

AD A110465

MRC Technical Summary Report #2278

PERIODIC SOLUTIONS OF LARGE NORM OF HAMILTONIAN SYSTEMS

Paul H. Rabinowitz

Mathematics Research Center University of Wisconsin—Madison 610 Walnut Street Madison, Wisconsin 53706

September 1981

Received August 12, 1981

Sponsored by

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 Approved for public release Distribution unlimited

National Science Foundation Washington, D. C. 20550

82 02 03 067

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

PERIODIC SOLUTIONS OF LARGE NORM OF HAMILTONIAN SYSTEMS

Paul H. Rabinowitz

Technical Summary Report #2278 September 1981

ABSTRACT

This paper studies Hamiltonian systems of ordinary differential equations. The only assumption made on the Hamiltonian is appropriately rapid growth at infinity. It is proved that for any given period, there is an unbounded sequence of periodic solutions of the system having the given period.

AMS(MOS) Subject Classification: 34C15, 34C25

Key Words: periodic solution, Hamiltonian system, minimax, variational methods, critical point

Work Unit No. 1 - Applied Analysis.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation under Grant No. MCS-8110556.

SIGNIFICANCE AND EXPLANATION

* Hamiltonian systems of ordinary differential equations model the motion of a discrete mechanical system. This paper considers a class of such systems assuming only suitably rapid growth for the Hamiltonian near infinity. Minimax and comparison arguments from the calculus of variations are then used to show that for any prescribed period, there exist arbitrarily large solutions of the system having the given period.

Accession For
NTIS GRAET
DTIC TAB
Unanneuroed
Justification
Ву
Distribution/
oility Codes
il and/or
Dist ' tecial
1 4
OTIC \

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

PERIODIC SOLUTIONS OF LARGE NORM OF HAMILTONIAN SYSTEMS

Paul H. Rabinowitz

Introduction

This paper concerns the existence of periodic solutions of large norm of the Hamiltonian system

(HS)
$$\dot{z} = J_{H_{Z}}(z)$$

where $z \in \mathbb{R}^{2n}$, $z \equiv \frac{dz}{dt}$, $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, I is the identity matrix on \mathbb{R}^n , $H:\mathbb{R}^{2n} \to \mathbb{R}$, and H_z is its gradiant. Let $(a,b)_{\mathbb{R}^j}$ denote the usual inner product in \mathbb{R}^j . The following result was presented in [1]:

Theorem 0.1: Let $H \in C^1(\mathbb{R}^{2n}, \mathbb{R})$ and satisfy

 (H_0) There is an r > 0 and $\mu > 2$ such that

$$0 < \mu H(z) \le (z, H_z(z))_{z=2n}$$

for all |z| > r.

Then for all T, R > 0, (HS) possesses a T periodic solution z(t) with $\max |z(t)| > R.$ $t \in [0,T]$

However the proof of Theorem 0.1 given in [1] was not complete. Under the additional assumption of power growth for H, the result was proved in [2]. Our goal here is to show that Theorem 0.1 holds as stated. The proof we give is in the spirit of the argument in [1]. Solutions of (HS) are obtained as critical points of a corresponding functional $I_{K}(z)$ by minimax arguments. The proof here, however, is more direct avoiding the finite dimensional approximation arguments of [1]. Moreover the choice of sets with

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation under Grant No. MCS-8110556.

respect to which we minimax $I_K(z)$ permits a multiplicity theorem for the corresponding critical values of $I_K(z)$ as well as rather sharp lower bounds for critical values of a comparison problem. The latter estimates play a critical role in establishing the unboundedness of the set of solutions of (HS). The lower bounds given for critical values in [1] are probably too weak for the argument given there to succeed without a power growth assumption for R.

§1. The proof of Theorem 0.1.

By rescaling time if necessary we can assume $T=2\pi$. Let z(t)=(p(t),q(t)) with $p,q\in\mathbb{R}^n$ and set

$$A(z) \equiv \int_{0}^{2\pi} (p(t), q(t)) e^{n} dt,$$

the so-called action integral. The basic idea we use in trying to find periodic solutions of (HS) is to obtain them as critical points of the corresponding functional

(1.1)
$$I(z) = A(z) - \int_{0}^{2\pi} H(z) dt$$

defined on the class of 2π periodic functions under a suitable norm. The form of A(z) suggests working in $E \equiv (W^2, {}^2(s^1))^{2n}$, the space of 2n tuples of 2π periodic functions which possess a square integrable "derivative" of order $\frac{1}{2}$ (See [3]). Unfortunately the H term in I is not necessarily smooth enough for our later purposes nor is I appropriately compact (i.e. I does not satisfy the Palais-Smale condition). Thus following [3] or [4], we truncate H by taking $X_K(s) \in C$ (R,R) such that $X_K(s) \equiv 1$ for $s \leq K$; $\equiv 0$ for $s \geq K+1$; and $X_K^*(s) < 0$ for $s \in (K,K+1)$ and setting

(1.2)
$$H_{K}(z) = \chi_{K}(|z|) H(z) + (1 - \chi_{K}(|z|)) r_{K}|z|^{4}$$
 where r_{K} satisfies

$$r_{K} = \max_{K \leq |z| \leq K+1} \frac{|H(z)|}{|z|^{4}}.$$

With this choice of r_K , it is easy to verify that H_K satisfies (H_0) with μ replaced by $\overline{\mu} = \min(\mu,4)$. Integrating (H_0) then shows that $H_K(z) \ge a_1 |z|^{\overline{\mu}} - a_2$ for all $z \in \mathbb{R}^{2n}$ with a_1,a_2 independent of K.

