PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-265065

(43)Date of publication of application: 17.10.1995

(51)Int.CI.

C12N 1/21 C12N 15/09 C12P // (C12N C12R (C12P 7/62 C12R 1:01)

(21)Application number: 06-084084

(71)Applicant: KANEGAFUCHI CHEM IND CO LTD

(22)Date of filing:

29.03.1994

(72)Inventor: SHIOMI HISAFUMI

(54) TRANSFORMANT OF COPOLYMER BY SYNTHETIC GENE AND PRODUCTION OF **COPOLYMER**

(57)Abstract:

PURPOSE: To produce a copolymer comprising a 3-hydroxybutyrate and a 3- hydroxyhexanoate from inexpensive fats and oils or a fatty acid as a raw material in high yield.

CONSTITUTION: This transformant is obtained by transfecting or transducing a vector plasmid containing a synthetic gene for a copolymer comprising a 3-hydroxybutyrate and a 3hydroxyhexanoate into a host microbial cell, especially the microbial cell of the genus Aeromonas. Furthermore, this transformant is prepared by transfecting or transducing the vector plasmid in which a β- ketothiolase gene or an acetoacetyl-CoA reductase gene or both are integrated into the host microbial cell. This method for producing the copolymer is to use the resultant transformant.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-265065

(43)公開日 平成7年(1995)10月17日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C12N 1/	21	8828-4B		
15/	09			
C12P 7/	62	7432-4B		
// (C12N 1	/21 .			
		9281 – 4B	C 1 2 N	15/ 00 A
		審查請求	未請求 請求項	頁の数5 FD (全 9 頁) 最終頁に続く
(21)出願番号	特顧平6-84084		(71)出顧人	
(00) these to	₩# c Æ (1004) 9	H OO II		鐘淵化学工業株式会社 大阪府大阪市北区中之島3丁目2番4号
(22)出顧日	平成6年(1994)3	<i>д2</i> 9 п	(70) Seutials	
			(72)発明者	塩見 尚史 兵庫県高砂市西畑1丁目13番2-303
			(74)代理人	弁理士 細田 芳徳

(54) 【発明の名称】 共重合体の合成遺伝子による形質転換体および共重合体の製造方法

(57)【要約】

【構成】3ーヒドロキシブチレートと3ーヒドロキシへキサノエートから構成される共重合体の合成遺伝子を含有するベクタープラスミドを宿主菌体内、特にアエロモナス属の菌体内に移入して得られる形質転換体、およびさらにβーケトチオラーゼ遺伝子および/またはアセトアセチルCoAリダクターゼ遺伝子が組み込まれたベクタープラスミドを宿主菌体内に移入して得られる形質転換体、並びにこれらの形質転換体を用いる該共重合体の製造方法。

【効果】本発明の形質転換体および本発明の製造方法を用いることにより、3ーヒドロキシブチレートと3ーヒドロキシヘキサノエートから構成される共重合体を、安価な油脂や脂肪酸を原料に高収率で生産することができる。

【特許請求の範囲】

【請求項1】 3ーヒドロキシブチレートと3ーヒドロキシへキサノエートから構成される共重合体の合成遺伝子を含有するベクタープラスミドを宿主菌体内に移入して得られる形質転換体。

【請求項2】 さらに β ーケトチオラーゼ遺伝子および γ かまたはアセトアセチルC o A リダクターゼ遺伝子が組 み込まれたベクタープラスミドを宿主菌体内に移入して 得られる請求項 1 記載の形質転換体。

【請求項3】 宿主菌がアエロモナス属の菌株であることを特徴とする請求項1または2に記載の形質転換体。 【請求項4】 ベクタープラスミドがpLA2917、 pLA2905、pLA2910、pLA2901、p RK248、pRK290、pLAFR1、pVK10

0、pVK101、pVK102よりなる群から選択されるものであることを特徴とする請求項1~3のいずれか1項に記載の形質転換体。

【請求項5】 請求項1~4のいずれか1項に記載した 形質転換体を培養することにより、3ーヒドロキシブチ レートと3ーヒドロキシヘキサノエートから構成される 共重合体を蓄積させることを特徴とする共重合体の製造 方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は共重合体ポリエステルおよびこれを醗酵合成する微生物に関し、自然環境(土中、河川、海中)の下で微生物の作用を受けて分解するプラスチック様高分子の製造方法に関するものである。さらに詳しくは、共重合体ポリエステルを醗酵合成する能力の改善された形質転換体、さらには、その形質転換体を利用した共重合体ポリエステルの製造方法に関する。

[0002]

【従来の技術および発明が解決しようとする課題】現在 まで数多くの微生物において、ポリエステルを菌体内に 蓄積することが、知られている。その代表例としては、 3-ヒドロキシブチレート(以下3HBと呼ぶ)のホモ ポリマーであるポリー3ーヒドロキシブチレート(以下 P(3HB)と呼ぶ)であり、その生産菌は数多く知ら れている(例えば、デービス(Dawes)ら、アドバンス・ イン・マイクロバイオロジー・アンド・バイオフィジッ クス(Adv. Microbiol. Biophys.), 14巻, 135頁, 1973年参照)。P(3HB)は、自然環境中で生物 的に分解するプラスチック(以下生分解性プラスチック と呼ぶ)であるが、高分子材料としてみた場合、ホモポ リマーであるために結晶性が高くかつ脆い性質を有して おり、実用的には不十分であった。このような欠点を克 服する方法として、コポリマーを生産する菌株のスクリ ーニングが行われた。特開昭63-226291号公報 によれば、シュードモナスオレオボランスATCC29

347に炭素源としてアルカンを与えることにより炭素数が6-12までの3-ヒドロキシアルカノエート(以下3HAと呼ぶ)をモノマーユニットとする共重合体(以下P(3HA)と呼ぶ)を醗酵合成できた。しかし、このP(3HA)は、炭素数6から12までに広く分布した共重合体であり、且つ、側鎖のメチレン基数が多いことから、物性的には室温でゲル状の高分子である。このため、プラスチック材料としては融点が低過ぎるものであった。

