Chen-Zhu Xie

Portfolio: 🗘 🔼 in Scholar: Г

Preference: 6

Contact: 🔽 🛚

Personality: aries INTP ab

EDUCATION

Nanjing University	College o	ences Nanjing, Jiangsu							
Doctor of Philosophy	Optical Engineering	<i>Q.E.</i> − <i>Top 15%</i> □	Nonlinear Fourier Optics - 2025.06						
Dissertation: "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\varepsilon}}, \bar{\bar{\chi}}$ dielectrics"									
Master 's Studies	Quantum Electronics	Courses Score – 93.5 🕠	THz OAM Source						
	Northeastern University School of Physics, College of Science Shenyang, Liaoning								
Northeastern Univer	rsity Scho	ol of Physics, College of Scie	Shenyang, Liaoning						
Northeastern University Bachelor of Science	rsity Scho Applied Physics	ol of Physics, College of Scie GPA Rank – 1/400	DDTank Aimbots – 2020.06						
Bachelor of Science	Applied Physics	GPA Rank − 1/400 👩	, ,						

Personal Projects

Managed to realize *tree*-print feature in CMD lines without knowing *any tree*-packages
in order to visualize run-time *Call Stack* with *buried checkpoints* & display *crucial info*to understand the *hierarchical structure* of my code from a more *abstract* perspective
Enabled *multi-threads* to accelerate *for loops* in python while preserving the *loops*' order
Implemented through utilizing the *producer-consumer model* (producer = thread pool)
Allow users to select which parts of the codes in the *for loops* to *parallelize* in CPU
Future model will move away from *python* as the primary language & shift to GPU
Favoring GPU is driven by "*fields* in physics = *arrays/matrices* in math/programs"
Haven't decided which to employ: CUDA, jax, webgl2, webGPU, mojo or bend?

Developed a log file system to track & record the operating status for debugging
to output script parameters (**kwargs) for rapid reproducibility of data in the future
to store data files & folders, and their metadata for swift data import and reutilization
Achieved automatic skipping of functions that return repeated values stored in memory
via @decorators: let precomputation assess whether to execute the decorated function
Wrap *matplotlib* into plot_1d(, _2d, _3d, .gif ...) for data visualization

DDTank Aimbots Analytic solution E(r) to $\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] E(r) = 0$ where $\varepsilon_{ij} \in \mathbb{C}$ 2023.02 –

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- logging system
 - \circ J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.

→ sped up by customized multithreading as well ...

o JOSA.A. | O.E. #tightly focus $\#\bar{\epsilon}$ anisotropy | Light.Sci.App. | O.E.

PPT <u>1 2 3</u> ... •

[repo]

Three Books Closed-form $E_3(\mathbf{r})$ in $\left[\nabla^2 + k_3^2\right] E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r}) E_1(\mathbf{r}) E_2(\mathbf{r})$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Developed a log file system to record and output script runtime parameters**kwargs,
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - O.L. | P.R.A.

SCIENTIFIC ACTIVITIES

[0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum

"Analytic vector linear & nonlinear Fourier crystal optics in arbitrary $\bar{\epsilon}$, $\bar{\bar{\chi}}$ dielectrics" | Oral [PPT] 2024.05.29

[-1] 2023 CSOE-NJU¹ Book Club Meeting & Sharing Session

"A guided tour to Ray & Wave Optics Simulation" | Oral [PPT]

2023.12.09

[-2] Academic Café Salon of the Research Group

"Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" | Oral [PDF]

2021.05.21

PUBLICATIONS

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, **C. Xie**, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications **14**, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

ACADEMIC FOCUS

Next generation high N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics 🜍 2024.06 -!Paraxial k_0^{ω} High N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics 😱 2024.03 -Emphasizing G_{xyz}^{ω} **3D** vector non-uniform analytic linear & nonlinear Fourier crystal optics 😱 2023.12 -Involving $\bar{\bar{\chi}}_{(1)}^{(2)}$ anisotropy **Vector** non-uniform analytic linear & nonlinear Fourier crystal optics 😱 2023.06 -!Unitary $G_{\omega}^{\pm} \Leftarrow$!Hermitian $\bar{\bar{\varepsilon}}_{r}^{\omega} \Rightarrow$ **Non-uniform** analytic linear & nonlinear Fourier crystal optics 😱 2023.03 -Solution E_{ω}^{\pm} to $(\nabla^2 + k_{\omega\pm}^2) E_{\omega}^{\pm} \propto P_{\omega+}^{(2)}$ **Analytic** linear & nonlinear Fourier crystal optics 🕤 2022.09 -Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below **Nonlinear** angular spectrum theory for SFG 😱 2022.06 -Solution $\mathcal{F}[E_3] = \iiint \text{to } (\nabla^2 + k_3^2) E_3(\mathbf{r}) \propto P_3^{(2)}(\mathbf{r})$ **Nonlinear** convolution solution to SFG 😱 2022.03 -Nonlinear THz LiNbO₃-based metasurface Quit THz project formally | COMSOL -2022.01BWOPO + THz optical parametric amplification Mathematica | BookxNote Pro -2021.12THz backward optical parametric oscillator (BWOPO) Mathematica | VBA Excel - 2021.11 Multi-cycle THz orbital angular momentum (OAM) source RoamEdit | Blender - 2021.11

