Double Integrals

Section 15.1-15.3

Outline

- Double Integrals over Rectangles
- Iterated Integrals
 - Fubini's Theorem
- Double Integrals over General Regions
 - Type I Regions
 - Type II Regions
- Double Integrals in Polar Coordinates

Consider regions that are polar rectangles

$$R = \{(r, \theta) | a \le r \le b, \alpha \le \theta \le \beta\} .$$

In order to compute the double integral $\iint_R f(x,y) dA \text{ , where } R \text{ is a polar rectangle,}$ we divide the interval [a,b] into m subintervals $[r_{i-1},r_i]$ of equal width $\Delta r = (b-a)/m$ and divide the interval $[\alpha,\beta]$ into n subintervals $[\theta_{j-1},\theta_j]$ of equal width $\Delta \theta = (\beta-\alpha)/n$.

▶ The area of polar subrectangle

$$R_{ij} = \{(r,\theta)|r_{i-1} \leq r \leq r_i, \theta_{j-1} \leq \theta \leq \theta_j\}$$
 is
$$\Delta A_{ij} = \frac{1}{2}r_i^2\Delta\theta - \frac{1}{2}r_{i-1}^2\Delta\theta = r_i^*\Delta r\Delta\theta$$
 where
$$r_i^* = (r_{i-1} + r_i)/2$$
.

Let $r_i^* = (r_{i-1} + r_i)/2$, $\theta_j^* = (\theta_{j-1} + \theta_j)/2$ be the sample points we choose from R_{ij} .

So the Riemann sum is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) \Delta A_{ij}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} f(r_i^* \cos \theta_j^*, r_i^* \sin \theta_j^*) r_i^* \Delta r \Delta \theta$$

which is a Riemann sum for the double integral $\int_{\alpha}^{\beta}\!\!\int_a^b g(r,\theta)drd\theta$, where

$$g(r,\theta) = rf(r\cos\theta, r\sin\theta)$$

2 Change to Polar Coordinates in a Double Integral If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_R f(x, y) dA = \int_{\alpha}^{\beta} \int_a^b f(r \cos \theta, r \sin \theta) r dr d\theta$$

Ex: Compute $\iint x+2y \, dA$, where R is bounded by R $\chi^2+y^2=1$, $\chi^2+y^2=4$, with $y \ge 0$, $\chi \le y$.

Ex: Find the volume of the solid which is under the surface $z=x^2+zy^2$, above the xy-plane, within the cylinder $x^2+y^2=2$, and to the right of the xz-plane.

Sol:

Ex: Compute $\iint_{\mathbb{R}^2} e^{-x^2 y^2} dA$.

Ex: Compute
$$\int_{0}^{\frac{\alpha}{\sqrt{2}}} \int_{0}^{y} \cos(x^{2}+y^{2}) dx dy + \int_{\frac{\alpha}{\sqrt{2}}}^{\frac{\alpha}{\sqrt{2}}} \int_{\frac{\alpha}{\sqrt{2}}}^{\sqrt{\alpha^{2}-x^{2}}} \cos(x^{2}+y^{2}) dy dx$$

What we have done so far can be extended to the more complicated type of region

$$D = \{(r,\theta) | \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \}$$

If f is continuous on a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, \ h_1(\theta) \leq r \leq h_2(\theta)\}$$

then

$$\iint\limits_{D} f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$

Ex:
$$D = \{(r, q) \mid \alpha \in Q \in B, h, (0) \leq r \leq h_2(0)\}$$
.
Find $A(D) = \iint |dA|$

Ex: Compute $\iint xy dA$, where D is the shaded region.

Ex: Find the volume of the solid that lies under the cone $Z = [x^2 + y^2]$ above the xy-plane and inside the cylinder $x^2 + y^2 = 2x$.

Review

- How do we define a double integral over a finite rectangle?
- What is an iterated integral?
- State the Fubini's Theorem.
- How do we integrate a function over a type I or type II region?
- Write down the formula for double integrals in polar coordinates.