#### **CUNY MSDA - IS609 Project**

Ben Arancibia Xingjia Wu Shipra Ahuja

# Project # 1

Chapter 5 Section 3 Project 3

# Craps is a dice game in which players make wages on the outcome of the roll, or a series of rolls, of a pair of dice.

- Question: Craps Construct and perform a Monte Carlo simulation of the popular casino game of craps.
- There are two basic bets in craps, pass and don't pass. In the pass bet, you wager that the shooter will win; in the don't pass bet, you wager that the shooter will lose. Conduct of the game:
  - Roll a 7 or 11 on the first roll: Shooter wins (pass bets win and don't pass bets lose)
  - Roll a 12 on the first roll: Shooter loses (boxcars; pass and don't pass bets lose)
  - Roll a 2 or 3 on the first roll: Shooter loses (pass bets lose, don't pass bets win)
  - Roll 4, 5, 6, 8, 9, 10 on the first roll: This becomes the point. The object then becomes to roll the point again before rolling a 7.
- The shooter continues to roll the dice until the point or a 7 appears. Pass bettors win if the shooter rolls the point again before rolling a 7. Don't pass bettors win if the shooter rolls a 7 before rolling the point again.



Craps involves the rolling of two dice. The assumption is that the dice are fair and the outcomes of the rolls are independent.

#### Mathematically you can solve for the possibilities

| Initial Roll | Probability of<br>Winning | Probability in<br>Decimal |
|--------------|---------------------------|---------------------------|
| 4            | 3/36 x 3/9                | 0.027778                  |
| 5            | 4/36 x 4/10               | 0.044444                  |
| 6            | 5/36 x 5/11               | 0.063131                  |
| 7            | 6/36                      | 0.166667                  |
| 8            | 5/36 x 5/11               | 0.063131                  |
| 9            | 4/36 x 4/10               | 0.044444                  |
| 10           | 3/36 x 3/9                | 0.027778                  |
| 11           | 2/36                      | 0.055556                  |
|              | Total:                    | 0.492929                  |

Probability the Shooter wins = 49.29% Probability the Shooter loses = 50.71%



Write an algorithm and code it in the computer language of your choice. Run the simulation to estimate the probability of winning a pass bet and the probability of winning a don't pass bet. Which is the better bet?

- Wrote algorithm in R
  - Code included in the report
- The better bet is house bets
  - Pass bets: 49.29%
  - Don't Pass bets: 47.93%

# Project # 2

Chapter 9 Section 3 Project 4

#### Problem

The NBC TV network earns an average of \$400,000 from a hit show and loses an average of \$100,000 on a flop (a show that cannot hold its rating and must be canceled). If the network airs a show without a market review, 25% turn out to be hits, and 75% are flops. For \$40,000, a market research firm can be hired to help determine whether the show will be a hit or a flop. If the show is actually going to be a hit, there is a 90% chance that the market research firm will predict a hit. If the show is going to be a flop, there is an 80% chance that the market research will predict the show to be a flop. Determine how the network can maximize its profits over the long haul.



#### Building network using gRain

```
suppressWarnings(suppressMessages(library(gRain)))
hf <- c("hit", "flop")</pre>
phf <- c("p.hit", "p.flop")</pre>
# Specify the Conditional Probability Tables
show <- cptable(~show, values=c(25, 75), levels=hf)</pre>
predict <- cptable(~predict|show, values= c(0.9, 0.1, 0.2, 0.8), levels=phf)</pre>
# Compile plist
plist <- compileCPT(list(show, predict))</pre>
summary(plist)
## $show
## show
## hit flop
## 0.25 0.75
##
## $predict
##
           show
## predict hit flop
## p.hit 0.9 0.2
    p.flop 0.1 0.8
# Build the network
net <- grain(plist)</pre>
```

