1.Please install "tidyverse" package and load it.

```
install.packages("tidyverse")
library(tidyverse)
```

Q1:

We will use the "diamonds" dataset that contains the prices and other attributes of almost 54,000 diamonds for mid-exam. This dataset is already included in "tidyverse" package.

1. How many rows are in "diamonds" dataset? How many columns?

53940rows 10columns

diamonds
dim(diamonds)

2. Please find out what attributes contains in the "diamonds" dataset.

"carat" "cut" "color" "clarity" "depth" "table" "price" "x" "y" "z"

names(diamonds)

用上述函式 names()得到 data 的 column name.

 Please find out the high-quality diamonds via filter by color(D), cut(Ideal), and clarity(IF).

^	carat	cut	color	clarity	depth	table	price	×	y ÷	z
1	0.51	Ideal	D	IF	62.0	56	3446	5.14	5.18	3.20
2	0.51	Ideal	D	IF	62.1	55	3446	5.12	5.13	3.19
3	0.53	Ideal	D	IF	61.5	54	3517	5.27	5.21	3.22
4	0.53	Ideal	D	IF	62.2	55	3812	5.17	5.19	3.22
5	0.63	Ideal	D	IF	61.2	53	3832	5.55	5.60	3.41
6	0.59	Ideal	D	IF	60.7	58	4161	5.45	5.49	3.32
7	0.59	Ideal	D	IF	60.9	57	4208	5.40	5.43	3.30
8	0.56	Ideal	D	IF	62.4	56	4216	5.24	5.28	3.28
9	0.56	Ideal	D	IF	61.9	57	4293	5.28	5.31	3.28
10	0.56	Ideal	D	IF	60.8	58	4632	5.35	5.31	3.24
11	0.59	Ideal	D	IF	60.9	60	4916	5.41	5.39	3.29
12	0.63	Ideal	D	IF	62.5	55	6549	5.47	5.50	3.43
13	0.63	Ideal	D	IF	62.5	55	6607	5,50	5.47	3.43
14	1.04	Ideal	D	IF	61.8	57	14494	6.49	6.52	4.02
15	1.04	Ideal	D	IF	61.8	57	14626	6.52	6.49	4.02
16	1.02	Ideal	D	IF	63.0	57	15575	6.39	6.35	4.01
17	1.06	Ideal	D	IF	61.2	57	15813	6.57	6.61	4.03
18	1.00	Ideal	D	IF	60.7	57	16469	6.44	6.48	3.92
19	1.07	Ideal	D	IF	60.9	54	17042	6.66	6.73	4.08
20	1.03	Ideal	D	IF	62.0	56	17590	6.55	6.44	4.03
21	0.27	Ideal	D	IF	62.4	56	893	4.15	4.12	2.58
22	0.31	Ideal	D	IF	61.1	56	1251	4.39	4.42	2.69
23	0.31	Ideal	D	IF	61.1	56	1310	4.42	4.39	2.69
24	0.31	Ideal	D	IF	60.5	57	1917	4.39	4.41	2.66
25	0.34	Ideal	D	IF	62.1	57	2287	4.46	4.52	2.79
26	0.34	Ideal	D	IF	59.8	57	2287	4.57	4.59	2.74
27	0.34	Ideal	D	IF	62.1	57	2346	4.52	4.46	2.79
28	0.34	Ideal	D	IF	59.8	57	2346	4.59	4.57	2.74

```
A=subset(diamonds,cut=="Ideal")
B=subset(A,color=="D")
C=subset(B,clarity=="IF")
```

先筛出 cut 栏为"Ideal"的所有列作为子集合 A,再从 A 筛出 color 栏为"D"的子集合 B,最后从 B 中筛出同时符合题述条件的 diamonds

4. Following the previous question, which diamond is most expensive? Sort the data to find the answer.

如果是从第三题的结果里挑,最贵的17590.

