### CS352 (Winter 2018) - Homework 6

Marc Tibbs (tibbsm@oregonstate.edu)

Due Date: February 25, 2018

**Problem 1:** (7 points) Shortest paths can be cast as an LP using distances dv from the source s to a particular vertex v as variables.

We can compute the shortest path from s to t in a weighted directed graph by solving.  $\max\,\mathrm{d} t$ 

subject to

ds = 0

 $dv - du \le w(u,v)$  for all  $(u,v) \in E$ 

We can compute the single-source by changing the objective function to  $\max \sum_{v \in V} dv$ 

Use linear programming to answer the questions below. Submit a copy of the LP code and output.

a) Find the distance of the shortest path from G to C in the graph below.

The shortest path is G, H, B, C with a distance of 16. A copy of the LP code and output is in the appendix.

b) Find the distances of the shortest paths from G to all other vertices.

A copy of the LP code and output is in the appendix.

| Vertex | Distance from G to Vertex |
|--------|---------------------------|
| a      | 7                         |
| b      | 12                        |
| c      | 16                        |
| d      | 2                         |
| e      | 19                        |
| f      | 17                        |
| g      | 0                         |
| h      | 3                         |

**Problem 2:** (7 points) Acme Industries produces four types of men's ties using three types of material. Your job is to determine how many of each type of tie to make each month. The goal is to maximize profit, profit per tie = selling price - labor cost - material cost. Labor cost is \$0.75 per tie for all four types of ties. The material requirements and costs are given below.

| Material  | Cost / Yard | Yards / Month |
|-----------|-------------|---------------|
| Silk      | \$20        | 1,000         |
| Polyester | \$6         | 2,000         |
| Cotton    | \$9         | 1,250         |

| Product Info       | Silk(s) | Poly(p) | Blend 1(b) | Blend2(c) |
|--------------------|---------|---------|------------|-----------|
| Sale Price         | \$6.70  | \$3.55  | \$4.31     | \$4.81    |
| Min. Units / Month | 6,000   | 10,000  | 13,000     | 6,000     |
| Max. Units / Month | 7,000   | 14,000  | 16,000     | 8,500     |

| Material Info | Silk(s) | Poly(p) | Blend 1(b) | Blend2(c) |
|---------------|---------|---------|------------|-----------|
| Silk          | 0.125   | 0       | 0          | 0         |
| Polyester     | 0       | 0.08    | 0.05       | 0.03      |
| Cotton        | 0       | 0       | 0.05       | 0.07      |

| Type         | Selling Price | Labor | Material | Profit/Tie |
|--------------|---------------|-------|----------|------------|
| Silk(s)      | 6.7           | 0.75  | 2.5      | 3.45       |
| Polyester(p) | 3.55          | 0.75  | 0.48     | 2.32       |
| Blend 1(b)   | 4.31          | 0.75  | 0.75     | 2.81       |
| Blend 2(c)   | 4.81          | 0.75  | 0.81     | 3.25       |

Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. What are the optimal numbers of ties of each type to maximize profit? Include a copy of the code and output.

The maximized profit is \$120,196, which you would get from selling 7,000 silk, 13,625 polyester, 13,100 blend1, and 8,500 blend2 ties. A copy of the LP code and output is in the appendix.

#### Problem 3: Transshipment Model (7 points)

This is an extension of the transportation model. There are now intermediate transshipment points added between the sources (plants) and destinations (retailers). Items being shipped from a Plant  $(p_i)$  must be shipped to a Warehouse  $(w_j)$  before being shipped to the Retailer  $(r_k)$ . Each Plant will have an associated supply  $(s_i)$  and each Retailer will have a demand  $(d_k)$ . The number of plants is n, number of warehouses is q and the number of retailers is m. The edges (i,j) from plant  $(p_i)$ to warehouse  $(w_j)$  have costs associated denoted cp(i,j). The edges (j,k) from a warehouse  $(w_j)$ to a retailer  $(r_k)$  have costs associated denoted cw(j,k).

The graph below shows the transshipment map for a manufacturer of refrigerators. Refrigerators are produced at four plants and then shipped to a warehouse (weekly) before going to the retailer.



