MAE0217 - Estatística Descritiva - Lista 4

Natalia Hitomi Koza¹
Rafael Gonçalves Pereira da Silva²
Ricardo Geraldes Tolesano³
Rubens Kushimizo Rodrigues Xavier⁴
Rubens Gomes Neto⁵
Rubens Santos Andrade Filho⁶
Thamires dos Santos Matos⁷

June de 2021

Sumário

Exercício 1					 						 							 					
Exercício 2					 						 							 					2
Exercício 3					 						 							 					2
Exercício 4					 						 							 					2
Exercício 15					 						 							 					2
Exercício 16	i .				 						 							 					2

 $^{^1\}mathrm{N\'umero}$ USP: 10698432

 $^{^2\}mathrm{Número~USP:~9009600}$

 $^{^3\}mathrm{N\'umero}$ USP: 10734557

 $^{^4\}mathrm{Número}$ USP: 8626718

⁵Número USP: 9318484

⁶Número USP: 10370336

⁷Número USP: 9402940

Exercício 1

i)

Tomaremos Volume USG como a variável explicativa x e Peso Real como a variável resposta y. Adotaremos o modelo de regressão linear simples $y_i = \alpha + \beta x_i + e_i$, onde α é o intercepto, beta é a inclinação da reta, e e_i são erros aleatórias não correlacionados.

ii)

```
dados1 <- read_excel("data/peso_volume_figado.xlsx")
dados1 <- dados1[order(dados1$volume_usg), ]
# ggplot(dados, aes(x=volume_usg, y=peso_real)) + geom_point() + geom_smooth(method=lm)
ggplot(dados1, aes(x=volume_usg, y=peso_real)) + geom_point()</pre>
```


iii)

Realizaremos o ajuste do modelo e mostraremos algumas métricas de qualidade do modelo:

```
ajustarModelo <- function(dados) {
  ajuste <- lm(peso_real ~ volume_usg, data=dados)
  intercept <- ajuste$coefficients[1]</pre>
```

```
slope <- ajuste$coefficients[2]
p <- ggplot(dados, aes(x=volume_usg, y=peso_real)) + geom_point() + geom_abline(intercept = intercept
plot(p)
print(summary(ajuste))
plot(ajuste)

return(ajuste)
}</pre>
```



```
##
## Call:
## lm(formula = peso_real ~ volume_usg, data = dados)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -210.43 -32.54
                     14.76
                             44.97 135.38
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 213.2762
                          133.3334
                                     1.600 0.132011
                                     4.407 0.000597 ***
## volume_usg
                 0.7642
                            0.1734
## ---
```

```
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 87.91 on 14 degrees of freedom
## Multiple R-squared: 0.5811, Adjusted R-squared: 0.5512
## F-statistic: 19.42 on 1 and 14 DF, p-value: 0.000597
```


A análise do ajuste indicou que as observações 3, 11 e 15 são mais influentes no modelo. Em especial, a observação 15 se destaca como outlier em todos os gráficos mostrados. Realizaremos novamente o ajuste com essa observação removida. Não removeremos as observações 3 e 11 dado que possuímos poucas observações e elas não fogem do padrão na mesma intensidade elevada da observação 15.

```
dados2 <- dados1[-c(15), ]
ajuste <- ajustarModelo(dados2)</pre>
```



```
##
## Call:
## lm(formula = peso_real ~ volume_usg, data = dados)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
## -89.914 -45.244 -0.841 41.949 111.047
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 85.1593
                         102.8848
                                    0.828
                                             0.423
## volume_usg
                0.9547
                           0.1361
                                    7.013 9.17e-06 ***
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 63.83 on 13 degrees of freedom
## Multiple R-squared: 0.7909, Adjusted R-squared: 0.7748
## F-statistic: 49.18 on 1 and 13 DF, p-value: 9.167e-06
```


Observamos uma melhora significativa no valor R^2 após a remoção da observação 15. Os gráficos indicam que os resíduos possuem os valores dentro do esperado. Idealmente, o R^2 deveria estar próximo de 1, mas não está. Dessa forma, podemo concluir que o ajuste do modelo aproxima os dados, mas não estritamente. Assim, espera-se que o intervalo de confiança seja grande.

iv)

 $\mathbf{v})$

Construindo intervalos de confiança dos parâmetros:

confint(ajuste)

```
## 2.5 % 97.5 %
## (Intercept) -137.1098633 307.428386
## volume_usg 0.6606159 1.248869
```

