Computational Methods for Some High-Dimensional Latent Variable Models

Murali Haran

Department of Statistics, Pennsylvania State University

Operations Research Colloquium, STAT 590 Penn State University, February 2015.

What This Talk is About

- Latent variable models are very useful and popular. I will provide examples.
- Computational challenges are often daunting
 - High-dimensional latent variables resulting in high-dimensional posterior distributions (or complex integrated likelihoods).
 - Constructing efficient MCMC algorithms can be a challenge.
- I will outline some approaches, skipping details:
 - Forward simulation-based approximations to the likelihood.
 E.g. Approximate Bayesian computing (ABC) or Gaussian process emulation
 - 2. Dimension reduction of the latent variables.
 - 3. Fast likelihood approximations, e.g. composite likelihood.
- I will be mostly concerned with providing a broad overview of methods. Time permitting, I may discuss a few details with examples.

Why are Latent Variable Models Useful?

Latent=hidden, unobservable.

- In scientific problems, often of interest to learn about unobservable processes. Infer these processes (latent variables) via a model connecting them to the observables.
- In social science/other disciplines, learn about hidden latent structures, subpopulations
 - E.g. learn about spread of infections from location to location (unobservable) from the data on numbers of infected at each location (observable).
- Can add flexibility, help a model fit data better.
 - E.g. random intercepts or random slopes model in regression. Capture heterogeneity.
 - E.g. model dependence in non-Gaussian data via a generalized linear mixed model with dependent random effects

Inference for a Latent Variable Model

- Generic model:
 - ▶ Data given latent variables: $f(Y_1, ..., Y_n | u_1, ..., u_k)$
 - ▶ Latent variable model $f(u_1, ..., u_k \mid \theta)$
 - Prior (if Bayesian approach), $p(\theta)$ (Bold notation implies vectors.)
- Maximum likelihood: maximize likelihood w.r.t. θ

$$\mathcal{L}(\theta) = \int f(\mathbf{Y} \mid u_1, \dots, u_k) f(u_1, \dots, u_k \mid \theta) p(\theta) du_1 \dots du_k$$

Bayesian approach: inference based on posterior

$$\pi(\theta, u_1, \ldots, u_k \mid \mathbf{Y}) \propto f(\mathbf{Y} \mid u_1, \ldots, u_k) f(u_1, \ldots, u_k \mid \theta) p(\theta)$$

- ▶ In both cases: computation may be challenging if u_1, \ldots, u_k is large in number and it is not easy to integrate them out analytically.
- Computing is getting faster but not fast enough to keep up with the increasing complexity of our models and the size of our data sets!

Computational Strategy 1: Forward Simulation

Basic idea: avoid working with the likelihood, which may be very expensive to evaluate. Instead:

- ► Simulate **Y*** from the "forward model" $f(Y_1, ..., Y_n \mid u_1, ..., u_k) f(u_1, ..., u_k \mid \theta)$ for various θ values. Obtain: **Y*** $(\theta_1), ..., Y$ * (θ_k)
- ▶ Compare the simulations to the observed data. Intuition: θ values that produced simulations that are similar to observations are "more likely" (higher posterior probability).
- In effect: replace likelihood function with an approximation based on forward simulations.

$$\pi(\theta \mid Y_1, \ldots, Y_n) \propto \hat{\mathcal{L}}(\theta; Y_1, \ldots, Y_n) p(\theta)$$

Multiple ways to do this in a systematic fashion:

- Approximate Bayesian Computation (ABC). (Beaumont et al. 2002; Marjoram et al., 2002)
- Gaussian process-based calibration (Kennedy and O'Hagan, 2001)

Strategy 1: Comments

- ▶ ABC: most useful when forward simulation is fast.
- Gaussian process approach: interpolates the behavior of the model based on relatively few forward simulations.
 - Useful when forward simulation is not fast.
 - There is smoothness in the process (nearby θ values result in similar simulated values).
 - The process is not too highly multivariate/complicated (hard to interpolate).
- Note that in both cases dimensionality of latent variable does not play a role in computational complexity except for simulation expense.

Computational Strategy 2: Dimension Reduction

- Basic idea: may be redundancy in latent variables so reduce their dimensions without information loss.
- ▶ Summary: replace $\pi(\theta, \text{latent vars} \mid Y_1, \dots, Y_n)$

$$\propto f(Y_1,\ldots,Y_n \mid u_1,\ldots,u_k)f(u_1,\ldots,u_k \mid \theta)p(\theta)$$

with:

$$\propto f(Y_1,\ldots,Y_n \mid v_1,\ldots,v_r) f(v_1,\ldots,v_r \mid \theta) \rho(\theta),$$

where v_1, \ldots, v_r are reduced-dimension latent variables and $r \ll k$.