Below are the costs of shipping from a plant to a warehouse and then a warehouse to a retailer. If it is impossible to ship between the two locations an X is placed in the table.

| Cost | W1   | W2   | W3  |
|------|------|------|-----|
| P1   | \$10 | \$15 | X   |
| P2   | \$11 | \$8  | X   |
| P3   | \$13 | \$8  | \$9 |
| P4   | X    | \$14 | \$8 |

| Cost | R1  | R2  | R3   | R4   | R5   | R6   | R7  |
|------|-----|-----|------|------|------|------|-----|
| W1   | \$5 | \$6 | \$7  | \$10 | X    | X    | X   |
| W2   | X   | X   | \$12 | \$8  | \$10 | \$14 | X   |
| W3   | X   | X   | X    | \$14 | \$12 | \$12 | \$6 |

The tables below give the capacity of each plant (supply) and the demand for each retailer (per week).

|        | P1  | P2  | P3  | P4  |
|--------|-----|-----|-----|-----|
| Supply | 150 | 450 | 250 | 150 |

|        | R1  | R2  | R3  | R4  | R5  | R6  | R7  |
|--------|-----|-----|-----|-----|-----|-----|-----|
| Demand | 100 | 150 | 100 | 200 | 200 | 150 | 100 |

Your goal is to determine the number of refrigerators to be shipped plants to warehouses and then warehouses to retailers to minimize the cost. Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. What are the optimal shipping routes and minimum cost. Include a copy of the code and output.

The minimum cost is \$17,100. The optimal shipping routes are shown in the graph below. A copy of the LP code and output is in the appendix.



#### Problem 4: A Mixture Problem (9 points)

Veronica the owner of Very Veggie Vegeria is creating a new healthy salad that is low in calories but meets certain nutritional requirements. A salad is any combination of the following ingredients:

Tomato, Lettuce, Spinach, Carrot, Smoked Tofu, Sunflower Seeds, Chickpeas, Oil Each salad must contain:

- At least 15 grams of protein
- At least 2 and at most 8 grams of fat
- At least 4 grams of carbohydrates
- At most 200 milligrams of sodium
- At least 40% leafy greens by mass.

The nutritional contents of these ingredients (per 100 grams) and cost are:

| Ingredient      | Calories | Protein(g) | Fat(g) | Carbs(g) | Sodium(mg) | Cost(100g) |
|-----------------|----------|------------|--------|----------|------------|------------|
| Tomato          | 21       | 0.85       | 0.33   | 4.64     | 9          | \$1.00     |
| Lettuce         | 16       | 1.62       | 0.20   | 2.37     | 28         | \$0.75     |
| Spinach         | 40       | 2.86       | 0.39   | 3.63     | 65         | \$0.50     |
| Carrot          | 41       | 0.93       | 0.24   | 9.58     | 69         | \$0.50     |
| Sunflower Seeds | 585      | 23.4       | 48.7   | 15       | 3.8        | \$0.45     |
| Smoked Tofu     | 120      | 16         | 5      | 3        | 120        | \$2.15     |
| Chickpeas       | 164      | 9          | 2.6    | 27       | 78         | \$0.95     |
| Oil             | 884      | 0          | 100    | 0        | 0          | \$2.00     |

**Part A:** Determine the combination of ingredients that minimizes calories but meets all nutritional requirements. Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. What is the cost of the low calorie salad?

The low calorie salad is made up of steamed tofu and lettuce. It costs \$2.33.

| Ingredient               | Calories | Protein(g) | Fat(g) | Carbs(g) | Sodium(mg) | Cost(100g) |
|--------------------------|----------|------------|--------|----------|------------|------------|
| Lettuce (58.5 grams)     | 9.4      | 0.9        | 0.1    | 1.4      | 16.4       | \$0.44     |
| Smoked Tofu (87.8 grams) | 105.4    | 14.1       | 4.4    | 2.6      | 105.4      | \$1.89     |
| Total (146.3 grams)      | 114.8    | 15         | 4.5    | 4        | 121.8      | \$2.33     |

**Part B:** Part B: Veronica realizes that it is also important to minimize the cost associated with the new salad. Unfortunately some of the ingredients can be expensive. Determine the combination of ingredients that minimizes cost. Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. How many calories are in the low cost salad?

