Week Oct 28 - Nov 1

What will you be learning?

Bonding in Molecules with Resonance What makes some materials conducting? How do molecules interact with each other?

Learning Objectives this week:

- Combination of valence bond theory, hybridization, and MO theory to explain resonance.
- How to count the number of orbitals in sigma and pi bond formation in a resonance structure?
- How do orbital combinations lead to the formation a band?
- What are valence and conduction bands, and how do we explain conductivity?
- What are intermolecular forces of interactions?
- How do we use these intermolecular forces of interactions to explain properties of molecules?

Resonance

NO_2

N 2s² 2p³

O 2s² 2p⁴

Total number of electrons based on valence shell electrons = 5 + 6(2) = 17

Resonance Structures:

More than one possible Lewis structure Both structures for NO₂ are probable/plausible Lewis structures Only electrons move (movement of lone pairs or multiple bonds) Atoms <u>do not</u> move

Using a mix of valence bond theory, hybridization and MO theory we can help explain (and simplify) bonding in such molecules with resonance.

Resonance

NO₂

Using a mix of valence bond theory, hybridization and MO theory we can help explain (and simplify) bonding in such molecules with resonance.

Determine hybridization at each atom center

Resonance

Using a mix of valence bond theory and MO theory we can help explain (and simplify) bonding in such molecules with resonance.

Each oxygen has _____4 valence orbitals

Total orbitals = 12

Nitrogen has _____4 valence orbitals

Hybrid orbitals = 9

In NO_2 , total _____ valence orbitals

Unhybridized orbitals = 12 - 9 = 3

For all the sigma bonds we use valence bond theory and hybridization

- the central nitrogen is sp² hybridized (in either structure)
- One sigma bond each with the two terminal oxygen atoms
- Third sp² orbital contains the lone electron on the central atom

Still remaining:

Atoms A, B and C are left with one unhybridized p orbital each.

Total = 3

Delocalized electron count (moving parts):

For the stationary structure, we removed moving bond (one that was making a double bond on either side) and a moving lone pair of electrons.

These four electrons are delocalized in the structure.

3 unhybridized p orbitals

4 electrons

For hybridization, we removed moving bond (one that was making a double bond on either side) and a moving lone pair of electrons.

These four electrons are delocalized in the structure.

Bonding in NO₂: Resonance structure

Break down the structure into two parts:

Stationary atoms and bonds

Moving bonds and any lone pair of electrons.

Consider the stationary structure and determine hybridization at each atom center.

Note the remaining p orbitals at each atom center that are unhybridized.

Use hybridization to explain the formation of sigma bonds using valence bond theory.

In NO₂, central nitrogen atoms forms two sp²-sp² sigma bonds.

Use the remaining p orbitals at each atom center for combination using MO theory.

Number of p orbitals combined should be equal to number of π MOs formed.

In NO₂ we combined three p orbitals (one at each atom) to form three delocalized π orbitals.

Place your moving electrons into MOs.

What is the relationship between the two structures (A and B) given below?

Based on the structures shown below:

How many pi molecular orbitals are in the molecule?

How many electrons are delocalized in the molecule?

What is the relationship between the two structures (A and B) given below?

Structure A and B are Resonance structures – the electrons are delocalized but the atoms and sigma bonds remain the same.

Atoms are stationary, but one bond and one lone pair of electrons and charge are moving.

Stationary structure

What is the relationship between the two structures (A and B) given below?

Structure A and B are Resonance structures – the electrons are delocalized but the atoms and sigma bonds remain the same.

Atoms are stationary, but one bond and one lone pair of electrons and charge are moving.

Kakkar Chem 110

$[HCO_2]^-$: delocalized π electrons

For hybridization, we removed moving bond (one that was making a double bond on either side) and a moving lone pair of electrons.

These four electrons are delocalized in the structure.

$[HCO_2]^-$: delocalized π electrons

3 unhybridized p orbitals

4 electrons

$[HCO_2]^-$: delocalized π electrons

For hybridization, we removed moving bond (one that was making a double bond on either side) and a moving lone pair of electrons.

These four electrons are delocalized in the structure.

What is the relationship between the two structures (A and B) given below?

Based on the structures shown below:

How many pi molecular orbitals are in the molecule?

How many electrons are delocalized in the molecule?

