Differential Privacy for Machine Learning

Master IASD, Université PSL

February 2024

Recommended Readings

Rererences used for this lecture:

- Deep Learning with Differential Privacy Abadi et al. ACM CCS 2016.
- Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data – Papernot et al. ICLR 2017
- Model-Agnostic Private Learning via Stability Bassily et al. NeurIPS 2018.

Modern ML

- Huge number of data points: $n \sim 1,000,000$ (Example: ImageNet has ~14 million images!)
- Huge number of model parameters: $p\sim 1,000,000$ (Example: Resnet-18 has $\,11\,$ million parameters!)
- Loss function typically not convex, not very smooth.

Table of Contents

- DP-SGD
 - Introduction
 Privacy amplification by sub-sampling
 Moments Accountant
- 2 PATE
- Wrap-up

Introduction

Privacy amplification by sub-sampling Moments Accountant

2 PATE

Introduction
Privacy via Stability
Sparse Vector Technique

SGD vs GD

- Computing the full gradient is O(n) very expensive.
- Instead, gradient is typically computed on a small batch of data points ($m\sim 100$) called mini-batch.
- In each iteration, m out of n data points are randomly sampled to form a mini-batch. Then, model parameters are updated with the mini-batch gradient.
- SGD with a small batch-size typically takes more iterations for convergence than the one with large batch-size.

Algorithm:

The algorithm is identical to DP-GD except that we use mini-batch gradient in place of full-gradient. Importantly, the gradient is clipped at some max value in every iteration.

$$g_t \leftarrow \nabla \mathcal{L}(\theta_t; \mathcal{D}_t)$$

$$\widetilde{g}_t \leftarrow \min \{C, g_t / \|g_t\|_2\}$$

$$\theta_{t+1} \leftarrow \theta_t - \eta \widetilde{g}_t + \mathbb{N}(0, \sigma^2 \mathcal{I}_p)$$

Utility:

- The mini-batch gradient is equal to the full gradient in expectation.
- Random subsampling for mini-batch introduces additional variance term in utility analysis.
- The effect of gradient-clipping is not fully understood.

Privacy:

- Sensitivity of the gradient is deliberately bounded by clipping.
- Two new techniques for tighter privacy analysis.
 - Privacy amplification by sub-sampling
 - 2 Moments accountant

Introduction

Privacy amplification by sub-sampling

Moments Accountant

2 PATE

Introduction
Privacy via Stability
Sparse Vector Technique

Privacy amplification by sub-sampling

Theorem

Let $M(\mathcal{D})$ be an ε -DP mechanism. Then the mechanism $M'(\mathcal{D})$ that outputs the result of M on a random subsample \mathcal{D}_{γ} of \mathcal{D} of size γn is $2\gamma(e^{\varepsilon}-e^{-\varepsilon})$ -DP.

Proof Sketch: Let \mathcal{D} and \mathcal{D}' be two neighboring datasets of size n, differing in d_i . Let $S \subset [n]$ be the subset of indices sampled. Let $R \subset [n] \setminus \{i\}$. For any event E,

$$\begin{split} &\frac{\mathbb{P}(M'(\mathcal{D}) \in E)}{\mathbb{P}(M'(\mathcal{D}') \in E)} = \frac{\gamma \mathbb{P}(M'(\mathcal{D}) \in E | i \in S) + (1 - \gamma) \mathbb{P}(M'(\mathcal{D}) \in E | i \notin S)}{\gamma \mathbb{P}(M'(\mathcal{D}') \in E | i \in S) + (1 - \gamma) \mathbb{P}(M'(\mathcal{D}') \in E | i \notin S)} \\ &= \frac{\mathbb{E}_{R,j \neq i} \left[\gamma \mathbb{P}(M'(\mathcal{D}) \in E | S = R \cup \{i\}) + (1 - \gamma) \mathbb{P}(M'(\mathcal{D}) \in E | S = R \cup \{j\}, j \neq i) \right]}{\mathbb{E}_{R,j \neq i} \left[\gamma \mathbb{P}(M'(\mathcal{D}') \in E | S = R \cup \{i\}) + (1 - \gamma) \mathbb{P}(M'(\mathcal{D}') \in E | S = R \cup \{j\}, j \neq i) \right]} \\ &\leq \frac{(\gamma e^{\varepsilon} + 1 - \gamma) \mathbb{E}_{R,j \neq i} \mathbb{P}(M'(\mathcal{D}) \in E | S = R \cup \{j\}, j \neq i)}{(\gamma e^{-\varepsilon} + 1 - \gamma) \mathbb{E}_{R,j \neq i} \mathbb{P}(M'(\mathcal{D}) \in E | S = R \cup \{j\}, j \neq i)} \\ &= \frac{(\gamma e^{\varepsilon} + 1 - \gamma)}{(\gamma e^{-\varepsilon} + 1 - \gamma)} = \frac{1 + \gamma(e^{\varepsilon} - 1)}{1 + \gamma(e^{-\varepsilon} - 1)}. \end{split}$$