The low cost salad is made up of chickpeas, sunflower seeds, and spinach. It has 278 calories. A copy of the LP code and output is in the appendix.

| Ingredient                  | Calories | Protein(g) | Fat(g) | Carbs(g) | Sodium(mg) | Cost(100g) |
|-----------------------------|----------|------------|--------|----------|------------|------------|
| Spinach (83.2 grams)        | 33.3     | 2.4        | 0.3    | 3        | 54.1       | \$0.42     |
| Sunflower Seeds (9.6 grams) | 56.2     | 2.2        | 4.7    | 1.4      | 0.4        | \$0.04     |
| Chickpeas (115.2 grams)     | 189      | 10.4       | 3      | 31.1     | 89.9       | \$1.09     |
| Total (208 grams)           | 278.5    | 15         | 8      | 35.5     | 144.4      | \$1.55     |

# **APPENDIX**

## QUESTION 1A

### Lindo Input:

```
max dc
ST
    dg = 0
    df - da <= 10
    da - df <= 5
   da - dh <= 4
    dh - dq \ll 3
    dc - df <= 3
    dd - dc <= 3
   de - dd <= 25
   dd - de <= 9
   de - df <= 2
    dg - de <= 7
    db - dh \le 9
    db - da <= 8
    db - df <= 7
    dc - db \ll 4
    de - db <= 10
    dd - dg <= 2
    df - dd <= 18
END
```

### Lindo Output:

LP OPTIMUM FOUND AT STEP 6

### OBJECTIVE FUNCTION VALUE

1) 16.00000

| VARIABLE | VALUE     | REDUCED COST |
|----------|-----------|--------------|
| DC       | 16.000000 | 0.000000     |
| DG       | 0.000000  | 0.000000     |
| DF       | 13.000000 | 0.000000     |
| DA       | 4.000000  | 0.000000     |
| DH       | 3.000000  | 0.000000     |
| DD       | 0.000000  | 0.000000     |
| DE       | 0.000000  | 0.000000     |
| DB       | 12.000000 | 0.000000     |
|          |           |              |

| ROW | SLACK | OR  | SURPLUS | DUAL | PRICES |
|-----|-------|-----|---------|------|--------|
| 2)  |       | 0.0 | 00000   | 1.   | 000000 |

```
3)
             1.000000
                                0.00000
 4)
            14.000000
                                0.000000
 5)
             3.000000
                                0.00000
 6)
             0.000000
                                1.000000
 7)
             0.000000
                                0.000000
                                0.000000
            19.000000
 8)
 9)
            25.000000
                                0.00000
10)
             9.000000
                                0.00000
            15.000000
11)
                                0.000000
12)
             7.000000
                                0.000000
13)
             0.000000
                                1.000000
             0.000000
                                0.00000
14)
15)
             8.000000
                                0.00000
16)
             0.000000
                                1.000000
17)
            22.000000
                                0.00000
18)
             2.000000
                                0.000000
19)
             5.000000
                                0.00000
```

## QUESTION 1B

```
Lindo Input:
```

```
max d(a through h)
ST
    dg = 0
    df - da <= 10
    da - df <= 5
    da - dh <= 4
    dh - dg \ll 3
    dc - df \le 3
    dd - dc <= 3
    de - dd <= 25
    dd - de <= 9
    de - df <= 2
    dq - de <= 7
    db - dh \le 9
    db - da <= 8
    db - df <= 7
    dc - db <= 4
    de - db <= 10
    dd - dg \ll 2
    df - dd <= 18
END
```

### <u>Lindo Output:</u>

LP OPTIMUM FOUND AT STEP

0

1) 7.000000

| VA | RIABLE  DA  DG  DF  DH  DC  DD  DE  DB                              | VALUE 7.000000 0.000000 17.000000 3.000000 16.000000 2.000000 0.000000 | REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000                           |
|----|---------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|    | ROW 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) | SLACK OR SURPLUS                                                       | DUAL PRICES 1.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 |
| NO |                                                                     | ong o                                                                  |                                                                                     |

