Лабораторная работа 4 Создание многопоточных OpenMP-программ

Курносов Михаил Георгиевич

E-mail: mkurnosov@gmail.com WWW: www.mkurnosov.net

Курс «Высокопроизводительные вычислительные системы» Сибирский государственный университет телекоммуникаци и информатики (Новосибирск) Осенний семестр, 2015

Задание 1: Вычисление числа π

 В качестве демонстрационной задачи предлагается приближенное вычисление числа π

$$\pi = \int_{0}^{1} \frac{4}{1+x^{2}} dx \qquad \pi \approx h \sum_{i=1}^{n} \frac{4}{1+(h(i-0.5))^{2}} \qquad h = \frac{1}{n}$$

$$\begin{array}{c} 4,50 \\ 4,00 \\ 3,50 \\ 3,00 \\ 2,50 \\ 2,00 \\ 1,50 \\ 0,00 \\ 0,10 \\ 0,20 \\ 0,30 \\ 0,40 \\ 0,50 \\ 0,60 \\ 0,70 \\ 0,80 \\ 0,90 \end{array}$$

Задание 1: Вычисление числа π

- Даны последовательная и две параллельные
 ОрепМР-программы вычисления числа π
 - □ рі последовательная версия программы
 - □ piomp для формирования результирующей суммы используется критическая секция (#pragma omp critical)
 - □ **piomp_red** для формирования результирующей суммы используется директива reduction

Задание 1: вычисление числа π

- Требуется по результатам выполнения программ на кластере Jet заполнить нижеследующие таблицы
- Принятые обозначения:
 - № количество потоков в программе
 - *n* количество шагов интегрирования

1) $n = 10^7$

Время РІ, сек.	E	Время Р	IOMP, cei	к.	Время PIOMP_RED, сек.				
N = 1	N = 2	N = 4	N = 6	N = 8	N = 2	N = 4	N = 6	N = 8	

2) $n = 10^8$

Время PI, сек.	Вр	емя РІС	ЭМР, сек	Κ.	Время PIOMP_RED, сек.			
N = 1	N = 2	N = 4	N = 6	N = 8	N = 2	N = 4	N = 6	N = 8

Задание 1: вычисление числа π

- Построить графики зависимости коэффициента S ускорения параллельных программ от количества N потоков в них (для n = 10⁸)
- Примерный вид требуемых графиков приведен ниже

$$S = \frac{T_1}{T_N}$$

Задание 1: вычисление числа π

- Построить графики зависимости коэффициента Е
 эффективности параллельных программ от количества N
 потоков в них (для n = 108)
- Примерный вид требуемых графиков приведен ниже

$$E = \frac{T_1}{N \cdot T_N}$$

Задание 2: параллельная версия DGEMM

- Разработать параллельную OpenMP-версию функции dgemm_block блочного умножения матриц (dgemm_block_omp)
- Построить график зависимости коэффициента ускорения программы от количества потоков в ней

Задание 3: primes

- В параллельной OpenMP-программе primes подсчета количества простых чисел обнаружить и исправить ошибку, связанную с не синхронизированным доступом потоков к их общей памяти (создать версию программы primes_fix)
- Оценить ускорение модифицированной программы primes_fix
- Обнаружить в программе primes_fix дисбаланс времени выполнения потоков. Добиться сбалансированного распределения вычислительной нагрузки на потоки. Оценить ускорение модифицированной программы.