Privacy amplification by sub-sampling

Proof Sketch: (continued) Therefore, M' is ε' -DP where,

$$\varepsilon' \le \log\left(\frac{1 + \gamma(e^{\varepsilon} - 1)}{1 + \gamma(e^{-\varepsilon} - 1)}\right)$$
$$\le 2\gamma(e^{\varepsilon} - e^{-\varepsilon}).$$

- For small ε , $2\gamma(e^{\varepsilon}-e^{-\varepsilon})\approx 4\gamma\varepsilon$. Hence, subsampling by γ fraction amplifies privacy by a factor of $4\gamma!$
- $\gamma \ll 1$ is better for privacy, but worse for utility.
- DP-SGD with batch-size m gets a privacy amplification of O(m/n).

L

Introduction
Privacy amplification by sub-sampling

2 PATE

Introduction
Privacy via Stability
Sparse Vector Technique

Moments Accountant

Theorem (Advanced Composition Theorem (Dwork & Roth))

For all $\varepsilon, \delta, \delta' \geq 0$, the class of (ε, δ) -DP mechanisms satisfies $(\varepsilon', k\delta + \delta')$ -DP under k-fold adaptive composition for

$$\varepsilon' = \sqrt{2k\ln(1/\delta')}\varepsilon + k\varepsilon(e^{\varepsilon} - 1).$$

- For small ε , advanced composition gives $(O(\sqrt{k}\varepsilon),O(k\delta))$ -DP for the composition of k (ε,δ) -DP mechanisms.
- Advanced composition theory is independent of the specifics of each mechanism in compositino.

Recall that the **privacy loss random variable** for a mechanism M is defined as,

$$\ell(y; M, \mathcal{D}, \mathcal{D}') := \log \frac{\mathbb{P}(M(\mathcal{D}) = y)}{\mathbb{P}(M(\mathcal{D}') = y)}.$$

Observe that M is ε -DP if $\ell(y; M, \mathcal{D}, \mathcal{D}') \leq \varepsilon$ for all y. Define the **moments accountant** parametrized by $\lambda > 0$ as,

$$\alpha_M(\lambda) := \max_{\mathcal{D}, \mathcal{D}': d(\mathcal{D}, \mathcal{D}') = 1} \log \mathbb{E}[\exp(\lambda \ell(y; M, \mathcal{D}, \mathcal{D}'))].$$

Theorem

For any $\varepsilon > 0$, a mechanism M with moments accountant $\alpha_M(\lambda)$ is (ε, δ) -DP for,

$$\delta = \min_{\lambda > 0} \exp(\alpha_M(\lambda) - \lambda \varepsilon).$$

Proof Sketch:

$$\mathbb{P}(\ell(y; M, \mathcal{D}, \mathcal{D}') > \varepsilon) = \mathbb{P}(\exp(\lambda \ell(y; M, \mathcal{D}, \mathcal{D}')) > \exp(\lambda \varepsilon))$$

$$\leq \frac{\mathbb{E}[\exp(\lambda \ell(y; M, \mathcal{D}, \mathcal{D}'))]}{\exp(\lambda \varepsilon)} = \exp(\alpha_M(\lambda) - \lambda \varepsilon).$$

Let bad event $B = \{y : \ell(y; M, \mathcal{D}, \mathcal{D}') \geq \varepsilon\}$. For any event E,

$$\mathbb{P}(M(\mathcal{D}) \in E) = \mathbb{P}(M(\mathcal{D}) \in E \cap B^c) + \mathbb{P}(M(\mathcal{D}) \in E \cap B)$$

$$\leq e^{\varepsilon} \mathbb{P}(M(\mathcal{D}') \in E \cap B^c) + \mathbb{P}(M(\mathcal{D}) \in B)$$

$$\leq e^{\varepsilon} \mathbb{P}(M(\mathcal{D}') \in E) + \exp(\alpha_M(\lambda) - \lambda_{\varepsilon}).$$

