Tutorial 7

1. Let the universal set, $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and S, T be the subsets of U defined as $S = \{x | x \in U \text{ and } 3 \text{ divides } x\}$, $T = \{x | x \in U \text{ and } 5 \text{ divides } x\}$. List the elements in $S \times T$.

1)	$S = \{0.3.6.93 \ T = \{0.5.103 \ V$
	$S \times T = \{(0.0), (0.5), (0.10), (3.0), (3.5), (3.10)\}$
	(6,0), (6,5), (6,10), (9,0), (9,5), (9,10)}

2. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A_1 = \{1, 2, 3, 4\}$, $A_2 = \{5, 6, 7\}$, $A_3 = \{4, 5, 7, 9\}$, $A_4 = \{4, 8, 10\}$, $A_5 = \{8, 9, 10\}$, $A_6 = \{1, 2, 3, 6, 8, 10\}$. List the possible partitions of A.

$$A_1 \cap A_2 \cap A_5 = \emptyset$$

2
) $A_{1} \cup A_{2} \cup A_{5} = A$

$$A_3 \cap A_6 = \emptyset$$

$$A_3 \cup A_6 = A \checkmark$$

 $\{A_1,A_2,A_5\}$ and $\{A_3,A_6\}$ are partitions of A

3. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{3, 4\}$ and define a binary relation R from A to B as follows: For $(x, y) \in A \times B$, $(x, y) \in R \Leftrightarrow x \geq y$.

Write R as a set of ordered pairs.

optional: AXB = { (1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (4,3), (4,4),

(513), (514)}
	Tannishan y applications
A	$=\{1,2,3,4,5\}$, $B=\{3,4\}$
-	For (x,y) + AxB, (x,y) + R => x>y
1 100	1 DI-5022 1000 1502
	R= \(\frac{3}{3}\), (4,3), (4,4), (5,3), (5,4)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
341	3 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 (48) 14-1

For each of the following relation on N, list the ordered pairs that belong to the relation.

$$R = \{(x, y): 2x + y = 9\}$$

$$S = \{(x, y): x + y < 7\}$$

Let $A = \{1, 3, 5, 7\}$ and R be the relation on A whose matrix is given below.

$$\mathbf{M}_R = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- Write R as a set of ordered pairs.

 Draw the digraph of R.

 Find the domain and range of R.
- ii)
- Give the in-degree and out degree of each vertex. iv)

	-	1	3	_5	7	ı
1	П	1	Ŏ	1	1	
1 3 5	Ι `	0	1	1	0	
5		1	0	0	1	
7		0	1	0	1	

$$i) \mathsf{R} = \{(1,1), (1,5), (1,7), (3,3), (3,5), (5,1), (5,7), (7,3), (7,7)\}$$

iii)Domain(R)=Range(R)= $\{1,3,4,5\}$

iv)

(olumn

row

Vertex	1	3	5	7
In-degree	2 🗸	2 🗸	2 🗸	3
Out-degree	3 🗸	2 /	2 🗸	2

6. Let R be the relation on {1, 2, 3, 4} given by u R v if and only if u + 2v is odd. Represent R in each of the following ways:
i) as a set of ordered pairs; ii) in graphical form; iii) in matrix form.
Give the in-degree and out-degree of each vertex.

7. Find the domain, range, matrix, and, when A = B, the digraph of the relation R.

i)
$$A = \{1, 2, 3, 4, 8\} = B$$
; $a R b$ if and only if $a = b$.

ii)
$$A = \{1, 2, 3, 4, 6\} = B$$
; $a R b$ if and only if a is a multiple of b.

iii)
$$A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8\}; a R b \text{ if and only if } b < a.$$

```
multiple of 2:2x1,2x2,2x3,...=2,4,6,...

multiple of 1:|x1,1x2,1x3,...=|1,2,3,...

1 is a multiple of 1:|x1,1x2,1x3,...=|1,2,3,...

2 is a multiple of 1:|x1,1x2,1x3,...=|1,2,3,...

3 is a multiple of 1:|x1,1x2,1x3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,2,3,...=|1,
```


8. Let
$$A = R$$
, set of (real numbers) Consider the following relation R on A : $a R b$ if and only if $a^2 + b^2 = 25$. Find Dom (R) and Ran (R) .

$$(a-0)^2 + (b-0)^2 = 25$$

Dom(R):
$$-5 < x < 5$$

Ran(R):
$$-5 < y < 5$$

$$-\frac{5}{5}$$
, -4.92 , -4.6 , -3 , 0 , 0.5 , $-\frac{5}{5}$: $-5 \le a \le 5$
 $-\frac{5}{5}$, -4.96 , -0 , $-\frac{5}{5}$: $-5 \le b \le 5$

y=2x+5

center:
$$(0.0)$$
, radius= $\sqrt{4}$ =2
e.g. $(x-0)^2 + (y-0)^2 = 4$

circle equation $(x-p)^2 + (y-q)^2 = r^2 \begin{cases} radius = \sqrt{r^2} = r \end{cases}$

Let A = {1, 2, 3, 4, 6} and R be the relation defined as a R b if and only if a is a multiple of b.
 Find each of the following.

i) R(3)

ii) R(6)

iii) $R(\{2,4,6\})$

$$R = \{(1,1), (\frac{1}{2}), (\frac{1}{3}), (\frac{1}{4}, \frac{1}{4}), (\frac{1}{6}), (\frac{1}{4}, \frac{1}{4}), (\frac{1}{6}), (\frac{1}{4}, \frac{1}{4}), (\frac{1}{6}), (\frac{1}{4}, \frac{1}{4}), (\frac{1}{4}, \frac{1}{4}$$

i)R
$$(3) = \{1,3\}$$

ii)R
$$(6) = \{1,2,3,6\}$$

iii)R
$$(\{2,4,6\}) = \{1,2,3,4,6\}$$

= $\{(1,2) \lor \{(4) \lor \{(6)\}\}$
= $\{(1,2) \lor \{(1,2,4) \lor \{(1,2,3,6)\}\}$

multiple of 1: |x|, |x|,

66)}			

10. Let $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 3, 4, 6\}$, and $R = \{(1, 2), (1, 4), (2, 3), (2, 5), (3, 6), (4, 7)\}$. Compute the restriction of R to B.

Q10.
$$A = \{1, 2, 3, 4, 5, 6, 7\}$$
 $B = \{2, 3, 4, 6\}$
 $R = \{0, 2\}, (1, 4), (2, 3), (2, 5), (3, 6),$
 $C(4, 7)$
 $C(4, 7)$
 $C(4, 7)$
 $C(5, 1), (6, 3), (6, 4), (6, 6)$
 $C(6, 1), (6, 3), (6, 4), (6, 6)$
 $C(6, 1), (6, 3), (6, 4), (6, 6)$
 $C(6, 1), (6, 3), (6, 4), (6, 6)$