MATH 709 HW # 8

MARIO L. GUTIERREZ ABED PROF. A. BASMAJAN

Problem 1 (Problem 6-1). Use Proposition 6.5¹ to give a simple proof (that does not use Sard's theorem) of the corollary that says that "if M and N are smooth manifolds (with or without boundary), and $F: M \to N$ is a smooth map, then if $\dim M < \dim N$, F(M) has measure zero in N." (Hint: given a smooth map $F: M \to N$, define a suitable map from $M \times \mathbb{R}^k$ to N, where $k = \dim N - \dim M$).

Proof. Let $n = \dim N$. For $k = \dim N - \dim M$, define $\widetilde{F} \colon M \times \mathbb{R}^k \to N$ by $(x, y) \mapsto F(x)$ for all $x \in M$ and $y \in \mathbb{R}^k$. This map is smooth because it can be written as the composition $\pi \circ (F \times \mathrm{Id}_{\mathbb{R}^k})$, where $\pi \colon N \times \mathbb{R}^k \to N$ is the canonical projection. It suffices then to show that the image of \widetilde{F} has measure zero in N.

Let $(U_1 \times U_2, \varphi_1 \times \varphi_2)$ and (V, ψ) be smooth charts for $M \times \mathbb{R}^k$ and N, respectively, such that $U_1 \subseteq M$ and $U_2 \subseteq \mathbb{R}^k$. To simplify notation a bit, let $U = U_1 \times U_2$ and $\varphi = \varphi_1 \times \varphi_2$. Then we have

$$\begin{split} \psi\left(\widetilde{F}(U)\cap V\right) &= \psi\left(\widetilde{F}\left(U\cap\widetilde{F}^{-1}(V)\right)\right) \\ &= \left(\psi\circ\widetilde{F}\circ\varphi^{-1}\right)\left(\varphi\left(U\cap\widetilde{F}^{-1}(V)\right)\right) \\ &\subseteq \left(\psi\circ\widetilde{F}\circ\varphi^{-1}\right)\left(\varphi(U)\cap\left(\varphi_1\left(\widetilde{F}^{-1}(V)\right)\times\{0\}\right)\right), \end{split}$$

which has measure zero in \mathbb{R}^n by Proposition 6.5. Therefore $\widetilde{F}(U)$ has measure zero. But $\widetilde{F}(M \times \mathbb{R}^k)$ can be written as a union of countably many sets of this form, so $\widetilde{F}(M \times \mathbb{R}^k) = F(M)$ has measure zero in N, as desired.

Problem 2 (Problem 6-9). Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be the map $F(x,y) = (e^y \cos x, e^y \sin x, e^{-y})$. For which positive numbers r is F transverse to the sphere $S_r(0) \subseteq \mathbb{R}^3$? For which positive numbers r is $F^{-1}(S_r(0))$ an embedded submanifold of \mathbb{R}^2 ?

Solution. Note that we have ||F(x,y)|| = r only when

$$r^{2} = e^{2y}\cos^{2}x + e^{2y}\sin^{2}x + e^{-2y} = e^{2y} + e^{-2y};$$

that is, when

$$y = \frac{1}{2} \log \left(\frac{1}{2} \left(r^2 \pm \sqrt{r^4 - 4} \right) \right).$$

Hence $||F(x,y)|| \ge \sqrt{2} \ \forall (x,y) \in \mathbb{R}^2$, and therefore F is trivially transverse to S_r for $r \in [0,\sqrt{2})$ $(F^{-1}(S_r(0)))$ is empty in this case). Now, for every $(x,y) \in \mathbb{R}^2$, we must have $F(x,y) \perp T_{F(x,y)}S_r$

¹The proposition states the following:

If $A \subseteq \mathbb{R}^n$ has measure zero and $F: A \to \mathbb{R}^n$ is a smooth map, then F(A) has measure zero.

if $F(x,y) \in S_r$. Then we compute the inner product of F(x,y) with the columns of DF(x,y):

$$(e^y\cos x, e^y\sin x, e^{-y})\cdot \begin{pmatrix} -e^y\sin x \\ e^y\cos x \\ 0 \end{pmatrix} = 0 \quad \text{and} \quad (e^y\cos x, e^y\sin x, e^{-y})\cdot \begin{pmatrix} e^y\cos x \\ e^y\sin x \\ -e^{-y} \end{pmatrix} = e^{2y} - e^{-2y}.$$

The second inner product is zero only when y = 0, which is the case only when $||F(x,y)|| = \sqrt{2}$. Hence, since $T_{F(x,y)}S_r$ and $DF_{(x,y)}(T_{(x,y)}\mathbb{R}^2)$ span $T_{F(x,y)}\mathbb{R}^3$ only when $r \neq \sqrt{2}$, we conclude that F is transverse to S_r for $r \in [0, \sqrt{2}) \cup (\sqrt{2}, \infty)$.

Now, by part a) of Theorem 6.30^2 from the text, we are guaranteed that $F^{-1}(S_r(0))$ is an embedded submanifold of \mathbb{R}^2 for $r \in [0, \sqrt{2}) \cup (\sqrt{2}, \infty)$; so we only need to check when $r = \sqrt{2}$. But note that in this case $F^{-1}(S_{\sqrt{2}}(0))$ is just a line in \mathbb{R}^2 , so it is an embedded submanifold as well.

²Here's the statement, for reference:

Suppose N and M are smooth manifolds and $S \subseteq M$ is an embedded submanifold. If $F: N \to M$ is a smooth map that is transverse to S, then $F^{-1}(S)$ is an embedded submanifold of N whose codimension is equal to the codimension of S in M.