1. Homework (Complex Systems block) Introduction to Focus Areas WS 2024/25

Deadline: November 25, 10:00 (before the lecture)

The homework should be worked out in groups and programming exercises must be submitted via whiteboard. Please hand in pen & paper exercises before the lecture (print-out or hand written, with the names and 'Matrikulationnummer' of all group members stated). Pen & paper exercises will be discussed on the board.

Homework 1 (Modelling (pen & paper), 2 points)

You saw the following depiction of a reaction network model in your favourite research magazine and you would like to use this model in a research project of your own. Decompose it into its

stoichiometric matrix S and a vector of **reaction rate** functions r_1, \ldots, r_5 . x_1, x_2, x_3 are the systems variables. \varnothing symbols denote the elimination of molecules. Stoichiometric coefficients can only be -1, 0 or 1; **Reaction constants** are: $k_1 = k_a$; $k_2 = \pi \cdot c_2$; $k_3 = \pi \cdot k_{\text{deg}}$; $k_4 = k_4$; $k_5 = \text{CL}$. Reaction rates r_1, \ldots, r_4 are of first order, while r_5 is a second order reaction rate.

Homework 2 (Modelling (pen & paper), 2 points)

You are given the following stoichiometric matrix S:

and the following propensity functions (= reaction rate functions) $r_1 \dots r_4$.

$$r_{1} = \frac{k_{a}}{K_{D} \left(1 + \frac{x_{4}}{K_{I}}\right)} \cdot x_{2} \cdot x_{4}$$

$$r_{2} = k_{b} \cdot x_{1}$$

$$r_{3} = k_{c} \cdot x_{2}$$

$$r_{4} = k_{d}$$
(1)

Write down the corresponding system of ordinary differential equations (ODEs).

Homework 3 (Modelling (pen & paper), 2 points)

You have used the following ODE-system in your research:

$$\begin{array}{lcl} \frac{\mathrm{d}}{\mathrm{d}t}x_1 & = & x_2 \cdot \mathrm{k_a} - x_1 \left(\mathrm{k_{cat}} \cdot x_3 + \mathrm{k_b} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t}x_2 & = & x_1 \left(\mathrm{k_{cat}} \cdot x_3 + \mathrm{k_b} \right) - x_2 \left(\mathrm{k_{deg}} + \mathrm{k_a} \right) \\ \frac{\mathrm{d}}{\mathrm{d}t}x_3 & = & \lambda - x_1 \cdot \mathrm{k_{cat}} \cdot x_3. \end{array}$$

Write down the rate functions r_1, \ldots akin to **Homework 2**. Then, depict the corresponding reaction network (analogous to the graphic in **Homework 4**, where you just write the rate that corresponds to the 'arrow', i.e. r_1).

Homework 4 (Implementation (upload via Whiteboard), 2+2 points)

a) You are given the following reaction network model: All reactions are mass-action, reaction

 r_1 is of zero order, reactions r_2, r_4 and r_5 are first order and reaction r_3 is of second order, with respective reaction constants k_1, \ldots, k_5 . Write a small program to generate the stoichiometric matrix and propensity function vector. Regrading the former, only use stoichiometric coefficients -1, 0 or 1.

Your program must write the stoichiometric matrix into a text file named "SMatrix.txt", collumns should be comma-delimited. E.g., in Python the numpy function 'savetxt' using a commadelimiters (','). Write numbers as signed integers, e.g. '-1' instead of '-1.00'.

b) Compute the value of the ODEs for parameters $k_1 = 5$, $k_2 = 3$, $k_3 = 12$, $k_4 = 7$, $k_5 = 3$ and time step $\triangle t = 1$ and the current system's state, which is given in the "Input.txt" file:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 25 \\ 15 \\ 5 \end{pmatrix}$$

Your program must write an output into a text file named "ODEValue.txt" using the above described format. Round the output to the first two digits after the comma, e.g. '1.20' or '0.34'. Name your program "Exc1_4.py" and submit via Whiteboard.

Tipp: There is a code scaffold provided for you in whiteboard which you can adapt.

Good luck!