- Can provide dramatic computational advantages.
- ► Reduced-dimensional approach may even have inferential/interpretability advantages over original model.
- This strategy is not very general. Most applicable when latent variables are modeling dependence. Can now consider ideas from literature on dimension reduction/sparsity.

Computational Strategy 3: Composite Likelihood

- Basic idea: approximate the likelihood function as the product of component log likelihoods.
- Each component likelihood is a likelihood function for a subset of data.
- This approximation, called a composite likelihood function (Lindsay, 1988) may be much faster to compute than the original log-likelihood.
- ► Replace $\pi(\theta, u_1, \dots, u_k \mid Y_1, \dots, Y_n)$

$$\propto f(Y_1,\ldots,Y_n\mid u_1,\ldots,u_k)f(u_1,\ldots,u_k\mid \theta)p(\theta)$$

with:

$$\propto \prod_{b=1}^{B} f(Z_b \mid U_b) f(U_b \mid \theta) p(\theta)$$

where Z_b is a subset (or "block") of the Y_1, \ldots, Y_n , and U_b is a corresponding subset of u_1, \ldots, u_k .

Composite Likelihood with Latent Variables

- ▶ If each function $f(Z_b \mid U_b)f(U_b \mid \theta)$ can be evaluated quickly, for instance by avoiding large matrix operations for dependent data, composite likelihood offer dramatic speed-ups over likelihood function evaluations.
- ► These component (block) evaluations may be easily parallelized. Useful for scalability of inference.
- When dealing with latent variables, there are opportunities for analytically or numerically integrating out the latent variables within each piece. That is, find (exactly or approximately):

$$f(Z_b \mid \theta) = \int f(Z_b \mid U_b) f(U_b \mid \theta) dU_b.$$

This integrates out the latent variables, reducing dimensions for maximum likelihood and Bayesian inference.

Strategy 1 Details

Approximate Bayesian computation (ABC)

(Tavare et al., 1997; Beaumont, Zhang, Balding, 2002)

Rejection sampler:

- ▶ Simulate θ^* from prior on θ .
- ▶ Accept θ^* with probability $h(\theta^*; \mathbf{Y}) = f(\mathbf{Y} \mid \theta^*)$.
- ▶ Repeat above: accepted θ^* s have distribution $\pi(\theta^* \mid \mathbf{Y})$.

Since $h(\theta^*; \mathbf{Y})$ is intractable or too expensive (need to integrate out the latent variables), this approach is not practical.

ABC rejection sampler:

- Generate $\theta \sim p(\cdot)$.
- ▶ Simulate $\mathbf{Y}^* \sim f(\cdot \mid \theta^*)$.
- Accept θ^* if $\mathbf{Y}^* = \mathbf{Y}$.
- ▶ Repeat above: accepted θ have distribution $\pi(\theta \mid \mathbf{Y})$.

Usually not practical since probability that $\mathbf{Y}^* = \mathbf{Y}$ is generally very small (for a continuous state space, it is 0).

ABC rejection sampling [cont'd]

- Approximate rejection sampler:
 - Generate $\theta \sim p(\cdot)$.
 - ▶ Simulate $\mathbf{Y}^* \sim f(\cdot \mid \theta^*)$.
 - Accept θ^* if $\rho(\mathbf{Y}^*, \mathbf{Y}) < \epsilon$, where $\rho(\mathbf{Y}^*, \mathbf{Y}), \epsilon > 0$ are a distance and threshold defined by the user.
- ▶ As $\epsilon \to \infty$, this algorithm generates observations from the prior. As $\epsilon \to 0$, this algorithm generates from $\pi(\theta \mid \mathbf{Y})$.
- ▶ Often, the distance is defined on same summary statistics on \mathbf{Y} , say $S(\mathbf{Y})$, rather than on \mathbf{Y} itself. That is, $\rho(\mathbf{Y}^*,\mathbf{Y})=\rho(S(\mathbf{Y}^*),S(\mathbf{Y}))$. This is particularly useful when \mathbf{Y} is high dimensional.

Likelihood-free MCMC

The previous algorithm is not very general. $p(\theta)$ will generally work poorly as a proposal for $\pi(\theta \mid \mathbf{Y})$ and it may also be very difficult to find another reasonable proposal, especially if θ has more than a few dimensions.

