E2 210 (Jan.-Apr. 2025)

Homework Assignment 4 Solutions

1. Recall that $g_{\ell}E = (-1)^{s_{\ell}}Eg_{\ell}$, and hence, for $|\tilde{\psi}\rangle = E|\psi\rangle$, with $|\psi\rangle \in \mathcal{Q}_{\mathcal{S}}$, we have

$$g_{\ell} | \tilde{\psi} \rangle = g_{\ell} E | \psi \rangle = (-1)^{s_{\ell}} E g_{\ell} | \psi \rangle = (-1)^{s_{\ell}} E | \psi \rangle = (-1)^{s_{\ell}} | \tilde{\psi} \rangle.$$

Now, let us analyze the given circuit:

$$|0\rangle - H H$$

$$|\tilde{\psi}\rangle - / g_{\ell}$$

After the first Hadamard and the controlled- g_{ℓ} operation, the joint state of all the qubits in the system is

$$\frac{1}{\sqrt{2}} \left(|0\rangle |\tilde{\psi}\rangle + |1\rangle g_{\ell} |\tilde{\psi}\rangle \right) = \frac{1}{\sqrt{2}} \left(|0\rangle + (-1)^{s_{\ell}} |1\rangle \right) |\tilde{\psi}\rangle = \begin{cases} |+\rangle |\tilde{\psi}\rangle & \text{if } s_{\ell} = 0\\ |-\rangle |\tilde{\psi}\rangle & \text{if } s_{\ell} = 1 \end{cases}$$

Now, applying the second Hadamard, the joint state becomes $|s_{\ell}\rangle |\tilde{\psi}\rangle$, so that measuring the first qubit in the computational basis yields s_{ℓ} without affecting $|\tilde{\psi}\rangle$.

2. Since $C_1^{\perp} \subsetneq C_2$, we have $n - k_1 < k_2$, so that the code \mathcal{Q} has dimension $\dim(\mathcal{Q}) = 2^{k_1 + k_2 - n} > 1$. Therefore, the minimum distance of \mathcal{Q} is equal to the least weight of an operator in $C(\mathcal{S}) \setminus \mathcal{S}$. (Both in $C(\mathcal{S})$ and in \mathcal{S} , we ignore the i^{ℓ} phase factors in front of Pauli operators of the form $X(\mathbf{a})Z(\mathbf{b})$.) Here, \mathcal{S} is the stabilizer group generated by the Pauli operators represented by the check matrix

$$H = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}.$$

As shown in class, the Pauli operator $X(\mathbf{a})Z(\mathbf{b})$ is in $C(\mathcal{S})$ iff $[\mathbf{b} \ \mathbf{a}]$ is in the nullspace of H. It is easily verified that

$$\operatorname{nullspace}(H) \ = \ \big\{ [\mathbf{c}_1 \ \mathbf{c}_2] : \mathbf{c}_1 \in \mathcal{C}_1, \mathbf{c}_2 \in \mathcal{C}_2 \big\}.$$

Therefore, the centralizer C(S) consists of all the Pauli operators $X(\mathbf{c}_2)Z(\mathbf{c}_1)$, with $\mathbf{c}_2 \in \mathcal{C}_2$ and $\mathbf{c}_1 \in \mathcal{C}_1$.

Moreover, the stabilizers in S are precisely the Pauli operators represented by the binary vectors in the rowspace of H. Clearly (since the rows of H_i generate C_i^{\perp} , i = 1, 2), we have

$$\operatorname{rowspace}(H) \ = \ \big\{ [\mathbf{b}_1 \ \mathbf{b}_2] : \mathbf{b}_1 \in \mathcal{C}_1^{\perp}, \mathbf{b}_2 \in \mathcal{C}_2^{\perp} \big\}.$$

Therefore, the stabilizer S consists of all the Pauli operators $X(\mathbf{b}_1)Z(\mathbf{b}_2)$, with $\mathbf{b}_1 \in \mathcal{C}_1^{\perp}$ and $\mathbf{b}_2 \in \mathcal{C}_2^{\perp}$.