_	carat [‡]	cut [‡]	color [‡]	clarity	depth ÷	table [‡]	price [‡]	x	y	z \$
1	1.03	Ideal	D	IF	62.0	56	17590	6.55	6.44	4.03
2	1.07	Ideal	D	IF	60.9	54	17042	6.66	6.73	4.08
3	1.00	Ideal	D	IF	60.7	57	16469	6.44	6.48	3.92
4	1 00	Ideal	D	ıc	617	57	10010	6 57	C C1	4.02

data1 <- C[order(C\$price,decreasing=TRUE),]</pre>

如果是从原始资料里挑,最贵的是18823

```
data <- diamonds
data1 <- data[order(data$price,decreasing=TRUE),]
print (data1)</pre>
```

将 data 按照 price 栏按降序排列,得到 data1,第一列即为所求。

5.Please group the diamond by color, cut, and clarity.Calculate the mean price and mean carat for each group.

一共分了 276 组

^	color	cut	clarity	mean_price **	mean_carat °						
1	D	Fair	11	7383.000	1.8775000						
2		Fair	SI2	4355.143	1.0169643						
3		Fair	SII	4273.345	0.9137931						
4		Fair	V52	4512.880	0.8436000						
5		Fair	VS1	2921.200	0.6300000						
6	D	Fair	VVS2	3607.000	0.5911111						
7	D	Fair	VVS1	4473.000	0.6066667						
8	D	Fair	IF	1619.667	0.3800000						
9	D	Good	11	3490.750	1.0400000						
0	D	Good	SI2	3595.296	0.8582511						
1	D	Good	SI1	3021,173	0.7008017						
2	D	Good	VS2	3588,462	0.7025000						
3	D	Good	VS1	3556,581	0.6632558						
4		Good	VVS2	2345.640	0.4812000						
5		Good	VVS1	2586.231	0.4907692						
6		Good	IF	10030.333	0.7866667						
7	D	Very Good	11	2622.800	0.9500000						
8	D	Very Good	SI2	4425.459	0.9317197						
9	D	Very Good	SI1	3234.931	0.7078340		t				
0	D	Very Good	VS2	3145.194	0.6336570	48	COLOL	Good	clarity 1	mean_price 0	mean_carat = 1.3308696
1	D	Very Good		2955.480	0.5833714	49	E	Good	SI2	3785.490	0.8825743
2		Very Good		2615.298	0.4657447	50 51		Good	SI1 VS2	3162.132 3772.019	0.7238592
						52		Good	VS1	3712.775	0.6806742
23		Very Good		2987.731	0.4746154	53 54		Good	VVS2 VVS1	3390.154 1905.953	0.5601923
4		Very Good	IF	10298.261	0.8030435	55		Good	IF	1519.222	
5	D	Premium	11	3818.750	1.1550000	56 57		Very Good Very Good	11 S12	3443.545 4279.447	1.0695455
6	D	Premium	SI2	4351.086	0.9189074	58 59		Very Good		3228.176 3329.497	0.7230831
7	D	Premium	SI1	3236.378	0.6916547	60		Very Good Very Good		3329.497 3089.358	0.6644135
8	D	Premium	VS2	2919.357	0.5845723	61		Very Good Very Good	VVS2	2041.685	0.4267114
9	D	Premium	VS1	4178.046	0.6870992	63		Very Good	IF.	4332.744	
0	D	Premium	VVS2	3888.436	0.5805319	64 65		Premium Premium	512	3199.267 4489.931	1.0430000
1		Premium	VVS1	3771.000	0.5382500	66	E	Premium	SI1	3362.625	0.7262866
						67 68		Premium	V\$2 V\$1	3070.394 3721.695	0.6189348
2		Premium	IF	9056.500	0.7080000	69	E	Premium	VVS2	2940.942	0.5115702
3		ideal	11	3526.923	0.9600000	70 71		Premium	VVS1	2699.857 4525.444	0.4622857
4	D	Ideal	SI2	3142.048	0.7503090	72	E	Ideal	11	3559.389	1.0377778
5	D	Ideal	SI1	2490.459	0.5947967	73 74		Ideal	SI2 SI1	3891.303 2883.808	0.8744136
6	D	Ideal	VS2	2111.927	0.4992935	75	E	Ideal	VS2	2163.324	0.5211356
7	D	Ideal	VS1	2576.040	0.5335043	76 77		Ideal	VS1 VVS2	2175.798	0.5035919
8	D	Ideal	VVS2	3619.014	0.5447887	78	E	Ideal	VVS1	2205.519	0.4265075
9		Ideal	VVS1	2705.778	0.4601389	79 80		Ideal Fair	IF II	3258.937 2543.514	0.4577215
10		ideal	IF.	6567.179	0.6157143	81		Fair	\$12	4520.112 3784.687	1.0801124
						82 83	F	Fair Fair	SI1 VS2	3400.472	0.7586792
11		Fair	11	2095.222	0.9688889	84 85	F	Fair Fair	VS1 VVS2	4103.061 4018.200	0.8048485
12		Fair	SI2	4172.385	1.0156410	86	F	Fair	VVS1	4679.800	0.6680000
13	E	Fair	SI1	3901.154	0.8670769	87 88		Fair Good	IF II	2344,000 2569,526	0.5550000
14	E	Fair	VS2	3041.714	0.6902381	89	F	Good	SI2	4426.786	1.0025373
15	E	Fair	VS1	3307.929	0.6328571	90 91		Good	SI1 VS2	3261,454 3790,543	
16	E	Fair	VVS2	3119.308	0.6007692	92	F	Good	VS1	2787.508	0.6246212
						93	-	Good	VVS2	3192.360	0.6076000

