$\frac{y=f(x_1, x_2)}{\frac{\partial y}{\partial x_1 \partial x_1}}$ 強分となれ序 $\frac{\partial^2 y}{\partial x_2 \partial x_1} = \frac{\partial^2 y}{\partial x_2 \partial x_1}$ 男様

$$A : \left(\frac{\partial T}{\partial V}\right)_{s} = -\left(\frac{\partial P}{\partial S}\right)_{v}$$

关于烙的线的多程

$$H=U+PV)$$

$$dH=d(U+PV)=dU+d(PV)$$

$$=T\cdot ds-PdV+PdV+V\cdot dP$$

$$=T\cdot ds+V\cdot dP$$

拉学和说. f(x, y) = (x, y) $(2f) = Sin(x+y) + x \cdot Cis(x+y)$

$$\left(\frac{\partial f}{\partial y}\right)_{x} = X \cdot Cos(x+y)$$

f(x, u(x,y)) . $f(\frac{\partial f}{\partial x})_{y} = (\frac{\partial f}{\partial x})_{u} + (\frac{\partial f}{\partial u})_{x} (\frac{\partial u}{\partial x})_{y}$

$$C_{V} = \left(\frac{dQ}{dT}\right)_{V} = \left(\frac{dU + p dV}{dT}\right)_{U} = \left(\frac{\partial U}{\partial T}\right)_{V}$$

$$C_{V} = \left(\frac{dQ}{dT}\right)_{V} = \left(\frac{dU + p dV}{dT}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{V}$$

$$C_{P} = \left(\frac{dQ}{dT}\right)_{P} = \left(\frac{dU + p dV}{dT}\right)_{P}$$

$$C_{P} = \left(\frac{dQ}{dT}\right)_{P} = \left(\frac{dU + p dV}{dT}\right)_{P}$$

$$C_{p} = \left(\frac{dQ}{dT}\right)_{p} = \left(\frac{dU + p dV}{dT}\right)_{p}$$

$$A_{1} = dU + V dp + p \cdot dV$$

$$G_{p} = \left(\frac{dU - V \cdot dp}{dT}\right)_{p} = \left(\frac{\partial H}{\partial T}\right)_{p}$$

$$A_{1} = \frac{dU - V \cdot dp}{dT} = \left(\frac{\partial H}{\partial T}\right)_{p}$$

$$A_{1} = \frac{dU - V \cdot dp}{dT} = \left(\frac{\partial H}{\partial T}\right)_{p}$$

$$A_{2} = \frac{dU - V \cdot dp}{dT} = 0$$

ア-歩左有 ds → dT . 引
$$\lambda$$
 $S = S(7, v)$ か

$$3345 dS = (35)_{V} \cdot dT + (35)_{T} \cdot dV$$

$$45345 dS = (35)_{V} \cdot dT + (35)_{T} \cdot dV \cdot \dots \cdot G$$

$$\frac{\partial U}{\partial T}|_{V} = T \cdot \left(\frac{\partial S}{\partial T}\right)_{V} + \left(\frac{\partial U}{\partial V}\right)_{T} = T \cdot \left(\frac{\partial S}{\partial V}\right)_{T} - P$$

对 (
$$\frac{\partial H}{\partial T}$$
) p 操作, $\frac{\partial H}{\partial T}$) $\frac{\partial H}{\partial T}$ $\frac{\partial H}{\partial T}$

$$A = S(T, p)$$

$$A = S(T, p)$$

$$A = (A - B)$$

得 d4 = 7·(多)p·dT + [7135)+V] dp ····⑥

(3)色对方, 数相等得

(3H)p=T.(35)p 70 (3H)=T(35)7+V

即
$$G - Cv = T (\frac{\partial S}{\partial T})_p - T (\frac{\partial S}{\partial T})_v \dots$$
 G

PVT系統故有的才独之重重 $S = S(p, V, T)$

那是 $S = S(T, V(T, p))$

和用之前被咨询识 $(\frac{\partial S}{\partial X})_u + (\frac{\partial S}$

对的面公式, 版一寸档验:

$$2 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} =$$

$$\frac{\partial V}{\partial T} = \left(\frac{\partial V}{\partial T}\right)_{p} = \frac{nR}{P}$$

$$G_{p}-C_{v}=T\cdot\frac{nR}{V}\cdot\frac{nR}{P}=nR$$

和这一级