Assessing Local Environmental Spending and Air Pollution Reduction in Indonesia: A Satellite Data Approach

Ega Kurnia Yazid¹ Kelvin Ramadhan Hidayat² Data Avicenna² Muhammad Faiz Zaidan Alharkan³

¹Decarbonization for Development, Centre for Strategic and International Studies, Indonesia

²Faculty of Economics and Business, Universitas Gadjah Mada, Indonesia

³Pertamina New & Renewable Energy, Indonesia

Accelerating Climate Action in Asia: Fiscal Policy Solutions ADBI Tokvo. 9-10 July 2025

Presentation Outline

- Introduction
- 2 Literature Review & Research Gap
- Oata & Methodology
- Results
- Conclusion

Indonesia's Environmental Challenge

Political & Environmental Concerns:

- Indonesia committed to net-zero emissions by 2060 at COP26
- Currently among top 10 global carbon emitters (Union of Concerned Scientists, 2021)
- Decentralized governance requires local-level environmental action
- Limited progress in emission reduction at local level

Data & Research Gaps:

- Paucity of air pollution data at local level. This highlights the need for alternative data sources for evaluation
- Most studies use general budget instead of environmental-specific spending

Policy Context & Research Objective

- The Government of Indonesia mandates the local government to manage the environmental quality through environmental funds (Government Regulation No. 32 of 2009 concerning Environmental Economic Instruments and Presidential Regulation No. 77 of 2018 concerning the Management of Environmental Funds).
- This study focuses on **environmental spending of local governments**. The potential sources of environmental budget of local governments are:
 - Indonesia's national budget (APBN) through the Special Allocation Funds for Environmental Functions (DAK Fungsi Lingkungan Hidup) and General Allocation Funds (DAU)
 - Locally generated revenue

Research Objective

This study, thus, aims to evaluate the effect of local environmental spending on pollution level.

Region/Country	Finding	Key Studies		
World	Mixed results: insignificant relationship to positive impact on SO_2 emissions. Direct negative impact varies by income level.	Halkos & Paizanos (2013); Bernauer & Koubi (2013); Yi- lanci & Pata (2022)		
Europe	Negative relationship - spending reduces SO_2 , NO_2 , and O_3 . Attributed to carbon taxes and governance quality.	Lopez & Palacios (2010); López & Palacios (2014)		
USA	No significant effect of central government spending. Budget composition at state level more important than total amount.	Islam & López (2013); Halkos & Paizanos (2017)		

Region/Country	Finding	Key Studies		
China	Mixed results: negative impact on SO_2 but positive on chemical oxygen demand and soot. Spatial spillover effects between provinces.	Zhang et al. (2017); Huang (2018); Xiong et al. (2020)		
Developing Asia	Context-dependent: large fiscal spending decreases pollution with shadow economy, increases with higher taxes.	Huynh (2020)		
Indonesia	Limited evidence - positive relationship with Environmental Quality Index at provincial level. Uses general spending, not environmental-specific budgets.	Oktavilia et al. (2021)		

Research Gaps

- Most studies use general government spending
- Limited focus on local-level analysis
- Lack of comprehensive analysis on various pollution types
- Few studies in developing countries
- Indonesia-specific evidence is very limited

Data Sources & Coverage

Dataset Overview:

- 474 cities/regencies across Indonesia (2011-2019)
- 4.266 observations total
- Excludes DKI Jakarta (outlier) and administratively divided regions

Air Pollution Data:

- NASA Giovanni satellite database
- Spatial resolution: 13.75 km imes 13.75 km
- Monthly data aggregated annually
- Pollutants: NO₂, SO₂, PM_{2.5}, O₃, Black Carbon

Budget & Control Data:

- Environmental budget: Ministry of Finance
- Economic data: SIMREG (BAPPENAS)
- Geographic data: USGS + QGIS
- Population density, elevation, GDP, industry share

8 / 18

Summary Statistics

Variable	Mean	Std. Dev.	Min	Max	Obs
Air Pollution Growth:					
NO ₂ Growth	-0.001	0.083	-0.231	0.187	3,724
SO ₂ Growth	0.018	1.027	-6.431	6.043	3,359
PM _{2.5} Growth	0.000	0.334	-1.797	1.341	3,318
O ₃ Growth	0.001	0.025	-0.040	0.059	3,768
Black Carbon Growth	1.010	2.647	-2.105	8.906	3,700
Key Variables:					
Env. Budget Growth	0.093	0.745	-10.727	10.940	3,673
Population Density	999.8	2,296.3	0.85	16,208.7	4,266
Regional GDP (In)	9.123	1.249	2.565	13.272	4,264

