### Chaos II: Differentialgleichungen

Michael Hartmann

Kaffeeseminar

6. November 2015

- Lineare Differentialgleichungen Lösung Beispiele in 2D
- Beispiel: gedämpfter harmonischer Oszillator
- 2 autonome, nicht-lineare Differentialgleichungen Stationäre Punkte und Stabilität
  - Beispiel: Fadenpendel komplexeres Beispiel
- 3 nicht-autonome, nicht-lineare Differentialgleichungen
- Motivation Beispiel Bifurkationsdiagramm
  - Seltsamer Attraktor

## Differentialgleichungen

Wir betrachten lineare, homogene Differentialgleichungen

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x} = \mathcal{L}\vec{x},$$

wobei  $\mathcal L$  (nicht singuläre)  $n \times n$  Matrix mit konstanten Koeffizienten.

Lösung

$$\vec{x}(t) = e^{\mathcal{L}(t-t_0)} \vec{x}(t_0)$$

Verhalten der Lösung wird durch die Eigenwerte von  $\mathcal L$  bestimmt

## Differentialgleichungen

Wir betrachten lineare, homogene Differentialgleichungen

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x} = \mathcal{L}\vec{x},$$

wobei  $\mathcal L$  (nicht singuläre)  $n \times n$  Matrix mit konstanten Koeffizienten.

Lösung:

$$\vec{x}(t) = e^{\mathcal{L}(t-t_0)}\vec{x}(t_0)$$

Verhalten der Lösung wird durch die Eigenwerte von  $\mathcal L$  bestimmt!

## Differentialgleichungen

Wir betrachten lineare, homogene Differentialgleichungen

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{x} = \mathcal{L}\vec{x},$$

wobei  $\mathcal L$  (nicht singuläre)  $n \times n$  Matrix mit konstanten Koeffizienten.

Lösung:

$$\vec{x}(t) = e^{\mathcal{L}(t-t_0)}\vec{x}(t_0)$$

Verhalten der Lösung wird durch die Eigenwerte von  $\mathcal L$  bestimmt!



















unstable star ( $\mathcal{L}$  diagonalisierbar)



unstable node ( $\mathcal L$  nicht diagonalisierbar)

Harmonischer Oszillator mit linearer Dämpfung:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

Als System 1. Ordnung:

$$\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega_0^2 & -2\gamma \end{pmatrix} \begin{pmatrix} x \\ v \end{pmatrix}$$

Eigenwerte:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$
  $\Rightarrow$   $\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$ 

Harmonischer Oszillator mit linearer Dämpfung:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

Als System 1. Ordnung:

$$\left(\begin{array}{c} \dot{x} \\ \dot{v} \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ -\omega_0^2 & -2\gamma \end{array}\right) \left(\begin{array}{c} x \\ v \end{array}\right)$$

Eigenwerte:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$
  $\Rightarrow$   $\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$ 

Harmonischer Oszillator mit linearer Dämpfung:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

Als System 1. Ordnung:

$$\left(\begin{array}{c} \dot{x} \\ \dot{v} \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ -\omega_0^2 & -2\gamma \end{array}\right) \left(\begin{array}{c} x \\ v \end{array}\right)$$

Eigenwerte:

$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$
  $\Rightarrow$   $\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$ 

$$\gamma = 0$$
:  $\lambda_{1,2} = \pm i\omega_0$ 



$$0 < \gamma < \omega_0$$
:  $\lambda_{1,2} = -\gamma \pm i\sqrt{\omega_0^2 - \gamma^2}$ 



 $\gamma = \omega_0$ :  $\lambda_{1,2} = -\gamma$  (Matrix *nicht* diagonalisierbar)



$$\gamma > \omega_0$$
:  $\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$ 



## autonome, nicht-lineare Differentialgleichungen

Wir interessieren uns für allgemeine DGI (autonom):

$$\dot{\vec{x}} = \vec{f}(\vec{x})$$

Stationäre Punkte:

$$\vec{f}(\vec{x}_s) = 0$$

Stabilität: um stationären Punkt entwickeln:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\vec{x}_{s}+\delta\vec{x}\right)pprox J_{f}\left(\vec{x}_{s}\right)\delta\vec{x}$$

## autonome, nicht-lineare Differentialgleichungen

Wir interessieren uns für allgemeine DGI (autonom):

$$\dot{\vec{x}} = \vec{f}(\vec{x})$$

Stationäre Punkte:

$$\vec{f}(\vec{x}_s) = 0$$

Stabilität: um stationären Punkt entwickeln:

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\vec{x}_{s}+\delta\vec{x}\right)pprox J_{f}\left(\vec{x}_{s}\right)\delta\vec{x}$$

