TAS

Cours 03 - Lambda-Calcul: Polymorphisme

Romain Demangeon

TAS - M2 STL

03/10/2024

Rappels

ightharpoonup Règles de sémantique de λ :

$$(\beta) \frac{M \longrightarrow M'}{\lambda x.M \ N \longrightarrow M[N/x]} \qquad (\mu_1) \frac{M \longrightarrow M'}{M \ N \longrightarrow M' \ N}$$
$$(\mu_2) \frac{N \longrightarrow N'}{M \ N \longrightarrow M \ N'} \qquad (\xi) \frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'}$$

Règles de typage de λ_{ST} :

$$(\mathbf{Var}) \frac{\Gamma, x : T \vdash x : T}{\Gamma, x : T \vdash x : T}$$

$$(\mathbf{Abs}) \frac{\Gamma, x : T \vdash M : S}{\Gamma \vdash \lambda x . M : T \to S}$$

$$(\mathbf{App}) \frac{\Gamma \vdash M : S \to T \qquad \Gamma \vdash N : S}{\Gamma \vdash M N : T}$$

Inférence de λ_{ST} : Génération d'équations

(dans la suite t_i variable et T type)

- Jugement initial à partir du terme à typer M_0 et d'une première variable (but) T_0 : $\Gamma \vdash M_0 : t_0$
- Le système de types est dirigé par la syntaxe : à chaque étape, une seule règle applicable.
- ightharpoonup Cas $\Gamma \vdash \lambda x.M : T$
 - ightharpoonup on crée deux nouvelles variables t_k et t_m
 - ▶ on génère les équations de Γ , x : $t_k \vdash M$: t_m
 - on ajoute l'équation $T = t_k \rightarrow t_m$
- ightharpoonup Cas $\Gamma \vdash M \ N : T$
 - on crée une nouvelle variable t_k
 - ▶ on génère les équations de $\Gamma \vdash M : t_k \rightarrow T$
 - ▶ on génère les équations de $\Gamma \vdash N : t_k$
 - on fait l'union des deux ensembles d'équations.
- ightharpoonup Cas $\Gamma \vdash x : T$
 - ightharpoonup on cherche si χ: T' appartient à Γ
 - ightharpoonup si oui on produit une unique équation T' = T
 - si non, on échoue (le terme n'est pas typable).
 (il nous manque une information sur une variable libre)

Inférence de λ_{ST} : Unification

- Signature : liste de symboles de fonctions avec leur arité.
- ► Terme : arbre syntaxique contenant des variables et des symboles de fonctions (ou constantes)
- ► Terme clos: terme sans variable.
- Algèbre de termes: ensembles de tous les termes définis inductivement¹ depuis une signature et un ensemble (infini) de variables.
- Exemple
 - ▶ signature : $\Sigma_1 = \{(Z,0), (S,1)\}$
 - \triangleright Z est un terme clos de Σ_1
 - \triangleright x est un terme de Σ_1
 - ► S(S(S(Z))) est un terme clos de Σ_1
 - ► S(y) est un terme de Σ_1
- Exemple
 - ightharpoonup signature : $\Sigma_2 = \{(Z,0), (S,1), (+,2), (.,2)\}$
 - ► S(S(S(Z))) est un terme clos de Σ_2
 - \blacktriangleright +(.(Z, S(Z)), S(S(S(Z)))) est un terme clos de Σ_2
 - \blacktriangleright +(.(y, S(Z)), S(S(x))) est un terme de Σ_2

¹plus petit point fixe de Knaster-Tarski.

Inférence de λ_{ST} : Unification (II)

- Exemple
 - ightharpoonup signature : $\Sigma_3 = \{(\rightarrow, 2)\}$
 - t₁ → (t₂ → t₁) est un terme de Σ₃.
 - ightharpoonup il n'existe pas de termes clos sur ightharpoonup3.

Inférence de λ_{ST} : Unification (II)

Exemple

- ightharpoonup signature : $\Sigma_3 = \{(\rightarrow, 2)\}$
- $ightharpoonup t_1
 ightarrow (t_2
 ightarrow t_1)$ est un terme de Σ_3 .
- large il n'existe pas de termes clos sur Σ_3 .
- $ightharpoonup \Sigma_3$ est la signature des types de λ_{ST} .

Exemple:

- on veut définir les termes du λ -calcul pur,
- on génère les termes de la signature $\{(App, 2), (\lambda, 2)\}$
- ▶ on se restreint aux termes tels que, pour tout noeud $\lambda(M_1, M_2)$, M_1 est une variable.
- une équation est un couple de termes (sur la même signature)
 - ightharpoonup par exemple : $S_1 = (x + (y.SSZ), Z + v)$
 - ightharpoonup par exemple : $S_2=(t_1
 ightarrow t_2, (t_2
 ightarrow t_2)
 ightarrow t_3)$

Inférence de λ_{ST} : Unification (III)

