

Computer Science Department

CS504

Digital Logic & Computer Organization

Lecture 4

Lecture Outline (Chapter 3)

- **★** Circuit Optimization (Section 3.1)
 - Literal Cost
 - Gate Input Cost
 - Boolean Function Optimization

- **★** Karnaugh Map (K-Map) (Section 3.2)
 - Two-Variable K-Map
 - Three-Variable K-Map

- **★ Four-Variable K-Map (Section 3.3)**
- **★ Product-Of-Sums (POS) Simplification (Section 3.4)**

Circuit Optimization

- Goal: To obtain the simplest implementation for a given function
- Optimization is a more formal approach to simplification that is performed using a specific procedure or algorithm
- Optimization requires a cost criterion to measure the simplicity of a circuit
- Distinct cost criteria we will use:
 - Literal cost (L)
 - Gate input cost (G)
 - Gate input cost including inverters (GN)

Literal Cost

- Literal a variable or it complement
- Literal cost the number of literal appearances in a Boolean expression corresponding to the logic circuit diagram
- Example: Boolean expressions for F

•
$$\mathbf{F} = \mathbf{B} \ \mathbf{D} + \mathbf{A} \ \overline{\mathbf{B}} \ \mathbf{C} + \mathbf{A} \ \overline{\mathbf{C}} \ \overline{\mathbf{D}}$$
 $\mathbf{L} = \mathbf{8}$

•
$$\mathbf{F} = \mathbf{B} \mathbf{D} + \mathbf{A} \mathbf{\overline{B}} \mathbf{C} + \mathbf{A} \mathbf{\overline{B}} \mathbf{\overline{D}} + \mathbf{A} \mathbf{B} \mathbf{\overline{C}}$$
 $\mathbf{L} = \mathbf{11}$

•
$$\mathbf{F} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{D})(\mathbf{B} + \mathbf{C} + \mathbf{\overline{D}})(\mathbf{\overline{B}} + \mathbf{\overline{C}} + \mathbf{D})$$
 $\mathbf{L} = \mathbf{10}$

Which solution is best? First solution is best

Gate Input Cost

- Gate Input Cost: Count of total number of inputs to the gates in the logic circuit implementation
- Two gate input costs are defined:
 - **G** = Count of gate inputs without counting Inverters
 - **GN** = Count of gate inputs + count of Inverters
- For SOP and POS equations, the gate input cost can be found from the Boolean expression by finding the sum of:
 - All literal appearances
 - Number of terms excluding single literal terms (added to G)
 - Number of distinct complemented single literals (added to GN)
- Example:

•
$$\mathbf{F} = \mathbf{B} \mathbf{D} + \mathbf{A} \mathbf{B} \mathbf{C} + \mathbf{A} \mathbf{C} \mathbf{D}$$

$$L = 8$$
 $G = L+3 = 11$
 $GN = G+3 = 14$

Cost Criteria (continued)

- GN = G + 2 = 9• Example 1: $\mathbf{F} = \mathbf{A} + \mathbf{B} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$ L = 5G = L + 2 = 7
- L (literal count) counts the AND inputs and the single literal OR input.
- G (gate input count) adds the remaining OR gate inputs
- **GN**(gate input count with NOTs) adds the inverter inputs

Cost Criteria (continued)

- Example 2:
- $F = A B C + \overline{A} \overline{B} \overline{C}$

$$L = 6 G = 8 GN = 11$$

• $\mathbf{F} = (\mathbf{A} + \overline{\mathbf{C}})(\overline{\mathbf{B}} + \mathbf{C})(\overline{\mathbf{A}} + \mathbf{B})$

$$L = 6$$
 $G = 9$ $GN = 12$

- Same function and same literal cost
- But first circuit has <u>better</u> gate input count and <u>better</u> gate input count with NOTs
- Select first circuit!

Cost Criteria Summary

Literal Count:

- Simple to evaluate by counting all literals
- However, does not represent circuit complexity accurately in all cases
- Gate Input Cost (or Count):
 - Good measure of logic implementation
 - Proportional to the number of transistors and wires used in the implementation
 - Important when measuring cost of circuits with more than two levels

Boolean Function Optimization

- Minimizing the gate input (or literal) cost of a **Boolean equation reduces the circuit cost**
- We choose gate input cost
- Boolean Algebra and graphical techniques are tools to minimize cost criteria values
- Some important questions:
 - When do we stop trying to reduce the cost?
 - Do we know when we have a minimum cost?
- Treat optimum or near-optimum cost functions for two-level (SOP and POS) circuits first
- Introduce a graphical technique using Karnaugh maps (K-maps for short)

Karnaugh Map (K-map)

- A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- The K-map can be viewed as
 - A reorganized version of the truth table