	COIOI	Cut	Clarity	mean_price	Illean_calar
144	G	Premium	11	4051.522	1.291304
145	G	Premium	SI2	5617.205	1.142703
146	G	Premium	SI1	4303.348	0.882720
147	G	Premium	VS2	4556.255	0.809459
148	G	Premium	VS1	4435.823	0.750176
149	G	Premium	VVS2	4323.571	0.692654
150	G	Premium	VVS1	2933.655	0.535146
151	G	Premium	IF	3311.115	0.564023
152	G	Ideal	11	4044.438	1.168750
153	G	Ideal	SI2	4612.086	0.976111
154	G	Ideal	SI1	3441,108	0.760257
155	G	Ideal	VS2	4310.035	0.769703
156	G	Ideal	VS1	4116.918	0.717145
157	G	Ideal	VVS2	3795.651	0.646085
158	G	Ideal	VVS1	2909.199	0.539107
	G		IF.		0.559107
159		Ideal		2206.031	
160		Fair	I1	4212.962	1.498653
161	Н	Fair	SI2	6022.407	1.364395
162	Н	Fair	SI1	5195.800	1.112266
163	Н	Fair	VS2	5110.927	1.036829
164	Н	Fair	VS1	4604.750	0.975937
165	Н	Fair	VVS2	3481.727	0.840909
166	Н	Fair	VVS1	4115.000	0.910000
167	Н	Good	11	3849.714	1,252142
168	Н	Good	SI2	5529.778	1.173544
169	Н	Good	SI1	4179.285	0.906723
170	Н	Good	VS2	4433.043	0.877971
171	Н	Good	VS1	3819.117	0.779870
172	Н	Good	VVS2	2428.000	0.588444
173	Н	Good	VVS1	1719.710	0.473548
174	Н	Good	IF	5948.750	0.935000
175	н	Very Good	11	5258.833	1.654166
176	н	Very Good	SI2	6112.414	1.234635
177	н	Very Good	SI1	4933.945	0.973967
178	н	Very Good	VS2	4620.221	0.893164
179	Н	Very Good	VS1	3750.198	0.772334
180	Н	Very Good	VVS2	2768.145	0.593724
181	Н	Very Good	VVS1	2042.191	0.504347
182	Н	Very Good	IF	2647.690	0.558275
183	н	Premium	11	3904.348	1,339782
184	н	Premium	SI2	6718.946	1.328291
185	Н	Premium	SI1	5707.722	1.084045
186	Н	Premium	VS2	5553.876	1.004642
187	н				
		Premium	VS1	3949.336	0.779613
188	Н	Premium	VVS2	2651.263	0.577457
189	Н	Premium	VVS1	1453.759	0.416250
190	Н	Premium	IF	3384.750	0.598000

