

x = any possible combination

ACTIVE LOW

Enable	Xi	Χo	Yo Y.	Y ₂ Y ₃	
t	×	×	1 1	1 1	
0	0	0	0 1	t t	
0	٥		10	\' '	
0	ï	0	1 1	10/1	
0	1	Ţ	t i	10	\

3-8 DECODER USING 2-4 DECODER

4-16 DECODER USING 2-4 DECODER

SEVEN SEGMENT CONVERTER

BINARY ADDER - HALF ADDER

FULL ADDER

$$\frac{\lambda \tilde{y} + \lambda \tilde{y} + \lambda \tilde{y} + \lambda \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \tilde{y} + \tilde{y} + \lambda \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \tilde{y} + \tilde{y} + \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$\frac{\tilde{z} + \tilde{y} + \tilde{y} + \tilde{y} + \tilde{y} + \tilde{y}}{\tilde{z} + \lambda \tilde{y}}$$

$$S = (x \oplus Y) \oplus Z$$

$$C \cdot xy + xz + yz$$

$$= xy + xyz + xyz + xyz + xyz$$

$$= xy(1+z) + z(xy + xy)$$

$$= xy + z(xy)$$

BINARY SUBTRACTOR

- · Half Subtractor
- · Full subtractor

B = AB

BCD ADDER

- · output sum cannot be greater than 9+9+1=19
- · add binary of 6 (0110) from binary sum 10 onwards

,0	!	0	t	O
	0	1	1	0
1	0	٥	Ò	0

resilive, two negative overflow is generated

Loverslow generated when xor of czanacy is L

COMPARATOR

A>B

A = B

A < B

MULTIPLEXER

- 2n input lines, single output, n select lines

- * for am, state is stored at low so remains same * for Qs, state is stored at high so remains same. *if value of am is o in start the clock will trigger Qm and it will go up until the next up is triggered.
- * as will then work on negative

an +1 JK Hoid O ١ invalid

*case 1
$$\rightarrow$$
 Rn = 1 Rn+1 = 0;
*case 2 \rightarrow Rn = 0 Rn+1 = 1;
J K Rn+1
0 0 RT nochange
0 1 0 reset
1 0 1 set

QT

Loggle

1 1

SR LATCH - NAND GATE

×	4	-	
	0	ı	* if any one of the input is o, an
2.5	1	•	at the second input, as output a
	0	i	always be 1.

1 1 0

S R
$$\mathbb{R}(n+1)$$

O invalid ** For $S=1 \rightarrow 1 \cdot \overline{\mathbb{R}}$

O 1 1 $\overline{\mathbb{I}} + \overline{\mathbb{R}}$

O + $\mathbb{R} = \mathbb{R}$

SE LATCH - NOR GATE

$$S = 0$$
 $R = 0$ Q

S R
$$\alpha(n+1)$$

O O α

O I O

O α

I D I

I invalid

**For R=0 \rightarrow α

O+ α

O+ α

O- α

O+ α

O- α

Service Servic	
IDO	CHARACTERISTIC TABLE
1112	

	1/5	R	Q(n)	Q(n+1)	
1	0	U	0	0	7
	0	0	١	1	} present state holds.
	0	1	0	0	2
	0	1	. 1	O	next state is always v
-	١	0	0	1	3
	١	O	١	1	next state is always 1
	١	١	O	×	invalid.
-	1	ı	1	×) Invalla.

GR FLIP FLOP EQUATION

SR FUP FLOP EXCITATION TABLE

ALCOHOL: A LANGE	NAME OF TAXABLE PARTY.		
Qn	&n+i	S	R
0	0	0	X
0	1	t	D
ı	0	C	١
	Ä,	X	0

* compare with characteristics table if values are changing then use don't care.

JK FLIP FLOP CHARACTERISTIC TABLE

2	k	R(n)	Q(n+1)
0	O	O	o
O	0	1	1
0	1	O	O
0	1	1	O
1	O	0	1
1	O	1	Ť.
1	- 1	0	1
1	.)	1	0

JK FLIP FLOP EQUATION

$$F = \frac{1}{16} + \overline{KQ_n} + \overline{JQ_n}$$

IK FUP FLOP EXCITATION TABLE

Q_n	& n+1	T	K
0	0	0	×
0	1	Ī	X
1	0	×	1
1	ı	X	0

a compare with characteristics table.

ATCH

E	\$	R	Q++1	Q.
0	X	, ×	A _t	Q.
1	0	0	Q _t	ā,
l	D	١	0	1
١	\	0	•	0
1		1	invai	id

additional gates beside SR latch - NAND NAND beside SR-latch

GATED D LATCH

E	D	841	Q++1
0	×	8+	0.
1	0	0	1
ı	١	ī	0

- . D is passed as inverter
- · D value is reflected in output Q_{t+1}

MASTER SLAVE DELIP FLOP

- then it will be reflected in y when clock is 1, but will not be reflected in Q.
- * check for falling edge ($1\rightarrow 0$), the output D will be reflected in Q.
- ·negative edge in clock.

D FLIP FLOP TO T FLIP FLOP

- . characteristic table of required flip flop (T)
- · excitation table of given jup jup (D)
- · insert a column to the right of characteristic table of required FF(T) and name it D
- · Write a function of D based on input T and present state (QT)
- circuit diagram by starting from given FF(D)
- · replace D with its equation.

D FLIP FLOP TO JK - FLIP FLOP

	_		•	•	_	2.	Q.	Qtti	D
1.	2	K	N.F	8++1	D	- ·		D	O
	0	0	0	0	0		0		
			8	3	,		0	1	1
	0	0	١	,	٠,		,	0	O
	0	١	O	0	0		•		
			\	O	0		ı	ı	1
	0		•		O				
	1	0	0	1	1				
	1	0	ĵ	1	t				
	١	· (D	i	1				
		4			0				

equation
$$\rightarrow D = J\bar{Q} + \bar{K}\bar{Q}$$

 $Q_{t+1} = J\bar{Q} + \bar{K}\bar{Q}$

COP

actevistic table.

6	Qn	Qn+1
0	0	0
0	1	0
١	0	١
1		1

* input is reflected in output. state equation:

· excitation table.

Q+	Qeti	D
0	D	0
0	I	1
1	0	0
	1	1

T FLIP FLOP

· characteristic table.

T	Qn	Qn+1		T	Q++1
0	0	0		0	Q,
0	ī	Ţ		١	QT
t	0	(* toggle if T=1		
ı	1	D]		

CHARACTERISTIC EQUATION

$$= T \bigoplus_{\tau} Q_{\tau}$$

$$= \tau \overline{Q_{\tau}} + \overline{\tau} Q_{\tau}$$

EXCITATION TABLE

Qn	Qn+1	τ	
0	0	0	
0	-	1	
V	0	1	
1		0	

and 8 are two slips lops, input n

State equations A(t+1), B(t+1)

- and A(t+1), B(t+1) is the output
- . plug in values
- on what value of a will present state move to next state.

MAB ACHI) B(CHI)

T-fup flop		$T_A = B + A$ $T_B = B + \overline{A}$
T	Q ++1	
0	8 t	
Ñ	Q.	

Present State B		NextState		Input	
		Atti	BHI	TA	TB
A	0	0	1	0	1
0		,	0	١	· ·
0	,	0	0	ï	O
1	0	0	0	ì	ı
ı	-4.1				

example

State Table

Present	State	Input		Next "	State	Output
A	В	x	٧	Atti		Z
٥	0	٥	٥	0	0	0
0	0	0	ī	0	0	0
0	0	t	0			
0	D	276	13047			
O	1	0	0	0	0	
o	1	0	١	O	0	
0	1	1	0			
0	1	i	Ĭ			
Ĩ.	0	0	0	0	0	
Ĺ	D	0	Ì	0	0	
1	0	1	0			
1	0	ī	, 1			
· f	ĺ	D	0	0	o	* • • •
1	1	D	1	0	0	
1	1	1	0			
1	1	- 1	i			

- if no end carry is generated, then answer is negative and equal to (r-1)'s complement. in (R-1)'s complement, end carry is added to the least significant aigit to end cary is generated, then answer is negative and equal to r's complement of the answer. Point complement, if an end courry is generated, discard it