Some Uses of K-Maps

- Provide a means for:
 - Finding optimum or near optimum
 - SOP and POS standard forms
 - Two-level AND/OR and OR/AND circuits

for functions with small numbers of variables

- Visualizing concepts related to manipulating Boolean expressions, and
- Demonstrating concepts used by computeraided design programs to simplify large circuits

Two-Variable K-Map

- A 2-variable Karnaugh Map:
 - Minterm m₀ and minterm m₁ are "adjacent" they differ in the value of variable y
 - Similarly, minterm m₀ and minterm m₂ are adjacent and differ in x
 - Also, m₁ and m₃ differ in the x variable
 - Finally, m₂ and m₃ differ in the y variable

xy	y = 0	y = 1
$\mathbf{x} = 0$	$\mathbf{m_0} = \mathbf{\bar{x}} \; \mathbf{\bar{y}}$	$\mathbf{m}_1 = \mathbf{\bar{x}} \ \mathbf{y}$
x = 1	$\mathbf{m_2} = \mathbf{x} \ \mathbf{\bar{y}}$	$\mathbf{m}_3 = \mathbf{x} \ \mathbf{y}$

K-Map and Truth Tables

The K-Map is a different form of the truth table

Truth Table

Input	Function
Values	Value
(\mathbf{x},\mathbf{y})	$\mathbf{F}(\mathbf{x,y})$
0 0	1
0 1	0
10	1
11	1

K-Map

xy	y = 0	y = 1
$\mathbf{x} = 0$	1	0
x = 1	1	1

K-Map Function Minimization

- $F(x,y) = m_0 + m_2 + m_3$ $\mathbf{F} = \overline{\mathbf{x}} \, \overline{\mathbf{y}} + \mathbf{x} \, \overline{\mathbf{y}} + \mathbf{x} \, \mathbf{y}$
- Two adjacent cells containing 1's can be combined using the **Minimization Theorem**

K-Map

xy	y = 0	y = 1
$\mathbf{x} = 0$	1	0
x = 1	1	1

- $\mathbf{m0} + \mathbf{m2} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} + \mathbf{x} \ \overline{\mathbf{y}} = (\overline{\mathbf{x}} + \mathbf{x}) \ \overline{\mathbf{y}} = \overline{\mathbf{y}}$
- $m2 + m3 = x \overline{y} + x y = x (\overline{y} + y) = x'$
- Therefore, F can be simplified as $F = x + \overline{y}$

Three Variable K-Map

x yz	yz=00	yz=01	yz=11	yz=10
x=0	\mathbf{m}_0	\mathbf{m}_1	m_3	$\mathbf{m_2}$
x=1	m_4	m_5	\mathbf{m}_7	\mathbf{m}_{6}

Where each minterm corresponds to the product terms:

x yz	yz=00	yz=01	yz=11	yz=10
x=0	z z	$\overline{x}\overline{y}z$	$-\mathbf{x}\mathbf{y}\mathbf{z}$	$\bar{x}y\bar{z}$
x=1	$x\bar{y}\bar{z}$	$\mathbf{x}\overline{\mathbf{y}}\mathbf{z}$	хуz	x y Z

• Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the K-Map

Alternative K-Map Labeling

- K-Map largely involves:
 - Entering values into the map, and
 - Reading off product terms from the map
- Alternate labelings are useful:

$\overline{\mathbf{y}}$			y	J
$\overline{\mathbf{x}}$	0	1	3	2
X	4	5	7	6
·	Z	7	Z	Z

Example Functions

By convention, we represent the minterms of F by a '1' in the map and leave the entries that contain '0' blank

Example 1:

$$F(x, y, z) = \sum (2, 3, 4, 5)$$

21 31

Example 2:

$$G(x, y, z) = \sum (3, 4, 6, 7)$$

Learn the locations of the 8 indices based on the variable order shown

			3	y
	0	1	³ 1	2
X	41	5	⁷ 1	⁶ 1
		Z		

Combining Squares

- By combining squares, we reduce number of literals in a product term, thereby reducing the gate input cost
- On a 3-variable K-Map:
 - One square represents a minterm with 3 variables
 - Two adjacent squares represent a term with 2 variables
 - Four adjacent squares represent a term with 1 variable
 - **Eight adjacent square is the function 1 (no variables)**

Example: Combining Squares

Example:

$$F = \sum (2, 3, 6, 7)$$

Applying the Minimization Theorem 3 times:

$$F(x,y,z) = \overline{x} y z + x y z + \overline{x} y \overline{z} + x y \overline{z}$$

$$= yz + y\overline{z}$$

$$= y$$

Thus the four terms that form a 2×2 square correspond to the term 'y'.