Let E^+, E^-, E^0 denote respectively the subspaces of E on which A(z) is positive definite, negative definite, and null. A basis for these spaces can be written down explicitly, e.g. if e_1, \cdots, e_{2n} denote the usual orthonormal basis in R^{2n} , set

$$\varphi_{jk} = (\sin jt)e_k - (\cos jt)e_{k+n}$$

$$\psi_{jk} = (\cos jt)e_k + (\sin jt)e_{k+n}$$

$$\theta_{jk} = (\sin jt)e_k + (\cos jt)e_{k+n}$$

$$\zeta_{jk} = (\cos jt)e_k - (\sin jt)e_{k+n}$$

Then

$$\begin{aligned} \mathbf{E}^{+} &= \operatorname{span}\{\varphi_{jk}, \psi_{jk} | j \in \mathbb{N}, \ 1 \leq k \leq n \} \\ \mathbf{E}^{-} &= \operatorname{span}\{\theta_{jk}, \zeta_{jk} | j \in \mathbb{N}, \quad 1 \leq k \leq n \} \\ \mathbf{E}^{0} &= \operatorname{span}\{\varphi_{0k}, \psi_{0k} | 1 \leq k \leq n \} \end{aligned}$$

and $E = E^+ \oplus E^- \oplus E^0$. Thus for $z \in E$, $z = z^+ + z^- + z^0 \in E^+ \oplus E^- \oplus E^0$ and we will take as norm for E

(1.4)
$$|z|^2 = A(z^+) - A(z^-) + |z^0| = |z^+|^2 + |z^-|^2 + |z^0|^2$$

It is easy to verify that this norm makes E a Hilbert space and E^+ , E^- , E^0 are orthogonal subspaces of E with respect to the inner product associated with (1.4) as well as with the L^2 inner product. Moreover

(1.5)
$$I_{K}(z) = A(z) - \int_{0}^{2\pi} H_{K}(z) dt$$
 belongs to $C^{1}(E,R)$. (See [3]).

We will show that $I_K(z)$ possesses an unbounded sequence of critical points which for appropriately chosen K are also critical points of I. This will be done by minimaxing I_K over certain families of sets Γ_j . To show the minimax values $c_j(K)$ produced in this fashion are indeed critical values of I_K requires sufficiently sharp lower bounds for $c_j(K)$. These lower bounds are obtained by minimaxing a comparison functional. Rather than pause now to introduce all of the properties required for the comparison problem, we

will simply assume there is an $M \in C^2(\mathbf{R},\mathbf{R})$ such that

- (m_1) For all K > 0, M has a truncation $M_K \in \mathbb{C}^2(\mathbb{R}, \mathbb{R})$ such that $M_K(s) = M(s)$ for $s \le K$,
- (m_2) $M_K(|z|) > H_K(z)$ for all $z \in \mathbb{R}^{2n}$ and

(1.6)
$$J_{K}(z) \equiv A(z) - \int_{0}^{2\pi} M_{K}(z) dt$$

satisfies $J_K \in C^1(E,R)$. We will make further assumptions concerning M and M_K as necessary. Then we will conclude the proof of Theorem 0.1 by constructing M and M_K having the desired properties. Note that (m_1) and (m_2) imply $M(|z|) \ge H(z)$ for all $z \in R^{2n}$ and (1.6) and (m_2) show $J_K(z) \le I_K(z)$ for all $z \in E$.

The minimax procedure we will use takes advantage of an S¹ invariance possessed by I_K and I. For $z \in E$ and $\theta \in [0,2\pi] \approx S^1$, set (1.7) $(T_A z)(t) = z(t + \theta).$

Then for fixed $z \in E$, $\|T_{\theta}z\|_{L^2}$, $I_K(T_{\theta}z)$, and $J_K(T_{\theta}z)$ remain unchanged as θ varies. We call a subset B of E an invariant set (under $\{T_{\theta}\}$ or S^1) if for all $z \in B$, $T_{\theta}z \in B$ for all $\theta \in [0,2\pi]$. If B is an invariant set, we say $h \in C(B,E)$ is an equivariant map if $h(T_{\theta}z) = T_{\theta}h(z)$ for all $\theta \in [0,2\pi]$ and $z \in B$. Note that the fixed point set of this group of symmetries,

(1.8) Fix $\{T_{\theta}\} \equiv \{z \in E | T_{\theta}^{-1} = z \text{ for all } \theta \in [0,2\pi]\} = E^0$. Let E denote the family of closed invariant subsets of $E \setminus \{0\}$. In [5], an index theory defined on E was introduced and we shall use it below. The properties we need are summarized in the following result:

Lemma 1.9: There is an index theory, i.e. a mapping i: $E + W \cup \{\infty\}$ such that if B, B₁ $\in E$,

- 10 i(B) \leq i(B₄) if there is a $\varphi \in C(B,B_1)$ with φ equivariant
- 2• $i(B \cup B_1) \le i(B) + i(B_1)$
- 3° If $B \subseteq E \setminus E^0$ and B is compact, $i(B) < \infty$ and there is a $\delta > 0$ such that $i(N_{\delta}(B)) = i(B)$ where $N_{\delta}(B) = \{x \in E | ||x B|| < \delta\}$.
- 4° If $S \subset E \setminus E^0$ is a 2n dimensional invariant sphere, i(S) = n.

 With these preliminaries in hand, several families of sets can be introduced. For $m \in \mathbb{N}$, let

(1.10)
$$V_{m} = \operatorname{span}\{\varphi_{jk}, \psi_{jk} \mid j \leq [m/n], k \leq m - nj\} \oplus E^{-} \oplus E^{0}$$
 where [a] denotes the greatest integer in a. Then V_{m} is an invariant subspace of E . By (1.3) and the Hölder inequality,
$$(1.11)J_{K}(z) \leq I_{K}(z) \leq |z^{+}|^{2} - a_{3}|z|^{\frac{1}{\mu}}_{L^{2}} + 2\pi a_{4} \leq |z^{+}|^{2} - a_{3}|z^{+}|^{\mu-}_{L^{2}} + 2\pi a_{4}.$$

Since $V_m \cap E^+$ is m dimensional and $\bar{\mu} > 2$, (1.11) shows there is an $R_m > 0$ and independent of K such that

(1.12)
$$I_{K}(z) \le -2\pi M(0)$$

for all $z \in V_m$ such that $\|z\| > R_m$. Let B_R denote the closed ball of radius R in E centered about 0. Set $D_m = B_{R_m} \cap V_m$. Then D_m is an invariant set. Let P denote the orthogonal projector of E onto E. Let G_m denote the class of mappings $h \in C(D_m, E)$ which satisfy the following properties:

- (g₁) h is equivariant
- (g_2) h(z) = z for $z \in (\partial B_R \cap V_m) \cup E^0$
- (g₃) $P^{-}h(z) = \alpha(z)z^{-} + \psi(z)$ where $\psi(z)$ is compact and $\alpha \in C(D_{m}, [1, \overline{\alpha}])$, $\overline{\alpha}$ depending on h.

