Job No.:
 5115024031
 Address:
 1636 Methven Highway, Ashburton, New Zealand
 Date:
 23/07/2024

 Latitude:
 -43.758203
 Longitude:
 171.636339
 Elevation:
 41.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3 m
Wind Region	NZ2	Terrain Category	1.55	Design Wind Speed	43.28 m/s
Wind Pressure	1.07 KPa	Lee Zone	YES	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = 0.6815

For roof CP,e from 0 m To 3.50 m Cpe = -0.64 pe = -0.65 KPa pnet = -1.48 KPa

For roof CP,e from 3.50 m To 7.0 m Cpe = -0.52 pe = -0.53 KPa pnet = -1.36 KPa

For wall Windward Cp, i = 0.6815 side Wall Cp, i = -0.32

For wall Windward and Leeward CP,e from 0 m To 7 m Cpe = 0.7 pe = 0.59 KPa pnet = 0.92 KPa

For side wall CP,e from 0 m To 3.50 m Cpe = pe = -0.55 KPa pnet = -0.22 KPa

Maximum Upward pressure used in roof member Design = 1.48 KPa

Maximum Downward pressure used in roof member Design = 0.39 KPa

Maximum Wall pressure used in Design = 0.92 KPa

Maximum Racking pressure used in Design = 1.03 KPa

Design Summary

Purlin Design

Purlin Spacing = 750 mm Purlin Span = 5850 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.74 S1 Downward =12.68 S1 Upward =18.58

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.08 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	314.81 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.11 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	145.66 %
M0.9D-WnUp	-4.03 Kn-m	Capacity	-4.32 Kn-m	Passing Percentage	246.86 %
V _{1.35D}	0.74 Kn	Capacity	12.06 Kn	Passing Percentage	1629.73 %

Second page

V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	2.13 Kn	Capacity	16.08 Kn	Passing Percentage	754.93 %
V _{0.9D-WnUp}	-2.75 Kn	Capacity	-20.10 Kn	Passing Percentage	730.91 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 15.20 mm

Limit by Woolcock et al, 1999 Span/240 = 24.17 mm

Deflection under Dead and Service Wind = 17.61 mm

Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 2.13 kn Maximum upward = -2.75 kn

Number of Blocking = 2 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 6000 mm Internal Rafter Span = 6850 mm Try Rafter 2x300x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 5.30 S1 Upward = 5.30

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	11.88 Kn-m	Capacity	43.54 Kn-m	Passing Percentage	366.50 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	34.14 Kn-m	Capacity	58.06 Kn-m	Passing Percentage	170.06 %
$M_{0.9D\text{-W}nUp}$	-44.17 Kn-m	Capacity	-72.58 Kn-m	Passing Percentage	164.32 %
V _{1.35D}	6.94 Kn	Capacity	64.42 Kn	Passing Percentage	928.24 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	19.93 Kn	Capacity	85.9 Kn	Passing Percentage	431.01 %
V _{0.9D-WnUp}	-25.79 Kn	Capacity	-107.38 Kn	Passing Percentage	416.36 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 16.24 mm

Limit by Woolcock et al, 1999 Span/240 = 29.17 mm

Deflection under Dead and Service Wind = 20.9 mm

Limit by Woolcock et al, 1999 Span/100 = 70.00 mm

Reactions

Maximum downward = 19.93 kn Maximum upward = -25.79 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 80 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 51.75 Kn > -25.79 Kn

Intermediate Design Front and Back

Intermediate Spacing = 3000 mm

Intermediate Span = 1846 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.44

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.18 Kn-m	Capacity	4.2 Kn-m	Passing Percentage	355.93 %
V _{0.9D-WnUp}	2.55 Kn	Capacity	-24.12 Kn	Passing Percentage	945.88 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 5.44 mm

Limit byWoolcock et al, 1999 Span/100 = 18.46 mm

Reactions

Maximum = 2.55 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 3000 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.35 Kn-m	Capacity	1.65 Kn-m	Passing Percentage	122.22 %
$ m V_{0.9D ext{-}WnUp}$	1.79 Kn	Capacity	12.06 Kn	Passing Percentage	673.74 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 23.14 mm

Limit by Woolcock et al, 1999 Span/100 = 30.00 mm

Sag during installation = 4.91 mm

Reactions

Maximum = 1.79 kn

Girt Design Sides

Girt's Spacing = 1200 mm

Girt's Span = 3500 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.57 S1 Downward =11.27 S1 Upward =22.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.69 Kn-m	Capacity	2.11 Kn-m	Passing Percentage	124.85 %
V _{0.9D-WnUp}	1.93 Kn	Capacity	16.08 Kn	Passing Percentage	833.16 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 16.69 mm

Limit by Woolcock et al. 1999 Span/100 = 35.00 mm

Sag during installation =9.10 mm

Reactions

Maximum = 1.93 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3700 mm
Area	27598 mm2	As	20698.2421875 mm2
Ix	60639381 mm4	Zx	646820 mm3
Iy	60639381 mm4	Zx	646820 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 21 m^2

Dead	5.25 Kn	Live	5.25 Kn
Wind Down	8.19 Kn	Snow	13.23 Kn
Moment wind	10.40 Kn-m	Moment snow	4.04 Kn-m
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ff =	22 MPa	F. =	9257 MPa

Capacities

PhiNex Wind	397.41 Kn	PhiMnx Wind	18.78 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	238.44 Kn	PhiMnx Dead	11.27 Kn-m	PhiVnx Dead	29.41 Kn
PhiNcx Snow	317.93 Kn	PhiMnx Snow	15.03 Kn-m	PhiVnx Snow	39.21 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.62 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.37 < 1 \text{ OK}$

Deflection at top under service lateral loads = 28.90 mm < 37.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
----------------	----------------	--------	----------	---------

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

$D_S =$	0.6 mm	Pile Diameter

L= 1700 mm Pile embedment length

f1 = 2250 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	10.40 Kn-m	Moment Snow =	Kn-m
Shear Wind =	4.62 Kn	Shear Snow =	4.04 Kn

Pile Properties

Safety Factory 0.55

Hu = 11.08 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 15.66 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.66 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of

internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1700) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1700)

Skin Friction = 23.34 Kn

Weight of Pile + Pile Skin Friction = 28.31 Kn

Uplift on one Pile = 26.35 Kn

Uplift is ok