58.82 1 58.82 1 58.82 1 58.82 1 58.81 1 58.80	0.03 + 0.14 - 1.33 1.34 1.73 2.08 1.60 2.98 3.31 2.94	+ 0.52 + 1.05 - 1.35 - 1.34 - 0.69 + 0.39 - 1.04 + 1.29 + 1.30	- 0 26 17.0 - 1 57 20.6 + 18 24 7.0 + 18 32 35.8 + 23 35.1 54.2 + 27 31 2.6 + 21 48 9.0 + 36 39 2.4 + 39 33 3.8 + 36 19 4.6	1 4.0 1 7.5 0 32.5 32.3 26.5 21.6 28.2 11.9 9.0 12.3	- 0.8 - 0.7 - 1.4 - 0.2 + 1.2 - 0.6 + 3.4 + 4.0 + 3.3
b) c)	5 Lacertæ . 43 o Pegasi	7.8 7.8 8.9 6.7 6 5.6	57 25.5 14 59 6.5 15 2 38.7 3 32.9 7 36.9 10 9.6 14 1.9 16 48.8	20 52. 24 22 33. 52 26 6. 30 27 0. 65 30 59. 30 33 38. 43 37 31. 37 40 18. 73	1 58.80 1 58.80 1 58.79 1 58.79 1 58.79 1 58.79 1 58.78	3. 73 4. 23 3. 32 3. 32 3. 86 2. 14 2. 24 2. 94	+ 1.29 + 1.29 + 1.69 + 0.65 + 1.07	+ 42 59 19.0 + 46 34 12.8 + 39 40 39.8 + 39 37 53.7 + 44 1 46.7 + 29 18 15.8 + 36 15 11.7	5.7 2.2 9.0 9.0 4.7 20.9 19.7 0 12.4	+ 4.7 + 5.4 + 4.0 + 4.9 + 1.3 + 1.6 + 3.3
	Fomalhaut 1 o Androm 56 Pegasi	1	24 0.5 30 29.2 35 4.2 15 38 27.0	47 31.61 54 1.38 22 58 37.12 23 2 0.48	1 58,77 1 58,76 1 58,76 — 1 58,75	+ 2.37 - 3.49 1.81 - 1.18	+ 5.04 + 1.37 - 0.58	- 30 42 29.8 + 41 8 1.6 + 24 16 46.3 + 16 24 12.2	4 49. 0 0 7. 5 25. 3 — 0 35. 2	- 6.1 + 4.3 0.0 - 1.8
				1783	JULY 1	4	,	Zer	ro corr. = +	1′ 47″.4.
	5 a Cor. Bor 41 γ Serpentis . 8 β Scorpii . 43 Sagittarii .	2.3 6 7 7 7	7 57 19.6 8 18 13.5 8 24 31.3 11 36 4.8 39 28.3 42 51.8 45 33.0 47 8.1	15 27 30. 45 48 27. 78 15 54 46. 62 19 6 51. 59 10 15. 66 13 39. 71 16 21. 35 17 56. 71	- 1 55. 91 1 55. 89 1 55. 88 1 55. 66 1 55. 65 1 55. 65 1 55. 65 1 55. 64	- 2. 10 - 1. 19 + 1. 41 + 1. 42 - 1. 58 1. 61 1. 46 1. 46	+ 1.42 + 1.41 - 1.69 - 1.04 - 1.24	+ 27 25 47.2 + 16 21 37.6 - 19 11 35.6 - 19 18 49.4 + 21 24 51.8 + 21 46 56.3 + 19 50 5.6	- 0 21.4 0 34.8 2 14.4 2 16.3 0 28.6 28.2 30.6 30.6	+ 1.1 - 1.8 - 0.7 - 0.7 - 0.7 - 0.6 - 1.1 - 1.1
d)	5 Vulpeculæs 38 μ Aquilæ . 44 σ . 10 Vulpeculæs 53 α Aquilæ . 58 12 γ Sagittæs .	6	47 57, 6 54 39, 8 11 59 38, 2 12 5 50, 2 11 19, 6 14 43, 1 20 13, 4	18 46.34 25 29.64 30 28.86 36 41.88 42 12.18 45 36.24 51 7.44	1 55, 64 1 55, 64 1 55, 63 1 55, 62 1 55, 61 1 55, 61 1 55, 60	1.45 0.49 0.35 1.91 — 0.59 + 0.02 — 1.39	- 1. 13 - 0. 64 - 0. 32 - 1. 45 + 0. 46 - 1. 32	+ 19 50 5.0 + 19 39 29.4 + 6 54 57.6 + 4 54 7.1 + 25 14 25.1 + 25 14 21.8 - 0 17 29.3 + 18 53 38.4		- 1.1 - 1.6 - 1.4 + 0.4 - 1.7 - 0.8 - 1.3
e) f)	15 Vulpeculæs 27 β^1 Jupiter 5 α^1 Capricorni 6 α^2	7.8	23 15.6 26 28.2 29 22.5 32 44.2 39 32.8 12 39 47.3	54 10.14 19 57 23.27 20 0 18.05 3 40.30 10 30.02 20 10 44.55	1 55, 60 1 55, 59 1 55, 59 1 55, 59 1 55, 58 — 1 55, 58	2.08 2.87 — 2.87 + 1.56 1.11 + 1.11	+ 0.26 + 1.32 + 1.32 + 1.48 + 1.63 + 1.63	+ 27 8 25.8 + 35 23 46.0 + 35 21 23.8 - 21 2 59.9 - 15 26 58.0	22. 0 13. 1 0 13. 2 2 29. 0 — 1 53. 8	+ 1.0 + 3.1 + 3.1 - 1.0 - 0.5
	b gassumed a c gassumed a as 6m.; r	as 9° 10′ as 4° 49′ not 7m.	12 2; not 34 12 1; not 9° 12'.; not 4° 48': anund 6; not 4 and	d T. I			a' Caprico	ed as 9 $oldsymbol{eta}$ Capricor	•	

(89)

			178	3 JULY 1	9		Zer	o corr. = + 1	l' 46". 4.
Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
85 η Urs. Maj Arcturus . 30 ζ Boötis 9 a² Libræ 5 a Cor. Bor 24 a Serpentis 32 μ	2 1 6 6.7 6.7 7 6.7 7.8	\$ 5 51 17.6 6 18 2.1 42 59.7 47 40.5 6 50 59.9 7 37 32.5 45 36.5 50 16.4 452 0.1 7 59 25.7 8 4 44.2 12 58.8 15 48.7 17 49.1 27 55.5 31 7.5 50 125.8 42 39.5 46 17.5 50 0.3 51 25.8 54 22.5 8 58 30.0 9 2 49.0 6 34.2	h m s 13 40 50.54 14 7 39.44 32 41.14 32 42.71 14 40 42.65 15 27 22.90 35 28.22 40 8.89 49 19.70 15 54 39.07 16 2 55.02 5 45.39 7 46.12 17 54.18 21 6.70 24 9.50 32 40.60 36 19.20 40 2.60 41 28.33 44 25.50 48 33.69 52 53.40 16 56 39.22	m s 1 48.58 1 48.56 1 48.53 1 48.53 1 48.48 1 48.48 1 48.46 1 48.45 1 48.45 1 48.45 1 48.44 1 48.44 1 48.44 1 48.42 1 48.42 1 48.41 1 48.40 1 48.40 1 48.39 1 48.39	** 4.95 1.52 1.07 - 2.18 + 1.11 - 2.12 - 0.51 + 0.20 + 1.66 + 1.43 - 3.09 - 1.44 + 2.00 1.57 + 0.38 0.47 1.01 1.02 2.66 3.84 3.80 3.82	+ 3.45 - 1.21 - 1.60	0	- 0 1.4 29.6 37.1 0 20.8 1 51.0 0 0 21.4 0 48.7 1 8.9 0 52.3 2 35.9 2 314.7 0 11.5 11.5 0 31.6 2 27.6 3 43.9 0 51.9 8 38.3 38.6 15.7 5.4 5.8	+ 5.7 - 1.0 - 1.3 - 1.3 - 1.4 - 1.5 -
70 Herculis . 73 "	8 8 7 6.7 6.7 8	10 52.7 11 4.5 16 11.4 20 17.5 23 43.3 26 47.5 9 36 36.2 10 54 31.2 10 56 54.9 11 1 16.8 5 49.1 6 55.0 11 40.1 16 6.5	17 0 58.43 1 10.26 6 18.00 10 24.77 13 51.13 16 55.83 17 26 46.14 18 44 53.94 47 18.04 51 40.66 56 13.71 18 57 19.79 19 1 26.06 4 6.00 6 32.80	1 48, 38 1 48, 38 1 48, 37 1 48, 37 1 48, 37 1 48, 36 1 48, 28 1 48, 27 1 48, 27 1 48, 27 1 48, 27 1 48, 26 1 48, 26	2. 12 2. 12 1. 63 1. 77 1. 88 1. 75 0. 92 1. 58 0. 28 1. 08 0. 92	+ 1.32 + 0.33 + 0.33 - 1.06 - 0.79 - 0.83 - 1.86 - 1.11 - 0.43 - 1.59 - 1.71 + 1.28 + 1.28 + 1.28	+ 27 21 + 27 22 10.0 + 21 40 29.3 + 23 18 49.6 + 24 42 13.4 + 23 9 3.5 + 12 42 44.6 + 21 9 16.5 + 3 55 14.5 + 14 46 1.0 + 12 40 5.0 + 13 32 4.7 + 35 44 38.2 + 37 25 32.1 + 39 2 10.0	21. 6 28. 2 26. 2 24. 6 26. 4 40. 2 29. 0 54. 9 37. 2 39. 1 12. 8 11. 8 19. 6	+ 1. - 0.0 + 0.0 - 2. - 1. - 1. - 2. - 2. + 3. + 3.
20 ε	7.8 6.7 6.7	17 48.5 20 16.5 23 5.2 25 57.3 31 2.3 40 14.2 41 46.8 42 41.4 45 51.6 47 18.6 51 35.4 0 11 55 58.9 12 10 649.3	8 15.08 10 43.49 13 32.65 16 25.22 21 31.06 30 44.47 32 17.32 33 12.07 36 22.79 37 50.03 42 4.93 44 26.52 19 46 31.75 20 0 51.80 7 25.58	1 48. 26 1 48. 25 1 48. 25 1 48. 25 1 48. 23 1 48. 23 1 48. 23 1 48. 23 1 48. 23 1 48. 22 1 48. 22 1 48. 22 1 48. 22	3.29 3.17 1.64 2.27 1.52 1.29 1.25 0.73 0.60 0.28 - 0.42 + 1.59 0.96	+ 1.28 + 1.27 - 1.04 - 0.98 - 1.21 - 1.41 - 1.43 - 2.35 - 1.44 - 0.41 - 0.90 + 1.58	+ 38 45 17.2 + 37 43 45.7 + 21 46 58.8 + 2 40 59.4 + 28 59 40.0 + 20 17 3.0 + 16 57 57.0 + 16 57 57.0 + 10 4 46 37.0 + 10 4 48.4 + 3 50 22.0 + 5 51 51.5 - 21 11 17.8	9, 8 10, 9 28, 2 57, 4 20, 0 30, 1 33, 6 34, 4 40, 3 44, 4 47, 2 55, 1 0 51, 4 2 30, 7	+ 3. - 0. - 1. + 1. - 1. - 1. - 2.
5 a Capresim 6 a ² 9 β 37 γ Cygni	7 7 6 7	17 13.1 20 0.6 25 42.1 31 43.3 33 52.2 38 1.4 12 43 16.8	7 49, 45 10 37, 41 16 19, 84 22 22, 03 24 31, 28 28 41, 16 20 33 57, 42	1 48. 20 1 48. 19 1 48. 19 1 48. 18 1 48. 18 1 48. 17 — 1 48. 17	0.96 + 1.13 - 3.38 1.39 1.66 4.24 - 4.08	+ 1.58 + 1.63 + 1.29 - 1.33 - 1.00 + 2.37 + 1.92	- 13 12 9.5 - 15 26 54.5 + 39 32 34.2 + 18 41 8.6 + 22 4 44.0 + 45 55 32.6 + 44 52 33.0	43.7 43.9 1 54.1 0 9.1 32.2 27.9 2.8 — 0 3.9	- 0. - 0. + 4. - 1. - 0. + 5.

(90)

			1783 JU	LY 19—Cor	atinued		Ze	oro corr. = +	1′ 46″. 4.
Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζφ	Refr.	q'
50 a Cygni 53 e		h m s 12 45 13.9 48 37.1 53 33.2 12 56 44.4 13 0 15.3 3 35.5	h m s 20 35 54.84 39 18.80 44 15.51 47 27.23 50 58.71 54 19.46	m s 1 48.17 1 48.17 1 48.16 1 48.16 1 48.15	- 4.03 2.68 3.85 3.89 3.48 4.34	* 1.79 + 1.40 + 1.54 + 1.59 + 1.32 + 2.63	+ 44 28 57.5 + 33 8 27.4 + 43 13 14.6 + 43 32 37.9 + 40 18 39.7 + 46 38 59.1	- 0 4.2 15.5 5.5 5.1 8.3 2.1	+ 5.0 + 2.7 + 4.3 + 4.8 + 4.1
62 ξ " 64 ζ "	7	8 10.7 13 51.5 14 48.6 20 6.0 23 10.1	20 58 55. 41 21 4 37. 14 5 34. 40 10 52. 67	1 48, 14 1 48, 14 1 48, 14 1 48, 13	3. 82 2. 34 2. 30 2. 76	+ 2.63 + 1.52 + 1.14 + 1.07 + 1.39	+ 43 2 22.8 + 29 42 42.8 + 29 19 16.4 + 33 58 6.4	5. 6 19. 2 19. 7 14. 7	+ 4.7 + 1.8 + 1.7 + 2.9
69 Cygni	6.7 6	26 6.3 28 0.4 31 12.1 36 13.6	13 57, 27 16 53, 95 18 48, 36 22 0, 59 27 2, 92	1 48, 13 1 48, 13 1 48, 12 1 48, 12 1 48, 12	1.40 3.02 2.95 1.71 4.08	$ \begin{array}{r} -1.32 \\ +1.30 \\ +1.31 \\ -0.91 \\ +1.92 \end{array} $	+ 18 51 55.6 + 36 24 6.0 + 35 42 42.2 + 22 40 30.6 + 44 52 0.6	32, 0 12, 2 12, 9 27, 2 3, 9	- 1.3 + 3.4 + 3.5 - 0.3
73ρ " 78μ " c) 13 Pegasi	8 6.7	36 53.0 42 8.7 45 28.3 45 43.8	27 42, 43 32 58, 99 36 19, 14 36 34, 68	1 48, 12 1 48, 11 1 48, 11 1 48, 11	4. 05 2. 15 2. 15 2. 16	+ 1.83 + 0.47 + 0.47 + 0.50	+ 44 36 32.2 + 27 45 7.0 + 27 44 48.0 + 27 46 20.0	4. 1 21. 4 21. 4 21. 4	+ 5.1 + 5.0 + 1.2 + 1.2
d) 32 Aquarii .	6 6 6	50 51.3 54 26.2 55 7.1 13 59 42.8 14 4 33.2	41 43.02 45 18.51 45 59.52 50 35.97 55 27.16	1 48. 10 1 48. 10 1 48. 10 1 48. 09 1 48. 09	1.20 1.38 1.39 - 1.33 + 0.14	- 1.48 - 1.33 - 1.33 - 1.39 + 1.05	+ 16 15 58.4 + 18 37 59.2 + 18 41 + 17 58 25.6 - 1 57 22.1	35. 4 32. 3 0 33. 1 1 8. 0	- 1.8 - 1.3 - 1.5 - 0.7
34 a "	6.7 6.7 7.8	5 34.0 9 4.1 12 21.2 15 38.3 21 19.3	56 28.13 21 59 58.64 22 3 16.44 6 34.08	1 48.09 1 48.08 1 48.08 1 48.08	+ 0.10 - 0.12 1.10 - 2.22	+ 0.86 - 0.04 - 1.57 + 0.78 + 1.20	- 1 22 26.8 + 1 40 8.8 + 14 57 42.5 + 28 28 50.6	1 6.3 0 59.7 37.3 0 20.6	- 0.7 - 1.6 - 1.9 + 1.4
48 γ " 55 ζ " 59 υ " 42 ζ Pegasi	8.9	28 32.0 33 37.3 38 29.7 41 31.2	12 16. 01 19 29. 90 24 36. 04 29 29. 24 32 31. 24	1 48.07 1 48.06 1 48.06 1 48.05 1 48.05	+ 0.18 0.08 + 1.64 - 0.58 0.70	+ 1.20 + 0.80 + 1.59 - 1.39 - 2 06	- 2 28 49.4 - 1 7 55.2 - 21 47 38.8 + 8 7 25.6 + 9 41 22.9 + 29 4 9.4	1 9.1 1 6.0 2 36.4 0 47.7 45.2	- 0.7 - 0.7 - 1.8 - 1.7
44 η " 47 λ " Fomalhaut	6.7	43 42.4 46 58.1 50 54.2 14 55 1.8	34 42.80 ,37 59.04 41 55.79 46 4.07	1 48. 05 1 48. 05 1 48. 04 1 48. 04	2. 28 1. 69 1. 33 3. 34	+ 1.00 - 0.95 - 1.39 + 1.28	+ 22 24 32.5 + 17 58 46.2 + 39 11 47.5	20.0 27.6 33.2 0 9.4	- 1.6 - 0.4 - 1.5 + 3.9
1 o Androm 54 a Pegasi	6 6.7 7	15 1 36.4 2 47.3 4 47.2 7 36.1 9 51.1 11 28.7	52 39.64 53 50.83 55 51.06 22 58 40.42 23 0 55.79 2 33.66	1 48.03 1 48.03 1 48.03 1 48.02 1 48.02 1 48.02	3. 98 3. 58 1. 02 1. 49 2. 22 2. 26	+ 1.72 + 1.37 - 1.65 - 1.23 + 0.78 + 0.92	- 30 42 33.8 + 44 10 58.0 + 41 8 3.8 + 14 1 34.1 + 19 56 55.8 + 28 28 24.5 + 28 50 43.3 + 18 26 19.2	4 50.3 0 4.5 7.5 38.6 30.6 20.6 20.3	- 6.1 + 4.3 + 4.3 - 2.6 - 1.1 + 1.4
12 Androm	6.7	14 2.7 18 0.6 21 12.7 24 57.0 27 27.5	5 8.08 9 6.63 12 19.26 16 4.17 18 35.08	1 48. 02 1 48. 01 1 48. 01 1 48. 01 1 48. 01	1. 36 2. 65 3. 09 3. 44 3. 65	- 1.35 + 1.40 + 1.28 + 1.30	+ 18 26 19.2 + 32 50 31.6 + 36 58 25.6 + 39 53 46.3 + 41 41 26.7	32.7 16.0 11.7 8.8	- 1.4 + 2.7 + 3.5 + 4.1
17 ι " 18 λ Piscium 21 α Androm. 88 γ Pegasi . Capella	6.5	33 48.4 38 15.5 15 41 39.0 16 7 49.6 16 12 42.6	24 57. 02 29 24. 85 32 48. 91 23 59 3. 81 0 3 57. 61	1 48.00 1 48.00 1 47.99 1 47.96 1 47.96	1, 46	-1.26 $+1.43$ $+0.19$	+ 19 37 36.4 + 42 2 21.2 + 0 34 46.0 + 27 52 10.4 + 13 57 44.0	31.1 0 6.7 1 2.1 0 21.4 38.8	- 0.9 - 1.3 - 2.0
Rigel		21 13 49.8	5 5 54.29	— 1 47.66	+ 0.61	+ 1.87	+ 45 43 37.0 - 8 28 7.3	- 1 26. 4	+ 5.5 - 0.5
	1		175	3 JULY 9	PO		Ze	ero corr. = +	1′ 47″. 9.
Jupiter . 9 β Capricorni 37 γ Cygni	3	12 5 46.9 16 3.3 12 21 45.0	20 0 17.91 10 36.00 20 16 18.64	- 1 46.80 1 46.79 - 1 46.79	+ 1.60 + 1.13 - 3.38	+ 1.50 + 1.63 + 1.29	- 21 13 5.4 - 15 26 59.0 + 39 32 32.2		- 1.0 - 0.5 + 4.0
a fassum b T. I assu	ed as 2º]	' 2' 7".5 ; not 2º 1 8s.5 ; not 58s.5.	2′ 37″.5.	,	c ga	ssumed as 2	28° 4'; not 28° 1'. as 32; not 33.	1	<u>'</u>

(91)

			1783 JUL	¥ 20—Contin	ıned	z	ero corr. = + 1	47 ″. 9.
Name	Mag.	T	App. sid. time	Clock corr.	tan δ	ζ — φ	Refr.	q'
50 a Cygni 53 e	7.8 7.8 7.8 6 7	h m s 12 27 39.0 27 46.0 29 55.6 34 4.5 38 3.0 41 17.3 44 40.2 52 0.8 12 55 25.4	h m s 20 22 13.61 22 20.63 24 30.59 28 40.17 32 39.32 35 54.15 39 17.60 46 39.40 20 50 4.56	m s -1 46.78 -1 46.78 1 46.78 1 46.78 1 46.77 1 46.77 1 46.77 1 46.76 -1 46.76	** 1. 39	33 + 18 41 4.1 01 + 22 4 42.1 36 + 45 55 31.9 + 43 32 53.0 79 + 44 28 56.8 40 + 33 8 25.0 39 + 3 42 4.5	- 0 31.9 31.9 27.7 2.8 5.1 4.2 15.4 55.0 - 0 55.5	" - 1.4 - 1.4 - 0.5 + 5.3 + 4.8 + 4.9 + 2.7 - 1.3
			178:	B JULY 93		Ze	ero corr. = + 1'	′ 44". 8.
14 ν Scorpii 9 Herculis 2 ε Ophiuchi 7 χ	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	7 55 28.2 7 58 39.2 8 2 54.8 10 29.7 12 6.6 18 21.3 21 13.6 26 50.2 30 29.0 32 28.7 34 11.7 35 36.8 38 33.7 42 42.2 47 58.8 50 7 13.2 8 58 48.6 9 0 22.5 2 38.4 7 54.6 10 58.4 16 57.0 20 47.5 24 29.1 35 13.2 7 54.6 10 58.4 10 58.4 10 58.4 11 58.3 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8 11 151.8	16 1 7.76 4 19.28 8 35.58 16 11.72 17 48.89 24 4.62 26 57.39 32 34.91 36 14.31 38 14.37 39 57.63 44 20.34 48 29.52 50 49.80 52 48.42 53 46.98 16 56 34.68 17 3 2.90 4 38.56 6 12.72 8 28.59 10 19.29 13 46.05 16 50.35 22 49.93 22 41.06 30 23.27 17 43 29.01 19 47 52.69 50 6.46 52 16.02 55 23.13 19 58 36.86 20 1 51.49 4 42.76 8 11.83 14 31.97 21 19.68 25 30.67 30 50.14 31 22.42 35 50.25	+ 43, 20 + 43, 19	- 1. 40	182 + 5 34 19.6 64 - 4 9 37.6 654 - 17 56 41.8 12 - 25 54 37.3 - 16 7 24.2 29 - 10 7 7 75 + 5 17 20.8 679 + 28 44 26 79 + 28 44 26 79 + 28 44 26 80 + 13 38 1.0 40 + 32 33 40.0 30 + 42 43 34.0 30 + 43 13 52.1 41 43 13 52.1 42 43 13 16 63 + 21 28 25.5 5 42 43 13 16 6 423 18 48.2 2	38.6 39.0 15.8 5.5 16.1 5.8 17.6 28.7 28.7 28.4 25.7 26.5 24.8 25.7 24.8 25.7 33.5 40.4 25.1 31.4 0 27.6 1 4.2 1 5.5 0 36.6 2 32.9 1 7.0 0 23.7 12.6 26.1 17.5 111.0 0 0.2 37.3	$\begin{array}{c}$

(92)

	Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ φ	Refr.	q'
-			h m s	h m s	m 8			0 / //	, ,,	 ,
)	2 Equulei .	7	12 46 50.7	20 53 18.11	— 1 42.96	- 0.45	- 1.00	+ 6 19 27.7	- 0 51.1	- 1
	3 · · · · ·	6	49 5.4 55 6.4	20 55 33.18 21 1 35.18	1 42.96 1 42.96	0.33	- 0.58 - 1.76	+ 4 38 21.5 + 9 15 8.9	54. 1 46. 2	- 1 - 1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5, 6	55 6.4 55 18.1	1 46.91	1 42.96	0.66	-1.73	¥ 9 11 18.0	46.3	- i
)	78 "	0.0	12 59 13.7	5 42.99	1 42.95	0, 65	- 1.71	+ 9 7 22.4	46. 4	- 1
	8 a "		13 0 15.9	6 45.52	1 42.95	0.31	-0.52	+ 4 20 58.0	54.7	- 1
	66 v Cygni .	Ì	4 17.6 7 21.1	10 47.88 13 51.88	1 42.95 1 42.94	2.76 1.40	+1.39 -1.32	+ 33 58 5.4 + 18 52 0.6	14. 9 32. 3	$+\frac{2}{1}$
	1 c Pegasi 69 Cygni		12 11.5	18 43.07	1 42.94	2.95	+1.31	35 42 41.9	13. 1	+ 3
	71 g ~~		16 42, 6	23 14.91	1 42.94	4.18	+ 2.22	+ 45 33 33.4	3.2	+ 5
	72 "		21 10.3	27 43. 34 30 3. 82	1 42.93 1 42.93	3, 15 3, 37	+ 1.27 + 1.29	+ 37 32 29.6 + 39 25 4.6	11. 2 9. 3	+3
	74 " · · · · 75		23 30.4 26 55.1	33 29.10	1 42.93	3, 72	+ 1.45	+ 42 15 58.4	6.4	+ 4
	77 "	6	28 53.4	35 27.71	1 42.93	3, 45	\perp 1.31	+ 40 3 56.0	8.6	+ 4
	Cygni	~ .	29 37.2	36 11.64	1 42, 92	3. 46 3. 69	+1.32 $+1.43$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8. 6 6. 7	+ 4 + 4
		7.8 7	32 53, 4 39 25, 1	39 28.39 46 1.16	1 42.92 1 42.92	2. 12	$\frac{1.43}{10.32}$	+ 42 2 6.2 + 27 18 33.3	22. 1	Ŧ i
	17 Pegasi	•	41 34.1	48 10, 51	1 42.92	- 0.80	 2. 89	+ 11 2 17.5	0 43.4	- 1
	28 Aquarii .	6	45 7.7	51 44.70	1 42.91	$+0.03 \\ 0.23$	+0.51 + 1.38	- 0 26 12.5 - 3 12 6.0	1 4.8 11.5	-000
	31 o "	6	47 12.6 48 45.0	53 49.94 21 55 22.59	1 42.91 1 42.91	+ 0.14	+ 1.05	- 1 57 18.1	8.5	_ o
	34 a "		10 10.0					— 1 22 25.5	1 7.1	- 0
	26 θ Pegasi		54 23, 9	22 1 2.42	1 42.90	- 0.37	- 0.73	+ 5 7 36.0	0 53.5	-1 + 3
	1 Lacertse .	5 5	13 59 43.6 14 1 39.5	6 22, 99 8 19, 21	1 42.90 1 42.90	3, 28 3, 05	+1.27 $+1.29$	+ 38 37 1.2 + 36 38 51.2	10, 1 12, 1	+ 3 + 3
	2 "		7 11.9	13 52.52	1 42.89	4. 16	+ 2.15		3.5	+ 5
	4 "		10 50.8	17 32.02	1 42.89	4.61	+3.10	+ 45 25 5.2 + 48 20 58.2	0.5	+ 5
	5 "		15 36.3	22 18.30 25 57.10	1 42.89 1 42.89	-4.33 +0.09	+ 2.60 + 0.82	+ 46 34 12.6 - 1 14 14.8	$\begin{array}{ccc} 0 & 2.2 \\ 1 & 6.7 \end{array}$	+ 5 - 0
	62 η Aquarii . 40 Pegasi		19 14.5 23 28.4	30 11.70	1 42.88	- 1.36	-1.35	+ 18 23 13.4	0 33.0	_ ĭ
	42 ζ "		25 43,0	32 26.66	1 42.88	0.70	- 2. 06	+ 9 41 23.6	45.6	<u></u> ⊢ !
	45 "	7	29 59.3	36 43.66 41 20.72	1 42,88 1 42,87	1.35 1.78	-1.37 -0.79	+ 18 12 37.0 + 23 26 27.2	33, 1 26, 2	$-1 \\ -0$
)	48μ " 50ρ "		34 35.6 39 20.3	46 6.20	1 42.87	0.55	-1.30	7 39 3.3	48.9	_ j
	51 "		41 51.1	48 37.41	1 42.86	1.46	- 1.26	+ 19 35 32.9	31.4	- 1
	53 β "	7	48 16.7 51 47.8	55 4.07 22 58 35.75	1 42.86 1 42.86	2.08 1.49	+0.15 -1.23	+ 26 53 18.5 + 19 56 59.6	22. 6 30. 9	+ 1 - 1
		7	54 3.0	23 0 51.32	1 42.85	2. 22	+ 0.78	→ 28 28 29.5	20.8	+i
)		7	14 58 13.8	5 2.81	1 42.85	1.36	 1.35	+ 18 26 21.4	33, 0	- 1
		8	15 2 12.0 3 6.7	9 1.66	1 42.85 1 42.85	2.65 2.61	+1.40 $+1.39$	+ 32 50 28.5 + 32 31 19.5	16. l 16. 4	+ 2 + 2
	12 Androm	8 6	3 6.7 5 24.2	9 56, 51 12 14, 39	1 42.84	3.09	+ 1.28	+ 36 58 27.6	11.8	_\frac{2}{3}
		7	9 8.6	15 59.40	1 42.84	3.43	+1.30	39 53 46.8	8,9	+ 4
)	13 "	6	11 39.2	18 30.39	1 42.83	3.65	+ 1.40	+ 41 41 25.3	7.1	+ 4 - 1
		5.6 7.8	17 59.6 21 13.1	24 51.86 28 5.89	1 42.83 1 42.83	1. 46 3. 70	-1.26 + 1.43	$\begin{vmatrix} + & 19 & 37 & 38.7 \\ + & 42 & 4 & 50.0 \end{vmatrix}$	31. 4 6. 7	+ 4
	17	3, 4	22 26.9	29 19.89	1 42.83	3.70	+ 1.43	+ 42 2 20.5	6.7	+ 4
	76 Pegasi	6	26 38.7	33 32.38	1 42.83	1.11	 1.56	+ 15 7 1.8	37.5	<u> </u>
	20 ψ Androm 79 Pegasi		30 13.3 33 34.7	37 7.57 40 29.52	1 42.82 1 42.82	4. 12 2. 14	+2.06 + 0.42	+ 45 11 8.1 + 27 36 48.9	3.6 21.8	+5 + 1
	79 Pegasi 81 • "	1	36 21.4	43 16.68	1 42,82	1. 33	1.40		33.6	1
		7.8	39 13.9	46 9.65	1 42, 82	1.89	- 0.46	+ 17 53 57.9 + 24 43 43.6	. 25.1	+ 0
	84.ψ "	7	41 35.5 44 10.7	48 31.64 51 7.26	1 42.81 1 42.81	1.82	-0.67 -0.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26. 1 24. 0	+ 0
)	85 "	'	45 42.6	52 39.41	1 42.81	2.00	0. 14	¥ 25 54 47.2	23.8	Į∓ ŏ
	86 "		49 26.4	56 23,82	1 42.81	0.88	- 2.36	→ 12 10 26.4	41.8	- 2
	87 "		52 42.5	23 59 40.46 0 3 53.25	1 42.81 1 42.80	1. 25 1. 02	- 1.43 - 1.65	+ 16 59 24.4 + 13 57 43.7	35, 0 39, 3	$-1 \\ -2$
	24θ Androm.		15 56 54.6 16 0 36.4	7 35.66	1 42.80	3. 13	+1.27	$\begin{vmatrix} + & 13 & 57 & 43.7 \\ + & 37 & 26 & 57.8 \end{vmatrix}$	11.4	+ 3
	27 ρ "		4 31.7	11 31.60	1 42, 80	— 3.06	+ 1.29	+ 36 44 20.4	0 12.1	+ 3
	7 Mayer	6.7	8 8.3	15 8.79	1 42.79	+0.24	+1.43	— 3 25 26.0	1 12.5	-0 + 2
	29π Androm Mars		20 4.6 25 19.4	27 7.05 32 22.71	1 42.79 1 42.78	-2.61 + 0.09	+1.39 +0.82	+ 32 29 58.6 - 1 15 1.7	0 16.5 1 7.0	T 0
	63 d Piscium .		16 32 8.6	0 39 13.03	— 1 42.78	-0.46	_ 1.01	+ 6 23 30.2	-0.51.4	- i

(93)

				178	3 JULY 9	6		Zei	o corr. = + 1	L' 48".7.
	Namo	Mag.	T	App. sid. time	Clock corr.	$n \tan \delta$	q	ζ — φ	Refr.	q'
	67 a Virginis .	1	h m s 4 58 26, 8	h m s 13 15 26, 95	m s - 1 40.72	* + 0.73	* + 1.79	0 / " — 10 1 55.8		
	Arcturus .		5 50 22.9	14 7 31.58	1 40.68	— 1.53	- 1.21	+ 20 17 44.5	0 29.5	- 1.0
ı)	27 γ Boötis	1	6 7 52.9 15 20.8	25 4.45 32 33.58	1 40.66 1 40.65	3, 36 1, 08	+ 1.28 $- 1.60$	+ 39 14 16.6 + 14 38 50.4	9. 2 37. 0	+3.9
•	36 ε "		20 1.5	37 15, 05	1 40.65	2.19	+ 0.57	+ 27 58 22.4	0 20.8	+ 1.
	9 a^2 Librae 20 γ "		23 20.5 35 46.7	40 34.59 53 2.83	1 40.65 1 40.64	+1.12 $+1.87$	+0.57 $+1.61$ $+2.37$	- 15 7 59.2 - 24 24 4.4	1 50.8 2 58.0	-0.1
	42 β Boötis		38 14.5	14 55 31.04	1 40.64	 3, 61	十 1.57	+ 41 13 34.6	0 7.3	+ 4.
	27 β Libræ 24 α Serpentis .		6 49 43.2 7 17 57.3	15 7 1.63 35 20.37	1 40.62 1 40.60	+0.62 -0.51	+ 1.87 - 1.17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 24.9 0 48.5	- 0. - 1.
	28β "		20 33, 2	37 56, 70	1 40, 60	1.19	- 1.49	+ 16 5 28.6	35. 1	— 1.
	37 ε ''		24 20.7 29 58.6	41 44.82 47 23.65	1 40.60 1 40.59	-0.37 +1.96	-0.70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 52.0 3 10.7	- 1. - 2.
)	8β "		37 5.2	15 54 31.42	1 40.59	1.43	+ 2.88 + 1.42 + 1.45 + 1.37 + 1.60	— 19 11 33.1	2 14.1	$-\tilde{0}$.
•	14 v ''		43 37.7	16 1 4.97	1 40.58	1.41	+ 1.45	— 18 52 41.3	2 12.3	- O.
)	1 δ Ophiuchi . 2 ε "		47 13.5 51 4.5	4 41.36 8 32.99	1 40.58 1 40.57	+0.30	± 1.37 ± 1.60	- 3 8 4.8 - 4 9 41.4	1 9.6 1 12.1	- 0. - 0.
•	26 y Herculis .	}	7 56 37.5	14 6.90	1 40.57	- 1.47	- 1. ZO	+ 19 39 7.6	0 30.5	— 1.
	Antares . 9 ω Ophiuchi .		8 0 16.0 3 27.8	17 46.00 20 58.34	1 40,57 1 40,56	+2.00 1.58	+ 3.11 + 1.48	— 25 54 45.6 — 20 58 43.6	3 16.5 2 26.8	- 2. - 1.
	23 τ Scorpii		6 30.7	24 J. 74	1 40.56	+ 2.16	+ 3, 94	— 27 43 13.6	3 42.9	3.
	13 ζ Ophiuchi . 40 ζ Herculis .		17 18.5	34 51.34	1 40.55	_ 2.57	+ 1.38	-10713.0 +315849.5	1 30.1 0 16.5	- 0. + 2.
	26 ε Scorpii		20 10.2	37 43.48	1 40.55		+5.30	— 33 48 17.8	6 34.1	二 ã
	52 Herculis .		27 4.7	44, 39, 11	1 40.54	— 4.32	+ 2.52	+ 46 20 23.8	0 2.4	+ 5
	27 κ Ophiuchi . 32 "		31 34.4 37 21.5	49 9.55 54 57.60	1 40,54 1 40,54	0.70 1.06	- 2.08 - 1.62	+ 9 42 22.8 + 14 23 49.4	44. 5 37. 4	$-\frac{1}{2}$
)			39 28.5	16 57 4.95	1 40,53	0.95	— 1.79	+ 13 1 57.9	39. 5	- 2.
		6.7	42 37.3 45 45.5	17 0 14.27 3 22.98	1 40,53 1 40,53	3, 99 2, 74	+ 1.70 $+ 1.40$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 14.9	+ 4. + 2.
	64 a "	•	48 53.7	6 31.69	1 40, 53	1.08	— 1.60	+ 14 37 51.0	37.2	- 1.
	69 "	8	54 17.6 8 56 55.0	11 56.48 14 34.31	1 40.52 1 40.51	3, 16 1, 83	+1.27 -0.68	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.0 25.4	$+\frac{3}{0}$
)		7	9 0 40.7	18 20.63	1 40.51	2.66	+ 1.40	$\begin{array}{c} + & 26 & 65 & 12.4 \\ + & 32 & 51 & 1.2 \\ + & 26 & 15 & 41.3 \end{array}$	15.6	+ 2
	76 λ "		6 2.6	23 43, 42	1 40, 51	2, 04	— 0.04	+ 26 15 41.3	22.7	+ 0
	55 a Ophiuchi.	7	8 57.0 12 13.5	26 38.30 29 55.34	1 40,51	0, 93 0, 15	-1.86 -0.14	+ 12 42 44.6 + 2 9 15.0	40.0 57.9	$-2 \\ -1$
	60.3 "	8	15 13, 1	32 55.43	1 40,50	0.32	- 0.54	+ 4 28 23.0	53. 4	<u> </u>
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ļ	16 47.3 21 1.7	34 29.89 38 44.99	1 40.50 1 40.50	0.34	- 0.58 - 0.25	+ 4 39 22.0 + 2 47 19.6	53, 0 56, 6	- 1 - 1
		6	25 58,6	43 42.70	1 40, 49	2. 32	+ 1.08	+ 29 22 1.6	19. 4	+ 1
	89 Herculis	7.8	28 7.8 30 40.5	45 52.26 48 25.38	1 40.49 1 40.49	2.58	+1.39 -0.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.5 22.9	$+ {}^{2}_{0}$
	66 n Ophiuchi.		33 30, 2	51 15.55	1 40, 49	0.32	— 0.52	+ 4 22 50.4	53. 5	1
`	97 Herculis . 70 P Ophiuchi .	7	37 25.8 40 24.2	55 11.80 58 10.82	1 40.49 1 40.48	1.74 0.17	-0.87 -0.19	+ 22 54 39.4 + 2 27 16.0	26.5 57.2	-0
,	70 1 Opinicai .	6.7	41 9.0	17 58 55, 61	1 40.48	0. 16	— 0. 13	+ 2 11 23.0	57.8	_ i
)		6	44 26.0 9 47 32.2	18 2 13.15	1 40.48	1, 21 1, 20	- 1.47	+ 16 25 42.8	34.8	<u> </u>
,	3 a Lyree	"	10 13 28.8	5 19.86 18 31 20.72	1 40.48 1 40.46	3 95	-1.48 + 1.27	+ 16 12 38.3 + 38 33 52.9	35. 1 10. 0	-1 + 3
	·	6	10 59 41.5	19 17 41.00	1 40.42	1.49	1.24	+ 19 50 0.0	30.8	— 1 — 1
	5 Vulpeculæ	6.5	11 0 31.1	18 30.73 18 48.78	1 40, 41	1.40	- 1.26 - 1.24	+ 19 39 27.0	31.0 30.8	<u> </u>
	7 "		3 38.5	21 38.64	1 40.41	1.49	- 1.24	+ 19 49 22.1	30.8	- 1
	4 ε Sagittæ .	6	6 47.1	24 47.76 29 14.09	1 40, 41 1 40, 41	1.20	- 1.24 1.26 1.24 1.42 1.49	+ 19 50 0.0 + 19 39 27.0 + 19 48 59.0 + 19 49 22.1 + 17 16 30.8 + 15 58 2.8 + 29 38 20.0	34. 1 35. 9	- 1 - 1
	12 φ Cygni		14 30.6	32 32.53	1 40.40	2.34	+ 1.12	+ 29 38 20.0	19. 4	+ 1
)	48ψ Aquilæ .	70	18 12.3	36 14.84	1 40.40	0.93	— 1.81	+ 12 46 34.2 + 7 43 50.5	40.2	 2
	53 a "	7.8	22 21.6 23 53.6	40 24.82 41 57.07	1 40, 40	0.60	- 1.31 - 1.44	+ 7 43 50.5 + 8 17 30.6	48.0 47.1	- 1 - 1
	60 β "		28 19.7	46 23, 90	1 40.39	0.42	- 0.90	+ 5 51 45.4	51.3	- 1
	12 γ Sagittæ .	1	11 32 47.7	19 50 52.63	- 1 40, 39	- 1.41	— 1.32	+ 18 53 36.4	- 0 32.0	1.

(94)

a Ts. II and III assumed as 21s. an not 31s. and 54s.5, respectively.
b T. III assumed as 29s.; not 30s.
c T. I assumed as 41s.5; not 51s.5.
d T. II assumed as 28s.; not 38s.

e Liv. assumed as 17 1; not 17 5.
f Transits over Ts. I and II assumed as 40m. 1s, and 40m. 54s.5; not 40m. 51s, and 41m. 14s.5; and name not 70 P. Ophiuchi.

A Div. assumed as 34 13 1; not 34 13 0.

i T. III assumed as 18m. 36s.; not 18m. 29s.

Name	Mag.	T	App. sid. time	Clock corr.	n tan ô		ζφ	Refr.	رم ا
Name	Mag.		App. sid. time	Clock corr.		q	ζφ	Men.	q '
25 Cvgni		h m s	h m s 19 53 42,60	m s 1 40, 39	s — 3, 04	8	0 / " + 36 25 47.4	- 0 12, 2	+ 3.
25 Cygni 16 n Sagittæ .		11,35 37.2 39 12.0	57 17.98	1 40.38	1.45	+1.30 -1.28	+ 36 25 47.4 + 19 21 33.0	31.4	+ 3. - 1.
17 Vulpeculæ	6	41 13.0	19 59 19.31	1 40.38	1.75	- 0.85	+ 22 58 42.4	26. 9	- ō
18 "	i	45 8.6	20 3 15, 56	1 40, 38	2.03	- 0.04	+ 26 14 53.5	23, 1	+ 0
19 "	6.5	46 22.2 49 45.6	4 29.36 7 53.32	1 40,38 1 40,38	2.02 1.73	- 0.07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23, 2	+ 0
37 γ Cygni.	0.5	11 58 2.6	16 11.68	1 40.36	3, 40	-0.88 + 1.29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27. 1 9. 1	-0 + 4
41		12 4 6.3	22 16.38	1 40, 36	2.34	+ 1.12	+ 29 37 47.4	19.4	+ i
00 1711	6	8 5.0	26 15.73	1 40.36	1.52	- 1.22	+ 20 13 53.4	30.3	— 1
27 Vulpeculæ	6.7	11 23.0 14 21.1	29 34.27 32 32,86	1 40.36 1 40.35	1.98 3.91	-0.19 $+1.59$	+ 25 41 36.0 + 43 32 50.8	23.8 5.2	+ 0
	7	15 37.2	33 49.17	1 40.35	4. 10	+1.92	+ 44 52 37.0	3. 2	+ 4 + 5
50 a Cygni		17 35.6	35 47.90	1 40.35	4.05	+ 1.79	+ 44 28 57.8	4. 2	+ 5
52 K "		20 14.3	38 27.02	1 40.35	2.37	+ 1.18	+ 29 54 44.2	19.0	+ 1
54 λ " 56 "		22 29.2 25 54.3	40 42.29 44 7.95	1 40.35 1 40.34	2.96 3.87	+1.32 $+1.54$	+ 35 40 30.6 + 43 13 15.0	13. 0 5. 5	+ 3 + 4
57 "		29 5.8	47 19.97	1 40.34	3.91	+ 1.60	+ 43 32 39.2	5, 2	T 4
58 v "		32 35.8	50 50.54	1 40.34	3, 50	+1.32	+ 40 18 39.7	8.3	 4
$59f^1$ "	7	35 57.1 39 42.4	54 12, 39 20 57 58, 31	1 40.34 1 40.33	4.36 4.26	+2.63 $+2.48$	+ 46 39 J.4 + 45 58 55.8	2. 1 2. 8	+ 5 + 5
63 f³ "		42 36.9	21 0 53.29	1 40.33	4.38	+ 2.67	+ 46 45 7.6	2. 0 2. 0	+ 5
•	7	46 0.7	4 17, 65	1 40.33	2. 26	+ 0.91	+ 28 48 26.0	20.3	+ 1
64 ζ "	6.7	47 9.8 53 49.8	5 26.94	1 40.33	2.32	+1.07	+ 29 19 17.0	19.8	+]
	6.7	12 57 39.3	12 8.04 15 58.17	1 40, 32 1 40, 32	1.58 1.77	- 1.13 - 0.79	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29. 3 26. 6	
35 Vulpeculæ		13 1 32.2	19 51.71	1 40.31	2.07	+ 0.08	+ 26 38 58.3	22.7	+ 0
2f Pegasi		3 33.0	21 52, 84	1 40.31	1.72	— 0.91	+ 22 40 33.4	27.4	- 0
3 "	6.7	6 0.9	24 21.15	1 40.31	1.70	- 0. 95	+ 22 25 25.1	27.7	- 0
	8.9	10 18, 4 13 31, 6	28 39, 36 31 53, 08	1 40.31 1 40.30	0, 41 0, 29	- 0.84 - 0.45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.7 54.7	—] —]
7 "	6	14 46.6	33 8.28	1 40, 30	0.34	- 0.59	+ 4 41 19.5	53.5	- í
12 "		19 29.2	37 51.65	1 40, 30	1.66	- 1.02	+ 21 56 10.6	28.2	- 0
13 " : :		23 12.6 29 43.8	41 35,66 48 7,93	1 40.30 1 40.29	1.20 0.80	- 1.48 - 2.89	+ 16 16 3.2 + 11 2 18.4	35, 6 42, 9	$-1 \\ -1$
18 "	6	32 37.5	51 2.11	1 40.29	0.41	-0.85	5 40 25.0	51,8	$\equiv i$
21 "		36 1.4	54 26.57	1 40, 29	0.75	- 2.52	+ 10 19 49.9	44.0	- 1
23 "	6	39 4, 5 42 55, 8	21 57 30.17 22 1 22.10	1 40.28 1 40.28	2. 18 2. 58	+0.53	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.3	+ 1
27 "		43 39, 8	2 6, 22	1 40.28	2.58	+1.39 +1.39	+ 32 5 46.0	16, 8 16, 8	$ +\frac{2}{2}$
	6.7	46 29.4	4 56.29	1 40, 28	2.73	+1.40	+ 33 30 56.9	15. 4	$+\tilde{2}$
1 Lacertæ .	7	49 48, 9 53 23, 5	8 16.34	1 40.27 1 40.27	3, 07	+ 1.29	+ 36 38 51.3	12.0	+ 3
	7	56 43,5	11 51.53 15 12.08	1 40.27	0.95 1.06	- 1.80 - 1.63	+ 12 55 58.5 + 14 10 25.6	40. 1 38. 3	- 2 - 2
	7	13 58 29,9	16 58.77	1 40.27	1.28	- 1.42	+ 17 19 45.9	34. 2	_ ĵ
	6	14 2 16.5	20 45, 99	1 40.26	1.98	- 0.20	+ 25 38 18.6	23.9	+ 0
43 Pegasi	6.7	4 46.3 14 48.3	23 16.20 33 19.85	1 40.26 1 40.26	2, 23 2, 21	+0.74 +0.65	+ 28 24 48.0 + 28 9 29.2	20.8 21.1	
47 λ "		19 18.7	37 50.99	1 40.26	1.70	-0.95	+ 22 24 32.8	27.7	+ d
49 σ "	اہما	24 36.6	43 9.76	1 40.25	0.63	- 1.55	+ 8 40 20.0	46.6	— 1
1 o Androm	6.7	33 57.7	52 32.40	1 40.24	4.00	+ 1.72	+44112.5	4.6	+ 4
56 Pegasi		39 42.7	22 58 18, 33	1 40.23	1.86	— 0.57	+ 41 8 5.0 + 24 16 48.2	7. 6 25. 5	+ 4
57 m %		41 43.8	23 0 19,76	1 40.23	0.54	- 1.27	+ 7 29 34.2	48.7	- 1
61 "	6.7	45 41.3	4 17.91	1 40.23	•2.22	+0.68	+ 28 14 45.7	21.0	+ 1
• • • •	6.7 7.8	48 19.7 50 59.5	6 56.74 9 36.98	1 40.22 1 40.22	2. 10 2. 04	+ 0.21 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22. 3 23. 1	‡ 1
	7.8	56 42.7	15 21, 12	1 40.22	1.71	- 0.93	+22336.8	23. 1 27. 6	+ 0
68 "		14 57 41.1	16 19.68	1 40.22	1.68	- 0.99	+ 22 11 34.0	28.0	 0
69 " : :		15 0 0.9 5 42.8	18 39,86 24 22,70	1 40.22	1.83	- 0.66 - 1.10	+ 23 57 29.8	25.9	0
• • • •	8	5 42.6 8 6.3	24 22.70 26 46.59	1 40.21 1 40.21	1.61 1.28	- 1.10 - 1.42	$\begin{vmatrix} + & 21 & 17 & 4.0 \\ + & 17 & 12 & 59.0 \end{vmatrix}$	29. 2 34. 4	- 0
75 s " -	_	10 5.4	28 46.02	1 40, 21	1.28	- 1.42	+ 17 11 2.0	34. 4	_ i
77 "	6.7	15 23.8	34 5.29	1 40, 21	0.66	— 1.71	+ 9 6 58.0	46.0	- 1
	6.7	15 19 36.2	23 38 18.38	— 1 40.20	— 1.86	— v. so	+ 24 21 23.0	 0 25.5	+ 0

(95)

			1783 JUL	¥ 26—Con	tinued		Zer	o corr. = + :	1′ 48″.7.
Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζ — φ	Refr.	q'
Double . a) 22 Androm 10 Ceti 28 Androm 51 Piscium . b) 29 π Androm 31 δ 32 34 ζ 35 ν 37 μ 71 ε Piscium . 43 β Androm	7 6.7 6.7 6 6.7 7 7 5.6 7.8	h m s 15 21 55.0 25 0.5 26 46.5 28 41.2 31 27.7 33 41.6 36 31.1 39 28.6 42 5.0 44 28.6 50 6.3 15 58 23.2 16 1 37.5 4 6.9 8 13.9 10 39.2 12 17.2 18 45.5 20 46.6 27 36.9 34 31.4 16 40 26.4	h m s 23 40 37.56 43 43.57 45 29.86 47 24.87 50 11.82 52 26.09 55 16.05 23 58 14.04 0 0 50.87 3 14.87 8 53.50 17 11.76 20 26.59 22 56.40 27 4.08 29 29.78 31 8.05 37 37.41 39 38.84 46 30.26 53 25.90 0 59 21.87	m 8 -1 40, 20 1 40, 19 1 40, 19 1 40, 19 1 40, 19 1 40, 19 1 40, 18 1 40, 18 1 40, 18 1 40, 17 1 40, 16 1 40, 16 1 40, 16 1 40, 16 1 40, 16 1 40, 15 1 40, 15 1 40, 15 1 40, 15 1 40, 15	- 2. 05 1. 23 1. 30 1. 61 2. 62 3. 60 3. 56 3. 32 4. 10 - 0. 72 + 0. 09 - 2. 24 0. 41 2. 62 2. 35 3. 25 5. 1. 75 3. 44 3. 14 0. 48 2. 82	+ 1.27 - 0.85 + 1.30 + 1.27 - 1.08	+ 26 27 18.6 + 16 40 48.0 + 17 31 25.2 + 21 25 23.2 + 32 29 56.2 + 41 7 52.0 + 40 51 26.1 + 38 54 52.2 + 44 50 3.8 + 44 50 3.8 + 9 59 16.8 - 1 15 30.8 + 28 31 53.8 + 28 31 53.8 + 29 38 56.0 + 38 14 22.2 + 39 38 56.0 + 38 14 22.2 + 39 51 59.0 + 37 17 32.6 + 6 42 28.4 + 34 26 27.6	7 " " 33.1 35.2 34.0 29.0 16.4 7.6 7.9 9.8 3.9 0 44.9 1 6.2 0 20.8 51.9 16.4 19.5 10.5 27.1 8.9 11.5 50.3 — 0 14.4	" + 1.7 - 1.6 - 0.7 + 2.6 + 4.3 + 4.3 + 5.1 + 1.5 - 2.6 + 1.5 + 2.6 + 1.5 - 2.6 + 1.5 - 2.6 + 1.5 - 2.6 + 2.6 + 3.9 + 5.1 - 2.6 + 4.3 - 2.6 + 4.3 - 2.6 - 2.6 - 3.9 - 4.6 - 3.9 - 4.6 - 4.6 - 4.6 - 5.1 - 6.7 - 7 - 7 - 7 - 4.6 - 7 - 7 - 4.6 - 7 - 7 - 4.6 - 7 - 7 - 4.6 - 7 - 4.6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
			178:	3 JULY 9	7		Zero	o corr. = + 1	48".0.
108 Herculis c) 59 d Serpentis 60 c 61 e 1 m Aquilæ 3 a Lyræ 4 Aquilæ 110 Herculis 10 β Lyræ d) 63 θ Serpentis 18 Aquilæ e) 20 22 27 d 30 δ 5 Vulpeculæ 7 f) 13 θ Cygni g) 49 v Aquilæ h) 53 a 12 γ Sagittæ 12 γ Sagittæ 12 γ Sagittæ 12 γ Sagittæ 22 Vulpeculæ 24 ξ sastumed as 4° 1' 1''; nastumed as 16° 21′ 8 agittæ 25 Vulpeculæ 26 γ Sagittæ 27 Vulpeculæ 28 Vulpeculæ 29 Vulpeculæ 21 γ Sagittæ 22 Vulpeculæ 23 Vulpeculæ 24 ξ sastumed as 4° 1′ 1′′; nastumed as 16° 21′ 8 agittæ	6.7 6 7.8 6 7 4 7.8 7.8 6.7 6.7	9 51 28. 7 52 34. 7 56 3. 2 9 58 18. 8 10 0 39. 4 3 17. 3 8 2. 2 9 31. 6 13 47. 2 13 47. 2 13 47. 2 25 18. 1 36 39. 2 40 41. 2 45 36. 2 49 10. 6 56 33. 6 56 33. 6 56 33. 6 10 22. 4 14 52. 0 10 22. 6 28 50. 6 31 51. 6 31 51. 4 45 48. 6 11 49 26. 7	18 13 13.56 14 19.74 17 48.81 20 4.79 22 25.78 25 4.11 29 49.79 31 19.43 355.73 38 4.54 43 14.99 47 8.56 18 58 31.48 19 2 34.14 7 29.93 16 15.78 18 29.14 20 11.02 21 37.25 24 46.77 28 35.19 32 0.20 36 50.54 40 23.70 41 55.87 44 16.65 47 2.80 50 51.42 20 2 7.19 3 14.28 20 11 30.94	- 1 39.10 1 39.10 1 39.10 1 39.09 1 39.09 1 39.08 1 39.08 1 39.08 1 39.06 1 39.06 1 39.05 1 39.05 1 39.05 1 39.04 1 39.04 1 39.04 1 39.04 1 39.04 1 39.03 1 39.00 1 39.00 1 39.00 1 39.99 1 38.99 1 38.99	- 2.34 - 2.35 - 0.00 + 0.15 - 0.061 - 3.32 - 0.78 + 0.60 - 0.32 - 0.78 - 0.60 - 0.32 - 1.49 1.49 1.49 1.49 1.68 4.87 0.51 0.56 0.61 0.28 1.42 2.12 4.84 1.53 1.55 - 3.16	+ 1.09 + 0.80 + 1.87 + 1.28 + 1.27 - 0.08 - 1.21 + 1.34 - 0.43 - 2.75 + 1.88 - 0.54 + 0.84 - 0.23 - 1.26 - 1.26 - 1.24 - 1.42 - 1.31 -	+ 29 33 31.0 + 29 44 35.2 + 0 4 6.4 - 2 7 16.1 - 1 9 12.0 - 8 23 13.4 + 38 41 59.0 + 38 33 52.4 + 1 50 45.4 + 20 19 48.1 + 31 21 53.0 + 33 5 515.8 + 10 43 57.8 - 8 17 35.2 + 4 27 6.0 - 1 17 31.2 + 2 40 57.4 + 19 39 31.0 + 19 47 50.5 + 19 47 50.5 + 19 47 50.5 + 19 47 50.5 + 19 47 50.5 + 19 47 50.5 + 19 47 50.5 + 19 47 50.5 + 19 49 24.4 + 17 16 31.6 + 22 5 42.4 + 7 5 6.8 + 7 43 51.0 + 8 17 34.8 + 18 53 39.4 + 27 8 31.7 + 49 28 37.7 + 49 28 37.7 + 20 15 46.0 + 22 50 6.6 4 + 37 20 25.0 - 10 15 46.0 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 50 6.6 4 + 22 5	10. 0 58. 8 17. 3 15. 4 54. 6 0 53. 6 1 24. 6 0 53. 6 1 57. 1 30. 5 30. 5 30. 5 30. 5 30. 5 27. 6 48. 8 47. 9 54. 7 21. 9 29. 6 29. 6 29. 6 29. 6 29. 6	

(96)

Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζφ	Refr.	q'
		h m s	h m s	m s			0 / //	, ,,	,
37 γ Cygni		11 54 5.6	20 16 11.60	1 38, 98	- 3.42	+ 1.29	+ 39 32 36.2	- 0 9. 0	+ 4.
,	6.7	12 6 24.8	28 31.82	1 38.96	4.28	+2.36 + 1.43	+ 45 55 34.5	2.8	+ 5.
	6.7 6.7	9 54.2 12 4.7	32 1.79 34 12.65	1 38,96 1 38,96	3.73 3.82	+ 1.43 + 1.48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6. 6 6. 0	+ 4. + 4.
50 a "	0.7	12 4.7	04 12.00	1 00.00	0.02	T 1.40	+ 44 29 2.8	4.2	¥ 5.
12 γ Delphini .	1	16 11.1	38 19.72	1 38.95	1.14	- 1.54	+ 15 20 5.6	36. 3	- î.
	7	20 13.5	42 22.78	1 38, 95	1.28	- 1.42	 	33. 9	— 1.
31 r Vulpeculæ		22 23.3	44 32.94 47 2.45	1 38.95	2. 04 2. 13	- 0.04	+ 26 16 21.0	22.8	+ 0. + 1.
32 q "	7.8	24 52.4 27 45.3	49 55.82	1 38, 95 1 38, 94	1.98	+0.28 -0.23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.8 23.6	‡ ö.
)	8.9	30 35.4	52 46.39	1 38.94	2.55	+1.37		17.0	+ 2 .
	7	33 31.4	55 42.87	1 38, 94	3, 90	∔ 1.56	+ 31 38 10.2 + 43 18 56.0	5. 3	+ 4.
	7	35 44.8	20 57 56.64	1 38.94	4.28	+ 2.39 + 2.66	+ 45 58 56.6 + 46 45 10.4	2.7	+ 5.
63 f ² Cygni	7.8	38 39.2 42 3.8	21 0 51, 52 4 16, 68	1 38,93 1 38,93	4.39 2.28	+ 2.00	+ 46 45 10.4 + 28 48 29.5	2. 0 20. 1	+ 5. + 1.
64 ζ "	1.0	43 12.6	5 25.67	1 38.93	2.33	+0.90 + 1.07	¥ 29 19 18.0	19.5	ĮΪi.
65 τ "		45 37.9	7 51.37	1 38,93	3, 14	十 1.27	+ 37 6 3.5	11.4	+ 3.
67 "	5	12 48 23.5	10 37.42	1 38.92	3, 29	+1.27	+ 38 27 57.9	10.1	+ 3.
	7.8 7	13 2 3.5 5 5.7	24 19.66 27 22.36	1 38, 91 1 38, 91	1.70 1.80	- 0.95 - 0.77	+ 22 25 23.4	27.3	- 0.
	7.8	5 5.7 8 25.7	30 42.91	1 38, 90	1.89	-0.77 -0.52	+ 23 28 17.6 + 24 30 24.8	26. 1 24. 9	+ 0.
	8	10 50.3	33 7.91	1 38, 90	1.59	- 0.32 - 1.15	+ 20 56 40.0	29. 1	二 ŏ.
	8	11 3.8	33 21.45	1 38,90	1, 56	1 10	1 00 26 17 0	29.5	— 0.
9 g Pegasi	~ 0	13 41.0	35 59.07	1 38.90	1.21	- 1.48	+ 16 20 39.0 + 16 10 54.8 + 16 15 59.6 + 24 53 25.4 + 33 43 42.0	35. 1	- 1
13 "	7.8	16 11.3 • 19 15.0	38 29.78 41 33.98	1 38,89 1 38,89	1, 20 1, 21	- 1.48 - 1.48	+ 16 10 54.8	35. 2 35. 2	
16 "		22 36. 1	44 55.63	1 38.89	1. 92	-0.41	+ 24 53 25 4	24. 4	+ 0
	8.9	25 1.0	47 20.93	1 38.89	2.76	+1.39	+ 33 43 42.0	14. 9	 + 2 .
	7.8	28 28.2	50 48.70	1 38.88	2.28	+ 0.50	+ 28 46 58.0	20. 1	I+ 1.
	8	30 31.2	52 52.04	1 38.88	2. 43	+1.25	+ 28 46 58.0 + 30 23 33.6	18.4	+ 2.
27 "		34 21.3 39 42.3	21 56 42.77 22 2 4.65	1 38.88 1 38.87	2. 57 2. 59	+1.38 +1.39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16. 8 16. 6	+ 2. + 2. + 2.
1 Lacertse .		45 51.3	8 14.66	1 38.87	3.08	+ 1.29	¥ 36 39	10.0	T 2.
	6	57 22.3	19 47.55	1 38.85	2.02	- 0, 13	+ 36 39 + 25 53 55.5	0 23.3	+ 0.
	6	13 59 18.9	21 44.47	1 38.85	+0.29	+1.57 +0.91	4 1 19.6	1 12.3	- 0,
44 η Pegasi	7	14 4 0.5 12 6.6	26 26.84 34 34.27	1 38.85 1 38.84	2. 28 2. 30	+0.91 +1.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 20. I 19. 9	+ 1. + 1.
44 η Pegasi 46 ξ ''		15 8.6	37 36.77	1 38.84	0.81	+ 1.00 - 2.89	+ 29 4 4.1 + 11 2 54.4	0 42.8	+ i.
76 d Aquarii .		22 16.7	44 46.04	1 38,83	+ 1.26	+ 1.64 + 5.05	— 16 57 38.4	2 2.0	— ô.
Fomalhaut		24 42.2	47 11.94	1 38.83	2.46	+5.05	— 30 42 39.1	4 48.3	- 6.
82 Aquarii .	5.6	26 45.2	49 15.28	1 38.83	2.45	+ 5.02 + 1.88	- 30 33 57.2 - 7 44 10.2	4 44, 3	- 6.
82 Aquarii .	6, 7	30 24.8 33 21.1	52 55.48 22 55 52.26	1 38.82 1 38.82	+0.56 -0.01	+0.31		1 23.3 1 2.7	- 0. - 0.
	6.7	37 51.3	23 0 23. 20	1 38.81	1.31	 1.41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 33.6	i.
	6.7	41 44.9	4 17.44	1 38, 81	2, 23	+0.67	+ 28 14 45.0	20.7	+ 1.
	6.7	43 1.3	5 34.05	1 38.81	2. 25	+ 0.80 + 1.16	+ 28 34 16.6		+ !
	7 6.7	46 20.0 48 8.3	8 53.29 10 41.89	1 38.81 1 38.80	2.37 2.75	+ 1.16 + 1.40	+ 29 49 29.8 + 33 35 3.5	19, 0 15. 1	+ 1. + 2.
12 Androm		49 36.7	12 10.53	1 38, 80	3. 12	丰 1.28	+33353,5 $+365829.3$ $+4023473$	11.6	Ŧ 3.
	7.8	52 56.1	15 30.47	1 38,80	3. 52	7 1.00	7 40 20 41.17	8.2	+ 4.
13 "		55 51.5	18 26.35	1 38.80	3, 68	+ 1.40	+ 41 41 26.0	6.9	+ 4.
	8.9 7.8	14 58 14.5 15 0 31.4	20 49.74 23 7.02	1 38.79	4.18	+2.08 + 1.50	+ 45 14 34.4	3.4	+ 5.
	7.0	2 35.5	25 11.46	1 38,79 1 38,79	3. 84 3. 82	+ 1.30 + 1.48	+ 42 50 54.0 + 42 40 39.8	5.8 6.0	+ 4. + 4.
16λ"	5.6	6 6.8	28 43, 34	1 38.78	4. 18	+ 2.08	+ 45 15 12.4	3.5	+ 5.
•	6.7	6 26.2	29 2.79	1 38.78	4. 14	+1.981	+ 44 59		-
	8	9 39.1	32 16.22	1 38.78	4. 14	+1.98	+ 44 59 23.0	3.8	+ 5. + 4.
20 ψ "	8 6	13 8.0 14 25.5	35 45, 69 37 3, 40	1 38,78 1 38,78	3, 79 4, 16	+1.47 + 2.06	+ 42 30 52.5 + 45 11 15.0	6. 1 3. 5	工艺
~~ ,	7	19 27. 4	42 6.13	1 35.77	3. 35	+ J.28	+ 38 58 12.6	9.8	+ 5. + 3.
	6.7	23 44.0	46 23, 43	1 38.77	4.30	+ 2.44	+ 46 7 7.5	2.6	+ 5.
84 ♥ Pegasi		25 46.8	48 26.56	1 38,77	1.84	- 0.67	+ 46 7 7.5 + 23 54 54.1 + 32 29 54.5	25.7	0.
	6 7	27 30.2	50 10.24	1 38.76	2.64	+1.39	+ 32 29 54.5	16.2	+ 2.
	6.7	15 29 44, 4	23 52 24.82	— 1 38.76	- 3, 62	+ 1.37	+ 41 7 52.5	- 0 7.5	+ 4.

Digitized by Google

Name	Mag.	T	App. sid. time	Clock corr.	n tau δ	q.	ζ-φ	Refr.	q'
22 Androm 36 Piscium . 28 Androm 29 π Androm . 31 δ Mars 50 37 μ Ceti 71 ε Piscium . 43 β Androm	7 7 6.7 5.6	h m s 15 32 33.8 35 31.3 38 7.6 40 31.5 44 26.2 46 8.6 15 57 40.3 16 0 10.1 4 16.6 6 42.3 15 30.2 23 39.7 30 34.2 16 36 29.3	h m s 23 55 14.68 23 58 12.66 0 0 49.39 3 13.69 7 9.03 8 51.71 20 25.30 22 55.51 27 2.68 29 28.78 38 18.12 46 28.96 53 24.60 0 59 20.68	m s — 1 38.76 1 38.76 1 38.75 1 38.75 1 38.75 1 38.73 1 38.73 1 38.73 1 38.73 1 38.72 1 38.71 1 38.70 — 1 38.69	4. 12 0. 50 0. 73 2. 25 0. 42 2. 64 - 2. 36 + 0. 05 - 3. 16 0. 48	+ 1.28 + 1.92 + 1.92 - 1.15 - 2.29 + 0.79 - 0.86 + 1.39 + 1.063 + 1.27 - 1.08	+ 40 51 27.1 + 38 54 51.4 + 44 50 4.8 + 44 51 34.0 + 7 1 16.5 + 9 59 15.4 + 28 31 53.6 + 5 44 46.0 + 32 29 56.4 + 29 38 53.8 - 0 44 20.8 + 37 17 32.3 + 6 42 22.1 + 34 26 27.3	7.8 9.7 3.9 49.3 44.6 20.4 51.5 16.2 0 19.3 1 4.8 0 11.3 50.0 0 14.2	+ 4. + 3. + 5. + 5. - 1. - 1. + 1. - 2. + 1. - 0. + 3. - 2.
			1783	JULY 29)		Zer	o corr. = + :	1′ 46".7
67 a Virginis b) 85 η Ursæ Maj. Arcturus 30 ζ Boötis - 9 a² Libræ - 3 β Cor. Bor 5 a " 2 ε Ophiuchi Antares 20 Ophiuchi 23 " - 666 Mayer - 28 Ophiuchi 33 " - 34 " - 76 λ Herculis 55 a Ophiuchi 41 104 Λ Herculis 108 " 3 a Lyræ - 6 6 λ Aquilæ 7 Vulpeculæ	1 • 6. 5 6. 5 6. 7 7. 8 7. 8 9 7 7. 8 7 6 6 7 7 8 9 7 7 8	4 46 35. I 5 11 46.0 5 38 30. 7 6 3 28. 4 11 28. 7 51 24. 8 6 58 1. 6 7 39 12. 4 48 24. 4 7 53 16. 9 8 4 21. 8 10 6. 1 15 15. 4 18 54. 3 25 59. 3 26 19. 3 31 11. 4 33 27. 3 34 54. 7 36 36. 5 54 10. 6 8 57 5. 3 9 44. 6 9 39. 9 12 11. 7 15 11. 2 17 37. 7 21 55. 7 23 15. 4 25 49. 3 39 40. 5 43 33. 7 9 44 39. 6 10 1 36. 9 7 36. 0 45 46. 2 45 46. 2 46 25 47. 0 10 54 55. 7	13 15 22. 98 13 40 38.02 14 7 27. 12 32 28. 92 14 40 30. 53 15 20 33. 20 15 27 11. 08 16 8 28. 64 17 42. 15 22 35. 45 33 42. 17 39 27. 40 44 37. 54 48 17. 54 48 17. 54 48 17. 50 55 23. 23 16 55 41. 28 17 0 36. 17 2 52. 44 4 20. 08 6 5 87 15 3. 64 23 39. 15 26 34. 33 34 11. 88 39 11. 00 41 43. 22 44 43. 21 47 10. 11 51 28. 82 52 48. 74 13 10. 31 16. 54 13 10. 36 14 16. 43 31 16. 52 18 37 16. 60 19 15 33. 07 21 34. 86 19 24 44. 08	1 36, 54 1 36, 52 1 36, 48 1 36, 48 1 36, 44 1 36, 39 1 36, 39 1 36, 36 1 36, 36 1 36, 36 1 36, 36 1 36, 35 1 36, 35 1 36, 35 1 36, 35 1 36, 35 1 36, 35 1 36, 35 1 36, 35 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 32 1 36, 28	- 1. 10 + 1. 13 - 2. 18 + 0.31 + 2. 00 - 1. 98 + 0.77 0. 42 1. 93 + 1. 92 + 1. 98 - 1. 04 1. 04 2. 11 2. 66 - 2. 39 - 2. 08 0. 95 2. 58 2. 58 3. 38 3. 36		- 10 1 56.5 + 50 22 13.6 + 20 17 46.2 + 14 38 49.4 - 15 7 57.9 + 29 50 15.2 + 27 25 46.6 - 4 9 42.8 - 25 54 44.8 + 21 57 4.2 + 25 15 53.0 - 10 23 24.5 - 5 47 42.0 - 24 43 32.8 - 24 37 22.0 - 24 43 32.8 - 24 37 22.0 - 25 17 52.8 + 13 54 27.1 + 13 54 27.1 + 13 52 23.2 + 35 35 45.0 + 26 42 53.4 + 32 26 13.0 + 21 42 43.3 + 22 43.6 + 31 34 34.0 + 31 30 16.6 + 33 17 46.6 + 33 17 9.6 + 31 20 14.6 + 30 18 46.3 + 29 33 30.0 + 38 33 53.2 - 4 58 25.2 + 11 0 51.6 + 19 49 25.0 + 17 16 32.0	22. 2 16. 1 0 28. 1 4 19. 9 0 22. 8 40. 0 17. 3 17. 1 14. 2 11. 6 9. 7	

(98)

			1783 JUI	L W 29 —Con	tinuea		Zen	corr. = +	1. 40
Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
		h m s	h m s	m s	8	8	c , ,,	, ,,	"
9 Vulpeculæ	6	10 56 56.1	19 26 44.81	- 1 36.20	1.47	- 1.29	+ 19 17 30.5	-031.2	- 1.
12 Cygni	6.7	10 58 44.1	28 33, 11	1 36.19	1.70 2.39	- 1.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27. 7 19. 2	-0.
12 Cygni	7.8	11 2 39.8 5 13.2	32 29.46 35 3.28	1 36, 19 1 36, 19	2. 39	+ 1.13 + 1.39	+ 29 38 25.4 + 32 33 34.0	16. 1	¥ 2.
	7.0	6 13.9	36 4.14	1 36, 19	2.62	+ 1.38	+ 31 53 53.3	16.8	¥ 2.
	7.8	7 31.3	37 21.75	1 36.19	2.79	H 1.40	+ 33 37 47.0	15.0	 + 2.
	7	9 36.1	39 26.89	1 36, 19	2.91	+ 1.37	+ 34 28 4.0	14. 1	+ 3.
53 a Aquilse .	i	12 1.7	41 52.90	1 36.18	0.61	- 1.44	+ 8 17 36.6	47.0	- <u>1</u> .
	7.8	14 22.9	44 14.49	1 36.18	0.26	0.41	+ 3 50 21.2	54.9	- 1.
21 η Cygni	6.7	17 8.1 19 58.3	47 0.14 49 50.81	1 36, 18 1 36, 18	1, 84 2, 91	-0.72 + 1.37	+ 23 44 27.3 + 34 29 28.6	25.8 14.1	+ 3.
ziη Oygii	7.8	22 32.6	52 25.53	1 36.17	3. 22	1.27	37 29 59.0	11.0	+ 3.
	7	25 57.1	55 50.59	1 36, 17	1, 25	- 1,46	+ 16 31		' -
	6.7	26 9.3	56 2.82	1 36, 17	1.24	— 1.47	+ 16 28 34.5	34. 9	— 1.
17 Vulpeculæ		29 21.6	19 59 15.65	1 36.16	1.78	- 0.86	+225845.0	26.7	- 0.
28 b ² Cygni 21 Vulpeculæ	I	33 7.8 37 5.1	20 3 2.47 7 0.42	1 36.16 1 36.16	3. 07 2. 23	+1.30 +0.58	$\begin{vmatrix} + & 36 & 11 & 0.7 \\ + & 28 & 1 & 29.2 \end{vmatrix}$	12. 4 20. 9	+ 3. + 1.
21 Vulpeculæ 24 ''	1	39 15.6	9 11.28	1 36, 16	1.87	- 0.65	23 59 34 2	20. 9 25. 5	† (
34 Cygni		41 31.5	11 27.55	1 36.15	3.20	+ ĭ. ž7	+ 23 59 34.2 + 37 20 25.8	11.2	+ 3
37 γ	l	46 10.8	16 7.62	1 36, 15	3.48	+1.27 $+1.29$	+ 39 32 36.2	9.0	+ 4.
	7.8	49 17.8	19 15.13	1 36.14	1.50	I— 1.25	+ 39 32 36.2 + 19 45 15.2 + 29 37 52.5	30.6	— 1.
41 i "	ļ	52 14.1	22 11.91	1 36.14	2.39	+ 1.13	+ 29 37 52.5	19. 2	+ 1
47 l "	6.7	11 57 10.2 12 1 44.9	27 8.81 31 44.26	1 36, 14 1 36, 13	2, 89 2, 39	+ 1.13 + 1.37 + 1.11	+ 34 29 29.6 + 29 33 39.0	14. 1 19. 3	+ 3. + 1.
50 a "	0.7	5 43.6	35 43, 61	1 36.13	4. 13	II 1.81	+ 29 :33 39.0 + 44 28 59.9 + 35 40 31.8	4.2	4 5.
54 λ "		10 37.5	40 38.31	1 36, 13	3.02	+1.32	+ 35 40 31.8	12.9	+ 3
	6.7	13 55.3	43 56.65	1 36. 12	2.18	+ 0.36	+ 27 26	21.6	+ 1.
32 q Vulpeculæ	6.7	16 57.4	46 59.25	1 36.12	2.16	+ 0.26	+ 27 13 10.2	21.9	+ 1.
	8.9	19 50.3 22 40.7	49 52, 62 52 43, 49	1 36, 11	2.01 2.59	-0.23 +1.37	+ 25 33 1.5 + 31 38 12.0	23. 7 17. 1	+ 0. + 2.
	8	25 36.2	55 39.47	1 36, 11	3.96	+1.37 $+1.56$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.3	Iã
62 ξ Cygni		28 39.9	20 58 43.67	1 36, 10	3.92	+1.52	+ 43 2 25.0	5.6	+ 4.
63 f "		30 44.3	21 0 48.41	1 36.10	4.46	+ 2.67	+ 46 45 8.4	2.0	+ 5.
٠,	7.8	33 48.2	3 52.81	1 36.10	4. 15	+1.82	+ 44 35 41.1	4. 1	 + 5 .
65 τ " 67 "	0.5	37 43.7	7 48.96	1 36.10	3. 17	+ 1.27	+ 37 6 2.2	11.5	+ 3
07	6.5	40 29.4 54 9.1	10 35.11 24 17.05	1 36.09 1 36.08	3. 34 1. 73	+1.27 -0.95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10, 1 27, 4	+3
	8	12 57 10.8	27 19.25	1 36.08	1.82	- 0.77	+ 23 28 20.0	26. 2	_ ŏ.
	7.8	13 0 30.7	30 39.72	1 36.07	1.91	- 0.52	<u>i</u> 24 30 25.0	25, 0	+ 0.
	7.8	2 55.2	33 4.62	1 36.07	1.61	- 1.14	+ 20 56 46.0	29. 1	— 0.
0 - D	7.8	3 9.6	33 19.06	1 36.07	1.58	- 1.18	+ 20 36 18.5	29.6	- O
9 g Pegasi	6.7	5 46.3 8 17.4	35 56. 19 38 27. 70	1 36.07 1 36.07	1, 23 1, 22	- 1.48 - 1.48	+ 16 20 43.0 + 16 10 57.4	35. 2 35. 3	
13 "	0.1	11 20.4	41 31, 20	1 36.06	1. 22	-1.48	+ 16 16 6.3	35. 2	= i
- ·	6.5	14 41.4	44 52.75	1 36.06	1.92	- 0.41	+ 24 53 26.4	24.5	+ 0.
	9	17 6.3	47 18,05	1 36.05	2.80	+ 1.39	+ 33 43 45.0	14.9	+ 0. + 2.
	9	20 33.5	50 45.82	1 36.05	2.31	+ 0.90	+ 28 46 59.7	20. 1	+ 1.
	7.8	23 41.3 23 57.1	53 54.14 54 9.98	1 36.05 1 36.05	1. 12 1. 11	$\begin{bmatrix} -1.58 \\ -1.59 \end{bmatrix}$	+ 14 55 53, 3 + 14 47 + 43 56 13. 0	37. 1	- 1.
	6.7	28 44.0	21 58 57.64	1 36.03	4.05	+ 1.68	43 56 13.0	4.7	+ 4
	7.8	33 29.8	22 3 44.24	1 36.04	3.78	+ 1.42	+ 41 56 25.0		+ 4
	6.7	36 21.2	6 36.11	1 36.04	4.10	+ 1.42 + 1.76	+ 44 20 27.2	4.3	+ 4
1 Lacertæ .	6.7	40 51.6	11 7.25	1 36.03	3. 13	十 1.29	+ 36 39 34.4 + 39 33 0.8 + 36 19 6.4	11.9	
•	7.8	43 56.4	14 12.56 18 49.62	1 36, 03 1 36, 02	3.47	+1.29 $+1.30$	+ 39 33 0.8 + 36 19 6.4	9. 0 12. 2	+ 4.
6 "	6.5	48 32,7 52 32,5	22 50. 08	1 36.02	3.78	+ 1.42	+ 30 19 0.4 + 41 59 15.7	6.6	+ 3.
	8	56 20.2	26 38.40	1 36.02	3.48	1.29	+ 39 37 55.5	9.0	+ 4
8 "	6.7	13 57 37.1	27 55.51	1 36.02	3.34	+ 1.27	+ 38 29 28.5	10.1	 + 3.
11 "		14 2 23, 4	32 42.59	1 36.01	3.93	+1.53	+4377.6	5.5	+ 4.
13 "		5 48.2	36 7.95	1 36.01	3.61	+1.34	+ 40 39 26.2	7.9	1+ 4
48 μ Pegasi	6	7 55.3 10 53,1	38 15.40 41 13.69	1 36,00 1 36,00	3.96 1.82	+ 1.57 - 0.78	1 23 26 25 R	5. 3 26. 2	+ 4. - 0.
TO be Tokasi.	6	13 42.6	44 3.66	1 36.00	1.18	— 1.51	+ 43 22 40.5 + 23 26 25.6 + 15 40 42.0	36. 1	_ i.
	6	14 16 58,0	22 47 19.59	— 1 36.00	— 2.96	+ 1.33	+ 35 10 23.9	— 0 13.4	+ 3.

Digitized by Google

	,		1783 JUI	VY 29—Con	unned		Zer	o corr. = + 1	1′ 46″. 7
Name	Mag.	T	App. sid. time	Clock corr.	n tan s	g	ζ — φ	Refr.	q'
) 54 a Pegasi	7 6.7 7.8 7 8 7	h m s 14 21 40.5 25 16.2 26 50.1 29 56.4 33 49.6 38 25.2 40 13.9 14 41 41.8	h m s 22 52 2.86 55 39.15 22 57 13.31 23 0 20.12 4 13.95 8 50.30 10 39.30 23 12 7.44	m s — 1 35, 99 1 35, 99 1 35, 99 1 35, 98 1 35, 98 1 35, 98 1 35, 97 — 1 35, 97	** 2. 42	** 1.18	+ 29 54 0.0 + 14 1 35.8 + 17 19 46.0 + 17 32 53.0 + 28 14 43.7 + 29 49 32.6 + 33 35 6.0 + 36 58 30.6	" - 0 19.0 38.5 33.9 33.6 20.8 19.0 15.1 - 0 11.6	+ 1. - 2. - 1. + 1. + 1. + 2. + 3.
	<u> </u>	1	178	3 JULY 3	0		Zei	o corr. = + 1	1′ 48″. 9
24 Vulpeculæ) 35 m Cygni	7.8 7.8 7 6 8.9 6.7 6	11 35 17. 9 38 6. 2 42 13. 6 46 1. 6 48 17. 1 53 12. 3 11 57 47. 7 12 1 46. 0 6 40. 4 8 21. 0 9 58. 1 12 13 0. 2	20 9 9.48 11 58.40 16 6.32 19 54.94 22 10.81 27 6.82 31 42.97 35 41.92 40 37.12 42 17.99 43 55.36 20 46 57.96	- 1 34.52 1 34.52 1 34.51 1 34.51 1 34.50 1 34.49 1 34.49 1 34.48 1 34.48 - 1 34.48	- 1.87 2.87 3.47 3.48 2.39 2.39 4.13 3.02 3.48 2.18	- 0.65 + 1.38 + 1.29 + 1.129 + 1.112 + 1.37 + 1.37 + 1.32 + 1.32 + 0.36 + 0.28	+ 23 59 31.2 + 34 17 14.0 + 39 32 38.2 + 39 40 19.4 + 29 37 51.0 + 34 29 29.8 + 29 33 36.9 + 44 28 59.2 + 35 40 31.0 + 39 35 20.0 + 27 25 26.5 + 27 13 10.8	- 0 25.5 14.3 9.0 8.9 19.2 14.1 19.2 4.2 12.9 9.0 21.6 - 0 21.9	0. + 2. + 4. + 1. + 3. + 1. + 5. + 3. + 1. + 1.
	<u>'</u>	<u> </u>	1783	AUGUST	17		Zero	eorr. = + 1	· 46″. 5
12 Androm 61 " - 12 Androm 67 Pegasi - 69 " - 14 Androm 15 " - 16 λ " - 19 κ " - 20 ψ " - 81 φ Pegasi - 85 " - 21 α Androm 88 γ Pegasi -	2 7 7.8 7.8	13 10 14.0 20 37.2 21 24.6 23 34.2 26 39.2 29 21.1 33 6.2 36 50.1 40 13.4 43 9.1 45 55.5 51 28.4 13 57 36.2 14 1 46.1 6 57.2 11 27.5 13 16.5 14 18 9.3	22 55 19.19 23 5 44.10 6 31.63 8 41.59 11 47.10 14 29.44 18 15.16 21 59.67 25 25.53 28 19.71 31 6.57 36 40.38 42 49.19 46 59.77 52 11.72 56 42.76 23 58 32.06 0 3 25.66	— 1 15. 26 1 15. 25 1 15. 25 1 15. 25 1 15. 25 1 15. 24 1 15. 24 1 15. 24 1 15. 24 1 15. 24 1 15. 24 1 15. 24 1 15. 22 1 15. 23 1 15. 23 1 15. 23 1 15. 23 1 15. 23 1 15. 23 1 15. 23 1 15. 23 1 15. 23 1 15. 23	- 1. 05 2. 13 2. 15 2. 37 3. 18 2. 57 1. 87 3. 30 3. 42 4. 26 3. 94 4. 24 1. 37 1. 66 2. 05 2. 22 2. 23 - 1. 05	+ 1.27 + 1.28 + 2.08 + 1.53 + 2.06 - 1.40 - 1.09 - 0.14 + 0.49 + 0.51	+ 14 1 33.8 + 26 52 16.0 + 27 2 48.0 + 29 15 22.6 + 36 58 37.8 + 31 19 11.0 + 23 57 30.6 + 38 1 16.8 + 39 1 1.6 + 45 15 23.4 + 43 12 20.2 + 17 54 0.8 + 21 25 25.6 + 25 54 49.4 + 27 48 13.0 + 27 52 18.8 + 13 57 47.4	22. 3 19. 9 11. 7 17. 6 25. 9 10. 7 9. 7 3. 5 5. 6	- 2. + 1. + 1. + 3. + 2. + 3. + 5. + 4. + 5. - 0. + 1. - 0. + 1. - 2.
******************			1783	AUGUST 2	0		Zero	corr. · + 1	′ 48″. 7
58 ε Herculis . 35 η Ophiuchi . 37	6.7 7	6 57 22.7 7 3 15.2 7 37.8 10 7.7 19 33.7 27 17.2 30 5.2 36 27.8 38 1.9 7 41 35.8	16 53 16, 30 16 59 9, 76 17 3 33, 08 6 3, 39 15 30, 90 23 15, 72 26 4, 18 32 27, 83 34 2, 19 17 37 36, 68	- 1 12.61 1 12.60 1 12.60 1 12.50 1 12.59 1 12.58 1 12.58 1 12.58 1 12.58	- 0.79 1.11 4.46 2.10 1.27 0.33 0.35	- 1.60 + 2.55 - 0.04 - 1.46 - 0.54 - 0.58	+ 31 13 54.4 - 15 26 27.8 + 10 50 32.5 + 14 37 52.0 + 46 25 57.6 + 26 15 44.8 + 16 38 38.4 + 4 28 30.1 + 4 39 21.7 + 33 18 16.3	22. 9 34. 7 53. 9 53. 5	+ 2. - 0. - 1. + 5. + 0. - 1. - 1. + 2.

(100)

				1783 AUGU	UST 20-Co	n tin ued		Zei	ro corr +	l' 48 '. 7
N	ame	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ-φ	Refr.	q'
			h m s	h m s	m s		8	0 / //	, ,,	,,
87	Herculis .	5	7 45 17.5	17 41 18.99	— 1 12.57	— 2.04	_ 0.20	+ 25 40 58.3	- 0 23.6	+ 0
		6.5	47 13.1	.43 14.91	1 12.57	2. 39	+ 1.08	+ 29 22 3.4	19.5	+ 1.
20	44	8	49 22.5	45 24.66	1 12.57	2.66	+ 1.39	32 3 3.0	16.6	+ 2. + 0.
89 92 <i>5</i>			51 54.5	47 57.08	1 12.56	2.08	- 0.09	+ 26 4 23.8	23. 2 19. 6	1
95 s		5.6	54 33.7 57 32.2	50 36.72 53 35.71	1 12, 56 1 12, 56	2.39 1.69	+1.06 -1.07	+ 29 15 30.4 + 21 35 16.6	28. 4	+ 1. - 0.
50	• •	0.0	7 57 32.9	53 36.41	1 12.56	1.69	1.07	+ 21 35 16.6	28.4	_ 0.
		7	8 1 38.3	17 57 42,48	1 12.56	0.18	_ 0.19	2 27 21.0	57.7	_ i.
		6.7	4 14.3	18 0 18.91	1 12.55	0. 23	- 0.30	+ 3 5 35.0	56.5	- i.
		6.7	5 1.6	1 6.34	1 12.55	0. 25	- 0.33	+ 3 16 48.0	56. 1	- 1.
104 A			8 55.9	5 1,26	1 12,55	 2.59	+ 1.34	+ 31 20 17.3	0 17.4	+ 2.
	Sagittarii -		12 9.6	8 15, 49	1 12,55	+2.44	+ 4.82	— 29 51 34.2	4 27.6	- 5.
22 À		. ~	19 38.4	15 45.52	1 12,54	+ 2.03	+ 2.90	- 25 30 6.2	3 13.6	- 2.
		6.7	28 53.6	25 2.24	1 12.53	- 1.84 1.84	- 0.78	+ 23 26 45.2 + 23 25 13.6	0 26.2 26.2	$\begin{bmatrix} -0. \\ 0. \end{bmatrix}$
3 a	Lyræ	0.7	31 37.0 34 42.9	27 46.09 30 52,50	1 12,53 1 12,53	-3,40	$\begin{array}{c} -0.79 \\ +1.27 \end{array}$	+ 38 33 56.4	0 10.0	+ 3.
5 .	Aquilæ .		40 20, 8	36 31, 32	1 12.53	+ 0.09	+ 0.81	_ 1 11 13.6	1 5.5	上 ő.
•	-1	7	43 39.0	39 50.08	1 12,52	_ 0.05	+ 0.18	+ 0 35 35.8	1 1.6	_ ŏ.
		7	45 40.6	41 52,00	1 12.52	0,80	_ 2.75	+ 10 43 9.1	0 43.4	— 1.
		8	47 11.3	43 22, 95	1 12,52	1.03	1.69	+ 13 42 9.0	38.9	 2 .
113	Herculis .	6.5	50 41.0	46 53, 22	1 12,51	1.75	- 0.96	+ 22 21 39.8	27.5	- 0.
	_	6	53 57.5	50 10.26	1 12.51	2.72	+1.39	+ 32 36 35.2	16.1	+ 2.
	Lyrae	3.4	8 55 53.3	52 6.38	1 12.51	2.69	+1.39	+ 32 22 37.4	16.3	+ 2.
	Aquilæ .	0	9 0 30.6	18 56 44.44	1 12.51	1.02	- 1.71	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.2	- 2.
	Lyræ . Aquilæ .	6	4 15.2 7 47.1	19 0 29.65 4 2.13	1 12,50 1 12,50	2. 67 0. 15	+1.39 -0.09		16. 6 58. 9	+ 2. - 1.
21	Aquilæ .	6.7	10 29.5	6 44.97	1 12.50	1.11	- 0.09 - 1.59	+ 1 55 35.3 + 14 41 59.8	37.5	二 i.
		6	11 55.4	8 11.10	1 12,50	1.63	-1.33	+ 20 59 56.5	29.2	— 0.
28 A	"	ő	14 34.5	10 50, 64	1 12, 49	0.90	- 2.60	11 58 8 0	41.5	— 2 .
		6	19 21.4	15 38, 32	1 12.49	1, 53	-1.24	+ 19 50 8.2	30.6	— 1 .
		6	20 57.1	17 14.28	1 12, 49	1.53	- 1.24	+ 19 50 5.0	30.6	— 1 .
	Vulpeculæ	6.5	21 46.1	18 3.42	1 12.49	1.52	— 1.26	+ 19 39 33.0	30.9	— 1.
6	<u> </u>	4.5	24 40.2	20 57.99	1 12.48	1.92	— 0.58	+ 24 12 55.0	25.3	0.
	Cygni		30 40.2	90 5 40	1 10 10	0.40		+ 33 58 36.1	14.7	+ 2.
12 φ		7	35 45.8 38 28.6	32 5, 42 34 48, 67	1 12.48 1 12.48	2. 42	+ 1.12 $- 0.96$	+ 29 38 26.0 + 22 19 46.5	19.3 27.7	+ 1. - 0.
53 a	Aquilæ .	1	45 8.4	19 41 29,57	1 12.46	1.75 0.62	- 0.96 - 1.45		47.4	_ i.
00 4	aquino .	6	37 22.7	22 34 12.16	1 12.32	0.73	- 2.16	+ 8 17 35.4 + 9 48 11.6	45. i	_ i.
14	Lacertæ	6	45 3.4	41 54.12	1 12.32	3.66	+ 1.35	+ 40 46 56,5	7.9	+ 4.
51	Pegasi	į.	51 15.5	48 7.24	1 12.31	1.52	- 1.26	+ 40 46 56.5 + 19 35 29.0	31.1	— 1.
		7.8	55 1.4	51 53.76	1 12, 31	1.03	- 1.69	+ 13 41 42.2	39. 1	_ 2.
54 a	"		12 58 22.8	22 55 15.71	1 12.31	1,06	— 1.65	+ 14 1 34.6	38.6	- 2.
58 n		0 =	13 3 30.3	23 0 24.05	1 12.30	0,65	- 1.53	+ 8 38 16.5	46.8	- 1. - 0.
		6.7	8 19.1 13 21.2	5 13, 64 10 16, 57	1 12.30 1 12.30	1.80 2.83	- 0.87 + 1.40	+ 22 54 19.1 + 33 35 7.4	27. 1 15. 2	+ 2.
64	"	6.5	15 42.2	12 37.96	1 12.29	2.52	+ 1.27	+ 30 36 13.4	18.3	+ 2. + 2.
~ 4		7	19 16.0	16 12.35	1 12.29	1.86	- 0.71	1 23 44 44.8	26.0	T 0.
69	"	1	21 16.4	18 13,08	1 12, 29	1, 89	— 0.65	+ 23 57 30.0	25.8	0.
14 .	Androm.	I	24 59.7	21 56, 98	1 12.28	3, 32	+1.27	+ 38 1 18.8	10.6	+ 3.
72	Pegasi	l	27 32.5	24 30, 20	1 12.28	2.46	+1.20	+ 30 6 28.4	18.8	+ 1.
13		١.	31 0.7	27 58.97	1 12.28	1, 19	- 1.51	+ 15 36 40.2	36.4	 1.
19 K	Androm	4	34 5.2	31 3.98	1 12.28	3, 96	+ 1.53	+ 43 6 25.0	5.6	+ 4.
20 v	44	7	38 10.5 39 38.1	35 9,95 36 37,79	1 12.27 1 12.27	4.27 4.28	+2.05 + 2.06	+ 45 8 58.4 + 45 11 23.4	3. 6 3. 6	+ 5. + 5.
~∪ ψ		6	43 5.5	40 5,76	1 12.27	2, 99	+ 1.33	+ 35 11 53.8	13.5	¥ 3.
		6.7	46 19.9	43 20, 69	1 12.27	3, 05	+ i.31	+ 35 43 44.8	13.0	¥ 3.
		7	49 12.6	46 13.86	1 12.26	1,54	- i.23	14 19 56 26.8	30.7	_ î.
84 ψ	Pegasi	l	50 58.9	48 0.45	1 12.26	1.89	- 0.67	+ 23 55 2.8	25.9	0.
•	-	6.7	53 34.8	50 36,78	1 12.26	2.04	- 0.19	1+ 25 41 38.3	23.8	+ 0.
01	A 3	6	13 57 48, 1	54 50,77	1 12.26	2.80	+ 1.40	+ 33 25 22.0	15.3	+ 2.
	Androm	1	14 1 26.2	23 58 29.47	1 12.25	2.25	+ 0.50	+ 27 52 15.4	21.4	+ 1.
	Pegasi Androm	1	6 19.1 14 10 0.8	0 3 23.17	1 12.25 - 1 12.25	1, 06 - 3, 24	-1.66 + 1.27	+ 13 57 42.7 + 37 27 5.8	-0.11.2	-2. + 3.
~+ U	arnuiviii	•	13.10 0.0	0 1 0.40	1 12, 23	3. 24	T 1.21	T 01 21 0.6	- 0 11.2	٦ ٥٠
Mier e	corr. assumed a	LE -4- 3 · =	not — 3	Min sesumed	as 21m.; not 20	lm	n D	iv, assumed as 268	15 4 5: not 9	8 11 .
Micr.	corr. assumed a	18 + 3; r	10t — 3.	f Observation of	Right-ascensio	n worthless	1; g D	and g ass'd as 24° 5	3' 36"; not 2	53, 5
: T. III	assumed as 44:	m. 2s.; n	ot 44m. 7s.		ni, but 8 Cygni			-		
Div.	ssumed as 17 1	3 2 · not	17131							

Mag. T 7 14 12 32 2 7 16 48 1 20 48 9 23 46 7 28 9 0 34 66 7 28 9 0 39 55 22 0 39 55 22 0 39 55 20 39 55 20 36 22 0 46 57 0 46 57 0 46 57 0 15 7 46 42 8 7 45 6 7 45 6 7 45 6 7 45 6 13 41 2 15 4 8 8 7 45 6 13 41 2 15 45 2 18 37 0 23 54 8 7 45 6 7 35 27 46 35 29 37 6 <th> App. sid. time </th> <th>m s -1 12.24 1 12.24 1 12.24 1 12.24 1 12.23 1 12.23 1 12.23 1 12.23 1 12.22 1 12.22 1 12.22 1 12.22 1 12.21 1 12.21 1 12.21 1 12.21 1 12.20 1 12.20 1 12.19 1 12.19 1 12.18</th> <th>- 3.50 + 1 3.96 + 1 3.96 + 1 3.92 + 1 4.69 + 2 4.62 + 1 1.41 + 1 2.72 + 1 4.63 + 2 3.36 + 1 4.77 + 3 4.15 + 1 3.12 + 1 4.15 + 1 3.82 + 1 1.32 - 2 1.83 - 2 1.84 - 2 1.83 - 2 1.84 - 2 1.85 - 1 1.75 - 2 1.75 /th> <th>1. 56 + 4 1. 52 + 4 1. 52 + 4 1. 54 + 4 1. 49 + 4 1. 49 + 3 1. 39 + 3 1. 35 + 1 1. 40 + 3 1. 35 + 4 1. 27 + 4 1. 30 + 3 1. 11 + 4 1. 30 + 3 1. 16 + 4 1. 30 + 3 1. 16 + 4 1. 32 + 1 1. 42 + 4 1. 38 + 1 1. 42 + 4 1. 38 + 1 1. 42 + 4 1. 38 + 1 1. 53 + 1 1. 53 + 1 1. 55 + 1 1. 50 + 3 1. 50</th> <th>3 9 52. 0 2 43 6. 2 7 47 40. 0 8 7 43. 6 2 5 47. 0 8 22 23. 4 2 41 11. 5 7 28 12. 0 8 16 27. 2 6 10 43. 2 8 21 43. 2 4 9 0. 6 6 54 4. 2 4 9 0. 6 6 54 4. 2 1 1 1 58 35. 0 8 1 13. 8 4 12 25. 6 7 19 56. 6 7 19 56. 6 9 43 23. 4</th> <th>Refr. </th> <th>" " " " " " " " " " " " " " " " " " "</th>	App. sid. time	m s -1 12.24 1 12.24 1 12.24 1 12.24 1 12.23 1 12.23 1 12.23 1 12.23 1 12.22 1 12.22 1 12.22 1 12.22 1 12.21 1 12.21 1 12.21 1 12.21 1 12.20 1 12.20 1 12.19 1 12.19 1 12.18	- 3.50 + 1 3.96 + 1 3.96 + 1 3.92 + 1 4.69 + 2 4.62 + 1 1.41 + 1 2.72 + 1 4.63 + 2 3.36 + 1 4.77 + 3 4.15 + 1 3.12 + 1 4.15 + 1 3.82 + 1 1.32 - 2 1.83 - 2 1.84 - 2 1.83 - 2 1.84 - 2 1.85 - 1 1.75 - 2 1.75	1. 56 + 4 1. 52 + 4 1. 52 + 4 1. 54 + 4 1. 49 + 4 1. 49 + 3 1. 39 + 3 1. 35 + 1 1. 40 + 3 1. 35 + 4 1. 27 + 4 1. 30 + 3 1. 11 + 4 1. 30 + 3 1. 16 + 4 1. 30 + 3 1. 16 + 4 1. 32 + 1 1. 42 + 4 1. 38 + 1 1. 42 + 4 1. 38 + 1 1. 42 + 4 1. 38 + 1 1. 53 + 1 1. 53 + 1 1. 55 + 1 1. 50 + 3 1. 50	3 9 52. 0 2 43 6. 2 7 47 40. 0 8 7 43. 6 2 5 47. 0 8 22 23. 4 2 41 11. 5 7 28 12. 0 8 16 27. 2 6 10 43. 2 8 21 43. 2 4 9 0. 6 6 54 4. 2 4 9 0. 6 6 54 4. 2 1 1 1 58 35. 0 8 1 13. 8 4 12 25. 6 7 19 56. 6 7 19 56. 6 9 43 23. 4	Refr.	" " " " " " " " " " " " " " " " " " "
7	0 9 37. 29 12 52. 82 13 53. 82 17 55. 35 20 53. 64 25 16. 66 28 31. 69 33 31. 01 37 4. 79 41 28. 41 44 7. 75 47 26. 99 51 54. 82 0 55 55. 88 1 1 22. 37 4 59. 76 7 48. 62 10 56. 33 13 0. 67 15 52. 94 21 11. 61 24 23. 83 26 55. 23 30 31. 23 30 31. 23 30 37. 44 47 9. 46 51 56. 64	- 1 12. 25 1 12. 24 1 12. 24 1 12. 24 1 12. 23 1 12. 23 1 12. 23 1 12. 22 1 12. 22 1 12. 22 1 12. 21 1 12. 21 1 12. 21 1 12. 21 1 12. 20 1 12. 20 1 12. 19 1 12. 18	- 3.50 + 1 3.96 + 1 3.98 + 1 3.98 + 1 3.92 + 1 4.69 + 2 2.66 + 1 2.72 + 1 4.36 + 1 4.43 + 2 4.43 + 2 4.15 + 1 3.32 + 1 1.35 + 1 1.35	1. 56 + 4 1. 52 + 4 1. 52 + 4 1. 54 + 4 1. 49 + 4 1. 49 + 3 1. 39 + 3 1. 35 + 1 1. 40 + 3 1. 35 + 4 1. 27 + 4 1. 30 + 3 1. 11 + 4 1. 30 + 3 1. 16 + 4 1. 30 + 3 1. 16 + 4 1. 32 + 1 1. 42 + 4 1. 38 + 1 1. 42 + 4 1. 38 + 1 1. 42 + 4 1. 38 + 1 1. 53 + 1 1. 53 + 1 1. 55 + 1 1. 50 + 3 1. 50	9 29 59.5 3 17 33.0 3 17 33.0 3 9 52.0 2 43 6.2 7 47 40.0 8 22 23.4 2 41 11.5 8 16 27.2 6 10 43.2 8 21 43.2 4 19 0.6 6 54 4.2 6 12 52.7 4 2 18 35.0 8 1 13.8 4 12 25.6 7 19 50.9 8 1 13.8 4 12 25.6 7 19 50.9 1 4 12.4 9 56 55.8 9 43 23.8 6 30 43.6	- 0 9.2 5.4 5.7 5.5 6.0 1.0 0.7 16.8 32.8 16.1 1.3 10.4 4.6 1.9 12.5 4.4 6.7 33.3 38.6 34.2 25.1 17.9 45.0 31.0 27.6 7.4	+ 4.0 + 4.7 + 4.7 + 4.7 + 5.5 + 5.5 + 2.5 + 5.4 + 5.4 + 5.5 + 4.9 + 4.5 - 2.0 - 1.7 - 1.9 + 2.2 - 1.1 - 4.3
7	56 16, 05 1 59 55, 35 2 1 58, 49 7 22, 59 11 10, 40 14 7, 79 16 46, 12 20 11, 78 23 14, 88 26 12, 87 29 19, 68 31 27, 53 33 53, 93 38 32, 69 44 56, 04 48 7, 16 52 12, 43 2 55 24, 45 3 10 12, 38	1 12.16 1 12.15 1 12.15 1 12.15 1 12.14 1 12.14 1 12.14 1 12.13 1 12.13 1 12.13 1 12.12 1 12.12 1 12.12 1 12.12 1 12.12 1 12.12 1 12.10 — 1 12.09	1. 42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 24 33.0 8 27 5.5 0 9 55.4 8 52 18.6 1 51 17.8 8 52 10.2 2 10.2 8 40 7.1 8 40 42.8 6 45 5.0 6 5 50.3 9 3 34.8 4 22 5.4 5 54 13.4 7 25 29.0 0 26 34.4 3 13 11.3 0 4 43.9	27. 7 32. 7 30. 5 32. 2 28. 4 20. 3 20. 3 13. 6 10. 0 12. 0 23. 4 2. 9 34. 2 30. 2 57. 0 8. 6 - 0 0. 2	- 0.4 - 1.4 - 1.3 - 0.5 + 1.6 + 1.5 + 3.1 + 3.5 + 0.5 - 1.3 - 2.0 + 5.3 - 1.0 - 1.2 + 4.1 + 5.6
	1783 A	UGUST 91			Ze	oro corr. = +	1′ 49″. 4.
6,7 6 6 33 32.2 6 34 20.0 6 35 4.5 39 27.0 43 28.0 47 1.3 51 9.9 55 19.8 11 57 31.8	34 7.72 34 55.65 35 40.27 40 3.49 44 5.15	- 1 11.05 1 11.05 1 11.05 1 11.04 1 11.04 1 11.03 1 11.03 1 11.03 - 1 11.03	3.56 + 1 3.60 + 1 4.80 + 3 2.25 + 6 0.92 - 3 0.30 - 6	1. 30 + 3 1. 31 + 4 1. 32 + 4 3. 09 + 4 0. 46 + 2 2. 89 + 1 2. 47 + 1 0. 45 +	9 48 3.6 0 4 2.5 0 8 40.8 8 16 55.5 7 45 46.0 1 2 20.0 2 4 20.1 3 59 41.8	- 0 10.3 8.8 8.6 8.5 0.5 21.3 42.8 41.3 54.9 - 0 25.2	+ 3.7 + 4.1 + 4.1 + 5.5 + 1.3 - 1.9 - 2.0 - 1.3 + 0.1
6. 6 6	7 11 29 42.2 33 32.2 34 25.5 50 36.1 54 40.7 16 57 52.2 17 12 37.7 7 11 29 42.2 33 32.2 34 20.0 35 4.5 39 27.0 43 28.0 47 1.3 51 9.9 55 19.8 11 57 31.8	36 25, 2 33 53, 93 41 3.2 34 56, 04 50 36, 1 48 7, 16 54 40, 7 52 12, 43 16 57 52, 2 2 55 24, 45 17 12 37, 7 3 10 12, 38 32, 9 34 7, 72 34 20, 0 34 55, 65 35 4, 5 35 40, 27 39 27, 0 40 3, 49 43 28, 0 44 5, 15 47 1, 3 47 39, 03 51 9, 9 51 48, 31 55 19, 8 55 58, 89 11 57 31, 8 21 58 11, 25 56, 5	36 25.2	36 25.2	36 25.2	36 25.2	36 25.2 33 53.93 1 12.12 1.08 -1.62 +14 22 5.4 38.4 41 3.2 38 32.69 1 12.12 4.38 +2.34 +45 54 13.4 2.9 47 25.5 44 56.04 1 12.12 1.33 -1.41 +17 25 29.0 34.2 50 36.1 48 7.16 1 12.11 1.58 -1.20 +20 26 34.4 30.2 54 40.7 52 12.43 1 12.11 0.24 -0.31 +3 13 11.7 57.0 16 57 52.2 2 55 24.45 1 12.10 3.57 +1.31 +40 4 43.9 8.6 17 12 37.7 3 10 12.38 -1 12.09 -4.94 +3.25 +49 2 26.2 -0 0.2 1783 AUGUST 91

(102)

				783 AUGUS	1 21—Cont			Zen	corr. = +	1' 49".4
	Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζ — φ	Refr.	q'
			h m s	h m s	m s	8		0 / //	, ,,	
		6	12 0 13.4	22 0 53.29	— 1 11.02	 2.68	+ 1.39	+ 32 5 43,1	- 0 16.6	+ 2
29 τ	r Pegasi	4.5	0 57.4	1 37.41	1 11.02	2.68	+1.39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16, 6	+ 3 + 3
	Ü	6	5 10.6	5 51.30	1 11.02	3,42	+1.27	+ 38 37 6.5	10.0	+ 3
1	Lacertæ .	5.6	7 6.8	7 47.82	1 11.02	3, 18	+ 1.29	+ 36 38 56.8	11.9	+ 3
31	Pegasi		11 26.3	12 8.03	1 11.01	0.84	 2.92	+ 11 6 11.8	42.8	
4	Lacertae .	6.5	16 18.3	17 0.84	1 11.01	4.76	+ 3.11	+48214.8	0, 5	+ 5
38	Pegasi	1	20 39.8	21 23,06	1 11.00		+1.35	+ 31 26 44.0	17.5	+2
7	Lacertæ .	l	22 55.4	23 40,03	1 10.99	4, 95	+ 3.28	+ 49 8 32.5	0.3	+5
8	"	6.7	26 46.0	27 30, 26	1 10.99	3, 40	+ 1.27	+ 38 29 30.6	10.0	+3
10	"		30 . 3. 9	30 48.70	1 10.99	3, 33	+ 1.27	+ 37 54 2.7 + 40 39 36.2 + 40 46 55.8	10.7	,+ 3
13	"	1	34 57.2	35 42.80	1 10,98	3, 67	+1.34	+ 40 39 36.2	7.9	+4
14			41 6.7	41 53, 31	1 10.98		+1.35	+404655.8	7.0	- 4
15	"		42 46.0	43 32.88	1 10.98	3.88	+ 1.44	+ 42 8 14.0	6.5	+ 4
16	"		47 0.0	47 47.58	1 10.97	3.64	+1.33	+ 40 25 22.6	8.2	+ 4
	n	7	51 15.2	52 3.48	1 10.97	4. 16	+ 1.72	+ 44 11 11.6	4.5	+ 4
	Pegasi.		54 26.3	55 15, 10	1 10.96	1.07	- 1.65	+ 14 1 34.2	38, 6	- 2
) 55 <i>l</i>		7	56 31.7	22 57 20.84 23 0 46.10	1 10.96	0.62	- 1.42	+ 0 13 43.4	47.3	- 1
~	Andre-	1 1	12 59 56, 4 13 3 5, 5	3 55.72	1 10,96	4.83	+ 3.13	+ 44 11 11.0 + 14 1 34.2 + 8 13 43.4 + 48 27 0.2 + 48 11 37.6 + 23 34 16.5	0.4	+ 5 + 5
7,	Androm	7	5 42.9		1 10.96	4.79	+3.07	+ 40 11 3/.0	0, 6 96, 9	+ 5
9	4.4	6	8 33.4	6 33, 55 9 24, 51	1 10.95	1, 86 3, 65	-0.75	+ 23 34 14.5 $+$ 40 33 46.5	26.2	
9		6	9 59.1	10 50.46	1 10.95 1 10.95	3, 65	+ 1.00	4U 00 40.0	8.1	+ 4
10		7	14 17.0	15 9.07	1 10.93		+ 1.30 + 1.10	+ 40 52 1.6 + 29 30 2.4	7.8 10.5	+ 4
		6.7	17 57.5	18 50.17	1 10.94	1.45	$\frac{+1.10}{-1.33}$	+ 18 40 36.1	19. 5 32. 3	广 ;
14	44	0	21 2.8	21 55, 98	1 10.94	3, 34	+1.27	+ 38 1 16.8	10.6	1 3
76	Pegasi .	6.7	32 5.7	33 0.69	1 10.93	1 16	-1.56	$\frac{7}{4} \frac{30}{15} \frac{1}{7} \frac{10.0}{3.4}$	37.1	! " -
10	T (Regi .	7.8	34 13.5	35 8.84	1 10.93	4, 30	¥ 9.05	+ 45 8 58.4	3, 6	-1 + 5
20 •	Androm		35 40.5	36 36.08	1 10.92	4.30	$\begin{array}{c} -1.50 \\ +2.05 \\ +2.06 \end{array}$	+ 38 1 16.8 + 15 7 3.4 + 45 8 58.4 + 45 11 19.4	3.6	+ 5
~~ Y	· *************	6	39 8.4	40 4.55	1 10.92	3, 02	+1.33	+351155.3	13.5	I
		7	42 22.4	43 19.08	1 10.91	3, 08	+ 1.31	+ 35 11 55.3 + 35 43 48.1	13. 3 12. 9	$+\frac{3}{3}$
		7	45 15.5	46 12.65	1 10.91	1,55	T 1.24	19 56 25 5	30.6	I i
84 •	Pegasi	*	47 2.5	47 59.94	1 10.91	1,90	_ 0. 67	+ 19 56 25.5 + 23 55 1.4	25, 8	_ o
~- 9		7	49 37.2	50 35.03	1 10.91	2.06	— 0. 19	+ 25 41 36.0	23. 8	م بــا
85	"	6.7	51 10.2	52 8.31	1 10.91	2.08	- 0.14	+ 25 54 49.0	23. 8 23. 5 15. 3	II ŏ
J.,	•	6	53 50, 8	54 49.35	1 10.90	2, 83	+1.40	+ 33 25 23.0	15. 3	1 9
		6	55 40.0	56 38.86	1 10.90	2, 26	→ 0.49 ·	<u> 1 27 48 9 0 1</u>	21.4	∔ ĩ
21 6	Androm		13 57 28.7	23 58 27.87	1 10,90	2.26	+0.51	+ 27 52 14.6 + 13 57 45.2 + 37 27 6.2	21.4	+ i
88 y	Pegasi	1	14 2 21.6	0 3 21.57	1 10.89	1.06	- 1.66	+ 13 57 45.2	38.7	; 2
24 6	Androm		6 3.5	7 4.08	1 10,89	3, 28	+ 1.27	+ 37 27 6.2	11.2	+ 3 + 4
		7	8 35.5	9 36, 49	1 10.89	3, 52	+ 1.29	+ 39 29 59.2	9. 1	+ 4
		7.8	11 50.3	12 51.82	1 10.88	4.03	+1.55	+ 39 29 59.2 + 43 17 32.0	5.4	 + 4
		6.7	12 51.3	13 52.99	1 10.88	3, 99	+ 1.52	+ 43 2 3.8	5.7	+ 4
		6.5	16 52.2	17 54.56	1 10.88	4.01	+1.54	→ 43 9 56.0 1	5.5	+ 4
		7	19 49.2	20 52.03	1 10.88	3, 95	+ 1.49	+ 42 43 7.0 + 47 47 38.5	6.0	+ 4
		6.7	24 11.8	25 15, 35	1 10.87	4.72	+ 2.97	+ 47 47 38.5	1.0	+5
		6.5	25 15.3	26 19.02	1 10.87	4.02	+1.55	+ 43 15 43.9	5, 4	+ 4
32	Androm.	6	27 26.9	28 30.98	1 10.87	4.78	+3.06	+ 48 7 48.4	0. 7 10. 4	+ 5
32	Androm.	7.8	29 36.4 32 25.2	30 40,84	1 10.87	3.37	+1.27	+ 38 14 23.0	JU. 4	+ 3
59	Piscium .	6.7	35 58.3	33 30, 10	1 10.87	2.69	T 3, 100	0% C 33.0	16.8	
64	riscium .	6.7		37 3.78 38 52.38	1 10.86	1.42	— 1.35	+ 18 22 26.3 + 15 45 5.1 + 32 41 9.6 + 47 28 11.9 + 36 16 29.4	32.8 36.3	一;
04		7.8	37 46.6 40 21.4	41 27.60	1 10.86 1 10.86	1.21 2.75		T 10 40 0. L	36.3 16.1 1.3 10.4 2.6 0.5 4.6 1.9 12.5 4.4 6.7 33.3	- 1
		6.7	42 59.7	44 6, 33	1 10.86	4.66	I 5.40	T 47 98 11 0	10.1	T 2
		7	46 18.9	47 26.09	1 10.85	3, 37	T 2.00	T 38 16 90 4	1. J 10. 4	1 3
		7	50 45.0	51 52.92	1 10.85				10.4 0 g	1 3
		7	14 54 46.5	0 55 55.08	1 10, 83	4 80	I 3 11	I 48 91 38 0	2, 0 0 5	I 5
		6.7	15 0 11.2	1 1 20,67	1 10.84	4 15	I 1 79	1 44 9 3 4	1 R	T 3
		7	3 48.1	4 58.16	1 10.83	4 57	1 2 72	I 46 54 4 A	1 0	压力
		6.7	6 37.4	7 47, 92	1 10.83	3. 14	+1.30	1 36 12 52 2	12.5	Π_{2}^{2}
46	Androm	"	9 44.2	10 55, 23	1 10.83	4.18	1.76	+ 48 21 38.0 + 44 9 3.4 + 46 54 4.4 + 36 12 52.2 + 44 21 28.1	4. 4	ΙÏ
		7.8	11 48.1	12 59. 47	1 10, 83				6.7	\perp 7
93 6	Piscium .	1	14 39.9	15 51.74	1 10, 82	1.39	-1.38	is is 8	33. 3	=i
99 7		1	19 57.7	21 10.41	1 10, 82	1.08	-1.63	+ 14 12 24.8	38.5	
- 4		7	23 9.0	24 22, 23	1 10.82	1.34	- 1.42	∔ 17 19 52.4	34. 2	$=$ \tilde{i}
		7	29 14.9	30 29.13	1 10.81	1.96	— 0.49	+ 18 1 15.8 + 14 12 24.8 + 17 19 52.4 + 24 37 25.2	25. 1	$+$ $\hat{0}$
		7	15 31 30.2	1 32 44.81	— 1 10,81	— 2.5 8	+1.31	+ 31 4 15.6		+ 2

(103)

			1783 BE	PTEMBE	. y		Zer	o corr. = +	1' 48".7
Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζφ	Refr.	q'
		h m s	h m s	m s	8	8	0 / "	, ,,	,
64 a Herculis .	2.3	6 18 45.9	17 5 48.37	- 0 57.78	— 1.15	- 1.60	+ 14 37 52.2	— 0 37.4	— 1.
75ρ "	1	30 9.6	17 13, 94	57.77	3.36	+ 1.27	+ 37 19 47.2	11.2	 + 3.
55 a Ophiuchi	1	38 49.4	25 55, 16	57.77	0.99	- 1.86	+ 12 42 46.4	40.2	 2.
60β "	1	46 39.9	33 46, 94	57.76	0, 36	- 0.59	+ 37 19 47.2 + 12 42 46.4 + 4 39 25.0	53.4	- 1.
62γ "		6 50 54.4	38 2.14	57.76	— 0.21	-0.24	+ 2 47 22.4	0 56.9	- 1 .
64 v "		7 0 54.0	48 3.38	57.76	+0.76	+1.80	9 44 13.0	1 29,6	- 0.
94 v Herculis .		4 3.6	51 13.50	57.76	-2.56	+ 1.21	+ 30 11 40.9 + 22 54 43.0	0 18.6	+ 1.
97 "	المما	7 18.4	54 28.83	57.75	1.86	- 0.87	+ 22 54 43.0	26.7	- 0
72 s Ophiuchi .	4.5	10 55, 4	58 6.43	57.75 57.75	0.74	- 1.95 - 1.89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45. 1	- 1.
104 A Herculis .	7 4.5	11 4, 3 17 33, 9	17 58 15.35 18 4 46.02	57.75 57.75	0.73 2.68	1.09	1 21 90 17 9	17.3	+ 2
104 21 Hercuits .	6.5	19 40, 1	6 52.56	57.75	3, 53	+1:34 + 1.28	+ 31 20 17.8 + 38 41 49.7 + 42 4 0.8	9.9	4 3
	6.5	22 43, 3	9 56.26	57, 74	3.97	T 1. 43	I 49 4 0 8	6.5	+ 4
	7.8	24 41.1	11 54, 33	57.74	4.89	$\frac{1}{4}$ 3.02	+ 48 0 18.8	0 0.9	+ 5
59 d Serpentis .	6.7	29 52, 5	17 6.63	57.74	0, 01	+ 0.34	+ 0 4 12.0	1 2.8	- ŭ
	6.7	35 13, 3	22 28, 33	57.74	1. 32	1.45	+ 16 46 19.6	0 34, 6	_ ĭ
	7	37 32.0	24 47.41	57.74	1.91	— 0.77	$+23\ 26\ 45.2$	26. i	⊢ 0
3 a Lyrae		43 21.6	30 37.97	57.74	3.51	+1.27	+ 38 33 58.8	10.0	+ 3
111 Herculis .		51 11.5	38 29, 16	57.73	1.42	- 1.39	+ 17 55 59.6	33, 0	├ 1
9 v ² Lyræ		55 29,9	42 48, 27	57.73	2.78	+1.39	+ 32 17 15.0	16.4	+ 2
113 Herculis .	!!!	7 59 19.3	46 38.30	57.73	1.81	- 0.96	+ 22 21 39.3	27.5	- 0
11 Aquilæ .		8 2 50,0	50 9.58	57.73	1,04	-1.74	+ 13 19 48.6 + 20 56 25.2	39, 3	- 2
	6.7	8 6.5	18 55 26.95	57.73	1.68	— 1.15	+ 20 56 25.2	29, 2	0
21 "		8 16 25.3	19 3 47. 12	57.72	0, 15	- 0.09	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58.8	<u> - !</u>
ne a' .	6.7	9 23 55.5	20 11 28.40	57.69	3.70	+1.31		8.6	+ 4
37 γ Cygni	10	27 56.0	15 29.55	57.69	3.63	+ 1.29	+ 39 32 41.8 + 10 15 45.0	9.1	+ 4
1 Th.1.1.1.	10	31 44.2	19 18.37	57.68	0.80	-2.48 -2.41	+ 10 15 45.0	44.2	- į:
) 1 Delphini .	0 ~	33 23, 7	20 58.14	57.68	0.79	2.41	+ 10 10 7.3 + 36 11 26.5	44.3	- <u>1</u>
44 Cygni	6.7	36 12.6 38 38.0	23 47.50 26 13.30	57.68	3, 22	+ 1.30 - 1.67	+ 30 11 20,0 1 12 55 12 4	12.4	$+\frac{3}{2}$
4 ζ Delphini . 6 β "		40 50.5	28 26, 16	57.68 57.68	1.09 1.08	- 1.67	+ 13 55 13.4 + 13 50 6.8	38.7 38.8	
υρ	7	45 31.6	33 8.03	57.68	4.38	+1.92	+ 44 52 44.0	3.9	+ 5
50 a Cygni	'	9 47 28.3	20 35 5.06	— 0 57.68	- 4.32	I i.80	+ 44 29 8.6	-04.2	+ 5
					·	<u> </u>	<i>'</i>		<u> </u>
			1783 SE	PTEMBE	R 6		Zer	o corr. = +	1′ 47″.
55 a Ophiuchi.	2.3	6 23 2.7	17 25 52.09	- 0 54.74	_ 0.99	- 1.86	+ 12 42 45.9 + 4 39 25.4	- 0 40.3	_ 2.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		30 53, 2	33 43.88	54.74	0.36	- 0.58	+ 4 39 25.4	53, 5	- 1
		35 7. 5 36 5. 5	37 58,88 38 57.04	54.73 54.73	-0.21 -2.31	-0.24 + 0.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57. 1 0 21. 2	<u>一</u> 1
86μ Herculis . 64ν Ophiuchi .	1	45 7.4	48 0.42	54.73	+0.76	I 1 80	+ 27 50 9.7 - 9 44 13.0	1 29.9	$+ \frac{1}{1}$
68 K ''		48 48.7	51 42, 32	54,73	0.10	+1.80 +0.02	+ 1 18 42.9	1 0.0	
10 γ Sagittarii .		49 49, 4	52 43, 18	54.73	+ 2.57	+4.96	- 30 21 37.0 l	4 39.1	_ 5
72 s2 Ophiuchi .	4.5	55 8.7	58 3.35	54.73	- 0.74	- 1.94	+ 9 31 50.4	0 45.2	<u> </u>
-	7	6 55 17.5	17 58 12, 17	54.73	0,73	— 1.9 0	+ 9 27 53.0	45.3	- 1.
104 A Herculis .		7 1 47.2	18 4 42,94	54.73	2, 67	+ 1.34 + 1.31 + 1.49	+ 31 20 20.0	17.4	
1κ"	_	10 17.2	13 14.34	54.72	— 3.18	+1.31	+ 35 57 7.2	0 12.6	+ 3
733 Mayer	7	18 23.8	21 22.27	54.72	+1.46		- 10 OU 10.0	2 11.0	j 0.
_	8	20 49.2	23 48.07	54.72	1.48	+ 1.47 + 1.82 + 1.27 + 1.27 + 1.87	- 18 41 55.6	12.2	
Saturn	_	23 42.7	26 42.05		+1.84	+ 1.82	- 22 50 39.6	2 44.5	- <u> </u>
9 a T	7	26 5.1	29 4.86		- 3, 51	1.2/	+ 38 42 9.0 + 38 33 58.8	0 9.9 0 10.0	1 3.
3 a Lyrae		27 34.8	30 34.80	54.72	- 3, 49 - 0, 65	T 1.2/	- 30 33 35.5	0 10,0	T 3
3 n Aquilæ .	6	29 37.3 33 12.3	32 37, 63 36 13, 22	54.72 54.72	+ 0.65	I 1.81	- 8 28 50.1 - 1 11 11.6	1 25.8	_ 0.
5 "	8	33 13, 3	36 14.22	54.72 54.72	0.09	+0.81 $+0.81$ $+1.44$	- 1 11 20.5	5. 7 5. 7	
7 "	'	37 37.0	40 38, 64	54.72	0.03	1 1 44	_ 3 30 J9.0	1 11.2	
8 "	1	37 52.8	40 54.48	54.71	+ 0.27	+ 1.45	_ 3 34 J3.0	1 11.2	J 3,
		40 57.9	44 0.09	54.71	1.70	_ 1.11	+ 21 9 22.4	0 29.0	- 0.
112 Herenlis -		46 35.7	49 38.82	54.71	+ 2.56	+ 4.90	30 7 37.7	4 34.1	_ 5.
112 Herculis . 38 C Sagittarii .	1	49 31.5	52 35.10	54.71	1.77	+1.62	— 22 1 43.8	2 37.5	_ i.
38 ζ Sagittarii . 39 ο "					1	1			
38 ζ Sagittarii .		54 41.6	18 57 46.05	54.71	1.71	+ 1.51	— 21 20 22.0	31.5	I.
38 ζ Sagittarii . 39 o "	8	54 41.6 7 57 19.7	18 57 46.05 19 0 24.58	54.71	1,71 1,76	+1.51 + 1.62	— 21 59 14.9	2 37.1	- 1 - 1
38 ζ Sagittarii . 39 ο " 41 π "	8	54 41.6		54.71	$ \begin{array}{r} + 2.56 \\ 1.77 \\ 1.71 \\ 1.76 \\ + 2.10 \end{array} $	+ 1.51 + 1.62 + 2.96			- 1. - 1. - 2.

(104)

		17	83 SEPTEM	IBER 6-C	ontinuo	đ	Ze	ro corr. = +	1′ 47″.7.
Name	Mag.	T	App. sid. time	Clouk corr.	n tan δ	q	ζ-φ	Refr.	q'
43 d Sagittarii . 775 Mayer . s) 47 χ' Sagittarii . c) 48 χ² 55 e ³ Jupiter .	6.7	h m s 8 2 44.7 4 26.1 9 50.0 9 57.3 13 57.0 27 51.2 8 36 42.7	h m s 19 5 50. 47 7 32. 15 12 56. 94 13 4. 26 17 5. 30 31 1. 10 19 39 54. 05	m 8 0 54.71 54.70 54.70 54.70 54.70 54.70 54.70 0 54.69	** + 1.53 1.25 2.03 2.02 2.80 1.29 + 1.78	* 1.41 + 1.64 + 2.60 + 2.55 + 5.29 + 1.66 + 1.65	- 19 18 51.7 - 15 53 44.4 - 24 53 32.5 - 24 47 44.0 - 32 27 7.5 - 16 36 41.4 - 22 7 7.4	- 2 16.6 1 56.2 3 6.4 3 5.0 5 42.5 2 0.0 - 2 38.2	- 0.7 - 0.5 - 2.2 - 2.1 - 7.7 - 0.5
			1783 81	EPTEMBI	:R 7		Ze	ro corr. = +	1′ 47″.9.
55 a Ophiuchi . 60 β " Saturn . 3 a Lyræ 32 ν¹ Sagittarii . 37 ξ² " 40 τ " 20 η Lyræ 14 Cygni 14 Delphini . 17 " 18 " 2 Equulei .	2.3 6.7 8.9 6 7 7.8 6.7 7 6.7 7 6.7 7	6 19 6.5 6 26 57.1 7 6 37.5 8 53.0 19 45.9 23 38.6 27 51.0 34 59.9 38 43.3 42 39.7 47 15.1 53 23.5 7 57 16.4 8 0 19.2 3 51.3 8 58.5 11 31.2 15 33.9 16 49.7 19 56.5 23 12.3 26 15.7 8 27 52.1 36 14.3 39 28 0.6 32 52.1 36 14.3 39 40.8 9 45 10.2	17 25 51, 80 17 33 43, 68 18 13 30, 60 15 46, 47 26 41, 16 30 34, 50 34 47, 59 41 57, 67 45 41, 68 49 38, 73 18 54 14, 88 19 0 24, 27 4 17, 82 7 21, 12 10 53, 79 16 1, 83 18 34, 95 22 38, 32 23 54, 34 23 71, 65 30 17, 98 33 21, 88 19 34 38, 39 20 35 16, 93 40 9, 23 40 9, 23 40 9, 23 44 85, 37 20 52 29, 35	— 0 54, 42 54, 41 54, 40 54, 40 54, 40 54, 39 54, 39 54, 39 54, 39 54, 39 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38 54, 38	- 0.99 0.36 0.93 - 1.63 + 1.85 - 3.51 - 1.72 2.55 2.33 + 1.78 - 1.71 3.53 3.53 3.29 3.18 3.16 3.47 3.42 3.99 4.04 1.36 1.01 - 0.77 - 0.49	- 1.86 - 0.59 - 2.67 - 1.21 + 1.82 + 1.27 + 1.51 + 1.28 + 1.28 + 1.31 + 1.28 + 1.31 + 1.47 - 1.15 - 1.42 - 1.15 - 1.42 - 1.15 - 1.42 - 1.00	+ 12 42 47.2 + 4 39 26.7 + 11 55 6.8 + 20 19 37.5 - 22 50 40.8 + 38 33 58.5 + 19 14 42.2 - 22 58 34.0 - 21 21 36.2 - 30 7 22.1 - 27 55 59.4 - 21 59 4.6 + 21 10 57.7 + 38 45 26.5 + 38 45 26.5 + 38 48 58.0 + 35 48 58.0 + 35 48 58.0 + 35 48 58.0 + 37 52 54.2 + 42 17 55.8 + 42 13 15.7 + 22 59 56.9 + 7 3 25.2 + 17 12 24.3 + 12 53 23.0 + 9 59 59.6 + 6 19 37.6	- 0 40.3 63.6 41.4 0 29.9 2 44.5 0 10.0 0 31.3 2 45.7 2 31.5 4 33.5 3 49.2 2 36.7 0 29.0 9.8 9.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12	- 1.3 - 2.6 - 1.8
	<u> </u>	!	1783 SE	PTEMBE	R 9		Ze	ero corr. = +	1' 47".9.
27 f Pleiadum . 45 ε Persei . 34 γ Eridani . 39 Tauri . 44 P " . 74 ε " . 81 " . 85 " . 86 " . ε) 87 Aldebaran 94 τ Tauri . 57 μ Eridani . 10 η Aurigæ . f) Capella . Rigel . 112 β Tauri . 24 γ Orionis .	6	17 18 6.2 25 9.3 29 38.5 39 26.9 17 57 46.4 18 0 5.7 1 17.2 3 21.5 5 17.6 11 2.9 16 2.9 16 28.8 45 49.1 54 21.5 18 55 16.6	3 38 6.2 45 9.3 49 38.2 54 19.5 3 59 26.9 4 17 46.4 20 5.7 21 17.2 23 21.5 25 17.6 31 2.9 36 22.9 4 53 7.7 5 2 28.8 5 49.1 14 21.5 5 15 16.6	- 1 42.56 1 42.46 1 42.38 1 42.33 1 42.13 1 42.12 1 42.03 1 42.03 1 41.98 1 41.60	- 1.72 2.14 1.49 1.19 1.21 1.26 - 1.82 + 0.28 - 3.80 - 4.51 + 0.65 - 2.38	+ 1.28 + 1.58 - 1.09 - 0.14 - 1.33 - 1.56 - 1.62 - 1.49 - 1.49 + 1.36 + 2.27 + 1.87 + 1.87	+ 39 20 23.1 - 14 7 44.2 + 21 23 30.4 + 25 52 45.6 + 18 39 59.4 + 15 11 22.4 + 15 21 19.4 + 14 21 30.1 + 16 2 32.4 + 22 30 26.6 - 3 40 8.4 + 40 53 32.8 + 45 43 29.8 - 8 27 57.0	1 49.3 0 29.2 23.8 32.7 37.4 37.2 38.6 36.2 0 27.8 1 13.0 0 7.8 0 3.1 1 27.2 0 20.9	+ 3

(105)

		Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	· ζ—φ	Refr.	q
	. ن	z Equulei		h m s 22 45 26, 1	h m s 21 5 26, 1	m s — 0 23,64	8	s 0,52	+ 4 20 59, 2	, ,, 0 54,3	_ 1
)		Aquarii	. 3	22 43 20.1	20 32.0	23.48	-0.33 $+0.49$	+1.86	- 6 31 12.0	1 20.1	_ 0
•	4	Pegasi .	- _	8 8.0	28 8.0	23, 43	— 0.36	- 0.61	+ 4 47 26.0	0 53.6	<u> </u>
			7 7	10 36.3 11 43.5	30 36.3 31 43,5	23, 38 23, 37	0.30 0.29	-0.45 -0.41	+ 4 47 26.0 + 4 2 2.1 + 3 50 46.9 + 8 52 33.4	55. 0 55. 4	
	8 &		. '	14 0.8	34 0,8	23, 36	0.67	- 1.61	+ 8 52 33.4	46, 5	— i
	11		-	16 41.2	36 41.2	23. 33	• 0.13	-0.05	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.7	;— !
	14 15			20 44. J 23 17. 7	40 44.1 43 17.7	23, 30 23, 27	2.40 2.26	+1.04 + 0.46	+2991.9 +274551.2	19.9 21.4	+ ;
		- -	7.8	26 6.1	46 6.1	23, 24	2.87	+ 1.39	+ 33 43 55.0	15.0	+
	18	" -	7.8	29 46, 1 33 20, 0	49 46.1	23. 21 23. 17	$\begin{array}{c} 0.43 \\ 0.28 \end{array}$	-0.85	+ 5 40 25.7	51.9 55.7	
	22 ı	, ".		35 12, 1	53 20, 0 55 12, 1	23. 16	0.28	- 0.39 - 0.45	+ 3 44 15.0 + 3 59 44.1	55. 2	
	25	" -	. 6	38 8.4	21 58 8.4	23, 13	1.62	- 1.18	+ 2 0 38 10.8	29.8	- (
)	28	" -	- 7	40 45.0 45 8.5	22 0 45.0 5 8.5	23. 11 23. 06	1,55 1,84	-1.24 -0.81	+ 19 54 10.0	30. 8 26. 6	_ [
′			7.8	48 49.9	8 49.9	23. 03 23. 03	2.03	-0.31	+ 23 13 31.6 + 25 15 49.0	24.3	+
	30		-	50 0.4	10 0.4	23. 02	0.35	- 0.59	+ 4 41 44.2	53. 7	 :
	33 34	" ·	-	53 42.3 56 2.2	13 42.3 16 2.2	22, 98 22, 96	1.54 0.95	-1.25 -0.33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31. 0 56. 7	
	35	" :		57 20.0	17 20.0	22, 95	0. 25 0. 27	-0.38	3 36 16.4	56.0	i
	37	" -	-	23 59 27.1	19 27.1	22.93	0.25	- 0.34	+ 3 19 35.8	56. 5	1
)	39		7	0 2 36.2 5 51.3	22 36, 2 25 51, 3	22. 91 22. 88	1.49 1.49	— 1.31 — 1.31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31.8	<u> </u> _ ;
	40	" .	. 6.7	8 52.5	28 52.5	22.84	1.43	- 1.35	i 18 23 20.0	32.7	I
	44 ŋ		-	13 19.4	33 19.4	22.80	2.39	+ 1.01	+ 29 4 15.7	20.0	+ 1
	46 ξ 48 μ	•		16 21.6 20 1.7	36 21.6 40 1.7	22.78 22.74	0.84 1.86	- 2.90 - 0.77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43. 2 26. 5	- I
	15	Lacertæ	-	22 46.0	42 46.0	22.72	3, 89	+ 1.44	+ 42 8 18.2	6.6	+ 4
			7,8	28 0.7 29 57.1	48 0.7	22. 67 22. 65	1, 59 1, 57	- 1.21 - 1.23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30. 2 30. 5	1 1
			7.0	32 58.2	49 57.1 52 58.2	22. 62	1.54	-1.25	+ 19 44 21.6	31.0	_ i
			7.8	35 24.2	55 24.2	22.59	1.48	- 1.31	+ 19 3 27.0	31.8	- 1
,	.7 m	Pegasi .	7	36 15.7 39 2.7	56 15.7 22 59 2.7	22, 58 22, 56	1.46 0,57	- 1.33 - 1.27	+ 18 43 35.4 + 7 29 35.6	32, 3 48, 8	- 1 - 1
١	6 "	Androm.		40 56.9	23 0 56, 9	22.55	3.92	+ 1.46	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.4	_ 4
	7	" -	-	43 7.5	3 7.5	22.53	4.81	+ 3.07	+ 48 11 47.3	0.6	+ 5
6	8 6	Pegasi .	•	48 12.5 52 38.3	8 12.5 12 38.3	22. 48 22. 44	4.74 0.84	$\begin{array}{c c} + 2.97 \\ - 2.92 \end{array}$	+ 47 48 17.0 + 11 6 50.0	1.0 43.2	+ 5 - 1
	70	- 09,000		0 58 41.2	18 41.2	22.38	0.88	— 2.98 ¦	11 33 10.6	42.5	2
-	2	44	7	1 1 27.2	21 27.2	22. 36	2. 21 2. 49	+0.27	+ 27 11 23.5	22.2	- !
•	Z	•	$\cdot \mid \begin{array}{c} 6 \\ 8 \end{array} \mid$	3 41.0 6 14.0	23 41.0 26 14.0	22, 34 22, 31	2.65	$\begin{array}{c c} + 1.20 \\ + 1.37 \end{array}$	+ 30 6 37.6 + 31 41 4.2	18.9 17.2	+1 + 2
		Androm	. _	8 1.1	28 1.1	22. 29	3.88	+ 1.43 ·	+ 42 2 37.6	6.6	+ 4
*	9 κ	" - ·	8	10 15.0 14 20.4	30 15.0 34 20.4	22. 27 22. 24	4, 02 - 4, 32 -	+ 1.53 - + 2.05 -	+ 43 6 29.0 + 45 9	5, 6	+ 4
2	ωψ	"	. 3	15 48.4	35 48.4	22.22	4. 32 4. 33	+2.06	45 11 29.3	3.6	+ 5
	•		8	18 49.0	38 49.0	22, 19	J. 71 -	- 1.06	+ 45 11 29.3 + 21 37 59.8	28.7	<u> </u>
9	6	Piscium .	7.8	21 27.8 24 29.7	41 27.8 44 29.7	22. 17 22. 14	3. 20 - 0. 44 -	$\begin{array}{c c} + 1.29 \\ - 0.90 \end{array}$	+ 36 40 0.1 + 5 51 18.7		$\frac{+3}{-1}$
		Pegasi		27 11.9	47 11.9	22. 12	1.91	- 0.67	23 55 5.0	25.9	0
	5	-	7	29 47.8	49 47.8	22.09	2.07	- 0.19	+ 23 55 5.0 + 25 41 43.0	23.9	+ 0.
c	v	• •	6.7	31 19.8 35 50.6	51 19.8 55 50.6	22. 08 22. 04	2.09 2.27	- 0.13 - + 0.49 -	+ 20 04 06.4 + 27 48 18.0	23. 0 - 21. 5	+ " + 1.
		Androm	"	37 39.9	57 39.9	22.02	2.27	+ 0.49 + 0.50	+ 25 54 56.4 + 27 48 18.0 + 27 52 22.4 + 44 50 16.5	23.6 21.5 21.4 - 0 3.9	∔ i
2	2	·	.	1 39 34.6	23 59 34,6 -	- 0 21.99 -	- 4.28 -	+ 1.92 -	+ 44 50 16.5 -	-03.9	+ 5

a T I assumed as 9s.; not 19s. b g assumed as 28° 56'; not 28° 58'. c & assumed as 25° 37'; not 25° 32'.
d Div. assumed as 31; not 30.

Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ — φ	Refr.	q'
		h m s	h m s	m s			0 / //	, ,,	,
88 y Pegasi		1 42 33.3	0 2 33.3	— 0 21.97	- 1.07	- 1.66	+ 13 57 45.4	- 0 39.0	- 2.
24 θ Androm	1	46 15.7	6 15.7	21.94	3.29	+1.27	+ 37 27 9.6	11.3	+ 3.
27 ρ "	8	50 12.2 53 5.1	10 12.2 13 5.1	21.90 21.87	3. 21 4. 01	+1.29 $+1.52$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12. 0 5. 7	+ 3. + 4.
) 28 "		1 59 9.5	19 9.5	21.82	2.34	+ 0.79	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20, 6	‡ ;
, ~	8	2 1 16.0	21 16.0	21.80	3, 91	+ 1.44	+ 42 16 9.0	6.4	T 4.
	7	4 3.0	24 • 3.0	21.77	3.08	+1.32	+ 35 36 45.4	13.2	
29 π "		5 47.2	25 47.2	21.75	2.74	+1.39	+ 32 30 4.8	16. 4	+ 3. + 2.
30 ε "	1	7 34.6	27 34.6	21.74	2.30	+ 0.64	+28640.9	21.2	j+ 1.
Nebula -	6	11 23.7	31 23.7	21.70	3.61	+1.31	+ 40 3 27.0	8.6	+ 4.
	7	14 42.2 18 43.3	34 42.2 38 43.3	21.67 21.63	4. 09 4. 12	+1.62 + 1.65	+ 43 38 48.3 + 43 47 23.2	5. 1 5. 0	+ 4. + 4.
25 Mayer	8	22 35, 5	42 35.5	21.60	0.22	-0.26	+ 2 53 57.2	57. 7	二 ï.
29 ''	7.8	27 31.5	47 31.5	21.55		- 0.85	+ 5 39 35.4	52.4	— i.
71 e Piscium .		32 8.6	52 8.6	21.51	0.51	-1.08	+ 6 42 29.6	0 50, 5	- 1.
Mars		2 34 6.9	0 54 6.9	21.49	0, 04	+ 0.20	+ 0 31 57.8	1 2.7	- 0.
106 Piscium .		3 10 34.9	1 30 34.9	21. 15	0.33	- 0.52	+ 4 22 30.4	0 54.9	- 1.
110 0 "	8.9	14 24. 1 20 34. 1	34 24.1 40 34.1	21.11 21.05	0.61	- 1.37 - 0.85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48. 2 27. 2	- 1. - 0.
6β Arietis	0.8	23 8.6	40 34.1	21.03 21.03		- 0.55 - 1.25	+ 19 43 25.6	31.3	_ i.
57 y Androm.		31 6.3	51 6.3	20.95	3, 77	$+ i.\widetilde{37}$	上 41 15 14 9	7.5	+ 4
13 a Arietis	1 1	35 25.9	1 55 25.9	20, 91	J. 77	- 0.95	+ 22 24 37.8 + 43 10 35.3	27.9	_ 0.
60 Androm		40 8.7	2 0 8.7	20.87	4.03	+1.54	+ 43 10 35.3	5.6	+ 4.
8 & Trianguli .		3 44 18.2	2 4 18.2	— 0 20.83	- 2.81	+ 1.40	+ 33 11 52.3	– 0 15.7	+ 2.
51 Piscium . 29 π Androm	7	2 1 12.2 5 19.2	0 21 12.2 25 19.2	+ 0 5.31 5.35	- 0.41 2.61	- 0.87 + 1.39	+ 5 44 49.0 + 32 30 7.4	- 0 52.4 16.4	- 1. + 2.
30 ε "		7 7.0	27 7.0	5. 36	2. 19	+0.64	1 98 6 41 6	21.3	Ŧĩ.
	8.9	10 58.0	30 58.0	5. 40	2.04	0.00	+ 26 25 50.8	23. 2	+ 0.
	6.7	14 14.6	34 14.6	5. 43	3.91	+ 1.62 -	+ 43 38 51.0	5, 1	+ 4.
	8.9	16 34.6	36 34.6	5. 45	3. 93	+ 1.64	+ 43 45 41.0	5.0	+ 4.
	8	18 15.7 22 8.2	38 15.7 42 8.2	5. 47 5. 50	3. 93 0. 21	$\begin{array}{c c} + 1.65 \\ - 0.27 \end{array}$	+ 43 47 29.6 + 2 53 58.2	5.0 57.8	+ 4. 1.
29 Mayer	7.8	27 4.3	47 4.3	5.55	0.41	- 0.85	5 39 33.8	52.5	_ i.
	9.10	30 50.6	50 50,6	5, 58	0.49	- 1.08 F	+ 6 45 17.0	50.6	- 1.
ε Piscium .		31 41.4	51 41.4	5. 59	0.48	-1.08	+ 6 42 32.1	50.7	- 1.
77 "	7.8	34 34.5	54 34.5	5.62	0.27	$\begin{array}{c c} -0.39 \\ -0.39 \end{array}$	+ 3 44 33.0 + 3 44 31.8	56, 1	- 1.
86 "	7.8	34 37.2 42 26.0	0 54 37.2 1 2 26.0	5. 62 5. 67	0. 27 0. 46	-0.39 -1.03	+ 6 24 51.8	56. 1 51. 2	— 1. — 1.
89 f "		46 35. 1	6 35, 1	5.73	0.19	- 0.20	+ 2 27 40.6	59. 1	_ î.
46 Androm		49 38.3	9 38.3	5.75	4.01	+ 1.76	+ 44 21 39.2	4.4	+ 4.
48		54 44.5	14 44.5	5.80	3.99	1.74	+ 44 15 15.3	4.5	+ 4 .
99 η Piscium .	70	2 59 53.8	19 53.8	5, 85	1. 04 - 3. 43 -	- 1.63 - + 1.30 -	+ 14 12 28.6 + 39 56 8.6	38.8 ¹	<u> </u>
50 υ ¹ Androm	7.8	3 3 8.6 4 6.9	23 8.6 24 6.9	5. 88 5. 89	3. 46	+1.30 + 1.32 +	+ 40 17 24.9	0.0 8.5	+ 4. + 4.
oo o Anuiviii	7	7 21.4	27 21.4	5. 92		1.29	39 33 12.9	9. 2	¥ 4.
53 τ "		7 50.1	27 50.1	5.92	3. 37	1.29	+ 39 33 12.9 + 39 26 52.5 + 18 58 39.7	9.2	+ 4.
109 Piscium .	8	13 6.7	33 6.7	5. 97	1.41	- 1.31 -	+ 18 58 39.7	32, 3	— I.
0 10-1	6.7	16 17.5	36 17.5	6.00	2,52 -	∔ 1.36 -	L 31 33 49 2 1	17.5	+ 2.
2 a Trianguli .	4	20 44.3 22 41.1	40 44.3 42 41.1	6. 04 6. 06	2. 23 - 1. 47 -	+ 0.79 - - 1.25 -	L 19 43 97 7	20.8 31.3	+ 1.5 - 1.5
6β Arietis	7.8	27 2.7	47 2.7	6. 10	1.28	- 1. 42 -	17 16 50.8		_ i.:
57 γ Androm		30 39.2	50 39.2	6. 13	3.60	+ 1.37 -	+ 28 29 41.2 + 19 43 27.7 + 17 16 50.8 + 41 15 16.6		+ 4.3
,	6	30 40.0	50 40.0	6. 13	3.60	+ 1.37	,		
	اما	34 58.4	54 58.4	6. 17	1 69 -	- 0.94 '-	22 24 39.0	27.9	- 0.
13 a Arietis	6.7	37 46.0	1 57 46.0	6. 19	3.20 -	+ 1.27 ;-	- 5/ 59 U.4		+ 3.7
59 Androm		43 50, 4	2 3 50.4	6. 25 6, 33	2.68 - 2.26 -	I 0.99 -	+ 37 59 0.4 + 33 12 1.4 + 28 52 15.6 + 28 40 14.8		+ 2.7
	7 2	50 50 0							_ , ,
59 Androm	7.8	52 50.2 3 55 28.0	12 50, 2 2 15 28, 0	+ 0 6.36	_ 2.24 -	0.85 -	- 28 40 14.8 -		+ 1.6 + 1.4

(107)

				1783 SEPT	EMBER 1	7—Conti	nuod	Zer	o corr. = + 1	l' 49". 4
1	Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
) 14 87 μ	Trianguli	7.8 4 6	h m s 3 58 53.8 4 2 38.7 2 42.3 6 30.8 10 1.5 13 12.8 16 55.8 20 3.7	h m s 2 18 53.8 22 38.7 22 42.3 26 30.8 30 1.5 33 12.8 36 55.8	m s + 0 6.39 6.42 6.42 6.46 6.49 6.52 6.55	2. 89 2. 73 2. 74 1. 57 3. 87 0. 65 3. 13	+ 1.33 + 1.39 + 1.39 - 1.14 + 1.56 - 1.73 + 1.27	+ 35 9 5.6 + 33 42 29.4 + 33 44 35.0 + 20 59 47.6 + 43 20 8.0 + 9 10 36.0 + 37 23 21.7 + 37 25 1.6	- 0 13.7 15.2 15.2 29.7 5.3 46.7	+ 3. + 2. + 2. - 0. + 4. - 1. + 3.
92 α 26 β 28 ω 58 ζ	Ceti Persei	8 7.8	24 8.2 27 51.2 30 54.3 34 6.2 37 19.6 42 26.6 47 58.6	40 3.7 44 8.2 47 51.2 50 54.3 54 6.2 2 57 19.6 3 2 26.6 7 58.6	6. 60 6. 62 6. 65 6. 70 6. 71 6. 74 6. 79 6. 84	3. 14 2. 47 0. 41 0. 23 3. 45 3. 29 1. 51 1. 42	- 1.22 - 1.31	+ 31 1 35.7 + 5 46 6.1 + 3 13 12.7 + 40 4 49.9 + 38 44 57.2 + 20 12 39.3 + 19 3 24.4	11. 4 18. 1 52. 5 57. 4 8. 7 10. 0 30. 7 32. 2	+ 3. + 2. - 1. + 4. + 3. - 1.
27 f 44 ζ 45 ε 34 γ 37 43 ω	Pleiadum . Persei Eridani . Tauri	6	52 40. 4 4 57 27. 2 5 1 7. 8 7 31. 4 12 55. 3 16 15. 9 20 29. 1 23 18. 3 27 47. 6 31 51. 7 36 31. 0 5 40 8. 0	12 40.4 17 27.8 21 7.8 27 31.4 32 55.3 36 15.9 40 29.1 43 18.3 47 47.6 51 51.7 3 56 31.0 4 0 8.0	6.88 6.93 7.02 7.07 7.10 7.14 7.16 7.20 7.24 7.28 + 0 7.33	4.61 4.14 4.46 4.40 1.80 1.77 2.48 — 3.36 + 1.03 — 1.61 1.41 — 3.43	+ 3.11 + 2.09 + 2.86 + 2.76 - 0.73 - 0.79 + 1.32 + 1.58 + 1.58 - 1.31 + 1.30	+ 48 15 37.2 + 45 16 36.6 + 47 25 28.3 + 47 2 50.8 + 23 39 36.0 + 23 21 22.6 + 31 12 4.9 + 39 20 23.1 - 14 7 49.4 + 21 27 23.2 + 19 0 10.8 + 39 53 25.4	0.6 3.5 1.4 1.8 26.4 26.8 18.0 0 9.4 1 49.8 0 29.2 32.3 — 0 8.8	+ 5. + 5. + 5. + 5. + 0. + 2. + 3. - 0. - 0. - 1. + 4.
				1783 8	BPTEMBI	ER 95			ro corr. = +	<u> </u>
5 7 η 13 μ 24 γ 27 ε	"	5. 6 6	7 16 28.4 23 17.9 36 36.6 40 9.5 7 48 12.7 8 3 32.7 8 56.7 13 51.3 8 59 3.7	5 36 28.4 43 17.9 5 56 36.6 6 0 9.5 8 12.7 23 32.7 28 56.7 6 33 51.3 7 19 3.7	+ 1 42.49 1 42.55 1 42.66 1 42.70 1 42.76 1 42.88 1 42.93 1 42.97 + 1 43.34	- 0.69 2.99 1.80 1.64 1.17 - 1.87 + 1.16 - 2.50	- 2.14 + 1.27 - 0.54 - 0.93 - 0.92 - 1.47 - 0.30 + 1.67 + 1.39	+ 9 46 28.6 + 37 9 1.4 + 24 25 44.5 + 22 31 57.8 + 22 35 12.2 + 16 32 59.4 + 25 18 22.4 - 16 25 16.4 + 32 19 14.0	- 0 45.7 11.6 25.5 27.9 27.9 35.6 0 24.6 2 1.4 - 0 16.7	- 1. + 3. + 0. - 0. - 1. + 0. - 0. + 2.
	a gassume	ed as 15° d as 15° d as 5° 3	8' 35"; not 15° 6' 30"; not 5° 20'.	8' 25''. ' 50''.	•	d T.	III assumed	d as 32s.5.; not 22s.5. as 0 10; not 0 8.	•	•

(108)

			1784	MARCH 2	3		Zer	ro corr. = + 1	l' 44 _' '. 3.
Name	Mag.	Т	App. sid. time	Clock corr.	n tan o	q	ζ φ	Refr.	q'
Sun I limb Sun II limb y Geminorum Sirius	1	h m s 2 59 32.5 3 1 42.2 9 16 39.3 26 57.7	h m s 0 8 32.5 0 10 42.2 6 25 39.3 35 57.7	- 0 22.00 21.30 21.28	- 0.08 - 1.11 + 1.10	* + 0.03 - 1.47 + 1.67	+ 1 15 38.6 + 16 32 59.0 - 16 25 40.3	, , ,, - 1 5.1 0 37.8 2 9.0 2 9.0	- 0.9 - 1.7 - 0.5
Geminorum ("	7 7 7 6 6 5.6	32 14. 6 36 52. 3 37 31. 3 40 39. 2 42 42. 1 48 11. 2 50 42. 5 53 50. 6 57 5. 2 9 58 37. 1 10 4 24. 0 7 45. 2 19 23. 4 23 28. 5 31 52. 4 34 27. 5	42 14, 6 45 52, 3 46 31, 3 49 39, 2 51 42, 1 57 11, 2 6 59 42, 5 7 250, 6 6 5, 2 7 37, 1 13 24, 0 16 45, 2 28 23, 4 32 28, 5 40 52, 5	21. 27 21. 27 21. 27 21. 25 21. 25 21. 24 21. 23 21. 23 21. 21 21. 19 21. 18 21. 18	- 3.76 1.84 1.83 1.69 1.42 3.08 1.69 2.00 1.13 1.57 0.79 2.00 0.37 2.02 0.15	+ 2. 12 - 0. 02 - 0. 06 - 0. 51 - 1. 16 + 1. 29 - 0. 51 + 0. 67 - 0. 88 - 2. 46 - 0. 72 - 0. 88 + 0. 79 - 0. 16 - 0. 16	+ 13 37 45.0 + 45 19 42.0 + 26 19 32.8 + 26 10 12.5 + 24 29 7.8 + 20 51 5.1 + 39 37 47.8 + 24 27 9.0 + 28 14 6.2 + 16 53 47.7 + 22 20 40.3 + 12 3 41.8 + 28 19 25.0 + 5 45 5.6 + 28 30 37.6 + 2 17 35.5 + 2 20 25 16.5	0 42. 2 3. 7 24. 8 27. 0 31. 8 9. 7 27. 1 22. 5 37. 3 29. 0 44. 8 55. 9 0 22. 2 1 3. 0 0 33. 4	- 2.0 + 5.1 + 0.8 + 0.7 + 0.2 + 1.3 - 1.7 - 0.2 - 2.0 + 1.4 - 1.5 + 1.5 - 1.0
)	7 7 6 8 7 7.8 6	36 8.0 38 31.0 42 29.4 44 54.3 46 48 2.5 50 57.0 52 7.2 55 14.5 10 59 9.0 11 2 23.7 11 5 6.3	45 8.0 47 31.0 51 29.4 53 54.3 55 57 2.5 7 59 57.0 8 1 7.2 4 14.5 8 9.0 11 23.7 8 14 6.3	21. 16 21. 15 21. 15 21. 14 21. 14 21. 13 21. 13 21. 12 21. 12 21. 11 — 0 21. 10	1. 09 0. 19 1. 55 1. 60 0. 94 1. 14 2. 74 1. 46 1. 28 — 1. 94	- 1.48 - 0.25 - 0.91 - 0.81 - 1.63 - 1.42 - 1.42 + 1.30 - 1.09 - 1.31	+ 16 20 10.0 + 2 46 33.1 + 22 38 31.0 + 23 13 5.4 + 22 10 33.0 + 14 14 21.4 + 17 8 58.9 + 17 7 50.0 + 36 21 19.3 + 21 23 48.8 + 18 59 37.1 + 27 36 18.9	0 38.2 1 2.0 0 29.5 28.8 30.1 41.3 37.0	- 1.8 - 1.2 - 0.3 - 0.2 - 0.5 - 2.0 - 1.7 - 1.7 + 3.4 - 0.3 + 1.2
Sun I limb Sun II limb Aldebaran . Capella . Rigel Tauri . Yorionis . '' . Aurigæ . Geminorum		3 3 8.2 3 5 8.0 7 15 7 55 27.5 8 4 0.5 4 54.5 21 10.3 8 35 3.3 9 16 36.5	0 12 8.2 0 14 8.0 4 24 5 4 27.5 13 0.5 13 54.5 30 10.3 5 44 3.3 6 25 36.5	18.91 18.90 18.90 18.87 18.85 18.77	- 0.07 - 0.11 + 0.54 - 1.99 - 0.40 + 0.14 - 3.66 1.09 1.74	+ 1.87 + 0.73 - 0.96 + 1.08 + 1.93 - 1.47	+ 1 7 3.0 + 1 39 15.0 + 16 2 33.6 + 45 43 47.0 - 8 28 11.3 + 28 23 8.4 + 6 7 30.5 - 2 4 48.7 - 9 45 45.0 + 44 52 45.9 + 16 32 56.8 + 44 41 7.0 + 25 18 22.8	- 1 4.3 1 3.1 0 37.8 0 3.0 1 31.5 0 22.0 0 54.4 1 12.3 1 36.3 0 4.1 37.3 4.4 25.7	- 0.9 - 1.0 - 1.8 + 5.2 - 0.5 + 1.4 - 1.5 - 0.7 - 0.4 + 5.1 - 5.0 + 5.0 + 0.5
Sirius	7.8 7.8	24 32, 4 26 54, 5 33 11, 8 39 13, 0 43 40, 1 48 9, 0 50 53, 5 9 52 50, 5	33 32.4 35 54.5 42 11.8 50.2 48 13.0 52 40.1 57 9.0 6 59 53.5 7 1 50.5	18. 77 18. 76 18. 75 18. 75 18. 74 18. 73 18. 73 18. 73 18. 72 — 0 18. 72	- 0.86 + 1.08 - 3.72 1.84 1.08 1.55 3.05 1.80 - 1.73	- 1.80 + 1.67 + 2.12 - 0.02 - 1.48 - 0.87 + 1.29 - 0.09 - 0.33	+ 13 5 42.7 - 16 25 41.8 + 45 19 42.7 + 26 19 33.4 + 26 10 12.5 + 16 20 35.1 + 22 55 28.6 + 39 37 43.8 + 26 4 16.0 + 25 13 20.8 - 25 13 20.8	0 42.4 2 7.2 0 3.6 24.5 24.7 37.7 28.7 9.6 24.8 — 0 25.9	- 2.0 - 0.5 + 5.1 + 0.8 + 0.7 - 1.8 - 0.2 + 4.0 + 0.7 + 0.4

(109)

			1	1784 MARC	H 93—Con	tiuued		Zer	o corr. = + 3	l′ 47″. 2
	Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
a)	η Can. Maj α Geminorum Procyon .	7	h m s 9 55 1.1 9 58 57.3 10 3 39.4 6 47.2 12 8.6 10 19 20.2	h m s 7 4 1.1 7 57.3 12 39.4 15 47.2 21 8.6 7 28 20.2	m s - 0 18.71 18.70 18.70 18.70 18.69 - 0 18.67	- 1.88 2.77 - 1.97 + 2.03 - 2.33 - 0.37	* 0.21 + 1.27 + 0.66 + 4.42 + 1.39 - 0.87	+ 27 2 26.2 + 37 7 27.6 + 28 11 19.1 - 28 51 7.2 + 32 19 21.2 + 5 45 2.2	- 0 23.7 12.3 0 22.3 4 23.4 0 17.5 - 0 55.1	+ 1. + 3. + 1. - 4. + 2. - 1.
				1784	MARCH 2	6		Zer	o corr. = +	1′ 45″.0
	y Geminorum s " Sirius c Can. Maj	6 7 7	9 16 29.0 21 52.7 24 25.6 26 48.2 39 6.5 47 14.5 50 46.8 52 43.3 55 36.3	6 25 29, 0 30 52, 7 33 25, 6 35 48, 2 48 6, 5 56 14, 5 6 59 46, 8 7 1 43, 3 4 36, 3	- 0 12.01 12.01 12.00 12.00 11.99 11.97 11.96 11.96	- 1.08 1.72 - 0.85 + 1.08 - 1.07 1.06 1.78 1.72 1.08	0, 32 1, 47	+ 16 32 59.4 + 25 18 23.6 + 13 5 43.7 - 16 25 44.8 + 16 20 36.6 - 28 39 5.2 + 16 14 30.6 + 26 4 17.5 + 25 13 23.2 + 16 29 34.9	36. 3	- 1. - 4. - 1. + 0. + 1.
)	a Geminorum Procyon .	7	9 58 50, 3 10 1 44. 4 5 27. 6 12 2. 2 14 9. 5 10 17 22. 8	7 50.3 10 44.4 14 27.6 21 2.2 23 9.5 7 26 22.8	11, 95 11, 94 11, 94 11, 93 11, 93 — 0 11, 92	1.57 1.37	+1.39	+ 37 7 31.6 + 23 19 28.2 + 20 39 13.2 + 32 19 20.7 + 3 48 46.6 + 24 40 33.0 + 5 45 4.6	11.9 27.4 30.8 17.0 57.3 25.7 — 0 53.5	+ 3. - 0. - 0. + 2. - 1. + 0. - 1.
				1784	MAY 95			Zero	corr. = + 1	′ 39″. 5
)	Sun II limb ζ Virginis . η Ursæ Maj. θ Centauri . Arcturus .	7	7 1 3.5 16 12 15.0 20 11.2 25 36.0 31 29.4 42 27.9 16 54 25.0	4 12 3,5 13 23 15.0 31 11.2 36 36.0 42 29.4 13 53 27.9 14 5 25.0	+ 0 27.71 29.09 29.10 29.12 29.13 29.16 + 0 29.19		- 1.34 1.31 + 5.50	+ 21 21 47.0 - + 0 30 0.0 - + 47 20 57.8 + 18 31 0.6 + 50 21 56.0 + 18 58 52.2 - - 35 11 53.4 + 20 17 29.1 -		- 0. - 0. + 5. - 1. + 5. - 10. - 11.
				178	4 JUNE 5			Zero	corr. = +1	44". 2
··)	Sun I limb Sun II limb Capella - Rigel Arcturus -	7 7.8 7 6	7 42 55. 6 48 35. 9 7 51 56. 0 16 52 48. 8 16 58 39. 5 17 2 15. 5 6 56. 9 52 38. 8 17 56 7. 3 18 0 25. 1 5 33. 6 9 39. 8 12 2. 8 18 19 47. 4	4 55 55.6 5 1 35.9 5 4 56.0 14 5 48.8 11 39.5 15 15.5 14 19 56.9 15 5 38.8 9 7.3 13 25.1 18 33.6 22 39.8 25 2.8 15 32 47.4	46. 92 46. 91 46. 89 46. 77 46. 75 46. 74 46. 72	+ 0.50 - 1.28 + 0.06 - 1.81 1.70 0.06 0.15 0.01 - 0.15 + 0.03	$\begin{array}{c} + 1.87 \\ - 1.16 \\ + 0.73 \\ + 0.72 \\ + 0.13 \\ + 0.04 \\ - 0.21 \\ + 0.32 \\ - 0.21 \\ + 0.52 \\ + 1.39 \end{array}$	+ 22 22 25, 3 + 22 54 9.0 + 45 43 45, 8 - 8 28 5, 3 + 20 53 32, 2 + 20 17 28, 6 - 1 0 27, 8 + 28 22 31, 2 + 26 48 15, 4 + 1 9 59, 2 + 2 34 41, 0 - 0 15 17, 9 + 2 35 18, 4 - 0 27 20, 4 + 32 4 14, 9 + 20 21 8, 6	- 0 27.6 27.0 0 3.0 1 26.0 0 30.1 0 30.8 1 6.8 0 21.2 0 22.9 1 1.9 0 58.9 1 5.7 17.1 - 1 30.7	- 0. - 0. + 5. - 0. - 1. - 0. + 1. - 0. - 1. - 0. + 1. - 0. - 1. - 0. - 1.

(110)

h m s 18 21 30.8 27 13.2 30 56.7 35 16.7 40 50.9 45 11.6 45 41.3 51 6.3 53 42.3 18 54 23.1 50 44.2 9 48.0 19 0 15.6 6 34.2 9 48.0 19 18 40.7	5 1 23.1 5 8 5.3 14 5 36.9 6 28.4 17 4.5 23 8.7 14 31 14.1	m s 46.69 46.67 46.64 46.63 46.62 46.62 46.60 46.60		+ 2.29 - 0.82 - 1.16 - 1.21	+ 45 43 49.3 + 23 11 8.7 + 20 53 40.0 + 20 17 28.6 + 20 10 58.4 + 31 18 3.6	44. 6 40. 5 39. 4 42. 7 26. 7 0 31. 6 2 0.8 0 52. 6 - 0 54. 1	+ 4. - 0. - 1. - 2. - 2. - 0. - 1. - 0. - 1.
7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 48 23.1 7 55 2 36.9 16 52 28.4 17 4 4.5 10 8.7 17 18 14.1	15 34 30.8 40 13.2 43 56.7 48 16.7 53 50.9 58 11.6 15 58 41.1 16 3 44.3 4 6.3 6 42.3 7 55.0 13 15.6 19 34.2 22 48.0 16 31 40.7 178 5 8 5.3 14 5 36.9 6 28.4 17 4.5 23 8.7 14 31 14.1	— 0 46.69 46.67 46.66 46.64 46.63 46.62 46.60 46.59 46.57 46.55 46.55 46.55 46.55 46.52 — 0 35.76 35.74 34.13 34.12 34.08 34.08 — 0 34.05	- 1.70 0.17 2.46 3.20 1.45 0.62 0.80 0.84 0.71 1.47 - 1.20 + 0.96 - 0.36 - 0.31	+ 0.18 - 0.26 + 1.30 + 1.64 - 0.78 - 2.61 - 2.71 - 1.64 - 2.61 - 0.73 - 0.73 - 0.75 + 2.29 - 0.82 - 1.16 - 1.21 - 1.21 + 1.33	+ 26 57 51.4 + 2 51 7.4 + 36 18 33.1 + 43 44 40.6 + 23 23 23.8 + 10 28 5.0 + 13 20 33.0 + 14 5 41.2 + 11 57 7.0 + 23 38 50.0 + 19 38 55.0 + 19 38 55.0 + 17 7.0 + 23 38 50.0 + 19 38 55.0 + 5 58 39.8 + 5 17 9.5 - 20 17 28.6 + 20 17 28.6 + 20 17 28.6 + 20 17 58.4 + 31 18 3.6	- 1 22.7 58.5 12.6 5.1 27.0 44.8 44.6 40.5 39.4 42.7 26.7 0 31.6 2 0.8 0 52.6 - 0 54.1 - 0 3.1 27.2 30.0 31.3 31.4	+ 1. - 1. + 3. + 4. - 0. - 1. - 2. - 2. - 2. - 1. - 1. - 1. - 1. - 1. - 1. - 1. - 2. - 0. - 1. - 1. - 1. - 2. - 0. - 1. - 1. - 1. - 2. - 0. - 1.
7 55 5.3 16 52 36.9 16 52 28.4 17 4 4.5 10 8.7 17 18 14.1	5 1 23.1 5 8 5.3 14 5 36.9 6 28.4 17 4.5 23 8.7 14 31 14.1	- 0 35.76 35.74 34.13 34.12 34.08 34.08 - 0 34.05	- 3, 47 1, 44 1, 29 1, 24 1, 24 2, 06	$\begin{array}{r} -0.82 \\ -1.16 \\ -1.21 \\ -1.22 \\ +1.33 \end{array}$	+ 45 43 49.3 + 23 11 8.7 + 20 53 40.0 + 20 17 28.6 + 20 10 58.4 + 31 18 3.6	- 0 3.1 27.2 30.0 31.3 31.4	+ 5. - 0. - 0. - 1. - 1.
7 55 5.3 16 52 36.9 16 52 28.4 17 4 4.5 10 8.7 17 18 14.1	5 8 5.3 14 5 36.9 6 28.4 17 4.5 23 8.7 14 31 14.1	35. 74 34. 13 34. 12 34. 08 34. 08 0 34. 05	1. 44 1. 29 1. 24 1. 24 2. 06	$\begin{array}{r} -0.82 \\ -1.16 \\ -1.21 \\ -1.22 \\ +1.33 \end{array}$	+ 23 11 8.7 + 20 53 40.0 + 20 17 28.6 + 20 10 58.4 + 31 18 3.6	27.2 30.0 31.3 31.4	- 0.9 - 0.0 - 1.0 - 1.
7 47 44.2	178				+ 17 20		
7 47 44.2		UNE I	16		Ze	ero corr. = + 1	l ′ 43″. 1
8 27 37.3 8 29 31.6 12 43 50.5 16 25 59.1 31 24.1 16 52 48.8 17 6 5.7 13 20.8 18 0.2 22 32.5 25 48.1 27 30 25.2 32 25.7 35 11.0	5 0 44.2 5 40 37.3 5 42 55.9 6 35 31.6 9 56 50.5 13 38 59.1 13 44 24.1 14 5 48.8 19 5.7 26 20.8 31 0.2 35 32.5 38 48.1 40 40 25.2 45 25.7 48 11.0	+ 0 3.37 3.50 3.51 3.69 4.36 4.92 4.93 4.98 5.03 5.04 5.06 5.07 5.08 5.09	1. 46 — 1. 50 + 1.01 — 0. 79 4. 13 1. 21 1. 27 1. 73 1. 54 2. 08 1. 81 1. 61 1. 85	+ 1.67 $- 1.79$ $+ 3.45$ $- 1.27$ $- 1.21$ $+ 0.12$ $- 0.60$ $+ 1.34$ $+ 0.55$ $- 0.32$ $+ 1.30$	$\begin{array}{c} + \ 19 \ 27 \ 53.9 \\ - \ 35 \ 12 \ 2.4 \\ + \ 20 \ 17 \ 31.1 \\ + \ 26 \ 48 \ 12.4 \\ + \ 24 \ 10 \ 31.4 \\ + \ 31 \ 21 \ 26.5 \\ + \ 27 \ 58 \ 7.0 \\ + \ 25 \ 14 \ 52.4 \\ + \ 29 \ 29 \ 41.0 \\ + \ 28 \ 21 \ 59.5 \\ + \ 30 \ 55 \ 26.2 \\ + \ 25 \ 31 \ 31.2 \end{array}$	1 27. 2 0 27. 0 0 26. 5 2 1. 3 0 40. 9 1. 5 0 32. 0 8 4. 4 0 31. 0 23. 1 26. 2 18. 0 21. 8 25. 0 20. 1 21. 4 18. 5 24. 7	- 2. + 5. - 1. -10. - 1. + 0. + 2. + 1. + 1. + 1. + 2. + 0.
38 41 30.5 42 10.3 45 50.1 48 52.6 52 26.2 56 5.0 17 58 46.3	51 54 30.5 55 10.3 14 58 50.1 15 1 52.6 5 26.2 9 5.0 15 11 46.3	5. 10 5. 10 5. 11 5. 11 5. 13 5. 13 + 0 5. 14	1.81 1.80 1.92 2.29 1.97 2.10 — 1.65	+ 0.52 + 0.47 + 1.07 + 1.39 + 1.18 + 1.37 - 0.19	$\begin{array}{c} + 40 & 6 & 10.0 \\ + 27 & 54 & 39.1 \\ + 27 & 46 & 29.0 \end{array}$	8.8 22.0 22.1 20.3 15.3 19.6	- 1. + 4. + 1. + 1. + 2. + 1. + 2. + 0.
	12 43 50.5 16 25 59.1 31 24.1 16 52 48.8 17 6 5.7 13 20.8 18 0.2 22 32.5 25 48.1 27 30 25.2 30 25.2 31 11.0 38 41 30.5 42 10.3 45 50.1 48 52.6 52 26.2 56 5.0	12 43 50.5 9 56 50.5 13 38 59.1 13 44 24.1 16 52 48.8 17 6 5.7 13 20.8 18 0.2 22 32.5 25 48.1 27 30 25.2 32 25.7 35 11.0 38 41 30.5 42 10.3 45 50.1 48 52.6 52 26.2 56 5.0 17 58 46.3 15 11 46.3 15 11 46.3	12 43 50.5 9 56 50.5 4.36 16 25 59.1 13 38 59.1 4.92 31 24.1 13 44 24.1 4.93 16 52 48.8 14 5 48.8 4.98 17 6 5.7 19 5.7 5.03 18 0.2 26 20.8 5.03 18 0.2 31 0.2 5.04 22 32.5 35 32.5 5.06 25 48.1 38 48.1 5.07 27 40 5.07 30 25.2 43 25.2 5.07 32 25.7 45 25.7 5.08 35 11.0 48 11.0 5.09 38 51 54 30.5 5.10 42 10.3 55 10.3 5.10 45 50.1 14 58 50.1 5.11 48 52.6 5 15 2.6 5.11 52 26.2 5.6 5.0 56 5.0 9 5.0 5.0 17 58 46.3 15 11 46.3 + 0 5.14	12 43 50.5 9 56 50.5 4.36 -0.79 16 25 59.1 13 38 59.1 4.92 4.13 31 24.1 13 44 24.1 4.93 1.21 16 52 48.8 14 5 48.8 4.98 1.27 17 6 5.7 19 5.7 5.03 1.73 13 20.8 26 20.8 5.03 1.54 18 0.2 31 0.2 5.04 2.08 22 32.5 35 32.5 5.06 1.81 27 40 5.07 1.61 27 40 5.07 1.85 32 25.7 43 25.2 5.07 1.85 32 25.7 45 25.7 5.08 2.05 35 11.0 48 11.0 5.09 1.63 38 51 54 30.5 5.10 1.80 42 10.3 55 10.3 5.10 1.80 48 52.6 15 152.6 5.11 1.92 56 5.0 9 5.0 5.13 1.97 58 46.3 15 11 46.3 + 0 5.14 - 1.65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(111)

				1784	4 JUNE 91		Zei	ro corr. = + 1	l' 43". 4
	Name	Mag.	T	App. sid. time	Clock corr. n t	an δ	ζφ	Refr.	q'
;)	β Persei a '' Aldebaran Venus Sun I limb Sun II limb		h m s 9 40 52.3 9 5 40.3 11 10 14.6 11 51 39.0 12 48 7.1 12 50 25.2	h m s 2 54 52.3 3 9 40.3 4 24 14.6 5 5 39.0 6 2 7.1 6 4 25.2	39. 03 4 38. 85 1 38. 76 1 38. 63 1	\$ 2.94 + 1.31 1.03 + 3.25 1.01 - 1.49 1.45 - 0.95 1.50 - 0.82 1.54 - 0.72	+ 40 5 7.8 + 49 2 50.4 + 16 2 33.6 + 22 25 57.8 + 23 10 54.6 + 23 42 37.3	- 0 8.6 0.2 35.9 27.8 26.9 - 0 26.2	+ 4. + 5. - 1. - 0. - 0.
)				178	4 JUNE 22		Zer	ro corr. = + :	1′ 43″.
	Double star	7 6 6 6.7	4 59 10.9 5 3 52.0 6 18.0 5 8 52.1	22 13 10.9 17 52.0 20 18.0 22 22 52.1	36. 2 36. 2	1. 06 - 1. 44 2. 67 + 1. 27 1. 78 + 0. 18 1. 01 - 1. 49	+ 37 19 5.4	- 0 34.9 11.4 22.4 - 0 36.0	- 1. + 3. + 1. - 1
			<u> </u>	178	34 JULY 4	·- ·	Zei	ro corr. = +	1′ 42″.
() ()	Aldebaran Capella . Rigel Venus		11 9 28.7 46 44.0 11 50 4.2 13 0 2.6	4 23 28.7 5 0 44.0 5 4 4.2 6 14 2.6	4.31 - 3 4.32 +	$ \begin{vmatrix} 1.04 \\ 3.69 \\ + 2.29 \\ 0.53 \\ + 1.87 \\ - 0.76 \end{vmatrix} $	+ 16 2 37.6 + 45 43 44.8 - 8 28 2.3 + 23 31 33.7	- 0 36.6 0 3.1 1 27.7 - 0 26.6	- 1 + 5 - 0 - 0
			·	178	4 JULY 14		Ze	ro corr. = +	1′ 39″.
f) r)	Capella Rigel - Venus - Sun I limb Sun II limb a Lyrae - V Sagittarii - A Aquilæ -	8 6 6.7 6	11 49 25.0 13 52 53.6 14 21 28.9 14 23 45.2 0 58 46.5 1 2 44.0 6 47.3 14 55.2 27 17.1 1 36 58.3 2 25 34.2	5 4 25.0 7 7 53.6 36 28.9 7 38 45.2 18 13 46.5 17 44.0 21 47.3 29 55.2 42 17.1 18 51 58.3 19 40 34.2	16. 31 — 16. 22 — 14. 50 + 14. 50 —	1. 10 — 1. 45 2. 92 + 1. 27 1. 55 + 1. 83 1. 48 + 1. 63	+ 21 49 38.6 - 23 31 13.0 + 6 3 52.4 + 16 46 20.4 + 38 33 56.2 - 22 54 21.2 - 22 1 24.5	- 0 3.1 1 27.4 0 27.0 0 28.6 2 54.7 0 51.8 35.2 0 10.2 2 44.5 2 39.7 - 0 47.9	+ 5 - 0 - 0 - 1 - 1 + 3 - 1 - 1
				1784 8	EPTEMBER	7	Zer	ro corr. == + :	1′ 40′′.
i)	γ Aquilæ	7 7 6.7 6	20 18 25.5 22 40.2 27 51.0 30 1.5 32 28.2 35 40 2.0 48 1.3 48 20 56 53.3 21 2 50.1	19 36 25.5 40 40.2 45 51.0 48 1.5 50 28.2 53 19 58 2.0 20 6 1.3 6 24.9 14 53.3 20 50.1	20, 18 20, 17 20, 16 20, 15 20, 13 20, 11 20, 11 20, 09 20, 07	0.59 — 2.35 0.48 — 1.44 1.32 — 1.03 1.41 — 0.82 1.94 + 1.24 1.40 — 0.85 0.08 + 0.01 0.77 + 1.58 2.73 + 1.29 3.75 + 3.17 3.69 + 3.07	+ 8 17 54.0 + 21 51 24.4 + 23 11 30.0 + 30 23 13 19.8 + 36 26 + 22 59 8.3 + 1 23 - 13 11 49.8 - 15 26 35.1 + 39 33 7.0 + 48 38 59.0	- 0 44.6 47.4 28.3 26.7 18.6 0 27.0 1 44.4 1 54.8 0 9.1 0.2	

37				a. ı				D. 6	
Name.	Mag.	<i>T</i>	App. sid. time	Clock corr.	n tan o	q	ζφ	Refr.	q'
Delphini . a Cygni ω Capricorni ν Cygni	7 6 6 4 7.8	h m s 21 9 55.4 14 30.3 16 28.3 21 12.0 22 30.2 27 45.9 31 32.5 36 23.5	h m s 20 27 55. 4 32 30. 3 34 28. 3 39 12. 0 40 30. 2 45 45. 9 49 32. 5 20 54 23. 5	m s - 0 20. 05 20. 04 20. 03 20. 02 20. 02 20. 00 20. 00 19. 98	+ 1.73 - 1.63 1.70	8 - 2.70 + 1.93 + 1.79 + 3.92 - 0.04 + 0.28 + 1.32 + 1.35	+ 10 37 19.2 + 44 53 14.7 + 44 29 31.8 - 27 40 33.7 + 26 16 50.0 + 27 13 41.6 + 40 19 16.7 + 31 29 14.8	3.8 0 4.1 3 46.8 0 23.4 22.1	— 3
9 Equulei . β Aquarii . 866 Mayer . λ Aquarii . μ Capricorni a Aquarii . θ Pegasi . Jupiter .	6 3.4	21 52 48.2 22 2 32.3 10 27.2 17 14.8 23 51.3 37 3.8 41 42.2 22 57 7.2	21 10 48.2 20 32.3 28 27.2 35 14.8 41 51.8 55 3.8 21 59 42.2 22 15 7.2	19, 89 19, 87 19, 86 19, 81 19, 80	0.72 0.86 $+ 0.08$ $- 0.30$	- 1.02 + 1.86 + 1.58 + 1.62 + 1.59 + 0.86 - 0.71	+ 6 26 20.9 - 6 30 45.8 - 17 36 58.6 - 12 20 53.1 - 14 33 3.8 - 1 21 54.2 + 5 8 8.2 - 12 20 11.2	0 50.8 1 20.3 2 7.0 1 40.9 50.6 1 6.9 0 53.3 — 1 40.9	- 1 - 0 - 0 - 0 - 0 - 0 - 0
·····			1784 SI	PTEMBE	:R 9		Zero	согт. = +	1′ 38″
Sun I limb Sun II limb Venus . Mercury . V Ophiuchi . P "		23 54 40. 2 23 56 49. 4 0 29 45. 5 0 27 29. 8 18 29 22. 9 36 50. 0	23 12 40. 2 14 49. 4 23 47 45. 5 0 45 29. 8 17 47 22. 9 17 54 50. 0	— 0 13, 68 13, 65	+ 0.57 - 0.15	+ 1.80 - 0.20	+ 5 15 12.9 - + 2 46 55.2 - 6 54 15.3 - 9 44 6.0 + 2 56 40.0 + 2 33 11.0 + 9 31 57.5 + 30 31 15.0	- 0 52.0 0 56.7 1 20.1 1 31.3 0 57.7 58.2 45.9 18.6	- 1 - 0 - 0 - 1 - 1 - 1 + 2
### A Herculis 106	7 7.8	46 4.0 52 36.2 53 28.7 18 58 26.5 19 3 4.3 7 21.1 10 25.2 19 11 11.8	18 4 4.0 10 36.2 11 28.7 16 26.5 21 4.3 25 21.1 28 25.2 18 29 54.9	13. 63 13. 61 13. 61 13. 60 13. 59 13. 57 13. 56 — 0 13. 56	$ \begin{array}{c c} 1.49 \\ -1.33 \\ 0.00 \\ +0.07 \end{array} $	+ 0.33 + 0.80 - 1.21 + 1.28	+ 20 46 29.2 + 31 20 27.9 + 24 20 56.0 + 21 51 48.8 + 29 44 49.0 + 0 4 19.0 - 1 9 1.6 + 20 17 40.4 + 38 42 21.0 + 38 34 11.8	29. 9 17. 7 25. 5 28. 6 0 19. 9 1 3. 7 9. 1 1 6. 7 0 30. 6	- 0 + 0 + 0 + 0 - 0 - 0 - 1 + 3
			1784 SE	PTEMBE	R 14		Zero	corr. = + 1	· 41".
Sun I limb Sun II limb Mercury d Ophiuchi P Serpentis 60 u 61 a Lyrse Therculis Y Lyrse Other controls Type Controls	6 6 7 6.5 7	13 12 20.0 14 28.9 13 46 47.0 18 56 37.0 18 58 8.0 19 0 24.2 2 46.1 7 3.0 11 36.8 12 23.2 18 22.5 21 43.0 21 58.9 27 28.2	12 30 20.0 12 32 28.9 13 4 47.0 18 12 37.0 16 8.0 18 24.2 20 46.1 25 3.0 29 36.8 30 23.2 36 22.5 39 43.0 39 58.9	4. 07 4. 08 4. 09 4. 09 4. 11 4. 12	$ \begin{array}{r} + 0.12 \\ + 0.06 \\ \hline - 1.20 \\ - 2.60 \\ + 0.53 \\ \hline - 1.21 \\ \end{array} $	+ 1.15 + 0.33 + 1.09 + 0.80 - 1.21 + 1.28 + 1.83 - 1.83 + 1.44 + 1.44	+ 2 48 24.7 - + 3 20 26.2 - 9 39 31.6 + 29 44 49.6 + 0 4 19.8 - 2 7 10.2 - 1 9 5.4 + 20 17 34.6 + 38 34 11.4 - 9 14 48.8 + 20 20 5.7 - 3 30 11.0 - 3 33 34 5.3 + 32 17 34.0 + 3 55 32.8	1 4.4 9.7 1 7.3 0 30.9 0 10.3 1 30.5 0 30.6 1 13.1 1 13.2	— 1.
2 Antinoi		27 29.8 19 32 4.9	45 29.8	4. 13	— 0.21	- 0.42 + 1.83	+ 3 55 32.0 - 6 1 59.8	0 56. 4 - 1 20. 3	— 1 — 0
a Hour assumed a	8 22 : no	t 21 · and minn	te as 41 : not 42			b T.	I assumed as 57m.;	not 58m.	

