

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS DEPARTAMENTO DE MATEMÁTICA

ÁLGEBRA Y GEOMETRÍA ANALÍTICA 2

EXAMEN FINAL

Apellido y nombre:	Carrera:	Legajo:

PARTE PRÁCTICA

Justificar debidamente todas sus respuestas.

- 1. Sea H el lugar geométrico determinado por el conjunto de todos los puntos equidistantes del punto (0,2,0) y del plano y=-2.
 - (a) Identificar la superficie que determina H.
 - (b) Sea C la curva obtenida al considerar la traza de H sobre el plano y=2. Identifique dicha curva y presente sus elementos (centro, radio, foco, vértices, eje focal, asíntotas, según corresponda). Realizar un esbozo de la curva.
 - (c) Escribir las ecuaciones paramétricas de C.
- 2. Sean los vectores $v_1 = (1, \alpha, 3)^t$, $v_2 = (-1, 5, 2)^t$, $v_3 = (2, -4, -1)^t$, $v_4 = (3, 1, 1)^t$ de \mathbb{R}^3 .
 - (a) Considerar la matriz cuadrada $A = (v_1|v_2|v_3) \in \mathbb{R}^{3\times 3}$; matriz cuya primer, segunda y tercer columna son v_1, v_2 y v_3 respectivamente. Determinar para qué valores de α el sistema $AX = v_4$ donde $X = (x, y, z)^t$ resulta: compatible determinado, compatible indeterminado e incompatible.
 - (b) Determinar, si existen, los valores de $\alpha \in \mathbb{R}$ para que el conjunto $B = \{v_1, v_2, v_3\}$ sea base de \mathbb{R}^3 . En caso afirmativo, describir v_4 como combinación lineal de los elementos de B.
 - (c) Describir brevemente cómo los dos ítems anteriores se conectan entre sí.
- 3. Establecer la veracidad o falsedad de los siguientes enunciados, justificar adecuadamente la respuesta.
 - (a) Uno de los términos del desarrollo de $(5x + 2y^2)^7$ es $262500x^2y^{10}$.
 - (b) En una estantería se ordenan 8 libros: 4 de computación, 3 de lengua y 1 de física. Si los libros son todos diferentes y todos los libros de la misma materia deben quedar juntos, hay 864 formas de ordenarlos.
 - (c) Sea la matriz $A \in \mathbb{R}^{3\times 3}$ tal que |A| = -3 y B la matriz obtenida intercambiando la primera y segunda columna de A, entonces $\left| \left(2A^t B \right)^{-1} \right| = -72$.

Complemento para alumnos libres

- 1. Dada la recta r:~(x,y,z)=(2t,1-t,3+t) con $t\in\mathbb{R}$ y los puntos A(0,1,1) y B=(h,0,2) se pide:
 - (a) Hallar la ecuación del plano π que contiene al punto A y a la recta r.
 - (b) Calcular los valores de h reales, si existen, para que la distancia del punto B al plano π sea igual a $\sqrt{5}$.

PARTE TEÓRICA

- 1. En los siguientes items, indique la veracidad o falsedad de los enunciados **justificando** adecuadamente.
 - (a) Si $f: [1, n] \to [1, n]$ es inyectiva no puede ser biyectiva.
 - (b) Sea $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, donde $a_{ij} = \delta_{ij}$, δ indicando la función Delta de Kroenecker. Entonces $\det(A) = 1$.
 - (c) El determinante de una matriz que se obtiene intercambiando dos columnas es el opuesto del determinante de la matriz original.
- 2. Seleccione la o las opciones correctas, justificando adecuadamente su elección:
 - (a) Sean $A=(a_{ij}), B=(b_{ij}), C=(c_{ij})\in \mathbb{F}^{5\times 5}$. Entonces el elemento $[ABC]_{2,4}$ es igual a:

i.
$$\sum_{k=1}^{5} \sum_{j=1}^{5} c_{j4} b_{kj} a_{2k}.$$

ii.
$$\sum_{k=1}^{5} \sum_{j=1}^{5} a_{kj} b_{4j} c_{j2}.$$

iii.
$$\sum_{k=1}^{2} \sum_{j=1}^{4} a_{2k} b_{kj} c_{j4}.$$

iv.
$$\sum_{k=1}^{5} \sum_{j=1}^{5} a_{2k} b_{kj} c_{j4}$$
.

(b) Considere las siguientes matrices:

$$R = \begin{pmatrix} 2 & 0 & 2 & -5 \\ 0 & -1 & 0 & -5 \\ 0 & 0 & 0 & 5 \end{pmatrix}, \qquad S = \begin{pmatrix} 0 & -1 & 0 & -5 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 0 & -3 & 5 & 0 \end{pmatrix}.$$

Dichas matrices representan las matrices ampliadas de tres sistemas de ecuaciones, (S_1) , (S_2) y (S_3) , respectivamente.

- i. Los sistemas S_2 y S_3 son homogéneos.
- ii. El sistema S_1 es compatible determinado.
- iii. El sistema S_3 tiene dos variables libres.
- iv. El cardinal del conjunto solución del sistema S_2 es finito.
- 3. (a) Defina de manera coloquial y simbólica el concepto de conjunto generador de \mathbb{F}^n para un cuerpo \mathbb{F} y un natural n.
 - (b) Explique porqué un conjunto de 2 vectores de \mathbb{R}^3 no puede ser generador del espacio.
- 4. (a) Defina geométricamente el concepto de hipérbola.
 - (b) Deduzca las ecuaciones paramétricas de la rama de una hipérbola con eje focal $x=x_0$ ubicada en el semiplano $x>x_0$.

- 5. En cada item proporcione un ejemplo de las ecuaciones que identifican el lugar geométrico del espacio indicado.
 - (a) Parábola en el plano x = 1 de vértice el punto (1, 2, 3).
 - (b) Hiperboloide de una hoja con eje de simetría el eje z=3 y centro de simetría el punto (1,2,3).
 - (c) Hélice circular de paso proporcional a 2.
 - (d) Cono doble recto con vértice en el punto (1, 2, 3).
 - (e) Recta por el origen (en forma cartesiana).
 - (f) Plano por el origen (en forma paramétrica).