Linear Programming

Optimization Techniques (ENGG*6140)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Winter 2023

Linear programming

A linear programming problem is of the form:

minimize linear function in x

subject to $\,$ affine inequality constraints in x,

affine equality constraints in x.

Standard linear programming

A **standard linear programming** problem is of the form:

Maximization:

$$\begin{array}{ll} \underset{\boldsymbol{x}=[x_1,\ldots,x_n]^\top}{\mathsf{maximize}} & \boldsymbol{\alpha}^\top \boldsymbol{x} \\ \mathsf{subject to} & \boldsymbol{\mathit{Gx}} \preceq \boldsymbol{\mathit{h}}, \\ & \boldsymbol{\mathit{x}} \succeq \boldsymbol{\mathit{0}}, \end{array}$$

Minimization:

$$\begin{array}{ll} \underset{\mathbf{x}=[x_1,\ldots,x_n]^\top}{\mathsf{minimize}} & \boldsymbol{\alpha}^\top \mathbf{x} \\ \mathsf{subject to} & \textit{Gx} \succeq \mathbf{\textit{h}}, \\ & \mathbf{\textit{x}} \succeq \mathbf{\textit{0}}, \end{array}$$

where $\mathbf{\textit{G}} \in \mathbb{R}^{m \times n}$ and $\mathbf{\textit{h}} \in \mathbb{R}^{m}$.

Standard linear programming

Equivalently:

minimize/maximize
$$\alpha_1x_1+\cdots+\alpha_nx_n$$
 subject to linear inequality constraint 1, \vdots linear inequality constraint m , $x_1,\ldots,x_n\geq 0$,

where $m \geq n$.

For **example**:

$$\begin{array}{llll} \underset{x_1, x_2}{\text{minimize}} & 12x_1 + 16x_2 & \underset{x_1, x_2}{\text{maximize}} & 40x_1 + 30x_2 \\ \\ \text{subject to} & x_1 + 2x_2 \geq 40, & \text{subject to} & x_1 + 2x_2 \leq 12, \\ & x_1 + x_2 \geq 30, & 2x_1 + x_2 \leq 16, \\ & x_1, x_2 \geq 0. & x_1, x_2 \geq 0. \end{array}$$

Practical Examples

Practical Example 1

- A company has two products. Let x_1 and x_2 denote the amount of the first and second products to be produced (with some scale), respectively. Therefore, $x_1, x_2 \ge 0$.
- The company has profits \$60 and \$30 for the first and second products. Therefore, the total profit of company:

$$c = (60x_1 + 30x_2).$$

- The resources for these products are limited, so we have the following restrictions:
 - ▶ We do not want the first product, with proportion 8, and the second product, with proportion 3, to spend more than \$48, so: $8x_1 + 3x_2 \le 48 .
 - ▶ For four of the first product and three of the second product, we have the budget to spend at least \$25, so: $4x_1 + 2x_2 \ge 25 .

The optimization becomes:

$$\label{eq:constraints} \begin{split} \underset{x_1,x_2}{\text{maximize}} & c = 60x_1 + 30x_2 \\ \text{subject to} & 8x_1 + 3x_2 \leq 48, \\ & 4x_1 + 2x_2 \geq 25, \\ & x_1, x_2 \geq 0. \end{split}$$

r Programming 7 / 59

Practical Example 2

- We have two 2D tanks of water which are connected from their bottom. Let x_1 and x_2 denote the height of water (with some scale) in the first and second tanks, respectively. Therefore, $x_1, x_2 \ge 0$.
- The widths of the two tanks are 60 and 30 (with some scale), respectively. Therefore, the total amount of water in these tanks is $c = 60x_1 + 30x_2$.

• There are some linear physical restrictions on the amount of water poured in these tanks (because of previous tanks which water has passed to reach these tanks): $8x_1 + 3x_2 \le 48$ and $4x_1 + 2x_2 \ge 25$.