Digitized by Google

Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
		h m s	h m s	m s	8	s	0 / //	, ,,	,,
	5.6	19 38 51.0	18 56 51,0	+ 0 4.16		+1.51	- 21 20 10.4	- 2 35.2	_ 1.
	5.6	44 48.0	19 2 48.0	4. 17	0.11	- 0.09	+ 1 55 51.9	1 0.4	<u> </u>
1 Anseris .		19 48 56.3	6 56, 3	4. 17	1.25		+21 0 14.5	0 29, 9	 0.
	7.8	20 2 46.8	20 46.8	4.23	1.01	— 1.42	+ 17 14 27.1	34.8	—].
	6.7	6 32.7	24 32.7	4.24	0.14		+ 2 26 24.2	59.3	- <u> </u> .
Aff A At at	7	9 59.0	27 59.0		- 0.16	-0.27	+ 2 53 40.6	0 58.5	- <u>1</u> .
45 Antinoi - 47 Aquilæ -		11 33.0 14 26.4	29 33.0 32 26.4	4.25 4.26	$\frac{+0.06}{-0.65}$	+0.79	-1656.0 + 11192.6	1 7.3 0 43,4	$\begin{bmatrix} -0. \\ 1. \end{bmatrix}$
47 Aquilæ .		14 20, 4	32 20, 4	4.20	- 0.03	3.00	+ 10 5 10.0	45.4	= j:
a "	!	22 15.5	40 15.5	4.28	0.47	1, 44	+ 8 17 55.6	48.4	- i.
9 Sagittæ .	7	24 45.0	42 45.0	4.29	1.06	- 1.38	+ 18 6 46,2	33.7	_ i.
β Aquilæ .	4.5	26	44				+ 5 52 7.0	52.7	- 1.
Sagittæ	6	29 57.8	47 57.8	4, 30	0.94	- 1.48	+ 16 12 16.6	36. 3	- 1.
6 Vulpeculæ		31 55.3	49 55, 3	4. 31	1.35	-0.93	+ 22 30 26.7	28. 1	— 0.
63 7 Antinoi .		35 35.4		4.32	0.39		+ 6 40 12.2	51.2	- 1.
) 15 Vulpeculæ		39 37.2	19 57 37.2	4.33	-1.38	-0.85	+22597.6	0 27.4	
65 θ Antinoi .	4	42 7.3 47 36.5	20 0 7.3 5 36.5	4, 33	$+0.08 \\ 0.76$	+0.89	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 8.0 46.1	
a¹ Capricorni a² ''		48 0.0	6 0.0	4, 35 4, 35		+1.58 +1.58	_ 10 5 00.4	40. 1	_ 0
a ³ ''	6	50 37, 0	8 37.0	4.36	+ 0.78	丁 1.57	— 13 2 5 19, 5	1 47.3	- 0
γ Cygni .	1	20 56 28.3	14 28.3	4.37	-2.69	1.29	+ 39 33 7.0	0 9.3	+ 4
	i	21 1 33, 8	19 33.8	4.39	2.52	+ 1.27	+ 37 43 3.4 + 36 11 44.2	11.2	+3
44 " .	7	4 46.7	22 46.7	4.39	2.40	+ 1.30	+ 36 11 44.2	12.8	+ 3
26 Vulpeculæ	6.7	8 53, 2	26 53.2	4.41	1.53	- 0.35	+ 25 7 32.2	25. 0	+ 0
	6	9	27				+ 25 42 11.0	24.2	
a .	, 7	14 6.1	32 6.1	4.42	3, 25		+ 44 53 11.6	4.0	
a Cygni	70	16 4.2	34 4.2	4. 42	3.20		+ 44 29 36.8	4.3	
31 Anseris .	7.8 6.5	22 51.5	40 51.5	4.44	1.63	+ 0.04	+ 26 33 56.0 + 26 16 47.8	23, 2 23, 6	
31 Anseris .	6.5	24 52.7 21 27 20.9	42 52.7 20 45 20.9	4.44	1.61 - 1.68	-0.04	+ 20 10 47.8 + 27 13 41.0	0 22.4	+0 + 1
$oldsymbol{eta}$ Aquarii .	"	22 2 7.2	21 20 7.2		+0.37	+0.28 +1.86	$\frac{+27}{6}$ 30 47.8	1 21.7	二 i
b redumin .	7.8	19 56.1	37 56, 1	4.59	0.79	+1.57	— 13 42 49.8	48.5	
μ Capricorni		23 27.2	41 27.2	4.60	0.85	⊥ 1 59	14 33 10 8	52, 3	
ι Aquarii .	5	36 42.2	21 54 42.2	4. 64	0.87	+ 1.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54. 1	— e
Jupiter .		22 53 32.4	22 11 32.4	+ 0 4.68	+ 0.73	+ 1.61	— 12 37 43, 6	— 1 43.9	- 0
			1784 81	EPTEMBI	ER 15		Zer	ro corr. = +	1′ 41″.
Sun I limb		0 15 52.1	23 33 52.1				+ 2 57 13.5	— 0 58, 4	_ 1.
Sun II limb	}	18 0.9	23 36 0.9						
Venus		0 56 34.7	0 14 34.7				-01651.6	1 5.4	— 9
e Serpentis .	7 6	19 2 42.3	18 20 42, 3	+ 0 7.86		+ 9.80	- 1 9 5.4 - 20 17 34 6	1 7.3	- 0 - 1
	7.6	6 58.8	24 58.8 28 10.3	7.87 7.88	-1.20 + 0.45	-1.21 +1.88	+ 20 17 34.6 - 7 58 19.3	0 30.8 1 26.4	
o Aquilæ .	5	12 19.6	30 19.6	7.89	+ 0.53	¥ 1.83	- 9 14 48.8	30.7	
14	"	15 50.8	33 50.8	7.90	- 0.11	+ 0.08	+ 1 50 39.2	1 0.6	
110 Herculis .	5	18 18.8	36 18.8	7.90		-1.21	+20203.2	0 30.8	- 1
	7	21 11.5	39 11.5	7. 91	1.40	- 0.80	+23 16 3.2	27.1	- 0
112 "	6	24 59.6	42 59.6	7.92	1.26	- 1.11	+ 21 9 33.9	29.6	
	7	28 28.1	46 28.1	7.93	1.04	- 1.40	+ 17 42 43.0	34.1	- <u>1</u>
. Andinat	6	28 31.5	46 31.5	7.93	1.04	- 1.40	+ 17 49 50.0 6 9 0 9	0 34.1	- 1
ι Antinoi . σ Sagittarii	4.5	32 1.5	50 1.5 18 56 47.0	7,94	+0.34	+1.83 + 1.51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 20.3 2 35.8	- 0 - 1
π Sagittarii .)		38 47.0 47 56.2	19 5 56.2	7.96 7.98	+1.27 -1.24	+ 1.31 - 1.16	+ 20 50 53.6	0 30.2	
,		48 52.5	6 52.5	7.99	-1.26	- 1.10 - 1.14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 30.0	
	. 6	55 18.0	13 18.0	8.01	+ 1.32	+ 1.66	- 22 10 20.0	2 42.8	
Saturn	İ	19 56 59.3	14 59.3	8.01	+ 1.34	+ 1.69	- 22 21 41.6	2 44.5	- 1
35 Antinoi .	7	20 0 0.7	18 0.7	8.02	- 0.08	- 0.01	+ 1 30 47.0	1 1.4	- j
	8	2 43.2	20 43.2	8.03	1.00	- 1.42	+ 17 14 22.1	0 34.9	- <u>]</u>
	7	6 29.4	24 29.4 27 55.2	8.05 8.06	0, 14	-0.19 -0.27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59. 5 58. 5	
							- Z 100 44. U		
l	7.8	9 55.2 20 15 37.8	19 33 37.8		- 0.53	- 1.67	+ 9 0 8.0	- 0 47.4	

(114)

	Na	me	Mag.	<i>T</i>	ì	App.	sid t	ime	Cloc	k co	rr.	n tan d	1	q		ζ—	φ	R	efr.	y	<i>'</i>
					n s		m	s		กเ ร				8	!	c	,,	,	"		,,
`		quilæ .		20 22			40 1		+ 0	8.0		- 0.48		1.44			55.0	- 0	48.5		1.
)	γ		5 6	31 34	5.9 32.0		49 52 3	5.9 9 0		8. I 8. I		1. 12 0. 59	\equiv	1.32	+ 1	8 54	2.3		32. 8	<u> </u>	1.
′			5		48.2		52 4			8. 1		1.47		0, 57	+ 2	4 19	35, 2		25.9	+ (0.
			7	37			55			٠					$+\tilde{3}$		52.0		17.6	<u>ا</u> ∔ ا	2.
			6		16.2		58 1	6.2		8. 1	13	2.30	+:	1. 33			56. 5	1	13.6	+:	3,
			7.6	44		20	2								+ 2				23.8		0.
	64 30	· · · · · · · · · · · · · · · · · · ·	5.6	48				3.0		8.1		1.51		0.40			29.3		25. 2	+ 9	
	24 V	ulpeculæ	6.7	49 52			7 2 10 3		l	8. 1 8. 1		1, 45 1, 00	(+ 2 + 1				26. 3 35. 2		0. 1.
	25	44	6.7	54			10 3 12 4			8. 1		1.43		1. 42 0. 71	$+\frac{1}{2}$		0.3	{	26. 6		ij. 0.
		ygni	"		24.6		14 2			8. 1		2.68		1. 29		9 33		1	9.3	+ 2	
	, ,	76	7.8	20 59			17 5			8.		1.38	(0. 84	÷ 2			1	27.4		ő.
	ι	"	5	21 2			20 2			8.5		1.85	+	1, 12		9 38			19.8	+	1.
	44	"		4			22 4			8, 2		2.38	+:	1.30	<u> + 3</u>	6 11	47.8	!	12.8	+ :	
	26 V	ulpeculæ	6	8				9.4	ŀ	8. 2		1.52		0. 35	+2		35.8		25.0		0.
	. ^		6.7	12		1		1.7		8.5		1.84		1.11		9 34		1	19.9		1.
		ygni	1	16	0, 1 24, 1		34 37 2	0. 1	1	8. 2 8. 2		3, 18 2, 12		1.80 1.40	+ 4	429 39		1	4. 3 16. 0		5. 2.
	ε		8		24. I 47. 8		31 2 40 4			8.2		2. 12 1. 62		0.04			59. 0		23. 3	1	
	31 A	nseris .	6	21 24			42 4		1	8. 2		1.60		0.04			50.8		23.6	17	ő.
		egasi .	6.7		26.3		41 2		1	8.		1.21		1. 20		0 27	28.8	1	30.8	<u> -</u>	ì.
	84 ψ	<i>"</i>	6		43, 2		44 4	3. 2		8. 7		1.44		0.67		3 55		1	26.5		0.
			7		18.4		49 1			8.7		1, 56		0, 19	+ 2		16.8		24.4	+ (
	85	"	6.7		51.9		50 5			8.7		1.58		0, 13			22.8	i	24.2	1+ 9	
		1	7		33. 3		53 3			8.8		2. 14	+	1.40		3 26		í	15.7	1+ 9	걏.
		ndrom	1	39		23	57 1			8.8		1.72		0, 51			54. 1	1	21.9	+ ;	រូ.
)	γr	egasi		44	5. 4 23, 9	, v		5. 4 3. 9		8.8 8.8		0, 81 1, 12		1.66 1.31		3 58 8 59	21. 2 39. 1		39.8 32.9	-	z. l.
	^		7		18.5	I		8.5		8.8		2, 98		1. 47		2 34	6.0	1	6.2	+	
	o A	.ndrom	6.5	51				3. 3		8.8		- 2.42		1. 29		$\tilde{6}$ 45		0	12, 2	+	3.
	F		6		20.0	1	13 2			8.8		+ 0.20		1.42		3 24			13.5	-	Ō.
)	10 C	eti	6	0 57	26.5		15 2	6.5		8.8		+0.06		0.82	_	1 14	54.0		8.0	-	0.
			7		58. 0		18 5			8.8		-0.21		0. 39	•		35. 2	0	57.2	1 .	1.
	51 P	Piscium .	6		11.0		21 1			8.8		0. 32		0.87		5 45			53.2	-	
)	53		7	9			25 3		Ì	8.8		0.88		1.57	+ 1	4 1 9 39	53. 0		38. 3 19. 9		ļ.
	βC	ndrom	1		44. 5 36. 5		27 4 32 3	6.5		8. 9 8. 9		— 1.85 + 1.13		1, 13 1, 42		9 9			20. 1	+	
		iscium .			26.7	i	37 2			8.		-0.36		1. 02		6 24			52. 1		ĭ.
			8		56. 1	1	41 5		ı	8.9		1.75		0.71		8 18			21.4		1.
	A	ndrom	1 .		23. 1	İ.	43 2			8.9		1.34	-	0. 95			30.6		28, 3	-	0.
		."	6		57.7		50 5			8.		1.92		1. 27			28.6	1	18.8	+	
	φP	Piscium .	-		59.5	1		9,5	١. ٨	8.9		1.41	-	0.78	+ 3	3 25	19.0	0	27.0	!	
			7	1 47	23.5	1	5 2	3.5 	+ 0	9, (00	— 1.92	, +	1.20	+ 4	O 34	57. 6	- 0	18.8	+ :	z.
						1	784	. 81	ept:	BM I	BE	R 16					Ze	oro cort	: = +	1′ 38′	'. 4
_	s	un I limb		12 19	23, 6	11	37 2	23, 6					Ī		+	2 34	2.8	<u>_</u> 0	58.4		1
	\mathbf{s}	an II limb	1	12 21	32.5	11	39 :	32.5				l			1			i		1	_
		enus	1		2.4		19		1			l					36.4	1	5.9	<u> - </u>	
		dercury .			34.4		11 3			10	Λ Λ	1 0 94		1 00			34.8	,	34.7		
		ntinoi .	4.5		57.3		49 5		+ 0		บบ กก	+0.34	+	1.83		$\frac{6}{2}$			20. 1 35. 0		
		lagittarii . Lquilse .	6		43, 3		56 4 2 4			12. 12.	02 03	+1.27 -0.11		1, 51 0, 09	_ ×		9, 9 48, 9	1			
		agittæ .	, ,		51.3	1 18		51.3		12.				1, 16	\pm 9	0 50	56.6		30. 1	_	_
)	. ~		6		5.3	1	11			12.		+0.04	+	0.60	<u> </u>	0 39	21.0	i		-	0.
	ð A	Lquilæ .		56	27.7	1	14 2		1	12.		<u> </u>	-	0. 23	+	2 41	17.8	0	58.8	<u> </u>	1.
)		-	1	19 58	40.0	1	16 4	10.0	İ	12.	07	1.16	_	1, 26	+ 1	9 39	52.9		31.6		
		nseris .	6		48.4		19 4		١. ٩	12.		1.17	,—	1, 24	+1	9 49	48.0	1	31.3		
	βС	Cygni		20 3	52, 0	19	21 5	2.0	+ 0	12.	10	— 1.69	+	o. 38	+ 2	7 29	56.8	- 0	22. 1	+	J.
a b	Name s	hould be y 8	ngittarii;	not γ Ac	pilæ.	d g a	ssume	ed as :	340 52	46";	not	34° 52′ 16′	': and	gI	lv. as Micr	gume	i as 5	2 12; das ⊦	not 52 7: not	11:	a
c	Transit	ed as that of s over Ts. I ar	id II assu	med as re	corded	e Di	v. ass	umed	as 53	70; 1	ot 5	371.		A 7			ed as 59			•	
		Ts. II and III:	4 773 1						940												

		17	784 SEPTE	MBER 16	-Contin	ued	Zere	o corr. = +	1′ 38″.4
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ — φ	Refr.	q'
		h m s	h m s	m 8	8	s	υ / //	, ,,	,
ι Aquilæ .		20 7 22.3	19 25 22.3	+ 0 12.10	+ 0.10	+ 0.99	— J 45 30.6	-18.6	- 0.
45 Antinoi .	6	11 26.0	29 26.0	12, 12	+0.06	+0.79	— 1 6 53.5	1 7.2	- 0.
46 Aquilæ .	6.7	13 58.5	31 58.5	12. 12	- 0.67	- 2.90	+ 11 41 3.0	0 42.9	- 2.
	6	17 1.8	35 1.8	12, 13	0.40	— 1.17	+ 7 5 29.2	50.3	—].
a "	7	20 8.2	38 8.2	12.14	0.58	- 2.40	+ 10 9 24.0	45. 3	- 1.
	~ 0	22 7.4	40 7.4	12. 15	0.48	- 1.44	+ 8 17 59.6	48.3	- 1.
12 Vulpeculæ	7.6 6	23 26 8.9	41 44 8.9	12, 16	1,41	- 0.76	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.6 26.8	-0.0
10	6, 5	27 13.4	45 13.4	12, 16	1.43	-0.70		26. 5	0
γ Sagittæ .	5	31 2.5	49 2.5	12. 10	1, 12	-1.32	+ 23 44 50.8 + 18 54 4.6	32. 6	_ i
γ Sagittæ .	8	33 7.1	51 7.1	12. 17	1, 55	-0.22	± 25 35 19.9	24. 3	I 6
	7.8	. 36 11.1	54 11.1	12. 18	1.98	+ 1.34	+ 31 20 39.1	17.8	+ 0. + 2.
	7	37 59,7	55 59.7	12, 19	2,00	+ 1.37	+ 31 35 50.0	17.6	+ 2
	6	40 12.0	19 58 12.0	12. 19	2, 30	+ 1.32	+ 35 21 58.8	13, 6	
	7.8	42 18.0	20 0 18.0	12, 20	1.20	- 1,21		30.8	<u> </u>
θ Sagittæ .	7	43 26.3	1 26.3	12. 20	1.22	- 1.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.6	- 1
-	7	44 38.4	2 38.4	12. 21	1.59	-0.06	+ 26 9 31.0	23.7	+ 0
	7	44 50.4	2 50.4	12. 21	1.57	- 0.16	+ 25 49 38.0	24, 0	1+ 0
	6.5	47 59.5	5 59.5	12. 22	1.51	-0.41	+ 24 55 32.3 	25. 2	+ 0
	6.5	48 41.2	6 41.2	12. 22	1.67	+0.25	+ 27 8 40.4	22.6	+ 1 + 3
C:	6	52 13.1	10 13.1	12. 23	2.21	1.38	$\begin{vmatrix} + & 34 & 17 & 51 & 0 \\ + & 29 & 33 & 8 & 0 \end{vmatrix}$	14.7	1+ 3
γ Cygni		20 56 20.7 21 1 26.0	14 20.7 19 26.0	12, 24 12, 26	2.69 2.52	+1.29 +1.27	$\begin{vmatrix} + 29 & 33 & 8.0 \\ + 37 & 43 & 5.2 \end{vmatrix}$	9, 3 11, 2	
44 "		4 38.9	22 38.9	12.20	2.37	+ 1.36	+ 36 11 45.8	12.7	1 3
ι Delphini .		9 20.1	27 20.1	12. 27	0.61	2.70	+ 10 37 21.8	44.7	+ 3 - 1
· Delphilli .		9 23.2	27 23.2	12. 27	0.01	~	10 0, 21.0	71	
10 "	7.6	13 3, 1	31 3.1	12. 29	0, 80	- 1.68	+ 13 48 45.7	39.7	_ 2
a Cygni		15 56.4	33 56.4	12.29	3, 19	+ 1.79	+ 44 29 33.5	4.3	+ 5
٠٠٠		19 20.0	37 20.0	12, 30	2, 12	+ 1.40	+ 33 9 3.4	15.9	÷ 2
31 Vulpeculæ	6.5	24 45, 6	42 45.6	12.32	1,60	-0.04	+ 26 16 52.2	23, 6	+ 0
32 Anseris .	6	21 27 13,6	20 45 13,6	12, 33	- 1.67	+ 0.28	+ 27 13 42.6	0 22, 5	+ 1
$oldsymbol{eta}$ Aquarii .		22 1 59.3	21 19 59.3	12.43	+ 0.37	+1.86	6 30 42.3	1 21.9	<u> </u>
ε Capricorni		6 46.2	24 46.2	12, 44	1, 21	+1.44	- 20 24 17.7	2 28.4	 0
γ "		9 54.3	27 54.3	12.45	1.03	+1.59	— 17 36 53, 6	2 9.5	- 0.
	6.7	13 5.1	31 5.1	12.46	+0.89	+ 1.62	- 15 22 3.8	1 56.8	- 0
ε Pegasi . .		19 9 0	20 0 0	10.47	0.00	0.05	+ 8 53 7.0	0 47.5	- 1
		18 8.0 21 45.7	36 8.0 39 45.7	12. 47 12. 48	- 0.09 0.94	- 0.05 - 1.48	+ 1 41 29.4 + 16 16 43.6	1 1.1 0 36, 3	
15 "	6	24 44.3	42 44.3	12.48	1.70	+ 0.47	+ 27 46 26.7	21.9	∓ i
	š	30 59.7	48 59.7	12.50	1.78	¥ 0.89	28 47 34.8	20.8	∓ i
1	7	34 8.7	52 8.7	12.51	- 0.86	- 1.57	+ 14 56 29.6	0 38.2	- i
ι Aquarii .	4	36 34.2	54 34, 2	12.52	+ 0.86	+ 1.60	- 14 54 0.0	1 54, 6	_ ō
e '"		40 52,8	21 58 52.8	12, 53	0.72	+1.61	- 12 36 44.7	44.1	- 0
θ "		47 14.2	22 5 14.2	12, 55	0.51	+ 1.86	- 8 50 50.0	29.7	 0
5	6	50 37.6	8 37.6	12, 55	0.51	+ 1.86	- 8 53 44.0	29.7	- 0
Jupiter .		52 34.5	10 34.5	12, 56	+ 0.73	+ 1.60	12 42 6.9	1 44.6	- 0
34 Pegasi	6	22 57 29.2	15 29.2	12.58	- 0.19	-0.33	+ 3 17 39.6	0 58.0	- j
37 "	6 7,8	23 0 54.2	18 54,2	12,58	0.19	- 0.34	+ 3 20 8.0	57.9	- 1
	7.8	1 36.1	19 36, 1 23 57, 1	12.59	0.18	- 0.32	+ 3 13 44.0 + 30 41 95 9	58.1	- 1 + 4
)	6.7	5 57.1 8 53.0		12.60	2.69	+ 1.29	T 00 31 80.0	9.2	1 3
<i>'</i>	6.7	11 40.8	26 53, 0 29 40, 8	12.61 12.62	2. 23 2. 40	+ 1.37 + 1.30	+ 34 31 11.8 + 36 27 14.8 + 29 4 48.4	14.6	+ 3 + 3
η Pegasi	\ \frac{1}{2}	14 45, 4	32 45. 4	12.62	1.81	1.00	+ 29 4 48.4	20.5	
λ	l	18 1.1	36 1.1	12.63	1.34	_ 0.95	+ 22 25 11.4	28.3	二 ō
μ "	1	21 28.8	39 28.8	12, 65	- 1.41	-0.77	+ 23 27 4.3	0 27.0	_ ŏ
ο Aquarii .	1	24 58.8	42 58.8	12.66	+ 0.99	+ 1.64	— 16 57 1.9	2 5.7	_ 0
Foll. Fomalhaut	5.4	29 29.5	47 29.5	12, 67	+ 1.92	+5.02	- 30 33 16.4	4 53.0	- 6
β Pegasi		35 11.5	53 11.5	12.69	— 1.65	+ 0.16	+ 2654 2.3 + 4512 1.0	0 23.0	+ 1
4 Androm		39 41.8	22 57 41.8	12.70	3. 26	+2.07	+ 45 12 1.0	3.6	+ 5
Q "	7.8	42 22.8	23 0 22.8	12.71	2.96	+ 1.45	+ 42 21 52.0 + 40 34 33.2	6.5	
9 " : :	2	50 4.1	8 4.1	12.72	2.78	+1.33	+ 40 34 33.2	8.3	1 + 4
	7.8	51 30.6 55 42.7	9 30.6	12,73	2.81	+ 1.36	+ 40 52 38.6	8.0	+ 4
13 "	1.6	23 58 38.5	13 42.7 23 16 38.5	+ 0 12.74	$\begin{bmatrix} 2.76 \\ -2.90 \end{bmatrix}$	+1.33 $+1.40$	+ 40 24 30.4 + 41 42 10.3	-0.7.2	+ 4
	ļ	33 .23 .20	20 20 00.0	1	2.50	- 1.40	1 31 30 10.0	- 0 1.2	T 3
		·		<u> </u>	·	·			
-		31 15 2; not 31 1			_		6 2 11; not 36 2 13.		

(116)

Name 14 Androm 15 '' - 74 Pegasi - 76 '' - \$\psi\$ '' - \$\psi\$ '' - \$\psi\$ '' - \$\psi\$ '' -	Mag. T h m s 0 2 34.: 5 58.: 8 37. 13 40.: 23 24.	23 58.2	Clock corr. m s + 0 12.76	n tan đ	q	ζ—φ	Refr.	q'
15 ''	0 2 34.1 5 58.3 8 37.0 13 40.5	23 20 34.7 23 58.2	m s + 0 12.76					
## Androm ## Androm ## Pegasi ## Androm	7.8 28 39 32 47 39 7 44 1 47 43 49 14 15 139 7 6 49 40 14 32 18 57 19 21 23 52 26 40 29 7 8 6 3 7 9 45 45 6 7 6 6 7 6 6 7 6 6	31 40.2 41 24.5 46 39.2 50 47.3 0 2 1.5 5 43.4 7 14.7 9 39.3 13 13.3 16 33.0 20 29.5 24 49.0 27 40.6 32 32.5 36 57.8 37 21.1 41 52.2 44 40.9 47 0 50 32.8 1 88.0 0 18 8.0 1 18	12. 77 12. 78 12. 78 12. 78 12. 78 12. 81 12. 83 12. 85 12. 86 12. 89 12. 90 12. 92 12. 93 12. 94 12. 95 12. 96 12. 98 13. 00 13. 02 13. 02 13. 11 13. 12 13. 13 13. 14 13. 15 13. 16 13. 17 13. 19 13. 21 13. 22 13. 23 13. 24 + 0 13. 26	- 2. 54 2. 63 1. 91 1. 88 1. 05 1. 72 0. 84 1. 57 1. 72 0. 84 9. 2. 99 2. 43 1. 89 1. 57 1. 85 1. 75 2. 48 3. 38 1. 75 2. 68 2. 67 2. 68 2. 66 1. 0. 99 1. 20 1. 20 1. 20 1. 20 1. 20 1. 20 2. 99 2. 43 1. 89 1. 57 1. 85 1. 75 2. 68 2. 66 1. 2	** 1.27 + 1.28 - 1.51 - 1.40 - 0.67 - 0.13 - 1.66 + 1.27 + 1.20 + 1.54 - 0.02 + 1.13 + 1.42 - 1.02 + 1.13 - 1.42 - 1.02 + 1.35 - 1.42 - 1.54 - 1.75 - 1.33 - 1.31 - 1.37 - 0.93 - 1.34 - 1.58 - 1.75	+ 38 1 36.2 + 39 1 36.2 + 15 37 18.0 + 15 7 42.2 + 17 54 36.9 + 23 55 36.8 + 23 55 36.8 + 25 55 28.8 + 27 52 51.4 + 13 27 40.5 + 42 34 10.0 + 36 45 4.0 + 30 9 34.0 + 43 10 31.7 + 16 54 18.8 + 26 2 59.0 + 29 39 35.5 + 29 39 35.5 + 42 34 10.0 + 36 45 4.0 + 31 10 31.7 + 16 54 18.8 + 26 2 59.0 + 29 39 35.5 + 17 13 18.6 + 43 31 59.0 + 46 11 17.0 + 47 13 18.6 + 40 17 49.0 + 39 33 39.0 + 40 17 49.0 + 39 33 39.0 + 41 110 52.4 + 18 13 4.6 + 21 10 52.4 + 18 13 4.6 + 21 10 52.4 + 18 13 4.6 + 21 35 52.4 + 18 34 53.2 + 18 34 53.2 + 18 34 53.2 + 18 34 53.2 + 18 34 55.0 + 9 13 24.2	5.7 35.6 24.0 0 19.9 2 20.1 0 52.1 21.4 11.6 5.3 2.7 35.2	" + 3.7 + 3.9 - 1.9 - 1.5 - 0.7 + 1.3 - 2.0 + 3.6 + 3.5 + 1.9 + 4.7 + 1.8 - 0.7 - 1.5 + 1.4 + 4.8 + 5.3 - 1.7 + 4.0 + 4.0 + 3.0 - 1.5 - 1.6 - 1.6 - 1.8 - 1.8 - 1.8
		1784 8	eptemb)	ER 17		Zer	ro corr. = + :	L' 42".4.
Sun I limb Sun II limb Venus Mercury . δ Ophiuchi . ε Antares . β Herculis . τ Ophiuchi . 6 Herculis . λ δ Sagittarii . ε λ ζ Lyræ	12 22 54. 12 25 4. 13 5 29. 13 56 43. 16 44 47. 48 39. 16 57 53. 17 2 44. 18 28 53. 33 4. 40 36. 40 36. 41 33. 48 50. 51 29. 18 56 21.	11 43 4.0 12 23 29.7 13 14 43.7 16 2 47.7 6 39.4 15 53.5 16 20 44.8 2 17 46 53.2 2 51 4.2 17 58 36.9 18 3 33.8 6 50.9 9 29.5	16. 03 16. 05 16. 07 16. 06 16. 06 16. 09	+ 0.18 0.23 + 1.57 - 1.30 + 0.56 + 0.46 - 1.91 - 1.96 + 1.86 2.21 + 1.54	+ 1.37 + 1.60 + 3.12 - 1.02 + 1.80 + 1.88 + 1.26	+ 1 38 48.0 + 2 10 49.0 - 1 18 22.2 - 11 4 34.2 - 3 8 9.2 - 4 9 41.4 - 25 54 43.6 + 21 57 5.2 - 9 44 9.0 - 8 10 10.2 - 8 10 10.2 - 8 10 12.2 - 20 51 22.9 - 34 22 32.2 - 25 29 52.4 + 37 22 4.0	1 14.2 3 22.4 0 28.5 1 31.5 1 26.4 0 18.7 0 17.7 4 32.2 7 16.8 3 17.3	- 1.0 - 1.0 - 0.7 - 0.3 - 0.7 - 0.6 - 0.5 - 0.4 - 2.6 - 0.5 - 2.6 - 0.5 - 2.6 - 2.6 - 3.5 - 4.5 - 4.5 - 2.6 - 3.5 - 4.5 - 4.5 - 4.5 - 5.5 - 5.4 - 5.5 - 5.4 - 5.5 - 5.4 - 5.5 - 5.4 - 5.5 - 5.4 - 5.5 - 6.4 - 7.5 -
T. II.	ver T. III assumed as a med as 24 5 2; not 24				ımcd as 23n numed as 17			

(117)

	Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
			h m s 19 21 46,8	h m s 18 39 46.8	m s + 0 16.16	* 0.20	s + 1.45	_ ° ′ ′′ _ 3 33 46.3	, ,, — 1 12.9	
	γ Lyræ 62 e Serpentis .	6	26 43.7 30 41.1	44 43.7 48 41.1	16, 17 16, 19	- 0.36 0.78	- 1.00 - 1.70	+321733.0 $+62047.5$ $+133652.2$	0 16.8 51.5 39.9	+2.6 -1.5 -2.6
	01 4 - 11-	6.7 6	40 5, 3 40 49, 1	58 5.3 18 58 49.1	16. 20 16. 21	0.96 0.96	- 1.47 - 1.47	+ 13 20 0.6 + 16 31 43.8 + 16 30	40.3 0 35.7	- 2.0 - 1.7
	21 Aquilæ . Sag.764 May Jupiter . t Autinoi .	5 6. 5	44 36.2 49 24.7 19 56 47.4 20 7 18.5	19 2 36.2 7 24.7 14 47.4 25 18.5	16. 21 16. 22 16. 24 16. 26	- 0.11 + 1.35 1.33 0.10	- 0.09 + 1.79 + 1.69 + 0.99	+ 1 55 50.9 - 22 46 7.2 - 22 21 57.2 - 1 45 30.6	1 0.2 2 47.6 2 44.0	- 1.0 - 1.4 - 1.5
	45 " 47 Aquilæ .	7	9 5.0 11 22.2 14 14.1	27 5. 0 29 22. 2 32 14. 1	16. 26 16. 27 16. 27	$ \begin{array}{r} 0.10 \\ 0.01 \\ + 0.06 \\ - 0.65 \end{array} $	+ 0.39 + 0.78 - 3.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 8.5 4.8 1 7.0 0 43.4	- 0. - 0. - 0. - 1.
)	49	6 7	16 58.0 20 4.2	34 58.0 38 4.2	16, 28 16, 29	0.40	- 1. 17 - 2. 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50. 4 45. 3 45. 2	- 1. - 1. - 1.
	a " 13 Vulpeculæ	6.7	22 3.5 23 34.7 26 5.6	40 3.5 41 34.7 44 5.6	16. 30 16. 30 16. 31	0. 47 1. 31 1. 40	- 1.44 - 1.01 - 0.76	+ 8 17 57.6 + 22 3 21.3 + 23 30 36.8	48. 3 28. 6 26. 8	- 1. - 0. - 0.
	η Cygni	6 5 8	27 10.0 30 0.0 30 53.6	45 10.0 48 0.0 48 53.6	16. 31 16. 32 16. 32	1. 42 2. 21 2. 21	$ \begin{array}{r} -0.71 \\ +1.37 \\ +1.37 \end{array} $	+ 23 44 51.2 + 34 29 54.2 + 34 26 34.0	26.5 14.5 14.5	0. + 3. + 3.
	16 Vulpeculæ	6 6 7	34 24, 2 34 40, 2 36 6, 5	52 24. 2 52 40. 2 54 6. 5	16. 33 16. 33 16. 33	1. 45 1. 47 1. 97	-0.60 -0.56 $+1.34$	+ 24 11 39.4 + 24 19 37.8 + 31 20 39.7	25. 9 25. 8 17. 8	+ 0. + 0. + 2.
	Vulpeculæ	7.6 6 7	37 55.3 39 42 14.0	55 55.3 19 57 20 0 14.0	16. 34 16. 35	1. 19	+ 1.37 - 1.21	+ 31 35 49.0 + 22 59 12.0 + 20 16 6.0	17. 5 27. 4 30. 8	+ 2. - 0. - 1.
	Sagittæ . 24 Vulpeculæ	8 7 8 6	42 10.7 46 13.3 49 21.5	0 10.7 4 13.3 7 21.5	16, 35 16, 36 16, 36	1. 19 1. 41 1. 44	- 1.21 - 0.75 - 0.65	+ 20 29 16.6 + 23 34 40.0 + 23 59 58.0	30. 6 26. 7 26. 2	- 1. - 0. 0.
)	34 Cygni 1 Delphini .	6 7 6,7	52 9.2 20 57 9.0 23 1 47.1	10 9.2 15 9.0 19 47.1	16, 37 16, 38 16, 39	2. 20 0. 12 0. 58	$ \begin{array}{r} -0.00 \\ +1.38 \\ -0.14 \\ -2.41 \end{array} $	$\begin{array}{c} + 23 & 33 & 30.0 \\ + 34 & 17 & 47.2 \\ + 2 & 15 & 22.5 \\ + 10 & 10 & 35.0 \end{array}$	14. 7 59. 6 45. 3	+ 2. - 1. - 1.
)	η Delphini .	6	4 32.3 5 7 2.3	22 32, 3 23 25 2, 3	16. 39 16. 41	1.51 0.80	- 0.36 - 1.66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25. 0 42. 0 39. 5	+ 0. - 2. - 2.
)	$ \beta $ $ \alpha $ Cygni $ \varepsilon $		9 14.7 15 52.4 19 15.6	27 14.7 33 52.4 20 37 15.6	16. 41 16. 42 16. 43	0.80 3.18 2.11	- 1.67 + 1.80 + 1.40	+ 13 50 32.4 + 44 29 35.8 + 33 9 4.7	39.7 4.3 15.9	- 2. + 5. + 2.
)	Fomalhaut	6	24 14.6 27 20.8 29 23.0	22 42 14.6 45 20.8 47 23.0	16.73 16.73 16.74	-0.91 $+1.92$ $+1.91$	-1.51 + 5.06 + 5.01	+ 15 41 20.7 - 30 42 3.1 - 30 33 20.0	0 37.1 4 56.9 4 53.0	- 1. - 6. - 6.
	56 Pegasi	7 7 6.7 7.8	33 43.2 37 23.6 38 41 32.2	51 43.2 55 23.6 56	16.75 16.75	- 0.87 1.01	- 1.57 - 1.42	+ 15 3 48.6 + 17 20 22.6 + 24 17 34.0	0 38, 1 34, 9 26, 0	- 1. - 1. + 0.
)		6.7 7 7	41 32.2 45 41.6 51 20.3 53 38.2	22 59 32.2 23 3 41.6 9 20.3 11 38.2	16.77 16.77 16.78 16.79	2.54 1.76 1.29	+ 1.27 $+ 0.82$ $- 1.02$ $- 0.46$	+ 38 16 56.6 + 28 34 57.0 + 21 54 0.8	10.6 21.0 29.0	+ 3. + 1. - 0.
	67 "	6.5 7 6.7	56 5.6 23 59 25.4 0 2 50.3	14 5. 6 17 25. 4 20 50. 3	16. 79 16. 80 16. 81 16. 81	1.48 1.94 1.09 1.65	-0.46 $+1.32$ -1.33 $+0.28$	+ 24 43 22.2 + 31 10 59.6 + 18 41 17.0 + 27 11 57.3	25. 5 18. 2 33. 1 22. 6	+ 0. + 2. - 1. + 1.
	71 "	6 7.8 6	4 28.8 6 57.0 9 22.8	22 28.8 24 57.0 27 22.8	16. 81 16. 82 16. 83	1. 26 1. 39 2. 91	- 1.10 - 0.79 + 1.43	$\begin{array}{c} + 27 & 11 & 37 & 3 \\ + 21 & 17 & 45 & 8 \\ + 23 & 21 & 13 & 4 \\ + 42 & 3 & 9 & 6 \end{array}$	29.7 27.2 6.8	- 0. - 0. + 4.
	78 Pegasi	5.6 6.5 7	11 37.0 15 57.2 16 22.6	29 37, 0 32 57, 2 34 22, 6	16. 84 16. 85 16. 85	3.02 1.73 1.12	+ 1.53 + 0.65 - 1.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5. 7 21. 5 32. 4	+ 4. + 1. - 1.
	82 "	6.5	0 23 25.7	23 41 25.7	+ 0 16.86	-0.55	- 2. 12	+ 9 44 21.1	- 0 46.2	— î.

(118)

Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ φ	Refr.	q'
		h m s	h m s	m s	8	8	0 / //	, ,,	,,
	6.7	0 25 53.3	23 43 53, 3	+ 0 16.87	- 0.33	- 0.90	+ 5 51 54.5	- 0 53.0	1.
ψ Pegasi		28 35.8	46 35.8	16.87	1.43	- 0.67	+ 23 55 40.2	26. 5	0.
05 44	6.7	31 11.0	49 11.0	16.88	1.56	-0.20	+ 25 42 20.8	24.4	+ 0.
85 "	6.7	32 43.8 35 39.3	50 43.8 53 39.3	16. 89 16. 89	1.57 1.54	-0.13 -0.27	+ 25 55 27.2 + 25 25 54.4	24. 1 24. 7	+ 0.1 + 0.1
a Androm	"	39 4.0	23 57 4.0		1.71	+ 0.52	¥ 27 52 51.4	21.9	ĮŢij.
)	7	45 42.5	0 3 42.5	16.91	1, 89	1.23	+ 30 19 17.0	19. 1	∔ 2.
θ "	6.5	47 39.5	5 39.5	16.92	2.47	+ 1.27	+ 37 27 42.3	11.5	+ 3.
	7	50 11.6 55 9.5	8 11.6 13 9.5	16.93 16.94	2.65 1.88	+1.29 $+1.20$	+ 39 30 36.8 + 30 9 32.4	9. 4 19. 4	+ 4. + 1.
	6	0 58 29.9	16 29.9	16. 94	3. 02	1.54	43 10 34.7	5.7	4 .
	6	1 1 47.5	19 47.5	16, 95	2, 05	+ 1.39	+ 32 22 12.4	17.0	+ 2.
	6.7	5 34.6	23 34.6	16.95	0.70	-2.38	+ 12 10 17.0	42.6	- 2.
Piscium .	6	6 34.8 10 23.8	24 34.8 28 23.8	16.96 16.97	0, 69 1, 19	- 2.57 - 1.21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.9 31.3	- 2. - 1.
	7	11 58.9	29 58.9	16, 98	1.40	-0.78	+ 23 25 45, 2	27.2	_ ō.
	7	16 5.7	34 5.7	16, 99	3, 08	+ 1.62	+ 43 39 23.4	5.2	+ 4.
	7.8	20 7.2 23 26.8	38 7.2 41 26.8	16.99 17.00	3, 10 2, 36	+1.65	+ 43 47 57.4 + 36 13 31.0	5. 1 12. 8	+ 4. + 3.
μ Andromedæ	. •	26 37.2	44 37.2	17.00	2. 47	+1.30 + 1.27	+ 36 13 31.0 + 37 18 15.0	11.7	¥ 3.
Double Star	6.7	1 29 42.3	0 47 42.3	+ 0 17.02	- 3.06	+ 1.59	+ 43 31 23.0	— 0 5.3	+ 4.
			1784 SI	PTEMBE	R 15	1	Zei	ro corr. = +	1′ 35′′.9
Sun I limb		0 26 26,6	23 44 26, 6				+ 1 15 29.0	_ 1 1.2	_ 0.
Sun II limb		0 28 35.6	23 46 35.6				+ 1 47 29.4	1 0.0	_ ĭ.
) 1 Delphini .	7	21 1 44.2		+ 0 19.76	— 0.57	- 2.41	+ 10 10 37.6	0 45.0	- <u> </u> .
ξ "	4 6	4 40.4 6 59.6	22 40. 4 24 59. 6	19.76 19.77	0.59 0.80	- 2.67 - 1.66	+ 10 34 7.4 + 13 55 38.1	44. 4 39. 2	$-\frac{1}{2}$.
β " : :	4	9	27	10.11	0.00	1.00	+ 13 50 33.0	39. 4	_ 2.
29 Anseris .	6	10 5.	28 5.			İ	+ 20 26 17.0	30.5	- 1.
δ Delphini .	7 5. 6	13 15 5.	31 33 5.				+ 16 44 39.0 + 14 17 56.0	35. 3 38. 7	- 1. - 2.
-		16 5.	34 5.				+ 24 29 36.0	25.5	+ ő.
Double Star	6. 5	18 5.	36 5.				+ 15 20 37.0	37.2	— 1.
31 Anseris .	6	24 37.8	42 37.8	19.79	1.59	- 0.04	+ 26 16 56.2	23.4	+ 0.
	6. 7 6	27 6.4 30 22.5	45 6.4 48 22.5	19.80 19.80	1.66 1.27	+0.28 -1.08	+ 27 13 43.6 + 21 29 10.6	22.3 29.1	+ 1. - 0.
	6	34 36.5	52 36.5	19. 81	0.79	— 1.6 6	+ 13 52 33.8	39. 4	_ 2.
	6.7	39 10.4	57 10.4	19.82	0.84	- 1.58 + 1.07	+ 14 47 27.7	38.0	- 1.
ζ Cygni	7	41 13.4 45 29.2	20 59 13.4 21 3 29.2	19.82 19.82	1.81	注 ::07	+ 29 19 31.6 + 29 19 56.7	20. 0 20. 0	‡ 1:
υ "		50 46.8	8 46.8	19.83	— 2. 17	1.39	+ 33 58 44.7	0 15.0	¥ 2.
ζ Capricorni		21 55 59.2	13 59.2	19.84	+ 1.39	+ 1.07 + 1.39 + 1.98	 23 18 45.4	2 53, 1	 1.
) β Aquarii .		22 1 52.4	19 52.4	19, 85 19, 86	0.36	+ 1.86 + 1.44	- 6 30 39.8	1 21.2	- 0.
ε Capricorni 6 Pegasi	ł.	6 38.8 10 18.8	24 38.8 28 18.8		+1.19 -0.08	+ 0.03	-202421.0 $+1636.4$	2 27.4 1 1.6	= 0. = 0.
) λ Capricorni	,	16 35.5	21 34 35.5			1.62	12 20 48.0	42.3	_ 0.
Jup. I limb		56 36.3	22 14 36.3		l	1	10 40 43 0	1 40 0	
) Jupiter, cent. Jup. II limb		56 38.4 22 56 40.2	14 38.4 14 40.2	19, 93	+ 0.73	+ 1.60	— 12 46 41.6	1 43.9	- o.
η Pegasi		23 14 38.5	32 38.5	19, 96	1.79	+ 1.01	+ 29 4 49.4	0 20.2	+ 1.
λ "	4	17 54.5	35 54.5	19.96	1.33	— 0.95	+ 22 25 13.0	28.1	— 0.
) σ " , ρ "		23 13.5	41 13.5	19.97	0, 49	-1.55 -1.30	+ 8 40 56.4	47.5	- -
ρ o Andromedæ		26 6.8 33 45.8	44 6.8 51 45.8	19.97 19.98	0.43 2.80	+1.37	+ 7 39 42.0 + 41 8 54.4	49.3	- 1. + 4.
a "						1	+ 14 2 11.0	0 39.4	— 2.
A Piscium .		39 21.0	22 57 21.0	20.00	0.06	+ 0.08	+ 0 57 7.3	1 2.4	— 0.
ι γ : :		51 4.8	23 9 4.8	20.01	- 0.23	- 0.49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0.0 0 55.7	- 1. - 1.
		23 57 35.3	23 15 35, 3	+ 0 20.02	0.00	+ 0.33	+ 0 4 23.8	— 1 4.3	— 0.
κ "		1	1	1					

(119)

			1784 81	EPTEMBER 90		Zer	ro corr. = + 1	l' 41".9 ——
Name	Mag.	T	App. sid. time	Clock corr. n tan	δ q	ζφ	Refr.	q'
) Rigel δ Orionis ζ '' α Columbæ - γ Leporis - Tauri β Aurigæ -	6 6 6	h m s 5 37 42.6 45 46.3 52 23.3 5 55 9.1 6 2 37.5 11 29.9 13 20.3 17 3.0 21 26.4 6 25 22.6	h m s 4 55 42.6 5 3 46.3 10 23.3 13 9.1 20 37.5 29 29.9 31 20.3 35 3.0 39 26.4 5 43 22.6	m s + 0.2 24.35 + 0.2 24.36	7 + 1.87 $4 + 0.58$ $5 + 0.79$ $2 + 0.53$ $2 + 1.08$ $5 + 5.40$ $5 + 1.72$ $5 + 1.72$ $5 + 1.72$	0 / // - 4 57 37.0 - 8 27 45.4 - 0 36 53.5 - 1 7 3.7 - 0 28 43.5 - 2 4 30.8 - 34 6 5.3 - 22 30 23.2 + 27 31 20.3	- 1 16.5 27.0 5.4 6.6 5.1 1 8.8 6 59.1 2 43.8 0 21.9 0 3.9	- 0. - 0. - 0. - 0. - 0. - 0. - 1. + 1. + 5.
Sun I limb Sun II limb		12 33 31.5 12 35 40.5	11 51 31.5 11 53 40.5	$\begin{array}{c c} 25.12 \\ -0.0 \\ 25.12 \end{array} \begin{vmatrix} -0.0 \\ 0.0 \end{vmatrix}$	3 + 0.21	+ 44 52 30.3 + 0 28 37.9 + 0 0 46.4	1 2.9	
			1784 81	EPTEMBER 24		- Zer	o corr. = + 1	.' 42".(
Sun II limb y Geminorum e " Sirius		0 49 53.6 7 6 42.8 12 6.5 7 17 1.1	0 7 53.6 6 24 42.8 30 6.5 6 35 1.1	+ 0 36.24 - 0.9 36.25 - 1.5 + 0 36.26 + 0.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1 4 57.6 - 0 32 49.2 + 16 33 2.8 + 25 18 23.4 - 16 25 19.2	- 1 6.8 1 5.7 0 35.6 0 24.6 - 2 1.4	— 0. — 0. — 1. + 0. — 0.
			1784 SI	PTEMBER 26		Zer	o corr. = + 1	.' 43 ".0
Regulus . Sun II limb	7 6 6	0 49 48.2 0 58 5.4 1 1 24.2 10 38 14.0 0 34.5	16 5.4 0 19 24.2	+ 0 40.57 — 2.6 40.58 2.9 40.59 2.0 + 0 41.57 — 0.79	$\begin{array}{c c} + 1.54 \\ + 1.39 \end{array}$	+ 39 30 38.8 + 43 10 35.8 + 32 22 15.9 + 12 59 50.3 - 1 43 4.6	- 0 9.4 5.7 17.0 0 41.3 - 1 9.6	+ 4. + 4. + 2. - 2. - 0.
			1784 SE	PTEMBER 28		Zer	o corr. = + 1	′ 35″.4
β Cygni 61 Cygni	7 7 7 6.7 3.4 7 7.8 7.8 7 6 6.7 7	19 51 39.9 55 46.8 56 43.6 19 59 40.7 20 3 19.5 9 18.1 13 39.2 22 0.3 25 22.7 26 40.6 29 57.7 33 56.4 36 1.6 38 33.3	19 9 39.9 13 46.8 14 43.6 17 40.7 21 19.5 27 18.1 19 31 39.2 20 40 0.3 43 22.7 44 40.6 47 57.7 51 56.4 54 1.6 56 33.3	+ 0 44.88	5 + 1.40 $2 + 1.40$ $3 + 1.31$ $3 + 0.39$ $4 - 1.34$ $3 + 1.35$ $3 + 0.91$ $4 + 1.35$ $4 + 1.35$ $4 + 1.35$ $4 + 1.35$ $4 + 1.27$	+ 26 51 29.6 + 33 5 46.1 + 32 46 57.7 + 35 52 27.2 + 27 29 57.2 + 2 53 45.6 + 7 52 20.2 + 34 45 18.2 + 34 45 18.2 + 31 43.0 + 21 29 11.1 + 35 10 7.6 + 37 47 33.8 + 37 40 43.4	16. 1 13. 0 21. 9 58. 0 48. 7 14. 1 20. 5 22. 3 29. 1 13. 6	+ 2. + 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
v "···	7.8 7.8 6.7 7 6.7	45 28.3 50 22.0 53 55.2 56 27.4 20 59 29.0 22 3 24.8 7 16.7 10 30.6 13 2.6 22 15 45.9	20 59 21 3 28.3 8 22.0 11 55.2 14 27.4 17 29.0 21 24.8 25 16.7 28 30.6 31 2.6	45. 05 2. 15 45. 05 2. 15 45. 06 2. 56 45. 07 1. 88 45. 07 1. 33 45. 08 2. 48 45. 09 3. 01 45. 09 2. 87 + 0 45. 10 — 2. 66	+ 1.34 + 1.39 + 1.29 + 1.19 + 0.08 - 0.87 + 1.27 + 1.63 + 1.45	29 19 32. 0 + 34 53 57. 8 + 33 58 47. 7 + 39 25 41. 3 + 29 59 58. 4 + 26 39 38. 7 + 22 53 10. 2 + 37 33 15. 3 + 43 42 44. 7 + 42 16 43. 2 + 40 9 16. 0	19. 9 14. 0 14. 9 9. 3 19. 2 22. 9 27. 5 11. 2 5. 1	+ 1. + 3. + 2. + 4. + 1.

(120)

	Name	Mag.	$oldsymbol{T}$	App. sid. time	Clock corr.	n tan ð	q	ζ φ	Refr.	q'
			h m s	h m s	m 8	s		0 / //	, ,	<u> </u>
		7	22 20 42.4	21 38 42.4	+ 0 45.10	- 1.12	_ 1,28	+ 19 27 6.0	- 0 31.7	— 1.
		7	21 1	39 1	,			+ 29 9 35.0	20.1	+ 1.
;)		6.7	24 49.2	42 49, 2	45, 11	1.06	- 1.33	+ 18 38 41.8	32.7	— 1.
	18 Pegasi	6	30 40, 4	48 40, 4	45, 12	0.31	- 0,85	+ 5 40 57.4	52. 6	
	- I	7	22 35 13.4	21 53 13.4	45. 13	0.51	- 1.73	+ 9 11 37.0	46.7	- 1.
	,, ,,	7	0 17 56.7	23 35 56.7	45.28	1.42	- 0.56	+ 24 22 4.8	25.7	+ 0.
- 7	79 "]	6 6	20 4.5	38 4.5	45, 28	1.65	+0.42 -1.20	+ 27 37 38.0 + 20 27 33.8	21. 9 30. 5	+ 1:
		6.7	22 48.2 23 4.8	40 48.2	45. 28 45. 28	1.18	- 1. 20 - 1. 19	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30. 3	= 0.
	-	6	23 4.6 27 3.7	45 3.7	45. 29	1.24	1.09	+ 21 26 2.7	29. 2	_ 0.
)	d, cc	•	28 - 6 , 8	46 6.8	45. 29	1.40	- 0.68	¥ 23 55 43.8	26.2	Ŏ.
,		6.7	30 42.7	48 42.7	45. 30	1.52	- 0.20	25 42 22.8	24. 2	+ 0.
		6	32 15.3	50 15.3	45. 30	1.54	— 0. 14	+ 25 55 31.8	23.8	
	_	6.7	35 16.7	53 16.7	45. 31	1.56	+0.02	+262731.6	23. 3	 + 0.
		7	36 51.1	54 51.1	45. 31	1.63	+ 0.32	+ 27 2 0 16.7	22, 2	+ 1:
	a Andromedæ	2.3	38 34.5	23 56 34, 5	45. 31	1.67	+0.51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.7	+ j.
	Dome-!	6.7	42 13.6 43 29.3	0 0 13.6	45. 32	1. 29 0. 78	- 0.98 - 1.65	+ 22 15 26.4 + 13 58 26.8	28. 3 39. 4	-0.
	γ Pegasi	8	43 29.3 46 49.4	1 29.3 4 49.4	45. 32 45, 33	2.24	-1.65 + 1.32	+ 13 58 26.8 + 35 24 44.0	39. 4 13. 5	
	σ Andromedæ	5	48 24.8	6 24.8	45. 33	2, 24	+1.32	+ 35 34 10.6	13.3	
,	3 Andromedæ	7	51 8.8	9 8.8	45. 33	0.54	2.13	+ 9 46 15.4	45.8	- j.
		6.7	54 40.8	12 40.8	45. 33	1.83			19, 1	+ 1.
		7	57 39.5	15 39.5	45, 34	0.83	— 1.58	+ 30 9 40.0 + 14 49 9.4	3 8. 0	 - 1.
)	Moon bright L.	2.6	0 58 46.5	16 46.5	45.34	- 0.28	- 0.66	 + 4 57 27. 2	0 54.1	— 1 .
	Moon dark L.	6	1 1 4.9	19 4.9						١.
	4 Mayer	7.8	5 45.3	23 45, 3	45, 36	+ 0.09	+ 0.97	- 1 41 40.5	1 8.6	- 0.
1	15 "	9	8 20.0	26 20.0	45. 36	+0.09 -1.30	+0.97 -0.95	- 1 41 33.0	1 8.6 0 28.1	
		5	15 9.1 17 16.2	33 9.1 35 16.2	45. 36 45. 37	1.34	- 0. 93 - 0. 84	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27, 3	
	Double, 1st	٠ ا	19 39.5	37 39.5	45. 37	1.57	+ 0.03	$ +23 \ 4 \ 34.4 \ +26 \ 31 \ 2.6 \ $	23. 2	
	μ Andromedæ		26 9.1	44 9.1	45.38	2.40	1.27	+ 37 18 19.6	11.6	
	# mudromedae	7	32 9.9	50 9.9	45. 39	2.66	+1.32	40 9 34.6	8.6	¥ 4.
		8.9	33 51.4	51 51.4	45. 39	2.54	+1.28 + 1.49	 38 48 38.0	10.0	+ 3.
	6 "		37 0.8	55 0.8	45.40	2.91	+ 1.49	+ 38 48 38.0 + 42 45 58.6	6.0	
	β "		39 1.6	0 57 1.6	45.40	2. 16	+ 1.37	+ 34 27 12.6	14.5	
		7.8	45 5.2	1 3 5.2	45.41	3.37	+2.71	+ 46 54 49.2	1.9	
	-	7.8	46 50.7	4 50.7	45.41	3. 30	+2.48 +0.41	+ 46 15 11.4 + 27 35 23.6	2, 6 22, 0	
		6 7	50 32.8 52 45.1	8 32.8 10 45.1	45. 41 45. 42	1.64 2.05	+ 1.40	+ 33 5 16.4		‡ 2.
	•	7.8	55 13.7	13 13,7	45. 43	2.08		¥ 33 26 14.0	15.6	11 9
	İ	7.8	56 12.3	14 12.3	45, 43	2.07	+ 1.40 + 1.40	→ 33 14 1.0	15.8	
	A "	6	1 58 33.4	16 33.4	45, 43	2.24	+ 2.33	+ 45 51 51.6	3.0	+ 5.
		6.7	2 3 11.9	21 11.9	45, 44	2, 29	+ 1.30	 → 36 6 17.0	12.8	⊹+ 3.
	χ Andromedæ	6	7 48.3	25 48.3	45. 45	2.96	+1.55	+ 43 15 32.8	5.5	
)		6	9 7.4	27 7.4	45. 45	2.85	+ 1.44	+ 42 10 35.8	6.6	
	I	6.7 6.7	12 52.5 2 17 17.5	30 52.5 1 35 17.5	45.45 + 0 45.46	1. 90 2. 36	+1.31 $+1.28$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.1 0 12.0	
		0	2 17 17.0	1 00 11.0	7 0 40.40	2.00	T 1	1 00 01 1.2		
				1784 81	EPTEMBE	B 30		Zer	ro corr. = +	1′ 37″. (
	0 D	7	0 17 52.3	23 35 52.3	+ 0 49.49	- i. 45	- 0.56	+ 24 22 4.4	- 0 26.4	
- 7	9 Pegasi	6	20 0.6	38 0.6	49, 49	1.67	+ 0.42 - 1.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.9 31, 3	1 1
	1	6.7	22 43.4 22 59.4	40 43. 4 40 59. 4	49, 49	1.20	二 i. i9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.3	
	·	·.'	26 59.5	44 59.5	49.50	1.26	— 1.09	¥ 21 26 4.0	30. 1	_ 0.
)	ł	6.7	30 39.0	48 39.0	49.51	1.54	— 0.2 0	+ 25 42 19.8	24. 8	+ 0.
		6.7	35 12.3	53 12.3	49. 52	1.59	+ 0.01	+ 26 27 29.6	23. 9	+ 0.
)	a Androm	_	38 30.8	23 56 30.8	49.53	1.55	+ 0.52	+27530.4	21.7	
	a. Domes-!	7	42 9.1	0 0 9.1	49.53	1.31	⊢ 0.98	+ 22 J5 20.4	29. 0	
)	γ Pegasi σ Androm		43 24.7 0 48 21.0	1 24.7 0 6 21.0	49.53 + 0 49.54	0.80 - 2.28	-1.66 +1.32	+ 22 15 26.4 + 13 58 23.2 + 35 34 7.6	40.5 - 0 13.7	-2.
					'		<u> </u>			<u> </u>

Digitized by Google

Name	Mag.	<i>T</i>	App. sid. time	Clock corr.	n tan đ	q	ζ-φ	Refr.	a'
Piscium Piscium A " A " A " A " A rietis	Mag. 7 7 7 7 8 6 7 7 6 4 7 7 7 6 7 7 8 6 7 7 8 7 8 7 8 7 8 6 7 7 8 7 8	7 h m s 0 51 4.8 57 35.3 0 59 48.5 1 1 50.9 5 40.8 8 15.5 10 54.9 17 12.2 2 65.8 32 5.6 35 57.3 38 18.2 2 26 5.8 41 23.9 45 0.7 46 47.0 50 29.0 1 58 29.4 2 3 7.3 5 26.8 7 44.3 9 59.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 17 13.0 20 35.5 2 12 48.6 11.1 3 5 47.5 37 59.5 2 58 14.1 3 5 48.5 9 22.0 12 4.7 16 20.6 22 28.6 25 32.8 28 10.3 32 15.4 37 24.3 37 24.3 37 24.3 37 24.3 37 24.3 37 24.3 37 24.3 37 24.3 37 24.3 37 24.3 37 25.5 38 10.3 38 15.4 37 28.6	50 15. 4 55 24. 3 2 58 34. 5 3 2 1. 2 8 14.7	# 8		+ 0. 47 + 1. 36 - 0. 05 - 1. 07 + 1. 39 - 1. 35 + 0. 46 + 0. 42 - 1. 40 - 0. 37 - 0. 94 + 0. 11 + 0. 71 - 1. 52 - 1. 42 - 1. 39 - 1. 39 - 1. 39 - 1. 32 - 1. 39 - 1. 32 - 1. 39 - 1. 32 - 1. 39 - 1. 32 - 1. 3	+ 40 17 50.6 + 43 15 31.4 + 41 30 6.2 + 31 4 52.6 + 36 51 5.2 + 19 25 38.9 + 27 44 0.0 - 3 7 4.7 + 1 42 46.9 + 33 56 20.2 + 18 27 43 24.0 + 27 37 21.0 + 17 55 44.8 + 25 2 51.3 + 22 28 57.0 + 17 55 44.8 + 26 6 31.0 + 26 45 31.0 + 26 45 3.0 + 17 56 36.2 + 18 53 10.9 - 29 47 5.6 + 49 2 59.4	Refr. 7	+ 2. + 1. + 1. + 0. + 1. + 0. + 1.
Double Sta Tauri 13 " Pleiadum	7 7 6 6.7	56 44.7 59 35.2 3 59 36.7 4 3 8.5 5 34.6 11 9.3 13 36.2 15 56.6 17 36.9 21 45.0 4 25 23.8	17 35. 2 17 36. 7 21 8. 5 23 34. 6 29 9. 3 30 35. 6 33 56. 6 35 36. 9 39 45. 0	49, 84 49, 85 49, 85 49, 85 49, 85 49, 85 49, 86 49, 86	1.61 1.61 0.96 1.32 1.10 1.10 1.33 1.33 1.33	+ 0. 13 + 0. 13 - 1. 42 - 0. 94 - 1. 31 - 1. 31 - 0. 78 - 0. 78 - 0. 91	+ 26 48 17.0 + 17 6 4.1 + 22 28 13.7 + 18 58 58.3 + 18 57 28.6 + 23 24 32.8 + 23 21 53.4 + 5 52 6.6	48. 5 23. 6 36. 1 28. 9 33. 6 27. 6 28. 1 54. 3	+ 0 - 1 - 0 - 1 - 1 - 0 - 0 - 0 - 1

(122)

	Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ — φ	Refr.	q'
:)	A Tauri	7 5	h m s 4 29 50.1 33 13.2 37 52.9 48 48.0 4 51 46.0	h m s 3 47 50.1 51 13.2 3 55 52.9 4 6 48.0 4 9 46.2	# 8 49.88 49.88 49.88 49.90 — 0 49.91	- 1. 14 1. 26 1. 10 0. 86 - 0. 98	- 1.27 - 1.08 - 1.31 - 1.57 - 1.43	0 / " + 19 34 2.0 + 21 27 46.0 + 19 0 44.0 + 15 4 50.0 + 17 0 34.8	- 0 32.7 30.3 33.5 39.1 - 0 36.2	
		,		1784	OCTOBE:	B 1	<u></u>	Ze	ro corr. = + 1	' 39". 3
_	Sun I limb		13 12 45.1	12 30 45.1				- 3 48 33.6	_ 1 14.5	— 0.
	Sun II limb Cophiuchi Cygni Antinoi Aquilæ Vulpeculæ Lorente Acygni Korgni	7.6687.66.7 7876.57766.7867.8	13 14 53.8 17 6 25.6 19 43 34.8 47 47.2 49 42.4 51 34.4 55 39.7 56 36.6 19 59 34.2 20 3 13.7 3 15.7 6 1.7 10 46.4 17 13.6 21 38.5 30 12.7 32 22.5 34 0.4 35 37.5 47 24.3 47 47 24.3 47 51 0.8 53 56.6 20 59 54.2	12 32 53. 8 16 24 25. 6 19 1 34. 8 5 47. 2 7 42. 4 9 34. 4 13 36. 6 17 34. 2 21 13. 7 21 13. 7 21 13. 7 24 1 28 46. 4 35 13. 6 39 22. 5 50 22. 5 50 22. 5 51 56 50. 2 20 0 46. 8 3 37. 5 5 24. 3 11 56. 7 11 56. 7 11 56. 7	+ 0 51. 22 51. 46 51. 47 51. 48 51. 49 51. 49 51. 49 51. 51 51 52 51. 52 51. 54 51. 54 51. 54 51. 55 51. 56 51. 56 51. 56 51. 56 51. 56 51. 57 51. 57	+ 0.57 - 0.46 0.81 0.80 1.61 2.07 2.04 2.30 1.66 - 0.56 0.46 0.69 0.79 0.80 0.94 1.35 1.34 1.39 1.34 1.57 1.83 1.94	+ 0.38 + 0.38 + 0.79 - 2.35 - 1.66 - 1.66 - 1.147 - 0.86 - 1.19 - 0.75 - 0.088 - 1.15 - 0.02 + 1.36	- 10 7 4.6 + 8 15 1.2 + 14 9 42.5 + 14 4 48.9 + 26 51 32.2 + 33 5 45.6 + 32 47 4.3 + 35 52 29.8 + 27 30 19.9 - 1 45 25.0 - 1 6 45.4 + 10 5 18.8 + 8 18 3.6 + 10 5 18.8 + 13 55 36.6 + 13 55 36.6 + 13 55 36.6 + 13 58 43.9 + 16 29 1.2 + 22 50 39.6 + 20 29 19.0 + 23 34 48.0 + 22 55 59.0 + 26 18 39.0 + 29 53 41.4 + 31 29 4.7 + 33 36 32.4 + 15 4 46.4 + 10 37 97 67	1 36. 3 0 49. 7 40. 2 40. 3 23. 5 16. 4 16. 8 13. 4 22. 7 0 22. 7 1 10. 5 1 9. 1 1 46. 7 45. 8 40. 7 45. 8 40. 7 45. 8 28. 2 31. 4 40. 6 37. 0 28. 2 31. 4 22. 2 20. 3 30. 8 24. 2 20. 0 18. 2	- 0.1 2.2. + + 2.3. + + 1.1 0.0 1.1 1.2 2.1 0.0 0.0. + 1.2. + 2.1 0.0 0.0. + 1.2. + 2.1. + 2.1 0.0 0.0. + 1.2. + 2.1 0.0 0.0. + 1.2. + 2.1. + 2.1 0.0 0.0. + 1.2 0.0 0.0. + 1.2 0.0 0.0. + 1.2 0.0 0.0. + 1.2 0.0
n) }	e Delphini "" a Cygni Lequulei	7.8 7 6 6 7	21 2 20.9 4 8.4 8 44.2 9 51.8 13 18.0 15 16.2 26 29 29.0 33 1.6	20 20.9 22 8.4 26 44.2 27 51.8 31 18.0 33 16.2 44 47 29.0 51 1.6	51. 58 51. 58 51. 59 51. 59 51. 60 51. 60	0. 86 0. 60 0. 60 0. 52 3. 17 3. 12 0. 19 0. 14	+ 1.40 - 1.57 - 2.67 - 2.70 - 1.80 + 1.93 + 1.79 - 0.36 - 0.20	+ 9 19 38.2 + 44 53 20.7 + 44 29 37.8 + 3 42 35.0 + 3 28 11.4	15. 9 39. 0 45. 9 45. 9 48. 0 4. 1 4. 4 55. 1 0 58. 8 1 0. 9	- 1. - 1. - 1. - 5. - 1. - 1.
		7 7.8 7.8 8 7.8 7 6.7	34 59.3 37 25.2 40 14.7 43 1.8 44 43.0 46 39.2 49 13.7 52 3.4 55 5.3	52 59.3 55 25.2 20 58 14.7 21 1 1.8 2 43.0 4 39.2 7 13.7 10 3.4 13 5.3	51. 63 51. 63 51. 64 51. 64 51. 65 51. 65 51. 65 51. 66	- 0.11 + 0.09 - 0.11 - 0.08 + 0.03 + 0.14 - 0.45 0.52 0.52	- 0.11 + 0.95 - 0.11 - 0.06 + 0.65 + 1.20 - 1.38 - 1.86 - 1.76	+ 2 5 19.8 - 1 37 36.4 + 2 4 11.4 + 1 45 42.1 - 0 47 36.0 - 2 29 57.7 + 8 3 21.9 + 9 25 5.0 + 9 14 47.7	1.7	- 1. - 0. - 1. - 0. - 0. - 1. - 1.
	f Pegasi γ Capricorni ε Pegasi	6 6	21 59 22. 4 22 1 24. I 3 17. 3 9 15. 6 22 12 20. 3	17 22. 4 19 24. 1 21 17. 3 27 15. 6 21 30 20. 3	51.66 51.67 51.67 51.68 + 0 51.68	1.60 1.33 - 1.34 + 1.01 - 0.02	$ \begin{array}{r} + 0.08 \\ - 0.90 \\ - 0.87 \\ + 1.59 \\ + 0.27 \end{array} $	+ 26 39 44.3 + 22 41 14.7 + 22 53 13.2 - 17 36 50.5 + 0 18 25.6 + 8 53 7.0	23.8 28.7 0 28.5 2 11.2 1 5.8 — 0 48.9	+ 0. - 0. - 0. - 0. - 1.

(123)

		·	1784 OCT	DBER 1—C	ntinue		Zer	o corr. = + 1	.' 39".
Name	Mag.	T	App. sid. time	Clock corr.	n tan δ	q	ζφ	Refr.	q'
)	7 7.8 6.7 7	h m s 22 17 34.7 20 16.0 24 42.2 22 25 23.1	h m s 21 35 34.7 38 16.0 42 42.2 21 43 23.1	m s + 0 51.69 51.69 51.70 + 0 51.70	9 - 0.71 0.84 1.07 - 1.07	*** - 1.84 - 1.59 - 1.33 - 1.33	0 / " + 12 43 14.4 + 14 45 11.3 + 18 38 46.4 + 18 41 41.6	- 0 42.7 39.5 34.0 - 0 34.0	— 2. — 1. — 1.
			1784 0	CTOBER 9		•	- Zer	o corr. = + 1	ı ' 3 8".
36 Pegasi	6 5 4.5 6.7 7.8 5 9.10	22 59 32.8 23 3 21.7 7 42.0 12 12.3 15 6.6 19 16.3 22 27.7 26 44.2 34 3.3 41 25.9 44 12.2 47 8.5 48 57.5	22 17 32.8 21 21.7 25 42.0 30 12.3 33 6.6 37 16.3 40 27. 44 44.2 52 3.3 22 59 25.9 23 2 12.2 5 6 57.5	+ 0 54.00 54.01 54.01 54.02 54.03 54.03 54.04 54.06 54.07 54.08 54	+0.28	- 1.37 - 1.30 + 1.78 + 1.57 + 1.60 + 1.86 + 5.06 - 0.23 - 0.40 - 0.40 - 0.12	+ 8 1 26.6 + 19 6 41.0 - 5 20 9.8 - 13 40 27.2 - 10 46 11.0 - 14 43 0.9 - 8 43 17.6 - 30 41 55.5 + 2 39 28.6 + 3 49 50.4 + 3 49 12.2 + 2 4 17.0	39. 4 57. 0 1 31. 7 5 5. 4 1 0. 9 0 58. 4	— 1. — 0. — 0. — 0. — 0. — 6. — 1. — 1.
13 " 14 " 15 "	6 8.9 5 6 8 7 6 7 8 8	50 30.9 53 1.8 57 0.8 23 57 20.2 0 0 47.1 2 4 11.3 5 7 56.5	8 30.9 11 1.3 15 0.8 15 20.2 18 47.1 20 22 11.3 23 25 56.5 28 26.6	54. 08 54. 08 54. 09 54. 09 54. 10	0.23 - 0.09 0.00 0.00 + 0.02	- 0.49 - 0.03 + 0.33 + 0.37 + 0.46 + 1.19	+ 4 12 4.8 + 1 38 2.4 + 0 4 24.8 - 0 3 49.0 - 0 18 5.6 - 2 16 33.0 - 2 26 18.1	0 57.7 1 3.1 6.6 7.0 7.5 12.3 12.7 6.6 1 1.9 0 58.8	- 1. - 1. - 0. - 0. - 0. - 0. - 0. - 1.
φ Pegasi	7 6.7 6 7 6.7 8 6	10 20.0 15 53.1 17 46.9 20 7.3 22 43.5 25 0.1 29 57.7 32 42.0 35 2.3 36 42.1	33 53.1 35 46.9 38 7.3 40 43.5 43 0.1 47 57.7 50 42.0 53 2.3 54 42 1	54. 11 54. 12 54. 12 54. 12 54. 13 54. 13 54. 14 54. 14 54. 15	0. 68 1. 44 1. 58 1. 03 1. 01 0. 56 0. 85 1. 51	- 1.40 - 1.41 - 2.34 - 1.57 - 0.26	+ 0 7 13.0 + 2 10 24.0 + 3 36 20.4 + 11 57 0.0 + 24 22 6.4 + 26 28 3.4 + 17 54 42.5 + 17 32 8.6 + 10 3 51.8 + 15 2 47.1 + 25 26 1.0 + 27 20 16.7	44. 0 26. 7 24. 1 35. 2 35. 6 47. 0 39. 2 25. 4	
 a Andromedæ γ Pegasi η Andromedæ 78 Piscium . β Pegasi 	4 7.8 7 6.7	38 26.0 0 43 20.3 1 26 54.3 32 23.7 33 37 18.0	23 56 26.0 0 1 20.3 44 54.3 50 23.7 51 0 55 18.0	54. 15 54. 15 54. 22 54. 23 54. 24	1. 69 0. 79 1. 29 1. 49	+ 0.51 - 1.66 - 0.98 - 0.34 + 1.29	+ 27 53 3.4 + 13 58 27.2 + 22 14 7.8 + 25 7 8.2 + 28 29 17.0 + 30 50 20.4	22. 5 - 40. 8 - 29. 4 - 25. 8 - 21. 7 - 19. 1 -	+ 1. - 2. - 0. + 1. + 2. + 3.
85 φ Piscium . v ' ' . A Androm	6.5 7.8 6 6 7 7	43 14.8 45 59.5 48 49.0 1 58 25.2 2 1 39.7 2 44.6	1 1 14.8 3 59.5 6 49.0 16 25.2 19 39.7 20 44.6	54, 25 54, 25 54, 26 54, 27 54, 27 54, 27	2. 19	$ \begin{array}{c c} -0.95 \\ -0.08 \\ +2.33 \\ +1.35 \\ +1.37 \end{array} $	+ 23 25 23.0 + 22 25 55.8 + 26 6 39.0 + 45 51 46.6 + 34 42 34.6 + 34 28 34.2	27.9 29.1 24.6 3.1 14.8	
2 Arietis	6. 5 6 6 7 6 7	3 5 22.5 10 48.9 12 14 22.1 16 5.8 17 41.6 2 21 14.9	21 23 22.5 28 48.9 30 32 22.1 34 5.8 35 41.6 1 39 14.9	54. 28 54. 29 54. 30 54. 30 54. 30 + 0 54. 31		$\begin{array}{c c} + 1.32 \\ + 1.38 \end{array}$	+ 36 6 18.0 + 40 17 54.6 + 34 7 53.0 + 19 12 3.0 + 18 59 13.4 + 16 18 54.5 + 15 51 51.1 + 17 12 43.4	8.8 15.4 33.4 33.7 37.5	+ 3. + 4. + 2. - 1. - 1. - 1.

(124)

Name		Mag.	T	App. sid. time	Clock corr.	n tan ô	q.	ζ φ	Refr.	q'
			h'm s	h m s	m s	,	<u> </u>	0 / //	, ,,	\
γ Ariet	is .	i i	2 22 54.7	1 40 54.7	+ 0 54.31	1.04	1.37	+ 18 13 10.2	— 0 34.8	1.
, 111101		7.8	26 6.2	44 6.2	54, 31	2.72	+ 1.34	+ 40 36 45.0	8.5	+ 4.
		6	28 50.0	46 50.0	54.32	1. 16	-1.23	+ 19 59 27.6	32.3	<u> </u>
) 11 "		6	32 37.8	50 37.8	54.32	1.47	-0.41 -1.07	+ 24 52 27.0	26. 1 30. 2	+ 0.
κ		6	35 42.9 38 58.2	53 42.9 56 58.2	54.33 54.33	1, 26 1, 12	- 1.07 - 1.29	+ 21 35 53.4 + 19 18 17.0	33. 3	_ 1
16 "		6	39 53.7	1 57 53, 7	54.33	1.05	-1.35		34.4	1.
10	• •	7	42 7.8	2 0 7.8	54, 34	3.50	+2.95	L 47 44 17 0 l	1, 1	+ 5
		6.7	46 11.8	4 11.8	54.35	1.83	- 0.90	+ 22 44 48.2 + 15 9 26.4 + 24 9 40.6 + 28 56 5.8 + 35 9 32.8	28.8	 0
		8]	51 12.7	9 12.7	54.35	1.85	- 1.56	+ 15 9 26.4	39.3	- 1
10 This	1:	7.8	54 44.0	12 44.0 15 21.7	54.36	1.42 1.76	- 0.61	+ 24 9 40.0 + 98 56 5 8	27.0 21.3	+ 1
13 Trian 14 "	guli .	7.6	2 57 21.7 3 0 9.7	18 9.7	54.36 54.36	2.23	$^{+0.95}_{+1.33}$	T 35 9 32.8	14, 3	4 3
, 14		6	3 34.7	21 34.7	54.37	2. 33	+1.30	+ 36 20 15.4	13.0	+ 3
		7	6 11.0	24 11.0	54.37	2.37	+1.30 $+1.29$	i∔ 36 45 43.0 l	12. 6	+3 + 3
5 q Perse		7	9 52.7	27 52.7	54.38	2.59	+ 1.28	+ 39 14 54.3 + 16 49 47.8	10.0	+ 3
37 Ariet	8	7	13 29.5	31 29.5	54.38 54.30	0.96	- 1.44 - 0.90		36.7 28.9	$-\frac{1}{0}$
		8 6	16 18.9 22 23.3	34 18.9 40 23.3	54.39 54.40	0.89	- 0.50 - 1.52	+ 22 42 27.2 + 15 34 50.5	38.5	
ρ ''		6	25 28.3	43 28.3	54.40	0.97	— 1.43	+ 17 8 26.2	36.3	_ î
ε "		6	28 5.9	46 5.9	54.41	1.18	- 1.20	+ 20 27 12.2	31.8	- 1
49 "		6.7	30 24.1	48 24.1	54.41	1.52	- 0.23	+ 25 34 52.2	25. 3	+ 0
		7	33 53.3	51 53.3	54.42	0.85	- 1.57	+ 14 59 50.4 + 18 32 1.5	39. 4 34. 4	_ I
ð Arieti	_	8.9	38 30.9 41	56 30.9 2 59	54.42	1.06	1.34	+ 18 53 10.0	0 34.0	=i
12 Erida			43 56.7	3 1 56.7	54, 43	+ 1.82	+ 4.79	- 29 47 4.2	4 43.1	- 5
a Perse			50 10.1	8 10.1	54.44	- 3.66	+ 3.26	+ 49 3 2.0 + 8 57 36.0	0 0.2	+ 5
ξ Tauri		1	56 40.4	14 40.4	54.44	0.50	— 1.64	+ 8 57 36.0	_ 49.0	- 1
		6.7	3 59 49.7	17 49.7	54.45	0.59	- 2.67	+ 10 34 31.0	46.3	- 1
70 "		6	4 2 52.3	20 52.3	54.45 54.46	1.40 1.31	- 0.72 - 0.94	+ 23 42 46.4	27.5 29.2	_ 0
79 " 11 "		6	5 29.5 9 5.3	23 29, 5 27 5, 3	54.47	1.46	- 0.50	+ 22 28 10.2 + 24 36 9.2	26.5	+ 0
*1		7.8	. 12 2.4	30 2.4	54, 47	1.44	- 0.55	+ 24 22 7.0	26.8	+ ŏ
m "		7.6	13 30.2	31 30.2	54.47	1.42	- 0.61	+ 24 8 0.8	27.0	0.
	dum .		15 52.4	33 52.4	54.48	1#37	- 0.78	+ 23 24 31.8	28.0	- o
) f Atlas		~ .	J7 33.8	35 33.8	54.48	1, 37 1, 45	- 0.78 - 0.52	+ 23 21 52.6 + 24 29 39.0	28. 1 26. 6	- 0
ξ Perse	;	7.8 5	20 29.7 26 10.4	38 29.7 44 10.4	54.48 54.49	2.23	+ 1.33	+ 35 7 59.6	14.4	$ + 0 \\ + 3$
Tauri		6.7	29 45, 2	47 45.2	54.50	1.13	1,27	+ 19 33 59.4	33.0	- i
A	• .		33 8.5	51 8.5	54.50	1.25	- 1.08	+ 19 33 59.4 + 21 27 51.0 + 21 46 56.0	30.5	- 0
	`	6	37 9.0	3 55 9.0	54.51	1.27	- 1.04	+ 21 46 56.0	30.1	- 0
Moon		j ,	40 5.7	4 8 5.7 9 41.4	54.53 54.53	1.55 0.97	- 0.09 - 1.43	17 0 34 0	24.7 36.5	$+ 0 \\ - 1$
δι Tauri			41 41.4 52 51.5	10 51.5	54.53	0.97	- 1.43 - 1.44	16 55 1.5	36, 6	
2 " "	. :		55 35.6	13 35.6	54.54	1.31	- 0.94	+ 22 28 48.4	29. 2	 0
		9	4 58 51.0	16 51.0	54.54	1.12	- 1.29	+ 26 4 59.3 + 17 0 34.0 + 16 55 1.5 + 22 28 48.4 + 19 20 27.8	33.3	- 1
412 1		7	5 2 15.4	20 15.4	54.54 54.55	1.00 0.91	- 1.41 - 1.49	十 17 31 58.4 16 9 52 9	35.8 37.9	
Aldel τ Tauri			4 44.4 10 29.8	22 44. 4 28 29. 8	54.56	- 1.31	-0.93	+ 17 31 58.4 + 16 2 53.8 + 22 30 43.3	0 29.1	
μ Eride			15 50.0	33 50.0	54.57	+ 0.20	+ J. 49	3 39 47,8	1 16.5	- 0
3 Orion		5	20 52.8	38 52.8	54.57	-0.28	- 0.73 - 1.24	+ 5 12 56.2	0 56.0	- 1
		6	24 18.2	42 18.2	54.58	0.41		+ 7.24 25.5	51.8	- I
		7	25 39.3	43 39.3	54.58 54.50	0.42	- 1.28 - 1.70	+ 7 32 59.7 + 13 34 39 3	51.7 41.7	$-\frac{1}{2}$
y "		8 5.6	31 20.2 33 25.7	49 20.2 51 25.7	54.59 54.60	0.77 - 0.85	- 1.70 - 1.57	+ 13 34 32.3 + 15 4 32.8	0 39.4	
γ Eride	ni -	3.0	38 21.2	56 21.2	54.60	+ 0.29	+ 1.78	_ 5 22 34.8	1 21.6	- 0
Cape			41 56.6	4 59 56.6	54.61	- 3.26	+2.29	+ 45 43 44.8	0 3.2	+ 5
) Rigel			45 16.4	5 3 16.4	54.61	+0.48	+ 1.87	8 27 45.2	1 31.5	O
-		6.7	49 22.9	7 22.0	54.62	1.13	-1.26 + 1.30	+ 19 33 55.4	0 33.0	-1
β Tauri	i	6	51 54.2 53 49.9	9 54.2 11 49.9	54.62 54.62	1.90 1.72	+1.30 +0.74	+ 19 33 55.4 + 30 54 12.1 + 28 23 17.5	19. 1 22. 0	+2 + 1
	le Star	6	5 57 10.5	15 10.5	54.63	_ 1.48	T 0. 40	+ 24 56 23.6	0 26.1	
8 Orion			6 2 6.6		+ 0 54.64	+0.02	+ 0.53	0 28 37.5	— 1 8.5	<u> </u>
				l	<u> </u>	1 .	l	<u> </u>		<u> </u>

(125)

					 		,				
]	Name	Mag.	Т	App. sid. time	Clock corr.	n tan đ	q	ζ φ	Refr.	q'
				h m s	h m s	m s	8	8	0 / //	, ,,	"
		Orionis	6	6 5 50.8	5 23 50.8	+ 0 54.64	+ 0.28	+ 1.74	- 4 59 35.7	- 1 20.4	— 0.
٠,	σ ζ		5.4	9 1.8 10 58.8	27 1.8	54.65	0.15	+1.27	- 2 44 25.2	14.0	- 0. - 0.
ı)	5		6.7	14 3.2	28 58.8 32 3.2	54. 65 54. 65	+0.11 -0.71	+1.09 -1.82	-2423.0 + 12468.6	1 12.4 0 43.0	_ 0. _ 2.
			6	16 39.3	34 39.3	54.66	0.77	— 1.68	+ 12 46 8.6 + 13 47 34.8 + 14 12 51.8	41.4	$-\tilde{2}$.
			7	19 22.7	37 22.7	54, 66	0.80	- 1.63	+ 14 12 51.8	40.6	— 2.
	а	"	8	24 39.4	42 39.4	54.67	0.41	- 1.23	+ 7 20 35.6	52. 0	- <u>1</u> .
	H	Geminorum	6	28 33.5 32 10.4	46 33.5 50 10.4	54.68 54.68	1.34 1.37	- 0.88 - 0.81	+ 22 51 12.7	28.8 - 28.2	
		Gommorum	7	35 39.0	53 39.0	54.69	0.93	1 48	+ 23 14 27.6 + 16 21 27.0	37.6	<u> </u>
			7	37 48.0	5 55 48.0	54, 69	1.35	— 0.83	+ 23 6 50.8	28.4	- 0.
			7	42 3.2	6 0 3.2	54.70	1.07	- 1.33	+ 18 42 20.8	34.3	= i.
	μ	"	'	44 59.2 6 51 4.7	2 59.2 9 4.7	54.70 54.71	1.40 1.32	- 0.70 - 0.92	+ 23 40 42.0 + 22 35 23 7	27. 5 29. 1	_ 0. _ 0.
	γ	"		7 6 25.0	24 25.0	54.73	0.94	- 1.47	+ 23 6 50.8 + 18 42 20.8 + 23 46 42.6 + 22 35 23.7 + 16 33 5.8 + 25 18 28 14 4	37.3	- 1.
	ε			11 48.6	29 48.6	54.74	- 1.50	- 0.30	+ 25 18 28.4	0 25.7	+ 0.
)	~	Sirius Geminorum		16 42.7 8 1 55.9	6 34 42.7	54.75 54.81	+0.93 -2.01	- 1. U/	10 20 14.0	2 7.2 0 17.5	- 0. + 2.
,	u	Procyon .		9 8.1	27 8.1	54.82	0.32	-0.87	+ 5 45 14.2	55.0	_ ĩ.
	β	Geminorum		8 13 13.7	7 31 13.7	+ 0 54.83	- 1.73	+ 0.79	+ 32 19 23.2 + 5 45 14.2 + 28 30 33.0	— 0 21.8	+ 1.
-			<u> </u>		1784	OCTOBE	B 6	·	Zer	ro corr. = +	1′ 41″.
		Sun		13 30 45, 3	12 50 45, 3				- 5 44 30.0	— 1 20.4	_ o.
			_	13 32 55.2	12 52 55.2				- 5 12 13.0	1 18.8	— 0.
		Ophiuchi .	2 3	18 5 56.8	17 25 56.8	- 0 57.24	- 0.72	- 1.86	+ 12 42 48.6	0 41.9	— 2.
	β	"	3	13 48.8 18 4.3	33 48.8 38 4.3	57. 22 57. 22	0. 26 0. 15	- 0.58 - 0.25	+ 4 39 28.7 + 2 47 28.0	55.8 - 59.5	
	θ	Herculis .	4	18 29 50.4	17 49 50.4	57.20	2.44	+ 1.27	+ 37 15 57.0	11.8	+ 3.
	e	Pegasi	6	21 53 11.5	21 13 11.5	56.86	0.33	— 0.91	+ 5 53 20.6	53.6	├ 1.
			8 6.7	56 47.5 21 58 48.0	16 47.5 18 48.0	56.85 56.85	0.51 0.41	-1.73 -1.20	+ 9 12 34.3 + 7 15 22.8 + 11 13 14.2	47.8 50.9	二 1:
		Nebula .	0	22 0 34.6	20 34.6	56.85	0.63	- 2.98	+ 11 13 14.2	44. 4	_ i.
			6.7	1 46.0	21 46.0	56.84	0.63	- 2.96	+ 11 11 10.8	44.6	- 1.
	5	Dogga	6.7 6.5	5 40.7 8 41.7	25 40.7 28 41.7	56.84 56.84	1.00 1.06	- 1.42 - 1.36	+ 11 11 10.8 + 17 21 44.2 + 18 20 33.2	35. 4 34. 1	- 1: - 1:
	J	Pegasi	7	11 2.1	31 2.1	56, 83	0.54	-2.01	+ 9 37 53.4	47. 1	二 i.
			6	13 2.5	33 2.5	56.82	0.56	2.18	+ 9 50 16.6	46. 8	- 1.
	ε	Pegasi	2.3	14 36.9	34 36.9	56.82	0.50	- 1.62	+ 8 53 3.2	48.3	<u> </u>
			7	17 23.1 20 4.1	37 23.1 40 4.1	56.82 56.81	0.72	- 1.84 - 1.59	+ 12 43 8.4 + 14 45 8.3	42. 2 39. 1	$-\frac{2}{1}$
			6.7	22 27.7	42 27.7	56.81	1.09	- 1.32	18 48 34.0	33, 4	— 1.
			6.7	24 30.3	44 30.3	56.81	1.08	- 1.33	+ 18 38 41.4 + 18 41 40.0	33.7	<u> </u>
١	17	66	7.8 6	25 11.2 27 27.6	45 11.2 47 27.6	56, 80 56, 80	1.08 0.62	- 1.33 - 1.88	+ 18 41 40.0 + 11 2 46.9	33. 6 44. 8	- 1. - 1.
,	18	" : :	6	30 21.5	50 21.5	56, 80	- 0.32	- 0.85	+ 5 40 56.4	0 54.0	二 i.
		Aquarii .	6.5	33 7.0	53 7.0	56.79	+ 0.18	+ 1.38	— 3 11 34.·6	1 13.9	— 0.
	a	"	3 7.8	35 40.5	55 40.5	56.79	+ 0.08	+ 0.86	- 1 21 54.2	1 9.1	— 0.
			7.6	37 53.2 41 4.5	21 57 53.2 22 1 4.5	56.78 56.78	- 0.48 1.07	+0.86 -1.52 -1.34	+ 0 30 02.0 + 18 33 18 0	0 48.7 33.8	— 1. — 1.
			7	22 45 41.5	22 5 41.5	56,77	1.26	- 1.09	+ 21 26 42.5	29.9	— õ.
	26	Piscium • .	7	0 25 6.7	23 45 6.7	56, 60	Λ 20	- 0.90	+ 8 36 52.0 + 18 33 18.0 + 21 26 42.5 + 5 51 53.0 - 4 45 9 7	0 53.7	- 1.
	27 29	"	5 5	28 36.0	48 36.0	56.60 56.50	+ 0.26	+1.70	2 20 0.1	1 18.1	— 0.
	LI		7	31 44, 3 36 32, 9	51 44.3 23 56 32.9	56.59 56.58	+0.24 -1.65	+0.33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 16.5 0 22.8	— 0. + 1.
			7.6	41 55.6	0 1 55.6	56, 58	1.66	+ 0.35	+ 27 20 15.7 + 27 23 44.2 + 31 59 23.4 + 31 41 47.5 + 28 32 37.2 + 32 30 41 4	22.7	+ 1. + 1. + 2. + 2. + 1.
()			7.6	43 53, 2	3 53.2	56,58	2.00	+1.39	+ 31 59 23.4	17.5	+ 2.
	28	Androm	6 6	50 31.3 0 59 47.3	10 31.3 19 47.3	56, 56 56, 55	1.97 1.74	十 1.37	+ 31 41 47.5 ± 98 39 27 9	17. 8 21. 4	生 华
	20 π	Androm.	4.5	1 6 25.1	26 25.1	56.54	2.04	¥ 1.39	+ 32 30 41.4	16. 9	I 2
	ŝ	"	3	8 50.7	28 50.7	56.53	1.82	+ 1.70 + 1.63 + 0.33 + 0.35 + 1.39 + 1.37 + 0.79 + 1.39 + 1.13	+ 32 30 41.4 + 29 39 40.2	20. 1	+ 2. + 1.
			7	1 11 13,8	0 31 13.8	- 0 56.52	1.39	— 0.77	+ 23 25 44.2	— 0 27.5	- 0.
				<u> </u>	!	<u> </u>	<u> </u>		1		1

(126)

			1784 OCTO	BER 6-C	ntinued	ı	Zei	ro corr. = + :	l ′ 4 1". 8.
Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
		h m s	h m s	m s	,	8	0 1 11	, ,,	"
57 Piscium .	6	1 16 19.3	0 36 19.3	— 0 56.52	- 0.81	1.62	+ 14 17 7.6	0 39.8	- 2.0
64 "	6.7	18 42.6 22 41.3	38 42.6 42 41.3	56.52 56.51	0.90 2.34	-1.51 +1.30	+ 15 45 44.4 + 36 13 37.4	37.7 13.0	-1.8
· μ Androm	4.3	25 51. 0	45 51.0	56.50	2.44	+1.27	+ 37 18 21.8	11.8	+ 3.3 + 3.6
Piscium .	7	29 40.5	49 40.5	56, 50	0.30	 0.75	+ 5 18 36.0	54.9	- I. 4
73 "	6	32 46.9 34 43.5	52 46.9 54 43.5	56. 49 56. 49	0, 38 0, 25	- 1.08 - 0.55	+ 6 43 5.2 + 4 29 23.4	52. 3 56. 5	-1.6 -1.3
· · · · · · · · · · · · · · · · · · ·	5.6	38 17.0	0 58 17.0	56.48	0.25	-0.55	+ 4 29 23.4 + 4 29 51.2	56.5	- 1.3
	6.7	42 18.6	1 2 18.6	56.48	2.07	 1.40	+ 32 55 51.4	16.5	+2.7 + 2.5
	6.7	45 21.3 47 37.8	5 21.3 7 37.8	56. 47 56. 47	2.00 2.34	+1.38 + 1.30	+ 31 57 13.9 + 36 13 34.6	17.6 13.0	+2.5 $+3.3$
	7.8	50 43.7	10 43.7	56.46	2.92	1.46	+ 42 25 36.8	6.5	¥ 4.6
	6.7	54 55.6	14 55.6	56.46	2.11	1.40	+ 33 26 15.2	16. 0	1 2.8
ξ Androm	6.7	55 55.0 1 58 16.0	15 55.0 18 16.0	56.45	2. 10 3. 30	+1.40 + 2.34	+ 33 14 0.0	16.2 3.0	+2.7 + 5.3
ç Androm	8	2 1 29.3	21 29.3	56. 45 56. 44	0.91	$\frac{+2.54}{-1.50}$	+ 45 51 51.7 + 15 49 52.6	37.6	I_ I 8
	7.8	4 12.5	24 12.5	56.44	1,00	- 1.42	+ 17 20 27.2	35.5	- 1.6
0 4-4-4	8	8 42.2	28 42.2	56.43	2.54	+1.27	+ 15 49 52.6 + 17 20 27.2 + 38 28 1.0 + 19 12 1.6	10.6	+ 3.8
2 Arietis	8	11 50.7 14 12.9	31 50.7 34 12.9	56. 43 56. 42	1.11 1.10	-1.30 -1.31	+ 19 12 1.6 + 18 59 12.2	33, 0 33, 2	$\begin{bmatrix} -1.3 \\ -1.3 \end{bmatrix}$
1)	7	35 31.9	55 31.9	56.39	1.47	0.48			l
13	6	35 39.4	55 39.4	56.39	1.47	- 0.48	+ 24 39 5.0	26. 0	+ 0.2
eta Trianguli . 42 Ceti	6	37 46.4 41 0.5	1 57 46.4 2 1 0.5	56.38 56.38	2. 15 0. 42	+1.39 -1.28	+ 33 56 18.7 + 7 32 37.6	15. 4 50. 7	+ 2.9 - 1.7
42 Cell ξ ''	5.6	42 37.0	2 37.0	56.38	0.42	- 1. 20 - 1. 32	+ 7 49 8.5	50, 7	二 i:7
,	7	46 3.0	6 3.0	56.37	1.35	- 0.87		28.5	- 0.2
	8 -	46 7.2	6 7.2	56. 37	1.35	-0.88	+ 22 51 0.0	28.2	-0.2
	6.7 7.8	48 31.1 51 33.3	8 31.1 11 33.3	56. 37 56. 36	1.78 2.19	+1.05 $+1.37$	+ 29 10 16.2 + 34 25 48.2	20.7 14.9	+ 1.6 + 3.0
	6	55 43.7	15 43.7	56.35	1.56	0.10	+ 26 1 9.0	24. 4	I
	6	2 59 12.2	19 12.2	56. 35	1.44	- 0.59	+ 22 44 45.9 + 22 51 0.0 + 29 10 16.2 + 34 25 48.2 + 26 1 9.0 + 24 15 11.4 + 32 48 50.0 + 36 45 39.8	26.5	+ 0.1
5)	7 7	3 2 18.6 6 1.7	22 18.6 26 1.7	56. 34 56. 34	2.06 2.39	+1.40 $+1.28$	+ 32 48 50, 0 + 36 45 39, 8	16. 6 12. 4	+0.1 $+2.7$ $+3.5$
9) 5) <i>q</i> Persei	4.5	9 43.3	29 43.3	56. 33	2.61	T 1.28	+ 39 14 51.8	9.8	¥ 3.9
37 Arietis	6.7	13 20.2	33 20.2	56, 32	0.97	1.44	+ 16 49 43.8	36, 3	- 1.7
41 "	8, 9 5, 6	16 9.9 18 20.8	36 9.9 38 20.8	56.32	1.34	- 0.90	+ 22 42 21.8 + 26 20 38.3	28.4	-0.3
41	7	21 26, 2	41 26.2	56, 32 56, 31	1.58 1.90	-0.02 + 1.28	+ 30 43 54.3	24. 0 18. 9	+ 0.8 + 2.1
	7.8	23 38.3	43 38.3	56. 31	1.13	_`1.28	+ 19 28 14.2	32.6	- 1. 2
ρ "	6.7	25 18.9	45 18.9	56. 30	0.98	- 1.42	+ 17 8 25.2	35.7	- 1.7
49 "	6.5	27 56.5 30 14.6	47 56.5 50 14.6	56.30 56.30	1.19 1.53	-1.20 -0.23	+ 20 27 10.1 + 25 34 51.2	31.3 24.9	<u>ー</u> 1.0
ρ Persei	4	32 25.8	52 25.8	56.29	2.50	+ 1.27	+ 25 34 51.2 + 37 58 16.2 + 40 5 18.8 + 41 31 23.8	11.1	+ 0.6 + 3.7
β "	4	35 13.5	55 13.5	56. 29	2.69	 1.31	+ 40 5 18.8	8.9	
a "	2.3	39 0.6 50 1.7	2 59 0.6 3 10 1.7	56. 28 56. 26	2.83 3.68	+139 +3.26	+413123.8 +4932.6	7.4	+ 4.4
	6.5	51 44.4	11 44.4	56. 26	3.59	¥ 3. 10	+ 48 19 3.1	0.5	+ 5.6 + 5.5 + 5.5
04 "	5.6	53 48.5	13 48.5	56. 26	3.58	→ 3.09	+ 48 16 0.0	0.6	+ 5.5
34 " 4 Tauri	5	55 3.1 3 59 41.1	15 3.1	56.25 56.25	3, 64	+ 3.19 - 2.67	+ 48 43 5.2 + 10 34 22.6	0.1	+ 5.6
T LOUIL	7.6	4 2 53.9	19 41.1 22 53.9	56, 25 56, 24	0.00	-2.67 -1.42	17 5 58.4	35. 9	$\begin{bmatrix} -1.9 \\ -1.7 \end{bmatrix}$
9 "	7	5 20.7	25 20.7	`56, 24	1, 32	-0.94	+ 22 28 8.2	28.6	0.4
11 "	8.9	7 20.2	27 20.2	56, 23	1.42	- 0.66	+ 23 58 11.4	26.9	0.0
11 "	8	8 56.7 11 15.3	28 56.7 31 15.3	56, 23 56, 23	1.47 1.49	- 0.50 - 0.38	+ 24 50 4.8 + 24 57 47 A	26. 1 25. 7	+ 0.2 + 0.4
m		13 21.0	33 21.0	56, 22	1.43	- 0.61	+ 24 7 53.6	26.7	0,0
η Pleiadum.	3	15 43.5	35 43.5	56. 22	1.38	— 0.78	+ 17 5 58.4 + 22 28 8.2 + 23 58 11.4 + 24 36 4.8 + 24 57 47.4 + 24 7 53.6 + 23 24 29.7 + 23 24 29.7	27.6	- 0.1
J "	6 7.8	17 24.0 21 38.3	37 24.0 41 38.3	56, 22 56, 21	1, 38 1, 49	- 0.79 - 0.38	+ 23 21 49.1 + 25 0 35.9	27.7 25.6	- 0.1 - 0.4
	6.7	22 56.8	42 56.8	56. 21	1.83	+1.23	+\30 22 33.4	19.4	+0.4
())	7.8	25 13.2	45 13.2	56. 20	2.17	+ 1.38	+ 34 9 17.0 + 36 20 28.9	15. 2	+ 2.9
()	8 6 5	28 9.6	48 9.6	56.20	2.35	+ 1.30	+ 36 20 28.9	12.8	+ 3.4
A Tauri	6.5	4 32 59.8	3 52 59.8	- 0 56. 19	— 1.26	— 1.09 `	+ 21 27 45.0	- 0 30.1	- 0.7
is 7′ 3	0" from th	of a star whose c ast of 13 Arietis, 12 14 6; not 12 14			c gas d gas e T. I	sumed as 9 sumed as 1 II assumed	° 36' 13"; not 9° 36 4° 41' 48"; not 14° as 28m.; not 38m.	′ 43″. 41′ 19″.	

(127)

		1784 0	OTOBER :	8		Ze	ro corr. = + 1	L' 39". 5.
Name	Mag. T	App. sid. time	Clock corr.	n tan ô	q	· ζ—φ	Refr.	q'
a) π Androm. 54 Piscium 57 "	h m s 0 52 29.7 7.8 0 58 57.8 6 1 4 36.0 9 7.5 6 16 14.6 18 37.4 6 18 37.4 22 36.5 6 27 8.3 22 35.5 32 42.3 32 42.3 32 42.3 32 42.3 32 42.3 43 12.6 6 27 8.3 32 42.3 32 42.3 42 5.2 7 43 12.6 6 37 42 5.2 7 43 12.6 6 37 8.3 314.7 1 55 37.1 2 0 55.3 314.7 1 48 35.7 1 28 37.1 1 48 35.7 1 28.1 1.5 28 37.0 24 11.2 24 11.2 24 11.2 24 11.2 <td< td=""><td>h m s 0 12 29.7 18 57.8 24 36.0 26 20.2 29 7.5 30 37.5 36 14.6 38 37.4 42 36.5 44 47 8.3 49 35.5 52 42.3 0 57 22.5 1 0 45.5 2 5.2 3 12.6 8 35.7 15 37.1 20 55.9 25 13.3 28 41.4 31 46.7 34 8.5 37 28.1 11.5 44 11.2 46 33.4 48 37.0 52 23.8 53 7.2 55 8.6 6 8 26.6 11 28.6 6 11 28.6 6 8 26.6 11 28.6 6 11 28.6 6 8 26.6 11 28.6 6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 8 26.6 11 28.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.</td><td>m s - 0 51.87 51.86 51.84 51.84 51.83 51.83 51.82 51.81 51.80 51.79 51.79 51.79 51.76 51.76 51.75 51.74 51.75 51.75 51.74 51.75 51.76 51.76 51.76 51.76 51.76 51.76 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.68 51.68 51.68 51.68 51.68 51.68 51.65 51.65 51.65 51.65 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.5</td><td>- 1.73 1.68 2.31 1.16 0.91 1.08 1.09 1.09 1.09 1.19 1.00 1.50 1.15 1.50 1.15 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50</td><td>- 1.42 - 1.20 - 0.55 - 1.39 - 0.00 - 0.04 - 0.42 - 0.67 - 1.49</td><td>+ 28 14 28.8 + 27 36 52.8 + 36 37 23.4 + 32 30 42.9 + 20 4 18.0 + 19 4 17 9.1 + 15 45 46.1 + 36 13 35.0 + 18 0 14.0 + 18 1 3 35.0 + 18 36.8 + 6 43 5.4 + 19 34 32.2 + 28 55 31.0 + 28 55 31.0 + 28 55 31.0 + 28 55 31.0 + 28 55 31.0 + 21 30 30.2 + 19 12 3.3 + 16 40 41.6 + 18 1 32 33.2 + 19 12 37.8 + 11 2 37.8 + 12 40 47.8 + 16 40 47.8 + 17 12 37.8 + 19 19 23.3 + 18 59 29.0 + 24 52 24.4 + 24 51 41.0 + 24 52 24.4 + 24 51 41.0 + 26 1 13.2 + 18 27 46.0 + 20 10 35.2 + 22 44 49.2 + 24 51 41.0 + 26 1 13.2 + 18 53 3.0 + 22 44 49.2 + 24 15 43.2 + 18 14 53.4 + 17 26 25.2 + 20 27 11.2 + 24 15 43.2 + 18 14 53.4 + 17 26 25.0 + 22 42 25.0 + 22 42 25.0 + 24 15 43.2 + 18 14 53.4 + 17 26 25.2 + 20 27 11.2 + 24 15 43.2 + 18 14 53.4 + 17 26 25.2 + 20 27 11.2 + 24 51 24.0 + 24 51 24.0 + 25 55 52.3 + 15 59 41.9 + 22 28 8.7 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 25 55 52.3 + 15 59 41.9 + 23 55 52.3 + 25 55 52.3 + 25 55 52.3 + 25 55 52.3 + 25 55 52.3 + 25 55 52.3 + 26 6.2</td><td>- 0 21.9 22.6 13.7 1 17.1 31.9 32.2 40.8 13.0 34.7 22.4 41.2 22.9 24.6 34.7 40.2 24.1 21.1 22.9 24.4 35.8 42.5 532.0 25.9 26.1 31.8 34.6 6 26.5 34.4 42.3 6 6 26.5 34.4 44.3 35.5 9 26.7 24.5 33.6 4 44.3 35.5 9 26.7 24.5 33.6 4 44.3 35.5 9 26.7 24.5 33.6 4 44.3 24.4 4 23.6 6 26.5 34.4 4 34.9 24.1 24.2 25.1 27.7 7 27.3 9 27.0 26.2 26.2 26.2 27.0 26.2 27.0 26.2</td><td>$\begin{array}{c} "\\ +1.4\\ +2.6\\ -1.1\\ -2.8\\ +3.3\\ -1.5\\ -2.0\\ -1.6\\ +1.6\\ -1.6\\ +1.1\\ -1.5\\ -2.0\\ -1.3\\ -1.3\\ -1.7\\ -2.0\\ -1.3\\ -1.3\\ -1.4\\ +0.4\\ +0.4\\ +0.4\\ +0.4\\ +1.1\\ -1.3\\ -1.6\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1$</td></td<>	h m s 0 12 29.7 18 57.8 24 36.0 26 20.2 29 7.5 30 37.5 36 14.6 38 37.4 42 36.5 44 47 8.3 49 35.5 52 42.3 0 57 22.5 1 0 45.5 2 5.2 3 12.6 8 35.7 15 37.1 20 55.9 25 13.3 28 41.4 31 46.7 34 8.5 37 28.1 11.5 44 11.2 46 33.4 48 37.0 52 23.8 53 7.2 55 8.6 6 8 26.6 11 28.6 6 11 28.6 6 8 26.6 11 28.6 6 11 28.6 6 8 26.6 11 28.6 6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 11 28.6 8 26.6 8 26.6 11 28.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.6 8 26.	m s - 0 51.87 51.86 51.84 51.84 51.83 51.83 51.82 51.81 51.80 51.79 51.79 51.79 51.76 51.76 51.75 51.74 51.75 51.75 51.74 51.75 51.76 51.76 51.76 51.76 51.76 51.76 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.75 51.68 51.68 51.68 51.68 51.68 51.68 51.65 51.65 51.65 51.65 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.55 51.5	- 1.73 1.68 2.31 1.16 0.91 1.08 1.09 1.09 1.09 1.19 1.00 1.50 1.15 1.50 1.15 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	- 1.42 - 1.20 - 0.55 - 1.39 - 0.00 - 0.04 - 0.42 - 0.67 - 1.49	+ 28 14 28.8 + 27 36 52.8 + 36 37 23.4 + 32 30 42.9 + 20 4 18.0 + 19 4 17 9.1 + 15 45 46.1 + 36 13 35.0 + 18 0 14.0 + 18 1 3 35.0 + 18 36.8 + 6 43 5.4 + 19 34 32.2 + 28 55 31.0 + 28 55 31.0 + 28 55 31.0 + 28 55 31.0 + 28 55 31.0 + 21 30 30.2 + 19 12 3.3 + 16 40 41.6 + 18 1 32 33.2 + 19 12 37.8 + 11 2 37.8 + 12 40 47.8 + 16 40 47.8 + 17 12 37.8 + 19 19 23.3 + 18 59 29.0 + 24 52 24.4 + 24 51 41.0 + 24 52 24.4 + 24 51 41.0 + 26 1 13.2 + 18 27 46.0 + 20 10 35.2 + 22 44 49.2 + 24 51 41.0 + 26 1 13.2 + 18 53 3.0 + 22 44 49.2 + 24 15 43.2 + 18 14 53.4 + 17 26 25.2 + 20 27 11.2 + 24 15 43.2 + 18 14 53.4 + 17 26 25.0 + 22 42 25.0 + 22 42 25.0 + 24 15 43.2 + 18 14 53.4 + 17 26 25.2 + 20 27 11.2 + 24 15 43.2 + 18 14 53.4 + 17 26 25.2 + 20 27 11.2 + 24 51 24.0 + 24 51 24.0 + 25 55 52.3 + 15 59 41.9 + 22 28 8.7 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 15 59 41.9 + 23 55 52.3 + 25 55 52.3 + 15 59 41.9 + 23 55 52.3 + 25 55 52.3 + 25 55 52.3 + 25 55 52.3 + 25 55 52.3 + 25 55 52.3 + 26 6.2	- 0 21.9 22.6 13.7 1 17.1 31.9 32.2 40.8 13.0 34.7 22.4 41.2 22.9 24.6 34.7 40.2 24.1 21.1 22.9 24.4 35.8 42.5 532.0 25.9 26.1 31.8 34.6 6 26.5 34.4 42.3 6 6 26.5 34.4 44.3 35.5 9 26.7 24.5 33.6 4 44.3 35.5 9 26.7 24.5 33.6 4 44.3 35.5 9 26.7 24.5 33.6 4 44.3 24.4 4 23.6 6 26.5 34.4 4 34.9 24.1 24.2 25.1 27.7 7 27.3 9 27.0 26.2 26.2 26.2 27.0 26.2 27.0 26.2	$\begin{array}{c} "\\ +1.4\\ +2.6\\ -1.1\\ -2.8\\ +3.3\\ -1.5\\ -2.0\\ -1.6\\ +1.6\\ -1.6\\ +1.1\\ -1.5\\ -2.0\\ -1.3\\ -1.3\\ -1.7\\ -2.0\\ -1.3\\ -1.3\\ -1.4\\ +0.4\\ +0.4\\ +0.4\\ +0.4\\ +1.1\\ -1.3\\ -1.6\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1.1\\ -1$

(128)

		1	1784 OCTO	BER 8-Co	ntinued		Ze	oro corr. = +	1′ 39″. 5.
Name	Mag.	T	App.sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
13 Tauri	6.7 3 6 8 6 6.7 5	h m s 4 12 17.8 15 38.7 17 20.5 22 21.1 25 5.7 29 32.0 4 32 55.5	h m s 3 32 17.8 35 38.7 37 20.5 42 21.1 45 5.7 49 32.0 3 52 55.5	m 8	* - 1.11 1.40 1.40 1.26 1.29 1.15 - 1.26	* 1.31 - 0.77 - 0.79 - 1.11 - 1.04 - 1.27 - 1.08	+ 18 57 23.0 + 23 24 31.4 + 23 21 51.1 + 21 16 30.0 + 21 49 37.2 + 19 33 59.9 + 21 27 48.4	- 0 33.5 27.8 27.8 27.8 30.4 29.7 32.7 - 0 30.2	" - 1.3 - 0.1 - 0.1 - 0.7 - 0.6 - 1.2 - 0.7
,	l	<u> </u>	1784	OCTOBE	R 9		<u> </u>	ero corr. = +	1′ 38″. 6.
a Ophiuchi β "	23415565.3.6 56.7.66 8 5 7 66.7.7.5867.7.667.56 8 5 7 66.7.7.5867.7.667.56	18 7 49.8 15 42.0 18 15 42.0 18 12 30.8 18 13.8 18 13.8 18 13.8 18 15.8 22 37.0 630 44.5 46 24.0 47 35.9 49 17.8 50 36.5 52 55 26.1 57 36.3 58 54.7 19 59 56.5 20 2 50.5 4 35.2 5 51.4 8 25.1,7 12 49.3 16 35.3 19 22.8 22 41.7 36 30.3 38 29.8 40 31.6 40 31.0 44 56.5 48 14.3 552 15.3 552 27.9 3 59.6 5 40.9 8 7.3 11 33.6 13 53.8 16 57.7 23 46.8 25 12.4 28 15.5 31 32.7	17 25 49.8 33 42.0 17 37 57.8 38 13.8 38 15.8 42 37.0 64 20.6 18 50 44.5 19 4 24.0 5 35.5 10 5 36.3 16 54.7 17 56.8 20 55.2 22 35.2 23 51.4 26 25.1 28 53.3 33 18.3 34 35.3 37 22.3 51.4 26 25.1 28 56.5 10 2 56.5 20 35.2 23 51.4 26 25.1 28 55.2 23 51.4 26 25.1 28 56.5 10 15.3 31 1.0 2 56.5 6 14.3 7 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 13 2.7 16 7.5 19 15.3 17 15.3 18 3.3 18 3.3 18 3.3 18 3.3 18 3.3 18 3.3 19 58 38 58 58 58 58 58 58 58 58 58 58 58 58 58	— 0 50. 21 50. 19 50. 19 50. 19 50. 09 50. 08 50. 07 50. 04 50. 04 50. 04 50. 02 50. 02 50. 02 50. 01 50. 01 50. 01 50. 01 50. 01 50. 00 49. 99 49. 99 49. 99 49. 99 49. 99 49. 95 49. 95 49. 95 49. 95 49. 95 49. 95 49. 91 49. 91 49. 91 49. 91 49. 91 49. 91 49. 91 49. 99 49. 89 49. 88 49. 88 49. 88 49. 88 49. 88 49. 88 49. 88 49. 87 49. 87	1, 62 1, 67	+ 1.31 + 1.30 - 1.06 - 1.80 - 1.30 + 1.79 + 0.04 + 0.36 + 0.28	+ 12 42 50.9 + 4 39 31.7 + 2 47 29.0 + 37 21 59.6 + 37 21 59.6 + 37 21 28.0 + 14 46 20.8 + 38 48 0.6 + 38 48 0.6 + 38 45 43.6 + 11 12 19.4 + 11 18 0.0 + 19 22 21.6 + 19 27 34.2 + 19 27 34.2 + 19 27 36.2 + 19 27 36.8 + 38 45 47.2 - 1 45 27.6 + 14 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 42 18 17.4 + 43 36.8 + 36 49 16.4 + 44 12 4.4 + 42 18 17.4 + 42 18 17.4 + 43 18 52.3 + 20 55 57.2 + 20 31 54.2 + 21 18 52.3 + 20 55 57.2 + 20 31 54.2 + 37 43 10.0 + 35 43 24.0 + 36 34 24.0 + 37 51 40.5 + 19 8 59.3 + 24 29 33.4 + 31 35 41.0 + 9 19 35.5 + 19 8 59.3 + 44 29 37.8 + 24 29 32.0 + 26 34 0.0 + 27 26 3.2 + 27 26 3.2 + 27 13 45.6 + 21 29 11.6	13.5	- 1.9 - 1.9

Digitized by Google

(129)

	<u> </u>	!	l .		1	1	1	0 corr. = +	1
Name	Mag.	<i>T</i>	App. sid. time	Clock corr.	n tan đ	q	ζ φ	Refr.	_ q'
	8	h m s 21 39 2.8	h m s 20 57 2,8	<i>m s</i> 0 49,85	8 1 17	8	0 ! "	/ //	,
)	6	42 23, 1	21 0 23.1	49.85	- 1, 17 1, 81	-1.23 +1.07	+ 20 4 49.4 + 29 19 30.0	- 0 31.6 20.5	- 1. + 1.
	7	45 17.2	3 17.2	49 84	2, 29	+1.32	+ 35 24 19.9	13.8	¥ 3
5 0 .	6	21 47 50.7	5 50.7	49.84	1.79	+0.98	+ 29 0 1.8	20.8	+ ĭ
ε Pegasi 81 π² Cygni	3 5	22 16 30.0	34 30.0	49.79	0.51	— 1.61	+ 8 53 4.9	48.2	<u> </u>
or w-cygni	7	21 42.8 25 4.2	39 42.8 43 4.2	49.78 49.78	3, 62 2, 56	+ 3.09	+ 48 17 37.6	0.6	+ 5
	7.8	28 9.3	46 9.3	49,77	1, 16	+1.27 -1.24	+ 38 30 45.4 + 19 49 16.4	10.5 32.0	+ 3 - 1
	9	32 1.8	50 1.8	49.77		+0.91	+ 28 47 44.3	21.0	+i
	7 6.7	37 8.8	21 55 8.8	49.76	3. 10	+ 1.60	+ 43 35 37.2	5.3	+ 4
33 Pegasi	6.7	53 53, 4 56 12, 4	22 11 53, 4 14 12, 4	49.73 49.73	1, 56 1, 16	- 0.16	+ 25 50 23.6	24.4	÷ 0
2 2 2 3 3 3 3	7	22 58 11.4	16 11.4	49.72	1, 10	- 1.25 - 1.42	+ 19 45 2.1 + 17 20 27.4	32, 1 35, 3	- 1 - 1
	7	23 0 58.2	18 58, 2	49.72	1.41	-0.73	23 40 57.6	27.0	
	7.6	• 4 28.5	22 28.5	49.71	1.74	+0.75	+ 28 25 34.6	21.4	+ 1
	6.7	5 49.5 9 11.0	23 49.5 27 11.0	49.71 49.70	2.59 2.57	+1.27 +1.27	+ 38 39 21.0 + 38 29 51.5	10.4	+ 3
11 Lacertee .	6.5	13 58.7	31 58.7	49.70	3, 02	+1.53	+ 38 29 51.5 + 43 7 59.7	10. 5 5. 7	+ 3 + 4
η Pegasi	3	15 47.7	33 47.7	49.69	1.79	+ 1.01	+ 29 4 54.0	20.7	ĮΤi
λ "	4	19 4.5 23 22 31,3	37 4.5	49.69	1.33	- 0.95	+ 22 25 16.5	28, 6	- 0
μ	7.8	1 14 33.0	22 40 31, 3 0 32 33, 0	49. 68 49. 49	1.40 0.89	-0.77 -1.53	+ 23 27 7.5 + 15 28 17.2	27.4	├- 9
57 Piscium .	6	18 12.3	36 12.3	49.49	0.83	- 1.62	+ 14 17 10.4	38. 1 39. 8	
64 "	6	20 35.1	38 35, 1	49. 49	0.91	- 1.50	十 15 45 47.1	37.7	_ î
68 "	6	26 6.8 29 6.0	44 6.8	49.48	1.05	- 1.39	+ 18 0 15.3	34.5	- 1
w	6	33 45.1	47 6.0 51 45.1	49. 47 49. 46	1.69 2.71	+ 0.49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.2	+ j
31 "	6	37 3.9	55 3,9	59.46	1. 19	+1.32 -1.21	+ 40 9 40.6 + 20 18 5.4	8.9 31.5	+ 4
4.2 66	6	37 5.0	55 5.0	49.46	1. 19	- 1.21	+ 20 17 41.6	31.5	_ i
9^{ψ^2}	6	39 1 42 9.3	0 57 1	40.45	1 00		+ 19 34 34.0	32.4	<u> </u>
ø " : :	5	44 58.9	1 0 9.3 2 58.9	49. 45 4 9. 44	1, 88 1, 40	+1.22 -0.77	+ 30 15 24.0 + 23 25 21.6	19.5	+ 2
89 ' '	6	49 34.2	7 34.2	49, 44	0, 13	_ 0.19	+ 2 28 13.9	0 27.5 1 0.6	-0
00 11	8.9	. 53 28.5	11 28.5	49. 43	0.85	- 1.60	+ 14 38 49.1	0 39.4	- î
92 " 98 "	7	55 12.0 1 59 22.3	13 12.0 17 22.3	49, 43 49, 42	0.97	- 1.46	 + 16 40 43.5 	36. 4	- 1
	9	2 3 59.3	21 59, 3	49, 41	0. 24 0. 15	- 0.50 - 0.21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 56.9 1 0.4	
55 Mayer	8	6 29.2	24 29.2	49.41	0.40	- 1.18	7 9 34.4	0 51.3	$\sqsubseteq i$
π Piscium . 57 Mayer	5 7.8	8 37.4	26 37.4	49.40	0.63	 2. 88	+ 11 1 27.8	44.9	- i
107 Piscium	6	9 9.6 13 44.1	27 9.6 31 44.1	49. 40 49. 40	0.63 1.12	- 2.87 - 1.30	+ 1059 + 1912 4.3	99.0	١.
109 "	6.7	16 5.7	34 5.7	49, 39	1. 12	- 1.30 - 1.31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33. 0 33. 2	- 1 - 1
	7	19 10.0	39 10.0	49, 38	1.25	- 1.11	+ 21 11 3.0	30.3	<u> </u>
γ Arietis	8	21 5.8 24 38.2	41 5.8	49.38 49.38	1.37	- 0.85	+ 23 1 42.8	28.0	- 0
ί	6	28 30.6	42 38.2 46 30.6	49.38 49.37	1.06 0.97	- 1.37 - 1.45	+ 18 13 13.7 + 16 44 50.8	34. 3 36. 3	<u> </u>
	8	32 28.1	50 28.1	49. 36	1.32	- 0.96	+ 22 19 52.2	28. 8	$\sqsubseteq \dot{a}$
a "	9	35 31.8	53 31.8	49.36	0.40	- 1.16	+ 7 2 52.2	51.7	- j
16 "	7	37 57.7 41 37.2	55 57.7 1 59 37.2	49, 36 49, 35	1.33 1.08	- 0.95 - 1.35	+ 22 25 16.0	28.8	<u>0</u>
	7	52 52.3	2 10 52.3	49.33	1.00	- 1.35 - 1.03	+ 18 27 46.2 + 21 51 54.0	34, 0 29, 5	
10 10	7.8	56 27.8	14 27.8	49.32	1.44	- 0.60	+ 21 51 54.0 + 24 9 37.8	26.5	Γ à
13 Trianguli . 14 "	6	2 59 5.4	17 5.4	49. 32	1.79	+0.95	+ 28 56 4.8	21.0	+ 1
	8	3 1 53.5 5 44.5	19 53.5 23 44.5	49. 31 49. 31	2. 27 0. 61	+1.33	+ 35 9 36.6	14. 1	+ 3
v Ceti	4.5	7 27.9	25 27.9	49, 31	- 0.26	-2.71 -0.57	+ 10 38 25.7 + 4 38 18.8	45.6 0 56.3	- <u> </u>
ð "···	3	11 18.5	29 18.5	49, 30	+0.04	+ 0.58	- 0 36 44.9 l	1 7.5	_ ō
γ 16 Trianguli .	3 6,7	15 1.3	33 1.3	49, 29	— 0.13	- 0.16 - 0.58	+ 2 18 49.7 + 24 15 44.0 + 30 43 58.2	1 0.9	⊢ 1
Almiguii .	7.8	19 10.2 23 19.3	37 10.2 41 19.3	49. 29 49. 28	1.46 1.92	一 0.58	+ 24 15 44.0 + 30 43 58.2	0 26.4	+ 0 + 2
. ~ .	6	27 19.5	45 19.5	49, 27	2.50	+1.28 + 1.27	+ 37 42 53, 4	19.0 11.4	$+\frac{2}{3}$
λ Ceti	5.6	31 4.6	49 4.6	49, 27	0.45	- 1.37	+ 8 1 49.2	49.9	<u>∸</u> i
α β Persei	2 2.3	33 54.3 3 37 6.3	51 54.3 2 55 6.3	49.26 0 49.26	0.18	- 0.32	+ 3 13 44.9	58.9	- 1 - 1
r	, ~. •	~ ~ 0.0	~ ~ ~ ~ ~ ~ ~ ~	— U 48.20	— 2.71	+ 1.31	+ 40 5 19.8	 0 8.9	+ 4

(130)

		•	1784 OCT	BER 9—(JOH LIBRO	 	Zer	o corr. = +	1. 38,.'6
Name	Mag.	<i>T</i>	App. sid. time	Clock corr.	n tan o	q	ς-φ	Refr.	q'
		h m s	h m s	m 8	, s	8	0 / //	, ,,	,,,
57 d Arietis	8 4	3 40 15.2 42 19.8	2 58 15.2 3 0 19.8	- 0 49.25 49.25	- 1.08 - 1.60	-1.34 + 0.02	+ 18 31 59.2 + 26 24 55.4	- 0 33.9 0 23.9	- 1. + 0.
a Fornacis.	3	45 41.1	3 41.1	49. 24	+ 1.85	+4.79	— 29 47 5 6 l	4 38.6	— 5.
a Persei	2.3	51 54.5	9 54.5	49. 23	— 3.71	+ 3.26	+ 49 3 1.6 + 8 15 1.0 + 11 57 35.0	0 0.2	+ 5.
o Tauri	4 7.8	56 7.8 58 22.5	14 7.8	49. 23	0.47	- 1.42	+ 8 15 1.0	49.4	- 1·
	7.8	3 59 46.1	16 22.5 17 46.1	49. 22 49. 22	0.69 0.61	-2.62 -2.70	+ 11 57 35.0 + 10 37 19.0	43. 4 45. 6	- 2. - 1.
Tauri	6	4 1 33.7	19 33.7	49. 22	0.61	- 2.67	+ 10 34 31.8	45. 8	_ i
	7	4 47.3	22 47.3	49. 21	0.99	- 1.42	+ 17 6 4.4	35. 8	- 1
9 " : !	7	7 13.6	25 13.6	49.21	1.33	- 0.94	+ 17 6 4.4 + 22 28 12.0 + 24 36 7.4 + 23 34 51.0	28.8	- 0
**	7	10 49.3 14 55.0	28 49.3 32 55.0	49. 20 49. 19	1.48 1.42	- 0.50 - 0.75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26. 1 27. 4	+ 0.
b "	5	15 0.5	33 0.5	49. 19	1.40	- 0.78	+ 23 24 25.0	27.6	
η " : : ! f " : : !	3	17 36.2	35 36.2	49. 19	1.40	- 0.78	+ 23 24 25.0 + 23 24 32.0	27.6	- p.
<i>f</i> " · ·	6 7	19 16.8 23 46.5	37 16.8 41 46.5	49.19	1.40	- 0.79	+ 23 21 53.1 16 20 24 4	27.6	- 0
	6	23 40.5 27 3.5	41 46.5 45 3.5	49. 19 49. 17	0.97 1.30	- 1.46 - 1.04	+ 23 21 53.1 + 16 39 34.4 + 21 49 41.2	36. 5 29. 6	
. 1	10.11	31 3.2	49 3.2	49. 17	1.16	- 1.25		32, 3	_ i
Tauri	6.7	31 29.2	49 29.2	49. 17	1.15	- 1.26	+ 19 34 2.2	32.5	- 1
39 "	6 7.8	34 52.9 38 53.0	52 52.9 56 53.0	49. 16 49. 16	1, 26	- 1.09 - 0.81	+ 21 27 48.0	30.1	- 0
p "	6.7	40 37.3	3 58 37.3	49, 15	1.57	-0.81	+ 23 16 2.7 + 25 53 11 4	27.7 24.6	- 0 + 0
_	10	44 37.2	4 2 37.2	49, 15	1.30	- 1.03	+ 25 53 11.4 + 21 52 33.0	29.6	_ ŏ
48 "	7	46 27.5	4 27.5	49. 14	0.86	- 1.58	+ 14 50 5.4	39, 1	- 1
51 "	7	48 33.0	6 33.0	49.14	1.24	- 1.13	+ 21 1 24.0	30.6	- 0
59 r Tauri	6	52 22.8	10 22,8	49, 13	1.50	- 0, 36	+ 21 13 26.0 + 25 5 18.5	30. 4 25. 5	+ 0
59 χ Tauri	4	54 34.8	12 34.8	49. 13	0.98	- 1.44	+ 16 54 59.8	36, 1	_ i
72 v ² "	6	57 19.5	15 19.5	49. 12	1.33	- 0.94	+ 16 54 59.8 + 22 28 46.4 + 14 14 5.0	28.8	- 0.
76 "	7 7	4 59 5.2	17 5.2	49. 12	0.82	- 1.63	+ 14 14 5.0	40.1	- 2
50 "	7	5 0 46.4 1	, 18 46.4 19	49, 12	0.87	- 1.56	+ 15 8 26.0 + 15 11 46.0	38. 7 38. 6	- 1 - 1
85 "	Ť	2 28.1	20 28, 1	49.11	0.89	- 1.54	+ 15 21 43.0	38.4	- i
86	5	4 32.2	22 32.2	49.11	0.83	- 1.62	+ 14 21 52.0	39.8	— 2 .
Aldebaran $90 c^1$ Tauri .	1 5	6 28.4 9 2.3	24 28.4 27 2.3	49.11	0.93	- 1.49 - 2.50	+ 16 2 52.3	37.4	- 1
93 c ² "	6	10 59.5	28 59.5	49. 10 49. 10	0.69	-2.50 -2.84	+ 15 21 43.0 + 14 21 52.0 + 16 2 52.3 + 12 3 10.1 + 11 44 53.2	43. 4 43. 8	- 2 - 2
	7	15 36.4	33 36.4	49.09	1.38	- 0.82	+ 11 44 53.2 + 23 11 58.0 + 15 30 0.5 + 24 12 51.4 + 23 34 45.5	27.9	·- 0
	6.7	20 18.7	38 18.7	49.08	0.90	- 1.52	+ 15 30 0.5	38. 2	<u> </u> 1.
	7 6.7	26 2.5 27 38.9	44 2.5 45 38.9	49.08 49.07	1. 45 1. 41	- 0.59 - 0.75	+ 24 12 51.4	26.6 27.4	+ 0
	4	33 7.3	51 7.3	49.06	1.26	- 1. 10	+ 21 15 4.6	30, 3	= 0
	6	38 52.7	55 52.7	49.06	1.43	- 0.67	+ 21 15 4.6 + 23 56 48.3 + 15 17 35.2 + 45 43 45.8	26.9	0
y Orionis .	6	40 16.1	4 58 16.1	49.05	0.88	- 1.55	+ 15 17 35.2	38.5	- 1
Capella	1 1	43 40.5 46 59.8	5 1 40.5 4 59.8	49. 05 49. 04	-3.30 +0.47	+2.28 +1.87	_ 8 27 40 1 1	0 3.2 1 30.3	+ 5
	8.7	50 29.8	8 29.8	49.03	T 1.13	二 1.29	+ 19 19 32.0	0 32.9	= i
am :	7.8	51 7.6	9 7.6	49.03	1.15	- 1.27	+ 19 19 32.0 + 19 33 54.0 + 28 23 15.6	32.6	_ 1
β Tauri	2 6	55 33.4	13 33.4	49.03	1.74	+ 0.74	+ 28 23 15.6	21.7	+ 1
o · · · ·	8,9	5 57 35.7 6 1 57.1	15 35.7 19 57.1	49. 02 49. 02	1, 28 1, 05	- 1.05 - 1.38	+ 21 43 11.4	29. 9 34. 7	$-0 \\ -1$
	6	2 28.7	20 28.7	49.01	1.07	$\begin{bmatrix} 1.35 \\ 1.35 \end{bmatrix}$	18 24 8.0	34. 1	_ i
	6.7	3 48.2	21 48.2	49.01	- 1.07	- 1.35	+ 18 21 18.6	0 34.2	- 1
e Orionis .	2 2	8 6.7	26 6.7	49.01	+0.08	+ 0.86	— 1 21 23.6	1 9.4	- 0
ζ "	7	12 43.3 17 15.6	30 43, 3 35 15, 6	49.00 48.99	+ 0.11 - 0.91	+ 1.08 - 1.51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 11.4 0 38.0	-0.1
135 Tauri	6	21 7.2	39 7.2	48.98	0.82	- 1.63	+ 14 12 48.3	40.2	- 2
139 "	6	27 30.3	45 30.3	48.97	1.56	- 0.14	+ 14 12 48.3 + 25 53 26.0	24.5	+ 0.
H Geminorum	7	28 25.4	46 25.4	48.97	1.55	- 0. 19	+ 25 43 12.7 + 23 14 26.3	24.9	
11 Genundrum	7.8	33 54.3 36 34.0	51 54.3 54 34.0	48. 96 48. 96	1.38	- 0.81 - 0.74	+ 23 37 16.0	27.9 27.4	
	7	6 39 32.4	5 57 32.4	— 0 48.95	- 1.37	- 0.83	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.28.0	_ 0
	· ·			l	1	1	1		Į.

(131)

			1784 OCTO	BER 9—C	ontinued 		Zer	o corr. = + 1′ 3	æ". 6
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζφ	Refr.	q'
		h m s	h m s	m s	8	8	0 / //	, ,,	"
G :	7	6 42 8.6	6 0 8.6	- 0 48, 95	-1.37	- 0.87	+ 22 55 18.4	— 0 <u>28.2</u> -	- 0.
η Geminorum	4.5	44 45.3 48 39.3	2 45.3 6 39.3	48, 94 48, 94	1.34	- 0.93 - 0.73	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.2 - 27.4 -	- 0. - 0.
μ "	3	52 48.4	10 48.4	48, 93	1.34	_ 0.92	+ 22 35 19.2		- 0. - 0.
,	7	6 55 20.4	13 20.4	48.93	. 1.39	- 0.78	+ 23 24 33.0	27.7	- 0.
)	7.6	7 1 33.3	19 33.3	48.92	0.99	- 1.43	+ 17 3 37.1	36.1	-].
a, 11	7.8 2.3	4 49.2 8 8.6	22 49. 2 26 8. 6	48. 91 48. 91	1, 15 0, 96	- 1.26 - 1.47	+ 19 33 40.8 + 16 33 5.9	32.6 - 36.7 -	- 1. - 1.
γ "	7	10 37.5	28 37.5	48, 91	1.74	+ 0.73	\pm 28 21 23.8 \pm		- 1. - 1.
ε "	3	13 32, 5	31 32, 5	48, 90	-1.53	- 0.3 0	+ 25 18 27.8	0 25.4	- 0.
Sirius	1	18 26.4	36 26.4	48.89	+ 0.95	l+ 1.67	 16 25 11.6	2 5.4 -	- 0.
61 Aurigæ .	6	22 1.8 24 55.1	40 J. 8 42 55, 1	48.88 48.88	- 2.59 1.55	+ 1.28 - 0.22	+ 38 43 25.6 + 25 36 31.4	0 10.4	- 3. - 0.
Geminorum	6	28 22.4	46 22.4	48.87	1.59	-0.22	+ 25 36 31.4 + 26 19 33.6	24.0	- 0. - 0.
00111110111111	6	29 1.3	47 1.3	48.87	- 1.58	- 0.06	+ 26 10 14.5	0 24.3	- ō.
e Can. Maj.	3.2	32 53.3	50 53.3	48, 86	+ 1.77	+ 4.34	— 28 38 12.8	4 15.3 -	- 4.
63 Aurigæ .	4.5 6	39 40.7 42 12.2	6 57 40.7 7 0.12.2	48, 86	- 2.68 1.46	+ 1.29 - 0.53	+ 39 37 34.8 + 24 27 11.2	0 9.5 - 26.4 -	- 4.
m Geminorum	6	42 12.2 45 20.4	7 0.12.2 3 20.4	48, 85 48, 84	1.74	+0.68	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.4	- U. - 1.
δ "	3	50 7.4	8 7.4	48, 83	1, 33	- 0.96	+ 22 20 39.6	29.0 -	- 0.
Uranus .		54 4.7	12 4.7	48.83	1.37	- 0.88	+ 22 50 7.8		- ŷ.
r Geminorum	6	7 57 5.9 8 3 40.6	15 5.9	48. 82 48. 81	1, 22 2, 04	1.18	+ 20 39 15.2	31. 2 - 17. 3 -	- 0.
a "·	6	7 14.0	21 40.6 25 14.0	48.81	2.30	+1.39 $+1.32$	+ 35 29 20.6	13.8	- 2. - 3.
Procyon .	ĭ	10 52.0	28 52,0	48.80	0, 32	- 0.87	+ 32 19 11.2 + 35 29 20.6 + 5 45 19.8 + 24 52 46.6	54.3 -	- 1.
) κ Geminorum	4.5	8 14 17.0	7 32 17.0	- 0 48.79	— 1.50	0.41	+ 24 52 46.6	— 0 25.9 ₊	- 0.
			1784 Q	CTOBER	13		Zer	o corr. := + 1' 4	41". 4
δ Geminorum	3	7 49 10.8	7 9 10.8	_ 1 52 60	_ 1.36	_ 0,96	+ 22 20 35.8	_ 0 29.0	- 0.
Uranus .		53 15.5	13 15, 5	1 52, 59	1.40	- 0.89	+ 22 49 58.3	28.4 -	- 0.
r Geminorum	6 6	56 9.8	16 9.8	1 52,59	1.25	- 1.18	+ 20 39 16.8 + 28 19 22.4	31.2 - 21.8 +	- 0.
a "	1.2	7 58 18.6 8 2 44.5	18 18.6 22 44.5	1 52.58 1 52.58	1.79 2.10	+0.71 + 139	1 32 19 12 2	17.3	- 1. - 2.
	6.7	6 17.5	26 17.5	1 52.57	2.37	 + 1.32	+ 35 29 22.6 + 5 45 14.8	13.8	- 3.
Procyon .	1	9 55.7	29 55.7	1 52.57	0.33	-0.87		54.4	- 1.
k Geminorum	4.5	13 20.7 8 15 33.7	33 20.7 7 35 33.7	1 52.56 - 1 52.56	1.54 - 1.14	- 0.41 - 1.31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 0. - 1.
	<u> </u>	<u> </u>	1784 0	CTOBER	13		Zer	o corr. = + 1'	39".5
Sun II limb		13 59 38.5	13 19 38,5				- 7 51 16.2	_ 1 28.2 _	- 0.
Venus		15 5 55.7	14 25 55.7				— 13 59 8.6	1 52.7	- 0.
Aldebaran	1 6 7	5 5 29.8	4 25 29.8	— 1 50, 64	- 0.98	- 1.49	+ 16 2 49.2 + 23 11 54.4		- 1.
	6.7	14 38.5 18 1.5	34 38.5 38 1.5	1 50.62 1 50.62	1.43 1.11	-0.82 -1.36	+ 23 11 54.4 $+ 18 19 10.2$	27.9 34.4	- 0. - 1.
97 Tauri	6	20 42.3	40 42.3	1 50.61	1, 12	— 1.35	+ 18 26 33.7	34.2 -	- 1. - 1.
) ₇₄ 44	7.8	24 14.8	44 14.8	1 50.61	1.15	- 1.30	+ 18 26 33.7 + 19 6 19.0	33, 3 —	- 1.
γ "	7	32 9.3 33 27.3	52 9.3 53 27.3	1 50, 59 1 50, 59	1.30 1.28	— 1. 11 — 1. 15	+ 21 14 55.4 + 20 56 36.5		- 0. - 0.
	7.6	36 58.9	4 56 58.9	1 50.59	1.30	-1.09	+ 20 56 36.5 + 21 23 14.1	30.3	- 0. - 0.
μ Persei	6.5	40 37.6	5 0 37.6	1 50.58	2.62	+1.27	+38116.2	11.0 +	- 3.
Capella .	1	42 42.6	2 42.6	1 50,58	- 3.43	 + 2.2 8	+ 45 43 45.8	0 3.2 +	- 5.
Rigel	1 7.6	46 1.7 49 32.0	6 1.7 9 32.0	1 50, 57 1 50, 56	+ 0.49 - 1.18	+1.87 -1.29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 30.3 — 0 32.9 —	- 0. - 1.
	6	50 8.6	10 8.6	1 50.56	1, 19	-1.27	+ 19 33 52.0	32.7	- i.
	6	53 6.8	13 6.8	1 50.56	0.98	- 1.47	+ 16 27 55.5	36.9 —	- 1.
	7.6 6	55 34.0 5 57 55.6	15 34.0 5 17 55.6	1 50,55 1 50,55	0.98 — 1.56	- 1.47 - 0.40	+ 19 19 33.0 + 19 33 52.0 + 16 27 55.5 + 16 28 42.8 + 24 56 16.6		- 1. - 0.
		2 31 30.0	U 11 00.0	. 00.00	1,00	- 0. 40	1. 22 00 10.0	~~.· T	٠.
						1			

(132)

			•	1784 OCT	BER 13-	Continue	ed .	Ze	ro corr. = + 1	L′ 39 ″. 5.
	Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζ φ	Refr.	q'
	δ Orionis .	2	h m s 6 2 52.3	h m s 5 22 52.3	m s — 1 50.54	+ 0.02	8	0 / " — 0 28 36, 5	, ,, - 1 7.5	,,
	ε "	2	6 2 52.3	27 8.5	1 50.54	0.08	+0.53 +0.86	- 0 28 36.5 - 1 21 24.0	9.6	-0.8 -0.7
	ζ "	2	11 44.8	31 44.8	1 50.53	+ 0.12	+ 1.08	- 2 4 23.6	1 11.5	- 0.7
		9. 10 7	14 24.1 16 17.3	34 24.1 36 17.3	1 50,52 1 50.52	- 0.96 0.94	- 1.49 - 1.51	+ 15 57 42.0 + 15 42 31.2	0 37.8 38.1	-1.8 -1.8
a) 136	Tauri	6	19 18.0	39 18.0	1 50.51	1.77	+ 0.50	+ 27 51 53.9	22.4	+ 1.3
137	"	6	22 3.2	42 3.2	1 50.51	0.83	— 1.64	+ 14 5 16.6	40.5	— 2. 0
		7.6 7.8	25 39.2 27 27.0	45 39.2 47 27.0	1 50.50 1 50.50	1.50 1.61	-0.60 -0.19	+ 24 10 52.2 + 25 43 11.0	26.7 24.9	+0.1
		7.8	30 35.6	50 35.6	1 50.50	1.38	— 0.96	+ 22 21 35.0	29.0	— 0.4
	<i>H</i> Geminórum	~ 0	32 56.3	52 56.3	1 50, 49	1.43	- 0.81	+ 23 14 22.4	27.9	- 0.2
		7.8 6	35 35.4 40 13.7	5 55 35.4 6 0 13.7	1 50.49 1 50.48	1.46 1.51	- 0.74 - 0.54	+ 23 37 22.6 + 24 25 50.9	27.5 26.5	-0.1 + 0.2
	η "	4.5	43 47.3	3 47.3	1 50, 48	1.39	-0.93		28.8	-0.3
		7	47 41.3	7 41.3	1 50.47	1.47	-0.74	+ 23 38 57.2	27.4	- 0.1
b)		7 6	48 6.9 54 21.3	8 6.9 14 21.3	1 50.47 1 50.46	1. 46 1. 45	-0.76 -0.78	$\begin{array}{c} + 23 & 31 & 10.6 \\ + 23 & 24 & 36.8 \end{array}$	27.6 27.7	- 0.1 - 0.1
		6.7	57 2.4	17 2.4	1 50.45	1.26	— 1.19	+ 20 35 30.6	31.3	- 0.9
	י יי יי יי	4	6 58 4.7	18 4.7	1 50.45	1.24	-1.21	+ 20 18 51.4	31.7	-1.0
		6.7 7	7 1 8.5 4 23.1	21 8.5 24 23.1	1 50.44 1 50.44	0.96 0.98	- 1.49 - 1.48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$37.6 \\ 37.2$	-1.8 -1.8
		7.8	5 28.0	25 28.0	1 50, 44	1.02	— 1.44	+ 16 56 21.0	36, 3	_ î.7
	γ " - ·	3	7 11.0	27 11.0	1 50.43	1.00	- 1.47	+ 16 20 28.0 + 16 56 21.0 + 16 33 6.8 + 25 18 23.6	36, 9	- 1.7
	Sirius	3 1	12 34.3 17 28.2	32 34.3 37 28.2	1 50, 43 1 50, 42	-1.58 + 0.98	-0.30 + 1.67	+ 25 18 23.6 - 16 25 13.7	0 25.4 2 5.7	+0.5 -0.5
:)	2	6	24 23.6	44 23.6	1 50.41	- 0.79	_ 1.73	$\begin{array}{c} - & 16 & 25 & 13.7 \\ + & 13 & 25 & 19.2 \\ + & 23 & 42 & 9.0 \end{array}$	0 41.5	-2.0
	. C. V.:	8	29 30.5	49 30.5	1 50.40	- 1.47	- 0.73	+ 23 42 9.0	0 27.4	— 0. 1
	ε Can. Maj	2.3 8	31 54.8 40 52.9	6 51 54.8 7 0 52.9	1 50, 39 1 50, 38	+1.83 -0.94	+4.34 -1.51	28 38 13.4 15 39 19.0	4 15.8 0 38.1	- 4.3 - 1.8
d)		š į	42 23.9	2 23.9	1 50.38	0.93	-1.52	+ 15 30 32.0	38.3	— i.š
	• •	7.8	45 34.4	5 34.4	1 50.37	1. 55	— 0.41	+ 24 52 49.6	25.9	+ 0.4
	d Geminorum Uranus	3	49 8.8 53 15.5	9 8.8 13 15.5	1 50.36 1 50.36	1.38 1.41	- 0.96 - 0.88	+ 15 39 19.0 + 15 30 32.0 + 24 52 49.6 + 22 20 37.3 + 22 49 56.5	29. 0 28. 4	-0.4 -0.3
;)	0.000	6	7 57 4.2	17 4.2	1 50.35	0.73	- 2. IU	+ 12 21 17.9 + 17 30 45.7	43.0	ž. ŏ
2	Geminorum	6 6.5	8 1 16.5	21 16.5	1 50.34 1 50.34	1.05	- 1.41	+ 17 30 45.7	35.5	- 1.6
2	Geminorum	7	4 30.6 6 50.9	24 30.6 26 50.9	1 50, 34	1.73 1.18	$\begin{array}{c c} + 0.33 \\ - 1.29 \end{array}$	+ 27 20 15.2 + 19 22 20.6 + 5 45 13.5 + 19 0 12.8	23. 0 33. 0	$+ 1.1 \\ - 1.2$
	Procyon .	1	9 53.7	29 53.7	1 50.33	0. 33	— 0.87	+ 5 45 13.5	54.4	— 1.5
26	Lyncis .	6 5	15 32.3 8 20 50.8	35 32.3 7 40 50.8	1 50.32 1 50.31	1. 15 - 3. 72	-1.31 + 3.05	+ 19 0 12.8 + 48 4 18.0	- 0 0.8	— 1.3 + 5.5
	Dyneis -		0 20 30.0	7 40 30.0	- 1 00.01	- 0.72	T 0.00	7 40 4 10.0	_ 0 0.0	T 0.0
				1784 0	CTOBER	14		Zer	o corr. = + 1	40".3.
	Sun		14 1 8.3 14 3 19.7	13 21 8.3 13 23 19.7				- 8 45 56.8 - 8 13 41.2	- 1 31.3 1 29.4	- 0.4 - 0.5
	a Lyrae	1	19 11 29.6	18 31 29.6	 1 49. 10	- 2.6 8	+ 1.27	+383410.8	0 10.5	
	•	7	21 7.9	41 7.9	1 49.10	— 1.45 ;	0.81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 27.8	v. z
	k Aquilæ .	4.5 3.4	27 19.6 31 43.7	47 19.6 18 51 43.7	1 49.07 1 49.07	$\begin{array}{c c} + 0.35 \\ - 0.88 \end{array}$	+1.84 -1.59	-670.8 $+144621.2$	1 22.7 0 39.3	- 0.5 - 1.9
	• • •	"."	40 9.8	19 0 9.8	1 49.05	1.00	- 1.59 - 1.47	+ 16 31 43.2	36.8	— 1.7
	T	ا م	40 54.1	0 54.1	1 49.05	1.00	- 1.47	+ 16 30 39.4	36.8	- 1.7
;	η Lyrse	6 7	48 16.8 52 14.5	8 16.8 12 14.5	1 49.04 1 49.03	2.70 1.70	+ 1.28 + 0.14	+ 14 46 21.2 + 16 31 43.2 + 16 30 39.4 + 38 45 39.6 + 26 50 22.6	23. 5	+3.9 $+1.0$
3	Vulpeculæ	6.5	55 53.2	15 53.2	1 49.02	1.63	_ 0. 15	+ 25 50 26.2	24.7	+1.0 $+0.7$
5	44	6	57 51.6 19 58 41.1	17 51.6 18 41.1	1 49.02 1 49.02	1.21 1.20	- 1.24 - 1.26	+ 19 50 30.0 + 19 39 51 0	32. 2 32. 5	— 1.1 — 1.2
		7	20 0 22.7	20 22.7	1 49.02	1.21	-1.20 -1.25	+ 25 50 26.2 + 19 50 30.0 + 19 39 51.0 + 19 48 15.4 + 19 49 49.0	32.3	- 1.1
7	"	6	1 49.8	21 49.8	1 49.01	- 1.21	- 1.24	+ 19 49 49.0	0 32.3	- 1.1
		6	5 2.3 20 7 23.5	25 2.3 19 27 23.5	1 49.01 1 49.00	+0.65 + 0.10	+ 1.72 + 1.00	-11 1 4.2 -1 45 30.0	1 39.7 1 10.5	— 0.3 — 0.7
a Tra	nsits over Ts. II a	and III	ļ		5° 19′; not 25°	1		ansits over Ts. I		
	corded over Ts. I			assumed as 3	5º 25' 47"; not	35° 25′ 17″.	T	ecorded over Ts. I	and III.	
							6 Di	v. assumed as 38 14	17; 801 39 14	13.

(133)

Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζ-φ	Refr.	q'
14 Cygni .	6 6 6 6 7	h m s 20 8 9.4 9 11 14 17.0 20 15 33.8	h m s 19 28 9.4 29 31 34 17.0 19 35 33.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	— 3.05	+ 1 75 + 1.45 + 1.47	- 5 7 10.9 + 41 55 35.0 + 37 53 15.0 + 42 18 14.4 + 42 33 35.8	- 1 19.7 0 7.1 11.3 6.7 - 0 6.4	- 0.5 + 4.5 + 3.7 + 4.6
			1784 0	CTOBER	15		Z	ero corr. = + 1	L' 40". 6.
Sun Venus a Lyræ k Aquilæ ζ Sagittarii π	1 4.5.4 4.5.5 66666676.666.5767677.866.86.6678264.66.6786.5	14	13 24 50.0 13 27 50.0 13 27 50.0 14 33 29.0 18 31 26.6 39 9.7 43 33.0 47 16.8 50 34.5 18 58 42.3 19 6 46.2 18 59.0 27 20.0 31 24.3 34 14.4 35 31.2 37 24.2 40 37.1 46 7.0 47 11.8 51 46.5 54 43.1 19 57 15.7 20 1 14.8 3 24.2 7 12.3 8 41.8 8 56.3 11 11.3 14 37.3 17 3.7 20 7.8 22 15.7 25 11.6 26 24.8 32 10.3 33 55 4.5 46 59.1 20 59 5.7 21 1 19.6 45 25.5	- 1 46. 64 1 46. 63 1 46. 62 1 46. 61 1 46. 59 1 46. 56 1 46. 56 1 46. 56 1 46. 56 1 46. 53 1 46. 53 1 46. 53 1 46. 51 1 46. 51 1 46. 51 1 46. 49 1 46. 49 1 46. 49 1 46. 49 1 46. 47 1 46. 47 1 46. 47 1 46. 47 1 46. 47 1 46. 43 1 46. 43 1 46. 38 1 46. 38 1 46. 38 1 46. 38 1 46. 37 1 46. 37 1 46. 37 1 46. 37 1 46. 37	- 2.71 2.59 - 2.13 - 1.96 1.33 1.196 1.33 1.196 1.40 0.06 1.53 1.48 1.50 1.41 1.53 1.54 2.42 2.27 1.81 1.30 1.27 1.50 2.88 2.386 3.79 3.83 3.06 3.33 2.17 2.40 2.63 2.63 1.91 1.91	+ 1. 27 + + 1. 27 + + 1. 39 + + 1. 51 - 1. 47 + + 1. 51 - 1. 47 + + 1. 0. 0. 76 - 0. 0. 57 - 0. 0. 57 - 0. 1. 1. 19 - 1. 10 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 1. 19 - 1. 10 - 1	9 8 10.8 8 10.8 8 13.5 55.6 14 51 10.0 13 32 15.8 14 52 13 10.8 6 6 59.6 19 18 36.0 19 18 36.0 18 13 44.2 16 30 51.0 18 13 44.2 16 30 51.0 17 145 30.0 18 13 44.2 16 30 51.0 19 18 36.0 10 18 13 44.2 10 22 10 7.0 11 45 30.0 11 45 30.0 12 18 18.0 13 18 18.0 14 18 18.0 14 18 18.0 14 18 18.0 15 17 14.0 16 18 18.0 17 14.0 18 18 18.0 19 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18.0 10 18 18 18 18.0 10 18 18 18 18.0 10 18 18 18 18 18 18 18 18 18 18 18 18 18	0.4 3.0 7.0 4.4 17.0 3.6 14.2 11.4 11.5 11.5 20.8 21.3	

(134)

]	Name		Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζφ	Refr.	q'
					h m s	h m s		8	,	0 / //	, ,,	
				6	21 50 46.8	21 10 46.8	— 1 46.35	- 2.70	+1.27	+ 38 28 39.0	— 0 10.7	+ 3
				7	52 36.5	12 36.5	1 46.35	2, 59	+1.27	+ 37 18 51.8	11.9	+ 3
				7	53	13 16 28.3	1 46 99	2.51	1 1 20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.0	+ 2 + 3
				'	56 28.3 56 54.5	16 54.5	1 46.33 1 46.33	2. 51 2. 51	+1.30 $+1.30$	+ 36 28 5.6 + 36 24 53.0	12. 8 12. 9	
e	9	Cygni		7	21 58 48.6	18 48.6	1 46.33	2. 45	+1.31	+ 35 43 25.4	13.7	∓ 3
	0	- 2 8		6	22 0 24.0	20 24.0	. 1 46, 33	2.48	+1.31 + 1.30	+ 36 10 1.5	13. 1	÷ {
	g	**		6	3 19.4	23 19.4	1 46.33	3, 47	+ 2.22 + 1.93	+ 45 34 21.4	3. 4	+ 5
		44		6	7 3.3 7 43.0	27 3.3 27 43.0	1 46.32 1 46.31	3; 39 3, 35	十 1.93	+ 44 52 50.0 + 44 37 23.0	4. 1 4. 4	# 5
	ρ		• •	7	9 41.3	29 41.3	1 46. 31	3, 33	+ 1.84 + 1.77	1 44 23 37.8 1	4.6	II i
				8	13 24.5	33 24.5	1 46.31	3, 21	+ 1.58	+ 43 26 21.8	· 5. 5	14
				7	15 44.2	35 44.2	1 46.31	3. 37	+ 1.58 + 1.89 + 2.33	+ 44 45 57.6	4.2	+ 5
	_	"		7.8 6.5	18 5.3 20 39.5	38 5.3 40 39.5	1 46.30 1 46.29	3.50 3.81	+ 2.33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3. 1 0. 6	+ 5
	H		• •	7	24 0.7	40 39.3	1 46.29	2.70	1.27	+ 38 30 42.8	10.6	# :
				7.8	27 59.3	47 59.3	1 46.28	2.39	+ 3.09 + 1.27 + 1.32 + 2.91	+ 35 6 44.9	14. 3	∔ ;
_		ъ.		7.8	22 30 38.3	21 50 38.3	1 46, 28	3, 72	+ 2.91	+ 47 37 24.2	1.3	+ 5
	4 5	Pisciu	m.	6	1 10 1.5	0 30 1.5	1 45.98 1 45.98	1.24 1.25	-1.22 -1.22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32, 2 32, 0	
ຍ	w			6.7	13 28.5	33 28.5	1 45.98 1 45.98	0.94	- 1.22 - 1.53	+ 20 14 27.9 + 15 28 18.2	32. 0 38. 6	_ ;
5	8	4.6		6	17 39.7	37 39.7	1 45.97	0.65	- 2.77	+ 10 47 8.4	45.9	<u> </u> _ i
	ð	**	••	4	19 20.8	39 20.8	1 45.96	0.38	- 1.02	+ 6 24 7.8	53.6	<u> </u>
		44		8.9	22 11.1	42 11.1	1 45.96	0.70	- 2.98	+ 11 35 56.0	44.7	<u>\$</u>
6	90	••	• •	6	25 3.1 27 34.2	45 3.1 47 34.2	1 45, 95 1 45, 95	1. 10 · 1. 39	- 1.39 - 0.98	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35. 0 29. 4	
				ğ	30 27.5	50 27.5	1 45, 95	2. 52	+1.29	¥ 36 36 15.6	12.7	+
				6.7	32 53, 7	52 53.7	1 45.94	2.01	+ 1.29 + 1.27 + 0.78	+ 30 37 33.7	19. 4	+ 2
				7	34 32.8	54 32.8	1 45.94	1.84	+ 0.78	+ 28 29 16.8	21.7	+ 1
				6.5	37 57.7 41 5.8	0 57 57.7	1 45.93 1 45.93	2.03 1.98	+ 1.29 + 1.22	+ 30 50 20.6 + 30 15 20.4	19. 1 19. 7	+ %
ρ	37	44	_	6.5	41 0.0	4	1 40. 50	1.30	+ 1.22	+ 14 58 37.0	39. 4	+ 1
			• •	9	47 5.1	7 5.1	1 45.92	1.23	- 1.24	+ 19 54 1.6	32.5	- 1
	10 v	"		6	49 29.8	9.29.8	1 45.91	1.66	- 0.07	+ 26 6 37.0	24.6	+ 1
)1	"	• •	6	51 56 30.8	11 16 30.8	1 45, 90	1, 11	_ 1.38	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22. 8 34. 8	+ 1 - 1
)	ρ		• •	6	56 56.1	J6 56. 1	1 45.90	1.11	=1.38	T 18 6 23.4	34. 8	_ i
	6	44		7 9	1 59 39.0 2 2 10.6	19 39,0	1 45.90	0.37	- 0.97	+ 6 10 13.8	53.9	i
•	53	Mayer	· •	9	2 2 10.6	22 10.6	1 45.89	0.59	- 2.13	+ 9 45 51.0	47.6	<u> </u>
	_	Pisciu		6	5 2.0 7 33.8	25 2.0 27 33.8	1 45.88 1 45.88	1.06 0.66	- 1.42 - 2.88	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36. 0 45. 5	1 1
	и	I isciu	ш.	7	8 6.7	28 6.7	1 45.88	0.66	2.86	10 57 47.0	45. 7	_ i
				7	10	30				+ 15 17 43.0	38.9	<u> </u>
10)6 v	44		5	12 3.0	32 3.0	1 45.87	0.26	- 0.53	+ 4 23 7.9	57.3	- 1
)				8	15 2.3 16 46.1	35 2.3 36 46.1	1 45.87 1 45.86	1, 17 0, 93	- 1.31 - 1.48	+ 18 59 15.4 + 16 18 54.0	33. 7 37. 5	- 1 - 1
•				7	20 6.8	40 6.8	1 45.86	1.31	- 1.46 - 1.11	+ 21 11 2.4	30.8	_ (
	γ	Arietia	١	4	23 34.5	43 34.5	.1 45.85	1.12	1.37	l∔ 18 13 16.0 l	34.7	<u> </u>
	•	Andro	m		25 14.5	45 14.5	1 45.85	1.48	+1.30	+ 36 10 1.0	13.2	+ :
,	1	Arietia		6 7	29 30.6 33 17.8	49 30.6 53 17.8	1 45, 85 1 45, 83	1.24		+ 19 59 23.5 + 24 52 24.5	32. 4 26. 1	
	8	Andro		6	37 22.6	57 22.6	1 45.83	1.58 2.54	-0.41 + 1.29	+ 24 52 24.5 + 36 48 24.1	20. 1 12. 5	‡
5	<u>.</u>	111111	-·· ·	7.8	39 42.2	1 59 42.2	1 45.83	2.66	上 1 97	+ 37 59 28.8	11.2	+
)				11	42 49.2	2 2 49.2	1 45.82	1. 19	 1.29	+ 18 47 14.0	33, 3	<u> </u>
			•	7.8	43 46.7	3 46.7	1 45.81 1 45.81	1.14		LL 18 35 3 0 (34.3	<u> </u>
				6.7	46 52.2 51 19.7	6 52.2 11 19.7	1 45.80	1.43 2.89	-0.89 $+1.33$	+ 22 44 50.4 + 40 23 6.2	28.7 8.8	- (+ 4
	d	Trian	zuli .	6	56 34.0	16 34.0	1 45.79	2, 03	+ i.28	+ 30 48 20.1	19. 2	+ \$
		•	-	7	2 59 11.4	19 11.4	1 45.78	2. 19	+ 1.40	+ 32 50 45.8	16. 9	۱4 ۶
1	ıĸ	"		7.8	3 1 44.8	21 44.8	1 45.78	2. 25	+ 1.40	+ 33 33 44.2	16.0	+ 8
1	15	••	• •	6.7 7.8	4 34.7 4 38.4	24 34.7 24 38.4	1 45.78 1 45.78	2. 27 2. 27	+ 1.33 + 1.28 + 1.40 + 1.40 + 1.39 + 1.39	+ 33 33 44.2 + 33 42 59.6 + 33 45 11.0	15. 9 15. 9	+ %
				8.9	3 7 37.8	2 27 37.8	- 1 45.77	- 2.16	+ 1.39	+ 32 27 18.6	— 0 17.3	T 2

(135)

						q	ζφ		q'
		h m s	h m s	m s	s	8	0 / //	, ,,	,
Persei	6	3 10 32.8	2 30 32.8	- 1 45.76	- 2.78	+ 1.28	+ 39 14 52.3	- 0 9.9	+ 3
37 o Arietis	6 9. 10	14 10.0 17 10.1	34 10.0 37 10.1	1 45.76 1 45.75	1, 03 1, 13	1.44 1.34	+ 16 49 46.8 + 18 27 19.0 + 26 20 43.3	36. 7 34. 6	
	3.10	19 10.1	39 10.1 39 10.2	1 45.75	1.68	-0.02	+ 26 20 43.3	24.4	+ 0
	6	21 28.0	41 28.0	1 45.74	1.86	— 1.63	+ 14 10 21.7	40.6	_ 2
	7	23 4.1	43 4.1	1 45.74	0.95	— 1.52	+ 14 10 21.7 + 15 34 55.0 + 17 26 8.0	38.5	- 1
52 Arietis	6.7	25 34.2	45 34.2	1 45.74	1.07	- 1.41	+ 17 26 8.0 + 3 36 54.6	35. 9	
λ "	6	27 36.9 30 0.8	47 36.9 50 0.8	1 45.74 1 45.73	0.21 0.48	-0.38 -1.37		59. 1 50. 7	
a Ceti	$\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$	32 50.5	52 50. 5	1 45, 73	0. 19	- 0.32	+ 3 13 48.4	59.9	— í
β Persei	2.3	36 2.7	56 2.7	1 45.72	2.86	+1.32	+ 40 5 21.4	9. 1	+ 4
55 Arietis	7	38 30.4	2 58 30.4	1 45.71	-1.82	+ 0.67	+ 28 13 26.0	0 22.2	+ 1
a Fornacis.	3	44 36.8	3 4 36.8	1 45.70	+ 1.94 - 3.83	+ 4.79	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 43.0 0 0.5	 5
a Persei	6 2.3	49 51.6 50 50.8	9 51.6 10 50.8	1 45.69 1 45.69	3.91	+3.12 + 3.26	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3	+ 5 + 5
# 1 01B01	6	54 38.8	14 38.8	1 45, 68	•3, 81	+ 3.09	+ 48 16 2.4	0.6	÷ 5
	5	57 17.1	17 17.1	1 45.68	3.66	+ 2.80	+ 47 12 30.0	1.7	+ 5 + 5
)	6	3 58 48.6	18 48.6	1 45.68	3.66 2.76	+ 2.81 + 1.28	+ 47 14 43.6 + 39 8 6.0	1.7 10.1	+ 5 + 3
	7 7	4 1 16.2 5 34 40.6	3 21 16.2 4 54 40.6	1 45.67 1 45.50	2.76 1. 2 0	$\frac{+1.28}{-1.28}$	+ 19 28 46.0	33, 1	I i
	6	36 49.5	4 56 49.5	1 45.50	1.51	- 0.67	+ 23 56 45.7	27.4	0
Capella .	1	42 37.5	5 2 37.5	1 45.49	 3.48	+ 2.28	+ 45 43 44.3	0 3.1	+ 5
Rigel	1 2	45 56.5	5 56.5 9 33.1	1 45.48 1 45.47	+0.50	+ 1.87	-82736.1 +404614.5	1 31.5 0 8.4	<u></u> 0 + 4
σ Aurigæ .	6.7 5.6	49 33, 1 51 50, 6	9 33.1 11 50.6	1 45, 47 1 45, 47	2.93 2.57	+1.35 + 1.27	+ 40 46 14.5 + 37 8 29.0 + 28 23 13.3	12.2	¥ 3
β Tauri	2.0	54 30.0	14 30.0	1 45.46	1.84	+ 0.74	+ 28 23 13.3	22. 1	+i
/	7	5 57 13.2	17 13.2	1 45, 46	- 0.95	- 1.51	+ 15 39 47.6	0 38.5	<u> </u>
	6.5	6 0 34.5	20 34.5	1 45. 45	+0.07	+0.83	- 1 16 44.0	1 10.2	- 0 0
d Orionis .	2 7	2 46.9 6 23.3	22 46.9 26 23.3	1 45.45 1 45.44	+0.02 -1.03	+0.52 -1.44	$-$ 0 28 35.4 \pm 16 59 37 5	1 8.5 0 36.8	$\frac{1}{1}$
122 Tauri	6.7	8 12.4	28 12.4	1 45.44	1.64	_ 0. 18	+ 16 52 37.5 + 25 44 25.4	25.2	+ 0
	• • •	14 19.8	34 19.8	1 45.43	0.97	— 1.49	+ 15 57 43.6	38. 1	- 1
		16 42.0	36 42.0	1 45. 42	1.08	- 1.41	+ 17 37 3.0	35.7	- <u>1</u>
134 " 137 "	6	19 16.8 21 57.7	39 16.8 41 57.7	1 45.42 1 45.41	0.76 0,85	- 1.97 - 1.64	+ 12 33 16.7 + 14 5 17.6	43. 4 40. 8	$-\frac{2}{2}$
β Auriges	2	25 32.8	45 32.8	1 45.41	3.39	+ 1.93	¥ 44 52 30.8	4. 1	+ 5
140 Tauri	7.8	29 14.3	49 14.3	1 45.40	1.44	- 0.88	+ 225111.8	2 8. 8	— 0
H Geminorum	5	32 50.9	52 50.9	1 45.39	1.46	- 0.81	+ 23 14 22.0 + 23 37 21.0	28.3	- 0
	7.8 7.6	35 29, 6 38 22, 6	55 29.6 5 58 22.6	1 45.39 1 45.38	1.49 1.39	-0.74 -0.99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.8 29.6	-0
	6	41 4.6	6 1 4.6	1 45.38	1.44	-0.87	¥ 22 55 17.1	28.6	$\sqsubseteq \ddot{o}$
η "	4.5	43 41.7	3 41.7	1 45.37	1.41	- 0.93	+ 22 32 4.8	29. 2	- 0
·	7	49 28.1	9 28.1	1 45.36	1.32	- 1.12	+2190.6	30.9	- 0
	6	50 10.6 54 16.0	10 10.6 14 16.0	1 45.36 1 45.35	1.32 1.47	-1.12 -0.78	+211145.2 + 232439.8	30. 9 28. 1	
	6	56 57.6	16 57.6	1 45.35	1.28	_ i. i8	+ 20 35 35.0	31.8	_ 0
ν "	4	6 57 59.4	17 59.4	1 45.35	1.26	- 1.21	+ 20 18 53.7	32. 1	- 1
	6	7 0 30.3	20 30.3	1 45.34	1.04	- 1.43	+ 17 3 29.1	36.6	- !
49 Aurigæ . 63 "	5.6 6	3 25.8 6 30.5	23 25.8 26 30.5	1 45.34 1 45.33	1.82 1.89	$+0.65 \\ +1.03$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22. 3 21. 2	+ 1 + 1
	6	10 45.2	30 45.2	1 45, 32	- 1.01	T 1.46	+ 16 34 2.3	0 37.2	二 i
Sirius	1	17 22.8	37 22.8	1 45, 31	+1.00	+1.67	- 10 25 9.8 I	2 7.2	 0
	6	24 17.8	44 17.8	1 45.30	0.81	— 1.72	+ 13 25 22.0 + 26 19 34.8	0 42.0	- 2
	6	27 18.5 29 41.0	47 18.5 49 41.0	1 45.30 1 45.30	1.68 1.00	- 0.02 - 1.48	+ 26 19 34.8 + 16 20 40.4	24.5 37.7	$+ 0 \\ - 1$
	6.7	31 42.2	51 42.2	1 45. 29	1.11	- 1.48 - 1.38	+ 18 1 45.2	35. 2	=i
ī	7	35 41.5	55 41.5	1 45.28	1.84	+0.78	+ 28 28 10.6	21.9	+ i + 2
τ Geminorum	4.5	39 12.5	6 59 12.5	1 45.27	2.01	+1.27	+ 30 33 28.7	19.5	+ 2
51 "	6.5	42 48 . 3 49 3 . 5	7 2 48.3 9 3.5	1 45.26 1 45.25	1.00 1.40	- 1.47 - 0.96	+ 16 29 35.4 + 99 90 35 6	37. 5 29. 4	- 1 - 0
Uranus .	٦	7 53 13.1	7 13 13.1	- 1 45.25	— 1.40	- 0.89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0 28.9	
							25 55.0	- 25,0	۱

(136)

Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ — φ	Refr.	q'
								<u> </u>	
Sun		h m s 2 8 31.3	h m s 1 28 31.3	m s	8	*	9 30 16, 3		_ ".
		2 10 42.7	1 30 42.7				8 58 0.8	30.7	- 0.
Venus a Lyræ	1	3 20 17.0 19 11 24.4	2 40 17.0 18 31 24.4	_ 1 43.82	 2.73	+ 1.27	- 15 16 39.4 + 38 34 10.2	1 57.6 0 10.6	-0.
)	7	20 16 1.0	19 36 1.0	1 43, 69	2.80	+ 1.28	1 00 00 = 0	9.9	 + 3.
	6	16 22.0 18 16.2	36 22.0 38 16.2	1 43.69 1 43.68	2.85 2.56	+ 1.27 + 1.28 + 1.29 + 1.29	+ 39 30 7.0 + 39 43 50.4 + 36 49 13.0	9. 3 12. 4	+ 4. + 3.
χ Cygni	5 1.2	19 59.5	39 59.5	1 43.68	2. 23 0. 50	+ 1.40 - 1.44	+ 33 12 53.6 + 8 17 57.6	16.3 49.8	+ 2.
a Aquilæ . 12 Vulpeculæ	6	22 2.8 23 34.2	43 34.2	1 43.68 1 43.67	1.38	— 1.01	+22 320.8	29.4	— 0.
• .	6 7.8	27 9.2 37 12.7	47 9.2 19 57 12.7	1 43.66 1 43.65	1.50 2.43	-0.71	+ 23 44 49.2 + 35 24 19.4	27. 4 14. 0	+ 0. + 3.
27 b Cygni	6	40 7.5	20 0 7.5	1 43.64	2.42	+ 1.32 + 1.32	+ 35 21 58.5	14.1	 + 3.
17 θ Sagittæ .	7	42 13.5 43 21.5	2 13.5 3 21.5	1 43.64 1 43.63	1.27 1.28	- 1.21 - 1.19	+ 20 16 3.0 + 20 29 11.6	31.8 31.5	
	6.7		•				+ 25 49 37.0	24.8	 + 0.
	7.8	47 7.8 48 39.2	7 7.8 8 39.2	1 43.63 1 43.62	1.34 1.31	- 1.10 - 1.15	+ 21 18 46.0 + 20 55 50.0	30.5	
		51 8.8 50 54.4	11 8.8 10 54.4	1 43.62 1 43.62	1, 28 1, 31	- 1. 19 - 1. 16	+ 20 31 53.0 + 20 50 30.0	31.5 31.0	- 0. - 0.
25 Vulpeculæ	6	54 34.2	14 34.2	1 43.61	1.50	— 0.71	+ 23 45 6.3	0 27.3	0.
-	8	57 8.0 20 59 47.3	17 8.0 19 47.3	1 43.61 1 43.60	0. 13 1. 46	- 0.14 - 0.84	+ 2 15 21.5 + 23 4 20.8	1 1.6 0 28.2	$\begin{bmatrix} -1.\\ 0. \end{bmatrix}$
)	7	21 3 7.5	23 7.5	1 43.59	1.24	- 1.24	+ 19 52 22.1	32.4	— 1.
ζ Delphini	7 5	4 31.4 7 1.7	24 31.4 27 1.7	1 43.59 1 43.59	1, 59 0, 85	- 0.36 - 1.66	+ 25 4 5.4 + 13 55 37.4	25.8 40.9	+ 0.
•	6 2	11 53.7	31 53,7	1 43.58	1.94	+ 1.10	+ 29 34 11.2 + 44 29 35.2	20.6	+ 1. + 5.
a Cygni	7	15 51.4 22 28.3	35 51.4 42 28.3	1 43.57 1 43.56	3, 36 2, 37	+ 1.10 + 1.79 + 1.35	+ 34 45 12.1	4.5 14.8	+ 3.
	6.7	25 51.0 26 55.7	45 51.0 46 55.7	1 43.55 1 43.55	1.89 2.19	+0.91 +1.39	+ 28 49 40.0 + 32 36 25.0	21. 4 17. 1	+ 1. + 2.
	6	30 26.0	50 26.0	1 43, 54	1.35	1.09	+ 21 29 6.5	30.4	<u></u> ⊢ 0.
	6	31 12.4 34 24.3	51 12.4 54 24.3	1 43.54 1 43.53	1.35 2.40	-1.08 $+1.33$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.4	- 0. + 3.
	6.7	36 29.5	56 29.5	1 43.53	2.64	+1.33 + 1.27	+ 37 47 30.2	11.5	+ 3.
	6.7	39 1.5 41 17.3	20 59 1.5 21 1 17.3	1 43, 52 1 43, 52	2, 63 1, 92	+1.27 $+1.07$	+ 37 40 42.0 + 29 19 27.6	11.6 20.8	+ 3. + 1.
ζ Cygni	8 5.4	44 23.3 45 32.4	4 23.3 5 32.4	1 43.51 1 43.51	1.88 1.92	+0.91 +1.07	+ 28 49 3.0 + 29 19 56.7	21.4	+ 1:
)	7	46 44.7	6 44.7	1 43.51	1.82	+0.97	+ 28 59 56.8	21.1	+ 1.
66 v "	6 7.8	50 50.2 52 33.4	10 50.2 12 33.4	1 43.50 1 43.50	2, 30 2, 61	+1.39 $+1.27$	+ 33 58 46.2 + 37 18 49.0	15.6 12.0	+ 2.1 + 3.1
	7	54 4.1	14 4.1	1 43.49	2.11	+ 1.37	+ 31 41 6.2	18. 1	 + 2.
	7.8	56 25.8 56 51.3	16 25.8 16 51.3	1 43.49 1 43.49	2, 52 2, 52	+1.30 + 1.30	+ 36 28 4.0 + 36 24 51.8	12.9 12.9	+ 3. + 3.
69 " 70 "	7 6	21 58 45.6 22 0 21.5	18 45.6 20 21.5	1 43.48 1 43.48	2.46 2.50	+1.31 + 1.30	+ 35 43 25.5 + 36 9 57.0	13.7 13.2	+ 3. + 3.
''g " : :	6.7	3 16.3	23 16.3	1 43.47	3, 49	+ 2.22	45 34 20.8	3.4	+ 5.
•	7	7 0.6 9 38.0	27 0.6 29 38.0	1 43.47 1 43.46	3. 40 3. 35	+1.93 $+1.77$	+ 44 52 52.0 + 44 23 31.7	4.1	+ 5. + 5.
	8	13 21.5	33 21.5	1 43, 45	3, 23	+ 1.58	+ 43 26 18.0	5.6	+ 4.
	7.8 7.8	15 41.8 18 2.4	35 41.8 38 2.4	1 43.45 1 43.44	3. 39 3. 52	+1.89 $+2.33$	+ 44 45 54.0 + 45 51 11.3	4.2 3.1	+ 4. + 5. + 5. + 5.
	6	20 36.9 23 57.6	40 36.9 43 57.6	1 43.44 1 43.43	3.83 2.72	+ 3. 09	+ 48 17 34.3 + 38 30 42.2	0.5 10.7	+ 5. + 3.
	7.8	27 56.2	47 56.2	1 43.43	-2.42	+1.27 +1.33	+ 35 6 46.4	0 14.4	+ 3.
28 Aquarii .	6 3	31 36 27.0	51 56 27.0	1 43.41	+ 0.08	+ 0.87	- 0 25 43.8 - 1 21 55.2	1 8.2 1 9.2	-0.0
35 "	6	38 51.1	21 58 51.1	1 43.40	1.22	+ 1.40	- 19 33 6.6	2 26.7	- 0.
)	8	43 37.6	22 3 37.6	1 43.39	0.73	+ 1.64	- 12 36 52.0 - 12 58 55.0	1 47.8 49.6	$\begin{bmatrix} -0. \\ -0. \end{bmatrix}$
Jupiter .	7	44 32.5 22 53 27.7	4 32.5 22 13 27.7	1 43.39 1 43.37	+0.81	+ 1.57 + 1.65	- 13 22 6.6 - 16 0 59.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0. - 0.
		~~ OU &I. I	~~ 10 ~1.1	1 40.07	7- 0.30		10 0 00.0	7.0	J
g assumed as 9° 20';			c Ts. I and II as				assumed as 61°; n		

