Araştırma Yöntemleri

Parametrik Olmayan Testler

Parametrik Olmayan Testler

 Verilerin normal dağılmış olması gerekmiyor

- Veriler sınıflama ya da sıralama ölçme düzeyinde toplanmış olacak
- Ya da eşit aralıklı / oranlı veriler sıralandıktan sonra test yapılacak
- Parametrik testlerden daha az güçlü
- Tür 2 hatası yapma olasılığı daha yüksek (gerçekte gruplar arasında fark varken fark olmadığını kabul etme olasılığı daha yüksek)

Parametrik Olmayan Testler Hangileri?

- Binom testi
- Ki- kare testi
- Mann-Whitney testi
- Wilcoxon işaretli sıralar toplamı ve işaret testi
- Kruskal Wallis testi
- Friedman'ın ANOVA testi
- Parametrik olmayan korelasyon testi

Veriler

- Aksi belirtilmedikçe testler için kullanılan veri dosyası: hsb2turkce.sav
- Veri dosyası 200 lise öğrencisine ait cinsiyet, ırk, sosyo-ekonomik statü, okul türü gibi demografik bilgileri ve öğrencilerin okuma, yazma, matematik, fen ve sosyal bilimler derslerinden aldıkları standart puanları içermektedir

PARAMETRİK TESTLER VE NON PARAMETRİK KARŞILIKLARI

Amaç	Parametrik Test (Normal Dağılım)	Non Parametrik Karşılığı (Normal Olmayan Dağılım)
Bir grubun teorik bir değerle kıyası	One sample t test	Wilcoxon test
Bağımsız iki grubun kıyası	Unpaired t test	Mann-Whitney U test
Eşleştirilmiş kıyas	Paired t test	Wilcoxon test
Üç ya da daha fazla grubun kıyası (ilişkisiz)	One way ANOVA	Kruskal-Wallis H test
Üç ya da daha fazla grubun kıyası (ilişkili)	Repeated-measures ANOVA	Friedman test
İki değişken arasındaki ilişki	Pearson correlation	Spearman correlation
Bir Ölçümün değerini tahminleme	Simple linear regression	Non parametrik regression

Veri Dosyasındaki Değişkenlerin Tanımları

No: Denek numarası

Cinsiyet: 0=erkek, 1=kadın (sınıflama)

Irk: 1=Latin, 2=Asyalı, 3=Siyah, 4=Beyaz (sınıflama)

Sosyo-ekonomik statü (sed): 1=düşük, 2=orta, 3=yüksek (sıralama)

Okul türü: 1=devlet, 2=özel (sınıflama)

Program türü: 1=genel, 2=akademik, 3=mesleki (sınıflama) Okuma puanı (okumanot): Bu dersten aldığı not (oranlı) Yazma puanı (yazmanot): Bu dersten aldığı not (oranlı) Matematik puanı (matnot): Bu dersten aldığı not (oranlı)

Fen puanı (fennot): Bu dersten aldığı not (oranlı)

Sosyal bilimler puanı (sosnot): Bu dersten aldığı not (oranlı)

Binom Testi Örneği

- Tek örneklemli binom testi sınıflama ölçme düzeyinde toplanmış veriler için kullanılır. Bağımlı değişken hakkındaki veriler iki düzeylidir (ör., Erkek-Kadın)
- Verilerin öngörülen bir yüzdeden farklı olup olmadığını test etmek için kullanılır
- Ör., öğrencilerin cinsiyete göre dağılımı %50'den (yani 0,5) farklı mıdır?
- Araştırma denencesi (H_1) : "Öğrencilerin cinsiyete göre dağılımı eşit değildir." $(H_1: \psi \neq \psi_0)$ (çift kuyruk testi)

Seçenek Denenceler

- Araştırma denencesi büyüktür/küçüktür diye de kurulabilir. O zaman tek kuyruk (büyükse sol, küçükse sağ) testi yapılır.
- H₁: "Kız öğrencilerin oranı %50'den daha yüksektir." H₁: ų < ų ₀ (sol kuyruk testi)
- H₀: "Kız öğrencilerin oranı %50'den daha düşüktür." н₀: ų > ų₀

Binom Testi - PASW

Mönüden

- Analyze -> Nonparametric Tests-> Legacy
 Dialogs -> Binomial'i seçin
- Test değişkenleri olarak Cinsiyet'i seçin
- Test oranı olarak 0,5 girin
- OK seçeneğine basın

Binom Testi Sonucu

Binom testi

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Asymp. Sig. (2-tailed)
ogrencinin cinsiyeti	Group 1	erkek	91	,46	,50	,229 ^a
	Group 2	kadin	109	,55		
	Total		200	1,00		