- un système est un ensemble d'équations :
 - **par exemple** : $\{(y, S(x)), (x + (y.SSZ), Z + v)\}$
 - ightharpoonup par exemple : $\{(t_1 \rightarrow t_2, (t_2 \rightarrow t_2) \rightarrow t_3)\}$
- un substitution est une fonction des variables dans les termes qui est l'identité presque partout.
 - **par exemple** : σ_1 définie par $x \mapsto SSZ, y \mapsto Z$ (et l'identité ailleurs)
 - ▶ par exemple : σ_2 définie par $x \mapsto Z, v \mapsto (SZ.SSZ), y \mapsto SZ$
 - **par exemple** : σ_3 définie par $t_1\mapsto (t_2\to t_2), t_3\mapsto t_2$
 - **p** par exemple : σ_3 définie par $t_1\mapsto (t_2\to t_2), t_3\mapsto t_2, t_2\mapsto t_8\to t_8$
- un unifieur (ou solution) d'un système $(T_i, S_i)_{i \in I}$ est une substitution σ telle que pour chaque équation (T_i, S_i) , $\sigma(T_i) = \sigma(S_i)$.
 - $\sigma(T)$ est le terme obtenu en remplaçant dans T chaque variable par son image par σ
 - $ightharpoonup \sigma_1$ n'est pas un unifieur de S_1
 - \triangleright σ_2 est un unifieur de S_1
 - $ightharpoonup \sigma_3$ est un unifieur de S_2
 - $ightharpoonup \sigma_4$ est un unifieur de S_2

Inférence de λ_{ST} : Unification (IV)

- un unifieur σ_0 (d'un système donné) est plus général qu'un unifieur σ_1 quand il existe σ_2 tel que $\sigma_1 = \sigma_0 \circ \sigma_2$
 - **par exemple** : σ_3 est plus général que σ_4
- un unifieur σ_0 (d'un système donné) est le plus général (mgu) s'il n'existe pas d'unifieur plus général que lui.
 - \triangleright par exemple : σ_3 est un mgu de S_2
 - **par exemple** : σ_3 est l'unique mgu de S_1
- unifier un système d'équation, c'est trouver un mgu pour ce système, ou échouer en prouvant qu'il n'existe pas d'unificateur pour ce système.
 - **par exemple** : S_2 s'unifie en σ_3
 - **par exemple** : l'unification de $\{t_3 = t_2 \rightarrow t_3\}$ échoue.

Inférence de λ_{ST} : Unification (IV)

- Plusieurs algorithmes connus : W, Martelli-Montanari, Hindley-Milner, . . .
- Principes communs :
 - on observe les équations une par une en maintenant un système (initialement, le système en entrée) et une substitution (initialement l'identité).
 - ightharpoonup cas d'une équation (x, T) ou (T, x)
 - ightharpoonup si T=x, on supprime l'équation du système,
 - si x est présent dans T et que $T \neq x$, on échoue.
 - ▶ sinon on compose $x \mapsto T$ avec σ (pour obtenir un nouveau σ), on supprime l'équation du système et on et applique le nouveau σ à toutes les équations du système.
 - ightharpoonup cas d'une équation $(f(T_1,\ldots,T_n),g(T'_1,\ldots,T'_m))$
 - ightharpoonup si $f \neq g$ on échoue.
 - sinon on ajoute au système les équations $\{(T_1, T_1'), \dots (T_n, T_m')\}$ (car n = m) et on supprime l'équation.

Inférence de λ_{ST} : Résolution de systèmes d'équation

(Méthode naïve, à raffiner en projet)

- On travaille sur un ensemble d'équations E.
- On identifie l'équation qui contient le but t₀
 - On conserve cette équation (qui donnera le type cherché)
- on prend une équation de l'ensemble :
 - ightharpoonup Cas $t_i = T$
 - si T_i appartient strictement à T, alors on échoue (deux types non unifiables).
 - sinon on remplace T_i par T dans toutes les autres équations et on supprime celle-là.
 - ightharpoonup Cas $T = t_i$
 - symétrique.
 - - on ajoute les équations T = S et T' = S'
 - on supprime celle-là.
- Terminaison : (nombre de variables, nombre de flèches, nombre d'équations) décroit strictement pour l'ordre lexicographique.

Types Produits

- Un type produit est une produit cartésien de types.
- ▶ Idée : On ajoute un constructeur de couples à la syntaxe.

$$M ::= x \mid M M \mid \lambda x.M \mid (M, N)$$

ightharpoonup (M, N) permet à M et N de se réduire.

$$(\mathsf{ProG}) \frac{M \longrightarrow M'}{(M,N) \longrightarrow (M',N')} \qquad \qquad (\mathsf{ProD}) \frac{N \longrightarrow N'}{(M,N) \longrightarrow (M',N')}$$

$$(\mathsf{Pro})\frac{\Gamma \vdash M : T \qquad \Gamma \vdash N : U}{\Gamma \vdash (M, N) : T \times U}$$

Types Produits

- Un type produit est une produit cartésien de types.
- ▶ Idée : On ajoute un constructeur de couples à la syntaxe.

$$M ::= x \mid M M \mid \lambda x.M \mid (M, N)$$

ightharpoonup (M, N) permet à M et N de se réduire.