Digitized by Google

				1784 OCTOI	BER 16C	ontinued 	l 	Zei	o corr. = +1	L' 43 ".
	Name	Mag.	T	App. sid. time	Clock corr.	n tan đ	q .	ζ φ	Refr.	g'
			h m s	h m s	m s	8	8	0 / "	, ,,	
50	A quarii	6	22 54 36.7	22 14 36.7	- 1 43.37	+ 0.89	+1.59	— 14 36 31.2	— 1 57.0	- 0
		6	23 0 56.8 4 27.5	20 56, 8 24 27, 5	1 43.36 1 43.38	0.71	+ 1.66	— 11 46 18.6 — 10 42 41.8	44. 1 39. 7	
63	"	6.5	23 8 18.6	22 28 18.6	-143.34	+ 0.32	+ 1.74 + 1.78	$-\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ 1 21.2	- ŏ
)		1		1784 -1	NOVEMBE	B 17	1	Zei	o corr. = + 1	l' 43".
	Aquilæ .	1.2	20 21 12.5	19 41 12,5	_ 0 53.78	_ 0,56	_ 1.44	+ 8 17 55.8	— 0 49.2	1
66	· Aquilæ ·	5. 6	42 59.5	20 2 59.5	53.75	₩ 0.11	+ 0.95	_ 1 38 59.9	1 9.7	_ 0
		7	20 58 20,1	18 20.1	53.73	- 0.15	— 0.12	+ 2 13 35.2	1 0.9	- 1
4	Cygni	5	21 1 21.5	21 21.5	53.72	4.37	+ 3.17	+ 48 39 3.0	0 0.2	+ 5
		6.7	3 52.6 7 46.6	23 52.6 27 46.6	53, 72 53, 71	0.72 3.98	-2.67	+ 10344.4 $+ 455614.7$	45. 4 2. 9	-1 + 5
		7.8	10 39.8	30 39.8	53.71	0.86	+2.37 -1.90	+ 12 39 23.0	42.2	
		6	13 1.5	33 1.5	53.71	1.16	— 1.45	+ 16 44 41.2	36, 1	- 1
		6	16 28.2	36 28.2	53.70	4.53	+ 3.34	+ 49 32 54.0	0.7	+ 5
		8	20 18.6 23 15.3	40 18.6	53.70	3.94	+ 2.28	+ 45 43 32.7	3.2	+ 5
32	Vulpeculæ	5	26 18.7	43 15.3 46 18.7	53. 69 53. 69	2.00 1.98	+0.36 + 0.28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22. 6 22. 9	I
	-	6.7	29 14.2	49 14.2	53.68	0.23	- 0.36	+ 3 28 4.0	58.2	<u> -</u> 1
61	Cygni	6	38 11.3	20 58 11.3	53.67	2.98	+1.27	+ 37 40 46.2	0 11.4	+ 3
		9.10	42 46.8 46 24.3	21 2 46.8 6 24.3	53, 67	- 0.11	-0.06 + 120	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1.9 1 11.7	<u> </u>
67	"	6	49 53.9	9 53.9	53, 66 53, 66	+0.17 -3.06	$+120 \\ +1.27$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 10.5	+ :
٠.		7	53 33.2	13 33.2	53.65	3, 16	+1.27 $+1.29$	+ 39 25 47.3	9.6	14
		7	56 5.1	16 5.1	53, 65	2, 22	+ I. I9	+ 29 59 57.4	19.6	+ 1
		7.8	21 59 44.1	19 44.1	53.64	0.75	- 2 87	+ 11 0 39.0	44.7	- <u>1</u>
		6.7	22 1 42.7 5 37.3	21 42.7 25 37.3	53, 64 53, 64	0.76 1.21	- 2.96 - 1.41	+ 11 11 12.8 + 17 21 47.2	44. 5 35. 3	
		7	10 59.0	30 59.0	53.63	0.66	-2.03	+ 9 37 56.0	47.0	二 i
		6	12 58.7	32 58.7	53.63	0.67	2, 18	+ 9 50 15.1	46.7	- 1
	•	7	17 20.2	37 20.2	53.62	0.87	+ 1· 84	+ 12 43 7.8	42.1	+ 2
		7	21 51.5 25 14.1	41 51.5 45 14.1	53. 61 53. 61	3. 24 1. 99	+ 1.84 + 1.32 + 0.32	+40 746.0 +271911.8	8.9 22.7	
		8.9	28 30.0	48 30.0	53.61	1.34	+ 0.32 - 1.29	+ 19 16 5.9	32. 7	二言
		6.7	31 55.4	51 55.4	53, 60	2.40	+1.38	+ 31 57 19.0	17.6	+ 2
		7	35 12.5	55 12.5	53.60	3, 67	+ 1.60	+ 43 35 37.2	5.3	+ 4
)		8 6.7	37 49.2 41 1.1	21 57 49.2	53, 59 53, 59	0.58 1.29	- 1.52 - 1.34	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48. 5 33. 7	
		7.	45 37.9	5 37.9	53.58	1.51	- 1.09	+ 21 26 39.0	29. 9	$\sqsubseteq i$
		7.8	47 30.2	7 30.2	53, 58	1.54	— 1.04	+ 21 48 47.2	29.4	 0
00	D	6	51 57.3	11 57.3	53.57	1.87	- 0.16	+ 25 50 22.6	24.4	+ 6
33	Pegasi	6	54 15.7 56 15.4	14 15.7 16 15.4	53. 57 53. 57	1.38 1.21	- 1.25 - 1.42	+ 19 44 59.5 + 17 20 22.6	32. 0 35. 3	- 1 - 1
		7	22 59 2.2	19 2.2	53, 56	1.69	-0.73	+ 23 40 55.6	27. 0	$\equiv i$
		6.7	23 2 32.2	22 22 32.2	53, 56	2.09	+ 0.76	+ 28 25 36.3	21.4	+ 1
		5.6	2 7 28.5	1 27 28.5	53, 31	3.62	+ 1.55	+ 43 15 40.4	5.5	+ 4
		8	10 37.7	30 37.7	53, 31	2.60	+ 1.38	+ 34 7 58.7		+ 2
		9	19 15.7 24 13.6	39 15.7 44 13.6	53, 30 53, 29	1.49	- 1.11 - 1.88	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30. 4 0 42. 4	- S
		7	27 58.2	47 58.2	53. 29	+ 0.20	+ 1.36	- 3 7 17.3	1 14.0	- ĉ
			30 32.6	50 32.6	53, 28	— 1.58	— 0.96	+ 22 19 52.7	0 28.9	— 0
15	Arietis .	6.5	38 9.9	1 58 9.9	53.27	1.80	- 0.41	+ 24 53 45.6	25, 8	+ 0
		7	42 55.5 46 0.6	2 2 55.5 6 0.6	53, 27 53, 26	1.30	- 1.34 - 0.90	+ 18 35 0.3 + 22 44 48.2	33. 9 28. 4	
		7	. 48 28.7	8 28.7	53. 26	2. 15	+ 1.05	+ 29 10 21.3	20.8	+ i
		7	54 32.7	14 32.7	53, 25	1.72	- 0.61 l	+ 24 9 35.0	26.6	0
14	(Turio	6.7	57 10.2	17 10.2	53. 25	2. 13	+ 0.95	+ 28 56 5.8	21. 1	+ 1
14	Trianguli .	6.6	2 59 58.5 3 3 23.7	19 58.5 23 23.7	53, 24 53, 24	2.72	+ 0.95 + 1.33 + 1.30	+35943.4 + 362020.1	14. I 19 Q	T 3
		7	6 7.1	26 7.1	53, 24	2.83 2.91	+1.30 + 1.27	T 37 7 28.0	12. 3	¥ 3
q	Persei	6	3 9 41.5	2 29 41.5	-0.53.23		+ i.28	+ 37 7 28.0 + 39 14 59.8	14. 1 12. 9 12. 1 — 0 9. 8	÷ 3
-		•		1		Ī				l

(138)

	_				1784 N	OVEMBE	R 93		Zer	o corr. = + 1	40".6.
		Name	Mag.	T	App. sid. time	Clock corr.	z tan ð	q	ζ — φ	Refr.	q'
a)	67 	G Cygni	. 6.7 5.6 7 3 6 4 5.7 7.8	h m s 21 37 47.5 44 30.8 49 42.0 21 55 53.4 22 0 54.2 3 25.4 5 41.0 15 36.7 37 43.8 39 47.4 45 26.9 47 47.3 49 17.4 54 4.8	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	m s - 0 42. 70 42. 69 42. 68 42. 68 42. 67 42. 66 42. 63 42. 63 42. 62 42. 62 42. 62 42. 62	2. 98 - 2. 17 + 0. 42 1. 44 1. 40 0. 82 0. 84 + 0. 84 - 1. 47 - 1. 46	8 - 0.10 + 1.07 + 1.27 + 1.19 + 1.86 + 1.48 + 1.44 + 1.62 + 1.60 - 1.09 - 1.10 + 1.60 - 1.25	+ 26 3 11.3 + 29 19 57.7 + 38 28 43.6 + 29 59 58.0 - 6 30 43.4 - 20 24 19.0 - 12 20 38.7 - 12 39 19.2 + 21 26 46.4 + 21 18 20.0 - 12 43 30.2 + 19 45 5.4	7 24.9 20.9 10.8 0 20.1 1 25.2 2 39.4 3 1 47.1 1 48.3 0 30.7 0 30.9 1 48.9 0 33.0	+ 0.7 + 3.8 + 1.9 - 0.3 - 0.3 - 0.7 - 0.7 - 0.1
		Pegasi	3 3 4	56 4.3 22 58 50.8 23 9 13.4 11 29.4 13 40.4 23 16 56.4	16 4.3 18 50.8 29 13.4 31 29.4 33 40.4 22 36 56.4	42. 61 42. 61 42. 60 42. 59 42. 59 — 0 42. 59	1. 17 1. 64 1. 24 0, 64	- 1.42 - 0.73	+ 19 45 5.4 + 17 20 28.0 + 23 41 11.2 + 18 23 59.0 + 9 42 3.0 + 29 4 59.0 + 22 25 19.0	36. 3 27. 8 34. 8 48. 2 21. 3 — 0 29. 4	- 1.6 0.0 - 1.4 - 1.8 + 1.6 - 0.4
					1784 N	OVEMBE	R 98		Zer	o corr. = + 1	40".0.
	3 61 67		1 1.2 3.4 2 3 6 6 7 7 6 6.7 6 8 7 6 6.7 4 8.9 6.7	19 10 15.5 20 20 54.2 20 25 21.2 21 14 42.1 18 6.8 34 28.1 37 52.6 43 1.5 44 47.9 45 56.8 48 56.8 48 51 30.2 21 58 48.7 22 5 51.1 6 30.2 10 41.1 22 12 22.0	18 30 15.5 19 40 54.2 19 45 21.2 20 34 42.1 38 6.8 54 28.1 20 57 52.6 21 3 1.5 4 47.9 5 8 56.8 8 11 30.2 15 46.2 18 48.7 25 51.1 26 30.2 30 41.1 21 32 22.0	— 0 35. 47 35. 40 35. 35 35. 35 35. 32 35. 32 35. 32 35. 32 35. 32 35. 30 35. 30 35. 30 35. 30	0. 52 0. 37 3. 48 2. 32 0. 29 2. 74 2. 53 2. 48 3. 12 0. 58 2. 05 1. 78 3. 53 3. 53 3. 50 3. 24	+ 1.45	+ 38 34 5.8 + 8 17 55.2 + 5 52 12.1 + 44 29 41.8 + 33 9 10.7 + 4 38 51.6 + 37 40 47.0 + 35 24 28.0 + 34 54 1.6 + 35 43 57.0 + 41 20 15.6 + 38 28 43.6 + 9 25 0.4 + 30 0 0.0 + 26 39 42.0 + 44 52 56.0 + 44 52 56.0 + 42 18 15.0 + 42 16 50.8	54.9 4.5 16.6 57.2 11.6 14.1 14.7 13.7 7.8 10.7 48.4	+ 3.87 - 1.50 + 5.00 + 2.77 + 3.62 + 3.22 + 3.12 + 4.44 + 1.99 + 5.11 + 4.66
					1784 D	ECEMBE	R 98		Zero	o corr. = + 1	40". 2.
b)	62	Lyræ Sun	6 5 7 7 7.8 7 6	19 9 53.7 11 41.4 19 14 5.3 23 50 16.1 23 57 18.9 0 1 8.0 5 26.7 9 34.2 14 53.3 19 13.7 0 21 46.0	18 29 53.7 31 41.4 18 34 5.3 23 10 16.1 17 18.9 21 8.0 25 26.7 29 24.2 34 53.3 39 13.7 23 41 46.0	14. 16 14. 16	+ 1.39 + 1.36 - 1.33 - 0.29 + 0.13 - 1.38 0.20 1.12 1.59	+ 1.86 - 0.92 - 0.72 + 1.15 - 0.79 - 0.38 - 1.30 + 0.02	+ 38 33 55, 4 - 23 36 24, 4 - 22 57 47, 9 + 22 32 53, 1 + 5 11 20, 0 - 2 16 37, 6 + 23 21 25, 9 + 3 36 19, 8 + 19 12 28, 4 + 26 28 12, 0 + 20 27 39, 4 -	2 57.5 0 29.8 0 57.3 1 14.5 0 28.7 1 0.4 0 34.3	+ 3.8 - 1.7 - 1.5 - 0.3 - 1.4 - 0.7 - 0.1 - 1.3 - 1.3 + 0.8 - 1.0
		a T. III as	sumed a	s 11s.; not 21s.			b gaan	umed as 51	° 7′; not 51° 17′.		•

(139)

			1785	MARCH	14		Zer	o corr. = +	1′ 39″.0.
Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζφ	Refr.	q'
Sun	9	h m s 0 17 52.1 20 2.6	h m s 23 37 52.1 23 40 2.6	m s	s	8	— 1 59 18.9	- 1 11.9	- 0.7
ε Orionis	2 2	6 9 38.6 15 54.2 21 26.5	35 54.2 41 26.5	+ 0 16.46 16.47 16.48	+ 0.13 - 1.87 1.32	+ 1.08 + 0.39 - 1.22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.7 1 13.5 0 23.4 32.7	$ \begin{array}{r} -0.7 \\ -0.7 \\ +1.2 \\ -1.1 \end{array} $
β Aurigæ .	2	23 33, 1 27 35, 4 29 23, 1	43 33.1 47 35.4 49 23.1	16, 48 16, 49 16, 49	3, 59	+ 1.93 $+ 1.50$ $+ 1.52$	+ 44 52 48.2 + 47 50 29.0 + 42 52 25.7 + 42 57 12.2	4.2 1.0 6.3 6.2	+ 5.1 + 5.5 + 4.7 + 4.7
HGeminorum 235 Mayer 3 Geminorum	5 7.8 8	36 22.7 36	56 22.7 56	16, 50	3, 35 1, 46	- 0.99	+ 42 57 12.2 + 23 14 22.4 + 22 11 21.7 + 23 6 48.4	28. 7 30. 1 28. 8	$\begin{array}{c} + 4.7 \\ - 0.2 \\ - 0.5 \\ - 0.2 \end{array}$
η " μ "	7 4 6 5 7.8 7 7	38 43.2 41 41.6 47 36.4 49 44.7 52 15.8 54 45.5 6 59 33.6 7 3 22.3	5 58 43. 2 6 1 41. 6 7 36. 4 9 44. 7 12 15. 8 14 45. 5 19 33. 6 23 22. 3	16, 51 16, 51 16, 52 16, 52 16, 52 16, 53 16, 54	1. 45 1. 49 0. 94 0. 50 1. 56 1. 37 1. 16 — 1. 10	- 0.78 - 1.15	+ 21 52 50.4 + 22 32 7.4	30, 6 29, 6 40, 6 29, 6 28, 5 31, 8 36, 0 37, 3	- 0.5 - 0.3 - 1.9 - 0.3 - 0.1 - 0.8 - 1.5 - 1.7
γ " Sirius θ Geminorum 42 ω " Uranus .	5 1 4 7 6 7 7	15 22.5 18 23.2 27 42.0 29 5.7 32 9.8 33 34.0 37 49.2	35 22.5 38 23.2 47 42.0 49 5.7 52 9.8 53 34.0 6 57 49.2	16. 56 16. 57 16. 58 16. 58 16. 59 16. 59	+ 1.06 - 2.45 1.06 1.64 1.52 1.55 1.85	+ 1.67 + 1.38 - 1.48 - 0.53	+ 16 33 4.4 + 16 33 4.4 - 16 25 38.8 + 34 10 54.2 + 16 20 36.6 + 24 29 14.3 + 22 55 30.6 + 23 17 49.0 + 27 10 24.6	0 37.8 2 9.2 0 15.7 38.2	- 1.7 - 0.5 + 2.9 - 1.8 + 0.2 - 0.2 - 1.0
m (feminorum 64 Aurigæ . δ Geminorum	5 7.8 4.5	42 51.3 47 4.5 50 20.2 52 7.9	7 2 51.3 7 4.5 10 20.2 12 7.9	16. 60 16. 60 16. 61 16. 62	3. 15 1. 48 1. 55 1. 93	+ 1.37 - 0.96 - 0.80 + 0.66	+ 24 27 12.0 + 41 13 20.0 + 22 20 37.6 + 23 19 27.1 + 28 11 20.1	27. 2 8. 1 29. 9 28. 6 22. 6	+ 0.2 + 4.3 - 0.4 - 0.1 + 1.3
P " 68 k "	6 7 6 7.8 7.8 7 7	54 45.3 7 57 34.0 8 1 7.5 4 59.5 5 58.7 7 52.9 10 21.5 8 12 19.4 9 10 41.2	14 45.3 17 34.0 21 7.5 24 59.5 25 58.7 27 52.9 30 21.5 7 32 19.4 8 30 41.2	16, 62 16, 63 16, 63 16, 64 16, 64 16, 65 16, 65	1. 44 0. 44 1. 05 1. 67 1. 65 1. 56 1. 52 1. 37 2. 32	- 1. 03 - 1. 14 - 1. 48 - 0. 43 - 0. 47 - 0. 77 - 0. 88 - 1. 17 + 1. 40	+ 21 51 3.7 + 6 59 44.4 + 16 15 31.0 + 24 48 29.0 + 24 40 37.0 + 23 28 54.6 + 22 52 19.8 + 20 47 58.4 + 32 47 57.6	30. 6 53. 6 38. 4 26. 8 26. 9 28. 5 29. 3 32. 0 17. 3	- 0.5 - 1.6 - 1.8 + 0.3 + 0.3 - 0.1 - 0.2 - 0.9 + 2.7
11 ε Hydræ .	4	9 15 9.1		+ 0 16.74	— 0.45	- 1.19	+ 7 10 54.3	- 0 53.2	- 1.6
			1785	MARCH 1	19 		Zei	ro corr. = +	1′ 34″.4.
ζ Orionis . 32 ν Aurigæ . H Geminorum b) 67 ν Orionis .	2 5 5 4.5	6 9 27.2 16 11.7 21 15.8 30 39.6	5 29 27.2 36 11.7 41 15.8 5 50 39.6	+ 0 27.69 27.70 27.71 27.72	+ 0.13 - 2.92 1.33 - 1.55	+1.28 -1.22	- 2 4 39.1 + 39 2 41.2 + 20 12 9.8 + 23 14 25.6 + 14 42 37.0	- 1 13.5 0 10.4 32.6 28.8 0 40.6	- 0.7 + 3.9 - 1.1 - 0.2 - 1.9
ζ Canis Maj. υ Geminorum 258 Mayer γ Geminorum	3 4 7 6.7 2.3	51 31.2 55 48.5 6 59 21.9 7 2 6.6	6 11 31.2 15 48.5 19 21.9 22 6.6	27.75 27.75 27.76 27.76	+ 2.07 - 1.34 1.17 1.06 1.08	+ 4.83 - 1.21 - 1.40 - 1.47 - 1.47	- 29 55 35.8 + 20 18 52.0 + 17 53 53.6 + 16 20 28.0	4 52.3 0 32.6 36.0 38.2 38.0	- 5.5 - 1.0 - 1.5 - 1.8 - 1.7
55 Aurigæ . Sirius 16 Lyncis .	5 6 1 6 7.8	4 53.8 7 2.1 8 42.3 15 11.3 21 30.6 7 24 48.1	24 53.8 27 2.1 28 42.3 35 11.3 41 30.6 6 44 48.1	27.77 27.77 27.77 27.78 27.78 + 0 27.79	3.57 - 3.57 + 1.06 - 3.64 - 1.18	+ 1.86 + 1.86 + 1.67	+ 16 33 1.4 + 44 41 13.0 + 44 40 35.0 - 16 25 35.0 + 45 19 45.0 + 18 9 11.4	4.4 0 4.4 2 9.2 0 3.7 — 0 35.5	+ 5.0 + 5.0 - 0.5 + 5.1 - 1.5
				<u> </u>	1				<u> </u>

(140)

			1785 MAR	BCH 19-C	entinued	l 	Zei	ro corr. = +	1′ 34″.4
Name	Mag.	T .	App. sid. time	Clock corr.	n tan ô	q	ζφ	Refr.	q'
)	6.7	h m s 7 27 31,0	h m s 6 47 31,0	m s + 0 27.79	1,06	<i>s</i> - 1,48	0 / " + 16 20 40.1	, ,, _ 0 38.3	
	6.7	29 45.5	49 45.5	27.79	1.09	— 1.43	+ 16572.8	37.3	— 1.
ω ⁹ Geminorum Herschel	6.7 6.7	31 57.8 33 19.2	51 57.8 53 19.2	27.80 27.80	1.53 1.55	- 0.86 - 0.80	+ 22 55 38.0 + 23 17 48.0	29.2 28.7	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Herscher -	7.8	38 36.1	6 58 36.1	27.81	1.01	-1.51	+ 15 39 17.0	39. 3	_ 1.
52 Geminorum	6.7 6.7	40 54.6	7 0 54.6 1 7.9	27.81 27.81	1.68 1.69	-0.37 -0.32	+ 25 2 40.0 + 25 13 25.0	26.5	+ 0.
oz Gemmorum	7.8	41 7.9 43 17.9	3 17.9	27.82	1.69	-0.32	+ 24 52 49.1	26. 3 26. 7	1 0
8 "	3	46 52.9	6 52.9	27.82	1.48	- 0.96	+ 24 52 49.1 + 22 20 42.0 + 28 11 19.4	29.9	- 0
٠ " ا	4.5 7	51 56.9 54 47.3	11 56.9 14 47.3	27.83 27.83	1, 93 0, 79	+0.66 -2.16	+ 28 11 19.4 + 12 21 23.8	22. 6 44. 4	$+\frac{1}{2}$
	6	7 57 25.4	17 25.4	27.84	0.79	- 2.09	+ 12 21 23.8 + 12 25 19.6	44.3	- 2
	7.8	8 0 39.7 1 32.7	20 39.7 21 32.7	27.84 27.84	2. 01 2. 00	+1.02 $+1.01$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.6 21.6	+ 1
	7	4 3.0	24 3.0	27.84	1.36	1.18	+ 20 36 33.6	32. 2	 0.
	6	6 39.7 10 35.0	26 39.7 30 35.0	27.85 27.85	1. 17 1. 77	- 1.37 - 0.04	+ 18 7 56.5 + 26 15 43.0	35.6 25.0	$\frac{1}{+}$
β "	2	11 44.3	31 44.3	27 . 85	1.95	+0.79	+ 28 30 41.9 + 23 38 26.3	22. 2	+ 0 + 1
82 "	6	15 17.6 17 18.7	35 17.6 37 18.7	27.86 27.86	1.58 1.65	-0.74 -0.47	+ 23 38 26.3 + 24 40 15.0	28. 2 26. 9	+ 0
Moon		20 25.4	40 25.4	27.86	1.58	- 0.73	+ 23 40 57.4	28, 2	0
5 Cancri	7 6	26 46.6 29	46 46.6 49	27.87	2.06	+ 1.17	+ 29 49 59.0 + 17 1 0.0	20, 8 37, 2	+ 1
7 "	6.7	30 44.5	50 44.5	27.88	1, 50	_ 0.91	+ 22 38 28.0	29.6	
$\frac{9}{11} \frac{\mu^1}{4} \frac{44}{11} \frac{1}{11$	5.6	33 9.4 35 14.8	53 9.4	27.88	1.54	- 0.82	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.8	- 0
11	6 7.8	35 14.8 37 20.8	55 14.8 7`57 20.8	27.88 27.89	1.92 1.15	+0.61 -1.41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.9 36.5	+ !
	7	40 32, 2	8 0 32.2	27.89	1.58	- 0.72	+ 23 45 10.2	28.2	0
19λ"	6	45 55.5 47	5 55.5 7 20.1	27.90 27.90	1, 67 1, 65	- 0.44 - 0.47	+ 24 48 45.0 + 24 39 58.2	26.9 27.0	+0 + 0
	_	53 27.6	13 27.6	27.91	1.69	- 0.33	1 05 10 06 6	26.4	+ 0
33 Lyncis .	7 6	8 56 29.6 9 0 28.5	16 29.6 20 28.5	27.92 27.92	1.82 2.72	+0.15 + 1.27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.3 12.5	+ 1. + 3.
	6	9 4 26.4	8 24 26.4	+ 0 27.92	- 2.3 8	+ 1.40	+ 33 30 57.6	- 0 16.5	+ 2
			1785	MARCH	91	,		ro corr. = +	1′ 38″.
Sun		0 43 8.3	0 3 8.3				+ 0 14 10.9 + 0 46 27.9	- 1 6.4 1 5.1	_ 0.
a Tauri	1	5 3 9.0	4 23 9.0	+ 0 30.39	- 1.05	_ 1.49	+ 16 2 48.7	0 38.1	⊢ 1.
Capella . Rigel	1 1	40 22.0 43 41.0	5 0 22.0 3 41.0	30, 43 30, 43	-3.75 +0.54	+ 2.28 + 1.87	+ 45 44 8.9 - 8 27 59.8	0 3.2 1 31.9	$+5 \\ -0$
eta Tauri	2	52 15.2	12 15.2	30.44	— 1.97	+ 0.73	+ 28 23 20.0	0 22, 1	+ 1.
γ Orionis .	2 2	5 53 8.5 6 0 31.7	13 8.5 20 31.7	30. 44 30. 45	-0.39	-0.96 +0.53	+ 6 7 43.6 $-$ 0 28 51.2	0 54.6 1 8.8	- 1. - 0
ε "	2	4 48.5	24 48.5	30, 45	0.09	+0.86	- 1 21 41.6	10.7	 0
ζ " π Aurigee .	6	9 24.7 23 31.4	29 24.7 43 31.4	30. 46 30. 48	+0.13 -3.76	+1.09 $+2.33$	- 2 4 38.6 - 45 52 23 0	1 12.7	-0.1 + 5
H Geminorum	5	30 36.6	5 50 26.6	30, 48	1.56	— 0.81	+ 45 52 23.0 + 23 14 23.4 + 29 32 23.0	28.4	 0
κ Aurigæ . μ Geminorum	4.5 3	41 12.4 6 49 30.7	6 1 12.4 9 30.7	30. 49 30. 50	2.07 1.51	+1.10 -0.92	+ 29 32 23.0 + 22 35 19.2	20.8 0 29.2	+ 1
ζ Can. Maj.	3	0 70 00.1		30.00	1.01	- 0.02	- 29 55 45.8	4 48.4	_ 5
258 Mayer 50 Aurigæ .	7 5.6	7 1 3 31.2	21	30.52	2 26	1 1 49	+ 16 20 29.0 + 42 38 8.2	0 37.8	
γ Geminorum	2.3	4 51.3	23 31.2 24 51.3	30. 52	3. 36 1. 08	+ 1.48 - 1.47	+ 16 33 2.6	6.5 37.5	+ 4
55 Aurigae .	5	6 58.3	26 58.3	30.52	3.61	+ 1.86	+ 44 41 13.6	4.3	+ 5
56 "	6	10 46.9 14 40.3	30 46.9 34 40.3	30.52 30.53	3. 49 2. 81	1.27	+ 16 33 2.6 + 44 41 13.6 + 43 44 53.9 + 37 42 40.0 + 41 59 30.0 + 39 5 1.7 + 46 30 7.2	5.3 11.7	+ 4 + 3
58 "	4.5	15 5.8	35 5.8	30, 53	3.29	+ 1.42	+ 41 59 30.0	7.1	 + 4
	6	17 46.5	37 46.5 40 9.8	30, 53 30, 53	2.97 3.85	十 2.28	+ 35 5 1.7 - 46 30 7 9	10.2 2.4	
59 "	16	20 9.8	10 0.0					2.4	

(141)

			1785 MAR	CH 91—Co	ntinued		Ze	ro corr. = +	1′ 38″.1
Name	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ — φ	Refr.	q'
		h m s	h m s	m s	8	8	0 / 1/	, ,,	,,
~ .	7.8	7 26 24.8	6 46 24.8	+030.54	- 1.87	+0.26	+ 27 8 14.5	- 0 23.7	+ 1.
ω Geminorum	6	28 51.4` 30	48 51.4 50	30.54	1.66	- 0.51	+ 24 29 10.3 + 18 1 44.0	26.9 35.3	+ 0.
	5	30 54.4	50 54.4	30, 54	1.41	- 1.16	00 51 50	31.6	
	7.8	33 27.3	53 27.3	30, 54	1.98	+ 0.78 + 1.25	+ 28 31 3.0 + 28 28 13.4 + 30 27 7.0 + 30 33 36.4 + 16 29 30.2 + 24 52 48.1 + 22 20 36.0 + 6 36 24.6	22.0	+ 1.
2 "	8.9	35 9.2	55 9.2	30, 55	2. 15	+1.25	+ 30 27 7.0	19.8	+ 2
λ "	6.7	36 58.8 40 35.0	6 56 58.8 7 0 35.0	30, 55 30, 55	2.16 1.08	+ 1.26 - 1.47	+ 30 33 36.4	19.6 37.6	+ 2. - 1.
	8	43 14.9	3 14.9	30.56	1.69	-0.41	+ 24 52 48.1	26.4	
δ"	3	7 46 50.2	7 6 50.2	30, 56	1.50	- 0.96	+ 22 20 36.0	29.6	 0.
5 Hydræ .	5.6	9 16 35.0	8 36 35.0	30.65	0.42	-1.06	+ 6 36 24.6	53.9	├ !
ζ"	7	20 35.2 23 34.4	40 35.2	30, 65 30, 66	0. 39 0. 43	- 0.96 - 1.09	+ 6 7 24.5 + 6 44 18.4	54.9 53.6	
,	7.8	26 45.9	46 45.9	30.66	1.88	+ 0.30	+ 27 14 8.2	23.6	+i
	7	28 30.7	· 48 30.7	30,66	2.00	+ 0.87	+ 28 42 58.6	21.8	+ 1. + 1. + 1.
	7 6-	30 51.7	50 51.7	30,67	2.00	+ 0.87	+ 28 42 54.3	21.8	1 !!
	6.7	32 35 9,8	52 55 9.8	30, 67	2, 53	+ 1.35	+ 39 16 31.0 + 34 43 16.1	10.0 15.0	+ 3. + 3.
	6.7	37 9.8	57 9.8	30, 67	2.27	+1.38	+ 31 48 18.8	18.2	+ 2
	7	39 26.2	8 59 26.2	30.67	1.26	1.32	+ 31 48 18.8 + 18 53 42.8 + 34 22 8.4 + 18 35 17.6 + 16 15 20.4	34.3	— 1.
83 Cancri	7	43 39.7 46 31.7	9 3 39.7 6 31.7	30.68 30.68	2. 49 1. 23	+1.37 -1.34	+ 34 22 8.4	15.4	$+\frac{3}{1}$
o Cancii	6.7	48 56.2	8 56.2	30.68	1.06	— 1.48	+ 16 15 20.4	38.0	= i.
	7	52 2.8	12 2.8	30.68	1.26	— 1.31	+ 19 2 12.7	34. 1	1.
2 ω Leonis . .	6	56 30.2	16 30.2	30.69	0.64	- 2.28	+ 9 58 1.0		├ 1.
	7	9 57 44.1	17 44. 1 20 3. 7	30.69 30.69	1.53 1.02	- 0.90 - 1.52	+ 22 43 32.6 + 15 28 23.6	29.2	$-\frac{0}{1}$
7 "	6	3 41.3	23 41.3	30.70	1.00	- 1.54	+ 15 18 43.0		<u> </u>
al. 66	7	6 22.3	26 22.3	30.70	1.41	— 1.11	+ 21 14 18.0 + 14 58 42.9		- 0.
ψ "	6	10 11 34.6	9 31 34.6	+ 0 30.71	- 0.98	- 1.57	+ 14 58 42.9	- 0 40.0	— 1.
		·	1785	MARCH	93		Ze	ro corr. = +	1′ 33′′.4
Aldebaran	1	5 3 6,5	4 23 6.5	+ 0 33.51	_ 1.06	_ 1.49	+ 16 2 48.7	_ 0 38.8	L 1.
Rigel	1	5 43 37.5	5 3 37.5	33.57	+ 0.55	+ 1.87	8 27 55.0	1 33.4	- 0.
59 Aurigæ .	6	7 14 36.5 17 43.2	6 34 36.5 37 43.2	33. 65 33. 66	2.86 3.00	+1.27 $+1.28$	+ 37 42 45.2	0 11.8	+ 3.
59 Aurigæ .	7.8	23 39, 2	43 39, 2	33, 67	0.84	$\frac{+1.25}{-1.94}$	8 27 55.0 + 37 42 45.2 + 39 5 2.2 + 12 49 41.1	10.4 43.8	+ 3.
41 Geminorum	6	27 24.6	47 24.6	33.68	1.08	— 1.48	+ 10 20 42.2	38.4	 1.
44 ω² "	6.7	29 25.3 31 51.8	49 25, 3 51 51, 8	33. 68 33. 68	1. 20 1. 56	- 1.38 - 0.87	+ 18 1 47.7 + 22 55 32.6	35.9 29.2	
Uranus .	0.7	33 15.3	53 15.3	33, 68	1.60	0.81	+ 22 55 52.0 $+$ 23 17 45.0	28.8	□ δ.
τ Geminorum	3	36 56.0	6 56 56.0	33, 69	2.18	+1.27	+ 30 33 39.8	19.9	 + 2.
51 "	6.7	40 31.6	7 0 31.6	33, 69	1.10	- 1.47	+ 16 29 36.9 + 25 13 27.0	38.1	— 1.
	8	41 43 12, 6	1 3 12.6	33.69	1.71	_ 0.41	+ 24 52 53.0	26.3 26.8	† 0. † 0.
ð "	3	46 46.8	6 46.8	33, 69	1.52	- 0.96	+222045.3	30.0	├ 0.
	5.6	48 43.7	8 43.7	33, 69	3.22		+ 41 2 39.3	8.3	+ 4.
	6.7	50 39.4 51 51.4	10 39.4 11 51.4	33.70 33.70	1.97	+ 0.58 + 0.66	+2815.0 $+281123.8$	23.0 22.8	+ 1. + 1.
	7.8	54 47.7	14 47.7	33.70	1.96	7 0.53	+ 27 57 10.1	23. 1	 1 1
	6	7 57 21.0	17 21.0	33.71	0.82	— 2.09	+ 12 25 21.6	0 44.5	— 2.
δ ³ Can. Maj.	6.7	8 2 27.7	22 27.7	33, 71	0.25	- 0.41	+ 3 48 54.1 + 3 43 15.0	1 0.2 1 0.4	
ு ் பார்	7.	5 37.0	25 37.0	33.71	2.36	+ 1.39	+ 32 27 56.8	0 17.7	+ 2.
c Geminorum	6	10 29.1	30 29.1	33.72	1.82	-0.05	+ 26 15 43.8	25. 1	+ 0. + 2.
80 π "	5 7.8	13 6.3	33 6.3	33.72	2.49	+1.39	+ 33 54 22.4	16.2	+ ½.
00 T	6	15 11.7 18 29.8	35 11.7 38 29.8	33.72 33.72	1.62 4.12	-0.73 +3.05	+ 23 38 28.6 + 48 4 40.2	28.4 0.8	+ 5.
Zn Lyncia	7	25 14.5	45 14.5	33.73	2.75	1.29	+ 36 37 41.0	13.1	4 3.
26 Lyncis .		28 44,8	48 44, 8	33.74	1.13	- 1.43	+ 17 1 5.4	37.4	<u>⊢</u> 1.
5 Cancri	6					0.00	1 രാളവാവ	Λ αα ~	1 1
· .	7	8 30, 38.6	7 50 38.6	+ 0 33.74	- 1.54	- 0.90	+ 22 38 28.0	- 0 29.7	- 0.

(142)

Name	Mag.	T .	App. sid. time	Clock corr.	n tan d	q	ζ φ	Refr.	q'
		h m s	h m s	m s			0 / //	, ,,	"
	7	8 33 2.7	7 53 2.7	+033.74	- 0.94	- 1.65	+ 14 5 17.6	- 0 41.9	- 2.
13 Canc. cat, 171	6.7	35 8.9 38 24.2	55 8.9 7 58 24.2	33, 74 33, 75	1.98 1.00	+0.59 -1.56	+ 28 4 23.2 + 15 14 13.9	23. 0 40. 2	+ 1:
10 Canc. Can, 171	7	41 21.7	8 1 21.7	33.75	1, 22	-1.36	+ 28 4 23.2 + 15 14 13.9 + 18 17 42.3	35.6	_ i.
$oldsymbol{eta}$ Cancri	4.3	44 21.1	4 21.1	33. 75	0.64	- 2.17	+ 9 49 18.0	49.0	<u> </u>
7 Leonis	7	8 45 22.7 10 3 37.3	8 5 22.7 9 23 37.3	33, 75 33, 83	0.62 1.00	- 1.92 - 1.54	+ 9 30 20.0 + 15 18 49.0	49. 4 40. 0	
/ Louis	7.8	6 18.0	26 18.0	33, 83	1.44	_ i.ii	+ 21 14 22.0	31.6	- 0 .
	7	33 12, 2	53 12.2	33, 86	0.59	- 1.66	+9041.0	50.4	— 1.
η "	3. 4 7. 8	35 5.8 36 57.3	55 5.8 56 57.3	33, 86 33, 86	1.19 1.45	- 1.40 - 1.09	+ 17 47 9.8 + 21 21 39.0	36.3 31.4	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$
	7.8	38 43.9	9 58 43.9	33.87	1.47	-1.05	+ 21 44 9.6	30, 9	☐ ŏ.
•	7	42 9.3	10 2 9.3	33, 87	1.51	- 0.99	+ 22 12 46.8	30.3	- 0.
39 "	6.7	44 53.5 47 36.7	4 53.5 7 36.7	33.87 33.88	1.66 1.40	- 0.59 - 1.16	+24930.2 +205414.5	27.8 32.2	_ 0.
42 "	7	49 47.0	9 47.0	33.88	1.06	— 1.49	¥ 16 2 12.0	39. 0	— 1.
04 T 341	6	10 56 22.2	16 22.2	33.88	2.20	+1.29 $+1.30$	+ 30 47 54.0	19.6	+ 2.
34 Leon. Min.	5 6.7	11 0 40.5	20 40.5 31 0.5	33.89 33,90	2.69 0.30	+1.30 -0.59	+3640.0 $+44119.8$	13.7 0 58.5	+ 3. - 1.
	8.9	13 55.0	33 55.0	33.90	0.13	-0.12	+ 2 7 35.0	1 4.0	− î.
	8	17 46.3	37 46.3	33.90	0.30	- 0.56	+ 4 33 41.0	0 58.9	— 1.
55 Leonis	6.5	19 19.3 24 7.3	39 19.3 44 7.3	33. 91 33. 92	0, 31 0, 12	-0.60 -0.08	+ 4 33 41.0 + 4 42 50.4 + 1 52 8.8	0 58.5 1 4.6	- 1. - 1.
57	6	24 1	44	0.02	0.12	0.00	1 33 58.0	1 5.1	— î.
58 d Leonis	1	28 56.5	48 56.5	33.92	0.31	- 0.61	+ 4 45 21.2	0 58.4	- <u>1</u> .
Moon		11 29 35.7	10 49 35.7	+ 0 33.92	- 0.31	- 0.64	+ 4 52 58.4	-1 0.3	- 1.
			1785	MARCH	30		Zer	ro corr. = +	1′ 30″.2
Sirius . 92 Leonis	1 4,5		6 34 39.5 11 28 39.8	+ 0 59.83 1 0.08	+ 1.13 - 1.60	+ 1.67 - 0.93	- 16 25 39.3 + 22 31 31.3	- 2 8.6 0 29.5	_ 0. _ 0.
	7	İ	29 58.9	1 0.08	1.66	- 0.79	+23231.0	28.4	0.
	6		32 4.5 39 1.3	1 0.08 1 0.09	1.91 2.65	0.00	+ 26 23 14.9 + 34 32 39.4	24.7 15.2	+ 0. + 3.
	7		41 41.2	1 0.09	2.68	+1.37 $+1.35$	+ 34 47 15.8	15.0	4 3.
	6		44 15.0	1 0.09	2.84	+1.29	+ 36 37 2.3	12.9	+ 3.
)	7.8 7.8		48 9.8 54 25.0	1 0.10 1 0.10	2.99 4.20	+1.27 + 2.87	+ 37 53 56.0 $+$ 47 27 22.0	11.6 14.7	+ 3. + 5.
,	6	1	11 58 54.1	1 0.10	2,09	$+\tilde{0}.77$	+ 28 27 18.3	22.1	+ i.
7 Clamm	7		12 2 37.1	1 0.11	1.78	-0.42	+ 24 50 42.0	26.5	+ 0.
7 Comæ	5.6	1	4 31.4 7 15.2	1 0.11 1 0.11	1.81 1.98	-0.35 + 0.27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.3 23.8	+ 0. + 1.
-	7.6	1	8 33, 1	1 0.11	1.98	+ 0.27	+ 27 10 22.0	23.8	 + 1.
e Comæ	4.5		10 45.7 12 43.0	1 0.11 1 0.12	1.96 1.94	+0.21	+2716.7 +264512.6	23.9 24.3	+ 1.
	6		15 17.3	1 0.12	2. 47	+0.10 +0.57	+ 20 45 12.0 + 27 59 40.7	24.3 22.8	+ 0. + 1.
d "	6		17 14.2	1 0.12	1.97	+ 0.24	+27 4 55.1	22, 6	+ 1.
25 Comme	8 5	1	19 54.9	1 0.12	2.07	+0.68	+ 28 14 0.0	22.5	+ 1.
25 Comæ	7.8		23 25.2 30 56.1	1 0.12	1.36 2.68	-1.27 +1.34	+ 28 14 0.0 + 19 32 32.8 + 34 51 7.6	33, 6 14. 9	-0.
	7	1	33 33.8	1 0.13	2.09	+ 0.80	14 28 33 4.2	22.2	+ 1.
36 Virginis . 31 Comæ	5.6		37 12.7 40 16.8	1 0.14 1 0.14	1.07 2.11	- 1.55 - 0.86	+ 15 16 50.0 + 28 41 31.6 + 27 55 34.0	39.6	— 1.
от соще	7.8		42 31.1	1 0.14	2. 11	+0.86 + 0.54	7 55 34.0	21.9 22.9	<u>i</u> 1.
	7	1	44 28.3	1 0.15	2.52	+ 1.40	+ 33 6 40.3 + 44 41 20.0	16.8	+ 2.
	6.7		45 1 49 12.4	1 0.15	2, 49	+ 1.40	+444120.0 $+32550.1$	4. 4 17. 1	± 5.
	7.8		53 7.3	1 0.15	3.74	丰 1.70	 ∔ 44 8 3. 0	4.9	
37* *	6	1	12 55 14.1	1 0.16	4.06	+1.70 + 2.53	+ 46 23 27.3	0 2.6	 + 5.
a Virginis .	1	1	13 12 53.7	+ 1 0.17	+ 0.68	+ 1.79	— 10 2 12.6	— 1 38.7	— 0.

(143)

		_	178	5 APRIL	5		Zero	corr. = +1	L′ 38″. 3.
Name	Mag.	T	App. sid. time	Clock corr.	n tan o	q	ζ — φ	Refr.	q'
Sun		h m s	h m s 0 57 4.8	m s	8	8	+ 6 35 17.2	- 0 53.2	
δ Orionis	2		0 59 14.6 5 19 55.1	+ 1 6.93	+ 0.03	+ 0.53	_ 0 28 48.6	1 9.4	_ o.
ξ"	2 2 3		24 11.4 5 28 47.8	1 6.94 1 6.94	+0.09	+0.86	- 1 21 42.2	11.5	- 0.
& Geminorum			6 29 37.6	1 7.02	-1.84	+1.08 -0.30	- 2 4 39.0 + 25 18 28.8	1 13.3 0 26.1	- 0.
Sirius	1 1		6 34 31:6	1 7.02	+ 1.15	+ 1.67	- 16 25 42.6	2 8.9	- 0.
Procyon . β Geminorum			7 26 57.9	1 7.08	- 0.39 2.12	-0.87 +0.79	+ 5 45 2.4 + 28 30 35.0	0 55.8 22.1	- 1. + 1.
25 Lyncis .	6		37 43.6	1 7.09	4.31	+ 2.99	+ 47 53 53.9	1.0	+ 5.
13 Canc. Cat. 1712	6 6.7		57 50.5 7 59 53.0	1 7.12 1 7.12	1.06	- 1.56	+ 15 14 7.4	39.8	— 1 .
	7.		8 4 49.5	1 7.12 1 7.12	1.71 1.99	-0.72 + 0.19	+ 23 45 3.8 + 26 58 16.8	28. 0 24. 0	+ 1.
31 Lyncis .	5		0.05.1		}		+ 43 50 13.0	5. 3	+ 4.
21 Cancri	8 6		9 35.1 11 7.1	1 7.13 1 7.14	0.78 0.78	- 3.00 - 3.00	+ 11 19 3 + 11 18		
	7		20 46.8	1 7.15	0,97	-1.65	+ 13 57 49.8	41.8	_ 2
	7		23 46.6 25 2.1	1 7.15 1 7.16	2.58 2.56	+ 1.40	+ 33 30 56.0 + 33 14 8.6	16.4	+ 2
	7		28 42.5	1 7.16	2. 36 2. 98	+1.40 + 1.27	+ 33 14 8.6 + 37 26 56.0	16.8 12.1	+ 2 + 3
r I am Min	7 6.7		33 4.6	1 7.17	2. 16	+0.95	+ 28 55 0.6	21.7	+ 1
5 Leon. Min.	7.8		36 4.4 40 1.2	1 7.17	2.63 1.28	+1.38 -1.37	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.8 35.5	$+ \frac{2}{1}$
ζ Hydræ .	4		42 57.4	1 7.18	0.46	- 1.09	+ 6 44 19.4	54.0	- î
	7 7.8		47 53.7 50 15.0	1 7.18 1 7.19	2.13	+0.86	+ 28 43 0.0	21.9	+ 1
•	5.6		51 44.3	1 7.19 1 7.19	2. 13 3. 19	$+0.86 \\ +1.28$	+ 28 42 58.6 + 39 16 33.0	21. 9 10. 1	+ 1 + 3
	6.7		54 33.2	1 7.20	2.70	+1.35	+ 34 43 20.6	15. 1	 + 3
	6.7 7.8		56 33.3 8 58 48.4	1 7.20 1 7.20	2, 42	+1.38 -1.32	+ 31 48 19.1 + 18 53 48.6	18, 4 34, 6	$+ \frac{2}{1}$
	6.7		9 0 55.7	1 7.20	2.78	+1.32	+ 35 29 15.0	14. 2	+ 3
	7.8 7		3 4.6 6 24.4	1 7.21 1 7.21	2, 66 3, 16	+1.37	+ 34 22 7.7	15.5	 + 2.
	7.8		8 19.3	1 7.21	1. 14	+ 1.28 - 1.48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10. 4 38. 3	+ 3. - 1.
Tombo	8.9		11 25.5	1 7.22	1.34	- 1.31	+ 19 2 15.2	34. 4	— 1 .
ω Leonis	5 7		15 53.3 20 37.3	1 7.22 1 7.23	0.69 1.76	- 2.24 - 0.56	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.3 27.4	 + 0
	7.8		25 32.7	1 7.24	0.95	— 1.69	+ 13 40 41.6	42.3	— 2
	8 7		27 51.2 31 ‡	1 7.24	0.97	- 1.65	+ 14 0 35.2	41.8	- 2
	7.8		35 54.7	1 7.25	3, 34	+ 1.34	+ 46	2. 9 8. 7	+ 5
22 " Regulus .	6		38 36.1	1 7.25	1.85	- 0.28	+ 25 22 59.2	26. 1	+ 0
negurus .	6.7		9 55 52.2 10 0 35.3	1 7.28 1 7.28	0.90 2.09	-1.79 +0.66	+ 12 59 35.8 + 28 10 17.1	43. 4 22. 7	$\frac{ -2 }{+1}$
	7.8		3 10.8	1 7.29	2.22	+ 1.15	+ 29 43 46.8	21.0	II i
	8		4 57.8 7 30.4	1 7.29 1 7.29	2.11 2.41	+0.78 + 1.37	+ 28 27 36.0 + 31 42 45.4	22. 3 18. 5	$+ \frac{1}{2}$
	7.8		9 32, 3	1 7.30	2.86	+1.30	+ 36 16 21.0	13.4	∔ 3
	7		10 12 14.5	+ 1 7.30	 2. 88	+ 1.30	+ 36 29 21.1	- 0 13.1	+ 3
			178	5 APRIL	9		Zer	0 corr. = +	1′ 34″.
	6		8 18 8.6	+ 1 14.92	_ 1, 39	_ 1.26	+ 19 40 53.4	- 0 33.1	_ 1
1 Leon. Min.	6 -		20 37.8 23 38.1	1 14.92	0.97	- 1.66	+ 13 57 50.8	41.4	_ 2
- 25000 Maille	6.7		25 16.5	1 14.93 1 14.93	2.58 2.58	+ 1.40 + 1.40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16. 3 16. 4	$+\frac{2}{2}$
	7 0		28 16.6	1 14, 93	1.47	- 1.18	+ 20 36 33.0	31.8	- U
	7.8 7.8		30 30 35.8	1 14.94	3, 05	+ 1.27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.8 11.4	+3 + 3
OF T -	7		32 55, 8	1 14.94	2.16	+ 0.94	+ 28 54 59.8	21.6	I i
35 Lyncis .	5.6 6.7		36 14.9 38	1 14.94	3, 84	+ 1.80	+ 44 29 15.6	4.5	+ 4
	7.		8 39 52.2	+ 1 14.95	_ 1.28	1.37	+ 38 2 16.0 + 28 54 59.8 + 44 29 15.6 + 19 36 14.0 + 18 9 7.0	33. 2 - 0 35. 2	

(144)

			i .				
Name	Mag.	T App. sid. time	Clock corr. n tan	δ q	ζ- φ	Refr.	q'
я Urs. Maj v Cancri	7 6. 7 4. 5 6 9. 10	h m s 8 40 30.1 42 3.5 45 25.7 8 48 56.2 13 24 44.7	m s - 1.2 + 1 14.95 - 1.2 1 14.95 1.3 1 14.96 1.8 1 15.38 1.8	$ \begin{array}{c cccc} 7 & -1.38 \\ 9 & +1.48 \\ -0.30 \\ -0.37 \end{array} $	0 / " + 18 19 40.0 + 18 1 11.8 + 42 35 45.7 + 25 15 59.8 + 25 0 48.0 + 25 41 28.2	- 0 35.0 35.4 6.5 25.9 26.3	- 1.4 - 1.4 + 4.0 + 0.
2 Boötis	6.7 9.10 6	25 39.9 27 37.4 29 40.3	1 15.38 1.8 1 15.38 1.8 1 15.38 1.7	33 0.33	+ 25 41 28.2 + 25 12 21.0 + 23 34 2.5	25. 5 26. 1 28. 1	+ 0. + 0. 0.
3 "	6	33 27.1 35 32.2	1 15, 39 0.3 1 15, 39 1.9	78 - 3.01	+ 11 23 40.1 + 26 45 43.3	45, 5 24, 1	- 1. + 0.
6 "	6 7	38 21.8 39 3.5	1 15, 40 1.0 1 15, 40 1.0	30 0.96 30 0.96	+22 18 54.0 +22 19 27.0	29.7 29.7	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
9 "	6.7 5.6	42 12.7 45 33.2	1 15.40 2.5 1 15.40 2.	12 1 0.79	+ 29 41 13.2 + 28 31 37.8	20.7 22.0	 - -
11 "	$\left \begin{array}{c}6\\7\\7\end{array}\right $	50 13.1 52 10.8 56 11.8	1 15, 42 2. 1 15, 42 1. 1 15, 42 2.	70 🗀 0.76	+ 28 24 23.5 + 23 30 52.5 + 35 46 55.7	22. 2 28. 2 13. 8	+ 1. + 0. + 3.
12 d "	6.5 7.8	13 59 24.3 14 1 46.0	1 15. 42 2. 1 15. 43 1. 1 15. 43 3.	91 🗀 0.09	<u>i</u> 26 5 35 3	25.0 5.7	+ 0.
	7 7	4 31.4 6 27.7	1 15.44 3. 1 15.44 3.	57 1.47	+ 42 30 9.2 + 40 43 2.6	6.6 8.5	+ 4.
	7 7	9 46. 4 13 16. 8	1 15. 44 3. 1 15. 45 2.	11 I II V. 73	+ 20 22 10.4	22.2	+ 4
σ"	6.7 7.8 5	15 31.2 17 45.5 24 6.7	1 15. 45 3. 1 15. 46 3. 1 15. 47 2.	51 🕂 1.42	+ 39 20 29.1 + 41 57 57.9 + 30 39 35.8	10.0 7.2 19.5	+ 3 + 4
•	6.7	27 3.3 30 42.0	1 15, 47 1.	$\begin{array}{c c} 36 & -1.30 \\ -1.28 & -1.28 \end{array}$	+ 19 13 9.8 + 19 24 13.0	33. 9 33. 6	- 1
	9 7	33 4.4 34 13.5	1 15.48 1. 1 15.48 1.	$\begin{array}{c c} 36 & -1.29 \\ 40 & -1.25 \end{array}$	+ 19 22 8.0 + 19 46 38.2	33.7 33.1	<u>_</u> 1
	6.7	37 39.7 39	1	83 - 0.31	T 24 47 1.0	25.9 26.5	∔ 0
)	6.7	42 33.0 44 10.2 45 51.5	1 15.50 2.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 32 52 14.9	17. 1 17. 1 0 16. 7	+ 2
110 Virginis . ψ Boötis	4.5	50 50.3 54 2.0	1 15.50 2.	$\begin{array}{c c} & - & 1.70 \\ & - & 0.27 \\ & 06 & + & 0.47 \end{array}$	+ 2 55 54.4 + 27 46 8.0	1 1.3 0 22.9	<u> </u>
45 ¢ "	5.6	14 56 40.3				- 0 25.5	
		178	5 APRIL 10		Ze	ro corr. = +	1′ 38″.
15 ψ ³ Cancri	5 5	7 58 32.8 8 6 50.2		28 + 1.25 74 + 1.66	+ 30 15 56.9 + 43 50 14.6	- 0 20.0 5.2	
28 v ^a Cancri	7 7	12 25. 6 14 36. 7	3 1 17, 35 1.	24 — 1.40 80 — 0.49) + 17 43 26.2	35. 9 26. 4) 1
	7 7	19 44.9 20		.74 — 2.76	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41.4	
) 2 Leon. Min.	7 6 7	22 50, 0 24 51, 6	6 1 17.37 2	$\begin{array}{c c} 12 & -1.49 \\ 56 & +1.49 \\ \hline 57 & +1.49 \end{array}$) + 33 14 12.0	38, 3 16, 6	-] -
, ,	7.8 6.7	25 15. 1 28 14. 8	1 17.37 2 3 1 17.37 1	47 1.10	0 + 33 27 2.0 0 + 20 36 31.6 0 + 37 39 37.0	1 31 6	+ %
	7.8	31 17.6 35 10.3		$\begin{array}{c c} .18 & + 1.06 \\ .68 & + 1.3 \end{array}$		1 21.2	3 + J
5 "	6.7	35 54.8 39 51.3		$\begin{array}{c c} .63 & + 1.3 \\ .38 & + 1.3 \end{array}$	4 + 31 21 32.6	18.3	2
	7 7 9	40 1 42 20.0 44 57.5		$\begin{array}{c c} .84 & -0.3 \\ .80 & -0.4 \end{array}$	$\begin{array}{c} + 18 & 19 & 44.0 \\ 2 & + 25 & 14 & 26.4 \\ 4 & + 24 & 45 & 54.5 \end{array}$	26.	0 +
	8 7	46 48 25.4		1	$\begin{array}{c} + 27 & 14 & 11 & 0 \\ + 27 & 14 & 11 & 0 \\ 0 & + 17 & 53 & 42 & 0 \end{array}$) 23.	6 🕂
	7	8 50 4.8			6 + 28 42 56.8		
			_ ' '	'	-' -		-'

Digitized by Google

43 Lyncis 6.5		1		1750 AF	BIL 10—C	MIIIMOU		Zen	eorr. – +	1 .16 .
8	Name.	Mag.	T	App. sid. time	Clock corr.	n tan d	q	ζ — φ	Refr.	q
36 Lyneis 5				h m s			5	1 1		
36 Lyneis . 5					+ 1 17.41					
9 147.3 117.42 0.85 -2.14 12 21 33.6 44.0	36 Lyncis .									
1.9 1.0 1.0	•			9 1 47.3	1 17, 42	0,85	— 2. 14		44.0	_ 2
7 Leon. Min. 6.7 15.59.1 17.43 2.98 1.37 37.21 11.2 19.1 7 Leon. Min. 6.7 16.57.4 17.44 2.68 1.37 34.27 26.9 15.3 8 "							$\frac{-1.41}{+1.27}$			
7 Leon, Min. 6 6 16 27.4 1 17.44 2,69 + 1.37 + 34 34 2,8 15.1 6 2 17.7 17.45 1.77 - 0.57 + 24 22 53.1 27.1 17.45 1.77 - 0.57 + 24 22 53.1 27.1 17.45 1.77 - 0.57 + 24 22 53.1 27.1 17.45 1.77 - 1.79 1.79 1.79 1.79 1.79 1.79 1.79 1.79		7		12 8.2	1 17, 43	2.98	+1.27	+ 37 21 11.2	12, 1	+ 3
8 " 6 6, 7 20 27.7 1 17.45 1.77 - 0.57 + 36 1 9.0 1 13.6 7 7 222 5.8 1 17.45 0.94 - 1.70 + 13 35 9.5 42.1 13.3 43 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	7 Loon Min						+ 1.37			
6.7 7 20 27.7 1 17.45 1.77 22 5.8 1 17.45 0.94 - 1.70 1 3 35 9.5 4 22.1 43 Lyneis . 6.5 8 27 24.7 1 17.46 0.95 - 1.69 - 13 36 9.5 42.1 43 Lyneis . 6.5 8 29 33.5 1 17.46 2.73 1 4.04 2.73 1 4.04 2.73 1 4.04 2.73 1 4.04 2.73 1 4.04 2.73 1 4.04 2.73 1 4.04 2.73 1 17.47 2.95 2.95 2.8 1 17.49 2.10 2.73 1 17.47 2.73 2.83 2.84 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8					1 17.44	2.03	T 1.57			
43 Lyncis . 6, 5								+ 24 22 53.1	27. 1	,+ 0
43 Lyneis . 6, 5 8 92 34, 7 1 17, 46 2, 73 + 1, 33 + 35 + 40 42 9, 2 8, 5 14, 6 14,					1 17.45			+ 13 35 9.5 + 13 40 33.8		- 2 - 2
14 Leon. Min. 7	43 Lyncis	6.5		27 24.7	1 17.46	3, 35	+1.35	+ 40 42 9.2	8.5	+ 4
14 Leon. Min. 7				29 33, 5 31 39 3			+1.33 $+2.43$	+ 35 2 48.0 + 46 4 33 4	14.6 2.9	+ 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7		35 33.5	1 17.47	4, 04	+2.43	+ 46 3 15.1	2.9	+ 5
π Leonis 4	,									
Regulus . 7		4		46		0.04	l			
7)									
24 Leon. Min. 7 3 0.0 25.9 1 17.51 2.08 $+ 0.66 + 28$ 10 11.8 22.5 7.8 3 0.6 1 17.51 2.22 $+ 1.15 + 29$ 43 45.4 20.7 7.8 7.8 7.20.4 1 17.52 2.11 $+ 0.78 + 28$ 27 36.2 22.1 1.6 4.8 9 1 17.52 2.41 $+ 1.37 + 31$ 42 44.4 18.4 18.4 9 1 17.53 2.81 $+ 1.30 + 36$ 16 20.7 13.3 7 12 4.4 1 17.53 2.89 $+ 1.30 + 36$ 16 20.7 13.3 7 12 4.4 1 17.53 2.89 $+ 1.30 + 36$ 26 29 19.6 13.1 6.7 17.8 17.12.9 1 17.54 2.26 $+ 1.32 + 40$ 17.49 6 9.0 9 22.5 0.7 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 9 25 0.7 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 9 25 0.7 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 9 25 0.7 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 28 52.1 1 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 2.3 4 40 1.3 4 17.55 1.29 $+ 1.32 + 40$ 17.49 6 9.0 35.2 2.3 4 17.56 1.3 4 17.56	Regulus .									_ ×
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6.7		10 0 25.9	1 17.51	2.08	+ 0.66	+ 28 10 11.8	22.5	+ 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 Leon. Min.									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2.41	+ 1.37	+ 31 42 44.4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							+1.30	+ 36 16 20.7		
7.8										+3 + 2 + 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+1.32	+ 40 5 36.0	9. 2	+ 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+1.32 -1.35			
2 ξ Virginis . 6 6 11 33 35.4 1 17.56 1.42 - 1.23 + 19 59 59.2 32.8 39 13 53 38.5 1 17.65 0.65 - 1.86 + 9 25 20.4 49.1 39 19 0 1 17.66 0.63 - 1.76 + 9 13 58.4 49.4 49.1 49.1 49.3 1 17.66 2.70 + 1.35 + 34 47 12.2 15.0 44 55.5 1 17.67 3.45 + 1.39 + 41 30 59.4 7.7 47 51.8 1 17.67 3.45 + 1.39 + 41 30 59.4 7.7 47 51.8 1 17.67 3.80 + 1.73 + 44 12 35.2 4.9 49 56.0 1 17.67 3.80 + 1.73 + 44 12 35.2 4.9 49 56.0 1 17.67 3.80 + 1.73 + 44 12 35.2 4.9 49 56.0 1 17.67 3.80 + 1.73 + 44 12 35.2 4.9 49 56.0 1 17.67 3.80 + 1.73 + 44 12 35.2 4.9 49 56.0 1 17.68 0.48 - 1.15 + 6 59 14.6 53.4 12 3 16.8 1 17.69 4.38 + 3.09 + 48 16 51.5 0.6 8 37.0 1 17.70 2.10 + 0.67 + 28 13 53.0 22.5 6.7 13 11.8 17.71 - 1.82 - 0.36 + 25 5 52.8 0 26.3 13 11.8 17.71 - 1.82 - 0.36 + 25 5 52.8 0 26.3 12 15 32.5 + 1 17.71 + 0.23 + 1.43 - 3 25 58.1 - 1 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17		6		28 52.1	1 17.55	2.51	+1.40	+ 32 47 36.0	17. 1	+ 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40 "									+ 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 ξ Virginis .	5, 6		11 35 38.5		0.65				Г i
11 S 1	_									- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+1.39			+ 3 + 4
11 S 6						3.04	+1.27			+ 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	118 "									+ 4
Sun -		7		12 3 16.8	1 17.69	4.38	+ 3.09	48 16 51.5	0, 6	+ 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							+ 0.67 - 0.36	+281353.0 +25552.8		+ 0
Sun) 510 Mayer						+ 1.43	- 3 25 58.1 -		- ŏ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·		1785	APRIL 1	1		Zero	o corr. = + 1	ı' 37".
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sun		-, ,	1 18 50.9						1
β Cancri . 4.3 31 Lyncis . 5 32 " . 6 19 36.6 1 19.35 0.68 — 2.17 + 9 49 11.4 48.1 32 " . 6 24 10.9 1 19.35 3.74 + 1.66 + 43 50 16.4 5.2 4 δ Hydrse . 4 4 Leon. Min. 7				1 21 1.0		0.50			- 0 49.7	- 1
31 Lyncis 5 6 47.9 1 19.35 3.74 + 1.66 + 43 50 16.4 5.2 19 36.6 1 19.37 2.95 + 1.27 + 37 7 11.7 12.3 24 10.9 1 19.38 1.42 - 1.23 + 19.59 7.4 32.7 4 Leon. Min. 7				7 30 51.5	+ 1 19.29 1 19.35		+0.79		21.9 48 1	+ !
32 " - 6 19 36.6 1 19.37 2.95 + 1.27 + 37 7 11.7 12.3 4 \(\delta \) Hydrse	31 Lyncis .	5		6 47.9	1 19.35	3.74	+ 1.66	+ 43 50 16.4	5. 9	+ 4
4 & Hydræ . 4 4 Leon. Min. 7 + 6 25 40.0 54.0 + 32 40 3.4 17.2	• • •	6				2.95	+1.27		12.3	$+ \frac{3}{1}$
4 Leon. Min. 7 + 32 40 3.4 17.2				24 10.9	1 15, 30	1,42	- 1.20		54.0	<u> — 1</u>
$ \begin{vmatrix} 0.7 \\ 6 \end{vmatrix} \begin{vmatrix} 20 & 23 & 7 \\ 8 & 29 & 5.0 \end{vmatrix} + \begin{vmatrix} 1 & 19 & 39 \\ + & 1 & 19 & 39 \end{vmatrix} = \begin{vmatrix} 2.57 \\ - & 3.0 \end{vmatrix} + \begin{vmatrix} 1.27 \\ + & 37 & 39 & 35.4 \end{vmatrix} = 0 \ 11.7 $	4 Leon. Min.			00 00 *	1 10 90	0.50	1 1 000	+ 32 40 3.4	17.2	+2
	,						+1.27	+ 37 39 35.4 -	- 0 11.7	+3
g & assumed as 23° 28′ 9″; not 23° 28′ 39″. d Ts. II and III assumed as 15m. 32s.5 and e T. I assumed as 23m. 45s.5; not 23m. 25s.5 respectively; not 15m. 22s.5 f & assumed as 11°; not 15°.	g assumed as 23° 28′ 9)"; not 23°	28' 39".					I assumed as 23m. 4	5s.5; not 23n	n. 44s.

(146)

ame.	Mag.	T	App. sid. time	Clock com	m 4cm .*	i _		D.C.	, ,
Tancri			1	CIOCK COIT.	n tan o	q	ζ φ	Refr.	q'
⁷ ancri			h m s	m s	s	8	0 / //	, ,,	,,
	6 4		8 31 49.6	+ 1 19.39	- 0.75		+ 10 49 58.6	- 0 46.3 52.6	- 1. - 1.
Hydræ .	7		34 7.3 35	1 19.40	0.49	— 1. 19	+ 7 10 53.0 + 13 18 43.4	32. 6 42. 4	$= \frac{1}{2}$
	7.6		37 46.7	1 19.40	1.13	— 1.48	16 7 9.5	38, 1	- 1.
	7		40 21.0	1 19,41	1.48	- 1.17	+ 20 44 59.0	31.7	- 0.
	10. 11 6. 7		44 21.0 45 57.2	1 19, 41 1 19, 42	2.01 2.01	+0.30	+ 27 17 15.0 + 27 14 8.7	23. 5 23. 5	+ 1. + 1.
Cancri	6.5		48 52, 5	1 19, 42	1.84	-0.30	14 25 16 0.1 1	25.9	i+ 0.
"				1 19.43	1.29	- 1.36	+ 18 18 41.0		<u> </u>
				1 19.44	0.79	_ 3.00	+ 11 31 29.0		-2.
	8.9		1 44.5	1 19.44	0.85	- 2.14	+ 12 21 34.4	43, 8	_ 2.
					0.85	- 2.14	+ 12 22 29.4		— 2.
									$\begin{bmatrix} -0.\\ -1. \end{bmatrix}$
	7		13 53, 5	1 19.47	1.06	- 1.56	+ 15 12 35.0	39.4	— 1 .
Loonie			16 54.8	1 19.47	1.63	- 0.90	+ 22 43 32.6	29.1	- O
LICOINS .						- 0.08 - 0.56	+ 24 22 53.1		+ 0
	9		22 9.1	1 19.48	1.04	- 1.57	+ 15 0 20.0	39. 8	— 1
"··-						- 1.54	+ 15 18 45.6		- 1
						- 1.65	+ 13 40 37.3 + 14 0 29.6		$-\frac{2}{2}$
	9.10		30 1.4	1 19.49	2.80	+ 1.31	+ 35 40 23.7	14.0	$+\frac{3}{3}$
	6			1 19.50	3.01	+ 1.27	+ 37 42 50.4		+ 3
						十 J. 28 一 9 98	+ 38 53 21.3		$+ \frac{3}{1}$
	7		43 17.3	1 19.52	0.59	- 1.55	8 40 24.0	50. 1	_ î
			45 28.2	1 19.52	0.64	- 1.80	9 18 59.8	49. 1	- 1
••									
	7.6			1 19.53				37.3	= i .
_ "	3, 4		54 20.3	1 19,53	1, 25	- 1.40	1 17 47 5.8 l	35.8	— 1 .
Regulus .	1			1 19.54	0.90	- 1.79	! I 10 27 00 0 I		- 2. - 1.
	7		9 59 11.8	1 19.54	2, 19	+ 1.06	+ 29 16 26.0 l		+ i.
			10 1 23.2	1 19.55	1.59	-0.98	+ 22 12 40.7		— 0.
Leonis						+ 0.78 - 1 19	+282736.8 +203950		+ 1.
Geomb .	8.9		7 46.9	1 19.56	1.47	- i. i8	+ 20 35 34.7	32. 1	- 0.
36	7		9 19.9	1 19.56	2.86	+ 1.30	+ 36 16 20.2	13. 3	+ 3.
Leon, Min.						+ 1.30 $- 0.58$	+ 36 29 19.1 + 4 38 23 0	13. I 57. 9	+ 3. - 1.
	9.8		15 40.9	1 19.57	0.30	- 0.53	∔ 4 23 34.1	0 58.3	_ i
				1 10 50	0.10		+ 3 14 4.0	1 0.7	-].
"			21 31.0 25 18.6	1 19.58	2.54	+ 1.40	+ 29 251.0 + 33 3 48.2	0 21.6 16.9	1 2
•	7.8		27 8.8	1 19,59	2. 13	+0.82	+ 28 37 1.0	22.0	+1
	7 9	•	31 40.4	1 19.60	3, 56	+ 1.46	+ 42 24 24.0	6.7	+ 4.
					2, 60	T 1.44	T 36 16 40.0		
	9		39 25, 2	1 .19.61	2, 64	+1.38	¥ 34 6 16.0	15.7	+ 2.
eonis .	5.6		10 42 41.7	+ 1 19.61	- 1.89	- 0.15	+ 25 52 11.4	— 0 25.3	+ 0.
	1		1785	APBIL 2)6		Zer	o corr. = +	1′ 40″.
Dun ann -	.		7 00 7 0	1 50 04	0.00	0 12		0.54.5	.
						- 2.79	+ 10 50 42.4	45.9	
eon. Min.	5		35 3.2	1 59,50	3. 34	+1.34	+ 40 35 53.1	8.5	+ 4.
eonis .			37 43.8	1 59.51	1.85	-0.28	+ 25 22 57.5	25.6	+ 0.
	7		5 40 55. Z	T 1 08.02	- 0.02	_ 1.00	7 3 3 10.0	— U 45.U	— 1 .
	Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis Ceonis	Cancri	Cancri . 6.7 6.5 7 9.10 8.9 6.7 7 7 7 4.5 6.7 9.10 6.7 8 7 7 7 6.5 6.7 7 7 7 6.5 6.7 7 7 7 8 7 7 8 9 10 6.7 8 7 7 7 7 8 7 7 8 7 7 7 8 8 7 7 7 8 9 10 6 7 7 7 7 8 7 7 8 7 7 8 9 10 6 7 7 7 7 8 7 7 7 8 9 10 6 7 7 7 7 7 7 8 9 10 6 7 7 7 7 7 7 7 7 7 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	Cancri . 6.7	Cancri . 6.7	Caneri	Cancri . 6.7	Cancer C	Cancer -

(147)

	Name	Mag.	T	App. sid. time	Clock corr.	n tan ô	q	ζ φ	Refr.	q'
				h m s		s	8	0 / //	' "	
	429 Mayer	7		9 50 42.0	+ 1 59.54	- 0.88	- 2.71	+ 12 38 41.9	- 0 43.0	2.
		8		53 8.2	1 59.54	0, 96	— 1.67	+ 13 48 20.0	41.2	— 2 .
	Regulus .	7.8		54 59.3 9 57 17.9	1 59.54	0,90	- 1.79 - 1.05	+ 12 59 36.1	42, 5	- 2.
	439 Mayer	6		10 2 37.3	1 59.55 1 59.55	1,55 1,33	- 1.03 - 1.32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30. 1 34. 0	- 0. - 1.
	441	7.8		5	1 00.00	2.00	1.00		41.4	_ 2.
	26 Leon. Min.	7		8 40.3	1 59.57	2.86	+1.30	+ 13 40 30.0 + 36 16 16.0	13.1	+ 3.
	28 "	6.5 7.8		9 49.2 11 26.3	1 59.57 1 59.57	2.70	+ 1.35 + 1.39	+ 34 46 31.0 + 33 49 19.2	14.8	+ 3.
	45 Leonis	6		14 23,5	1 59.57 1 59.58	2.61 0.72	-2.79		15. 8 46. 0	
	10 11001110 0	7		17 27.4	1 59.58	0.22	- 0.32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59, 9	— i
	04 T M	8.9		20 14.0	1 59.59	1.53	- 1.09	+ 21 23 13.0	30.6	- 0
	36 Leon. Min. 50 Leonis	7.6		23 42. 2 25 26. 9	1 59, 60	2.75 1.21	+ 1.33		14. 3 36. 2	+ 3
	50 Leonis	6		28 10.5	1 59.60 1 59.61	2.51	-1.42 $+1.40$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36. 2 17. 0	+ 2
)		7		33 42, 2	1 59.62	3, 54	+ 1.44	+ 42 12 44.6	6.8	+ 4
		6.7		37 1.7	1 59, 62	1.78	-0.52	+ 24 31 4.0	0 26.6	 + 0
		6,7		39 14.0 50 12.7	1 59.63 1 59.65	0, 14 1, 98	$\begin{vmatrix} - & 0.13 \\ + & 0.15 \end{vmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2.3 0 23.7	- 1
		7.8		51 50.4	1 59.65	1.93	_ 0.01	+ 26 20 21.2	24.4	+ 0
		6.7		55 23.6	1 59.66	1.29	- 1.35	+ 18 21 2.2	34.7	 1
		$\begin{vmatrix} 6 \\ 6 \end{vmatrix}$		10 59 42.5	1 59.67	2. 69 2, 90	+1.36 + 1.29	+ 34 35 21.3	15. 0 12. 8	1 3
		7		7 52, 2	1 59.68	3.46	+ 1.39	+ 36 38 10.5 + 41 34 56.0	7.5	
		6		9 1.5	1 59.69	3, 43	+ 1.38	+ 41 19 30.8	7.8	+ 4
		6.7	4	14 6.0	1 59.70	4.09	+2.52	+ 46 20 17.0	2.6	
		5.7		14 14.5 20 3.0	1 59.70 1 59.71	4. 04 3. 04	+2.40 + 1.27	+ 46 1 56.3 + 37 55 33.0	2.9 11.4	
		5.6		20 33.0	1 59.71	3.05	+1.27	+ 37 58 44.0	11.4	
	59 Ursæ Maj.	6		24 55.0	1 59.72	2.70	+ 1.94	+ 44 47 15.4	4.0	+ 3
	62 ''	6 7		28 25.2 30 17.9	1 59.73 1 59.73	2, 53 2, 53	+1.40 + 1.40	+ 32 54 39.5 + 32 55 51.4	16.8 16.8	
		7		33 55.9	1 59.73	1.81	-0.41	+ 24 53 25.8	26. 2	
		6		37 58.3	1 59.75	0.94	1.72	+ 13 27 12.0	41.9	<u> </u> 2
		7.8		38 29.4	1 59.75	0.90	- 1.79	+ 12 58 56.7	0 42.7	
		7.8		42 27. 2 45 16. 3	1 59.75 1 59.76	0. 14 0. 32	- 0.15 - 0.59	+ 2 16 47.1 + 4 39 53.9	1 2.2 0 57.1	
	7 b Virginis .	6		11 47 0.0	+ 1 59.76	- 0, 33	- 0.63	+ 4 39 53.9 + 4 50 16.0	- 0 56.8	
				1788	APRIL S	39		Zer	o corr. = +	1′ 40″.
	33 Leon. Min. 47 ρ Leonis	4.5		10 17 32.4	$+\frac{2}{2}$ 7.87	- 2.57	+ 1.40	+ 33 27 14.0	- 0 16.2	
	48 "	6		19 25, 6 21 30, 2	2 7.87 2 7.87	0, 71 0, 55	- 3.95 - 1.37	+ 10 23 24.0 + 8 2 16.0	46.8 50.7	
		8.9		22 45.7	2 7.88	0, 56	1 40	L 8 7 58 0	50.5	— 1
	456 Mayer	7.8		25 18.1	2 7.89	1.21	- 1.42	+ 17 13 20.9	36.2	
'	42 Leon. Min.	6.5		28 1.8 33 35.0	2 7.89 2 7.90	2, 51 3, 54	+ 1.40	+ 32 47 35.4 + 42 12 44.0	6. 9 6. 9	+ 2
		7.8		33 56.3	2 7.90	3.54		+ 42 15 47.0	6.9	+ 4
	400 17 34 1	7.8		41 31.8	2 7.92	0.48	— 1.14	+ 6 58 20.4	52.6	<u> </u>
	47 Ursæ Maj.	8 7.8		45 18.3 49 21.9	2 7.93 2 7.93	3. 45 3. 96	+ 1.39 + 2.16	+ 41 32 52.4 + 45 27 40.0	7.5 3 5	+ 4
		8 8		51 28.2	2 7.93	3, 96	¥ 2.15	+ 45 27 40.0 + 45 25 51.0	3.5	T i
		7		52 30.5	2 7.95	3, 93	+ 2.08	+ 45 14 43.1	3.7	+ 5
		6		55 23.4	2 7.96	2.99	+ 2.15 + 2.08 + 1.27 + 1.28	+ 37 26 46.6	11.9	+ 5
		7.8		10 58 43.7 11 4 30.3	2 7.97 2 7.98	2, 94 3, 69	1.28	+ 365746.6 + 432744.7		
		8		6 32.3	2 7.98	4,06	+1.57 $+2.45$	+ 46 8 43.8	2.8	+ 5
	56 Ursæ Maj.	6		8 55.0	2 7.99	3.85	+ 1.84	+ 44 37 51.2	3.8	+ 5
)	57 "	7 6		12 48, 2 11 15 23, 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.69 - 3.33	+ 1.36	+ 34 36 14.0 + 40 29 28.0	- 0 8.7	+++++
,	- · ·	"		1	1 ~	0.00	1' ""			, , ,

(148)

Name.	Mag.	T	App. sid. time	Clock corr.	n tan đ	q	ζ	φ		R	efr.	
e Maj. nis . .	6.7 7 6 7 7 5 6.7 7		h m s 11 16 2.0 24.2 28 16.7 30 9.3 32 2.6 34 49.2 38 28.5 41 48.0 41 54.2 46 49.4	m s + 2 8.01 2 8.03 2 8.04 2 8.04 2 8.05 2 8.06 2 8.06	1.53 3.19 4.28 4.28 9.75	+ 1.27 + 1.40 + 1.40 - 1.53 - 1.09 + 1.28 + 2.93 + 2.93 + 1.33	+ 44 + 37 + 32 + 32	58 4 54 3 55 4	3. 0 2. 2 6. 9 9. 0		11. 3 16. 8 16. 8 38. 9 30. 6 10. 0 1. 2 1. 2	1 + + + +
rinis .	7.6 10, 11 6.7 7 8.9 7		50 41.8 54 58.0 56 35.0 11 58 36.2 12 3 51.2 12 7 52.2	2 8.07 2 8.07 2 8.08 2 8.09 2 8.09 + 2 8.10	0. 46 0. 49 0. 21 0. 35 3. 36	- 1.09 - 1.20 - 0.30 - 0.73 + 1.35	+ 6 + 7 + 3 + 5 + 40	44 3 13 5 2 14 1 45 3	4.5 0.4 7.0 2.2	0 1 0	53, 2 52, 4 0, 6 56, 1	1
1	is	Maj. 7 6 7 7 7 7 6 7 7 7 7 6 10, 11 6, 7 7 7 8, 9	Maj. 7 6 7 7 7 7 7 7 7 7 7 7 7 7 6 10, 11 6, 7 7 8, 9	6.7 7 21 16 22 24.2 24.2 28 16.7 7 30 9.3 32 2.6 34 49.2 38 28.5 7 41 48.0 7 41 54.2 27	6.7 7 28 10.7 28 10.7 28 10.7 28 10.7 30 9.3 2 8.04 32 2.6 2 8.04 32 2.6 2 8.04 32 2.6 2 8.05 38 28.5 2 8.06 38 28.5 2 8.06 41 48.0 2 8.06 77 41 54.2 2 8.06 77 41 54.2 2 8.06 77 41 54.2 2 8.06 10.11 6.7 7.6 50 41.8 2 8.07 54 58.0 2 8.07 54 58.0 2 8.07 78 11 58 36.2 2 8.09 8.9 12 3 51.2 2 8.09	Maj. 6,7 7 22 24.2 2 8.01 2.52 30 9.3 2 8.04 2.52 32 2.6 2 8.04 1.08 32 2.6 2 8.05 3.19 38 28.5 2 8.06 4.28 7 41 48.0 2 8.06 4.28 41 54.2 2 8.06 4.28 7 45 40.4 2 8.06 4.28	Maj. $ \begin{bmatrix} 6.7 \\ 7 \\ 6 \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Maj. 6 7 11 16 20 24.2 + 2 8.01 - 3.05 + 1.27 + 37 58 4 2 8.03 2 5.52 + 1.40 + 32 54 3 55 4	Maj. 6,7 7 11 16 20 24.2 + 2 8.01 - 3.05 + 1.27 + 37 58 42.2 28 16.7 2 8.03 2 8.04 2.52 + 1.40 + 32 54 36.9 2 8.04 2.52 + 1.40 + 32 55 49.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

CATALOGUE OF STARS

OBSERVED BY

D'AGELET.

CATALOGUE.

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
				- 				а	δ
1 2 3 4 5 6 7 8 9 10	Bessel, W.100, 1 " Piazzi 8 Lalande 84 " 88 Pegasi γ " " " "	6.7 7 7.6 7.8 6.7	4 Sept. 28 4 Sept. 30 4 Oct. 6 3 July 26 3 July 27 3 July 19 3 July 23 3 Aug. 17 3 Aug. 20 3 Aug. 21	h m s 0 0 56.6 0 56.3 0 57.7 1 32.5 1 32.7 2 7.0 2 7.8 2 7.7 2 8.2 2 8.0	+ 45.2 45.2 45.2 50.0 50.0 49.8 49.3 49.3 49.2	+22 16 33.0 22 16 34.0 27 25 4.4 44 53 21.9 44 53 23.2 13 58 47.2 13 58 47.2 13 58 53.0 13 58 53.0	+ 4 54.6 4 54.3 4 53.4 5 37.2 5 37.0 5 29.6 5 28.7 5 23.9 5 23.3 5 23.1	h m s 0 1 41.8 1 41.5 0 1 42.9 0 2 22.5 2 22.7 0 2 57.0 2 57.6 2 57.5 2 57.2	+22 21 27.6 21 28.3 +27 29 57.8 +44 58 59.1 59 0.2 +14 4 19.9 4 16.9 4 13.9 4 17.0
11 , 12* 13 14 15* 16 17* 18 19	"" "" "" "" Bessel, W.181 89 Pegasi	7.6	3 Sept. 15 4 Sept. 15 4 Sept. 16 4 Sept. 28 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Sept. 15 4 Sept. 17 3 July 27	2 8.6 2 11.8 2 11.9 2 12.2 2 11.8 2 12.0 2 56.0 3 30.3 3 58.8 5 28.6	49. 3 45. 4 45. 3 45. 2 45. 2 45. 2 45. 4 45. 4 45. 5 49. 7	13 58 54.6 13 59 20.8 13 59 18.5 13 59 20.8 13 59 17.7 13 59 23.0 32 0 50.2 19 0 46.3 30 20 42.3 7 2 13.6	5 18.3 4 56.1 4 56.0 4 54.4 4 54.2 4 54.1 4 54.2 4 56.6 4 57.4 5 25.5	2 57. 9 2 57. 2 2 57. 2 2 57. 4 2 57. 0 2 57. 2 0 3 41. 4 0 4 15. 7 0 4 44. 3 0 6 18. 3	4 12.9 4 16.9 4 14.5 4 15.2 4 17.1 +32 5 44.4 +19 5 42.9 +30 25 39.7 + 7 7 39.1
21 22 23 24 25 26 27* 28 29	Lalande 221	6.5 5 4	4 Sept. 28 3 July 23 3 Aug. 20 3 Aug. 21 3 Sept. 15 4 Sept. 16 4 Sept. 17 4 Sept. 28 4 Sept. 30 3 July 26	5 33.8 5 51.0 5 51.3 5 51.2 5 51.7 5 55.1 7 9.2 7 9.6 7 10.3	45. 6 50. 4 49. 8 49. 7 49. 2 45. 7 45. 6 45. 6 49. 8	35 26 9.1 37 28 34.8 37 28 46.9 37 28 47.9 37 28 52.0 37 29 11.0 37 29 16.8 35 35 35.3 10 0 18.5	4 55. 1 5 35. 8 5 28. 3 5 28. 0 5 20. 8 4 58. 5 4 58. 1 4 55. 1 4 54. 7 5 26. 5	0 6 19.4 0 6 41.4 6 41.1 6 40.9 6 40.9 6 40.9 0 7 54.8 7 55.2 0 8 0.1	+35 31 4.2 +37 34 10.6 34 15.2 34 15.9 34 12.8 34 9.5 34 14.9 +35 40 31.0 40 28.8 +10 5 45.0
31 32 33* 34 35 36 37 38 39 †40	26 Andromedæ	5.6 7 7 7 7 7 6 7	3 July 27 4 Sept. 15 4 Sept. 16 3 Aug. 20 3 Aug. 21 4 Sept. 17 4 Sept. 26 4 Oct. 6 4 Sept. 28 4 Sept. 30	7 9.9 7 25.8 7 26.1 8 22.8 8 23.4 8 27.4 9 34.1 9 51.5 9 51.7	49. 8 45. 9 45. 9 49. 9 49. 8 45. 9 45. 8 45. 7 45. 3	10 0 18.8 42 35 45.8 42 35 46.7 39 31 43.0 39 32 13.5 39 32 16.4 31 43 13.9 9 47 3.2 9 45 49.5	5 26. 4 4 59. 3 4 59. 3 5 28. 5 5 28. 2 4 58. 3 4 56. 0 4 53. 2 4 54. 0 4 53. 8	7 59.7 0 8 11.7 8 12.0 0 9 12.7 9 13.2 9 13.1 9 13.2 0 10 19.8 0 10 36.8 0 10 37.0	5 45.2 +42 40 45.1 40 46.0 +39 37 11.5 37 11.7 37 12.1 37 12.4 +31 48 7.1 + 9 51 57.2 + 9 50 43.3
41 42 43 44 45 46* 47 48 49 50	27 Andromedæ ρ Lalande 418 Johnson 81 Groombridge 57	6.5 6 8 7 7.8 6.7 6.7 8	3 July 23 3 Sept. 15 4 Sept. 15 4 Sept. 16 4 Oct. 8 3 Aug. 20 3 Aug. 21 3 Aug. 21 3 Aug. 21 3 Sept. 15	9 47.0 9 48.4 9 51.0 9 51.1 11 38.8 11 38.5 12 39.2 12 39.6 0 12 40.7	50. 7 49. 4 46. 0 46. 0 45. 7 50. 2 50. 2 50. 3 50. 3 + 49. 8	36 45 56.5 36 46 14.5 36 46 37.9 36 46 33.7 28 15 47.8 43 19 21.0 43 19 20.7 43 3 45.1 43 3 52.2 +43 3 54.2	5 35.4 5 20.6 4 58.4 4 58.2 4 52.6 5 29.2 5 28.8 5 29.1 5 28.7 + 5 21.3	0 10 37.7 10 37.8 10 37.0 10 37.1 0 12 22.5 0 12 28.3 12 28.7 0 13 29.5 13 29.9 0 13 30.5	+36 51 31.9 51 35.1 51 36.3 51 31.9 +28 20 40.4 +43 24 50.2 24 49.5 +43 9 14.2 9 20.9 +43 9 15.5

(153)

20

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction-	Mean equ	inox 1800. 0
								а	ð
51 52 53 54 55 56 57* 58 59	Piazzi 59	7.8 7 8.7 6.7 6 7 7 6	4 Sept. 16 4 Sept. 17 4 Sept. 28 3 July 23 4 Sept. 15 3 July 26 4 Sept. 15 4 Sept. 28 4 Sept. 30 3 Aug. 20	h m s 0 13 25.5 13 25.8 13 25.5 13 27.7 13 30.5 15 36.2 16 22.4 16 22.4 16 40.7	46. 0 45. 9 49. 6 45. 1 49. 6 45. 2	+30 10 55.0 30 10 57.3 +30 10 58.2 - 3 24 54.4 3 24 26.0 - 1 14 21.3 +14 50 4.9 14 50 1.0 43 11 39.9	+ 4 57.2 4 56.9 4 54.4 5 22.3 4 54.0 5 22.1 4 53.9 4 53.4 4 53.2 5 27.0	h m s 0 14 11.5 14 11.8 14 11.4 14 17.3 0 14 15.6 0 16 22.1 16 21.4 0 17 8.0 0 17 31.4	0 / " +30 15 52.2 15 54.2 15 52.6 19 32.1 - 3 19 32.0 - 1 9 27.9 9 27.4 +14 54 58.3 54 54.2 +43 17 6.9
61 62 63 64 65* 66 67 68 69* 70	Bessel, W.366 . 28 Andromedæ	6.5 6 6 6 7.8 7	3 Aug. 21 4 Sept. 16 4 Sept. 17 4 Sept. 26 4 Oct. 8 4 Sept. 30 3 July 26 3 July 27 3 Sept. 15 4 Oct. 6	16 41.2 16 44.4 16 45.4 16 44.5 18 4.7 18 39.9 18 45.0 18 45.1 18 46.1	44.9	43 11 44.6 43 12 9.1 43 12 16.1 43 12 17.8 +27 38 17.9 - 4 1 33 23.2 28 33 22.7 28 33 32.5 28 33 59.1	5 26.7 4 58.7 4 58.4 4 55.8 4 52.0 4 52.9 5 31.1 5 31.0 5 18.6 4 52.5	17 31.9 17 31.0 17 32.0 17 31.0 0 18 50.7 0 19 24.8 0 19 35.9 19 35.9 19 35.8 19 35.9	17 11.3 17 7.8 17 14.5 17 13.6 +27 43 9.9 - 3 56 4.9 +28 38 54.3 38 53.7 38 51.1 38 51.6
71 72 73 74 75 76 77 78 79 80*	Flamsteed, B.30 Piazzi 93 Flamsteed, B.34 Lalande 742 Bessel, W.398 Groombridge 84 51 Piscium	7 7 7 6 6 7.8 7.8 8	4 Sept. 15 3 Aug. 20 3 Aug. 21 4 Sept. 17 4 Sept. 26 4 Sept. 30 3 Sept. 15 3 July 26 3 July 27	. 19 6.3 29 39.0 19 38.7 20 3.8 20 4.2 20 40.0 20 42.0 20 51.7 21 14.9 21 15.5	45.0	3 40 18.1 42 44 53.6 42 44 55.0 32 23 40.4 23 44.5 +16 55 19.2 -2 58 52.1 +42 17 57.3 5 45 40.7 5 45 41.0	4 53.8 5 28.3 5 28.0 4 56.5 4 54.5 4 52.7 5 20.4 5 23.4 5 23.3	19 51.7 0 20 30.0 20 29.6 0 20 50.2 20 50.5 0 21 25.9 0 21 27.0 0 21 42.3 0 22 4.8 22 5.4	+ 3 45 11.9 +42 50 21.9 50 23.0 +32 28 36.9 28 39.0 +17 0 14.7 - 2 53 59.4 +42 23 17.7 + 5 51 4.1 51 4.3
81 82 83 84 85 86 87 88 89 90	Lalande 849	7 6 7 6 6,7 7 7.8 6,7 7.8	3 Sept. 17 4 Sept. 15 3 Sept. 15 4 Oct. 8 4 Sept. 17 3 Aug. 20 3 Aug. 21 4 Sept. 28 4 Sept. 30 4 Sept. 17	21 16. 2 21 18. 7 23 39. 5 23 43. 2 23 48. 6 24 2. 7 24 2. 7 24 31. 7 24 31. 4 24 48. 6	45. 0 45. 0	5 45 44.5 5 46 6.5 35 38 25.6 35 38 52.4 12 11 14.8 47 49 32.4 — 1 41 14.4 — 1 41 12.1 +12 1 59.2	5 15.5 4 53.7 5 19.0 4 51.6 4 53.7 5 29.0 5 28.6 4 52.0 4 52.0 4 53.5	22 5.0 22 4.2 0 24 29.9 24 29.8 0 24 34.3 0 24 53.5 0 25 16.7 25 16.4 0 25 34.3	51 0.0 51 0.2 +35 43 44.6 43 44.0 +12 16 8.5 +47 55 2.2 55 1.0 -1 36 22.4 36 20.1 +12 6 52.7
91* 92 93 94* 95 96 97 98 99 100*	Piazzi 122 18 (Hev.)Androm. 29 Andromedæ π 53 Piscium	7 6.5 4.5 4.5 7	4 Sept. 16 3 Aug. 21 3 July 23 3 July 26 3 July 27 3 Sept. 15 4 Oct. 6 4 Oct. 8 4 Sept. 15	25 0. 4 25 5. 7 25 23. 0 25 22. 7 25 22. 7 25 24. 1 25 23. 3 25 27. 9 25 27. 7 25 36. 6	46. 4 51. 5 51. 6 51. 5 51. 5 50. 3 50. 3 46. 6 46. 6 45. 9	26 4 14. 1 43 17 32. 6 32 31 29. 5 32 31 32. 7 32 31 30. 8 32 31 41. 2 32 31 43. 0 32 32 8. 9 32 32 7. 9 +14 2 54. 2	4 55. 3 5 27. 4 5 32. 1 5 31. 3 5 31. 1 5 18. 3 5 17. 9 4 51. 7 4 51. 2 4 53. 9	0 26 14.6 26 14.2 26 14.2 26 14.4 26 13.6 26 14.5 26 14.3	+26 9 9.4 +43 23 0.0 +32 37 1.6 37 4.0 37 1.9 36 59.5 37 0.6 36 59.1 +14 7 48.1
101 102 103 104 105 106 107 108 109 110	15 Ceti 30 Andromedæ e Groombridge 113 31 Andromedæ ð	7 6 6	4 Sept. 28 4 Sept. 30 3 Sept. 15 3 Sept. 17 3 Aug. 20 3 Aug. 21 3 July 26 3 July 27 4 Sept. 15 4 Sept. 16	27 6.4 27 6.1 27 11.2 27 10.8 27 17.8 27 18.4 27 48.4 27 48.8 27 52.7 0 27 52.8	45. 0 50. 2 50. 1 52. 2 52. 1 51. 5 51. 4 46. 8	-1 41 6.9 -1 41 12.1 +28 8 11.2 28 8 11.0 48 9 37.1 48 9 42.6 29 40 27.0 29 40 24.3 29 41 0.1 +29 40 55.0	4 51.5 4 51.5 5 17.4 5 17.0 5 28.6 5 28.2 5 30.0 5 29.8 4 55.6 + 4 55.4	28 0.9 0 28 10.0 28 10.5 0 28 39.9 28 40.2 28 39.5	-1 36 15.4 36 20.6 +28 13 28.6 13 28.0 +48 15 57.0 45 54.1 45 54.1 45 55.7 +29 45 50.4

(154)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
								а	8
111 112 113 114 115 116 117 118 119	31 Andromedæ ð 54 Piscium 55 Piscium 32 Andromedæ Piazzi 145 16 Mayer Piazzi 148	3 6 6 6 6 6 7.8 6 7	4 Oct. 6 4 Oct. 8 4 Oct. 15 4 Sept. 17 4 Oot. 15 3 July 26 3 Aug. 21 4 Oct. 8 4 Sept. 30 4 Sept. 17	h m s 0 27 53, 5 28 13, 3 28 13, 1 28 38, 4 28 38, 5 29 25, 9 29 27, 9 29 43, 3 29 46, 6 30 13, 7	44.8	0 / " +29 41 3.7 20 5 24.5 20 5 28.5 20 15 27.4 20 15 35.5 38 16 4.1 38 16 5.7 +19 50 25.6 — 5 31 55.8 +23 27 0.3	+ 4 51.2 4 50.6 4 49.8 4 53.7 4 49.8 5 32.3 5 25.4 4 50.4 4 50.8 4 53.8	29 24.5 0 30 18.3 30 19.4	0 / " +29 45 54.9 +20 10 15.1 10 18.3 +20 20 21.1 20 25.3 +38 21 36.4 21 31.1 +19 55 16.0 - 5 27 5.0 +23 31 54.1
121 122 123 124 125 126 127 128 129 130	33 Andromedæ Lalande 1113,4 Lalande 1125	7 8.9 7.8 6 7.8 7.8	4 Oct. 6 3 Sept. 15 3 Sept. 17 4 Oct. 9 4 Oct. 15 3 Aug. 20 3 Aug. 21 4 Sept. 15 4 Sept. 16 4 Sept. 28	30 15. 1 30 59. 7 31 1. 4 31 41. 1 31 40. 0 32 17. 5 32 17. 9 32 48. 0 33 52. 2	46. 3 51. 2 50. 2 45. 9 45. 9 51. 2 51. 2 44. 0 46. 4	23 26 58.4 40 5 12.7 26 27 17.8 15 29 15.8 15 29 18.3 32 7 21.4 +32 7 19.1 -19 9 59.0 -19 9 57.0 +22 24 43.9	4 50.6 5 18.5 5 11.8 4 50.0 4 49.4 5 23.6 5 23.3 4 49.5 4 49.6 4 51.2	31 1.4 0 31 50.9 0 31 51.6 0 32 27.0 32 25.9 0 33 9.1 0 33 32.0 0 34 38.6	31 49.0 +40 10 31.2 +26 32 29.6 +15 34 5.8 34 7.7 +32 12 45.0 12 42.4 -19 5 9.5 5 7.4 +22 29 35.1
131 132 133 134 135 136 137 138 139 140	Groombridge 140 " 57 Piscium " 58 Piscium 59 Piscium 34 Andromedæ ζ	6 6.7 7 6 6 6 6 6 6 6	3 Sept. 15 3 Sept. 17 4 Sept. 17 4 Oct. 7 4 Oct. 9 4 Oct. 9 4 Oct. 15 3 Aug. 20 3 Aug. 21 3 July 26	34 18. 1 34 17. 7 34 21. 2 35 20. 4 35 20. 3 35 20. 3 35 50. 3 35 49. 8 35 50. 2 35 54. 7	51. 9 51. 8 48. 2 45. 9 45. 9 45. 7 50. 2 51. 4	43 40 38.2 43 40 40.1 43 41 5.4 14 18 7.6 14 18 6.6 14 18 7.2 10 48 1.2 18 23 37.8 18 23 41.4 23 5 15.6	5 18.5 5 18.0 4 56.2 4 49.5 4 49.2 4 49.2 4 48.8 5 19.2 5 19.0 5 26.0	0 36 40.0 0 36 40.4	+43 45 56.7 45 58.1 46 1.6 +14 22 57.1 22 55.8 22 56.4 +10 52 50.0 +18 28 57.0 +18 29 0.4 +23 10 41.6
141 142 143 144 145 146 147 148 149 150	Groombridge 149 63 Piscium & 64 Piscium	5 4 8.9 4 6 6.7 6	4 Sept. 28 4 Sept. 30 3 Sept. 17 3 July 23 4 Sept. 16 4 Oct. 15 3 Aug. 21 4 Oct. 6 4 Oct. 8	35 59. 4 35 59. 6 36 37. 8 37 28. 8 37 34. 2 37 32. 7 37 33. 4 37 38. 8 37 43. 7 37 43. 2	46. 6 46. 6 52. 0 50. 3 45. 7 45. 6 45. 4 50. 2 46. P 46. 1	23 5 42.3 23 5 44.1 43 47 30.3 6 24 22.1 6 24 51.7 6 24 50.2 6 24 53.3 15 46 16.4 15 46 46.7 46 46.0	4 50.7 4 50.4 5 17.4 5 20.7 4 50.5 4 50.4 4 49.6 5 17.8 4 49.0 4 48.7	0 38 19.1 38 19.9 38 18.3 38 18.8	10 33.0 10 34.5 +43 52 47.7 + 6 29 42.8 29 42.2 29 40.9 +15 51 34.2 51 35.7 51 34.7
151 152 153 154 155 156 157 158 159 160	35 Andromedæ ν 65 Piscium i Piazzi 196	6 7 7 7.8 7 7.8 8.9 7	4 Oct. 9 3 July 26 4 Sept. 28 3 Sept. 15 3 Sept. 17 4 Sept. 17 3 Aug. 20 3 Aug. 21 4 Oct. 15 4 Sept. 17	37 43. 2 37 56. 6 38 23. 3 38 19. 2 38 22. 7 40 14. 9 40 21. 5 41 42. 7	46. 1 53. 0 46. 9 52. 2 52. 2 48. 5 51. 8 51. 8 45. 8 48. 0	46 46.2 39 53.42.9 26 32 15.7 43 49 13.3 43 49 18.9 43 49 39.5 32 42 46.7 32 42 45.5 11 36 49.9 36 15 3.9	4 48.6 5 31.1 4 50.5 5 17.7 5 17.1 4 55.4 5 21.9 5 21.6 4 47.7 4 53.5	0 39 10.2 0 39 11.4 39 11.1 39 11.2 0 41 6.7 41 7.2 0 41 7.3	51 34.8 +39 59 14.0 +26 37 6.2 +43 54 31.0 54 36.9 +32 48 8.6 48 7.1 +11 41 37.6 +36 19 57.4
161 162 163 164 165 166 167 168 169 170	Bessel, W.1179	7 6.7 6.7 8 7.8 8 6.7 6.7 6	4 Sept. 30 4 Oct. 6 4 Oct. 8 4 Sept. 15 4 Sept. 16 3 Sept. 17 3 Aug. 20 3 Aug. 21 4 Oct. 8	41 43.7 41 43.8 41 43.6 42 4.0 42 4.1 42 13.4 42 13.2 42 53.8 42 53.7 0 43	47.8 47.8 47.4 47.4 48.9 48.8 53.8 + 53.8	36 15 2.4 36 15 9.5 36 15 4.8 28 19 26.4 28 19 19.2 2 54 48.5 2 54 48.6 47 30 5.4 +18 1 17.3	4 50. 3 4 49. 0 4 48. 4 4 52. 5 4 52. 3 5 10. 5 5 10. 4 5 23. 8 5 23. 5 4 47. 6	42 51.5 0 43 2.3 43 2.0 0 43 47.6 43 47.5	19 52.7 19 58.5 19 53.2 +28 24 18.9 24 11.5 + 2 59 59.0 +47 35 28.6 35 28.9 +18 6 4.9

(155)

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
				PF		PP		а	ð
171 172* 173 174 175 176 177 178 179 180	66 Piscium	6 6	4 Oct. 9 4 Oct. 15 4 Sept. 15 3 July 26 3 July 27 4 Sept. 16 4 Sept. 17 4 Sept. 28 4 Sept. 30 4 Oct. 6	h m s 0 43 14.9 43 14.7 43 29.8 44 48.2 44 48.4 44 58.0 44 53.4 44 53.2 44 53.3	+ 46.4 46.3 47.0 53.4 53.3 48.3 48.3 48.2 48.2	+18 1 17.9 18 1 18.4 22 27 43.3 37 19 13.3 37 19 12.5 37 19 47.0 37 19 49.2 37 19 47.0 37 19 51.3 37 19 55.4	+ 4 47.4 4 46.8 4 51.3 5 28.2 5 28.0 4 53.2 4 52.9 4 50.1 4 49.7 4 48.3	h m s 0 44 1.3 44 1.0 0 44 16.8 0 45 41.6 45 41.7 45 41.3 45 41.6 45 41.4	+18 6 5.3 6 5.2 +22 32 34.6 +37 24 41.5 24 40.5 24 40.2 24 42.1 24 37.1 24 41.0 24 43.7
181 182 183 184 185 186 187 188 † 189	38 Andromedæ η 68 Piscium	4 6 6 6 6.7 7 7.8 7.8 6.7	4 Oct. 2 4 Oct. 15 4 Oct. 8 4 Oct. 9 3 Aug. 20 3 Aug. 21 3 Sept. 15 3 Sept. 17 4 Sept. 16 4 Sept. 17	45 46.2 45 45.9 46 15.3 46 15.3 46 12.7 46 13.1 47 8.7 47 8.6 47 47 57.8	46.8 46.7 47.3 47.3 52.8 52.6 49.1 49.1	22 15 16.5 22 15 23.4 27 49 43.3 27 49 45.3 38 18 9.2 38 18 12.1 5 40 31.7 5 40 29.2 43 33 36.9 43 33 4.9	4 47.8 4 46.0 4 47.0 4 46.8 5 21.7 5 21.4 5 9.3 5 9.1 4 49.5 4 53.2	0 46 33.0 46.32.6 0 47 2.6 47 2.6 0 47 5.5 47 5.9 0 47 57.8 47 57.7 0 48 0 48 47.1	+22 20 4.3 20 9.4 +27 54 30.3 54 32.1 +38 23 30.9 23 33.5 + 5 45 41.0 45 38.3 +43 38 26.4 +43 37 58.1
191 192 193 194 195 196 197 198 199 200	30 Mayer	7 7 9 6 7 7.8 7 7 6 9.10	4 Oct. 6 4 Oct. 8 4 Oct. 15 3 Aug. 20 3 Aug. 21 4 Sept. 16 4 Sept. 28 4 Sept. 30 4 Oct. 9 3 Sept. 17	48 43.0 48 42.6 48 40.3 50 40.6 50 40.1 50 44.9 50 54.0 50 53.8 50 54.2 50 54.6	45.5 45.5 48.2 54.2 54.2 49.9 48.9 48.9 48.8	5 19 21.5 5 19 19.8 36 37 46.9 46 12 34.6 46 12 30.6 46 12 58.0 40 11 5.5 40 11 9.4 40 11 14.4 6 46 14.2	4 46. 0 4 45. 8 4 45. 3 5 22. 5 5 22. 2 4 53. 3 4 48. 9 4 46. 3 5 8. 0	0 49 28.5 49 28.1 0 49 28.5 0 51 34.8 51 34.3 51 34.3 0 51 42.9 51 42.7 51 43.0 0 51 43.9	+ 5 24 7.5 24 5.6 +36 42 32.2 +46 17 57.1 17 52.8 17 51.3 +40 15 54.4 15 57.8 16 0.7 + 6 51 22.2
201 202 203 204 205 206 207 208 209 210	69 Piscium	6 6.7 7.8 4 4 8.9	4 Sept. 15 4 Oct. 15 4 Oct. 2 3 July 26 3 July 27 3 Sept. 17 4 Oct. 6 4 Oct. 8 4 Sept. 28	51 6.0 51 7.0 51 16.1 51 44.2 51 44.3 51 45.5 51 45.4 51 49.0 51 49.0	48. 1 47. 7 47. 3 50. 5 50. 4 49. 3 49. 3 45. 6 45. 6 48. 9	30 38 53.3 30 38 57.0 25 8 21.4 6 43 25.2 6 43 18.5 6 43 27.7 6 43 29.2 6 43 53.1 6 43 50.9 38 50 7.3	4 50.6 4 44.5 4 46.4 5 15.8 5 15.5 5 7.7 4 45.0 4 44.8 4 48.3	0 51 54.1 51 54.7 0 52 3.4 0 52 34.7 52 34.7 52 34.8 52 34.6 52 34.6 0 53 24.4	+30 43 43.9 43 41.5 +25 13 7.8 + 6 48 41.0 48 35.6 48 36.9 48 36.9 48 35.7 +38 54 55.6
211 212 213 214 215 216 217 218 219 220	Flamsteed, B.103 73 Piscium 74 Piscium γ γ γ γ γ γ γ γ γ γ γ γ γ	7 7 6 6 6 7.8 7 7	4 Oct. 2 4 Oct. 15 4 Oct. 6 4 Oct. 9 4 Oct. 9 3 Sept. 17 3 Sept. 17 3 Aug. 20 3 Aug. 21 4 Sept. 30	52 52 45. 8 53 46. 2 54 12. 0 54 13. 1 54 39. 5 54 42. 2 54 42. 0 54 42. 5 54 46. 4	47. 6 45. 4 46. 9 46. 9 49. 0 49. 0 55. 2 55. 2 50. 4	28 30 35,3 28 30 37.1 4 30 7.4 20 19 11.5 20 18 47.7 3 45 25.0 3 45 23.8 48 23 36.9 48 23 32.4 48 24 5.0	4 46.8 4 44.0 4 44.3 4 44.2 5 6.4 5 21.8 5 21.5 4 48.4	0 55 0.0	+28 35 22.1 +4 34 51.7 +20 23 55.7 +20 23 31.9 + 3 50 31.6 50 30.2 +48 28 58.7 28 53.9 28 53.4
221 222 223 224 225 226 227 228 229 230	41 Andromedæ . 78 Piscium 79 Piscium ψ² 42 Andromedæ φ 80 Piscium ε 43 Andromedæ β	6.7 7 6 6 5.6	4 Sept. 28 4 Oct. 2 4 Oct. 15 4 Oct. 8 4 Oct. 9 4 Sept. 30 4 Oct. 6 3 July 26 3 July 27 4 Sept. 28	55 44.8 56 11.6 56 11.0 56 28.3 56 57 7.5 57 19.7 57 40.3 57 40.5 0 57 46.2	49.7 48.1 48.0 46.9 50.3 45.5 53.9 53.9 + 48.7	42 47 32.7 30 51 42.1 30 51 44.3 19 35 37.9 19 35 39.0 46 5 26.1 4 30 35.2 34 28 4.8 34 28 4.0 +34 28 36.5	4 47.9 4 45.5 4 43.0 4 43.6 4 43.5 4 47.4 4 43.1 5 22.9 5 22.7 + 4 46.2	0 58 34.2 58 34.4	+42 52 20.6 +30 56 27.6 56 27.3 +19 40 21.5 40 22.5 +46 10 13.5 + 4 35 18.3 +34 33 27.7 +34 33 22.7

(156)

	-		<u> </u>					·	1000.0
No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
								a	δ
231 232 233 234 235 236 237 238 239 240	43 Andromedæ β 82 Piscium g 83 Piscium τ Piazzi 9 Piazzi 11 Lalande 2154 . 85 Piscium φ	6 6.5 5 6 6.7 6 6 6.7	4 Oct. 2 4 Oct. 9 4 Oct. 15 4 Oct. 8 3 Aug. 20 3 Aug. 21 4 Sept. 30 4 Oct. 8 4 Oct. 6 4 Sept. 15	h m s 0 (57) 59 19, 2 59 19, 1 0 59 52, 9 1 0 7. 8 0 7. 4 0 12, 1 1 12, 6 1 21, 4 2 6, 3	+ 48.1 48.1 48.0 55.0 55.0 50.2 48.1 48.6 47.8	+34 28 41.5 30 16 45.1 30 16 43.3 28 56 51.0 44 10 49.6 44 10 53.1 44 11 21.0 28 55 19.0 32 57 19.4 23 26 33.3	+ 4 45.3 1 4 42.0 4 42.9 5 18.7 5 18.7 4 46.2 4 42.5 4 43.1 4 45.6	0 7.2 1 0 40.9 1 1 2.8 1 2.4 1 2.3 1 2 0.7 1 2 10.0	33 26.8 +30 21 28.2 21 25.3 +29 1 33.9 +44 16 8.3 16 11.8 16 7.2 +29 0 1.5 +33 2 2.5 +23 31 18.9
241 242 243 244 245 246* 247 248 249 250	"	6.5 6 6.7 7 7.8 7 6.7	4 Oct. 2 4 Oct. 9 4 Oct. 8 3 Sept. 17 4 Oct. 13 3 Aug. 20 3 Aug. 21 4 Sept. 28 4 Sept. 30 4 Oct. 6	2 6.9 2 7.3 2 19.5 2 30.2 2 3 45.7 3 45.5 3 50.0 3 49.6 4 24.2	47. 5 47. 5 47. 9 49. 4 55. 9 55. 8 51. 0 51. 0 48. 6	23 26 33, 6 23 26 32, 6 27 23 25, 7 6 25 48, 5 14 59 36, 3 46 55 57, 3 46 56 28, 1 46 56 22, 8 31 58 40, 6	4 42.7 4 41.7 4 42.0 5 3.6 4 40.5 5 18.0 5 17.8 4 45.8 4 45.3 4 42.0	1 3 1 4 41.6 4 41.3 4 41.0 4 40.6	31 16.3 3+14.3 +27 28 7.7 +6 30 52.1 +15 4 16.8 +47 1 14.4 1 15.1 1 13.9 1 8.1 +32 3 22.6
251 252 253 254 255 256 257 258 259 260	Lalande 2270 Piazzi 30 Lalande 2292,3 . Piazzi 31 Lalande 2330	7.8 9 7 7.8 7.8 6 6.7 7	4 Oct. 2 4 Oct. 15 4 Sept. 15 4 Sept. 28 4 Sept. 30 3 Aug. 20 3 Aug. 21 4 Oct. 6 3 Sept. 17 4 Oct. 9	4 51.5 5 16.7 5 31.8 5 35.3 5 35.8 6 34.6 6 35.3 6 40.3 6 40.4 6 44.4	47.5 47.1 48.8 51.1 51.0 54.0 49.4 49.0 45.3	22 27 4.9 19 55 8.6 30 36 22.3 46 16 49.5 46 16 53.1 36 14 32.2 36 14 32.2 36 15 6.7 2 28 29.8 2 28 50.8	4 41.6 4 39.6 4 45.8 4 45.2 4 44.6 5 13.9 5 13.7 4 41.5 5 1.2 4 39.4	1 5 39.0 1 6 3.8 1 6 20.6 1 6 26.4 6 26.8 1 7 28.6 7 29.3 7 29.7 1 7 29.4 7 29.7	+22 31 46.5 +19 59 48.2 +30 41 8.1 +46 21 34.7 21 37.7 +36 19 46.1 19 46.1 19 48.2 + 2 33 31.0 33 30.2
261 262 263 264 265 266 267 268 269 270	90 Piscium v 91 Piscium l Piazzi 50 46 Andromedæ ξ	6 6 6 6 7.8 4.5	4 Oct. 2 4 Oct. 8 4 Oct. 15 4 Sept. 28 4 Sept. 30 4 Oct. 15 4 Oct. 6 3 Aug. 20 3 Aug. 21 3 Sept. 17	7 41.6 7 42.3 7 42.2 9 17.0 9 17.4 9 9 45.8 9 41.8 9 42.0 9 41.8	48. 1 48. 0 48. 0 48. 4 48. 4 48. 2 50. 6 55. 9 55. 8 55. 2	26 7 53.7 26 7 50.2 26 7 53.7 27 36 38.2 27 36 39.6 27 36 46.0 42 27 16.7 44 23 16.3 44 23 18.0 44 23 29.1	4 40.9 4 39.9 4 38.9 4 41.1 4 40.8 4 38.1 4 41.1 5 14.9 5 14.6 5 7.2	1 8 29.7 8 30.3 8 30.2 1 10 5.4 10 5.8 10 36.4 1 10 37.7 10 37.8 10 37.0	+26 12 34.6 12 30.1 12 32.6 +27 41 19.3 41 20.4 41 24.1 +42 31 57.8 +44 28 31.2 28 32.6 28 36.3
271 272 273 274 275 276 277 278 279 280	Lalande 2446,8 . Piazzi 56 Piazzi 61 92 Piscium Piazzi 70	8.9 7 7.8 7.8 7.8 7.8 6.7	4 Oct. 9 4 Sept. 28 4 Sept. 30 3 Aug. 20 3 Aug. 21 4 Oct. 9 4 Oct. 9 4 Sept. 28 4 Sept. 30 4 Oct. 6	10 36.6 11 29.8 11 30.1 11 46.1 11 46.2 12 20.5 12 20.1 13 58.4 13 58.4	46.7 49.3 49.2 55.5 47.0 47.0 49.5 49.4 49.4	14 39 46.4 33 6 38.5 33 6 38.7 42 0 21.5 42 0 22.2 16 41 44.0 33 27 36.6 33 27 41.0 33 27 43.8	4 38. 1 4 41. 2 4 40. 7 5 13. 3 5 13. 1 4 37. 5 4 37. 4 4 40. 1 4 39. 7 4 38. 5	1 11 23, 3 1 12 19, 1 12 19, 3 1 12 41, 7 12 41, 7 1 13 7, 5 13 7, 1 1 14 47, 9 1 14 47, 8	+14 44 24.5 +33 11 19.7 11 19.4 +42 5 34.8 5 35.3 +16 46 20.3 46 21.4 +33 32 16.7 +33 32 20.7 32 22.3
281 282 283 284* 285 286 287 288 289* 290	93 Piscium ρ 48 Andromedæ ω Lalande 2604 94 Piscium 95 Piscium	5 6 7.8 6.7 6 7	3 Aug. 20 3 Aug. 21 4 Oct. 8 4 Oct. 15 3 Sept. 17 4 Sept. 28 4 Sept. 30 4 Oct. 6 4 Oct. 6 4 Oct. 9	14 38.0 14 38.2 14 42.9 14 42.4 - 14 48.0 14 57.1 14 56.9 14 57.8 15 7.7 1 16 32.1	51.7 51.6 47.2 47.2 55.6 49.4 49.4 47.2 + 45.5	18 2 27.7 18 2 30.4 18 2 56.3 18 3 5.3 44 17 5.1 33 15 23.3 33 15 25.5 33 15 28.7 + 4 14 31.4	5 5.0 5 4.8 4 36.5 4 35.8 5 5.1 4 39.7 4 39.3 4 38.1 4 35.6 + 4 35.1	15 29.8 15 30.1 15 29.6 1 15 43.6 1 15 46.3 15 46.3 15 47.2 1 15 54.9	+18 7 32.7 7 35.2 7 32.8 7 41.1 +44 22 10.2 +33 20 3.0 20 4.8 20 6.4 +18 12 3.3 + 4 19 6.5

(157)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
				P.P V -		PF		. а	ð
291 292 293 294 295 296 297 298 299 300	49 Andromedæ A 96 Piscium 97 Piscium 99 Piscium	6 6 6 7 6	4 Sept. 28 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 15 4 Sept. 16 3 Aug. 20 3 Aug. 21 3 Sept. 17 4 Oct. 8	h m s 1 17 18.9 17 19.1 17 18.5 17 18.6 17 51.8 18 18.7 19 56.7 19 56.9 19 57.0 20 1.7	** + 52.0	c / " +45 53 29.3 45 53 31.3 45 53 27.4 45 53 35.8 6 10 59.0 17 14 20.1 14 13 33.7 14 13 33.7 14 13 37.2 14 14 1.7	+ 4 40.6 4 40.1 4 39.6 4 38.6 4 34.4 4 37.8 5 1.3 5 1.1 4 56.8 4 34.0	h m s 1 18 10.9 18 11.1 18 10.5 18 10.5 1 18 37.4 1 19 6.2 1 20 48.0 20 48.2 20 47.7 20 48.6	+45 58 9.9 58 11.4 58 7.0 58 14.4 + 6 15 33.4 +17 18 57.9 +14 18 35.0 18 34.8 18 34.0 18 35.7
301 . 302 303 304 305 306 307 308* 309 310	53 Mayer	9 8 7 9 7 6.7 7	4 Oct. 15 4 Oct. 6 4 Oct. 2 4 Oct. 9 4 Oct. 2 4 Sept. 28 4 Sept. 30 4 Oct. 2 3 Aug. 20 3 Aug. 21	20 22. 0 20 30. 4 20 33. 1 21 9. 5 21 38. 1 21 55. 9 21 23 8. 9 23 8. 7	46. 2 47. 1 50. 0 45. 4 50. 0 50. 4 50. 4 51. 9 51. 8	9 46 42.2 15 50 55.0 34 44 1.4 2 34 33.4 36 7 42.9 36 7 42.5 36 7 46.6 17 21 3.7 17 21 5.9	4 33. 2 4 34. 0 4 36. 7 4 32. 9 4 36. 1 4 37. 1 4 36. 6 4 36. 7 5 0. 5 4 59. 5	1 21 8.2 1 21 17.5 1 21 23.1 1 21 54.9 1 22 28.1 1 22 46.8 22 46.3 22 1 24 0.8 24 0.5	+ 9 51 15.4 +15 55 29.0 +34 48 38.1 + 2 39 6.3 +34 34 36.8 +36 12 20.0 12 19.1 12 23.3 +17 26 4.2 26 5.4
311 312 313 314 315* 316 317 318 319 320*	"	7.8 7 7.8 8 7	4 Oct. 6 4 Oct. 15 3 Sept. 17 4 Oct. 9 4 Oct. 8 3 Sept. 17 4 Sept. 16 4 Sept. 30 4 Oct. 2 3 Aug. 20	23 13.6 23 13.6 23 12.4 23 38.2 24 19.1 24 10.7 24 15.0 24 15.1 24 15.4 25 38.4	47. 4 47. 3 55. 3 46. 0 46. 8 55. 5 51. 6 51. 3 51. 3	17 21 31.9 17 21 34.7 39 57 53.3 7 10 20.1 13 33 29.5 40 19 9.9 40 19 23.0 40 19 28.0 40 19 28.5 11 1 51.2	4 32.9 4 32.0 5 0.2 4 31.8 4 59.8 4 39.6 4 36.2 4 35.8 4 53.5	24 1.0 24 0.9 1 24 7.7 1 24 24.2 1 25 5.9 1 25 6.2 25 6.6 25 6.4 25 6.7 1 26 30.8	26 4.8 26 6.7 +40 2 53.5 + 7 14 51.9 +13 38 1.3 +40 24 9.7 24 2.6 24 4.2 24 4.3 +11 6 44.7
321 322 323 324 325 326 327 328 329 330	57 Mayer	5 6 7.8 7 6 6 5.6 7 7	4 Oct. 9 4 Oct. 15 4 Oct. 9 4 Oct. 15 4 Sept. 28 4 Sept. 30 4 Nov. 17 3 Sept. 17 4 Sept. 16 4 Oct. 8	25 44.5 25 44.4 26 16.7 26 17.3 26 32.3 26 32.3 26 33.1 27 25.2 27 29.4 27 47.1	46. 5 46. 5 46. 5 52. 2 52. 2 51. 8 55. 6 51. 7 46. 9	11 2 19.6 11 2 16.2 10 59 10 58 40.0 43 17 7.4 43 17 7.4 43 17 22.6 39 34 57.1 39 35 12.2 13 11 26.0	4 31. 0 4 30. 6 4 30. 4 4 36. 1 4 35. 7 4 25. 0 4 58. 0 4 38. 1 4 30. 1	26 31. 0 26 30. 9 1 27 3. 2 27 3. 8 1 27 24. 7 27 24. 9 1 28 20. 8 28 21. 1 1 28 34. 0	6 50.6 6 46.8 +11 3 3 10.4 +43 21 43.5 21 43.1 21 47.6 +39 39 55.1 39 50.3 +13 15 56.1
331 332* 333 334 335 336 337 338 339 340	Bessel, W.714 Groombridge 360 53 Andromedæ τ 41 (Hev.)Androm. 165 Piscium Piazzi 145 1 (Hev.)Trianguli	8 6 5 6 7 7 7 6 6	4 Oct. 6 4 Sept. 28 3 Sept. 17 4 Sept. 16 4 Sept. 30 4 Oct. 15 3 Aug. 20 3 Aug. 21 4 Oct. 2 4 Nov. 17	27 44.5 27 51.4 27 53.9 27 57.6 28 47.4 28 29 16.6 29 15.9 29 42.4 29 43.2	51. 1 52. 0 55. 6 51. 7 51. 9 53. 3 53. 3 50. 4 50. 1	38 29 36.0 42 12 9.1 39 28 36.6 39 28 54.4 41 31 40.1 15 18 42.8 24 38 51.7 24 38 49.7 34 9 19.1 34 9 29.4	4 33.0 4 35.4 4 57.7 4 37.8 4 34.3 4 29.1 • 4 59.4 4 59.2 4 32.3 4 24.3	1 28 35. 6 1 28 43. 4 1 28 49. 5 28 49. 3 1 29 39. 3 1 29 39. 3 1 30 '9. 9 30 9. 2 1 30 32. 8 30 33. 3	+38 34 9.0 +42 16 44.5 +39 33 34.3 33 32.2 +41 36 14.4 +15 23 11.9 +24 43 51.1 43 48.9 +34 13 51.4 13 53.7
341 342 343 344 345 346 347 348 349 350	Lalande 3100 106 Piscium	7.8 5 6 6 6 6 6.7 7 6.7	4 Sept. 16 3 Sept. 15 4 Oct. 15 4 Oct. 2 4 Oct. 6 4 Oct. 8 4 Oct. 9 3 Aug. 20 3 Aug. 21 4 Sept. 28	29 59.6 30 12.9 30 16.3 31 30 51.9 30 52.5 30 52.3 31 32.7 1 31 37.4	51.8 49.4 45.6 47.9 47.8 47.8 54.7 54.6 + 50.0	39 17 6.7 4 23 24.4 4 23 49.9 19 13 6.9 19 13 9.1 19 13 8.4 19 13 8.6 31 5 45.4 31 5 49.3 +31 6 11.0	4 36.8 4 49.7 4 28.2 4 29.8 4 29.3 4 29.0 4 29.0 5 .0.1 4 59.9 + 4 31.7	32 27.3	+39 21 43.5 + 4 28 14.1 28 18.1 +19 17 36.7 17 38.4 17 37.4 17 37.6 +31 10 45.5 10 49.2 +31 10 42.7

(158)

No.	Name	Mag.	Date	Αpp't α	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
110.				PP V -				а	ð
351 352 353 354 355 356 357 358 359 360*	Lalande 3149,50 109 Piscium 110 Piscium o 3 Arietis	7.6 8 6 8 6.7 6.7 8 6.7	4 Sept. 30 3 Sept. 17 4 Oct. 2 4 Oct. 6 4 Oct. 9 4 Oct. 15 3 Sept. 15 4 Sept. 16 4 Oct. 2	h m s 1 31 37.6 33 10.0 33 14.0 33 14.1 33 14.4 33 13.9 33 14.0 34 1.0 34 57.4 34 57.7	+ 50.0 51.8 48.0 47.9 47.9 47.8 50.1 47.8 47.6	+31 6 13.1 18 59 55.5 19 0 17.0 19 0 19.5 19 0 19.2 19 0 19.3 19 0 21.0 8 3 53.5 16 19 48.6 16 19 53.8	+ 4 31.3 4 50.6 4 28.5 4 28.0 4 27.7 4 27.6 4 27.0 4 48.2 4 29.2 4 27.2	h m s 1 32 27.6 1 34 1.8 34 2.0 34 2.0 34 2.3 34 1.8 34 1.8 1 34 51.1 1 35 45.2 35 45.3	+31 10 44.4 +19 4 46.1 4 45.5 4 47.5 4 46.9 4 46.9 4 48.0 + 8 8 41.7 +16 24 17.8 24 21.0
361* 362 363 364 365* 366 367 368 369 370	Piazzi 170	9 6.7 7 6.7 6 6.7 6 7 7	4 Oct. 15 4 Sept. 28 4 Sept. 30 3 Sept. 17 4 Oct. 2 4 Oct. 2 4 Sept. 16 4 Oct. 9 4 Oct. 15 4 Nov. 17	34 57. 8 36 1. 9 36 1. 6 36 22. 3 36 33. 5 36 34. 0 38 18. 0 38 18. 3 38 18. 5 38 19. 8	47. 4 51. 4 51. 4 54. 4 47. 5 48. 8 48. 4 48. 3 48. 1	16 19 55.2 36 52 31.1 36 52 33.3 31 35 23.5 15 52 49.8 15 52 49.5 21 12 0.1 21 12 10.5 21 12 11.4 21 12 11.5	4 26. 0 4 30. 3 4 29. 9 4 51. 4 4 26. 3 4 25. 6 4 28. 4 4 25. 1 4 24. 4 4 21. 6	35 45, 2 1 36 53, 3 36 53, 0 1 37 16, 7 1 37 21, 0 37 21, 5 1 39 6, 8 39 6, 7 39 6, 8 39 7, 9	24 21.2 +36 57 1.4 57 3.2 +31 40 14.9 +15 57 16.1 +21 16 28.5 16 35.6 16 35.8 16 33.1
371 † 372 373 374 375 376 377 378 379* 380	Lalande 3378 54 Ceti Bessel, W.1017 Lalande 3405 2 Trianguli Lalande 3425 5 Arietis "	7.8 6.7 7 6.7 8.9 8.4 8	4 Sept. 30 3 Aug. 20 4 Oct. 2 4 Oct. 8 3 Sept. 15 4 Oct. 9 3 Sept. 17 4 Sept. 30 4 Sept. 16 4 Oct. 2	39 22.8 39 24.5 40 6.8 40 7.4 40 10.4 40 14.2 40 48.9 41 0.5 41 46.1 41 46.6	48. 2 51. 1 47. 8 47. 8 52. 8 48. 8 53. 9 49. 8 48. 4 48. 1	19 26 41.8 9 57 57.7 17 13 44.2 17 13 39.8 23 2 30.2 23 2 53.2 28 31 11.2 27 45 15.7 18 14 7.7 18 14 12.5	4 25. 4 4 28. 8 4 24. 5 4 23. 8 4 47. 6 4 24. 2 4 48. 0 4 25. 8 4 23. 6	1 40 11.0 1 40 15.6 1 40 54.6 40 55.2 1 41 3.2 41 3.0 1 41 42.8 1 41 50.3 1 42 34.5 42 34.7	+19 31 7.2 +10 2 26.5 +17 18 8.7 18 3.6 +23 7 17.8 7 17.4 +28 35 59.2 +27 49 41.5 +18 18 33.5 18 36.1
381 382 383* 384 385 386 388 389 390		8.9 9 6.7 7.8	4 Oct. 9 4 Oct. 15 3 Aug. 20 3 Sept. 15 3 Sept. 17 4 Oct. 8 4 Nov. 17 4 Oct. 15 4 Sept. 16 4 Oct. 2	41 46. 4 41 46. 2 42 43. 8 42 44. 8 42 44. 4 43 16. 9 43 17. 6 43 28. 5 43 54. 0 44 59. 1	48. 0 47. 9 •53. 0 52. 3 52. 3 47. 1 46. 8 51. 4 49. 2 52. 8	18 14 16.5 18 14 20.4 19 44 40.0 19 44 43.4 19 44 44.6 12 41 43.9 36 11 31.7 22 31 2.7 40 38 19.3	4 22. 8 4 22. 3 4 49. 8 4 45. 2 4 44. 9 4 21. 6 4 20. 0 4 22. 7 4 25. 5 4 25. 2	42 34.4 42 34.1 1 43 36.8 43 37.1 43 36.7 1 44 4.0 44 4.4 1 44 19.9 1 44 43.2 1 45 51.9	18 39.3 18 42.7 +19 49 29.8 49 28.6 49 29.5 +12 46 4.4 46 3.9 +36 15 54.4 +22 35 28.2 +40 42 44.5
391 392 393 394 395* 396* 397 399 400*	8 Arietis ι 9 Arietis λ 58 Ceti Lalande 3640 . Piazzi 222	6 6 7 7.8 6 6.7 6	4 Sept. 16 4 Oct. 8 4 Oct. 9 3 Aug. 20 4 Sept. 30 4 Nov. 17 3 Sept. 17 4 Oct. 2 4 Oct. 8 4 Oct. 15	45 38.7 45 39.3 45 38.8 45 54.6 47 5.2 47 6.1 47 41.9 47 42.9 47 42.3	48. 2 47. 8 47. 8 53. 6 44. 6 44. 3 51. 9 48. 6 48. 5	16 45 43.6 16 45 48.7 16 45 51.4 +22 32 4.4 - 3 6 42.8 - 3 6 49.0 +17 18 4.0 20 0 32.8 20 0 35.4 20 0 30.6	4 23. 2 4 20. 5 4 20. 5 4 48. 7 4 18. 1 4 20. 4 4 41. 6 4 20. 4 4 19. 7 4 18. 9	1 46 26, 9 46 27, 1 46 26, 6 1 46 48, 2 1 47 49, 8 47 50, 8 1 47 58, 0 1 48 30, 5 48 31, 4 48 30, 7	+16 50 6.8 50 9.2 50 11.9 +22 36 53.1 - 3 2 24.7 2 28.6 +17 22 45.6 +20 4 53.2 4 55.1 4 49.5
401 402 403 404* 405 406* 407 408 409* 410	Lalande 3715 57 Andromedæ γ " Lalande 3767 113 Piscium a " 10 Arietís	8 6 6.7	4 Oct. 9 4 Nov. 17 3 Aug. 20 3 Sept. 15 3 Sept. 15 3 Sept. 17 4 Sept. 16 4 Sept. 30 4 Oct. 2 4 Oct. 8	49 36.5 49 36.8 50 42.1 50 42.9 . 50 43.9 50 56.7 50 57.6 51 29.2 1 51 30.2	49. 0 48. 7 58. 6 57. 8 57. 8 57. 8 45. 7 45. 5 50. 3 + 49. 5	22 21 1.6 22 21 6.4 41 16 55.6 41 17 1.2 41 17 2.8 41 (17) 1 43 16.4 1 43 20.2 24 53 39.9 +24 53 38.4	4 18.7 4 14.9 4 51.4 4 45.2 4 44.6 4 16.8 4 16.1 4 18.8 + 4 17.8	50 25, 5 1 51 40, 7 51 40, 9 1 51 41, 7 1 51 42, 4 51 43, 1 1 52 19, 5	+22 25 20.3 25 21.3 +41 21 47.0 21 46.4 21 47.4 +41(21) + 1 47 33.2 47 36.3 +24 57 58.7 +24 57 56.2

(159)

	1				1	1	1	· · · · · · · · · · · · · · · · · · ·	
No.	Name	Mag.	Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800.0
								а	ð
411 412 413 414* 415 416 417 418 419 420	10 Arietis	7 7.8 9 7 6 6 6	4 Oct. 15 4 Oct. 8 4 Oct. 9 4 Oct. 6 4 Sept. 16 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 8 3 Aug. 20	h m s 1 51 30.0 52 13.6 52 40.9 54 33.6 54 34.4 54 34.9 54 41.1 55 1.2	# 49.4 49.5 46.3 49.2 49.4 49.1 49.6 49.6 54.0	+24 53 39.4 24 52 55.0 7 3 37.5 24(48) 21 37 1.2 21 37 1.2 21 37 1.2 24 40 21.0 24 40 23.1 22 25 53.6	+ 4 17.0 4 17.5 4 15.3 4 18.8 4 16.7 4 16.4 4 16.2 4 15.9 4 42.4	1 53 3.1 1 53 27.2 1 55 22.4	+24 57 56. 4 +24 57 12. 5 + 7 7 52. 8 +24(52) +21 41 20. 0 41 21. 5 +21 41 17. 6 +24 44 37. 2 44 39. 0 +22 30 36. 0
421 422 • 423 424 425 426 427 428 429* 430	14 Arietis Lalande 3950,1 59 Andromedæ	2 6 4 6.5 6.7 6.7 7.8	3 Sept. 15 3 Sept. 17 4 Oct. 9 4 Oct. 15 4 Sept. 30 4 Oct. 6 4 Nov. 17 4 Oct. 8 3 Sept. 17 4 Oct. 15	55 2. 3 55 1. 9 55 6. 1 55 35. 5 56 48. 4 56 48. 4 57 37. 2 57 50. 3 57 55. 0	53. 3 53. 3 49. 1 52. 3 51. 9 51. 8 49. 4 48. 0 57. 3 52. 7	22 25 59.7 22 26 0.1 22 26 25.4 36 49 55.7 33 57 44.6 33 57 44.6 24 55 3.2 16 12 37.9 38 0 42.7 38 1 1.9	4 37.8 4 37.4 4 15.3 4 15.6 4 17.4 4 16.2 4 9.9 4 13.0 4 39.2 4 14.4	55 55. 6 55 55. 1 55 55. 2 1 56 27. 8 1 57 40. 3 57 41. 1 1 58 3. 8 1 58 25. 2 1 58 47. 6 58 47. 7	30 37.5 30 37.5 30 40.7 +36 54 11.3 +34 2 2.0 2 4.2 +24 59 13.1 +16 16 50.9 +38 5 21.9 5 16.3
431 432* 433 434 435 436 437 438 439 440	Lalande 3959 15 Arietis 60 Andromedæ b 64 Ceti 17 Arietis 7	7 6 6 6 7 6	4 Oct. 2 3 Aug. 20 4 Sept. 16 4 Sept. 30 4 Oct. 2 4 Oct. 8 4 Oct. 9 3 Sept. 15 4 Oct. 6 3 Aug. 20	57 50, 1 58 40, 4 58 44, 7 58 45, 0 58 45, 6 (58) 58 45, 4 1 59 45, 3 2 0 2, 4 0 43, 6	48.7 53.2 48.9 48.6 48.6 48.5 59.2 46.5	19 19 21. 1 18 28 20. 1 18 28 45. 7 18 28 46. 6 18 28 46. 6 18 28 50. 0 18 28 49. 4 43 12 24. 6 7 33 27. 0 20 11 12. 5	4 13.9 4 38.4 4 15.3 4 13.4 4 13.2 4 12.5 4 12.4 4 39.5 4 10.6 4 37.5	1 58 38.8 1 59 33.6 59 33.6 59 34.2 (59) 59 33.9 2 0 44.5 2 0 48.9 2 1 37.3	+19 23 35.0 +18 32.58.5 33 1.0 33 0.1 32 59.8 33 2.5 33 1.8 +43 17 4.1 + 7 37 37.6 +20 15 50.0
441 442* 443 444 445 446 447 448 449 450	Lalande 4068-70 Piazzi 13 65 Ceti	6 11 7 5.6 8 8 9	4 Oct. 8 4 Oct. 15 4 Oct. 2 4 Oct. 6 4 Sept. 16 4 Oct. 8 4 Oct. 15 4 Nov. 17 3 Sept. 15 3 Sept. 17	0 48.5 1 0.9 1 1.6 1 38.9 1 57.7 1 58.6 1 58.4 1 59.6 3 56.0 3 55.4	48. 9 48. 5 56. 3 46. 6 49. 0 48. 6 48. 5 48. 2 56. 3 56. 3	20 11 41.8 18 48 20.0 47 46 0.0 7 49 58.3 18 35 56.9 18 36 7.9 18 36 8.0 33 13 29.5 33 13 37.7	4 11.4 4 10.4 4 16.8 4 9.5 4 13.2 4 10.4 4 9.7 4 7.5 4 34.1 4 33.6	1 37. 4 2 1 49. 4 2 1 57. 9 2 2 25. 5 2 2 46. 7 2 47. 8 2 4 52. 3 4 51. 7	15 53.2 +18 52 30.4 +47 50 16.8 + 7 54 7.8 +18 40 10.1 40 17.5 40 17.6 40 15.5 +33 18 3.6 18 11.3
451 452 453 454 455 456 457 458 459 460	Piazzi 39	8 7.8 6.7 7 7 7.8 7 8	4 Sept. 30 4 Sept. 16 4 Oct. 2 4 Oct. 6 4 Oct. 8 4 Oct. 15 4 Nov. 17 4 Oct. 6 3 Aug. 20 4 Sept. 30	5 0.0 5 3.9 5 4.4 5 3.7 5 4.1 5 4.8 5 8.6 6 7.7 6 32.3	50. 8 50. 0 49. 6 49. 6 49. 4 49. 2 49. 6 53. 6 50. 8	27 44 39.7 22 45 57.6 22 45 57.7 22 45 59.0 22 45 59.9 22 46 2.0 22 46 2.5 22 52 13.4 18 53 33.8 27 38 36.5	4 10.9 4 12.0 4 9.7 4 9.2 4 8.8 4 8.0 4 5.0 4 9.1 4 33.0 4 9.8	2 5 50.8 2 5 53.9 5 53.5 5 54.0 5 53.3 5 54.0 2 5 58.2 2 7 1.3 2 7 23.1	+27 48 50.6 +22 50 9.6 50 7.4 50 8.2 50 8.7 50 10.0 50 7.5 +22 56 22.5 +18 58 6.8 +27 42 46.3
461 462 463 464 465 466 467 468 469 470	Lalande 4295,6 68 Ceti	6.7 7 7 6.7 6.7 7 7 8 7.8	4 Oct. 6 4 Oct. 8 4 Nov. 17 4 Sept. 16 4 Oct. 15 3 Aug. 20 4 Oct. 9 4 Oct. 9 4 Oct. 6 4 Oct. 8	7 34.0 7 34.2 7 34.3 8 29.8 9 32.3 9 55.5 10 0.6 10 36.1 2 10 36.1	44.7 54.2 54.4 49.5 48.2 52.6	29 11 38.9 29 11 41.5 +29 11 45.1 - 3 57 32.7 +40 24 42.2 21 52 37.6 21 53 2.6 15 10 23.8 34 27 18.1 +34 27 16.8	4 8.4 4 8.1 4 2.7 4 3.6 4 7.2 4 31.1 4 5.2 4 4.9 4 7.2 + 4 6.7	2 10 49.9 10 50.1 2 10 51.8	+29 15 47.3 15 49.6 15 47.8 - 3 53 29.1 +40 28 49.4 +21 57 8.7 57 7.8 +15 14 28.7 +34 31 25.3 +34 31 23.5

(160)

				•	<u> </u>			Mean equ	inox 1800. 0
No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	a	δ
471 472 473 474 475 476 477 478 479 480	Piazzi 74	8 7.8 5 7.8 8 7.8 7 8 6 6.7	3 Aug. 20 3 Sept. 17 4 Sept. 16 4 Oct. 2 4 Oct. 8 4 Oct. 8 4 Nov. 17 4 Sept. 30 4 Oct. 6 4 Oct. 8	h m s 2 12 54. 2 12 55. 2 13 8. 3 13 36. 3 13 36. 5 13 36. 4 13 37. 1 14 38. 4 14 45. 7 14 45. 6	+ 56.6 55.6 47.6 50.2 50.1 49.7 50.5 50.7 50.6	+28 53 40.2 28 53 46.1 9 37 49.0 24 10 52.2 24 10 50.8 24 10 41.9 24 10 51.4 25 4 2.9 26 2 27.1 26 2 28.9	+ 4 27.8 4 25.8 4 2.9 4 3.8 4 3.0 4 2.9 3 58.9 4 3.6 4 2.8 4 2.8	h m s 2 13 50.8 13 50.8 2 14 5.9 2 14 26.5 14 26.7 14 26.8 2 15 28.9 2 15 36.4 15 36.2	+28 58 8.0 + 9 41.51.9 + 9 41.51.9 +24 14 56.0 14 53.8 14 50.3 +25 8 6.5 +26 6 29.9 6 31.3
481 482 483 484 485 486 487 488 489 490	11 Trianguli d 12 Trianguli c 25 Arietis 13 Trianguli Lalande 4572,4 Lalande 4588 Piazzi 96	6 7.6 7 6.7 6.7	4 Oct. 15 3 Aug. 20 3 Sept. 17 4 Sept. 16 4 Oct. 2 4 Oct. 2 4 Nov. 17 4 Sept. 30 4 Oct. 15 4 Oct. 6	14 47, 5 15 32, 5 15 33, 0 15 58, 2 16 15, 2 16 15, 8 17 1, 6 17 24, 8 18 13, 8	51.7 56.4 55.6 47.4 51.5 51.4 51.0 50.0 52.4 50.4	30 49 43.6 28 41 36.8 28 41 44.9 9 14 13.5 28 57 24.7 28 57 24.0 28 57 29.3 22 30 4.7 32 52 12.2 24 16 26.8	4 2.7 4 28.8 4 23.6 4 0.8 4 1.7 3 56.6 4 1.3 4 0.5 4 0.0	2 15 39.2 2 16 28.9 16 28.6 2 16 45.6 2 17 6.7 17 6.8 2 17 51.6 2 18 17.2 2 19 4.2	+30 53 46.3 +28 46 5.6, 46 8.5 + 9 18 14.3 +29 1 27.5 1 25.7 1 25.9 +22 34 6.0 +32 56 12.7 +24 20 26.8
491 492 493 494* 495 496 497 498 499 500*	26 Arietis	6 6.5 6 5.6 7.8 7	4 Oct. 8 3 Aug. 20 3 Sept. 17 4 Oct. 2 4 Oct. 9 4 Nov. 17 4 Oct. 15 4 Oct. 8 4 Oct. 6 3 Aug. 20	18 38.3 18 58.0 18 58.6 19 3.2 19 3.2 19 3.2 19 58.2 21 10.4 21 21.6 22 0.6	49. 1 58. 6 57. 8 53. 4 53. 2 52. 8 52. 7 48. 1 52. 7 60. 0	18 53 36.2 35 10 37.3 35 10 44.4 35 11 0.2 35 11 4.2 35 11 15.4 33 35 11.6 14 4 32.5 32 50 17.9 38 42 25.3	3 58.5 4 28.1 4 22.6 4 2.0 4 0.6 3 54.2 3 58.7 3 55.8 3 59.1 4 26.7	2 19 56. 6 19 56. 4 19 56. 6 19 56. 4 19 56. 7 2 20 50. 9	+18 57 34.7 +35 15 5.4 15 7.0 15 2.2 15 4.8 15 9.6 +33 39 10.3 +14 8 28.3 +32 54 17.0 +38 46 52.0
501 502 503 504* 505 506* 507 508 509 510	Lalande 4752 Lalande 4759 15 Trianguli Piazzi 117 78 Ceti 31 Arietis	6 6 8 6.7 7.8 7.8 4.5 5.6	4 Oct. 2 4 Nov. 17 4 Oct. 9 3 Sept. 17 4 Oct. 15 3 Sept. 17 4 Oct. 15 4 Sept. 30 4 Oct. 9 4 Oct. 8	22 28, 0 22 28, 9 22 51, 9 22 43, 8 22 48, 0 22 47, 4 22 51, 7 24 37, 4 24 37, 8	53. 9 53. 3 47. 4 57. 5 52. 9 57. 5 52. 9 46. 2 46. 1 47. 6	36 21 44.4 36 21 53.6 10 39 16.8 33 44 6.5 33 44 29.1 33 46 12.1 33 46 38.6 4 38 55.9 4 38 59.7 11 30 29.4	3 59.6 3 51.6 3 54.0 4 19.1 3 56.6 4 19.1 3 56.5 3 52.2 3 51.9 3 51.3	2 23 21. 9 23 22. 2 2 23 39. 3 2 23 41. 3 23 40. 9 2 23 44. 6 2 25 23. 6 25 23. 9 2 25	+36 25 44.0 25 45.2 +10 43 10.8 +33 48 25.6 48 23.7 +33 50 31.2 50 35.1 + 4 42 48.1 42 51.6 +11 34 20.7
511 512 513* 514 515 516 517 518 519 520	Lalande 4830	6 7 7 8.9 6 6.5	3 Aug. 20 4 Oct. 2 4 Oct. 6 4 Nov. 17 4 Oct. 15 3 Sept. 13 3 Aug. 20 4 Sept. 30 4 Oct. 8 4 Oct. 9	24 58, 9 25 4, 3 25 4, 2 25 12, 2 25 51, 3 26 34, 6 28 5, 4 28 10, 1 28 11, 0 28 29, 8	59. 5 54. 2 54. 1 53. 7 52. 6 54. 0 56. 2 51. 3 51. 1 45. 0	36 46 45.2 36 47 12.5 36 47 12.7 37 9 2.4 32 28 44.5 21 1 6.3 26 7 16.3 26 7 44.3 +26 7 44.8 - 0 36 14.5	4 23.6 3 57.7 3 56.9 3 49.6 3 54.0 4 12.5 4 17.3 3 53.4 3 52.3 3 48.1		+36 51 8.8 51 10.2 51 9.6 +37 12 52.0 +32 32 38.5 +21 5 19.0 +26 11 33.6 11 37.7 11 37.1 - 0 32 26.4
521 522* 523 524 525 526* 527 528 529 530	12 Persei	7 4.5 6 6 6	4 Oct. 2 4 Oct. 6 4 Oct. 15 4 Nov. 17 3 Aug. 20 3 Sept. 17 4 Sept. 30 4 Oct. 8 4 Oct. 9 4 Oct. 2	28 45.8 28 45.6 28 45.5 28 46.4 30 12.6 30 53.0 30 53.8 32 11.7 2 32 21.5	55. 2 55. 1 54. 9 54. 5 54. 4 61. 5 51. 6 51. 4 45. 6 + 49. 1	+39 16 26.8 39 16 27.7 39 16 26.9 39 16 36.9 19 4 50.2 43 21 56.8 26 46 59.1 26 47 2.2 2 19 26.4 +16 50 48.0	3 55. 4 3 54. 6 3 52. 7 3 46. 7 4 13. 0 4 15. 4 3 51. 4 3 50. 2 3 45. 4 + 3 47. 9	29 40.7 29 40.4 29 40.9 2 31 7.2 2 31 7.2 2 31 44.6 31 45.2 2 32 57.3	+39 20 22.2 20 22.3 20 19.6 20 23.6 +19 9 3.2 +43 26 12.2 +26 50 50.5 50 52.4 + 2 23 11.8 +16 54 35.9
!	21				l		1	, (I	l61)

Digitized by Google

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction		inox 1800. 0
								а	ð
531 532 533 534 535 536 537 538* 539 540	36 Arietis	6.7 6 8 8.9 8.9 9.10 7	4 Oct. 6 4 Oct. 15 3 Aug. 20 3 Sept. 17 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 8 4 Oct. 15 4 Oct. 8	h m s 2 32 21.5 32 21.8 32 39.1 33 16.9 35 9.4 35 11.3 511.3 35.11.5 35 21.9 36 18.7	+ 49.0 48.8 53.2 51.2 50.6 50.5 50.5 49.3 50.9	+16 50 47.6 16 50 49.0 14 23 13.7 9 11 36.9 28 20 41.1 22 43 34.9 22 43 35.6 18 25 23.6 24 16 56.3	+ 3 47.6 3 46.9 4 9.2 4 3.5 3 48.3 3 46.8 3 46.3 3 46.3 3 44.6 3 45.4	h m s 2 33 10.5 33 10.6 2 33 32.3 2 34 8.1 2 36 1.6 2 36 1.7 36 1.8 36 2.0 2 36 11.2 2 37 9.6	+16 54 35.2 54 35.9 +14 27 22.9 + 9 15 40.4 +28 24 29.4 +22 47 23.4 47 21.7 +18 32 8.2 +24 20 41.7
541 542 543 544 545 546 547 548* 549 550	1. 16 Persei p 41 Arietis Lalande 5221 Lalande 5248,9 43 Arietis σ 20 Persei . Piazzi 201	6.7 4 5.6 3 6.5 8 6 7 7.8	4 Oct 9 3 Sept. 17 4 Oct. 6 4 Oct. 15 3 Aug. 20 4 Oct. 15 3 Sept. 17 4 Oct. 6 4 Oct. 9	36 18.9 37 0.5 37 22.9 37 22.8 37 18.5 38 35.6 39 38.8 40 8.4 40 29.3 40 29.4	50.9 59.6 51.6 51.4 64.3 49.4 48.3 59.8 53.0 52.9	24 16 56.3 37 25 3.2 26 21 56.9 26 22 0.3 45 56 4.5 18 15 57.0 14 11 19.7 37 26 43.1 30 45 19.3 30 45 19.9	3 45. 3 4 7. 8 3 45. 1 3 44. 0 4 15. 6 3 42. 5 3 40. 4 4 5. 0 3 43. 4 3 42. 9	37 9.8 2 38 0.1 2 38 14.5 38 14.2 2 38 22.8 2 39 25.0 2 40 27.1 2 41 8.2 2 41 22.3 41 22.3	20 41.6 +37 29 11.0 +26 25 42.0 25 44.3 +46 0 20.1 +18 19 39.5 +14 15 0.1 +37 30 48.1 +30 49 2.7 49 2.8
551* 552 553 554 555 556 557 558 559 560	Piazzi 203	7 6 7 7.8 6.7 6.7 5 6 6.7	4 Sept. 30 4 Oct. 2 4 Oct. 15 4 Oct. 6 3 Aug. 20 4 Oct. 15 4 Sept. 30 4 Oct. 2 4 Oct. 6	41 16. 0 41 15. 3 41 15. 9 42 39. 6 43 41. 2 43 46. 0 44 20. 2 44 20. 3 44 20. 2	49. 0 49. 0 48. 7 49. 9 54. 3 49. 4 49. 2 49. 5 49. 4 49. 4	15 35 50.0 15 35 48.8 15 35 55.3 19 29 22.2 17 26 41.8 17 27 11.1 17 9 25.5 17 9 26.8 17 9 29.6	3 40.3 3 40.2 3 39.2 3 39.4 4 1.8 3 37.3 3 38.0 3 37.8 3 37.5	2 42 5.0 42 4.3 42 4.6 2 43 29.5 2 44 35.5 44 35.1 44 35.2 2 45 9.7 45 9.6	+15 39 30.3 39 29.0 39 34.5 +19 33 1.6 +17 30 43.6 30 45.2 30 48.4 +17 13 3.5 13 4.6 13 7.1
561 562 563 564 565 566 567 568 569 570	21 Persei	6.7 6 6 6.5 5 8	4 Oct. 8 3 Sept. 17 4 Oct. 9 4 Oct. 15 3 Aug. 20 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 8 3 Sept. 17	44 20.9 44 13.7 44 29.0 45 50.6 46 52.3 46 57.9 46 57.9 46 57.7 47 56.6	49. 3 57. 7 55. 4 45. 9 55. 3 50. 4 50. 3 50. 2 50. 5	17 9 27.1 31 3 9.2 37 44 24.2 3 37 34.8 20 27 52.1 20 28 18.0 20 28 18.0 20 28 18.3 5 47 1.5	3 37. 3 3 59. 4 3 40. 8 3 33. 8 3 58. 0 3 36. 5 3 36. 2 3 35. 8 3 35. 6 3 48. 9	45 10.2 2 45 11.4 2 45 24.4 2 46 36.5 2 47 47.6 47 48.1 47 48.3 47 47.9 2 48 47.1	13 4.4 +31 7 8.6 +37 48 5.0 +3 41 8.6 +20 31 50.1 31 53.7 31 54.2 31 55.4 31 53.9 + 5 50 50.4
571 572 573 574 575 576 577 578 579 580	91 Ceti	5.6 6.7 6	4 Oct. 9 4 Oct. 15 4 Oct. 2 4 Oct. 6 3 Aug. 20 3 Sept. 17 4 Sept. 30 4 Oct. 9 4 Oct. 15 4 Oct. 6	48 13.5 48 13.2 49 16.8 49 16.5 50 59.8 51 0.5 51 4.7 51 4.3 51 28.3	47. 1 47. 0 51. 8 51. 8 50. 6 49. 9 46. 1 45. 9 45. 8 55. 9	8 2 36.2 8 2 35.4 25 36 6.1 25 36 8.7 3 14 2.2 3 14 31.5 3 14 21.9 3 14 27.9 37 59 44.6	3 32, 2 3 32, 2 3 35, 3 3 34, 8 3 47, 9 3 45, 3 3 29, 1 3 28, 9 3 29, 0 3 35, 4	2 49 0.6 49 0.2 2 50 8.6 50 8.3 2 51 50.4 51 50.4 51 50.4 51 50.1 2 52 24.2	+ 8 6 8.4 6 7.6 +25 39 41.4 39 43.5 + 3 17 50.1 17 48.8 17 51.0 17 52.3 17 56.9 +38 3 20.0
581 583 583 584 585 586 586 588 589 589 590	Lalande 5671 . 52 Arietis	7 6 4 2.3 2.3 6.7	4 Oct. 2 4 Oct. 8 3 Aug. 20 3 Sept. 17 4 June 21 4 Oct. 6 4 Oct. 9 4 Oct. 15 4 Sept. 30 4 Oct. 8	52 45, 3 52 52, 8 54 10, 1 54 10, 8 54 11, 6 54 15, 6 54 15, 6 54 15, 4 56 11, 7 2 56 12, 8	49.0 51.5 62.7 61.7 60.7 56.9 56.8 56.7 50.0 + 49.8	15 0 47.7 24 24 32.0 40 6 28.1 40 6 34.7 40 6 45.8 40 6 53.6 40 6 57.0 17 57 36.8 +17 57 37.4	3 29.9 3 31.1 3 57.5 3 52.5 3 47.8 3 33.5 3 32.9 3 31.8 4 3 26.8	55 12.5 55 12.3 55 12.7 55 12.4 55 12.1 2 57 1.7	+15 4 17.6 +24 28 3.1 +40 10 25.6 10 27.2 10 34.5 10 29.3 10 26.5 10 28.8 +18 1 4.4 +18 1 4.2

(162)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800. 0
					,			а	δ
591 592 593 594 595 596 597 598 599 600	55 Arietis 99 Mayer 28 Persei	7 8.9 8 7. 6	4 Oct. 15 4 Oct. 2 4 Oct. 8 4 Oct. 9 3 Sept. 17 4 Oct. 6 4 Sept. 30 4 Oct. 2 4 Oct. 8 4 Oct. 9	h m s 2 56 43.5 57 22.9 (57) 57 23.5 57 24.3 58 2.9 59 21.9 59 28.6 2 59 29.0	+ .52.6 50.1 50.0 61.4 57.7 50.3 52.3 52.3	+28 14 45,8 18 33 4.3 18 32 57,1 18 33 2.5 38 46 40,5 41 33 2.6 18 54 12.9 18 54 13.3 26 26 9.0 26 26 10,9	, , , , , , , , , , , , , , , , , , ,	h m s 2 57 36, 1 2 58 13, 0 (58) 58 13, 5 2 58 25, 7 2 59 0, 6 3 0 12, 2 0 3 0 20, 9 0 21, 3	+28 18 13.4 +18 36 30.7 36 22.9 36 28.3 +38 50 29.4 +41 36 33.0 +18 57 38.3 +26 29 34.4 29 36.4
601 602 603 604* 605* 606 - 608 609 610	58 Arietis	3 3 7 7.8 6 2	3 Sept. 17 4 Sept. 30 4 Oct. 2 4 Oct. 9 4 Oct. 15 4 Oct. 8 3 Sept. 17 4 Oct. 15 3 Feb. 18	3 2 30.7 2 57.6 2 57.7 2 58.5 2 57.8 7 8.6 7 43.6 8 2.7 8 5.2 8 55.6	54. 9 36. 7 36. 7 36. 4 52. 5 52. 1 54. 7 61. 5 71. 6	+20 13 56.9 -29 50 14.9 29 50 10.9 -29 50 11.9 +26 16 56.8 24 52 38.0 19 4 40.3 48 25 44.6 49 4 36.5	3 38. 4 3 12. 6 3 12. 8 3 13. 8 3 14. 9 3 16. 2 3 17. 4 3 32. 3 3 20. 8 3 32. 8	3 3 25.6 3 3 34.4 3 35.0 3 34.2 3 8 1.1 3 8 35.7 3 8 57.4 3 9 6.7 3 10 7.2	+20 17 35.3 -29 47 2.3 47 1.2 46 57.1 46 57.0 +26 20 15.0 +24 55 55.4 +19 8 12.6 +48 29 5.4 +49 8 9.3
611* 612 613* 614* 615 616 617 618 619 620*	"	2.3 2.3 2.3 6	3 Apr. 9 3 Aug. 20 4 June 21 4 Sept. 30 4 Oct. 2 4 Oct. 9 4 Oct. 9 4 Oct. 15 4 Oct. 6 4 Sept. 30	8 54.8 8 58.6 9 0.5 9 4.1 9 5.0 9 4.8 9 4.5 10 47.6 11 38.5	72. 5 68. 7 62. 4 62. 3 62. 2 62. 1 62. 0 61. 9 52. 1	49 4 28.6 49 4 20.3 49 4 39.2 49 4 41.8 49 4 46.0 49 4 45.6 49 4 46.0 48 20 49.9 23 57 5.3	3 39. 6 3 45. I 3 34. 2 3 23. 2 3 22. 7 3 21. 2 3 20. 0 3 20. 1 3 14. 3	10 7.3 10 7.2 10 6.5 10 6.4 10 7.2 10 6.9 10 6.3 3 11 49.5 3 12 30.6	8 8.2 8 5.4 8 13.4 8 5.0 8 8.7 8 11.7 8 6.8 8 6.0 +48 24 10.0 +24 0 19.6
621 622* 623 624 625: 626 627* 628 629 630	Piazzi 53	6 6 5.6 6 4 5 7.8	4 Oct. 8 3 Sept. 17 4 Oct. 6 4 Oct. 15 4 Oct. 9 4 Oct. 9 4 Sept. 30 4 Oct. 2 4 Oct. 15	11 39, 6 12 45, 8 12 51, 8 12 52, 4 13 16, 7 14 6, 4 15 30, 0 15 32, 4 15 30, 6	51.9 67.3 62.0 61.8 47.4 62.4 48.5 47.8 61.3	23 57 4.8 48 17 31.5 48 17 46.7 48 17 47.9 8 15 48.5 11 58 28.2 8 58 25.3 8 58 23.8 47 14 14.3	3 13.4 3 36.0 3 18.0 3 16.3 3 8.5 3 17.1 3 7.0 3 6.7 3 6.6 3 13.5	12 31.5 3 13 53.1 13 53.8 13 54.2 3 14 4.1 3 15 8.8 3 16 18.5 3 16 20.2 16 20.5 3 16 31.9	0 18.2 +48 21 7.5 21 4.7 21 4.2 + 8 18 57.0 +48 48 9.6 +12 1 35.2 + 9 1 32.0 1 30.4 +47 17 27.8
631 632* 633 634 635 636 637 638 639 640	108 Mayer Groombridge 694 109 Mayer 36 Persei Str. G. C. 345 pr foll. 4 Tauri s	7.8 6 7.8 8 8 6.7 6 6	4 Oct. 9 4 Oct. 15 4 Oct. 8 3 Sept. 17 4 Sept. 30 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 9 4 Oct. 15	16 53, 6 17 2, 1 17 36, 8 17 32, 1 18 23, 6 18 25, 1 18 40, 9 18 42, 6 18 41, 2 19 29, 0	+ 48. 1 61. 5 49. 7 65. 9 53. 3 53. 3 48. 3 48. 2 48. 1 57. 6	10 38 10.1 47 16 27.9 16 0 41.9 45 18 27.6 26 49 31.3 26 49 31.3 10 35 21.4 10 35 16.7 10 35 22.7 39 9 40.4	3 5.3 3 11.5 3 5.8 3 30.0 3 8.8 3 3.8 3 3.6 . 3 3.4	3 18 38.0 3 19 16.9	+10 41 15.4 +47 19 39.4 +16 3 47.7 +45 21 57.6 +26 52 40.1 +26 52 40.1 +10 38 25.2 38 20.3 38 26 1 +39 12 48.4
641 642 643 644* 645 646 647 648 649 650	37 Persei ψ 7 Tauri Piazzi 87 " 9 Tauri " " " " " " " " " " " " " " " " "	6 6 7 7.6 7 7	3 Sept. 17 4 Oct. 2 4 Oct. 8 4 Sept. 30 4 Oct. 9 4 Sept. 30 4 Oct. 9 4 Sept. 30 4 Oct. 2 4 Oct. 8	21 13. 2 21 44. 6 21 45. 3 21 56. 0 21 55. 7 24 22. 2 24 21. 7 24 22. 2 3 24 22. 5	67. 4 52. 3 52. 1 50. 3 50. 1 50. 0 51. 9 51. 8 + 51. 8	47 27 21.7 23 43 57.5 23 43 55.5 17 7 3.3 17 7 2.6 17 7 5.5 22 29 21.4 22 29 19.2 22 29 21.0 +22 29 18.9	3 26, 8 -3 4.0 3 3.3 3 2.3 3 1.8 3 1.6 3 1.1 3 0.9 4 3 0.4	3 22 36, 9 22 37, 4 3 22 46, 3 22 45, 4 22 45, 4 25 14, 2 25 13, 6 25 14, 0	+47 30 48,5 +23 47 1,5 46 58,8 +17 10 5,6 10 4,4 10 7,1 +22 32 22,5 32 20,1 32 21,5 +22 32 19,3

(163)

No.	Name	Mag.	Date	App't α	Reduct'n	Αpp't δ	Reduction	Mean equ	inox 1800. 0
						2-PP 7 0		а	ð
651 652 653 654 655 656 657 658 659 660	9 Tauri Lalande 6677 39 Persei d 11 Tauri	7 8.9 8. 6 7 6.7 6.8	4 Oct. 9 4 Oct. 6 4 Oct. 8 3 Sept. 17 4 Oct. 2 4 Oct. 8 4 Oct. 8 4 Oct. 9 4 Sept. 30 4 Oct. 6	h m s 3 24 22.1 26 21.9 26 22.4 27 36.8 27 57.8 27 58.4 27 58.1 29 56.7 30 17.2	+ 51.8 52.4 52.3 67.6 52.7 52.6 52.6 51.0 52.8	+22 29 21.4 23 59 26.3 23 59 27.9 47 4 43.8 24 37 20.7 24 37 20.7 24 37 20.1 19 0 0.4 24 59 3.9	+ 3 0.2 2 58.9 2 58.7 3 19.5 2 57.8 2 57.3 2 57.1 2 57.0 2 54.4 2 55.1	h m s 3 25 13.9 3 27 14.3 27 14.7 3 28 44.4 3 28 50.5 28 51.1 28 51.0 28 50.7 3 30 47.7 3 31 10.0	- 7 " +22 32 21.6 +24 2 25.2 2 26.6 +47 8 3.3 +24 40 19.3 40 18.0 40 16.8 40 17.1 +19 2 54.8 +25 1 59.0
661 662 663 664 665 666 667 668 669 670*	Robinson 776 14 Tauri 16 Tauri g 17 Tauri b 18 Tauri m 20 Tauri c 25 Tauri	7.8 6.7 6.7 7 5 7.6	4 Oct. 2 4 Sept. 30 4 Oct. 8 4 Oct. 9 4 Oct. 9 4 Oct. 6 3 Sept. 17 4 Sept. 30 4 Oct. 2	30 54, 9 31 23, 6 31 23, 8 32 3, 6 32 9, 1 32 22, 7 32 59, 8 34 44, 3 34 44, 7	52.7 · 51.0 50.8 52.4 52.3 52.7 52.6 56.9 52.6 52.5	24 23 18.9 18 58 30.7 18 58 27.7 23 36 2.1 23 25 35.9 24 9 12.4 24 9 8.7 23 40 59.0 23 25 41.9 23 25 42.3	2 54.7 2 52.9 2 52.3 2 52.6 2 52.4 2 53.1 2 52.7 3 6.3 2 50.6 2 50.4	3 31 47.6 3 32 14.6 32 14.6 3 32 56.0 3 33 15.3 33 15.3 3 35 56.7 3 35 36.9 35 37.2	+24 26 13.6 +19 1 23.6 1 20.0 +23 38 54.7 +23 28 28.3 +24 12 5.5 12 1.4 +23 44 5.3 +24 28 32.5 28 32.7
671 672 673 674 675 676* 677* 678 679 680	27 Tauri f	3 3 3 6 6 6 6	4 Oct. 6 4 Oct. 8 4 Oct. 9 3 Sept. 9 3 Sept. 17 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 8 4 Oct. 9	34 45. 1 34 45, 0 34 44. 8 36 21. 0 36 20. 4 36 24. 6 36 26. 1 36 25. 6 36 25. 8	52. 4 52. 4 52. 4 57. 2 56. 9 52. 6 52. 6 52. 4 52. 4	23 25 43.8 23 25 43.0 23 25 42.9 23 22 45.5 23 22 45.3 23 23 2.2 23 23 3.0 23 23 3.1 23 23 2.7 23 23 4.0	2 50.0 2 49.8 2 49.7 3 3.1 3 2.3 2 48.6 2 48.2 2 48.0 2 47.9	35 37.5 35 37.5 35 37.2 3 37 18.2 37 17.3 37 17.3 37 18.0 37 19.2 37 17.8	28 33.8 28 32.8 28 32.6 +23 25 48.6 25 47.6 25 51.0 25 51.3 25 50.7 25 51.9
681 682 683 684 685 686 687 688 689 690	Piazzi 179	7.8 7.8 7 8 7	4 Oct. 2 4 Sept. 30 4 Oct. 6 3 Sept. 17 4 Oct. 9 4 Oct. 8 4 Oct. 6 3 Sept. 9 3 Sept. 17 4 Sept. 30	39 22, 2 40 33, 6 40 40, 2 40 35, 1 40 54, 9 41 27, 2 41 59, 9 43 24, 5 43 23, 4 44 11, 4	53. 0 47. 2 53. 1 60. 1 50. 3 51. 8 55. 1 64. 4 64. 1 52. 3	24 30 51, 2 5 52 47.8 25 1 52.5 31 13 38.5 16 40 34.8 21 17 38.4 30 23 57.8 39 22 5.5 39 22 7.0 21 50 50, 2	2 45.7 2 39.6 2 44.1 2 59.9 2 41.4 2 42.0 2 44.1 3 0.2 2 59.1 2 39.9	3 40 15.2 3 41 20.8 3 41 33.3 3 41 35.2 3 41 45.2 3 42 19.0 3 42 58.0 3 44 28.3 44 27.5 3 45 3.7	+31 16 38.4 +16 43.16.2
691 692 693* 694 695* 696 697 698 699 700	46 Persei ξ	6 6 7.8 · 5 8 10.11 7 6.7	4 Oct. 8 4 Oct. 9 4 Oct. 6 4 Oct. 2 4 Oct. 6 3 Sept. 9 3 Sept. 17 4 Oct. 9 4 Sept. 30 4 Oct. 2	44 11. 9 44 12. 0 44 16. 2 45 4. 0 47 12. 4 47 58. 5 47 57. 4 48 11. 6 48 37. 6	52. 1 52. 0 56. 8 57. 3 57. 8 44. 8 44. 6 51. 4 51. 6	21 50 46.4 21 50 49.6 34 10 46.5 35 9 26.9 +36 22 1.3 -14 7 46.0 -14 7 50.2 +19 47 42.2 19 35 5.1 19 35 3.8	2 39. 2 2 39. 2 2 42. 7 2 42. 5 2 39. 9 2 37. 5 2 35. 0 2 34. 2 2 34. 2	45 4.0 45 43.0 3 45 13.0 3 46 1.3 3 48 10.2 3 48 43.3 48 43.3 3 49 3.0 3 49 29.2 49 28.9	+34 13 29.2 +35 12 9.4 +36 24 41.2 -14 5 8.5 5 15.2 +19 50 16.4 +19 37 39.5
701 702 703 704* 705 706 707 708 709 †710	37 Tauri	6.7 6.7 5 6.5 5 6	4 Oct. 8 4 Oct. 9 3 Sept. 17 4 Sept. 30 4 Oct. 2 4 Oct. 6 4 Oct. 8 4 Oct. 8 3 Sept. 9 4 Oct2	48 38.1 48 37.6 51 56.2 52 0.7 52 0.7 52 1.3 52 1.7 52 1.4 52 34.3 3 56 1.2	51. 4 51. 4 56. 6 52. 3 52. 3 52. 2 52. 1 52. 1 56. 8 + 52. 5	19 35 5.5 19 35 7.1 21 28 42.7 21 28 52.0 21 28 58.4 21 28 56.0 21 28 57.0 21 28 55.8 21 24 48.4 +21 48 3.9	2 33.8 2 33.7 2 43.2 2 31.2 2 31.0 2 30.6 2 30.5 2 43.1 + 2 26.2	49 29. 5 49 29. 0 3 52 52. 8 52 53. 0 52 53. 5 52 53. 8 52 53. 5 3 53 31. 1 3 56 53. 7	37 40.8 +21 31 25.9 31 23.2 31 29.4 31 26.6 31 27.5 31 26.2 +21 27 31.5

(164)

No.	Name	Mag.	Date	App't α	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
	-							a	δ
711 712 713 714 715 716 717* 718 719 720	Lalande 7661 43 Tauri ω ¹ 44 Tauri p 52 Persei f Lalande 7865 48 Tauri 51 Tauri 56 Tauri	7.8 6.7 10 7 7 6	4 Oct. 9 3 Sept. 17 4 Sept. 30 3 Sept. 9 4 Oct. 9 3 Sept. 17 4 Oct. 9 4 Oct. 9 4 Oct. 9 4 Oct. 9	h m s 3 56 1.6 56 35.6 56 40.4 57 42.3 3 57 46.4- 4 0 13.2 1 45.7 3 35.9 5 41.5 (6)	+ 52.8 55.8 51.6 58.7 53.8 65.2 52.4 50.1 52.2	+23 17 13.4 19 1 26.6 19 1 46.2 25 54 10.4 25 54 26.1 39 55 10.1 21 53 41.5 14 51 3.0 21 2 31.2 21 14 33.4	+ 2 26. 4 2 36. 6 2 25. 2 2 38. 4 2 25. 1 2 39. 1 2 19. 6 2 15. 5 2 14. 8 2 13. 7	h m s 3 56 54.4 3 57 31.4 57 32.0 3 58 41.0 58 40.2 4 1 18.2 4 2 38.1 4 4 26.0 4 6 33.7 4 (7)	+23 19 39.8 +19 4 3.2 4 11.4 +25 56 48.8 56 51.2 +39 57 49.2 +21 56 1.1 +14 53 18.5 +21 4 46.0 +21 16 47.1
721 722 723 724 725 726 727 728 729 730	54 Tauri γ 59 Tauri χ 61 Tauri δ¹ 64 Tauri δ² 72 Tauri υ² 74 Tauri ε 76 Tauri	6 4 6 7	4 Sept. 30 4 Oct. 9 4 Sept. 30 4 Oct. 2 4 Oct. 2 4 Oct. 9 4 Oct. 9 3 Sept. 9 4 Oct. 9	7 35.5 9 31.8 10 33.7 10 33.5 11 43.6 11 42.9 14 27.9 14 28.1 16 1.4 16 13.6	50. 4 53. 8 51. 2 51. 1 51. 1 50. 9 53. 1 52. 9 56. 3 50. 0	15 5 46.0 25 6 32.0 17 1 33.9 17 1 34.4 16 56 1.8 16 56 22 29 57.4 22 29 55.8 18 41 13.2 14 15 1.5	2 11. 4 2 11. 4 2 8. 5 2 8. 4 2 7. 0 2 6. 7 2 5. 5 2 4. 9 2 12. 7 2 0. 6	4 8 25.9 4 10 25.6 4 11 24.9 11 24.6 4 12 34.7 12 34.1 4 15 21.0 15 21.0 4 16 57.7 4 17 3.6	+15 7 57.4 +25 8 43.4 +17 3 42.4 +16 58 8.8 +16 58 7.3 +22 32 2.9 32 0.7 +18 43 25.9 +14 17 2.1
731 732 733 734* 735 736 737 738 739 740	158 Mayer	9 7 6 7 7 5	4 Oct. 2 4 Oct. 9 3 Sept. 9 4 Oct. 9 3 Sept. 9 4 Oct. 9 4 Oct. 9 4 Oct. 9 4 Oct. 9 5 Sept. 9 4 Oct. 9 7 Sept. 9	17 43.1 17 54.8 18 20.8 18 19 32.3 19 36.6 21 7.5 21 36.7 21 40.6 23 29.6	52. 0 50. 4 55. 0 55. 1 50. 5 51. 4 54. 8 50. 2 57. 5	19 21 31.8 15 9 24.0 15 12 31.0 15 12 44.1 15 22 28.2 15 22 41.3 17 32 59.6 14 22 37.4 14 22 48.8 16 3 30.6	2 0.7 1 58.9 2 8.5 1 58.3 2 6.9 2 6.9 1 56.0 2 3.9 - 1 54.1 2 11.0	4 18 35.1 4 18 45.2 4 19 15.8 19 4 20 27.4 20 27.1 4 21 52.1 4 22 31.5 22 30.8 4 24 27.1	+19 23 32.5 +15 11 22.9 +15 14 39.5 14 42.4 +15 24 35.1 24 48.2 +17 34 55.6 +14 24 41.3 24 42.9 +16 5 41.6
741* 742 743* 744* 745 746* 747 748 749	"	1 1 1 1 1 1	3 Mar. 6 3 Apr. 9 3 Sept. 9 4 Mar. 23 4 June 21 4 July 4 4 Oct. 2 4 Oct. 9 4 Oct. 13 5 Mar. 21	23 29, 6 23 29, 2 23 32, 8 23 23 33, 2 23 30, 4 23 36, 9 23 36, 7 23 36, 8	57. 7 58. 2 55. 4 54. 2 54. 0 53. 7 51. 0 50. 8 50. 7 50. 4	16 3 27.8 16 3 28.8 16 3 42.3 16 3 41.2 16 3 39.3 16 3 51.7 16 3 51.7 16 3 49.4 16 3 46.9	2 11. 4 2 12. 1 2 2. 0 2 3. 2 2 1. 4 2 0. 3 1 52. 3 1 52. 3 1 52. 2 1 55. 5	24 27.3 24 27.4 24 28.2 24 24 27.2 24 24.1 24 27.7 24 27.7 24 27.4 24 27.2	5 39, 2 5 40, 3 5 44, 3 5 40, 7 5 41, 6 5 45, 3 5 44, 6 5 42, 4
751 752 753 754* 755 756 757* 758 759 760	90 Tauri c ¹ 93 Tauri c ² 94 Tauri τ 654 Bradley 57 Eridani μ	7 6.7	5 Mar. 23 4 Oct. 9 4 Oct. 9 3 Mar. 6 3 Sept. 9 4 Oct. 2 4 Oct. 2 4 Oct. 13 3 Sept. 9 4 Oct. 2	23 37, 5 26 10, 0 28 6, 9 29 14, 9 29 18, 1 29 22, 1 32 25, 1 32 45, 6 34 42, 7 34 46, 3	50, 5 49, 4 49, 4 60, 4 58, 1 53, 4 53, 5 53, 4 48, 4 44, 5	16 3 41.5 12 4 3.3 11 45 46.0 22 31 36.9 22 31 46.4 22 31 52.5 23 13 8.5 +23 13 5.8 - 3 39 34.1 - 3 39 26.3	1 55.6 1 48.1 1 45.8 2 1.1 1 56.7 1 47.6 1 43.3 1 43.0 1 40.6 1 33.3	24 28.0 4 26 59.4 4 28 56.3 4 30 15.3 30 16.2 30 15.5 4 33 38.6 33 39.0 4 35 31.1 35 30.8	5 37, 1 +12 5 51, 4 +11 47 31, 8 +22 33 38, 0 33 43, 1 33 40, 1 +23 14 51, 8 - 3 37 53, 5 37 51, 0
761 762 763 764 765 766 767 768 769 770	173 Mayer	7 6.7 6 5 7.8 6 7 7 6.7 8	4 Oct. 13 4 Oct. 9 4 Oct. 13 4 Oct. 2 4 Oct. 13 4 Oct. 9 4 Oct. 9 4 Oct. 9 4 Oct. 9	36 8.4 37 27.2 38 49.2 39 46.4 42 21.7 43 11.1 43 11.4 44 32.2 44 47.7 4 50 12.3	51. 6 50. 8 51. 7 47. 4 52. 0 48. 2 54. 1 48. 3 53. 9 + 50. 4	+18 20 13.9 15 30 59.0 18 27 37.6 5 13 37.4 19 7 23.9 7 25 10.7 24 14 3.5 7 33 44.9 23 35 56.6 +13 35 27.2	1 37.6 1 35.2 1 34.3 1 29.6 1 30.1 1 25.9 1 30.8 1 24.2 1 28.6 + 1 19.0	4 40 33.8 4 43 13.7 4 43 59.3 4 44 5.5 4 45 20.5 4 45 41.6	+18 21 51.5 +15 32 34.5 +18 29 11.9 + 5 15 7.0 +19 8 54.0 + 7 26 36.6 +24 15 34.3 + 7 35 9.1 +23 37 25.2 +13 36 46.2

(165)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equi	nox 1800. 0
								а	ð
771* 772 773 774 775 776 777 778 779 780	102 Tauri Piazzi 282 10 Aurige 11 Orionis 186 Mayer 104 Tauri 103 Tauri	4 4 7 5 5,6 7 6 6 6	4 Oct. 9 4 Oct. 13 4 Oct. 13 3 Sept. 9 3 Feb. 18 4 Oct. 2 4 Oct. 15 3 Feb. 18 4 Oct. 9 4 Oct. 15	h m s 4 50 15.9 50 16.3 51 34.3 51 23.4 52 11.5 52 17.9 52 52.6 54 40.1 55 1.5 55 1.8	+ 53.1 52.9 52.8 68.0 57.2 51.0 52.2 58.5 54.2 54.0	+21 16 12.2 21 16 3.9 20 57 44.4 40 55 17.2 15 5 11.6 15 5 30.1 19 29 52.3 18 20 18.7 23 58 0.0 23 57 58.9	+ 1 21.0 1 20.8 1 19.2 1 33.4 1 31.4 1 16.6 1 17.2 1 26.8 1 16.0 1 15.7	53 8,9 4 53 44.8 4 55 38.6	+21 17 33.2 17 24.7 +20 59 3.6 +40 56 50.6 +15 6 43.0 6 46.9 +19 31 9.5 +18 21 45.5 +23 59 16.0 59 14.6
781 782 783 784 785 786* 787 789 789	105 Tauri	7.6 6 4 6 6.5 7.8 1	4 Oct. 13 4 Sept. 20 4 Oct. 2 4 Oct. 9 4 Oct. 13 3 Feb. 18 3 Feb. 18 3 Mar. 17 3 Mar. 18 3 Mar. 21	55 5.9 56 9.0 57 17.9 57 24.6 4 58 45.7 5 0 32.7 0 42.7 (0) 0 41.9 0 42.0	53. 0 44. 4 43. 9 50. 9 60. 7 73. 6 73. 6 74. 3 74. 4	+21 24 22.6 - 4 57 12.1 - 5 22 18.3 +15 18 33.4 38 12 38.4 45 (54) 45 45 36.6 45 45 40.4 45 45 38.1 45 45 42.7	1 24.9 1 5.6 1 4.3 1 10.4 1 15.2 1 9.1 1 9.2 1 9.3 1 9.4	4 59 46.4 5 1 46.3	+21 25 47.5 - 4 56 6.5 - 5 21 14.0 +15 19 43.8 +38 13 53.6 +45(55) +46 45.7 46 49.6 46 47.4 46 52.1
791 792 793* 794* 795* 796 797 798 799 800	"		3 April 30 3 July 19 3 Sept. 9 4 Mar. 23 4 June 5 4 June 16 4 July 4 4 July 14 4 Oct. 2	0 41.9 (0) 0 44.8 (0) 0 46.3 0 46.3 0 46.9 (0) 0 50.2	75. 0 71. 6 70. 0 70. 0 69. 8 69. 3 65. 7	45 45 29.3 45 45 25.6 45 45 19.9 45 45 36.4 45 45 32.3 45 45 34.6 45 45 38.6 45 45 29.0 45 45 22.5 45 45 25.5	1 13.4 1 22.3 1 22.1 1 4.3 1 13.2 1 13.6 1 14.5 1 16.4 1 17.1 1 15.9	1 56, 9 (1) 1 56, 4 (1) 1 56, 3 1 56, 2 1 56, 1 1 56, 2 (1) 1 55, 9	46 42.7 46 47.9 46 42.0 46 40.7 46 45.5 46 48.2 46 53.1 46 45.4 46 39.6 46 41.4
801 802 803 804 805 806 807* 808 809 810	729 Bradley	1 1 1 1 7	4 Oct. 9 4 Oct. 13 4 Oct. 15 5 Mar. 21 3 Feb. 18 3 Mer. 17 3 Mar. 18 3 Mar. 21 3 April 4	0 50.4 0 59.9 0 50.8 0 51.0 3 9.4 4 8.4 4 7.4 4 7.7 4 7.4 (4)	48.5	45 45 26.5 45 45 27.4 45 45 27.0 +45 45 49.0 - 8 25 13.3 8 28 0.5 8 28 0.8 8 28 2.0 8 28 3.7 8 28 6.3	1 15.2 1 14.9 1 14.7 1 0.0 1 23.5 1 22.0 1 22.6 1 22.5 1 22.0	1 55.9 1 56.2 1 56.0 1 55.6 5 3 57.4 5 4 56.4 4 55.9 4 55.9 (4)	46 41.7 46 42.3 46 41.7 46 49.0 — 8 23 49.8 — 8 26 38.5 26 38.2 26 39.4 26 41.2 26 44.3
811 812 813 814 815 816 817* 818 819*			3 April 30 3 July 19 3 Sept. 9 4 Mar. 23 4 June 5 4 June 5 4 July 4 4 July 14 4 Sept. 20 4 Oct. 2	4 7.2 4 9.1 4 9.9 4 11.0 4 9.9 (4) 4 10.9 4 10.8 4 13.0 4 13.4	48. 2 46. 7 45. 4 45. 8 45. 4 45. 1 43. 2	8 27 57.8 8 27 47.8 8 27 36.8 8 27 56.1 8 27 47.6 8 27 49.6 8 27 48.4 8 27 51.3 8 27 31.0 8 27 38.6	1 17.6 1 9.4 1 7.3 1 3.9 1 2.0 0 54.2	4 56.2 4 57.3 4 56.6 4 56.4 4 55.7 (4) 4 56.3 4 56.2 4 56.2	26 38. 2 26 42. 2 26 38. 0 26 38. 5 26 38. 2 26 42. 3 26 44. 5 26 49. 3 26 36. 8 26 44. 2
821* 822 823 824 825 826 827 828 829 830	"" "" "" Piazzi 43 Johnson 1458 196 Mayer	1 1 1 1 8.7 7.6 6.7 6.7 7.8	4 Oct. 15 4 Oct. 2	4 13.1 4 13.5 4 13.6 4 13.8 7 38.4 7 39.0 7 46.0 8 15.1 5 8 16.2	42. 6 42. 5 42. 2 42. 2 52. 6 52. 4 62. 3 52. 8	19 20 38, 4 40 47 51, 0 19 34 59, 8	0 55. 0 0 55. 2 1 13. 8 1 13. 8 0 58. 4 0 58. 3 1 4. 6 0 57. 9	5 8 48.3 5 9 7.9	26 40.3 26 41.7 +19 21 34.9 21 36.7 +40 48 55.6 +19 35 57.7