Since $h(z) = z \in G_m$ for all $m \in N$, $G_m \neq \phi$.

Finally for $j \in W$, define

(1.13)
$$\Gamma_{\mathbf{j}} = \{\overline{h(D_{\mathbf{m}} \setminus Y)} | \mathbf{m} > \mathbf{j}, h \in G_{\mathbf{m}}, Y \in E, \text{ and } i(Y) \leq \mathbf{m} - \mathbf{j}\}.$$

This class of sets resembles somewhat a class used in [5]. We will minimax

 I_{K} and J_{K} over this class. First we briefly study Γ_{+} :

Lemma 1.14: The classes Γ_{ij} possess the following properties:

1° (Monotonicity):
$$\Gamma_{j+1} \subset \Gamma_{j}$$

2° (Excision): If B
$$\epsilon$$
 Γ and Z ϵ E with i(Z) \leq s \leq j, then
$$\overline{B \backslash Z} \ \epsilon \ \Gamma_{j-s}$$

3° (Invariance): If $\varphi \in C(E,E)$ and satisfies (g_1) , (g_3) and (g_2) for all m > j, then $B \in \Gamma_j$ implies $\overline{\varphi(B)} \in \Gamma_j$.

Proof: The definition of Γ_{j} implies 1°. To prove 2°, let $B = \overline{h(D_{m} \setminus Y)} \in \Gamma_{j}$. We claim

(1.15)
$$\overline{B/Z} = \overline{h(D_{\overline{M}}/(Y \cup h^{-1}(Z)))}.$$

Assuming this for the moment, since $h \in G_m$, $Y \cup h^{-1}(Z) \in E$. Hence by 2° and 1° of Lemma 1.9,

$$i(Y \cup h^{-1}(Z)) \le i(Y) + i(h^{-1}(Z)) \le i(Y) + i(Z) \le m - (j-s).$$

Thus $\overline{B \setminus Z} \in \Gamma_{j-s}$. To verify (1.15), note first that $b \in h(D_m \setminus (Y \cup h^{-1}(Z)))$ implies $b \in h(D_m \setminus Y) \setminus Z \subset B \setminus Z$, i.e.

(1.16)
$$h(D_{\overline{M}} \setminus (Y \cup h^{-1}(Z))) \subset \overline{B \setminus Z}.$$

Similarly,

(1.17)
$$B\setminus Z \subseteq h(D_{m}\setminus (Y \cup h^{-1}(Z)))$$

so combining (1.16)-(1.17) yields (1.15). Lastly to get 3°, again let

 $B = \overline{h(D_m \setminus Y)} \in \Gamma_1$. It is straightforward to show that

$$\varphi(B) \subset \overline{(h(D \setminus Y))} \subset \overline{\varphi(B)}$$
.

Therefore

(1.18)
$$\overline{\varphi(B)} = \overline{\varphi(h(D_{\underline{m}} Y))} \in \Gamma_{\underline{q}}$$

since $\varphi \circ h \in G_m$.

The next result which is based on related intersection theorems in [6] is crucial for our later estimates.

Proposition 1.19: Let $h \in G_m$, $j \le m$, $\rho < R_m$, and $\theta = \{z \in D_m | h(z) \in \partial B_\rho \cap V_{j-1}^{\perp} \}$

Then θ is compact and $i(\theta) \le m-j+1$.

Proof: Due to the way in which it is defined, Θ is closed and invariant. Since $h(E^0) = E^0 \subset V_0$ via (g_2) and $0 \cap V_0 = \emptyset$, $\Theta \cap E^0 = \emptyset$. To see that Θ is compact, let (z_1) be a sequence in Θ . Since D_m is bounded, by restricting to a subsequence if necessary, we can z_1 converges weakly to some $z \in E$, i.e. $z_1 = z_1 = z_2$. Since D_m is closed and convex, it is weakly closed so $z = z^+ + z^- + z^0 \in D_m$. Writing $z_1 = z_1^+ + z_1^- + z_1^0$, we can assume $z_1^+, z_1^0 + z_1^+, z_2^0$ since E^0 and $V_m \cap E^+$ are finite dimensional subspaces of E. Moreover by (g_3)

(1.20)
$$P[h(z_i) = \alpha(z_i)z_i + \psi(z_i)]$$

where $1 \le \alpha(z_i) \le \overline{\alpha}$, $\overline{\alpha}$ depending on h, and ψ is compact. Thus $z_i^- = -\alpha(z_i^-)^{-1}\psi(z_i^-)$

so z_1 and hence z_1 has a strongly convergent subsequence. Consequently 9 is compact and by 3° of Lemma 1.9, $i(0) < \infty$ and there is a $\delta > 0$ such that

(1.21)
$$i(0) = i(N_{\delta}(0))$$

To estimate i(0), a finite dimensional approximation argument will be used. Let

$$E_{k} = span\{\varphi_{\sigma_{i}}, \psi_{\sigma_{i}}, \theta_{\sigma_{i}}, \zeta_{\sigma_{i}} | 0 \le \sigma \le k, 1 \le l \le 2n\}$$

and let P_k denote the orthogonal projector of E onto E_k . Thus E_k is an invariant subspace of E, $P_k h \in C(P_k D_m, E_k)$ is equivariant, and for $k \ge m$, $P_k h(z) = z$ for $z \in E^0 \cup (\partial B_R \cap V_m \cap E_k)$. Therefore $(P_k h)^{-1} (B_p \cap E_k)$ is a closed invariant neighborhood of 0 in $V_m \cap E_k$. Let 2 denote the

component of $(P_kh)^{-1}(B_{\rho} \cap E_k)$ which contains 0. Then Ω is contained in the interior of $B_{R_m} \cap V_m \cap E_k$. Let \widetilde{P}_j denote the orthogonal projector of $V_m \cap E_k$ onto $V_{j-1} \cap E_k$. Thus $f = \widetilde{P}_j P_k h \in C(\Omega, V_{j-1} \cap E_k)$, is equivariant, and f(z) = z for $z \in E^0 \cap \Omega$. But then f, Ω satisfy the hypotheses of Theorem 2.3 of [6] which guarantees that

