Algebra 2 Odd Functions

SHOW ALL WORK on the worksheet

Determine whether the following functions are even, odd, or neither.

1.
$$f(x) = 4x - 3$$

4.
$$f(x) = \frac{1}{3}x^3$$

7.
$$f(x) = 3x^{2} + 1$$

 $f(-x) = 3(-x^{2}) + 1$
 $= 3x^{2} + 1$
 $= f(x)$

2. f(x) = |x| + 1

5.
$$f(x) = 7x$$

8.
$$f(x) = x^3 - 2x$$

 $f(-x) = (-x)^3 - 2(-x)$
 $= -x^{-2} + 2x$

$$= -(x^3 - 2x)$$

$$= - F(x)$$
Odd

11.
$$f(x) = \frac{1}{x}$$

$$f(-x) = \frac{1}{-x}$$

$$= -\frac{1}{x}$$

$$= -f(x)$$

$$0 dd$$

3.
$$f(x) = -x^2 - 4$$

6.
$$f(x) = \sqrt{x+5}$$

9.
$$f(x) = 3x + 4$$

$$f(-x) = 3(-x) + 4$$

= -3x + 4
= $f(x)$ or $-f(x)$
Neither

10.
$$f(x) = x^{2} - 5x$$

$$f(-x) = (-x)^{2} - 5(-x)$$

$$= x^{2} + 5x$$

$$= f(x) \circ (-f(x))$$

$$12. f(x) = \frac{x}{x^2 + 1}$$

$$f(-x) = \frac{-x}{(-x)^2 + 1}$$
$$= -\frac{x}{x^2 + 1}$$

$$= -\frac{1}{\chi^2 + 1}$$

$$= - + (\chi)$$

Algebra 2 Odd Functions

Graph each function and state the key characteristics

13.
$$f(x) = -3\sqrt[3]{x+4} + 5$$

14.
$$y = \frac{1}{2}h(x-3) + 5$$

Domain: (-so,so) or R

Range: (- so, so) or R

x-int: 0.63

y-int: 0.2378

End Behavior: $0.5 \times 9.7 + 1.0 \times 1.$

 $0.5 \times 3-0.1 f(x) \rightarrow \infty$

Increase: Non &

Decrease: (- 🔑, 🛩)

Max: Hone

Min: None

Line of Symmetry: None

Domain: (-2) or R

Range: /- ∞,¬¬¬

x-int: ≈ -6.1 , 11

y-int: ≈ 6.1

End Behavior: $a5 \times 300$, y3-00 $a5 \times 3-00$, y3-00

Increase: $(-\infty, -3) \cup (-1, 3) \cup (5, 6)$

Decrease: $(-3, -1) \cup (3, 6) \cup (8, 8)$

Max: $\alpha + (-3,7), (3,6.5), (8,7)$

Min: a+(-1,10),(5,5)

Line of Symmetry: None