	color	cut	clarity	mean_price	mean_carat
95	F	Good	IF	3132.867	0.5333333
96	F	Very Good	11	4252.923	1.2107692
97	(F)	Very Good	SI2	4249.758	0.9511953
98	F	Very Good	SI1	3574.292	0.7964580
99	F	Very Good	VS2	3995.944	0.7420172
100	F	Very Good	VS1	3880.802	0.6880546
101	F	Very Good	VVS2	3461.912	0.5713655
102	F	Very Good	VVS1	2826.540	0.4937356
103	F	Very Good	IF	4677.075	0.6068657
104	F	Premium	11	3554.559	1.1352941
105	F	Premium	512	4747.090	1.0352199
106	F	Premium	5/1	4040.467	0.8421217
107	F	Premium	V52	4221,467	0.7309532
108	F	Premium	VS1	4758.038	0.7673448
109	F	Premium	VVS2	4099.466	0.6576027
110	F	Premium	VVS1	3969.325	0.6062500
111	F	Premium	IF	3617.581	0.5254839
112	F	Ideal	11	3903.452	1.1078571
113	F	Ideal	SI2	4335.508	0.9321854
114	F	Ideal	SI1	3710.322	0.7696053
115	F	Ideal	VS2	3317.205	0.6322412
116	F	Ideal	VS1	3504.002	0.6440422
117	F	Ideal	VVS2	3323.629	0.5773077
118	F	Ideal	VVS1	2611.234	0.4761818
119	F	Ideal	IF	2153.709	0,4114925
120	G	Fair	11	3187,472	1.2264151
121	G	Fair	512	5665.150	1,2620000
122	G	Fair	SI1	3579.362	0.9095652
123	G	Fair	V52	5384.444	0.9777778
124	G	Fair	VS1	3497.622	0.7742222
125	G	Fair	VVS2	3099.059	0.6647059
126	G	Fair	VVS1	2216.333	0.5700000
127	G	Fair	IF.	1488.000	0.4550000
128	G	Good	11	3195.789	1,1742105
129	G	Good	SI2	4776.411	1.0869325
130	G	Good	SIT	4129.329	0.8838164
131	G	Good	VS2	4140.714	0.8156771
132	G	Good	VS1	4302,428	0.7792105
133	G	Good	VVS2	3310,467	0.6261333
134	G	Good	VVS1	2705.195	0.5470732
135	G	Good	IF.	4060.136	0.6481818
136	G	Very Good	11	3194.812	1.1237500
137	G	Very Good	SI2	4699.269	1.0327523
138	G	Very Good	SII	3481.871	0.7857595
139	G	Very Good	VS2	4426.816	0.8102714
140	G	Very Good	VS1	3770.150	0.7013194
	6	,	V31 VV52	3711.785	0.7013194

