3 Processus de Poisson

Processus de Poisson non-homogène

Définition

Un processus de dénombrement $\{N(t); t \geq 0\}$ est dit être un processus de Poisson non-homogène avec fonction d'intensité $\lambda(t)$ si

- (1) N(0) = 0;
- (2) $\{N(t); t \geq 0\}$ a des accroissements indépendants;
- (3) $\Pr(N(t+h) N(t) = 1) = \lambda(t)h + o(h);$
- (4) $\Pr(N(t+h) N(t) \ge 2) = o(h)$ où o(h) est une fonction négligeable.

Proposition 1

$$\Pr(N(t+s) - N(t) = n) = \frac{(m(t+s) - m(s))^n}{n!} e^{-(m(t+s) - m(s))}$$

où $m(t) = \int_0^t \lambda(x) dx$. On a alors que

$$N(t+s) - N(s) \sim Pois(m(t+s) - m(s))$$

Proposition 2

Si S_n désigne le temps d'occurence du $n^{\rm e}$ évènement, alors

$$f_{S_n}(t) = \lambda(t) \frac{m(t)^{n-1}}{(n-1)!} e^{-m(t)}$$

Proposition 3

Si $T_n = S_n - S_{n-1}$, alors on a, pour $n \ge 2$,

$$f_{T_n}(t) = \frac{1}{(n-2)!} \int_0^\infty \lambda(s) \lambda(t+s) m(s)^{n-2} e^{-m(t+s)} ds$$

1. Être capable de faire cette démonstration pour l'examen

Processus de Poisson composé

Définition

Un processus stochastique $\{N(t); t \geq 0\}$ est dit être un processus de Poisson composé s'il peut être représenté comme suit :

$$X(t) = \sum_{i=1}^{N(t)} Y_i$$

où $\{N(t); t \geq 0\}$ est un Processus de Poisson avec paramètre $\lambda > 0$ et $\{Y_i; i \in \mathbb{N}\}$ est une suite de v.a. iid indépendantes de N(t).

Proposition 1

Soit $\{X(t); t \geq 0\}$ un processus de Poisson composé avec paramètre $\lambda > 0$ et supposons que $\Pr\left(Y_i = \alpha_j\right) = p_j, \sum p_j = 1$. Alors,

$$X(t) = \sum_{j} \alpha_{j} N_{j}(t)$$

où $N_j(t)$ est le nombre de fois que se produit l'évènement α_j dans l'intervalle de temps [0,t], et $\{N(t);t\geq 0\}$ forme une suite de v.a. indépentantes telles que $N_j(t)\sim Pois(\lambda p_jt)$. Lorsque $t\to\infty$, alors X(t) est asymptotiquement normal, i.e.

$$X(t) \sim \mathcal{N}\left(\lambda t \operatorname{E}\left[Y\right], \lambda t \operatorname{E}\left[Y^2\right]\right)$$

Proposition 2

Si $\{X(t); t \geq 0\}$ et $\{Y(t); t \geq 0\}$ sont 2 processus de Poisson composés indépendants avec paramètres et fonctions de répartition λ_1, F_{X_1} et λ_2, F_{Y_1} respectivement, alors $\{X(t) + Y(t); t \geq 0\}$ est aussi un processus de Poisson composé avec paramètre $\lambda_1\lambda_2$ et fonction de répartition $F_{X_1+Y_1}$ telle que

$$F_{X_1+Y_1} = \frac{\lambda_1 F_{X_1} + \lambda_2 F_{Y_1}}{\lambda_1 + \lambda_2}$$

Processus de Poisson conditionnel

Définition

Un processus de dénombrement avec un taux aléatoire $\Lambda>0$ est un processus de Poisson conditionnel si $\{N(t)|\Lambda=\lambda;t\geq0\}$ est un processus de Poisson avec taux $\lambda>0$.

Rappel sur la loi Gamma

La fonction de répartition de la loi Gamma, lorsque $\alpha \in \mathbb{Z}$, est définie par

$$F_X(x) = 1 - \sum_{k=1}^{\alpha - 1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}$$