【0003】これに対し、ポリエステルを構成している モノマーユニットとして、3 HB以外の構造的に異なる モノマーユニットを組み込むことが提案された。特開昭 57-150393号公報、特開昭58-69225号 公報、特開昭63-269989号公報、特開昭64-48821号公報、特開平1-156320号公報によ れば、アルカリゲネス ユートロファスを用い、炭素源 として炭素数が奇数個のカルボン酸、例えば、プロピオ ン酸や吉草酸を与えることにより、3 HBと Bーヒドロ キシバリレート(以下3HVと呼ぶ)との共重合体(以 下P(3HB-CO-3HV)と呼ぶ)が得られる。同 様に、炭素源として、4-ヒドロキシ酪酸やアーブチロ ラクトンを与えることにより、3HBと4ーヒドロキシ ブチレート(4 HB)との共重合体(以下P(3 HB-CO-4HB)と呼ぶ)が得られることが、報告されて いる。そして、このP(3HB-CO-3HV)やP (3HB-CO-4HB) は、3HVや4HBの成分組 成を高めることでP(3HB)の脆性を改良し、プラス チックとして加工性にも広がりを持つ性質を有している ので実用的な生分解性プラスチックとして注目されてい る。しかし、このようなコポリマーを微生物内で醗酵合 成させるには、3 HBのユニット成分を作るための炭素 源(通常は、グルコース、シュクロースのような糖類や 酢酸、メタノール、エタノール、グリセリン等)と、3 HVや4HBのようなコポリマーのユニット成分を作る ための中間体(3HVを作る場合は、プロピオン酸、吉 草酸、4 HBを作る場合は1, 4 ーブタンジオール、7 ーブチロラクトン)とを培地に添加しなければならず、 しかもこのような原料は高価であるために培養コストが 高くなる欠点を有していた。

【0004】他方、このP(3HB-CO-3HV)やP(3HB-CO-4HB)の欠点を克服する方法として、アエロモナス属の菌株を用いることが提案された。特開平5-93049号公報によれば、アエロモナス属の菌株FA440やOL-338を用い、非常に安価な天然油脂を炭素源として3-ヒドロキシブチレートと3-ヒドロキシへキサノエートの共重合体(以下P(3HB-CO-3HH×)が得られている。そして、この共重合体は可塑性が高く柔軟性があるため、P(3HB-CO-3HV)やP(3HB-CO-4HB)よりもポリマー物性が優れているだけでなく、高価な原料(炭素

源)を培地に添加する必要がないことから、安価なコス トでの生産が期待された。しかしながら、アエロモナス 属の菌株の特徴は脂肪酸のβー酸化経路の中間代謝物で ある3-ヒドロキシアシルCoAからポリエステル合成 が進むルートがメインであり、βー酸化の主生成物であ るアセチルCoAが有効に利用されないことや、P(3 HB-CO-3HHx)の合成酵素活性が低いことなど が原因となって、菌体内ポリエステル蓄積が抑制される ことが明らかとなっている。従って、安価な天然油脂を 炭素源として利用できても生産性が低く、炭素源収率も 低いという課題が残されていた。従って、本発明の目的 は、アエロモナス属菌のP(3HB-CO-3HHx) の合成酵素活性を高めるため、P(3HB-CO-3H Hx)の合成酵素遺伝子等によって形質転換された形質 転換体を提供することにある。また、本発明の他の目的 は、かかる形質転換体を用いるP(3HB-CO-3H Hx) 等の共重合体を製造する方法を提供することにあ る。

[0005]

【課題を解決するための手段】本発明者は、アエロモナス属の菌株が優れたポリエステルを蓄積出来るにもかかわらず、菌体中の蓄積量と炭素収率が低いために工蓄間量と炭素収率を高めるため鋭意研究を行った。その結果、アエロモナス属のポリエステル合成に関与する遺伝子群を、適当な宿主に移入した形質転換株が、著量のポリエステルを合成し、炭素収率も非常に優れていることを発見し、さらに研究をすすめて本発明を完成するに至った。即ち、本発明の要旨は、(1) 3ーヒドロキシであるに乗りたの合成遺伝子を含有するベクタープラスミドを宿主菌体内に移入して得られる形質転換体、(2)

さらに β ーケトチオラーゼ遺伝子および/またはアセトアセチルC o A リダクターゼ遺伝子が組み込まれたベクタープラスミドを宿主菌体内に移入して得られる

(1) 記載の形質転換体、(3) 宿主菌がアエロモナス属の菌株であることを特徴とする(1) または(2) に記載の形質転換体、(4) ベクタープラスミドが p L A 2 9 1 7、 p L A 2 9 0 5、 p L A 2 9 1 0、 p L A 2 9 0 1、 p R K 2 4 8、 p R K 2 9 0、 p L A F R 1、 p V K 1 0 0、 p V K 1 0 1、 p V K 1 0 2 よりなる群から選択されるものであることを特徴とする(1) ~(3) のいずれかに記載の形質転換体、並びに(5)

(1)~(4)のいずれかに記載した形質転換体を培養することにより、3ーヒドロキシブチレートと3ーヒドロキシヘキサノエートから構成される共重合体を蓄積させることを特徴とする共重合体の製造方法、に関する。以下に本発明を詳細に説明する。

【0006】1. 共重合体の合成遺伝子によって形質転換された形質転換体の取得方法

P(3HB-CO-3HH×)の合成遺伝子によって形質転換された本発明の形質転換体を取得するためには以下の方法を採るのが便宜である。まず、P(3HB-CO-3HH×)を合成できる菌株より遺伝子ライブラリーを作成し、次いでP(3HB-CO-3HH×)の合成遺伝子が欠損した合成能欠損変異株に入れ、最後にP(3HB-CO-3HH×)の合成能が回復した菌株を選別すれば、P(3HB-CO-3HH×)の合成遺伝子によって形質転換された本発明の形質転換体を得ることができる。

