Ergebnisse 4.1

- a) <u>**97.7** %</u>
- b) <u>**69.1** %</u>
- c) <u>**50.0** %</u>
- d) 19.1 %
- e) <u>**72.4%**</u>
- f) 12.6 Jahre
- g) **7.4 Jahre**
- h) **10 Jahre.**

Ergebnisse 4.2

- a) X muss im Intervall] $\mu \sigma$; $\mu + \sigma$ [liegen.
- b) <u>68%</u>
- c) <u>**95%**</u>
- d) <u>**99%**</u>

Ergebnisse 4.3

Da L normalverteilt ist, handelt es sich um eine *stetige* Zufallsvariable. "<" und "≤" sind deshalb beim Bestimmen von Wahrscheinlichkeiten austauschbar.

- a i) $P(X < 950g) \approx 28.8\%$
 - ii) P(X=950g) = 0
 - iii) P(950g < X < 1150g) ≈ 66.5%
- b) Gesucht: das 90%-Quantil: $x_{90\%} \approx 1115g$
- c) i) Sei *N1* das Gewicht des ersten und *N2* das Gewicht des zweiten Sackes. Laut Angabe sind die Gewichte unabhängig. Also:
 - i) $P(N1>950 \cap N2>950) \approx 50.7\%$
 - ii) **P(** beide unter **950** g) = P(N1< 950 \cap N2<950) \approx 8.3 %
 - iii) P(N1<950 ∪ N2<950) ≈ 49.8%
- d) $P(950 < G < 1150 \mid G \ge 950) \approx 93.4\%$
- e) Gefragt ist analog zu (d):

$$P(750 < G < 950 \mid G \ge 750) \approx \frac{(1 - 0.71226) - (1 - 0.99728)}{1 - (1 - 0.99728)}$$

 $\approx 28.6\%$

Das Ergebnis ist völlig anders als in (d), bei einer gedächtnislosen Verteilung der Zufallsvariablen X wären beide Ergebnisse dagegen gleich.