Code: 04

COUNCILE OF SCIENTIFIC & INDUSTRIAL RESEARCH

Mathematical Science

Unit – 3:

Syllabus

Sub Unit – 2: Partial Differential Equation:

Sl. No	Topic
1.	2.2. Partial Differential Equaiton
	2.1.1. Definition
	2.1.2. Order and Degree of Partial Differential Equation
	2.1.3. Linear and Non – linear Partial Differential Equation
2.	2.2. Classification of First Order Partial Differential Equation.
	2.2.1. Linear
	2.2.2. Semi Linear
477.3	2.2.3. Quasi Linear
	2.2.4. Non Linear
3.	2.3. Cauchy Problem for first order partial differential equations
4.	2.4. Different Methods for finding solutions of Partial Differential Equation
	2.4.1. Lagrange's Method
	2.4.2. Charpit's Method
5.	2.5. Working rule of Partial differential Equation with constant coefficients.
	2.5.1. To finding complementary function (C.F.) of linear homogeneous PDE
	with constant coefficients.
	2.5.2. To finding complementary function (C.F.) of a linear non –
	homogeneous PDE with constant coefficients.
	2.4.3. To finding particular integral (P.I) of linear non – homogeneous PDE
	with constant coefficient.
	2.5.4. To finding particular integral (P.I) of linear homogeneous PDE with
	constant coefficients.

6.	2.6. Classification of second order partial differential equations.
7.	2.7. Canonical Forms
	2.7.1. Canonical form for Hyperbolic Equation
	2.7.2. Canonical from Parabolic Equation
	2.7.3. Canonical form for Elliptic equation
8.	2.8. A few Well – Known partial differential equation
9.	2.9. Method of Separation of variables
	2.9.1. Laplace Equation(in two dimension)
	2.9.2. Heat Equation
	2.9.3. Wave Equation

Partial Differential Equations (PDEs)

2.1. Partial Differential Equation:

2.1.1. Definition: An equation containing one or more partial derivatives of an unknown function of two or more independent variables is known as a partial differential equation.

Example (2.1.):
$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z + xy$$
, $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ etc.

2.1.2. Order and Degree of Partial Differential Equation:

The order of a partial differential equation is defined as the order of the highest partial derivatives in the equation.

The degree of a partial differential equation is the degree of the highest order derivative which occurs in it after the equation has been rationalized.

2.1.3. Linear and Non – linear Partial Differential Equation:

A partial differential equation is said to be linear if the dependent variable and its partial derivatives occur only in the first degree and are not multiplied. A partial differential equation which is not linear is called a non – linear partial differential equation.

2.2. Classification of first order partial differential equation:

2.2.1. A first order partial differential equation said to be linear if it can be expressed as

$$P(x,y)\frac{\partial z}{\partial x} + Q(x,y)\frac{\partial z}{\partial y} + R(x,y)z + S(x,y) = 0$$

2.2.2. A partial differential equation is said to be semi – linear if it can be expressed as

$$P(x,y)\frac{\partial z}{\partial x} + Q(x,y)\frac{\partial z}{\partial y} + R(x,y,z) = 0$$

2.2.3. A partial differential equation is said to be quasi – linear if it can be expressed as

$$P(x,y,z)\frac{\partial z}{\partial x} + Q(x,y,z)\frac{\partial z}{\partial y} + R(x,y,z) = 0$$

2.2.4. A partial differential equation is said to be non – linear if it is neither linear nor quasi – linear and also nor semi – linear.

Example (2.2):

Find a partial differential equation by elimination a and b from

$$z = ax + by + a^2 + b^2$$

Solution:
$$\frac{\partial z}{\partial x} = a$$
, $\frac{\partial z}{\partial y} = b$

$$\therefore \text{ Partial differential equation is } z = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$$

Example (2.3):

Find the partial differential equation by eliminating h and k from the equation

$$(x-h)^2 + (y-k)^2 + z^2 = \lambda^2$$

Solution: Differentiating partially with respect to x and y

$$2(x-h) + 2z \frac{\partial z}{\partial x} = 0, 2(y-k) + 2z \frac{\partial z}{\partial x} = 0$$

$$\Rightarrow x - h = -z \frac{\partial z}{\partial x}$$
 and $y - k = -z \frac{\partial z}{\partial y}$

∴ Partial differential equation is
$$z^2 \left(\frac{\partial z}{\partial x}\right)^2 + z^2 \left(\frac{\partial z}{\partial x}\right)^2 + z^2 = \lambda^2$$

