Grado en Ingeniería de Software

Laboratorio de Bases de Datos y Sistemas Distribuidos

Sistemas de Gestión de Bases de Datos (MySQL) y Herramientas de Gestión

Que es un SGBD?

Definición SGBD/DBMS

- ➤ Un **Sistema Gestor de Bases de Datos** o **SGBD**, también llamado **DBMS** (*Data Base Management System*) es un software muy específico, dedicado a servir de interfaz entre la base de datos, el usuario y las aplicaciones que la utilizan.
- Los SGDBs también proporcionan métodos para mantener la integridad y la consistencia de los datos, para administrar el acceso de usuarios a los datos y para recuperar la información si el sistema se corrompe.
- Permiten <u>presentar la información de la base de datos en diferentes formatos</u>. La mayoría incluyen un generador de informes. También pueden incluir un módulo gráfico que permita presentar la información con gráficos y tablas.
- ➤ Generalmente se accede a los datos mediante lenguajes, de definición, de consulta y lenguajes de alto nivel que simplifican la tarea de construir las aplicaciones.

Que es un SGBD?

Un SGDB tiene varios módulos cada uno de los cuales realiza una función específica. Los módulos de un SDBD varían de unos a otros, en general consta de los siguientes elementos

- El motor de la base de datos acepta peticiones lógicas de los otros subsistemas del SGBD, las interpreta y accede a la base de datos y al diccionario de datos en el dispositivo de almacenamiento para ejecutar las peticiones solicitadas.
- El **subsistema de definición de datos** permite crear y mantener el diccionario de datos y define la estructura del ficheros que soporta la base de datos.
- El **subsistema de manipulación de datos,** el subsistema de manipulación de datos es la interfaz principal del usuario con la base de datos, permite añadir, cambiar y borrar información.
- El **subsistema de generación de aplicaciones** contiene utilidades para ayudar a los usuarios en el desarrollo de aplicaciones. Usualmente proporciona pantallas de entrada de datos, lenguajes de programación e interfaces.
- El **subsistema de administración** permite gestionar la base de datos ofreciendo funcionalidades como volcado y recuperación, gestión de la seguridad, optimización de consultas, control de concurrencia y gestión de cambios.

Estructura de los SGBD

Arquitectura de capas de los SGBD

La mayoría de los SGBD tienen una arquitectura basada en 3 niveles o capas:

Lenguajes para interactuar con los SGBD

- Lenguaje de definición (LDD o DDL):
 Define el nivel Interno y el conceptual. Diseñadores y Administradores DB
- Lenguaje de manipulación (LMD o DML):
 Es el utilizado por los usuarios para realizar consultas, inserciones, eliminaciones y modificaciones
- •Independencia Lógica: Se puede modificar la estructura de la Base de Datos sin la necesidad de reescribir las aplicaciones.
- •Independencia Física: Se puede alterar la estructura física de la Base de Datos sin la necesidad de alterar su estructura lógica.

Propiedades de los SGBD y BBDD

En las bases de datos, se denomina transacción al conjunto de operaciones que se ejecutan de forma atómica, es decir, o se ejecuta todo o nada. Por ejemplo, es una sola transacción la acción de transferir fondos de una cuenta bancaria a otra, aun cuando involucra varios cambios en distintas tablas.

Atomicidad: requiere que cada transacción sea "todo o nada"

Consistencia: se asegura que <u>cualquier transacción llevará</u> a la base de datos <u>de un estado válido a otro estado válido</u>.

Aislamiento ("Isolation" en inglés): se <u>asegura que la ejecución concurrente</u> <u>de las transacciones</u> resulte en un estado del sistema que se obtendría si estas transacciones <u>fueran ejecutadas una atrás de otra</u>

Durabilidad: significa que <u>una vez que se confirmó una transacción, quedará constante,</u> incluso ante eventos como pérdida de alimentación eléctrica, errores y caídas del sistema.

Formas de interactuar con la la BD

- Comandos SQL en la consola del SGBD
- 2 Mediante Scripts
- Herramientas de Gestión DBeaver/phpMyAdmin
- A través de otro programa
 (Java, Visual Basic, Perl, Python, PHP, C++)

Base de Datos

Gestores de BD más populares

SGBD Ranking

10

Ranking de SGBD en función de su popularidad:

Feb 2024	Rank Jan 2024	Feb 2023	DBMS	Database Model	Score		
					Feb 2024	Jan 2024	Feb 2023
1.	1.	1.	Oracle 🖺	Relational, Multi-model 🔞	1241.45	-6.05	-6.08
2.	2.	2.	MySQL 😝	Relational, Multi-model 🔞	1106.67	-16.79	-88.78
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model	853.57	-23.03	-75.52
4.	4.	4.	PostgreSQL	Relational, Multi-model	629.41	-19.55	+12.90
5.	5.	5.	MongoDB 😝	Document, Multi-model 🛐	420.36	+2.88	-32.41
6.	6.	6,	Redis ც	Key-value, Multi-model 🔞	160.71	+1.33	-13.12
7.	7.	1 8.	Elasticsearch	Search engine, Multi-model 🔣	135.74	-0.33	-2.86
8.	8.	4 7.	IBM Db2	Relational, Multi-model 🔞	132.23	-0.18	-10.74
9.	9.	1 2.	Snowflake 🚹	Relational	127.45	+1.53	+11.80
10.	↑ 11.	₩9.	SQLite #	Relational	117.28	+2.08	-15.38
11.	4 10.	4 10.	Microsoft Access	Relational	113.17	-4.50	-17,86
12.	12.	4 11.	Cassandra 🔠	Wide column, Multi-model 🔞	109.27	-1.77	-6.95
13.	13.	13.	MariaDB 🔠	Relational, Multi-model 🔞	97.23	-2.00	+0.42
14.	14.	14.	Splunk	Search engine	91.65	-1.07	+4.57
15.	1 6.	15.	Amazon DynamoDB 🚼	Multi-model 🛐	82.90	+1.96	+3.21
16.	4 15.	16.	Microsoft Azure SQL Database	Relational, Multi-model	79.56	-1.51	+0.81