V	color ÷	cut 0			man carat 0
	COIOI	cut	clarity	mean price	mean_carac
191	Н	Ideal	11	5415.184	1,4755263
192	Н	Ideal	S12	5589.473	1.1438222
193	Н	Ideal	SI1	4769.988	0.9372084
194	Н	Ideal	VS2	4039.126	0.7960432
195	Н	Ideal	VS1	3613.325	0.7065310
196	Н	Ideal	VVS2	2591.156	0.5673010
197	Н	Ideal	VVS1	1915.985	0.4934969
198	Н	Ideal	IF	1982.765	0.4746018
199	1	Fair	11	3501.000	1.3229412
200	Ţ	Fair	SI2	6658.022	1.5115556
201	1	Fair	SI1	4574.967	1.1080000
202	1	Fair	VS2	3856.125	0.9531250
203	1	Fair	VS1	4500.480	1.0104000
204	1	Fair	VVS2	2994.625	0.8450000
205	1	Fair	VVS1	4194.000	0.9000000
206	1	Good	11	4175.444	1.4100000
207	1	Good	SI2	6933.012	1.4248148
208	1	Good	SI1	4742.945	1.0152727
209	1	Good	VS2	5956.564	1.1296364
210	1	Good	VS1	4597.165	0.9266019
211	1	Good	VVS2	2758.000	0.7196154
212	1	Good	VVS1	2650.955	0.6663636
213	1	Good	IF	1749.333	0.5300000
214	1	Very Good	11	6045.125	1.7662500
215	1	Very Good	SI2	6621,600	1.3343500
216	1	Very Good	SI1	5195.302	1.0658939
217	1	Very Good	VS2	5754.642	1.0663504
218	1	Very Good	VS1	5276.971	0.9854146
219	1	Very Good	VVS2	3059.887	0.7018310
220	i	Very Good	VVS1	2056.420	0.5708696
221	1	Very Good	IF	4093.895	0.7647368
222	1	Premium	11	5044.625	1.6058333
223	1	Premium	SI2	7148.484	1.4240064
224	1	Premium	SII	6092.093	1.1803542
225	1	Premium	VS2	7156.346	1.2359048
226	1	Premium	VS1	5339.367	0.9826244
227	1	Premium	VVS2	3190.768	0.6821951
228	1	Premium	VVS1	1831.083	0.5161905
229	1	Premium	IF VVS1	2358.565	0.5730435
	1		11	2358.505 4103.294	
230		Ideal		111111111111111111111111111111111111111	1.2982353
231	1	Ideal	SI2	7191.912	1.3784672
232	1	Ideal	SI1	5178.565	1.0276389
233	1	Ideal	VS2	4663.384	0.9278995
234	1	Ideal	VS1	3944.422	0.8061029
235	1	Ideal	VVS2	2858.680	0.6538202
236	1	Ideal	VVS1	2034.397	0.5513408
237	1	Ideal	IF	1502.621	0.4514737

Chausina 101 to 227 of 276 antrior E total columns

237	I	Ideal	IF	1502.621	0,4514737
238	J	Fair	11	5795.043	1.9934783
239	J	Fair	SI2	5131.815	1.3166667
240	J	Fair	SI1	4553.929	1.1810714
241	J	Fair	VS2	4067.826	1.0326087
242	J	Fair	VS1	5906.188	1.2293750
243	J	Fair	VVS2	2998.000	1.0100000
244	J	Fair	VVS1	1691.000	0.7000000
245	J	Good	11	3794.500	1.3700000
246	J	Good	512	5306.113	1.3188679
247	J	Good	SI1	4627.625	1.1257955
248	J	Good	VS2	4803.167	1.1143333
249	J	Good	VS1	3662.827	0.8750000
250	J	Good	VVS2	4371.154	0.9369231
251	J	Good	VVS1	4633.000	1.0000000
252	J	Good	IF	2738.000	0.6900000
253	J	Very Good	11	4478.375	1.4625000
254	J	Very Good	512	5992.898	1.3609375
255	J	Very Good	SI1	5026.544	1.1353297
256	J	Very Good	VS2	5325.549	1.1405435
257	J	Very Good	VS1	4339.592	0.9649167
258	J	Very Good	VVS2	5960.448	1.1020690
259	J	Very Good	VVS1	3175.526	0.7652632
260	J	Very Good	IF	1074.125	0.4550000
261	J	Premium	11	4577.231	1.5784615
262	J	Premium	512	7550.286	1.5545342
263	J	Premium	SI1	5726.579	1.2577990
264	J	Premium	VS2	6175.559	1.2457426
265	J	Premium	VS1	5817.261	1.1362092
266	J	Premium	VVS2	6423.353	1.2520588
267	J	Premium	VVS1	7244.375	1.2245833
268	J	Premium	IF	7026.000	1.1416667
269	J	Ideal	11	9454.000	1.9900000
270	J	Ideal	512	6555.173	1.3844545
271	J	Ideal	SI1	5115.675	1.1439095
272	J	Ideal	VS2	4867.134	1.0512500
273	J	Ideal	VS1	4734.428	0.9783582
274	J	Ideal	VVS2	4121.926	0.8705556
275	J	Ideal	VVS1	2000.172	0.5782759
276	J	Ideal	IF	2489.000	0.5768000

