Prvi međuispit iz Matematike 3R

19.11.2012.

1. (5 bodova)

- a) Navedite Dirichletove uvjete.
- b) Zadovoljava li funkcija

$$f(x) = \begin{cases} 0, x \in \mathbb{Z} \\ \frac{1}{1-x^2}, \text{ inače} \end{cases}$$

Dirichletove uvjete na intervalu $[0, \pi]$? Tvrdnju detaljno obrazložite.

c) Iskažite teorem o konvergenciji Fourierovog reda.

2. (5 bodova)

Zadana je periodična funkcija $f: \mathbb{R} \to \mathbb{R}$ definirana formulom

$$f(x) = |x - 2|$$
, za $-1 \le x < 1$.

Pomoću razvoja funkcije f u Fourierov red izračunajte

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}.$$

3. (5 bodova)

- a) Definirajte Fourierov integral funkcije f i njezin sinusni spektar.
- b) Pomoću prikaza funkcije

$$f(x) = \begin{cases} -1, -1 < x < 0 \\ 1, 0 < x < 1 \\ 0, \text{ inače} \end{cases}$$

u obliku Fourierovog integrala, izračunajte

$$\int_{0}^{\infty} \frac{\sin^3 x}{x} \, dx.$$

4. (5 bodova)

Iskažite i dokažite teorem o Laplaceovoj transformaciji periodičke funkcije.

OKRENITE!

5. (5 bodova)

Ispitajte za koje vrijednosti realnog broja α nepravi integral

$$\int_{0}^{\infty} e^{\alpha t} t \sin 3t \, dt$$

konvergira, te ga za dotične vrijednosti od α izračunajte.

6. (5 bodova)

Pomoću Laplaceove transformacije riješite jednadžbu

$$f'(t) - 4 \int_{0}^{t} f(u) du + 6 \int_{0}^{t} e^{t-u} f(u) du = 0, \ f(0) = 1.$$

7. (5 bodova)

- a) Kada kažemo da su dva skupa ekvipotentna?
- b) Dokažite da su \mathbb{R} i $A = \{r \in \mathbb{R} : r > 1\}$ ekvipotentni.
- c) Dokažite da su \mathbb{N} i $B = \{z \in \mathbb{Z} : |z| > 2\}$ ekvipotentni.

8. (5 bodova)

Neka je $X = \{1, 2, 3, 4, 5, 6\}$. Neka su ρ_5 i ρ_7 relacije ekvivalencije na X definirane na sljedeći način:

$$x \rho_5 y \Leftrightarrow x^2 - y^2 = 5k, k \in \mathbb{Z},$$

 $x \rho_7 y \Leftrightarrow x^2 - y^2 = 7k, k \in \mathbb{Z}.$

Pokažite da je $|X/\rho_5| = |X/\rho_7|$.

Zabranjena je upotreba kalkulatora i šalabahtera. Ispit se piše 2h.

Međuispit iz MAT3R 13h - RJEŠENJA 19.11.2012.

1. b) Ne zadovoljava. U 1 ima prekid koji nije prve vrste.

2.
$$S(x) = 2 + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin n\pi x$$
, $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} = -\frac{\pi}{4}$.

3.
$$f(x) = \frac{4}{\pi} \int_0^\infty \frac{\sin^2 \frac{\lambda}{2}}{\lambda} \sin \lambda x \, d\lambda$$
, $\int_0^\infty \frac{\sin^3 x}{x} \, dx = \frac{\pi}{4}$.

- **5.** Konvergira za $\alpha > 0$. $\int_{0}^{\infty} e^{\alpha t} t \sin 3t \, dt = -\frac{6\alpha}{(\alpha^2 + 9)^2}.$
- **6.** $f(t) = \frac{1}{7}u(t)\left(2e^{-t} + 5e^t\cos\sqrt{3}t \sqrt{3}e^t\sin\sqrt{3}t\right).$
- 7. b) Primjer bijekcije $f: \mathbb{R} \to A, f(x) = 1 + e^x$.
- c) Primjer bijekcije $f: \mathbb{N} \to B$, f(2k) = k+2, f(2k-1) = -k-2.
 - **8.** $X/\rho_5 = \{[1]_{\rho_5}, [2]_{\rho_5}, [5]_{\rho_5}\}, X/\rho_7 = \{[1]_{\rho_7}, [2]_{\rho_7}, [3]_{\rho_7}\}.$