Types of Morphisms in Bicategories

The Clowder Project Authors

July 22, 2025

019H In this chapter, we study special kinds of morphisms in bicategories:

Monomorphisms and Epimorphisms in Bicategories (Sections 14.1 and 14.2).
 There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.

Arguably, the notion that best captures these concepts is that of a *pseudomonic morphism* (Definition 14.1.10.1.1) and of a *pseudoepic morphism* (Definition 14.2.10.1.1), although the other notions introduced in Sections 14.1 and 14.2 are also interesting on their own.

Contents

14.1	Monomorphisms in Bicategories		
	14.1.1	Representably Faithful Morphisms	2
	14.1.2	Representably Full Morphisms	3
	14.1.3	Representably Fully Faithful Morphisms	5
	14.1.4	Morphisms Representably Faithful on Cores	7
	14.1.5	Morphisms Representably Full on Cores	8
	14.1.6	Morphisms Representably Fully Faithful on Cores	9
	14.1.7	Representably Essentially Injective Morphisms	11
	14.1.8	Representably Conservative Morphisms	11
	14.1.9	Strict Monomorphisms	12
	14.1.10	Pseudomonic Morphisms	13

	14.4	Ерипог	phisms in Bicategories	16			
		14.2.1	Corepresentably Faithful Morphisms	16			
		14.2.2	Corepresentably Full Morphisms	17			
		14.2.3	Corepresentably Fully Faithful Morphisms	18			
		14.2.4	Morphisms Corepresentably Faithful on Cores	20			
		14.2.5	Morphisms Corepresentably Full on Cores	21			
		14.2.6	Morphisms Corepresentably Fully Faithful on Cores	22			
		14.2.7	Corepresentably Essentially Injective Morphisms	23			
		14.2.8	Corepresentably Conservative Morphisms	24			
		14.2.9	Strict Epimorphisms	24			
		14.2.10	Pseudoepic Morphisms	25			
	A	Oals and	Chapters	28			
	А	Other	Juapters	40			
019K	14.1.1 Representably Faithful Morphisms Let C be a bicategory.						
		be a bica	0 7				
019L	DE		14.1.1.1.1 ► REPRESENTABLY FAITHFUL MORPHISMS				
019L	A	FINITION 1-morphi	· ·	h			
019L	A	FINITION 1-morphi	14.1.1.1.1 \blacktriangleright Representably Faithful Morphisms ism $f: A \to B$ of C is representably faithful if, for each	h			
019L	A :	FINITION 1-morphi ∈ Obj(<i>C</i>	14.1.1.1.1 ▶ REPRESENTABLY FAITHFUL MORPHISMS $f: A \to B \text{ of } C \text{ is } \mathbf{representably } \mathbf{faithful}^{\mathrm{I}} \text{ if, for each}$ (a), the functor	h			
019L	A :	FINITION 1-morphi \in Obj(C ren by pos	14.1.1.1.1 \triangleright REPRESENTABLY FAITHFUL MORPHISMS ism $f: A \to B$ of C is representably faithful ¹ if, for each f , the functor $f_*: \operatorname{Hom}_C(X, A) \to \operatorname{Hom}_C(X, B)$ stcomposition by f is faithful. Terminology: Also called simply a faithful morphism , based on Item 1 of				
∂19L	A i X	FINITION 1-morphi ∈ Obj(C ren by pos 1-Further T tmple 14.1.1	14.1.1.1.1 \triangleright REPRESENTABLY FAITHFUL MORPHISMS ism $f: A \to B$ of C is representably faithful ¹ if, for each f , the functor $f_*: \operatorname{Hom}_C(X, A) \to \operatorname{Hom}_C(X, B)$ stcomposition by f is faithful. Terminology: Also called simply a faithful morphism , based on Item 1 of				

In detail, f is representably faithful if, for all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

019Q

019N EXAMPLE 14.1.1.1.3 ► EXAMPLES OF REPRESENTABLY FAITHFUL MORPHISMS

Here are some examples of representably faithful morphisms.

o19P

1. Representably Faithful Morphisms in Cats₂. The representably faithful morphisms in Cats₂ are precisely the faithful functors; see Categories, Item 2 of Proposition II.6.I.I.2.

2. Representably Faithful Morphisms in Rel. Every morphism of Rel is representably faithful; see Relations, Item 1 of Proposition 8.5.11.1.1.

019R 14.1.2 Representably Full Morphisms

Let *C* be a bicategory.

019S DEFINITION 14.1.2.1.1 ► REPRESENTABLY FULL MORPHISMS

A 1-morphism $f: A \to B$ of C is **representably full**¹ if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{Hom}_C(X, A) \to \operatorname{Hom}_C(X, B)$$

given by postcomposition by f is full.

¹Further Terminology: Also called simply a **full morphism**, based on Item 1 of Example 14.1.2.1.3.

019T REMARK 14.1.2.1.2 ► Unwinding Definition 14.1.2.1.1

In detail, f is representably full if, for each $X \in \operatorname{Obj}(C)$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow}_{f \circ \psi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \qquad X \xrightarrow{\phi} A$$

of C such that we have an equality

019U

019V

019W

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

EXAMPLE 14.1.2.1.3 ► EXAMPLES OF REPRESENTABLY FULL MORPHISMS

Here are some examples of representably full morphisms.

- 1. Representably Full Morphisms in Cats₂. The representably full morphisms in Cats₂ are precisely the full functors; see Categories, ?? of Proposition II.6.2.I.2.
- 2. Representably Full Morphisms in Rel. The representably full morphisms in Rel are characterised in Relations, Item 2 of Proposition 8.5.II.I.I.

019X 14.1.3 Representably Fully Faithful Morphisms

Let *C* be a bicategory.

019Z

01A0

019Y DEFINITION 14.1.3.1.1 ➤ REPRESENTABLY FULLY FAITHFUL MORPHISMS

A 1-morphism $f: A \to B$ of C is **representably fully faithful**¹ if the following equivalent conditions are satisfied:

- I. The 1-morphism f is representably faithful (Definition 14.1.1.1) and representably full (Definition 14.1.2.1.1).
- 2. For each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{Hom}_{\mathcal{C}}(X, A) \to \operatorname{Hom}_{\mathcal{C}}(X, B)$$

given by postcomposition by f is fully faithful.

01A1 REMARK 14.1.3.1.2 ► UNWINDING REPRESENTABLY FULLY FAITHFUL MORPHISMS

In detail, f is representably fully faithful if the conditions in Remark 14.1.1.1.2 and Remark 14.1.2.1.2 hold:

I. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$\mathrm{id}_f \star \alpha = \mathrm{id}_f \star \beta,$$

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-morphism

$$\beta \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\beta \downarrow}_{f \circ \psi} B$$

¹Further Terminology: Also called simply a **fully faithful morphism**, based on Item 1 of Example 14.1.3.1.3.

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

©1A2 EXAMPLE 14.1.3.1.3 ► EXAMPLES OF REPRESENTABLY FULLY FAITHFUL MORPHISMS

Here are some examples of representably fully faithful morphisms.

There are some examples of representably fully faithful morphisms

- 1. Representably Fully Faithful Morphisms in Cats₂. The representably fully faithful morphisms in Cats₂ are precisely the fully faithful functors; see Categories, Item 6 of Proposition II.6.3.1.2.
- 2. Representably Fully Faithful Morphisms in Rel. The representably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 8.5.II.I.I) with the representably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 8.5.II.I.I.

01A5 14.1.4 Morphisms Representably Faithful on Cores

Let C be a bicategory.

01A3

01A4

01A6 DEFINITION 14.1.4.1.1 ► MORPHISMS REPRESENTABLY FAITHFUL ON CORES

A 1-morphism $f: A \to B$ of C is **representably faithful on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f_*: \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is faithful.

01A7 REMARK 14.1.4.1.2 ➤ UNWINDING DEFINITION 14.1.4.1.1

In detail, f is representably faithful on cores if, for all diagrams in C of the form

$$X \xrightarrow{\alpha \parallel \beta} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$\mathrm{id}_f \star \alpha = \mathrm{id}_f \star \beta,$$

then $\alpha = \beta$.

01A8 14.1.5 Morphisms Representably Full on Cores

Let *C* be a bicategory.

01A9 DEFINITION 14.1.5.1.1 ► MORPHISMS REPRESENTABLY FULL ON CORES

A 1-morphism $f:A\to B$ of C is **representably full on cores** if, for each $X\in \mathrm{Obj}(C)$, the functor

$$f_* \colon \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(\mathit{X}, \mathit{A})) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(\mathit{X}, \mathit{B}))$$

given by postcomposition by f is full.