(1.22)
$$i(f^{-1}(0) \cap \partial\Omega) > m-j+1.$$

At zeroes of f on $\partial\Omega$, we have $P_kh(z) \in \partial B_\rho \cap V_{j-1}^1$. Thus (1.22) and 1° of Lemma 1.9 imply

$$\Theta_{\mathbf{k}} \equiv \{ \mathbf{z} \in D_{\mathbf{m}} | \mathbf{P}_{\mathbf{k}} \mathbf{h} \in \partial \mathbf{B}_{\mathbf{p}} \cap \mathbf{v}_{\mathbf{j-1}}^{\perp} \}$$

satisfies

(1.23)
$$i(\theta_{k}) > m-j+1.$$

We claim $0_k \in N_\delta(\theta)$ for all large k. The completion of the proof is then immediate via 1° of Lemma 1.9, (1.23), and (1.21). Arguing indirectly, if $0_k \not \in N_\delta(\theta)$ for all large k, then there is a sequence of k's $\to \infty$ for which $z_k \in 0_k$ but $z_k \not \in N_\delta(\theta)$. Writing $z_k = z_k^+ + z_k^- + z_k^0$, as above we can assume z_k^+, z_k^0 converge and

$$P_{k}^{T}h(z_{k}) = \alpha(z_{k})z_{k}^{T} + P_{k}\psi(z_{k}) = 0.$$

This implies z_k^- also converges so $z_k^+ z \in D_m^-$. Moreover since $(1.24) \|h(z) - P_k h(z_k)\| \le \|h(z) - P_k h(z)\| + \|P_k (h(z) - h(z_k))\| + 0$ as $k^+ = and P_k h(z_k) \in \partial B_\rho \cap V_{j-1}^\perp$, it follows that $z \in 0$. On the other hand $z \notin N_{\delta/2}(0)$, a contradiction. Thus $0 \in N_{\delta}(0)$ for large k and the proposition is proved.

Corollary 1.25: Under the hypotheses of Proposition 1.19, if $Y \in E$,

 $i(Y) \le m-j$ and $W = \overline{O} \setminus Y$, then

(1.26)
$$\overline{h(O_m \setminus Y)} \cap \partial B_O \cap V_{j-1}^{\perp} \supset h(W) \neq \phi.$$

Proof: W is compact and

$$h(W) \subseteq \overline{h(D_m \setminus Y)} \cap \partial B_O \cap V_{1-1}^{\perp}$$

Hence by 1° and 2° of Lemma 1.9 and Proposition 1.19,

(1.27)
$$i(\overline{h(D_{M} \setminus Y)}) \cap \partial B_{p} \cap V_{j-1}^{\perp} > i(h(W)) > i(W) > i(0) - i(Y) > 1$$
 so (1.26) follows.

Having completed the above preliminaries, we can now define a sequence of minimax values for \mathbf{I}_K and \mathbf{J}_{K^\bullet} Let

(1.28)
$$c_{j}(K) = \inf_{B \in \Gamma_{j}} \sup_{z \in B} I_{K}(z),$$

(1.29)
$$b_{j}(K) = \inf_{B \in \Gamma_{j}} \sup_{z \in B} J_{k}(z).$$

By (1.11) we have

(1.30)
$$c_{j}(K) > b_{j}(K), j \in \mathbb{N}, K \in \mathbb{R}^{+}$$

and by 1° of Lemma 1.14, we see that

(1.31)
$$c_{j+1}(K) > c_{j}(K); b_{j+1}(K) > b_{j}(K) > b_{1}(K)$$

An estimate for b₁(K) will be needed later. Set

$$\vec{M}(s) = M(s) - M(0); \quad \vec{M}_{K}(s) = M_{K}(s) - M(0).$$

We assume that

$$(m_3)$$
 $\bar{M}(s) = o(s^2)$ at $s = 0$

and

 (m_4) $M_{K}(s)$ is strictly monotonically increasing in s and tends to $m_{K}(s)$ as $s + \infty$.

Let

$$\vec{J}_{K}(z) \equiv A(z) - \int_{0}^{2\pi} \vec{M}_{K}(z) dt.$$

Then

(1.32)
$$b_{j}(K) = \inf_{B \in \Gamma_{j}} \sup_{z \in B} \overline{J}_{K}(z) - 2\pi M(0) = \overline{b}_{j}(K) - 2\pi M(0).$$

Lemma 1.33: $b_1(K) > 0$.

Proof: Since $\overline{M}(s) = O(s^2)$ at s = 0, by Lemma 3.35 of [3],

(1.34)
$$\int_{0}^{2\pi} \tilde{M}_{k}(z) dt = 0 (||z||^{2}) \text{ at } z = 0.$$

Let $B \in \Gamma_1$ so $B = \overline{h(D_m Y)}$ for some $h \in G_m$, $m \ge 1$, $Y \in E$ and $i(Y) \le m-1$. Since $V_0^{\downarrow} = E^{+}$, by Corollary 1.25 with j = 1, for any $P \le R_m$, there is a $\widehat{z} \in D_m \setminus Y$ such that $h(\widehat{z}) \in \partial B_p \cap E^{+}$. Hence $\sup_{B} \overline{J}_K(z) \ge \overline{J}_K(h(\widehat{z})) = \|h(\widehat{z})\|^2 - \int_0^{2\pi} \overline{M}_K(h(\widehat{z})) dt$

$$= \rho^2 - \int_0^{2\pi} \bar{n}_k(h(\hat{z})) dt.$$

By (1.34), $\rho = \rho(K) \leq R_1$ can be chosen so that

$$\int_{0}^{2\pi} \bar{M}_{K}(z) dt \leq \frac{1}{2} \|z\|^{2}$$

for |z| < p. Therefore

(1.35)
$$\sup_{z} \bar{J}_{k}(z) > \rho^{2} - \frac{1}{2}\rho^{2} = \frac{1}{2}\rho^{2}$$
.

