第五讲物理内存管理: 非连续内存分配 第 6 节 RISC-V 页机制

向勇、陈渝

清华大学计算机系

xyong,yuchen@tsinghua.edu.cn

2020年2月28日

向勇、陈渝 (清华大学) 2020 年 2 月 28 日

回顾

• 通过页表来实现隔离与共享

- 运行的应用程序之间的隔离与共享
- 应用与内核之间的隔离与共享
- 便干非连续内存管理

- RISC-V 对页表的硬件支持
 - 页表基址

- 页表基址: satp
- Supervisor Address Translation and Protection (satp) Register

RV32 Supervisor address translation and protection register satp

- 页表基址: satp
- Supervisor Address Translation and Protection (satp) Register

RV64 Supervisor address translation and protection register satp

- 页表基址: satp
- Supervisor Address Translation and Protection (satp) Register

RV32				
Value	Name	Description		
0	Bare	No translation or protection.		
1	Sv32	Page-based 32-bit virtual addressing.		
RV64				
Value	Name	Description		
0	Bare	No translation or protection.		
1-7	_	Reserved		
8	Sv39	Page-based 39-bit virtual addressing.		
9	Sv48	Page-based 48-bit virtual addressing.		
10	Sv57	Reserved for page-based 57-bit virtual addressing.		
11	Sv64	Reserved for page-based 64-bit virtual addressing.		
12-15	_	Reserved		

- 地址保护
- 页表项(page table entry)

X	W	R	Meaning
0	0	0	Pointer to next level of page table.
0	0	1	Read-only page.
0	1	0	Reserved for future use.
0	1	1	Read-write page.
1	0	0	Execute-only page.
1	0	1	Read-execute page.
1	1	0	Reserved for future use.
1	1	1	Read-write-execute page.

- RISC-V 对页表的硬件支持
 - 地址保护
 - 页表项(page table entry)

- RISC-V 对页表的硬件支持
 - 地址保护
 - 页表项(page table entry)

63 53 10 9 8 7 6 5 4 3 2 1 0

Reserved Physical Page Number RSWD A G U X WR V

- 地址保护
- 页表项(page table entry)

RISC-V 地址转换

RV32

- 当在 satp 寄存器中启用了分页时,虚拟地址 映射启动。
- 1. satp.PPN 给出一级页表基址,VA[31:22] 给 出一级页号,CPU 会读取位于地址 (satp. PPN × 4096 + VA[31: 22] × 4) 的页表项。

RISC-V 地址转换

RV32

- 当在 satp 寄存器中启用了分页时,虚拟地址 映射启动。
- 1. satp.PPN 给出一级页表基址,VA[31:22] 给 出一级页号,CPU 会读取位于地址 (satp. PPN × 4096 + VA[31: 22] × 4) 的页表项。
- 2. 该 PTE 包含二级页表的基址,VA[21:12]
 给出二级页号,CPU 读取位于地址 (PTE.
 PPN × 4096 + VA[21: 12] × 4) 的叶节点页表项。

RISC-V 地址转换

RV32

- 当在 satp 寄存器中启用了分页时,虚拟地址 映射启动。
- 1. satp.PPN 给出一级页表基址,VA[31:22] 给 出一级页号,CPU 会读取位于地址 (satp. PPN × 4096 + VA[31: 22] × 4) 的页表项。
- 2. 该 PTE 包含二级页表的基址,VA[21:12]
 给出二级页号,CPU 读取位于地址 (PTE.
 PPN × 4096 + VA[21: 12] × 4) 的叶节点页表项。
- 3. 叶节点页表项的 PPN 字段和页内偏移 (原始虚址的最低 12 个有效位) 组成了最终 结果: 物理地址就是 (LeafPTE. PPN × 4096 + VA[11: 0])

- 为页表分配物理内存
- 确定映射的物理空间与虚拟空间
- 创建页表
- 设置 sapt, 使能页表

- 为页表分配物理内存
- 确定映射的物理空间与虚拟空间
- 创建页表
- 设置 sapt, 使能页表

Talk is cheap. Show me the code.

(Linus Torvalds)