Map-Reduce and Related Systems

Acknowledgement

The slides used in this chapter are adapted from the following sources:

- CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford University, http://www.mmds.org
- ENGG4030 Web-Scale Information Analytics, by Wing Cheong Lau, The Chinese University of Hong Kong,

Divide and Conquer

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What is the common theme of all of these problems?

Common Theme?

- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism

Managing Multiple Workers

- Difficult because
 - We don't know the order in which workers run
 - We don't know when workers interrupt each other
 - We don't know the order in which workers access shared data
- Thus, we need:
 - Semaphores (lock, unlock)
 - Conditional variables (wait, notify, broadcast)
 - Barriers
- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...
- Moral of the story: be careful!

What's the point?

- It's all about the right level of abstraction
 - The von Neumann architecture has served us well, but is no longer appropriate for the multi-core/cluster environment
- Hide system-level details from the developers
 - No more race conditions, lock contention, etc.
- Separating the what from how
 - Developer specifies the computation that needs to be performed
 - Execution framework ("runtime") handles actual execution

The datacenter is the computer!

"Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Google MapReduce

- Framework for parallel processing in large-scale shared-nothing architecture
- Developed initially (and patented) by Google to handle Search Engine's webpage indexing and page ranking in a more systematic and maintainable fashion
- Why NOT using existing Database (DB)/ Relational Database Management Systems (RDMS) technologies?

Mismatch of Objectives

- DB/ RDMS were designed for high-performance transactional processing to support hard guarantees on consistencies in case of MANY concurrent (often small) updates, e.g. ebanking, airline ticketing;
 DB Analytics were "secondary" functions added on later;
- For Search Engines, the documents are never updated (till next Web Crawl) and they are Read-Only; It is ALL about Analytics!
- Import the webpages, convert them to DB storage format is expensive
- The Job was simply too big for prior DB technologies!

Typical BigData Problem

- Iterate over a large number of records
- Mastract something of interest from each
 - Shuffle and sort intermediate results
 - Aggregate intermediate resultaduce
 - Generate final output

Key idea: provide a functional abstraction for these two operations

MapReduce

• Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are sent to the same reducer
- <a,b>* means a list of tuples in the form of (a,b)
- The execution framework handles everything else...

"Hello World" Task for MapReduce: Word Counting

- Unix/Linux shell command to Count occurrences of words in a file named doc.txt:
 - words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
 - "uniq" stands for unique, is a true Unix command; see its manpage to find out what "uniq -c" does
- The above "Unix/Linux-shell command" captures the essence of MapReduce
 - Great thing is that it is naturally parallelizable

Provided by the programmer

MAP:
Read input and produces a set of key-value pairs

Group by key: Collect all pairs with same key

Provided by the programmer

Reduce:
Collect all
values
belonging to the
key and output

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term spacebased man/mache partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need

Big Document

(crew, 1) (crew, 1) (space, 1) (the, 1) (the, 1) (the, 1) (shuttle, 1) (recently, 1)

(key, value)

(crew, 2) (space, 1) (the, 3) (shuttle, 1) (recently, 1) ...

(key, value)

sequential reads

Only

"Hello World": Pseudo-code for Word Count

```
Map(String docid, String text):
// docid: document name, i.e. the input key;
// text: text in the document, i.e. the input value
   for each word w in text:
      EmitIntermediate(w, 1);
Reduce(String term, Iterator<Int> Ivalues):
// term: a word, i.e. the intermediate key, also happens to be the output key here;
// Ivalues: an iterator over counts (i.e. gives the list of intermediate values from Map)
   int sum = 0:
   for each v in Ivalues:
      sum += v;
   Emit(term, sum);
```

// The above is pseudo-code only! True code is a bit more involved: needs to define

how the input key/values are divided up and accessed, etc).

