Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs

Simon Grund^{1,2}, Oliver Lüdtke^{1,2}, and Alexander Robitzsch^{1,2}

¹Leibniz Institute for Science and Mathematics Education, Kiel, Germany

²Centre for International Student Assessment, Germany

Supplemental Online Material

Enclosed in this document are the supplemental materials for our article entitled "Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs." Supplement A contains the computer code and M*plus* syntax file used in the empirical example. Supplement B contains an additional simulation study that compares an "empirical Bayes" and a fully Bayesian procedure for FCS-LAT. Supplement C contains an additional simulation study that contrasts the use of least informative and data-dependent priors in JM. Supplement D contains additional tables that include the complete results of Studies 1 and 2.

Supplement A: Computer Code for the Empirical Example

Below, we provide the computer code for the statistical software R (R Core Team, 2016) and the syntax file for the statistical software M*plus* that were used in the empirical example in the main article. The data set comprised the German subsample of the Programme for International Student Assessment (PISA; OECD, 2014). These data are available online free of charge (https://www.oecd.org/pisa).

```
# ***
# 0) load packages
#

library(foreign)
library(mice)
library(miceadds)
library(mitml)

# ***
# 1) prepare data
#

# student data set (level 1)
stu.dat <- read.spss("PiSA2012_SPSS_student_DEU.sav", to.data.frame=TRUE)

# school data set (level 2)
sch.dat <- read.spss("PiSA2012_SPSS_school_DEU.sav", to.data.frame=TRUE)

# create combined data sets (level 1 and 2)
ind <- match(stu.dat$SCHOOLID, sch.dat$SCHOOLID)
stu.vars <- c("SCHOOLID", "ST04Q01", "ESCS", "CLSMAN", "STUDREL", "PV1MATH")</pre>
```

```
sch.vars <- c("SC11Q01", "SC11Q02")
# combine
dat <- cbind(stu.dat[,stu.vars], sch.dat[ind,sch.vars])</pre>
# reformat and rename
dat <- within(dat, SCHOOLID <- as.numeric(SCHOOLID))</pre>
colnames(dat) <- c("SCHOOLID", "GENDER", "ESCS", "CLSMAN", "STUDREL", "PVMATH", "NSTU", "NCMP")</pre>
# fix seed for random number generator(s)
seed <- 1234
# ***
# 2.i) joint modeling (JM)
fml <- list( GENDER + ESCS + CLSMAN + STUDREL + PVMATH ~ 1 + (1|SCHOOLID) ,
             NSTU + NCMP \sim 1 )
imp.jm <- mitml::jomoImpute(data=dat, formula=fml, n.burn=5000, n.iter=500, m=20,
                             seed=seed)
# completed data sets
for(i in 1:20){
 out <- within(mitml::mitmlComplete(imp.jm,i),{ GENDER <- as.numeric(GENDER)-1 })</pre>
 write.table(out, file=paste0("jm",i,".dat"), row.names=FALSE, col.names=FALSE)
 cat(paste0("jm",i,".dat\n"), file="jm_list.dat", append=TRUE)
}
# ***
# 2.ii) single-level FCS (FCS-SL)
predMatrix <- matrix(0, ncol(dat), ncol(dat))</pre>
rownames(predMatrix) <- colnames(predMatrix) <- colnames(dat)</pre>
predMatrix["ESCS",] <- c(0,1,0,1,1,1,1,1)
                                                 # regression (flat file)
predMatrix["CLSMAN",] <- c(0,1,1,0,1,1,1,1)
                                               # regression (flat file)
predMatrix["STUDREL",] \leftarrow c(0,1,1,1,0,1,1,1) # regression (flat file)
predMatrix["NSTU",] <- c(0,1,1,1,1,1,0,1)
                                               # regression (flat file)
predMatrix["NCMP",] <- c(0,1,1,1,1,1,1,0)
                                                 # regression (flat file)
impMethod <- c("","","norm","norm","norm","","norm","norm")</pre>
imp.fcssl <- mice::mice(data=dat, predictorMatrix=predMatrix, method=impMethod,</pre>
                         m=20, maxit=50, seed=seed)
# completed data sets
for(i in 1:20){
 out <- within(mice::complete(imp.fcssl,i),{ GENDER <- as.numeric(GENDER)-1</pre>
   NSTU <- mitml::clusterMeans(NSTU,SCHOOLID)</pre>
   NCMP <- mitml::clusterMeans(NCMP,SCHOOLID)</pre>
 })
```

```
write.table(out, file=paste0("fcssl",i,".dat"), row.names=FALSE, col.names=FALSE)
  cat(paste0("fcssl",i,".dat\n"), file="fcssl_list.dat", append=TRUE)
}
# 2.iii) two-level FCS with manifest cluster means (FCS-MAN)
predMatrix <- matrix(0, ncol(dat), ncol(dat))</pre>
rownames(predMatrix) <- colnames(predMatrix) <- colnames(dat)</pre>
predMatrix["ESCS",] <- c(-2,1,0,3,3,3,1,1)
                                                 # random intercepts model
predMatrix["CLSMAN",] <- c(-2,1,3,0,3,3,1,1)
                                                 # random intercepts model
predMatrix["STUDREL",] <- c(-2,1,3,3,0,3,1,1) # random intercepts model
predMatrix["NSTU",] <- c(-2,1,1,1,1,1,0,1) # regression at level 2
predMatrix["NCMP",] <- c(-2,1,1,1,1,1,1,0)
                                               # regression at level 2
impMethod <- c("","","2l.pan","2l.pan","2l.pan","","2lonly.norm","2lonly.norm")</pre>
imp.fcsman <- mice::mice(data=dat, predictorMatrix=predMatrix, method=impMethod,</pre>
                         m=20, maxit=50, seed=seed)
# completed data sets
for(i in 1:20){
  out <- within(mice::complete(imp.fcsman,i),{ GENDER <- as.numeric(GENDER)-1 })</pre>
  write.table(out, file=paste0("fcsman",i,".dat"), row.names=FALSE, col.names=FALSE)
  cat(paste0("fcsman",i,".dat\n"), file="fcsman_list.dat", append=TRUE)
}
# ***
# 2.iv) two-level FCS with manifest and latent cluster means (FCS-LAT)
lm.dat <- within(dat, LM.CLSMAN <- LM.STUDREL <- LM.PVMATH <- NA)</pre>
predMatrix <- matrix(0, ncol(lm.dat), ncol(lm.dat))</pre>
rownames(predMatrix) <- colnames(predMatrix) <- colnames(lm.dat)</pre>
predMatrix["LM.CLSMAN",] <- c(-2,1,1,2,0,0,1,1,0,1,1)
                                                          # latent group means
predMatrix["LM.STUDREL",] <- c(-2,1,1,0,2,0,1,1,1,0,1)
                                                          # latent group means
predMatrix["LM.PVMATH",] <- c(-2,1,1,0,0,2,1,1,1,1,0)
                                                          # latent group means
predMatrix["ESCS",] <- c(-2,1,0,1,1,1,1,1,1,1,1)
                                                          # random intercepts model
predMatrix["CLSMAN",] <- c(-2,1,3,0,1,1,1,1,0,1,1)</pre>
                                                          # random intercepts model
predMatrix["STUDREL",] <- c(-2,1,3,1,0,1,1,1,1,0,1)
                                                          # random intercepts model
predMatrix["NSTU",] < c(-2,1,1,0,0,0,0,1,1,1,1)
                                                          # regression at level 2
predMatrix["NCMP",] <- c(-2,1,1,0,0,0,1,0,1,1,1)
                                                         # regression at level 2
visitSeq \leftarrow c(11,4,9,5,10,3,7,8)
impMethod <- c("","","21.pan","21.pan","21.pan","","21only.norm","21only.norm",</pre>
               "21.latentgroupmean.mcmc", "21.latentgroupmean.mcmc",
               "21.latentgroupmean.mcmc")
```

Following the imputation, the completed data sets were saved in a series of text files. These files were analyzed with the statistical software Mplus (L. K. Muthén & Muthén, 2012) using the syntax file given below.

```
TITLE:
Empirical example using data from PISA 2012;
DATA:
FILE = ..._list.dat; ! replace "..." with prefix for imputation method
                        ! (e.g., "jm_list.dat")
TYPE = IMPUTATION;
VARIABLE:
NAMES = SCHOOLID GENDER ESCS CLSMAN STUDREL PVMATH NSTU NCMP;
USEVARIABLES = SCHOOLID GENDER ESCS CLSMAN STUDREL PVMATH NSTU NCMP SCHESCS:
BETWEEN = NSTU NCMP SCHESCS;
WITHIN = GENDER ESCS;
CLUSTER = SCHOOLID;
DEFINE:
SCHESCS = CLUSTER_MEAN (ESCS); ! manifest cluster means for ESCS
CENTER ESCS (GROUPMEAN); ! cluster mean centering for ESCS CENTER SCHESCS (GRANDMEAN); ! grand mean centering for SCHESCH
ANALYSIS:
TYPE = TWOLEVEL;
MODEL:
%within%
PVMATH on GENDER ESCS CLSMAN STUDREL;
PVMATH on NSTU NCMP SCHESCS CLSMAN STUDREL;
```

Table 1
Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y with z ($\hat{\sigma}_{yz}$) and the Regression Coefficients of y on z and z on y ($\hat{\beta}_{yz}$ and $\hat{\beta}_{zy}$) for Small ICC of y ($\rho_{Iy}=.10$) and 20% Missing Data (MAR, $\lambda=0.5$)

		Bias (%)		R	el. RMSI	Ξ	Co	verage (%)
	FCS-MAN	FCS-LAT (EB)	FCS-LAT (FB)	FCS-MAN	FCS-LAT (EB)	FCS-LAT (FB)	FCS-MAN	FCS-LAT (EB)	FCS-LAT (FB)
				Covarian	ce y with	$z(\hat{\sigma}_{yz})$			
J = 30	0.9	5.0	-3.7	0.789	0.809	0.743	93.8	93.4	94.1
J = 50	-0.3	3.6	-1.6	0.584	0.604	0.565	94.5	93.9	95.0
J = 100	0.1	3.0	0.3	0.419	0.426	0.406	94.3	93.8	94.7
				Regress	sion y ~ :	$z(\hat{\beta}_{yz})$			
J = 30	-4.7	-1.2	-7.5	0.707	0.726	0.688	91.5	90.1	93.6
J = 50	-3.0	0.1	-4.0	0.532	0.544	0.519	92.4	91.7	94.4
J = 100	-1.5	0.8	-1.4	0.382	0.389	0.376	93.4	92.7	94.3
				Regress	sion $z \sim y$	$y(\hat{\beta}_{zy})$			
J = 30	-10.2	-6.7	-10.8	0.957	0.989	0.968	92.8	93.3	94.5
J = 50	-4.3	-0.9	-4.3	0.791	0.793	0.795	94.0	94.0	95.0
J = 100	-1.3	1.4	-1.1	0.601	0.596	0.582	93.9	94.0	94.5

Note. J = number of clusters; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means (fully Bayesian).

Supplement B: Fully Bayesian Procedure for FCS-LAT

As an alternative to using an "empirical Bayes" procedure during the generation of plausible values of latent cluster means, a fully Bayesian procedure may be used that draws the model parameters from their posterior distributions. The resulting procedure is "Bayesianly proper" in the sense of Rubin (1987) and may improve efficiency and coverage properties in smaller samples. In the following simulation study, we evaluated the differences between the empirical Bayes and the fully Bayesian procedure for the generation of latent cluster means. Both procedures were implemented using the R package miceadds (Robitzsch, Grund, & Henke, 2017). The simulated conditions were similar to those in Study 1 in the main article and were intended to match the conditions displayed in Figure 2

and Table 2 with smaller samples (n = 5, J = 30, 50, 100).

The results of this simulation are provided in Table 1. When FCS-LAT was based on an empirical Bayes procedure (EB), we observed coverage rates for the regression coefficient of y on z ($\hat{\beta}_{yz}$) below the nominal value of 95% in very small samples ($J \leq 50$). On the other hand, when FCS-LAT was based on a fully Bayesian procedure (FB), the coverage rates were nearly optimal for all parameters and even in very small samples. In addition, FCS-LAT (FB) yielded lower values for the RMSE than FCS-MAN or FCS-LAT (EB) in these conditions, indicating that the parameters were estimated with greater accuracy overall. By contrast, the results for the bias were usually best under FCS-LAT (EB), whereas the bias under FCS-LAT (FB) was slightly higher for the two regression coefficients ($\hat{\beta}_{yz}$ and $\hat{\beta}_{zy}$).

Supplement C: Data-Dependent Priors in JM

Even though the use of data-dependent priors (DDPs) is not without criticism (e.g., see Gelman et al., 2014), it has been recommended that DDPs be used to mitigate problems in the estimation of multilevel models in smaller samples (e.g., Grund, Lüdtke, & Robitzsch, 2016; McNeish, 2016). In the following simulation study, we explored the effects of using DDPs for MI of missing data at Level 2 using JM. In order to specify DDPs, we estimated the covariance matrix of the variables at Level 1 ($\hat{\Sigma}_1$) and Level 2 ($\hat{\Sigma}_2$) from the complete data using the formulae provided by B. O. Muthén (1994). To ensure that these matrices were positive-definite, the variances were constrained to be larger than zero, and the covariances were constrained in such a way that they implied a correlation between -1 and 1. Using these estimates, we set the scale matrices of the inverse-Wishart priors to $\mathbf{S}_1 = \mathbf{v}_1 \hat{\Sigma}_1$ for the covariance matrix at Level 1 and $\mathbf{S}_2 = \mathbf{v}_2 \hat{\Sigma}_2$ for the covariance matrix at Level 2, where the degrees of freedom \mathbf{v}_1 and \mathbf{v}_2 were set to match the dimensions of $\hat{\Sigma}_1$ and $\hat{\Sigma}_2$, respectively (i.e., largest possible dispersion; see Schafer & Yucel, 2002). The remaining parameters of the simulation were a subset of the conditions in Study 1 (n = 5; J = 30, 50, 100, 200, 500,

Figure 1. Estimated bias for the mean and the variance of z ($\hat{\mu}_z$ and $\hat{\sigma}_z^2$) and the covariance of y with z ($\hat{\sigma}_{yz}$) for varying numbers of clusters (J) and ICCs of y (ρ_{Iy}) and 20% missing data (MAR, $\lambda = 0.5$). LD = listwise deletion; FCS-MAN = two-level FCS with manifest group means; JM = joint modeling with least-informative priors; JM-DDP = joint modeling with data-dependent priors.

1000; ρ_{Iy} = .10, .30; λ = 0.5; 20% missing data).

The results for the bias in the mean and variance of z ($\hat{\mu}_z$ and $\hat{\sigma}_z^2$), and the covariance of y with z ($\hat{\sigma}_{yz}$) are presented in Figure 1. As in the main study, all procedures provided essentially unbiased estimates of the mean and variance of z. However, to provide unbiased estimates of the covariance of y with z, JM required slightly larger samples than FCS-MAN, especially when the ICC of y was low ($J \ge 200$ with ρ_{Iy}). By contrast, the use of data-dependent priors (JM-DDP) led to a noticeable decrease in bias; that is, much smaller samples were required for the bias in the parameter estimates to vanish ($J \ge 100$). These

results illustrate that the performance of JM may be substantially improved by employing data-dependent priors or, alternatively, by formulating a more reasonable "prior guess" of the variances and covariances at Level 1 and 2 on the basis of prior knowledge rather than relying on the standard least-informative priors.

Supplement D: Additional Tables

This section presents the complete results of the simulation studies reported in the main article. Note that the bias is calculated here in a "raw" metric for all procedures, that is, with the "true" values in the data-generating model as a point of reference. This is in contrast to the main article, where the bias was calculated on the basis of the results obtained from the complete data sets. The results are organized in a series of tables numbered according to the simulation study. Tables 1-1 to 1-30 contain the results of Study 1, and Tables 2-1 to 2-40 contain the results of Study 2.

Study 1: Bias, RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With 20% Missing Data (MCAR, $\lambda = 0$) Table 1-1

						!							!		ı	ı		
95.7	95.3	95.0	89.9	95.1	95.6	0.03	0.03	0.03	0.03	0.03	0.03	0.00	0.00	0.00	0.00	0.00		J = 1000
1 1	1.1) · · ·		1.0		0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00		1 000
944	044	947	2 08	94 6	2 50	0 05))	0 0	0 05	0 05	0 02	-0 00	-000	-0 00	-0 00	-000		I = 500
93.5	93.2	93.3	86.9	92.9	93.9	0.08	0.08	0.08	0.08	0.08	0.07	-0.00	-0.00	-0.00	-0.00	-0.00		J = 200
94.9	94.5	93.9	88.3	93.9	94.8	0.11	0.11	0.11	0.11	0.11	0.10	-0.00	0.00	0.00	0.00	0.00	-0.00	J = 100
93.9	94.0	93.9	87.6	93.9	93.2	0.16	0.16	0.16	0.16	0.16	0.14	-0.00	-0.00	-0.00	-0.00	-0.00		J = 50
93.9	94.3	94.1	86.2	93.8	93.7	0.20	0.20	0.20	0.20	0.20	0.18	-0.00	-0.00	-0.00	-0.00	-0.00		J = 30
																		$\eta = 20$
94.8	95.6	95.2	88.8	95.1	93.9	0.04	0.04	0.04	0.04	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	J = 1000
94.1	95.1	94.8	90.3	95.5	95.3	0.05	0.05	0.05	0.05	0.05	0.05	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 500
95.3	95.1	95.1	91.8	95.7	95.5	0.08	0.08	0.08	0.08	0.08	0.07	0.00	0.00	0.00	0.00	0.00	0.00	J = 200
93.1	93.3	92.6	88.3	93.3	94.1	0.12	0.12	0.12	0.12	0.12	0.10	0.00	0.00	0.00	0.00	0.00	0.00	J = 100
94.7	95.1	95.1	90.9	95.2	94.4	0.15	0.15	0.15	0.15	0.15	0.14	0.00	0.00	0.00	0.00	-0.00	0.00	J = 50
92.5	93.0	93.4	88.1	92.5	92.5	0.21	0.21	0.21	0.21	0.21	0.19	0.00	0.00	0.00	0.00	0.00	0.00	n = 5 $J = 30$
						= .30)		rrelatio	Moderate intraclass correlation (ρ_{Iy}	ıte intra	Modera							
95.7	96.0	95.1	88.5	95.8	94.8	0.03	0.03	0.03	0.03	0.03	0.03	0.00	0.00	0.00	0.00	0.00	0.00	J = 1000
96.1	95.5	96.1	89.2	95.4	96.7	0.05	0.05	0.05	0.05	0.05	0.04	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 500
96.0	95.6	95.3	89.0	95.1	95.1	0.08	0.08	0.08	0.08	0.08	0.07	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 200
93.9	93.8	94.7	86.7	94.3	93.9	0.11	0.11	0.11	0.11	0.11	0.10	0.00	0.00	0.00	0.00	0.00	0.00	J = 100
93.9	93.3	93.9	86.9	93.1	93.7	0.16	0.16	0.16	0.16	0.16	0.15	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 50
94.3	94.4	94.1	87.7	93.2	93.9	0.20	0.20	0.20	0.20	0.20	0.18	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 30
																		n = 20
94.8	93.7	94.3	89.7	94.4	94.7	0.04	0.04	0.04	0.04	0.04	0.03	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 1000
95.5	95.4	95.4	91.3	95.0	95.5	0.05	0.05	0.05	0.05	0.05	0.04	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	J = 500
95.2	94.6	94.5	89.9	94.6	94.6	0.08	0.08	0.08	0.08	0.08	0.07	-0.00	0.00	0.00	-0.00	-0.00	0.00	J = 200
95.2	94.7	94.9	90.7	94.7	95.3	0.11	0.11	0.11	0.11	0.11	0.10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 100
94.9	95.1	95.3	91.9	94.9	94.9	0.15	0.15	0.15	0.15	0.15	0.14	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 50
94.2	94.5	94.5	89.5	93.8	94.1	0.20	0.20	0.20	0.20	0.20	0.18	0.00	0.00	0.00	0.00	0.00	-0.00	i = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation (ρ_{Iy}	l intracl	Small							
JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		Coverage (%)	Covera					1SE	RMSE					s (%)	Bias			

Study 1: Bias, RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With 20% Missing Data (MAR, $\lambda=0.5$) Table 1-2

						!												
94.8	93.8	93.6	49.1	35.8	94.9	0.04	0.04	0.04	0.07	0.09	0.03	-0.00	0.00	0.00	-0.06	-0.08	-0.00	J = 1000
		00.			1.0				0.00	0.10		0.00	0.00	0.00	0.00	0.00		1 1000
93 9	943	93 7	673	61 7	94 8	0 0	500	0 05	0 08	0 10	200	000	000	000	-0.06	-0 0x	9	I = 500
94.9	94.7	94.1	79.3	81.4	94.4	0.08	0.08	0.08	0.10	0.11	0.07	0.00	0.00	0.00	-0.05	-0.08	0.00	J = 200
94.4	95.1	94.6	85.7	90.1	94.9	0.11	0.11	0.11	0.12	0.14	0.10	-0.00	0.00	0.00	-0.06	-0.08	0.00	J = 100
94.3	94.2	94.7	86.8	90.9	94.8	0.16	0.16	0.16	0.16	0.17	0.14	-0.01	0.00	0.00	-0.05	-0.08	-0.00	J = 50
94.5	95.1	94.9	86.6	92.1	94.4	0.20	0.20	0.20	0.20	0.21	0.18	-0.01	0.01	0.01	-0.05	-0.08	0.01	J = 30
																		n = 20
95.5	94.8	94.8	67.1	46.4	94.1	0.04	0.04	0.04	0.05	0.08	0.03	-0.00	0.00	0.00	-0.04	-0.07	0.00	J = 1000
95.3	94.7	94.7	77.1	68.1	94.7	0.05	0.05	0.05	0.07	0.09	0.04	-0.00	-0.00	-0.00	-0.04	-0.07	-0.00	J = 500
95.4	95.4	95.0	85.4	85.0	95.6	0.08	0.08	0.08	0.09	0.10	0.07	0.00	0.00	0.00	-0.04	-0.07	0.00	J = 200
94.1	94.0	94.2	86.1	88.3	93.9	0.11	0.11	0.11	0.12	0.13	0.10	-0.01	-0.00	-0.00	-0.04	-0.07	0.00	J = 100
95.1	94.3	94.1	88.3	92.2	94.3	0.15	0.16	0.16	0.16	0.17	0.14	-0.01	0.01	0.00	-0.04	-0.07	0.00	J = 50
92.5	92.5	93.0	85.7	90.9	92.1	0.21	0.22	0.22	0.21	0.22	0.19	-0.02	0.01	0.00	-0.04	-0.07	0.00	n = 5 $J = 30$
						= .30)	$(\rho_{Iy}$	rrelatio	Moderate intraclass correlation	ıte intra	Modera							
95.4	95.0	95.0	41.2	45.7	96.1	0.04	0.04	0.04	0.07	0.08	0.03	-0.00	0.00	-0.00	-0.06	-0.07	0.00	J = 1000
94.3	93.8	94.5	59.4	66.4	95.4	0.05	0.05	0.05	0.08	0.09	0.04	-0.01	-0.00	-0.00	-0.07	-0.08	-0.00	J = 500
94.4	93.8	94.4	76.8	84.1	94.2	0.08	0.08	0.08	0.10	0.11	0.07	-0.00	0.00	0.00	-0.06	-0.07	0.01	J = 200
95.1	95.1	95.5	82.7	90.5	94.7	0.11	0.11	0.11	0.12	0.13	0.10	-0.01	0.00	0.00	-0.06	-0.07	0.00	J = 100
94.1	94.3	94.5	83.1	90.7	94.1	0.16	0.17	0.16	0.17	0.18	0.15	-0.02	0.01	0.00	-0.06	-0.07	0.00	J = 50
92.6	93.2	93.5	83.7	91.9	93.1	0.21	0.21	0.21	0.21	0.22	0.18	-0.03	0.01	0.00	-0.06	-0.07	-0.00	J = 30
																		n = 20
95.0	94.6	94.8	70.1	67.7	94.7	0.04	0.04	0.04	0.05	0.06	0.03	-0.00	-0.00	-0.00	-0.04	-0.05	-0.00	J = 1000
95.2	95.0	95.4	80.6	81.8	96.8	0.05	0.05	0.05	0.06	0.07	0.04	-0.00	-0.00	-0.00	-0.04	-0.05	-0.00	J = 500
95.5	94.8	94.7	87.7	90.2	95.5	0.08	0.08	0.08	0.09	0.09	0.07	-0.01	0.00	-0.00	-0.04	-0.05	-0.00	J = 200
94.7	94.5	94.5	87.6	91.8	94.5	0.11	0.11	0.11	0.12	0.12	0.10	-0.01	0.00	-0.00	-0.04	-0.05	-0.00	J = 100
95.4	95.9	95.5	88.4	93.6	94.5	0.16	0.16	0.16	0.16	0.16	0.14	-0.02	0.01	0.00	-0.04	-0.05	0.00	J = 50
93.0	93.4	93.6	86.6	91.9	92.4	0.21	0.21	0.21	0.21	0.22	0.18	-0.03	-0.00	-0.01	-0.05	-0.06	-0.00	n = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation (ρ_{Iy}	l intracl	Small							
JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		ge (%)	Coverage (%)					1SE	RMSE					_	Bias			

Study 1: Bias, RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With 20% Missing Data (MAR, $\lambda=1$) Table 1-3

					•	1 2 2		•	; -		•		3	,	•	•	•	;
95.3	95.0	94.9	1.3	0.0	94.1	0.04	0.04	0.04	0.13	0.17	0.03	-0.00	0.00	0.00	-0.13	-0.16		J = 1000
94.8	94.5	95.3	11.0	5.1	96.0	0.05	0.05	0.05	0.14	0.17	0.04	-0.00	-0.00	-0.00	-0.13	-0.17		J = 500
95.0	95.5	95.2	44.8	39.1	95.2	0.08	0.08	0.08	0.15	0.18	0.07	-0.01	0.00	0.00	-0.13	-0.17	0.00	J = 200
94.6	94.2	94.5	67.1	67.5	94.3	0.12	0.12	0.12	0.16	0.19	0.10	-0.01	0.01	0.01	-0.12	-0.16		J = 100
93.0	94.2	93.9	76.3	79.8	93.8	0.17	0.18	0.18	0.20	0.22	0.14	-0.03	0.00	0.00	-0.13	-0.16		J = 50
94.1	94.1	94.8	78.9	84.5	94.3	0.21	0.22	0.22	0.23	0.25	0.18	-0.03	0.01	0.01	-0.12	-0.16		J = 30
94.9	93.0	93.0	10.5	1.1	94.8	0.04	0.04	0.04	0.11	0.13	0.03	-0.00	-0.00	-0.00	-0.10	-0.14	0.00	0.001 = 0.000
04.0	03.6	04.0	10 4	1 1	04.0	0.00	0.00	0.00	0.11	0.15	0.03	0.00	0.00	0.00	0.10	0.17	0.93	J = 300
050	92.6	05.5	340	13.7	ار ار ار	0.05	0.05	0.05	0 11	0 15	0 04	-0.00	000	-0.00	_0 10	-0.15	-0.00	I = 500
95.7	94.5	95.6	65.0	52.2	96.1	0.08	0.08	0.08	0.12	0.16	0.07	<u>-0.01</u>	-0.00	-0.00	-0.10	-0.15	-0.00	J = 200
94.9	94.3	94.3	75.8	71.3	95.1	0.12	0.12	0.12	0.15	0.18	0.10	-0.01	0.00	0.00	-0.10	-0.14	0.00	J = 100
93.7	93.8	93.8	80.6	81.6	94.1	0.17	0.18	0.18	0.18	0.21	0.14	-0.03	0.01	-0.00	-0.10	-0.15	-0.00	J = 50
92.9	92.9	93.9	82.8	85.7	93.0	0.22	0.24	0.23	0.22	0.25	0.19	-0.05	0.01	-0.00	-0.10	-0.15	-0.00	n = 5 $J = 30$
						= .30)		rrelatio	Moderate intraclass correlation (ρ_{Iy}	ıte intra	Modera							
94.1	94.1	94.1	1.0	0.9	93.6	0.04	0.04	0.04	0.14	0.15	0.03	-0.01	-0.00	-0.00	-0.13	-0.15	-0.00	J = 1000
94.2	94.6	95.0	11.3	13.0	95.5	0.05	0.05	0.05	0.14	0.15	0.04	-0.01	-0.00	-0.00	-0.13	-0.14	-0.00	J = 500
94.8	95.1	94.7	46.5	53.7	94.7	0.08	0.08	0.08	0.15	0.16	0.07	-0.02	0.01	0.00	-0.13	-0.14	0.01	J = 200
93.7	93.8	94.2	63.3	71.9	95.1	0.12	0.13	0.12	0.17	0.18	0.10	-0.03	0.01	0.00	-0.13	-0.14	0.00	J = 100
93.5	94.6	94.0	74.3	81.5	94.4	0.17	0.18	0.18	0.20	0.21	0.14	-0.05	0.02	0.01	-0.13	-0.14	0.01	J = 50
92.4	93.5	94.2	79.0	86.4	94.2	0.22	0.24	0.23	0.24	0.24	0.18	-0.07	0.01	0.00	-0.13	-0.14	-0.00	J = 30
																		n = 20
94.4	93.9	94.3	23.0	14.6	94.5	0.04	0.04	0.04	0.09	0.11	0.03	-0.01	0.00	0.00	-0.08	-0.10	0.00	J = 1000
96.1	94.1	95.2	47.2	42.5	95.9	0.05	0.05	0.05	0.10	0.12	0.04	-0.01	0.00	0.00	-0.09	-0.10	0.00	J = 500
93.4	93.3	94.5	68.7	71.0	94.9	0.09	0.09	0.09	0.12	0.13	0.07	-0.02	0.01	-0.00	-0.09	-0.11	-0.00	J = 200
94.8	94.0	95.2	81.3	84.6	95.0	0.12	0.12	0.12	0.14	0.15	0.10	-0.03	0.02	0.00	-0.08	-0.10	0.00	J = 100
95.3	93.5	95.7	85.2	89.2	95.3	0.17	0.18	0.18	0.18	0.19	0.14	-0.04	0.02	0.00	-0.08	-0.10	-0.00	J = 50
93.2	92.3	93.8	85.0	89.6	92.6	0.22	0.24	0.24	0.22	0.23	0.19	-0.06	0.01	-0.00	-0.09	-0.10	0.00	n = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation (ρ_{Iy}	intracl	Small							
JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		ge (%)	Coverage (%)					RMSE	RN:					s (%)	Bias			

Study 1: Bias, RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With 40% Missing Data (MCAR, $\lambda = 0$) Table 1-4

						1			:)			•		
95.7	94.9	95.0	80.6	95.2	94.9	0.04	0.04	0.04	0.04	0.04	0.03	0.00	0.00	0.00	-0.00	-0.00	-0.00	J = 1000
96.4	95.1	95.3	80.6	95.5	95.7	0.05	0.05	0.05	0.05	0.06	0.04	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 500
96.2	96.0	95.6	81.7	95.5	96.3	0.09	0.09	0.09	0.09	0.09	0.07	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	J = 200
95.5	94.9	94.7	78.5	94.5	94.6	0.13	0.13	0.13	0.13	0.13	0.10	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	J = 100
93.9	94.5	93.6	76.7	92.3	93.3	0.18	0.18	0.18	0.18	0.19	0.15	0.01	0.01	0.00	0.01	0.01	0.00	J = 50
94.1	94.1	93.7	75.6	92.9	93.8	0.24	0.24	0.24	0.23	0.24	0.19	0.00	0.01	0.01	0.01	0.01	0.01	J = 30
95./	94.2	94.1	82.2	94.9	94.9	0.04	0.04	0.04	0.04	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.000
95.9	2.5	95.6	4.4	95.6	93.5	0.06	0.06	0.06	0.06	0.06	0.03	0.00	0.00	0.00	0.00	0.00	0.00	J = 500
94.7	94.3	94.7	82.9	94.4	94.6	0.09	0.09	0.09	0.09	0.09	0.07	0.00	0.00	0.00	-0.00	-0.00	0.00	J = 200
94.7	94.9	95.1	84.6	94.9	94.5	0.13	0.13	0.13	0.12	0.12	0.10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 100
94.1	94.1	94.6	82.9	94.4	94.1	0.18	0.18	0.18	0.18	0.18	0.14	0.01	0.01	0.00	0.00	0.00	0.00	J = 50
94.5	94.1	94.3	81.2	93.4	93.5	0.24	0.24	0.24	0.23	0.24	0.18	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	n = 5 $J = 30$
						= .30)		rrelatio	Moderate intraclass correlation (ρ_{Iy}	te intra	Modera							
94.9	93.6	93.9	76.5	94.2	94.5	0.04	0.04	0.04	0.04	0.04	0.03	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 1000
94.3	94.5	94.5	81.2	95.1	95.0	0.06	0.06	0.06	0.06	0.06	0.04	0.00	-0.00	-0.00	-0.00	0.00	0.00	J = 500
94.4	93.6	94.5	76.5	94.5	93.9	0.09	0.09	0.09	0.09	0.09	0.07	0.00	0.00	0.00	0.00	0.00	-0.00	J = 200
94.3	94.1	94.5	76.5	94.3	94.5	0.13	0.13	0.13	0.13	0.13	0.10	0.00	0.00	0.00	0.00	0.00	0.00	J = 100
93.4	94.5	94.1	74.9	92.9	94.3	0.19	0.18	0.19	0.19	0.19	0.14	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 50
93.1	93.8	93.5	74.4	92.4	92.9	0.24	0.24	0.24	0.24	0.24	0.19	0.01	0.01	0.01	0.01	0.01	0.00	J = 30
93.9	93.2	93.2	81.7	93.9	93.6	0.04	0.04	0.04	0.04	0.04	0.03	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 1000
95.1	94.8	94.6	83.1	94.4	95.5	0.06	0.06	0.06	0.06	0.06	0.04	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 500
94.1	94.4	93.7	82.6	93.8	94.8	0.09	0.09	0.09	0.09	0.09	0.07	-0.00	-0.00	-0.00	0.00	0.00	-0.00	J = 200
94.9	94.8	95.4	81.5	94.1	94.7	0.13	0.13	0.13	0.13	0.13	0.10	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	J = 100
93.7	93.9	93.8	82.4	93.6	93.5	0.19	0.18	0.18	0.18	0.19	0.14	-0.00	-0.00	-0.00	-0.00	-0.00	0.00	J = 50
93.1	93.9	92.9	81.1	92.7	94.1	0.24	0.24	0.24	0.23	0.23	0.18	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	n = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation (ρ_{Iy}	intracl	Small							
JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		Coverage (%)	Covera					RMSE	RM					s (%)	Bias			