The optimization becomes:

$$\label{eq:continuity} \begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 60x_1 + 30x_2 \\ \\ \text{subject to} & 8x_1 + 3x_2 \leq 48, \\ & 4x_1 + 2x_2 \geq 25, \\ & x_1,x_2 \geq 0. \end{array}$$

8 / 59

Visualization: example 1

Minimization example:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 12x_{1}+16x_{2} \\ \text{subject to} & x_{1}+2x_{2}\geq 40, \\ & x_{1}+x_{2}\geq 30, \\ & x_{1},x_{2}\geq 0. \end{array}$$

gramming 10 / 59

Visualization: example 2

Maximization example:

$$\label{eq:maximize} \begin{array}{ll} \underset{x_1, x_2}{\text{maximize}} & 40x_1 + 30x_2 \\ \\ \text{subject to} & x_1 + 2x_2 \leq 12, \\ & 2x_1 + x_2 \leq 16, \\ & x_1, x_2 \geq 0. \end{array}$$

Visualization: example 3

Example with more number of constraints:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 2x_{1}+3x_{2} \\ \text{subject to} & x_{1}+2x_{2}\geq 8, \\ & 2x_{1}+0.5x_{2}\geq 4, \\ & x_{1}+x_{2}\leq 8, \\ & x_{1}\leq 5, \\ & x_{2}\leq 10, \\ & x_{1},x_{2}\geq 0. \end{array}$$

Simplex Method Description

Simplex method description

- As you saw in the pictures, the feasible set (determined by the constraints) in the linear programming has affine/linear boundaries.
- It is because the constraints are affine/linear.
- Therefore, the feasible set is like a simplex with linear edges and some corners.
- The corners of the feasible set are named the extreme points.

The images are taken from Wikipedia.

Simplex method description

- The simplex algorithm was initially proposed in 1947 [1].
- It works on the linear boundaries (edges) and extreme points of the simplex feasible set.
- Obviously, the solution is at one of the extreme points.

Simplex method description

- The simplex algorithm starts from an extreme point and it goes to one of its neighbor extreme points having the smallest/largest cost function at that point (only if the neighbor extreme point has smaller/larger cost value compared to the current extreme point).
- It continues this procedure until we reach an extreme point whose neighbor extreme points do not have smaller/larger cost value.

The images are taken from Wikipedia.

One of the methods for Simplex Algorithm: Tableau Method for Maximization

Slack variables

Consider this example:

$$\begin{array}{ll} \underset{x_1, x_2, x_3}{\text{maximize}} & 6x_1 + 5x_2 + 4x_3 \\ \text{subject to} & 2x_1 + x_2 + x_3 \leq 240, \\ & x_1 + 3x_2 + 2x_3 \leq 360, \\ & 2x_1 + x_2 + 2x_3 \leq 300, \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

- We convert each inequality ≤ constraint to an equality constraint by adding slack variables.
- Slack variables are positive scalars which are added to the left hand side of inequality
 constraint to make it equality.
- Example:

$$2x_1 + x_2 + x_3 \le 240 \implies 2x_1 + x_2 + x_3 + s_1 = 240,$$

 $x_1 + 3x_2 + 2x_3 \le 360 \implies x_1 + 3x_2 + 2x_3 + s_2 = 360,$
 $2x_1 + x_2 + 2x_3 \le 300 \implies 2x_1 + x_2 + 2x_3 + s_3 = 300,$
 $s_1, s_2, s_3 \ge 0.$

Slack variables

So, this problem:

$$\begin{array}{ll} \underset{x_1, x_2, x_3}{\text{maximize}} & 6x_1 + 5x_2 + 4x_3 \\ \text{subject to} & 2x_1 + x_2 + x_3 \leq 240, \\ & x_1 + 3x_2 + 2x_3 \leq 360, \\ & 2x_1 + x_2 + 2x_3 \leq 300, \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

is converted to:

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3}{\text{maximize}} & 6x_1+5x_2+4x_3 \\ \text{subject to} & 2x_1+x_2+x_3+s_1=240, \\ & x_1+3x_2+2x_3+s_2=360, \\ & 2x_1+x_2+2x_3+s_3=300, \\ & x_1,x_2,x_3,s_1,s_2,s_3\geq 0. \end{array}$$

