Neural Networks

Machine Learning Techniques

Input Layer

 (x_1)

 (h_{12})

 (x_2)

 (h_{13})

Input Layer Hidden Layer-1 Hidden

Layer-2

Input Layer Hidden Layer-1 Hidden Layer-2

Input Layer Hidden Layer-1 Hidden Layer-2

Input Layer Hidden Layer-1 Hidden Layer-2

Input Layer Hidden Layer-1 Hidden Layer-2

Activation Functions

$$\mathsf{ReLU}(z) = \max(0,z)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Input Layer Hidden Layer-1 Hidden Layer-2

$$h_{11} = g(5x_1 + 3x_2 + 2)$$

$$\widehat{y} = g(2h_{21} - h_{22} + 3)$$

 $\langle x_2 \rangle$

 (h_{22})

Regression

$$L(y,\widehat{y}) = (y - \widehat{y})^2$$

Regression

$$L(y, \hat{y}) = (y - \hat{y})^2$$

Binary Classification

$$L(y, \widehat{y}) = -y \log \widehat{y} - (1-y) \log(1-\widehat{y})$$

Binary Cross Entropy Loss

Backward Pass

$$\pmb{\theta} = \left[w_{11}^1, \ \cdots, w_{11}^2, \ \cdots, w_{11}^3, \ \cdots, b_1^1, \ \cdots, b_1^3 \right]^T$$

Backward Pass

$$\pmb{\theta} = \left[w_{11}^1, \ \cdots, w_{11}^2, \ \cdots, w_{11}^3, \ \cdots, b_1^1, \ \cdots, b_1^3\right]^T$$

$$\pmb{\theta}^{t+1} = \pmb{\theta}^t - \alpha \cdot \underbrace{\nabla \Bigg[\sum_{i=1}^n L(y_i, \widehat{y}_i) \Bigg]}_{\text{Backpropagation}}$$

Softmax ACtivation

$$\widehat{y}_1 = \frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}}$$

$$\widehat{y}_2 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}$$

$$\hat{y}_3 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}$$

Softmax Activation

$$\widehat{\boldsymbol{y}}_1 = \frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [1 \ 0 \ 0]^T \mid \mathbf{x})$$

$$\widehat{y}_2 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [0 \ 1 \ 0]^T \mid \mathbf{x})$$

$$\widehat{y}_3 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [0 \ 0 \ 1]^T \mid \mathbf{x})$$

Softmax Activation

one-hot-encoding
$$\widehat{y}_1 = \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}} = P\big(\mathbf{y}=[1 \quad 0 \quad 0]^T \mid \mathbf{x}\big)$$

$$\widehat{y}_2 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [0 \ 1 \ 0]^T \mid \mathbf{x})$$

$$\widehat{y}_3 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [0 \ 0 \ 1]^T \mid \mathbf{x})$$

Softmax Activation

one-hot-encoding
$$\widehat{y}_1 = \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}} = P\big(\mathbf{y}=[1 \quad 0 \quad 0]^T \mid \mathbf{x}\big)$$

$$\widehat{y}_2 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [0 \ 1 \ 0]^T \mid \mathbf{x})$$

$$\widehat{y}_3 = \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}} = P(\mathbf{y} = [0 \ 0 \ 1]^T \mid \mathbf{x})$$

Categorical Distribution (tossing a 3-sided dice)

Categorical Cross Entropy

$$L(\widehat{\mathbf{y}},\mathbf{y}) = -y_1 \log_2(\widehat{\boldsymbol{y}}_1) - y_2 \log_2(\widehat{\boldsymbol{y}}_2) - y_3 \log(\widehat{\boldsymbol{y}}_3)$$

Categorical Cross Entropy

$$L(\widehat{\mathbf{y}},\mathbf{y}) = -y_1 \log_2(\widehat{\boldsymbol{y}}_1) - y_2 \log_2(\widehat{\boldsymbol{y}}_2) - y_3 \log(\widehat{\boldsymbol{y}}_3)$$

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \widehat{\mathbf{y}} = \begin{bmatrix} 0.2 \\ 0.3 \\ 0.5 \end{bmatrix}$$

Categorical Cross Entropy

$$L(\widehat{\mathbf{y}},\mathbf{y}) = \, -\, y_1 \log_2(\widehat{\boldsymbol{y}}_1) - y_2 \log_2(\widehat{\boldsymbol{y}}_2) - y_3 \log(\widehat{\boldsymbol{y}}_3)$$

$$\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \widehat{\mathbf{y}} = \begin{bmatrix} 0.2 \\ 0.3 \\ 0.5 \end{bmatrix}$$

$$\begin{split} L(\widehat{\mathbf{y}}, \mathbf{y}) &= -0 \times \log_2(0.2) - 1 \times \log_2(0.3) - 0 \log(0.5) \\ &= -\log_2(0.3) \\ &= 1.73 \end{split}$$

Data, Algorithm, Computation

Data, Algorithm, Computation

Large (Labelled) Datasets

<u>ImageNet</u>

14 million images

Data, Algorithm, Computation

Data, Algorithm, Computation

MLT

Model building:

- **Given** a feature matrix \rightarrow X, train:
 - Linear Regression
 - Logistic Regression
 - SVM
 - Random Forest
 - AdaBoost
- Choose the best model by cross validation

Model building:

- **Given** a feature matrix \rightarrow X, train:
 - Linear Regression
 - Logistic Regression
 - SVM
 - Random Forest
 - AdaBoost
- Choose the best model by cross validation

Business Understanding <u>CRISP-DM</u>: **CR**oss-Industry **S**tandard **P**rocess for **D**ata-Mining

<u>Source</u>: Chapter-2, Trustworthy Machine Learning

<u>Source</u>: Chapter-2, Trustworthy Machine Learning

<u>Source</u>: Chapter-2, Trustworthy Machine Learning

