Classification problem

Overfitting and regularization

Khiem Nguyen

Email	khiem.nguyen@glasgow.ac.uk						
MS Teams	khiem.nguyen@glasgow.ac.uk						
Whatsapp	+44 7729 532071 (Emergency only)						

May 18, 2025

Table of Contents

1 Underfitting (high bias) versus Overfitting (high varianace)

2 Addressing overfitting

Regularization: Intuition and Formulation

Underfitting versus overfitting

Underfit versus overfit

Underfitting

$$w_1x + b$$

Does not fit the training set well

high bias

Underfit versus overfit

Underfitting

$$w_1x + b$$

Does not fit the training set well

high bias

Overfitting

$$w_1x + w_2x^2 + \dots + w_{10}x^{10} + b$$

Fit the training set extremely well

high variance

Underfit versus overfit

Underfitting

$$w_1x + b$$

Does not fit the training set well

high bias

Just right

$$w_1 x + w_2 x^2 + b$$

Fit training set pretty well

generalization

Overfitting

$$w_1x + w_2x^2 + \dots + w_{10}x^{10} + b$$

Fit the training set extremely well

high variance

Underfitting versus overfitting: Classification

Underfit – high bias

$$z = w_1 x_1 + w_2 x_2 + b$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(z)$$

 \boldsymbol{g} is the sigmoid function

Underfitting versus overfitting: Classification

Underfit – high bias

$$z = w_1 x_1 + w_2 x_2 + b$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(z)$$

g is the sigmoid function

Overfit - high variance

$$\begin{split} z &= w_1 x_1 + w_2 x_2 + w_3 x_1^2 x_2 \\ &+ w_4 x_1^2 x_2^2 + w_5 x_1^2 x_2^3 \\ &+ w_6 x_1^3 x_2 + \dots + b \end{split}$$

Underfitting versus overfitting: Classification

Underfit - high bias

$$z = w_1 x_1 + w_2 x_2 + b$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(z)$$

g is the sigmoid function

Just right

$$z = w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x^2 + w_5 x_1 x_2 + b$$

Overfit - high variance

$$\begin{split} z &= w_1 x_1 + w_2 x_2 + w_3 x_1^2 x_2 \\ &+ w_4 x_1^2 x_2^2 + w_5 x_1^2 x_2^3 \\ &+ w_6 x_1^3 x_2 + \dots + b \end{split}$$

Table of Contents

① Underfitting (high bias) versus Overfitting (high varianace)

Addressing overfitting

3 Regularization: Intuition and Formulation

Addressing overfitting: Collect more training examples

Maybe reduce the order of fitting?

It is not always easier to harvest more data

Select features to include/exculde

size	bedrooms	floors	age	avg. income	 distance to center	price
\overline{x}_1	x_2	x_3	\overline{x}_4	x_5	x_{100}	\overline{y}

Select features to include/exculde

size	bedrooms	floors	age	avg. income	 distance to center	price
x_1	x_2	x_3	x_4	x_5	x_{100}	y

Select features to include/exculde

size	bedrooms	floors	age	avg. income	 distance to center	price
x_1	x_2	x_3	x_4	x_5	x_{100}	y

$$f_{\overline{w},b}(\vec{x}) = \\ -8246.12x + 0.1351x^2 - \cdots + 33781x^8 - 542x^9 + \\ 33.92x^{10} + 974.89$$

large values for model parameters \overrightarrow{w}, b

Produced by by using hand-written code with regularization on w_3,\dots,w_{10}

$$f_{\overline{w},b}(\vec{x}) = \\ -8246.12x + 0.1351x^2 - \dots + 33781x^8 - 542x^9 + \\ 33.92x^{10} + 974.89$$

large values for model parameters \overrightarrow{w}, b

Produced by by using hand-written code with regularization on w_3,\dots,w_{10}

$$f_{\overline{w},b}(\vec{x}) = \\ -8246.12x + 0.1351x^2 - \cdots + 33781x^8 - 542x^9 + \\ 33.92x^{10} + 974.89$$

large values for model parameters \vec{w}, b

$$\begin{split} f_{\overrightarrow{w},b}(\overrightarrow{x}) = \\ 2.971x_{\text{scaled}} - 2.35x_{\text{scaled}}^2 + \text{small-no.}x_{scaled}^3 + \\ \cdots \text{small-no.}x_{scaled}^4 + \text{small-no.}x_{scaled}^{10} + 1.845 \end{split}$$

smaller values for model parameters \vec{w}, b

Produced by by using hand-written code with regularization on w_3, \dots, w_{10}

Address overfitting: Summary

Options

- Collect more data
- Select features (feature selection)

