Modèles de régression gaussienne pour des distributions en entrée

49è Journées de Statistiques

N. Venet*,*, F. Bachoc*, F. Gamboa*, J.-M. Loubes*

30 mai 2017, Avignon

*CEA Tech, *Institut de Mathématiques de Toulouse

Le problème de régression sur des distributions

On dispose de *n* couples *entrées* / *sorties* $(\mu_i, y_i) \in \mathcal{P}(\mathbb{R}) \times \mathbb{R}$, et on cherche à associer une sortie à une distribution μ_{n+1} .

 \mathbb{R}

Le problème de régression sur des distributions

On dispose de *n* couples *entrées* / *sorties* $(\mu_i, y_i) \in \mathcal{P}(\mathbb{R}) \times \mathbb{R}$, et on cherche à associer une sortie à une distribution μ_{n+1} .

1

Le problème de régression sur des distributions

On dispose de *n* couples *entrées* / *sorties* $(\mu_i, y_i) \in \mathcal{P}(\mathbb{R}) \times \mathbb{R}$, et on cherche à associer une sortie à une distribution μ_{n+1} .

Motivations

Nos motivations sont doubles : considérer des modèles dont les entrées sont

- 1. aléatoires ou
- 2. fonctionnelles (spectres, histogrammes, ...)
 - avec la restriction de positivité et de masse 1,
 - ... qui en contrepartie autorise l'intervention d'outils comme la distance de Wasserstein.

Plan de la présentation

- 1. Régression gaussienne
- 2. Noyaux sur l'espace de Wasserstein
- 3. Résultats asymptotiques pour l'EMV et la régression
- 4. Résultats numériques

Régression gaussienne

On choisit un processus aléatoire $(Y_x)_{x\in\mathbb{R}}$ et on considère

$$\hat{Y}(x) := \mathbb{E}(Y_x | Y_{x_1} = y_1, \cdots, Y_{x_n} = y_n)$$

On choisit un processus aléatoire $(Y_x)_{x\in\mathbb{R}}$ et on considère

$$\hat{Y}(x) := \mathbb{E}(Y_x | Y_{x_1} = y_1, \cdots, Y_{x_n} = y_n)$$

On choisit un processus aléatoire $(Y_x)_{x\in\mathbb{R}}$ et on considère

$$\hat{Y}(x) := \mathbb{E}(Y_x | Y_{x_1} = y_1, \cdots, Y_{x_n} = y_n)$$

lci il faut un processus aléatoire $(Y_\mu)_{\mu\in\mathcal{P}(\mathbb{R})}$ pour considérer

$$\hat{Y}(\mu) := \mathbb{E}(Y_{\mu}|Y_{\mu_1} = y_1, \cdots, Y_{\mu_n} = y_n)$$

Л

Noyaux sur l'espace de

Wasserstein

La $\it distance \ de \ Wasserstein$ entre deux probabilités μ et ν admettant des moments d'ordre deux est définie par :

 \mathbb{R}

$$W_2(\mu, \nu) := \left(\inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^2} |x - y|^2 d\pi(x, y)\right)^{1/2},$$

où $\Pi(\mu, \nu)$ est l'ensemble des probabilités sur \mathbb{R}^2 de marginales μ et ν .

La $\it distance \ de \ Wasserstein$ entre deux probabilités μ et ν admettant des moments d'ordre deux est définie par :

La $\it distance \ de \ Wasserstein$ entre deux probabilités μ et ν admettant des moments d'ordre deux est définie par :

La $\it distance \ de \ Wasserstein$ entre deux probabilités μ et ν admettant des moments d'ordre deux est définie par :

Une remarque

Pour $\mu, \nu \in \mathcal{W}_2(\mathbb{R})$ et F_μ^{-1} , F_ν^{-1} les fonctions quantiles associées,

$$W_2(\mu,\nu) = \left(\int_{[0,1]} \left(F_{\mu}^{-1}(u) - F_{\nu}^{-1}(u) \right)^2 du \right)^{1/2}. \tag{1}$$

- Ce couplage optimal spécifique à la dimension 1 permet l'évaluation numérique de la distance de Wasserstein.
- C'est aussi l'ingrédient central des preuves des Théorèmes 1 et 2.