Fuente:https://db-engines.com/en/ranking

SGBD Ranking

En esta asignatura SÓLO estudiaremos las BDs RELACIONALES

Sistema de Gestión de BD MySQL

- Desarrollado a mediados de los años 90 por un equipo de desarrollares. Fue una de las primeras bases de datos de código abierto y sigue siéndolo hasta el día de hoy. Algo que ha convertido a MySQL en uno de los sistemas de gestión de BD preferido por las startups. Los desarrolladores pueden utilizar MySQL y modificar su código para adaptarlo a nuevas necesidades. Fue adquirido por Sun Microsysmtems y ésta más tarde adquirida por Oracle, a pesar de ello ha mantenido su licencia GPL.
- MySQL fue adquirida por Sun Microsystems en 2008. La cultura de Sun era bastante abierta, siendo una de las grandes empresas tecnológicas que contribuía activamente y lideraba muchos proyectos de software libre de éxito. En el año 2010, Oracle adquirió a Sun, y por ende se quedó con MySQL.
- ➤ MySQL es un sistema de gestión de base de datos relacional actualmente de licencia dual, es decir, licencia pública general (GPL) y licencia comercial distribuida por Oracle Corporation. Está considerada como la base de datos de código abierto más popular del mundo, y una de las más utilizada en general junto a <u>Oracle</u> y <u>Microsoft SQL Server</u>, en el desarrollo de aplicaciones en entornos web.
- MySQL se usa generalmente junto con PHP y Apache Web Server, además de una distribución de Linux, lo que ha llevado al uso del famoso acrónimo LAMP (Linux, Apache, MySQL, PHP).
- ➤ MySQL puede usar diferentes motores de almacenamiento (storage engine). El motor de almacenamiento es el módulo software subyacente a un SGBD que se encarga de almacenar, manejar y recuperar información de una tabla. Elegiremos uno u otro en función de la velocidad, la confiabilidad o alguna otra dimensión. Los motores más conocidos son InnoDB y MyISAM. Los motores de almacenamiento se pueden elegir a nivel de tabla.

Motores de Almacenamiento

InnoDB

- •Es el motor de almacenamiento por defecto de MySQL y MariaDB
- •Soporte de transacciones
- •Bloqueo de registros
- •Nos permite tener las características ACID garantizando la integridad de nuestras tablas.
- •Es probable que si nuestra aplicación hace un uso elevado de *INSERT* y *UPDATE* notemos un aumento de rendimiento con InnoDB con respecto a MyISAM.

MyISAM

- •Mayor velocidad en general a la hora de la recuperación de datos. No transaccional.
- •Es el motor más antiguo y por tanto de uso más común en sistemas Legacy.
- •Recomendable para aplicaciones en las que dominan las sentencias *SELECT* ante los *INSERT /UPDATE*.
- •Ausencia de características de atomicidad ya que no tiene que hacer comprobaciones de la integridad referencial, ni bloquear las tablas para realizar las operaciones.

Motores de Almacenamiento

Sistema de Gestión de BD MariaDB

MariaDB nace un poco antes de la compra de MySQL por parte de Oracle, y es un *fork* para mantener el código con licencia GPL. Los desarrolladores partieron del código de MySQL Server 5.5, y en la actualidad intentan mantener la compatibilidad con las nuevas versiones.

XtraDB

- •Bifurcación ampliada de InnoDB
- •Permite una configuración más detallada del motor, en comparación a InnoDB
- •Se comporta mejor sobre arquitecturas multi-core y soporta clustering
- •Es probable que sea reemplazado por Aria en un futuro

Aria

- •Es la mejora para MyISAM aunque de desarrollo lento porque su equipo está centrado en hacer MariaDB más robusto
- •Se está planteando como el sustituto de MyISAM
- •Resistente a caídas
- Mejor manejo de tipos BLOB (Binary Large Objects) que MyISAM
- •Soportará transacciones en el futuro

MySQL – Herramientas de Gestión

MySQL proporciona herramientas de Gestión que aprenderemos a manejar durante las prácticas

Herramientas de Reporting

Además de las herramientas de gestión, los SGBDs ofrecen otras que nos permiten crear informes basados en los datos almacenados en nuestra BD

Jaspersoft Studio – Conecta con la BD para generar informes

https://community.jaspersoft.com/community-download

U-Tad

Calle Playa de Liencres, 2 bis (entrada por calle Rozabella) Parque Europa Empresarial Edificio Madrid 28290 Las Rozas, Madrid

CENTRO ADSCRITO A:

PROYECTO COFINANCIADO POR:

