Formulario (2022 - 02)

Igualdades

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \, b^{n-k}; \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1;$$

$$\sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda); \qquad \sum_{x=0}^\infty \binom{x+k-1}{k-1} \phi^x = \frac{1}{(1-\phi)^k} \quad \text{si } 0 < \phi < 1 \text{ y } k \in \mathbb{N}$$

Propiedades función $\Gamma(\cdot)$ y $B(\cdot, \cdot)$

$$(1) \quad \Gamma(k) = \int_0^\infty u^{k-1} \, e^{-u} \, du = \mathrm{gamma}(k); \quad (2) \quad \Gamma(a+1) = a \, \Gamma(a); \quad (3) \quad \Gamma(n+1) = n!, \quad \mathrm{si} \, \, n \in \mathbb{N}_0;$$

(4)
$$\Gamma(1/2) = \sqrt{\pi}$$
; (5) $B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx$; (6) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)} = \text{beta}(q, r)$

Distribución Gamma

$$(1) \quad \text{Si } T \sim \operatorname{Gamma}(k, \, \nu), \, \operatorname{con} \, k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu \, t)^x \, e^{-\nu \, t}}{x!}$$

$$(2) \quad \mathsf{Gamma}(1,\,\nu) = \mathsf{Exp}(\nu) \qquad (3) \quad \mathsf{Gamma}(\eta/2,\,1/2) = \chi^2(\eta)$$

Medidas descriptivas

las descriptivas
$$\mu_X = \mathsf{E}(X), \quad \sigma_X^2 = \mathsf{E}\left[(X - \mu_X)^2\right], \quad \delta_X = \frac{\sigma_X}{\mu_X}, \quad \theta_X = \frac{\mathsf{E}\left[(X - \mu_X)^3\right]}{\sigma_X^3}, \quad K_X = \frac{\mathsf{E}\left[(X - \mu_X)^4\right]}{\sigma_X^4} - 3$$

$$M_X(t) = \mathsf{E}\left(e^{t\,X}\right), \quad \mathsf{E}[g(X)] = \begin{cases} \sum_{x \in \Theta_X} g(x) \cdot p_X(x) & \text{Rango} = \max - \min, \quad \mathsf{IQR} = x_{75\,\%} - x_{25\,\%} \\ \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx & \text{Polymertical Problems} \end{cases}$$

$$\mathsf{Cov}(X,Y) = \mathsf{E}[(X - \mu_X) \cdot (Y - \mu_Y)] = \mathsf{E}(X \cdot Y) - \mathsf{E}(X) \cdot \mathsf{E}(Y) \quad , \quad \rho = \frac{\mathsf{Cov}(X,Y)}{\sigma_X^2}$$

Teorema de Probabilidades Totales

$$\begin{split} p_Y(y) &= \sum_{x \in \Theta_X} p_{X,Y}(x,y); \qquad f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy \\ p_X(x) &= \int_{-\infty}^{+\infty} p_{X \mid Y = y}(x) \cdot f_Y(y) \, dy; \qquad f_Y(y) = \sum_{x \in \Theta_X} f_{Y \mid X = x}(y) \cdot p_X(x) \\ \mathsf{E}(X) &= \int_{-\infty}^{+\infty} \mathsf{E}(X \mid Y = y) \cdot f_Y(y) \, dy \qquad \mathsf{E}(Y) = \sum_{x \in \Theta_X} \mathsf{E}(Y \mid X = x) \cdot p_X(x) \end{split}$$

Esperanza y Varianza Condicional

$$\mathsf{E}(Y) = \mathsf{E}[\mathsf{E}(Y \,|\, X)] \quad \mathsf{y} \quad \mathsf{Var}(Y) = \mathsf{Var}[\mathsf{E}(Y \,|\, X)] + \mathsf{E}[\mathsf{Var}(Y \,|\, X)]$$

Transformación

Sea Y = g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X\left(g_i^{-1}(y)\right) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right| \quad \text{o} \quad p_Y(y) = \sum_{i=1}^k p_X\left(g_i^{-1}(y)\right)$$

Sea Z = g(X, Y) una función cualquiera:

$$p_Z(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy = \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Suma Normales Independientes

Consideremos X e Y variables aleatorias independientes con distribución Normal (μ_X, σ_X) y Normal (μ_Y, σ_Y) respectivamente. Si $Z = a + b \cdot X + c \cdot Y$, con a, b y c constantes, entonces

$$Z = a + b \cdot X + c \cdot Y \sim \mathsf{Normal}(\mu,\,\sigma), \quad \mu = a + b \cdot \mu_X + c \cdot \mu_Y \quad \mathsf{y} \quad \sigma = \sqrt{|b|^2 \cdot \sigma_X^2 + |c|^2 \cdot \sigma_Y^2}$$

Distribución Normal Bivariada

$$\begin{split} f_{X,Y}(x,y) &= \frac{1}{2\,\pi\,\sigma_X\,\sigma_Y\,\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\,\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right)\right]\right\} \\ &\quad Y \,|\, X = x \sim \operatorname{Normal}\left(\mu_Y + \frac{\rho\,\sigma_Y}{\sigma_X}\,(x-\mu_X),\,\sigma_Y\,\sqrt{(1-\rho^2)}\right) \\ &\quad X \sim \operatorname{Normal}(\mu_X,\,\sigma_X) & \text{e} \quad Y \sim \operatorname{Normal}(\mu_Y,\,\sigma_Y) \end{split}$$

Teorema del Límite Central

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\displaystyle\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n}\,\sigma} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \longrightarrow Z \sim \mathsf{Normal}(0,1),$$

cuando $n \to \infty$, $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$.

Mínimo y Máximo

Sean X_1, \ldots, X_n variables aleatorias continuas independientes con idéntica distribución (f_X y F_X), entonces para:

$$Y_1 = \min\{X_1, \dots, X_n\} \longrightarrow f_{Y_1} = n \ [1 - F_X(y)]^{n-1} \ f_X(y); \ Y_n = \max\{X_1, \dots, X_n\} \longrightarrow f_{Y_n} = n \ [F_X(y)]^{n-1} \ f_X(y)$$

Mientras que la distribución conjunta entre Y_1 e Y_n está dada por:

$$f_{Y_1,Y_n}(u,v) = n(n-1) [F_X(v) - F_X(u)]^{n-2} f_X(v) f_X(u), \quad u \le v$$

Función Generadora de Momentos

En el caso que X_1,\ldots,X_n sean variables aleatorias independientes con funciones generadoras de momentos M_{X_1},\ldots,M_{X_n} respectivamente, se tiene si $Z=\sum_{i=1}^n X_i \to M_Z(t)=M_{X_1}(t)\times\cdots\times M_{X_n}(t).$

Propiedades Esperanza, Varianza y Covarianza

Sean $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_m$ variables aleatorias y $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_m$ constantes conocidas.

