Math 401: Midterm 2 Study Guide

Tim Farkas

Oct 2021

Chapter 3: The Real Numbers

Definitions & Theorems

Theorem 10.6(2) (Principle of Mathematical Induction) P(n) is true for all $n > m, n, m \in \mathbb{N}$ provded

- (a) P(m) is true, and
- (b) for each $k \in \mathbb{N} \geq m$, if P(k) is true, then P(k+1) is true.

Note: If m = 1, then P(n) is true for all $n \in \mathbb{N}$.

Theorem 11.9d (Triangle Inequality) Let $x, y \in \mathbb{R}$. Then $|x + y| \le |x| + |y|$.

Theorem 12.1 Let p be a prime number. Then \sqrt{p} is not a rational number.

Definition 12.2 (Upper / Lower Bound) If there exists a real number m such that $m \ge s$ for all $s \in S$, then m is an *upper bound* of S, and we say S is "bounded above"

Flip for lower bound.

Definition 12.2 (Maximum / Minimum) If there exists an upper (lower) bound m of S that is a member of S, then m is the maximum (minimum) of S.

Definition 12.5 (Supremum / Infimum) An upper (lower) bound m of a non-empty subset of \mathbb{R} is called the *supremum (infimum)* or *least upper (greatest lower) bound* of S iff

if for all m' < m, there exists an $s \in S$ such that s > m'.

Flip for infimum.

Axiom (Completeness of the Reals) Every non-empty subset of \mathbb{R} that is bounded above (below) has a supremum (infimum).

Theorem 12.9(10) (The Archimedean Property) The following are equivalent:

- (a) The set \mathbb{N} of natural numbers is unbounded above in \mathbb{R} .
- (b) For each $z \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that n > z.
- (c) For each x > 0 and for each $y \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that nx > y.
- (d) For each x > 0, there exists an $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$.

Theorems 12.12 and 12.13 If x and y are real numbers and x < y, then there exists both an irrational number i such that x < i < y, and a rational number r such that x < r < y.

Definition 13.3 (Interior Point) A point x in \mathbb{R} is an *interior point* of S if there exists a (non-deleted) neighborhood N of x such that $N \subseteq S$.

Definition 13.3 (Boundary Point) A point x in \mathbb{R} is a boundary point of S if for every (non-deleted) neighborhood N of x, we have $N \cap S \neq \emptyset$ and $N \cap S^c \neq \emptyset$.

Definition 13.6 (Open / Closed Sets) Let $S \in \mathbb{R}$.

If $\operatorname{bd} S \subseteq S$, then S is closed.

If $\operatorname{bd} S \subseteq S^c$, then S is open.

Definition 13.14 (Accumulation / Isolated Points) A point $x \in \mathbb{R}$ is an accumulation point of S if every deleted neighborhood of x contains a point in S.

Otherwise, x is an *isolated point* of S.

Definition 14.1 (Open Cover) A family \mathcal{F} of open sets is an *open cover* of the set S if $S \subseteq \bigcup \mathcal{F}$.

Definition 14.1 (Subcover) If $\mathcal{G} \subseteq \mathcal{F}$, and \mathcal{G} is also an open cover of S, then \mathcal{G} is a *subcover* of S.

Definition 14.1 (Compact Set) The set S is called *compact* if every open cover of S contains a finite subcover.

Theorem 14.5 (Heine-Borel) A subset S of $\mathbb R$ is compact iff S is closed and bounded.

Chapter 4: Sequences

Definitions & Theorems

Definition 16.2 (Convergence) A sequence s_n is said to *converge* to a number L if for every $\epsilon > 0$ there exists a number $N \in \mathbb{N}$ such that if n > N, then $|s_n - L| < \epsilon$.

Theorem 16.13 Every convergent sequence is bounded.

Theorem 16.14 If a sequence converges, it's limit is unique.

Theorem 17.1 (Fundamental Limit Theorems) Suppose that (s_n) and (t_n) are convergent sequences with limits s and t. Then

- (a) $\lim_{n\to\infty} (s_n + t_n) = s + t$
- (b) $\lim_{n\to\infty} ks_n = ks$ and $\lim_{n\to\infty} (k+s_n) = k+s$ for any $k \in \mathbb{R}$.
- (c) $\lim_{n\to\infty} s_n t_n = st$.
- (d) $\lim_{n\to\infty} \frac{s_n}{t_n} = \frac{s}{t}$.

Definition 18.1 (Monotone) A sequence is *monotone* if either $s_n \leq s_{n+1}$ (increasing) or $s_n \geq s_{n+1}$ (decreasing) for all $n \in \mathbb{N}$.

Theorem 18.3 (Monotone Convergence Theorem) A monotone sequence is convergent iff it is bounded.

Definition 18.9 (Cauchy Sequence) A sequence (s_n) is a Cauchy sequence if for all $\epsilon > 0$, there exists a number $N \in \mathbb{N}$ such that if n, m > N, then $|s_n - s_m| < \epsilon$.

Theorem 18.12 (Cauchy Convergence Criterion A sequence of real numbers is convergent iff it is a Cauchy sequence.

Definition 19.1 (Subsequence) Let (n_k) be a sequence of natural numbers such that $n_1 < n_2 < ... < n_k$. Then s_{n_k} is a *subsequence* of s_n .

Theorem 19.4 If a sequence (s_n) converges to a real number s, then any subsequence of (s_n) converges to s.

Theorem 19.7 Every bounded sequence has at least one convergent subsequence.

Definition 19.9 (Limit Superior / Inferior) If S is the set of subsequential limits of a sequence (s_n) , the *limit superior* $\limsup s_n = \sup(S)$. The *limit inferior* is defined likewise with the infimum of S.