Forming equalities

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3}{\text{maximize}} & 6x_1+5x_2+4x_3 \\ \\ \text{subject to} & 2x_1+x_2+x_3+s_1=240, \\ & x_1+3x_2+2x_3+s_2=360, \\ & 2x_1+x_2+2x_3+s_3=300, \\ & x_1,x_2,x_3,s_1,s_2,s_3\geq 0. \end{array}$$

The cost function is: $c := 6x_1 + 5x_2 + 4x_3 \implies c - 6x_1 - 5x_2 - 4x_3 = 0$. Therefore:

$$2x_1 + x_2 + x_3 + s_1 = 240,$$

$$x_1 + 3x_2 + 2x_3 + s_2 = 360,$$

$$2x_1 + x_2 + 2x_3 + s_3 = 300,$$

$$c - 6x_1 - 5x_2 - 4x_3 = 0.$$

Forming the table in the tableau method

$$2x_1 + x_2 + x_3 + s_1 = 240,$$

$$x_1 + 3x_2 + 2x_3 + s_2 = 360,$$

$$2x_1 + x_2 + 2x_3 + s_3 = 300,$$

$$c - 6x_1 - 5x_2 - 4x_3 = 0.$$

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7/2	% 3	Si	Sz	53	RHS
Sı	2	1	1	1	0	0	240
52	į	3	2	0	1	0	240 360 300
53	2	1	2	0	U	`_	
	-6	-5	4	0	0	D	0

Pivot and min test

- 1 In maximization problem, choose the most negative value for the pivot column.
- ② Do the min test: divide RHS values (of rows except the c row) to the values of the pivot column. Ignore the negative or zero values in min test.
- Set the minimum division value for the pivot row. The intersection of pivot row and pivot column gives the pivot value.

Simplifying the pivot column

- Make the pivot value one and other values zero in the pivot column.
- 2 For every row, use the row itself and the pivot row only.
- 3 Replace the name of the pivot row with the name of the pivot column.

/	1/21	$\sqrt{\chi_2}$	1 3	Sı	Sz	٤ ک	RH	<u>S</u>
451	12	1	1		0	0	240	
S ₂	11	3	2	0	İ	0	360	
5 ₃	2	1	2	0	0	1	300	
c	16	-5	4	0	0	D	0	
	, ·	Иı	7,2	1 3	Sį	52	S ₃	RHS
۲/	$\alpha_{\rm L}$	1	0.5	0.5	0.5	0	0	120
[/2 [2- [2	52	0	2,5	1.5	-0.	5 (0	240
2 2 13-12	53	0	0	[_1	0	1	60
r4+3r1	C	D	-2	-1	3	. 0	0	720

Continuing the table

 In the maximization problem, we continue the table until all the values in the c row are non-negative (positive or zero).

/	R	$\sqrt{\chi_2}$	% 3	Sı	Sz	53	RH	S
451	(2)	1	1]	0	0	240	\supset
52	11	3	2	0	1	٥	360	
5 ₂	2	1	2	0	0	1	300	
c	16	-5	4	0	0	D	0	
	1	% ₁	72	4 ₃	Sį	52	S ₃	RHS
۲./۵	24	1	0.5	0.5	0.5	0	0	120
[/2 5- 12	5ء	0	2.5	1.5	-0.9	5 (0	240
73-Y2	53		O	1	-1	0	(60
r4+3r1	C	D	-2	-1	3	0	١٥	720

Continuing the table

	1 % ₁	1/2	13	51	52	53	RH.	<u></u>	min test
$\frac{1}{\alpha_{i}}$	1	0.5	0.5	0.5	0	0	120	ر – إ	0 = 240
(52)	0	2.5	1.5	-0.	5 (0	240) !	40 = 96 2.5
53	0	0	1	(0	(60	_	_
C	D	-2	-1	3	0	0	72	0	
11 - 12 5 12/2.5 13 14 + 45 12	8/1 8/2 53	0	0	1 1/5	3/5 -1/5	-13 25 0	53 (72 96 60 912 maxim knotic	num last on (c*)

Basic and non-basic variables

Once the table is over:

- A row with having only one 1 and the rest 0 is a basic variable.
- The other columns are non-basic variables.

