Homework Assignment 3

Lecturer: Kyunghyun Cho

February 28, 2017

- **1.** Suppose we are given a set of input-output pairs $D = \{(\mathbf{x}_1, y_1^*), \dots, (\mathbf{x}_N, y_N^*)\}$, and we want to find the best classifier among the following hypothesis sets:
 - 1. $H_{\text{perceptron}}$: Perceptron classifier
 - 2. H_{logreg} : Logistic regression
 - 3. $H_{\text{sym},C}$: Support vector machine with a regularization coefficient C

where C is one of $\{c_0, \ldots, c_M\}$. The dataset D is split into 80% training set and 20% test set. Our goal is two folds; (1) choose the best classifier, and (2) report its generalization performance (or its estimate). Describe in words how these two goals are met using the principles of K-fold cross validation.

2. The distance function of multi-class logistic regression was defined as

$$\begin{split} D(y^*, M, \mathbf{x}) &= -\log p_{M^*(\mathbf{x})} \\ &= -a_{y^*} + \log \sum_{k=1}^K \exp(a_k), \end{split}$$

where

$$\mathbf{a} = \mathbf{W}\tilde{\mathbf{x}}$$
.

Derive a learning rule step-by-step for each column vector \mathbf{w}_c of the weight matrix \mathbf{W} .

3. PROGRAMMING ASSIGNMENT