Study 1: Bias, RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With 40% Missing Data (MAR, $\lambda=0.5$) Table 1-5

		!	1			!							!			ı		
7.7	71.1	77.0		٠.٠	1.17		0.01	0.01	0.11	0.10	0.00	0.00	0.00	0.00	0.11	0.15	0.00	7 - 1000
95 A	04 4	04 8	70	ر 1	04.2	0 0	0 04	0 04	0 11	0 16	0 03	000	-000	000	_0 11	10 15	-0 00	I - 1000
94.5	94.1	94.3	26.1	23.9	94.8	0.06	0.06	0.06	0.12	0.16	0.05	-0.00	0.00	0.00	-0.11	-0.15	0.00	J = 500
94.6	93.9	93.7	54.4	62.1	93.9	0.10	0.10	0.10	0.14	0.17	0.07	-0.00	0.01	0.00	-0.10	-0.15	0.01	J = 200
94.9	93.4	93.8	63.1	77.1	94.1	0.14	0.14	0.14	0.16	0.20	0.10	-0.01	0.01	0.01	-0.10	-0.15	0.00	J = 100
94.6	93.9	93.5	68.6	85.0	94.0	0.19	0.20	0.20	0.21	0.24	0.14	-0.02	0.00	0.00	-0.11	-0.15	0.00	J = 50
94.6	94.9	94.3	70.1	88.1	93.7	0.24	0.24	0.24	0.25	0.28	0.18	-0.04	0.00	-0.00	-0.11	-0.15	-0.00	J = 30
																		n = 20
95.5	94.4	93.8	27.0	8.0	95.6	0.04	0.04	0.04	0.09	0.14	0.03	-0.00	-0.00	0.00	-0.08	-0.13	-0.00	J = 1000
94.8	94.2	93.9	51.6	35.4	94.2	0.06	0.06	0.06	0.10	0.15	0.05	-0.00	0.00	0.00	-0.08	-0.13	-0.00	J = 500
94.9	94.8	94.6	68.6	68.7	95.6	0.09	0.09	0.09	0.12	0.16	0.07	-0.01	-0.00	-0.00	-0.08	-0.13	-0.00	J = 200
93.9	93.2	93.8	75.1	81.3	94.5	0.14	0.14	0.14	0.15	0.18	0.10	-0.02	0.00	0.00	-0.08	-0.13	0.00	J = 100
94.5	95.0	93.7	78.3	87.2	94.0	0.19	0.20	0.19	0.20	0.23	0.14	-0.03	0.00	-0.00	-0.09	-0.14	-0.00	J = 50
93.9	94.1	93.9	79.1	89.3	94.3	0.25	0.26	0.26	0.25	0.27	0.19	-0.04	0.01	0.00	-0.08	-0.13	0.00	n = 5 $J = 30$
						= .30)		rrelatio	Moderate intraclass correlation (ρ_{Iy}	ıte intra	Modera							
95.1	94.8	93.2	4.9	9.5	95.5	0.04	0.04	0.04	0.12	0.14	0.03	-0.00	0.00	0.00	-0.12	-0.13	0.00	J = 1000
94.9	95.7	95.3	20.3	33.3	94.7	0.06	0.06	0.06	0.13	0.15	0.04	-0.01	-0.00	-0.00	-0.12	-0.13	0.00	J = 500
93.8	93.5	94.3	46.2	66.3	95.5	0.10	0.10	0.10	0.15	0.17	0.07	-0.02	-0.00	-0.00	-0.12	-0.14	-0.00	J = 200
93.3	93.5	93.6	59.1	80./	94.8	0.14	0.14	0.14	0.17	0.19	0.10	-0.03	0.01	0.00	-0.12	-0.13	-0.00	J = 100
92.3	93.2	93.9	66.5	86.5	93.5	0.19	0.20	0.20	0.22	0.23	0.14	-0.05	0.01	0.00	-0.12	-0.13	-0.00	J = 50
92.3	22.0	22.9	07.0	0/.	20.1	0.4.0	0.20	0.20	0.27	0.20	0.10	0.00	0.00	0.01	0.10	0.10	0.01	J - JO
000	02 0	02.0	60.0	0 TO	02 1	0 26	96.0))	0 27	000	0 10	0 00	9	001	0 13	0 15	0 01	n = 20
95.3	95.3	95.3	32.6	32.5	95.1	0.04	0.04	0.04	0.08	0.11	0.03	-0.01	0.00	-0.00	-0.07	-0.10	0.00	J = 1000
94.8	94.7	94.5	53.5	59.7	95.1	0.06	0.06	0.06	0.09	0.11	0.04	-0.01	0.00	-0.00	-0.07	-0.10	-0.00	J = 500
93.7	92.9	93.9	67.7	80.9	95.5	0.10	0.10	0.10	0.12	0.14	0.07	-0.02	0.00	-0.00	-0.08	-0.10	-0.00	J = 200
93.7	94.3	94.0	75.1	87.7	95.5	0.14	0.14	0.14	0.15	0.16	0.10	-0.03	0.01	0.00	-0.07	-0.10	0.00	J = 100
92.6	94.1	93.3	78.0	89.3	93.6	0.20	0.20	0.20	0.20	0.21	0.14	-0.05	0.01	-0.00	-0.08	-0.10	-0.00	J = 50
93.4	94.2	93.5	79.1	90.6	92.5	0.25	0.27	0.27	0.25	0.25	0.19	-0.04	0.02	0.01	-0.06	-0.09	-0.00	n = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation (ρ_{Iy}	l intracl	Smal							
JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		ige (%)	Coverage (%)					RMSE	RIv.					s (%)	Bias			

Study 1: Bias, RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With 40% Missing Data (MAR, $\lambda=1$) Table 1-6

94.7	93.1	93.1	0.0	0.0	95.7	0.06	0.06	0.06	0.25	0.31	0.03	-0.00	0.00	0.00	-0.25	-0.31	- 1	I = 1000
		01.1			0	0.0	0.00	0.00	0 1 0		0.01	0.00	0.01	0.01	0 10			1 000
8 50	93 9	94 7	00	00	0 26	0 07	0 08	80.0	0 25	0 31	0 04	-0 00	0 01	0 01	-025	05.0		I = 500
95.3	93.1	92.7	5.6	6.2	93.6	0.12	0.12	0.12	0.27	0.32	0.07	-0.03	-0.00	-0.00	-0.25	-0.30	- 1	J = 200
95.0	94.0	94.8	18.1	25.5	95.1	0.17	0.17	0.17	0.28	0.33	0.10	-0.05	-0.00	-0.00	-0.26	-0.31	0.00	J = 100
93.1	94.3	93.3	38.1	54.8	94.5	0.23	0.26	0.26	0.31	0.35	0.14	-0.08	0.00	-0.00	-0.25	-0.31	- 1	J = 50
92.7	93.1	95.2	49.4	6/.1	94.0	0.30	0.33	0.33	0.34	0.38	0.18	-0.12	0.00	-0.01	-0.26	-0.31	- 1	J = 30
3	3)	2		2	2	2			5				2		= 20
94.4	93.4	93.9	0.0	0.0	96.1	0.06	0.06	0.06	0.20	0.27	0.03	-0.00	0.00	0.00	-0.20	-0.27	-0.00	I = 1000
93.0	93.4	92.8	2.3	0.0	94.3	0.08	0.08	0.08	0.21	0.27	0.00	-0.01	0.00	0.00	-0.20	-0.20	0.00) = 500
	03.4	00.0) i	2.1	24.	0.10	0.10	0.10	0 0	0.70	0.04	0.01	0.00	0.00	0.20	0.00	0.00	7 1 200
2 2 2	02.5	02.0) / /	13 .1	04.7	0.13	0.13	0.13	0 0	000	0.10	0.03	0.00	0.01		0.10	0.01	1 100
0 <u>4</u> 5	93 0	93 8	446	43 1	04 7	0 17	0 10	0 18	0 23	0 20	0 10	_0 04	0 00	0.01	_0 10	96.0	0 01	I = 100
92.9	91.5	93.9	59.1	65.0	93.7	0.23	0.28	0.26	0.27	0.32	0.14	-0.09	0.03	-0.00	-0.20	-0.27	0.00	J = 50
92.3	92.7	93.9	66.3	74.4	93.2	0.29	0.38	0.36	0.31	0.35	0.19	-0.13	0.04	-0.01	-0.21	-0.27	0.00	= 5 $I = 30$
						= .30)		orrelatio	Moderate intraclass correlation (ρ_{Iy}	ate intra	Modera							
94.6	93.9	94.3	0.0	0.0	94.8	0.06	0.05	0.05	0.25	0.27	0.03	-0.02	-0.00	-0.00	-0.25	-0.27		J = 1000
92.0	92.8	93.8	0.1	0.3	93.3	0.08	0.08	0.08	0.23	0.27	0.04	-0.03	0.00	0.00	-0.25	-0.27		J = 500
91.0	92.7	94.1	0.5	13.3	95.0	0.13	0.13	0.12	0.25	0.23	0.07	0.00	0.01	0.00	C2.0-	-0.27	0.00	7 = 200
2 i	201	2 : 0	n (3 :	04.0	0 : 10	0 : 10				0 9	0.10	0.01	0.00	000	0 :		200
90.2	92.9	94.8	20.9	41.1	94.9	0.18	0.18	0.18	0.28	0.29	0.10	-0.10	0.01	-0.00	-0.25	-0.27		<i>I</i> = 100
90.3	92.2	92.8	42.3	63.9	94.7	0.24	0.29	0.27	0.30	0.32	0.14	-0.14	0.03	0.00	-0.25	-0.26		J = 50
90.1	91.8	93.7	51.5	74.9	94.2	0.30	0.37	0.35	0.33	0.35	0.18	-0.18	0.02	-0.01	-0.25	-0.27		J = 30
																		= 20
92.5	93.2	94.2	0.5	0.2	93.6	0.06	0.06	0.06	0.17	0.20	0.03	-0.02	0.00	-0.00	-0.16	-0.19	0.00	J = 1000
92.5	92.6	94.1	6.1	6.3	94.3	0.08	0.08	0.08	0.18	0.20	0.05	-0.04	0.01	0.00	-0.17	-0.19	-0.00	J = 500
92.0	91.6	93.9	33.2	41.0	95.3	0.12	0.14	0.13	0.19	0.21	0.07	-0.06	0.03	0.00	-0.16	-0.19	0.00	J = 200
91.8	90.7	93.5	53.2	65.4	93.7	0.17	0.19	0.19	0.21	0.23	0.10	-0.09	0.04	0.01	-0.16	-0.19	0.00	J = 100
92.1	92.9	95.0	65.7	78.2	95.3	0.23	0.26	0.26	0.24	0.26	0.14	-0.12	0.02	-0.00	-0.17	-0.20	0.00	J = 50
92.1	92.1	92.7	72.6	83.7	95.1	0.28	0.35	0.37	0.28	0.30	0.18	-0.13	0.00	0.01	-0.16	-0.19	0.00	J = 30
																		= 5
						.10)	$(\rho_{Iy} =$	relation	Small intraclass correlation (ρ_{Iy}	l intracl	Smal							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
		ge (%)	Coverage (%)					RMSE	R1					Bias (%)	Bias			

 $\lambda = 0$ Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With 20% Missing Data (MCAR, Table 1-7

1 0																		
			Bias	(%)					RMSE	SE					Coverage (%)	ge (%)		
	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM
							Small	intracle	ass corn	Small intraclass correlation ($\rho_{Iy} =$.10)						
n=5																		
J = 30	-2.6	-3.5	-18.6	1.5	1.4	-1.6	0.26	0.29	0.31	0.31	0.31	0.30	87.5	84.8	71.1	89.7	89.8	87.7
J = 50	-2.1	-2.6	-17.9	0.2	0.3	-1.6	0.20	0.23	0.27	0.24	0.23	0.23	89.5	87.5	69.8	91.8	90.9	89.7
J = 100	-1.5	-1.7	-17.3	-0.6	-0.3	-1.4	0.14	0.15	0.22	0.16	0.16	0.16	91.5	92.0	66.3	93.4	92.5	92.8
J = 200	-0.3	-0.4	-16.2	0.3	0.3	-0.2	0.10	0.11	0.19	0.11	0.11	0.11	93.8	93.5	54.1	94.7	94.5	94.3
J = 500	-0.0	-0.1	-16.1	0.2	0.1	-0.1	0.06	0.07	0.17	0.07	0.07	0.07	94.3	94.6	24.9	94.0	94.4	94.1
J = 1000	0.2	0.2	-15.8	0.3	0.3	0.2	0.04	0.05	0.16	0.05	0.05	0.05	94.6	95.3	5.8	95.2	94.8	95.1
n = 20																		
J = 30	-3.3	-4.2	-22.4	0.1	0.6	-2.4	0.25	0.28	0.32	0.30	0.29	0.28	86.6	84.8	67.5	88.8	89.7	88.0
J = 50	-1.6	-2.3	-20.9	0.2	0.2	-1.5	0.20	0.23	0.28	0.24	0.24	0.23	89.5	88.7	66.1	90.9	91.3	90.2
J = 100	-0.6	-0.8	-19.6	0.4	0.5	-0.6	0.14	0.16	0.24	0.16	0.16	0.16	92.3	91.9	60.1	92.9	93.2	92.9
J = 200	-0.5	-0.6	-19.5	-0.0	0.1	-0.5	0.10	0.11	0.22	0.11	0.11	0.11	94.0	94.4	43.3	95.0	94.5	94.7
J = 500	-0.3	-0.3	-19.3	-0.2	-0.2	-0.3	0.06	0.07	0.20	0.07	0.07	0.07	94.4	93.8	12.4	93.8	93.6	94.0
J = 1000	-0.1	0.0	-19.0	0.2	0.2	0.0	0.05	0.05	0.19	0.05	0.05	0.05	94.4	95.0	1.2	93.0	94.9	94.8
							Modera	te intrac	class co	Moderate intraclass correlation (ρ_{Iy}	$n(\rho_{Iy} =$: .30)						
n=5																		
J = 30	-3.3	-4.4	-18.8	0.3	0.8	-2.1	0.25	0.28	0.31	0.30	0.30	0.29	87.5	86.1	71.6	90.5	90.9	89.8
J = 50	-3.2	-3.4	-18.2	-1.1	-1.0	-2.1	0.19	0.21	0.26	0.22	0.22	0.22	90.6	88.2	70.9	91.5	91.1	90.1
J = 100	-0.9	1.1	-16.4	0.0	0.1	-0.5	0.14	0.16	0.21	0.16	0.16	0.16	92.3	92.7	66.9	93.9	93.7	93.3
J = 200	-0.4	-0.4	-15.9	0.2	0.2	-0.1	0.10	0.11	0.19	0.11	0.11	0.11	93.3	93.2	56.4	94.4	94.4	93.8
J = 500	-0.3	-0.2	-15.8	0.0	-0.0	-0.1	0.06	0.07	0.17	0.07	0.07	0.07	95.3	95.8	24.8	96.1	96.1	95.4
J = 1000	-0.1	-0.1	-15.8	-0.0	-0.0	-0.1	0.04	0.05	0.16	0.05	0.05	0.05	94.1	94.9	5.9	94.4	94.5	95.2
n = 20																		
J = 30	-2.8		-21.3	0.3	0.4	-1.7	0.25	0.28	0.32	0.29	0.29	0.28	87.3	84.8	68.2	90.1	90.1	88.3
J = 50	-1.2		-19.2	1.3	1.5	0.2	0.20	0.23	0.27	0.23	0.24	0.23	90.3	89.3	69.3	92.5	92.8	91.3
J = 100	-0.7		-19.3	0.1	0.1	-0.3	0.14	0.15	0.23	0.16	0.16	0.16	93.5	93.2	61.5	94.1	94.1	94.2
J = 200	-0.4	-0.2	-18.7	0.2	0.2	-0.0	0.10	0.12	0.21	0.12	0.12	0.12	93.2	93.1	46.1	93.7	93.4	92.7
J = 500	-0.4		-18.9	-0.2	-0.2	-0.3	0.06	0.07	0.20	0.07	0.07	0.07	94.2	93.6	14.6	93.9	94.3	94.2
J = 1000	0.1		-18.5	0.2	0.2	0.2	0.05	0.05	0.19	0.05	0.05	0.05	94.6	94.8	2.1	94.3	95.0	94.7

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With 20% Missing Data (MAR, $\lambda = 0.5$) Table 1-8

7 - 0:57																		
			Bias	(%)					RMSE	SE					Coverage (%)	ge (%)		
	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM
							Small	intracla	ss corre	Small intraclass correlation (ρ_{Iy} =		.10)						
n=5											,							
J = 30	-3.3	-5.1	-19.9	1.6	1.9	-2.6	0.25	0.28	0.31	0.31	0.31	0.29	87.6	85.8	70.5	90.6	90.2	88.6
J = 50	-2.3	-4.0	-19.2	0.1	0.6	-2.4	0.19	0.22	0.27	0.23	0.23	0.22	90.9	87.7	68.5	92.5	92.1	90.3
J = 100	-1.9	-2.9	-18.3	-0.4	-0.1	-1.6	0.14	0.16	0.23	0.16	0.17	0.16	92.1	90.7	62.5	92.7	92.5	91.9
J = 200	-0.7	-2.0	-17.3	-0.2	-0.1	-1.0	0.10	0.11	0.20	0.11	0.11	0.11	94.4	92.5	51.4	93.7	93.9	94.3
J = 500	<u>-0.1</u>	<u> </u>	-16.8	0.1	0.1	-0.2	0.06	0.07	0.18	0.07	0.07	0.07	94.2	92.7	22.2	93.9	93.2	94.5
J = 1000	-0.2	<u>-12</u>	-16.9	-00	<u>-</u> 0 :	-0.2	0.05	0.05	0.17	0.05	0.05	0.05	94 1	93 3	رد د	94.2	94.7	93.7
n = 20	i	į	10.		:	;		0.00					-	0:0	į			70.1
J = 30	-3.0	-5.6	-23.4	1.5	2.2	-2.9	0.26	0.29	0.33	0.32	0.32	0.29	87.0	83.4	66.3	89.9	89.9	87.2
J = 50	-1.8	-4.0	-22.2	0.6	1.0	-2.0	0.20	0.22	0.29	0.23	0.24	0.22	90.1	89.2	65.8	93.3	93.8	91.7
J = 100	-1.2	-3.1	-21.4	0.1	0.1	-1.4	0.14	0.15	0.25	0.16	0.16	0.16	92.7	91.9	54.9	94.1	93.7	93.6
J = 200	-0.7	-2.6	-21.1	-0.3	-0.2	-1.0	0.10	0.12	0.23	0.12	0.12	0.12	92.9	90.9	36.8	93.1	93.1	92.6
J = 500	-0.3	-2.0	-20.6	0.0	0.1	-0.3	0.06	0.07	0.21	0.07	0.07	0.07	95.3	93.4	7.4	95.9	95.7	95.2
J = 1000	0.1	-1.7	-20.3	0.2	0.2	0.0	0.04	0.05	0.21	0.05	0.05	0.05	95.3	91.8	0.6	95.4	95.4	94.3
]	Moderate intraclass correlation ($ ho_{Iy}$	te intrac	lass co	rrelatior	$1(\rho_{Iy} =$.30)						
n = 5																		
J = 30	-3.5	-5.8	-20.2	1.4	2.0	-2.2	0.25	0.27	0.31	0.30	0.30	0.28	88.2	85.0	69.8	90.5	90.8	89.1
J = 50	-2.6	-4.5	-18.9	0.0	0.2	-1.6	0.20	0.23	0.27	0.23	0.24	0.23	88.7	86.6	68.4	91.4	91.5	89.6
J = 100	-1.6	-3.9	-18.7	-0.9	-0.8	-1.7	0.14	0.16	0.23	0.16	0.16	0.16	91.3	89.1	61.8	92.2	92.8	91.5
J = 200	-0.8	-2.7	-17.8	-0.2	-0.2	-0.6	0.11	0.12	0.20	0.12	0.12	0.12	91.3	88.3	48.8	92.3	92.4	91.8
J = 500	-0.3	-2.2	-17.2	-0.2	-0.1	-0.3	0.06	0.07	0.18	0.07	0.07	0.07	93.3	92.7	17.9	94.4	94.3	94.7
J = 1000	0.1	-1.7	-16.8	0.2	0.2	0.1	0.05	0.05	0.17	0.05	0.05	0.05	95.2	93.0	3.7	94.9	94.7	94.8
n = 20))))))))))))))	<u>.</u>)	
J = 30	-4.4		-24.3	0.0	-0.2	-2.9	0.25	0.29	0.34	0.31	0.31	0.30	2.78	82.2	64.2	88.9	89.3	86.9
J = 50	-2.2		-22.1	-0.0	0.1	-1.6	0.20	0.22	0.29	0.23	0.23	0.23	90.1	87.7	63.6	91.1	91.2	90.2
J = 100	-0.9	-3.2	-21.1	0.4	0.4	-0.4	0.14	0.15	0.25	0.16	0.16	0.16	92.6	90.2	55.5	93.5	93.7	93.3
J = 200	-0.1		-20.6	0.4	0.4	-0.1	0.10	0.11	0.23	0.12	0.12	0.11	93.5	90.9	36.7	94.2	94.1	93.0
J = 500	-0.2		-20.4	0.2	0.2	0.1	0.06	0.08	0.21	0.08	0.08	0.08	93.7	90.8	9.7	93.9	93.9	94.4
J = 1000	-0.2		-20.6	-0.1	-0.1	-0.2	0.04	0.05	0.21	0.05	0.05	0.05	95.5	91.1	0.2	95.8	95.8	95.6
					j				:			1			1			

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With 20% Missing Data (MAR, Table 1-9

93.3 94.5	94.3	0.1	43.0	93.1	0.06	0.06	0.06	0.26	0.11	0.04	-0.2	-0.0	-0.1	-26.1	-9.6	-0.2	7 - 1000
93.3)	>	2	26											>))	<i>I</i> = 1000
94.4	92.9	0.6	63.7	93.3	0.08	0.08	0.08	0.27	0.12	0.06	-0.3	0.1	0.0	-26.3	-9.7	-0.2	J = 500
2	94.6	16.8	78.2	94.5	0.13	0.13	0.13	0.28	0.14	0.10	0.0	1.2	1.3	-26.3	-9.6	-0.1	J = 200
92.7	93.1	38.6	80.5	90.8	0.18	0.19	0.19	0.30	0.18	0.15	-0.8	1.4	1.2	-26.9	-10.6	-1.3	J = 100
91.9	92.9	54.5	81.9	90.1	0.25	0.28	0.28	0.32	0.23	0.20	-0.3	4.3	4.2	-26.6	-10.4	-1.0	J = 50
91.1	90.9	58.3	79.1	87.9	0.30	0.35	0.36	0.36	0.28	0.25	-2.8	4.9	4.9	-29.1	-13.4	-4.2	J = 30
																	i = 20
	93.5	0.3	64.0	93.7	0.06	0.06	0.06	0.22	0.09	0.05	-0.1	0.2	0.1	-21.3	-7.2	-0.0	J=1000
	94.0	5.3	79.0	95.0	0.08	0.08	0.08	0.22	0.09	0.06	0.1	0.6	0.5	-21.2	-7.1	-0.1	J = 500
	93.1	31.2	83.8	93.0	0.12	0.13	0.12	0.24	0.13	0.10	-0.7	0.3	0.2	-21.8	-7.9	-0.7	J = 200
93.7	93.1	51.2	84.7	91.6	0.17	0.19	0.18	0.26	0.17	0.14	-0.8	1.8	1.5	-22.1	-8.2	-0.9	J = 100
	92.0	61.7	82.5	90.1	0.23	0.27	0.26	0.29	0.23	0.20	-2.2	4.2	2.8	-23.0	-9.7	-1.9	J = 50
92.6 88.3	92.2	62.9	80.9	87.1	0.30	0.37	0.35	0.33	0.28	0.25	-2.8	8.1	5.6	-24.1	-11.2	-3.5	i = 5 $J = 30$
					= .30)		rrelatio	class cc	Moderate intraclass correlation (ρ_{Iy}	Modera							
	94.2	0.0	64.3	95.1	0.06	0.06	0.06	0.25	0.09	0.05	-0.4	0.2	0.2	-24.8	-7.2	-0.1	J = 1000
	93.9	2.1	74.4	93.3	0.08	0.08	0.08	0.26	0.10	0.06	-1.2	-0.1	-0.1	-25.2	-7.7	-0.4	J = 500
	92.6	17.0	80.5	92.7	0.12	0.13	0.13	0.27	0.13	0.10	-2.8	-0.2	-0.4	-26.1	-8.7	-1.1	J = 200
	93.5	41.9	84.6	92.3	0.17	0.19	0.18	0.28	0.17	0.14	-2.7	1.9	1.7	-25.7	-8.2	-0.9	J = 100
	92.7	55.0	82.9	90.2	0.23	0.27	0.26	0.32	0.22	0.20	-4.3	4.4	3.2	-26.8	-9.7	-2.1	J = 50
92.5 88.1	92.9	61.5	82.1	87.8	0.29	0.39	0.37	0.34	0.28	0.26	-4.0	9.6	7.9	-26.3	-9.4	-1.9	J = 30
																	i = 20
94.4 9	95.0	1.1	84.7	95.5	0.05	0.06	0.06	0.20	0.06	0.04	-0.6	0.2	0.0	-19.2	-4.0	-0.2	J = 1000
	95.0	11.0	90.1	95.3	0.07	0.08	0.08	0.20	0.08	0.06	-0.5	0.7	0.5	-19.1	-3.8	-0.1	J = 500
95.4 93.7	95.6	40.7	89.0	94.4	0.11	0.12	0.12	0.21	0.11	0.10	-1.3	1.4	0.7	-19.5	-4.4	-0.5	J = 200
	94.9	60.3	89.8	92.5	0.15	0.17	0.17	0.23	0.15	0.14	-1.3	3.4	2.1	-19.4	-4.5	-0.8	J = 100
	93.6	65.4	86.7	89.2	0.23	0.27	0.26	0.28	0.22	0.21	-1.9	5.5	4.0	-20.6	-5.8	-1.8	J = 50
	92.8	68.5	82.9	86.7	0.29	0.37	0.36	0.32	0.28	0.25	-2.5	8.8	7.4	-21.7	-7.4	-3.4	J = 30
																	i = 5
					.10)		elation	ass cori	Small intraclass correlation (ρ_{Iy} =	Small							
FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
	Coverage (%)	Covera					RMSE	RN					(%)	Bias			

 $\lambda = 0$ Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With 40% Missing Data (MCAR, Table 1-10

7 - 0)																		
			Bias	(%)					RMSE	ISE					Coverage (%)	ıge (%)		
	CD	LD	FCS- SL	FCS- MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS- MAN	FCS- LAT	JM
							Small	intracla	ass corr	Small intraclass correlation (ρ_{Iy} =		10)						
n=5																		
J = 30	-3.1	-5.7	-35.4	7.9	8.2	-0.4	0.25	0.33	0.42	0.41	0.42	0.34	87.4	82.0	47.6	91.5	90.9	87.9
J = 50	-1.7	-3.3	-33.6	3.8	4.4	-0.2	0.20	0.26	0.38	0.28	0.29	0.26	90.1	86.7	42.2	93.4	93.9	91.4
J = 100	-0.6	-1.3	-32.7	2.0	2.4	-0.2	0.15	0.18	0.35	0.19	0.20	0.19	91.3	91.0	27.2	93.4	93.7	92.3
J = 200	-0.5	-1.0	-32.6	0.7	1.0	-0.3	0.10	0.13	0.34	0.14	0.14	0.13	93.1	91.8	8.4	93.3	92.6	92.2
J = 500	-0.1	-0.1	-32.0	0.5	0.6	-0.0	0.06	0.08	0.33	0.08	0.08	0.08	95.3	94.6	0.3	95.2	95.4	94.6
J = 1000	-0.1	-0.2	-32.1	0.1	0.1	-0.2	0.04	0.06	0.32	0.06	0.06	0.06	95.3	94.0	0.0	93.9	93.6	93.9
n = 20 J = 30	23 23	-7.4	-42.5	4.8	6.6	-2.9	0.25	0.32	0.48	0.38	0.40	0.33	88.4	81.9	36.8	91.7	92.7	87.9
J = 50	-1.9	-3.6	-39.9	3.1	3.5	-1.5	0.19	0.25	0.43	0.28	0.28	0.26	90.9	87.2	32.3	92.8	92.5	90.1
J = 100	-0.3	-1.3	-38.7	1.9	2.1	-0.5	0.14	0.18	0.41	0.19	0.19	0.18	94.0	91.7	14.7	94.5	93.9	92.5
J = 200	-1.0	1.1	-38.6	0.4	0.5	-0./	0.10	0.13	0.40	0.13	0.13	0.13	94.0	93.3	2.8	94.1	95.0	94.0
J = 1000	$0.1^{-0.5}$	-0.1	-38.0	0.2	0.2	-0.1	0.04	0.06	0.38	0.06	0.06	0.06	95.2	95.2	0.0	94.6	94.3	95.0
							Modera	te intra	class co	Moderate intraclass correlation ($ ho_{Iy}$	n (ρ_{Iy} =	: .30)						
n = 5																		
J = 30	-2.8	-5.3	-34.1	6.8	7.6	0.5	0.26	0.33	0.41	0.39	0.39	0.35	86.1	82.9	49.7	91.9	92.0	89.9
J = 50	-2.8	3.3	-33.0	3.4	. w . &	-0.0	0.20	0.25	0.38	0.28	0.28	0.26	89.2	87.1	43.5	92.1	92.7	91.5
J = 100	-1.2	-2.1	-32.6	1.0	: :	-0.3	0.14	0.19	0.35	0.19	0.19	0.19	92.7	89.3	27.0	92.9	92.3	92.2
J = 200	-1.4	-1.2	-31.9	0.2	0.3	-0.5	0.10	0.12	0.33	0.13	0.13	0.13	93.7	92.9	8.4	93.9	94.4	93.7
J = 500	-0.0	0.0	-31.1	0.6	0.5	0.3	0.06	0.08	0.32	0.09	0.08	0.08	93.4	93.5	0.1	94.2	93.8	93.9
J = 1000 $n = 20$	-0.0	-0.2	-31.4	0.1	0.1	0.0	0.04	0.06	0.32	0.06	0.06	0.06	94.6	95.4	0.0	95.0	95.2	95.0
J = 30	-4.0	-6.5	-40.9	5.6	5.8	-0.2	0.26	0.34	0.47	0.40	0.39	0.36	86.1	80.2	40.3	90.6	90.9	89.1
J = 50	-2.3	-3.6	-38.9	2.7	. 3 . 5	-0.1	0.19	0.24	0.42	0.26	0.27	0.25	90.2	87.5	32.8	92.7	92.6	91.7
J = 100	-1.1	-1.6	-38.2	$\frac{1.3}{2}$	1.2	0.1	0.14	0.19	0.40	0.20	0.20	0.19	92.0	89.7	17.1	92.6	93.2	93.1
J = 200	-0.4	-0.7	-37.5 -37.3	0.9	0.9	0.0	0.10	0.13	0.38	0.13	0.13	0.13	94.0 94.0	92.8 94.7	2.1	94.9 94.9	94.3 94.3	94.1 94.6
J = 1000	-0.0	-0.3	-37.4	0.1	-0.0	-0.1	0.05	0.06	0.38	0.06	0.06	0.06	93.8	93.7	0.0	94.6	93.1	94.1

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With 40% Missing Data (MAR, $\lambda = 0.5$) Table 1-11

