Máquina de Turing

Teoria da Computação

INF05501

A Máquina de Turing

- Proposta por Alan Turing em 1936
- Universalmente conhecida e aceita como formalização de algoritmo
- Possui, no mínimo, o mesmo poder computacional de qualquer computador de propósito geral
- Trata-se de um mecanismo simples que formaliza a ideia de uma pessoa que realiza cálculos
- Não constitui uma máquina, como definida anteriormente, mas sim um programa para uma Máquina Universal

Noção Intuitiva

- O ponto de partida de Turing: pessoa fazendo cálculos usando somente
 - Um instrumento de escrita
 - Um apagador
 - Uma folha de papel organizada em quadrados (células)

Funcionamento

- Partida: Folha de papel contém somente os dados iniciais do problema
- Desenvolvimento: Trabalho da pessoa composto por três operações:
 - Ler um símbolo de um quadrado
 - Alterar um símbolo de um quadrado
 - Mover os olhos entre quadrados
- Parada: Cálculos terminam quando é encontrada uma representação satisfatória para a resposta desejada

Hipóteses de Funcionamento

- Para viabilizar o procedimento descrito, as seguintes hipóteses são aceitáveis:
 - Natureza bidimensional do papel não é requisito essencial
 - Assume-se que papel consiste de uma fita infinita organizada em quadrados
 - Conjunto de símbolos pode ser finito
 - Conjunto de estados da mente da pessoa durante o processo de cálculo é finito
 - Existem dois tipos de estados em particular: estado inicial e estado final, correspondendo ao início e ao fim dos cálculos, respectivamente

Restrições de Funcionamento

- Essencialmente, existem três restrições quanto ao funcionamento de uma Máquina de Turing:
 - Comportamento da pessoa a cada momento é determinado somente pelo:
 - * Seu estado presente
 - * Símbolo armazenado no quadrado para o qual sua atenção está voltada
 - Pessoa é capaz de observar e alterar o símbolo de apenas um quadrado de cada vez
 - Pessoa só pode transferir sua atenção para um dos quadrados adjacentes

Noção como Máquina

- Uma Máquina de Turing é composta por:
 - Uma fita
 - Uma unidade de controle
 - Um programa

Fita

- Usada simultaneamente como
 - * Dispositivo de **entrada**
 - * Dispositivo de **saída**
 - * Memória de trabalho
- É finita à esquerda e infinita (tão grande quanto necessário) à direita
- Dividida em células, cada uma das quais armazena um símbolo

- Fita (cont.)
 - Os **símbolos** podem ser:
 - * Pertencentes ao alfabeto de entrada
 - * Pertencentes ao alfabeto auxiliar
 - * Branco, denotado por β
 - ∗ Marcador de início de fita, denotado por ⊳

- Fita (cont.)
 - No início:
 - Palavra a ser processada ocupa as células mais à esquerda, após o marcador de início de fita
 - * Demais células contêm branco

- Unidade de Controle
 - Reflete o **estado corrente** da máquina
 - Possui um número finito e predefinido de estados
 - Possui uma unidade de leitura e gravação (cabeça da fita), a qual acessa uma célula da fita de cada vez
 - A cabeça da fita lê o símbolo da célula atual e grava um novo símbolo
 - Após a leitura/gravação (a gravação é realizada na mesma célula de leitura), a cabeça move-se uma célula para a direita ou esquerda

- Programa (ou Função de Transição)
 - Utilizado para comandar a unidade de controle
 - Função que, a partir do estado atual da máquina e de um símbolo lido, determina:
 - * Novo estado
 - * Símbolo a ser gravado na célula atual
 - * Sentido do movimento da cabeça da fita

Representação de uma Máquina de Turing

Modelo Formal

- \(\Sigma\) é o alfabeto de símbolos de entrada
- Q é o conjunto finito de estados possíveis
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ é o conjunto de estados finais
- V é o alfabeto de símbolos auxiliares

Modelo Formal (cont.)

- β é o símbolo especial branco
- > é o símbolo especial de início de fita
- • II é o programa ou função de transição, que é uma função parcial definida como segue:

$$\Pi: Q \times (\Sigma \cup V \cup \{\beta, \triangleright\}) \to Q \times (\Sigma \cup V \cup \{\beta, \triangleright\}) \times \{E, D\}$$

Modelo Formal (cont.)

- Símbolo de início de fita ocorre somente na célula mais à esquerda
- A função programa considera:
 - Estado atual $p \in Q$
 - Símbolo lido da fita $sl \in (\Sigma \cup V \cup \{\beta, \triangleright\})$ para determinar:
 - Novo estado $q \in Q$
 - Símbolo a ser gravado $sg \in (\Sigma \cup V \cup \{\beta, \triangleright\})$
 - Sentido do movimento da cabeça da fita m, tal que $m \in \{E, D\}$, onde E denota esquerda e D, direita

Representações

• Grafo finito:

$$\Pi(p,sl) = (q,sg,m)$$

Representações

• Tabela de Transições:

$$\Pi(p, sl) = (q, sg, m)$$

Π	Δ	 sl	 sg	 β
p		(q,sg,m)		
q				

Processamento

- Processamento de $M=(\Sigma,Q,\Pi,q_0,F,V,\beta,\rhd)$ dada uma **palavra de entrada** w:
 - Parte-se de q_0 , com a cabeça posicionada sobre a célula que contém \gt
 - Sucessiva aplicação de Π até ocorrer uma condição de parada

Condições de Parada

- ullet Processamento pode parar **aceitando** ou **rejeitando** a entrada w
- ullet Entrada é aceita se processamento de w leva a um estado final
- Entrada é rejeitada se:
 - A função programa é indefinida para o argumento (símbolo lido e estado corrente)
 - O argumento corrente da função programa define um movimento inválido (à esquerda da célula mais à esquerda)
- Condições de parada podem não ser atingidas para $w \Rightarrow loop$ infinito

Variações da Máquina de Turing

- Diversas variações sobre a definição de Máquina de Turing são conhecidas e adotadas
- O objetivo é flexibilizar as restrições da definição inicial e facilitar o trabalho com o formalismo e o seu entendimento
- No entanto, tais variações não alteram o poder computacional do formalismo
- Variações mais significativas estão nas características da fita e no movimento da cabeça da fita

Variações da Máquina de Turing (cont.)

• Exemplos:

- Inexistência do marcador de início de fita
 - * Célula mais à esquerda da fita contém o primeiro símbolo da entrada (ou branco, se a entrada for vazia)
 - * Requer cuidado especial para controlar quando a cabeça da fita atinge o fim da mesma
- Cabeça de fita não se move em uma leitura/gravação
 - * Adicionalmente ao movimento para esquerda ou direita, a cabeça pode permanecer parada
 - * Objetivo é **reduzir o número de transições** necessárias

Variações da Máquina de Turing (cont.)

- Exemplos:
- Estado final de rejeição
 - Definição de um estado que explicita a condição de parada que rejeita a entrada
 - Visa a facilitar a compreensão da lógica da função programa

Aplicações da Máquina de Turing

- Reconhecimento de linguagens
- Processamento de funções
- Análise da solucionabilidade de problemas