■
$$\mathsf{E}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = a_0 + \sum_{i=1}^n a_i \cdot \mathsf{E}(X_i).$$

$$\blacksquare \ \operatorname{Cov}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i, \, b_0 + \sum_{i=1}^m b_j \cdot Y_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i \cdot b_j \cdot \operatorname{Cov}\left(X_i, Y_j\right).$$

$$\text{Var}\left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = \sum_{i=1}^n \sum_{j=1}^n a_i \cdot a_j \cdot \text{Cov}\left(X_i, X_j\right).$$

$$\blacksquare \ \ \text{Si} \ X_1, \ldots, X_n \ \text{son variables aleatorias independientes, entonces} \ \text{Var} \left(a_0 + \sum_{i=1}^n a_i \cdot X_i\right) = \sum_{i=1}^n a_i^2 \cdot \text{Var} \left(X_i\right)$$

Aproximación de Momentos

Sea X una variable aleatoria e Y=g(X), la aproximación de 4to orden está dada por

$$Y = g(X) \approx g(\mu_X) + \frac{(X - \mu_X)g'(\mu_X)}{1!} + \frac{(X - \mu_X)^2g''(\mu_X)}{2!} + \frac{(X - \mu_X)^3g'''(\mu_X)}{3!} + \frac{(X - \mu_X)^4g''''(\mu_X)}{4!}$$

Sean X_1, \ldots, X_n variables aleatorias con valores esperados $\mu_{X_1}, \ldots, \mu_{X_n}$ y varianzas $\sigma_{X_1}^2, \ldots, \sigma_{X_n}^2$ e $Y = g(X_1, \ldots, X_n)$, la aproximación de primer orden está dada por

$$\begin{split} Y &\approx g(\mu_{X_1}, \dots, \mu_{X_n}) + \sum_{i=1}^n \left(X_i - \mu_{X_i}\right) \frac{\partial}{\partial \, X_i} g(\mu_{X_1}, \dots, \mu_{X_n}) \\ & \mathsf{E}(Y) \approx g(\mu_{X_1}, \dots, \mu_{X_n}) \\ & \mathsf{Var}(Y) \approx \sum_{i=1}^n \sum_{j=1}^n \rho_{ij} \, \sigma_{X_i} \, \sigma_{X_j} \, \left[\frac{\partial}{\partial \, X_i} g(\mu_{X_1}, \dots, \mu_{X_n}) \cdot \frac{\partial}{\partial \, X_j} g(\mu_{X_1}, \dots, \mu_{X_n}) \right], \qquad \mathsf{con} \, \rho_{ij} = \mathsf{Corr}(X_i, \, X_j) \end{split}$$

Estimador Máximo Verosímil

Sea X_1, \dots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por un parámetro θ . Si $\hat{\theta}$ es el estimador máximo verosímil del parámetro θ , entonces:

- $E(\hat{\theta}) \to \theta$, cuando $n \to \infty$.
- $\qquad \qquad \operatorname{Var}(\hat{\theta}) = \frac{1}{I_n(\theta)}, \operatorname{con} I_n(\theta) = -\operatorname{E}\left[\frac{\partial^2}{\partial \, \theta^2} \, \ln L(\theta)\right].$
- $\sqrt{I_n(\theta)}(\hat{\theta} \theta) \sim \text{Normal}(0, 1)$, cuando $n \to \infty$.
- $\blacksquare \ \, \text{El estimador máximo verosímil de } g(\theta) \text{ es } g(\hat{\theta}), \text{ cuya varianza está dada por: } \text{Var}[g(\hat{\theta})] = \frac{[g'(\theta)]^2}{I_n(\theta)}.$

Error Cuadrático Medio

El error cuadrático medio de un estimador $\hat{\theta}$ de θ se define como:

$$\mathsf{ECM}(\hat{\theta}) = \mathsf{E}\left[\left(\hat{\theta} - \theta\right)^2\right] = \mathsf{Var}(\hat{\theta}) + \mathsf{Sesgo}^2$$

Distribuciones Muestrales

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0,1), \quad \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \sim \text{t-student}(n-1), \quad \frac{s^2 \left(n-1\right)}{\sigma^2} \sim \chi^2(n-1)$$

$$\operatorname{con} s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}.$$

Potencia

Sean X_1, \dots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces para $H_0: \mu = \mu_0$ y σ conocido:

$$1 - \Phi\left(k_{1-\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right) + \Phi\left(k_{\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right), \qquad 1 - \Phi\left(k_{1-\alpha} - \Delta\frac{\sqrt{n}}{\sigma}\right), \qquad \Phi\left(k_{\alpha} - \Delta\frac{\sqrt{n}}{\sigma}\right)$$

Comparación de Poblaciones

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución Normal (μ_X, σ_X) y Normal (μ_Y, σ_Y) respectivamente. Con medias y varianzas muestrales dadas por:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \qquad \overline{Y}_m = \frac{1}{m} \sum_{j=1}^m Y_j$$

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2 \qquad S_Y^2 = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y}_m)^2$$

Entonces

■ Si σ_X y σ_Y son conocidos:

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \text{Normal}(0, 1)$$

■ Si σ_X y σ_Y son desconocidos pero iguales:

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t - \mathsf{Student}(n + m - 2)$$

$$\operatorname{con} S_p^2 = \frac{(n-1) S_X^2 + (m-1) S_Y^2}{n+m-2}$$

■ Si σ_X y σ_Y son desconocidos:

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}} \sim t - \mathsf{Student}(\nu)$$

con

$$\nu = \left[\frac{\left(S_X^2 / n + S_Y^2 / m \right)^2}{\frac{\left(S_X^2 / n \right)^2}{n-1} + \frac{\left(S_Y^2 / m \right)^2}{m-1}} \right]$$

■ Si μ_X y μ_Y son desconocidos:

$$\frac{\left[(n-1) \, S_X^2 / \sigma_X^2 \right] / (n-1)}{\left[(m-1) \, S_Y^2 / \sigma_Y^2 \right] / (m-1)} = \frac{S_X^2}{S_Y^2} \cdot \frac{\sigma_Y^2}{\sigma_Y^2} \sim F(n-1, m-1)$$

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución Bernoulli (p_X) y Bernoulli (p_Y) respectivamente, entonces

$$\frac{(\overline{X}_n - \overline{Y}_m) - (p_X - p_Y)}{\sqrt{\frac{p_X(1 - p_X)}{n} + \frac{p_Y(1 - p_Y)}{m}}} \overset{\text{aprox}}{\sim} \mathsf{Normal}(0, \, 1) \qquad \mathsf{y} \qquad \frac{(\overline{X}_n - \overline{Y}_m) - (p_X - p_Y)}{\sqrt{\frac{\overline{X}_n(1 - \overline{X}_n)}{n} + \frac{\overline{Y}_m(1 - \overline{Y}_m)}{m}}} \overset{\text{aprox}}{\sim} \mathsf{Normal}(0, \, 1)$$

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución $Poisson(\lambda_X)$ y $Poisson(\lambda_Y)$ respectivamente, entonces

$$\frac{(\overline{X}_n - \overline{Y}_m) - (\lambda_X - \lambda_Y)}{\sqrt{\frac{\lambda_X}{n} + \frac{\lambda_Y}{m}}} \overset{\text{aprox}}{\sim} \mathsf{Normal}(0, \, 1) \qquad \mathsf{y} \qquad \frac{(\overline{X}_n - \overline{Y}_m) - (\lambda_X - \lambda_Y)}{\sqrt{\frac{\overline{X}_n}{n} + \frac{\overline{Y}_m}{m}}} \overset{\text{aprox}}{\sim} \mathsf{Normal}(0, \, 1)$$

Sean X_1, \ldots, X_n e Y_1, \ldots, Y_m dos muestras aleatorias independientes con distribución Exponencial (ν_X) y Exponencial (ν_Y) respectivamente, entonces

$$\frac{(\overline{X}_n - \overline{Y}_m) - \left(\frac{1}{\nu_X} - \frac{1}{\nu_Y}\right)}{\sqrt{\frac{1}{n}\frac{1}{\nu_X^2} + \frac{1}{m}\frac{1}{\nu_Y^2}}} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}(0, 1) \qquad \mathsf{y} \qquad \frac{(\overline{X}_n - \overline{Y}_m) - \left(\frac{1}{\nu_X} - \frac{1}{\nu_Y}\right)}{\sqrt{\frac{\overline{X}_n^2}{n} + \frac{\overline{Y}_m^2}{m}}} \overset{\mathsf{aprox}}{\sim} \mathsf{Normal}(0, 1)$$

Bondad de Ajuste

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \sim \chi^{2}(k - 1 - \nu)$$

 $con \ \nu$ igual al número de estadísticos muestrales utilizados para estimar los parámetros del modelo ajustado.