Since B $\in \Gamma_1$ was arbitrary, (1.35) shows $\bar{b}_1(K) > \frac{1}{2}\rho^2 > 0$ where $\rho = \rho(K)$.

Our next goal is to prove that the minimax values $\bar{b}_j(K)$ are critical values of \bar{J}_k . This requires a variant of a standard "Deformation Theorem".

Let $\Psi \in C^1(\mathbb{R}^{2n},\mathbb{R})$ and for some constants s, α_1 , $\alpha_2 > 0$ satisfy

$$|\Psi(z)| \leq \alpha_1 |z|^s + \alpha_2$$

for all $z \in \mathbb{R}^{2n}$. Then

$$\int_{0}^{2\pi} \Psi(z) dt \quad \text{and} \quad \Phi(z) = A(z) - \int_{0}^{2\pi} \Psi(z) dt$$

belong to $C^1(E,R)$ - see [3]. We say Φ satisfies the Palais-Smale condition (PS) if whenever (i) $\Phi(z_m)$ is uniformly bounded and (ii) $\Phi^*(z_m) \neq 0$, then (z_m) possesses a convergent subsequence. Let $K = \{z \in |\Phi(z)| = c\}$

and $\Phi^*(z) = 0$ and $A = \{z \in E | \Phi(z) \le c\}$.

Lemma 1.36: Let Ψ be as above with $\Phi \in C^1(E,R)$. If Φ also satisfies (PS), then for any $c \in R$, $\overline{c} > 0$, and invariant neighborhood θ of K_c , there is an $\varepsilon \in (0,\overline{\varepsilon})$ and $\eta \in C([0,1] \times E,E)$ such that

1° $\Pi(t, \cdot)$ is equivariant for all $t \in [0, 1]$

2° $\Pi(t, \cdot)$ is a homeomorphism of E onto E for all $t \in [0, 1]$

 3° $\eta(0,z)=z$

4°
$$\eta(t,z) = z$$
 if $\Phi(z) \notin [c-\overline{\epsilon},c+\overline{\epsilon}]$

5.
$$\eta(1,A_{C+\epsilon}^{9}) \subset A_{C-\epsilon}$$

6° If
$$K_c = \phi$$
, $n(1, A_{c+\epsilon}) \subset A_{c-\epsilon}$

7° $p^{-}n(1,z)$ satisfies (g_3) .

Proof: The result without assertions 1° and 7° is well known - see e.g. [7] or [8]. Moreover given an equivariant pseudogradiant vector field V(z) for $\Phi^*(z)$, 1° also follows via the proof of [8]. The existence of such a V(z) of the form $V(z) = A^*(z) + P(z)$ with P compact is given e.g. in [9]. Lastly 7° follows since $P^-\Pi(t,z)$ is determined as the solution of the initial value problem for the ordinary differential equation:

(1.37)
$$\frac{dP \eta}{dt} = -\beta(\eta) P (A^*(\eta) + P(\eta))$$

$$P \eta(0,z) = P z = z$$

where β is a scalar function with $0 \le \beta \le 1$. Since $PA'(\eta) = -2P^{-1}\eta$,

$$P^{-}\eta(t,z) = z^{-} \exp \int_{0}^{t} 2\beta(\eta(s,z))ds$$

(1.38)

+
$$\int_{0}^{t} (\exp \int_{0}^{t} 2\beta(\eta(s,z))ds)P(\eta(\tau,z))d\tau$$
.

Hence $P^{-1}(t,z)$ has the form (g_3) .

Remark 1.39: Due to the form of the truncation involved, $I_K \in C^1(E,R)$ and as we shall see later, J_K , $\overline{J}_K \in C^1(E,R)$. Moreover this form implies I_K , J_K , \overline{J}_K satisfy (PS) - see [3]. Actually [3] only proves any sequence (z_m) satisfying (i) and (ii) (for I_K , J_K , or \overline{J}_K) is bounded. Therefore z_m converges weakly in E and z_m^0 converges strongly in E (along some subsequence). Since $P^{\frac{1}{2}}$ (z) = \pm $z^{\frac{1}{2}}$ + $P^{\frac{1}{2}}$ $\widetilde{P}(z)$ with \widetilde{P} compact see [3] - (ii) and the weak convergence of $z_m^{\frac{1}{2}}$ imply the strong convergence of $z_m^{\frac{1}{2}}$ and hence (PS).

Now we are in a position to establish that the \vec{b}_j (K)'s are critical values of \vec{J}_k .

Lemma 1.40:

- 1• $\overline{b}_{j+1}(K) > \overline{b}_{j}(K)$
- 2° $\vec{b}_{j}(K)$ is a critical value of \vec{J}_{K}
- 3° Any critical points of \vec{J}_{κ} corresponding to $\vec{b}_{\kappa}(\kappa)$ lie in $\epsilon \setminus \epsilon^0$
- 4° If $\vec{b}_{j+1}(K) = \cdots = \vec{b}_{j+1}(K) \equiv b$ and $K \equiv (\vec{J}_{K}^{*})^{-1}(0) \cap \vec{J}_{K}^{-1}(b)$, then i(K) > 1.

Proof: Statement 1° follows from (1.31) and (1.32). To prove 2°, it suffices to prove the stronger multiplicity assertion 4°. Note first that since \overline{J}_K satisfies (PS), K is compact. For $z \in E^0$, $\overline{J}_K \le 0$ via (m_4) and the definition of \overline{M}_K . Moreover by 1° of this lemma and Lemma 1.33, $\overline{b}_j(K) > \overline{b}_1(K) > \frac{1}{2}\rho^2(K) > 0$. Hence $K \cap E^0 = \phi$ and 3° follows. Now by 3° of Lemma 1.9 there is a $\delta > 0$ such that $i(N_{\delta}(K)) = i(K)$. Suppose $i(K) \le \ell-1$. We invoke Lemma 1.36 with $\Phi = \overline{J}_K$, $c = \overline{b}$, $\overline{\epsilon} = \frac{1}{4}\rho^2(K)$, and $\theta = N_{\delta}(K)$. Thus there is an $\epsilon \in (0,\overline{\epsilon})$ and $\eta \in C(\{0,1\} \times E,E)$ satisfying 1°-7° of Lemma 1.36. Choose $B \in \Gamma_{j+\ell}$ such that $\sup_{K \in K} \overline{J}_K \le b + \epsilon$

