DECISION TREE

- ClAssification and Regression Tree (CART)

Supervised learning algorithm

Root Node - Outlook

Decision node - Humidity/Wind

Leaves - Yes/No

Structure of a Tree

HOW DECISION TREE ALGORITHM WORKS (HOW TO FIND ROOT)

Attribute selection measures

- Information gain
- Gini index

Information Gain

Information Gain -> Information theory -> Entropy = randomness or uncertainty of a random variable.

There are **2 steps for calculating information gain** for each attribute:

- Calculate entropy of Target.
- Calculate the Entropy for every attribute.

Information gain = Entropy of target - Entropy of attribute

Entropy

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x).$$

The measure of uncertainty

Dataset

Predictors	Target
	A

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Entropy of Target

Frequency Table

		Play Golf	
		Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3

		Play Golf	
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1

		Play Golf	
	Yes No		No
Humidity	High	3	4
	Normal	6	1

		Play Golf	
			No
Windy	False	6	2
	True	3	3

Outlook - Entropy

		Play	Golf	
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

 $\mathbf{E}(PlayGolf, Outlook) = \mathbf{P}(Sunny)*\mathbf{E}(3,2) + \mathbf{P}(Overcast)*\mathbf{E}(4,0) + \mathbf{P}(Rainy)*\mathbf{E}(2,3)$

$$= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$$

= 0.693

Activate Go to PC:

Outlook - Information Gain

G(PlayGolf, Outlook) = **E**(PlayGolf) – **E**(PlayGolf, Outlook)

= 0.940 - 0.693 = 0.247

All Attributes - Information Gain

+		Play Golf	
7		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf	
		Yes No	
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
Gain = 0.029			

		Play Golf	
		Yes No	
Uumiditu	High	3	4
Humidity	Normal	6	1
Gain = 0.152			

Play Go		Golf	
		Yes No	
M/im du	False	6	2
Windy True		3	3
Gain = 0.048			

Outlook	Temp	Humidity	Windy	Play Golf
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Sunny	Mild	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Hot	High	FALSE	Yes
Overcast	Cool	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes

Overcast

Temp	Humidity	Windy	Play Golf
Hot	High	FALSE	Yes
Cool	Normal	TRUE	Yes
Mild	High	TRUE	Yes
Hot	Normal	FALSE	Yes
Hot	High	FALSE	Yes

Sunny

Temp.	Humidity	Windy	Play Golf
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

		Play Golf	
		Yes	No
Toma	Mild	2	1
Temp.	Cool	1	1
Gain = 0.02			

		Play Golf	
		Yes	No
Umaiditu	High	1	1
Humidity	Normal	2	1
Gain = 0.02			

*		Play Golf	
		Yes	No
Mindy	False	3	0
Windy	True	0	2
Gain = 0.97			

Temp.	Humidity	Windy	Play Golf
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Mild	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	High	TRUE	No

Rainy

Temp.	Humidity	Windy	Play Golf
Hot	High	FALSE	No
Hot	High	TRUE	No
Mild	High	FALSE	No
Cool	Normal	FALSE	Yes
Mild	Normal	TRUE	Yes

		Play	Golf
		Yes	No
	Hot	0	2
Temp.	Mild	1	1
	Cool	1	0
Gain = 0.57			

*		Play Golf		
		Yes	No	
Lumiditu	High	0	3	
Humidity	Normal	2	0	
Gain = 0.97				

		Play	Golf
		Yes	No
Windy	False	1	2
Windy	True	1	1
Gain = 0.02			

Tree

Predit the Play – D15?

Sunny – Cool – Normal – False

Predit the Play – D15?

Sunny - Cool - Normal - False = Play

Decision Rules

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

Decision Tree - Gini

Gini Index =
$$1 - \sum_{j} p_j^2$$

Classification vs Regression Tree

When to stop splitting? Overfitting

How to overcome? Pruning

- 1. Pre-pruning
- 2. Post-pruning

Ensemble

Machine learning paradigm which combine weak learners to become a strong learner

Model1	Model2	Model3	VotingPrediction
1	0	1	1

Random Forest

Most used algorithm - Bagging Technique (Bootstrap aggregating - bagging)

HOW THE RANDOM FOREST ALGORITHM WORKS IN MACHINE LEARNING

- Supervised learning algorithm
- Regression and classification problems

Bagging

Random Forest pseudocode

Randomly select "k" features from total "m" features.
 Where k << m

For classification a good default is: k = sqrt(m)For regression a good default is: k = m/3

- Among the "k" features, calculate the node "d".
- Split the node into daughter nodes.
- Repeat 1 to 3 steps
- Build forest by repeating steps 1 to 4 for "n" number times to create "n" number of trees.

Key Points

- Majority voting.
- Higher the number of trees in the forest = High accuracy.
- When we have more trees in the forest, random forest classifier won't overfit the model.
- For each bootstrap sample taken from the training data, there will be samples left behind that were not included.
 These samples are called Out-Of-Bag samples or OOB.
- The performance of each model on its left out samples when averaged can provide an estimated accuracy of the bagged models. This estimated performance is often called the OOB estimate of performance.

Random Forest - Skeleton

K – Means

Un-Supervised learning algorithm Clustering

No dependant variable

Pseudocode

- Input the algorithm with the number of clusters K and the data set.
- Randomly generate or randomly select K centroids from the data set.

The algorithm then iterates between two steps:

1. Data assignment step

$$\underset{c_i \in C}{\operatorname{argmin}} dist(c_i, x)^2$$

where $dist(\cdot)$ is the standard (L_2) Euclidean distance

2. Centroid update step:

In this step, the centroids are recomputed. This is done by taking the mean of all data points assigned to that centroid's cluster.

$$c_i = \frac{1}{|S_i|} \sum_{x_i \in S_i} x_i$$

The algorithm iterates between steps one and two

- 1. No data points change clusters
- 2. The sum of the distances is minimized or some maximum number of iterations is reached

Choosing K - K Means ++

Run the K-means clustering algorithm for a range of K values

Distance and Speed

Graph

Flow Chart

Key Points

 No prediction – The interest is group to similar kind of attributes to a common class

Example –

- Same language documents are one group.
- While categorising the news articles (Same news category(Sport) articles are one group)

Result of K- means

- 1. The centroids of the K clusters, which can be used to label new data
- 2. Labels for the training data (each data point is assigned to a single cluster)