First Attempt (1)
(3×3) Matrix i=1 10 = 1 = 0 i=1 10 = 1 = 0 i=1 1 1 1 1 1 1 1 1 1
(2) Now, you have to itente around "second level" of the sorounded dements (>). In this case, there is no
oxtra-dimension. 3 Then, we make the same iteration as before with downt
(1,0) $(1,1)$ and 30
tor example Apain, iterate around the nine sorrounded Apain and sorrounded Apain, iterate around the nine sorrounded Apain and apain and approximate the supplement
elements. In this case, maximum gimenset is $3 \times 1 = 3$.
Drawboacks: > Extremely difficult to suplement
Drawboacks: Statemely difficult to implement > loads of iterations Working Solution = we need temporally states to swelfend results.
> [1x6] Matrix. For exemple, [0], 1,1,0,1] -> Max dimensió 3x1
> [1x6] Mouth a [6x1] Matrix: [0] > Max dimensión 1x4 > New with a [6x1] Matrix: [0] > Max dimensión 1x4 > tor the time being, we can use the same solution for multidimental arrays (mxn)
-) For the true berry, we can use the same seaton
Example (1) [0,11] > Max Dinien = 1x2 > temp-array < 2 Example (1) [0,11] > Par i=2: 1 we And '1' we sum add
Example (1) [0,11] > Max Dille = 2.2 and 1' we sum add in [0,11] > Row i=2; if we find it we sum add in [1,j-1] the value of the doment (1,j-1) is 111 > Max Dille of the doment (1,j-1) Hax Dille = (2x2) > temp-array < 24 3 [0,11] > Row i=3; Hax Diller = (3x2) > temp-array 6
(3) (0, 11) > Now i=3; Hax Divien = (3x2) > temp-arrayer 6

(4) so, we have this temp-array = [2,46]

This is the Maximum dimension of a susarray inside the array!

(3) In order to not change the origin array, we need to create a copy of it, so we can change values in order to save them in the correct position.

(a) I have comment rusy-file called "M. 16" for additional information.