Presentación práctica de eficiencia Asignatura: Algorítmica

Rubén Morales Pérez Francisco Javier Morales Piqueras Bruno Santindrian Manzanedo Ignacio de Loyola Barragan Lozano Francisco Leopoldo Gallego Salido

16 de marzo de 2016

Índice

- 1 Presentación
- 2 Algoritmos de ordenación

Burbuja

Inserción

Selección

Mergesort

Quicksort

3 Resto de algoritmos

Fibonacci

Hanoi

Floyd

- 4 Optimización
- 5 Diferentes ordenadores

Hemos usado los siguientes algoritmos en esta práctica

Ordenación

- Burbuja
- Inserción
- Selección
- Mergesort
- Quicksort
- Heapsort

Otros

- Fibonacci
- Hanoi
- Floyd

El siguiente script automatizaba el proceso de obtención de las gráficas y los datos.

script.sh

Podemos hacer que gnuplot automatice su trabajo. Suponemos que el fichero donde están los datos es "datos.dat", como indicamos anteriormente los scripts de gnuplot se ejecutan: gnuplot algoritmo.gp

Presentación

f(x) = a*x*x+b*x+c

$$f(x) = ax^3 + bx^2 + cx + c$$

$$g(x) = ax^2 + bx + c$$

$$h(x) = ax \cdot log_2(x)$$

$$i(x) = a \cdot ((1 + \sqrt{(5)})/2)^x$$

Scripts de gnuplot

Podemos hacer que gnuplot automatice su trabajo. Suponemos que el fichero donde están los datos es "datos.dat", como indicamos anteriormente los scripts de gnuplot se ejecutan: gnuplot algoritmo.gp

algoritmo.gp

Presentación

set terminal pngcairo set output "fichero.jpeg" set title "Eficiencia algoritmo" set xlabel "Tamaño del vector" set ylabel "Tiempo (s)" set fit quiet f(x) = a*x*x+b*x+cfit f(x) "datos.dat"via a, b, c plot "datos.dat", f(x)

$$f(x) = ax^3 + bx^2 + cx + c$$

$$g(x) = ax^2 + bx + c$$

$$h(x) = ax \cdot log_2(x)$$

$$i(x) = a \cdot ((1 + \sqrt{(5)})/2)^x$$

Podemos hacer que gnuplot automatice su trabajo. Suponemos que el fichero donde están los datos es "datos.dat", como indicamos anteriormente los scripts de gnuplot se ejecutan: gnuplot algoritmo.gp

algoritmo.gp

Presentación

set terminal pngcairo set output "fichero.jpeg" set title "Eficiencia algoritmo" set xlabel "Tamaño del vector" set ylabel "Tiempo (s)" set fit quiet f(x) = a*x*x+b*x+cfit f(x) "datos.dat"via a, b, c plot "datos.dat", f(x)

Funciones ajustadas

$$f(x) = ax^3 + bx^2 + cx + d$$
$$g(x) = ax^2 + bx + c$$
$$h(x) = ax \cdot log_2(x)$$
$$i(x) = a \cdot ((1 + \sqrt{(5)})/2)^x$$

Ordenador usado para la ejecución

HP Pavilion g series (Pavilion g6) Sistema operativo: ubuntu 14.04 LTS

Memoria: 3.8 GiB (4Gb)

Procesador: Inter Core i3-2330M CPU @ 2.20GHz x 4

Gráficos: Intel Sandybridge Mobile

Tipo de SO: 64 bits Disco: 487.9 GB

Burbuja

Función

Este algoritmo tiene una eficiencia cuadrática, debemos ajustar una función del tipo $f(x) = ax^2 + bx + c$

$$f(x) = a \cdot x^2 + b \cdot x + c$$

$$\begin{cases} a = 4,31433 \cdot 10^{-9} \pm 2,378 \cdot 10^{-10} (5,511\%) \\ b = 3,94506 \cdot 10^{-6} \pm 2,476 \cdot 10^{-6} (62,75\%) \\ c = -0,00311235 \pm 0,005425 (174,3\%) \end{cases}$$

Burbuja

Función

Este algoritmo tiene una eficiencia cuadrática, debemos ajustar una función del tipo $f(x) = ax^2 + bx + c$

Ajuste

$$f(x) = a \cdot x^2 + b \cdot x + c$$

En el ajuste también tenemos un margen de error:

$$\begin{cases} a = 4,31433 \cdot 10^{-9} \pm 2,378 \cdot 10^{-10} (5,511\%) \\ b = 3,94506 \cdot 10^{-6} \pm 2,476 \cdot 10^{-6} (62,75\%) \\ c = -0,00311235 \pm 0,005425 (174,3\%) \end{cases}$$

Burbuja

Inserción

Función

Aunque el algoritmo de inserción tenga una eficiencia $O(n^2)$ tiene una constante multiplicativa menor que el burbuja, y similar al selección.

