MONASH University Information Technology

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

FIT3080 – Intelligent Systems

Knowledge Representation Chapters 7-9

Knowledge Representation: Learning Objectives

- Knowledge-based agents
- Logic in general models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- First-order logic
- Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution refutation systems
 - > substitution
 - > unification
 - > resolution

Assumptions about the Environment

- Observable
- Known
- Single/multi agent
- Deterministic
- Sequential/episodic
- Static
- Discrete

Knowledge Representation

- How do we represent facts about the world?
- How do we reason about these facts?
- Some widely accepted formal calculi
 - Propositional logic
 - First-order logic
 - Probability calculus

Knowledge Bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent:
 - Tell it what it needs to know
 - Ask it a question answers follow by inference from the KB
- Agents may be viewed
 - at the knowledge level what they know
 - at the implementation level data structures in the KB and algorithms that manipulate them

A Simple Knowledge-based Agent

The agent must be able to:

- Represent states, actions, etc
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden properties of the world
- Deduce appropriate actions

Logic in General

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the meaning of sentences,
 - i.e., the truth of a sentence in each possible world
- E.g., the language of arithmetic
 - x+2 ≥ y is a sentence; x2+y > {} is not a sentence
 - x+2 ≥ y is true in all the worlds where the number x+2 is no less than the number y
 - $-x+2 \ge y$ is true in a world where x = 7, y = 1
 - $-x+2 \ge y$ is false in a world where x = 0, y = 6

Entailment

Entailment means that one thing follows logically from another:

$$KB \models \alpha$$

knowledge base KB entails sentence α iff α is true in all worlds where KB is true

- E.g.,
 - the KB containing "the Giants won" and "the Reds won" entails "the Giants won or the Reds won"
 - x+y = 4 entails 4 = x+y
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

- Models are formally structured worlds with respect to which truth can be evaluated
- If a sentence α is true in a model m, we say that
 - m is a model of α , or
 - m satisfies a
- $M(\alpha)$ = the set of all models of α
 - $KB \models \alpha \text{ iff } M(KB) \subseteq M(\alpha)$
 - > E.g., KB = Giants won & Reds won α = Giants won

Inference

- $KB \mid_{i} \alpha$ means that sentence α can be derived from KB by procedure i
- Soundness: procedure *i* is sound if whenever $KB \mid_i \alpha$, it is also true that $KB \models \alpha$
- Completeness: procedure *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
- First-order logic (FOL) is expressive enough to say almost anything of interest, and there exists a sound and complete inference procedure for it

Grounding

The connection between logical reasoning processes and real environments

- How do we know that KB is true in the real world?
 - The agent's sensors create a connection, i.e., the meaning and truth of percept sentences are defined by the processes of sensing and sentence construction
- Where do we get the rest of an agent's knowledge?
 - By learning (generalizing) from experience

FIT3080 – Intelligent Systems

Propositional Logic

Propositional Logic: Some Definitions

- Literal: a proposition or its negation
 - E.g., P, ¬P
- Clause: a disjunction of literals
 - E.g., $\neg P \lor Q \lor A$

Propositional Logic: Syntax

- Propositional logic is the simplest logic
- The proposition symbols P₁, P₂, ... are sentences
 - Negation: If S is a sentence, ¬S is a sentence
 - Conjunction: If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence
 - Disjunction:
 If S₁ and S₂ are sentences, S₁ ∨ S₂ is a sentence
 - Implication: If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence
 - **Biconditional**: If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence

Propositional Logic: Semantics

Each model specifies true/false for each proposition

- E.g.,
$$S_1$$
 S_2 S_3 false true false

Rules for evaluating truth with respect to a model m:

```
\neg S is true iff S is false S_1 \wedge S_2 is true iff S_1 is true and S_2 is true S_1 \vee S_2 is true iff S_1 is true or S_2 is true S_1 \Rightarrow S_2 \equiv \neg S_1 \vee S_2 is true iff S_1 is false or S_2 is true S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true and S_2 \Rightarrow S_3 is true
```

Simple recursive process evaluates an arbitrary sentence

- E.g.,
$$\neg S_1 \land (S_2 \lor S_3) = true \land (true \lor false) = true \land true = true$$

Truth Tables for Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Logical Equivalence

