	Name: Sanket Chandrashekhar Harvande (19)
	DATE OI)
	ASSTANMENT NO. 02
	ASSIGNMENT NO. 02
0,	Define a> Regular Expression
	b) Regular Language
	b) regular cariginal
\rightarrow	a) Regular Expression:
	R-E. is used for specifying the strings of regular
	language & is defined as
	(1) 'ø', is R.E. for specifying {} (null set)
	(2) (E) is R.E. for specifying {E} (Epsilon)
	(3) °a¹ is R-E. for specifying {99} (4) Let R & s be two R.E. for specifying LR & LS
	respectively
	is (R)/(5) is R.E. for specifying LRULS
s	(ii) (R) (s) is R.E. for specifying LR.15
	(iii) (R)* is R.E. for specifying LR*
	(b) Regular language:
	It is a longuage that can be
	expressed with a regular expression or a deterministic or non-deterministic finite Automata or state machine
	A language . A language is a set of strings which are
	made up of characters from a specified alphabet, or set
	of symbols Regular languages are a subset of the
	set of all strings.
	Closure properties of regular expression languages. The class of regular languages is closed under
	The class of regular languages is closed under
	1) Union 11) Intersection
	iii) Complimentation (iv) set difference
	v) Concatination vi) kleen closure
	vii) Reversal

	Name: Sanket Chandrashekhar Harvande: 19: DATE
0.2	Write short Note on:
	a) Arden's Theorem:
	i) The Arden's theorem is used in regular longuages
	to determine whether a given expression has a unique solution
	ii) It states that for two regular expressions out of
	which medoes not contain e as its input, there
	exist a unique solution.
	iii) Let P & a be two regular expressions so if P
	doesn't have E as its input R = Q + RP will have
	a unique solution represented by R = @ P#
	Proof1-
	We need to consider the fact that a regular
	expression r can be represented as E+x2+x3+
	So, we begin the proof using
	R = a + RP
	R = Q + (Q + RP)P
	$= Q + Qp + Rp^2$
	Again replacing R=Q+RP in RHS gives as
	$R = Q + QP + QP^2 + RP^3$
	$R = \emptyset(E + P + P^2 + \dots)$
	But (E+P+P2) can be replaced by pox
	Hence , R = QP* a unique solution hence exists.

	Name: Sanket Chandrashekhar Harvande	
1	Dall 119	1 (03)
1	sign :	
h,) Pumping lemma for RL1-	
12) Diriping Cirikina Va Ne	
5	statement:	
_		
	- Let L be a regular language & let Z b	ne a word
	of L such that 12/2, n, where n is to	ne minimum
_ n	number of states required for recognizing	y L.
	- Then as per pumping lemma, we can	writez as
	Z=UVW where IUV/ 7, n k1 < IV/ < n s	uch that
	all the strings of the form UV W	where it,0
_ N	would belong to L.	
	Applications of Pumping lemma:	
	1) colored a chairman of the lampuson	
	1) select a string z in the language	
	2) Breaks the strings z into x, y & z a with the above conditions imposed b	v the
- 1	pumping lemma.	y cree
(3)) Now check if there is any contradicti	on to the
p) Now, check if there is any contradiction pumping lemma for any value i.	
		· · · · · · · · · · · · · · · · · · ·
c)) Closu Properties of RL:-	
1	i) Closure & Union :-	
	If L& m are regula	r Languages
50	o in LUM	
	proof 1- let 1 & M be the languages of	regular
	expression R&S respectively	
	Then R+5 is a regular expression wh	ose language
15	5 LUM	
-		
411)	> Concate nation:	
+	Let R & S be two regular	r expressions
Sp	pecifying regular languages L(R) & L(S) resp	
Ty	law if we perform contatination operat	im m
Har	nguages L(R) & I.(s). Then resulting la	nguage after

	Name: Sanket Chandrashekhar Harvande
	Roll: 19 Sign: 19
	the operation is performed will also be a regular Language which be specified by a regular expression
<u> </u>	R-5 is the regular expression for specifying L(R). L(S)
	(ii) Intersection (-
	Regular languages are closed under intersection i-e. if we perform intersection between
	this are loss and the seather to be and the season between
	two regular languages then the resulting language will be also a regular language
	acou a regular language
	iv> Difference:-
	Regular languages are closed under
	set difference operator i.e. if we perform set difference
	operator between 1 on the two regular languages then
	the resulting language will be also a regular language
	V> Reversal 1-
	Regular languages are closed under reversal
	i'e i'f we take a reversal of a regular language then the
,	resulting language will be regular
	1 1
Q ·3	Convert the following DFA to RE
	(9 ₁) (9 ₂)
	0 / 0
	(q_3)
	$\Rightarrow q = 0q + 1q + E$
	0 - 00 +10
	$9_2 = 09_3 + 19_2$
	$\frac{q}{3} = 0q_1 + 1q_2$
	92 = 09 + 192

	Name: Sanket Chandrashekhar Harvande
	Q. 11 ' 19
	Sign:
	= 19 + 093
	12
	92 = 1 * 093 using Arden's Theorem.
	d
	9 = 09, +192
	= 09, + 11 * 92
	=11 * 09 + 09.
	= (11*0)*09, Using Axden's Theorem
	J
,	9, = 09, + 192 + E
	= 091 + 11 * 093 + E
	= 091+11*0(11*0) *091+E
	= (0+11*0(11*0)*0)91+E
	= [(0+11*0(11*0)*0)]*E
e.	$9_1 = (0+(1*0(11*0)*0)*$
	2
Q.4	Prove: L= {a P is prime } is not regular
->	Lotis assume Lis a regular & p is a prime number
	prime numbers - 2,3,5,7
	- aa aaa
	aaaaa
	Now consider x = aaaaa 1x 1 is prime say p.
	i = 2
	aaaaa
	uvvw
	but p+1 is not a prime number. Hence
	Whatever we have assumed becomes contradictory.
	Hence Lis not regular

Nome: - Sanket Chandrashekhar Harvande	
Roll; 19 Sign (Date -)	
Q.5 Show that L= {ww/w E{0,13*} is not regular	_
> Let us assume Lis regular, consider Le is	
pumping lemma, constant k represent length of ul	
consider	_
x = 0101 0101 w w k k	
W W	
K K	
2 - 0/0/0/0	
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
According to pumping lemma there exist uvue	
-: 1UU K /V/20	
i=2	
undul	
01101 0101	
K+1 K	
	-
.: uVvw ≠ L	
:- We have a contradiction therefore our assumption	
10 00 10 119.	
Hence it is not regular.	
	_