

클라우드 세상 속으로

클라우드 컴퓨팅의 이해

수업 목표

- •클라우드 컴퓨팅의 정의
- •클라우드 컴퓨팅의 역사
- •클라우드 컴퓨팅의 주요 개념
- •클라우드 컴퓨팅의 주요 용어
- •클라우드 컴퓨팅의 장단점

- ●필요한 만큼 빌려서 사용하고
- •서비스 부하에 따라서 실시간 확 장성을 지원받으며,
- •사용한 만큼 지불하는 컴퓨팅 패 러다임

Refer to: "클라우드 서비스 활성화를 위한 정보보호대책 보고서", 정부부처합동, 2015

Image from : 한국인터넷진흥원, "클라우드 정보보호 안내서", 한국인터넷진흥원(2017, 12)

구축형(소유형) 환경	클라우드(공유형) 환경
많은 초기 구매 비용(HW임대 및 구축)	초기 투자비용 없음
인력, 패치 및 업그레이드 등 높은 유지비용	낮은 유지비용
고정 용량 및 정해진 자원 할당	유연한 용량 및 효율적인 자원 할당
구매 및 설치	신청 후 빠른 서비스 이용 가능
지리적 한정	지리적 한정 없음
한정된 트래픽 처리	대규모의 트래픽 수용가능

Refer to : 한국인터넷진흥원, "클라우드 정보보호 안내서", 한국인터넷진흥원(2017, 12)

클라우드 컴퓨팅 개념의

시초

- ●존 매카시(John McCarthy)
- ●1965년
- •인공지능의 아버지
- •컴퓨팅 환경은 공공 시설 (Public Utility)을 쓰는 것과 같을 것
- •물리적이고 개인적인 한계를 벗어 나 언제 어디서나 자유롭게 컴퓨팅 이 가능

클라우드 컴퓨팅 개념의

시초

- •1995, General Magic + AT&T + 기타 통신사
 - "Magic Cap" OS로 클라우드 컴퓨팅 방식을 최초로 시작
 - 통신 기술과 하드웨어 등 제반 기 술의 한계로 실패

Image from : https://en.wikipedia.org/wiki/Magic_Cap

클라우드 컴퓨팅 개념의

시초

- •2006, Christophe Bisciglia
 - Google
 - •본격적인 클라우드 서비스 시작

CLOUDERA

 $Image\ from: \underline{https://archive.fortune.com/galleries/2008/fortune/0801/gallery.BestCo_Googlers.fortune/9.html}$

클라우드 컴퓨팅 개념의

시초

- •2006, AWS
 - Amazon의 자회사
 - 유휴 IT 리소스 제공 시작

클라우드 컴퓨팅 개념의

시초

- •2016, 산호세, 미국
- •검색엔진전략 컨퍼런스
- •에릭 슈미트(Eric Schmidt, 前 구글 CEO)
- "클라우드 컴퓨팅" 용어 사용

Image from : https://en.wikipedia.org/wiki/Eric_Schmidt

컴퓨팅 패러다임의 변화

Image from: https://www.etnews.com/201010110011?m=1

컴퓨팅 패러다임의 변화

- •메인 프레임 시대
 - 1960년대 ~ 1980년대 이전까지
 - •중앙의 메인 프레임
 - 더미 터미널(Dummy Terminal)

IBM 3270 terminal

IBM 7094, a typical Mainframe

Image from: http://www.libqa.com/wiki/116

Image from:

https://www.ahnlab.com/kr/site/securityinfo/secune ws/secuNewsView.do?curPage=3&seq=11020

컴퓨팅 패러다임의 변화

- •분산형 컴퓨팅 시대
 - 1980년대 ~ 2000년대
 - •클라이언트/서버 구조
 - P2P(Peer to Peer) 구조

Client-Server network

P2P network

컴퓨팅 패러다임의 변화

•클라우드 컴퓨팅 시대

Image from: http://www.ddaily.co.kr/cloud/news/article.html?no=50793

클라우드 컴퓨팅 발전의 기폭제가 된 관련 기술

- •그리드 컴퓨팅
- •클러스터링
- •가상화
- •유틸리티 컴퓨팅
- •서버 기반 컴퓨팅

Image from: https://wedul.site/424

클라우드 컴퓨팅 발전의 기폭제가 된 관련 기술

Image from: https://sports.donga.com/it/article/all/20101104/32347559/1

- •그리드 컴퓨팅
 - Grid Computing
 - •컴퓨팅 자원을
 - •하나 이상의 논리적 풀로
 - 조직화해서
 - 플랫폼을 제공하는 것