• Two sentences are logically equivalent iff they are both true in the same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) commutativity of \wedge
            (\alpha \vee \beta) \equiv (\beta \vee \alpha) commutativity of \vee
((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) associativity of \land
((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) associativity of \vee
             \neg(\neg\alpha) \equiv \alpha double-negation elimination
        (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) contraposition
       (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) implication elimination
       (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) biconditional elimination
        \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) de Morgan
        \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) de Morgan
(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) distributivity of \wedge over \vee
(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) distributivity of \vee over \wedge
```


Validity and Satisfiability

- A sentence is valid if it is true in all models
 - E.g., True, A∨¬A, A \Rightarrow A
- Validity is connected to inference via the Deduction Theorem
 - $-\alpha \models \beta$ iff $\alpha \Rightarrow \beta$ is valid
- A sentence is satisfiable if it is true in some model
 - E.g., A∨B, C
- A sentence is unsatisfiable if it is true in no models
 - E.g., A∧¬A
- Satisfiability and validity are connected
 - $-\alpha$ is valid iff $\neg\alpha$ is unsatisfiable
 - $-\alpha$ is satisfiable iff $-\alpha$ is not valid
 - $-\alpha \models \beta$ iff $\alpha \land \neg \beta$ is unsatisfiable

Proof Methods

Model checking

Enumerates all possible models to check that a sentence α is true in all models where KB is true

- Truth table enumeration $(2^n$, where n is the number of symbols)
- Backtracking (recursive enumeration of all models) with logicrelated heuristics

Application of inference rules

Sound generation of new sentences from old

- Proof = a sequence of inference rule applications
 - > use inference rules as operators in a standard search algorithm
 - > typically require transformation of sentences into a *normal form*

Common Rules of Inference

Parent clauses	Resolvent	Name	
P and ¬PvQ	Q	Modus Ponens	
¬Q and ¬PvQ	¬P	Modus Tollens	
P and Q	P or Q	And Elimination	
PvQ and ¬PvQ	Q		
PvQ and ¬Pv¬Q	Qv¬Q or	Tautology	
	Pv⊣P		
P and ¬P	NIL		
¬PvQ and ¬QvR	¬PvR	Chaining	
PvQ and ¬PvR	QvR		

Proof as Search

- Initial state: initial KB
- Actions: the inference rules applied to all the sentences that match the lhs of the rule
- Result: add the sentence on the rhs of a rule to the KB
- Goal: a state where the KB contains the sentence we are trying to prove

Monotonicity: the set of entailed sentences can only increase as information is added to the KB

Resolution

 Resolution – an inference rule applied to clauses that yields a complete inference algorithm when coupled with any complete search algorithm

$$l_1 \vee \ldots \vee l_i \vee \ldots \vee l_k \qquad m_1 \vee \ldots \vee m_j \vee \ldots \vee m_n$$

$$l_1 \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n$$

- where l_i and m_j are complementary literals ($l_i = \neg m_j$)
- the resultant clause should contain only one copy of each literal
- Resolution is sound for propositional logic

Conversion to Conjunctive Normal Form

- Every sentence in propositional logic is logically equivalent to a conjunction of clauses
- Converting a sentence to Conjunctive Normal Form (CNF)
 - 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
 - 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$
 - 3. Move inwards by repeated application of the following equivalences:
 - > double-negation: $\neg (\neg \alpha) \equiv \alpha$
 - > de Morgan $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
 - > de Morgan $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$
 - 4. Apply distributivity law (∧ over ∨) and flatten

Resolution-refutation Systems

Proof by refutation

- Negate the goal and add the negation to the set of clauses
- 2. Apply resolution to the clauses in the set of clauses until a contradiction is reached

Answer extraction

- Build a tautology by appending the goal itself to the negation of the goal
- 2. When the negated goal is contradicted, the answer resides in the goal

Resolution-refutation Algorithm

• Proof by contradiction, i.e., given a goal α , show that $KB_{\wedge} \neg \alpha$ is unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
clauses \leftarrow \text{ the set of clauses in the CNF representation of } KB \land \neg \alpha
new \leftarrow \{ \}
loop do
for each <math>C_i, C_j \text{ in } clauses do
resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)
if resolvents \text{ contains the empty clause then return } true
new \leftarrow new \cup resolvents
if new \subseteq clauses \text{ then return } false
clauses \leftarrow clauses \cup new
```

Resolution-refutation – Example

Soundness and Completeness

Resolution refutation is sound and complete

- Resolution Closure RC(S) of a set of clauses S is the set of <u>all</u> clauses derivable by repeated application of the resolution rule to the clauses in S or their derivatives
 - -RC(S) is finite \rightarrow Resolution always terminates
- Ground resolution theorem: if a set of clauses is unsatisfiable, then the resolution closure of those clauses contains the empty clause
 - → Resolution-refutation is complete for propositional logic