7 - 0.5)																		
			Bias	(%)					RMSE	SE					Coverage (%)	ge (%)		
	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-	FCS- LAT	JM	CD	LD	FCS- SL	FCS-	FCS- LAT	JM
							Small	intracla	ss corr	Small intraclass correlation ($\rho_{Iy} =$	$\rho_{Iy} = .$.10)						
n=5																		
J = 30	-4.7	-7.2	-36.0	10.6	10.0	-1.0	0.25	0.32	0.43	0.44	0.41	0.34	86.7	83.7	45.9	92.7	93.4	89.5
J = 50	-1.3	-4.7	-34.8	4.6	5.6	<u>-1.1</u>	0.20	0.26	0.39	0.30	0.30	0.27	89.7	84.7	39.3	92.1	92.6	90.1
J = 100	-0.7	-2.4	-33.3	2.8	3.5	-0.3	0.14	0.18	0.36	0.20	0.20	0.18	93.3	90.9	24.4	94.9	95.3	93.3
J = 200	-0.1	-1.7	-32.9	1.6	1.8	-0.1	0.10	0.13	0.34	0.14	0.14	0.14	93.4	90.9	7.8	94.4	93.5	92.8
J = 500	-0.0	-1.6	-32.9	0.5	0.6	-0.2	0.06	0.08	0.33	0.09	0.09	0.08	95.1	93.0	0.1	94.5	93.4	93.0
J = 1000	-0.1	-1.5	-33.0	0.1	0.2	-0.2	0.04	0.06	0.33	0.06	0.06	0.06	95.3	92.8	0.0	94.5	94.5	94.3
n = 20																		
J = 30	-3.5	-8.1	-42.9	9.2	10.9	-2.3	0.26	0.33	0.48	0.43	0.44	0.34	86.3	81.9	37.1	93.7	93.3	89.5
J = 50	-2.1	-6.4	-41.7	3.4	4.3	-2.7	0.20	0.25	0.45	0.28	0.29	0.26	89.7	84.4	28.1	92.3	92.9	90.1
J = 100	-0.8	-3.6	-40.1	2.4	2.4	-0.8	0.14	0.18	0.42	0.19	0.19	0.18	92.3	88.8	13.2	93.7	94.0	92.1
J = 200	-0.2	-2.8	-39.6	1.2	1.5	-0.5	0.10	0.13	0.41	0.13	0.14	0.13	94.8	92.2	1.2	94.6	94.3	93.7
J = 500	-0.0	-2.8	-39.6	0.3	0.5	-0.3	0.06	0.08	0.40	0.08	0.08	0.08	94.9	92.1	0.0	93.9	95.4	94.0
J = 1000	-0.0	-2.4	-39.4	0.4	0.4	0.1	0.05	0.06	0.40	0.06	0.06	0.06	94.3	91.9	0.0	94.4	93.5	93.9
]	Moderate intraclass correlation ($ ho_{Iy}$	te intrac	dass co	rrelation	$1(\rho_{Iy} =$: .30)						
n=5																		
J = 30	-2.2	-6.9	-34.5	10.8	12.3	1.7	0.26	0.33	0.42	0.43	0.44	0.35	87.7	80.6	49.7	92.3	92.3	89.7
J = 50	-2.4	-6.4	-35.1	3.9	4.7	-0.5	0.20	0.26	0.39	0.29	0.30	0.27	90.3	84.4	38.9	92.1	93.6	89.9
J = 100	-1.9	-5.0	-34.2	1.1	1.3	-0.9	0.14	0.18	0.37	0.20	0.19	0.19	91.6	87.4	23.0	92.3	93.1	91.7
J = 200	-0.2	-2.5	-32.7	1.6	1.7	0.8	0.10	0.13	0.34	0.14	0.14	0.14	93.6	90.7	8.0	94.2	94.9	94.3
J = 500	-0.2	-2.8	-33.0	0.3	0.4	0.0	0.06	0.09	0.34	0.09	0.09	0.09	93.9	90.5	0.1	93.4	92.5	93.0
J = 1000	-0.0	-2.5	-32.8	0.4	0.3	0.1	0.04	0.06	0.33	0.06	0.06	0.06	95.4	91.6	0.0	95.5	95.8	96.2
n = 20	<u>،</u>		<u>,</u>) ၁	0	_	26.0	0 33	0 40	2	0 41	0 27	n 10	000	27 2	3	2	00.3
1 100	1.1		1 0 1	1 .	1 0	· :	2 6		2 - 1	100	1.0				1 1 1	1.1	3	
J = 50	1.4		-40.5).4 •	0.5	5.5	0.20	0.25	0.44	0.29	0.29	0.27	90.1	85.1	31./	93.3	93.5	91.5
J = 100	-0.7		-39.9	2.0	2.1	0.2	0.14	0.18	0.42	0.20	0.20	0.19	92.2	87.9	12.4	93.9	93.3	93.0
J = 200	-0.6	-4.0	-39.5	0.8	0.7	-0.0	0.10	0.13	0.40	0.13	0.13	0.13	93.7	89.9	1.8	94.3	93.7	94.8
J = 500	-0.2		-39.3	0.4	0.4	0.1	0.06	0.08	0.40	0.08	0.08	0.08	95.1	90.4	0.0	93.8	95.2	95.2
J = 1000	-0.1		-39.2	0.2	0.2	0.1	0.05	0.07	0.39	0.06	0.06	0.06	94.2	88.0	0.0	94.6	95.5	94.6
		ı)				;			1			1			

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With 40% Missing Data (MAR, Table 1-12

7 - 1)																		
			Bias	(%)					RMSE	SE					Coverage (%)	ge (%)		
	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM
							Small	intracla	ass corn	Small intraclass correlation ($\rho_{Iy} =$.10)						
n=5																		
J = 30	-3.4	-10.6	-38.3	25.9	21.3	-1.4	0.26	0.33	0.44	0.61	0.53	0.35	87.7	79.9	42.3	95.5	95.3	89.9
J = 50	-2.1	-8.6	-37.4	13.2	13.4	-1.8	0.20	0.26	0.41	0.38	0.37	0.27	89.7	81.9	34.5	94.6	95.5	89.3
J = 100	-1.1	-7.1	-36.5	6.1	7.6	-2.4	0.14	0.18	0.38	0.24	0.24	0.19	92.7	85.9	17.9	95.0	94.7	91.9
J = 200	-0.7	-5.7	-35.6	3.1	4.6	-1.7	0.10	0.14	0.37	0.15	0.16	0.14	93.8	85.6	3.8	94.9	95.2	92.2
J = 500	-0.3	-5.4	-35.5	1.3	2.0	-1.3	0.06	0.09	0.36	0.10	0.10	0.09	94.2	85.5	0.0	94.0	93.8	92.1
J = 1000	-0.1	-5.4	-35.6	0.3	0.5	-1.1	0.04	0.08	0.36	0.06	0.06	0.06	95.7	79.6	0.0	94.1	94.9	93.6
n = 20																		
J = 30	-3.1	-15.0	-47.0	21.7	26.5	-5.4	0.25	0.34	0.51	0.56	0.61	0.35	87.0	74.7	29.0	94.4	95.0	86.7
J = 50	-2.1	-12.9	-45.8	11.3	15.6	-5.5	0.20	0.26	0.48	0.37	0.40	0.26	89.5	80.5	20.1	94.9	94.8	89.4
J = 100	-1.3	-11.7	-45.1	4.9	6.5	-4.8	0.15	0.20	0.46	0.24	0.25	0.19	90.5	79.3	5.2	94.1	94.0	89.2
J = 200	-0.6	-11.0	-44.8	2.3	2.6	-3.6	0.10	0.16	0.45	0.16	0.16	0.14	94.3	75.8	0.2	94.4	95.2	91.3
J = 500	0.2	-9.8	-43.9	1.4	1.5	-1.4	0.06	0.12	0.44	0.10	0.10	0.09	95.5	69.3	0.0	95.0	94.4	93.5
J = 1000	-0.1	-10.1	-44.2	0.3	0.3	-1.0	0.04	0.11	0.44	0.07	0.07	0.07	95.3	49.8	0.0	94.8	94.7	94.4
							Moderate intraclass correlation ($ ho_{Iy}$	te intrac	class co	rrelatio	$n \left(\rho_{Iy} = \right)$: .30)						
n=5] 3 O	14 0	140 4	2 AC	30 O	-03	96.0	0 32	0 46	0.61	0 64	0 36	86 7	75 8	380	05 7	020	8 08
J = 50	-2.6	-13.9	-39.9	11.1	15.7	-1.9	0.20	0.26	0.43	0.37	0.41	0.27	89.5	77.6	29.0	94.4	95.5	90.6
J = 100	-1.2	-11.4	-38.8	5.9	7.4	-0.1	0.15	0.20	0.41	0.25	0.27	0.21	90.5	79.1	13.9	93.7	94.1	92.3
J = 200	-0.5	-10.8	-38.5	2.4	2.6	-0.3	0.10	0.16	0.39	0.16	0.17	0.15	94.7	76.8	1.5	93.9	93.4	92.8
J = 500	-0.4	-10.5	-38.4	0.7	0.8	-0.3	0.06	0.13	0.39	0.10	0.10	0.10	94.6	66.1	0.0	93.2	93.1	92.5
J = 1000	-0.3	-10.1	-38.2	0.6	0.6	0.1	0.05	0.11	0.38	0.07	0.07	0.07	93.7	49.6	0.0	93.5	93.2	94.5
n = 20 J = 30	-2.0	-17.1	-47.7	21.2	23.9	2.1	0.26	0.33	0.51	0.56	0.59	0.39	86.7	74.0	28.2	94.0	94.1	89.9
J = 50	-2.5	-16.3	-47.3	10.3	10.5	-0.2	0.20	0.27	0.50	0.38	0.37	0.30	90.1	75.3	16.7	93.9	93.1	90.7
J = 100	-1.3	-15.1	-46.9	4.5	4.4	-0.3	0.14	0.22	0.48	0.24	0.25	0.22	92.7	72.9	4.1	94.1	95.4	93.1
J = 200	-0.7	-13.7	-45.9	1.9	2.2	-0.2	0.10	0.18	0.47	0.17	0.17	0.16	93.0	69.6	0.1	93.2	94.4	94.2
J = 500	-0.1	-13.0	-45.7	1.5	1.5	0.6	0.06	0.15	0.46	0.11	0.10	0.10	93.8	54.2	0.0	94.3	93.9	94.7
J = 1000	-0.1	-13.0	-45.6	0.7	0.6	0.2	0.05	0.14	0.46	0.07	0.07	0.07	94.4	26.5	0.0	93.4	93.7	94.8
		,			}				:			1			1			

(MCAR, $\lambda = 0$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With $z(\hat{G}_{yz})$ With 20% Missing Data Table 1-13

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
M CD

 $(MAR, \lambda = 0.5)$ Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z ($\hat{\sigma}_{yz}$) With 20% Missing Data Table 1-14

(1711111, 1/1 –	(0.0)																		
			Bias	(%)					RMSE	ISE					Coverage (%)	ge (%)			
	CD	LD	FCS- SL	FCS- MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS- MAN	FCS- LAT	JM	
							Small	intracla	ass corr	Small intraclass correlation (ρ_{Iy} =		.10)							
n=5																			
J = 30	-3.9	-16.3	-26.3	-6.1	-2.2	-17.5	0.10	0.11	0.10	0.12	0.12	0.11	92.2	90.2	86.3	93.6	93.2	93.7	
J = 50	-1.4	-11.5	-22.0	-0.9	2.6	-10.8	0.08	0.08	0.08	0.09	0.09	0.08	94.1	91.5	87.0	95.3	94.8	94.1	
J = 100	-3.0	-13.5	-23.6	-3.0	-0.2	-9.4	0.06	0.06	0.06	0.07	0.07	0.06	93.8	91.2	84.5	93.5	94.1	94.2	
J = 200	-0.1	-10.9	-21.2	-0.2	1.6	-4.5	0.04	0.04	0.05	0.04	0.04	0.04	95.4	92.2	82.3	96.0	95.4	95.6	
J = 500	-0.7	-10.9	-21.5	-0.8	-0.2	-2.8	0.03	0.03	0.04	0.03	0.03	0.03	94.2	86.6	67.0	94.7	94.2	94.6	
J = 1000	-0.3	-10.5	-21.1	-0.0	0.2	-1.2	0.02	0.02	0.04	0.02	0.02	0.02	95.4	84.0	46.2	95.7	95.5	95.6	
n = 20 J = 30	-2.6	- 13.3	-26.9	-1.9	-0.5	<u>-14.1</u>	0.07	0.08	0.08	0.09	0.09	0.08	90.5	86.1	77.4	92.8	92.5	91.9	
J = 50	0.3	-10.9	-25.0	-0.3	0.8	-8.8	0.06	0.06	0.06	0.07	0.07	0.06	93.3	89.1	77.8	94.1	93.7	92.9	
J = 100	-2.1	-12.3	-26.1	-2.0	-1.7	-6.8	0.04	0.05	0.06	0.05	0.05	0.05	92.7	88.4	71.3	92.9	93.3	93.1	
J = 200	0.0	10.1	1.C2 4.C4	1.1	0.0	0.0	0.00	2.0	0.0	0.00	0.00	0.00	05.3	07.5	33.6	0.40	04.2	94.0	
J = 1000	0.3	-10.5	-24.6	-0.0	0.1	-0.7	0.01	0.02	0.04	0.02	0.02	0.02	93.2	75.6	8.7	95.1	94.1	94.7	
							Modera	te intra	class co	Moderate intraclass correlation (ρ_{Iy}	$n(\rho_{Iy} =$: .30)							
n=5	ν 7	15.0	21	ν 7	ာ ၁		0 13	0	0 13	0 1 %	0 15	0	8	82	2	02 7	03 1	01 7	
J = 50	-2.9	-13.1	-19.2	-2.7	-1.8	-7.2	0.10	0.11	0.11	0.11	0.12	0.11	91.7	87.5	83.6	93.1	93.1	92.2	
J = 100	-1.8	-13.2	-19.3	-3.0	-2.4	-5.0	0.07	0.08	0.09	0.08	0.08	0.08	92.3	88.0	80.5	93.1	93.1	93.3	
J = 200	-0.2	-10.8	-17.1	-0.2	-0.0	-1.2	0.05	0.06	0.07	0.06	0.06	0.06	93.7	88.1	76.5	92.8	93.2	92.6	
J = 500	-0.7	-11.2	-17.3	-1.0	-0.9	-1.3	0.03	0.05	0.06	0.04	0.04	0.04	93.1	83.0	60.2	94.0	94.6	94.6	
J = 1000 $n = 20$	0.3	-10.1	-16.3	0.3	0.4	0.0	0.02	0.04	0.05	0.03	0.03	0.03	95.3	78.6	42.8	94.9	95.2	94.3	
J = 30	-5.2	-15.3	-24.3	-5.0	-5.4	-10.3	0.12	0.13	0.13	0.13	0.14	0.13	87.8	82.6	74.0	90.2	89.6	88.2	
J = 50	-2.3	-13.1	-21.8	-2.5	-2.5	-6.1	0.09	0.10	0.10	0.10	0.10	0.10	92.0	86.5	77.0	93.3	93.1	92.1	
J = 100	-1.2	-11.7	-20.8	1.4	1.3	-3.1	0.06	0.07	0.08	0.07	0.07	0.07	92.6	87.0	73.3	93.9	94.1	93.0	
J = 500	-0:3	-10.9	-19.9	0.1	0.1	-0.3	0.04	0.00	0.06	0.03	0.03	0.03	96.2 95.1	8/./ 82.0	68. <i>5</i> 43.6	95.4 96.1	95.2 96.2	95.8 95.8	
J = 1000	-0.1	-10.4	-19.5	0.1	0.2	-0.0	0.02	0.04	0.06	0.02	0.02	0.02	94.7	72.2	15.5	94.7	94.4	94.7	

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z ($\hat{\sigma}_{yz}$) With 20% Missing Data (MAR, $\lambda = 1$) Table 1-15

																ı		
94.2	95.0	94.3	0.0	0.0	95.6	0.03	0.03	0.03	0.11	0.12	0.02	-0.5	-0.1	-0.1	-41.2	-41.6	-0.1	J = 1000
94.7	94.1	93.9	0.2	0.2	95.1	0.04	0.04	0.04	0.12	0.12	0.03	-1.5	-0.6	-0.7	-41.7	-42.1	-0.3	J = 500
95.1	95.3	95.2	12.3	12.5	94.9	0.06	0.06	0.06	0.12	0.12	0.04	-2.0	0.4	0.8	-41.4	-41.9	0.2	J = 200
93.5	93.6	93.3	35.4	37.0	94.1	0.08	0.09	0.09	0.13	0.13	0.06	-5.2	-0.5	-0.8	-41.8	-42.2	-1.1	J = 100
92.3	93.2	92.9	51.2	53.0	91.7	0.12	0.13	0.13	0.14	0.14	0.09	-10.0	-1.1	-1.3	-42.1	-42.5	-1.7	J = 50
91.3	93.1	93.7	55.4	56.9	89.7	0.14	0.16	0.16	0.15	0.15	0.11	-17.8	-4.4	-4.7	-45.0	-45.3	-6.1	J = 30
																		n = 20
94.8	93.6	94.7	0.1	0.0	94.3	0.03	0.03	0.03	0.10	0.12	0.02	-0.7	-0.0	-0.3	-36.7	-41.8	0.1	J = 1000
94.8	94.2	94.0	5.6	1.0	95.3	0.04	0.05	0.04	0.11	0.12	0.03	-1.5	-0.2	-0.6	-37.0	-42.0	-0.2	J = 500
93.2	92.3	93.5	33.1	19.5	93.9	0.07	0.07	0.07	0.11	0.12	0.05	-4.2	-1.2	-1.6	-37.5	-42.5	-1.1	J = 200
93.3	92.7	93.3	55.9	45.0	93.1	0.10	0.10	0.10	0.12	0.13	0.07	-6.7	0.3	-0.9	-37.3	-42.4	-0.7	J = 100
92.8	92.9	93.3	67.2	60.1	92.2	0.13	0.14	0.14	0.14	0.14	0.10	-13.8	0.6	-2.4	-38.5	-43.1	-2.4	J = 50
90.7	92.7	93.5	70.2	64.6	89.7	0.16	0.19	0.18	0.16	0.16	0.13	-19.6	2.2	-3.8	-39.4	-44.0	-3.1	n = 5 $J = 30$
						= .30)		Moderate intraclass correlation (ρ_{Iy}	class co	ıte intra	Modera							
94.7	93.5	93.5	0.0	0.0	95.4	0.02	0.02	0.02	0.08	0.07	0.01	-2.1	-0.2	-0.3	-48.7	-41.8	-0.2	J = 1000
93.5	94.5	95.8	0.0	1.2	94.4	0.02	0.03	0.02	0.08	0.07	0.02	-4.4	-0.8	-0.8	-49.0	-42.2	-0.8	J = 500
93.0	94.4	93.9	6.2	17.9	93.3	0.04	0.04	0.04	0.08	0.07	0.03	-8.9	-0.5	-1.0	-49.4	-42.6	-0.5	J = 200
93.2	92.9	93.8	29.9	44.7	94.3	0.05	0.06	0.06	0.08	0.07	0.04	-12.4	1.2	0.5	-48.5	-41.6	-0.2	J = 100
90.3	92.6	93.3	48.8	59.0	91.2	0.07	0.09	0.08	0.09	0.08	0.06	-20.3	3.1	0.3	-48.8	-42.0	-1.1	J = 50
91.5	92.3	93.7	57.4	65.3	91.2	0.09	0.11	0.11	0.10	0.09	0.08	-28.3	1.6	-1.6	-49.3	-42.5	-2.3	J = 30
,	!	!		!	:			,				:	:	,	;		;	n = 20
93.1	92.1	92.8	<u>-</u>	2.4	94.4	0.03	0.03	0.03	0.07	0.07	0.02	-3.7	0.4	-0.4	-43.7	-41.8	-0.3	J = 1000
94.7	94.3	95.5	10.7	18.5	95.4	0.03	0.03	0.03	0.07	0.07	0.02	-5.1	2.3	0.5	-43.0	-41.1	0.7	J = 500
94.5	94.0	94.9	44.4	55.7	95.6	0.05	0.06	0.05	0.08	0.07	0.04	-11.6	4.0	-0.4	-43.8	-42.1	-0.1	J = 200
93.7	93.7	94.0	65.9	75.0	94.3	0.07	0.08	0.08	0.08	0.08	0.05	-17.6	6.3	-1.3	-44.0	-42.4	-1.5	J = 100
94.0	93.7	94.3	76.0	83.5	92.5	0.10	0.12	0.11	0.09	0.09	0.08	-25.0	7.2	-2.3	-45.0	-43.4	-2.7	J = 50
93.9	92.8	94.8	78.6	86.2	91.9	0.12	0.16	0.15	0.11	0.11	0.10	-32.4	2.1	-5.0	-47.2	-45.5	-4.0	J = 30
																		n=5
						.10)		Small intraclass correlation (ρ_{Iy} =	ass corr	intracl	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
		ge (%)	Coverage (%)					RMSE	RM					(%)	Bias			
																	,	

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z ($\hat{\sigma}_{yz}$) With 40% Missing Data (MCAR, $\lambda = 0$) Table 1-16

95.4 94.9																	
		2.7	95.4	95.8	0.02	0.02	0.02	0.08	0.03	0.02	-0.7	-0.3	-0.3	-27.0	-0.4	-0.2	J = 1000
		19.0	95.2	96.1	0.03	0.03	0.03	0.08	0.04	0.03	-0.5	0.1	0.1	-26.5	0.0	0.1	J = 500
		44.7	93.6	95.2	0.05	0.05	0.06	0.09	0.06	0.04	-2.2	-0.4	-0.5	-27.5	-1.4	-1.2	J = 200
		61.5	92.9	94.2	0.07	0.08	0.08	0.09	0.08	0.06	-3.0	-0.0	-0.2	-27.1	-0.3	-0.1	J = 100
		66.1	90.8	91.5	0.10	0.11	0.11	0.11	0.11	0.09	-6.2	0.5	-0.4	-28.1	-2.6	-1.1	J = 50
	92.4 9	66.0	85.7	88.3	0.14	0.14	0.14	0.14	0.15	0.11	-14.9	-4.4	-5.2	-32.4	-7.7	-5.7	J = 30
																	n = 20
		18.0	95.3	94.8	0.03	0.03	0.03	0.07	0.03	0.02	-0.5	-0.2	-0.2	-22.6	-0.3	-0.1	J = 1000
		44.1	94.7	95.9	0.04	0.04	0.04	0.07	0.04	0.03	-0.8	0.0	0.0	-22.3	0.0	-0.0	J = 500
		64.5	93.8	94.0	0.06	0.06	0.06	0.08	0.06	0.05	-1.8	-0.1	-0.4	-22.9	-0.9	-1.3	J = 200
93.9 92.7	92.9	71.7	91.9	92.7	0.09	0.09	0.09	0.10	0.09	0.07	-4.6	-0.4	-1.0	-23.9	-1.9	-1.1	J = 100
		75.8	90.3	91.7	0.12	0.13	0.13	0.12	0.13	0.10	-9.8	-0.6	-2.5	-25.0	-3.6	-2.2	J = 50
		77.3	88.3	91.0	0.16	0.17	0.17	0.15	0.17	0.13	-13.2	0.6	-2.4	-25.3	-3.1	-2.3	n = 5 $J = 30$
					= .30)		Moderate intraclass correlation (ρ_{Iy}	class co	ate intra	Modera							
		0.3	94.7	95.7	0.02	0.02	0.02	0.06	0.02	0.01	-1.1	0.1	0.1	-34.2	0.0	0.1	J = 1000
		8.1	95.6	95.0	0.02	0.02	0.02	0.06	0.02	0.02	-1.7	0.6	0.4	-34.0	0.3	0.1	J = 500
		36.1	93.8	94.7	0.04	0.04	0.04	0.06	0.04	0.03	-4.9	0.5	-0.0	-34.6	-0.5	-0.7	J = 200
		54.9	92.6	94.3	0.05	0.05	0.05	0.07	0.05	0.04	-8.5	0.8	0.2	-34.8	-0.9	0.4	J = 100
		63.5	89.6	91.5	0.07	0.08	0.07	0.08	0.08	0.06	-15.2	0.7	-0.8	-35.6	-2.2	-0.8	J = 50
92.9 89.9	93.1 9	65.8	86.3	89.7	0.09	0.10	0.10	0.09	0.10	0.07	-22.1	0.7	-2.9	-38.1	-6.0	-2.2	J = 30
																	n = 20
94.9 95.2	95.3	17.1	95.0	95.7	0.02	0.02	0.02	0.05	0.02	0.02	-2.5	0.0	-0.4	-29.2	-0.6	-0.5	J = 1000
		42.5	93.4	96.0	0.03	0.03	0.03	0.05	0.03	0.02	-4.8	-0.4	-1.2	-29.7	-1.5	-0.9	J = 500
		68.0	94.3	95.2	0.05	0.05	0.05	0.06	0.05	0.04	-7.7	2.5	-0.3	-30.0	-1.5	-0.2	J = 200
		76.2	93.2	94.1	0.07	0.07	0.07	0.07	0.07	0.05	-12.2	2.9	-1.7	-30.4	-2.4	-0.4	J = 100
		80.8	91.7	93.5	0.09	0.11	0.10	0.09	0.10	0.08	-16.7	3.8	-1.6	-30.8	-3.2	-1.4	J = 50
		81.9	89.5	91.2	0.11	0.14	0.13	0.11	0.13	0.10	-24.5	-1.7	-5.9	-33.4	-6.7	-4.6	J = 30
																	n=5
					.10)		Small intraclass correlation ($\rho_{Iy} =$	lass cor	l intracl	Smal							
FCS- LAT JM	FCS- H	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
	ge (%)	Coverage (%)					RMSE	R.N					(%)	Bias			

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z ($\hat{\sigma}_{yz}$) With 40% Missing Data (MAR, $\lambda = 0.5$) Table 1-17

(141,141, 17 –	0.0)																	
			Bias	(%)					RMSE	SE					Coverage (%)	ge (%)		
ı	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM	CD	LD	FCS- SL	FCS-MAN	FCS- LAT	JM
							Small	intracla	ass corn	Small intraclass correlation (ρ_{Iy} =		.10)						
n=5																		
J = 30	-4.0	-17.1	-38.3	-0.1	5.3	-27.4	0.10	0.12	0.11	0.15	0.15	0.11	92.5	90.8	80.1	94.3	93.9	94.7
J = 50	-1.4	-16.5	-38.3	-2.0	4.1	-24.1	0.08	0.10	0.09	0.11	0.11	0.10	93.3	90.3	77.5	95.3	94.1	94.8
J = 100	0.7	-13.5	-35.7	2.0	7.3	-13.3	0.05	0.07	0.07	0.08	0.08	0.07	95.2	90.8	73.4	94.7	94.3	94.9
J = 200	-0.8	-15.2	-37.1	-0.4	3.1	-9.9	0.04	0.05	0.07	0.05	0.06	0.05	94.6	88.8	56.3	93.5	93.0	93.2
J = 500	-0.4	-15.5	-37.3	-0.4	0.8	-5.8	0.03	0.04	0.06	0.03	0.03	0.03	95.1	85.0	24.2	94.7	93.0	93.5
J = 1000	0.2	-14.4	-36.6	0.1	0.7	-2.7	0.02	0.03	0.06	0.02	0.02	0.02	94.5	79.9	4.1	94.4	94.2	94.9
n = 20																		
J = 30	-1.9	-17.6	-44.7	-1.7	2.9	-25.9	0.07	0.09	0.09	0.11	0.11	0.09	89.3	83.3	60.1	93.3	93.6	91.3
J = 50	-1.1	-16.7	-43.9	-1.5	0.5	-20.1	0.06	0.07	0.08	0.08	0.08	0.07	92.4	85.4	55.9	94.6	93.5	91.5
J = 100	-1.4	-15.1	-43.0	-0.6	0.1	-11.9	0.04	0.05	0.08	0.05	0.05	0.05	92.7	87.0	40.7	94.9	94.4	92.8
J = 200	0.4	-13.8	-42.1	0.8	1.0	-6.2	0.03	0.04	0.07	0.04	0.04	0.04	94.0	86.7	18.7	95.7	95.1	95.1
J = 500	0.1	-14.6	-42.7	-0.1	0.1	-2.8	0.02	0.03	0.07	0.02	0.03	0.03	93.7	78.3	1.1	94.3	93.2	93.6
J = 1000	-0.3	-14.5	-42.6	-0.1	-0.0	-1.5	0.01	0.03	0.07	0.02	0.02	0.02	95.1	67.7	0.0	93.8	94.3	94.3
							Moderate intraclass correlation ($ ho_{Iy}$	te intrac	class co	rrelatio	$n \left(\rho_{Iy} = \right)$: .30)						
n=5																		
J = 30	-2.8	-20.0	-33.4	-3.0	1.3	-18.0	0.13	0.16	0.15	0.18	0.19	0.16	89.2	81.2	72.1	92.6	91.8	90.3
J = 50	-3.5	-19.1	-32.9	-3.1	-0.8	-12.9	0.10	0.13	0.13	0.14	0.14	0.13	91.9	84.6	69.3	93.1	93.4	91.5
J = 100	-2.3	-17.6	-31.7	-2.6	-1.5	-7.7	0.07	0.10	0.11	0.10	0.10	0.09	93.5	84.1	63.2	93.9	94.7	92.9
J = 200	-0.4	-14.2	-29.1	0.3	0.2	-2.4	0.05	0.07	0.09	0.07	0.07	0.06	93.3	86.6	52.5	95.1	94.8	95.3
J = 500	-0.2	-14.6	-29.2	0.0	0.2	-1.0	0.03	0.06	0.09	0.04	0.04	0.04	94.4	76.2	24.2	94.8	94.2	94.7
J = 1000	-0.0	-14.1	-28.8	0.4	0.2	-0.3	0.02	0.05	0.08	0.03	0.03	0.03	95.3	68.2	4.4	94.8	93.9	95.0
n = 20)))	1		1) \) \) 1)))	
J = 30	-3.4	-19.0	-3/.9	-3.3	-2.4	-15.3	0.12	0.15	0.15	0.16	0.16	0.15	88.9	19.9	60.3	92.1	92.3	89.9
J = 50	-1.5	-15.8	-35.3	-0.8	-0.8	-8.5	0.09	0.11	0.13	0.12	0.12	0.11	91.9	84.6	58.2	94.3	94.4	93.3
J = 100	-0.5	-15.3	-34.8	-0.6	-0.4	-4.7	0.06	0.09	0.11	0.09	0.08	0.08	93.2	83.6	46.7	93.5	93.9	93.2
J = 200	-0.5	-15.2	-34.7	-0.7	-0.7	-2.7	0.04	0.07	0.10	0.06	0.06	0.06	95.3	83.4	27.4	94.8	94.3	94.5
J = 500	-0.3	-15.1	-34.4	-0.3	-0.4	-1.2	0.03	0.05	0.10	0.04	0.04	0.04	94.8	73.1	4.5	95.8	94.4	94.8
J = 1000	-0.0	-14.3	-33.9	0.2	0.1	-0.2	0.02	0.05	0.09	0.03	0.03	0.03	93.8	60.0	0.1	94.6	95.5	95.3
		٠			ì		•		:			1			1			

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z ($\hat{\sigma}_{yz}$) With 40% Missing Data (MAR, $\lambda = 1$) Table 1-18

	-57.5 -61.3 0.6 0.4 -0.7 0.02 0.16 0.17 0.04 0.04	-1.1 -58.5 -62.2 -1.7 -1.5 -7.1 0.05 0.16 0.17 0.08 0.08 0.3 -57.4 -61.2 1.2 1.2 -1.2 0.03 0.16 0.17 0.05 0.05	-1.1 -59.2 -62.9 -1.4 -1.4 -11.8 0.06 0.17 0.18 0.11 0.11	-3.5 -59.7 -63.4 -3.2 -2.0 -22.3 0.09 0.18 0.18 0.16 0.16	-3.2 -60.1 -63.5 -4.1 -1.8 -30.8 0.12 0.19 0.19 0.21 0.21	0.1 -57.5 -55.8 0.8 0.9 -0.6 0.02 0.16 0.15 0.04	-0.2 -57.9 -56.1 -0.3 0.3 -3.0 0.03 0.16 0.16 0.06	-0.3 -58.4 -56.7 -0.6 0.5 -7.8 0.05 0.16 0.16 0.09	= 100 -0.6 -58.0 -56.4 0.5 3.9 -13.8 0.07 0.17 0.17 0.13 0.14	-2.6 -60.2 -58.6 -3.5 6.1 -28.3 0.10 0.18 0.18 0.19	-2.8 -60.4 -59.1 -4.8 6.7 -37.9 0.13 0.19 0.19 0.26	Moderate intraclass correlation (ρ_{Iy} =) -0.2 -58.2 -69.9 -1.0 -0.9 -5.4 0.01 0.09 0.11 0.02	-0.4 - 57.9 - 69.8 - 0.4 - 0.3 - 9.2 0.02 0.09 0.11 0.03	-70.0 -0.6 0.4	-1.6 -58.9 -70.5 -1.9 1.3 -29.9 0.04 0.10 0.11 0.07	-1.4 -57.9 -69.9 -2.0 6.3 -40.0 0.06 0.10 0.12 0.11	-4.5 -60.0 -71.3 -5.7 3.5 -51.0 0.07 0.11 0.12 0.14	0.7 JULY 0.10 1.7 0.00 JULY 0.007 0.107 0.007 0.007	-0.7 -58.4 -6.4 -1.4 0.0 -9.6 0.02 0.00 0.10 0.03 0.03	0.0 -57.3 -63.7 1.0 5.1 -12.9 0.02 0.09 0.10 0.05 0.05	= 200 -0.2 -58.2 -64.5 -0.3 9.0 -24.5 0.04 0.10 0.11 0.07 0.08	-0.3 -58.0 -64.2 1.9 13.1 -34.2 0.06 0.10 0.11 0.11 0.11	0.7 - 58.4 - 64.2 - 0.2 8.9 - 43.3 0.08 0.11 0.12 0.16 0.16	-3.5 -58.1 -64.5 1.1 -1.3 -51.1 0.10 0.12 0.12 0.21 0.21	Small intraclass correlation ($\rho_{Iy} = .1$		
:	0.17 0.04	0.17 0.08	0.18 0.11	0.18 0.16	0.19 0.21	0.15 0.04	0.16 0.06	0.16 0.09	0.17 0.13	0.18 0.19	0.19 0.26	te intraclass correlation (ρ_L	0.11 0.02	0.11 0.03	0.11 0.05	0.11 0.07	0.12 0.11	0.12 0.14	0.00	0 10 0 03	0.10 - 0.05	0.11 0.07	0.11 0.11	0.12 0.16	0.12 0.21	intraclass correlation (ρ_{Iy} :	FCS- FCS- SL MAN	
FOG 61	0.04	0.08 91.9	0.11 93.8	0.14 91.7	0.18 89.5	0.04 94.8	0.06 95.3	0.09 94.3	4 0.12 92.7 21.7	0.17 91.9	0.20 89.5		0.02 94.2	0.03 94.4	0.05 94.4	0.07 93.1	0.09 93.3		0.00	0.03 05.8	0.05 95.3	8 0.07 94.6 42.3	0.09 94.1	0.11 92.3	0.13 92.3	= .10)	T JM CD LD	
ECC MANI	0.0 92.3 92.1 94.3	93.7 94.3 94.4 93.8	93.5 93.8	93.5 93.4	93.8 93.9	93.5 93.3	93.6 93.4	94.3 93.8	29.3 93.9 92.6 93.0	94.2 91.7	93.6 92.4		94.0 93.0	94.5 92.8	93.8 93.8	93.7 92.7	94.3 92.5	33.4 93.6 92.8 89.6)))))))))))))))))))	03 0 07 /	93.0 90.8	93.6	94.1 93.4	95.2 92.2	93.1		SL MAN LAT JM	1

