

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination-May 2023

Max. Marks: - 100

Class: S.E

Course Code: - MA201

Name of the Course: Linear Algebra

Duration: 3 Hours

Semester: IV

Branch: - COMPS, AIML, DS

Instructions:

1) All Questions are Compulsory.

2) Assume suitable data if necessary.

Q No.		Max. Mks	C	BL
Q.1	a) If V is the vector space and inner product for the vector space is defined by. $ < u, v > = u. \ v = \int_{-1}^{1} u(x). \ v(x) dx $ Apply Gram-Schmidt orthogonalisation process to transform the standard basis $S = \{1, x, x^2\}$ into an orthonormal basis.	8	4	3
	 b) State only one axiom that fails to hold for each of the following sets W to be subspaces of the respective real vector spaces V with Standard operations. 1) W = {(x, y) x² = y²}, V = R² 2) W = {(x, y) x y ≥ 0}, V = R² 3) W = {(x, y, z) x² + y² + z² = 1}, V = R³ 4) W = {f f (x) ≤ 0 for all x}, V = F(-∞, ∞) 	8	4	2
	c) Verify whether (1, 2), (3, 6) are linearly independent when placed with Initial points at the origin by analytical and geometrical method.	6	4	2
	OR c) Show that the vectors v_1, v_2, v_3 are linearly independent and when combined with v_4 becomes dependent where $v_1 = (1, 2, 4), v_2 = (2, -1, 3), v_3 = (0, 1, 2), v_4 = (-3, 7, 2).$	6	4	2
	d) Find the basis of row space, column space and null space for the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$	7	4	1
	e) Find the least square solution of AX= B where $A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$	5	4	2

Q.2	a) Find the highest Page Rank from the given directed graph.	8	6	13
	OR			
	a) Solve the following system of differential equation $y' = \begin{bmatrix} 4 & 1 \\ 0 & 2 \end{bmatrix}$ y	8	6	3
	using diagonalisation with initial conditions $y_1(0) = 3$ and $y_2(0) = -2$.			
	b) If $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ find e^{At}	7	6	2
	c) Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$	8	6	3
	d) i) If λ is an eigen value of a non singular matrix A then prove that $\frac{ A }{\lambda}$ is an eigen value of adj.A.	3	6	1
Q.3	a) Apply Crout's Method to solve the following equations	8	2	3
	x + y + 4z = 43			
	2x + 10y + z = 63			
	25x + 2y + z = 69			
	b) Show that the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalisable. Find the	8	5	3
	diagonal matrix and the transforming matrix.		×	
Q.4	a) Circum the H7112			
	a) Given the Hill 2-cipher key $A = \begin{bmatrix} 1 & 1 \\ 2 & 6 \end{bmatrix}$	8	3	3
	Compute A^{-1} modulo 27 and hence decode the following message			
	X, N, U, F, Y, V, C, R, S, Q, E, J			
			1 1	1/

Q.5	 a) Show that the following system of equations is consistent if a, in arithmetic progression. 3x + 4y + 5z = a , 4x + 5y + 6z = b , 5x + 6y + 7z = c Find the solution when a = 1, b = 2, c = 3. 	b, c are 8	1	3
	OR			
	a)Investigate for what values of λ and μ , the equations $x + y + z = 6$	5, 8	1	3
	$x + 2y + 3z = 10$ and $x + 2y + \lambda z = \mu$ have i) no solution			
	ii) a unique solution iii) infinite number of solutions.			
	b) The diagram in the Figure below describes the four one-way structure. Kumasi (vph is number of vehicles per hour). Determine the amount of traffic between each of four intersection.	8	1	3
	190vph 150vph			
	Atonsu-Prempeh Rd B			
	241vph x 105vph			
	Roman Hill Road y w Labour-Asafo intercha	inge		
	2			
	280vph D Asafo market-Kaietia Rd C 230vph			
	236vph 110vph			

****** All the Best *******

