黄玟瑜 19335074 huangmy73@mail2.sysu.edu.cn

Homework 8 操作系统原理, 2021 春

2021-06-08

完成教材习题 8.2、8.4、8.6 和 8.11

习题 8.2

a. 每执行 4 次 C[i,j]=A[i,j]+B[i,j] 发生 3 次缺页中断。

例如: 第 1 次内层循环执行 C[i,j]=A[i,j]+B[i,j] 发生 3 次缺页中断,分别调入 $A[0,0]\sim A[0,63]$ 、 $A[1,0]\sim A[1,63]$ 、 $A[2,0]\sim A[2,63]$ 、 $A[3,0]\sim A[3,63]$, $B[0,0]\sim B[0,63]$ 、 $B[1,0]\sim B[1,63]$ 、 $B[2,0]\sim B[2,63]$ 、 $B[3,0]\sim B[3,63]$, $C[0,0]\sim C[0,63]$ 、 $C[1,0]\sim C[1,63]$ 、 $C[2,0]\sim C[2,63]$ 、 $C[3,0]\sim C[3,63]$,第 2、3、4 次内层循环执行 C[i,j]=A[i,j]+B[i,j] 不会发生缺页中断,因此每执行 4 次 C[i,j]=A[i,j]+B[i,j] 发生 3 次缺页中断。

b. 修改后程序如下:

c. 修改后, 每执行 256 次 C[i,j]=A[i,j]+B[i,j] 发生 3 次缺页中断。

例如: 第 1 次内层循环执行 C[i,j]=A[i,j]+B[i,j] 发生 3 次缺页中断,分别调入 $A[0,0]\sim A[0,63]$ 、 $A[1,0]\sim A[1,63]$ 、 $A[2,0]\sim A[2,63]$ 、 $A[3,0]\sim A[3,63]$, $B[0,0]\sim B[0,63]$ 、 $B[1,0]\sim B[1,63]$ 、 $B[2,0]\sim B[2,63]$ 、 $B[3,0]\sim B[3,63]$, $C[0,0]\sim C[0,63]$ 、 $C[1,0]\sim C[1,63]$ 、 $C[2,0]\sim C[2,63]$ 、 $C[3,0]\sim C[3,63]$,此后,在第 2~256 次内层循环执行 C[i,j]=A[i,j]+B[i,j] 不会发生缺页中断,因此每执行 256 次 C[i,j]=A[i,j]+B[i,j] 发生 3 次缺页中断。

习题 8.4

- a. 如下图所示。
- b. 如下图所示。
- c. 如下图所示。
- d. 如下图所示。("后续的页面访问序列"不知道是什么意思)

e.

替换策略	缺页中断次数	缺页率
OPT	4	40%
LRU	6	60%
FIFO	7	70%
CLOCK	6	60%

习题 8.6

a.

1	0	2	2	1	7	6	7	0	1	2
1	1	1	1	1	1	1	1	1	1	1
	0	0	0	0	0	6	6	6	6	2
		2	2	2	2	2	2	0	0	0
					7	7	7	7	7	7
F	F	F			F	F		F		F
0	3	0	4	_ 5	1	_ 5	2	4	_ 5	6
1	1	1	4	4	4	4	4	4	4	4
2	2	2	2	5	5	5	5	5	5	5
0	0	0	0	0	0	0	2	2	2	2
7	3	3	3	3	1	1	1	1	1	6
	F		F	F	F		F			F
7	6	7	2	4	2	7	3	3	2	3
4	4	4	2	2	2	2	2	2	2	2
5	5	5	5	4	4	4	4	4	4	4
7	7	7	7	7	7	7	7	7	7	7
6	6	6	6	6	6	6	3	3	3	3
F			F	F			F			

LRU 的内存命中率为 $\frac{16}{33} \approx 48.5\%$

b.

FIFO 的内存命中率为 $\frac{16}{33} \approx 48.5\%$

c.

以上两种策略的内存命中率大致相同,对这个页面访问序列来说,FIFO模拟 LRU 的效果较好,性能几乎相同。

习题 8.11

 $a.400 ns_{\circ}$

200ns (获取页表项) +200ns (获取数据) =400ns

b. 250ns.

有效访问时间 = $85\% \times (物理内存访问时间 + 20ns) + 15\% \times (逻辑内存访问时间 + 20ns)$

因此

有效访问时间 =
$$85\% \times (200ns + 20ns) + 15\% \times (400ns + 20ns) = 250ns$$

c.

TLB 的命中率越高,有效访问时间越短,由于访问内存获取页表项需要时间,获取逻辑内存访问时间大于物理内存访问时间,命中率高意味着可以减少内存访问次数,因此有效访问时间越短。