CS-225: Discrete Structures in CS

Homework 4, Part 2

Noah Hinojos

February 6, 2024

Exercise Set 6.2

13

Suppositions:

Suppose sets A, B, and C are arbitrarily chosen sets.

Goal:

Prove
$$(A - B) \cap (C - B) = (A \cap C) - B$$
.

Deductions:

By set equality, $(A - B) \cap (C - B) = (A \cap C) - B$ is true if and only if each side of the equation is a subset of the other. Hence, the following set relations must be proved:

$$(A - B) \cap (C - B) \subseteq (A \cap C) - B \tag{i}$$

and

$$(A \cap C) - B \subseteq (A - B) \cap (C - B) \tag{ii}$$

Proving (i) is to prove that $\forall x$, if $x \in (A - B) \cap (C - B)$ then $x \in (A \cap C) - B$. Proving (ii) is to prove that $\forall x$, if $x \in (A \cap C) - B$ then $x \in (A - B) \cap (C - B)$.

- (i) $\forall x$, if $x \in (A B) \cap (C B)$ then $x \in (A \cap C) B$.
 - Suppose $x \in (A B) \cap (C B)$.
 - By definition of intersection, $x \in A B$ and $x \in C B$.
 - . By definition of difference; $x \in A, x \in C$, and $x \notin B$.

- By definition of intersection, $x \in A \cap C$.
- By definition of difference, $x \in (A \cap C) B$.
- Hence, $x \in (A \cap C) B$.
- (ii) $\forall x$, if $x \in (A \cap C) B$ then $x \in (A B) \cap (C B)$.
 - Suppose $x \in (A \cap C) B$.
 - By definition of difference, $x \in A \cap C$ and $x \notin B$.
 - By definition of intersection, $x \in A$ and $x \in C$.
 - By definition of difference, $x \in (A B)$ and $x \in (C B)$.
 - By definition of intersection, $x \in (A B) \cap (C B)$.
 - Hence, $x \in (A B) \cap (C B)$.

Since (i) and (ii) are true, then by set equality the original equation $(A - B) \cap (C - B) = (A \cap C) - B$ is also true.

Conclusion:

Therefore, $(A - B) \cap (C - B) = (A \cap C) - B$.

17

Suppositions:

Suppose sets A, B, and C are arbitrarily chosen sets. Also presume $A \subseteq B$.

Goal:

Prove $A \cup C \subseteq B \cup C$.

Deductions:

The supposition $A \subseteq B$ is equivalent to the statement that $\forall x$, if $x \in A$ then $x \in B$.

Proving $A \cup C \subseteq B \cup C$ is to prove that $\forall x$, if $x \in A \cup C$ then $x \in B \cup C$.

 $\forall x$, if $x \in A \cup C$ then $x \in B \cup C$.

• Let's take looking at the following cases.

- Case 1: $x \in C$.
- By definition of union, $x \in B \cup C$ because $x \in C$.
- Case 2: $x \in A$.
- By our original supposition, $x \in B$ because $x \in A$.
- Looking at these cases, if $x \in A$ or $x \in C$ then $x \in B$ or $x \in B \cup C$ respectively.
- Through definition of union, this can be rewritten as if $x \in A \cup C$ then $x \in B \cup C$.
- Hence, $\forall x$, if $x \in A \cup C$ then $x \in B \cup C$.

Since it is true that $\forall x$, if $x \in A \cup C$ then $x \in B \cup C$; it must also be true that $A \cup C \subseteq B \cup C$.

Conclusion:

Therefore, $A \cup C \subseteq B \cup C$.

20

Suppositions:

Suppose A, B, and C are arbitrarily chosen sets. Also presume $A \subseteq C$ and $B \subseteq C$.

Goal:

Prove $A \cup B \subseteq C$.

Deductions:

The supposition $A \subseteq C$ is equivalent to the statement that $\forall x$, if $x \in A$ then $x \in C$. The supposition $B \subseteq C$ is equivalent to the statement that $\forall x$, if $x \in B$ then $x \in C$.

Proving $A \cup B \subseteq C$ is to prove that $\forall x$, if $x \in A \cup B$ then $x \in C$.

 $\forall x$, if $x \in A \cup B$ then $x \in C$.

- Let's take looking at the following cases.
- Case 1: $x \in A$.
- By definition of union, $x \in C$ because $x \in A$.
- Case 2: $x \in B$.
- By our original supposition, $x \in C$ because $x \in B$.

- Looking at these cases, if $x \in A$ or $x \in B$ then $x \in C$.
- Through definition of union, this can be rewritten as if $x \in A \cup B$ then $x \in C$.

Since it is true that $\forall x$, if $x \in A \cup B$ then $x \in C$; it must also be true that $A \cup B \subseteq C$.

Conclusion:

Therefore, $A \cup B \subseteq C$.

Exercise Set 6.3

37

$$(B^c \cup (B^c - A))^c = B \cap (B^c - A)^c$$
 De Morgan's Law
$$= B \cap (B^c \cap A)^c$$
 Set Difference Law
$$= B \cap (B \cup A^c)$$
 De Morgan's Law Absorption Law

38

$$(A \cap B)^c \cap A = (A^c \cup B^c) \cap A$$
 De Morgan's Law
$$= (A^c \cap A) \cup (B^c \cap A)$$
 Distributive Law
$$= \varnothing \cup (B^c \cap A)$$
 Complement Law
$$= B^c \cap A$$
 Identity Law
$$= A \cap B^c$$
 Communative Law
$$= A - B$$
 Set Difference Law