Chapitre IV: Mouvement Brownien

Probabilités II

4^{ème} annéelA A.U:2022-2023

- Vecteurs gaussiens
- 2 Mouvement Brownien

Définition

On dit qu'un vecteur aléatoire $X=(X_1,\cdots,X_d)$ est un vecteur gaussien si, pour tout $a=(a_1,\cdots,a_d)\in\mathbb{R}^d$, la variable aléatoire réelle aX est une variable aléatoire gaussienne.

Autrement dit, toute combinaison linéaire de X est gaussienne. Par linéarité de l'espérance et par bilinéarité de la variance on a :

$$E[a.X] = a_1 E[X_1] + \cdots + a_d E[X_d] = a.E[X],$$

et

$$Var[a.X] = \sum_{i=1}^{d} \sum_{i=1}^{d} a_i a_j Cov(X_i, X_j),$$

avec
$$Cov(Y, Z) = E(YZ) - E(Y)E(Z) = E[(Y - E(Y))(Z - E(Z))].$$

Notons par Γ , avec $\Gamma_{ij} = Cov(X_i, X_j)$, la matrice de variance covariance du vecteur X et m, avec $m_i = E(X_i)$, son vecteur moyenne. La fonction caractéristique de X est donnée par :

$$E(e^{iuX}) = exp\{iE(u.X) - \frac{1}{2}Var(u.X)\} = e^{iu.m - \frac{1}{2}u^t\Gamma u}.$$

La fonction caractéristique (et donc la loi) ne dépend que du couple (m, Γ) . On dit dans ce cas que X suit la loi $N(m, \Gamma)$.

Exemple:

Si X_1, \dots, X_d sont des variables gaussiennes centrées réduites indépendantes alors $X = (X_1, \dots, X_d)$ est un vecteur gaussien centré de matrice de variance covariance égale à la matrice identité de \mathbb{R}^d .

Exemple:

Si X_1, \dots, X_d sont des variables gaussiennes centrées réduites indépendantes alors $X = (X_1, \dots, X_d)$ est un vecteur gaussien centré de matrice de variance covariance égale à la matrice identité de \mathbb{R}^d .

En effet : pour $a \in \mathbb{R}^d$, par indépendance, la fonction caractéristique de a.X est :

$$\Phi_{a.X}(t) = E[e^{ita.X}] = \prod_{j=1}^d E[e^{ita_j.X_j}] = \prod_{j=1}^d e^{-\frac{(ta_j)^2}{2}} = e^{-\frac{t^2}{2}a^t.a}$$

Donc la variable aléatoire a.X suit la loi gaussienne centrée de variance $a^t.a.$

Remarque!!

Il ne suffit pas que X_1 et X_2 soient des variables gaussiennes réelles pour que (X_1, X_2) soit un vecteur gaussien. Ce résultat est vrai dans le cas particulier où X_1 et X_2 sont indépendantes.

Stabilité du caractère gaussien par transformation linéaire

Si X est un vecteur aléatoire à valeurs dans \mathbb{R}^d et Y=a+MX avec $a\in\mathbb{R}^n$ un vecteur constant et et M une matrice de taille $n\times d$, alors toute combinaison linéaire des coordonnées de Y est combinaison linéaire des coordonnées de X à une constante près :

pour
$$b \in \mathbb{R}^n$$
, $b.Y = b.a + (M^t.b).X$.

Donc si X est gaussien, alors Y est aussi gaussien.

Vecteurs gaussiens et indépendance

Proposition

Les coordonnées d'un vecteur gaussien $X = (X_1, \dots, X_d)$ sont indépendantes si et seulement si sa matrice de variance covariance Γ est diagonale.

Convergence en loi de vecteurs aléatoires

Définition

On dit que $(X_n, n \ge 1)$ suite de variables aléatoires à valeurs dans \mathbb{R}^d converge en loi vers X variable aléatoire à valeurs dans \mathbb{R}^d si, pour toute fonction continue et bornée $f: \mathbb{R}^d \to \mathbb{R}$

$$\lim_{n\to+\infty} E[f(X_n)] = E[f(X)].$$

Théorème

Soit $(X_n, n \ge 1)$ une suite de variables aléatoires à valeurs dans \mathbb{R}^d . Cette suite converge en loi vers X si et seulement si, pour tout $u = (u_1, \dots, u_d)$, on a :

$$\lim_{n\to+\infty} E[e^{iu.X_n}] = E[e^{iu.X}].$$

Convergence en loi de vecteurs aléatoires

Théorème: TCL multidimensionnel

Soit $(X_n, n \ge 1)$ une suite de variables aléatoires à valeurs dans \mathbb{R}^d indépendantes suivant toutes la même loi que X. On suppose que $E[|X|^2] < \infty$. Alors

$$\sqrt{n}\left(\frac{1}{n}(X_1+\cdots+X_n)-m\right).$$

converge en loi vers un vecteur gaussien centré de matrice de variance-covariance Γ .

Stabilité des vecteurs gaussiens par convergence en loi

Proposition

Soit $(X_n)_n$ une suite de variables gaussiennes réelles qui converge en loi vers X. Alors X est gaussienne.

Corollaire

Soit $(X_n)_n$ une suite de vecteurs gaussiens à valeurs dans \mathbb{R}^d qui converge en loi vers un vecteur X. Alors X est gaussien.

- 1 Vecteurs gaussiens
- 2 Mouvement Brownien

Plan

Vecteurs gaussiens

2 Mouvement Brownien

Processus Stochastique

Définition

On appelle processus stochastique à temps continu à valeurs dans un espace (E,\mathcal{E}) , une famille $(X_t,t\geq 0)$ de variables aléatoires à valeurs dans E définies sur un espace de probabilité (Ω,\mathcal{A},P) .

Remarque : L'indice $t \in [0, +\infty[$ représente le temps. Notons que l'on peut associer, à chaque $\omega \in \Omega$, une trajectoire :

$$t \to X_t(\omega)$$
.

Processus Stochastique

Définition

Un processus $(X_t, t \ge 0)$ à valeurs réelles $(E = \mathbb{R})$ est dit :

- **①** continu si les trajectoires $t \mapsto X_t(\omega)$ les sont.
- **2** stationnaire (au sens faible) si $\forall h \geq 0, (X_{t+h})_{t\geq 0}$ et $(X_t)_{t\geq 0}$ ont la même loi.
- **3** à accroissements indépendants si $\forall n \in \mathbb{N}^*$ et $0 \le t_1 \le t_2 \le \cdots \le t_n$, les accroissements $X_{t_1}, X_{t_2} X_{t_1}, \cdots, X_{t_n} X_{t_{n-1}}$ sont des v.a.r indépendantes.
- lacktriangle à accroissements stationnaires si $\forall t,h\geq 0$, $X_{t+h}-X_t$ a même loi que X_h-X_0

Mouvement Brownien

Définition

Un processus stochastique $(B_t, t \ge 0)$ à valeurs réelles est dit un mouvement brownien (standard) s'il vérifie les quatre propriétés suivantes :

- $B_0 = 0$.
- Pour tout $s \le t$, l'accroissement $B_t B_s$ suit la loi gaussienne centrée de variance t s (Processus à accroissements stationnaires).
- si $0 \le t_1 \le t_2 \le \cdots \le t_n$, les accroissements $B_{t_1}, B_{t_2} B_{t_1}, \cdots, B_{t_n} B_{t_{n-1}}$ sont indépendants. (Processus à accroissements indépendants).
- En dehors d'un ensemble de probabilité nulle, les trajectoires $t \to B_t(\omega)$ sont continues.(Processus continu).

Notons que (i) et (ii) implique que $B_t = B_t - B_0$ suit la loi gaussienne centrée de variance t dont la densité est

$$\frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}.$$

Mouvement Brownien

Théorème

Si $(X_t, t \ge 0)$ est un processus continu à accroissements indépendants et stationnaires alors il existe deux constantes réelles r et σ t.q. $\forall t \ge 0$,

$$X_t - X_0 = rt + \sigma B_t$$

avec $(B_t, t \ge 0)$ un mouvement brownien.

Mouvement Brownien

Exemple

Si on souhaite modéliser le cours $(S_t)_{t\geq 0}$ d'une action par un processus continu strictement positif à accroisements relatifs

$$\frac{S_t - S_u}{S_u} = \frac{S_t}{S_u} - 1, \quad u \le t$$

indépendants et stationnaires, donc $X_t = ln(S_t)$ est un processus continu à accroissements indépendants et stationnaires.

Dans ces conditions, d'aprés le théorème précédent, il existe deux constantes réelles r et σ et un mouvement brownien $(B_t)_{t>0}$ t.q.

$$\forall t \geq 0, S_t = S_0 \exp(\sigma B_t + rt).$$

Ce modèle d'actif est appelée modèle de Black-Sholes.

Mouvement Brownien - Régularité des trajectoires

Une propriété importante du mouvement brownien est le manque de régularité des trajectoires. Nous admettrons le théorème suivant

Théorème

Soit $(B_t, t \ge 0)$ un mouvement brownien, alors, en dehors d'un ensemble de probabilité nulle, il n'existe aucun point où la trajectoire est différentiable.

Mouvement Brownien - Régularité des trajectoires

Caractère gaussien du mouvement brownien

Nous avons vu que si $(B_t, t \ge 0)$ est un mouvement brownien alors B_t suit une loi gaussienne. Une propriété plus forte est vérifié par le processus $(B_t, t \ge 0)$: c'est un processus gaussien.

Définition

On dit qu'un processus $(X_t, t \geq 0)$ est un processus gaussien, si pour tout entier n et pour tout n-uplet, $0 \leq t_1 < t_2 < \cdots < t_n < +\infty$, le vecteur $(X_{t_1}, \cdots, X_{t_n})$ est un vecteur gaussien.

Théorème

Un mouvement brownien est un processus gaussien.

Caractère gaussien du mouvement brownien

Théorème

Soit $(B_t, t \ge 0)$ un processus gaussien centré continu t.q.

$$\forall s, t \geq 0, \quad Cov(B_s, B_t) = min(s, t).$$

Alors $(B_t, t \ge 0)$ est un mouvement brownien.