Missing Data (MCAR, $\lambda = 0$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on $z(\hat{\beta}_{yz})$ With 20% Table 1-19

94.2 93.7 94.7 94.9 91.5 93.0 92.7 94.1 94.0 94.3 94.4 94.1 94.5 94.2 95.6 95.9 95.6 95.9 91.4 92.5 91.9 93.5 93.5 93.8 93.2 93.6 93.7 95.8 95.4 95.6	91.8 91.8 93.1 94.2 94.3 94.4 95.8 95.8 93.5 93.5 93.6	93.9 90.2 91.7 92.6 91.1 90.5 91.2 91.2 88.4 89.8 89.8 89.8	91.7 94.1 93.9 93.8 95.2 95.2 89.7 90.7 93.5 93.5 93.5 93.5	92.0 93.5 92.4 94.9 96.0	0.04 0.02 0.02	0.04 0.02 0.02	0.04 0.02 0.02	0.05 0.03 0.03	0.04 0.03 0.02	0.04	-0.3	-0.4 -0.2 0.1	-0.5 -0.2 0.1	6.4	0.2 -0.1 0.2	-0.1 -0.2	J = 500 $J = 1000$
	91.8 93.1 94.2 94.3 94.4 95.8 95.8 91.7 92.5 93.6 94.8	93.9 90.2 91.7 92.6 91.1 90.5 91.2 91.2 88.4 89.7 91.3	91.7 94.1 93.9 93.8 95.2 95.2 89.7 90.7 93.5 93.6 94.4	93.5 92.4 94.9	0.04 0.02	0.04	0.04	0.05	0.04	0.04	-0.3	-0.2	-0.5 -0.2	6.4	-0.2		J = 500
	91.8 93.1 94.2 94.3 94.4 95.8 91.7 92.5 93.5	93.9 90.2 91.7 92.6 91.1 90.5 91.2 91.2 88.4 89.7 91.3	91.7 94.1 93.9 93.8 95.2 95.2 89.7 90.7 93.5 93.0	93.5 92.4	0.04	0.04	0.04	0.05	0.04	0.04	:	1.0	C.0-	0	0.2		1 100
	91.8 91.8 93.1 94.2 94.3 94.4 95.8 91.7 92.5 93.5	93.9 90.2 91.7 92.6 91.1 90.5 91.2 88.4 89.7 91.3	91.7 94.1 93.9 93.8 95.2 89.7 90.7 93.5	93.5				0.00	0.00	2	-0.7	_0 4) n	6.5	,		1 = 200
	91.8 91.8 93.1 94.2 94.3 94.4 95.8 91.7 92.5	93.9 90.2 91.7 92.6 91.1 90.5 91.2 88.4 89.7	91.7 94.1 93.9 93.8 95.2 95.2 89.7 90.7	92.0	0.06	0.06	0.06	у О О	0.06	0.05	-1.1	-0.5	-0.3	6.6	0.2		J = 100
	91.8 91.8 93.1 94.2 94.3 95.8 91.7	93.9 90.2 91.7 92.6 91.1 90.5 91.2	91.7 94.1 93.9 93.8 95.2 89.7	2	0.08	0.08	0.08	0.09	0.08	0.08	-2.7	-1.7	-1.4	6.2	-0.0		J = 50
	91.8 91.8 93.1 94.2 94.3 94.4 95.8	93.9 90.2 91.7 92.6 91.1 90.5 91.2	91.7 94.1 93.9 93.8 95.2	90.0	0.11	0.11	0.11	0.12	0.11	0.10	-5.4	-3.0	-3.2	5.2	-1.1		J = 30
	91.8 91.8 93.1 94.2 94.3 94.4 95.8	93.9 90.2 91.7 92.6 91.1 90.5 91.2	91.7 94.1 93.9 93.8 95.2														= 20
	91.8 91.8 93.1 94.2 94.3 94.4	93.9 90.2 91.7 92.6 91.1 90.5	91.7 94.1 93.9 93.8	95.9	0.02	0.02	0.02	0.03	0.02	0.02	-0.7	-0.5	-0.6	4.8	-0.4	_	J = 1000
	94.4 91.8 93.1 94.2 94.3	93.9 90.2 91.7 92.6 91.1	91.7 94.1 93.9	94.0	0.03	0.03	0.03	0.04	0.03	0.03	0.1	0.3	0.3	5.7	0.5		J = 500
	94.4 91.8 93.1 94.2	93.9 90.2 91.7 92.6	91.7 94.1	93.5	0.05	0.05	0.05	0.05	0.05	0.04	-0.4	0.2	0.2	5.8	0.5		J = 200
	94.4 91.8 93.1	93.9	91.7	94.1	0.06	0.07	0.07	0.07	0.07	0.06	-0.4	0.6	0.6	6.3	1.0		J = 100
	91.8	93.9	,	92.5	0.10	0.10	0.10	0.10	0.10	0.09	-3.6	-1.5	-2.1	4.5	-0.5	-0.4	J = 50
	94.4	93.9	90 5	91.9	0.13	0.13	0.13	0.14	0.13	0.11	-6.7	-3.2	-4.2	3.1	-2.1		J = 30
	94.4	93.9		0)	$O_{Iy} = .3$	ation (c	ss correl	ntraclas	Moderate intraclass correlation (ρ_{Iy}	Mo							
	,)	94.9	94.8	0.01	0.01	0.01	0.01	0.01	0.01	-0.5	-0.1	-0.1	2.1	-0.2	1 ·	J = 1000
	93.7	92.0	93.5	94.2	0.02	0.02	0.02	0.02	0.02	0.02	-1.1	-0.6	-0.7	1.9	-0.4		J = 500
	93.8	93.2	93.6	94.1	0.03	0.03	0.03	0.03	0.03	0.03	-1.6	-0.1	-0.3	2.2	-0.2	0.1	J = 200
	93.9	93.5	94.1	94.0	0.04	0.04	0.04	0.04	0.04	0.04	-3.3	-0.6	-0.7	2.4	0.1		J = 100
	93.6	92.0	92.3	94.2	0.05	0.05	0.05	0.06	0.06	0.05	-5.3	-0.8	-1.0	2.9	0.5		J = 50
	91.6	89.8	89.6	91.1	0.07	0.07	0.07	0.08	0.08	0.07	-8.2	-2.7	-3.1	1.9	-0.4		J = 30
																	= 20
94.0 94.9	94.0	93.6	94.6	94.1	0.02	0.02	0.02	0.02	0.02	0.02	-1.0	-0.2	-0.3	1.6	-0.2	_	J = 1000
	94.1	93.5	94.5	93.8	0.03	0.03	0.03	0.03	0.03	0.02	-1.3	0.3	0.0	1.9	0.0		J = 500
	93.7	93.9	94.1	93.3	0.04	0.04	0.04	0.04	0.04	0.04	-2.4	0.9	-0.1	2.2	0.4		J = 200
	94.3	92.7	93.3	93.7	0.06	0.06	0.06	0.06	0.06	0.05	-3.2	1.9	0.3	3.0	1.3	0.9	J = 100
	93.0	92.1	92.1	92.1	0.08	0.08	0.08	0.08	0.08	0.07	-8.1	-0.9	-3.1	0.2	-1.5		J = 50
	90.7	89.4	89.0	90.5	0.10	0.11	0.11	0.11	0.11	0.10	-9.5	-1.4	-4.2	0.4	-1.0		J = 30
																	= 5
					y = .10	ion (ρ_{I})	correlat	raclass	Small intraclass correlation (ρ_{Iy}	S							
FCS- LAT JM	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS-	- FCS- MAN	FCS- SL	LD	CD	
	Coverage (%)	Covera					RMSE	RN					ıs (%)	Bias			

Missing Data (MAR, $\lambda = 0.5$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With 20% Table 1-20

	1					1	:		;		•		2		•	•	•	
94.4	95.0	94.3	93.1	75.1	94.2	0.02	0.02	0.02	0.02	0.03	0.02	0.1	0.3	0.2	1.4	-8.0	0.1	J = 1000
95.8	95.2	95.7	94.5	85.0	95.3	0.03	0.03	0.03	0.03	0.03	0.02	-0.3	-0.1	-0.1	1.1	-8.2	-0.1	J = 500
96.0	95.3	95.9	94.3	91.0	95.3	0.04	0.04	0.04	0.04	0.04	0.03	-0.8	-0.4	-0.4	1.0	-8.3	-0.1	J = 200
93.8	94.3	94.3	92.1	90.6	94.3	0.06	0.06	0.06	0.06	0.06	0.05	-2.8	-1.8	-1.9	0.3	-8.9	-0.4	J = 100
94.5	94.1	94.5	91.3	91.4	93.1	0.08	0.08	0.08	0.09	0.08	0.07	-4.5	-2.6	-2.4	0.6	-8.4	-0.2	J = 50
93.4	91.7	91.8	88.5	89.1	90.8	0.11	0.11	0.11	0.12	0.11	0.10	-7.5	-4.8	-4.6	0.5	-8.7	-0.6	J = 30
;	;	0.0	0			0.00				0	0.01	:					i	n = 20
20	30	9 50	95 1	79 6	95 4	000	003	0 02	000	0 03	000	_ 0 1	0 1	0 0	9.0	ر ا	0)	I = 1000
93.6	93.7	93.8	93.2	85.7	93.9	0.03	0.03	0.03	0.03	0.04	0.03	<u>-1</u> .1	-0.8	-0.9	-0.2	-9.2	-0.4	J = 500
95.1	94.3	94.3	93.6	91.3	94.6	0.05	0.05	0.05	0.05	0.05	0.04	-0.8	0.0	-0.1	0.8	-8.4	0.6	J = 200
94.7	94.1	93.8	93.3	90.8	93.3	0.07	0.07	0.07	0.07	0.07	0.06	-3.6	-1.8	-2.2	-0.8	-9.7	-0.3	J = 100
94.3	92.5	93.3	91.5	91.1	92.3	0.10	0.10	0.10	0.10	0.10	0.09	-5.7	-2.0	-2.7	-0.3	-9.0	-0.2	J = 50
93.1	91.0	91.7	90.5	89.7	90.9	0.13	0.13	0.13	0.13	0.13	0.11	-8.5	-3.7	-5.1	-1.2	-9.3	-1.0	n = 5 $J = 30$
						= .30)		Moderate intraclass correlation (ρ_{Iy}	class cc	te intra	Modera							
94.5	93.9	94.0	88.0	77.4	94.5	0.01	0.01	0.01	0.02	0.02	0.01	-0.7	-0.2	-0.2	-5.4	-8.9	0.2	J = 1000
95.9	95.8	95.3	91.3	87.7	94.6	0.02	0.02	0.02	0.02	0.02	0.02	-0.6	0.4	0.3	-4.7	-8.3	0.5	J = 500
95.0	93.8	94.4	92.6	90.6	94.4	0.03	0.03	0.03	0.03	0.03	0.03	-2.8	-0.6	-0.9	-5.4	-8.9	0.1	J = 200
94.3	93.6	94.0	92.6	91.5	93.5	0.04	0.04	0.04	0.04	0.04	0.03	-5./	-2.1	-2.4	-6.2	-9./	-1.0	J = 100
95.1	93.1	92.9	93.1	92.1	92.5	0.05	0.06	0.06	0.06	0.05	0.05	-6.9	-0.5	-1.0	-3.7	-7.3	2.1	J = 50
94.5	92.0	92.3	90./	89.9	91.6	0.07	0.07	0.07	0.08	0.07	0.07	-11.0	-2.6	-3.3	-4.4 -4.4	- × · ·	0.1	J = 30
n	3	3	20	90 0	2	0 07	3	0	0 00	0	3	1)))		0	2	n = 20
94.7	94.2	94.6	92.8	86.2	95.2	0.02	0.02	0.02	0.02	0.02	0.02	-0.9	0.2	0.0	-5.1	-9.4	-0.1	J = 1000
95.0	94.5	94.8	93.3	88.5	94.1	0.03	0.03	0.03	0.03	0.03	0.02	-2.7	-0.4	-1.0	-5.7	-9.9	-0.7	J = 500
95.2	94.1	95.1	94.6	93.7	95.0	0.04	0.04	0.04	0.04	0.04	0.04	-3.6	1.6	-0.1	-4.6	-9.0	0.7	J = 200
95.3	93.9	94.3	93.9	92.7	94.6	0.06	0.06	0.06	0.06	0.06	0.05	-8.0	-0.6	-2.9	-6.6	-10.9	-1.3	J = 100
95.0	91.6	93.4	93.1	91.8	92.6	0.08	0.09	0.08	0.08	0.08	0.07	-8.1	2.0	-0.8	-3.1	-7.4	1.2	J = 50
93.6	89.6	90.4	90.4	89.4	89.1	0.10	0.11	0.11	0.11	0.11	0.10	-14.5	-4.1	-7.2	-7.6	-11.4	-0.6	J = 30
																		n=5
						.10)		Small intraclass correlation (ρ_{Iy} =	ass cori	intracl	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	G	
		Coverage (%)	Covera					RMSE	RI∿					(%)	Bias			
																,		(

Missing Data (MAR, $\lambda = 1$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With 20% Table 1-21

5				1 2 1 2 2 2	1	1000	lalatian		<u>.</u>		lata dad			of almost	h	i 1	la change	Make
94.6	93.7	92.9	15.2	0.0	94.5	0.02	0.02	0.02	0.06	0.10	0.02	-0.5	-0.2	-0.2	-20.3	-35.4	0.1	J = 1000
93.7	94.4	92.9	40.1	0.8	94.1	0.03	0.03	0.03	0.06	0.10	0.02	-1.5	-1.0	-1.0	-20.9	-35.9	-0.1	J = 500
95.9	95.7	95.7	71.2	18.6	94.4	0.04	0.04	0.04	0.07	0.10	0.04	-2.6	-1.4	-1:1	-20.4	-35.7	0.4	J = 200
95.0	94.2	94.8	79.9	47.5	94.4	0.07	0.07	0.07	0.08	0.11	0.05	-5.8	-3.2	-3.3	-20.4	-35.5	0.2	J = 100
93.9	93.5	92.7	84.5	64.7	92.9	0.10	0.10	0.10	0.11	0.12	0.07	-11.9	-7.5	-7.5	-21.2	-35.9	-0.7	J = 50
94.1	92.6	92.5	85.1	71.5	91.0	0.13	0.12	0.12	0.13	0.14	0.10	-17.7	-11.2	-11.8	-22.1	-36.7	-1.9	J = 30
																		n = 20
95.3	94.5	94.8	33.7	0.0	94.0	0.02	0.02	0.02	0.06	0.10	0.02	-0.8	-0.4	-0.6	-19.6	-37.3	0.1	J = 1000
95.1	94.2	94.6	60.7	1.6	94.9	0.04	0.04	0.04	0.06	0.11	0.03	-2.0	-1.2	-1.5	-20.1	-37.6	-0.2	J = 500
93.8	92.5	93.6	79.9	25.5	93.7	0.06	0.06	0.06	0.08	0.11	0.04	-4.4	-2.4	-2.7	-20.3	-37.7	-0.4	J = 200
93.9	92.1	93.0	86.1	51.5	94.2	0.08	0.08	0.08	0.09	0.12	0.06	-7.6	-3.3	-4.1	-19.9	-37.3	0.3	J = 100
94.5	92.0	93.1	89.8	70.9	92.3	0.12	0.12	0.12	0.12	0.13	0.09	-13.4	-6.0	-7.4	-20.0	-36.7	-0.3	J = 50
93.2	89.9	91.2	87.9	74.2	90.5	0.15	0.15	0.15	0.15	0.15	0.12	-19.5	-9.3	-12.6	-20.5	-36.9	0.2	n = 5 $J = 30$
						= .30)		rrelatio	Moderate intraclass correlation (ρ_{Iy}	ıte intra	Modera							
93.9	94.1	94.1	0.7	0.0	95.6	0.01	0.01	0.01	0.05	0.06	0.01	-1.9	-0.7	-0.7	-31.8	-37.3	-0.1	J = 1000
94.8	94.8	94.6	15.1	1.8	93.8	0.02	0.02	0.02	0.05	0.06	0.02	-3.5	-1.1	-1.1	-31.8	-3/.4	-0.4	J = 500
96.2	94.4	95.1	52.8	25.6	95.2	0.03	0.03	0.03	0.06	0.06	0.02	-7.0	-1.2	-1.5	-31.6	-37.2	0.5	J = 200
7).4	92.9	0.10	70.0	٠.٠	22.7	0.00	0.00	0.04	0.00	0.07	0.0	11.1	12.5	1.7	1.00.7	1.00.1	· · ·	J - 100
05.7	02 0	0/ 2	73.6	Λ (2) 2 (02.0	0.05	0.05	0.00	0.06	0.07	2.5	1111	ر د د د	- C - C	30.7	36.1	0.0	<i>I</i> = 100
04 7	02 4	93 0	χ Λ	۲ 09	22	0 07	0 07	0 07	0 07	0 07	20.0	1× ×	1 A 8	- 6 O	_30 <i>4</i>	- 36 1	0 6	I - 50
94.8	90.6	92.4	83.2	73.5	91.3	0.09	0.09	0.09	0.09	0.09	0.07	-27.2	-11.8	-12.7	-31.6	-37.2	-0.9	J = 30
	:	0.0	1		;					0	9				;	;		n = 20
94 1	92.7	93.6	9 60	<u>-</u> ;	04 S	0 00	0 00	0.00	0.05	0.06	0 00	-3.4	-00	_0.7	-303	-39 5	_0 i	I = 1000
95.4	93.8	95.6	54.2	12.9	95.6	0.03	0.03	0.03	0.05	0.06	0.02	-5.0	_	-0.4	-29.6	-38.8	0.8	J = 500
94.9	92.1	93.5	79.0	48.1	95.1	0.05	0.05	0.05	0.06	0.07	0.04	-11.0	1.5	-2.0	-29.9	-39.2	0.5	J = 200
94.4	92.3	93.1	86.2	69.6	94.3	0.07	0.07	0.07	0.07	0.08	0.05	-17.7	0.4	-5.5	-30.5	-39.7	-0.8	J = 100
95.2	89.0	91.5	89.1	77.3	92.1	0.09	0.10	0.10	0.09	0.09	0.07	-24.7	-2.4	-9.5	-30.7	-39.9	-0.8	J = 50
94.9	87.1	90.2	89.3	78.5	92.1	0.12	0.14	0.13	0.12	0.11	0.10	-33.3	-12.2	-17.2	-34.0	-42.2	-1.8	J = 30
																		n = 5
						.10)	$(\rho_{Iy} =$	elation	intraclass correlation		Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	G	
		Coverage (%)	Covera					RMSE	RN					\$ (%)	Bias			

Missing Data (MCAR, $\lambda = 0$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With 40% Table 1-22

1 1		2 6	_) (i	70.1		0.02	0:01			0.01				1 2	i	. c	W-1000
956	95 T	05.7	443	05 7	05.7	0 00	0 00	0 00	0 05	0 00	0 00	-0 6	-0 s	۱ ۵ -	16.6	-0.7	-0°	I = 1000
96.2	95.2	96.2	63.7	96.2	95.2	0.03	0.03	0.03	0.06	0.03	0.02	-0.4	0.1	0.1	17.1	0.3	0.5	J = 500
94.4	93.8	94.0	80.8	93.2	93.8	0.05	0.05	0.05	0.07	0.05	0.04	-1.9	-1.0	-1.1	16.1	-0.6	-0.7	J = 200
94.9	94.4	94.8	84.8	93.5	94.2	0.06	0.06	0.06	0.09	0.07	0.05	-2.4	-0.4	-0.7	18.5	1.5	1.1	J = 100
94.5	92.8	93.7	85.5	91.3	91.0	0.09	0.09	0.09	0.12	0.10	0.08	-5.0	-1.7	-1.8	18.0	1.0	1.3	J = 50
94.9	92.9	92.8	84.7	89.0	91.4	0.12	0.13	0.13	0.16	0.13	0.10	-12.4	-6.6	-7.1	15.1	-1.4	-1.6	J = 30
																		n = 20
95.3	93.9	94.1	69.4	94.9	94.9	0.02	0.02	0.02	0.04	0.02	0.02	-0.5	-0.2	-0.3	12.8	-0.1	-0.1	J = 1000
94.6	95.3	94.6	79.3	95.1	94.8	0.03	0.03	0.03	0.05	0.03	0.03	-0.9	-0.4	-0.4	12.8	0.0	0.0	J = 500
94.2	94.2	94.4	87.3	94.5	95.1	0.05	0.05	0.05	0.07	0.06	0.04	-1.0	-0.1	-0.3	13.3	0.5	0.1	J = 200
95.2	93.4	92.8	88.4	93.2	93.2	0.08	0.08	0.08	0.10	0.08	0.06	-4.0	-1.1	-1.6	12.7	0.1	0.1	J = 100
94.4	92.9	93.0	89.3	91.5	92.9	0.11	0.11	0.11	0.13	0.12	0.09	-8.8	-2.9	-4.4	11.9	-0.4	0.4	J = 50
94.5	91.5	92.6	86.3	87.7	90.9	0.15	0.15	0.15	0.18	0.16	0.12	-12.0	-3.9	-6.0	12.8	1.6	0.6	J = 30
																		۲ ا
						= .30)		rrelatio	Moderate intraclass correlation ($ ho_{Iy}$	ıte intra	Modera							
95.4	95.4	94.5	89.1	94.5	96.2	0.01	0.01	0.01	0.02	0.01	0.01	-1.0	-0.1	-0.1	6.1	0.1	0.0	J = 1000
95.5	95.1	95.3	90.5	95.2	96.0	0.02	0.02	0.02	0.02	0.02	0.01	-1.2	0.5	0.4	6.8	0.8	0.4	J = 500
95.6	94.5	94.1	91.9	94.1	94.1	0.03	0.03	0.03	0.04	0.03	0.02	-4.0	0.1	-0.2	6.7	0.6	0.4	J = 200
95.7	92.8	92.9	90.6	91.8	93.9	0.04	0.04	0.04	0.05	0.05	0.03	-7.5	-0.9	-1.2	6.5	0.4	0.7	J = 100
94.7	91.4	92.2	89.1	89.7	91.8	0.06	0.07	0.07	0.07	0.07	0.05	-12.5	-1.2	-2.2	7.7	1.7	1.0	J = 50
95.1	91.1	91.7	87.9	88.9	90.9	0.08	0.09	0.09	0.10	0.09	0.07	-17.6	-2.7	-4.6	8.0	1.3	1.4	J = 30
																		n = 20
95.3	94.5	94.3	93.0	95.4	95.8	0.02	0.02	0.02	0.02	0.02	0.02	-2.3	-0.1	-0.4	4.2	-0.3	-0.3	J = 1000
93.9	93.5	94.2	92.6	93.8	94.1	0.03	0.03	0.03	0.03	0.03	0.02	-4.7	-1.0	-1.7	3.4	-1.3	-0.8	J = 500
95.5	94.3	93.9	94.0	94.0	94.2	0.04	0.04	0.04	0.05	0.05	0.04	-7.2	1.6	-0.9	3.9	-0.6	0.3	J = 200
94.3	91.9	93.1	91.7	92.4	93.3	0.06	0.07	0.07	0.07	0.07	0.05	-11.4	1.1	-2.9	3.6	-0.8	0.3	J = 100
93.9	91.5	92.9	91.0	90.5	92.8	0.09	0.10	0.10	0.10	0.10	0.08	-15.3	0.2	-3.9	4.1	0.0	0.2	J = 50
94.3	90.1	91.6	89.4	87.5	89.9	0.11	0.13	0.12	0.14	0.13	0.10	-21.7	-5.8	-9.5	2.3	-1.2	-1.7	n = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation	l intracl:	Smali							1
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-	FCS- SL	LD	CD	
		ge (%)	Coverage (%)					ISE	RMSE						Bias			ı

Missing Data (MAR, $\lambda = 0.5$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With 40% Table 1-23

-				-		1	:		:				3		- !			3.7
95.3	94.7	95.3	78.4	65.0	95.4	0.02	0.02	0.02	0.03	0.04	0.02	-0.3	<u>-</u> 0.1	0.0	8.7	-11.3	0.0	J = 1000
94.7	95.1	94.7	86.6	77.1	94.1	0.03	0.03	0.03	0.04	0.04	0.02	-1.3	-0.8	-0.8	8.0	-12.0	-0.1	J = 500
93.3	93.6	93.6	88.5	86.2	94.4	0.05	0.05	0.05	0.06	0.06	0.04	-2.7	-1.4	-1.4	8.1	-11.7	0.1	J = 200
94.6	93.7	93.9	88.7	88.8	92.0	0.07	0.07	0.07	0.08	0.07	0.05	-4.9	-2.4	-2.6	8.5	-11.4	0.2	J = 100
95.3	93.5	93.0	88.9	89.0	92.2	0.09	0.10	0.10	0.11	0.10	0.07	-9.2	-4.9	-5.1	8.8	-10.9	-0.1	J = 50
93.4	90.9	91.1	85.7	84.7	91.1	0.13	0.13	0.14	0.16	0.14	0.10	-15.8	-8.8	-9.6	7.7	-12.0	-0.6	J = 30
																		n = 20
96.1	95.2	94.8	89.4	72.1	94.4	0.02	0.02	0.02	0.03	0.04	0.02	-0.4	-0.1	-0.1	5.8			J = 1000
94.2	93.2	94.1	89.5	81.3	93.9	0.04	0.04	0.04	0.04	0.05	0.03	-1.1	-0.2	-0.3	5.7			J = 500
95.8	95.2	95.3	92.8	89.5	94.5	0.05	0.05	0.05	0.06	0.06	0.04	-3.1	-1.5	-1.4	5.4			J = 200
94.7	93.7	93.3	92.0	90.3	94.0	0.08	0.08	0.08	0.09	0.09	0.06	-7.1	-2.9	-3.8	3.7	-13.3	-0.3	J = 100
94.3	91.9	92.9	90.1	88.7	91.9	0.12	0.12	0.12	0.13	0.12	0.09	-12.2	-4.9	-6.5	3.4			J = 50
94.3	90.9	92.6	89.5	86.4	90.4	0.15	0.15	0.15	0.17	0.15	0.12	-19.4	-9.4	-11.6	0.1			n = 5 $J = 30$
						= .30)	$n(\rho_{Iy} =$	rrelatio	Moderate intraclass correlation (ρ_{Iy}	te intra	Modera							
94.7	93.5	94.7	90.8	68.2	94.7	0.01	0.01	0.01	0.02	0.02	0.01	-1.5	-0.4	-0.5	-5.2	-12.4	-0.2	J = 1000
95.0	93.4	93.8	92.9	82.5	93.7	0.02	0.02	0.02	0.02	0.03	0.02	-2.6	-0.5	-0.5	-5.0	-12.2	0.1	J = 500
96.7	95.1	95.4	93.9	90.6	94.8	0.03	0.03	0.03	0.03	0.03	0.02	-5.7	-0.6	-0.5	-4.0	-11.3	0.6	J = 200
95.1	94.4	93.6	93.6	90.6	93.1	0.05	0.05	0.05	0.05	0.05	0.04	-11.0	-2.1	-2.9	-4.8	-11.9	-0.6	J = 100
95.3	92.3	93.7	91.6	89.5	92.9	0.07	0.07	0.07	0.07	0.07	0.05	-16.9	-3.2	-4.0	-3.3	-10.6	0.9	J = 50
95.5	90.8	91.7	90.4	87.6	90.8	0.08	0.09	0.09	0.09	0.09	0.07	-22.5	-5.3	-7.7	-2.9	-10.2	1.5	J = 30
																		n = 20
95.6	94.0	94.9	93.8	82.9	95.1	0.02	0.02	0.02	0.02	0.03	0.02	-2.5	0.5	-0.1	-5.4	-13.1	0.3	J = 1000
95.1	93.8	95.0	93.7	85.2	95.4	0.03	0.03	0.03	0.03	0.04	0.02	-5.6	0.0	-1.0	-6.6		-0.4	J = 500
95.0	92.8	94.2	94.1	90.6	95.3	0.05	0.05	0.05	0.05	0.05	0.04	-10.1	0.7	-2.4	-6.5		-0.8	J = 200
96.3	92.5	94.1	95.0	92.5	94.6	0.06	0.07	0.07	0.07	0.06	0.05	-13.1	3.0	-1.4	-3.8		1.3	J = 100
96.0	90.7	93.2	92.8	90.1	92.8	0.09	0.10	0.10	0.10	0.09	0.07	-22.3	-0.9	-5.7	-5.0		-0.0	J = 50
95.8	88.7	90.0	90.7	87.5	90.7	0.11	0.13	0.13	0.14	0.13	0.10	-24.6	-2.6	-8.6	-3.6		0.9	J = 30
																		n=5
						10)	$1(\rho_{Iy} =$	elation (Small intraclass correlation	intracl	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		ge (%)	Coverage (%)					ISE	RMSE					(%)	Bias			

Missing Data (MAR, $\lambda = 1$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With 40% Table 1-24

			1		·	1			:		•)	,		•		
93.9	93.1	93.7	12.2	0.0	94.7	0.03	0.03	0.03	0.08	0.14	0.02	-1.3		-0.5	-29.0	-51.2	0.1	J=1000
96.1	92.6	94.0	38.9	0.0	95.0	0.04	0.04	0.03	0.09	0.14	0.02	-2.6		-1.0	-28.6	-51.0	0.4	J = 500
96.7	94.2	94.7	65.3	3.3	93.5	0.06	0.06	0.06	0.10	0.15	0.04	-8.5		-5.0	-30.1	-51.8	-0.5	J = 200
95.3	94.8	94.7	78.4	20.6	94.7	0.09	0.09	0.09	0.11	0.15	0.05	-14.3		-8.4	-30.1	-51.9	0.1	J = 100
95.0	94.5	93.9	82.7	42.2	91.5	0.13	0.12	0.12	0.14	0.16	0.08	-25.6		-16.3	-30.8	-52.1	-0.9	J = 50
94.3	92.9	92.5	85.1	53.3	90.5	0.16	0.16	0.16	0.17	0.17	0.10	-34.7	-22.9	-23.2	-29.7	-51.3	-1.2	n = 20 $J = 30$
93.5	92.9	93.9	24.9	0.0	94.8	0.03	0.03	0.03	0.08	0.15	0.02	-1.2	-0.1	-0.3	-28.6	-52.7	0.4	J = 1000
95.3	93.0	94.3	53.2	0.0	95.2	0.04	0.04	0.04	0.09	0.15	0.03	-3.5	-1.3	-1.9	-29.0	-53.0	0.1	J = 500
95.2	92.9	94.4	76.8	6.0	95.0	0.07	0.07	0.07	0.10	0.15	0.04	-9.4	-4.1	-4.8	-29.9	-53.4	0.2	J = 200
94.7	91.1	92.7	85.9	29.2	93.1	0.11	0.10	0.10	0.12	0.16	0.06	-16.1	-6.8	-8.2	-28.9	-52.4	0.5	J = 100
94.9	89.1	92.3	89.2	49.5	93.1	0.15	0.15	0.15	0.16	0.17	0.09	-30.1	-14.2	-18.0	-32.2	-54.0	-0.2	J = 50
93.7	89.6	91.3	88.9	59.5	90.1	0.19	0.20	0.20	0.20	0.19	0.12	-40.8	-21.5	-27.0	-32.7	-53.6	0.5	n = 5 $J = 30$
						= .30)	n (ρ _{Iy} =	rrelatio	Moderate intraclass correlation (ρ_{Iy}	te intra	Modera							
94.2	94.1	95.0	0.1	0.0	94.2	0.02	0.02	0.02	0.07	0.09	0.01	-4.8		-1.7	-46.1	-53.5	-0.1	J = 1000
94.1	92.7	92.6	6.3	0.0	93.5	0.03	0.03	0.03	0.07	0.09	0.02	-8.6		-2.6	-46.0	-53.3	-0.6	J = 500
94.1	92.8	93.5	46.6	6.5	96.0	0.05	0.04	0.04	0.08	0.09	0.02	-16.8	-4.1	-4.7	-45.5	-53.0	0.2	J = 200
93.9	92.6	94.3	70.7	26.7	94.1	0.07	0.06	0.06	0.08	0.09	0.04	-28.1	•	-9.8	-46.2	-53.6	-0.4	J = 100
94.3	90.7	92.5	82.2	49.7	92.8	0.09	0.09	0.09	0.09	0.10	0.05	-38.3	- 1	-16.8	-44.5	-52.0	0.9	J = 50
94.5	89.1	91.4	86.1	59.7	91.8	0.11	0.12	0.11	0.11	0.11	0.07	-48.7	_	-26.1	-45.8	-52.9	-1.1	n = 20 $J = 30$
94.1	91.2	92.9	7.8	0.1	96.1	0.03	0.03	0.03	0.07	0.09	0.02	-9.0	-1.0	-2.3	-45.4	-56.0	-0.6	J = 1000
93.0	90.7	93.3	41.9	1.3	95.3	0.04	0.04	0.04	0.07	0.09	0.02	-12.6	1.8	-1.6	-43.8	-54.9	0.4	J = 500
92.7	89.7	92.8	73.8	20.5	93.8	0.07	0.07	0.07	0.08	0.09	0.04	-24.1	1.8	-5.7	-44.7	-55.5	0.7	J = 200
95.7	89.1	91.4	87.8	47.6	94.4	0.09	0.09	0.09	0.09	0.10	0.05	-34.1	0.5	-9.0	-43.8	-54.8	0.8	J = 100
95.7	86.7	89.9	92.1	65.9	90.9	0.11	0.13	0.12	0.11	0.11	0.08	-43.6	-9.0	-18.2	-43.4	-54.5	2.7	J = 50
95.1	86.8	88.1	92.7	72.3	90.1	0.13	0.16	0.15	0.13	0.13	0.10	-51.4	-20.9	-25.2	-42.3	-53.2	-0.2	i = 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	Small intraclass correlation	intracl	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
		Coverage (%)	Covera					RMSE	RN					(%)	Bias			