Horn Clauses and Definite Clauses

- Definite clause a disjunction of literals of which <u>exactly one</u> is positive
 - E.g., $\neg A \lor \neg B \lor C$
 - Definite clauses can be written as implications (A∧B) ⇒ C
- Horn clause a disjunction of literals of which <u>at</u> most one is positive
 - All definite clauses are Horn clauses
 - Clauses with no positive literals are goal clauses
 - Inference with Horn clauses can be done with forward or backward chaining
 - Deciding entailment with Horn clauses can be done in time that is linear on the size of the KB

Forward Chaining Algorithm

IDEA: Work forwards from the facts in KB

```
function PL-FC-Entails?(KB, q) returns true or false
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                     agenda, a list of symbols, initially the symbols known to be true
   while agenda is not empty do
       p \leftarrow \text{Pop}(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                     if HEAD[c] = q then return true
                     Push(Head[c], agenda)
   return false
```

Forward chaining is sound and complete for Horn KBs

Forward Chaining – Example

KB:

- $-R1:P\Rightarrow Q$
- $R2: L \wedge M \Rightarrow P$
- $R3: B \wedge L \Rightarrow M$
- $R4: A \land P \Rightarrow L$
- $R5: A \wedge B \Rightarrow L$
- A
- B
- Prove Q

Agenda		C	OU	ın	t	Inferred
			R 3			
AB	1	2	2	2	2	
В	1	2	2	1	1	Α
L						
M						

Backward Chaining

- IDEA: Work backwards from the query q:
 - to prove q by Backward Chaining, check if q is known already, or prove by Backward Chaining all premises of some rule concluding q
- Avoid loops: check if new subgoal is already on the goal stack
- Avoid repeated work: check if a new subgoal
 - 1. has already been proved true, or
 - 2. has already failed

Backward chaining is sound and complete for Horn KBs

Backward Chaining – Example

• KB:

- $-R1: P \Rightarrow Q$
- $R2: L \wedge M \Rightarrow P$
- $R3: B \wedge L \Rightarrow M$
- $R4: A \wedge P \Rightarrow L$
- $R5: A \wedge B \Rightarrow L$
- A
- B
- Prove Q

Forward versus Backward Chaining

Forward Chaining

- data-driven, automatic, unconscious processing
 - > e.g., object recognition, routine decisions
- may do lots of work that is irrelevant to the goal

Backward Chaining

- goal-driven, appropriate for problem-solving
 - > e.g., How do I get into a PhD program?
- complexity can be much less than linear in size of KB
- Both are sound and complete for Horn KBs

Pros and Cons of Propositional Logic

- **(2)** declarative
- @ allows partial/disjunctive/negated information
- © compositional:
 - meaning of $A \wedge B$ is derived from meaning of A and of B
- Meaning is context-independent
- Propositional logic has very limited expressive power
 - E.g., cannot say "all men are mortal"

FIT3080 – Intelligent Systems

First Order Logic

First-order Logic (FOL)

First-order logic assumes the world contains

- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...
- → FOL has increased expressive power

First Order Logic – Syntax (I)

- term constant, variable or function
- atomic formula predicate symbol and terms
 - Example: MARRIED(John, Mother(x))
 - > Predicate symbol MARRIED
 - > Constant John
 - > Function *Mother*
 - > Variable x
- literal atomic formula or negation of an atomic formula
 - E.g., ¬MARRIED(John, Mother(x))
- ground literal literal without variables

First Order Logic – Syntax (II)

connectives

- disjunction P(x) v Q(y) v W(x,y)
- conjunction $P(x) \wedge Q(y)$
- implication P(x) \Rightarrow W(x,y) \equiv ¬P(x) v W(x,y)
- clause disjunction of literals
 E.g., MARRIED(John, Mother(x)) v MARRIED(John, y)
- conjunctive normal form a conjunction of a finite set of clauses

E.g., $(P1(x)vP2(y)) \wedge P3(x)$

Well Formed Formulas (wffs)

Legitimate expressions in predicate calculus

- 1. Any conjunction of wffs is a wff
- 2. Any disjunction of wffs is a wff
- 3. If both the antecedent and the consequent are wffs, so is the implication
- 4. The negation of a wff is also a wff

