Skills and Knowledge Required for the SIR Model Numerical Simulation Project

Samuel Quaigraine

Note

Every individual is to read this and have an understanding of what we are supposed to do Note:

- Everyone will present
- Mosy importantly, we should all learn how to write algorithms and use flowcharts efficiently as it will aid and make this project go on smoothly for us
- We will all contribute to this project and no one will be left out
- Do well to bring your laptops to each meeting
- If you do not contribute fully to this project your name will not be included

1 Understanding the SIR Model and Epidemiology

- Knowledge of how infectious diseases spread in a population.
- Understanding of key parameters:
 - S (Susceptible individuals)
 - I (Infected individuals)
 - -R (Recovered individuals)
 - $-\beta$ (Infection rate)
 - $-\gamma$ (Recovery rate)
- Familiarity with real-world epidemic examples (e.g., COVID-19, flu) to draw comparisons.

Mathematical and Computational Skills $\mathbf{2}$

Ordinary Differential Equations (ODEs) 2.1

- Understanding how to represent dynamic systems with differential equations.
- Ability to interpret and manipulate equations:

$$\frac{dS}{dt} = -\beta SI,\tag{1}$$

$$\frac{dI}{dt} = \beta SI - \gamma I,\tag{2}$$

$$\frac{dS}{dt} = -\beta SI, \qquad (1)$$

$$\frac{dI}{dt} = \beta SI - \gamma I, \qquad (2)$$

$$\frac{dR}{dt} = \gamma I. \qquad (3)$$

2.2 Numerical Methods for Solving ODEs

2.2.1 **Euler's Method**

- First-order approximation method.
- Formula:

$$X_{n+1} = X_n + hf(X_n, t_n) \tag{4}$$

2.2.2Runge-Kutta Method (RK4)

- Higher-order method for better accuracy.
- Uses intermediate values k_1, k_2, k_3, k_4 for better approximations.

Algorithm Development and Programming 3

Writing and Understanding Algorithms

- Translating mathematical formulas into step-by-step computational procedures.
- Implementing iterative updates for numerical solutions.

3.2Python or MATLAB Programming

- Implementing Euler's and RK4 methods in Python/MATLAB.
- Handling loops, functions, and numerical arrays.
- Writing modular, well-documented, and optimized code.

3.3 Data Visualization

- Using Python libraries like **Matplotlib** to plot:
 - -S(t), I(t), and R(t) over time.
 - Effects of different step sizes h.
- Understanding how to interpret and compare plots.

4 Project Management & Collaboration

4.1 Mathematical Formulation

- Mathematical Modeler: Develops and verifies differential equation models
- Parameter Analyst: Determines values for β and γ based on real-world data.
- Numerical Methods Specialist: Ensures appropriate numerical techniques (Euler's Method, RK4) are applied.

4.2 Coding

- Lead Programmer: Writes core numerical implementation in Python/MATLAB.
- Debugger: Tests and optimizes code for efficiency and correctness.
- System Integrator: Ensures all components function correctly together.

4.3 Visualization

- Data Visualizer: Creates graphical representations of simulation results.
- Graph Analyst: Interprets data trends and peak infection rates.
- **Presentation Designer:** Ensures clarity and readability of graphical outputs.

4.4 Report Writing

- **Technical Writer:** Documents methodology, results, and interpretations.
- **Proofreader:** Reviews and refines documentation for clarity and consistency.
- Researcher: Provides relevant background information and references.

4.5 Academic Integrity

- Ethics Officer: Ensures compliance with integrity guidelines.
- Peer Reviewer: Validates originality and proper citations.

5 Conclusion

To excel in this project, an individual should be proficient in **epidemiological** modeling, numerical methods, algorithm implementation, programming, and data visualization. Strong analytical and teamwork skills are also necessary for success.

Samuel Quaigraine