NO. ITERATIONS= 0

### LP OPTIMUM FOUND AT STEP 1

### OBJECTIVE FUNCTION VALUE

### 1) 12.00000

| VARIABLE | VALUE     | REDUCED COST |
|----------|-----------|--------------|
| DB       | 12.000000 | 0.00000      |
| DG       | 0.000000  | 0.00000      |
| DF       | 17.000000 | 0.00000      |
| DA       | 7.000000  | 0.00000      |
| DH       | 3.000000  | 0.00000      |
| DC       | 16.000000 | 0.00000      |
| DD       | 0.000000  | 0.00000      |

| DE | 19.00000 | 0.00000 |
|----|----------|---------|
|    |          |         |

| ROW | SLACK OR SURPLUS | DUAL PRICES |
|-----|------------------|-------------|
| 2)  | 0.00000          | 1.000000    |
| 3)  | 0.00000          | 0.000000    |
| 4)  | 15.000000        | 0.000000    |
| 5)  | 0.00000          | 0.000000    |
| 6)  | 0.00000          | 1.000000    |
| 7)  | 4.00000          | 0.000000    |
| 8)  | 19.00000         | 0.000000    |
| 9)  | 6.00000          | 0.000000    |
| 10) | 28.00000         | 0.000000    |
| 11) | 0.00000          | 0.000000    |
| 12) | 26.000000        | 0.000000    |
| 13) | 0.00000          | 1.000000    |
| 14) | 3.00000          | 0.000000    |
| 15) | 12.00000         | 0.000000    |
| 16) | 0.00000          | 0.000000    |
| 17) | 3.00000          | 0.000000    |
| 18) | 2.00000          | 0.000000    |
| 19) | 1.000000         | 0.000000    |

### LP OPTIMUM FOUND AT STEP 2

### OBJECTIVE FUNCTION VALUE

1) 16.00000

| 1)       | 16.00000         |              |
|----------|------------------|--------------|
| VARIABLE | VALUE            | REDUCED COST |
| DC       | 16.00000         | 0.000000     |
| DG       | 0.00000          | 0.000000     |
| DF       | 13.000000        | 0.000000     |
| DA       | 7.00000          | 0.000000     |
| DH       | 3.00000          | 0.000000     |
| DD       | 2.00000          | 0.000000     |
| DE       | 15.000000        | 0.000000     |
| DB       | 12.000000        | 0.000000     |
|          |                  |              |
| ROW      | SLACK OR SURPLUS | DUAL PRICES  |
| 2)       | 0.00000          | 1.000000     |
| 3)       | 4.00000          | 0.000000     |
| 4)       | 11.000000        | 0.000000     |
| 5)       | 0.00000          | 0.000000     |
| 6)       | 0.00000          | 1.000000     |
| 7)       | 0.00000          | 0.000000     |

| 8)  | 17.000000 | 0.000000 |
|-----|-----------|----------|
| 9)  | 12.000000 | 0.000000 |
| 10) | 22.00000  | 0.000000 |
| 11) | 0.00000   | 0.000000 |
| 12) | 22.00000  | 0.000000 |
| 13) | 0.00000   | 1.000000 |
| 14) | 3.00000   | 0.000000 |
| 15) | 8.00000   | 0.000000 |
| 16) | 0.00000   | 1.000000 |
| 17) | 7.000000  | 0.000000 |
| 18) | 0.00000   | 0.000000 |
| 19) | 7.000000  | 0.000000 |
|     |           |          |

### LP OPTIMUM FOUND AT STEP 0

| 1)                                                  | 2.000000                                                                |                                                           |
|-----------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|
| VARIABLE DD DG DF DA DH DC DE DB                    | VALUE 2.000000 0.000000 13.000000 7.000000 3.000000 16.000000 15.000000 | REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000 |
| ROW 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) | SLACK OR SURPLUS                                                        | DUAL PRICES 1.000000 0.000000 0.000000 0.000000 0.000000  |

| 18) | 0.00000  | 1.000000 |
|-----|----------|----------|
| 19) | 7.000000 | 0.000000 |

