Rozpoznawanie wiadomości dotyczących katastrof

Warsztaty z technik uczenia maszynowego

Jakub Rymuza

Karol Nowiński

1 czerwca 2022

Spis treści

1	Wstep	3
2	Podział pracy	3
3	Wykorzystywane narzędzia	3
4	Użyte dane	3
5	Analiza danych 5.1 Podstawowe informacje	4 4 4 5
6	Przygotowanie danych 6.1 Czyszczenie danych	5 5
7	Modele	8
8	Wnioski	12
9	Bibliografia	12

1 Wstęp

Projekt polega na przetwarzaniu wiadomości z serwisu Twitter w celu ustalenia, które z nich mówią o katastrofach. Może to pomóc m.in. we wcześniejszym rozpoznawaniu sytuacji zagrażajacych życiu. Może to też pomóc służbom w ocenie skali zagrożenia zdarzeniem.

2 Podział pracy

W związku z tym, że grupa składa się z dwóch osób, zdecydowaliśmy, że nie będziemy dzielić pracy na poszczególne role. Praca wykonywana będzie w większości wspólnie, pracując wspólnie nad rozwiązaniem problemu.

3 Wykorzystywane narzędzia

Projekt opiera się na procesowaniu języka naturalnego za pomocą technik uczenia maszynowego. Projekt zostanie wykonany w języku Python. W szczególności wykorzystane zostaną biblioteki *NumPy* oraz *Pandas* z wykorzystaniem notatników *Jupyter*.

4 Użyte dane

W projekcie wykorzystano dwa zbiory danych z [1]:

- zbiór treningowy *train.csv*, który zostanie wykorzystany do wytrenowania modelu do rozwiązywania problemu. Zawiera on 7613 rekordów. Rekordy zawierają następujące pola:
 - *id* identyfikator rekordu,
 - keyword słowo kluczowe uprzednio wyciągnięte z wiadomości wszystkie słowa kluczowe dotyczą katastrof, są tą słowa takie jak na przykład "crash", "earthquake" i tym podobne. To pole jest opcjonalne, tzn. nie każdy rekord je zawiera,
 - location lokalizacją z której wiadomość została wysłana. Podobnie jak keyword, jest to pole opcjonalne,
 - text najważniejsza pole zawiera treść wiadomości,

- target wartość logiczna stwierdzająca czy dana wiadomość mówi o katastrofie czy nie.
- zbiór testowy test.csv-zbiór na którym model będzie testowany. Zawiera on 3263 rekordów. Rekordy wyglądają tak samo, jak w przypadku zbioru treningowe, za wyjątkiem oczywiście braku pola target, którego obliczenie jest celem projektu.

5 Analiza danych

5.1 Podstawowe informacje

W zbiorze *train* składającym się z 7613 rekordów, tylko 5080 posiada podaną lokację, a 7552 posiada podane słowo kluczowe (*keyword*).

Natomiast w zbiorze *test* na 3263 rekordów, tylko 2158 posiada podaną lokację, a 3237 posiada podany *keyword*.

Wynika stąd, że w obu zbiorach prawie wszystkie rekordy mają podane słowo kluczowe, natomiast tylko około dwie trzecie z nich mają podaną lokację.

5.2 Długość tweetów

Na rysnku 1 umieszczono histogramy liczby tweetów w danym przedziale długości w zależności od tego czy mówią o katastrofie czy nie dla zbioru train. Można zauważyć, tweety o katastrofie częściej są krótkie lub średniej długości, natomiast rzadko są bardzo długie. Natomiast w obu przypadkach pik występuje dla długości około 120 znaków.

5.3 Skład danych treningowych

Na rysnku 2 zaznaczono skład zbioru *train* ze względu na ilość tweetów o katastrofach. Jak widać dane są rozmieszczone dość równomiernie, z niewielką przewagą tweetów niemówiących o katastrofach. Taki skład danych treningowych umożliwia dobre wytrenowanie modelu.

Rysunek 1: Znaki w tweet'cie

5.4 Słowa kluczowe

Słowa kluczowe mogą pełnić ważna rolę przy klasyfikacji tweetu. Na rysunku 3 przedstawiono popularność poszczególnych słów kluczowych w zbiorze train. Jak widać najpopularnijsze słowa kluczowe to derailment, outbreak i wreckage.