【0007】① P(3HB-CO-3HH×)を合成できる菌株より遺伝子ライブラリーを作成するためには、P(3HB-CO-3HH×)を合成できる菌株から染色体DNAを抽出精製し、制限酵素により切断した後に適当な長さのDNA断片を分離し、ベクタープラスミドと結合することにより得られる。

【0008】P(3HB-CO-3HHx)を合成できる菌株とは、アエロモナス属の菌株であればいずれでもよく、例えば、アエロモナス キャビエ FA440株、アエロモナス ハイドロフィラ OL-338株などが挙げられる。

【0009】P(3HB-CO-3HHx)を合成でき る菌株より染色体DNAを抽出精製する方法としては、 例えば、マーマー(Marmur)らの方法 (ジャーナル・オブ ・モレキュラー・バイオロジー(Journal of Molecular Biology), 3巻, 208頁, 1961年) が挙げられ る。染色体を切断する際に用いる制限酵素は、ベクター プラスミドに対応する制限酵素であればいずれでもよ く、宝酒造、ファルマシア、バイオラッド社などから容 易に入手できる。また、切断されたDNA断片から適当 な長さのDNAを抽出するが、ここで適当な長さとは、 通常のベクターを用いるときは5000~2000塩 基対程度、コスミドあるいはファージベクターを用いる ときは15000~30000塩基対程度を意味する。 DNA断片から適当な長さを取りだす方法としては、蔗 糖密度勾配を用いる方法やアガロースゲルを用いる方法 (モレキュラー・クローニング(Moleculrar Cloning), 150頁, コールド・スプリング・ハーパー・ラ ボラトリー(Cold Spring Harbor Laboratory) 出版(1

ボラトリー(Cold Spring Harbor Laboratory) 出版(1982年)参照)などいずれでもよく、例えば、RK2の複製に関与する領域を有するベクタープラスミド、例えば、pRK229、pRK248(ジャーナル・オブ・バクテリオロジー、141巻、219頁、1980年参照)、pRK290(プロシーディング・ナショナル・アカデミー・サイエンス・オブ・USA、77巻、7347頁、1980年)、pLA2901、pLA2905、pLA2910、pLA2917(ジャーナル・オブ・バクテリオロジー、161巻、955頁、1985年参照)、pLAFR1(ジーン(Gene)、18巻、289頁、1982年参照)、pVK100、pVK10

1, p V K 1 O 2 (プラスミド (Plasmid), 8巻, 45頁, 1982年)、あるいは、R K 2 の複製に関する領域を制限酵素で切り出し加工したものなどが挙げられる。

【0010】ベクタープラスミドは、染色体DNAを断 片化する際に使用した制限酵素の塩基配列に対応する制 限酵素を用いて切断した後、適当な長さにされた染色体 DNA断片と連結する。この連結は、T4DNAリガーゼを 用いればよく、例えばライゲーションキット(宝酒造 (株) など) を用いて行うことができる。これにより、 様々な遺伝子の断片とベクタープラスミドを結合した混 合物(以下、遺伝子ライブラリーと呼ぶ)を得ることが できる。あるいは、遺伝子ライブラリーにおいて、適当 な長さの染色体DNA断片を用いる代わりに、P(3H B-CO-3HHx)を合成できる菌株からmRNAを 抽出精製し、mRNAを精製した後それからcDNA断 片を合成する方法 (モレキュラー・クローニング(Molec ular Cloning), コールド・スプリング・ハーバー・ラ ボラトリー(Cold Spring Harbor Laboratory) 出版(1 982年)参照)を利用してもよい。また、遺伝子ライ ブラリーを、大腸菌に一度形質転換あるいは形質導入し た後、遺伝子ライブラリーを大量に精製することもでき る(モレキュラー・クローニング(Molecular Clonin g) , コールド・スプリング・ハーバー・ラボラトリー (Cold Spring Harbor Laboratory) 出版(1982年)

【0011】② 次に、P(3HB-CO-3HH×)の合成遺伝子が欠損した変異株(以下合成能欠損変異株と呼ぶ)を取得するためには、P(3HB-CO-3HH×)を合成できる菌株に変異処理を施した後、炭素数6以上の油脂関連物質を唯一の炭素源とする培地で増殖でき、炭素数6以上の油脂関連物質を唯一の炭素源としてP(3HB-CO-3HH×)を合成できる培地でP(3HB-CO-3HH×)を合成できない菌株を選別すればよい。

【0012】ここで、変異処理はいずれの方法でもよく、例えば、紫外線、X線、Y線などによる変異、N-メチル-N' ---トロ-N--トロソグアジニン、エチルメタンスルホン酸などの変異剤による処理などいずれでもよい。

【0013】炭素数6以上の油脂関連物質を唯一の炭素源とする培地とは、炭素源として炭素数6以上の油脂関連物質以外を含有しない培地であり、例えば、デービス(Davis)の最少培地やM9最少培地に増殖に最小限必要なビタミンとミネラルを添加したものを基本培地とし、グルコースを炭素数6以上の油脂関連物質に置き換えた培地である。炭素数6以上の油脂関連物質を唯一の炭素源としてP(3HB-CO-4HHx)を合成できる培地とは、炭素源として炭素数6以上の油脂関連物質以外を含有せず、且つ、炭素源に対して窒素源を十分制限し

た培地であり、例えば、デービス(Davis) の最少培地や M 9 最少培地に増殖に最小限必要なビタミンとミネラル を添加したものを基本培地とし、グルコースを炭素数 6 以上の油脂関連物質に置き換え、硫酸アンモニウムなどの窒素源を通常の 1 / 5 以下にした培地である。

