Reed-Muller Error-Correcting Codes

Prateek Sharma

April 30, 2010

Reed-Muller codes

The Reed-Muller codes are the second oldest codes after Hamming and the Golay codes.

In this talk:Code properties: Distance, dimension, orthogonal codeDecoding AlgorithmsApplications of Reed-Muller codes

Most famously used in the Mariner-9 spacecraft in 1972 to transmit clear images of the Martian surface.

They were chosen over the other codes because of the fast decoding algorithm (the Green machine).

Mariner-9

• mariner9.jpg

Construction

$$\mathbf{x} \equiv (x_1, x_2, \dots, x_m) \in \mathbb{F}^m$$

$$f(\mathbf{x}) \quad f : \mathbb{F}_2^m \to \{0, 1\}$$

f is a $n = 2^m$ length vector over F_2

Disjunctive Normal Form : $f = x_3 + x_1x_2$ (+ is xor)

A collection of 2^{2^m} vectors, each of length 2^m .

Boolean Monomials

$$M = \{1, x_1, x_2, \dots, x_m, x_1x_2, \dots, x_{m-1}x_m, x_1x_2x_3, \dots, x_1x_2 \dots x_m\}$$

$$f = 1 + a_1 x_1 + a_2 x_2 + \ldots + a_m x_m + a_{12} x_1 x_2 + \ldots + a_{12 \dots r} x_1 x_2 \dots x_r + \ldots$$

Since **f** is a linear combination, it follows that the length of x_1, x_2, \ldots, x_m is 2^m .

Reed-Muller Codes

Reed-Muller codes

The Reed-Muller codes of order r and length $n=2^m$, $0 \le r \le m$ is the set of all vectors \mathbf{f} , where $f(x_1, \ldots, x_m)$ is a Boolean function which is a polynomial of degree at most r.

First-order codes

$$1 + a_1x_1 + a_2x_2 + \ldots + a_mx_m$$

Linearity

Lemma

 $\mathcal{R}(r,m)$ is a linear code.

Basis

The monomials of degree $\leq r$ form a basis for $\mathcal{R}(r, m)$.

Generator matrix

$$G(r,m) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_m \\ x_1x_2 \\ \vdots \\ x_1x_2 \dots x_r \end{pmatrix}$$
(1)

Dimension

The dimension (k) of $\mathcal{R}(r,m)$ is equal to the number of monomials of degree $\leq r$ $k=1+\binom{m}{1}+\binom{m}{2}+\ldots+\binom{m}{r}$

 $\mathcal{R}(0, m)$ is the repetition code (2^m repetition) .

 $\mathcal{R}(m,m)$ consists of all possible binary sequences of length 2^m .

Length	$n=2^m$
Minimum Distance	$d = 2^{m-r}$
Dimension	$k=1+\binom{m}{1}+\binom{m}{2}+\ldots+\binom{m}{r}$

	1	1	1	1	1	1	1	1	1
$\mathcal{R}(1,3)=$	x_1	0	0	0	0	1	1	1	1
	<i>X</i> ₂	0	0	1	1	0	0	1	1
	<i>X</i> ₃	0	1	0	1	0	1	0	1
	$x_1 + x_2$	0	0	1	1	1	1	0	0
	$x_1 + x_3$	0	1	1	0	0	1	1	0
	$x_2 + x_3$	0	1	0	1	1	0	1	0
	$x_1 + x_2 + x_3$	0	1	1	0	1	0	0	1
	$1 + x_1$	1	1	1	1	0	0	0	0
	$1 + x_2$	1	1	0	0	1	1	0	0
	$1 + x_3$	1	0	1	0	1	0	1	0
	$1 + x_1 + x_2$	1	1	0	0	0	0	1	1
	$1 + x_1 + x_3$	1	0	0	1	1	0	0	1
	$1 + x_2 + x_3$	1	0	1	0	0	1	0	1
	$1 + x_1 + x_2 + x_3$	1	0	0	1	0	1	1	0

$$G(2,3) = \begin{bmatrix} 1 & & & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ x_1 & & & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ x_2 & & & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ x_3 & & & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ x_1 \cdot x_2 & & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ x_1 \cdot x_3 & & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ x_2 \cdot x_3 & & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Recursive Definition

Theorem

$$\mathcal{R}(r+1,m+1) = \{\mathbf{u}|\mathbf{u}+\mathbf{v}: \mathbf{u} \in \mathcal{R}(r+1,m), \mathbf{v} \in \mathcal{R}(r,m)\}$$

$$G(r+1, m+1) = \begin{pmatrix} G(r+1, m) & G(r+1, m) \\ 0 & G(r, m) \end{pmatrix}$$
(2)

$$G(1, m+1) = \begin{pmatrix} G(1, m) & G(1, m) \\ 0 & 1 \end{pmatrix}$$
 (3)

where

$$G(0,m)=(\overbrace{1111}^{2^m})$$

This way, the columns of G(1, m) are binary representations of numbers from 1 to 2^m in descending order.

Nested Structure

$$\mathcal{R}(r,m) \subseteq \mathcal{R}(t,m)$$
 if $0 \le r \le t \le m$

Theorem

Let C_i be an $[n, k_i, d_i]$ code. Then the concatenated code defined by

$$C = \{(\mathbf{u}, \mathbf{u} + \mathbf{v}) | \mathbf{u} \in C_1, \mathbf{v} \in C_2\}$$

has the parameters $[2n, k_1 + k_2, min\{2d_1, d_2\}]$.

Properties

Distance

Minimum distance, $d = 2^{m-r}$

First-Order

Every codeword in $\mathcal{R}(1,m)$ (except $\mathbf{1},\mathbf{0}$) has weight 2^{m-1}

Dimension

$$dim(\mathcal{R}(r,m)) = dim(\mathcal{R}(r,m-1)) + dim(\mathcal{R}(r-1,m-1))$$

Dual and Orthogonal of RM codes

Dual

$$\mathcal{R}(m-r-1,m) = \mathcal{R}(r,m)^{\perp}$$

The dual code $\mathcal{R}(1,m)^{\perp}$ is the extended binary Hamming code H(m)The Orthogonal code \mathcal{O}_m is a $[2^m,m,2^{m?1}]$ code consisting of the vectors $\sum_{i=1}^m u_i \mathbf{v_i}$

Orthogonal Code

$$\mathcal{R}(1,m) = \mathcal{O}_m \cup (\mathbf{1} + \mathcal{O}_m)$$

uniqueness

Theorem

Any linear code with parameters $[2^m, m+1, 2^{m-1}]$ is equivalent to the first order Reed-Muller code.

Proof in [?].

Plotkin Bound

Theorem (Plotkin Bound)

If
$$C = [n, k, d]$$
 code,

$$d \leq \frac{n2^{k-1}}{2^k - 1}$$

Proof.

Counting in two ways:

Step Decoding

Theorem

One-step majority logic decoding can correct upto $\frac{n-1}{2(d'-1)}$ errors. (d' is the minimum distance of the dual code.)

Proof.

$$1 \quad 000 \underbrace{11111}_{\geq d'-1}$$

L-Step Decoding

$$E_L \leq \frac{n}{d'} - \frac{1}{2}$$

L-step decoding can correct only 2 errors in Golay codes.

Geometry

Reed Decoding Algorithm

Algorithm

- For each row, find the 2^{m-r} characteristic vectors, and take the dot product with \mathbf{x} .
- ② The majority of the values of the dot products is the coefficient of the row $\left(0/1\right)$.
- Ocentral contraction of the original message.

Example

Let $\mathbf{m} = 0110$ in $\mathcal{R}(1,3)$. $\mathbf{c} = 00111100$. $\mathbf{x} = 10111100$.

Hadamard Transform

 $F(\mathbf{v})$ of a binary vector \mathbf{v} is a vector with 0 replaced by 1 and 1 by -1. The Orthogonal code \mathcal{O}_m with real vectors is equivalent to the Hadamard matrix H_m .

Proof.

$$v_i, v_j \in \mathcal{R}(1, m) \implies v_i \cdot v_j = 0$$

 \mathcal{O}_m is a $2^m \times 2^m$ matrix with elements +1,-1 such that dot product of any two rows is 0.

$$\mathcal{R}(1,m) = \begin{pmatrix} H_m \\ -H_m \end{pmatrix} \tag{4}$$

Fast Hadamard Transform

Maximize the correlation between received vector u and the rows:

$$corr(F(u), F(v)) = n - d(u, v)$$

$$H_{2^m} = M_{2^m}^{(1)} M_{2^m}^{(2)} \dots M_{2^m}^{(m)}$$
 where $M_{2^m}^{(i)} = I_{2^{m-i}} \otimes H_2 \otimes I_{2^{i-1}}, \qquad 1 \leq i \leq m$

Easy to implement in hardware — used in Mariner-9. (Green Machine)

List Decoding Algorithm

Algorithm for $\mathcal{R}(1,m)$ capable of correcting $n(\frac{1}{2}-\epsilon)$ errors in $O(n\epsilon^3)$. Hadamard Transform: $\frac{n}{4}$ errors in $O(n \log n)$ time.

Algorithm

List:
$$L_{\epsilon}(y) = \{ f \in \mathcal{R}(1, m) : d(\mathbf{y}, \mathbf{f}) \leq n(\frac{1}{2} - \epsilon) \}$$

Candidate (ith prefix): $c^{(i)}(x_1, \dots, x_m) = c_1 x_1 + \dots + c_i x_i$
 $L_{\epsilon}^{(i)}(y) = \{ c^{(i)}(x_1, x_2, \dots, x_i) = c^{(i-1)} + c_i x_i \}$

distance

$$\Delta(\mathbf{y}, \mathbf{c^{(i)}}) = \sum_{\alpha} |\mathbf{y}_{\alpha} \mathbf{c^{(i)}}| = \sum_{\alpha} |\mathbf{v}_{\alpha}^{(i)}|$$

$$S_{0,\alpha} = \{(x_1, \dots x_{i-1}, 0, \alpha_{i+1} \dots \alpha_m)\}$$

$$S_{1,\alpha} = \{(x_1, \dots x_{i-1}, 1, \alpha_{i+1} \dots \alpha_m)\}$$

Since $c^{(i)} = c^{(i-1)} + c_i x_i$, we can write :

$$\mathbf{v}_{\alpha}^{(\mathbf{i})} = \mathbf{v}_{\mathbf{0},\alpha}^{(\mathbf{i})} + (-1)^{c_i} \mathbf{v}_{\mathbf{1},\alpha}^{(\mathbf{i}-\mathbf{1})}$$

List Decoding

Example

Applications

- Communication Used in Mariner and Viking space-probes in the 1970's.

 More recently, used is in the IEEE 802.11b standard for
 Wireless Local Area Networks (WLANs).
- Testing Low-degree polynomials Using $\mathcal{R}(1,m)$ codes to test whether a binary function is a low-degree polynomial is a central theme in a lot of research in complexity theory \cite{bolden} , $\cite{complex}$, and the properties are used to prove the bounds on the number of queries needed to determine the original function.
- Sidelnikov cryptanalysis The cryptanalysis attack uses the properties of Reed-Muller codes to break the cryptographic code [?]. The uniqueness result stated earlier is a central feature in the cryptographic attack. [?]
- Side Channel attacks The list decoding of the $\mathcal{R}(1,m)$ codes is used in the side-channel attack described in [?]

References