- a. Based on Z Approximation.
- Deneklerin %46'sı (91) erkek, %55'i kız (109)
 - toplamın %101 olması yuvarlama hatasından kaynaklanıyor
- Bu yüzdeler test değerinden (%50) farklı
- Ama bu fark istatistiksel açıdan anlamlı değil (p = 0,229).
- Yani şansa bağlı olarak böyle bir oran elde edilebilir
- Başka bir deyişle, cinsiyete göre dağılım %50'ye eşittir
- Boş hipotez kabul edilir

Binom Testinin Yorumu

- Deneklerin cinsiyete göre dağılım yüzdeleri (%46 erkek, %55 kız) arasında anlamlı bir fark yoktur (p = 0,229). Başka bir deyişle, örneklemdeki erkeklerin oranı %50 değerinden anlamlı bir biçimde farklı değildir
- Basit tanımlayıcı istatistikler için histogram vermeye gerek yok. Yorum yandaki gibi abartılı bir şekille desteklenirse okuyucuya daha çok bilgi sunmuş olmuyoruz. Tablolar/şekiller metindeki bilgilere yeni bilgi ekliyorsa kullanılmalı

Sekil 1. Deneklerin cinsivete göre dağılımı (N=200)

Ki- kare Testleri

- Ki- kare (χ^2) testi sınıflama ölçüm düzeyinde toplanan veriler için kullanılır
- Değişkenlerin gözlenen sıklık değerleriyle beklenen sıklık değerleri arasındaki farkı test eder
- χ^2 test sonucu ikisi arasında istatistiksel açıdan anlamlı bir fark olduğunu gösterirse bu farkın şans eseri olmadığı sonucuna varılır
- İki tür χ² testi vardır:
 - χ² uyum iyiliği testi
 - χ² ilişki testi

Ki- kare Uyum İyiliği Testi

- Bir bağımsız değişken için gözlenen sıklık değerlerinin beklenenlerden farkını test eder
- Ör., öğrencilerin sosyo-ekonomik durumlarının evrendeki %30 düşük, %50 orta, %20 yüksek oranlarına uygun olup olmadığını test edelim
- Araştırma denencesi (H₁): "Öğrencilerin sosyo-ekonomik durumlarına göre dağılımı %30 düşük, %50 orta, %20 yüksek şeklinde değildir" (H₁: ų ≠ ų ₀) (çift kuyruk testi)
- Veya (H₁): "Sosyo-ekonomik durumu düşük olan öğrencilerin oranı %30'un altındadır" (H₁: ų < ų ₀) (sol kuyruk testi)

Ki- kare Uyum İyiliği Testi - PASW

Mönüden

- Analyze -> Nonparametric Tests -> Legacy
 Dialogs -> Chi-square'i seçin
- Test değişkeni olarak öğrencinin sosyoekonomik durumunu seçin
- Beklenen değerler olarak Values kısmına sırasıyla 30, 50, 20 girin
- OK'e tıklayın

Ki- kare Uyum İyiliği Testi Sonucu

sosyo-ekonomik durum

	Gözlenen (N)	Beklenen (N)	Sapma	l
düşük	47	60,0	-13,0	l
orta	95	100,0	-5,0	l
yüksek	58	40,0	18,0	ŀ
Toplam	200			l

Test Statistics

	sosyo- ekonomik durum
Chi-square	11,167ª
df	2
Asymp. Sig.	,004

a. 0 cells (,0%) have expected frequencies less than 5. The minimum expected cell frequency is 40,0.

- İlk tablo gözlenen ve beklenen değerleri ve ikisi arasındaki sapma miktarını veriyor
 - 2. tablo χ^2 (ki kare) değerini (11,167), serbestlik derecesini (SD=2) ve p değerini (p = 0,004) veriyor
- χ² testinde sıklık değeri 5'ten az olan ya da sıfır olan göz olmazsa daha isabetli sonuç verir. Bu koşul ihlal edilirse Fisher kesin testi kullanılır

Yorum

- Bu sonuç örneklemdeki öğrencilerin sosyo ekonomik durumlarına göre dağılımının denencede öngörülen değerlerden farklı olduğunu göstermektedir
- Ekonomik durumu düşük olanların oranı beklenen %30'dan daha düşük iken, yüksek olanların oranı beklenenden (%20) daha yüksektir
- Ki- kare istatistiği ve p değeri de bunu gösteriyor (ki- kare=11,167; SD=2; p=0,004) (SD sosyoekonomik sınıf sayısının bir eksiğidir)
- Boş hipotez reddedilir

Rapor Etme

- APA stiline göre bu bulgu şöyle rapor edilir:
- "Öğrencilerin sosyo-ekonomik durumlarına (düşük, orta, yüksek) göre dağılımı evrendeki dağılımdan –beklenen dağılım- anlamlı düzeyde farklıdır ($\chi^2_{(2)}$ = 11,167, p = 0,004). Örneklemdeki sosyo-ekonomik durumu yüksek olan öğrencilerin oranı beklenenden daha yüksek, düşük olanların oranı beklenenden daha düşüktür."

Ki- kare İlişki Testi

- Ki- kare testi iki bağımsız sınıflama değişkeni arasında ilişki olup olmadığını test etmek için kullanılır
- Ör., öğrencilerin cinsiyetiyle mezun oldukları lise türü (genel/anadolu/meslek) arasında bir ilişki olup olmadığını test edelim
- Araştırma denencesi (H₁): "Öğrencilerin cinsiyetiyle mezun oldukları lise türü arasında bir ilişki vardır." (çift kuyruk testi)

Ki- kare İlişki Testi - PASW

Mönüden

- Analyze -> Descriptive statistics -> Crosstabs'i seçin
- Satıra lise türünü, sütuna cinsiyeti yerleştirin
- Statistics seçeneğine tıklayarak Chi square'i işaretleyin
- Cells seçeneğine tıklayarak Observed ve Expected'i işaretleyin
- OK'e tıklayın

Ki-kare Testi Sonucu

			cins	iyet	
			erkek	kadın	Toplam
program türü	genel	Gözlenen	21	24	45
		Beklenen	20,5	24,5	45,0
	anadolu	Gözlenen	47	58	105
		Beklenen	47,8	57,2	105,0
	meslek	Gözlenen	23	27	50
		Beklenen	22,8	27,3	50,0
Toplam		Gözlenen	91	109	200
		Beklenen	91,0	109,0	200,0

(Chi-Square Tests	•	
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	,053ª	2	,974
Likelihood Ratio	,053	2	,974
Linear-by-Linear Association	,003	1	,955
N of Valid Cases	200		

a. 0 cells (,0%) have expected count less than 5. The minimum expected count is 20,48.

- Cinsiyet ile mezun olunan lise türü çapraz tablosunda gözlenen ve beklenen değerler birbirine çok yakın
- Nitekim χ² (ki kare) değeri (0,053) çok küçük ve anlamlı değil (SD=2, p = 0,974) (Sıklık değeri satır (3) ve sütün (2) sayılarından birer çıkarılıp birbiriyle çarpılarak elde edilir
- Boş hipotez kabul edilir

Yorum

- APA stiline göre bu bulgu şöyle rapor edilir:
- "Öğrencilerin cinsiyetiyle mezun oldukları lise türü arasında istatistiksel açıdan anlamlı bir ilişki yoktur ($\chi^2_{(2)}$ = 0,053, p = 0,974)."

- Mann-Whitney Testi

 Bağımsız örneklem t- testinin parametrik olmayan karşılığıdır. Bağımlı değişkenin sıralı olduğu varsayılır
- Mann-Whitney testi bağımsız örneklem t- testine çok benzer
- Araştırma denencesi (H₁): "Erkek ve kız öğrencilerin yazma puanlarının ortalaması birbirinden farklıdır." \dot{H}_1 : $\dot{q} \neq \dot{q}_0$ (çift kuyruk testi).
- Önce bağımlı değişkenin (yazma puanı) normal dağılıma uygun olup olmadığını Kolmogorov-Smirnov (K-S) testi ile test edelim

Önce Kolmogorov-Smirnov Normallik Testi

- · Mönüden:
- Analyze -> Descriptive Statistics-> Explore'u seçin
- Bağımlı değişkene yazma puanını atayın
- Bağımsız değişkene (Factor List) Cinsiyeti atayın
- Both seçeneği işaretli (İstatistikler ve Grafik için)
- Statistics sekmesinde Descriptives'in ve %95 güven aralığı seçili (değiştirilebilir)
- Plots (grafik) sekmesinden Normality plots with test seçeneğini işaretleyin
- OK'e tıklayın

K-S Normallik Testi Sonucu Tests of Normality cinsiyet Shapiro-Wilk Kolmogorov-Smirnova Statistic Sig. yazma notu erkek .124 .001 ,950 ,002 109 kadın ,139 946 109 ,000 a. Lilliefors Significance Correction

- K-S testine göre hem erkeklerin hem de kızların yazma notları Sig. değerleri 0,05'in altında olduğu için normal dağılım koşulunu yerine getirmiyor
- Shapiro-Wilk testi de K-S benzeri bir normallik testi (bu test de benzer sonuç vermiş)

K-S Testi Sonucunu Rapor Etme

- K-S testi sonucu D ile gösterilir ve APA stiline göre şöyle rapor edilir:
- "Hem erkeklerin (D(91)=0,124, p=0,001) hem de kızların (D(109)=0,139, p=0,000) yazma notları normal dağılıma uygun değildir"
- Bu durumda verilere parametrik olmayan test uygulanır
- Daha önce niçin parametrik test uyguladığımız sorusunun yanıtı testin sonunda