Composition

Let a mechanism M be a composition of mechanisms M_1, \ldots, M_k . Then for any $\lambda > 0$,

$$\alpha_M(\lambda) \le \sum_{i=1}^k \alpha_{M_i}(\lambda).$$

Using moments accountant with DP-SGD:

- In each iteration $t \in \{1,\ldots,T\}$ of DP-SGD, we have M_t , a Gaussian mechanism that is amplified by sub-sampling. Hence, $\alpha_{M_t}(\lambda)$ can be computed for a range of $\lambda \in (0,\lambda_{max})$ using numerical integration.
 - Example: Condider 1D. Without loss of generality, assume $M(\mathcal{D}) \sim \mathbb{N}(0, \sigma^2) = \mu_0$ and $M(\mathcal{D}') \sim \mathbb{N}(1, \sigma^2) = \mu_1$. Let $\mu = (1 \gamma)\mu_0 + \gamma\mu_1$. Then, $\alpha = \log \max\{E_1, E_2\}$ where,

$$E_1 = \mathbb{E}_{z \sim \mu_0} [(\mu_0(z)/\mu(z))^{\lambda}],$$

$$E_2 = \mathbb{E}_{z \sim \mu} [(\mu(z)/\mu_0(z))^{\lambda}].$$

- For T iterations, accumulate the moments accountants and then compute $\alpha_M(\lambda) \leq \sum_{t=1}^T \alpha_{M_t}(\lambda)$.
- Finally, choose optimal $\lambda > 0$ to find best possible (ε, δ) using the formula $\delta = \min_{\lambda > 0} \exp(\alpha_M(\lambda) \lambda \varepsilon)$.

Figure: Comparison of privacy guarantee with advanced composition vs moments accountant for $\gamma=0.01$, $\delta=10^{-5}$ and $\sigma=4$. Figure taken from Abadi et al. 2016.

Table of Contents

- 1 DP-SGD
- 2 PATE
 Introduction
 Privacy via Stability
 - Sparse Vector Technique
- 3 Wrap-up

Introduction
Privacy amplification by sub-sampling
Moments Accountant

2 PATE

Introduction

Privacy via Stability Sparse Vector Technique

PATE - Private Aggregation of Teacher Ensembles

Algorithm:

- 1 Train an ensemble of teachers on disjoint subsets of sensitive data.
- 2 Train a student model on public unlabeled data labeled using the teacher-ensemble (semi-supervised learning).
- 3 For private inference, use the student model.

Figure: PATE Block Diagram

Utility:

- If each teacher gets access to a large-enough fraction of the dataset (i.e., if the number of teachers is small enough), then each teacher can be trained to high accuracy. Subsequently, aggregate teacher has high accuracy.
- Subsampling and aggregation is similar to boosting in ML, and may help accuracy.
- Availability of public unlabeled data may help improve accuracy if semi-supervised learning methods are used.

Privacy: Per-query privacy of the teacher ensemble

- Simple PATE: Noisy arg-max via Laplace mechanism gives ε -DP.
 - Let $\{f_i\}_{i=1}^{n_T}$ denote the classifiers for each of the n_T teachers. For each label $j \in [L]$, $c_j(\mathcal{D}) = |\{i \in [n_T] : f_i(\mathcal{D}_i) = j\}|$ is the count for label j.

$$\hat{f}(\mathcal{D}) = \underset{j \in [L]}{\arg \max} \{ c_j(\mathcal{D}) + Lap(0, 1/\varepsilon) \}.$$

- Improved PATE: Subsampling and aggregation via stability gives (ε, δ) -DP.
 - Intuition: If there is a clear majority among the teachers, then we can release the exact arg-max without losing privacy.

Privacy: Overall privacy of the student model

- Simple PATE: Advanced composition and post-processing
 - If the aggregation mechanism is ε -DP, then the training data to the student model with k labelings of the teacher ensemble is $O(\sqrt{k}\varepsilon)$ -DP by advanced composition.
 - The output of the student model (irrespective of the number of times it is queried) is also $O(\sqrt{k}\varepsilon)$ -DP by post-processing property.
 - More teachers is better for privacy, but worse for utility.
- Improved PATE: Sparse vector technique
 - Intuition: By refusing to answer unstable queries, one can get a better privacy guarantee than strong composition for a large number of queries. Similar to "Above Threshold" mechanism, we have stability threshold.