1.41) $\sup_{K} \overline{J}_{K} \leq b + \epsilon$

By 2° of Lemma 1.14, $\overline{B\setminus O}\in \Gamma_{j+1}$. The definition of R_m - see (1.12) - implies that $\overline{J}_K(z)=J_K(z)+2\pi M(0)\leq 0$ for $z\in \partial B_R\cap V_m$. As was noted above $\overline{J}_K\leq 0$ on E^0 . Thus by 4° of Lemma 1.36, $\eta(1,z)=z$ for $z\in E^0\cup (\partial B_R\cap V_m)$ for all $m\in M$ and $\eta(1,z)$ satisfies (g_2) . Moreover 1° and 7° of Lemma 1.36 imply $\eta(1,z)$ satisfies (g_1) and (g_3) . Hence $\eta(1,z)\in G_m$ for all $m\in M$. Consequently by 3° of Lemma 1.14, $Q\equiv \eta(1,\overline{B\setminus O})\in \Gamma_{j+1}$. Note that $Q=\eta(1,\overline{B\setminus O})$ via 2° of Lemma 1.36. Thus by the definition of $\overline{b}_{j+1}(X)$,

(1.42)
$$\sup_{Q} \vec{J}_{K} > b$$
 while by (1.41) and 5° of Lemma 1.36

(1.43)
$$\sup_{C} \bar{J}_{K} \leq b-\varepsilon,$$

a contradiction. Thus the Lemma is proved.

Next we will make a closer study of the critical values $\vec{b}_j(K)$ of \vec{J}_K . Let z = (p,q) be a corresponding critical point. Then - see e.g. [3] - z is a classical solution of

(1.44)
$$\begin{cases} p = -\frac{\partial}{\partial q} \, \overline{M}_{K}(|z(t)|) = -M_{K}^{1}(|z(t)|) \frac{q}{|z|} \\ q = \frac{\partial}{\partial p} \, \overline{M}_{K}(|z(t)|) = M_{K}^{1}(|z(t)|) \frac{p}{|z|} \end{cases}$$

Condition (m_3) guarantees that there are no problems with the right hand side of (1.44) if $z(t_0)=0$. Since (1.44) is a Hamiltonian system, $M_K(|z(t)|)$ is independent of t. Therefore by (m_4) , |z(t)| must be constant and nonzero since $\bar{b}_1(k) > \bar{b}_1(K) > 0$. Differentiating (1.44) then yields

$$\ddot{\mathbf{p}} = -\frac{\ddot{\mathbf{M}}_{K}^{*}(|\mathbf{z}(\mathsf{t})|)}{|\mathbf{z}|} \quad \dot{\mathbf{q}} = -\left(\frac{\ddot{\mathbf{M}}_{K}^{*}(|\mathbf{z}|)}{|\mathbf{z}|}\right)^{2} \mathbf{p}$$

with q satisfying the same equation. We know exactly what all solutions of (1.45) are and in order for them to be 2π periodic, it must be the case that

$$\frac{\vec{M}_{K}^{i}(|z|)}{|z|} = k$$

for some $k \in \mathbb{N}$. Then p,g have the form

(1.47)
$$\begin{cases} p(t) = \alpha \cos kt + \beta \sin kt \\ \\ q(t) = \alpha \sin kt - \beta \cos kt \end{cases}$$

where $\alpha, \beta \in \mathbb{R}^n$ and $|z(t)|^2 = \alpha^2 + \beta^2$. Thus for each $k \in \mathbb{N}$, we get a 2n-1 dimensional sphere S_k in E (or L^2) of solutions of (1.44). Since S_k is also an invariant set and lies in $E \setminus E^0$, by 4° of Lemma 1.9, $i(S_k) = n$.

Suppose that $M_K'(s) = M_K'(s)$ is strictly monotone and tends to infinity as $s \to \infty$.

Then (1.46) shows that |z(t)| is a monotone increasing function of k which goes to infinity as $k+\infty$. The critical value of \overline{J}_K corresponding to any $z \in S_k$ is

$$\vec{J}_{K}(z) = \int_{0}^{2\pi} (p, q) - \vec{M}_{K}(z) dt$$
(1.48)

$$= 2\pi (\frac{1}{2}|z| \tilde{M}_{K}^{*}(|z|) - \tilde{M}_{K}^{*}(|z|)).$$

Thus if M_K satisfies

 (m_6) $\frac{1}{2} s \, \overline{M}_K^*(s) - M_K^*(s)$ is strictly monotone increasing in s then on the set of its critical points, \overline{J}_K is a monotone function of |z| and via (m_5) of k.

Lemma 1.49: $\bar{b}_{j}(K) > J_{K}|_{S_{k}}$ where k = [j/n].

Proof: This follows by combining our above observations. By 1° of Lemma 1.40, the critical values $\vec{b}_j(K)$ form a nondecreasing sequence in j and by 4°, a multiple critical value of "multiplicity" k has a corresponding set of critical points of index at least k. All critical points of \vec{J}_K are of the form (1.47) and combine in families S_k of index n. All $z \in S_k$ have $|z(t)| = \text{constant} = Y_k$ with Y_k independent of z and by (m_S) , Y_k is a monotonically increasing function of k. Moreover by (m_S) and (m_S) $\vec{J}_K|_{S_k} = \sigma_k$ also is a monotonically increasing function of k. Thus the j^{th} minimax value $\vec{b}_j(K)$ must come from family \vec{k} where $\vec{k} \geq \{j/n\} = k$.

Corollary 1.50: If M satisfies

$$(m_7)$$
 $\frac{1}{2} \times \overline{M}_{K}^{1}(s) > \theta \overline{M}_{K}(s)$ where $\theta > 1$,

then

(1.51)
$$\overline{J}_{K|S_n} > 2\pi(\theta-1) \overline{M}_{K}(M_{K}^{-1}(k)) + \infty$$
 as $k + \infty$.

Proof: By (1.45) and (m_7) , for $z \in S_k$,

$$\tilde{J}_{K}(z) \geq 2\pi(\theta-1)\tilde{M}_{K}(Y_{k})$$

so the result follows from (1.46) and (m_5) .