Example (2.4): Form a partial differential equation by eliminating the arbitrary function ϕ

from
$$\phi(x + y + z, x^2 + y^2 - z^2) = 0$$

Solution:
$$\phi(x + y + z, x^2 + y^2 - z^2) = 0$$

Let
$$x + y + z = u$$
 and $x^2 + y^2 - z^2 = v$

$$\therefore \phi(u,v) = 0$$

Differentiating partially with respect to x

$$\frac{\partial \phi}{\partial u} \left(\frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z} \right) + \frac{\partial \phi}{\partial v} \left(\frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z} \right) = 0$$

$$or, \frac{\frac{\partial \phi}{\partial u}}{\frac{\partial \phi}{\partial v}} = -2(x - pz)(1 + p)$$

Differentiating partially with respect to ywith Technology

$$\frac{\partial \phi}{\partial u} \left(\frac{\partial u}{\partial y} + q \, \frac{\partial u}{\partial z} \right) + \frac{\partial \phi}{\partial v} \left(\frac{\partial v}{\partial y} + q \, \frac{\partial v}{\partial z} \right) = 0$$

$$or, \frac{\frac{\partial \phi}{\partial u}}{\frac{\partial \phi}{\partial x}} = -2(y - qz)(1 + q)$$

 \therefore Eliminating ϕ we get the partial differential equation as (y+z)p-(x+z)q=x-y.

Example (2.5):

Form a partial differential equation by eliminating the function ϕ from

$$lx + my + nz = \phi (x^2 + y^2 + z^2)$$

Differentiating partially with respect to x and y.

$$l + n \frac{\partial z}{\partial x} = \phi'(x^2 + y^2 + z^2) \cdot \left(2x + 2z \frac{\partial z}{\partial x}\right)$$

$$m + n \frac{\partial z}{\partial y} = \phi'(x^2 + y^2 + z^2) \cdot \left(2y + 2z \frac{\partial z}{\partial y}\right)$$

$$or, \frac{l+n\frac{\partial z}{\partial x}}{m+n\frac{\partial z}{\partial y}} = \frac{2(x+z\frac{\partial z}{\partial x})}{2(y+z\frac{\partial z}{\partial y})}$$

or,
$$(ny - mz)\frac{\partial z}{\partial x} + (lz - nx)\frac{\partial z}{\partial y} = mx - ly$$

2.3. Cauchy Problem for first order partial differential equations:

- (a) If $x_0(\mu)$, $y_0(\mu)$ and $z_0(\mu)$ are functions which together with their first derivatives are continuous in the interval I defined by $\mu_1 < \mu < \mu_2$
- (b) And if f(x, y, z, p, q) is a continuous function of x, y, z, p and q in a certain region U of the xyzpq space, then it is required to establish the existence of a function $\phi(x, y)$ with the following property.
 - (i) $\phi(x, y)$ and its partial derivatives with respect to x and y are continuous functions of x and y in a region \mathbb{R} of the xy space.
 - (ii) For all values of x and y lying in \mathbb{R} , the point $\{x, y, \phi(x, y), \phi_x(x, y), \phi_y(x, y)\}$ lies in U and $f(x, y, \phi, \phi_x, \phi_y) = 0$
 - (iii) For all $\mu \in I$, the point $(x_0(\mu), y_0(\mu)) \in \mathbb{R}$ and $\phi(x_0, y_0) = z_0$

Example (2.6):

Solve the Cauchy Problem for zp+q=1 with $x_0=\mu$, $y_0=\mu$, $z_0=\frac{\mu}{2}$, $0\leq\mu\leq1$.

Solution:
$$f(x, y, z, p, q) = zp + q - 1 = 0$$

$$x_0 = \mu, y_0 = \mu, \ z_0 = \frac{\mu}{2}, 0 \le \mu \le 1$$

$$\therefore \frac{\partial f}{\partial p} = z, \frac{\partial f}{\partial q} = 1 \text{ and}$$

$$\frac{\partial f}{\partial q} \cdot \frac{dx_0}{d\mu} - \frac{\partial f}{\partial p} \cdot \frac{dy_0}{d\mu} = 1 - z = 1 - \frac{\mu}{2} \neq 0, for \ 0 \leq \mu \leq 1$$

$$\frac{dx}{dt} = \frac{\partial f}{\partial y}, \frac{dy}{dt} = \frac{\partial f}{\partial g}$$
 and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$

or,
$$\frac{dx}{dt} = z$$
, $\frac{dy}{dt} = 1$, $\frac{dz}{dt} = p$ $\frac{\partial f}{\partial p} + q$ $\frac{\partial f}{\partial q} = pz + q = 1$