Table of Contents

1 Underfitting (high bias) versus Overfitting (high varianace)

2 Addressing overfitting

3 Regularization: Intuition and Formulation

 $\underline{\mathbf{Idea}} : \ \mathsf{Make} \ w_3, w_4, \dots, w_{10} \ \mathsf{really} \ \mathsf{small} \ (\approx 0)$

Idea: Make w_3, w_4, \dots, w_{10} really small (≈ 0)

$$+w_3 \times x^3 + \dots + w_{10} \times x^{10} + \dots$$

Idea: Make w_3, w_4, \dots, w_{10} really small (≈ 0)

$$+ \underline{w_3} \times x^3 + \dots + \underline{w_{10}} \times x^{10} + b$$

<u>Idea</u>: Make w_3, w_4, \dots, w_{10} really small (≈ 0)

$$\min_{\overrightarrow{w},b} \left\{ \frac{1}{2m} \sum_{i=1}^m (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})^2 \right\}$$

 $\underline{\textbf{Idea}} \text{: Make } w_3, w_4, \dots, w_{10} \text{ really small } (\approx 0)$

$$\min_{\overline{w},b} \frac{1}{2m} \sum_{i=1}^m (f_{\overline{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \mathsf{Large-number} \times w_3^2 + \dots + \mathsf{Large-number} \times w_{10}^2$$

To make the cost function small, w_3, \dots, w_{10} should become smaller $(\to 0)$.

Regularization: Cost function

size	bedrooms	floors	age	avg. income	 distance to center	price
$\overline{x_1}$	x_2	x_3	x_4	x_5	x_{100}	y

Smaller values $w_1, w_2, \dots, w_n, b \quad o \quad \text{simpler model} \quad o \quad \text{less likely to overfit}$

$$J(\overrightarrow{w},b) = \frac{1}{2m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)^2 + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^n w_j^2}_{\text{regularization term}}$$

 λ – regularization parameter Remember: $\lambda > 0$

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left\{ \frac{1}{2} \underbrace{\frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\vec{x}^{(i)}) - y^{(i)} \right)^2}_{\text{mean squared error}} + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^n w_j^2}_{\text{regularization term}} \right\}$$

 λ balances both goals

- fit the data
- ${f 2}$ keep w_j small (if needed)

But

choosing large λ may lead to simple fit. For example, with $\lambda=10^{10}$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = y_{1} \xrightarrow{\approx} 0 x + y_{2} \xrightarrow{\approx} 0 x^{2} + \dots + y_{10} \xrightarrow{\approx} 0 x^{10} + b \quad \rightarrow \quad f_{\overrightarrow{w},b}(\overrightarrow{x}) = 0$$

Regularized linear regression

$$\min_{\overrightarrow{w},b} J(\overrightarrow{w},b) = \min_{\overrightarrow{w},b} \left\{ \underbrace{\frac{1}{2m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)^2}_{1/2 \text{ xMSE}} + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^n w_j^2}_{\text{regularization term}} \right\}$$

Gradient descent

Repeat

$$\begin{cases} w_1 = w_1 - \alpha \frac{\partial J}{\partial w_1}(\overrightarrow{w}, b) \\ \vdots \\ w_n = w_n - \alpha \frac{\partial J}{\partial w_n}(\overrightarrow{w}, b) \\ b = b - \alpha \frac{\partial J}{\partial b}(\overrightarrow{w}, b) \end{cases}$$

$$\begin{split} \frac{\partial J}{\partial w_j} &= \underbrace{\frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}}_{\text{from } 1/2 \text{ ×MSE}} + \frac{\lambda}{m} w_j}_{\text{from } 1/2 \text{ ×MSE}} \\ j &= 1, \dots, n \end{split}$$

$$\frac{\partial J}{\partial b} &= \frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
 Don't have to regularize b

