

Problem Statement

Design a modular PCB in KiCad for urban environmental surveillance. The PCB must integrate sensor interfacing, power management, and real-time data transmission while ensuring scalability and efficiency under strict power and connectivity constraints. It should feature mapped communication protocols for sensors and actuators, a robust power management unit with battery monitoring, recharging, and a solar panel interface, and a modular design using standard electronic components. Bonus points will be awarded for a precision-engineered PCB layout with a 3D CAD model ensuring a perfect fit with a predefined solar panel.

Proposed Solution

- KiCad is used for schematic capture and PCB layout, while FreeCAD/Fusion
 360 is utilized for 3D modeling to ensure structural compatibility with the solar panel.
- The solution uses ESP32/ESP8266 for Wi-Fi & BLE, LoRa modules for long-range communication for seamless sensor-actuator integration.
- The air quality (MQ-135, CCS811), temperature & humidity, and light sensors (BH1750) for comprehensive environmental monitoring.

Technical Approach

PCB Layout

Front Copper Layer

Back Copper Layer

3D Rendered Image

Schematic Diagram

Bill of Materials

Component Name	Price (INR)	Specifications
ESP32-S3 Dev Module	500	Wi-Fi & BLE microcontroller
MQ-135 Gas Sensor	250	Air quality monitoring, detects CO2, NH3, alcohol, benzene
Sound Sensor Module	150	Microphone-based sound level detection
OLED Display	400	0.96-inch, I2C interface, 128x64 resolution
BME280 Environmental 5	350	Temperature, humidity, and pressure sensor
Solar Panel	800	Renewable power source, typically 5V output
Rechargeable Module (T	100	Lithium battery charging module
IR Flame Sensor	180	Infrared-based fire detection sensor
Battery 3.7V 2500mAh 18	300	Rechargeable Li-ion battery
Voltage Booster	200	Boosts voltage for stable power supply
Dust Sensor	600	PM2.5 and PM10 air quality monitoring
Hall Effect Sensor	120	Detects magnetic fields, used for speed and proximity sensing
MAX471 Current and Vol	250	Measures current and voltage for power monitoring
Water Flow Sensor	450	Measures fluid flow rate in pipes
DHT11 Temperature and	100	Basic temperature and humidity sensor
Soil Moisture Sensor	150	Detects moisture levels in soil
Relay Module	200	Electromechanical switch for high-power applications
Rain Sensor	180	Detects rainwater presence
RTC DS3231 Module	250	Real-time clock module with battery backup

THANKYOU!