Integrating $y = t + c_1$ and $z = t + c_2$ at t = 0 $x(\mu, 0) = \mu$, $y(\mu, 0) = \mu$ and

$$z\left(\mu,0\right)=\frac{\mu}{2}$$

$$\therefore y = t + \mu, z = t + \frac{\mu}{2}$$

$$\frac{dx}{dt} = t + \frac{\mu}{2}$$
 so that $x = \frac{1}{2}t^2 + \frac{1}{2}\mu t + c_3$

$$x = \frac{1}{2}t^2 + \frac{1}{2}\mu t + \mu$$

Also,
$$t = \frac{y-x}{1-\frac{y}{2}}$$
 and $\mu = \frac{x-\frac{y^2}{2}}{1-\frac{y}{2}}$

Putting these values in $z = t + \frac{\mu}{2}$ we get the solution $z = \frac{2(y-x) + x - \frac{y^2}{2}}{2-y}$

2.4. Different Methods for finding solutions of Partial Differential Equation:

2.4.1. Lagrange's Method:

The general solution of the first order quasi – linear partial differential equation

P(x,y,z)p + Q(x,y,z)q = R(x,y,z) is given by $\phi(u,v) = 0$ where ϕ is an arbitrary and $u(x,y,z) = c_1, v(x,y,z) = c_2$ are two independent solutions of the auxiliary equations

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$$

2.4.2. Charpit's Method:

For the equations f(x, y, z, p, q) = 0, the Charpit's auxiliary equations are

$$\frac{dx}{f_p} = \frac{dy}{f_q} = \frac{dz}{pf_p + qf_q} = \frac{dp}{-(f_x + pf_z)} = \frac{dq}{-(f_y + qf_z)}$$

Example (2.7):

Solve
$$(mz - ny)p + (nx - lz)q = ly - mx$$

Solution:

The Lagrange's auxiliary equations are

$$\frac{dx}{mz - ny} = \frac{dy}{nx - lz} = \frac{dz}{ly - mx}$$
$$= \frac{xdx + ydy + zdz}{nz}$$

$$or$$
, $x dx + y dy + z dz = 0$ Text with Technology

Integrating
$$x^2 + y^2 + z^2 = c_1$$

Also =
$$\frac{l \, dx + m \, dy + n \, dz}{0}$$

$$\therefore l dx + m dy + n dz = 0$$

Integrating
$$lx + my + nz = c_2$$

So the solution is
$$\phi(x^2 + y^2 + z^2, lx + my + nz) = 0$$

Example (2.8):

Solve
$$x (y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$$

Sol: Lagrange's auxiliary equations are

$$\frac{dx}{x(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{z(x^2-y^2)}$$

$$= \frac{\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz}{y^2 + z - x^2 - z + x^2 - y^2}$$

$$\Rightarrow \frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz = 0$$

Integrating $\log x + \log y + \log z = 0 \Rightarrow xyz = c_1$

Also,
$$= \frac{x \, dx + y \, dy - dz}{x^2 (y^2 + z) - y^2 (x^2 + z) - z (x^2 - y^2)} = x \, dx + y \, dy - dz = 0$$

Integrating
$$\frac{x^2}{2} + \frac{y^2}{2} - z = \frac{c_2}{2} \Rightarrow x^2 + y^2 - 2z = c_2$$

So, the solution is
$$\phi(x^2 + y^2 - 2z, xyz) = 0$$

Example (2.9): Solve
$$x(y - z)p + y(z - x)q = z(x - y)$$

Sol:
$$\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)} = \frac{\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz}{0}$$

$$or$$
, $\frac{1}{x}dx + \frac{1}{y}dy + \frac{1}{z}dz = 0$ Integrating $xyz = c_1$

Also,
$$=\frac{dx + dy + dz}{0}$$
 $\Rightarrow dx + dy + dz = 0$

Integrating
$$x + y + z = c_2$$

So, the solution is
$$\phi(x + y + z, xyz) = 0$$

Example (2.10):

Solve
$$-(2x^2 + y^2 + z^2 - 2yz - zx - xy)p + (x^2 + 2y^2 + z^2 - yz - 2zx - xy)q = x^2 + y^2 + 2z^2 - yz - zx - 2xy$$