Regresión Lineal Simple

Para el modelo de regresión lineal simple $y' = \hat{y} = \alpha + \beta x$, se tiene que

$$\hat{\alpha} = \overline{y} - \hat{\beta} \, \overline{x}, \quad \hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \quad r^2 = 1 - \frac{s_{Y|x}^2}{s_Y^2}, \qquad s_{Y|x}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - y_i')^2$$

$$\hat{\rho} = \hat{\beta} \, \frac{s_X}{s_Y}, \qquad \hat{\rho}^2 = 1 - \frac{(n-2)}{(n-1)} \, \frac{s_{Y|x}^2}{s_Y^2} \qquad , \langle \mu_{Y|x_i} \rangle_{1-\alpha} = \overline{y}_i \pm t_{(1-\alpha/2), \, n-2} \cdot s_{Y|x} \sqrt{\frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^{n} (x_j - \overline{x})^2}}$$

Regresión Lineal Múltiple

$$SCT = SCR + SCE$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^2 = \frac{SCR}{SCT} = 1 - \frac{SCE}{SCT} = 1 - \frac{(n-k-1)}{(n-1)} \frac{s_{Y+x}^2}{s_Y^2}, \qquad r^2 = 1 - \frac{(n-1)}{(n-k-1)} \frac{SCE}{SCT} = 1 - \frac{s_{Y+x}^2}{s_Y^2}$$

$$T_{b_j} = \frac{b_j - \beta_j}{s_{b_j}} \sim \text{t-Student}(n-k-1), \qquad F = \frac{SCR/k}{SCE/(n-k-1)} \sim F(k, n-k-1)$$

con k regresores en el modelo, b_j estimador de β_j y $s_{b_j} = \sqrt{\widehat{\mathrm{Var}(b_j)}}$

$$F = \frac{\left(SCE_{(r)} - SCE\right)/r}{SCE/(n - (k + r) - 1)} \sim F(r, n - (k + r) - 1)$$

con $SCE_{(r)}$ y SCE son suma de errores al cuadrado de dos modelos anidados en k regresores comunes.

Modelos de probabilidad en R:

En general para cierta distribución DISTR existen las siguientes funciones:

```
dDISTR(x,...) entrega P(X=x). pDISTR(q,...) entrega P(X \leq q). qDISTR(p,...) entrega el valor de x tal que P(X \leq x) = p. rDISTR(n,...) genera una muestra proveniente de un modelo de distribución.
```

- Binomial: _binom(,size=n,prob=p)
- Geométrica: $_{\texttt{geom}}(\texttt{x} = x 1, \texttt{prob} = p)$
- Binomial-Negativa: _nbinom(x=x-r, size=r, prob=p)
- Poisson: $_{pois}(,lambda=\lambda)$
- Uniforme: _unif(,min=a,max=b)
- Normal: $_{norm(,mean=\mu,sd=\sigma)}$
- Log-Normal: _lnorm(,meanlog=λ,sdlog=ζ)
- Exponencial: _exp(,rate=\(\nu\))
- Gamma: $_{gamma}(,shape=k, rate=\nu)$
- Chi Cuadrado: _chisq(,df=η)
- t-Student: _t(,df=ν)
- Fisher: $_f(,df1=\eta,df2=\nu)$

- Hipergeométrica: _hyper(, m=m, n=N-m, k=n)
- Weibull: _weibull(, shape= β , scale= η)
- Logística: _logis(, location= μ , scale= σ)
- Log-Logística: plogis $\left(\frac{\log(x)-\mu}{\sigma}, \text{location} = 0, \text{ scale} = 1\right)$, dlogis $\left(\frac{\log(x)-\mu}{\sigma}, \text{location} = 0, \text{ scale} = 1\right)/(x\sigma)$
- Beta: pbeta $\left(\left(\frac{\mathbf{x}-a}{b-a}\right)$, shape1 = q, shape2 = r)

Estadística descriptiva en R:

- Media: mean()
- Moda: mlv() del paquete "modeest"
- Varianza: var()
- Desviación estándar: sd()
- Resumen de vector numérico: summary()
- Cuantiles: quantile()
- Mínimo: min()
- Máximo: max()
- Rango: max()-min()
- Rango intercuartil: IQR()
- Mediana: median()
- Coeficiente de variación: sd()/mean()
- Coeficiente de asimetría: skewness() del paquete "moments"
- Coeficiente de kurtosis: kurtosis()-3 del paquete "moments"

Estimación y Prueba de Hipótesis:

- Estimación de Momentos: fitdist(..., method = "mme", ...) de library(fitdistrplus)
- Estimación Máximo Verosímil: fitdistr() de library(MASS) y fitdist(..., method = "mle", ...) de library(fitdistrplus)
- Test para μ con σ conocido (bajo Normalidad): z.test(). (library(TeachingDemos))
- Test para μ con σ desconocido (bajo Normalidad): t.test().
- Test para σ con μ desconocido (bajo Normalidad): sigma.test(). (library(TeachingDemos))
- Test para comparación de varianzas: var.test().
- Test para comparación de medias: t.test().
- Test aproximado para θ (bajo cualquier distribución): z.test(). (library(TeachingDemos))
- Test aproximado para p (bajo Bernoulli): prop.test(..., correct = F).

Bondad de Ajuste:

- Test KS: ks.test().
- Test χ^2 : chisq.test().
- Test Shapiro (Normalidad): shapiro.test().

Regresión lineal:

- Regresión lineal: lm().
- Tabla ANOVA: aov().
- Tabla ANOVA: anova(). (equivalente a summary de aov)