### LP OPTIMUM FOUND AT STEP 1

### OBJECTIVE FUNCTION VALUE

1) 19.00000

| VARIABLE  DE  DG  DF  DA  DH  DC  DD  DB | VALUE 19.000000 0.000000 17.000000 7.000000 3.000000 16.000000 2.000000 | REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000 |
|------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------|
| DOM                                      | CINCK OD CHDDING                                                        | DIINI DDICEC                                              |
| ROW<br>2)                                | SLACK OR SURPLUS 0.000000                                               | DUAL PRICES 1.000000                                      |
| 3)                                       | 0.00000                                                                 | 1.000000                                                  |
| 4)                                       | 15.000000                                                               | 0.000000                                                  |
| 5)                                       | 0.000000                                                                | 1.000000                                                  |
| 5)<br>6)                                 | 0.000000                                                                | 1.000000                                                  |
| 7)                                       | 4.000000                                                                | 0.000000                                                  |
| 8)                                       | 17.000000                                                               | 0.000000                                                  |
| 9)                                       | 8.000000                                                                | 0.000000                                                  |
| 10)                                      | 26.000000                                                               | 0.000000                                                  |
| 11)                                      | 0.000000                                                                | 1.000000                                                  |
| 12)                                      | 26.000000                                                               | 0.000000                                                  |
| 13)                                      | 0.000000                                                                | 0.000000                                                  |
| 14)                                      | 3.000000                                                                | 0.000000                                                  |
| 15)                                      | 12.000000                                                               | 0.000000                                                  |
| 16)                                      | 0.000000                                                                | 0.000000                                                  |
| 17)                                      | 3.000000                                                                | 0.000000                                                  |
| 18)                                      | 0.00000                                                                 | 0.00000                                                   |
| 19)                                      | 3.000000                                                                | 0.00000                                                   |

NO. ITERATIONS= 1

LP OPTIMUM FOUND AT STEP 0

1) 17.00000

| VARIABLE DF DG DA DH DC DD DE DB                                    | VALUE<br>17.000000<br>0.000000<br>7.000000<br>3.000000<br>16.000000<br>2.000000<br>19.000000<br>12.000000 | REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000                           |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| ROW 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) | SLACK OR SURPLUS                                                                                          | DUAL PRICES 1.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 |

### LP OPTIMUM FOUND AT STEP 0

NO. ITERATIONS= 0

### OBJECTIVE FUNCTION VALUE

### 1) 0.000000E+00

| VARIABLE | VALUE     | REDUCED COST |
|----------|-----------|--------------|
| DG       | 0.000000  | 0.000000     |
| DF       | 17.000000 | 0.000000     |
| DA       | 7.000000  | 0.000000     |
| DH       | 3.000000  | 0.000000     |
| DC       | 16.000000 | 0.000000     |
| DD       | 2.000000  | 0.000000     |
| DE       | 19.000000 | 0.000000     |

| DB 12.000000 0.000000 | Э |
|-----------------------|---|
|-----------------------|---|

| ROW | SLACK OR SURPLUS | DUAL PRICES |
|-----|------------------|-------------|
| 2)  | 0.00000          | 1.000000    |
| 3)  | 0.00000          | 0.000000    |
| 4)  | 15.000000        | 0.000000    |
| 5)  | 0.00000          | 0.000000    |
| 6)  | 0.00000          | 0.000000    |
| 7)  | 4.000000         | 0.000000    |
| 8)  | 17.000000        | 0.000000    |
| 9)  | 8.000000         | 0.000000    |
| 10) | 26.000000        | 0.000000    |
| 11) | 0.00000          | 0.000000    |
| 12) | 26.000000        | 0.000000    |
| 13) | 0.00000          | 0.000000    |
| 14) | 3.000000         | 0.000000    |
| 15) | 12.00000         | 0.000000    |
| 16) | 0.00000          | 0.000000    |
| 17) | 3.00000          | 0.000000    |
| 18) | 0.00000          | 0.000000    |
| 19) | 3.000000         | 0.000000    |
|     |                  |             |