6 Przygotowanie danych

6.1 Czyszczenie danych

W celu poprawienia treningu modelu przeprowadzono następujące operacji "czyszczące" dane:

- Usunięcie z tekstu kodów "%20" (kod ASCII spacji) przekształcono na spacje, zaś "amp;" przekształcono na słowo "and".
- Przekształcenie całego tekstu do małych liter. Dzięki temu słowa *fire* i *Fire* będą traktowane jako to samo słowo, a nie dwa różne.

Rysunek 2: Stosunek tweetów o katastrofach i nie o katastrofach

Rysunek 3: Popularność słów kluczowych

- Usunięcie linków z danych nasz model nie będzie w stanie wchodzić w linki i ich analizować, więc tylko utrudniałyby one niepotrzebnie proces uczenia.
- Poprawienie błędów konwersji w danych w używanych danych w niektórych miejscach można znaleźć ciągi %20 (kod ASCII spacji) zamiast znaku spacji. Może to spowodować, że na przykład frazabuilding%20on%20fire będzie traktowana jako jedno słowo i nie rozpozna że chodzi tam o coś związanego z ogniem.
- Rozwinięcie skrótów na przykład zamiana asap na as soon as possible.
- Usunięcie tzw. *stopwords*. Są to słowa typu *the* czy *is*, które wnoszą niewiele informacji do treści i mogą zostać pominięte przy treningu modelu.

7 Modele

Po przygotowaniu danych, użyto różnych modeli w celu sprawdzeniu, który z nich jest najlepszy. Użyte modele wraz z dokładnością (accuracy) oraz tablicami pomyłek (confusion matrices):

- Klasyfikator drzewa decyzyjnego (decision tree classifier) dokładność
 75.73%
- Naiwny klasyfikator bayesowski (Naive Bayes classifier) dokładność 80.43%
- \bullet Wielomianowy na
iwny klasyfikator bayesowski (multinomial naive Bayes classifier) dokładność
-79.71%
- Klasyfikator regresji logistycznej (logistic regression classifier) dokładność 79.94%
- Klasyfikator regresji grzbietowej (ridge regression classifier) dokładność 77.61%
- Klasyfikator lasu losowego (random forest classifier) dokładność -78.92%

Rysunek 4: Tablica pomyłek dla klasyfikator drzewa decyzyjnego

Rysunek 5: Tablica pomyłek dla naiwnego klasyfikatora bayesowskiego

Rysunek 6: Tablica pomyłek dla wielomianowego naiwnego klasyfikatora bayesowskiego

Rysunek 7: Tablica pomyłek dla klasyfikatora regresji logistycznej

Rysunek 8: Tablica pomyłek dla klasyfikatora regresji grzbietowej

Rysunek 9: Tablica pomyłek dla klasyfikatora lasu losowego

8 Wnioski

W wyniku projektu udało się stowrzyć system automatycznie klasyfikujący treść tweetów. W dzisiejszym świecie pełnym informacji jest to bardzo ważna funkcja. Wśród wykorzystanych modeli, najlepsze wyniki uzyskał naiwny klasyfikator bayesowski - powyżej 80%. Bardzo zbliżone wyniki uzyskał też klasyfikator regresjii logistycznej oraz wielomianowy naiwny klasyfikator bayesowski. Dokładność powyżej 80% można w uczeniu maszynowym można już traktować jako dość wysoki, zatem cel projektu można uznać za zrealizowany. Przy wysłaniu przesłania wyniku do Kaggle uzyskano następujący wynik: Stemizacja i lemizacja dla danych użytych w projekcie nie dawała wy-

Rysunek 10: Wyniki z Kaggle

miernych korzyści, dlatego warto z niej zrezygnować w celu przyspieszenia procesu klasyfikacji.

9 Bibliografia

- [1] Treść zadania na stronie Kaggle https://www.kaggle.com/c/nlp-getting-started
- [2] O. Duda, P. Hart, D. Stork Pattern Classification, 2nd Edition
- [3] N. Indurkhya, F. Damerau Handbook of Natural Language Processing, 2nd Edition