Estadística II - Taller 06 Semestre: 2021-02

Profesores: Carlos M. Lopera-Gómez y Raúl Alberto Pérez

Monitor: Simon Pedro Galeano

1. Responda las siguientes preguntas.

- a) En un modelo de regresión es posible que $R^2=R_{adj}^2$, ¿bajo qué condiciones? ¿Es esto factible en modelos de regresión?
- b) Se tiene un modelo de regresión con k covariables, ¿cuál es el número de observaciones para obtener una estimación de la varianza?.
- c) Suponga que se tiene $\underline{\mathbf{x}}_0 = [1, x_{01}, \cdots, x_{0k}]$ adecuado para hacer inferencias respecto a la respuesta media de $\underline{\mathbf{x}}_0$, ¿la siguiente ecuación es correcta?

$$P\left(0 < \frac{\hat{Y}_0 - \mathbb{E}[Y|\underline{\mathbf{x}}_0|]}{se(\hat{Y}_0)} < t_{\alpha/2, n-p}\right) = 0.5 - \frac{\alpha}{2}$$

donde $\hat{Y}_0 = \underline{\mathbf{x}}_0 \underline{\beta}$.

- d) Suponga que $\underline{\mathbf{x}}_0 = [1, x_{01}, \cdots, x_{0k}]^T$ es un punto en el que no se comete extrapolación, luego $\underline{\mathbf{x}}_0^T (\mathbf{X}^T \mathbf{X})^{-1} \underline{\mathbf{x}}_0 < 1$.
- e) Considere a la entrada h_{ii} de la matriz **H**, se tiene que $\sum_{i=1}^{n} h_{ii}$ es igual al número de covariables en el modelo.
- f) En un modelo de regresión suponga que 2p > n y que para i = 3 $h_{ii} > \frac{2p}{n}$, ¿dicha observación es un punto de balanceo?
- 2. Considere la siguiente base de datos

Obs	Peso (Kg)	Sexo			Circunferencia
			(m)	cuello (cm)	muñeca (cm)
1	47.6	F	1.57	29.5	13.9
2	68.1	M	1.66	38.4	16
3	68	М	1.9	36.5	16.6
4	80	М	1.76	38	17.1
5	68.1	М	1.83	38	17.1
6	56.1	F	1.66	33	14.7
7	54.2	F	1.65	32.5	15.4
8	69.2	М	1.78	40.5	16.5
9	74.3	М	1.68	38	16.1
10	73.3	М	1.69	37.5	16.3
11	102.2	М	1.79	41.5	17.1
12	46.7	F	1.49	31.5	13.8
13	63.8	М	1.74	38	16.4
14	76.9	М	1.73	39.5	17.6
15	52.5	F	1.52	32.5	14.4
16	67.3	М	1.76	36.5	16.1
17	79.1	М	1.82	38	18
18	58.4	F	1.62	33	14.3
19	59.3	F	1.68	32	14.2
20	57.3	F	1.61	32	14.7
21	67.6	F	1.64	34.5	15.3
22	62.7	F	1.67	33	15.3
23	71.9	М	1.64	38.5	16.8
24	74.9	М	1.75	40	16.8
25	73	М	1.85	37.2	16.4
26	63.8	М	1.71	35	15.6

- a) Ajuste un modelo de regresión usando la estatura como respuesta y al resto como covariables (excepto al sexo).
- b) Plantee un contraste usando la hipótesis general lineal para comparar efectos de covariables sobre la respuesta.
- c) Valide los supuestos del modelo, encuentre puntos de balanceo e influencia, también identifique outliers.