6. Following the previous question, explore the relationship between the carat and price for each quality of diamonds and plot by scatter plots.

Q2:

Question 2 will use the "midwest" dataset includes demographic information of US midwest counties. This dataset is already included in the "tidyverse" package.

1. How many counties in Illinois?

102 个

```
midwest
dim(midwest)
names(midwest)
data=midwest
A=subset(data,state=="IL")
dim(A)
```

从 midwest 提出一个 state 为" IL" 的子集合,该集合的列的数量 即为 country 的个数

2. How many counties' populations are more than 10000 and less than 20000 in Illinois?

31 个 打开 environment 查看 1.中建立的子集合 A, 点选 poptotal 栏的上三角符号,可直接升序排列,有结果可知从第 14 列到第 44 列符合要求,共 31 个。Code 实现如下:

```
A=subset(data,state=="IL")
dim(A)
A <- A[order(ASpoptotal,decreasing=FALSE),]</pre>
```


3. Which county is the least population in Illinois? How much population is it? Sort the data to find the answer.

Pope country 4373 人

由 2.得到排序后的资料,第一列的 country 栏对应的为"POPE", poptotal ==4373.

Please find out the relationship between area, total
population, and population density. Try to figure out how to
calculate population density on this dataset.

$Density = \frac{poptotal}{1000*area}$

```
A <- A[order(ASpoptotal,decreasing=FALSE),]
B=data[,5]/data[,4]
B
C=data[,6]
C=C/B
C</pre>
```


用 poptotal 栏的值对应除 area 栏的值,再将商除 density=0.001,因此得到上述彼此的关系

5. Following the previous question, What is the population density of Illinois?

Density=3459.625

```
A=subset(data,state=="IL")
sumarea=sum(data$area[1:102])
sumpoptotal=sum(data$poptotal[1:102])
sumpoptotal
ILdensity=sumpoptotal/(1000*sumarea)
ILdensity
```

先得到 IL 的子集合 A,再将 A 的 area 和 poptotal 分别求和得到 sumarea and sumpoptotal ;最后根据 4.的公式得到 ILdensity

6. What is the population density of each state? Plot the bar plot to show it.

将资料按照 state 分组,然后求出每组的 poptotal, area 之和,再利用 4.的公式求出各组的 sumdensity,最后利用 barplot()函式将 sumdensity 可视化

Q3:

The "sleep" dataset shows the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients. Please using data(sleep) to load the dataset.

1. How many rows are in "sleep" dataset? How many columns?

data(sleep) sleep dim(sleep)

20rows 3columns

Group1 有 10 列, Group2 有 10 列, column: extra/group/ID

Please find out what attributes contains in the "sleep" dataset and explain it.

Extra:与对照组相比,该药物对病人的影响为多少(睡眠时间的增加),正值为正相关,值越大催眠效果越好,负值为负相关,值越小催眠效果越差

Group:为区分两种药物的组别 ID: 10 位病人的 ID

3. Please group the two soporific drugs and calculate the mean of increase in hours of sleep and median of increase in hours of sleep for each soporific drug.

group1:mean:0.75 median:0.35

group2:mean:2.33 median:1.75

4. Using any data visualization skill to present Which soporific drug can increase more sleep time? Please submit the figure and your code.

