Clarke dual method for Hamiltonian systems with non standard grow

(In alphabetical order)

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina sonia.acinas@gmail.com

Jakub Maksymiuk

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto (5800) Río Cuarto, Córdoba, Argentina, fmazzone@exa.unrc.edu.ar

Abstract

In this paper we consider the problem of finding periodic solutions of certain Hamiltonian systems \dots blablabla

1 Main problem

Let $H:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$. We are looking for periodic solutions of the Hamiltonian system

$$\begin{cases} \dot{q}(t) &= D_p H(t, q(t), p(t)) \\ \dot{p}(t) &= -D_q H(t, q(t), p(t)) \\ p(0) &= p(T), q(0) = q(T) \end{cases}$$
 (1)

for $t \in [0, T]$. I think that, like in [7], is better to present the Hamiltonian problem as the main problem

^{*}SECyT-UNRC, FCEyN-UNLPam and UNSL

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

²⁰¹⁰ AMS Subject Classification. Primary: 34C25. Secondary: 34B15.

 $^{{\}bf Keywords}$ and ${\bf phrases.}$ Periodic Solutions, Orlicz Spaces, Euler-Lagrange, Critical Points.

An alternative writing of (1) using the combined variable u = (q, p) and the canonical symplectic matrix

$$J = \begin{pmatrix} 0 & I_{d \times d} \\ -I_{d \times d} & 0 \end{pmatrix}$$

is the following

$$\dot{u} = J\nabla H(t, u(t)) \tag{2}$$

or equivalently

$$J\dot{u} = -\nabla H(t, u(t)) \tag{3}$$

where ∇H is the gradient of H with respect to the combined variable.

2 Preliminaries

We will use some basic concepts of convex analysis that we list below.

Let
$$\Gamma_0(\mathbb{R}^d) = \{F : \mathbb{R}^d \to (-\infty, +\infty)\}$$

convex, lower semicontinous functions with non-empty effective domain.}

The Fenchel conjugate of F is given by

$$F^{\star}(p) = \sup_{q \in \mathbb{R}^d} \langle p, q \rangle - F(q)$$

The Fenchel conjugate satisfies the following properties:

- 1. $F^* \in \Gamma_0(\mathbb{R}^d)$
- 2. If $F \leq G$, then $G^* \leq F^*$.
- 3. If $G(q) = \alpha F(\beta q) + \sigma$ with $\alpha, \beta, \sigma > 0$ then $G^{\star}(p) = \alpha F^{\star}(\frac{p}{\beta \alpha}) \sigma$

Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a differentiable, convex function such that $\Phi(0) = 0$, $\Phi(q) > 0$ if $q \neq 0$, $\Phi(-q) = \Phi(q)$, and

$$\lim_{|q| \to \infty} \frac{\Phi(q)}{|q|} = +\infty,\tag{4}$$

where $|\cdot|$ denotes the euclidean norm on \mathbb{R}^d . From now on, we say that Φ is an G-function if Φ satisfies the previous properties.

We write Φ^* for the Fenchel conjugate of Φ .

We do not assume that Φ and Φ' satisfy the Δ_2 -condition.

We denote by $\partial F(q)$ the subdifferential of F in the sense of convex analysis (see [2, 3])

The next result is a generalization of [6, Prop. 2.2, p.34]

Proposition 2.1. Let $F \in \Gamma_0(\mathbb{R}^d)$. Suppose that there exist an anisotropic function Φ and non negative constants β, γ such that

$$-\beta \leqslant F(q) \leqslant \Phi(q) + \gamma, \text{ for all } q \in \mathbb{R}^d.$$
 (5)

Now, if $p \in \partial F(q)$ then

$$\Phi^{\star}(p) \leqslant \Phi(2q) + 2(\beta + \gamma). \tag{6}$$

Proof. If $p \in \partial F(q)$, from [6, Thm. 2.2, p.33],

$$F^{\star}(p) = \langle p, q \rangle - F(q) \tag{7}$$

Conjugating (5), we have

$$F^{\star}(p) \geqslant \Phi^{\star}(p) - \gamma. \tag{8}$$

From Young's inequality, we get

$$\langle p, q \rangle = \frac{1}{2} \langle p, 2q \rangle \leqslant \frac{1}{2} \Phi^{\star}(p) + \frac{1}{2} \Phi(2q)$$
 (9)

By eqs. (5) and (7) to (9), we get

$$\Phi^{\star}(p) \leqslant \frac{1}{2}\Phi^{\star}(p) + \frac{1}{2}\Phi(2q) + \beta + \gamma$$

which implies (6)

Remark 1. Inequality (6) is a few better than the corresponding in [6, Prop. 2.2] because the the case of power function we obtain $(\beta + \gamma)^{1/p}$, meanwhile in [6] appears $(\beta + \gamma)^{1/(p-1)}$.

