# proj\_wallmart

## April 9, 2024

## Importing Libraries

```
[109]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

## Loading the Dataset .csv file

```
[110]: df = pd.read_csv('Walmart_Store_sales.csv')
```

# [111]: df

| [111]: | Store | Date       | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price | \ |
|--------|-------|------------|--------------|--------------|-------------|------------|---|
| 0      | 1     | 05-02-2010 | 1643690.90   | 0            | 42.31       | 2.572      |   |
| 1      | 1     | 12-02-2010 | 1641957.44   | 1            | 38.51       | 2.548      |   |
| 2      | 1     | 19-02-2010 | 1611968.17   | 0            | 39.93       | 2.514      |   |
| 3      | 1     | 26-02-2010 | 1409727.59   | 0            | 46.63       | 2.561      |   |
| 4      | 1     | 05-03-2010 | 1554806.68   | 0            | 46.50       | 2.625      |   |
| •••    |       | •••        | •••          |              | •••         |            |   |
| 6430   | 45    | 28-09-2012 | 713173.95    | 0            | 64.88       | 3.997      |   |
| 6431   | 45    | 05-10-2012 | 733455.07    | 0            | 64.89       | 3.985      |   |
| 6432   | 45    | 12-10-2012 | 734464.36    | 0            | 54.47       | 4.000      |   |
| 6433   | 45    | 19-10-2012 | 718125.53    | 0            | 56.47       | 3.969      |   |
| 6434   | 45    | 26-10-2012 | 760281.43    | 0            | 58.85       | 3.882      |   |

|      | CPI        | Unemployment |
|------|------------|--------------|
| 0    | 211.096358 | 8.106        |
| 1    | 211.242170 | 8.106        |
| 2    | 211.289143 | 8.106        |
| 3    | 211.319643 | 8.106        |
| 4    | 211.350143 | 8.106        |
| •••  | •••        | •••          |
| 6430 | 192.013558 | 8.684        |
| 6431 | 192.170412 | 8.667        |
| 6432 | 192.327265 | 8.667        |

```
6433 192.330854 8.667
6434 192.308899 8.667
```

[6435 rows x 8 columns]

## [112]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6435 entries, 0 to 6434
Data columns (total 8 columns):

| #    | Column         | Non-Null Count   | Dtype   |
|------|----------------|------------------|---------|
|      |                |                  |         |
| 0    | Store          | 6435 non-null    | int64   |
| 1    | Date           | 6435 non-null    | object  |
| 2    | Weekly_Sales   | 6435 non-null    | float64 |
| 3    | Holiday_Flag   | 6435 non-null    | int64   |
| 4    | Temperature    | 6435 non-null    | float64 |
| 5    | Fuel_Price     | 6435 non-null    | float64 |
| 6    | CPI            | 6435 non-null    | float64 |
| 7    | Unemployment   | 6435 non-null    | float64 |
| dtyp | es: float64(5) | , int64(2), obje | ct(1)   |
|      | 100            | O                |         |

memory usage: 402.3+ KB

## [113]: df.shape

## [113]: (6435, 8)

 $\bullet\,$  The number of Rows and Columns are 6435 and 8

## [114]: df.describe()

| [4447] |       | a.          |              |              |             |             | , |
|--------|-------|-------------|--------------|--------------|-------------|-------------|---|
| [114]: |       | Store       | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price  | \ |
|        | count | 6435.000000 | 6.435000e+03 | 6435.000000  | 6435.000000 | 6435.000000 |   |
|        | mean  | 23.000000   | 1.046965e+06 | 0.069930     | 60.663782   | 3.358607    |   |
|        | std   | 12.988182   | 5.643666e+05 | 0.255049     | 18.444933   | 0.459020    |   |
|        | min   | 1.000000    | 2.099862e+05 | 0.000000     | -2.060000   | 2.472000    |   |
|        | 25%   | 12.000000   | 5.533501e+05 | 0.000000     | 47.460000   | 2.933000    |   |
|        | 50%   | 23.000000   | 9.607460e+05 | 0.000000     | 62.670000   | 3.445000    |   |
|        | 75%   | 34.000000   | 1.420159e+06 | 0.000000     | 74.940000   | 3.735000    |   |
|        | max   | 45.000000   | 3.818686e+06 | 1.000000     | 100.140000  | 4.468000    |   |
|        |       |             |              |              |             |             |   |
|        |       | CPI         | Unemployment |              |             |             |   |
|        | count | 6435.000000 | 6435.000000  |              |             |             |   |
|        | mean  | 171.578394  | 7.999151     |              |             |             |   |
|        | std   | 39.356712   | 1.875885     |              |             |             |   |
|        | min   | 126.064000  | 3.879000     |              |             |             |   |
|        | 25%   | 131.735000  | 6.891000     |              |             |             |   |
|        | 50%   | 182.616521  | 7.874000     |              |             |             |   |