클라우드 컴퓨팅 발전의 기폭제가 된 관련 기술

•클러스터링

- Clustering
- •독립적인 IT 자원들을
- 상호연결하여
- •그룹으로 묶어서
- •하나의 단일 시스템처럼
- •작동하도록 하는 것

Image from: https://www.researchgate.net/figure/Meta-cluster-computing_fig3_220285871

- •가상화
 - Virtualization
 - •컴퓨터 리소스의
 - •물리적 특징을 추상화

클라우드 컴퓨팅 발전의 기폭제가 된 관련 기술

•유틸리티 컴퓨팅

- Utility Computing
- •IT 자원들을
- •전기나 수도처럼
- •하나의 서비스 개념으로
- •사용한 만큼 요구 부과
- On-demand Computing

- •서버 기반 컴퓨팅
 - Server-based Computing
 - Thin-Client VS Thick-Client

Image from : https://clearcube.com/posts/what-is-a-thin-client/

클라우드 컴퓨팅의 특성

National Institute of
Standards and Technology
U.S. Department of Commerce

- •주문형 셀프 서비스
- •광대역 네트워크 접근
- •자원의 공동관리
- •신속한 탄력성
- •측정 가능한 서비스

클라우드 컴퓨팅의 특성

National Institute of Standards and Technology U.S. Department of Commerce

•주문형 셀프 서비스

- On-Demand Self-Service
- •서버 시간, 네트워크 저장 장치 등의 컴퓨팅 기능을
- 사업자(CSP) 또는 사람의 중재 없이
- •사용자의 개별 화면을 통해
- 필요한 만큼 자동적으로 확보 해서 사용

클라우드 컴퓨팅의 특성

- •광대역 네트워크 접근
 - Broad Network Access
 - •이질적인 경량 또는 중량 클라이언트 플랫폼(모바일 폰, 노트북)과 같은 다양한 디바이스를 통해
 - •네트워크를 이용해서
 - •이용 가능

클라우드 컴퓨팅의 특성

- •자원의 공동관리
 - Resource Pooling
 - 사업자(CSP)의 컴퓨팅 자원을
 - •다중 임대 방식으로
 - 다중 사용자에게
 - 풀 형태로 유지되며
 - •사용자는 사용하고 있는 자원 (리소스)의 위치를 알 수 없음.

클라우드 컴퓨팅의 특성

- •신속한 탄력성
 - Rapid Elasticity
 - •필요에 따라
 - ●필요한 만큼
 - 탄력적으로 제공
 - 신속한 확장(Scale Up, 처리능 력을 높이는 것)
 - 신속한 축소(Scale Down, 처리 능력을 낮추는 것)를 위해
 - 자동적으로 제공

클라우드 컴퓨팅의 특성

•측정 가능한 서비스

- Measured Service
- •서비스 형태에 적절한
- •미터링 기능을 이용해
- 이용한 만큼
- 요금이 부가되는
- 종량제

Managed by vendor

클라우드 서비스 모델

SOFTWATE (As a Service) **Applications Applications** Data Runetime Middleware Middleware Managed by O/S Virtualization Virtualization vendor Servers Storage Networking

클라우드 서비스 모델

- On-Premises
- laaS(Infrastructure as a Service
- PaaS(Platform as a Service)
- SaaS(Software as a Service)

Image from: https://velog.io/@aonee/%ED%81%B4%EB%9D%BC%EC%9A%B0%EB%93%9C%EB%9E%80-nzrij240

클라우드 서비스 모델

Applications Data Runetime You manage Middleware O/S Virtualization Servers Storage Networking

- On-Premises
 - 영내(營內, 領內)
 - 클라우드 기반이 아닌 통제된 IT 환경을 의미
 - ●전통적인 IT 서비스 방식
 - •기업이 자체적으로 데이터 센터 를 보유하고 시스템 구축부터 운영까지, 모두 수행하는 형태