3 Optimal bounds for a symplectic bilinear form

We consider the Euclidean space \mathbb{R}^{2d} equipped with the standard symplectic structure given by bilinear canonical symplectic 2-form

$$\Omega(u,v) := \langle Ju,v \rangle.$$

As Jakub observed we can not consider any G-function on the symplectic manifold \mathbb{R}^{2n} . I thinkthat the following can be the appropriate form of the G-function defined on the symplectic manifold \mathbb{R}^{2n}

Definition 3.1. Let Φ a G-function defined in the symplectic manifold \mathbb{R}^{2n} . We say that Φ is a symplectic G-function if

$$\Phi(Ju) = \Phi^{\star}(u). \tag{10}$$

Example 3.1. Let $\Phi: \mathbb{R}^d \to [0, +\infty)$ be a G-function. Then the G-function

$$\Phi(u) = \Phi(q, p) := \Phi(q) + \Phi^{\star}(p).$$

is a symplectic G-function.

PROBLEM 0: It is the previous the general form of any symplectic G-function? It is possible to find other example of these functions?

We note that if Φ is symplectic then

$$\nabla \Phi(Ju) = J\Phi^{\star}(u). \tag{11}$$

Here we are agreeing that $\nabla \Phi$ is a column vector.

As a consequence of (10), the matrix J induce a isometry between the spaces $L^{\Phi}([0,T],\mathbb{R}^{2d})$ and $L^{\Phi^{\star}}([0,T],\mathbb{R}^{2d})$. Therefore we can define a bilinear form $\overline{\Omega}$ on $L^{\Phi}([0,T],\mathbb{R}^{2d})$ of the following way

$$\overline{\Omega}(u,v) := \int_0^T \Omega(u,v)dt, \quad u,v \in L^{\Phi}([0,T],\mathbb{R}^{2d})$$

We consider the following functional

$$\Theta(u) := \overline{\Omega}(u, \dot{u}).$$

We are interested in to find bounds of the quadratic functional Θ of the following type

$$\theta(u) \geqslant -C \int_{0}^{T} \Phi(\dot{u}) dt, \tag{12}$$

for $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$. It is important to get the best constant C in previous inequality because this constant imposes restrictions to the Hamiltonian H.

If $\Phi(q) = |q|^2/2$ was proved in [6, Prop. 3.2] (12) holds width $C = T/\pi$. Below we prove that this is the optimal constant satisfying (12). Meanwhile in [9, Lem. 3.3] was proved that $C_{\Phi} = 2T$ satisfies (12) when $\Phi(q) = |q|^{\alpha}/\alpha$, $1 < \alpha < \infty$. Since this constant is not equal to T/π when $\alpha = 2$, it is not optimal.

Proposition 3.2. Let Φ be any symplectic G-function. Then (12) holds for and $C = 2T^{-1}$ for every $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$.

Proof. Let $u \in W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$. As is usual we write $u = \tilde{u} + \overline{u}$ where

$$\overline{u} = \frac{1}{T} \int_0^T u(t)dt.$$

From [8, Lem. 2.4] we have that

$$\int_0^T \Phi(\tilde{u})dt \leqslant \int_0^T \Phi(T\dot{u})dt.$$

Then by Young's inequality and using (10)

$$\int_{0}^{T} \Omega(\dot{u}, u) dt = T \int_{0}^{T} \left\langle J\dot{u}, T^{-1}\tilde{u} \right\rangle dt$$

$$\geqslant -T \left\{ \int_{0}^{T} \Phi^{*}(J\dot{u}) dt + \int_{0}^{T} \Phi(T^{-1}\tilde{u}) dt \right\}$$

$$\geqslant -2T \left\{ \int_{0}^{T} \Phi(\dot{u}) dt \right\}$$

Clearly the cosntant 2/T is far to be optimal. A possible way of improve C is consider other average \overline{u} . The mean value that it was used is the standard condered in the literature. But this value is appropriate for el Hilbert setting $\Phi(q) = |q|^2/2$. In this case, the value of \overline{u} is the nearest (in the L^2 -norm) constant vector to u. For a arbitrary G function, it seem more reasonable consider the nearest constant vector to u respect to the Φ -integral, i.e.

