# Situating Computational Thinking with Big Data: BlockPy and CORGIS





Austin Cory Bart, Javier Tibau, Bushra Chowdhury, Dr. Dennis Kafura, Dr. Clifford A. Shaffer, Dr. Eli Tilevich

## **Problem and Motivation**

To this end, Virginia Tech will comprehensively evaluate and modify the current Curriculum for Liberal Education to ... incorporate computational thinking and informatics/digital fluency as basic skills for all students, thereby enabling our students to be engaged citizens and life-long learners."

- Computational Thinking: New requirement at Virginia Tech for 24,000+ undergraduates
- Represents a **movement** in higher education to bring computing to everyone
- The primary challenges here are
  - Engage a diversity of different majors
  - Scale the learning experience to thousands











• We join with a small but growing initiative of research initiatives that use Big Data as an authentic, motivating learning context for students.

# Relevant Theories and Background

Sources of motivation as modelled by the **MUSIC Model of Academic Motivation** 

- eMpowerment
- Usefulness
- Success
- Interest
- Caring

#### **Educational Theories**

- Situated Learning Constructivism
- Socio-cognitivism
- Active Learning
- Problem-based Learning Cooperative Learning
- Mastery Learning Instructional Design

**3Vs of Big Data** 

Theory of Big Data

Source: http://blog.sqlauthority.com "... Information that cannot be handled

# Pedagogy

- "Introduction to Computational Thinking"
- 2 instructors (Senior and Associate)
- Fall 2014: 24 students, 70% male
- **Spring 2015**: 40 students, 60% female, 3 UTAs
- **Spring 2016**: 50 students, 50% female, 4 UTAs
- 20 different majors from 5 different colleges

#### **Class Strategy**

- Staff are guides, not talking heads
- Only a quarter of classtime is lecture
- Early focus on paper-and-pencil topics All material situated in Big Data context

#### **Learning Objectives**

- Abstraction
- Algorithms Visualizations
- Social Impacts



**3-phase** course with repeated emphasis on core objectives

(1) NetLogo Abstraction and Modelling

> (2) BlockPy Algorithms

(3) Python

Open-ended Final Projects

#### **Cohort model**

- Interdisciplinary teams
- 5-6 students
- Free to work together
- Support network

# Technology

#### BlockPy

- Block-based programming using BlockPy
- Local Python execution with Skulpt Automatic, interactive feedback through
- static analysis and output checking
- Code-aligned Property Explorer
- English-text explanation of code BlockPy Plot the forecasted temperatures of Miami in Celsius. You'll need to use the "create empty list" and "append" blocks to create a new list of Celsius temperatures from the forecasted temperatures in Blacksburg, and then plot these new temperatures against the old ones. Feedback: <a>Success!</a>

ຽ Undo ເຊື Redo ເຊື Reset ເພື Clear 🗎 🗮 Align set celsius\_temperatures = [ c create empty list Decisions Iteration set celsius tv -v 32 ÷v 2 Functions Calculation append item celsius to list celsius\_temperatures Python lot line 🎉 celsius\_temperatures 🔻 nake plot's title 😘 (Temperatures in Miami) 🤈 Dictionaries Data - Stock Data - Earthquakes Data - Crime Data - Books

- Real-time bi-directional mapping with Python code for deep transfer Plot visualization blocks
- CORIGS datasets blocks
- Interaction logging for advanced analysis
- Integration with Canvas through LTI



#### **Automatic English Explanation**

Import the weather module (which provides access to US weather reports). Import the PyPlot package from the MatPlotLib module (which let's you do plotting) Set the property <u>celsius\_temperatures</u> to a new empty list. Set the property temperatures to the expected temperatures for "Blacksburg, VA". For every element inside of the list the property <u>temperatures</u>, set t to that element's value and execute the Set the property celsius to (the property t minus 32) divided by 2. Append the property <u>celsius</u> to the property <u>celsius\_temperatures</u> (which must be a list). Plot the list the property <u>celsius\_temperatures</u> onto the current canvas as a line. Set the title of the current plot to "Temperatures in Miami".

#### **Instructor Interface**



#### **Dual Block/Text Conversion**

with traditional methods..."<sup>[5]</sup>



#### **Block-Text Conversion Architecture**



#### Automatic, Guided Feedback

| were stro | nger than t<br>and correc | he average<br>ting errors i | eartho<br>n algo | quake'<br>rithms |                | orrect the er<br>bugging". | out: Which of<br>ror in this algo<br>is receiving. |
|-----------|---------------------------|-----------------------------|------------------|------------------|----------------|----------------------------|----------------------------------------------------|
| Run       | I Text                    | Wide                        | ຕ                | G                | <b>2</b> Reset | ⊞ Clear                    | <b>■</b> Align                                     |
| Decisions |                           |                             | t cou            |                  |                |                            |                                                    |

#### **CORGIS Datasets Project**

- Collection of Real-time, Giant, Interesting datasetS
- Over 35 ready-to-use datasets in a wide variety of subjects
- Free, open-source Beginner-friendly interface
- Goal is to support Python, Java, Racket, and Android
- Internal scaffolding for managing high velocity and high volume datasets































### Motivational Data





#### **Conclusions and Future Work**

- Overall Lessons
  - Survey data gathered from the first offering indicates students enjoyed the experience
  - Authentic assessment of student final projects suggests positive learning gains
  - Plan to leverage the Computational Thinking Concept Inventory for context comparison • Longitudinal analysis to determine the course's impact on students long-term success
- Pedagogical Lessons
  - Social interaction is key as class continues to scale, the human element must be retained
  - Students definitely appreciated the more active lessons (as expected from literature)
  - Success (Self-efficacy) and Self-regulation is of growing importance

#### Technology Lessons

- Building up problems is hard, especially if they have feedback need more tools for this
- NetLogo doesn't fit in well needs to be replaced with BlockPy/Python material
- As we embrace more and more learners, we need more and more datasets; eventually we will want to look into artificially created datasets

# References

[1] A. C. Bart, et al., "Implementing an Open-access, Data Science Programming Environment for Learners", COMPSAC '16, Atlanta, Georgia. June 10-15, 2016.

[2] Bart, A. C., et al. "Transforming introductory computer science projects via real-time web data." SIGCSE. 2014.

[3] Anderson, C. "The end of theory." Wired magazine, 16, 2008.

[4] Anderson, R. E., et al. "Introductory programming meets the real world: using real problems and data in CS1." SIGCSE. 2014.

[5] Carter, L. "Why students with an apparent aptitude for computer science don't choose to major in computer science." ACM. p. 27-31 (2006).

[6] Jones, B. D. "Motivating Students to Engage in Learning: The MUSIC Model of Academic Motivation." International Journal of Teaching and Learning in Higher Education 21.2 (2009)

[7] Manyika, J., et al. "Big data: The next frontier for innovation, competition, and productivity." (2011). [8] Office of the Senior Vice President and Provost. "Academic implementation strategy for a plan for a new horizon: Envisioning Virginia Tech 2013-2018." Technical report, 2013.

This material is based upon work supported by the National Science Foundation, grant TUES-1140318, and the National Science Foundation Graduate Research Fellowship, Grant No. DGE 0822220