Contact Sensing via Joint Torque Sensors and a Force/Torque Sensor for Legged Robots

Jared Grinberg and Yanran Ding

Background Method Experiment Conclusions

Animals in Complex Environments

Whole-body sensing

Multi-point contact

Adaptive stability

https://www.safariventures.com/unraveling-the-secrets-of-leopards-master-hunters--and-tree-climbers/

https://explorersweb.com/apes-downclimbing-crucial-for-human-arm-development/ https://www.shutterstock.com/image-photo/male-wanderer-walking-through-woods

https://www.voutube.com/watch?v=H1PFWGf_1lk&ab_channel=ClimbingTechTips

Background Method Experiment Conclusions

Animals in Complex Environments

Whole-body sensing

Multi-point contact

Adaptive stability

Animals excel at this - so why don't robots?

https://www.safariventures.com/unraveling-the-secrets-of-leopards-master-hunters--and-tree-climbers/

https://explorersweb.com/apes-downclimbing-crucial-for-human-arm-development/ https://www.shutterstock.com/image-photo/male-wanderer-walking-through-woods

https://www.voutube.com/watch?v=H1PFWGf_1lk&ab_channel=ClimbingTechTips

Animals in Complex Environments

Whole-body sensing

Multi-point contact

Adaptive stability

Animals excel at this - so why don't robots?

Robots need comprehensive awareness to adapt safely.

https://www.safariventures.com/unraveling-the-secrets-of-leopards-master-hunters -and-tree-climbers/

https://explorersweb.com/apes-downclimbing-crucial-for-human-arm-development/ https://www.shutterstock.com/image-photo/male-wanderer-walking-through-woods overcoming-311052977

https://www.voutube.com/watch?v=H1PFWGf_1lk&ab_channel=ClimbingTechTips

Background Method **Experiment Conclusions**

Legged Robots in Complex Environments

Legged robots increasingly operate in unstructured environments

Outdoors

Warehouse

Disaster Sites

Versatile mobility

https://www.voutube.com/watch?v=cGb3bE6ZwrQ&ab_channel=MichiganRobotics%3ADvnamic

https://www.voutube.com/watch?v=Q8KWZB4kgTY&ab_channel=DEEPRobotics https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/

The Contact Detection Gap

Detect foot contact but miss leg collisions.

> Damage | Instability Navigation failure

https://www.youtube.com/watch?v=aX7KypGlitg&list=PPSV&ab channel=

https://www.youtube.com/watch?v=6JgvIRMQU1E&list=PPSV&ab chann el=RobotLocomotionGroup

Current Approaches to Whole-Body Sensing

Torque Sensing

Wensing, TRO 2017

Method

Motor Current Estimation

Benefits

- Current ∞ Torque
- Uses existing hardware in QDDs

Contact Detection

De Luca, ICRA 2005

Momentum Observer

- Fast detection
- Only encoder

Whole-Body Coverage

Bayer, Micromachines 2022

Alternative Sensing **Modalities**

- Rich spatial data
- Detects across entire body

Critical Gaps in Existing Methods

Torque Sensing

Wensing, TRO 2017

Motor Current Estimation

Limitations • Not direct measurement

Method

Contact Detection

De Luca, ICRA 2005 Momentum

Observer

Requires friction modeling

Whole-Body Coverage

Bayer, Micromachines 2022 Alternative Sensing Modalities

Extensive arrays, fragile

Our Approach: Combined Sensing for Complete Awareness

Torque Sensing

Direct Joint Torque Sensing

Solution

Method

• Scales to higher torque

Bypass gearbox friction

Whole-Body Coverage

Single Hip-Mounted FT Sensor

- Proximal link detection
- Protected location

Methodology

Background

Method

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \, \dot{\mathbf{q}} \, + \, \mathbf{g}(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{fric}} \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{motor}}$$

$$\mathbf{M}(\mathbf{q})\,\ddot{\mathbf{q}}\,+\,\mathbf{C}ig(\mathbf{q},\dot{\mathbf{q}}ig)\,\dot{\mathbf{q}}\,+\,\mathbf{g}ig(\mathbf{q}ig)\,+\,oldsymbol{ au}_{\mathrm{fric}}\,+\,oldsymbol{ au}_{\mathrm{ext}}\,=\,oldsymbol{ au}_{\mathrm{motor}}$$
 $-\,oldsymbol{ au}_{\mathrm{fric}}$ $-\,oldsymbol{ au}_{\mathrm{fric}}$

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \, \dot{\mathbf{q}} \, + \, \mathbf{g}(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{motor}} \, - \, oldsymbol{ au}_{\mathrm{fric}}$$

Method

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C} ig(\mathbf{q}) \, \dot{\mathbf{q}} \, + \, \mathbf{g} ig(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{motor}} \, - \, oldsymbol{ au}_{\mathrm{fric}}$$
 $oldsymbol{ au}_{\mathrm{sen}} \, = \, oldsymbol{ au}_{\mathrm{motor}} \, - \, oldsymbol{ au}_{\mathrm{fric}}$

$$\mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) + \boldsymbol{\tau}_{\mathrm{ext}} = \boldsymbol{\tau}_{\mathrm{sen}}$$

$$\mathbf{M}(\mathbf{q})\,\ddot{\mathbf{q}}\,+\,\mathbf{C}\big(\mathbf{q},\dot{\mathbf{q}}\big)\,\dot{\mathbf{q}}\,+\,\mathbf{g}\big(\mathbf{q}\big)\,+\,\boldsymbol{\tau}_{\mathrm{ext}}\,=\,\boldsymbol{\tau}_{\mathrm{sen}}$$