Solution: Lagrange's auxiliary equations are

$$\frac{dx}{2x^2 + y^2 + z^2 - 2yz - zx - xy} = \frac{dy}{x^2 + 2y^2 + z^2 - yz - 2zx - xy} = \frac{dz}{x^2 + y^2 + 2z^2 - yz - zx - 2xy}$$

$$= \frac{dx - dy + 0 \cdot dz}{z^2 - y^2 - yz + zx} = \frac{0 \cdot dx + dy - dz}{y^2 - z^2 - zx + xy} = \frac{-dx + 0 \cdot dy + dz}{z^2 - x^2 - xy + yz}$$

$$\therefore \frac{dx - dy}{(x - y)(x + y + z)} = \frac{dy - dz}{(y - z)(x + y + z)} = \frac{T dz - dx}{(z - x)(x + y + z)}$$
 Technology

$$\Rightarrow \frac{d(x-y)}{x-y} = \frac{d(y-z)}{y-z} = \frac{d(z-x)}{z-x}$$

$$\therefore \frac{d(x-y)}{x-y} = \frac{d(y-z)}{y-z}$$

Integrating
$$\frac{x-y}{y-z} = c_1$$

$$\therefore \frac{d(y-z)}{y-z} = \frac{d(z-x)}{z-x}$$

Integrating
$$\frac{y-z}{z-x} = c_2$$

So, the solution is
$$\phi\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right) = 0$$

Example (2.11):

Find a complete integral of $z = px + qy + p^2 + q^2$

Solution: Here $f(x, y, z, p, q) = z - px - qy - p^2 - q^2$

Charpit's auxiliary equations are

$$\frac{dp}{f_x + pf_z} = \frac{dq}{f_y + qf_z} = \frac{dz}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{dy}{-f_q}$$

$$or, \frac{dp}{0} = \frac{dq}{0} = \frac{dz}{p(x+2p)+q(y+2q)} = \frac{dx}{x+2p} = \frac{dy}{y+2q}$$

$$\Rightarrow dp = 0$$
 or $p = a$

$$dq = 0$$
 or $q = b$

So the complete integral is $z = ax + by + a^2 + b^2$

Example (2.12): Find a complete integral of px + qy = pq

Solution:
$$f(x, y, z, p, q) = px + qy - pq \dots \dots \dots \dots (1)$$

Charpit's auxiliary equations are

$$\frac{dp}{f_x + pf_z} = \frac{dq}{f_y + qf_z} = \frac{dz}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{dy}{-f_q}$$

or,
$$\frac{dx}{-(x-q)} = \frac{dy}{-(y-q)} = \frac{dz}{-p(x-q)-q(y-q)} = \frac{dp}{p} = \frac{dq}{q}$$
...(2)

From last two relations $\frac{dp}{p} = \frac{dq}{q}$

Integrating
$$\log p = \log q + \log a \Rightarrow p = aq$$
....(3)

From (1)
$$aqx + qy - aq^2 = 0$$
 or $aq = ax + y \dots (4)$

From (3) and (4)
$$q = \frac{ax+y}{a}$$
 and $p = ax + y$

Also,
$$dz = p dx + q dy = (ax + y)dx + \frac{(ax+y)}{a}dy$$

or,
$$a dz = (ax + y)(a dx + dy)$$

Integrating
$$az = \frac{(ax+y)^2}{2} + b$$

Which is the complete integral.

Example (2.12):

Find a complete integral of $2zx - px^2 - 2qxy + pq = 0$

Sol:

$$f(x, y, z, p, q) = 2zx - px^2 - 2qxy + pq = 0....(1)$$

Charpit's auxiliary equations are

$$\frac{dp}{f_x + pf_z} = \frac{dq}{f_y + qf_z} = \frac{dz}{-pf_p - qf_q} = \frac{dx}{-f_p} = \frac{dy}{-f_q}$$

or,
$$\frac{dp}{2z-2qy} = \frac{dp}{0} = \frac{dx}{x^2-q} = \frac{dy}{2xy-pq} = \frac{dz}{px^2+2qxy-2pq}$$

$$\Rightarrow dq = 0 \Rightarrow q = a$$

From (1)
$$2zx - px^2 - 2axy + pa = 0$$

or,
$$p = \frac{2zx-2axy}{x^2-a}$$

Putting these values in dz = pdx + qdy

$$dz = \frac{2x(z-ay)}{x^2-a} dx + a dy$$

or,
$$\frac{dz-a}{z-ay} = \frac{2x}{x^2-a} dx$$

Integrating,
$$\log(z - ay) = \log(x^2 - a) + \log b$$

$$or, \quad z - ay = b (x^2 - a)$$

Which is the complete integral.

2.5. Working rule of Partial differential Equation with constant coefficients:

2.5.1. To finding complementary function (C.F.) of linear homogeneous partial differential equation with constant coefficients.

Let F(D, D') Z = f(x, y) be the differential equation. Factorize F(D, D') into linear factors of the form (bD - aD'). Then use the following result

- (i) Corresponding to each non repeated factor (bD aD'), the part of the C.F. is taken as $\phi(by + ax)$
- (ii) Corresponding to each repeated factor $(bD aD')^m$ the part of the C.F. is taken as $\phi_1(by + ax) + x \phi_2(by + ax) + x^2\phi_3(by + ax) + \dots + x^{m-1}\phi_m(by + ax)$.

2.5.2. To finding complementary function (C.F.) of a linear non – homogeneous partial differential equation with constant coefficients:

- (i) Corresponding to each non repeated factor (bD aD' c), the part of the C.F. is taken $e^{\frac{cx}{b}} \cdot \phi(by + ax)$ if $b \neq 0$.
- (ii) Corresponding to each repeated factor $(bD aD' c)^m$, the part of the C.F. is taken as $e^{\frac{cx}{b}}[\phi_1(by + ax) + x \phi_2(by + ax) + x^2\phi_3(by + ax) + \dots + x^{m-1}\phi_m(by + ax)]$
- 2.5.3. To finding particular integral (P.I) of linear non homogeneous partial differential equation with constant coefficient:

(i) When
$$f(x,y) = e^{ax+by}$$
 and $F(a,b) \neq 0$. Then $P.I = \frac{e^{ax+by}}{F(a,b)}$

(ii) When
$$f(x, y) = \sin(ax + by)$$
 or $\cos(ax + by)$. Then

$$P.I = \frac{1}{F(D,D')}\sin(ax + by) \text{ or } \cos(ax + by)$$

Which is calculated by putting $D^2 = -a^2$, ${D'}^2 = -b^2$ and DD' = -ab provided the denominator is not zero.

(iii) When
$$f(x,y) = x^m y^n$$
, Then

$$P.I = \frac{1}{F(D,D')} x^m y^n = [F(D,D']^{-1} x^m y^n]$$

(iv) When
$$f(x,y) = V e^{ax+by}$$
, where V is a function of x and y. Then

$$P.I = \frac{1}{F(D,D')} V e^{ax + by} = e^{ax + by} \underbrace{\text{ext } \frac{1}{V} \text{ with }}_{F(D+a,D'+b)} V \text{echnology}$$

2.5.4. To finding particular integral (P.I) of linear homogeneous partial differential equation with constant coefficients:

(i) When $F(a,b) \neq 0$ and F(D,D') is a homogeneous function of degree n, then

$$P.I = \frac{1}{F(D,D')} \phi(ax + by) = \frac{1}{F(a,b)} \iint \dots \int \phi(v) dv. dv. \dots dv$$

Where
$$v = ax + by$$

(ii) When F(a, b) = 0, We have

$$P.I = \frac{1}{(bD - aD')^n} \phi(ax + by) = \frac{x^n}{b^n n!} \phi(ax + by)$$

Example (2.13):

Find the general solution of $(D^3 - 3DD'^2 - 2D'^3)z = \cos(x + 2y)$

Solution:

The auxiliary equation is $m^3 - 3m - 2 = 0 \Rightarrow m = -1, -1, 2$

So, C.
$$F = \phi_1(y - x) + \phi_2(y - x) + \phi_3(y + 2x)$$

$$P.I = \frac{1}{D^3 - 3DD'^2 - 2D'^3} \cos(x + 2y)$$

$$= \frac{1}{1^3 - 3 \cdot 1 \cdot 2^2 - 2 \cdot 2^3} \iiint \cos v \, dv \, dv \, dv, \text{ where } v = x + 2y$$

$$= -\frac{1}{27}(-\sin v) = \frac{1}{27}\sin(x+2y)$$

So, the general solution is $z = \phi_1(y - x) + \phi_2(y - x) + \phi_3(y + 2x) + \frac{1}{27}\sin(x + 2y)$

Example (2.14):

Find the particular integral of $(D^2 - 2DD' + D'^2)z = \tan(x + y)$

Solution:

$$P.I = \frac{1}{D^2 - 2DD' + {D'}^2} \tan(x + y) = \frac{x^2}{1^2 \cdot 2!} \tan(x + y) = \frac{x^2}{2} \tan(x + y)$$

2.6. Classification of second order partial differential equations:

The most general linear second order partial differential equation is

$$A u_{xx} + B u_{xy} + C u_{yy} + D u_x + E u_y + F u = G$$

Where the coefficients A, B, C, D, E, F, G are functions of x and y or constants.

The above partial differential equation is elliptic, parabolic or hyperbolic at a point (x_0, y_0) according as the discriminant $B^2(x_0, y_0) - 4 A(x_0, y_0) C(x_0, y_0)$ is negative, zero or positive.

2.7. Canonical Forms:

Given partial differential equation is $A u_{xx} + B u_{xy} + C u_{yy} + D u_x + E u_y + F u = G$

Consider the transformation $\xi = \xi(x, y), \eta = \eta(x, y)$

So that

$$u_x = u_\xi \xi_x + u_\eta \eta_x$$

$$u_{\nu} = u_{\xi} \xi_{\nu} + u_{\eta} \eta_{\nu}$$

$$u_{xx} = u_{\xi\xi} \, \xi_x^2 + 2u_{\xi\eta} \xi_x \eta_x + u_{\eta\eta} \eta_x^2 + u_{\xi} \xi_{xx} + u_{\eta} \eta_{xx}$$

$$u_{xy} = u_{\xi\xi} \, \xi_x \xi_y + u_{\xi\eta} \, (\xi_x \eta_y + \xi_y \eta_x) + u_{\eta\eta} \, \eta_x \eta_y + u_{\xi} \xi_{xy} + u_{\eta} \eta_{xy}$$

$$u_{yy} = u_{\xi\xi} \xi_{y}^{2} + 2u_{\xi\eta} \xi_{y} \eta_{y} + u_{\eta\eta} \eta_{y}^{2} + u_{\xi} \xi_{yy} + u_{\eta} \eta_{yy}$$

Substituting these the given equation reduces to $\bar{A}u_{\xi\xi} + \bar{B}u_{\xi\eta} + \bar{C}u_{\eta\eta} + \bar{D}u_{\xi} + \bar{E}u_{\eta} + \bar{C}u_{\eta\eta} + \bar{D}u_{\eta\eta} + \bar{D}u_{\eta$

$$\bar{F} u = \bar{G}$$

Where

$$\bar{A} = A \xi_x^2 + B \xi_x \xi_y + C \xi_y^2$$

$$\bar{B} = 2 A \xi_x \eta_x + B (\xi_x \eta_y + \xi_y \eta_x) + 2C \xi_y \eta_y$$

$$\bar{C} = A \eta_x^2 + B \eta_x \eta_y + C \eta_y^2$$

$$\overline{D} = A \xi_{xx} + B \xi_{xy} + C \xi_{yy} + D \xi_x + E \xi_y$$

$$\bar{E} = A \eta_{xx} + B \eta_{xy} + C \eta_{yy} + D \eta_x + E \eta_y$$

$$\bar{F} = F, \bar{G} = G$$

2.7.1. Canonical form for Hyperbolic Equation:

$$\bar{A} = A \xi_x^2 + B \xi_x \xi_y + C \xi_y^2 = 0$$

$$\bar{C} = A \eta_x^2 + B \eta_x \eta_y + C \eta_y^2 = 0$$

or,
$$A\left(\frac{\xi_x}{\xi_y}\right)^2 + B\left(\frac{\xi_x}{\xi_y}\right) + C = 0$$
 and $A\left(\frac{\eta_x}{\eta_y}\right)^2 + B\left(\frac{\eta_x}{\eta_y}\right) + C = 0$

Solving,

$$\frac{\xi_{x}}{\xi_{y}} = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$

$$\frac{\eta_x}{\eta_y} = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

Also, characteristics equations are $\frac{dy}{dx} = -\frac{\xi_x}{\xi_y}$, $\frac{dy}{dx} = -\frac{\eta_x}{\eta_y}$

Example (2.15):

$$3u_{xx} + 10 u_{xy} + 3 u_{yy} = 0$$

Here
$$A = 3$$
, $B = 10$, $C = 3$

$$B^2 - 4AC = 6A > 0$$
.