Mann-Whitney Testi - PASW

- Mönüden:
- Analyze -> Nonparametric Tests-> Legacy Dialogs -> 2 Independent Samples'i seçin
- Test değişkeni olarak yazma puanını seçin.
- Grup değişkeni olarak cinsiyeti seçin
- Grupları 0 (kadın) ve 1 (erkek) olarak tanımlayın
- Mann-Whitney U testini işaretleyin
- Options sekmesinden Descriptives'i işaretleyin
- OK'e tıklayın

Mann-Whitney Testi Sonucu

Ranks

cinsiyet	N	Mean Rank S	um of Ranks
yazma puan erkek	91	85,63	7792,00
kadin	109	112,92	12308,00
Total	200		/

Test Statistics a

	yazma puani
Mann-Whitney U	3606,000
Wilcoxon W	7792,000
Z	-3,329
Asymp. Sig. (2-tailed)	,001

a. Grouping Variable: cinsiyet

- Tabloların Yorumu Mann-Whitney U testinde bütün öğrencilerin yazma puanları en düşük puandan en yüksek puana doğru sıralanır
- Erkek ve kız öğrencilere ait puanların sıraları ayrı ayrı toplanıp ortalaması
- Erkeklerin aldığı notların sıralama ortalaması 85,63, kızlarınki 112,92
- Yani kızlar daha yüksek puan almışlar -ki puan sıralamalarının ortalaması erkeklerinkinden daha yüksek ve aradaki fark istatistiksel açıdan anlamlı (z = -3,329, p = 0,001).
- Mann-Whitney *U* testi *z* dağılımını (SND) kullanıyor. Örneklem büyüklüğü arttıkça sonuçlar daha güvenilir
- z değeri (-3,329) erkeklerin aldıkları puanların sıralarının ortalamasının 3 standart sapma altında olduğunu gösteriyor
- Yani erkeklerin puanı istatistiksel açıdan anlamlı derecede kızlarınkinden farklı
- Kız ve erkeklerin notları arasında gerçekte fark olmayıp da erkeklerin bu puanı şans eseri alma olasılıkları binde birden az (yani çok düşük)
- Böylece boş hipotez reddedilir

- Grafik karşılaştırma yapmak amacıyla erkek ve kızların sıralanmış notlarının ortancalarını vermektedir
 - Mann-Whitney U testi
 ortalamalar arasındaki farkı
 değil de sıra farkını ölçtüğü için
 grafikteki kutucuğun
 ortasındaki değerler ortancadır
 - Erkek ve kızların notlarının ortancaları ile %95 güven aralıkları birbirinden farklıdır

Etki Büyüklüğü

- z değeri için etki büyüklüğü $r = Z / \sqrt{N}$ formülüyle bulunur (r= -3,329 / $\sqrt{200}$ = -0,23)
- r = -0,23 etki büyüklüğü erkeklerle kızların notları arasında çok büyük fark olmadığını gösteriyor

Mann-Whitney Testi Sonucunu Rapor Etme

- Mann-Whitney U testi sonucu APA stiline göre şöyle rapor edilir:
- "Mann-Whitney U testi sonucuna göre erkeklerle kızların yazma notları arasında anlamlı bir fark vardır (U = 3606,000 p=0,001, z=-3,329, r=-0,23)."

Neden Daha Önce Parametrik Olmayan Test Kullanmadık? I

- Bu veriler için hem parametrik hem de parametrik olmayan testlerde erkek ve kızların yazma puanları arasındaki fark anlamlı çıktı
 - Mann-Whitney *U* test sonucu: *U* = 3606, *p***=0,001**, *z*=-3,329, *r*=-0,23.
 - Bağımsız örneklem t-testi sonucu: t = -3,66, SD = 169,7, p = 0,000, r=0,27.
- Peki, yazma puanları normal dağılmamasına karşın neden aynı veriler için daha önce parametrik test kullandık?
- Parametrik testler daha güçlüdür
- Parametrik testlerde Tür 2 hatası (gerçekte gruplar arasında fark varken fark olmadığını kabul etme olasılığı) yapma olasılığı daha düşüktür

Neden Daha Önce Parametrik Olmayan Test Kullanmadık? II

- İki testin p değerlerini karşılaştırın (U testi için p=0,001, t-testi için p=0,000)
- Bu veriler için farketmedi, iki test de iki grup arasındaki farkı yakaladı
- Ama sınır değere (0,05) yakın başka testlerde parametrik test sonucunda iki grup arasındaki puan farkı anlamlı, parametrik olmayanda anlamsız çıkabilir ve ilkinde boş hipotez reddedilir, ikincisinde kabul edilirdi
- Parametrik testlerin iki grup arasındaki farkı farketme gücü parametrik olmayanlarınkinden daha yüksektir
- Bu nedenle veriler normal dağılıma uygun ve aralıklı oranlı ölçüm düzeyinde toplandıysa parametrik testler kullanılmalı