O/S

Servers

Storage

Networking

Virtualization

Managed by vendor

- laaS
 - Infrastructure as a Service
 - 하드웨어 자원을 네트워크를 통해 이용하는 형태
 - 서버, 스토리지, 네트워크를 가상화 환경으로 만들어서 필요에 따라 자원을 사용할 수 있게 해주는 서비스

클라우드 서비스 모델

Servers and storage

Networking firewalls/security Data center physical plant/building

Image from : https://cic.gsa.gov/solutions/iaas

- Platform as a Service
- 애플리케이션 개발 환경을 네트 워크를 통해 이용하는 형태
- 응용 프로그램 개발 도구, 컴파 일러 등을 클라우드 서비스로 제공
- •개발을 위한 플랫폼 구축할 필 요없이 필요한 개발 요소들을 웹에서 쉽게 빌려 쓸 수 있게 하 는 모델

클라우드 서비스 모델

Paas — laas — —

Development tools, Operating systems database management, business analytics

Servers and storage

Networking firewalls/security Data center physical plant/building

Image from : https://cic.gsa.gov/solutions/paas/

클라우드 서비스 모델 SOFTWATE (As a Service)

SaaS

- Software as a Service
- 소프트웨어의 기능을 네트워크 를 통해 이용하는 형태
- •사용자가 원하는 소프트웨어를 임대·제공하는 서비스
- On-demand Software

클라우드 서비스 모델

laaS

Hosted applications/apps

Development tools, Operating systems database management, business analytics

Servers and storage

Networking firewalls/security Data center physical plant/building

Image from : https://cic.gsa.gov/solutions/saas/

클라우드 서비스 모델

클라우드 서비스 배포 모델

- Public Cloud
- Private Cloud
- Hybrid Cloud
- Community Cloud

Image from: https://www.rishabhsoft.com/blog/basics-of-cloud-computing-deployment-and-service-models

클라우드 서비스 배포 모델

Public Cloud

- 공용 클라우드
- 전문 클라우드 사업자에 의 해 제공되고
- •네트워크를 통해
- •불특정 다수 누구나
- 가입해서 사용할 수 있는 클라우드

Image from: https://authenticredcreative.com/how-the-public-cloud-service-works/

클라우드 서비스 배포 모델

Internal Private Cloud

Hosted Private Cloud

- Private Cloud
 - •사설 클라우드
 - •클라우드 솔루션을 이용해서
 - •특정 조직의 내부적으로
 - •자사 전용 환경을 구축
 - 자체적으로 데이터센터 안에 클라우드 환경 구축
 - •조직이나 기관의 구성들만

클라우드 서비스 배포 모델

- Hybrid Cloud
 - 다양한 클라우드 서비스를
 - 상호 연동하여
 - •하나의 클라우드 서비스로
 - 공용 클라우드와 사설 클라 우드 결합 형태

클라우드 서비스 배포 모델

- Community Cloud
 - 공통의 목적을 가진 기업들이
 - •클라우드 시스템을 구축해서
 - •데이터 센터에서
 - 공동 운영하는 형태

Image from: https://www.javatpoint.com/community-cloud

클라우드 서비스 배포 모델

구분	장점	단점	
퍼블릭 클라우드	●초기 투자비용 없음 ●융통성 있는 사용량 조절	•서비스 제공자 기업의 의존도가 높음	
프라이빗 클라우드	●기존 IT 자원을 활용 가능 ●행위추적 용이	•초기 투자비용이 많이 소요	
하이브리드 클라우드	●기존 IT 자원을 활용 가능 ●서비스 구성변경 용이	●운용비와 도입비용 증가	
커뮤니티 클라우드	●초기 투자비용 없음 ●융통성 있는 사용량 조절	•서비스 제공자 기업의 의존도가 높음	
공통정보보호 요구사항	외부에서 내부(클라우드) 시스템 접속이 이루어져 함에 따라 통신구간 암호화, 내부 시스템 보호를 위한 방화벽, 침입방지 시스템 구축 등 주요 보호조치 필요		

가상서버

소프트웨어

서비스

저장 장치

네트워크 장치

- ●IT 자원
- •물리적 또는 가상의 IT 관련 산물
- •하드웨어 자원
 - •물리적 서버,저장 장치, 네트 워크 장치
- •소프트웨어 기반의 자원
 - 가상 서버, 사용자 소프트웨 어 프로그램

Infrastructure

- ●인프라
- •기반 시설
- ●IT 서비스의 기반이 되는
- •시스템 구조
 - 하드웨어와 네트워크 장비
 - 장비를 제어하기 위한 시스템 소 프트웨어도 포함

Platform

- ●플랫폼
- •기차 플랫폼 또는 무대 강단
- •상생 생태계
- •판매자와 구매자 양쪽을
- •하나의 場으로 끌어들여
- •새로운 가치를 창출하도록 만드는 모델

Virtual Machine & Virtualization

- •가상 머신
 - •하나의 물리적 서버 상에
 - 하이퍼바이저(Hypervisor)라는
 - 소프트웨어가 여러 개의 가상 머신을 생성하여 제공
- ●가상화
 - •하나의 물리적 서버 상에
 - •하나 이상의 가상 머신을 생성 하여
 - •복수 개의 논리적 서버를 운영 하는 기술

Image from: https://www.sdxcentral.com/edge/definitions/mec-virtualization/

수평 확장

Scale-out

- Horizontal Scaling
- ●동일한 유형의 IT자원의
- •할당과 반납을 통한
- •확장과 축소
 - Scale Out : 자원의 수평적 할당
 - Scale In : 자원의 수평적 반납

Image from: https://toma0912.tistory.com/87

수직 확장

- Vertical Scaling
- ●IT 자원의 수요 증가/감소를
- •처리할 수 있는 능력
 - Scale Up : 기존 IT 자원을 고사양 용량의 다른 자원으로 대체한 경우
 - Scale Down : 저사양 용량의 IT자원 을 다른 자원으로 대체한 경우

Image from: https://toma0912.tistory.com/87

Data Center

- •서버 컴퓨터와 네트워크 회선 등을
- •제공하는 건물이나 시설
- •서버 호텔
- •서버 컴퓨터를 한 곳에 모 아 안정적으로 관리하기 위한 목적

Image from: https://www.ciokorea.com/news/39204

비용절감	접근성으로 인한 기회비용 증가 -> 안정된 데이터베이스 구축 -> 안정된 운영가능	편리함	실제서버 호스팅이 아니므로 설치시 간단
확장성	단말 별로 따로 컨텐츠를 구축할 필요없음 -> 다양한 플랫폼에서 서비스를 제공	민첩성	실시간 데이터 관리 가능 -> 작업간 커뮤니케이션 용이

Image from: https://www.slideshare.net/misia85/ss-12893552

클라우드 컴퓨팅의 장단점

비용절감	IT기기의 소유개념에서 렌트개념 으로 변화 -> 구매 및 관리비용 절감	편리함	인터넷 환경만 있다면 공간의 제약 이 없음 기기의 고사양 볼필요로 경박간소 화 등 기기 이용의 편의성증가
확장성	여러 단말에서 동시에 서비스나 컨텐츠 사용이 가능	민첩성	실시간 데이터 업데이트 및 스토리지 관리가 용이함

Image from : https://www.slideshare.net/misia85/ss-12893552

클라우드 컴퓨팅의 장단점

안정성	호환성에서 문제 발생, 중상위 서버 서비스장애 가능성	보안성	완벽한 보안은 없음 - 해킹의 문제
자기통제성	네트워크 장애 시 서비스 중단	다른서비스로 변경 어려움	전체적인 데이터 이동 시 옮기는 것이 불편

Image from : https://www.slideshare.net/misia85/ss-12893552

References

- 박정운, "구글 클라우드 플랫폼 뽀개기", 비제이퍼블릭 (2019)
- 한국인터넷진흥원, "클라우드 정보보호 안내서", 한국인터 넷진흥원(2017, 12)
- "클라우드 서비스 활성화를 위한 정보보호대책 보고서", 정부부처합동, 2015
- "클라우드컴퓨팅 기술 스택", 한국클라우드컴퓨팅연구조합, 2017
- 김승회, "클라우드컴퓨팅의 장점과 단점", 2012
- 하야시 마사유키 저/서재원 역, "그림으로 배우는 클라우 드 2nd Edition, 영진닷컴(2021)
- https://edu.goorm.io/learn/lecture/18575/모두를 위한 클라우드 컴퓨팅 입문

Image from : 한국인터넷진흥원, "클라우드 정보보호 안내서", 한국인터넷진흥원(2017, 12)