$$(\mathsf{ProG}) \frac{M \longrightarrow M'}{(M,N) \longrightarrow (M',N')} \qquad \qquad (\mathsf{ProD}) \frac{N \longrightarrow N'}{(M,N) \longrightarrow (M',N')}$$

$$(\mathsf{Pro})\frac{\Gamma \vdash M : T \qquad \Gamma \vdash N : U}{\Gamma \vdash (M, N) : T \times U}$$

- ► Problèmes :
 - on ne peut pas déconstruire les couples

Types Produits (corrigés)

On ajoute des déconstructeurs de couples à la syntaxe.

$$M ::= x \mid M M \mid \lambda x.M \mid (M, M) \mid \Pi_1 M \mid \Pi_2 M$$

qui permettent de projeter un couple

$$(\mathsf{ProG}) \frac{M \longrightarrow M'}{(M, N) \longrightarrow (M', N')} \qquad \qquad (\mathsf{ProD}) \frac{N \longrightarrow N'}{(M, N) \longrightarrow (M', N')}$$

$$(\mathsf{PjG}) \frac{}{\Pi_1 \ (M, N) \longrightarrow M} \qquad \qquad (\mathsf{PjD}) \frac{}{\Pi_2 \ (M, N) \longrightarrow M}$$

et que l'on doit typer

$$(\mathsf{Pro}) \frac{\Gamma \vdash M : T \qquad \Gamma \vdash N : U}{\Gamma \vdash (M, N) : T \times U} \qquad (\mathsf{PjG}) \frac{\Gamma \vdash M : T \times U}{\Gamma \vdash \Pi_1 \ M : T}$$

$$(\mathsf{PjD}) \frac{\Gamma \vdash M : T \times U}{\Gamma \vdash \Pi_2 \ M : U}$$

- Exemple :
 - ► Evaluer et typer $(\lambda c.(\Pi_1 \ c) \ (\Pi_2 \ c)) \ (I,I \ K)$

Types Sommes

- Un type somme est une union de types.
- ldée : On ajoute une somme à la syntaxe.

$$M ::= x \mid M M \mid \lambda x.M \mid M + M$$

ightharpoonup M + N se comporte de manière non-déterministe comme M ou N.

$$(SumG)\frac{M \longrightarrow M'}{M + N \longrightarrow M'} \qquad (SumD)\frac{N \longrightarrow N'}{M + N \longrightarrow N'}$$

$$(Sum)\frac{\Gamma \vdash M : T \qquad \Gamma \vdash N : U}{\Gamma \vdash M + N : T + U}$$

Types Sommes

- Un type somme est une union de types.
- ► Idée : On ajoute une somme à la syntaxe.

$$M ::= x \mid M M \mid \lambda x.M \mid M + M$$

ightharpoonup M+N se comporte de manière non-déterministe comme M ou N.

$$(\operatorname{SumG})\frac{M\longrightarrow M'}{M+N\longrightarrow M'} \qquad \qquad (\operatorname{SumD})\frac{N\longrightarrow N'}{M+N\longrightarrow N'}$$

$$(Sum)\frac{\Gamma \vdash M : T \qquad \Gamma \vdash N : U}{\Gamma \vdash M + N : T + U}$$

- ► Problèmes :
 - la réduction asujettie est violée $I + K \longrightarrow I$.
 - on ne peut pas appliquer de fonction de manière intéressante : quel M peut apparaître dans M (I+K)
 - mauvaise idée.

Types Sommes (Corrigés)

On a des constructeurs qui "indique un côté" et un destructeur qui branche.

$$M ::= x \mid M M \mid \lambda x.M \mid g : M \mid d : M \mid sw M : M + M$$

On branche en fonction du côté du terme.

$$(\operatorname{SumG}) \frac{M \longrightarrow M'}{g: M \longrightarrow g: M'} \qquad (\operatorname{SumD}) \frac{N \longrightarrow N'}{g: N \longrightarrow g: N'}$$

$$(\operatorname{SwG}) \frac{}{\operatorname{sw} g: M: N_1 + N_2 \longrightarrow N_1} \qquad (\operatorname{SwG}) \frac{}{\operatorname{sw} d: M: N_1 + N_2 \longrightarrow N_2}$$

$$(\operatorname{SumG}) \frac{\Gamma \vdash M : T}{\Gamma \vdash \mathsf{g} : M : T + U} \qquad (\operatorname{SumG}) \frac{\Gamma \vdash M : U}{\Gamma \vdash \mathsf{d} : M : T + U}$$

$$(\operatorname{Sw}) \frac{\Gamma \vdash M : T + U}{\Gamma \vdash \operatorname{sw} \mathsf{d} : M : N_1 + N_2 : S}$$

Types Sommes (Corrigés)

On a des constructeurs qui "indique un côté" et un destructeur qui branche.

$$M ::= x \mid M M \mid \lambda x.M \mid g : M \mid d : M \mid sw M : M + M$$

On branche en fonction du côté du terme.