- Recall that the Metropolis-Hastings algorithm constructs a Markov chain with stationary distribution $\pi(\theta \mid \mathbf{Y})$ by generating the next state of the Markov chain as follows:
 - If current state is θ , propose a move to θ^* according to a transition kernel $q(\cdot \mid \theta)$.
 - Calculate acceptance probability,
 - $\alpha(\theta, \theta^*) = \min\left(1, \frac{h(\theta^*; \mathbf{Y})}{h(\theta; \mathbf{Y})} \frac{p(\theta^*)}{p(\theta)} \frac{q(\theta | \theta^*)}{q(\theta^* | \theta)}\right).$
 - Accept θ^* as the next state with probability $\alpha(\theta, \theta^*)$.

Likelihood-free MCMC [cont'd]

- ▶ Again, $h(\theta^*; \mathbf{Y})$ is either intractable or too expensive.
- Likelihood-free MCMC:
 - If current state is θ , propose a move to θ^* according to a transition kernel $q(\cdot \mid \theta)$.
 - Generate $\mathbf{Y}^* \sim f(\cdot \mid \theta^*)$.
 - ▶ If $(\mathbf{Y}^* \neq \mathbf{Y})$, reject θ^* (stay at θ). If $(\mathbf{Y}^* = \mathbf{Y})$ calculate acceptance probability, $\alpha(\theta, \theta^*) = \min\left(1, \frac{p(\theta^*)}{p(\theta)} \frac{q(\theta|\theta^*)}{q(\theta^*|\theta)}\right)$. Accept θ^* as the next state with probability $\alpha(\theta, \theta^*)$.
- Avoided evaluating h but this Markov chain has stationary distribution $\pi(\theta \mid \mathbf{Y})$. Proof is a simple reversibility argument (see Marjoram, Molitor, Plagnol, Tavare, 2003).

Likelihood-free MCMC [cont'd]

- ightharpoonup As before, $m Y^* =
 m Y$ is very unlikely (or has zero probability) in most cases.
- Approximate likelihood-free MCMC:
 - If current state is θ , propose a move to θ^* according to a transition kernel $q(\cdot \mid \theta)$.
 - Generate $\mathbf{Y}^* \sim f(\cdot \mid \theta^*)$.
 - If $(\rho(S(\mathbf{Y}^*), S(\mathbf{Y})) > \epsilon)$, reject θ^* (stay at θ). If $(\rho(S(\mathbf{Y}^*), S(\mathbf{Y})) < \epsilon$ calculate acceptance probability, $\alpha(\theta, \theta^*) = \min\left(1, \frac{p(\theta^*)}{p(\theta)} \frac{q(\theta|\theta^*)}{q(\theta^*|\theta)}\right).$

Accept θ^* as the next state with probability $\alpha(\theta, \theta^*)$.

 \blacktriangleright Avoided evaluating h. The idea: if ϵ is small this Markov chain has approximately the right stationary distribution $\pi(\theta \mid \mathbf{Y})$. No really sound theoretical basis for convergence of estimates based on this algorithm.

Example of Strategy 1: Gravity Time Series SIR Model

SIR = Susceptible-Infected-Recovered

- ▶ Models the number of incidences of measles in *K* different communities (cities).
- ► The model has components of a discrete time-series TSIR model for local dynamics (Bjørnstad et al., 2002; Grenfell et al. 2002).
- Similar to gravity models from transportation theory, it has an explicit formulation for the spatial transmission between different host communities.
- It allows for stochasticity inherent in the disease transmission and random immigration.
- It includes seasonality in the transmission rates.

(Jandarov, Haran, Bjornstad, Grenfell, 2013)

Gravity TSIR Model: Notation

- ▶ I_{kt}: number of infected individuals in city k at time t
- \triangleright S_{kt} : number of susceptible individuals in city k at time t
- ▶ L_{kt}: number of infected people moved to city k at time t
- $ightharpoonup d_{ki}$: distance between cities k and j
- \triangleright N_{kt} , B_{kt} : size and birth rate of city k at time t

Gravity TSIR Model

▶ Number of incidences of a disease at time t + 1 for city k,

$$I_{k(t+1)} \sim \mathsf{Poisson}(\lambda_{k(t+1)})$$
, where $\lambda_{k(t+1)} = \beta_t S_{kt} (I_{kt} + L_{kt})^{\alpha}$.

- ▶ $I_{k(t+1)}$ increases with I_{kt} , S_{kt} , and number of infected immigrants coming to city k at time t (L_{kt}).
- ▶ $\{\beta_t\}$ are 26 different parameters that are repeated every year to allow differences in seasonal transmission (26 = number of biweeks in a year).