Noyaux sur l'espace de Wasserstein i

Théorème 1 (Champs browniens fractionnaires)

Pour tout $0 \le H \le 1$ et $\sigma_0 \in \mathcal{W}_2(\mathbb{R})$,

$$K^{H,\sigma}(\mu,\nu) = \frac{1}{2} \left(W_2^{2H}(\sigma_0,\mu) + W_2^{2H}(\sigma_0,\nu) - W_2^{2H}(\mu,\nu) \right)$$
 (2)

est une fonction de covariance sur $W_2(\mathbb{R})$. De plus cette fonction est non-dégénérée si et seulement si 0 < H < 1.

- On a un champ brownien fractionnaire indexé par $W_2(\mathbb{R})$. Il est à accroissements stationnaires, nul en l'origine σ_0 .
- Le paramètre de Hurst *H* gouverne l'auto-similarité, la régularité des trajectoires et la mémoire à longue distance.

Noyaux sur l'espace de Wasserstein ii

Théorème 2 (Processus stationnaires)

Pour $F: \mathbb{R}^+ \to \mathbb{R}^+$ complètement monotone et $0 < H \le 1$,

$$(\mu,\nu) \mapsto F\left(W_2^{2H}(\mu,\nu)\right) \tag{3}$$

est la fonction de covariance d'un processus gaussien stationnaire indexé par $W_2(\mathbb{R})$.

- Rappelons que $F \in C^{\infty}(\mathbb{R}^+, \mathbb{R}^+)$ est complètement monotone si $(-1)^n F^{(n)}$ est à valeurs positives pour tout $n \in \mathbb{N}$.
- En particulier pour $\sigma^2, \ell > 0$ et $0 \le H \le 1$,

$$K_{\sigma^2,\ell,H}(\nu_1,\nu_2) = \frac{\sigma^2}{\ell} \exp\left(-\frac{W_2(\nu_1,\nu_2)^{2H}}{\ell}\right)$$
 (4)

est une covariance.

Résultats asymptotiques pour

l'EMV et la régression

Conditions pour nos résultats i

Condition 1 (Cadre asymptotique "en expansion")

On considère une matrice triangulaire de points d'observations de $\mathcal{W}_2(\mathbb{R})$ $\{\mu_1,...,\mu_n\} = \{\mu_1^{(n)},...,\mu_n^{(n)}\}$ tels que pour tout $n \in \mathbb{N}$ et $1 \leq i \leq n$, μ_i est de support inclus dans [i,i+K], où $K < \infty$ est fixe.

Condition 2 (Modèle paramétrique stationnaire)

Le modèle de fonctions de covariance $\{K_{\theta}, \theta \in \Theta \subset \mathbb{R}^p\}$ est tel que

$$\forall \theta \in \Theta, \ K_{\theta}(\mu, \nu) = F_{\theta}\left(W_2(\mu, \nu)\right) \ \text{et} \quad \sup_{\theta \in \Theta} |F_{\theta}(t)| \leq \frac{A}{1 + |t|^{1 + \tau}},$$

avec $A < \infty$ et $\tau > 1$ des constantes.

g

Conditions pour nos résultats ii

Condition 3 (Cas "bien spécifié")

Nous disposons d'observations $y_i = Y(\mu_i)$, $i = 1, \dots, n$ du processus aléatoire gaussien Y, centré et de covariance K_{θ_0} pour un $\theta_0 \in \Theta$.

Condition 4 (Non-dégénérescence asymptotique)

La suite de matrices $R_{\theta} = (K_{\theta}(\mu_i, \mu_j))_{1 \leq i,j \leq n}$ est telle que

$$\lambda_{\mathsf{inf}}(R_{\theta}) \geq c$$

pour une constante c>0, où $\lambda_{inf}(R_{\theta})$ désigne la plus petite valeur propre de R_{θ} .