01AA REMARK 14.1.5.1.2 ➤ UNWINDING DEFINITION 14.1.5.1.1

In detail, f is representably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \xrightarrow{\sim} f \circ \psi, \quad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underset{\psi}{\Longrightarrow}} A$$

of *C* such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta=\mathrm{id}_f\star\alpha.$$

01AB 14.1.6 Morphisms Representably Fully Faithful on Cores

Let *C* be a bicategory.

01AD

01AE

01AC DEFINITION 14.1.6.1.1 ► Morphisms Representably Fully Faithful on Cores

A 1-morphism $f: A \to B$ of C is **representably fully faithful on cores** if the following equivalent conditions are satisfied:

- I. The 1-morphism f is representably faithful on cores (Definition 14.1.5.1.1) and representably full on cores (Definition 14.1.4.1.1).
- 2. For each $X \in \mathrm{Obj}(C)$, the functor $f_* \colon \mathsf{Core}(\mathsf{Hom}_C(X,A)) \to \mathsf{Core}(\mathsf{Hom}_C(X,B))$

given by postcomposition by f is fully faithful.

Ø1AF REMARK 14.1.6.1.2 ► UNWINDING DEFINITION 14.1.6.1.1

In detail, *f* is representably fully faithful on cores if the conditions in Remark 14.1.4.1.2 and Remark 14.1.5.1.2 hold:

1. For all diagrams in *C* of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta : f \circ \phi \xrightarrow{\sim} f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad \qquad }} A$$

of *C* such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

01AG 14.1.7 Representably Essentially Injective Morphisms

Let *C* be a bicategory.

01AH DEFINITION 14.1.7.1.1 ► REPRESENTABLY ESSENTIALLY INJECTIVE MORPHISMS

A 1-morphism $f: A \to B$ of C is **representably essentially injective** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is essentially injective.

Ø1AJ REMARK 14.1.7.1.2 ► UNWINDING DEFINITION 14.1.7.1.1

In detail, f is representably essentially injective if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ of C, the following condition is satisfied:

$$(\star)$$
 If $f \circ \phi \cong f \circ \psi$, then $\phi \cong \psi$.

01AK 14.1.8 Representably Conservative Morphisms

Let *C* be a bicategory.

01AL DEFINITION 14.1.8.1.1 ► REPRESENTABLY CONSERVATIVE MORPHISMS

A 1-morphism $f:A\to B$ of C is **representably conservative** if, for each $X\in {\rm Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is conservative.

©1AM REMARK 14.1.8.1.2 ➤ Unwinding Definition 14.1.8.1.1

In detail, f is representably conservative if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ and each 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of *C*, if the 2-morphism

$$\mathrm{id}_f \star \alpha \colon f \circ \phi \Longrightarrow f \circ \psi, \qquad X \underbrace{\downarrow}_{f \circ \psi}^{f \circ \phi} E$$

is a 2-isomorphism, then so is α .

01AN 14.1.9 Strict Monomorphisms

Let *C* be a bicategory.

01AP DEFINITION 14.1.9.1.1 ➤ STRICT MONOMORPHISMS

A 1-morphism $f:A\to B$ of C is a **strict monomorphism** if, for each $X\in \mathrm{Obj}(C)$, the functor

$$f_* : \operatorname{Hom}_{\mathcal{C}}(X, A) \to \operatorname{Hom}_{\mathcal{C}}(X, B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_* \colon \operatorname{Obj}(\operatorname{\mathsf{Hom}}_C(X,A)) \to \operatorname{Obj}(\operatorname{\mathsf{Hom}}_C(X,B))$$

is injective.

Ø1AQ REMARK 14.1.9.1.2 ► UNWINDING DEFINITION 14.1.9.1.1

In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

©1AR EXAMPLE 14.1.9.1.3 ► EXAMPLES OF STRICT MONOMORPHISMS

Here are some examples of strict monomorphisms.

- 01AS

 1. Strict Monomorphisms in Cats₂. The strict monomorphisms in Cats₂ are precisely the functors which are injective on objects and injective on morphisms; see Categories, Item 1 of Proposition 11.7.2.1.2.
- 2. Strict Monomorphisms in Rel. The strict monomorphisms in Rel are characterised in Relations, Proposition 8.5.10.1.1.

