CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No : **6.3.2**

Lecture: Orthogonality

Topic: Gram-Schmidt Process

Concept: The Gram-Schmidt Process

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: ces-22July2020

Rev: 29th June 2020

What does Gram-Schmidt Process Do?

It orthogonalises a set of vectors!

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^n . The first two examples of the process are aimed at hand calculation.

EXAMPLE 1 Let
$$W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$$
, where $\mathbf{x}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Con-

struct an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for W.

SOLUTION The subspace W is shown in Fig. 1, along with \mathbf{x}_1 , \mathbf{x}_2 , and the projection \mathbf{p} of \mathbf{x}_2 onto \mathbf{x}_1 . The component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 is $\mathbf{x}_2 - \mathbf{p}$, which is in W because it is formed from \mathbf{x}_2 and a multiple of \mathbf{x}_1 . Let $\mathbf{v}_1 = \mathbf{x}_1$ and

$$\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{p} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{x}_1}{\mathbf{x}_1 \cdot \mathbf{x}_1} \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

Then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal set of nonzero vectors in W. Since dim W=2, the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for W.

Lay, Linear Algebra and its Applications (4th Edition)

354 CHAPTER 6 Orthogonality and Least Squares

The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$

$$\cdot$$

 $\mathbf{v}_p = \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \dots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\left\{\mathbf{v}_{1},\ldots,\mathbf{v}_{k}\right\} = \operatorname{Span}\left\{\mathbf{x}_{1},\ldots,\mathbf{x}_{k}\right\} \quad \text{for } 1 \leq k \leq p \tag{1}$$

MIT OpenCourseWare 2.46M subscribers

Gram-Schmidt Orthogonalization

Instructor: Ana Rita Pires

View the complete course: http://ocw.mit.edu/18-06SCF11

Worldwide Center of Mathematics

26.5K subscribers

Watch these worked out examples:

- 1. GramSchmidt: https://www.youtube.com/watch?v=Aslf3KGq2UE
- 2. QR: https://www.youtube.com/watch?v=6DybLNNkWyE
- 3. MIT Gram Schmidt: https://www.youtube.com/watch?v=TRktLuAktBQ&t=17s

EXAMPLE 2 Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$. Then $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is

clearly linearly independent and thus is a basis for a subspace W of \mathbb{R}^4 . Construct an orthogonal basis for W.

SOLUTION

Step 1. Let $\mathbf{v}_1 = \mathbf{x}_1$ and $W_1 = \text{Span}\{\mathbf{x}_1\} = \text{Span}\{\mathbf{v}_1\}$.

Step 2. Let \mathbf{v}_2 be the vector produced by subtracting from \mathbf{x}_2 its projection onto the subspace W_1 . That is, let

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{W_{1}} \mathbf{x}_{2}$$

$$= \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \qquad \text{Since } \mathbf{v}_{1} = \mathbf{x}_{1}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

As in Example 1, \mathbf{v}_2 is the component of \mathbf{x}_2 orthogonal to \mathbf{x}_1 , and $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for the subspace W_2 spanned by \mathbf{x}_1 and \mathbf{x}_2 .

Note: $v_2' = v_2 * 4$ to get rid of denominator in v_2

Step 3. Let \mathbf{v}_3 be the vector produced by subtracting from \mathbf{x}_3 its projection onto the subspace W_2 . Use the orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2'\}$ to compute this projection onto W_2 :

$$\operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} \underbrace{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} + \underbrace{\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}'}{\mathbf{v}_{2}' \cdot \mathbf{v}_{2}'} \mathbf{v}_{2}'}_{\mathbf{v}_{2} \cdot \mathbf{v}_{2}'} = \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}$$

Then \mathbf{v}_3 is the component of \mathbf{x}_3 orthogonal to W_2 , namely,

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{W_{2}} \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

See Slide 3 of Chapter 6.2.5 for explanation.

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{W_{2}} \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

FIGURE 2 The construction of \mathbf{v}_3 from \mathbf{x}_3 and W_2 .

See Fig. 2 for a diagram of this construction. Observe that \mathbf{v}_3 is in W, because \mathbf{x}_3 and $\operatorname{proj}_{W_2}\mathbf{x}_3$ are both in W. Thus $\{\mathbf{v}_1,\mathbf{v}_2',\mathbf{v}_3\}$ is an orthogonal set of nonzero vectors and hence a linearly independent set in W. Note that W is three-dimensional since it was defined by a basis of three vectors. Hence, by the Basis Theorem in Section 4.5, $\{\mathbf{v}_1,\mathbf{v}_2',\mathbf{v}_3\}$ is an orthogonal basis for W.

$$\operatorname{projection of}_{\mathbf{x}_{3} \text{ onto } \mathbf{v}_{1}} \mathbf{v}_{1} + \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}'} \mathbf{v}_{2}' = \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix}$$

The Basis Theorem

Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.