#### Unit 22: Linear Filters

Jeffrey Woo

Department of Statistics, University of Virginia

Spring 2020

# Readings for Unit 22

Textbook chapter 4.7 (until page 214).

### Last Unit

Smoothing periodogram to reduce variance.

#### Motivation

Some of the previous topics have suggested that one could "transform" a time series to modify the distribution of its spectral density or variance. In this unit we will define a linear filter and show how it can be used to extract signals from a time series.

Worked Examples I

Worked Examples II

The linear filter modifies the spectral characteristics of a time series in a predictable way. Let  $x_t, t=0,\pm 1,\pm 2,\ldots$ , be a stationary **input series**, and  $a_j, j=0,\pm 1,\pm 2,\ldots$ , be a set of specified coefficients. We use the linear filter  $\{a_j, j=0,\pm 1,\pm 2,\ldots\}$  to operate on  $\{x_t, t=0,\pm 1,\pm 2,\ldots\}$  to produce an **output series** 

$$y_t = \sum_{j=-\infty}^{\infty} a_j x_{t-j}.$$
 (1)

(1) is sometimes called a convolution.  $y_t$  is a linear combination of  $x_t$ 's, suggesting the name "linear filter". The coefficients  $a_r$  are collectively called the **impulse response function**.

**Example**: Recall that a causal ARMA model  $\phi(B)y_t = \theta(B)w_t$  has the causal representation  $y_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}$ . This is a special case of (1) with  $a_j = 0$  for j < 0.

- $y_t$  in (1) depends on all x's (both past and future) whereas causal ARMA model depends only on past values.
- In (1), we do NOT assume that  $x_t$  is a white noise series. Instead  $x_t$  can be any stationary series.

Let  $\gamma_x(h) = E[(x_{t+h} - Ex_{t+h})(x_t - Ex_t)]$  denote the autocovariance function of  $x_t$ , and the spectral density is denoted by

$$f_{x}(\omega) = \sum_{h=-\infty}^{\infty} \gamma_{x}(h)e^{-2\pi\omega ih}.$$

The inverse Fourier transform formula is

$$\gamma_{\mathsf{x}}(h) = \int_{-0.5}^{0.5} f_{\mathsf{x}}(\omega) e^{2\pi\omega i h} d\omega.$$

(2)

Note that

$$A_{yx}(\omega) = \sum_{j=-\infty}^{\infty} a_j e^{-2\pi\omega ij}$$
 (3)

is the Fourier transform of  $a_j$  and called the **frequency response** function. We require  $\sum_{j=-\infty}^{\infty} |a_j| < \infty$  to ensure that  $A_{yx}(\omega)$  is well defined.

Now we compute the spectral density  $f_y(\omega)$  of  $y_t$ . By the inverse Fourier transform,

$$\gamma_y(h) = \int_{-0.5}^{0.5} f_y(\omega) e^{2\pi\omega i h} d\omega. \tag{4}$$

Comparing (4) and (2), we find that

$$f_{y}(\omega) =$$
 . (5)

We can use (5) to compute the exact effect on the spectrum of any given filtering operation. The spectrum of the input series is changed by filtering and the effect of the change is characterized as a frequency-by-frequency multiplication by the squared magnitude of the frequency response function,  $A_{yx}(\omega)$ .  $|A_{yx}(\omega)|^2$  is called the **power transfer** function.

Suppose two filtering operations are applied to a stationary series  $x_t$  in succession, e.g.:

$$y_t = \sum_{j=-\infty}^{\infty} a_j x_{t-j},$$

and then

$$z_t = \sum_{k=-\infty}^{\infty} b_k y_{t-k}.$$

The spectrum of the output is

$$f_z(\omega) = |A(\omega)|^2 |B(\omega)|^2 f_x(\omega).$$

Worked Examples I

Worked Examples II

## Worked Example: MA(1)

**Question**: Consider an MA(1) process  $y_t = w_t + \theta w_{t-1}$ . Given that  $f_w(\omega) = \sigma_w^2$ , derive the spectral density of this MA(1) process using (5).

## Worked Example: AR(1)

**Question**: Consider an AR(1) process  $y_t = 0.5y_{t-1} + w_t$ . Given that  $f_w(\omega) = \sigma_w^2$ , derive the spectral density of this AR(1) process using (5).

## Worked Example: First Difference Filter

**Question**: Consider the first difference filter  $y_t = \nabla x_t = x_t - x_{t-1}$ . Derive the power transfer function for this filter and comment on the practical implications.

## Worked Example: First Difference Filter

#### **Power Transfer Function of First Difference Filter**



## Worked Example: Moving Average Filter

**Question**: Consider the following moving average filter  $y_t = \frac{1}{24}(x_{t-6} + x_{t+6}) + \frac{1}{12} \sum_{j=-5}^5 x_{t-j}$ . Derive the power transfer function for this filter and comment on the practical implications.

# Worked Example: Moving Average Filter

#### **Power Transfer Function of Moving Average Filter**



Worked Examples I

Worked Examples II

We'll apply the first difference and 12-month moving average filters to the SOI dataset.







- The first difference filter retained the higher frequencies.
- The moving average filter retained the lower frequencies.
  Enhances the component associated with El Niño and dampens the seasonal/yearly component.





#### Series: soi Raw Periodogram



#### Series: x Smoothed Periodogram



From the periodogram of the moving average filtering of the data, high frequency behavior has been removed. El Niño frequency around 1/52.



For the 12-month moving average filter, frequencies higher than around 0.08 will be "cut off". Periods shorter than 1/0.08 = 12.5 months will be dampened, and the El Niño frequency is retained.