【0014】炭素数6以上の油脂関連物質として、天然油脂、例えば、コーン油、大豆油、サフラワー油、サンフラワー油、オリーブ油、ヤシ油、パーム油、ナタネ油、魚油、鯨油、豚油、牛油など、脂肪酸、例えば、ヘキサン酸、デカン酸、オクタン酸、ラウリン酸、オレイン酸、パルミチン酸、リノレン酸、リノール酸、ミリスチン酸など、あるいは、これら脂肪酸のエステル、あるいは、アルコール、例えば、オクタノール、ラウリルアルコール、オレイルアルコール、パルミチルアルコールなど、あるいはこれらアルコールのエステルなどが挙げられる。

【OO15】変異処理を施した菌株について、P(3H B-CO-3HHx)合成の有無を調べる方法として は、例えば、スダンブラックBにより染色する方法(ア キーブス・オブ・バイオテクノロジー(Archives of Bio technology), 71巻, 283頁, 1970年)、位相 差顕微鏡により蓄積を調べる方法などいずれでもよい。 また、変異株をサッカロースやパーコールの濃度勾配法 (アキーブス・オブ・バイオテクノロジー(Archives of Biotechnology), 143巻, 178頁, 1985年) により合成能欠損変異株の濃縮をしてから選別を行って もよい。そして、共重合体P(3HB-CO-3HH) x)の合成遺伝子の入った形質転換体を得るためには、 合成能欠損変異株に遺伝子ライブラリーを形質転換ある いは形質導入した後、炭素数6以上の油脂関連物質を唯 一の炭素源としてP(3HB-CO-3HHx)を合成 できる培地でP(3HB-CO-3HHx)の合成能が 修復した菌株(以下、合成能修復株と呼ぶ)を選別すれ ばよい。

【〇〇16】合成能欠損変異株へ遺伝子ライブラリーを 形質転換する方法は、一般に利用される方法でよく、例 えば、塩化カルシウム法(ジャーナル・オブ・モレキュ ラー・バイオロジー(Journal of Molecular Biology). 53巻, 159頁, 1970年参照)、塩化ルビジウム 法(メソーズ・イン・エンザイモロジー(Methods inEnz ymology), 68巻, 253頁, 1979年参照)、低 p H法(遺伝子操作マニュアル(講談社サイエンティフ ィク出版)参照)などが挙げられる。また、コスミドベ クターやファージベクターを利用する場合の形質導入 は、一般に利用される方法でよく、例えば、市販のin vitroパッケージング キット (例えば、宝酒造 (株) 製) が利用できる。また、ベクタープラスミド が、プラスミドRK2に存在するtrfA、trfB、 rlx領域を含んでいる場合、接合法(ジャーナル・オ ブ・パクテリオロジー、161巻、955頁、1985

年参照)により形質導入できる。炭素数6以上の油脂関連物質を唯一の炭素源としてP(3HB-CO-3HH x)を合成できる培地は、既に記載した合成能欠損変異株を取得する場合の培地と同一でよく、P(3HB-CO-3HHx)の合成の有無を調べる方法も、既に記載した合成能欠損変異株を取得する場合に使用した方法と同じでよい。

[0017] st. $\beta-f+f+f-t$ oAからアセトアセチルCoAを合成し、アセトアセチ ルCοAリダクターゼは、アセトアセチルCοAからβ ーヒドロキシブチル C ο A を合成する。この β ーヒドロ キシブチルCoAは、P(3HB)合成のための3HB **のモノマーユニットである。従って、B-ケトチオラー** ゼおよび/またはアセトアセチルCoAリダクターゼ活 性の低い菌体では、菌体が炭素源を代謝する過程で多量 に合成されるアセチルCoAを、P(3HB-CO-3 HHx) 合成の3HBのモノマーユニットとして充分に 使えない。これに対し、P(3HB-CO-3HHx) 合成遺伝子の他に、B-ケトチオラーゼおよび/または アセトアセチルCoAリダクターゼ遺伝子が導入された 形質転換体は、 $\beta-$ ケトチオラーゼおよび/またはアセ トアセチルCoAリダクターゼ活性が上昇しており、ア セチルCoAを、P(3HB-CO-3HHx)合成の 3 HBのモノマーユニットとして充分に使用できる。そ れゆえ、炭素数6以上の炭素源以外の物質を唯一の炭素 源とし、窒素源を制限した培地で培養した場合、P(3) HB)を高濃度に蓄積することができる。これらの遺伝 子は、P(3HB-CO-3HHx)の合成遺伝子に近 接して存在している。それゆえ、既に記載した合成能修 復株のなかには、P(3HB-CO-3HHx)の合成 遺伝子を有し、且つ、βーケトチオラーゼおよびアセト アセチルCoAリダクターゼ遺伝子を有していない形質 転換体とP(3HB-CO-3HHx)の合成遺伝子を 有し、且つ、βーケトチオラーゼ遺伝子とアセトアセチ ルCoAリダクターゼ遺伝子の両方、あるいはその一方 を有する形質転換体が存在する。

【0018】③ 最後に、本発明の形質転換体を選別するには、合成能修復株を炭素数6以上の油脂関連物質以外の物質を唯一の炭素源とし、窒素源を制限した培地で培養した後、重合体(3HB)を高濃度に蓄積している菌株を選択すればよい。炭素数6以上の油脂関連物質以外の炭素源としては、糖類、例えば、グルコース、サッカロース、マルトース、フラクトース、ガラクトース、でんぷん、でんぷん加水分解物など、低級アルコール類、例えば、メタノール、エタノール、プロパノール、ブタノールなど、グリセリン、有機酸類、例えば、酢酸、アセト酢酸、クエン酸、コハク酸、酒石酸、乳酸、グルコン酸などが挙げられる。