C=Sleep %>%
group_by(group)%>%
summarise(sum_extra=sum(extra),
median_extra=median(extra),
mean_extra=mean(extra))
res1 <- C\$mean_extra
barplot(res1)

将分组后的 mean_extra 做柱形图,可知 group2 的平均睡眠增加时长远大于 group1,所以 group2 的药效要远好于 group1.

Q4:

Question 4 will use the "quakes" dataset includes the locations of 1000 seismic events of MB > 4.0. The events occurred in a cube near Fiji since 1964. Please using data(quakes) to load the dataset.

 Please inspect data to find out what attributes contains in the "quakes" dataset and explain it.

lat: numeric Latitude of event

long: numeric longitude

depth: numeric depth(KM)

mag: Richer Magnitude

station: numeric Number of stations reporting

```
> names(quakes)
[1] "lat" "long" "depth" "mag" "stations"

uata
library('datasets')
quakes
names(quakes)
```

2. How many observations magnitude > 5.0 and depth > 500 in this dataset?

38个

^	lat °	long	depth	mag	stations
1	-23.74	179.99	506	5.2	75
2	-17.72	180.30	595	5.2	74
3	-21.96	180.54	603	5.2	66
4	-23.36	180.01	553	5.3	61
5	-17.80	181.38	587	5.1	47
6	-22.13	180.38	577	5.7	104
7	-19.13	182.51	579	5.2	56
8	-24.57	178.40	562	5.6	80
9	-12.93	169.63	641	5.1	57
10	-23.49	179.07	544	5.1	58
11	-21.98	179.60	583	5.4	67
12	-20.43	182.37	502	5.1	48
13	-23.73	179.99	527	5.1	49
14	-17.59	181.09	536	5.1	6
15	-19.77	181.40	630	5.1	54
16	-20.04	182.01	605	5.1	45
17	-17.72	181.42	565	5.3	8
18	-17.84	181.30	535	5.7	112
19	-13.45	170.30	641	5.3	9:
20	-26.18	178.59	548	5.4	6
21	-22.10	179.71	579	5.1	5
22	-21.11	181.50	538	5.5	10
23	-23.53	179.99	538	5.4	8
24	-18.08	180.70	628	5.2	7.
25	-17.71	181.18	574	5.2	6
26	-23.31	179.27	566	5.1	4
27	-19.89	174.46	546	5.7	9
28	-24.18	179.02	550	5.3	8
29	-23.78	180.31	518	5.1	7
30	-18.12	181.88	649	5.4	8
31	-17.59	180.98	548	5.1	7
32	-18.14	180.87	624	5.5	10
33	-18.21	180.87	631	5.2	6
34	-17.64	177.01	545	5.2	9
35	-17.98	181.51	586	5.2	6
36	-21.08	180.85	627	5.9	11
37	-21.55	181.39	513	5.1	8:
38	-17.85	181,44	589	5.6	115

library('datasets')
quakes
names(quakes)
A=quakes
library(data.table)
8=data.table(A)
B[depth>500]
C=B[depth>500]
C=C[mag>5]

将 quakes data 转为 table, 然后逐步筛出 depth>500 的资料 C, 最后再从 C 里面筛出 mag>5.0 的资料集。

- 3. Following the previous question(magnitude > 5.0 and depth> 500), please plot the scatter plot by longitude(long) andlatitude(lat) and color by the magnitude
 - n-yunca library(data.table) B=data.table(A) B[depth>500] C=B[depth>500] C=([may>5] library(ggplot2) ggplot(C,aes(x=lat,y=long,color=mag))

4. Please plot the box plot by magnitude to find out how many outliers in the figure? Tips: x = factor(0)

- 5. Please plot the histogram by magnitude frequency to find out the distribution. Tips: Please note the width of the bin when you plot.
- 6. Please plot the histogram by depth frequency to find out the distribution. Tips: Please note the width of the bin when you plot.