Checking the optimal values

- Once the table is over, the RHS of the c row is the **optimal cost function**. Here it is $c^* = 912$.
- The optimal values for the variables are the RHS of the rows. In other words, the optimum basic variables are the RHS of rows. Here they are $x_1^* = 72$, $x_2^* = 96$, $x_3^* = 60$.
- The optimum value for the rest of the variables (the **non-basic variables**) is **zero**. Here they are $x_3^* = 0$, $s_1^* = 0$, $s_2^* = 0$.
- We can check if the optimal cost is correct:

$$c := 6x_1 + 5x_2 + 4x_3 \implies c^* = 6x_1^* + 5x_2^* + 4x_3^* = 6(72) + 5(96) + 4(0) = 912$$

	ļ	я	øίջ	я:	, S ₁	Sz	53	RHS
1-12	911	1	,	1/5	3/5	-1/3-	0	72
Y2/2.5	Δh		ı	3/5	-1/5-	45	٥	96
12/2.5	/\Z S2	,	0	ĺ	-(-1/3 2/5 0	i	60
,		1		レ	13/5	4-		(912)
4+45 r2	_	10						I. get
			all	hor	n-nego	ahle		maximum last function (c*)

27 / 59

Big M method

When to use the big M method

We should use the big M method when there are one or some \geq constraints and/or = constraints. In other words, whenever we have **mixed constraints**.

Consider this example with \leq and \geq constraints:

$$\begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 3x_1 + 4x_2 \\ \text{subject to} & 2x_1 + x_2 \leq 600, \\ & x_1 + x_2 \leq 225, \\ & 5x_1 + 4x_2 \leq 1000, \\ & x_1 + 2x_2 \geq 150, \\ & x_1, x_2 \geq 0. \end{array}$$

• For < constraints, we use slack variables as before:

$$2x_1 + x_2 \le 600 \implies 2x_1 + x_2 + s_1 = 600,$$

 $x_1 + x_2 \le 225 \implies x_1 + x_2 + s_2 = 225,$
 $5x_1 + 4x_2 \le 1000 \implies 5x_1 + 4x_2 + s_3 = 1000,$
 $s_1, s_2, s_3 > 0.$

Big M method: \geq constraints

$$\begin{array}{ll} \underset{x_1,x_2}{\text{maximize}} & c = 3x_1 + 4x_2 \\ \text{subject to} & 2x_1 + x_2 \leq 600, \\ & x_1 + x_2 \leq 225, \\ & 5x_1 + 4x_2 \leq 1000, \\ & x_1 + 2x_2 \geq 150, \\ & x_1, x_2 \geq 0. \end{array}$$

$$x_1 + 2x_2 > 150 \implies x_1 + 2x_2 + s_4 = 150 \implies s_4 < 0.$$

• For \geq constraints, we use excess variables e and artificial variables a:

$$x_1 + 2x_2 \ge 150 \implies x_1 + 2x_2 + a_4 - e_4 = 150,$$

 $a_4, e_4 > 0.$

• We want the additional variable to be very small $(a_4 = \epsilon)$ so we add it to the cost function with a very big multiplication factor $M \gg 1$:

$$\max_{x_1, x_2, x_3} \text{maximize} \quad c = 3x_1 + 4x_2 - Ma_4,$$

because if $M \gg 1$, then $a_4 \to 0$ to cancel its effect in the cost function.

inear Programming 30 / 59

Tableau method with the big M method

$$\begin{array}{ll} \underset{x_1,x_2,s_1,s_2,s_3,a_4,e_4}{\text{maximize}} & c = 3x_1 + 4x_2 - \textit{Ma}_4 \\ \text{subject to} & 2x_1 + x_2 + s_1 = 600, \\ & x_1 + x_2 + s_2 = 225, \\ & 5x_1 + 4x_2 + s_3 = 1000, \\ & x_1 + 2x_2 + a_4 - e_4 = 150, \\ & x_1,x_2,s_1,s_2,s_3,a_4,e_4 \geq 0. \end{array}$$