$$(SumG) \frac{M \longrightarrow M'}{g: M \longrightarrow g: M'} \qquad (SumD) \frac{N \longrightarrow N'}{g: N \longrightarrow g: N'}$$

$$(SwG) \frac{SwG}{sw g: M: N_1 + N_2 \longrightarrow N_1} \qquad (SwG) \frac{SwG}{sw d: M: N_1 + N_2 \longrightarrow N_2}$$

$$(\operatorname{SumG}) \frac{\Gamma \vdash M : T}{\Gamma \vdash \mathsf{g} : M : T + U} \qquad (\operatorname{SumG}) \frac{\Gamma \vdash M : U}{\Gamma \vdash \mathsf{d} : M : T + U}$$

$$(\operatorname{Sw}) \frac{\Gamma \vdash M : T + U}{\Gamma \vdash \operatorname{sw} \mathsf{d} : M : N_1 + N_2 : S}$$

- ► Problème :
 - On ne peut pas se servir de *M* dans chacune des deux branches.

Types Sommes (Corrigés II)

Le destructeur lie une variable.

$$M ::= x \mid M M \mid \lambda x.M \mid g : M \mid d : M \mid sw M \triangleright x : M + M$$

On branche en fonction du côté du terme.

$$(SumG) \frac{M \longrightarrow M'}{g: M \longrightarrow g: M'} \qquad (SumD) \frac{N \longrightarrow N'}{g: N \longrightarrow g: N'}$$

$$(SwG) \frac{SwG}{sw g: M \bowtie x: N_1 + N_2 \longrightarrow N_1[M/x]}$$

$$(SwG) \frac{SwG}{sw d: M \bowtie x: N_1 + N_2 \longrightarrow N_2[M/x]}$$

$$(\operatorname{SumG}) \frac{\Gamma \vdash M : T}{\Gamma \vdash g : M : T + U} \qquad (\operatorname{SumG}) \frac{\Gamma \vdash M : U}{\Gamma \vdash d : M : T + U}$$

$$(\operatorname{Sw}) \frac{\Gamma \vdash M : T + U}{\Gamma \vdash \operatorname{sw} d : M : N_1 + N_2 : S}$$

Types Sommes (Corrigés II)

Le destructeur lie une variable.

$$M ::= x \mid M M \mid \lambda x.M \mid g : M \mid d : M \mid sw M \triangleright x : M + M$$

On branche en fonction du côté du terme.

$$(SumG) \frac{M \longrightarrow M'}{g: M \longrightarrow g: M'} \qquad (SumD) \frac{N \longrightarrow N'}{g: N \longrightarrow g: N'}$$

$$(SwG) \frac{N \longrightarrow N'}{g: N \longrightarrow g: N'}$$

$$(\texttt{SwG}) \frac{}{\texttt{sw d} : M \rhd x : \textit{N}_1 + \textit{N}_2 \longrightarrow \textit{N}_2[\textit{M}/\textit{x}]}$$

$$(SumG) \frac{\Gamma \vdash M : T}{\Gamma \vdash g : M : T + U} \qquad (SumG) \frac{\Gamma \vdash M : U}{\Gamma \vdash d : M : T + U}$$

$$(Sw) \frac{\Gamma \vdash M : T + U}{\Gamma \vdash sw \ d : M : N_1 + N_2 : S}$$

- Exemple:
 - ► Evaluer et typer $(\lambda x.sw \ x \triangleright y : y \ 2 + y \ 3 \ 4)$ (g : I).
 - Evaluer et typer $(\lambda x.sw \ x \ \triangleright y : y \ 2 + y \ 3 \ 4) \ (d : K)$.

Polymorphisme

- Polymorphisme de généricité : une même fonction/méthode est utilisable avec des types différents.
- ▶ Dans λ_{ST} , un terme typable est typable avec une infinité de type :

```
\emptyset \vdash I : \alpha \to \alpha
\emptyset \vdash I : (\alpha \to \alpha) \to (\alpha \to \alpha)
\emptyset \vdash I : (\alpha \to \beta \to \alpha) \to (\alpha \to \beta \to \alpha)
\emptyset \vdash I : (\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to (\alpha \to \alpha) \to \alpha)
```

- Dans ce processus, chaque variable de type agit comme une variable mathématique, que l'on peut remplacer par n'importe quel type.
- Cette caractéristique permet de typer / / :

$$(\mathsf{App}) \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{}{\varkappa : \alpha \to \alpha \vdash \varkappa : \alpha \to \alpha}}{\emptyset \vdash \mathit{I} : (\alpha \to \alpha) \to (\alpha \to \alpha)} \qquad (\mathsf{Abs}) \frac{(\mathsf{Var}) \frac{}{\varkappa : \alpha \vdash \varkappa : \alpha}}{\emptyset \vdash \mathit{I} : \alpha \to \alpha}$$

▶ Dans la branche de gauche, I est typée avec le type $(\alpha \to \alpha) \to (\alpha \to \alpha)$, et dans la branche de droite avec $\alpha \to \alpha$.