(Xia, Bjørnstad and Grenfell, 2004)

Gravity TSIR Model

- Number of susceptible individuals at time t+1 for city k, $S_{k(t+1)} = S_{kt} + B_{kt} I_{k(t+1)}$.
- ▶ Number of infected immigrants (latent) at time *t* for city *k*

$$L_{kt} \sim \text{Gamma}(\textit{m}_{kt}, 1), \, \text{where} \,\, \textit{m}_{kt} = \theta \textit{N}_{kt}^{ au_1} \sum_{j=1, j
eq k}^{K} rac{(\textit{Ijt})^{ au_2}}{\textit{d}_{kj}^{
ho}}.$$

 $ightharpoonup L_{kt}$ increases with size of city k, number of infected people in all other cities, taking into account distances.

Inference for Measles Dynamics

- Parameters of the model:
 - ▶ Reliable estimates of local transition parameters α and β are known (Bjørnstad et al. 2001).
 - ▶ Gravity parameters θ , τ_1 , τ_2 and ρ are unknown.
- Sources of information:
 - The UK Registrar General's data for 952 cities in England and Wales for years 1944-1966 of biweekly incidences of measles.
 - Number of susceptibles from standard reconstruction algorithms (cf. Fine and Clarkson 1982a, Finkenstadt and Grenfell 2000).
- ▶ **Goal**: Infer gravity parameters $\Theta = (\theta, \tau_1, \tau_2, \rho)$ from data.

Computational Challenges

- ▶ Dimensions of the data (*TK*): 546*952 = 519,792.
- ▶ Number of infected immigrants $\{L_{k,t}\}$ are unobserved.
- ► The likelihood function is complicated:
 - Involves integrating over 519,792 latent variables.
 - Expensive calculations per iteration.

An Emulation Based Solution

- Let vector of summary statistics from observations be Z.
- ▶ Simulate realizations of the gravity TSIR model at various parameter settings $\Theta_1, \Theta_2, \dots, \Theta_p$.
- Let $\mathbf{Y}(\Theta)$ be the vector of summary statistics obtained at parameter setting Θ .
- ► Consider: $(\Theta_1, \mathbf{Y}(\Theta_1)), \dots, (\Theta_p, \mathbf{Y}(\Theta_p)).$
- Stochastic emulation: Fit a Gaussian Process (GP) to above simulations.
 - ► Thus for any new parameter setting Θ^* , we have a predictive distribution for the process $\mathbf{Y}(\Theta^*)$.

New Inferential Approach

- 1. Predictive distribution provides a probability model (the Gaussian process emulator) that connects the parameters to the *observed* summary statistics **Z**. This gives us a likelihood function. ("emulator likelihood"), $\mathcal{L}(\Theta)$. Avoids latent variables $\{L_{k,t}\}$ in calculation, i.e., do not have to deal with $\int \mathcal{L}(\Theta, L) dL$ or high-dimensional posterior $\pi(\Theta, L \mid \{I_{k,t}\})$
- 2. ML or Bayesian inference to obtain estimates of **⊙**.

Skipping lots of important details: dimension reduction, computational issues, worrying about discrepancy between model and data etc. . . .

Example of Strategy 2: Non-Gaussian Spatial Data Models

Figure: U.S. infant mortality data by county. n = 3071 Ratio of deaths to births, each averaged over 2002-2004. Darker indicates higher rate.

Non-Gaussian Spatial Data Example #2

Greenland ice sheet thickness (Bamber et al., 2001)

Spatial Data on a Lattice

- Gaussian and non-Gaussian spatial data are very common and appear in a large number of disciplines.
- Common lattice data: binary, count, zero-inflated
- Purpose of the model
 - 1. regression while adjusting for residual spatial dependence
 - 2. smoothing the spatial field and "borrowing strength"
- These models are used widely and have become particularly important in disease epidemiology and ecology.

Spatial Linear Models

- ▶ Spatial process at location **s** is $Z(\mathbf{s}) = X(\mathbf{s})\beta + W(\mathbf{s})$.
 - $X(\mathbf{s})$ are covariates at \mathbf{s} and β is a vector of coefficients.
 - Model dependence among spatial random variables by imposing it on the errors (the W(s)'s).
- ▶ Gaussian Markov Random field (GMRF): Let Θ be the parameters for precision matrix $Q(\Theta)$. Then:

$$\mathbf{Z}_{n\times 1}|\Theta, \boldsymbol{\beta} \sim N(\mathbf{X}_{n\times p}\boldsymbol{\beta}_{p\times 1}, Q^{-1}(\Theta))$$

Spatial Linear Models: Dependence

- ▶ $Q = \text{diag}(A\mathbf{1}) A$ where adjacency matrix A is such that $A_{ij} = 1$ if locations i and j are neighbors, 0 else
- Implications:
 - W(s) is conditionally independent of all other Ws given its neighbors
 - uncertainty about $W(\mathbf{s})$ is inversely proportional to its number of neighbors.

