Cloud Deployment Models

Introduction

- Models include:
 - Private cloud (deployed within organisation's firewall)
 - Public cloud (deployed outside organisation's firewall), hosted by third party
- Datacenter
 - Houses computer systems and related components such as for communications and storage systems
 - Has redundant or backup power supplies, data communication connections, environment controls like AC, fire suppression, and also security
- Clouds are locations dependent
- Reliability and redundancy supported by multiple data centers.
- Clouds certainly span One or many datacenters.

Cloud characteristics

- On-demand service
- Ubiquitous n/w access
- Location independent resource pooling
- Rapid elasticity

Cloud characteristics

- On-demand service
 - Provisions computing capabilities such as server time and n/w storage
 - Automatically without requiring human interaction

- Ubiquitous n/w access
 - Services available over the n/w accessed through standard mechanisms
 - Can be used on heterogeneous client platforms(mobiles, laptops, PCs)

- Location independent resource pooling
 - Multitenant
 - Resources pooled to serve multiple customers
 - Physical and virtual servers dynamically assigned based on demand
 - Location independence, customer has no control of the locations of services located
 - Example of resources storage, processing, memory, n/w bandwidth.

Rapid elasticity

- Services can be rapidly and elastically provisioned
- Can scale out automatically and rapidly, and
- Can be quickly released
- Customer have unlimited services that can be purchased in any quantity at any time

Measured service

- Cloud systems automatically control and optimise resources
- Leverages metering at some level of abstraction suitable for a service
- Resource usage can be monitored, controlled and reported providing transparency for the utilized service
- More the standardization, and virtualization, more the reduction in infrastructure costs

Why organizations migrating to cloud?

- Greater flexibility
- Cost reduction
- Avoid problems and delays arising from apps that have varying loads

How can cloud vendor's address clients challenges?

- Prioritising cloud apps based on business impact and risk
- Identifying apps that are suitable and have high business impact
- Addressing problems of workloads to improve the client experience
- Mitigating risk of costly implementation delays
- Avoiding apps with complex and integrated workloads
- Leveraging expertise to help successfully migrate apps to cloud environment
- Help accelerate cloud initiatives

Cost factor

- Virtualization and standardization allows to deliver services with fewer resources and drive up utilization
- Automation reduces labour cost to give cost benefit
- Frees up budget to be diverted to core services and to innovation and development of new services
- Enables smarter way to deliver services because of self service portals
- Cost also matters when high security requirement leads to high level SLA's
- increases productivity by providing dynamic infrastructure, and
- Providing resources to team wherever and whenever required

- Virtualization driving up utilisation lowers current and future capital investments
- Self service portals enables clients to help themselves with less support people
- Automation reduces IT operation costs
- Test and development environments are different and complex, so
- Multiple skills such as for OS, DB, apps, middleware skills are required to deliver to customers
- Cloud that allows to define environments and reuse it, drives down the labour cost

Cloud Deployment Models

Cloud delivery models classified into 3 types:

- Public:

- capabilities are rented and paid by use
- Drives efficiency
- Retains more control and customization

- Private:

- business convert their IT environment into cloud to deliver services
- Standardised and low security risk
- Hybrid: combine elements of public and private

Public clouds

- the services and infrastructure are provided off-site over the Internet
- offer the greatest level of efficiency in shared resources
- are also more vulnerable than private clouds
- Need not buy, service or maintain any infrastructure

It is a good choice when:

- Standardized applications is used by lots of people, such as e-mail
- There are SaaS (Software as a Service) applications from a vendor who has a well-implemented security strategy
- need incremental capacity (the ability to add computer capacity for peak times)
- doing an ad-hoc software development project using a Platform as a Service (PaaS) offered by cloud
- · Wiki's, blogs, social networking websites
- Batch processing with limited security requirements
- Looking for online storage solutions
- In applications where latency is not an issue

Public clouds are NOT suitable when:

- Apps composed on multiple co-dependent services
- Online transaction processing systems
- That require high level of auditability and accountability
- Apps that are based on third party software that does not have virtualization or cloud aware licensing strategy.
- Data is sensitive information like employee info and health care records

Private clouds

- Are deployment inside the company's firewall
- Have onsite data centers
- services and infrastructure are maintained on a private network
- Has greater control over infrastructure
- Improved security
- Enterprises have to still purchase and maintain all the software and infrastructure, which increases the costs

Is suitable when:

- Data is business hence, control and security are critical
- Business enforces strict security and data privacy issues
- Enterprise is large enough to run a cloud data centre efficiently and effectively on its own
- Vendor lock-in problems are to be avoided
 - It can be data or tools or platform lock-in due specific vendors having rights or license over some tools or platforms and makes migrating difficult on public cloud

High cost of privacy

- Ownership of hardware or software eliminates the pay per use feature
- There is huge upfront cost
- Hardware is sized for peal loads hence there will be inefficient excess capacity.
- Involves complex procurement cycles
- Complete ownership of implementation and hence complete control

Comparison

	Public cloud	Private cloud
Initial cost	zero	high
Running cost	Predictable	Unpredictable
Customization	Impossible	Possible
Privacy	No (provider has access to the data)	Yes
Single sign-on	difficult	Possible
Scaling up	Easy	Difficult

Hybrid cloud

- Combination of private and public cloud
- Can outsource non business critical info processing to public cloud and keep business critical services and data in private
- It is usually used in evolution process of outsourcing to public clouds.
- Try to keep different aspects of business in suitable clouds
- Can address different security and control requirements

Security in public clouds

- Private clouds tend to use older technology than public clouds
- Public clouds are hardened through continual hacking attempts
- Public clouds attract the best security people available
- As they seek out the top security experts and treat them as the most important part of their businesses
- So Private cloud staff competence is less

- Multi tenancy
 - As long as the provider provides security to highest-risk client, all the lower risk clients get better security
- Security assessment
 - Assessment can be done regularly by the provider and each client can given the assessment to know the current state of security
- Shared risk
 - A cloud provider may not be the cloud operator
 - A provider of SaaS may be using the laaS service provided by another provider
 - Multi-tier service provider arrangement shares the risk of security issues among many layers
- Staff security screening
- Distributed data centers