## autonome, nicht-lineare Differentialgleichungen

Wir interessieren uns für allgemeine DGI (autonom):

$$\dot{\vec{x}} = \vec{f}(\vec{x})$$

Stationäre Punkte:

$$\vec{f}(\vec{x}_s) = 0$$

Stabilität: um stationären Punkt entwickeln:

$$\frac{\mathrm{d}}{\mathrm{d}t}(\vec{x}_{s}+\delta\vec{x})\approx J_{f}(\vec{x}_{s})\delta\vec{x}$$

#### Differentialgleichung:

$$\ddot{x} + \omega_0^2 \sin x = 0$$

Als System 1. Ordnung:

$$\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \vec{f}(x, v) = \begin{pmatrix} v \\ -\omega_0^2 \sin x \end{pmatrix}$$

#### Stationäre Punkter

- $(x_1^s, v_1^s) = (0, 0)$
- $(x_2^s, v_2^s) = (\pi, 0)$

Differentialgleichung:

$$\ddot{x} + \omega_0^2 \sin x = 0$$

Als System 1. Ordnung:

$$\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \vec{f}(x, v) = \begin{pmatrix} v \\ -\omega_0^2 \sin x \end{pmatrix}$$

Stationäre Punkter

- $(x_1^s, v_1^s) = (0, 0)$
- $(x_2^s, v_2^s) = (\pi, 0)$

Differentialgleichung:

$$\ddot{x} + \omega_0^2 \sin x = 0$$

Als System 1. Ordnung:

$$\begin{pmatrix} \dot{x} \\ \dot{v} \end{pmatrix} = \vec{f}(x, v) = \begin{pmatrix} v \\ -\omega_0^2 \sin x \end{pmatrix}$$

Stationäre Punkte:

- $(x_1^s, v_1^s) = (0, 0)$ 
  - $(x_2^s, v_2^s) = (\pi, 0)$

$$(x_1^s, v_1^s) = (0, 0)$$
:

Linearisieren:

$$\vec{f} \left( \begin{array}{c} x_1^s + \delta x \\ v_1^s + \delta v \end{array} \right) \approx \left( \begin{array}{cc} 0 & 1 \\ -\omega_0^2 & 0 \end{array} \right) \left( \begin{array}{c} \delta x \\ \delta v \end{array} \right)$$

- Eigenwerte:  $\lambda_{1,2} = \pm i\omega_0^2$
- ⇒ stabiler stationärer Punkt, Oszillationen

$$(x_1^s, v_1^s) = (0, 0)$$
:

• Linearisieren:

$$\vec{f} \left( \begin{array}{c} x_1^s + \delta x \\ v_1^s + \delta v \end{array} \right) \approx \left( \begin{array}{cc} 0 & 1 \\ -\omega_0^2 & 0 \end{array} \right) \left( \begin{array}{c} \delta x \\ \delta v \end{array} \right)$$

- Eigenwerte:  $\lambda_{1,2} = \pm i\omega_0^2$
- ⇒ stabiler stationärer Punkt, Oszillationen



$$(x_2^s, v_2^s) = (0, \pi)$$
:

$$\vec{f} \left( \begin{array}{c} x_2^s + \delta x \\ v_2^s + \delta v \end{array} \right) \approx \left( \begin{array}{cc} 0 & 1 \\ \omega_0^2 & 0 \end{array} \right) \left( \begin{array}{c} x \\ v \end{array} \right)$$

- Eigenwerte:  $\lambda_{1,2} = \pm \omega_0^2$
- ⇒ instabiler stationärer Punkt

$$(x_2^s, v_2^s) = (0, \pi)$$
:

•

$$\vec{f} \begin{pmatrix} x_2^s + \delta x \\ v_2^s + \delta v \end{pmatrix} \approx \begin{pmatrix} 0 & 1 \\ \omega_0^2 & 0 \end{pmatrix} \begin{pmatrix} x \\ v \end{pmatrix}$$

- Eigenwerte:  $\lambda_{1,2} = \pm \omega_0^2$
- ⇒ instabiler stationärer Punkt



### Weiteres Beispiel

#### Differentialgleichung:

$$\left( \begin{array}{c} \dot{\vartheta} \\ \dot{\varphi} \end{array} \right) = \vec{f}(\vartheta, \varphi) = \left( \begin{array}{c} A \sin \varphi + C \cos \varphi \cos \vartheta \\ A \frac{\cos \vartheta}{\sin \vartheta} \cos \varphi + B \cos \vartheta - C \frac{\sin \varphi}{\sin \vartheta} \end{array} \right)$$

Stationäre Punkte:  $\vec{f} = 0$ 

•  $\dot{\vartheta} = 0$ :

$$\cos artheta = -rac{A}{C} an arphi, \quad \sin artheta = \sqrt{1-rac{A^2}{C^2}} an^2 arphi$$

