Lösungen Testat STOC SW04

Daniel Winz

20. März 2013 21:47

Inhaltsverzeichnis

1	Auf	Aufgabe 1 1.1 a														2															
	1.1	a .																													2
	1.2	b .			•									•	•			•				•	•		•		•	•			2
2	Aufgabe 2																2														
	2.1	a .																													2
	2.2	b .																													2
	2.3	с.																													2
3	Aufgabe 3																3														
	3.1	a .																													3
	3.2	b .																													3
	3.3	с.																													3
	3.4	d .																										•			3
4	Aufgabe 4																3														
	4.1	a .																													4
	4.2	b .																													4
	4.3	с.																													4
	4.4	d .																										•			4
5	Aufgabe 5																4														
	5.1	a .																													4
	5.2	b .																													4
	5.3	c .																													4
	5.4	d .																													5
	5.5	е.																													5
	5.6	f.																													5
	5.7	g .									•			•		•	•		•	•	•						•	•			5
6	Auf																														5
	6.1	a .																													5
	6.2	b .																													5

1 Aufgabe 1

1.1 a

$$\begin{array}{c|cccc} x & 1 & 2 & 3 \\ \hline k & -4 & 10 & 20 \\ \hline P(X=x) & \frac{1}{6} & \frac{1}{18} & \frac{2}{3} \\ \end{array}$$

1.2 b

$$E = \frac{7}{9} \cdot (-4) + 10 \cdot \frac{1}{6} + 20 \cdot \frac{1}{18} = -\frac{1}{3}$$

Da diese Variable kleiner als null ist verliert man durchschnittlich Geld.

2 Aufgabe 2

2.1 a

n=10 Stichproben, $\pi=0.02$

$$X_i = \left\{ \begin{array}{l} 1, \text{ i-te Probe verunreinigt} \\ 0, \text{ i-te Probe sauber} \end{array} \right.$$

$$X = \sum_{i=1}^{n} X_i$$

$$P(X=0) = \binom{n}{x} \cdot \pi^x \cdot (1-\pi)^{n-x} = \binom{10}{0} \cdot 0.02^0 \cdot (1-0.02)^{10-0} = 0.817$$

$$P(X=0) = 0.98^{10} = 0.817$$

2.2 b

$$y = 1$$

$$y = 11$$

$$P(y=1) = 0.817$$

$$P(y = 11) = 1 - 0.817 = 0.183$$

2.3

$$E[Y] = 1 \cdot P(y = 1) + 11 \cdot P(y = 11) = 1 \cdot 0.817 + 11 \cdot 0.183 = 2.83$$

Einsparung:

$$10 - E[Y] = 10 - 2.83 = 7.17$$

3 Aufgabe 3

3.1 a

Binomialverteilung mit:

$$n = 50$$

$$\pi = 0.1$$

$$x = 3$$

3.2 b

$$P(X=3) = \binom{n}{x} \cdot \pi^x \cdot (1-\pi)^{n-x} = \frac{n!}{x! \cdot (n-x)!} \cdot \pi^x \cdot (1-\pi)^{n-x}$$
$$= \frac{50!}{3! \cdot (50-3)!} \cdot 0.1^3 \cdot (1-0.1)^{50-3} = 0.139$$

R:

> dbinom(3,size=50,prob=0.1)

[1] 0.1385651

3.3

$$P(X \le 3) = \sum_{j=0}^{3} (P(X = j)) = 0.250$$

R:

> sum(dbinom(0:3,size=50,prob=0.1))

[1] 0.2502939

3.4 d

Mit dieser Prüfung kann der Hersteller nur eine Wahrscheinlichkeit angeben, mit welcher die Vorgaben erreicht werden. Es ist keine Garantie, dass maximal 10~% der Gläser minderwertig sind.

4 Aufgabe 4

Allgemein:

$$P_{\lambda}(k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

 $mit \ \lambda = 2$

4.1 a

$$P_{\lambda}(0) = \frac{2^0}{0!} \cdot e^{-2} = 0.135$$

R:

> dpois(0,2)

[1] 0.1353353

4.2 b

$$P_{\lambda}(\leq 3) = \sum_{j=0}^{3} (P_{\lambda}(j)) = 0.857$$

R:

> sum(dpois(0:3,2))

[1] 0.8571235

4.3 c

$$P_{\lambda}(>3) = 1 - P_{\lambda}(\le 3) = 0.143$$

R:

> 1-sum(dpois(0:3,2))

[1] 0.1428765

4.4 d

Poissonverteilung mit Erwartungswert $\lambda = 6$ $Y \sim \text{Poisson}(\lambda)$

5 Aufgabe 5

5.1 a

> dbinom(10,size=50,prob=0.2)

[1] 0.139819

5.2 b

> sum(dbinom(0:5,size=50,prob=0.2))

[1] 0.04802722

5.3 c

> sum(dbinom(15:50,size=50,prob=0.2))

[1] 0.06072208

5.4 d

c für $P(X \le c) \approx 0.99$ wird von Hand empirisch gefunden.

- > sum(dbinom(0:20,size=50,prob=0.2))
- [1] 0.9996793
- > sum(dbinom(0:15,size=50,prob=0.2))
- [1] 0.9691966
- > sum(dbinom(0:16,size=50,prob=0.2))
- [1] 0.9855583
- > sum(dbinom(0:17,size=50,prob=0.2))
- [1] 0.9937392

Das ist in R sicher auch automatisch ohne For-Schleife möglich.

5.5 €

- > plot(0:1000,dpois(200,0:1000),type='1')
- > dpois(200,200)
- [1] 0.02819773

5.6 f

- > sum(dpois(200,0:200))
- [1] 0.4953046

5.7 g

- > sum(dpois(200,190:210))
- [1] 0.5420267

6 Aufgabe 6

6.1 a

$$P(X=6) = \left(\begin{array}{c} 6 \\ 6 \end{array}\right) \cdot \left(\frac{1}{49}\right)^6 \cdot \left(1 - \frac{1}{49}\right)^{6-6} = \frac{6!}{6! \cdot (6-6)!} \cdot \left(\frac{1}{49}\right)^6 \cdot \left(1 - \frac{1}{49}\right)^0 = 7.22 \cdot 10^{-11}$$

R:

- > dbinom(6,size=6,prob=1/49)
- [1] 7.224762e-11

6.2 b

$$\left(\begin{array}{c} 15 \\ 7 \end{array}\right) = \frac{15!}{7! \cdot (15 - 7)!} = 6435$$