Introduction
Privacy amplification by sub-sampling
Moments Accountant

2 PATE

Introduction

Privacy via Stability

Sparse Vector Technique

Privacy: Per-query privacy of the teacher ensemble

- Simple PATE: Noisy arg-max via Laplace mechanism gives ε -DP.
 - Let $\{f_i\}_{i=1}^{n_T}$ denote the classifiers for each of the n_T teachers. For each label $j \in [L]$, $c_j(\mathcal{D}) = |\{i \in [n_T] : f_i(\mathcal{D}_i) = j\}|$ is the count for label j.

$$\hat{f}(\mathcal{D}) = \underset{j \in [L]}{\operatorname{arg max}} \{c_j(\mathcal{D}) + Lap(0, 1/\varepsilon)\}.$$

- Improved PATE: Subsampling and aggregation via stability gives (ε, δ) -DP.
 - Intuition: If there is a clear majority among the teachers, then we can release the exact arg-max without losing privacy.

Notions of Stability

Let f be a function on dataset \mathcal{D} .

- Subsampling Stability: f is γ -subsampling stable on $\mathcal D$ if $f(\mathcal D_\gamma)=f(\mathcal D)$ with probability at least 3/4 when $\mathcal D_\gamma$ is a random subsample from $\mathcal D$ which includes each entry independently with probability γ .
- **Perturbation Stability:** f is k-perturbation stable on \mathcal{D} if $f(\mathcal{D}') = f(\mathcal{D})$ for all \mathcal{D}' such that $d(\mathcal{D}, \mathcal{D}') \leq k$. We say that f is *stable* on \mathcal{D} if it is at least 1-stable on \mathcal{D} , and *unstable* otherwise.

Define **distance to instability** of a dataset \mathcal{D} with respect to a function f as follows.

 $dist_f(\mathcal{D}) = \arg\max\{k \in [n] : f(\mathcal{D}) \text{ is } k - perturbation stable\}.$

Privacy via Stability

M_{stab} Privacy via Stability

Input: Dataset \mathcal{D} , function f, threshold T privacy budget (ε, δ) .

- $\hat{d} \leftarrow dist_f(\mathcal{D}) + Lap(0, 1/\varepsilon).$
- 3 If $\hat{d} > T$, then $\hat{f} = f(\mathcal{D})$, else $\hat{f} = fail$.

Output: \hat{f} .

Privacy via Stability

- M_{stab} returns the *exact* output on stable datasets!
- Computing $dist_f(\mathcal{D})$ can be very intensive.
- M_{stab} is a special case of a much broader class of mechanisms that fall under Propose-Test-Release (PTR) framework.

Privacy of M_{etah}

Theorem

 M_{stab} is (ε, δ) -DP.

Proof sketch: Take any two neighboring datasets \mathcal{D} and \mathcal{D}' .

- Case I: $f(\mathcal{D}) = f(\mathcal{D}')$. Observe that the sensitivity of $dist_f$ is 1. Hence, by Laplace mechanism, \hat{d} is an ε -DP estimate for $dist_f(\mathcal{D})$. Hence, by post-processing property, M_{stab} is ε -DP.
- Case II: $f(\mathcal{D}) \neq f(\mathcal{D}')$. In this case, $dist_f(\mathcal{D}) = dist_f(\mathcal{D}') = 0$. Hence, \hat{d} is a zero-mean Laplace random variable. By a tail bound, $\hat{d} \leq T$ w.p. at least $1 - \delta$. Hence, M_{stab} returns the same output i.e. fail on both datasets w.p. at least $1-\delta$. Therefore, M_{stab} is ε -DP w.p. at least $1-\delta$.

25 / 38

Utility of M_{stab}

Theorem

If any $\beta > 0$, if f is $\frac{\log(1/\delta) + \log(1/\beta)}{\varepsilon}$ -perturbation stable on \mathcal{D} , then $M_{stab}(\mathcal{D}) = f(\mathcal{D})$ with probability at least $1 - \beta$.