01AU 14.1.10 Pseudomonic Morphisms

Let *C* be a bicategory.

OTAV DEFINITION 14.1.10.1.1 ▶ PSEUDOMONIC MORPHISMS

A 1-morphism $f: A \to B$ of C is **pseudomonic** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X, A) \to \mathsf{Hom}_{\mathcal{C}}(X, B)$$

given by postcomposition by f is pseudomonic.

Ø1AW REMARK 14.1.10.1.2 ► Unwinding Definition 14.1.10.1.1

In detail, a 1-morphism $f:A\to B$ of C is pseudomonic if it satisfies the following conditions:

01AX

I. For all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

01AY

2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon f \circ \phi \xrightarrow{\sim} f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \xrightarrow{\sim} \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha.$$

01AZ

PROPOSITION 14.1.10.1.3 ► PROPERTIES OF PSEUDOMONIC MORPHISMS

Let $f: A \to B$ be a 1-morphism of C.

01B0

I. Characterisations. The following conditions are equivalent:

01B1

(a) The morphism f is pseudomonic.

01B2

(b) The morphism f is representably full on cores and representably faithful.

01B3

(c) We have an isocomma square of the form

$$A \stackrel{\operatorname{id}_{A}}{=} A \xrightarrow{\operatorname{id}_{A}} A$$

$$A \stackrel{\operatorname{eq.}}{=} A \times_{B} A, \quad \operatorname{id}_{A} \downarrow \qquad \downarrow^{F}$$

$$A \xrightarrow{F} B$$

in *C* up to equivalence.

01B4

- 2. *Interaction With Cotensors*. If *C* has cotensors with 1, then the following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) We have an isocomma square of the form

$$A \stackrel{\text{eq.}}{=} A \stackrel{\leftrightarrow}{\times}_{1 \pitchfork F} B, \qquad A \stackrel{\text{form}}{=} A \stackrel{\text{$$

in *C* up to equivalence.

PROOF 14.1.10.1.4 ► PROOF OF PROPOSITION 14.1.10.1.3

Item 1: Characterisations

Omitted.

Item 2: Interaction With Cotensors

Omitted.

01B5 14.2 Epimorphisms in Bicategories

01B6 14.2.1 Corepresentably Faithful Morphisms

Let *C* be a bicategory.

01B7 DEFINITION 14.2.1.1.1 ► COREPRESENTABLY FAITHFUL MORPHISMS

A 1-morphism $f:A\to B$ of C is **corepresentably faithful** if, for each $X\in \mathrm{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is faithful.

01B8 REMARK 14.2.1.1.2 ➤ Unwinding Definition 14.2.1.1.1

In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

01BA

01B9 EXAMPLE 14.2.1.1.3 ► EXAMPLES OF COREPRESENTABLY FAITHFUL MORPHISMS

Here are some examples of corepresentably faithful morphisms.

I. Corepresentably Faithful Morphisms in Cats₂. The corepresentably faithful morphisms in Cats₂ are characterised in Categories, Item 5

of Proposition 11.6.1.1.2.

01BB

2. Corepresentably Faithful Morphisms in Rel. Every morphism of Rel is corepresentably faithful; see Relations, Item 1 of Proposition 8.5.13.1.1.

01BC 14.2.2 Corepresentably Full Morphisms

Let *C* be a bicategory.

O1BD DEFINITION 14.2.2.1.1 ► COREPRESENTABLY FULL MORPHISMS

A 1-morphism $f: A \to B$ of C is **corepresentably full** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is full.

01BE REMARK14.2.2.1.2 ► Unwinding Definition 14.2.2.1.1

In detail, f is corepresentably full if, for each $X \in \mathrm{Obj}(C)$ and each 2-morphism

$$\beta \colon \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \xrightarrow{\phi} X$$

of *C* such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f$$
.

01BF EXAMPLE 14.2.2.1.3 ► EXAMPLES OF COREPRESENTABLY FULL MORPHISMS

Here are some examples of corepresentably full morphisms.

- olbG

 1. Corepresentably Full Morphisms in Cats₂. The corepresentably full morphisms in Cats₂ are characterised in Categories, Item 7 of Proposition II.6.2.I.2.
- 01BH
 2. Corepresentably Full Morphisms in Rel. The corepresentably full morphisms in Rel are characterised in Relations, Item 2 of Proposition 8.5.13.1.1.