Tablas de Percentiles \boldsymbol{p}

				Distril	oución l	Normal E	Stándar	k_p					Distribu	ción t-stud	dent $t_p($	$\nu)$
k_p	0,00	0,01	0,02			0,04	0,05	0,06	0,07	0,08	0,09	ν	$t_{0,90}$	$t_{0,95}$	t _{0,975}	$t_{0,99}$
0,0	0,5000	0,5040	0,508	,		,	0,5199	0,5239	0,5279	0,5319	0,5359	1	3,078	6,314	12,706	31,821
0,1	0,5398	0,5438		,			0,5596	0,5636	0,5675	0,5714	0,5753	2	1,886	2,920	4,303	6,965
0,2	0,5793	0,5832	0,587			*	0,5987	0,6026	0,6064	0,6103	0,6141	3	1,638	2,353	3,182	4,541
0,3	0,6179	0,6217	0,625			*	0,6368	0,6406	0,6443	0,6480	0,6517	4	1,533	2,132	2,776	3,747
0,4	0,6554	0,6591	0,662			*	0,6736	0,6772	0,6808	0,6844	0,6879	5	1,476	2,015	2,571	3,365
0,5	0,6915	0,6950		,		′	0,7088	0,7123	0,7157	0,7190	0,7224	6	1,440	1,943	2,447	3,143
0,6	0,7257	0,7291	0,732				0,7422	0,7454	0,7486	0,7517	0,7549	7	1,415	1,895	2,365	2,998
0.7	0,7580	0,7611	0,764			*	0,7734	0,7764	0,7794	0,7823	0,7852	8	1,397	1,860	2,306	2,896
0,8	0,7881	0,7910		,		*	0,8023	0,8051	0,8078	0,8106	0,8133	9	1,383	1,833	2,262	2,821
0,9	0,8159	0,8186		,		*	0,8289	0,8315	0,8340	0,8365	0,8389	10	1,372	1,812	2,228	2,764
1,0	0,8413	0,8438	,			,	0,8531	0,8554	0,8577	0,8599	0,8621	11	1,363	1,796	2,201	2,718
1,1	0,8643	0,8665	0,868	,			0,8749	0,8770	0,8790	0,8810	0,8830	12	1,356	1,782	2,179	2,681
1,2	0,8849	0,8869	0,888			*	0,8944	0,8962	0,8980	0,8997	0,9015	13	1,350	1,771	2,160	2,650
1,3	0,9032	0,9049	0,906				0,9115	0,9131	0,9147	0,9162	0,9177	14	1,345	1,761	2,145	2,624
1,4	0,9192	0,9207	0,922	,		*	0,9265	0,9279	0,9292	0,9306	0,9319	15	1,341	1,753	2,131	2,602
1,5	0,9332	0,9345	0,935			*	0,9394	0,9406	0,9418	0,9429	0,9441	16	1,337	1,746	2,120	2,583
1,6	0,9452	0,9463	0,947			*	0,9505	0,9515	0,9525	0,9535	0,9545	17	1,333	1,740	2,110	2,567
1,7	0,9554	0,9564	0,957	,		*	0,9599	0,9608	0,9616	0,9625	0,9633	18	1,330	1,734	2,101	2,552
1,8	0,9641	0,9649	0,965	,			0,9678	0,9686	0,9693	0,9699	0,9706	19	1,328	1,729	2,093	2,539
1,9	0,9713	0,9719	0,972			*	0,9744	0,9750	0,9756	0,9761	0,9767	20	1,325	1,725	2,086	2,528
2,0	0,9772	0,9778	,			*	0,9798	0,9803	0,9808	0,9812	0,9817	21	1,323	1,721	2,080	2,518
2,1	0,9821	0,9826	0,983	0,98		*	0,9842	0,9846	0,9850	0,9854	0,9857	22	1,321	1,717	2,074	2,508
2,2	0,9861	0,9864	0,986	0,98	871 - 0	,9875	0,9878	0,9881	0,9884	0,9887	0,9890	23	1,319	1,714	2,069	2,500
2,3	0,9893	0,9896	0,989	8 0,99	901 0	,9904	0,9906	0,9909	0,9911	0,9913	0,9916	24	1,318	1,711	2,064	2,492
2,4	0,9918	0,9920	0,992	2 0,99	925 0	,9927	0,9929	0,9931	0,9932	0,9934	0,9936	25	1,316	1,708	2,060	2,485
2,5	0,9938	0,9940	0,994	1 0,99	943 0	,9945	0,9946	0,9948	0,9949	0,9951	0,9952	26	1,315	1,706	2,056	2,479
2,6	0,9953	0,9955	0,995	6 0,99	957 0	,9959	0,9960	0,9961	0,9962	0,9963	0,9964	27	1,314	1,703	2,052	2,473
2,7	0,9965	0,9966	0,996	70,99	968 0	,9969	0,9970	0,9971	0,9972	0,9973	0,9974	28	1,313	1,701	2,048	2,467
2,8	0,9974	0,9975	0,997	6 0,99	977 - 0	,9977	0,9978	0,9979	0,9979	0,9980	0,9981	29	1,311	1,699	2,045	2,462
2,9	0,9981	0,9982	0,998	0,99	983 - 0	,9984	0,9984	0,9985	0,9985	0,9986	0,9986	30	1,310	1,697	2,042	2,457
3,0	0,9987	0,9987	0,998	7 0,99	988 0	,9988	0,9989	0,9989	0,9989	0,9990	0,9990	∞	1,282	1,645	1,960	2,326
							Dis	stribución Chi-C	Suadrado $c_{I\!\!P}$	(ν)						
$\frac{\nu}{1}$	c _{0,005} 0,000	$c_{0,001} = 0,000$	$\frac{c_{0,025}}{0,001}$	c _{0,05} 0,004	$c_{0,1} = 0.016$	$c_{0,2} = 0.064$	$c_{0,3} = 0.148$	$c_{0,4} = 0.275$	$c_{0,6} = 0.708$	$\frac{c_{0,7}}{1,074}$	$\frac{c_{0,8}}{1,642}$	$c_{0,9}$ $2,706$	$c_{0,95}$ $3,841$	$c_{0,975} = 5,024$	c _{0,99} 6,635	c _{0,995} 7,879
2	0,010	0,002	0,051	0,103	0,211	0,446	0,713	1,022	1,833	2,408	3,219	4,605	5,991	7,378	9,210	10,597
3	0,072 $0,207$	0,024 $0,091$	0,216 $0,484$	0,352 $0,711$	0,584 $1,064$	1,005 1,649	1,424 $2,195$	1,869 2,753	$^{2,946}_{4,045}$	3,665 $4,878$	4,642 $5,989$	6,251 $7,779$	7,815 9,488	9,348 11,143	11,345 $13,277$	12,838 14,860
5	0,412	0,210	0,831	1,145	1,610	2,343	3,000	3,655	5,132	6,064	7,289	9,236	11,070	12,833	15,086	16,750
