Homework 10

1 On the sphere $x^2 + y^2 + z^2 = R^2$ in \mathbf{E}^3 consider a circle C which is the intersection of the sphere with the plane z = R - h, 0 < h < R

Let X be an arbitrary vector tangent to the sphere at a point of C.

Find the angle between X and the result of parallel transport of X along C.

- **2** On two-dimensional Riemannian manifold with coordinates x^1, x^2 consider the vector fields $\mathbf{A} = \frac{\partial}{\partial x^1}$, $\mathbf{B} = \frac{\partial}{\partial x^2}$, $\mathbf{X} = (1 + x^1 x^2) \frac{\partial}{\partial x^2}$, and the vector field $\mathbf{Y} = (\nabla_{\mathbf{A}} \nabla_{\mathbf{B}} \nabla_{\mathbf{B}} \nabla_{\mathbf{A}}) \mathbf{X}$, where ∇ is a connection. Calculate the value of the field \mathbf{Y} at the point $x^1 = x^2 = 0$ if the curvature tensor of the connection ∇ is such that $R^1_{212} = 1$ and $R^2_{212} = 0$ at this point.
 - 3 Write down components of curvature tensor in terms of Christoffel symbols.
- 4 For every of the statements below prove it or show that it is wrong considering counterexample.
- a) If there exist coordinates u, v such that Riemannian metric G at the given point \mathbf{p} is equal to $G = du^2 + dv^2$ in these coordinates, then curvature of Levi-Civita connection at the point \mathbf{p} vanishes.
- b*) If all first derivatives of components of Riemannian metric in coordinates u, v vanish at the given point with coordinates (u_0, v_0) :

$$\frac{\partial g_{ik}(u,v)}{\partial u}\big|_{u=u_0,v=v_0} = \frac{\partial g_{ik}(u,v)}{\partial v}\big|_{u=u_0,v=v_0} = 0,$$

then curvature of Levi-Civita connection also vanishes at this point.

c) If all first and second derivatives of components of Riemannian metric

$$\frac{\partial g_{ik}(u,v)}{\partial u}\,,\frac{\partial g_{ik}(u,v)}{\partial v}\,,\frac{\partial^2 g_{ik}(u,v)}{\partial u^2}\,,\frac{\partial^2 g_{ik}(u,v)}{\partial u\partial v}\,,\frac{\partial^2 g_{ik}(u,v)}{\partial v^2}\,,$$

vanish at the given point then curvature of Levi-Civita connection also vanishes at this point.

5 State the relation between the Riemann curvature tensor of the Levi-Civita connection of a surface in \mathbf{E}^3 and its Gaussian curvature K. Deduce the Theorema Egregium from this statement.

Let M be a surface $\mathbf{r} = \mathbf{r}(u, v)$ in \mathbf{E}^3 , such that at the given point \mathbf{p} Gaussian curvature K = 1, and the induced Riemannian metric is equal to $G = du^2 + dv^2$ at this point.

Calculate all components of the Riemannian curvature tensor R_{ikmn} in coordinates u, v at the point \mathbf{p} .

Show that induced Riemannian metric cannot be equal identically to $du^2 + dv^2$ in a vicinity of the point **p**.

6 Using relation between Gaussian curvature and Riemann curvature tensor for Levi-Civita connection, write down all components $\{R_{ikmn}\}$ of Riemann curvature tensor for sphere of radius ρ in spherical coordinates.

1