Spatial Generalized Linear Mixed Models

Model for Z at location \mathbf{s}_i

- 1. $Z(\mathbf{s}_i)|\beta,\Theta,W(\mathbf{s}_i),i=1,\ldots,n$, conditionally independent E.g. $Z(\mathbf{s}_i)|\beta,W(\mathbf{s}_i)\sim \text{Poisson}(\mu(\mathbf{s}_i))$
- 2. Link function $g(\mu(\mathbf{s}_i)) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$ E.g. $\log(\mu_i) = X(\mathbf{s}_i)\beta + W(\mathbf{s}_i)$
- 3. Impose dependence: $\mathbf{W} = (W(\mathbf{s}_1), \dots, W(\mathbf{s}_n))^T$

$$p(\mathbf{W}| au) \propto au^{(n-1)/2} \exp\left(-rac{ au}{2}\mathbf{W}'Q\mathbf{W}
ight)$$

4. Priors for Θ , β

Inference based on $\pi(\Theta, \beta, \mathbf{W} \mid \mathbf{Z})$ (Besag et al. (1991), Diggle et al. (1998))

SGLMMs: Challenges

SGLMMs have become very popular even outside mainstream statistics. Flexible models but some drawbacks:

- Confounding between spatial random effects and fixed effects (covariates)
- (2) Computational challenges

Spatial Confounding in SGLMMs

- ▶ $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, orthogonal projection onto $C(\mathbf{X})$
- $ightharpoonup \mathbf{P}^{\perp} = \mathbf{I} \mathbf{P}$, orthogonal projection onto $C(\mathbf{X})$'s orthogonal complement
- ▶ Spectral decomposition to acquire orthogonal bases, $\mathbf{K}_{n \times p}$ and $\mathbf{L}_{n \times (n-p)}$, for $C(\mathbf{X})$ and $C(\mathbf{X})^{\perp}$. Rewrite:

$$g(E(Z_i | \beta, W_i)) = \mathbf{X}_i \beta + W_i = \mathbf{X}_i \beta + \mathbf{K}_i \gamma + \mathbf{L}_i \delta.$$

K is collinear with X.

This is the source of confounding. Appears to cause variance inflation.

Computing for SGLMMs

MCMC algorithms for SGLMMs are challenging to construct:

- Spatial random effects: one random effect for each data point. n+p+1 dimensions where n=size of data, p=number of predictors. MCMC is slow per iteration due to high dimensionality
- Markov chain is slow mixing due to strong cross-correlations among the spatial random effects.

Several attempts to address these issues: Rue and Held (2005), Haran et al. (2003), Haran and Tierney (2010)

Observations

- Spatial random effects W are the cause of confounding issues as well as computational challenges.
- ▶ **W** are just a device to induce dependence. Not intrinsically important.
- ▶ Idea: reparameterize and reduce dimensions of W.

Spatial Confounding: Reparameterization Solution

- Reich, Hodges and Zadnik (2006) propose solution: since K have no scientific meaning, delete them from the model.
- ▶ $g(E(Z_i | \beta, \delta)) = \mathbf{X}_i \beta + \mathbf{L}_i \delta$. Prior for random effects δ now

$$\label{eq:posterior} p(\boldsymbol{\delta} \,|\, \boldsymbol{\tau}) \propto \boldsymbol{\tau}^{(n-p)/2} \exp\left(-\frac{\tau}{2} \boldsymbol{\delta}' \mathbf{Q}^* \boldsymbol{\delta}\right),$$

where $\mathbf{Q}^* = \mathbf{L}'\mathbf{Q}\mathbf{L}$.

- Corrects issues due to confounding
- # of parameters reduced (only slightly) from n + p + 1 to n + 1. Computational challenge remains.
- RHZ approach does not fully account for underlying graph

Our Sparse Reparameterization

- ▶ Represent graph G = (V, E) using \mathbf{A} , $n \times n$ adjacency matrix with entries $\operatorname{diag}(\mathbf{A}) = \mathbf{0}$ and $\mathbf{A}_{ij} = 1\{(i,j) \in E, i \neq j\}$, with $1\{\cdot\}$ an indicator function
- ▶ Basic idea inspired by Griffith (2003): augment a generalized linear model with selected eigenvectors of (I – 11'/n)A(I – 11'/n). This appears in Moran's I statistic (nonparametric measure of spatial dependence),

$$\label{eq:lagrangian} \textit{I}(\boldsymbol{A}) \propto \frac{\boldsymbol{Z}'(\boldsymbol{I} - \boldsymbol{1}\boldsymbol{1}'/n)\boldsymbol{A}(\boldsymbol{I} - \boldsymbol{1}\boldsymbol{1}'/n)\boldsymbol{Z}}{\boldsymbol{Z}'(\boldsymbol{I} - \boldsymbol{1}\boldsymbol{1}'/n)\boldsymbol{Z}},$$

