Indian Institute of Information Technology Allahabad Univariate and Multivariate Calculus Test Tentative Marking Scheme

Program: B.Tech. 2nd Semester (IT+ECE)

Duration: **01 Hour**Date: May 22, 2021

Full Marks: 21

Time: 11:00 - 12:00 IST

Attempt all questions.

1. Negate the following sentence:

"In every city in India there exists at least one person who can speak minimum three languages and who can read and write two languages". [2]

Solution. The negation of the sentence is:

"There exists a city in India in which every person can speak maximum two languages or can read or write more than or less than two languages". [2]

2. Let $A \subset \mathbb{R}$ such that $\sup A = \inf A$. What can you say about A. Provide justifications for your answer.

Solution. We claim that A is a singleton. Let $x, y \in A$ such that $x \neq y$. Without loss of generality, we can assume x < y. Then $\inf A \leq x < y \leq \sup A$. This is a contradiction since $\sup A = \inf A$.

3. Let $x_1 = \frac{5}{2}$. For $n \ge 1$, define $x_{n+1} = \frac{1}{7}(x_n^3 + 6)$. Discuss the convergence/divergence of this sequence, and find its limits in case it is convergent. [5]

Solution. Given $x_1 = \frac{5}{2} \Rightarrow x_n > 0$.

Now, $x_2 = \frac{173}{56} \Rightarrow x_2 > x_1$.

$$x_{n+1} - x_n = \frac{x_n^3 - x_{n-1}^3}{7} = \frac{(x_n - x_{n-1})(x_n^2 + x_{n-1}^2 + x_n x_{n-1})}{7} > 0.$$
 [2]

By induction, (x_n) is an increasing sequence.

Let (x_n) be bounded above. Then (x_n) will converge to its supremum. Let ℓ be the limit of (x_n) .

Since
$$x_n \ge \frac{5}{2}$$
 for all n , we have $\ell \ge \frac{5}{2}$. [1]

It follows that,

$$7\ell = \ell^3 + 6 \Rightarrow \ell = 1, 2, -3 < \frac{5}{2},$$
 [1]

a contradiction. Hence, the sequence is not bounded above and divergent. [1]

4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y), for all $x, y \in \mathbb{R}$. If f is continuous at 0, show that f is continuous everywhere.

Solution. We first note that f(0) = 0, f(-x) = -f(x) and f(x - y) = f(x) - f(y). [1]

Let $x \in \mathbb{R}$ and $x_n \to x$. Then $x_n - x \to 0$.

Since f is continuous at 0, $f(x_n) - f(x) = f(x_n - x) \to f(0) = 0$. Hence, $f(x_n) \to f(x)$. Therefore, f is continuous at x.

5. Find an interval [a, b] in which the equation

$$e^{-x} = 4 - x^3$$

Solution. Set $f(x) = e^{-x} - 4 + x^3$.

$$f(0) = -3 < 0 \text{ and } f(2) = e^{-2} + 4 > 0$$
 [1+1]

The function f is sum of continuous function, hence continuous. Thus, by IVP there exists a point c in [0,2] such that f(c)=0.

6. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(0) > 0 and $f(a) < a^2$ for some $0 < a \in \mathbb{R}$. Show that there exists a point $b \in (0, a)$ such that $f(b) = b^2$. [3]

Solution. Let
$$g(x) = f(x) - x^2$$
. Then g is continuous. [1]

$$g(0) = f(0) > 0$$
 and $g(a) = f(a) - a^2 < 0$. [1]

By IVP there exists a real number b in (0, a) such that g(b) = 0, that is, $f(b) = b^2$. [1]

7. Let $f:(1,4) \longrightarrow (0,3)$ be a continuous function such that $f([2,5/2]) \subseteq [2,5/2]$. Show that there exists a $c \in [2,5/2]$ such that f(c) = c.

Solution. Let
$$g(x) = f(x) - x$$
. Since f is continuous, g is also continuous. [1]

Also
$$g(2) \ge 0$$
 and $g(5/2) \le 0$. [1]

By IVP, there exists a $c \in [2, 5/2]$ such that $g(c) = f(c) - c = 0 \Rightarrow f(c) = c$. [1]