IV. K

AS.150.498: Modal Logic and Its Applications Johns Hopkins University, Spring 2017

Validity in classical first-order logic is undecidable. There is no decision procedure for determining whether a given sentence in the language of first-order logic is valid. Still, there are proof systems that output all and only the validities of first-order logic. Likewise, there are systems in which a sentence $\varphi \in S_{\mathcal{L}}$ in the basic sentential modal language is provable if and only if φ is valid. Let us consider such a system.

1 The System K

Definition 4.1. The minimal modal logic K has the following rules and axioms:¹

- (PL) All (substitutions of) tautologies are axioms
- (MP) From φ and $\varphi \supset \psi$ infer ψ
- (Nec) From φ infer $\Box \varphi$
- (K) For any $\varphi, \psi, \Box(\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi)$ is an axiom
- (Duality) Expressions involving \square and \lozenge are interchangeable according to the duality $\square \equiv \neg \lozenge \neg$

Definition 4.2. A **proof in K** is a sequence of sentences $\langle \varphi_1, ..., \varphi_n \rangle$ in $S_{\mathcal{L}}$ such that for all $k \leq n$ one of the following conditions is met:

 φ_k is an axiom

$$\exists i, j \leq k(\varphi_i \text{ is } (\varphi_j \supset \varphi_k))$$

$$\exists i \leq k(\varphi_k \text{ is } \Box \varphi_i)$$

 $\exists i \leq k(\varphi_k \text{ is obtained from } \varphi_i \text{ according to Duality})$

If there is a proof in **K** ending with φ , then $\vdash_{\mathbf{K}} \varphi$.

Fact 4.1. $\vdash_{\mathbf{K}} \Box(\varphi \wedge \psi) \supset (\Box \varphi \wedge \Box \psi)$

1.
$$(\varphi \land \psi) \supset \varphi$$
 PL
2. $\square((\varphi \land \psi) \supset \varphi)$ Nec 1
3. $\square((\varphi \land \psi) \supset \varphi) \supset (\square(\varphi \land \psi) \supset \square\varphi)$ K

$$\begin{array}{lll} 4. & \square(\varphi \wedge \psi) \supset \square\varphi_A & \text{MP 3,2} \\ 5. & (\varphi \wedge \psi) \supset \psi & \text{PL} \\ 6. & \square((\varphi \wedge \psi) \supset \psi) & \text{Nec 5} \\ 7. & \square((\varphi \wedge \psi) \supset \psi) \supset (\square(\varphi \wedge \psi) \supset \square\psi) & \text{K} \\ 8. & \underline{\square(\varphi \wedge \psi) \supset \square\psi_B} & \text{MP 7,6} \\ 9. & A \supset (B \supset (A \wedge B)) & \text{PL} \\ 10. & B \supset (A \wedge B)) & \text{MP 9,4} \\ 11. & (\underline{\square(\varphi \wedge \psi)_C} \supset \underline{\square\varphi_D}) \wedge (\underline{\square(\varphi \wedge \psi)_C} \supset \underline{\square\psi_E}) & \text{MP 10,8} \\ 12. & ((C \supset D) \wedge (C \supset E)) \supset (C \supset (D \wedge E)) & \text{PL} \\ 13. & \square(\varphi \wedge \psi) \supset (\square\varphi \wedge \square\psi) & \text{MP 12,11} \end{array}$$

Fact 4.2. $\vdash_{\mathbf{K}} \Box(\varphi \supset \psi) \supset (\Diamond \varphi \supset \Diamond \psi)$

1.	$(\varphi \supset \psi) \supset (\neg \psi \supset \neg \varphi)$	PL
2.	$\Box((\varphi\supset\psi)\supset(\neg\psi\supset\neg\varphi))$	Nec 1
3.	$\Box((\varphi \supset \psi) \supset (\neg \psi \supset \neg \varphi)) \supset (\Box(\varphi \supset \psi) \supset \Box(\neg \psi \supset \neg \varphi))$	K
4.	$\Box(\varphi \supset \psi)_A \supset \Box(\neg \psi \supset \neg \varphi)_B$	MP 3,2
	$ \overline{\Box(\neg\psi\supset\neg\varphi)\supset(\Box\neg\psi\supset\Box\neg\varphi)} $	K
6.	$\Box(\neg\psi\supset\neg\varphi)\supset(\neg\Diamond\psi\supset\neg\Diamond\varphi)_{C}$	Duality
	$(\neg \Diamond \psi \supset \neg \Diamond \varphi) \supset \overline{(\Diamond \varphi \supset \Diamond \psi)_{D}}$	PL
	$(A \supset B) \supset ((B \supset \overline{C}) \supset ((C \supset D) \supset (A \supset D)))$	PL
9.	$(B\supset C)\supset ((C\supset D)\supset (A\supset D))$	MP 8,4
10.	$(C\supset D)\supset (A\supset D)$	MP 9,6
11.	$\Box(\varphi\supset\psi)\supset(\Diamond\varphi\supset\Diamond\psi)$	MP 10,7

2 Soundness

Theorem 4.1. If $\vdash_{\mathbf{K}} \varphi$ then $\models \varphi$.

Proof: It suffices to show that the axioms of K are validities and the rules of inference of K preserve validity.

(PL): If φ is (a substitution of) a tautology, then clearly $\models \varphi$ given the semantic clauses for \bot , \neg , and \land .

(MP): Suppose that $\models \varphi$ and $\models \varphi \supset \psi$. For any pointed model \mathcal{M}, w , $[\![\varphi]\!]_{\mathcal{M}}^w = T$ and $[\![\varphi \supset \psi]\!]_{\mathcal{M}}^w = T$, so $[\![\psi]\!]_{\mathcal{M}}^w = T$ given the semantic clauses for \neg and \land . Thus $\models \psi$.

(Nec): Suppose that $\models \varphi$. For any pointed model \mathcal{M}, w , $\llbracket \Box \varphi \rrbracket_{\mathcal{M}}^w = T$ since $\forall v \in \{v : w \mathcal{R} v\} (\llbracket \varphi \rrbracket_{\mathcal{M}}^v = T)$. Thus $\models \Box \varphi$.

(K): Suppose that $\llbracket \Box(\varphi \supset \psi) \rrbracket_{\mathcal{M}}^w = \llbracket \Box \varphi \rrbracket_{\mathcal{M}}^w = T$ for arbitrary \mathcal{M}, w . Then $\forall v \in \{v : w \mathcal{R} v\} (\llbracket \varphi \supset \psi \rrbracket_{\mathcal{M}}^v = \llbracket \varphi \rrbracket_{\mathcal{M}}^v = T)$, so $\forall v \in \{v : w \mathcal{R} v\} (\llbracket \psi \rrbracket_{\mathcal{M}}^v = T)$.

¹Recall that $\varphi \supset \psi$ abbreviates $\neg(\varphi \land \neg \psi)$.

That is, $\llbracket \Box \psi \rrbracket_{\mathcal{M}}^w = T$, so $\llbracket \Box (\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi) \rrbracket_{\mathcal{M}}^w = T$. Thus $\models \Box (\varphi \supset \psi) \supset (\Box \varphi \supset \Box \psi)$.

(Duality): Suppose that $\models \varphi$ and φ' is obtained from φ by appealing to the duality of \square and \lozenge . Since $\llbracket \varphi \rrbracket_{\mathcal{M}}^w = \llbracket \varphi' \rrbracket_{\mathcal{M}}^w$ for any pointed model \mathcal{M}, w , $\models \varphi'$.

3 Completeness

Theorem 4.2. If $\models \varphi$ then $\vdash_{\mathbf{K}} \varphi$.

Proof: For the purposes of the completeness proof, let us introduce the notion of \mathbf{K} -consistency.

Definition 4.3. A set of sentences $\Gamma \subset S_{\mathcal{L}}$ is **K-consistent** just in case there are no sentences $\varphi_1, ..., \varphi_n \in \Gamma$ such that $\vdash_{\mathbf{K}} (\varphi_1 \wedge ... \wedge \varphi_n) \supset \bot$.

Note: If $\not\vdash_{\mathbf{K}} \varphi$ then $\{\neg \varphi\}$ is **K**-consistent. Why? If $\{\neg \varphi\}$ is **K**-inconsistent, then $\vdash_{\mathbf{K}} \neg \varphi \supset \bot$ and since $(\neg \varphi \supset \bot) \supset \varphi$ is a (substitution of) a tautology, $\vdash_{\mathbf{K}} \varphi$.

To prove completeness, it suffices to establish the contrapositive: if $\not\vdash_{\mathbf{K}} \varphi$ then $\not\models \varphi$.

Given the previous note, it thus suffices to show that if $\{\neg\varphi\}$ is **K**-consistent then $\not\models \varphi$; that is, $\{\neg\varphi\}$ is **K**-consistent only if there is some pointed model \mathcal{M}, w such that $[\![\neg\varphi]\!]_{\mathcal{M}}^w = T$.

In fact, the proof will establish something much stronger—viz., that there is a single model \mathcal{M} where every K-consistent set of sentences in $S_{\mathcal{L}}$ is satisfied at some world in this model.

Definition 4.4. $\Gamma \subset S_{\mathcal{L}}$ is a maximal K-consistent set if and only if Γ is K-consistent and there is no $\Delta \subset S_{\mathcal{L}}$ such that $\Gamma \subset \Delta$ and Δ is K-consistent.

Using these maximal sets, we can construct the model we are after:

Definition 4.5. The canonical model for K is the model \mathcal{M}^K where:

 $\mathcal{W}^{\mathbf{K}}$ is the set of all maximal **K**-consistent sets $\mathcal{R}^{\mathbf{K}} = \{ \langle \Gamma, \Delta \rangle : \text{for all } \varphi \in S_{\mathcal{L}}, \text{ if } \Box \varphi \in \Gamma \text{ then } \varphi \in \Delta \}$ $\mathcal{V}^{\mathbf{K}}(p,\Gamma) = T \text{ iff } p \in \Gamma$

Every K-consistent set is satisfied at some world $\Gamma \in \mathcal{W}^{\mathbf{K}}$. This follows immediately from the following two lemmas.

Lemma 4.1. (Lindenbaum Lemma) If $\Gamma \subset S_{\mathcal{L}}$ is **K**-consistent, then there is a maximal **K**-consistent set Δ such that $\Gamma \subseteq \Delta$.

Proof: Enumerate all of the sentences in $S_{\mathcal{L}}$: $\varphi_1, \varphi_2, \varphi_3, \ldots$ The set Δ can then be constructed in stages:

$$\Delta_0 = \Gamma$$

$$\Delta_n = \begin{cases} \Delta_{n-1} \cup \{\varphi_n\} & \text{if this is } \mathbf{K}\text{-consistent} \\ \Delta_{n-1} \cup \{\neg \varphi_n\} & \text{otherwise} \end{cases}$$

$$\Delta = \bigcup_n \Delta_n$$

Lemma 4.2. (Truth Lemma) $[\![\varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T \text{ iff } \varphi \in \Gamma.$

Proof: By induction on the complexity of sentences in $S_{\mathcal{L}}$.

Atomic case: By the definition of $\mathcal{V}^{\mathbf{K}}$.

 \bot case: Since Γ is **K**-consistent, $\bot \not\in \Gamma$. By the semantic clause for \bot , $\llbracket \bot \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = F$. Thus $\llbracket \bot \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\bot \in \Gamma$.

 \neg case: $\llbracket \neg \varphi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = F$ iff $\varphi \notin \Gamma$ by the semantic clause for \neg and the induction step. Since Γ is a maximal **K**-consistent set, $\varphi \notin \Gamma$ iff $\neg \varphi \in \Gamma$. Thus $\llbracket \neg \varphi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\neg \varphi \in \Gamma$.

 \wedge case: $\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\llbracket \varphi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = \llbracket \psi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\varphi, \psi \in \Gamma$ by the semantic clause for \wedge and the induction step. Since Γ is a maximal **K**-consistent set, $\varphi, \psi \in \Gamma$ iff $\varphi \wedge \psi \in \Gamma$. Thus $\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\varphi \wedge \psi \in \Gamma$.

 \square case (right-to-left): $\square \varphi \in \Gamma$ only if $\forall \Delta \in \{\Delta : \Gamma \mathcal{R}^{\mathbf{K}} \Delta\} (\varphi \in \Delta)$ only if $\forall \Delta \in \{\Delta : \Gamma \mathcal{R}^{\mathbf{K}} \Delta\} (\llbracket \varphi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Delta} = T)$ by the definition of $\mathcal{R}^{\mathbf{K}}$ and the induction step. Thus, $\square \varphi \in \Gamma$ only if $\llbracket \square \varphi \rrbracket_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ by the semantic clause for \square .

 \square case (left-to-right): Assume $\square \varphi \notin \Gamma$. Then $\Delta = \{ \neg \varphi \} \cup \{ \psi : \square \psi \in \Gamma \}$ is **K**-consistent. If not, there are sentences $\psi_1, ..., \psi_n \in \Delta$ such that:

$$\begin{array}{l} \vdash_{\mathbf{K}} (\psi_1 \wedge \ldots \wedge \psi_n) \supset \bot \\ \vdash_{\mathbf{K}} (\psi_1 \wedge \ldots \wedge \psi_n \wedge \neg \varphi) \supset \bot \\ \vdash_{\mathbf{K}} (\psi_1 \wedge \ldots \wedge \psi_n) \supset \varphi \\ \vdash_{\mathbf{K}} \Box (\psi_1 \wedge \ldots \wedge \psi_n) \supset \Box \varphi \\ \vdash_{\mathbf{K}} (\Box \psi_1 \wedge \ldots \wedge \Box \psi_n) \supset \Box \varphi \text{ (from converse of Fact 4.1)} \end{array}$$

But then since $\Box \psi_1, ..., \Box \psi_n \in \Gamma$ and Γ is a maximal **K**-consistent set, $\Box \varphi \in \Gamma$, contradicting the opening assumption. (What if one of the chosen ψ_i is $\neg \varphi$? Then we're already at the second step in the above argument.)

Now, since Δ is **K**-consistent, there is a maximal **K**-consistent set Δ' such

that $\Delta \subseteq \Delta'$ by the Lindenbaum Lemma. $[\![\varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Delta'} = F$ by the induction step and $\Gamma \mathcal{R}^{\mathbf{K}} \Delta'$. Thus $[\![\Box \varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = F$ by the semantic clause for \Box .

 \Diamond case: $[\![\Diamond \varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $[\![\neg \Box \neg \varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\neg \Box \neg \varphi \in \Gamma$ by the duality of \Diamond and \Box , and previous cases. Since Γ is **K**-consistent, $\neg \Box \neg \varphi \in \Gamma$ iff $\Diamond \varphi \in \Gamma$. Thus $[\![\Diamond \varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Gamma} = T$ iff $\Diamond \varphi \in \Gamma$.

That ends the completeness proof for \mathbf{K} .

4 Strong Completeness

There is an even stronger result in the vicinity.

Let us write $\Gamma \vdash_{\mathbf{K}} \psi$ when there are sentences $\varphi_1, ..., \varphi_n \in \Gamma$ such that $\vdash_{\mathbf{K}} (\varphi_1 \wedge ... \wedge \varphi_n) \supset \psi$. Definition 1.5 can also be extended to handle the case where Γ is infinite: $\Gamma \models \psi$ just in case there is no pointed model \mathcal{M}, w such that $\llbracket \varphi \rrbracket_{\mathcal{M}}^w = T$ for each $\varphi \in \Gamma$ but $\llbracket \psi \rrbracket_{\mathcal{M}}^w = F$.

Theorem 4.3. $\Gamma \vdash_{\mathbf{K}} \psi$ if and only if $\Gamma \models \psi$.

Proof: The left-to-right soundness result was effectively proven in §2. For the right-to-left completeness result, assume $\Gamma \not\vdash_{\mathbf{K}} \psi$. Then $\Gamma \cup \{\neg \psi\}$ is \mathbf{K} -consistent, so $\Gamma \cup \{\neg \psi\} \subseteq \Delta$ where Δ is a maximal \mathbf{K} -consistent set. But then $[\![\varphi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Delta} = T$ for each $\varphi \in \Gamma$ and $[\![\psi]\!]_{\mathcal{M}^{\mathbf{K}}}^{\Delta} = F$. Thus $\Gamma \not\vdash_{\mathbf{K}} \psi$ only if $\Gamma \not\models \psi$.