Combining Four Squares

Example Shapes of 4-square Rectangles:

Combining Two Squares

Example Shapes of 2-square Rectangles:

Simplifying 3-Variable Functions

- K-Maps can be used to simplify Boolean functions
- **Example: find an optimum SOP equation for**

$$F(x, y, z) = \sum (0, 1, 2, 4, 6, 7)$$

$$\mathbf{F} = \overline{\mathbf{z}} + \overline{\mathbf{x}} \ \overline{\mathbf{y}} + \mathbf{x} \ \mathbf{y}$$

Four-Variable K-Map

$\overline{\mathbf{Y}}$			\mathbf{Y}			
W	X	00	01	11	10	
TX 7	00	$\mathbf{m}_0 = \overline{\mathbf{w}} \ \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}}$	$\mathbf{m_1} = \overline{\mathbf{w}} \ \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z}$	$\mathbf{m}_3 = \overline{\mathbf{w}} \ \overline{\mathbf{x}} \ \mathbf{y} \ \mathbf{z}$	$\mathbf{m}_2 = \overline{\mathbf{w}} \ \overline{\mathbf{x}} \ \mathbf{y} \ \overline{\mathbf{z}}$	X
VV	01	$\mathbf{m_4} = \overline{\mathbf{w}} \mathbf{x} \overline{\mathbf{y}} \overline{\mathbf{z}}$	$\mathbf{m}_5 = \overline{\mathbf{w}} \mathbf{x} \overline{\mathbf{y}} \mathbf{z}$	$\mathbf{m}_7 = \overline{\mathbf{w}} \mathbf{x} \mathbf{y} \mathbf{z}$	$\mathbf{m}_6 = \overline{\mathbf{w}} \times \mathbf{y} \overline{\mathbf{z}}$	v
1 1 1 1	11	$\mathbf{m}_{12} = \mathbf{w} \mathbf{x} \mathbf{\overline{y}} \mathbf{\overline{z}}$	$\mathbf{m}_{13} = \mathbf{w} \mathbf{x} \mathbf{\overline{y}} \mathbf{z}$	$\mathbf{m}_{15} = \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}$	$\mathbf{m}_{14} = \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{\overline{z}}$	A
VV	10	$\mathbf{m}_8 = \mathbf{w} \; \overline{\mathbf{x}} \; \overline{\mathbf{y}} \; \overline{\mathbf{z}}$	$\mathbf{m}_9 = \mathbf{w} \; \overline{\mathbf{x}} \; \overline{\mathbf{y}} \; \mathbf{z}$	$\mathbf{m}_{11} = \mathbf{w} \; \overline{\mathbf{x}} \; \mathbf{y} \; \mathbf{z}$	$\mathbf{m}_{10} = \mathbf{w} \; \overline{\mathbf{x}} \; \mathbf{y} \; \overline{\mathbf{z}}$	X
		$\overline{\mathbf{Z}}$	Z		$\overline{\mathbf{Z}}$	

4-Variable K-map Terms

- 4-variable K-maps can have rectangles corresponding to:
 - Single square = 4-variable minterm
 - 2 combined squares = 3-variable term
 - 4 combined squares = 2-variable term
 - 8 combined squares = 1 variable term
 - 16 (all) combined squares = constant '1'

Combining Eight Squares

Examples of 8-square Rectangles:

Combining Four Squares

Examples of 4-square Rectangles:

Combining Two Squares

Examples of 2-square Rectangles:

Simplifying 4-Variable Functions

• $F(W, X, Y, Z) = \sum (0, 2, 4, 5, 6, 7, 8, 12)$

Product-of-Sums Simplification

- Step 1: Draw the K-map for \overline{F} , replacing the 0's of F with 1's in \overline{F} and vice versa
- Step 2: Obtain a minimal Sum-of-Product (SOP) expression for F
- Step 3: Use DeMorgan's Theorem to obtain $F = \overline{F}$ The result is a minimal Product-of-Sum (POS) expression for F
- Step 4: Compare the cost of the minimal SOP and POS expressions to find which one is better

Product-Of-Sums Simplification

- $F(W, X, Y, Z) = \sum (1, 2, 3, 9, 10, 11, 13, 14, 15)$
- F = WZ + WY + XZ + XY (G = 8+4 = 12)
- \overline{F} (W, X, Y, Z) = \sum (0, 4, 5, 6, 7, 8, 12) = \overline{Y} Z + W X
- $\mathbf{F} = \overline{\mathbf{Y}} \ \overline{\mathbf{Z}} + \overline{\mathbf{W}} \ \mathbf{X} = (\mathbf{Y} + \mathbf{Z}) \ (\mathbf{W} + \overline{\mathbf{X}}) \ (\mathbf{G} = \mathbf{4} + \mathbf{2} = \mathbf{6})$

Logic and Computer Design Fundamentals, 4e

The End

Questions?