Remark 1.52: Note that from (1.51) for any k, by choosing K(k) sufficiently large, we have $\overline{M}_{K}(M_{K}^{-1}(k)) = \overline{M}(M^{-1}(k))$ independently of K.

With the aid of the lower bounds established above for $\bar{b}_j(K)$ and therefore $b_j(K)$, we will study the minimax values $c_j(K)$.

Lemma 1.53: If $c_{j}(K) > 2\pi a_{2}$,

- (i) $c_{j}(K)$ is a critical value of I_{K} .
- (ii) Any corresponding critical point lies in E/E⁰.

(iii) If
$$c_{j+1}(K) = \cdots = c_{j+\ell}(K) \equiv c > 2\pi a_2$$
,
 $i(I_K^{-1}(c) \cap (I_K^*)^{-1}(0)) > \ell$.

Proof: Note that

$$\sup_{E^0} I_{K} = 2\pi \sup_{E^0} (-H_{K}(z)) \le 2\pi \sup_{E^0} (a_2 - a_1|z|^{\frac{1}{\mu}})$$

via (1.3). Thus if $c_j(K) > 2\pi a_2$, an argument paralleling that of Lemma 1.40 yields (i)-(iii) above. We will omit the details.

Remark 1.54: Since $c_j(K) > b_j(K) + \infty$ as $j + \infty$ via Lemma 1.49, (1.51) and the definition of $\tilde{b}_j(X)$, the requirement that $c_j(K) > 2\pi a_2$ is satisfied for all large j, say $j > j_0(X)$. Moreover Remark 1.52 shows j_0 can be chosen independently of K for K suitably large, say $K > K_0$. For what follows we restrict ourselves to $K > K_0$.

John But Ball State Comment

The next two lemmas provide K independent bounds for $c_j(K)$ and corresponding critical points $z_i(K)$.

<u>Lemma 1.55:</u> For $j > j_0$, there is a constant d_j independent of K such that $c_j(K) \le d_j$.

Proof: Choosing h(z)=z and $Y=\phi$ in the definition of Γ_j we see $B=D_j\in\Gamma_j$. Hence by (1.28) and our choice of j,

(1.56)
$$0 < c_{j}(K) \le \sup_{j} I_{K}(z).$$

Let $z \in D_j$ such that $I_K(z) > 0$. Since $D_j \subset V_j$,

(1.57)
$$A(z) \le |z^{+}|^{2} \le j|z^{+}|^{2}.$$

On the other hand, by (1.56) and (1.3),

$$(1.58) \ \ A(z) \ge \int_{0}^{2\pi} H_{K}(z) dt \ge a_{1} \int_{0}^{2\pi} |z|^{\mu} dt - 2\pi a_{2} \ge a_{3} \left(\int_{0}^{2\pi} |z^{+}|^{2} \right)^{\overline{\mu}/2} - 2\pi a_{2}$$

where a_3 is independent of K and $\overline{\mu} > 2$. Consequently (1.57)-(1.58) successively imply K independent bounds for $\|z^{\dagger}\|_{L^2}$ and $\|z^{\dagger}\|_{L^2}$. Hence by (1.3) again,

$$I_{K}(z) \le ||z|^{+}||^{2} + 2\pi a_{2}$$

which is bounded from above by a constant d_j independent of K and any such $z \in D_j$. The lemma now follows from (1.56).

Lemma 1.59: Let $z_j(K)$ be a critical point of I_K with critical value $c_j(K)$. Then there is a constant δ_j independent of K such that $\|z_j(K)\|_{T^{\infty}} \le \delta_j$.

Proof: For notational convenience we will drop the K when referring to $z_j(K)$. Since $I_K'(z_j)z_j=0$, by (H_0) (for H_K),

$$c_{j}(K) = I_{K}(z_{j}) - \frac{1}{2} I_{K}(z_{j}) z_{j}$$

$$= \int_{0}^{2\pi} \left[\frac{1}{2} (z_{j}, H_{Kz}(z_{j})) R^{2n} - H_{K}(z_{j}) \right] dt$$

$$\geq (2^{-1} - \bar{\mu}^{-1}) \int_{0}^{2\pi} (z_{j}, H_{Kz}(z_{j})) R^{2n} dt - a_{4}.$$

where a₄ is a constant independent of K. Then (1.60) and Lemma 1.55 yield a K independent upper bound for

Next observe that by (H $_0$) again and the fact that z_j is a solution of a Hamiltonian system, we have

(1.61) $2^{\pi}H_{K}(z_{j}) = \int_{0}^{2\pi} H_{K}(z_{j}) dt \leq \overline{\mu}^{-1}H_{\overline{z}_{j}}H_{Kz}(z_{j}) \Big|_{R^{2n}L^{1}} + a_{5}$ where a_{5} is a K-independent constant. Thus $H_{K}(z_{j})$ and therefore by (1.3) z_{j} are bounded in L^{∞} independently of K. Hence the Lemma.

Modulo the construction of M and M_K , we can now complete the:

Proof of Theorem 0.1: It suffices to show that I(z) has an unbounded sequence of critical values c_j . Indeed if z is a critical value of I, as in (1.60) we have

(1.62) $I(z) = \int_{0}^{2\pi} \left[\frac{1}{2} (z, H_{Z}(z)) - H(z) \right] dt$ so if the set of critical points of I were bounded in L, the corresponding set of critical values also would be bounded via(1.62).

For each $j > j_0$, choose $K_j > \max(\delta_j, M^{-1}(j))$. Let $z_j = z_j(K_j)$ be a critical point of I_{K_j} with critical value $c_j(K_j)$. By Lemma 1.59, $\|z_j\|_{L^\infty} \le \delta_j$. Hence by our choice of K_j , $H_{K_j}(z_j) = H(z_j)$ and $H_{KZ}(z_j) = H_{Z_j}(z_j)$. Consequently z_j is a solution of (HS) and a critical point of I with critical value $c_j = c_j(K_j)$ via (1.62). By (1.30), (1.32), (1.51), Remark 1.52, and our choice of K_j ,

$$I_{K_{j}}(z_{j}) = c_{j}(K_{j}) > \vec{b}_{j}(K_{k}) - 2\pi M(0)$$

$$(1.63)$$

$$> 2\pi (\theta - 1) \hat{A}(M^{-1}(j)) - 2\pi M(0) + \infty \text{ as } j + \infty.$$

Hence $c_j + \infty$ as $j + \infty$.

