CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Code Optimization

- There is no fully optimizing compiler O
- Let's assume O exists: it takes a program P and produces output Opt(P) which is the smallest possible
- Imagine a program Q that produces no output and never terminates, then Opt(Q) could be:
 L1: goto L1
- Then to check if a program P never terminates on some inputs, check if Opt(P(i)) is equal to Opt(Q) = Solves the Halting Problem
- Full Employment Theorem for Compiler Writers, see Rice(1953)

Optimizations

- Non-Optimizations
- Correctness of optimizations
 - Optimizations must not change the meaning of the program
- Types of optimizations
 - Local optimizations
 - Global dataflow analysis for optimization
 - Static Single Assignment (SSA) Form
- Amdahl's Law

Non-Optimizations

```
enum { GOOD, BAD };
                                          enum { GOOD, BAD };
extern int test_condition();
                                          extern int test_condition();
void check() {
                                          void check() {
 int rc;
                                           int rc;
 rc = test_condition();
                                           if ((rc = test_condition())) {
 if (rc != GOOD) {
                                            exit(rc);
  exit(rc);
```

Which version of check runs faster?

Types of Optimizations

- High-level optimizations
 - function inlining
- Machine-dependent optimizations
 - e.g., peephole optimizations, instruction scheduling
- Local optimizations or Transformations
 - within basic block

Types of Optimizations

- Global optimizations or Data flow Analysis
 - across basic blocks
 - within one procedure (intraprocedural)
 - whole program (interprocedural)
 - pointers (alias analysis)

Maintaining Correctness

What does this program output?

3

Not:

\$ decafcc byzero.decaf
Floating exception

```
branch delay
int main() {
                   slot (cf. load
  int x;
                     delay slot)
  if (false) {
    x = 3/(3-3);
  } else {
    x = 3;
  print int(x);
```

Peephole Optimization

- Redundant instruction elimination
 - If two instructions perform that same function and are in the same basic block, remove one
 - Redundant loads and stores

```
li $to, 3
li $to, 4
```

Remove unreachable code

```
li $to, 3
goto L2
```

12-12-08

... (all of this code until next label can be removed) 8

Peephole Optimization

- Flow control optimization goto L1
 - L1: goto L2
- Algebraic simplification
- Reduction in strength
 - Use faster instructions whenever possible
- Use of Machine Idioms
- Filling delay slots

Constant folding & propagation

- Constant folding
 - compute expressions with known values at compile time
- Constant propagation
 - if constant assigned to variable, replace uses of variable with constant unless variable is reassigned

Constant folding & propagation

Copy Propagation

- Structure preserving transformations
- Common subexpression elimination

```
a := b + c
b := a - d
c := b + c
d := a - d (\Rightarrow b)
```

 Dead-code elimination (combines copy propogation with removal of unreachable code)

```
if (debug) { f(); } /* debug := false (as a constant) */
if (false) { f(); } /* constant folding */
using deadcode elimination, code for f() is removed
x := t3
x := t3
t4 := x becomes t4 := t3
```

Renaming temporary variables

```
t1:= b+c can be changed to t2:= b+c replace all instances of t1 with t2
```

Interchange of statements

```
t1 := b+c t2 := x+y t2 := x+y can be converted to t1 := b+c
```

Algebraic transformations

$$d := a + o \implies a$$

 $d := d * 1 \implies eliminate$

Reduction of strength

$$d := a ** 2 (\Rightarrow a * a)$$

Control Flow Graph (CFG)

Control Flow Graph in TAC

- def-use chains keep track of where variables were defined and where they were used
- Consider the case where each variable has only one definition in the intermediate representation
- One static definition, accessed many times
- Static Single Assignment Form (SSA)

- SSA is useful because
 - Dataflow analysis and optimization is simpler when each variable has only one definition
 - If a variable has N uses and M definitions (which use N+M instructions) it takes N*M to represent def-use chains
 - Complexity is the same for SSA but in practice it is usually linear in number of definitions
 - SSA simplifies the register interference graph

Original Program

• SSA Form

$$a := x + y$$

$$b := a - 1$$

$$a := y + b$$

$$b := x * 4$$

$$a := a + b$$

$$a1 := x + y$$

what about conditional branches?

Edge-split SSA Form

Unique
Successor &
Unique
Predecessor

- Conversion from a Control Flow Graph (created from TAC) into SSA Form is not trivial
- SSA creation algorithms:
 - Original algorithm by Cytron et al. 1986
 - Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
 - Harel algorithm

Conversion to SSA Form

- Simple idea: add a φ function for every variable at a join point
- A join point is any node in the control-flow graph with more than one predecessor
- But: this is wasteful and unnecessary.

Conversion to SSA

b1 is never used, stmt can be deleted

Conversion to SSA

b2 changes in each loop. SSA is **not** functional programming!

3: return c1

Dominance Relation

- X dominates Y if every path from the start node to Y goes through X
- D(X) is the set of nodes that X dominates
- X strictly dominates Y if X dominates Y and X ≠ Y

Dominance Relation

5 strictly dominates 6, 7, 8

Dominance Relation

Dominance Property of SSA

- Essential property of SSA form is the definition of a variable must dominate use of the variable:
 - If X is used in a φ function in block n, then definition of X dominates every predecessor of n
 - If X is used in a non-φ statement in block n, then the definition of X dominates n.