Remarques importantes

- Un processus de Poisson conditionnel a des accroissements stationnaires (i.e. l'accroissement ne dépend pas d'où on est, mais plutôt de l'intervalle de temps);
- (2) Mais le processus de Poisson conditionnel n'a pas nécessairement des accroissements indépendants;
- (3) Identité Poisson-Gamma : si on a $\Lambda \sim \Gamma(m, \theta)$, alors ¹

$$N(t) \sim NB\left(r = m, p = \frac{\theta}{\theta + t}\right)$$

(4) L'espérance et la variance d'un processus de Poisson conditionnel sont définies par

$$E[N(t)] = tE[\Lambda]$$

$$Var(N(t)) = tE[\Lambda] + t^{2}Var(\Lambda)$$

(5) En utilisant le théorème de Bayes, on peut trouver la fonction de répartition $F_{\Lambda|N(t)}(x|n)$ et fonction de densité $f_{\Lambda|N(t)}(x|n)$ telles que

$$F_{\Lambda|N(t)}(x|n) = \frac{\Pr\left(\Lambda \le x | N(t) = n\right)}{\Pr\left(N(t) = n\right)}$$
$$= \frac{\Pr\left(N(t) = n | \Lambda\right) f_{\Lambda}(\lambda) d\lambda}{\int_0^\infty \Pr\left(N(t) = n | \Lambda = \lambda\right) f_{\Lambda}(\lambda) d\lambda}$$

(6) On a, $\forall t > 0$,

$$\Pr\left(N(t) > n\right) = \int_0^\infty \overline{F}_{\Lambda}\left(\frac{x}{n}\right) \frac{x^n}{n!} e^{-x} dx$$

4 Processus de renouvellement

Définitions générales

- > T_n: intervalle de temps entre le (n − 1)^e et le n^e renouvellement;
- > $S_n = \sum_{i=1}^n T_i$: le temps d'occurence du $n^{\rm e}$ renouvellement. On va souvent noter $S_{N(t)}$, avec N(t) comme temps d'arrêt du processus 2 ;
- > $\mu = \mathrm{E}\left[T_i\right]$: temps moyen d'attente entre 2 renouvellements;

Distribution de N(t)

On définit N(t) comme $N(t) = \max\{n : S_n \le t\}$. Alors,

$$\Pr(N(t) = n) = F_T^{*n}(t) - F_T^{*(n+1)}(t)$$

Dans le cas où $T \sim Erlang(m, \lambda)$, alors

$$\Pr(N(t) = n) = \sum_{k=mn}^{m(n+1)-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!}$$

Fonction de renouvellement

La fonction de renouvellement est le nombre moyen d'occurences dans l'intervalle [0,t] :

$$m(t) = E[N(t)] = \sum_{n=1}^{\infty} F_T^{*(n)}(t)$$

Solution de l'équation de renouvellement

m(t) satisfait l'équation de renouvellement, soit

$$m(t) = F_T(t) + \int_0^t m(t - x) f_T(x) dx$$

2. N(t) est le temps d'arrêt dans le sens où on cesse le processus de dénombrement lorsqu'on atteint N(t).

Relation biunivoque entre m(t) et F_T

Avec la transformée de Laplace de m(t), $\hat{m}(s)$, on a

$$\hat{m}(s) = \frac{\hat{f}_T(s)}{s} + \hat{m}(s)\hat{f}_T(s)$$
$$= \frac{\hat{f}(s)}{s(1 - \hat{f}(s))}$$

Théorèmes limites

(1) On a que $N(\infty) = \infty$ avec probabilité 1. De plus,

$$\frac{N(t)}{t} \xrightarrow[t \to \infty]{} \frac{1}{\mu}$$

avec une probabilité presque certaine.

(2) Théorème élémentaire du renouvellement : avec $t o \infty$, on a

$$\frac{m(t)}{t} \xrightarrow[t \to \infty]{} \frac{1}{\mu}$$

(3) Lorsque $t \to \infty$, N(t) est aymptotiquement normale, telle que

$$N(t) \sim \mathcal{N}\left(rac{t}{\mathrm{E}\left[T
ight]}, rac{t\mathrm{Var}\left(T
ight)}{\mathrm{E}\left[T
ight]^{3}}
ight)$$

Équation de renouvellement

De façon générale, si on a une équation intégrale d'une fonction g(t) telle que

$$g(t) = h(t) + \int_0^t g(t - x) dF_T(x)$$

Alors, la seule solution est

$$g(t) = h(t) + \int_0^t h(t - x) dm(x)$$

Distribution de $S_{N(t)}$

On peut définir la fonction de répartition et l'espérance de $S_{N(t)}$ comme

$$F_{S_{N(t)}}(x) = \overline{F}_T(t) + \int_0^x \overline{F}_T(t-y)dm(y)$$

et

$$\mathbb{E}\left[S_{N(t)}\right] = tF_T(t) - \int_0^t (t - y)\overline{F}_T(t - y)dm(y)$$

