National Tsing Hua University

11320IEEM 513600

Deep Learning and Industrial Applications

Homework 3

113034506 李家欣

1.

- (1) Number of defect classes: 4
- (2) Types of defect classes: ['broken_large', 'broken_small', 'contamination', 'good']
- (3) Number of images used in your dataset: 50
- (4) Distribution of training and test data: Skewed Distribution(good 類別佔 40%)
- (5) Image dimensions: (50, 900, 900, 3)

2.

● 調整方向

- (1) 不同 backbone: Resnet18(預設)、Resnet50、Resnet101
- (2) 資料增強: 預設, 新增
- (3) 解凍策略: 解凍 fc (預設)、解凍 fc+layer3+layer4
- (4) Batch size: 32(預設)、8

● 最佳模型

Model: Resnet18 + 資料增強 + 解凍多層 + batch size 8

optimizer: AdamW

Learning Rate: 0.0001

Weight Decay: 0.01)

Test accuracy: 62.5%

● 成功關鍵

- (1) 相較 ResNet18, ResNet50 有更深的結構、更多參數,能夠學到更細緻的瑕疵特徵;另外 ResNet101 雖然深,但針對小資料集容易 overfitting,故最終測試下來 ResNet50 是一個表現最好的折衷方法
- (2) 資料增強(採用不同角度、光照、大小的瑕疵)可以改善資料集數量少的問題,以此降低 overfitting
- (3) 解凍三層使得模型更能學習到細節的瑕疵特徵,增加泛化能力
- (4) Batch: 初始設定為 32, 但考慮到資料集數量少(總共 50 張), 可能導致每

個 epoch 更新次數少或沒有,反而造成學習不佳,故選擇較小的 batch size

● 其他模型效果(編號是對應.ipynb 的檔名)

編號	backbone	資料增強	解凍層數	batch size	準確度
1	resnet18	X	fc	32	25.00%
2		V	fc	32	37.50%
3		X	fc + layer3 + layer4	32	25.00%
4		X	fc	8	50.00%
5		V	fc + layer3 + layer4	32	37.50%
6		X	fc + layer3 + layer4	8	37.50%
7		V	fc	8	25.00%
8		V	fc + layer3 + layer4	8	25.00%
9	resnet50	X	fc	32	25.00%
10		V	fc	32	25.00%
11		X	fc + layer3 + layer4	32	25.00%
12		X	fc	8	50.00%
13		V	fc + layer3 + layer4	32	25.00%
14		X	fc + layer3 + layer4	8	50.00%
15		V	fc	8	50.00%
16		V	fc + layer3 + layer4	8	62.50%
17	resnet101	X	fc	32	25.00%
18		V	fc	32	25.00%
19		X	fc + layer3 + layer4	32	25.00%
20		X	fc	8	50.00%
21		V	fc + layer3 + layer4	32	25.00%
22		X	fc + layer3 + layer4	8	50.00%
23		V	fc	8	50.00%
24		V	fc + layer3 + layer4	8	25.00%

3. 1 Long-Tail Distribution

資料集中少數類別樣本數量多,而多數類別數量少的情況

3.2 論文方法

- a. 使用 VQGAN 來生成影響,改善分布
- b. 將原始和生成影像做比較,獲得潛在的異常區域(圖像、區 塊、像素等向量指標來量化異常)
- c. 以多層次異常指標訓練分類器,做為評估指標

這篇論文實驗使用變化很細微的零件瑕疵資料集,其中 MVTec AD 資料集成功提高一般準確率與 ZFN 約束下到 95.69% 和 87.93%。

Source: ArnaudBougaham1 · MohammedElAdoui1 · IsabelleLinden2 · BenoîtFréna(2022) Composite

4.

- (1) Feature Embedding + Nearest Neighbor: 利用預訓練模型抽取正常特徵,異常 樣本因特徵不同無法匹配,e.g. PatchCore、PaDiM
- (2) Autoencoder 重建誤差檢測: 模型學習還原正常圖像,異常圖像重建失敗產 生高誤差,e.g. Variational AE、Denoising AE
- (3) Contrastive Learning: 透過比對相似與不相似樣本特徵,學習具區分性的空間,與正常樣本距離較遠者視為異常。
- (4) One-Class Learning: 僅學習正常類型特徵邊界,落在邊界外視為異常,e.g. One-Class SVM
- (5) GAN: 生成器學習產生正常樣本,異常樣本因無法準確重建,進而找出異常區域的差異
- (6) **資料增強**: 人工加入雜訊、模糊、mask 等模擬異常以強化模型辨識能力

5.1 dataset

- (1)物件檢測:
 - 圖片檔
 - 標註檔: 包含邊界框座標、標籤
- (2)圖像分割
 - 圖像
 - 遮罩、像素標記檔: 每個像素都有標籤,或是用顏色區分

5.2

(1) 移學習能力強: YOLO world 及 SAM 模型已在大規模資料集(e.g. COCO、ImageNet)上進行過預訓練,擁有豐富的特徵表達學習能力,故僅需少量樣本就能進行微調

支援自定義類別與標註格式,使用者可以透過 labbelmg 等軟體進行人工標註, 以應對不同應用做針對性訓練。

- (2) 支援自定義類別與標註格式:使用者可以透過 labbelmg 等軟體進行人工標註,以適應更特殊的應用場域
- (3) 減少標註成本: YOLO world 及 SAM 具備"用點選或框選提示就能分割"半自動標註流程,可加速自定義資料集