Method

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \, \dot{\mathbf{q}} \, + \, \mathbf{g}(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{sen}}$$

$$P = M(q) \dot{q}$$

Method

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \, \dot{\mathbf{q}} \, + \, \mathbf{g}(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{sen}}$$

$$\mathbf{P} = \mathbf{M}(\mathbf{q}) \,\dot{\mathbf{q}}$$

$$\dot{\mathbf{P}} = \frac{d}{dt} \left[\mathbf{M}(\mathbf{q}) \,\dot{\mathbf{q}} \right]$$

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \, \dot{\mathbf{q}} \, + \, \mathbf{g}(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{sen}}$$

$$\dot{\mathbf{P}} = \mathbf{M}(\mathbf{q}) \ddot{\mathbf{q}} + \dot{\mathbf{M}}(\mathbf{q}) \dot{\mathbf{q}}$$

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C} ig(\mathbf{q}, \dot{\mathbf{q}} ig) \, \dot{\mathbf{q}} \, + \, \mathbf{g} ig(\mathbf{q} ig) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{sen}}$$

$$\dot{\mathbf{P}} = \mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} + \dot{\mathbf{M}}(\mathbf{q}) \, \dot{\mathbf{q}}$$

$$\dot{\mathbf{M}} = \mathbf{C} + \mathbf{C}^\top$$

$$\mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \, \dot{\mathbf{q}} \, + \, \mathbf{g}(\mathbf{q}) \, + \, oldsymbol{ au}_{\mathrm{ext}} \, = \, oldsymbol{ au}_{\mathrm{sen}}$$

$$\dot{\mathbf{P}} \ = \mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \ + \ \mathbf{C} \, \dot{\mathbf{q}} \ + \ \mathbf{C}^{\mathbf{T}} \, \dot{\mathbf{q}}$$

Momentum Observer

$$\mathbf{M}(\mathbf{q})\,\ddot{\mathbf{q}} \;+\; \mathbf{C}\big(\mathbf{q},\dot{\mathbf{q}}\big)\,\dot{\mathbf{q}} \;+\; \mathbf{g}\big(\mathbf{q}\big) \;+\; \boldsymbol{\tau}_{\mathrm{ext}} \;=\; \boldsymbol{\tau}_{\mathrm{sen}}$$

$$\dot{\mathbf{P}} = \mathbf{M}(\mathbf{q}) \, \ddot{\mathbf{q}} \, + \, \mathbf{C} \, \dot{\mathbf{q}} \, + \, \mathbf{C}^{\mathbf{T}} \, \dot{\mathbf{q}}$$

Momentum Observer

Background

$$\dot{\mathbf{P}} = \mathbf{C}^{\top} \dot{\mathbf{q}} - \mathbf{g} + \boldsymbol{ au}_{\mathrm{sen}} - \boldsymbol{ au}_{\mathrm{ext}}$$

Generalized Momentum

Background

$$\dot{\mathbf{P}} = \mathbf{C}^{ op} \dot{\mathbf{q}} - \mathbf{g} + oldsymbol{ au}_{ ext{sen}} - oldsymbol{ au}_{ ext{ext}}$$
 $\dot{\mathbf{P}} = \mathbf{u} - oldsymbol{ au}_{ ext{ext}}$

Residual for Contact Detection

$$\mathbf{r}(t) = \mathbf{K} \left[\mathbf{P}(t) - \mathbf{p}_{int}(t) - \mathbf{P}_0 \right]$$

$$\dot{\mathbf{P}} = \mathbf{u} - \boldsymbol{\tau}_{\text{ext}} \rightarrow \mathbf{p}_{\text{int}}(t + \Delta t) = \mathbf{p}_{\text{int}}(t) + \left| \mathbf{u} + \mathbf{r}(t) \right| \Delta t$$

Residual for Collision Link Identification

$$r_i(t) \neq 0$$
 for $i = 1, \dots, c$
 $r_j(t) = 0$ for $j = c + 1, \dots, n$

$$c = \max\{i \in \{1, \dots, n\} : |r_i(t)| > \epsilon_{res}\}$$

The Underdetermined Contact Problem

3 unknowns

Background

- 2 known measurements
- Underdetermined system

Background

<u>Contact Detection</u> → <u>Contact Localization</u>

- Base FT Sensor 3 additional measurements
- Proximal to any contactable link

Force Calculation

Background

$$\mathbf{w} = \mathbf{S}(\mathbf{C}\dot{\mathbf{q}} + \mathbf{g} - \mathbf{B}\,\boldsymbol{\tau}_{\mathrm{sen}})$$

$$\mathbf{F}^u = \mathbf{w} - \mathbf{F}^b$$

$$\mathbf{F}_c = -[F_x^u, F_z^u]^{\top}$$

Position Calculation

$$\mathbf{p}_c = \mathbf{p}_1 + \alpha (\mathbf{p}_2 - \mathbf{p}_1), \ \alpha \in [0, 1]$$

$$M_y^u + \mathbf{p}_c \wedge \mathbf{F}_{xz}^u = 0$$

$$\alpha = -\frac{M_y^u + \mathbf{p}_1 \wedge \mathbf{F}_{xz}^u}{(\mathbf{p}_2 - \mathbf{p}_1) \wedge \mathbf{F}_{xz}^u}$$