MapReduce

Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed File System (later)

MapReduce

• Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k'', v'' \rangle^*
```

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:

```
partition (k', number of partitions) → partition for k'
```

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations
- Sometimes useful to override the hash function:
 - e.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

combine
$$(k', v') \rightarrow \langle k', v' \rangle^*$$

- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic
- Works only if Reduce function is Commutative and Associative

Hadoop Streaming

- To enjoy the convenience brought by Hadoop, one has to implement mapper and reducer in Java
 - Hadoop defines a lot of data types and complex class hierarchy
 - There is a learning curve
- Hadoop streaming allows you to use any language to write the mapper and reducer

Hadoop Streaming

- Using Hadoop Streaming, you need to write
 - Mapper
 - Read input from standard input (STDIN)
 - Write map result to standard output (STDOUT)
 - Key value are separated using tab
 - Group by key
 - Done by Hadoop
 - Reducer
 - Read input (Mapper's output) from standard input (STDIN)
 - Write output (Final result) to standard output (STDOUT)

Hadoop Streaming

- Allows you to start writing MapReduce application that can be readily deployed without having to learn Hadoop class structure and data types
- Speed up development
- Utilize rich features and handy libraries from other languages (Python, Ruby)
- Efficiency critical application can be implemented in efficient language (C, C++)

Hadoop Streaming: Word Count Mapper

```
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        # tab-delimited; the trivial word count is 1
        print '%s\t%s' % (word, 1)
```

Hadoop Streaming: Word Count Reducer

```
#!/usr/bin/env python
from operator import itemgetter
import sys
current word = None
current count = 0
word = None
for line in sys.stdin:
    line = line.strip()
    word, count = line.split('\t', 1)
    try:
        count = int(count)
    except ValueError:
        continue
    if current word == word:
        current count += count
    else:
        if current word:
            print '%s\t%s' % (current word, current count)
        current count = count
        current word = word
if current word == word:
    print '%s\t%s' % (current word, current count)
```

Hadoop Streaming: How to Run?

To run the sample code

```
$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar \
-input inputPathonHDFS \
-output outputPathonHDFS \
-file pathToMapper.py \
-mapper mapper.py \
-file pathToReducer.py \
-reducer reducer.py
```

- -file caches the argument to every tasktracker
- The above command distribute the mapper.py and reducer.py to every tasktracker

Hadoop Streaming: Word Count

```
#!/usr/bin/env python
"""A more advanced Mapper, using Python iterators and generators."""
import sys
def read input(file):
   for line in file:
        yield line.split()
def main(separator='\t'):
   # input comes from STDIN (standard input)
   data = read input(sys.stdin)
    for words in data:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
       # Reduce step, i.e. the input for reducer.py
        # tab-delimited; the trivial word count is 1
        for word in words:
            print '%s%s%d' % (word, separator, 1)
if name == " main ":
   main()
```

Hadoop Streaming: Word Count