Background for Sparse Reparameterization

- ► Griffith's goal: reveal the structure of missing spatial covariates. Our goal: smoothing orthogonal to X
- ▶ Hence, we replace I 11'/n with P^{\perp}
- ▶ $\mathbf{M}_{\mathbf{X}}(\mathbf{A}) = \mathbf{P}^{\perp}\mathbf{A}\mathbf{P}^{\perp}$, Moran operator for \mathbf{X} with respect to the graph G, appears in numerator of generalized Moran's I:

$$\label{eq:loss_loss} \emph{l}_{\textbf{X}}(\textbf{A}) \propto \frac{\textbf{Z}'\textbf{P}^{\perp}\textbf{A}\textbf{P}^{\perp}\textbf{Z}}{\textbf{Z}'\textbf{P}^{\perp}\textbf{Z}}.$$

Applying the Sparse Reparameterization

Replacing L with M in the RHZ model gives

$$g(E(Z_i | \beta, \delta)) = \mathbf{X}_i \beta + \mathbf{M}_i \delta.$$

And the prior for the random effects is now

$$p(\delta \mid \tau) \propto au^{q/2} \exp\left(-rac{ au}{2} \delta' \mathbf{Q}^{**} \delta
ight),$$

where $\mathbf{Q}^{**} = \mathbf{M}'\mathbf{Q}\mathbf{M}$.

- Corrects issues due to confounding
- ▶ Potential for dimension reduction: if we reduce dimensions of \mathbf{M}_i to q, the # parameters is reduced from n + p + 1 to q + p + 1 (q can be small)

Interpreting the Resulting Reparameterization

► "Tailored" to **X** and **G**: eigenvectors comprise all possible patterns of clustering residual to **X** and accounting for **G**

Some selected basis vectors for the 30 \times 30 lattice.

Eigenvectors 7, 13, 42 from RHZ and Moran bases

Interpreting the Resulting Reparameterization

 Positive (negative) eigenvalues correspond to varying degrees of positive (negative) spatial dependence (Boots and Tiefelsdorf, 2000)

The standardized eigenvalues for the 30 \times 30 lattice.

Exploiting the New Parameterization

- If we assume positive spatial dependence, eigenvectors corresponding to negative spatial dependence (negative eigenvalues) should be removed.
- Small eigenvalues may not be meaningful. Remove corresponding eigenvectors.
- Result: much reduced dimensions

Study: Inference for Spatial Binary

 30×30 lattice simulated from RHZ model with $\beta_1 = \beta_2 = 1$. Predictors are the coordinates of unit square.

Model	\hat{eta}_1 CI(eta_1)	$\hat{\beta}_2 \operatorname{CI}(\beta_2)$
Sparse	1.080 (0.613, 1.556)	1.130 (0.644, 1.635)
RHZ	1.120 (0.637, 1.606)	1.192 (0.679, 1.713)
Traditional	0.500 (-2.655, 3.616)	-0.605 (-3.698, 2.577)

- ▶ Point and interval estimates for Traditional are very poor: 95% interval includes 0
- Sparse and RHZ produce similar (good) results

Similar results for Gaussian (linear) and Poisson

Spatial Count Data: Simulation Results

De-correlated Random Effects

Greatly improves efficiency of simple MCMC. No need for elaborate proposals (cf. Held and Rue (2005), Haran et al. (2003), Haran and Tierney (2010)).

Spatial Binary: Computational Efficiency

Model	Dimension	Running Time
Sparse	228	2.5 hours
RHZ	901	18.5 hours
Traditional	903	38.5 hours

- MCMC algorithm is
 - faster per iteration (far fewer random effects)
 - mixes faster (random effects are "decorrelated")
- ► Far greater speed-ups with much smaller *q*, e.g. 25-50 is adequate for our examples (we are also being *extremely* careful by running very long chains!)
 Real data example: 14 days (traditional) versus 2-8 hours

Summary

- I have described three fairly different frameworks for thinking about fast computing for high-dimensional latent variable models.
- Different strategies are better suited to different models.
- ► Lots of opportunities for interesting research, including ways for combining these methods.