Based on the structures shown below: How many pi molecular orbitals are in the molecule? How many electrons are delocalized in the molecule?

Structure A

Structure B

Structure A and B are Resonance structures – the electrons are delocalized but the atoms and sigma bonds remain the same.

There are 3 unhybridized p orbitals (carbon and 2 oxygens are all sp² hybridized) and hence 3 π molecular orbitals.

There are 4 total delocalized electrons.

2 in the π bond, and a lone pair that is delocalized on the two oxygen atoms.

Bonding in NO₃: Resonance structure

$$NO_3^ \vdots_0^{\circ}: 0: \vdots_0^{\circ}$$

There are three resonance structures – the electrons are delocalized but the atoms and sigma bonds remain the same.

Atoms are stationary, but one bond and lone pair of electrons and charge are moving.

N
$$2s^2 2p^3$$

O $2s^2 2p^4$
: O sp^2
N: Number of electron groups = 3 = number of hybrid orbitals = 3 = sp^2
O: Number of electron groups = 3 = number of hybrid orbitals = 3 = sp^2
 sp^2 O sp^2

Stationary structure

N forms three $sp^2-sp^2 \sigma$ bonds with three O atoms

Still remaining:

Nitrogen and three oxygen atoms are left with one unhybridized p orbital each.

$$Total = 4$$

For hybridization, we removed moving bond (one that was making a double) and moving lone pairs of electrons. Total number of electrons = 6.

These six electrons are delocalized in the structure.

4 unhybridized p orbitals

From LCAO of 4 p orbitals

Bonding in NO₃: Resonance structure

There are 4 unhybridized p orbitals (nitrogen and 2 oxygens are all sp² hybridized) and hence 4 π molecular orbitals.

There are 6 total delocalized electrons.

2 in the π bond, and lone pairs that are delocalized on the oxygen atoms.

Band Theory: Group 1 Metals

Li 2s¹

Band Theory: Group 1 Metals

Li_{2s¹} Li_n (metal): n 2s AOs = n MOs (\underline{n} valence electrons)

Li 2s Energy Band

Li 2s¹ Li_n (metal): n 2s AOs = n MOs (n valence electrons)

(partially filled energy band enables conductivity)

Band Theory Group 2 Metals

Be $2s^2$ Be_n (metal): n 2s AOs = n MOs (2n valence electrons)

Be: Only using 2s Energy Band

 Be_n (metal): n 2s AOs = n MOs (2n valence electrons)

Valence shell of Be $2s^2 2p^0$

Valence Band (2s) filled MOs

* 2s band completely filled... but 2p band is empty!*

Be with 2s and 2p Energy Bands

Band Theory: Conductivity

Conductivity

Conductivity depends upon the size of the energy "gap" between valence and conduction band

Metals (conductors) – no band gap, "free" electrons (no covalent bonds) **Semiconductors** – small band gap, bonding has more covalent character **Insulators** – large band gap, strongly held electrons in covalent bonds

- a) Draw the band structure of potassium and silicon.
- b) One of these two elements is a semiconductor. Which one? Explain your choice.

a) Draw the band structure of potassium and silicon.

K 4s Energy Band

a) Draw the band structure of potassium and silicon.

 K_n (metal): n 4s AOs = n MOs (n valence electrons)

a) Draw the band structure of potassium and silicon.

- a) Draw the band structure of potassium and silicon.
- b) One of these two elements is a semiconductor. Which one? Explain your choice.

K - Conductor

Band structure of Si

Si - semiconductor

Germanium has the same structure as silicon. A small amount of gallium is added to a sample of germanium to improve its ability to conduct electricity.

- a) Is this an example of a *p*-type semiconductor or an *n*-type semiconductor?
- (b) Explain how the addition of gallium increases conductivity.

Germanium has the same structure as silicon. A small amount of gallium is added to a sample of germanium to improve its ability to conduct electricity.

- a) Is this an example of a *p*-type semiconductor or an *n*-type semiconductor?
- (b) Explain how the addition of gallium increases conductivity.

Germanium has the same structure as silicon. A small amount of gallium is added to a sample of germanium to improve its ability to conduct electricity.

