1. Solution

The sample size, *n*, is 35. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	Χ
Q1	$\lceil 0.25 imes 35 ceil$	9	62.58
Q2	$\lceil 0.5 imes 35 \rceil$	18	63.61
Q3	$\lceil 0.75 \times 35 \rceil$	27	65.14

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 65.14 - 62.58$$

$$= 2.56$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $62.58 - 1.5 \times 2.56$
= 58.74
upper boundary = Q3 + $1.5 \times IQR$
= $65.14 + 1.5 \times 2.56$
= 68.98

We determine the outliers.

outliers =
$$\{70.08, 71.11, 72.09, 74.39\}$$

We identify the ends of the whiskers: 60.1 and 68.56. We plot the boxplot.

2. Solution

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	67.53
Q2	$\lceil 0.5 \times 56 \rceil$	28	69.86
Q3	$\lceil 0.75 \times 56 \rceil$	42	71.43

We determine the IQR.

$$IQR = Q3 - Q1$$

= 71.43 - 67.53
= 3.9

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $67.53 - 1.5 \times 3.9$
= 61.68
upper boundary = Q3 + $1.5 \times IQR$
= $71.43 + 1.5 \times 3.9$
= 77.28

We determine the outliers.

outliers =
$$\{60.87, 77.39\}$$

We identify the ends of the whiskers: 64.43 and 76.16. We plot the boxplot.

