# Saving, Capital Accumulation, and Output Intermediate Macroeconomics

Yang Tang

March 18, 2024

#### Outline

- ▶ Interactions between Output and Capital
- ► The Implications of Alternative Saving Rates
- Example

#### Motivation

- Since 1970, in the U.S. the ratio of saving to gross domestic product has averaged only 17%, compared to 23% in Germany and 29% in Japan.
- ▶ How is saving rate connected with capital accumulation given that capital accumulation can drive the economic growth.
- examine the effects of the saving rate on the level and growth rate of output.

#### Interactions between Output and Capital

#### Output in the long run depends on two relations:

- ► The amount of capital determines the amount of output being produced
- The amount of output produced determines the amount of saving, which in turn determines the amount of capital being accumulated over time



## The Effects of Capital on Output

Recall that

$$\frac{Y}{N} = F(\frac{K}{N}, 1) \equiv f(\frac{K}{N})$$

▶ Assume that *N* is constant, and there is no technological progress, so *f* does not change over time:

$$\frac{Y_t}{N} = f(\frac{K_t}{N})$$

Higher capital per worker leads to higher output per worker.

## The Effects of Output on Capital Accumulation

- Assume
  - ▶ Closed economy: I = S + (T G)
  - ▶ Public saving (T G) is 0: I = S
  - Assume a constant and exogenous saving rate: S = sY
- ▶ So the relation between output and investment:

$$I_t = sY_t$$

Investment is proportional to output.

# Physical Capital Accumulation(I)

▶ The evolution of the capital stock is:

$$K_{t+1} = (1 - \delta)K_t + I_t$$

► Replace investment by the above expression and divide both sides by *N*:

$$\frac{K_{t+1}}{N} = (1 - \delta) \frac{K_t}{N} + s \frac{Y_t}{N}$$

or

$$\frac{K_{t+1}}{N} - \frac{K_t}{N} = s \frac{Y_t}{N} - \delta \frac{K_t}{N} = sf(\frac{K_t}{N}) - \delta \frac{K_t}{N}$$

► The change in the capital stock per worker is equal to saving per worker minus depreciation.

# Physical Capital Accumulation(II)

When capital and output are low(high), investment per worker exceeds (is less than) depreciation per worker, the change in capital per worker is positive (negative), capital increases(decreases).



#### Steady State

The state in which output per worker and capital per worker are no longer changing is called the **steady state** of the economy.

$$sf(\frac{K^*}{N}) = \delta \frac{K^*}{N}$$

The steady-state value of capital per worker is such that the amount of saving per worker is sufficient to cover depreciation of the capital stock per worker.

$$\frac{Y^*}{N} = f(\frac{K^*}{N})$$

#### Example

► Assume the production function *f* takes form:

$$Y = K^{1/2} N^{1/2}$$

▶ The capital accumulation equation can thus be expressed as:

$$\frac{K_{t+1}}{N} - \frac{K_t}{N} = s(\frac{K_t}{N})^{1/2} - \delta \frac{K_t}{N},$$

which describes the evolution of capital over time.

#### Example Cont'd

▶ This implies capital per worker in the steady state( $K^*/N$ ) becomes:

$$\frac{K^*}{N} = (\frac{s}{\delta})^2$$

► The steady state output per worker is:

$$\frac{Y^*}{N} = (\frac{K^*}{N})^{1/2} = \frac{s}{\delta}$$

## The Saving Rate and Output

- The saving rate has no effect on the long-run growth rate of output per worker, which is equal to zero.
- ► The saving rate determines the level of output per worker in the long run.



## The Saving Rate and Output

An increase in the saving rate will lead to higher growth of output per worker for some time, but not forever.



#### Golden Rule

- What matters to people is not how many is produced, but how much they consume.
- ▶ **Golden-rule level of capital**: The level of capital associated with the saving rate that yields the highest level of consumption in steady state.



#### Saving Rates and Consumption

- ► For a saving rate between zero and the golden-rule level, a higher saving rate leads to higher capital per worker, higher output per worker and higher consumption per worker.
- ► For a saving rate greater than the golden-rule level, a higher saving rate still leads to higher capital per worker and output per worker, but lower consumption per worker.
- An increase in the saving rate leads to lower consumption for some time but higher consumption later.

#### Previous Example Cont'd

► In the steady state of the previous example, consumption per worker is:

$$\frac{C}{N} = \frac{Y}{N} - \delta \frac{K}{N}$$

▶ The steady-state consumption per worker is:

$$\frac{C}{N} = \frac{s}{\delta} - \delta(\frac{s}{\delta})^2 = \frac{s(1-s)}{\delta}$$

The above is maximized when s = 1/2.

## Example Cont'd

| Saving rate S | $\frac{K}{N}(\%)$ | $\frac{Y}{N}(\%)$ | $\frac{C}{N}(\%)$ |
|---------------|-------------------|-------------------|-------------------|
| 0.0           | 0.0               | 0.0               | 0.0               |
| 0.1           | 1.0               | 1.0               | 0.9               |
| 0.2           | 4.0               | 2.0               | 1.6               |
| 0.3           | 9.0               | 3.0               | 2.1               |
| 0.4           | 16.0              | 4.0               | 2.4               |
| 0.5           | 25.0              | 5.0               | 2.5               |
| 0.6           | 36.0              | 6.0               | 2.4               |
| 1.0           | 100.0             | 10.0              | 0.0               |

Table: Steady-state Levels of Capital, Output and Consumption per Worker with respect to Different Saving Rate