【0019】蓄積量を調べる方法は、既に記載した方法でよく、例えば、スダンブラックBにより染色する方

法、顕微鏡により蓄積を調べる方法などいずれでもよい し、ポリマーを回収し重量を測定する方法、例えば、培 養終了後、菌体を蒸留水およびメタノール等により洗浄 し、滅菌乾燥して得られる乾燥菌体をクロロホルム等を 用いて、抽出処理し、遠心分離後、濾過等により菌体成 分を除去後、抽出液にメタノールを加えて共重合体を沈 **殿回収する方法でもよい。さらに、形質転換体について** 直接βーケトチオラーゼおよびアセトアセチルCoAリ ダクターゼ活性を測定してもよい(例えば、セニア(Sen ior)らの方法、バイオケミカル・ジャーナル(Biochemic al Journal), 125巻, 55頁, 1971年参照)。 【0020】アエロモナス属の菌株を宿主とした場合の 形質転換体は、宿主内に入れられたベクタープラスミド 上の遺伝子の大部分は、多コピー数が染色体内に挿入さ れる。それゆえ、P(3HB-CO-3HHx)の生産 には、これらの形質転換体を直接使用することができ る。

【0021】また、P(3HB-CO-HH×)をアエロモナス属以外の菌株で生産することも可能である。この場合、例えば、形質転換体よりプラスミドを抽出精製したものを、大腸菌に入れた後、プラスミドを精製し、プラスミドをそのまま、あるいは、目的の宿主で発現可能なベクターに連結しなおした後、目的の宿主にプラスミドを入れればよい。

【0022】アエロモナス属からのプラスミドの精製および大腸菌からのプラスミドの精製方法は、通常の方法でよく、例えば、アルカリ法(メソーズ・イン・エンザイモロジー(Methods in Enzymology), 100巻,243頁,1983年発刊)が使用できる。また、大腸菌や目的の宿主にプラスミドを入れる方法は、既に述べた合成能欠損変異株へ遺伝子ライブラリーを形質転換した時と同じ方法、例えば、塩化カルシウム法、塩化ルビジウム法、低pH法など、コスミドベクターやファージベクターを利用する場合の形質導入法例えば、市販のinvitroパッケージキットを用いる方法など、接合法などが挙げられる。

【0023】目的の宿主としては、炭素数6以上の油脂関連物質を代謝できる微生物であればいずれでもよく、バクテリアとして、グラム陰性バクテリア、例えば、エシェリヒア(Esherihia) 属、シュードモナス(Pseudomon as) 属、アルカリゲネス属(Alcaligenes)、アグロバクテリウム(Agrobacterium) 属、フラボバクテリウム(Fla bobacterium)属、ビブリオ(Vibrio)属、エンテロバクター(Enterobacter)属、リゾピウム(Rhizobium)属、グルコノバクター(Gluconobacter)属など、グラム陽性パクテリア、例えば、バシルス(Bacillus)属、クロストリヂウム(Clostridium) 属、ラクトバシルス(Lactobacillus)属、コリネバクテリウム(Corynebacterium)属、アルスロバクター(Artherobacter)属、ストレプトコッカス(Streptococcus)属など、また放線菌として、ストレ

プトマイセス (Streptomyces) 属、アクチノマイセス (Act inomyces) 属、ノカルディア (Nocardia) 風などが挙げられる。また、酵母、かびでもよい。

【0024】2. 形質転換体を用いた共重合体の培養方法及び抽出精製法

P(3HB-CO-3HHx)を醗酵合成するために は、形質転換体に炭素数6以上の油脂関連物質を含む炭 素源を与え、炭素源以外の栄養源である窒素源、無機 塩、その他の有機栄養源のいずれかを制限した培地(p Hは中性ないし微アルカリ性)、例えば、窒素源をO. 5~8%に制限した培地で、培養温度は25~38℃の 範囲で、好気的に1~4日培養することにより、P(3) HB-CO-3HHx)を顆粒として菌体内に蓄積さ せ、その後、この共重合体を回収すればよい。あるい は、P(3HB-CO-3HHx)を醗酵合成するため には、形質転換体に炭素数6以上の油脂関連物質を含む 炭素源あるいは炭素数6以上の油脂関連物質を含まない 炭素源を与え、炭素源以外の栄養源である窒素源、無機 塩、その他の有機栄養源を制限しない培地で、pHは中 性~微アルカリ性、培養温度は25~38℃の範囲で、 好気的に1~4日培養した後、炭素数6以上の油脂関連 物質を含む炭素源を与え、炭素源以外の栄養源である窒 素源、無機塩、その他の有機栄養源のいずれか、例え ば、窒素源を制限した培地で、pHは中性~微アルカリ 性、培養温度は25~38℃の範囲で、好気的に1~4 日培養することにより、P(3HB-CO-3HHx) 顆粒として菌体内に蓄積させ、その後、この共重合体を 回収すればよい。また、培養は半回分培養してもよい し、連続的に培養してもよい。

【0025】炭素源以外の栄養源として窒素源を制限する場合、炭素源は窒素源の5倍以上重量を与えることが好ましい。また、炭素数6以上の油脂関連物質を含む炭素源は、炭素数6以上の油脂関連物質と油脂関連物質以外の炭素源からなり、これらの量比は、目的のP(3HB-CO-3HH×)の組成に応じて適宜換えればよい。炭素数6以上の油脂関連物質の量比が高いほど、3HH×が豊富な共重合体を得られる。

【0026】炭素数6以上の油脂関連物質としては、既に述べたように、天然油脂、例えば、コーン油、大豆油、サフラワー油、サンフラワー油、オリーブ油、ヤシ油、パーム油、ナタネ油、魚油、鯨油、豚油、牛油など、脂肪酸、例えば、カプロン酸、デカン酸、オクタン酸、ラウリン酸、オレイン酸、パルミチン酸、リノレン酸、リノール酸、ミリスチン酸など、あるいは、これら脂肪酸のエステル、あるいは、アルコール、例えば、オクタノール、ラウリルアルコール、オレイルアルコール、パルミチルアルコールなど、あるいはこれらアルコールのエステルなどが挙げられる。

