Graded Assignment: Data Analysis Project

Bayesian Statistics Specialization: Course 2, Techniques and Models

Tiago B. Lacerda

2025-05-11

Executive Summary

This report presents a comprehensive analysis of the Excellent Consistent Quality (ECQ) success rate across various network sites in Brazil's Northeast region. The primary objective is to identify sites with significantly lower ECQ success probabilities compared to the network average, enabling targeted interventions for network improvement. A three-level Bayesian hierarchical model is employed to account for data scarcity and local variability, providing stable estimates of each site's true ECQ success probability. The analysis reveals critical insights into site performance, guiding data-informed investment decisions.

Introduction

In contemporary 4G and 5G mobile networks, operators must efficiently allocate limited resources to ensure high service quality. A pivotal metric in this context is the Excellent Consistent Quality (ECQ) success rate at individual sites. ECQ assessments evaluate whether networks consistently support demanding applications such as video streaming, video calls, and gaming, ensuring a seamless user experience. These tests are typically conducted with embedded SDKs in applications. They measure KPIs including download speed, upload speed, latency, jitter, packet loss, and time to first byte, aligning with thresholds recommended for various demanding applications. However, the variability in the number of tests across sites—some reporting only a handful while others report hundreds due to natural user mobility—poses a significant challenge. Naïve "site-by-site" estimates can be misleading: small samples may produce extreme rates simply due to chance, and citywide averages can obscure localized underperformance. To address this, a three-level Bayesian hierarchical model is proposed, nesting individual sites within municipalities and municipalities within ANFs.

Problem Definition

Our network comprises multiple sites scattered across a city, each running a varying number of ECQ tests. Some sites may report as few as 5–20 tests in a given period, while others conduct several hundred. The core challenge is to identify which sites genuinely underperform in terms of ECQ success rate and thus prioritize network improvement investments, without being misled by the randomness inherent in small test counts.

Specific Question

Which sites have a true ECQ success probability significantly below the network average, and how can rank them for targeted interventions, accounting for both data scarcity and local variability?

By formalizing this question, we set the stage for applying a hierarchical Bayes model that "borrows strength" across sites and municipalities, producing posterior distributions for each site's success probability. These posteriors underpin credible intervals and ranking metrics that guide robust, data-informed investment decisions.

Data

In this report, we analyze ECQ test data collected in October 2024 across Brazil's Northeast region, encompassing 8 ANFs. Each data point corresponds to a specific network site, identified by its unique ENDERECO_ID. For every site, we have recorded the total number of ECQ tests conducted and the number of successful tests (TESTES_ECQ_OK), indicating instances where the network met the stringent performance thresholds defined by the ECQ metric.

Below is a summary of the data we will be using in our analysis.

```
## tibble [958 x 6] (S3: tbl_df/tbl/data.frame)
##
   $ group id
                   : int [1:958] 101 103 93 106 104 107 95 96 94 97 ...
   $ ANF
                         [1:958] "83" "83" "83" "83" ...
##
                                 "ARACAGI" "ARARUNA" "AGUA BRANCA" "AREIAL" ...
   $ MUNICIPIO
                   : chr
                         [1:958]
##
   $ ENDERECO_ID
                  : chr [1:958]
                                 "PBAAG_0001" "PBAAN_0001" "PBABW_0001" "PBAEA_0001" ...
   $ TESTES_ECQ_OK: num [1:958] 9 27 12 10 80 0 19 5 26 0 ...
   $ TESTES_ECQ
                   : num [1:958] 13 57 28 12 150 1 21 12 31 12 ...
```


Points represent a random sample of network sites (ENDERECO_ID)

Bayesian Model Structure

Model structure definition in JAGS.

```
model_string <- "</pre>
model {
  # Hiperparâmetros globais
  mu_global ~ dbeta(3, 3)
  sigma_global ~ dgamma(2, 0.5) # Prior Gamma mais informativa
  # Parâmetros ANF com restrição
  alpha_anf <- mu_global * sigma_global</pre>
  beta_anf <- (1 - mu_global) * sigma_global
  mu_anf ~ dbeta(alpha_anf, beta_anf)
  # Priors para dispersão
  phi_municipio ~ dgamma(2, 0.9) # Gamma mais suave
  phi site ~ dgamma(2, 2)
  # Loop por municípios
  for(g in 1:N_group) {
    a_municipio[g] <- mu_anf * phi_municipio</pre>
    b_municipio[g] <- (1 - mu_anf) * phi_municipio</pre>
    mu_municipio[g] ~ dbeta(a_municipio[g], b_municipio[g])
  }
  # Loop por sites
  for(s in 1:N_sites) {
    logit_mu_site[s] <- logit(mu_municipio[group_per_site[s]])</pre>
    theta site[s] <- ilogit(logit mu site[s] + epsilon[s])</pre>
    epsilon[s] ~ dnorm(0, 1/phi_site)
    n_success[s] ~ dbin(theta_site[s], n_tests[s])
  }
}
```

Conclusions

The application of the Bayesian hierarchical model enabled the identification of sites with performance significantly below average, highlighting priority areas for intervention. The consideration of credible intervals in the estimates reinforces the need for actions based on robust statistical evidence, aiming for the continuous improvement of network quality.

