Lecture 3: Introduction

Amos Ron

University of Wisconsin - Madison

January 29, 2021

Outline

- Diagonalizability
 - General square case
 - The Symmetric case, the Schur decomposition
- Norms
 - Vector Norms
 - Matrix Norms

Outline

- Diagonalizability
 - General square case
 - The Symmetric case, the Schur decomposition
- Norms
 - Vector Norms
 - Matrix Norms

Blank page

Diagonalizability

Definition: Diagonalizability

 $A \ m \times m$ is diagonalizable is there exists a basis for C^m made of e-vectors of A

Diagonalizability

Theorem:

A is square. TFCAE:

- A is diagonalizable
- There exist a matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Another equivalent condition deferred.

Proof of Theorem

(2) \implies (1): We have AP = PD. We prove that each column of P is an eigenvector of A. This proves (1), since the columns of any $m \times m$ invertible matrix form a basis for C^m . The jth column of P is Pe_j . Now:

$$A(Pe_j) = (AP)e_j = (PD)(e_j) = P(De_j) = P(D(j,j)e_j) = D(j,j)(Pe_j).$$

So, $(D(j,j), Pe_j)$ is an eigenpair of A.

Proof of Theorem

(1) \Longrightarrow (2) We are given m eigenpairs (λ_j, v_j) , with (v_1, \ldots, v_m) a basis for C^m . Let P be the matrix whose columns are v_1, \ldots, v_j , and let D be the diagonal matrix whose diagonal is $\lambda_1, \ldots, \lambda_m$. We show that $A = PDP^{-1}$ by showing that AP = PD, i.e., by showing that, for every j,

$$(AP)e_j = (PD)e_j.$$

Now,

$$(AP)e_j = A(Pe_j) = Av_j = \lambda_j v_j = P(\lambda_j e_j) = P(De_j) = (PD)e_j.$$

The symmetric case

Reminder: A is symmetric whenever A = A'.

Theorem: Spectral rudiments of a symmetric matrix

Assume A = A'. Then:

- \bullet $\sigma(A) \subset R$.
- A is diagonalizable.
- There is an A-eigenbasis which is also an orthonormal basis.
- The Schur Decomposition: A is orthogonally diagonalizable:

$$A = QDQ' = QDQ^{-1},$$

with Q orthogonal and D diagonal.

Demo #1

Outline

- Diagonalizability
 - General square case
 - The Symmetric case, the Schur decomposition
- Norms
 - Vector Norms
 - Matrix Norms

Definition: Norm

Let

$$||\cdot||$$

be an assignment from \mathbb{R}^m to

$$R_+ := \{c \in R \mid c \ge 0\} :$$

$$\mathbf{R}^m \ni \mathbf{v} \mapsto ||\mathbf{v}|| \in \mathbf{R}_+.$$

This assignment is a norm if the following conditions are valid:

- ||v|| = 0 if and only if v = 0.
- For $c \in \mathbb{R}$, $v \in \mathbb{R}^m$, we have ||cv|| = |c|||v||.
- For $v, w \in \mathbb{R}^m$, $||v + w|| \le ||v|| + ||w||$.

Example: The 1-norm, mean-norm, ℓ_1 -norm...

$$||v||_1 := \sum_{i=1}^m |v(i)|.$$

Example: The 2-norm, Euclidean-norm, ℓ_2 -norm, the least square norm...

$$||v||_2 := \sqrt{\sum_{i=1}^m |v(i)|^2}.$$

Example: The ∞ -norm, max-norm, ℓ_{∞} -norm, uniform norm...

$$||v||_{\infty} := \max_{1 \le i \le m} |v(i)|.$$

Example: The *p*-norm, ℓ_p -norm, $1 \le p < \infty$

$$||v||_p := \left(\sum_{i=1}^m |v(i)|^p\right)^{1/p}.$$

Definition of matrix norms

A is $m \times n$, maps thus \mathbb{R}^n to \mathbb{R}^m . We choose a norm, $||\cdot||$, for the domain, and a norm $||\cdot||'$ for the range.

Definition of matrix norms

A is $m \times n$, maps thus R^n to R^m . We choose a norm, $||\cdot||$, for the domain, and a norm $||\cdot||'$ for the range.

Definition: Matrix norm

$$||A|| := \max\{\frac{||Av||'}{||v||} : v \neq 0\} = \max\{||Av||' : ||v|| = 1\}.$$

Definition of matrix norms

Definition: Matrix norm

$$||A|| := \max\{\frac{||Av||'}{||v||} : v \neq 0\} = \max\{||Av||' : ||v|| = 1\}.$$

If the norms $||\cdot||$ and $||\cdot||'$ are both p-norms for the same p, we denote the matrix norm as $||A||_p$.

Theorem: computing $||A||_1$

Let $A_{m \times n}$ with columns a_1, \ldots, a_n . Then

$$||A||_1 = \max_{1 \le i \le n} ||a_i||_1$$

Theorem: computing $||A||_1$

Let $A_{m \times n}$ with columns a_1, \ldots, a_n . Then

$$||A||_1 = \max_{1 \le i \le n} ||a_i||_1 =: X$$

Proof: We need to show that $||A||_1 \le X$, and $||A||_1 \ge X$. First, for any $1 \le j \le m$, $||e_j||_1 = 1$, therefore

$$||a_j||_1 = ||Ae_j||_1 \le ||A||_1.$$

Therefore,

$$X \leq ||A||_1$$
.

Theorem: computing $||A||_1$

Let $A_{m \times n}$ with columns a_1, \ldots, a_n . Then

$$||A||_1 = \max_{1 \le i \le n} ||a_i||_1 =: X$$

Now, let $v \in \mathbb{R}^n$, $||v||_1$. Then

$$||Av||_1 = ||\sum_{i=1}^n v(i)a_i||_1 \le \sum_{i=1}^n ||v(i)a_i||_1 = \sum_{i=1}^n |v(i)|||a_i||_1$$

Now, let $v \in \mathbb{R}^n$, $||v||_1$. Then

$$||Av||_1 = ||\sum_{i=1}^n v(i)a_i||_1 \le \sum_{i=1}^n ||v(i)a_i||_1 = \sum_{i=1}^n |v(i)|||a_i||_1$$

$$\leq \sum_{i=1}^{n} |v(i)|X$$

Now, let $v \in \mathbb{R}^n$, $||v||_1$. Then

$$||Av||_1 = ||\sum_{i=1}^n v(i)a_i||_1 \le \sum_{i=1}^n ||v(i)a_i||_1 = \sum_{i=1}^n |v(i)|||a_i||_1$$

$$\leq \sum_{i=1}^{n} |v(i)|X$$

$$= X \sum_{i=1}^{n} |v(i)| = X||v||_{1} = X.$$

Therefore, $||A||_1 < X$.