Solution of Homework 3

(1) (Sketch | bn-bm| = $|\sqrt{\frac{a_n}{a_{n+3}}} + 5| \le |\sqrt{\frac{a_n}{a_{n+3}}} + 5| = |\sqrt{\frac{a_n}{a_{n+3}}} + 5| =$

 $= \sqrt{\frac{3a_{n}-3a_{m}}{(a_{n}+3)(a_{n}+3)}} \leq \sqrt{\frac{3(a_{n}-a_{m})}{3\times3}} = \sqrt{\frac{a_{m}+3}{3}(a_{m}+3)(a_{m}+3)} \leq \sqrt{\frac{3(a_{n}-a_{m})}{3\times3}} \leq \sqrt{\frac{3(a_{n}-a_{m})}{3}(a_{m}+3)(a_{$

Solution $\forall \epsilon > 0$, Since Earlis Cauchy, $\exists K \in \mathbb{N}$ such that $m, n \geq K \Rightarrow |a_n - a_m| < 3\epsilon^2$ $\Rightarrow |b_n - b_m| < \epsilon$.

Duppose f(a) = f(b). Then $(-f(a) = 1 - f(b), 1 - a) = f(1 - f(a)) = f(1 - f(b)) = 1 - b^q$. So $a^q = b^q$. Taking 9^{th} root, a = b. Hence f is injective. Since f is differentiable (hence continuous), by the continuous injection theorem, f is strictly monotone. Since f(i) < 0, f is strictly decreasing. Let $g(x) = f(x) - x^{2013}$. Then $g(1) = f(1) - 1^{2013} < 0$. Since f is strictly decreasing, $0 < 1 \Rightarrow f(0) > f(1) = 0 \Rightarrow g(0) = f(0) - 0^{2013} = f(0) > 0$. By the intermediate value theorem, $\exists r \in \mathbb{R}$, g(r) = 6, \vdots $f(r) = r^{2013}$.

(3) By Taylor's theorem, $\exists \theta_0$ between θ_0 and θ_0 between θ_0 and θ_0 between θ_0 and θ_0 between θ_0 between θ_0 between θ_0 between θ_0 and θ_0 between θ_0 between θ_0 and θ_0 between θ_0

For every $\varepsilon > 0$, Since S is of measure O, $\exists (a_1,b_1), (a_2,b_2), ...$ such that $S \subseteq \bigcup_{i=1}^{\infty} (a_i,b_i)$ and $\bigcup_{i=1}^{\infty} |a_i-b_i| < \frac{\varepsilon}{2}$, then $T \subseteq \bigcup_{i=1}^{\infty} (2a_i,2b_i)$ and $\bigcup_{i=1}^{\infty} |z_{a_i}-z_{b_i}| < \varepsilon$. Therefore, T is of measure O.

Since f is Riemann integrable, by Lebesgue's Theorem, S_f is of measure O. Observe that if f(x) is Continuous at w, then $g(x) = f(\frac{x}{2})$ is Continuous at 2w. Taking Contrapositive, if g is discontinuous at 2w, then f is discontinuous at w. (This means if $2w \in S_g$, then $w \in S_f$.) So we have $S_g \subseteq \{2w : w \in S_f\}$. By the of measure O. By Lebesgue's theorem, g is Riemann integrable.