Fuzzy Logic GA

Sabah Sayed

Department of Computer Science
Faculty of Computers and Artificial Intelligence
Cairo University
Egypt

Evolving Fuzzy Systems using Genetic Algorithms

 We want to evolve a fuzzy rule system using a GA.

Things to consider:

- What will be evolved (what parts of the fuzzy system)
- How system elements are represented
- Population initialization
- Fitness evaluations
- Operators used

What will we evolve?

- Usually the rule base is evolved to get the best rules representing a dataset of a particular problem.
- We can also evolve the membership functions used to find the best types (triangular, trapezoidal, ...etc) and ranges.

Representing Fuzzy Rules

- Each chromosome will represent a single rule set
- Our system will use Mamdani-type fuzzy rules, for example:

```
if input_1 is not Low, and input_2 is
High, then the output is Medium
if input_2 is Low, then the output is
High
```

- but computers generally can't handle this kind of input (yet)
- Assuming each variable has three fuzzy sets; Low, Medium, High:

```
Let Low=1 Medium=2 High=3

The above two rules can be numerically represented as:

-1 3 2 and 0 1 3 (0 means "don't care")
```

Population Initialization

- Random initialization of the population.
- Rules are checked for feasibility.
- Each rule must have a non-zero antecedent, and a non-zero consequent.
- A rule such as 2 3 1 1 0 is thus non feasible, and is not included in the rule set.
- Re-generate individuals to compensate for the infeasible chromosomes.

Fitness Evaluation

 Percent correct and mean-square error are often used.

 Additional components of fitness may include the number of rules (minimize).

Steps of Evolving a Fuzzy Rule System

 Given a history of data (dataset), to a particular problem:

x1	x2	х3		xm	У
	••••	:	•••	•••	•••
		••••			••••

it is required to evolve a fuzzy system that will classify or predict y.

Step 1:

Get min and max of each Xi (column) in dataset $=> X_{i-min}, X_{i-max}$

Step 2:

 Design fuzzy sets
 (select them)

- <u>Step 3:</u>
 - Design chromosomes composed of random set of fuzzy rules as follows:
- R_j:
 if x1=M and x2=L
 then y=H
- R_k:
 if x1=H
 then y=L

Step 3:

Note that number of rules in chromosome is variable => variable-length chromosome

chromosome 1:

R1	R2	R3	R4

chromosome 2:

R5	R6	R7

Step 4:

Design of crossover operator

R1	R2	R3	R4
1	1		
Random crossover point			

R1	R6	R7

R5	R6	R7
1		
Random	crossov	er
point		

R5	R2	R3	R4

Step 5:

Design of mutation operator

- According to random number r, for each entry in rule, either:
 - Add 1 (r: 0- 0.33)ex. L to M
 - Subtract 1 (r: 0.34 0.66)ex. H to M
 - Negate (r: 0.67 1)ex. L to Not L

- Step 6: Fitness function
- Run each fuzzy system (chromosome) as usual on dataset
- Fitness_i = (number of correctly predicted rows)_i
- Or Fitness_i = 1/MSE_i
 (mean square error)

Calculate Fitness of Chromosome k: Mean Square Error

```
each Chromosome chrk in GA population:
   for each record r: in the dataset [ri,rz --- rp]:
     & Use values of Xii/Xii/Xii --- Xmi to perform.
        1 fuzzification
        (2) Inference -> Rules Ri, Rz, Rz -- in chry
        3) Defuzzi fication -> to get Yi (predicted)
    & Calculate square Error (SE) = (Yi (predicted) / (actual)
   & Sum-of-SEs += SE
   MSE = Sum. of - SEs/p
   Fitness of Chrk = 1/MSEk
```

• <u>Step 7:</u>

Selection Strategy:
Roulette wheel selection

• **Step 8:**

Replacement strategy: Elitism Strategy