```
#!/usr/bin/env python
"""A more advanced Reducer, using Python iterators and generators."""
from itertools import groupby
from operator import itemgetter
import sys
def read mapper output(file, separator='\t'):
    for line in file:
       yield line.rstrip().split(separator, 1)
def main(separator='\t'):
    # input comes from STDIN (standard input)
    data = read mapper output(sys.stdin, separator=separator)
    # groupby groups multiple word-count pairs by word,
    # and creates an iterator that returns consecutive keys and their group:
     current word - string containing a word (the key)
        group - iterator yielding all ["<current word&gt;", "&lt;count&gt;"] items
    for current word, group in groupby(data, itemgetter(0)):
       try:
            total count = sum(int(count) for current word, count in group)
            print "%s%s%d" % (current word, separator, total count)
        except ValueError:
            # count was not a number, so silently discard this item
            pass
if __name__ == "__main__":
    main()
```

Two more details...

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

Example 2: Inverted Index (for a Search Engine)

Foo Bar This page contains My page contains so much text text too contains: Foo, Bar much: Foo My: Bar page: Foo, Bar so: Foo text: Foo, Bar This: Foo

too: Bar

Inverted Index with MapReduce

Mapper:

- Key: PageName // URL of webpage
- Value: Text // text in the webpage

foreach word w in Text

EmitIntermediate(w, PageName)

Reducer:

- Key: word
- Values: all URLs for word
- ... Just the Identity function

Inverted Index Data flow w/ MapReduce

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

Usage is usually clear from context!

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, used in production
 - Now an Apache project
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- o Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Dealing with Failures

Map worker failure

- Map tasks completed (Why ??) or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

Master failure

MapReduce task is aborted and client is notified

How many Map and Reduce jobs?

M map tasks, R reduce tasks

o Rule of a thumb:

- Make M much larger than the number of nodes in the cluster
- One DFS chunk (64 Mbyte each by default) per mapper is common
- Improves dynamic load balancing and speeds up recovery from worker failures

Usually R is smaller than M

Because output is spread across R files

Task Granularity & Pipelining

- Fine granularity tasks: # of map tasks >> machines
 - Minimizes time for fault recovery
 - Can do pipeline shuffling with map execution
 - Better dynamic load balancing
 - e.g. For 2000 processors, *M* = 200,000 ; *R* = 5000

Refinements: Backup Tasks

o Problem

- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

Effect

Dramatically shortens job completion time

How do we get data to the workers?

Distributed File System

- Don't move data to workers... move workers to the data!
 - Store data on the local disks of nodes in the cluster
 - Start up the workers on the node that has the data local

• Why?

- Not enough RAM to hold all the data in memory
- Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop
 - Non-starters
 - Lustre (high bandwidth, but no replication outside racks)
 - Gluster (POSIX, more classical mirroring, see Lustre)
 - NFS/AFS/whatever doesn't actually parallelize

GFS: Assumptions

- Commodity hardware over "exotic" hardware
 - Scale "out", not "up"
- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads over random access
 - High sustained throughput over low latency

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunkservers
- Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

Google File System

Ghemawat, Gobioff, Leung, 2003

- Chunk servers hold blocks of the file (64MB per chunk)
- Replicate chunks (chunk servers do this autonomously). More bandwidth and fault tolerance
- Master distributes, checks faults, rebalances (Achilles heel)
- Client can do bulk read / write / random reads

Google File System /HDFS

- 1. Client requests chunk from master
- 2. Master responds with replica location
- 3. Client writes to replica A
- 4. Client notifies primary replica
- 5. Primary replica requests data from replica A
- 6. Replica A sends data to Primary replica (same process for replica B)
- Primary replica confirms write to client
 - Master ensures nodes are live
 - Chunks are checksummed
 - Can control replication factor for hotspots / load balancing
 - Deserialize master state by loading data structure as flat file from disk (fast); See Section 4.1 of GFS SOSP2003 paper for details

From GFS to HDFS

- Terminology differences:
 - GFS master = Hadoop namenode
 - GFS chunkservers = Hadoop datanodes
- Functional differences:
 - Initially, no file appends in HDFS (the feature has been added recently)
 - http://blog.cloudera.com/blog/2009/07/file-appends-in-hdfs/
 - http://blog.cloudera.com/blog/2012/01/an-update-on-apache-hadoop-1-0/
 - HDFS performance is (likely) slower

For the most part, we'll use the Hadoop terminology...

HDFS Architecture

Namenode Responsibilities

- Managing the file system namespace:
 - Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