Ajuste

$$f(x) = a \cdot x^{2} + b \cdot x + c$$

$$\begin{cases}
a = 2,36229 \cdot 10^{-9} \pm 2,503 \cdot 10^{-10} (10,6\%) \\
b = -2,27723 \cdot 10^{-6} \pm 2,606 \cdot 10^{-6} (114,5\%) \\
c = 0,00096037 \pm 0,005712 (594,8\%)
\end{cases}$$

Inserción

Selección

Función

Este algoritmo tiene dos partes una ordenada y otra no, en cada iteración coge el máximo/mínimo de los elementos no ordenados y los inserta en los ordenados.

Ajuste

$$f(x) = a \cdot x^2 + b \cdot x + c$$

$$a = 2,36327 \cdot 10^{-9} \pm 3,232 \cdot 10^{-11} (1,368\%)$$

Selección

Mergesort

Función

Siguiente algoritmo de ordenación: mergesort

Ajuste

$$f(x) = a \cdot x \cdot log_2(x)$$

$$a = 3.5231 \cdot 10^{-8} \pm 1.191 \cdot 10^{-9} (3.382\%)$$

Quicksort

Función

El algoritmo de ordenación más rápido en término medio: quicksort

Ajuste

$$f(x) = a \cdot x \cdot log_2(x)$$

$$a = 2,3704 \cdot 10^{-8} \pm 5,497 \cdot 10^{-10}(2,319\%)$$

Quicksort

Algoritmos de ordenación

Función

Se observa una diferencia notable entre los algoritmos $O(nlog_2(n))$ y los $O(n^2)$, casi no se aprecian los primeros.

Fibonacci

Función

Fibonacciiiii

Ajuste

$$f(x) = a \cdot \left(\frac{1+\sqrt{5}}{2}\right)^{x}$$
$$a = 5.59738 \cdot 10^{-9} \pm 2.093 \cdot 10^{-12}(0.0374\%)$$

Fibonacci

Resto de algoritmos

Hanoi

Función

Hanoi

Ajuste

$$f(x) = a \cdot (2^{x})$$

 $a = 1,12636 \cdot 10^{-8} \pm 1,391 \cdot 10^{-11} (0,1235\%)$

Hanoi

Floyd

Función

Tipo de algoritmo con programación dinámica para encontrar el camino mínimo en grafos ponderados.

Ajuste

$$f(x) = a \cdot x^{3} + b \cdot x^{2} + c \cdot x + d$$

$$\begin{cases}
a = 1,11725 \cdot 10^{-8} \pm 3,725 \cdot 10^{-10}(3,334\%) \\
b = -2,27723 \cdot 10^{-6} \pm 6,692 \cdot 10^{-7}(29,39\%) \\
c = 0,00096037 \pm 0,0003713(38,66\%) \\
d = -0,115743 \pm 0,06234(53,86\%)
\end{cases}$$

Floyd

Optimizando algoritmos

Algoritmos

En este apartado optimizaremos diferentes algoritmos.

- Burbuja
- Quicksort
- Floyd

Observación

Como podemos comprobar, por mucho que optimicemos el algoritmo de burbuja no llega a igualarse al mejor algoritmo de ordenación (en término medio), quicksort. La optimización más agresiva sin riesgo de pérdida de información es -O2 y llega a ser 10 veces más lento que quicksort sin optimización (con 10.000 elementos).

Optimizando algoritmos

Algoritmos

En este apartado optimizaremos diferentes algoritmos.

- Burbuja
- Quicksort
- Floyd

Observación

Como podemos comprobar, por mucho que optimicemos el algoritmo de burbuja no llega a igualarse al mejor algoritmo de ordenación (en término medio), quicksort. La optimización más agresiva sin riesgo de pérdida de información es -O2 y llega a ser 10 veces más lento que quicksort sin optimización (con 10.000 elementos).

Burbuja optimizado

Quicksort optimizado

Conclusión

Esto es una prueba gráfica de que hay que tener en cuenta la eficiencia de los algoritmos, ya que la mejora hardware no es suficiente en caso de que tengamos restricciones de tiempo.

Burbuja optimizado

Floyd

Algoritmo

El algoritmo floyd, tipo de algoritmo con programación dinámica para encontrar el camino mínimo en grafos ponderados.

Floyd

Diferentes ordenadores