(166)

No.	Name	Mag.	Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800.0
•								a	ð
831 832 833 834 835 836 837 838 839	196 Mayer	6 5.6 6 6 6	4 Oct. 13 4 Oct. 15 4 Sept. 20 4 Oct. 2 4 Oct. 13 3 Feb. 18 3 Mar. 17 3 Mar. 18 3 April 4 3 April 5	h m s 5 8 15.6 10 3.8 10 48.3 10 48.2 11 13.8 12 35.8 12 35.6 12 35.9 12 35.7 12 35.8	** 52.5 60.3 44.9 57.7 51.4 63.2 63.6 63.7 64.0 64.0	0 / " +19 34 57.6 +37 10 0.9 -0 36 17.7 +30 55 33.8 16 28 56.3 28 24 29.9 28 24 29.9 28 24 29.5 28 24 29.5 28 24 28.1	, , , , , , , , , , , , , , , , , , ,	h m s 5 9 8.1 5 11 4.1 5 11 33.2 5 11 45.9 5 12 5.2 5 13 39.0 13 39.2 13 39.6 13 39.7 13 39.8	0 / " +19 35 55.2 +37 11 1.6 -0 35 29.5 +30 56 32.3 +16 29 49.2 +28 25 27.7 25 27.6 25 27.5 25 29.1 25 26.7
841* 842 843 844* 845 846 847 848* 849*	"	2 2 2 6 2	3 April 9 3 April 30 3 Sept. 9 4 Mar. 23 4 Oct. 2 4 Oct. 2 4 Oct. 15 5 Mar. 21 4 Sept. 20 3 Feb. 18	12 35, 7 12 35, 7 12 35, 2 12 40, 3 12 43, 5 12 43, 4 12 43, 4 12 44, 4 13 34, 3 13 31, 3	45.8	28 24 29.2 28 24 30.3 28 24 26.3 28 24 35.0 28 24 35.5 28 24 33.2 +28 24 33.2 +28 24 37.4 -1 6 29.1 +6 8 15.6	0 58.7 0 59.7 0 59.6 0 54.0 0 55.1 0 54.8 0 54.7 0 50.9 0 44.3 1 3.9	13 39.7 13 39.9 13 39.7 13 39.9 13 40.0 13 39.7 13 39.5 13 39.8 5 14 20.1 5 14 24.9	28 25 27.9 25 30.0 25 25.9 25 29.0 25 30.6 25 28.7 25 27.9 25 28.3 — 1 5 44.8 + 6 9 19.5
851 852 853 854 855 856 857 858 859	"	2 7.6 6 7 6 6 6 6.5	3 April 4 3 Sept. 9 4 Mar. 23 5 Mar. 21 4 Oct. 13 4 Oct. 15 4 Oct. 2 4 Oct. 2 4 Oct. 13 4 Oct. 15	13 30.1 13 33.6 13 34.2 13 37.6 13 41.0 14 44.1 15 25.3 16 3.2 16 3.1 18 50.0	54. 3 52. 2 50. 6 47. 0 51. 4 53. 6 51. 1 55. 1 54. 8 45. 1	6 8 15.9 6 8 32.6 6 8 21.8 6 8 25.6 16 29 43.6 21 44 19.5 15 40 47.9 24 57 36.5 +24 57 30.7 — 1 16 14.3	1 4.3 0 50.5 1 0.5 0 57.5 0 49.7 0 50.1 0 47.4 0 49.8 0 49.3 0 38.1	14 24.4 14 25.8 14 24.8 14 24.6 5 14 32.4 5 15 38.0 5 16 16.4 5 16 58.3 16 57.9 5 19 35.1	
861* 862 863 864 865 866 867 868 869*	9 Leporis β 25 Aurigæ χ Lalande 10346 119 Tauri 34 Orionis δ	8.9	3 Mar. 17 3 Feb. 18 4 Oct. 9 4 Oct. 9 3 Mar. 6 3 Mar. 17 3 Mar. 18 3 April 4 3 April 5 4 Sept. 20	18 57.8 18 38.9 19 5.6 19 37.3 20 56.2 20 56.0 20 55.9 20 56.1 20 56.1	52.2	-20 56 49.5 +32 0 55.6 18 4 9.4 +18 25 11.1 - 0 28 28.4 0 28 27.2 0 28 31.6 0 28 31.0 0 28 33.1 0 28 7.5	1 4.7 0 47.9 0 43.3 0 42.7 0 55.7 0 55.8 0 55.5 0 55.5	5 19 41.0 5 19 44.0 5 19 57.8 5 20 29.6 5 21 47.5 21 47.4 21 47.9 21 47.9	-20 55 44.8 +32 1 43.5 +18 4 52.7 +18 25 53.8 - 0 27 32.7 27 31.4 27 35.8 27 35.5 27 37.6 27 32.8
871 872 873 874 875 876 877 878 879 880	"	2 2 2 2 2 6.7 7 6	4 Oct. 2 4 Oct. 13 4 Oct. 15 5 Mar. 21 5 April 5 4 Oct. 9 3 Feb. 18 4 Oct. 15 4 Oct. 2 3 Mar. 6	21 1.8 21 2.3 21 2.0 21 2.7 21 2.6 20 56.8 23 11.1 24 35.4 24 47.5 24 41.8	52.3 43.9 51.6 44.2	0 28 8.2 0 28 5.3 0 28 4.0 0 28 22.7 — 0 28 20.5 +18 22 21.6 -17 59 30.1 +16 53 39.6 — 4 59 18.0 +20 59 39.9	0 34.8 0 35.2 0 35.4 0 50.3 0 50.0 0 41.0 0 56.9 0 35.9 0 28.6 0 42.8	21 47.5 21 47.7 21 47.4 21 47.5 21 47.6 5 21 49.1 5 23 55.0 5 25 27.0 5 25 31.7 5 25 41.8	+18 23 2.6 -17 58 33.2 +16 54 15.5 - 4 58 49.4
881 882* 883 884 885 886* 887 888 889	46 Orionis e	2 2 2	3 April 4 3 April 7 3 Mar. 17 3 Mar. 18 3 Mar. 21 3 April 4 3 April 9 4 Oct. 9 4 Oct. 13 5 April 5	24 41. 9 24 41. 7 25 13. 3 25 13. 2 25 12. 9 (25) 25 13. 1 25 18. 6 25 18. 9 5 25 19. 3	51. 1 51. 2 51. 4 45. 3 45. 2	20 59 39, 9 +20 59 36, 2 — 1 21 18, 9 1 21 21, 0 1 21 421, 5 1 21 20, 5 1 21 20, 5 1 20 55, 1 1 20 54, 8 — 1 21 16, 1	0 43.2 0 43.9 0 49.9 0 49.8 0 49.6 0 49.4 0 29.2 0 29.4 + 0 44.9	25 42.4 25 42.2 5 26 4.4 26 4.3 26 4.1 (26) 26 4.5 26 3.9 26 4.1 5 26 4.0	20 31, 2 20 31, 6 20 30, 9 20 31, 3 20 25, 9

(167)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equi	inox 1800, 0.
210.	2,000							а	ð
891 892 893 894 895 895 899 899	46 Orionis ε 125 Tauri 48 Orionis σ 50 Orionis ζ	2 2 6.7 5.4	5 Mar. 14 5 Mar. 21 4 Oct. 15 4 Oct. 2 3 Feb. 18 3 Mar. 6 3 Mar. 17 3 Mar. 18 3 April 4 3 April 7	h m s 5(25) 25 19.9 26 25.1 27 57.9 29 50.1 29 49.4 29 49.3 29 49.5 29 49.7 29 49.7	# 44. 4 55. 1 45. 0 50. 3 51. 2 50. 8 50. 8 51. 1 51. 1	0 / " - 1 21 16.4 - 1 21 14.9 +25 45 41.4 - 2 44 1.3 2 4 20.3 2 4 19.6 2 4 19.0 2 4 20.4 2 4 22.9 2 4 28.5	+ 0 45. 1 0 45. 2 0 36. 3 0 25. 2 0 42. 7 0 42. 8 0 43. 4 0 43. 4 0 43. 1 0 43. 0	h m s 5(26) 26 4, 3 5 27 20, 2 5 28 42, 9 5 30 40, 4 30 40, 1 30 40, 3 30 40, 8	- 1 20 31.3 20 29.7 +25 46 17.7 - 2 43 36.1 - 2 3 37.6 3 36.8 3 37.0 3 39.8 3 45.5
901 902 903 904* 905 906 907 908 909	" " " " " " " " " " " " " " " " " " "	2 2 2 2 2 2	3 April 30 4 Mar. 23 4 Sept. 20 4 Oct. 2 4 Oct. 9 4 Oct. 13 5 Mar. 14 5 Mar. 19 5 Mar. 21 5 April 5	29 48. 7 29 52. 6 29 55. 5 29 54. 6 29 55. 5 29 56. 3 29 56. 1 29 56. 4 29 56. 0	51. 4 47. 5 45. 6 45. 2 45. 0 44. 9 44. 1 44. 2 44. 2 44. 4	2 4 20.2 2 4 14.5 2 3 58.4 2 3 57.5 2 3 56.3 2 4 17.3 2 4 18.9 2 4 14.7	0 41.5 0 41.0 0 22.6 0 22.8 0 23.0 0 23.2 0 39.6 0 39.6 0 39.6	30 40.1 30 40.1 30 41.1 30 39.8 30 40.5 30 40.4 30 40.4 30 40.3 30 40.6	3 38.7 3 33.5 3 35.8 3 34.7 3 32.5 3 33.1 3 37.7 3 39.3 3 34.3 3 35.4
911 912 913 914* 915 916 917 918 919 920	Columbæ a 128 Tauri	9. 10 6. 7 7	4 Sept. 20 4 Oct. 13 4 Oct. 15 4 Oct. 2 3 Mar. 6 4 Oct. 13 4 Oct. 13 4 Oct. 15 3 Feb. 18 3 Mar. 6	31 52. 3 32 31. 1 32 31. 9 32 55. 3 33 7. 4 34 24. 2 34 24. 3 34 54. 1 35 26. 8 35 26. 1	32. 7 51. 4 51. 3 50. 5 42. 1 51. 4 51. 3 52. 0 41. 8 42. 1	-34 11 31.7 +15 58 41.9 15 58 44.3 +12 47 2.2 -22 29 33.1 +15 43 31.0 15 43 30.8 +17 38 6.3 -22 31 56.5 22 31 56.0	0 11.7 0 25.2 0 25.3 0 23.6 0 44.4 0 22.6 0 22.7 0 22.7 0 39.9 0 41.0	5 32 25.0 5 33 22.5 33 23.2 5 33 45.8 5 33 49.5 5 35 15.6 5 35 46.1 5 36 8.6 36 8.2	-34 11 20.0 +15 59 7.1 59 9.6 +12 47 25.8 -22 28 48.7 +15 43 53.6 +17 38 29.0 -22 31 16.6 31 15.0
921 922 †923 924 925 926 927 928* 929 930	133 Tauri	6 5 6 6 5.6 7	4 Sept. 20 4 Oct. 2 5 Mar. 14 5 Mar. 19 3 Mar. 1 4 Mar. 23 4 Oct. 15 4 Oct. 13 3 Sept. 25 4 Oct. 2	35 30.5 35 31.5 36 9.2 36 37.8 37 29.3 (37) 37 27.6 37 26.2 38 8.1 38 14.9	38. 0 50. 9 54. 9 60. 6 47. 4 50. 1 56. 2 53. 3 51. 1	-22 31 26.5 +13 48 30.0 27 32 45.0 +39 4 9.1 - 9 45 41.7 - 9 45 34.5 +12 34 11.9 27 53 12.3 9 47 28.6 14 13 47.8	0 9.4 0 20.6 0 21.4 0 16.8 0 34.4 0 33.0 0 17.8 0 22.1 0 16.7 0 17.1	36 8.5 5 36 22.4 5 37 4.1 5 37 38.4 5 38 16.7 (38) 5 38 17.7 5 38 22.4 5 39 1.4 5 39 6.0	31 17.1 +13 48 50.6 +27 33 6.4 +39 4 25.9 - 9 45 7.3 +45 1.5 +12 34 29.7 +27 53 34.4 + 9 47 45.3 +14 14 4.9
931 932 933 934 935 936 937 938* 939*	136 Tauri	6 6 6	4 Oct. 9 4 Sept. 20 4 Oct. 13 4 Oct. 15 3 Mar. 1 5 Mar. 14 5 Mar. 19 3 Mar. 6 3 Feb. 18 3 Feb. 26	38 15.8 39 49.6 40 10.2 40 9.8 41 32.8 41 40.4 41 41.0 42 0.2 43 26.8 43 26.7	42.7.	14 13 44.7 27 32 42.0 14 6 13.6 14 6 15.4 20 13 10.2 20 13 10.5 -20 54 41.3 + 7 21 6.0 7 21 1.6	0 17.1 0 19.8 0 14.6 0 14.7 0 18.5 0 16.9 0 17.0 0 30.9 0 19.8 0 20.0	39 6.7 5 40 46.5 5 41 0.9 41 0.5 5 42 32.3 42 32.3 42 32.8 5 42 42.9 5 44 20.8	14 1.8 +27 33 1.8 +14 6 28.2 6 30.1 +20 13 28.7 13 30.9 13 27.5 -20 54 10.4 + 7 21 25.8 21 21.6
941 942 943 944* 945 946 947 948 949 950	"		3 Mar. 1 3 Mar. 6 3 Mar. 9 3 Mar. 17 3 Mar. 18 3 Mar. 21 3 April 4 3 April 5 3 April 7 3 April 9	43 26, 4 43 26, 5 43 26, 3 43 26, 9 43 26, 2 43 25, 2 43 25, 9 43 26, 3 5 43 25, 8	54. 2 54. 2 54. 3 54. 4 54. 5 54. 7 54. 7 54. 7 54. 7 + 54. 8	7 21 5.7 7 21 6.1 7 21 4.5 7 21 3.2 7 21 4.5 7 21 4.5 7 21 4.2 7 21 3.1 7 21 0.7 7 21 0.4 + 7 21 3.4	0 20.2 0 20.2 0 20.3 0 20.3 0 20.3 0 20.3 0 20.2 0 20.2 0 20.2 + 0 20.1	44 20.6 44 20.7 44 20.6 44 21.3 44 20.6 44 19.7 44 20.8 44 20.6 44 21.0 5 44 20.6	21 25.9 21 26.3 21 24.8 21 23.5 21 24.8 21 24.5 21 23.3 21 20.9 21 20.6 + 7 21 23.5

(168)

No.	Name	Mag.	Date	App't α	Reduct'n	App't d	Reduction	Mean equ	inox 1800.0
								а	ð
951 952 953 954 955 956 957 958 959 960	58 Orionis α Lalande 11198,9 34 Aurigæ β 35 Aurigæ π 139 Tauri	7.6 2 2 6 6	3 April 16 3 April 30 4 Oct. 2 4 Oct. 13 4 Mar. 23 4 Sept. 20 4 Oct. 15 5 Mar. 14 5 Mar. 21 4 Oct. 9	h m s 5 43 25.7 43 25.8 43 32.4 43 46.6 43 42.7 43 45.8 43 45.9 43 47.9 44 0.4 44 39.6	+ 54.9 55.0 48.6 54.7 69.1 66.5 65.5 64.1 64.9 55.6	7 21 2.6 7 21 4.2 7 21 20.6 24 12 5.1 44 54 34.1 44 54 34.3 44 54 12.4 44 54 28.1 45 54 3.3 25 54 40.8	+ 0 19.9 0 19.4 0 7.8 0 13.2 0 5.9 0 20.5 0 19.9 0 5.6 0 5.1 0 12.6	5 44 20.6 44 20.8 44 21.0 5 44 41.3 5 44 51.8 44 52.3 44 51.4 44 52.0 5 45 5.3 5 45 35.2	0 / " +45 21 22.5 21 23.6 21 28.4 +24 12 18.3 +44 54 40.0 54 33.9 54 32.3 54 33.7 +45 54 8.4 +25 54 53.4
961 962 963 964 965* 966 967* 968 969 970	36 Aurigæ	7 7.8 7.8 8 7.8	5 Mar. 14 3 Sept. 25 4 Oct. 9 4 Oct. 13 3 Mar. 9 4 Oct. 2 4 Oct. 15 5 Mar. 14 4 Oct. 13 5 Mar. 14	(44) 44 58. 7 45 34. 7 45 34. 7 47 19.7 47 26. 0 47 26. 6 47 50. 0 48 42. 8 49 37. 8	66. 0 55. 5 55. 4 60. 8 54. 5 54. 1 62. 7 54. 0 62. 8	47 52 12.5 37 10 40.8 25 44 27.0 25 44 26.2 22 52 18.9 22 52 23.4 42 54 3.1 22 22 45.1 42 58 49.7	0 4.4 0 16.6 0 11.4 0 11.4 0 9.1 0 8.0 0 8.1 0 1.1 + 0 5.2 - 0 1.2	5(45) 5 46 4.7 5 46 30.2 46 30.1 5 48 20.5 48 20.7 5 48 52.7 5 49 36.8 5 50 40.6	+47 52 16.9 +37 10 57.4 +25 44 38.4 44 37.6 +22 52 28.0 52 31.5 +42 54 4.2 +22 22 50.3 +42 58 48.5
971 972 973 974 975* 976 977 978 979 980	1 Geminorum h	6 4 5	3 Feb. 26 3 Mar. 6 3 Mar. 9 3 Mar. 17 3 Mar. 18 3 Mar. 21 4 Oct. 2 4 Oct. 9 4 Oct. 13 4 Oct. 15	50 57. 1 50 56. 9 50 56. 6 50 56. 5 50 56. 7 50 56. 7 51 2. 9 51 3. 2 51 3. 6 51 3. 2	60. 8 60. 9 61. 0 61. 1 61. 2 54. 7 54. 5 54. 4 54. 3	23 15 29, 8 23 15 36, 6 23 15 33, 0 23 15 34, 1 23 15 34, 1 23 15 37, 8 23 15 36, 9 23 15 33, 8 23 15 34, 1	+ 0 3.7 0 3.6 0 3.7 0 3.6 0 3.5 0 3.7 0 3.4 0 3.4 0 3.5	5 51 57.9 51 57.8 51 57.6 51 57.6 51 57.8 51 57.3 51 57.6 51 57.7 51 58.0 51 57.5	+23 15 33.5 15 40.2 15 36.7 15 36.9 15 37.6 15 34.2 15 40.3 15 37.2 15 37.6
981 982 983 984 985 986 987 988 989 990*	2 Geminorum	5 5 7.8 7.8 7.8 7.8 7.8	5 Mar. 14 5 Mar. 19 5 Mar. 21 3 Mar. 9 4 Oct. 9 4 Oct. 13 4 Oct. 15 4 Oct. 2 3 Feb. 26 3 Mar. 1	(51) 51 5. 0 51 4. 7 53 35. 6 53 42. 9 53 42. 7 53 42. 0 54 31. 3 56 28. 9 56 28. 8	53. 1 53. 1 61. 1 54. 7 54. 5 54. 5 52. 0 60. 3 60. 3	23 15 32.5 23 15 31.0 23 15 32.9 23 38 34.9 23 38 27.1 23 38 34.5 23 38 33.7 16 22 26.2 22 12 30.5 22 12 37.8	0 3.8 0 4.0 + 0 4.0 - 0 0.3 0 0.0 + 0 0.1 + 0 0.4 - 0 3.6 0 4.0 0 4.0	(51) 51 58. 1 51 57. 8 5 54 36. 7 54 37. 6 54 37. 2 54 36. 5 5 55 23. 3 5 57 29. 2 57 29. 1	15 36.3 15 35.0 15 36.9 +23 38 34.6 38 27.1 38 34.6 38 34.1 +16 22 22.6 +22 12 26.5 12 33.8
991 992 993 994 995 996 997 998 999	3 Geminorum	7.8 7.6 7.8 7 7 8 6 6	3 Mar. 6 4 Oct. 15 5 Mar. 14 4 Oct. 2 4 Oct. 9 5 Mar. 14 3 Sept. 25 4 Oct. 13 5 Mar. 14 3 Feb. 18	56 28. 4 56 34. 8 56 36. 8 56 40. 5 56 41. 2 56 58 16. 9 58 21. 2 58 57. 2 59 11. 4	60. 4 53. 9 52. 6 54. 7 54. 5 59. 5 54. 9 52. 4 59. 1	22 12 34.6 22 12 32.7 22 12 30.1 23 8 0.8 23 7 58.2 23 7 58.4 24 27 6.1 21 53 58.3 19 49 22.4	0 4.1 0 4.1 0 2.8 0 4.0 0 4.0 0 3.2 0 6.7 0 5.7 0 5.7 0 6.2	57 35.7 57 5 59 16.4 59 16.1 5 59 49.6	12 30.5 12 28.6 12 27.3 +23 7 56.8 7 54.2 7 55.2 +24 26 59.9 26 58.4 +21 53 52.6 +19 49 16.2
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	6 Geminorum Lalande 11791 44 Aurigæ κ 7 Geminorum η	7 6 7 4.5	4 Oct. 9 4 Oct. 15 4 Oct. 2 5 Mar. 21 3 Feb. 26 3 Mar. 1 3 Mar. 6 3 Mar. 9 3 Mar. 17	59 17.4 5 59 16.9 6 0 55.5 1 41.9 1 47.8 1 48.1 1 47.5 1 47.5 1 47.3 6 1 47.1	54. 4 54. 2 52. 9 55. 8 60. 3 60. 4 60. 5 60. 6 + 60. 7	22 56 28 6 22 56 28 9 18 43 23 8 29 33 42 1 22 33 13 6 22 33 11 6 22 33 12 9 22 33 13 4 4 +22 33 15 1	0 7.5 0 7.4 0 11.2 0 11.8 0 11.8 0 11.9 0 12.0 0 11.9 — 0 12.1	0 11.1 6 1 48.4 6 2 37.7 6 2 48.1 2 48.5 2 47.9	+22 56 21.1 56 21.5 +18 43 12.6 +29 33 30.3 +22 33 1.8 32 59.7 33 1.0 33 1.6 33 2.5 +22 33 3.0

Digitized by Google

(169)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	ainox 1800, 0
	2.00.00		240					а	δ
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020	7 Geminorum 7	4.5 4.5 4.5 4 8 7.8	3 Mar. 18 3 Mar. 21 3 April 4 3 Sept. 25 4 Oct. 9 4 Oct. 13 4 Oct. 15 5 Mar. 14 3 Mar. 9 3 Mar. 17	h m s 6 1 47.6 1 47.4 1 47.3 1 49.6 1 54.1 1 1 54.5 1 54.0 1 55.7 3 45.2 3 45.0	** 60.7 60.8 61.0 58.7 54.3 54.1 52.7 61.1 61.3	+22 33 14.8 22 33 15.5 22 33 12.3 22 33 17.1 22 33 14.3 22 33 15.9 22 33 16.5 23 47 56.3 23 47 53.0	0 12. 1 0 12. 2 0 11. 9 0 12. 4 0 11. 1 0 11. 0 0 10. 9 0 9. 7 0 15. 2 0 15. 5	h m s 6 2 48.3 2 48.3 2 48.3 2 48.4 2 48.6 2 48.1 2 48.4 6 4 46.3 4 46.3	33 3.3 33 0.4 33 4.7 33 3.2 33 1.0 33 5.0 33 6.8
1021 1022 1023 1024 1025 1026* 1027 1028 1029 1030	10 Geminorum 11 Geminorum 12 Geminorum Lalande 12053 Lalande 12057	7 7 7.8 7 7 7 7 7 6 4.5	3 Mar. 18 4 Oct. 2 3 Feb. 18 4 Oct. 9 4 Oct. 13 3 Feb. 26 4 Oct. 15 5 Mar. 14 5 Mar. 19	3 45, 2 3 51, 8 5 41, 3 5 48, 2 5 48, 2 6 14, 2 6 12, 1 7 40, 3 7 50, 4 (7)	61. 3 55. 1 60. 8 54. 7 54. 6 54. 6 60. 7 53. 5 49. 7	23 47 51.8 23 47 53.7 23 40 13.1 23 40 9.1 23 340 9.2 23 32 22.4 23 20 39.5 21 10 9.5 14 43 36.5 14 43 28.9	0 15.5 0 13.2 0 17.8 0 15.8 0 15.7 0 16.3 0 18.5 0 18.9 0 14.5	4 46.5 4 46.9 6 6 42.1 6 42.9 6 43.2 6 7 12.8 6 8 33.8 6 8 40.1 6 (8)	+23, 20, 21, 0
1031 1032 1033 1034 1035 1036 1037 1038 1039* 1040	248 Mayer	7	4 Oct. 15 3 Feb. 18 3 Feb. 26 3 Mar. 6 3 Mar. 17 3 Mar. 17 3 Mar. 18 3 Mar. 21 3 April 4 3 April 9	8 22. 8 9 51. 2 9 51. 0 9 50. 5 9 50. 5 9 50. 6 9 50. 5 9 50. 4	53. 5 60. 3 60. 4 60. 5 60. 7 60. 7 60. 8 61. 0 61. 2	21 12 54, 1 22 36 33, 6 22 36 30, 0 22 36 32, 0 22 36 33, 1 22 36 33, 1 22 36 32, 8 22 36 34, 1 22 36 35, 9 22 36 32, 2	0 19.8 0 23.5 0 23.6 0 23.7 0 23.7 0 23.8 0 23.8 0 23.8 0 23.8	6 9 16.3 6 10 51.5 10 51.6 10 51.5 10 51.3 10 51.2 10 51.2 10 51.4 10 51.5	+21 12 34.3 +22 36 10.1 36 6.4 36 8.3 36 9.4 36 10.6 36 9.0 36 10.3 36 12.1 36 8.5
1041 1042 1043 1044 1045 1046 1047 1048 1049	ι	3 5 3 3 6.7 7.8 7	3 Sept. 25 4 Oct. 2 4 Oct. 9 5 Mar. 14 5 Mar. 21 5 Mar. 21 3 Feb. 18 3 Mar. 9 3 Mar. 18	9 52. 9 9 57. 2 9 57. 2 9 59. 8 9 58. 8 12 5. 8 (12) 12 19. 4 12 20. 6 12 21. 4	33, 4	22 36 31.5 22 36 32.9 22 36 28.8 22 36 30.3 +22 36 27.8 -29 58 59.8 -29 59 1.6 +23 32 47.4 23 32 44.7 23 32 46.7	0 23.8 0 21.7 0 21.6 0 20.0 0 19.9 0 6.3 0 6.3 0 27.4 0 27.7 0 27.8	10 51.7 10 51.7 10 51.5 10 52.4 10 51.6 6 12 39.2 (12) 6 13 20.1 13 21.6 6 13 22.5	36 7.7 36 11.2 36 7.2 36 10.3 •36 7.9 -29 59 5.5 59 7.9 +23 32 20.0 32 17.1 +23 32 18.9
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060	Piazzi 89	7 7 6 6 7.8 7.8 7 6.7 6.7	3 Mar. 17 4 Oct. 9 4 Oct. 13 4 Oct. 15 5 Mar. 14 3 Feb. 26 5 Mar. 14 4 Oct. 13 4 Oct. 13 4 Oct. 13	12 22.3 12 29.3 12 28.6 12 28.4 12 30.0 14 59.5 15 9.8 16 11.8	61. 0 54. 7 54. 5 54. 4 52. 9 60. 0 51. 9 53. 4 53. 3 53. 3	23 25 50, 6 23 25 43, 8 23 25 48, 5 23 25 52, 2 23 25 49, 4 21 44 55, 0 20 54 24, 0 20 36 37, 9 20 36 42, 9 20 19 58, 2	0 27.8 0 24.6 0 24.5 0 24.4 0 23.4 0 27.5 0 25.7 0 28.9 0 28.8 0 30.4	13 24.0 13 23.1 13 22.8 13 22.9 6 13 43.0 6 15 51.4 6 16 2.9 16 3.1	+23 25 22.8 25 19.2 25 24.0 25 27.8 25 26.0 +21 44 27.5 +20 53 58.3 +20 36 9.0 36 14.1 +20 19 27.8
1061 1062 1063* 1064 1065 1066 1067 1068 1069 1070*	Bessel, W.655	4 4 7.6 6 8 7.8 6.7 7 7 7.8	4 Oct. 15 5 Mar. 19 4 Oct. 9 4 Oct. 15 3 Mar. 6 3 Mar. 17 4 Oct. 13 5 Mar. 19 5 Mar. 14 3 Feb. 26	16 11.6 16 13.7 18 42.0 18 42.5 18 47.4 18 55.6 19 15.6 19 47.1 19 47.6 6 21 5.9	53. 2 51. 8 52. 2 52. 0 58. 2 60. 5 51. 6 50. 8 50. 7 + 60. 1	20 20 1.2 20 19 52.8 17 4 37.9 17 4 31.4 17 33 13.5 22 19 22.7 16 2 24.3 17 54 50.5 17 55 12.7 +22 16 36.3	0 30, 3 0 27, 0 0 34, 5 0 34, 6 0 35, 0 0 37, 0 0 35, 8 0 30, 7 0 39, 7	19 34.5 6 19 45.6 6 19 56.1 6 20 7.2 6 20 37.9 6 20 38.3	19 30.9 19 25.8 +17 4 3.4 3 56.8 +17 32 38.5 +22 18 45.7 +16 1 48.5 +17 54 19.8 +17 54 42.0 +22 15 56.6

(170)

No.	Name	Mag.	. Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800. 0
				pp v u		PF	200 411011011	а	δ
1071 1072 1073 1074* 1075 1076 1077 †1078 1079 1080	Lalande 12539 . 49 Aurigæ	7.8 5.6 7.8 7 6.7 7	3 Mar. 18 4 Oct. 15 4 Oct. 9 3 Mar. 6 4 Oct. 13 5 Mar. 17 4 Oct. 13 5 Mar. 17	h m s 6 21 4.3 21 39.3 21 57.9 22 24.1 22 30.2 22 31.8 22 22 54.2 23 35.1 23 36.3	** 60.8 56.5 53.1 1 57.7 51.8 50.2 60.4 52.0 50.4	+22 16 29.3 28 10 24.8 19 34 45.6 16 21 30.8 16 21 28.5 16 21 27.5 22 16 29.6 16 57 22.5 16 57 21.1	0 40.7 0 34.7 0 38.3 0 39.9 0 40.0 0 33.6 0 33.6 0 42.7 0 41.2 0 35.2	6 22 55.8 6 22 35.8 6 22 51.0 6 23 21.8 23 22.0 23 22.0 23 24.6 6 24 27.1 24 26.7	+22 15 49.2 +28 9 50.1 +19 34 7.3 +16 20 50.9 20 48.5 20 48.8 20 53.9 +22 15 46.9 +16 56 41.3 56 45.9
1081* 1082 1083 1084 1085 1086 1087 1088 1089 1090	50 Aurigæ	5.6 7 7 6	5 Mar. 21 3 Feb. 18 3 Mar. 18 3 Mar. 21 4 Oct. 15 3 Feb. 18 3 Feb. 26 3 Mar. 6 3 Apr. 4 3 Apr. 5	23 59. 9 24 40. 5 24 40. 1 24 44. 3 (25) 25 11. 6 25 11. 5 25 11. 1 25 10. 9	62. 4 60. 6 61. 1 61. 1 56. 9 57. 6 57. 7 58. 2 58. 2	42 39 44.4 23 46 14.8 23 46 16.6 23 46 19.3 29 9 9.2 16 34 10.3 16 34 5.6 16 34 6.3 16 34 5.4	0 45.3 0 45.8 0 45.9 0 38.3 0 44.0 0 44.0 0 43.9 0 44.1	6 25 2.3 6 25 41.1 25 41.6 25 41.2 6 25 41.2 6 26 9.2 26 9.2 26 9.3 26 9.1	+42 38 59.1 +23 45 29.5 45 30.8 45 33.4 +29 8 30.9 +16 33 21.6 33 21.6 33 22.2 33 21.3
1091 1092 1093 1094 1095* 1096* 1097 1098 1099 1100		2.3	3 Apr. 9 3 Apr. 16 3 Apr. 30 3 Sept. 25 4 Mar. 22 4 Mar. 23 4 Mar. 26 4 Sept. 24 4 Oct. 2 4 Oct. 9	25 10. 8 25 10. 8 25 10. 7 25 12. 9 25 15. 4 25 15. 2 25 14. 4 25 16. 6 25 17. 3 25 17. 3	58. 3 58. 4 58. 6 56. 2 54. 1 54. 2 54. 2 52. 4 52. 2 52. 0	16 34 7.7 16 34 3.8 16 34 9.6 16 34 9.6 16 34 5.0 16 34 5.0 16 34 7.5 16 34 5.4 16 34 6.1	0 44.2 0 44.2 0 44.4 0 47.6 0 41.0 0 41.1 0 44.2 0 43.9 0 43.7	26 9.1 26 9.2 26 9.3 26 9.1 26 9.5 26 8.6 26 9.0 26 9.5 26 9.3	33 23.5 33 19.6 33 25.2 33 22.0 33 22.8 33 23.3 33 23.3 33 23.3 33 21.5 33 22.4
1101 1102 1103 1104 1105 1106 1107 1108 1109*	"	3 5 2.3 2.3 5 7 7.8 6	4 Oct. 13 5 Mar. 14 5 Mar. 19 5 Mar. 21 4 Mar. 23 5 Mar. 19 5 Mar. 21 4 Oct. 9 3 Feb. 26 4 Oct. 15	25 18. 1 (25) 25 19. 0 25 19. 3 (27) 27 28. 2 27 27. 1 27 47. 6 28 52. 2 28 57. 4	51. 8 50. 2 50. 3 63. 6 63. 6 56. 8 57. 6 51. 8	16 34 7.7 16 34 3.9 16 33 56.1 16 34 1.5 44 42 54.8 44 42 48.0 44 42 52.4 28 22 42.1 16 34 59.3 16 35 4.0	0 43.5 0 37.2 0 37.2 0 37.2 0 53.9 0 49.6 0 49.6 0 42.8 0 49.3 0 58.6	26 9.9 (26) 26 9.2 26 9.6 6(28) 28 31.8 28 30.7 6 28 44.4 6 29 49.8 29 49.2	33 24. 2 33 26. 7 33 18. 9 33 24. 3 +44 42 0. 9 41 58. 4 42 2. 8 +28 21 59. 3 +16 34 10. 0 34 5. 4
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120	Groombridge 1213 26 Geminorum . 27 Geminorum ε	6	5 Mar. 19 3 Feb. 18 3 Mar. 6 3 Feb. 18 3 Mar. 6 3 Mar. 6 3 Mar. 21 3 Apr. 4 3 Sept. 25 4 Mar. 23	29 8. 4 29 47. 4 29 46. 7 30 35. 4 30 35. 4 30 35. 2 30 35. 3 30 37. 5 30 39. 9	63, 5 58, 0 58, 2 61, 3 61, 5 61, 7 61, 8 62, 0 60, 0 57, 7	44 42 10.0 17 50 31.1 17 50 29.3 25 19 48.1 25 19 49.7 25 19 48.2 25 19 49.8 25 19 48.2 25 19 45.8 25 19 44.8	0 51.7 0 51.0 0 51.1 0 54.2 0 54.7 0 54.9 0 55.0 0 55.1 0 52.0 0 51.5	6 30 11.9 6 30 45.4 30 44.9 6 31 36.7 31 36.9 31 37.1 31 37.0 31 37.3 31 37.5 31 37.6	+44 41 18.3 +17 49 40.1 49 38.2 +25 18 53.9 18 55.0 18 53.3 18 54.8 18 53.1 18 53.8 18 53.3
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130	" " " 56 Aurigee 31 Geminorum §2" Rümker 1993	3 3 3 6 6	4 Mar. 26 4 Sept. 24 4 Oct. 2 4 Oct. 9 4 Oct. 13 5 April 5 5 Mar. 21 4 Mar. 23 4 Mar. 26 5 Mar. 21	30 38.7 30 40.9 30 41.5 30 42.0 30 42.5 31 15.6 33 11.0 33 11.0 6 35 9.3	57. 8 56. 0 55. 7 55. 5 55. 3 53. 9 62. 9 52. 8 52. 8 59. 3	25 19 44. 1 25 19 41. 3 25 19 41. 8 25 19 41. 5 25 19 38. 2 25 19 41. 5 43 46 31. 5 13 6 45. 5 13 6 45. 4 +37 44 10. 0	0 51.5 0 48.1 0 47.8 0 47.7 0 47.5 0 47.1 0 54.1 0 50.6 0 50.6 0 56.9	6 34 3.8 34 3.8	18 52.6 18 53.2 18 54.0 18 53.8 18 50.7 18 54.4 +43 45 37.4 +13 5 54.9 5 54.8 +37 43 13.1

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
110.	Name	mag.	Date	жүр с с	Teduct II	дрр г о	1 toution	а	8
1131 1132 1133 1134 1135 1136 1137 1138 1139*	Rümker 1993 - Sirius	7	5 Mar. 23 3 Feb. 18 3 Feb. 26 3 Mar. 6 3 Mar. 18 3 Mar. 21 3 April 4 3 April 9 3 April 16 3 April 19	h m s 6 35 8,6 35 36,0 35 36,1 35 36,1 35 35,1 35 35,8 35 35,6 35 35,5	+ 59. 4 44. 3 44. 4 44. 5 44. 7 44. 8 45. 0 45. 1 45. 2 45. 3	+37 44 10.4 -16 25 54.4 16 25 56.0 16 25 58.2 16 25 58.3 16 26 1.8 16 26 4.3 16 26 0.9 16 26 5.1	- 0 57.0 0 50.8 0 49.9 0 49.2 0 48.6 0 48.5 0 48.7 0 49.1 0 49.2	h m s 6 36 8.0 6 36 20.3 36 20.7 36 20.6 36 20.8 36 20.7 36 20.7 36 20.7	+37 43 13.4 -16 26 45.2 26 45.9 26 47.4 26 46.9 26 50.3 26 52.8 26 51.4 26 50.0 26 54.3
1141 1142 1143 1144 1145 1146 1147* 1148 1149* 1150		1 1 1	3 April 28 3 April 29 3 April 30 3 May 15 3 Sept. 25 4 Mar. 22 4 Mar. 23 4 Mar. 26 4 June 16 4 Sept. 24	35 34, 9 35 35, 1 35 35, 5 35 37, 1 35 39, 5 35 38, 5 35 38, 0 35 40, 0	45. 4 45. 4 45. 5 45. 6 43. 6 41. 8 41. 8 41. 9 42. 7 40. 7	16 26 2.2 16 26 0.3 16 26 1.1 16 26 2.5 16 25 30.8 16 26 5.5 16 26 2.3 16 25 56.5 16 25 39.1	0 50, 0 0 50, 1 0 50, 2 0 52, 0 0 72, 7 0 44, 5 0 44, 4 0 44, 5 0 68, 3	36 20, 3 36 20, 5 36 20, 6 36 21, 1 36 20, 7 36 20, 3 36 20, 3 36 20, 9 36 20, 7	26 52, 2 26 50, 4 26 51, 3 26 54, 5 26 43, 5 26 50, 0 26 46, 7 26 48, 4 26 43, 3 26 47, 4
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160	"	1 1 1 1 1 1 4.5	4 Oct. 2 4 Oct. 9 4 Oct. 13 4 Oct. 15 5 Mar. 14 5 Mar. 19 5 Mar. 30 5 April 5 5 Mar. 21 4 Mar. 22	35 40, 0 35 40, 1 35 40, 4 35 40, 2 35 41, 8 35 42, 1 35 41, 4 35 34, 5 (38)	40. 4 40. 2 40. 1 40. 1 38. 7 38. 8 39. 0 39. 2 61. 7	16 25 43.1 16 25 38.9 16 25 40.4 16 25 36.9 16 26 9.5 16 26 11.9 -16 26 13.7 +42 1 5.5 13 38 45.1	0 68. 1 0 67. 8 0 67. 6 0 67. 3 0 40. 0 0 39. 7 0 39. 6 0 39. 6 0 58. 9 0 55. 9	36 20, 4 36 20, 3 36 20, 5 36 20, 5 36 20, 5 36 21, 1 36 20, 6 6 36 36, 2 6 (39)	26 51.2 26 46.7 26 48.0 26 44.2 26 49.5 26 50.5 26 51.5 26 53.3 +42 0 6.6 +13 37 49.2
1161 1162 1163 1164 1165 1166 1167* 1168 1169 1170	59 Aurigæ	6 6 6 6 6	5 Mar. 21 5 Mar. 23 3 Feb. 26 5 Mar. 14 4 Oct. 9 5 Mar. 21 4 Oct. 9 4 Mar. 22 4 Mar. 23 5 Mar. 19	38 15.3 38 15.1 38 33.7 38 38.5 39 11.6 40 39.1 42 4.4 41 51.7 41 51.4 41 56.9	60. 0 60. 0 59. 8 57. 3 61. 9 64. 5 55. 6 68. 5 68. 5	39 6 33.5 39 6 29.1 22 0 1.9 34 12 20.4 38 44 57.6 46 31 48.3 25 37 45.6 45 21 27.7 45 21 31.6 45 21 20.8	0 61.2 0 61.3 0 64.8 0 59.9 0 54.0 0 66.5 0 61.6 0 73.4 0 73.4	6 39 15.3 39 15.1 6 39 33.5 6 39 35.8 6 40 13.5 6 41 43.6 6 43 0.0 6 43 0.2 42 59.9 43 0.5	+39 5 32.3 5 27.8 +21 58 57.1 +34 11 20.5 +38 44 3.4 +46 30 41.6 +25 36 44.0 +45 20 18.0 20 12.5
1171 1172 1173* 1174 1175 1176 1177 1178 1179 1180	38 Geminorum & Lalande 13377 271 Mayer 39 Geminorum	6 6 8 7.8 7.8 7	5 Mar. 21 3 Mar. 6 4 Oct. 13 4 Oct. 15 3 Feb. 26 5 Mar. 23 5 Mar. 19 4 Mar. 22 4 Mar. 23 4 Oct. 9	41 56.2 42 25.3 42 30.7 42 30.0 44 3.5 44 10.1 45 13.3 45 29.2 (45) 45 31.9	63.7 56.3 50.7 50.6 55.9 48.8 50.7 57.9	45 21 24.9 13 26 15.2 13 26 15.2 13 26 18.6 12 50 33.3 12 50 28.7 18 10 8.8 26 20 53.1 26 20 49.0	0 67.9 0 67.8 0 67.1 0 66.7 0 69.9 0 59.5 1 2.6 1 11.7 1 11.8 1 6.4	42 59, 9 6 43 21, 6 43 21, 4 43 20, 6 6 44 59, 4 44 58, 6 6 46 4, 0 6 46 27, 1 (46) 46 27, 8	20 17.0 +13 25 7.4 25 8.1 25 11.9 +12 49 23.4 49 29.2 +18 9 6.2 +26 19 41.4 19 45.1 19 42.6
1181 1182* 1183 1184 1185 1186 1187 1188* 1189 1190	40 Geminorum Bessel, W. 1544,5 Piazzi 294 274 Mayer 41 Geminorum	6 7 6 7.8 7.8 8 7	4 Oct. 15 4 Mar. 22 4 Mar. 23 4 Oct. 9 5 Mar. 21 3 Feb. 26 4 Oct. 13 3 Feb. 26 4 Mar. 23 4 Mar. 26	45 31.5 46 8.1 (46) 46 10.8 46 53.7 47 24.4 47 37.9 47 48.5 47 51.7 6 47 52.0	55. 7 57. 8 55. 8 54. 2 57. 2 54. 6 57. 3 53. 8 + 53. 9	26 20 51.7 26 11 32.6 26 11 35.7 26 11 19.5 27 9 29.9 16 13 21.0 16 21 45.5 16 21 42.8 +16 21 43.2	1 6.0 1 12.5 1 12.5 1 7.3 1 7.8 1 15.7 1 9.8 1 16.3 1 11.4	46 27. 2 6 47 5. 9 (47) 47 6. 6 6 47 47. 9 6 48 21. 6 6 48 32. 5 6 48 45. 8 48 45. 5 6 48 45. 9	19 45.7 +26 10 20.1 10 23.2 10 12.2 +27 8 22.1 +16 12 6.9 +23 42 11.2 +16 20 29.2 20 31.4 +16 20 31.8

(172)

No.	Name	Mag.	Date	App't a	Reduct'n	App't 8	Reduction	Mean equ	inox 1800.0
								а	ð
1191 1192 1193* 1194 1195 1196 1197 1198 1199 1200	41 Geminorum	6 7 6.7 6 7 6 6 6 6.7	4 Oct. 15 5 Mar. 14 5 Mar. 19 5 Mar. 23 3 Mar. 6 4 Mar. 22 5 Mar. 14 5 Mar. 21 4 Oct. 15 5 Mar. 21	h m s 6 47 53.2 47 56.0 47 56.2 47 55.7 49 12.4 49 15.7 49 20.1 49 19.8 49 54.4	+ 51.7 49.9 50.0 50.0 60.9 57.1 52.9 53.0 52.4	0 / " +16 21 41.5 16 21 35.6 16 21 35.4 16 21 35.4 24 30 34.9 24 30 25.3 24 30 26.4 24 30 21.6 18 2 49.1 18 2 45.3	- 1 12.6 1 5.4 1 5.3 1 5.4 1 21.0 1 16.1 1 9.8 1 9.9 1 14.6 1 9.7	h m s 6 48 44.9 48 45.9 48 46.2 48 45.7 6 50 13.3 50 12.8 50 12.8 6 50 46.8	+16 20 28.9 20 30.2 20 29.1 20 30.0 +24 29 13.9 29 9.2 29 16.6 29 11.7 +18 1 34.5 1 35.6
1201 1202 1203 1204 1205 1206* 1207* 1208 1209 1210	21 Canis Maj. ε 43 Geminorum ζ 44 Geminorum ω²	6.7 3.2 2.3 6.7	5 Mar. 23 4 Mar. 26 4 Oct. 9 4 Oct. 13 5 Mar. 19 3 Mar. 6 3 Apr. 4 4 Mar. 22 5 Mar. 21 3 Feb. 26	49 56. 4 (50) 50 10. 6 50 10. 6 50 10. 8 51 15. 0 51 14. 7 51 18. 3 51 22. 4 52 15. 6	50. 6 35. 5 35. 4 50. 2 59. 2 59. 7 55. 5 51. 6 60. 0	+18 2 43.7 -28 41 36.3 28 40 53.8 -28 40 54.0 +16 57 58.2 20 52 24.4 20 52 25.1 20 52 16.8 20 52 10.7 22 56 45.0	1 8.4 1 0.8 1 29.6 1 29.2 1 8.3 1 22.6 1 23.2 1 17.5 1 11.1 1 24.5	50 47.0 6(50) 50 46.1 50 46.0 6 51 1.0 6 52 14.2 52 14.4 52 13.8 52 14.0 6 53 15.6	1 35.3 -28 42 37.1 42 23.4 42 23.2 +16 56 49.9 +20 51 1.8 51 1.9 50 59.3 50 59.6 +22 55 20.5
1211 1212 1213* 1214 1215 1216 1217* 1218 1219 1220	Lalande 13724,5 .	7 6.7 6.7 7 7.8 7.8 8.9 6.7	4 Mar. 23 5 Mar. 14 5 Mar. 19 5 Mar. 23 4 Oct. 15 5 Mar. 21 3 Feb. 26 5 Mar. 21 3 Mar. 6 3 Mar. 6	52 18, 9 52 24, 0 52 23, 2 52 23, 0 53 55, 2 53 56, 6 55 30, 6 55 38, 8 55 54, 8 55 56, 4	56. 4 52. 3 52. 4 52. 4 56. 5 54. 6 63. 5 55. 4 57. 3 57. 2	22 56 46.9 22 56 40.3 22 56 43.0 22 56 36.6 28 29 30.7 28 29 30.8 30 28 34.5 30 28 27.3 16 27 39.3 16 15 45.4	1 19.6 1 13.1 1 13.1 1 13.2 1 16.0 1 16.9 1 29.9 1 19.7 1 27.9 1 27.8	53 15.3 53 16.3 53 15.6 53 15.4 6 54 51.7 54 51.2 6 56 34.1 56 34.2 6 56 52.1 6 56 53.6	55 27.3 55 27.2 55 29.9 55 23.4 +28 28 14.7 28 14.7 4.30 27 4.6 27 7.6 +16 26 11.4 +16 14 17.6
1221 1222* 1223 1224 1225 1226 1227 1228 1229 1230	63 Aurigæ	4.5 6 3 7	4 Mar. 26 4 Mar. 22 4 Mar. 23 4 Oct. 9 3 Feb. 26 4 Oct 15 5 Mar. 21 5 Mar. 23 3 Mar. 6 5 Mar. 14	56 0.0 56 48.2 56 48.5 56 50.4 57 20.4 57 28.4 57 28.8 57 56.3 58 4.2	53. 7 64. 4 64. 4 62. 3 63. 5 57. 4 55. 4 55. 5 62. 0 53. 9	16 15 37.2 39 39 26.4 39 39 25.4 39 39 7.9 30 35 4.9 30 34 51.0 30 34 55.4 27 11 50.2 27 11 40.8	1 22. 1 1 31. 2 1 31. 3 1 16. 2 1 33. 8 1 19. 7 1 21. 9 1 22. 0 1 34. 0 1 21. 2	56 53.7 6 57 52.6 57 52.9 57 52.7 6 58 23.9 58 23.9 58 23.8 58 24.3 6 58 58.3 58 58.3	14 15. +39 37 55.5 37 54. 37 51. +30 33 31. 33 32.5 33 35. 33 33. +27 10 16.5 10 19.6
1231 1232 1233 1234 1235 1236 1237 1238 1239* 1240	1036 Bradley	8 7.8 6 7.8 7.8 7 8	4 Oct. 13 5 Mar. 19 4 Mar. 22 4 Oct. 9 5 Mar. 14 3 Mar. 6 4 Mar. 23 4 Mar. 26 4 Oct. 13 3 Feb. 26	59 0.1 59 1.4 59 19.1 59 21.4 (59) 59 28.3 59 32.9 6 59 33.0 7 0 31.1 0 55.8	51. 5 49. 6 56. 9 55. 0 61. 4 57. 6 57. 6 51. 5	15 40 18.6 15 40 10.3 24 28 26.4 24 28 23.6 24 28 24.0 26 5 43.0 26 5 39.1 26 5 39.1 15 31 31.4 16 30 38.9	1 27. 1 1 18. 7 1 29. 3 1 24. 7 1 22. 2 1 35. 8 1 30. 2 1 30. 3 1 28. 6 1 34. 8	6 59 51.6 59 51.0 7 0 16.0 0 16.4 (0) 7 0 29.7 0 30.5 0 30.6 7 1 22.6 7 1 53.0	38 51.0
1241 1242 1243 1244 1245 1246 1247 1248* 1249 1250	1048 Bradley	6.5 6.7 6 6.7 7.8 6.7 6.7 6.7	4 Oct. 15 5 Mar. 21 5 Mar. 23 5 Mar. 19 3 Mar. 6 4 Mar. 23 4 Mar. 26 5 Mar. 19 5 Mar. 23 4 Mar. 22	1 0.6 1 3.0 1 2.7 1 20.4 1 26.0 1 29.7 1 29.3 1 33.7 (1) 7 2 28.0	51.8 49.9 49.9 53.0 61.0 57.2 57.2 53.1 + 58.5	16 30 36.7 16 30 28.9 16 30 30.4 25 3 48.3 25 14 48.5 25 14 43.5 25 14 33.5 25 14 34.5 +28 15 29.3	1 29. 2 1 21. 5 1 21. 5 1 24. 7 1 38. 3 1 32. 5 1 25. 1 1 25. 2 — 1 34. 7	1 52.4 1 52.9 1 52.6 7 2 13.4 7 2 27.0 2 26.9 2 26.5 2 26.8 (2) 7 3 26.5	29 7.5 29 7.4 29 8.5 +25 2 23.6 +25 13 10.5 13 11.6 13 8.4 13 9.5 +28 13 54.6

(173)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800, 0
								a	δ
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260	53 Geminorum . 64 Aurigæ	6 5 7.8 7.8 8 8 7 7	4 Oct. 9 5 Mar. 14 4 Oct. 13 5 Mar. 19 5 Mar. 21 5 Mar. 23 4 Mar. 23 4 Mar. 26 3 Feb. 26 3 Mar. 6	h m s 7 2 30.5 3 6.1 3 42.1 3 43.6 3 44.4 3 44.2 3 40.7 4 21.8 5 38.4 5 38.2	* 56. 6 60. 3 55. 0 52. 9 53. 0 57. 9 53. 7 57. 3 57. 4	+28 15 21.3 41 14 55.2 24 54 3.6 24 53 57.2 24 54 0.2 24 54 0.0 27 3 50.7 16 30 41.8 16 55 0.2 16 55 1.7	m s -1 27.3 1 32.0 1 29.8 1 27.6 1 27.7 1 35.9 1 33.2 1 41.5 1 41.6	h m s 7 3 27.1 7 4 6.4 7 4 37.1 4 36.5 4 36.4 4 37.2 7 4 38.6 7 5 15.5 7 6 35.7 6 35.6	+28 13 54.0 +41 13 23.2 +24 52 33.8 52 29.6 52 32.6 52 32.3 +27 2 14.8 +16 29 8.6 +16 53 18.6 53 20.1
1261 1262 1263 1264 1265* 1266 1267 1268 1269 1270	55 Geminorum &	3 3 3 3	4 Mar. 22 3 Feb 26 3 Mar. 6 3 April 4 4 Mar. 22 4 Oct. 12 4 Oct. 13 4 Oct. 15 5 Mar. 14	5 41.4 7 10.6 7 9.7 7 9.8 7 13.4 7 16.9 7 16.1 7 15.9 7 18.7	53.8 59.5 59.6 60.1 55.9 54.2 54.0 53.9 51.8	16 54 53, 0 22 21 54, 4 22 22 3, 1 22 21 59, 9 22 21 55, 4 22 21 47, 8 22 21 47, 4 22 21 46, 4 22 21 46, 3	1 35. 0 1 45. 1 1 45. 3 1 46. 1 1 38. 8 1 35. 4 1 35. 2 1 35. 1 1 35. 0 1 30. 9	6 35.2 7 8 10.1 8 9.3 8 9.9 8 9.3 8 10.5	53 18.0 +22 20 9.3 20 17.8 20 13.8 20 16.6 20 13.4 20 12.6 20 12.3 20 11.4 20 15.4
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280	65 Aurigæ	3 3 3 5.6 6 7.8	5 Mar. 19 5 Mar. 21 5 Mar. 23 4 Mar. 23 4 Mar. 26 5 Mar. 23 3 Feb. 26 3 Mar. 6 4 Mar. 26 5 Mar. 14	7 18.3 7 18.0 7 18.0 7 37.1 7 36.9 9 15.5 10 15.5 10 15.3 10 30.1 10 34.5	51. 9 51. 9 52. 0 62. 7 62. 8 60. 3 60. 8 60. 9 56. 3 52. 1	22 21 46.1 22 21 44.1 22 21 48.3 37 9 6.0 37 9 8.2 41 4 8.7 25 27 4.6 25 27 8.9 23 20 45.6 23 20 37.4	1 31.0 1 31.0 1 31.1 1 44.4 1 44.6 1 39.9 1 50.3 1 50.6 1 43.5 1 35.2	8 10.2 8 10.2 8 10.0 7 8 39.8 8 39.7 7 10 15.8 7 11 16.3 11 16.2 7 11 26.4 11 26.6	20 15.1 20 13.1 20 17.2 +37 7 21.6 7 23.6 +41 2 28.8 +25 25 14.3 25 18.3 +23 19 2.1 19 2.2
1251 1252 1253* 1254 1255 1255 1257 1259 1290	59 Geminorum . 60 Geminorum	6.7 4.5 4.5 5 6	5 Mar. 23 4 Mar. 23 5 Mar. 14 5 Mar. 19 5 Mar. 23 4 Mar. 23 3 Feb. 26 4 Mar. 26 4 Oct. 9 4 Oct. 12	11 11.7 12 19.4 12 23.3 12 23.5 12 23.8 12 59.5 14 9.5 14 13.1 14 14.7 14 14.8	54. 1 58. 3 54. 0 54. 1 54. 2 51. 9 58. 7 55. 2 53. 5 53. 4	28 2 16, 7 28 12 45, 3 28 12 37, 8 28 12 32, 5 28 12 35, 7 12 4 39, 3 20 40 31, 2 20 40 26, 5 20 40 26, 1	1 37.7 1 47.4 1 38.9 1 39.1 1 39.2 1 42.8 1 54.2 1 47.4 1 44.8 1 44.5	7 12, 5.8 7 13 17.7 13 17.3 13 17.6 13 18.0 7 13 51.4 7 15 8.2 15 8.3 15 8.2 15 8.2	+28 0 39.0 +28 10 57.9 10 58.9 10 53.4 10 56.5 +12 2 56.5 +20 38 37.0 38 36.9 38 31.6
1291 1292* 1293 1294* 1295 1296 1297* 1298 1299 1300	63 Geminorum p Lalande 14453 . 31 Canis Maj. η Flamsteed, B. 1043 65 Geminorum b ² Piazzi 114 Lalande 14555 .	6 6 7 7.8 5.6 6 8 7	5 Mar. 14 4 Oct. 13 5 Mar. 19 4 Mar. 23 5 Mar. 23 3 Feb. 26 4 Mar. 22 4 Oct. 12 3 Feb. 26 5 Mar. 14	14 59. 4 15 11. 0 15 12. 2 15 35. 0 15 20. 0 16 20. 0 16 22. 7 16 24. 9 17 11. 9 17 49. 0	36.8	21 52 11.6 12 22 12.4 +12 22 11.8 -28 53 47.9 +27 58 21.7 28 20 52.1 28 20 48.3 28 20 43.4 28 20 56.6 7 0 28.2	1 40.0 1 48.6 1 37.1 1 34.2 1 42.6 1 59.3 1 52.6 1 44.4 2 0.4 1 38.5	7 17 22.0 17 20.9 17 21.3 7 18 13.9	+21 50 31.6 +12 20 23.8 20 34.7 -28 55 22.1 +27 56 39.1 +28 18 55.7 18 55.7 18 59.0 +28 18 56.2 + 6 58 49.7
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310	6 Canis Minoris o Lalande 14620 66 Geminorum a	6 6 6	5 Mar. 19 5 Mar. 23 4 Oct. 13 3 Feb. 26 3 Mar. 6 3 April 8 3 April 9 3 April 14 3 April 26 3 April 29	17 50. 4 17 51. 8 19 23. 7 20 45. 0 20 45. 5 20 45. 1 20 44. 7 20 45. 5 20 44. 3 7 20 44. 1	48. 3 48. 3 52. 2 63. 8 63. 9 64. 5 64. 5 64. 6 64. 8 + 64. 9	12 26 7.7 12 26 8.5 17 31 48.1 32 20 53.8 32 20 57.9 32 20 57.0 32 20 57.0 32 20 53.7 32 20 59.5 +32 21 1.1	1 40.2 1 40.3 1 51.9 2 6.3 2 6.8 2 8.4 2 8.4 2 8.4 2 8.5 — 2 8.5	18 40. 1 7 20 15. 9 7 21 48. 8 21 49. 4 21 49. 6 21 49. 2 21 50. 1 21 49. 1	+12 24 27.5 24 28.2 +17 29 56.2 +32 18 47.5 18 51.1 18 43.1 18 48.6 18 45.3 18 51.0 +32 18 52.6

(174)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
		3.						а	δ
1311 1312 1313 1314 1315 1316 1317* 1318 1319 1320	66 Geminorum a	1. 2 1. 2 1. 2 7	3 April 30 3 May 3 3 May 9 3 Sept. 25 4 Mar. 23 4 Mar. 26 4 Oct. 2 4 Oct. 9 4 Oct. 12 5 Mar. 19	h m s 7 20 44. 2 20 44. 1 20 45. 9 20 49. 0 20 49. 0 20 50. 1 20 51. 1 20 51. 2 21 6. 6	+ 64.9 64.9 65.0 63.0 59.9 60.0 58.5 58.2 58.1 54.3	+32 21 0.9 32 20 53.2 32 20 56.3 32 20 56.3 32 20 55.4 32 20 56.4 32 20 46.9 32 20 35.1 32 20 38.9 29 8 11.4	2 8.5 2 8.4 2 8.2 1 58.3 1 59.6 1 59.7 1 49.2 1 48.7 1 48.5 1 49.0	h m s 7 21 49.1 21 49.0 21 49.0 21 48.9 21 48.9 21 48.6 21 49.3 7 22 0.9	0 / " +32 18 52.4 18 44.8 18 48.1 18 49.0 18 53.8 18 51.5 18 57.7 18 46.4 18 50.4 +29 6 22.4
1321 1322 1323 1324 1325 1326 1327 1328* 1329 1330	68 Geminorum κ Piazzi 136 . 69 Geminorum ν " 9 Canis Min. δ³ Piazzi 143 . Piazzi 144 . 70 Geminorum .	6 7.8 6 6 6.7 7 6	5 Mar. 14 5 Mar. 19 3 Feb. 26 3 Mar. 6 4 Oct. 13 4 Mar. 26 5 Mar. 23 5 Mar. 23 5 Mar. 19 4 Oct. 9	21 21. 6 21 59. 6 22 33. 5 22 33. 6 22 38. 9 22 56. 9 23 0. 8 (23) 24 28. 3 24 24. 2	49. 4 54. 2 61. 4 61. 5 55. 9 49. 4 45. 8 51. 0 59. 7	16 16 29.8 29 4 53.4 27 21 45.4 27 21 51.8 27 21 32.8 3 49 26.0 3 43 46.7 20 37 34.9 35 30 48.6	1 45.6 1 50.7 2 7.4 2 7.8 1 52.4 1 52.7 1 43.5 1 43.5 1 50.8 1 56.0	7 22 11.0 7 22 53.8 7 23 34.9 23 35.1 23 34.8 7 23 46.3 23 46.6 (24) 7 25 19.3 7 25 23.9	+16 14 44.2 +29 3. 2.7 +27 19 38.0 19 44.0 19 40.4 + 3 47 40.3 47 42.5 + 3 42 3.2 +20 35 44.1 +35 28 52.6
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340	302 Mayer	6.7 7 7.8 7 7.8 6	4 Oct. 12 4 Oct. 13 3 Mar. 6 5 Mar. 14 5 Mar. 23 4 Mar. 26 5 Mar. 14 5 Mar. 19 3 Feb. 26 3 April 4	24 23. 9 24 58. 1 25 0. 0 25 14. 0 26 9. 7 26 8. 7 26 13. 2 27 5. 0 27 57. 4 27 57. 1	59. 6 52. 8 65. 2 52. 4 55. 6 56. 5 52. 3 50. 1 52. 8 53. 3	35 30 53, 4 19 23 25, 9 35 4 1, 7 24 49 41, 5 32 29 15, 0 24 41 52, 5 24 41 49, 4 18 8 53, 8 5 45 59, 9 5 45 58, 5	1 55.7 1 58.0 2 13.4 1 52.9 1 56.8 2 3.8 1 54.0 1 53.0 2 9.0 2 8.6	25 23, 5 7 25 50, 9 7 26 5, 2 7 26 6, 4 27 5, 3 7 27 5, 5 7 27 55, 1 7 28 50, 2 28 50, 4	28 57.7 +19 21 27.9 +35 1 48.3 +24 47 48.6 +32 27 18.2 +24 39 48.7 39 55.4 +18 7 0.8 + 5 43 50.9 43 49.9
1341* 1342 1343* 1344 1345 1346 1347 1348 1349		1	3 April 5 3 April 9 3 April 14 3 April 19 3 April 28 3 April 28 3 April 29 3 April 30 3 May 3 3 May 9	27 57. 0 27 56. 8 27 56. 3 27 57. 0 27 56. 4 27 56. 7 27 56. 4 27 56. 5 27 56. 5 27 56. 2	53. 3 53. 4 53. 5 53. 6 53. 6 53. 7 53. 7 53. 7 53. 7 53. 7	5 45 57. 2 5 45 59. 8 5 45 57. 9 5 45 58. 9 5 46 0. 1 5 46 2. 6 5 46 2. 6 5 46 1. 8 5 45 59. 8	2 8.6 2 8.8 2 8.8 2 9.0 2 9.3 2 9.3 2 9.3 2 9.3 2 9.5 2 9.7	28 50, 3 28 50, 2 28 49, 8 28 50, 6 28 50, 1 28 50, 4 28 50, 1 28 50, 2 28 50, 0	43 48. 6 43 51. 0 43 49. 1 43 49. 9 43 50. 8 43 48. 8 43 53. 3 43 53. 2 43 53. 2 43 50. 1
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360	"	1 1 1 1 1 7	4 Mar. 22 4 Mar. 23 4 Mar. 26 4 Oct. 2 4 Oct. 12 4 Oct. 12 4 Oct. 13 5 April 5 5 April 26 5 Mar. 14	28 1.0 28 0.3 (28) 28 1.7 28 2.0 28 1.9 28 2.2 28 3.7 28 3.9 28 7,2	49. 6 49. 6 48. 5 48. 3 48. 2 48. 1 46. 3 46. 6 51. 9	5 45 52.5 5 45 52.8 5 45 54.6 5 45 56.3 5 46 2.6 5 46 0.3 5 45 57.1 5 45 43.4 5 45 41.5 23 30 5.0	1 59.7 1 59.7 1 59.7 2 7.3 2 6.9 2 6.6 2 6.5 1 50.2 1 50.7 1 55.8	28 50, 6 28 49, 9 (28) 28 50, 2 28 50, 3 28 50, 1 28 50, 3 28 50, 0 28 50, 5 7 28 59, 1	43 52. 8 43 53. 1 43 54. 9 43 49. 0 43 55. 7 43 50. 6 43 53. 2 43 50. 8 +23 28 9. 2
1361 1362 1363 1364 1365* 1366 1367* 1368 1369 1370	75 Geminorum σ 309 Mayer 76 Geminorum c	6 4.5 4.5	3 Mar. 6 5 Mar. 14 5 Mar. 19 5 Mar. 23 3 Mar. 6 3 April 8 4 Oct. 9 4 Oct. 12 3 Feb. 26 3 April 4	29 45. 3 30 35. 8 31 1. 0 31 21. 0 31 20. 0 31 26. 3 31 26. 2 32 2. 6 7 32 2. 2	62. 2 51. 6 52. 9 53. 0 60. 2 60. 8 54. 9 54. 8 61. 7 + 62. 3	29 23 37. 1 22 53 29. 3 26 16 53. 2 26 16 52. 8 24 54 12. 9 24 54 11. 9 24 53 59. 7 24 54 0. 0 28 32 6. 5 +28 32 10. 0	2 17.9 1 58.4 2 0.2 2 0.3 2 18.7 2 20.0 2 4.2 2 4.0 2 20.4 — 2 22.1	7 31 27.4 7 31 53.9 31 54.0 7 32 21.2 32 20.8 32 21.2 32 21.0 7 33 4.3	+29 21 19.2 +22 51 30.9 +26 14 53.0 14 52.5 +24 51 54.2 51 51.9 51 55.5 51 56.0 +28 29 46.1 +28 29 47.9

(175)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
2,00	2,2,3	8.				 PP • •		а	δ
1371 1372* 1373 1374 1375 1376 1377 1378 1379 1380	78 Geminorum β		3 April 8 3 April 9 3 April 14 3 April 16 3 April 19 3 April 26 3 April 28 3 April 29 3 April 30 3 May 3	h m s 7 32 1.7 32 1.7 32 2.2 32 2.0 32 1.9 32 2.0 32 1.9 32 1.7 32 1.6 32 1.6	** 62. 3 62. 4 62. 5 62. 5 62. 6 62. 7 62. 6 62. 7 62. 7	+28 32 9.1 28 32 9.7 28 32 9.7 28 32 9.7 28 32 14.9 28 32 12.5 28 32 12.5 28 32 14.4 28 32 9.7	2 22. 2 2 22. 3 2 22. 3 2 22. 3 2 22. 3 2 22. 4 2 22. 5 2 22. 5 2 22. 5 2 22. 5 2 22. 5	h m s 7 33 4.0 33 4.7 33 4.5 33 4.4 33 4.6 33 4.6 33 4.3 33 4.3	+28 29 46.9 29 50.7 29 47.4 29 47.4 29 52.5 29 49.5 29 46.0 29 50.0 29 51.9 29 47.2
1381 1382 1383 1384 1385, 1386 1387 1388 1389 1390	79 Geminorum g	2 2 2 2 7	3 May 9 4 Mar. 22 4 Oct. 2 5 Mar. 19 5 April 5 5 April 11 5 Mar. 14 3 April 4 4 Oct. 12 4 Oct. 13	32 1.6 32 6.1 32 7.6 32 11.0 32 9.9 32 9.5 32 33.5 33 34.2 33 38.7 33 39.5	62. 8 57. 9 56. 6 53. 8 54. 1 54. 2 50. 8 58. 2 52. 6 52. 6	28 32 10.8 28 32 1.2 28 31 51.3 28 31 55.6 28 31 52.7 28 31 52.9 20 49 4.5 19 1 29.7 19 1 17.6	2 22. 4 2 12. 3 2 4. 4 2 2. 2 2 3. 0 2 3. 1 2 0. 1 2 20. 8 2 8. 7 2 8. 6	33 4.4 33 4.0 33 4.2 33 4.8 33 4.0 33 32.7 7 33 24.3 7 34 32.4 34 31.3 34 32.1	29 48. 4 29 48. 9 29 46. 9 29 53. 4 29 49. 7 29 49. 8 +20 47 4. 4 +18 59 8. 9 59 11. 4 59 9. 0
1391 1392 1393 1394* 1395 1396 1397 1398* 1399 1400	80 Geminorum π 82 Geminorum Lalande 15218 25 Lyncis 26 Lyncis 83 Geminorum φ	5 6 7.8 6 5 6	5 Mar. 23 3 Mar. 6 5 Mar. 19 5 Mar. 23 5 Mar. 19 5 April 5 4 Oct. 13 5 Mar. 23 3 Feb. 26 3 Mar. 6	33 38.9 35 35.2 35 43.1 35 43.1 37 44.4 38 59.8 39 2.4 40 13.5 40 13.0	56. 0 59. 6 51. 8 51. 9 52. 2 63. 7 66. 5 63. 5 61. 0	33 55 42.5 23 39 52.4 23 39 32.5 23 39 33.6 24 41 22.7 47 55 36.7 48 6 2.2 48 6 18.3 27 18 41.5 27 18 46.7	2 5.9 2 23.9 2 5.4 2 5.6 2 7.3 2 17.1 2 4.9 2 16.6 2 30.5 2 31.0	7 34 34.9 7 36 34.8 36 34.9 36 35.0 7 38 36.6 7 39 53.1 7 40 6.3 40 5.9 7 41 14.5 41 14.0	+33 53 36.6 +23 37 28.5 37 27.1 37 28.0 +24 39 15.4 +47 53 19.6 +48 3 57.3 4 1.7 +27 16 11.0 16 15.7
1401 1402* 1403 1404 1405 1406 1407* 1408* 1409 1410		8.9 9 7 7 6	3 April 4 3 April 5 4 Mar. 22 3 Feb. 26 3 Mar. 6 3 April 4 3 April 5 4 Mar. 22 3 Feb. 26	40 12.8 40 12.9 40 30.9 40 28.1 40 37.9 43 0.6 43 0.2 43 0.3 43 3.7 44 41.1	61. 5 61. 5 48. 3 60. 8 60. 9 58. 1 58. 6 58. 6 54. 4 56. 5	27 18 47.2 27 18 44.2 2 18 15.8 27 7 12.7 27 7 15.7 20 26 33.6 20 26 33.4 20 26 32.5 20 26 27.3 16 21 17.3	2 32. 4 2 32. 5 2 14. 1 2 31. 1 2 31. 2 2 32. 7 2 33. 6 2 33. 7 2 23. 0 2 33. 6	41 14.3 41 14.4 7 41 19.2 7 41 28.9 41 28.8 7 43 58.8 43 58.8 43 58.9 43 58.1 7 45 37.6	16 14.8 16 11.7 + 2 16 1.7 +27 4 41.6 4 44.5 +20 24 0.9 23 59.8 23 58.8 24 4.3 +16 18 43.7
1411 1412 1413 1414 1415 1416 1417 1418 1419*		6 7 7	3 Mar. 6 4 Mar. 22 5 Mar. 23 4 Mar. 22 5 Mar. 19 3 Feb. 26 3 Mar. 6 3 April 4 3 April 5 3 April 8	44 39.7 44 44.3 45 46.8 47 9.4 47 13.6 47 48.4 47 47.8 47 47.9 47 47.5	56. 5 53. 0 56. 9 48. 4 53. 9 60. 2 60. 2 60. 7 60. 7	16 21 23.5 16 21 14.3 36 39 4.7 2 47 14.2 29 51 14.5 25 58 18.8 25 58 16.3 25 58 20.2 25 58 20.2 25 58 21.3	2 33.6 2 23.6 2 20.5 2 22.2 2 19.6 2 40.0 2 40.3 2 41.7 2 41.8 2 41.9	45 36.1 45 37.3 7 46 43.7 7 47 57.8 7 48 7.5 7 48 48.6 48 48.6 48 48.6 48 48.3	+ 2 44 52.0 +29 48 54.9 +25 55 38.8 55 36.0 55 38.5 55 38.4
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430	3 Caneri 4 Caneri ω² 5 Caneri 6 Caneri	7 6 6	3 April 9 3 April 4 3 Mar. 6 5 Mar. 29 5 Mar. 23 3 Feb. 26 3 Mar. 6 3 April 5 3 April 8 3 April 9	47 47.2 48 21.9 48 38.3 (49) 49 16.0 50 11.7 50 11.6 50 11.4 50 10.6 7 50 10.7		25 58 21.0 17 53 19.0 25 40 21.4 17 1 55.5 17 1 59.7 28 23 15.1 28 23 20.8 28 23 18.6 28 23 18.6 28 23 20.0	2 41.9 2 39.7 2 41.3 2 17.8 2 17.8 2 17.8 2 44.0 2 45.7 2 45.8	48 48.0 7 49 19.6 7 49 38.4 7(50) 50 5.4 7 51 12.8 51 12.8 51 13.1 51 12.3 7 51 12.4	+17 50 39.3 +25 37 40.1 +16 59 37.7 59 41.8 +28 20 41.6 20 36.8 20 32.9 20 33.0

(176)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800, 0
			•					а	ð
1431 1432 1433 1434 1435* 1436 1437 1438 1439* 1440	7 Cancri	7 6.7 7 6	4 Mar. 22 5 Mar. 19 5 Mar. 23 3 Mar. 6 3 April 4 3 April 5 3 April 8 5 Mar. 23 3 Feb. 26 4 Mar. 22	k m s 7 51 5.8 51 10.0 51 9.9 53 0.4 52 59.8 52 59.2 52 58.8 53 33.8 53 26.6 53 30.7	+ 55. 1 51. 2 51. 2 55. 4 55. 8 55. 9 48. 4 58. 9 55. 2	+22 39 45.5 22 39 32.5 22 39 31.4 13 43 20.2 13 43 21.6 13 43 17.7 13 43 17.5 14 6 7.1 23 14 29.1 23 14 20.7	- 2 33.3 2 21.7 2 21.8 2 43.6 2 44.1 2 44.1 2 21.7 2 46.4 2 36.3	h m s 7 52 0.9 52 1.2 52 1.1 7 53 55.8 53 55.1 53 54.7 7 54 22.2 7 54 25.9	0 / " +22 37 12.2 37 10.8 37 9.6 +13 40 36.6 40 37.5 40 33.6 40 33.5 +14 3 45.4 +23 11 42.7 11 44.4
1441 1442 1443 1444 1445* 1446 1447 1448 1449 1450*	10 Cancri μ^2 11 Cancri	5. 6 6 6 7	5 Mar. 19 3 Feb. 26 3 April 4 3 April 5 3 April 5 4 Mar. 22 5 Mar. 19 5 Mar. 23 3 April 4 3 April 8	53 34.9 54 59.9 54 59.7 54 59.2 54 58.9 55 55 41.4 55 41.2 56 35.0 (56)	51. 3 58. 5 59. 0 59. 0 59. 0 53. 0 56. 0	23 14 7.3 22 11 50.7 22 11 52.7 22 11 50.8 22 11 54.0 22 11 46.7 28 5 29.2 28 5 34.9 14 15 28.7 14 15 34.0	2 24.5 2 48.1 2 49.6 2 49.5 2 49.7 2 37.8 2 28.3 2 28.5 2 48.8 2 48.9	54 26. 2 7 55 58. 4 55 58. 7 55 58. 2 55 57. 9 55 7 56 34. 4 56 34. 2 7 57 31. 0 (57)	11 42.6 +22 9 2.6 9 3.1 9 1.3 9 4.3 9 8.9 +28 3 0.9 3 6.4 +14 12 39.9 12 45.1
1451* 1452 1453* 1454 1455 1456 1457 1458 1459 1460	13 Cancri ψ ¹ 14 Cancri ψ ² 324 Mayer Flamsteed, B. 1146 Bessel, W. 44 15 Cancri	7.8 6.7 6 8	4 Mar. 22 3 Mar. 6 3 April 5 3 Feb. 26 5 Mar. 19 5 Mar. 23 5 April 5 4 Mar. 22 3 April 4 3 April 8	56 38. 8 57 5. 9 57 6. 1 57 23. 2 57 46. 1 58 55. 0 59 33. 3 59 41. 9 59 41. 3	52. 0 60. 2 60. 6 60. 0 49. 4 48. 6 48. 8 53. 0 62. 2	14 15 22. 4 26 28 7. 5 26 28 7. 8 26 9 3. 2 17 38 1. 3 15 15 5. 2 15 15 4. 0 17 10 4. 5 30 17 35. 8 30 17 37. 9	2 37. 1 2 52. 1 2 53. 7 2 51. 9 2 47. 2 2 27. 9 2 28. 2 2 41. 4 2 58. 2 2 58. 4	57 30.8 7 58 6.1 58 6.7 7 58 23.2 7 58 35.5 7 59 44.0 59 43.8 8 0 26.3 8 0 44.1 0 43.5	12 45.3 +26 25 15.4 25 14.1 +26 6 11.3 +17 35 14.1 +15 12 37.3 12 35.8 +17 7 23.1 +30 14 37.6 14 39.5
1461* 1462 1463 1464 1465 1466 1467 1468 1469 1470	" 16 Cancri " " Bessel, W. 71,2 Lalande 16053 " 329 Mayer "	7 7 6.7 8 7	3 April 9 5 April 10 3 Feb. 26 3 Mar. 6 3 April 5 4 Mar. 22 5 Mar. 19 5 April 5 3 Feb. 26 3 April 4	59 41. 4 59 49. 1 59 46. 9 59 46. 4 7 59 45. 4 8 0 43. 5 0 57. 8 0 57. 7 1 46. 7 1 45. 9	62. 3 55. 0 56. 9 57. 0 57. 4 52. 9 51. 3 51. 6 56. 9 57. 3	30 17 34. 4 30 17 17. 8 18 17 15. 4 18 17 15. 5 18 17 15. 1 17 8 55. 6 23 46 16. 4 23 46 14. 1 18 19 1. 0 18 18 58. 2	2 58. 5 2 34. 5 2 53. 1 2 53. 2 2 54. 8 2 32. 6 2 33. 4 2 55. 5 2 56. 6	0 43.7 0 44.1 8 0 43.8 0 43.4 0 42.8 8 1 36.4 8 1 49.1 1 49.3 8 2 43.6 2 43.2	14 35.9 14 43.3 +18 14 22.3 14 22.3 14 20.9 +17 6 12.8 +23 43 43.8 43 40.7 +18 16 5.5 16 1.6
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480	Lalande 16145, 6 17 Cancri β	7 7.8	5 Mar. 23 4 Mar. 22 3 Feb. 26 3 Mar. 6 3 April 4 3 April 8 3 April 9 3 April 14 3 April 16	1 52.9 3 51.9 4 45.8 4 44.9 4 45.3 4 44.5 4 45.7 4 45.7 4 44.8 4 44.8	49. 6 60. 3 53. 9 53. 9 54. 3 54. 3 54. 4 54. 4 54. 5	18 18 38, 6 36 22 53, 7 9 50 26, 0 9 50 27, 0 9 50 25, 3 9 50 27, 2 9 50 27, 2 9 50 27, 2 9 50 23, 7 9 50 25, 2	2 32. 0 2 52. 4 2 57. 4 2 57. 2 2 57. 5 2 57. 5 2 57. 6 2 57. 6 2 57. 7 2 57. 8	2 42.5 8 4 52.2 8 5 39.7 5 38.8 5 39.6 5 38.8 5 39.5 5 40.1 5 39.3 5 39.3	16 6.6 +36 20 1.3 + 9 47 28.6 47 29.8 47 27.8 47 27.8 47 29.6 47 29.6 47 27.5 47 27.5
1481 1482 1483 1484 1485 1486 1487* 1488 1489 1490*	" 331 Mayer	4.3 4.3 7 7 9.10 8.9 7	3 April 26 5 Mar. 23 5 April 11 3 April 4 5 Mar. 23 5 April 5 3 April 5 5 Mar. 19 3 April 2	4 44. 0 4 52. 0 4 52. 2 5 47. 0 5 53. 9 5 54. 1 5 54. 1 6 21. 3 8 6 38. 0	54.6 46.9 47.2 54.2 46.8 52.6 54.2 54.3 51.5 + 54.2	9 50 26, 0 9 50 0, 6 9 49 58, 9 9 31 22, 4 9 31 2, 2 26 59 32, 1 9 49 22, 7 24 49 52, 8 + 9 48 35, 4	2 58. 2 2 32. 5 2 32. 8 2 58. 6 2 33. 6 2 39. 8 2 58. 8 2 58. 8 2 58. 6 2 38. 6 2 39. 8	6 48.7 8 7 12.8	47 27.8 47 28.1 47 26.1 + 9 28 23.8 28 28.6 +26 56 52.3 + 9 46 23.9 +24 47 14.2 + 9 45 35.6
	23	!	l					(1	77)

Digitized by Google

No.	Name ,	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
								а	δ
1491 1492 1493* 1494 1495 1496* 1497 1498 1499 1500	Piazzi 36	8 6 6 5	3 April 5 3 April 8 3 Mar. 6 3 Mar. 6 3 April 4 3 April 8 5 Mar. 19 4 Mar. 22 3 April 9 5 April 5	h m s 8 6 38.2 6 52.3 7 7.7 7 38.0 7 37.5 (7) 7 45.9 7 45.3 7 57.1 (8)	+54.3 61.0 59.0 59.2 59.6 51.4 54.2 68.9	+ 9 48 37.7 27 54 28.4 24 27 24 41 33.7 24 41 33.6 24 41 34.4 24 41 5.9 21 25 1.3 43 52 14.5 43 51 50.9	2 59.8 3 6.4 3 4.5 3 6.0 2 40.1 2 52.1 3 13.2 2 47.8	h m s 8 7 32.5 8 7 53.3 8 8 6.7 8 8 37.2 8 37.1 (8) 8 37.3 8 8 39.5 9 6.0 (9)	0 / " + 9 45 37.9 +27 51 22.0 24 25 +24 38 29.2 38 27.6 38 28.2 38 25.8 +21 22 9.2 +43 49 1.3 49 3.1
1501 1502 1503 1504 1505 1506* 1507 1508 1509 1510	Piazzi 48 20 Cancri d	5 5 8 7 9	5 April 10 5 April 11 5 April 5 3 Mar. 6 3 April 4 3 April 4 3 April 5 3 April 8 4 Mar. 22 3 April 2	8 5.5 8 5.2 10 38.4 10 56.5 10 56.6 10 56.0 10 55.9 11 0.0	59. 8 59. 8 47. 5 57. 0 57. 3 57. 4 57. 4 57. 4 53. 3 57. 2	43 51 53.2 43 51 53.5 11 19 53.6 19 0 59.4 19 0 55.5 19 0 56.1 19 0 57.5 19 0 45.7 18 48	2 48. 0 2 48. 1 2 39. 4 3 7. 0 3 8. 0 3 8. 0 3 8. 2 2 55. 0 3 8. 0	9 5.3 9 5.0 8 11 25.9 8 11 53.5 11 53.9 11 53.4 11 53.3 11 53.3 8 11 57.2	49 5.2 49 5.4 +11 17 14.2 +18 57 52.4 57 48.3 57 48.3 57 49.3 57 50.7 +18 46
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520	21 Caneri	6	3 April 5 3 April 8 5 April 5 3 Mar. 6 3 April 4 3 April 4 3 April 4 3 April 4 3 April 8 4 Mar. 22	12 4.2 12 3.9 12 10.5 13 16.1 13 15.4 13 15.4 13 40.3 13 39.6 13 38.7 13 43.7	54. 7 54. 7 47. 5 60. 6 61. 0 49. 5 60. 6 60. 6 56. 3	11 19 4.3 11 19 6.3 11 19 28 35 48.8 28 35 43.8 28 35 43.8 28 35 43.6 27 37 51.7 27 37 55.4 27 37 41.1	3 6.9 3 7.0 3 12.1 3 14.0 3 14.4 2 44.8 3 14.2 3 14.4 3 0.7	8 12 58.9 12 58.6 12 58.0 8 14 16.7 14 16.4 14 16.4 8 14 29.8 8 14 40.2 14 39.3 14 40.0	+11 15 57.4 15 59.3 15 +28 32 36.7 32 29.8 32 28.8 +17 41 42.8 +27 34 37.5 34 41.0 34 40.0
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530	24 Cancri v ¹ Lalande 16581,3 28 Cancri v ² 29 Geminorum . 341 Mayer 340 Mayer 30 Cancri v ³ 31 Cancri θ	10. 11 7 7	5 Mar. 19 3 April 2 3 April 4 5 April 10 3 April 8 3 April 4 5 Mar. 19 3 April 5 3 April 8 3 Mar. 6	13 53.5 15 30.1 15 43.9 15 51.8 16 30.7 16 45.1 16 55.8 18 40.0 18 40.1	51. 5 57. 1 59. 4 51. 6 55. 9 59. 4 51. 9 59. 3 59. 3 56. 7	25 13 35.0 18 46 39.5 24 51 9.0 24 50 44.5 14 54 59.3 25 3 14.3 26 53 48.1 24 48 0.8 24 47 59.3 18 48 53.9	2 46. 6 3 13. 4 3 15. 8 2 49. 6 3 13. 5 3 17. 0 2 50. 2 3 19. 2 3 19. 4 3 13. 3	8 14 45.0 8 16 27.2 8 16 43.3 16 43.4 8 17 26.6 8 17 44.7 8 19 39.3 19 39.4 8 20 10.5	+25 10 48.4 +18 43 26.1 +24 47 53.2 47 54.9 +14 51 45.8 +24 59 57.9 +26 50 57.9 +24 44 41.6 44 39.9 +18 45 40.6
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540	344 Mayer	6 7 6 6	3 April 4 3 April 16 5 April 9 3 April 9 3 April 5 3 April 5 5 April 10 3 April 9 5 Mar. 19 5 April 11	19 13, 9 19 13, 0 19 20, 9 19 25, 1 20 9, 9 20 9, 5 20 58, 8 20 45, 8 20 55, 0 20 54, 3	57. 1 57. 3 49. 9 64. 6 59. 2 59. 3 47. 2 64. 5 55. 6 56. 0	18 48 54.6 18 48 56.3 19 41 53.8 37 9 37.6 24 48 34.7 24 48 36.6 10 46 49.4 37 9 6.6 37 8 37.4 37 8 40.3	3 17.8 3 18.3 2 51.4 3 24.6 3 21.0 2 250.0 3 26.2 2 57.3 2 59.0	20 11, 0 20 10, 3 8 20 10, 8 8 20 29, 7 8 21 9, 1 21 8, 8 8 21 46, 0 8 21 50, 3 21 50, 3	45 36.8 45 38.0 +19 39 2.4 +37 6 13.0 +24 45 13.7 45 15.4 +10 43 59.4 +37 5 40.4 5 40.1 5 41.3
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550	347 Mayer 35 Cancri 349 Mayer 350 Mayer 1 Leonis Minoris	7 6 7	5 April 5 5 April 9 5 April 10 3 April 5 3 April 8 3 April 8 5 April 10 3 April 9 5 Mar. 19 5 April 5	21 51, 3 21 50, 1 21 22 80, 9 22 50, 5 23 15, 4 24 4, 8 24 44, 5 24 53, 3 8 24 52, 6	48. 1 48. 1 57. 5 57. 6 57. 6 48. 7 62. 7 54. 0 + 54. 3	13 58 44, 3 13 58 42, 1 13 58 47, 5 20 19 25, 3 20 19 25, 3 20 30 28, 1 16 2 38, 5 33 32 47, 3 33 32 18, 3 +33 32 20, 7	2 51.9 2 51.9 2 52.0 3 22.6 3 23.3 2 54.9 3 29.5 3 0.1 3 1.4	8 22 39. 4 22 38. 2 22 8 23 48. 4 23 48. 1 8 24 13. 0 8 24 53. 5 8 25 47. 2 25 47. 3 8 25 46. 9	+13 55 52.4 55 50.2 55 55.5 +20 16 2.7 +20 27 4.8 +15 59 43.6 +33 29 17.8 29 18.2 +33 29 19.3

(178)

No	N		Dete	A 24	D. J	A24 #	D. d	Mean equ	inox 1800. 0
No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	а	ð
1551 1552 1553 1554* 1556* 1556 1557 1558 1559* 1560	1 Leonis Minoris 36 Cancri c ¹ 351 Mayer 2 Leonis Minoris 4 Hydræ d 37 Cancri c ² 3 Leonis Minoris	6 7 6 4	5 April 9 3 April 2 3 April 4 5 April 11 5 April 5 5 April 10 5 April 11 3 April 2 3 April 8 3 April 9	h m s 8 24 51.8 25 20.2 25 20.2 25 27.7 26 8.1 26 7.8 (26) 26 19.3 26 21.1 26 22.5	+ 54.4 54.2 54.2 54.2 54.2 54.2 54.1 54.2 62.6	+33 32 20.4 10 23 45.6 10 23 50.6 20 0 11.0 33 15 32.8 33 15 37.0 6 26 21.9 10 19 10.0 10 19 14.9 33 28 51.4	7 1. 6 3 22. 1 3 22. 1 2 57. 6 3 2. 5 3 2. 8 2 53. 6 3 23. 2 3 23. 2 3 23. 2 3 23. 2	h m s 8 25 46.2 8 26 14.4 26 14.4 8 26 17.5 8 27 2.3 27 2.0 8(27) 8 27 13.4 27 15.3 8 27 25.1	0 ' '' +33 29 18.8 +10 20 23.5 20 28.5 +19 57 13.4 +33 12 30.3 12 34.2 + 6 23 28.3 +10 15 46.8 15 51.7 +33 25 20.1
1561* 1562* 1563 1564 1565 1566 1567 1568 1569 1570*	" 4 Leonis Minoris 39 Cancri 363 Mayer " " " Lalande 17 1	6.7 7 8.9 6 7 7.8 7 6.7	5 April 9 5 April 10 5 April 11 3 April 14 3 April 2 5 April 9 5 April 10 5 April 5 5 April 11	26 30.2 26 31.3 (27) 27 37.4 29 22.2 29 21.7 29 28.9 29 29.5 29 48.0 29 47.8	54. 3 54. 3 57. 7 57. 4 57. 5 49. 9 49. 9 55. 6 55. 6	33 28 22.6 33 28 27.3 32 41 26.2 20 45 41 0 20 37 58.7 20 38 6.1 20 37 35.0 20 37 37.8 37 28 25.8 37 28 31.8	3 3.2 3 3.3 3 3.4 3 28.6 3 30.0 3 30.3 3 1.8 3 7.6 3 7.9	27 24.5 27 25.6 8(28) 8 28 35.1 8 30 19.6 30 19.2 30 18.8 30 19.4 8 30 43.6 30 43.4	25 19. 4 25 24. 0 +32 38 22. 8 +20 42 12. 4 +20 34 28. 7 34 35. 8 34 33. 2 34 36. 0 +37 25 18. 2 25 23. 9
1571 1572 1573* 1574* 1575 1576 1577 1578 1579 1580*	Lalande 17131	7.8 6.7 6	5 April 9 5 April 10 5 April 11 3 Feb. 18 3 April 2 3 April 2 3 April 8 3 April 14 3 April 16 3 April 19	30 (30) 30 22. 6 30 43. 7 (30) 30 43. 6 30 43. 6 30 42. 8 30 43. 2	55. 8 57. 5 58. 0 58. 0 58. 1 58. 1 58. 1	37 41 5.5 37 41 7.8 37 41 4.7 22 14 8.5 22 14 10.8 22 14 11.3 22 14 16.4 22 14 12.6 22 14 17.0	3 8. 4 3 8. 5 3 8. 6 3 30. 0 3 32. 2 3 32. 4 3 32. 7 3 32. 8 3 32. 9	8 31 (31) 31 18.4 8 31 41.2 (31) 31 41.6 31 41.0 31 41.7 31 40 9 31 41.3	+37 37 57.1 37 59.3 37 56.1 +22 10 38.5 10 38.6 10 39.1 10 44.0 10 39.9 10 37.5 10 44.1
1581 1582 1583 1584 1585 1586* 1587 1588 1589 1590	Lalande 17153-6 Lalande 17182 . 46 Cancri . 47 Cancri Lalande 17204 49 Cancri . 48 Cancri .	7.8 7.8 7.8 6	5 Mar. 14 5 April 9 3 April 8 3 April 2 3 April 16 3 April 19 3 April 4 5 April 10 5 April 11 3 April 4	30 57. 0 31 49. 0 32 1. 3 (32) 32 20. 6 32 21. 3 32 25. 9 32 33. 8 33 5. 4 33 32. 8	53. 4 55. 9 61. 4 57. 0 57. 1 60. 5 52. 5 47. 1 60. 6	32 49 22.0 38 3 43.0 31 28 19.6 18 56 23.5 18 56 24.1 29 13 7.8 29 12 41.9 10 50 47.8 29 32 30.5	3 5.4 3 10.0 3 37.0 3 32.8 3 33.4 3 36.3 3 7.7 3 2.0 3 37.8	8 31 50.4 8 32 44.9 8 33 2.7 8(33) 33 17.6 33 18.4 8 33 26.4 33 26.3 8 33 52.5 8 34 33.4	+32 46 16.6 +38 0 33.0 +31 24 42.6 +18 52 50.7 52 49.4 52 50.5 +29 9 31.5 9 34.2 +10 47 45.8 +29 28 52.7
1591 1592 1593* 1594 1595 1596 1597 1598 1599 1600	" Lalande 17256 50 Cancri A ³ 11 Hydræ e Lalande 17327,8 " 370 Mayer	7 7 4 4 7.8 7.8	3 April 8 3 April 14 5 April 5 5 April 9 3 April 8 5 Mar. 14 5 April 11 3 April 4 5 April 10 3 April 14	33 32.8 33 34.5 34 10.6 34 9.5 35 2.4 35 24.2 35 25.0 36 18.6 36 26.8 36 43.4	60. 6 60. 7 52. 3 52. 4 54. 8 45. 7 46. 1 62. 4 54. 3 55. 0	29 32 29.6 29 32 27.3 28 56 18.8 28 56 14.5 12 53 36.1 7 11 36.2 34 30 43.7 34 30 20.0 13 20 6.0	3 38. 0 3 38. 4 3 9. 3 3 9. 2 3 34. 0 3 2. 9 3 3. 0 3 42. 4 3 13. 3 3 36. 2	34 33.4 34 35.2 8 35 2.9 35 1.9 8 36 57.2 8 36 91.1 8 37 21.0 37 21.1 8 37 38.4	28 51.6 28 48.9 +28 53 9.5 53 5.3 +12 50 2.1 + 7 8 35.6 +34 27 1.3 27 6.7 +13 16 29.8
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610	13 Hydræ o 5 Leonis Minoris 35 Lyncis 371 Mayer 372 Mayer 54 Cancri 52 Cancri	7 5.6 6.7 6.7 5.6 7 7.6	5 April 11 5 Mar. 21 5 April 5 5 April 10 5 April 9 3 April 14 3 April 14 3 April 23 Feb. 18 5 April 11 3 April 5	36 37 4.2 37 10.3 37 10.9 37 27.8 38 22.8 38 24.3 38 57.2 39 3.5 8 39 2.4	45. 6 54. 0 54. 1 58. 5 56. 7 56. 8 55. 3 48. 4 + 56. 0	13 19 36.4 6 37 7.2 34 4 36.0 34 4 39.9 44 30 50.7 18 47 52.8 19 37 43.4 16 8 34.2 16 8 7.0 +16 47 43.1	3 6.4 3 4.2 3 13.5 3 13.9 3 17.5 3 39.9 3 39.7 3 38.1 3 9.6 3 39.5	8 38 4.3 38 5.0 8 38 26.3 8 39 19.5 8 39 21.1 8 39 52.5 39 51.9	16 30.0 +6 34 3.0 +34 1 22.5 1 26.0 +44 27 33.2 +18 44 12.9 +19 34 3.7 +16 4 56.1 +16 44 3.6

(179)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
			200			pp		а	δ
1611 1612 1613 1614 †1615 1616 1617 1618 1619	52 Cancri	7 6.7 7 7.8 7 6 7	3 April 8 3 April 4 5 April 9 3 April 16 5 Mar. 21 5 April 5 5 April 9 5 April 10 3 April 8 5 April 11	h m s 8 39 1.5 39 9.9 39 39.8 41 4.5 41 5.7 41 4.5 41 7.6 41 24.9 41 37.8	** + 56.0 61.8 60.3 45.5 48.8 48.9 52.9 59.6 49.6	+16 47 43.4 33 16 32.5 19 37 15.2 29 8 53.6 6 8 6.2 18 10 5.0 31 22 55.1 27 44 4.1 20 46 3.8	7 " " 3 39.7 3 45.0 3 10.9 3 45.0 3 12.0 3 12.1 3 16.6 3 46.0 3 13.6	h m s 8 39 57.5 8 40 11.7 8 40 8 40 40.1 8 41 50.0 8 41 54.5 41 53.4 8 42 0.5 8 42 24.5 8 42 27.4	0 / " +16 44 3.7 +33 12 47.5 +19 34 4.3 +29 5 8.6 + 6 4 58.3 +18 6 53.3 +18 6 52.9 +31 19 38.5 +27 40 18.1 +20 42 50.2
1621 1622 1623 1624 1625* 1626 1627 1628* 1629 1630	Piazzi 196	7 7 7 6.7 7 6	5 April 9 5 April 10 3 April 4 5 April 9 3 April 4 3 April 5 5 April 10 3 April 2 3 April 8 3 Feb. 18	41 42. 4 41 42 2. 2 43 15. 8 43 27. 7 43 28. 0 43 35. 2 43 32. 4 43 32. 0 43 56. 2	48. 9 59. 3 48. 8 58. 6 58. 6 50. 8 61. 7 61. 8 52. 4	18 20 38.2 18 20 46.4 27 2 10.3 16 2 9.6 25 16 6.0 25 16 4.4 25 15 39.7 33 44 1.3 33 44 3.5 6 45 35.1	3 12.7 3 12.8 3 46.1 3 14.1 3 47.1 3 47.1 3 16.9 3 50.3 3 50.7 3 42.4	8 42 31.3 42 8 43 1.5 8 44 4.6 8 44 26.3 44 26.0 8 44 34.1 44 63.8 8 44 48.6	+18 17 25.5 17 33.6 +26 58 24.2 +17 58 55.5 +25 12 18.9 12 17.3 12 22.8 +33 40 11.0 40 12.8 + 6 41 52.7
1631 1632 1633 1634 1635* 1636 1637 1638* 1639 1640	60 Cancri al " 9 Ursæ Maj. t 61 Cancri ol 62 Cancri ol 63 Cancri ol Lalande 17653	10.11	5 Mar. 21 5 April 5 3 April 2 3 April 16 3 April 16 3 April 14 3 April 14 3 April 8 3 April 14 5 April 11	44 3.5 44 3.0 44 4.6 44 4.4 44 17.7 44 47.5 45 9.3 45 27.8 45 27.4 45 38.7	45. 6 45. 8 54. 4 54. 6 69. 9 60. 8 55. 7 55. 7 55. 8 51. 5	6 45 1.3 6 45 2.1 12 26 32.4 12 26 33.9 48 52 55.7 31 3 16.2 16 8 25.9 16 24 11.4 16 24 9.3 27 18 30.0	3 10.9 3 11.0 3 43.5 3 44.0 3 57.1 3 51.1 3 46.4 3 46.5 3 46.7 3 19.5	44 49. 1 44. 8 8 44 59. 0 44 59. 0 8 45 27. 8 8 46 5. 0 8 46 23. 5 46 23. 2 8 46 30. 2	41 50. 4 41 51. 1 +12 22 48. 9 22 49. 9 +48 48 58. 6 +30 59 25. 1 +16 4 39. 5 +16 20 24. 9 20 22. 6 +27 15 10. 5
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650	Lalande 17674 64 Cancri	7.8 9 4.5 7.8 6.7 7 6.7	3 April 5 5 April 10 3 April 16 3 Feb. 18 5 April 9 5 Mar. 21 5 April 10 5 April 11 3 April 4 3 April 2	46 4.6 46 12.4 46 12.2 46 36.7 46 38.5 47 15.0 47 47 14.9 48 5.3 48 52.5	58. 4 50. 7 61. 6 54. 1 57. 0 51. 1 51. 4 61. 3 59. 6	24 47 35.5 24 47 6.9 33 15 4.1 12 41 10.5 42 37 18.5 27 15 23.7 27 15 27.3 27 15 23.6 33 5 21.9 28 44 42.8	3 49.7 3 19.1 3 53.3 3 46.0 3 25.4 3 19.5 3 20.9 3 20.9 3 54.5 3 53.8	8 47 3.0 47 3.1 8 47 13.8 8 47 30.8 8 47 35.5 8 48 6.1 48 6.3 8 49 6.6 8 49 52.1	+24 43 45.8 +33 11 10.8 +12 37 24.5 +42 33 53.1 +27 12 4.2 12 6.4 12 2.7 +33 1 27.4 +28 40 49.0
1651 1652 1653 1654 1655 1656 1657 1658 1659* 1660	12 Ursæ Maj. κ 68 Cancri 69 Cancri	7 7 7	5 Mar. 21 5 April 5 3 April 30 5 April 10 3 April 2 3 April 2 3 April 5 3 April 8 3 April 14 5 April 9	49 0.2 48 59.6 48 45.9 49 40.2 50 2.4 50 2.6 50 2.0 50 2.1 50 9.0	51. 5 51. 7 69. 1 48. 6 58. 3 58. 4 58. 4 58. 4 58. 5 50. 7	28 44 16.4 28 44 17.9 48 0 21.7 17 54 43.8 25 17 41.6 25 17 44.3 25 17 44.3 25 17 41.4 25 17 44.4	3 21.5 3 22.7 4 1.8 3 20.0 3 53.9 3 54.0 3 54.0 3 54.3 3 54.6 3 22.8	49 51.7 49 51.3 8 49 55.0 8 50 28.8 8 51 0.7 51 1.0 51 0.4 51 0.6 50 59.7	40 54. 9 40 55. 2 +47 56 19. 9 +17 51 23. 8 +25 13 47. 7 13 47. 6 13 50. 3 13 47. 1 13 49. 8 13 46. 3
1661 1662 1663 1664 1665 1666* 1667 1668 1669 1670	70 Caneri ρ ⁶ Flamsteed, B.1280 17 (Hev.) Lyncis 1282 Bradley	6.5 7 7.8 7 10 8.9 6 5.6	5 April 11 3 Mar. 29 5 Mar. 21 5 April 5 5 April 03 3 April 2 3 April 5 5 Mar. 21 5 April 5 5 Mar. 21 5 April 5 3 April 2	50 9.8 51 14.1 51 21.2 51 20.9 51 20.9 52 19.2 52 9.8 52 52 49.6 8 54 6.2	50.7 59.4 51.4 51.6 51.7 58.3 58.3 55.2 + 55.9	25 17 12.1 28 44 39.3 28 44 12.1 28 44 16.5 28 27 20.6 25 27 22.7 39 18 3.0 39 18 5.1 +17 58 9.3	3 22. 9 3 55. 9 3 23. 6 3 24. 8 3 25. 1 3 56. 3 3 27. 8 3 29. 6 — 3 55. 7	51 0.5 8 52 13.5 52 12.6 52 12.5 52 12.5 68 53 8.5 53 8.1 8 53 53 44.8 8 55 · 2.1	13 49.2 +28 40 43.4 40 49.5 40 51.7 40 50.4 +25 23 24.5 23 26.4 +39 14 35.2 +17 54 13.6

(180)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800, 0
2.0.			2430					a	δ
1671 1672 1673 1674* 1675 1676 1677 1678 1679 1680	Lalande 17932 . 73 Cancri . Lalande 17950 . 72 Cancri	8 7.8 8 6.7 6.7 6.7 6.7 7	5 April 10 3 April 16 3 April 5 3 April 4 3 April 8 5 Mar. 21 5 April 5 3 April 4 3 April 14 5 April 10	h m s 8 54 14.9 54 19.7 54 44.7 54 57.9 54 57.4 55 39.3 55 39.0 56 0.5 56 8.7 56 16.0	+ 48.2 55.5 59.4 60.0 60.0 53.2 53.4 58.8 55.3 47.9	+16 42 30.9 16 7 50.7 28 51 57.3 30 30 55.7 30 30 59.3 34 44 42.2 34 44 46.8 27 30 59.6 15 34 26.1 15 33 57.0	3 23.6 3 56.0 3 59.0 4 0.7 4 1.0 3 29.0 3 30.5 4 0.8 3 57.6 3 25.1	8 55 15.2 8 55 44.1	0 / " +16 39 7.3 +16 3 54.7 +28 47 58.3 +30 26 55.0 26 58.3 34 41 13.2 41 16.3 +27 26 58.8 +15 30 28.5 15 30 31.9
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690	78 Cancri	7.8 7 7.8 8 8.9 6.7 6.7	3 April 2 3 April 16 5 April 11 3 April 13 3 April 5 3 Mar. 29 5 Mar. 21 5 April 5 3 April 13	56 52.3 56 52.1 56 59.8 56 52.5 57 4.1 57 139.6 57 39.5 57 52.2	55. 9 56. 1 48. 6 57. 5 59. 9 55. 2 52. 1 52. 3	18 20 11.3 18 20 15.6 18 19 39.0 22 54 47.4 30 25 38.1 16 6 28.1 31 49 41.1 31 49 41.5 22 52 1.8 22 51 59.4	3 58.7 3 59.3 3 26.7 4 0.7 4 2.8 3 58.1 3 29.9 3 31.4 4 0.3 4 1.7	8 57 48.2 57 48.2 57 48.4 8 57 50.0 8 58 4.0 8 58 31.7 58 31.8 8 58 58 49.6	+18 16 12.6 16 16.3 16 12.3 +22 50 46.7 +30 21 35.3 +16 2 30.0 +31 46 11.2 46 10.1 +22 48 1.5 22 47 57.7
1691 1692 1693 1694 1695 1696 1697 1698 1699*	395 Mayer	7 5 7.8 7 7.8	3 April 14 5 April 11 5 April 10 3 April 4 3 April 5 3 April 13 5 Mar. 21 5 April 5 3 Mar. 29 3 April 14	57 53.0 58 59 42.4 59 45.8 59 45.7 59 45.7 59 54.3 8 59 52.9 9 0 25.4 0 24.7	57. 4 56. 9 56. 0 56. 0 56. 1 48. 4 48. 7 55. 0 55. 2	22 52 1.8 12 25 36.6 44 5 37.3 18 55 18.5 18 55 25.1 18 55 45.3 18 54 45.3 18 54 51.0 15 51 35.9 15 51 34.6	4 1.9 3 26.7 3 37.4 4 1.9 4 1.9 4 2.2 3 35.2 3 29.2 4 1.3 4 1.9	58 50.4 8 59 9 0 39.3 9 0 41.8 0 41.7 0 41.6 0 42.7 0 41.6 9 1 20.4 1 19.9	47 59.9 +12 22 9.9 +44 1 59.9 +18 51 16.6 51 23.2 51 18.9 51 10.1 51 21.8 +15 47 34.6 47 32.7
1701 1702 1703 1704 1705 1706 1707 1708* 1709 1710	Lalande 18162	8.9 9.10 6 6.7 8.9	3 April 2 5 April 11 3 April 16 5 April 5 5 April 5 5 April 11 3 Mar. 29 3 April 4 3 April 5	1 12.0 1 19.4 1 53.7 1 53.7 2 1.4 3 1.7 3 1.0 3 15.9 3 15.5 3 15.3	53. 8 46. 8 61. 6 61. 7 53. 3 47. 0 47. 0 55. 0 55. 0	11 32 58.0 11 32 19.1 35 31 7.8 35 31 7.2 35 30 42.2 12 22 26.5 12 22 26.0 15 49 48.9 15 49 51.3	4 1.0 3 28.3 4 9.5 4 10,1 3 36.3 3 29.1 3 29.9 4 4.1 4 4.3 4 4.3	9 2 5.8 2 6.2 9 2 55.3 2 55.4 2 54.7 9 3 48.0 9 4 10.9 4 10.5 4 10.3	+11 28 57.0 28 50.8 +35 26 58.3 26 57.1 27 5.9 +12 18 57.4 18 56.1 +15 45 41.9 45 47.0
1711 1712 1713 1714 1715 1716 1717* 1718 1719 1720	" Lalande 18251 Lalande 18256 " 38 Lyncis " 398 Mayer " 83 Cancri	9 ,7 7.8 6.7 6.7	3 April 13 3 April 5 5 Mar. 21 5 April 5 3 April 8 3 April 14 5 April 11 3 Mar. 29 3 April 2	3 15.0 3 53.6 4 9.3 4 10.5 5 19.0 6 5.4 6 12.3 6 53.1 6 52.4	55. 1 55. 0 52. 6 52. 8 62. 2 62. 4 54. 1 46. 9 55. 6 55. 7	15 49 49.4 15 53 57.6 34 23 34.1 34 23 33.4 37 42 38.9 37 42 40.9 12 23 58.6 12 23 21.0 18 36 47.2 18 36 52.5	4 4.7 4 5.0 3 36.1 3 37.8 4 13.6 4 14.2 4 6.4 3 32.7 4 8.4 4 8.6	4 10.1 9 4 48.6 9 5 1.9 5 3.3 9 6 21.2 6 21.4 9 6 59.5 6 59.2 9 7 48.7 7 48.1	45 44.7 +15 49 52.6 +34 19 58.0 19 55.6 +37 38 25.3 38 26.7 +12 19 52.2 19 48.3 +18 32 38.8 32 43.9
1721* 1722 1723 1724 1725 1726 1727 1728 1729 1730	Lalande 18360,2 40 Lyncis Lalande 18412	6.7 7.8	3 April 4 3 April 5 3 April 13 5 Mar. 21 3 April 15 5 April 5 3 April 8 3 April 26 5 Mar. 21 5 April 5	6 52.3 6 52.4 6 52.2 6 59.8 7 21.7 7 29.7 7 48.9 9 24.3 9 9 23.9	55. 7 55. 7 55. 8 48. 1 62. 8 54. 3 61. 1 61. 1 47. 5 47. 7	18 36 54.4 18 36 53.8 18 36 52.1 18 36 19.6 39 5 50.4 39 5 19.0 35 17 58.7 35 18 4.0 16 16 18.7 +16 16 19.4	4 8.7 4 9.2 3 34.2 4 16.7 3 41.9 4 15.1 4 16.6 3 35.7 — 3 36.4	7 48.0 7 48.1 7 48.0 7 47.9 9 8 24.5 8 24.0 9 8 50.0 8 50.3 9 10 11.8 9 10 11.6	32 45.7 32 45.1 32 42.9 32 45.4 +39 1 33.7.1 +35 13 43.6 13 47.4 +16 12 43.0 +16 12 43.0

(181)

No.	Name	Mag.	Date	App't α	Reduct'n	App't d	Reduction	Mean equ	inox 1800. 0
	•			• .				а	ð
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740	Lalande 18414 . Lalande 18422 . Lalande 18424 . 6 Leonis Minoris Lalande 18466 .	7.8 7.8 8.9 9 8 6 6	3 April 4 5 April 10 3 April 12 5 April 12 5 April 13 3 April 5 3 April 5 3 April 13 3 April 16 5 April 10	h m s 9 9 22.5 9 29.2 9 36.5 9 37.1 10 58.0 10 57.7 10 57.8 10 56.9	+ 55.3 48.0 56.1 56.7 49.2 57.8 57.8 57.9 61.9 53.6	0 / " +17 30 41.4 17 30 8.2 19 40 1.7 22 24 40.2 22 24 4.5 26 5 59.4 26 6 5.9 37 30 29.5 37 30 0.5	4 10.7 3 37.0 4 12.2 4 12.4 3 38.9 4 15.0 4 15.5 4 19.5 3 44.8	10 17.2 9 10 32.6 9 10 33.8 10 34.3 9 11 55.8 11 55.5 11 55.7	0 / " +17 26 30.7 26 31.2 +19 35 49.5 +22 20 27.6 +26 1 44.4 1 44.2 1 44.2 1 47 26 10.0 26 15.7
1741* 1742 1743* 1744 1745 1746* 1747 1748 1749 1750	402 Mayer	7	3 Mar. 29 3 April 2 3 April 4 3 Feb. 18 3 Mar. 29 3 April 2 3 April 4 3 April 5 3 April 26 3 April 28	11 30.6 11 30.3 11 29.9 12 0.4 12 0.9 12 0.3 12 0.7 11 59.7 12 0.2	57. 9 58. 0 58. 0 57. 8 58. 0 58. 0 58. 0 58. 4 58. 4	26 50 22.7 26 50 21.7 26 50 20.0 27 6 18.4 27 6 18.7 27 6 22.0 27 6 23.0 27 6 25.7 27 6 21.8	4 15.1 4 15.5 4 15.6 4 12.6 4 15.7 4 16.2 4 16.2 4 17.8 4 17.9	9 12 28.5 12 28.3 12 27.9 9 12 58.2 12 58.9 12 58.3 12 58.7 12 58.1 12 58.6	+26 46 7.6 46 6.2 46 4.4 +27 2 5.8 2 3.0 2 3.2 2 5.8 2 6.8 2 7.9 2 3.9
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760	Lalande 18520 . Lalande 18520 . Lalande 18545 . " 41 Lyncis .	7 8.9 8 7 7 6.7	3 April 29 5 April 30 5 Mar. 21 5 April 5 3 April 14 5 April 11 3 April 8 3 April 16 5 April 10 3 April 13	12 0, 2 11 59, 9 12 30, 9 12 30, 1 12 35, 1 12 42, 7 13 15, 8 13 23, 9 14 23, 9	58. 4 58. 4 48. 1 48. 3 55. 7 48. 2 61. 7 61. 7 53. 4 65. 7	27 6 25, 3 27 6 26, 5 19 3 15, 4 19 3 17, 8 18 37 55, 2 18 37 21, 2 37 23 16, 0 37 22 41, 5 46 32 37, 7	4 17.9 4 18.0 3 38.9 3 39.8 4 14.6 3 40.1 4 20.0 4 21.7 3 46.6 4 25.3	13 18.4	2 7.4 2 8.5 +18 59 36.5 59 38.0 +18 33 40.6 33 41.1 +37 18 56.8 18 54.3 18 54.9 +46 28 12.4
1761 1762 1763 1764 1765 1766* 1767 1768* 1769 1770	Piazzi 84	6.7 7.8 7	3 April 2 3 April 4 5 April 11 3 Feb. 18 3 Mar. 29 3 April 5 3 April 8 3 April 14 5 Mar. 21	15 2.9 15 2.7 15 10.4 16 50.4 16 51.6 16 49.5 16 50.4 16 50.4 16 58.0	54. 5 54. 6 47. 4 52. 9 53. 1 53. 2 53. 2 53. 3 45. 9	15 14 1.8 15 14 4.9 15 13 31.1 9 59 25.9 9 59 24.8 9 59 26.4 9 59 26.4 9 59 26.6 9 58 49.3	4 15.3 4 15.3 3 41.0 4 15.6. 4 15.3 4 15.4 4 15.6 4 15.6 4 15.8 3 40.2	9 15 57.4 15 57.3 15 57.8 9 17 45.3 17 44.7 17 42.6 17 43.6 17 43.7 17 43.9	+15 9 46.5 9 49.6 9 50.1 + 9 55 10.3 55 9.5 55 7.7 55 11.0 55 12.5 55 10.8 .55 9.1
1771 1772 1773 1774 1775 1776 1777 1778 1779* 1780	Lalande 18631 30 Hydræ a " " 3 Leonis	5 7 6.7	5 April 5 3 April 16 5 April 10 3 April 29 3 April 30 3 May 2 3 May 16 3 April 4 3 April 8 3 April 13	16 57. 6 16 47. 3 16 55. 2 (16) 16 56. 5 16 56. 4 16 56. 3 16 55. 6 17 35. 2	49. 1 49. 1 48. 9	9 58 54.8 34 29 27.7 +34 28 53.5 - 7 43 47.8 7 43 47.8 7 43 48.7 - 7 43 48.7 + 9 7 27.5 9 7 26.9 34 36 0.3	3 40.6 4 24.0 3 48.5 4 10.5 4 10.6 4 11.1 4 15.3 4 15.3 4 24.4	17 48.6	55 14.2 +34 25 3.7 25 5.0 - 7 47 58.3 47 58.3 47 57.3 47 57.3 47 57.3 49 3 12.2 3 11.6 +34 31 35.9
1781 1782 1783 1784 1785 1786 1787 1788 1789*	"	6 6 7 7 6	3 April 16 5 April 10 5 Mar. 21 5 April 11 5 April 10 3 Mar. 29 3 April 2 3 April 4 3 April 4 3 April 8	17 35, 1 17 43, 5 18 12, 4 18 11, 7 18 19 19, 9 19 19, 8 19 20, 0 19 20, 1 9 19, 9	60. 4 52. 3 48. 8 49. 1 56. 7 56. 8 56. 8 + 56. 9	34 36 0.3 34 35 29.6 22 44 41.2 22 44 40.6 36 2 37.6 23 54 53.0 23 54 50.9 23 54 55.4 23 54 54.3 +23 54 51.3	4 24.6 3 49.2 3 44.4 3 45.8 3 49.7 4 21.4 4 21.8 4 21.9 4 22.1	20 16.6 20 16.8 20 16.9	31 35.7 31 40.4 +22 40 56.8 40 54.8 +35 58 47.9 +23 50 31.6 50 29.1 55 33.5 50 32.4 +23 50 29.2

(182)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
110.	Маше	mag.			Leader 1			а	δ
1791 1792 1793 1794 1795 1796 1797 1798 1799* 1800	4 Leonis λ 5 Leonis § 9 Leonis Minoris 6 Leonis h 10 Leonis Minoris	4.5 7 6 4.5 4.5	3 April 14 5 April 11 3 Feb. 18 3 April 16 3 April 26 3 April 5 3 April 8 5 Mar. 21 3 April 13 3 April 16	h m s 9 19 19.8 19 26.9 20 15.8 20 9.9 20 8.9 (20) 20 20.8 20 31.8 20 53.9 20 53.9	+ 57.0 49.3 53.4 61.3 61.5 53.3 47.1 61.2 61.2	+23 54 53.7 23 54 19.7 12 14 56.3 37 26 16.4 37 26 22.5 10 39 41.0 10 39 38.7 15 29 20.6 37 21 8.5 37 21 5.5	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	h m s 9 20 16.8 20 16.2 9 21 9.2 9 21 11.2 21 10.4 9(21) 21 14.7 9 21 18.9 9 21 55.1 21 55.1	+23 50 31.1 50 32.5 +12 10 37.9 +37 21 48.5 21 53.7 +10 35 22.2 35 19.8 +15 25 36.2 +37 16 40.3 16 37.0
1801 1802 1803 1804* 1805 1806 1807 1808 1809 1810*	Lalande 18775	7 6.7 6 6 7 7 8.9 8.9 9	5 April 5 5 April 10 5 April 11 3 April 13 3 April 16 3 April 14 5 April 10 3 Mar. 29 3 April 5 5 April 11	21 42.2 21 42.8 21 43.0 22 36.8 22 36.9 23 13.5 23 20.6 23 19.5 23 29.6 23 20.6	49. 3 49. 4 60. 9 60. 9 54. 1 46. 8 54. 2 54. 3 47. 1	24 24 9.0 24 24 5.0 24 24 3.6 36 47 1.5 36 46 58.9 13 36 4.3 15 1 15 1 48.1 15 1 15.7	3 48.7 3 48.9 3 49.1 4 29.6 4 29.9 4 22.7 3 46.9 4 22.4 4 22.7 3 47.7	9 22 31.5 22 32.1 22 32.4 9 23 37.7 23 37.8 9 24 7.4 9 24 13.7 24 13.5 24 13.1	20 16. 1 20 14. 5 +36 42 31. 9 42 29. 0 +13 32 18. 0 32 17. 4
1811 1812 1813 1814 1815 1816* 1817 1818* 1819* 1820	7 Leonis	6 6 7	3 Mar. 29 3 April 2 3 April 4 3 April 5 3 April 5 5 April 11 5 Mar. 21 5 Mar. 23 3 April 8 3 Feb. 18	24 2.3 24 2.1 24 1.8 24 1.7 24 1.5 24 9.1 24 9.5 24 8.6 25 4.1 25 46.2	54. 3 54. 3 54. 4 54. 4 47. 2 47. 0 47. 0 54. 9 52. 3	15 20 18.4 15 20 12.9 15 20 17.0 15 20 18.0 15 20 15.0 15 19 41.0 15 19 40.5 17 24 1.3 7 47 53.1	4 23. 2 4 23. 4 4 23. 4 4 23. 4 4 23. 6 3 48. 1 3 47. 1 3 47. 2 4 25. 2 4 23. 4	9 24 56.6 24 56.4 24 56.2 24 56.1 24 55.9 24 56.5 24 56.5 24 55.6 9 25 59.0 9 26 38.5	15 49.5 15 53.6 15 54.6 15 51.4 15 53.6 15 52.7 15 53.3
1821 1822 1823 1824* 1825 1826 1827 1828 1829 1830	" 11 Leonis	6.7 7.8 7 6.7 6 7.8	3 Feb. 26 3 April 2 3 April 5 3 April 14 3 April 16 5 April 10 5 April 10 5 April 11 5 Mar. 21 5 Mar. 23	25 46.5 26 11.4 26 11.8 26 11.2 26 19.6 26 37.3 26 37.6 26 37.5 26 50.5 26 49.3	52. 2 54. 3 54. 3 54. 4 60. 5 46. 7 46. 8 46. 8 48. 2 48. 2	7 47 49.1 15 19 1.3 15 19 3.8 15 19 7.1 36 12 49.9 13 41 35.6 13 41 28.8 13 41 30.9 21 15 24.3 21 15 23.0	4 22. 9 4 25. 2 4 25. 8 4 32. 9 3 49. 4 3 49. 4 3 50. 5 3 50. 6	26 38.7 9 27 5.7 27 6.1 27 5.6 9 27 20.1 9 27 24.4 27 24.3 9 27 38.7 27 37.5	43 26.2 +15 14 36.1 14 38.4 14 41.3 +36 8 17.0 +13 37 46.5 37 39.4 37 41.5 +21 11 33.8 11 32.4
1831 1832 1833* 1834 1835 1836 1837 1838 1839 1840	Flamsteed, B. 1359 413 Mayer Lalande 18976 43 Lyncis Lalande 18986 13 Leonis ""	6 7 9 6.5 8 7 8	3 April 13 3 April 16 3 April 19 3 Feb. 26 5 April 10 5 April 5 5 April 11 3 April 2 3 April 4 3 April 5	26 48.7 26 48.9 27 30.8 28 39.3 28 40.2 28 55.5 29 9.0 29 9.7 29 9.0	60. 4 60. 5 54. 2 52. 6 53. 7 46. 7 46. 8 57. 2 57. 2 57. 2	36 18 25.0 36 18 28.4 14 16 54.0 9 14 55.3 40 43 43.8 14 1 29.7 14 1 23.7 26 53 26.1 26 53 28.1 26 53 28.9	4 33.0 4 33.4 4 26.9 4 25.6 3 59.3 3 51.3 4 31.2 4 31.3	9 27 49.1 27 49.4 9 28 25.0 9 29 31.9 9 29 33.9 9 29 42.3 9 30 6.2 30 6.2	+36 13 52.0 13 55.0 +14 12 27.1 + 9 10 29.7 +40 39 44.5 +7 57 38.7 57 32.4 +26 48 54.9 48 56.8 48 57.6
1841 1842 1843 1844 1845 1846 1847 1848* 1849	13 Leonis Minoris 14 Leonis o	6 6	3 April 8 3 April 13 3 April 16 3 Feb. 18 3 Feb. 26 3 Mar. 29 3 April 19 3 April 26 3 April 28 3 April 29	29 36. 2 29 36. 0 29 36. 2 29 34. 8 29 35. 9 29 35. 5 29 33. 4 29 31. 5 9 29 31. 0	60, 1 60, 2 60, 2 52, 9 53, 1 53, 3 53, 4 53, 4 + 53, 5°	36 4 35.4 36 4 39.1 36 4 38.8 10 52 9.5 10 52 6.0 10 52 8.5 10 52 7.9 10 52 10.2 10 52 5.3 +10 52 12.3	4 34.8 4 35.3 4 35.6 4 26.9 4 26.6 4 26.8 4 26.6 4 26.2 4 28.0 4 26.0	9 30 36.3 30 36.2 30 36.4 9 30 27.7 30 29.0 30 28.8 30 26.8 30 24.9 9 30 24.5	+36 0 0.6 0 3.8 0 3.2 +10 47 42.6 47 39.4 47 41.7 47 41.3 47 44.0 47 37.3 +10 47 46.3

(183)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
						- 11		a	δ
1851 1852 1853 1854 1855 1856* 1858 1859 1860*	14 Leonis o Lalande 19048 15 Leonis f Lalande 19068	3.4 8 7.8 9.10	3 April 30 5 April 26 5 April 10 3 April 2 3 April 18 5 April 11 3 April 4 3 April 5 3 April 13 3 April 14	h m s 9 29 34.2 29 41.8 30 49.6 30 49.5 31 11.0 31 19.4 31 55.1 31 55.5 31 54.8 31 55.5	+ 53.5 46.3 51.8 58.4 59.9 51.9 54.1 54.1 54.2	+10 52 14.4 10 51 35.3 35 4 15.4 30 57 46.1 35 42 22.7 35 41 50.3 15 0 16.1 15 0 18.4 15 0 17.2	- 4 28.1 3 51.5 3 59.2 4 32.8 4 36.0 3 59.8 4 30.1 4 30.1 4 30.6 4 30.6	32 11.3	+10 47 46.3 47 43.8 +35 0 16.2 +30 53 13.3 +35 37 46.7 37 50.5 +14 55 46.0 55 48.3 55 44.7 55 46.6
1861 1862 1863 1864 1865 1866 1867 1869 1870	14 Leonis Minoris " Piazzi 163	6 7 7 7 7 8	5 Mar. 21 5 April 5 5 April 10 3 Feb. 26 3 April 2 3 April 2 3 Feb. 18 3 Feb. 26 3 Mar. 21 3 Mar. 29	32 3, 8 32(55) 32 55, 2 32 56, 3 32 56, 1 32 55, 0 33 31, 5 33 31, 7 33 31, 4 33 31, 7	46. 7 55. 2 56. 2 56. 4 56. 6 56. 3 56. 2 56. 3 56. 4	14 59 39, 1 46 6 13, 7 46 6 14, 7 24 27 46, 7 24 27 45, 3 24 27 49, 3 24 45 49, 2 24 45 45, 3 24 45 50, 2 24 45 45, 6	3 52.9 4 3.3 4 4.0 4 31.0 4 33.5 4 34.9 4 31.4 4 33.1 4 33.8	33 52.5 33 51.6	55 46.0 +46 2 10.4 2 10.7 +24 23 15.7 23 14.8 23 18.8 +24 41 18.2 41 13.9 41 17.1 41 11.8
1871 1872 1873 1874 1875 1876 1877* 1878 1879 1880	"	6	3 April 2 3 April 4 3 April 5 3 April 8 3 April 29 3 April 20 3 May 16 3 April 8 3 April 14 3 April 16	33 31.6 33 32.1 33 31.5 33 31.1 (33) 33 31.2 33 30.7 34 41.9 34 42.0 34 33.2	56. 4 56. 5 56. 5 56. 8 56. 8 56. 8 53. 5 53. 6 64. 2	24 45 49.1 24 45 51.6 24 45 54.4 24 45 50.6 24 45 53.7 24 45 51.6 12 47 55.0 12 47 56.6 47 1 25.2	4 34.0 4 34.2 4 34.3 4 34.6 4 36.2 4 36.2 4 37.0 4 31.9 4 32.2 4 43.1	34 28.0 34 27.9 34 27.6 (34) 34 28.0 34 27.5 9 35 35.4 35 35.6 9 35 37.4	41 15.1 41 17.4 41 20.1 41 16.0 41 17.5 41 16.3 41 14.6 +12 43 23.1 43 24.4 +46 56 42.1
1823 1824 1834 1836 1837 1838 1839 1839	Lalande 19172,3	6.7 7 7.8 7.8 7 7	3 Feb. 26 3 Mar. 21 3 April 2 3 April 4 3 April 5 3 April 19 3 April 8 3 April 14 5 April 11	35 3, 9 35 3, 1 35 3, 4 35 3, 8 35 44, 8 35 44, 8 36 27, 3 36 49, 4	56. 1 56. 2 56. 3 56. 4 56. 4 56. 6 53. 5 53. 5 52. 2 54. 6	24 38 25.0 24 38 32.5 24 38 29.9 24 38 30.7 24 38 32.2 24 38 31.6 12 33 44.8 12 33 42.8 37 44 19.8 46 4 56.4	4 32. 4 4 34. 3 4 35. 5 4 35. 5 4 36. 7 4 32. 8 4 33. 1 4 4. 0 4 6. 4	35 59.3 35 59.6 35 59.8 36 0.2 35 59.9 9 36 38.3 36 38.3	+24 33 52.6 33 58.2 33 54.5 33 55.2 33 56.7 33 56.7 412 29 12.0 29 9.7 +37 40 15.8 +46 0 50.0
1891 1892 †1893 1894 1895 1896 1897 1898* 1899 1900*	16 Leonis Minoris 20 Leonis Piazzi 183 21 Leonis 17 Leonis Minoris	7.8 5 6 7.8 8 6 6.7	5 April 5 5 April 26 3 Feb. 26 3 Mar. 29 3 April 4 3 April 8 3 April 19 3 Feb. 26 3 April 16	37 0.0 37 0.7 37 42.6 37 41.7 37 42.8 37 40.8 37 50.8 39 9.8 39 9.5	53. 0 53. 4 56. 3 55. 6 55. 6 55. 7 56. 5 56. 7 53. 2 60. 6	40 37 24, 9 40 37 29, 5 25 34 42, 6 22 10 53, 9 22 10 57, 4 22 10 54, 9 25 33 44, 9 25 33 46, 3 12 50 44, 2 38 55 30, 9	4 4.6 4 6.8 4 34.8 4 36.5 4 36.9 4 37.5 4 38.4 4 39.3 4 34.7 4 44.3	9 38 37.3 38 38.4 38 36.3 9 38 46.3 38 47.5 9 40 3.0	+40 33 20.3 33 22.7 +25 30 7.8 +22 6 17.4 6 20.5 6 16.5 +25 29 6.5 29 7.0 +12 46 9.5 +38 50 46.6
1901 1902 1903 1904 1905 1906 1907 1908* 1909 1910*	23 Leonis 22 Leonis	6.7 8.9 6.5 6 6.5 6	5 April 11 3 April 14 3 April 2 3 April 5 3 April 5 3 April 19 5 April 10 5 April 10 5 April 26 3 Feb. 18	39 18.7 39 17.9 39 34.1 39 33.6 39 33.6 39 33.7 39 41.2 39 41.2 40 24.7	52. 4 53. 8 56. 3 56. 4 56. 6 48. 9 48. 9 49. 1 + 56. 6	38 54 52.1 14 4 16.8 25 24 46.6 25 24 50.7 25 24 53.9 25 24 11.9 25 24 13.1 +27 1 7.1	4 6.4 4 36.3 4 39.1 4 39.3 4 39.6 4 40.5 4 2.0 4 2.4 4 3.7 	9 40 30, 4 40 30, 0 40 29, 4 40 30, 3 40 30, 1 40 30, 1 40 30, 3	50 45.7 +13 59 40.5 +25 20 7.5 20 11.4 20 8.1 20 13.4 20 9.9 20 8.0 20 9.5 4 +26 56 30.5

(184)

No.	Name	Mag.	Date	App't α	Reduct'n	App't d	Reduction	Mean equ	inox 1800. 0
110.		mag.	·					α	δ
1911 1912 1913 1914 1915 1916 1917* 1918 1919	24 Leonis μ	8	3 Mar. 21 3 Mar. 29 3 April 2 3 April 24 3 April 28 3 April 29 3 April 30 3 May 2 5 April 11	h m s 9 40 24.7 40 25.1 40 25.0 40 25.0 40 24.2 (40) 40 24.9 40 24.8 40 24.7 42 31.0	* 56.6 56.7 56.7 56.8 57.0 57.0 57.1 46.0	+27 1 11.8 27 1 8.7 27 1 12.5 27 1 11.7 27 1 15.0 27 1 10.9 27 1 14.1 27 1 13.4 11 15 33.8	- 4 39. 1 4 39. 9 4 40. 3 4 40. 4 4 42. 3 4 42. 5 4 42. 6 4 42. 6 4 42. 7 4 0. 1	h m s 9 41 21.3 41 21.8 41 21.6 41 21.8 41 21.2 (41) 41 21.9 41 21.8 9 43 17.0	+26 56 32.7 56 28.8 56 32.2 56 31.3 56 32.7 56 32.7 56 32.0 56 30.7 +11 11 33.7
1921 1922 1923 1924 1925 1926 1927 1928 1929* 1930	423 Mayer Lalande 19396 .18 Leonis Minoris Piazzi 208 19 Leonis Minoris Lalande 19442	7.8 8.9 8.9 6 6 7 5.6 8.9 7.8	3 April 14 3 April 19 3 Mar. 29 3 April 26 3 April 28 5 April 11 3 April 29 3 Feb. 18 3 April 16	42 37. 4 42 38. 0 42 47. 9 43 46. 5 43 46. 7 44 34. 7 (44) 44 22. 0 44 51. 4 44 50. 1	52. 6 52. 7 56. 2 58. 6 58. 7 45. 4 61. 4 61. 5 53. 8 54. 0	9 5 20.8 9 5 20.4 25 39 36.0 33 24 21.4 33 24 18.6 8 41 9.5 42 4 58.8 42 4 57.3 15 45 7.2 15 45 12.4	4 37.5 4 37.6 4 41.4 4 47.1 4 47.3 4 0.7 4 50.4 4 50.7 4 39.4 4 41.3	9 43 30.0 43 30.7 9 43 44.1 9 44 45.1 44 45.4 9 45 20.1 9(45) 45 23.5 9 45 45.2 45 44.1	+ 9 0 43.3 0 42.8 +25 34 54.6 +33 19 34.3 19 31.3 + 8 37 8.4 42 0 8.4 0 6.6 +15 40 27.8
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940	10 Sextantis	6.7 8 6.7	3 April 14 3 April 19 3 April 12 3 April 13 3 Mar. 29 3 April 5 3 April 5 3 April 8 3 April 14 3 April 30	44 56, 0 44 56, 5 45 40, 1 46 23, 6 46 34, 3 46 34, 2 46 33, 5 46 33, 6 46 33, 4	52. 8 52. 8 55. 2 54. 1 53. 3 53. 3 53. 4 53. 4 53. 5 53. 7	9 57 6.3 9 57 6.5 21 11 49.0 16 14 50.9 13 28 17.1 13 28 12.2 13 28 19.2 13 28 17.3 13 28 17.3	4 39.5 4 39.8 4 43.5 4 42.4 4 41.1 4 41.2 4 41.4 4 41.5 4 41.8 4 42.7	9 45 48.8 45 49.3 9 46 35.3 9 47 17.7 9 47 27.6 47 27.2 47 27.6 47 26.9 47 27.1 47 27.1	+ 9 52 26.5 52 26.5 +21 7 5.5 +16 10 8.5 +13 23 36.6 23 31.6 23 37.8 23 29.4 23 35.5 23 34.8
1941 1942 1943 1944 1945 1946* 1947* 1948 1949	11 Sextantis	6 7 7.8 9	5 April 10 5 April 11 3 Feb. 26 3 April 19 3 Feb. 18 3 Mar. 29 3 April 2 3 April 5 3 April 8 3 April 14	46 45. 4 46 45. 3 47 3. 7 47 3. 8 48 45. 3 (48) 48 45. 5 48 45. 3 48 45. 2 48 45. 3	45. 5 45. 5 52. 9 53. 2 52. 3 52. 4 52. 4 52. 4 52. 5	9 19 46.2 9 19 46.3 11 59 3.7 11 59 2.6 9 4 33.5 9 4 36.7 9 4 35.9 9 4 36.0 9 4 34.8	4 2.3 4 2.4 4 40.7 4 42.1 4 41.6 4 41.8 4 41.8 4 41.9 4 42.1	9 47 30,9 47 30,8 9 47 56,6 47 57,0 9 49 37,6 (49) 49 37,9 49 37,7 49 37,6 49 37,8	+ 9 15 43. 15 43. +11 54 23. 54 20. + 8 59 51. 59 55. 59 51. 59 54. 59 52.
1951 1952 1953 1954 1955 1956 1957 1958 1959* 1960	"	4 6.5 4 6.7	3 April 16 3 April 28 3 April 29 3 April 30 3 May 2 5 April 11 5 April 12 5 April 12 5 April 12	48 44, 6 48 45, 3 48 45, 2 48 45, 1 48 44, 7 (48) 48 52, 4 48 52, 4 50 42, 7 50 50, 1	52. 5 52. 7 52. 7 52. 7 52. 7 45. 4 45. 4 45. 6 55. 4 48. 0	9 4 35.1 9 4 29.5 9 4 31.6 9 4 33.3 9 4 33.7 9 3 55.6 9 3 59.9 22 59 15.2 22 58 35.8	4 42.2 4 42.7 4 42.8 4 42.8 4 43.0 4 3.5 4 3.7 4 4.3 4 37.7 4 9.1	49 37. 1 49 38. 0 49 37. 9 49 37. 8 49 37. 4 (49) 49 37. 8 49 38. 0 9 51 38. 1 51 38. 1	59 52. 59 46. 59 48. 59 50. 59 50. 59 53. 59 51. 59 55. +22 54 37. 54 26.
1961 1962 1963 1964 1965 1966* 1967 1968 1969 1970*	Flamsteed, B.1422 Lalande 19635 428 Mayer 429 Mayer 430 Mayer	9. 10 8. 9 9 9 7 8 8 7	3 April 4 3 April 8 3 April 19 3 April 2 3 April 5 5 April 10 3 April 14 3 April 30 5 April 26 3 April 14	51 49.0 51 48.0 51 48.4 51 57.9 52 2.5 52 8.1 52 9.5 52 31.8 52 38.0 9 53 36.9	46, 2	9 16 7.5 9 16 9.4 19 59 43.0 +10 56 10 55 47.3 -9 4 25.9 12 39 37.6 +9 1 59.4	4 44.2 4 44.2 4 44.6 4 47.0 4 44.8 4 6.3 4 39.7 4 46.9 4 8.0 — 4 45.7	52 53.8 9 52 58.3 9 53 25.2 53 24.2	11 28.0 11 24.8

(185)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
								a	δ
1971 1972* 1973 1974 1975 1976 1977 1978 1979 1980	430 Mayer	7 7 7 7.6 7.6 7.6	5 Mar. 23 3 Mar. 29 3 April 2 3 April 4 3 April 13 3 April 16 5 April 11 3 April 26 3 April 28 3 April 29	h m s 9 53 43.8 53 56.1 53 54.9 53 55.0 53 54.4 53 54.5 54 2.5 54 36.2 54 36.4 54 36.6	+ 45.2 53.8 53.9 54.0 46.7 58.8 58.9 58.9	+ 9 1 22.2 16 48 15.6 16 48 11.5 16 48 10.6 16 48 15.8 16 48 16.9 16 47 32.4 36 17 46.6 36 17 42.1 36 17 44.1	4 6.3 4 47.3 4 47.6 4 47.6 4 48.4 4 48.5 4 9.2 4 56.1 4 56.2	h m s 9 54 29.0 9 54 49.9 54 48.7 54 48.4 54 48.4 54 49.1 9 55 35.0 55 35.3 55 35.5	+ 8 57 15.5 +16 43 28.3 43 23.6 43 27.4 43 27.4 43 28.4 43 28.4 43 28.4 43 23.2 +36 12 50.5 12 45.5 12 47.8
1981 1982 1983* 1984 1985 1987 1987 1989 1989	Lalande 19724	8 8	3 April 19 5 April 26 3 Feb. 18 3 Feb. 26 3 Mar. 29 3 April 2 3 April 4 3 April 5 3 April 8 3 April 14	54 58, 2 55 5, 1 55 30, 2 55 30, 7 55 30, 9 55 30, 8 55 30, 8 55 30, 1 55 30, 0	53. 4 46. 4 53. 9 54. 0 54. 0 54. 0 54. 1 54. 1	13 49 57.9 13 49 17.5 17 48 45.5 17 48 44.8 17 48 43.9 17 48 46.1 17 48 45.4 17 48 45.4	4 48. 4 4 9. 9 4 47. 3 4 47. 2 4 48. 7 4 48. 8 4 49. 0 4 49. 1 4 49. 3 4 49. 7	9 55 51. 6 55 51. 5 9 56 24. 1 56 24. 6 56 24. 9 56 24. 8 56 24. 8 56 24. 8 56 24. 2 56 24. 1	+13 45 9.5 +17 43 58.9 +18 43 57.6 43 57.6 43 56.6 43 56.3 43 56.6 43 56.6
1991* 1992 1993* 1994 1995* 1996 1997 1998 1999* 2000		3. 4 3. 4 8. 9	3 April 26 3 April 28 3 April 29 3 April 30 3 May 2 3 May 9 5 April 11 5 Mar. 23 3 April 4 3 Feb. 18	55 29.6 55 30.3 55 30.1 55 30.1 55 30.4 55 29.8 55 37.2 56 39.7 56 49.6	54. 3 54. 3 54. 3 54. 3 54. 4 54. 4 46. 9 46. 7 53. 1 52. 9	17 48 44.4 17 48 40.9 17 48 46.0 17 48 47.9 17 48 44.1 17 48 5.9 17 48 5.4 13 (3) 13 1 6.8	4 50.6 4 50.8 4 50.9 4 51.0 4 50.9 4 51.4 4 10.5 4 9.4	56 23, 9 56 24, 6 56 24, 4 56 24, 8 56 24, 8 56 24, 2 56 23, 8 9 57 32, 8 9 57 42, 5	43 53.8 43 50.1 43 55.1 43 56.9 43 56.1 43 52.7 43 55.4 43 56.0 +12(58) +12 56 18.7
2001 2002 2003 2004 2005 2006 2007 2008* 2009 2010	"		3 Feb. 26 3 Mar. 21 3 Mar. 29 3 April 2 3 April 4 3 April 5 3 April 8 3 April 12 3 April 13 3 April 14	56 49.7 56 49.1 56 50.8 56 49.5 56 49.9 56 49.1 56 49.8 56 49.4	52. 9 52. 9 53. 0 53. 1 53. 1 53. 1 53. 1 53. 1 53. 1	13 1 8.7 13 1 8.0 13 1 8.2 13 1 4.5 13 1 6.7 13 1 9.9 13 1 7.9 13 1 7.5 13 1 6.8 13 1 10.6	4 47.9 4 48.0 4 48.4 4 48.5 4 48.6 4 48.7 4 48.9 4 49.1 4 49.1 4 49.2	57 42.6 57 42.0 57 43.8 57 42.5 57 43.0 57 42.2 57 42.2 57 42.9 57 42.5	56 20, 56 20, 56 19, 56 16, 56 18, 56 21, 56 19, 56 18, 56 17, 56 21,
2011 2012 2013 2014 2015 2016 2017 2018 2019*	"	1 1	3 April 16 3 April 26 3 April 28 3 April 29 3 April 30 3 May 2 3 May 3 3 May 9 3 May 16 3 July 10	56 49.8 56 50.0 56 49.5 56 49.5 56 49.4 56 49.3 56 49.2 56 49.5 56 49.2	53. 1 53. 3 53. 3 53. 3 53. 3 53. 3 53. 3 53. 4 53. 5 53. 9	13 1 8.6 13 1 7.4 13 1 3.8 13 1 9.4 13 1 9.3 13 1 10.3 13 1 9.8 13 1 8.2 13 1 7.0 13 1 13.4	4 49. 3 4 49. 9 4 50. 0 4 50. 1 4 50. 2 4 50. 3 4 50. 6 4 51. 0 4 53. 0	57 42.9 57 43.3 57 42.8 57 42.8 57 42.7 57 42.6 57 42.6 57 43.0 57 43.1	56 19. 56 17. 56 13. 56 19. 56 19. 56 20.
2021 2022* 2023 2024 2025 2026 2027 2028 2029 2030	"" "" "" "" "" "" "" "" "" "" "" "" ""	1 1 1 7.8 7	4 June 16 4 Sept. 26 5 April 5 5 April 10 5 April 11 5 April 26 5 Mar. 23 5 April 11 3 April 2 5 Mar. 23	56 52.3 56 53.0 56 56.8 56 56.7 56 56.8 56 56.2 57 28.6 58 58.9 9 59 15.2	50. 2 49. 7 45. 9 46. 0 46. 2 47. 3 53. 7 + 47. 3	13 0 51.5 13 0 50.0 13 0 28.7 13 0 29.6 13 \$\psi\$ 28.5 13 0 32.3 21 22 40.3 10 38 10.6 16 46 1.2 +21 45 11.5	4 26. 0 4 30. 1 4 9. 7 4 10. 0 4 10. 0 4 10. 7 4 11. 2 4 9. 8 4 51. 1 — 4 12. 4	57 42.5 57 42.7 57 42.7 57 42.7 57 42.8 57 42.4 9 58 15.9 9 59 52.6 10 0 2.5	56 25.1 56 19.1 56 19.0 56 19.0 56 18.1 56 21. +21 18 29. +10 34 0.1 +16 41 10. +21 40 59.

(186)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
								а	ð
2031 2032 2033 2034 2035 2036* 2037* 2038 2039 2040	Lalande 19808 34 Leonis	7.8 7 7.8 7 7.8	5 April 26 3 Feb. 26 3 April 2 3 April 4 3 April 5 3 April 8 3 April 14 3 April 16 3 April 29 3 Feb. 18	h m s 9 59 14.8 59 58.9 59 59.0 59 58.0 59 58.5 59 58.5 59 58.4 59 58.5 9 59 58.3 10 0 10.0	+ 47. 7 53. 1 53. 2 53. 2 53. 2 53. 2 53. 3 53. 3 53. 5 49. 0		4 15. 0 4 50. 1 4 51. 2 4 51. 3 4 51. 3 4 51. 5 4 51. 8 4 51. 9 4 52. 6 4 50. 5	h m s 10 0 2.5 10 0 52.0 0 52.2 0 52.2 0 52.2 0 52.7 0 51.7 0 51.8 0 51.8 10 0 59.0	+14 10.6 +14 20 11.6 20 9.3 20 9.9 20 14.7 20 8.6 20 13.4 20 13.4 20 12.2 - 7 26 11.3
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050	Lalande 19837 Lalande 19865 437 Mayer 22 Leonis Minoris 438 Mayer	7 7 6.7 6.7 7 7 7 6.7	5 April 10 5 April 11 5 April 5 5 April 10 3 April 10 5 Mar. 23 5 April 11 3 April 26 3 April 28 3 Feb. 26	0 30.6 0 30.2 1 41.2 1 42.0 2 33.2 2 40.7 2 40.2 2 37.7 2 38.8 2 46.2	48.9 48.5 48.6 54.8 47.3 47.4 57.3 57.3	+29 17 42.1 29 17 43.9 28 11 34.0 28 11 29.5 22 14 28.4 22 13 47.8 32 32 18.8 32 32 16.9 17 12 21.3	4 16.7 4 16.8 4 16.6 4 17.1 4 56.3 4 14.5 4 16.0 5 0.4 5 0.6 4 52.2	10 1 19.5 1 19.1 10 2 29.7 2 30.6 10 3 28.0 3 28.0 3 27.6 10 3 35.0 3 36.1 10 3 39.8	+29 13 25.4 13 27.1 +28 7 17.4 7 12.4 +22 9 32.1 9 34.9 9 31.8 +32 27 18.4 27 16.3 +17 7 29.1
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060	23 Leonis Minoris 33 Ursæ Majoris λ 24 Leonis Minoris	7 7.8 8 8 5.6	3 Mar. 29 3 April 2 3 April 14 3 April 16 3 April 26 3 April 28 3 April 8 3 April 13 3 April 30 3 April 28	2 46.7 2 46.5 2 46.4 3 53.8 3 54.3 3 59.0 3 58.7 3 59.0 (4)	53. 6 53. 6 53. 8 53. 8 56. 7 56. 7 60. 1 60. 2 60. 5	17 12 26.2 17 12 22.6 17 12 25.4 17 12 25.4 30 23 9.3 30 23 9.3 30 23 9.8 43 59 28.0 43 59 29.4 43 59 33.3 29 45 39.5	4 54.5 4 53.7 4 54.5 4 54.7 5 0.5 5 2.4 5 3.1 5 5.2 5 0.7	3 40, 3 3 40, 1 3 39, 9 3 40, 2 10 4 50, 5 4 51, 0 10 4 59, 1 4 58, 9 4 59, 5 10 (5)	7 31.7 7 28.9 7 30.9 7 30.7 +30 18 8.8 18 3.3 +43 54 25.6 54 26,3 54 28.1 +29 40 38.8
2061 2062 2063 2064* 2065 2066 2067 2068 2069 2070		7.8 7 8 6 7	5 April 5 5 April 10 3 April 14 3 April 19 5 April 26 3 Feb. 26 3 April 4 3 April 5 3 April 29 3 Feb. 26	4 17. 0 4 17. 0 4 27. 5 4 26. 8 4 34. 2 4 30. 7 4 31. 4 4 30. 8 4 37. 0	48.7 48.8 54.0 54.1 47.0 55.0 55.1 55.1 55.4 54.9	29 45 5.9 29 45 5.4 18 48 45.5 18 48 47.6 18 48 7.7 24 34 24 34 26.5 24 34 23.3 24 34 28.0 24 29 24.9	4 18.5 4 19.0 4 56.1 4 56.5 4 17.2 4 57.0 4 57.1 4 59.2 4 54.0	5 5.7 5 5.8 10 5 21.5 5 20.9 5 21.2 10 5 25.7 5 26.1 5 26.5 5 26.2 10 5 31.9	40 47.4 40 46.4 +18 43 49.4 43 51.1 43 50.5 +24 29 29 29.5 29 26.2 29 28.8 +24 24 30.9
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080*	"		3 Mar. 29 3 April 2 3 April 4 3 April 5 3 April 29 3 May 3 3 May 16 3 April 12 3 April 8 3 April 16	4 37.5 4 36.8 4 36.9 4 37.5 4 36.5 4 36.9 4 36.9 5 2.5 5 17.5 5 18.3	55. 0 55. 0 55. 1 55. 4 55. 4 55. 6 53. 2 55. 0 55. 1	24 29 26.1 24 29 24.3 24 29 26.5 24 29 30.3 24 29 31.1 24 29 28.8 24 29 29.0 14 48 6.5 24 11 14.5 24 11 16.8	4 56. 4 4 56. 8 4 57. 0 4 57. 0 4 59. 3 4 59. 5 5 0. 3 4 55. 3 4 57. 7 4 58. 4	5 32.5 5 31.8 5 32.0 5 32.6 5 31.9 5 32.0 10 5 55.7 10 6 12.5 6 13.4	24 29.7 24 27.5 24 29.5 24 33.3 24 31.6 24 29.3 24 28.7 +14 43 11.2 +24 6 16.8 6 18.4
2081* 2082 2083 2084 2085 2086 2087 2088 2089	Lalande 19973-5 Bessel, W.201 22 Sextantis 441 Mayer 40 Leonis	6.7 8 7 7 7 7	5 Mar. 23 3 April 12 3 April 26 5 April 5 5 April 10 5 April 11 3 Feb. 18 3 April 14 5 April 26 3 April 8	5 25. 1 5 51. 7 5 55. 9 6 3. 8 6 5. 1 6 3. 9 6 52. 9 6 49. 9 (6)	47. 5 54. 4 56. 1 48. 4 48. 4 49. 2 53. 0 + 54. 2	24 10 35.8 21 5 15.2 28 29 35.6 28 28 53.4 26 28 54.4 +28 28 53.5 -6 59 30.4 +13 42 0.6 13 41 27.3 +20 33 53.2	4 16. 4 4 57. 6 5 1. 2 4 19. 1 4 19. 6 4 19. 7 4 55. 1 4 56. 2 4 16. 8 — 4 58. 4	6 12.6 10 6 46.1 10 6 52.0 6 52.2 6 53.5 6 52.3 10 7 42.1 10 7 42.9 (7) 10 8 49.5	6 19.4 +21 0 17.6 +28 24 34.4 24 34.8 24 33.8 -7 4 25.5 +13 37 4.4 37 8.5 +20 28 54.8

(187)

No.	Name .	Mag.	Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800. 0
	1141110		24.0	пррос	Leader 11			a	δ
2091 2092 2093 2094 2095 2096* 2098 2098 2099	40 Leonis	7	3 April 12 5 April 11 3 Feb. 26 3 Mar. 29 3 April 2 3 April 5 3 April 13 3 April 16 3 April 19	h m s 10 7 55.7 8 2.3 8 1.2 8 1.1 8 1.0 8 1.1 8 1.1 8 0.8 8 0.7 8 0.8	** 54.2 47.0 54.1 54.2 54.2 54.2 54.2 54.3 54.4 54.4	+20 33 47.2 20 33 9.4 20 55 51.3 20 55 53.6 20 55 59.5 20 55 56.4 20 55 56.4 20 55 52.3 20 55 53.7	4 58. 8 4 18. 5 4 55. 8 4 57. 8 4 58. 2 4 58. 3 4 58. 9 4 59. 2 4 59. 5	h m s 10 8 49,9 8 49,3 10 8 55,3 8 55,2 8 55,3 8 55,3 8 55,1 8 55,1 8 55,2	+20 28 48.4 28 50.9 +20 50 55.5 50 55.8 50 51.8 50 58.1 50 49.1 50 53.1
2101 2102 2103 2104* 2105 2106 2107 2108 2109 2110	25 Leonis Minoris Anonyma Lalande 20057,8	3 8 7.8 7	3 April 29 3 May 3 3 May 9 3 May 16 5 Mar. 23 3 April 26 3 April 28 5 April 5 5 April 10 3 April 12	8 0.6 8 0.9 8 0.2 8 0.7 8 8.0 8 1.4 8 2.2 8 36.6 8 36.9 8 57.0	54. 5 54. 6 54. 6 54. 7 46. 9 59. 7 59. 8 48. 9 49. 0 54. 2	20 55 54.1 20 55 53.3 20 55 53.4 20 55 52.1 20 55 14.9 42 56 59.7 31 44 7.6 31 44 7.3 20 37 17.3	5 0.2 5 0.6 5 1.0 5 1.3 4 17.2 5 7.1 5 7.3 4 21.4 4 22.0 4 59.4	8 55.1 8 55.5 8 54.8 8 55.4 8 54.9 10 9 2.0 10 9 25.5 9 25.9 10 9 51.2	50 53.9 50 52.7 50 52.4 50 50.8 50 57.1 +42 50 57.1 50 52.4 +31 39 46.9 39 45.3 +20 32 17.9
2111 2112 2113 2114 2115 2116* 2117 2118 2119 2120	1433 Bradley . 34 Ursæ Maj. μ 42 Leonis	8.9 6.5 7 6 7	5 April 11 3 April 28 3 April 28 3 Feb. 26 3 Mar. 29 3 April 4 3 April 4 8 April 5 3 May 2 5 Mar. 23	9 3.8 9 14.7 9 22.4 10 11.0 10 11.1 10 10.8 10 10.7 10 10.2 10 18.3	46. 9 59. 6 59. 6 53. 1 53. 2 53. 2 53. 2 53. 2 53. 5 46. 0	20 36 39.1 42 19 33.2 42 35 8.2 16 3 37.3 16 3 45.3 16 3 39.3 16 3 41.3 16 3 43.6 16 3 43.6	4 19. 1 5 7. 3 5 8. 1 4 56. 9 4 58. 0 4 58. 2 4 58. 3 4 58. 4 5 0. 2 4 17. 4	9 50.7 10 10 14.3 10 10 22.0 10 11 4.1 11 4.3 11 4.0 11 3.9 11 3.7 11 4.3	32 20.0 +42 14 25.0 +42 30 0.1 +15 58 40.4 58 47.5 58 43.0 58 43.0 58 43.0 58 43.0 58 47.2
2121 2122 2123 2124 2125 2126 2127 2128 2129 2129 2130	26 Leonis Minoris " 27 Leonis Minoris 415 Mayer 43 Leonis 28 Leonis Minoris	7.8 8 7 7 6 7.8 7 6	5 April 5 5 April 10 5 April 11 5 April 26 3 April 8 3 April 8 3 April 19 3 April 4 3 April 29 3 April 8	10 38.0 10 38.1 10 37.9 10 38.3 10 34.9 10 48.4 10 48.0 11 40.6 11 39.6	49. 7 49. 8 49. 8 50. 0 57. 1 52. 3 52. 3 51. 7 52. 0 57. 0	36 17 49.2 36 17 49.6 36 17 47.6 36 17 46.9 34 59 49.8 10 2 56.0 10 2 57.7 7 38 9.7 7 38 9.7 34 8 34.1	4 23.7 4 24.4 4 24.5 4 26.3 5 4.0 4 57.9 4 57.2 4 58.2 5 4.7	10 11 27.7 11 27.9 11 27.7 11 28.3 10 11 32.0 10 11 40.3 10 12 32.3 12 31.6 10 12 36.4	+36 13 25.1 13 25.1 13 23. 13 20.0 +34 54 45.1 + 9 57 59.1 + 7 33 12.1 33 11.1 +34 43 29.4
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140	446 Mayer	6.5 7.8 7 7 6.7	3 April 13 3 April 16 5 April 26 3 Mar. 29 3 April 19 3 April 26 3 April 27 5 April 5 5 April 10 5 April 11	11 38.9 11 40.0 11 47.4 12 52.4 12 51.2 13 12.9 13 13.2 13 20.2 13 20.3 13 20.5	57. 0 57. 1 49. 6 52. 4 52. 6 57. 6 49. 6 49. 7 49. 7	34 48 35,9 34 48 43,2 34 47 59,9 11 40 45,1 11 40 40,5 36 31 29,9 36 31 27,9 36 30 48,8 36 30 46,8	5 5.3 5 5.6 4 26.4 4 58.7 4 59.7 5 8.3 5 8.4 4 25.1 4 25.7 4 25.8	12 35.9 12 37.1 12 37.0 10 13 44.8 13 43.8 10 14 10.8 14 9.8 14 10.0 14 10.2	43 30.0 43 37.0 43 33.1 +11 35 46.4 35 40.1 +36 26 21.0 26 19.0 26 24.0 26 23.1 26 21.0
2141 2142 2143 2144* 2145 2146 2147 2148 2149 2150	Lalande 20178	7 7.8 4.5 5 6	3 April 28 5 April 26 3 April 8 3 April 13 3 April 16 3 April 30 3 Feb. 26 3 April 2 3 April 3 3 April 4	13 17.0 13 24.7 13 27.2 13 27.4 13 27.6 13 27.5 13 50.0 13 49.6 13 49.7	56. 9 49. 3 56. 9 57. 0 57. 0 57. 2 52. 0 52. 1 52. 1 + 52. 1	33 51 22.9 33 50 47.0 34 53 39.8 34 53 39.2 34 53 44.3 34 53 249.5 9 52 49.5 9 52 40.4 + 9 52 47.6	5 7.7 4 27.0 5 5.7 5 6.4 5 6.8 5 8.4 4 58.9 4 59.0 4 59.0 4 59.0	10 14 13.9 14 14.0 10 14 24.1 14 24.4 14 24.6 14 24.7 10 14 42.0 14 41.7 14 41.8 10 14 41.5	+33 46 15.5 46 20.6 +34 48 34. 48 32.8 48 37.5 + 9 47 50.6 47 41.6 + 9 47 48.6

(188)

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
	2.4224			22pp + 2				а	δ
2151 2152 2153* 2154 2155 2156 2157 2158 2159 2160	44 Leonis	6.7 8.9 8.9 7.8 7.8	3 April 5 3 April 14 3 April 25 3 April 29 3 May 2 3 Feb. 26 3 April 2 3 April 3 3 April 29 3 Feb. 18	h m s 10 13 49.8 13 50.2 13 49.0 13 48.5 13 48.9 14 10.7 14 9.0 15 26.1	** 52.1 52.2 52.3 52.4 52.0 52.1 52.3 49.6	9 52 49.5 9 52 49.6 9 52 48.6 9 52 43.1 9 52 46.9 9 52 8.7 9 52 5.2 9 52 3.4 + 9 52 - 5 19 49.6	4 59.0 4 59.5 5 0.8 5 0.3 5 0.4 4 59.1 4 59.2 4 59.2	14 42.4 14 41.3 14 40.8 14 41.3	+ 9 47 50.5 47 49.1 47 49.2 47 42.8 47 46.5 + 9 47 9.6 47 6.0 47 4.2 47 - 5 24 50.2
2161 2162 2163 2164 2165 2166 2167* 2168 2169 2170*	31 Leonis Minoris 45 Leonis Lalande 20278,9	6,5 5,6 7, 6 7,8	3 April 19 3 April 26 3 April 30 3 May 1 3 Mar. 29 3 April 3 3 April 5 3 April 29 5 April 26 3 April 13	15 25.5 15 18.1 15 18.8 15 19.1 16 13.6 16 11.4 16 13.1 16 11.7 16 19.6 16 18.4	49. 7 57. 7 57. 8 57. 8 52. 2 52. 2 52. 2 52. 4 45. 4 51. 3	- 5 19 50.0 +37 48 50.2 37 48 52.5 37 48 51.2 10 51 40.1 10 51 36.8 10 51 41.5 10 50 56.8 4 39 44.8	4 55. 4 5 10. 0 5 10. 3 5 10. 4 5 0. 5 5 0. 7 5 0. 8 5 2. 0 4 21. 0 4 59. 4	16 15.2 10 16 15.8 16 16.6 16 16.9 10 17 5.8 17 3.6 17 5.3 17 4.1 17 5.0 10 17 9.7	24 45.4 +37 43 40.2 43 42.2 43 40.8 +10 46 36.1 46 40.7 46 38.1 46 35.8 + 4 34 45.4
2171 2172 2173 2174 2175* 2176* 2177 2178 2179 2180	Piazzi 79	8 6 6.7 9.8 6 6.7 7.8 7.8	5 April 11 5 Mar. 23 5 April 10 5 April 11 3 April 12 3 April 25 3 April 26 3 April 27 3 May 1 3 May 2	16 25.5 16 55.2 16 55.3 16 59.6 17 13.2 17 12.9 17 24.9 17 42.9 17 42.8	44. 4 48. 2 48. 4 44. 3 53. 0 53. 1 58. 1 58. 1 52. 5 52. 5	4 39 1.1 30 49 9.9 30 49 14.9 4 24 11.9 15 26 45.1 40 1 52.1 40 1 51.6 11 15 30.3 11 15 31.9	4 18.6 4 23.8 4 26.0 4 18.9 5 3.0 5 3.8 5 11.8 5 12.0 5 3.1 5 3.2	17 9.9 10 17 43.4 17 43.7 10 17 43.9 10 18 6.2 18 5.2 10 18 23.0 18 23.6 10 18 35.4 18 35.3	34 42.5 +30 44 46.1 44 48.9 + 4 19 53.0 +15 21 38.1 21 41.4 +39 56 40.3 56 39.6 +11 10 27.2 10 28.7
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190	Lalande 20339	7 6 6 7 7.8 6.7 6 7	3 April 8 3 April 28 3 April 27 5 April 10 3 Feb. 18 3 April 19 3 April 13 3 April 129 5 April 11	18 4.1 18 4.3 18 21.5 18 29.6 19 13.2 19 14.0 19 19.5 19 19.4 (19)	57. 2 57. 4 57. 5 58. 1 50. 1 50. 5 50. 6 51. 0 51. 2 44. 2	37 23 1.0 37 23 0.8 37 23 0.9 40 7 54.3 40 7 9.8 0 28 7.0 0 28 3.7 3 15 26.3 3 15 25.8 3 14 39.5	5 9.0 5 11.7 5 11.8 5 12.6 4 29.3 5 2.7 5 0.2 5 0.9 5 1.3 4 20.0	10 19 1.3 19 1.5 19 1.8 10 19 19.6 19 19.7 10 20 3.7 20 4.6 10 20 10.5 20 10.6 (20)	+37 17 52.0 17 49.1 17 49.1 +40 2 41.7 2 40.5 + 0 23 4.3 23 3.5 + 3 10 25.4 10 24.5 10 19.5
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200*	33 Leonis Minoris Groombridge 1653 46 Leonis i	7 5 4.5 7.8 7.8	5 April 26 5 April 16 5 April 29 3 April 27 5 April 10 3 April 2 3 April 3 3 April 5 3 April 12 3 April 14	19 26. 4 19 31. 8 19 39. 0 20 28. 8 20 36. 4 20 37. 6 20 37. 4 20 37. 5 20 37. 7	44. 3 56. 3 49. 0 58. 0 50. 0 52. 8 52. 8 52. 8 52. 9 52. 9	3 14 46.7 33 29 16.4 33 28 41.4 40 20 7.1 40 19 23.6 15 14 33.0 15 14 33.0 15 14 33.4 15 14 33.4	4 20.2 5 9.7 4 30.2 5 13.8 4 30.4 5 4.2 5 4.3 5 4.8 5 4.9	21 26.4	10 26.5 +33 24 6.7 24 11.2 +40 14 53.3 14 53.2 +15 9 31.1 9 28.8 9 36.0 9 28.6 9 33.2
2201 2202* 2203 2204 2205 2206 2207 2208 2209 2210	33 (Hev.)Urs. Maj 34 Leonis Minoris " 47 Leonis ρ " " " "	5. 6 5. 6 5 5	3 April 25 3 April 28 3 April 30 3 April 8 3 April 26 5 Mar. 23 3 Feb. 18 3 Feb. 26 3 Mar. 29 3 April 5	20 37, 2 20 33, 4 20 33, 2 21 5, 1 21 5, 0 21 13, 0 21 24, 0 21 24, 3 21 25, 0 10 21 24, 6	53. 0 58. 2 58. 3 56. 6 56. 9 48. 9 52. 0 52. 0 + 52. 0	15 14 33.6 41 32 12.2 41 32 17.5 36 6 0.4 36 6 6.2 36 5 23.0 10 24 55.9 10 24 55.9 +10 25 0.2	5 5.7 5 14.7 5 14.5 5 10.3 5 12.7 4 26.9 5 3.6 5 3.2 5 3.3 — 5 3.6	21 30.2 10 21 31.6 21 31.5 10 22 1.7 22 1.9 22 1.9 10 22 16.0 22 18.3 22 17.0 10 22 16.6	9 27.9 +41 26 57.5 27 3.0 +36 0 50.1 0 53.5 0 56.1 +10 19 52.3 19 52.1 19 56.6 +10 19 56.6

(189)

No.	Name	Mag.	Date	App't a	Reduct'n	App't 8	Reduction	Mean equi	inox 1800. 0
110.	1181116	mag.	Date	ж үр с с	Leduct II			а	ð
2211 2212* 2213 2214* 2215 2216 2217 2218 2219 2220	47 Leonis	4 11 8.9 7	3 May 1 3 May 9 5 April 29 3 April 19 5 April 11 3 April 13 3 April 12 3 April 14 3 April 19	h m s 10 21 23.4 21 22.9 21 28.8 22 3.6 22 11.0 22 49.4 23 29.7 23 29.9 23 29.6 23 30.1	** 52.3 52.4 45.3 51.8 46.8 47.8 51.6 51.7 51.7 51.8	+10 24 53.1 10 24 55.1 10 24 16.2 8 11 38.8 21 24 22.4 29 4 8.4 8 3 48.3 8 3 49.1 8 3 48.6	, " - 5 5.0 5 5.4 4 23.6 5 4.0 4 27.4 4 28.4 5 4.2 5 4.4 5 4.6 5 4.7	h m s 10 22 15.7 22 15.3 22 14.1 10 22 55.4 10 22 57.8 10 23 37.2 10 24 21.3 24 21.6 24 21.3	+10 19 48.1 19 49.7 19 52.6 + 8 6 34.8 +21 19 55.0 +28 59 40.0 + 7 58 41.5 58 43.9 58 44.5 58 43.9
2221 2222 2223 2223 2224* 2225 2226 2227 2228* 2229 2230	49 Leonis 35 Leonis Minoris " Lalande 20484 "	5.6 6 5.6 7.8 7	3 April 29 5 April 29 3 Mar. 29 3 April 2 3 April 8 3 April 8 3 April 27 3 April 13 3 April 13 3 April 25 3 May 1	23 29, 5 23 36, 2 23 40, 1 23 38, 6 23 53, 1 23 52, 7 23 55, 8 23 55, 9 23 56, 2	51. 9 44. 9 51. 8 51. 9 56. 7 56. 8 57. 0 51. 0 51. 1	8 3 47.8 8 3 4.4 9 45 57.6 9 45 47.4 37 26 45.8 37 26 50.5 3 18 58.9 3 19 5.6 3 19 5.3	5 5.3 4 23.9 5 4.5 5 4.6 5 12.1 5 13.7 5 3.5 5 3.8 5 4.0	24 21.4 24 21.1 10 24 31.9 24 30.5 10 24 49.8 24 49.5 24 50.1 10 24 46.8 24 47.0 24 47.4	58 42.5 58 40.5 + 9 40 53.1 40 42.8 +37 21 33.7 21 35.8 21 35.8 + 3 13 55.4 14 1.8 14 1.3
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240	Johnson 2525 Piazzi 116 36 Leonis Minoris 455 Mayer	7 8 7.8 9 8 8.9 7.6	3 May 2 3 April 28 3 April 30 3 April 3 3 April 29 5 April 29 3 April 26 3 April 27 5 April 26 3 April 2	23 55. 3 24 8. 1 24 8. 3 24 45. 4 24 45. 4 24 51. 6 25 32. 7 25 40. 4 26 8. 6	51. 2 59. 7 59. 7 51. 6 51. 8 44. 9 56. 4 48. 9 53. 1	3 19 5.6 47 40 11.4 47 40 14.4 8 9 26.1 8 9 26.1 8 8 46.6 35 11 56.9 35 11 56.9 35 11 20.9 18 23 57.5	5 4.1 5 18.3 5 18.3 5 4.8 5 6.0 4 24.6 5 14.8 5 14.9 4 33.3 5 7.9	24 46.5 10 25 7.8 25 8.0 10 25 37.0 25 37.2 25 36.5 10 26 29.4 26 29.1 26 29.3 10 27 1.7	4 20.1 4 22.0 +35 6 42.1 6 42.0 6 47.6
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250	37 Leonis Minoris 38 Leonis Minoris Lalande 20568 Arg. Z., Oel. 11017 50 Leonis	5.6 6 8.9	3 April 14 5 April 10 3 April 26 3 May 9 5 April 11 3 April 25 3 April 25 3 April 28 3 April 30 3 Feb. 26	26 7.9 26 15.6 26 29.5 26 29.4 26 37.0 26 41.6 27 10.7 27 8.7 27 9.0 27 16.8	55. 9 56. 1 48. 2 56. 9 52. 8 59. 7 59. 5	18 23 57.7 18 23 18.2 33 5 56.3 33 5 54.7 33 5 11.4 39 2 10.3 15 8 44.7 47 58 1.7 47 58 12.5 17 14 58.9	5 15.9 4 31.2 5 14.0 5 9.1 5 18.7 5 19.9	27 1.1 27 1.6 10 27 25.4 27 25.5 27 25.2 10 27 38.5 10 28 3.5 10 28 8.4 28 8.5 10 28 9.7	18 51. 2 +33 0 41. 6 0 38. 8 0 40. 2 +38 56 56. 3 +15 3 35. 6 +47 52 43. 0 52 52. 6
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260	"	6.7 7.8 7 7 7 7 7.8 7.8	3 April 2 3 April 3 3 April 5 3 April 14 3 April 16 3 May 1 3 May 2 5 April 26 5 April 29 3 April 29	27 16.8 27 17.0 27 17.0 27 16.9 27 18.2 27 17.0 27 16.4 27 23.9 27 23.4 27 21.4	52. 9 52. 9 53. 0 53. 0 53. 2 53. 2 46. 0 46. 0	17 15 4.1 17 14 26.8 17 14 23.8	5 8,2 5 8,4 5 9,1 5 9,2 5 10,4 5 10,5 4 28,5 4 29,1	28 9.7 28 9.9 28 9.9 28 9.9 28 11.2 26 10.2 26 9.6 28 9.9 26 9.4 10 28 18.5	9 52.7 9 55.0 9 55.5 9 54.3 9 59.4 9 53.6 9 58.3 9 54.7
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270	2 Hydræ ø³ Lalande 20589 . 457 Mayer . 39 Leonis Minoris Anonyma Flamsteed, B.151: """	10 10	3 Feb. 18 3 April 3 3 April 13 5 April 11 3 April 2 3 April 19 3 April 86 3 April 27 3 April 28	28 2.8 27 58.3 28 20.9 28 27.1 29 17.9 29 18.4 30 1.1 30 1.2 10 30 1.4	52. 9 51. 9 47. 4 53. 2 53. 4 55. 4 55. 6	9 57 57.5 28 38 17.9 19 59 9.2 19 59 9.9 32 49 34.2 32 49 39.7 32 49 37.4	5 8.6 5 7.6 4 30.9 5 10.0 5 11.3 5 14.1 5 16.3 5 16.4	10 28 51.2 10 29 12.8 10 29 14.5 10 30 11.1 30 11.6 10 30 56.5 30 56.8 30 57.2	2 +17 3 20.3 4 9 52 49.9 5 +28 33 47.0 +19 53 59.2 53 58.6 +32 44 20.1 44 23.4 44 21.0

(190)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
	•							а	δ
2271 2272 2273* 2274 2275 2276 2277 2278 2279 2280	Flamsteed, B.1519 " Piazzi 132 36 (Hev.) Ur. Maj. Bessel, W.618 40 Leonis Minoris	6 6.5 10 8 6 6.5 7	5 April 10 5 April 26 5 April 29 3 Feb. 26 3 April 29 3 April 30 3 May 1 3 April 13 3 April 25 3 May 2	h m s 10 30 8.5 30 9.0 30 8.4 30 5.4 30 5.4 30 46.5 30 46.4 30 52.3 31 6.9 31 6.6	*** + 48. 0 48. 2 48. 2 52. 5 52. 8 58. 9 58. 9 54. 6 54. 7	+32 49 0.5 32 49 0.8 32 49 2.0 15 6 14.6 15 6 18.6 47 20 29.2 47 20 28.3 11 29 5.3 27 27 33.9 27 27 36.0	- 4 32.6 4 34.6 4 34.9 5 8.0 5 11.0 5 21.6 5 9.4 5 15.1 5 15.8	h m s 10 30 56.5 30 57.2 30 56.6 10 30 57.9 30 57.9 10 31 45.4 31 45.3 10 32 1.5 32 1.3	+32 44 27.9 +44 26.2 44 27.1 +15 1 6.6 1 7.6 +47 15 7.6 +15 6.7 +11 23 55.9 +27 22 18.8 22 20.2
2281 2282 2283* 2284 2285 2286 2287 2288 2289 2289	Bessel, W.624 Piazzi 137 34 Sextantis 41 Leonis Minoris 35 Sextantis Lalande 20693	6 7 7 6.7 6 7.8 7.8	5 April 10 3 April 12 3 April 30 3 May 1 5 Mar. 23 3 May 9 3 April 5 3 April 14 3 April 2 3 April 3	31 14.5 31 14.3 31 14.6 31 14.7 31 33.5 31 36.3 32 6.6 32 6.9 32 8.9 32 9.0	47. 1 50. 7 58. 9 58. 9 44. 1 54. 2 51. 2 51. 3 53. 0	27 26 51. 4 1 59 22. 0 47 20 44. 7 47 20 40. 3 4 41 53. 3 24 19 7. 6 5 52 47. 0 5 52 45. 1 19 26 45. 3 19 26 47. 4	4 31.6 5 7.1 5 21.9 5 22.0 4 26.0 5 15.5 5 8.3 5 8.6 5 11.2 5 11.2	10 32 13.5 32 13.6 10 32 17.6 10 32 30.5	22 19.8 + 1 54 14.9 +47 15 22.8 15 18.3 + 4 37 27.3 +24 13 52.1 + 5 47 38.7 47 36.5 +19 21 34.1 21 36.2
2291 2292 2293 2294 2295 2296 2297 2296 2297 2299 2300	Groombridge 1685 42 Leonis Minoris Piazzi 146 459 Mayer	8 7 5 5 6.7 6 5 7 8.9	3 April 16 5 April 11 3 April 8 3 April 25 3 April 27 3 April 28 3 May 2 3 April 28 3 May 2 3 April 14	32 9. 1 32 57. 9 33 47. 5 33 47. 5 33 47. 7 33 47. 7 33 47. 3 34 49. 7 34 14. 4	53. 2 49. 5 • 55. 0 55. 2 55. 2 55. 2 55. 3 55. 3 51. 6	19 26 49.5 42 25 59.3 31 49 13.2 31 49 18.8 31 49 13.2 31 49 14.4 31 49 16.3 31 45 46.4 31 45 56.8 8 39 0.1	5 12.3 4 36.4 5 15.6 5 17.8 5 18.0 5 16.8 5 18.5 5 18.5 5 18.5 5 10.4	33 2.3 10 33 47.4 10 34 42.5 34 42.7 34 43.1 34 42.9 34 42.6 10 34 44.9 34 44.6 10 35 6.0	21 37.2 +42 21 22.9 +31 43 57.6 44 1.0 43 55.2 43 57.8 +31 40 28.2 40 38.3 + 8 33 49.7
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310	Bessel, W.672 . Lalande 20741 . 51 Leonis m 52 Leonis k	8 8.9 7 6	3 April 12 5 Mar. 23 3 April 28 3 April 2 3 April 3 3 April 16 3 May 3 5 April 10 3 Feb. 18 3 Feb. 26	34 20. 9 34 28. 6 34 22. 0 34 43. 9 34 43. 3 34 43. 3 34 50. 3 34 56. 4 34 57. 1	50. 7 43. 8 55. 2 53. 0 53. 1 53. 2 53. 4 46. 0 52. 5 52. 4	2 8 36, 3 2 8 3, 4 31 48 49, 4 20 1 44, 3 20 1 42, 9 20 1 49, 0 20 1 49, 0 20 1 4, 2 15 20 1, 4 15 20 1, 9	5 8.6 4 26.8 5 18.5 5 12.6 5 12.6 5 13.7 5 15.2 4 31.2 5 10.5 5 10.4	10 35 11. 6 35 12. 4 10 35 17. 2 10 35 36. 9 35 36. 4 35 36. 7 35 36. 3 10 35 48. 9 35 49. 5	+ 2 3 27.7 3 36.6 +31 43 30.9 +19 56 31.7 56 30.3 56 34.5 56 33.8 56 33.0 +15 14 50.9 14 51.5
2311 2312 2313 2314 2315* 2316 2317 2318 2319 2320	Johnson 2558	7 7.8 7 7 7 7 7.8 8.7	3 April 13 3 April 19 3 April 29 5 April 11 5 April 26 5 April 29 3 April 30 3 May 1 5 April 29 3 April 14	34 56. 1 34 56. 4 35 40. 1 35 39. 7 35 40. 8 35 34. 3 35 34. 3 36 2. 1 36 3. 1	52. 5 52. 5 52. 6 49. 3 49. 5 49. 6 56. 9 56. 9 51. 4	15 20 2.0 15 20 2.6 15 20 3.2 42 14 18.6 42 14 23.0 42 14 22.4 40 53 6.1 40 53 0.8 42 17 25.4 7 29 4.8	5 12.4 5 12.8 5 13.6 4 37.4 4 39.7 4 39.9 5 22.0 5 22.1 4 40.1 5 10.8	35 48.6 35 49.2 35 49.0 10 36 29.4 36 29.2 36 30.4 10 36 31.2 36 31.0 10 36 51.6 10 36 54.5	14 49.6 14 49.8 14 49.6 +42 9 41.2 9 43.3 9 42.5 +40 47 44.1 . 47 38.7 +42 12 45.3 + 7 23 54.0
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330	Lalande 20973 43 Leonis Minoris Groombridge 1692 53 Leonis " " " " " " " " " " " " " " " " " "	8.9	3 April 3 3 April 29 3 April 30 3 Feb. 18 3 Feb. 26 3 April 2 3 April 3 3 April 5 3 April 5 3 April 13	36 34. 1 36 58. 9 36 57. 2 37 52. 0 37 52. 5 37 51. 8 37 52. 1 37 52. 5 10 37 52. 6	52. 4 54. 8 57. 1 51. 9 51. 8 51. 8 51. 8 51. 9 + 51. 9	15 20 57. 9 30 33 35. 5 42 32 3. 4 11 41 10. 7 11 41 14. 3 11 41 10. 6 11 41 10. 3 11 41 14. 4 11 41 11. 4 +11 41 13. 1	5 12. 4 5 19. 3 5 23. 1 5 12. 0 5 11. 7 5 12. 2 5 12. 2 5 12. 3 5 12. 4 — 5 12. 7	10 37 54.3 10 38 43.9 38 44.1 38 43.3 38 43.6 38 43.9 38 44.4	+15 15 45, 5 +30 28 16, 2 +42 26 40, 3 +11 35 58, 7 36 2, 6 35 58, 4 35 58, 1 36 2, 1 35 59, 0 +11 36 0, 4

(191)

