Selenium

From Wikipedia, the free encyclopedia

Selenium is a chemical element with symbol **Se** and atomic number 34. It is a nonmetal with properties that are intermediate between the elements above and below in the periodic table, sulfur and tellurium. It rarely occurs in its elemental state or as pure ore compounds in the Earth's crust. Selenium (Greek $\sigma\epsilon\lambda\dot{\eta}\nu\eta$ selene meaning "Moon") was discovered in 1817 by Jöns Jacob Berzelius, who noted the similarity of the new element to the previously discovered tellurium (named for the Earth).

Selenium is found in metal sulfide ores, where it partially replaces the sulfur. Commercially, selenium is produced as a byproduct in the refining of these ores, most often during production. Minerals that are pure selenide or selenate compounds are known but rare. The chief commercial uses for selenium today are glassmaking and pigments. Selenium is a semiconductor and is used in photocells. Applications in electronics, once important, have been mostly supplanted by silicon semiconductor devices. Selenium is still used in a few types of DC power surge protectors and one type of fluorescent quantum dot.

Selenium salts are toxic in large amounts, but trace amounts are necessary for cellular function in many organisms, including all animals. Selenium is an ingredient in many multivitamins and other dietary supplements, including infant formula. It is a component of the antioxidant enzymes glutathione peroxidase and thioredoxin reductase (which indirectly reduce certain oxidized molecules in animals and some plants). It is also found in three deiodinase enzymes, which convert one thyroid hormone to another. Selenium requirements in plants differ by species, with some plants requiring relatively large amounts and others apparently requiring none.^[4]

Characteristics

Physical properties

Selenium forms several allotropes that interconvert with temperature changes, depending somewhat on the rate of temperature change. When prepared in chemical reactions, selenium is usually an amorphous, brick-red powder. When

Selenium, 34Se

General properties

Name, symbol selenium, Se

Appearance black, red, and gray (not

pictured) allotropes

Selenium in the periodic table

Atomic number (Z) 34

Group, block group 16 (chalcogens),

p-block

Period period 4

Element category

polyatomic nonmetal,

sometimes considered a

metalloid

Standard atomic weight (\pm) (A_r)

78.971(8)^[1]

Electron configuration

[Ar] $3d^{10} 4s^2 4p^4$

per shell 2, 8, 18, 6

Physical properties

Structure of hexagonal (gray) selenium

rapidly melted, it forms the black, vitreous form, usually sold commercially as beads.^[5] The structure of black selenium is irregular and complex and consists of polymeric rings with up to 1000 atoms per ring. Black Se is a brittle, lustrous solid that is slightly soluble in CS₂. Upon heating, it softens at 50 °C and converts to gray selenium at 180 °C; the transformation temperature is reduced by presence of halogens and amines.[6]

The red α , β , and ν forms are produced from solutions of black selenium by varying the evaporation rate of the

solvent (usually CS₂). They all have relatively low, monoclinic crystal symmetries and contain nearly identical puckered Se₈ rings with different arrangements, as in sulfur. The packing is most dense in the α form. In the Se₈ rings, the Se-Se distance is 233.5 pm and Se-Se-Se angle is 105.7°. Other selenium allotropes may contain Se₆ or Se₇ rings.^[6]

The most stable and dense form of selenium is gray and has a hexagonal crystal lattice consisting of helical polymeric chains, where the Se-Se distance is 237.3 pm and Se-Se-Se angle is 130.1°. The minimum distance between chains is 343.6 pm. Gray Se is formed by mild heating of other allotropes, by slow cooling of molten Se, or by condensing Se vapor just below the melting point. Whereas other Se forms are insulators, gray Se is a semiconductor showing appreciable photoconductivity. Unlike the other allotropes, it is insoluble in CS₂.^[6] It resists oxidation by air and is not attacked by nonoxidizing acids. With strong reducing agents, it forms polyselenides. Selenium does not exhibit the changes in viscosity that sulfur undergoes when gradually heated.^{[5][7]}

Isotopes

Selenium has six naturally occurring isotopes. Synthetic isotope ⁷⁹Se and 23 others have been identified:

Phase solid Melting point 494 K (221 °C, 430 °F) **Boiling point** 958 K (685 °C, 1265 °F) **Density** near r.t. gray: 4.81 g/cm³ alpha: 4.39 g/cm³ vitreous: 4.28 g/cm³ when liquid, at m.p. 3.99 a/cm^3 1766 K, 27.2 MPa **Critical point** gray: 6.69 kl/mol Heat of fusion 95.48 kl/mol Heat of

vaporization

Molar heat capacity

25.363 J/(mol·K)

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	500	552	617	704	813	958

Atomic properties

Oxidation states 6, 5, **4**, 3, **2**, 1, [2] -1, **-2**

(a strongly acidic oxide)

Pauling scale: 2.55 **Electronegativity** Ionization 1st: 941.0 kl/mol energies 2nd: 2045 kJ/mol

3rd: 2973.7 kl/mol

Atomic radius empirical: 120 pm

Covalent radius 120±4 pm 190 pm Van der Waals

radius

Miscellanea

hexagonal **Crystal structure**

 82 Se is stable, for all practical purposes. See also *Selenium-79* for recent changes in the measured half-life of 79 Se, which are important for the dose calculations in the geological disposal of long-lived radioactive waste. $^{[10]}$

External links

Wikipedia: Selenium (https://en.wikipedia.org/wiki/Selenium)

Thermal amorphous: conductivity 0.519 W/(m⋅K)

Magnetic ordering diamagnetic[3]

Young's modulus 10 GPa
Shear modulus 3.7 GPa
Bulk modulus 8.3 GPa
Poisson ratio 0.33

Brinell hardness 736 MPa CAS Number 7782-49-2

Mohs hardness

History

2.0

Naming after Selene, Greek

goddess of the moon

Discovery and Jöns Jakob Berzelius and Johann Gottlieb Gahn

(1817)

Most stable isotopes of selenium

iso	NA	half-life	DM	DE	DP		
				(MeV)			
⁷² Se	syn	8.4 d	ε	_	⁷² As		
		0.4 u	γ	0.046	_		
⁷⁴ Se	0.86%	is stable with 40 neutrons					
⁷⁵ Se	syn	119.779 d	ε	-	⁷⁵ As		
			γ	0.264,	-		
				0.136,			
				0.279			
⁷⁶ Se	9.23%	is stable with 42 neutrons					
⁷⁷ Se	7.60%	is stable with 43 neutrons					
⁷⁸ Se	23.69%	is stable with 44 neutrons					
⁷⁹ Se	trace	3.27×10 ⁵ y	β-	0.151	⁷⁹ Br		
⁸⁰ Se	49.80%	is stable with 46 neutrons					
⁸² Se	8.82%	1.08×10 ²⁰ y	β-β-	2.995	⁸² Kr		