### Query network (1)

• The probability that the market review predicts a hit

```
q1 <- setFinding(net, nodes="predict", states=c("p.hit"))
(phit <- pFinding(q1))

## [1] 0.375

• The probability the market review predicts a flop

q2 <- setFinding(net, nodes="predict", states=c("p.flop"))
(pflop <- pFinding(q2))

## [1] 0.625</pre>
```



#### Query network (2)

hit flop 0.6 0.4

• The probability that a show actually turns out to be a hit or a flop when the market review predicts a hit

```
(querygrain(q1, nodes = "show", type="marginal"))
## $show
## show
```





#### Conclusion

Since the expected profit of hiring market review (35k) is higher than not hiring (25k), the network can hire a market review to maximize its profits over the long haul.

# Project #3

Chapter 11 – Section 5 – Project 5

### **Problem Description**

- Analyze the spread of a communicable disease depicted by ordinary differential equation below using various methods
  - dN/dt = 0.25N(10-N)
- Qualitative Graphical Analysis
  - Phase Lines for First & Second Derivatives
  - Solution Curves
  - Slope Field Plot
- Actual Solution
  - Separation of Variables technique
- Numerical Methods
  - Euler's Method
  - Runge -Kutta Method

# Autonomous Differential Equation Points of Equilibrium

- Autonomous Differential Equation
  - dN/dt = 0.25N(10-N)
- When dN/dt = o
  - Differential Equation "Autonomous Differential Equation"
- Points at which dN/dt=o
  - Rest Points or Equilibrium Points
- dN/dt = o when
  - N=o
  - N=10
- N= o and N=10 are Equilibrium Points

### Rate of spread of the disease

- Plot shows the rate at which the communicable disease spreads
- Equilibrium points are N=0 and N=10 since dN/dt=0 at these points
- Rate of change is fastest at N=5 as dN/dt is max at N=5



## Qualitative Graphical Method Phase Lines

Phase Lines (Using First-Derivative)

**Phase Lines (Using Second-Derivative)** 





- Arrows go away from N=o (Unstable Equilibrium)
- Arrows lead to N=10 (Stable Equilibrium)

#### **Solution Curves**

- Trajectories of solution curves move away from N=o (Unstable Equilibrium)
- Trajectories of solution curves move towards N=10 (Stable Equilibrium)



## Slope Fields

- Equilibrium Points N=0 and N=10 are shown with red lines
- Solution Curves are shown for some initial conditions
  - N<0</li>
  - 0<N<10
  - N>10
- Solution curves move towards N=10 (Stable)
- Solution Curves move away from N=o (Unstable)



## Stability of Equilibrium Points

- Equilibrium points can be stable or unstable
- Stability can be determined by looking at
  - Phase Lines
    - Arrows moving away from equilibrium points UNSTABLE equilibrium point (N=o)
    - Arrows moving towards equilibrium points STABLE equilibrium point(N=10)
  - Solution Curves Trajectories
    - Solution Curves moving towards Equilibrium points (STABLE N=10) and moving away from equilibrium points (UNSTABLE N=0)
  - Slope Fields
    - Small line segments move towards equilibrium points (STABLE N=10) and away from equilibrium points (UNSTABLE N=0)

# Actual Solution Separation of Variables Technique

- Actual Solution
  - Integrate the differential equation dN/dt = 0.25N(10-N) using separation of variables technique