Wilcoxon İşaretli Sıralar Toplamı Testi

- Bağımlı (eşli) örneklem t- testinin parametrik olmayan karşılığıdır.
- İki değişkene ait verilerin normal dağılması gerekmez.
- Veriler sıralama ölçme düzeyinde toplanmış olmalı ya da aralıklı/oranlı veriler sıralama verisine çevrilmelidir (çevirme işlemini test seçildiğinde PASW yapıyor)
- Okuma ve yazma puanlarının normal dağılmadığını daha önce K-S testiyle test ettiğimize göre, aynı örneği kullanarak öğrencilerin okuma ve yazma puanları arasında fark olup olmadığını test edelim.
- Araştırma denencesi (H₁): "Öğrencilerin okuma ve yazma puanları birbirinden farklıdır." (çift kuyruk testi).

Wilcoxon-İşaretli Sıralar Toplamı - PASW

- · Mönüden:
- Analyze -> Nonparametric Tests-> Legacy Dialogs ->2 Related Samples'ı seçin
- Test değişken çiftine okuma ve yazma puanlarını seçin
- Test türüne Wilcoxon'u işaretleyin
- Options seçeneğine tıklayarak "Descriptives" teki işareti kaldırın
- OK'e tıklayın

Wilcoxon İşaretli Sıra Toplamı Sonucu

Wilcoxon Signed Ranks Test

		N	Mean Rank	Sum of Ranks
yazma notu - okuma notu	Negative Ranks	88ª	90,27	7944,00
	Positive Ranks	97 ^b	95,47	9261,00
	Ties	15°	45000 4000	
	Total	200		

Test Statistics^b

c. yazma notu = okuma notu

	yazma notu - okuma notu
Z	-,903ª
Asymp. Sig. (2-tailed)	,366

a. Based on negative ranks.

b. Wilcoxon Signed Ranks Test

Tabloların Yorumu

- Bağımlı örneklem t- testinde olduğu gibi Wilcoxon işaretli sıralar toplamı testi de öğrencilerin okuma ve yazma puanları arasında istatistiksel açıdan anlamlı bir fark olmadığını gösteriyor (Okuma puanı sıraları ort = 95,47; Yazma puanı sıraları ort= 90,27; z = -0,903, p = 0,366).
- Böylece boş hipotez kabul edilir
- Bu test öğrencilerin okuma ve yazma puanlarının ortalamaları karşılaştırılarak yapılmıyor. Bütün öğrencilerin okuma ve yazma puanları sıralanıyor. Bir puanın diğerinden küçük, büyük ve diğerine eşit olduğu vaka sayıları saptanıyor
- Örnekte yazma puanı sırası okuma puanı sırasından düşük olan 88 öğrenci (negative ranks), yazma notu sırası okuma puanı sırasından büyük olan (positive ranks) 97 öğrenci ve yazma ve okuma notu sıraları eşit olan (ties) 15 öğrenci var
- Negatif ve pozitif sıraların toplam ve ortalamaları veriliyor
- Z değeri bize öğrencilerin aldıkları okuma puanlarının sıralarının ortalamasının yazma puanlarının sıralarının ortalamasından yaklaşık 5 puan düşük olduğunu gösteriyor. Bu, anlamlı bir fark değil
- Wilcoxon işaretli sıralar toplamı testi katsayısı (T) olarak için negatif sıraların toplamı alınıyor
- Etki büyüklüğü ($r = z / \sqrt{N} = 0.06$)

Wilcoxon İşaretli Sıralar Toplamı Testi Sonucunu Rapor Etme

- Wilcoxon işaretli sıralar toplamı testi T ile gösterilir ve APA stiline göre şöyle rapor edilir:
- "Wilcoxon işaretli sıralar toplamı testi sonucuna göre öğrencilerin okuma ve yazma puanları arasında istatistiksel açıdan anlamlı bir fark yoktur (T = 7944, p=0.366, z=-0.903, r=-0.06)."
- Bağımlı örneklem t-testinde de aynı sonucu elde etmiştik (t-testindeki ortalamalar arasındaki yarım puanlık fark, bu testteki sıralar ortalaması arasındaki yaklaşık 5 puanlık fark anlamlı değil)

Wilcoxon İşaretli Sıra Testi

- İki değişken arasındaki sıralı olarak değil de negatif ve pozitif olarak sınıflanmışsa Wilcoxon işaretli sıra testi yerine Wilcoxon işaret testi yapılabilir. İşaret testinde farkın sıralı olmadığı varsayılır.
- Ör., okuma ve yazma verileri üzerinde işaretli sıra testi yapalım:

Wilcoxon İsaret Testi

Sign Test

Frequencies		
		Ν
yazma notu - okuma notu	Negative Differences ^a	88
	Positive Differences ^b	97
	Ties ^c	15
	Total	200
a. yazma notu < okuma	notu	
b. yazma notu > okuma	notu	
c. yazma notu = okuma	notu	