- X strictly dominates Y if X dominates Y and X ≠ Y
- Dominance Frontier (DF) of node X is the set of all nodes Y such that:
 - X dominates a predecessor of Y, AND
 - X does not strictly dominate Y

- Algorithm to compute DF(X):
 - Local(X) := set of successors of X who do not immediately dominate X
 - Up(X) := set of nodes in DF(X) that are not dominated by X's immediate dominator.
 - DF(X) := Union of Local(X) & (Union of Up(K) for all K that are children of X)

• ComputeDF(X):

```
S := {} // empty set
For each node Y in Successor(X):
  If Y is not immediately dominating X:
    S := S + \{Y\} // \text{ this is Local}(X), + \text{ means union}
For each child K of X in D(X): // X dominates K
  For each element Y in ComputeDF(K):
    If X does not dominate Y,
            S := S + \{Y\} // \text{ this is } Up(X)
DF(X) = S
```

- Dominance Frontier Criterion
 - If node X contains definition of some variable a, then any node Y in the DF(X) needs a ϕ function for a.
- Iterated Dominance Frontier
 - Since a ϕ function is itself a definition of a new variable, we must iterate the DF criterion until no nodes in the CFG need a ϕ function.

Placing \phi Functions

Placing \phi Functions

Placing \phi Functions

Placing \(\phi \) Functions

Rename Variables

Program

```
i:=1
j:=1
k:=0
while k<100:
  if j < 20:
     j:=i
     k := k+1
   else:
     j:=k
     k := k+1
return j
```


Dominance Relations

•D(1) =
$$\{2,3,4,5,6,7\}$$

•D(2) =
$$\{3,4,5,6,7\}$$

$$\bullet$$
D(3) = {5,6,7}

•
$$D(4) = \{\}$$

•
$$D(5) = \{\}$$

$$\cdot D(6) = \{\}$$

•
$$D(7) = \{\}$$

Dominance Relations

•D(1) = $\{2,3,4,5,6,7\}$

Converting to SSA

Dominance Relations

Converting to SSA

•D(1) =
$$\{2,3,4,5,6,7\}$$

•D(2) =
$$\{3,4,5,6,7\}$$

•D(3) =
$$\{5,6,7\}$$

•
$$D(4) = \{\}$$

•
$$D(5) = \{\}$$

$$\bullet D(6) = \{\}$$

•
$$D(7) = \{\}$$

Dominance Frontier

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

•DF(5) =
$$\{7\}$$

•DF(6) =
$$\{7\}$$

•DF
$$(7) = \{2\}$$

Variable j in 5 $DF(5) = \{ 7 \}$

Variable j in 7 $DF(7) = \{ 2 \}$

1:
$$i := 1$$
 $j := 1$ $k := 0$

Variable j in 5 $DF(5) = \{ 7 \}$

Variable j in 7 $DF(7) = \{ 2 \}$

Variable j in 6 $DF(6) = \{ 7 \}$

1:
$$i := 1$$
 $j := 1$ $k := 0$

Variable k in 5 $DF(5) = \{7\}$

Variable k in 7 $DF(7) = \{2\}$

Variable k in 6 $DF(6) = \{ 7 \}$

- SSA form contains statements, basic blocks and variables
- Dead-code elimination
 - if there is a variable v with no uses and def of v has no side-effects, delete statement defining v
 - if $z := \phi(x, y)$ then eliminate this stmt if no defs for x, y

- Constant Propagation
 - if v := c for some constant c then replace v with c for all uses of v
 - $-v := \phi(c_1, c_2, ..., c_n)$ where all c_i are equal to c can be replaced by v := c

- Conditional Constant Propagation
 - In previous flow graph, is j always equal to 1?
 - If j = 1 always, then block 6 will never execute and so j := i and j := 1 always
 - If j > 20 then block 6 will execute, and j := k
 will be executed so that eventually j > 20
 - Which will happen? Using SSA we can find the answer.

- Arrays, Pointers and Memory
 - For more complex programs, we need dependencies: how does statement B depend on statement A?
 - Read after write: A defines variable v, then B uses v
 - Write after write: A defines v, then B defines
 - Write after read: A uses v, then B defines v
 - Control: A controls whether B executes

Memory dependence

```
M[i]:= 4
x:= M[j]
M[k]:= j
```

- We cannot tell if i, j, k are all the same value which makes any optimization difficult
- Similar problems with Control dependence
- SSA does not offer an easy solution to these problems

More on Optimization

- Advanced Compiler Design and Implementation by Steven S. Muchnick
- Control Flow Analysis
- Data Flow Analysis
- Dependence Analysis
- Alias Analysis
- Early Optimizations
- Redundancy Elimination

- Loop Optimizations
- Procedure Optimizations
- Code Scheduling (pipelining)
- Low-level Optimizations
- Interprocedural Analysis
- Memory Hierarchy

Amdahl's Law

- Speedup_{total} =
 ((1 Time_{Fractionoptimized}) + Time_{Fractionoptimized}/
 Speedup_{optimized})-1
- Optimize the common case, 90/10 rule
- Requires quantitative approach
 - Profiling + Benchmarking
- Problem: Compiler writer doesn't know the application beforehand

Summary

- Optimizations can improve speed, while maintaining correctness
- Various early optimization steps
- Static Single-Assignment Form (SSA)
- Optimization using SSA Form