Practical Engineering with LLMs

Open-Source LLMs & Special Guest: Jan Monica

TODAY'S SCHEDULE

- . Special Guest: Jan Monica
- . Tips 'n Tricks on Open Source LLMs
- . Your Questions...
- . The Template for Code Submission
- . Guideline for the Final Presentation

Jan Monica on Security of LLM Apps

Tips 'n Tricks on Open Source LLMs

- How to choose the right model?
 - o Type, Fine-tuning, Number of parameters
- Which type of quantization should you take?
- How to make your model of choice run in Ollama?
 - o Prompt templates, Modelfiles, API
- How to run Ollama on Mac and Windows through Docker?

How to choose the right model?

What model category is good for the task?

- Base LLM (e.g. LLaMa 2, Mistral, etc.) → Text generation
- Chat model (e.g. Zephyr, Neural-Chat, etc.) → Chats
- Code model (e.g. CodeLLaMa) → Code generation
- RAG models (e.g. dRAGon model family) → RAG
- Mixture-of-Experts (e.g. Mixtral 8x7B) → Generalist
- Small models (e.g. StableLM Zephyr, Mamba) → "Local" models
- many many more available at HuggingFace
- → Open LLM Leaderboard

(https://huggingface.co/spaces/HuggingFaceH4/open Ilm leaderboard)

How to choose the right model?

What dataset was used for fine-tuning?

- Orca, Dolphin, SlimOrca, etc. → used to improve reasoning abilities of LLMs
- ultrachat, ultrafeedback → used to create state-of-the-art chat models
- many more (ChatGPT-generated) datasets that were created in the last year

How to choose the right model?

- What is the right number of parameters?
 - Depends on your available resources and the task
 - Usual parameter numbers for LLMs are ~3 billion, ~7 billion, ~13 billion,
 ~35 billion, ~60 billion up to 70+ billion parameters
 - Memory usage is calculated by the number of parameters and the precision of the values (e.g. FP16, FP32, etc.)
 - Example: 7 billion parameter model with FP32 precision would need 28.000.000.000 bytes or 28 GB

Which quantization should you take?

- Quantization is a technique used to reduce the size of neural nets and LLMs by modifying the precision of the weights
- Reducing the precision from FP32 to FP16 would half the size of the model
- 4-bit quantization was very popular as tradeoff between performance and quality in the last months
- A lot of quantized open-source models were made available on HuggingFace from TheBloke

Name	Quant method	Bits	Size	Max RAM required	Use case
neural-chat-7b- v3-1.Q2_K.gguf	Q2_K	2	3.08 GB	5.58 GB	smallest, significant quality loss - not recommended for most purposes
neural-chat-7b- v3-1.Q3 K S.gguf	Q3_K_S	3	3.16 GB	5.66 GB	very small, high quality loss
neural-chat-7b- v3-1.Q3 K M.gguf	Q3_K_M	3	3.52 GB	6.02 GB	very small, high quality loss
neural-chat-7b- v3-1.Q3_K_L.gguf	Q3_K_L	3	3.82 GB	6.32 GB	small, substantial quality loss
neural-chat-7b- v3-1.Q4_0.gguf	Q4_0	4	4.11 GB	6.61 GB	legacy; small, very high quality loss - prefer using Q3_K_M
neural-chat-7b- v3-1.Q4_K_S.gguf	Q4_K_S	4	4.14 GB	6.64 GB	small, greater quality loss
neural-chat-7b- v3-1.Q4 K M.gguf	Q4_K_M	4	4.37 GB	6.87 GB	medium, balanced quality - recommended
neural-chat-7b- v3-1.Q5 0.gguf	Q5_0	5	5.00 GB	7.50 GB	legacy; medium, balanced quality - prefer using Q4_K_M
neural-chat-7b- v3-1.Q5 K S.gguf	Q5_K_S	5	5.00 GB	7.50 GB	large, low quality loss - recommended
neural-chat-7b- v3-1.Q5 K M.gguf	Q5_K_M	5	5.13 GB	7.63 GB	large, very low quality loss - recommended
neural-chat-7b- v3-1.Q6_K.gguf	Q6_K	6	5.94 GB	8.44 GB	very large, extremely low quality loss
neural-chat-7b- v3-1.Q8_0.gguf	Q8_0	8	7.70 GB	10.20 GB	very large, extremely low quality loss - not recommended

How to make your model of choice run in Ollama?

- Ollama offers some pre-built models to download and use
- Additional models can be downloaded for example from HuggingFace
- Different models require different prompt templates
- Model, parameters, prompt template, etc. can be specified in a Modelfile

```
ollama create yoda -f ./Modelfile
```

```
### System:
{system_message}

</s>
</s>
### User:
{prompt}

{prompt}

{prompt}</s>
### Assistant:

<|assistant|>
```

{prompt}

```
PARAMETER temperature 1

TEMPLATE """
{{- if .First }}

### System:
{{ .System }}
{{- end }}

### User:
{{ .Prompt }}

### Assistant:
"""

SYSTEM """
Yoda you are from Star Wars. In the style of Yoda you answer only.

Example:
User: Who are you?
Assistant: Yoda, I am. From the Star Wars franchise you know me.
"""
```

How to make your model of choice run in Ollama?

How to run Ollama on Mac and Windows through Docker?

- Using Docker you can make Ollama run on Mac (already has its own standalone application) and Windows
- After going through the Docker installation progress you can get Ollama with the command: docker pull ollama/ollama
- Then run: docker run -d -v ollama:/root/.ollama -p 11434:11434
 --name ollama ollama/ollama
- Inside of Docker desktop the console and file system can be used to create Modelfiles and create custom models

Your Questions ...

The Template for Code Submission

Why do we need a template?
What happens with my submitted infos/code?

The Template for Code Submission

10 min talk + 5 min discussion per group

1. Introduction (1 minute):

- Project Title: Start with the title of your application.
- App Thumbnail: Display the title page or screenshot of your app.
- Team Members: Briefly introduce the team members.

2. Application Overview (4 minutes):

- **Brief Description:** Summarize the purpose and key features of your app, focusing on the target user group and essential functionalities.
- Screenshots: Show 1-3 screenshots of key functionalities, user interaction and app response.
- Live Demo: If possible, give a brief live demonstration of the app.

3. Development Framework (4 minutes):

- GUI Framework: Explain the choice of GUI framework and its role in your app.
- Data Handling: Discuss any specific data handling libraries used and their importance.
- Embedding Models: If applicable, describe the embedding models used.
- Large Language Model (LLM): Detail the LLMs integrated into your project and their functionalities.
- Database Utilization: If relevant, mention the database technology used and its purpose.
- LangChain: Did you use LangChain or another framework, or developed components yourself?
- Challenges and Solutions: Share significant challenges encountered and how they were resolved.

4. Conclusion (1 minute):

- Future Enhancements: Discuss potential improvements or future features.
- Closing Remarks: Summarize the value and uniqueness of your app.

5. Discussion (5 minute):

• Engagement: Encourage questions and interactions from the audience after the presentation.