### LP OPTIMUM FOUND AT STEP 0

| 1)       | 3.000000         |              |
|----------|------------------|--------------|
|          |                  |              |
| VARIABLE | VALUE            | REDUCED COST |
| DH       | 3.000000         | 0.000000     |
| DG       | 0.00000          | 0.000000     |
| DF       | 17.00000         | 0.00000      |
| DA       | 7.00000          | 0.00000      |
| DC       | 16.00000         | 0.00000      |
| DD       | 2.00000          | 0.00000      |
| DE       | 19.00000         | 0.00000      |
| DB       | 12.00000         | 0.00000      |
|          |                  |              |
|          |                  |              |
| ROW      | SLACK OR SURPLUS | DUAL PRICES  |
| 2)       | 0.00000          | 1.000000     |
| 3)       | 0.00000          | 0.00000      |
| 4)       | 15.00000         | 0.00000      |
| 5)       | 0.00000          | 0.00000      |
| 6)       | 0.00000          | 1.000000     |
| 7)       | 4.00000          | 0.000000     |
|          |                  |              |

```
8)
          17.000000
                              0.000000
9)
           8.000000
                              0.000000
          26.000000
10)
                              0.00000
11)
           0.000000
                              0.000000
          26.000000
12)
                              0.000000
13)
           0.000000
                              0.000000
14)
           3.000000
                              0.000000
15)
           12.000000
                              0.000000
           0.000000
                              0.000000
16)
            3.000000
17)
                              0.000000
18)
            0.000000
                              0.000000
19)
            3.000000
                              0.000000
```

## QUESTION 2

```
Lindo Input:
```

```
\max 3.45s + 2.32p + 2.81b + 3.25c
ST
    s >= 0
    p >= 0
    b >= 0
    c >= 0
    s >= 6000
    s <= 7000
    p >= 10000
    p <= 14000
   b >= 13000
    b <= 16000
    c >= 6000
    c <= 8500
    .125s <= 1000
    .08p + .05b + .03c \le 2000
    .05b + .07c \le 1250
END
```

### <u>Lindo Output:</u>

LP OPTIMUM FOUND AT STEP 0

#### OBJECTIVE FUNCTION VALUE

1) 120196.0

| VARIABLE | VALUE        | REDUCED COST |
|----------|--------------|--------------|
| S        | 7000.000000  | 0.000000     |
| P        | 13625.000000 | 0.00000      |
| В        | 13100.000000 | 0.000000     |
| С        | 8500.000000  | 0.000000     |

```
ROW
      SLACK OR SURPLUS
                            DUAL PRICES
2)
         7000.000000
                               0.00000
        13625.000000
 3)
                               0.000000
        13100.000000
                               0.00000
 4)
 5)
         8500.000000
                               0.00000
 6)
         1000.000000
                               0.00000
7)
            0.000000
                               3.450000
8)
         3625.000000
                               0.000000
 9)
          375.000000
                               0.00000
          100.000000
10)
                               0.000000
11)
         2900.000000
                               0.000000
12)
         2500.000000
                               0.000000
13)
            0.000000
                               0.476000
14)
          125.000000
                               0.000000
15)
            0.000000
                              29.000000
            0.000000
                              27.200001
16)
```

0

## QUESTION 3

### Lindo Input:

y37 >= 0

 $x11 + x12 \le 150$  $x21 + x22 \le 450$ 

```
\min 10x11 + 15x12 + 11x21 + 8x22 + 13x31 + 8x32 + 9x33 + 14x42
+ 8x43 + 5y11 + 6y12 + 7y13 + 10y14 + 12y23 + 8y24 + 10y25 +
14y26 + 14y34 + 12y35 + 12y36 + 6y37
ST
    x11 >= 0
    x12 >= 0
    x21 >= 0
    x22 >= 0
    x31 >= 0
    x32 >= 0
    x33 >= 0
    x42 >= 0
    x43 >= 0
    y11 >= 0
    y12 >= 0
    y13 >= 0
    y14 >= 0
    y23 >= 0
    y24 >= 0
    y25 >= 0
    y26 >= 0
    y34 >= 0
    y35 >= 0
    y36 >= 0
```