It remains to construct the functions M(s) and M_K(s) satisfying (m_1) - (m_7) . To begin, choose $\varphi(z)$ such that

(a)
$$\varphi(s) = \alpha_0 + \alpha_1 s^4$$
 for $s \in [0,1]$ where $\alpha_0 > 2^s$ max $|H(z)|$ $|z| \le s$

(b)
$$\varphi|s| \ge 2^5 \max_{z \in A} |H(z)|$$

|z| s+1
(c)
$$\varphi \in \mathbb{C}^2$$
 and $\varphi'(s), \varphi''(s) > 0$ if $s > 0$.

Set M(s) $\equiv e^{\varphi(s)}$. Then with the aid of (a), (b), (c) we have:

(a')
$$M \in \mathbb{C}^2$$
 and $M'(s)$, $M''(s) > 0$ if $s > 0$

(b')
$$M(s) > \varphi(s)$$

$$(c^*)$$
 s $M^*(s) > 3 M^*(s)$ for $s > 0$.

These facts and simple computations imply:

(i)
$$M(s) = M(s) - M(0) = o(s^2)$$
 at $s = 0$

(ii)
$$M(\{z\}) \ge |H(z)|$$
 for all $z \in \mathbb{R}^{2n}$

(iii)
$$M(s)$$
, $M(s) = \frac{M'(s)}{s}$, $\frac{s}{2}M'(s) - M(s)$ are strictly monotonically increasing

(iv)
$$\frac{1}{5} = \frac{1}{5} =$$

Define $M_{K}(s) \equiv M(s)$ for $s \leq K$ and for $s \geq K$

$$M_{K}(s) = M(K) + M'(K)(s-K) + \frac{M''(K)}{2}(s-K)^{2} + \rho_{1}(s-K)^{4}$$

We can assume $K \ge 1$. Then $M_K \in \mathbb{C}^2$ and satisfies (m_1) and (m_3) . Moreover (1.64) s M_K^n $(s) > 3 M_K^n$

for $s \in \{K, K + \varepsilon_K\}$ for some $\varepsilon_K > 0$ via (c') above. Therefore by choosing $\rho_1(K)$ sufficiently large, (1.64) holds for all s > K. This fact and (iii) - (iv) quickly yield $(m_4) - (m_7)$. Lastly to verify (m_2) , i.e. $M_K(|z|) > |H_K(z)|$, note that this is true for $|z| \le K$ via (ii). For

|z| > K+1, comparing M_K and H_K shows the desired inequality holds if

 $\rho_1(K) > 8r_K(1+K^4)$. Lastly for K < |z| < K+1, by the definition of r_K ,

$$|H_{k}(z)| \le |H(z)| + r_{K}(K+1)^{4} \le$$

$$\leq \left[1+\left(\frac{K+1}{K}\right)^4\right] \max_{|\zeta|\leq K+1} |H(\zeta)| \leq M(K) \leq M(|z|).$$

The proof of Theorem 0.1 is complete.

References

- Rabinowitz, P. H., A variational method for finding periodic solutions of differential equations: Nonlinear Evolution Eq.,
 M. G. Crandall, ed.; Academic Press, New York, 1978, 225-251.
- 2. Rabinowitz, P. H., On large norm periodic solutions of some differential equations, to appear in Ergodic Theory and Dynamical Systems, Proc. Sp. Yr- Maryland 1979-80, A. Katok, ed.
- Benci, V. and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., <u>52</u>, (1979), 336-352.
- 4. Rabinowitz, P. H., Periodic solutions of Hamiltonian systems, Comm.

 Pure Appl. Math., 31, (1978), 157-184.
- 5. Fadell, E. R. and P. H. Rabinowiz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45, (1978), 139-174.
- for arbitrary S¹ actions and applications, Math Research Center

 Technical Summary Report, University of Wisconsin-Madison, 1981.
- 7. Clark, D. C., A variant of the Ljusternick-Schnirelman theory, Ind.
 Univ. Math. J., 22, (1972), 65-74.
- 8. Rabinowitz, P. H., Variational methods for nonlinear eigenvalue problems, Proc. Sym. on Eigenvalues of Nonlinear Problems, Edizioni Cremonese, Rome, 1974, 141-195.
- 9. Benci, V., On critical point theory for indefinite functionals in the presence of symmetry, to appear Trans. Amer. Math. Soc.

PHR/db

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS DEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
2278	-10-A110 4	65	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
PERIODIC SOLUTIONS OF LARGE NORM OF HAMILTONIAN SYSTEMS		Summary Report - no specific	
		reporting period	
		6. PERFORMING ORG. REPORT NUMBER	
}		The state of the s	
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)	
Paul H. Rabinowitz		DAAG29-80-C-0041	
		MCS-8110556	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Mathematics Research Center, University of		AREA & WORK UNIT NUMBERS	
610 Walnut Street Wisconsin		l Applied Analysis	
Madison, Wisconsin 53706		_	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
<u> </u>		September 1981	
See Item 18		13. NUMBER OF PAGES	
		21	
14. MONITORING IGENCY NAME & ADDRESS(II different from Controlling Office)		15. SECURITY CLASS. (of this report)	
		UNCLASSIFIED	
		15#. DECLASSIFICATION/DOWNGRADING	
		SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
U. S. Army Research Office National Science Foundation			
P.O. Box 12211 Washington, D. C. 20550			
Research Triangle Park			
North Carolina 27709			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
periodic solution, Hamiltonian system, minimax, variational methods,			
critical point			
20 AGETRACE (Continue or common alla li consegue and identific but have been			
20. ABSTRACT (Continue on reverse side it necessary and identify by block number) This paper studies Hamiltonian systems of ordinary differential equations.			
The only assumption made on the Hamiltonian is appropriately rapid growth at			
infinity. It is proved that for any given period, there is an unbounded			
sequence of pariodic columbiant of the	y given period,	there is an unbounded	
sequence of periodic solutions of the system having the given period.			

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