6 7	$0,676 \\ 0,989$	$0,381 \\ 0,598$	$^{1,237}_{1,690}$	$^{1,635}_{2,167}$	$^{2,204}_{2,833}$	$3,070 \\ 3,822$	$3,828 \\ 4,671$	$^{4,570}_{5,493}$	$^{6,211}_{7,283}$	$7,231 \\ 8,383$	$8,558 \\ 9,803$	$10,645 \\ 12,017$	12,592 $14,067$	14,449 $16,013$	16,812 $18,475$	18,548 $20,278$
8	1,344 1,735	0,857 $1,152$	2,180 $2,700$	2,733 $3,325$	3,490 4,168	4,594 5,380	5,527 6,393	6,423 $7,357$	8,351 $9,414$	9,524 $10,656$	11,030 $12,242$	13,362 $14,684$	15,507 16,919	17,535 $19,023$	20,090 21,666	21,955 $23,589$
10	2,156	1,479	3,247	3,940	4,865	6,179	7,267	8,295	10,473	11,781	13,442	15,987	18,307	20,483	23,209	25,188
11 12	2,603 3,074	$^{1,834}_{2,214}$	3,816 $4,404$	4,575 $5,226$	5,578 $6,304$	6,989 7,807	8,148 9,034	9,237 $10,182$	11,530 $12,584$	12,899 $14,011$	14,631 $15,812$	17,275 $18,549$	19,675 21,026	21,920 23,337	24,725 $26,217$	26,757 $28,300$
13	3,565	2,617	5,009	5,892	7,042	8,634	9,926	11,129	13,636	15,119	16,985	19,812	22,362	24,736	27,688	29,819
14 15	4,075 $4,601$	$3,041 \\ 3,483$	5,629 $6,262$	6,571 $7,261$	7,790 8,547	9,467 10,307	10,821 $11,721$	12,078 $13,030$	14,685 $15,733$	16,222 $17,322$	18,151 $19,311$	21,064 $22,307$	23,685 24,996	26,119 27,488	29,141 30,578	31,319 $32,801$
16	5,142	3,942	6,908	7,962	9,312	11,152	12,624	13,983	16,780	18,418	20,465	23,542	26,296	28,845	32,000	34,267
17 18	5,697 $6,265$	4,416 $4,905$	$7,564 \\ 8,231$	8,672 $9,390$	10,085 $10,865$	12,002 12,857	13,531 $14,440$	14,937 $15,893$	17,824 $18,868$	19,511 $20,601$	21,615 $22,760$	24,769 $25,989$	27,587 $28,869$	30,191 31,526	33,409 34,805	35,718 $37,156$
19 20	6,844 7,434	5,407 $5,921$	8,907 9,591	10,117 $10,851$	$11,651 \\ 12,443$	13,716 14,578	15,352 $16,266$	16,850 17,809	19,910 20,951	21,689 22,775	23,900 25,038	27,204 $28,412$	30,144 31,410	32,852 34,170	36,191 37,566	38,582 39,997
21	8,034	6,447	10,283	11,591	13,240	15,445	17,182	18,768	21,991	23,858	26,171	29,615	32,671	35,479	38,932	41,401
22 23	8,643 9,260	6,983 7,529	10,982 11,689	12,338 13,091	14,041 $14,848$	16,314 17,187	18,101 $19,021$	19,729 $20,690$	23,031 24,069	24,939 $26,018$	27,301 28,429	30,813 $32,007$	33,924 35,172	36,781 38,076	40,289 41,638	42,796 $44,181$
24	9,886	8,085	12,401	13,848	15,659	18,062	19,943	21,652	25,106	27,096	29,553	33,196	36,415	39,364	42,980	45,559
25 26	10,520 $11,160$	8,649 $9,222$	13,120 $13,844$	14,611 $15,379$	16,473 $17,292$	18,940 19,820	20,867 $21,792$	22,616 $23,579$	26,143 $27,179$	28,172 $29,246$	30,675 $31,795$	34,382 $35,563$	37,652 38,885	40,646 $41,923$	44,314 $45,642$	46,928 $48,290$
27	11,808	9,803	14,573	16,151	18,114	20,703	22,719	24,544	28,214	30,319	32,912	36,741	40,113	43,195	46,963	49,645
28 29	12,461 $13,121$	10,391 10,986	15,308 16,047	16,928 $17,708$	18,939 19,768	21,588 22,475	23,647 $24,577$	25,509 $26,475$	29,249 $30,283$	31,391 $32,461$	34,027 $35,139$	37,916 $39,087$	41,337 $42,557$	44,461 $45,722$	48,278 49,588	50,993 52,336
30	13,787	11,588	16,791	18,493	20,599	23,364	25,508	27,442	31,316	33,530	36,250	40,256	43,773	46,979	50,892	53,672
40 50	20,707 $27,991$	17,916 $24,674$	24,433 $32,357$	26,509 $34,764$	29,051 $37,689$	32,345 $41,449$	34,872 $44,313$	37,134 $46,864$	41,622 $51,892$	44,165 $54,723$	47,269 $58,164$	51,805 $63,167$	55,758 $67,505$	59,342 $71,420$	63,691 76,154	66,766 $79,490$
60	35,534	31,738	40,482	43,188	46,459	50,641	53,809	56,620	62,135	65,227	68,972	74,397	79,082	83,298	88,379	91,952
70 80	43,275 $51,172$	39,036 $46,520$	48,758 $57,153$	51,739 $60,391$	55,329 $64,278$	59,898 69,207	63,346 $72,915$	66,396 $76,188$	72,358 $82,566$	75,689 $86,120$	79,715 $90,405$	85,527 $96,578$	90,531 $101,879$	95,023 $106,629$	100,425 $112,329$	104,215 $116,321$
90 100	59,196 67,328	54,155 $61,918$	65,647 $74,222$	69,126 77,929	73,291 82,358	78,558 87,945	82,511 $92,129$	85,993 95,808	92,761 $102,946$	96,524 $106,906$	101,054 111,667	107,565 $118,498$	113,145 $124,342$	118,136 $129,561$	124,116 135,807	128,299 $140,169$
100	01,320	01,010	. 4,222	.1,323	02,300	01,340	52,129	20,000	102,540	100,500	111,007	110,400	124,342	123,301	100,007	140,109