Consequently, we find that $C(S) \setminus S$ consists of all operators of the form $X(\mathbf{a})Z(\mathbf{b})$, where either $\mathbf{a} \in \mathcal{C}_2 \setminus \mathcal{C}_1^{\perp}$ or $\mathbf{b} \in \mathcal{C}_1 \setminus \mathcal{C}_2^{\perp}$ (or both). Among these, the operators of least weight must be either of the form $X(\mathbf{a})Z(\mathbf{0})$ with $\mathbf{a} \in \mathcal{C}_2 \setminus \mathcal{C}_1^{\perp}$, or of the form $X(\mathbf{0})Z(\mathbf{b})$ with $\mathbf{b} \in \mathcal{C}_1 \setminus \mathcal{C}_2^{\perp}$. We conclude that the least weight among operators in $C(S) \setminus S$ is the smaller of $d_{\min}(\mathcal{C}_2 \setminus \mathcal{C}_1^{\perp})$ and $d_{\min}(\mathcal{C}_1 \setminus \mathcal{C}_2^{\perp})$. (Here, for a set A of binary vectors, $d_{\min}(A)$ refers to the least Hamming weight among the vectors in A.)

- 3. (a) Since $H_1H_1^T=0$, any row, \mathbf{h} , of H_1 has to be orthogonal to itself: $\mathbf{h}\cdot\mathbf{h}=0\pmod{2}$. Since $\mathbf{h}\cdot\mathbf{h}$ is equal to the number of 1's in \mathbf{h} (i.e., the Hamming weight of \mathbf{h}), we see that \mathbf{h} must have even Hamming weight. In particular, this means that any stabilizer generator g is either composed of an even number of X operators, or an even number of Z operators. In either case, it commutes with $X^{\otimes n}$ and $Z^{\otimes n}$. Thus, $X^{\otimes n}$ and $Z^{\otimes n}$ are both in the centralizer C(S).
 - For $X^{\otimes n}$ and $Z^{\otimes n}$ to **not** be logical identity operators, they must not be in the stabilizer S. A necessary and sufficient condition for this is that the all-ones vector $\mathbf{1}$ must not be in the rowspace of H_1 . For instance, if n is odd, then $\mathbf{1}$ cannot be in the rowspace of H_1 . This is because any vector \mathbf{h} in the rowspace of H_1 must be self-orthogonal for $H_1H_1^T=0$ to hold, and binary vectors of odd Hamming weight cannot be self-orthogonal over \mathbb{F}_2 .
 - (b) Let $\overline{E} = H^{\otimes n}$. We first show that for every stabilizer generator g, there is another stabilizer generator g' such that $g \cdot \overline{H} = \overline{H} \cdot g'$. Note that any operator of the form $X_{\mathbf{b}} = \bigotimes_i X_i^{b_i}$, where $\mathbf{b} = (b_1, b_2, \dots, b_n)$ is a binary vector, we have

$$X_{\mathbf{b}} \cdot \overline{H} = \bigotimes_{i} (X_{i}^{b_{i}} \cdot H) = \bigotimes_{i} (H \cdot Z_{i}^{b_{i}}) = \overline{H} \cdot Z_{\mathbf{b}},$$

where we used the fact that $X\cdot H=H\cdot Z$. Analogously, $Z_{\mathbf{b}}\cdot \overline{H}=\overline{H}\cdot X_{\mathbf{b}}$.

Now, since the check matrix of the CSS code is of the form

$$\begin{bmatrix} H_1 & \mathbf{0} \\ \mathbf{0} & H_1 \end{bmatrix},$$

the stabilizer generators are of the form $X_{\mathbf{b}}$ and $Z_{\mathbf{b}}$, and moreover, $X_{\mathbf{b}}$ is a stabilizer generator iff $Z_{\mathbf{b}}$ is also a stabilizer generator. We conclude that for every stabilizer generator g, there is another stabilizer generator g' such that $g \cdot \overline{H} = \overline{H} \cdot g'$.

Now, consider any codestate $|\psi\rangle \in \mathcal{Q}$ and let $|\varphi\rangle = \overline{H} |\psi\rangle$. Then, for any stabilizer generator g, we have

$$g | \varphi \rangle = g \overline{H} | \psi \rangle = \overline{H} g' | \psi \rangle = \overline{H} | \psi \rangle = | \varphi \rangle.$$

Therefore, $\overline{H} | \psi \rangle \in \mathcal{Q}$ for any $| \psi \rangle \in \mathcal{Q}$, which proves that \overline{H} is a logical operator for \mathcal{Q} .