Custom Joint Torque Sensor Design

- $1 \text{ k}\Omega$ strain gauges
- Full Wheatstone bridge
- 5 V excitation
- Differential output
- 6061 Aluminum Alloy
- Under \$32

- GF = 2 (gauge factor)
- $V_{\rm ex}$ = 5V (excitation voltage)
- ϵ = strain

$$\frac{\Delta R}{R} = GF \epsilon$$

$$V_o = V_{\rm ex} \times \frac{\Delta R/R}{4}$$

• GF = 2 (gauge factor)

Method

- $V_{\rm ex}$ = 5V (excitation voltage)
- ϵ = strain

$$V_o = V_{\rm ex} \times \frac{{
m GF}\,\epsilon}{4}$$

LSB =
$$V_{\rm ref}/2^{24}$$
 $V_o = V_{\rm ex} \times \frac{{\rm GF}\,\epsilon}{4}$

$$\epsilon_{
m min} \, = \, rac{4 \, V_{
m ref}}{{
m GF} \, V_{
m ex} \, 2^N}$$

$$\epsilon_{\min} = \frac{4 V_{\text{ref}}}{\text{GF } V_{\text{ex}} 2^N} \approx 5.96 \times 10^{-8} \text{ (ideal)}$$

$$\approx 1.53 \times 10^{-5} \text{ (ENOB)}$$

Finite Element Analysis Validation

- Detects strains under typical torques
 - Ideal = 0.001 Nm
 - ENOB = 0.4 Nm
- 8.5 Nm capacity

FEA with external torque of 0.4 Nm

Experiments and Results

<u>Simulation Study Overview</u>

- **Platform: MATLAB ODE45**
- Physical parameters from actual robot
- Virtual joints at base for FT sensor emulation
- PD controller at 1kHz
- Contact applied at t = 0.5s
- **Test Scenarios:**

- Scenario 1: 5N force on Link 1 ($\alpha = 0.5$, $-\pi/3$ rad)
- Scenario 2: 7N force on Link 2 ($\alpha = 0.8$, $-\pi/3$ rad)

Fixed-Base Simulation

TABLE III: Results of Fixed-Base Simulation

Scenario	Force Errors (N)			Position Errors (mm)		
Scenario	Fx	Fz	$ \mathbf{F} $	p_x	p_{z}	$ \mathbf{p} $
Test 1 Mean	-0.008	-0.008	0.112	1	0	3
STD	0.089	0.090	0.058	4	1	2
Test 2 Mean	0.002	-0.006	0.142	0	2	2
STD	0.108	0.111	0.059	2	1	1

Background

Fixed-Base Simulation Parametric Sweep of Configurations

Results: <13.5m localization and <0.15N force error

Floating-Base Simulation

- Base can move in x and z directions
- Two additional virtual joints for base translation

Floating-Base Simulation

Simulation Performance: Floating Base

Results: Sub-cm localization and <0.2N force error

Hardware Experimental Setup: Fixed-Base

- 2-DOF planar leg testbed
- 3-4 kSps, 24-bit ADC
- Static tests: 0.05-0.5kg loads
- Positions: 25%, 50%, 75%, 100%

Contact Localization Results: Fixed-Base

Configuration	Load (kg)	Location Error RMS (mm)	Force Error RMS (N)
Link 1	0.1	8.89	0.129
	0.5	7.91	0.174
Link 2	0.05	4.09	0.045
	0.1	4.87	0.106

Background

Joint Torque Sensor Characterization

Sensor 1:

y = 0.0115 x + 5.0069, with $R^2 = 0.9999$

Sensor 2:

y = -0.0108 x - 2.3260, with $R^2 = 0.9991$

Sensor: **0.0317 RMSE**

Motor Current: 0.1638 RMSE

Sensor Performance

Background

- 96.4% accuracy relative to ground truth
- MAE: 0.0286 Nm (practical resolution)

Sensor: **0.0317 RMSE**

Motor Current: 0.1638 RMSE

Summary

- Why This Matters: Direct torque sensing, real time, single FT sensor
- Advantage: Friction-agnostic approach, scalable to any joint count, simpler than tactile arrays
- **Performance:** 96.4% sensor accuracy, sub-cm localization, <0.2N force errors
- Limitation: Multiple simultaneous contacts, only tested in quasi-static

Future Work

- Additional sensing modalities: Handle concurrent collision points
- **Dynamic Testing:** Validation during active locomotion

Thanks for Listening!

Jared Grinberg