Proof sketch: If $dist_f(\mathcal{D}) > \frac{\log(1/\delta) + \log(1/\beta)}{\varepsilon}$, then by a tail bound on Laplace distribution, we get $\hat{d} > \frac{\log(1/\delta)}{\varepsilon}$ with probability at least $1 - \beta$. Hence, with probability at least $1 - \beta$, $M_{stab}(\mathcal{D}) = f(\mathcal{D})$.

26 / 38

Privacy via Subsample and Aggregate

${\cal M}_{samp}$ Privacy via Subsample and Aggregate

Input: Dataset \mathcal{D} , function f, privacy budget (ε, δ) .

- 1) $\gamma \leftarrow \frac{\varepsilon}{32\log(1/\delta)}$, $n_T \leftarrow \frac{\log(n/\delta)}{q^2}$.
- 2 Subsample n_T datasets $\mathcal{D}_1, \dots, \mathcal{D}_{n_T}$ where \mathcal{D}_i includes each $d \in \mathcal{D}$ w.p. γ .
- 3 If some $d \in \mathcal{D}$ appears in more than $2\gamma n_T$ subsampled datasets, then $\hat{f} = fail$.
- 4 Else,
 - **1** For each possible output y of f, $count(y) \leftarrow |\{i : f(\mathcal{D}_i) = y\}|$.
 - 2 $\hat{d} \leftarrow \frac{count_{(1)}-count_{(2)}}{4\gamma n_T} 1 + Lap(0, 1/\varepsilon).$
 - 3 If $\hat{d} > \frac{\log(1/\delta)}{\varepsilon}$, then $\hat{f} = \arg\max_{y} count(y)$, else $\hat{f} = fail$.

Output: \hat{f} .

Privacy of M_{samp}

Theorem

$$M_{samp}$$
 is (ε, δ) -DP.

Proof sketch:

Let Z_{ij} be a bernoulli random variable indicating the event $d_i \in \mathcal{D}_j$ where $i \in \{1, \dots, n\}$ and $j \in \{1, \dots, n_T\}$. $\mathbb{E}[Z_{ij}] = \gamma$. From Hoeffding inequality,

$$\mathbb{P}(\sum_{j=1}^{n_T} Z_{ij} > 2\gamma n_T) \le e^{-2(\gamma n_T)^2/n_T}.$$

Hence, the bad event B of some $d \in \mathcal{D}$ appearing in more than $2\gamma n_T$ subsampled datasets occurs with probability at most δ .

Conditioned on B^c , observe that the counts $count_{(1)}, count_{(2)}$ can change by at most $2\gamma n_T$ by changing one data point. Hence, $\frac{count_{(1)}-count_{(2)}}{4\gamma n_T}$ has sensitivity of 1, implying that \hat{d} is ε -DP. The privacy guarantee now follows from that of M_{stab} .

Utility of M_{samp}

Theorem

If f is γ -subsampling stable on $\mathcal D$ for $\gamma=\frac{\varepsilon}{32\log(1/\delta)}$, then $M_{samp}(\mathcal D)=f(\mathcal D)$ w.p. at least $1-3\delta$.

Proof sketch: Let Z_j be a bernoulli r.v. indicating the event $f(\mathcal{D}) = f(\mathcal{D}_i)$. From γ -subsampling stability of f, we have that $\mathbb{P}(Z_j = 1) = 3/4$ for all $j \in \{1, \dots, n_T\}$. By Hoeffding inequality,

$$\mathbb{P}(\sum_{j} Z_{j} - 3n_{T}/4 < -n_{T}/8) \le e^{-n_{T}/32}.$$

Hence, $count(f(\mathcal{D})) = \sum_j Z_j$ is at least $5n_T/8$ w.p. $1-\delta$. So, $count_{(1)} \geq 5n_T/8$ and $count_{(2)} \leq 3n_T/8$. Hence, $\frac{count_{(1)}-count_{(2)}}{4\gamma n_T} \geq \frac{1}{16\gamma}$.

Utility of M_{samp}

Proof sketch: (continued)

For
$$M_{samp}(\mathcal{D}) = f(\mathcal{D})$$
, we need $\hat{d} = \frac{count_{(1)} - count_{(2)}}{4\gamma n_T} - 1 + Lap(0, 1/\varepsilon) > \frac{\log(1/\delta)}{\varepsilon}$.