- 4. (a) Let C_1 be the [7,4] Hamming code with parity-check matrix H_1 as given. It is straightforward to check that $H_1 \cdot H_1^T = 0$, so that $C_1^{\perp} \subseteq C_1$. But we also have $\dim(C_1^{\perp}) = n \dim(C_1) = 7 4 = 3 < \dim(C_1)$, and so $C_1^{\perp} \subseteq C_1$. Applying the result of Problem 2 above, we see that the minimum distance of the Steane code is equal to $d_{\min}(C_1 \setminus C_1^{\perp})$.
 - Now, C_1^{\perp} is equal to the rowspace of H_1 . Running through all the vectors in $\operatorname{rowspace}(H_1)$, we can check that every nonzero codeword of C_1^{\perp} has Hamming weight equal to 4. Since the Hamming code C_1 has minimum distance 3, it follows that $d_{\min}(C_1 \setminus C_1^{\perp}) = 3$.

Thus, the minimum distance of the Steane code is 3, making it a $[[7, 1, 3]]_2$ code capable of correcting a single qubit-error.

(b) Note that for any $|\mathbf{b}\rangle$ in the computational basis of an n-qubit Hilbert space, we have $X^{\otimes n} |\mathbf{b}\rangle = |\mathbf{1} \oplus \mathbf{b}\rangle$, where $\mathbf{1}$ is the all-ones binary vector of length n. Also,

$$Z^{\otimes n} | \mathbf{b} \rangle = (-1)^{\mathbf{1} \cdot \mathbf{b}} | \mathbf{b} \rangle = \begin{cases} | \mathbf{b} \rangle & \text{if } \mathbf{b} \text{ has even Hamming weight} \\ - | \mathbf{b} \rangle & \text{if } \mathbf{b} \text{ has odd Hamming weight.} \end{cases}$$

From these observations and the given expressions for $|\overline{0}\rangle$ and $|\overline{1}\rangle$, it is immediate that

$$\overline{X} \ket{\overline{0}} = \ket{\overline{1}}, \quad \overline{X} \ket{\overline{1}} = \ket{\overline{0}}, \quad \overline{Z} \ket{\overline{0}} = \ket{\overline{0}}, \quad \overline{Z} \ket{\overline{1}} = -\ket{\overline{1}}$$

(c) For any $|\mathbf{b}\rangle = |b_1 b_2 \dots b_n\rangle$ in the computational basis, we have $H^{\otimes n} = \bigotimes_i |\sigma_i\rangle$, where $\sigma_i = +$ if $b_i = 0$, and $\sigma_i = -$ if $b_i = 1$. Applying this to each of the computational basis states involved in the superpositions that make up $|\overline{0}\rangle$ and $|\overline{1}\rangle$, we can indeed verify that

$$\overline{H} \ket{\overline{0}} = \frac{1}{\sqrt{2}} \left(\ket{\overline{0}} + \ket{\overline{1}} \right) \quad \text{and} \quad \overline{H} \ket{\overline{1}} = \frac{1}{\sqrt{2}} \left(\ket{\overline{0}} - \ket{\overline{1}} \right).$$

However, doing this by hand is quite tedious, which is why this should be verified by writing a small computer program.

In some sources, it is suggested that it suffices to verify that $\overline{H} \, \overline{X} \, \overline{H} = \overline{Z}$ and $\overline{H} \, \overline{Z} \, \overline{H} = \overline{X}$ (these are of course very easy to verify). But this is not strictly correct, since these identities will also be satisfied if we replace \overline{H} by $-\overline{H}$, which is not exactly the same operator.

(d) For any $|\mathbf{b}\rangle$ in the computational basis, we have $S^{\otimes n}|\mathbf{b}\rangle = i^{w(\mathbf{b})}\mathbf{b}$ and $(S^{\dagger})^{\otimes n}|\mathbf{b}\rangle = (-i)^{w(\mathbf{b})}|\mathbf{b}\rangle$, where $w(\mathbf{b})$ is the Hamming weight of the binary vector \mathbf{b} . Using this, it is easy to check that

$$\left(S^{\dagger}\right)^{\otimes 7} |\overline{0}
angle = |\overline{0}
angle \quad ext{and} \quad \left(S^{\dagger}\right)^{\otimes 7} |\overline{1}
angle = i \, |\overline{1}
angle \, .$$

This is because each computational basis state involved in the superposition in $|\overline{0}\rangle$ has Hamming weight 4 (and $(-i)^4 = 1$), while each computational basis state involved in the superposition in $|\overline{1}\rangle$ has Hamming weight 3 (and $(-i)^3 = i$).