【0027】炭素数6以上の油脂関連物質以外の炭素源としては、糖類、例えば、グルコース、サッカロース、

マルトース、フラクトース、ガラクトース、でんぷん、 でんぷん加水分解物など、低級アルコール類、例えば、 メタノール、エタノール、プロパノール、ブタノールな ど、グリセリン、有機酸類、例えば、酢酸、アセト酢 酸、プロピオン酸、クエン酸、コハク酸、酒石酸、乳 酸、グルコン酸などが挙げられる。窒素源としては、ア ンモニウム塩、例えば、硝酸アンモニウム、硫酸アンモ ニウム、塩化アンモニウム、コハク酸アンモニウム、ク エン酸アンモニウムなど、硝酸塩、例えば、硝酸ナトリ ウム、硝酸カリウムなど、また、アンモニア水、アンモ ニアガス、尿素、アミノ酸、ペプチド、核酸関連物質な どが挙げられる。無機塩としては、りん酸塩、例えば、 リン酸カリウム、リン酸ナトリウム、リン酸カルシウム など、カリウム塩、例えば、塩化カリウムなど、カルシ ウム塩、例えば、塩化カルシウムなど、マグネシウム 塩、例えば、塩化マグネシウム、硫酸マグネシウムな ど、ナトリウム塩、例えば、塩化ナトリウム、炭酸ナト リウムなど、マンガン塩、例えば、硫酸マンガン、塩化 マンガンなど、重金属塩、例えば、鉄、亜鉛、銅、コバ ルトなどの塩化物、硫酸化物、硝酸化物などが挙げられ

【0028】その他の有機栄養源としては、アミノ酸、例えば、グリシン、アラニン、セリン、スレオニン、プロリン、アスパラギン酸、オルニチン、プロリン、チリシンなど、ペプチド類、例えば、ペプトン、カザミノ酸、グリシルグリシン、アラニルアラニン、アラニルグリシンなど、ビタミン類、例えば、ビタミンB12、ビオチンなど、天然物由来物質、例えば、酵母エキス、肉エキス、麦芽、麦芽エキス、コーンスティプリカー、大豆粉、米ぬか、大豆粉、カゼイン分解物など、核酸関連物質、例えば、ウラシル、シトシン、チミン、アデニン、プリン、これらとリボース、デオキシリボースからなるヌクレオチドなどが挙げられる。

【0029】醗酵合成された共重合体の菌体からの回収は、常法により行うことができる。例えば、培養終了後、菌体を蒸留水およびメタノール等により洗浄し、滅菌乾燥して得られる乾燥菌体をクロロホルム等を用いて、抽出処理し、遠心分離後、濾過等により菌体成分を除去し、得られる抽出液にメタノールを加えて共重合体を沈殿回収することができる。

[0030]

【実施例】以下に実施例を挙げて、本発明を説明するが、本発明はかかる実施例に限定されるものではない。 実施例 1

最初に、ポリエステル合成能欠損変異株を取得した。アエロモナス属の菌株として、アエロモナス キャビエ(Aeromonas caviae) FA440株を使用した。アエロモナス キャビエ FA440をNーメチルーNーニトロソグアニジン処理(生物工学実験書、66頁、社団法人日

本生物工学会編(培風館出版)参照)を施し、変異を行 った。そして、1プレート当たりコロニーが約100個 になるようにMM(0.5%グルコース、0.01%硫 酸マグネシウム、0.3%燐酸ニカリウム、0.7%燐 酸ーカリウム、0. 1%硫酸アンモニウム、0. 01% イーストエキス、pH7. O) 寒天培地に菌体懸濁液を **塗布し、30℃で5日間インキュベートした。得られた** コロニー10000個に対して、MM寒天培地と、MP A (O. 15%パルミチン酸、O. 01%硫酸マグネシ ウム、0.7%リン酸ニカリウム、0.3%リン酸ーカ リウム、0. 1%硫酸アンモニウム、0. 01%イース トエキス、1m I/100m I トリトンX-100) 寒 天培地と、MNP(0.15%パルミチン酸、0.01 %硫酸マグネシウム、O. 7%リン酸ニカリウム、O. 3%リン酸ーカリウム、0.01%硫酸アンモニウム、 0.01%イーストエキス、1ml/100mlトリト ンX-100、pH7. 0) 寒天培地とに、それぞれの コロニーをレプリカした。そして、MNP寒天培地のプ レートを30℃で5日間インキュベートした後、スダン ブラックB法により、ポリエステルを染色した。即ち、 200mg/リットルのスダンブラックBを含む95% のエタノール溶液を10mlずつ各プレートに注ぎ、3 0分間放置した後、溶液を除去し、95%のエタノール 溶液で1回プレートを洗浄した。その結果、MM培地と MPA培地で増殖し、且つ、MNP培地で青色に染色さ れていないコロニーを5個得た。それらを位相差顕微鏡 (オリンパスBH2、1000倍)で観察し、ポリエス テルが蓄積していないことを確認した。これら、ポリエ ステル合成遺伝子の欠損株(合成能欠損変異株)のひと つをACOO4と呼ぶ。