Don't have to regularize b

Implementing gradient descent

Repeat

$$\begin{cases} w_j = w_j - \alpha \bigg\{ \frac{1}{m} \sum_{i=1}^m \left[\left(f_{\overline{w},b}(x^{(i)}) - y^{(i)} \right) x_j^{(i)} \right] + \frac{\lambda}{m} w_j \bigg\} \\ \\ b = b - \alpha \frac{1}{m} \sum_{i=1}^m \left(f_{\overline{w},b}(x^{(i)}) - y^{(i)} \right) \end{cases} \label{eq:w_j}$$

$$w_j = \underbrace{w_j - \alpha \frac{\lambda}{m} w_j}_{y \left(1 - \alpha \frac{\lambda}{m}\right)} - \underbrace{\alpha \frac{1}{m} \sum_{i=1}^m \left(f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}\right) x_j^{(i)}}_{\text{usual update as without regularization}}$$

The term $w_j \left(1 - \alpha \frac{\lambda}{m}\right)$ shrinks w_j a bit in each iteration

Example:

$$\alpha \frac{\lambda}{m} = 0.1 \times \frac{1}{1000} = 0.0001$$

$$\rightarrow w_j \underbrace{(1 - 0.0001)}_{0.9999}$$

Derivation of gradient of the cost function $J(\overrightarrow{w},b)$ (optional)

$$\begin{split} \frac{\partial J}{\partial w_{\mathbf{1}}} J(\overrightarrow{w},b) &= \frac{\partial}{\partial w_{\mathbf{1}}} \bigg\{ \frac{1}{2m} \sum_{i=1}^{m} \Big(\underbrace{\overrightarrow{w} \cdot \overrightarrow{x}^{(i)} + b - y^{(i)}}_{w_{\mathbf{1}} x_{\mathbf{1}}^{(i)} + \cdots + w_{n} x_{n}^{(i)} + b - y^{(i)}} \Big)^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} w_{j}^{2} \Big\} \\ &= \frac{1}{2m} \sum_{i=1}^{m} 2 \Big[\Big(\overrightarrow{w} \cdot \overrightarrow{x}^{(i)} + b - y^{(i)} \Big) x_{\mathbf{1}}^{(i)} \Big] + \frac{\lambda}{2m} 2 w_{\mathbf{1}} \\ &= \frac{1}{m} \sum_{i=1}^{m} \Big[\Big(\underbrace{\overrightarrow{w} \cdot \overrightarrow{x}^{(i)} + b}_{f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})} - y^{(i)} \Big) x_{\mathbf{1}}^{(i)} \Big] + \frac{\lambda}{m} w_{\mathbf{1}} = \frac{1}{m} \sum_{i=1}^{m} \Big[\Big(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \Big) x_{\mathbf{1}}^{(i)} \Big] + \frac{\lambda}{m} w_{\mathbf{1}} \end{split}$$

Generalization ($\partial J/\partial b$ the same as before):

$$\frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m \left[\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} \right] + \frac{\lambda}{m} w_j$$

Regularized logistic regression

$$z = w_1 x_1 + w_2 x_2 + w_3 x_1^2 x_2$$

$$+ w_4 x_1^2 x_2^2 + w_5 x_1^2 x_2^3 + \dots + b$$

$$f_{\overline{w},b} = \frac{1}{1 + e^{-z}}$$

Regularized logistic regression

$$\begin{split} z &= w_1 x_1 + w_2 x_2 + w_3 x_1^2 x_2 \\ &+ w_4 x_1^2 x_2^2 + w_5 x_1^2 x_2^3 + \dots + b \\ f_{\overline{w},b} &= \frac{1}{1 + \mathrm{e}^{-z}} \end{split}$$

Cost function

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1-y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \\ \underset{\overrightarrow{w},b}{\min} J(\overrightarrow{w},b) \quad \rightarrow \quad w_j \downarrow$$

Regularized logistic regression:

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1-y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} w_j^2$$

Gradient descent

Repeat

$$\begin{cases} w_j = w_j - \alpha \frac{\partial J}{\partial w_j}(\overrightarrow{w}, b) \\ \\ j = 1, \dots, n \\ \\ b = b - \alpha \frac{\partial J}{\partial b}(\overrightarrow{w}, b) \end{cases}$$

$$\begin{split} \frac{\partial J}{\partial w_j} &= \frac{1}{m} \sum_{i=1}^m \left(f_{\overline{w},b}(\vec{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} w_j \\ & j = 1, \dots, n \\ \frac{\partial J}{\partial b} &= \frac{1}{m} \sum_{i=1}^m \left(f_{\overline{w},b}(\vec{x}^{(i)}) - y^{(i)} \right) \end{split}$$

Looks same as for linear regression! BUT

 $f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(z(\overrightarrow{x};\overrightarrow{w},b))$ is logistic regression function model