Polymorphisme (II)

- Ce processus ne s'applique pas aux variables.
- $\delta = \lambda x.x \ x$ n'est pas typable :

$$\textbf{(Abs)} \frac{(\mathsf{Var}) \frac{(\mathsf{Var})}{x: t_1 \vdash x: t_3 \to T_2}}{x: T_1 \vdash x : T_2} \frac{(\mathsf{Var}) \frac{}{x: t_1 \vdash x: t_3}}{\emptyset \vdash \lambda x. x : t_1 \to t_2}$$

- ▶ on tombe sur $t_3 \rightarrow t_2 = t_3$ qui n'est pas unifiable.
- la règle (**App**) force le contexte Γ (donc le type de x) à être le même des deux côtés de l'application.
- ightharpoonup pourtant δ I ne semble pas plus problématique que I I.
- On peut étendre le système de types pour typer ces termes faisant apparaître de la généricité.
 - le même code qui va substituer les deux occurences de x est utilisé "de deux manières différentes".

Polymorphisme (III)

On ajoute la quantification universelle aux types:

$$T ::= \alpha \mid T \rightarrow T \mid \forall \alpha. T$$

on ajoute des règles pour ce constructeur de types :

$$(\mathbf{Gen}) \frac{\Gamma \vdash M : T}{\Gamma \vdash M : \forall \alpha . T} \qquad \qquad (\mathbf{Inst}) \frac{\Gamma \vdash M : \forall \alpha . T}{\Gamma \vdash M : T[U/\alpha]}$$

- ► (Gen) permet de généraliser les variables de types d'un type donné à un terme.
- (Inst) permet d'instantier la variable liée d'un type universel par n'importe quel type.
- c'est Système F.

Polymorphisme (IV)

 $ightharpoonup \delta$ est typable :

$$(\mathbf{App}) \frac{(\mathbf{Var}) \frac{(\mathbf{Var}) \overline{x : \forall \alpha.\alpha \to \alpha \vdash x : (\forall \alpha.\alpha \to \alpha)}}{x : \forall \alpha.\alpha \to \alpha \vdash x : (\forall \alpha.\alpha \to \alpha) \to (\forall \alpha.\alpha \to \alpha)} } (\mathbf{Var}) \frac{}{x : \forall \alpha.\alpha \to \alpha \vdash x : \forall \alpha.\alpha \to \alpha}$$

$$(\mathbf{Abs}) \frac{x : \forall \alpha.\alpha \to \alpha \vdash x : (\forall \alpha.\alpha \to \alpha)}{x : \forall \alpha.\alpha \to \alpha \vdash x : (\forall \alpha.\alpha \to \alpha)}$$

$$(\mathbf{Abs}) \frac{(\mathbf{Var}) \overline{x : \forall \alpha.\alpha \to \alpha \vdash x : \forall \alpha.\alpha \to \alpha}}{y \vdash \delta : (\forall \alpha.\alpha \to \alpha) \to (\forall \alpha.\alpha \to \alpha)}$$

- ici on utilise la règle (Inst) pour remplacer chaque α par le type $\forall \alpha.\alpha \rightarrow \alpha$ lui-même.
- $ightharpoonup \Omega$ n'est pas typable.
 - le type de δ ne peut pas être généralisé de manière intéressante (il n'a pas de variable libre)
 - ightharpoonup on ne peut donc pas typer δ avec deux types différents dans δ δ .

Polymorphisme (V)

- ► Théorème : En Système F, *M* est typable si et seulement si *M* est fortement normalisant.
- Conséquence :

Polymorphisme (V)

- ► Théorème : En Système F, M est typable si et seulement si M est fortement normalisant.
- Conséquence : F n'est pas inférable (l'inférence c'est pas décidable)
 - elle n'est plus dirigée par la syntaxe, (on peut utiliser (Abs) ou (Inst))
 - ightharpoonup quand on utilise (Inst), on a plusieurs possibilités pour U.
- pour un langages de programmation, on veut du polymorphisme inférable.

Let-polymorphisme

- les langages fonctionnels utilisent un polymorphisme plus restreint
- ils disposent d'une construction let
 - let $x = e_1$ in e_2 a la même sémantique que $(\lambda x.e_2)$ e_1
 - c'est le seul endroit où l'on peut créer du polymorphisme

$$(\text{Let}) \frac{\Gamma \vdash e_1 : T \qquad \Gamma, e_1 : \mathbf{Gen}(T) \vdash e_2 : U}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : U}$$

avec $\mathbf{Gen}(T)$ l'opération syntaxique qui transforme T en $\forall \alpha_1 \forall \alpha_2 \ldots \forall \alpha_n. T$ si $\alpha_1, \ldots, \alpha_n$ sont les variables de types libres de T.

- l'inférence devient décidable.
- l'algorithme de *Hindley-Milner* (variante d'unification) est utilisé pour l'inférence de types des langages à *la ML*.