First Order Logic – Quantification

Quantification

- Universal (∀) –∀x [ELEPHANT(x) ⇒ COLOUR(x,GRAY)]
- Existential (∃) –∃x WRITE(x,COMPUTER-CHESS)
- 1. Any conjunction of wffs is a wff
- 2. Any disjunction of wffs is a wff
- 3. If both the antecedent and the consequent are wffs, so is the implication
- 4. The negation of a wff is a wff
- 5. Any expression obtained by quantifying a wff is a wff

FOL – Nesting of Quantifiers

 Existential inside the scope of universal E.g., ∀s∃c Eats(s,c)

 Universal inside the scope of existential E.g., ∃c∀s Eats(s,c)

FOL – Some Equivalences

- $\neg(\exists x)P(x) \equiv (\forall x) [\neg P(x)]$ There does not exist an x such that P(x) is true \equiv For all x, P(x) is false
- ¬(∀x)P(x) ≡ (∃x) [¬P(x)]
 It is not true that for all x P(x) is true ≡
 There exists an x, such that ¬P(x)
- $(\forall x)[P(x) \land Q(x)] \equiv (\forall x)P(x) \land (\forall y)Q(y)$ For all x, P(x) and Q(x) are true \equiv For all x, P(x) is true, and for all y Q(y) is true
- (∃x)[P(x) v Q(x)] ≡ (∃x)P(x) v (∃y)Q(y)
 There is an x, such that P(x) is true or Q(x) is true ≡
 There is an x, such that P(x) is true, or
 there is a y, such that Q(y) is true

Rules of Inference – Example

- Modus Ponens:
 [P and P⇒Q] → Q
- Modus Tollens:
 [¬Q and P⇒Q] → ¬P
- Universal Specialization
 ∀x W(x) → W(A), where A is a constant
- Example: Universal Specialization + Modus Ponens
 - 1. $\forall x [DOG(x) \Rightarrow BARKS(x)]$
 - 2. DOG(FIDO)

From 1 and 2: BARKS(FIDO)

General Inference – Resolution Refutation

Resolution

- Unification
 - > Substitution
- Converting wffs into clauses

Substitution

- Substitution is a set of ordered pairs
 s={t₁/v₁, t₂/v₂, ..., t_n /v_n}
 where t_i/v_i means that t_i is substituted for v_i
 throughout
 - Example:{A/x, B/y} P(x,y) → P(A,B)
- Semantics: all elements are applied simultaneously
 - Example: {g(y)/x, h(z)/y, x/z} P(w, y, g(z), x)→P(w, h(z), g(x), g(y))

Composition of Substitutions

s1s2 – composition of two substitutions

- Apply s2 to the terms of s1
- Add any pairs of s2 having variables not in s1

Example: term $s1 = \{g(x,y)/z\}$ variable $s2 = \{A/x, B/y, C/w, D/z\}$ $s1s2 = \{g(A,B)/z, A/x, B/y, C/w\}$ $s2s1 = \{A/x, B/y, C/w, D/z\}$

Properties of compositions of substitutions

- L(s1s2) = (Ls1)s2
- Associative: (s1s2)s3 = s1(s2s3)
- NOT commutative: s1s2 ≠ s2s1

Unification

- A process that finds substitutions of terms for variables, such that two expressions are identical
- A set {E_i} of expressions is unifiable, if there exists a substitution s such that E₁s= E₂s= ...
 In this case, s is a unifier of {E_i}
- mgu (most general unifier) the mgu g of {E_i} has the property that if s is any unifier of {E_i}, yielding {E_i}s, then there exists a substitution s' such that {E_i}s = {E_i}gs'
- Example: s={A/x, B/y} unifies P(x,f(y)) with P(x,f(B)) but the mgu is {B/y}

Algorithm Unify

Algorithm Unify(E1,E2)

- 1. If either E1 or E2 is a symbol (predicate, function, constant, negation or variable), then interchange E1 and E2, so that E1 is a symbol
 - a. If E1 and E2 are identical then return { } // no substitution
 - **b.** If E1 is a variable do
 - i. If E1 occurs in E2 then return FAIL
 - ii. return {E2/E1}
 - c. If E2 is a variable then return {E1/E2}
 - d. return FAIL
- 2. F1 ← the first element of E1, T1 ← rest of E1
- 3. F2 ← the first element of E2, T2 ← rest of E2
- 4. Z1 ← Unify(F1,F2)
- 5. If Z1 = FAIL, then return FAIL
- 6. G1← result of applying Z1 to T1; G2 ← result of applying Z1 to T2
- 7. **Z2** ← Unify(G1,G2)
- 8. If Z2 = FAIL, then return FAIL
- 9. return the composition of Z1 and Z2

