From Characters to Words to in Between: Do We Capture Morphology?

by Clara Vania and Adam Lopez

Peter Danenberg (danenberg@)

May 1, 2017

An update on mobile-first

TL;DR

- 1. Character-level models are better than word-level models, but not as good as morphological ones.
- 2. Good morphology is expensive!

Lets build a case for morphology.

Word-level embeddings might discover analogies like $cat \to cats \cong dog \to dogs$, but not for out-of-vocabulary things like $sloth \to sloths$.

Morphology is only as good as its segmentizer, though.

Modeling cats as e.g. cat and -s is potentially useful but expensive.

Character-based models are pretty good, too.

- ► They can capture related orthographic mutations (e.g. -s and -es in finches).
- ► They're cheap!

Let's compare!

Let's compare language models on the same datasets while varying the following parameters:

- 1. Subword unit
- 2. Composition function
- 3. Morphological typology

Results are in.

- ► Character-level embeddings outperform word-level ones.
- ▶ Bi-LSTMs and CNNs are more effective than addition.
- Character-level embeddings aren't as good as morphological ones.
- ► Character-level embeddings are limited by orthography.

Segmentation is different than analysis.

word triesmorphemes try + smorphs tri + esanalysis try + VB + 3rd + SG + Pres

Fusional languages combine features in one morpheme (English).

$$wanted \rightarrow want + ed$$

 $\rightarrow want + VB + 1st + SG + Past$

Agglutinative languages have one feature per morpheme (Turkish).

$$okursam o oku + r + sa + m$$

 $o "read" + AOR + COND + 1SG$

Root and pattern languages modify roots (Arabic).

ktb ("write") \rightarrow katab ("wrote")

Reduplicative languages duplicate (Indonesian).

 $anak \text{ ("child")} \rightarrow anak-anak \text{ ("children")}$

Language models are differentiated by subword-generation and composition.

$$\mathbf{w} = f(\mathbf{W}_s, \sigma(w))$$

where σ returns subword units; \mathbf{W}_s is a parameter matrix; and f is a composition function.

Subword units are four types.

- Character
- ► Character trigram
- Morfessor
- Byte-pair encoding

Composition functions are three types.

- Addition
- ▶ Bi-LSTM
- ► CNN

Language models are comparable using perplexity.

Results tend to favor trigram bi-LSTMs.

Language	word	character		char trigrams		BPE		Morfessor		%imp
		bi-lstm	CNN	add	bi-lstm	add	bi-lstm	add	bi-lstm	70 mip
Czech	41.46	34.25	36.60	42.73	33.59	49.96	33.74	47.74	36.87	18.98
English	46.40	43.53	44.67	45.41	42.97	47.51	43.30	49.72	49.72	7.39
Russian	34.93	28.44	29.47	35.15	27.72	40.10	28.52	39.60	31.31	20.64
Finnish	24.21	20.05	20.29	24.89	18.62	26.77	19.08	27.79	22.45	23.09
Japanese	98.14	98.14	91.63	101.99	101.09	126.53	96.80	111.97	99.23	6.63
Turkish	66.97	54.46	55.07	50.07	54.23	59.49	57.32	62.20	62.70	25.24
Arabic	48.20	42.02	43.17	50.85	39.87	50.85	42.79	52.88	45.46	17.28
Hebrew	38.23	31.63	33.19	39.67	30.40	44.15	32.91	44.94	34.28	20.48
Indonesian	46.07	45.47	46.60	58.51	45.96	59.17	43.37	59.33	44.86	5.86
Malay	54.67	53.01	50.56	68.51	50.74	68.99	51.21	68.20	52.50	7.52

Table 5: Language model perplexities on test. The best model for each language is highlighted in **bold** and the improvement of this model over the word-level model is shown in the final column.

How about with hand-annotated morphology?

Languages	Addition	bi-LSTM
Czech	51.8	30.07
Russian	41.82	26.44

What if we increase the amount of unannotated data?

#tokens	word	char trigram	char	
#tokens	word	bi-LSTM	CNN	
1M	39.69	32.34	35.15	
2M	37.59	36.44	35.58	
3M	36.71	35.60	35.75	
4M	35.89	32.68	35.93	
5M	35.20	34.80	37.02	
10M	35.60	35.82	39.09	

What about automatic annotation?

Using MADAMIRA for Arabic, the perplexity of bi-LSTMs is still 42.85 vs. 39.87 with character trigrams.

Lastly, what if we restrict ourselves to nouns and verbs?

Inflection	Model	all	frequent	rare
Czech	word	61.21	56.84	72.96
nouns	characters	51.01	47.94	59.01
	char-trigrams	50.34	48.05	56.13
	BPE	53.38	49.96	62.81
	morph. analysis	40.86	40.08	42.64
Czech	word	81.37	74.29	99.40
verbs	characters	70.75	68.07	77.11
	char-trigrams	65.77	63.71	70.58
	BPE	74.18	72.45	78.25
	morph. analysis	59.48	58.56	61.78
Russian	word	45.11	41.88	48.26
nouns	characters	37.90	37.52	<u>38.25</u>
	char-trigrams	36.32	34.19	38.40
	BPE	43.57	43.67	43.47
	morph. analysis	31.38	31.30	31.50
Russian	word	56.45	47.65	69.46
verbs	characters	45.00	40.86	50.60
	char-trigrams	42.55	39.05	<u>47.17</u>
	BPE	54.58	47.81	64.12

Character-level models lose the meaning of root morphemes.

Model	Frequent Words			Rare V	Words	OOV words	
Model	man	including	relatively	unconditional	hydroplane	uploading	foodism
	person	like	extremely	nazi	molybdenum	-	-
word	anyone	featuring	making	fairly	your	-	-
word	children	include	very	joints	imperial	-	-
	men	includes	quite	supreme	intervene	-	-
BPE	ii	called	newly	unintentional	emphasize	upbeat	vigilantism
LSTM	hill	involve	never	ungenerous	heartbeat	uprising	pyrethrum
LOTIVI	text	like	essentially	unanimous	hybridized	handling	pausanias
	netherlands	creating	least	unpalatable	unplatable	hand-colored	footway
char-	mak	include	resolutely	unconstitutional	selenocysteine	drifted	tuaregs
trigrams	vill	includes	regeneratively	constitutional	guerrillas	affected	quft
LSTM	cow	undermining	reproductively	unimolecular	scrofula	conflicted	subjectivism
	maga	under	commonly	medicinal	seleucia	convicted	tune-up
char-	mayr	inclusion	relates	undamaged	hydrolyzed	musagte	formulas
LSTM	many	insularity	replicate	unmyelinated	hydraulics	mutualism	formally
LSTW	mary	includes	relativity	unconditionally	hysterotomy	mutualists	fecal
	may	include	gravestones	uncoordinated	hydraulic	meursault	foreland
char-	mtn	include	legislatively	unconventional	hydroxyproline	unloading	fordism
CNN	mann	includes	lovely	unintentional	hydrate	loading	dadaism
CIVIN	jan	excluding	creatively	unconstitutional	hydrangea	upgrading	popism
	nun	included	negatively	untraditional	hyena	upholding	endemism

Conclusion

Might be some utility in semi-supervised learning from partially annotated data.