Missing Data (MCAR, $\lambda = 0$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With 20% Table 1-25

93.1 93.5 93.8 94.1 93.7 94.5 94.1 94.0 94.7 95.8 93.3 94.0	93.0	36.8	93.3	94.4	0.00	0.06	0.06	0.13	0.06	0.05	-0.1	0.1	0.1	-13.2	0.1	0.1	J - 1000
					-			2				:		2			
) (3 :	2 6) (0 :	. ,		> (2 ;	7 1000
		60.3	95.4	95.0	0.08	0.08	0.09	0.14	0.08	0.07	-0.2	-0.0	-0.1	-13.4	-0.0	-0.1	J = 500
		77.6	93.7	93.2	0.14	0.14	0.14	0.17	0.14	0.12	-0.2	0.4	0.3	-12.9	0.4	0.4	J = 200
		84.7	94.1	93.3	0.19	0.20	0.19	0.21	0.19	0.18	-0.4	0.6	0.8	-13.0	0.8	0.8	J = 100
		86.3	92.9	93.1	0.28	0.28	0.29	0.27	0.28	0.25	-0.8	1.4	1.6	-12.4	1.6	1.0	J = 50
		00.0	90.9	21.3	0.57	0.50	0.50	0.55	0.50	0.55	-2.9	0.1		13.1	1.0	1.0	J = 50
		ν 0	900	01 2	0 27	0 30	0 20	0 25	0 20	0 22	ာ ၁	-0	- 3	12 1	10	1	$\eta = 20$
95.3 95.9		62.5	95.4	96.1	0.07	0.07	0.07	0.12	0.07	0.07	-0.3	-0.1	-0.1	-11.3	-0.1	-0.2	J = 1000
		80.2	93.9	93.2	0.11	0.11	0.11	0.13	0.11	0.10	1.0	1.3	1.4	-10.1	1.3	1.1	J = 500
		0 0	3 :	2	0.1.	0.1.	0.1.	0.10	0.1.	9.5			- ;	10.1	<u>.</u> :	1 ;	7 - 500
		876	04 6	8 70	0 17	0 17	0 17	0 18	0 17	0 15	9.0	1 4	1 4	101	1 7	<u>၂</u>	I - 200
		90.1	94.2	94.2	0.24	0.25	0.24	0.23	0.25	0.22	1.4	3.1	2.9	-9.1	3.3	2.6	J = 100
		89.0	93.4	93.5	0.37	0.40	0.39	0.35	0.42	0.35	0.0	3.8	3.1	-9.2	4.9	3.1	J = 50
	94.7	89.5	92.9	93.6	0.54	0.62	0.61	0.53	0.66	0.72	1.0	8.2	6.4	-7.2	10.8	6.5	
					= .30)		nrelatic	class co	Moderate intraclass correlation (ρ_{Iy}	Modera							
94.8 94.7	94.6	31.5	94.5	94.5	0.13	0.13	0.13	0.29	0.13	0.12	-0.1	0.4	0.4	-17.0	0.5	0.2	J = 1000
	94.1	53.5	94.2	95.6	0.18	0.18	0.19	0.32	0.18	0.16	-1.2	-0.5	-0.5	-17.5	-0.5	-0.3	J = 500
	94.4	0.17	94.9	94.9	0.28	0.29	0.29	0.36	0.29	0.26	-0.9	1.2	0.9	-16.6	1.4	1.0	J = 200
	94.3	00.0	93.7	94.3	0.41	2.2	0.44	4.0	0.44	0.39	2.5	 2	7.7	-13.3		2.3	J = 100
	0.4.0	07.1	1.00	90.7	0.01	0.0	0.0	0.09	0.70	0.09	1:) C) : :	15.5) i	ر ن د	J - J0
	0.70	07 1	02 /	02.7	0 61	0 67	0 67	0.40	070	0.50	<u> </u>	ν ;	Λ ;	12 h	ν ;	ν (1 - 50
		86.6	91.5	92.5	0.87	0.98	0.94	0.81	1.25	0.88	-0.8	9.3	7.9	-11.2	11.9	<u>~</u>	$\eta = 20$ $J = 30$
94.7 94.8	95.0	76.0	95.4	95.2	0.24	0.25	0.25	0.30	0.26	0.23	0.6	1.6	1.4	-13.2	1.7	1.7	J = 1000
		83.9	96.0	96.2	0.35	0.37	0.37	0.35	0.40	0.34	2.0	4.1	3.7	-11.5	4.7	3.4	J = 500
		87.3	95.3	95.8	0.65	0.71	0.69	0.58	0.88	0.67	6.1	10.5	9.3	-6.7	13.4	9.7	J = 200
		86.6	92.7	92.3	1.13	1.17	1.16	1.05	1.29	1.25	13.9	20.8	18.4	2.7	22.6	18.9	J = 100
		89.2	90.4	92.1	1.74	1.73	1.68	1.55	1.99	2.28	22.2	29.9	27.2	12.3	35.8	35.7	J = 50
		86.6	86.9	88.3	2.28	2.40	2.31	2.29	3.42	2.64	33.1	39.3	34.0	25.9	45.9	45.0	J = 30
																	i = 5
					.10)	$(\rho_{Iy} =$	relation	ass cor	Small intraclass correlation (ρ_{Iy}	Small							
FCS- LAT JM	FCS- I	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	G	
	ge (%)	Coverage (%					RMSE	R.N					_	Bias			
																	(

Missing Data (MAR, $\lambda = 0.5$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With 20% Table 1-26

			1			1			:		•)			,		
94.3	94.4	95.8	7.9	93.6	94.4	0.07	0.07	0.06	0.19	0.07	0.05	0.1	0.3	0.2	-19.4		0.0	J = 1000
95.0	94.9	94.7	31.0	94.5	94.5	0.09	0.09	0.09	0.19	0.09	0.08	-0.0	0.3	0.3	-19.3		-0.1	J = 500
96.0	95.7	95.7	64.0	95.9	95.7	0.14	0.14	0.14	0.21	0.14	0.12	0.1	1.0	0.9	-19.0		0.8	J = 200
94.5	94.9	94.7	74.6	94.2	94.1	0.20	0.21	0.21	0.25	0.21	0.17	-2.1	-0.3	-0.4	-20.0	1.0	-0.2	J = 100
94.4	93.6	94.5	81.8	92.9	92.6	0.29	0.29	0.29	0.30	0.30	0.25	-3.0	0.7	0.7	-19.1		1.0	J = 50
93.5	92.1	92.1	80.7	89.2	91.0	0.39	0.42	0.41	0.39	0.41	0.33	-6.2	-1.0	-0.5	-20.4		-0.5	J = 30
																		n = 20
93.7	94.5	95.5	36.1	90.8	95.1	0.08	0.08	0.08	0.16	0.10	0.07	0.1	0.5	0.4	-16.3	6.2	0.3	J = 1000
95.3	95.0	94.7	60.7	93.6	94.0	0.11	0.11	0.11	0.18	0.13	0.10	-0.5	-0.1	-0.2	-16.7	5.8	0.2	J = 500
94.3	93.5	93.9	78.4	93.7	94.7	0.18	0.19	0.19	0.21	0.22	0.16	0.3	1.6	1.5	-15.8	8.2	1.4	J = 200
95.0	94.7	94.7	83.1	95.3	93.7	0.26	0.27	0.26	0.27	0.30	0.22	-2.2	0.6	-0.1	-16.9	7.5	1.1	J = 100
94.7	94.5	94.4	87.4	94.6	93.6	0.39	0.43	0.42	0.36	0.54	0.36	0.1	6.5	5.4	-12.6	14.5	5.0	J = 50
95.3	94.5	94.5	87.7	93.9	93.5	0.57	0.64	0.62	0.52	0.87	0.55	2.6	13.5	10.6	-8.7	26.6	10.6	J = 30
																		n=5
						= .30)	$n \left(\rho_{Iy} = \right)$	Moderate intraclass correlation (ρ_{Iy}	class co	te intra	Modera							
94.7	94.4	95.2	6.0	91.1	95.1	0.13	0.14	0.14	0.40	0.17	0.12	-0.7	0.0	-0.1	-24.6	5.6	0.2	J = 1000
95.0	95.4	95.1	27.8	93.7	95.8	0.18	0.19	0.19	0.41	0.22	0.16	-0.9	0.5	0.4	-24.4	6.2	0.2	J = 500
94.8	93.4	94.3	60.4	94.3	95.1	0.30	0.32	0.31	0.45	0.36	0.26	-1.9	1.3	0.8	-23.9	7.1	1.3	J = 200
95.2	94.2	94.2	75.3	94.2	94.0	0.43	0.46	0.46	0.52	0.52	0.39	-3.7	1.8	1.4	-23.4	8.6	1.4	J = 100
94.5	93.9	93.7	81.5	93.1	93.3	0.62	0.70	0.69	0.63	0.82	0.58	-4.0	6.4	5.3	-20.3	14.0	5.7	J = 50
94.4	92.7	92.7	82.7	92.5	91.5	0.92	1.05	1.02	0.89	1.36	0.90	-3.6	11.7	9.8	-16.8	23.2	9.5	J = 30
																		n = 20
95.8	95.5	96.0	59.0	91.8	95.9	0.24	0.25	0.25	0.36	0.67	0.23	1.2	2.6	2.5	-19.2	32.8	2.2	J = 1000
96.1	96.2	96.8	72.2	99.7	95.8	0.34	0.37	0.36	0.41	0.87	0.33	0.6	3.4	2.8	-18.7	34.7	2.8	J = 500
93.8	95.3	95.1	80.5	97.4	94.6	0.65	0.70	0.65	0.61	1.43	0.64	2.5	9.4	7.1	-15.0	48.3	7.6	J = 200
94.0	94.7	94.2	82.4	94.4	92.9	1.04	1.13	1.09	1.01	2.32	1.07	7.0	16.9	13.6	-7.8	61.5	14.7	J = 100
92.9	93.1	93.5	84.9	91.2	91.5	1.68	1.74	1.65	1.69	3.18	1.87	20.5	31.9	27.9	9.9	77.4	32.1	J = 50
94.2	93.4	93.3	86.3	87.4	87.8	2.26	2.37	2.20	2.39	4.63	2.90	19.2	30.1	25.1	14.5	64.3	43.7	J = 30
																		n=5
						.10)		Small intraclass correlation (ρ_{Iy} =	ass corn	intracl	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS-MAN	FCS- SL	LD	CD	
		ıge (%)	Coverage (%)					ISE	RMSE					(%)	Bias			I
																,		

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With 20% Missing Data (MAR, $\lambda = 1$) Table 1-27

J = 500 $J = 1000$	J = 200	J = 100	J = 50	J = 30	n = 20	J = 1000	J = 500	J = 200	J = 100	J = 50	n = 5 $J = 30$		J = 1000	J = 500	J = 200	7 - 200	J = 100	J = 50	J = 30	n = 20	J = 1000	J = 500	J = 200	J = 100	J = 50	J = 30	n = 2			I	
-0.1	0.6	0.8	1.0	-1.3		0.4	0.1	0.7	2.1	4.5	10.1		0.2	-0.5	0.7	0.7	1.7	4.7	9.4		1.0	3.1	7.5	22.6	35.0	49.3			CD		,
9.0 9.1	10.3	11.1	12.2	12.3		51.6	51.9	57.9	70.5	92.7	117.1		48.7	48.7	4.4	л (C. C	63.6	83.0	90.1		438.5	395.7	359.0	318.5	253.5	182.8			LD		
-41.4 -41.1	-41.1	-40.6	-40.2	-42.1		-36.5	-36.8	-36.4	-35.6	-34.1	-31.1		-48.4	-48.8	10.0	186	-47.1	-44.9	-41.5	į	-43.0	-41.6	-38.9	-24.6	-17.7	-5.7			FCS- SL	Bias	
-0.3 -0.0	1.2	1.0	1.4	-0.2		-0.0	-0.4	0.1	1.6	4.2	7.8		0.1	-0.4	0.7	ر د د د	2.4	6.2	10.1	į	0.9	2.9	6.9	18.7	15.2	13.1			FCS- MAN	s (%)	
$-0.2 \\ 0.0$	0.8	1.2	1.5	0.4		0.3	0.0	0.5	3.0	8.1	15.5		0.2	-0.4	0.7	0.7	<u>. ၂</u>	9.4	13.6	:	1.7	4.9	12.0	28.5	26.1	22.5			FCS- LAT		
$-1.1 \\ -0.5$	-1.6	-3.6	-7.8	-14.2		-0.4	-1.2	-2.5	-4.5	-8.4	-10.3	Mo	-1.7	<u>-4</u> .1	-/.9	_7 0	<u>-1</u>	-16.0	-20.1	;	-2.5	- 3.1	-5.3	1.5	1.1	1.2		S	JM		
0.08	0.12	0.18	0.26	0.33		0.07	0.09	0.15	0.22	0.35	0.52	derate i	0.12	0.16	0.20	0.00	0.39	0.59	0.90	i	0.22	0.33	0.58	1.18	2.44	3.07		Small intraclass	8		
0.15 0.12	0.21	0.31	0.44	0.60		0.50	0.53	0.70	1.09	1.66	2.68	Moderate intraclass correlation (ρ_{Iy} =	0.82	0.87	1.09	1 00	1.59	2.33	4.63		7.06	6.45	6.51	6.68	6.97	7.90			LD		
0.38 0.38	0.39	0.40	0.44	0.48		0.34	0.35	0.36	0.39	0.44	0.53	s correl	0.77	0.78	0.00	0.80	0.81	0.86	0.97		0.70	0.70	0.76	1.24	1.85	2.46		correlat	FCS- SL	RN	
0.12 0.08	0.18	0.27	0.39	0.50		0.10	0.14	0.22	0.33	0.49	0.68	ation (c	0.18	0.24	0.57	0.37	0.56	0.86	1.26	į	0.29	0.41	0.71	1.27	1.72	2.22		correlation (ρ_{I_2}	FCS- MAN	RMSE	
0.12 0.08	0.18	0.27	0.39	0.51		0.10	0.14	0.22	0.34	0.52	0.75	$I_y = .3$	0.18	0.24	0.07	0.37	0.58	0.90	1.30	į	0.29	0.43	0.76	1.40	1.86	2.32		$_{,} = .10)$	FCS- LAT		
0.12	0.17	0.25	0.36	0.45		0.10	0.14	0.21	0.31	0.42	0.56	0)	0.17	0.23	0.57	0.27	0.50	0.72	0.96	į	0.27	0.37	0.62	1.11	1.65	2.12			JM		
94.2 95.6	95.2	93.9	93.1	90.7		94.7	95.6	95.5	94.7	93.7	92.9		94.9	94.4	90.4	0 × 0	94.5	93.2	91.4	,	95.9	96.6	94.9	93.0	91.4	89.8			8		
89.8 83.5	92.7	92.4	91.3	89.6		15.8	51.1	86.4	94.5	94.9	91.4		18.1	52.3	4.4	2 1 2	92.0	93.9	91.2	,	0.9	.5 .5	34.6	54.0	67.0	68.0			LD		
0.0	7.9	30.6	53.4	60.9		0.3	4.3	33.0	56.9	72.7	78.3		0.0	0.0	0.5	i a	32.2	55.4	64.0		6.6	25.9	53.6	68.8	75.5	81.2			FCS- SL	Covera	
93.1 93.8	94.7	92.5	91.9	93.8		93.8	94.9	93.6	94.3	94.5	93.5		92.9	93.7	94.2	0/ j	93.2	93.4	93.0	;	94.6	96.9	95.7	93.8	94.8	94.3			FCS-MAN	Coverage (%)	
94.2 93.7	95.0	93.4	92.3	93.1		94.2	93.4	92.5	93.0	93.1	91.5		93.0	93.5	94./	0/7	92.5	91.4	91.0	;	94.1	95.7	96.1	94.0	94.5	93.6			FCS- LAT		
94.3 94.5	94.8	93.8	94.8	94.2		94.5	95.3	95.1	94.5	95.1	95.3		94.3	94.2	93.0	03 6	94.9	95.2	94.8	;	94.8	95.6	94.8	93.2	95.2	95.5			JM		

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With 40% Missing Data (MCAR, $\lambda = 0$) Table 1-28

95.4	95.1	95.3	0.3	95.9	95.4	0.07	0.07	0.07	0.25	0.07	0.05	-0.5	-0.1	-0.1	-26.8	-0.2	-0.0	J = 1000
95.3	95.6	95.7	8.3	95.6	95.3	0.10	0.10	0.10	0.25	0.10	0.07	-0.4	0.2	0.2	-26.5	0.3	0.2	J = 500
94.2	94.3	93.8	38.4	93.8	93.8	0.16	0.16	0.16	0.28	0.16	0.12	-1.4	0.3	0.2	-27.0	0.3	-0.4	J = 200
94.5	94./	94.3	36.4	93.9	95.3	0.22	0.22	0.23	0.30	0.22	0.17	-2.5	0.5	0.4	-26.8	0.6	0.4	J = 100
90.0	1.1	24.7	09.5	91.0	92.3	0.50	0.55	0.55	10.0	0.55	2.2	 	0.1	1.1	20.0	2.6	- - -	J = 30
0 7 0	0/ 1	0/ 7	¥ 0.4	01 0	00 2	0.20	0 22	0.33	0.37	0 22	0 2/	ر د	-	ာ	7 70	ر د د	1 :	7 - 50
93.8	92.1	92.0	69.8	87.3	91.0	0.42	0.48	0.48	0.42	0.48	0.34	-10.2	1.5	0.7	-28.8	2.0	0.1	J = 30
																		n = 20
95.5	95.1	95.5	10.0	95.7	95.4	0.08	0.08	0.08	0.22	0.09	0.06	-0.3	0.0	-0.1	-22.5	0.1	0.1	J = 1000
94.6	94.4	95.0	38.8	94.6	95.6	0.12	0.12	0.12	0.22	0.12	0.10	-0.5	0.4	0.3	-22.1	0.5	0.3	J = 500
95.2	95.3	94.6	65.4	95.2	94.7	0.19	0.19	0.19	0.25	0.20	0.15	-0.5	1.3	1.0	-21.9	1.8	0.1	J = 200
94.6	94.0	94.0	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	93.5	94.2	0.28	0.31	0.30	0.30	0.32	0.23	-1.3	3.4	2.6	-21.4	4.5	2.6	J = 100
94.9	93.3	93.9	21./	92.7	93.3	0.39	0.4/	0.43	0.58	1.11	0.54	4.0	0.5)./	-20.9	11./	4 4	J = 50
	00:	0 00	01:	200	00.0	0.00	0.07	0.00	0.00	1 1		<u>.</u>	, i) i		11:	<u> </u>	7 50
953	93 1	92 5	82 4	90 9	93 6	0 55	0 67	0 63	0 50	0 82	0 53	-6 O	10 5	6)	-19 0	14 4	73	n=5 $I=30$
						= .30)	$n(\rho_{Iy} =$	rrelatio	class co	Moderate intraclass correlation (ρ_{Iy}	Modera							
95.0	94.6	95.4	0.1	95.8	95.3	0.14	0.14	0.14	0.55	0.14	0.11	-1.1	0.1	0.0	-34.2	0.1	0.1	J = 1000
94.5	95.1	94.5	5.7	96.0	95.2	0.20	0.21	0.21	0.56	0.21	0.16	-1.6	0.7	0.4	-34.0	0.6	0.1	J = 500
96.1	94.0	94.3	32.4	94.3	94.6	0.32	0.34	0.34	0.59	0.35	0.26	-4.3	1.3	0.8	-34.1	1.6	0.1	J = 200
95.3	93.5	94.2	54.9	93.3	94.0	0.45	0.51	0.50	0.62	0.54	0.38	-6.3	3.5	2.9	-33.1	5.1	3.2	J = 100
95.0	93.0	94.1	68.9	92.3	92.9	0.65	0.80	0.76	0.71	0.91	0.57	-11.7	6.1	4.1	-32.7	9.4	4.4	J = 50
93.9	93.2	93.9	72.3	89.9	92.9	0.88	1.14	1.08	0.87	1.49	0.84	-16.1	9.8	5.2	-32.6	15.0	6.9	J = 30
))))) 			<u>.</u>		ı)	,	1	\)	n = 20
95.0	95.7	95.6	35.0	95.9	95.3	0.25	0.27	0.27	0.48	0.30	0.23	-0.7	1.9	1.5	-27.9	2.5	1.5	J = 1000
94.8	94.9	95.3	53.2	95.0	95.2	0.35	0.38	0.38	0.52	0.44	0.32	-2.8	1.9	1.1	-28.2	3.7	1.5	J = 500
96.1	96.5	96.2	73.4	96.2	96.5	0.67	0.80	0.76	0.64	1.04	0.67	3.1	15.1	11.6	-21.4	21.5	11.5	J = 200
94.2	95.3	94.6	79.6	92.2	93.4	1.21	1.25	1.19	1.13	1.65	1.26	7.4	22.0	16.8	-13.6	32.5	21.8	J = 100
93.5	94.2	94.6	80.6	89.0	91.6	1.67	1.72	1.71	1.50	3.15	2.12	10.0	26.1	20.6	-7.2	42.6	32.3	J = 50
94.0	94.9	93.8	82.7	84.2	88.3	2.16	2.29	2.13	1.95	3.63	3.20	7.6	23.0	16.0	-5.4	37.4	42.3	J = 30
																		n = 5
						.10)		elation (ass corre	Small intraclass correlation ($\rho_{Iy} =$	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
		Coverage (%)	Covera					RMSE	RI∿					s (%)	Bias			

Note. n = cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

Missing Data (MAR, $\lambda = 0.5$) Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y ($\hat{\beta}_{zy}$) With 40% Table 1-29

			1			1			;)			•		
95.8	95.6	94.8	0.0	95.8	95.7	0.07	0.07	0.07	0.31	0.08	0.05	-0.1	0.2	0.3	-33.8	2.3	0.0	J = 1000
93.9	93.9	94.0	0.8	94.3	94.4	0.11	0.11	0.11	0.32	0.11	0.08	-0.9	-0.0	-0.0	-34.2	2.0	-0.0	J = 500
95.0	93.7	94.7	20.4	94.2	94.2	0.17	0.18	0.17	0.33	0.18	0.12	-1.7	0.4	0.4	-34.0	2.6	0.6	J = 200
93.5	93.7	92.9	42.6	92.6	94.1	0.25	0.26	0.26	0.36	0.26	0.17	-3.5	0.8	0.7	-34.1	3.2	0.6	J = 100
95.1	93.1	93.5	60.5	90.9	92.4	0.34	0.37	0.37	0.39	0.38	0.25	-6.0	2.3	2.2	-33.5	5.4	1.4	J = 50
93.4	91.5	91.6	63.7	87.3	91.2	0.45	0.50	0.50	0.46	0.54	0.34	-13.1	0.5	-0.3	-36.2	3.9	0.1	= 20 $J = 30$
94.6	93.8	94.1	3.3	88.8	93.3	0.09	0.10	0.10	0.27	0.14	0.07	0.1	0.6	0.7	-28.6	9.5	0.3	J = 1000
94.5	93.3	94.0	19.0	91.6	94.3	0.13	0.14	0.13	0.28	0.18	0.10	-0.6	0.7	0.5	-28.9	9.8	0.2	J = 500
95.3	93.8	94.8	52.6	94.8	93.6	0.21	0.22	0.21	0.30	0.27	0.16	-0.5	2.1	2.2	-27.8	11.9	1.4	J = 200
94.4	94.3	93.2	66.7	94.9	93.8	0.30	0.33	0.33	0.35	0.42	0.24	-4.4	2.6	1.2	-29.2	14.4	1.6	J = 100
95.1	93.7	93.5	75.5	94.5	93.6	0.43	0.52	0.49	0.42	0.78	0.35	-8.3	5.9	2.9	-29.0	23.5	2.8	J = 50
95.1	92.6	93.4	78.9	90.7	92.7	0.59	0.77	0.71	0.54	1.68	0.56	-7.1	15.6	9.8	-24.1	41.5	12.1	= 5 $J = 30$
						= .30)		rrelatio	Moderate intraclass correlation (ρ_{Iy}	ıte intra	Modera							
94.9	94.5	95.0	0.0	89.2	95.0	0.16	0.16	0.16	0.68	0.22	0.11	-1.3	0.1	0.0	-42.5	8.6	-0.1	J = 1000
95.5	93.7	94.8	0.3	91.8	93.8	0.23	0.23	0.23	0.68	0.30	0.17	-2.4	0.5	0.4	-42.4	9.2	0.6	J = 500
95.1	93.6	95.0	18.4	94.8	94.4	0.34	0.36	0.36	0.69	0.44	0.27	-5.5	1.9	1.6	-41.5	11.0	1.2	J = 200
95.3	93.5	94.0	40.5	94.3	93.3	0.49	0.54	0.53	0.73	0.66	0.39	-9.9	2.9	2.1	-41.5	13.4	1.2	J = 100
94.8	92.9	94.5	59.5	93.2	93.7	0.68	0.84	0.79	0.80	1.14	0.57	-16.5	6.1	3.6	-40.8	21.1	4.1	J = 50
94.8	92.2	93.4	67.6	90.9	91.2	0.94	1.26	1.20	0.96	2.10	0.94	-18.4	13.6	8.0	-38.0	31.6	9.4	J = 20 J = 30
70.0	70.1	70.0	17.0	1	1.0	0.1.0	1	0.1		1.10	11.0	1.0	1.,	1.0	0.0	· · ·	1.	1 1 1000
96.0	95.7	05 ×	146	97.5	94.6	0.50	0.77	0.77	0.59	1 10	0.00	× :	1 7	1.0	-36 O	53.4	1 :0 2	I = 1000
956	0 50	95 7	396	97 5	9 96	0 38	0 45	0 43	0 61	1 49	95.0	-2	٧ _	ည ထ	- 34 ×	64 2	ည ထ	I = 500
93.7	94.6	95.4	61.3	93.9	95.2	0.68	0.82	0.76	0.72	2.44	0.65	-2.8	12.1	7.7	-31.4	81.4	7.6	J = 200
94.0	94.9	94.5	72.9	91.3	93.7	1.09	1.24	1.20	0.97	2.83	1.16	3.1	24.8	19.3	-21.3	93.1	20.9	J = 100
94.1	94.5	94.1	78.3	88.0	91.4	1.63	1.82	1.71	1.49	4.14	2.11	5.7	31.4	23.6	-9.0	96.8	38.3	J = 50
94.8	95.1	94.2	81.0	83.7	89.4	2.01	2.09	2.10	1.92	4.50	2.53	0.6	20.8	12.7	-9.7	70.1	35.9	= 5 $J = 30$
						.10)	$(\rho_{Iy} =$	elation	intraclass correlation	intracl	Small							
JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	JM	FCS- LAT	FCS- MAN	FCS- SL	LD	CD	
		ıge (%)	Coverage (%)					RMSE	RIV						Bias			

Note. n = cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

Study 1: Bias (in %), RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y ($\hat{\beta}_{zy}$) With 40% Missing Data Table 1-30 (MAR, $\lambda = 1$)

Note. n = cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

Unbalanced Data (Uniform, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of $z(\hat{\mu}_z)$ With Moderately

MAN NJ LAT JM CD MAN NJ LAT MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT Small intraclass correlation $(ρ_{Iy})$ = CO MAN NJ LAT NJ			EC.	Bias (%)				ECC R	Rel. RMSE	SE			н	Co	Coverage (verage (
50		CD	FCS- MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD		FCS-MAN	FCS- FCS- MAN NJ	
50						S	mall int	raclass	correlat	ion (ρ_{I_2}	, = .10)					
50	$\bar{n}=5$															
200 0.00 0.00 -0.00 0.00 -0. 1000 0.00 0.00 -0.00 0.00 -0. 50 0.01 0.01 0.01 0.01 -0. 200 -0.00 -0.00 -0.00 -0.00 -0. 1000 -0.00 0.01 0.01 0.01 -0. 50 0.00 0.00 0.00 0.00 0.00 0. 1000 0.01 0.01 0.01 0.01 -0. 50 0.01 0.01 0.01 0.01 -0.	J = 50	-0.01	-0.00	-0.00	0.00	-0.02	0.15	0.17	0.17	0.17	0.17	93.9			93.0	93.0 93.8
1000 0.00 0.00 -0.00 0.00 -0.00 50 0.01 0.01 0.01 0.01 0.01 -0.200 200 -0.00 -0.00 -0.00 -0.00 -0.00 1000 -0.00 0.01 0.01 0.01 -0.200 50 0.00 0.00 0.00 0.00 0.00 0.00 1000 0.00 0.	J = 200		0.00	-0.00	0.00	-0.01	0.07	0.08	0.08	0.08	0.08	93.7		94.4		93.9
0 50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00	J = 1000	_	0.00	-0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	95.3				94.9
50 0.01 0.01 0.01 0.01 -0. 200 -0.00 -0.00 -0.00 -0.00 -0. 1000 -0.00 -0.00 -0.00 -0. 1000 -0.00 0.00 0.01 0.01 -0. 200 0.00 0.00 0.00 0.00 0.00 0. 1000 0.00 0.01 0.01 0.01 -0. 50 0.01 0.01 0.01 0.01 -0.	$\bar{n} = 20$															
200 -0.00 -0.00 -0.00 -0.00 -0. 1000 -0.00 -0.00 -0.00 -0.00 -0. 1000 -0.00 -0.00 -0.00 -0. 1000 0.00 0.01 0.01 0.01 -0. 1000 0.00 0.00 0.00 0.00 -0. 1000 0.01 0.01 0.01 -0. 1000 0.00 0.00 0.00 0.00 -0.	J = 50	0.01		0.01	0.01	-0.01	0.14	0.16	0.16	0.16	0.16	94.4				95.6
1000 -0.00 -0.00 -0.00 -0.00 -0. 1000 -0.00 -0.01 -0. 1000 0.00 0.00 0.00 0.00 0. 1000 0.00 0.00 0.00 0.00 -0. 1000 0.01 0.01 0.01 -0.	J = 200	-0.00		-0.00	-0.00	-0.01	0.07	0.08	0.08	0.08	0.08	94.4		95.7	95.7	95.7 96.0
50 0.00 0.01 0.01 0.01 -0. 200 0.00 0.00 0.00 0.00 0. 1000 0.00 0.00 0.00 0.00 -0. 0 0.01 0.01 0.01 0.01 -0.	J = 1000	-0.00		-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	95.0	\circ		95.0	95.0 94.2
50 0.00 0.01 0.01 0.01 -0.01 0.14 0.16 0.17 0.16 200 0.00 0.00 0.00 0.00 0.00 0.07 0.08 0.08						Mo	derate i	ntraclas	s correl	ation (ç	$I_{Iy} = .3$	0)				
0 0.00 0.01 0.01 0.01 -0.01 0.14 0.16 0.17 0.16 00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0 0.01 0.01 0.01 -0.00 0.14 0.16 0.16 0.16	$\bar{n}=5$															
00 0.00 0.00 0.00 0.00 0.00 0.07 0.08 0.08	J = 50	0.00	0.01	0.01	0.01	-0.01	0.14	0.16	0.17	0.16	0.16	94.8	\sim		94.2	94.2 94.3
000 0.00 0.00 0.00 0.00 -0.00 0.03 0.03	J = 200	0.00	0.00	0.00	0.00	0.00	0.07	0.08	0.08	0.08	0.08	95.2	Ų	95.0	95.0	95.0 95.1
) 0.01 0.01 0.01 0.01 -0.00 0.14 0.16 0.16 0.16	J = 1000		0.00	0.00	0.00	-0.00	0.03	0.03	0.03	0.03	0.03	95.	7			95.8
0.01 0.01 0.01 -0.00 0.14 0.16 0.16 0.16	$\bar{n}=20$															
		0.01		0.01	0.01	-0.00	0.14	0.16	0.16	0.16	0.15	95.3			94.1	94.1 94.9
$0.00 \ -0.00 \ -0.00 \ -0.00 \ 0.07 \ 0.08 \ 0.08 \ 0.08$	J = 50	0.00		-0.00	-0.00	-0.00	0.07	0.08	0.08	0.08	0.08	95.7		95.5	95.5	95.5 95.4
0.00 0.00 0.00 -0.00 0.03 0.04 0.04 0.03	J = 50 $J = 200$	000		0.00	0.00	-0.00	0.03	0.04	0.04	0.03	0.03	94.7	7			95.0
\overline{Note} . \overline{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS - SL = single-level	J = 50 0.01 J = 200 0.00 J = 1000 - 0.00	0.00											l			