Approach 2: Block Composite Likelihood

- ► Composite likelihood for spatial data (Vecchia, 1988; Stein et al., 2004; Caragea and Smith, 2006; Eidsvik et al., 2013)
- ▶ Block composite likelihood (Caragea and Smith 2006):
 - ► Divide spatial field into *M* blocks
 - Conditional independence between blocks given their block means
 - Large scale trend captured by dependence between block means
 - Small scale variation captured by dependence within each block
 - Valid probability model: Important for rigorous Bayesian inference

Composite Likelihood Basics

- Approximating log likelihood function as sum of sub-log likelihoods
- Each sub-likelihood is likelihood based on part or summary of data
- Maximum composite likelihood estimator (MCLE): consistency and asymptotic normality under same conditions as MLE

Emulation Using Composite Likelihood

▶ We approximate original log likelihood $\ell(\mathbf{Y}|\boldsymbol{\xi})$ by

$$c\ell(\mathbf{Y}|\boldsymbol{\xi}) \propto \underbrace{\ell(\bar{\mathbf{Y}}|\boldsymbol{\xi})}_{ ext{likelihood for block means}} + \underbrace{\sum_{i}^{M} \ell(\mathbf{Y}_{(i)}|\bar{\mathbf{Y}}_{(i)},\boldsymbol{\xi})}_{ ext{likelihood for block output}},$$

with emulator parameter ξ , collection of block means $\bar{\mathbf{Y}}$, and ith output $\mathbf{Y}_{(i)}$ and mean $\bar{\mathbf{Y}}_{(i)}$.

MCLE $\hat{\xi}$ is consistent under original emulation model.

Calibration Using Composite Likelihood

▶ Approximate original log likelihood $\ell(\mathbf{Z}|\mathbf{Y}, \boldsymbol{\theta}, \boldsymbol{\xi}_{\delta})$ by

$$c\ell(\mathbf{Z}|\mathbf{Y}, \boldsymbol{\theta}, \boldsymbol{\xi}_{\delta}, \hat{\boldsymbol{\xi}}) \propto \underbrace{\ell(\mathbf{Z}|\bar{\mathbf{Y}}, \boldsymbol{\theta}, \boldsymbol{\xi}_{\delta}, \hat{\boldsymbol{\xi}})}_{ ext{likelihood for block means}} + \underbrace{\sum_{i}^{M} \ell(\mathbf{Z}_{(i)}|\mathbf{Y}_{(i)}, \overline{\mathbf{Z}}_{(i)}, \boldsymbol{\theta}, \boldsymbol{\xi}_{\delta}, \hat{\boldsymbol{\xi}})}_{ ext{likelihood for block observations}}$$

with covariance parameter for discrepancy ξ_{δ} , block means for observations $\mathbf{Z}_{(i)}$ and mean $\mathbf{Z}_{(i)}$.

▶ Infer θ through "composite" posterior

$$\log \pi(\theta, \xi_{\delta} | \mathbf{Y}, \mathbf{Z}, \hat{\boldsymbol{\xi}}) \propto c\ell(\mathbf{Z} | \mathbf{Y}, \theta, \xi_{\delta}, \hat{\boldsymbol{\xi}}) + \log p(\theta) + \log p(\xi_{\delta})$$
 with prior densities $p(\theta)$ and $p(\xi_{\delta})$.

Theorems on Posterior Mode

- For posterior mode $\hat{\theta}_n$,
 - ▶ Under probability model for composite posterior, asymptotic covariance for $\hat{\theta}_n$ is \mathbf{Q}_n^{-1} .
 - ▶ Under original model, asymptotic covariance for $\hat{\theta}_n$ is $\mathbf{G}_n^{-1} = \mathbf{Q}_n \mathbf{P}_n^{-1} \mathbf{Q}_n$, inverse of Godambe information matrix.

 \mathbf{P}_n : Covariance matrix for gradient of composite likelihood.

 \mathbf{Q}_n : Information matrix for composite likelihood.

 Proofs follow directly from Chernozhukov and Hong (2003). Details in Chang et al. (2013)

Covariance Adjustment

- ► For posterior mode $\hat{\theta}_n$ and true value θ_0 ,
 - ▶ Under composite posterior $\mathbf{Q}_n^{\frac{1}{2}} \left(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0 \right) \overset{\mathcal{D}}{\rightarrow} N(0, \mathbf{I}), \text{ as } n \rightarrow \infty$
 - ▶ Under original posterior $\mathbf{G}_n^{\frac{1}{2}}\left(\hat{\boldsymbol{\theta}}_n \boldsymbol{\theta}_0\right) \overset{\mathcal{D}}{\to} N(0, \mathbf{I})$, as $n \to \infty$
- Asymptotic covariance of $\hat{\theta}_n$ computed using MCMC sample from composite posterior converges to \mathbf{Q}_n^{-1}
- Open-faced sandwich adjustment (Shaby 2012): For each posterior draw for θ, compute

$$ilde{ heta}^{open} = \hat{oldsymbol{ heta}}_n + \mathbf{Q}_n^{-1} \mathbf{P}_n^{rac{1}{2}} \mathbf{Q}_n^{rac{1}{2}} (oldsymbol{ heta} - \hat{oldsymbol{ heta}}_n).$$

 \Rightarrow This adjusts covariance from \mathbf{Q}_n^{-1} to \mathbf{G}_n^{-1} .

