3544. $2^{x/z} + 2^{y/z} = 8$; в точке M_0 (2, 2, 1).

3545. $x = a \cos \psi \cos \varphi$, $y = b \cos \psi \sin \varphi$, $z = c \sin \psi$; B Touke M_0 (φ_0, ψ_0) .

3546. $x = r \cos \varphi$, $y = r \sin \varphi$, $z = r \operatorname{ctg} \alpha$; B точке M_0 (φ_0 , r_0).

3547. $x = u \cos v$, $y = u \sin v$, z = av; в точке M_0 (u_0, v_0).

3548. Найти предельное положение касательной плоскости к повер хности:

$$x = u + v$$
, $y = u^2 + v^2$, $z = u^3 + v^3$,

жогда точка касания M (u, v) $(u \neq v)$ неограниченно приближается к точке M_0 (u_0, u_0) линии края u = v поверхности.

3549. На поверхности $x^2 + 2y^2 + 3z^2 + 2xy + 2xz + 4yz = 8$ найти точки, в которых касательные плоскости параллельны координатным плоскостям.

3550. В какой точке эллипсоида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^3} = 1$$

нормаль к нему образует равные углы с осями координат?

3551. К поверхности $x^2 + 2y^2 + 3z^2 = 21$ провести касательные плоскости, параллельные плоскости

$$x+4y+6z=0.$$

3552. Доказать, что касательные плоскости к поверхности $xyz = a^3$ (a > 0) образуют с плоскостями координат тетраэдр постоянного объема.

3553. Доказать, что касательные плоскости к поверхности

$$\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} \quad (a > 0)$$

отсекают на осях координат отрезки, сумма которых постоянна.

3554. Доказать, что касательные плоскости к конусу

$$z = xf\left(\frac{y}{x}\right)$$

проходят через его вершину.

3555. Доказать, что нормали к поверхности вращения

$$z = f\left(\sqrt{x^2 + y^2}\right) \quad (f' \neq 0)$$

пересекают ось вращения.