01BJ 14.2.3 Corepresentably Fully Faithful Morphisms

Let *C* be a bicategory.

01BL

01BM

O1BK DEFINITION 14.2.3.1.1 ➤ COREPRESENTABLY FULLY FAITHFUL MORPHISMS

A 1-morphism $f: A \to B$ of C is **corepresentably fully faithful**¹ if the following equivalent conditions are satisfied:

- I. The 1-morphism f is corepresentably full (Definition 14.2.2.I.I) and corepresentably faithful (Definition 14.2.I.I.I).
- 2. For each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_C(B,X) \to \mathsf{Hom}_C(A,X)$$

given by precomposition by f is fully faithful.

¹Further Terminology: Corepresentably fully faithful morphisms have also been called **lax epimorphisms** in the literature (e.g. in [Adá+oɪ]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

Ø1BN REMARK 14.2.3.1.2 ► Unwinding Definition 14.2.3.1.1

In detail, f is corepresentably fully faithful if the conditions in Remark 14.2.1.1.2 and Remark 14.2.2.1.2 hold:

1. For all diagrams in *C* of the form

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta : \phi \circ f \Longrightarrow \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad B \xrightarrow{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f$$
.

01BP EXAMPLE 14.2.3.1.3 ► EXAMPLES OF COREPRESENTABLY FULLY FAITHFUL MORPHISMS

Here are some examples of corepresentably fully faithful morphisms.

o1BQ
1. Corepresentably Fully Faithful Morphisms in Cats₂. The fully faithful epimorphisms in Cats₂ are characterised in Categories, Item 10 of Proposition 11.6.3.1.2.

2. Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 8.5.13.1.1) with the corepresentably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 8.5.13.1.1.

01BS 14.2.4 Morphisms Corepresentably Faithful on Cores

Let *C* be a bicategory.

O1BT DEFINITION 14.2.4.1.1 ► MORPHISMS COREPRESENTABLY FAITHFUL ON CORES

A 1-morphism $f: A \to B$ of C is **corepresentably faithful on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_C(B, X)) \to \mathsf{Core}(\mathsf{Hom}_C(A, X))$$

given by precomposition by f is faithful.

01BU REMARK 14.2.4.1.2 ► Unwinding Definition 14.2.4.1.1

In detail, f is corepresentably faithful on cores if, for all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \iiint \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

01BV 14.2.5 Morphisms Corepresentably Full on Cores

Let *C* be a bicategory.

01BW DEFINITION 14.2.5.1.1 ► MORPHISMS COREPRESENTABLY FULL ON CORES

A 1-morphism $f: A \to B$ of C is **corepresentably full on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is full.

01BX REMARK 14.2.5.1.2 ➤ UNWINDING DEFINITION 14.2.5.1.1

In detail, f is corepresentably full on cores if, for each $X \in \mathrm{Obj}(C)$ and each 2-isomorphism

$$\beta : \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \xrightarrow{\sim} \psi, \quad B \xrightarrow{\phi} X$$

of *C* such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\varphi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f$$
.

01BY 14.2.6 Morphisms Corepresentably Fully Faithful on Cores Let C be a bicategory.

01BZ DEFINITION 14.2.6.1.1 ► Morphisms Corepresentably Fully Faithful on Cores

A 1-morphism $f: A \to B$ of C is **corepresentably fully faithful on cores** if the following equivalent conditions are satisfied:

- 01C0

 I. The 1-morphism f is corepresentably full on cores (Definition 14.2.5.1.1) and corepresentably faithful on cores (Definition 14.2.1.1.1).
- 01C1 2. For each $X \in \mathrm{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B, X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A, X))$$

given by precomposition by f is fully faithful.

01C2 REMARK 14.2.6.1.2 ➤ Unwinding Definition 14.2.6.1.1

In detail, *f* is corepresentably fully faithful on cores if the conditions in Remark 14.2.4.1.2 and Remark 14.2.5.1.2 hold:

I. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \iiint \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \qquad A \stackrel{\phi \circ f}{\biguplus} X$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad \qquad }} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\varphi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f$$
.

01C3 14.2.7 Corepresentably Essentially Injective Morphisms Let C be a bicategory.

01C4 DEFINITION 14.2.7.1.1 ➤ COREPRESENTABLY ESSENTIALLY INJECTIVE MORPHISMS

A 1-morphism $f: A \to B$ of C is **corepresentably essentially injective** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_C(B,X) \to \mathsf{Hom}_C(A,X)$$

given by precomposition by f is essentially injective.