$$N = \frac{10Ke^{2.5t}}{Ke^{2.5t}-1}$$

• For N(o) = 2



Actual Solution for N(o)=2

$$N = \frac{-2.5e^{2.5t}}{-0.25e^{2.5t}-1}$$

Actual Solution for N(o)=7

$$N = \frac{-23.3e^{2.5t}}{-2.33e^{2.5t}-1}$$

Actual Solution for N(o)=14

$$N = \frac{35e^{2.5t}}{3.5e^{2.5t} - 1}$$

### Comparison

#### Qualitative Plot with Actual Solution

**Qualitative Plot** 

N(o)=2, N(o)=7, N(o)=14

Actual Solution Plot N(o)=2, N(o)=7, N(o)=14





## Numerical Methods Euler's Method

```
# Function to compute numerical solution using Euler's method
eulers <- function(h)
                            # Accept step size
  N <- 0
  start <- 0
                            # Start of interval
  end <- 10
                            # End of Interval
  NO <- 2
                            # Initial Value
  nsteps <- (end-start)/h # Compute number of steps required
 N[1] <- NO
                            # Put intial value in first position of array
  t <- seq(start,end,by=h) # Generate sequence of time(x-axis)
                            # Loop to generate data points
 for(i in 1:nsteps)
    N[i+1] \leftarrow N[i] + ((0.25*N[i])*(10-N[i]))*h
  df <- data.frame(cbind(t,N))
 return(df)
```

- Differential Equation dN/dt=0.25N(10-N) has been solved using Euler's Method
- Step Size h=0.1 and h=1 has been used to compute the solution

# Comparison Euler's Method with Actual Solution

#### **Actual Solution**

- •Reaches equilibrium(N=10) at t=7.5
- •Matches Euler's Solution with h=0.1
- •No match with Euler's Solution for h=1

#### **Euler's Solution**

- Larger step size(h=1)
- Solution does not reach equilibrium
- Smaller step size (h=0.1)
- Reaches equilibrium(N=10) at t=6.5







## Numerical Methods Runge-Kutta Method

```
# Function to compute numerical solution using 4th order Runge Kutta method
rk4 <- function(f,h)
   start <- 0
                          # Start of interval
   end <- 10
                          # End of Interval
   t0 <- 0
                          # Initial value of t
   NO <- 2
                          # Initial Value of N
   nsteps <- (end-start)/h # Compute number of steps required for a given step size
   vt <- double(nsteps + 1) # Initialize vector vt
   vN <- double(nsteps + 1) # Initialize vector vN
   vt[1] <- t <- t0
                          # Put initial value of t in 1st position of array vt
   vN[1] <- N <- NO
                          # Put initial value of N in 1st position of array vN
   # Loop computing k1, k2, k3, k4 using Runge Kutta method
   for(i in 1:nsteps)
      k1 <- f(t, N)
      k2 \leftarrow f(t + 0.5*h, N + (k1*0.5*h))
      k3 \leftarrow f(t + 0.5*h, N + (k2*0.5*h))
      k4 <- f(t+h, N + (k3*h))
      vt[i + 1] <- t <- t0 + i*h
       vN[i+1] \leftarrow N \leftarrow N + ((1/6)*(k1+(2*k2)+(2*k3)+k4)*h)
       cbind(vt, vN)
```

- Differential Equation dN/dt=0.25N(10-N) has been solved using 4<sup>th</sup> order Runge-Kutta Method
- Step Size h=0.1 and h=1 has been used to compute the solution

# Comparison Runge-Kutta Method with Actual Solution

#### **Actual Solution**

- •Reaches equilibrium(N=10) at t=7.5
- •Matches Runge-Kutta's Solution with h=0.1
- •Fairly matches Runge-Kutta Solution for h=1

#### Runge-Kutta Solution

- Larger step size(h=1)
  - Reaches equilibrium(N=10) **very slowly** at t=36
- Smaller step size (h=0.1)
- Reaches equilibrium(N=10) **quickly** at t=7.5







#### Conclusion

- All methods below for analysis of ordinary differential equation indicate N=10 as a point of stable equilibrium and N=0 as a point of unstable equilibrium
  - Qualitative Phase Lines & Solution Curves
  - Slope Field Plot
  - Actual Solution using Separation of Variables
  - Euler's Method
  - Runge Kutta Method
- Relative Error between Actual Solution vs Solution from Numerical Methods
  - Error is very small when step size is small
  - Error increases as step size increases
- Runge -Kutta Method vs Euler's Method
  - More accurate than Euler's method
  - Much closer to actual solution
  - Relative Error between Actual Solution and Runge Kutta solution is negligible compared to Euler's Method

# Thank You

Questions?