De plus,

$$\mathrm{E}\left[S_{N(t)+1}\right] = \mathrm{E}\left[T\right]\left(m(t)+1\right)$$

Key renewal theorem

$$\lim_{t \to \infty} \int_0^t h(t-x)dm(x) = \frac{1}{\operatorname{E}[T]} \int_0^\infty h(x)dx$$

Processus de renouvellement avec délai

- > Soit $\{T_n: n \in \mathbb{N}\}$ des temps entre des renouvellements succesifs qui sont *iid* tel que $F_{T_n}(t) = F_{T_2}(t)$ pour $n \geq 2$ et $F_{T_1(t)} \neq F_{T_2}(t)$. Alors $\{N_d(t); t \geq 0\}$ est dit être un processus de renouvellement avec délai.
- \rightarrow La distribution de $N_d(t)$ est

$$\Pr\left(N_d(t) = n\right) = F_{T_1} * F_{T_2}^{*(n-1)}(t) - F_{T_1} * F_{T_2}^{*(n)}(t)$$

 \rightarrow la fonction de renouvellement $m_d(t)$ est donc

$$m_d(t) = \sum_{n=1}^{\infty} F_{T_1} * F_{T_2}^{*(n-1)}(t)$$

> De plus, $m_d(t)$ satisfait aussi l'équation de renouvellement, telle que

$$m_d(t) = F_{T_1}(t) + \int_0^t m_o(t-x) f_{T_1}(x) dx$$

où $m_o(t)$ est la fonction de renouvellement d'un processus de renouvellement ordinaire qui débute à T_2 .

Processus de renouvellement stationnaire

> Un processus de renouvellement $\{N_e(t); t \geq 0\}$ est dit stationnaire si

$$F_{T_1} = F_e(t) = \frac{\int_0^t \overline{F}_{T_2}(x) dx}{E[T_2]}$$

 \rightarrow La fonction de renouvellement $m_e(t)$ est définie par

$$m_e(t) = \operatorname{E}\left[N_e(t)\right] = \frac{t}{\operatorname{E}\left[T_2\right]}$$

 \rightarrow La distribution de $N_e(t)$ est définie par

$$\Pr(N_e(t+h) - N_e(t) = n) = \Pr(N_e(h) = n)$$

Car les accroissements sont stationnaires.

Processus de renouvellement alterné

- > Soit la suite $\{(T_n, T'_n); n \in \mathbb{N}\}\$ des vecteurs *iid* où les composantes (T_n, T'_n) peuvent être dépendante. T_n représente un intervalle de temps dans lequel le processus (de renouvellement) est on et T'_n un intervalle de temps où le processus est off.
- > On peut donc définir 2 processus (*on* et *off*):
 - $-\{N_1(t); t \geq 0\}$ est un processus de renouvellement avec délai généré par la suite des temps $\{T_1, T'_n + T_{n+1}; n \in \mathbb{Z}\}$, et sa fonction de renouvellement est

$$m_1(t) = \sum_{n=1}^{\infty} F_{T_1} * F_{T_2+T_1}^{*(n-1)}(t)$$
$$= \sum_{n=1}^{\infty} F_{T_1}^{*(n)}(t) * F_{T_1'}^{*(n-1)}(t)$$

 $-\{N_2(t); t \geq 0\}$ est un processus de renouvellement ordinaire généré par la suite des temps $\{T_n + T'_n; n \in \mathbb{Z}\}\$, et sa fonction de renouvellement est

$$m_2(t) = \sum_{n=1}^{\infty} F_{T_1 T_1'}^{*(n)}(t) = \sum_{n=1}^{\infty} F_{T_1}^{*(n)} * F_{T_1'}^{*(n)}(t)$$

 \rightarrow **Proposition 1:** Supposons que T_n est indépendant de T'_n , $\forall n \in \mathbb{N}$ et soit $p_i(t)$ la probabilité que le processus de renouvellement alterné soit dans l'état i au temps t, i=1,2. Alors,

$$p_1(t) = m_2(t) - m_1(t) + 1 = 1 - p_2(t)$$

> Proposition 2 : Avec les mêmes hypothèses qu'à la proposition 1, on a

$$\lim_{t \to \infty} p_1(t) = \frac{\operatorname{E}\left[T_1\right]}{\operatorname{E}\left[T_1\right] + \operatorname{E}\left[T_1'\right]} = 1 - \lim_{t \to \infty} p_2(t)$$

Application : somme de renouvellements Note : on appelle aussi σ le paramètre de volatilité ou coeffiavec réclamations escomptées