Using a tail bound on Laplace distribution, $Lap(0,1/\varepsilon)$ does not go below $\frac{-\log(1/\delta)}{\varepsilon}$

w.p.
$$1 - \delta$$
. Hence, we need $\frac{1}{16\gamma} > \frac{2\log(1/\delta)}{\varepsilon}$.

30 / 38

Introduction
Privacy amplification by sub-sampling
Moments Accountant

2 PATE

Introduction
Privacy via Stability
Sparse Vector Technique

3 Wrap-up

Privacy: Overall privacy of the student model

- Simple PATE: Advanced composition and post-processing
 - If the aggregation mechanism is ε -DP, then the training data to the student model with k labelings of the teacher ensemble is $O(\sqrt{k}\varepsilon)$ -DP by advanced composition.
 - The output of the student model (irrespective of the number of times it is queried) is also $O(\sqrt{k}\varepsilon)$ -DP by post-processing property.
 - More teachers is better for privacy, but worse for utility.
- Improved PATE: Sparse vector technique
 - Intuition: By refusing to answer unstable queries, one can get a better privacy guarantee than strong composition for a large number of queries. Similar to "Above Threshold" mechanism, we have stability threshold.

Recap: Above Threshold

Algorithm 1 Input is a private database D, an adaptively chosen stream of sensitivity 1 queries f_1, \ldots , and a threshold T. Output is a stream of responses a_1, \ldots

```
AboveThreshold(D, \{f_i\}, T, \epsilon)
  Let \hat{T} = T + \operatorname{Lap}\left(\frac{2}{\epsilon}\right).
   for Each query i do
      Let \nu_i = \operatorname{Lap}(\frac{4}{6})
      if f_i(D) + \nu_i > \hat{T} then
         Output a_i = \top.
          Halt.
      else
         Output a_i = \bot.
      end if
  end for
```

Figure: Above Threshold Mechanism from Dwork & Roth

Sparse Vector Technique

Above Threshold Mechanism:

- Is ε -DP.
- Noise added to each query is $Lap(0, 4/\varepsilon)$.
- Halts after encountering the first query that exceeds the threshold.
- Outputs index of the last query.

Sparse Vector Mechanism:

- Is (ε, δ) -DP. (Apply advanced composition on Above Threshold mechanism.)
- Noise added to each query is $Lap(0, \sqrt{32Q \log(1/\delta)}\varepsilon)$.
- Halts after encountering Q queries that crosses the threshold.
- Outputs the indices of Q queries that exceed threshold.

Privacy via sparse vector technique

M_{svec} Privacy via sparse vector

Input: Dataset \mathcal{D} , function f, privacy budget (ε, δ) , query set $\{f_1, \ldots, f_m\}$, unstable query count Q.

- 1 $q \leftarrow 0$, $\lambda \leftarrow \sqrt{32Q \log(1/\delta)} \varepsilon$, $T \leftarrow 2\lambda \log(2m/\delta)$.
- $\hat{T} \leftarrow T + Lap(\lambda).$
- 3 For $f \in \{f_1, \ldots, f_m\}$ and $c \leq Q$ do
 - $\mathbf{1} \quad \hat{f} \leftarrow M_{stab}(\mathcal{D}, f, T = \hat{T}, \varepsilon = 1/2\lambda).$
 - 2 If $\hat{f} = fail$

 - $\hat{T} \leftarrow T + Lap(\lambda).$

Output: \hat{f} .

Privacy via sparse vector technique

- Noise added to each query is $O(\sqrt{Q}\log(m))$ as opposed to $O(\sqrt{m})$ with advanced composition.
- Allows for answering a lot more queries than with simple PATE.

Table of Contents

- 1 DP-SGD
- PATE
- Wrap-up

Introduction
Privacy amplification by sub-sampling
Moments Accountant

2 PATE

Introduction
Privacy via Stability
Sparse Vector Technique

DP-SGD vs PATE

PATE	DP-SGD
Uses a group of "teacher" mod-	Trains a single model using
els to train a "student" model	stochastic gradient descent
Model agnostic	Model specific
Privacy degrades with more	Privacy degrades with more it-
queries on Teachers	erations of optimization
Techniques: stability, aggrega-	Techniques: sub-sampling, mo-
tion, sparse vector technique	ments accountant
Can work with heterogeneous	Works with homogeneous data
data, heterogeneous models	and model

Topics for further exploration

- Differentially private PAC learning
- Federated learning and Local differential privacy
- Connections with robust machine learning