FUNDEMENTALS OF ELECTRICAL AND

ELECTRONICS ENGINEERING

(ECE-1002)

Dr.Jayendra kumar (70077)

Taran(19BCE7346)

• LIST OF EXPERIMENTS

Content Outlines		
Weeks	Topics	Task/Reading
1	Experiment #1: Ohm's Law & Series and parallel circuits	Experiment #1
2	Experiment #2 : Kirchoff's current law	Experiment #2
3	Experiment #3: kirchoff's voltage law	Experiment #3
	Experiment #4: Thevenin's and Norton's theorem and Maximum power transfer theorem	Experiment #4
4	Experiment #5 : Superposition Theorem	Experiment #5
5	Experiment #6: verification of diode	Experiment #6
6	Experiment #7: design of half rectifier	Experiment #7
7	Experiment #8: design of Bridge rectifier with and without capacitor	Experiment #8
9	Experiment #9: BJT Characteristic and Biasing Circuits	Experiment #9

EXPERIMENT NO.1

TITLE: verification of ohm's law (simulation)

OBJECTIVE:

- To verify Ohm's law (V=IR) where current through a resistor is proportional to the voltage across it.
- To verify that in a series circuit;
 - The total resistance is equal to the sum of the individual resistors.
 - The voltage drops across the resistors equals to the applied voltage.
 - The value of the current is the same in all parts of the circuit.
- To verify that in parallel circuits;
 - The equivalent resistance is the reciprocal of the sum of reciprocals of the individual resistors.
 - The branch current in parallel equal to the supply current.
 - The voltage drop across each resistor in parallel is the same.
 - To verify by measurement and calculation for two different networks: the total current and the branch values, the voltage drop across various parts of the networks and the method for determining the equivalent resistance of such networks.
- Equipments:
 - Instruments
 - DC power supply
 - o Two digital multimeters.
 - \circ Resistors; 1.0k Ω , 1.5k Ω , 6.8k Ω

EQUIPMENT: computer and ni multisim software

FIG 1 DC CIRCUIT

ECE1002 VIT AP reg no. : 19BCE7346

ECE LAB REPORT EXPERIMENT NO. 2

TITLE: Kirchhoff's Current Law

Objective:

a) To verify Kirchhoff's current laws.

Equipment:

<u>Instruments</u>
DC power supply
Three digital multimeters.

Components Resistors; 300Ω (2), 330 Ω, 1.8 kΩ, 2.7 kΩ, 3.0 kΩ

Procedures:

Part A: Kirchhoff's Current Law:

- 1. Measure the branch currents entering node A by placing ammeter as shown in *FIG*
- 2. Record the magnitude and the direction of the current as indicated by each ammeter in *Table*

EXPERIMENT NO.3

Objective:

b) To verify Kirchhoff's voltage laws.

Equipment:

Instruments
DC power supply
Three digital multimeters.

Components Resistors; 300Ω (2), 330 Ω, 1.8 kΩ, 2.7 kΩ, 3.0 kΩ

Part A: Kirchhoff's Voltage Law:

- Measure the resistance of each resistor. Set the supply voltage to 10V. Record the measured values in *Table*
- Construct the circuit shown in
- Commence at point A and measure the potential difference between each successive pair of lettered terminals for Mesh 1. i. e. A-B, B-C, C-D and D-A.

(Note: DMM's probes have to be placed consistently.)

- Record down the measured values in Table
- Measure the potential difference for the points AC, CE and EA. Verify Kirchhoff's voltage law using the displayed values. (Note that V_{CA} is actually V_C – V_A). What can be deduced from this condition? Record the measured values in *Table*

EXPERIMENT NO.: 4

Title: Thevenin's & Norton's Theorem and Maximum Power Transfer Theorem

Objectives:

- a) To applied Thevenin's and Norton's theorems in finding the current flowing in a particular resistor (variable load) in a particular network.
- b) To verify the theorems by comparing the simulated values to those obtained by measurement.
- c) To verify the maximum power transfer theorem.

Equipment:

Instruments
DC power supply
Digital multimeters

Components

Resistors 1.8k Ω ; 3.6k Ω ; 820 Ω ; 100 Ω (2); 180 Ω

Rheostat (2)

Diagram:

EXPERIMENT NO.: 5

TITLE: Superposition Theorem

Objective:

To verify experimentally the Superposition theorem which is an analytical technique of determining currents in a circuit with more than one EMF source.

Equipment:

Instruments

Two DC power supplies of suitable voltage and current ratings.

Three DC voltmeters (0-5 V).

One multimeter.

Trainer board

Components

Three potentiometers (10 k Ω)

Procedures:

- 1. Set up the network (circuit) as in Fig. 3.1.
- 2. Keep both sources active in the circuit by keeping the poles of SPDT s in proper position.
- 3. Apply 5 volts from E_1 and 10 V from E_2 .
- 4. Set the rheostats R_1 , R_2 , R_3 at such value so that none of the ammeter readings I_1 , I_2 , I_3 exceeds the power supplies (E_1 and E_2 current ratings and the rheostat current) ratings.
- 5. Measure the current I_2 and record it in *Table 1*.
- 6. Render E₂ inactive.
- 7. Measure the current I_2 ' in the branch R_2 and record it in *Table 1*.
- 8. Render E_1 inactive.
- 9. Measure the current I_2 " in the branch R_2 and record it in *Table 1*.
- 10. Verify if $I_2 = I_2' + I_2''$ which would validate the superposition theorem for this particular circuit.
- 11. Repeat steps 4 to 10 by changing R_1 , R_2 , and R_3 and take a few more sets of readings.
- 12. Find theoretically the current I_2 with reference to Fig. 3.1 by applying the superposition theorem considering $E_1 = 15$ volts, $E_2 = 20$ volts and R_1 , R_2 , R_3 at their measured values recorded in Table

Fig. 3.1

EXPERIMENT NO.: 6

Title: Diode Characteristic and Application

Objectives:

- a. To study the characteristics of a silicon (Si) diode and a germanium (Ge) diode.
- b. To calculate and draw the DC output voltages of half-wave

Equipment:

Instruments

DC power supply

2 Digital Multimeters (DMM)

Function Generator

Oscilloscope

Components

Silicon Diode (D1N4002), Germanium Diode (1N34A)

Resistors: $1k\Omega$

Resistors: $2.2k\Omega$, $3.3k\Omega$

Circuit diagram:

EXPERIMENT NO.7

Title: design of half rectifier

Circuit diagram:

ECE LAB REPORT EXPERIMENT NO.8

TITLE: design of bridge rectifier with and without capacitor

Fig: Bridge rectifier with out capacitor

Fig : Bridge with capacitor

ECE LAB REPORT EXPERIMENT NO. 9

TITLE: BJT Characteristics & Biasing Circuits

Objectives:

- a) To provide the characteristics of a transistor using experimental methods.
- b) To determine the quiescent operating conditions of a voltage-divider-bias BJT configurations.

Equipment:

Instruments

1 DC Power Supply

3 Digital Multimeter (DMM)

Components

Resistors: 680Ω , $6.8 k\Omega$, $1 k\Omega$, $3 k\Omega$, $22 k\Omega$, $330 k\Omega$, $10 k\Omega$ potentiometer, $1M\Omega$

potentiometer

Transistors: 2N3904

Circuit diagram:

