Константы

Число Авогадро, N_A	$6.022 imes 10^{23}$ моль $^{-1}$
Элементарный заряд, e	$1.602 \times 10^{-19} \mathrm{K}$ л
Универсальная газовая постоянная, R	$8.314\mathrm{Дж}\mathrm{моль}^{-1}\mathrm{K}^{-1}$
Постоянная Фарадея, F	96 485 Кл моль ⁻¹
Постоянная Планка, <i>h</i>	6.626×10^{-34} Дж с
Температура в Кельвинах (К)	$T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$
Ангстрем, Å	$1 \times 10^{-10} \mathrm{m}$
пико, п	$1 \text{ mM} = 1 \times 10^{-12} \text{ M}$
нано, н	1 нм = 1×10^{-9} м
микро, мк	$1 \text{ MKM} = 1 \times 10^{-6} \text{ M}$

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc -	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57- 71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 lr 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po -	85 At -	86 Rn -
87 Fr	88 Ra -	89- 103	104 Rf -	105 Db	106 Sg	107 Bh -	108 Hs -	109 Mt -	110 Ds -	111 Rg -	112 Cn -	113 Nh -	114 Fl -	115 Mc -	116 Lv -	117 Ts -	118 Og
			F.7	F0	F0	(0	(1	(2)	7.7	(1	(F		(7	60	60	70	74
			57	58	59	60	61	62	<u>6</u> 3	64	<u>6</u> 5	66	67	<u>6</u> 8	<u>6</u> 9	70	71

Официальный комплект решений 7-класса.

Содержание

Задача №1. Тест (10%)	3
Задача №2. Серебряная ёлочка (21%)	4
Задача №3. Газовые реакции (24%)	5
Задача №4. Казалось бы, простая смесь (24%)	7
Задача №5. Титрование (21%)	7

Задача №1. Тест

Автор: Галикберова М.

За каждый верный ответ	Всего	Bec(%)			
1	10	10			

- 1. Что изучает наука химия?
 - А. Человека и природу
 - В. Вещества, их свойства и превращения
 - С. Деление клеток
 - D. Природные явления

Ответ: В.

- 2. Вещества, состоящие из различных атомов
 - А. Озон и кислород
 - В. Уголь и алмаз
 - С. Фуллерен и графит
 - D. Аммиак и азот

Ответ: **D**.

- 3. Какова валентность кислорода?
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Ответ: В.

- 4. Формула гидроксида меди (I)
 - A. CuOH
 - B. CuO
 - C. Cu₂O
 - D. $Cu(OH)_2$

Ответ: А.

- 5. Из атомов каких элементов состоит вода?
 - А. Натрий и хлор
 - В. Кислород, азот
 - С. Водород, кислород
 - D. Водород, хлор

Ответ: **С**.

- 6. Как называется первая группа в таблице Менделеева?
 - А. Галогены
 - В. Халькогены
 - С. Благородные газы
 - D. Щелочные металлы

Ответ: **D**.

- 7. Какую химическую формулу имеет поваренная соль?
 - A. NaBr
 - B. NaF
 - C. NaCl
 - D. NaI

Ответ: С.

- 8. Сколько процентов содержится кислорода в атмосфере?
 - A. 1%
 - B. 78%
 - C. 50%
 - D. 21%

Ответ: **D**.

- 9. Что может являться примером химической реакции?
 - А. Горение древесины
 - В. Плавление поваренной соли
 - С. Таяние льдов
 - D. Растворение сахара в воде

Ответ: А.

- 10. Группа только простых веществ приведена в ряду:
 - А. Кислород, воздух, вода
 - В. Кислород, алюминий, угарный газ
 - С. Серебро, водород, озон
 - D. Хлор, золото, хлоровдород

Ответ: С.

Задача №2. Серебряная ёлочка

Автор: Касьянов А.

2.1 (8 баллов)

В первую очередь стоит определить что за эксперимент называется "Серебрянная ёлочка". Столкнувшиеся с ним раньше уже знают, что это наглядный опыт, в котором медную проволочку, согнутую в виде елочки, опускают в раствор **нитрата серебра**, после чего медная проволока покрывается тонким слоем серебра, что соответсвует названию экперимента.

Если же такой эксперимент выполнять/наблюдать не приходилось, то в тексте задачи имеются небольшие подсказки. Например, на **идею о медной проволоке** может указывать тот факт, что раствор втечение эксперимента приобретал всё более и более голубой оттенок. Более того, если название "азотнокислое серебро" является незнакомым, то эту соль можно запросто угадать, заглянув в таблицу растворимости, посмотрев на единственную растворимую расворимую соль, содержащую азот. Таким образом, изначальный раствор является раствором нитрата серебра ${\rm AgNO}_3$.