01C5 REMARK 14.2.7.1.2 ➤ UNWINDING DEFINITION 14.2.7.1.1

In detail, f is corepresentably essentially injective if, for each pair of morphisms ϕ , ψ : $B \rightrightarrows X$ of C, the following condition is satisfied:

$$(\star) \ \text{If } \phi \circ f \cong \psi \circ f \text{, then } \phi \cong \psi.$$

01C6 14.2.8 Corepresentably Conservative Morphisms

Let *C* be a bicategory.

01C7 DEFINITION 14.2.8.1.1 ► COREPRESENTABLY CONSERVATIVE MORPHISMS

A 1-morphism $f: A \to B$ of C is **corepresentably conservative** if, for each $X \in \mathrm{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(\mathcal{B}, X) \to \mathsf{Hom}_{\mathcal{C}}(\mathcal{A}, X)$$

given by precomposition by f is conservative.

01C8 REMARK 14.2.8.1.2 ➤ Unwinding Definition 14.2.8.1.1

In detail, f is corepresentably conservative if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ and each 2-morphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad \qquad }} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \qquad A \xrightarrow{\alpha \star \mathrm{id}_f} X$$

is a 2-isomorphism, then so is α .

01C9 14.2.9 Strict Epimorphisms

Let *C* be a bicategory.

01CA DEFINITION 14.2.9.1.1 ► STRICT EPIMORPHISMS

A 1-morphism $f: A \to B$ is a **strict epimorphism in** C if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_*: \operatorname{Obj}(\operatorname{\mathsf{Hom}}_{\mathcal{C}}(B,X)) \to \operatorname{Obj}(\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,X))$$

is injective.

01CB REMARK 14.2.9.1.2 ► Unwinding Definition 14.2.9.1.1

In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \xrightarrow{f} B \xrightarrow{\phi} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

©1CC EXAMPLE 14.2.9.1.3 ► EXAMPLES OF STRICT EPIMORPHISMS

Here are some examples of strict epimorphisms.

o1CD I. Strict Epimorphisms in Cats₂. The strict epimorphisms in Cats₂ are characterised in Categories, Item 1 of Proposition 11.7.3.1.2.

2. Strict Epimorphisms in **Rel**. The strict epimorphisms in **Rel** are characterised in Relations, Proposition 8.5.12.1.1.

01CF 14.2.10 Pseudoepic Morphisms

Let *C* be a bicategory.

01CE

01CG DEFINITION 14.2.10.1.1 ▶ PSEUDOEPIC MORPHISMS

A 1-morphism $f:A\to B$ of C is **pseudoepic** if, for each $X\in \mathrm{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is pseudomonic.

01CH REMARK 14.2.10.1.2 ► UNWINDING DEFINITION 14.2.10.1.1

In detail, a 1-morphism $f:A\to B$ of C is pseudoepic if it satisfies the following conditions:

1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \parallel \beta}_{\psi} X,$$

if we have

01CJ

01CK

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f,$$

then $\alpha = \beta$.

2. For each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta \colon \phi \circ f \xrightarrow{\sim} \psi \circ f, \quad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad \qquad }} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\phi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star \mathrm{id}_f$$
.

PROPOSITION 14.2.10.1.3 ▶ PROPERTIES OF PSEUDOEPIC MORPHISMS

Let $f: A \to B$ be a 1-morphism of C.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The morphism f is pseudoepic.
 - (b) The morphism f is corepresentably full on cores and corepresentably faithful.
 - (c) We have an isococomma square of the form

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\leftrightarrow}{\coprod}_A B, \quad \text{id}_B \qquad B \stackrel{\text{id}_B}{\swarrow} \qquad B \\ B \stackrel{\leftarrow}{\longleftarrow} A$$

in C up to equivalence.

PROOF 14.2.10.1.4 ► PROOF OF PROPOSITION 14.2.10.1.3

Item 1: Characterisations

Omitted.

01CM

01CN

01CP

01CQ

Appendices

A Other Chapters

Preliminaries

- I. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

13. Constructions With Monoidal Categories

Bicategories

14. Types of Morphisms in Bicategories

Extra Part

15. Notes

References

[Adá+01] Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: *Theory Appl. Categ.* 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on p. 18).