Percentiles p Distribución Fisher: $F_p(df_1, df_2)$

```
qf(p = 0.950, df1, df2):
         df2=1
                df2=2
                        df2=3
                                df2=4
                                        df2=5
                                               df2=6
                                                       df2=7
                                                               df2=8
                                                                       df2=9 df2=10 df2=11 df2=12 df2=13 df2=14 df2=15
df1=1
                18.51
                        10.13
                                 7.71
                                         6.61
                                                 5.99
                                                        5.59
                                                                5.32
                                                                        5.12
                                                                                4.96
                                                                                        4.84
                                                                                               4.75
                                                                                                       4.67
                                                                                                                       4.54
       161.45
                                                                                                               4.60
                                                 5.14
                                                         4.74
                                                                                        3.98
                                                                                                                3.74
                                                                                                                       3.68
       199.50
                19.00
                                 6.94
                                         5.79
                                                                4.46
                                                                        4.26
                                                                                4.10
                                                                                                3.89
                                                                                                       3.81
df1=2
                         9.55
df1=3
       215.71
                19.16
                         9.28
                                 6.59
                                         5.41
                                                 4.76
                                                         4.35
                                                                4.07
                                                                        3.86
                                                                                3.71
                                                                                        3.59
                                                                                                3.49
                                                                                                       3.41
                                                                                                                3.34
                                                                                                                       3.29
                                 6.39
                                                                3.84
                                                                        3.63
                                                                                        3.36
df1=4
       224.58
                19.25
                         9.12
                                         5.19
                                                 4.53
                                                         4.12
                                                                                3.48
                                                                                                3.26
                                                                                                       3.18
                                                                                                                3.11
                                                                                                                       3.06
df1=5
       230.16
                19.30
                         9.01
                                 6.26
                                         5.05
                                                 4.39
                                                         3.97
                                                                3.69
                                                                        3.48
                                                                                3.33
                                                                                        3.20
                                                                                               3.11
                                                                                                       3.03
                                                                                                                2.96
                                                                                                                       2.90
df1=6
       233.99
                19.33
                         8.94
                                 6.16
                                         4.95
                                                 4.28
                                                         3.87
                                                                3.58
                                                                        3.37
                                                                                3.22
                                                                                        3.09
                                                                                                3.00
                                                                                                       2.92
                                                                                                                2.85
                                                                                                                       2.79
       236.77
                                                 4.21
                                                         3.79
                                                                3.50
                                                                        3.29
                                                                                                2.91
                                                                                                                2.76
df1=7
                19.35
                         8.89
                                 6.09
                                         4.88
                                                                                3.14
                                                                                        3.01
                                                                                                       2.83
                                                                                                                       2.71
       238.88
                         8.85
                                 6.04
                                         4.82
                                                         3.73
                                                                3.44
                                                                        3.23
                                                                                        2.95
                                                                                                2.85
                                                                                                       2.77
                                                                                                                2.70
df1=8
                19.37
                                                 4.15
                                                                                3.07
                                                                                                                       2.64
df1=9
       240.54
                19.38
                         8.81
                                 6.00
                                         4.77
                                                 4.10
                                                         3.68
                                                                3.39
                                                                        3.18
                                                                                3.02
                                                                                        2.90
                                                                                                2.80
                                                                                                       2.71
                                                                                                                2.65
                                                                                                                       2.59
df1=10 241.88
                19.40
                         8.79
                                 5.96
                                         4.74
                                                 4.06
                                                         3.64
                                                                3.35
                                                                        3.14
                                                                                2.98
                                                                                        2.85
                                                                                                2.75
                                                                                                       2.67
                                                                                                                2.60
                                                                                                                       2.54
df1=11 242.98
                19.40
                         8.76
                                 5.94
                                         4.70
                                                 4.03
                                                         3.60
                                                                3.31
                                                                        3.10
                                                                                2.94
                                                                                        2.82
                                                                                                2.72
                                                                                                       2.63
                                                                                                                2.57
                                                                                                                       2.51
                                                                3.28
df1=12 243.91
                19.41
                         8.74
                                 5.91
                                         4.68
                                                 4.00
                                                         3.57
                                                                        3.07
                                                                                2.91
                                                                                        2.79
                                                                                                2.69
                                                                                                       2.60
                                                                                                               2.53
                                                                                                                       2.48
df1=13 244.69
                19.42
                         8.73
                                 5.89
                                         4.66
                                                 3.98
                                                         3.55
                                                                3.26
                                                                        3.05
                                                                                2.89
                                                                                        2.76
                                                                                               2.66
                                                                                                       2.58
                                                                                                                2.51
                                                                                                                       2.45
df1=14 245.36
                19.42
                         8.71
                                 5.87
                                         4.64
                                                 3.96
                                                         3.53
                                                                3.24
                                                                        3.03
                                                                                2.86
                                                                                        2.74
                                                                                                2.64
                                                                                                       2.55
                                                                                                                2.48
                                                                                                                       2.42
df1=15 245.95
                19.43
                         8.70
                                 5.86
                                         4.62
                                                 3.94
                                                         3.51
                                                                3.22
                                                                        3.01
                                                                                2.85
                                                                                        2.72
                                                                                                2.62
                                                                                                       2.53
                                                                                                                2.46
                                                                                                                       2.40
df1=16 246.46
                19.43
                         8.69
                                 5.84
                                         4.60
                                                 3.92
                                                         3.49
                                                                3.20
                                                                        2.99
                                                                                2.83
                                                                                        2.70
                                                                                                2.60
                                                                                                       2.51
                                                                                                               2.44
                                                                                                                       2.38
df1=17 246.92
                19.44
                         8.68
                                 5.83
                                         4.59
                                                 3.91
                                                         3.48
                                                                3.19
                                                                        2.97
                                                                                2.81
                                                                                        2 69
                                                                                               2.58
                                                                                                       2.50
                                                                                                                2.43
                                                                                                                       2.37
df1=18 247.32
                19.44
                         8.67
                                 5.82
                                         4.58
                                                 3.90
                                                         3.47
                                                                3.17
                                                                        2.96
                                                                                2.80
                                                                                        2.67
                                                                                                2.57
                                                                                                       2.48
                                                                                                               2.41
                                                                                                                       2.35
df1=19 247.69
                19.44
                         8.67
                                 5.81
                                         4.57
                                                 3.88
                                                         3.46
                                                                3.16
                                                                        2.95
                                                                                2.79
                                                                                        2.66
                                                                                               2.56
                                                                                                       2.47
                                                                                                                2.40
                                                                                                                       2.34
df1=20 248.01
                19.45
                         8.66
                                 5.80
                                         4.56
                                                 3.87
                                                         3.44
                                                                3.15
                                                                        2.94
                                                                                2.77
                                                                                        2.65
                                                                                                2.54
                                                                                                       2.46
                                                                                                               2.39
                                                                                                                       2.33
df1=21 248.31
                19.45
                         8.65
                                 5.79
                                         4.55
                                                 3.86
                                                         3.43
                                                                3.14
                                                                        2.93
                                                                                2.76
                                                                                        2.64
                                                                                               2.53
                                                                                                       2.45
                                                                                                                2.38
                                                                                                                       2.32
                                 5.79
                                         4.54
df1=22 248.58
                19.45
                         8.65
                                                 3.86
                                                         3.43
                                                                3.13
                                                                        2.92
                                                                                2.75
                                                                                        2.63
                                                                                                2.52
                                                                                                       2.44
                                                                                                                2.37
df1=23 248.83
                19.45
                         8.64
                                 5.78
                                         4.53
                                                 3.85
                                                         3.42
                                                                3.12
                                                                        2.91
                                                                                2.75
                                                                                        2.62
                                                                                               2.51
                                                                                                       2.43
                                                                                                                2.36
                                                                                                                       2.30
df1=24 249.05
                19.45
                         8.64
                                 5.77
                                         4.53
                                                 3.84
                                                         3.41
                                                                3.12
                                                                        2.90
                                                                                2.74
                                                                                        2.61
                                                                                                2.51
                                                                                                       2.42
                                                                                                               2.35
                                                                                                                       2.29
df1=25 249.26
                19.46
                         8.63
                                 5.77
                                                 3.83
                                                         3.40
                                                                3.11
                                                                        2.89
                                                                                2.73
                                                                                        2.60
                                                                                                2.50
                                                                                                       2.41
                                         4.52
                                                                                                                2.34
                                 5.76
                                                         3.40
df1=26 249.45
                19.46
                         8.63
                                         4.52
                                                 3.83
                                                                3.10
                                                                        2.89
                                                                                2.72
                                                                                        2.59
                                                                                                2.49
                                                                                                       2.41
                                                                                                               2.33
                                                                                                                       2.27
df1=27 249.63
                         8.63
                                 5.76
                                                 3.82
                                                         3.39
                                                                3.10
                                                                        2.88
                                                                                2.72
                                                                                        2.59
                                                                                                2.48
                                                                                                       2.40
                                                                                                                2.33
                                                                                                                       2.27
                19.46
                                         4.51
                                 5.75
                                                         3.39
                                                                3.09
                                                                        2.87
                                                                                        2.58
                                                                                                2.48
                                                                                                       2.39
                                                                                                                2.32
df1=28 249.80
                19.46
                         8.62
                                         4.50
                                                 3.82
                                                                                2.71
                                                                                                                       2.26