Unbalanced Data (Uniform, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With Strongly

		_	Bias (%)	<u> </u>			R	Rel. RMSE	Ħ			Covera	/erage (%)	(%)	
	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlat	ion (ρ_{I_2}	, = .10)					
$\bar{n}=5$															
	00	0.00	0.00	0.01	-0.01	0.14	0.16	0.16	0.16	0.16	95.1	95.5	95.2	94.5	95
).00	0.01	0.00	0.01	-0.00	0.07	0.08	0.08	0.08	0.08	94.1	94.4	93.6	94.3	94
J = 1000 C	0.00	0.00	0.00	0.00	0.00	0.03	0.03	0.03	0.03	0.03	96.3	96.1	95.4	95.7	96.0
$\bar{n} = 20$															
J = 50 C			0.01	0.01	-0.02	0.14	0.16	0.16	0.16	0.16	94.7	94.5	95.2	95.0	94
J = 200 - 0			-0.00	-0.00	-0.01	0.07	0.08	0.08	0.08	0.08	94.6	94.9	95.1	95.5	94
J = 1000 - 0.00		-0.00	-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	95.1	95.0	95.0	95.0	94.4
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ç	$I_y = .3$	9				
$\bar{n}=5$															
J = 50 C		0.01	0.01	0.01	-0.01	0.14	0.16	0.16	0.16	0.16	94.6	95.2	94.6	95.0	94
J = 200 C	0.00	0.00	-0.00	-0.00	-0.00	0.07	0.08	0.08	0.07	0.08	95.6	95.2	95.8	96.1	95
		-0.00	-0.00	-0.00	-0.00	0.03	0.03	0.03	0.03	0.03	95.7	95.0	95.1	95.0	95.5
$\bar{n} = 20$															
J = 50 0		0.01	0.01	0.01	-0.00	0.14	0.16	0.16	0.16	0.16	94.5	94.9	96.0	94.7	95
	-0.00	-0.00	0.00	2	-0.00	0.07	0.08	0.08	20.00	0.08	94.9	94.5	94.6	94.8	94.5
I = 1000 = 0		>)	-0.00	>	200		,	0.00	2	2	03 0	3		20

Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of $z(\hat{\mu}_z)$ With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$)

			Bias (%)	_			Re	Rel. RMSE	Ë			Cov	Coverage (e (%)	
	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlat	ion ($\rho_{I_{\mathcal{I}}}$, = .10)					
$\bar{n}=5$															
	0.00	0.01	0.01	0.01	-0.01	0.15	0.17	0.17	0.17	0.16	94.0	94.0	95.2	94.4	94
J = 200	0.00	0.00	0.00	0.00	-0.01	0.07	0.08	0.08	0.08	0.08	94.6	94.9	95.2	95.3	94.2
	-0.00	-0.00	-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	94.7	95.0	94.5	94.7	94
$\bar{n}=20$															
J = 50	-0.00	-0.00	-0.00	-0.00	-0.03	0.14	0.16	0.16	0.16	0.16	93.6	94.4	94.5	93.7	93
J = 200	0.00	0.00	0.00	0.00	-0.00	0.07	0.08	0.08	0.08	0.08	93.9	94.3	94.2	93.8	94.5
J = 1000 -	-0.00	0.00	0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	94.6	95.4	95.1	95.1	94
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	9				
$\bar{n}=5$															
= 50	0.01	0.00	0.01	0.01	-0.01	0.14	0.16	0.16	0.16	0.16	94.6	95.4	95.7	95.3	95
J = 200	0.00	0.00	0.00	0.00	-0.00	0.07	0.08	0.08	0.08	0.08	92.7	93.4	93.4	93.4	94
J = 1000	-0.00	-0.00	-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	96.0	95.2	95.0	95.0	95.6
$\bar{n}=20$															
J = 50	-0.00	-0.00	-0.00	-0.00	-0.01	0.14	0.16	0.16	0.16	0.16	95.5	94.2	94.8	94.9	94
J = 200	0.00	0.00	0.00	0.00	0.00	0.07	0.08	0.08	0.08	0.08	95.3	95.4	95.4	94.5	95.3
J = 1000	0.00	0.00	0.00	0.00	0.00	0.03	0.04	0.04	0.04	0.04	94.4	93.1	93.3	93.3	93

FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling. joint modeling.

Unbalanced Data (Bimodal, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With Strongly

			Bias (%)	Ŭ			Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
ı	CD	FCS-MAN	FCS-	FCS- LAT	JM	G	FCS-MAN	FCS-	FCS- LAT	M	CD	FCS-	FCS-	FCS- LAT	
					Sı	nall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlati	ion (ρ_{Iy}	= .10)					
$\bar{n}=5$															
J = 50 -	-0.00	0.00	-0.00	0.00	-0.01	0.14	0.17	0.17	0.17	0.17	94.1	93.5	93.9	93.5	
_	0.00	0.00	0.00	0.00	-0.00	0.07	0.08	0.08	0.08	0.08	95.3	95.9	95.6	96.1	
J = 1000	0.00	0.00	0.00	0.00	0.00	0.03	0.04	0.04	0.04	0.04	95.2	95.1	95.8	95.5	
$\bar{n}=20$															
J = 50	0.00	0.01	0.01	0.01	-0.01	0.14	0.16	0.16	0.16	0.16	93.7	94.6	93.9	94.2	
J = 200	0.00	0.01	0.00	0.00	-0.00	0.07	0.08	0.08	0.08	0.08	94.8	95.9	95.9	95.3	
J = 1000	0.00	0.00	0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	93.2	93.0	92.5	92.3	
					Мо	derate ii	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$))				
$\bar{n}=5$															
J = 50 -	-0.00	0.00	-0.00	0.00	-0.01	0.13	0.15	0.16	0.15	0.15	96.0	95.7	94.8	95.0	
	-0.00	0.00	-0.00	-0.00	-0.00	0.07	0.08	0.08	0.08	0.08	94.7	95.3	95.7	95.0	
$J = 1000$ $\bar{n} - 20$	0.00	0.00	-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	95.3	95.4	95.8	95.5	
$\overline{}$	-0.00	0.00	-0.00	0.00	-0.01	0.14	0.16	0.16	0.16	0.16	94.5	95.1	95.4	94.9	
J = 200	0.00	0.00	0.00	0.00	0.00	0.07	0.08	0.08	0.08	0.08	93.5	95.2	94.6	93.8	
J = 1000 -	-0.00	-0.00	-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	94.5	94.0	93.6	94.0	
Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS - SL = single-level	erage c	luster si	ze: <i>I</i> = 1	nıımher	of clust	are: CD	- Comp	lata dat	a aata. I	:	-	1	20 01		. 1
	(,	TOOT	OT CITION	10, 00	- Comp	זכוב חמר	a sets; L	D = list	Wise de	etion;	TC-0-01	$z = \sin g$	_

Unbalanced Data (Uniform, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of $z\left(\hat{\mu}_{z}\right)$ With Moderately

			Bias (%)	•			Re	Rel. RMSE	Ħ			Covera	/erage (%)	%)	
I	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlati	ion (ρ_{Iy}	= .10)					
$\bar{n}=5$															
J = 50 -	0.00	0.01	0.01	0.02	-0.04	0.15	0.20	0.21	0.21	0.20	92.6	95.1	94.2	93.3	92.8
J = 200 -	0.00	-0.01		0.00	-0.02	0.07	0.09	0.09	0.09	0.09	95.2	95.4	94.8	94.9	94.7
J = 1000 -	-0.00	-0.00		-0.00	-0.01	0.03	0.04	0.04	0.04	0.04	94.7	93.7	93.4	94.4	94.8
$\bar{n}=20$															
J = 50 –	0.00	-0.00	-0.00	0.00	-0.05	0.14	0.18	0.19	0.19	0.19	95.2	95.5	95.9	95.0	93.8
J = 200 -0.00	0.00	0.00	0.00	0.00	-0.02	0.07	0.09	0.09	0.09	0.09	94.6	93.7	95.4	95.0	94.9
J = 1000 -	-0.00	-0.00	-0.00	-0.00	-0.01	0.03	0.04	0.04	0.04	0.04	95.6	95.6	94.1	95.2	94.8
					Mo	derate iı	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_y = .30$))				
$\bar{n}=5$															
J = 50 -	-0.00	-0.00	-0.00	0.00	-0.03	0.14	0.19	0.20	0.19	0.19	94.0	94.0	95.4	94.0	93.5
J = 200 -	0.00	-0.00	-0.00	-0.00	-0.01	0.07	0.10	0.10	0.10	0.09	95.3	94.6	94.7	93.8	95.1
$J = 1000$ $\bar{n} = 20$	0.00	-0.00	-0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	93.8	94.1	93.8	93.7	93.6
J = 50	0.00		-0.01	-0.01	-0.03	0.14	0.19	0.19	0.19	0.19	94.3	94.0	95.5	94.4	95.2
J = 200 0.00	0.00	0.00	-0.00	0.00	-0.00	0.07	0.10	0.10	0.10	0.10	95.5	94.3	94.5	94.2	94.9
J = 1000 -	0.00		-0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	94.2	94.3	94.4	94.1	93.9
$Note.$ \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; $FCS-SL$ = single-level	erage c	luster si	ze; $J = 1$	number	of cluste	ers; CD	= comp	lete dat	a sets; L	D = list	wise de	eletion;	FCS-SI	$z = \sin g$	le-leve
	•						,							•	

Unbalanced Data (Uniform, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With Strongly

HCK HCK HCK HCK
CD MAN NJ LAT JM CD MAN NJ LAT JM CD MAN
Small intraclass correlation ($\rho_{Iy} = .10$)
$\bar{n} = 5$
= 50
J = 200 0.00 -0.00 0.00 0.01 -0.02 0.07 0.10 0.10 0.10 0.10 95.7 94.1
-0.00 -0.00 -0.00 -0.01 0.03 0.04 0.04 0.04 0.04 95.5
$\bar{n} = 20$
-0.00 -0.00 0.00 -0.05 0.14 0.19 0.19 0.19 0.19 94.6
J = 200 - 0.00 - 0.01 - 0.01 - 0.01 - 0.03 0.07 0.09 0.09 0.09 0.10 94.9 94.5
0.00 0.00 0.00 -0.00 0.03 0.04 0.04 0.04 0.04 94.7
Moderate intraclass correlation ($\rho_{I_y} = .30$)
$\bar{n} = 5$
-0.01 -0.01 -0.00 -0.04 0.14 0.19 0.20 0.20 0.19 94.9
-0.00 -0.00
000-0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.04
0.01 0.01 0.01 -0.01 0.14 0.19 0.20 0.19 0.19
$0.00 \ -0.00 \ -0.00 \ -0.00 \ -0.01 \ 0.07 \ 0.09 \ 0.09 \ 0.09 \ 0.09 \ 94.5$
-0.00

Unbalanced Data (Bimodal, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of $z\left(\hat{\mu}_{z}\right)$ With Moderately

Unbalanced Data (Bimodal, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias, Relative RMSE, and Coverage of the 95% Confidence Interval for the Mean of z ($\hat{\mu}_z$) With Strongly

			Bias (%)				Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					S	mall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlati	ion (ρ_{I_2}	= .10)					
$\bar{n}=5$															
50	-0.00	-0.00	-0.00	0.00	-0.03	0.14	0.20	0.21	0.19	0.19	94.0	94.0	93.6	93.6	93
\circ	0.00	-0.00	-0.00	0.00	-0.01	0.07	0.10	0.10	0.10	0.10	94.7	94.0	94.1	93.5	94.3
J = 1000	0.00	-0.00	-0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	96.5	95.8	95.7	95.9	96
$\bar{n}=20$															
J = 50	0.00	0.00	0.00	0.00	-0.04	0.14	0.19	0.20	0.19	0.19	95.0	94.4	95.0	94.9	93
J = 200	0.00	0.00	-0.00	0.00	-0.02	0.07	0.10	0.10	0.09	0.10	95.4	94.4	95.0	94.3	93.7
J = 1000	0.00	-0.00	0.00	0.00	-0.00	0.03	0.04	0.04	0.04	0.04	94.8	94.8	95.2	94.4	94
					Мо	derate ii	Moderate intraclass correlation (ρ_{Iy} =	s correl	ation (ρ	$I_y = .30$	0)				
$\bar{n}=5$															
J = 50 .	-0.00	-0.01	-0.01	-0.01	-0.03	0.15	0.21	0.21	0.20	0.20	92.9	93.8	93.1	93.4	93
$\overline{}$	0.00	-0.00	0.00	0.00	-0.01	0.07	0.10	0.10	0.10	0.10	94.4	93.7	92.9	93.5	94.0
$J = 1000 \cdot \bar{n} = 20$	-0.00	-0.00	-0.00	-0.00	-0.00	0.03	0.04	0.04	0.04	0.04	94.5	93.9	93.6	93.6	92
= 50	-0.00	-0.00	-0.01	-0.00	-0.03	0.14	0.19	0.20	0.19	0.19	93.3	95.4	95.4	93.8	9
_	0.00	-0.00	-0.00	0.00	-0.01	0.07	0.09	0.10	0.09	0.09	95.9	94.8	94.4	95.0	94.9
J = 1000	-0.00	-0.00	0.00	0.00	0.00	0.03	0.04	0.04	0.04	0.04	95.1	93.7	94.3	94.0	92
Note. $\bar{n} = av$	/erage o	cluster si	\bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level	number	of clust	ers; CD	= comp	lete dat	a sets; I	D = list	twise do	eletion;	FCS-SI	= sing	le-le

With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z (\hat{o}_z^2)

Note	J = 1	J = Z	J =	$\bar{n}=20$	J = 1000	J = 200	J =	$\bar{n}=5$		J = 1000 -	J = Z	J=:	$\bar{n}=20$	J = 1000	J = Z	J = 50	$\bar{n}=5$				
$\bar{p} = \text{oversoe cluster size}$	1000 - 0.1	200 - 0.0	J = 50 -1.5			200 - 0.6				1000 -0.2	200 - 0.5	50 -1.8	0	1000 - 0.1	200 0.4	50 -1.3			CD		
re clust		0.7			0.1	-0.2	-1.0			0.0	0.0	0.7			1.1				FCS- MAN	В	
25.0	0.2	1.3	3.6		0.2	0.5	2.0			0.1	0.6	4.6		0.0	1.7	4.5			FCS- NJ	Bias (%)	
	0.1	0.7	0.6		0.1	-0.1	-0.8			-0.0	-0.0	0.8		-0.1	1.2	1.5			FCS- LAT	٠	
dann	0.0	0.4	-0.9		0.0	-0.6	-2.9			-0.1	-0.8	-2.0		-0.2	0.2	-1.4			JM		
ar of ol	0.05	0.10	0.20		0.04	0.10	0.21		Modera	0.04	0.10	0.20		0.05	0.10	0.20		Small	CD		
netore.	0.05	0.12	0.24		0.05	0.12	0.23		Moderate intraclass correlation (ρ_{Iy}	0.05	0.12	0.24		0.05	0.11	0.24		Small intraclass correlation ($\rho_{Iy} = .10$)	FCS- MAN	R	
I - number of clusters: CD - complete data sets: ID	0.05	0.12	0.25		0.05	0.12	0.24		class co	0.05	0.12	0.27		0.05	0.12	0.25		ass corr	FCS- NJ	Rel. RMSE	
omplet	0.05	0.12	0.24		0.05	0.12	0.23		rrelatio	0.05	0.12	0.24		0.05	0.11	0.24		elation (FCS- LAT	SE	
data	0.05	0.12	0.24		0.05	0.11	0.23		$n(\rho_{Iy} =$	0.05	0.11	0.23		0.05	0.11	0.22		$(\rho_{Iy} = .$	JM		
ete: I D	94.6	93.6	90.1		95.5	93.5	88.2		= .30)	94.6	93.4	89.7		94.2	95.3	90.2		10)	CD		
	94.5	93.7	91.2		95.4	93.7	91.9			95.1	94.0	90.6		93.7	95.3	92.3			FCS- MAN	Со	
امام مانت	94.0	93.4	93.4		95.7	94.0	95.0			95.4	94.4	93.1		94.3	96.0	94.4			FCS- NJ	Coverage (%)	
- listurise deletion: ECC_CI	94.4	93.1	91.5		94.0	93.0	92.0			95.7	93.6	90.8		94.7	95.6	92.7			FCS- LAT	(%)	
IO C CI	94.1	93.5	90.2		95.0	93.2	90.0			95.0	93.6	89.4		94.1	94.9	92.5			JM		

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL cluster means; JM = joint modeling. = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent

With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z (\hat{o}_z^2)

-0.2 -0.1 -0.0	J = 200 -0.6 0.1 0.7	-1.3 1.2 4.4	00 - 0.1 0.1 0.0	J = 200 -0.2 0.5 0.9	= 50 -2.5 0.8 3.9	$\bar{n}=5$		0.1 0.1	-0.6 0.4 0.8	-1.4 1.6 4.9		-0.4 0.3 0.8	-3.2 -0.2 3.4	$\bar{n}=5$		CD FCS- FCS- I	Bias (%)	
	0.0 - 0.3			0.2 - 0.1]			1.5 - 1.6	0.1 - 0.1					FCS- LAT JM		
	0.10 0.12			0.10 0.11			Moderate intraclass correlation ($ ho_{Iy}$		0.10 0.11		0.05 0.05				Small intra	CD FCS-MAN		
	2 0.12			0.11			traclass cor		0.11)5 0.05		•		Small intraclass correlation ($\rho_{Iy} = .10$)	S- FCS- N NJ	Rel. RMSE	
	0.12 (0.11 (-		relation (0.11 (0.05 (lation (ρ _/	FCS- LAT	E	
	0.12			0.11 9	•		Ш		0.11 9		0.05				$t_y = .10$	JM		
'	92.3		_	94.5			.30)		94.7		94.9		•)	CD $^{\mathrm{I}}_{\mathrm{N}}$		
	93.2			93.9					95.7		94.4					FCS- I	Cove	
	93.7			94.5					96.0		95.0	94.8	93.5			FCS- NJ	Coverage (%)	
	92.4	91.0	94.6	93.8	93.0			94.7	95.4	93.3	94.1	93.9	91.6			FCS- LAT	6)	
94.8	93.0	90.6	94.5	93.8	91.6			94.9	94.4	91.7	94.1	93.7	91.3			JM		

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z (\hat{o}_z^2)

		В	Bias (%)	\cup			Re	Rel. RMSE	Ħ			Co	Coverage (%)	%)	
	CD 1	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM
						Small	Small intraclass correlation ($\rho_{Iy} = .10$)	ss corr	lation ($\rho_{Iy} = .$	10)				
$\bar{i} = 5$															
J = 50 - 1		0.6			-2.0	0.21	0.24	0.26	0.24	0.23	90.2	91.6	93.1	91.1	91.
_		-0.3			-1.0	0.10	0.11	0.11	0.11	0.11	93.7	93.9	94.2	94.0	94
	0.0	0.3	0.3	0.2	0.1	0.05	0.05	0.05	0.05	0.05	93.3	94.0	93.8	93.4	94.6
$\bar{n}=20$															
J = 50 -2		0.7		0.7	-2.5	0.19	0.23	0.25	0.23	0.22	90.7	92.3	94.0	92.3	90
J = 200 - 0		-0.2	0.2		1.1	0.10	0.11	0.11	0.11	0.11	93.9	94.7	94.7	94.5	94.0
J = 1000 (0.2	0.4			0.2	0.04	0.05	0.05	0.05	0.05	96.2	96.3	96.4	96.6	95
					7	Modera	Moderate intraclass correlation (ρ_{Iy}	lass co	relation	$1(\rho_{Iy} =$: .30)				
$\bar{n}=5$															
J = 50 -3		-0.3			-2.2	0.19	0.22	0.24	0.22	0.22	89.8	93.4	94.6	92.5	91
	-0.5	0.1	0.6		-0.2	0.10	0.11	0.12	0.11	0.11	94.3	92.8	93.3	93.6	93
J = 1000 - 0		0.1		0.2	0.1	0.04	0.05	0.05	0.05	0.05	94.2	93.9	94.2	94.5	93.9
$\bar{n}=20$															
J = 50 - 2	2.1	0.4	3.5		-1.2	0.20	0.24	0.25		0.24	89.6	90.9	93.0	91.1	89
J = 200 -0.5	0.5	0.1	0.7	0.1	-0.2	0.10	0.11	0 11	0.24	0.11	93.8	94.7		94.3	94.6
					>				0.24 0.11				95.1		

Note. n = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means. cluster means; JM = joint modeling.

With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$)

	•					•	`						`		
		В	Bias (%))			R	Rel. RMSE	SE			Co	Coverage (%)	%)	
	CD	FCS- FCS- MAN NJ	FCS- NJ	FCS- LAT	JM	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM
						Small	intracla	ass corr	Small intraclass correlation ($\rho_{Iy} = .10$)	$\rho_{Iy} = .$	10)				
$\bar{n}=5$															
J = 50 -	-2.2	1.4	4.1	0.7	-1.4	0.21	0.24	0.25	0.24	0.23	88.9	91.7	93.8	91.4	90.6
J = 200 -	-1.0	-0.0	0.3	-0.3	-0.9	0.10	0.12	0.11	0.11	0.11	92.3	92.8	94.1	93.0	92.5
J = 1000 -	-0.1	0.3	0.1	0.1	-0.1	0.05	0.05	0.05	0.05	0.05	94.6	94.0	94.5	94.6	94.7
$\bar{n}=20$															
J = 50 -	-2.9	0.6	3.1	0.5	-2.4	0.19	0.23	0.23	0.23	0.22	90.7	93.1	95.0	92.6	90.9
J = 200 -	-0.7	0.3	0.5	-0.0	-0.7	0.10	0.11	0.11	0.11	0.11	92.4	94.7	94.5	93.9	92.8
J = 1000 -	-0.1	0.2	0.0	-0.0	-0.2	0.05	0.05	0.05	0.05	0.05	93.9	92.7	93.0	93.3	92.7
						Modera	te intra	class co	Moderate intraclass correlation (ρ_{Iy}	$1(\rho_{Iy} =$: .30)				
$\bar{n}=5$															
J = 50 -		1.8	4.2	1.1	-0.6	0.19	0.23	0.24	0.23	0.22	90.5	92.5	94.2	92.4	91.9
J = 200 -	-0.8	-0.0	0.3	-0.2	-0.7	0.10	0.11	0.11	0.11	0.11	94.5	94.7	95.2	94.8	94.7
J = 1000 -		0.1	-0.1	-0.1	-0.1	0.05	0.05	0.05	0.05	0.05	95.0	94.7	93.7	94.0	94.(
$\bar{n}=20$															
J = 50 -	-3.2	0.2	2.8		-1.7	0.20	0.23	0.25	0.23	0.23	90.6	92.0	94.5	92.4	91.4
J = 200 -	-0.6	-0.0	0.4		-0.5	0.10	0.11	0.11	0.11	0.11	94.1	93.9	94.7	94.2	94.]
J = 1000 -	-0.2	0.0	0.0	-0.1	-0.1	0.04	0.05	0.05	0.05	0.05	94.7	95.0	95.4	94.7	95.7
Note. $\bar{n} = i$	averag	average cluster size;	er size	<i>J</i> =	numbe	number of clusters;	usters;	CD = c	= complete data sets; LD	data s	ets; LD		ise del	= listwise deletion; FCS-SL	ČS-S
1	170176	C CIUSE	CI SIZE	ر ا	IIIIIII	21 01 01	מאנכוא, י		ompiere	c data s	פוס, בנ		TSC del	споп, г	6

= single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling. S-SL

Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With

_ <i>J</i>	J	J	$\bar{n} =$	J	J	J :	۱		$\mid J$	J	J	$ar{n} = ar{n}$	J	J	$\bar{n} =$			
<i>I</i> = 1000	' = 200		= 20	= 1000	=200	= 50			= 1000	r = 200	J = 50	= 1000 = 20	= 200	= 50	5			ı
-0.0	-0.6	-2.0		-0.1	-0.3	-2.0			-0.1	-0.1	-2.0	-0.3	-0.2	-2.4			CD	
0.1	0.8	3.4		0.4	1.2	5.0			0.3	1.5	4.6	-0.2	1.0	4.0			FCS- MAN	
0.4	2.2	13.1		0.6	2.9	15.9			0.6	2.9	14.5	0.2	2.9	16.0			FCS-	D145 (70)
0.1	0.8	4.0		0.3	1.2	6.0			0.3	1.3	5.3	-0.1	1.3	4.6			FCS- LAT)
-0.1	0.0	-0.0		0.2	0.3	0.4		Mo	-0.0	-0.5	-1.5	-0.5	-0.5	-2.0		S	JM	
0.05	0.10	0.21		0.04	0.10	0.20		derate i	0.05	0.10	0.19	0.04	0.10	0.20		mall int	CD	
0.06	0.14	0.29		0.06	0.13	0.28		Moderate intraclass correlation (ρ_{Iy}	0.06	0.14	0.28	0.06	0.14	0.29		Small intraclass correlation (ρ_{Iy}	FCS- MAN	N
0.06	0.14	0.36		0.06	0.14	0.39		s correl	0.06	0.14	0.36	0.06	0.14	0.38		correlat	FCS-	Net. Marsh
0.06	0.14	0.29		0.06	0.14	0.29		lation (_f	0.06	0.14	0.29	0.06	0.14	0.29		ion (ρ_I	FCS- LAT) L
0.06	0.14	0.28		0.06	0.13	0.26		$o_{Iy} = .30$	0.06	0.13	0.25	0.06	0.13	0.26		$v_{\rm v} = .10$	JM	
93.9	93.0	88.4		96.1	93.4	90.1		9	93.9	94.8	90.6	93.6	93.5	90.0			CD	
93.8	93.1	92.2		93.3	94.7	94.5			93.4	94.6	94.0	92.9	94.6	94.1			FCS- MAN	
94.2	93.7	95.3		94.5	95.7	97.2			94.9	94.4	96.0	93.6	95.9	96.3			FCS-	Coverage (70)
94.2	92.6	92.7		95.0	94.8	94.0			94.4	95.1	92.7	93.3	95.7	93.1			FCS- LAT	(0/-)
93.8	93.2	90.7		94.3	94.8	91.6			95.0	93.8	91.5	93.4	93.8	90.7			JM	

Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With

			Bias (%)	_			Re	Rel. RMSE	Œ			Cov	Coverage (%)	%)	
	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation (ρ_{Iy}	correlat	ion (ρ_{I_2}	, = .10)					
$\bar{n}=5$															
J = 50	-1.9	5.3	17.2	5.6	-0.4	0.21	0.31	0.41	0.31	0.28	89.4	91.7	95.4	91.8	00
J = 200	-0.7	1.2	3.0	1.2	-0.8	0.10	0.14	0.15	0.14	0.13	93.2	94.3	94.2	94.0	93.8
_	-0.2	0.2	0.4	0.1	-0.4	0.05	0.06	0.06	0.06	0.06	94.0	94.0	94.6	93.9	2
$\bar{n} = 20$	<u>,</u>	n O	7	n O	<u>.</u>			20	2	2	00 1	2	7	2	
J = 50	-2.1	5.3	15.4	5.0	<u>-1.</u>	0.20	0.30	0.39	0.31	0.26	88./	91.6	95.7	92.3	9
J = 200	-0.8	-0.0	1.8	0.0	-1.8	0.10	0.14	0.14	0.14	0.14	93.4	92.6	93.5	92.3	91.9
J = 1000	-0.1	0.4	0.7	0.4	-0.0	0.04	0.06	0.06	0.06	0.06	95.4	95.0	95.1	95.9	2
					Мо	derate i	Moderate intraclass correlation (ρ_{Iy} =	s correl	ation (c	$O_{Iy} = .30$	9				
$\bar{n}=5$															
J = 50	-1.5	6.9	17.1	7.3	1.3	0.19	0.30	0.38	0.30	0.26	90.5	95.2	97.4	94.1	9
J = 200	-1.0	0.6	2.2	0.6	-0.5	0.10	0.14	0.14	0.14	0.14	93.3	93.0	94.8	93.7	93.0
J = 1000	-0.4	0.0	0.2	-0.1	-0.3	0.04	0.06	0.06	0.06	0.06	95.4	95.6	96.1	95.4	9
$\bar{n}=20$															
J = 50	-1.0	6.1	16.0	5.8	2.2	0.20	0.30	0.37	0.29	0.28	89.1	94.1	96.6	92.5	9
J = 200	-0.5	0.4	2.1	0.5	-0.3	0.10	0.14	0.15	0.14	0.14	93.4	93.4	93.4	92.5	93.2
J = 1000	-0.1	0.1	0.4	0.1	-0.1	0.05	0.06	0.06	0.06	0.06	94.8	94.1	93.8	93.9	9
J = 1000 - 0.1 0.1 0.4 0.1 -0.1 0.05 0.06 0.06 0.06 0.06 94.8 94.1 93.8 93.9 93.2	-0.1	0.1	0.4	0.1	-0.1	0.05	0.06	0.06	0.06	0.06	94.8	94.1	93.8		93.9

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With

		_	Bias (%)	_			K	Kel. KIVISE	Ü				Coverage (%)	(0)	
	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	
					Sı	mall int	Small intraclass correlation (ρ_{Iy}	correlat	ion (ρ_{Iy}	= .10)					
$\bar{n}=5$															
J = 50	-2.2	5.1	14.8	4.9	-1.3	0.20	0.30	0.37	0.30	0.27	89.6	93.3	95.6	92.1	
J = 200	-0.4	1.0	2.7	1.4	-0.7	0.10	0.14	0.14	0.14	0.13	93.1	93.1	94.9	93.9	
J = 1000	-0.3	-0.1	0.2	-0.0	-0.5	0.04	0.06	0.06	0.06	0.06	94.9	94.5	94.9	94.4	94.4
$\bar{n}=20$															
J = 50	-2.2	5.4	14.2	6.0	-0.8	0.19	0.30	0.36	0.30	0.26	89.4	94.0	97.3	94.1	
J = 200	-0.4	0.6	2.4	0.7	-1.3	0.10	0.14	0.14	0.14	0.13	94.6	93.3	93.9	93.9	92.3
J = 1000	-0.5	-0.2	0.1	-0.3	-0.7	0.05	0.06	0.06	0.06	0.06	93.9	94.4	94.0	93.0	
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_y = .30$	0)				
$\bar{n}=5$															
J = 50	-1.1	4.8	15.1	5.5	0.6	0.20	0.30	0.50	0.31	0.27	91.4	92.9	95.7	93.9	
J = 200	-0.6	1.0	2.7	1.0	-0.2	0.10	0.14	0.14	0.14	0.13	93.6	93.6	95.5	94.4	93.5
J = 1000	-0.2	0.3	0.5	0.3	0.2	0.04	0.06	0.06	0.06	0.06	94.4	94.9	94.9	95.7	
$\bar{n}=20$															
J = 50	-1.6	3.8	13.0	4.2	0.3	0.20	0.29	0.35	0.29	0.27	89.4	93.1	95.8	93.2	
J = 200	-0.6	0.9	2.5	0.8	0.1	0.10	0.14	0.14	0.14	0.14	94.1	93.8	93.8	93.4	
J = 1000	0	0.2	0.5	0.2	0.0	0.04	0.06	0.06	0.06	0.06	95.2	94.1	94.0	93.3	93.6

Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Variance of z ($\hat{\sigma}_z^2$) With