Hence the given equation is a hyperbolic partial differential equation.

The characteristic equations are

$$\frac{dy}{dx} = -\frac{\xi_x}{\xi_y} = -\frac{-B + \sqrt{B^2 - 4AC}}{2A} = \frac{1}{3}$$

$$\frac{dy}{dx} = -\frac{\eta_x}{\eta_y} = -\frac{-B - \sqrt{B^2 - 4AC}}{2A} = 3$$

So,
$$y = 3x + c_1$$
, $y = \frac{1}{3}x + c_2$

$$\therefore$$
 Transformations are $\xi = y - 3x$, $\eta = y - \frac{1}{3}x$

$$\bar{A} = 3(-3)^2 + 10(-3)(1) + 3 = 0$$

$$\bar{B} = 2 \cdot 3 \left(-3 \right) \cdot \left(-\frac{1}{3} \right) + 10 \left((-3) \cdot 1 + 1 \cdot \left(-\frac{1}{3} \right) \right) + 2 \cdot 3 \cdot 1 \cdot \frac{1}{1} = -\frac{64}{3}$$

$$\overline{C}=0, \ \overline{D}=0, \ \overline{E}=0, \overline{F}=0$$

Canonical equation is
$$\frac{64}{3}u_{\xi\eta}=0$$
 or, $u_{\xi\eta}=0$

On integration,
$$u(\xi, \eta) = f(\xi) + g(\eta)_{\text{with Technology}}$$

$$or, u(x, y) = f(y - 3x) + g\left(y - \frac{x}{3}\right)$$

This is the general solution.

2.7.2. Canonical from Parabolic Equation:

$$\bar{A}=0$$
 or $\bar{C}=0$

Let
$$\bar{A} = 0 \implies A \xi_x^2 + B \xi_x \xi_y + C \xi_y^2 = 0$$

$$\frac{\xi_{\chi}}{\xi_{\nu}} = -\frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

For parabolic case, we get
$$\frac{\xi_x}{\xi_y} = -\frac{B}{2A}$$

Characteristic equation is
$$\frac{dy}{dx} = -\frac{\xi_x}{\xi_y} = \frac{B}{2A} \Rightarrow \xi(x, y) = c_1$$

Example (2.16): $x^2u_{xx} - 2xy u_{xy} + y^2u_{yy} = e^x$

The discriminant is $B^2 - 4AC = 4x^2y^2 - 4x^2y^2 = 0$

So, given equation is parabolic.

Characteristics equation is $\frac{dy}{dx} = \frac{B}{2A} = -\frac{2xy}{2x^2} = -\frac{y}{x}$

On integration, xy = c

Let
$$\xi = xy$$

$$\bar{A} = 0$$
, $\bar{B} = 0$, $\bar{C} = v^2$, $\bar{D} = -2xv$, $\bar{E} = 0$

$$\bar{F} = 0$$
, $\bar{G} = e^x$

Transformed equation is $y^2 u_{nn} - 2 \xi u_{\xi} = e^{\xi/\eta}$

or,
$$\eta^2 u_{\eta\eta} = 2\xi u_{\xi} + e^{\xi/\eta}$$

The canonical form is $u_{\eta\eta} = \frac{2\xi}{\eta^2} u_{\xi} + \frac{1}{\eta^2} e^{\xi/\eta}$

2.7.3. Canonical form for Elliptic equation:

For elliptic case

$$B^2 - 4AC < 0,$$

Characteristic equations are

$$\frac{dy}{dx} = \frac{B \pm \sqrt{B^2 - 4AC}}{2A}$$

Let
$$\alpha = \frac{\xi + \eta}{2}$$
, $\beta = \frac{\xi - \eta}{2i}$

Example (2.17):

$$u_{xx} + x^2 u_{yy} = 0$$

$$B^2 - 4AC = -4x^2 < 0$$

So, the given equation is elliptic.