```
227.232807
                               14.313000
       max
[115]: df.isna().sum()
[115]: Store
                        0
       Date
                        0
       Weekly_Sales
                        0
       Holiday_Flag
                        0
       Temperature
                        0
       Fuel_Price
                        0
       CPI
                        0
       Unemployment
                        0
       dtype: int64
         • There is no missing values present in the dataset
      df.dtypes
[116]:
                          int64
[116]: Store
       Date
                         object
       Weekly_Sales
                        float64
       Holiday_Flag
                          int64
       Temperature
                        float64
       Fuel_Price
                        float64
       CPI
                        float64
       Unemployment
                        float64
       dtype: object
         • As checked, the Date variable has object data-type
[117]: # Converting the Date data-type to datetime
[118]: from datetime import datetime
       df['Date'] = pd.to_datetime(df['Date'])
[119]: df.dtypes
[119]: Store
                                  int64
                        datetime64[ns]
       Date
       Weekly_Sales
                               float64
                                  int64
       Holiday_Flag
       Temperature
                               float64
       Fuel_Price
                               float64
       CPI
                               float64
       Unemployment
                               float64
       dtype: object
```

75%

212.743293

8.622000

#### [120]: df [120]: Holiday\_Flag Temperature Fuel\_Price \ Store Date Weekly\_Sales 1 2010-05-02 1643690.90 42.31 2.572 0 1 1 2010-12-02 1641957.44 1 38.51 2.548 2 1 2010-02-19 0 39.93 1611968.17 2.514 3 1 2010-02-26 1409727.59 0 46.63 2.561 4 1 2010-05-03 1554806.68 0 46.50 2.625 6430 45 2012-09-28 713173.95 0 64.88 3.997 6431 45 2012-05-10 0 64.89 3.985 733455.07 6432 45 2012-12-10 734464.36 0 54.47 4.000 6433 45 2012-10-19 0 56.47 3.969 718125.53 6434 45 2012-10-26 760281.43 0 58.85 3.882 Unemployment CPI 0 211.096358 8.106 1 211.242170 8.106 2 8.106 211.289143 3 211.319643 8.106 4 211.350143 8.106 6430 192.013558 8.684 8.667 6431 192.170412 6432 192.327265 8.667 6433 192.330854 8.667 6434 192.308899 8.667 [6435 rows x 8 columns]

# 0.1 Basic Statistics tasks

## 1. Which store has maximum sales

[121]: total\_sales=df.groupby('Store')['Weekly\_Sales'].sum('Weekly\_Sales').round()

# Grouping the Store number and its Weekly Sales to finding the sum of all\_u

Weekly Sales of each Store

[122]: pd.DataFrame(total\_sales.sort\_values().tail(1))

# Sort the values and find the maximum Weekly Sales of the Store

## [122]: Weekly\_Sales Store 20 301397792.0

• Here, the Store 20 has the maximum sales

2. Which store has maximum standard deviation i.e., the sales vary a lot. Also, find out the coefficient of mean to standard deviation

