University of Salzburg

Lecturer: Roland Kwitt

Machine Learning (911.236)

Exercise sheet **F**

Exercise 1.

5 P.

Construct an example showing that the 0-1 loss function may suffer from **local minima**. In particular, take $\mathcal{X}=\mathbb{R}^2$ and construct a training sample

$$S \in (\mathcal{X} \times \{\pm 1\})^m$$

for which there exists a vector ${\bf w}$ and some $\epsilon>0$ such that . . .

• ... for any \mathbf{w}' with

$$\|\mathbf{w}' - \mathbf{w}\| \le \epsilon$$

we have

$$L_S(\mathbf{w}) \leq L_S(\mathbf{w}')$$

but

• ... there exists some \mathbf{w}^* such that

$$L_S(\mathbf{w}^*) \leq L_S(\mathbf{w})$$
.

This would show that **w** is **not** a global minimum of L_S .

Hint: Consider homogeneous halfspaces (parametrized by w), i.e., $h_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$ and think about unit vectors and a very very small training set :) The Cauchy-Schwarz inequality might also be of great help!