Typage impératif

- les langages ML contiennent des traits impératifs.
- ightharpoonup On peut les ajouter à λ :
 - allocation ref M
 - déréférencement ! M
 - ightharpoonup réaffectation M:=N
- On ajoute un constructeur de type spécifique Ref pour les typer.
- Ca donne :

$$\begin{split} (\mathtt{Ref}) \frac{\Gamma \vdash M : T}{\Gamma \vdash \mathtt{ref} \ T : \mathsf{Ref} \ T} & (\mathtt{Deref}) \frac{\Gamma \vdash M : \mathsf{Ref} \ T}{\Gamma \vdash !M : T} \\ & (\mathtt{Assign}) \frac{\Gamma \vdash M : \mathsf{Ref} \ T\Gamma \vdash N : T}{\Gamma \vdash M := N : ()} \end{split}$$

Typage impératif (II)

en fait ça ne fonctionne pas.

let
$$f = \text{ref } \lambda x.x$$
 in
let $f = f := \lambda x.x + 1$ in
!f f

- il ne faut pas toujours généraliser les types impératifs lors d'un let
- ► la solution des langages ML est :
 - distinguer les termes expansifs et non-expansifs
 - les termes non-expansifs sont généralisés,
 - les termes expansifs recoivent un polymorphisme faible
 - ▶ par exemple, **Ref** $_\alpha \longrightarrow _\alpha$
 - pendant l'inférence, la première fois qu'ils sont instantiés ils se transforment en leur instantiation : $_{-}\alpha \longrightarrow _{-}\alpha$ devient Nat \longrightarrow Nat et ne peut plus être modifié.
 - en OCaml c'est 'a vs. '_a
- Détail au Cours 04.

Curry-Howard : Logique Intuitionniste

► Formules logiques avec l'implication.

$$\phi ::= A \mid \phi \Rightarrow \phi$$

- Γ : ensemble d'hypothèses (de formules),
- ▶ Jugements $\Gamma \vdash \phi$: " ϕ est prouvable avec les hypothèses Γ "
- ► Séquents Intuitionnistes :

$$(\mathsf{Ax})_{\overline{\Gamma,A\vdash A}} \qquad (\mathsf{MP})^{\frac{\Gamma\vdash A\Rightarrow B}{\Gamma\vdash B}} \qquad (\mathsf{I})^{\frac{\Gamma,A\vdash B}{\Gamma\vdash A\Rightarrow B}}$$

Formules prouvables :

Curry-Howard : Correspondance

- ► Formules de SI \leftrightarrow Types de λ_{ST}
- ▶ Preuves de SI \leftrightarrow Dérivation de typage de λ_{ST}
 - ightharpoonup = Termes de λ_{ST}
 - car le système de types est dirigé par la syntaxe

$$(App) \xrightarrow{(App)} \xrightarrow{\Gamma \vdash x : A \rightarrow (B \rightarrow C)} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash x : A \rightarrow B \rightarrow C, y : A \rightarrow B, z : A \vdash \lambda(x z) (y z) : C} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)$$

▶ ??? de SI \leftrightarrow Réduction de λ_{ST}

Curry-Howard: Elimination des coupures

- Opération de transformation des preuves.
- ► Utilisation d'un lemme :

$$(\mathbf{App}) \frac{(\mathbf{I}) \frac{\overline{\Gamma, A \vdash B}}{\overline{\Gamma \vdash A \Rightarrow B}} \qquad \frac{\overline{\mathcal{P}}_2}{\overline{\Gamma \vdash A}}}{\overline{\Gamma \vdash B}} \qquad \longrightarrow \qquad \frac{\overline{\mathcal{P}}_1[\overline{\mathcal{P}}_2]}{\overline{\Gamma \vdash B}}$$

avec $\mathcal{P}_1[\mathcal{P}_2]$ la preuve obtenue en prenant \mathcal{P}_1 et en remplaçant tous les $(\mathbf{A}\mathbf{x})_{\overline{\Gamma'}}$ par $\frac{\mathcal{P}_2}{\Gamma' \vdash A}$

- on simplifie une preuve en *inlinant* un lemme à tous les endroits où on en avait besoin.
- ▶ l'enchainement de (App) avec (I) à gauche s'appelle une coupure, le processus correspondant à la réduction est l'élimination des coupures.
- éliminer une coupure peut faire grossir la preuve et ajouter des coupures.
 - ightharpoonup en copiant plusieurs fois les coupures dans \mathcal{P}_{\in}
- l'élimination des coupures termine.

Curry-Howard: Logique Classique

Calcul des Séquents classique :

$$(\mathsf{TE}) \frac{}{\vdash A \lor A} \qquad \text{ou} \qquad (\mathsf{Abs}) \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \qquad \text{ou}$$

$$(\mathsf{PL}) \frac{\Gamma \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}{\Gamma \vdash A}$$

▶ comment introduire $A \lor B$ dans λ_{ST} ?