```
[123]: df_std = df.groupby('Store')['Weekly_Sales'].std()
[124]: pd.DataFrame(df_std.sort_values().tail(1))
[124]:
               Weekly_Sales
       Store
       14
              317569.949476
         • The Store 14 has the maximum standard deviation
[125]: store_max = df[df['Store']==14].Weekly_Sales
       mean_to_std = store_max.std() / store_max.mean()*100
[126]: mean_to_std
[126]: 15.713673600948338
         • The co-efficient of mean to std deviation of store 14 is 15.713%
      3. Which store/s has good quarterly growth rate in Q3'2012
[127]: df.head()
[127]:
          Store
                       Date
                             Weekly_Sales
                                            Holiday_Flag
                                                          Temperature Fuel_Price \
       0
              1 2010-05-02
                               1643690.90
                                                                 42.31
                                                                             2.572
              1 2010-12-02
                                                                 38.51
                                                                             2.548
       1
                               1641957.44
                                                       1
       2
              1 2010-02-19
                               1611968.17
                                                       0
                                                                 39.93
                                                                             2.514
       3
              1 2010-02-26
                               1409727.59
                                                       0
                                                                 46.63
                                                                             2.561
                               1554806.68
              1 2010-05-03
                                                       0
                                                                 46.50
                                                                             2.625
                      Unemployment
       0 211.096358
                              8.106
       1 211.242170
                              8.106
       2 211.289143
                              8.106
       3 211.319643
                              8.106
       4 211.350143
                              8.106
[128]: q^2 = df[(df['Date'] >= '2012-04-01')&(df['Date'] <= '2012-06-30')].
        ⇒groupby('Store')['Weekly Sales'].sum().round()
[129]: q2.head()
```

[129]: Store

- 1 21036966.0
- 2 25085124.0

```
3
             5562668.0
       4
            28384185.0
             4427262.0
       Name: Weekly_Sales, dtype: float64
[130]: q3 = df[(df['Date'] >= '2012-07-01')&(df['Date'] <= '2012-09-30')].
        Groupby('Store')['Weekly_Sales'].sum().round()
[131]: q3.head()
[131]: Store
       1
            18633210.0
       2
            22396868.0
       3
             4966496.0
       4
            25652119.0
             3880622.0
       5
       Name: Weekly_Sales, dtype: float64
[132]: df_q3_2012 = pd.DataFrame({'Q2 Sales':q2,'Q3 Sales':q3,'Difference':(q3 - q2),
                                   'Growth Rate': (q3-q2)/q2})
       df_q3_2012.sort_values(by = 'Growth Rate', ascending=False).head(1)
           # Formula of Growth Rate is (q3 - q2)/q2
           # I have taken the top store which has good Growth Rate among all
[132]:
               Q2 Sales
                          Q3 Sales Difference Growth Rate
       Store
```

 $\bullet$  Here, the store 16 has good quarterly growth rate in Q3'2012 which has a Growth Rate of -0.027

-0.027893

4. Some holidays have a negative impact on sales. Find out holidays which have higher sales than the mean sales in non-holiday season for all stores together

-184822.0

16

6626133.0 6441311.0

|        | sales than the mean sales in hell heliday season for an stores together |       |            |              |              |             |              |  |  |  |
|--------|-------------------------------------------------------------------------|-------|------------|--------------|--------------|-------------|--------------|--|--|--|
| [133]: | df                                                                      |       |            |              |              |             |              |  |  |  |
| [133]: |                                                                         | Store | Date       | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price \ |  |  |  |
|        | 0                                                                       | 1     | 2010-05-02 | 1643690.90   | 0            | 42.31       | 2.572        |  |  |  |
|        | 1                                                                       | 1     | 2010-12-02 | 1641957.44   | 1            | 38.51       | 2.548        |  |  |  |
|        | 2                                                                       | 1     | 2010-02-19 | 1611968.17   | 0            | 39.93       | 2.514        |  |  |  |
|        | 3                                                                       | 1     | 2010-02-26 | 1409727.59   | 0            | 46.63       | 2.561        |  |  |  |
|        | 4                                                                       | 1     | 2010-05-03 | 1554806.68   | 0            | 46.50       | 2.625        |  |  |  |
|        | •••                                                                     | •••   | •••        | •••          |              | •••         |              |  |  |  |
|        | 6430                                                                    | 45    | 2012-09-28 | 713173.95    | 0            | 64.88       | 3.997        |  |  |  |
|        | 6431                                                                    | 45    | 2012-05-10 | 733455.07    | 0            | 64.89       | 3.985        |  |  |  |
|        | 6432                                                                    | 45    | 2012-12-10 | 734464.36    | 0            | 54.47       | 4.000        |  |  |  |

```
6433
                45 2012-10-19
                                   718125.53
                                                          0
                                                                   56.47
                                                                                3.969
       6434
                                   760281.43
                                                          0
                                                                   58.85
                45 2012-10-26
                                                                                3.882
                    CPI Unemployment
       0
             211.096358
                                 8.106
                                 8.106
       1
             211.242170
       2
             211.289143
                                 8.106
       3
             211.319643
                                 8.106
       4
             211.350143
                                 8.106
       6430 192.013558
                                 8.684
       6431 192.170412
                                 8.667
       6432 192.327265
                                 8.667
       6433 192.330854
                                 8.667
       6434 192.308899
                                 8.667
       [6435 rows x 8 columns]
[134]: Super_Bowl=['12-02-2010','11-02-2011','10-02-2012','08-02-2013']
       Labour_Day = ['2010-09-10','2011-09-09','2012-09-07','2013-09-06']
       Thanksgiving = ['2010-11-26','2011-11-25','2012-11-23','2013-11-29']
       Christmas = ['2010-12-31','2011-12-30','2012-12-28','2013-12-27']
           # Created a set from the holiday events description
[135]: Super Bowl Sales = round(df[df['Date'].isin(Super Bowl)]['Weekly Sales'].
        \rightarrowmean(),2)
       Labour_Day_Sales = round(df[df['Date'].isin(Labour_Day)]['Weekly_Sales'].
        \rightarrowmean(),2)
       Thanksgiving_Sales = round(df[df['Date'].isin(Thanksgiving)]['Weekly_Sales'].
        \rightarrowmean(),2)
       Christmas Sales = round(df[df['Date'].isin(Christmas)]['Weekly Sales'].mean(),2)
       non_holiday_sales = round(df[df['Holiday_Flag']==0]['Weekly_Sales'].mean(),2)
[136]: print('Super bowl: ' + str(Super_Bowl_Sales))
       print('Labour Day: ' + str(Labour_Day_Sales))
       print('Thanksgiving: ' + str(Thanksgiving_Sales))
       print('Christmas: ' + str(Christmas_Sales))
       print('Non-Holiday sales: ' +str(non_holiday_sales))
      Super bowl: 1079127.99
      Labour Day: 1039182.83
      Thanksgiving: 1471273.43
      Christmas: 960833.11
      Non-Holiday sales: 1041256.38
```

• Here, Thanksgiving has the highest sales than the mean sales in non-holiday season for all stores

## 5. Provide a monthly and semester view of sales in units and give insights

```
[137]: # Monthy view of Sales in units

[138]: df['year'] = pd.DatetimeIndex(df['Date']).year
    df['month'] = pd.DatetimeIndex(df['Date']).month
    df['day'] = pd.DatetimeIndex(df['Date']).day
```

```
[139]: plt.figure(figsize=(15,7))

plt.bar(df['month'],df['Weekly_Sales'])
plt.xlabel('Months')
plt.ylabel('Weekly Sales')

plt.title('Monthy view of Sales in units')
plt.show()
```



• Here, December has the highest sales

```
6430 2
6431 1
6432 2
6433 2
6434 2
Name: semester, Length: 6435, dtype: int32
```

```
[142]: semester=sns.barplot(x='semester',y='Weekly_Sales',data=df)
plt.show()
```



• Here, Semester 2 has the hightest sales in unit

## 0.2 Statistical Model

```
[143]: X = df[['Store','Fuel_Price','CPI','Unemployment','day','month','year']]
Y = df['Weekly_Sales']
[144]: # Linear Regression model
```

```
[145]: from sklearn.model_selection import train_test_split
       from sklearn.linear_model import LinearRegression
       import sklearn
[146]: | X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.8,
        →random state=42)
[147]: | linear_reg = LinearRegression()
[148]: linear_reg.fit(X_train, Y_train)
[148]: LinearRegression()
[151]: Y_pred = linear_reg.predict(X_test)
[152]: | print('R2 score: ' +str(r2_score(Y_test, Y_pred)))
       print('Linear model accuracy: ' +str(linear reg.score(X train, Y train)))
       print('Mean Squared Error: ' +str(mean_squared_error(Y_test, Y_pred)))
      R2 score: 0.14894500845355385
      Linear model accuracy: 0.14372803259754718
      Mean Squared Error: 274171250281.01086
[153]: # Plot a scatterplot graph
[154]: figs,axes = plt.subplots(2,2, figsize = (8,8))
       sns.scatterplot(data=df, x='Store', y='Weekly_Sales', color='red', ax=axes[0,0])
       sns.scatterplot(data=df, x='Fuel Price', y='Weekly_Sales', color='green', u
       \Rightarrowax=axes[0,1])
       sns.scatterplot(data=df, x='CPI', y='Weekly_Sales', color='blue', ax=axes[1,0])
       sns.scatterplot(data=df, x='Unemployment', y='Weekly_Sales', color='yellow', u
        \Rightarrowax=axes[1,1])
       plt.show()
```



• Linear Regression is not good fit for the model

```
# Random Forest Model
[155]:
[156]:
       df.corr()
[156]:
                             Store
                                    Weekly_Sales Holiday_Flag
                                                                 Temperature
       Store
                     1.000000e+00
                                       -0.335332 -4.386841e-16
                                                                   -0.022659
       Weekly_Sales -3.353320e-01
                                        1.000000
                                                  3.689097e-02
                                                                   -0.063810
       Holiday_Flag -4.386841e-16
                                                  1.000000e+00
                                                                   -0.155091
                                        0.036891
       Temperature
                    -2.265908e-02
                                       -0.063810 -1.550913e-01
                                                                    1.000000
       Fuel Price
                     6.002295e-02
                                        0.009464 -7.834652e-02
                                                                    0.144982
       CPI
                    -2.094919e-01
                                       -0.072634 -2.162091e-03
                                                                    0.176888
```

```
Unemployment 2.235313e-01
                                      -0.106176 1.096028e-02
                                                                  0.101158
      vear
                     3.474318e-12
                                      -0.018378 -5.678257e-02
                                                                  0.064269
      month
                     6.289676e-16
                                       0.067535 3.322341e-01
                                                                  0.066440
      day
                   -1.070464e-15
                                      -0.014873 -3.603594e-02
                                                                  0.089019
                     5.868729e-16
                                       0.035353 2.761285e-01
                                                                  0.130314
      semester
                    Fuel Price
                                      CPI
                                          Unemployment
                                                                 year
                                                                              month \
      Store
                      0.060023 -0.209492
                                               0.223531 3.474318e-12
                                                                       6.289676e-16
      Weekly_Sales
                       0.009464 -0.072634
                                              -0.106176 -1.837754e-02 6.753523e-02
      Holiday_Flag
                                               0.010960 -5.678257e-02 3.322341e-01
                     -0.078347 -0.002162
      Temperature
                       0.144982 0.176888
                                               0.101158 6.426923e-02 6.643970e-02
      Fuel_Price
                      1.000000 -0.170642
                                              -0.034684 7.794703e-01 -5.283174e-02
      CPI
                      -0.170642 1.000000
                                              -0.302020 7.479573e-02 1.478843e-03
      Unemployment
                     -0.034684 -0.302020
                                               1.000000 -2.418135e-01 -2.061552e-03
                      0.779470 0.074796
                                              -0.241813 1.000000e+00 -1.390145e-01
      vear
      month
                      -0.052832 0.001479
                                              -0.002062 -1.390145e-01
                                                                      1.000000e+00
                      0.032532 0.003966
                                              -0.008167 -1.277942e-02 5.959249e-03
      day
                      -0.061948 0.002291
                                              -0.009498 -9.683011e-02 8.642165e-01
      semester
                             day
                                       semester
      Store
                   -1.070464e-15 5.868729e-16
      Weekly Sales -1.487292e-02 3.535312e-02
      Holiday_Flag -3.603594e-02 2.761285e-01
      Temperature
                    8.901925e-02 1.303141e-01
      Fuel Price
                     3.253169e-02 -6.194830e-02
      CPI
                    3.965821e-03 2.291341e-03
      Unemployment -8.166853e-03 -9.497961e-03
                   -1.277942e-02 -9.683011e-02
      year
      month
                     5.959249e-03 8.642165e-01
                     1.000000e+00 3.487338e-02
      day
      semester
                     3.487338e-02 1.000000e+00
[157]: from sklearn.ensemble import RandomForestRegressor
[175]: rf = RandomForestRegressor(n_estimators = 500, max_depth=15, n_jobs=5)
      rf.fit(X_train,Y_train)
[175]: RandomForestRegressor(max_depth=15, n_estimators=500, n_jobs=5)
[176]: Y_pred=rf.predict(X_test)
[177]: print('R2 score: ' +str(r2_score(Y_test, Y_pred)))
      print('Root Mean Squared Error:', np.sqrt(mean_squared_error(Y_test, Y_pred)))
      print('Mean Squared Error: ' +str(mean_squared_error(Y_test, Y_pred)))
      R2 score: 0.9524234944111671
      Root Mean Squared Error: 123802.21502366115
```

Mean Squared Error: 15326988444.76483

```
[178]: plt.figure(figsize=(10,9))
sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
[179]: plt.scatter(Y_test, Y_pred)
   plt.xlabel('Y_test')
   plt.ylabel('Prediction')
   plt.show()
```



- $\bullet$  For Random Forest Regressor R2 score: R2 score: 0.9524234944111671 Root Mean Squared Error: 123802.21502366115 Mean Squared Error: 15326988444.76483
- The Random Forest Regressor model would be the best fit for the outcome

### 2. Change dates into days by creating new variable.

```
[164]: df['day'] = pd.to_datetime(df['Date']).dt.day_name()
    df.head()
```

| [164]: | Store      | Date   | Weekly_ | Sales | Holida | y_Flag ' | Temperature | Fuel_Price | \ |
|--------|------------|--------|---------|-------|--------|----------|-------------|------------|---|
| 0      | 1 2010-    | -05-02 | 16436   | 90.90 |        | 0        | 42.31       | 2.572      |   |
| 1      | 1 2010-    | -12-02 | 16419   | 57.44 |        | 1        | 38.51       | 2.548      |   |
| 2      | 1 2010-    | -02-19 | 16119   | 68.17 |        | 0        | 39.93       | 2.514      |   |
| 3      | 1 2010-    | -02-26 | 14097   | 27.59 |        | 0        | 46.63       | 2.561      |   |
| 4      | 1 2010-    | -05-03 | 15548   | 06.68 |        | 0        | 46.50       | 2.625      |   |
|        |            |        |         |       |        |          |             |            |   |
|        | CPI        | Unemp  | loyment | year  | month  | da       | y semester  |            |   |
| 0      | 211.096358 |        | 8.106   | 2010  | 5      | Sunda    | y 1         |            |   |
| 1      | 211.242170 |        | 8.106   | 2010  | 12     | Thursda  | y 2         |            |   |
| 2      | 211.289143 |        | 8.106   | 2010  | 2      | Frida    | y 1         |            |   |

3 211.319643 8.106 2010 2 Friday 1 4 211.350143 8.106 2010 5 Monday 1