Unification Example: Unify(P(y,g(y)),P(z,g(x)))

```
4. Z1 \leftarrow Unify(P,P)
    1.a P and P are identical → return NIL
 7. Z2 \leftarrow Unify((y,g(y)),(z,g(x)))
    4. Z1 \leftarrow Unify(y,z): 1.b.ii return \{z/y\}
    6. G1 \leftarrow (g(y)){z/y} \rightarrow (g(z)), G2 \leftarrow (g(x)){z/y} \rightarrow (g(x))
    7. Z2 \leftarrow Unify((g(z)),(g(x))):
        4. Z1 \leftarrow Unify(g(z),g(x))
           4. Z1 \leftarrow Unify(g,g)
               1.a g and g are identical → return NIL
           7. Z2 \leftarrow Unify((z),(x))
               4. Z1 \leftarrow Unify(z,x): 1.b.ii return {x/z}
9. return composition of \{z/y\}\{x/z\} = \{x/y,x/z\}
```


Converting wffs into Clauses

- 1. Eliminate implication symbols
- 2. Reduce scopes of negation symbols
- 3. Standardize variables
- 4. Eliminate existential quantifiers (skolemize)
- 5. Move all universal quantifiers to the front
- 6. Put result in conjunctive normal form (CNF)
- 7. Eliminate universal quantifiers
- 8. Eliminate ∧ symbols
- 9. Rename variables (standardize variables apart)

Converting wffs into Clauses – Example 1

```
\forall x [ CanRead(x) \Rightarrow Intelligent(x) ]
```

- 1. Eliminate \Rightarrow : $\forall x [\neg CanRead(x) v Intelligent(x)]$
- 7. Eliminate ∀: ¬CanRead(x) v Intelligent(x)

Converting wffs into Clauses – Example 2

```
\forall x [\neg (\forall y) [ P(x,y) \Rightarrow Q(x,y)] ]
    Eliminate ⇒:
                                 \forall x [\neg (\forall y) [\neg P(x,y) \lor Q(x,y)]]
    Reduce scope of \neg: \forall x [ \exists y \neg [ \neg P(x,y) \lor Q(x,y)] ]
                                  \forall x \exists y [P(x,y) \land \neg Q(x,y)]
    Eliminate ∃:
                                  \forall x [ P(x,g(x)) \land \neg Q(x,g(x)) ]
4.
    Eliminate ∀:
                                        P(x,g(x)) \wedge \neg Q(x,g(x))
8.
     Eliminate \Lambda symbols: { P(x,g(x)), \neg Q(x,g(x)) }
   Standardize variables apart: { P(x_1,g(x_1)), \neg Q(x_2,g(x_2)) }
```


General Resolution

- Let the prospective parent clauses be $\{L_j\}$ and $\{M_i\}$ (with variables standardized apart)
- Suppose that $\{l_j\}$ is a subset of $\{L_j\}$ and that $\{m_i\}$ is a subset of $\{M_i\}$ such that a most general unifier s exists for the union of the sets $\{l_j\}$ and $\{\neg m_i\}$
- The clauses $\{L_j\}$ and $\{M_i\}$ resolve and the new clause $\{\{L_j\}-\{l_j\}\}$ U $\{\{M_i\}-\{m_i\}\}$ is a resolvent of the two clauses

General Resolution – Example

1. Everyone who can read is literate

 $\forall x [CanRead(x) \Rightarrow Literate(x)]$

2. Whoever goes to school can read

 $\forall x [GoSchool(x) \Rightarrow CanRead(x)]$

$$\neg GoSchool(x_1) \ v \ CanRead(x_1) \ \neg CanRead(x_2) \ v \ Literate(x_2)$$

$$mgu \ s=\{x_1/x_2\}$$

 \neg GoSchool(x₁) v Literate(x₁)

Resolution-refutation – Example (I)

1. If a unit is easy, there are some students who are enrolled in it who are happy

```
\forall u \ [ Easy(u) \Rightarrow \exists s \ [ Enrolled(s,u) \land Happy(s) ] ]
```

2. If a unit has a final exam, no students that are enrolled in it are happy

```
\forall u [ HasFinal(u) \Rightarrow \neg \exists s [ Enrolled(s,u) \land Happy(s) ] ]
```