Массу раствора можно вычислить через объём и плотность раствора:

$$m = \rho \times V = 1.152 \times 200 = 230.4 \,\mathrm{r}$$

Если масса каждой из 5 ёлочек увеличилась на 1.15 г, то общее изменение составило:

$$\Delta m = 1.15 \times 5 = 5.75 \,\mathrm{r}$$

Уравнение реакции, протекающей втечение опыта, выглядит следующим образом:

$$Cu + 2 AgNO_3 \longrightarrow Cu(NO_3)_2 + 2 Ag$$

Т.к. эксперимент закончился, значит всё серебро, содержащееся в изначальном растворе количественно выделилось. Т.е. количество серебра, выделевшееся на медной проволоке равно количеству серебрами, содержавшемуся в первоначальном растворе.

Обозначим количество медь, которое вступило в реакцию как x, значит количество серебра, которое выделилось на проволоке составит 2x.

Изменение массы ёлочек обусловлено процессом, при котором параллельно протекают два процесса: осаждение серебра и растворение меди. Это можно выразить следующим уравнением:

$$\Delta m = +m_{Ag} - m_{Cu}$$

Выразив массы металлов по формуле $m_A = n_A \times M_A$, получим следующее уравнение:

$$5.75 = 107.9 \times 2x + 63.55 \times x = 215.8x + 63.55x$$

$$x = 0.021$$
 моль

Отсюда, количество серебра, равное количеству нитрата серебра, содержащемся в изначальном растворе, составляет:

$$m_{\rm AgNO_3} = M_{\rm AgNO_3} \times n_{\rm AgNO_3} = 169.91 \times 2 \times 0.021 = 7.136 \,\mathrm{r}$$

Массовую долю нитрата серебра можно вычислить следующим образом:

$$\omega_{\text{AgNO}_3} = \frac{m_{\text{AgNO}_3}}{230.4} = \frac{7.136}{230.4} = 0.031 = 3.1\%$$

В соответстии с уравнением реакции, после окончания опята в стакане остался раствор нитрата меди $Cu(NO_3)_2$

- 1 балл за полное уравнение реакции (-0.5 балла за неправильные коэффициенты)
- 1 балл за указание меди, как металла из которого была сделана проволока
- **1 балл** за указание нитрата меди, как соли, оставшейся в растворе после окончания эксперимента
- **5 баллов** за нахождение массовой доли с соответсвующим решением. Максимально 4 балла при наличии решения и отсутствияи значения массовой доли.

Задача №3. Газовые реакции

Автор: Бегдаир С.

3.1 (5 баллов)

Находим среднюю молярную массу газовой смеси:

$$M_{r(CM)} = p_{(CM)} \cdot V_m = 2.455 \cdot 22.4 = 55$$
 г/моль

Составляем систему уравнении используя среднюю молярну массу и массовые доли элементов в соединениях:

$$\begin{cases} M_{r(CM.)} = M_r(AB_2) \cdot \chi(AB_2) + M_r(BB_2) \cdot \chi(BB_2) \\ \omega(A) = \frac{A_r(A)}{M_r(AB_2)} \\ \omega(B) = \frac{A_r(B)}{M_r(BB_2)} \end{cases}$$

Так как у нас имеется эквимолярная смесь двух веществ, то мольная доля каждого компонента будет равна 50%.

$$\begin{cases} 55 = \frac{A_r(A) + 2 \cdot A_r(B)}{2} + \frac{A_r(B) + 2 \cdot A_r(B)}{2} \\ 0.5 = \frac{A_r(A)}{A_r(A) + 2 \cdot A_r(B)} \\ 0.30435 = \frac{A_r(B)}{A_r(B) + 2 \cdot A_r(B)} \end{cases}$$

$$A_r(B) = 16 \, \Gamma / \text{моль}$$

Дописанная реакция:

$$SO_2 + NO_2 = SO_3 + NO$$

За каждый найденный элемент – 1.5 баллов (общ. 4.5 баллов)

За написанную реакцию – 0.5 балла

3.2 (9.5 балла)

Находим молярную массу К₅:

$$M_r(K_5) = p(K_5) \cdot V_m = 2.455 \cdot 22.4 = 55 г/моль$$

Единственный подходящий по молярной массе газом является - HCl.

Пишем все упомянутые реакции:

$$K_1 - H_2SO_3, K_2 - HNO_2, K_3 - HNO_3, K_4 - H_2SO_4, K_5 - HCl, K_6 - HSO_3Cl.$$

Все соединения подлежат к классу соединении кислот.