- Coordinating file operations:
 - Directs clients to datanodes for reads and writes
 - No data is moved through the namenode
- Maintaining overall health:
 - Periodic communication with the datanodes
 - Block re-replication and rebalancing
 - Garbage collection
- Namenode can be Archille's heel Single point of failure or bottleneck of scalability for the entire FS:
 - Need to have a Backup Namenode HDFS (or Master in GFS)
 - Compared to the fully-distributed approach in Ceph

Putting everything together...

Sample Use of MapReduce

More MapReduce Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host

o Other examples:

- Link analysis and graph processing
- Machine Learning algorithms
- More later in the course...

Another Example: Language Model

o Statistical machine translation:

 Need to count number of times every 5-word sequence occurs in a large corpus of documents

• With MapReduce:

- Map:
 - Extract (5-word sequence, count) from document
- Reduce:
 - Combine the counts

Example: Join By Map-Reduce

- Compute the natural join $R(A,B) \bowtie S(B,C)$
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)

Α	В
a ₁	b_1
a_2	b_1
a_3	b_2
a_4	b_3

R

 \bowtie

В	C
b_2	C ₁
b_2	C_2
b_3	c_3

S

A	С
a_3	C ₁
a_3	C_2
a_4	C_3

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- O A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs (b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Cost Measures for Algorithms

- In MapReduce we quantify the cost of an algorithm using
- 1. Communication cost = total I/O of all processes
- 2. Elapsed communication cost = max of I/O along any path
- 3. (*Elapsed*) *computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)

Example: Cost Measures

For a map-reduce algorithm:

- Communication cost = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
- Elapsed communication cost is the sum of the largest input + output for any map process, plus the same for any reduce process

What Cost Measures Mean

- Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other
- Total cost tells what you pay in rent from your friendly neighborhood cloud
- Elapsed cost is wall-clock time using parallelism

Cost of Map-Reduce Join

- Total communication cost
 - $= O(|R|+|S|+|R\bowtie S|)$
- Elapsed communication cost = O(s)
 - We're going to pick k and the number of Map processes so that the I/O limit s is respected
 - We put a limit s on the amount of input or output that any one process can have. s could be:
 - What fits in main memory
 - What fits on local disk
- With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost

MapReduce is good for...

- o Embarrassingly Parallel algorithms
- Summing, grouping, filtering, joining
- Off-line batch jobs on massive data sets
- Analyzing an entire large data set
 - New higher level languages/systems have been developed to further simplify data processing using MapReduce
 - Declarative description (NoSQL type) of processing task can be translated automatically to MapReduce functions
 - Control flow of processing steps (Pig)

MapReduce is OK, (and only ok) for...

- Iterative jobs (e.g. Graph algorithms like Pagerank)
 - Each iteration must read/write data to disk
 - I/O and latency cost of an iteration is high

MapReduce is NOT good for...

- Jobs that need shared state/ coordination
 - Tasks are shared-nothing
 - Shared-state requires scalable state store
- Low-latency jobs
- Jobs on small datasets
- Finding individual records

For some of these, we will introduce alternative computational models/ platforms, e.g. GraphLab, Spark, later in the course

Scalability/Flexibility Issues of the MapReduce/ Hadoop 1.0 Job Scheduling/Tracking

- The MapReduce Master node (or Job-tracker in Hadoop 1.0) is responsible to monitor the progress of ALL tasks of all jobs in the system and launch backup/replacement copies in case of failures
 - For a large cluster with many machines, the number of tasks to be tracked can be huge
 - => Master/Job-Tracker node can become the performance bottleneck
- Hadoop 1.0 platform focuses on supporting MapReduce as its only computational model; may not fit all applications
- Hadoop 2.0 introduces a new resource management/ jobtracking architecture, YARN [1], to address these problems

[1] V.K. Vavilapalli, A.C.Murthy, "Apache Hadoop YARN: Yet Another Resource Negotiator," ACM Symposium on Cloud Computing 2013.

YARN for Hadoop 2.0

Single Use System

Batch Apps

Multi Use Data Platform

Batch, Interactive, Online, Streaming, ...

YARN provides a resource management platform for general Distributed/ Parallel Applications beyond the MapReduce computational model.

YARN for Hadoop 2.0

- Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g. MapReduce is one framework (Application), MPI, or Storm are other ones.
- YARN splits the functions of JobTracker into 2 components: resource allocation and job-management (e.g. task-tracking/ recovery):
 - Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
 - Each AM will request resources from the YARN Resource Manager (RM) to launch the Application's jobs/tasks (Containers in the figure above);
 - The YARN RM determines resource allocation across the entire cluster by communicating with/ controlling the Node Managers (NM), one NM per each machine.