					.5 t ₁		1 -
$\tau_{1}^{\#2}$	0	0	0	- <u>i</u> kr5+2 k ³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2}\;(k^2r_5+2k^4r_5)}$	0	$\frac{i}{kr_5 + 2k^3 r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$i \sqrt{2} k$ $t_1 + k^2 t_1$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^\alpha$	$\sigma_{1}^{\#2} + ^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#^2} + \alpha$

	$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^+}^{\sharp 1}\dagger$	0	0	0	0
$f_{0+}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

	$\sigma_{0^{+}}^{#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}\dagger$	0	0	0	0
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\!\#\!1}\dagger$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

	#	1	1	1	3	3	3	2	17
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + \bar{l}k\sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}^{\#1}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}^{\alpha\beta} = 0$	Total #:

	$\omega_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1-\alpha}^{\#1}$	$\omega_{1}^{#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{ikt_1}{3}$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{l} k t_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

_			
$\omega_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{+lphaeta}\omega_{2}^{\#1}_{2}$	0	0	<u>£1</u> 2
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{+}$ $_{lphaeta}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_2^{#1} + ^{lphaeta}$	$f_2^{*1} + \alpha \beta$	$\omega_{2^{-}}^{\#1} +^{\alpha\beta\chi}$
$\sigma_{2}^{\#1}$ $_{lphaeta}$	0	0	$\frac{2}{t_1}$
χβ	$\frac{2k}{3t_1}$) ² t ₁	

 $\tau_2^{\#1} + ^{\alpha\beta}$

 $\sigma_{2}^{#1} +^{\alpha eta \chi}$

Massive particle					
Pole residue:	$-\frac{1}{r_2} > 0$				
Polarisations:	1				
Square mass:	$\frac{t_1}{r_2} > 0$				
Spin:	0				
Parity:	Odd				

Quadratic pole					
Pole residue:	$-\frac{1}{r_5 t_1^2} > 0$				
Polarisations:	2				