The characteristic equations are

$$\frac{dy}{dx} = \frac{B \pm \sqrt{B^2 - 4AC}}{2A} = \pm ix$$

On integration,
$$iy + \frac{x^2}{2} = c_1$$
, $-iy + \frac{x^2}{2} = c_2$

Let
$$\xi = \frac{1}{2}x^2 + iy$$
, $\eta = \frac{1}{2}x^2 - iy$

Also let
$$\alpha = \frac{\xi + \eta}{2}$$
, $\beta = \frac{\xi - \eta}{2i}$

So, that
$$\alpha = \frac{x^2}{2}$$
, $\beta = y$

Now,
$$\bar{A} = x^2$$
, $\bar{B} = 0$, $\bar{C} = x^2$, $\bar{D} = 1$, $\bar{E} = 0$, $\bar{F} = 0$, $\bar{G} = 0$

Hence the required canonical equation is

$$x^2 u_{\alpha\alpha} + x^2 u_{\beta\beta} + u_{\alpha} = 0$$

$$u_{\alpha\alpha} + u_{\beta\beta} = -\frac{u_{\alpha}}{2\alpha}$$

2.8. A few Well – Known partial differential equation:

- (i) (i) $u_{xx} + u_{yy} + u_{zz} = 0$ [Laplace equation]
- (ii) $u_t = K(u_{xx} + u_{yy} + u_{zz})$ [Heat equation]
- (iii) $u_{tt} = C^2(u_{xx} + u_{yy} + u_{zz})$ [Wave equation]
- (iv) $u_t + u u_x = \mu u_{xx}$ [Burger equation]

2.9. Method of Separation of variables:

2.9.1. Laplace Equation (in two dimension):

$$u_{xx} + u_{yy} = 0$$

We assume the solution in the form u(x, y) = X(x)Y(y)

$$\therefore X''Y + Y''X = 0$$

or,
$$\frac{X''}{X} = -\frac{Y''}{Y} = k$$
(say)

Case – I: Let
$$K = p^2$$
, p is real.

Then
$$\frac{d^2X}{dx^2} - p^2X = 0$$
 and $\frac{d^2Y}{dy^2} + p^2Y = 0$

Solution is
$$X = c_1 e^{px} + c_2 e^{-px}$$
 and $Y = c_3 \cos py + c_4 \sin py$

Thus the solution is
$$u(x, y) = (c_1 e^{px} + c_2 e^{-px}) \cdot (c_3 \cos py + c_4 \sin py)$$

Case – II: Let
$$k = 0$$
. Then $\frac{d^2X}{dx^2} = 0$ and $\frac{d^2Y}{dy^2} = 0$

Integrating twice, we get

$$X = c_5 x + c_6$$

$$Y = c_7 y + c_8$$

Solution is
$$u(x, y) = (c_5 x + c_6)(c_7 y + c_8)$$

Case – III: Let
$$K = -p^2$$

$$X = c_9 \cos px + c_{10} \sin px$$

$$Y = c_{11}e^{py} + c_{12}\sin e^{-py}$$

Hence the solution is
$$u(x, y) = (c_9 \cos px + c_{10} \sin px) \cdot (c_{11}e^{py} + c_{12} \sin e^{-py})$$

2.9.2. Heat Equation:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$
, $-\infty < x < \infty$, $t > 0$.(One dimensional)

Let
$$u(x,t) = X(x)Y(t)$$

So
$$\frac{X''}{X} = \frac{1}{\alpha} \frac{Y'}{Y} = \lambda$$

$$\Rightarrow Y = c e^{\alpha \lambda t}$$

Let
$$\lambda = -\mu^2$$

So,
$$X'' + \mu^2 X = 0$$

$$X = c_1 \cos \mu x + c_2 \sin \mu x$$

Hence,
$$u(x,t) = (A\cos\mu x + B\sin\mu x) e^{-\alpha\mu^2 t}$$

2.9.3. Wave Equation:

$$u_{tt} = c u_{xx}$$
 (one dimensional)

Let
$$u(x,t) = X(x) Y(t)$$

So,
$$X \frac{d^2Y}{dt^2} = c^2 Y \frac{d^2X}{dx^2}$$

i.e.,
$$\frac{\frac{d^2X}{dx^2}}{X} = \frac{\frac{d^2Y}{dt^2}}{c^2Y} = K$$

Case - I

Let
$$K = \lambda^2 (K > 0)$$

$$\frac{d^2X}{dx^2} - \lambda^2 X = 0$$

$$\frac{d^2Y}{dt^2} - c^2\lambda^2Y = 0$$

$$\Rightarrow X = c_1 e^{\lambda x} + c_2 e^{-\lambda x}$$

$$Y = c_3 e^{c\lambda t} + c_4 e^{-c\lambda t}$$

$$u(x,t) = (c_1 e^{\lambda x} + c_2 e^{-\lambda x})(c_3 e^{c\lambda t} + c_4 e^{-c\lambda t})$$