Test Statistics

	yazma notu - okuma notu
Z	-,588
Asymp. Sig. (2-tailed)	,556
a. Sign Test	-

- İşaret testi de puanlar arasında anlamlı fark olmadığını olmadığını gösteriyor (z = -0,588, p = 0,556, r = 0,04).
- Boş hipotez kabul edilir

Kruskal-Wallis Testi

- Tek yönlü ANOVA testinin parametrik olmayan karşılığı
- Veriler normal dağılmamışsa, grup/koşul sayısı üç ve daha fazlaysa ve tüm gruplarda/koşullarda farklı denekler kullanıldıysa Kruskal-Wallis testi uygulanır
- Ör., öğrencilerin yazma puanları mezun oldukları lise türüne göre farklı mıdır?
- Araştırma denencesi $(H_1)_{:}$ "Öğrencilerin yazma puanları mezun oldukları lise türüne göre farklıdır." H_1 : $\psi \neq \psi_0$ (çift kuyruk testi)

Kruskal-Wallis Testi - PASW

- · Mönüden:
- Analyze -> Nonparametric Tests-> Legacy Dialogs -> K
 Independent Samples'ı seçin
- Test değişkenine yazma puanını atayın
- Gruplama değişkenine program türünü atayın ve Define range'e tıklayarak minimum 1, maksimum 3 değerlerini girin
- Test türü için Kruskal Wallis'i ve Median'ı işaretleyin
- Options'a tıklayarak Descriptives'i işaretleyin
- OK'e tıklayın

Kruskal-Wallis Testi Sonucu

Kruskal-Wallis Test

wedian res

Ranks

	program türü	N	Mean Rank
yazma notu	genel	45	90,64
	anadolu	105	121,56
	meslek	50	65,14
	Total	200	6

Test Statistics^{a,b}

	yazma notu			
Chi-square	34,045			
df	2			
Asymp. Sig.	,000			

a. Kruskal Wallis Test

b. Grouping Variable: program türü

Frequencies

		program türü		
		genel	anadolu	meslek
yazma notu	> Median	17	65	11
	<= Median	28	40	39

Test Statistics^b

32	yazma notu
N	200
Median	54,00
Chi-square	23,456ª
df	2
Asymp. Sig.	,000

a. 0 cells (,0%) have expected frequencies less than 5. The minimum expected cell frequency is 20,9.

b. Grouping Variable: program türü

Tabloların Yorumu

- Mann-Whitney U testindeki gibi puanlar sıralanır
- Lise türüne göre sıraların ortalaması alınır
- K-W test istatistiği H olarak bilinir ama PASW'de ki- kare olarak veriliyor
- Öğrencilerin mezun oldukları lise türüne göre yazma notları arasındaki fark anlamlı (H = 34,045, SD=2, p=0,000)
- Ortanca (median) testi de aynı sonucu veriyor
- Anadolu liselerinden mezun olan öğrencilerin çoğu ortancadan (54) daha yüksek not almışlar
- Parametrik olmayan testler için yaygın kullanılan post hoc testleri yok
- Farklı grubu/grupları bulmak için 3 Mann-Whitney testi yapmak gerekir

Mann-Whitney Post hoc Testleri meslek- genel anadolu - genel Test Statistics^a Test Statistics yazma notu yazma notu Mann-Whitney U 813,000 Mann-Whitney U 1607.000 Wilcoxon W 2088,000 Wilcoxon W 2642,000 -2,331 -3,111 Asymp. Sig. (2-tailed) ,020 ,002 Asymp. Sig. (2-tailed) a. Grouping Variable: program türü a. Grouping Variable: program türü Üç farklı grup için test yapılır; her birinin anadolu - meslek kendi alfa yanılma yüzdesi (α) olduğundan Test Statistics^a 0,05 üçe bölünür (0,0167) (buna Bonferroni düzeltmesi denilir) yazma notu Mann-Whitney U 1169,000 Yani meslek lisesiyle genel lise puanları arasındaki fark anlamlı olmaktan çıkar (0,02 Wilcoxon W 2444,000 -5,587 ANOVA testinde de ikisi arasındaki fark Asymp. Sig. (2-tailed) sınırın biraz üstündeydi a. Grouping Variable: program türü

Kruskal-Wallis Testi Etki Büyüklüğü

- Kruskall Wallis testi için etki büyüklüğü her ikili grup için ayrı ayrı hesaplanır.
- Anadolu liseleri ile meslek liseleri için $r = -5,587 / \sqrt{(105+50)} = -0,45$ (yani 0,5'e yakın olduğu için etki katsayısı büyük sayılır)
- r_{anadolu-genel}= -0,25 (etki küçük)
- r_{meslek-genel} = -0,24 (etki küçük)

