Problem

Prove that if A ? P, then $P^A = P$.

Step-by-step solution

Step 1 of 1

Given:

Language A belongs to the polynomial type oracle Turing machine P.

 $A \in P$

Proof:

 P^{A} , is basically the class of the language which is decidable with the polynomial Turing machine which uses language A.

Here, it is to be proved that $P^A = P$

Construction:

Language A is the device which checks whether the string w is the member of A.

Suppose string w contains the value ${a^nb^n}$ and user has given the string ${aabb}$ then it is accepted by A. If the string ${aabbb}$ is specified then it is not expected by the language A.

Now, user checks this for the poly-time Turing machine:

Suppose N is the poly-time Turing machine, here, construction of the machine is done so that it can be proved that P^A , is basically the class of the language which is decidable with the polynomial Turing machine which uses language A.

- \bullet Computation path for N is done and it is found that it leads to the acceptance of the polynomial.
- If the string is accepted then yes query will execute if it is not accepted then no query will execute.
- Machine N checks whether all the string is accepted and rejected
- If the guess is right then string is accepted.

Here, for all the string computation is done and hence it is proved that $P^A = P$

Comment