Aspectos Teóricos da Computação

Prof. Rodrigo Martins rodrigo.martins@francomontoro.com.br

Cronograma da Aula

Autômatos Finitos

Máquinas de estado

Grafo de estados

Autômatos Finitos

• Esta aula introduz a classe de linguagens conhecidas como "linguagens regulares".

• Essas linguagens são exatamente aquelas que podem ser descritas por autômatos finitos.

Autômatos Finitos

- Um autômato finito tem um conjunto de estados, e seu controle se desloca de estado para estado em resposta a "entradas" externas.
- Autômatos finitos podem ser:
 - **determinístico**, que significa que o autômato não pode estar em mais de um estado em qualquer instante.
 - Não determinísticos, significa que o autômato pode estar em vários estados ao mesmo tempo.

Autômatos Finitos

- Estados {**S0,S1**}
- Entrada=(0,1)
- Saída = (parado, andando)
- ◆ Entrada 0 → para
- ◆ Entrada 1 → anda

Ventilador...

- Estados {\$0,\$1,\$2,\$3}
- Entrada=(botão vermelho, azul, laranja amarelo)

 Saída=(desligado, ligado velocidade 1, ligado velocidade 2 e ligado velocidade 3)

Máquina de Estado Finito

- Para descrever uma máquina de estado finito em particular, precisamos definir os três conjuntos e as duas funções que a definem. Por exemplo:
- Seja uma máquina de estado finito M, descrita da seguinte maneira:
- M = [S, I, O, fi e fo]
- $S = \{ s0, s1, s2 \}$
- $I = \{ 0, 1 \}$
- $O = \{ 0, 1 \}$
- fi e fo funções de input e output (transições).

Máquina de Estado Finito

Estado Atual	Próx	kimo Estado	Saída
	Entrada Atual 0 1		
S ₀	S ₁	s _o	0
S ₁	S ₂	S ₁	1
S ₂	S ₂	S ₀	1

- M = [S,I,O,fi e fo]
- A máquina M começa no estado s0 que tem saída 0. Se o primeiro símbolo de entrada for um 0, o próximo estado da máquina é s1, que tem saída 1
- Se o próximo símbolo de entrada for 1, a máquina permanece no estado s1, com saía 1.
- Continuando esta análise, vemos que uma sequência de entrada que consista em caracteres 01101, lidos da esquerda para a direita, produz o seguinte efeito

Grafo de Estados

 Outra forma de definir as funções fi e fo é através de um grafo chamado grafo de estados.

Máquina de Estado Finito.

• O zero inicial da cadeia de saída é supérfluo - ele apenas reflete o estado inicial, e não o resultado de qualquer entrada.

Ciclo	t ₀	t ₁	<i>t</i> ₂	<i>t</i> ₃	t ₄	<i>t</i> ₅
Entrada	0	1	1	0	1	_
Estado	s _o	S ₁	S ₁	S ₁	S ₂	So
Saída	<u>o</u>	1	1	1	1	0

Exemplo 1

- Para a máquina definida, reproduza a saída para a sequência de entrada 1010.
- ◆ A saída é 00111

Ciclo	t_o	t ₁	<i>t</i> ₂	<i>t</i> ₃	t ₄
Entrada	1	0	1	0	_
Estado	s _o	s _o	S ₁	S ₁	S ₂
Saída	0	0	1	1	1

Exemplo 2

• Uma máquina M é dada pelo grafo de estados.

Forneça a tabela de estados de M.

A Tabela de Estados

Estado	Próximo	Saída	
Atual	Entrada 0		
s_0	s_0	S ₃	0
S ₁	s_0	S ₂	1
S ₂	s_3	s_3	1
s_3	S ₁	S ₃	2

Exemplo 3

• Uma máquina de estados é descrita pela tabela de estados:

Estado Normal	Próx	imo Es	Saída	
	Entra 0	ada Atı 1	ual 2	
s _o	s _o	S ₁	S ₁	0
S ₁	S ₁	s _o	s _o	1

• Desenhar o grafo de estados para de M

Grafo

Exemplo 4

• Qual a saída correspondente à sequência de entrada 2110? Mostrar em tabela e em grafo (caminho!).

Ciclo	t _o	t ₁	t ₂	t ₃	t ₄
Entrada	2	1	1	0	
Estado	s _o	S ₁	s _o	S ₁	S ₁
Saída	0	1	0	1	1

Uma máquina M é descrita pela tabela de estados:

Estado atual	Próxi	mo Esta	Saída	
	Entra 0	da Atua 1		
s_o	s _o	s ₂	S ₁	0
S ₁	S ₁	So	S ₂	1
S ₂	S ₁	S ₂	S _o	0

- ◆ A Criar o grafo de estado para M.
- B Qual a sequência de saída que corresponde a entrada 211201
- C Qual a sequência de saída que corresponde a entrada 2122213

Uma máquina M é descrita pelo seguinte grafo:

- A Criar a tabela de estados para M.
- B Qual a sequência de saída que corresponde a entrada 211201
- C Qual a sequência de saída que corresponde a entrada 2122213

- Com base na tabela de estados abaixo:
 - A criar o grafo.
 - B verificar a saída gerada a partir da entrada 00110101110, para isso gerar a tabela de transição.

Estado	Próx	Próximo Estado		
Atual	Entra 0			
S ₀	S ₁	S ₀	0	
S ₁	S ₃	S ₂	1	
S ₂	S ₄	S ₅	1	
S_3	S ₃	S ₄	0	
S ₄	S ₂	S ₀	0	
S ₅	S ₃	S ₄	0	

Baseado na tabela de estados:

Estado Atual	Próximo Estado				Saída
Atdai	Entr	ada A	tual		
	0	1	2	3	
S ⁰	S ¹	S ⁵	S ⁰	So	0
S ¹	S ³	S ⁴	S ³	S ²	1
S ²	S ⁴	S ⁵	S ⁴	S ⁵	1
S ³	S ³	S ³	So	So	2
S ⁴	S ²	So	S ²	S ⁴	2
S ⁵	S ³	S ⁴	S ¹	So	0

- Criar o grafo.
- Criar a tabela de transição para verificar a saída gerada pela maquina com as entradas:
 - **•** 0000013333
 - **333012222**
 - **•** 012301233210

Com base no grafo:

 Verifique se o autômato chega ao estado final ao receber como entrada a palavra baba

Referências desta aula

 HOPCROFT, John E.; MOTWANI, Rajeey; ULLMAN, Jeffrey D. Introdução a teoria de autômatos, linguagens e computação. Rio de Janeiro: Campus, 2002.

> FIM Obrigado

> > Rodrigo