AVL Trees (高度平衡樹)

AVL Tree Definition

Quiz!

- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1
- Proposed by G. M. Adelson-Velsky & E. M. Landisin 1962.

An example of an AVL tree where the heights are shown next to the nodes:

n(2) /3 /4 \ n(1)

Height of an AVL Tree

- Fact: The height of an AVL tree storing n keys is O(log n).
- Proof:
 - Let us bound n(h), the minimum number of internal nodes of an AVL tree of height h.
 - Base cases: n(1) = 1 and n(2) = 2
 - Recurrent formula: For n > 2, an AVL tree of height h contains the root node, one AVL subtree of height n-1 and another of height n-2
 → n(h) = 1 + n(h-1) + n(h-2)
 - Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So $n(h) > 2 n(h-2) > 2^2 n(h-4) > 2^3 n(h-6) > ... > 2^i n(h-2i)$ → $n(h) > 2^{h/2-1}$ → $h < 2\log n(h) + 2$
 - Thus the height of an AVL tree is O(log n) Moer details in textbook

Insertion

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

Insertion Example, continued

Single Rotations

Single Rotations:

Double Rotations

double rotations:

Recap on Insert

- From the inserted node, you need to find the first node x leading to the root that has AVL violation.
- Perform restructure(x) only once to restore all AVL order leading to the root
- Restructure(x)
 - RR or LL imbalance → Single rotation
 - RL or LR imbalance → Double rotations

Example of Single Rotations

Insert 1, 2, 3, 4, 5, 6, 7 into an AVL tree.

Example of Single and Double Rotations

Quiz!

◆Insert 1, 3, 4, 15, 14, 12, 2 into an AVL tree.

Exercise

Quiz!

◆Insert 12, 8, 7, 14, 18, 10, 20, 16, 15 with AVL rotations.

Delete

Delete begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.

Example:

before deletion of 32

after deletion

Rebalancing after a Delete (1/2)

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- If x has RR imbalance, we perform restructure(x) or single rotation to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

Rebalancing after a Delete (2/2)

- If we have a tie and x is chosen to have RL imbalance
- We perform restructure(x) or double rotations (which is unnecessary) to restore balance at z

Example of Complex Deletes (1/2)

Delete that involves two restructures

Example of Complex Deletes (2/2)

Delete that involves two restructures

Recap on Deletes

- Comparison
 - For deletes, you need to check imbalance all the way to the root
 - For inserts, you need only perform restructuring once.
- To make the delete sequence generate the same tree each time:
 - Use the in-order successor (if the node has both subtrees) to replace the deleted node.
 - Use single rotation whenever possible.

Youtube Links for AVL Trees

Intro to AVL tree

MIT open course ware (For inserts only. The lecturer mistakenly said that you need to check all the way to the root...)

Tree growing

- A detailed example
 from SDSU: 43, 18, 22, 9, 21, 6, 8, 20, 63, 50, 62, 51.
- Tree shrinking
 - A simple example
 - Another example
 - Yet another example

AVL Tree Performance

- a single restructure takes O(1) time
 - using a linked-structure binary tree
- find takes O(log n) time
 - height of tree is O(log n), no restructures needed
- put takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- erase takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)