			(
Bias (%) Rel. RMSE		Re	el. RMS	ΣE			Cov	Coverage (%)	%)	
CD FCS- FCS- FCS- JM CD FCS- FCS- FCS- JM C		FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM
Small intraclass correlation ($\rho_{Iy} = .10$)	lintr	raclass	correlat	ion (ρ_{I})	= .10)					
$\bar{n} = 5$										
-2.2 5.3 14.5 4.1 -1.2 0.20 0.29 0.36 0.28 0.26	.20	0.29	0.36	0.28	0.26	89.5	93.7	96.3	93.2	90.
-1.0 0.8 2.5 0.8 -0.6 0.10 0.13 0.14 0.14 0.13	.10	0.13	0.14	0.14	0.13	93.4	93.5	95.5	93.0	92.
J = 1000 - 0.2 0.1 0.3 0.1 -0.1 0.04 0.06 0.06 0.06 0.06 9:	.04	0.06	0.06	0.06	0.06	95.3	94.9	94.2	94.7	94.0
-3.0 2.9 11.6 2.5 -3.3 0.20 0.28 0.33 0.27 0.25	.20	0.28	0.33	0.27	0.25	88.4	93.5	96.2	92.7	90.
-0.1 2.0 3.6 1.9 0.0 0.10 0.13 0.14 0.13 0.13	.10	0.13	0.14	0.13	0.13	93.5	95.0	95.8	95.2	93.9
0.6 0.2 -0.1 0.04 0.06 0.06 0.06 0.06	.04	0.06	0.06	0.06	0.06	96.7	94.8	94.5	95.4	95.
Moderate intraclass correlation ($\rho_{Iy} = .30$)	ate in	ntraclas	s correl	ation (ρ	$I_{y} = .30$))				
$\overline{n} = 5$										
= 50 -0.4 6.5 16.4 6.8 0.8 0.20 0.31 0.38 0.31 0.27	.20	0.31	0.38	0.31	0.27	91.9	94.3	96.2	93.7	91.
0.3 2.0 0.2 -0.8 0.10 0.14 0.14 0.13 0.13	.10	0.14	0.14	0.13	0.13	93.4	94.0	95.1	94.9	93.
-0.0 0.1 0.4 0.1 -0.1 0.04 0.06 0.06 0.06 0.06	.04	0.06	0.06	0.06	0.06	95.5	93.8	94.5	94.2	93.7
-2.5 2.8 12.1 3.1 -1.3 0.20 0.28 0.35 0.28 0.26	.20	0.28	0.35	0.28	0.26	89.2	92.5	96.1	92.6	91.
		0.14		0.14		944))	7 7	027	93.3
J = 200 -0.5 1.0 2.7 1.1 0.2 0.10 0.14 0.14 0.14 0.14 9.	.10		0.14		0.14		93.2	90.1	70.1	

With z ($\hat{\sigma}_{yz}$) With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y

		В	Bias (%)				R	Rel. RMSE	E			Co	Coverage (%)	%)	
I	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
						Small	Small intraclass correlation (ρ_{Iy}	ass corr	elation ($\rho_{Iy} = .10)$	10)				
$\bar{n}=5$															
J = 50	0.2		1.2	5.4	-8.2	0.08	0.09	0.10	0.10	0.09	93.2	94.5	95.3	94.0	94
J = 200	0.2	0.2	0.4	2.3	-3.6	0.04	0.05	0.04	0.05	0.04	95.9	96.1	96.5	95.5	96.7
J = 1000	0.1		-0.4	-0.1	-1.5	0.02	0.02	0.02	0.02	0.02	94.9	93.8	94.3	94.5	92
)))) I))))))))))))))
		-	-0.9	0.8	-9./	0.06	0.07	0.07	0.0/	0.0/	91.8	92.6	93.9	92.4	9
J = 200 -	-0.9	-1.3	-1.3	-1.2	-4.2	0.03	0.03	0.03	0.03	0.03	92.6	94.1	94.4	94.1	93.9
J = 1000 - 0.1	,	-0.3	-0.2	-0.1	-0.7	0.01	0.01	0.01	0.01	0.01	94.4	94.7	94.2	94.8	95
					ь	Modera	Moderate intraclass correlation (ρ_{Iy}	class co	rrelation	$1(\rho_{Iy} =$: .30)				
$\bar{n}=5$															
J = 50 -	-1.8	-1.4	-1.1	-0.5	-5.5	0.10	0.12	0.12	0.12	0.11	92.4	94.0	95.3	94.5	93
J = 200 -		-1.3	-1:1	-1.0	-2.4	0.05	0.06	0.06	0.06	0.06	93.6	94.0	93.8	93.8	94.2
_		-0.2	-0.1	-0.0	-0.2	0.02	0.03	0.03	0.03	0.03	95.2	93.7	95.0	93.8	92
= 50	-0.3	-0.4	-0.9	-0.5	-4.1	0.09	0.10	0.11	0.10	0.10	92.5	93.0	93.9	93.2	93
_	0.4		0.5		-0.3	0.05	0.05	0.05	0.05	0.05	94.8	94.4	94.3	94.1	93.4
J = 1000 -	-0.2	0.0	-0.0	0.0	-0.2	0.02	0.02	0.02	0.02	0.02	94.6	94.7	94.9	94.6	94.9
Note. $\bar{n} = a$	verag	average cluster size;	er size	e;] =	numbe	er of cl	J = number of clusters;	CD = complete data sets: LD = listwise deletion: FCS-SL	omplete	data s	245. 1 1	- lietu	1. A.	otion. I	5
	(()	OTTIPITO	, dara	cis, LL	A TOTA	Arse der	епоп; г	

= single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

 $(\hat{\sigma}_{yz})$ With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z

							,		ا أ				à
I	CD	FCS-	FCS-	FCS- LAT	M	CD	FCS- MAN	FCS-	FCS- LAT	M	CD	FCS-	 FCS-
					S	mall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlat	ion ($\rho_{I_{\mathcal{Y}}}$	= .10)			
$\bar{n}=5$													
J = 50	-4.9	-5.6	-2.5	-0.6	-12.0	0.08	0.09	0.10	0.09	0.09	93.4	94.3	96.1
J = 200	-1.9	-4.2	-1.5	-0.2	-5.5	0.04	0.05	0.05	0.05	0.05	94.6	94.1	94.1
J = 1000	0.2	-3.0	-0.1	0.3	-1.1	0.02	0.02	0.02	0.02	0.02	94.8	94.2	94.7
$\bar{n}=20$													
J = 50	-0.4	0.7	1.1	1.8	-7.9	0.06	0.07	0.07	0.07	0.06	93.1	94.1	95.0
J = 200	-0.1	-0.5	0.1	0.4	-2.6	0.03	0.03	0.03	0.03	0.03	94.8	94.3	94.7
J = 1000	0.1	-0.8	-0.2	-0.0	-0.7	0.01	0.02	0.02	0.02	0.02	94.4	94.4	94.2
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	9		
$\bar{n}=5$													
	-2.5	-3.4	-2.7	-2.5	-8.0	0.10	0.12	0.12	0.12	0.12	93.2	93.7	94.1
	0.1	-1.0	-0.2	-0.1	-1.2	0.05	0.06	0.06	0.06	0.06	93.4	93.6	93.5
	0.1	-1.0	-0.1	0.3	0.1	0.02	0.03	0.03	0.03	0.03	95.2	94.2	94.6
$\bar{\eta} = 20$													
J = 50 .	-0.4	0.3	0.9	0.9	-3.0	0.09	0.10	0.10	0.10	0.10	91.4	93.5	93.9
J = 200 .	-0.9	-1.2	-0.7	-0.9	-1.6	0.05	0.05	0.05	0.05	0.05	94.8	94.5	94.7
J = 1000.	-0.2	-0.4	-0.4	-0.3	-0.5	0.02	0.02	0.02	0.02	0.02	93.7	94.5	94.3
$N_{OC} = N_{OC} = N$) energy	ductor ci	70· I -	numher	of clust		- Come	lete dat	o sets. I		المناده ال	aletion.	בכי כו

Note. \vec{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = $\frac{1}{2}$ joint modeling.

 $(\hat{\sigma}_{yz})$ With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z

			Bias (%)	<u> </u>			Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
ı	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	M	CD	FCS-MAN	FCS-	FCS- LAT	JM
					S	mall int	Small intraclass correlation (ρ_{Iy}	correlat	ion ($\rho_{I_{\mathcal{Y}}}$	= .10)					
$\bar{n}=5$															
J = 50	-3.8	-4.2	-2.4	-0.2	-12.0	0.08	0.10	0.10	0.10	0.09	90.6	92.9	93.1	92.4	92
J = 200	-0.4	-1.2	-0.2	1.2	-4.2	0.04	0.05	0.05	0.05	0.04	94.4	93.8	95.0	94.0	94.3
J = 1000	0.4	-0.7	0.5	0.7	-0.7	0.02	0.02	0.02	0.02	0.02	94.6	94.4	94.2	94.6	9.
$\bar{n} = 20$															
J = 50	-1.1	-0.6	-0.6	0.2	-9.5	0.06	0.07	0.07	0.07	0.06	93.5	93.5	94.0	92.9	9
J = 200	-0.5	-1.3	-1.2	-1.1	-4.0	0.03	0.03	0.03	0.03	0.03	94.8	95.1	95.5	95.5	95.2
J = 1000	0.2	0.1	0.3	0.4	-0.2	0.01	0.02	0.02	0.02	0.02	94.2	94.3	94.6	94.5	9,
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_y = .30$	9				
$\bar{n}=5$															
J = 50	-2.5	-1.6	-1.5	-0.8	-5.7	0.10	0.12	0.12	0.12	0.11	91.8	93.5	94.3	93.6	9
J = 200	0.5	0.2	0.0	0.6	-0.7	0.05	0.06	0.06	0.06	0.06	94.2	95.2	94.7	94.6	9.
J = 1000	0.1	-0.3	-0.1	0.1	-0.2	0.02	0.03	0.03	0.03	0.03	95.2	95.0	94.9	94.2	94.9
$\bar{n} = 20$															
J = 50	-1.9	-1.9	-1.6	-1.7	-5.0	0.09	0.11	0.11	0.11	0.10	91.0	92.8	93.7	93.1	92
J = 200	-0.4	0.0	-0.1	-0.0	-0.8	0.05	0.05	0.05	0.05	0.05	94.5	94.5	95.0	94.9	94.4
I - 1000	0.2	0.4	0.4	0.4	0.2	0.02	0.02	9	0.02	0.02	95.6	94.8	94.6	94.7	92

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = 1.5joint modeling.

With z ($\hat{\sigma}_{yz}$) With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y

		н	Bias (%)	٣			Re	Rel. RMSE	Ë			Co	Coverage (%)	%)	
I	CD	FCS-	FCS-	FCS- LAT	JM	CD	FCS-	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
						Small	Small intraclass correlation ($\rho_{Iy} = .10$)	ıss corre	elation ($ \rho_{Iy} = . $	10)				
$\bar{n}=5$															
J = 50 -	-2.6	-6.1	-0.8	0.3	-9.6	0.09	0.10	0.10	0.10	0.09	92.3	93.7	94.2	92.6	92.7
J = 200 -	-0.5	-6.5	-0.4	1.0	-3.7	0.04	0.05	0.05	0.05	0.05	94.5	93.8	95.3	95.3	95.0
J = 1000 -	-0.6	-7.6	-1.2	-0.5	-1.6	0.02	0.02	0.02	0.02	0.02	94.3	91.0	94.0	94.0	94.5
$\bar{n} = 20$))										2		3	
1 - 200 -	2 O J	300	107	0.5	30	0.03	0.0	0.04	200	2.00	040	04.4	05 i	0 i	04.1
7 1000	3 6) i) i	0 0	0.00					2 :	3 :	0.00	00	0
							Moderate intraclass correlation (o	class co	relation	1 (0, =	= .30)				
$\bar{n}=5$															
	-3.9	-5.3	-3.6	-1.7	-6.8	0.11	0.12	0.12	0.12	0.12	94.3	94.5	95.3	94.7	94.2
J = 200 -	-0.3	-3.2	-0.9	-0.1	-1.6	0.05	0.06	0.06	0.06	0.06	95.1	94.7	95.2	95.0	95.4
_	0.3	-2.7	-0.4	0.2	-0.0	0.02	0.03	0.03	0.03	0.03	95.8	95.1	95.5	95.0	94.7
$\bar{n}=20$															
J = 50 -	-2.6	-1.7	-1.9		-5.1	0.09	0.11	0.11	0.11	0.10	93.4	93.4	94.2	93.6	92.8
J = 200	0.2	-0.5	-0.2		-1.0	0.05	0.05	0.05	0.05	0.05	93.8	94.5	94.4	94.4	94.5
J = 1000 - 0.5	-0.5	-0.9	-0.6	-0.4	-0.6	0.02	0.02	0.02	0.02	0.02	95.7	95.8	95.7	95.4	96.5
Nata = - a		-1			_			}			ן י		-	1:	2

cluster means; JM = joint modeling. = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z $(\hat{\sigma}_{yz})$ With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$)

		H	Bias (%)				Re	Rel. RMSE	Ě			Cov	Coverage (%)	%)	
ı	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	mall int	raclass	correlat	Small intraclass correlation (ρ_{Iy}	= .10)					
$\bar{n}=5$															
J = 50	-0.5	0.2	1.4	7.7	-21.0	0.08	0.11	0.12	0.11	0.09	92.9	96.2	96.7	95.1	96.3
_	2.1	-0.6	1.1	4.5	-8.6	0.04	0.05	0.05	0.06	0.05	94.7	93.7	94.7	93.2	94.6
_	-0.3	-2.2	-0.8	-0.2	-3.3	0.02	0.02	0.02	0.02	0.02	95.6	94.0	94.4	93.7	94.1
$\bar{n}=20$															
	-4.1	-2.9	-2.2	-0.1	-20.5	0.06	0.08	0.08	0.08	0.07	88.9	93.2	94.0	91.7	90.
J = 200	0.1	1.1	0.7	1.1	-6.1	0.03	0.04	0.04	0.04	0.04	94.5	96.2	95.9	95.5	94.
_	-0.3	-0.6	-0.5	-0.3	-1.8	0.01	0.02	0.02	0.02	0.02	94.6	94.6	93.9	94.7	94.7
					Мо	derate i	ntraclas	s correl	Moderate intraclass correlation ($\rho_{Iy} = .30$)	$I_y = .30$	9				
$\bar{n}=5$															
J = 50	-1.0	-1.1	0.2	2.3	-10.7	0.10	0.14	0.15	0.14	0.13	92.8	94.7	94.6	94.5	93.
	-0.3	-0.8	-0.2	-0.0	-2.8	0.05	0.07	0.07	0.07	0.07	94.7	94.0	94.6	93.6	94.
J = 1000	-0.3	-0.6	-0.3	-0.2	-0.7	0.02	0.03	0.03	0.03	0.03	95.0	93.6	93.5	93.8	94.7
0	-3.1	-4.8	-4.3	-4.0	-11.5	0.09	0.12	0.13	0.12	0.12	91.4	92.3	93.2	93.1	90.
J = 200	-0.2	-0.2	-0.4	-0.3	-2.1	0.05	0.06	0.06	0.06	0.06	94.6	93.2	02 2	92.6	94.1
	0.0		,	,	ر د 0_	0 00		003		003	94.3	03.7	7.0.6	020	3

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z $(\hat{\sigma}_{yz})$ With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$)

2.0															
		_	Bias (%)	Ŭ			Re	Rel. RMSE	Ħ			Covera	ge	(%)	
ı	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					S	mall int	Small intraclass correlation (ρ_{Iy}	correlat	ion (ρ_{I})	, = .10)					
$\bar{n}=5$															
J = 50	-3.3	-11.8	-3.6	1.8	-25.1	0.08	0.11	0.12	0.11	0.10	92.5	94.4	95.4	92.4	92
J = 200	-0.8	-7.7	-0.4	2.9	-9.7	0.04	0.05	0.05	0.06	0.05	95.3	94.1	95.8	94.9	94
J = 1000	0.3	-7.5	-0.4	0.6	-2.7	0.02	0.03	0.02	0.02	0.02	95.0	92.1	95.5	93.8	94.6
$\bar{n} = 20$															
J = 50	-1.3	-1.9	-0.1	1.5	-20.1	0.06	0.08	0.08	0.08	0.07	93.0	93.7	95.4	94.5	91
J = 200	-0.8	-4.1	-1.5	-1.3	-8.1	0.03	0.04	0.04	0.04	0.04	92.6	94.1	95.1	93.2	92.5
J = 1000	0.2	-1.6	0.1	0.5	-1.1	0.01	0.02	0.02	0.02	0.02	95.4	95.5	96.0	95.9	96
					Мо	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	9				
$\bar{n}=5$															
	0.1	-0.9	2.4	3.6	-9.6	0.11	0.15	0.15	0.15	0.13	91.8	94.0	96.2	93.5	93
J = 200 .	-1.5	-3.9	-1.5	-0.5	-3.6	0.05	0.07	0.07	0.07	0.07	93.8	92.7	93.6	93.5	94
	-0.4	-2.8	-0.8	-0.3	-0.7	0.02	0.03	0.03	0.03	0.03	95.2	93.7	94.5	94.0	95.3
$\bar{n} = 20$															
_	-1.4	-1.0	-0.9	-0.6	-8.3	0.09	0.12	0.13	0.12	0.12	91.4	93.1	94.0	92.5	92
J = 200	0.2	-0.4	0.1	-0.0	-2.1	0.05	0.06	0.06	0.06	0.06	93.8	92.9	94.1	93.2	93
J = 1000.	-0.2	-0.5	-0.4	-0.2	-0.6	0.02	0.03	0.03	0.03	0.03	94.7	93.5	95.1	93.3	94.7
$J = 1000$ $Note. \ \bar{n} = av$	-0.2 erage o	-0.5 cluster si	-0.4 ze; $J = 1$	-0.2 number	-0.6	0.02 ers; CD	0.03 = comp	0.03 lete dat	0.03 a sets; I	0.03 $D = list$	94.7 wise do	93.5 eletion;	95.1 FCS-SI	93.5 = sii	<u> </u>
Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level	erage (cluster si	ze; $J = 1$	number	of clust	ers; CD	= comp	lete dat	a sets; I	D = list	wise do	eletion;	FCS-SI	$z = \sin g$	le-l

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z $(\hat{\sigma}_{yz})$ With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$)

Cc FCS- MAN 94.6 94.2 94.7

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Covariance of y With z $(\hat{\sigma}_{yz})$ With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$)

			Bias (%)	<u> </u>			Re	Rel. RMSE	Ħ			Cover	/erage (%)	%)	
ı	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-	FCS-	FCS- LAT	JM
					Sn	nall intr	Small intraclass correlation (ρ_{Iy}	orrelati		= .10)					
$\bar{n}=5$															
J = 50	-2.5	-15.5	-4.7	-0.4	-24.5	0.08	0.11	0.13	0.12	0.10	93.1	94.5	95.5	93.5	92.8
J = 200	-0.7	-17.5	-2.5	0.9	-10.0	0.04	0.06	0.05	0.06	0.05	94.6	92.8	95.5	94.2	94.6
J = 1000	0.2	-16.8	-1.5	0.3	-2.7	0.02	0.04	0.02	0.02	0.02	95.4	81.4	94.4	93.3	94.1
$\bar{n}=20$															
J = 50	-2.2	-7.6	-2.4	-0.7	-20.2	0.06	0.09	0.09	0.08	0.08	91.4	94.3	95.9	93.8	92.3
J = 200	-0.1	-6.8	-1.1	0.2	-7.2	0.03	0.04	0.04	0.04	0.04	95.6	94.5	95.3	95.3	94.
J = 1000	-0.0	-7.1	-1.1	-0.1	-1.8	0.01	0.02	0.02	0.02	0.02	93.7	90.0	94.9	94.4	94
					Moc	lerate ir	Moderate intraclass correlation ($\rho_{Iy} = .30$)	correla	ıtion (ρ _/	$t_y = .30$)				
$\bar{n}=5$															
J = 50	-0.7	-8.6	-2.2	-0.2	-13.0	0.11	0.16	0.16	0.16	0.14	92.9	92.6	94.0	92.3	92.
J = 200	-0.9	-8.9	-2.6	-1.6	-4.9	0.05	0.08	0.07	0.07	0.07	94.8	92.1	94.4	95.2	94.
J = 1000	-0.3	-7.8	-1.3	-0.3	-0.8	0.02	0.04	0.03	0.03	0.03	95.5	89.7	94.6	94.5	95.2
$\bar{n}=20$															
J = 50	-0.6	-3.2	-2.6	-1.9	-10.7	0.10	0.12	0.13	0.13	0.12	90.6	93.9	95.0	94.7	93.7
J = 200	0.1	-2.1	-0.7	-0.2	-2.5	0.05	0.06	0.06	0.06	0.06	94.6	93.7	93.8	93.6	93.9
J = 1000	-0.0	-1.3	-0.2	0.2	-0.1	0.02	0.03	0.03	0.03	0.03	95.3	94.3	93.8	94.6	95.(
Mote = av	AD CTA	ducter ci	76. I -	number	of cluste		Comp	late date	sets: I	フェ list	wise de	letion:	ECC CI	I cina	2 2
where $n = a$ verage endirection $J = \text{indifferent of translets}$, $CD = \text{complete take sets}$, $ED = \text{instance detection}$, is	Clago	Tueror or	100,0	IIIIIII	or crusic	13,	dino	ורור חמונ	r sers, L) I IIs	WISC OF	Touch,	רייים דיין	CD-DT — SITISIC-ICVCI	5

 $(MAR, \lambda = 0.5)$ Coefficient of y on z $(\hat{\beta}_{yz})$ With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 20% Missing Data Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Table 2-25

Note $\bar{n} =$	J = 1000	J = 200	J = 50	J = 1000	J = 200	= 50	$\bar{n}=5$		J = 1000	J = 200	J = 50 .	$\bar{n}=20$	J = 1000	J = 200	J = 50	$\bar{n}=5$				
avera		0.4	1.5	0.0	-0.4	1.9			0.0	-0.3	-0.1		0.2	-0.2	0.6			CD		
ge clu	-0.0	-0.2	-1.0	-0.4	-1.2	-0.3			-0.3	-1.4	-2.6		-0.8	-1.0	-0.9			FCS- MAN		
ster si	-0.2	-0.8	-3.9	-0.3	-1.6	-2.7			-0.3	-1.9	-5.0		-0.5	-1.3	-3.4			- FCS-	Bias (%)	
ze:] :			-1.0		-1.0					-1.2			0.0					- FCS- LAT	%)	
= num			-3.2		-1.8					-3.5			-1.3					T JM		
ber of			0.07		0.04			Mode			0.05		0.02				Sm	CD		
cluste			7 0.08		4 0.05			erate in		3 0.03			2 0.02				all intr			
	02	2	80	2	05	10		ıtracl	01	03	8		2	2	9		aclas	FCS- MAN	Rel	
<u>ا</u>	0.02	0.04	0.08	0.02	0.05	0.10		ass co	0.01	0.03	0.06		0.02	0.04	0.08		s corr	FCS-	Rel. RMSE	
omplete	0.02	0.04	0.08	0.02	0.05	0.10		Moderate intraclass correlation (ρ_{Iy}	0.01	0.03	0.06		0.02	0.04	0.09		Small intraclass correlation (ρ_{Iy}	FCS- LAT	SE	
e data s	0.02	0.04	0.08	0.02	0.05	0.10		n (ρ_{Iy} =	0.01	0.03	0.06		0.02	0.04	0.08		Ш	JM		
ets: LT	94.6	94.6	92.7	95.2	93.8	92.3		, = .30)	94.9	92.8	91.6		94.6	95.0	91.9		.10)	CD		
) = list	95.1	95.2	93.4	94.3	94.4	94.0			94.9	94.6	93.3		94.3	94.8	93.6			FCS- MAN	Cc	
wise de	95.1	94.5	93.6	94.0	93.9	94.2			94.9	94.4	92.8		93.6	95.2	94.3			FCS-	Coverage (%)	
letion:	94.9	95.2	93.5	94.3	94.4	93.1			94.4	93.9	91.7		94.2	93.8	91.3			FCS- LAT	(%)	
\bar{n} = average cluster size: I = number of clusters: CD = complete data sets: LD = listwise deletion: FCS-SI.	95.1	95.2	93.5	93.4	94.8	94.5			94.4	94.8	94.0		95.0	95.9	95.7			JM		

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

 $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 20% Missing Data (MAR,

,	, _	, _	$\bar{n} =$	J	J	J	$\bar{n} =$		J	J	J	$\bar{n} =$	J	J	J	$\bar{n} =$				
= 1000		J = 50	20	= 1000	J = 200	= 50	: 5		J = 1000	J = 200	= 50	: 20	J = 1000	J = 200 .		: 5			ı	
0.0	-0.5	0.9		0.2	0.2	0.2			0.3	0.5	1.1		0.2	-1.6	-1.7			8		
-0.3	1.2	-0.6)	-1.0	-1.7	-4.1			-0.9	-1.0	-0.8		-3.3	-4.7	-6.0			FCS- MAN		
-0.4	1.4	-2.8)	-0.1	-1.3	-5.8			-0.3	-0.8	-3.2		-0.3	-2.6	-5.7			- FCS-	Bias (%)	
-0.2	0.9	-0.0		0.3	-0.5	-2.9			-0.0	0.0	0.5		0.2	-0.6	-0.5			FCS- LAT	(0)	
-0.4	-1.3	-2.2)	0.1	-1.2	-6.3		-	-0.6	-2.1	-5.9		-1.0	-5.1	-9.6			JM		
0.02	0.04	0.08		0.02	0.05	0.09		Modera	0.01	0.03	0.05		0.02	0.04	0.08		Small	CD		
	0.04	0.08		0.02	0.05	0.11		te intra	0.01	0.03	0.06		0.02	0.04	0.09		intracl	FCS- MAN	R	
0.02	0.04	0.08		0.02	0.05	0.11		class co	0.01	0.03	0.06		0.02	0.04	0.09		ass corr	FCS-	Rel. RMSE	
0.02	0.04	0.08		0.02	0.05	0.11		Moderate intraclass correlation ($\rho_{Iy} = .30$)	0.01	0.03	0.06		0.02	0.04	0.09		Small intraclass correlation (ρ_{Iy}	FCS- LAT	SE	
0.02	0.04	0.08		0.02	0.05	0.11		n ($ ho_{Iy}$ =	0.01	0.03	0.06		0.02	0.04	0.08		$(\rho_{Iy} = 1)$	JM		
95.3	94.2	92.6)	95.5	93.4	92.5		= .30)	94.0	94.4	92.5		94.5	94.0	92.1		= .10)	CD		
95.3	93.9	93.3)	95.1	93.8	93.0			94.6	94.9	93.0		94.3	95.1	93.8			FCS- MAN	Co	
95.3	94.2	93.8		94.5	93.9	93.0			94.6	94.3	93.5		94.7	95.1	93.8			FCS-	Coverage (%)	
95.3	94.4	92.9)	94.6	92.9	92.7			93.8	93.8	92.2		94.1	92.6	91.9			FCS- LAT	(%)	
0.02 0.02 0.02 95.3 95.3 95.3 95.3 94.5	94.4	93.9)	94.9	93.9	93.0			94.9	94.8	94.7		94.9	94.7	94.5			JM		

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z $(\hat{\beta}_{yz})$ With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$)

			? à				,		ן נֿ			ו		1	
I			B1as (%)				\ \tag{\chi}	Kel. KMSE	Œ			Cox	Coverage (%)	%)	
ı	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					S	mall int	Small intraclass correlation (ρ_{Iy}	correlat	ion ($\rho_{I_{2}}$	= .10)					
$\bar{n}=5$															
J = 50	-2.2	-5.1	-6.0	-1.3	-10.1	0.08	0.09	0.09	0.09	0.08	91.3	91.8	91.5	90.4	93.
J = 200	0.6	-1.0	-0.6	1.2	-3.2	0.04	0.04	0.04	0.04	0.04	93.7	94.0	94.0	93.7	95.
J = 1000	0.4	-1.0	0.1	0.4	-0.8	0.02	0.02	0.02	0.02	0.02	95.8	94.7	94.5	94.7	94.9
$\bar{n}=20$															
J = 50	1.6	-1.3	-3.8	-0.6	-7.0	0.05	0.06	0.06	0.06	0.06	93.7	93.6	93.8	92.5	95.
J = 200	-0.1	-1.2	-1.5	-0.9	-2.9	0.02	0.03	0.03	0.03	0.03	95.9	95.4	96.3	95.6	95.6
J = 1000	-0.1	-0.3	-0.2	-0.0	-0.5	0.01	0.01	0.01	0.01	0.01	94.0	94.6	93.5	94.1	94.
					Мо	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (p	$I_{y} = .30$	9				
$\bar{n}=5$															
J = 50	1.0	-1.5	-3.8	-0.6	-3.7	0.09	0.10	0.10	0.10	0.10	92.7	94.0	94.3	93.5	94.
J = 200	1.0	-0.1	-0.7	0.3	-0.6	0.04	0.05	0.05	0.05	0.05	93.8	94.6	95.1	94.5	94.
J = 1000	0.1	-0.5	-0.4	-0.1	-0.2	0.02	0.02	00	0.02	0.02	93.9	94.6	94.5	94.3	94.3
$\bar{n}=20$								10.0							
J = 50	0.1	-2.4	-5.0	-2.2	-4.1	0.08	0.08	0.01	0.08	0.08	92.8	94.2	94.5	94.8	95.
J = 200	0.2	-0.1	-0.8	_0 2	-0.6	0.04	0.04	0.08	2	0.04	93.5		94.9	0/17	94.9
<i>i</i> _ 1000		>		1				0.08	0.04			95.2		74./	2

 $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of y on z ($\hat{\beta}_{yz}$) With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 20% Missing Data (MAR, Table 2-28

			Bias (%)	(6)			R	Rel. RMSE	SE			Со	Coverage (%)	(%)	
	G	FCS- MAN	FCS-	FCS- FCS- I NJ LAT	JM	CD	FCS- MAN	FCS-	FCS- LAT	JM	CD	FCS- MAN	FCS-	FCS- LAT	JM
						Small	intracl	ass corr	Small intraclass correlation (ρ_{Iy}	$\rho_{Iy} = .10)$	10)				
$\bar{n}=5$															
J = 50	-0.2	-7.7	-4.7	-0.7	-8.3	0.08	0.09	0.09	0.10	0.09	90.7	93.0	91.5	89.3	93.1
$\overline{}$	0.4	-6.8	-0.9	1.0	-3.0	0.04	0.04	0.04	0.04	0.04	93.4	95.2	95.2	93.5	95.4
J = 1000	-0.5	-7.9	-1.4	-0.7	-1.5	0.02	0.02	0.02	0.02	0.02	94.5	92.8	95.2	94.3	95.4
$\bar{n}=20$															
J = 50	0.3	-4.8	-4.5	-1.2	-7.7	0.06	0.06	0.06	0.07	0.06	92.6	94.1	94.1	92.9	94.5
J = 200	0.5	-3.2	-1.1	-0.2	-2.3	0.03	0.03	0.03	0.03	0.03	94.0	94.5	93.8	94.8	95.7
J = 1000	-0.0	-3.2	-0.6	0.1	-0.6	0.01	0.02	0.01	0.01	0.01	92.9	93.8	94.9	94.3	94.8
					ь	Modera	te intra	class co	Moderate intraclass correlation (ρ_{Iy}	$1(\rho_{Iy} =$: .30)				
$\bar{n}=5$															
J = 50	-2.0	-6.8	-7.1	-2.6	-5.9	0.10	0.11	0.11	0.11	0.10	92.9	94.1	94.4	93.4	94.3
J = 200	0.3	-3.3	-1.3	0.0	-1.0	0.05	0.05	0.05	0.05	0.05	95.5	95.1	95.3	95.2	95.6
$J = 1000$ $\bar{n} = 20$	0.5	-2.9	-0.3	0.3	0.1	0.02	0.02	0.02	0.02	0.02	96.1	94.9	96.0	95.9	95.9
	0.6	-2.0	-4.2	-1.2	-3.4	0.08	0.09	0.09	0.09	0.09	93.9	93.6	94.4	93.9	94.0
J = 200	0.8	-0.5	-0.6	0.1	-0.5	0.04	0.04	0.04	0.04	0.04	93.9	94.7	95.0	93.5	94.5
J = 1000	-0.3	-0.9	-0.7	-0.3	-0.5	0.02	0.02	0.02	0.02	0.02	95.2	95.5	95.3	95.4	95.6
Note. $\bar{n} =$	avera	e clus	ter siz	e: <i>J</i> =	numbe	average cluster size: $J = \text{number of clusters}$;	usters:	CD = c	= complete data sets; LD	data s	ets: LD	= listv	vise del	etion;]	= listwise deletion; FCS-SL
;	2 10 2 2	(1)	מולים לי	?			C C C C	ָ י		מבנב נ	֝֟֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	I LIST V			()

Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = joint modeling.

of y on z ($\hat{\beta}_{yz}$) With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

	2														
			Bias (%)				Re	Rel. RMSE	Έ			Cov	Coverage (%)	%)	
I	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-	FCS-	FCS- LAT	JM
					Sı	mall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlat	ion (ρ_{Iy}	= .10)					
$\bar{n}=5$															
	1.9	-3.6	-10.8	3.2	-18.4	0.07	0.10	0.10	0.10	0.09	92.3	92.7	93.4	91.4	96
J = 200	2.4	-1.7	-1.8	3.1	-8.0	0.04	0.05	0.05	0.05	0.05	94.0	92.8	93.6	92.4	94
J = 1000	0.0	-2.0	-1.0	-0.1	-2.9	0.02	0.02	0.02	0.02	0.02	96.4	94.7	94.6	94.2	94.5
$\bar{n}=20$															
J = 50	-2.5	-7.5	-13.7	-5.5	-19.1	0.05	0.07	0.07	0.07	0.07	91.6	93.3	93.8	91.8	94
J = 200	0.3	-0.3	-2.0	-0.1	-5.4	0.02	0.03	0.03	0.03	0.03	94.5	95.1	95.3	94.7	95.2
J = 1000	-0.2	-0.9	-1.1	-0.6	-1.8	0.01	0.01	0.01	0.01	0.01	94.9	94.7	94.6	94.3	94
					Мо	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	9				
$\bar{n}=5$															
J = 50	1.0	-5.4	-12.0	-3.3	-10.7	0.09	0.12	0.12	0.12	0.12	91.6	92.8	92.9	91.3	95
J = 200	0.1	-2.1	-3.2	-1.4	-3.3	0.04	0.06	0.06	0.06	0.06	94.0	95.0	94.3	93.6	94
J = 1000	-0.3	-1.0	-1.0	-0.5	-0.9	0.02	0.03	0.03	0.02	0.03	95.3	95.4	94.3	95.0	95.1
J = 50	-1.2	-7.6	-13.5	-7.3	-11.2	0.08	0.10	0.10	0.10	0.10	90.9	93.8	93.2	93.8	94
J = 200	0.4	-1.0	-2.6	-1.1	-2.2	0.04	0.05	0.05	0.05	0.05	94.2	94.1	95.2	94.7	95
J = 1000	0.1	-0.1	-0.4	-0.0	-0.3	0.02	0.02	0.02	0.02	0.02	94.7	94.7	95.0	95.0	95.3
Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS - SL = single-level ID =	erage c	duster si	ze; $J = 1$	number	of clust	ers; CD	= comp	lete dat	a sets; I	D = list	wise de	eletion;	FCS-SI	_ = sing	le-le
			1	•							1				1

of y on z ($\hat{\beta}_{yz}$) With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