### Lindo Output:

LP OPTIMUM FOUND AT STEP 13

### OBJECTIVE FUNCTION VALUE

1) 17100.00

| VARIABLE | VALUE            | REDUCED COST |
|----------|------------------|--------------|
| X11      | 150.000000       | 0.000000     |
| X12      | 0.00000          | 8.000000     |
| X21      | 200.000000       | 0.00000      |
| X22      | 250.000000       | 0.00000      |
| X31      | 0.00000          | 2.000000     |
| X32      | 150.000000       | 0.00000      |
| X33      | 100.000000       | 0.00000      |
| X42      | 0.00000          | 7.000000     |
| X43      | 150.000000       | 0.00000      |
| Y11      | 100.000000       | 0.00000      |
| Y12      | 150.000000       | 0.00000      |
| Y13      | 100.000000       | 0.00000      |
| Y14      | 0.00000          | 5.000000     |
| Y23      | 0.00000          | 2.000000     |
| Y24      | 200.000000       | 0.000000     |
| Y25      | 200.000000       | 0.000000     |
| Y26      | 0.00000          | 1.000000     |
| Y34      | 0.00000          | 7.000000     |
| Y35      | 0.00000          | 3.000000     |
| Y36      | 150.000000       | 0.00000      |
| Y37      | 100.000000       | 0.000000     |
|          |                  |              |
|          |                  |              |
| ROW      | SLACK OR SURPLUS | DUAL PRICES  |
| 2)       | 150.000000       | 0.000000     |
| 3)       | 0.00000          | 0.000000     |
| 4)       | 200.000000       | 0.000000     |
| 5)       | 250.000000       | 0.000000     |

```
6)
                                0.00000
             0.000000
 7)
          150.000000
                                0.000000
 8)
          100.000000
                                0.00000
 9)
             0.000000
                                0.00000
10)
          150.000000
                                0.000000
11)
          100.000000
                                0.00000
          150.000000
                                0.00000
12)
13)
          100.000000
                                0.00000
14)
             0.000000
                                0.00000
15)
             0.00000
                                0.000000
          200.000000
                                0.00000
16)
          200.000000
17)
                                0.00000
18)
             0.000000
                                0.00000
19)
             0.00000
                                0.00000
20)
             0.00000
                                0.000000
21)
          150.000000
                                0.000000
22)
          100.000000
                                0.00000
             0.00000
23)
                                1.000000
24)
             0.000000
                                0.000000
25)
             0.000000
                                0.000000
             0.00000
                                1.000000
26)
27)
             0.00000
                              -16.000000
28)
             0.00000
                              -17.000000
29)
             0.00000
                              -18.000000
30)
             0.000000
                              -16.000000
31)
             0.000000
                              -18.000000
32)
             0.000000
                              -21.000000
33)
                              -15.000000
             0.000000
34)
             0.000000
                              -11.000000
35)
             0.000000
                               -8.000000
36)
             0.000000
                               -9.000000
```

13

NO. ITERATIONS=

## QUESTION 4A

### Lindo Input:

```
min 21t + 161 + 40s + 41c + 585ss + 120 st + 164ch + 884o
ST

t >= 0
1 >= 0
s >= 0
c >= 0
ss >= 0
st >= 0
ch >= 0
0 .85t + 1.621 + 2.86s + 0.93c + 23.4ss + 16st + 9ch >= 15
.33t + .21 + .39s + .24c + 48.7ss + 5st + 2.6ch + 100o >= 2
.33t + .21 + .39s + .24c + 48.7ss + 5st + 2.6ch + 100o <=
```

```
8
4.64t + 2.37l + 3.63s + 9.58c + 15ss + 3st + 27ch >= 4
9t + 28l + 65s + 69c + 3.8ss + 120st + 78 ch <= 200
.4l + .4s + .4t + .4c + .4ss + .4st + .4ch + .4o - l - s
<= 0
END
```

