Câu 1:

Cho đồ thị và heuristic như sau:

state space

heuristic function (goal state: G)

S	5	Α	В	С	D	E	F	G
6	5	4	5	2	2	8	4	0

Tìm đường đi từ S đến G bằng:

- Greedy với h bên trên
- A* với h bên trên

I) Greedy Best-First Search (Tìm kiếm tốt nhất tham lam):

Greedy Best-First Search chỉ sử dụng hàm heuristic để chọn nút tiếp theo, luôn chọn nút có vẻ gần với mục tiêu nhất theo heuristic.

Các bước:

- 1. Bắt đầu tại nút S (h(S) = 6).
- 2. Từ S, xem xét các nút lân cận A, B, F.
 - A(h(A) = 4)
 - F(h(F) = 4)
 - B (h(B) = 5)
 - Chọn A vì nó có giá trị h thấp nhất và đứng trước F.
- 3. Từ A, xem xét các nút lân cận C, D
 - C(h(C) = 2)
 - D(h(D) = 2)
 - F(h(F) = 4)
 - B (h(B) = 5)
 - Chọn C vì nó có giá trị h thấp nhất và đứng trước D.
- 4. Từ C, xem xét các nút lân cận G.
 - G(h(G) = 0)
 - D (h(D) = 2)
 - F(h(F) = 4)
 - B (h(B) = 5)
 - Chọn G vì nó có giá trị h thấp nhất. Đường đi tìm được: S -> A -> C -> G

II) Tìm kiếm A*:

Tìm kiếm A^* sử dụng cả chi phí thực tế để đến một nút (g) và ước lượng heuristic (h) để đánh giá nút tiếp theo cần mở rộng, sử dụng công thức (f(n) = g(n) + h(n)).

Các bước:

- 1. Bắt đầu tại nút S.
 - f(S) = g(S) + h(S) = 0 + 6 = 6.
- 2. Từ S, xem xét các nút lân cận A, B, F.
 - Đối với A: g(A) = 2, h(A) = 4, f(A) = 2 + 4 = 6.
 - Đối với B: g(B) = 1, h(B) = 5, f(B) = 1 + 5 = 6.
 - Đối với F: g(F) = 3, h(F) = 4, f(F) = 3 + 4 = 7.
 - Chọn A vì cùng giá trị f và ưu tiên chọn A.
- 3. Từ A, xem xét các nút lân cận C, D và cùng cấp là G, E.
 - Đối với D: g(D) = 1 + 2 = 3, h(D) = 2, f(D) = 3 + 2 = 5.
 - B: g(B) = 1, h(B) = 5, f(B) = 1 + 5 = 6.
 - Đối với C: g(C) = 2 + 2 = 4, h(C) = 2, f(C) = 4 + 2 = 6.
 - F: g(F) = 3, h(F) = 4, f(F) = 3 + 4 = 7.
 - Đối với G: g(G) = 3 + 6 = 9, h(G) = 0, f(G) = 9 + 0 = 9.
 - Đối với E: g(E) = 1 + 4 = 5, h(E) = 8, f(E) = 5 + 8 = 13.
 - Chọn D vì nó có giá trị f thấp nhất.

- 4. Từ D, xem xét các nút lân cận G
 - B: q(B) = 1, h(B) = 5, f(B) = 1 + 5 = 6.
 - Đối với C: g(C) = 2 + 2 = 4, h(C) = 2, f(C) = 4 + 2 = 6.
 - F: g(F) = 3, h(F) = 4, f(F) = 3 + 4 = 7.
 - Đối với G: g(G) = 1 + 2 + 4 = 7, h(G) = 0, f(G) = 7 + 0 = 7.
 - Đối với E: g(E) = 1 + 4 = 5, h(E) = 8, f(E) = 5 + 8 = 13.
 - Chọn B vì nó có giá trị f thấp nhất
 - Chọn C vì nó có giá trị f thấp nhất
 - Chọn F vì nó có giá trị f thấp nhất
 - Chọn G vì nó có giá trị f thấp nhất. Đường đi tìm được: S -> B -> D -> G

Câu 2

Cho đồ thị và heuristic như sau:

Node	h_1	h_2
A	9.5	10
\mathbf{B}	9	12
C	8	10
D	7	8
E	1.5	1
F	4	4.5
G	0	0

Tìm đường đi ngắn nhất từ A đến G bằng:

- A* với h1
- A* với h2

Chúng ta sẽ giải quyết bài toán này bằng thuật toán A^* với hai hàm heuristic (h_1) và (h_2) để tìm đường đi ngắn nhất từ A đến G.

l) A* với (h_1):

Các bước:

- 1. Bắt đầu tai nút A.
 - $f(A) = g(A) + h_1(A) = 0 + 9.5 = 9.5$.
- 2. Từ A, xem xét các nút lân cận B và C.
 - Đối với B: g(B) = 1, h_1(B) = 9, f(B) = 1 + 9 = 10.
 - Đối với C: g(C) = 4, h_1(C) = 8, f(C) = 4 + 8 = 12.
 - Chọn B vì f(B) thấp nhất.
- 3. Từ B, xem xét các nút lân cận D và C.
 - Đối với C: g(G) = 1 + 1 = 2, h_1(C) = 8, f(G) = 8 + 2 = 10.
 - Đối với D: g(D) = 1 + 5 = 6, h 1(D) = 7, f(D) = 6 + 7 = 13.
 - C Chọn C vì f(C) thấp nhất.
- 4. Từ C, xem xét các nút lân cận D và cùng cấp với D là E G F.
 - Đối với D: g(D) = 1 + 1 + 3 = 5, h 1(D) = 7, f(D) = 5 + 7 = 12.
 - Đối với F: g(F) = 1 + 5 + 3 = 9, $h_1(F) = 4$, f(F) = 9 + 4 = 13
 - Đối với G: g(G) = 1 + 5 + 9 = 15, h(G) = 0, f(G) = 15 + 0 = 15
 - Đối với E: g(E) = 1 + 5 + 8 = 14, h 1(E) = 1.5, f(E) = 14 + 1.5 = 15.5
 - Chọn D vì f(D) thấp nhất.
- 5. Từ D, xem xét các nút lân cận E, G, F
 - Đối với F: g(F) = 1 + 1 + 3 + 3 = 8, h_1(F) = 4, f(F) = 8 + 4 = 12
 - Đối với G: g(G) = 1 + 1 + 3 + 9 = 14, $h_1(G) = 0$, f(G) = 14 + 0 = 14
 - Đối với E: q(E) = 1 + 1 + 3 + 8 = 13, h 1(E) = 1.5, f(E) = 13 + 1.5 = 14.5
 - Chọn F vì f(F) thấp nhất.
- 6. Từ F, xem xét các nút lân cận G
 - Đối với G: g(G) = 1 + 1 + 3 + 3 + 5 = 13, $h_1(G) = 0$, f(G) = 13 + 0 = 13
 - Đối với E: g(E) = 1 + 1 + 3 + 8 = 13, h 1(E) = 1.5, f(E) = 13 + 1.5 = 14.5
 - Chọn G vì f(G) thấp nhất.
- 7. Từ G Đường đi tìm được là A->B->C->D->F->G

II) A* với (h_2):

Các bước:

- 1. Bắt đầu tại nút A.
 - f(A) = g(A) + h 1(A) = 0 + 10 = 10.
- 2. Từ A, xem xét các nút lân cận B và C.
 - Đối với B: g(B) = 1, h_2(B) = 12, f(B) = 1 + 12 = 13.
 - Đối với C: g(C) = 4, h_2(C) = 10, f(C) = 4 + 10 = 14.
 - Chọn B vì f(B) thấp nhất.
- 3. Từ B, xem xét các nút lân cận D và C.
 - Đối với C: g(G) = 1 + 1 = 2, $h_2(C) = 10$, f(G) = 10 + 2 = 12.
 - Đối với D: g(D) = 1 + 5 = 6, h_2(D) = 8, f(D) = 6 + 8 = 14.
 - C Chon C vì f(C) thấp nhất.
- 4. Từ C, xem xét các nút lân cận D và cùng cấp với D là E G F.
 - Đối với D: g(D) = 1 + 1 + 3 = 5, h(D) = 8, f(D) = 5 + 8 = 13.
 - Đối với F: g(F) = 1 + 5 + 3 = 9, h 2(F) = 4.5, f(F) = 9 + 4.5 = 13.5
 - Đối với E: g(E) = 1 + 5 + 8 = 14, h(E) = 1, f(E) = 14 + 1 = 15
 - Đối với G: g(G) = 1 + 5 + 9 = 15, $h_2(G) = 0$, f(G) = 15 + 0 = 15
 - Chọn D vì f(D) thấp nhất.
- 5. Từ D, xem xét các nút lần cận E, G, F
 - Đối với F: g(F) = 1 + 1 + 3 + 3 = 8, h(2(F) = 4.5, f(F) = 8 + 4.5 = 12.5
 - Đối với G: g(G) = 1 + 5 + 9 = 15, h 2(G) = 0, f(G) = 15 + 0 = 15
 - Đối với E: g(E) = 1 + 5 + 8 = 14, h 2(E) = 1, f(E) = 14 + 1 = 15
 - Chon F vì f(F) thấp nhất.
- 6. Từ F, xem xét các nút lân cận G
 - Đối với G: g(G) = 1 + 1 + 3 + 3 + 5 = 13, $h_2(G) = 0$, f(G) = 13 + 0 = 13
 - Đối với E: g(E) = 1 + 1 + 3 + 8 = 13, $h_2(E) = 1$, f(E) = 13 + 1 = 14
 - Chon G vì f(G) thấp nhất.
- 7. Từ G Đường đi tìm được là A->B->C->D->F->G

Câu 3

Cho mê cung như hình bên dưới. Đường in đậm biểu diễn vách ngăn không đi qua được. Hãy tìm đường đi từ s đến g với các chiến lược tìm kiếm dưới đây. Trình bày thứ tự duyệt các ô theo định dạng $\langle b_1, b_2, ..., b_n \rangle$, với b_i là ô được duyệt.

			a	b	
			c	d	e
f	s	h	k	m	n
p	q	r	t	g	

- Tìm kiếm tham lam với heuristic là khoảng cách Manhattan.
 h(state) = số bước ngắn nhất từ state đến g nếu không có rào chắn, ví dụ, h(k)
 = 2, h(s) = 4, h(g) = 0.
- Tìm kiếm A* với heuristic như trên

Chúng ta sẽ giải quyết bài toán này bằng hai chiến lược tìm kiếm: tìm kiếm tham lam (Greedy) và tìm kiếm A* với heuristic là khoảng cách Manhattan.