This approach allows for a nuanced understanding of performance variability across different sites and municipalities, ensuring that interventions are targeted where they are most needed. By quantifying uncertainty through credible intervals, decision-makers can assess the reliability of the estimates and prioritize actions with greater confidence.

In summary, the Bayesian hierarchical model provides a comprehensive framework for identifying underperforming areas and supports evidence-based decision-making to enhance overall network quality.

Table 1: Amostra de Sites Prioritários

	Identificação			Site — HDI			Município — HDI			Testes		Impacto / Pri.	
ANF	City	Site	HDI Inf.	Avg.	HDI Sup.	HDI Inf	Avg	HDI Sup	Test	Succ	Fail	Impact	Prio
81 83 83 83 81	BONITO MONTEIRO ITAPORANGA CAMPINA GRANDE CUPIRA	PEBNO_0002 PBMER_0002 PBIRN_0005 PBCGE_0007 PECUP_0003	0.16 0.39 0.43 0.55 0.16	0.21 0.44 0.49 0.60 0.24	0.27 0.50 0.55 0.65 0.32	0.05 0.20 0.26 0.62 0.09	0.16 0.42 0.45 0.67 0.29	0.28 0.65 0.67 0.72 0.51	188 295 252 377 103	41 131 124 225 24	147 164 128 152 79	0.61 0.48 0.34 0.32 0.32	1 2 3 4 5
81 83 81 83 81	JABOATAO DOS GUARARAPES JOAO PESSOA JABOATAO DOS GUARARAPES SUME SURUBIM	PBJPA_0047	0.65 0.47 0.59 0.35 0.40	0.69 0.53 0.63 0.42 0.47	0.72 0.59 0.68 0.50 0.54	0.70 0.72 0.70 0.28 0.34	0.74 0.74 0.74 0.47 0.48	0.77 0.76 0.77 0.66 0.62	607 254 393 160 184	417 131 247 67 86	190 123 146 93 98	0.31 0.31 0.28 0.28 0.27	6 7 8 9 10
83 81 81 81	CATOLE DO ROCHA RECIFE PAULISTA LIMOEIRO RECIFE	PBCRH_0002 PERCE_0097 PEPUI_0017 PELIO_0004 PERCE_0150	0.31 0.54 0.52 0.41 0.45	0.39 0.60 0.57 0.48 0.52	0.47 0.65 0.63 0.55 0.59	0.28 0.79 0.69 0.28 0.79	0.47 0.80 0.74 0.42 0.80	0.65 0.82 0.80 0.57 0.82	138 309 279 188 198	53 181 158 91 99	85 128 121 97 99	0.27 0.27 0.27 0.27 0.25	11 12 13 14 15
81 81 81 83 81	PALMARES RECIFE PRIMAVERA BAIA DA TRAICAO LIMOEIRO	PEPLS_0001 PERCE_0322 PEPVE_0001 PBBAI_0001 PELIO_0003	0.47 0.59 0.15 0.00 0.32	0.53 0.64 0.24 0.03 0.41	0.60 0.69 0.33 0.08 0.49	0.59 0.79 0.09 0.00 0.28	0.73 0.80 0.29 0.05 0.42	0.86 0.82 0.52 0.15 0.57	211 353 77 46 126	110 224 18 0 51	101 129 59 46 75	0.25 0.24 0.24 0.24 0.23	16 17 18 19 20
83 81 81 81	JOAO PESSOA IPOJUCA MACHADOS AGRESTINA OLINDA	PBJPA_0038 PEIPJ_0002 PEMHO_0001 PEAGE_0002 PEOLD_0039	0.71 0.38 0.00 0.03 0.46	0.74 0.46 0.03 0.08 0.53	0.77 0.54 0.08 0.15 0.60	0.72 0.63 0.00 0.09 0.70	0.74 0.69 0.05 0.23 0.75	0.76 0.75 0.15 0.39 0.79	624 136 43 45 183	462 59 0 0 95	162 77 43 45 88	0.22 0.22 0.22 0.22 0.22	21 22 23 24 25
81 83 81 83 81	SURUBIM JOAO PESSOA ABREU E LIMA MARI RECIFE	PESUU_0003 PBJPA_0124 PEABU_0001 PBMAI_0001 PERCE_0073	0.40 0.58 0.43 0.45 0.62	0.48 0.63 0.51 0.52 0.67	0.55 0.69 0.58 0.60 0.72	0.34 0.72 0.56 0.28 0.79	0.48 0.74 0.69 0.52 0.80	0.62 0.76 0.80 0.75 0.82	148 294 157 171 352	71 185 77 89 234	77 109 80 82 118	0.21 0.21 0.21 0.21 0.20	26 27 28 29 30
83 81 81 81	JOAO PESSOA AGRESTINA OLINDA VICENCIA JOAO ALFREDO	PBJPA_0073 PEAGE_0001 PERCE_0018 PEVCI_0002 PEJFD_0003	0.59 0.32 0.54 0.23 0.02	0.64 0.41 0.60 0.33 0.09	0.69 0.49 0.66 0.43 0.16	0.72 0.09 0.70 0.15 0.09	0.74 0.23 0.75 0.37 0.23	0.76 0.39 0.79 0.61 0.40	292 113 230 83 41	186 49 136 27 0	106 64 94 56 41	0.20 0.20 0.20 0.20 0.20	31 32 33 34 35