【知识点一】

基础篇

			CIT MANUAL		
1.1 (天大 2010)	一运动质点在	E某瞬时位于矢径r	(x,y)的端点处,则其速度	度大小为:()	
A. $\frac{dr}{dt}$	B. $\frac{d\vec{r}}{dt}$	$C. \frac{d \vec{r} }{dt}$	$D.\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2}$	$\left(\frac{v}{t}\right)^2$	
1.2 (天大 2007)	质点作半径为	JR的变速圆周运动	J时的加速度为(v表示日	E一时刻质点的速率): ()	
A. $\frac{dv}{dt}$	B. $\frac{v^2}{R}$	$C.\frac{dv}{dt} + \frac{v^2}{R}$	$D.\left[\left(\frac{dv}{dt}\right)^2 + \frac{v^4}{R^2}\right]$	$\frac{1}{2}$	
1.3 (清华习题)	一质点沿x轴作	作直线运动 , 其v-	t 曲线如图所示,如 $t=0$	时,	
质点位于坐标原	点,则 $t = 4.5$	s 时, 质点在 x 轴上	上的位置为:()	2	
A.5 <i>m</i>	B.2m	C.0	D2m	1 2.5 4.5	<i>t</i> (s)
1.4 (清华习题)	某质点作直线	运动的运动学方程	为	$\begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$	
x = 3t - 5t	3+6 (SI),贝]该质点作:()	习题 1.3 图	
A.匀加速直	线运动,加速	度沿χ轴正方向Β.久	习加速直线运动,加速度	沿x轴负方向	
C.变加速直	线运动,加速点	度沿 x 轴正方向D.雪	芝加速直线运动,加速度	沿x 轴负方向	
1.5 (武大习题)	有一质点沿 x 车	曲作直线运动,在 t	时刻的坐标位置为 $x=4$.	$5t^2-2t^3(SI)$,则 $2s$ 末的时候速	逐和第
2s 内的路程分别	J为: ()				
A.6 m/s , 2.2	5 <i>m</i>	B.6m/s, 2m	C.2m/s, $2.25m$	D.2m/s, 2m	
1.6 (西交 2015)	一质点沿半名	公为1m的圆形轨道运	运动,在某一时刻它的角	速度为1 <i>rad/s</i> ,角加速度为1 <i>rad</i>	l/s², 贝
质点在该时刻的	速度和加速度	大小分别为:()		
A.1 m/s , 1 m/s	s^2	B.1 m/s , 2 m/s^2	$C.1m/s, \sqrt{2} m/s^2$	$D.2m/s, \sqrt{2} m/s^2$	
1.7 (天大习题)	某人骑自行车	以速率ν向西行驶	,今有风以相同的速率从	北偏东 30°方向吹来,试问人感	到风从
哪个方向吹来?	()				
A.北偏东 30	0°	B.南偏东 30°	C.北偏西 30°	D.西偏南 30°	
1.8 (川大习题)	在相对地面静	止的坐标系内,A、	B 二船都以 3 m/s 的速率	\mathbb{Z} 匀速行驶, \mathbf{A} 船沿 \mathbf{x} 轴正向, \mathbf{B}	·船沿y
轴正向,今在船	A 上设置与静	止坐标系方向相同	的坐标系(x、y方向的	单位矢量用 i、j 表示),那么在	A 船上
的坐标系中,B	船的速度(以	m/s 为)为:()		
A.3 $i + 3j$]	B. $-3i + 3j$	C. $-3i - 3j$	D.3i - 3j	

- **1.9**(华科习题)一架飞机在静止空气中的速率为 v_1 = 135 km/h。在刮风天气,飞机以 v_2 = 135 km/h的速率向正北飞行,机头指向北偏东 30°。请协助驾驶员判断风向和速度。
- **1.10*** 如图所示,直杆 AB 两端可以分别在两固定而相互垂直的直线导槽上滑动,已知杆的倾角 φ 按 $\varphi = \omega t$ 随时间变化,其中 ω 为常量,试求杆上任一点 M 的运动学方程和轨迹方程。

提高篇

1.11 (天大 2011) 某物体的运动规律为 $\frac{dv}{dt} = -kv^2t$,式中k 为大于 0 的常量,当 t=0 时,初速为 v_0 ,则速度v与时间t 的函数关系是: ()

$$A.v = \frac{1}{2}kt^2 + v_0 \qquad B.v = -\frac{1}{2}kt^2 + v_0 \qquad C.\frac{1}{v} = \frac{1}{2}kt^2 + \frac{1}{v_0} \qquad D.\frac{1}{v} = -\frac{1}{2}kt^2 + \frac{1}{v_0}$$

1.12 (华科 2015) 某质点的运动方程为x = 4t + 2 , $y = 3t^2 - 6t + 5$, 则质点速度大小取最小值时,质点的位置 坐标为: (

A.
$$x = 6, y = 1$$
 B. $x = 5, y = 6$ C. $x = 6, y = 2$ D. $x = 2, y = 6$

- **1.13** (川大习题) 一质点沿 x 轴运动,其加速度 a 与位置坐标的关系为 $a=3+6x^2(SI)$,如果质点在原点处的速度为 0 ,则其在任意位置处的速度为 ______。
- **1.15** (华科习题) 有两艘海船 A 和 B, A 船以速度 10 km/h 向北偏西 30°航行, B 船以速度 20 km/h 向正西方向航行, 在某时刻 B 船位于 A 船的北偏东 60°方向。问两船与要采取措施避免相碰吗?