Kaynak: Field ve Hole, 2008, s. 247-249

Kruskal Wallis Testi Sonucunu Rapor Etme

- Kruskal Wallis testi APA stiline göre şöyle rapor edilir:
- "Öğrencilerin yazma notları hangi tür liseden mezun olduklarına göre anlamlı düzeyde farklılık göstermektedir (H = 34,045, SD=2, p=0,000). Farkın hangi grup ya da gruplardan kaynaklandığını bulmak için Mann-Whitney U testleri yapıldı. Bonferroni düzeltmesi uygulanarak tüm etkiler için anlamlılık düzeyi 0,0167 olarak kabul edildi. Meslek liseleriyle genel lise mezunlarının yazma puanları arasında anlamlı bir fark gözlenmedi (U=813, p > 0,0167). Anadolu liseleriyle meslek liselerinden ve anadolu liseleriyle genel liselerden mezun olan deneklerin yazma notlarının birbirinden anlamlı düzeyde farklı olduğu görüldü (sırasıyla U=1169, r=-0,45, U=1607, r=-0,25). Anadolu liselerinden mezun olan öğrencilerin yazma puanları hem meslek liselerinden hem de genel liselerden mezun olanlardan daha yüksektir."
- · Boş hipotez reddedilir

Kaynak: Field ve Hole, 2008, s. 247-249

Friedman'ın ANOVA Testi

- Tek yönlü tekrarlı ANOVA testinin parametrik olmayan karşılığı
- Veriler normal dağılmamışsa, grup/koşul sayısı üç ve daha fazlaysa ve tüm gruplarda/koşullarda aynı denekler kullanıldıysa Friedman'ın ANOVA testi uygulanır
- Ör., öğrencilerin okuma, yazma ve matematik puanları birbirinden farklı mıdır?
- Araştırma denencesi (H₁) : "Öğrencilerin okuma, yazma ve matematik puanları birbirinden farklıdır." (çift kuyruk testi)
- Boş hipotez (H₀) her dersin puan türü sıralarının benzer olup olmadığını test eder

Önce Kolmogorov-Smirnov Normallik Testi

- Mönüden:
- Analyze -> Descriptive Statistics-> Explore'u seçin
- Bağımlı değişken listesine okuma, yazma ve matematik puanlarını atayın
- Both seçeneği işaretli (İstatistikler ve Grafik için)
- Statistics sekmesinde Descriptives'in ve %95 güven aralığı seçili (değiştirilebilir)
- Plots (grafik) Normality plots with test seçeneğini işaretleyin
- · OK'e tıklayın

K-S Normallik Testi Sonucu

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sia.	Statistic	df	Sig.
yazma notu	,134	200	,000	,947	200	,000
okuma notu	,105	200	,000	,980	200	,006
matematik notu	,071	200	,016	,977	200	,002

- a. Lilliefors Significance Correction
- K-S testi sonuçları yazma, okuma ve matematik puan türleri için de anlamlı (sırasıyla D(200)=0,134, p=0,000, D(200)=0,105, p=0,000), D(200)=0,071, p=0,016).
- Yani her üç puan türü için de verilerin dağılımı normal değil, dolayısıyla parametrik olmayan test uygulanabilir

Friedman'ın ANOVA Testi - PASW

- · Mönüden:
- Analyze -> Nonparametric Tests-> Legacy Dialogs ->K Related Samples'ı seçin
- Test değişkenlerine okuma, yazma ve matematik puanlarını atayın
- Test türü için Friedman'ı işaretleyin
- Statistics'e tıklayarak Descriptive ve Quartile'ı işaretleyin
- OK'e tıklayın

Friedman'ın ANOVA Testi Sonucu **Descriptive Statistics** Percentiles Std. Deviation Maximum 25th 75th Mean Minimum 50th (Median) yazma notu 52.78 9.479 45.25 54.00 60.00 200 44,00 okuma notu 52.23 10.253 76 50.00 60.00 matematik notu 52,65 9,368 45,00 Friedman Test Ranks Mean Rank 2,04 okuma notu 1,96 matematik notu 2,01 Test Statistics^a Chi-square Asymp, Sig. a. Friedman Test

Tabloların Yorumu

- İlk tabloda tanımlayıcı istatistikler verilmiş. Parametrik olmayan test yapıldığı için ortanca (median) önemli
- Test istatistiği ki- kare ile verilmiş, SD 2, p değeri 0,724 ($\chi^2_{(2)}$ = 0,645, p = 0,724)
- Test sonucuna göre üç puan türünün dağılımları birbirine benziyor.
 Sıra ortalamaları ve ortancalar birbirine çok yakın
- **Boş hipotez kabul edilir:** Öğrencilerin okuma, yazma ve matematik puanları birbirine benzemektedir
- Boş hipotez reddedilmiş olsaydı daha önce Kruskal Wallis testinde olduğu gibi post hoc testleri (Wilcoxon) yapmak ve etki büyüklüğünü hesaplamak gerekecekti
- (Parametrik olmayan testler için yaygın kullanılan post hoc testleri olmadığını söylemiştik)

