2 Miscellaneous Logic

(a)

(i) Possibly true.

false example:

```
Let G(x,y): y=x+2, so (\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) is true for G(x,y).
However, since 3+2=5 \neq 4, so G(3,4) is false.
```

true example:

Let
$$G(x,y): y=x+1$$
, so $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$ is true for $G(x,y)$.
And, since $3+2=4$, so $G(3,4)$ is true.

(ii) Possibly true.

false example:

```
Let G(x,y): y=x+2, so (\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) is true for G(x,y).
```

However, consider x = 0.

Since
$$0 + 2 = 2 \neq 3$$
, so $(\forall x \in \mathbb{R})$ $G(x,3)$ is false.

true example:

Let G(x,y): y=3, so $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$ is true for G(x,y).

Since the statement given indicates that y is always 3,

So, $(\forall x \in \mathbb{R})$ G(x,3) is true.

(iii) Certainly true.

Since the statement given, $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$ G(x,y), is true, and since $3 \in \mathbb{R}$, so there must exist a $y \in \mathbb{R}$ such that G(3,y) is true. Thus, $\exists y \ G(3,y)$ is a true statement.

(iv) Certainly false.

Since the statement given, $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) \ G(x,y)$, is true, and since $3 \in \mathbb{R}$, so there must exist a $y \in \mathbb{R}$ such that G(3,y) is true, which means that $\forall y \neg G(3,y)$ is a false statement.

(v) Possibly true.

false example:

```
Let G(x,y): y=3, so (\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) is true for G(x,y).
```

So $\forall x \in \mathbb{R}, y = 3$, which means that there's no x such that y = 4.

So $\exists x \ G(x,4)$ is false.

true example:

Let G(x,y): y=x+2, so $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$ is true for G(x,y).

Consider $x = 2, x \in \mathbb{R}$.

Since 2 + 2 = 4, so $\exists x \ G(x, 4)$ is true.

(b)

$$(X \lor Y \lor Z) \land (\neg (X \land Y) \lor (Y \land Z) \lor (Z \land X))$$