Taller Repaso Parcial

Introducción a los Sistemas Inteligente - 2021-2

Considere el siguiente conjunto de datos. Los atributos x_i son atributos binarios y el atributo C es un atributo de clase que puede tomar tres posibles valores $\{a, b, c\}$.

	x_1	x_2	x_3	C
1	0	0	1	b
2	0	0	0	c
3	1	0	1	a
4	0	1	1	c
5	1	1	0	b
6	0	0	0	a
7	1	0	1	a
8	1	1	0	b

- 1. Construya un modelo Naïve Bayes a partir de de los datos.
- 2. Clasifique los ejemplo (1,1,1) y (1,0,1)
- 3. Asuma que está entrenando un árbol de decisión, ¿cuál es la ganancia de información de cada uno de lo atributos x_1, x_2 y x_3 ?
- 4. Ignore el atributo de clase y aplique el algoritmo de agrupamiento k-means con k=3.
- 5. Considere la siguiente red neuronal:

Con función de transferencia

$$f(x) = \begin{cases} 0 & \text{si } x \le \theta \\ 1 & \text{si } x > \theta \end{cases}$$

Asuma que todos los ejemplos de las clases a y c son ejemplos negativos (etiqueta 0) y los de la clase b ejemplos positivos (etiqueta 1) . Calcule la matriz de confusión y diferentes métricas de desempeño.