Curry-Howard: Logique Classique

Calcul des Séquents classique :

$$(TE)_{\overline{\vdash A \lor A}} \qquad \text{ou} \qquad (Abs)_{\overline{\vdash \vdash \neg \neg A}}^{\overline{\vdash \vdash \neg \neg A}} \qquad \text{ou}$$

$$(PL)_{\overline{\vdash \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}}^{\Gamma \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}$$

▶ comment introduire $A \lor B$ dans λ_{ST} ?

$$(SumG) \frac{\Gamma \vdash M : T}{\Gamma \vdash g : M : T \lor U} \qquad (SumG) \frac{\Gamma \vdash M : U}{\Gamma \vdash d : M : T \lor U}$$

$$(Sw) \frac{\Gamma \vdash M : T \lor U}{\Gamma \vdash sw \ d : M : N_1 + N_2 : S}$$

soit

$$(\operatorname{LI}) \frac{\Gamma \vdash T}{\Gamma \vdash T \lor U} \qquad (\operatorname{RI}) \frac{\Gamma \vdash U}{\Gamma \vdash T \lor U} \qquad (\operatorname{E}) \frac{\Gamma \vdash T \lor U \qquad \Gamma, T \vdash S \qquad \Gamma, U \vdash S}{\Gamma \vdash S}$$

Curry-Howard: Logique Classique (II)

- ightharpoonup il faut complexifier λ pour obtenir des calculs en relation avec SK
- le $\lambda\mu$ -calcul permet de définir des termes nommés:

$$M ::= x \mid \lambda x.M \mid M M \mid \mu \alpha.E$$
 $E ::= [\alpha] M$

la réduction structurelle permet, dans un terme liant le nom α , de distribuer un argument N à tous les sous-termes nommés par α .

$$\overline{(\mu\alpha.M)\ N\longrightarrow \mu\alpha.M[[\alpha](N\ M')/[\alpha]M']}$$

- le système de types standard de $\lambda\mu$ correspond à la déduction naturelle classique.
- $lackbox{} \overline{\lambda}\mu\tilde{\mu}$ correspond aux séquents classiques

$$C ::= [V|E] \qquad V ::= x \mid \lambda x. V \mid e \ v \mid \mu \alpha. c \qquad E ::= \alpha \mid \alpha \lambda. e \mid v \ e \mid \overline{\mu} x. c$$

avec la réduction

$$\overline{[\lambda x. V | V' E]} \longrightarrow \overline{[V' | \overline{\mu} x. [V | E]]} \qquad \overline{[E' V | \alpha \lambda. E]} \longrightarrow \overline{[\mu \alpha. [V | E] | E'}$$

$$\overline{\mu \alpha. [V | \alpha]} \longrightarrow V \qquad \overline{[\mu \alpha. C | E]} \longrightarrow C[E/\alpha] \qquad \overline{[V | \overline{\mu}. C]} \longrightarrow C[V/x]$$

$$\overline{\mu x. [x | E]} \longrightarrow E$$

termes, contextes, et commandes manipulent le flot de contrôle.

Cube de Barendregt

- ightharpoonup trois directions pour enrichir λ_{ST}
- ▶ termes dépendants de types : Polymorphisme
 - Système F présenté avec instantiation explicite et réduction typée

$$M ::= x \mid \lambda x.M \mid M M \mid \Lambda T.M \mid T \qquad T ::= \alpha \mid T \to T \mid \forall \alpha.T$$

$$\frac{\Gamma \vdash \Lambda X.M : \forall \alpha.T}{\Gamma \vdash \Lambda X.M \ U \longrightarrow \Gamma \vdash M : T[U/X]}$$

- on peut définir δ comme $\Lambda Y.\lambda x.(x Y \rightarrow Y) (x Y)$
- ightharpoonup et I comme $\Lambda X.\lambda x.x$
- et typer δ ($\forall \alpha.(\alpha \rightarrow \alpha)$) I.
- types dépendant de termes (appelés "types dépendants")
 - ▶ formellement $T ::= \alpha \mid T \rightarrow T \mid \pi x.T$
 - permet de définir, par exemple, 4 vect, les vecteurs de taille inférieure à 4.
- types dépendant de types (constructeurs de types)
 - ▶ formellement $T ::= \alpha \mid T \to T \mid \Pi X.T$
 - permet de définir Liste A, les listes d'éléments de types A,
 - hierarchie de sortes (comme en PAF)

Curry-Howard: Correspondances

- ► Le Calcul des Constructions ferme le cube de Barendregt
- ▶ Quelques correspondances de Curry-Howard connues :
 - ▶ SI $\leftrightarrow \lambda_{ST}$
 - ightharpoonup SK $\leftrightarrow \overline{\lambda}\mu\tilde{\mu}$
 - ▶ Arithmétique de Peano ↔ Système F
 - ► Logique de Hilbert ↔ Logique Combinatoire
 - ► LI d'ordre supérieur ↔ Calcul des Constructions.
 - $ightharpoonup \lambda$ linéaires \leftrightarrow Logiques Linéaires.

Recherche: Métiers et Structures en France

Métiers :

- Enseignants-Chercheurs (192 heqtd par an), deux corps : Maîtres de Conférence et Professeur
- Chercheurs rattachés à un institut (CNRS, INRIA)
- Ingénieurs.
- Non-fonctionnaires (doctorants, post-doc, ATER, CDD, ...)

► Recrutement :

- ► EC: Doctorat + Qualification + Concours locaux
- ► C: Doctorat + Concours nationaux
- I: Concours nationaux
- ► Hierarchie des structures :
 - équipe : 10, même thématique.
 - laboratoire : 100, gestion financière (hors RH).
 - Unité de Formation et de Recherche: 100, gestion financière RH,
 - Université: 1000, indépendance administrative et financière.
- Ailleurs : plus ou moins similaire (tenure, absence de chercheurs, contrats cours, ...)