			Bias (%)				Re	Rel. RMSE	Ħ			Co	Coverage (%)	
	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	
					S	mall int	Small intraclass correlation (ρ_{Iy}	correlati	ion (ρ_{Iy}	= .10)				
$\bar{n}=5$														
J = 50	-1.2	-16.6	-16.8	-3.5	-24.1	0.08	0.10	0.10	0.10	0.10	91.3	93.3	94.0	
J = 200	-0.0	-8.9	-3.2	1.6	-8.9	0.04	0.05	0.05	0.05	0.05	94.9	94.9	94.0	
J = 1000	0.6	-7.7	-0.8	0.5	-2.4	0.02	0.02	0.02	0.02	0.02	94.5	92.6	95.2	
$\bar{n}=20$														
J = 50		-6.3	-11.3	-2.6	-17.6	0.05	0.07	0.07	0.07	0.07	93.0	93.4	94.6	
J = 200	-0.0	-4.2	-3.3	-1.4	-6.5	0.03	0.03	0.03	0.03	0.03	93.8	94.7	94.6	
J = 1000		-1.9	-0.6	0.1	-1:1	0.01	0.01	0.01	0.01	0.01	95.3	95.6	95.0	
					Мо	derate ii	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$)			
$\bar{n}=5$														
J = 50	1.3	-7.6	-11.4	-4.0	-11.2	0.09	0.12	0.12	0.12	0.12	91.8	93.5	93.6	
J = 200	-0.5	-4.7	-3.7	-1.3	-3.3	0.05	0.06	0.06	0.06	0.06	93.9	95.1	95.0	
J = 1000	-0.1	-2.9	-1.0	-0.2	-0.4	0.02	0.03	0.02	0.02	0.02	94.8	95.2	95.9	
$\bar{n} = 20$														
J = 50	-0.4	-6.2	-12.6	-5.4	-9.9	0.08	0.10	0.10	0.10	0.10	91.2	93.2	92.5	
J = 200	0.7	-0.8	-1.9	-0.5	-1.9	0.04	0.05	0.05	0.05	0.05	92.7	94.1	93.8	
J = 1000	-0.1	-0.6	-0.8	-0.3	-0.6	0.02	0.02	0.02	0.02	0.02	95.2	94.9	94.8	
Note $\bar{n} = av$	erage (duster si	\bar{n} = average cluster size: I = number of clusters: CD = complete data sets: LD = listwise deletion: FCS-SL = single-level	nımher	of clust	are: CD	= comn	lete dat	a sets. I	D = list	wise de	letion:	FCS-SI	
Ivoie. $n = av$	erage o	Tuster St	[Ze, J =]	Intilioei	or crusic	21S, CD	dillo3 =	Tele dar	a sets, L		WISE OF	ienon,	「こう-い」	١.

of y on z ($\hat{\beta}_{yz}$) With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

	,														
		_	Bias (%)				Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
Ī	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation (ρ_{Iy}	correlati	ion (ρ_{Iy}	= .10)					
$\bar{n}=5$															
J = 50	-0.9	-9.2	-14.9	-1.1	-21.2	0.07	0.10	0.10	0.10	0.09	92.5	92.6	93.0	90.8	95.0
J = 200	0.4	-3.5	-2.7	2.6	-8.5	0.04	0.05	0.05	0.05	0.05	94.2	94.8	94.7	92.1	95.2
J = 1000	-0.4	-3.2	-0.9	0.3	-2.6	0.02	0.02	0.02	0.02	0.02	94.6	94.5	94.2	93.7	95.0
$\bar{n}=20$															
J = 50	-0.4	-6.2	-12.6		-18.4	0.05	0.07	0.07	0.07	0.07	92.3	92.6	92.5	90.8	93.7
J = 200	-0.4	-2.7	-3.6	-1.9	-6.9	0.03	0.03	0.03	0.03	0.03	94.7	94.7	94.4	94.4	95.4
J = 1000	0.6	-0.8	-0.5		-1.3	0.01	0.01	0.01	0.01	0.01	94.2	94.0	95.0	93.7	94.5
					Mo	derate ii	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	\odot				
$\bar{n}=5$															
J = 50	-0.5	-6.2	-12.9		-11.2	0.09	0.12	0.12	0.12	0.12	91.6	94.3	93.8	92.0	95.3
J = 200	-0.5	-2.5	-3.7	-1.6	-3.6	0.05	0.06	0.06	0.06	0.06	93.5	94.1	93.8	94.0	94.6
J = 1000	0.1	-1.1	-0.6		-0.4	0.02	0.02	0.02	0.02	0.02	94.1	95.9	94.6	95.2	95.9
$\bar{n}=20$															
J = 50	-0.1		-12.4		-10.3	0.08	0.10	0.11	0.10	0.10	91.7	91.6	92.5	93.1	94.8
J = 200	0.4		-2.4		-2.0	0.04	0.05	0.05	0.05	0.05	93.6	93.7	93.5	93.5	94.1
J = 1000	0.1	-0.2	-0.4	-0.1	-0.3	0.02	0.02	0.02	0.02	0.02	95.8	95.0	95.2	94.2	95.3
\overline{Note} . \overline{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS - SL = single-level	erage c	luster si	ze; $J = r$	number	of cluste	ers; CD	= comp	lete dat	a sets; L	D = list	wise de	eletion;	FCS-SI	$z = \sin g $	e-leve

of y on z $(\hat{\beta}_{yz})$ With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

			Bias (%)				Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
I	CD	FCS-MAN	FCS-	FCS- LAT	JM	G	FCS-MAN	FCS-	FCS- LAT	M	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation (ρ_{Iy}	correlat	ion ($\rho_{I_{\mathcal{Y}}}$	= .10)					
$\bar{n}=5$															
_	-0.1	-19.5	-14.1	-2.7	-21.9	0.08	0.11	0.11	0.12	0.10	90.4	93.2	91.8	89.0	94.5
J = 200	0.2	-18.1	-4.9	-0.0	-9.4	0.04	0.05	0.05	0.05	0.05	94.1	94.3	95.1	93.0	94.8
J = 1000	0.3	-17.0	-1.8	0.2	-2.5	0.02	0.03	0.02	0.02	0.02	95.8	81.2	94.1	93.3	94.5
$\bar{n}=20$															
J = 50	0.9	-9.3	-10.5	-2.1	-16.3	0.06	0.08	0.08	0.08	0.07	92.3	94.8	94.3	90.6	96.(
J = 200	0.2	-8.7	-4.4	-1.7	-7.1	0.03	0.04	0.03	0.04	0.04	95.5	94.8	94.2	94.0	95.6
J = 1000	-0.0	-7.5	-1.7	-0.3	-1.7	0.01	0.02	0.02	0.02	0.02	93.0	89.6	95.0	94.3	94.6
					Мо	derate ii	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	9				
$\bar{n}=5$															
J = 50	-0.2	-14.3	-14.6		-13.5	0.10	0.14	0.13	0.14	0.13	93.2	93.8	93.6	90.4	93.9
J = 200	-0.3	-9.3	-4.5		-4.1	0.05	0.07	0.06	0.06	0.06	95.3	94.5	94.8	94.9	95.6
$J = 1000$ $\bar{n} = 20$	-0.3	-7.9	-1.8	-0.4	-0.7	0.02	0.03	0.03	0.03	0.03	95.2	89.5	95.1	94.0	95.8
J = 50	1.7	-5.7	-11.7	-4.4	-9.4	0.08	0.10	0.11	0.11	0.10	91.0	95.0	94.6	93.1	95.
J = 200	0.7	-3.1	-3.3	-1.4	-2.8	0.04	0.05	0.05	0.05	0.05	94.7	94.5	94.1	94.7	94.6
J = 1000	-0.1	-1.6	-0.8	-0.2	-0.4	0.02	0.02	0.02	0.02	0.02	95.1	95.4	95.7	95.1	95.5
Note. $\bar{n} = av_0$	erage c	luster si	\bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; $FCS-SL$ = single-level	number	of clust	ers; CD	= comp	lete dat	a sets; I	D = list	wise de	eletion;	FCS-SI	$z = \sin g$	le-lev

of z on y ($\hat{\beta}_{zy}$) With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

J = 1000	J = 200	J = 50	$\bar{n}=20$	J = 1000	J = 200	J = 50	$\bar{n}=5$		J = 1000	J = 200	J = 50	$\bar{n}=20$	J = 1000	J = 200	J = 50	$\bar{n}=5$				
-0.2	0.6	2.0		0.3	0.4	3.4			-0.0	1.1	4.5		1.4	9.6	32.5			CD		15
0.1	0.7	1.6		-0.2	-0.1	3.6			-0.3	0.4	4.2		-0.0	8.7	27.3			FCS- MAN	l	
0.0	0.8	1.2		0.1	0.3	4.3			-0.1	0.6	5.3		1.0	10.0	28.3			FCS- NJ	Bias (%)	
0.1	0.7	1.5		0.2	0.4	5.0			0.0	0.7	5.6		1.4	12.1	33.3			FCS- LAT		
-0.1	-0.1	-2.2		-0.0	-1.0	-0.7		Mod	-0.6	-2.5	-4.2		-0.1	5.2	21.3		Sı	JM	ı	
0.05	0.12	0.25		0.07	0.16	0.35		derate ir	0.12	0.27	0.61		0.22	0.62	1.80		nall int	CD		
0.06	0.14	0.30		0.08	0.18	0.40		Moderate intraclass correlation ($\rho_{Iy} = .30$)	0.13	0.31	0.72		0.25	0.67	1.67		Small intraclass correlation (ρ_{Iy}	FCS-MAN	R	
0.06	0.14	0.31		0.08	0.18	0.41		correla	0.14	0.31	0.74		0.25	0.69	1.72		orrelati	FCS- NJ	Rel. RMSE	
0.06	0.15	0.30		0.08	0.18	0.41		ıtion (ρ	0.13	0.31	0.74		0.25	0.71	1.77			FCS- LAT	Œ	
0.06	0.14	0.29		0.08	0.18	0.37		$I_{y} = .30$	0.13	0.30	0.65		0.25	0.63	1.71		= .10)	JM		
95.1	93.7	90.8		94.7	94.2	93.4))	95.1	94.3	93.9		95.5	95.9	91.2			CD		
95.1	94.2	92.7		95.4	94.4	94.2			95.1	94.6	94.4		95.5	96.6	92.2			FCS-MAN	Cove	
95.5	94.4	93.1		96.2	94.9	95.1			94.4	94.0	94.5		95.4	96.5	93.3			FCS- NJ	verage (%)	
95.2	94.4	92.7		95.0	94.2	93.8			94.6	94.0	93.0		95.2	96.3	92.4			FCS- LAT	(%)	
95.1	94.7	93.8		95.2	95.3	94.4			95.6	94.6	94.5		95.3	95.9	92.6			JM		

joint modeling. FCS; FCS-MAN = two-level FCS with manifest cluster means; FCS-LAT = two-level FCS with latent cluster means; JM = Note. \bar{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$)

	,														
			Bias (%)				Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
I	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation (ρ_{Iy}	correlati	ion ($ ho_{Iy}$	= .10)					
$\bar{n}=5$															
J = 50	35.2	25.5	32.9	35.0	24.5	2.29	1.77	1.89	1.89	1.82	92.2	93.8	94.8	93.3	93.5
J = 200	9.2	3.8	9.6	11.3	5.0	0.64	0.63	0.70	0.72	0.65	94.7	94.9	95.1	95.4	94.7
J = 1000	1.4	-3.7	1.1	1.5	0.1	0.22	0.23	0.24	0.25	0.24	95.3	93.0	94.7	94.8	95.0
$\bar{n}=20$															
J = 50	8.2	7.6	9.0	10.3	-0.6	0.63	0.70	0.74	0.74	0.64	93.2	93.9	94.6	93.0	94.9
J = 200	1.5	0.4	1.7	2.0	1.1	0.27	0.32	0.32	0.32	0.31	94.8	94.4	95.5	94.3	95.0
J = 1000	0.2	-1.3	-0.1	0.1	-0.6	0.12	0.14	0.14	0.14	0.14	94.8	94.1	94.3	93.9	95.1
					Mo	derate iı	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_y = .30$))				
$\bar{n}=5$															
J = 50	5.5	2.9	5.4	6.2	-0.7	0.39	0.44	0.48	0.47	0.42	93.2	93.4	93.7	92.5	94.3
J = 200	1.7	-0.6	1.3	1.4	0.3	0.17	0.19	0.19	0.19	0.19	93.7	94.5	93.8	93.5	95.1
J = 1000	0.4	-1.6	0.2	0.5	0.3	0.07	0.08	0.08	0.08	0.08	95.5	95.1	95.3	95.0	94.9
J = 50	2.9	3.5	4.3	4.4	0.3	0.26	0.31	0.33	0.32	0.30	91.8	92.7	93.0	92.7	93.4
J = 200 -	-0.3	-0.7	-0.2	-0.3	-1.0	0.12	0.15	0.15	0.15	0.15	94.3	94.0	94.2	94.1	94.6
J = 1000	0.0	-0.3	-0.2	-0.0	-0.3	0.06	0.07	0.07	0.07	0.07	94.5	94.5	94.7	94.9	94.2
\overline{Note} . \overline{n} = average cluster size; J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS - SL = single-level	erage c	luster si	ze; $J = 1$	number	of cluste	ers; CD	= comp	lete dat	a sets; L	D = list	wise de	eletion;	FCS-SI	$z = \sin g$	le-leve
				,				!							

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 20% Missing Data (MAR, $\lambda = 0.5$)

	,														
		H	Bias (%)				Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation (ρ_{Iy}	correlat	ion (ρ_{Iy}	= .10)					
$\bar{n}=5$															
J = 50	26.7	24.8	26.3	30.1	20.0	2.56	1.70	1.80	1.80	1.77	92.1	94.5	94.7	94.1	94.7
J = 200	9.0	6.3	9.2	10.9	4.4	0.64	0.65	0.69	0.72	0.63	94.8	94.9	95.2	95.8	94.7
J = 1000	1.2	-1.1	1.2	1.5	0.0	0.22	0.24	0.25	0.25	0.24	95.1	94.5	95.1	95.1	94.3
$\bar{n}=20$															
J = 50	4.7	4.7	5.5	6.3	-4.6	0.60	0.71	0.75	0.75	0.65	93.5	93.9	94.8	92.7	94.6
J = 200	1.1	-0.1	0.3	0.5	-2.5	0.26	0.30	0.30	0.31	0.29	94.9	96.0	96.0	95.2	95.9
J = 1000	0.2	-0.2	0.3	0.4	-0.2	0.12	0.14	0.14	0.14	0.14	94.8	94.4	94.3	94.9	94.5
					Mod	derate ii	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$)				
$\bar{n}=5$															
J = 50	4.7	4.5	5.4	6.4	0.6	0.37	0.40	0.42	0.42	0.38	93.5	95.1	95.2	94.6	95.7
J = 200	1.4	0.7	1.0	1.5	0.2	0.16	0.18	0.18	0.19	0.18	95.4	93.9	95.0	93.6	94.8
J = 1000	0.3	-0.4	0.2	0.4	0.1	0.07	0.08	0.08	0.08	0.08	96.5	95.0	96.2	95.3	95.4
$\bar{n}=20$,				1	1))))	1) 		,
J = 50	0.2	0.1	0.4	0.4	-3.2	0.26	0.31	0.32	0.31	0.30	90.9	92.2	92.3	92.4	92.9
J = 200	0.6	1.0	0.9	1.0	0.2	0.12	0.15	0.15	0.15	0.14	94.5	94.6	93.9	93.0	94.8
J = 1000	0.3	0.3	0.4	0.4	0.2	0.05	0.07	0.07	0.07	0.07	95.5	94.2	94.6	94.8	94.0
Note. \bar{n} = average cluster size: J = number of clusters; CD = complete data sets; LD = listwise deletion; FCS-SL = single-level	erage c	luster si	ze; $J = I$	number	of cluste	ers; CD	= comp	lete dat	a sets; L	D = list	wise de	eletion;	FCS-SI	$z = \sin \alpha$	le-leve
	(,							,	

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 20% Missing Data (MAR, $\lambda = 0.5$)

CD FCS- FCS- FCS- FCS- FCS- FCS- FCS- FCS-							
HECS- FCS- FCS- FCS- FCS- FCS- FCS- FCS- F	Rel. RMSE	MSE		Cov	Coverage (%)	%)	
	FCS- NJ	FCS- LAT	M CD	FCS- MAN	FCS- NJ	FCS- LAT	JM
Small intraclass correlation ($\rho_{Iy} = .10$)	ass correlation (ρ	lation $(\rho_{Iy} =$.10)				
$\bar{n} = 5$							
31.4 16.0 25.3 29.7 17.3 2.14 1.72 1.69 1.77	1.69	1.77		94.1	94.5	93.6	93.
8.0 -2.2 7.7 9.5 3.9 0.59 0.56 0.63 0.65	0.63	0.65		93.8	95.4	95.3	95.:
J = 1000 0.8 -8.6 0.2 0.8 -0.3 0.21 0.25 0.23 0.23 0.23	0.23	0.23	.23 95.7	91.2	95.7	94.8	95.0
5.7 -0.8 5.4 6.7 -4.1 0.69 0.71 0.81 0.81	0.81	0.81		95.1	94.1	93.5	94.
1.9 -3.0 1.6 1.9 -1.0 0.29 0.32 0.34 0.34	0.34	0.34		96.4	95.0	94.1	95.3
-4.3 -0.1	0.15	0.15	.15 94.3	94.1	94.5	93.8	94.
Moderate intraclass correlation ($\rho_{Iy} = .30$)	class correlation (relation (ρ_{Iy}	= .30)				
$\bar{n} = 5$							
= 50 7.4 1.9 8.0 9.9 4.0 0.45 0.46 0.51 0.51	0.51	0.51		94.1	94.0	92.7	94.
-4.0 0.6 1.3 -0.2 0.17 0.19 0.20 0.20	0.20	0.20		94.1	94.1	93.2	94.
J = 1000 0.2 -4.7 -0.4 0.1 -0.0 0.07 0.09 0.08 0.08 0.09	0.08	0.08	.09 96.1	92.4	94.0	94.8	93.7
$\bar{n} = 20$							
1.4 1.2 2.1 2.7 -1.5 0.27 0.32 0.34 0.33 0.32	0.34	0.33		93.0	93.2	92.3	94.
1.2 -0.1 0.8 1.0 -0.0 0.13 0.15 0.16 0.16 0.15	0.16	0.16		94.3	93.8	93.9	94.6
J = 1000 - 0.2 - 1.2 - 0.3 - 0.1 - 0.3 0.06 0.07 0.07 0.07 0.07		0.07	.07 95.9	95.1	94.8	95.6	95.
verage cluster size; $J = \text{number of clusters}$; $CD = \text{complete data sets}$; $LD = \text{list}$	0.07						

of z on y $(\hat{\beta}_{zy})$ With Moderately Unbalanced Data (Uniform, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

	5						•				(
			Bias (%)				R	Rel. RMSE	Ë			Cover	/erage (%)	%)	
ı	CD	FCS-	FCS-	FCS- LAT	JM	CD	FCS-MAN	FCS-	FCS- LAT	JM	CD	FCS-	FCS-	FCS- LAT	JM
					Sn	nall intr	Small intraclass correlation (ρ_{Iy}	orrelati	on (ρ_{Iy})	= .10)					
$\bar{n}=5$															
J = 50	40.0	23.0	25.6	35.2	9.0	2.52	1.60	1.72	1.76	1.70	92.2	94.2	94.1	95.0	94.
J = 200	11.3	6.0	10.0	14.0	-1.2	0.70	0.74	0.80	0.84	0.69	95.4	95.0	95.7	95.0	94.
J = 1000	1.9	-1.0	1.4	2.1	-1.3	0.22	0.26	0.27	0.28	0.26	95.7	95.2	95.3	95.3	95.0
$\bar{n} = 20$															
J = 50	2.4	3.0	4.2	6.9	-16.1	0.58	0.82	0.88	0.87	0.70	93.0	93.2	95.0	91.5	94.
J = 200	1.1	1.9	1.7	2.1	-5.2	0.26	0.36	0.36	0.36	0.34	94.7	94.5	95.5	95.4	95.
J = 1000	-0.3	-0.7	-0.4	-0.2	-1.8	0.12	0.16	0.17	0.17	0.16	94.8	94.1	93.5	93.9	93.7
					Moc	lerate ir	Moderate intraclass correlation ($\rho_{Iy} = .30$)	correla	ıtion (ρ _/	$r_y = .30$)				
$\bar{n}=5$															
J = 50	5.3	4.0	6.0	8.9	-5.8	0.35	0.47	0.53	0.51	0.43	94.4	95.0	95.5	94.0	96.
J = 200	:1	0.1	1.0	1.3	-1.6	0.16	0.21	0.22	0.22	0.21	94.3	94.4	95.1	94.0	95.
J = 1000	0.1	-0.4	0.1	0.2	-0.2	0.07	0.09	0.10	0.10	0.10	95.6	93.4	94.1	94.9	94.7
$\bar{n} = 20$															
	0.0	-1.7	-1.4	-0.9	-8.9	0.26	0.38	0.41	0.39	0.36	92.1	92.4	93.6	92.8	93.
J = 200	0.3	0.1	-0.1	0.0	-1.8	0.12	0.18	0.18	0.17	0.17	94.7	94.2	93.4	94.3	95.
_	-0.0	-0.1	-0.0	0.1	-0.4	0.05	0.08	0.08	0.08	0.08	95.7	94.9	94.4	94.6	93.9
$Note \bar{n} = av$	erage (duster si	\bar{n} = givergoe cluster size: I = number of clusters: (T) = complete data sets: (T) = listwise deletion: FCS-SI = single-level	nımher (of cluste	re CD	= Comp	lete dats	sets. I		wise de	letion:	ECS-SI	= sino	P-1
TOC. II - uvoiugo	2000	יים בסומוכו	1100	. 1001	010000	13, ()	J. T.		֓֞֞֜֞֜֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 700 0	100001.,		7 - 211.6	ָ בַּ

of z on y $(\hat{\beta}_{zy})$ With Strongly Unbalanced Data (Uniform, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

		_	Bias (%)				Re	Rel. RMSE	Ë			Cov	Coverage (%)	%)	
ı	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation (ρ_{Iy}	correlat	ion ($\rho_{I_{\mathcal{Y}}}$	= .10)					
$\bar{n}=5$															
	38.2	11.5	24.0	32.3	5.6	1.90	1.86	1.84	1.90	1.70	92.5	93.1	94.1	94.3	94
J = 200	6.6	-5.8	6.6	10.1	-4.6	0.60	0.59	0.69	0.73	0.58	96.4	95.3	97.2	96.8	95
J = 1000	2.4	-8.1	1.9	2.7	-0.8	0.22	0.27	0.27	0.28	0.25	96.1	91.7	95.3	95.1	95.2
$\bar{n} = 20$															
J = 50	4.8	1.5	5.8	8.1	-15.9	0.60	0.78	0.87	0.88	0.70	93.8	94.2	94.9	92.8	95
J = 200	0.7	-3.8	0.1	0.3	-6.8	0.27	0.37	0.38	0.38	0.36	94.9	94.2	94.6	93.5	93.7
J = 1000	0.1	-2.6	-0.0	0.5	-1.2	0.12	0.16	0.16	0.16	0.15	95.8	95.6	96.0	94.8	95
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_y = .30$	9				
$\bar{n}=5$															
J = 50	6.9	2.0	8.8	10.7	-4.7	0.38	0.47	0.54	0.55	0.44	92.6	94.7	95.1	91.8	95
J = 200	0.6	-3.5	0.7	1.6	-1.6	0.16	0.22	0.23	0.23	0.22	94.0	93.2	94.1	93.5	93.8
J = 1000	0.0	-3.7	-0.4	0.2	-0.2	0.07	0.10	0.09	0.09	0.09	95.4	94.0	95.2	94.4	96
$\bar{n}=20$															
J = 50	1.4	1.4	1.7	2.3	-6.0	0.27	0.39	0.41	0.39	0.36	91.0	92.3	93.7	92.4	94
J = 200	0.5	-0.4	0.3	0.2	-1.9	0.13	0.18	0.18	0.18	0.18	93.2	93.2	93.8	93.1	94
J = 1000	0.1	-0.4	-0.1	0.1	-0.3	0.06	0.08	0.08	0.08	0.08	93.5	92.9	94.6	92.6	94.2
$Note \bar{n} = \text{average cluster size}$. $I = \text{number of clusters}$: CD = complete data sets: ID = listwise deletion: FCS-SI = single-level	arage (dueter ei	70· I = 1	nimher	of cluste	are: CD	- comp	lete dat	a cetc. I	フ _ー lie	wise de	aletion.	ECS-SI	I sing	10-10
11000. 11 - 411	2000	TOTOL OF	,	19111001	OI CIGOR	010, ()	Juno	1000 000	£ 5005, E		77.100 00	Olouou,		2	7

Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient of z on y $(\hat{\beta}_{zy})$ With Moderately Unbalanced Data (Bimodal, $\pm 40\%$) and 40% Missing Data (MAR, $\lambda = 0.5$)

		_	Bias (%)				Re	Rel. RMSE	Ë			Cov	Coverage (%)	%)	
	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM
					Sı	nall int	Small intraclass correlation ($\rho_{Iy} = .10$)	correlat	ion ($\rho_{I_{\mathcal{Y}}}$	= .10)					
$\bar{n}=5$															
J = 50	38.0	18.3	21.2	29.0	6.1	2.19	1.75	1.80	1.82	1.71	92.1	94.4	94.5	94.6	9
J = 200	6.8	1.1	6.9	11.5	-3.6	0.59	0.66	0.73	0.76	0.62	95.8	95.2	96.6	96.1	95.1
J = 1000	0.9	-3.4	1.0	2.1	-1.5	0.21	0.25	0.27	0.27	0.25	96.4	94.8	95.4	95.8	9
$\bar{n}=20$															
J = 50	4.4	3.8	4.5	7.6	-15.0	0.57	0.81	0.89	0.88	0.70	95.7	94.3	95.0	93.5	2
J = 200	0.8	-1.0	0.5	0.5	-6.7	0.26	0.36	0.37	0.37	0.35	95.0	94.6	94.3	93.5	95.4
J = 1000	0.0	-1.5	-0.4	-0.2	-2.0	0.12	0.16	0.17	0.17	0.17	94.3	94.6	94.6	94.3	9
					Mo	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$	9				
$\bar{n}=5$															
J = 50	5.7	3.2	5.4	8.6	-5.3	0.37	0.47	0.55	0.53	0.43	94.1	94.0	95.7	92.6	2
J = 200	1.0	-0.0	1.0	1.6	-1.7	0.17	0.22	0.23	0.23	0.22	94.5	94.2	94.7	94.0	2
$J = 1000$ $\bar{n} = 20$	0.1	-1.0	0.2	0.6	0.1	0.07	0.10	0.10	0.10	0.10	94.7	93.3	94.2	94.4	94.0
	-0.2	-1.9	-1.6	-1.0	-9.2	0.26	0.37	0.40	0.37	0.35	92.7	91.9	95.1	93.3	0
J = 200	0.2	0.4	0.5	0.5	-1.5	0.12	0.18	0.19	0.18	0.18	93.6	93.6	92.6	92.6	94.4
	0.2	0.0	0.2	0.3	-0.1	0.06	0.08	0.08	0.08	0.08	94.8	93.5	93.7	93.5	2
.	erage c	luster si	ze; $J = 1$	number	of clust	ers; CD	= comp	lete dat	a sets; I	D = list	wise de	eletion;	FCS-SI	= sing	le-
			1					1	}		1				•

of z on y $(\hat{\beta}_{zy})$ With Strongly Unbalanced Data (Bimodal, $\pm 80\%$) and 40% Missing Data (MAR, $\lambda = 0.5$) Study 2: Bias (in %), Relative RMSE, and Coverage of the 95% Confidence Interval for the Regression Coefficient

		1	Bias (%)				Re	Rel. RMSE	Ħ			Cov	Coverage (%)	%)	
	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM	CD	FCS- MAN	FCS- NJ	FCS- LAT	JM	CD	FCS-MAN	FCS- NJ	FCS- LAT	JM
					Sı	mall int	Small intraclass correlation (ρ_{Iy}	correlati	ion ($\rho_{I_{\mathcal{Y}}}$	= .10)					
$\bar{n}=5$															
J = 50	21.1	-9.2	6.5	14.6	-8.8	1.76	1.42	1.69	1.74	1.55	92.1	94.5	94.7	94.0	94.7
J = 200	6.1	-16.8	4.6	7.8	-4.9	0.62	0.63	0.71	0.73	0.62	94.9	90.6	95.6	94.3	94.7
J = 1000	1.4	-19.1	-0.1	1.5	-1.6	0.21	0.37	0.26	0.27	0.25	95.5	76.4	94.2	94.2	94.8
$\bar{n} = 20$															
J = 50	3.0	-9.5	2.6		-17.4	0.64	0.79	0.94	0.91	0.74	92.7	94.8	95.2	92.4	94.8
J = 200	1.7	-8.8	0.7	1.7	-5.9	0.29	0.38	0.40	0.40	0.37	94.0	93.9	94.3	93.3	95.
J = 1000	0.4	-9.4	-0.6		-1.4	0.13	0.22	0.17	0.17	0.17	95.2	86.1	95.1	94.3	94.3
					Мо	derate i	Moderate intraclass correlation ($\rho_{Iy} = .30$)	s correl	ation (ρ	$I_{y} = .30$)				
$\bar{n}=5$															
J = 50	9.2	-8.1	6.3	7.8	-6.9	0.42	0.50	0.60	0.59	0.48	93.0	93.3	94.1	91.3	94.
J = 200	1.4	-10.6	-0.5	0.4	-3.1	0.16	0.22	0.22	0.22	0.22	95.9	94.1	95.5	95.7	95.
J = 1000	0.2	-10.2	-0.8	0.1	-0.4	0.07	0.13	0.10	0.10	0.10	94.2	84.5	94.8	94.2	94.4
n = 20)	1))			2			2	3	2	2	2
J = 50	2.2	-1.9	0.9	1.2	-8.3	0.28	0.38	0.43	0.40	0.36	91.0	93.4	93.8	93.4	94.
J = 200	0.6	-2.7	-0.2	0.3	-2.0	0.13	0.19	0.19	0.20	0.19	95.1	94.4	94.2	93.2	94.:
J = 1000	0.2	-1.9	0.0	0.4	0.1	0.06	0.08	0.08	0.08	0.08	95.9	95.0	95.1	94.3	95.1
$Note \ \bar{n} = ave$	7.206.7	\bar{n} = giverage cluster size: I = number of clusters: CD = complete data sets: LD = listwise deletion: FCS-SL = single-level	7e. I = 1	nimber	of cluste	arc. CD	= comn	lete dat	a sets. I		wise de	letion.	ECS-SI	= sinol	<u></u>
	g	1				- 50,	Juno			. (2 6		. (a c	

References

- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D., Vehtari, A., & Rubin, D. B. (2014). *Bayesian data analysis* (3rd ed.). Boca Raton, FL: CRC press.
- Grund, S., Lüdtke, O., & Robitzsch, A. (2016). Multiple imputation of missing covariate values in multilevel models with random slopes: A cautionary note. *Behavior Research Methods*, 48, 640–649. doi: 10.3758/s13428-015-0590-3
- McNeish, D. M. (2016). Using data-dependent priors to mitigate small sample bias in latent growth models: A discussion and illustration using Mplus. Journal of Educational and Behavioral Statistics, 41, 27–56. doi: 10.3102/1076998615621299
- Muthén, B. O. (1994). Multilevel covariance structure analysis. *Sociological Methods & Research*, 22, 376–398. doi: 10.1177/0049124194022003006
- Muthén, L. K., & Muthén, B. O. (2012). *Mplus user's guide* (7th ed.). Los Angeles, LA: Muthén & Muthén.
- OECD. (2014). PISA 2012 technical report. Paris, France: Author.
- R Core Team. (2016). *R: A language and environment for statistical computing (Version 3.3.0)*. Retrieved from http://www.R-project.org/
- Robitzsch, A., Grund, S., & Henke, T. (2017). *Miceadds: Some additional multiple imputation functions, especially for mice (Version 2.3-0)*. Retrieved from http://CRAN.R-project.org/package=miceadds
- Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: Wiley.
- Schafer, J. L., & Yucel, R. M. (2002). Computational strategies for multivariate linear mixed-effects models with missing values. *Journal of Computational and Graphical Statistics*, 11, 437–457. doi: 10.1198/106186002760180608