$$\int_0^T \Phi(u - \overline{u}) dt \leqslant \int_0^T \Phi(u - u_0) dt, \quad \text{for every } u_0 \in \mathbb{R}^{2n}$$

Equivalently \overline{u} is characterizate by

$$\int_0^T \nabla \Phi(u - \overline{u}) dt = 0.$$

There is not a explicit formula as in the Hilbert setting. PROBLEM 1. We can get a better constant taking this \overline{u} ???

We call to the best constant in (12) C_{Φ} , i.e.

$$C_{\Phi} = -\inf \left\{ \left. \frac{\int_0^T \langle J\dot{u}, u \rangle dt}{\int_0^T \Phi(\dot{u}) dt} \right| u \in W^1 L^{\Phi} \left([0, T], \mathbb{R}^{2d} \right) \right\}$$
 (13)

Proposition 3.3. The relation $C_{\Phi} = C_{\Phi^*}$ holds for every symplectic Φ .

Proof. Since Φ is symplectic if u = Jv

$$\frac{\int_0^T \langle J\dot{u}, u \rangle dt}{\int_0^T \Phi(\dot{u}) dt} = \frac{\int_0^T \langle -\dot{v}, Jv \rangle dt}{\int_0^T \Phi(J\dot{v}) dt} = \frac{\int_0^T \langle J\dot{v}, v \rangle dt}{\int_0^T \Phi^{\star}(\dot{v}) dt}.$$

Using that $u \mapsto Ju$ is invertible from $W^1L^{\Phi^*}([0,T],\mathbb{R}^{2d})$ into $W^1L^{\Phi}([0,T],\mathbb{R}^{2d})$ the statement follows taking infimum in previous equality.

For the following result we need the theory of indices of G-functions, see [4, 5] for a complete treatment in the case of N-functions defined on \mathbb{R} . The results are easily extended to the anisotropic setting. We denote by α_{Φ} and β_{Φ} the so called Matuszewska-Orlicz indices of the function Φ , which are defined next

$$\alpha_{\Phi} := \lim_{t \to 0^{+}} \frac{\log \left(\sup_{u > 0} \frac{\Phi(tu)}{\Phi(u)} \right)}{\log(t)}, \quad \beta_{\Phi} := \lim_{t \to +\infty} \frac{\log \left(\sup_{u > 0} \frac{\Phi(tu)}{\Phi(u)} \right)}{\log(t)}. \tag{14}$$

We have that $1 \le \alpha_{\Phi} \le \beta_{\Phi} \le +\infty$. The relation $\beta_{\Phi} < \infty$ holds true if and only if Φ is a Δ_2 -function. The indices satisfy the following relation

$$\frac{1}{\alpha_{\Phi}} + \frac{1}{\beta_{\Phi^{\star}}} = 1. \tag{15}$$

Therefore if Φ^* is a Δ_2 -function (I mean Δ_2 as globally Δ_2) then $\alpha_{\Phi} > 1$.

We observe that if Φ is symplectic then $\Phi \in \Delta_2$ implies $\Phi^* \in \Delta_2$. It is well known that if Φ and Φ^* are Δ_2 -function, then Φ is controlled by above and below by power functions. More concretely, for every $\epsilon > 0$ there exists a constant $K = K(\Phi, \epsilon)$ and p_0, p_1 with $1 < \alpha_{\Phi} - \epsilon < p_1 \leqslant p_2 < \beta_{\Phi} + \epsilon < \infty$ such that, for every $t, u \geqslant 0$,

$$K^{-1}\min\{t^{p_2},t^{p_1}\}\Phi(u)\leqslant \Phi(tu)\leqslant K\max\{t^{p_2},t^{p_1}\}\Phi(u). \tag{16}$$

We recall the following result of [1].