Friedman'ın ANOVA Testi Sonucunu Rapor Etme

- Friedman'ın ANOVA testi sonucu APA stiline göre şöyle rapor edilir:
- "Friedman'ın ki- kare testi sonucu öğrencilerin okuma, yazma ve matematik notları arasında anlamlı bir fark olmadığını göstermektedir $(\chi^2_{(2)} = 0,645, p = 0,724)$. Her üç derse ait puanların dağılımı birbirlerine benzemektedir."
- Boş hipotez kabul edilir

Parametrik Olmayan Korelasyon Testi (Spearman's rho)

- İki değişken arasındaki ilişkinin gücünü ölçmek için kullanılan parametrik olmayan bir testtir
- · Verilerin normal dağılmış olması gerekmez
- Sıralama ölçüm düzeyinde toplanmış veriler için kullanılır
- Veriler aralıklı ya da oranlı ölçüm düzeyinde toplanmışsa önce sıralamaya çevrilir, sonra test uygulanır
- Gene okuma ve yazma puanları arasındaki korelasyona bakalım. Verilerin normal dağılmadığını biliyoruz
- Araştırma hipotezi (H₁): "Öğrencilerin okuma ve yazma puanları arasında bir korelasyon vardır." (H₁: ų₁≠ ų₂) (çift kuyruk testi).

Korelasyon Testi - PASW

- · Mönüden:
- Analyze -> Correlate-> Bivariate'i seçin
- · Yazma ve okuma puanlarını atayın
- Spearman ve two-tailed test'i seçin
- OK'e tıklayın

Spearman Korelasyon Testi Sonucu

Correlations					
			okuma notu	yazma notu	
Spearman's rho	okuma notu	Correlation Coefficient	1,000	,617**	
		Sig. (2-tailed)	ă.	,000	
		N	200	200	
	yazma notu	Correlation Coefficient	,617 ^{**}	1,000	
		Sig. (2-tailed)	,000		
		N	200	200	

^{**.} Correlation is significant at the 0.01 level (2-tailed).

 Veriler sıralı olduğu için Spearman korelasyon katsayısında aritmetik ortalama ya da standart sapma seçenekleri hesaplanmaz

Tablonun Yorumu

- Öğrencilerin okuma ve yazma puanları arasında pozitif bir korelasyon (0,617) var ve bu korelasyon anlamlı (0,000)
- Parametrik olmayan Spearman korelasyon katsayısı Spearman's ρ ya da Spearman's rho ile gösterilir
- Korelasyon katsayısı okuma ve yazma puanları arasındaki korelasyonun yaklaşık 0,38'ini açıklıyor (rho'nun karesi alınır)
- Yani okuma puanlarının %38'i yazma puanlarındaki değişimle açıklanabilir
- Yani okuma puanları yüksek olan öğrencilerin yazma puanları da yüksektir (ya da yazma puanları yüksek olan öğrencilerin okuma puanları da yüksektir)
- · Boş hipotez reddedilir

Spearman Korelasyon Testi Sonucunu Rapor Etme

- APA stiline göre bulgular şöyle rapor edilir:
- "Öğrencilerin okuma ve yazma puanları arasında pozitif bir korelasyon gözlenmiştir (Spearman's ρ = 0,617, p = 0,000, ρ^2 =0,38). İki değişken arasında orta düzeyde güçlü bir korelasyon vardır. Okuma puanları yüksek olan öğrencilerin yazma puanları da nispeten daha yüksektir."
- Son cümle "Yazma puanları yüksek olan öğrencilerin okuma puanları da nispeten daha yüksektir." şeklinde de yazılabilir

Parametrik ve Parametrik Olmayan Korelasyon Testi Karşılaştırması

Correlations

		okuma notu	yazma notu
okuma notu Pearson Correlation		1	,597**
	Sig. (2-tailed)		,000
	N	200	200
yazma notu	Pearson Correlation	,597**	1
	Sig. (2-tailed)	,000	
	N	200	200

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Correlations

			okuma notu	yazma notu
Spearman's rho	okuma	Correlation Coefficient	1,000	,617**
	notu	Sig. (2-tailed)	st.	,000
		N	200	200
	yazma	Correlation Coefficient	,617**	1,000
	notu	Sig. (2-tailed)	,000	100
		N	200	200

^{**.} Correlation is significant at the 0.01 level (2-tailed)

- Pearson korelasyon testi ile Spearman aynı sonucu verdi (yani iki değişken arasında korelasyon var)
- Ama Spearman korelasyon katsayısı Pearson'dan daha yüksek
- Çünkü parametrik olmayan testler parametrik testlerden daha az duyarlıdır