I) Tìm kiểm tham lam (Greedy) với heuristic là khoảng cách Manhattan

Khoảng cách Manhattan là tổng khoảng cách theo trục x và trục y từ một ô đến ô đích, không xét đến các vật cản.

Các bước:

- 1. Bắt đầu tại nút S (h(S) = 4).
- 2. Từ S, xem xét các nút lân cận H, F.
 - 1. H(h(H) = 3)
 - 2. F(h(F) = 5)
 - 3. Chọn H vì nó có giá trị h thấp nhất.
- Từ H, xem xét các nút lân cân K
 - 1. C(h(C) = 3)
 - 2. F(h(F) = 5)
 - 3. Chọn C vì nó có giá trị h thấp nhất.
- 4. Từ C, xem xét các nút lân cận A.
 - 1. A(h(A) = 4)
 - 2. F(h(F) = 5)
 - 3. Chọn A vì nó có giá trị h thấp nhất
- 5. Từ A, xem xét các nút lân cận B.
 - 1. B(h(B) = 3)
 - 2. F(h(F) = 5)
 - 3. Chọn B vì nó có giá trị h thấp nhất
- Từ B, xem xét các nút lân cân D, E.
 - 1. D(h(D) = 2)
 - 2. E(h(E) = 3)

 - F (h(F) = 5)
 Chọn D vì nó có giá trị h thấp nhất
- 7. Từ D, xem xét các nút lân cận E, M.
 - 1. M(h(M) = 1)
 - 2. E(h(E) = 3)
 - 3. F(h(F) = 5)
 - 4. Chọn M vì nó có giá trị h thấp nhất
- 8. Từ M, xem xét các nút lân cận G, N.
 - 1. E(h(E) = 3)
 - 2. F(h(F) = 5)

Thứ tự được duyệt là <S,F,H,K,C,A,B,D,E,M,N,G> Đường đi tìm được là S->H->K->C->A->B->D->M->G

Tìm kiếm A* với heuristic là khoảng cách Manhattan II)

Tìm kiếm A* kết hợp giữa chi phí thực tế (g) và heuristic (h).

Các bước: với tất cả G = 0

- 1. Bắt đầu tại nút S.
 - f(S) = h(S) = 4
- 2. Từ S, xem xét các nút lân cận H, F.
 - Đối với H: h(H) = f(H) = 3.
 - Đối với F: h(F) = f(F) = 5
 - Chon H vì nó có giá tri f thấp nhất .
- 3. Xem xét các nút lân cân K, P.
 - Đối với K: h(K) = f(K) = 2.
 - Đối với P: h(P) = f(P) = 4.
 - Đối với F: h(F) = f(F) = 5
 - Chọn K vì nó có giá trị f thấp nhất.
- 4. Xem xét các nút lân cận C, Q
 - Đối với C: h(C) = f(C) = 3.
 - Đối với Q: h(Q) = f(Q) = 3.
 - Đối với P: h(P) = f(P) = 4.
 - Đối với F: h(F) = f(F) = 5
 - Chọn C vì nó có giá trị f thấp nhất
- 5. Xem xét các nút lân cận A, R
 - Đối với C: h(R) = f(R) = 2.
 - Đối với Q: h(Q) = f(Q) = 3.
 - Đối với P: h(P) = f(P) = 4.
 - Đối với A: h(A) = f(A) = 4

- Đối với F: h(F) = f(F) = 5
- Chọn C vì nó có giá trị f thấp nhất.
- 6. Xem xét các nút lân cận T, B
 - Đối với T: h(T) = f(T) = 1.
 - Đối với Q: h(Q) = f(Q) = 3.
 - Đối với B: h(B) = f(B) = 3
 - Đối với P: h(P) = f(P) = 4.
 - Đối với A: h(A) = f(A) = 4
 - Đối với F: h(F) = f(F) = 5
 - Chọn T vì nó có giá trị f thấp nhất.
- 7. Xem xét các nút lân cận G, D
 - Đối với G: h(G) = f(G) = 0.
 - Đối với D: h(D) = f(D) = 2.
 - Đối với Q: h(Q) = f(Q) = 3.
 - Đối với B: h(B) = f(B) = 3
 - Đối với P: h(P) = f(P) = 4.
 - Đối với A: h(A) = f(A) = 4
 - Đối với F: h(F) = f(F) = 5
 - Chọn G vì nó có giá trị f thấp nhất.

Thứ tự được duyệt là <S,F,H,K,P,C,Q,A,R,B,T,D,G> Đường đi tìm được là S->F->P->Q->R->T->G