- a) Is this an example of a *p*-type semiconductor or an *n*-type semiconductor?
- (b) Explain how the addition of gallium increases conductivity.

$$Ge 4s^2 4p^2$$

Bonus Practice Question

Identify the following as p-type, n-type or undoped semiconductors:

a) Ge doped with P

b) InSb doped with Te

c) GaP

a) Ge doped with P

Bonus Practice Question

Identify the following as p-type, n-type or undoped semiconductors:

- a) Ge doped with P
- b) InSb doped with Te
- c) GaP

b) InSb doped with Te

n-type semiconductor

Bonus Practice Question

Identify the following as p-type, n-type or undoped semiconductors:

- a) Ge doped with P b) InSb doped with Te
- c) GaP

c) GaP

Ga 4s² 4p¹ P 3s² 3p³

undoped semiconductor

Intermolecular Forces

Intermolecular Forces Affect Many Physical Properties

The strength of the attractions between particles can greatly affect the properties of a substance or solution.

Increased intermolecular forces – Increased boiling point

More interaction between molecules, more heat needed to change from liquid to gaseous state.

Intermolecular forces affect how soluble a compound will be in a solvent (water, ethanol, etc) – Why does salt dissolve in water?

Intermolecular forces affect viscosity and other physical properties of molecules.

Intermolecular forces <u>between</u> molecules depend upon the interaction <u>between</u> molecules.

These interactions depend upon polarity of a molecule and polarizability.

Intermolecular forces <u>between</u> molecules depend upon the interaction <u>between</u> molecules.

These interactions depend upon polarity of a molecule and polarizability

Polar Molecule

Larger atoms have more loosely held valence electrons are more polarizable than smaller atoms.

Fluorine, for example, has more tightly held electrons than iodine.

F₂ molecules will have smaller attractive force between them, compared to I₂ molecules.

It is easier to create a temporary instantaneous dipole in I_2 than F_2 .

Two iodine molecules

Polarizability is a measure of how the electron cloud in a molecule responds to changes in its electronic environment

Polarizability

How easily can an electron cloud be distorted

Down a group: Polarizability increases

Across a period: Polarizability decreases

Cations: Less polarizable than their atoms

Anions: More polarizable than their atoms

Intermolecular Forces

Nonbonding (Intermolecular)		kJ/mol		
Ion-dipole	······	Ion charge— dipole charge	40-600	Na+····O
H bond	δ ⁻ δ ⁺ δ ⁻ -A-H·····:B-	Polar bond to H- dipole charge (high EN of N, O, F	10–40 F)	:Ö—н;Ö—н н н
Dipole-dipole	—	Dipole charges	5-25	I-CII-CI
Ion-induced dipole	+	Ion charge— polarizable e cloud	3–15	Fe ²⁺ ····O ₂
Dipole-induced dipole		Dipole charge— polarizable e— cloud	2-10	H-CI····CI-CI
Dispersion (London)		Polarizable e clouds	0.05-40	F-F····F-F

symmetrical distribution

unsymmetrical distribution

Type of Force	Applied to		
Dispersion Forces	All molecules		
Dipolar Forces	Polar molecules		
Hydrogen Bonding	Polar molecules with N-H, O-H or F-H bond		

Which intermolecular forces are present in the following compounds?

1. HCl

2. Ne

3. HF

Which intermolecular forces are present in the following compounds?

1. HC Determine if it is polar. Look at the electronegativity difference.

Dipole – dipole forces

Dispersion forces

$$S^{+}$$
 S^{-}
 $H - CI$
 S^{+} S^{-}
 $H - CI$
 S^{+} S^{-}
 S^{+} S^{-}
 S^{+} S^{-}
 S^{-}
 S^{+} S^{-}
 S^{-}
 S^{+} S^{-}
 S^{-}
 S^{+} S^{-}
 S^{-}
 S^{-}
 S^{-}
 S^{+} S^{-}
 $S^$

HCl is a polar molecule.

It will have dispersion forces and dipole-dipole forces. No H-bonding since H is bonded to Cl, not to N/O/F

Which intermolecular forces are present in the following compounds?

1. HCl

2. Ne Determine if it is polar. Look at the electronegativity difference.

Nonpolar Dispersion forces

Nonpolar so it will have only dispersion forces.

3. HF Determine if it is polar. Look at the electronegativity difference.

$$\delta$$
+ δ -

H — $\overset{\bullet}{F}$:

Polar Molecule

Dispersion forces

Dipole – dipole forces

Hydrogen bonding

Which intermolecular forces are present in the following compounds?

1. HCl

Dispersion forces and Dipole-dipole forces.

2. Ne

Dispersion forces

3. HF

Dispersion forces, Dipole-dipole forces, Hydrogen bonding

Which of these molecules will have Hydrogen bonding?

CH₃CH₂CH₂OH

CH₃CHO

CH₃CH₂F

CH₃CH₂NH₂

Which of these molecules will have Hydrogen bonding?

CH₃CH₂CH₂OH

Hydrogen bonded to a small highly electronegative element (O)

YES, this molecule will have hydrogen bonding

CH₃CHO

Hydrogen bonded to carbon, and NOT to a small highly electronegative element

NO, this molecule will NOT have hydrogen bonding

Which of these molecules will have Hydrogen bonding?

$$CH_3CH_2F$$
 $H \longrightarrow C \longrightarrow F$:

Hydrogen bonded to carbon, and NOT to a small highly electronegative element.

NO, this molecule will NOT have hydrogen bonding

Hydrogen bonded to a small highly electronegative element (N)

YES, this molecule will have hydrogen bonding

Which of these molecules will have Hydrogen bonding?

CH₃CH₂CH₂OH

CH₃CHO

YES

NO

CH₃CH₂F

CH₃CH₂NH₂

NO

YES

Arrange the following in increasing order of their boiling points?

$$CH_3CH_2CH_2CH_3$$
 $CH_3C(CH_3)_2CH_3$ $CH_3C(CH_3)_2CH_2OH$

$$CH_3C(CH_3)_2CH_3$$

Arrange the following in increasing order of their intermolecular forces?

$$I_2$$

$$Br_2$$

Arrange the following in increasing order of their boiling points?

$$CH_3CH_2CH_2CH_3$$
 $CH_3C(CH_3)_2CH_3$ $CH_3C(CH_3)_2CH_2OH$

$$CH_3C(CH_3)_2CH_3$$

$$CH_3C(CH_3)_2CH_2OH$$

Formula: C₅H₁₂

Nonpolar, Linear molecule, High surface area Dispersion forces only.

$$CH_3C(CH_3)_2CH_3$$

$$CH_3$$
 H
 H_3C — C — C — C — C
 H_3C H

Nonpolar, Branched molecule, Low surface area Dispersion forces only.

Arrange the following in increasing order of their boiling points?

CH₃CH₂CH₂CH₂CH₃ CH₃C(CH₃)₂CH₃ CH₃C(CH₃)₂CH₂OH

Formula: C₅H₁₂O

 $CH_3C(CH_3)_2CH_2OH$

Polar molecule

Dispersion, Dipole-dipole, Hydrogen bonding

Arrange the following in increasing order of their boiling points?

CH₃CH₂CH₂CH₂CH₃

Nonpolar, Linear molecule, High surface area Dispersion forces only.

CH₃C(CH₃)₂CH₃

Nonpolar, Branched molecule, Low surface area Dispersion forces only.

Weakest intermolecular forces

CH₃C(CH₃)₂CH₂OH

Polar molecule
Dispersion, Dipole-dipole, Hydrogen bonding

Strongest intermolecular forces

 $CH_3C(CH_3)_2CH_3 < CH_3CH_2CH_2CH_2CH_3 < CH_3C(CH_3)_2CH_2OH_3$

Arrange the following in increasing order of their boiling points? CH₃CH₂CH₂CH₂CH₃ CH₃C(CH₃)₂CH₃ CH₃C(CH₃)₂CH₂OH

Arrange the following in increasing order of their intermolecular forces? I_2 Br_2 HCI

l₂

Nonpolar molecule

Molar mass = $(127 \times 2) = 254$

Dispersion forces only

Br₂

Nonpolar molecule

Molar mass = $(80 \times 2) = 160$

Dispersion forces only

HCI

Polar molecule

Dispersion forces
Dipole - dipole forces

 $Br_2 < I_2 < HCI$

Revision: Chemical Bonding and Intermolecular Forces

Practice Question

- 1. Draw the Lewis structure for CH₃CH₂COOH
- 2. Predict the VSEPR geometry at each of the carbons.
- 3. Determine a hybridization scheme to rationalize the geometry.
- 4. Identify the orbitals involved in each bond.

1. Draw the Lewis structure for CH₃CH₂COOH.

- 1. Draw the Lewis structure for CH₃CCH.
- Predict the VSEPR geometry at each of the carbons.

VSEPR geometry requires the count of bond pairs

Bond pairs = 4 **Geometry = Tetrahedral**

McGill

Bond pairs = 3

Geometry = Trigonal planar

- 1. Draw the Lewis structure for CH₃CH₂COOH
- 2. Predict the VSEPR geometry at each of the carbons.
- 3. Determine a hybridization scheme to rationalize the geometry.
- 4. Identify the orbitals involved in each bond.

C 2s² 2p² O 2s² 2p⁴ H 1s¹

CH₃CH₂COOH

Hybridization = sp^3

- 1. Draw the Lewis structure for CH₃CH₂COOH
- 2. Predict the VSEPR geometry at each of the carbons.
- 3. Determine a hybridization scheme to rationalize the geometry.
- 4. Identify the orbitals involved in each bond.

C 2s² 2p² O 2s² 2p⁴ H 1s¹

CH₃CH₂COOH

Two sp³-s σ bonds

One $sp^3-sp^3 \sigma$ bond

One $sp^3-sp^2 \sigma$ bond

Two sp²-sp³ σ bonds

One sp²-sp² σ bond

One p-p π bond

Theories of Covalent Bonding

One sp³-s σ bond One sp³-sp² σ bond

Draw MO diagram for CN⁻. What is the bond order? Write down its MO electronic configuration and indicate if the molecule will be dia- or paramagnetic.

Bond Order = $\frac{1}{2}$ (no. of electrons in bonding orbitals – no. of electrons in antibonding orbitals)

$$(\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^4 (\sigma 2p)^2$$
 Bond order in CO = $(8-2)/2 = 3$

Diamagnetic

Resonance SO₂ S 3s² 3p⁴ O 2s² 2p⁴ **Determine hybridization at each atom center** (valence orbitals)

- Number of electron groups = 3 = number of hybrid orbitals = 3 = sp^2
- Number of electron groups = 3 = number of hybrid orbitals = 3 = sp^2

For all the sigma bonds we use valence bond theory and hybridization

the central Sulfur is sp² hybridized

ns

- Two $sp^2 sp^2$ sigma bonds with two terminal oxygen atoms
- Third sp² orbital contains the lone pair of electrons on sulfur

SO_2 : delocalized π electrons

SO_2 : delocalized π electrons

For hybridization, we removed moving bond (one that was making a double bond on either side) and a moving lone pair of electrons.

These four electrons are delocalized in the structure.

Graphic displays involve the use of semiconductors which absorb different amounts of energy depending on particle size. This energy is then re-emitted as photons of light. Different particle sizes give different colours.

Use band theory to explain why the larger particles produce colours toward the red end of the visible spectrum while smaller particles produce colours toward the violet end.

Formation of a Band

Graphic displays involve the use of semiconductors which absorb different amounts of energy depending on particle size. This energy is then re-emitted as photons of light. Different particle sizes give different colours.

Use band theory to explain why the larger particles produce colours toward the red end of the visible spectrum while smaller particles produce colours toward the violet end.

Graphic displays involve the use of semiconductors which absorb different amounts of energy depending on particle size. This energy is then re-emitted as photons of light. Different particle sizes give different colours.

Use band theory to explain why the larger particles produce colours toward the red end of the visible spectrum while smaller particles produce colours toward the violet end.

 CH_2F_2 has a boiling point of $-52^{\circ}C$, while CH_2CI_2 a boiling point of 40°C. Why is the boiling point of dichloromethane 92° higher than that of difluoromethane?

Fluorine more electronegative than Chlorine
It makes CH₂F₂ more polar than CH₂Cl₂.
But CH₂F₂ has lower boiling point than CH₂Cl₂?

 CH_2F_2 has a boiling point of $-52^{\circ}C$, while CH_2CI_2 a boiling point of 40°C. Why is the boiling point of dichloromethane 92° higher than that of difluoromethane?

Dispersion forces

Dipole-dipole forces

Molar mass of $CH_2F_2 = 52$

Polar

Dispersion forces

Dipole-dipole forces

Molar mass of $CH_2Cl_2 = 85$

CH₂Cl₂ will have stronger dispersion forces than CH₂F₂

It leads to CH₂Cl₂ with higher boiling point than CH₂F₂

