Teorema 1. Sean H un espacio con producto interno $y \emptyset \neq M \subseteq H$ un subconjunto convexo y completo. Entonces para cada $u \in H$ existe un único $\tilde{u} \in M$ tal que

$$||u - \tilde{u}|| = \inf_{v \in M} ||u - v||$$

Teorema 2. Bajo la misma notación que en el teorema anterior, si M es un subespacio cerrado de H, entonces para cada $u \in H$ se cumple $u - \tilde{u} \in M^{\perp}$.

Teorema 3. Si $T \in \mathbb{B}(H, K)$, donde H y K son de Hilbert, entonces

$$Im(T)^{\perp} = Ker(T^*) \ y \ \overline{Im(T^*)} = \overline{Im(T^*T)}$$

Corolario. Los estimadores $\boldsymbol{b} = (b_0, b_1, b_2, \cdots, b_k)$ por el método de los mínimos cuadrados de los parámetros $\{\beta_i\}_{i=0}^k$ a partir de la muestra $\{(\boldsymbol{x_i}, y_i)\}_{i=1}^n$ se calculan como

$$\boldsymbol{b} = (X^T X)^{-1} X^T \boldsymbol{y}.$$

Demostración. Observemos que queremos hallar $\boldsymbol{b} \in \mathbb{R}^{k+1}$ que minimice a $\|\boldsymbol{y} - X\boldsymbol{b}\|^2$. Por los Teoremas 1 y 2, tomando M = Im(X), tenemos $\tilde{\boldsymbol{y}} = X\boldsymbol{b}$ para alguna $\boldsymbol{b} \in \mathbb{R}^{k+1}$ y además $\boldsymbol{y} - X\boldsymbol{b} \in Im(X)^{\perp} = Ker(X^T)$.

Por lo tanto

$$0 = X^T(\boldsymbol{y} - X\boldsymbol{b}) = X^T\boldsymbol{y} - X^TX\boldsymbol{b}$$

y como X^TX es invertible por la izquierda (¿Por qué?) se tiene lo pedido.

Saludos, **Héctor**.