19MAT201: Numerical Methods

Pavithra Celeste R

September 5, 2021

Syllabus

- Roots of Transcendental and Polynomial Equations: Bisection method, Iteration methods based on first degree equations, Rate of convergence, system of nonlinear equations.
- Interpolation and Approximation: Lagrange, Newton's Divided
 Difference, Newton's Forward and Backward interpolations

Text books

Text book:

Numerical Methods in Engineering with Python, Jaan Kiusalaas, Cambridge University Press, 2010.

References:

- ▶ R.L. Burden, J. D. Faires, *Numerical Analysis*, Richard Stratton, 2011, 9th edition.
- S.D. Conte and Carl de Boor, Elementary Numerical Analysis; An Algorithmic Approach. International series in Pune and Applied Mathematics, McGraw Hill Book Co., 1980.

- Why?
- What?
- How?

Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically (numerical approximation) the problems of mathematical analysis.

Real world problems:

- Mathematical models
- Choose method/algorithm
- Programmig
- Execute
- Validate

Algorithm: Step by step logical instructions having a stopping criteria.

- Stability
- Convergence
- Error

Error

```
Round off error, Truncation error, Model errors

Absolute error = |Exact value - approximated value|
Relative error = |Exact value - approximated value|
| exact value |
| approximate error = | current approximated value |
| current approximated value |
```

Root Finding

Polynomial equations: $x^5 + x^2 + 6x = 2$

Trancendental Equations: $x = e^x$

Root or Zero of the function f(x): The value of x, for which f(x) = 0.

Example: f(x) = x + 3, then the root is x = -3.

Iterative method

- f(x) = 0
- $x_{n+1} = g(x_n), n = 0, 1, 2, ...$
- for n = 0, $x_1 = g(x_0)$

Algorithm

- Choose two real numbers a and b such that f(a)f(b) < 0
- 2 Set $x_r = \frac{a+b}{2}$.
- If $f(a)f(x_r) < 0$, the root lies in the interval (a, x_r) . Then, set $b = x_r$ and go to step 2.
 - ▶ If $f(a)f(x_r) > 0$, the root lies in the interval (x_r, b) . Then, set $a = x_r$ and go to step 2.
 - ▶ If $f(a)f(x_r) = 0$, then x_r is a root of the equation f(x) = 0 and the computation may be terminated.

13/17

Stopping criteria

Last interval is small as desired, say ϵ .

At the end of nth step:

- interval $[a_n, b_n]$ with length $\frac{|b-a|}{2^n}$
- $\frac{|b-a|}{2^n} \le \epsilon$
- $n \ge \frac{\log_e(|b-a|/\epsilon)}{\log_e 2}$

Find a real root of the equation $x^3 - 2x - 5 = 0$.

Time a real root of the equation $x = 2x = 3 = 0$							
n	а	b	X _r	$f(x_r)$			
1	2	3	2.5	5.6250			
2	2	2.5	2.25	1.8906			
3	2	2.25	2.125	0.03457			
4	2	2.125	2.0625	-0.3513			
5	2.0625	2.125	2.09375	-0.0089			
6	2.09375	2.125	2.10938	0.1668			
7	2.09375	2.10938	2.10156	0.07856			
8	2.09375	2.10156	2.09766	0.03471			
9	2.09375	2.09766	2.09570	0.01286			

n	а	b	X _r	$f(x)_r$
10	2.09375	2.09570	2.09473	0.00195
11	2.09375	2.09473	2.09424	-0.0035
12	2.09424	2.09473		

Root is 2.094.

Here
$$|b - a| = |3 - 2| = 1$$
. Let $\epsilon = 0.001$. Then $n \ge 10$.

Use bisection to find the real root of the equation

$$f(x) = x^3 - x - 1 = 0.$$

 Find a positive root of the equation xe^x = 1, which lies between o and 1.

17/17