PPT 1234 ... 😱

¹ The Nanjing University student branch of the Chinese Society for Optical Engineering

Narrow-band THz OAM source via Optical Rectification (OR)	Python Blender	- 2021.10
\bigcirc Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics	RoamEdit VBA Excel	- 2021.07
\bigcirc Visible Photons $\xrightarrow{ ext{SPDC}}$ THz Spectroscopy	BookxNote Pro GeoGebra VBA Excel	- 2021.06
Cavity Phase Matching = Sheet OPO	Paint 3D RoamEdit GeoGebra VBA Excel	- 2021.05
THz Holography via Optical Rectification	Matlab GeoGebra VBA Excel	- 2021.01
\bigcirc Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)	GeoGebra VBA Excel	- 2020.12
\square Multicycle THz pulse generation by OR in LiNbO $_3$ crystals	VBA PowerPoinT	- 2020.10

Honors & Awards

Academia	Doctor's Qualification Exam (Oral)	Excellent	Top 15%	Nanjing U.	2024.01
	Bachelar Thesis 😱 & Defense 🕒	Excellent (1/90	Northeastern U.	2020.06
Competition	Three Provinces Achievement Expo	Exhibition (Leader	Three Prov.	2019.10
	"Challenge Cup" Tech Competition	Grand prize C	Leader	Liaoning Prov.	2019.06
Scholarships	Academic Fellowship	1st class	¥40,000	Nanjing U.	2020-24
&	"Jinchuan" Scholarship	1st place	¥5,000	Northeastern U.	2019.04
Fellowships	Academic Scholarship	1st place	¥2,000	Northeastern U.	2018.06
	Entrance Scholarship	3rd place	¥5,000	Leshan No.1 H.S.	2013.09
Honors	Graduation with Honor	Outstanding		Northeastern U.	2020.07
&	League Member	Excellent		Northeastern U.	2019.11
Titles	Undergraduate Student	Excellent (Northeastern U.	2018.12
Memberships	Chinese Society for Optical Engineering	Member (Nanjing U.	2021-25
	"Qian Sanqiang" Talent Class	Head		I.H.E.P.	2017-20

RESEARCH PROJECTS

3D Vector Nonlinear Fourier Crystal Optics $\textbf{Solving} \left[\left[\left(\boldsymbol{\nabla} \times \right)^2 - k_0^2 \, \bar{\bar{\boldsymbol{\varepsilon}}} \cdot \right] \boldsymbol{E}(\boldsymbol{r}) = k_0^2 \, \bar{\bar{\boldsymbol{\chi}}} \colon \mathcal{F}_\omega^{-1} \Big[\widetilde{\boldsymbol{E}}_\mathrm{p} \widetilde{\boldsymbol{E}}_\mathrm{p} \Big] (\boldsymbol{r}) \, \right] \text{analytically}$ 2023.05 -

- The first & fastest white box solver ever for this inhomogeneous wave equation o or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including o k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- Reproduced well-known papers, all of which provide either zero or wrong theory:
 - Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
 - O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component

PPT 123 ... 😱

Complex Vector Linear

Fourier Crystal Optics

Analytic solution E(r) to $\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] E(r) = 0$ where $\varepsilon_{ij} \in \mathbb{C}$ 2023.02 –

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- Reproduced well-known papers, some are purely experimental (too hard to model):
 J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - o JOSA.A. | O.E. #tightly focus #\bar{\pi} anisotropy | Light.Sci.App. | O.E.

PPT <u>123</u> ... 😱

Real Scalar Nonlinear

Fourier Crystal Optics

Closed-form $E_3(r)$ in $\left[\nabla^2 + k_3^2\right] E_3(r) = -k_{03}^2 \chi(r) E_1(r) E_2(r)$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency:
 P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 O.L. | P.R.A.

 PPT 1234 ...
 PPT 134 ...
 PPT 1234 ...
 PPT 1234

Extracurricular Activities

Detailed explanation of what you do at this club

Detailed explanation of what you do at this club

- Member at Some Club
 2017–Current
- Member at Some Club 2016–2017
- Volunteer at Some Event Fall 2019
- Detailed explanation of what you do in this event
- Volunteer at Some Event

 Detailed explanation of what you do in this event

 Winter 2015

SKILLS

- Skill Group: List of technologies

Languages

- Language: language proficiency level
- EXAM: details
- Language: language proficiency level
- Language: language proficiency level