【0031】実施例2

次に、アエロモナスの遺伝子ライブラリーを作成した。 アエロモナス キャビエ FA440株を200mlの LB培地(1%イーストエキス, 0.5%パクトペプト ン、O.5%塩化ナトリウム、O.1%グルコース、p H7. 2) 中、30℃で一昼夜培養した後、10000 rpmで10分間遠心分離することにより集菌した。そ して、この菌体をO.O1Mのトリス(ヒドロキシメチ ル) アミノメタンー0. 001Mのエチレンジアミン四 酢酸ニナトリウム溶液(以下TE溶液と呼ぶ)50ml に懸濁し、50mgの塩化リゾチームを添加した後、4 **℃で30分間放置した。さらに、50mlの1%のラウ** リル硫酸ナトリウムを含有するTE溶液を添加し、70 **℃で20分間放置した。この液を室温まで冷却後、10** 0mlのフェノールークロロホルム溶液(容量比1: 1)を添加して静かに攪拌した後、10000rpmで 10分間遠心分離し、上澄みをパスツールピペットで静 かに取りだした。そして、フェノールークロロホルム溶 液(容量比1:1)の代わりに、100mlのクロロホ ルム溶液を用いて同様の操作を行い、上澄みをパスツー ルピペットで静かに取りだし、ビーカーに入れた。この上澄み液に-20℃に冷却したエタノールを少しずつ添加しながら、析出してきた染色体DNAをガラス棒で巻き取ることにより、アエロモナス キャピエFA440の染色体DNAを得た。

【〇〇32】得られた染色体DNAを、制限酵素Sau3AIで部分分解した後、透析チューブ法(モレキュラー クローニング(Molecular cloning), 164頁, コールド スプリング ハーバー ラボラトリー(Cold Spring Harbar Laboratory) 出版参照)により、5~15キロ塩基対のDNA断片を分離精製した。他方、ベクタープラスミドは、アエロモナス属で発現可能なpLA2917を使用した。このプラスミドを制限酵素BgIIIで切断し、脱燐酸化処理(モレキュラー クローニング (Molecular cloning), 133頁, コールド スプリング ハーバーラボラトリー(Cold Spring Harbar Laboratory) 出版参照)を施した後、精製した染色体DNA断片(遺伝子ライブラリー溶液と呼ぶ)と連結した。

【0033】形質転換は、塩化カルシウム法を用いて行った。即ち、大腸菌DH1株を1mlのLB培地に一白金耳接種し、37℃で一昼夜振盪培養した。そして、0.05mlの培養液を5mlのLB培地に入れ、37

○.05mlの培養液を5mlのLB培地に入れ、37℃でさらに2時間培養した。その後、培養液を1000Orpmで10分間遠心分離して菌体を回収した後、

0. 1m I / I の塩化カルシウム溶液2m I に懸濁して

4℃で2時間放置した。その後、再び10000 rpm で10分間遠心分離して菌体を回収した後、0.1mo I/Iの塩化カルシウム-O. O1mo I/Iのトリス (ヒドロキシメチル) アミノメタン溶液 0.2mlに懸 濁し、遺伝子ライブラリー溶液〇. 〇1m / を添加し、 さらに45分間放置した。そして、42℃で2分間放置 した後、1.8mlのLB培地を添加して37℃でさら に2時間放置し、この菌体を集菌した後に25mg/m Iのテトラサイクリンを含有するLB寒天培地上に塗布 し、37℃で24時間インキュベートした。その結果、 105 個程度のテトラサイクリンに耐性を示すコロニー が得られた。得られたテトラサイクリンに耐性を示すこ れらのコロニーよりアルカリ法(メソーズ・イン・エン ザイモロジー(Methods in Enzymology) , 100巻,2 43頁、1983年発刊)を用いて、プラスミドを粗精 製した後、超遠心分離法(モレキュラー クローニング

製した後、超速心が離法(モレキュラー クローニング (Molecular cloning) , 150頁, コールド スプリング ハーバー ラボラトリー(Cold SpringHarbar Labor atory) 出版) を用いてプラスミドの精製を行った。このようにして、精製された遺伝子ライブラリーを得た。

【0034】実施例3

アエロモナスの菌株として、実施例 1 で取得したアエロモナス キャビエ (Aeromonas caviae) A C O O 4 株の抗生物質に対する耐性を調べたところ、テトラサイクリン、カナマイシンに感受性であり、アンピシリンには耐

性を示した。そこで、テトラサイクリンをマーカーとして使用した。アエロモナス キャピエ ACOO4に実施例2で作成した遺伝子ライブラリーを、実施例2の大腸菌DH1の時と同様に、塩化カルシウム法により形質転換した後、テトラサイクリンを含有するLB培地に塗布し、30℃で一昼夜インキュベートした。その結果、105個程度のテトラサイクリンに耐性を示すコロニーを得た。

【0035】得られたテトラサイクリンに耐性を示すそ れぞれのコロニーをテトラサイクリンを含有するMM寒 天培地とテトラサイクリンを含有するMNP寒天培地と につまようじで10000個レプリカした。テトラサイ クリンを含有するMM寒天培地のプレートは、30℃で 3日間インキュベートした後4℃の冷蔵庫の中で保存し た。一方、テトラサイクリンを含有するMNP寒天培地 のプレートは、30℃で5日間インキュベートした後、 前述のスダンブラック法により染色した。その結果、ス ダンブラックにより青色に染色されるコロニーを3個得 た。さらに、実施例1と同様に位相差顕微鏡を用いて観 察し、ポリエステルの顆粒が蓄積していることを確認し た。こうして、P(3HB-CO-3HHx)の合成遺 伝子を含む断片がクローニングされたコロニーを3個得 た。それらのうちの1個のコロニーを、以下AC118 株と呼ぶ。

【0036】アエロモナス キャビエ FA440、A C004、AC118を10mlのLB培地(AC11 8はテトラサイクリンを含有したLB培地)の入った三 角フラスコ中30℃で24時間振盪培養した。その後、 それぞれの菌を集め、1mlの生理食塩水に懸濁したも のを、100mlの、M9G(0.6%リン酸ニナトリ ウム、0.3%リン酸ーカリウム、0.05%塩化ナト リウム、0.01%塩化アンモニウム、0.024%塩 化マグネシウム、0.001%塩化カルシウム、1%グ ルコース、0.01%イーストエキス) 培地に入れ、3 0℃で48時間振盪培養した。得られた培養液中1m | を遠心分離して菌体を集め、位相差顕微鏡により、菌体 の蓄積状況を調べた。残り99mlより得られた菌を集 め、蒸留水で2回菌体を洗浄し、エタノールで1回洗浄 した後、菌体を集め、乾燥した後、乾燥菌体重量を測定 した。その後、クロロホルム15mlに乾燥菌体を懸濁 し50℃で2時間放置した。そして、ワットマンNo.