За каждое определенное неизвестное вещество – 1 балла (общ. 6 баллов)

За каждую написанную реакцию – 0.5 балл (общ. 3.5 баллов)

3.3 (2.5 балла)

$$HNO_2 + H_2O_2 = HNO_3 + H_2O$$

 $HNO_2 + Cl_2 + H_2O = HNO_3 + 2 HCl$
 $7 HNO_2 + 2 KMnO_4 = 2 Mn(NO_3)_2 + 2 KNO_3 + HNO_3 + 3 H_2O$

Использование пероксида водорода (${
m H}_2{
m O}_2$) является лучшим методом для получения чистого раствора ${
m HNO}_3$, так как в продуктах не выходит побочных продуктов кроме воды и азотной кислоты.

За правильный выбор и обоснование – 1 балл.

За каждую написанную реакцию – 0.5 балл (общ. 1.5 балла)

Задача №4. Казалось бы, простая смесь

Автор: Касымалы М.

4.1 (3 балла)

Казалось бы, металл определить попросту невозможно, но это только на первый взгляд. Поскольку карбонаты щелочноземельных металлов разлагаются с образованием оксида щелочноземельного металла и углекислого газа, по закону сохранения массы, масса углекислого газа составляет 22.76 - 16.16 = 6.6 г, а его кол-во составляет $\frac{6.6}{44}$ = 0.15 моль. Так как оксид щелочноземельного металла и углекислый газ образуется в стехиометрическом соотношении 1:1, мы можем сказать, что средняя молярная масса оксидов двух щелочноземельных металлов составляет $\frac{16.16}{0.15}$ = 107.73 г/моль. Значит один из оксидов должен иметь молярную массу меньше 107.73 г/моль, а другой оксид должен иметь молярную массу больше 107.73 г/моль (2 балла). Расчетами нетрудно показать, что M(BeO), M(MgO), M(CaO), M(SrO) < 107.73 г/моль, и только молярная масса оксида бария превышает значение 107.3 г/моль. Отсюда можно сделать вывод о том, что в смеси по крайней мере содержится барий. (1 балл).

4.2 (1 балл)

Щелочноземельный металл, окрашивающий пламя в кирпично-красный цвет - кальций (Ca) **(1 балл)**

4.3 (2 балла)

Пусть кол-во молей карбоната бария будет х моль, а кол-во молей карбоната кальция будет у моль. В таком случае, мы можем составить систему уравнений:

$$x + y = 0.15$$
$$153x + 56y = 16.16$$

Решая эту систему уравнений, мы получаем x = 0.08 моль, y = 0.07 моль. Значит $m(BaCO_3) = 0.08 \cdot 197 = 15.76$ г, и $w(BaCO_3) = \frac{15.76}{22.76} = 0.6924$ (69.24%) (1 балл), $w(CaCO_3) = 100 - 69.24 = 30.76\%$ (1 балл).

Задача №5. Титрование

Автор: Бекхожин Ж.

5.1 (1.5 балла)

MgCO₃ (**0.5 балл**), HCl (**0.5 балла**), Na₂CO₃ (**0.5 балла**)

5.2 (1.5 балла)

$$MgCO_3 + 2HCl \longrightarrow MgCl_2 + CO_2 + H_2O$$

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + CO_2 + H_2O$

0.5 балла за каждую реакцию только если уравнение абсолютно правильное, частичный балл не допускается. В обоих случаях требуется 2 моля соляной кислоты (**0.25 балла** за каждое правильное значение)

5.3 (3 балла)

$$n_{\mathrm{Na_2CO_3}}$$
 = m/M = 0.567/(2 · 23 + 12 + 3 · 16) = 0.005349 моль
$$n_{\mathrm{HCl}} = 2 \cdot n_{\mathrm{Na_2CO_3}} = 0.010698 \; \mathrm{моль}$$

$$C_{\mathrm{HCl}} = n/V = 0.010698/0.05349 = 0.2 \; \mathrm{моль/л}$$

1 балл за моли карбоната натрия, **0.5 балла** за моли соляной кислоты, **1.5 балла** за концентрацию соляной кислоты.

5.4 (4 балла)

$$n_{
m HCl} = C_{
m HCl} \cdot V_{
m HCl} = 0.2 \cdot 0.02567 = 0.005134$$
 моль
$$n_{
m MgCO_3} = n_{
m HCl}/2 = 0.002567$$
 моль
$$m_{
m MgCO_3} = n_{
m MgCO_3} \cdot M = 0.2156 \;
m r$$

$$\omega = 0.2156/0.5 = 43.12\%$$

1 балл за моли карбоната магния, **0.5 балла** за моли соляной кислоты, **1.5 балла** за массу карбоната магния, **1 балл** за процент карбоната магния в таблетке.