

Course: Statistical Learning

FRANCO REINALDO BONIFACINI (41540A)

Table of contents

01 Introduction

- Project's goal
- Exploratory Data Analysis

03 Supervised Learning

- Regression model
- Decision tree
- Random forest

02 Unsupervised Learning

- PCA
- Hierarchical clustering
- K-Means

04 Conclusions

- Final comments
- Further analysis

Project's Goal

With no intention of engaging in political discourse or ideologies, the project aims to illustrate that the occurrence of cancer-related deaths correlates with factors such as investment in public health and the Human Development Index (HDI), rather tan the messages conveyed by political parties.

"It is easy to preach with the word, but the world truly requires preaching through the example".

Datasets used and preprocessing

Datasets used and preprocessing

Datasets used and preprocessing

80

10

Normalizing country names

New variables:

- cancer_affection_rate
- cancer_death_rate
- Rate of death by age.
- Rate of death by type

Exploratory Data Analysis

Number of Records by Ideology

Avg. Cancer Death by Ideology

Avg. Spending in Public Health by Ideology

Avg. HDI by Ideology

Exploratory Data Analysis

Deaths from Cancer by Range of Age

Exploratory Data Analysis

Anual Average Ideology

Anual Average Death by Cancer

(% from total deaths)

Anual Average Public Health Spending (% from GDP)

Anual Average HDI

cancer_affection_rate

cancer_death_rate

public_health_spe

hdi

hog_ideology_numeric (from -1 as leftist to 1 as rightist)

Principal Components Analysis

Defining the number of components

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Standard deviation 1.8703178 0.9842269 0.52369751 0.4153300 0.2940247 Proportion of Variance 0.6996177 0.1937405 0.05485182 0.0344998 0.0172901 Cumulative Proportion 0.6996177 0.8933583 0.94821010 0.9827099 1.0000000

Principal Components Analysis

Loadings

	Comp.1	
cancer_affection_rate	0.4945552	0.06707236
cancer_death_rate	0.5104804	0.07395429
public_health_spe	0.4854279	0.11563296
hdi	0.4942418	-0.01293469
hog_ideology_numeric	0.1221055	-0.98817700

Countries and Components

Clustering

Evaluation of Clustering Results

```
Clustering Methods:
    hierarchical kmeans pam
##
   Cluster sizes:
    2 3 4 5 6
##
   Validation Measures:
##
   hierarchical Connectivity
                Dunn
##
                Silhouette
                Connectivity
   kmeans
                                      29.0516 40.1238 39.9873 47.5468
##
                Dunn
                Silhouette
##
                                      28.7603 44.4929 38.4960 47.8837
                Connectivity 13.0647
   pam
##
                Dunn
                                               0.0323
                Silhouette
                               0.5038
                                      0.3753 0.4278 0.4110 0.4320
   Optimal Scores:
##
##
                Score Method
                                    Clusters
   Connectivity 7.2655 hierarchical 2
## Dunn
                0.1312 hierarchical 6
## Silhouette 0.5038 kmeans
```


Clustering

Evaluation of Clustering Results

```
Clustering Methods:
    hierarchical kmeans pam
##
   Cluster sizes:
    2 3 4 5 6
##
   Validation Measures:
##
   hierarchical Connectivity
                               7.2655 16.6750 23.5286 29.9000 34.6440
                Dunn
##
                Silhouette
                Connectivity
                              13.0647 29.0516 40.1238 39.9873 47.5468
   kmeans
##
                Dunn
                Silhouette
##
                Connectivity 13.0647 28.7603 44.4929 38.4960 47.8837
   pam
##
                Dunn
                                               0.0323
                Silhouette
                               0.5038
                                      0.3753 0.4278 0.4110 0.4320
   Optimal Scores:
##
##
                Score Method
                                    Clusters
   Connectivity 7.2655 hierarchical 2
## Dunn
                0.1312 hierarchical 6
## Silhouette 0.5038 kmeans
```


Hierarchical Clustering

Linkage Method:

Single

k=2: 0.1864929

k=6: 0.2355196

Complete

k=2: 0.4142643

k=6: 0.3932472

Average

k=2: 0.5002604

k=6: 0.4178778

Dendogram:

Hierarchical Clustering

Hierarchical Clustering

- Better-defined and well separated clusters.
- Clear differences among clusters

K-Means

Clustering with K=2

```
## k=2:

## WCSS = 83.6088 226.8112

## Between SS / Total SS = 0.581355
```


Variables reduction

Variables

cancer_death_rate
 (dependent)

cancer_affection_rate

public_health_spe

hdi

hog_ideology_numeric
(from -1 as leftist to 1 as rightist)

main_cancers (5 main cancers)

rate_50_over
(main age ranges)

Regression Model

Use PCA for dimensionality reduction and address multicollinearity.

ngs:		
	Comp.1	Comp.2
r_affection_rate	0.459	
50_over	0.473	
cancers	0.374	-0.164
c_health_spe	0.450	
	0.462	
deology_numeric		0.980
	ngs: r_affection_rate 50_over cancers c_health_spe deology_numeric	Comp.1 r_affection_rate 0.459 50_over 0.473 cancers 0.374 c_health_spe 0.450 0.462

Regression Model

Use PCA for dimensionality reduction and address multicollinearity.

```
Loadings:

cancer_affection_rate 0.459
rate_50_over 0.473
main_cancers 0.374 -0.164
public_health_spe 0.450
hdi 0.462
hog_ideology_numeric 0.980
```

Linear regression with PCA on the averaged dataset

```
## Call:
## lm(formula = cancer death rate ~ Comp.1 + Comp.2, data = df sup avg pca)
##
## Residuals:
         Min
                         Median
   -0.086873 -0.023151 -0.001131 0.018767 0.104107
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.157333 0.002729 57.645
                                             <2e-16 ***
## Comp.1
               0.043852
                          0.001386 31.650
                                             <2e-16 ***
## Comp.2
                          0.002742 -0.702
               -0.001925
                                              0.484
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.03517 on 163 degrees of freedom
## Multiple R-squared: 0.8601, Adjusted R-squared: 0.8584
## F-statistic: 501.1 on 2 and 163 DF, p-value: < 2.2e-16
```

```
## RMSE = 0.03484603
## MAE = 0.026823
```

Ideology is not significant

Decision Tree

- Averaged tree had better performance.
- Both exclude ideology.

Original dataset

Averaged dataset

Accuracy = 0.9017756

Random Forest

Original dataset outputted better performance.

Conclusions

Project's goal

The objective was **strongly supported by the results** obtained from both unsupervised and supervised techniques: project aims to illustrate that the occurrence of cancer-related deaths correlates with factors such as investment in public health and the Human Development Index (HDI), rather than the messages conveyed by political parties.

Further analysis

- New independent variables (other death causes, income, etc)
- Different perspective of the ideology variable (whole mandate)
- Changing dependent variable (education level, employment rate, entrepreneurship rate, etc)

