Image and Video Processing EQ2330

Markus Flierl

School of Electrical Engineering KTH Royal Institute of Technology

Autumn 2015/2016

Why Do We Process Images?

- Acquire an image
 - Correct aperture and color balance
 - Reconstruct image from projections
- Prepare for display or printing
 - Adjust image size
 - Halftoning
- Facilitate picture storage and transmission
 - Efficiently store an image in a digital camera
 - Send an image from Mars to Earth
- Enhance and restore images
 - Remove scratches from an old movie
 - Improve visibility of tumor in a radiograph
- Extract information from images
 - Read the ZIP code on a letter
 - Measure water pollution from aerial images

Restoration of image from Hubble Space Telescope

Source: IVPL Northwestern University, Chicago

Color photo enhancement

Original

Automatic enhancement

Software: Picture Project 1.5, 2005, Nikon Corporation

Markus Flierl: EQ2330 Image and Video Processing

Introduction no. 4

Noise reduction

Degraded image

Noise-reduced image

Source: Class project, Stanford University

Markus Flierl: EQ2330 Image and Video Processing

Special effects

Photo

Simulated color pencils

Simulated oil painting

Source: Class project, Stanford University

Markus Flierl: EQ2330 Image and Video Processing

Halftoning

Pseudocolor enhancement for security screening

Extraction of settlement area from an aerial image

Source: INRIA, Sophia-Antipolis, France

Markus Flierl: EQ2330 Image and Video Processing

Earthquake analysis from Space

Image shows the ground displacement

Source: JPL, Pasadena, QUAKEFINDER project

Source: Class project, Stanford University

Image segmentation

Mosaic from multiple source images

Source: Class project, Stanford University

Face morphing

Source: Class project, Stanford University

Handwriting recognition

(c)

Biometrics: Fingerprint recognition

FBI's Integrated Automated Fingerprint Identification System IAFIS

Markus Flierl: EQ2330 Image and Video Processing

Biometrics: Iris recognition

Source: J. Daugman, U. Cambridge

Outline EQ2330

- Digital images
- Point operations
- Linear processing, filtering
- Color
- Multiresolution image processing
- Image compression
- Video compression
- Feature detection
- Image segmentation

Prerequisites EQ2330

- Required
 - Signals and Systems
 - Signal Theory or equivalent, e.g., EQ1220
- NOT required
 - Information theory, will be reviewed in class, as needed

EQ2330 Organisation

Regularly check class home page:

https://www.kth.se/social/course/EQ2330/

Assistants:

Du Liu

Hanwei Wu

Office hours: Markus Flierl We 12-13, Ov10, A:329

EQ2330 Organisation

- Access to files: KTH Web login
- Preparation assignments
 - We hand out prep assignments and you solve them before exercise sessions
 - Exercise sessions: In groups of 2-3, peer correction and discussion
 - Hand in your solution + your correction of peer solution at the end of each exercise session
 - If you miss a session: Hand in your solution and your correction of a peer solution within two days

EQ2330 Organisation

Projects

- 3 projects, require computer + Matlab
- Groups of up to 2 students (one report per group)

Grading

- Hand in all prep assignments and peer corrections (pass/fail); pass is required to take exam
- Projects and written exam contribute equally to final grade

Further Reading

Slides available as hand-outs

Recommended book:

R. C. Gonzales, R.E. Woods, "Digital Image Processing," Prentice-Hall.

Additional books:

- A.K. Jain, "Fundamentals of Digital Image Processing," Prentice-Hall, Addison-Wesley, 1989.
- R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," Pearson-Prentice-Hall, 2004.
- Al Bovik (ed.), "Handbook of Image and Video Processing," Academic Press, 2005.
- J.W. Woods, "Multidimensional Signal, Image, and Video Processing and Coding," Academic Press, 2006.