习题 1.14 图

【知识点一参考答案】

基础篇

1.1【正解】D

【解析】根据速度的定义可知: $\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{x}}{dt} + \frac{d\vec{y}}{dt}$, 所以 $|\vec{v}| = \sqrt{\left(\frac{d\vec{x}}{dt}\right)^2 + \left(\frac{d\vec{y}}{dt}\right)^2}$ 。

1.2【正解】D

【解析】注意圆周运动不仅有切向加速度而且有法向加速度, $\vec{a} = \vec{a}_t + \vec{a}_n$,其中, $a_n = \frac{v^2}{r}, a_t = \frac{dv}{dt}$,且两者垂直,矢量合成可得答案为 D。

1.3【正解】B

【解析】v-t 图像中,曲线与坐标轴所围成的面积就是位移,其中在坐标轴下方的图像与坐标轴围成的面积是负的。

1.4【正解】D

【解析】根据题意, $v=3-15t^2$,a=-30t,显然是个变加速运动,且加速度方向为负方向。

1.5【正解】A

【解析】根据题意 $v=9t-6t^2$,所以,2s 末速度为-6 m/s,大小为6 m/s,求路程时候,要注意在第2s 内是否发生了速度的符号变化。显然在 t=1.5s 时候,速度为0,所以要分别求 1.0-1.5 s,1.5-2.0 s 的路程, $x_1=|4.5\times1.5^2-2\times1.5^3-(4.5-2)|=0.875$, $x_2=|4.5\times2^2-2\times2^3-(4.5\times1.5^2-2\cdot1.5^3)|=1.375$,所以 $x=x_1+x_2=2.25$ m。

1.6【正解】C

【解析】根据角量和线量之间的关系可知: $v = \omega r = 1 \text{ m/s}, a_t = \alpha r = 1 \text{ m/s}^2, a_n = \frac{v^2}{r} = 1 \text{ m/s}^2,$ 合成得 $a = \sqrt{2} \text{ m/s}^2$ 。

1.7【正解】C

【解析】相对于人,风的方向要加一个向东的 v, 作矢量图如图:显然,最终的速度方向是北偏西 30°。

习题1.7图

1.8【正解】B

【解析】相对 A 船, B 船的速度要矢量加一个 A 船速度的反方向的速度, 所以答案是 B。

1.9【解析】如图所示,根据余弦定理:

 v_1 v_2 m v_3 m m m m m

习题1.9图

即风向为东风偏北15°,风吹方向为北偏西75°。 1.10*【解析】如图所示,根据图中几何关系可以知道,M的坐标是:

$$x = b \cos \varphi = b \cos \omega t$$

 $y = a \sin \varphi = a \sin \omega t$

为了求轨迹方程,消去运动方程中的参数 t 得: $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ 即 M 点的轨迹是一个椭圆。

提高篇

1.11【正解】C

【解析】已知速度和时间的微分方程,直接解微分方程并结合初始条件可得:

$$\frac{1}{v^2}dv = -ktdt \Rightarrow -\frac{1}{v} = -\frac{1}{2}kt^2 - \frac{1}{v_0}, 所以答案是 C.$$

1.12【正解】C

【解析】根据速度的定义:
$$|\vec{v}| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{4^2 + (6t - 6)^2}$$
, 显然, $t=1$ 时, 速度取最小值, 此时 $x = 6, y = 2$, 所以答案是 C。

1.13【正解】 $v = \sqrt{6x + 4x^3}$

【解析】根据题意
$$\frac{dv}{dt} = 3 + 6x^2 = \frac{dv}{dx} \frac{dx}{dt} = \frac{dv}{dx} v \Rightarrow (3 + 6x^2) dx = v dv$$
,
所以解微分方程并结合初始条件可得: $3x + 2x^3 = \frac{1}{2} v^2 \Rightarrow v = \sqrt{6x + 4x^3}$ 。

1.14【正解】 v_2 ($\frac{l}{h}\cos\theta + \sin\theta$)

【解析】根据题意,作速度关系图:

要想让物体不被淋湿,必须让雨相对车的速度的方向与水平线的夹角恰好等于 φ ,其中 $\tan \varphi = \frac{h}{l}$,

速度合成图如右上图所示。根据正弦定理: $\frac{v_1}{\sin\left(\theta + \frac{\pi}{2} - \varphi\right)} = \frac{v_2}{\sin\,\varphi}$,

所以
$$v_1 = \frac{v_2}{\sin \varphi} \cos (\theta - \varphi) = v_2 \left(\frac{\cos \theta}{\tan \varphi} + \sin \theta \right) = v_2 \left(\frac{l}{h} \cos \theta + \sin \theta \right).$$

1.15【解析】根据题意,作如下图:

习题1.15图

要判断两个船是否会相撞,此时,以 A 为参照系,B 的速度合成后如右上图,在 \triangle BCD 中根据正弦定理: $\frac{v_B}{\sin B} = \frac{v_A}{\sin C} \Rightarrow \frac{\sin B}{\sin C} = \frac{\sin (30^\circ + 90^\circ - C)}{\sin C} = \frac{\sin 120^\circ}{\tan C} - \cos 120^\circ = 2$

所以 $\tan C = \frac{\sqrt{3}}{3} \Rightarrow C = 30^{\circ}$,所以此时以 A 为参考系,B 的速度正好指向 A,所以要采取措施避免相撞。