Calculus I Computing limits with direct substitution

Todor Milev

2019

Find
$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$

Find
$$\lim_{x\to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$

Plug in 3: $\frac{(3)+2}{\sqrt{(3)-1}((3)+1)^2} = \frac{?}{?}$

Find
$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$

Plug in 3: $\frac{(3)+2}{\sqrt{(3)-1}((3)+1)^2} = \frac{5}{?}$

Find
$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$

Plug in 3: $\frac{(3)+2}{\sqrt{(3)-1}((3)+1)^2} = \frac{5}{?}$

Find
$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$

Plug in 3: $\frac{(3)+2}{\sqrt{(3)-1}((3)+1)^2} = \frac{5}{16\sqrt{2}}$

Find
$$\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2}$$
Plug in 3: $\frac{(3)+2}{\sqrt{(3)-1}((3)+1)^2} = \frac{5}{16\sqrt{2}}$
Therefore $\lim_{x \to 3} \frac{x+2}{\sqrt{x-1}(x+1)^2} = \frac{5}{16\sqrt{2}}$.

Find
$$\lim_{x\to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Find
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = \frac{?}{?}$

Find
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = \frac{0}{?}$

Find
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = \frac{0}{?}$

Find
$$\lim_{x \to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = \frac{0}{0}$

Find
$$\lim_{x\to 3} \frac{x^3 - 3x^2 + x - 3}{x^2 - 7x + 12}$$

Plug in 3: $\frac{(3)^3 - 3(3)^2 + (3) - 3}{(3)^2 - 7(3) + 12} = \frac{0}{0}$

Zero over zero is undefined, so we can't use direct substitution.