> On considère le processus des réclamations escomptées à t = 0, soit $\{Z(t); t > 0\}$, défini par

$$Z(t) = \sum_{k=1}^{N(t)} e^{-\delta S_k} X_k$$

- $\{N(t); t \ge 0\}$ un processus de renouvellement ordinaire;
- S_k est le moment où se produit la k^e réclamation;
- La suite $\{X_n; n \in \mathbb{Z}\}$ de v.a. *iid* et indépendantes de N(t) représentant les montants de réclamations;
- $-\delta$ est la force d'intérêt appliquée pour actualiser les réclamations.
- > Dans un processus de renouvellement ordinaire, on a, pour k = 1, 2, ..., n,

$$f_{S_k|N(t)}(x|n) = f_{S_k}(x) \frac{\Pr(N(t-x) = n-k)}{\Pr(N(t) = n)}$$

> On peut calculer le premier moment du processus des réclamations escomptées $\{Z(t); t > 0\}$:

$$E[Z(t)] = E[X] \int_0^t e^{-\delta x} dm(x)$$

où m(t) est la fonction de renouvellement du processus de renouvellement $\{N(t); t > 0\}$.

Mouvement Brownien

Définitions

Définition générale

Un processus stochastique $\{X(t); t \geq 0\}$ est dit être un mouvement Brownien avec paramètre de variance σ^2 si

- (1) X(0) = 0;
- (2) $\{X(t); t \geq 0\}$ a des accroissements indépendants et stationnaires;
- (3) $\forall t > 0, X(t) \sim \mathcal{N}(0, \sigma^2 t).$

cient de diffusion. Un mouvement Brownien est dit standard si $\sigma = 1$.

Proposition 1

Considérons un mouvement Brownien standard. Alors, $\forall 0 < t_1 < t_2 < ... < t_n$, on a

$$f_{X_1(t_1),...,X_n(t_n)}(x_1,...,x_n) = \frac{e^{-\frac{1}{2}\left(\frac{x_1^2}{t_1} + \frac{(x_2 - x_1)^2}{t_2 - t_1} + ... + \frac{(x_n - x_{n-1})^2}{t_n - t_{n-1}}\right)}}{(2\pi)^{\frac{n}{2}}(t_1(t_2 - t_2)...(t_n - t_{n-1}))^{\frac{1}{2}}}$$

Proposition 2

Considérons un mouvement Brownien standard. Alors, $\forall 0 < s < t, X(s) | X(t)$ obéit à une loi normale, tel que

$$E[X(s)|X(t) = x] = \frac{s}{t}x$$

$$Var(X(s)|X(t) = x) = \frac{s}{t}(t - s)$$

Temps d'atteinte d'une barrière

 \rightarrow Soit T_a le le premier moment où le mouvement Brownien standard atteint le niveau a. Alors,

$$\Pr\left(T_a \le t\right) = \sqrt{\frac{2}{\pi}} \int_{|a|/\sqrt{t}}^{\infty} e^{-\frac{x^2}{2}} dx$$

> On peut trouver la distribution de la valeur maximale que peut prendre $\{X(s); 0 \le s \le t\}$, telle que

$$\Pr\left(\max_{0 \le s \le t} X(s) \ge a\right) = \sqrt{\frac{2}{\pi}} \int_{a/\sqrt{t}}^{\infty} e^{-\frac{x^2}{2}} dx$$

Variations sur le mouvement Brownien

Mouvement Brownien avec dérive

Un mouvement Brownien avec dérive (drifted) a exactement la même définition qu'un mouvement Brownien standar, à l'exception que

$$X(t) \sim \mathcal{N}\left(\mu t, \sigma^2 t\right)$$

où μ est le paramètre de dérive. Note : on a donc que X(t) = $\mu t + \sigma B(t)$, où B(t) est un mouvement Brownien standard.

Mouvement Brownien géométrique

Définition

Soit $\{X(t); t \geq 0\}$ un mouvement Brownien brownien avec dérive μ et volatilité σ . Alors, le processus $\{X(t); t \geq 0\}$ défini par

$$X(t) = e^{Y(t)}$$

est dit être un mouvement Brownien géométrique.

Proposition : Soit $\{X(t); t \geq 0\}$ un mouvement Brownien géométrique avec dérive μ et volatilité σ . Alors,

$$E[X(t)|X(u)] = X(s)e^{(t-s)\left(\mu + \frac{\sigma^2}{2}\right)}$$

pour $0 \le u \le s \le t$.