3. Prove that if a unit has a final exam, the unit is not easy

```
\forall u [ HasFinal(u) \Rightarrow \neg Easy(u) ]
```


Resolution-refutation – Example (II)

Converting to clauses

```
1. \forall u \ [ Easy(u) \Rightarrow \exists s \ [ Enrolled(s,u) \land Happy(s) ] ]
   Eliminate \Rightarrow: \forall u [ \neg Easy(u) v \exists s [Enrolled(s,u) \land Happy(s) ]]
   Eliminate \exists: \forall u [\neg Easy(u) v [Enrolled(g(u),u) \land Happy(g(u))]]
   Turn into CNF: \forall u [ [ \neg Easy(u) \ v \ Enrolled(g(u),u) ] \land [
                              [ \neg Easy(u) v Happy(g(u)) ] ]
   Eliminate \forall: [ \neg Easy(u) v Enrolled(g(u),u) ] \land
                        [ - Easy(u) v Happy(g(u)) ]
   Eliminate \Lambda and rename variables:
     1.1 \neg Easy(u<sub>1</sub>) v Enrolled(g(u<sub>1</sub>),u<sub>1</sub>)
     1.2 - Easy(u_2) v Happy(g(u_2))
```


Resolution-refutation – Example (III)

```
2. \forallu [ HasFinal(u) \Rightarrow \neg \existss [ Enrolled(s,u) \land Happy(s) ] ] 
 Eliminate \Rightarrow: \forallu [ \neg HasFinal(u) v \neg \existss [ Enrolled(s,u) \land Happy(s) ] ] 
 Reduce scope of \neg: \forallu [\neg HasFinal(u) v \foralls \neg[ Enrolled(s,u) \land Happy(s) ] ] 
 \forallu [\neg HasFinal(u) v \foralls[\negEnrolled(s,u) v \negHappy(s) ] ] 
 Move \forall to the front: \forallu \foralls [\neg HasFinal(u) v \neg Enrolled(s,u) v \negHappy(s) ] 
 Eliminate \forall and rename variables: \neg HasFinal(u<sub>3</sub>) v \negEnrolled(s<sub>3</sub>,u<sub>3</sub>) v \negHappy(s<sub>3</sub>)
```


Resolution-refutation – Example (IV)

Using resolution to prove statement 3 Negate the goal:

```
3'. \neg \forall u \text{ [ HasFinal(u)} \Rightarrow \neg \text{ Easy(u) ]}

Eliminate \Rightarrow: \neg \forall u \text{ [} \neg \text{ HasFinal(u)} \lor \neg \text{ Easy(u) ]}

Reduce scope of \neg: \exists u \text{ [ HasFinal(u)} \land \text{ Easy(u) ]}

Eliminate \exists: HasFinal(A) \land Easy(A)

Eliminate \land: 3'.1 HasFinal(A)

3'.2 Easy(A)
```


Resolution-refutation – Example (V)

Resolution Strategies

- Unit preference: prefer resolutions where one of the sentences is a unit clause (single literal)
 - Unit resolution: every resolution must involve a unit clause
- Set of support: every resolution step should involve at least one element of a special set of clauses, the set of support. The resolvent is added to the set of support
 - E.g., set of support = $\{\neg Q\}$
- Input resolution: every resolution combines one of the original input sentences (from the KB or the query) with another sentence
- Subsumption: eliminates all sentences that are subsumed by (more specific than) an existing sentence in the KB

Uses of FOL in Al

Theorem proving

- 1. ON(C,A)
- 2. ONTable(A), ONTable(B)
- 3. CLEAR(C), CLEAR(B)
- 4. $\forall x [CLEAR(x) \Rightarrow \neg \exists y ON(y,x)]$

Goal: Prove $\neg \exists y \ ON(y,C)$

Question answering

- 1. MANAGER(Purchasing-dept., John-Jones)
- 2. WorksIn(Purchasing-dept., Joe-Smith)
- 3. $\forall x \ \forall y \ \forall z \ [WorksIn(x,y) \ \Lambda \ MANAGER(x,z)] \Rightarrow BossOf(y,z)$

Goal: Who is the boss of Joe Smith? ∃x BossOf (Joe-Smith,x)

Planning

Reading

- Russell, S. and Norvig, P. (2010), Artificial Intelligence – A Modern Approach (3rd edition), Prentice Hall
 - Chapter 7, Sections 7.1-7.5
 - Chapter 8
 - Chapter 9, Sections 9.1, 9.2 and 9.5