Recherche: Financement et Evaluation

- ► Financement:
 - ► RH :
 - fonctionnaires : grille de salaires publique, ancienneté, point d'indice.
 - non-fonctionnaires : variables.
 - Autres (matériel, contrats courts doctorats, missions) :
 - fonds propres laboratoire.
 - projets (région, France, Europe) : appels à candidatures.
- ► Evaluation:
 - évaluation des laboratoires, équipes, université tous les 5-7 ans,
 - HCERES : instance indépendante

Recherche: Articles

Chronologie:

- Ecriture d'un projet de financement sur un sujet donné.
- ► Travail en collaboration (inter ou intra université) sur le sujet.
- Découverte de résultats.
- Rédaction d'un article (10-15 pages) rassemblant résultats et preuves..
- ► Soumission de l'article au comité d'une conférence.
- Acceptation de l'article, présentation à la conférence, publication des proceedings.
- ► Rédaction d'une version longue (40 pages).
- Soumission de la version longue au comité d'un journal.
- Acceptation de l'article et publication du journal.

Recherche: Articles (II)

▶ Publication :

- surtout numérique,
- problèmes de droits (disponibilité des articles).
- articles (preprint) (parfois vidéos, transparents) disponibles sur les sites personnels des auteurs.

► Acceptation :

- conférences et journaux ont un Program Committee (des chercheurs du domaine) qui
 - distribue les articles à des reviewers (des chercheurs du sous-domaine),
 - collecte les avis,
 - décide de l'acceptation.
- principe de la recherche peer-reviewed
- limites de la recherche moderne (réfutabilité Popperienne)
- des sites (DBLP, par exemple) répertorient les publications (acceptées) des chercheurs.

Article: Composition

- Abstract : un résumé de l'article (objectifs, méthodes, résultats)
- ► Introduction (Section 1) : explique en détail de manière informelle le contexte, les objectifs, les méthodes de l'article.
- ► Formalisme (Section 2) : introduit le langage (mathématique ou informatique) étudié
- Coeur de l'article (Section 3+) : présente les techniques utilisée en détail et les résultats (théorèmes, algorithmes).
- Preuves (version longue) : souvent absentes dans l'article de conférence.
- Related Works: mise en relation de l'article avec les autres travaux du domaine (précédents, ou concurrents).
- ▶ Bibliographie : détails de tous les articles cités.

Synthèse d'article : Lecture

- Auteurs : comprendre leurs domaines et leurs travaux précédents
- ► *Abstract* : lire et comprendre pour choisir l'article.
- ▶ Introduction (Section 1) : comprendre les enjeux et les contributions.
- ► Formalisme (Section 2) : assimiler le formalisme (syntaxe, règles, exemples), produire des exemples
- ➤ Coeur de l'article (Section 3+) : comprendre les grandes lignes des méthodes utilisées, étudier des exemples, détailler les parties techniques.
- Preuves (version longue) : observer les techniques de preuve utilisées (ne pas lire les détails).
- ► Related Works : lire (au moins) l'abstract des articles cités, comprendre l'originalité de l'article.

Synthèse d'article : Consignes

- travail en binômes (note pouvant être différenciée).
- ▶ 25% de la note d'UE (moitié de la partie Typage),
- lire un article scientifique récent et en faire une synthèse,
- synthèse présentée sous formes :
 - d'un rapport (8-15 pages)
 - d'une soutenance (8 minutes devant les autres étudiants).
- choix d'un article dans une liste par Moodle:
 - articles de l'année 2024,
 - conférences internationales de programmation,
 - plus ou moins liés au typage.
 - les articles sont inéquitables en difficulté (pris en comptes dans la notation),

Synthèse d'article : Consignes

- Objectif: montrer que l'article est principalement compris.
- ► Ne pas traduire l'article.
- ▶ Ne pas sélectionner un sous-ensemble de l'article.
- ▶ Ne pas reprendre de phrases telles quelles.
- Reformuler les notions.
- Réécrire formules et exemples.
- Utiliser des exemples personnels inédits.
- Mettre en relation avec les connaissances acquises (cours de TAS, autres cours)
- Explorer les implémentations.
- Eventuellement, contacter les auteurs.

Synthèse d'article : Consignes (II)

Rapport:

- attention au plagiat (auteurs du rapport ≠ auteurs de l'article)
- suivre la structure de l'article (mais ne pas recopier le contenu)
- détailler ce qui a été compris (reformulation, exemples)
- résumer ce qui n'a pas été compris.
- critiquer (vis-à-vis du cours, du monde professionnel, ...) les contributions de l'article.

► Soutenance :

- présenter les grandes lignes de l'article et le formalisme,
- montrer quelques points techniques
- s'adresser au public de TAS (cours connu)
- soigner la présentation orale.

Conclusion

- ► TDs 03-06 Travail en autonomie
 - réalisation d'un évaluateur-typeur,
 - synthèse d'article.
- ► Cours 04 : Typage en ML.