Results

Climate sensitivity estimation using sea temperature anomaly:

Discussion

- Dimension reduction-based approach:
 - ▶ Very fast, scales well with *n*, number of spatial locations
 - Very easy to use: Automatic emulation step
- Composite likelihood-based approach:
 - Formal way to account for information loss due to blocking

Ongoing Research: Calibration Problem for Binary Output

Again, which output best matches the observations?

References

- PCA approach:
 - Chang, W., Haran, M., Olson, R., and Keller, K. (2013) Fast dimension-reduced climate model calibration, accepted for publication in the Annals of Applied Statistics, arXiv:1303.1382.
 - Chang, W., Applegate, P., Haran, M. and Keller, K. (2013) Probabilistic calibration of a Greenland Ice Sheet model using spatially-resolved synthetic observations: toward projections of ice mass loss with uncertainties, under revision.
- Composite likelihood approach:
 - Chang, W., Haran, M., Olson, R., and Keller, K. (2013) A composite likelihood approach to computer model calibration with high-dimensional spatial data, *tentatively* accepted by Statistica Sinica, arXiv:1308.0049.

This work was supported by the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507.

General Asymptotic Properties of Maximum CL

Theorem

(Lindsay, 1988) Under the same regularity conditions as used for ordinary likelihood, the maximum composite likelihood estimator (MCLE) $\hat{\psi}_n^{\text{CL}}$ has

- ▶ Consistency: $\hat{\psi}_n^{CL} \stackrel{\mathcal{P}}{\to} \psi$ as $n \to \infty$, where ψ^* is the true value of ψ .
- Asymptotic Normality:

$$\mathbf{G}_{n}^{\frac{1}{2}}\left(\hat{\psi}_{n}^{\mathit{CL}}-\psi\right)\overset{\mathcal{D}}{
ightarrow}\mathit{N}(0,\mathbf{I}),$$

where $\mathbf{G}_n = \mathbf{Q}_n \mathbf{P}_n^{-1} \mathbf{Q}_n$ is the Godambe information matrix (Godambe, 1960), \mathbf{P}_n is the covariance matrix of the gradient $\nabla c \ell_n$, and \mathbf{Q}_n is the information matrix of $c \ell_n$.

Asymptotic Results

Theorem: For posterior mode $\hat{\theta}_n$ and true value θ_0 ,

1. **Consistency**: Posterior density of θ degenerates on θ_0 in total variation.

For finite n, covariance of θ is approximately \mathbf{Q}_n^{-1} .

2. **Normality**: For Godambe information matrix $\mathbf{G}_n = \mathbf{Q}_n \mathbf{P}_n^{-1} \mathbf{Q}_n$,

$$\mathbf{G}_n^{\frac{1}{2}}\left(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0\right) \stackrel{\mathcal{D}}{\rightarrow} N(0, \mathbf{I}), \text{ as } n \rightarrow \infty,$$

utilizing results from Chernozhukov and Hong (2003).

 \mathbf{P}_n : Covariance matrix of gradient.

 \mathbf{Q}_n : Information matrix of composite likelihood.

Effect of No. of Blocks

- Trade-offs between block sizes (n_i) and number of blocks (M)
- More blocks: Faster computation, but slower convergence
- Heuristic guideline: Keep block size larger than effective range (3 range parameter)

Pseudo Likelihood

- Computing exact likelihood for autologistic model involves computing intractable constant.
- Conditional composite likelihood (Besag, 1975):

$$c\ell(\mathbf{Z}, \boldsymbol{\eta}(\boldsymbol{\theta}) | \psi, \boldsymbol{\theta}) = \sum_{j=1}^{n} \log f(Z(\mathbf{s}_{j}) | \mathbf{Z}_{-j}, \psi, \boldsymbol{\eta}(\boldsymbol{\theta})) + \log f(\boldsymbol{\eta}(\boldsymbol{\theta}) | \boldsymbol{\theta}).$$

where
$$\mathbf{Z}_{-j} = \{Z_k | k \in \mathcal{N}_j\}.$$

▶ Other approaches are not feasible for large *n*.