

Initial Design

1.0

Design Requirements

Parameter	Value	
Minimum Input Voltage	9V	
Maximum Input Voltage	30V	
Nominal Input Voltage	12V	
Input Steady-State Ripple	2%	
Input Undervoltage Lockout Level	5.85V	
Output Voltage	5.1V	
Output Current	2.5A	
Output Voltage Load Step Over/Undershoot	2%	
Load Start Current	0.5A	
Load Pulse Current	1.5A	
Load Pulse Edge Rate	10A/us	
Performance Priority	Balance Efficiency and Size	
BOM Priority	Low Cost	
Mode of Operation	PWM	
Switching Frequency	1113kHz	
Soft Start Time	5ms	
Ambient Temperature	25°C	

Schematic

Note 1: AC simulations may fail when PFMDCM Mode is selected and the Load Current is low enough to engage PFMDCM operation. PFMDCM is hysteretic and there is no AC Loop to measure.

Note 2: To change the Switching Ferguency in online design tool return to the Design Requirements tab.

Note 3: The Efficiency Simulation gives the results for PVM mode only, irrespective of the selected Mode in the Design Requirements tab.

Note 4: External Clock Synchronization feature is not modelled.

BOM

Ref	Qty	Part Number	Manufacturer	Description
U1	1	MAX17576	Maxim Integrated	4.5V to 60V, 4A, High-Efficiency, Synchronous Step-Down DC-DC Converter with Internal Compensation
C1	1	CGA2B3X7R1H104K050BB	TDK	Cap Ceramic 0.1uF 50V X7R 10% Pad SMD 0402 125°C Low ESR Automotive T/R
C2	1	GRM188R71A225KE15D	Murata Manufacturing	Cap Ceramic 2.2uF 10V X7R 10% Pad SMD 0603 125°C T/R
СЗ	1	C0402C273K8RACTU	KEMET Corporation	Cap Ceramic 0.027uF 10V X7R 10% Pad SMD 0402 125°C T/R
C4	1	EMK105B7104KV-F	Taiyo Yuden	Cap Ceramic 0.1uF 16V X7R 10% Pad SMD 0402 125°C T/R
CIN	1	GRM31CR71H225KA88	Murata Manufacturing	Cap 2.2uF 50V X7R 1206 10% 4.7mOhm 0.91nH LTB
COUT	1	GRM32ER70J476ME20L	Murata Manufacturing	Cap 47uF 6.3V X7R 1210 20% 1.8mOhm 0.82nH Active
				Inductor 3.3 uH 20% 13.6mOhm max 4.8Arms @20C 6.3Arms @40C

L1	1	MSS1246-332MLB	Coilcraft	10.16Asat @-10% 11.24Asat @-20% 11.76Asat @-30% 4.8mmHt 151.29mm^2 MSS1246 Active
R1	1	CRCW04023M32FKED	Vishay	Res Thick Film 0402 3.32M Ohm 1% 0.063W(1/16W) ±100ppm/°C Pad SMD Automotive T/R
R2	1	ERJ2RKF8663X	Panasonic	Res Thick Film 0402 866K Ohm 1% 0.1W(1/10W) ±100ppm/°C Pad SMD Automotive T/R
R3	1	CRG0402-P-1433FT	Venkel	Res Thick Film 0402 143K Ohm 1% 0.063W(1/16W) ±100ppm/°C Pad SMD T/R
R4	1	CRG0402-P-3092FT	Venkel	Res Thick Film 0402 30.9K Ohm 1% 0.063W(1/16W) ±100ppm/°C Pad SMD T/R
R5	1	NTR04F1742DTRF	NIC Components	Res Thin Film 0402 17.4K Ohm 1% 0.063W(1/16W) ±50ppm/°C Pad SMD T/R
R6	1	RCG040210K0FKED	Vishay	Res Thick Film 0402 10K Ohm 1% 0.063W(1/16W) ±100ppm/°C Pad SMD T/R
R7	1	CRG0402-P-4R75FT	Venkel	Res Thick Film 0402 4.75 Ohm 1% 0.063W(1/16W) -300ppm/°C to 500ppm/°C Pad SMD T/R

Simulation Results

AC Analysis - Fri Nov 27 2020 10:10:54

Phase Margin: 62.15° at a crossover frequency of 60.6kHz

20 30 40 50 60 70 80 90 100 110

Efficiency - Fri Nov 27 2020 10:10:54

% of total

Loss (W)

Component
© 2020 Maxim Integrated. All rights reserved.

Component	Loss (W)	% of total
Inductor losses	0.33	26.2
Losses in IC	0.93	73.8
Total	1.26	100

Steady State - Fri Nov 27 2020 10:10:54

Line Transient - Fri Nov 27 2020 10:10:54

Load Step - Fri Nov 27 2020 10:10:54

Start Up - Fri Nov 27 2020 10:10:54