df1=29 249.95
                         8.62
                                         4.50
                                                 3.81
                                                         3.38
                                                                3.08
                                                                        2.87
                                                                                2.70
                                                                                        2.58
                                                                                                2.47
                                                                                                       2.39
                                                                                                               2.31
                                                                                                                       2.25
                19.46
                                 5.75
                                                                                               2.47
                                                                                                       2.38
                                                                                                               2.31
df1=30 250.10
                19.46
                         8.62
                                 5.75
                                         4.50
                                                 3.81
                                                         3.38
                                                                3.08
                                                                        2.86
                                                                                2.70
                                                                                        2.57
       df2=16 df2=17 df2=18 df2=19 df2=20 df2=21
                                                      df2=22 df2=23 df2=24 df2=25 df2=26
                                                                                             df2=27 df2=28 df2=29 df2=30
df1=1
                 4.45
                                         4.35
                                                         4.30
                                                                4.28
                                                                        4.26
                         4.41
                                 4.38
                                                 4.32
                                                                                4.24
                                                                                        4.23
                                                                                               4.21
                                                                                                       4.20
                                                                                                               4.18
df1=2
          3.63
                 3.59
                         3.55
                                 3.52
                                         3.49
                                                 3.47
                                                         3.44
                                                                3.42
                                                                        3.40
                                                                                3.39
                                                                                        3.37
                                                                                                3.35
                                                                                                       3.34
df1=3
          3.24
                 3.20
                         3.16
                                 3.13
                                         3.10
                                                 3.07
                                                         3.05
                                                                3.03
                                                                        3.01
df1=4
                 2.96
                         2.93
                                                 2.84
                                                                2.80
                                                                        2.78
                                                                                2.76
                                                                                        2.74
                                                                                                       2.71
df1=5
                 2.81
                         2.77
                                 2.74
                                         2.71
                                                 2.68
                                                         2.66
                                                                2.64
                                                                        2.62
                                                                                                                2.55
df1=6
          2.74
                 2.70
                         2.66
                                 2.63
                                         2.60
                                                 2.57
                                                         2.55
                                                                2.53
                                                                        2.51
                                                                                2.49
                                                                                        2.47
                                                                                                2.46
                                                                                                       2.45
                                                                                                                2.43
          2.66
                 2.61
                         2.58
                                         2.51
                                                 2.49
                                                         2.46
                                                                2.44
                                                                        2.42
                                                                                2.40
                                                                                                       2.36
df1=8
          2.59
                 2.55
                         2.51
                                 2.48
                                         2.45
                                                 2.42
                                                         2.40
                                                                2.37
                                                                        2.36
                                                                                2.34
                                                                                        2.32
                                                                                                2.31
                                                                                                                2.28
                 2.49
                         2.46
                                                 2.37
                                                                2.32
df1=10
          2.49
                 2.45
                         2.41
                                 2.38
                                         2.35
                                                 2.32
                                                         2.30
                                                                2.27
                                                                        2.25
                                                                                2.24
                                                                                        2.22
                                                                                                2.20
                                                                                                       2.19
                                                                                                                2.18
df1=11
                 2.41
                         2.37
                                                                2.24
                                                                        2.22
                                                                                                       2.15
          2.46
                                 2.34
                                         2.31
                                                 2.28
                                                         2.26
                                                                                2.20
                                                                                        2.18
                                                                                                2.17
                                                                                                                2.14
                                                                                                                       2.13
         2.42
                 2.38
                         2.34
                                 2.31
                                                 2.25
                                                         2.23
                                                                2.20
                                                                        2.18
df1=12
                                         2.28
                                                                                2.16
                                                                                        2.15
                                                                                                2.13
                                                                                                       2.12
                                                                                                                2.10
df1=13
         2.40
                 2.35
                         2.31
                                 2.28
                                         2.25
                                                 2.22
                                                         2.20
                                                                2.18
                                                                        2.15
                                                                                2.14
                                                                                               2.10
                                                                                                       2.09
                                                                                                               2.08
                                                                                        2.12
                                                                                                                       2.06
                                                                        2.13
df1=14
          2.37
                 2.33
                         2.29
                                 2.26
                                         2.22
                                                 2.20
                                                         2.17
                                                                2.15
                                                                                2.11
                                                                                        2.09
                                                                                                2.08
                                                                                                       2.06
                                                                                                                2.05
df1=15
         2.35
                 2.31
                         2.27
                                 2.23
                                         2.20
                                                 2.18
                                                         2.15
                                                                2.13
                                                                        2.11
                                                                                2.09
                                                                                        2.07
                                                                                                2.06
                                                                                                       2.04
                                                                                                               2.03
                                                                                                                       2.01
         2.33
                 2.29
                         2.25
                                 2.21
                                                                                2.07
                                                                                        2.05
                                                                                                2.04
                                                                                                       2.02
                                                                                                                2.01
                                                                                                                       1.99
df1=16
                                         2.18
                                                 2.16
                                                         2.13
                                                                2.11
                                                                        2.09
                                                 2.14
                                                                                               2.02
                 2.27
                         2.23
                                                         2.11
df1=17
         2.32
                                 2.20
                                         2.17
                                                                2.09
                                                                        2.07
                                                                                2.05
                                                                                        2.03
                                                                                                       2.00
                                                                                                                1.99
                                                                                                                       1.98
                         2.22
                                                                2.08
                                                                        2.05
df1=18
         2.30
                 2.26
                                 2.18
                                         2.15
                                                 2.12
                                                         2.10
                                                                                2.04
                                                                                        2.02
                                                                                                2.00
                                                                                                       1.99
                                                                                                                1.97
                                                                                                                       1.96
                                                                                                       1.97
df1=19
         2.29
                 2.24
                         2.20
                                 2.17
                                         2.14
                                                 2.11
                                                         2.08
                                                                2.06
                                                                        2.04
                                                                                2.02
                                                                                        2.00
                                                                                                1.99
                                                                                                                1.96
                                                                                                                       1.95
         2.28
                 2.23
                         2.19
                                                         2.07
                                                                2.05
                                                                        2.03
                                                                                                1.97
                                                                                                       1.96
                                                                                                                1.94
df1=20
                                 2.16
                                         2.12
                                                 2.10
                                                                                2.01
                                                                                        1.99
                                                                                                                       1.93
df1=21
         2.26
                 2.22
                         2.18
                                 2.14
                                         2.11
                                                 2.08
                                                         2.06
                                                                2.04
                                                                        2.01
                                                                                2.00
                                                                                        1.98
                                                                                                1.96
                                                                                                       1.95
                                                                                                                1.93
                                                                                                                       1.92
df1=22
         2.25
                 2.21
                         2.17
                                 2.13
                                         2.10
                                                 2.07
                                                         2.05
                                                                2.02
                                                                        2.00
                                                                                1.98
                                                                                        1.97
                                                                                                1.95
                                                                                                       1.93
                                                                                                               1.92
                                                                                                                       1.91
df1=23
         2.24
                 2.20
                         2.16
                                                 2.06
                                                         2.04
                                                                2.01
                                                                        1.99
                                                                                1.97
                                                                                                       1.92
                                 2.12
                                         2.09
                                                                                        1.96
                                                                                               1.94
                                                                                                                1.91
                                                                                                                       1.90
                                                 2.05
                                                         2.03
                                                                        1.98
                                                                                        1.95
                                                                                                1.93
                                                                                                       1.91
                                                                                                                1.90
df1=24
         2.24
                 2.19
                         2.15
                                 2.11
                                         2.08
                                                                2.01
                                                                                1.96
                                                                                                                       1.89
         2.23
                                                 2.05
df1=25
                 2.18
                         2.14
                                         2.07
                                                         2.02
                                                                2.00
                                                                        1.97
                                                                                        1.94
                                                                                                1.92
                                                                                                       1.91
                                                                                                                1.89
                                 2.11
                                                                                1.96
                                                                                                                       1.88
df1=26
         2.22
                 2.17
                         2.13
                                         2.07
                                                 2.04
                                                         2.01
                                                                1.99
                                                                        1.97
                                                                                1.95
                                                                                        1.93
                                                                                                1.91
                                                                                                       1.90
                                                                                                                1.88
                                                                                                                       1.87
                                 2.10
                                                 2.03
df1=27
         2.21
                 2.17
                         2.13
                                 2.09
                                         2.06
                                                         2.00
                                                                1.98
                                                                        1.96
                                                                                1.94
                                                                                        1.92
                                                                                                1.90
                                                                                                       1.89
                                                                                                                1.88
                                                                                                                       1.86
df1=28
         2.21
                 2.16
                         2.12
                                 2.08
                                         2.05
                                                 2.02
                                                         2.00
                                                                1.97
                                                                        1.95
                                                                                1.93
                                                                                        1.91
                                                                                                1.90
                                                                                                       1.88
                                                                                                               1.87
                                                                                                                       1.85
df1=29
         2.20
                 2.15
                         2.11
                                 2.08
                                         2.05
                                                 2.02
                                                         1.99
                                                                1.97
                                                                        1.95
                                                                                1.93
                                                                                        1.91
                                                                                                1.89
                                                                                                       1.88
                                                                                                                1.86
                                                                                                                       1.85
                         2.11
                                                 2.01
df1=30
                                 2.07
                                                         1.98
                                                                1.96
                                                                        1.94
                                                                                1.92
                                                                                        1.90
                                                                                                1.88
                                                                                                       1.87
                                                                                                                1.85
                                                                                                                       1.84
```

Propiedad:

Si
$$F \sim F(\mathsf{df}_1,\,\mathsf{df}_2)$$
, entonces $F_p(\mathsf{df}_1,\,\mathsf{df}_2) = \frac{1}{F_{1-p}(\mathsf{df}_2,\,\mathsf{df}_1)}$.

		C		F
Distribución	Densidad de Probabilidad	X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \dots, n$	u, p	$\mu X = n p$ $\sigma_X^2 = n p (1 - p)$ $M(t) = [p e^t + (1 - p)]^n, t \in \mathbb{R}$
Geométrica	$p (1-p)^{x-1}$	$x=1,2,\dots$	d	$M(t) = p e^{t} / [1 - (1 - p)/p^{2}]$ $M(t) = p e^{t} / [1 - (1 - p) e^{t}], t < -\ln(1 - p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x = r, r + 1, \dots$	r, p	$\mu X = r/p$ $\frac{\sigma_X^2 = r (1 - p)/p^2}{r (1 - p) (1 - p)} M(t) = \left\{ p e^t / [1 - (1 - p) e^t] \right\}^T, t < -\ln(1 - p)$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	7	$\mu X = \nu t$ $\sigma_X^2 = \nu t$ $M(t) = \exp \left[\lambda \left(e^t - 1 \right) \right], t \in \mathbb{R}$
Exponencial	7 e – 7 e e	0 ∧I 8	Ä	$\mu_X = 1/\nu$ $\sigma_X = 1/\nu^2$ $\sigma_X = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	О ЛІ в	r, '%	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k, t < \nu$
Normal	$\frac{1}{\sqrt{2\pi\sigma}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	8 V 8 V 8	μ , σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R}$
Log-Normal	$\frac{1}{\sqrt{2\pi}\left(\zetax\right)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	8 VI 0	s 'x	$\begin{split} \mu_X &= \exp\left(\lambda + \frac{1}{2}\zeta^2\right) \\ \sigma_X^2 &= \mu_X^2 \left(e^{\zeta^2} - 1\right) \\ E(X^r) &= e^{r\lambda}M_Z(r\zeta),\mathrm{con}Z\sim\mathrm{Normal}(0,1) \end{split}$
Uniforme	$\frac{1}{(b-a)}$	a	a, b	$\begin{split} \mu X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b^* - e^t a]/[t (b-a)], t \in \mathcal{R} \end{split}$
Beta	$\frac{1}{B(q,r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	a	q, r	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n}}{\binom{N}{n}}$	$\max\{0,n+m-N\}\leq x\leq \min\{n,m\}$	$N,\ m,\ n$	$\mu_X = n \stackrel{\mathcal{R}}{X}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \stackrel{\mathcal{R}}{Y} \left(1 - \frac{m}{Y}\right)$

Otras distribuciones

■ Si $T \sim \text{Weibull}(\eta, \beta)$, se tiene que

$$F_T(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right] \quad f_T(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right], \quad t > 0$$

Con $\beta > 0$, es un parámetro de forma y $\eta > 0$, es un parámetro de escala. Si t_p es el percentil $p \times 100 \,\%$, entonces

$$\ln(t_p) = \ln(\eta) + \frac{1}{\beta} \cdot \Phi_{\mathsf{Weibull}}^{-1}(p), \quad \Phi_{\mathsf{Weibull}}^{-1}(p) = \ln[-\ln(1-p)]$$

Mientras que su m-ésimo momento está dado por

$$E(T^m) = \eta^m \Gamma(1 + m/\beta)$$

$$\mu_T = \eta \Gamma\left(1 + \frac{1}{\beta}\right), \quad \sigma_T^2 = \eta^2 \left[\Gamma\left(1 + \frac{2}{\beta}\right) - \Gamma^2\left(1 + \frac{1}{\beta}\right)\right]$$

■ Si $Y \sim \text{Logística}(\mu, \sigma)$, se tiene que

$$F_Y(y) = \Phi_{\text{Logistica}}\left(\frac{y-\mu}{\sigma}\right); \qquad f_Y(y) = \frac{1}{\sigma}\,\phi_{\text{Logistica}}\left(\frac{y-\mu}{\sigma}\right), \quad -\infty < y < \infty$$

donde

$$\Phi_{\rm Logistica}(z) = \frac{\exp(z)}{[1+\exp(z)]} \quad {\rm y} \quad \phi_{\rm Logistica}(z) = \frac{\exp(z)}{[1+\exp(z)]^2}$$

son la función de probabilidad y de densidad de una Logística Estándar. $\mu \in \mathbb{R}$, es un parámetro de localización y $\sigma > 0$, es un parámetro de escala. Si y_p es el percentil $p \times 100 \%$, entonces

$$y_p = \mu + \sigma \, \Phi_{\mathsf{Logistica}}^{-1}(p) \quad \mathsf{con} \quad \Phi_{\mathsf{Logistica}}^{-1}(p) = \log \left(rac{p}{1-p}
ight)$$

Su esperanza y varianza están dadas por: $\mu_Y = \mu$ y $\sigma_Y^2 = \frac{\sigma^2 \, \pi^2}{3}$.

■ Si $T \sim \text{Log-Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_T(t) = \Phi_{\text{Logistica}}\left(\frac{\ln(t) - \mu}{\sigma}\right); \quad f_T(t) = \frac{1}{\sigma\,t}\,\phi_{\text{Logistica}}\left(\frac{\ln(t) - \mu}{\sigma}\right) \quad t > 0$$

Donde $\exp(\mu)$, es un parámetro de escala y $\sigma > 0$, es un parámetro de forma. Si t_p es el percentil $p \times 100 \%$, entonces

$$\ln(t_p) = \mu + \sigma \, \Phi_{\mathsf{Logistica}}^{-1}(p)$$

Para un entero m>0 se tiene que

$$E(T^m) = \exp(m \mu) \Gamma(1 + m \sigma) \Gamma(1 - m \sigma)$$

El m-ésimo momento no es finito si $m \sigma \geq 1$.

Para
$$\sigma < 1$$
: $\mu_T = \exp(\mu) \Gamma(1 + \sigma) \Gamma(1 - \sigma)$

y para
$$\sigma < 1/2$$
: $\sigma_T^2 = \exp(2\,\mu)\,\left[\Gamma(1+2\,\sigma)\,\Gamma(1-2\,\sigma) - \Gamma^2(1+\sigma)\,\Gamma^2(1-\sigma)\right]$

 \blacksquare Un variable aleatoria T tiene distribución t-student (ν) si su función de densidad está dada por:

$$f_T(t) = \frac{\Gamma[(\nu+1)/2]}{\sqrt{\pi \nu} \Gamma(\nu/2)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}, \quad -\infty < t < \infty$$

- $\mu_T = 0$, para $\nu > 1$.
- $\sigma_T^2 = \frac{\nu}{\nu 2}$, para $\mu > 2$.
- Si $T \sim \text{Fisher}(\eta, \nu)$, se tiene que

$$f_T(t) = \frac{\Gamma(\frac{\eta + \nu}{2})}{\Gamma(\eta/2)\Gamma(\nu/2)} \left(\frac{\eta}{\nu}\right)^{\frac{\eta}{2}} \frac{t^{\frac{\eta}{2} - 1}}{\left(\frac{\eta}{\nu} t + 1\right)^{\frac{\eta + \nu}{2}}}, \quad t > 0$$

- $\mu_T = \frac{\nu}{\nu 2}$, para $\nu > 2$.
- $\sigma_T^2=rac{2\,
 u^2\,(\eta+
 u-2)}{\eta\,(
 u-2)^2\,(
 u-4)},$ para u>4