A seguir, construiremos a tabela.

```
volumes <- c(600, 700, 800, 900, 1000)
df <- data.frame(volume_usg = volumes)
previsto <- predict(ajuste, df, interval='confidence')
previsto <- data.frame(previsto)</pre>
```

```
intervalo <- previsto$fit - previsto$lwr
previsto <- cbind(volume_usg = volumes, previsto, intervalo = intervalo)
kable(previsto)</pre>
```

volume_usg	fit	lwr	upr	intervalo
600	658,00	602,24	713,77	55,77
700	$753,\!48$	$715,\!40$	$791,\!56$	38,08
800	$848,\!95$	809,96	887,95	39,00
900	$944,\!43$	886,80	$1.002,\!06$	57,63
1.000	1.039,90	$957,\!12$	$1.122,\!68$	82,78

vi)

vi)i)

Novamente, tomaremos o Volume USG como a variável explicativa x e o Peso Real como a variável resposta y. Adotaremos o modelo de regressão linear simples $y_i = \beta x_i + e_i$, onde beta é a inclinação da reta e e_i são erros aleatórias não correlacionados.

vi)ii)

```
dados3 <- data.frame(dados1)
ggplot(dados3, aes(x=volume_usg, y=peso_real)) + geom_point()</pre>
```


vi)iii)

Realizaremos o ajuste do modelo e mostraremos algumas métricas de qualidade do modelo:

```
ajustarModelo <- function(dados) {
    # - 1 omite o intercepto
    ajuste <- lm(peso_real ~ volume_usg - 1, data=dados)
    print(ajuste$coefficients)
    intercept <- 0
    slope <- ajuste$coefficients
    p <- ggplot(dados, aes(x=volume_usg, y=peso_real)) + geom_point() + geom_abline(intercept = intercept plot(p)
    print(summary(ajuste))
    plot(ajuste)

    return(ajuste)
}
ajuste <- ajustarModelo(dados3)</pre>
```

volume_usg ## 1.03777

##

```
## Call:
## lm(formula = peso_real ~ volume_usg - 1, data = dados)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
##
  -255.69 -51.77
                     28.47
                             64.06
                                   129.78
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                         0.03003
                                    34.56 1.03e-15 ***
## volume_usg 1.03777
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 92.36 on 15 degrees of freedom
## Multiple R-squared: 0.9876, Adjusted R-squared: 0.9868
## F-statistic: 1194 on 1 and 15 DF, p-value: 1.026e-15
```


Novamente, os gráficos indicam que a observação 15 é um outlier. Refaremos o ajuste removendo a observação 15.

```
dados4 <- dados1[-c(15), ]
ajuste <- ajustarModelo(dados4)</pre>
```

volume_usg ## 1.065977


```
##
## Call:
## lm(formula = peso_real ~ volume_usg - 1, data = dados)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
                   7.344 46.963 107.218
## -88.998 -49.559
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## volume_usg 1.06598
                       0.02156 49.44
                                         <2e-16 ***
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 63.11 on 14 degrees of freedom
## Multiple R-squared: 0.9943, Adjusted R-squared: 0.9939
## F-statistic: 2444 on 1 and 14 DF, p-value: < 2.2e-16
```


As mesmas observações sobre a qualidade do modelo se aplicam. Os gráficos indicam que os resíduos possuem os valores dentro do esperado. Idealmente, o R^2 deveria estar próximo de 1, mas não está. Dessa forma, podemo concluir que o ajuste do modelo aproxima os dados, mas não estritamente. Assim, espera-se que o intervalo de confiança seja grande.

vi)iv)

Construindo intervalos de confiança dos parâmetros:

confint(ajuste)

```
## 2.5 % 97.5 %
## volume_usg 1.019729 1.112225
vi)v)
```

A seguir, construiremos a tabela.

```
volumes <- c(600, 700, 800, 900, 1000)
df <- data.frame(volume_usg = volumes)
previsto <- predict(ajuste, df, interval='confidence')
previsto <- data.frame(previsto)
intervalo <- previsto$fit - previsto$lwr
previsto <- cbind(volume_usg = volumes, previsto, intervalo = intervalo)
kable(previsto)</pre>
```

volume_usg	fit	lwr	upr	intervalo
600	639,59	611,84	667,34	27,75
700	$746,\!18$	$713,\!81$	$778,\!56$	$32,\!37$
800	852,78	815,78	889,78	37,00
900	$959,\!38$	917,76	$1.001,\!00$	41,62
1.000	$1.065,\!98$	1.019,73	$1.112,\!23$	$46,\!25$

vi)vi) Ambos os modelos satisfazem de forma similar as métricas mostradas na etapa (iii). Entretanto, observa-se na etapa (v) que o segundo modelo apresenta intervalos de confiança menores para suas predições de peso real. Dessa forma, o modelo sem intersecto demonstrou-se mais conveniente. Destacamos que o intervalo de confiança de 97,5% do parâmetro α no primeiro modelo era consideravelmente alto, o que poderia indicar que ele não possuia muita importância no modelo.

Exercício 2

Exercício 3

Exercício 4

Exercício 15

Exercício 16