Lemma 3.4. Let Φ be a G-functions. If $\Phi^* \in \Delta_2$ globally, then for any $0 < \mu < \alpha_{\Phi}$,

$$\lim_{\|\boldsymbol{u}\|_{L^{\Phi}} \to \infty} \frac{\int_{0}^{T} \Phi\left(\frac{\boldsymbol{u}}{\Lambda}\right) dt}{\|\boldsymbol{u}\|_{L^{\Phi}}^{\mu}} = +\infty.$$
 (17)

Theorem 3.5. Suppose that $u \in W^1L_T^{\Phi}([0,T], \mathbb{R}^{2d})$ attains the minimum in (13), then $\lambda = 2/C_{\Phi}$ is the first eigenvalue and u the corresponding eigenfunction of the following problem.

$$\begin{cases} \frac{d}{dt} \nabla \Phi^{\star}(\dot{u}) + \lambda \nabla \Phi^{\star}(\lambda u) = 0\\ u(0) = u(T), \int_{0}^{T} \nabla \Phi^{\star}(\lambda u) dt = 0 \end{cases}$$
 (Eig)

Proof.

4 Differentiability of Hamiltonian dual action

Theorem 4.1. Suppose that $\Phi : \mathbb{R}^{2d} \to [0, +\infty)$ is a differentiable G-function, not necessarily symplectic. Additionally

- 1. $H:[0,T]\times\mathbb{R}^{2d}\to\mathbb{R}$ is measurable in t, continuously differentiable with respect to u.
- 2. there exist $\beta, \gamma \in L^1([0,T],\mathbb{R}), \Lambda > \lambda > 0$ such that

$$\Phi^{\star}\left(\frac{u}{\Lambda}\right) - \beta(t) \leqslant H(t, u) \leqslant \Phi^{\star}\left(\frac{u}{\Lambda}\right) + \gamma(t) \tag{18}$$

Then there exists Λ_0 such that the dual action

$$\chi(v) = \int_0^T \frac{1}{2} \langle J\dot{v}, v \rangle + H^{\star}(t, \dot{v}) dt \tag{19}$$

is continuously differentiable in $W^1L_T^{\Phi}([0,T],\mathbb{R}^{2d}) \cap \{u|d(\dot{u},L^{\infty})<\Lambda_0\}$. If v is a critical point of χ with $d(\dot{v},L^{\infty})<\Lambda_0$, the function defined by $u(t)=\nabla H^{\star}(t,\dot{v})$ solves

$$\left\{ \begin{array}{lcl} \dot{u} & = & J \nabla H(t,u) \\ u(t) & = & u(T) \end{array} \right.$$

Proof. Conjugating 2 we obtain

$$\Phi(\lambda u) - \gamma(t) \leqslant H^{\star}(t, v) \leqslant \Phi(\Lambda v) + \beta(t) \tag{20}$$

Since H^* is smooth, we have $\partial_v H^*(t,v) = \{\nabla_v H^*(t,v)\}$. Applying Proposition 2.1 with $F = H^*$, $\Phi(\Lambda v)$ instead of $\Phi(u)$ and $u = \nabla H^*(t,v) \in \partial_v H(t,v)$, inequality (18) becomes

$$\Phi^{\star}\left(\frac{\nabla H^{\star}(t,v)}{\Lambda}\right) \leqslant \Phi(2\Lambda v) + 2(\beta + \gamma). \tag{21}$$

which will be the main inequality in the proof.

We are planning to obtain the structure condition (??) of [8] which guarantees differentiability.

We consider the Lagrangian

$$\mathcal{L}(t, v, \xi) = \frac{1}{2} \langle J\xi, v \rangle + H^{\star}(t, \xi)$$
 (22)

and we have to prove that there exist $\Lambda_0 > \lambda_0 > 0$ such that

$$|\mathcal{L}| + |\nabla_v \mathcal{L}| + \Phi^* \left(\frac{\nabla_\xi \mathcal{L}}{\lambda_0}\right) \le a(v) \left(b(t) + \Phi\left(\frac{\xi}{\Lambda_0}\right)\right)$$
 (23)