### Lindo Output:

LP OPTIMUM FOUND AT STEP 12

### OBJECTIVE FUNCTION VALUE

1) 114.7541

| VARIABLE | VALUE    | REDUCED COST |
|----------|----------|--------------|
| T        | 0.000000 | 16.901640    |
| L        | 0.585480 | 0.000000     |
| S        | 0.000000 | 14.513662    |
| С        | 0.000000 | 36.289616    |
| SS       | 0.000000 | 408.387970   |
| ST       | 0.878220 | 0.000000     |
| CH       | 0.000000 | 97.551910    |
| 0        | 0.000000 | 886.404358   |
|          |          |              |
|          |          |              |

| ROW | SLACK OR SURPLUS | DUAL PRICES |
|-----|------------------|-------------|
| 2)  | 0.00000          | 0.000000    |
| 3)  | 0.585480         | 0.000000    |
| 4)  | 0.00000          | 0.000000    |
| 5)  | 0.00000          | 0.000000    |
| 6)  | 0.00000          | 0.000000    |
| 7)  | 0.878220         | 0.000000    |
| 8)  | 0.00000          | 0.000000    |
| 9)  | 0.00000          | 0.000000    |
| 10) | 0.00000          | -7.650273   |
| 11) | 2.508197         | 0.000000    |
| 12) | 3.491803         | 0.000000    |
| 13) | 0.022248         | 0.000000    |
| 14) | 78.220139        | 0.000000    |
| 15) | 0.00000          | 6.010929    |

NO. ITERATIONS= 12

## QUESTION 4B

### Lindo Input:

```
min t + .751 + .5s + .5c + .45ss + 2.15st + 0.95ch + 2o ST
```

- t >= 0
- 1 >= 0
- s >= 0
- c >= 0

```
ss >= 0
   st >= 0
   ch >= 0
   o >= 0
   .85t + 1.621 + 2.86s + 0.93c + 23.4ss + 16st + 9ch >= 15
   .33t + .21 + .39s + .24c + 48.7ss + 5st + 2.6ch + 100o >=
   .33t + .21 + .39s + .24c + 48.7ss + 5st + 2.6ch + 100o <=
8
   4.64t + 2.371 + 3.63s + 9.58c + 15ss + 3st + 27ch >= 4
   9t + 281 + 65s + 69c + 3.8ss + 120st + 78 ch <= 200
   .41 + .4s + .4t + .4c + .4ss + .4st + .4ch + .4o - 1 - s
<= 0
END
```

### <u>Lindo Output:</u>

LP OPTIMUM FOUND AT STEP 3

#### OBJECTIVE FUNCTION VALUE

1) 1.554133

| VARIABLE | VALUE    | REDUCED COST |
|----------|----------|--------------|
| T        | 0.000000 | 1.002081     |
| L        | 0.000000 | 0.402912     |
| S        | 0.832298 | 0.00000      |
| С        | 0.000000 | 0.486914     |
| SS       | 0.096083 | 0.00000      |
| ST       | 0.000000 | 0.405609     |
| СН       | 1.152364 | 0.00000      |
| 0        | 0.000000 | 7.281258     |
|          |          |              |

| ROW | SLACK OR SURPLUS | DUAL PRICES |
|-----|------------------|-------------|
| 2)  | 0.00000          | 0.000000    |
| 3)  | 0.00000          | 0.000000    |
| 4)  | 0.832298         | 0.000000    |
| 5)  | 0.00000          | 0.000000    |
| 6)  | 0.096083         | 0.000000    |
| 7)  | 0.00000          | 0.000000    |
| 8)  | 1.152364         | 0.000000    |
| 9)  | 0.00000          | 0.000000    |
| 10) | 0.000000         | -0.131261   |
| 11) | 6.000000         | 0.000000    |
| 12) | 0.00000          | 0.051847    |
| 13) | 31.576324        | 0.000000    |
| 14) | 55.651089        | 0.000000    |
| 15) | 0.00000          | 0.241358    |