# A Large Scale Structure Void Identifier for Galaxy Surveys Based on the $\beta$ -Skeleton Graph Method

Felipe L. Gómez-Cortés Jaime E. Forero-Romero Xiao-Dong Li







# Objetivos

- Identificar vacíos cósmicos en la Estructura de Gran Escala (LSS) usando un método nuevo en Astrofísica
- Utilizar el nuevo método para imponer restricciones en parámetros cosmológicos.



Proyección sobre el plano XY ~57.000 galaxias del SDSS

## El grafo $\beta$ -Skeleton

Depende de un parámetro real:  $\beta$ 



Figura 1: Zona de exclusión en el  $\beta$ -Skeleton. Feg et al (2019).



Figura 2: Conjunto tridimensional de 50 puntos aleatorios. Grafo  $\beta$ -Skeleton  $\beta = 1$ .



Figura 2: Grafo  $\beta$ -Skeleton calculado (líneas rojas) con  $\beta = 1$  y  $\beta = 10$  sobre halos de materia oscura (puntos azules) de una simulación de n-cuerpos. Feg et al (2019).

## Primera Aproximación



Figura 3: Buscando vacíos variando el parámetro  $\beta$ .

## Primera Aproximación

Irregular Void Recognition Using 0.8-1.3-skeletons





Figura 4: Vacíos esféricos encontrados, vacíos elipsoides no encontrados

Vaciado en Cera (Enc. Brit.)





Figura 5: Puntos Observados y Puntos Aleatorios

Vaciado en Cera (Enc. Brit.)





Figura 6: Puntos Observados y Puntos Aleatorios

Vaciado en Cera (Enc. Brit.)





Figura 7: Puntos dentro de vacíos, observados y aleatorios

Vacíos: Puntos del catálogo aleatorio conectados exclusivamente entre sí.

(Incluyendo puntos de frontera)

Figura 6: Puntos aleatorios pertenecientes a los vacíos encontrados en un catálogo de prueba.



Vacíos: Puntos del catálogo aleatorio conectados exclusivamente entre sí.

(Incluyendo puntos de frontera)



Figura 7: β-Skeleton encontrado solo para los puntos de vacío.

## Resultados

Sobre ~57.000 galaxias del SDSS.

$$r = 0-300 \text{ Mpc/h}$$











## Resultados: Elipticidad



Figura 8: Nuestro análisis (izq.) comparado con resultados sobre Millenium (Platen et al 2008) (der.)

## Resultados: Relación entre los semiejes



Figura 9: Nuestro análisis (izq.) comparado con resultados sobre Millenium (Platen et al 2008) (der.)

### Resultados: Función de Densidad de Probabilidad



## Conclusiones

• Tenemos un método geométrico que identifica Vacíos dentro de la LSS.

Tiempo de cómputo corto ( orden ~ N)

#### Por hacer:

- Exploración de los parámetros  $\beta$ , densidad de puntos aleatorios y densidad de datos observacionales
- Comparación con otros algoritmos para la búsqueda de vacíos (VIDE) sobre SDSS
- Realizar análisis cosmológico (restricción del parámetro de energía oscura)