We start with $|\mathcal{L}|$. From (20),

$$|\mathcal{L}| \leqslant \frac{1}{2} |\langle J\xi, v \rangle| + H^{\star}(t, \xi) \leqslant \frac{1}{2} |\xi| |v| + \Phi(\Lambda \xi) + \beta(t).$$

Since $\frac{\Phi(x)}{|x|} \to \infty$ as $|x| \to \infty$, there exists C > 0 such that $|x| \le \Phi(x) + C$ for all $x \in \mathbb{R}^d$. Then,

$$|\mathcal{L}| \leqslant \frac{1}{2} \frac{|v|}{\Lambda} \left(\Phi(\Lambda \xi) + C \right) + \Phi(\Lambda \xi) + \beta(t) \leqslant \max \left\{ \Lambda, \frac{|v|}{2\Lambda} \right\} \left[\Phi(\Lambda \xi) + C + \beta(t) \right]$$

which is an estimate like the second member of (23).

Now, we treat $|\nabla_{\nu}\mathcal{L}|$ and we get

$$|\nabla_{\nu}\mathcal{L}| = \frac{1}{2}|J\xi| \le |\xi| \le \frac{1}{2\Lambda}(\Phi(\Lambda\xi) + C). \tag{24}$$

which is also an estimate of the desired type.

Finally, we deal with $\Phi(\nabla_{\xi}\mathcal{L}\lambda_0)$. As Φ^* is a convex, even function, we have

$$\Phi^{\star}\left(\frac{\nabla_{\xi}\mathcal{L}}{\lambda_{0}}\right) = \Phi^{\star}\left(\frac{-\frac{1}{2}Jv}{\lambda_{0}} + \frac{\nabla H^{\star}(t,\xi)}{\lambda_{0}}\right) \leqslant \frac{1}{2}\Phi^{\star}\left(\frac{Jv}{\lambda_{0}}\right) + \frac{1}{2}\Phi^{\star}\left(\frac{2\nabla H^{\star}(t,\xi)}{\lambda_{0}}\right).$$

We choose $\frac{2}{\lambda_0} = \frac{1}{\Lambda}$ with Λ as in (21) and we finally have

$$\Phi^{\star}\left(\frac{\nabla_{\xi}\mathcal{L}}{\lambda_{0}}\right) \leqslant \Phi^{\star}\left(\frac{Jv}{2\Lambda}\right) + \Phi(2\Lambda\xi) + 2(\beta + \gamma) =$$

$$\max\left\{\Phi^{\star}\left(\frac{Jv}{2\Lambda}\right), 1\right\} \left[\Phi(2\Lambda\xi) + 2(\beta + \gamma)\right]$$
(25)

which is a bound like the second member of (23).

Therefore, from (23), (24), (25) and choosing the worst functions a and b, we obtain condition (??).

Next, [8, Thm. 4.5] implies differentiability of χ in a set like $W^1L_T^{\Phi}([0,T],\mathbb{R}^d) \cap \{u|d(\dot{u},L^{\infty})<\lambda_0\}.$

If $v \in W^1L_T^{\Phi}([0,T],\mathbb{R}^d)$ is a critical point of χ with $d(\dot{v},L^{\infty}) < \lambda_0$ then, from equations (21) of [8] we obtain

$$0 = \int_0^T \frac{1}{2} \langle J\dot{v}, h \rangle - \frac{1}{2} \langle \dot{h}, Jv \rangle + \langle \nabla H^*(t, \dot{v}), \dot{h} \rangle.$$

The rest of the proof follows as in [6].

5 Existence periodic solutions Hamiltonian system

The following theorem extend to a quite general function Φ the result in [6, Th. 3.1] formulated for $\Phi_2(u) = |u|^2/2$. Even more, our result improves a little bit [6, Th. 3.1] in the sense that we obtain existence for Φ_2 when the functions, introduced below, l and γ are in L^2 and L^1 respectively instead that L^4 and L^2 which is assumed in [6, Th. 3.1]. This little improvement is due to the observation in Remark 1.

Theorem 5.1. Suppose that Φ is a symplectic G-function and

H1) Exists $\xi \in L^{\Phi^*}([0,T],\mathbb{R}^{2d})$ such that

$$H(t, u) \geqslant \langle \xi(t), u \rangle$$
.