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
	7,4410		2400		L			а	δ
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340	53 Leonis	8 8 7.8 8 6 6.7 8 9	3 May 9 5 Mar. 23 3 May 1 3 May 2 3 April 19 3 April 16 5 April 26 5 Mar. 23 5 April 11 3 May 1	h m s 10 37 51.2 38 19.3 38 28.0 38 28.5 38 38.4 38 51.2 38 50.0 39 52.3 40 7.2 40 36.3	+ 52.2 44.0 55.2 55.2 54.0 53.6 46.6 44.0 47.6 55.2	+11 41 4 34 14.1 33 10 20.3 33 10 22.4 26 47 12.4 24 32 58.1 24 32 18.3 4 43 23.9 33 45 52.1 34 8 23.0	- 4 29. 1 5 21. 0 5 21. 1 5 17. 8 5 16. 9 4 36. 9 5 22. 2	h m s 10 38 43.4 10 39 3.3 10.39 23.2 39 23.7 10 39 32.4 10 39 45.6 10 40 36.3 10 40 54.8 10 41 31.5	0 / " +11 36 + 4 29 45.0 +33 4 59.3 5 1.3 +26 41 54.6 +24 27 41.2 27 42.7 + 4 38 54.5 +33 41 15.2 +34 3 0.8
2341 2342 2343 2344 2345* 2346 2347 2348 2349 2350	45 Leonis Minoris Lalande 20919 46 Leonis Minoris " 45 Ursæ Maj. ω Lalande 20941	9 6 7 4.5 5.6 7.8 7.8	5 April 11 3 April 26 3 April 28 3 May 1 3 May 2 3 April 29 3 April 3 3 April 19 3 April 2	40 43.6 40 55.4 41 13.4 41 9.7 41 9.6 41 9.5 41 28.1 41 45.2 41 45.6 42 55.5	47. 6 54. 4 44. 0 55. 3 55. 4 57. 1 53. 8 53. 9 53. 6	34 7 40.6 29 0 40.3 2 9 25.0 35 22 46.2 35 22 51.9 35 22 50.1 44 20 29.5 27 21 22.3 27 21 31.1 26 38 21.9	4 37.2 5 20.6 4 29.8 5 22.6 5 22.9 5 23.0 5 25.5 5 17.4 5 19.4 5 17.7	41 31.2 10 41 49.8 10 41 57.4 10 42 5.0 42 4.9 10 42 25.2 10 42 39.0 42 39.5 10 43 49.1	3 3.4 +28 55 19.7 + 2 4 55.2 +35 17 23.6 17 29.0 17 27.1 +44 15 4.0 +27 16 4.9 16 11.7 +26 33 4.2
2351* 2352 2353* 2354 2355 2356 2357 2358 2359 2360	47 Leonis Minoris 464 Mayer 46 Ursæ Majoris 454 Leonis	7 7 6 6 7.8	3 April 16 3 April 19 3 April 28 3 April 30 3 May 1 5 April 29 3 April 29 3 May 1 3 May 2 3 Feb. 26	42 54. 8 42 55. 4 42 53. 6 42 53. 6 42 53. 9 43 38. 1 43 42. 4 43 42. 3 43 42. 8 43 52. 2	53. 7 53. 7 55. 2 55. 2 55. 2 44. 5 55. 1 55. 1 55. 1	26 38 25, 2 26 38 26, 3 35 11 19, 7 35 11 23, 3 35 11 21, 8 6 59 7, 0 34 39 42, 6 34 39 43, 0 34 39 40, 0 25 54 0, 7	5 19.2 5 19.6 5 23.3 5 23.4 5 23.5 4 32.5 5 23.5 5 23.7 5 23.8 5 14.5	43 48.5 43 49.1 10 43 48.8 43 48.8 43 49.1 10 44 22.6 10 44 37.5 44 37.4 44 37.9 10 44 45.7	33 6.0 33 6.7 +35 5 56.4 5 59.9 5 58.3 + 6 54 34.8 +34 34 19.1 34 19.3 34 16.2 +25 48 46.2
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370	55 Leonis	5.6 7 5.6 6.5 7	3 April 2 3 April 3 3 April 8 3 April 13 5 April 11 3 Feb. 18 3 May 3 3 May 9 5 Mar. 23 3 April 16	43 51.7 43 51.7 43 51.7 43 52.3 43 59.3 44 34.0 44 33.7 44 33.5 44 41.0 44 48.4	53. 5 53. 5 53. 5 53. 6 46. 4 50. 7 50. 8 50. 8 43. 7 53. 6	25 54 7.0 26 54 2.6 25 54 5.1 25 54 4.6 25 53 24.2 1 53 13.9 1 52 36.6 26 39 16.5	5 18.0 5 18.0 5 18.6 5 19.1 4 36.3 5 15.6 5 14.2 4 31.2 5 20.1	44 45. 2 44 45. 2 44 45. 9 44 45. 7 10 45 24. 7 45 24. 3 45 24. 7 10 45 42. 0	48 49.0 48 44.6 48 45.5 48 47.9 + 1 48 3.0 48 47 59.7 48 5.4 +26 33 56.4
2371 2372 2373 2374 2375 2376* 2377 2378 2379 2380	57 Leonis Piazzi 200 47 Ursæ Majoris " Piazzi 203	7.8 6 6 8 8 8 6 6.7	3 April 19 3 April 27 5 Mar. 23 3 April 3 3 April 19 3 April 25 3 April 26 5 April 29 3 April 27 3 April 28	44 47.9 44 48.2 45 47 1.7 47 2.0 47 17.9 47 18.1 47 24.2 47 25.3 47 25.4	53.7 53.8 52.7 52.8 55.9 55.9 48.5 55.2 55.2	26 39 15. 4 26 39 15. 6 1 34 25. 3 20 46 43. 6 20 46 42. 4 41 35 7. 0 41 36 9. 8 41 34 30. 1 37 15 19. 7 37 15 16. 9	5 20. 4 5 21. 2 4 31. 3 5 18. 1 5 19. 7 5 26. 5 5 26. 7 4 44. 2 5 25. 6 5 25. 8	45 41. 6 45 42. 0 10 46 10 47 54. 4 47 54. 8 10 48 13. 8 48 14. 0 48 12. 7 10 48 20. 5 48 20. 6	33 55. 0 33 54. 4 + 1 29 54. 0 +20 41 25. 5 41 22. 7 +41 29 40. 5 29 43. 1 29 45. 9 +37 9 54. 1 9 51. 1
2381 2383* 2384 2384 2386 2386 2386 2389 2380	49 Ursæ Majoris Lalande 21116 58 Leonis """ """	6 6.7 7.8 8	3 April 30 3 May 1 3 April 29 3 May 1 3 April 16 3 May 2 3 Feb. 18 3 Feb. 19 3 Feb. 26 3 April 2	47 25, 4 47 25, 4 48 39, 6 (48) 49 0, 0 49 0, 3 49 22, 1 49 22, 1 49 22, 4 10 49 22, 9	50. 2 50. 3 51. 0 51. 0 50. 9	37 15 22.7 37 15 20.2 40 22 28.4 +40 22 32.1 — 2 18 51.7 — 2 19 2.5 + 4 46 32.4 4 46 36.6 + 4 46 35.2	5 26. 0 5 26. 1 5 27. 2 5 27. 5 5 14. 2 5 14. 4 5 17. 3 5 16. 7 	50 13.1 50 13.3	9 56.7 9 54.1 +40 17 1.2 17 4.6 - 2 24 5.9 24 16.9 + 4 41 16.8 41 15.1 41 19.9 + 4 41 20.4

(192)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
								а	δ
2391* 2392 2393 2394 2395 2396 2397 2398 2399 2400	58 Leonis d ""	7 .7.8 7.8	3 April 3 3 April 14 5 Mar. 23 3 April 8 3 April 19 3 April 19 3 April 12 3 May 1 5 April 29	h m s 10 49 19.0 49 23.1 49 29.5 49 31.1 49 31.2 49 31.2 49 59.3 50 45.2 51 21.2 51 28.0	50. 9 44. 0 51. 1 51. 2 51. 2 54. 1 52. 7 56. 4	+ 4 46 33.7 4 46 38.8 4 45 54.8 7 15 40.7 7 15 39.5 7 15 42.2 31 1 53.3 21 20 17.7 45 30 0.9 +45 29 22.5	- 5 15.8 5 16.0 4 32.9 5 16.4 5 16.6 5 16.9 5 24.7 5 20.5 5 29.9 4 46.7	h m s 10 50 9.8 50 14.0 50 13.5 10 50 22.2 50 22.4 50 22.4 10 50 53.4 10 51 37.9 10 52 17.6 52 16.8	0 / " + 4 41 17.9 41 22.8 41 21.9 + 7 10 24.3 10 22.9 10 25.3 +30 56 28.6 +21 14 57.2 +45 24 31.0 24 35.8
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410	Bessel, W.991 Piazzi 224 Groombridge 1732 Flamsteed, B.1571 Ursæ Majoris	7 6 7 6.7 6.7 7 8.9 8.9	3 April 16 3 April 26 3 April 27 3 April 29 5 April 28 3 April 30 3 April 3 3 April 19 3 April 25	51 36, 3 52 3, 2 52 4, 0 52 3, 6 52 10, 5 52 10, 9 52 10, 9 52 25, 3 52 26, 5	50. 2 53. 4 53. 4 53. 4 46. 3 55. 2 55. 3 51. 2 51. 3 55. 1	- 2 21 0.5 +26 56 15.6 26 56 17.9 26 56 14.9 26 55 33.0 40 2 0.5 40 2 6.2 8 44 40.9 8 44 45.8 39 24 27.5	5 15.2 5 24.1 5 24.2 5 24.4 4 41.0 5 28.3 5 28.5 5 17.8 5 18.4 5 27.8	10 52 26.5 10 52 56.6 52 57.4 52 57.0 52 56.8 10 53 6.1 53 6.2 10 53 16.5 53 16.9 10 53 21.6	- 2 26 15.7 +36 50 51.5 50 53.7 50 50.5 +39 56 32.2 56 37.7 + 8 39 23.1 39 27.4 +39 18 59.7
2411 2412 2413 2414 2415 2416 2417 2418 2419* 2420*	62 Leonis g Piazzi 228 467 Mayer Groombridge 1734 51 Leonis Minoris " Piazzi 233	8 7 7.8 7.8 9.10	3 Feb. 26 3 April 13 3 April 25 3 April 14 5 April 29 3 April 26 3 April 27 5 April 26 3 Feb. 18 3 Feb. 19	52 31.7 52 31.5 52 39.2 52 48.9 53 34.3 53 40.6 53 41.2 53 48.1 53 41.1 53 40.8	50. 5 50. 5 55. 1 50. 9 48. 6 53. 2 53. 3 46. 1 50. 3	1 9 45.2 1 9 44.3 39 24 54.9 4 48 8.8 45 27 33.5 26 22 20.6 +26 21 38.3 - 1 20 42.8 - 1 20	5 18.0 5 16.4 5 27.8 5 17.4 4 47.3 5 24.6 5 24.7 4 41.4 5 19.6	10 53 22.2 53 22.0 10 53 34.3 10 53 39.8 10 54 22.9 10 54 34.5 54 34.5 54 34.2 10 54 31.4 54 31.1	+ 1 4 27.2 4 27.9 +39 19 27.1 + 4 42 51.4 +45 22 46.2 +26 16 55.9 16 56.9 - 1 26 2.4
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430	63 Leonis χ Lalande 21255 Piazzi 239 Lalande 21277	8 7 7.8 9.10	3 Feb. 26 3 April 2 3 April 3 3 April 8 3 April 19 3 May 1 5 April 29 3 May 2 3 April 16	53 50.8 53 50.6 53 50.6 53 50.6 53 50.9 53 50.9 54 29.0 54 36.6 54 54.7 55 22.6	51. 2 51. 2 51. 2 51. 2 51. 3 51. 4 56. 0 48. 5 51. 4 52. 6	+ 8 30 12.8 8 30 12.4 8 30 10.5 8 30 7.6 8 30 10.2 8 30 9.9 45 17 5.8 45 16 25.3 8 18 7.4 21 39 8.7	5 18.3 5 18.2 5 18.2 5 18.4 5 18.8 5 19.6 5 31.0 4 47.6 5 19.9 5 22.7	10 54 42.0 54 42.0 54 41.8 54 41.8 54 42.2 54 41.8 10 55 25.0 55 25.1 10 55 46.1 10 56 15.2	+ 8 24 54.5 24 54.2 24 52.3 24 49.2 24 51.4 24 50.3 +45 11 34.8 11 37.7 + 8 12 47.5 +21 33 46.0
2431 2432* 2433 2434 2435* 2436 2437 2438 2439 2440	52 Leonis Minoris 65 Leonis p² 64 Leonis	6.7 7	3 April 12 3 April 27 3 May 3 3 Feb. 18 3 Feb. 19 3 April 8 3 April 13 3 April 14 3 Feb. 26 3 April 30	55 25, 2 55 25, 0 55 25, 5 55 51, 1 55 51, 5 55 51, 5 55 51, 5 55 51, 5 56 2, 6 56 38, 0	53. 1 53. 2 53. 3 50. 8 50. 8 50. 6 50. 7 50. 7 52. 8 54. 5	26 42 18.9 26 42 19.8 26 42 20.6 3 7 43.9 3 7 40.8 3 7 40.8 3 7 45.5 24 29 29.2 37 10 57.0	5 23. 6 5 25. 3 5 26. 0 5 20. 0 5 20. 0 5 18. 0 5 18. 2 5 18. 2 5 19. 0 5 29. 3	10 56 18,3 56 18,2 56 18,8 10 56 41,9 56 42,3 56 42,2 56 42,2 56 42,8 10 56 55,4 10 57 32,5	+26 36 55.3 36 54.6 + 3 2 23.9 2 20.8 2 22.9 2 21.1 2 27.3 +24 24 10.2 +37 5 27.7
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450	67 Leonis " " " " " Piazzi 251 Piazzi 252	6 5.6 6 6.7 7 6	3 April 3 3 April 12 3 April 25 3 April 26 3 April 27 3 May 3 3 April 29 5 April 26 3 April 30 5 April 29	57 10.9 57 10.5 57 10.5 57 10.6 57 10.6 57 11.0 57 12.6 57 20.6 57 22.3 10 57 29.6	52. 8 52. 9 53. 0 53. 0 53. 1 52. 3 45. 2 54. 5 + 47. 3	25 49 40, 3 25 49 42, 1 25 49 42, 1 25 49 46, 8 25 49 45, 4 25 49 45, 9 18 22 47, 5 18 22 6, 7 37 29 3, 4 +37 28 19, 1	5 22. 8 5 24. 0 5 25. 5 5 25. 6 5 25. 7 5 26. 3 5 23. 7 4 40. 2 5 29. 5 4 45. 9	10 58 3.7 58 3.4 58 3.5 58 3.6 58 4.1 10 58 4.9 58 16.8 10 58 16.8	+25 44 17.5 44 18.1 44 17.2 44 21.2 44 19.7 44 19.6 +18 17 23.8 17 26.5 +37 23 33.9 +37 23 33.2

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
						PP		а	δ
2451 2452 2453 2454 2455 2456* 2457 2458 2459 2460	52 Ursæ Maj. ψ 66 Leonis Piazzi 4 "" "" Piazzi 5 Lalande 21411	8 6.7 6.7 6 7.8 7.8 6.7	3 May 1 3 April 2 3 April 14 3 April 12 3 April 13 3 April 25 3 May 3 3 April 30 3 April 27 3 May 9	h m s 10 57 26.9 58 10.7 10 58 10.5 11 0 21.2 0 22.0 0 22.1 0 22.2 0 19.6 0 32.6 0 32.1	** 55.8 50.3 50.4 51.7 51.7 51.8 51.9 54.3 54.0 54.2	0 / " +45 40 25.3 -0 9 43.2 -0 9 38.3 +15 34 27.6 15 34 28.4 15 34 28.3 15 34 21.7 38 4 11.8 35 57 51.7 35 57 50.1	5 32. 1 5 18. 3 5 18. 2 5 22. 4 5 22. 5 5 23. 6 5 24. 2 5 30. 6 5 29. 7 5 31. 3	h m s 10 58 22.7 10 59 1.0 59 0.9 11 1 12.9 1 13.7 1 13.9 11 1 13.9 11 1 26.6	0 / " +45 34 53.2 - 0 15 1.5 14 56.5 +15 29 5.2 29 5.9 29 4.7 29 7.5 +37 58 41.2 +35 52 22.0 52 18.8
2461 2462* 2463 2464 2465 2466 2467 2468 2469* 2470	Lalande 21418 - Lalande 21422 - Anonyma - Lalande 21440 - 469 Mayer - 68 Leonis d	7 7 8. 6 7 6	5 April 29 3 April 29 3 April 8 5 April 26 3 April 26 3 May 1 3 Feb. 26 3 April 2 3 April 3 3 April 16	0 50.0 0 53.8 1 6.6 1 40.8 2 17.6 2 17.3 2 34.7 2 35.0 2 34.4 2 34.8	46. 9 52. 3 50. 4 46. 5 52. 3 52. 4 52. 3 52. 2 52. 2	36 59 18.5 25 49 32.8 0 45 49.1 34 36 50.0 21 18 46.6 21 18 47.4 21 42 25.7 21 42 27.9 21 42 24.7 21 42 27.4	4 47. 0 5 23. 8 5 19. 3 4 46. 2 5 25. 9 5 26. 4 5 21. 0 5 23. 6 5 23. 7 5 25. 1	11 1 46.1 11 1 57.0 11 2 27.3 11 3 9.9 3 9.7	+36 54 31.5 +25 44 9.0 + 0 40 29.8 +34 32 3.8 +21 13 20.7 13 21.0 +21 37 4.7 37 6.3 37 1.0 37 2.3
2471 2472* 2473 2474 2475 2476* 2477 2478 2479 2480		6	3 April 25 3 April 26 3 April 27 3 April 29 3 May 3 3 Feb. 18 3 Feb. 19 3 April 8 3 April 19 3 Feb. 19	2 34. 4 2 34. 5 2 34. 6 2 34. 1 2 34. 4 2 40. 3 2 40. 4 2 40. 7 2 46. 3 (2)	52. 3 52. 3 52. 3 52. 4 52. 4 50. 6 50. 6 50. 4 51. 2	21 42 26.8 21 42 30.0 21 42 29.7 21 42 28.4 21 42 31.3 1 6 22.7 1 6 20.2 9 14 32.0 16 36 37.5	5 26. 0 5 26. 2 5 26. 2 5 26. 4 5 26. 8 5 22. 4 5 19. 9 5 22. 2 5 21. 3	3 26.7 3 26.8 3 26.9 3 26.5 3 26.8 11 3 30.9 3 31.0 3 31.1 11 3 37.5 11 (3)	37 0.8 37 4.0 37 3.5 37 2.0 37 4.5 + 1 1 0.1 0 58.8 1 0.3 + 9 9 9.8 + 16 31 16.2
2481 2482 2483 2484 2485 2485 2487 2487 2489 2490	" Lalande 21473 72 Leonis Lalande 21503 73 Leonis " " "	7	3 April 12 3 April 13 3 April 14 3 May 1 3 April 8 3 April 3 3 Feb. 18 3 Feb. 19 3 Feb. 26 3 April 12	2 52.0 2 51.8 2 52.1 2 55.2 (3) 4 31.6 4 31.5 4 32.1 4 32.0	51.8 51.8 51.8 52.3 52.3 51.7 51.7 51.6 51.5	16 36 36.6 16 36 36.7 16 36 42.9 21 12 24 16 26.7 16 17 26.7 14 29 10.8 14 29 10.2 14 29 9.5 +14 29 9.4	5 23.5 5 23.6 5 23.7 5 25.4 5 22.7 6 21.8 5 21.9 5 21.7 5 23.5	3 43.8 3 43.6 3 43.9 11 3 47.5 11 (4) 11 4 55.2 11 5 23.3 5 23.2 5 23.7 5 23.5	31 13.1 31 13.1 31 19.2 +21 7 +24 11 1.3 +16 12 4.2 +14 23 49.0 23 48.3 23 47.8 23 45.9
2491 2492 2493 2494 2495 2496 2497 2498* 2499 2500*	74 Leonis	7.8	3 April 2 3 April 14 3 April 16 3 Feb. 26 5 April 29 3 April 25 3 April 25 3 April 27 3 April 28	5 40.0 5 39.9 5 40.1 6 8.1 6 36.2 6 36.3 6 36.6 6 36.3 6 36.7 6 36.5	50. 1 50. 1 50. 2 50. 6 47. 2 53. 1 53. 2 53. 2 53. 2 53. 2	- 2 28 13.0 2 28 10.9 - 2 28 14.9 + 3 11 58.6 43 29 24.7 32 44 49.1 32 44 49.1 32 44 49.1 32 44 45.3	5 20. 4 5 20. 2 5 20. 1 5 22. 6 4 40. 5 5 28. 5 5 30. 3 5 30. 4 5 30. 6 5 30. 7	11 6 30.1 6 30.0 6 30.3 11 6 58.7 11 7 23.4 11 7 29.4 7 29.8 7 29.5 7 29.9 7 29.7	- 2 33 33.4 33 31.1 33 35.0 + 3 6 36.0 +43 24 44.2 +32 39 18.8 39 21.2 39 18.5 39 14.6
2501 2502 2503* 2504 2505 2506* 2507 2508 2509 2510	24 Ursæ Maj. v Piazzi 30	6 6 7 7	3 April 26 3 April 29 3 April 30 5 April 26 3 May 3 3 May 2 3 Feb. 26 3 April 2 3 April 3 3 April 25	6 45.3 6 45.6 6 45.2 7 7.9 7 17.6 7 38.4 7 48.0 7 47.9 7 48.5 11 7 51.8	53. 3 53. 4 53. 4 46. 4 54. 0 51. 7 50. 6 50. 5 60. 5 + 53. 2	34 16 35.0 34 16 31.5 34 16 34.5 36 39 41.8 39 22 24.4 16 2 50 12.3 2 50 6.0 2 50 3.8 +34 0 27.0	5 30.9 5 31.3 5 31.4 4 48.0 5 33.5 5 23.2 5 21.8 5 21.7 — 5 30.9	7 39. 0 7 38. 6 11 7 54. 3 11 8 11. 6 11 8 30. 1 11 8 38. 6 8 38. 4 8 39. 0	+34 11 4.1 11 0.2 11 3.1 +36 34 53.8 +39 16 50.9 +16 + 2 44 49.1 44 44.2 44 42.1 +33 54 56.1

(194)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	M ean equ	inox 1800. 0
						трр го		a	δ
2511 2512 2513 2514 2515 2516 2517 2518* 2519* 2520	Lalande 21578 Lalande 21586 Johnson 2664 Piazzi 40	7 7 6 7 8 7 8 8.9	3 April 26 3 April 28 3 April 30 3 April 14 3 May 9 5 April 29 3 April 19 3 May 2 3 May 3 3 May 9	h m s 11 7 51.7 7 51.8 7 50.8 8 22.3 8 21.4 8 38.7 9 3.7 9 2.6 9 3.0 9 0.9	+ 53.2 53.2 53.3 50.3 50.5 47.4 51.8 51.9 51.9	+34 0 29.5 34 0 23.2 +34 0 30.4 - 0 27 46.1 - 0 27 53.0 +46 10 27.1 18 29 42.6 18 29 47.0 18 29 47.0 18 29 47.5	- 5 31.1 5 31.4 5 31.6 5 21.4 5 22.0 4 51.4 5 26.3 5 27.6 5 27.6 5 28.2	k m s 11 8 44.9 8 45.0 8 44.1 11 9 12.6 9 11.9 11 9 26.1 11 9 55.5 9 54.4 9 54.9 9 (52.8)	c , " +33 54 58.4 54 51.8 54 58.8 - 0 33 7.5 33 15.0 +46 5 35.7 +18 24 16.3 24 19.4 24 19.4 24 19.3
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530	Groombridge 1768 77 Leonis σ	8 7 7	3 April 30 5 April 26 3 Feb. 18 3 Feb. 26 3 April 2 3 April 2 3 April 29 3 April 27 3 April 28	9 42.8 9 49.8 9 58.1 9 57.6 9 58.3 9 58.2 9 58.4 10 52.7 10 52.2	54. 0 46. 7 51. 0 50. 9 51. 0 51. 0 51. 0 53. 8 53. 8	41 37 22.4 41 36 33.6 7 12 48.9 7 12 47.8 7 12 51.3 7 12 49.4 7 12 44.9 7 12 44.9 41 21 45.7 41 21 42.8	5 34.3 4 49.9 5 24.1 5 23.6 5 23.5 5 23.7 5 23.7 5 24.3 5 34.0 5 34.2	11 10 36.8 10 36.5 11 10 49.1 10 48.6 10 49.2 10 49.2 10 49.4 11 11 46.5 11 46.0	+41 31 48.1 31 43.7 + 7 7 24.8 7 24.2 7 27.8 7 25.7 7 7 21.2 7 20.6 +41 16 11.7 16 8.6
2531 2532 2533 2534* 2535 2536 2537 2538 2539 2540	56 Ursæ Majoris 71 Leonis Groombridge 1774 Piazzi 50 Lalande 21688 78 Leonis	6 6 8 6.7 6.7	3 April 30 5 April 26 3 April 25 3 April 26 5 April 29 3 May 2 3 May 9 3 April 14 3 May 1 3 Feb. 26	10 52.5 10 59.1 10 54.3 10 53.8 11 1.0 11 8.8 12 13.6 12 17.5 12 38.2	53. 8 46. 6 54. 1 54. 1 47. 0 51. 8 53. 5 50. 4 51. 8 51. 2	41 21 52.3 41 21 8.0 44 40 14.0 44 40 18.0 44 39 33.2 18 37 26.4 1 19 13.9 18 19 44.3 11 43 12.1	5 34.5 4 50.1 5 34.6 5 34.8 4 51.5 5 28.1 5 35.1 5 22.9 5 28.1 5 24.1	11 46.3 11 45.7 11 11 48.4 11 47.9 11 12 0.6 11 12 0.6 11 13 2.3 11 13 4.0 11 13 9.3 11 13 29.4	16 17.8 16 17.9 +44 34 39.4 34 43.2 34 41.7 +18 31 58.1 +38 19 51.3 + 1 13 51.0 +18 14 16.2 +11 37 48.0
2541 2542* 2543 2544 2545 2546 2547 2548 2549 2550	79 Leonis	5.6	3 April 2 3 April 3 3 April 12 3 April 13 3 Feb. 18 3 Feb. 19 3 April 16 3 April 29 3 April 12 3 April 19	12 38, 1 12 38, 1 12 37, 8 12 39, 1 (12) 12 55, 1 12 56, 0 12 56, 0 14 18, 6 14 18, 7	51. 1 51. 1 51. 1 51. 1 50. 7 50. 5 50. 6 51. 4 51. 5	11 43 13.0 11 43 9.7 11 43 10.0 11 43 11.4 2 35 44.3 2 35 48.9 2 35 38.9 2 35 36.3 17 38 41.1 17 38 41.3	5 24. 5 5 24. 6 5 25. 1 5 25. 1 5 25. 4 5 25. 4 5 23. 7 5 26. 8 5 27. 5	13 29.2 13 29.2 13 28.9 13 30.2 11(13) 13 45.8 13 46.5 13 46.6 11 15 10.0 15 10.2	37 48.5 37 45.1 37 44.9 37 46.3 + 2 30 18.9 30 15.5 30 15.5 +17 33 14.3 33 13.8
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560	" 80 Leonis Lalande 21756, 7 Arg. Z., Oel. 11722	7 7 8.9 8.9 9.10	3 April 26 3 May 1 3 May 2 3 May 3 3 April 2 3 April 14 5 April 29 3 April 27 3 April 28 3 April 30	14 18.3 14 17.7 14 18.6 14 18.7 14 42.6 14 43.3 14 54.9 15 43.6 15 44.2	51.6 51.6 51.6 51.6 50.6 50.6 45.8 54.0 54.0	17 38 42.5 17 38 44.3 17 38 45.3 17 38 45.8 5 3 1.3 5 3 4.9 34 37 42.8 47 29 30.4 47 29 24.1 47 29 33.8	5 28. 1 5 28. 5 5 28. 6 5 28. 7 5 23. 9 5 24. 3 4 49. 5 5 36. 7 5 36. 9 5 37. 2	15 9.9 15 9.3 15 10.2 15 10.3 11 15 33.2 15 33.9 11 15 40.7 11 16 37.6 16 38.2 16 38.8	33 14.4 33 15.8 33 16.7 33 17.1 + 4 57 37.4 57 40.6 +34 32 53.3 +47 23 53.7 23 47.2 23 56.6
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570	83 Leonis	8 8.9 7 6.7 5.7	3 Feb. 26 3 April 3 3 April 29 5 April 26 5 April 26 5 April 26 3 Feb. 19 3 Feb. 26 3 April 2 3 April 3	15 47. 5 15 47. 9 15 47. 7 16 4. 1 16 12. 6 16 48. 3 16 48. 1 16 48. 4 11 16 48. 4	50.7 50.5 50.7 46.6 46.6 50.8 50.8 50.6 50.5 + 50.5	4 11 29.6 4 11 27.1 4 11 25.9 46 22 0.4 46 3 39.4 4 2 49.0 4 2 47.6 4 2 50.8 4 2 50.3 + 4 2 42.9	5 25. 2 5 24. 1 5 24. 9 4 52. 4 4 52. 4 5 26. 1 5 26. 0 5 25. 5 5 24. 2 — 5 24. 3	11 16 38.2 16 38.4 16 38.4 11 16 50.7 11 16 59.2 11 17 39.1 17 38.9 17 38.7 17 38.9 11 17 38.6	+ 4 6 4.4 6 3.0 6 1.0 +46 17 8.0 +45 58 47.0 + 3 57 22.6 57 25.3 57 26.1 + 3 57 18.6

(195)

No.	Name	Mag.	Date	App't a	Reduct'n	pp't đ	Reduction	Mean equ	inox 1800, 0
				PP		, PP - 1		а	δ
2571 2572 2573 2574* 2575 2576 2577* 2578 2579 2580	84 Leonis 7 Johnson 2688 57 Ursæ Majoris 85 Leonis Lalande 21863	7.8 6	3 April 16 3 April 19 3 April 29 3 May 16 3 April 25 3 April 25 5 April 29 3 April 12 3 April 13 3 April 26	h m s 11 16 48.2 16 48.2 16 47.9 16 48.3 16 53.2 17 22.1 17 29.2 18 24.5 18 25.0 18 35.1	+ 50.6 50.6 50.8 53.1 53.1 46.0 51.3 51.3 52.3	+ 4 2 51.7 4 2 45.4 4 2 47.8 4 2 44.7 40 29 56.2 40 31 48.3 16 36 29.9 16 36 29.3 31 10 15.8	5 24.6 5 24.7 5 25.1 5 25.9 5 34.8 5 34.9 4 51.7 5 27.4 5 27.5 5 32.8	11 18 15.2 18 15.2 11 19 15.8 19 16.3	+ 3 57 27.1 57 20.7 57 22.7 57 18.8 +40 24 21.4 +40 26 13.6 26 12.6 +16 31 2.5 31 1.8 +31 4 43.0
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590	58 Ursæ Majoris Groombridge 1794 	6 6.7 7 7 7 6 6	3 May 9 5 April 29 3 April 27 3 April 28 3 April 30 3 April 30 3 April 30 3 May 1 3 May 2 3 April 2 3 April 16	18 34.7 18 18 46.8 18 46.9 18 47.0 19 10.3 19 10.1 19 10.3 19 15.1 19 16.0	52. 4 53. 4 53. 4 51. 4 51. 5 51. 5 50. 1	31 10 14.7 44 21 4.0 44 46 8.1 44 46 3.0 44 46 14.4 19 36 5.5 +19 36 5.7 — 1 48 37.5 — 1 48 41.7	5 34. 4 4 52.7 5 36. 6 5 36. 8 5 37. 1 5 28. 6 5 30. 2 5 30. 3 5 24. 0 5 24. 1	19 27. 1 11 19 11 19 40. 2 19 40. 3 19 40. 4 11 20 1. 7 20 1. 6 20 1. 8 11 20 5. 2 20 6. 4	4 40.3 +44 16 11.3 +44 40 31.5 40 26.2 40 37.3 +19 30 39.3 30 35.3 30 35.4 -1 54 1.5 54 5.8
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600	Lalande 21892,3 88 Leonis 480 Mayer Lalande 21922 Lalaude 21925	7.8 7 7.8 8 7.8 7	3 April 12 3 May 2 3 May 9 3 Feb. 26 3 April 29 3 April 19 3 April 27 3 April 28 3 April 12 3 April 12	20 13.0 20 12.8 20 12.0 20 33.8 20 33.9 20 56.6 21 29.6 21 29.2 21 32.1 21 33.3	51.5 51.5 51.3 51.2 50.0	+18 56 39.7 18 56 47.5 18 56 42.7 15 34 10.6 +15 34 9.4 - 5 16 24.9 +35 14 49.5 19 11 45.0 19 11 48.0	5 28, 3 5 30, 3 5 30, 9 5 25, 6 5 29, 1 5 23, 6 5 34, 5 5 34, 7 5 28, 6 5 30, 0	21 4.3 21 3.5	+18 51 11.4 51 17.2 51 11.8 +15 28 45.0 28 40.3 - 5 21 48.5 +35 9 20.9 9 14.8 +19 6 16.4 6 18.0
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610	Bessel, W.481 Piazzi 100 Lalande 21947 Bessel, W.448 Piazzi 104	7.8 7 7.8 8 6.7 5.6 7 8	3 May 2 3 May 9 5 April 26 3 April 3 3 April 16 3 April 30 5 April 26 5 April 29 3 April 2 3 April 19	21 32.9 21 32.9 22 0.9 22 12.5 22 12.3 22 24.0 22 30.9 22 30.4 22 29.3 22 37.9	51. 4 51. 5 44. 8 50. 5 50. 5 52. 5 45. 5 45. 5 50. 4 50. 0	19 11 49.1 19 11 50.0 37 57 6.0 4 33 22.8 4 33 28.6 38 0 59.3 38 0 17.0 38 0 15.4 + 3 41 40.2 - 5 20 38.2	5 30.5 5 31.2 4 51.1 5 25.5 5 25.7 5 35.9 4 51.2 4 51.7 5 25.3 5 23.9	22 24.3 22 24.4 11 22 45.7 11 23 3.0 23 2.8 11 23 16.5 23 16.4 23 15.9 11 23 19.7 11 23 27.9	6 18.6 6 18.8 +37 52 14.9 + 4 27 57.3 28 2.9 +37 55 23.7 + 3 36 14.9 - 5 26 2.1
2611 2612* 2613 2614 2615* 2616 2617 2618 2619 2620*	89 Leonis	6 6	3 Feb. 18 3 Feb. 19 3 April 3 3 April 16 3 Feb. 26 3 April 12 3 April 13 3 April 25 3 April 29 3 May 16	23 17.1 23 17.0 23 17.2 23 17.2 23 26.0 23 25.5 23 25.5 23 25.7 23 25.6	50. 8 50. 7 50. 5 50. 5 51. 3 51. 2 51. 2 51. 2 51. 3 51. 4	+ 4 15 41.6 4 15 41.3 4 15 36.4 4 15 44.6 17 59 28.6 17 59 30.2 17 59 31.6 17 59 31.1 17 59 30.9	5 27. 4 5 27. 4 5 25. 7 5 26. 0 5 26. 8 5 28. 7 5 26. 7 5 30. 0 5 30. 3 5 31. 9	11 24 7.9 24 7.7 24 7.7 24 7.7 11 24 17.3 24 17.0 24 16.7 24 16.7 24 17.0 24 17.0	+ 4 10 14.2 10 13.9 10 10.7 10 18.6 +17 54 1.8 54 1.8 54 2.9 52 2.9 54 0.8 53 59.0
2621 2622 2623 2624 2625 2626* 2627 2628 2629 2630	Lalande 21987 45 (Hev.) Leonis Lalande 22018 91 Leonis	7.8 8 7 6 6 6 7	3 April 26 3 April 27 3 May 2 3 April 28 3 April 28 3 April 29 3 April 28 3 April 3 3 April 13 3 April 19	24 23. 6 24 22. 8 24 23. 9 24 53. 1 24 53. 3 24 52. 3 25 50. 3 25 52. 5 25 52. 1 11 25 51. 8	51. 3 51. 3 51. 3 51. 8 51. 8 51. 9 51. 7 50. 2 50. 3 + 50. 3	19 4 14.1 19 4 10.6 19 4 15.3 28 58 42.2 28 58 41.8 28 58 41.8 28 58 24.4 0 22 11.8 0 22 11.5 + 0 22 11.4	5 30.5 5 30.5 5 31.0 5 33.6 5 33.7 5 34.9 5 33.7 5 25.5 5 25.5 5 25.7	25 14. 1 25 15. 2 11 25 44. 9 25 45. 1 25 44. 2 11 26 42. 0 11 26 42. 7 26 42. 4	+18 58 43.6 58 40.1 58 44.3 +28 53 8.6 53 9.4 53 6.9 +28 52 50.7 + 0 16 46.3 16 45.9 + 0 16 45.7

No.	Name	Mag	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800, 0
No.	Name	Mag.	Date	кррии	Reduct n	Appto	Reduction	а	δ
2631 2632 2633 2634 2635 2636* 2636 2638 2639 2640	91 Leonis v Piazzi 121 59 Ursæ Majoris 1 Virginis """ """ Piazzi 132	7.6 6	3 April 29 3 April 27 3 April 25 5 April 26 3 Feb. 18 3 Feb. 19 3 Feb. 26 3 April 2 3 May 16 3 April 13	h m s 11 25 52.2 26 39.2 26 46.1 26 54.0 27 17.2 27 16.3 27 17.7 27 18.3 29 18.4	+ 50.4 51.9 52.6 45.5 50.9 50.8 50.6 50.9 50.3	+ 0 22 8.6 6 33 4 58.8 44 49 35.8 44 48 55.2 9 19 52.2 9 19 55.2 9 19 55.2 9 19 55.2 9 19 52.7 9 19 52.7 2 9 3.0	, 25, 9 5 35, 7 5 37, 6 4 53, 5 5 27, 5 5 27, 5 5 27, 0 5 29, 7 5 26, 5	h m s 11 26 42.6 11 27 31.1 11 27 38.7 27 39.5 11 28 8.1 28 7.7 28 8.1 28 8.3 28 9.2 11 30 8.7	+ 0 16 42.7 +32 59 23.1 +44 43 58.2 44 1.7 + 9 14 24.7 14 28.0 14 25.7 14 23.0 + 2 3 36.5
2641 2642 2643 2644* 2645 2646 2647 2648 2649 2650	92 Leonis 61 Ursæ Majoris Piazzi 137 62 Ursæ Majoris	7 6 4.5	3 April 26 3 Feb. 26 3 April 3 3 April 29 5 Mar. 30 3 April 16 3 April 25 3 April 30 3 May 13 3 April 27	29 18. 3 29 31. 3 29 30. 8 29 30. 6 29 37. 4 29 36. 6 29 37. 2 29 37. 2 30 13. 7 30 16. 7	50. 4 51. 3 51. 1 51. 2 44. 2 51. 7 51. 8 51. 9 52. 3 51. 6	2 9 2.7 22 33 11.9 22 33 14.6 22 33 20.1 22 32 31.7 35 25 32.3 35 25 29.5 35 25 33.9 42 26 33.4 32 56 45.3	5 26. 9 5 26. 7 5 29. 4 5 32. 5 4 44. 9 5 33. 8 5 35. 5 5 35. 3 5 40. 1 5 35. 1	30 8.7 11 30 22.6 30 21.9 30 21.8 30 21.6 11 30 28.3 30 29.0 30 29.1 11 31 6.0 11 31 8.3	3 35.8 +22 27 45.2 27 45.2 27 47.6 27 46.5 19 58.5 19 54.0 19 58.6 +42 20 53.3 +32 51 10.2
2651 2652 2653 2654 2655 2656 2657 2658* 2659 2660	" Lalande 22144 484 Mayer Lalande 22155 Lalande 22159 Lalande 22175,6	6.7 6 8 7 7 7 7	3 April 28 3 May 9 5 April 26 5 April 29 5 Mar. 30 3 April 13 3 May 1 3 May 2 3 April 16 3 April 25	30 16.7 30 17.0 30 23.8 30 23.6 30 56.5 31 3.6 31 19.6 31 29.7 32 9.7	51. 6 51. 8 44. 7 44. 7 44. 2 50. 5 50. 5 51. 1 51. 4 51. 5	32 56 41.1 32 56 46.1 32 56 6.1 32 56 3.6 23 24 2.7 5 56 41.3 3 33 41.7 19 26 35.8 32 57 58.8 32 57 56.9	5 35. 3 5 36. 9 4 50. 8 4 51. 3 4 45. 1 5 27. 7 5 27. 6 5 32. 3 5 33. 7 5 35. 1	31 8.3 31 8.5 31 8.5 31 8.3 11 31 40.7 11 31 54.7 11 32 10.1 11 32 20.8 11 33 1.1 33 1.1	51 5.8 51 9.2 51 15.3 51 12.3 +23 19 17.6 + 5 51 13.6 + 3 28 14.1 +19 21 3.5 +32 52 25.1 52 21.8
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670	"	6.7 7 7.8 7 7 6 6.7 7	3 April 27 3 April 28 3 April 30 3 May 9 5 April 26 5 April 29 5 Mar. 30 3 April 12 3 April 13 5 April 29	32 9.2 32 9.3 32 9.5 32 9.2 32 16.5 32 16.2 33 2.7 34 1.0 34 0.9 34 8.0	51.5 51.5 51.6 44.6 44.6 44.2 50.7 50.7	32 58 2.6 32 57 54.7 32 58 2.1 32 58 0.3 32 57 18.0 32 57 26 24 21.2 15 27 53.0 15 27 52.9 15 27 10.2	5 35. 3 5 35. 4 5 35. 8 5 37. 2 4 51. 0 4 51. 5 4 45. 8 5 29. 6 5 29. 6 4 46. 9	33 0.7 33 0.8 33 1.0 33 0.8 33 1.1 33 0.8 11 33 46.9 11 34 51.7 34 51.6 34 52.0	52 27. 3 52 19. 3 52 26. 3 52 23. 1 52 27. 0 52 24. 2 +26 19 35. 4 +15 22 23. 4 22 23. 3 22 23. 3
2671 2672 2673 2674* 2675 2676 2677 2678* 2679 2680	2 Virginis ξ ¹ Lalande 22222 Lalande 22231 63 Ursæ Maj. χ 3 Virginis ν	7.8	3 Feb. 26 3 Mar. 18 3 April 2 3 April 3 3 April 26 3 May 2 3 April 19 3 April 28 3 April 29 3 April 16	34 6.7 34 6.7 34 7.1 34 6.5 34 6.6 34 6.9 34 16.7 34 34.2 34 35.5 34 44.2	50. 7 50. 5 50. 5 50. 5 50. 6 51. 0 50. 5 52. 0 50. 5	9 27 37.2 9 27 38.0 9 27 39.2 9 27 37.0 9 27 37.0 21 5 43.2 8 13 59.2 48 58 49.0 48 58 56.0 7 44 28.5	5 28. 1 5 27. 7 5 28. 0 5 28. 0 5 29. 3 5 29. 9 5 28. 9 5 39. 9 5 40. 1 5 28. 4	11 34 57. 4 34 57. 2 34 57. 6 34 57. 0 34 57. 2 11 34 57. 2 11 35 7. 2 11 35 26. 2 35 27. 5 11 35 34. 7	+ 9 22 9.1 22 10.3 22 11.2 22 9.0 22 7.7 +21 0 13.3 + 8 8 30.3 +48 53 9.1 53 15.9 + 7 39 0.1
2681 2682 2683 2684 2685 2686* 2687 2688 2689 2690	Piazzi 156	6.7 6 7 7 5.6 5.6	3 April 25 3 April 30 3 May 2 5 April 26 3 Feb. 19 3 Mar. 18 3 April 16 3 May 1 5 April 10 3 Feb. 26	34 43.6 35 46.3 35 46.7 35 53.4 36 46.2 36 46.7 36 47.8 36 45.8 11 36 48.2	50.5 51.1 51.1 44.2 50.8 50.5 50.6 43.7 + 51.0	7 44 28.3 24 55 23.7 24 55 23.9 24 54 40.7 9 26 50.0 9 26 49.6 9 26 52.2 9 26 49.2 9 26 8.4 +21 25 13.6	5 28.9 5 34.0 5 34.2 4 49.1 5 28.6 5 28.0 5 28.8 5 29.9 4 44.4 — 5 27.5	35 34.1 11 36 37.4 36 37.8 36 37.6 11 37 37.0 37 37.2 37 38.3 37 37.3 11 37 39.2	38 59. 4 +24 49 49. 7 49 49. 7 49 51. 6 + 9 21 21. 4 21 21. 6 21 23. 4 21 19. 3 21 24. 0 +21 19 46. 1

(197)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
						PP - "		a	δ
2691* 2692 2693 2694 2695 2696 2697 2698 2699 2700	93 Leonis	5 6.7 7	3 April 2 5 April 29 3 April 3 3 April 13 3 April 25 3 Feb. 26 3 April 3 3 April 12 3 April 13 3 April 19	h m s 11 36 47.7 36 54.6 37 30.1 37 30.2 38 0.9 38 0.7 38 0.7 38 1.0 38 1.1 38 0.7	** 50.8 44.1 50.6 50.5 50.8 50.6 50.6 50.6 50.6 50.6 50.6 50.6 50.6 50.6 5	+21 25 24.5 21 24 38.5 15 29 9.9 15 29 11.7 6 23 40.6 15 46 50.7 15 46 52.3 15 46 55.1 15 46 55.1	- 5 30.0 4 48.8 5 29.2 5 30.0 5 29.0 5 27.9 5 29.3 5 30.0 5 30.1 5 30.7	h m s 11 37 38.5 37 38.7 11 38 20.7 38 20.8 11 38 51.4 11 38 51.5 38 51.3 38 51.6 38 51.7 38 51.3	0 / " +21 19 54.5 19 49.7 +15 23 40.7 23 41.7 + 6 18 11.6 +15 41 22.8 41 23.0 41 24.3 41 25.0 41 25.5
2701 2702 2703 2704 2705 2706 2707* 2708 2709 2710	"	2 2 2 2 2 2 2 6 6	3 April 29 3 May 13 3 May 16 3 May 20 3 May 31 3 June 2 3 June 3 3 July 10 3 April 27 3 April 28	38 0.7 38 0.9 38 0.6 38 0.6 38 0.6 38 0.6 38 0.6 37 59.8 38 25.2 38 25.3	50. 7 50. 8 50. 8 50. 9 51. 0 51. 0 51. 5 51. 2	15 46 55.1 15 46 52.9 15 46 52.3 15 46 52.5 15 46 52.5 15 46 54.8 15 46 58.9 15 46 58.5 36 8 10.1 36 8 5.8	5 31.6 5 32.9 5 33.2 5 33.5 5 34.3 5 34.4 5 34.5 5 36.1 5 36.7 5 36.9	38 51.4 38 51.5 38 51.7 38 51.5 38 51.6 38 51.6 38 51.6 38 51.3 11 39 16.4 39 16.5	41 23.5 41 20.0 41 19.1 41 24.6 41 18.2 41 20.4 41 24.4 41 22.2 +36 2 33.4 2 28.9
2711 2712 2713 2714 2715 2716* 2717 2718 2719 2720*	Lalande 22334 5 Virginis β	6 9 9	3 April 30 3 April 28 3 April 30 3 Feb. 18 3 Feb. 19 3 Feb. 29 3 Mar. 18 3 April 2 3 April 3 3 April 29	38 25. 1 34 54. 2 38 54. 4 39 25. 6 39 24. 9 39 25. 0 39 24. 8 (39) 39 24. 3	51. 2 51. 1 51. 1 50. 6 50. 6 50. 5 50. 3 50. 3	36 8 13.8 35 59 44.7 35 59 45. 2 59 4.8 2 59 4.1 2 59 6.0 2 59 7.2 2 59 7.2 2 59 2.6 2 59 3.2	5 37.2 5 36.9 5 37.2 5 29.9 5 29.8 5 29.8 5 27.9 5 27.8 5 27.7 5 28.3	39 16.3 11 39 45.3 39 45.5 11 40 16.2 40 15.5 40 15.6 40 15.3 40 15.1 (40) 40 14.7	2 36.6 +35 54 7.8 54 8. + 2 53 34.9 53 34.3 53 36.9 53 39.8 53 39.4 53 34.9 53 34.9
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730	Anonyma	7 6 7 6 6 8.9	3 May 16 3 May 20 3 May 31 3 June 2 3 May 1 3 May 2 3 May 9 5 April 26 5 Mar. 30 3 April 25	39 25, 4 (39) 39 25, 1 (39) 39 48, 3 39 48, 3 39 48, 0 39 55, 4 40 0, 1 40 19, 3	50. 5 50. 6 50. 6 50. 6 50. 7 44. 8 44. 0 50. 5	2 59 1.6 2 59 5.5 2 59 0.3 2 59 1.9 13 28 52.9 13 28 55.3 13 28 58.3 13 28 8.8 34 33 57.4 13 0 31.5	5 29. 1 5 29. 5 5 29. 9 5 30. 1 5 31. 3 5 31. 9 4 46. 5 4 47. 5 5 30. 7	40 15, 9 (40) 40 15, 7 (40) 11 40 38, 9 40 39, 1 40 38, 7 40 40, 2 11 40 44, 1 11 41 9, 8	53 32.5 53 36.0 53 30.4 53 31.8 +13 23 21.6 23 23.9 23 21.4 23 22.3 +34 29 9.9 +12 55 0.8
2731* 2732 +2733 +2734 -2735 -2736 -2737 -2738 -2739 -2740	1830 Groombridge Lalande 22390 Johnson 2755 Piazzi 176	7.8 7.8 6.7 7 7 6.7 8 7	3 May 9 5 April 26 5 April 10 3 April 27 3 April 28 5 April 12 3 April 12 3 April 26 5 Mar. 30 5 April 10	40 19.7 40 26.5 40 34.3 40 27.4 40 27.2 40 34.6 41 21.5 41 39.0 42 40.0 42 40.6	50, 6 43, 8 44, 1 51, 0 51, 1 44, 2 50, 6 51, 1 43, 8 43, 9	13 0 39.6 12 59 52.7 9 14 46.1 39 16 25.7 39 15 32.1 21 36 49.0 47 45 51.6 34 48 34.1 34 48 39.2	5 31.9 4 46.5 4 50.2 5 37.7 5 37.9 4 53.7 5 31.3 5 39.6 4 47.6 4 49.4	41 10, 3 41 10, 3 11 41 18, 4 11 41 18, 4 41 18, 3 41 18, 8 11 42 12, 1 11 42 30, 1 11 43 23, 8 43 24, 5	+39 10 48.0 10 49.1 10 38.4 +21 31 17.7
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750	Flamsteed, B.1862 Lalande 22414 65 Ursæ Maj. pr	7.8 7.8 7 10 9.10 8.9 7 6 7	3 April 27 3 April 28 3 April 30 3 Mar. 18 3 April 3 3 May 2 3 April 26 3 April 29 3 May 9 5 April 29	42 34. 2 42 33. 9 42 33. 9 42 32. 1 42 33. 0 42 33. 0 43 47. 3 43 47. 3 43 47. 4 11 43 54. 7	50. 9 50. 9 50. 9 50. 4 50. 4 50. 5 50. 9 51. 0 + 44. 1	42 7 21.5 42 7 24.4 42 7 25.2 9 46 32.6 9 46 25.4 9 46 34.8 47 41 3.9 47 41 5.4 47 41 6.3 +47 40 20.1	5 38. 4 5 38. 6 5 39. 0 5 28. 7 5 30. 5 5 39. 7 5 40. 2 5 42. 0 4 55. 9	11 43 25, 1 43 24, 8 43 24, 8 11 43 22, 5 43 23, 4 43 23, 6 11 44 38, 2 44 39, 2 44 38, 4 11 44 38, 8	1 45.8 1 46.2 + 9 41 4.2 40 56.7 41 4.3 +47 35 24.2 35 25.2 35 24.3

(198)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800. 0
								a	ð
2751 2752* 2753 2754 2756 2756 2757 2758 2759 2760	65 Ursæ Maj. foll. 6 Virginis A Lalande 22455 491 Mayer	7 6 7	5 April 29 3 Feb. 19 3 Mar. 18 3 April 3 3 April 13 3 April 25 3 May 2 3 May 13 3 May 16 3 April 19	h m s 11 44 0.9 43 54.8 43 55.3 43 56.0 43 55.7 43 55.6 43 55.5 44 14.4 44 14.5 44 19.7	+ 44.0 50.7 50.4 50.3 50.4 50.4 50.8 50.8 51.3	+47 39 59.1 9 38 49.8 9 38 50.9 9 38 46.7 9 38 48.8 9 38 47.9 9 38 54.8 26 43 44.1 26 43 43.3 2 18 10.5	- 4 55.9 5 29.1 5 28.5 5 28.8 5 29.2 5 30.1 5 30.5 5 36.6 5 38.0 5 28.2	h m s 11 44 44.9 11 44 45.5 44 45.7 44 46.3 44 46.1 44 45.9 11 45 5.2 45 5.3 11 45 11.0	0 / " +47 35 3.2 + 9 33 20.7 33 22.4 33 17.9 33 19.6 33 17.8 33 24.3 +26 38 7.5 38 5.3 + 2 12 42.3
2761 2762 2763 2764* 2765 2766 2767 2768* 2769 2770	95 Leonis o Groombridge 1836 ""	7.8 7 7.6 8 7.8 6 7.6 6.7 7.6	5 April 26 3 April 16 3 April 27 3 April 28 3 April 30 5 Mar. 30 3 April 27 3 April 28 3 April 30 5 April 10	44 26. 7 44 31. 9 44 49. 3 44 49. 7 44 48. 7 45 13. 5 46 4. 2 46 3. 9 46 4. 4 46 11. 1	43. 5 50. 4 50. 7 50. 7 50. 7 43. 7 50. 6 50. 6 43. 6	2 17 28.1 16 51 7.5 41 51 26.1 41 51 21.9 41 51 26.8 36 38 23.0 41 33 14.7 41 33 13.5 41 33 35.0	4 44. 0 5 30. 9 5 38. 4 5 38. 7 5 38. 8 4 47. 9 5 38. 4 5 38. 7 5 38. 9 4 50. 8	45 10.2 11 45 22.3 11 45 40.0 45 40.4 45 39.4 11 45 57.2 11 46 54.8 46 54.5 46 55.0 46 54.7	12 44.1 +16 45 36.6 +41 45 47.7 45 43.2 45 48.0 +36 33 35.3 +41 27 36.3 27 34.8 27 35.8 27 44.2
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780	Piazzi 201	8.9 8 6 6 7 6.7 6.7 7	3 April 25 3 May 2 3 May 13 3 May 16 3 Mar. 18 3 April 3 3 April 4 3 May 9 5 April 26 3 May 1	46 39. 4 46 39. 2 46 59. 2 46 58. 0 47 8. 3 47 8. 8 47 8. 0 47 15. 2 47 59. 2	50. 3 50. 4 50. 7 50. 7 50. 3 50. 2 50. 2 50. 4 43. 5 50. 3	8 10 54.0 8 11 1.3 33 29 5.3 33 29 7.4 4 41 12.8 4 41 13.6 4 41 15.9 4 40 36.1 1 44 4.2	5 29. 8 5 30. 2 5 38. 8 5 39. 1 5 28. 4 5 28. 3 5 28. 3 5 29 8 4 44. 7 5 28. 6	11 47 29.7 47 29.6 11 47 49.9 47 48.7 11 47 58.6 47 59.0 47 58.4 47 58.7 11 48 49.5	+ 8 5 24.2 5 31.1 +33 23 26.5 23 28.3 + 4 35 44.4 35 43.9 35 45.3 35 50.1 35 51.4 + 1 38 35.6
2781 2762 2763 2764 2765 2766 2767 2768 2769 2769	Lalande 22566,7	6.7 7 7 7 6 7.8 8.9	3 May 16 5 April 29 3 Feb. 19 3 Mar. 18 3 April 3 3 April 3 3 May 9 5 April 26 5 Mar. 30 5 April 10	48 48.9 48 56.0 48 51.7 48 52.6 48 52.5 48 52.1 48 51.1 48 58.8 49 8.2 49 7.7	50. 6 43. 6 50. 3 50. 2 50. 2 50. 4 43. 5 43. 5	35 14 26,1 35 13 41,4 4 51 41,3 4 51 39,1 4 51 37,5 4 51 41,0 4 50 58,5 37 55 18,3 37 55 30,0	5 39.7 4 52.9 5 29.9 5 28.5 5 28.4 5 28.4 5 29.9 4 44.9 4 48.0 4 50.0	11 49 39.5 49 39.6 11 49 42.3 49 42.9 49 42.7 49 42.3 49 41.3 49 42.3 11 49 51.7 49 51.2	+35 8 46.4 8 48.5 + 4 46 11.4 46 10.6 46 9.1 46 13.6 +37 50 30.3 50 40.0
2791 2792 2793* 2794* 2795 2796 2797 2798 2799 2800	Johnson 2783	8 8 8.9 8	3 April 26 3 April 27 3 April 28 3 April 30 3 April 16 3 April 19 3 April 25 3 May 2 3 May 13	49 14.1 49 14.6 49 13.9 49 14.3 49 47.1 49 47.2 49 46.9 49 47.1 50 33.1	50. 2 50. 3 50. 3 50. 2 50. 2 50. 2 50. 3 50. 3 50. 5	45 50 16.0 45 50 12.2 45 50 12.9 45 50 18.7 7 49 19.3 7 49 16.2 7 49 14.5 7 49 19.3 7 49 18.5 37 15 20.9	5 39. 2 5 39. 4 5 39. 6 5 40. 0 5 29. 3 5 29. 5 5 29. 9 5 30. 2 5 31. 5 5 39. 9	11 50 4.3 50 4.9 50 4.2 50 4.6 11 50 37.3 50 37.4 50 37.0 50 37.6 11 51 23.5	+45 44 36.8 44 32.8 44 33.3 44 38.7 + 7 43 50.0 43 46.7 43 44.6 43 49.1 43 47.0 +37 9 41.0
2801 2802 2803 2804 2805 2806 2807 2808 2809* 2810	1 Comæ	6.5 7 6 6 6.7 6.7 7	3 May 16 3 April 29 3 April 26 3 April 27 3 April 28 3 April 30 5 April 10 3 April 26 3 April 30 3 April 30	50 33.2 50 38.1 51 5.4 51 5.7 51 5.3 51 5.3 51 11.6 51 28.1 51 28.6	50. 4 50. 3 50. 1 50. 1 50. 1 50. 1 43. 2 50. 0 50. 1 + 50. 1	37 15 21.3 23 18 4.9 44 15 0.8 44 15 0.7 44 15 4.7 44 15 4.6 44 14 14.1 44 19 27.8 44 19 22.7 +44 19 30.6	5 40, 3 5 34, 2 5 38, 8 5 39, 0 5 39, 2 5 39, 6 4 51, 2 5 38, 8 5 39, 2 — 5 39, 6	52 18.7	9 41.0 +23 12 30.7 +44 9 22.0 9 21.7 • 9 15.5 9 25.0 9 22.9 +44 13 49.0 13 43.5 +44 13 51.0

(199)

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction	Mean equ	inox 1800, 0.
								а	ð
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Lalande 22655	7 7.8 7 7.6	3 May 13 3 May 16 3 April 16 5 April 29 3 April 29 3 Feb. 19 3 April 3 3 April 4 3 April 25 3 May 9	h m s 11 52 28.1 52 27.3 52 41.8 52 48.3 53 11.1 54 10.1 54 10.8 54 11.2 54 11.2 54 9.8	** 50.3 50.3 50.2 43.5 50.2 50.6 50.2 50.2 50.2 50.3 **	+30 53 18.7 30 53 17.9 6 46 8.9 6 45 20.5 22 39 57.5 9 56 8.0 9 56 6.7 9 56 8.1 9 56 3.6 9 56 9.1	- 5 38. 0 5 38. 4 5 29. 2 4 45. 6 5 33. 9 5 29. 0 5 29. 0 5 30. 4 5 31. 4	h m s 11 53 18.4 53 17.6 11 53 32.0 53 31.8 11 54 1.3 11 55 0.7 55 1.0 55 1.4 55 0.1	+30 47 40.7 47 39.5 + 6 40 39.7 40 34.9 +22 34 23.6 + 9 50 38.8 50 37.7 50 39.1 50 33.2 50 37.7
21 22 22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Lalande 22717 Piazzi 232 Lalande 22750 Lalande 22754 500 Mayer Lalande 22762	8 9 7.8 9.8 8. 7 9.10 8.9	3 May 20 3 May 16 3 April 30 5 Mar. 30 3 April 28 3 May 13 3 April 16 3 April 4 3 April 29 3 May 2	54 8.9 54 56.4 55 18.6 55 23.8 56 19.7 56 25.7 56 56.4 56 59.3 56 59.1	50. 4 50. 2 49. 6 42. 7 49. 6 50. 1 50. 2 50. 1 50. 2 50. 2	9 56 6, 9 24 24 45, 1 47 29 39, 3 47 28 42, 9 44 18 13, 5 24 14 57, 0 1 49 53, 1 7 14 28, 9 7 14 36, 3	5 32.3 5 36.4 5 40.2 4 49.1 5 39.0 5 35.9 5 28.3 5 28.6 5 30.0 5 30.1	54 59.3 11 55 46.6 11 56 8.2 56 6.5 11 57 9.3 11 57 46.6 11 57 49.4 57 49.3 57 49.4	50 34.6 +24 19 8.7 +47 23 59.1 23 53.8 +44 12 34.5 +24 9 21.1 + 1 44 24.8 + 7 9 0.3 9 5.2 9 6.2
2532 2532 2533* 2534* 2536 2536 2537 2539 2540	Lalande 22768	16, 11 7 7, 8 7, 8 8, 9 7	5 April 29 3 April 26 3 April 27 3 April 28 3 April 30 3 Feb. 19 3 Feb. 26 3 April 3 3 April 4 3 April 16	57 4.4 57 8.9 57 8.6 57 9.1 57 8.6 58 35.9 58 36.2 58 36.6 58 36.1 58 36.4	43. 4 49. 6 49. 6 49. 6 50. 6 50. 4 50. 1 50. 2 50. 2	7 13 47.2 40 51 53.0 40 51 51.2 40 51 49.4 40 51 50.8 3 6 54.9 3 6 47.1 3 6 49.0 3 6 51.8	4 45.6 5 37.6 5 37.2 5 36.5 5 30.5 5 29.6 5 28.2 5 28.2 5 28.4	57 47.8 11 57 58.5 57 58.2 57 58.7 57 58.2 11 59 26.5 59 26.6 59 26.7 59 26.3 59 26.6	9 1.6 +40 46 15.4 46 13.8 46 12.2 46 14.3 + 3 1 24.4 1 21.3 1 18.9 1 20.8 1 23.4
2841* 2842 2843 2844 2845 2847 2848 2849 2850		6.7 7 5 6 6 6.5	3 May 9 5 April 29 3 May 31 3 Feb. 19 3 April 3 3 April 3 5 April 10 3 April 29 3 May 13 3 May 16	58 35.7 53 42.6 59 1.2 59 1.3 59 1.8 59 1.2 59 8.4 59 29.0 59 45.5 59 45.7	50. 2 43. 4 50. 6 50. 5 50. 1 50. 1 43. 3 50. 0 49. 9 49. 9	3 6 47.3 +3 6 6.0 -21 25 2.5 +7 0 41.6 7 0 39.2 7 0 40.1 6 59 58.5 18 0 55.7 28 29 19.3 28 29 20.6	5 29. 4 4 44. 6 5 22. 7 5 29. 6 5 28. 6 5 29. 6 5 444. 5 5 32. 5 5 37. 0 5 37. 4	59 25, 9 59 26, 0 11 59 51, 8 11 59 51, 8 59 51, 9 59 51, 7 12 0 19, 0 12 0 35, 4 0 35, 6	1 17.9 1 21.4 -21 30 25.2 + 6 55 12.0 55 10.6 55 10.5 55 14.0 +17 55 23.2 +28 23 42.3 23 43.2
2851 2852 2853 2854 2856* 2856 2857 2858 2858 2860	Lalande 22846	6 7 7 7 7.8 7	5 May 30 3 April 26 3 April 27 3 April 28 3 April 30 5 April 29 3 May 9 3 May 20 3 April 4 3 May 2	59 52.9 59 50.0 59 50.0 59 50.2 11 59 50.1 12 0 43.2 0 50.9 0 50.7 1 14.9 1 14.5	43. 0 49. 3 49. 4 49. 4 49. 4 49. 8 49. 8 50. 1	28 28 27. 8 41 5 59. 8 41 5 55. 5 41 5 54. 8 41 6 0. 4 5 14 55. 5 27 4 43. 6 27 4 45. 2 7 4 54. 9	4 46.3 5 37.6 5 37.8 5 38.0 5 38.3 4 45.1 5 36.0 5 37.5 5 28.5 5 30.0	0 39, 4 0 39, 6 0 39, 5 12 1 26, 6 12 1 40, 7 1 40, 5	23 41.5 +41 0 22.2 0 17.7 0 16.8 0 22.1 + 5 10 10.4 +26 59 7.6 59 11.2 + 6 59 16.8 59 24.9
2861 2462 2463 2864 2865 2866 2867 2868 2869* 2870	12 Virginis 4 Lalande 22914 Anonyma Lalande 22944 Lalande 22946 Lalande 22948 Lalande 22949 Lalande 22963	8 9 7 7 7.8 7	3 Feb. 26 3 April 3 3 April 3 3 Feb. 19 5 Mar. 30 3 April 28 3 April 30 3 May 16 3 April 28 3 April 26	2 23.5 2 23.8 2 26.0 2 48.1 3 35.0 3 31.2 3 31.2 3 42.7 4 26.1	50. 3 50. 0 50. 0 50. 6 42. 9 48. 6 48. 6 49. 3 48. 5 + 48. 5	11 28 0.7 11 27 58.4 11 15 47.0 0 33 49.5 24 51 46.1 48 15 6.4 48 15 15.2 40 33 3.2 48 (8) +48 19 26.6	5 28. 4 5 28. 8 5 28. 8 5 30. 5 4 45. 5 5 39. 2 5 39. 7 5 40. 4 — 5 38. 7	3 13.8 12 3 16.0 12 3 38.7 12 4 17.9 12 4 19.9 4 19.9 12 4 32.0 12 4 38.1	

(200)

Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
		· - 					а	δ
Lalande 22963	7 7.8 7	3 April 27 3 April 28 3 April 30 3 May 9 3 May 13 5 April 10 3 May 31 3 June 2 3 April 29 3 April 4	h m s 12 4 25.8 4 26.3 4 25.3 4 26.1 4 26.3 4 33.2 4 41.7 4 41.8 5 0.7 5 22.7	48.5 48.7 48.7 41.8 50.7 50.7	48 19 17.4 48 19 29.2 48 19 25.6 48 19 24.8 +48 18 35.3 -16 20 29.4 -16 20 28.7	- 5 38.9 5 39.1 5 39.5 5 41.3 5 42.0 4 50.9 5 24.1 5 24.1 5 31.7 5 30.3	h m s 12 5 14.3 5 14.8 5 13.8 5 14.8 5 15.0 5 15.0 12 5 32.4 5 32.5 12 6 12.2	+48 13 44.4 13 38.3 13 49.7 13 44.3 13 42.8 13 44.4 -16 25 53.5 25 52.8 +16 0 47.9 +25 3 29.6
Lalande 23002 Piazzi 34 Flamsteed, B.1703 13 Virginis "" "" "" ""	5.6 8.9 8.9 7.8 8	3 May 20 5 Mar. 30 3 May 16 5 April 29 3 May 9 3 April 16 3 Feb. 19 3 Feb. 26 3 Mar. 18 3 April 3	5 22. 5 5 29. 4 5 50. 7 5 57. 3 7 4. 7 7 25. 7 7 34. 8 7 35. 1 7 34. 7 7 35. 3	50.3	— 7 41 50.8	5 36.5 4 45.4 5 40.3 4 53.3 5 33.4 5 26.4 5 30.1 5 29.4 5 27.9 5 27.4	6 12.2 6 12.2 12 6 39.8 6 39.6 12 7 54.4 12 8 16.0 12 8 25.4 8 25.6 8 24.9 8 25.5	3 30.8 3 30.1 +40 42 18.6 42 18.6 +19 32 52.7 - 7 47 17.2 + 0 19 33.0 19 33.5 19 36.8 19 34.6
Flamsteed, B.1697 14 Virginis Bessel, W.243	6 7 9 7.8 7 7 8 8	3 April 4 3 May 1 5 Mar. 30 3 April 16 3 April 29 3 April 26 3 April 27 3 April 28 3 April 30 3 May 16	7 34.8 7 35.2 8 13.6 8 13.1 8 13.2 8 16.8 8 18.1 8 18.0 8 17.6 8 17.3	50. 0 50. 0	- 7 42 42.1 - 7 42 36.4	5 27. 4 5 27. 8 4 45. 4 5 26. 3 5 26. 1 5 36. 9 5 37. 1 5 37. 5 5 40. 2	8 25. 0 8 25. 4 12 8 56. 2 12 9 3. 1. 9 3. 2 12 9 5. 4 9 6. 6 9 6. 2 9 6. 1	19 42.7 19 32.7 +27 7 16.3 — 7 48 8.4 48 2.5 +41 25 30.8 25 23.4 25 19.3 25 31.7 25 25.9
8 Comse	7.6 7.8	3 May 13 3 Feb. 19 3 Feb. 26 3 Mar. 18 3 April 3 3 April 4 3 May 1 3 May 9 5 Mar. 30 5 April 10	8 22.4 8 49.9 8 50.2 8 50.6 8 50.6 8 50.2 9 21.7 9 31.5 9 53.3	49.6 50.6 50.5 50.2 50.2 50.2 50.2 50.1 42.6 42.5	24 14 21.0 0 32 16.3 0 32 14.6 0 32 20.4 0 32 13.3 0 32 14.0 0 32 12.2 4 31 9.2 27 11 29.4 28 15 10.7	5 34.9 5 29.9 5 29.2 5 27.8 5 27.2 5 27.6 5 27.6 5 29.1 4 45.2 4 46.9	12 9 12.0 12 9 40.5 9 40.7 9 40.3 9 40.8 9 41.0 9 40.4 12 10 11.8 12 10 14.1 12 10 35.8	+24 8 46.1 + 0 26 46.4 26 45.4 26 52.6 26 46.1 26 46.8 26 44.6 + 4 25 40.1 +27 6 44.2 +28 10 23.8
Piazzi 55	7 7.8 7.8 7.8 7 8 7	5 April 29 3 April 26 3 April 27 3 April 28 3 April 30 3 May 16 3 Feb. 26 3 Mar. 18 3 April 3 3 April 4	9 57.7 10 20.9 10 22.2 10 21.7 10 21.4 11 4.4 11 31.6 11 31.8 11 32.4 11 32.3	43, 0 48, 0 48, 0 48, 0 48, 0 49, 7 50, 3 50, 0 50, 0	16 43 57. 0 46 43 17. 8 46 43 15. 4 46 43 15. 3 46 43 21. 5 17 56 58. 1 6 30 37. 8 6 30 42. 0 6 30 36. 6 6 30 38. 3	4 47. 1 5 37. 6 5 37. 8 5 38. 1 5 38. 3 5 28. 8 5 28. 1 5 27. 3 5 27. 4 5 27. 6	12 10 40.7 12 11 8.9 11 10.2 11 9.7 11 9.4 12 11 54.1 12 12 21.9 12 21.8 12 22.4 12 22.3	+16 39 9.9 +46 37 40.2 37 37.2 37 37.2 37 43.2 +17 51 29.3 + 6 25 9.7 25 14.7 25 9.2 25 10.7
12 Comæ & 4 Canum Ven.	4.5 6.7 5	3 April 14 3 April 16 3 May 2 3 May 9 3 May 13 5 Mar. 30 3 April 26 3 April 27 3 April 28 3 April 30	11 32.3 11 32.1 11 32.1 11 31.3 11 36.5 11 44.1 13 7.1 13 6.8 13 6.7 12 13 6.7	49. 9 49. 9 50. 0 50. 0 49. 3 42. 5 47. 9 48. 0 48. 0 + 48. 0	6 30 38.0 6 30 39.7 6 30 41.5 6 30 39.4 27 2 58.7 27 2 14.0 43 44 45.8 43 44 40.9 +43 44 40.5	5 27.7 5 28.0 5 28.9 5 29.3 5 35.5 4 44.8 5 36.4 5 36.6 5 36.8 — 5 37.3	12 22.2 12 22.0 12 22.1 12 21.3 12 12 25.8 12 26.6 12 13 55.0 13 54.7 12 13 54.7	25 10.3 25 11.7 25 12.6 25 10.1 +26 57 23.2 57 29.2 +43 39 9.4 39 6.7 39 4.1 +43 39 11.2
	Lalande 22963 4 Corvi y 6 Comæ 7 Comæ Lalande 23002 Piazzi 34 Flamsteed, B.1703 13 Virginis n Bessel, W.243 8 Comæ 15 Virginis 7 16 Virginis c Flamsteed, B.1709 Bessel, W.278,9 Piazzi 55 Arg. Z., Oel. 12568 12 Comæ 6	Lalande 22963	Lalande 22963 .	Lalande 22963 .	Lalande 22963	Lalande 22963	Lalande 22963 .	Name Mag. Date App't a Reduct'n App't b Reduction

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
110.		arag.		түр • С				а	δ
2931 2932 2933 12934 2935 2936 2937 2938* 2939 2940	13 Comæ f Lalande 23214,5 . Lalande 23233 . Piazzi 75 Piazzi 77 Lalande 23252 Piazzi 78	7 7 6 6.7 8 7.8 8	3 May 13 3 May 20 5 Mar, 30 3 April 28 3 May 16 5 April 10 3 April 29 3 April 14 3 May 9 3 April 16	h m s 12 13 26.0 13 25.9 13 41.3 14 16.4 14 21.0 14 27.3 14 52.5 14 57.9 14 57.7 15 6.8	+ 49.2 49.2 42.4 47.8 49.2 42.4 50.0 50.0 50.1 49.5	+27 18 5.2 27 18 9.2 26 46 19.4 44 3 16.8 25 7 51.0 25 7 5.0 25 7 5.0 3 14 31.8 3 14 33.4 17 3 54.7	m s 5 35.3 5 36.2 4 44.5 5 36.7 5 34.9 4 45.7 5 28.0 5 26.9 5 28.1 5 29.3	h m s 12 14 15.2 14 15.1 12 14 23.7 12 15 4.2 12 15 10.2 15 9.7 12 15 42.5 12 15 47.9 15 47.8 12 15 56.3	9 5.3
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950	6 Canum Ven	7 7 6 6 6 9.10 6.7	3 May 1 3 May 2 3 April 26 3 April 27 3 April 28 3 May 31 3 June 2 5 Mar. 30 3 April 3 3 April 28	15 6.4 15 6.4 15 9.7 15 10.0 16 8.6 16 9.0 16 8.8 16 15.5 16 37.7 16 44.3	49.5 49.5 48.1 48.1 48.8 49.1 49.1 42.2 49.6 48.8	17 3 52.2 17 3 53.9 40 13 25.1 40 13 23.7 29 28 26.2 28 1 39.9 28 1 42.1 28 0 49.4 13 17 57.5 +29 18 40.3	5 30.7 5 30.9 5 35.3 5 35.5 5 33.1 5 37.3 5 37.5 4 44.3 5 34.3 5 33.0	15 55.9 15 55.9 12 15 57.8 15 58.1 12 16 57.4 12 16 58.1 16 57.9 16 57.7 12 17 27.3 12 17 33.1	7 48.2 +29 22 53.1 +27 56 2.6 . 56 4.6 . 56 5.1
2951* 2952 2953 2954 2955* 2956 2957 2958 2959*	510 Mayer Lalande 23311 Groombridge 1894 511 Mayer Bradley 1671 17 Come d 18 Come. Piazzi 103	6.8 7 7 6.7 5 6 6.7 8.9	5 April 10 3 May 13 3 April 30 3 May 9 3 May 16 3 May 16 5 Mar. 30 3 May 20 3 Feb. 26 3 April 3	16 51.9 16 50.2 16 54.7 17 16.3 17 55.2 18 5.4 18 12.6 18 36.3 18 51.0	43. 5 50. 7 47. 7 50. 0 48. 9 48. 9 42. 2 49. 0 49. 8 49. 4	- 3 25 36.9 -13 15 8.7 +42 33 27.5 5 35 50.3 27 (6) 27 6 50.3 27 6 3.7 25 18 33.7 15 50 54.4 15 50 53.0	4 42. 0 5 23. 7 5 36. 4 5 28. 3 5 34. 7 4 51. 6 5 34. 7 5 25. 8 5 27. 1	12 17 35.4 12 17 40.9 12 17 42.4 12 18 6.3 12 18 44.1 12 18 54.3 18 54.8 12 19 25.3 12 19 40.8	+ 5 30 22.0 +27 (1) +27 1 15.6 1 12.1 +25 12 59.0 +15 45 28.6
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970	" 512 Mayer Taylor 6649 Lalande 23384,5	7 8 6.7 6 7 7.8 8 7.8	3 April 4 3 April 14 3 April 29 3 May 2 3 May 13 3 April 16 3 May 1 3 April 27 3 April 28 3 April 30	18 51.6 18 51.7 18 51.6 18 51.2 18 56.3 19 34.4 19 37.2 19 37.7 19 37.4	49. 4 49. 4 49. 4 49. 4 50. 7 49. 6 49. 6 47. 7 47. 7	15 50 52.8 15 50 54.9 15 50 58.0 +15 50 59.5 -12 11 38.0 +10 55 1.3 10 55 1.0 40 27 10.4 40 27 10.1 40 27 20.1	5 27. 2 5 28. 1 5 29. 7 5 29. 9 5 23. 7 5 27. 3 5 28. 1 5 34. 7 5 34. 9 5 35. 2	19 41.0 19 41.1 19 41.0 19 40.6 12 19 47.0 12 20 24.0 20 23.8 12 20 24.9 20 25.4 20 25.1	49 32.9
2971 2972 2973 2974 2975* 2976* 2977 2978 2979 2980*	"	6 7 7 7 8 7 6	3 May 16 3 May 20 3 May 17 3 April 26 3 April 27 3 April 28 3 April 30 5 Mar. 30 3 April 3	20 11.4 20 10.8 20 11.8 20 27.8 20 27.9 20 27.6 20 27.6 20 53.6 22 5.1 22 5.1	48. 9 48. 9 49. 4 47. 6 47. 6 47. 6 47. 6 42. 0 49. 6	25 46 3.0 25 46 3.9 17 48 51.6 40 46 56.8 40 46 56.4 40 47 1.5 28 15 9.0 11 29 27.0 11 29 31.9	5 34. 0 5 34. 5 5 31. 9 5 34. 4 5 34. 6 5 34. 8 5 35. 2 4 43. 3 5 26. 1 5 26. 3	12 21 0.3 20 59.7 12 21 1.2 12 21 15.4 21 15.5 21 15.1 21 15.2 12 21 35.6 12 22 54.7 22 54.7	40 29.4 +17 43 19.7 +40 41 22.4 41 21.8 41 13.8 41 26.3 +28 10 35.7 +11 24 0.9
2981 2982 2983 2984* †2985 2986 2987 2988 2989 2990	Lalande 23463 . Lalande 23464 . Piazzi 118	6 7 6 7 7.8	3 April 14 3 May 17 3 May 13 3 April 29 3 May 2 3 April 29 3 May 1 3 May 1 3 May 9 3 Feb. 19 3 May 16	22 5.0 22 6.1 22 21.8 22 26.0 22 31.0 22 34.3 22 35.5 22 37.1 12 22 46.1	50.8 49.7 49.5 49.7 49.7 49.7 51.1	11 29 33.8 +11 29 29.5 -11 38 22.3 + 9 8 46.2 11 52 27.9 8 52 18.8 8 52 21.8 + 5 25 2.5 - 8 15 19.7 +25 28 52.6	5 26.7 5 29.7 5 23.4 5 27.5 5 28.2 5 27.5 5 27.3 5 29.9 - 5 33.4	22 54.5 22 55.7 12 23 12.6 12 23 15.7 12 23 20.5 12 23 24.2 23 24.0 12 23 25.4 12 23 28.2 12 23 34.9	23 59.8 -11 43 45.7 + 9 3 18.7 +11 46 59.7 + 8 46 51.4 46 54.3 + 5 19 35.2

(202)

No.	Name	Mag.	Date	App't α	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
								а	δ
2991 2992 2993 2994* 2995 2996 2997 2998 2999 3000	8 Canum Ven	5 5 6 7 6	3 April 26 3 April 27 3 April 28 3 April 30 3 June 2 3 April 29 3 May 1 3 May 2 3 May 17 3 June 3	h m s 12 23 27.2 23 27.1 23 26.7 23 27.1 23 26.5 23 30.1 23 30.4 23 30.5 23 30.1 24 2.8	*** + 47.1 47.1 47.1 47.1 47.5 49.7 49.7 49.7 49.8 49.0	+42 32 15.8 42 32 16.5 42 32 10.9 42 32 18.0 42 32 21.6 8 55 57.4 8 56 59.5 8 56 8 55 54.8 23 49 30.9	, " - 5 34.2 5 34.4 5 34.6 5 34.9 5 40.4 5 27.2 5 27.4 5 27.5 5 28.8 5 34.8	h m s 12 24 14.3 24 14.2 24 13.8 24 14.2 24 14.0 12 24 19.8 24 20.1 24 20.2 24 19.9 12 24 51.8	0 / " +42 26 41.6 26 42.1 26 36.3 26 43.1 26 41.2 + 8 50 30.2 50 32.1 50 50 26.0 +23 43 56.1
3001 3002 3003 3004 3005 3006 3007* 3008 3009 3010	Lalande 23520 . 24 Comæ . Lalande 23545 . Groombridge 1907	7 5 7 7.8 8 8.9 6 6.7	3 May 9 5 Mar. 30 3 May 13 3 April 27 3 April 28 3 April 30 3 Feb. 19 3 May 16 3 April 4 3 April 14	24 5.7 24 22.7 24 41.0 25 16.4 25 16.7 25 15.8 25 38.8 26 6.8 26 10.4 26 11.0	49.7 42.4 50.7 47.1 47.1 50.9 49.1 49.6 49.5	8 38 35.0 +19 33 28.5 -10 52 42.4 +40 52 50.0 40 52 53.2 +40 52 58.8 9 418 17 7.3 9 59 23.6 9 59 26.4	5 27. 8 4 42. 1 5 23. 3 5 33. 5 5 33. 7 5 34. 1 5 28. 6 5 30. 7 5 25. 2 5 25. 8	12 24 55.4 12 25 5.1 12 25 31.7 12 26 3.5 26 3.8 26 2.9 12 26 29.7 12 26 55.9 12 27 0.0 27 0.5	+ 8 33 7.2 +19 28 46.4 -10 58 5.7 +40 47 16.5 47 19.5 47 21.9 - 4 43 37.5 +18 11 36.6 + 9 53 58.4 54 0.6
3011 3012 3013 3014 3015 3016* 3017 3018 3019 3020	Lalande 23603 Lalande 23610 Lalande 23625,6 26 Virginis 9 Canum Ven.	6.7 6.7 6 7 7 8	3 May 1 3 May 9 3 May 17 3 April 29 3 April 27 3 April 28 3 April 3 3 May 13 3 April 27	26 9.3 26 9.7 26 10.3 26 41.4 27 8.5 27 8.3 27 8.6 27 52.7 28 5.5 (28)	49. 6 49. 6 49. 6 49. 4 47. 1 47. 1 50. 1 50. 6	9 59 25.6 9 59 23.1 9 59 20.8 11 46 37.3 39 53 1.1 39 53 1.4 39 53 0.1 + 0 20 17.2 - 6 48 13.0 +42 4 10.8	5 27. 0 5 27. 9 5 28. 4 5 27. 5 5 32. 6 5 32. 8 5 33. 1 5 34. 2 5 23. 4 5 33. 0	26 58.9 26 59.3 26 59.3 12 27 30.8 12 27 55.4 27 55.7 12 28 42.8 12 28-56.1 12(29)	53 58.6 53 55.2 53 52.4 +11 41 9.8 +39 47 28.5 47 28.6 47 27.0 + 0 14 43.0 - 6 53 36.4 +41 58 37.8
3021 3022 3023 3024 3025 3026 3027 3028 3029* 3030*	26 Come	7 7 7 6	3 April 30 3 May 16 3 May 1 3 April 28 3 April 14 3 May 9 3 May 17 3 April 4 3 April 29 3 May 20	28 20.6 28 20.9 28 21.6 29 35.6 29 57.2 29 55.1 30 40.8 30 39.9 30 41.4	46.7 48.7 50.4 47.4 49.5 49.5 49.6 49.4 49.4	42 4 13.9 +22 15 22.9 - 4 54 33.4 +35 21 26.3 10 1 15.6 10 1 18.9 10 1 11.4 11 36 55.8 11 36 57.4 +11(36)	5 33.6 5 31.2 5 23.5 5 31.4 5 24.8 5 27.3 5 24.2 5 26.3	29 7.3 12 29 9.6 12 29 12.0 12 30 23.0 12 30 46.7 30 46.7 12 31 30.2 31 29.3 31 30.8	58 40.3 +22 9 51.7 - 4 59 56.9 +35 15 54.9 + 9 55 50.8 55 51.9 55 44.1 +11 31 31.6 31 31.1 (31)
3031 3032 3033 3034 3035 3036 3037* 3038 3039*	29 Virginis γ 28 Virginis 28 Virginis 30 Virginis	8	3 Feb. 19 3 Feb. 26 3 April 3 3 May 1 3 May 2 3 May 3 3 June 3 3 May 13 3 April 4 3 April 29	30 41.4 30 42.1 30 42.5 30 42.0 30 42.9 30 42.2 30 47.0 30 55.7 30 55.0	50. 7 50. 6 50. 2 50. 1 50. 1 50. 3 50. 3 50. 6 49. 4 49. 4	- 0 15 33.9 0 15 33.9 0 15 35.0 0 15 34.9 0 15 31.0 0 15 33.6 - 6 18 38.3 +11 25 51.3	5 26. 5 5 25. 7 5 23. 6 5 23. 8 5 23. 9 5 25. 5 5 25. 5 5 22. 9 5 24. 2 5 26. 1	12 31 32.1 31 32.7 31 32.7 31 32.1 31 33.0 31 32.6 31 32.5 12 31 37.6 12 31 45.1 31 44.4	- 0 21 0.4 20 59.6 20 58.6 20 58.7 20 54.9 21 0.7 20 59.1 - 6 24 1.2 +11 20 27.1 20 22.7
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050	Piazzi 162 Piazzi 164 Piazzi 170 Lalande 23768 Lalande 23780	6.7 7.8 7.8 7 7 7.8 7	3 May 20 3 April 30 5 Mar. 30 3 April 26 3 April 27 3 April 28 3 April 14 3 May 13 3 May 17 5 Mar. 30	30 56.0 31 49.3 31 54.9 32 1.9 32 2.4 32 2.7 33 5.5 33 5.9 34 10.1 12 34 32.6	49. 5 47. 4 41. 0 45. 6 45. 6 45. 6 50. 2 50. 3 50. 4 41. 4	11 25 49.3 34 53 9.6 34 52 26.0 47 4 9.7 47 4 7.4 +47 4 4.9 — 1 39 12.5 1 39 19.2 — 2 42 9.8 +28 34 13.7	5 28.1 5 30.9 4 41.6 5 32.7 5 33.0 5 33.2 5 22.8 5 23.5 5 23.2 4 40.4	31 45.5 12 32 36.7 32 35.9 12 32 47.5 32 48.0 32 48.0 32 35.7 33 56.2 12 35 0.5 12 35 14.0	20 21.2 +34 47 38.7 47 44.4 +46 58 37.0 58 31.7 - 1 44 35.3 44 42.7 - 2 47 33.0 +28 29 33.3

(203)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
								а	. 8
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060	32 Virginis d ²	6. 5 6. 5	3 Feb. 26 3 April 3 3 April 4 3 May 31 3 April 28 3 April 30 3 May 20 3 April 29 3 May 1	h m s 12 34 40.7 34 41.5 34 41.4 34 40.9 34 44.4 34 57.1 34 57.5 35 14.2 35 22.9 35 22.8	# 49.9 49.5 49.5 49.6 46.5 45.4 45.4 47.2 49.3 49.3	c / " + 8 51 32.8 8 51 31.4 8 51 31.3 8 51 33.1 40 27 34.9 46 37 39.0 46 37 45.5 34 44 0.8 10 45 10.2 10 45 7.7	, " - 5 23. 2 9 5 22. 9 5 27. 3 5 34. 5 5 32. 2 5 33. 4 9 5 24. 8	h m s 12 35 30, 6 35 31, 0 35 30, 9 35 30, 5 12 35 30, 9 12 35 42, 9 12 36 1, 4 12 36 12, 2 36 12, 1	+ 8 46 9.6 46 8.5 46 8.4 46 5.8 +40 22 0.4 +46 32 6.8 32 12.8 +34 38 27.4 +10 39 45.3 39 42.9
3061** 3062** 3063** 3065* 3066* 3067* 3068* 3069* 3070	27 Comæ	6.7 6.7 6.7 6.7	3 May 9 3 June 2 3 June 3 3 April 26 3 May 1 3 April 4 3 April 4 3 April 14 3 May 17	35 23, 0 35 49, 8 35 50, 0 36 2, 6 36 5, 1 36 20, 0 36 21, 2 36 51, 2 36 50, 8	49. 3 48. 9 48. 9 49. 6 49. 4 49. 1 48. 8 49. 8 49. 8	10 45 10, 3 17 45 47, 3 17 45 48, 6 7 8 22, 8 10 15 3, 1 13 8 39, 1 13 8 41, 4 16 46 41, 1 4 45 29, 5 4 45 24, 9	5 25. 7 5 30. 1 5 30. 0 5 23. 7 5 24. 8 5 22. 9 5 25. 5 5 22. 5 5 24. 4	36 12.3 12 36 38.7 36 38.9 12 36 52.2 12 36 54.5 12 37 9.1 12 37 10.0 12 37 41.0 37 40.6	39 44.6 +17 40 17.2 40 18.6 + 7 2 59.1 +10 9 38.4 +13 3 16.3 3 18.5 +16 41 15.6 + 4 40 7.0 40 0.5
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080	Lalande 23875 . 36 Virginis	6 6 7 7	3 May 1 3 April 3 3 April 4 3 May 31 5 Mar. 30 2 April 30 3 April 30 3 May 16 3 May 20 3 May 13	37 24. 4 38 3. 5 38 3. 7 38 3. 6 38 10. 2 38 44. 3 38 44. 3 39 11. 9 39 22. 5	49. 3 48. 9 48. 9 49. 0 42. 3 47. 6 47. 6 47. 6 47. 8 49. 6	10 17 38.7 15 18 24.5 15 18 25.7 15 18 27.6 15 17 38.7 28 44 1.8 28 44 9.3 27 36 59.0 + 7 24 35.2	5 24.2 5 22.3 5 22.4 5 28.3 4 44.5 5 27.3 5 27.7 5 30.2 5 30.4 5 24.1	12 38 13.7 12 38 52.4 38 52.6 38 52.6 38 52.5 12 39 31.9 39 31.9 39 31.9 12 39 59.7 12 40 12.1	+10 12 14.5 +15 13 2.2 13 3.3 12 59.3 12 54.2 +28 38 34.2 38 39.2 38 39.1 +27 31 28.6 + 7 19 11.1
3081 3082 3083 3084 3085 3086 3087 3088 3089 3089	524 Mayer	6.7 7 6 6 6 6	3 April 27 3 May 1 3 Feb. 26 3 April 3 3 April 4 3 April 14 3 April 26 3 May 17 3 May 9 3 May 16	40 9.0 40 24.5 40 36.5 40 36.8 40 36.6 40 37.1 40 36.4 40 36.5 41 8.8 41 8.6	50.8 49.3 50.2 49.8 49.8 49.7 49.8 47.5	9 9 29.7 + 9 23 26.6 4 14 11.5 4 14 12.3 4 14 12.3 4 14 9.9 4 14 5.6 28 43 23.1 28 43 24.0	5 20. 0 5 23. 2 5 22. 2 5 21. 1 5 21. 3 5 21. 9 5 23. 2 5 28. 5 5 29. 4	12 40 59.8 12 41 13.8 12 41 26.7 41 26.6 41 26.4 41 26.9 41 26.3 12 41 56.3 41 56.1	- 9 14 49.7 + 9 18 3.4 + 4 8 49.3 8 50.4 8 46.9 8 51.0 8 48.0 8 42.4 +28 37 54.6 37 54.6
3091 3092 3093 3094 3095 3096* 3098 3098 3100*	38 Virginis	5. 6 7 6. 7 9	3 May 20 5 Mar. 30 3 Feb. 19 3 April 3 3 April 29 3 May 13 3 April 28 3 June 2 3 April 27 3 April 29	41 8.3 41 15.7 42 6.7 42 7.6 42 23.2 42 29.7 42 41.0 42 58.5 43 7.4 43 7.4	51. 0 50. 3 50. 7 50. 4 49. 8 49. 0	28 43 25, 1 +28 42 41, 4 - 2 22 24, 8 2 22 27, 3 7 53 4, 0 - 3 2 38, 9 + 5 25 0, 5 + 13 35 54, 5 - 8 21 40, 8 8 21 36, 0	5 30, 0 4 38, 6 5 23, 8 5 20, 4 5 19, 7 5 20, 7 5 21, 9 5 26, 6 5 19, 3 5 19, 2	41 55. 8 41 56. 7 12 42 57. 7 42 57. 9 12 43 13. 9 12 43 20. 1 12 43 30. 8 12 43 47. 5 12 43 58. 2 43 58. 2	37 55.1 38 2.8 - 2 27 48.6 27 47.7 - 7 58 23.7 - 3 7 59.6 + 5 19 38.6 + 13 30 27.9 - 8 27 0.1 26 55.1
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110	Piazzi 217	7.8	3 May 17 5 Mar. 30 3 May 1 3 Feb. 19 3 Feb. 26 3 April 3 3 April 4 3 April 14 3 April 26 3 April 27	43 7.1 43 29.8 44 10.9 44 41.9 44 42.0 44 42.5 44 43.0 44 42.2 (44) 12 44 43.1	49. 7 50. 4 50. 2 49. 7 49. 7 49. 7	- 8 21 39.9 +27 56 42.6 4 13 26.7 4 34 35.3 4 34 36.5 4 34 35.8 4 34 36.9 4 34 37.2 + 4 34 36.6	5 19.1 4 37.8 5 21.0 5 21.4 5 20.8 5 19.8 5 19.8 5 20.0 5 20.6 — 5 20.6	43 57. 9 12 44 10. 8 12 45 0. 6 12 45 32. 3 45 32. 2 45 32. 2 45 32. 7 45 31. 9 (45) 12 45 32. 8	26 59.0 +27 52 4.8 + 4 8 5.7 + 4 29 13.9 29 15.7 29 14.2 29 16.0 29 16.9 29 16.6 + 4 29 16.0

(204)

No.	Name	Mag	Date	App't α	Reduct'n	App't o	Reduction	Mean equ	inox 1800, 0
					 			a,	δ
3111 3f12 3113 3114 3115* 3116 3117 3118 3119 3120	43 Virginis & Bessel, W.831,2 Lalande 24097 12 Can. Ven. foll. 12 Can. Ven. pr. Lalande 24119	7 7	3 April 28 3 May 1 3 May 2 3 May 9 3 May 13 5 Mar. 30 3 June 3 3 June 2 3 May 15 3 May 17	h m s 12 44 42.8 44 42.1 44 42.9 44 42.0 45 6.6 45 27.3 45 51.5 45 51.9 46 5.4 46 4.8	+ 49.7 49.7 49.7 49.7 50.4 40.5 46.9 50.8 50.8	0 / " - 4 34 30,8 4 34 37,4 4 34 41,4 + 4 34 39,4 - 3 41 22,1 + 33 9 56,4 39 29 41,0 + 39 29 25,5 - 7 44 10,0 - 7 44 13,7	- 5 20.7 5 20.8 5 20.8 5 21.4 5 19.7 4 37.6 5 33.4 5 33.3 5 18.5 5 18.4	45 31.8 45 32.6 45 31.7 12 45 57.0 12 46 7.8 12 46 38.4	- 7 / // + 4 29 10.1 29 16.6 29 20.6 29 18.0 - 3 46 41.8 +33 5 18.8 +39 24 7.6 +39 23 52.2 - 7 49 28.5 49 32.1
3121 3122 3123 3124 3125 3126 3127 3128* 3129 3130	Lalande 24126 . Groombridge 1938 Lalande 24133-5 . Lalande 24155 . 36 Comæ 44 Virginis	8 7 7 7.6 6	3 April 4 5 Mar. 30 3 May 13 3 April 27 3 April 28 3 May 20 3 Feb. 19 3 Feb. 26 3 April 3 3 April 4	46 25, 6 46 46 43, 7 47 32, 0 47 32, 3 48 13, 1 48 31, 0 48 31, 8 48 32, 0	51. 3 50. 2 50. 2	+ 2 36 9.6 +44 42 50.8 -13 48 46.3 1 43 49.0 - 1 43 53.0 +18 34 50.7 - 2 38 25.2 2 38 26.3 2 38 26.9	5 19. 2 4 38. 3 5 16. 8 5 18. 7 5 18. 8 5 24. 8 5 21. 7 5 19. 9 5 18. 4 5 18. 3	12 47 15.5 12 47 12 47 35.0 12 48 22.2 48 22.5 12 49 1.4 12 49 22.0 49 21.9 49 22.2 49 22.4	+ 2 30 50.4 +44 38 12.5 -13 54 3.1 - 1 49 7.7 49 11.8 +18 29 25.9 - 2 43 46.9 43 46.2 43 45.2
3131 3132 3133 3134 3135 3136 3137 3138 3139* 3140	Lalande 24186 Lalande 24204	8 8,9	3 April 14 3 April 26 3 May 9 3 May 12 3 May 17 3 April 26 3 April 27 3 April 28 3 May 31	48 31. 6 48 31. 7 48 31. 3 48 36. 8 49 14. 9 49 15. 8 (49) 49 28. 3 49 28. 2 49 55. 0	50, 3 50, 3 50, 3 49, 0 50, 8 50, 8 50, 3 46, 7	2 38 26.7 2 38 29.0 — 2 38 27.9 +11 50 19.4 — 7 55 44.2 7 55 46.6 2 12 5.0 — 2 12 12.1 +31 57 26.8	5 18. 2 5 18. 2 5 18. 6 5 22. 0 5 17. 3 5 18. 1 5 18. 1 5 18. 0 5 29. 3	49 21. 9 49 22. 0 49 21. 6 12 49 25. 8 12 50 5. 7 50 6. 6 12 (50) 50 18. 6 50 18. 5 12 50 41. 7	43 44.9 43 47.2 43 46.5 +11 44 57.4 -8 1 1.4 0 58.0 -2 17 24.7 17 23.1 17 30.1 +31 51 57.5
3141 3142 3143 3144 3145 3146* 3147 3148 3149 3150	Piazzi 244 Bessel, W.919 38 Comæ	6.7 6.7 6	3 June 3 5 Mar. 30 3 May 4 3 May 2 3 May 20 3 Feb. 26 3 April 3 3 May 12 3 April 4 3 April 14	49 55, 0 50 11, 5 50 10, 0 50 27, 7 50 27, 6 51 24, 5 51 25, 0 51 25, 5 52 46, 9 52 46, 7	46.7 40.1 49.5 48.3 48.3 49.4 48.9 48.9 50.4 50.3	31 57 30.7 32 56 15.9 5 31 39.3 18 17 42.7 18 17 41.1 12 7 29.8 +12 7 33.3 - 2 29 43.6 2 29 35.7	5 29. 8 4 36. 0 5 19. 4 5 21. 6 5 24. 0 5 17. 1 5 17. 6 5 21. 0 5 16. 9 5 16. 7	50 41.7 12 50 51.6 12 50 59.5 12 51 16.0 51 15.9 12 52 13.9 52 13.9 52 14.4 12 53 37.3 53 37.0	52 0.9 +32 51 39.9 + 5 26 19.9 +18 12 21.1 +12 2 9.5 2 12.2 2 12.3 - 2 35 0.5 34 52.4
3151 3152 3153 3154 3155* 3156 3157 3158* 3159 3160	" 48 Virginis Lalande 24305 Groombridge 1953 Piazzi 262 14 Canum Ven. 39 Comæ "	6 8 7.8 7	3 April 26 3 April 27 3 April 28 3 May 9 3 May 15 5 Mar, 30 3 May 16 3 June 3 3 May 2 8 May 4	52 46. 1 52 46. 7 52 46. 1 52 45. 9 53 32. 3 54 55 3. 3 55 36. 9 55 48. 7 55 48. 5	50. 3 50. 3 50. 3 50. 3 50. 8 38. 0 51. 5 45. 4 47. 5	2 29 43.5 2 29 45.0 2 29 48.3 2 29 39.8 — 7 24 20.6 +44 9 33.2 +35 57 46.7 22 19 15.3 22 19 7.1	5 16.7 5 16.8 5 16.9 5 17.2 5 16.0 4 35.4 5 14.1 5 28.9 5 20.3 5 20.5	53 36.4 53 37.0 53 36.4 12 53 36.2 12 54 23.1 12 54 43.4 12 55 54.8 12 56 22.3 12 56 36.2 56 36.0	35 0.2 35 1.8 35 5.2 - 2 34 57.0 - 7 29 36.6 +44 4 57.8 -13 50 31.6 +36 52 17.8 +22 13 55.0 13 46.6
3161 3162 3163 3164* 3165 3166 3167 3168* 3169 3170	40 Come	6	3 June 3 5 Mar. 30 3 Feb. 19 3 Feb. 26 3 April 4 3 April 26 3 April 28 3 May 15 3 May 20	55 50, 0 56 12, 7 56 34, 4 56 34, 4 56 35, 0 56 35, 0 56 35, 1 12 56 47, 0	47.5 37.4 51.8 51.7 51.2 51.1 51.1 51.1 + 46.6	23 46 56.9 +46 25 0.2 - 9 34 43.8 9 34 40.3 9 34 46.2 9 34 47.6 9 34 53.1 - 9 34 52.5 +28 47 31.3	5 25. 1 4 34. 7 5 20. 5 5 19. 5 5 15. 3 5 14. 8 1 5 14. 5 5 14. 5 5 14. 4 5 24. 2	12 56 50. 1 12 57 26. 2 57 26. 1 57 26. 7 57 26. 7 57 25. 6 57 26. 1 57 26. 2	+23 41 31.8 +46 20 25.5 -9 40 4.3 39 59.8 40 2.4 40 1.0 40 2.1 40 7.6 40 6.9 +28 42 7.1

(205)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equi	nox 1800.0
						,		а	ð
3171 3172 3173* 3174 3175 3176 3177 3178	292 Argelander . 1745 Bradley . 50 Virginis . 51 Virginis θ	6 6 7 6	3 April 27 3 May 12 3 May 20 3 May 17 3 April 4 3 April 26 3 Feb. 19 3 April 25	h m s 12 57 17.2 57 17.9 57 31.4 58 15.8 58 27.3 (58) 58 45.2 58 45.8	+ 50.9 50.9 46.6 51.7 51.1	7 49 17.0 - 7 49 20.1 +28(44) -15 21 31.8 9 10 14.4 9 22 43.7 4 22 43.7	5 14.4 5 14.3 5 12.4 5 14.7 5 18.3 5 14.1	h m s 12 58 8.1 58 8.8 12 58 18.0 12 59 7.5 12 59 18.4 (59) 12 59 36.5 59 36.5	0 / " - 7 54 31.4 54 34.4 +28(38) -15 26 44.5 - 9 15 29.1 15 28.2 - 4 28 2.0 27 59.5
3179 3180 3181	"	6	3 May 1 3 May 9 3 May 2	58 46.1 58 45.8 59 27.9	50.5 50.5 47.8	4 22 47.4 — 4 22 45.0	5 14.2 5 14.4	59 36. 6 59 36. 3	28 1.6 27 59.4 +18 35 28.4
3182 3183 3184 3185* 3186 3187 3188 3189 3190	42 Comæ Ber. " Piazzi 3 17 Canum Ven. Anonyma Lalande 24494	8 7.8 7.8	3 May 2 3 May 4 3 May 20 3 June 2 3 April 16 3 June 2 3 June 3 3 May 15 3 April 4 3 April 26	59 28.0 59 26.5 59 27.7 12 59 32.6 13 0 6.3 0 6.1 0 21.9 0 21.0	47.8 47.9 48.0 51.0 44.7 44.7 51.1 51.2 51.2	+18 40 46.4 18 40 47.6 18 40 47.6 18 40 44.1 8 56 43.1 39 39 23.4 +39 39 23.5 - 9 21 38.2 10 4 0.5 10 3 59.3	5 18.0 5 18.3 5 20.4 5 21.9 5 13.5 5 27.6 5 27.8 5 13.0 5 13.9 5 13.0	0 15.8 0 14.4 0 15.7 13 0 23.6	35 22. 35 27. 35 22. 9 1 56. +39 33 55. 33 55. 9 26 51. -10 9 14. 9 12.
3191* 3192 3193 3194 3195 3196* 3197* 3198 3199 3200	53 Virginis	5 6.5 6.7 7.8 7 8.9	3 April 27 3 April 28 3 May 17 3 April 14 3 May 17 3 Feb. 26 3 April 4 3 April 25 3 April 26	0 34.4 0 34.7 0 34.6 1 54.8 2 38.0 2 56.8 3 25.5 3 26.5 3 25.4 3 25.1	51.7 51.7 51.7 52.1 52.2 49.8 51.8 51.2 51.1	15 1 34.3 15 1 40.5 15 1 41.7 17 40 21.9 -18 47 24.8 + 2 36 39.7 - 9 12 59.6 9 13 0.9 9 13 5.5 9 13 4.4	5 12.2 5 12.3 5 11.6 5 12.4 5 10.6 5 14.7 5 16.6 5 12.6 5 11.8 5 11.7	13 1 26.1 1 26.4 1 26.3 13 2 46.9 13 3 30.2 13 3 46.6 13 4 17.3 4 17.7 4 16.5 4 16.2	-15 6 46. 6 52. 6 53. -17 45 34. -18 52 35. + 2 31 25. - 9 18 16. 18 13. 18 17. 18 16.
3201 3202 3203* 3204* 3205* 3206 3207 3208 3209 3210	"	7 7 7.8 7.8 7 7 6.7	3 April 27 3 April 28 3 May 1 3 May 15 3 May 12 3 April 16 3 May 4 3 April 29 3 May 12 3 April 4	3 25.8 3 25.6 3 26.1 3 26.3 3 38.8 4 18.9 4 18.5 5 30.4 6 1.5 6 8.4	51, 1 51, 1 51, 1 51, 2 52, 4 52, 3 49, 1 51, 3 51, 3	9 13 1.9 9 13 5.5 9 13 3.0 9 13 12.0 10 12 7.6 -18 47 9.7 18 47 14.8 + 7 39 20.7 -10 20 19.7 9 24 6.2	5 11.7 5 11.7 5 11.7 5 11.6 5 11.3 5 11.2 5 9.5 5 13.1 5 10.3 5 11.5	4 16.9 4 16.7 4 17.2 4 17.4 13 4 30.0 13 5 11.3 5 10.8 13 6 19.5 13 6 52.8 13 6 59.7	18 13. 18 17. 18 14. 18 23. —10 17 18. —18 52 20. 52 24. + 7 34 7. —10 25 30. — 9 29 16.
3211 3212* 3213 3214* 3215 3216 3217 3218 3219 3220	"	0 -	3 April 25 3 April 26 3 April 27 3 April 28 3 May 15 3 April 29 3 May 17 3 May 31 3 April 7 3 April 25	6 8.2 6 7.9 6 7.8 6 7.8 6 8.7 6 41.0 7 7.0 7 50.3 8 59.7 8 59.1	51. 2 51. 2 51. 2 51. 2 49. 2 52. 1 43. 6	9 24 4.4 9 24 7.1 9 24 4.4 9 24 9.6 — 9 24 11.2 + 6 36 50.9 -17 6 21.9 +41 43 6.8 -10 9 45.3 10 9 42.7	5 10.6 5 10.6 5 10.5 5 10.5 5 10.5 5 12.4 5 8.4 5 24.2 5 9.9 5 9.2	13 7 59.1 13 8 33.9	+41 37 42.
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230	1768 Bradley	6.7 6 6 6.7 8 4	3 April 27 3 April 29 3 May 15 3 May 4 3 April 4 3 April 26 3 Feb. 19 3 April 16 3 May 20 3 April 14	8 59.7 8 59.6 8 59.6 9 38.6 9 43.5 9 51.3 9 51.3 10 36.4 13 10 38.4	51. 3 51. 3 49. 2 49. 6 49. 5 52. 0 52. 4 43. 3	10 9 45.3 -10 9 48.7 + 5 58 5.5 4 4 57.9 + 4 4 55.5	5 9.0 5 11.3 5 9.6 5 10.4 5 14.6 5 8.9 5 20.8	9 50, 9 9 50, 9 13 10 27, 8 13 10 33, 1 10 32, 8 13, 10 46, 7 13 11 19, 7	59 45. - 8 57 0. -18 26 6.

(206)

No.	Name	Mag.	Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800, 0
			2	прроб		2.pp 0.5		а	ð
3231 3232 3233 3234 3235 3236 3237 3238 † 3239 3240	Bessel, W.235 64 Virginis 63 Virginis 65 Virginis Piazzi 72 Bessel, W.257	8 7.8 8 7.8	3 May 1 3 April 4 3 June 3 3 April 28 3 April 27 3 May 1 3 April 25 3 May 9 3 April 29 3 April 26	h m s 13 11 0.5 11 15.9 11 16.0 11 27.6 12 7.6 12 7.2 12 34.5 12 35.2 12 34.9 12 39.6	49.3 52.2 50.5 50.5 51.3 51.3	-3 31 35.3 +6 17 36.6 +6 17 39.1 -16 35 53.7 3 47 13.5 3 47 15.1 9 44 10.3 9 43 55.4 -13 16 9.8 + 3 50 47.4		h m s 13 11 51.0 13 12 5.2 12 5.3 13 12 19.8 13 12 58.1 12 57.7 13 13 25.8 13 26.5 13 13 26.6 13 13 29.1	- 3 36 44.2 + 6 12 27.8 12 26.1 -16 41 1.3 - 3 52 21.8 52 23.5 - 9 49 17.9 -13 21 17.0 + 3 45 38.3
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250	66 Virginis Spica Virginis	6.5	3 April 27 3 June 2 3 Feb. 19 3 Feb. 26 3 April 3 3 April 7 3 April 9 3 April 14 3 April 16	13 18.6 13 18.8 13 48.8 13 48.3 13 49.0 13 49.1 13 48.9 13 49.3 13 49.4 13 49.2	50. 5 50. 6 52. 2 52. 1 51. 5 51. 4 51. 4 51. 4	- 4 1 40.2 4 1 45.6 10 1 33.8 10 1 34.3 10 1 37.4 10 1 35.1 10 1 36.1 10 1 36.2	5 7.7 5 9.0 5 13.1 5 11.9 5 7.9 5 7.8 5 7.7 5 7.6 5 7.4 5 7.2	13 14 9.1 14 9.4 13 14 41.0 14 40.4 14 40.5 14 40.3 14 40.7 14 40.8 14 40.6	- 4 6 47.9 6 54.6 -10 6 46.9 6 46.2 6 45.3 6 42.2 6 42.8 6 43.7 6 44.3 6 40.4
3251 3252 3253 3254 3255 3256 3256 3257 3258 3259 3260*			3 April 18 3 April 25 3 April 28 3 April 29 3 May 4 3 May 9 3 May 12 3 May 15 3 May 17 3 May 20	13 49. 3 13 49. 1 13 49. 1 13 48. 9 13 49. 2 13 48. 9 13 50. 0 13 49. 3 13 49. 5	51. 4 51. 3 51. 3 51. 3 51. 3 51. 3 51. 3 51. 3	10 1 41.2 10 1 33.8 10 1 40.0 10 1 36.8 10 1 41.0 10 1 37.0 10 1 41.3 10 1 42.2 10 1 40.8 10 1 41.6	5 7.1 5 7.0 5 7.0 5 6.7 5 6.7 5 6.8 5 6.8	14 40, 7 14 40, 4 14 40, 2 14 40, 2 14 40, 5 14 40, 3 14 40, 0 14 40, 8 14 40, 3	6 48.3 6 40.8 6 47.0 6 43.8 6 47.7 6 43.7 6 48.0 6 48.9 6 47.6 6 48.4
3261* 3262 3263 3264 3265 3266 3267 3268 3269 3270	"	1 1 1 1 1 1	3 May 31 3 June 2 3 June 3 3 July 5 3 July 10 3 July 20 5 Mar. 30 3 May 4 3 May 9	13 48.8 13 49.0 13 49.0 13 49.2 13 49.0 13 49.0 13 56.3 (15)	51. 4 51. 4 51. 6 51. 7 51. 8 51. 9 44. 6	10 1 41.4 10 1 38.6 10 1 40.3 10 1 40.7 10 1 40.8 10 1 36.8 10 1 40.1 10 2 21.5 14 50 49.6 14 50 42.8	5 6.9 5 7.1 5 7.2 5 8.5 5 9.5 5 9.7 4 26.9 5 4.9	14 40.2 14 40.4 14 40.8 14 40.7 14 40.9 14 40.9 13(16) (16)	6 48.3 6 45.7 6 47.5 6 49.2 6 49.3 6 46.3 6 49.8 6 48.4 —14 55 54.6 55 47.7
3271 3272 3273 3274* 3275 3276 3277 3278 3279 3280	70 Virginis	6.5 7 7	3 May 12 3 Feb. 26 3 April 3 3 April 18 3 April 29 3 May 31 3 June 2 3 April 7 3 April 14 4 April 4	15 57. 3 17 50. 1 17 51. 2 17 51. 4 17 51. 7 18 9. 5 18 9. 5 (18) 18 31. 0 19 10. 2	52. 0 48. 5 47. 9 47. 8 47. 8 50. 1 50. 1 48. 3 50. 9	-14 50 51.5 +14 56 18.5 14 56 19.7 14 56 22.7 +14 56 23.2 - 0 14 8.6 +11 56 42.9 +11 56 44.6 - 5 20 51.8	5 4.7 5 4.3 5 5.5 5 6.8 5 7.6 5 7.6 5 5.1 5 5.0	16 49.3 13 18 38.6 18 39.1 18 39.2 18 39.5 13 18 59.6 13(19) 19 19.3 13 20 1.1	55 56.2 +14 51 14.2 51 14.2 51 15.9 51 15.2 - 0 19 17.2 - 19 16.2 +11 51 37.8 51 39.8 - 5 25 56.8
3281 3252 3253 3254 3254 3255 3256 3257 3258 3259 3290	Piazzi 106	6 7.8 9	3 April 16 3 April 9 3 May 4 3 April 27 3 Feb. 26 3 April 16 3 April 16 3 April 7 3 April 7 3 April 27	19 9.8 19 42.4 19 42.5 20 24.2 20 27.0 20 43.6 20 43.5 21 20.1 (21) 13 21 35.7	50. 8 50. 4 50. 3 52. 6 51. 3 51. 5 50. 8 52. 2 + 51. 3	5 20 59.9 1 55 49.4 1 55 48.3 17 36 23.5 9 8 14.5 5 7 56.3 5 7 56.1 14 14 37.2 9 2 41.0 — 9 2 40.7	5 4.6 5 4.5 5 4.9 5 3.1 5 3.6 5 7.2 5 3.8 5 3.9 5 3.6 — 5 3.0	20 0.6 13 20 32.8 20 32.8 13 21 16.8 13 21 18.3 13 21 35.1 21 34.3 13 22 12.3 13(22) 13 22 27.0	26 4.4 - 2 0 53.9 0 53.2 -17 41 26.6 - 9 13 18.1 - 5 13 3.5 12 59.9 -14 19 41.1 - 9 7 44.6 - 9 7 43.7

(207)

No.	Name	Mag.	Date	Αpp't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800, 0
							!	a	. ð
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300	76 Virginis A Piazzi 119 Bessel, W.421 Flamsteed, B.1862 Bessel, W.438 78 Virginis	8 7.8 6.7 6 7 8	3 May 9 3 May 12 3 April 29 3 April 18 3 May 20 3 May 31 3 April 25 3 May 4 3 April 7 3 April 14	h m s 13 21 35. 4 21 36. 9 21 49. 8 21 55. 6 22 32. 9 22 28. 6 22 58. 8 (23) 23 11. 1		9 2 38.8 9 2 42.7 1 18 20.3 — 7 19 41.9 +25 28 41.2 +25 28 30.3 — 7 30 3.3 — 7 30 11.7 + 4 46 34.6 4 46 34.6	5 2.9 5 3.0 5 3.6 5 3.2 5 10.5 5 12.1 5 2.3 5 2.7 5 2.7	h m s 13 22 26.7 22 28.2 13 22 40.0 13 23 18.8 23 18.8 13 23 49.7 23 49.9 13 (24) 24 0.4	- 9 7 41.7 7 45.7 - 1 23 23.9 - 7 24 45.1 +25 23 30.7 - 23 24.7 - 7 35 5.8 35 14.0 + 4 41 31.9 41 31.9
3301 3302 3303 3304 3305 3306 3307* 3308 3310	Piazzi 127	6 7.8	3 May 15 3 June 2 3 Feb. 26 3 April 3 3 April 3 3 May 17 4 May 25 3 April 9 3 April 16 3 April 27	23 10.9 23 15.3 23 40.4 23 40.9 23 41.2 23 44.3 24 16.8 24 16.5 25 12.6	50.7 50.7	4 46 30.8 0 48 0.3 0 31 0.8 0 30 54.2 0 30 56.3 + 0 30 36.2 - 4 17 17.4 + 0 11 0.9	5 4.9 5 5.0 5 3.1 5 2.3 5 2.3 5 2.8 4 43.8 5 1.9 5 1.9	24 0, 2 13 24 5, 2 13 24 31, 1 24 31, 0 24 31, 1 24 30, 8 13 25 7, 5 25 7, 2 13 26 2, 6	41 25.9 + 0 42 55.3 + 0 25 57.7 25 51.9 25 57.3 25 52.5 25 52.4 - 4 22 19.4 22 15.3 + 0 5 59.0
3311 3312 3313 3314 3315* 3316 3317* 3318 3319 3320	Bessel, W.583 81 Virginis	7.8 9.10 6.7 6.5 6 6.7	3 June 2 5 April 9 3 Feb. 26 3 April 3 3 April 7 3 April 21 3 May 20 3 May 31 5 April 9	25 12. 7 25 57. 9 26 15. 9 26 16. 5 26 16. 1 26 15. 4 26 48. 1 26 48. 5 26 53. 2	50. 0 39. 7 51. 8 51. 2 51. 2 51. 1 45. 6 45. 7 39. 5	0 10 59.3 +25 1 56.8 - 6 45 37.8 6 45 45.4 6 45 41.8 6 45 47.8 +25 43 24.7 25 43 23.5 25 42 38.0	5 4.0 4 21.2 5 4.5 5 1.1 5 1.0 5 0.6 5 8.0 5 9.7 4 20.9	26 2.7 13 26 37.6 13 27 7.7 27 7.7 27 7.3 27 7.5 27 7.5 13 27 33.7 27 34.2 27 32.7	5 55.3 +24 57 35.6 - 6 50 42.3 50 46.5 50 42.9 50 48.4 +25 38 16.7 38 13.8 38 17.1
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330	Lalande 25177	6.7 7 6 6 6 6.7 6.7 7 6.7	3 April 9 3 April 25 3 April 29 3 May 9 3 May 12 3 April 7 3 April 16 3 April 18 3 April 27 3 May 15	26 45. 6 26 45. 6 26 45. 7 27 32. 7 27 34. 4 (28) 28 21. 4 28 21. 0 28 38. 3 28 37. 7	52. 4 52. 4	3 29 30.9 3 29 35.7 3 29 32.4 15 24 40.6 +15 20 -15 20 25.3 15 20 20.4 -15 20 28.5 +19 22 18.5 19 22 16.4	5 0.6 5 1.2 5 0.8 5 3.8 5 0.2 4 59.4 4 59.4 5 2.0 5 4.7	13 27 35.1 27 35.0 27 35.1 13 28 20.2 28 21.9 13(29) 29 13.8 29 13.4 13 29 25.0 29 24.4	+ 3 24 30.3 24 34.5 24 31.6 +15 19 36.8 19 -15 25 25.5 25 19.8 25 27.9 +19 17 16.5 17 11.7
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340	Lalande 25222 Lalande 25236 Lalande 25255 82 Virginis m 1 Boötis	7 8.9 9.10 8 7.8	3 May 20 3 May 31 5 April 9 3 April 9 3 Feb. 26 3 April 3 3 April 4 3 April 21 3 April 27	28 45. 3 28 45. 4 28 50. 6 29 26. 9 30 19. 4 30 16. 1 30 16. 8 30 17. 0 30 20. 8	51. 3 50. 7 50. 7 50. 6	25 14 22.8 25 14 19.1 25 13 30.0 3 16 17.2 +20 18 21.9 - 7 36 19.8 7 36 16.7 - 7 36 20.7 +21 3 23.3	5 6.7 5 8.5 4 19.8 4 58.9 5 3.0 5 2.3 4 58.8 4 58.9 4 58.3 5 1.3	29 31. 1 29 30. 1	+25 9 16.1 9 10.6 9 10.2 + 3 11 18.3 +20 13 18.9 - 7 41 16.0 41 17.6 41 15.6 41 19.0 +20 58 22.0
3341* 3342 3343 3344 3345 3346* 3347 3348* 3349 3350*	2 Boötis	6 8 6 9 7.8 7	3 May 15 3 May 20 3 May 31 5 April 9 3 May 4 3 June 2 4 May 25 3 April 7 3 April 9 3 April 14	30 48.5 30 48.4 30 48.0 30 53.2 30 52.7 31 37.0 31 39.6 32 12.1 32 12.2 13 32 12.2	45.9 45.9 45.9 39.7 49.0 39.6 36.8 49.4 49.3 + 49.3	23 35 52, 2 23 35 57, 9 23 35 54, 5 23 35 9, 1 5 52 22, 3 47 22 24, 2 4 38 4 38 21, 9 + 4 38 20, 6	5 4.2 5 5.1 5 6.8 4 18.5 4 59.6 5 12.4 4 50.4 4 57.2 — 4 57.5	13 32 16.6 32 16.4 13 33 1.5 33 1.5	+23 30 48.0 30 52.8 30 47.7 30 50.6 + 5 47 22.7 +47 17 53.2 17 50.8 + 4 33 33 24.7 + 4 33 23.1

(208)

No.	Name	Mag.	Date	App't a	Reduct'n	A pp't 	Reduction	Mean equ	inox 1800. 0
								a	δ
3351 3352 3353 3354 3355 3356 3357 3358 3360	84 Virginis o 549 Mayer	6.7 6.7 6.6	3 April 25 3 April 3 3 May 17 3 April 16 3 April 21 3 April 27 3 May 9 3 May 15 3 May 20 3 May 34	h m s 13 32 12.3 32 40.0 32 46.9 32 51.8 32 51.8 33 31.9 33 31.6 33 31.8 33 31.5 33 32.0	+ 49.2 50.9 52.5 52.5 45.7 45.7 45.7 45.7 45.8	+ 4 38 24.6 - 4 24 8.9 13 39 57.6 -15 4 59.2 15 5 1.8 +23 47 51.8 23 47 54.1 23 47 49.8 23 47 55.1 +23 47 50.7	4 58. 1 4 57. 2 4 55. 8 4 56. 8 4 59. 5 5 1. 7 5 2. 6 5 3. 3 5 5. 0	h m s 13 33 1.5 13 33 30.9 13 33 39.1 13 33 44.3 33 44.0 13 34 17.3 34 17.5 34 17.2 34 17.8	+ 4 33 26 - 4 29 6 -13 44 53 -15 9 56 +23 42 53 42 52 42 47 42 51 42 45
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370	85 Virginis	7 7 7 5. 6 7 6. 7 6. 7	3 April 7 3 Feb. 26 3 June 2 5 April 9 3 April 18 3 April 4 3 April 14 3 April 25 3 April 9 3 May 4	(34) 34 25, 6 34 28, 5 34 38, 7 35 27, 5 35 41, 9 35 40, 9 36 7, 9 36 8, 2	52. 7 39. 6 41. 6 53. 1 53. 0 52. 9 51. 4 51. 0 50. 9	-14 40 24.0 -11 20 5.3 +46 37 2.1 +11 24 27.4 -18 10 0.1 16 46 12.9 16 46 7.2 8 37 3.5 5 36 51.1 5 36 58.0	4 56. 9 5 0. 9 5 10. 3 4 16. 1 4 50. 4 4 56. 2 4 55. 4 4 54. 9 4 55. 1 4 55. 0	13(35) 13 35 18, 3 13 35 8, 1 13 35 20, 3 13 36 20, 6 13 36 33, 8 13 36 40, 0 13 36 58, 9 36 59, 1	-14 45 20 -11 25 6 +46 31 51 +11 20 11 -18 14 50 -16 51 2 -8 41 58 -5 41 46 41 53
3371 3372 3373 3374 3375 3376 3377 3379	" 3 Boötis Groombridge 2044 4 Boötis	7 6 6 6	3 May 15 3 May 31 3 May 20 5 April 9 3 June 2 3 April 27 4 May 25 3 April 7 3 May 4 3 May 9	36 8.4 36 8.3 36 40.6 36 45.7 37 2.6 36 59.2 37 2.7 37 0.0 37 0.2 37 0.1	38. 9 40. 9 46. 6	5 37 4.9 - 5 37 4.0 +26 47 41.5 26 46 54.8 42 10 54.4 18 32 28.6 +18 32 6.1 - 5 45 0.4 5 45 2.2	4 55. 2 4 55. 9 5 2. 0 4 15. 3 5 7. 7 4 56. 8 4 40. 6 4 54. 5 4 54. 4 4 54. 5	36 59.3 36 59.2 13 37 25.5 37 24.6 13 37 43.5 13 37 46.1 13 37 51.1 37 51.1 37 51.0	42 0 41 59 +26 42 39 42 39 +42 5 46 +18 27 35 - 5 49 54 49 58 49 56
3381 3382 3383 3385* 3386 3386 3387 3388* 3389	89 Virginis	6.7 5.6 2	3 May 31 3 April 4 3 April 7 3 April 16 3 April 18 3 April 21 3 July 10 3 July 19 3 July 29 4 May 25	37 0.0 38 9.2 (38) 38 8.5 38 9.2 38 9.1 39 0.3 39 0.5 38 59.9 (39)	51. 0 53. 1 53. 0 53. 0 53. 0 38. 4 38. 6 36. 8	5 45 7.2 17 2 55.0 17 2 52.0 17 2 53.3 17 2 56.1 —17 2 56.3 +50 24 13.7 50 24 4.6 50 23 39.6	4 55.2 4 54.9 4 54.6 4 53.7 4 53.6 4 53.6 5 12.6 5 12.7 5 12.4 4 46.5	37 51, 0 13 39 2, 3 (39) 30 1, 5 30 2, 2 39 2, 1 13 39 39, 1 39 39, 1 39 38, 7 (39)	50 2 -17 7 50 7 46 7 47 7 49 +50 18 59 19 1 18 52 18 53
3391 3392 3393 3394 3395 3396 3397 3398 3399*	Groombridge 2051 5 Boötis v Lalande 25475 6 Boötis Johnson 3100 Lalande 25485	7 5.6 6 7.8 6.7 6	4 June 16 3 June 2 3 May 12 3 May 17 3 May 31 3 May 20 5 April 9 3 June 2 3 April 25 3 May 15	39 3, 3 38 58, 6 39 4, 1 39 3, 3 39 13, 4 39 29, 3 39 34, 6 39 38, 4 39 33, 9 30 33, 7	35. 2 40. 4 46. 9 46. 9 44. 6 45. 8 39. 7 40. 3 48. 8	50 23 46, 3 43 8 21, 8 16 52 37, 4 16 52 35, 3 28 4 8, 5 22 20 44, 9 22 19 58, 6 43 25 39, 4 6 34 40, 4 6 34 36, 1	4 50.5 5 6.5 4 57.1 4 57.8 5 2.5 4 59.2 4 13.5 5 6.3 4 53.6 4 55.3	39 38.5 13 39 39.0 13 39 51.0 39 50.2 13 39 58.0 13 40 15.1 40 14.3 13 40 18.7 13 40 22.7 40 22.5	18 55 +43 3 15 +16 47 40 47 37 +27 59 6 +22 15 45 +43 20 33 + 6 29 46 29 40
3401 3402 3403 3404 3405 3406 3407 3408 3410	Piazzi 220 Bessel, W.766 Lalande 25528 Flamsteed, B.1906 7 Boötis	7 7.8 7.8 7.8 6 6 7	5 April 9 3 May 9 3 May 16 3 May 4 3 April 9 3 May 12 3 April 27 3 May 17 3 May 20 4 May 25	40 16. 3 41 26. 8 41 26. 8 41 37. 5 42 8. 6 42 10. 0 42 53. 2 42 53. 2 42 53. 1 13 42 56. 1	46. 8 46. 6 46. 4 46. 3 46. 4	+22 20 31.6 - 9 36 15.0 - 9 36 25.0 + 1 53 54.9 17 48 20.0 17 48 18.4 19 0 19.9 19 0 18.8 19 0 22.8 +18 59 58.3	4 13.1 4 51.2 4 51.8 4 52.3 4 51.8 4 55.1 4 55.6 4 56.2 4 37.0	13 40 56,0 13 42 17,6 42 18,4 13 42 27,1 13 42 55,4 42 56,6 13 43 39,5 43 39,5 13 43 39,3	+22 16 18 - 9 41 10 41 16 + 1 49 2 +17 43 28 43 23 +18 55 27 55 23 +18 55 21

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't ð	Reduction	Mean equ	inox 1800.0
								a	δ
3411 3412 3413 3414 3415 3416 3417* 3418 3419 3420	Lalande 25570 Flamsteed, B.1911 Lalande 25580 90 Virginis p Bessel, W.1040 8 Boötis 90 Virginis p	9. 10 6 6. 7 7. 8	3 April 16 3 May 31 5 April 9 3 April 25 3 Feb. 26 3 April 3 3 April 4 3 April 7 3 May 12 3 April 27	h m s 13 43 14.3 43 22.0 43 27.0 43 30.9 43 36.0 43 36.4 43 36.7 (43) 44 18.1 44 23.4	** 49.3 44.0 38.0 47.1 50.9 50.2 50.2 46.8 46.2	+ 4 13 45.7 29 43 14.4 29 42 29.0 +14 54 24.6 - 0 25 53.1 0 25 55.4 0 25 54.5 - 0 25 51.9 +16 20 55.5 19 29 16.1	- 4 50.4 5 0.0 4 11.4 4 51.6 4 52.0 4 50.0 4 50.0 4 49.9 4 53.4 4 51.6	h m s 13 44 3.6 13 44 6.0 44 5.0 13 44 18.0 13 44 26.9 44 26.9 (44) 13 45 4.9 13 45 9.6	+ 4 8 55.3 +29 38 14 4 38 17.6 +14 49 33.0 - 0 30 45.1 30 45.4 30 44.5 30 41.8 +16 16 2.1 +19 24 24.5
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430	Bessel, W.826 . 92 Virginis	7	3 May 17 3 May 20 4 June 16 3 May 9 3 April 7 3 April 17 3 April 16 3 April 18 3 April 21 3 May 4	44 23. 1 44 23. 7 44 26. 6 44 26. 2 45 27. 4 45 27. 2 45 27. 2 45 27. 9 45 28. 1	46. 2 46. 2 43. 2 51. 5 49. 7 49. 6 49. 6 49. 6 49. 5	19 29 18.8 19 29 20.5 +19 29 3.8 - 8 40 19.3 + 2 6 54.4 2 7 0.1 2 6 55.3 2 6 55.5 2 6 56.1 2 6 57.5	4 54.7 4 55.2 4 39.2 4 49.3 4 47.8 4 48.9 4 48.9 4 49.0 4 49.8	45 9.3 45 9.9 45 9.8 13 45 17.7 13 46 17.1 46 17.0 46 16.8 46 17.2 46 17.5	24 24.1 24 25.3 24 24.6 — 8 46 8.6 + 2 2 6.6 2 11.2 2 6.4 2 6.6 2 7.1 2 7.7
3431 3432 3433 3434 3435* 3436 3437 3438 3439 3440	Lalande 25646 Piazzi 251 9 Boötis "" Piazzi 259	7 7 6.7 7 8 7 5.6 7.8	3 May 15 3 May 31 3 June 2 3 April 9 3 April 25 3 May 12 3 April 27 3 May 17 5 April 9 3 May 20	45 27.7 46 16.2 46 16.3 46 12.8 46 13.0 46 14.1 46 41.8 46 47.3 47 28.6	49. 5 43. 8 43. 8 46. 8 46. 7 46. 6 44. 0 44. 0 38. 2 46. 6	2 6 56,1 29 44 19.8 29 44 20.5 16 57 9.7 16 57 4.2 28 33 37.2 28 33 33.4 28 32 52.0 17 16 3.7	4 50.5 4 57.9 4 58.2 4 47.9 4 49.9 4 52.1 4 51.1 4 54.8 4 9.2 4 52.6	46 17.2 13 47 0.0 47 0.1 13 46 59.6 46 59.7 47 0.7 13 47 25.8 47 25.8 47 25.5 13 48 15.2	2 5.6 +29 39 21.9 39 22.3 +16 52 21.8 52 14.3 52 15.8 +28 28 46.1 28 38.6 28 42.8 +17 11 11.1
3441* 3442 3443 3444 3445 3446 3447 3448 3449 3450	Piazzi 260 10 Bootis c Piazzi 260 Lalande 25713 Lalande 25723	7.8 7 6.7 6.7 7 6.7 7 6.7 7.8	3 May 15 3 May 20 3 April 27 3 May 9 3 April 3 3 April 4 3 April 16 3 June 2 3 April 7 3 April 14	47 42.7 47 43.2 48 31.1 48 30.6 48 37.2 48 37.9 48 37.9 49 9.2 49 23.8 49 23.7	50. 6 50. 6 50. 5	17 27 52.7 17 27 55.2 22 45 31.2 +22 45 35.3 - 2 29 21.4 2 29 18.5 - 2 29 15.7 +26 52 30.9 3 43 58.0 3 43 59.4	4 51.5 4 52.5 4 49.1 4 51.1 4 46.7 4 46.6 4 56.1 4 45.7 4 46.1	13 48 29.2 48 29.7 13 49 16.4 49 15.9 13 49 27.8 49 28.5 49 28.4 13 49 53.6 13 50 13.2 50 13.0	+17 23 1.2 +22 40 42.1 +0 44.2 -2 34 8.1 34 5.3 34 2.3 +26 47 34.8 + 3 39 12.3 39 13.3
3451 3452* 3453 3454 3455* 3456* 3457 3458 3459 3460	93 Virginis 7 Lalande 25758,9 Piazzi 281	7 7.8 7 6.7	3 April 21 3 May 16 3 April 7 3 April 16 3 April 18 3 May 4 3 May 9 3 May 9 3 May 31	49 24. 2 49 24. 2 (50) 50 39. 3 50 39. 2 50 38. 2 50 38. 2 50 56. 8 50 58. 7 51 18. 9	49. 3 49. 2 49. 5 49. 4 49. 4 49. 4 45. 2 45. 2 46. 2	3 43 56.1 3 43 54.2 2 35 55.9 2 35 57.7 2 35 55.9 2 35 52.2 2 35 52.2 2 35 52.2 2 35 52.3 1 59.7 23 1 55.5 18 43 33.4	4 46. 3 4 48. 1 4 44. 9 4 45. 1 4 45. 2 4 45. 1 4 46. 9 4 49. 3 4 49. 8 4 51. 6	50 13.5 50 13.4 13(51) 51 28.8 51 28.7 51 28.3 51 28.3 51 42.0 51 43.9 13 52 5.1	39 9.8 39 6.1 + 2 31 11.0 31 12.6 31 10.7 31 7.1 31 8.4 +22 57 10.4 57 5.7 +18 38 41.8
3461 3462* 3463 3464 3465 3466 3467 3468 3469 3470	11 Boötis	6 6.7 7 7 8 7.8	3 April 27 5 April 9 3 April 4 3 May 20 5 April 27 3 April 27 3 May 12 3 June 2 4 May 25 4 June 16	51 22.4 51 27.2 52 55.7 53 18.6 53 23.8 53 40.7 53 41.4 54 0.5 54 4.9	51.8	28 26 17.9 +28 25 37.4 - 8 12 40.0 +23 32 41.0 23 31 59.1 28 33 29.1 +28 33 26.4 -35 17 59.4 35 18 27.4 -35 18 34.1	4 47. 6 4 6. 2 4 44. 1 4 49. 7 4 45. 9 4 48. 8 4 37. 7 4 19. 2 4 17. 4	13 52 6.2 52 5.2 13 53 47.5 13 54 3.6 54 2.8 13 54 24.4 54 25.1 13 54 58.0 54 58.4	+28 21 30.3 21 31.2 — 8 17 24.1 +23 27 51.3 27 54.2 +28 28 37.6 —35 22 37.1 —22 46.6 —35 22 51.5

(210)

No.	Name .	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800. 0
	110110							a -	ð
3471 3472 3473 3474 3475 3476 3477 3478 3479*	Lalande 25873,4 94 Virginis	7 7 6 7 7	3 April 18 3 June 3 3 April 3 3 April 7 3 April 7 3 May 9 3 April 3 3 April 4 3 April 19 3 May 16	h m s 13 54 53, 1 54 53, 0 54 50, 9 54 52, 0 54 51, 6 54 51, 6 55 17, 9 55 17, 5 55 18, 1 55 16, 5	** + 44.1	+26 52 11.6 +26 52 8.7 - 7 51 10.6 7 51 2.2 7 51 2.5 7 51 5.3 8 16 27.4 8 16 26.6 8 16 30.1 8 16 24.6	- 4 43.1 4 51.5 4 42.7 4 42.6 4 42.2 4 42.1 4 42.4 4 42.4 4 42.0 4 41.7	h m s 13 55 37.2 55 37.1 13 55 42.6 55 43.7 55 43.0 13 56 9.7 56 9.3 56 9.7 56 8.1	+26 47 28 47 17 - 7 55 53 55 44 55 47 - 8 21 9 21 12 21 6
3481 3482* 3483 3484 3485 3486 3488* 3489* 3490	Bessel, W.1052 . Piazzi 303	9 6 7 7 7.8 •7.8	3 May 4 3 April 21 3 April 25 3 May 20 3 April 27 3 May 19 5 April 9 3 April 3 3 April 4 3 April 7	56 0.2 56 11.5 56 11.4 57 14.0 57 21.8 57 22.3 57 25.7 57 31.3 57 31.3 57 30.7	46. 2 43. 3 41. 4 41. 3	- 9 17 3.7 +18 0 32.3 18 0 28.8 29 28 37.7 35 48 58.3 35 49 3.5 +35 48 19.9 - 9 17 58.6 9 17 57.6 9 18 2.7	4 41.2 4 42.0 4 42.5 4 47.8 4 43.7 4 47.1 4 2.5 4 41.0 4 40.8 4 40.7	13 56 51, 9 13 56 57, 7 56 57, 6 13 57 57, 3 13 58 3, 2 58 3, 6 58 1, 6 13 58 23, 3 58 23, 3 58 22, 7	- 9 21 44 17 55 50 55 46 +29 23 49 +35 44 14 44 16 44 17 - 9 22 38 22 38
3491 3492 3493 3494 3495 3496* 3497 3498 3499	Lalande 25943 . 562 Mayer	5 6 7 6 8 8	3 April 16 3 May 4 3 April 18 3 June 2 3 April 16 3 April 16 3 April 21 3 April 21 3 April 27 3 May 20	57 30, 4 57 30, 5 58 21, 3 59 3, 6 59 39, 2 59 38, 9 14 0 33, 0 0 32, 8 0 32, 0	51. 9 51. 8 44. 4 53. 0 51. 0 51. 0 50. 9 44. 2 44. 1 44. 2	9 18 4.1 - 9 18 8.3 +25 20 23.3 -15 16 19.7 4 56 35.7 4 56 41.4 +26 7 20.8 26 7 22.2 26 7 27.5	4 40, 3 4 40, 1 4 41, 0 4 38, 1 4 38, 5 4 38, 7 4 39, 1 4 40, 1 4 44, 5	58 22.3 58 22.3 13 59 5.7 13 59 56.6 14 0 30.2 0 30.1 0 29.8 14 1 17.2 1 16.9 1 16.2	22 44 22 48 +25 15 42 -15 20 57 - 5 1 14 1 19 +26 2 41 2 42 2 43
3501 3502 3503 3504 3505* 3506 3507 3508 3509 3510*	Piazzi 10	6.5 8 8 7 8	5 April 9 3 April 25 3 May 16 3 May 12 3 April 3 3 April 3 3 April 3 3 April 7 3 April 16 3 April 19	0 37, 7 0 33, 5 0 33, 7 1 9, 1 1 3, 2 1 3, 7 1 22, 1 1 22, 8 1 23, 2 1 22, 9	51.0 50.9	+26 6 45.7 - 5 5 59.5 - 5 6 8.7 +41 48 24.9 - 8 52 30.6 8 52 29.1 9 15 32.7 9 15 27.9 9 15 29.3 9 15 21.3	3 59, 9 4 32, 2 4 38, 5 4 45, 0 4 38, 3 4 38, 1 4 38, 1 4 37, 7 4 37, 4 4 37, 4	1 15.9 14 1 24.5 1 24.6 14 1 48.0 14 1 55.2 1 55.7 14 2 14.2 2 14.8 2 15.1 2 14.8	2 49 - 5 10 31 10 43 +41 43 33 - 8 57 6 57 7 - 9 20 10 20 6 19 58
3511° 3512 3513 3514 3515 3516° 3516° 3518 3519 3520	Lalande 26046 Groombridge 2083	7 7 7.8 7 8 6.7 7 6	3 May 4 3 May 31 3 May 12 5 April 9 3 April 25 3 May 9 3 May 16 3 April 18 3 April 21	1 23, 1 2 6, 3 2 56, 2 2 59, 3 3 6, 0 3 5, 2 3 6, 4 3 6, 1 3 41, 1 3 41, 9	38. 2 33. 1 51. 2 51. 0 50. 9 50. 9	- 9 15 34.3 +21 40 4.1 43 21 54.6 +43 21 6.2 - 4 56 5.3 4 56 5.3 4 55 54.2 - 4 56 0.2 +13 58 51.7 13 58 48.2	4 37, 3 4 44, 1 4 43, 8 3 58, 7 4 36, 3 4 36, 3 4 36, 3 4 36, 5 4 35, 5 4 35, 9	2 14.9 14 2 51.4 14 3 34.4 3 32.4 14 3 57.2 3 56.2 3 57.3 3 57.0 14 4 28.1 4 28.9	20 11 +21 35 20 +43 17 10 17 7 - 5 0 41 0 37 0 30 0 36 +13 54 16
3521 3522 3523 3524 3525 3526 3527 3528 3529* 3530	Piazzi 26	7	3 April 27 3 June 2 3 April 3 3 April 4 3 April 7 3 April 16 3 April 19 3 April 25 3 May 4 3 May 9	3 41.4 4 39.6 4 41.2 4 41.7 4 41.8 4 41.8 4 41.5 4 41.4 4 41.9	46, 9 44, 7 51, 2 51, 2 51, 2 51, 1 51, 0 50, 9 + 50, 9	13 58 50, 1 +22 53 29, 3 - 4 57 40, 3 4 57 41, 1 4 57 36, 9 4 57 36, 9 4 57 38, 5 4 57 36, 9 - 4 57 36, 9	4 36, 6 4 42, 7 4 35, 0 4 35, 0 4 34, 9 4 34, 7 4 34, 7 4 34, 7 4 35, 6 — 4 35, 1	4 28. 3 14 5 24. 3 14 5 32. 4 5 32. 9 5 33. 0 5 32. 9 5 32. 5 5 32. 8 14 5 32. 1	54 13 +22 48 46 - 5 2 15 2 16 2 9 2 10 2 17 2 13 2 13 - 5 2 12

(211)

No.	Name	Mag.	Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800.0
					litedaet h	Аррто		a	δ
3531 3532 3533 3534 3535 3536* 3537 3538 3538 3540	99 Virginis Lalande 26118,9 Anonyma Groombridge 2089 Arcturus	7 7 8 7	3 May 16 4 June 5 4 June 8 3 May 12 5 April 9 3 April 18 3 April 21 3 April 27 3 May 20 3 May 31	h m s 14 4 41.9 4 59.4 5 0.3 5 37.7 5 44.7 5 48.5 5 48.1 5 48.6 5 48.8 5 48.7	+ 50.9 42.1 42.1 36.6 33.2 45.4 45.3 45.3 45.3	- 4 57 39.9 +20 54 45.5 20 54 52.4 46 26 40.2 42 31 41.9 20 18 54.2 20 18 53.1 20 18 54.8 20 18 55.6	- 4 35. 2 4 24. 3 4 24. 8 4 42. 0 3 58. 6 4 34. 1 4 34. 5 4 35. 4 4 39. 1 4 40. 8	h m s 14 5 32.8 14 5 41.5 5 42.4 14 6 14.3 14 6 17.9 14 6 33.9 6 33.9 6 34.1 6 33.9	- 5 2 15.1 +20 50 21.2 50 27.6 +46 21 58.2 +42 27 43.3 +20 14 20.1 14 18.6 14 20.7 14 14.8
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550		1 1	3 June 2 3 June 3 3 July 5 3 July 8 3 July 10 3 July 19 3 July 26 3 July 29 4 May 25 4 June 5	5 48.4 5 48.4 5 48.5 5 48.7 5 48.3 5 48.2 5 48.2 5 47.8 5 51.8 (5)	45, 3 45, 6 45, 6 45, 6 45, 7 45, 8 45, 8 42, 2	20 19 0.9 20 19 0.3 20 19 1.5 20 19 1.3 20 19 2.7 20 19 1.6 20 19 2.7 20 19 2.2 20 18 37.3 20 18 41.0	4 41.2 4 41.4 4 45.3 4 45.4 4 45.6 4 46.2 4 46.4 4 46.5 4 21.3 4 22.9	6 33, 7 6 34, 1 6 34, 3 6 33, 9 6 33, 9 6 33, 0 6 33, 6 6 34, 0 6 34, 0 (6)	14 19.7 14 18.9 14 16.2 14 15.9 14 17.1 14 15.4 14 16.3 14 15.7 14 16.0 14 18.1
3551* 3552 3553 3554* 3556 3556 3557 3558 3560	Lalande 26149 Brisbane 4852 Flamsteed, B 1955 100 Virginis \(\lambda\) Johnson 3174	8 6 7 6.7	4 June 8 4 June 16 3 May 4 3 April 25 5 April 9 3 April 4 3 May 9 3 May 12 3 May 31	5 51.8 5 51.3 6 37.9 6 42.1 7 41.1 7 25.3 7 26.3 7 44.3 7 44.6	42, 2 42, 3 50, 9 53, 8 33, 7 52, 9 52, 9 52, 8 36, 3 36, 4	20 18 39.5 +20 18 42.2 — 4 57 48.0 —17 42 16.7 +40 44 33.0 —12 22 0.7 12 22 1.3 —12 21 55.6 +46 34 27.2 46 34 25.6	4 23. 4 4 24. 5 4 33. 4 4 32. 9 3 55. 2 4 33. 6 4 32. 3 4 40. 2 4 44. 6	6 34.0 6 33.6 14 7 28.8 14 7 35.9 14 8 14.8 14 8 18.3 8 19.2 8 18.2 14 8 20.6 8 21.0	14 16.1 14 17.7 - 5 2 21.4 -17 46 49.6 +40 40 37.8 -12 26 34.4 26 34.9 26 27.9 +46 29 47.0 29 41.0
3561 3562 3563 3564 3565* 3566 3567 3568 3569* 3570	19 Boötis λ 102 Virginis v 18 Boötis	6 6 7 7 7	3 May 20 3 May 16 3 April 21 3 April 27 3 May 12 3 May 15 5 April 9 3 April 3 3 April 4 3 April 7	8 10,9 8 24,7 8 48,7 8 48,8 9 46,9 10 37,3 10 59,6 10 51,0 10 51,8	36. 1 50. 1 46. 8 46. 8 34. 5 51. 4 33. 9 50. 4 50. 4	+47 5 25.8 - 1 15 28.6 +14 0 34.8 14 0 36.3 +49 0 41.6 - 7 5 39.6 +39 47 1.3 - 0 59 29.2 0 59 26.4 0 59 27.6	4 42.0 4 32.9 4 31.7 4 32.5 4 38.1 4 30.8 3 52.6 4 29.6 4 29.6 4 29.6	14 8 47.0 14 9 14.8 14 9 35.5 9 35.6 14 10 21.4 14 11 23.7 14 11 33.8 14 11 41.0 11 41.4 11 42.2	+47 0 43.8 - 1 20 1.5 +13 56 3.1 56 3.8 +48 56 3.5 - 7 10 10.4 +39 43 8.7 - 1 3 58.8 3 56.0 3 57.2
3571 3572 3573 3574 3575 3576 3577* 3578* 3579 3580	569 Mayer	7 6 7.8 7 7 4 7.8 7.8	3 May 9 3 May 16 4 June 5 3 June 2 3 April 16 3 April 25 3 April 18 3 May 15 3 April 27 3 April 25	10 50, 1 10 50, 3 10 53, 4 11 13, 3 11 49, 0 11 48, 9 12 12 31, 0 12 44, 7 13 4, 6	50. 1 50. 0 46. 6 51. 3 52. 4 52. 3 55. 3 42. 3 52. 3	0 59 23.7 0 59 24.7 0 59 51.1 6 45 56.3 10 42 59.7 10 43 2.8 15 6 32.4 -23 48 55.2 +30 21 56.1 -10 40 44.0	4 30.6 4 31.0 4 14.0 4 30.8 4 29.2 4 29.0 4 29.3 4 26.9 4 30.3 4 28.1	11 40.2 11 40.3 11 40.0 14 12 4.6 14 12 41.4 12 41.2 14 13 14 13 26.3 14 13 27.0 14 13 56.9	3 54.3 3 55.7 4 5.1 6 50 27.1 -10 47 28.9 47 31.8 -15 11 1.7 -23 53 22.1 +30 17 25.8 -10 45 12.1
3581 3582 3583* 3584 3585 3586 3587 3588 3589* 3590	Lalande 26310	6.7 7.8 6.7 7.6 6	3 May 13 3 May 12 3 April 21 3 May 9 3 May 31 3 May 12 4 June 5 5 April 9 3 April 3 3 April 4	13 5.2 13 22.8 13 25.3 13 24.4 13 24.9 14 25.3 14 27.5 14 30.9 16 4.3 14 16 4.4	43. 5 43. 4 43. 4 42. 7 39. 7	-10 40 51.0 +33 30 10.4 26 19 30.6 26 19 37.1 26 19 35.7 28 24 8.5 28 23 55.6 +28 23 29.3 - 5 8 10.8 - 5 8 15.9	4 28.0 4 33.2 4 29.2 4 31.7 4 35.8 4 31.6 4 16.7 3 49.6 4 25.7 4 25.6	13 57.4 14 14 4.0 14 14 8.8 14 7.8 14 8.3 14 15 8.0 15 7.2 15 8.0 14 16 55.8	45 19.0 +33 25 37.2 +26 15 1.4 15 5.4 14 59.9 +28 19 36.9 19 38.9 19 39.7 — 5 12 36.5 — 5 12 41.5

(212)

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
	2141110			прроб	Moduce B		1 caucion	а	δ
3591 3592 3593 3594 3596 3596 3596 3599 3600	Lalande 26389 . 22 Boötis f	6.7 5 6 6.7	3 April 16 3 May 4 3 May 29 3 April 21 3 April 27 3 May 9 3 May 31 4 June 8 3 May 12 5 April 9	h m s 14 16 4.1 16 4.6 16 8.9 16 24.6 16 24.3 16 23.0 16 24.1 16 28.0 16 41.0 16 44.7	+ 51.2 51.0 47.4 45.1 45.0 45.0 41.9 38.8 33.7	0 / " - 5 8 9.1 - 5 8 + 9 21 42.1 20 12 26.3 20 12 25.6 20 12 28.0 20 12 22.7 20 12 9.1 39 22 43.1 + 39 21 57.7	4 25. 4 4 29. 5 4 25. 4 4 26. 3 4 28. 3 4 31. 8 4 15. 1 4 31. 3 3 51. 1	h m s 14 16 55.3 16 55.6 14 16 56.3 14 17 9.7 17 9.3 17 9.1 17 9.9 14 17 19.8 17 18.4	0 / " - 5 12 34.5 12 + 9 17 12.6 +20 8 0.9 7 59.3 7 59.7 7 50.9 7 54.0 +39 18 11.8 18 6.6
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610	574 Mayer 105 Virginis φ Lalande 26417 106 Virginis Bessel, W.466	7.8 6.7 7.8	3 May 13 3 April 3 3 April 4 3 April 7 3 May 16 3 April 19 3 May 4 3 May 12 3 May 31 5 April 9	17 0.4 17 4.8 17 4.4 17 4.1 17 5.1 17 11.7 17 18.6 18 55.3 18 54.7 18 58.9	51.2	- 9 1 38.2 1 15 0.0 1 15 1.2 1 14 57.2 - 1 14 59.2 +15 43 55 15.2 +2 0 13.5 42 0 15.6 41 59 29.9	4 24.8 4 24.3 4 24.3 4 24.3 4 25.7 4 24.4 4 24.5 4 29.6 4 34.1 3 46.3	14 17 52.3 14 17 55.3 17 54.9 17 54.6 17 55.2 14 17 55.2 14 18 9.8 14 19 32.8 19 32.3 19 31.5	- 9 6 3.0 - 1 19 24.3 19 25.5 19 21.5 19 24.9 +15 39 30.7 +41 55 43.9 55 41.5 55 43.6
3611* 3612* 3613 3614 3615 3616 3617 3618* 3620	Piazzi 97	7 7 6.7 6.7 7 8 7	3 April 27 4 June 5 4 June 16 3 May 12 3 May 31 3 April 18 3 April 19 3 May 4 3 April 16 3 April 21	19 5.5 19 8.4 19 9.1 21 6.0 21 6.3 20 50.4 21 26.5 22 16.6 22 31.1 22 31.2	55. 6 45. 4 51. 2	26 49 35.8 26 49 27.7 26 49 33.3 42 46 47.8 +42 46 50.2 -23 3 11.9 +18 36 33.0 -5 54 34.0 +31 19 41.8 31 19 41.3	4 24. 4 4 14. 0 4 15. 7 4 27. 6 4 32. 3 4 22. 6 4 20. 4 4 20. 2 4 19. 3 4 20. 4	14 19 48.6 19 48.5 19 49.2 14 21 43.0 21 43.4 14 21 46.0 14 22 11.9 14 23 7.8 14 23 12.7 23 12.7	+26 45 11.1 45 13.7 45 17.6 +42 42 20.2 42 17.9 -23 7 34.5 +18 32 12.6 -5 58 54.2 +31 15 22.5 15 20.9
3621 3622 3623 3624* 3625 3626 3627 3628 3629 3630	26 Boötis Lalande 26560 . Bessel, W.550 .	8.7 7 8	3 April 25 3 May 29 4 June 8 3 April 27 3 May 13 3 April 25 3 May 12 3 May 31 3 April 3 3 April 4	22 31.5 22 31.0 22 33.9 22 43.3 22 58.7 23 4.4 23 22.7 23 22.7	41. 5 41. 4 38. 6 44. 0 43. 9 41. 5 36. 1 36. 2 38. 7 38. 7	31 19 41. 2 31 19 47. 6 31 19 30. 9 23 13 13. 9 23 13 11. 6 31 13 7. 4 44 20 51. 2 44 20 50. 2 39 15 35. 0 39 15 37. 7	4 21, 2 4 28, 3 4 12, 6 4 20, 9 4 23, 7 4 20, 8 4 26, 1 4 30, 8 4 16, 2 4 16, 4	23 13.0 23 12.4 23 12.5 14 23.27.0 23 27.2 14 23 40.2 14 23 41.1 23 40.6 14 24 1.4 24 1.4	15 20.0 15 19.3 15 18.3 +23 8 53.0 8 47.9 +31 8 46.6 +44 16 25.1 16 19.4 +39 11 18.8 11 21.3
3631 3632 3633 3634 3635 3636 3637 3638* 3639 3640		9 5 7	3 July 8 3 July 10 3 July 26 3 May 16 3 April 16 3 April 25 3 May 29 5 April 9 3 April 27	23 22. 3 23 22. 4 23 21. 7 24 45. 4 25 16. 3 25 15. 6 25 16. 5 25 21. 1 26 21. 2	38. 9 38. 8 39. 2 48. 8 41. 7 41. 6 41. 6 41. 5 36. 1 43. 6	39 15 57, 9 39 15 58, 5 39 16 0, 0 4 25 24, 7 30 41 33, 4 30 41 34, 8 30 41 37, 8 30 40 53, 1 24 11 56, 3	4 35.8 4 35.9 4 36.9 4 20.7 4 16.7 4 18.5 4 17.6 4 25.7 3 41.1 4 17.4	25 57. 2 25 58. 1 25 58. 0 25 57. 2	11 22.1 11 22.6 11 23.1 + 4 21 4.0 +30 37 16.7 37 13.2 37 17.2 37 12.1 37 12.0 +24 7 38.9
3641 3642 3643 3644 3645 3646 3647 3648 3649* 3650*	" Piazzi 133 Lalande 26667,8 " 3 Librae	7 6.7 6 5.6 6.7 7.8 7.8 7 6	3 May 12 3 May 13 3 May 31 4 June 16 3 May 4 3 April 3 3 April 4 3 May 9 3 April 18 3 April 21	26 21.7 26 20.8 26 20.6 26 23.7 26 32.9 26 54.0 26 54.8 26 55.2 26 55.9 14 28 11.4	51. 0 42. 5 42. 5 42. 2 56. 1	24 11 56.9 24 11 56.9 24 12 0.6 +24 11 48.3 - 4 35 58.3 +28 26 0.7 28 25 58.8 +28 26 8.7 -24 4 55.1 +19 14 51.0	4 20.2 4 20.5 4 23.8 4 9.0 4 17.2 4 13.0 4 13.3 4 19.7 4 17.4 4 14.6	27 37.3 27 37.4 14 27 52.0	7 36.7 7 36.8 7 36.8 7 39.3 — 4 40 15.5 +28 21 47.5 21 45.5 21 49.0 —24 9 12.5 +19 10 36.4

(213)

No.	Name	Mag.	Date	App't α	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
								а	ð
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660	Piazzi 140	6.7 6 6 6 6.7 7 6 6 6 6	3 April 25 3 April 27 3 May 12 3 May 13 5 April 9 3 May 29 3 April 3 3 April 4 3 April 27 3 May 12	h m s 14 28 10, 6 28 11, 2 28 12, 0 28 16, 1 30 22, 5 30 22, 8 30 23, 5 30 33, 8	+ 45.0 45.0 44.9 44.9 39.1 47.3 46.5 46.5 46.2 43.8	+19 14 48.7 19 14 48.6 19 14 46.5 19 14 47.0 19 14 9.3 9 54 57.4 14 28 11.6 14 28 13.7 22 54 36.5	- 4 15.2 4 15.4 4 18.0 4 18.0 3 39.1 4 17.1 4 10.8 4 10.7 4 13.2 4 16.1	h m s 14 28 55.6 28 56.2 28 56.9 28 55.8 28 55.2 14 30 51.6 14 31 9.0 31 9.3 31 9.7 14 31 17.6	+19 10 33.5 10 33.2 10 28.5 10 29.0 10 30.2 + 9 50 40.3 +14 24 0.8 24 6.0 24 0.5 +22 50 20.4
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670	29 Boötis π 30 Boötis ζ	6	3 May 13 3 April 16 3 April 19 3 April 21 3 April 25 4 June 8 3 April 3 3 April 4 3 April 27 3 April 28	30 33, 3 30 34, 6 30 34, 0 30 34, 7 30 34, 5 30 37, 6 30 48, 9 30 49, 4 30 49, 8	43. 8 45. 6 45. 5 45. 5 45. 5 42. 1 46. 5 46. 5 46. 2 46. 2	22 54 35.6 17 21 13.1 17 21 7.8 17 21 14.3 17 21 9.3 17 21 14 39 43.1 14 39 45.1 14 39 51.7 14 39 48.7	4 16. 4 4 11. 8 4 12. 2 4 12. 5 4 12. 9 4 10. 2 4 10. 4 4 12. 8 4 13. 1	31 17.1 14 31 20.2 31 19.5 31 20.2 31 20.0 31 19.7 14 31 35.4 31 35.9 31 36.0 31 36.0	50 19.2 +17 17 1.3 16 55.6 17 1.8 16 56.4 +14 35 32.9 35 34.7 35 38.9 35 35.6
3671 3672 3673 3674* 3675 3676 3677 3678* 3679 3680	4 Libræ	6 6 7 7.8	3 July 8 3 July 10 3 July 19 3 July 26 3 July 29 3 April 18 3 May 4 3 May 16 3 May 31 4 June 16	30 49, 8 30 50, 0 30 49, 9 30 50, 3 30 49, 7 30 46, 2 30 45, 5 31 2, 6 31 4, 5	56. 2 56. 0 55. 8	14 39 57.7 14 39 55.9 14 39 55.2 14 40 0.2 +14 39 57.1 -24 3 51.7 24 3 53.8 -24 3 53.3 +31 23 1.2 31 22 53.9	4 22. 2 4 22. 5 4 23. 2 4 23. 5 4 23. 7 4 13. 9 4 12. 4 4 11. 5 4 20. 8 4 4. 8	31 36, 1 31 36, 3 31 36, 2 31 36, 7 31 36, 2 14 31 42, 4 31 41, 3 14 31 43, 6 31 42, 8	35 35.5 35 33.4 35 32.0 35 36.7 35 33.4 -24 8 5.6 8 6.2 8 4.8 +31 18 40.4 18 49.1
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690	31 Boötis	7 8.9 7 7.6 6 6 6 6	3 May 29 3 May 31 3 April 7 5 April 9 3 May 9 3 May 16 3 April 16 3 April 19 3 April 21 3 April 21	31 2.3 31 12.8 31 40.7 31 54.6 32 2.3 32 29.3 33 55.8 33 56.0 33 56.0	51.3	9 5 41.7 +31 27 35.2 - 4 42 28.1 +19 25 12.9 22 3 38.0 15 38 18.2 27 27 13.8 27 27 13.3 27 27 17.0 27 27 16.3	4 16.2 4 20.7 4 11.7 3 36.0 4 14.1 4 13.4 4 8.3 4 8.9 4 9.3 4 10.1	14 31 49.5 14 31 53.8 •14 32 32.0 14 32 33.8 14 32 46.3 14 33 15.1 14 34 37.5 34 38.2 34 38.3 34 38.3	+ 9 1 25.5 +31 23 14.5 4 46 39.8 +19 21 36.9 +21 59 23.9 +15 34 4.8 +27 23 9.5 23 4.4 23 7.7 23 6.2
3691 3692 3693 3694* 3695* 3696 3697 3698 3699*	Lalande 26870,1 5 Libre Lalande 26872,4 "108 Virginis	6 6 9	3 May 13 3 May 31 3 April 18 3 May 16 5 April 9 3 May 4 3 April 4 3 May 29 3 April 7 3 April 27	33 56. 0 33 55. 6 33 44. 4 33 44. 2 34 17. 2 34 10. 3 34 10. 8 34 30. 1 35 9. 8	56. 1 55. 8 38. 9 53. 5	27 27 18.8 +27 27 19.7 -22 13 35.9 -22 13 37.7 +19 23 7.7 -14 32 18.1 + 8 37 23.1 1 38 23.6 17 53 17.4	4 13.8 4 17.3 4 11.0 4 9.0 3 34.1 4 9.5 4 7.8 4 12.7 4 8.3 4 8.4	14 34 57.7 14 34 58.3 34 58.4 14 35 19.9	23 5.0 23 2.4 -22 17 46.9 17 46.7 +19 19 33.6 -14 36 27.6 + 8 33 15.3 32 15.4 + 1 34 15.3 +17 49 9.0
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710	Lalande 26901 . 109 Virginis	4 7 4.5	3 May 9 3 May 12 5 April 9 3 April 3 3 April 28 3 May 13 3 July 8 3 July 10 3 July 19 3 July 26	35 9, 3 35 10, 2 35 26, 3 39 19, 6 35 33, 3 35 33, 6 35 32, 6 35 32, 6 35 32, 8	45. 1 45. 1 38. 8 49. 5 42. 0 42. 0 42. 2 42. 3 42. 4 + 42. 5	17 53 18.9 17 53 16.7 19 47 38.9 2 48 46.0 27 59 35.6 27 59 40.8 27 59 49.8 27 59 50.5 +27 59 51.6	4 10.7 4 11.1 3 33.0 4 7.3 4 9.2 4 12.3 4 21.7 4 22.0 4 22.7 4 23.2	14 36 9.1 14 36 15.3 36 15.0 36 14.8 36 14.9 36 15.0	49 8.2 49 5.6 +19 44 5.9 + 2 44 38.7 +27 55 26.4 55 28.9 55 27.8 55 27.8 +27 55 28.4

(214)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
		Diag.	24.0	прроб				а	ð
3711 3712 3713* 3714 3715- 3716 3717* 3718* 3719 3720	36 Boötis & Bessel, W.728 . Piazzi 177	8 7 7.8 7 7 7 8 7.8	4 June 16 3 April 4 3 April 27 3 May 9 3 May 12 3 April 3 3 April 7 3 April 16 3 April 19 3 April 25	h m s 14 35 36, 3 35 44, 1 35 48, 3 35 47, 3 35 48, 9 36 28, 9 (36) 37 33, 9 37 34, 6 37 33, 5	+ 39.1 47.4 45.2 45.1 49.2 44.6 44.6 44.6	+27 59 29.6 10 34 46.0 17 43 1.3 17 43 5.6 17 42 58.5 2 57 4.8 2 57 12.3 19 57 36.2 19 57 39.3 19 57 43.8	- 4 1.8 4 6.5 4 8.1 4 10.0 4 10.4 4 6.0 4 6.0 4 4.8 4 5.6 4 6.3	h m s 14 36 15.4 14 36 32.5 14 36 33.5 36 32.4 36 34.0 14 37 18.1 (37) 14 38 18.5 38 19.2 38 18.1	0 / " +27 55 27.8 +10 30 39.5 +17 38 53.2 38 55.6 38 48.1 + 2 52 58.8 53 6.3 +19 53 31.4 53 33.7 53 37.5
3721 3722* 3723 3724* 3725 3726 3727 3728 3729 3730	7 Libræ μ 6 Libræ . Lalande 26992 9 Libræ a²	7 7.8 5 6 6 6.7 6.7	3 April 28 3 May 9 3 May 16 3 May 4 3 May 12 3 May 29 4 June 16 5 April 9 3 April 3 3 April 18	37 33, 9 37 34, 0 37 29, 8 37 38, 1 38 48, 9 38 48, 3 38 51, 2 38 53, 0 38 56, 8 (38)	53. 2 57. 2 42. 7 42. 7 39. 8	19 57 33.8 +19 57 40.2 -13 14 16.3 -27 3 4.2 +25 16 20.2 25 16 21.0 +25 15 46.8 -15 7 59.1 15 7 57.3	4 6.7 4 8.5 4 6.3 4 6.2 4 8.4 4 11.7 3 58.3 3 29.9 4 6.6 4 5.6	38 18.5 38 18.5 14 38 23.0 14 38 35.3 14 39 31.6 39 31.0 39 30.2 14 39 51.0 (39)	53 27.1 53 31.7 -13 18 22.6 -27 7 10.4 +25 12 11.8 12 14.0 12 12.7 12 16.9 -15 12 5.7 12 2.9
3731 3732 3733 3734 3735 3736 3737 †3738 3739* 3740	" Lalande 27024 10 Libræ Lalande 27036 Lalande 27038 32 (Hev.) Boötis	7 7 8 7.8 6.7	3 July 10 3 July 19 3 July 26 3 July 29 3 April 16 3 May 16 3 May 9 3 April 4 3 April 25	38 56, 8 38 56, 9 38 56, 7 38 56, 8 39 34, 2 39 34, 2 39 34, 9 39 58, 4 40 0, 8 40 40, 5	53. 8 53. 8 53. 9 54. 0 44. 5 44. 2 54. 3 44. 2 43. 5 41. 3	15 8 0.5 15 8 3.6 15 8 1.8 -15 8 2.7 +20 25 0.9 +20 24 59 7 +20 25 4.3 23 56 11.6 29 31 6.7	4 5.3 4 5.6 4 5.9 4 6.0 4 2.7 4 7.3 4 3.7 4 6.2 4 0.7 4 3.5	39 50, 6 39 50, 7 39 50, 6 39 50, 8 14 40 18, 7 40 18, 7 14 40 39, 2 14 40 42, 6 14 40 44, 3 14 41 21, 8	12 5.8 12 9.2 12 8.7 12 8.7 +20 20 58.2 20 51.2 -17 31 13.4 +20 20 58.1 +23 52 10.9 +29 27 3.2
3741 3742 3743* 3744 3745* 3746 3747 3748* 3750	Lalande 27055 Lalande 27069	7 8.9 8 9	4 June 16 5 April 9 3 April 4 3 May 12 3 May 29 3 April 19 3 April 19 3 April 21 3 April 28 3 May 20	(40) 40 41 5.2 41 7.0 41 6.2 41 25.5 41 25.4 41 25.4 41 25.5 41 24.9	43. 5 43. 1 43. 1 44. 5 44. 5 44. 5 44. 4 44. 3	29 31 5.7 24 48 9.5 23 48 46.1 23 48 48.2 23 48 55.2 20 0 21.8 20 0 17.1 20 0 19.4 20 0 17.5 +20 0 23.2	3 57.6 3 22.9 3 59.6 4 5.8 4 9.1 4 1.0 4 1.5 4 1.8 4 2.9 4 6.7	(41) 14 41 14 41 48.7 41 50.1 41 49.3 14 42 10.3 42 10.0 42 9.9 42 9.9 42 9.2	27 8.1 +24 44 46.6 +23 44 46.5 44 42.4 44 46.1 +19 56 20.8 56 15.6 56 17.6 56 14.6 56 16.5
3751*3752 3753* 3754* 3755 3756 3757 3758 3759 3760	Piazzi 201	8 7.8 7 8.9 7 6.7	3 May 4 3 May 9 3 May 13 3 April 3 3 May 20 3 May 20 4 June 16 3 April 16 3 April 19 3 April 27	41 48.7 42 15.8 42 16.3 42 39.6 43 15.3 43 15.6 43 29.1 43 34.9 43 33.4 43 35.3	43.9 53.2	-23 44 47.5 +21 11 19.8 +21 11 13.5 -11 0 21.9 +16 35 49.2 16 35 49.2 28 23 22.6 20 1 55.4 20 1 51.7 20 1 54.3	4 2.2 4 4.1 4 4.7 4 2.3 4 4.4 4 5.7 3 48.7 3 58.4 3 59.4 4 0.9	44 0.8	-23 48 49.7 +21 7 15.7 7 8.8 -11 4 24.2 +16 31 44.8 +28 19 33.9 +19 57 57.0 57 52.3 57 53.4
3761 3762 3763 3764* 3765 3766 3767* 3768 3769 3770	Lalande 27140 Lalande 27138 14 Libræ	6 7.6 7 6.7 7	3 April 28 3 May 12 3 May 13 5 April 9 3 April 25 3 April 18 3 May 4 3 May 16 3 April 3 3 May 29	43 35, 3 43 35, 8 43 34, 9 43 47, 4 43 38, 9 44 55, 4 44 56, 0 44 55, 4 45 3, 0 14 45 19, 8		20 1 50.2 20 1 54.9 20 1 53.7 32 48 36.2 +20 46 58.7 -24 33 32.9 24 33 30.7 24 33 34.3 -10 31 34.5 +32 54 17.3	4 0.7 4 3.0 4 3.3 3 25.2 4 0.0 4 0.9 3 59.3 3 58.5 4 0.0 — 4 6.3	44 19.6 44 20.0 44 19.1 14 44 22.1 14 44 23.0 14 45 52.2 45 52.6 45 51.9 14 45 56.1 14 45 59.5	57 49.5 57 51.9 57 50.4 +32 45 11.0 +20 42 58.7 -24 37 23.8 37 30.0 37 32.8 -10 35 34.5 +32 50 11.0

(215)

.	N.) (Deta	Ann. 74 -	Radnat's	App't δ	Reduction	Mean equ	inox 1860. 0
No.	Name	Mag.	Date	App't a	Reduct'n	Appto		a	δ
				h m s	8	0 / //	, ,,	h m s	0 ,
3771	Piazzi 215	7	5 April 9	14 45 24.6	+ 34.6	+32 53 35.2	-323.7	14 45 59.2	+32 50 11
3772	Lalande 27195 .	7	3 April 21	45 27.9	40.6	30 56 58.6	3 57.8	14 46 8.5	+30 53 0 52 59
3773		7	4 June 16	45 30.0	37.7	30 56 53.0	3 53.4	46 7.7 14 46 47.4	+15 15 45
3774	Piazzi 221	7	3 April 19	46 1.6	45.8	15 19 42.8 15 19 48.1	3 56.9 4 0.2	46 47.0	15 47
3775	"	6.7	3 May 9	46 1.4	45.6	15 19 44.0	4 0.2	46 47.3	15 43
3776		6 9	3 May 13 3 April 4	46 1.7 46 28.0	45, 6 45, 2	17 59 11.9	3 52.7	14 47 13.2	+17 55 19
3777	Lalande 27227 .	9	3 May 12	46 29, 4	44.8	17 59 16.7	3 59.8	47 14.2	55 16
3778* 3779	1 Serpentis	6	3 April 27	46 28.8	48.0	0 42 51.0	3 57.5	14 47 16.8	+ 0 38 53
3780	i cerpenus		3 April 28	46 29.3	48.0	0 42 48.0	3 57.6	47 17.3	38 50
3781	Lalande 27241,2	7	5 April 9	47 5.8	34.5	33 10 19.7	3 22.3	14 47 40.3 14 47 51.8	+33 6 57 +17 12 7
3782	Piazzi 226	6.7	3 April 16	47 6.6	45.2	17 16 3.1	3 55.4 3 55.5	47 52.0	12 3
3783	"	6	3 April 25	47 6.9 47 7.4	45. 1 44, 9	17 15 58.8 17 16 3.9	4 0.6	47 52.3	12 3
37×4	Piazzi 227	6.7	3 May 20 3 May 12	47 20.1	43, 4	22 26 12.9	3 59, 4	14 48 3.5	+22 22 13
37₹5 3786*.	Trazzi zzi	7	3 May 15	47 19.5	43.4	+22 26 13.9	4 0.1	48 2.9	22 13
3787*	18 Libræ	1	3 April 3	47 12.4	53. 0	— 10 15 53.5	3 57.7	14 48 5.4	-10 19 51
3788	Lalande 27277,8	8	3 April 21	47 56.4	42.3	+26 11 54.7	3 55.1	14 48 38.7	+26 7 59
3789	Piazzi 231	7	3 May 13	48 3.9	45.6	14 54 43.6	3 58.2	14 48 49.5	+14 50 45
3790	Piazzi 232	7	3 May 29	48 11.2	42:3	25 33 1.6	4 2.3	14 48 53.5	+25 28 59
3791	"	7.8	4 June 16	48 14.2	39. 4	25 32 50, 2	3 49.6 3 52.7	48 53.6 14 49 58.1	29 (1 +24 58 52
3792*	Lalande 27311 .	7.8	3 April 16	49 15.4	42.7	+25 2 45.2	3 52.7	14 49 56.1	-10 7 17
3793	Piazzi 233	7.8	3 April 3	(49)	40.0	-10 3 20.3 +25 55 14.4	3 52.6	14 50 3.6	+25 51 21
3794	Piazzi 236	7.8	3 April 21	49 21, 3	42, 3 42, 1	+25 55 13.9	3 57.7	50 3.1	51 16
3795	• • •	7.8	3 May 12 3 April 18	49 21.0 49 26.5	52. 1	7 38 59.3	3 54.9	14 50 18.6	- 7 42 54
3796 3797*	19 Librae δ		3 May 4	49 26.8	51.9	7 39 3.2	3 54, 6	50 18.7	42 57
3797* 3798	"		3 May 16	49 26.7	51.8	- 7 39 1.8	3 55.2	50 18.5	42 57
3799*	Lalande 27325	7.8	3 April 19	49 48.2	45.6	+15 42 2.5	3 54.0	14 50 33.8	+15 38 8
3800	11	8.9	3 May 9	49 48, 2	45.4	15 42 13.0	3 55.9	50 33.6	38 17
3801		8	3 May 13	49 48.6	45. 3	15 42 5.4	3 56.4	50 33.9	38 9
3802	"		4 June 16	(49)		+15 41 57.9	3 45.8	(50) 14 51 24.3	35 12 - 7 32 49
3803	Lalande 27347 .	7.8	3 April 3	50 32.0	52, 3	- 7 28 55.9 - 7 28 53.6	3 53.9 3 53.6	51 24.6	32 47
3804		6 7	3 May 4	50 32,7 50 45,5	51.9 49.7	+ 0 43 29.3	3 53, 1	14 51 35.2	+ 0 39 36
3805	2 Serpentis	6.7	3 April 27 3 April 28	50 44.8	49.7	0 43 27.2	3 53.3	51 34.5	39 33
3806 3807	Piazzi 247	6	3 April 4	51 11.3	43, 5	22 54 32,6	3 49.1	14 51 54.8	+22 50 43
3≓08	118221247	7	3 April 16	51 10.9	43.4	22 54 36.1	3 50.9	51 54, 3	50 45
3809*	"	6.7	3 April 25	51 11.2	43. 2	22 54 36, 2	3 52.3	51 54.4	50 43
3810	"	7	3 May 12	51 12.0	43, 1	22 54 40.8	3 55.4	51 55.1	50 45
3811*	"	8	3 May 20	51 11.4	43. 1	22 54 34.0	3 57.0	51 54.5	50.37
3812	Bessel, W.1189 .	7.6	4 June 16	50		+40 7 48.4	3 50.0	14 51	+40 3 58
3813	20 Libræ		3 April 18	(51)		_24 25 12.1	3 54.5	14(52) 52 23, 2	-24 29 6 29 5
3814*	"		3 July 8	51 26.5	56.7	24 25 15.4 24 25 20.5	3 50.4 3 50.4	52 23, 2	29 10
3815	"		3 July 10	51 26, 4	56.7 56.0	-24 25 20.5 -24 25 15.6	3 50.4	52 23.3	29 6
3816			3 July 26	51 26, 4 (51)	56.9 49.4	+25655.7	3 50.7	14(52)	+ 2 53 5
3317	110 Virginis	6	3 April 7 3 April 28	51 59.6	49.4	2 57 1.0	3 51.9	52 48.7	53 9
3819 3818	"	4.5	5 April 9	52 5, 3	42.7	2 56 26,6	3 19.9	52 48.0	53 €
3520	Lalande 27406,7	7	3 April 19	52 31.3	45.2	16 54 27.0	3 50, 1	14 53 16.5	+16 50 30
3821	"	7.8	3 May 9	52 32, 0	43.8	16 54 30.5	3 53.1	53 15.8	50 37
3822	41 Boötis ω		3 April 25	52 38, 6	42.2	25 52 13, 3	3 50.8	14 53 20.8	+25 48 22
3823			3 May 13	52 38.6	42.0	25 52 20.3	3 54.5	53 20.6	48 25
3∺24	* 1 3 07 100		3 May 15	52 39.0	42.0	25 52 17.9	3 55.0	53 21.0 14 54 0.8	48 24 +18 45 56
3825*	Lalande 27422 .	8	3 April 16	53 16.2	44.6	18 49 55, 1	3 58.4	14 54 0.6	+41 11 8
3826	42 Boötis β		3 April 28	53 49, 5	35,6	41 15 0.4 41 15 10.3	3 50.9 3 56.6	54 24.7	11 13
3827			3 May 20	53 49.2 53 48 8	35.5	41 15 10.3	4 6.5	54 24.7	ii ii
3525			3 July 8 3 July 26	53 48.8 53 48.2	35, 9 36, 3	41 15 17.8	4 8.4	54 24.5	ii ii
3829 3830	Lalande 27442	8.9	3 April 3	14 53 39.0		+11 35 12.1	_ 3 47.6	14 54 26.1	
	Laiauu 4/444 .	0.0	լ ⊍ ռաթուս Ս	** OO OO'O	1 [24 4 4	,	1		1

(216)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
								a	ð
3831 3832 3833 3834 3835 3836 3837 3838 3839* 3840	Piazzi 265	8.9 7 7.8 9	3 May 13 3 April 21 4 June 16 3 April 27 3 May 29 3 May 4 3 May 16 3 May 4 3 May 16 3 April 4	h m s 14 54 31.5 54 32.4 54 34.3 54 40.7 54 41.0 54 35.7 54 47.0 54 46.5 55 10.8	** + 41.2 41.4 38.4 43.8 43.7 54.2 54.0 54.2 54.1 41.7		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	h m s 14 55 12.7 55 13.8 55 12.7 14 55 24.5 55 24.7 14 55 29.9 55 29.9 14 55 41.2 55 40.6 14 55 52.5	0 / " +27 52 18.1 52 14.2 52 17.6 +20 37 47.5 37 43.6 -15 28 13.2 28 16.1 -15 42 42 3.3 +27 44 9.5
3841 3842 3843 3844* 3845 3846 3847 3848 3849 3850	"	5 5.6 6	3 April 21 3 April 25 3 May 12 3 May 13 3 May 15 4 June 16 5 April 9 3 April 28 3 April 3 3 April 4	55 11. 6 55 11. 4 55 12. 1 55 11. 6 55 11. 3 55 14. 1 55 15. 9 56 41. 2 57 25. 4 57 25. 4	41.5 41.4 41.3 41.2 38.4 36.0 31.2 44.6	27 47 54.2 27 47 57.4 27 47 54.0 27 47 56.5 27 47 59.8 27 47 51.3 27 47 21.0 48 30 1.0 19 17 5.6 19 17 2.3	3 47. 3 3 48. 3 3 51. 7 3 52. 0 3 52. 3 3 43. 3 3 14. 8 3 48. 3 3 42. 7 3 42. 9	55 53.1 55 52.8 55 53.4 55 52.9 55 52.5 55 52.5 55 51.9 14 57 12.4 14 58 10.0 58 10.0	44 6.9 44 9.1 44 2.3 44 4.5 44 7.5 44 8.6 44 6.8 +48 26 12.7 +19 13 22.9 13 19.4
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860	Piazzi 282	6 6.7 5.6	3 May 9 3 April 18 3 April 16 3 April 19 3 April 25 3 April 27 3 May 12 3 May 20 3 May 29 5 April 9	57 26. 1 57 16. 9 57 48. 8 57 48. 9 57 48. 5 57 49. 4 57 49. 4 57 48. 7 57 48. 8 57 53. 7	44. 1 56. 8 42. 2 42. 2 42. 1 42. 0 42. 0 41. 9 41. 9 36. 6	+19 17 9.7 -23 8 44.4 +25 43 9.8 25 43 8.5 25 43 8.5 25 43 8.5 25 43 8.5 25 43 13.8 25 43 13.6 25 42 35.3	3 53, 4 3 48, 5 3 43, 7 3 44, 3 3 45, 3 3 45, 3 48, 7 3 50, 4 3 52, 2 3 12, 6	58 10, 2 14 58 13, 7 14 58 31, 0 58 31, 1 58 30, 6 58 30, 8 58 31, 4 58 30, 6 58 30, 7 58 30, 3	13 16.3 -23 12 32.9 +25 39 26.1 39 24.9 39 23.2 39 23.2 39 19.8 39 21.4 39 22.7
3861 3862 3863* 3864 3865 3866* 3867 3868 3869 3870	Lalande 2575 Lalande 27602 46 Boötis b Piazzi 291 Lalande 27646,7	6.7 6 7 6 8.9	3 May 13 4 June 16 3 April 21 3 April 16 3 April 19 3 April 27 3 May 12 3 May 29 3 April 4	58 8.1 58 54.4 59 4.6 59 10.9 59 11.0 59 10.8 59 11.5 14 59 10.8 15 0 2.9	37. 2 37. 7 41. 1 42. 1 42. 0 41. 9 41. 9 41. 8 41. 7 42. 5	37 17 43.1 29 21 18.2 27 8 16.1 25 56 38.1 25 56 38.7 25 56 37.9 25 56 38.7 25 56 42.6 25 30 17.7	3 49.7 3 39.9 3 43.2 3 42.4 3 42.9 3 43.8 3 44.2 3 47.1 3 50.6 3 39.4	14 58 45, 3 14 59 32, 1 14 59 45, 7 14 59 53, 0 59 53, 0 59 52, 7 59 53, 3 59 52, 5 15 0 45, 4	+37 13 53, +29 17 38, +27 4 32, +25 52 55, 52 53, 52 54, 52 53, 52 51, 52 52, +25 26 38,
3871 3872 3873 3874 3875* 3876 3877 3878 3879* 3880	Lalande 27644 . 24 Libree i¹ Lacaille 6271 . 25 Libree i² Lalande 27705	7.8 7.8 7 8 7.8 8	3 April 28 3 May 15 3 May 4 3 May 16 3 July 8 3 April 18 3 May 4 3 April 25 3 May 20 3 May 13	0 2.9 15 0 13.2 14 59 56.1 59 55.5 14 59 55.0 15 0 41.5 1 1.6 1 47.7 1 48.1 1 54.5	42. 0 38. 5 55. 3 55. 2 55. 2 56. 9 55. 3 43. 6 43. 4 38. 6	25 30 22.2 +34 5 48.5 -18 57 42.9 -18 57 41.8 18 57 44.9 23 10 54.6 -18 49 17.4 +20 52 12.0 20 52 12.5 33 54 20.3	3 43.5 3 47.6 3 44.3 3 43.8 3 43.4 3 45.1 3 40.9 3 45.4 3 45.2		26 38. +34 2 0. -19 1 27. 1 25. 1 28. -23 14 39. -18 53 0. +20 48 31. 48 27. +33 50 35.
3881 3882 3883 3884 3885 3886 3887 3888* 3889* 3890	Lalande 27718	7.8 7 6 6.7 6 8 6.7 7	3 May 15 4 June 16 3 April 16 3 May 9 3 May 12 3 April 19 3 May 29 3 May 16 3 April 4 3 May 9	1 54.1 1 56.8 2 14.6 2 13.9 2 15.6 2 28.4 2 28.6 2 23.0 3 3.6 15 3 4.0	38.6 35.9 44.1 43.8 43.8 43.0 42.6 54.6 44.2 + 43.7	33 54 23.1 33 54 17.9 19 47 52.9 19 47 54.6 19 47 55.2 23 8 12.6 +23 8 18.7 -16 56 56.2 +20 5 10.5 +20 5 19.5	3 45.7 3 37.8 3 39.0 3 42.8 3 43.3 3 39.2 3 47.2 3 41.4 3 36.6 — 3 42.0	2 32.7 2 32.7 15 2 58.7 2 57.7 2 59.4 15 3 11.4 3 11.2 15 3 47.8 15 3 47.8	50 37,4 50 40, +19 44 13,8 44 11,8 44 11,8 +23 4 33,4 4 31,5 -17 0 37,6 +20 1 33,5 +20 1 37,5

