William Stallings
Data and Computer
Communications
7th Edition

Chapter 4
Transmission Media

Overview

- Characteristics and quality determined by:
 - Medium
 - —Signal
- Medium
 - —Guided wire
 - Unguided wireless
- For Guided Medium
 - —The medium is more important
- For Unguided
 - —The bandwidth produced by the antenna is more important
- Key concerns are data rate and distance

Design Factors

- Bandwidth
 - Higher bandwidth gives higher data rate
- Transmission impairments
 - Attenuation
- Interference
 - Issue especially in case of unguided medium
- Number of receivers
 - Unicast (one sender, one receiver)
 - Multicast (multiple receivers can introduce more errors)

Guided Transmission Media

- Twisted Pair
- Coaxial Cable
- Optical Fiber

Transmission Characteristics of Guided Media

	Frequency Range	Typical Attenuatio	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 d B) km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	0.7 dB/km @ 1 kHz	50 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

Twisted Pair

Twisted Pair - Architecture

- —Separately insulated
- —Twisted together
- -Often "bundled" into cables
- Usually installed in building during construction

Two Insulated copper wires

Issues:

- (1) Interference due to unwanted electrical coupling of two copper
- (2) Interference due to unwanted electrical coupling between the neighboring twisted pairs

Twisted Pair - Applications

- Most commonly used medium
- Telephone network
 - —Between house and local exchange (subscriber loop)
- Within buildings
 - —To private branch exchange (PBX)
- For local area networks (LAN)
 - —10Mbps or 100Mbps

Twisted Pair - Pros and Cons

Advantages

- —Less expensive
- —Easy to work with

Disadvantages

- —Low data rate
- —Short range

Twisted Pair (TP) → Characteristics

- Analog transmission
 - Amplifiers every 5km to 6km
- Digital transmission
 - —Use either *analog* or *digital* signals
 - —repeater every 2km or 3km
- TP is Limited
 - Distance
 - Bandwidth
 - Data rate
- Susceptible to interference and noise
 - Easy coupling of electromagnetic fields

Unshielded and Shielded TP

Unshielded Twisted Pair (UTP)

- —Ordinary telephone wire
- —Less expensive
- —Weak immunity against noise and interference
- —Suffers from external EM interference

Shielded Twisted Pair (STP)

- —An extra metallic sheath on each pair
- —Relatively more expensive
- —Provide better performance than UTP
 - Increased Data rate
 - Increased Bandwidth

UTP Categories

Cat 3

- —up to 16MHz
- Voice grade found in most offices
- —Twist length of 7.5 cm to 10 cm
- Cat 4
 - —up to 20 MHz

Cat 5

- —up to 100MHz
- Commonly pre-installed in new office buildings
- —Twist length 0.6 cm to 0.85 cm
- Cat 5E (Enhanced) –see tables
- Cat 6
- Cat 7

Coaxial Cable

Coaxial Cable - Architecture

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding

Coaxial Cable → Applications

- Television (TV) signals distribution
 - —Ariel to TV
 - —Cable TV
- Long distance telephone transmission
 - —Can carry 10,000 voice calls simultaneously
 - —Being replaced by fiber optic
- Short distance computer systems links
 - —Local area networks (LAN)
 - —Metropolitan area network (MAN)

Coaxial Cable -Characteristics

Analog

- —Amplifiers every few km
- —Closer if higher frequency
- —Up to 500MHz

Digital

- —Repeater every 1km
- —Closer for higher data rates

Problem

- —Inter-modulation noise
- —Thermal noise

Optical Fiber

Optical Fiber -> Architecture

Optical Fiber -> Benefits

- Greater capacity
 - —Data rates of hundreds of Gbps
- Smaller size & weight
 - -Made up of extremely thin fibers
- Lower attenuation
 - -Electromagnetic isolation
- Greater repeater spacing
 - -10s of km at least

Optical Fiber - Transmission Characteristics

- Operational range
 - 10¹⁴ to 10¹⁵ Hz
- Light source
 - —Light Emitting Diode (LED)
 - Cheaper
 - Wider operating temperature range
 - Last longer
 - —Injection Laser Diode (ILD)
 - Operates on laser principle
 - More efficient
 - Greater data rate
- Wavelength Division Multiplexing (WDM)

The less Transmission

Wireless Transmission Frequencies

- 2GHz to 40GHz (Microwave Frequency)
 - —Highly directional
 - —Point to point devices
 - —Microwave communications
- 30MHz to 1GHz (Radio Frequency)
 - —Omnidirectional
 - —Broadcast radio
- 3 x 10¹¹ to 2 x 10¹⁴ (Local Frequency)
 - —For Local applications

Antennas

By definition

— Is a electrical device

Transmission

- Radio frequency energy from transmitter
- Converted to electromagnetic energy
- By antenna
- Radiated into surrounding environment

Reception

- Electromagnetic energy impinging on antenna
- Converted to radio frequency electrical energy
- Fed to receiver
- Same antenna often used for both

Radiation Pattern

- Antenna might radiate power in all direction
- Not same performance in all directions
- How can we determine the performance of an antenna?
 - —Solution is "Radiation Pattern"
 - Graphical representation of the radiated power
- Isotropic antenna is an ideal antenna
 - —Radiates in all directions equally
 - —Use as a reference to characterize the power

Antenna Gain

Measure of directionality of antenna

- Power output in particular direction compared with that produced by isotropic antenna
- Measured in decibels (dB)

Gain could be +ve or -ve

Terrestrial Microwave (TMW)

- 1. Parabolic antenna
- 2. Small beam
- 3. Line of sight
- 4. Use especially for P2P applications
- 5. Usually use for long distance communications

Satellite Microwave (SM)

- 1. Satellite is relay station
- 2. Satellite
 - receives on one frequency
 - amplifies or repeats signal
 - transmits on another frequency
- 3. Requires geo-stationary orbit
 - Height of 35,784km
- 4. Applications
 - Television
 - Long distance telephone
 - Private business networks

Satellite Point to Point Link

(a) Point-to-point link

Satellite Broadcast Link

(b) Broadcast link

Broadcast Radio

1. Omnidirectional (travel in all directions)

- 2. Line of sight is over
- 3. Doesn't need parabolic antenna

4. Example→ FM radio

Wireless Propagation

Signal travels along three routes

1. Ground wave

- Follows contour of earth
- Up to 2MHz
- AM radio

2. Sky wave

- Signal reflected from ionize layer of upper atmosphere
- BBC world service, Voice of America

3. Line of sight

- Above 30Mhz
- Antennas must be physically aligned
- Atmosphere can reflect the microwave signal

Sky Wave Propagation

(b) Sky-wave propagation (2 to 30 MHz)

Ground Wave Propagation

(a) Ground-wave propagation (below 2 MHz)

Line of Sight Propagation

(c) Line-of-sight (LOS) propagation (above 30 MHz)

Transmission Impairments in Wireless Transmission

Free Space Loss

- 1. Signal dispersion is a function of distance
- 2. Ratio between power-radiated to power-received
- 3. Greater for lower wavelength
- 4. Antenna gain can be used to compensate the losses
- 5. Also known as near far problem

Refraction

- 1. Each wireless medium has its own density
- 2. Propagation speed is a function of density of the medium
- 3. When medium changes, the result is refraction
- 4. Refraction means change of direction

Required Reading

- Review Examples 4.1 to 4.4
- HW#2: Problems 4.1 and 4.2
 - Due Date: Tuesday, September 25 (in class timing)
 - Need hard copy (typed or in hand writing)
- OpNet Lab 2 and 3
 - —(Due Date: Thursday, September 27 before 2:30 Pm)
 - -3 Students (maximum) per group
 - —One submission per group