

Universidade do Minho

Escola de Engenharia

MESTRADO INTEGRADO EM ENGENHARIA DE TELECOMUNICAÇÕES E INFORMÁTICA

SISTEMAS DIGITAIS

Grupo 02 - Elementos:

Nome:Beatriz Ressurreição Alves

E-mail: a96003@alunos.uminho.pt

Nome:João Gomes

E-mail: a96826@alunos.uminho.pt

PROPOSTA DE RESOLUÇÃO

4. Utilizando flip-flops D disponíveis em circuitos integrados 7474 e portas lógicas auxiliares, projete um circuito detetor de sequência que ative uma saída OPEN sempre que detetar a sequência de 4 bits desejada (S) na sua entrada BIT.

a) Construa o diagrama de estados para a sequência de 4 bits do seu grupo $B\!=\!96826~A\!=\!96003$

b) Efetue a atribuição de estados tendo em consideração o valor do dígito B3 ATRIBUIÇÃO DE ESTADOS:

S0-000; S1-001; S2-010; S3-011; S4-100

Estado Atual	Estado Segui	Estado Seguinte		Saída	
	B=0	B=1	B=0	B=1	
SO SO	S1	SO SO	0	0	
S1	S2	SO SO	0	0	
S2	S3	S2	0	0	
S3	S3	S4	0	1	
S4	S1	SO SO	0	0	

c) Apresente a tabela de transição/saída para o problema, relacionando como entradas: o estado atual (Q2, Q1 e Q0) e a entrada BIT; e como saídas: o estado seguinte (Q2*, Q1* e Q0*) e a saída da máquina de estados (OPEN).

Tabela de estados:

Estado Atual	Estado Seguinte		Saída	
	B=0	B=1	B=0	B=1
Q2Q1Q0	Q2*Q1*Q0*	Q2*Q1*Q0*		
000	001	000	0	0
001	010	000	0	0
010	011	010	0	0
011	011	100	0	1
100	001	000	0	0

TABELA DE ESTADOS

		Estado Atual	Estado Seguinte	Estado	OPEN
		Estado Atadi	Estado Seguinte	Excitação	OI LIV
	В			EXCITAÇÃO	
	В				
		Q2Q1Q0	Q2*Q1*Q0*	D2D1D0	
	0	000	001	001	0
SO SO					
	1	000	000	000	0
	-				
	0	001	010	010	0
S1	-				
51	1	001	000	000	0
	1	001	000	000	
	0	010	011	011	0
	ŭ	010	011	011	"
S2	1	010	010	010	0
	0	011	011	011	0
53	· ·	011	011	011	"
33	1	011	100	100	1
	1	011	100	100	1
	0	100	001	001	0
		200	551	551	
S4	1	100	000	000	0

d) Com base na tabela da alínea anterior, determine as equações de excitação dos flip-flops D e a equação de saída, com recurso a mapas de Karnaugh.

00	01	11	10
0	0	0	0
0	Х	Х	х
0	Х	Х	х
0	0	1	0
	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 X X X 0 0 0 1

D2=BQ1Q0

0100				
Q1Q0 BQ2	00	01	11	10
00	0	1	1	1
01	0	Х	х	Х
11	0	Х	х	х
10	0	0	0	1
D1=B'Q2'Q0+Q2'Q1Q0'				

Q1Q0 BQ2	00	01	11	10
00	1	0	1	1
01	1	Х	Х	Х
11	0	Х	Х	Х
10	0	0	0	0

D0=B'Q1'Q0'+B'Q2'Q1

e) Determine os sinais a inserir nas entradas assíncronas PRESET e CLEAR dos flip
flops para satisfazer os requisitos deste problema.

Entradas \overline{PRESET} ligada a 5V e \overline{CLEAR} ao interruptor R.

f) Desenhe o diagrama esquemático do circuito.