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800, 0
								а	ð
3891 3892* 3893 3894 3895 3896 3897 3898 3899 3900	Piazzi 18	6.7 6.7 7.8 6 6.7 6.7 6.7	3 April 3 3 May 20 3 May 29 3 April 18 4 June 5 3 May 13 3 May 15 3 April 25 3 May 12 4 June 16	h m s 15 3 57.7 3 58.1 3 58.3 3 52.6 4 52.0 5 16.2 5 16.4 5 27.2 5 27.6 5 30.5	39. 0 39. 0 40. 2 40. 0	+23 47 34.2 23 47 44.3 +23 47 43.4 -21 35 8.1 + 1 10 40.6 32 36 10.9 32 36 13.3 29 58 31.8 29 58 31.4 +29 58 23.0	, " - 3 35. 1 3 43. 4 3 45. 1 3 41. 3 3 26. 7 3 41. 3 3 41. 9 3 36. 9 3 40. 6 3 32. 0	h m s 15 4 40.6 4 40.5 4 40.6 15 4 49.1 15 5 37.9 15 5 55.2 5 55.4 15 6 7.4 6 7.6 6 7.8	+23 43 59.1 44 0.9 43 58.3 -21 38 49.4 + 1 7 13.9 +32 32 29.6 32 31.4 +29 54 54.9 54 50.8 54 51.0
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910	27 Libræ β Groombridge 2205 Lalande 27845,7	2 6.7 6.7 7	3 April 21 3 May 4 3 May 16 3 July 8 3 July 9 3 July 10 3 July 26 3 April 27 3 April 28 3 April 19	5 24, 0 5 23, 5 5 23, 6 5 24, 1 5 23, 9 5 23, 9 5 23, 5 6 20, 0 6 19, 9 6 21, 7	52. 5 52. 3 52. 2 52. 2 52. 2 52. 2 52. 3 38. 5 33. 4	- 8 34 30, 6 8 34 27, 2 8 34 23, 5 8 34 28, 2 8 34 29, 0 - 8 34 25, 5 +43 51 16, 6 43 51 23, 4 26 26 58, 6	3 39. 2 3 34. 3 3 35. 6 3 40. 8 3 40. 9 3 41. 6 3 36. 8 3 37. 2 3 34. 8	15 6 16.5 6 15.8 6 15.8 6 16.3 6 16.1 6 16.1 6 15.8 15 6 53.5 6 53.3 15 7 3.3	- 8 38 8.8 38 5.5 38 2.1 38 9.0 38 10.6 38 7.9 38 7.1 +43 47 39.8 47 46.2 +26 23 23.8
3911 3912 3913 3914 3915 3916 3917 3918 3919* 3920	49 Boötis & 5 Serpentis 44 (Hev.) Boötis 28 Libræ	6	3 April 16 3 May 12 3 May 13 3 May 15 3 July 8 4 June 5 3 April 3 3 May 9 3 May 20 3 May 16	6 47. 8 6 48. 4 6 48. 3 6 47. 8 8 20. 2 8 42. 6 8 43. 0 8 42. 1 8 39. 1	38, 5 38, 2 38, 2 38, 5 45, 5 44, 0 43, 5 43, 1 54, 9	34 7 42.3 34 7 48.6 34 7 45.2 34 7 46.9 34 7 58.2 2 35 25.2 21 22 11.8 21 22 19.6 +21 22 23.6 -17 21 37.4	3 33, 5 3 39, 5 3 39, 7 3 40, 1 3 51, 1 3 23, 5 3 30, 3 3 35, 6 3 37, 8 3 34, 8	15 7 26.3 7 26.6 7 26.5 7 26.3 15 9 5.7 15 9 26.6 9 26.5 9 25.2 15 9 34.0	+34 4 8.8 4 9.1 4 5.5 4 6.8 4 7.1 + 2 32 1.7 +21 18 41.5 18 44.0 18 45.8 -17 25 12.2
39.22 39.22 39.22 39.24 39.25 39.25 39.25 39.39 39.39	Lalande 27942	7.8 7 8 6.7 7 6 6.7 7	3 April 19 3 May 29 4 June 16 3 May 4 3 May 12 3 May 13 3 May 15 3 April 25 3 May 13 3 April 27	9 6.9 9 7.2 9 9.4 8 58.0 9 16.6 9 15.1 9 15.4 10 2.2 10 47.6 10 57.4	39. 2 36. 5 54. 2	+31 38 8.1 31 38 14.4 +31 38 5.6 -14 45 21.4 +34 23 34.1 34 23 33.3 1 30 45.0 33 18 23.8 46 24 40.5	3 31, 5 3 40, 5 3 30, 0 3 35, 7 3 37, 0 3 37, 1 3 37, 3 3 33, 2 3 35, 1 3 31, 5	15 9 46. 4 9 46. 4 9 45. 9 15 9 52. 2 15 9 54. 6 9 53. 1 9 63. 4 15 10 51. 7 15 11 26. 0 15 11 29. 0	+31 34 36.6 34 33.9 34 35.6 -14 48 56.1 +34 19 57.1 19 56.5 19 56.0 + 1 27 11.8 +33 14 48.7 +46 21 9.0
333 333 333 334 335 335 335 335 335 335	1 Coronæ o 30 Libræ o² Piazzi 53 31 Libræ ɛ	7 6.7 7	3 April 28 3 April 16 3 April 19 3 May 15 3 May 20 3 May 16 3 April 3 4 June 16 3 May 4 3 July 8	10 57.5 11 12.2 11 12.7 11 13.3 11 12.7 10 59.1 11 46.6 11 49.6 12 29.9 (12)	54. 0 42. 0	46 24 42, 9 30 24 30, 0 30 24 29, 3 30 24 32, 7 +30 24 38, 2 -14 21 2, 2 +25 44 34, 7 +25 44 39, 9 - 9 31 59, 6 9 32 0, 8	3 32, 0 3 28, 6 3 29, 2 3 34, 8 3 36, 1 3 32, 5 3 26, 2 3 30, 6 3 30, 7 3 32, 9	11 29, 1 15 11 52, 2 11 52, 6 11 52, 9 11 52, 3 15 11 53, 3 15 12 28, 6 12 29, 7 15 13 22, 6 (13)	21 10.9 +30 21 1.4 21 0.1 20 57.9 21 2.1 -14 24 34.7 +25 41 8.5 41, 9.3 - 9 35 30.3 35 33.7
3941 3942 3943 3944 3945* 3946 3947 3948 3949 3950	8 Serpentis Lalande 28061 Bessel, W. 350, 1 Lalande 28074 2 Coronæ " " Groombridge 2221	7.8 7 8 5.6 6	3 July 9 4 June 5 3 May 9 3 May 12 3 April 27 3 April 16 3 April 19 3 May 13 3 May 15 3 April 28	12 30. 4 12 38. 7 13 2. 8 13 16. 5 13 36. 8 14 17. 2 14 17. 1 14 17. 1 15 14 37. 8	32. 1 31. 4 39. 6 39. 5 39. 3 39. 3	9 32 0.8 - 0 14 39.6 +19 41 45.7 45 13 33.3 46 26 54.2 31 4 36.1 31 4 36.7 31 4 36.4 +40 21 35.5	3 33, 1 3 18, 6 3 30, 8 3 32, 9 3 28, 4 3 24, 9 3 25, 6 3 31, 0 3 31, 3 3 27, 4	15 13 48.6 15 14 8.2 15 14 56.8 14 56.6 14 56.4 14 56.7	35 33.9 - 0 17 58.2 +19 38 14.9 +45 10 0.4 +46 23 25.8 +31 1 11.1 1 7.6 1 5.1 +40 18 8.1

(218)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	iuox 1800, 0
						FF		а	δ
3951 13952* 3953 3954 3955 3956 3957 3958 3959 3960	Groombridge 2221 Bessel, W.329 9 Serpentis Piazzi 72 51 Boötis " 32 Libræ Lalande 28164	6 8 7.6 6	3 May 29 3 April 25 3 April 25 3 May 9 3 May 29 3 April 28 3 May 13 3 May 15 3 May 4 3 May 12	h m s 15 14 38.9 14 28.9 15 46.4 16 10.2 16 10.6 16 20.7 16 20.8 16 20.8 16 5.5 16 50.3	+ 34.8 46.3 44.9 43.4 43.2 36.0 35.9 35.9 54.7 31.3	0 / " +40 21 42.1 11 46 53.1 16 11 52.4 20 14 59.3 20 14 59.5 38 8 30.3 38 8 35.7 +38 8 34.3 —15 56 57.5 +46 2 31.8	3 35.5 3 26.9 3 25.3 3 27.1 3 30.8 3 25.1 3 29.0 3 29.4 3 26.8 3 28.7	h m s 15 15 13.7 15 15 15.2 15 16 31.3 15 16 53.6 16 53.8 15 16 56.7 16 56.7 16 56.7 15 17 0.2 15 17 21.6	0 / " +40 18 6.6 +11 43 26.2 +16 8 27.1 +20 11 32.2 11 28.7 +38 5 5.2 5 6.7 5 4.9 -16 0 24.3 +45 59 3.1
3961 3962 3963 3964 3965 3966 3967 3968 3969*	33 Librse ζ ² Piazzi 81 10 Serpentis . 34 Librse ζ ³ Johnson 3387 3 Coronse Bor. β	7 6.7 4.5 6.7 8 7 9 8.9	3 April 18 3 May 16 3 April 3 4 June 5 3 May 16 3 April 27 3 April 28 3 May 13 3 May 15 3 April 16	17 22. 4 17 22. 7 17 49. 6 17 46. 5 18 30. 4 19 0. 3 19 0. 0 19 0. 0 19 0. 7 18 55. 7		-16 40 53.6 -16 40 56.6 +35 5 40.7 + 2 36 2.6 -15 51 16.5 +41 46 4.7 44 46 15.3 44 46 11.7 29 51 30.0	3 26. 2 3 25. 2 3 18. 3 3 13. 6 3 24. 1 3 21. 9 3 22. 2 3 26. 5 3 26. 8 3 19. 6	15 18 17.6 18 17.5 15 18 27.5 15 18 32.0 15 19 25.0 15 19 32.4 19 32.5 19 32.7 15 19 35.6	-16 44 19.8 44 21.8 +35 2 22.4 + 2 32 49.0 -15 54 40.0 +44 42 42.8 42 39.8 42 48.8 42 44.9 +29 48 10.4
3971 3972* 3973 3974 3975 3976* 3977 3978 3979 3980*	". Piazzi 89	7 6.7 6.7 7.8 8	3 April 19 3 July 9 3 July 10 3 July 29 3 April 25 3 May 5 3 April 28 3 May 12 3 April 18	18 55. 9 18 56. 2 18 57. 0 18 55. 5 19 15. 9 19 15. 7 20 29. 4 20 30. 3 20 31. 0 20 13. 0	39, 9 39, 7 39, 7 39, 3 44, 5 44, 4 35, 6 35, 1 35, 0 56, 0	29 51 29, 9 29 51 44, 7 29 51 45, 0 17 8 37, 8 17 8 48, 6 39 28 38, 6 39 28 39, 1 +39 28 43, 9 —18 55 12, 4	3 20. 2 3 36. 7 3 36. 9 3 38. 8 3 21. 2 3 24. 2 3 14. 9 3 20. 3 3 23. 9 3 23. 4	19 35. 8 19 35. 9 19 36. 7 19 34. 8 15 20 0. 4 20 0. 1 15 21 5. 0 21 5. 4 21 6. 0 15 21 9. 0	48 9.7 48 8.0 48 7.8 48 6.2 +17 5 16.6 5 21.8 +39 25 23.7 25 18.8 25 20.0 -18 58 35.8
3981 3952 3953 3954 3955 3956 3957 3958 3959 3990*	35 Libræ ζ ⁴ Piazzi 100 Arg. Z. Oelt. 15405 11 Serpentis 12 Serpentis	6 7 7 5.6 7	3 May 4 3 May 16 3 May 29 3 May 13 3 May 15 4 June 5 3 April 3 3 April 19 3 April 25 3 May 9	20 43, 9 20 44, 0 21 39, 5 21 49, 7 21 49, 6 21 53, 6 22 12, 4 22 12, 3 22 12, 4 22 12, 3	38.5 29.7 29.7 47.4 45.0 44.7 44.6	16 6 24.5 -16 6 24.8 +32 2 10.9 47 57 7.1 +47 57 6.8 -0 26 42.7 16 47 49.3 16 47 53.2 16 47 51.8 +16 47 59.3	3 21.7 3 21.5 3 26.0 3 23.3 3 23.8 3 8.9 3 15.2 3 17.0 3 17.8 3 20.0	15 21 38.7 21 38.7 15 22 18.0 15 22 19.4 22 19.3 15 22 41.0 15 22 57.0 22 57.0 22 56.7	-16 9 46.2 9 46.3 +31 58 44.9 +47 53 43.8 53 43.0 - 0 29 51.6 +16 44 34.1 44 36.2 44 34.0 44 39.3
3991 3992 3993* 3994 3995 3996* 3997 3998 3999 4000	Lalande 28345 . Lalande 28347 . Piazzi 109 . 38 Libræ	7 6 6 6 6.7 6	3 May 16 3 April 27 3 April 28 3 April 3 3 April 25 3 April 16 3 April 18 3 May 4 3 May 13 3 May 15	22 46.8 23 10.2 23 10.4 23 6.5 23 7.6 23 26.8 23 27.5 23 27.2 24 3.8 24 3.8	36. 1 45. 0 44. 6 54. 5 54. 5 54. 2	-16 23 59.5 +37 21 37.8 37 21 36.3 16 45 2.2 +16 45 7.8 -14 3 20.9 14 3 16.7 -14 3 21.8 +41 38 24.0 41 38 20.7	3 13.4 3 16.7 3 17.1 3 14.0 3 16.7 3 19.0 3 19.0 3 18.5 3 20.1 3 20.5	15 23 41.6 15 23 46.3 23 46.5 15 23 51.5 23 52.2 15 24 21.3 24 22.0 24 21.4 15 24 37.4 24 37.4	-16 27 12.9 +37 18 21.1 18 19.2 +16 41 48.2 41 51.1 -14 6 39.9 6 35.7 6 40.3 +41 35 3.9 35 0.2
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010	4 Coronse θ Lalande 28389 . 5 Coronse a	7.8 2.3 2.3	4 June 5 3 May 16 3 April 27 3 May 12 3 May 29 3 July 8 3 July 9 3 July 10 3 July 10 3 July 14 3 July 19	24 15. 4 24 24. 3 25 32. 9 25 32. 8 25 32. 8 25 32. 8 25 32. 8 25 32. 8 25 32. 8 25 32. 8	54. 8 40. 5 40. 4 40. 3 40. 4 40. 4 40. 4 40. 5	+32 5 44.5 -16 16 50.5 +27 26 59.7 27 27 5.0 27 27 6.7 27 27 13.0 27 27 13.2 27 27 13.7 27 27 14.3 +27 27 14.1	3 11.2 3 12.0 3 13.8 3 17.0 3 20.7 3 28.4 3 28.5 3 28.6 3 28.6 3 29.1 — 3 29.8	15 25 19. 1 15 26 13. 4 26 13. 3 26 13. 1 26 13. 2 26 13. 5 26 13. 2 26 13. 3	+32 2 33.3 -16 20 2.5 +27 23 45.9 23 48.0 23 46.0 23 44.6 23 44.7 23 45.2 +27 23 44.3

(219)

No.	Name	Mag.	Dute	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
1,0,								а	δ
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020	5 Coronæ 15 Serpentis 18 Serpentis 7 ² 614 Mayer 41 Libræ Lalande 2×466 6 Coronæ Bor. μ Lalande 2×505,6 Lalande 2×572,3	7.6 6 7.8 6.7	3 July 29 3 April 3 3 April 28 3 April 19 3 May 4 3 May 13 3 May 15 3 April 25 3 April 28	h m s 15 25 32.8 25 44.4 26 32.1 26 26.7 26 29.1 26 39.3 27 20.5 27 20.3 28 3.2 29 57.4	** + 40.7 44.4 44.5 54.4 55.8 56.9 34.5 34.5 39.1 45.8	+27 27 13.0 18 22 59.7 +16 50 38.9 -13 47 25.3 18 34 34.6 -22 25 45.9 +39 44 7.5 30 42 58.6 +12 45 48.0	3 30.7 3 10.7 3 13.2 3 15.4 3 15.1 3 15.0 3 16.0 3 16.4 3 10.5 3 0.7	h m s 15 26 13.5 15 26 28.8 15 27 16.6 15 27 21.1 15 27 24.9 15 27 55.0 27 54.8 15 28 42.3 15 30 43.2	+27 23 42.3 +18 19 49.0 +16 47 25.7 -13 50 40.7 -18 37 49.7 -22 29 0.9 +39 40 53.0 40 51.1 +30 39 48.1 +12 42 47.3
4021 4022 4023* 4024 4025 4026 4027 4028 4029 4030	43 Libræ κ Piazzi 146 Piazzi 148 19 Serpentis τ ³ 7 Coronæ Bor ζ 20 Serpentis χ	7 7 6.7 6 7	3 May 4 3 May 12 3 May 29 3 April 25 3 May 13 3 May 15 3 May 12 3 May 29 3 April 3 3 April 28	29 30, 6 29 46, 6 29 46, 8 30 28, 7 30 28, 5 30 28, 9 31 4, 4 31 3, 6 31 14, 3 31 37, 5	56. 0 44. 2 44. 1 36. 8 36. 6 36. 6 44. 3 44. 1 36. 2 45. 6	-18 57 51.1 +17 1 21.2 17 1 23.6 35 23 16.2 35 23 16.3 35 23 14.6 16 43 53.4 16 43 58.0 37 20 33.6 13 33 5.0	3 12.0 3 11.4 3 14.5 3 7.4 3 11.7 3 12.3 3 9.9 3 12.9 3 2.0 3 7.1	15 30 26.6 15 30 30.8 30 30.9 15 31 5.5 31 5.1 31 5.5 15 31 48.7 31 47.7 15 31 50.5 15 32 23.1	-19 1 3.1 +16 58 9.8 58 9.1 +35 20 10.8 20 4.6 20 2.3 +16 40 43.5 40 45.1 +37 17 31.6 +13 29 57.9
4031 4032 4033* 4034 4035* 4036 4037 4038 4039 4040	Lalande 28612	8 8.9 6 7.8 6	3 April 27 3 May 9 4 June 5 3 July 8 3 May 16 3 May 4 3 May 31 3 April 25 3 May 13 3 May 15	31 42.9 31 43.1 31 58.3 31 56.2 32 28.8 32 55.5 33 40.1 33 40.7 33 40.8	47. 2 47. 1 39. 8 54. 4 59. 7 55. 7 58. 8 40. 5 40. 4	8 31 13.0 8 31 16.7 +20 22 21.1 -14 58 17.7 29 20 57.0 18 24 45.2 -27 22 12.0 +26 59 20.7 26 59 18.5 26 59 18.1	3 7.1 3 8.5 3 0.8 3 17.8 3 8.4 3 8.0 3 6.7 3 3.5 3 7.4 3 7.7	15 32 30.1 32 30.2 15 32 38.1 15 32 50.6 15 33 28.5 15 33 54.2 15 34 4.3 15 34 20.6 34 21.1 34 21.1	+ 8 28 5.9 28 8.2 +20 19 20.3 -15 1 35.5 -29 24 5.4 -18 27 53.2 -27 25 18.7 +26 56 17.2 56 11.1 56 10.4
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050	24 Serpentis a	7.8	4 June 5 3 April 27 3 April 28 3 May 29 3 July 8 3 July 9 3 July 10 3 July 19 3 July 26 3 May 9	33 42.6 33 37.3 33 37.6 33 38.5 33 38.2 33 38.4 33 37.9 33 38.1 34 17.6	37. 4 47. 7 47. 7 47. 3 47. 3 47. 3 47. 4 47. 4 47. 5 45. 9	26 59 13.9 7 6 54.0 7 6 57.3 7 6 58.3 7 7 3.0 7 7 0.7 7 7 2.9 7 7 2.1 7 7 5.0 11 57 35.4	2 59.8 3 4.8 3 5.0 3 8.8 3 13.6 3 13.7 3 13.8 3 14.6 3 15.3 3 5.5	34 20, 0 15 34 25, 0 34 25, 3 34 25, 8 34 25, 5 34 25, 7 34 25, 3 34 25, 5 34 25, 6 15 35 3, 5	56 14.1 + 7 3 49.2 3 52.3 3 49.5 3 49.4 3 47.0 3 49.1 3 47.5 3 49.7 +11 54 29.9
4051 4052 4053* 4054 4055 4056 4057 4058 4059* 4060	26 Serpentis . 9 Coronæ Bor. π Lacaille 6531 . Lalande 28746 . 26 Serpentis β	6 6 7 4.5	3 April 3 3 May 12 3 April 19 3 May 4 3 April 25 3 April 28 3 April 28 3 May 9 3 May 13 3 May 15	34 53. 2 35 29. 4 35 56. 2 36 12. 7 36 12. 9 36 13. 2 36 13. 2 36 13. 2	44. 4 37. 5 59. 8 52. 7 44. 6 44. 6 44. 4 44. 4	17 57 3.9 +33 12 23.3 -28 6 13.9 -8 47 53.3 +16 6 28.1 16 6 27.3 16 6 33.0 16 6 26.0 16 6 26.7	3 3.1	15 35 37.6 15 36 7.3 15 36 9.2 15 36 48.9 15 36 57.3 36 57.5 36 57.6 36 58.3 36 57.6	+17 54 1.2 +33 9 18.3 -28 9 21.6 - 8 50 57.0 +16 3 26.4 3 26.9 3 25.9 3 29.9 3 21.6 3 22.6
4061* 4062* 4063 4064 4065 4066 4067 4068 4069 4070		3 6 4	3 May 29 3 July 8 3 July 9 3 July 26 3 May 15 3 May 16 3 May 12 3 April 19 3 July 9	36 14.1 (36) 36 13.9 36 13.4 36 28.0 36 28.1 37 16.1 38 10.5 38 0.0 15 38 21.5	44. 3 44. 3 44. 5 44. 4 44. 3 61. 4 45. 0 58. 7 + 50. 4	16 6 31.3 16 6 39.3 16 6 37.0 16 6 40.4 16 12 23.8 +16 12 32.6 -32 57 12.6 +14 28 9.7 -25 4 49.0 - 2 45 24.8	3 6.7 3 8.7 3 13.0 3 14.9 3 3.6 3 3.9 3 3.9 3 5.5	36 58.4 (36) 36 58.2 36 57.9 15 37 12.4 37 12.4 15 38 17.5 15 38 55.5 15 38 58.7 15 39 11.9	3 24.6 3 30.6 3 24.0 3 25.5 +16 9 20.2 9 28.7 -33 0 15.6 +14 25 8.5 -25 7 52.9 - 2 48 30.3

(220)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Менп еqu	inox 1800, 0
								a	δ
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080	32 Serpentis	5. 6 5 8. 9	3 July 19 3 April 25 3 April 28 3 May 9 3 May 15 3 May 29 4 June 5 3 April 3 3 July 9 3 July 10	h m s 15 38 21.9 39 0.3 39 0.9 39 1.0 39 1.2 39 1.1 39 26.1 39 52.0 40 3.6 40 3.5	+ 50.5 43.6 43.6 43.4 43.2 45.3 45.5 47.9	-2 45 25.4 +18 49 7.0 18 49 6.9 18 49 8.8 18 49 5.7 18 49 10.7 2 51 51.9 14 43 50.5 5 8 26.3 5 8 26.7	- 3 6.2 2 57.4 2 57.9 2 59.9 3 0.9 3 3.4 2 50.2 2 54.0 3 5.6 3 5.7	h m s 15 39 12.4 15 39 43.9 39 44.5 39 44.4 39 44.6 39 44.3 15 40 11.4 15 40 37.5 15 40 51.5	0 / " - 2 48 31.6 +18 46 9.6 46 9.0 46 8.9 46 4.8 46 7.3 + 2 49 1.7 +14 40 56.5 + 5 5 20.7 5 21.0
4081 4082 4083 4084 4085 4086* 4087 4088 4089* 4090	10 Coronæ δ Serpentis R 2 Scorpii A ¹ 45 Libræ λ 46 Libræ θ 38 Serpentis ρ	7 6.7 4.5	3 July 19 3 July 26 3 May 12 3 April 27 3 April 28 3 April 19 3 May 16 3 May 4 3 July 8 3 May 13	40 3.3 40 3.2 40 32.5 40 44.1 40 44.3 40 38.8 40 40.2 40 48.2 41 32.7 41 46.9	48. 0 48. 0 40. 2 44. 6 44. 9 58. 6 58. 1 56. 4 54. 8 42. 2	5 8 26.1 5 8 28.5 26 44 20.2 15 47 57.8 +15 47 57.1 -24 40 3.2 24 40 2.6 19 30 22.7 -16 4 55.0 +21 38 11.9	3 6.5 3 7.0 2 58.6 2 55.8 3 0.7 2 58.8 2 58.6 2 58.0 2 57.2	40 51.3 40 51.2 15 41 12.7 15 41 28.7 41 29.2 15 41 38.3 15 41 44.6 15 42 27.5 15 42 29.1	5 19.6 5 21.5 +26 41 21.6 +15 45 2.2 45 1.3 -24 43 3.4 -19 33 21.3 -16 7 53.0 +21 35 14.7
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100	11 Coronæ κ 139 Serpentis - Piazzi 203	8 7.8 6	3 May 15 3 May 29 3 April 3 3 May 9 3 May 16 3 May 12 3 July 5 4 June 5 3 April 27	41 46.8 41 47.0 42 .4.5 42 4.3 42 27.8 43 7.0 43 6.3 43 8.9 43 8.5 43 10.3	42. 2 42. 1 45. 0 44. 4 58. 5 35. 7 35. 7 33. 1 45. 3 43. 8	21 38 13.8 21 38 15.0 15 53 59.9 +15 54 6.0 -25 36 49.5 +36 20 9.2 36 20 22.4 36 20 8.0 13 53 0.2 18 3 21.3	2 57. 5 3 0.3 2 50. 8 2 55. 9 2 56. 5 2 55. 8 3 8. 5 2 50. 0 2 52. 5 2 52. 4	42 29.0 42 29.1 15 42 49.5 42 48.7 15 43 26.3 15 43 42.0 43 42.0 43 42.0 15 43 53.8 15 43 54.1	35 16.3 35 14.7 +15 51 9.1 51 10.1 -25 39 46.0 +36 17 13.4 17 13.9 17 18.0 +13 50 7.7 +18 0 28.9
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110		6.7 7 6.7 6 6 6 6	3 April 28 3 May 13 3 July 8 3 July 9 3 May 29 3 April 19 3 May 4 3 April 3 3 April 27 3 April 28	43 10.0 43 10.0 (43) 43 34.6 44 14.2 44 24.6 45 58.6 45 59.8 45 59.5	59. 5 46. 5 54. 9 54. 6	18 3 26.8 +18 3 25.7 -28 34 12.4 -28 34 17.7 + 9 13 41.6 -14 11 1.7 -14 11 0.2 +19 15 41.4 19 15 44.8	2 52. 7 2 55. 3 2 52. 4 2 52. 3 2 55. 6 2 54. 3 2 53. 9 2 45. 6 2 48. 8 2 49. 1	43 53.8 43 53.6 15(44) 44 34.1 15 45 0.7 15 45 19.2 15 46 42.4 46 43.1 46 42.8	0 34.1 0 30.4 -28 37 4.8 37 10.0 + 9 10 46.0 -14 13 56.0 13 54.1 +19 12 55.8 13 0.5 12 55.7
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120	6 Scorpii π 41 Serpentis γ	7	3 May 9 3 May 31 3 July 8 3 July 9 3 July 25 3 April 25 3 May 13 3 May 15 3 July 5 3 July 14	45 59. 3 45 48. 8 45 48. 1 45 48. 3 45 47. 9 46 28. 3 46 28. 9 46 29. 4 46 29. 2	43. 1 58. 4 58. 3 58. 3 58. 4 44. 4 44. 1 44. 1 44. 0 44. 0	+19 15 47.0 -25 28 32.4 25 28 41.8 25 28 45.8 -25 28 40.9 +16 22 36.9 16 22 33.1 16 22 43.2 16 22 48.4	2 51. 1 2 51. 8 2 50. 6 2 50. 5 2 50. 5 2 48. 2 2 51. 2 2 51. 5 2 59. 3 3 1. 2	46 42.4 15 46 47.2 46 46.4 46 46.6 46 46.3 15 47 12.8 47 13.4 47 13.0 47 13.2	12 55.9 -25 31 24.2 31 32.4 31 36.3 31 31.5 +16 19 46.2 19 41.6 19 43.9 19 47.2
4121 4122 4123 4124* 4125 4126 4127 4128 4129 4130	2 Herculis		4 June 5 3 July 5 3 April 19 3 July 19 3 May 29 3 May 4 3 April 3 3 April 27 3 April 28 3 May 9	47 28.5 47 56.8 47 33.9 47 34.5 48 15.1 48 38.1 48 39.0 48 38.7 15 48 38.9	57.7 57.1 31.3 55.1 40.4 39.9 39.9	43 46 24.6 +38 34 57.1 -21 59 33.5 -21 59 26.4 +43 12 9.3 -15 52 58.8 +27 30 38.0 27 30 42.8 27 30 42.7 +27 30 45.6	2 45. 4 3 2.9 2 51.7 3 1.7 2 54.1 2 49. 4 2 41.1 2 43.5 2 45. 4 — 2 47.7	15 48 31. 1 15 48 31. 6 48 31. 6 15 48 46. 4 15 49 8. 2 15 49 18. 5 49 18. 9 49 18. 6	+43 43 39.2 +38 31 54.2 -22 2 25.2 2 28.1 +43 9 15.2 -15 55 48.2 +27 27 56.9 27 59.3 +27 27 57.9

(221)

No.	Name	Mag.	Date	Αpp't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800, 0
110.	Aumo	mag.	Dave					а	δ
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140	13 Coronæ Bor. ε Piazzi 239 Lalande 29160 Lacaille 6663 5 Herculis r	5 6.7 6.7 6 7.8 7 6	3 May 13 3 May 15 3 April 25 3 May 13 3 May 15 3 May 15 3 July 5 3 April 19 3 May 29 3 July 10	h m s 15 48 38.6 48 38.5 50 59.6 50 59.6 51 0.1 50 50.9 50 51.1 50 56.9 51 32.7 51 32.5	** 39.7 39.7 35.1 34.9 34.8 45.0 44.8 58.6 43.2 43.2	+27 30 43.8 27 30 41.0 37 15 47.7 37 15 52.3 13 53 28.3 +13 53 40.8 -24 6 52.9 +18 25 42.0 18 25 38.1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	h m s 15 49 18.3 49 18.2 15 51 34.7 51 34.5 51 34.9 15 51 35.9 15 51 55.5 15 52 15.9 52 15.7	+27 27 53.5 27 51.1 +37 13 6.4 13 9.1 13 6.6 +13 50 43.6 50 46.8 -24 9 40.5 +18 22 54.4 22 43.1
4141 4142 4143* 4144 4145 4146* 4147 4148 4149 4150	Lalande 29196 Bessel, W.1390,1 51 Libræ ξ 15 Coronæ Bor. ρ 14 Coronæ Bor. λ 44 Serpentis π Johnson 3482	7.8 7 7 6.7 9	3 May 12 3 July 8 3 April 27 3 April 28 3 May 4 3 April 29 4 June 5 3 May 13 3 May 15	51 49.6 51 50.2 52 12.3 52 11.9 52 29.6 52 48.1 52 47.9 53 2.0 53 16.6 53 16.1	44. 8 44. 8 37. 6 53. 5 36. 8 38. 3 38. 3 33. 3	14 5 3.7 14 (5) 32 11 7.9 +32 11 13.8 -10 45 54.7 +33 57 48.6 30 27 52.9 23 24 40.9 39 47 25.1 +39 47 26.6	2 43. 9 2 40. 2 2 40. 7 2 43. 8 2 43. 4 2 42. 3 2 36. 7 2 43. 1 2 43. 0	15 52 34, 4 52 35, 0 15 52 49, 9 52 49, 5 15 53 23, 1 15 53 26, 2 15 53 40, 3 15 53 49, 9 53 49, 4	+14 2 19.3 (2) +32 8 27. 8 33. -10 48 38.3 +33 55 5. +30 25 10. +23 22 4.3 +39 44 42. 44 43.
4151 4152 4153* 4154 4155 4156* 4157 4158 4159 4160	β Scorpii	6.7 7.8 6 6	3 April 19 3 May 31 3 July 9 3 July 14 3 July 19 3 July 25 3 April 25 3 July 5 3 July 8	52 52.2 52 53.6 52 53.9 52 53.5 52 53.5 52 53.7 54 7.0 54 7.3 54 8.1 54 8.3	57. 8 56. 2 56. 1 56. 1 56. 2 44. 0 43. 5 43. 1	-19 11 57.7 19 11 57.2 19 12 4.9 19 12 3.3 19 12 0.1 -19 11 59.2 +18 24 14.6 18 24 24.9 18 24 30.8 18 24 32.6	2 44. 8 2 43. 6 2 43. 6 2 43. 6 2 43. 5 2 43. 5 2 35. 5 2 38. 3 2 50. 9 2 51. 3	15 53 50.0 53 49.8 53 50.0 53 49.7 53 49.6 53 49.9 15 54 51.0 54 50.8 54 51.2 54 51.4	—19 14 42. 14 40. 14 48. 14 46. 14 43. 14 42. +18 21 39. 21 46. 21 39. 21 41.
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170	Groombridge 2299 10 Scorpii ω² Piazzi 266 6 Herculis " Lacaille 6710	8 9 7 6 7 6.7 6	3 May 13 3 May 15 3 July 9 3 April 27 3 April 28 3 May 12 3 May 13 3 May 15 3 May 29 3 April 19	54 31.3 54 31.3 (54) 55 23.4 55 23.6 56 7.0 56 5.4 56 5.4 56 6.1 55 50.4	34. 9 34. 9 28. 6 28. 6 28. 6	40 37 42.5 +40 37 39.5 -20 16 19.3 +37 14 3.7 37 14 1.1 46 38 32.9 46 38 29.7 +46 36 35.9 -23 5 37.8	2 41. 4 2 41. 9 2 41. 1 2 35. 9 2 36. 2 2 40. 1 2 39. 7 2 40. 2 2 44. 2 2 41. 8	15 55 4.1 55 4.1 15(55) 15 55 58.3 55 58.5 15 56 35.0 56 34.0 56 34.6 15 56 48.8	+40 35 1. 34 5720 19 0. +37 11 27. 11 24. +46 35 51. 35 49. 35 5123 8 19.
4171 4172 4173 4174 4175 4176* 4177 4178* 4179* 4180	Piazzi 275 Lalande 29378 Groombridge 2305 45 Serpentis Lalande 29386 46 Serpentis Lalande 29410	7.8 7 6.7 6.7 7.8 6.7 6	3 May 16 3 April 25 3 July 5 3 July 8 3 July 10 4 June 5 3 April 27 3 April 28	56 48.7 57 21.9 57 30.8 57 31.1 57 18.7 57 21.8 57 23.6 57 51.1 58 0.4 58 0.7	56. 3 37. 2 33. 2 33. 1 45. 9 42. 8 45. 6 42. 7 41. 8	-18 52 3.9 +32 50 28.1 39 45 4.3 39 45 6.3 10 28 51.7 10 29 2.6 13 55 18.2 10 39 55.7 22 24 46.0 22 24 44.7	2 58.9 2 33.1 2 50.8 2 51.4 2 45.7 2 30.0 2 32.5 2 29.5 2 33.2 2 33.3	58 4.6 15 58 9.2 15 58 33.8	-18 55 2. +32 47 55. +39 42 13. 42 14. +10 26 6. 26 32. +13 52 45. +10 37 26. +22 22 12. 22 11.
4181 4182* 4183 4184 4185 4186 4187 4188 4189 4190	Lalande 29424 7 Herculis	5 6.7 7	3 May 4 3 May 15 3 May 29 3 May 15 3 July 9 3 May 31 3 July 9 3 May 16 3 July 23 3 July 23	58 11.5 58 20.0 58 19.9 59 2.6 58 56.3 59 1.8 59 0.8 59 27.3 59 27.4	48. 5 43. 5 . 43. 3 43. 4 59. 5 59. 4 59. 3 56. 3 56. 1 + 56. 1	4 2 14.8 17 37 55.9 17 37 55.9 +17 47 18.0 -27 50 30.4 27 20 57.8 27 21 10.2 18 53 4.2 18 53 8.1 -18 53 5.6	2 35.9 2 36.9 2 38.9 2 35.2 2 34.0 2 35.8 2 34.1 2 35.7 2 35.7 2 35.7	15 59 3, 5 59 3, 2	+ 3 59 38. +17 35 17. 35 21. +17 44 42. -27 53 4. -27 23 33. 23 44. -18 55 39. 55 43. -18 55 41.

(222)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
1								a	δ
4191 4192 4193 4194 4195 4196* 4197 4198 4199 4200	Lalande 29489 . Lacaille 6745 . 16 Coronæ 7 Lalande 29506	7.8 6 7 7.8 6 6	3 April 25 3 April 19 3 July 19 3 July 5 3 July 8 3 April 27 3 April 28 3 May 12 3 May 13 3 May 15	h m s 16 0 36.7 0 34.2 1 4.8 1 15.8 1 15.9 1 41.9 1 42.2 1 42.9 1 42.5 1 42.3	# 32.4 62.4 34.7 29.0 29.0 43.8 43.8 43.6 43.6	+41 12 9.0 -32 26 36.5 +37 3 8.0 45 57 43.9 45 57 43.6 17 14 3.2 17 14 0.9 17 14 2.3 17 14 3.2	2 28.5 2 37.9 2 48.2 2 46.8 2 47.4 2 28.5 2 32.6 2 31.4 2 31.5 2 31.8	h m s 16 1 9.1 16 1 36.6 16 1 39.5 16 1 44.8 1 44.9 16 2 25.7 2 26.0 2 26.5 2 26.1 2 25.9	+41 9 40.5 -32 29 14.4 +37 0 19.8 +45 54 57.1 54 56.2 +17 11 34.7 11 31.8 11 29.5 11 30.8 11 31.4
4201 4202 4203* 4204* 4205 4206 4207 4208 4209 4210	Arg. Z., Oel. 15942 640 Mayer 9 Herculis Lalande 29566 1 Ophiuchi """ """	8 9. 10 7	3 May 29 3 July 5 3 July 8 3 July 9 3 July 23 4 June 5 3 May 4 3 May 16 3 July 10 3 July 26	1 42.4° 2 11.4 2 11.2 1 49.1 2 34.9 2 55.2 3 2.0 3 1.7 3 2.5 3 2.4	43. 4 28. 9 29. 0 58. 4 47. 2 41. 7 51. 0 50. 8 50. 5	17 14 7.9 45 55 44.8 +45 55 46.5 -24 54 52.4 + 5 35 11.0 +13 21 34.7 - 3 7 36.3 3 7 27.1 3 7 29.0 3 7 26.4	2 34. 2 2 45. 6 2 46. 8 2 31. 2 2 39. 0 2 23. 6 2 29. 7 2 30. 6 2 35. 1 2 35. 3	2 25. 8 16 2 40. 3 2 40. 2 16 2 47. 5 16 3 22. 1 16 3 36. 9 16 3 53. 0 3 52. 5 3 53. 0 3 53. 0	11 33.7 +45 52 59.2 52 59.7 -24 57 23.6 + 5 32 32.0 +13 19 11. - 3 10 6.0 9 57.7 10 4.1 10 1.7
4211 4212 4213 4214* 4215 4216 4217 4218 4219 4220	49 Serpentis	6 6 7 7 6.7 7	4 Sept. 17 4 June 5 3 April 25 3 July 19 3 April 28 3 May 13 3 May 15 3 May 29 3 July 5	3 5. 0 3 17. 2 3 54. 6 3 55. 1 3 49. 5 3 50. 3 3 49. 9 3 50. 3 4 14. 6 4 39. 6	47. 9 41. 5 34. 8 34. 4 40. 2 39. 7 39. 4 39. 4 46. 6 30. 5	-3 7 39.2 +14 6 44.0 36 59 22.5 36 59 44.0 27 13 59.6 27 14 1.3 27 14 1.4 27 14 1.1 8 24 54.6 42 56 22.9	2 28. 0 2 23. 1 2 24. 1 2 45. 5 2 21. 4 2 25. 5 2 25. 8 2 29. 3 2 30. 6 2 37. 2	4 30.0 4 29.3 4 29.7	10 7.2 +14 4 20.9 +36 56 58.4 56 58.5 +27 11 38.2 11 32.6 11 31.8 + 8 22 24.0 +42 53 45.7
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230	Flamsteed, B.2227 Lacaille 6781 15 Herculis 16 Herculis 17 Coronæ σ 18 Grande σ 19 Grande σ 19 Grande σ	6 7 6 6.7	3 July 8 3 May 31 3 April 19 3 July 10 4 June 5 3 April 27 3 April 28 3 July 19 3 April 25 3 May 13	4 39.7 4 56.1 5 10.8 5 50.0 5 52.4 5 54.0 5 55.0 6 35.2 6 36.0	59. 9 63. 8	+42 56 23. 1 -28 3 35. 4 -34 56 27. 3 +11 58 24. 6 11 58 6. 5 19 21 49. 9 19 22 0. 7 34 24 47. 2 34 24 50. 6	2 38, 4 2 28, 4 2 32, 6 2 34, 6 2 19, 2 2 23, 1 2 38, 0 2 20, 8 2 25, 2	5 10.3 16 5 56.0 16 6 14.6 16 6 35.1 6 34.5 16 6 37.3 6 36.9 6 37.6 16 7 11.4 7 11.9	53 44.7 -28 6 3.8 -34 58 59.9 +11 55 50.0 55 47.3 +19 19 25.8 19 26.8 19 22.7 +34 22 26.4 22 25.4
4231* 4232* 4233 4234* 4236 4237 4238 4239* 4240	17 Herculis	7.6 7 7.8 7.8 8 7.8	3 May 15 4 June 5 3 July 23 3 July 26 3 July 26 4 Sept. 17 3 April 27 3 April 28 3 July 5 3 July 8	6 35. 9 7 6. 2 6 54. 3 6 54. 3 6 54. 0 7 21. 9 7 22. 0 8 0. 4 8 0. 7	50.9 51.0 51.0 47.3	34 24 49.7 +23 40 7.4 -4 9 6.4 4 9 5.4 4 9 9.0 -4 9 13.8 +19 23 23.0 19 23 22.7 37 6 11.1 37 6 10.8	2 25, 5 2 20, 2 2 30, 7 2 30, 9 2 31, 1 2 23, 1 2 20, 9 2 21, 2 2 36, 5 2 37, 1	16 7 45.2 7 45.3 7 45.2 7 44.3 16 8 4.8 8 4.9	22 24.2 +23 37 47.2 - 4 11 37.1 11 36.3 11 40.1 11 36.9 +19 21 2.1 21 1.5 +37 3 34.6 3 33.7
4241 4242* 4243 4244 4245 4246 4247 4248 4249 4250	18 Coronæ Bor. v 20 Scorpii σ Lalande 29762 Lalande 29752 19 Herculis Flamsteed, B.2244	9.10 7 6 6 6.7 6	3 May 29 3 May 16 3 May 31 3 July 9 3 July 9 3 April 25 3 May 13 3 May 15 3 April 27 3 April 28	8 6.2 8 4.5 8 4.8 8 4.3 8 54.6 9 21.2 9 26.7 9 27.0 10 42.3 16 10 42.0	58.9 58.7 58.5 34.3 37.2 39.7 39.6 42.0	+29 41 43.9 -25 3 31.2 25 3 25.6 -25 3 37.9 +37 3 30.0 32 19 24.4 26 25 53.9 26 25 52.1 21 39 48.3 +21 39 52.1	2 27. 0 2 25. 2 2 24. 6 2 23. 3 2 35. 8 2 17. 0 2 21. 2 2 21. 6 2 21. 6 2 16. 2	16 9 3.4 9 3.5 9 2.8 16 9 28.9 16 9 58.4 16 10 6.4 10 6.6 16 11 24.3	+29 39 16.9 -25 5 56.4 5 50.2 6 1.2 +32 17 7.4 +26 23 32.7 23 30.5 +21 37 32.1 +21 37 35.6

(223)

No.	Name	Mag.	Date	App't a	Reduct'n	App' t մ	Reduction	Mean equi	nox 1800, 0
				- •				а	ð
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260	Flamsteed, B.2244 50 Serpentis σ 644 Mayer 4 Ophiuchi ψ Groombridge 2328 20 Herculis γ	6 5.6 6.7 6	3 July 5 3 July 8 3 July 10 3 April 19 3 July 9 3 May 13 3 May 15 3 April 25 3 May 16 3 July 8	h m s 16 10 42.4 (10) 11 8.3 11 6.6 11 28.9 12 32.3 12 32.1 12 23.1 12 23.6 12 22.9	# 41.5 48.9 61.3 56.4 32.3 32.4 42.8 42.5 42.3	+21 39 56.4 21, 39 59.3 + 1 33 1.9 -29 10 56.2 -19 31 6.0 +40 13 55.0 19 40 13.9 19 40 15.7 19 40 21.7	2 30, 3 2 30, 6 2 25, 8 2 23, 8 2 20, 3 2 17, 1 2 17, 7 2 14, 0 2 17, 8 2 28, 0	h m s 16 11 23.9 (11) 16 11 57.2 16 12 7.9 16 12 25.3 16 13 4.5 16 13 5.9 13 6.1 13 5.2	+21 37 26.1 37 28.7 + 1 30 36.1 -29 13 20.0 -19 33 26.3 +40 11 38.3 +19 37 59.9 37 57.9 37 53.7
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270	5 Ophiuchi ρ 22 Herculis τ 20 Corona Bor. ν^1 7 Ophiuchi χ 51 Serpentis ω	6 3.4	3 July 26 4 June 5 3 May 31 3 July 5 3 May 29 3 May 15 3 July 9 3 July 23 3 April 25 3 April 27	12 23.6 12 26.6 12 38.8 12 38.7 13 17.2 14 15.0 14 31.4 15 26.4 15 26.8	42. 4 39. 3 57. 9 57. 7 27. 5 35. 7 55. 8 55. 9 44. 8 44. 7	19 40 24.6 +19 40 6.4 -22 55 57.1 -22 55 59.1 +46 50 4.1 +34 18 56.7 -17 57 9.7 -17 57 5.3 +14 32 30.4 14 32 23.5	2 30.5 2 12.4 2 18.6 2 18.1 2 21.0 2 14.6 2 16.8 2 16.9 2 10.4 2 10.7	16 14 50.7 16 15 27.2 15 27.3	37 54. 1 37 54. 0 -22 58 15. 7 58 17. 2 +46 47 43. 1 +34 16 42. 1 -17 59 26. 5 59 22. 2 +14 30 20. 0 30 12. 8
4271 4272 4273 4274 4275* 4276 4277 4278 4279 4280	3 Ophiuchi v Antares	5	3 April 28 3 July 10 3 April 19 3 May 16 3 May 31 3 July 5 3 July 5 3 July 9 3 July 19 3 July 23	15 27.0 16 8.0 16 10.7 16 10.8 16 11.3 16 11.3 16 10.8 16 10.9 16 10.9	44. 7 50. 5 60. 0 59. 4 59. 2 59. 0 59. 0 59. 0 59. 1 59. 1	+14 32 25.0 - 7 52 58.1 25 56 15.6 25 56 13.0 25 56 16.1 25 56 14.5 25 56 18.4 25 56 17.9 25 56 15.6 25 56 14.2	2 10.9 2 17.1 2 16.5 2 14.6 2 15.5 2 12.9 2 12.8 2 12.7 2 12.4 2 12.4	16 11.7 16 16 58.5 16 17 10.7 17 10.2 17 10.5 17 10.3 17 9.9 17 10.0 17 9.9	30 14.1 7 54 45.2 25 58 32.1 58 27.6 58 31.6 58 27.4 58 30.6 58 28.0 58 26.6
4281 4282 4283 4284 4285 4286 4287 4288 4289 14290	" Lalande 29960, 1 " 25 Herculis	7 7.8 7 6	3 July 26 3 July 29 4 Sept. 17 3 May 13 3 May 15 3 May 23 3 July 9 3 July 23 4 June 5 3 May 31	16 10.5 16 10.9 16 14.0 16 51.7 16 52.0 17 43.4 18 8.5 (18) 18 50.3 18 51.7	59. 1 59. 1 55. 8 43. 7 43. 7 33. 4 59. 1 51. 5 50. 7	25 56 16.0 25 56 17.9 -25 56 26.2 +16 28 9.6 16 28 14.6 +37 53 39.6 -26 3 9.2 16 7 37.2 16 7 46.9 3 16 26.8	2 12.4 2 12.4 2 4.7 2 11.4 2 12.6 2 14.1 2 10.4 2 16.0 2 2.3 2 11.2	17 9.6 17 10.0 17 9.8 16 17 35.4 17 35.7 16 18 16.8 16 19 7.6 16 (19) 19 41.8 16 19 42.4	58 28.4 58 30.3 58 30.9 +16 25 58.2 26 2.0 +37 51 25.5 -26 5 19.6 -16 9 53.2 9 49.2 - 3 18 38.0
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300	Bessel, W.425 Lalande 30024–6 9 Ophiuchi ω 26 Herculis Lalande 30051 27 Herculis β	7.8 7.8 7 7 7 6.7	3 July 10 3 May 13 3 May 15 3 July 19 3 July 26 3 April 27 3 April 28 3 May 16 3 May 29 3 July 29	18 51.7 19 22.8 19 22.9 19 21.3 19 20.8 19 45.4 20 6.5 20 56.5	51. 4 42. 7 42. 7 57. 1 57. 1 36. 4 36. 4 54. 0 41. 2	- 7 1 42.5 +18 52 35.4 +18 52 33.2 -20 59 22.8 -20 59 22.7 +33 11 15.2 +33 11 13.3 -11 57 8.8 +21 58 9.8 21 58 22.6	2 13.6 2 7.9 2 8.3 2 9.8 2 10.0 2 3.3 2 3.5 2 8.8 2 9.0 2 19.9	16 19 43.1 16 20 5.5 20 5.6 16 20 18.4 20 17.9 16 20 21.8 16 21 0.5 16 21 37.7 21 37.7	50 24.9 -21 1 32.6 1 32.7
4301 4302* 4303 4304 4305 4306 4307 4308 4309 4310	Flamsteed, B.2260 28 Herculis 29 Herculis 23 Scorpii	6 6 7	4 Sept. 17 3 April 28 3 May 13 4 June 5 3 May 31 3 July 5 3 July 8 3 July 9 3 July 19 3 July 23	20 58.3 21 10.6 21 10.8 22 0.2 22 30.8 22 27.7 22 27.3 22 27.2 16 22 27.5	42. 1 41. 8 44. 1 45. 2 59. 9 59. 9 59. 9	20 57 35.4 20 57 37.8 5 59 29.9 +11 57 45.5.2 -27 45 5.2 27 45 12.4 27 45 10.2	2 13.5 2 0.5 2 3.9 1 59.5 2 6.8 2 4.5 2 4.4 2 1.2 2 1.1	16 23 27.6 23 27.2	56 5.1 +20 55 34.9 55 33.9 + 5 57 30.4 +11 55 42.7 -27 47 9.7 47 16.8 47 18.8 47 11.4 -27 47 8.4

- -(224)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction		inox 1800.0
						!		а	ð
4311 4312* 4313 4314 4315 4316 4317 4318 4319 4320*	23 Scorpii τ 31 Herculis 32 Herculis 12 Ophiuchi Lalande 30193 . 13 Ophiuchi ζ	7.8 6.7 8 7	3 July 26 3 May 29 3 April 27 3 April 28 3 May 13 3 May 15 3 June 3 3 July 10 3 April 19 3 May 16	h m s 16 22 27.3 23 24.9 25 4.4 25 5.1 25 5.2 25 1.2 25 1.2 25 15.9 25 16.2	# 60.0 36.3 37.5 37.5 37.2 37.2 48.7 53.9 53.4	0 / " -27 45 11.3 +33 59 9.9 30 57 32.6 30 57 35.5 30 57 37.7 +30 57 34.4 -1 50 39.7 -10 6 58.3 10 6 57.0	2 1.1 2 6.2 1 55.9 1 56.3 1 59.7 2 0.2 2 3.4 2 7.4 2 0.9 2 1.7	h m s 16 23 27.3 16 24 1.2 16 25 41.9 25 42.3 25 42.3 25 42.4 16 25 57.4 16 26 9.8 26 9.6	-27 47 12.4 +33 57 3.7 +30 55 36.7 55 39.2 55 38.0 -1 53 3.0 +1 48 32.3 -10 8 59.2 8 58.7
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330*	653 Mayer	8 6.7 7.6 7	3 July 23 3 July 26 4 Oct. 1 3 July 9 3 May 29 3 May 13 3 May 15 3 April 27 3 April 28 3 July 8	25 16.7 (25) 25 19.2 25 57.8 26 22.0 27 9.5 27 9.9 27 4.7 27 4.6 27 25.8	53, 0 53, 1 50, 3 55, 8 46, 8 30, 1 30, 1 44, 4 49, 6	10 6 54.7 10 6 55.8 10 7 2.0 -17 46 19.3 + 7 33 28.4 42 53 18.1 14 55 24.9 +14 55 22.1 - 0 47 7.3	2 5.1 2 5.5 1 59.1 2 2.0 2 0.8 1 56.7 1 57.4 1 55.6 1 55.9 2 3.6	26 9.7 (26) 26 9.5 16 26 53.6 16 27 8.8 16 27 89.6 27 40.0 16 27 49.1 27 49.0 16 28 15.4	8 59.8 9 1.3 9 1.1 -17 48 21.3 + 7 31 27.6 +42 51 21.4 51 20.7 +14 53 29.3 53 26.2 - 0 49 10.9
4331* 4332 4333 4334 4335 4336 4337 4338 4239 4340	Lalande 30273,4 655 Mayer 24 Scorpii Groombridge 6223 36 Herculis m ¹ 37 Herculis m ² Lalande 30344	7 7.8 6 6 6 6.7 6.7 7.6	3 May 31 3 July 9 3 July 9 3 May 13 3 May 15 3 May 29 3 May 16 3 May 29 3 April 27 3 April 28	27 50. 5 28 47. 2 29 5. 8 29 55. 5 29 55. 8 29 55. 4 29 55. 4 29 55. 7 30 8. 1 30 8. 3	52. 8 55. 8 55. 7 26. 9 26. 8 47. 9 48. 0 47. 9 41. 4	9 6 8.8 17 37 25.5 -17 18 38.0 +47 3 17.6 47 3 19.6 4 38 27.8 4 39 15.1 4 39 22 26 44.2 22 26 44.3	1 59, 3 1 58, 2 1 58, 0 1 52, 9 1 53, 4 1 56, 3 1 54, 6 1 49, 7 1 49, 8	16 28 43.3 16 29 43.0 16 30 1.5 16 30 22.4 30 22.4 30 23.9 16 30 43.4 30 43.6 16 30 49.5 30 49.5	- 9 8 8.1 -17 39 23.5 -17 20 36.0 +47 1 24.7 1 26.4 + 4 36 36.4 + 4 37 20.5 37 +22 24 54.5 24 54.5
4341 4342 4343 4344 4345 4346* 4347 4348 4349 4350	14 Ophiuchi	6 7 7 6.7 6 6.7	3 May 31 3 July 19 3 July 23 4 June 5 3 April 27 3 April 28 3 July 29 3 July 10 3 July 10 3 July 10 3 May 29	30 46. 1 30 51. 1 30 50. 6 30 53. 1 32 3. 0 32 3. 3 32 3. 5 32 27. 0 32 40. 7 32 51. 1	49, 0 47, 5 47, 5 44, 3 40, 1 40, 1 39, 7 36, 7 36, 7 38, 6	1 36 31.0 5 18 11.2 5 18 11.8 5 17 58.2 25 17 4.2 25 17 4.6 25 17 16.2 (49) 49 21 37.2 27 20 37.6	1 55. 3 2 1. 6 1 59. 5 1 48. 2 1 46. 7 1 47. 0 2 5. 9 2 5. 2 1 52. 7	31 38. 1 31 37. 4 16 32 43. 1 32 43. 4 32 43. 2 16 33 3. 7(16 33 17. 4	+ 1 34 35.7 + 5 16 9.6 16 12.3 16 10.1 +25 15 17.5 15 17.6 15 10.3 +49) +49 19 32.0 +27 18 44.9
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360	40 Herculis ζ Lalande 30438 . Lalande 30448 . 41 Herculis 44 Herculis η	6 6 6.7	3 May 15 3 July 8 3 July 26 3 June 3 3 June 3 3 May 31 3 July 19 3 July 23 3 May 15 3 July 8	33 9.6 33 10.1 33 9.6 33 10.5 33 30.7 34 29.4 34 29.3 34 29.6 35 30.3 35 30.6	36, 5 36, 3 36, 3 41, 0 41, 0 47, 1 47, 0 47, 0 32, 2 32, 0	32 0 2.4 32 0 18.6 32 0 24.2 22 0 54.9 22 4 6 30 54.8 6 30 58.2 6 30 56.9 39 20 21.5 39 20 33.5	1 48. 9 2 2. 0 2 2. 6 1 53. 2 1 50. 4 1 57. 0 1 57. 3 1 45. 4 1 59. 9	33 46.4 33 45.9 16 33 51.5 16 34 11.7	+31 58 13.5 58 16.6 58 21.6 +21 59 1.7 +22 2 + 6 29 4.4 29 1.2 28 59.6 +39 18 36.1 18 33.6
4361 4362 4363 4364 4365 4366 4367* 4368 4369 4370*	43 Herculis i Flamsteed, B.2310 19 Ophiuchi	6 6 7 6.7 6.7	3 May 16 3 April 27 3 April 28 3 May 29 3 July 23 3 July 23 3 May 31 3 July 29 3 April 27 3 July 23	35 27. 4 35 35. 8 35 35. 8 36 16. 6 36 29. 9 36 11. 0 37 8. 6 37 53. 6 38 11. 4 16 38 11. 8	63, 1 - 47, 4 - 53, 2 - 44, 8 -	8 59 16.8 16 9 16.3 16 9 15.8 2 28 0.4 +28 45 52.7 -33 53 12.0 +5 38 50.9 -10 23 9.7 +13 59 4.4 +13 59 12.8	1 48.6 1 39.4	16 36 19.7 36 19.7 16 37 5.2 16 37 7.8 16 37 56.0 16 38 46.8 16 38 56.2	+ 8 57 30.2 +16 7 32.6 7 32.8 + 2 26 12.7 +28 43 53.0 -33 54 56.3 +5 37 4.2 -10 24 58.3 +13 57 25.0 +13 57 18.8
	29	!						(2:	25)

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800. 0
_								a	ð
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380	Lalande 30590 Bessel, W.1289 Flamsteed, B.2318 47 Herculis k 21 Ophiuchi 48 Herculis 50 Herculis	6.7 7 6 6.5 6	3 July 19 3 May 15 3 June 3 3 April 27 3 July 19 3 July 23 3 May 16 3 May 31 3 May 29 3 May 29	h m s 16 38 11.5 38 26.8 38 26.9 (39) 39 37.3 39 37.3 39 50.3 40 28.2 40 51.8 42 13.7	+ 44.2 29.2 29.0 44.3 44.3 47.8 48.9 37.0 37.1	+13 59 11.1 43 37 6.7 43 37 14.6 13 38 53.9 13 39 6.6 13 39 4.6 1 35 52.2 30 20 41.6 30 11 7.3	- 1 53.7 1 41.3 1 46.9 1 37.6 1 51.6 1 52.0 1 35.5 1 41.9 1 41.4 1 39.7	h m s 16 38 55.7 16 38 56.1 38 56.9 16(40) 40 21.6 40 21.4 16 40 38.1 16 41 17.1 16 41 28.8 16 42 50.8	0 ' " +13 57 17.4 +43 35 25.4 +35 27.7 +13 37 16.3 37 15.0 37 12.8 + 7 36 19.9 + 1 34 10.3 +30 19 0.2 +30 9 27.6
4381 4382 4383 4384 4385 4386 4387 4388 4389* 4390	49 Herculis	6 7 7 6.7 6	3 June 3 3 April 27 3 April 28 3 May 31 3 May 15 3 July 19 3 July 23 3 July 26 3 July 29	42 14, 3 42 14, 3 42 14, 9 42 14, 4 42 35, 4 42 35, 8 42 35, 9 42 56, 8 42 48, 6 43 3, 4	37. 0 44. 2 44. 2 43. 7 35. 8 35. 6 35. 7 27. 1 39. 4 51. 5	30 11 1.8 15 20 46.7 15 20 42.8 15 20 56.2 32 55 31.6 32 55 49.3 46 22 15.4 +25 1 56.0 - 5 47 12.8	1 41.0 1 33.6 1 33.8 1 39.6 1 35.5 1 51.3 1 52.0 1 54.0 1 47.8 1 42.9	42 51.3 16 42 58.5 42 59.1 42 58.1 16 43 11.2 43 11.6 16 43 23.9 16 43 28.0 16 43 54.9	9 20, 8 +15 19 13, 1 19 9, 0 19 16, 6 +32 53 56, 1 53 59, 9 53 57, 3 +46 20 21, 4 +25 0 8, 2 - 5 48 55, 7
4291 4392 4393 4394 4395* 4396 4397 4398 4399* 4400	Arg. Z., Oel.16568 4 54 Herculis 56 Herculis Groombridge 2389 4 44 45 46 47 48 48 48 48 48 48 48 48 48	8 8.9 6 7 8.9 6 7	3 May 13 3 May 15 3 May 31 3 May 29 3 April 28 3 May 13 3 May 15 3 June 3 3 July 19 3 July 23	43 50, 0 43 49, 5 45 52, 7 46 11, 7 46 43, 8 46 43, 8 46 43, 8 46 43, 8 46 43, 0 46 44, 1	26. 4 26. 4 42. 2 39. 6 20. 9 20. 3 29. 3 29. 3 29. 3	+47 1 9.4 47 1 13.1 18 47 20.8 26 5 19.6 43 11 59.3 43 12 57. 43 11 27.0 43 12 22.7 +43 12 23.8	1 33.0 1 33.5 1 34.7 1 33.8 1 24.7 1 28.8 1 29.2 1 34.9 1 47.0 1 47.8	16 44 16. 4 44 15. 9 16 46 34. 9 16 46 50. 7 16 47 13. 4 47 12. 7 47 12. 9 47 12. 2 47 13. 4	+46 59 36.4 59 39.6 +18 45 46.1 +26 3 45.8 +43 10 34.6 10 36.9 [9 57.8] 10 31.6 10 35.7 10 36.0
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410	666 Mayer	6.5 7.8 9 6 8 8 7 6.7	3 July 29 3 July 29 3 July 26 3 May 31 3 July 23 3 April 28 3 May 13 3 May 15 3 June 3 3 July 19	46 45.2 46 56.2 47 26.2 47 30.4 49 5.4 50 5.2 50 5.4 51 4.1 51 2.7	59. 0 58. 7 45. 8 42. 3 35. 7 26. 0 25. 7 25. 7 29. 2 29. 4	-24 44 51.8 -24 38 38.9 + 9 43 25.2 18 34 55.9 32 85 11.3 47 42 29.6 47 42 36.6 42 51 9.9 42 51 20.3	1 32.6 1 32.4 1 40.7 1 32.3 1 42.8 1 19.7 1 23.8 1 24.4 1 28.7 1 40.7	16 47 44. 2 16 47 54. 9 16 48 12. 0 16 48 12. 7 16 49 41. 1 16 50 31. 2 50 30. 8 50 21. 1 16 51 33. 3 51 32. 1	-24 46 24.4 -24 40 11.3 + 9 41 44.5 +18 33 23.6 +32 33 28.5 +47 41 9.9 41 13.9 41 12.2 +42 49 41.2 49 39.6
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420	Arg. Z., Oel. 16677 31 Ophiuchi Lalande 30990,1 58 Herculis " 32 Ophiuchi 59 Herculis d " "	6 6.7 6.7	3 July 23 3 April 28 3 July 29 3 May 31 3 May 29 3 July 23 3 Aug. 20 3 July 26 3 May 13 3 May 15	51 3.0 51 44.7 51 27.1 51 51.6 52 2.0 52 2.7 52 2.4 53 14.4 53 38.5 53 38.9	59.2	42 51 17.7 +47 40 37.7 -25 19 18.1 +22 57 40.7 31 45 14.3 31 15 21.5 31 15 25.8 14 24 58.7 33 53 17.1 33 53 14.9	1 41.5 1 17.2 1 26.0 1 26.1 1 25.5 1 38.4 1 42.0 1 33.7 1 18.9 1 19.4	52 39.1 52 39.2 16 53 58.3	49 36.2 +47 39 20.5 -25 20 44.1 +22 56 14.6 +31 13 48.8 13 43.1 13 45.8 +14 23 25.0 +33 51 58.2 51 55.5
4421 4422 4423 4424 4425 4426 4427 4428 4429* 4430	33 Ophiuchi	7.8 6.7 7.8 8	3 June 3 3 July 29 3 July 29 3 April 28 3 July 19 3 July 23 3 May 29 3 May 31 3 July 26 3 May 13	53 38.7 53 44.2 54 2.2 54 48.8 54 48.5 54 49.2 55 21.4 55 21.7 16 56 12.1	34. 8 44. 1 44. 1 29. 6 29. 1 29. 2 44. 5 44. 5 44. 4 + 38. 0	33 53 22.7 13 55 33.5 13 53 29.5 43 2 23.7 43 2 51.3 43 2 50.7 13 2 55.5 13 2 57.5 13 3 5.1 +28 23 42.9	1 24. 5 1 32. 8 J 32. 8 I 13. 0 1 35. 5 I 36. 3 I 20. 7 I 21. I I 30. 5 — 1 15. 5	16 54 46.3 16 55 18.4 55 17.6 55 18.4 16 56 5.9 56 6.2 56 6.1	51 58.2 +13 54 0.7 +13 51 56.7 +43 1 10.7 1 15.8 1 14.4 +13 1 34.8 1 36.4 1 34.6 +28 22 27.4

(226)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
								a	δ
4431 4432 4433 4434 4435 4436 4437 4438 4439	Lalande 31134 35 Ophiuchi 7 Groombridge 2408 2172 Bradley Lalande 31222 Piazzi 313 62 Herculis	9 6 7 7.8 6.7 6.7 8 8	3. May 15 3 Aug. 20 3 April 28 3 May 13 3 May 15 3 July 26 3 July 29 3 July 19 3 July 19 3 July 19 3 May 29	k m s 16 56 11.7 58 0.0 58 31.8 58 31.6 58 31.7 58 31.5 58 58.1 59 8.3 59 20.1 59 37.8	+ 38.0 55.4 28.7 28.4 28.3 33.9 38.1 39.5	+28 23 43.7 -15 26 33.2 +44 6 30.2 44 6 35.3 44 6 58.4 35 37 22.0 27 25 27 23 35.9 24 46 40.1	- 1 16.0 1 20.5 1 7.4 1 11.4 1 12.1 1 31.6 1 30.2	h m s 16 56 49.7 16 58 55.4 16 59 0.5 59 0.0 59 0.1 58 59.8 16 59 32.0 16 59 46.4 16 59 58.2 17 0 17.3	0 / " +28 22 27.7 -15 27 53.7 +44 5 22.8 5 26.6 5 23.2 5 26.6 4 35 35 51.8 +27 24 +27 22 9.2 +24 45 25.5
4441 4442* 4443 4444 4445 4446* 4447 4448 4449 4450	Anonyma	7.8 7.8 6.7 8.9 8 7 6 7.8	3 May 31 3 April 28 3 July 29 3 July 23 3 May 13 3 May 13 3 July 26 3 May 31 3 Aug. 20 3 July 29	16 59 38.0 17 1 2.6 1 14.1 1 17.1 1 37.9 1 38.2 1 41.1 2 6.9 2 16.9 2 42.5	39. 5 25. 5 38. 5 40. 8 24. 5 24. 5 34. 9 39. 6 45. 5 35. 6	24 46 37.6 47 57 23.9 26 44 18.8 21 29 40.9 48 40 44.9 33 39 10.5 24 30 39.5 10 51 36.3 32 27 46.2	1 15.0 1 13.6 1 25.6 1 23.6 1 7.1 1 7.6 1 25.7 1 11.3 1 22.5 1 24.4	0 17.5 17 1 28.1 17 1 52.6 17 1 57.9 17 2 2.4 2 2.7 17 2 16.0 17 2 46.5 17 3 2.4 17 3 18.1	45 22.6 +47 56 10.3 +26 42 53.2 +21 28 17.3 +48 39 37.8 +33 37 44.8 +24 29 28.2 +10 50 13.8 +32 26 21.8
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460	Lalande 31320 . Lalande 31357	7 7 7 7.8	3 July 23 3 July 19 3 July 23 3 July 29 3 May 29 3 May 31 3 July 26 3 Aug. 20 3 Sept. 2 3 May 13	2 52.7 4 26.9 4 26.8 4 48.2 4 48.4 4 48.5 4 47.8 5 23.1	40.8 40.7 40.7 43.9 43.8 43.7 43.9 44.2 27.1	21 30 4.4 21 41 46.9 21 41 47.3 14 38 51.0 14 38 50.6 14 39 1.4 14 39 1.6 45 35 19.0	1 21. 1 1 18. 3 1 18. 9 1 19. 9 1 7. 8 1 7. 5 1 17. 5 1 20. 1 1 20. 8 1 1. 4	17 3 33.5 17 5 7.6 5 7.6 5 7.5 17 5 32.1 5 32.2 5 32.2 5 32.0 5 32.0 17 5 50.2	+21 28 43.3 +21 40 28.6 40 27.5 40 27.4 +14 37 43.2 37 43.2 37 43.1 37 41.3 41.3 41.3 45 34 17.6
4461 4462 4463 4464 4465 4466 4467 4468 4469* 4470	65 Herculis δ Lalande 31418 67 Herculis π 66 Herculis ω Lalande 31483 Lalande 31496	7.8 6 6.7 6.7 8	3 May 15 3 April 28 3 July 23 3 April 28 3 May 15 3 June 3 3 May 29 3 July 19 3 July 23 3 May 31	5 23, 3 6 9, 3 6 43, 0 (7) 7 32, 3 7 32, 3 8 27, 7 8 33, 8 8 33, 6 8 55, 5	27. 1 39. 8 39. 6 33. 0 32. 8 45. 3 39. 9 39. 9 49. 6	45 35 14.8 25 6 2.3 23 59 43.7 37 3 27.3 37 3 30.2 37 3 34.1 11 6 30.8 23 20 9.6 +23 20 6.3 - 0 5 19.6	1 1.8 0 58.2 1 16.2 0 54.8 0 59.0 1 4.3 1 2.0 1 12.7 1 13.4 1 2.2	5 50.4 17 6 49.1 17 7 22.6 17 (8) 8 5.3 8 5.2 17 9 13.0 17 9 13.7 9 13.5 17 9 45.1	34 13.0 +25 5 4.1 +23 58 27.5 +37 2 32.5 2 29.8 +11 5 23.8 +23 18 56.9 - 0 6 21.8
4471 4472 4473 4474 4475 4476 4477 4478 4479* 4480	68 Herculis μ 69 Herculis ε 70 Herculis 72 Herculis ω Lalande 31638	6.7 6.7 6.7	3 May 13 3 May 15 3 June 3 3 July 26 3 May 31 3 July 23 3 July 23 3 May 13 3 May 15 3 July 26	9 21. 1 9 21. 2 10 14. 8 10 14. 1 12 0. 2 12 0. 4 12 0. 5 12 35. 7 12 35. 3 12 51. 3	35. 3 35. 2 32. 4 32. 5 39. 2 39. 2 35. 5 35. 5 39. 6	+33 20 20,6 33 20 20,0 37 31 22,8 37 31 46,3 24 43 29,6 24 43 35,5 24 43 34,6 32 45 8,4 32 45 9,2 +23 54 35,7	0 56. 1 0 56. 5 1 0. 4 1 14. 0 0 57. 0 1 8. 2 1 9. 1 0 51. 4 0 51. 8 1 7. 8	17 9 56.4 9 56.4 17 10 47.2 10 46.6 17 12 39.6 12 39.6 12 39.7 17 13 11.2 13 10.8 17 13 30.9	+33 19 24.5 19 23.5 +37 30 22.4 30 32.3 +24 42 32.6 42 27.3 42 25.5 +32 44 17.0 44 17.4 +23 53 27.9
4481 4482 4483 4484* 4485 4486 4487 4488 4489 4490*	45 Ophiuchi	3, 4 7 7 6, 7 6, 7	3 July 29 3 Aug. 20 3 May 13 3 May 15 3 May 31 3 July 19 3 July 23 3 May 29 3 Sept. 2 3 July 26	13 34.4 14 16.4 14 39.6 14 39.2 15 4.9 15 4.6 15 47.7 16 14.1 17 16 38.9	61. 4 26. 6 31. 0 30. 9 40. 1 39. 9 39. 9 47. 9 33. 2 + 35. 1	-29 39 17. 1 +46 27 49. 3 40 11 32. 7 40 11 42. 1 23 10 18. 4 23 10 23. 3 23 10 24. 1 4 20 26. 0 37 21 28. 2 +32 52 37. 0	0 54.8 1 13.2 0 47.8 0 48.3 0 52.5 1 3.4 1 4.1 0 51.8 1 10.6 — 1 4.0		-29 40 11,9 +46 26 36,1 +40 10 44,9 10 53,8 +23 9 25,9 9 19,9 9 20,0 + 4 19 34,2 +37 20 17,6 +32 51 33,0

(227)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
		Jiug.						a	δ
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500	Groombridge 2436 Lacaille 7:334 Lalande 31844 77 Herenlis z Piazzi 133 76 Herenlis λ Lalande 31960	8 4 7.8 8.9	3 May 15 3 April 28 3 May 15 3 May 29 3 July 23 3 May 15 3 July 26 3 July 29 3 Aug. 20 3 May 13	h m s 17 16 45.8 18 19.3 19 1.1 21 2.6 21 4.1 22 0.8 22 0.7 22 1.0 22 17.7	** 31.8 60.9 34.2 24.2 42.2 38.8 38.4 38.4 38.7 43.1	+38 47 0.3 -26 5 8.3 +34 52 57.5 48 26 44.7 17 41 25.7 26 16 49.3 26 17 8.0 26 17 7.6 26 17 11.3 16 59 36.1	, " - 0 45.2 0 51.2 0 42.2 0 42.7 0 54.5 0 38.3 0 55.2 0 55.6 0 58.6 0 38.6	h m s 17 17 17.6 17 19 20.2 17 19 35.3 17 21 26.8 17 21 46.3 17 22 39.5 22 39.2 22 39.1 22 39.7 17 23 0.8	+38 46 15.1 -26 5 59.5 +34 52 15.3 +48 26 2.0 +17 40 31.2 +26 16 11.0 16 12.8 16 12.0 +16 58 57.5
†4501 4502 4503 4504 4505 4506 4507 4508 4509 4510	Lalande 31957 Lalande 31994 54 Ophiuchi Lalande 32042,3 55 Ophiuchi a	6. 5	3 April 28 3 May 15 3 May 31 3 May 15 3 Aug. 20 3 April 28 3 May 13 3 May 29 3 May 31 3 July 12	22 35, 1 23 32, 7 24 25, 8 24 49, 7 24 48, 9 24 54, 4 24 54, 4 24 54, 6 24 55, 4	45. 5 43. 1 44. 3 43. 2 42. 9 45. 2 44. 9 44. 6 44. 6	12 5 48.0 16 55 53.6 13 19 8.3 16 39 31.7 16 39 50.7 12 43 44.7 12 43 37.2 12 43 39.8 12 43 45.3	0 36, 1 0 37, 0 0 39, 2 0 35, 2 0 52, 3 0 32, 8 0 38, 1 0 38, 3 0 38, 5 0 46, 3	17 23 20, 6 17 24 1f, 8 17 25 10, 1 17 25 32, 9 25 31, 8 17 25 39, 0 25 39, 3 25 39, 0 25 39, 2 25 39, 6	+12 5 11.9 +16 55 16.6 +13 18 29.1 +16 38 56.5 38 58.4 +12 43 11.9 43 2.1 43 1.5 43 4.9 42 59.0
4511* 4512* 4513 4514 4515 4516 4517 4518 4519 4520	"	2.3 2.3 2 2 7	3 July 19 3 July 23 3 July 26 3 July 29 3 Sept. 2 3 Sept. 6 3 Sept. 7 4 Oct. 6 4 Oct. 9 3 July 26	24 55. 0 24 55. 2 24 55. 0 24 55. 2 24 54. 5 24 54. 5 24 54. 5 24 57. 0 24 57. 0 28 14. 5	44. 2 44. 2 44. 3 44. 3 44. 7 45. 0 45. 0 42. 3 42. 3 48. 4	12 43 48,8 12 43 47,8 12 43 51,3 12 43 48,3 12 43 52,9 12 43 52,8 12 43 52,8 12 43 46,5 12 43 45,5 2 10 4,8	0 47.4 0 47.9 0 48.3 0 48.7 0 51.9 0 52.1 0 52.2 0 49.5 0 49.4 0 41.6	25 39, 2 25 39, 4 25 39, 3 25 39, 5 25 39, 2 25 39, 5 25 39, 3 25 39, 3 27 29 2, 9	43 1.4 42 59.9 43 3.0 42 59.6 43 1.0 42 59.2 43 0.6 42 57.0 42 56.1 + 2 9 23.2
4521 4522* 4523 4524 4525* 4526* 4527 4528 4529* 4530	Bessel, W.620 79 Herculis Groombridge 2447 82 Herculis y 58 Ophiuchi Piazzi 194	7 6 6.7 6 7.8 7 6 7.6 8	3 April 28 3 May 13 3 May 15 3 July 23 3 May 31 3 May 31 3 May 31 3 July 12 3 April 28 3 July 26	28 26, 2 26 37, 0 28 38, 0 28 37, 7 30 54, 5 30 59, 9 31 0, 8 30 29, 8 31 13, 5 31 14, 1	46. 3 39. 7 39. 7 39. 2 23. 8 23. 8 23. 8 57. 7 48. 5 47. 3	12 52 29.1 24 26 45.5 24 26 44.9 24 26 59.8 48(35) 48 42 56.9 +48 42 53.6 -21 33 46.9 + 4 29 7.1 4 29 17.0	0 25.9 0 28.3 0 28.8 0 44.6 0 27.7 0 27.5 0 33.2 0 25.4 0 37.8	17 29 12.5 17 29 16.7 29 17.7 29 16.9 17 31 18.3 17 31 24.6 17 31 27.5 17 32 2.0 32 1.4	+12 52 3.2 +24 26 17.2 26 16.1 26 15.2 +48(35) +48 42 29.2 42 26.1 -21 34 20.1 + 4 28 41.7 28 39.2
4531 4532 4533 4534* 4535 4536 4537 4538 4539 4540	2228 Bradley Piazzi 204 60 Ophiuchi β	7 7 7.6 6	3 Aug. 20 3 May 13 3 May 15 3 July 29 3 April 28 3 July 26 3 Aug. 20 3 Sept. 2 3 Sept. 6 3 Sept. 7	31 14, 4 32 12, 9 32 14, 0 32 34, 4 32 47, 2 32 48, 5 32 48, 2 32 48, 2 32 48, 2 32 48, 2 32 48, 3	47.7 39.6 39.6 35.7 48.4 47.4 47.6 47.8 47.9	4 29 23, 6 24 37 37, 2 24 37 35, 9 31 24 55, 0 4 40 13, 3 4 40 16, 3 4 40 18, 9 4 40 18, 9 4 40 19, 6	0 39.9 0 23.1 0 23.5 0 41.3 0 22.9 0 35.5 0 37.7 0 38.4 0 38.5 0 38.5	32 2, 1 17 32 52, 5 32 53, 6 17 33 10, 1 17 33 35, 6 33 35, 9 33 36, 3 33 36, 0 33 36, 1 33 36, 2	28 43, 7 +24 37 14, 1 37 12, 4 +31 24 13, 7 + 4 39 50, 4 39 40, 8 39 37, 8 39 40, 5 39 39, 7 39 41, 1
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550	85 Herculis 4 83 Herculis 4 84 Herculis 4 Lalande 32464 52 Ophiuchi 7	3 3 6.7 7 7	4 Oct. 6 4 Oct. 9 3 May 29 3 May 31 3 May 13 3 May 15 3 May 15 3 May 15 3 Aug. 20 3 May 31	32 50, 7 32 51, 0 33 22, 6 33 23, 6 33 37, 1 33 38, 1 34 29, 0 34 30, 5 36 22, 7 17 37 3, 7	45. 1 45. 0 26. 1 26. 0 39. 6 39. 6 39. 7 39. 7 35. 0 48. 5	4 40 13.3 4 40 13.3 46 7 31.1 46 7 33.7 24 40 50.3 24 40 45.3 24 25 45.6 24 25 43.9 33 19 52.4 + 2 48 6.0	0 36, 9 0 36, 8 0 24, 1 0 24, 7 0 20, 9 0 21, 4 0 21, 6 0 20, 0 0 39, 3 - 0 21, 5	33 35, 8 33 36, 0 17 33 48, 7 33 49, 6 17 34 16, 7 34 17, 7 17 35 8, 7 35 10, 2 17 36 57, 7 17 37 52, 2	39 36.4 39 36.5 +46 7 7.0 7 9.0 +24 40 30.0 40 26.9 +24 25 24.0 25 23.9 +33 19 13.1 + 2 47 44.5

(228)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800, 0
			•					а	δ
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560	62 Ophiuchi γ	3 4 6 6 6	3 July 10 3 July 12 3 July 26 3 Sept. 2 3 Sept. 2 3 Sept. 6 4 Oct. 6 4 Oct. 9 3 July 29 3 May 13 3 May 15	h m s 17 37 3.8 37 4.3 37 4.0 37 3.9 37 3.7 37 6.7 37 6.7 37 33.5 37 36.1 37 36.7	+ 48.1 48.1 48.1 48.5 48.6 45.7 45.8 35.6 42.7	+ 2 48 7.4 2 48 4.8 2 48 10.6 2 48 10.2 2 48 10.2 2 48 9.1 2 48 6.9 31 36 5.9 17 47 7.0 17 47 5.6	0 27. 1 0 27. 4 0 29. 1 0 31. 8 0 31. 9 0 30. 8 0 30. 7 0 33. 8 0 15. 9 0 16. 2	h m s 17 37 51.9 37 52.4 37 52.1 37 52.3 37 52.3 37 52.3 17 38 9.1 17 38 18.8 38 19.4	+ 2 47 40.3 47 37.4 47 41.5 47 38.3 47 38.3 47 36.2 +31 35 32.1 +17 46 51.1 46 49.4
4561 4562 4563 4564 4565 4566* 4567 4568 4569 4570*	86 Herculis "" Piazzi 255 "" Lalanda 32600 87 Herculis Flamsteed, B.2433	6.7 7.8 6 7 5 7.8	3 April 28 3 May 29 3 Sept. 6 3 May 13 3 May 15 3 July 23 3 July 29 3 May 31 3 Aug. 20 3 May 29	37 59. 9 38 0. 7 38 0. 5 39 24. 4 39 25. 2 40 5. 4 40 3. 8 40 4. 2 41 20. 9	38. 4 37. 8 38. 1 42. 1 42. 0 41. 1 34. 0 38. 8 38. 8 24. 7	27 51 14.8 27 51 16.7 27 51 37.5 19 19 58.2 19 19 56.2 19 20 10.5 34 21 45.5 25 42 11.4 25 42 24.0 47 41 27.0	0 10.9 0 17.9 0 37.3 0 13.1 0 13.5 0 23.3 0 30.5 0 19.7 0 32.5 0 12.1	17 38 38.3 38 38.5 38 38.6 17 40 6.5 40 7.7 40 6.3 17 40 39.4 17 40 42.6 40 43.0 17 41 45.6	+27 51 3.9 50 58.8 51 0.2 +19 19 45.1 19 43.2 19 42.2 +34 21 15.0 +25 41 51.7 41 51.5 +47 41 14.9
4571 4572* 4573 4574 4575* 4576 4577 4578 4579 4580	Bessel, W.1433	7.8 7.8 6.7 6.5 7.6 7.8 7.8	3 May 13 3 May 15 3 July 23 3 July 10 3 July 12 3 July 25 3 Aug. 20 3 April 28 3 July 29 3 July 26	41 42.4 41 43.4 41 43.2 41 36.2 41 35.9 42 1.0 42 1.0 42 13.0 43 5.0 44 10.6	41. 3 40. 7 40. 0 59. 2 59. 2 36. 7 37. 0 44. 1 32. 4 35. 2	22 23 5.0 22 23 8.0 +22 23 19.2 -24 49 36.7 -24 49 35.8 +29 23 32.5 29 23 34.2 15 23 14.8 36 54 57.4 32 4 39.7	0 9.2 0 9.6 0 25.2 0 17.1 0 17.1 0 26.4 0 30.4 0 6.7 0 25.5 0 23.7	17 42 23.7 42 24.1 42 23.2 17 42 35.4 42 35.1 17 42 37.7 42 38.0 17 42 57.1 17 43 37.4 17 44 45.8	+22 22 55.8 22 58.4 22 54.0 -24 49 53.8 49 52.9 +29 23 6.1 23 3.8 +15 23 8.1 +36 54 31.9 +32 4 16.0
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590*	88 Herculis z Lalande 32810 Lalande 32832 90 Herculis f 89 Herculis 5 Sagittarii i	8 5.9 5.9 5.9	3 Aug. 20 3 May 29 3 July 29 3 May 13 3 May 15 3 July 10 3 May 31 3 July 26 3 Aug. 20 3 July 12	44 10. 8 44 25. 9 45 31. 7 45 35. 7 45 36. 7 46 17. 2 46 42. 6 46 42. 8 46 42. 4 46 56. 9	35. 6 24. 0 31. 2 36. 7 36. 7 30. 3 38. 7 38. 3 38. 6 58. 9	32 4 37.6 48 27 21.0 38 52 44.7 30 25 12.3 30 25 10.4 40 3 32.6 26 5 37.5 26 5 48.3 +26 5 50.0 -24 14 52.6	0 27.9 0 7.4 0 23.0 0 2.5 0 2.9 0 17.4 0 4.1 0 19.1 0 23.1 0 16.0	44 46. 4 17 44 49. 9 17 46 2. 9 17 46 12. 4 46 13. 4 17 46 47. 5 17 47 21. 3 47 21. 0 17 47 55. 8	4 9.7 +48 27 13.6 +38 52 21.7 +30 25 9.8 25 7.5 +40 3 15.4 +26 5 33.4 +26 5 33.4 5 29.2 5 26.9 -24 15 8.6
4591* 4592 4593 4594 4595* 4596 4597* 4598 4599 4600*	64 Ophiuchi ν Piazzi 307 91 Herculis θ 57 Serpentis ζ	3	3 April 28 3 Sept. 2 3 Sept. 6 4 Sept. 9 4 Sept. 17 3 April 28 3 May 13 3 May 15 4 Oct. 6 3 July 10	47 8.0 47 8.2 47 8.3 47 11.6 47 11.6 (48) 48 51.4 48 52.8 48 52.0 49 4.4	32.7	9(43) 9 43 54.3 9 43 55.6 9 43 59.5 9 43 58.5 - 4 47 10.5 +37 17 3.3 37 16 58.5 +37 17 30.5 - 3 39 42.3	0 13 5 0 13.5 0 13.4 0 13.4 - 0 3.0 + 0 3.1 + 0 2.7 - 0 23.6 0 9.2	17 48 2. 1 48 1. 4 48 1. 6 48 1. 3 48 1. 4 17(48) 17 49 24. 1 49 25. 5 49 23. 4 17 49 55. 0	- 9(44) 44 7.8 44 9.1 44 12.9 44 11.9 - 4 47 13.5 +37 17 6.4 17 6.9 - 3 39 51.5
4601 4602 4603 †4604 4605 4606 4607 4608 4609 4610	92 Herculis 5 66 Ophiuchi n 67 Ophiuchi o 94 Herculis p 68 Ophiuchi κ Bessel, W.1719 . Groombridge 2493	9 7 8	3 May 31 3 Aug. 20 3 July 26 3 July 29 4 Sept. 9 3 May 29 3 Sept. 2 3 Sept. 6 3 July 29 3 May 13	49 22. 9 49 22. 8 49 34. 2 49 50. 5 (49) 50 14. 6 50 14. 4 50 47. 5 51 10. 7 17 51 26. 7	37. 0 47. 4 31. 9 36. 5 36. 7 49. 3 32. 8	+29 16 48.0 29 17 1.1 4 23 44.3 37 50 9.9 2 57 19.3 30 12 51.3 30 13 12.9 1 19 29.7 36 19 4.4 +43 26 21.2	0 1.5 0 19.8 0 11.4 0 22.3 — 0 13.9 + 0 0.5 — 0 20.1 0 15.7 — 0 14.3 + 0 7.6	17 49 59.9 49 59.8 17 50 21.6 17 50 22.4 17(50) 17 50 51.1 50 51.1 17 51 36.8 17 51 43.5 17 51 55.2	+29 16 46.5 16 41.3 + 4 23 32.9 +37 49 47.6 + 2 57 5.4 +30 12 51.8 + 1 19 14.0 +36 18 50.1 +43 26 28.8

(229)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction .	Mean equi	nox 1800.0
4611 4612 4613 4614 4615 4616 4617 4619 4620	Groombridge 2493 69 Ophiuchi 7 Piazzi :339 10 Sagittarii 7 95 Herculis 1st	5.6 8	3 May 15 4 Sept. 17 3 April 28 3 July 12 3 Sept. 6 3 May 31 3 Aug. 20 3 Aug. 20 3 May 13 3 May 15	h m s 17 51 28.0 51 22.6 51 12.9 51 56.1 51 56.0 52 20.3 52 20.4 52 21.1 53 5.3 53 6.5	+ 28.4 49.2 0 62.9 1 2.8 1 2.2 0 40.7 40.6 40.6 28.6 28.6	21 36 36, 3 21 36 36, 3 43 14 39, 9	+ 0 7.1 - 0 8.5 0 5.3 - 0 1.8 + 0 0.5 + 0 2.5 - 0 13.9 - 0 13.9 + 0 10.0 + 0 9.5	h m s 17 51 56.4 17 52 11.8 17 52 15.8 17 52 58.9 52 58.2 17 53 1.0 53 1.7	+43 26 26.9 -8 10 3.8 -29 34 18.7 -30 24 36.3 24 33.7 +21 36 22.4 36 22.4 +43 14 49.9 14 48.5
4621 4622 4623 4624 4625 4626 4627 4628 4629* 4630	96 Herculis	7 7.8 7 4.5 6 7	3 July 10 3 July 26 3 Sept. 2 3 July 29 4 Sept. 9 3 July 12 3 April 28 3 July 29 3 July 26 3 Aug. 20	53 9.3 53 28.7 53 22.4 53 42.1 54 36.0 54 23.5 55 16.1 56 20.4 56 30.0 56 29.6	60, 8 57, 2	20 50 41.2 22 56 1.4 22 56 4.8 33 19 21.4 + 2 33 49.9 -28 27 57.5 -17 10 4.2 +21 38 27.5 2 28 6.5 2 28 10.9	- 0 5.7 0 6.6 0 13.8 0 10.3 - 0 7.5 + 0 1.2 + 0 4.9 - 0 4.9 - 0 3.3	17 54 8.5 54 8.6 17 54 16.6 17 55 21.3 17 55 24.3 17 56 13.3 17 57 0.8	+20 50 35.5 +22 55 52.8 55 51.0 +33 19 11.1 + 2 33 42.4 -28 27 56.1 -17 10 0.5 +21 38 22.6 + 2 28 5.5 28 7.6
4631* 4632 4633 4634 4635 4636 4637 4638 4639	98 Herculis	4.5 4.5 7 7 6.7 8	3 May 31 3 July 10 3 Sept 2 3 Sept. 6 4 Sept. 9 3 Sept. 2 3 Sept. 6 3 July 26 3 May 13 3 May 15	56 56.3 56 58.9 57 6.0 57 5.9 (57) 57 15.0 57 14.8 57 14.8 57 42.3 57 43.2	40. 5 45. 7 45. 8 45. 8 45. 8 45. 9 48. 3 30. 9 30. 9	8 43 6.8 9 32 47.4 9 32 51.1 9 32 48.0 9 28 9 28 53.6 2 12 12.9 40 4 17.6	+ 0 9.3 + 0 1.0 - 0 5.2 0 5.4 0 6.3 - 0 5.1 - 0 16.6 + 0 16.2	17 57 44.6 17 57 51.8 57 51.7 (57) 17 58 0.8 58 0.7 17 58 3.1	+22 12 38.4 + 8 43 7.1 + 9 32 42.5 32 45.3 32 41.4 + 9 28 + 2 12 12.5 + 40 4 34.5 4 29.5
4641 4642 4643 4644 4645 4646 4647 4648* 4649*	99 Herculis b " 73 Ophiuchi q 103 Herculis o Bessel, W.28 . Lalande 33376 102 Herculis . Bessel, W.66 . " Lalande 33412 .	6.7 6.7 7.8 7.8 6	4 Sept. 9 4 Sept. 17 3 July 10 3 July 8 3 Aug. 20 3 Aug 20 4 Sept. 9 3 May 13 3 May 15 3 July 26	(58) 58 52.3 58 49.7 59 7.7 59 5.8 59 53.2 17 (59) 18 0 3.2 0 4.3 0 30.0	34. 3 47. 6 36. 9 48. 1 48. 0 39. 5 39. 5 42. 6	30 32 36,7 30 32 40,5 3 58 11,4 28 44 35,8 3 6 26,0 3 17 39,6 20 47 36,6 24 56 16,7 +16 26 54,9	- 0 9.2 - 0 9.6 + 0 4.1 + 0 3.0 - 0 0.6 + 0 1.3 - 0 6.1 + 0 18.4 0 17.9 0 2.6	17 59 44.6 17 59 53.9 18 0 41.2 18 (0) 18 0 42.7 0 43.8	+30 32 27. 32 30. + 3 58 15. +28 44 38. + 3 6 25. + 3 17 40. +20 47 30. +24 56 33. 56 34. +16 26 57.
4651 4652* 4653 4654 4655 4656 4657 4658 4659	13 Sagittarii μ ¹ Lalande 3:2514 104 Herculis Λ	6 5. 6 4. 5	3 April 28 3 July 26 3 May 13 3 May 15 3 May 31 3 July 29 3 Aug. 20 3 Sept. 2 3 Sept. 6 4 Sept. 9	0 49.5 3 36.7 3 46.7 3 47.3 3 47.0 3 47.2 3 47.5 3 46.9 3 46.9 3 49.7	58, 9 42, 7 36, 3 36, 2 35, 9 35, 6 35, 8 36, 1 36, 1 33, 7	-21 5 53.7 +16 13 50.1 31 21 28.2 31 21 24.3 31 21 32.0 31 21 50.9 31 21 50.9 31 21 50.9 31 21 50.7	0 11.0 0 6.9 0 24.8 0 24.4 0 20.1 1 4.7 + 0 0.6 - 0 0.9 0 1.1 0 2.7	18 1 48.4 18 4 19.4 18 4 23.0 4 23.5 4 22.9 4 22.8 4 23.3 4 23.0 4 23.0 4 23.4	-21 5 42, +16 13 57, +31 21 53, 21 48, 21 52, 21 51, 21 51, 21 50, 21 51, 21 48,
4661 4662 4663* 4664 4666* 4666* 4668* 4669 4670	Lacaille 7651 Groombridge 2530 19 Sagittarii d Anonyma	6 7 6.7 6.5	4 Sept. 17 3 April 28 3 May 13 3 May 15 3 Sept. 2 3 April 28 3 July 12 3 Aug. 20 4 Sept. 17 3 July 29	3 49.2 3 35.1 5 53.0 5 53.7 5 52.6 7 8.7 7 10.2 7 10.2 7 13.6 18 7 39.0	0 33.9 1 4.9 0 31.9 31.9 31.8 63.1 61.5 61.6 57.8 + 36.1	+31 21 55.6 -33 26 58.7 +38 43 3.9 38 43 2.6 +38 43 32.3 -29 54 2.2 29 54 24.7 29 54 18.1 +30 20 16.6	- 0 3 2 + 0 11.4 0 28.8 0 28.2 0 1.0 0 17.5 0 19.2 0 20.9 0 19.9 + 0 10.5	4 23.1 18 4 40.0 18 6 24.9 6 25.6 6 24.4 18 8 11.8 8 11.7 8 11.8 8 11.4 18 8 15.1	21 52. -33 26 47. +38 43 32. 43 30. 43 33. -29 53 44. 54 5. 53 57. 53 58. +30 20 27.

(230)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Meun equ	inox 1800, 0
								a	δ
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680	Groombridge 2533 Lalande 33779 Bessel, W. 303 74 Ophiuchi 20 Sagittarii 6 Herculis	7 7 6.5 8 6	3 May 13 3 May 15 3 Sept. 2 3 May 31 3 July 8 3 April 28 3 July 10 4 Sept. 17 3 May 31 3 July 8	h m s 18 8 56. 3 8 57. 4 8 56. 0 9 35. 9 9 36. 4 9 56. 8 10 5. 3 9 53. 2 10 17. 1 10 17. 8	56.1 0 47.8 1 0.0	+42 5 19.7 42 5 18.0 42 5 47.5 24 21 53.9 +24 22 1.0 -14 28 32.0 +3 17 34.8 -34 28 16.1 +24 21 49.9 24 21 59.2	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	h m s 18 9 25, 9 9 27, 0 9 25, 6 18 10 15, 4 10 15, 5 18 10 53, 1 18 10 53, 2 18 10 56, 6 10 56, 8	+42 5 53.4 5 51.2 5 52.5 +24 22 22.2 22 19.7 -14 28 6.0 + 3 17 55.2 -34 27 51.1 +24 22 19.2 22 19.0
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690	Lalande 3:814 106 Herculis 2:302 Bradley Lalande 3:3868 1 Lyrse 107 Herculis	7.8 6.7 6 8.9 9	4 Sept. 9 3 Sept. 2 4 Sept. 9 3 July 27 3 July 29 3 May 15 3 Sept. 6 3 July 8 3 July 10	10 20.5 10 54.7 11 12.7 11 33.2 11 32.8 12 16.2 12 17.7 12 17.8 12 36.2 12 36.0	36, 9 25, 0 37, 9 36, 5 36, 5 26, 3 26, 3 33, 6 36, 9	24 22 8.8 48 2 12.1 21 52 57.9 29 35 1.6 29 34 59, 3 46 19 20.1 46 19 20.4 35 58 45.6 28 46 36.9 28 46 40.8	0 7.5 0 7.0 0 9.3 0 16.8 0 16.3 0 38.7 0 10.3 0 22.9 0 22.4	10 57. 4 18 11 19. 7 18 11 50. 6 18 12 9. 7 12 9. 3 18 12 44. 0 18 12 51. 4 18 13 13. 1 13 12. 9	22 16, 3 +48 2 19, 1 +21 53 7, 2 +29 35 18, 4 35 15, 6 +46 19 58, 8 19 59, 1 +35 58 55, 9 +28 46 59, 8 47 3, 2
4691 4692* 4693 4694 4695 4696 4697 4698 4699 4700	108 Herculis	6 6 5,6 8	3 July 27 3 July 29 4 Sept. 14 3 Sept. 7 3 May 31 3 April 28 4 July 14 3 July 10 3 Sept. 7	12 39. 4 12 38. 9 12 40. 3 12 32. 6 13 7. 8 12 59. 2 13 35. 6 14 30. 2 14 29. 5 14 49. 2	36. 4 36. 4 34. 6 44. 8 40. 1 53. 2 54. 4 40. 3 40. 3	29 46 6.0 29 46 2.5 29 46 13.1 11 56 11.3 +23 11 2.5 -7 10 35.2 -23 32 28.4 +21 40 55.9 21 40 59.6 +20 20 54.5	0 18.4 0 17.8 0 9.0 0 15.9 0 33.3 0 37.0 0 25.4 0 26.1 0 24.3 0 17.1	18 13 15.8 13 15.3 13 14:9 18 13 17.4 18 13 47.9 18 13 52.4 18 14 30.0 18 15 10.5 15 9.8 18 15 30.6	+29 46 24.4 46 20.3 46 22.1 +11 56 27.2 +23 11 35.8 - 7 9 58.2 -23 32 3.0 +21 41 22.0 41 23.9 +20 21 11.6
4701 4702* 4703 4704 4705 4706* 4707* 4708 4709 4710*	22 Sagittarii λ Groombridge 2555 59 Serpentis d	6 6 6.7	3 July 12 3 Aug. 20 4 Sept. 17 3 May 13 3 May 15 3 April 28 3 July 27 3 Sept. 2 4 Sept. 9 4 Sept. 14	14 38. 3 14 37. 9 14 42. 0 16 2. 3 16 3. 1 16 8. 2 16 10. 0 16 9. 2 16 13. 2 16 12. 4	59. 4 59. 5 55. 8 24. 0 24. 0 50. 4 49. 0 49. 3 46. 0 46. 1	-25 31 28.5 25 31 33.5 -25 31 29.7 +49 0 47.5 49 0 43.7 0 4 41.2 0 4 51.2 0 4 52.7 0 4 55.9	0 29. 1 0 30. 2 0 28. 3 0 44. 0 0 44. 5 0 39. 1 0 27. 3 0 24. 7 0 21. 9 0 21. 8	18 15 37.7 15 37.4 15 37.8 18 16 26.3 16 27.1 18 16 58.6 16 59.0 16 58.5 16 59.2 16 58.5	-25 30 59.4 31 3.3 31 1.4 +49 1 31.5 1 28.2 + 0 5 20.3 5 18.5 5 21.8 5 14.6 5 17.7
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720	Lalande 34067,8 2 Lyræ	7 6.7 6 6 7.8	3 May 31 3 July 8 4 July 14 3 July 12 3 July 10 3 July 27 4 Sept. 9 4 Sept. 14 3 July 12 3 May 13	16 23, 2 17 8, 4 17 28, 2 17 29, 8 18 0, 0 18 26, 9 (18) 18 29, 5 18 46, 5 19 41, 0	56. 5 38. 1 49. 8 46. 8 46. 9 56. 3	27 17 3.4 39 23 51.1 + 6 4 38.5 -18 50 54.4 +26 19 47.8 - 2 6 36.3 2 6 38.6 2 6 39.3 -18 32 2.0 +48 10 20.3	0 38, 5 0 29, 3 0 27, 5 0 29, 5 0 30, 4 0 31, 0 0 25, 5 0 25, 5 0 34, 5 0 50, 4	18 19 16, 7 (19) 19 16, 4 18 19 42, 8	+27 17 41.9 +39 24 20.4 +6 5 6.0 -18 50 24.9 +26 20 18.2 -2 6 5.3.1 6 13.8 -18 31 27.5 +48 11 10.7
4721 4722 4723 4724 4725 4726 4727 4728 4729* 4730	Piazzi 100	9 5. 6 7 6 6. 7 6. 7 8	3 May 15 3 April 28 3 Sept. 6 3 July 27 4 Sept. 9 4 Sept. 14 4 Sept. 15 3 Sept. 2 4 July 14 3 July 8	19 42. 2 20 37. 8 20 30. 5 20 47. 6 20 51. 6 20 51. 0 20 51. 0 21 27. 8 21 30. 3 18 21 55. 5	56, 6 49, 5 46, 4 46, 5 46, 5 42, 8 39, 5	48 10 17. 3 +23 43 41. 8 -18 30 37. 6 1 8 29. 9 1 8 30. 2 1 8 32. 1 -1 8 32. 0 +16 47 32. 2 16 47 22. 9 +44 7 23. 1	0 50. 0 0 51. 7 0 36. 5 0 34. 2 0 28. 3 0 28. 2 0 28. 1 0 27. 7 0 32. 2 + 0 36. 3	18 21 27.1 18 21 37.1 21 38.0 21 37.5 21 37.5 18 22 10.6 22 9.8	11 7.3 +23 44 33.5 -18 30 1.1 -1 7 55.7 8 2.5 8 3.9 +16 47 59.9 +17 55.1 +44 7 59.4

(231)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
								а	δ
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740	Johnson 3944 Lalande 34333 Bessel, W 741,2 Lalande 34354 1 Aquilæ m Piazzi 116 Rümker 6596 Lalande 34436	8 7 7 8 6.7 7 7	3 May 31 3 May 13 3 April 28 3 Sept. 6 3 July 27 3 Aug. 20 3 Sept. 2 3 July 10 3 May 13 4 Sept. 9	h m s 18 22 33.2 22 35.6 23 3.2 22 56.3 23 27.5 23 47.0 24 11.7 25 1.8 25 5.1	+ 26.1 41.2 36.5 56.6 52.2 39.7 39.9 42.1 41.9 38.5	+46 17 1.1 21 45 19.1 +32 5 52.8 -18 42 20.8 - 8 22 50.7 +23 28 7.6 23 28 7.7 17 34 41.9 20 18 21.0 20 18 47.0	+ 0 49.4 0 51.1 0 56.8 0 29.1 0 39.3 0 31.0 0 29.5 0 39.9 0 54.5 0 28.1	h m s 18 22 59, 3 18 23 16, 8 18 23 39, 7 18 23 52, 9 18 24 19, 7 18 24 26, 9 18 24 53, 8 18 25 43, 7 25 43, 6	0 / " +46 17 50.5 +21 46 10.2 +32 6 49.6 -18 41 51.7 - 8 22 11.4 +23 28 38.6 28 37.2 +17 35 21.8 +20 19 15.5 19 15.1
4741 4742 4743 4744 4745 4746 4747* 4748 4749 4750	Piazzi 127 Lalande 34484,5 - Piazzi 132 Lalande 34528,9 Lalande 34536 2339 Bradley -	7 7.6 7.8 7.8 6.7 6.7 6.7 6.7 8 7	4 Sept. 14 4 Sept. 15 3 May 31 3 July 8 3 April 28 3 April 28 3 April 20 3 April 20 3 May 13 3 May 15 3 May 31	25 4.7 25 4.3 25 38.5 25 38.9 26 19.9 26 30.9 27 25.9 27 28.4 28 8.8 28 8.2	38. 6 38. 6 31. 7 31. 3 35. 3 39. 7 35. 3 41. 2 32. 1 31. 8	20 18 44.0 20 18 44.2 38 40 53.2 38 41 1.9 34 17 9.4 23 26 36.0 34 17 11.7 21 56 6.6 38 43 17.1 38 43 26.0	0 27.6 0 27.5 0 53.3 0 41.9 1 1.9 0 35.0 1 3.5 0 58.7 1 1.5 0 57.1	25 43, 3 25 42, 9 18 26 10, 2 26 10, 2 18 26 55, 2 18 27 10, 6 18 28 1, 2 18 28 9, 6 18 28 40, 9 28 40, 0	19 11.6 19 11.7 +38 41 46.5 41 43.8 +34 18 11.3 +23 27 11.0 +34 18 15.2 +21 57 5.3 +38 44 18.6 44 23.1
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760	Bessel, W.784 . 3 Lyræ a	9 8 7.8 7 7.8 6	3 July 8 3 July 10 3 July 27 3 Sept. 6 4 Sept. 9 4 Sept. 12 3 April 28 3 May 31 3 July 8	28 9.1 28 8.6 28 8.7 28 7.9 28 10.3 28 20.5 29 36.8 29 38.7 29 37.8 29 38.6	31.3 31.3 31.3 32.0 29.5 48.9 32.7 32.2 31.9 31.4	38 43 37.4 38 43 35.1 38 43 41.0 38 43 50.6 +38 43 52.9 - 7 58 4.8 +38 35 5.0 38 35 7.2 38 35 16.9 38 35 29.7	0 45.7 0 45.1 0 40.3 0 32.5 0 22.1 0 40.1 1 7.5 1 3.7 0 59.5 0 47.9	28 40, 4 28 39, 9 28 40, 0 28 39, 9 28 39, 8 18 29 9, 4 18 30 9, 5 30 10, 9 30 9, 7 30 10, 0	44 23.1 44 20.2 44 21.3 44 23.1 44 15.0 - 7 57 24.7 +38 36 12.5 36 10.9 36 16.4 36 17.6
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770		1	3 July 10 3 July 12 3 July 26 3 July 27 3 July 29 3 Aug. 20 3 Sept. 2 3 Sept. 6 3 Sept. 7 4 July 14	29 37.7 29 38.4 29 38.3 29 38.3 29 38.2 29 37.8 29 37.9 29 37.9 29 39.1	31. 4 31. 4 31. 4 31. 4 31. 7 32. 0 32. 1 32. 1 29. 1	38 35 29, 9 38 35 30, 3 38 35 35, 4 38 35 34, 2 38 35 33, 7 38 35 38, 9 38 35 41, 3 38 35 40, 2 38 35 40, 2 38 35 29, 2	0 47. 2 0 46. 6 0 43. 0 0 42. 8 0 42. 1 0 37. 2 0 35. 2 0 34. 8 0 34. 7 0 42. 2	30 9.1 30 9.8 30 9.7 30 9.7 30 9.6 30 9.5 30 10.0 30 10.0 30 8.2	36 17. 1 36 16. 9 36 18. 4 36 17. 0 36 15. 8 36 16. 1 36 16. 5 36 15. 1 36 14. 9 36 11. 4
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780	"	1 1 1 1 1 1 1 5	4 Sept. 9 4 Sept. 14 4 Oct. 9 4 Oct. 14 4 Oct. 15 4 Oct. 15 4 Nov. 28 4 Dec. 28 4 Sept. 14 4 Sept. 15	29 40, 0 29 39, 6 29 39, 4 29 39, 1 29 38, 5 29 38, 1 29 38, 5 29 38, 1 30 29, 6 30 29, 8	29. 9 30. 0 30. 6 30. 7 30. 8 30. 8 31. 5 31. 6 49. 3 49. 3	38 35 43, 6 38 35 46, 2 38 35 41, 2 38 35 44, 4 38 35 44, 8 38 35 39, 0 +38 35 39, 0 +38 35 28, 7 — 9 14 38, 4 9 14 38, 5	0 30.5 0 30.0 0 29.5 0 29.6 0 29.6 0 29.7 0 35.9 0 45.2 0 43.4 0 43.3	30 9.9 30 9.6 30 10.0 30 9.8 30 9.3 30 9.9 30 10.0 30 9.7 18 31 18.9 31 19.1	36 14.1 36 16.2 36 10.7 36 14.0 36 14.4 36 16.4 36 14.9 36 13.9 9 13 55.0 13 55.2
4781 4782 4783 4784 4785 4786 4787* 4788 4789 4790	3 Aquilæ 76 Groombridge 2627 Groombridge 2629 28 Sagittarii Lalande 34772 4 Aquilæ 5 Aquilæ Lalande 34842	7 7 7 8.9 6 8	3 Sept. 6 3 May 15 3 May 31 3 July 10 3 Sept. 7 4 Sept. 15 3 Aug. 20 3 Sept. 6 3 Sept. 6	31 45, 4 32 36, 2 32 53, 3 33 18, 3 33 50, 4 33 56, 4 33 58, 7 35 19, 7 35 19, 4 18 35 20, 4	32. 2 58. 0 41. 8 48. 3 45. 4	- 8 28 28.7 +40 44 24.6 +38 10 13.6 -22 36 9.8 +19 15 57.5 1 51 33.3 + 1 51 19.0 - 1 10 30.1 1 10 30.3 - 1 10 39.2	0 49.1 1 8.3 1 4.0 0 54.9 0 44.4 0 52.4 0 44.4 0 52.7 0 51.8 + 0 51.8	18 32 37.9 18 33 7.1 18 33 25.5 18 34 16.3 18 34 32.2 18 34 44.7 34 44.1 18 36 9.3 36 9.1 18 36 10.1	- 8 27 39.6 +40 45 32 9 +38 11 17.6 -22 35 14.9 +19 16 41.9 + 1 52 25.7 52 3.4 - 1 9 37.4 9 38.5 - 1 9 47.4

(232)

			.	A 94	D - du atio	Amu't d	Reduction	Mean equ	inox 1800.0
No.	Name	Mag.	Date	App't a	Reduct'n	App't 5	Reduction	а	ð
4791* 4792 4793* 4794 4795 4796 4797 4798* 4800	6 Aquilæ	6 7 6.5 5 7	3 July 29 3 April 28 3 May 15 4 July 27 4 Sept. 14 4 Sept. 15 3 May 15 3 May 15 3 May 15 4 Sept. 17	h m s 18 35 42.4 36 1.3 36 5.6 36 22.7 36 24.2 36 24.3 36 54.8 (37) 37 13.2 (37)	+ 50.9 34.2 32.0 40.9 38.6 38.6 35.8 31.8	0 / " - 4 57 53.9 +36 20 15.7 39 5 11.6 20 21 5.2 20 21 15.2 20 21 12.8 32 58 9.4 39 26 49.6 39 22 37 23 38.5	+ 0 55.6 1 16.8 1 13.3 0 53.9 0 42.6 0 42.5 1 14.1 1 14.1	h m s 18 36 33.3 18 36 35.5 18 36 37.6 18 37 3.6 37 2.8 37 2.8 37 30.6 18(37) 18 37 45.0 18(37)	0 / // - 4 56 58. +36 21 32. +39 6 24. +20 21 59. 21 55. 21 55. +32 59 23. +39 28 3. +39 24 +37 24 18.
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810	7 Lyræ	5 7 7 7 6.7 6.5 6.7	4 Oct. 9 4 Oct. 15 4 Oct. 9 3 Sept. 2 3 Aug. 20 4 Sept. 15 4 Oct. 14 3 May 31 3 April 28 3 May 13	37 22.5 37 21.8 37 24.5 37 28.6 38 37.7 39 17.2 39 16.5 39 1.2 39 27.3 39 48.1	60, 6	37 23 30.1 37 23 30.7 37 22 58.5 17 57 13.8 0 36 22.0 23 17 11.3 +23 17 11.3 -26 53 10.2 +19 5 38.6 31 31 17.5	0 39.7 0 39.8 0 39.7 0 50.1 0 57.1 0 47.1 0 45.3 1 3.0 1 18.0	37 53.8 37 53.3 18 37 55.8 18 38 12.3 18 39 26.6 18 39 54.7 39 54.5 18 40 1.8 18 40 24.7	
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820	7 Aquilæ	6.7 7 6 7 6 6	3 May 15 3 Sept. 6 4 Sept. 14 3 Sept. 6 4 Sept. 14 4 Sept. 17 3 Aug. 20 3 July 10 3 July 12 3 Sept. 7	39 48.9 39 45.6 39 48.8 40 1.5 40 4.7 40 4.6 40 35.9 41 6.6 41 7.7 41 7.0	50. 9 47. 2 50. 6 47. 2 47. 3	+31 31 18.2 - 3 29 43.1 3 29 43.5 3 33 3 33 17.9 - 3 33 17.4 +10 44 12.5 -22 59 42.5 22 59 43.2 -22 59 33.3	1 17.7 0 58.7 0 53.7 0 54.0 0 53.9 0 57.5 1 5.7 1 5.6 1 6.6	40 25.5 18 40 36.5 40 36.0 18 40 52.1 40 51.9 40 51.9 18 41 20.9 18 42 4.7 42 5.8 42 5.3	32 35, 3 28 44, 28 49, 3 32, 32 23, 32 23, 32 23, 410 45 10, -22 58 36, 58 37, 58 26,
1821 1822 1823* 1824* 1825 1826 1827 1828 1829* 1830	Lalande 35110 8 Lyræ ν ¹ 9 Lyræ ν ² 34 Sagittarii σ	6 6	3 July 27 4 Oct. 9 4 Oct. 15 3 May 13 3 May 15 3 Sept. 2 4 Sept. 17 3 May 31 3 July 5	41 34.7 41 46.2 41 45.6 41 49.4 41 49.9 41 49.2 (41) (41) 41 50.9 (41)	35. 7 33. 8 34. 0 36. 2 36. 2 0 35. 7	+31 23 26.0 32 34 36.9 32 34 36.9 32 18 21.2 32 18 23.2 32 18 49.8 32 19 0.9 +32 19 1.2 -26 32 57.9 -26 32 48.4	1 0.4 0 46.2 0 46.2 1 21.1 1 20.7 0 53.5 0 47.2 0 46.9 1 7.1 1 6.7	18 42 10.4 18 42 20.0 42 19.6 18 42 25.6 42 26.1 42 24.9 (42) 18 42 51.3 (42)	+31 24 26 +32 35 23 -35 23 +32 19 42 19 43 19 43 19 48 -26 31 50 31 41
1831 1832* 1833 1834 1835* 1836 1837 1838 1839 1840	Lalande 35130 35 Sagittarii ν² 10 Lyræ β 112 Herculis	8 6 5	3 Aug. 20 3 July 8 3 July 10 3 July 12 4 July 14 3 July 27 3 April 28 3 July 19 3 Sept. 6 4 Sept. 15	42 7.7 42 3.1 42 2.5 42 3.4 42 6.0 (42) 43 1.7 43 3.0 43 2.6 43 5.2	0 43.9 58.1 58.0 58.0 54.0 42.1 40.6 41.0 38.3	+13 43 16.8 -22 55 29.2 22 55 30.5 22 55 31.9 -22 55 27.8 +33 7 21.7 21 10 18.0 21 10 33.1 21 10 40.3 21 10 44.9	0 59.0 1 7.1 1 7.0 1 7.0 1 2.2 1 0.9 1 23.6 1 5.0 0 56.9 0 51.0	18 42 51.6 18 43 1.2 43 0.5 43 1.4 43 0.0 18(43) 18 43 43.8 43 43.6 43 43.5	+13 44 15 -22 54 22 54 23 54 24 54 25 +33 8 22 +21 11 41 11 38 11 37 11 35
4841 4842 4843 4844 4845 4846* 4846* 4846 4848 4849 4850	 62 Serpentis 37 Sagittarii ξ³ 63 Serpentis θ¹ " Serpentis θ² 113 Herculis 	6.5	4 Sept. 17 3 July 17 3 Sept. 7 3 April 28 3 July 19 3 July 27 4 Sept. 14 4 Sept. 14 3 Aug. 20 3 Sept. 2	44 58, 5 44 50, 5 45 27, 7 45 29, 1 45 28, 8 45 31, 7 45 38, 3 45 38, 3 18 45 37, 8	57. 3 57. 5 49. 1 47. 5 47. 5 44. 6 44. 6 40. 3	+ 6 21 36.9 -21 22 28.1 -21 22 20.8 + 3 55 59.0 3 56 4.7 3 56 7.9 3 56 16.4 3 56 15.6 22 23 0.6 +22 23 0.1	0 57. 4 1 10. 8 1 11. 2 1 22. 5 1 9. 4 1 8. 5 0 58. 9 0 58. 9 1 2. 4 + 1 0. 8	18 45 42, 3 18 45 48, 0 18 46 16, 7 46 16, 6 46 16, 3 18 46 16, 3 18 46 18, 3 18 46 18, 3 18 46 18, 3	+ 6 22 34 -21 21 17 21 9 + 3 57 21 57 14 57 16 57 15 + 3 57 14 +22 24 3 +22 24 0

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't մ	Reduction		inox 1800. 0
		·!						а	δ
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860	9 Aquilæ	4.5 4.5 7	4 Oct. 9 4 Oct. 14 4 Oct. 15 3 May 31 3 May 13 3 May 15 4 Sept. 15 4 Sept. 15 3 May 13 3 May 15	h m s 18 45 32.6 45 32.7 45 32.4 45 22.8 46 11.1 46 11.4 46 33.6 46 37.0 46 56.2 46 58.1	** 48.5 48.6 48.6 58.7 33.8 33.7 39.7 39.6 33.9 33.8	-6 6 41.0 6 6 6 43.7 6 6 42.4 -22 48 1.6 +36 42 19.0 36 42 17. 17 43 48.7 17 50 55.7 36 37 43.3 36 37 41.3	+ 1 1.9 1 1.9 1 1.9 1 12.4 1 28.2 1 27.7 0 56.3 0 56.5 1 29.3 1 28.8	46 45.1 18 47 13.3 18 47 16.6	43 45.4
4861* 4862 4863 4864 4865* 4866 4867 4868 4869 4870	Lalande 35367,8 . 2388 Bradley	6	3 July 10 3 Aug. 20 4 Sept. 17 3 July 5 3 July 8 3 Sept. 6 4 Oct. 15 3 Sept. 2 4 Sept. 17	47 21.6 48 56.4 48 54.8 48 51.5 48 51.3 48 51.8 48 51.8 48 54.7 49 9.1 (49)	43.5 35.3 41.2 61.3 61.4 61.4 57.9 44.2	14 33 33,4 32 38 10,4 +13 37 52,7 -30 10 11,9 30 10 29,2 30 10 20,3 30 10 13,2 -30 10 26,3 +13 20 56,0 13 21 0.7	1 13.3 1 5.5 1 0.4 1 16.7 1 16.5 1 19.5 1 14.5 1 7.5 1 0.8	18 48 5.1 18 49 31.7 18 49 36.0 18 49 52.8 49 52.6 49 53.0 49 53.2 49 52.6 18 49 53.3 (49)	+14 34 46.7 +32 39 15.9 +13 38 53.1 -30 8 55.2 9 2.7 9 10.1 8 53.7 9 11.8 +13 22 3.5 22 1.5
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880	13 Aquilæ ε Lalande 35472,3 . 12 Aquilæ i	3.4 3.4 8 4.5 4.5	3 May 13 3 May 15 3 July 10 3 July 19 4 Oct. 9 4 Oct. 14 3 July 12 4 Sept. 14 4 Sept. 15 4 Sept. 16	49 48.7 49 49.2 49 49.2 49 52.0 49 52.0 49 52.2 49 44.3 50 11.2 50 11.6 50 11.5	44. 4 44. 4 43. 4 43. 3 41. 2 41. 3 50. 8 48. 0 48. 0	14 46 52.2 14 46 57.9 14 47 6.7 14 47 8.3 14 47 18.7 +14 47 20.3 — 4 43 47.3 6 1 39.3 6 1 39.6 — 6 1 43.6	1 29.3 1 28.9 1 16.8 1 15.0 1 0.9 1 16.7 1 7.8 1 7.8	18 50 33.1 50 33.6 50 32.6 50 33.0 50 33.2 50 33.5 18 50 35.1 18 50 59.2 50 59.6 50 59.5	+14 48 21.5 48 26.8 48 23.5 48 23.3 48 19.6 48 21.3 - 4 42 30.6 - 6 0 31.5 0 31.8 0 35.8
4881 4882* 4883 4884 4885 4886 4887 4888 4889* 4890	39 Sagittarii o 15 Aquilæ h 40 Sagittarii τ	6.7	3 Aug. 20 3 July 12 3 April 28 3 July 5 3 Sept. 6 4 July 12 3 May 31 3 July 8 3 Sept. 7	50 52.6 51 32.4 51 42.6 51 43.5 51 43.8 51 47.0 53 33.9 53 26.3 53 26.5 53 26.9	35. 5 50. 5 59. 3 57. 6 57. 7 53. 6 50. 7 61. 0 60. 2 60. 3	+32 24 12.3 - 3 59 51.9 22 2 29.0 22 2 22.8 22 2 34.8 22 2 26.0 4 20 19.4 27 58 5.6 27 58 8.9 -27 58 4.5	1 6.8 1 19.1 1 22.9 1 20.1 1 20.9 1 14.4 1 22.0 1 22.5 1 22.7 1 25.1		- 3 58 32, 8 -22 1 6, 1 1 2, 7 1 13, 9 1 11, 6 - 4 18 57, 4 -27 56 43, 1
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900	Lalande 35672 Lalande 35674 17 Aquilæ ζ Lalande 35758 18 Aquilæ 41 Sagittarii π	8 7.8 6.7 8.9 5.6	3 July 19 3 July 10 3 Sept. 2 3 July 19 3 Aug. 20 3 July 12 3 July 27 3 May 13 3 May 15 3 May 31	54 22.6 54 26.3 54 26.4 55 28.8 55 29.2 56 8.7 56 53.4 56 53.4 56 53.7	44. 2 40. 9 41. 1 43. 9 43. 9 48. 9 58. 5 58. 5	+12 41 9.1 20 57 32.0 20 57 43.9 13 33 10.0 13 33 17.5 0 19 11.4 +10 45 0.9 -21 21 7.3 21 21 7.2 21 20 59.0	1 21.5 1 23.3 1 13.3 1 22.9 1 17.7 1 25.5 1 23.7 1 29.5 1 28.7	18 55 6.8 18 55 7.2 55 7.5 18 56 12.7 56 13.1 18 56 57 32.8 18 57 32.8 18 57 51.9 57 52.9 57 51.7	+20 58 55.3 58 57.2 +13 34 32.9 34 35.2 + 0 20 36.9 +10 46 24.6 -21 19 37.6
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910	Lalande 35851	5. 6 4 6. 7 6	3 July 8 3 Sept. 6 4 Sept. 14 4 Sept. 15 4 Sept. 16 4 Oct. 15 4 Sept. 17 4 Oct. 14 4 Sept. 17	56 54.9 56 54.6 56 57.9 56 57.7 56 58.1 56 58.1 58 18.3 59 2.9 18 59 2.6	53, 5 53, 5 53, 5 54, 0 40, 2 40, 7 40, 2	21 21 5.8 21 21 6.8 21 21 5.4 21 21 6.8 21 21 7.6 -21 21 11.9 +16 32 48.8 16 31 +16 31 41.2	1 27.2 1 27.7 1 21.4 1 21.4 1 21.7 1 11.7 1 11.3 + 1 12.2	57 52. 2 57 51. 9 57 51. 4 57 51. 2 57 51. 2 57 51. 6 57 52. 6 18 58 59. 3 58 59. 0 18 59 43. 1 18 59 43. 3	19 39. 1 19 44. 0 19 45. 4 19 46. 2 19 50. 2 +16 34 0. 5

(234)

No.	Name	Mag.	Date	App't a	Reduct'n	. Α pp't δ	Reduction	Mean equ	inox 1800. 0
								a	ð
4911*	17 Lyrse	6	3 Aug. 20	h m s 18 59 15.9	+ 35.7	+32 10 19.8	+ 1 20.2	h m s 18 59 51.6	+32 11 40.
4912*	18 Lyrae i	ŀ	3 July 10	59 36.5	33.6	35 46 14.5	1 30.8	19 0 10.1	+35 47 45.
4913* 4914	767 Mayer		3 July 19 3 July 5	59 36, 2 59 33, 1	33, 5 57, 5	+35 46 15.0 -21 59 55.9	1 28, 1 1 30, 8	0 9.7	47 43. -21 58 25.
4915	101 Mayer	8	3 Sept. 6	59 33, 3	57.5	22 0 5.5	1 31.5	0 30.8	58 34.
4916*	"	6	3 Sept. 7	18 59 33, 3	57.6	21 59 54.6	1 31.4	0 30.9	58 23.
4917	20 Aquilæ		3 May 13	19 0 56.3	53. 3	8 17 19.9	1 38.9	19 1 49.6	- 8 15 41.
4918*			3 July 27	0 57.6	52.0	8 17 12.3	1 31.1	1 49.6	15 41.
4919* 4920	Bessel, W.91 .	5, 6 6	3 May 15 3 May 31	1 10.6 1 9.7	54.9 54.5	12 37 53.6 12 37 49.8	1 37.8 1 36.2	19 2 5.5 2 4.2	-12 36 15. 36 13.
4921	Piazzi 19	7.8	3 July 19	2 15.9	32.6	37 27 10.9	1 32.0	19 2 48.5	+37 28 42. + 8 17 7.
1922 19 2 3	Lalande 36062 .	7.8	4 Oct. 1	2 24.4	43.4	+ 8 15 49.1	1 18.7	19 3 7.8 19 3 16.0	+ 8 17 7. -25 35 5.
4924	42 Sagittarii ψ		3 July 5 3 Sept. 6	2 17.0 2 17.2	59, 0 59, 0	_25 36 39.9 _25 36 48.7	1 34.4 1 36.2	19 3 16.0 3 16.2	35 12.
4925	21 Aquilæ	6	3 Aug. 20	2 49.4	48.3	+ 1 56 24.1	1 30.1	19 3 37.7	
4926	. "		3 Sept. 2	2 49.2	48.4	- 1 56 24.2	1 29.2	3 37.6	57 53.
4927	"	5,6	4 Sept. 14	2 52.0	45.2	1 56 30.8	1 21.6	3 37.2	57 52.
4928 4929		6	4 Sept. 16	2 52.1	45.3	1 56 25.9	1 21.5	3 37.4 3 37.5	57 47.
4929 4930	Flamsteed, B.2591	5 7	4 Sept. 17 3 Sept. 7	2 52, 2 3 20, 6	45. 3 41. 1	1 56 32.1 21 12 15.8	1 21.4 1 25.0		+21 13 40.
1931	Piazzi 27	6	4 Oct. 9	3 32.6	30.8	38 49 32.9	1 12.8	19 4 3.4	+38 50 45
1932* 1933*	Groombridge 2782	6.7	3 July 10 3 July 12	4 13.6 4 14.2	31.0 31.0	40 4 41.0 40 4 39.6	1 37.5 1 36.9	19 4 44.6 4 45.2	+40 6 18 6 16
4934	Lalande 36146	6	3 May 13	4 10.2	46.0	11 21 0.9	1 48.6	19 4 56.2	+11 22 49
1935	Piazzi 30	7	3 July 19	4 42.5	31.7	39 3 50.7	1 35.4	19 5 14.2	+39 5 26
4936	"	}	4 Oct. 9	4 44.5	30.7	+39 4 12.9	1 14.2	5 15.2	5 27
4937	Lalande 36173,4	6.7	3 May 15	4 30, 1	53.6	9 3 24.2	1 43, 4	19 5 23.7	
4938 4939	43 Sagittarii d	6	3 July 14 3 Sept. 6	4 58.8 4 58.7	56. 3 56. 4	19 19 19.0	1 37.8	19 5 55.1 5 55.1	-19 17 41 17 43
494 0	" : : :	5	4 Oct. 15	4 58.7 5 2.5	53.1	19 19 21.3 19 19 20.1	1 31.4	5 55.6	
4941	Lalande 36205	7	3 July 5	5 16.8	55.2	—16 20 5.0	1 38.6	19 6 12.0	
4942 4943	Lalande 36207,8.	6.7	3 Aug. 20	5 29.8 5 40.0	43.5	+14 43 9.1	1 31.6		+14 44 40 $+$ 4 29 38
4944	22 Aquilæ		3 May 31 3 July 27	5 49.0 5 50.0	48. J 47. 3	4 27 52.7 4 27 59.1	1 46.2 1 36.6	6 37.3	
4945	1 Sagittæ	1	4 Sept. 15	6 1.8	38.5	20 52 4.0	1 20, 7	19 6 40.3	
4946			4 Sept. 16	6 1.0	38.5	20 52 4.1	1 20.6	6 39.5	53 24
4947	20 Lyræ η	1	3 July 10	6 24.5	31.9	38 46 57.4	1 40.6	19 6 56.4	
4948 4949	"		3 July 19	6 24.8	31.1	38 46 57.7	1 37.8	6 55.9 6 56.9	
4949 4950	":::	5	3 Sept. 7 4 Oct. 9	6 24.5 6 26.4	32. 4 30. 9	38 47 8.5 38 47 15.7	1 26.3 1 16.3	6 57.3	
4951	Talada geogra	6	4 Oct. 14	6 26.3	31.0	38 47 13.4	1 16.4	6 57.3	
4952 4953	Lalande 36268 	6	4 Oct. 1	6 36.2		+14 10 39.6 -15 53 53.4	1 22.2	19 7 17.5 19 7 35.3	+14 12 1
4954	1 Vulpeculæ	6	3 Sept. 6 3 Aug. 20	6 40.3 6 55.8	55. 0 41. 0	+21 1 15.2	1 39.2 1 32.4	19 7 35.3 19 7 36.8	-15 52 14 +21 2 47
4955		"	4 Sept. 14	6 58.1	38.4	21 1 25.1	1 22.0	7 36.5	2 47
4956	"		4 Sept. 15	6 58.1	38.5	21 1 23.1	1 21.9	7 36.6	2 45
4957	2429 Bradley	6	3 May 15	7 28.4	50.2	0 2 27.1	1 50.0	19 8 18.6	
4958 4959	25 Aquilæ ω¹	6.7	3 May 13 4 Oct. 9	7 39.9 7 43.4	46, 1	11 12 45.3	1 53.6	19 8 26.0	
4960	24 Aquilæ	6	3 May 15	7 47.8	42. 5 50. 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 24.6 1 50.5	8 25.9 19 8 38.0	
4961	776 Mayer	6.5	4 Sept. 17	7 44.1	53.9	-22 47 13.8	1 35.5		—22 45 38
4962	Lalande 36336 .	7	3 July 14	8 17.3	40.8	+21 26 9.9	1 41.8	19 8 58.1	
4963 4964*	Lalande 36348 . Piazzi 64	6,7	4 Oct. 1 3 May 31	8 31.4 8 34.0	41.3	14 5 45.9 9 14 9.6	1 24.8	19 9 12.7 19 9 20.4	+14 7 10 + 9 16 0
4965	21 Lyree θ	0.1	3 July 10	8 52.9	32.6	37 45 22.1	1 44.1	19 9 20.4	$+9 16 0 \\ +37 47 6$
4966		1	3 July 12	8 53.4	32.6	37 45 23.7	1 43.5	9 26.0	47 7
4967	"	1	3 July 19	8 53, 3		+37 45 24.8	1 41.4	9 25.9	47 6
4968	44 Sagittarii ρ¹	5	4 Oct. 15	9 10.9	52, 6	-18 14 20.8	1 36.2	19 10 3.5	-18 12 44
4969	46 Sagittarii v		3 July 5	9 21.0	55.2	16 20 40.6	1 44.0	19 10 16.2	
4970	27 Aquilæ d	1	3 July 27	19 9 26.8	+ 49.4	— 1 16 49.4	+ 1 41.9	19 10 16.2	— 1 15 7

(235)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800. 0
No.	Name	mag.	Date					a	δ
4971 4972 4973 4974 4975 4976 4977 4978* 4979 4980	28 Aquilæ A 29 Aquilæ ω² Lalande 36409 . Lalande 36431,3 Lalande 36489 Lalande 36505	6 7.6 7.8 7 7 6 6 7 7.8	3 Aug. 20 4 Oct. 9 3 Sept. 7 4 Sept. 28 4 Oct. 1 4 Oct. 1 4 May 15 4 Sept. 16 3 July 14 3 July 19	h m s 19 9 34.6 9 57.2 10 23.3 10 24.4 10 23.9 11 15.1 11 18.0 11 41.4 11 41.7	50.5 46.1 40.7	0 / " +11 59 13.2 11 8 52.2 38 44 39.0 26 52 43.3 26 52 49.0 +26 52 40.4 - 0 39 0.6 - 0 38 49.3 +21 48 14.9 +21 48 16.4	+ 1 37.5 1 27.5 1 31.1 1 24.0 1 23.8 1 25.1 1 32.9 1 46.6 1 45.4	19 10 19 10 29.7	+12 0 50.7 +11 10 19.7 +38 46 10.1 +26 54 7.3 54 12.8 54 4.2 - 0 37 5.5 37 16.4 +21 50 1.5 50 1.8
4981* 4982* 4983 4984 4985 4986 4987 4988* 4989 4990	47 Sagittarii χ^1 48 Sagittarii χ^2 Lalande 36542 50 Sagittarii Lalande 36610 3 Vulpeculæ Rümker 7384 Lalande 36628,30	7.6 6 7 6 6.5 6 7 7.6	3 Sept. 6 3 Sept. 6 4 Oct. 9 4 Sept. 15 3 July 29 3 May 31 4 Oct. 14 3 May 13 4 Sept. 28 4 Oct. 1	12 6.9 12 14.1 12 33.6 13 29.0 13 53.2 13 59.6 14 2.4 14 3.3 14 31.0 14 30.5	58. 6 58. 5 43. 0 53. 6 44. 9 39. 6 37. 1 44. 4 33. 6 33. 7	-24 54 53.4 -24 49 3.4 + 9 30 29.7 -22 11 22.6 +11 1 53.7 25 51 16.2 25 51 42.5 15 36 5.4 33 7 8.4 33 7 11.2	1 49.0 1 49.2 1 31.2 1 42.3 1 46.8 2 1.7 1 28.4 2 3.6 1 27.8 1 27.8	19 13 5.5 19 13 12.6 19 13 16.6 19 14 22.6 19 14 38.1 19 14 39.2 14 39.5 19 14 47.7 19 15 4.6 15 4.2	-24 53 4.4 -24 47 14.2 + 9 32 0.9 -22 9 40.3 +11 3 40.5 +25 53 17.9 +15 38 9.0 +33 8 36.2 8 39.0
4991 4992 4993 4994* 4995 4996 4997 4998 4999 5000	Lalande 36629 2 Sugittæ 30 Aquilæ 4 4 4 4 31 Aquilæ b	7 6	3 July 14 3 Aug. 20 4 Oct. 15 3 April 28 3 May 15 3 July 12 3 July 19 3 July 27 4 Sept. 16 4 Oct. 9	14 23, 0 14 23, 1 14 42, 2 14 34, 8 14 36, 4 14 36, 8 14 36, 3 14 39, 4 14 42, 6	41.5 41.5 40.7 49.9 49.4 48.2 48.1 48.1 45.0 42.4	19 51 17.3 19 51 25.2 16 31 53.0 2 41 36.4 2 41 41.5 2 41 47.3 2 41 47.2 2 41 56.2 11 29 50.5	1 50. 2 1 42. 8 1 31. 7 2 8. 2 2 5. 1 1 51. 0 1 49. 4 1 47. 6 1 36. 1 1 32. 9	19 15 4.5 15 4.6 19 15 22.9 19 15 24.7 15 25.8 15 24.7 15 24.4 15 24.4 19 15 25.0	+19 53 7.5 53 8.0 +16 33 24.7 + 2 43 44.6 43 46.6 43 34.2 43 36.7 43 34.8 43 32.3 +11 31 23.4
5001 5002 5003 5004 5005 5006 5007 5008 5009*	Lalande 36654,5 . 3 Sagittæ Lalande 36663,4	6.7 7 6.7 7 6 6 7 6 6 7	3 Sept. 7 4 Oct. 15 4 Sept. 28 4 Oct. 1 3 July 14 3 July 26 3 Aug. 20 4 Oct. 14 3 May 13 4 Oct. 9	15 5. 4 15 5. 2 15 27. 9 15 27. 4 15 58. 4 15 57. 9 16 0. 1 16 0. 3 16 2. 3	33, 2 40, 7 33, 8 33, 8 41, 5 41, 5 41, 5 39, 5 42, 9 39, 6	37 10 33.1 16 32 56.4 32 48 19.7 32 48 29.5 19 51 20.7 19 51 16.8 19 51 22.0 19 53 37.0 19 23 19 23 26.5	1 38. 4 1 32. 1 1 29. 1 1 28. 8 1 52. 4 1 49. 9 1 32. 5 1 32. 6	19 15 38.6 19 15 45.9 19 16 1.7 16 1.2 19 16 39.9 16 39.6 16 40.5 16 40.5 16 43.2 16 41.9	+37 12 11.5 +16 34 24.5 +32 49 48.8 49 58.3 +19 53 13.1 53 6.9 53 9.5 +19 24 24 59.1
5011 5012* 5013* 5014 5015 5016 5017* 5018* 5019	3 Cygni	7 6.7 6 6.5 6.5 6	3 May 31 3 Sept. 6 3 May 13 3 July 14 3 July 26 3 July 27 3 Aug. 20 4 Sept. 16 4 Oct. 14 4 Oct. 9	16 29. 2 16 18. 7 16 46. 5 16 47. 6 16 47. 6 16 48. 2 16 49. 6 16 49. 6	40. 2 61. 9 42. 8 41. 6 41. 5 41. 5 41. 6 39. 0 39. 6 39. 5	+24 31 45.6 -32 31 10.0 +19 40 29.3 19 40 44.9 19 40 43.5 19 40 49.6 19 40 58.5 19 40 57.6 19 28 39.2	2 4.8 1 54.0 2 8.1 1 53.2 1 50.8 1 50.7 1 46.0 1 34.4 1 33.5 1 33.8	19 17 9.4 19 17 20.6 19 17 29.3 17 29.6 17 29.1 17 29.8 17 28.6 17 29.2 19 17 43.9	+24 33 50.4 -32 29 16.0 +19 42 37.4 42 38.1 42 37.3 42 37.8 42 35.6 42 32.9 42 31.1 +19 30 13.0
5021 5022 5023* 5024 5025 5026 5027 5028 5029 5030*	Lalande 36754 Lalande 36774 - Piazzi 133 - Lalande 36791 - 35 Aquilæ c 4 Cygni - Piazzi 139 - Piazzi 144 -	6.7 6 6 7 6.7 6.7 7 6.7	3 July 26 3 Sept. 7 3 May 15 3 July 5 4 Sept. 15 4 Sept. 27 4 Oct. 1 3 July 27 4 Oct. 14 3 May 15	17 5.6 17 38.6 17 29.7 17 43.4 18 8.6 18 24.6 18 24.7 18 29.3 18 31.2 19 19 19.3	51.8 45.3 32.3 32.4 41.5 39.5	19 50 15.8 36 49 46.6 + 2 30 7.7 - 7 28 24.4 + 1 31 26.0 35 53 59.0 19 49 6.9 19 49 22.3 + 2 28 0.7	1 51.2 1 41.9 2 4.5 1 55.5 1 40.8 1 32.2 1 32.0 1 53.1 1 35.6 + 2 6.9	19 18 12.3 19 18 19.1 19 18 35.2 19 18 53.9 19 18 56.9 18 57.1 19 10.8	+19 52 27.0 +36 51 28.5 + 2 32 12.2 - 7 26 28.9 + 1 33 6.8 +35 55 25.1 +35 51.0 +19 51 0.0 50 57.9 + 2 30 7.6

(236)

No.	Nama	Man	Date	App't a	D. d	App't δ	D. du . si an	Mean equ	inox 1800, 0
No.	Name	Mag.	Date	Appta	Reduct'n	Appto	Reduction	а	δ
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040	36 Aquilæ e 5 Cygni	6 6.7 6 4.5 7 7	3 July 12 3 July 19 3 May 13 3 May 31 3 Aug. 20 3 May 31 3 May 31 3 July 26 3 July 27 3 July 29	h m s 19 19 21.7 19 41.5 19 42.3 19 42.8 19 43.0 19 55.7 19 55.5 19 55.5	+ 50.2 37.6 40.9 40.4 39.7 40.9 40.4 41.5 41.5	0 / " — 3 13 36.9 +29 1 8.0 24 13 58.2 24 14 4.2 24 14 18.4 24 19 46.8 19 50 38.9 19 50 40.8 19 50 40.0	+ 1 57.1 1 56.4 2 13.3 2 9.2 1 49.3 2 13.8 2 9.3 1 55.1 1 54.9 1 54.4	h m s 19 20 11.9 19 20 23.2 20 23.2 20 22.7 19 20 36.1 20 36.1 19 20 37.0 20 37.4	0 ' " - 3 11 39.8 +29 3 4.4 +24 16 11.5 16 13.4 16 7.7 -24 22 0.7 -24 22 0.7 -22 4.1 +19 52 34.0 52 35.7 52 34.4
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050	" Lalande 36927 Piazzi 157 Piazzi 158 6 Cygni β	6 7 6 7.8 8 7 7.8 6.7	4 Sept. 16 4 Oct. 9 4 Oct. 14 4 Sept. 14 4 Sept. 15 3 Sept. 7 4 Oct. 9 3 July 10 3 April 28 4 Sept. 16	19 58. 1 19 58. 1 19 58. 3 20 48. 6 20 48. 8 21 42. 1 21 44. 2 21 31. 1 21 58. 5 22 2. 8	39. 0 39. 4 39. 5 39. 9 40. 0 35. 1 32. 7 46. 6 40. 0 35. 3	19 50 54.0 19 50 57.8 19 50 55.9 17 15 31.9 17 15 26.9 35 50 47.0 7 2 32.5 27 30 38.3 27 31 14.2	1 38. 1 1 36. 9 1 37. 4 1 40. 0 1 45. 3 1 35. 9 2 0. 6 2 19. 9 1 39. 3	20 37.1 20 37.5 20 37.8 19 21 28.5 21 28.8 19 22 17.2 22 16.9 22 17.7 19 22 38.5 22 38.1	52 32.1 52 34.7 52 33.3 +17 17 11.9 17 6.9 +35 52 21.7 52 22.9 + 7 4 33.1 +27 32 58.2 32 53.5
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060	Comp. β Cygni - Piazzi 163 - Piazzi 164	3.4 6 8 6.7 6 6 6 6.5	4 Sept. 28 4 Oct. 1 4 Oct. 1 3 July 5 3 Sept. 7 4 Oct. 9 3 July 26 3 July 27 3 July 29 4 Oct. 14	22 3.2 22 3.9 22 5.9 22 39.1 22 58.1 23 0.4 23 4.7 23 5.0 23 5.2 23 15.7	35. 5 36. 3 36. 3 41. 4 34. 4 32. 7 42. 6 42. 6 42. 6 49. 9	27 31 11.8 27 31 13.5 27 31 37.7 20 28 54.0 35 47 5.0 35 47 15.0 17 17 43.7 17 17 44.2 +17 17 43.2	1 38.3 1 38.1 1 38.1 2 3.8 1 49.3 1 37.4 1 59.4 1 59.2 1 58.8 1 51.0	22 38.7 22 40.2 19 22 42.2 19 23 20.5 19 23 33.3 19 23 37.3 23 47.3 23 47.6 23 47.8 19 24 5.6	32 50. 1 32 51. 6 +27 33 15. 8 +20 30 57. 8 +35 48 53. 1 +17 19 43. 1 19 43. 4 19 42. 0 -10 59 12. 9
5061 5062 5063 5064 5065 5066 5067* 5068 5069 5070	38 Aquilæ	6.7 7 7.8 6	3 July 10 3 July 12 3 July 14 3 May 31 3 Aug. 20 4 Sept. 14 4 Sept. 15 3 July 5 3 July 29 3 July 12	23 32. 4 23 32. 1 23 32. 4 23 44. 6 (23) 24 36. 6 24 37. 1 25 5. 5 25 5. 9 (25)	46. 6 46. 5 35. 8 45. 0 45. 0 45. 0 39. 3 41. 8	+ 6 55 53.9 6 55 52.9 6 55 54.1 33 59 56.3 34 0 13.0 2 27 4.0 25 36 3.7 +19 18 44.7 — 1 45 13.0	2 3.3 2 3.0 2 2.6 2 16.5 1 48.5 1 48.5 2 7.4 2 1.4 2 5.3	19 24 19. 0 24 18. 7 24 18. 9 19 24 20. 4 (24) 19 25 21. 6 25 22. 1 19 25 44. 8 19 25 47. 7 19(26)	+ 6 57 57. 2 57 55. 9 57 56. 7 +34 2 12. 8 2 1. 5 + 2 28 53. 7 28 52. 5 +25 38 11. 1 +19 20 46. 1 — 1 43 7. 7
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080	"	6 4.5 6 6 7 6 6 6.7	4 Sept. 16 4 Sept. 17 4 Oct. 1 4 Oct. 9 4 Oct. 14 4 Oct. 13 3 Sept. 7 4 Oct. 14 4 Oct. 15 3 May 15	25 35. 5 25 36. 2 25 36. 2 25 36. 6 25 34. 6 26 5. 1 26 22. 4 (26) 26 49. 2	47.9	1 45 1.5 1 44 57.4 1 44 56.9 1 44 59.7 1 45 0.9 — 1 45 0.8 +38 18 7.9 — 5 6 50.8 — 5 6 53.8 +33 19 24.7	1 50, 8 1 50, 8 1 50, 5 1 49, 4 1 50, 4 1 50, 7 1 51, 5 1 52, 8 1 52, 7 2 24, 6	26 21.9 26 22.2 26 26 22.9 26 22.4 26 21.4 19 26 38.2 19 27 10.3 (27) 19 27 25.9	43 10.7 43 6.6 43 6.4 43 10.3 43 10.5 43 10.1 +38 19 59.4 -5 4 58.0 5 1.1 +33 21 49.3
5081** 5082 5083 5084 5085 5086 5087 5088 5089 5090	Bessel, W.928 Lalande 37206 Piazzi 202 4 Sagittæ & Flamsteed, B.2664 Lalande 37262	7 6.7 7.8 7 6 7 7	3 July 27 3 July 29- 3 May 31 4 Sept. 17 3 July 9 3 July 26 4 Oct. 14 4 Sept. 14 4 Sept. 15 4 Sept. 28	26 53.5 26 54.2 27 11.9 27 21.7 27 30.8 27 31.0 27 28 2.8 28 2.8 19 28 2.6	45. 8 43. 3 43. 1 44. 8 44. 5	22 7 2.3 22 7 0.9 +41 27 21.4 -0 7 37.6 +15 59 13.0 15 59 13.8 41 57 12.7 2 54 22.3 2 54 25.7 + 2 54 21.8	2 4.3 2 3.8 2 22.4 1 52.5 2 9.2 2 5.5 1 42.2 1 52.6 + 1 52.2	19 27 34. 1 27 34. 8 19 27 43. 4 19 28 7. 5 19 28 14. 1 28 14. 1 19 28 19 28 47. 6 28 47. 3 19 28 47. 6	+22 9 6.6 9 4.7 +41 29 43.8 - 0 5 45.1 +16 1 22.2 1 19.3 +41 58 54.9 + 2 56 14.9 + 2 56 19.7 + 2 56 14.0

· (237)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
								a	δ
5091* 5092 5093 5094 5095 5096 5097 5098 5099 5100	Lalande 37262 . 44 Aquilæ σ Lalande 37310	6.7 8 6.7 7 6	4 Oct. 9 3 July 10 3 July 12 3 July 14 3 July 5 3 July 8 3 July 19 3 Sept. 7 4 Oct. 14 3 July 9	h m s 19 28 2.3 28 31.9 28 32.0 28 32.2 28 54.1 28 53.5 29 21.5 29 39.6	+ 45.2 47.3 47.3 47.3 41.6 41.5 33.2 43.2	+ 2 54 22.9 4 54 58.7 4 55 0.9 4 55 0.1 20 18 18.3 20 18 19.1 37 54 35.1 37 54 47.7 +16 5 9.1	+ 1 52.3 2 9.8 2 9.8 2 9.9 2 12.3 2 11.7 2 8.8 1 57.6 1 44.8 2 18.5	h m s 19 28 47.5 19 29 19.2 29 19.3 29 19.5 19 29 35.6 29 35.5 29 35.0 19 29 54.7 29 19 30 22.8	+ 2 56 15.2 + 4 57 8.5 57 10.7 57 10.0 +20 20 30.6 20 26.5 20 27.9 +37 56 32.7 56 32.5 +16 7 27.6
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110	45 Aquilæ	6 6.7 6 6 6 6 4	4 Sept. 14 4 Sept. 16 4 Sept. 17 4 Oct. 1 4 Oct. 13 3 May 31 4 Oct. 9 3 July 27 3 Sept. 6 3 May 15	29 38.1 29 39.0 29 39.3 29 38.8 29 38.6 29 56.6 29 57.9 30 39.7 30 9.4 30 26.5	28. 2 24. 6 54. 9	- 1 6 22.7 1 6 23.0 1 6 19.3 1 6 15.9 - 1 6 23.8 +44 13 4.6 44 13 43.3 +49 43 38.3 -16 36 54.2 +17 31 26.1	1 55. 6 1 55. 5 1 55. 5 1 54. 9 1 55. 4 2 26. 5 1 44. 5 2 9. 8 2 10. 3 2 26. 1	19 30 24. 2 30 25. 2 30 25. 5 30 25. 2 30 25. 2 30 25. 2 19 30 26. 1 19 31 4. 3 19 31 4. 3 19 31 10. 4	- 1 4 27.1 4 27.5 4 23.8 4 21.0 4 28.4 +44 15 31.1 15 27.8 +49 45 48.1 -16 34 43.9 +17 33 52.2
5111 5112 5113 5114 5115* 5116 5117* 5118 5119* 5120	12 Cygni φ Lalande 37387 6 Sagittæ β Groombridge 2897 46 Aquilæ	7 8,9 7 6,7	3 July 19 3 July 26 3 July 29 3 Aug. 20 3 July 5 3 July 5 3 July 9 3 July 9 3 July 19 3 May 31 4 Sept. 16	30 26.4 30 50.9 30 52.0 30 51.6 31 2.4 31 2.1 31 21.2 31 21.2 31 56.8 32 7.0	42.6 37.4 37.4 41.8 41.7 42.9 42.8 26.3 41.9	17 31 38,2 29 39 51,1 29 39 54,7 29 39 57,2 19 59 10,2 19 59 9,1 16 59 7,3 48 47 3,9 11 41 56,5	2 10.8 2 9.8 2 8.9 2 3.7 2 15.0 2 14.4 2 12.1 2 29.9 1 55.2	31 9.0 19 31 28.3 31 29.4 31 29.0 19 31 44.2 31 43.8 19 32 4.1 32 4.0 19 32 23.1 19 32 48.9	33 49.0 +29 42 0.9 42 3.6 42 0.9 +20 1 25.2 1 23.5 +17 1 19.3 1 19.4 +48 49 33.8 +11 43 51.7
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130	14 Cygni	6 6 7.8 6.5	3 Sept. 7 4 Oct. 9 4 Oct. 14 4 Oct. 15 4 Sept. 28 3 July 10 3 July 12 4 Sept. 14 4 Sept. 17 3 July 29	32 25.0 32 26.8 32 26.4 32 26.2 32 22.3 32 23.5 32 24.1 32 27.0 32 26.7 33 25.8	30, 8 29, 4 29, 6 29, 6 43, 4 45, 0 41, 9 42, 1 36, 0	42 19 41. 9 42 19 53. 9 42 19 52. 6 42 19 56. 5 7 53 5. 2 11 19 37. 9 11 19 38. 8 11 19 58. 6 11 20 0. 8 32 55 7. 2	2 1.1 1 47.8 1 47.5 1 56.1 2 15.3 2 14.9 1 56.0 1 55.7 2 12.2	19 32 55.8 32 56.2 32 56.0 32 55.8 19 33 5.7 19 33 8.5 33 8.9 33 8.8 19 34 1.8	+42 21 43.0 21 41.7 21 40.1 21 44.0 + 7 55 1.3 +11 21 53.2 21 53.7 21 54.6 21 56.5 +32 37 19.4
5131 5132 5133 5134 5135 5136 5137 5138* 5139* 5140	Lalande 37486,7 Lalande 3748,9 Lalande 37497 Groombridge 2909 Groombridge 2910 Lalande 37521,2	6.7 7 6 7 7.8 6 7 7.8 8.9	3 Sept. 7 4 Oct. 9 4 Oct. 14 4 Oct. 15 3 Aug. 20 4 Sept. 15 3 May 31 4 Oct. 16 3 July 5 3 July 8	33 41.4 33 43.8 33 43.2 33 43.0 33 33.5 33 43.7 34 9.8 34 15.8 34 8.9 34 8.6	30. 6 29. 3 29. 4 29. 4 40. 7 42. 8 29. 4 31. 3 41. 0 40. 9	42 35 2.1 42 35 13.7 42 35 14.3 42 35 11.5 22 21 7.1 9 1 0.2 45 0 50.0 39 31 44.3 21 59 22.6 21 59 23.6	2 2.7 1 49.3 1 49.2 1 49.1 2 8.1 1 57.9 2 32.4 1 50.3 2 19.2 2 18.6	19 34 26,5	+42 37 4.8 37 3.6 37 3.6 37 0.6 +22 23 15.3 + 9 2 58.3 +45 3 22.4 +39 33 34.6 +22 1 41.8
5141 5142 5143 5144 5145 5146* 5147* 5148* 5149 5150	10 Vulpeculæ	8 7.8 7 6 6.7 6 6 6	3 July 9 3 July 10 3 July 29 4 Oct. 16 3 July 19 3 July 26 3 July 14 3 July 27 4 Sept. 16 4 Sept. 17	34 9.4 34 8.7 34 26.7 34 36.8 34 31.8 34 31.7 34 44.0 35 9.8 35 12.4 19 35 12.7	40.9 40.9 36.3 31.1 44.4 44.4 39.5 46.4 43.5 + 43.5	21 59 21.8 21 59 23.2 31 55 25.7 39 45 28.4 12 47 41.1 12 47 40.7 25 15 49.4 7 6 4.4 7 6 15.7 + 7 6 18.6	2 18.3 2 18.1 2 13.6 1 50.6 2 16.2 2 14.8 2 14.8 2 0.0 +2 0.0	19 35 7.9 19 35 16.2 35 16.1 19 35 23.5 19 35 56.2 35 55.9	1 40.1 1 41.3 +31 57 39.3 +39 47 19.0 +12 49 57.3 49 55.3 +25 18 7.4 + 7 8 19.2 8 15.7 + 7 8 18.6

(238)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800, 0
	•							u	δ
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160*	Groombridge 2920 Lalande 37584 50 Aquilæ y	7 7.8	4 Oct. 15 3 July 29 3 April 28 3 May 13 3 May 13 3 July 12 3 July 19 4 Sept. 7 4 Sept. 14 4 Sept. 17	h m s 19 35 36.3 35 44.2 35 57.5 35 58.6 36 0.1 35 59.2 35 58.7 36 2.4 (36) (36)	** 31.9 35.5 47.3 46.8 46.8 45.5 45.4 42.4	+38 10 14.9 33 39 21.5 10 5 36.0 10 5 33.4 10 5 42.2 10 5 48.8 10 6 3.5 10 6 4.1 10 6 7.3	+ 1 52.0 2 15.5 2 34.1 2 31.8 2 31.4 2 19.8 2 18.2 2 1.1 2 0.5 2 0.3	h m s 19 36 8.2 19 36 19.7 19 36 44.8 36 45.4 36 46.9 36 44.1 36 46.8 (36) (36)	+38 12 6.9 +33 41 37.0 +10 8 10.1 8 5.2 8 13.6 8 5.8 8 7.0 8 4.6 8 4.6 8 7.6
5161* 5162 5163 5164 5165 5166 5167 5168 5169 5170	Groombridge 2925 Lalande 37627 Lalande 37655 Piazzi 278 18 Cygni d	6 6 6 10 8 7	4 Oct. 1 4 Oct. 9 4 Oct. 16 3 May 31 3 July 19 3 July 9 3 July 29 3 April 28 3 May 13 3 May 15	36 2.2 36 31.7 36 31.2 36 32.6 36 45.9 37 35.9 37 49.2 38 12.8 38 13.0 38 14.2	42. 7 32. 4 32. 6 32. 0 40. 3 39. 9 35. 1 31. 0 30. 4 30. 4	10 6 9.6 36 50 46.3 36 50 47.4 41 15 22.6 23 34 45.0 24 36 43.4 34 29 39.6 44 36 7.0 44 36 8.8 44 36 11.1	1 59.5 1 53.6 1 53.4 2 35.1 2 21.8 2 23.2 2 18.3 2 45.1 2 42.4 2 42.0	36 44, 9 19 37 4, 1 37 3, 8 19 37 4, 6 19 37 26, 2 19 38 15, 8 19 38 24, 3 19 38 43, 4 38 44, 6	8 9.1 +36 52 39.9 52 40.8 +41 17 57.7 +23 37 6.8 +24 39 6.6 +34 31 57.9 +44 38 52.1 38 51.2 38 53.1
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180	17 Cygni Lalande 37695 Lalande 37710–3 Lalande 37717 Lalande 37753	5 7 7 7.8 6.7 7.8 6.7 6.7	4 Oct. 16 4 Sept. 16 4 Sept. 17 3 July 9 3 July 19 4 Oct. 15 3 July 26 3 July 27 3 May 31 4 Oct. 9	38 15, 0 38 17, 4 38 17, 5 38 46, 0 38 45, 2 38 47, 4 38 42, 6 (38) 39 47, 8 39 50, 5	34. 2 42. 5 42. 5 39. 8 39. 8 37. 8 46. 2 34. 2 32. 0	33 14 23, 3 10 10 15, 3 10 10 21, 4 24 51 31, 5 24 51 52, 8 24 51 52, 8 24 51 52, 7 7 44 49, 5 7 44 49, 5 37 52 31, 3 37 53 11, 6	1 56.2 2 3.1 2 3.0 2 24.8 2 24.5 1 58.7 2 20.2 2 17.7 2 39.0 1 57.3	19 38 49.2 19 38 59.9 39 0.0 19 39 25.8 39 25.0 39 25.2 19 39 28.8 (39) 19 40 22.0 40 22.5	+33 16 19.5 +10 12 18.4 12 24.4 +24 53 56.3 53 54.3 53 50.9 + 7 47 9.7 +37 55 10.3 55 8.9
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190	53 Aquilæ a		3 April 28 3 May 13 3 May 15 3 July 5 3 July 9 3 July 9 3 July 10 3 July 12 3 July 14 3 July 19	40 12.7 40 13.2 40 14.3 40 14.4 40 14.5 40 14.8 40 14.2 40 15.1 40 14.5 40 14.7	48. 0 47. 5 47. 4 46. 3 46. 2 46. 2 46. 2 46. 2 46. 2 46. 1	8 18 18.9 8 18 15.4 8 18 25.0 8 18 30.4 8 18 27.6 8 18 29.0 8 18 30.0 8 18 29.9 8 18 30.4 8 18 32.9	2 39. 3 2 36. 8 2 36. 5 2 26. 3 2 25. 7 2 25. 6 2 25. 3 2 24. 9 2 23. 7	19 41 0.7 41 0.7 41 1.7 41 0.7 41 0.7 41 1.0 41 0.4 41 1.3 41 0.7 41 0.8	+ 8 20 58. 2 20 52. 2 21 0. 5 20 56. 7 20 53. 4 20 55. 7 20 55. 6 20 55. 2 20 55. 3 20 56. 6
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200			3 July 26 3 July 27 3 July 29 3 Aug. 20 4 July 14 4 Sept. 14 4 Sept. 15 4 Sept. 16 4 Sept. 17	40 14.6 40 14.8 40 14.7 40 15.0 40 18.1 40 18.1 40 17.9 40 17.9 40 17.6 40 17.9	46. 1 46. 0 46. 0 42. 9 43. 0 43. 1 43. 2 43. 2	8 18 30.5 8 18 34.2 8 18 34.6 8 18 35.0 8 18 40.3 8 18 46.8 8 18 46.8 8 18 46.2 8 18 48.0 8 18 50.0	2 22. 4 2 22. 2 2 21. 9 2 16. 7 2 14. 4 2 6. 6 2 5. 9 2 5. 8 2 5. 7 2 5. 7	41 0.7 41 0.8 41 0.7 41 1.0 41 1.0 41 1.1 41 1.1 41 0.8 41 1.1	20 52. 9 20 56. 4 20 56. 5 20 51. 7 20 54. 7 20 52. 7 20 52. 7 20 52. 0 20 53. 7 20 55. 7
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210	2529 Bradley 12 Vulpeculæ Lalande 37855	1. 2 1. 2 1. 2 7 7. 6 6. 7 6 6 8. 9	4 Oct. 1 4 Oct. 16 4 Nov. 17 4 Nov. 28 3 May 31 4 Sept. 16 4 Sept. 17 4 Oct. 15 4 Oct. 16 3 July 12	40 18. 1 40 17. 2 40 16. 7 40 16. 8 41 48. 7 41 41 48. 7 41 48. 1 19 42 38. 0	42. 3 43. 6 44. 0 44. 0 34. 1 38. 4 38. 9 38. 9 + 47. 7	8 18 51.5 8 18 49.4 .8 18 47.9 8 18 43.1 38 10 9.8 22 4 34.3 22 4 34.6 22 4 30.0 22 4 34.2 + 3 51 13.5	2 5.1 2 5.0 2 6.8 2 7.7 2 41.8 2 4.4 2 3.0 + 2 27.8	41 0.4 41 0.8 41 0.7 41 0.8 19 42 2.8 19 42 27.1 42 27.1 42 27.0 19 43 25.7	20 56.6 20 54.4 20 54.7 20 50.8 +38 12 51.6 +22 6 38.7 6 39.0 6 33.0 6 37.2 + 3 53 41.3

(239)

No.	Nama	Mag	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
No.	Name	Mag.	Date	жүрги	iteduct ii	Appro	Tecuacion .	а	δ
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220	Lalande 37855	7 7.8 7.8 7 6 6 6.7 6	3 July 19 3 July 27 3 July 29 4 Sept. 14 3 May 31 3 July 14 3 July 19 3 July 10 4 Sept. 16 4 Sept. 17	h m s 19 42 37.6 42 37.6 42 37.6 42 46.8 42 54.6 43 41.1 44 7.1 44 18.9 44 19.8	+ 47.7 47.6 47.6 39.8 34.2 49.1 46.8 46.8 37.8 37.9	0 / " + 3 51 12.0 3 51 10.5 3 51 11.7 18 7 52.3 +38 10 9.9 - 0 16 46.3 + 6 35 6 35 1.6 23 31 52.5 23 31 52.3	+ 2 26.6 2 25.5 2 25.2 2 6.8 2 43.2 2 28.6 2 30.8 2 7.2 2 7.1	h m s 19 43 25.3 43 24.6 43 25.2 19 43 26.6 19 43 28.8 19 44 30.2 19 44 56.7 44 57.7	+ 3 53 38.8 53 36.0 53 36.9 +18 9 59.1 +38 12 53.1 - 0 14 17.7 + 6 37 37 32.4 +23 33 59.7 33 59.4
5221 5222 5223 5223 5224 5225 5226* 5227 5228 5229 5230	60 Aquilæ β	6	4 Oct. 15 3 April 28 3 May 13 3 May 15 3 July 5 3 July 8 3 July 9 3 July 10 3 July 19 3 July 26	44 18.2 44 40.3 44 41.0 44 42.1 44 42.0 44 42.5 (44) 44 42.2 44 42.2	38. 4 48. 9 48. 4 47. 1 47. 1 47. 0 46. 9	23 31 50.9 5 52 32.9 5 52 26.4 5 52 33.2 5 52 39.5 5 52 38.3 5 52 36.3 5 52 45.0 5 52 41.3	2 5.5 2 44.2 2 41.9 2 41.7 2 31.8 2 31.3 2 31.1 2 30.9 2 29.3 2 28.1	44 56.6 19 45 29.2 45 29.4 45 30.5 45 29.1 45 29.6 (45) 45 29.2 45 29.1	33 56.4 + 5 55 17.1 55 8.5 55 14.5 55 11.3 55 9.4 55 7.4 55 14.5 55 9.4
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240	2541 Bradley Lalande 37965,6 Lalande 38017	4.5 3.4 6.7 6.7 6.5 6 6.7 6 7	4 Sept. 14 4 Nov. 28 3 July 27 3 July 29 4 Sept. 16 4 Sept. 17 4 Oct. 15 4 Oct. 16 4 Sept. 7 3 July 12	44 44 44.5 45 21.3 45 21.4 45 23.4 45 24.2 45 23.3 45 28.5 46 10.1	44.8 40.3 40.3 37.8 37.8 38.3 38.3 38.4 49.1	5 52 54.1 5 52 55.7 23 45 47.1 23 45 48.2 23 46 2.7 23 46 7.1 23 46 5.1 +21 52 35.7 — 0 12 48.7	2 13. 1 2 10. 3 2 28. 8 2 28. 3 2 8. 4 2 6. 8 2 6. 7 2 10. 1 2 32. 1	45 45 29. 3 19 46 1. 6 46 1. 7 46 1. 2 46 2. 0 46 1. 4 46 1. 6 19 46 6. 9 19 46 59. 2	55 7. 1 55 6. 0 +23 48 15. 9 48 16. 5 48 11. 1 48 15. 6 48 11. 9 48 11. 6 +21 54 45. 8 - 0 10 16. 6
5241 5242 5243 5244* 5245 5246 5247 5248 5249 5250	Lalande 38039 . Lalande 38068 . 11 Sagittæ	7 6 7 7 6 4.5 5	3 July 23 3 May 31 4 Sept. 7 3 July 8 3 July 9 3 July 10 4 Sept. 14 3 July 29 4 Sept. 17 3 July 10	46 10.2 46 54.6 47 39.1 47 57.4 47 57.6 47 57.0 47 59.7 48 13.1 48 15.5 48 24.2	49. 0 35. 3 37. 9 43. 4 43. 4 40. 4 35. 4 33. 4 43. 5	- 0 12 51.2 +36 25 43.2 23 12 43.2 16 12 55.2 16 12 58.0 16 13 19.8 34 31 4.2 34 31 25.1 15 55 13.2	2 30. 6 2 48. 1 2 12. 5 2 36. 3 2 36. 2 2 36. 2 2 33. 0 2 13. 7 2 32. 0 2 9. 9 2 36. 5	46 59. 1 19 47 29. 9 19 48 17. 0 19 48 40. 8 48 41. 0 48 40. 1 19 48 48. 5 48 48. 9 19 49 7. 7	10 20. +36 28 31. +23 14 55. +16 15 31. 15 35. 15 34. 15 33. +34 33 36. 33 35. +15 57 49.
5251 5252 5253 5254 5255 5256 5257* 5258* 5259* 5260	Santini 1381 . Lalande 38127,8 . Lalande 38129,30 12 Sagittæ γ	6 8 7 5 6.7	3 July 23 4 Sept. 17 4 Oct. 1 3 July 14 3 July 26 3 July 27 4 Sept. 15 4 Sept. 16 3 May 31 4 Sept. 14	48 23,5 49 9,1 49 0,9 49 9,1 49 9,5 49 11,6 49 12,2 49 44,8 49 57,3	48. 6 33. 4 42. 4 42. 4 42. 2 42. 2 39. 6 39. 6 34. 6 38. 3	0 47 56.7 34 28 4.9 10 44 3.8 18 54 52.7 18 54 54.5 18 55 9.6 18 55 9.1 37 52 44.9 22 31 39.6	2 33. 4 2 11. 0 2 14. 9 2 36. 6 2 33. 7 2 33. 5 2 14. 1 2 14. 0 2 52. 2 2 14. 4	19 49 12.1 19 49 42.5 19 49 43.3 19 49 51.5 49 51.7 49 51.9 49 51.2 49 51.8 19 50 19.4 19 50 35.6	+ 0 50 30, +34 30 15, +10 46 18, +18 57 29, 57 25, 57 23, 57 23, +37 55 37, +22 33 54,
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270	Lalande 38177 . 13 Sagittæ χ Piazzi 362 . Lalande 38202 . Piazzi 365 . Lalande 38230 . Lalande 38233 .	6.7 6.7 6.7 8 7.8 9.10 8	4 Oct. 15 4 Sept. 7 3 July 5 3 July 8 3 July 9 3 July 9 3 July 29 3 July 23 4 Oct. 1 4 Sept. 16	49 56.8 50 7.4 50 18.3 50 18.1 50 18.0 50 23.7 50 47.4 50 33.7 51 11.6 19 51 17.5	38. 8 35. 1 43. 3 43. 2 43. 2 43. 2 33. 9 41. 5 + 37. 2	22 31 39.1 30 24 43.3 16 56 10.6 16 56 5.9 16 56 8.5 17 1 44.7 +37 31 38.3 - 0 47 5.9 +13 56 33.2 +25 36 34.5	2 12.5 2 14.3 2 40.1 2 39.5 2 39.3 2 39.4 2 35.3 2 36.2 2 16.4 + 2 15.1	50 35.6 19 50 42.5 19 51 1.6 51 1.3 51 1.2 19 51 6.9 19 51 21.3 19 51 22.9 19 51 53.1 19 51 54.7	33 51.6 +30 26 57.6 +16 58 50.7 58 45.6 58 47.6 +17 4 24.1 +37 34 13.6 — 0 44 29.7 +13 58 49.6 +25 39 49.6

(240)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800, 0
								<u>a</u>	d,
5271 5272 5273 5274 5275 5276 5277* 5278 5279 5280	25 Cygni 15 Vulpeculæ "Groombridge 3001 2559 Bradley Lalande 38284 Lalande 38292 16 Vulpeculæ	6 6 6 7 5	3 July 26 3 July 14 3 July 27 3 May 31 4 Sept. 15 4 Oct. 15 4 Sept. 15 4 Oct. 1 3 July 12 4 Sept. 15	h m s 19 52 0.5 52 12.7 52 12.1 52 33.4 52 38.5 52 37.9 52 37.0 52 49.5 52 52.1 52 54.3	+ 34.5 39.1 39.0 30.2 37.7 38.2 42.5 41.5 40.3 37.6	+36 27 27.2 27 9 52.2 27 9 58.8 45 10 57.2 24 12 56.0 24 12 56.0 10(20) 13 59 40.6 24 20 26.0 24 20 50.8	+ 2 37.8 2 41.1 2 37.7 2 56.9 2 16.9 2 15.0 2 18.2 2 42.3 2 17.4	h m s 19 52 35.0 19 52 51.8 52 51.1 19 53 3.6 19 53 16.2 53 16.1 19 53 19.5 19 53 31.0 19 53 32.4 53 31.9	0 / " +36 30 5.0 +27 12 33.3 12 36.5 +45 13 54.1 +24 15 12.9 15 11.0 +10(22) +14 1 58.8 +24 23 8.3 23 8.2
5281 5282* 5283 5284 5285 5286 5287 5288 5289 5290	Lalande 38319	6 5.6 7.8 7.8 7.8 7.8 7	4 Sept. 17 4 Oct. 15 3 July 5 3 July 8 3 July 9 3 July 5 3 July 5 3 July 8 3 July 9 3 July 10	52 54.5 52 54.5 53 19.8 53 20.1 53 20.5 53 19.6 53 34.9 53 34.9 53 35.4 53 34.2	37. 7 38. 2 43. 0 43. 0 43. 0 43. 0 42. 9 42. 9 42. 9	24 20 54.5 24 20 53.2 17 42 2.2 17 42 1.0 17 42 3.0 17 42 1.7 17 54 15.6 17 54 19.6 17 54 19.4	2 17. 2 2 15. 3 2 44. 2 2 43. 5 2 43. 2 2 43. 0 2 44. 4 2 43. 7 2 43. 4 2 43. 2	53 32.2 53 32.7 19 54 2.8 54 3.1 54 3.5 54 2.6 19 54 17.9 54 18.3 54 18.5 54 17.1	23 11.7 23 8.5 +17 44 46.4 44 44.5 44 44.5 +17 57 0.0 57 3.3 57 4.2 57 2.6
5291* 5292 5293 5294 5295 5296 5297 5298 5299* 5300	14 Sagittæ 9 63 Aquilæ 7 2567 Bradley Lalande 38368 15 Sagittæ z 26 Cygni c²	7 7.8 7 6.7 6.7 4.5	4 Oct. 9 3 July 23 4 Sept. 14 3 July 29 4 Sept. 16 4 Sept. 17 3 July 29 4 Oct. 1 3 May 31 3 July 27	53 37. 9 53 37. 5 53 38. 3 54 11. 7 54 22. 6 54 22. 2 54 23. 9 54 26. 6 55 14. 9 55 15. 7	40. 4 43. 6 43. 6 43. 2 34. 9 34. 9 43. 2 40. 7 27. 1 26. 1	17 54 46.6 15 26 3.7 6 41 0.7 16(32) 31 22 2.0 31 22 6.6 16 29 44.5 16 30 1.7 49 30 18.5 49 30 30.7	2 18.0 2 40.3 2 22.0 2 17.8 2 17.6 2 39.8 2 19.5 3 1.1 4 42.4	54 18.3 19 54 21.1 19 54 21.9 19 54 54.9 19 54 57.5 54 57.1 19 55 7.1 55 7.3 19 55 42.0 55 41.8	57 4.6 +15 28 44.0 + 6 43 22.7 +16(34) +31 24 19.8 24 24.2 +16 32 24.3 32 21.2 +49 33 19.6 33 13.1
5301 5302 5303 5304 5305 5306 5307 †5308* 5309 5310	Lalande 38404 16 Sagittæ 7 Lalande 38423 Lalande 38438	7.8 7 7.8 6 6 8 7	3 July 14 4 Oct. 15 4 Oct. 16 3 July 5 3 July 8 3 July 26 4 Oct. 9 3 July 12 4 Sept. 15 4 Sept. 16	55 26. 1 55 28. 1 55 27. 9 55 34. 7 55 34. 7 55 34. 9 55 37. 4 55 41. 7 55 56 12. 3	35, 3 33, 7 33, 7 42, 4 42, 4 42, 2 39, 9 41, 1	35 25 23, 4 35 25 51, 8 35 25 51, 9 19 22 47, 2 19 22 47, 4 19 22 49, 0 19 23 10, 9 22 36 41, 6 31 37 18, 2 31 37 13, 2	2 45.8 2 15.8 2 15.8 2 47.7 2 46.5 2 42.0 2 19.8 2 45.8 2 18.9 2 19.8	19 56 1. 4 56 1. 8 56 1. 6 19 56 17. 1 56 17. 1 56 17. 3 19 56 22. 8 19 56 56 47. 1	+35 28 9.2 28 7.6 28 7.7 +19 25 34.9 25 33.9 25 30.7 +22 39 27.4 +31 39 37.1 39 33.0
5311 5312 5313 5314 5315 5316 5317 5318 5319* 5320	64 Aquilæ	7.6 7.8 6 6	4 Sept. 17 3 July 9 3 July 10 3 July 5 3 July 12 3 July 23 4 Sept. 7 4 Sept. 14 4 Sept. 17	56 11. 0 56 52. 2 56 52. 1 57 36. 7 57 36. 1 57 36. 3 57 36. 9 57 39. 3 57	49. 5 49. 5	+31 37 16.3 -1 17 20.3 -1 17 21.3 +22 59 59.6 22 59 58.6 23 0 4.0 23 0 4.8 23 0 21.2 23 0 21.3 23 0 26.8	2 19.6 2 45.9 2 45.8 2 50.1 2 48.2 2 44.7 2 43.9 2 24.3 2 23.2 2 22.9	56 45.8 19 57 41.7 57 41.6 19 58 17.7 58 17.1 58 17.1 58 17.7 58 17.7 58 17.5 58	39 35.9 1 14 34.4 14 35.5 +23 2 49.7 2 46.8 2 48.7 2 48.7 2 45.5 2 44.5 2 49.7
5321 5322 5323 5324 5325 5326 5327 5328 5329* 5330	27 Cygni b'	5.6 6 6 6 6 6,7	4 Oct. 1 4 Oct. 9 3 May 31 3 July 14 4 Sept. 15 4 Sept. 16 4 Oct. 16 4 Oct. 15 3 July 9 3 July 10	57 39, 5 57 39, 4 58 19, 6 58 20, 9 58 23, 4 58 23, 2 58 22, 8 19 59 27, 4 20 0 9, 6 20 0 8, 9	38. 5 38. 6 36. 3 35. 4 33. 2 33. 2 33. 8 34. 5 49. 6 + 49. 6	23 0 26.1 23 0 26.0 35 22 49.5 35 23 1.1 35 23 27.5 35 23 26.8 35 23 30.9 33 48 35.7 1 27 6.6 + 1 27 2.8	2 21.7 2 21.3 3 2.7 2 49.6 2 22.0 2 21.8 2 19.2 2 20.6 2 50.0 + 2 49.9	58 18.0 58 18.0 19 58 55.9 58 56.3 58 56.6 58 56.4 58 56.4 20 0 1.9 20 0 59.2 20 0 58.5	2 47.8 2 47.3 +35 25 52.2 25 50.7 25 49.5 25 50.1 +33 50 56.3 — 1 24 16.6 — 1 24 12.9

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction		inox 1800, 0
			2	пррос				а	δ
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340	65 Aquilæ θ Lalande 38631 17 Sagittæ θ 2 Capricorni ξ ² 28 Cygni b ²	6.5 4 4.5 8 6.7 7.8 7 7 5.6	3 July 23 4 Sept. 14 4 Oct. 9 4 Sept. 17 3 July 27 4 Sept. 17 4 Sept. 17 4 Oct. 16 3 July 8 3 May 31	h m s 20 0 9.5 0 12.6 0 12.1 0 24.7 0 25.5 0 27.8 0 28.0 0 27.4 0 23.1 1 23.9	53, 5	c / " + 1 27 3.6 1 26 49.9 - 1 26 44.8 +20(16) 20 17 3.1 20 17 11.6 20 17 16.6 +20 17 13.5 -13 14 15.9 +36 12 22.4	+ 2 48.0 2 31.5 2 31.1 2 47.9 2 26.6 2 24.9 2 49.4 3 6.9	h m s 20 0 58.9 0 58.5 20 1 3.9 20 1 7.4 1 7.0 1 7.2 1 7.1 20 1 16.6 20 1 59.9	0 ' " - 1 24 15.6 24 18.4 24 13.7 +20(19) +20 19 51.0 19 38.3 19 43.2 19 38.4 -13 11 26.5 +36 15 29.3
5341 5342 5343 5344 5345 5346 5346 5348 5349 5350	18 Vulpeculæ	8.9 6 7 7 7 7 7 6.7	3 July 29 3 July 26 3 July 12 3 July 27 4 Sept. 16 4 Sept. 17 4 Oct. 1 4 Oct. 15 4 Oct. 16 4 Oct. 9	1 24.5 1 33.1 1 33.5 1 32.6 1 36.1 (1) 1 36.0 1 35.3 1 35.4 2 7.6	35. 0 39. 6 42. 0 41. 8 39. 2 39. 4 39. 7 39. 7 46. 4	36 12 38.3 26 16 19.8 20 29 56.5 20 30 6.0 20 30 21.3 20 30 25.9 20 30 22.7 +20 30 22.4 - 1 38 26.7	2 49. 0 2 49. 7 2 53. 0 2 49. 4 2 27. 9 2 27. 9 2 26. 6 2 26. 1 2 26. 1 2 33. 3	1 59, 5 20 2 12, 7 20 2 15, 5 2 14, 4 2 15, 3 (2) 2 15, 4 2 15, 0 2 15, 1 20 2 54, 0	15 27. 3 +26 19 9. 5 +20 32 49. 5 32 55. 4 32 49. 2 32 55. 3 32 52. 5 32 48. 8 32 48. 5 - 1 35 53. 4
5351 5352* 5353 5354 5355 5356 5357 5358 5359 5360	19 Vulpeculæ 20 Vulpeculæ Lalande 38821 Anonyma	5.6 7.6 7 6.7 8	4 Nov. 17 3 July 26 4 Sept. 15 4 Sept. 16 3 July 23 4 Sept. 16 4 Oct. 16 4 Sept. 17 4 Oct. 1 4 Oct. 9	2 6.8 2 46.9 2 49.0 2 57.6 3 0.9 (3) 4 27.5 4 26.9 5 22.0	47. 0 39. 7 37. 1 39. 8 37. 3 38. 1 38. 4 39. 3	-1 38 27. 3 +26 10 23. 4 26 10 47. 3 26 10 46. 4 25 50 31. 5 25 50 53. 1 25 50 56. 2 23 35 55. 6 23 35 59. 7 21 20 0. 1	2 34.5 2 51.3 2 28.5 2 28.3 2 52.5 2 28.6 2 26.3 2 30.7 2 29.2 2 30.4	2 53.8 20 3 26.6 3 3 26.1 20 3 37.4 3 38.2 (3) 20 5 5.6 5 5.3 20 6 1.3	35 52.8 +26 13 14.7 13 15.8 13 14.7 +25 53 24.0 53 21.7 53 22.5 +23 38 26.3 38 28.9 +21 22 30.5
5361 5362 5363 †5364* 5365 5366 5367 5368 5369 5370	21 Vulpeculæ 5 Capricorni a¹ "" 11(Hev)Vulpeculæ 22 Vulpeculæ	7.8 6 5.6 6.5	4 Oct. 16 3 July 29 4 Oct. 15 4 Sept. 7 3 July 19 4 Sept. 14 4 Sept. 15 4 Sept. 16 3 May 31	5 21.7 5 22.6 5 24.6 5 41.1 5 39.9 5 43.2 6 9.3 6 9.8	53, 4 53, 2 49, 6	21 19 58.1 28 2 56.3 28 3 17.3 + 1 23 -13 9 49.4 13 9 51.6 -13 9 38.5 +24 56 45.9 22 51 11.3	2 30, 1 2 53, 7 2 28, 6 2 55, 1 2 54, 5 2 40, 7 2 32, 5 2 32, 4 3 9, 9	6 1.1 20 6 1.5 6 1.6 20 6 26.2 20 6 33.3 6 33.1 6 32.8 20 6 46.9 6 47.4 20 6 51.9	22 28. 2 +28 5 50. 0 5 45. 9 + 1 26 -13 6 54. 3 6 57. 1 6 57. 8 +24 59 18. 4 59 18. 3 +22 54 21. 2
5371 5372 5373* 5374 5375 5376 5377 5378 5379 5380	6 Capricorni a ² 29 Cygni b ³ 23 Vulpeculæ 18 Sagittæ .	6. 5 6. 5 6. 7	3 July 26 3 July 27 4 Oct. 1 3 July 12 3 July 19 4 Sept. 7 4 Sept. 14 3 July 23 4 Sept. 16 4 Oct. 1	6 10. 3 6 10. 6 6 13. 6 6 3. 7 6 3. 8 6 7. 1 6 6. 7 6 27. 1 6 52. 0	53, 4 53, 3 49, 5 49, 5	22 51 25. 8 22 51 27. 4 +22 51 50. 4 -13 12 5. 6 13 12 7. 3 13 11 54. 4 -13 12 +36 9 1. 7 27 9 57. 2 20 57 6. 7	2 55, 9 2 55, 2 2 31, 3 2 55, 8 2 55, 2 2 41, 2 2 57, 2 2 32, 7 2 32, 3	6 51.4 6 51.7 6 52.3 20 6 57.1 6 57.1 6 56.2 20 7 2.3 20 7 28.8 20 7	54 21.7 54 22.6 54 21.7 -13 9 9.8 9 12.1 9 13.2 9 13.2 +36 11 58.9 +27 12 29.9 +20 59 39.0
5381 5382 5383 5384 5385 5386 5387 5389 5389 5390	Rumker 8153 24 Vulpeculæ	7 7 7.8 6 6 7	4 Oct. 9 4 Oct. 15 4 Oct. 16 4 Oct. 15 3 July 29 3 July 30 4 Sept. 15 4 Sept. 17 3 July 10 3 July 14	6 53. 0 6 52. 9 6 53. 1 7 7. 4 7 32. 4 7 35. 4 7 35. 4 7 35. 8 7 33. 4 20 8 37. 2	49.1	20 57 4.1 20 56 58.9 20 57 1.5 20 45 13.5 24 0 55.6 24 1 11.1 +24 1 14.2 0 1 14.7 -15(27)	2 :32. 3 2 :32. 0 2 :32. 2 3 :2. 2 3 :2. 2 3 :0. 5 2 :56. 0 2 :34. 2 2 :34. 0 + 2 :59. 0	20 8 13.2 8 13.0 8 13.4 8 13.8 20 8 22.5	59 36, 4 59 30, 9 59 33, 5 +20 47 45, 7 +24 3 55, 9 3 50, 6 3 45, 3 3 48, 2 + 0 1 44, 3 -15(24)

(242)

No.	Name	Mag.	Date	App't α	Reduct'n	App't d	Reduction	Mean equ	inox 1800.0
	,							а	δ
5391 5392 5393 5394 5395 5396* 5397 5398 5399 5400*	8 Capricorni ν 9 Capricorni β ""	6 3 7.8 8	4 Sept. 14 3 July 14 3 July 19 3 July 20 4 Sept. 7 4 Oct. 16 4 Oct. 9 4 Oct. 15 4 Oct. 16 3 July 27	h m s 20 8 43.7 8 51.7 8 52.0 8 52.0 (8) 9 8.0 9 23.0 9 22.4 9 22.7 9 50.1	+ 49.6 54.0 54.0 54.0 39.6 39.7 39.8 34.7	0 / " -13 25 25.8 15 27 4.9 15 27 2.7 15 27 4.8 -15 26 50.3 +20 51 41.5 20 33 0.9 20 32 57.1 20 33 3.9 37 22 5.3	+ 2 44.0 2 59.5 2 58.5 2 58.3 2 44.9 2 34.8 2 35.1 2 34.8 2 34.7 3 0.3	h m s 20 9 33, 3 20 9 45, 7 9 46, 0 9 46, 0 (9) 2) 9 47, 6 20 10 2, 6 10 2, 1 10 2, 5 20 10 24, 8	-13 22 41.8 -15 24 5.4 24 4.2 24 6.5 24 5.4 +20 54 16.3 +20 35 36.0 35 31.9 35 38.6 +37 25 5.6
5401* 5402 5403 5404* 5405 5406 5407 5408 5409 5410	Bessel, W.474 Anonyma 35 Cygni m 2618 Bradley Lalande 39102 Lalaude 39162 Lalande 39181	7 7 6 6 6.7 6.7 7 8	3 July 29 4 Oct. 1 3 July 10 3 July 30 4 Sept. 16 4 Sept. 17 3 Sept. 2 4 Sept. 15 4 Oct. 9 4 Oct. 1	9 49.5 9 50.8 9 53.0 10 22.4 10 24.5 10 25.3 10 36.0 12 10.5 12 47.6	34.7 37.5 45.6 36.2 34.0 34.1 40.4 39.1 36.2	37 22 4.8 26 19 54.8 10 47 54.3 34 18 51.5 34 19 17.7 34 19 17.8 40 4 5.2 17 7 37.3 22 10 42.6 29 55 2.6	2 59. 6 2 34. 6 3 2. 8 2 59. 8 2 35. 6 2 35. 6 2 50. 9 2 38. 9 2 37. 7 2 37. 1	10 24, 2 20 10 28, 3 20 10 38, 6 20 10 58, 6 10 58, 5 10 58, 5 20 11 2, 4 20 11 16, 4 20 12 49, 6 20 13 23, 8	25 4.4 +26 22 29.4 +10 50 57.1 +34 21 51.3 21 53.3 21 53.3 21 56.1 +17 10 16.2 +22 13 20.3 +29 57 39.7
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420	25 Vulpeculæ	6 6 6	3 July 23 4 Sept. 15 4 Oct. 16 3 July 12 3 July 20 3 July 26 3 July 27 3 July 29	12 46.5 12 48.8 12 48.6 12 48.4 14 30.4 14 29.8 14 29.2 14 30.5 14 29.3	40.9 38.2 36.7 35.7 33.9 33.8 33.8 33.7 33.7	23 45 50.1 23 46 15.1 23 46 17.2 23 46 22.3 39 34 15.7 39 34 15.5 39 34 15.1 39 34 18.8 39 34 17.9	3 4.4 2 40.1 2 37.8 2 37.6 3 10.8 3 8.3 3 6.5 3 6.2 3 5.6	20 13 27.4 13 27.0 13 27.3 13 27.1 20 15 4.3 15 3.4 15 3.6 15 2.9 15 4.2 15 3.0	+23 48 54.5 48 55.2 48 55.0 48 59.9 +39 37 26.5 37 24.1 37 23.4 37 25.3 37 25.4 37 23.5
5421 5422 5423 5424 5425 5426 5427 5426* 5429 5430	"	6 5	3 July 30 3 Sept. 2 4 Sept. 7 4 Sept. 14 4 Sept. 15 4 Sept. 15 3 July 9 3 July 23 4 Oct. 1 4 Oct. 9	14 29, 6 14 29, 5 14 31, 8 14 31, 3 14 31, 4 14 31, 5 14 56, 1 15 14, 8 15 17, 2 15 17, 1	33.7 33.9 31.5 31.6 31.6 31.6 55.2 37.8 35.6 35.7	39 34 22.1 39 34 25.4 39 34 42.0 39 34 43.0 39 34 44.3 +39 34 41.3 -18 54 29.5 +31 29 58.8 31 30 28.1 31 30 28.1	3 5.2 2 55.8 2 41.7 2 40.1 2 40.0 2 39.8 3 5.8 3 7.8 2 39.6 2 39.0	15 3.3 15 3.4 15 3.3 15 2.9 15 3.0 15 51.3 20 15 51.3 20 15 52.6 15 52.8	37 27.3 37 21.2 37 23.7 37 23.1 37 24.3 37 20.9 -18 51 23.7 +31 33 6.6 33 7.7 33 7.1
5431 5432* 5433 5434 5435 5436 5437 5438 5439 5440	Piazzi 134	6.5 7 8 7 3.4 7 7.6 7.8	4 Oct. 15 4 Sept. 17 4 Oct. 16 3 July 10 3 May 31 4 Nov. 17 3 July 29 4 Sept. 15 4 Oct. 16 3 July 30	15 16.5 15 25.1 15 24.1 15 54.5 16 30.1 17 26.0 17 36.0 18 1.7 18 1.4 18 18.2	56. 1	31 30 27.3 2 16 4.3 2 16 2.2 +13 12 59.4 -18 30 55.8 + 2 14 17.3 19 46 30.2 23 5 30.0 23 5 35.7 39 42 3.4	2 38.6 2 47.2 2 46.7 3 10.3 3 11.1 2 50.0 3 8.3 2 46.0 2 43.5 3 9.8	20 17 26.2 20 18 11.8 20 18 18.6 20 18 40.2 18 40.4	33 5.9 + 2 18 51.5 18 48.9 +13 16 9.7 -18 27 44.7 + 2 17 7.3 +19 49 38.5 +23 8 16.0 8 19.2 +39 45 13.2
5441 5442 5443 5444 5445* 5446 5447 5448 5449 5450*	Lalande 39418 Lalande 39426 Anonyma 40 Cygni	8 8 10 7.8 8.9 6	4 Oct. 9 4 Oct. 15 3 Sept. 2 4 Oct. 1 3 July 10 3 July 20 3 Sept. 14 4 Sept. 16 4 Oct. 9 3 Sept. 2	18 19, 9 18 19, 8 18 17, 4 18 45, 1 18 41, 6 19 34, 8 19 36, 9 19 37, 0 19 36, 7 20 19 57, 3	32. 2 32. 4 45. 6 34. 8 42. 8 35. 0 32. 7 32. 7 33. 2 + 45. 7	39 42 26,5 39 42 27,8 10 16 47,7 33 37 58,6 19 24 10,5 37 44 10,2 37 44 37,1 37 44 40,8 +10 11 9,9	2 40.9 2 40.3 3 3.5 ⁵ 2 43.1 3 14.4 3 13.3 2 47.2 2 47.0 2 44.4 + 3 5.4	18 52.1 18 52.2 20 19 3.0 20 19 19.9 20 19 24.4 20 20 9.6 20 9.7 20 9.9 20 20 43.0	45 7.4 45 8.1 +10 19 51.2 +33 40 41.7 +19 27 24.9 +37 47 23.5 47 24.3 47 23.0 47 25.2 +10 14 15.3

(243)

No.	Name	Mag.	Date	App't α	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
	2,000							а	ð
5451* 5452* 5453 5454 5455 5456 5457 5458 5459 5460	1 Delphini	6.7 7 6.7 5 7.8	4 Sept. 17 4 Sept. 18 4 Sept. 7 4 Oct. 15 4 Nov. 17 3 July 20 3 July 26 3 July 29 3 July 30 4 Sept. 15	h m s 20 20 0.5 20 1.0 20 29.5 20 28.6 20 26.6 20 24.1 20 34.8 20 34.5 20 35.0 20 37.2	# 42.6 42.7 26.5 27.4 28.4 43.0 38.7 38.7 36.2	+10 11 30.3 10 11 26.7 48 40 44.5 48 40 51.4 18 42 50.6 29 39 18.5 29 39 21.8 29 39 26.1	+ 2 50.3 2 50.4 2 47.9 2 41.4 2 41.6 3 13.7 3 13.1 3 12.3 3 12.0 2 47.9	h m s 20 20 43.1 20 43.7 20 20 56.0 20 56.0 20 55.1 20 21 7.1 20 21 13.5 21 13.2 21 13.4	0 / " +10 14 20.6 14 17.1 +48 43 32.4 43 26.1 43 33.0 +18 46 4.3 +29 42 34.6 42 34.1 42 34.5 42 34.5
5461 5462 5463 5464 5465* 5466* 5467 5468 5469 5470	Lalande 39506	7 7.8 7.8 9 7 7 7.8 6.7	3 July 19 3 July 20 4 Oct. 9 4 Oct. 1 3 July 10 4 Oct. 16 3 July 19 3 July 20 3 Sept. 2 4 Sept. 14	20 31. 1 20 31. 1 21 8. 7 21 10. 0 21 18. 5 21 21. 4 22 40. 4 22 41. 1 22 47. 9 22 50. 0	43. 0 43. 0 34. 2 41. 4 42. 7 40. 1 41. 8 41. 8 35. 9 33. 5	18 42 21.4 18 42 18.7 35 44 52.3 15 5 44.8 19 53 1.2 19 53 31.9 22 6 2.0 22 6 1.8 36 13 6.1 36 13 16.0	3 14. 1 3 13. 9 2 44. 6 2 49. 4 3 17. 5 2 47. 9 3 17. 0 3 16. 8 3 6. 0 2 49. 6	20 21 14.1 21 14.1 20 21 42.9 20 21 51.4 20 22 1.2 22 1.5 20 23 22.2 23 22.9 20 23 23.8 23 23.5	+18 45 35.5 45 32.6 +35 47 36.9 +15 8 34.2 +19 56 18.7 56 19.8 +22 9 19.0 9 18.6 +36 16 12.1 16 5.6
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480	Lalande 39594,5. 2 Delphini &	7 6 7 4 6	4 Sept. 15 4 Sept. 16 4 Oct. 9 4 Sept. 17 4 Oct. 16 3 May 31 3 July 9 4 Sept. 18 4 Oct. 1 4 Nov. 17	22 50. 1 22 50. 1 22 49. 9 22 46. 8 22 45. 9 22 53. 1 22 53. 0 22 56. 9 22 56. 7 22 55. 5	33, 5 33, 5 34, 0 38, 4 46, 8 45, 9 43, 6 42, 7 43, 4	36 13 19.7 36 13 14.8 36 13 18.2 25 5 22.2 25 5 23.3 10 34 29.1 10 34 38.1 10 34 57.0 10 35 1.9 10 35 0.1	2 49. 4 2 49. 3 2 46. 3 2 50. 6 2 48. 1 3 26. 9 3 18. 3 2 53. 3 2 52. 5 2 53. 3	23 23, 6 23 23, 6 23 23, 9 20 23 24, 8 23 24, 3 20 23 38, 9 23 40, 5 23 38, 9	16 9.1 16 4.1 16 4.5 +25 8 12.8 8 11.4 +10 37 56.0 37 56.4 37 50.3 37 54.4 37 53.4
5481 5482 5483 5484* 5485 5486 5487 5488 5489 5490	45 Cygni ω ² 3 Delphini η Johnson 4835 46 Cygni ω ³ Lalande 39681 4 Delphini ζ " " "	6 6 6 6	4 Sept. 7 4 Oct. 15 4 Sept. 17 3 July 23 4 Oct. 15 3 July 29 3 July 9 3 July 10 3 July 12 3 Sept. 2	23 24.8 23 24.5 23 24.5 23 46.2 24 41.7 24 32.6 25 13.0 25 12.5 25 13.1 25 12.9	27. 0 27. 9 28. 2 27. 8 42. 4 44. 8 44. 8 44. 8 44. 8	48 14 13.4 48 14 17.9 12 18 5.4 49 3 35.7 48 30 16.0 20 15 10.7 13 56 10.2 13 56 12.2 13 56 12.9 13 56 21.4	2 49.7 2 44.6 2 53.9 3 19.5 2 46.2 3 17.2 3 21.6 3 20.3 3 20.8 3 10.8	20 23 51.8 23 52.4 20 24 20 24 14.4 20 25 9.5 20 25 15.0 20 25 57.8 25 57.9 25 57.4	+48 17 3.1 17 2.5 +12 20 59.3 +49 6 55.2 +48 33 2.2 +20 18 27.9 +13 59 31.8 59 32.5 59 33.7 59 32.2
5491* 5492 5493 5494 5495* 5496 5497* 5498 5500*	47 Cygni <i>l</i> Groombridge 3226	6 6 5 6 6 7	4 Sept. 17 4 Sept. 18 4 Oct. 9 4 Oct. 16 3 July 29 3 July 30 3 July 19 3 July 20 3 July 27 4 Oct. 15	25 16. 2 25 16. 9 25 14. 9 25 15. 6 25 31. 2 25 30. 8 26 51. 1 26 51. 5 26 50. 9 26 52. 7	41. 6 41. 6 41. 9 42. 0 36. 7 36. 7 30. 6 30. 6 30. 6 29. 4	13 56 39.5 13 56 32.8 13 56 37.5 13 56 37.8 34 31 5.2 34 31 7.6 45 57 21.5 45 57 22.3 45 57 25.0 45 57 54.3	2 55. 2 2 55. 1 2 53. 8 2 53. 6 3 18. 4 3 18. 1 3 24. 6 3 24. 2 3 21. 5 2 48. 6	25 57.8 25 58.5 25 56.8 25 57.6 20 26 7.9 26 7.5 20 27 21.7 27 22.1 27 21.5 27 22.1	59 34.7 59 27.9 59 31.3 59 31.4 +34 34 23.6 34 25.7 +46 0 46.1 0 46.5 0 46.5 0 48.9
5501 5502 5503 5504 5505 5506 5507* 5508 5509 5510	26 Vulpeculæ . 6 Delphini β 5 Delphini ι	6.7 6.7 6	4 Nov. 17 4 Sept. 14 4 Sept. 15 3 July 9 3 July 10 3 Sept. 24 4 Sept. 17 4 Sept. 18 4 Sept. 7 4 Sept. 16	26 51. 3 26 55. 7 27 25. 7 27 24. 9 27 25. 7 27 28. 6 27 27 32. 0 20 27 29. 1	30. 3 38. 0 38. 0 44. 9 44. 6 41. 6 42. 5 + 42. 5	45 58 0.1 25 8 48.9 25 8 52.6 13 51 5.5 13 51 14.7 13 51 33.1 13 51 27.5 10 38 13.6 +10 38 13.6	2 48.7 2 55.3 2 55.2 3 24.1 3 23.8 3 13.4 2 57.5 2 57.5 2 59.4 + 2 58.3	27 21.6 20 27 33.8 27 33.7 20 28 10.6 28 9.8 28 10.3 28 10.2 28 20 28 14.5 20 28 11.6	0 48.8 +25 11 47.8 11 47.8 +13 54 26.3 54 29.3 54 28.1 54 30.6 54 25.0 +10 41 13.0 +10 41 11.9

(244)

No.	Name	Mag.	Date	Αpp't α	Reduct'n	App't d	Reduction	Mean equ	inox 1800.0
						•••		а	δ
5511 5512 5513 5514 5516 5516 5517 5518 5519 5520	5 Delphini (27 Vulpeculæ	6 6 6	4 Oct. 1 3 July 26 4 Sept. 14 4 Oct. 1 4 Oct. 9 4 Sept. 18 3 July 23 3 May 31 3 July 9	h m s 20 27 32.5 27 51.7 28 41.1 28 41.4 29 4.3 29 4.5 29 35.3 29 37.1	+ 42.7 40.5 43.1 43.2 44.5 44.3 45.4 44.5	0 / " +10 38 19.1 25 43 1.5 25 43 28.7 9 20 27.7 9 20 24.9 20 27 21.4 15 5 10.3 15 5 6.1 15 9 20.0 15 9 24.9	+ 2 57. 4 3 21. 4 2 46. 3 2 58. 5 2 58. 5 2 57. 7 3 25. 5 3 23. 0 3 36. 0 3 26. 8	h m s 20 28 15.2 20 28 32.2 28 20 29 24.2 29 24.6 20 29 48.8 29 48.8 20 30 20.7 30 21.6	0 / " +10 41 16.5 +25 46 22.9 46 15.0 + 9 23 26.2 23 23.5 +20 30 19.1 +15 8 35.8 8 29.1 +15 12 56.0 12 51.7
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530	Piazzi 255 Piazzi 258 "" Groombridge 3243	7.8 6.7 7 6.7 6 6.7 8	3 July 10 3 July 12 3 July 23 4 Nov. 17 3 July 29 3 July 30 4 Sept. 15 4 Oct. 3 16 3 July 27 4 Oct. 15	29 36, 2 29 36, 7 29 36, 8 29 43, 3 30 6, 9 30 7, 2 30 9, 2 30 9, 3 30 20, 5 30 22, 2	44. 4 44. 4 44. 3 42. 9 39. 0 36. 4 37. 0 32. 8 31. 4	15 9 27.3 15 9 31.4 15 9 28.5 12 40 21.8 29 35 8.2 29 35 8.2 29 35 34.5 29 35 35.7 42 5 9.9 42 5 25.7	3 26, 4 3 26, 0 3 23, 6 2 59, 7 3 23, 4 3 23, 2 2 58, 0 2 54, 7 3 25, 3 2 52, 7	30 20.6 30 21.1 30 21.1 20 30 26.2 20 30 45.9 30 46.6 30 46.3 20 30 53.3 30 53.6	12 53.7 12 57.4 12 52.1 +12 43 21.5 +29 38 31.6 38 32.5 38 30.1 +42 8 35.2 8 18.4
5531 5532 5533* 5534 5535 5536 5537 5538 5539 5540	Groombridge 3244 Lalande 39956 10 Delphini	7 6.7 7 7.6 8 7 7 7	3 July 20 3 July 26 4 Oct. 9 4 Sept. 16 3 July 9 3 July 26 3 Sept. 2 4 Sept. 7 4 Sept. 14	30 50.3 30 50.2 31 1.5 31 12.9 32 7.2 32 7.1 32 6.6 32 7.9 32 8.9 32 9.2	32. 3 32. 3 40. 4 41. 6 31. 8 31. 6 31. 6 31. 7 29. 5 29. 6	43 34 40.6 43 34 39.1 19 10 3.7 13 49 42.4 44 54 20.9 44 54 26.9 44 55 33.9 44 55 53.9 44 54 56.7 44 54 54.0	3 28. 3 3 26. 4 2 58. 5 3 1. 6 3 34. 0 3 30. 3 3 28. 0 3 16. 3 3 0. 7 2 58. 9	20 31 22.6 31 22.5 20 31 41.9 20 31 54.5 20 32 39.0 32 38.2 32 38.2 32 38.4 32 38.8	+43 38 8.9 38 5.5 +19 13 2.9 +13 52 44.0 +44 57 54.9 57 50.9 57 50.9 57 56.8 57 52.9
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550	Piazzi 272	7 7 6 6.7 5.6	4 Oct. 1 4 Sept. 18 4 Nov. 17 3 July 27 4 Sept. 18 3 April 23 3 May 13 3 May 31 3 July 9 3 July 10	32 8.4 31 32 5.2 32 31.4 33 34 3.1 34 3.3 34 3.8 34 5.0 34 4.8	29. 9 41. 7 32. 9 34. 4 33. 8 33. 2 32. 1 32. 1	44 55 1.0 16 45 37.9 16 45 46.4 42 42 5.2 14 18 51.2 44 30 25.8 44 30 25.3 44 30 40.9 44 30 40.6	2 55.8 3 0.7 3 0.7 3 27.9 3 3.6 3 53.8 3 51.8 3 47.8 3 35.9 3 35.6	32 38.3 20 32 32 46.9 20 33 4.3 20 34 20 34 37.5 34 37.1 34 37.0 34 36.9	57 56.6 +16 48 38.6 48 47.1 +42 45 33.1 +14 21 54.6 +44 34 13.2 34 17.6 34 16.6 34 16.6
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560			3 July 12 3 July 19 3 July 20 3 July 23 3 July 26 3 July 27 3 July 29 3 July 30 3 Sept. 2 4 Sept. 7	34 4.9 34 4.4 34 5.1 34 5.0 34 5.3 (34) 34 5.2 34 5.1 34 4.9 34 6.8	32. 1 32. 0 32. 0 32. 0 31. 9 31. 9 31. 9 32. 0 29. 8	44 30 40.4 44 30 44.7 44 30 45.4 44 30 47.3 44 30 51.6 44 30 47.4 44 30 48.9 44 30 58.1 44 31 12.8	3 34.9 3 32.5 3 32.2 3 31.2 3 30.2 3 29.9 3 29.1 3 28.8 3 18.6 3 2.7	34 37.0 34 36.4 34 37.1 34 37.0 34 37.2 (34) 34 37.1 34 37.0 34 36.9 34 36.6	34 15.1 34 17.5 34 17.6 34 15.8 34 17.1 34 21.3 34 16.5 34 16.5 34 15.5
5561 5562 5563* 5564 5565 5566 5567 5568 5569 5570	"	2 2 2 2 2 8	4 Sept. 14 4 Sept. 15 4 Sept. 16 4 Sept. 17 4 Oct. 1 4 Oct. 9 4 Oct. 16 4 Nov. 28 3 Sept. 7	34 7.2 34 7.0 34 7.3 34 7.4 34 6.5 34 6.4 34 6.6 34 6.3 34 5.1 20 34 19.9	29.9 29.9 29.9 30.0 32.2 30.4 30.6 31.7 + 41.7	44 31 18.8 44 31 14.9 44 31 12.6 44 31 17.7 44 31 17.7 44 31 17.0 44 31 17.4 44 31 19.0 44 31 22.3 +23 1 17.9	3 1.0 3 0.8 3 0.5 3 0.4 2 57.8 2 56.1 2 56.1 2 57.3 + 3 19.3	34 37.1 34 36.9 34 37.2 34 37.4 34 36.7 34 36.8 34 37.2 34 36.9 34 36.8 20 35 1.6	34 19.6 34 15.7 34 13.1 34 19.3 34 15.8 34 13.8 34 13.8 34 15.1 34 19.6 +23 4 37.9

(245)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800.0
								а	8
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580	30 Vulpeculæ	6 6 5	4 Sept. 18 4 Oct. 9 4 Nov. 17 3 July 9 3 July 27 4 Sept. 18 3 July 26 3 May 31 3 July 19 3 July 20	h m s 20 34 (34) 35 33, 3 36 38, 2 36 38, 1 36 45, 5 37 28, 1 37 29, 4 37 29, 6	+ 28.6 44.6 44.3 39.2 39.1 37.9 37.9	+24 30 46,6 24 30 44,7 49 34 42,0 15 21 9,5 15 21 15,4 15 21 33,8 29 56 15,8 33 9 47,8 33 10 1,0 33 10 0,2	+ 3 2.7 3 0.7 2 56.7 3 34.8 3 30.6 3 6.5 3 32.0 3 49.4 3 35.2 3 34.9	20 37 22.8 37 22.4 37 20 37 24.7	+24 33 49.3 33 45.4 +49 37 38.7 +15 24 44.3 24 46.0 24 40.3 +29 59 47.8 +33 13 37.2 13 36.2 13 35.1
5581 5582 5583 5584 5585 5585 5587 5588 5589 5590		3 6 8	3 July 23 4 Sept. 15 4 Sept. 16 4 Sept. 17 4 Nov. 28 3 July 26 3 July 29 3 July 30 4 Sept. 7 4 Nov. 17	37 29. 2 37 31. 6 37 31. 6 37 31. 3 37 30. 5 39 0. 5 39 0. 9 38 57. 6 39 23. 2	53, 3	33 9 58.4 33 10 31.3 33 10 28.6 33 10 33.9 33 10 36.8 35 42 8.8 +35 42 10.2 -27 42 44.0 +45 45 17.9	3 34.0 3 5.4 3 5.1 3 4.9 3 2.8 3 35.0 3 34.1 3 33.8 3 18.4 3 1.1	36 7.1 38 6.9 38 6.9 38 7.2 20 39 37.1 39 37.3 30 37.7 20 39 50.9 20 39 54.2	13 32. 4 13 36. 7 13 38. 8 13 39. 6 +35 45 44. 5 45 42. 9 45 44. 0 -27 39 25. 6 +45 48 19. 0
5591 5592 †5593 †5594* 5595 5596 5597 5598 5599 5600	14 Delphini	6 8.9 7.8 7 7.8 8	3 Sept. 7 3 July 23 4 Sept. 7 3 July 30 4 Sept. 26 4 Oct. 16 3 July 27 4 Sept. 14 4 Sept. 15 4 Oct. 9	39 13, 2 39 20, 7 40 8, 5 40 41, 3 40 44, 5 40 41, 1 40 54, 3 40 54, 5 40 55, 3	46. 8 45. 5 37. 8 35. 0 35. 4 43. 8 37. 8 37. 8 38. 2	7 4 22. 2 11 44 41. 3 26 18 7. 5 39 37 3. 9 34 46 42. 6 34 46 43. 6 17 15 8. 8 26 35 15. 0 26 35 17. 9 26 35 15. 9	3 26.8 3 34.0 3 10.3 3 37.1 3 6.2 3 4.4 3 35.1 3 9.8 3 9.7 3 6.9	20 40 0.0 20 40 6.2 20 40 46.3 20 41 16.3 20 41 19.5 41 19.1 20 41 24.9 20 41 32.1 41 32.3 41 33.5	+ 7 7 49.0 +11 48 15.3 +26 21 17.8 +39 40 41.0 +34 49 48.8 49 48.0 +17 18 43.9 +26 38 24.8 38 27.6 38 22.8
5601 5602 5603 5604 5605 5606 5607 5608 5609*	55 Cygni	6.7 6.7 7 6 8	3 July 23 3 July 12 3 July 19 3 July 26 3 July 29 3 July 30 4 Oct. 9 4 Nov. 17 3 July 9 3 July 10	41 35, 6 42 25, 0 42 25, 0 42 25, 3 42 18, 7 42 19, 1 42 21, 2 42 20, 0 42 35, 0 42 34, 7	31. 9 33. 1 33. 2 33. 2 40. 3 40. 3 37. 9 38. 6 44. 1 44. 1	45 18 56, 4 43 14 55, 7 43 15 0, 2 43 15 2, 9 27 27 27 26 54, 9 27 27 20, 3 27 27 22, 4 17 13 39, 4 17 13 33, 7	3 37.0 3 44.2 3 41.9 3 39.5 3 36.8 3 8.0 3 7.8 3 41.6 3 41.3	20 42 7.5 20 42 58.4 42 58.5 20 42 59.0 42 59.1 42 59.1 42 58.6 20 43 19.1 43 18.8	+45 22 33.4 +43 18 39.9 18 42.1 18 42.4 +27 30 30 33.7 30 28.3 30 30.2 +17 17 21.0 17 15.0
5611 5612 5613 5614 5615 5616 5617* 5618 5619 5620*	31 Vulpeculæ r Lalande 40403,4 Piazzi 376	6.7 6.5 6 6.5 6 7 6.7 6	3 Sept. 7 3 July 17 4 Sept. 14 4 Sept. 15 4 Sept. 16 4 Sept. 16 4 Sept. 28 4 Oct. 16 3 July 20 4 Oct. 1	42 34, 8 42 51, 9 42 55, 5 42 56, 3 42 56, 3 42 56, 0 44 6, 5 44 52, 0 45	43.8 40.8 38.0 38.0 38.0 37.3 37.6 47.4	17 13 36.5 26 17 46.9 26 18 6.3 26 18 9.3 26 18 7.8 26 18 9.5 28 50 59.5 28 51 3.4 3 42 56.1 3 43 17.9	3 29. 0 3 38. 3 3 11. 8 3 11. 7 3 11. 5 3 11. 5 3 10. 6 3 8. 9 3 39. 7 3 16. 5	43 18.6 20 43 32.7 43 33.5 43 34.3 43 34.3 43 34.0 20 44 44.1 20 45 39.4	17 5.5 +26 21 25.2 21 18.1 21 21.0 21 19.3 21 20.8 +28 54 10.1 54 12.3 + 3 46 35.8 46 34.4
5621 5622 5623 5624* 5625 5626 5627 5628 5629 5630	Anonyma	6.7 6 6.7 7 6.7 6 5 6 6	4 Oct 15 4 Oct, 16 3 July 9 3 July 10 3 July 29 3 July 29 3 July 30 4 Oct. 9 4 Sept. 7 4 Sept. 14	45 11.9 45 11.4 45 21.9 45 21.1 45 21.2 45 21.6 45 24.1 45 24.5 20 45 23.9	36, 3 36, 3 40, 8 40, 8 40, 6 40, 5 38, 1 37, 6 + 37, 7	32 37 49.0 32 37 53.8 27 14 27.6 27 14 29.9 27 14 34.0 27 14 38.8 27 15 2.4 27 15 0.6 +27 15 1.0	3 9,3 3 8,2 3 46,1 3 45,6 3 41,0 3 40,4 3 11,1 3 15,5 + 3 14,2	45 47. 7 20 46 2. 7 46 1. 9 46 2. 5 46 1. 8 46 2. 1 46 2. 2 46 2. 1	+32 40 58.3 41 2.0 +27 18 13.7 18 15.5 18 15.0 18 16.4 18 18.9 18 13.5 18 16.1 +27 18 15.2

(246)

No.	Name	Mag.	Date	App't α	Reduct'n	App't đ	Reduction	Меан еди	inox 1800, 0
								a	ð
5631 5632 5633 5634 5635 5636 5637 5638* 5639 5640	32 Vulpeculæ q	6 6.7 6 5	4 Sept. 16 4 Sept. 18 4 Sept. 28 4 Nov. 17 3 Sept. 7 3 July 23 3 July 26 3 Sept. 7 3 July 27	h m s 20 45 24.5 45 24.8 45 23.3 45 23.3 45 23.3 45 37.0 45 37.3 48 2.0 48 14.7	+ 37.7 37.8 37.9 38.8 45.1 33.3 33.2 33.2 46.0 41.2	+27 14 59.6 27 14 59.6 27 14 57.2 27 15 5.4 12 54 28.9 43 34 20.4 43 34 27.5 10 1 1.2 25 34 21.9	+ 3 13.9 3 13.6 3 12.1 3 10.9 3 32.6 3 45.5 3 44.2 3 43.2 3 35.7 3 44.0	h m s 20 46 2.2 46 2.6 46 2.2 46 2.1 20 46 8.4 20 46 10.1 46 10.2 46 10.5 20 48 48.0 20 48 55.9	C / " +27 18 13.5 18 11.9 18 9.3 18 16.3 +12 58 1.5 +43 38 9.6 38 4.6 38 10.7 +10 4 36.9 +25 38 5.9
5641* 5642 5643* 5644 5645* 5646 5647 5648 5649 5650	1 Equulei 33 Vulpeculæ	8.9 6.7 7 6 6.7 6 6 6 6	3 July 29 3 July 9 3 July 20 3 July 23 4 Oct. 1 4 Nov. 17 4 Sept. 18 4 Sept. 28 4 Oct. 9 4 Oct. 16	48 14.3 48 16.8 48 17.2 48 17.1 48 20.1 48 19.9 48 40.0 48 40.4 48 40.5 48 40.0	41. 2 48. 2 48. 0 48. 0 44. 7 45. 4 39. 6 39. 8 39. 9 40. 1	25 34 25.1 3 28 24.7 3 28 23.4 3 28 24.3 3 28 50.7 3 28 46.7 21 30 16.7 21 30 19.6 21 30 18.7	3 43.9 3 45.4 3 43.4 3 42.9 3 19.9 3 20.7 3 17.7 3 16.3 3 15.6 3 15.1	48 55.5 20 49 5.0 49 5.2 49 5.1 49 4.8 49 5.3 20 49 19.6 49 20.2 49 20.4 49 20.1	38 9.0 + 3 32 10.1 32 6.8 32 7.2 32 10.6 32 8.3 +21 33 34.4 33 33.0 33 35.2 33 33.8
5651 5652 5653 5654 5655* 5656 5657 5658* 5659 5660*	58 Cygni	4 4.5 8 7 8.9 9	3 July 12 3 July 19 3 July 26 4 Sept. 7 4 Oct. 15 4 Oct. 9 4 Oct. 16 3 July 27 3 July 29 3 July 23	49 8. 1 49 8. 4 49 8. 0 49 11. 0 49 10. 2 49 27. 1 49 26. 4 51 6. 3 51 6. 2 51 33. 7	35, 3 35, 2 35, 1 32, 6 33, 3 39, 9 40, 1 39, 0 39, 0 47, 2	40 20 22. 1 40 20 21. 9 40 20 24. 2 40 20 52. 5 40 20 59. 8 21 31 34. 0 21 31 33. 3 31 39 43. 6 31 39 44. 0 6 20 19. 9	3 51.2 3 49.0 3 46.5 3 14.4 3 11.8 3 16.3 3 15.8 3 47.7 3 46.9 3 46.6	20 49 43. 4 49 43. 6 49 43. 1 49 43. 6 49 43. 5 20 50 7. 0 50 6. 5 20 51 45. 3 51 45. 2 20 52 20. 9	+40 24 13.3 24 10.9 24 10.7 24 6.9 24 11.6 +21 34 50.3 34 49.1 +31 43 31.3 43 30.9 + 6 24 6.5
5661 5662 5663 5664 5665* 5666 5667 5668 5669 5670	Lalande 40739 . 22 Capricorni 7	7 7 6.7 6.7 6	3 Sept. 7 4 Oct. 1 3 July 9 3 July 12 3 July 26 4 Sept. 28 4 Oct. 9 4 Oct. 15 4 Oct. 16	51 33.5 51 52.9 52 5.4 52 29.2 52 29.6 52 30.3 52 40.5 52 40.0 52 39.8 52 39.7	55.1	6 20 33.5 + 2 30 56.0 -20 41 53.9 +46 40 47.2 46 40 43.8 46 40 53.4 35 11 32.5 35 11 33.5 11 34.3 35 11 36.4	3 39. 8 3 23. 5 3 45. 4 3 55. 6 3 53. 3 5 1. 0 3 18. 1 3 16. 7 3 15. 9 3 15. 8	52 20, 5 20 52 37, 9 20 53 0, 5 20 53 1, 2 53 1, 5 53 2, 1 20 53 15, 8 53 15, 5 53 15, 4 53 15, 3	24 13.3 + 2 34 19.5 -20 38 8.5 +46 44 42.8 44 42.1 44 44.4 +35 14 50.6 14 52.2 14 50.2 14 52.2
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680	Lalande 40773 . Johnson 5078 . Piazzi 448 . 3 Equulei . Lalande 40811 . Bradley 2740 .	6 7 8 7 6 6 7.8 7 6.7 6.7	4 Sept. 18 3 July 27 3 July 29 4 Oct 1 3 July 23 4 Nov. 28 4 Sept. 7 4 Sept. 28 4 Oct. 15 4 Oct. 16	52 53.9 54 1.6 54 1.0 53 50.7 53 49.3 53 51.9 54 2.8 54 45.5 54 44.5	41. 9 33. 8 33. 8 45. 1 47. 7 45. 2 36. 4 34. 3 34. 6 34. 7	13 53 28.3 43 20 43.4 43 20 44.7 2 5 56.4 4 39 10.8 4 39 33.0 31 30 39.7 37 49 1.9 37 49 5.7	3 22. 9 3 52. 0 3 51. 3 3 25. 4 3 48. 8 3 26. 3 3 23. 8 3 19. 8 3 17. 6 3 17. 4	20 54 37.0 54 37.1 20 54 39.2	+13 56 51.2 +43 24 35.4 24 36.0 + 2 9 21.8 + 4 42 59.6 + 31 34 3.5 +37 52 21.7 52 21.3 52 23.1
5681 5682 5683 5684 5685 5686 5687 5688 5689 5689	Anonyma	7 7 8 6.7 7.8 6.7 6 6	3 July 26 3 July 27 4 Oct. 9 3 July 9 4 Oct. 1 3 July 19 3 July 29 3 July 29 4 Nov. 23 3 July 12 4 Sept. 28	56 16.2 56 15.8 56 10.5 56 14.4 56 17.9 57 5.0 57 5.2 57 2.9 57 14.5 20 57 17.2	49.7 46.0 34.3 34.2 39.5 37.0	46 0 47.0 46 0 47.2 +20 5 55.3 -1 37 34.3 -1 37 8.3 +43 4 8.3 43 4 10.8 26 4 27.7 37 41 32.6 +37 42 11.3	3 55. 0 3 54. 6 3 22. 9 3 52. 7 3 28. 8 3 57. 1 3 54. 5 3 22. 4 4 3 22. 2	56 48.3 20 56 51.0 20 57 4.1 57 3.9 20 57 39.3 57 39.4 20 57 42.4 20 57 51.5	+46 4 42.0 4 41.8 +20 9 18.2 - 1 33 41.6 33 39.5 +43 8 5.4 8 5.3 +26 7 50.1 +37 45 32.2 +37 45 33.5

(247)

No.	Name	Mag.	Date	App't a	Reduct'n	App't d	Reduction	Mean equ	inox 1800, 0
								a	δ
5691 5692* 5693 5694 5695 5696 5697 5698 5699 5700	61 Cygni, prec	6 6.7 6 6 7 6.7	4 Oct. 15 4 Oct. 16 4 Nov. 17 4 Nov. 28 4 Oct. 15 3 Sept. 18 3 July 26 3 July 27 3 July 29 4 Oct. 1	h m s 20 57 16.4 57 16.6 57 15.9 57 15.8 57 18.0 57 27.8 59 11.3 59 10.9 59 10.5 59 6.1	** + 34.8 34.8 35.5 35.7 34.8 41.7 32.3 32.3 32.2 45.1	+37 42 15.7 37 42 17.3 37 42 21.4 37 42 19.0 37 42 22.7 14 48 23.7 46 46 59.7 46 47 1.8 46 46 58.5 2 4 47.8	+ 3 20.0 3 19.9 3 19.3 3 20.2 3 20.1 3 27.2 3 58.1 3 57.8 3 57.1 3 30.4	h m s 20 57 51. 2 57 51. 4 57 51. 5 20 57 52. 8 20 58 9.5 20 59 43. 6 59 43. 2 59 42. 7 20 59 51. 2	0 / " +37 45 35.7 45 37.2 45 40.7 45 39.2 +37 45 42.8 +14 51 50 57.8 50 59.6 50 55.6 + 2 8 18.2
5701 5702 5703 5704* 5705 5706 5707 †5708 5709 5710	Piazzi 1	6.7 7 6 6 6 5.6 8 9.10	3 July 9 4 Sept. 18 4 Sept. 28 4 Oct. 9 4 Oct. 16 4 Oct. 16 3 July 23 3 July 23 4 Oct. 1 4 Nov. 17	59 30.0 59 32.5 59 59 32.5 59 32.4 59 32.9 20 59 49.8 21 0 1.6 1 53.3 1 53.0	40.6 37.5 37.8 37.9 37.9 46.5 46.5 45.1 45.8	29 20 14.9 29 20 49.2 29 20 49.2 29 20 49.8 29 20 48.3 29 20 51.8 9 16 5.7 9 12 14.7 1 46 17.8 1 46 15.7	4 1.6 3 27.2 3 25.4 3 24.4 3 23.6 3 23.5 3 55.2 3 55.5 3 33.0 3 33.7	21 0 10.6 0 10.0 0 0 10.3 0 10.3 0 10.8 21 0 36.3 21 0 48.1 21 2 38.4 2 38.8	+29 24 16.5 24 16.4 24 14.6 24 14.2 24 11.3 +9 20 0.9 +9 16 10.2 +1 49 50.8 49 49.4
5711* 5712 5713 5714 5715 5716 5717 5718 5719*	Lalande 41143 . Lalande 41155 . Piazzi 26 "" Lalande 41165 . Piazzi 30 . Bessel, W.128 .	8 7 7 7 7.8 8 8 7 8.9 7.8	3 July 29 4 Oct. 9 4 Nov. 28 3 July 26 3 July 27 4 Oct. 16 3 July 19 3 July 9 4 Oct. 1	2 14.4 2 26.4 2 25.0 2 36.0 2 36.4 2 38.5 2 38.8 2 47.8 3 9.1 3 35.3	33. 7 35. 8 36. 7 40. 6 40. 6 38. 1 38. 2 40. 4 36. 3 45. 7	44 37 28.7 35 25 47.9 35 25 57.1 28 49 55.9 28 49 58.9 28 50 27.7 28 50 26.5 29 44 11.8 +40 18 13.0 — 0 47 5.9	4 0.1 3 25.8 3 25.3 3 59.6 3 59.4 3 26.5 3 26.5 4 1.9 4 7.1 3 36.9	21 2 48.1 21 3 2.2 3 1.7 21 3 16.6 3 17.0 3 16.6 3 17.0 21 3 28.2 21 3 45.4 21 4 21.0	+44 41 28.8 +35 29 13.7 29 22.4 +28 53 55.5 53 58.3 53 54.2 53 53.0 +29 48 13.7 +40 22 20.1 - 0 43 29.0
5721 5722 5723 5724 5725 5726 5727 5728 5729*	64 Cygni	6.5 5.4 5.6 7	3 July 12 3 July 19 3 July 26 3 July 27 4 Sept. 18 4 Oct. 15 4 Oct. 16 4 Nov. 23 3 July 23 4 Sept. 28	3 45.3 3 45.0 3 45.4 3 45.5 3 48.3 3 47.9 3 48.0 3 47.1 3 57.7 4 12.5	40 7 40.5 40.4 40.4 37.6 38.0 38.0 38.7 46.6 35.8	+29 20 41.1 29 20 44.8 29 20 47.5 29 20 48.1 29 21 14.3 29 21 20.9 29 21 20.9 29 21 19.1 9 8 19.0 34 55 22.3	4 4.9 4 2.9 4 0.8 4 0.6 3 31.0 3 27.2 3 27.4 3 27.6 3 58.4 3 29.0	21 4 26.0 4 25.5 4 25.8 4 25.9 4 25.9 4 26.0 4 25.8 21 4 44.3 21 4 48.3	+29 24 46. 0 24 47. 7 24 48. 3 24 48. 7 24 45. 3 24 47. 7 24 48. 3 24 46. 7 + 9 12 17. 4 +34 58 51. 3
5731 5732 5733 5734 5735* 5736 5737 5738 5739 5740	Piazzi 43	7 7.6 6 7 7 7 8.9	4 Nov. 28 4 Nov. 28 4 Oct. 9 4 Oct. 15 4 Oct. 16 3 July 23 3 Sept. 15 4 Oct. 1 4 Nov. 17 3 July 9	4 11.4 5 0.1 4 59.9 5 0.3 5 1.7 5 1.6 5 32.2 5 32.0 6 2.6	46. 1 46. 8	34 55 30.0 35 45 26.5 29 1 21.2 29 1 17.5 29 1 20.3 4 21 46.8 4 4 21 53.8 — 2 29 31.6 — 2 29 37.2 +40 15 12.8	3 27. 0 3 28. 5 3 29. 2 3 28. 7 3 28. 6 3 59. 9 3 52. 8 3 37. 2 3 38. 3 4 10. 0	4 48.4 21 5 21 5 38.1 5 38.0 5 38.5 21 5 49.3 21 6 18.3 6 18.8 21 6 39.1	58 57. 0 +35 48 55. 0 +29 4 50. 4 4 46. 2 4 48. 9 + 4 25 46. 6 - 2 25 54. 4 25 58. 9 +40 19 22. 8
5741 5742 5743 5744 5745 5746 5747 5748* 5749*		8 6.7 5 6.5 6 6 6	3 July 27 3 July 29 4 Oct. 1 4 Nov. 28 3 July 27 3 July 29 4 Oct. 15 4 Nov. 17 4 Nov. 23 4 Nov. 28	6 10.6 6 11.0 8 3.5 8 19.7 8 56.5 8 57.0 8 58.4 8 57.6	37.5 37.5 43.6 34.8 37.1 35.0 35.7 + 35.8	37 7 43,6 37 7 40,9 8 4 9,2 41 21 52,2 38 29 39,6 38 29 35,0 38 30 12,7 38 30 18,3 38 30 17,2 +38 30 16,7	4 3.7 4 3.2 3 36.9 3 29.2 4 6.9 4 6.2 3 30.6 3 29.5 3 29.5 4 3 29.6	6 48.5 21 8 47.1	+37 11 47.3 11 44.4 + 8 7 46.1 +41 25 21.4 +38 33 46.5 33 43.3 33 47.8 33 47.0 +38 33 46.3

(248)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800, 0
						PF		а	ð
5751 5752* 5753 5754 5755 5756 5757 5758 5759 5760	66 Cygni v Groombridge 3421 Lalande 41476 9 Equulei Anonyma	6 7 6.7 6 7	3 July 12 3 July 19 3 July 23 4 Sept. 18 4 Sept. 28 4 Oct. 13 3 July 9 3 July 26 4 Sept. 7 4 Oct. 15	h m s 21 9 3.1 9 3.2 9 3.6 9 5.8 9 6.3 9 5.8 9 13.5 10 25.0 10 26.9 10 48.8	** 39.2 39.1 39.0 36.2 36.4 36.7 36.0 43.4 43.8 35.5	0 / " +33 59 35.3 33 59 41.0 33 59 38.2 34 0 8.5 34 0 11.1 34 0 16.8 41 46 50.6 21 7 3.4 6 27 8.7 37 20 24.1	+ 4 11.0 4 8.8 4 7.6 3 35.5 3 33.6 3 31.2 4 13.5 4 6.4 3 41.3 3 32.3	h m s 21 9 42.3 9 42.3 9 42.6 9 42.0 9 42.7 9 42.5 21 9 49.5 21 11 8.4 21 11 10.7 21 11 24.3	+34 3 46.3 3 49.8 3 45.8 3 44.0 3 44.7 3 48.0 +41 51 4.1 +21 11 9.8 + 6 30 50.0 +37 23 56.4
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770	Lalande 41497,8 . 1 Pegasi ε Lalande 41554 10 Equulei β Anonyma .	7.8 7 8 7 7 6 7.8	4 Oct. 16 4 Oct. 1 4 Nov. 28 3 July 9 3 July 23 4 Oct. 15 4 Oct. 16 4 Oct. 6 4 Sept. 28	10 48.6 10 52.7 10 52.4 12 6.1 12 6.4 12 6.2 11 12 19.9 12 13.4 12 39.0	35. 5 43. 3 44. 1 44. 4 44. 2 44. 1 37. 6 44. 2 34. 5	37 20 23.9 9 25 54.6 9 25 50.2 18 53 3.7 18 53 8.7 18 53 11.8 31 42 30.0 31 42 33.8 5 54 7.3 39 27 11.4	3 32. 3 3 39. 0 3 39. 9 4 12. 2 4 9. 4 4 8. 5 3 35. 5 3 35. 5 3 41. 0 3 36. 2	11 24.1 21 11 36.0 11 36.5 21 12 50.5 12 50.6 12 50.3 21 12 12 57.5 21 12 57.6 21 13 13.5	23 56.2 + 9 29 33.6 + 9 29 30.1 +18 57 15.9 57 18.1 57 20.3 +31 46 5.5 46 9.3 + 5 57 48.3 +39 30 47.6
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780	Lalande 41615,6 . Piazzi 118 34 Capricorni Lalande 41644	7 6.7 6 7 7.8 7 7	4 Nov. 17 4 Oct. 1 3 July 26 4 Sept. 18 4 Oct. 16 4 Oct. 16 3 July 9 3 July 19 4 Oct. 15 4 Oct. 16	12 37.7 13 54.7 14 15.3 14 22.4 14 40.8 14 41.1 14 58.8 15 4.1 15 7.0 15 6.6	35. 5 43. 4 42. 8 50. 9 36. 0 42. 6 38. 4 36. 1 36. 1	39 27 24.7 9 15 37.0 +23 21 4.7 -23 20 4.2 +36 29 36.8 36 29 36.8 25 14 55.5 36 25 43.6 36 26 24.1 36 26 25.6	3 32. 4 3 41. 2 4 10. 5 3 49. 9 3 35. 6 4 16. 1 4 15. 0 3 36. 4 3 36. 0	13 13.2 21 14 38.1 21 14 58.1 21 15 13.3 21 15 16.8 15 17.1 21 15 41.4 21 15 42.5 15 43.1 15 42.7	30 57.1 + 9 19 18.2 +23 25 15.2 -23 16 14.3 +36 33 12.6 33 13.4 +25 19 11.6 +36 29 58.6 30 0.5 30 1.6
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790	Bessel, W.437	7.8 7 7 7 8 6.7 7 7 6.7	4 Sept. 28 4 Nov. 17 4 Nov. 23 4 Nov. 28 4 Oct. 6 3 July 19 3 July 23 4 Oct. 15 4 Oct. 16 4 Oct. 6	15 11.8 15 10.4 15 9.7 15 10.0 15 48.4 16 58.6 16 58.5 17 1.1 17 1.0 17 49.5	37. 9 38. 8 38. 8 38. 9 43. 5 38. 8 38. 8 36. 4 43. 9	30 1 16.5 30 1 22.7 30 1 20.4 30 1 21.8 9 13 26.5 35 44 16.8 35 44 55.5 35 44 58.3 7 16 12.1	3 39, 5 3 36, 9 3 37, 4 3 43, 1 4 16, 9 4 15, 6 3 37, 9 3 38, 0 3 45, 4	21 15 49.7 15 49.2 15 48.5 15 48.9 21 16 31.9 21 17 37.3 17 37.5 17 37.4 21 18 33.4	+30 4 56.0 4 59.4 4 57.3 4 59.2 + 9 17 9.6 +35 48 35.8 48 32.4 48 33.4 48 36.3 + 7 19 57.5
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800	35 Vulpeculæ	6 6 6 6 7.8	3 July 26 4 Sept. 28 4 Oct. 1 4 Nov. 28 4 Oct. 15 4 Oct. 16 4 Nov. 17 4 Oct. 6 3 July 19 3 July 26	18 9.4 18 12.6 18 12.5 18 11.7 18 36.5 18 36.8 19 34.1 20 9.9 20 9.9	41. 9 39. 0 39. 0 40. 0 36. 3 36. 3 43. 6 43. 0 43. 3	26 40 25, 2 26 40 52, 1 26 41 0, 7 26 40 58, 9 36 11 32, 3 36 11 30, 4 11 1 35, 4 11 14 9, 7 22 41 49, 5 22 41 54, 4	4 14.5 3 42.3 3 42.1 3 40.9 3 39.3 3 39.1 3 45.2 3 45.9 4 17.7 4 15.8	19 13.1	+26 44 39.7 44 34.4 44 42.8 44 39.8 +36 15 11.6 15 9.5 +11 5 20.6 +11 17 55.6 +22 46 7.2 46 10.2
5801 5802 5803* 5804 5805 5806 5807* 5808 5809 5810	22 Aquarii β "" "" "" "" "" "" "" "" "" "" "" ""	6 3 6.7 6.7	4 Oct. 1 3 July 9 3 Sept. 15 4 Sept. 7 4 Sept. 14 4 Sept. 16 4 Sept. 18 4 Nov. 23 4 Oct. 6 4 Nov. 17	20 13.5 20 10.1 20 10.9 20 14.6 20 14.0 20 14.0 20 14.5 20 13.8 20 45.6 21 20 45.3	50, 7 50, 3 46, 7 46, 8 46, 8 46, 8 47, 6 43, 0	+22 42 25.0 -6 30 50.5 6 30 42.4 6 30 26.5 6 30 26.3 6 30 25.3 -6 30 25.6 -6 30 25.6 +11 12 9.4	3 44.5 4 14.5 4 8.7 3 51.2 3 51.0 3 51.0 3 51.0 3 52.6 3 46.9 + 3 46.8		46 9.5 - 6 26 36.0 26 33.7 26 35.3 26 37.7 26 35.3 26 36.1 +11 15 53.0 +11 15 56.2

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App [*] t δ	Reduction	Mean equ	inox 1800. 0
	Attano			PF • W				a	ð
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820	71 Cygni g Piazzi 174 Piazzi 178 37 Capricorni Bessel, W.671	6 6,7 6,7 7,8 7,8 6 6,7	3 July 23 4 Oct. 15 4 Oct. 16 4 Sept. 28 4 Oct. 1 3 July 26 3 July 27 3 July 29 4 Nov. 23 4 Oct. 6	h m s 21 21 30.0 21 31.8 21 31.6 22 7.7 22 6.8 22 38.2 22 38.1 22 38.3 22 45.6 24 41.4	50.9	+45 35 20.2 45 36 3.8 45 36 5.9 22 54 17.9 22 54 23.8 22 26 45.7 22 26 43.7 +22 26 42.9 -21 2 4.2 +17 22 49.0	+ 4 21.3 3 40.5 3 40.3 3 46.4 3 46.4 18.0 4 17.7 4 17.2 3 59.6 3 46.5	h m s 21 22 4.7 22 4.5 22 4.3 21 22 47.8 22 47.0 21 23 21.4 23 21.6 21 23 36.5 21 25 23.0	0 / " +45 39 41.5 39 44.3 39 46.2 +22 58 4.3 58 9.9 +22 31 3.7 31 1.4 -20 58 4.6 +17 26 35.5
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830	2807 Bradley	7 6 7 7 7	4 Nov. 17 3 July 19 4 Oct. 15 4 Oct. 16 4 Nov. 28 3 July 9 3 July 12 4 Sept. 16 4 Sept. 18 4 Nov. 23	24 41. 0 25 12. 6 25 15. 5 26 15. 7 25 14. 2 24 57. 8 24 57. 6 25 1. 3 25 1. 3	42. 2 35. 4 33. 3 33. 3 34. 3 54. 2 54. 1 49. 8 49. 8 50. 7	17 22 53.3 44 53 48.2 44 54 31.6 44 54 36.3 +44 54 37.0 -20 25 28.4 20 25 26.1 20 25 6.6 20 25 13.4 -20 25 13.6	3 46. 4 4 26. 0 3 43. 6 3 43. 6 3 42. 1 4 15. 8 4 15. 7 3 57. 5 3 57. 7 4 1. 3	25 23, 2 21 25 48, 0 25 48, 8 25 49, 0 25 48, 5 21 25 51, 7 25 51, 1 25 51, 1 25 51, 9	26 39.7 +44 58 14.2 58 15.2 58 19.9 58 19.1 -20 21 12.6 21 10.4 21 11.1 21 15.7 21 12.3
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840	Piazzi 200	7 8 6 4 6.5 7	3 July 27 3 July 29 3 July 19 4 Oct. 15 4 Nov. 28 3 July 23 4 Sept. 28 3 July 26 4 Oct. 6 4 Oct. 15	25 40, 9 25 40, 6 25 52, 1 25 55, 2 25 53, 2 25 53, 2 26 0, 6 26 57, 8 27 42, 4 27 53, 4	43. 1 43. 1 35. 6 33. 4 34. 4 38. 6 35. 8 47. 7 41. 5 33. 6	+23 29 39.4 23 29 40.4 44 38 19.5 44 39 4.2 44 39 4.6 37 34 6.8 37 34 43.1 5 39 19.0 18 21 39.5 44 25 18.8	4 20.7 4 20.2 4 26.5 3 44.2 3 42.7 4 24.2 3 47.8 4 19.5 3 51.0 3 45.9	21 26 24.0 26 23.7 21 26 27.7 26 28.6 26 27.6 21 26 37.1 26 36.4 21 27 45.5 21 28 23.9 21 28 27.0	+23 34 0.1 34 0.6 +44 42 46.0 42 48.4 42 47.3 +37 38 31.0 38 30.9 + 5 43 38.5 +18 25 30.5 +44 29 4.7
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850	4 Pegasi	7 3.4 7 6.7 7.8	4 Oct. 16 3 Sept. 15 3 July 23 4 Sept. 7 4 Sept. 16 4 Oct. 1 4 Sept. 18 3 July 12 3 Aug. 21 3 July 27	27 53.0 27 43.6 28 16.8 28 9.9 28 9.4 28 9.9 28 38.6 29 4.0 29 3.9 29 1.6	33. 6 47. 6 38. 0 49. 1 49. 1 49. 2 45. 1 38. 7 38. 2 43. 0	44 25 15.4 4 48 21.2 +39 26 44.0 -17 37 26.1 17 37 25.3 -17 37 25.3 +1 17 9.8 38 20 51.5 38 21 0.9 24 31 48.1	3 45.7 4 13.2 4 26.5 3 59.0 3 59.2 4 0.0 3 56.3 4 30.7 4 18.0 4 23.9	28 26. 6 21 28 31. 2 21 28 56. 8 21 28 59. 0 28 58. 5 28 59. 1 21 29 23. 7 21 29 42. 7 29 42. 1 21 29 44. 6	29 1.1 + 4 52 34.4 +39 31 10.5 -17 33 27.1 33 26.1 33 23.0 + 1 21 6.1 +38 25 22.2 25 18.9 +24 36 12.0
5851 5852* 5853 5854 5855 5856* 5857 5858 5859 5860	Lalande 42240,1 Lalande 42243	7.8 7 8.9 7 7 8.9 7 7 8.6	3 July 29 4 Sept. 28 4 Nov. 28 4 Oct. 6 4 Nov. 17 3 July 26 3 Sept. 15 3 July 9 3 July 19 4 Oct. 1	29 1.2 29 14.7 30 4.0 30 2.7 30 12.0 30 12.2 31 7.6 31 9.2 31 12.2	42. 9 33. 7 35. 6 43. 5 44. 0 48. 1 47. 8 38. 8 42. 2 45. 4	24 31 46.9 43 44 19.8 42 19 52.7 9 38 46.3 9 38 50.2 4 2 49.5 4 2 56.0 38 32 17.8 27 46 33.2 0 18 58.3	4 23. 2 3 50. 2 3 46. 3 3 54. 8 3 54. 7 4 22. 1 4 15. 6 4 33. 5 4 28. 4 3 57. 8	30 46.7 21 31 0.1 31 0.0 21 31 46.4 21 31 51.4	38 10.1 +43 48 10.0 +42 23 39.0 + 9 42 41.1 42 44.9 + 4 7 11.6 7 11.6 +38 36 51.3 +27 51 1.6 + 0 22 56.1
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870	Lalande 42287 44 Capricorni d³ Lalande 42292 Groombridge 3532 7 Pegasi 75 Cygni "" ""	7 6.7 8 7.8 8 8 6 6.7	3 Sept. 15 4 Sept. 16 3 July 27 3 July 29 4 Oct. 16 4 Oct. 16 3 July 26 3 July 23 4 Sept. 28 4 Nov. 28	31 19.4 31 20.1 31 26.3 31 25.8 31 36.6 31 36.4 31 27.1 31 43.9 31 46.3 21 31 44.9	48.5 44.0 44.0 34.3 34.3 48.0 37.0 34.4	+ 3 51 40.4 -15 22 22.7 +20 57 58.1 20 58 2.8 43 28 1.7 43 28 0.5 4 42 13.4 42 17 41.3 42 18 16.6 +42 18 28.5	4 16.5 4 1.2 4 25.4 4 25.4 4 24.8 3 49.0 3 48.7 4 23.1 4 30.1 3 52.3 + 3 47.5	21 32 8.6 21 32 10.3 32 9.8 21 32 10.9 32 10.7 21 32 15.1 21 32 20.9 32 20.7	+ 3 55 56.9 -15 18 21.5 +21 2 23.5 2 27.6 +43 31 50.7 31 49.2 + 4 46 36.5 +42 22 11.4 22 8.9 +42 22 16.0

(250)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800. 0
	2.00.10	ug.		прр . с	I double in the second			a	δ
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880	Lalande 42309,10 2827 Bradley 76 Cygni 77 Cygni 8 Pegasi 6	8 7.8 6 6 6 6 6	3 July 27 3 July 29 4 Oct. 6 4 Nov. 17 3 Aug. 21 3 July 23 3 Aug. 21 3 Sept. 15 4 Sept. 16	h m s 21 31 39.8 31 40.2 32 2.9 32 2.2 32 54.4 33 42.2 33 42.7 33 42.3 33 35.2 (33)	+ 44.1 44.1 43.4 44.0 37.9 38.4 38.1 37.8 46.8	+20 37 34.6 20 37 34.7 9 51 9.8 9 51 9.6 39 49 48.3 40 5 36.3 40 5 47.4 8 53 35.3 8 53 56.1	+ 4 25.6 4 25.0 3 56.2 3 56.0 4 17.4 4 36.1 4 31.6 4 22.0 4 17.7 3 59.1	h m s 21 32 23.9 32 24.3 21 32 46.3 32 46.2 21 33 32.3 21 34 20.3 34 20.4 34 20.1 21 34 22.0 (34)	+20 42 0.2 41 59.7 + 9 55 6.0 55 5.6 +39 54 5.7 +40 10 13.8 10 7.9 10 9.4 + 8 57 53.0 57 55.2
5881 5882 5883 5884 5885 5886 5887 5888 5889 5889	Lalande 42379	2.3 3 7 7.8 4.5 6	4 Oct. 1 4 Oct. 6 4 Oct. 9 4 Oct. 15 4 Oct. 15 3 July 27 3 July 29 3 July 9 3 July 23 3 Aug. 21	(33) 33 38.0 33 38.1 33 56.4 33 56.8 34 17.4 34 26.3 34 26.6 34 27.0	43. 7 43. 7 33. 9 33. 9 45. 3 44. 5 38. 4 38. 1 37. 8	8 53 53.6 8 53 54.9 8 53 53.5 44 47 39.1 44 47 38.2 16 21 50.1 16 21 52.7 40 10 14.7 40 10 11.3 40 10 25.8	3 57.9 3 57.7 3 57.6 3 50.6 3 50.4 4 27.2 4 26.8 4 36.6 4 32.2 4 22.8	(34) 34 21.7 34 21.8 21 34 30.3 34 30.7 21 35 2.8 35 1.9 21 35 4.7 35 4.8	57 53.5 57 52.6 57 51.1 +44 51 29.7 51 28.6 +16 26 17.3 26 19.5 +40 14 51.3 14 43.5 14 48.6
5891 5892 5893* 5894 5896 5897 5896 5899 5800	78 Cygni μ ¹ Piazzi 267 48 Capricorni λ Johnson 5380 12 Pegasi	7 6.7 5 7.8 7.8 6	4 Sept. 28 3 July 19 3 July 19 4 Sept. 7 4 Sept. 18 4 Nov. 23 4 Oct. 15 4 Oct. 16 3 July 12 3 July 26	34 29.7 34 29.4 34 44.9 34 57.3 34 57.7 34 56.5 36 17.8 36 9.0 36 8.7	35. 4 42. 4 42. 4 47. 8 47. 8 48. 6 33. 6 44. 2 43. 9	40 10 46.9 27 46 14.2 +27 47 46.2 -12 20 54.2 12 20 54.7 -12 20 45.7 +45 52 51.6 45 52 56.8 21 57 21.6 21 57 30.6	3 54. 4 4 31. 3 4 31. 4 4 3. 5 4 3. 6 4 6. 2 3 52. 2 4 33. 5 4 29. 7	35 5.1 21 35 11.8 21 35 27.3 21 35 45.1 35 45.5 35 45.5 21 36 51.4 21 36 53.2 36 52.6	14 41.3 +27 50 45.5 +27 52 17.6 -12 16 50.7 16 51.1 16 39.3 +45 56 44.0 +22 1 55.1 2 0.3
5901 5902 5903* 5904 5905 5906 5907 5908 5909 5910	11 Pegasi	7 7 7 7.8 6.7 7 7.8 7.8	3 Sept. 15 4 Sept. 16 4 Oct. 1 4 Oct. 6 4 Nov. 17 3 July 27 3 July 29 3 July 9 3 July 23 4 Sept. 14	36 17.7 36 20.3 36 23.8 36 23.7 36 23.9 36 48.9 37 42.6 37 43.2 38 3.0	48. 3 45. 0 42. 8 42. 9 43. 4 45. 4 45. 3 37. 9 37. 6 48. 0	1 41 43.7 1 42 5.7 12 44 9.0 12 44 6.0 12 44 6.7 16 12 5.8 16 12 7.0 42 3 48.1 +42 3 48.8 -13 42 57.4	4 20, 8 4 2, 2 3 59, 2 3 58, 9 3 58, 5 4 29, 1 4 29, 6 4 39, 9 4 35, 3 4 5, 9	21 37 6.0 37 5.3 21 37 6.6 37 6.6 37 7.3 21 37 33.6 37 34.2 21 38 20.5 38 20.8 21 38 51.0	+ 1 46 4.5 46 7.9 +12 48 8.2 48 4.9 48 5.2 +16 16 34.9 16 36.6 +42 8 28.0 8 24.1 -13 38 51.5
5911 5912 5913 5914 5915 5916 5917 5918* 5919 5920	81 Cygni π ² Lalande 42549 Lalande 42559 13 Pegasi	5 6.5 6 7.8 7 6.7	3 Aug. 21 4 Oct. 9 4 Oct. 15 4 Oct. 16 4 Oct. 1 4 Oct. 6 4 Sept. 28 3 July 12 3 July 19 3 July 26	38 50.7 38 52.5 38 52.5 38 52.7 39 5.3 39 4.9 39 25.1 39 52.7 39 52.2 39 52.2		+48 18 49.9 48 19 21.1 48 19 20.8 48 19 22.6 14 46 9.2 14 46 9.1 19 28 8.5 16 17 7.6 16 17 14.5	4 27.2 3 55.3 3 54.1 3 53.9 4 0.9 4 0.6 4 6.6 4 35.4 4 33.7 4 31.9	21 39 25. 2 39 25. 0 39 25. 2 39 25. 4 21 39 47. 7 39 47. 7 21 40 6. 5 21 40 38. 4 40 37. 8 40 38. 1	
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930	14 Pegasi Johnson 5408 Piazzi 312 51 Capricorni μ	7 8.9 7 6.7 6.7	3 July 27 3 July 29 4 Sept. 16 3 Sept. 15 4 Sept. 28 3 July 9 4 Nov. 17 3 July 17 4 Oct. 6 4 Sept. 7	39 52. 4 39 52. 4 39 55. 8 40 19. 4 40 53. 8 40 56. 0 41 25. 8 41 28. 5 21 41 33. 9	41.6	16 17 10.6 16 17 16.0 16 17 43.9 29 10 33.8 29 10 51.9 40 8 36.2 40 9 24.2 18 49 4.4 +18 49 41.1	4 31.7 4 31.2 4 3.0 4 21.4 4 0.0 4 42.1 3 54.4 4 37.2 4 1.6 + 4 8.5	40 37.8 40 37.8 40 37.7 21 41 1.3 41 21 41 32.7 41 32.7 21 42 11.0 42 10.1 21 42 22.0	14 51.9 +40 13 18.3 13 18.6 +18 53 41.6 53 42.7

(251)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
No.	Name	.nag.	17400	Аррти	Reduct is			а	8
5931* 5932 5933 5934 5935 5936 5937 5938 5939	51 Capricorni μ Groombridge 3584 " 15 Pegasi" 16 Pegasi	7 7 7 6 6.5	4 Sept. 14 4 Oct. 9 4 Oct. 15 4 Oct. 16 3 Aug. 21 3 Sept. 16 3 July 27 3 July 29	h m s 21 41 34.2 42 13.1 42 13.0 42 12.7 42 52.3 42 52.6 42 55.6 43 14.4 43 14.4	# 48.1 36.5 36.7 36.7 42.4 42.4 39.4 43.4 43.4	-14 33 22.3 +38 32 17.3 38 32 16.6 38 32 18.6 27 47 15.4 27 47 21.4 24 54 49.4 24 54 49.4	+ 4 8.6 3 58.8 3 57.8 3 57.8 4 29.1 4 23.4 4 4.4 4 35.9 4 35.3 4 37.0	h m s 21 42 22.3 21 42 49.6 42 49.7 42 49.4 21 43 34.7 43 35.0 43 35.0 21 43 57.8 43 57.8 21 44 12.8	-14 29 13. +38 36 16. 36 14. 36 16. +27 51 44. 51 44. 51 48. +24 59 25. 59 24. +18 43 49.
5940 5941* 5942 5943 5944 5945 5946 5947 5948 5949 5950	Lalande 42690,1 Lalande 42708,9 Lalande 42712,3	6.7 6.7 6.7 7.8 7.8 8.9 7	3 July 19 4 Sept. 28 4 Oct. 1 4 Oct. 6 3 July 19 4 Oct. 1 4 Oct. 6 3 July 9 3 July 9 3 July 12 3 July 23 4 Nov. 17	43 27.7 43 31.9 43 31.5 43 31.1 44 8.7 44 12.0 44 12.0 44 16.0 44 16.4 44 18.8	45. 1 41. 6 41. 6 41. 7 45. 1 41. 7 41. 7 43. 2 43. 1 42. 9 40. 4	18 39 12.0 18 39 43.1 18 39 50.3 18 39 48.1 18 42 18 42 45.5 18 42 46.8 27 19 56.4 27 19 57.1 27 20 33.2	4 3.9 4 3.7 4 3.1 4 3.9 4 3.6 4 42.2 4 41.5 4 38.2 3 59.8	44 13.5 44 13.1 44 12.8 21 44 53.8 44 54.1 44 53.7	43 47. 43 54. 43 51. +18 46 46 49. 46 50.
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960*	Lalande 42743 Lalande 42756 Piazzi 337 17 Pegasi	7.8 8.9 9 7.8 7.8	4 Oct. 9 3 July 27 3 July 29 3 Sept. 15 4 Oct. 16 4 Oct. 16 3 July 23 3 July 26 3 Aug. 21 4 Oct. 6	45 17. 1 45 40. 7 45 40. 6 45 41. 4 46 11. 9 46 11. 7 46 23. 9 46 24. 0 46 24. 3 46 28. 3	41. 5 41. 0 41. 0 40. 8 37. 9 37. 9 46. 8 46. 8 46. 4	19 50 21.8 33 45 17.9 33 45 19.6 33 45 33.1 35 8 14.3 35 8 18.4 11 3 17.0 11 3 22.3 11 3 24.7 11 3 42.0	4 3.9 4 39.4 4 37.6 4 25.3 4 1.1 4 0.9 4 37.0 4 36.3 4 31.2 4 6.7	21 45 58.6 21 46 21.7 46 21.6 46 22.2 21 46 49.8 46 49.6 21 47 10.7 47 10.8 47 10.7 47 11.6	+19 54 25, +33 49 57, 49 57, 49 58, +35 12 15, 12 19, +11 7 54, 7 58, 7 55, 7 48,
5961 5962 5963* 5964 5965* 5966 5967 5969 5970	Lalande 42×36 Lalande 42×46 Lalande 42×49 Lalande 42×67 Bessel, W.1274 Lalande 42×83,5 18 Pegasi	8.9 7.8 7.8 6 7.9 8 9 6	4 Nov. 17 3 July 19 4 Oct. 15 3 July 19 3 July 29 3 July 27 3 July 29 4 Sept. 16 4 Oct. 9 3 July 26	47 33.8 47 37.9 47 49.0 48 51.2 48 45 2 49 8.4 49 11.3 49 11.2 49 20.6	50.4	+19 17 14.9 - 5 23 4.1 +28 17 19.2 47 39 9.0 17 59 37.4 28 48 27.4 28 48 27.8 28 48 53.9 28 49 3.4 5 41 20.0	4 4.4 4 36.5 4 45.2 4 1.5 4 41.0 4 41.2 4 40.5 4 8.8 4 5.0 4 37.6	21 48 16.0 21 48 28.3 21 48 32.1 21 49 24.9 21 49 30.5 21 49 51.0 49 50.7 49 50.8 21 50 8.5	+19 21 19 -5 18 27 +28 22 4 +47 43 10 +18 4 18 +28 53 8 53 2 53 8 + 5 45 57
5971 5972 5973 5974 5975 5976 5977 5978 5979	28 Aquarii	6 6 7 6 6 6.7 8	3 Sept. 15 4 Sept. 28 4 Oct. 6 3 July 12 3 July 23 4 Oct. 16, 3 Aug. 21 4 Nov. 17 3 July 27 3 July 23	49 21. 6 49 24. 4 49 23. 5 50 1. 2 50 2. 3 (49) 50 33. 9 51 0. 8 51 12. 0 52 8. 6	49, 4 49, 2 46, 3 39, 5	5 41 22.5 5 41 38.7 + 5 41 42.7 - 0 25 33.3 - 0 25 9.5 +12 5 26.2 31 58 46.9 +30 25 5.2 - 3 11 33.4	4 30.5 4 10.2 4 9.8 4 39.6 4 37.6 4 11.5 4 34.4 4 3.2 4 43.0 4 38.6	50 9.2 50 8.7 50 7.9 21 50 50.6 50 51.5 (50) 21 51 20.2 21 51 40.3 21 51 54.3 21 52 58.3	+32 250
5981 5982 5983* 5985 5986 5986 5987 5988 5989	Lalande 42989 . Bessel, W.1299 . 21 Pegasi . Lalande 43012 . 32 Aquari Lalande 43037,8 .	6.5 7.8 7 8 7.6	4 Oct. 6 3 July 29 4 Sept. 16 3 July 29 3 July 26 3 Sept. 15 3 July 19 3 July 23 4 Sept. 28	52 11. 8 52 15. 4 52 18. 8 52 31. 2 52 43. 0 52 56. 2 53 40. 3 53 40. 9 21 53 56. 3	42.5 46.0 47.0 48.0 49.7 49.6 49.5	- 3 11 7.4 +14 57 1.0 14 57 27.9 14 48 10 20 52.5 + 3 45 8.2 - 1 56 44.4 - 1 56 42.5 + 9 12 23.9	4 13.8 4 40.6 4 12.1 4 41.0 4 33.2 4 41.9 4 40.5 4 40.0 + 4 12.6	52 57.8 21 53 1.4 53 1.3 21 53 17.2 21 53 30.0 21 53 44.2 21 54 30.4 54 29.9 54 30.4 21 54 40.0	+10 25 33. + 3 49 41. - 1 52 2. 52 3. 52 2.

(252)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800. 0
	2/440	mug.						а	ð
5991 5992 5993 5994 5996 5996 5997 5998 5999 6000	Groombridge 3655 34 Aquarii a 22 Pegasi v	7 7 3 3	4 Oct. 9 4 Nov. 17 3 July 9 3 July 19 3 July 23 4 Sept. 7 4 Oct. 6 4 Oct. 16 3 Aug. 21 3 Sept. 15	h m s 21 54 17.5 54 16.8 (54) 54 41.0 (54) 54 44.9 54 44.7 54 44.5 54 47.1 54 48.2	+ 35.5 36.4 49.5 45.5 45.6 45.7 48.0 47.9	0 / " +43 37 15.3 +43 37 19.7 -1 21 51.5 1 21 47.4 1 21 21.5 1 21 21.2 -1 21 21.8 +4 0 35.0 +4 0 37.8	+ 4 6.8 4 2.8 4 43.4 4 41.4 4 41.0 4 16.1 4 15.0 4 15.1 4 37.2 4 34.5	h m s 21 54 53, 0 54 53, 2 21(55) 55 30, 5 (55) 55 30, 4 55 30, 2 21 55 35, 1 55 36, 1	0 / " +43 41 22.1 41 22.5 - 1 17 8.1 17 6.0 17 7.5 17 5.6 17 7.2 17 6.7 + 4 5 12.2 5 12.3
6001 6002 6003 6004 6005 6006* 6007 6008 6009*	33 Aquarii Lalande 43073 . 23 Pegasi . Bessel, W.1391 . 24 Pegasi . Lalande 43146,7 . Groombridge 3679 Piazzi 406 .	7.8 8 6.7 6.7	4 Sept. 14 4 Sept. 16 3 July 27 3 July 26 4 Oct. 6 4 Nov. 17 3 Aug. 21 4 Nov. 23 3 July 29 3 July 12	54 49.3 54 49.2 55 2.7 55 48.2 56 54.4 56 53.5 56 57.7 57 3.6 57 19.2 57 11.9	48. 1 38. 3	-14 54 17.9 -14 54 16.7 +31 53 54.4 27 55 9.6 8 37 43.3 8 37 40.7 +24 17 45.9 -12 39 27.5 +43 57 59.9 +18 25 17.2	4 17.5 4 17.5 4 46.2 4 46.4 4 14.2 4 13.9 4 39.6 4 21.8 4 49.3 4 49.1	21 55 37.2 55 37.1 21 55 44.8 21 56 31.4 21 57 38.3 57 37.9 21 57 41.5 21 57 57.5 21 57 57.7	-14 50 0.4 49 59.2 +31 58 40.6 +27 59 56.0 + 8 41 57.5 41 54.6 +24 22 25.5 -12 35 5.7 +44 2 49.2 +18 30 6.3
6011 6012 6013 6014 6015 6016 6017 6018* 6019	35 Aquarii	6 6.7 6 6	4 Oct. 16 3 Sept. 15 3 July 19 4 Nov. 23 4 Sept. 16 4 Oct. 16 4 Oct. 16 3 July 23 4 Sept. 7 3 July 26 3 Aug. 21	57 10.3 57 42.5 58 10.4 59 7.2 59 7.7 (59) 59 18.4 59 21.4 59 40.6 21 59 41.0	48. 9 44. 6 48. 9 48. 1 47. 4 48. 2 44. 4 42. 3 42. 0	-19 33 50.8 +20 39 30.5 + 1 40 54.5 -12 36 50.9 12 36 50.7 -12 36 56.8 + 5 8 25.9 5 8 53.6 32 7 14.4 -32 7 18.4	4 21.8 4 35.1 4 44.4 4 23.1 4 20.0 4 21.1 4 45.4 4 18.6 4 50.0 4 42.3	21 57 59, 2 21 58 27, 1 21 58 59, 3 21 59 55, 3 59 55, 1 (59) 22 0 6, 6 0 5, 8 22 0 22, 9 0 23, 0	-19 29 29.0 +20 44 5.6 + 1 45 38.9 -12 32 27.8 32 30.7 32 35.7 + 5 13 11.3 13 12.2 +32 12 4.4 12 0.7
6021 6022 6023 6024 6025* 6026 6027 6028 6029* 6030	Lalande 43255	7.8 7.6 6.7 4.5 6.7 8 7.8	3 July 12 4 Oct. 6 4 Nov. 17 3 Sept. 15 3 July 26 3 July 27 3 Aug. 21 3 July 19 4 Oct. 16 3 July 29	22 0 1.9 0 5.3 0 4.9 0 19.1 0 24.8 0 24.6 0 25.1 1 25.7 1 56.6 2 5.8	47.6	18 33 46.2 18 34 24.6 18 34 24.9 19 55 28.3 32 7 20.4 32 7 18.3 32 7 23.6 +14 58 49.7 -12 59 1.6 +41 58 9.5	4 51. 2 4 14. 5 4 12. 5 4 36. 9 4 50. 5 4 50. 3 4 42. 9 4 49. 6 4 22. 8 4 52. 6	0 47.4 0 47.5 22 1 4.0	+18 38 37.4 38 39.1 38 37.4 +20 0 5.2 +32 12 10.9 12 6.5 12 6.5 +15 3 39.3 -12 54 38.8 +42 3 2.1
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040*	Lalande 43331 . Piazzi 29 . Piazzi 32 . Piazzi 33 . 1 (Hev.) Lacertæ Lalande 43417 Piazzi 39	8.9 6.7 8 6.7 5 6 7 7	3 July 12 3 July 26 3 July 12 3 July 9 3 July 23 3 Aug. 21 4 Oct. 6 4 Nov. 17 4 Nov. 23 3 Sept. 15	2 6.0 3 14.7 3 45.8 3 56.2 4 38.1 4 42.4 4 41.7 4 41.7 4 42.8	44.7 42.2 44.0 46.5 40.8 40.9 41.6 42.2 42.3 44.3	23 53 11.6 33 32 33.0 27 32 26.3 16 7 33.8 38 38 39.7 38 38 49.7 21 27 53.7 21 27 55.6 23 14 55.0	4 53, 9 4 52, 7 4 56, 0 4 54, 1 4 55, 7 4 46, 4 4 16, 9 4 14, 9 4 15, 1 4 39, 8	22 5 18.9 5 19.0 22 5 24.0 5 23.9 5 24.0	+23 58 5.5 +33 37 25.7 +27 37 22.3 +16 12 27.9 +38 43 35.4 43 36.1 +21 32 10.6 32 6.3 32 10.7 +23 19 34.8
\$041 6042 6043 6044 6045 6046 6047 6048 6049 6050	Lalande 43420,1 Groombridge 3717 43 Aquarii θ 1 Lacertæ	7.8 6.7 5 5.6 10 7.8 7.8	3 July 19 3 July 29 4 Sept. 16 3 July 23 3 July 26 3 July 27 3 Aug. 21 3 July 12 4 Nov. 17 4 Nov. 23	4 44.6 4 57.7 5 29.1 6 34.6 6 34.3 6 34.0 6 34.9 6 31.1 6 34.0 22 7 2.1	46. 6 41. 5 41. 4 41. 1 45. 4 42. 2	28 30 17.8 +44 22 14.5 - 8 50 41.7 +36 40 27.3 36 40 31.4 36 40 37.7 21 49 24.3 21 50 0.2 +21 19 29.0	4 54.9 4 55.0 4 23.2 4 56.8 4 55.8 4 48.4 4 56.6 4 15.8 + 4 16.4	22 5 36.5 22 6 15.7 22 7 16.1 7 15.8 7 15.4 7 16.0 22 7 16.2 7 16.2	+28 35 12.7 +44 27 9.5 - 8 46 18.5 +36 45 24.1 45 27.2 45 26.1 +21 54 20.9 54 16.0 +21 23 45.4

(253)

No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	Mean equ	inox 1800, 0
								a	ð
6051 †6052 6053 6054 6055 6056 6057 6058 6059 6060	Lalande 43518 - 46 Aquarii ρ Piazzi 65 30 Pegasi Piazzi 69 48 Aquarii γ 31 Pegasi	7 7.8 6 8 6.7 7	3 July 9 3 Sept. 15 4 Sept. 16 3 July 12 3 July 29 3 Sept. 15 3 July 29 3 July 9 3 July 19 3 Aug. 21	h m s 22 6 59.5 8 24.5 8 52.5 9 29.2 9 29.4 9 36.4 10 8.5 10 29.9 10 29.3 10 53.3	46. 6 42. 0 41. 6 47. 9 46. 9 49. 9 49. 7	0 / " - 1 18 36.3 +25 17 15.3 - 8 53 35.7 +36 41 5.0 36 41 12.6 4 42 39.3 +12 57 5.1 - 2 28 17.4 - 2 28 12.8 +11 7 16.5	+ 4 51.7 4 42.0 4 25.2 5 2.0 4 56.8 4 39.9 4 53.4 4 53.6 4 51.8 4 48.3	h m s 22 7 49.2 22 9 8.5 22 9 39.1 22 10 11.2 10 11.0 22 10 24.3 22 10 55.4 22 11 19.8 11 19.0 22 11 40.1	
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070	Piazzi 76	6.7 6 7 7.8 7.8 6 6	4 Oct. 9 4 Nov. 17 4 Oct. 16 3 July 23 3 July 29 4 Oct. 16 3 Sept. 15 4 Oct. 9 4 Nov. 17	11 2.0 11 1.7 11 47.0 12 7.6 12 34.6 12 34.4 12 55.8 13 16.5 13 20.3 13 19.5	41.4 41.0 47.6	25 51 38.5 +25 51 41.9 -16 1 21.2 +45 26 51.6 39 34 42.9 +39 34 42.9 -14 36 45.4 +19 45 50.7 19 46 7.6 19 46 9.3	4 19.7 4 17.3 4 29.5 5 2.2 5 4.8 4 59.5 4 29.6 4 45.5 4 21.6 4 20.3	22 11 43.0 11 43.3 22 12 34.9 22 12 46.8 22 13 16.0 13 15.4 22 14 1.7 14 2.5 14 2.2	+25 55 58.2 55 59.2 -15 56 51.7 +45 31 53.8 +39 39 47.7 39 42.0 -14 32 15.8 +19 50 36.2 50 29.2 50 29.6
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080	Lalande 43729 923 Mayer Piazzi 97 4 Lacertæ 34 Pegasi	6 7 7 7 7 6	4 Nov. 23 3 July 26 3 July 9 3 July 26 4 Oct. 9 4 Nov. 17 4 Nov. 23 3 July 23 3 Aug. 21 3 Sept. 15	13 19.6 13 29.1 13 26.8 15 15.8 15 19.2 15 19.2 15 19.1 15 47.6 15 48.2 15 38.7	42.8 46.7 49.9 46.2 42.7 43.1 43.2 38.4 38.0 48.1	19 46 11.9 +14 11 34.0 - 2 16 43.3 +17 20 58.7 17 21 29.1 17 21 28.7 17 21 30.7 48 22 48.0 48 22 59.2 3 17 56.8	4 20.5 4 55.8 4 55.4 4 57.5 4 23.7 4 22.3 4 22.3 5 5.2 4 55.2 4 48.1	14 2.4 22 14 15.8 22 14 16.7 22 16 2.0 16 1.9 16 2.8 16 2.3 22 16 26.0 16 26.2 22 16 26.8	50 32.4 +14 16 29.8 - 2 11 47.9 +17 25 56.2 25 52.8 25 51.0 -25 53.0 +48 27 53.2 27 54.4 + 3 22 44.9
6081 6082 6083 6084 6085 6086 6087 6088 6089	35 Pegasi Lalande 43859 55 Aquarii ζ Lalande 43891 Lalande 43893	6 7 7.8 7 7	4 Sept. 16 3 Sept. 15 3 July 12 3 July 29 3 July 9 3 July 9 4 Oct. 9 4 Nov. 17 4 Nov. 23 3 July 27	15 41.3 16 56.4 17 11.5 17 11.8 17 42.1 17 42.7 18 6.3 18 6.2 18 5.8 18 6.6	44.7 48.1 42.6 42.2 49.7 49.5 41.7 42.2 42.2 44.7	3 18 18.8 3 37 9.3 36 20 39.7 +36 20 44.2 -1 7 14.6 -1 7 15.6 +23 42 9.1 23 42 11.5 23 42 24.0 25 55 20.9	4 27.7 4 49.0 5 6.7 5 1.7 4 58.3 4 56.3 4 24.2 4 21.6 4 22.0 5 0.9	16 26.0 22 17 44.5 22 17 54.1 17 54.0 22 18 31.8 18 32.2 22 18 48.0 18 48.4 18 48.0 22 18 51.3	22 46.5 + 3 41 58.3 +36 25 46.4 25 45.9 - 1 2 16.3 2 19.2 +23 46 33.3 46 33.1 46 46.0 +26 0 21.8
6091* 6092 6093 6094 6095 6096 6097 6098 6099 6100	36 Pegasi Lalande 43914,5 Piazzi 120 37 Pegasi 57 Aquarii Piazzi 127 38 Pegasi Lalande 43981 5 Lacertæ	7.8 6 6 7.8 6	4 Oct 2 3 July 12 3 July 26 3 Sept. 15 4 Sept. 16 4 Oct. 16 4 Sept. 16 3 Aug. 21 3 July 27 3 July 12	18 25.0 18 51.2 19 3.6 19 3.6 19 6.2 19 15.8 19 48.2 20 10.8 20 7.5 20 33.1	47, 0 44, 8 43, 2 49, 7	8 2 13.0 43 1 2.1 25 39 44.0 3 20 28.3 + 3 20 47.3 -11 46 19.7 + 3 14 23.1 +31 28 18.2 - 4 0 44.5 +46 36 0.1	4 27. 4 5 9. 5 5 1. 6 4 50. 1 4 29. 5 4 32. 1 4 29. 9 4 55. 9 5 11. 3	22 19 51.7 19 50.9 22 20 2.8 22 20 33.0 22 20 54.0 22 20 57.2	+ 8 6 40.4 +43 6 11.6 +25 44 45.6 + 3 25 18.4 25 16.8 -11 41 47.6 + 3 18 53.0 +31 33 14.1 - 3 55 48.6 +46 41 11.4
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110	6 Lacertæ Piazzi 139 39 Pegasi 7 Lacertæ Piazzi 142	6. 5 6. 5 6. 7 7. 6 6. 7	3 July 23 3 July 29 3 July 9 3 July 26 4 Oct. 9 4 Nov. 17 3 Sept. 15 4 Oct. 2 3 Aug. 21 4 Oct. 16	20 33.7 21 11.7 21 34.2 21 34.5 21 37.8 21 37.8 22 10.5 22 13.3 22 27.4 22 22 46.5	39. 6 40. 9 44. 8 44. 4 40. 9 41. 4 45. 6 42. 5 38. 3 + 46. 8	46 36 0.6 42 1 0.3 28 26 9.0 28 26 17.3 28 26 53.2 28 26 59.3 19 7 19 7 44.8 +49 10 27.2 -10 42 38.5	5 7.7 5 5.3 5 8.5 5 3.6 4 25.5 4 22.4 4 27.9 4 59.4 4 33.7	21 13, 3 22 21 52, 6 22 22 19, 0 22 18, 9 22 18, 7 22 18, 7 22 22 56, 1 22 55, 8 22 23 5, 7 22 23 33, 3	41 8.3 +42 6 5.6 +28 31 17.5 31 20.9 31 18.7 -19 12 12 12.7 +49 15 26.6 -10 38 4.8

(254)

N.	Name	Man	Doto	A'4	Podnot's	A mm?s &	Poduction.	Mean equ	inox 1800. 0
No.	Name	Mag.	Date	App't a	Reduct'n	App't δ	Reduction	а	δ
6111 6112 6113 6114* 6115 6116 6117 6118 6119*	Groombridge 3804 59 Aquarii v Groombridge 3810 62 Aquarii 7 Lalande 44146 Groombridge 3815	6.7 7 7.8 7.8 7 7 8.9 8	4 Oct. 9 3 July 19 3 July 19 3 July 12 4 Sept. 16 3 July 23 3 July 27 3 July 9 3 July 12 3 July 29	h m s 22 22 58.5 22 51.2 24 5.5 24 5.5 24 8.3 24 15.1 24 46.6 25 0.3 24 59.8 25 0.2	** 38.8 52.6 42.3 42.2 38.4 49.4 44.4 42.3 41.9	+38 40 53.0 -21 48 30.0 +39 42 26.8 39 42 18.9 +39 42 59.2 -1 13 37.2 -1 13 37.2 39 39 36.5 39 39 32.8 39 39 37.3	+ 4 25.2 4 54.9 5 12.2 5 11.9 4 31.0 4 59.5 5 5.2 5 13.4 5 12.5 5 7.2	h m s 22 23 37.3 22 23 43.8 22 24 47.8 24 46.7 22 25 4.5 22 25 31.0 22 25 42.7 25 42.1 25 42.1	+38 45 18.2 -21 43 35.1 +39 47 39.0 47 30.8 47 30.8 -1 8 37.9 +28 55 40.4 +39 44 49.9 44 45.3 44 44.5
6121* 6122 6123 6124 6125 6126 6127* 6128 6129 6130	Piazzi 158	7 7.8 6.7 6.7 6.5 6.7 8.9	3 Sept. 15 4 Oct. 9 3 July 29 3 Aug. 21 4 Oct. 2 4 Oct. 16 4 Sept. 16 3 July 19 3 July 9 3 July 23	25 25, 6 26 20, 0 26 17, 4 26 17, 1 26 38, 1 26 37, 4 27 4, 8 27 39, 2 27 48, 3 28 26, 1	45.7 39.1 42.3 42.0 46.0 46.1 39.8 48.2 42.1 46.5	19 10 8.3 +38 31 23.4 38 31 8.9 +38 31 13.8 - 5 19 52.5 - 5 19 47.7 +34 32 38.6 8 8 23.6 41 41 17.9 18 24 23.7	4 52.8 4 26.9 5 7.6 5 0.3 4 34.0 4 32.4 5 4.2 5 15.5 5 6.2	22 26 11.3 22 26 59.1 22 26 59.7 26 59.1 22 27 24.1 27 23.5 22 27 44.6 22 28 27.4 22 28 30.4 22 29 12.6	+19 15 1.1 +38 35 50,3 +38 36 16.5 36 14.1 - 5 15 18.5 +34 37 11.0 8 13 27.8 +41 46 33.4 +18 29 29.9
6131 6132 6133* 6134* 6135 6136 6137 6138 6139 6140	10 Lacertæ	6.7 6.7 5.6 6.7	3 Sept. 15 4 Nov. 23 3 July 12 3 July 9 3 Aug. 21 4 Sept. 16 3 July 19 3 July 23 4 Nov. 23 3 July 29	28 26, 9 28 28, 2 28 58, 3 29 35, 7 24 35, 7 29 52, 3 30 40, 4 30 41, 0 30 44, 1 31 4, 2	45. 9 43. 3 41. 5 43. 2 42. 3 39. 6 48. 0 47. 9 44. 5 41. 5	18 24 36.1 18 25 3.4 44 3 30.5 37 55 32.0 37 55 45.1 36 28 42.1 9 42 22.3 9 42 21.0 9 42 53.6 43 8 53.5	4 54.5 4 28.8 5 15.8 5 15.5 5 2.2 4 34.0 5 6.2 5 4.4 4 32.6 5 11.0	29 12.8 29 11.5 22 29 39.8 22 30 18.9 30 18.0 22 30 31.9 22 31 28.4 31 28.9 31 28.6 22 31 45.7	29 30.6 29 32.2 +44 8 46.3 +38 0 47.5 0 47.3 +36 33 18.1 + 9 47 28.5 47 25.4 47 26.2 +43 14 4.5
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150	Lalande 44391 . 43 Pegasi o	6.5	4 Oct. 9 4 Oct. 2 3 July 12 3 July 26 3 July 9 3 July 9 3 July 27 3 Sept. 15 4 Sept. 16 4 Sept. 18	31 7.5 31 8.6 31 38.2 31 38.0 32 53.8 32 53.5 32 54.1 32 55.2 32 57.2 32 57.7	38. 4 46. 9 45. 3 44. 9 45. 3 45. 0 44. 8 44. 3 41. 1	+43 9 37.3 -13 40 40.8 +28 10 45.5 28 10 58.1 29 5 28.8 29 5 34.2 29 5 33.8 29 5 47.5 29 6 7.9 29 6 6.7	4 29. 2 4 37. 7 5 13. 2 5 9. 3 5 15. 0 5 12. 0 5 9. 9 4 56. 8 4 35. 6 4 35. 2	31 45, 9 22 31 55, 5 22 32 23, 5 32 22, 9 22 33 39, 1 33 38, 9 33 38, 9 33 38, 3 33 38, 9	14 6.5 -13 36 3.1 +28 15 58.7 16 7.4 +29 10 43.8 10 43.7 10 43.7 10 43.5 10 41.9
6151* 6152 6153 6154 6155 6156 6157* 6158 6159 6160	Bessel, W.773 . 936 Mayer	3 3 6 7 6 6	4 Oct. 9 4 Nov. 23 3 Aug. 20 4 Oct. 2 3 July 29 3 Aug. 21 3 July 23 3 July 9 3 July 12 3 July 27	32 57. 2 32 56. 7 32 57. 0 34 3. 0 34 29. 7 34 29. 5 34 58. 1 35 31. 4 35 31. 4	41. 3 41. 8 47. 4 46. 5 42. 4 42. 0 46. 8 45. 4 45. 3 47. 7	29 6 13.5 29 6 19.9 + 9 49 13.4 -10 46 12.1 +40 41 9.2 40 41 21.3 18 13 47.2 29 19 43.9 29 19 41.8 11 3 57.7	4 31.2 4 27.9 5 1.0 4 38.3 5 12.6 5 5.3 5 9.7 5 16.5 5 15.6 5 7.4	22 34 49.5 22 35 12.1 35 11.5 22 35 44.9 22 36 16.8 36 16.7	10 44.7 10 47.8 + 9 54 14.4 -10 41 33.8 +40 46 21.8 46 27.2 +18 18 56.9 +29 25 0.4 24 57.4 +11 9 5.1
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170	47 Pegasi λ	4 4 4 6 5 5.6	3 Sept. 15 3 July 19 3 July 26 4 Sept. 16 4 Sept. 18 4 Oct. 9 4 Nov. 23 3 July 29 4 Oct. 2 3 July 12	35 55.1 36 8.4 36 8.1 36 11.4 36 12.2 36 12.2 36 11.3 36 37.0 38 12.8 22 38 18.3	46.9	11 4 12.5 22 25 50.9 22 25 53.4 22 26 21.1 22 26 20.4 22 26 26.1 22 26 29.8 +43 24 26.6 —14 43 19.8 +36 16 46.7	4 58.5 5 12.2 5 10.3 4 37.1 4 36.8 4 33.7 4 31.2 5 14.3 4 40.9 + 5 18.8	36 42.3 22 36 54.7 36 54.2 36 53.7 36 54.5 36 54.9 36 54.9 22 37 18.9 22 38 59.7 22 39 2.4	9 11,0 +22 31 3,1 31 3,7 30 58,2 30 57,2 30 59,8 31 1,0 +43 29 40,9 -14 38 38,9 +36 22 5,5

(255)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
				PF				a	ð
6171* 6172 6173 6174 6175 6176 6177 6178 6179* 6180	48 Pegasi μ	4 6.7 6	3 July 23 3 July 29 3 Sept. 15 4 Sept. 16 4 Oct. 9 3 July 19 3 Aug. 20 3 Aug. 21 4 Oct. 2 3 July 26	h m s 22 39 35.3 39 35.1 39 36.3 39 39.3 40 5.0 40 39.5 40 40.0 41 24.1 41 27.3	** 46. 2 46. 0 45. 5 42. 3 42. 4 47. 1 42. 5 46. 2 48. 2	+23 27 45.7 23 27 46.0 23 27 56.4 23 28 15.6 23 28 18.6 17 59 57.9 40 48 41.5 +40 48 41.7 — 8 43 11.1 + 8 41 20.3	+ 5 13.2 5 11.5 5 0.1 4 38.7 4 35.1 5 8.9 5 8.5 4 41.1 5 9.7	h m s 22 40 21.5 40 21.1 40 21.8 40 21.6 40 21.8 22 40 52.1 22 41 22.0 41 22.5 22 42 10.3 22 42 15.5	0 / " +23 32 58.9 32 57.5 32 56.5 32 54.3 32 53.7 +18 5 1.0 +40 53 50.4 53 50.2 - 8 38 30.0 + 8 46 30.0
6181* 6182 6183 6184 6185 6186 6187 6188 6189 6190*	15 Lacertæ	6	4 Sept. 18 3 Aug. 21 3 Sept. 15 3 July 29 4 Sept. 17 3 July 27 4 Sept. 16 3 July 19 3 July 23 4 Sept. 18	41 31.4 42 19.5 42 20.8 42 25.0 42 28.9 43 10.1 43 14.1 44 14.0 44 21.5 44 25.0	44. 2 42. 3 42. 2 47. 2 43. 4 51. 2 47. 0 43. 8 48. 4	8 41 43.0 42 10 1.4 42 10 6.3 15 41 50.8 +15 42 24.2 -16 57 29.7 +39 13 28.4 7 39 57.5 7 40 26.9	4 39.8 5 9.5 5 1.8 5 11.1 4 40.0 5 4.8 4 42.6 5 20.3 5 11.4 4 41.0	42 15.6 22 43 1.8 43 3.0 22 43 12.2 43 12.3 22 44 1.1 22 44 57.8 22 45 9.9 45 9.4	46 22.8 +42 15 10.9 15 8.1 +15 47 1.9 47 4.2 -16 52 48.1 52 47.1 +39 18 48.7 + 7 45 8.9 45 7.9
6191 6192 6193 6194 6195 6196 6197* 6198 6199 6200	Lalande 44×62 24 Piscis Austr. a 16 Lacertæ 51 Pegasi	6 1 1	3 July 29 3 July 9 3 July 12 3 July 19 3 July 27 4 Sept. 17 4 Oct. 2 3 Aug. 21 3 July 23 3 Aug. 20	45 42. 0 45 40. 1 45 40. 3 (45) 45 40. 6 45 44. 5 46 34. 3 46 51. 8 46 52. 2	44. 4 53. 4 53. 3 52. 9 48. 5 48. 5 43. 0 47. 0 46. 5	+35 12 0.3 -30 45 53.5 30 45 40.8 30 45 43.8 30 45 45.4 30 45 28.4 +40 27 7.9 19 36 45.1 19 36 45.4	5 17. 0 5 4. 5 5 4. 3 5 3. 7 5 3. 5 4 45. 1 4 47. 0 5 11. 3 5 15. 6 5 8. 7	22 46 26. 4 22 46 33. 5 46 33. 6 (46) 46 33. 5 46 32. 7 22 47 17. 3 22 47 38. 8 47 38. 7	+35 17 17.3 -30 40 49.0 40 36.5 40 40.1 40 41.9 40 38.6 40 41.4 +40 32 19.2 +19 42 0.7 41 54.1
6201 6202 6203 6204* 6205 6206 6207 6208 6209 6210	Anonyma Lacaille 9321 Lalande 44982 Lalande 45023 Bessel, W. 1137 Groombridge 3947	7 5.6 5.4 6 7.8 7 7.8 7 6.7	3 Sept. 15 3 July 27 4 Sept. 16 4 Sept. 17 3 Sept. 15 3 July 29 3 Aug. 20 3 July 19 3 July 26 3 Aug. 21	47 35, 2 47 43, 9 47 49, 1 47 46, 7 49 31, 7 50 25, 6 50 38, 7 50 49, 4 50 49, 9 50 50, 1	52.7 48.4 48.4 46.3 45.6 47.3 43.3	+20 21 49.6 -30 36 59.5 30 36 37.0 -30 36 36.6 +20 4 7.1 29 55.6 13 42 49.8 44 12 44.8 44 12 51.5 +44 13 1.4	5 3.7 5 4.2 4 45.7 4 45.9 5 4.6 5 17.9 5 9.5 5 24.4 5 22.3 5 13.8	22 48 21.4 22 48 36.6 48 37.5 48 35.1 22 50 18.0 22 51 11.2 22 51 26.0 22 51 32.7 51 33.0 51 32.7	+20 26 53.3 -30 31 55.3 31 51.3 31 50.7 +20 9 11.7 +30 0 47.5 +13 47 59.3 +44 18 9.2 18 13.8 18 15.2
6211 6212 6213 6214 6215 6216 6217 6218 6219* 6220	82 Aquarii	7 7 4.5	3 July 27 4 Sept. 17 3 July 9 3 July 19 3 July 19 3 July 26 4 Sept. 18 3 Sept. 15 4 Oct. 2 3 July 9	51 19, 1 51 57, 5 52 0, 6 52 0, 5 52 0, 6 (52) 52 4, 4 52 32, 8 52 57, 0 53 19, 1	50. 0 43. 7 44. 3 44. 2 44. 0 40. 1 46. 4 44. 9 46. 7	- 7 43 46.0 +15 4 51.0 41 9 48.6 41 9 42.5 41 9 50.4 41 9 50.4 41 10 26.9 19 45 39.7 2 40 5.2 26 54 35.4	5 9.1 4 43.8 5 27.2 5 26.3 5 24.3 5 22.1 4 44.0 5 5.7 4 40.1 5 23.8		- 7 38 36.9 +15 9 34.8 +41 15 15.8 15 8.8 15 11.3 15 10.9 +19 50 45.4 + 2 44 45.3 +26 59 59.2
6221 6222 6223 6224* 6225* 6226 6227 6228 6229 6230	54 Pegasi a	2 6.7 7.8	3 July 23 4 Sept. 16 3 July 19 3 July 29 3 Aug. 17 3 Aug. 20 3 Aug. 21 4 Sept. 18 3 July 27 3 Sept. 15	53 19. 3 53 22. 7 54 0. 4 54 0. 5 54 1. 2 54 0. 7 54 1. 4 (54) 54 13. 7 22 54 58. 8	46.3 42.4 48.0 47.8 47.4 47.3 47.3 43.8 49.2 + 46.6	26 54 41.7 26 55 18.7 14 2 39.9 14 2 42.0 14 2 39.6 14 2 42.7 14 2 43.0 14 3 5.5 0 8 48.9 +19 4 44.1	5 20. 2 4 44. 5 5 17. 9 5 15. 6 5 11. 5 5 10. 8 5 10. 6 4 44. 5 5 12. 1 + 5 6. 8		+27 0 1.9 0 3.2 +14 7 57.8 7 57.6 7 51.1 7 53.6 7 50.0 + 0 14 1.0 +19 9 50.9

(256)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
								a	δ
6231 6232 6233 6234* 6235 6236 62:7 6238 6239 6240	Piazzi 300	6.7 7 7 6.7 6	3 July 29 4 Sept. 17 3 Sept. 15 3 Aug. 21 3 July 12 3 July 23 4 Sept. 17 3 July 23 4 Sept. 18	h m s 22 55 34.6 55 37.9 55 50.3 56 7.8 56 36.0 56 35.7 56 56 49.7 56 50.2 57 41.0	+ 47.5 43.5 46.7 48.0 47.1 46.7 47.4 47.3 45.1	+17 20 57.1 17 21 28.4 18 44 52.0 8 14 43.8 24 18 5.1 24 18 11.4 24 18 50.5 19 58 10.5 19 58 12.4 0 57 39.9	+ 5 16.3 4 45.1 5 7.0 5 10.7 5 23.5 5 19.9 4 45.4 5 20.6 5 19.7 4 46.1	h m s 22 56 22.1 56 21.4 22 56 37.0 22 56 55.8 22 57 23.1 57 22.4 57 22 57 37.1 57 37.5 22 58 26.1	0 / " +17 26 13.4 26 13.5 +18 49 59.0 + 8 19 54.5 +24 23 28.6 23 31.3 23 35.9 +20 3 31.1 3 32.1 + 1 2 26.0
6241 6242 6243 6244* 6245 6246 6247 6248 6249 6250	4 Andromedæ 57 Pegasi m Lalande 45320 Piazzi 319 58 Pegasi n Groombridge 3996 Groombridge 3997	6.7 7.8 6.7 7 7.8	4 Sept. 16 3 July 26 3 Sept. 15 3 July 27 3 July 19 3 July 19 3 July 23 3 Aug. 20 3 Aug. 21 4 Sept. 17	57 53, 3 58 37, 7 58 38, 3 58 41, 7 58 41, 4 59 6, 3 59 7, 0 59 9, 6 59 33, 4 59 47, 7	39. 7 48. 6 47. 9 47. 6 47. 5 46. 5 46. 4 48. 0 42. 4	45 13 40.9 7 30 32.6 7 30 35.4 17 34 1.8 17 34 4.5 28 29 51.7 28 29 54.9 8 39 16.6 48 28 54.7 38 18 32.1	4 46.9 5 16.4 5 8.0 5 18.7 5 18.2 5 23.8 5 22.7 5 12.0 5 18.0 4 46.9	22 58 33.0 22 59 26.3 59 26.2 22 59 29.3 59 28.9 22 59 52.8 59 53.4 22 59 57.6 23 0 15.8 23 0 28.8	+45 18 27.8 + 7 35 49.0 35 48.4 +17 39 20.5 39 23.7 +28 35 15.5 35 17.6 + 8 44 28.6 +48 34 12.7 +38 23 19.0
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260	Piazzi 4	6.7 7.8 7 6.7 6.7 7	3 July 12 4 Oct. 2 3 Sept. 15 4 Sept. 16 3 July 26 3 July 27 3 July 27 3 July 29 3 Aug. 21 3 Sept. 15	22 59 59.1 23 0 19.4 0 31.9 0 34.0 0 44.3 2 36.1 2 37.1 2 36.4 2 43.0 2 43.2	48. 1 44. 8 43. 6 40. 5 46. 6 46. 5 46. 5 42. 8 42. 6	16 25 19.3 3 50 29.3 42 23 4.2 42 23 28.5 25 52 10.9 28 16 14.7 28 16 13.6 28 16 10.9 48 13 32.1 48 13 42.4	5 22.5 4 45.9 5 9.9 4 47.8 5 24.5 5 23.0 5 22.8 5 22.2 5 19.2 5 11.0	23 0 47.2 23 1 4.2 23 1 15.5 1 14.5 23 1 30.9 23 3 22.9 23 3 25.8 3 25.8	+16 30 41.8 + 3 55 15.2 +42 28 14.1 28 16.3 +28 57 35.4 +28 21 37.7 21 36.4 21 33.1 +48 18 51.3 18 53.4
6261 6262 6263* 6264 6265 6266 6267 6268 6269 6270	Lalande 45472 Lalande 45496 Lalande 45498 61 Pegasi Lalande 45543	7.8 6.7 7 6.7 6.7 6.7 7	4 Oct. 2 3 July 19 3 July 23 3 July 27 4 Sept. 17 3 Aug. 20 3 Aug. 17 3 July 26 3 Aug. 17 3 Aug. 21	3 5.7 3 17.4 3 17.3 3 53.8 3 57.4 3 58.9 5 14.6 5 14.4 5 20.0	44.9 47.9 47.8 46.6 42.6 46.7 46.4 46.8 46.4	3 49 51.1 18 27 31.5 18 27 31.8 28 35 45.7 28 36 19.9 22 55 40.5 26 53 41.0 27 4 13.2 23 35 37.7	4 46. 8 5 22. 7 5 21. 6 5 23. 2 4 48. 1 5 15. 8 5 17. 5 5 23. 7 5 17. 7 5 16. 1	23 3 50.6 23 4 5.3 4 5.1 23 4 40.4 4 40.0 23 4 45.2 23 5 13.3 23 6 1.4 6 0.8 23 6 6.7	+ 3 54 37.9 +18 32 54.2 32 53.4 +28 41 8.9 41 8.0 +23 0 56.5 +26 58 58.5 +27 9 40.1 9 30.9 +23 40 53.8
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280*	6 Piscium y Anonyma Lalande 45613,4 . Lalande 45620 . 8 Andromedæ . Lalande 45635 . Piazzi 44	5 7 8 7 8 7.8 9.10 7.8	4 Sept. 18 4 Oct. 2 3 July 27 3 July 29 3 July 19 3 July 23 3 Aug. 17 3 Sept. 15 4 Oct. 2 3 July 26	(6) 6 2.4 7 13.3 7 13.1 7 17.4 7 17.6 7 25.0 7 48.2 7 51.4 7 54.7	45. 0 45. 0 46. 6 46. 6 46. 5 46. 4 46. 3 43. 2 45. 0 47. 1	2 6 35.9 2 6 41.7 29 51 0.6 29 51 2.2 32 52 4.7 32 51 59.9 29 16 50.8 47 50 11.7 2 4 52.6 26 25 31.4	4 48.6 4 47.8 5 24.8 5 24.2 5 27.8 5 26.7 5 18.8 5 12.9 4 48.2 5 24.3	23 (6) 6 47. 4 23 7 59. 9 7 59. 7 23 8 3. 9 8 11. 3 23 8 31. 4 23 8 36. 4 23 8 41. 8	+ 2 11 24.5 11 29.5 +29 56 25.4 56 26.4 +32 57 32.5 57 26.6 +29 22 9.6 +47 55 24.6 + 2 9 40.8 +26 30 55.7
6281* 6282 6283 6284 6285 6286 6287 6288 6289* 6290	9 Andromedæ Lalande 45655 Lalande 45677 7 Piscium b Bessel, W.262 . 10 Andromedæ .	6 8 6.7 7 6.7 6	3 Aug. 21 4 Sept. 16 3 July 23 3 July 27 3 July 29 3 Aug. 29 4 Sept. 18 4 Oct. 2 4 Sept. 17 3 Aug. 21	8 11.2 8 15.4 8 12.4 9 1.7 9 1.9 9 2.8 9 24.1 9 24.3 9 34.8 23 9 37.2	44.8 41.4 46.5 46.5 46.5 45.8 44.9 44.9 43.5 + 44.4	40 35 32.0 40 36 7.5 32 32 50.5 33 36 39.2 33 36 40.4 33 36 43.7 4 12 38.6 4 12 44.4 21 55 13.7 +40 53 47.5	5 19.8 4 50.3 5 26.9 5 26.2 5 25.7 5 19.3 4 48.6 4 49.5 4 49.6 + 5 20.4	23 8 56.0 8 56.8 23 8 58.9 23 9 48.2 9 48.4 9 48.6 23 10 9.0 10 9.2 23 10 18.3 23 10 21.6	+40 40 51.8 40 57.8 +32 38 17.4 +33 42 5.4 42 6.1 42 3.0 + 4 17 27.2 17 33.9 +22 0 3.3 +40 59 7.9
	33	·			1	<u> </u>		(:	

Digitized by Google

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
								а	ð
6291 6292 6293 6294 6295 6296 6297 6298 6209	10 Andromedæ . 62 Pegasi 7 12 Andromedæ	2 6 6 6.5 7 8.9	4 Sept. 16 4 Dec. 28 3 July 19 3 July 23 3 July 27 3 July 29 3 Aug. 17 3 Aug. 20 4 Sept. 17 4 Oct. 2	h m s 23 9 41.9 9 59.7 10 29.4 10 29.7 10 29.9 10 29.6 10 30.0 11 24.4 11 53.0 11 55.3	+ 41.4 44.3 46.2 46.1 46.0 45.9 45.5 46.3 43.3 45.0	+40 54 13.3 22 34 3.2 37 0 3.8 37 0 4.1 37 0 9.2 37 0 9.2 37 0 16.1 30 37 45.8 24 44 39.4 1 38 36.9	+ 4 50.8 4 44.7 5 29.7 5 28.6 5 27.5 5 26.9 5 21.3 5 19.5 4 50.3 4 49.4	23 12 36, 3	+40 59 4.1 +22 38 47.9 +37 5 33.5 5 32.7 5 36.7 5 36.1 5 37.4 +30 43 5.3 +24 49 29.7 + 1 43 26.3
6301 6302 6303 6304 6305 6306 6307 6308 6310	66 Pegasi 3109 Bradley Lalande 45831 Groombridge 4052 Lalande 45839 Groombridge 4053 " 67 Pegasi 68 Pegasi v	7.8 7.8 7.8 7.8 7 6.7 7 6.5	3 Sept. 15 3 cug. 17 3 July 26 3 July 27 4 Sept. 16 3 Aug. 21 3 July 19 3 July 23 4 Sept. 17 3 July 26	12 12.1 13 13.0 13 38.3 13 49.5 13 54.0 13 56.8 14 14.0 14 14.4 14 21.8 14 36.8	47.8 46.4 47.8 45.8 41.8 46.5 46.1 46.0 42.9 47.8	11 7 55.1 31 20 42.1 22 34 27.6 40 25 31.2 40 26 4.5 29 31 34.1 39 55 28.0 39 55 26.8 31 12 26.0 22 12 54.3	5 12.1 5 21.0 5 21.2 5 29.5 4 51.9 5 19.6 5 31.8 5 30.6 4 51.2 5 25.1	23 12 59.9 23 13 59.4 23 14 26.1 23 14 35.3 14 35.8 23 14 43.1 15 0.4 23 15 4.7 23 15 24.6	+11 13 7.2 +31 26 3.1 +22 39 48.8 +40 31 0.7 30 56.4 +29 36 53.7 +40 0 59.8 0 57.4 +31 17 17.2 +22 18 19.4
6311 6312 6313 6314 6315 6316* 6317 6318 6319 6320*	Lalande 45861 8 Piscium κ¹ 9 Piscium κ² 13 Andromedæ 69 Pegasi	7 5 6 6	3 Aug. 20 4 Sept. 18 4 Oct. 2 4 Oct. 2 3 July 19 3 July 27 4 Sept. 16 3 July 26 3 Aug. 17	14 57.5 15 55.6 15 55.2 16 14.7 16 44.8 16 45.3 16 45.3 16 49.7 16 57.2 16 57.4	47. 1 45. 2 45. 1 45. 1 46. 1 46. 0 45. 9 41. 8 47. 7 47. 2	23 46 7.5 0 4 54.6 + 0 4 56.0 - 0 3 18.2 +41 43 10.5 41 43 7.4 41 43 11.5 41 43 45.9 23 58 52.6 23 58 51.2	5 19.2 4 51.2 4 50.4 4 50.5 5 32.7 5 31.5 5 30.3 4 52.9 5 26.3 5 20.6	23 15 44.6 23 16 40.8 16 40.3 23 16 59.8 23 17 30.9 17 31.3 17 31.2 17 31.5 23 17 44.9 17 44.6	+23 51 26.7 + 0 9 45.8 9 46.4 + 0 1 32.3 +41 48 43.2 48 38.9 48 41.8 48 38.8 +24 4 18.9 4 11.8
6321* 6322* 6323 6324 6325 6326 6327 6328 6329 6330	10 Piscium θ Lalande 45960 70 Pegasi q Groombridge 4074 Lalande 46022 14 Andromedæ	5 6.7 7 8.9 8	3 Aug. 20 4 Dec. 28 3 Aug. 21 4 Sept. 17 3 Sept. 15 3 July 27 4 Oct. 2 3 Aug. 17 3 Aug. 20 3 Aug. 21	16 58.3 17 3.7 17 36.5 17 39.8 18 15.0 19 8.9 19 41.7 20 42.4 20 42.7 20 43.0	47. 2 45. 6 47. 6 44. 0 47. 9 45. 6 45. 2 46. 2 46. 1 46. 1	23 58 52.9 5 12 1.5 18 41 51.8 18 42 24.9 11 34 16.3 +45 16 24.1 - 0 17 35.3 +38 2 56.3 38 3 0.6 38 2 59.3	5 19, 9 4 52, 2 5 18, 7 4 51, 5 5 13, 8 5 31, 9 4 51, 2 5 24, 5 5 23, 5 5 23, 1	17 45.5 23 17 49.3 23 18 24.1 18 23.8 23 19 2.9 23 19 54.5 23 20 26.9 23 21 28.6 21 28.8 21 29.1	4 12.8 + 5 16.4 + 18 47 10.5 47 16.4 + 11 39 30.1 + 45 21 56.0 - 0 12 44.1 + 38 8 20.8 8 24.1 8 22.4
6331 6332 6333* 6334 6335 6336 6337 6338 6339 6340	13 Piscium	7 7 7 6.7 7.8 6 6 6 6.5	4 Sept. 16 4 Oct. 2 4 Dec. 28 3 Sept. 15 4 Sept. 17 3 July 27 3 July 26 4 Sept. 17 4 Oct. 2 3 July 19	20 46. 2 20 55. 1 21 2. 9 21 5. 7 21 25. 9 22 30. 8 22 43. 2 23 6. 7 23 6. 3	45. 9 46. 8 43. 5 46. 2 48. 2 44. 0 45. 2	+38 3 27.0 -2 16 7.4 -2 16 12.6 +27 12 50.5 27 13 8.1 42 52 40.9 21 18 22.8 +21 18 57.7 -2 25 52.9 +19 38 50.5	4 53. 5 4 51. 6 4 53. 9 5 15. 1 4 52. 7 5 32. 1 5 26. 9 4 52. 8 4 52. 2 5 28. 1	21 49.2 23 22 12.1 23 23 28.0 23 27.2 23 23 51.9	8 20.5 - 2 11 15.8 11 18.7 +27 18 5.6 18 6.8 +42 58 13.0 +21 23 49.7 23 50.5 - 2 21 0.7 +19 44 18.6
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350	72 Pegasi	5.6 6 7 7 8 7.8 7.8	3 July 23 3 Aug. 20 3 Sept. 15 3 July 27 3 Aug. 17 4 Sept. 16 4 Oct. 2 3 July 26 4 Sept. 17 4 Dec. 28	23 6.3 23 16.7 23 17.4 23 30.3 24 8.2 24 9.6 24 25 3.7 25 11.6 23 25 10.4	48. 4 47. 0 46. 7 46. 4 46. 3 42. 7 48. 5 44. 0 + 44. 7	19 38 50.9 30 8 0.2 30 8 10.8 42 42 26.5 39 2 42.3 39 3 8.6 0 7 44.2 17 14 11.6 23 22 28.5 +23 22 37.3	5 27. 3 5 22. 4 5 15. 7 5 32. 5 5 25. 2 4 54. 4 4 52. 1 5 26. 2 4 53. 4 + 4 47. 5	24 4.1 23 24 16.7 23 24 54.5 24 52.3 23 25 23 25 52.2 23 25 55.6	44 18.2 +30 13 22.6 13 26.5 +42 47 59.0 +39 8 7.5 8 3.0 + 0 12 36.3 +17 19 37.8 +23 27 21.9 +23 27 24.8

(258)

No.	Name	Mag.	Date	App't a	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
								а	ð
6351 6352 6353 6354 6355 6356 6357 6358* 6359* 6360	Lalande 46255 Johnson 6126 74 Pegasi Piazzi 136 16 Andromedæ 2 75 Pegasi Lalande 46300,1 17 Andromedæ 4	8 7.8 5.6 6.7 3.4	3 Sept. 15 3 July 23 3 Aug. 20 4 Sept. 16 4 Oct. 2 3 July 27 3 Aug. 17 3 July 26 3 July 27 3 July 27 3 July 27 3 July 27	h m s 23 25 50.4 26 20.8 26 44.0 26 47.0 26 50.4 27 2.5 27 2.3 27 3.1 27 21.9 27 34.6	# 46.7 46.9 48.1 44.4 45.0 46.4 45.9 48.6 46.5	+31 42 39.6 42 6 32.6 15 37 50.7 15 38 17.3 2 10 59.7 45 17 2.0 45 17 11.5 17 12 14.6 45 (0) 42 4 5.4	+ 5 16.5 5 34.3 5 20.5 4 53.5 4 52.3 5 33.7 5 27.3 5 26.6 5 35.6	h m s 23 26 37.1 23 27 7.7 23 27 32.1 27 31.4 23 27 35.4 23 27 48.9 27 48.2 23 27 55.4 23 28 8.4 23 28 21.8	+31 47 56.1 +42 12 6.5 +15 43 11.2 +3 10.8 + 2 15 52.0 +45 22 35.7 22 38.6 +17 17 41.2 +45 (6) +42 9 41.0
6361 6362 6363 6364* 6365 6366 6367 6368 6369 6370	" " " " " " " " " " " " " " " " " " "	6 8 7.8 4 5.6	3 July 23 3 Sept. 15 4 Sept. 17 4 Oct. 2 4 Dec. 28 3 Aug. 17 3 Aug. 20 3 Sept. 15 4 Sept. 17 3 July 27	27 34.8 27 36.4 27 38.2 29 20.1 29 19.5 29 48.3 29 50.2 29 52.4 30 35.3	47. 0 45. 9 42. 6 45. 0 45. 8 46. 4 46. 3 46. 0 42. 7 46. 8	42 4 3.1 42 4 24.7 42 4 49.7 3 36 57.9 3 36 58.3 43 8 10.4 43 8 12.8 43 8 18.3 43 8 45.8 45 1 12.3	5 24. 3 5 17. 8 4 55. 1 4 52. 6 4 54. 9 5 26. 1 5 26. 4 5 18. 3 4 55. 6 5 33. 7	28 21.8 28 22.3 28 20.8 23 30 5.1 30 5.3 23 30 35.3 30 35.6 30 36.2 30 35.1 23 31 22.1	9 37,4 9 44.8 9 44.8 + 3 41 50.8 41 53.9 +43 13 36.6 13 39.9 13 36.6 13 41.4 +45 6 46.6
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380	18 Piscium λ 76 Pegasi	6.5 7 7.8 8	3 July 19 3 July 23 3 Aug. 21 4 Sept. 16 3 July 26 4 Sept. 17 3 Aug. 20 3 Aug. 21 3 Sept. 15 3 July 27	31 1.1 31 46.9 31 47.0 31 49.6 32 22.7 33 13.0 33 55.5 33 55.7 33 55.9 34 4.6	49. 6 48. 9 48. 3 44. 6 49. 1 44. 0 46. 5 46. 5 46. 2 47. 5	0 35 29.4 15 8 7.2 15 8 13.8 15-8 40.7 9 7 58.9 28 10 22.8 45 10 49.3 45 10 49.3 45 10 49.3	5 23.8 5 27.5 5 21.0 4 54.3 5 25.2 4 55.1 5 27.6 5 27.3 5 34.4	23 31 50.7 23 32 35.8 32 35.3 32 34.2 23 33 11.8 23 33 57.0 23 34 42.0 34 42.2 34 42.1 23 34 52.1	+ 0 40 53.5 +15 13 34.5 13 34.6 13 35.6 + 9 13 24. +28 15 17. +45 16 16.6 16 16.6 +42 38 13.4
6381 6382 6383* 6384 6385 6386 6387 6388 6389 6390	Rümker 11533 Lalande 46553,4 20 Andromedæ ψ Lalande 46611	7 7 7 6	4 Sept. 17 4 Dec. 28 4 Oct. 2 3 July 23 3 July 27 3 Aug. 27 3 Aug. 20 3 Aug. 21 3 Sept. 15 3 July 26	34 37.0 34 36.7 34 43.7 35 22.7 35 22.5 35 23.0 35 22.9 35 23.9 36 35.8	44. 5 45. 2 44. 7 47. 4 47. 3 46. 8 46. 7 46. 7 46. 3 48. 6	19 13 34.7 19 13 33.0 11 57 52.6 45 12 54.4 45 13 4.6 45 13 13.6 45 13 10.3 45 13 10.3 45 13 21.0 24 22 46.3	4 54. 9 4 50. 2 4 52. 8 5 36. 4 5 35. 2 5 28. 7 5 27. 4 5 19. 5 5 30. 0	23 35 21.5 35 21.9 23 35 28.4 23 36 10.1 36 9.8 36 10.0 36 9.6 36 10.2 23 37 24.4	+19 18 29. 18 23. +12 2 45. +45 18 30. 18 39. 18 36. 18 41. 18 37. 18 40. +24 28 16.
6391 6392 6393 6394 6395 6396 6397* 6398 6399 6400	Bessel, W.895 . 79 Pegasi	7 7 6.7 8 6 6 6 7	4 Sept. 28 4 Sept. 30 4 Oct. 2 3 Sept. 15 3 July 23 4 Sept. 28 4 Sept. 30 3 Aug. 20 3 Aug. 21 3 July 26	36 40,0 36 39,8 36 39,0 38 24,0 38 45,0 38 48,8 38 51,8 38 51,9 38 55,3	44.3 44.3 44.3 47.9 48.7 44.3 47.7 47.7 48.7	24 23 14.6 24 23 15.1 24 23 18.4 21 39 20.7 27 38 13.1 27 38 52.7 27 39 0.9 35 13 32.1 35 13 34.3 26 28 45.0	4 53. 2 4 52. 9 4 52. 6 5 17. 9 5 32. 0 4 53. 5 4 53. 0 5 26. 3 5 26. 0 5 31. 0	37 24.3 37 24.3 37 23.3 23 39 11.9 23 39 33.7 39 32.9 39 33.1 23 39 39.5 39 39.6 23 39 44.0	+27 43 45. 43 46. 43 53. +35 18 58. 19 0.
6401 6402 6403 6404 6405* 6406 6407 6408 6409 6410	Lalande 46725 . Lalande 46746 . 23 Piscium 81 Pegasi ø	7 7 7 7.8 6.7 6 6 6	4 Oct. 2 4 Dec. 28 3 July 27 3 Sept. 15 4 Sept. 15 4 Sept. 28 4 Sept. 30 4 Dec. 28 3 July 23 3 Aug. 17	38 59.9 38 58.0 40 25.3 41 3.7 41 32.6 41 31.1 41 30.5 41 29.5 41 31.1 23 41 31.2	44. 3 45. 0 48. 2 47. 4 44. 7 44. 6 45. 3 49. 1 + 46. 6	26 29 18.7 26 29 28.2 38 59 54.7 36 41 41.7 20 28 38.4 20 28 37.7 20 28 38.0 20 28 46.1 17 55 7.6 +17 55 12.4	4 52.8 4 48.2 5 34.4 5 19.5 4 56.0 4 53.7 4 53.4 4 50.5 5 29.5 + 5 23.7	39 44.2 39 43.0 23 41 13.5 23 41 51.1 23 42 17.3 42 15.7 42 15.1 42 14.8 23 42 20.2 23 42 19.8	33 31. 33 31. 33 36. +18 0 37.

(259)

No.	Name	Mag.	Date	Α ρρ't <i>α</i>	Reduct'n	App't o	Reduction	Mean equ	inox 1800.0
	Name	mag.	Date	· App t u	Leduct II	App to	recurement	a	<i>δ</i>
6411 6412 6413 6414 6415 6416 6417 6418 6419	81 Pegasi	6 6.5 6.7 6.7 6.7 7 6.7 7	4 Sept. 16 4 Oct. 2 4 Sept. 17 4 Sept. 28 4 Sept. 30 3 July 26 3 Aug. 21 3 July 26 4 Oct. 2	h m s 23 41 34.9 41 35.2 41 39.9 41 47.7 41 46.5 42 0.7 42 6.7 42 6.4 43 47.0 43 51.8	** + 44.8 + 44.7 + 45.0 + 44.6 + 44.6 + 49.1 + 47.9 + 47.9 + 49.2 + 44.8	+17 55 39.7 17 55 44.4 9 45,15.5 20 32 59.3 20 32 58.8 16 41 59.8 35 45 27.8 17 32 38.3 17 33 10.0	+ 4 55.6 4 53.2 4 55.1 4 53.8 4 53.5 5 26.8 5 26.6 5 28.9 4 53.4	h m s 23 42 19.7 42 19.9 23 42 24.9 23 42 32.3 42 31.1 23 42 44.6 42 54.3 23 44 36.2 44 36.6	0 / " +18 0 35.3 0 37.6 + 9 50 10.6 +20 37 53.1 37 52.3 +16 47 28.2 +35 50 50.5 50 54.4 +17 38 7.2 38 3.4
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430	26 Piscium	6.7 7 7.8 6.7 7 6 7 6	3 Sept. 15 4 Sept. 17 4 Oct. 6 3 July 23 3 July 27 3 Aug. 20 3 Aug. 21 3 July 26 3 Aug. 17 4 Sept. 28	44 6. 2 44 8. 9 44 8. 9 44 24. 5 44 42. 8 44 59. 0 45 42. 0 45 41. 8 45 46. 7	48. 5 45. 1 45. 0 49. 1 48. 2 48. 5 48. 5 49. 1 48. 6 44. 7	5 52 15.5 5 52 42.4 5 52 39.6 24 45 3.6 46 8 58.2 19 57 43.2 21 26 42.2 21 26 42.4 21 27 8.2	5 17.5 4 56.1 4 53.8 5 31.7 5 36.8 5 23.5 5 30.2 5 24.9 4 54.0	23 44 54.7 44 54.0 44 53.9 23 45 13.6 23 45 31.0 23 45 47.5 23 46 31.1 46 30.4 46 31.4	57 38.5 57 33.4 +24 50 35.3
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440*	84 Pegasi ψ	6	4 Sept. 30 3 July 23 3 July 27 3 Aug. 20 3 Aug. 21 3 Sept. 15 4 Sept. 16 4 Sept. 17 4 Sept. 28	45 46.6 46 46.3 46 45.3 • 46 45.6 46 46.5 46 47.9 46 49.9 46 50.6 46 50.0	44.7 49.2 49.1 42.5 42.2 44.8 44.8 44.8	21 27 10.2 23 56 19.4 23 56 16.4 23 56 25.6 23 56 25.0 23 56 25.3 23 56 53.1 23 56 56.1 +23 56 56.1 +23 56 53.0	4 53.8 5 31.7 5 30.8 5 24.7 5 24.6 5 18.8 4 56.7 4 56.6 4 56.4 4 54.2	46 31.3 23 47 35.5 47 34.4 47 34.1 47 35.0 47 34.7 47 34.7 47 34.7 47 34.7	32 4.0 +24 1 51.1 1 47.2 1 50.3 1 49.6 1 48.1 1 49.8 1 45.3 1 52.5 1 47.2
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450	27 Piscium . Lalande 47032,4 Piazzi 250 . 3192 Bradley	5 6.7 6 6.7 7 6.7 7 7 7 6.7	4 Oct. 6 3 July 26 3 July 27 4 Oct. 2 3 July 23 3 Aug. 21 3 Sept. 15 4 Sept. 15 4 Sept. 17	47 41.4 48 30.4 48 30.2 46 48.9 49 22.3 49 23.3 49 23.4 49 25.4 49 26.1	45. 1 49. 0 49. 0 45. 0 49. 3 48. 6 48. 6 48. 3 44. 9 44. 8	- 4 44 46.5 +32 31 31.1 32 31 28.9 10 4 41.6 25 43 1.9 25 43 2.2 25 43 2.9 25 43 34.4 25 43 39.4	4 54, 9 5 33, 6 5 33, 4 4 54, 0 5 32, 5 5 25, 0 5 19, 2 4 57, 1 4 56, 6	23 48 26.5 23 49 19.4 49 19.2 23 49 34.9 23 50 11.6 50 10.9 40 10.5 50 11.7 50 10.3 50 10.9	- 4 39 51.6 +32 37 4.7 37 2.3 +10 9 35.6 +25 48 34.4 48 29.1 48 27.2 48 29.1 48 31.5 48 36.0
6451 6452* 6453 6454 6455 6456* 6457 6458 6459 6460	Groombridge 4199 29 Piscium 85 Pegasi	6.7 6.7 7 6.7 5	4 Sept. 28 4 Sept. 30 3 July 26 3 July 27 4 Oct. 6 3 July 23 3 Aug. 17 3 Aug. 21 3 Sept. 15 4 Sept. 15	49 26. 3 49 26. 8 50 43. 7 50 43. 8 50 49. 6 50 54. 3 50 55. 2 50 55. 5 50 59. 0	45. 1	25 43 34.6 25 43 32.6 41 9 37.4 +41 9 37.3 -4 13 20.1 +25 56 8.9 25 56 15.6 25 56 23.7 25 56 40.7	4 54. 5 4 54. 0 5 36. 2 5 35. 9 4 55. 1 5 32. 8 5 26. 1 5 25. 1 5 19. 4 4 57. 3	50 11.1 50 11.6 23 51 32.7 51 32.8 23 51 34.7 23 51 43.9 51 43.9 51 43.8 51 43.9	48 29.1 46 26.6 +41 15 13.6 15 13.2 - 4 8 25.0 +26 1 41.7 1 39.1 1 40.7 1 43.1 1 38.0
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470	Lalande 47140,2 . Groombridge 4219 Piazzi 267	6 6 8 7 7 6 6 7 6.7	4 Sept. 16 4 Sept. 17 4 Sept. 28 4 Oct. 2 3 July 26 3 July 27 3 Aug. 20 3 Aug. 21 4 Sept. 15 4 Sept. 17	50 58.4 50 59.0 50 58.9 51 33.7 53 33.7 53 37.1 53 37.1 53 37.0 53 41.4 23 53 54.4	44. 9 44. 9 44. 9 45. 0 49. 3 49. 3 48. 7 48. 7 44. 9 + 45. 0	25 56 43, 8 25 56 46, 2 25 56 44, 1 15 3 44, 6 40 53 11, 2 40 53 11, 6 33 26 58, 1 33 26 59, 8 33 27 29, 5 +25 27 12, 6	4 57.0 4 56.7 4 54.5 4 54.0 5 36.2 5 35.8 5 27.2 5 27.0 4 57.9 + 4 56.8	23 54 23.0 54 23.0 23 54 25.8 54 25.7 54 26.3	1 40, 8 1 42, 9 1 38, 6 +15 8 38, 6 +40 58 47, 4 +33 32 25, 3 32 26, 8 32 27, 4 +25 32 9, 4

(260)

No.	Name	Mag.	Date	App't a	Reduct'n	App't đ	Reduction	Mean equ	inox 1800.0
						••		a	δ
6471 6472 6473 6474 6475 6476	Piazzi 268 Lalande 47216 86 Pegasi Piazzi 276	6 6.7 6.7 6	4 Oct. 2 4 Sept. 28 4 Sept. 30 3 July 23 3 Aug. 17 3 Aug. 21 3 Sept. 15	h m s 23 53 54.7 54 0.5 54 0.2 54 37.8 55 25.8 55 26.2 55 25.8	+ 45.0 45.0 45.0 49.6 49.0 48.9 48.5	c / // +25 27 14.7 26 28 44.5 26 28 43.5 12 11 27.4 27 49 39.2 27 49 38.3 27 49 48.0	+ 4 53.9 4 54.6 4 54.6 5 28.4 5 26.7 5 25.7 5 20.1	h m s 23 54 39.7 23 54 45.5 54 45.2 23 55 27.4 23 56 14.8 56 15.1 56 14.3	+25 32 8.6 +26 33 39.1 33 38.1 +12 16 55.8 +27 55 5.9 55 4.0 55 8.1
6478 6479 6480	Lalande 47264	7 7 7	4 Sept. 28 4 Oct. 2 4 Oct. 6	55 35.1 55 34.9 55 35.0	45. 0 45. 0 45. 0	27 21 31.0 27 21 33.3 27 21 35.8	4 54.7 4 54.0 4 53.3	23 56 20, 1 56 19, 9 56 20, 0	+27 26 25.7 26 27.3 26 29.1
6481 6482 6483 6484 6485 6486 6487 6488 6459 6490	Groombridge 4237 21 Andromedæ a	7	3 July 26 3 July 27 3 July 19 3 Aug. 17 3 Aug. 20 3 Aug. 21 3 Sept. 15 4 Sept. 15 4 Sept. 16 4 Sept. 17	56 31.8 56 31.8 57 14.2 57 15.5 57 15.2 57 15.1 57 19.3 57 19.7	49.5 49.8 49.1 49.0 48.6 45.2 45.2	38 56 35.0 38 56 33.6 27 53 34.1 27 53 44.0 27 53 43.9 27 53 52.5 27 54 14.9 27 54 13.2	5 35. 7 5 35. 4 5 34. 3 5 26. 8 5 25. 8 5 25. 6 5 19. 7 4 57. 4 4 57. 1	23 57 21.3 57 21.3 23 58 4.0 58 4.2 58 4.5 58 4.2 58 3.7 58 4.5 58 4.5 58 4.9	+39 2 10.7 2 9.0 +27 59 8.4 59 12.0 59 9.8 59 9.5 59 12.2 59 12.5 59 10.3
6491 6492* 6493 6494 6495* 6496 6497	87 Pegasi # 22 Andromedæ .	2.3 5.6	4 Sept. 28 4 Sept. 30 4 Oct. 2 3 July 23 3 July 26 3 July 27 3 Sept. 15	57 18.6 57 19.3 57 19.0 57 55.0 59 8.5 59 8.4 23 59 10.3	45. 1 45. 1 45. 1 49. 7 49. 8 49. 8 + 48. 6	27 54 15. 4 27 54 17. 0 27 54 20. 8 17 0 32. 5 44 51 53. 7 44 52 7. 9	4 54.8 4 54.4 4 54.1 5 29.9 5 37.3 5 37.0 + 5 21.8	58 3.7 58 4.4 58 4.1 23 58 44.7 23 59 58.3 59 58.2 23 59 58.9	59 10.2 59 11.4 59 14.9 +17 6 2.4 +44 57 31.0 57 31.0 +44 57 29.7

NOTES TO CATALOGUE.

No. 40 apparently the same star as No. 39.

189 δ is 30" larger than No. 190 = Str. Cat. Gen. 75.

372 δ is 30" smaller than Arg. 52 = Piazzi 185.

923 δ is 5' larger than Lal. 10975 = W. 1341,2.

2934 a is 2* smaller than Lal. 23233 = W. 37?,

3738 δ is 8' smaller than Lal. 27036 = W. 933.

3952 δ is 30" larger than W. 329.

4501 a is 25° smaller than Lal. 31597 = W. 469.

 $5308~\delta$ is $30^{\prime\prime}$ larger than Lal. 38423.

5708 δ is 1' 30" larger than Lal. 41055,6 = Piazzi !0.

6327 δ is 40" larger than Lal. 46022 = W. 459.

CORRIGENDA.

P. 12, l. 25, for "time T" read "approximate sidereal time."

P. 20, for $\xi = 19^{\circ} 20'$ dele the negative sign.

P. 32, l. 21, omit No. 3174 from the list.

P. 112, l. 10-14, observations of 1784, June 22, add 17h 14m to the numbers in columns T and app. sid. time.

Pp. 129-132, subtract 2m from the numbers in column T. for Oct. 9. P. 206, No. 3174, omit the t. The star is Taylor 6044 = Brisbane 4343.

(261)

THE SATURNIAN SYSTEM.

BY BENJAMIN PEIRCE.

The ring is the characteristic feature of the Saturnian system, and its theory is the chief object of the present investigation. Observation has shown the ring of Saturn not to be one, but to be subdivided into two or, possibly, more concentric rings. The mutual action of these rings cannot be neglected in the complete theory, nor the reciprocal action of the rings and the satellites. But the analysis properly commences with the consideration of a single elementary ring. The actual ring is thin, which facilitates the computations; but it is proposed to extend this memoir, which must be regarded as merely introductory, to the research into the attractions of any ring, however thick. Such a ring is, geometrically, a hollow cylinder, and the resulting formulæ will be found to be curious and novel aggregates of discontinuous terms, in which the discontinuities unexpectedly balance each other and leave an uninterrupted continuity in the numbers deduced from the formulæ.

1. The ring is assumed to be of uniform density and thickness, and to fill the space contained between two co-axial and concentric circular cylinders. The following notation is adopted:—

2b = the length of the cylinder or the thickness of the ring,

 $a_2 =$ the radius of the base of the outer cylinder,

 $a_1 =$ the radius of the base of the inner cylinder,

r = the distance of the attracted point from the axis of the cylinder,

e = the distance of a particle of the ring from the axis,

 φ = the angle from r to ϱ .

By the equatorial plane, or simply the plane of the ring, is to be understood the plane which is drawn perpendicular to the axis and midway between the bases.

(1) (263)

z = the distance of the attracted point from the plane of the ring,

 ζ = the distance of the particle from the plane of the ring,

f = the distance of the attracted point from the particle.

The following notation is also introduced into this memoir:*

$$J = \sqrt{-1}$$

• the ratio of the circumference to the diameter of the circle, = 3.1415926536,

 \odot = the base of Naperian logarithms, = 2.7182818285,

which gives

$$\sqrt{99} = J^{-J} = 4.810477381.$$

If, then,

$$F = \text{any function of } \varrho \text{ and } \zeta = F(\varrho, \zeta)$$

let

$$F_2 = F(\varrho, b), \quad F_0 = F(\varrho, 0), \quad F_1 = F(\varrho, -b),$$
 $F_{2m} = F(a_m, b), \quad F_{0m} = F(a_m, 0), \quad F_{1m} = F(a_m, -b),$
 $F_{20} = F(0, b), \quad F_{00} = F(0, 0), \quad F_{10} = F(0, -b),$
 $F_{\zeta 0} = F(0, \zeta),$
 $F_{(0)} = \text{the value of } F \text{ when } z \text{ vanishes,}$
 $F^{(0)} = \text{the value of } F \text{ when } r \text{ and } z \text{ vanish.}$

Let, moreover,

k = the density of the cylinder, $d\sigma = \varrho \, d\varrho \, d\varphi \, d\zeta = \text{the volume of a particle,}$ $d\psi = \varrho \, d\varrho \, d\varphi,$ $\Omega = k \int_{\sigma} \frac{1}{f} = \text{the potential of the ring for the attracted point.}$

The value of f is given by the equation,

$$f^{2} = r^{2} + \varrho^{2} - 2r\varrho\cos\varphi + (z - \zeta)^{2}$$

$$= (r + \varrho)^{2}\sin^{2}\frac{1}{2}\varphi + (r - \varrho)^{2}\cos^{2}\frac{1}{2}\varphi + (z - \zeta)^{2}$$

$$= (r + \varrho)^{2} - 4r\varrho\cos^{2}\frac{1}{2}\varphi + (z - \zeta)^{2}$$

$$= (\varrho - r\cos\varphi)^{2} + r^{2}\sin^{2}\varphi + (z - \zeta)^{2}.$$

^{*} This notation is introduced in order to set free the letters i, π , and e, which are so much wanted for astronomical purposes. The sign for $\sqrt{-1}$ is similar in aspect to i, and is nearly an inverted τ . The sign for the ratio of the circumference to the diameter is nothing more than a e with the lower extremity extended and wound over the letter; while that for the Naperian base is nearly the letter e with the initial extremity bent down over the symbol.

2. The integration with reference to ζ gives, by familiar forms of integration,

$$D_{\psi} \Omega = k (\Omega_2' - \Omega_1'),$$

in which

$$\Omega' = \log (f - z + \zeta).$$

3. When the ring is very thin, and the attracted point nearly in its plane, so that the second dimensions of z and b can be neglected, the formulæ give

$$f = f_{0(0)}$$
 $\Omega' = \log f + rac{\zeta - z}{f},$
 $\Omega'_2 = \log f + rac{b - z}{f},$
 $\Omega'_1 = \log f - rac{b + z}{f},$
 $\Omega'_2 - \Omega'_1 = rac{2b}{f} = rac{2b}{f}$

so that the result is the same as if the values were reduced to

$$\Omega_2' = -\Omega_1' = \frac{b}{f}$$

4. In the same way, when the attracted point is so far from the cylinder, that the cube of b can be rejected in comparison with the square of the distance of the point, the formulæ give, by reduction,

$$\begin{split} f^2 &= f_0^2 - 2 z \zeta + \zeta^2, \\ f &= f_0 - \frac{z \zeta}{f_0} + \frac{\zeta^2}{2 f_0} \left(1 - \frac{z^2}{f_0^2} \right), \\ \Omega' &= \log \left(f_0 - z \right) + \frac{\zeta}{f_0} + \frac{z \zeta^3}{2 f_0^3}, \\ \Omega'_2 &= \Omega'_1 = \frac{2 b}{f_0}, \end{split}$$

which is the same as if the values were reduced to

$$\Omega_2' = -\Omega_1' = \frac{b}{f_0}$$

5. The integration with reference to ϱ gives, by introducing

$$\begin{split} \Omega'' &= \int_{\rho} (\varrho \, \Omega'), \\ \Omega_2'' &= \int_{\rho} (\varrho \, \Omega_2') = \int_{\rho} \left[\varrho \, \log \left(f_2 - z + b \right) \right] \\ &= \frac{1}{2} \, \varrho^2 \log \left(f_2 - z + b \right) - \frac{1}{2} \int_{\rho} \left[\varrho^2 \, \mathcal{D}_{\rho} \log \left(f_2 - z + b \right) \right] \\ &= \frac{1}{2} \, \varrho^2 \log \left(f_2 - z + b \right) - \frac{1}{2} \int_{\rho} \frac{\varrho^2 \, \mathcal{D}_{\rho} f_2}{f_2 - z + b}. \end{split}$$

(265)

But the value of f^1 in § 1 gives

$$f D_{\rho} f = \varrho - r \cos \varphi$$
.

Hence

$$\Omega_2'' = \frac{1}{2} \varrho^2 \log (f_2 - z + b) - \int_{\rho} \frac{\varrho^2 (\varrho - r \cos \varphi)}{2f_3 (f_2 - z + b)}$$

But, again, an easy reduction gives

$$\begin{split} \int_{\rho} \frac{\varrho^{2}(\varrho - r\cos\varphi)}{2f_{2}(f_{2} - z + b)} &= \int_{\rho} \frac{\varrho^{2}(\varrho - z\cos\varphi) (f_{2} + z - b)}{2f_{2}[f_{2}^{2} - (z - b)^{2}]} = \int_{\rho} \frac{\varrho^{2}(\varrho - r\cos\varphi) (f_{2} + z - b)}{2f_{2}(r^{2} + \varrho^{2} - 2\varrho r\cos\varphi)} \\ &= \int_{\varrho} \frac{\varrho^{2}(\varrho - r\cos\varphi) (f_{2} + z - b)}{2f_{2}f_{2}^{2}(\varrho)}. \end{split}$$

Put, for the moment,

$$p = \varrho - r \cos \varphi$$

and we find

$$\begin{split} f_2^2 &= p^2 + r^2 \sin^2 \varphi + (z - b)^2, \\ \psi^2 &= p^2 + 2 \, p \, r \cos \varphi + r^2 \cos^2 \varphi, \\ \psi^2 \left(\varrho - r \cos \varphi \right) &= p^3 + 2 \, p^2 \, r \cos \varphi + p \, r^2 \cos^2 \varphi \\ &= \left(p^2 + r^2 \sin^2 \varphi \right) \left(p + 2 \, r \cos \varphi \right) + p \, r^2 \cos 2 \, \varphi - r^3 \sin \varphi \sin 2 \, \varphi, \\ p^2 + r^2 \sin^2 \varphi &= \varrho^2 + r^2 - 2 \, \varrho \, r \cos \varphi = f_{0(0)}^2, \\ \int_{\rho} \frac{\varrho^3 \left(\varrho - r \cos \varphi \right)}{2 f_2 \left(f_2 - z + p \right)} &= \frac{1}{2} \int_{\rho} (p + 2 \, r \cos \varphi) + \int_{\rho} \frac{(z - b) \, \left(p + 2 \, r \cos \varphi \right)}{2 f_2} + \int_{\rho} \frac{p \, r^2 \cos 2 \, \varphi - r^3 \sin \varphi \sin 2 \, \varphi}{2 f_{0(0)}^2} \\ &+ \int_{\rho} \frac{(z - b) \, \left(p \, r^2 \cos 2 \, \varphi - r^3 \sin \varphi \sin 2 \, \varphi \right)}{2 f_2 f_{0(0)}^2}. \end{split}$$

The terms of this last integral, which do not involve z-b can be omitted, because the same terms must recur in the expression of Ω_1'' , and must consequently disappear from the value of Ω .

We find also, by the integral tables,

$$\begin{split} \int_{p} \frac{p}{f_{2}} &= f_{2}, \\ \int_{p} \frac{1}{f_{2}} &= \log (f_{2} + p), \\ \int_{p} \frac{p}{f_{2} f_{0(0)}^{2}} &= \frac{1}{2(z - b)} \log \frac{f_{2} - z + b}{f_{2} + z - b} = \frac{1}{z - b} \log (f_{2} - z + b) - \frac{1}{z - b} \log f_{0(0)} \\ &= \frac{1}{z - b} \log f_{0(0)} - \frac{1}{z - b} \log (f_{2} + z - b), \\ \int_{p} \frac{1}{f_{2} f_{0(0)}^{2}} &= \frac{1}{r \sin \varphi(z - b)} \tan^{[-1]} \frac{p(z - b)}{r \sin \varphi f_{2}}. \end{split}$$

Hence

$$\begin{split} \Omega_2'' &= \frac{1}{2} \left(\varrho^2 + r^2 \cos 2 \varphi \right) \log \left(f_2 + z - b \right) - \frac{1}{2} (z - b) f_2 \\ &- (z - b) r \cos \varphi \log \left(f_2 + \varrho - r \cos \varphi \right) \\ &+ \frac{1}{2} r^2 \sin 2 \varphi \tan^{[-]} \frac{(\varrho - r \cos \varphi) (z - b)}{f_2 r \sin \varphi}, \end{split}$$

and

$$\frac{1}{k} D_{\bullet} \Omega = \Omega_{22}'' - \Omega_{12}'' - \Omega_{21}'' + \Omega_{11}''$$

(266)

6. When the cube can be rejected, as in § 4, the integration of the formula of that section gives

$$-\Omega_1'' = \Omega_2'' = \int_{\rho}^{\underline{b}\,\varrho} \int_{\underline{p}}^{\underline{b}\,\varrho} \frac{b\,(p+r\cos\varphi)}{f_0}$$

$$= bf_0 + b\,r\cos\varphi\log(f_0 + \varrho - r\cos\varphi).$$

7. When the point is so near the axis of the ring that the square of r can be rejected, the value of Ω_2'' is easily found to be

$$\begin{split} \varOmega_{2}^{\prime\prime} &= -\frac{1}{2} \, \varrho^{2} \log \left(f_{2}^{(0)} + z - b \right) - \frac{r \, \varrho \cos \varphi}{f_{2}^{(0)} \, (f_{2}^{(0)} + z - b)} \\ &- \frac{1}{2} \, (z - b) \left[f_{2}^{(0)} - \frac{r \, \varrho \cos \varphi}{f_{2}^{(0)}} + 2 \, r \cos \varphi \log \left(f_{2}^{(0)} + \varrho \right) \right]. \end{split}$$

8. In order to obtain the last integral of Ω , which is to be performed in reference to φ as the variable, elliptic integrals must be introduced; and the following notation is adopted, which does not differ materially from the ordinary notation:

$$\sin \theta = \sin i \sin \varphi,$$
 $F_i \varphi = \int_{\phi} \sec \theta,$
 $E_i \varphi = \int_{\phi} \cos \theta,$
 $F_i^1 = F_i(\frac{1}{2} \odot), \qquad E_i^1 = E_i(\frac{1}{2} \odot).$

If we also assume

$$H_i \varphi = (F_i^1 - E_i^1) F_{\infty i} \varphi - F_i^1 E_{\infty i} \varphi + \frac{1}{2} \odot$$

$$co i = \frac{1}{2} \odot -i$$

in which

we obtain from well known formulæ of elliptic integrals

$$\frac{\cos^2 i \sin \eta \cos \eta}{\sqrt{(1-\cos^2 i \sin^2 \eta)}} \left[\int_0^{\frac{1}{2}} \frac{\sec \theta}{\cos^2 \varphi + \cos^2 i \sin^2 \eta \sin^2 \varphi} - F_i^{\eta} \right] = H_i \eta,$$

$$\frac{\sqrt{(1-\cos^2 i \sin^2 \eta)}}{\sin \eta \cos \eta} \left[\int_0^{\frac{1}{2}} \frac{\sec \theta}{1+\cot^2 \eta \sin^2 \varphi} - \sin^2 \eta F_i^{\eta} \right] = H_i \eta.$$

We have also the following formulæ of elliptic integrals, which are given in elementary treatises:

$$\begin{split} &\int_{\phi} \frac{\sec \theta}{\sin^2 \varphi} = \mathbf{F}_i \varphi - \mathbf{E}_i \varphi - \cot \varphi \cos \theta, \\ &\int_{\phi} (\tan^2 \frac{1}{2} \varphi \sec \theta) = 2 \tan \frac{1}{2} \varphi \cos \theta + \mathbf{F}_i \varphi - 2 \mathbf{E}_i \varphi, \\ &\int_{\phi} (\sin^2 \varphi \sec \theta) = \frac{1}{\sin^2 i} (\mathbf{F}_i \varphi - \mathbf{E}_i \varphi), \\ &\int_{\phi} (\sec^2 \varphi \sec \theta) = \mathbf{F}_i \varphi - \sec^2 i (\mathbf{E}_i \varphi - \tan \varphi \cos \theta), \\ &\int_{\phi} \sec^3 \theta = \sec^2 i \mathbf{E}_i \varphi - \tan^2 i \sin \varphi \cos \varphi \sec \theta. \end{split}$$

By putting

$$\varphi' = \frac{1}{2} \odot - \frac{1}{2} \varphi$$

(267)

we have in all the forms in which the function to be integrated has the same value for negative as for positive values of φ' ,

$$\int_{0}^{2\odot} \phi = 2 \int_{-1\odot}^{1\odot} \phi = 4 \int_{0}^{1\odot} \phi.$$

We also have

$$\begin{split} f \, \mathrm{D}_{\phi} f &= r \, \varrho \sin \varphi, \\ \int_{\phi}^{2 \, \odot} \left[\cos 2 \, \varphi \log \left(f_2 + z - b \right) \right] &= -\frac{1}{2} \int_{0}^{2 \, \odot} \left(\sin 2 \, \varphi \, \frac{\mathrm{D}_{\phi} f_2}{f_2 + z - b} \right) = -\int_{0}^{2 \, \odot} \frac{\varrho \, r \sin^2 \varphi \cos \varphi}{f_2 \, (f_2 + z - b)} \\ &= -\int_{0}^{2 \, \odot} \frac{\varrho \, r \sin^2 \varphi \cos \varphi \, (f_2 - z + b)}{f_2 \, [f_2^2 - (z - b)^2]} \\ &= -\int_{0}^{2 \, \odot} \frac{\varrho \, r \sin^2 \varphi \cos \varphi \, (f_2 - z + b)}{f_2 \, f_0^2_{0(0)}} \\ &= -\int_{0}^{2 \, \odot} \frac{\varrho \, r \sin^2 \varphi \cos \varphi}{f_0^2_{0(0)}} + (z - b) \int_{0}^{2 \, \odot} \frac{\varrho \, r \sin^2 \varphi \cos \varphi}{f_2 \, f_0^2_{0(0)}}. \end{split}$$

The first term of this last member, occurring in both Ω_2'' and Ω_1'' , may be omitted, which leaves, for the present case,

$$\int_{0}^{2\odot} \left[\cos 2\varphi \log \left(f_{2}+z-b\right)\right] = \int_{0}^{2\odot} \frac{(z-b)\varrho r \sin^{2}\varphi \cos\varphi}{f_{2}f_{0}^{2}(\varphi)}.$$

But

$$\varrho r \sin^2 \varphi \cos \varphi = -\varrho r \cos^3 \varphi + \varrho r \cos \varphi$$

$$= \left(\frac{1}{2} \cos^2 \varphi + \frac{\varrho^2 + r^2}{4 \varrho r} \cos \varphi + \frac{(\varrho^2 - r^2)^2}{8 \varrho^2 r^2}\right) f_{0(0)}^2 - \frac{(\varrho^2 + r^2) (\varrho^2 - r^2)^2}{8 \varrho^2 r^2},$$

which gives

(a)
$$\int_{0}^{2\odot} \left[\cos 2\varphi \log (f_2+z-b)\right] = (z-b) \int_{0}^{2\odot} \left(\frac{\cos^2\varphi}{2f_3} + \frac{\ell^2+r^2}{4\ell r f_2} \cos \varphi + \frac{(\ell^2-r^2)^2}{8\ell^2 r^2 f_2}\right) - \frac{(z-b)(\ell^2+r^2)(\ell^2-r^2)^2}{8\ell^2 r^2} \int_{0}^{2\odot} \frac{1}{\ell^2 f_{000}^2}.$$

Again we find

(268)

$$\int_{0}^{2\odot} \left[r \cos \varphi \log \left(f_{2} + \varrho - r \cos \varphi \right) \right] = - \int_{0}^{2\odot} \frac{r \sin \varphi \left(D_{\phi} f_{2} + r \sin \varphi \right)}{f_{2} + \varrho - r \cos \varphi}$$

$$= - \int_{0}^{2\odot} \frac{r^{2} \sin^{2} \varphi \left(f_{2} + \varrho \right)}{f_{2} \left(f_{3} + \varrho - r \cos \varphi \right)}$$

$$= - \int_{0}^{2\odot} \frac{r^{2} \sin^{2} \varphi \left(f_{2} + \varrho \right) \left(f_{2} - \varrho + r \cos \varphi \right)}{f_{2} \left[f_{2}^{2} - (\varrho - r \cos \varphi)^{2} \right]}$$

$$= -\int_{0}^{2 \odot} \frac{r^2 \sin^2 \varphi \ (f_2^2 - \varrho^2 + f_2 r \cos \varphi + \varrho r \cos \varphi)}{f_2 \left[r^2 \sin^2 \varphi + (z - b)^2\right]}$$

$$= -\int_{0}^{2 \odot} \frac{r^2 \sin^2 \varphi \cos \varphi}{r^2 \sin^2 \varphi + (z - b)^2} - \int_{0}^{2 \odot} \frac{r^2 \sin^2 \varphi \ \left[r^2 + (z - b)^2 - \varrho r \cos \varphi\right]}{f_2 \left[r^2 \sin^2 \varphi + (z - b)^2\right]}.$$

The first term of this last member occurs in $\Omega_{22}^{"}$ and $\Omega_{12}^{"}$ just as in $\Omega_{21}^{"}$ and $\Omega_{11}^{"}$, and may, therefore, be rejected; which leaves

$$\int_{0}^{2\odot} \left[r \cos \varphi \log \left(f_{2} + \varrho - r \cos \varphi \right) \right] = - \int_{0}^{2\odot} \frac{\left[r^{2} \sin^{2} \varphi + (z - b)^{2} - (z - b)^{2} \right] \left[r^{2} + (z - b)^{2} - \varrho r \cos \varphi \right]}{f_{2} \left[r^{2} \sin^{2} \varphi + (z - b)^{2} \right]}$$

$$(b) = - \int_{0}^{2\odot} \frac{r^{2} + (z - b)^{2} - \varrho r \cos \varphi}{f_{2}} + (z - b)^{2} \int_{0}^{2\odot} \frac{r^{2} + (z - b)^{2} - \varrho r \cos \varphi}{f_{2} \left(r^{2} + (z - b)^{2} - r^{2} \cos^{2} \varphi \right)};$$

again we find

$$\begin{split} \int_{0}^{2 \odot} \left[\sin 2\varphi \tan^{[-]} \frac{(\varrho - r \cos \varphi) (z - b)}{f_2 r \sin \varphi} \right] &= \int_{0}^{2 \odot} \left[\frac{1}{2} \cos 2\varphi \frac{r(z - b) [f_2 r \sin^2 \varphi - (\varrho - r \cos \varphi) (f_2 \cos \varphi + \sin \varphi D_{\phi} f_2)]}{f_2^2 r^2 \sin^2 \varphi + (\varrho - r \cos \varphi)^2 (z - b)^2} \right] \\ &= (z - b) \int_{0}^{2 \odot} \left[\frac{1}{2} r \cos 2\varphi \frac{f_2^2 (r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) r \varrho \sin^2 \varphi}{f_2 [r^2 \sin^2 \varphi + (z - b)^2] f_{0(0)}^2} \right]. \end{split}$$

The fraction, under the sign of integration, may for a moment be denoted by $f_2^{-1}V$; thus

$$V = \frac{1}{2} r \cos 2 \varphi \frac{f_2^2 (r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) r \varrho \sin^2 \varphi}{[r^2 \sin^2 \varphi + (z - b)^2] f_0^2(\varphi)},$$

which can be developed into the form

$$V = \frac{M}{f_{0,0}^2} + \frac{N}{r^2 \sin^2 \varphi + (z-b)^2} + P.$$

The value of M is found by putting

$$f_{0(0)}^2 = 0$$

in the value of

$$Vf_{0(0)}^2$$
;

that of N is found by putting

$$r^2\sin^2\varphi=-(z-b)^2,$$

in the value of

$$V[r^2\sin^2\varphi+(z-b)^2];$$

and that of P is found by division.

First, then, to find M, the equation

$$f_{0(0)}^2 = r^2 + \varrho^2 - 2 r \varrho \cos \varphi = 0$$
,

gives the reduced values

$$f_2^2 = (z - b)^2,$$

$$2\cos\varphi = \frac{\varrho}{r} + \frac{r}{\varrho} = \frac{\varrho^2 + r^2}{\varrho r},$$

(269)

$$r - \varrho \cos \varphi = \frac{r^{2} - \varrho^{2}}{2 r},$$

$$\varrho - r \cos \varphi = \frac{\varrho^{2} - r^{2}}{2 \varrho r},$$

$$1 + \cos \varphi = \frac{(\varrho + r)^{2}}{2 \varrho r},$$

$$1 - \cos \varphi = -\frac{(\varrho - r)^{2}}{2 \varrho r},$$

$$\sin^{2} \varphi = -\frac{(\varrho^{2} - r^{2})^{2}}{4 \varrho^{2} r^{2}},$$

$$\cos^{2} \varphi = \frac{\varrho^{4} + r^{4}}{2 \varrho^{2} r^{2}},$$

$$f_{2}^{2}(r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) r \varrho \sin^{2} \varphi = \frac{r^{2} - \varrho^{2}}{2 r \varrho} \left[(z - b)^{2} \varrho - \frac{(\varrho^{2} - r^{2})^{2}}{4 \varrho} \right],$$

$$r^{2} \sin^{2} \varphi + (z - b)^{2} = (z - b)^{2} - \frac{(\varrho^{2} - r^{2})^{2}}{4 \varrho^{2}},$$

$$M = V f_{0(0)}^{2} = \frac{1}{2} r \cos 2 \varphi \frac{f_{2}^{2}(r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) r \varrho \sin^{2} \varphi}{r^{2} \sin^{2} \varphi + (z - b)^{2}}$$

$$= \frac{1}{2} r \varrho \frac{(\varrho^{4} + r^{4})(r^{2} - \varrho^{2})}{4 r^{2} \varrho^{2}} = \frac{(\varrho^{4} + r^{4})(r^{2} - \varrho^{2})}{8 r^{2} \varrho^{2}}.$$

Secondly, to find N, the equation

$$r^2\sin^2\varphi = -(z-b)^2$$

gives the reduced values

$$\cos^{2}\varphi = \frac{r^{2} + (z - b)^{2}}{r^{2}},$$

$$\cos 2\varphi = \frac{r^{2} + 2(z - b)^{2}}{r^{2}},$$

$$\frac{1}{f_{\theta(0)}^{2}} = \frac{1}{e^{2} + r^{2} - 2} \frac{1}{e^{r \cos \varphi}} = \frac{e^{3} + r^{2} + 2}{(e^{2} + r^{2})^{2} - 4} \frac{1}{e^{2} r \cos^{2}\varphi} = \frac{e^{2} + r^{2} + 2}{(e^{2} - r^{2})^{2} + 4} \frac{1}{e^{2} r^{2} \sin^{2}\varphi}$$

$$= \frac{e^{2} + r^{2} + 2}{(e^{2} - r^{2})^{2} - 4} \frac{1}{e^{2} (z - b)^{2}},$$

$$f_{2}^{2}(r - \varrho \cos \varphi) = r \varrho^{2} + r^{3} + r (z - b)^{2} - [\varrho^{3} + 3 \varrho r^{2} + \varrho (z - b)^{2}] \cos \varphi + 2 \varrho^{2} r \cos^{2}\varphi$$

$$= 3 \varrho^{2} r + r^{3} + (2 \varrho^{2} + r^{2}) \frac{(z - b)^{2}}{r} - [\varrho^{8} + 3 \varrho r^{2} + \varrho (z - b)^{2}] \cos \varphi,$$

$$- (\varrho - r \cos \varphi) \varrho r \sin^{2}\varphi = (\frac{\varrho^{3}}{r} - \varrho \cos \varphi) (z - b)^{2},$$

$$f_{2}^{2}(r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) \varrho r \sin^{3}\varphi = (3 \varrho^{2} + r^{2}) \frac{r^{2} + (z - b)^{2}}{r} - [\varrho^{8} + 3 \varrho r^{2} + 2\varrho (z - b)^{2}] \cos \varphi,$$

$$f_{3}^{2}(r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) \varrho r \sin^{3}\varphi = (3 \varrho^{2} + r^{2}) \frac{r^{2} + (z - b)^{2}}{r} - [\varrho^{8} + 3 \varrho r^{2} + 2\varrho (z - b)^{2}] \cos \varphi,$$

$$+ \frac{f_{3}^{2}(r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) \varrho r \sin^{3}\varphi}{(\varrho^{2} + r^{2}) (\varrho^{2} + r^{2}) \frac{r^{2} + (z - b)^{2}}{r} - 2\varrho r [\varrho^{8} + 3 \varrho r^{2} + 2\varrho (z - b)^{2}] \cos^{2}\varphi}$$

$$+ \frac{2 \varrho r (3 \varrho^{2} + r^{2}) \frac{r^{3} + (z - b)^{2}}{r} - (\varrho^{2} + r^{2}) [\varrho^{3} + 3 \varrho r^{2} + 2 \varrho (z - b)^{2}]}{(\varrho^{2} - r^{2})^{2} - 4 \varrho^{2}(z - b)^{2}} \cos \varphi$$

$$= \frac{r^{2} + (z - b)^{2}}{r} \frac{(\varrho^{2} + r^{2}) (3 \varrho^{2} + r^{2}) - 2 \varrho [\varrho^{8} + 3 \varrho r^{2} + 2 \varrho (z - b)^{2}]}{(\varrho^{2} - r^{2})^{2} - 4 \varrho^{2}(z - b)^{2}}$$

$$+ \frac{4 \, \ell^{8} \, (z - b)^{2} - \varrho \, (\varrho^{2} - r^{2})^{2}}{(\varrho^{2} - r^{2})^{2} - 4 \, \varrho^{2} \, (z - b)^{2}} \cos \varphi$$

$$= \frac{r^{2} + (z - b)^{2}}{r} - \varrho \cos \varphi,$$

$$N = V \left[r^{2} \sin^{2} \varphi + (z - b)^{2} \right] = \frac{1}{2} \, r \cos 2 \, \varphi \, \frac{f_{3}^{2} \, (r - \varrho \cos \varphi) - (\varrho - r \cos \varphi) \, \varrho \, r \sin^{2} \varphi}{f_{0}(0)^{2}}$$

$$= \frac{1}{2 \, r^{2}} \left[r^{2} + 2 \, (z - b)^{2} \right] \left[r^{2} + (z - b)^{2} - \varrho \, r \cos \varphi \right]$$

$$= \frac{1}{2 \, r^{2}} \left[2 f_{20}^{2} - r^{2} \right) \left(f_{20}^{2} - \varrho \, r \cos \varphi \right).$$

$$(d)$$

Lastly, to find P, we may neglect the terms which do not affect its value, which gives the reduced values

$$\begin{split} f_2^2(r-\varrho\cos\varphi) &= 2\,r\,\varrho^2\cos^2\varphi - \left[3\,r^2\,\varrho + \varrho^3 + \varrho\,(z-b)^2\right]\cos\varphi + r^3 + r\,\varrho^2 + r\,(z-b)^2, \\ &- (\varrho-r\cos\varphi)\,r\,\varrho\sin^2\varphi = -r^2\,\varrho\cos^3\varphi + r\,\varrho^2\cos^2\varphi + r^2\,\varrho\cos\varphi - \varrho^2r, \\ f_2^2(r-\varrho\cos\varphi) - (\varrho-r\cos\varphi)\,r\,\varrho\sin^2\varphi = -r^2\,\varrho\cos^3\varphi + 3\,r\,\varrho^2\cos^2\varphi \\ &- \left[2\,r^2\,\varrho + \varrho^3 + \varrho\,(z-b)^2\right]\cos\varphi, \\ \frac{1}{8}\,r\cos2\varphi\, \left[f_2^2(r-\varrho\cos\varphi) - (\varrho-r\cos\varphi)\,r\,\varrho\sin^2\varphi\right] = -r^3\varrho\cos^5\varphi + 3\,r^2\varrho^2\cos^4\varphi \\ &- \left[\frac{3}{2}\,r^2\varrho + r\,\varrho^3 + r\,\varrho\,(z-b)^2\right]\cos^3\varphi, \\ \left[r^2\sin^3\varphi + (z-b)^2\right]f_{0(0)}^2 = 2\,r^3\varrho\cos^3\varphi - r^2\,(r^2+\varrho^2)\cos^2\varphi - 2\,r\,\varrho\,[r^2 + (z-b)^2]\cos\varphi. \end{split}$$
 The quotient of the second members of the two last equations gives

(e)
$$P = -\frac{1}{2}\cos^2\varphi + \left(\frac{5\varrho}{4r} - \frac{r}{4\varrho}\right)\cos\varphi + \frac{\varrho^2}{8r^2} - \frac{3}{4} - \frac{r^2}{8\varrho^2} - \frac{(z-b)^2}{r^2}.$$

The combination of the equations (a), (b), (c), (d), and (e) gives

$$\Omega_{2}^{""} = \int_{0}^{2} \Omega_{2}^{"} = -\varrho^{2} \int_{0}^{\infty} \log (f_{2} + z - b)$$

$$-\left[\frac{(z - b)(\varrho^{3} + r^{2})(\varrho^{3} - r^{2})^{3}}{16 \varrho^{2}} + \frac{(z - b)(\varrho^{4} + \varrho^{4})(\varrho^{3} - r^{2})}{16 \varrho^{2}}\right] \int_{0}^{2} \int_{f_{2}}^{2} \frac{1}{f_{3}f_{0}^{2}(0)}$$

$$+ \frac{1}{4}(z - b)\left[r^{2} - 2(z - b)^{2}\right] \int_{0}^{2} \frac{r^{3} + (z - b)^{2} - \varrho r \cos \varphi}{\left[r^{2} \sin^{2} \varphi + (z - b)^{2}\right]f_{3}} - \frac{1}{2}(z - b) \int_{0}^{2} \varphi f_{2}$$

$$+ \int_{0}^{2} \frac{z - b}{f_{3}} \left[\frac{1}{4}r^{2} \cos^{2} \varphi + \frac{r}{8\varrho}(\varrho^{2} + r^{2}) \cos \varphi + \frac{(\varrho^{2} - r^{2})^{2}}{16\varrho^{3}} - \varrho r \cos \varphi + r^{2} + (z - b)^{2}\right]$$

$$- \frac{1}{4}r^{2} \cos^{2} \varphi + \left(\frac{5}{8}\varrho r - \frac{r^{3}}{8\varrho}\right) \cos \varphi + \frac{\varrho^{3}}{16} - \frac{3}{8}r^{2} - \frac{r^{4}}{16\varrho^{3}} - \frac{1}{2}(z - b)^{2}\right],$$

$$(f) = -\varrho^{2} \int_{0}^{\infty} \log (f_{2} + z - b) + \frac{1}{4}(z - b)\left[r^{2} - 2(z - b)^{2}\right] \int_{0}^{2} \frac{r^{2} + (z - b)^{2} - \varrho r \cos \varphi}{\left[r^{2} \sin^{2} \varphi + (z - b)^{2}\right]f_{2}}$$

$$+ \frac{1}{8}\varrho^{2}(r^{2} - \varrho^{2})(z - b) \int_{0}^{2} \frac{1}{f_{2}f_{0}^{2}(0)} - \frac{3}{8}(z - b) \int_{0}^{2} \left[f_{2} - \frac{r^{3} + (z - b)^{2}}{f_{2}}\right].$$
35

In order to reduce the preceding integrations to the forms of elliptic integrals, we may assume

$$\cos^2 i = \frac{(\varrho - r)^2 + (z - \zeta)^2}{(\varrho + r)^2 + (z - \zeta)^2}$$

$$\sin \eta' = \frac{\cos i_{0(0)}}{\cos i},$$

$$\sin \eta'' \cos i = \sin \eta''' = \frac{\sqrt{(z - \zeta)^2}}{r + \sqrt{[r^2 + (z - \zeta)^2]}}.$$

These values give

$$\begin{split} \sin^2 i_2 &= \frac{4 \, \varrho \, r}{(\varrho + r)^2 + (z - b)^2} \\ f_2^2 &= \left[(\varrho + r)^2 + (z - b)^2 \right] (1 - \sin^2 i_2 \sin^2 \varphi'), \\ f_0^2(0) &= (\varrho + r)^2 (1 - \sin^2 i_{0(0)} \sin^2 \varphi') \\ &= (\varrho - r)^2 \left[\cos^2 \varphi' + \sin^2 \eta'_2 \cos^2 i_2 \sin^2 \varphi' \right], \\ \cos^2 i_2 \cos^2 \eta'_2 &= \cos^2 i_2 - \cos^2 i_2 \sin^2 \eta'_2 = \cos^2 i_2 - \cos^2 i_{0(0)} \\ &= \frac{\left[(\varrho + r)^2 - (\varrho - r)^2 \right] (z - b)^2}{(\varrho + r)^2 + (z - b)^2} = \frac{4 \, \varrho \, r \, (z - b)^2}{\left[(\varrho + r)^2 + (z - b)^2 \right] (\varrho + r)^2}, \\ \sin^2 \eta'_2 \cos^2 \eta'_2 \cos^4 i_2 &= \frac{4 \, \varrho \, r \, (\varrho - r)^2 \, (z - b)^2}{\left[(\varrho + r)^2 + (z - b)^2 \right] (\varrho + r)^4}, \\ &= \frac{\sin^3 \eta'_2 \cos^2 \eta'_2 \cos^4 i_2}{1 - \sin^2 \eta'_2 \cos^2 i_2} = \frac{(\varrho - r)^2 \, (z - b)^2}{\left[(\varrho + r)^2 + (z - b)^2 \right] (\varrho + r)^2}, \\ \frac{1}{3} \, \varrho^2 \left(r^2 - \varrho^2 \right) (z - b) \int_0^2 \frac{1}{\sqrt{f_0^2 + g_0^2}} = \frac{1}{2} \frac{\varrho^2 \, (r - \varrho) \, (z - b)}{(\varrho + r) \sqrt{\left[(\varrho + r)^2 + (z - b)^2 \right]}} \int_0^4 \frac{\sec \theta_2}{\cos^3 \varphi + \sin^2 \eta'_2 \cos^2 i_2 \sin^2 \varphi} \\ &= \frac{1}{2} \, \varrho^2 \, \frac{\sqrt{(r - \varrho)^2}}{r - \varrho} \, \frac{\sqrt{(z - b)^2}}{z - b} \, \frac{\cos^2 i_2 \sin \eta_2 \cos \eta'_2}{\sqrt{(1 - \sin^2 \eta'_2 \cos^2 i_3)}} \int_0^4 \frac{\sec \theta_2}{\cos^3 \varphi + \sin^2 \eta'_2 \cos^2 i_2 \sin^2 \varphi} \\ &= \frac{1}{2} \, \varrho^2 \, \frac{\sqrt{(r - \varrho)^2}}{r - \varrho} \, \frac{\sqrt{(z - b)^2}}{z - b} \, H_{i_1} \, \eta'_2 + \frac{1}{2} \, \frac{\varrho^3 \, (r - \varrho) \, (z - b)}{\left[(\varrho + r)^2 + (z - b)^2 \right]} \, F_{i_1}^1. \end{split}$$

Again, we have

(g)

$$r^{2} \sin^{2} \varphi + (z - b)^{2} = r^{2} + (z - b)^{2} - r^{2} \cos^{2} \varphi = f_{20}^{2} - r^{2} \cos^{2} \varphi$$

$$= (f_{20} + r \cos \varphi) (f_{20} - r \cos \varphi),$$

$$\frac{r^{2} + (z - b)^{2} - \varrho r \cos \varphi}{r^{2} \sin^{2} \varphi + (z - b)^{2}} = \frac{f_{20}^{2} - \varrho r \cos \varphi}{f_{20}^{2} - r^{2} \cos^{2} \varphi} = \frac{1}{2} \frac{f_{20} + \varrho}{f_{20} + r \cos \varphi} + \frac{1}{2} \frac{f_{20} - \varrho}{f_{20} - r \cos \varphi},$$

$$\sin \eta_{2}'' \cos i_{2} = \frac{\sqrt{(z - b)^{2}}}{r + f_{20}} = \frac{\sqrt{(f_{20}^{2} - r^{2})}}{f_{20} + r} = \sqrt{\frac{f_{20} - r}{f_{20} + r}},$$

$$1 - \sin^{2} \eta_{2}'' \cos^{2} i_{2} = \frac{2r}{f_{20} + r} = \sin^{2} i_{2} + \cos^{2} i_{2} \cos^{2} \eta_{2}'',$$

$$(272)$$

(h)

$$\cos^{2}i_{2}\cos^{2}\eta_{3}'' = \frac{2r}{f_{20} + r} - \frac{4 \, er}{e^{2} + 2 \, er + f_{20}'} = \frac{2r \, (e^{3} - 2 \, ef_{20} + f_{20}')}{(f_{20} + r) \left[(e + r)^{3} + (z - b)^{2} \right]}$$

$$= \frac{2r \, (f_{20} - e)^{2}}{(f_{20} + r) \left[(e + r)^{3} + (z - b)^{2} \right]}$$

$$\frac{\sin^{2}\eta_{1}' \cos^{2}\eta_{1}' \cos^{2}\eta_{1}'}{1 - \sin^{2}\eta_{1}' \cos^{2}\eta_{1}'} = \frac{(f_{20} - e)^{2} (z - b)^{3}}{(f_{20} + r)^{2} \left[(e + r)^{2} + (z - b)^{2} \right]}.$$
We also have
$$\sin^{2}\eta_{2}''' = \frac{f_{20} - r}{f_{20} + r},$$

$$\cos^{2}\eta_{2}'''' = \frac{2r}{f_{20} - r},$$

$$1 - \cos^{2}i_{2}\sin^{2}\eta_{2}''' = \cos^{2}\eta_{2}''' + \sin^{2}i_{2}\sin^{2}\eta_{2}''' = \frac{2r}{f_{20} + r} + \frac{4 \, er \, (f_{20} - r)}{(f_{20} + r) (e^{2} + 2 \, er + f_{20}^{2})} = \frac{2r \, (f_{20} + e)^{3}}{(f_{20} + r) \left[(e + r)^{3} + (z - b)^{3} \right]},$$

$$= \frac{2r \, (f_{20} + 2 \, ef_{20} + e)^{2}}{(f_{20} + r) \left(e^{2} + 2 \, er + f_{20}^{2} \right)} = \frac{2r \, (f_{20} + e)^{3}}{(f_{20} + r) \left[(e + r)^{3} + (z - b)^{3} \right]},$$

$$\frac{1 - \cos^{2}i_{2}\sin^{2}\eta_{2}'''}{\sin^{2}\eta_{2}''' \cos^{2}\eta_{2}''''} = \frac{(f_{20} + e)^{2} (z - b)^{2}}{(f_{20} + r)^{2} \left[(e + r)^{2} + (z - b)^{2} \right]},$$

$$\tan^{2}\eta_{2}'''' (1 - \cos^{2}i_{2}\sin^{2}\eta_{2}''') = \frac{(f_{20} + e)^{2} (z - b)^{2}}{(f_{20} + r)^{2} \left[(e + r)^{2} + (z - b)^{2} \right]},$$

$$(z - b) \int_{\phi}^{3} \frac{e^{3} + (z - b)^{2} - e^{r\cos\phi}}{[r^{2}\sin^{2}\phi + (z - b)^{2}] f_{2}} = \frac{1}{4} (z - b) \int_{\phi}^{3} \frac{f_{20} - e}{(f_{20} - r\cos\phi) f_{1}} + \frac{1}{4} (z - b) \int_{\phi}^{3} \frac{f_{20} + e}{(f_{20} + r\cos\phi) f_{2}}$$

$$= 2(z - b) \int_{\phi}^{4} \frac{f_{20} - e}{(f_{20} + r)^{2} \sin^{2}\phi' f_{2}} + 2(z - b) \int_{\phi}^{4} \frac{f_{20} - e}{(f_{20} - r)^{2} \sin^{2}\phi' f_{2}}$$

$$= \frac{2\sqrt{(z - b)^{2}} \sqrt{(f_{20} - e)^{2}}}{f_{20} - e} \frac{\cos^{2}i_{2}\sin^{2}\eta_{2}'' \cos^{2}i_{2}\sin^{2}\eta_{2}'' \sin^{2}\phi}{\sqrt{(1 - \cos^{2}i_{2}\sin^{2}\eta_{2}'')}} \int_{\phi}^{4} \frac{\sec\theta}{\cos^{2}\phi + \cos^{2}i_{2}\sin^{2}\eta_{2}'' \sin^{2}\phi}$$

The combination of the equations (f), (g), and (h) gives

 $= \frac{2\sqrt{(z-b)^2}}{z-b} \left[\frac{\sqrt{(f_{20}-\varrho)^2}}{f_{11}-g_2} H_{i_1} \eta_2'' + H_{i_2} \eta_2''' \right]$

 $+ \frac{2\sqrt{(z-b)^2}}{z-b} \frac{\sqrt{(1-\cos^2i_2\sin^2\eta_2''')}}{\sin\eta_2'''\cos\eta_2'''} \int_{\phi}^{i-\frac{1}{2}} \frac{\sec\theta_2}{1+\cot^2\eta'''\sin^2\phi}$

 $+\frac{{}^{4}f_{90}(z-b)}{(f_{90}+r)\sqrt{[(p+r)^{2}+(z-b)^{2}]}}F_{i_{2}}^{1}$

$$\Omega_{2}^{""} = -\frac{1}{2} \varrho^{2} \int_{0}^{2} \log (f_{2} + z - b) + \frac{1}{2} \varrho^{2} \frac{\sqrt{(r - \varrho)^{2}}}{r - \varrho} \frac{\sqrt{(z - b)^{2}}}{z - b} H_{i_{1}} \eta_{2}^{\prime}$$
(273)

$$+ \frac{1}{2} \left[r^{2} - 2 (z - b)^{2} \right] \frac{\sqrt{(z - b)^{2}}}{z - b} \left[\frac{\sqrt{(f_{20} - \varrho)^{2}}}{f_{20} - \varrho} \operatorname{H}_{i_{2}} \eta_{2}^{"} + \operatorname{H}_{i_{2}} \eta_{2}^{"'} \right]$$

$$- \frac{\frac{1}{2} \odot r^{2} \sqrt{(z - b)^{2}}}{z - b} \left(1 + \frac{\sqrt{(r - \varrho)^{2}}}{r - \varrho} \right) - \frac{3}{2} (z - b) \sqrt{\left[(\varrho + r)^{2} + (z - b)^{2} \right]} \operatorname{E}_{i_{2}}^{1}$$

$$+ \left[r f_{20} \left(2 + \frac{r}{r + f_{20}} \right) - \frac{1}{2} f_{20}^{2} + \frac{1}{2} \frac{\varrho^{2} (r - \varrho)}{\varrho + r} \right] \frac{z - b}{\sqrt{\left[(\varrho + r)^{2} + (z - b)^{2} \right]}} \operatorname{F}_{i_{2}}^{1},$$

and finally

$$\Omega = k \left(\Omega_{22}^{\prime\prime\prime} - \Omega_{21}^{\prime\prime\prime} - \Omega_{12}^{\prime\prime\prime} + \Omega_{11}^{\prime\prime\prime} \right).$$

The terms multiplied by $\frac{1}{4}$ \odot are added to free the expression of Ω''' from the discontinuity, with which it would otherwise be affected. Thus when

we have

$$r = \varrho$$

$$\eta_2' = 0, \quad H_{i_{\perp}} \eta_2' = \frac{1}{2} \circ 0,$$

and the corresponding term of Ω_2''' would be

$$\frac{r^2}{4} \odot \frac{\sqrt{(r-\varrho)^2}}{r-\varrho} \frac{\sqrt{(z-b)^2}}{z-b},$$

which suddenly reverses its sign, and is balanced by the term which is added in the corrected form.

Also, when

$$z = b$$

we have

$$\eta_2'' = \eta_2''' = 0$$
, $H_i, \eta_2'' = H_i, \eta_2''' = \frac{1}{2}$ \odot , $f_{20} = r$,

and the corresponding terms of Ω_2''' are

$$\frac{1}{4} r^2 \odot \frac{\sqrt{(z-b)^2}}{z-b} \left(\frac{\sqrt{(r-\varrho)^2}}{r-b} + 1 \right),$$

which suddenly reverse their signs, and are balanced by the opposing terms.

It is proper to observe, that in this latter case

$$\eta_2' = \frac{1}{2} \odot, \quad H_{i_1} \eta_2' = 0.$$

When

$$f_{20}=\varrho$$
,

we have

$$\eta_2'' = \frac{1}{2} \odot, \quad H_{i_*} \eta_2'' = 0,$$

so that in these cases the sudden reversal of sign does not affect the continuity of the function.

The function

$$H_i \eta_2'''$$

never vanishes, because η_2''' can never become a right angle.

9. The first term of $\Omega_2^{"}$ is incapable of integration, but it may easily be made to assume another form, which will be preferable for computation by means of quadratures. For this purpose, denote it by the letter L, so that

$$\mathbf{L_2} = -\frac{1}{2} \varrho^2 \int_{0}^{2 \odot} \log (f_2 + s - b).$$

(274)

Its derivative with reference to z is

$$D_{2} L_{2} = -\frac{1}{2} \varrho^{2} \int_{0}^{2} \frac{1}{f_{2}} = -\frac{2 \varrho^{2}}{\sqrt{[(\varrho+r)^{2} + (z-b)^{2}]}} F_{i_{2}}^{1},$$

$$L_{2} = -\int_{z} \frac{2 \varrho^{2}}{\sqrt{[(\varrho+r)^{2} + (z-b)^{2}]}} F_{i_{2}}^{1}.$$

10. When the attracted point is near either of the curved edges of the ring, the value of Ω''' admits of peculiar transformations and reductions. Thus let the approximated edge be that for which

$$z=b$$
, $\varrho=a_2$

and put

 l_2 = the distance of the attracted point from the edge, and let this distance be so small that its cube can be rejected. We have then

$$l_{2}^{2} = (a_{2}-r)^{2} + (z-b)^{2},$$

$$\sec^{2} i_{22} = \frac{4 a_{2} r + l_{2}^{2}}{l_{2}^{2}} = \frac{4 a_{3} r}{l_{2}^{2}} \left(1 + \frac{l_{2}^{2}}{4 r^{2}}\right) = \frac{4 r^{2}}{l_{2}^{2}} \left(1 + \frac{a_{2}-r}{r} + \frac{l_{1}^{2}}{4 r^{2}}\right),$$

$$\sec i_{22} = \frac{2 r}{l_{2}} \left(1 + \frac{a_{2}-r}{2 r} + \frac{l_{2}^{2}-(a_{2}-r)^{2}}{8 r^{2}}\right) = \frac{2 r}{l_{2}} \left(1 + \frac{a_{2}-r}{2 r} + \frac{(z-b)^{2}}{8 r^{2}}\right),$$

$$\cos^{2} i_{22} = \frac{l_{2}^{2}}{4 r^{2}} \left(1 - \frac{a_{2}-r}{r} - \frac{(z-b)^{3}-3 (a_{2}-r)^{2}}{4 r^{2}}\right),$$

$$\sin^{2} \gamma_{22}' = \frac{(a_{2}-r)^{2}}{l_{2}^{2}}, \qquad \cos^{2} \gamma_{22}' = \frac{(z-b)^{2}}{l_{2}^{2}},$$

$$\sin^{2} \gamma_{22}' = \frac{(a_{2}-r)^{2}}{l_{2}^{2}}, \qquad \cos^{2} \gamma_{22}' = \frac{(z-b)^{2}}{l_{2}^{2}},$$

$$\sin^{2} \gamma_{22}' = \frac{2 \sqrt{(a_{2}-r)^{2}} \sqrt{(z-b)^{2}}}{l_{2}^{2}}, \qquad \cos^{2} \gamma_{22}' = \frac{\sqrt{(z-b)^{2}}}{l_{2}^{2}},$$

$$\sin^{2} \gamma_{22}' = \sin^{2} \gamma_{22}'' = \frac{\sqrt{(z-b)^{2}}}{l_{2}^{2}} \left(1 + \frac{a_{2}-r}{r}\right),$$

$$\cos^{2} \gamma_{22}'' = \frac{(a_{2}-r)^{2}}{l_{2}^{2}} \left(1 + \frac{a_{2}-r}{2 r}\right),$$

$$\cos^{2} \gamma_{22}'' = \frac{\sqrt{(a_{2}-r)^{2}}}{l_{2}^{2}} \left(1 + \frac{a_{2}-r}{2 r}\right),$$

$$\cos^{2} \gamma_{22}'' = \frac{\sqrt{(a_{2}-r)^{2}} \sqrt{(x-b)^{2}}}{l_{2}^{2}} \left(1 + \frac{a_{2}-r}{2 r} - \frac{(z-b)^{2}}{2 r (a_{2}-r)}\right),$$

$$\sin^{2} \gamma_{12}'' = \frac{2 \sqrt{(a_{2}-r)^{2}} \sqrt{(x-b)^{2}}}{l_{2}^{2}} \left(1 + \frac{a_{2}-r}{2 r} - \frac{(z-b)^{2}}{2 r (a_{2}-r)}\right),$$

$$= \sin^{2} \gamma_{12}' \left(1 + \frac{a_{2}-r}{2 r} - \frac{(z-b)^{2}}{2 r (a_{2}-r)}\right),$$
(275)

Digitized by Google

$$\begin{split} \frac{1}{2} \odot -\eta_{22}'' &= \eta_{22}' - \frac{(a_2-r)\sqrt{(z-b)^3}}{2r\sqrt{(a_2-r)^2}}, \\ F_{i_2}^1 &= (1+\frac{1}{4}\cos^2i_{22})\log(4\sec i_{22}) - \frac{1}{4}\cos^2i_{23}, \\ E_{i_3}^1 &= 1+\frac{1}{4}\cos^2i_{22}\log(4\sec i_{22}) - \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}' &= \eta_{22}'(1+\frac{1}{4}\cos^2i_{22}) - \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}' &= \eta_{22}'(1+\frac{1}{4}\cos^2i_{22}) - \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}' &= \eta_{22}'(1-\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}' &= \eta_{22}'(1-\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}'' &= F_{\cot_{12}}\eta_{22}'' &= F_{\cot_{12}}\eta_{22}'' - F_{\cot_{12}}\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}'' &= F_{\cot_{12}}\eta_{22}'' - F_{\cot_{12}}\eta_{22}' - F_{\cot_{12}}\eta_{22}'\cos^2i_{22}, \\ F_{\cot_{12}}\eta_{22}'' &= F_{\cot_{12}}\eta_{22}' - F_{\cot_{12}}\eta_{22}' - F_{\cot_{12}}\eta_{22}'\cos^2i_{22}, \\ F_{i_1}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}'(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\log(4\sec i_{22}), \\ H_{i_{11}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\log(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\log(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\log(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\log(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\log(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\cos(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}'\cos^2i_{22} - \frac{1}{4}\cos^2i_{22}\sin 2\eta_{22}'\cos(4\sec i_{22}), \\ H_{i_{12}}\eta_{22}'' &= \frac{1}{8}\odot -\eta_{22}''(1+\frac{1}{4}\cos^2i_{22}) + \frac{1}{8}\sin 2\eta_{22}''\cos^2i_{22} - \frac{1}{4}\cos^2i_{22} - \frac{1}{4}\cos^2i_{22} - \frac{1}{4}\cos^2i_{22} - \frac{1}{4}$$

These quantities, substituted in the value of Ω''' , reduce it to

$$\Omega_{22}^{"'} = 2(r-a_2)(z-b)\log(4\sec i_{22}) + 3(a_2-r)(z-b)$$
$$-(z-b)^2 \tan^{[-]} \frac{a_2-r}{z-b} - (a_2-r)^2 \tan^{[-]} \frac{z-b}{a_2-r}.$$

11. When the cube of b can be rejected, the integral of the value of D'' in §6 gives by the formulæ of §8,

$$\Omega_{2}^{"'} = -\Omega_{1}^{"'} = \int_{0}^{2\odot} (bf_{0}) + \int_{0}^{2\odot} [br\cos\varphi\log(f_{0} + \varrho - r\cos\varphi)]
= b \int_{0}^{2\odot} \frac{\varrho^{2} - \varrho r\cos\varphi}{f_{0}} + bz^{2} \int_{0}^{2\odot} \frac{r^{2} + z^{2} - \varrho r\cos\varphi}{(z^{2} + r^{2}\sin^{2}\varphi)f_{0}}
= 2b\sqrt{z^{2}} \left(\frac{\sqrt{(f_{00} - \varrho)^{2}}}{f_{00} - \varrho} H_{i_{0}} \eta_{0}^{"} + H_{i_{0}} \eta_{0}^{"'} \right)
+ 2b\sqrt{[(\varrho + r)^{2} + z^{2}]} E_{i_{0}}^{1} + \frac{2b(\varrho^{2} + z^{2} - r^{2})}{\sqrt{[(\varrho + r)^{2} + z^{2}]}} F_{i_{0}}^{1}.$$
(276)

12. When the second dimensions of z and b can be rejected, the preceding formula becomes

$$\Omega_{2}^{""} = -\Omega_{1}^{""} = 2 b (\varrho + r) E_{loc}^{1} + 2 b (\varrho - r) F_{loc}^{1}$$

13. When the attracted point is so near the axis that the square of r can be rejected, the integral of the formula of § 7 gives

$$\varOmega_2''' = -2 \odot \varrho^2 \log (f_2^{[0]} + z - b) - 2 \odot (z - b) f_2^{[0]}.$$

14. The attraction of the ring in the direction of the radius r, and toward the axis, is

$$k = -D_r \Omega = k \int_{\sigma}^{r-\varrho \cos \varphi} f_a$$

15. The integration, indicated in the preceding formula, may be first performed with reference to ζ , and the result is

$$D_{\psi} R = R_2' - R_1'$$

in which

$$R'_2 = -\frac{(r - \varrho \cos \varphi)(z - b)}{f^2_{(0)}f_2}.$$

16. The integration with reference to ϱ gives

$$D_{\phi} R = R_{22}'' - R_{21}'' - R_{12}'' + R_{11}''$$

in which

$$\mathbf{R_2''} = \int_{\mathbf{\varphi}} (\varrho \ \mathbf{R_2'}).$$

The notation and equations of §5 give

$$\begin{split} r \varrho - \varrho^2 \cos \varphi &= -p^2 \cos \varphi - p \, r \cos 2 \, \varphi + r^2 \cos \varphi \sin^2 \varphi \\ &= -f_{0(0)}^2 \cos \varphi - p \, r \cos 2 \, \varphi + 2 \, r^2 \cos \varphi \sin^2 \varphi, \\ R_2'' &= (z - b) \int_p \frac{\cos \varphi}{f_2} + (z - b) \, r \cos 2 \, \varphi \int_p \frac{p}{f_{0(0)}^2 f_2} \\ &- 2 \, (z - b) \, r^2 \cos \varphi \sin^2 \varphi \int_p \frac{1}{f_{0(0)}^2 f_2} \\ &= (z - b) \cos \varphi \log \left(f_2 + \varrho - r \cos \varphi \right) - r \cos 2 \, \varphi \log \left(f_2 + z - b \right) \\ &- r \sin 2 \, \varphi \, \tan^{[-]} \frac{p \, (z - b)}{r \sin \varphi \, f_2}. \end{split}$$

17. When the second dimensions of z and b can be rejected because they are small, the value of R_2 can be reduced to

$$R_2' = \frac{br - b\varrho\cos\varphi}{f_{\sigma(x)}^3}.$$

This gives

$$R_{2}'' = -b \cos \varphi \int_{p} \frac{1}{f_{0,0}} -b r \cos 2 \varphi \int_{p} \frac{p}{f_{0,0}^{2}} + 2 b r^{2} \cos \varphi \sin^{2} \varphi \int_{p} \frac{1}{f_{0,0}^{2}}$$
(277)

$$= -b\cos\varphi\log(f_{0(0)} + \varrho - r\cos\varphi) - \frac{br - 2b\varrho\cos\varphi}{f_{0(0)}}.$$

But this formula may not be used when $\varrho - r$ is also very small.

18. The integration with reference to φ gives

$$R = R_{22}^{""} - R_{21}^{""} - R_{12}^{""} + R_{11}^{""}$$

in which

$$\mathbf{R}_{\mathbf{2}}^{\prime\prime\prime} = \int_{0}^{20} \mathbf{R}_{\mathbf{2}}^{\prime\prime}.$$

The formulæ and notation of § 9 give

$$\begin{split} \mathbf{R}_{2}''' &= -\frac{z-b}{r} \int_{0}^{2\frac{\gamma}{r}} \frac{r^{2} + (z-b)^{2} - \varrho \, r \cos \varphi}{f_{2}} + \frac{(z-b)^{3}}{r} \int_{0}^{2\frac{\gamma}{r}} \frac{r^{2} + (z-b)^{2} - \varrho \, r \cos \varphi}{\left[r^{2} + (z-b)^{2} - r^{2} \cos^{2}\varphi\right] f_{3}} \\ &- r \, (z-b) \int_{0}^{2\frac{\gamma}{r}} \left[\frac{\cos^{2}\varphi}{2f_{3}} + \frac{(\varrho^{2} + r^{2}) \cos \varphi}{4 \, \varrho \, r f_{2}} + \frac{(\varrho^{2} - r^{2})^{2}}{8 \, \varrho^{2} \, r^{2}} \right] + \frac{(z-b) \, (\varrho^{2} + r^{2}) \, (\varrho^{2} - r^{2})^{2}}{8 \, \varrho^{2} \, r} \int_{0}^{2\frac{\gamma}{r}} \frac{1}{f_{3} f_{3}^{2} (\varphi)} \\ &- r \, (z-b) \int_{0}^{2\frac{\gamma}{r}} \frac{\mathbf{V}}{f_{3}} \\ &= -\frac{1}{4} \, (z-b) \, \varrho^{2} \, (r^{2} - \varrho^{2}) \int_{0}^{2\frac{\gamma}{r}} \frac{1}{r f_{2} f_{3}^{2} (\varphi)} - \frac{1}{4} \, (z-b) \, r \int_{0}^{2\frac{\gamma}{r}} \frac{f_{30}^{2} - \varrho \, r \cos \varphi}{\left[r^{2} \sin^{2}\varphi + (z-b)^{2}\right] f_{2}} \\ &- \frac{z-b}{4 \, r} \int_{0}^{2\frac{\gamma}{r}} \frac{\ell^{2} + 2 \, \varrho \, r \cos \varphi}{f_{2}} \\ &= -\frac{\varrho^{2}}{r} \frac{\sqrt{(r-\varrho)^{2}}}{r-\varrho} \frac{\sqrt{(z-b)^{2}}}{z-b} \, \mathbf{H}_{i_{1}} \, \eta'_{2} - \frac{r \, \sqrt{(z-b)^{2}}}{z-b} \left[\frac{\sqrt{(f_{30} - \varrho)^{2}} \, \mathbf{H}_{i_{2}} \, \eta''_{2} + \mathbf{H}_{i_{2}} \, \eta'''_{2}} \right] \\ &+ \frac{\frac{1}{2} \, \odot \, r \, \sqrt{(z-b)^{2}}}{z-b} \left(1 + \frac{\sqrt{(r-\varrho)^{2}}}{r-\varrho} \right) + \frac{z-b}{r} \, \sqrt{\left[(\varrho+r)^{2} + (z-b)^{2}\right]} \, \mathbf{F}_{i_{2}}^{1}} \\ &- \left[\frac{\varrho^{2} \, (3\, r + \varrho)}{r \, (r + \varrho)} + \frac{f_{30} \, (2\, r^{2} + r f_{30} + f_{30}^{2})}{r \, (r + f_{30})} \right] \frac{z-b}{\sqrt{\left[(\varrho+r)^{2} + (z-b)^{2}\right]}} \, \mathbf{F}_{i_{2}}^{1}}. \end{split}$$

19. When the point is very near either of the edges of the ring, the forms of reduction of § 10 give

$$R_{22}^{""} = (b-z)\frac{r+a_2}{r} \left[\log\left(4\sec i_{22}\right) - 1 - \tan \gamma_{22}^{'}\left(\frac{1}{2}\odot - \gamma_{22}^{'}\right)\right].$$

20. When the second dimensions of z and b can be neglected, the integral of R_2'' in § 17 gives

$$\int_{0}^{2 \odot} \left[b \cos \varphi \log \left(f_{0(0)} + \varrho - r \cos \varphi \right) \right] = - \int_{0}^{2 \odot} \frac{b \sin \varphi \left(D_{\varphi} f_{0(0)} + r \sin \varphi \right)}{f_{0(0)} + \varrho - r \cos \varphi} \\
= - \int_{0}^{2 \odot} \frac{b r \sin^{2} \varphi \left(f_{0(0)} + \varrho \right)}{f_{0(0)} \left(f_{0(0)} + \varrho - r \cos \varphi \right)} \tag{278}$$

$$\begin{split} &= -\int_{0}^{2 \odot} \frac{b \, r \sin^2 \varphi \, (f_{0 \, (\!\omega\!)} + \varrho) \, (f_{0 \, (\!\omega\!)} - \varrho + r \cos \varphi)}{f_{0 \, (\!\omega\!)} \, r^2 \sin^2 \varphi} \\ &= -\int_{\varphi}^{2 \odot} \frac{b \, (f_{0 \, (\!\omega\!)}^2 - \varrho^2 + \varrho \, r \cos \varphi)}{r \, f_{0 \, (\!\omega\!)}} \\ &= -\int_{\varphi}^{2 \odot} \frac{1}{2} \, b \, (f_{0 \, (\!\omega\!)}^2 - \varrho^2 + r^2)}{r \, f_{0 \, (\!\omega\!)}}, \\ \mathrm{R}_2''' &= -b \int_{0}^{2 \odot} \frac{r - 2 \, \varrho \cos \varphi}{f_{0 \, (\!\omega\!)}} - \int_{0}^{2 \odot} b \, \cos \varphi \, \log \, (f_{0 \, (\!0\!)} + \varrho - r \cos \varphi) \\ &= -b \int_{0}^{2 \odot} \frac{1}{2} \, f_{0 \, (\!\omega\!)}^2 - \frac{1}{2} \, \varrho^2 - \frac{1}{2} \, r^2}{r \, f_{0 \, (\!\omega\!)}} = -\frac{2 \, b \, (\varrho + r)}{r} \, \mathrm{E}_{i_0 \, (\!\sigma\!)}^1 + \frac{2 \, b \, (\varrho^2 + r^2)}{(\varrho + r) \, r} \, \mathrm{F}_{i_0 \, (\!\sigma\!)}^1. \end{split}$$

21. When the attracted point is so near the axis that the square of r can be rejected, the first term of R_2'' in § 16 is the only one which must be retained, and in this case we have

$$\log (f_2 + \varrho - r \cos \varphi) = \log (f_2^{[0]} + \varrho) - \frac{r \cos \varphi}{f_z^{[0]}},$$

$$R_2''' = -\frac{\odot r (z - b)}{f_z^{[0]}}.$$

22. The attraction of the ring, perpendicular to its plane, and toward the plane, is

$$Z = -D_2 \Omega = k \int_{\sigma} \frac{z - \zeta}{l^2}$$
.

23. The integral of the value of $D_{\sigma}Z$ taken with reference to ζ , gives

$$D_{\psi} Z = k (Z_2' - Z_1'),$$

in which

$$Z_2'=\frac{1}{f_2}$$
.

24. The integration of $\rho Z_2'$ with reference to ρ gives

$$D_{\phi} Z = k (Z_{22}^{"} - Z_{21}^{"} - Z_{12}^{"} + Z_{11}^{"}),$$

in which

36

$$Z_{2}'' = \int_{\rho} \frac{\varrho}{f_{2}} = f_{2} + r \cos \varphi \int_{\rho} \frac{1}{f_{2}}$$

$$= f_{2} + r \cos \varphi \log (f_{2} + \varrho - r \cos \varphi).$$

25. The final integration with reference to φ gives, by means of the formulæ of § 9,

$$Z = k (Z_{22}^{""} - Z_{21}^{""} - Z_{12}^{""} + Z_{11}^{""}),$$
(279)

in which

$$\begin{split} Z_{2}^{\prime\prime\prime} &= (z-b)^{2} \int_{0}^{2 \odot} \frac{r^{2} + (z-b)^{2} - \varrho \, r \cos \varphi}{\left[r^{2} \sin^{2} \varphi + (z-b)^{2}\right] f_{3}} + \frac{1}{2} \int_{0}^{2 \odot} f_{2} + \frac{1}{2} \left(\varrho^{2} - f_{20}^{2}\right) \int_{0}^{2 \odot} \frac{1}{f_{2}} \\ &= 2 \sqrt{(z-b)^{2}} \left[\frac{\sqrt{(f_{20} - \varrho)^{2}}}{f_{20} - \varrho} \left(\mathbf{H}_{\mathbf{i}_{3}} \, \eta_{2}^{\prime\prime} - \frac{1}{2} \odot \right) + \mathbf{H}_{\mathbf{i}_{3}} \, \eta_{2}^{\prime\prime\prime} - \frac{1}{2} \odot \right] \\ &+ \frac{2 f_{20}^{2} - 4 \, r \, f_{20} - 2 \, \varrho^{2}}{\sqrt{\left[(\varrho + r)^{2} + (z-b)^{2}\right]}} \, \mathbf{F}_{\mathbf{i}_{3}}^{1} + 2 \sqrt{\left[(\varrho + r)^{2} + (z-b)^{2}\right]} \, \mathbf{E}_{\mathbf{i}_{2}}^{1}. \end{split}$$

26. When the ring is thin and the attracted point near its plane, so that the third dimensions of z and b can be neglected, the value of Z_2'' can be reduced by the formulæ

$$f_2 = f_{0(0)} + \frac{(z-b)^2}{2f_{0(0)}},$$

$$\log(f_2 + \varrho - r\cos\varphi) = \log(f_{0(0)} + \varrho - r\cos\varphi) + \frac{(z-b)^2}{2f_{0(0)}(f_{0(0)} + \varrho - r\cos\varphi)}$$

The substitution of these values in Z_2'' and the neglect of the terms which are common to Z_{22}'' and Z_{21}'' , as well as to Z_{12}'' and Z_{11}'' , gives

$$\begin{split} Z_2'' &= \frac{-zb}{f_{0(0)}} - \frac{zbr\cos\varphi}{f_{0(0)}(f_{0(0)} + \varrho - r\cos\varphi)} \\ &= \frac{-zb}{f_{0(0)}} - \frac{zb\cos\varphi(f_{0(0)} - \varrho + r\cos\varphi)}{rf_{0(0)}\sin^2\varphi} \\ &= \frac{zb(\varrho\cos\varphi - r)}{rf_{0(0)}\sin^2\varphi} - \frac{zb\cos\varphi}{r\sin^2\varphi} \\ &= \frac{zb}{4rf_{0(0)}} \left(\frac{\varrho - r}{\sin^2\frac{1}{2}\varphi} - \frac{\varrho + r}{\cos^2\frac{1}{2}\varphi}\right) - \frac{zb\cos\varphi}{r\sin^2\varphi} \end{split}$$

The integral of this expression becomes, after omitting the last term, for reasons already given,

$$\begin{split} Z_2''' &= \frac{z\,b}{r\,(\varrho+r)} \int_0^{\frac{1}{\varrho}} \left[\frac{1}{\sqrt{(1-\sin^2i\sin^2\varphi)}} \left(\frac{\varrho-r}{\cos^2\varphi} - \frac{\varrho+r}{\sin^2\varphi} \right) \right] \\ &= -\frac{2\,b\,z}{\varrho+r} \, \mathbf{F}_{i_2}^1 - \frac{2\,b\,z}{\varrho-r} \, \mathbf{E}_{i_2}^1. \end{split}$$

27. The mass of the ring is

$$M = 2 \odot b k (a_2^2 - a_1^2),$$

which gives

$$k = \frac{M}{2 \odot b \left(a_2^2 - a_1^2\right)}$$

28. When the ring is very thin and narrow, the integrations can be performed at once with reference to φ , and we find, by using a for the mean radius of the ring, (280)

$$\Omega = 2b k a (a_2 - a_1) \int_{0}^{\frac{\pi}{0}} \frac{1}{f}$$

$$= \frac{M}{2 \odot} \int_{0}^{\frac{2}{0}} \frac{1}{f} = \frac{2M}{\odot \sqrt{[(a+r)^2 + z^2]}} F_i^1,$$

$$R = \frac{M}{2 \odot} \int_{0}^{\frac{2}{0}} \frac{r - a \cos \varphi}{f^4}$$

$$= \frac{M}{r \odot \sqrt{[(a+r)^2 + z^2]}} \left(F_i^1 + \frac{r^2 - a^2 - z^2}{(r-a)^2 + z^2} E_i^1 \right),$$

$$Z = \frac{M}{2 \odot} \int_{0}^{\frac{2}{0}} \frac{z}{f^2}$$

$$= \frac{2Mz}{\odot [(a-r)^2 + z^2] \sqrt{[(a+r)^2 + z^2]}} E_i^1.$$

These formulæ give

$$R = \frac{\Omega}{2r} + \frac{r^2 - a^2 - z^2}{2rz} Z.$$

29. If, in the general case, a plane is drawn through the attracted point perpendicular to the axis of the cylinder, and if, in this plane, two circles are taken, with their common centre in the axis, and with radii r' and r'', connected by the equation,

$$r'r'' = (2 + (z - \zeta)^2) = q^2$$

in which q is the distance of the common centre from the attracting particle (ϱ, ζ) , every point in either circumference has the same value of i, which may be determined by the equation

$$\cos^2 i = \frac{r' + r'' - 2\varrho}{r' + r'' + 2\varrho}$$

The two circles may be called *complementary*, and are derived from each other by a simple and obvious geometrical construction. It is apparent, indeed, that they are both tangent to a spherical surface, which passes through the particle (ϱ, ζ) , and is tangent to the cone having for its axis the axis of the cylinder, for its vertex the common centre of the circles, and which passes through the point (ϱ, ζ) .

If the values of § 29 are, then, denoted as functions of r' and r'', they give

$$\Omega\left(r''\right) = \sqrt{\frac{r'}{r''}} \Omega\left(r'\right) = \frac{q}{r''} \Omega\left(r'\right) = \frac{q}{q} \Omega\left(r'\right),$$

$$Z\left(r''\right) = \left(\frac{r'}{r''}\right)^{\frac{3}{2}} Z\left(r'\right) = \frac{q^{3}}{r''^{3}} Z\left(r'\right) = \frac{r'^{3}}{q^{3}} Z\left(r'\right),$$

$$R\left(r''\right) = \frac{q}{r''^{3}} \Omega\left(r'\right) - \frac{q^{3}}{r''^{3}} R\left(r'\right) = \frac{q^{3}}{r''^{3}} \left[R\left(r'\right) - \frac{r' - r''}{z} Z\left(r'\right)\right].$$
(281)

When the quantity

$$r^2 + z^2$$

is so large that a^2 can be rejected in comparison with it, the values of the functions of § 28 become

$$\begin{split} &\Omega\left(r'\right) = \frac{M}{\sqrt{(r'^2 + z^2)}}, \\ &R\left(r'\right) = \frac{M \, r'}{(r'^2 + z^2)^{\frac{2}{3}}}, \\ &Z\left(r'\right) = \frac{M \, z}{(r'^2 + z^2)^{\frac{2}{3}}} = \frac{z}{r'} \, R\left(r'\right); \end{split}$$

whence, the corresponding values for r'' are

$$\Omega(r'') = \frac{M}{q\sqrt{\left(1 + \frac{z^2}{r'^2}\right)}},$$

$$R(r'') = \frac{M r''}{\left[q\sqrt{\left(1 + \frac{z^2}{r'^2}\right)}\right]^8},$$

$$Z(r'') = \frac{M z}{\left[q\sqrt{\left(1 + \frac{z^2}{r'^2}\right)}\right]^8} = \frac{z}{r''} R(r'').$$

When z is so small that its square can be rejected in comparison with r', these values become

$$\Omega(r') = \frac{M}{r'}, \qquad \Omega(r'') = \frac{M}{\sqrt{(r'r'')}}, R(r') = \frac{M}{r'^2}, \qquad R(r'') = -\frac{M}{\sqrt{(r'^8r'')}}, Z(r') = \frac{M^2}{r'^8}, \qquad Z(r'') = \frac{M^2}{\sqrt{(r'^8r''^8)}}.$$

30. When the ring is very thin, and the attracted point is so near its plane that the second dimensions of z and b can be neglected; and when the ring extends inward to the very axis itself, its outer radius may be denoted by a, and the points r' and r'' may be connected by the equation

$$r' r'' = a^2,$$

and we may suppose

$$r' > a,$$
 $r'' < a$

which gives

$$\cos i = \frac{r'-a}{r'+a} = \frac{a-r''}{a+r'''}$$

$$r' = a \cot^2 \frac{1}{2} i$$

$$r'' = a \tan^2 \frac{1}{2} i,$$

(282)

$$M = 2 \odot k b a^2,$$

$$k = \frac{M}{2 \odot b a^2}$$

and from the formulæ of §§ 12, 20, and 26,

$$\Omega(r') = \frac{2 M}{\odot a} \operatorname{cosec}^{2} \frac{1}{2} i (E_{i}^{1} - \cos i F_{i}^{1}),$$

$$\Omega(r'') = \frac{2 M}{\odot a} \operatorname{sec}^{2} \frac{1}{2} i (E_{i}^{1} + \cos i F_{i}^{1}),$$

$$R(r') = \frac{2 M}{\odot a^{2}} \operatorname{sec}^{2} \frac{1}{2} i [(1 - \frac{1}{2} \sin^{2} i) F_{i}^{1} - E_{i}^{1}),$$

$$R(r'') = \frac{2 M}{\odot a^{2}} \operatorname{cosec}^{2} \frac{1}{2} i [(1 - \frac{1}{2} \sin^{2} i) F_{i}^{1} - E_{i}^{1}]$$

$$= \frac{r'}{a} R(r') = \frac{a}{r''} R(r'),$$

$$Z(r') = \frac{2 M z}{\odot a^{2}} \sin^{2} \frac{1}{2} i (\operatorname{sec} i E_{i}^{1} - F_{i}^{1}) = \frac{z \sin^{4} \frac{1}{2} i}{a^{2} \cos^{2} i} \Omega(r'),$$

$$Z(r'') = \frac{2 M}{a^{3}} - \frac{2 M z}{\odot a^{3}} \cos^{2} \frac{1}{2} i (\operatorname{sec} i E_{i}^{1} + F_{i}^{1}) = \frac{2 M}{a^{3}} - \frac{z \cos^{4} \frac{1}{2} i}{a^{2} \cos^{2} i} \Omega(r''),$$

$$a R(r') + \Omega(r'') = \frac{4 M}{\odot a^{2}} \cos^{2} \frac{1}{2} i - \frac{2 M}{a},$$

$$a R(r'') + \Omega(r') = \frac{4 \odot}{\odot a^{3}} \sin^{2} \frac{1}{2} i = \frac{a}{r'} [a R(r') + \Omega(r'')],$$

$$\Omega(r'') = \frac{r'}{a} \Omega(r') + \frac{r'}{a} (r' - r'') R(r').$$

If r' is so large that the square of the lineal dimensions of the ring can be rejected, these quantities become

$$\Omega(r') = \frac{M}{r'}, \qquad \Omega(r'') = \frac{2M}{a},$$

$$R(r') = \frac{M}{r'^2}, \qquad R(r'') = \frac{M}{a r'} = \frac{r'' M}{a^2},$$

$$Z(r') = \frac{M^2}{a^2} \qquad Z(r'') = \frac{2M}{a^2} - \frac{2Mz}{a^2}.$$

The general values of this section can easily be reduced to series. If

$$\overset{b}{\Pi}_{i}\psi i \quad \text{and} \quad \overset{b}{\Sigma}_{i}\psi i$$

denote respectively the continued product of all values of the function ψi from a to b, and the sum of all these values, we find

$$\Omega(r') = \frac{M}{r'} + \frac{2M}{r'} \sum_{1}^{\infty} \left[\prod_{i}^{i} \left(\frac{2i-1}{2i} \right)^{2} \frac{1}{2i+2} \left(\frac{a}{r'} \right)^{2i} \right], \tag{283}$$

$$\begin{split} & \varOmega\left(r''\right) = \frac{2\,\mathrm{M}}{a} - \frac{2\,\mathrm{M}}{a} \, \sum_{1}^{\infty} \left[\prod_{1}^{i} \left(\frac{2\,i - 1}{2\,i} \right)^{2} \frac{1}{2\,i - 1} \left(\frac{r^{4}}{a} \right)^{2\,i} \right], \\ & \mathrm{R}\left(r'\right) = \frac{\mathrm{M}}{r^{\prime^{2}}} + \frac{2\,\mathrm{M}}{r^{\prime^{2}}} \, \sum_{1}^{\infty} \left[\prod_{1}^{i} \left(\frac{2\,i - 1}{2\,i} \right)^{2} \, \frac{2\,i + 1}{2\,i + 2} \left(\frac{a}{r'} \right)^{2\,i} \right], \\ & \mathrm{R}\left(r''\right) = \frac{\mathrm{M}\,r''}{a^{2}} + \frac{2\,\mathrm{M}\,r''}{a^{2}} \, \sum_{1}^{\infty} \left[\prod_{1}^{i} \left(\frac{2\,i - 1}{2\,i} \right)^{2} \, \frac{2\,i + 1}{2\,i + 2} \left(\frac{r''}{a} \right)^{2\,i} \right], \\ & Z\left(r'\right) = \frac{z}{r^{\prime^{2}} - a^{2}} \, \varOmega\left(r'\right), \\ & Z\left(r''\right) = \frac{2\,\mathrm{M}}{a^{2}} - \frac{z}{a^{2} - r'^{\prime^{2}}} \, \varOmega\left(r''\right). \end{split}$$

The values of Z in these equations are only applicable when

$$z > b$$
;

but when

$$z < b$$
,

they must be multiplied by $\frac{z}{b}$.

(284)

31. The following tables contain the value of the potential and attractions of thin rings computed by the formulæ of §§ 27 and 30. In the first table, the ring is narrow as well as thin, and in the second table, it is continuous to the centre of the ring. The values of r' and r'' are the same in both tables for the same value of i.

Table of the potential and attractions of an infinitely thin and narrow ring upon points in its plane.

i	y .'	r"	$\frac{r' \Omega(r')}{r'} = a \frac{\Omega(r'')}{r'}$	$\frac{r^{\prime 2} \mathrm{R} (r^{\prime})}{2}$	$\frac{ar'' R (r'')}{M}$	· · · · · · · · · · · · · · · · · · ·
<u> </u>			<u>M</u> — a <u>M</u>	M	M	M z M z
00	x	0.	1.000000	1.000000	0.	1.000000
5	524. 5825	0.001906	1.000001	1.000003	0.000002	1.000008
10	130.64601	0.007654	1.000015	1.000044	0.000030	1.000133
15	57.69548	0.017332	1.000075	1.000226	0.000151	1.000678
20	32.16343	0.031091	1.000242	1.000726	0.000484	1.002178
25	20.34650	0.049149	1.000605	1.001816	0.001210	1.005455
30	13.92820	0.071797	1.001292	1.003884	0.002592	1.011692
35	10.05901	0.099413	1.002484	1.007481	0.004997	1.022584
40	7.54863	0.132474	1.004431	1.013402	0.008952	1.040596
45	5.82843	0.171573	1.007667	1.022796	0.015130	1.069407
50	4.59891	0.217443	1.012146	1.037109	0.024963	1.114780
55	3.69017	0.270990	1.019159	1.059161	0.040002	1.186278
60	3.00000	0.333333	1.029660	1.093066	0.063406	1.301032
65	2.46391	0.405859	1.045496	1.146265	0.100769	1.492956
70	2.03961	0.490291	1.069889	1.233363	0.163474	1.838875
75	1.69840	0.588791	1.109147	1.387800	0.278653	2.550722
80	1.42028	0.704088	1.178052	1.707872	0.529820	4.437579
81	1.37089	0.729454	1.198292	1.815448	0.617156	5.199017
82	1.32335	0.755660	1.221947	1.949978	0.728030	6.242754
83	1.27752	0.782739 .	1.250000	2.122787	0.827787	7.734104
84	1.23346	0.810727	1.283927	2.35269	1.06876	9.98322
85	1.19095	0.839663	1.325983	2.67340	1.34741	13.6314
86	1.14997	0.869585	1.380021	3.15182	1.77180	20.1935
87	1.11046	0.900534	1.453314	3.94369	2.49037	34.0356
88	1.07232	0.932555	1.562340	5.52133	3 .95899	72.7347
89	1.03553	0.965694	1.760174	10.1627	8.4025	275.347
90	1.00000	1.000000	∞	∞	∞	∞

Digitized by Google

Table of the potential and attractions of a thin ring, continuous to its centre, upon points in its plane.

i	$\frac{a\Omega(r'')}{2\;\mathrm{M}}$	$\frac{r'\Omega(r')}{\mathrm{M}}$	$\frac{\left \frac{r^{\prime 2} \mathbf{R} (r^{\prime})}{\mathbf{M}} = \frac{a^{8} \mathbf{R} (r^{\prime\prime})}{r^{\prime\prime} \mathbf{M}}\right }{\mathbf{M}}$	$\frac{r'^8 Z (r')}{M z}$	$\frac{2a-a^{2}Z(r'')}{2 M z}$
00	1.0000000	1.0000000	1.000000	1.00000	1.00000
5	0.9999988	1.0000007	1.000002	1.00000	1.00000
10	0.9999858	1.0000073	1.00002	1.00001	1.00000
15	0.9999246	1.0000375	1.000022	1.00034	1.00023
20	0.9997578	1.0001209	1.000363	1.00109	1.00073
25	0.9993957	1.0003022	1.000907	1.00273	1.00182
30	0.9987100	1.0006456	1.001939	1.00583	1.00388
35	0.9975244	1.0012400	1.003729	1.01123	1.00748
40	0.9955980	1.0022082	1.006654	1.02011	1.01333
45	0.9925998	1.0037209	1.011247	1.03416	1.02271
50	0.9880727	1.0060176	1.018273	1.05594	1.03711
55	0.9813807	1.0094381	1.0289-3	1.08944	1.05916
60	0.9716148	1.0145048	1.044815	1.14132	1.09306
65	0.9574514	1.0219778	1.078666	1.22352	1.14626
70	0.9368815	1.0331557	1.106622	1.36010	1.23336
75	0.9066496	1.0504120	1.167882	1.60779	1.38775
80	0.8612096	1.0778420	1.278265	2.13747	1.70787
81	0.8494422	1.0853725	1.311186	2.31968	1.81544
82	0.8364986	1.0938600	1.350033	2.54992	1.94989
83	0.8222016	1.1035076	1.396511	2.84908	2.12280
84	0.8063222	1.1145718	1.453285	3.25213	2.35721
85	0.7885587	1.1279491	1.525237	3.82399	2.67338
86	0.7684940	1.1425976	1.617462	4.68618	3.15185
87	0.7455082	1.1610259	1.745602	5.86530	3.94367
88	0.7185595	1.1841932	1.940486	9.08531	5.51290
89	0.6855088	1.2155897	2.304686	18.88092	10.16588
90	0.6366197	1.2732394	∞	∞	∞

ON THE DISTRIBUTION OF CERTAIN DISEASES IN REFERENCE TO HYGIENIC CHOICE OF LOCATION FOR THE CURE OF INVALID SOLDIERS.

The disposition to be made of maimed and infirm soldiers after the war is becoming a problem of great national moment. A most able physician and zealous sanitarian* has already entered upon its solution, and after having collected materials from all important sources, has already arrived at conclusions which highly commend themselves. His leading idea is, that each one should enjoy a home connected with some occupation as a means of support; and that pensioners should not be collected into large communities by themselves, as at Greenwich, Chelsea, or the Hotel of the Invalids. With this view he has classified the various employments, especially the petty offices in the gift of the general government and of corporate bodies, which men deprived of a leg or an arm or otherwise maimed may be able to fill, or so to combine these places that one man may supply what the other lacks, and thus mutually assist each other. Such as may be broken down by camp diseases and incapable of any active labor, he proposes to classify also, and to have sanitary institutions established in various regions, the localities for them being selected with reference to the particular infirmity to be treated. It is with a view of contributing something towards this latter branch of the project, and to show how reasonable it is, that this paper is undertaken.

It has been vaguely known that certain diseases predominate in certain regions, while they are comparatively unknown elsewhere. But the actual facts in the case, so far as this country is concerned, have not, I think, been tabulated. I will confine myself for illustration to the two great classes of diseases which are most likely to be the causes of invalidism, viz: consumption and miasmatic diseases or fevers.

It has been a disputed point whether the North is really and notably more subject to consumption than the South. Judging from statistical tables derived from the principal southern cities, the only sources we have had, until recently, for affording a conclusion, the proportion of deaths there has not been much less than in the northern cities. The southerner has told us, however, that the deaths in their cities are those of northern invalids who come south to die; and that their own population is not much affected by the disease.

In the census of the United States for 1860, the diseases causing death that year were given. This census was taken simultaneously everywhere, under the same auspices, and according to the same formula. It covered a territory embracing nearly every variety of climate and surface, surpassing in these respects any registration ever before attempted;

*Dr. John Ordroneaux, of New York.

(287)

greater indeed than the whole extent of civilized Europe, and better adapted, therefore, to afford conclusions as to the effect of climate on the distribution of diseases, than all the registrations of Europe, taken, as they have been, at many different times and under many different auspices. I have made an analysis of this census, taking each State by itself, and ascertaining for each the percentage of deaths from consumption compared with deaths from all other diseases; and also the number of persons living to one person dying of consumption.

The result was both startling and decisive, and is exhibited in the following table. In this table is incorporated also an analysis of the less accurate and less extensive census of 1850, which shows, in the main, a similar result, and strongly confirms the general conclusions.

		consumption.					for tion.	
STATES.	Per cent. of all deaths, 1860.	Per cent. of all. deaths, 1850.	Mean of percent- age.	Number living to one death, 1860.	Number living to one death, 1850.	Mean of number living.	Per cent. of fever deaths, 1860.	Sums of per cent, fo fever and consumption.
Maine New Hampshire Rhode Island Vermont Massachusetts Connecticut District of Columbia Now Jersey New York Pennsylvania Michigan Maryland Delaware California Minnesota Ohio Wisconsin Indiana Kentucky Iowa Illinois Tennessee Virginia Oregon Kansas Missouri Louisiana North Carolina Florida Alabama P Mississippi Texas	29. 888 26. 971 24. 220 24. 043 23. 758 21. 611 20. 565 18. 794 18. 265 17. 375 16. 916 16. 905 16. 176 14. 965 14. 741 13. 519 11. 669 11. 131 10. 773 10. 545 10. 036 9. 942 9. 170 7. 839 7. 742 7. 244 6. 394 5. 950 5. 027 4. 853 4. 833	22. 44 21. 81 20. 96 24. 02 17. 66 16. 76 12. 61 14. 67 12. 33 14. 55 11. 45 9. 76 8. 84 9. 99 8. 42 8. 57 7. 78 7. 74 8. 48 5. 27 5. 36 5. 52 4. 91 3. 98 3. 69 3. 66	26. 164 23. 880 22. 590 24. 030 20. 709 19. 185 18. 262 15. 700 16. 467 14. 852 15. 608 14. 183 13. 332 11. 790 11. 254 10. 044 9. 850 9. 275 8. 957 8. 718 9. 210 6. 505 6. 300 5. 955 5. 430 4. 503 4. 270 4. 245	290 280 308 404 254 363 294 498 473 579 631 574 558 725 1,140 669 852 792 663 902 879 771 757 2,498 1,002 908 839 1,304 1,556 1,618 1,428 1,428 1,428	343 344 214 418 290 382 383 535 463 656 605 529 776 774 1,742 924 755 1,209 983 1,141 867 1,052 838 1,546 2,033 2,133 1,827 1,898	316 312 261 411 272 372 338 516 468 617 618 551 667 721 1,297 858 709 1,055 931 956 812	8. 500 7. 885 3. 460 7. 889 4. 732 5. 807 4. 838 4. 371 3. 701 6. 681 9. 141 5. 539 6. 475 9. 281 8. 226 6. 959 7. 206 12. 679 10. 665 12. 646 12. 602 12. 162 6. 881 7. 423 7. 839 14. 050 11. 893 12. 626 14. 417 12. 366 15. 002 15. 491	34, 664 31, 765 26, 050 31, 839 25, 441 24, 992 23, 100 20, 071 20, 168 21, 533 24, 749 19, 722 19, 807
Texas South Carolina Georgia Arkansas	4. 833 4. 279 4. 156 3. 878	3. 66 3. 32 2. 81 4. 34	4, 245 3, 799 3, 483 4, 109	1, 439 1, 804 2, 153 1, 323	1,898 2,504 3,248 1,590	1, 668 2, 154 2, 700 1, 456	15. 491 12. 290 12. 311 17. 800	19, 736 16, 089 15, 794 21, 909

It will be seen that the greatest mortality was at the extreme north, and diminished southward almost as regularly as the States could be called. Taking the first column as most correct, we see that in Maine nearly thirty per cent. of all deaths were from consumption; while in Georgia and Arkansas only about four per cent. died from that cause; or, at least nine (288)

in the extreme north to one in the extreme south. The same result is arrived at if we compare the number of persons living to one death from consumption. The variations from this direct and uniform decrease are very slight. For instance, in the District of Columbia the proportion was considerably greater than in other places of the same latitude, owing probably to the mixed population, derived as it is from all sections of the land; while in Minnesota and Iowa it is less dominant, owing, as there is reason to believe, to the remarkably equable and dry climate. Again, some allowance must be made for the newly settled territories which are mainly populated by young and vigorous men, with a dearth of females, a class in which the disease would not be expected to prevail.

The general law that liability to consumption in the United States decreases as we pass from north to south must be considered as definitively settled. Whatever the minor errors in diagnosis or in registration may have been, and considering the uniform time and method in which the data were obtained, they would weigh little against the uniform rate and direction of the variation exhibited.

Now in addition to the fact that consumption is so much more fatal at the north than at the south, it is also a fact that the mortality from all diseases is greater at the south than at the north. If we take the three northernmost States, Maine, Vermont, and New Hampshire, the mortality to every one hundred persons is 1.25, or one person to every 81 living; while if we take the southern States, South Carolina, Georgia, and Texas, the mortality is 1.41 to one hundred, or one death to every 71 living. It then becomes a question, what disease, or what class of diseases at the south compensates for the fatality of consumption at the north. The miasmatic diseases, developing fevers of various types, are well known to be very fatal at the south. If we tabulate the fevers in the same way as we have done consumption, (and this is also exhibited in the table,) we find the order of the States nearly reversed, the proportion of deaths being very small in the northern and large in the southern States. Indeed, if we add together the percentage of deaths from consumption and fever in each of the States, their sum is nearly equal for all the States; and the extremes of variation for the States, instead of one to ten, become as one to two.

It is thus evident that there are regions more favored than others in respect to exemption from certain diseases, and consequently more favorable to recovery from those diseases; and that this preference is much more strong than has been supposed—certainly more strong than has ever before been proved. What is true in regard to the two diseases in question is true to a certain extent of other diseases.

The idea, therefore, of establishing sanitaria for different diseases in parts of the country best suited to their cure, sending patients north or south, east or west, to the sea-shore or upon the mountains, as the case may be, is a most important one. Infirmaries established with this idea in view must be attended with a far greater degree of success than can be obtained from the old system of mingling together invalids laboring under all sorts of infirmities, as has been the case heretofore in all countries.

An English writer has maintained that the idea that consumption and ague are antago(289)

nistic, and that it is more rife and more rapidly fatal in northern than in southern latitudes, or that its prevalence has any connexion with a cold, wet and variable climate, are popular errors, at variance with the facts of common experience as well as with the results of statistical research. Certainly, the figures of our table, more reliable under the circumstances than any European tables covering a territory of equal extent, are opposed to such views, and strongly confirm the popular notions, so far at least as the United States are concerned.

ON SHOOTING STARS.

BY H. A. NEWTON.

The periodical shooting stars, particularly those of August and November, have hitherto very naturally attracted more attention than the sporadic ones, those which are seen on every clear night in the year. Yet these latter are objects of no small interest. There are methods of observing, and of computation, by which much can be learned about them, and observations already made show something of their numbers and of their place in the solar system. I propose to combine these existing materials and see to what they lead us. If it be said that I use rude processes and inexact data, and reject in computing terms of considerable importance, I must plead that it is a step forward to do anything in this direction, and express the hope that better data will soon warrant the use of more refined processes.

It will be necessary to assume some propositions which are probably not strictly true, and others which may not be universally conceded. I shall, however, set forth very distinctly these assumptions that future observation may correct them if erroneous, and verify them if true.

In the American Journal of Science for July, 1864, p. 135, I gave a table of the computed altitudes of three hundred and forty-two shooting stars, which are all I have been able to collect from the scientific journals.* The altitude is in each case computed from the parallax shown by observations made at two or more places at some distance from each other. These observations are always subject to large probable errors, and there is often great doubt whether different observers saw the same object. An attempt is made to separate in the table the manifestly unreliable cases from the rest. But the remaining ones individually are not all deserving of confidence. Taken together, however, many of the errors will balance, and the whole may be made the basis of computation as a first approximation.

DISTRIBUTION VERTICALLY OF THE MIDDLE POINTS OF THE LUMINOUS PORTIONS OF THE • METEOR-PATHS.

When in the table the altitudes of the beginning and ending of the visible part of a path are given, the half sum is taken as the altitude of the middle point. When only one end is given we might reject it altogether. It seems better, however, to give some weight to such determinations. By adding or substracting one-half the average descent of shooting stars we

^{*} This table, with the accompanying notes, is given in an appendix to this memoir.

obtain a number which may be used for the altitude of the middle point. This average descent according to the table is about twenty geographic miles. But the average length of track will be found to be between twenty one and thirty-four miles. If the points from which the motion of the meteors is directed are uniformly distributed over the visible hemisphere, then it may be shown that the average descent would be one-half the average length. When, therefore, only the first or last altitude is given in the table, we ought, according to the first result, to take ten miles from the first, or add ten miles to the last altitude, and use the result as the altitude of the middle point. The second result gives a quantity between five and a quarter and eight and a half miles to be added or subtracted. I have used, therefore, eight miles as half the amount of descent.

When one end only is given, the resulting altitude is counted once. When both ends are given it is counted twice. Again, certain sets of altitudes are computed from base lines that were too short or too long, or they are otherwise not deserving of full confidence. Such are the flights observed and computed by Brandes and Benzenberg in 1798, 1801, and 1802, a part of those by Brandes in 1823, those by the younger Brandes in 1833, those by Bogus-Lauski, Erman, and Littrow in 1837 and 1838, by Coulvier-Gravier in 1845, and by Le Verrier in 1856. These are counted once only, while the other sets are counted twice. In the best cases, therefore, the altitudes are counted four times. Proceeding in this manner, and converting miles into kilometres, we have the following numbers:

Altitudes between	0	and	30	kilometres	39
"	30	"	60	6.6	114
4.4	60	"	90	"	243
4.6	90	"	120	"	277
66	120	"	150	6.6	106
"	150	6 6	180	"	57
4.6	180	"	210	4 6	20
4 6	210	"	240	6.6	20
4.6	240	"	270	4.6	8
61	270	"	300	6.6	10
Altitudes over	300	kilo	metr	es ·	. 2

These numbers are exhibited graphically in figure 1.

(292)

The observations made in this country in August and November of last year, and the more reliable series of European observations, lead me to doubt very much the smaller altitudes. Most of them are in fact computed from very short base lines. While there may be some flights which are quite low, I feel safe in disregarding all the cases where the height of the middle point is said to be less than thirty kilometres. On the other hand, there must be a definite upper limit to the appearance of these trains, and the extension of the curve given above to the right of 180 at least, may be referred to errors of observation. The numbers corresponding I shall therefore disregard. In the following computations the rejection of these very high altitudes produces an effect the opposite of that which results from rejecting the very low ones, and the two effects tend to balance each other.

I shall assume that these observed paths are fair examples as to altitude of all visible paths, and hence that the frequency of the middle points at different altitudes above the earth's surface is proportional to, and may be expressed by, these numbers:

\mathbf{From}	30	kilometres to	60	by	114
"	60		90	"	243
"	90	6.6	120	"	277
"	120	6.6	150	"	106
"	150	. "	180	"	57

Representing these numbers by ρ , and the average altitude by $h_{\rm e}$, we have, approximately,

$$h_{\bullet} = \frac{\sum \rho h}{\sum \rho},$$

where in the finite summation indicated by Σ the successive values of ρ are to be taken, and h is to be successively $\frac{1}{2}$ (30 + 60), $\frac{1}{2}$ (60 + 90), &c., or 45, 75, 105, 135, and 165 kilometres. The value of h_0 , that is, the average altitude of the middle points of the meteor-paths above the earth's surface, is thus found to be 95.5 kilometres, or 59.4 English miles.

DISTRIBUTION OF THE METEOR-PATHS OVER THE APPARENT HEAVENS IN AZIMUTH.

If the middle points of the apparent paths of all the shooting stars that can be seen at one place during a long time were marked on the visible heavens, we might reasonably suppose these points equably distributed in azimuth. For let O, in figure 2, be the place of an observer, Z his zenith, and let the paths, or their middle points, be distributed through a stratum above him. If then OA and OA1 make equal angles with OZ, these lines will pass similarly through the stratum, and about as many paths should be seen along one line as along the other.

This argument implies an equable distribution of the paths horizontally along the stratum, which is not strictly true. For the number of meteors seen at a place increases through the night, and hence there should be east of us more paths than west of us at any time of the night. The difference, however, is quite small. A uniform direction of the paths may also have a little influence, especially by changing the distance at which paths can be seen.

The above conclusion accords with observation. Mr. HERRICK was accustomed to watch in company with others on the anniversaries of the August and November showers, and sometimes on other nights. He classified the paths carefully according to the quarter of the heavens in which they originated, sometimes dividing the heavens into the N., E., S., and W. quadrants, at other times into N.E., S.E., S.W., and N.W. quadrants. His results, as well as those of others observing in the same manner, are published in the volumes of the American Journal of Science since 1837. Rejecting all the observations when the heavens were not divided into four parts, and collecting the remainder, we have of 6,598 observed paths—

800 in N.	733 in N.E.
965 in E.	852 in S.E.
847 in S.	833 in S.W.
889 in W.	679 in N.W.

These numbers imply a small predominance in the southeast. Since the average zenith distance of the middle points of paths is 48°.3, the above numbers give as a centre of gravity, or centre of distribution, a point about 2° from the zenith, in the direction S. 28° E. Mr. Herrick classified them according to the place from which they proceeded. This makes the centre of distribution a little nearer the zenith, and perhaps more to the east, than it would have been if he had classified them according to their middle points.

Mr. Coulvier-Gravier has given in his Recherches sur les Étoiles Filantes some deductions from 2,309 paths observed by him. A table given on page 184 implies that a point about 5° from the zenith, and very nearly northeast, is the centre of distribution. This is farther from the zenith than the point before given. The observations are of one person, and are of course affected by his habits of watching. Combining both results we have the centre a little south of east of the zenith, and 1°.6 distant. We may safely regard these deviations from the zenith as errors of observation, and consider the relative frequency of occurrence of meteorpaths in different parts of the visible heavens as a function of zenith distance only.

DISTRIBUTION OF METEOR-PATHS AS TO APPARENT ALTITUDES.

We have seen that the relative frequency of meteor-paths in different parts of the visible heavens is a function of zenith distance only. The nature of that function cannot be determined a priori. But that there is a very rapid diminution of brilliancy as we approach the horizon is thus shown.

Let m and m^1 in the foregoing figure be the places of two meteor-paths of equal intrinsic brightness, and equal altitude, one seen in the zenith from O, and the other at a distance θ from the zenith. The one at m^1 will appear less bright at O than that at m, both because it is farther from O, and because its light has to traverse obliquely the stratum of air and mists which is near O and much below the region of shooting stars. Since $Om^1 \cos \theta = Om$, the diminution of light from distance is expressed by the factor $\cos^2 \theta$.

(294)

The relative intensity of a ray of light at the upper surface of the atmosphere, and at the earth's surface, is expressed by the formula (Bëer, Photometrische Calcul.)

$$\log\frac{\mathrm{I}^{\mathrm{I}}}{\mathrm{I}} = -\frac{\mathrm{A}}{\cos\theta},$$

where I is the intensity of the ray on entering the atmosphere, I¹ its intensity at the earth's surface, and A a constant to be determined by observation. Bouguer gives 0.8146 for the value of A, Lambert 0.59, Seidel 0.78, and Schlagintweit 0.587. The ray is here supposed to come from a distant source. As the absorption is almost all in the region below the lowest shooting stars, the same formula may be used by allowing for the diminution of intensity due to distance of the source. This gives us

$$\log \frac{\mathrm{I}^{1}}{\mathrm{I} \cos^{2} \theta} = -\frac{\mathrm{A}}{\cos \bar{\theta}}.$$

Taking the mean of the two smaller values assigned to A, that is 0.5885, and the approximate mean of the two larger values, or 0.8, and computing with them the relative brilliancy of a meteor-path at zenith distances of 5°, 15°, 25°, &c., considering the brilliancy of those in the zenith as unity, we have the following table:

TABLE I .- Relative brilliancy of shooting stars at different zenith distances.

Zenith	RELATIVE BRILLIANCY.			
distance.	A = 0.8	A = 0.5885		
50	0.9884	0. 9906		
150	0, 9070	0, 9137		
25 °	0.7562	0,7729		
350	0, 5624	0,5892		
450	0, 3590	0, 3918		
550	0. 1774	0.2124		
65°	0, 0599	0.0799		
75 °	0.0066	0.0124		
850	0.0000017	0.000016		
	1	<u> </u>		

The numbers in these columns express the relative intensity of the light from flights of equal inherent brilliancy. The rapid diminution of the light is remarkable, being much greater than that of the light of the fixed stars. The curvature of the earth is neglected in the formula, but this affects seriously only the numbers in last line or two of the table.

We cannot hence conclude the relative numbers of shooting stars seen at different altitudes. The brilliancy of paths seen at a zenith distance of 55° is about one-fifth, or one-sixth, of that which they would have if seen in the zenith. But it does not hence necessarily follow that, looking at that zenith distance, we can see only one-fifth, or one-sixth, of the paths

Digitized by Google

(295)

visible to observers under them. The proportion rendered invisible depends also upon the relative numbers of shooting stars of different magnitudes. Thus as an extreme case suppose all were of equal brilliancy, and at an equal height above the earth. Above a certain almacantaral circle we should see them all, while below that circle we should see none.

The law of distribution of the paths in apparent altitude might be obtained directly by observations arranged for that purpose. But such observations would have to be continued for a considerable time, and would involve great labor. Another method has, therefore, been adopted for obtaining the approximate law of distribution, by using materials collected for other purposes.

If we should compute or measure the zenith distances of a large number of paths seen by one observer we should find them affected by his habits of watching. Thus one who looked habitually to the zenith would see only those near that point, while one looking low down would see few near the zenith. But combining the observations of a large number of persons, we might hope that many of these individual habitudes would counteract each other, and that the aggregate results would be affected only by common errors. I have therefore taken for this purpose various sets of observations made by about forty different persons. Some are given in the Astronomische Nachrichten, some in Quetelet's Correspondence Math. et Phys, some in Heis' Wochenschrift, and some, not yet published, were made in this country in August and November last. For a part, the distances of the middle points of the several paths from the zenith for the time were computed. For the remainder, the place of the zenith was in each case computed, and the distance from it to the middle of the path was carefully measured on a good sixteen-inch globe. The number of paths thus computed, or measured, was 1,393. Of these, 30 were within 10° of the zenith, 60 were between 10° and 20° from the zenith, 142 between 26° and 30°, &c., as in the second column of the following table:

TABLE II .- Illustrating the distribution of meteor-paths over the sky.

Zenith distance.	No. of meteors.	Area of sky.	No. Area.	Sec³ θ.	No. Area sec ³ t.
0 — 10°	30	. 01519	1975	1.012	1951
10 — 20	60	. 04512	1330	1. 110	1198
20 — 30	142	. 07366	1928	1. 343	1436
30 — 40	197	. 09999	1970	1,819	1083
10 50	274	. 12325	2223	2, 828	786
50 — 60	304	. 14279	2129	5, 299	- 402
60 — 7 0	245	. 15798	1551	13, 248	117
70 — 80	110	. 16837	653	57.678	11
80 — 90	31	. 17365	178	1510. 474	• 0

(296)

If the area of the visible heavens is unity, the numbers in the third column give the areas of the corresponding zones. The numbers of paths divided by the areas give quotients proportional to the numbers of stars at different altitudes for any unit of surface. These form the fourth column. They increase slowly to about 45°, and then rapidly diminish to the horizon.

The number of paths along an oblique line OA, (figure 2,) is greater than that along a perpendicular line OZ. They must be very nearly as the cube of the length of the line, or, disregarding the curvature of the earth, as \sec^3 . θ :1. In the fifth column are given the cubes of the secants of 5°, 15°, 25°, &c., these angles being the mean zenith distances for the several zones. In the eighth column are the quotients arising from dividing the numbers in the fourth column by those in the fifth.

These numbers would be nearly constant if all the shooting stars in each direction were visible. Their rapid diminution as θ increases corresponds very strikingly with the diminution of light as shown in the previous table. This correspondence may be better shown by placing the numbers together in the same table, as below. In the first and second columns marked I and I₁, are the numbers for the intensity of the light at different zenith distances. The next column, headed n, is the value of $\frac{\text{No.}}{\text{Area } \sec^3$. θ , from table II. Dividing now n by I and I₁, we have the remaining columns. As the curvature of the earth is not taken into account, the last line is of no importance:

TABLE III.—Comparison of intensity of light of shooting stars with the proportion visible at different altitudes.

I	I ₁	n	$n \div I$	$n \div \mathbf{I}_1$
. 9884	. 9906	1951	1974	1970
. 9070	. 9137	1198	1321	1311
.7562	. 7729	1436	1899	1858
. 5624	. 5892	1083	1926	1838
. 3590	. 3918	786	2190	2006
. 1774	. 2124	402	2266	1893
. 0599	. 0799	117	1953	1464
. 0066	. 0124	11	. 1667	. 887
•			_	

Since the numbers in the last two columns are tolerably uniform, it appears that the ratio of the shooting stars visible at different altitudes is very nearly as the intensity of their light. Near the zenith the area of observation and the number of shooting stars actually seen are so small that the law is less evident. But whether we consider the values of n, or $n \div I$, or $n \div I$, or the numbers in the fourth column of the preceding table, it will be probably admitted that 1800 is not far from the value to which n approaches as θ becomes zero. The

(297)

product $1800 \times \sec^3$. $5^{\circ} \times .01519 = 27.67$ would then give the number of shooting stars, out of 1393, that should be seen within 10° of the zenith. This is equivalent to one in 50.35. That is, not quite one in fifty of all the shooting stars seen at a place should have the middle points of their apparent paths within 10° of the zenith.

NUMBER OF SHOOTING STARS THAT COME INTO THE ATMOSPHERE EVERY DAY.

Shooting stars are seen in all countries, and any differences of number for different countries thus far detected may be easily explained by the personal equations of observers, or by differences in the clearness of the atmosphere. It will be assumed that for a given considerable period of time the meteors are equally abundant over all parts of the earth's surface.

Their frequency at different altitudes from the earth's surface, however, varies. If we suppose ρ_1 to be the number of the middle points of visible paths that fall in any given period of time into a cubic unit of the space of the region of meteor-paths, we should have ρ_1 a function of the altitude above the earth's surface. Let x represent the altitude, and R the earth's radius. Suppose now an inverted cone whose vertex is at the eye of the observer, whose axis is a vertical line, and whose semi-vertical angle is 10° . In general, shooting stars which have the middle points of their paths within this cone will have the middle points of their apparent paths within 10° of the zenith.* The number in this cone in the given time will be expressed very nearly by the formula,

$$\int_{a}^{b} \rho_{1} \tan^{2} 10^{o} x^{2} dx,$$

where a and b are the values of x for the lower and upper surfaces of the region of meteorpaths.

On the other hand, the total number of shooting stars in the given period over the whole earth will be equal to

$$\int_a^b 4 \pi \rho_1 (\mathbf{R} + x)^2 dx.$$

The whole number visible at one place is 50.35 times the number seen within 10° of the zenith, and therefore 50.35 times the number within the above-described cone. Hence if *m* is the number in a given period visible in one place, and N the number that would be visible (except for daylight, clouds, moon, &c.,) through the whole earth in the same period, we should have,

$$N = \frac{m}{50 \ 35}. \int_{a}^{b} \frac{4 \pi \rho_{1} (R + x)^{2} dx}{\int_{a}^{b} \pi \rho_{1} \tan^{2} 10^{o}} \frac{dx}{x^{2} dx},$$

or since

$$\frac{4}{50.35 \tan^2 10^{\circ}} = 2,555,$$

we have

$$N = 2.555 \ m \left\{ \frac{\int_{a}^{b} \rho_{1} x^{2} dx + 2R \int_{a}^{b} \rho_{1} x dx + R^{2} \int_{a}^{b} \rho_{1} dx}{\int_{a}^{b} \rho_{1} x^{2} dx} \right\}.$$

^{*}The average apparent distance of the true centres of the meteor-paths from the centres of the apparent paths is about 10' of arc. The error resulting from the above supposition is therefore exceedingly small.

(298)

Now ρ_1 is a function of x, and assuming as heretofore that the observed altitudes are fair examples of the real altitudes, we shall have $\rho_1 = k\rho$ where k is a constant depending for its numerical value on the period of time assumed, the unit of space assumed, and the abundance of meteors during the given period. As we have assumed an equable distribution over the earth's surface, this constant may be removed outside the integral sign. Again, we may, without great error, use finite summation for integration, and drop the common factors k and dx. The equation then becomes,

$$N = 2.555 m \left\{ \frac{\sum_{a}^{b} \rho x^{2} + 2R \sum_{a}^{b} \rho x + R^{2} \sum_{a}^{b} \rho}{\sum_{a}^{b} \rho x^{2}} \right\}.$$

In this summation x is to be taken successively $\frac{1}{2}(30+60)$, $\frac{1}{2}(60+90)$, &c., that is, 45, 75, 105, 135, and 165 kilometres, and ρ is 114, 243, 277, 106, and 57. Hence

$$\Sigma_{a}^{b} \rho = 797$$
,
 $\Sigma_{a}^{b} \rho x = 76155$, and
 $\Sigma_{a}^{b} \rho x^{2} = 8135325$.

The mean value of R is 6370 kilometres, and therefore

$$N = 10460 m$$
;

that is, the number over the whole earth is to be considered as 10460 times the number visible at one place.

To obtain this result it was assumed that the shooting stars were uniformly distributed over the earth's surface, and that the conditions of visibility were uniform. If, however, we regard the actual instead of the theoretical case, we find that the numbers vary through the hours of the night. Hence for a fraction of a day, at least, the distribution is not uniform. The rapid diminution towards the horizon already shown indicates the influence of mists, &c., in absorbing the light of these bodies. But for this, more would be seen within 10° of the horizon than in the whole of the rest of the heavens; whereas, of 1393 only 31 were seen in this part of the sky. These mists, of course, vary in different climates. Hence the numbers visible in different places may reasonably be expected to differ. Let, however, a locality have an atmosphere of mean purity, let it in other respects be one of medium character with respect to the number of visible meteor-paths, and let n be the mean hourly number of shooting stars seen in a clear sky at that place, then we may consider that the whole number that under clear skies could be seen over the whole earth in one hour would be 10460n.

The value of n is of course to be found by observation. It varies for different hours of the night, but may be found either by counting the numbers that appear throughout the night, or by counting at or near midnight.

Mr. E. Bouvard, in the year from October, 1840, to October, 1841, observed at Paris on (299)

every clear, moonless night.* He always watched between 11 and 1 o'clock. During 74 hours and 22 minutes he saw 572 shooting stars. Allowing one-fourth of a minute (the period estimated by him) for recording each path, and we have an average of 8 meteors per hour. By what factor we must multiply the number seen by one observer to obtain the whole number visible at the place, we have no observations, that I know of, to determine. It is probable that this multiplier is as large as four, and that 30 is not too large for the mean value of n. This would give the average number of meteors that traverse the atmosphere daily, and that are large enough to be visible to the naked eye if the sun, moon, and clouds would permit, equal to $30 \times 24 \times 10460$, or more than seven and a half millions.

I shall now assume that the phenomenon called a shooting, or falling star is caused by a small body, (probably a solid,) which was originally moving in its own orbit in the solar system, or in space; that this body coming into the atmosphere of the earth elicits light by the loss of velocity, and is usually itself dissipated before reaching the earth's surface. The term meteoroid will be used to denote such a body before it enters the earth's atmosphere.

NUMBER OF METEOROIDS IN THE SPACE WHICH THE EARTH TRAVERSES.

Suppose many small bodies to be distributed through an indefinite space, so that there shall be n bodies in a cubic unit. Suppose that these bodies have all an uniform velocity of v units per second in the same direction. Suppose a large sphere whose radius is R, and which is without attraction, to be at rest in this space. The sphere intercepts in each second as many small bodies as are contained in a right cylinder, whose length is v, and whose radius is R, that is, $\pi n R^2 v$ bodies.

Suppose now that the sphere attracts the small bodies. Let the hyberbolic arc MB, figure 3, represent the orbit of one of these bodies which just grazes the surface of the sphere at B. Let MA be its asymptote, and EA the perpendicular on the asymptote from the centre of the sphere, then will the large

body intercept all the small bodies in a cylinder whose radius is EA. But if v is the velocity of the small bodies at a great distance from E, and v_1 is the velocity at B, then will $EB \times v_1 = EA \times v$ by the law of conservation of areas. The number of bodies intercepted by the sphere is then evidently $\pi n v \times EA^2$, that is, $\pi n v R^2 \frac{v_1^2}{v^2}$. If now v_0 be the velocity which a body would acquire by falling from infinity to the surface of the sphere when acted on only by the attraction of the sphere, then will $v_0^2 + v^2 = v_1^2$, by the law of conservation of force. Hence the sphere will meet in each second with $\pi n v R^2 \left(1 + \frac{v_0^2}{v^2}\right)$ bodies.

If the sphere has an uniform motion in any direction, the same reasoning and formulas apply by making v and v_1 represent velocities relative to the centre of the sphere.

This reasoning may be extended to several systems of small bodies. Let there be distributed uniformly through the indefinite space in each unit n' bodies of one system, n'' bodies of

*Comptes Rendus, xiii, 1029.

(300)

Digitized by Google

a second system, n''' bodies of a third system, and so forth, and let the bodies of the first system move in one direction with a velocity v' relative to the sphere; let the bodies of the second system move in another direction with a relative velocity v'', &c., then will the number of bodies which the sphere intercepts in each second be equal to

$$\pi \, \mathbf{R^2} \, n' \, v' \left(1 + \frac{{v_o}^2}{{v'}^2} \right) + \pi \, \mathbf{R^2} \, n'' \, v'' \left(1 + \frac{{v_o}^2}{{v''}^2} \right) + \pi \, \mathbf{R^2} \, n''' \, v''' \left(1 + \frac{{v_o}^2}{{v''}^2} \right) + \&c.$$

Call this N1, and we may write,

$$N^1 = \pi R^2 \left(\Sigma n' v' + v_o^2 \Sigma \frac{n'}{v'} \right),$$

where the summation indicated by Σ extends to all the systems of bodies. If V is the mean value of v', v'', v''', &c., for all the bodies, and n is sum of n', n'', n''', &c., then $\Sigma n'v' = n \nabla$. The remaining term is the sum of fractions whose denominators vary. We may, however, write

$$v_o^2 \Sigma \frac{n'}{v'} = \frac{n v_o^2}{V} (1 + \theta),$$

when θ is a number, and is evidently positive; for the mean value of fractions having the same numerator is greater than the numerator divided by the mean value of the denominators. Moreover, if the values of v', v'', v''', &c., do not vary widely, θ will be small. Making these substitutions, we have,

$$N^1 = \frac{\pi n R^2}{V} (V^2 + v_o^2 + \theta v_o^2).$$

This formula expresses the number of meteoroids which the earth intercepts, by considering the earth with its atmosphere as the supposed sphere, R its radius measured to the upper part of the region of meteor-paths, V the mean relative velocity of the meteoroids when they come into the earth's attraction, v_0 the velocity acquired by a body falling from infinity to a distance R from the centre of the earth, N^1 the average number of meteoroids coming into the atmosphere in a second, and n the mean number in a cubic unit of the space the earth is traversing in the given period.

If m be the average number visible at one place in a unit of time, we have found that N = 10460m. The volume of a sphere whose radius is R is $\frac{4}{3}\pi R^3$. Let M be the number of meteoroids in a space equal to the volume of such a sphere; then $M = \frac{4}{3}\pi n R^3$, and

$$10460 m = \frac{3}{4} \cdot \frac{\mathrm{M}}{\mathrm{VR}} \left(\mathrm{V^2} + v_{\mathrm{o}}{}^2 + \theta \, v_{\mathrm{o}}{}^2 \right),$$

 \mathbf{or}

$$\mathbf{M} = \frac{4}{3} \cdot \frac{10460 \text{ m R V}}{\mathbf{V}^2 + v_0^2 + \theta v_0^2}$$

where m denotes the average number (or fraction of a number) seen in one place per second. If the hourly number is, as before assumed, 30, then m is $\frac{1}{120}$, and

$$M = 116.2 \left(\frac{RV}{V^2 + v_o^2 + \theta v_o^2} \right). \tag{301}$$

THE MEAN LENGTH OF APPARENT PATHS.

To obtain the mean length of the apparent paths I have computed, or measured, the lengths assigned in 213 European and 803 American observations. The aggregate sum of the lengths is 12804°, which gives an average of 12°.6. As the observations were made by a large number of persons, this result will be nearly free from the individual peculiarities of observers.

NUMBERS OF TELESCOPIC SHOOTING STARS.

Shooting stars are of all degrees of brilliancy, and there are many very faint ones. Almost every hour that a man watches he sees, or thinks he sees, flights which are yet so faint as to leave him in doubt whether they are shooting stars, or only illusions. We may therefore reasonably conclude that large numbers of shooting stars are invisible to the naked eye which yet are visible through the telescope.

This conclusion is verified by observation. In 1854 Messrs. Pape and Winnecke observed* at Göttingen for 32 hours, on nights between the 24th of July and the 3d of August. Pape saw with the naked eye 312 shooting stars, and Winnecke saw 45 during the same time through a comet-seeker. The diameter of the field of view is not given, but in observations made at the same time diameters of 53' and 36', with powers of 30 and 60, were used.

If the apparent length of a meteor-path is l, and the breadth of the field of view of a telescope is b, and if the axis of the telescope is directed towards any part of the area whose length is l and breadth is b, the meteor-path would cross the field of view. If all paths were of the same length b, and were equally distributed over the whole heavens, then would a telescope command a portion of the heavens expressed by the fraction $lb \div$ surface of sky. Meteor-paths diminish somewhat in length as they diminish in brightness. On the other hand, a path may be longer when viewed by aid of the telescope than when seen by the naked eye. Hence for the approximate mean value of l may be taken $12^{\circ}.6$, the mean value of the length of the apparent meteor-paths visible to the naked eye. Let b be 53', and the ratio of those actually seen through one telescope to all those which are bright enough to be visible in it is

$$53 \times 12.6:360 \times 60 \times \frac{180}{\pi}$$
, or 1:1853.

I have selected the larger diameter of the telescope, that the ratio may be too small rather than too large. For the same reason I prefer to reject in the divisor that part of the surface of the sky which is within 15° of the horizon. This makes the ratio 1:1371.

We have seen that according to BOUVARD's observations one person should see an average of 8 shooting stars per hour. Hence if $\frac{4}{3}1^{5}2$ is taken as the ratio of the number of those seen in a comet-seeker to that of those seen by one person with the naked eye, there should be in each hour $8 \times \frac{4}{3}1^{5}2 \times 1371$, or 1582 shooting stars hourly that might be visible through a comet-seeker if the whole heavens could be watched. The ratio between those visible at one place

* Astronomische Nachrichten, xxxix, 113.

(302)

and those visible somewhere over the earth has been found to be for common meteors $1 \div 10460$. If the same ratio applies to telescopic meteors, (a supposition to which exceptions may, it is admitted, be reasonably taken,) we have for the whole number of meteoroids coming daily into the air at least $1582 \times 24 \times 10460$, or four hundred millions. There is, moreover, no reason to doubt that a further increase of optical power would reveal still larger numbers of these small bodies.

MEAN DISTANCE OF THE SHOOTING STARS.

Although an exact determination of the mean distance of the meteor-paths from an observer is not easily made, yet some idea of the limits of its value may be obtained.

Suppose a small cone whose vertex is at the eye of the observer, whose axis is perpendicular to the horizon, and whose semi-vertical angle is α . Let d be the mean distance from the observer of the middle points falling within this cone, x the distance of an element of the cone from the observer, and ρ the factor expressing the abundance of the meteor-paths in the different elements; then by the same formula as for centre of gravity,

$$d = \frac{\int_a^b \pi \rho \, a^2 x^3 \, dx}{\int_a^b \pi \rho \, a^2 x^2 \, dx},$$

where a and b are the heights of the limits of the meteor region. Using summation for integration, and taking the values of ρ , a, and b, before given, we have,

$$d = \frac{\sum_{p}^{b} \rho x^{3}}{\sum_{p}^{b} \rho x^{2}} = 116.6 \text{ kilometres.}$$

Consider now the paths along a line OA, figure 2, inclined to OZ by any angle. Many of those visible at points directly underneath them are invisible at O, because of distance. It seems reasonable that a larger proportion of the more distant than of the nearer ones should disappear. If, then, it be supposed that the number of those which disappear from different points along the line is always proportional to the actual number at each point, and the mean distance be computed on this hypothesis, we shall have a result greater than the mean distance of the paths actually seen.

If the angle AOZ is θ , the mean distance of the paths in a small cone whose axis is OA is evidently $d \sec \theta$, on the above supposition. Representing by φ the numbers in the second column of table II, we have for an approximate expression for the superior limit of the mean distance of all visible shooting stars from an observer,

$$\frac{d \Sigma \varphi \sec \theta}{\Sigma \varphi} = 232 \text{ kilometres,}$$

where the summation extends to the several values of φ , and θ has successively the values 5°, 15°, 25°, &c. If the curvature of the earth had been considered, this limit would have 39

been smaller. Hence the mean distance of shooting stars from an observer is less than 232 kilometres, or 144 miles.

Again, if the mean distance be computed by supposing the disappearing paths to be always those which are farthest from φ , the result will evidently be smaller than the truth. The approximate number of paths that disappear may be thus found. If none disappeared the numbers in the last column of table II would be constant, and equal to 1800, the earth's curvature being neglected. The quotients of 1800 divided by the numbers in that column may be represented by q, and then q will express the proportion of all the paths along OA that are visible at O. We then should have the equation,

$$\int_a^{x_1} \pi \ a^2 \sec^3 \theta \ \rho \ x^3 \ dx = q \int_a^b \pi \ a^2 \sec^3 \theta \ \rho \ x^2 \ dx,$$

where x_1 represents the altitude of the farthest visible paths. Using summation and observing that $\sum_{i=1}^{b} \rho x^2 = 8135325$, we have

8135325
$$q = \sum_{i=1}^{x_1} \rho x^2$$
.

In this summation so many values of ρx^2 as are contained entirely in 8135325q are to be taken, and with the next value of x such a value of ρ is to be found as will complete the equation. Let ρ_0 stand for the values of ρ thus used, including the last. Then if δ is the mean distance from O of the visible paths in the cone, we shall have

$$\delta = \frac{\sec \theta \sum_{i=1}^{x_1} \rho_o x^3}{\sum_{i=1}^{x_1} \rho_o x^2}$$

Computing δ when θ is 5°, 15°, 25°, &c., and the mean value of δ for the whole heavens will be equal to the expression,

$$\frac{\Sigma \varphi \delta}{\Sigma \varphi}$$
, or 140.7 kilometres;

that is, the mean distance of all shooting stars from an observer (supposing the data on which the computations are based to be correct) is greater than 140 kilometres, or 87 miles. This limit, however, cannot be very positively asserted, since the errors from various sources, especially those from using summation instead of integration, may in this case be quite considerable.

MEAN FORESHORTENING OF THE METEOR-PATHS BY PERSPECTIVE.

To determine the effect of perspective in shortening the apparent paths of meteors, we need the following geometrical proposition:

If a sphere whose radius is a be supposed to have an indefinite number of diameters, and the extremities of these diameters are uniformly distributed over the surface of the sphere, and if O be a point without the sphere whose distance from the centre of the sphere is b, then

will the mean value of the angles at O subtended by all the diameters be equal to $\frac{\pi}{2}$. $\frac{a}{b}$.

(304)

For let C be the centre of the sphere, AB a diameter, and θ the angle ACO. The mean value of AOB will be twice that of AOC. The tangent of AOC is $\frac{a \sin \theta}{b-a \cos \theta}$. Let the whole number of the radii of the sphere be n, then the number which will make the angle ACO

greater than θ , and less than $\theta + d\theta$, is $2n\pi \sin \theta d\theta$ divided by 4π , or $\frac{1}{2}n\sin \theta d\theta$. Multiply the value of AOC for each value of θ by the number of radii for which ACO is between θ and $\theta + d\theta$, and divide the sum of the products by the whole number of radii, or n, and we have the mean value of AOC. This is evidently,

$$\frac{1}{2}\int_0^{\pi} \tan^{-1} \left(\frac{a \sin \theta}{b - a \cos \theta} \right) \sin \theta \ d \ \theta.$$

The value of this expression, when b is greater than a, is $\frac{\pi}{4} \cdot \frac{a}{b}$. Hence the mean value of AOB is $\frac{\pi}{4} \cdot \frac{2a}{b}$, which was to be proved.

The mean effect of foreshortening by perspective may therefore be thus expressed. Let the diameter of the sphere be bent into the arc of a circle whose radius is b, then the angle it thus measures is to the mean value of AOB as a square to its inscribed circle.

This result is independent of the ratio of a to b, except that it must be less than unity. Hence the proposition applies to any number of equal, or unequal lines viewed by an observer, provided only that the directions of the lines be properly distributed.

If shooting stars came directly downward we should see all that were coming towards us, since they would be near the zenith. We should see few, if any, whose paths are nearly at right angles to the line of vision, for those would be down near the horizon, and concealed by mists and smoke. It seems probable that in this case the mean effect of foreshortening would be a little greater than for the diameters of a sphere.

Again, if the paths were all parallel to the horizon we should see an undue number moving nearly at right angles to the line of vision; for those which are diminished most by foreshortening are near the horizon, and hence mainly hidden.

But the directions of the meteor-paths are from all parts of the heavens, from horizon to zenith. It seems reasonable to conclude that the mean effect of foreshortening is intermediate between that for paths coming from points in the horizon and that for paths coming from the zenith. Hence it ought to be nearly represented by that of the diameters of the sphere.

This conclusion may be thus expressed. The mean length of the observed paths of shooting stars is found to be 12°.6. If every path was turned about its middle point, and bent into an arc of a circle of which the observer's eye was the centre, the mean apparent length would be increased in the ratio of a square to its inscribed circle; that is, it would be equal to $\frac{4}{\pi} \times 12^{\circ}.6$, or about 16°.04.

(305)

AVERAGE LENGTH OF THE VISIBLE PART OF METEOR-PATHS.

If l be the length of an arc, and b the radius, the angle subtended is measured by $\frac{l}{b}$. If we consider any number n of arcs, the average of the angles subtended is $\frac{1}{n} \Sigma \frac{l}{b}$. If b is constant, or is proportional to l, the value of this expression would be equal to the mean value of l divided by the mean value of b. Applying this to the meteor-paths, the higher, and hence more distant paths, are probably longer than the lower and nearer ones. The value of b does not moreover become very small. Hence we may consider $\frac{1}{n} \Sigma \frac{l}{b}$ as approximately $\frac{l}{b}$, where l_0 is the mean length and b_0 is the mean distance. We have, then, approximately,

$$\frac{l_0}{b_0} = \frac{16.04 \, \pi}{180} = 0.28.$$

Since the mean of fractions having the same numerator is greater than the numerator divided by the mean of the denominators, we may, however, consider l_0 as less than 0.28b. The difference from this cause is probally less than one-tenth of the whole amount, as will be seen by summing the values of $\frac{1}{6}$ instead of those of b.

Inasmuch as the value of b_0 is found to be between 140 and 232 kilometres, we have l^0 comprised between 39 and 65 kilometres, or between 24 and 40 statute miles, or between 21 and 34 geographical miles. The smaller number is without doubt much nearer the truth than the other.

THE MEAN DURATION OF FLIGHT AND THE MEAN VELOCITY OF THE SHOOTING STARS.

Mr. Wartmann, of Geneva, gives for the aggregate duration of 368 flights observed during one night in August, 1838, by six observers, 180°.33, which is 0°.49 for each flight. The mean of 499 estimates made in August and November last is 0°.418. The mean of the whole 867 estimates is 0°.45. If the durations given by those observers who are accustomed to estimate small intervals of time had alone been taken, the result would have been very nearly the same. Almost all observers agree that the mean duration of flight is not much, if any, greater than half a second.*

A mean duration of half a second, and a mean length of path between 39 and 65 kilometres, seem to imply a mean velocity between 78 and 130 kilometres per second. The smallest of these velocities (more than 48 miles) is twice and a half the velocity of the earth in its orbit about the sun. This cannot consist with the supposition that the meteoroids all move in closed orbits about the sun. Hence we must accept as highly probable, one, or more, of these three conclusions, viz:

1st. That the length of track is too long, which seems to involve that the altitudes, on which all the computations are based, are on the whole too large. All the altitudes greater than 150 kilometres might, I think, have been safely rejected.

^{*}A shortening of the duration of flight toward morning is indicated by theory, and is confirmed by observation.
(306)

- 2d. That the estimates of time are in general too small. This is quite probable. The mind may not make proper allowance for the time that elapses after the shooting star is seen before the eye is fairly directed to the place of the path.
- 3d. That many of the meteoroids move in hyperbolic orbits about the sun. Whatever may be said of the sporadic meteors, this cannot be true of the members of the August and November groups.

The sporadic shooting stars cannot all belong to one narrow ring which has a diameter nearly equal to that of the earth's orbit.

Such a ring would have to be but little inclined to the ecliptic in order to furnish meteors throughout the year. The bodies could not have a retrograde motion, else shooting stars would be seen only in the morning hours, and would moreover have a very distinctly marked radiant.

They cannot have a direct motion; for their velocity must then be nearly equal to that of the earth, and yet a little less than it, in order that more be seen in the morning than in the evening. Their relative velocity on entering the atmosphere would be not much greater than that of a body falling to the earth from an infinite distance,—that is, not much greater than 11 kilometres per second. So small a mean velocity is entirely inconsistent both with direct observation and with the conclusions given above, on page 16.

We might, it is true, suppose the ring to have a considerable breadth, in which case the meteors would have a larger mean relative velocity. But if the breadth be such as to furnish a velocity at all consistent with observation, we have no longer a ring lying between the orbits of Mars and Venus, but a disk extending much beyond these planets.

A large portion of the meteoroids must, when they meet the earth, have absolute velocities grater than the earth's velocity in its orbit; or else—

The sporadic meteors have a series of radiants at some distance from the ecliptic, and hence come from a series of rings considerably inclined to the earth's orbit;

For shooting stars cannot have relative motions upwards from the earth when they enter the atmosphere. If, then, the absolute velocities of the meteoroids were all less than those of the earth, their relative motions (disregarding the earth's attractions) would all be from points of the heavens less than 90° from that point to which the earth is moving. To an observer early in the evening but a small part of this hemisphere is above the horizon, while in the morning almost all of the hemisphere is visible. Hence, either the number of those seen in the morning should be very much greater than that of those seen in the evening, or else there should be a radiant in that part of the heavens which is above the horizon in the earlier hours of the night. If the earth's attraction be considered, the numbers seen in the evening would be somewhat increased, as also the numbers seen in the morning. The disproportion, therefore, between the morning and evening hours would be slightly diminished. But even with this allowance the increase through the night would be greater than the observed increase, unless one of the two suppositions above given is true.

To determine the amount of this increase there is great deficiency of reliable data. Mr.

(307)

HERRICK estimated that about three times as many were to be seen in the morning as in the evening. Mr. Coulvier-Gravier gives the following table* for the mean hourly numbers at different hours of the night.

5 ^h to 6 ^h —7.2	12h to 1h—10.7
6 to 7—6.5	1 to 2—13.1
7 to 8—7.0	2 to 3—16.8
8 to 9—6.3	3 to 4—15.6
9 to 10—7.9	4 to 5—13.8
10 to 11—8.0	5 to 6—13.7
11 to 12—9.5	6 to 7—13.0

As the observations from which these numbers have been obtained have never been published, we cannot say what confidence is to be given to them.

DISTRIBUTION OF THE ORBITS OF THE METEOROIDS IN THE SOLAR SYSTEM.

There are at least three suppositions respecting the distribution of the orbits of the meteoroids in the solar system which are naturally suggested. Either of them may be considered as plausible, and one does not necessarily exclude another.

1st. They may form a number of rings like the August group, cutting or passing near the earth's orbit at many points along its circuit. The sporadic shooting stars may be outlying members of such rings.

- 2d. They may form a disk in or near the plane of the orbits of the planets.
- 3d. They may be distributed at random, like the orbits of comets.

According to the first of these suppositions there should be a succession of radiants corresponding to the several rings. Professor Heis and R. P. Grey, esq., believe that they have detected such a series. Continued observation directed to this end will probably decide whether the meteoroids belong entirely, or mostly, to rings.

According to the second supposition the apparent paths of the sporadic meteors should, if produced in the direction of the motion, all cut the ecliptic below the horizon. For the absolute motion of the meteoroid and the earth's motion being both in or near the ecliptic, the resultant relative motion should be from some point in or near the ecliptic. That point should be above the horizon, since the body must move downward to enter the atmosphere. As the apparent path produced backward cuts this point, it will, if produced forward, cut the ecliptic below the horizon.† We have thus a simple means of determining whether the sporadic meteors come exclusively, or even largely, from a disk or lenticular-shaped group like that which the Zodiacal Light is often supposed to indicate.

If the third supposition is true, the mean velocity of the meteors is a function of the numbers of shooting stars in the different hours of the night. For if the velocity is very small few would be seen in the evening, while if it is very large there should be nearly as many in the evening as in the morning.

^{*} Recherches sur les Meteores, p. 220.

[†]The earth's attraction tends to turn the direction of the path downward, or carry the point from which the meteor comes away from the ecliptic towards the zenith. This will sometimes, though rarely, affect the above rule.

By the supposition the absolute motions would evidently be directed from all parts of the celestial sphere in equal numbers. Consider first all those bodies that have a given absolute velocity v' not less than the earth's velocity v. Let O, figure 5, be the point to which the earth is moving, and OO' a lune of the celestial sphere, then a meteor whose absolute motion is from some point of the area abcd will have its relative motion from an area ABCD nearer to 0. Let $OA = OB = \theta$, and v''represent the meteor's relative velocity. Let n be the number of meteors coming from all parts of the celestial sphere, n' the number whose relative

$$n' = \frac{nd\varphi}{4\pi} (1 - \cos \Theta a).$$

But by the law of composition of motion we also have,

motions are from OAB, and $d\varphi$ be the angle O, then we have,

$$v'^2 = v^2 + v''^2 - 2 v v'' \cos \theta$$

or

$$v'' = v \cos \theta \pm (v^1 - v^2 \sin^2 \theta),$$

and

$$v'\cos \Theta a = v''\cos \theta - v.$$

Hence,

$$1 - \cos Oa = 1 + \frac{v}{v'} \sin^2 \theta \mp \cos \theta \left(1 - \frac{v^3}{v'^2} \sin^2 \theta\right)^{\frac{1}{2}},$$

and

$$n' = rac{n d arphi}{4 \ r} \ \left\{ \ 1 + rac{v}{v'} \sin^2 heta \pm \cos heta \left(1 - rac{v^2}{v'^2} \sin^2 heta
ight)^{rac{1}{4}}
ight\}.$$

Since v' is greater than v, or equal to it, the sign of the radical in the value of v'' does not change.

Let now Z be the zenith of an observer, O be the point to which the earth is moving, ACA' be the horizon, OZ be a, AOC be a, and AOB be $d\varphi$. The number of meteors whose relative motions are from the two vertically opposite triangles OAB and OA'B', is obtained by adding to the value of n' given above its value when θ is made $\pi - \theta$, which gives $\frac{nd\varphi}{2\pi}$ (1 + $\frac{v}{v'}\sin^2\theta$). Those visible by any observer must come from points

above the horizon. Let it be assumed that the number of those that are actually visible is proportional to the number of those coming from the visible hemisphere. If No represents this latter number, then

$$N_o = \int_0^{\pi} \frac{nd\varphi}{2\pi} (1 + \frac{v}{v'} \sin^2 \theta)$$

But $\tan \theta = \cos a \sec \varphi$, since ACO is a right angle, and hence

$$\sin^2\theta = \frac{\cos^2 a \sec^2 \varphi}{1 + \cos^2 a \sec^2 \varphi},$$

Substituting and integrating we have

$$N_o = \frac{n}{2} (1 + \frac{v}{v'} \cos a).$$

(309)

To obtain this equation v' has been supposed equal to or greater than v. If v' is less than v there is a maximum value of θ , determined by the equation $v\sin\theta = v'$, and the radical in the value of v'' changes sign. The same expression for N₀ would, however, be found in this case by proceeding as follows. The number of shooting stars whose relative motion is from the triangle OAB, figure 6, would be equal to the whole number whose absolute motion is from the lune, diminished by those meteors for which θ exceeds a certain value OA. The amount of this diminution is $\frac{nd\varphi}{4\pi}$ multiplied by the difference of the two values of $1-\cos \Theta a$ obtained by changing the sign of the radical—that is, by $\frac{nd\varphi}{2\pi}(1-\frac{v^2}{v'^2}\sin^2\theta)\frac{1}{2}$. Hence,

$$N_o = n - \frac{n}{2\pi} \int_{-\phi'}^{\phi'} \left(1 - \frac{v^2}{v'^2} \sin^2 \theta\right)^{\frac{1}{2}} \cos \theta d\varphi,$$

where $\tan \theta = \cos a \sec \varphi$, and φ' is the value of φ when $v \sin \theta = v'$. Substituting and integrating, we have as before,

$$N_o = \frac{n}{2} (1 + \frac{v}{v'} \cos a).$$

Let l be the latitude of a place, h the hour angle counting from the time when the point to which the earth is moving is on the meridian, and δ the declination of that point; then $\cos \alpha = \sin l \sin \delta + \cos l \cos \delta \cos h$.

The mean value of δ for the year is zero, and hence for the entire year we may use the equation $\cos \alpha = \cos l \cos h$, and hence, approximately,

$$N_o = \frac{n}{2} (1 + \frac{v}{v'} \cos l \cos h).$$

If we compute according to this formula the value of $N_o \div n$ for the several hours of the night, for the latitude of New Haven, and that of Paris with the three values $v' = v\sqrt{2}$, v' = v, and $v' = \frac{4}{5}v$, we shall have the following table:

TABLE IV .- Hypothetical distribution of the shooting stars through the hours of the night,

Hours of	New Haven.			Paris.		
the night.	v'=v√2	v'=v	v'=1v	v' v = v √2	v' = v	v'= t v
h. 6	.875	. 970	. 765	.732	. 829	.911
7	.862	.954	.756	.725	.818	.897
8	.825	. 907	.730	701	.785	.856
9	.765	. 832	.687	.664	. 732	.791
10	. 688	. 735	. 633	. 616	. 665	.706
11	597	. 622	. 569	. 560	. 585	. 606
12	. 500	. 500	. 500	.500	. 500	. 500
1	. 403	. 378	. 431	. 440	. 415	. 394
2	. 312	. 265	. 367	.384	. 335	., 294
3	. 235	. 168	. 313	. 336	268	. 209
4	. 175	. 093	.270	. 299	215	. 144
5	. 138	. 046	. 244	.275	182	. 103
6	. 125	. 030	. 235	.268	171	. 089

(310)

The velocities have been considered as uniform. But it is evident that if some shooting stars have larger and some smaller velocities, the hourly distribution ought to be approximately that corresponding the mean velocity. It has been assumed, moreover, that the number seen is proportional to that of those coming from all parts of the visible heavens. But if the number seen is proportional to the number that strike the upper surface of the atmosphere within the circumference of a given circle of moderate dimensions, the centre of the circle being in the zenith of the observer, then must the number coming from each element of the visible heavens be multiplied by the cosine of the zenith distance of that element. By this supposition the hourly numbers would be increased in the morning and diminished in the evening from those given in table IV. Neither of these suppositions is probably strictly correct.

It should be borne in mind, on the other hand, that the earth's attraction tends to make the numbers more uniform through the night. There should also be less difference in the hourly numbers during the last half of the year than in the first half, since the point to which the earth is moving is then north of the equator.

If now we compare the numbers in table IV with Mr. Herrick's estimate, and with Mr. Coulvier-Gravier's hourly numbers given above, a mean velocity of the shooting stars is indicated as large as, or larger than, that of comets in parabolic orbits. The nature of the data will not, however, allow this conclusion to be strongly urged. Yet that the mean velocity is greater than that of the earth in its orbit seems almost certain.

NUMBER OF METEOROIDS IN THE SPACE WHICH THE EARTH IS TRAVERSING.

We have found that, of the space through which the earth is travelling, a volume equal to that of the earth (atmosphere included) contains a mean number of meteoroids expressed by the equation,

$$M = 116.2 \frac{RV}{V^2 + v_o^2 + \theta v_o^2}$$

In this equation V is the mean relative velocity of the meteoroids. If the absolute velocities were all uniform, and the points from which they come uniformly distributed over the heavens, we should have evidently,

$$V = \frac{1}{2} \int_{0}^{\pi} (v^{2} + v'^{2} - 2 vv' \cos w)^{\frac{1}{2}} \sin w dw = v + \frac{1}{3} \frac{v'^{2}}{v}.$$

For v' we may use, as an approximation, the mean absolute velocity. If v' = v, then $V = \frac{1}{3}v$. If $v' = v\sqrt{2}$, then $V = \frac{5}{5}v$. As the mean velocity of the meteoroids seems to be greater than that of the earth, and more nearly equal to that of bodies moving in parabolic orbits, the latter value will be used for V. Computing M on this supposition, neglecting the term θv_0^2 , we have its value more than 14,000. If we deduct for the volume occupied by the atmosphere, we have more than 13,000 bodies in each volume of the size of the earth, each body such as would furnish a shooting star visible under favorable circumstances to the naked eye.

40

Digitized by Google

(311)

If telescopic meteors are considered, this number ought doubtless to be increased at least forty-fold.

There seems to be little reason for supposing that the space near the earth's orbit is very much more thickly strewn with these bodies than other parts of the solar system. That they are grouped according to some law is altogether probable. But a velocity different from that of the earth implies, of necessity, that they are not grouped closely about the earth's orbit.

These bodies cannot be regarded as the fragments of former worlds; they are rather the materials from which worlds are forming. If astronomy furnishes any measure of their total mass, we may therefrom obtain some idea, rude though it be, of the mass of the individuals.

RIFLED GUNS.

BY W. H. C. BARTLETT.

PART I.

STRAINS TO WHICH RIFLED GUNS ARE SUBJECTED.

THE general introduction of the rifled gun into the military service has made an epoch in the art of war. The great range, accuracy of fire, and increased penetrating power of the missiles of these guns, have greatly expanded the dimensions of defensive works on land and changed materially the construction and character of our military marine. Such important results afford strong temptation to push the means by which they are obtained beyond the limits of prudence, and instances of disaster have created the impression that, in some cases, these limits have already been passed.

The rifled gun is not only subjected to the usual lateral strain of an ordinary smooth-bore, but also to a strain in the direction of its length, and one of torsion around its axis; and doubts have been expressed whether these strains, simultaneously applied and oft repeated, may not prove an overmatch for the endurance of the material of which this kind of gun is made. Such doubts are to be confirmed or dispelled only by numerical estimates of the strains, and the purpose of the present paper is to construct, upon principle, a set of formulas by which these estimates may be made. Many rifled guns have failed; but the same may be said of all guns, smooth and rifled; and the question is, are these failures unavoidable in the rifle?

A good gun can only result from the principles of physics, rightly applied by the rules of mechanics. Of course, such a gun may come from accident, but the chances are so adverse as to make it highly improbable. Bad guns must ever fail. Good ones may and often do fail from improper treatment. If the missile clog, explode in the bore, be not rammed home, or the powder partake of the character of a fulminate in quickness, the best guns must yield. The laws of matter are immutable. No gun can stand everything. And yet, the failure of a good gun from causes which would break any gun, is as likely to destroy confidence in all guns of the same kind as the failure of a bad one under legitimate tests, and just as likely to produce a prejudice as a well-founded conviction. It is, therefore, quite as important to know how to treat guns as to know how to make them. The circumstances attending the failure of a gun are rarely ever known, and the verdict of those charged with the investigation of the causes of failure is almost always tainted with uncertainty.

It ought to be too late for the question of gun failure to come up. The country should possess, at this late day, an efficient and safe system of artillery, with a body of officers suffi
(313)

Digitized by Google

ciently instructed in its principles and use to avoid the risk, much more the certainty, of failure. We have no such system. Of the principal guns now in use, some have come from individual enterprise at home, while others have been imported from abroad. These guns are various in pattern, and require different modes of treatment. As a system, they are wanting in that degree of uniformity, and consequently in that simplicity which comes from uniformity, essential to efficient concert on the part of large bodies of men of various grades of intelligence, that must act together in their use. In the transfer of a gunner from one station to another, he should never be conscious that he has changed his piece, except in its character of gun, howitzer, or mortar; otherwise, just that kind of disaster which has characterized some of our artillery practice during the present war must be expected.

While the investigation here proposed is intended to be general, and applicable to all rifled guns, yet, as the object is numerical results, and as these results must vary with the character of the twist, some one class of these guns must be taken as a type. Take those constructed by Mr. PARROTT.

The calibres of these guns vary from two and nine-tenths to ten inches, and the weights of the missiles range from ten to three hundred pounds. As before remarked, they, like all rifled guns, are subjected to three strains. The first stretches in the direction of the circumference, the second in the direction of the length, and the third twists around the axis. The object is to find the second and third in terms of the first. The first being known from experiment, the latter become known. The known shape and dimensions of the guns, and the strength of the material of which they are made, complete the requisite data, and the application of the formulas will be easy.

LAW OF THE TWIST.

sought.

(1)—The twist is increasing, starting with nothing at or near the bottom of the bore and reaching a maximum at the mouth, and determined in this wise, viz: CAB D represents the development of so much of the cylindrical bore as is traversed by a single groove on a plane tangent along an element of the cylinder which coincides with the groove where it begins at the bottom. A C is the development of that part of the circumference, at the bottom, into which the entire groove is projected; A N E is a quadrantal arc, described with C as a centre and CA as a radius. The quadrant ANE is divided into any number of equal parts. A B, which is the length of the groove in the direction of the axis of the gun, is divided into the same number of equal parts. Lines are drawn through the points of division on the quadrant, parallel to A B, and through those of A B parallel to A C; where these lines meet, taken in their order from A, give points in the developed groove. P M and G M are two of such lines, and M is a point on the curve

EQUATION OF THE DEVELOPED GROOVE.

'?)—Draw the radius C N, and denote the angle A C N by φ . Call the radius C A, r; take (314)

the origin at A; AB as the axis y and AC as that of x; then will $\Delta G = y$ and $\Delta P = x$. And because the arc AN and AG must, from the construction, bear to one another a constant ratio, call this ratio m, and we have

$$y = mr\varphi \cdot \cdot \cdot \cdot \varphi = \frac{y}{mr}.$$

$$x = r - r \cos \varphi = r \left(1 - \cos \frac{y}{mr}\right). \tag{1}$$

EQUATION OF A HELIX OF THE GROOVE.

(3)—Now wrap the developed surface around the cylinder of the bore; denote the radius of the latter by ρ . Conceive a plane through the axis of the gun to revolve about that line and to start from a position in which it contains the element of the cylinder upon which the groove starts at the bottom. Denote the variable angle which this plane makes with its initial position by Ψ ; then will

$$x = \rho \Psi$$
.

and Eq. (1)

$$\rho. \Psi = r \left(1 - \cos \frac{y}{mr} \right) \tag{2}$$

whence

$$y = mr \cos^{-1}\left(1 - \frac{\rho \Psi}{r}\right);$$

and denoting the length of the groove in the direction of the axis by l, and recollecting that for y = l we have $r = \rho \mathcal{F}$, we get,

$$l = mr. \cos^{-1} (1-1) = \frac{1}{2} \pi. mr.$$

 \mathbf{or}

$$mr = \frac{2l}{r}$$
.

Denote by n the ratio of the circumference of the bore to that portion of the same into which the entire helix is projected, then will

$$r=\frac{2\pi\rho}{n}$$

and these substituted in Eq. (2) give

$$\rho. \Psi = \frac{2 \pi}{n}. \rho. \left[1 - \cos \left(\frac{1}{2} \pi. \frac{y}{l} \right) \right]$$

$$\rho = \text{constant}$$
(3)

for the equations of a helix of the groove, with the origin on the axis of the piece; or

$$L = \rho \Psi - \frac{2\pi}{n} \cdot \rho \cdot \left[1 - \cos\left(\frac{1}{2}\pi \cdot \frac{y}{l}\right)\right] = 0;$$

$$\rho = \text{constant.}$$
(4)

(4)—Differentiating Eq. (3), dividing by dt, and making

$$\frac{dy}{dt} = V = \text{velocity of the projectile,}$$
(315)

we have

$$\frac{d^{y}}{dt} = \frac{\pi^2}{n!} V. \sin \left(\frac{1}{2} \pi. \frac{y}{i} \right); \tag{5}.$$

Differentiating again, and dividing by dt, we find

$$\frac{d^2 \Psi}{dt^2} = \frac{\pi^3}{2 n \cdot l^2} \cdot \nabla^2 \cdot \cos\left(\frac{1}{2} \pi \frac{y}{l}\right) + \frac{\pi^2}{n \cdot l} \cdot \sin\left(\frac{1}{2} \pi \cdot \frac{y}{l}\right) \cdot \frac{d^2 y}{dt^2}.$$
 (6)

(5)—Dividing equation (5) by 2π , and denoting the number of turns of the missile in a unit of time by ν , we find

$$\nu = \frac{\pi}{2 \, n. \, l} \cdot \text{V. sin} \left(\frac{1}{2} \, \pi. \, \frac{y}{l} \right)$$

At the mouth of the piece, y = l, and

$$\nu = \frac{\pi}{2 n l} \cdot V \tag{7}$$

(6)—Denoting the distance passed over by the projectile while turning once on its axis by d, we have

$$d = \frac{\mathbf{V}}{\mathbf{v}} = \frac{2 \ n. \ l}{\pi}. \tag{8}$$

(7)—The passage of the missile from its place of rest to the mouth of the piece is a case of constrained motion, and the conditions of constraint are given by Eq. (4.)

Make the following notation, viz:

P = intensity of the force on back of the projectile in direction of axis.

M = mass of the projectile.

I = moment of inertia of the projectile with reference to axis of piece.

N = normal pressure on edge of land.

f =Coefficient of friction.

 $\theta =$ Angle of inclination of an element of the twist to axis of piece.

s = Any indefinite arc of the helix.

Then will

$$\left(P - M \cdot \frac{d^2 y}{dt^2}\right) \cdot \delta y - I \cdot \frac{d^2 \psi}{dt^2} \cdot \delta \psi - f \cdot N \cdot \delta s = 0.$$

$$\delta s = \rho \cdot \sin \theta \delta \cdot \Psi + \cos \theta \cdot \delta y;$$
(A)

which latter substituted above gives

$$\left(\mathbf{P}.-\mathbf{M}.\frac{d^2y}{dt^3}.-f.\ \mathbf{N}\ \cos\ \theta\right)\delta y-\left(\mathbf{I}.\frac{d^2y}{dt^2}+f.\ \mathbf{N}.\ \rho.\ \sin\ \theta\right)\delta Y=0.$$

From Eq. (4) we have

$$\rho. \, \delta \, \Psi + \left[\Psi - \frac{2 \, \pi}{n} \left(1 - \cos \left(\frac{1}{2} \, \pi. \, \frac{y}{l} \right) \right) \right] \, \delta \, \rho - \frac{\pi^2}{n \cdot l} \, \rho. \, \sin \left(\frac{1}{2} \, \pi. \, \frac{y}{l} \right) \cdot \delta \, y = 0.$$

or, Eq. (4),

$$\rho. \, \delta \, \Psi - \frac{\pi^2}{n. \, l} \, \rho. \, \sin \left(\frac{1}{2} \, \pi. \, \frac{y}{l} \right) \delta \, y = 0.$$

$$\delta \, \rho = 0.$$

(316)

Multiply the first by λ , second by λ^1 , and adding to the equation above,

$$\left(P - M. \frac{d^2 y}{dt^2} - f. N. \cos \theta - \lambda. \frac{\pi^2}{\pi \cdot t} \cdot \rho. \sin \left(\frac{1}{2} \pi. \frac{y}{t}\right)\right) \delta \rho$$

$$- \left(I. \frac{d^2 \Psi}{dt^2} + f. N. \rho. \sin \theta - \lambda \rho\right) \delta \Psi$$

$$+ \lambda^1. \delta \rho$$

whence,

$$P - \mathbf{M} \cdot \frac{d^2 y}{dt^2} - f. \text{ N. cos } \theta - \lambda \cdot \frac{\pi^2}{n \cdot t} \rho. \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l}\right) = 0;$$
 (9)

$$1. \frac{d^3 \Psi}{dt^2} + f. \text{ N. } \rho. \sin \theta - \lambda. \rho. = 0;$$

$$\lambda^1 = 0$$

$$(10)$$

$$=0$$
 (10)¹

$$N = \lambda \cdot \sqrt{\left(\frac{d L}{\rho d \Psi}\right)^2 + \left(\frac{d L}{d \rho}\right)^2 + \left(\frac{d L}{d y}\right)^2} = \lambda \cdot \sqrt{1 + \frac{\pi^4}{n^2 l^2} \cdot \rho^2 \cdot \sin^2\left(\frac{1}{2} \pi \cdot \frac{y}{l}\right)}.$$

From Eqs. (9) and (10) we have

$$\lambda = \frac{P - M \cdot \frac{d^2 y}{d\ell^2} - f \cdot N \cdot \cos \theta}{\frac{\pi^2}{n \cdot l} \cdot \rho \cdot \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l}\right)};$$

$$\lambda = \frac{I \cdot \frac{d^2 \Psi}{d\ell^2} + f \cdot N \cdot \rho \cdot \sin \theta}{\rho}$$

Equating these values, we get,

$$P - M. \frac{d^2 y}{dt^2} - N. \left[f. \cos \theta + f. \rho. \sin \theta. \frac{\pi^2}{n. l} \sin \left(\frac{1}{2} \pi. \frac{y}{l} \right) \right] - I. \frac{d^2 \psi}{dt^2} \frac{\pi^2}{n. l} \sin \left(\frac{1}{2} \pi. \frac{y}{l} \right) = 0. \quad (11)$$

Make

$$a = \sqrt{1 + \frac{\pi^4}{n^2 \cdot l^2} \cdot \rho^2 \cdot \sin^2\left(\frac{1}{2} \pi \cdot \frac{y}{l}\right)}$$
 (12).

then will

$$N = \lambda \cdot a = \frac{I \cdot \frac{d^2 \Psi}{d\ell^2} + f \cdot N \cdot \rho \cdot \sin \theta}{\rho} a$$

$$N = \frac{I \cdot \frac{d^2 \Psi}{d\ell^2} \cdot a}{\rho \cdot (1 - a \cdot f \sin \theta)}.$$

Substituting this in Eq. (11,) we find

$$P-M.\frac{d^2y}{dt^2}-I.\frac{d^2\psi}{dt^2}\left[\frac{a.f.\left(\cos\theta+\rho.\sin\theta.\frac{\pi^2}{n.l}.\sin\left(\frac{1}{2}\pi.\frac{y}{l}\right)\right)}{\rho\left(1-a.f.\sin\theta\right)}+\frac{\pi^2}{n.l}.\sin\left(\frac{1}{2}\pi.\frac{y}{l}\right)\right]=0.$$

Make

$$\mathbf{A}^{1} = \frac{a.f. \left(\cos\theta + \rho. \sin\theta. \frac{\pi^{3}}{n.l} \sin\left(\frac{1}{2}\pi. \frac{y}{l}\right)\right)}{\rho \left(1 - a.f. \sin\theta\right)} + \frac{\pi^{3}}{n.l} \sin\left(\frac{1}{2}\pi. \frac{y}{l}\right). \tag{13}$$

and the above becomes,

(317)

$$P - M. \frac{d^2 y}{dt^2} - I. \frac{d^2 \psi}{dt^2}. A^1 = 0.$$

Substituting the value of $\frac{d^2 \Psi}{dt^2}$, as given by Eq. (6), we find

$$\frac{d^2 y}{dt^2} = \frac{P - A^1 \cdot I \cdot \frac{\pi^3}{2 \pi \cdot l^2} \cos \left(\frac{1}{2} \pi \cdot \frac{y}{l}\right) V^2}{M + A^1 \cdot I \cdot \frac{\pi^2}{n \cdot l} \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l}\right)};$$

Multiplying both numbers by M, and subtracting from P = P,

$$P - M. \frac{d^2 y}{dt^2} = A^1. I. \frac{\pi^2}{n. l} \sin \left(\frac{1}{2} \pi. \frac{y}{l} \right) \frac{P + M. V^2. \frac{\pi}{2 l} \cot \left(\frac{1}{2} \pi. \frac{y}{l} \right)}{M + \frac{\pi^2}{n. l} \sin \left(\frac{1}{2} \pi. \frac{y}{l} \right) I. A^1.}$$
(14)

Again, substituting the value of $\frac{d^2y}{dt^2}$, as given in Eq. (6), we find

$$\frac{d^2 \psi}{dt^2} = \frac{\pi^2}{n \cdot l} \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right) \frac{P + M \cdot V^2 \cdot \frac{\pi}{2 l} \cot \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right)}{M + \frac{\pi^2}{n \cdot l} \cdot \sin \cdot \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right) \cdot I \cdot A^1}$$

$$\frac{I}{\rho} \cdot \frac{d^2 \psi}{dt^2} = \frac{I}{\rho} \cdot \frac{\pi^2}{n \cdot l} \cdot \sin \cdot \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right) \cdot \frac{P + M \cdot V^2 \cdot \frac{\pi}{2 l} \cdot \cot \cdot \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right)}{M + \frac{\pi^2}{n \cdot l} \cdot \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right) \cdot I \cdot A^1}. \tag{15}$$

Before the value of A^1 can be employed, it will be necessary to find $\cos \theta$, and $\sin \theta$, in functions of y. For this purpose we have

$$\sin \theta = \frac{\rho \cdot d \Psi}{\sqrt{\rho^2 d \Psi^2 + dy^2}} = \frac{1}{\sqrt{1 + \frac{dy^2}{\rho^2 \cdot d \Psi^2}}} = \frac{\frac{\pi^2}{n \cdot l} \cdot \rho \cdot \sin\left(\frac{1}{2}\pi \cdot \frac{y}{l}\right)}{\sqrt{1 + \frac{\pi^4}{n^2 l^2} \cdot \rho^2 \cdot \sin^2\left(\frac{1}{2}\pi \cdot \frac{y}{l}\right)}};$$

$$\cos \theta = \frac{dy}{\sqrt{\rho^2 d \Psi^2 + dy^2}} = \frac{1}{\sqrt{1 + \frac{\rho^2 \cdot d \Psi^2}{dy^2}}} = \frac{1}{\sqrt{1 + \frac{\pi^4}{n^2 \cdot l^2} \cdot \rho^2 \cdot \sin^2\left(\frac{1}{2}\pi \cdot \frac{y}{l}\right)}};$$
(16)

which substituted in the value for A1, a will disappear, and give

$$A^{1} = \frac{f + \rho \cdot \frac{\pi^{2}}{n \ l} \cdot \sin\left(\frac{1}{2} \pi \cdot \frac{y}{l}\right)}{\rho \left(1 - f \cdot \rho \cdot \frac{\pi^{2}}{n \ l} \cdot \sin\left(\frac{1}{2} \pi \cdot \frac{y}{l}\right)\right)}$$

and making $A = A^1 \rho$, the formula will stand

$$\mathbf{A} = \frac{f + \rho \cdot \frac{\pi^2}{n \cdot l} \cdot \sin\left(\frac{1}{2}\pi \cdot \frac{y}{l}\right)}{1 - f \cdot \rho \cdot \frac{\pi^2}{n \cdot l} \cdot \sin\left(\frac{1}{2}\pi \cdot \frac{y}{l}\right)}$$
(17)

(318)

$$P - M \frac{d^2 y}{dt^2} = I. A. \frac{\pi^2}{n \cdot l. \rho}. \sin \left(\frac{1}{2} \pi. \frac{y}{l}\right) \cdot \frac{P + M. V.^2 \frac{\pi}{2 l} \cdot \cot \left(\frac{1}{2} \pi. \frac{y}{l}\right)}{M + I. A. \frac{\pi^2}{n \cdot l. \rho}. \sin \left(\frac{1}{2} \pi. \frac{y}{l}\right)}$$
(18)

$$\frac{I}{\rho} \cdot \frac{d^2 \, \mathcal{V}}{dt^2} = \frac{I}{\rho} \cdot \frac{\pi^2}{\mathbf{n} \cdot \ell} \cdot \sin\left(\frac{1}{2} \, \pi \cdot \frac{y}{\ell}\right) \cdot \frac{P + M \cdot V^2 \cdot \frac{\pi}{2 \, \ell} \cdot \cot\left(\frac{1}{2} \, \pi \cdot \frac{y}{\ell}\right)}{M + I \cdot A \cdot \frac{\pi^2}{\mathbf{n} \cdot \ell \cdot \rho} \cdot \sin\left(\frac{1}{2} \, \pi \cdot \frac{y}{\ell}\right)}.$$
(19)

(8)—If p_1 denote the pressure of the gas on one square foot of surface, then

$$P = p_1 \cdot \pi \cdot \rho^2$$
. (20)

and denoting the weight of the projectile, in pounds, by W, and the principal radius of gyration of the missile in reference to the axis of rotation by k_1 , then will

$$I = \frac{W}{g} k_1^2, \quad ; \quad M = \frac{W}{g}$$
 (21)

and Eqs. (18) and (19) become

$$P - M \cdot \frac{d^2 y}{dt^2} = A \cdot \frac{\pi^2 \cdot k_1^2}{\rho \cdot n \cdot l \cdot g} \cdot \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right) \cdot \frac{p_1 \cdot g \cdot \pi \cdot \rho^2 + W \cdot V^2 \cdot \frac{\pi}{2 l} \cdot \cot \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right)}{1 + A \cdot k_1^2 \cdot \frac{\pi^2}{n \cdot l \cdot \rho} \cdot \sin \left(\frac{1}{2} \pi \cdot \frac{y}{l} \right)}$$
(22)

$$\frac{I}{\rho} \cdot \frac{d^2 \mathcal{V}}{dt^2} = \frac{\pi^2 \cdot k_1^2}{\rho \cdot \mathbf{n} \cdot l \cdot \mathbf{g}}, \sin \left(\frac{1}{2}\pi \cdot \frac{\mathbf{y}}{l}\right) \cdot \frac{p_1 \cdot \mathbf{g} \cdot \pi \cdot \rho^2 + W \cdot V^2 \cdot \frac{\pi}{2 l} \cdot \cot \left(\frac{1}{2}\pi \cdot \frac{\mathbf{y}}{l}\right)}{1 + A \cdot k_1^2 \cdot \frac{\pi^2}{\mathbf{n} \cdot l \cdot \rho} \cdot \sin \left(\frac{1}{2}\pi \cdot \frac{\mathbf{y}}{l}\right) \tag{23}$$

(9)-Denote by C the strain in direction of circumference of the bore, then

$$C = p_1. \ 2 \ \rho. \ (y+c)$$
 (24)

in which c is the distance from the bottom of the bore to the beginning of the groove.

At the mouth of the gun, y = l, and the working formulas become

$$A = \frac{f + \rho \cdot \frac{\pi^2}{n \cdot l}}{1 - f \cdot \rho \cdot \frac{\pi^2}{n \cdot l}}$$
 (25)

$$P - M. \frac{d^2 y}{dt^2} = A. \frac{\pi^2. k_1^2}{n. l.} \cdot \frac{p_1. \pi. \rho.}{1 + A. \frac{\pi^2 k_1^2}{n. \rho. l}}$$
(26)

$$\frac{I}{\rho} \cdot \frac{d^2 \Psi}{dt^2} = \frac{\pi^2 k_1^2}{n \cdot l} \cdot \frac{p_1 \cdot \pi \cdot \rho}{1 + A \cdot \frac{\pi^2 \cdot k_1^2}{n \cdot \rho \cdot l}}$$
(27)

$$C = 2 p_1 \cdot \rho (l+c) \tag{28}$$

The value of λ^{i} being zero, Eq. $(10)^{i}$ shows no action to draw the expanding ring of the projectile outward, on the part of the edge of the land.

Equation (24) gives the circumferential, equation (22) the longitudinal, and equation (23) (319)

the torsion strain, all expressed in pounds, and the lever arm of the latter being the radius of the bore. The strength of the gun material will readily suggest the figure and dimensions necessary to resist these strains. The strength of the material should be ascertained by careful experiments, so conducted as to subject cylinders of the metal simultaneously to the three kinds of strain, the intensities of the strains bearing to one another the proportions suggested by the formulas.

(10)—To apply these formulas, it will only be necessary to find, experimentally, the value of p_1 , and that of V, for different values of y, and to compute from the known figure and dimensions of the projectile the value of k_1 . The values of p_1 , corresponding to given values of y, may be found by a modification of RODMAN's process of plugs. To find V, for the same value of y, let a gun of each of the calibres employed in service, be successively reduced in length, and the initial velocity at each reduction determined by the electro-ballistic pendulum, observing to keep the charges of powder, as well as the projectiles, as nearly alike as possible in the several trials.

(11)—Let us illustrate the mode of computation by applying the formulas to a probable case.

In Major Rodman's work, entitled "Experiments on Metals and Gunpowder," page 200, it appears that in a 42-pounder, 8 pounds of powder behind a solid shot and sabot gave a pressure of the gas on a square inch, at 14 inches from the bottom of the bore, equal to 46,100 pounds; at 28 inches 12,200; at 42 inches 5,500; at 56 inches 5,350; at 70 inches 4,970, and at 84 inches 5,700; showing a pretty rapid decrease after the projectile begins to move, and from which it may be assumed that the missile acquires half its initial or maximum velocity at about one third the distance from the starting point to the mouth of the piece.

In a little pamphlet by Mr. Parrott, entitled "Ranges of Parrott Guns and Notes for Practice," we find, at page 9, that with 10 pounds of powder, a shell, of which the weight was 101 pounds, was projected from his 100-pounder with an initial velocity of 1,250 feet; and at page 10, that the same charge of powder, in same gun, gave, with an 80 pound missile, a pressure, according to the plug process, of 81,000 pounds to the square inch. It is assumed that the pressure behind the 101-pound shell was not less than this, and that this pressure occurred soon after the projectile began to move. Then, assuming, according to the suggestions of Rodman's experiments, that this pressure was reduced to one-third at one-third the distance from the point of the projectile's departure to the mouth of the gun, and taking the dimensions of the 100-pounder from the pamphlet, page 19, the data for computation will stand:

$$\rho = 0.266$$

$$\rho_1 = \frac{1}{3} \times 81000 \times 144 = 3888000.$$

$$l = 10.833$$

$$\frac{1}{2} \pi. \frac{y}{l} = 90^{\circ} \times \frac{1}{3} = 30^{\circ}$$

$$\mathbf{n} = 3.5$$

$$\mathbf{k_1^2} = 0.035378$$

$$\mathbf{v} = 625$$

$$\mathbf{c} = 1$$
(320)

$$g=32$$
 $y=3.61$
 $\pi=3.1416$ $f=0.217$ friction between brass and cast iron.
 $W=101$.

Eq. (24)	Nos	\mathbf{Logs}		Logs
$p_1 =$	3888000;	6.5897263		
$2 \rho =$	0.532	9.7259116		•
y+c=	4.611	0.6637951		
`C =	9537457 lbs	6.9794330		
Eq. (17)				•
$\rho =$	0.266	9 4248816		9.4248816
$\pi^2 =$	(3.1416)3	0.4971509×2		0.9943018
# == 7	3.5	0.5440680	a c	9.4559320
l =	10.833	1.0347487	ac	8.9652513
$\rho \cdot \frac{\pi^2}{n \cdot l}$	0.06924			8.8403667
$\sin\left(\frac{1}{2}\pi.\frac{y}{l}\right) = \sin 30^{\circ}$				9.6989700
$\rho.\frac{\pi^3}{n.l}.\sin\left(\frac{1}{2}\pi.\frac{y}{l}\right)$	0.03462			8.5393367
f =	0 217			9.3364597
$f. \rho. \frac{\pi^3}{\pi. l} \sin \left(\frac{1}{2} \pi. \frac{y}{l}\right)$	0.00751			7.8757964
0.217 + 0.03462	0.25162			9.4007452
1 - 0.00751	0.99249		a c	0.0032739
A ·	0.2535			9.4040191
Eq. (23)				
\mathbf{w}	101		•	2.0043213
$\mathbf{V_3}$	(625) ²	2 7958800 × 2		5.5917600
π	3.1416			0.4971509
$\cot \frac{1}{2} \pi \frac{y}{l} =$	cot. 30°		•	0.2385606
2 <i>l</i>	21.666	•	a c	8.664210
W. V ² . $\frac{\pi}{2l}$. cot. $\left(\frac{1}{2}\pi, \frac{y}{l}\right)$	9908341			6.9960138
42			(32	21)

$p_1 =$	3888000			6 5897263
g =	32	•		1.5051500
π=	3.1416			0.4971509
ρ^{2}	(0.266) ²	9.4248816×2		8.8497632
p ₁ . g. π. ρ ²	2765610			7.4417904
W. V ² . $\frac{\pi}{2l}$. cot. $\frac{1}{2}$ π . $\frac{y}{l}$	9908341			
$p_1 \cdot g \cdot \pi \cdot \rho^2 + W \cdot V^2 \cdot \frac{\pi}{2l} \cot . 30^\circ =$	12673951			
A =	0.2535			9.4040191
k 1 ³	0.035378			8.5487333
π^2	$(3.1416)^2$	0.4971509×2		0.9943018
sin 30°				9.6989700
28	3.5	0.5440680	a c	9.4459320
1	10.833	1.0347487	a c	8.965 2513
P	0.266	9.4248816	a c	0.5751184
	0.004389			7.6423259
	1			====
$1 + A. k_1^3. \frac{\pi^2}{n. l. \rho}. \sin 30^\circ$	1.004389		a c	9.9980985
$p_1 g. \pi. \rho^3 + W. V^2. \frac{\pi}{2 l}$ cot. 300	12673951			7.1029121
sin 30°				9.6989700
k_1^2				8.5487333
π^2				0 9943018
ρ			a c	0.5751184
n	•		a c	9.4559320
7			a c	8.9652513
8			a c	8.4948500
$\frac{\mathbf{I}}{\rho} \cdot \frac{d^3 \Psi}{dt^3}$		6841,7 lbs		3.8351674
A 🏲				9.4040191
$P-M.\frac{d^2y}{dx^2}$		1734,5 lbs		3.2391865

^{(12)—}Let us now compute the strains when the missile has reached the mouth of the gun. For this purpose Eqs. (25), (26), (27), and (28) are applicable.

(322)

	$f + \rho \cdot \frac{\kappa}{n \cdot l} = 0.2$	217 + 0.0676 = 0.2846		9.454234
1	$1 - f \cdot \rho \cdot \frac{\pi^2}{\pi \cdot l} = 1.0$	000 - 0.0147 = 0.9853	a c	0.006431
	A =	0.28884		9.460666
Eq. (27)				
	A			9.460666
	π^{3}			0.994301
	k_1^2			8.548733
	n		a c	9.455932
	l		a c	8 965251
	P		a c	0.575118
	A. $\frac{\pi^3 k_1^2}{8, l, \rho} =$	0.01		8.000003
				====
	1 + 0.01 =	1.01	a c	9.995678
	P			9.424881
	π			0.497150
	$p_1 = \frac{1}{8}$	$< 81000 \times 144 = 1458000$		6.163757
	k_1^2			8.548733
	π ³			0.994301
	n		a c	9.455932
	l	10.833	a c	8.965251
$\frac{\mathbf{I}}{\hat{\rho}} \cdot \frac{d^3 \Psi}{dt^3}$		11110 lbs		4.045687
<i>,</i>		A		9.460666
$\mathbf{M.} \frac{d^2y}{dt^2}$		3208,9 lbs		3.506353
Eq. (28)				
• • •	2			0.30103
	p_1			6.163757
	ρ			9.424881
	(l+c)=10.	833		1.034748
	C =	8422050 lbs		6.925417

(13)—Next, compute the effective work the torsion strain performed on the projectile during the passage of the latter to the mouth of the piece. For this purpose we have Eq. (5), making y = l.

 $\frac{\mathrm{I}}{2} \left(\frac{d \Psi}{dt} \right)^{2} = \frac{\mathrm{W}}{2 g} \cdot k_{1}^{2} \cdot \frac{\pi^{4}}{\pi^{2} \ell^{2}} \cdot \mathrm{V}^{2}.$

(323)

$V^2 =$	$(1250)^2$	3.0969100×2		6.1938200
$\pi^4 =$	$(3.1416)^4$			1.9886036
k_1^2				8.5487333
W =	100			2.0000000
2 g =	64		a c	8.1938200
*3 =	$(3,5)^2$		a c	8.9118640
$l^2 =$	(10,833) ³		a c	7.9305026
$\frac{\mathrm{I}}{2} \cdot \left(\frac{d \Psi}{dt}\right)^2$		5852 ^{fp} , 5		3.7673435
2 (110)	•			

The work of the torsion strain will be that required to raise 5852,5 pounds through a vertical distance of one foot in the time required for the projectile to pass from rest to the mouth of the gun.

·(14)—To compute the work in the missile, due to its motion of translation, we have

W = 100 l	bs		2.0000000
g = 32		a c	8.4948500
2 = 2	•	a c	9.6989700
$V^2 = (1250)$))²		6.1938200
$\frac{\mathbf{M}\mathbf{V^2}}{2} = \frac{\mathbf{W}}{2g}.\mathbf{V^2}$	2441406 ^{fp}		6.3876400
(15)—The torsion st	train at mouth, or T = 11110	log	4.0456870
Circumfe	rential or $C = 8422050$	a c	3.0745822
$rac{\mathbf{T}}{\mathbf{C}}$	0.001319		7.1202692
\mathbf{C}	0,002020		***************************************

So that the strain which twists the gun is but a little more than one one-thousandth part of that which acts to split it.

And again,

Longitudinal strai	n, or $L = 3208,9$	log	3.5063534
Circumferential	or $C = 8422050$	a c	3.0745822
-			
$\frac{L}{C} =$	0,000381		6.5809356

and the longitudinal strain is not quite four ten-thousandths that which acts to split.

(16)—To integrate Eqs. (18) and (19) it will be necessary to have the law of continuity that connects the different values of p_1 , which is, as we have seen from Major Rodman's experiments, variable. The integral function would enable us to find the actual work performed by the torsion and longitudinal strains during the motion of the missile within the gun. The work performed by the expansive action of the gas against the base of the projectile would also result from the integration of the expression

(324)
$$\pi. \ \rho^{2}. \ p_{1}. \ dy = \pi. \ \rho^{2}. \ \mathbf{F} \ (y) \ dy.$$

in which

$$p_1 = \mathbf{F}(y)$$
;

and we should have all the data to ascertain with certainty whether the results, as regards intensity of action, furnished by the plug experiments of Major Rodman, are true estimates of the expansive energy of the gas within the gun. Unfortunately, the experiments thus far have not been sufficiently numerous nor conducted in a way to evolve this desirable law. Nor will its precise mathematical expression be matter of easy attainment, since so much depends, not only upon the devices of the experiments, but also upon the nature and character of the powder as regards the proportions of its chemical ingredients, the size and compactness of its grains, and the mode of manufacture.

(16)—But we are not without the means of a fair proximate test of Major Rodman's results. Take at random any one set of them, say the first, on page 196, as given by a 42-pounder, smooth bore, with a cylindrical missile, of which the weight was 75.44 pounds, the charge of powder being 5.13 pounds, viz:

		Pressure in p	ounds at differen	distances from b	ottom of the bore	on square luch.	
Initial velocity 904 feet.	At bottom	14 in, = 1f, 1666	28 in. = 2f,3333	42 in. = 3f,5000	56 in. = 4f,6666	70 in. = 5f,8333	84 in. = 7f,0000
	36420 lbs.	15850	8370	6470	6850	8050	6720

In the Ordnance Manual, page 18, we find the diameter of the bore to be 7 inches = 0^{c} , 5833; the length of the bore 110 inches = 9^{c} , 1666; and, at page 288, the length of the cartridge for each pound of powder 0,98 inch. The length of the cartridge will be $5,13 \times 0.98 = 5.0274$ inches = 0.419 feet; and the path over which the gas worked on the projectile 9^{c} , 1666 — $0.419 = 8^{c}$, 7476. The table gives the intensities of this action at the beginning, then at a point whose distance from it is 1.1666 - 0.419 = 0.7476, and then at equal intervals of 1.1666 of a foot to the distance 7 feet. At the mouth of the piece it will be assumed that the pressure is 6000, suggested by the apparent law of decrease. The work, denoted by Q, will come from

$$Q = \pi. \ \rho.^{3} \ 144 \left\{ + \left(\frac{\frac{36420 + 15850}{2} \times 0,7476}{2} + 8370 + 6470 + 6850 + 8050} \right) \times 1,1666 + \frac{6720 + 6000}{2} \times 1,7476 \right\}$$

in which

$$\rho = \frac{0.5833}{2} = 0^{\circ},2916$$
;

whence

$$Q = \pi$$
. ρ . 144 \(26135 \times 0.7476 \times 41025 \times 1.16666 + 6360 \times 1.7476 \)

(325)

26135	4.4172225	
0,7476	. 9 873 6693	
,	4.2908918	19538
41025	4.6130486	
1,16666	0.0669220	
	4.6799706	47860
6360	3.8034571	
1,7476	0.2424420	
	4.0458991	11115
	4.8949416	78513
144	2.1583625	
$\rho^2 = (0.2916)^3$	8.9295750	
π	0.4971509	
$Q = 3020160^{fp}$	6.4800300	
-		

Next, estimate the work with which the missile and gas leave the gun. Denote this by Q'; then

$$Q' = \frac{MV^2}{2} = \frac{W}{2g}. V^3.$$

in which

$$W = 75,44 + 5,13 = 80,57$$
 $V^2 = (904)^2$
 $S = 9123368$
 $W = 80,57$
 1.9061734
 $2g = 64$
 ac
 8.1938200
 C
 1028790^{6p} ,
 6.0123302

Then the work of friction between the projectile and gun. Call this Q',

$$Q'' = f. W. l$$

in which

$$f = 0.138;$$
 $W = 75.44;$ $l = 9.1666 - 0.419 = 8.7476$
 $f = 0.138$ 9.1398791
 $W = 75.44$ 1.8776017
 $l = 8.7476$ 0.9418889
 $Q'' 91.^{10}068$ 1.9593697

Next, compute the work of the atmospheric resistance. For this purpose take the formula of PIOBERT for spherical projectiles, viz:

(326)

$$\mathbf{R} = \mathbf{A}. \ \pi. \ \rho^2. \left(\mathbf{V}^2 + \frac{\mathbf{V}^3}{\mathbf{V}_1} \right)$$

in which A is the resistance, in pounds, on a square foot of cross section of the projectile for a velocity equal to one foot a second; V_1 the velocity which would make the two terms of the binomial factor equal to one another; and R the entire atmospheric resistance. For spherical balls, A = 0,000514; and for pointed missiles one-third less, or

$$A = 0.000342$$

and

$$V_1 = 1427$$
 feet.

While the actual velocity of the projectile increases rapidly from the point of starting to the mouth of the piece, the decrease in the elastic pressure shows a diminution in the acceleration. The law which connects the actual velocity of the missile with its distance from the point of starting may, with reasonable approximation to the truth, be assumed to be that which connects the ordinate of a parabola of suitable parameter with its corresponding abscissa, the curve being referred to its vertex and axis. This would give

$$V^2 = 2 p y$$
;

at the mouth of piece y = l; and V = V = initial velocity. Whence

$$V^2 = 2 p. l.$$

or

$$2 p = \frac{V^3}{l};$$

which substituted above gives

$$V = \sqrt{\frac{\overline{V^2}}{l} \cdot \underline{y}}.$$

This substituted in PIOBERT's formula gives

$$R = A. \pi. \rho^{2}. \left(V^{2}. \frac{y}{l}. + \frac{V^{3}}{V_{1}}. \frac{y^{\frac{3}{2}}}{l^{\frac{3}{2}}} \right)$$

whence, denoting the work of the atmospheric resistance by Q''',

$$Q''' = \int R \ dy = \int_{y=l}^{y=0} A. \ \pi. \ \rho^2. \left(V^2. \frac{y \ dy}{l} + \frac{V^3}{V_1} \frac{y^{\frac{3}{2}} \ dy}{l^{\frac{3}{2}}} \right)$$

or

$$Q''' = A. \pi. \rho^{2}. l. V^{2}. \left(\frac{1}{2} + \frac{2}{5}. \frac{V}{V_{1}}\right)$$

$$V = 904$$

$$V_{1} = 1427$$

$$a c$$

$$0 3010300$$

$$5$$

$$a c$$

$$0.2534$$

$$0.5000$$

$$0.7534$$

$$0.7534$$

$$0.7534$$

$$0.7534$$

$$0.7534$$

(327)

whence

0.7534		9.8770256		
$V^2 = (904)^2$		5.9123368		
l = 8.7476		0.9418889		
$\rho^{2} = (0.2916)^{2}$		8.9295750		
$\pi = (3,1416)$		0.4971509		
A = 0,000342		6.5340261		
$Q''' = 492,^{fp}05$		2.6920033		492. ^ф 05
$\mathbf{Q''}$				91.07
. $\mathbf{Q'}$				1028790.00
$\mathbf{Q'} + \mathbf{Q''} + \mathbf{Q'''}$	a c	3.9874272	a c	1029373.412
${f Q}$		6.4800300		•
$\frac{Q}{Q' + Q'' + Q'''} = 2.934$		0.4674572		

Thus showing the work performed by the forces indicated by the plug experiments to be nearly three times as great as that with which the missile leaves the gun, augmented by the work of friction and of atmospheric resistance.

Taking one-third of the circumferential, longitudinal, and torsion strains, as they existed at the instant the missile left the piece, in the example of the 100-pounder, these strains will stand—

$$C = 2807350 \text{ lbs}$$
 $T = 3703.3$
 $L = 1069.6$

giving the same ratios as before, and from which it is obvious that the failure of rifled guns, with the PARROTT twist, must be sought in some cause other than the superaddition of the pulling and twisting strains to that which acts to split the piece; and, so far as the principles of rifling are concerned, this gun may be made as safe as the common smooth-bore.

(17)—The values of C, T, and L, will vary with the character of the twist. An increasing twist which develops into the arc of a circle, tangent to a rectilinear element of the bore at the bottom of the piece, is suggested in Captain Benton's book on ordnance and gunnery; and the uniform twist is in common use. The equation of the first is

$$y^{2} = 2 \ ax - x^{2};$$
 $x = \rho. \ \Psi$

$$L = y^{2} - 2 \ a. \ \rho. \ \Psi + \rho^{2}. \ \Psi^{2} = 0$$

$$\rho = \text{constant}$$
 (4)

in which a is the radius of the circle. Making y=l, and $\Psi=\frac{2\pi}{n}$, we have

$$a = \frac{l^2 + \rho^2 \cdot \frac{4 \pi^2}{n^2}}{4 \rho \cdot \frac{\pi}{n}}$$
 (29)

(18)—The Equation of the second or uniform twist is (328)

Digitized by Google

y = ax:

whence

$$L = y - a. \rho. \Psi = 0$$

$$\rho = \text{constant}$$
(4)"

in which a is the cotangent of the angle which an element of the helix makes with the axis of the piece. Making y=l,

$$a = \frac{n \cdot l}{2 \cdot \pi} \tag{30}$$

Equations (4)' and (4)" treated after the manner of Eq. (4) and combined with Eqs. (A), will give new values for T and L.

(19)—But why are the indications of the plug, in excess of the pressure measures? Let us see. The circumstances of the experiments are these, viz: A hole is made in the barrel of the gun, in the direction of a line intersecting at right angles the axis. In this hole is inserted a plug, tight enough to permit freedom of motion and yet prevent the sensible escape of gas. The outer end of the plug terminates in an obtuse lanceolate cutter. In contact with the point of this cutter is firmly secured a piece of thick copper plate, with its plane face at right angles to the axis of the plug. When the gun is fired the expanding gas acts upon the head of the plug and drives it into the plate, and the intensity of the action is inferred to be measured by a dead weight which, by its simple pressure and without sensible motion, will produce an equal cut.

Denote by x the distance the cutter has penetrated the copper; by $F_1(x)$ the corresponding pressure of the expanding gas on the end of the plug, in pounds; by $F_2(x)$ the corresponding resistance of the copper; by W the weight of the plug and cutter, and by V their common velocity; then will

$$\int F_1(x) \ dx - \int F_2(x) \ dx - \frac{W}{2 \ g} . V^2 = 0.$$

The value of $F_1(x)$ begins with zero and when x is zero; it rapidly increases to a maximum, and then rapidly diminishes as the missile progresses and x increases. The function denoted by F_1 must have a maximum. Such a function is

$$F_1(x) = A. \sin \left(\frac{1}{2}\pi.\frac{x}{a}\right);$$

in which A denotes the maximum elastic force; a the value of x or copper penetration when it occurs. And although this may not be the precise function which expresses the law in question, it will be sufficient for the purposes of the illustration.

Let the law of copper resistance be

$$\mathbf{F}_2(x) = \mathbf{B} \ x^{\mathrm{m}},$$

and the work becomes

43

$$\int A. \sin \left(\frac{1}{2} \pi. \frac{x}{a}\right). dx - \int B x^{m} dx - \frac{W}{2g}. V^{2} = 0;$$

or

A.
$$\frac{2 a}{\pi} \left[1 - \cos \left(\frac{1}{2} \pi \cdot \frac{x}{a} \right) \right] - B x^{m} \cdot \frac{x}{m+1} - \frac{W}{2 g} \cdot V^{3} = 0.$$
 (329)

At the instant the plug stops, V=0; and

$$A = B x^{m} \cdot \frac{\pi}{a} \cdot \frac{x}{2(m+1)} \cdot \frac{1}{1 - \cos\left(\frac{1}{2}\pi \cdot \frac{x}{a}\right)}$$

or

$$\frac{A}{B x^{m}} = \frac{\pi}{a} \cdot \frac{x}{2(m+1)} \cdot \frac{1}{1 - \cos\left(\frac{1}{2}\pi \cdot \frac{x}{a}\right)}$$

The first member is the ratio of the maximum elastic force of the gas to the copper resistance at the instant the plug stops, or at the instant of greatest penetration; and it is apparent that we can neither take the first member equal to unity nor x = a, since x has already been taken to satisfy the condition of V = 0. The penetration or width of the cut cannot, therefore, indicate, directly, the maximum gas pressure.

If we make m=1, that is, the copper resistance proportional to the plug penetration, then will

$$\frac{A}{B^x} = \frac{\pi}{4} \cdot \frac{x}{a} \cdot \frac{1}{1 - \cos\left(\frac{1}{2}\pi \cdot \frac{x}{a}\right)}$$

still indicating the same difficulty.

It seems to have been taken for granted, in Major Rodman's experiments, that the gas pressure is constant during the time the cutter is making its way to the stopping point. This certainly cannot be true; but if it were, then would

 $\int A \, dx - \int B \, x^{m} \, dx - \frac{W}{2 \, g}. \, V^{2} = 0;$

or

A
$$x - \frac{B}{m+1}x^{m+1} - \frac{W}{2g}$$
. $V^2 = 0$;

and the instant the plug stops, V = 0, and

 $(m+1) A - B x^m = 0$

or

$$x = \sqrt[m]{(m+1)} \frac{A}{B}.$$

and making m=1, which supposes the resistance to vary directly as the penetration,

 $x=2\frac{A}{B}$

or

$$Bx=2A$$
.

That is, the resistance of the copper at the stopping point of the cutter is twice the pressure of the gas.

(20)—Major Rodman seems not to have recalled the distinction between the measure for intensity and that for its work. The real difficulty lies in our ignorance of the laws which connect the intensity of copper resistance and of gas elasticity with the plug penetration. If these (330)

laws were accurately known, it would be easy to find the maximum of gas pressure, by the RODMAN process, from the known depth of plug penetration and the resistance due to the unit of penetration. In the absence of these laws, it would be better to modify the experiments by inserting a number of plugs around the circumference of the same cross section of the gun, made at different distances from the mouth, and keep the plugs in their places by suitable dynamometers strained to different degrees; and after firing, find that plug which has made but a faint indentation on the copper. The indication of the dynamometer on this plug would be the measure of the maximum elastic force of the gas.

- (21)—These objections to Major Rodman's results are made in no spirit of criticism; they are unavoidable, and belong to the discussion which was proposed at the outset. The labors of that distinguished officer have been beset with difficulties, and, considering the range and nature of his experimental researches, it would be matter of surprise if he had made no mistakes. The spirit of professional improvement which seems to have animated him from his entrance into the ordnance corps, has given the country much valuable information, and to find fault with it because it is not all that could be desired, would be unreasonable and unjust.
- (22)—Let us next find the number of turns the projectile makes in a second of time, on leaving the piece. For this end, take Eq. (7).

π		0.4971509
v		3.0969100
2	a c	9.6989700
n	a c	9.4559320
l	a c	8.9652513
v = 51.8		1.7142142

(23)—The radius, denoted by ρ_1 , of the interior surface of the shell, is 0,266-0,094, equal to 0,172 of a foot; and the actual rotary velocity, denoted by V_1 , of this surface around its axis, is given by

$V_1 = 2 \pi. \rho^1. \nu.$	
2	0.3010300
π	0.4971509
$ ho^1$	9.2355284
ν	1.7142142
$V_1 = 55^{t}.9$	1.7479235

That is, on leaving the piece, the velocity of rotation of the interior surface of the shell is nearly fifty-six feet; half of which would be sufficient to ignite a wooden or heat to redness an iron axle, if rubbed under moderate pressure by the turning shell without a lubricant; and it is not necessary to attribute the frequent explosions of rifle shells within the gun to any other cause. The powder thrown by centrifugal action against the inner rough surface of the shell before it has taken the rotary motion of the latter, would be subjected to friction enough to explode it. Here is a real source of failure with rifled guns.

(331)

Again, in the Parrott missile, the sudden rotation is produced by a force of torsion applied at one end; it is resisted by the inertia of the projectile which it develops, and to which it is equal. At the mouth of the piece, in the case of the 100-pounder, that resistance is equal to about thirty-six hundred pounds. If the shell had an incipient defect, this strain would not fail to develop it, and probably open an avenue for the inflamed gas to enter.

Taking the velocity of the projectile at one-third the distance from its starting point to the mouth to be equal to half its initial velocity, and denoting the radius of the inner surface of the shell by ρ^1 , we shall have for the velocity of rotations of this surface, by making $y = \frac{1}{3}l$, Eq. (5),

v • ·	•		•
	$V_1 = \rho^1 \cdot \frac{d \Psi}{dt} = \rho^1 \cdot \frac{2}{n}$	$\frac{\pi^2}{l} \times \frac{1250}{2} \times \text{si}$	n 1/6 π;
whence,	$\rho^1 = 0.172$		9.2355284
	$\pi^2 = (3.1416)^2$		0.9943018
	V = 625		2.7958800
	$\sin \frac{1}{6} \pi = \sin 30^{\circ}$		9.6989700
	n = 3.5	a c	9.4559320
	l = 10,833	a c	8.9652513
	$V_1 = 13^f.99$		1.1458635

Giving at this point a rotary velocity of about fourteen feet a second.

It is understood to be the habit of Mr. PARROTT, latterly, to coat the interior of all his shells with a mastic, which presents a very smooth and yielding surface. This has the effect to lessen the friction, close any very fine apertures arising from imperfect casting, and to diminish greatly the chances of explosion, if it do not wholly remove them.

There is, however, another source of premature explosion from excess of mechanical action. Every sudden compression is attended by development of heat, and there can be no doubt this may be sufficient in degree to explode powder. Can it, in any case of practice, be enough to fire the exploding charge of the shell? A knowledge of the law which connects the velocity of the projectile with the distance of the latter from its starting point would enable us, by the aid of the equation next preceding that numbered (14), to find the pressure upon the powder of the shell at any point within the gun, and therefore the maximum pressure. But, as before remarked, this law is unknown. It is easy, however, to find the average pressure in any case, from the initial velocity.

Denote the weight of the exploding charge of the shell, in pounds, by W; the initial velocity by V; the length of the projectile's path in the gun by l, and the average pressure upon the powder by p; then will

For the 100-pounder,
$$W = 5$$

$$V = 1250$$

$$l = 10,833$$

$$g = 32;$$

$egin{array}{cccccccccccccccccccccccccccccccccccc$	4.3528913
•	8.4948500
∨. V³	8.9652513
	6.1938200
W	0.6989700
whence	

p = 11268.5 lbs., over five and a half tons,

which, being an average, is much below the maximum. It is the pressure upon that layer of powder in contact with the bottom of the shell. The inner diameter of the shell is about three-tenths of a foot, and the area over which the pressure is exerted is, therefore, about seven-hundredths of a square foot. The pressure is found to be sufficient to destroy all granulation and to reduce the powder to a compact indurated mass at the bottom of the shell hard enough to resist all effort by the finger-nail to impress it. Of course, in all this there is much friction among the particles of the powder, and great condensation of air at the base of the projectile's cavity.

The pressure is greater in proportion as the bursting charge is greater and the area of the cross section of the shell's cavity is less. It is found that the explosions within the gun are much more frequent for larger than smaller charging. Fuze charges—that is, charges just sufficient to blow out the fuze plug without breaking the shell—are rarely attended with internal explosions.

PART II.

MATERIALS AND DIMENSIONS OF GUNS.

- (1)—It has been shown that the principle of *rifling* is, of itself, no sufficient cause of the disasters which have characterized some of our artillery practice, and that if these disasters did not wholly arise from sheer carelessness, as many doubtless did, the source of trouble must be sought outside of the mere fact of rifling.
- (2)—It does not appear that the propagation of molecular disturbance, by which alone the forces of resistance to the expanding action of gases are developed and brought into action, has ever been duly considered in the choice of the material and adjustment of the dimensions of guns, and yet it is of all considerations the most important.

In the preceding pages an attempt has been made to construct a set of formulæ by which to compute the strains upon rifled guns. It is now proposed to indicate the influence which the rate of molecular disturbance has upon the capacity of a gun to resist the more important of these strains, called the *circumferential*.

(3)—It is well known that the velocity of molecular disturbance is in nowise dependent upon the intensity of the initial forces which produce it, but results wholly from peculiarity of molecular structure that determines elasticity and density. This velocity is always the same in the same body; and a body to preserve its identity, in this connexion, must preserve its temperature and the external pressure upon it unchanged. The material of a gun after (333)

repeated firing, by which it becomes heated and thrown into a new set, is not the same as before the firing began.

- (4)—It is by the propagation of molecular disturbance that the forces of resistance are developed and brought into action, and the rate of this propagation is measured by the velocity of sound in the gun material.
- (5)—When powder is burned behind a projectile, the first action of the expanding gas is to enlarge the bore and compress the metal in the direction of the radius, and this action may be so intense and sudden as to break up the molecular structure within, before the outer portion can come to its support, and tear the gun as an ordinary force would a piece of cloth applied to its edge. This would be the case, for instance, with an active fulminate, in which the limits of stable equilibrium of the chemical forces are very narrow.
 - (6)—Take the following notation, viz:

M = Modulus of the gun's material.

p = Pressure of the gas on unit of surface.

 $\rho = \text{Radius of bore.}$

c =Thickness of gun.

l = Length of bore on which p is exerted.

V = Velocity of sound in the gun material.

t = Time since the beginning of the explosion to the instant of greatest action.

Q_r = Quantity of work of gun resistance.

Q_p = Quantity of work of the expanding gas on gun.

(7)—Take the axis of the gun for the axis of y; a line at right angles thereto for that of x. The circumference of the bore before firing will be

and at any time after the explosion begins

$$2 \pi (\rho + \delta \rho)$$

in which $\delta \rho$ is the increase of ρ . And the expansion of the circumference will be

$$2 \pi (\rho + \delta \rho) - 2 \pi \rho = 2 \pi. \delta \rho$$

and on a unit of length

$$\frac{2 \pi \delta \rho}{2 \pi \rho} = \frac{\delta \rho}{\rho}$$

Conceive a circular ring of radius x, and of which the plane is perpendicular to the gun's axis, and let the area of a section of this ring, by a plane through the axis, be dx. dy.

When the circumference of the bore is expanded by $2 \pi \delta \rho$, that of this ring will be $2 \pi \delta x$; and on a unit of length

$$\frac{2 \pi \cdot \delta x}{2 \pi x} = \frac{\delta x}{x}.$$

By the principles of wave propagation,

$$\frac{\delta x}{x} = \frac{\delta \rho}{\rho} \cdot \sin \left(\frac{1}{2} \pi \frac{Vt + \rho - x}{Vt} \right). \tag{1}$$

(334)

with the condition that,

$$Vt + \rho > x, \tag{2}$$

without which the disturbance will not move fast enough to develop resistance by the time it is needed.

The molecular resistance on a unit of surface, supposing every element of the unit to exert a resistance equal to that on dx. dy, will be

$$\mathbf{M}.\frac{\delta x}{x}$$

and on the element dx. dy,

$$\mathbf{M}. \frac{\delta x}{x}. dx. dy.$$

The elementary quantity of work of this resistance, on a unit of length of the ring, will be

$$\mathbf{M.} \ \frac{\delta x}{x} \cdot d \frac{\delta x}{x} \cdot dx \cdot dy.$$

which integrated between the limits $\frac{\delta x}{x} = 0$ and $\frac{\delta x}{x} = \frac{\delta x}{x}$, will give the work of resistance in a unit of length of the ring. This integration gives

$$\frac{1}{2}$$
 M. $\left(\frac{\delta x}{x}\right)^2$. dx . dy .

and in the entire ring

$$2 \pi x. \frac{1}{2} M. \frac{\delta x^2}{x^2} dx. dy. = \pi. M. \frac{\delta x^2}{x^2} xdx. dy.$$

Replacing $\frac{\delta x}{x}$ by its value in the wave function (1), and indicating the integration within the limits of l and c, we get

$$Q_{r} = \int_{y=1}^{y=0} \int_{z=\rho+c}^{z=\rho} \pi. \ M. \frac{\delta \rho^{2}}{\rho^{2}} dy. \sin^{2} \left(\frac{1}{2} \pi \frac{Vt + \rho - x}{Vt} \right) x dx.$$

or

$$Q_{r} = \pi. \ M. \frac{\delta \rho^{2}}{\rho^{2}}. \ l. \ \left[\frac{1}{4} \left(\rho + c \right)^{2} - \frac{1}{4} \rho^{2} + \frac{1}{2} \left(\rho + c \right). \frac{Vt}{\pi}. \sin \left(\pi. \frac{c}{Vt} \right) - \left(\frac{Vt}{\pi} \right)^{2}. \sin^{2} \left(\frac{1}{2} \pi \frac{c}{Vt} \right) \right]. \tag{3}$$

(8)—In the incipient state of powder inflammation the gas pressure is zero, and this pressure reaches a maximum when the bore is most enlarged. Denoting by p the varying value of the pressure upon a unit of surface; by P its maximum value, and by $(\delta\rho)$ the varying value of $\delta\rho$, we may write

$$p = P. \sin \left(\frac{1}{2} \pi. \frac{(\delta \rho)}{\delta \rho}\right).$$

The pressure upon the interior surface of which the length is l is

2 π. ρ. l.
$$p = 2$$
 π. ρ. l. P. sin $\left(\frac{1}{2}$ π. $\frac{(\delta \rho)}{\delta \rho}\right)$.

and the work of this pressure from the beginning till the bore has its greatest expansion is

$$Q_{p} = \int_{(\delta\rho) = \delta\rho}^{(\delta\rho) = 0} 2 \pi. \rho. l. P. \sin\left(\frac{1}{2}\pi \frac{(\delta\rho)}{\delta\rho}\right) d(\delta\rho) = 4. \rho. \delta\rho. l. P$$
5)

But Q_r and Q_p must be equal. Hence after omitting the common factors and multiplying by ρ_r , we have

$$M. \frac{\delta \rho}{\rho} \left[\frac{1}{4} (\rho + c)^2 - \frac{1}{4} \rho^2 + \frac{1}{2} (\rho + c) \cdot \frac{Vt}{\pi} \cdot \sin \left(\pi \cdot \frac{c}{Vt} \right) - \left(\frac{Vt}{\pi} \right)^2 \cdot \sin^2 \left(\frac{1}{2} \pi \cdot \frac{c}{Vt} \right) \right] = \frac{4}{\pi} \cdot \rho^2 \cdot P \quad (4)$$

(9)—Make φ the variable ratio of the sine to its arc; that is,

$$\varphi = \frac{\sin\left(\pi \frac{c}{V_t}\right)}{\pi \cdot \frac{c}{V_t}} \tag{5}$$

$$\varphi_1^2 = \frac{\sin^2\left(\frac{1}{2}\pi, \frac{c}{Vt}\right)}{\left(\frac{1}{2}\pi, \frac{c}{Vt}\right)^2} \tag{6}$$

and we have,

$$\mathbf{M}.\frac{\delta\rho}{\rho^2} \left[\frac{1}{4} (\rho+c)^2 - \frac{1}{4} \rho^2 + \frac{1}{2} (\rho+c) c. \varphi - \frac{1}{4} \varphi_1^2 c^2 \right] = \frac{4}{\pi}. \rho \mathbf{P}.$$
 (7)

(10)—The least value possible for φ is zero, and this will occur when

$$\frac{c}{Vt} = 1$$

or when the molecular disturbance only reaches the outer surface of the gun at the instant of greatest action on the bore, in which case the outer layer of molecules will afford no aid whatever.

If

$$\frac{c}{\nabla t} > 1$$

then the disturbance would fall short of the outer surface at the instant of greatest action, and all that part of the gun beyond the wave front would be useless.

- (11)—The greatest value for φ is unity, and this will happen when the arc is so small that the sine may be taken equal to the arc; that is, when the molecular disturbance moves with great rapidity and the powder burns very slowly.
- (12)—The velocity of sound through cast iron is about 18,673 feet a second; and it is stated in Benton's Ordnance and Gunnery, page 48, that a grain of powder of a particular kind, and having a diameter of 0,056 inches, will burn up in 0,056 of a second. Making, therefore,

$$V = 18673^{f}$$

 $t = 0.056^{8}$

 $Vt = 1045^{\circ}.7$

we find

$$Vt = 1045^{\circ}.7$$

$$\frac{\pi}{Vt} = 0.003.$$

(13)—So that in ordinary practice φ and φ_1 may be taken as equal to unity, and Eq. (7) becomes
(336)

$$\mathbf{M} \cdot \frac{\delta \rho}{\rho} \cdot \left[c^2 + 2 \ c \ \rho \right] = \frac{8}{\pi} \mathbf{P} \cdot \rho^2 \tag{8}$$

or

$$\mathbf{M}.\frac{\delta\rho}{\rho} = \frac{8}{\pi} \cdot \frac{\mathbf{P}.\,\rho^2}{c^2 + 2\,c\,\rho} \tag{9}$$

25

The first member is the tensile strain upon a unit of surface of a section through the axis, each element of the surface having the same strain and equal to that on a cross section of the circular filament in the surface of the bore.

(14)—Solving with respect to P,

$$P = \frac{\pi}{8} \cdot M \cdot \frac{\delta \rho}{\rho} \cdot \frac{c \left(c + 2 \rho\right)}{\rho^2} \tag{10}$$

which gives the internal pressure just sufficient to produce the tensile strain M. $\frac{\delta \rho}{\rho}$.

(15)—Solving with respect to $\delta \rho$, we have

$$\delta \rho = \frac{8}{\pi} \cdot \frac{\mathbf{P}}{\mathbf{M}} \cdot \frac{\rho^3}{c^2 + 2\rho c} \tag{11}$$

which gives the enlargement of the bore.

(16)—Dividing both members of Eq. (9) by P. there will result,

$$\frac{\mathbf{M}.\frac{\delta\rho}{\rho}}{\mathbf{P}.} = \frac{8}{\pi} \cdot \frac{\rho^2}{c^2 + 2\rho c} \tag{12}$$

which gives a direct relation between the tension of the gas, as measured by its pressure on unit of surface of the bore, and the tensile strain upon the material of the gun on an equal extent of section through the axis. This for the same gun is constant.

(17)—Solving Eq. (9) with respect to c, we find

$$c = -\rho \left(1 \mp \sqrt{1 + \frac{8}{\pi} \cdot \frac{P}{M \cdot \frac{\delta \rho}{\rho}}}\right) \tag{13}$$

This will give the thickness necessary to resist the pressure P, which develops the tensile strain $\mathbf{M} \frac{\delta \rho}{\rho}$, the radius of the bore being ρ , and the upper sign being taken to satisfy the inequality (2).

(18)—On the other hand, if the powder be excessively quick, ∇t would become comparatively small. Let us, for illustration, suppose it equal to c, which would bring the wave front only to the outer surface of the gun when the gas has its greatest action; then would

$$\varphi = 0$$
, and $\varphi_1^2 = \frac{4}{\pi^2}$

and Eq. (7) would become, writing c_1 for c_2

$$\mathbf{M}.\frac{\delta\rho}{\rho}.\left[\frac{1}{4}(\rho+c_1)^2-\frac{1}{4}\rho^3-\frac{1}{\pi^2},c_1^2\right]=\frac{4}{\pi}.\ \mathbf{P}.\ \rho^2$$

or

44 (337)

Digitized by Google

M.
$$\frac{\delta \rho}{\rho} \cdot \left[\frac{\pi^2 - 4}{4 \pi^2} \cdot c_1^2 + \frac{1}{2} \rho c_1 \right] \cdot = \frac{4}{\pi}$$
. P. ρ^2 .

and solving with respect to c_1 ,

$$c_1 = -\frac{\pi^2}{\pi^2 - 4} \cdot \rho \cdot \left[1 \pm \sqrt{1 + 16 \cdot \frac{\pi^2 - 4}{\pi^3} \cdot \frac{P}{M \cdot \frac{\delta \rho}{\rho}}} \right]$$
 (14)

which is much greater than the value for c, as given by Eq. (13), and which shows that a gun having its dimensions properly adjusted to slow powder might fail under the action of one much quicker. Indeed, there can be no doubt that many good guns have been broken by the use of powder rendered unfit for cannon practice by reason of its superior quickness. Quick powder gives no better range, often crushes the projectile in shell firing, and unnecessarily taxes, if it do not destroy, the gun. Its use should be avoided.

The velocity of molecular disturbance increases with an increase of elasticity and diminution of density. Gun metal should, therefore, possess the greatest elasticity and least density consistent with high tenacity.

(19)—In the report of Major WADE on the metals for cannon, page 269, the tenacity of the Greenwood gun iron is given at 35,538 pounds. This is the value of M $\frac{\delta \rho}{\rho}$ at the breaking point for this quality of iron. Taking the case of the 42-pounder, we shall have

M
$$\frac{\delta \rho}{\rho}$$
 = 35538 lbs
 ρ = 0°.29166
 c = 0°.70833.

which, in Eq. (10), give

$$P = 150100 \text{ lbs}$$

for the pressure on a square inch of bore, which would be sufficient to break a gun made of the Greenwood iron and having the dimensions of the 42-pounder.

(20)—In his report upon gun metals and powder, page 200, Major RODMAN gives, as the mean of five experiments, 51800 pounds to the square inch, as the pressure due to 8 pounds of powder, (grain 0,1 inch in diameter), a solid shot and sabot, fired in a 42-pounder. Hence, making

P = 51800 lbs

$$\rho = 0^{\circ}.29166$$

 $c = 0^{\circ}.70833$

and substituting in Eq. (9), give

$$M. \frac{\delta \rho}{\rho} = 35541 \text{ lbs}$$

for the tensile strain on a square inch.

(21)—From the experiments of Major RODMAN, of which the results are given at page 158 of his work on the properties of metals and qualities of powder, it appears that cast iron—of the kind tested—when subjected to a tensile strain of 5,000 pounds to the square (338)

inch, was elongated 0,0002171th part of its entire length, and that where the strain exceeded this, the metal took a new set and altered its molecular structure, for beyond 5000 it did not recover the dimensions of which it had been deprived. Moreover, it appears, at page 166 of same work, that the repeated application of a tensile strain equal to 15000 to the square inch, gave a constantly increasing extension, showing a decreasing power of resistance. Thus, the first application gave an extension 0,001278; the 100th, 0,001510; and the 250th, 0,001537.

The moduli, computed from these data, are for the

1st, $M = 11737100$	Log = 7,0695600
100th, M = 9933770	Log = 6,9971144
250th, $M = 9759270$	Log = 6.9894174

and computed from the extension 0,0002171, produced by 5000 pounds,

M = 23030800 Log = 7,3623102

Every variation in the modulus requires a corresponding variation in the value of c, Eq. (13). And that a gun may be uninjured by firing, the value of M $\frac{\delta \rho}{\rho}$ should never exceed the maximum tension from which the gun may recover its dimensions; and keep its molecular structure unaltered. This, in the present case, is 5,000 pounds, and which in Eq. (10) will give, in the case of any gun made of this iron and whose radius and thickness are, respectively, ρ and c, the maximum gas pressure to which such gun should be exposed. This prescribes a rule for the treatment of guns in actual service.

- (22)—If the exigencies of an occasion require a greater pressure, then the gun, after a certain number of rounds, should be thrown aside, broken up and recast.
- (23)—But if it be the question to construct a gun to bear a given gas pressure, and of which the material will bear the tensile strain $\mathbf{M} \frac{\delta \rho}{\rho}$ without change of molecular structure, we have only to substitute the given pressure P and the tensile strain in Eq. (13), to find the necessary thickness.

It is quite apparent that all guns have their limits of endurance, and that these limits are somewhat narrow. Those charged with their use have ever at hand the means of pushing them beyond these limits, and these means they are very apt to apply unless restrained by well defined and very positive rules. These rules require a knowledge of the relations which connect the proportions of the constituents of powder, density, size of grain and volume, with the pressure which the gas arising from its combustion exerts upon the bore of the gun. This knowledge we do not possess. In the first part, upon the strains of rifled guns, were given the objections, founded upon the principles of mechanics, to Major RODMAN's inferences from his plug experiments in this regard.

(24)—In support of those objections, the following table, giving the results of a series of experiments by Mr. PARROTT, with one of his 100-pounders, is appended:

(339)

Pressures and ranges; 100-pound gun.

[No. 7 is the powder used in navy heavy guns; No. 5 in army 8 and 10-inch columbiads. No. 5 is slower than No. 7.]

No.	Elevation.	Charge.	Projectile.	Pressure—lbs.	Range—yds.
1	5 degrees	10 lbs. Dupont 7	Shot, 99½ lbs	38,000	2,078
2	do	dodo	do	45, 300	2, 180
3	do	10 lbs. Hazard 7	do	80,000	2, 251
4	do	dodo	do	86,000	2,308
5	do	10 lbs. Benn 5	do	27,500	2, 221
6	do	10 lbs. Doremus comp	do	114,000	2,370
7	10 degrees	10 lbs. Dupont 7	Shell, 101 lbs	66, 400	1
8	do	dodo	do	69, 300	
9	do	10 lbs. Hazard 7	do	70,200	Not taken.
10	do	dodo	do	87,000	J
11	15 degrees	10 lbs. Dupont 7	Shell, 101 lbs	60, 350	4,796
12	do	dodo	Shot, 991 lbs	64,000	5,030
13	do	dodo	Shot, 82 lbs	66,000	5, 190
14	do	10 lbs. Hazard 7	Shell, 101 lbs	99,020	4,735
15	do	dodo	Shot, 991 lbs	102,980	5, 045
16	do	dodo	Shot, 82 lbs	89,000	5, 254
17	do	10 lbs. Benn 5	Shell, 101 lbs	61,750	4,868
18	do	dodo	Shot, 991 lbs	40, 200	4,796
19	do	dodo	Shot, 82 lbs	41,600	5,038
20	do	10 lbs. Dupont 7	Round shot, 32 lbs	27, 250	*3,701
21	do	, -	dodo	39, 300	*3, 352
22	do	ł	dodo	20,000	*3, 195
23	20 degrees	10 lbs. Dupont 7	Shell, 101 lbs	65, 800	5,853
24	do	i -	Shot, 994 lbs	48,650	6, 125
25	do	1	Shot, 82 lbs	1	6, 338
26	do	10 lbs. Hazard 7	Shell, 101 lbs	102,900	5,762
27	do			102,000	5, 972
28	do	dodo		1 '	6,273
29	do	10 lbs. Benn 5	l '	1	5,698
30		dodo		91,500	6, 240
31	do	dodo	Shot, 82 lbs	39, 300	5, 991

^{*} Wild in direction.

It is sufficient simply to run the eye over the last two columns and note the almost entire absence of correspondence between the plug indications and the ranges, to be satisfied of the little reliance to be placed upon the former.

(26—It is of importance to gun practice that the pressures of gases arising from the burning of different kinds of powder be accurately ascertained, and a series of experiments, free from all objections, and having for its object to supply this information, is desirable.

(27)—To find the greatest gas pressure to which a gun of given dimensions should be subjected without impairing its quality of endurance, substitute in Eq. (10) for $M \frac{\delta \rho}{\rho}$ the (340)

greatest tensile strain from which the material may recover its former figure after being relieved. In the case of the Greenwood iron 42-pounder, this is 5000. We find

$$P = 21165 lbs.$$

(28) Again, let it be required to find the thickness of a 42-pounder to be subjected to a gas pressure double this, and yet the tensile strain not to exceed 5000. Then Eq. (13)

$$c = 1^{\circ}.0625$$
,

which is the thickness necessary to resist a pressure equal to twice 21165 without incurring a tensile strain greater than 5000 pounds. It is quite apparent how these numbers will vary with the nature of the gun metal. In the testing of a new gun, means should be provided for measuring the *pitch* of the sound with which it responds to a blow from a light hammer on the face of the muzzle after every discharge. Altered tone will indicate altered structure.

(29)—To determine the gas pressure let A B C D represent the edge of a block of copper; K G H the cutter of the plug apparatus in the position to which it is pressed by a dead weight, without velocity, so that the resistance of the copper may measure the weight. Make this notation, viz:

W = Weight equal to copper resistance.

x =Depth of penetration, G O.

y =Distance E F, or length of cut.

 $\varphi = \text{Angle H G K}.$

A = Copper resistance for unit of penetration.

(30)—Assume as the law which connects the resistance with the penetration,

$$\mathbf{W} = \mathbf{A} \ x^{\mathbf{m}}, \tag{15}$$

in which m is a constant, as well as A; both to be found by experiment. For any other weight as W_1 and penetration x_1 , we have

$$\mathbf{W}_1 = \mathbf{A}. \ \mathbf{x_1}^{\mathbf{m}} \tag{16}$$

Taking logs. in both equations, and subtracting first from the second, we find, after solving with respect to m,

$$m = \frac{\text{Log W}_1 - \text{Log W}}{\text{Log } x_1 - \text{Log } x}$$
(17)

and from Eq. (15)

$$\mathbf{A} = \frac{\mathbf{W}}{x^{\mathbf{m}}} \tag{18}$$

From the figure

$$y=2 x \tan \frac{1}{2} \varphi$$

or

$$x = \frac{y}{2 \tan \frac{1}{2} \varphi} \tag{19}$$

which substituted for x in Eqs. (17) and (18) gives, after reduction,

$$m = \frac{\text{Log W}_1 - \text{Log W}}{\text{Log } y_1 - \text{Log } y}$$
(20)

$$A = \frac{(2 \tan \frac{1}{2} \varphi)^{m}. W}{v^{m}}$$
 (21)

By repeated trials with different weights but with the same cutter and copper, a series of values for m and A may be found, and these being treated by the principle of least squares, will give the most probable values for the constants m and A. The copper should not be beaten or rolled, but simply cast and planed to a smooth surface with a very sharp tool.

(31)—To apply these preliminaries to the finding of gas pressures, it is to be observed that when the powder begins to burn, the pressure is nothing, and at the close of the action it is also nothing; that is, the initial and terminal values of the pressure are zero, having a maximum value somewhere between. The simplest law of continuity which connects these varying values with each other is expressed by the equation

$$p = P. \sin \left(\pi \right) \tag{22}$$

in which p denotes the pressure, in pounds, upon the plug head, P the maximum pressure upon the same, and l the greatest value for x, or the entire penetration.

The quantity of work of this pressure will be

$$\int_{x=l}^{x=0} P. \sin \left(\pi \cdot \frac{x}{l}\right) d x = \frac{2l}{\pi} \cdot P;$$

The quantity of work of the copper resistance will be

$$\int_{x=l}^{x=0} A x^{m} dx = \frac{A}{m+1} l^{m+1};$$

(32)—But these quantities of work must be equal; whence

$$\frac{2l}{\pi} \cdot P = \frac{A}{m+1} \cdot l^{m+1}$$

or

$$P = \frac{\pi}{2(m+1)}$$
. A. l^m (23)

and denoting by a, the maximum value of y, or the entire length of the cut, answering to l, we have, Eq. (19),

$$l = \frac{a}{2 \tan \frac{1}{2} \varphi},$$

which in Eq. (23) gives

$$P = \frac{\pi}{2(m+1)} \cdot A \cdot \left(\frac{a}{2 \tan \frac{1}{2} \varphi}\right)^{m}$$
 (24)

A and m are known, Eqs. (20) and (21); a may be measured by the Filar Micrometer with great accuracy; whence P becomes known. The value of P, multiplied by the ratio of the area unity to that of the plug head, gives the pressure on unit of surface, or P in Eq. (7).

(34)—At page 38 of Major Rodman's work is a table giving a series of actual pressures, varying from 1.000 to 14,000 pounds, and the cuts produced, ranging in length from 0,21 to 1,11 of an inch. These, by Eq. (17), give a mean value for m = 1,5957; say

$$m = 1,6.$$

(35)—The angle made by the inclined edges of the cutter does not appear to be given. For the sake of illustration, this angle will be supposed equal to that given in the figure on the plate fronting page 299; so that

$$\frac{1}{2} \varphi = 81^{\circ}.45'$$
.

(36)—Take at random from the table any weight and its corresponding cut; say

W = 8000 lbs., and a = 0.78 in.

These data in Eq. (21) give

A = 792810 lbs.

Log 5.8991690.

(37)—Now, suppose this cut of 0,78 in. to be produced by the action of the expanding gas in the gun; Eq. (24) will give

$$P = 5005 \text{ lbs.}$$

- (38)—It may be objected that the function in Eq. (22) gives the maximum pressure P at the middle point of the penetration. The objection is of little worth, for the object being to find the maximum pressure to which the gun is subjected, it matters not where it occurs, so that it be found. That function is employed to find the work of p over the distance l; and this work being measured by the area included between the curve of which Eq. (22) is the equation, the extreme ordinates, which are nothing, and the path l, that area will be sensibly the same wherever the maximum ordinate P may be found.
- (39)—The several values of m, as deduced from the table and tested by the method of least squares, give the mean error equal to 0,4441; the probable error in any one determination 0,2996; and the probable error in final result 0,0831. But among these values there are three remarkable for discordance with the others. If these be rejected, as having been influenced by something extraneous to the recognized agencies of the experiments, we find the mean error 0,2681; probable error in any one determination 0,1816; and probable error in final result 0,0572—a sufficient proof that the method proposed for evolving the law of copper resistance will lead to the desired result.
- (40)—As before remarked, the copper should be neither hammered nor rolled, as these processes break up the homogeneousness of the material and develop unequal resistance at different points and in different directions.

The form of Major Rodman's cutter seems to be objectionable. It would be much better to use a conical point, and rely upon a Filar Micrometer, with great magnifying power in the eye-glass, to measure the surface diameter of the penetration.

WEST POINT, 1865.

Digitized by Google

r - 25

Digitized by Google