1の濾紙により濾過し、さらに、メンブランフィルター (アドバンテック社製、PTFEタイプT050A047A)により濾過することにより、菌体残渣を取り除いた。さらに、このクロロホルム溶液に40mlのメタノールを添加し、ポリエステルを沈澱させた。沈澱物を遠心分離し、上澄み液を除去した後、乾燥してポリエステルを得た。

【〇〇37】全ポリエステル重量を測定した後、得られ たポリエステル5~7mgをクロロホルム1m1に溶解 し、0.85m | のメタノールと0.15m | の濃硫酸 を添加して密栓し、100℃で140分間放置すること により、ポリマーの分解物のメチルエステル体を得た。 これを、O℃の氷水で十分冷却し、硫酸アンモニウムで 飽和した蒸留水 0.5mlを添加し激しく攪拌した。静 置して2層に分離させた後、下部の有機層を注意深く抽 出しその組成を分析した。分析には、キャピラリーガス クロマトグラフィーを使用した。キャピラリーガスクロ マトグラフは、HP5890川(ヒューレット パッカ ード社製)を用いて行った。使用したカラムは、J&W 社製のヒューズド シリカ キャピラリーカラムDB-5 (カラム内径 0. 25 mm、液膜厚 0. 25 μm、カ ラム長30m)である。また、温度は、初発温度60℃ で30分間行い、その後8℃/分の速度で昇温して、最 終温度240℃を3分間行った。得られた結果を表1 (上側) に示す。表1において、AC118のみが、グ ルコースを唯一の炭素源としてP(3HB)を蓄積でき た。さらに、セニア(Senior)らの方法(パイオケミカル ・ジャーナル(Biochemical Journal) , 125巻, 55 頁、1971年参照)に従って、 β ーケトチオラーゼ活 性とアセトアセチルCoAリダクターゼ活性を測定した 結果、AC118株はFA440株に対してこれらの活 性がそれぞれ2倍、1.5倍上昇していた。従って、A C118株にクローニングされたDNA断片には、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエート により構成される共重合体の合成遺伝子、及び、βーケ トチオラーゼ遺伝子、及び、アセトアセチルCoAリダ クターゼ遺伝子が存在しており、これらの遺伝子の発現 により対応する酵素活性が上昇したものと結論できる。

[0038]

【表1】

炭素原	使用菌株	乾燥菌体重量 (g/l)	ポリエステル含 量 (g/g-乾燥菌体)	ポリエステル組 成 C6/C4(mol/mol)
グルコース	FA440	0. 491	0. 00	測定不能*'
	AC004	0. 430	0. 00	測定不能*'
	AC118	0. 394	0. 20	0.00
バルミチン酸	FA440	0. 736	0. 08	0.17
	AC004	0. 730	0. 00	測定不能 [*]
	AC118	0. 742	0. 60	0.05

a) ホリエステルがほとんど合成されていないため測定できなかった。

【0039】実施例4

アエロモナス キャビエ FA440、AC004、AC118を10mIのLB培地(AC118はテトラサイクリンを含有したLB培地)の入った三角フラスコ中30℃で24時間振盪培養した。その後、それぞれの菌を集菌して1mIの生理食塩水に懸濁したものを、100mIのMNP培地に入れ、30℃で48時間振盪培養した。得られた培養液中1mIを遠心分離して菌体を集め、位相差顕微鏡により、菌体の蓄積状況を調べた。残り99mIより得られた菌を集め、実施例3と同様の方法でポリエステルを精製し、分析した。得られた結果を表1(下側)に示す。

【0040】親株であるFA440株では、ポリエステル含量及びポリエステル収率が非常に低いのに対し、AC118株では、ポリエステル含量が60%にも到達し、ポリエステル収率も著しく改善された。そして、本実験で得られたポリエステル含量は、アルカリゲネスユートロファスを用い、炭素源として炭素数が奇数個のカルボン酸を与えてP(3HB-CO-3HV)を得る方法よりも高い含量を得るものであるばかりか、非常に

安価な油脂類似物質を炭素源にするために、生産コスト の面からも極めて優れた方法であることが判明した。

【0041】なお、本実施例で使用したアエロモナスキャビエ FA440株は、工業技術院微生物工業技術研究所(微工研)に平成3年6月11日付けで寄託されており、寄託番号は、微工研条寄第BP-3432号である。また、本実施例で得られたアエロモナス キャビエ AC118株は、工業技術院生命工学工業技術研究所(生命研)に平成6年2月2日付けで寄託されており、寄託番号は、生命研条寄第BP-4544号である。さらに、プラスミドpLA2917は、アメリカン・タイプ・カルチャー・コレクション(ATCC)の寄託番号37355としてそれぞれ分譲された。

[0042]

【発明の効果】本発明の形質転換体および本発明の製造方法を用いることにより、3ーヒドロキシブチレートと3ーヒドロキシヘキサノエートから構成される共重合体を、安価な油脂や脂肪酸を原料に高収率で生産することができる。

フロントページの続き

(51) Int. CI. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

C12R 1:01) (C12P 7/62

C12R 1:01)

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
7	SKEWED/SLANTED IMAGES
4	COLORED OR BLACK AND WHITE PHOTOGRAPHS
Ġ	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox