# Machine Learning – B – January 20, 2020

Time limit: 2 hours.

|       | Last Name                                   | First Name                           | Matricola                             |
|-------|---------------------------------------------|--------------------------------------|---------------------------------------|
|       |                                             |                                      |                                       |
| Note: | if you are not doing the regular $\epsilon$ | exam for ML 2019/20, write below     | name of exam, CFU, and                |
|       | · ·                                         | attend the course). Please specify a | · · · · · · · · · · · · · · · · · · · |
|       |                                             |                                      |                                       |
|       |                                             |                                      |                                       |

## **EXERCISE A1**

Assume the following data about an online shop have been collected:

- Customers are: 45% young men (class YM); 30% young women (YW); 25% neither of the above (O).
- Young men buy: Shoes 20%; Trousers 30%; Shirts 50%.
- Young women buy: Shoes 20%; Trousers 50%; Shirts 30%.
- Other customers buy: Shoes 30%; Trousers 30%; Shirts 40%.
- 1. If you receive an order for shoes, which is the most probable class the customer who issued the order belongs to? Why?
- 2. Which is, and how do you compute, the likelihood that an order is for shoes?

## **EXERCISE A2**

- 1. Explain when a dataset is linearly separable
- 2. Illustrate the error function minimized by the Least Squares method
- 3. Show an example, in a 2D dataset for binary classification, of application of Least Squares
- 4. Draw a 2D dataset for binary classification, describe a problem Least Squares suffers from and discuss one plausible approach to solve it.

# **EXERCISE B1**

Consider the set of principal components  $\mathbf{u}_1, \dots, \mathbf{u}_D$  recovered from the (mean subtracted) data points  $\mathbf{x}_1, \dots, \mathbf{x}_N$  and the variance of this data along each component  $\lambda_1, \dots, \lambda_D$ .

- Give the name of an algorithm that can be used to obtain the principal components and the corresponding variances.
- Quantify the exact approximation error when only the first M < D principal components are used for describing the data.
- $\bullet$  Provide the formula describing how the data points are expressed in the basis defined by the first M principal components.

## **EXERCISE B2**

Consider the following Convolutional Neural Network acting on images of dimension  $56 \times 56 \times 3$ :

| conv1  | $7 \times 7$ kernel and 16 feature maps with padding 3 and stride 1 |  |  |
|--------|---------------------------------------------------------------------|--|--|
| relu1  | acting on 'conv1'                                                   |  |  |
| pool1  | $2 \times 2$ max pooling with stride 2 acting on 'relu1'            |  |  |
| conv2  | $5 \times 5$ kernel and 32 feature maps with padding 2 and stride 3 |  |  |
| relu2  | acting on 'conv2'                                                   |  |  |
| pool2  | $2 \times 2$ max pooling with stride 2 acting on 'relu2'            |  |  |
| conv3  | $1 \times 1$ kernel and 32 feature maps with padding 0 and stride 1 |  |  |
| relu3  | acting on 'conv3'                                                   |  |  |
| fc1    | with 100 units acting on (flattened) 'relu3'                        |  |  |
| relu4  | acting on 'fc1'                                                     |  |  |
| fc2    | with 50 units acting on 'relu4'                                     |  |  |
| relu5  | acting on 'fc2'                                                     |  |  |
| fc3    | with 2 units acting on 'relu5'                                      |  |  |
| output | identity ('fc3')                                                    |  |  |

- 1. Compute the number of parameters for each layer of the network.
- 2. What is a suitable loss function to train the network defined above?

## **EXERCISE C1**

Consider the dataset  $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$  where each tuple  $(\mathbf{x}_n, t_n)$  corresponds to an input value  $\mathbf{x}_i \in \mathbb{R}^3$  and the corresponding target value  $t_i \in \mathbb{R}$ .

- 1. Provide the definition of a linear regression model (in its most general form) with parameters **w** that can be used for estimating a non-linear function y such that  $t \approx y(\mathbf{x}, \mathbf{w})$ .
- 2. Discuss possible causes of overfitting for this problem and how to avoid/attenuate them.

## EXERCISE C2

Consider the following data set for binary classification (white vs black circles).

- 1. Draw in each of the diagrams below a possible solution for a method based on Perceptron with very small learning rate and a possible solution for a method based on SVM.
- 2. Describe the difference between the two solutions and briefly explain how these are obtained with the two methods.
- 3. Discuss which solution would you prefer and why.