Key Observations:

- Large variation in environmental budget growth (-10.7% to +10.9%)
- Most pollutants show near-zero average growth
- Substantial heterogeneity across regions

Growth Rate Definition:

$$PollutionGrowth_{it} = ln(Pollution_{it}) - ln(Pollution_{it-1})$$

Fixed Effects Model:

$$PollutionGrowth_{it} = \alpha + \beta \cdot EnvBudgetGrowth_{it} + X'_{it}\gamma + Z'_{it}\delta + \omega_i + \phi_t + \epsilon_{it}$$

$$(1)$$

Where:

- X_{it} : Regional characteristics (population density, elevation)
- Z_{it} : Economic characteristics (GDP, government spending, industry share)
- ω_i : City/regency fixed effects
- ϕ_t : Year fixed effects

Main Results

	(1) Bivariate		(2) +	(2) + Regional		(3) + Economic	
	SO_2	NO_2	SO_2	NO_2	SO_2	NO_2	
Env. Budget	0.130 (0.270)	- 0.010** (0.004)	0.132 (0.028)	- 0.018* (0.010)	0.107 (0.300)	- 0.016* (0.011)	
Pop. Density Elevation			-0.184* 0.100**	0.039** -0.004**	-0.202* 0.090*	0.039** -0.004***	
In(Regional GDP) In(Total Gov. Spend.) Share of Industry					2.600 0.130 1.001	0.003 -0.007 -0.004	
Fixed Effects N Adj. R ²	3,314 0.048	3,673 0.829	Year + City 3,195 0.048	/Regency: \ 3,545 0.834	es 3,194 0.048	3,544 0.834	

Key Findings:

- Environmental budget significantly reduces NO₂ pollution
- No significant effect on SO₂ pollution
- Results consistent across specifications

Effect Magnitude & Economic Interpretation

Main Finding

A 10% increase in environmental budget spending is associated with a 0.16% reduction in NO₂ pollution growth

Economic Interpretation:

- Inelastic relationship spending increases do not translate proportionately to pollution reduction
- Suggests inefficiencies in current environmental spending
- NO₂ reduction likely due to programs targeting **fuel combustion sources** (vehicles, power plants)
- SO₂ unaffected suggests programs do not address industrial pollution sources

Heterogeneity Analysis: Income Levels

	Q1 (Poorest)		Q2		Q3		Q4 (Richest)	
	SO_2	NO_2	SO_2	NO_2	SO_2	NO_2	SO_2	NO_2
Env. Budget	- 0.961*	- 0.036*	0.127	- 0.047*	0.397	0.014	-0.194	-0.008
Growth	(0.574)	(0.019)	(0.086)	(0.027)	(0.559)	(0.018)	(0.599)	(0.017)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	807	883	796	914	842	908	749	839

Key Insights:

- Environmental spending more effective in poorer regions
- Effect becomes insignificant in wealthier areas
- Suggests diminishing returns with economic development

Temporal Dynamics & Other Pollutants

Lagged Effects:

- No significant lagged effects found
- Environmental spending only affects pollution in current year
- Suggests short-term focus rather than sustainable programs

Policy Concern:

 Programs may focus on budget absorption rather than long-term environmental improvement

Other Pollutants:

Pollutant	Effect		
NO ₂	-0.016*		
SO_2	0.107		
O_3	-0.005**		
$PM_{2.5}$	0.019		
Black Carbon	+0.160**		

Mixed Results:

- Effective for NO₂ and O₃
- No effect on SO₂ and PM_{2.5}
- Increases Black Carbon

Conclusion

Key Findings:

- Environmental spending significantly reduces NO₂ pollution but shows no significant effect on SO₂ levels
- Budget effectiveness is inelastic 10% budget increase yields only 0.016% NO₂ reduction

Data & Methodology

- Environmental programs show short-term impact only with no lasting effects in subsequent years
- Effects are stronger in economically disadvantaged areas compared to wealthier regions

Policy Implications

Current programs primarily target vehicle and power plant emissions (NO₂ sources)

Data & Methodology

- Need for programs addressing industrial pollution sources (SO₂ emissions)
- Efficiency improvements required for optimal budget utilization
- Taking advantage of satellite data for evaluation
- Focus on sustainable, long-term environmental strategies rather than short-term measures

Limitations

- Natural phenomena (e.g. forest fires, volcanic eruptions) and other possible factors that may influence pollution levels not controlled
- Cannot isolate specific environmental programs within environmental spending within local governments

Contact: ega.yazid@fellow.csis.or.id