Condition 5

$$\forall \alpha > 0, \liminf_{n \to \infty} \inf_{\|\theta - \theta_0\| \ge \alpha} \frac{1}{n} \sum_{i,j=1}^{n} \left[K_{\theta}(\mu_i, \mu_j) - K_{\theta_0}(\mu_i, \mu_j) \right]^2 > 0.$$

Consistance de l'EMV

Théorème 3 (Consistance de l'EMV))

Sous les conditions 1 à 5 l'estimateur par maximum de vraisemblance est consistant, c'est-à dire :

$$\hat{\theta}_{ML} \xrightarrow[n \to \infty]{\mathbb{P}} \theta_0.$$

Conditions supplémentaires

Condition 6 (Régularité du modèle)

- $\forall t \geq 0$, $F_{\theta}(t)$ est \mathcal{C}^1 en θ et vérifie $\sup_{\theta \in \Theta} \max_{i=1,\cdots,p} \left| \frac{\partial}{\partial \theta_i} F_{\theta}(t) \right| \leq \frac{A}{1+t^{1+\tau}}, \text{ où } A, \tau \text{ sont définis dans la } Condition 2.$
- Pour tout $t \ge 0$, $F_{\theta}(t)$ est C^3 en θ et $\forall q \in \{2,3\}$, $\forall i_1 \cdots i_q \in \{1, \cdots p\}$,

$$\sup_{\theta \in \Theta} \max_{i=1,\cdots,p} \left| \frac{\partial}{\partial \theta_{i_1}} \cdots \frac{\partial}{\partial \theta_{i_q}} F_{\theta}(t) \right| \leq \frac{A}{1+|t|^{1+\tau}}.$$

• $\forall (\lambda_1 \cdots, \lambda_p) \neq (0, \cdots, 0)$,

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{i,j=1}^{n}\left(\sum_{k=1}^{p}\lambda_{k}\frac{\partial}{\partial_{\theta_{k}}}K_{\theta_{0}}\left(\mu_{i},\mu_{j}\right)\right)^{2}>0.$$

Normalité asymptotique de l'EMV

Théorème 4

Soit M_{ML} la matrice de taille p \times p définie par

$$(M_{ML})_{i,j} = \frac{1}{2n} Tr \left(K_{\theta_0}^{-1} \frac{\partial K_{\theta_0}}{\partial \theta_i} K_{\theta_0}^{-1} \frac{\partial K_{\theta_0}}{\partial \theta_j} \right).$$

Sous les conditions 1 à 6, l'estimateur par maximum de vraisemblance est asympotiquement normal. Plus précisément :

$$\sqrt{n} \ M_{ML}^{1/2} \left(\hat{\theta}_{ML} - \theta_0 \right) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, I_p).$$

De plus

$$0 < \liminf_{n \to \infty} \lambda_{min}(M_{ML}) \le \limsup_{n \to \infty} \lambda_{max}(M_{ML}) < +\infty.$$

Krigeage sous le modèle estimé par EMV

Théorème 5

Sous les conditions 1 à 6, l'estimateur par Krigeage sous $\hat{\theta}_{ML}$ est asymptotiquement optimal :

$$orall \mu \in \mathcal{W}_2(\mathbb{R}), \ \left| \hat{Y}_{\hat{ heta}_{ML}}(\mu) - \hat{Y}_{ heta_0}(\mu)
ight| = o_{\mathbb{P}}(1).$$

Résultats numériques

Performances sur des données simulées

• On note $m_k(\nu)$ le k-ième moment de ν et considère la fonction

$$F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$$

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},$$
(5)

qu'on va chercher à interpoler.

Performances sur des données simulées

• On note $m_k(\nu)$ le k-ième moment de ν et considère la fonction

$$F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$$

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},$$
(5)

qu'on va chercher à interpoler.

 On génère \(\nu_1, \cdots, \nu_{100}\) qui sont des gaussiennes de moyennes et de variances tirées uniformément, perturbées aléatoirement afin d'exhiber des irrégularités.

