Student	First Name	Last Name
1	Apoorv	SOMKUWAR
2	Akash	SHARMA
3	Rodrigo	GUILHERME
4	Raphaël	AUBRY

Answer #1

Numerical values of coefficients a_0 , a_1 and b_1 of the motion equation.

Do not forget the unit + 3 figures after the coma.

```
a_0 = 0.961 \text{ s}^{-1}
a_1 = 0.949 \text{ s}^{-1}
b_0 = 0.666 \text{ s}^{-1}
```

Answer #2

Numerical values in rad and ° for $\beta(0^-)$

```
\beta(0^{\circ}) = -0.269 \text{ rad} \sim 15.44^{\circ}
```

Answer #3

The ODE to be solved just after the reversal is : $\ddot{m{eta}} + a_1 \dot{m{eta}} + a_0 m{eta} = c_0$

Two boundary conditions are associated with this ODE

Numerical values for c_0 and the boundary conditions. Do not forget the unit + 3 figures after the coma.

```
c_0 = 0.256

\beta(0^+) = -0.269 \text{ rad}

d\beta/dt(0^+) = 0 \text{ rad/s}
```

Answer #4

Numerical value for the discriminant Δ , which is strictly negative.

$$\Delta = -2.87$$

Answer #5

Numerical value for r and s. Do not forget the unit + 3 figures after the coma.

```
r = -0.481

s = 0.848
```

Answer #6

Numerical value for C_1 and C_2 . Do not forget the unit + 3 figures after the coma.

```
C_1 = -0.539 \text{ rad}
C_2 = -0.305 \text{ rad}
```

Answer #7

Literal expressions for t_k and β_k .

```
t_k= 3.706k

\beta_k= 0.269 - (-1)^k * 0.539exp(-1.781k)
```

Answer #8

Numerical values for t_k and β_k k=0,1,2.

```
t_0 = 0
t_1 = 3.706
t_3 = 7.412
\beta_0 = -15.43
\beta_1 = 20.64
\beta_2 = 14.56
```

Answer #9

Numerical values to fill the following table.

t in s	0-	0+	3.706
β in rad	-0.269	-0.269	0.360
$\delta_{\rm n}$ in rad	-0.384	0.384	0.384
R _{y,β} in N	56976	56976	-71171
R _{y,δ} in N	-38728	38728	38728
R _y in N	18248	95704	-37443

QUESTION #4

Answer #10

Numerical values for the coefficients appearing in the expression for M_c .

$$M_c = a\dot{\beta} + b\beta - c\delta_n$$

a = 666

b = 4892

c = 17856

Answer #11

Numerical values to fill the following table.

t in s	0	O ⁺	t ₁ =
b in rad	-0.269	-0.269	0.360
δ_n in rad	-0.384	0.384	0.384
M _c in Nm	5538	-8174	-5094

Answer #12

Numerical values for the coefficients appearing in the expression for δ_n .

$$\delta_n = a + b\dot{\beta} + c\beta$$

a = 0.412

b = 0.037

c = 0.274

Answer #13

Numerical values for the coefficients appearing in the new motion equation.

$$\ddot{\boldsymbol{\beta}} + a\dot{\boldsymbol{\beta}} + b\boldsymbol{\beta} = c$$

a = 0.936

h = 0.767

c = 0.275

Answer #14

Expressions of b and db/dt including numerical expressions of coefficients involved.

$$\beta = 0.358 - \exp(-0.468t) * (0.627\cos 0.740t + 0.397\sin 0.740t)$$

 $d\beta/dt = 0.650 * \exp(-0.468t) * \sin 0.740t$