H2) There exists $\alpha \in (0, C_{\Phi})$ (C_{Φ} is defined in (13)) such that for every $(t, u) \in [0, T] \times \mathbb{R}^{2d}$

$$H(t, u) \leq \frac{1}{\alpha} \Phi(\alpha u) + \gamma(t).$$

H3)

$$\int_0^T H(t,u)dt \to +\infty, \quad when \ |u| \to +\infty.$$

Then xxxxxxxxxxxxxxxx

Proof. Let δ be a positive number such that $\alpha + \delta < C_{\Phi}^{-1}$. Note that from (16) we have that

$$\frac{K}{\alpha + \delta} \Phi \left((\alpha + \delta) u \right) - \frac{1}{\alpha} \Phi \left(\alpha u \right) \geqslant \frac{K_1}{\alpha} \Phi \left(\alpha u \right),$$

where $K_1 = [(\alpha + \delta)/\alpha]^{p_1 - 1} - 1 > 0$ and K, p_2 are the constants in (16). The constat K_1 depends only on α, δ and Φ .

We define

$$H_{\delta}(t, u) = \frac{K_1}{\alpha} \Phi(\alpha u) + H(t, u)$$

Let $\lambda = \min\{1, K_1/2\}$. Then by H1), Young inequality and since $0 < \lambda \le 1$ we have

$$H_{\delta}(t,u) \geqslant \frac{K_{1}}{\alpha} \Phi\left(\alpha u\right) - \left| \frac{1}{\alpha} \left\langle \frac{\xi(t)}{\lambda}, \lambda \alpha u(t) \right\rangle \right|$$

$$\geqslant \frac{K_{1}}{\alpha} \Phi\left(\alpha u\right) - \frac{1}{\alpha} \Phi^{\star} \left(\frac{\xi(t)}{\lambda}\right) - \frac{1}{\alpha} \Phi\left(\lambda \alpha u(t)\right)$$

$$\geqslant \frac{K_{1}}{2\alpha} \Phi\left(\alpha u\right) - \frac{1}{\alpha} \Phi^{\star} \left(\frac{\xi(t)}{\lambda}\right)$$
(26)

On the other hand

$$H_{\delta}(t,u) \leqslant \frac{K}{\alpha+\delta}\Phi\left((\alpha+\delta)u\right) + \gamma(t)$$
 (27)

The perturbed Hamiltonian H_{δ} verifies the assumptions of Theorem 4.1. Moreover, since $\Phi \in \Delta_2 \cap \nabla_2$ we have that the dual action

$$\chi_{\delta}(v) = \int_{0}^{T} \frac{1}{2} \langle J\dot{v}, v \rangle + H_{\delta}^{\star}(t, \dot{v}) dt$$
 (28)

is continuously differentiable in $W^1L_T^{\Phi^*}([0,T],\mathbb{R}^{2d})$.

On the other hand

$$\chi_{\delta}(v) \geqslant \left(\frac{1}{\alpha + \delta} - C_{\Phi}\right) \int_{0}^{T} \Phi(v) dt - \gamma_{0}$$

Acknowledgments

The authors are partially supported by UNRC and UNLPam grants. The second author is partially supported by a UNSL grant.

References

- [1] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, and E. Schwindt. Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting. *Nonlinear Analysis, TMA.*, 125:681 698, 2015.
- [2] F. Clarke. *Optimization and Nonsmooth Analysis*. Classics in Applied Mathematics. SIAM, Philadelphia, 1990.

- [3] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. 2013.
- [4] Alberto Fiorenza and Miroslav Krbec. Indices of Orlicz spaces and some applications. *Commentationes Mathematicae Universitatis Carolinae*, 38(3):433–452, 1997.
- [5] L. Maligranda. Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.
- [6] J. Mawhin and M. Willem. Critical point theory and Hamiltonian systems. Springer-Verlag, New York, 1989.
- [7] J. Mawhin and M. Willem. Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences. Springer, 2010.
- [8] Fernando D Mazzone and Sonia Acinas. Periodic solutions of euler-lagrange equations in an anisotropic orlicz-sobolev space setting. arXiv preprint arXiv:1708.06657, 2017.
- [9] Y. Tian and W. Ge. Periodic solutions of non-autonomous second-order systems with a *p*-Laplacian. *Nonlinear Anal.*, 66(1):192–203, 2007.