•  $\dot{\varphi}=0$ :

$$\sin \varphi \left[ \left( \frac{A^2}{C^2} + 1 \right) \cos \varphi + \frac{AB}{C^2} \sqrt{1 - \frac{A^2}{C^2} \tan^2 \varphi} \right] = 0$$

### Weiteres Beispiel

Differentialgleichung:

$$\begin{pmatrix} \dot{\vartheta} \\ \dot{\varphi} \end{pmatrix} = \vec{f}(\vartheta, \varphi) = \begin{pmatrix} A \sin \varphi + C \cos \varphi \cos \vartheta \\ A \frac{\cos \vartheta}{\sin \vartheta} \cos \varphi + B \cos \vartheta - C \frac{\sin \varphi}{\sin \vartheta} \end{pmatrix}$$

Stationäre Punkte:  $\vec{f} = 0$ 

•  $\dot{\vartheta}=0$ :

$$\cos \vartheta = -\frac{A}{C} \tan \varphi, \quad \sin \vartheta = \sqrt{1 - \frac{A^2}{C^2}} \tan^2 \varphi$$

•  $\dot{\varphi}=0$ :

$$\sin \varphi \left| \left( \frac{A^2}{C^2} + 1 \right) \cos \varphi + \frac{AB}{C^2} \sqrt{1 - \frac{A^2}{C^2} \tan^2 \varphi} \right| = 0$$

#### Stationäre Punkte

- stationäre Punkte hängen nur von A/C und B/C ab
- $\sin \varphi = 0$ :
  - $(\vartheta, \varphi) = (\pi/2, 0)$ : stabil falls  $C^2 > -A(A+B)$
  - $(\vartheta, \varphi) = (\pi/2, \pi)$ : instabil
- falls  $\varphi$  stabiler (instabiler) stationärer Punkt, dann auch  $-\varphi$
- weitere stationäre Punkte für Lösungen von:

$$\left(\frac{A^2}{C^2} + 1\right)\cos\varphi + \frac{AB}{C}\sqrt{1 - \frac{A^2}{C^2}\tan^2\varphi}, \qquad |\varphi| \leq \arctan\left|\frac{C}{A}\right|$$

#### Stationäre Punkte



# Beispiel

$$A/C = 0.2$$
,  $B/C = -2.5$ :



### Kurze Zusammenfassung

- 1 Umschreiben der DGL als System 1. Ordnung
- Suchen von stationären Punkten
- 3 Untersuchen der Stabilität der stationären Punkte

#### Kurze Zusammenfassung

- 1 Umschreiben der DGL als System 1. Ordnung
- 2 Suchen von stationären Punkten
- 3 Untersuchen der Stabilität der stationären Punkte

Was bei nicht-autonomen Systemen?

## Nicht-autonome Systeme

#### Differentialgleichung:

$$\begin{pmatrix} \dot{\vartheta} \\ \dot{\varphi} \end{pmatrix} = \begin{pmatrix} A\sin\varphi + C\cos\varphi\cos\vartheta \\ A\frac{\cos\vartheta}{\sin\vartheta}\cos\varphi + B\cos\vartheta - C\frac{\sin\varphi}{\sin\vartheta} - \mu_0 + \mu_1\sin(\omega t) \end{pmatrix}$$

#### Untersuchung:

stroboskop-artige Popagation:

$$\left( \begin{array}{c} \vartheta(nT) \\ \varphi(nT) \end{array} 
ight), \quad T = \frac{2\pi}{\omega}, \quad n \in \mathbb{N}$$

- Bifurkationsdiagramm
- Attraktor

## Nicht-autonome Systeme

#### Differentialgleichung:

$$\begin{pmatrix} \dot{\vartheta} \\ \dot{\varphi} \end{pmatrix} = \begin{pmatrix} A\sin\varphi + C\cos\varphi\cos\vartheta \\ A\frac{\cos\vartheta}{\sin\vartheta}\cos\varphi + B\cos\vartheta - C\frac{\sin\varphi}{\sin\vartheta} - \mu_0 + \mu_1\sin(\omega t) \end{pmatrix}$$

#### Untersuchung:

stroboskop-artige Popagation:

$$\left(\begin{array}{c} \vartheta(nT) \\ \varphi(nT) \end{array}\right), \quad T = \frac{2\pi}{\omega}, \quad n \in \mathbb{N}$$

- Bifurkationsdiagramm
- Attraktor

## Bifurkationsdiagramm



Parameter: A= 2, B= 1, C= 0.4,  $\mu_0=$  1,  $\omega=$  1

#### Seltsamer Attraktor



Parameter: A= 2, B= 1, C= 0.4,  $\mu_0=$  1,  $\mu_1=$  3.4,  $\omega=$  1

#### Seltsamer Attraktor



Vielen Dank für die Aufmerksamkeit!