Performances sur des données simulées

• On note $m_k(\nu)$ le k-ième moment de ν et considère la fonction

$$F: \mathcal{W}_2(\mathbb{R}) \to \mathbb{R}$$

$$F(\nu) = \frac{m_1(\nu)}{0.05 + \sqrt{m_2(\nu) - m_1(\nu)^2}},\tag{5}$$

qu'on va chercher à interpoler.

- On génère ν_1, \cdots, ν_{100} qui sont des gaussiennes de moyennes et de variances tirées uniformément, perturbées aléatoirement afin d'exhiber des irrégularités.
- Maximum de vraisemblance sur $\hat{\sigma}^2, \hat{\ell}, \hat{H}$ pour le modèle gaussien paramétrique

$$K_{\sigma^2,\ell,H}(\nu_1,\nu_2) = \frac{\sigma^2}{\ell} \exp\left(-\frac{W_2(\nu_1,\nu_2)^{2H}}{\ell}\right).$$
 (6)

Performances sur données simulées

• On évalue la méthode sur un jeu de données test $(\nu_{t,i})_{i=1}^{500}$ généré de la même manière que les ν_i ,

Performances sur données simulées

• On évalue la méthode sur un jeu de données test $(\nu_{t,i})_{i=1}^{500}$ généré de la même manière que les ν_i , avec les critères :

$$RMSE^2 = rac{1}{500} \sum_{i=1}^{500} \left(F(
u_{t,i}) - \hat{F}(
u_{t,i}) \right)^2,$$
 $CIR_{\alpha} = rac{1}{500} \sum_{i=1}^{500} \mathbf{1} \left\{ \left| F(
u_{t,i}) - \hat{F}(
u_{t,i}) \right| \le q_{\alpha} \hat{\sigma}(
u_{t,i}) \right\}.$

Performances sur données simulées

• On évalue la méthode sur un jeu de données test $(\nu_{t,i})_{i=1}^{500}$ généré de la même manière que les ν_i , avec les critères :

$$RMSE^2 = rac{1}{500} \sum_{i=1}^{500} \left(F(
u_{t,i}) - \hat{F}(
u_{t,i}) \right)^2,$$
 $CIR_{\alpha} = rac{1}{500} \sum_{i=1}^{500} \mathbf{1} \left\{ \left| F(
u_{t,i}) - \hat{F}(
u_{t,i}) \right| \le q_{\alpha} \hat{\sigma}(
u_{t,i}) \right\}.$

modèle	RMSE	CIR _{0.9}
"Wasserstein"	0.094	0.92
"Legendre" ordre 5	0.49	0.92
"Legendre" ordre 10	0.34	0.89
"Legendre" ordre 15	0.29	0.91
"PCA" ordre 5	0.63	0.82
"PCA" ordre 10	0.52	0.87
"PCA" ordre 15	0.47	0.93

Merci pour votre attention.

Références i

F. Bachoc.

Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. *Journal of Multivariate Analysis*, 125:1–35, 2014.

F. Bachoc, F. Gamboa, J.-M. Loubes, and N. Venet. **Gaussian process regression model for distribution inputs.** *arXiv preprint arXiv* :1701.09055, 2017.

C. Berg, J. P. R. Christensen, and P. Ressel. **Harmonic analysis on semigroups.** Springer-Verlag, 1984.

J. Istas.

Manifold indexed fractional fields.

ESAIM Probab. Stat., 16:222-276, 2012.

Références ii

N. Venet.

Nonexistence of fractional brownian fields indexed by cylinders. *arXiv* preprint, 2016.

N. Venet.

On the existence of fractional brownian fields indexed by manifolds with closed geodesics.

arXiv preprint, 2016.

C. Villani.

Optimal transport : old and new, volume 338.

Springer Science & Business Media, 2009.

Avis de recherche:

 $\mathbb{S}^1 \times \mathbb{R}$.

Jeux de données spatiales sur le cylindre