Evolving an artificial "brain"

Course: Artificial intelligence

Robby and a genetic algorithm

dr.sc. Marko Čupić

Zagreb, 2013.

- A robot's job is to collect thrown away bottles
- Robby operates in a grid of dimension 10x10 surrounded by walls
- The blue squares are bottles that need to be collected

- The grid contains 100 cells
- A cell is either empty or contains a bottle to collect
- * The starting position of Robby is the top left corner i.e. position(0,0)
- Robby has a limited field of vision: he sees only the cell where he currently is and adjacent cells (north, south, east, west)

- Actions that the robot can make based on his perception are:
 - do nothing,
 - pick up the bottle from the cell you are on,
 - move to the northern adjacent cell,
 - * move to the southern adjacent cell,
 - move to the eastern adjacent cell,
 - move to the western adjacent cell,
 - move in a randomly chosen direction.

- * To clean the entire grid the robot can use a maximum of 200 actions, the final position of Robby is not important
- Robby can not remember anything, the only information that is at his disposal while standing at cell (i,j) is what he sees from that cell.
- He must make a decision of what to do based on this information alone.

The problem

- The task of Robby is to collect as many bottles as possible within the limited number of actions
- We will use a genetic algorithm to evolve Robby's "brain"

- * How many different perceptions can Robby have?
- Let's count: a cell can contain:
 - Nothing (denoted by 0)
 - Bottle (denoted by 1)
 - Wall (denoted by 2)

* Robby perceives 5 cells in total; these are all the possibilities:

Robby's brain can now be seen as a 162-dimensional vector: at position j is the action for perception j:

Actions for each of 162 possible perceptions

The number of different "brains" is:

$$7 \cdot 7 \cdot 7 \cdot \cdots 7 = 7^{162}$$

Actions for each of 162 possible perceptions

 * If a single "brain" can be evaluated in 1µs, we still need 10½ years, i.e. 10½ times the age of the universe to check them all

- We implement a three-tournament genetic algorithm (TGA)
 - Generate a random population of POP_SIZE "brains" and evaluate them
 - Repeat until finished
 - Randomly choose three individuals
 - Child = Crossover of the better two + mutation
 - Evaluate the child use it to replace the third individual

* Crossover

For each perception copy the action from one of the parents (randomly choose which)

- Mutation
 - With a given mutation probability randomly choose a new action for a perception

* Evaluation

- Simulate the procedure of collecting bottles in the given number of steps in N different worlds
- The total fitness of an individual is the average of performances across worlds
- Scoring actions performed
 - Bottle picked up: +10
 - Picking up bottle on empty cell: -5
 - Crashing into the wall: -10

- Stopping criterion
 - Given number of iterations
 - Finding a solution that is acceptably good

(Simulation)