 We make zero the column value of additional variable in the c row, because the value of a₄ should be about zero rather than M.

	i	A)	αz	Sı	Sz	Sz	a4	e4	RHS
-		2	1	1	0	0	0	0 0	600
	51	ı	·	ь	1	D	0	6	225
	22	1	,			1		6	1000
	73	5	4	6	ь	•	1	_ [150
	a4	1	2	D	0	•			
		_3	_4	0	٥	0	W	°	
	_	1-	24	4 0	-	6	D	M	-150M
15-M74	C	-3-M	-210	1-1					

31 / 59

Tableau method with the big M method

Tableau method with the big M method

1	RI	az_	Sı	Sz.	53	a4 1	(e4)	RHS	_
51	3/2	0	ĺ	0	·	乜	包	575	
(52	1/2	0	0	1	0 -	1/2	1/2	150)	150 =300
53	3	<u> </u>	•	0	١.	-2	2	700	700= 350
χ _z	1-12	(0	o	0	し	1/2	75	_
c	1-1	0	G	,	9 1	1+2	[-2]	300	
		1 8	ر الم	Sı	Sz	ſ ₃	94	e4	RHS
.6	<u></u>	1	0	1	o	0	0	- 1	375
r1-42	ea	1	0		2.	0	_ [1/	300
252	53	};	_	•	_ - 4	t	P		100
r3-4r2	ر جاو	1:	0	0	-(0	•	1	225
ra + r2	~ ¿	1'					M	-	900
15 +4 PZ	0	11	0	0	4	0		' ز_	,,,,
<i>,</i>		_	a	ll po	osilive				

Therefore: $s_1^* = 375, e_4^* = 300, s_3^* = 100, x_2^* = 225, x_1^* = 0, s_2^* = 0, s_3^* = 0, a_4^* = 0, c^* = 900.$ Check: $c^* = 3x_1^* + 4x_2^* = 3(0) + 4(225) = 900$

Example 2 for mixed constraints

Consider another example with mixed constraints:

$$\begin{array}{ll} \underset{x_{1},x_{2},x_{3}}{\text{maximize}} & c = x_{1} - x_{2} + 3x_{3} + 4 \\ \\ \text{subject to} & x_{1} + x_{2} \leq 20, \\ & x_{1} + x_{3} = 5, \\ & x_{2} + x_{3} \geq 10, \\ & x_{1},x_{2},x_{3} \geq 0. \end{array}$$

• We drop the DC value from the cost for now:

$$c = x_1 - x_2 + 3x_3$$
.

We have:

$$x_1 + x_2 \le 20 \implies x_1 + x_2 + s_1 = 20,$$

 $x_1 + x_3 = 5 \implies x_2 + x_3 + a_1 = 5,$
 $x_2 + x_3 \ge 10 \implies x_2 + x_3 + a_2 + e_2 = 10,$
 $s_1, a_1, a_2, e_2 \ge 0.$

Example 2 for mixed constraints

The problem is converted to:

$$\begin{aligned} & \underset{x_1, x_2, x_3}{\text{maximize}} & & c = x_1 - x_2 + 3x_3 - \textit{Ma}_1 - \textit{Ma}_2 \\ & \text{subject to} & & x_1 + x_2 + s_1 = 20, \\ & & & x_2 + x_3 + a_1 = 5, \\ & & & x_2 + x_3 + a_2 + e_2 = 10, \\ & & & s_1, a_1, a_2, e_2 \geq 0. \end{aligned}$$

i	1/2	1/2	(×3)	۶ı	a_1	Az	ez	RHS	m)n tools
	<u> </u>	1	7 .	(٥	•	0	20	
51	<u>'</u>			<u> </u>	$\overline{}$	0	0	5)	5/ =5
(ai	1		<u> </u>	-				10	10/=10
$\widetilde{a_2}$	0	1	- t	0	0		(1 /6	~(
	 		-3	0	+M.	M+	•	10	
C	-	+1		 -		M		-5M	
	-M-1	ſ	-M-3	0	0	7.		-3/1	
1ª MY2	١		 	┼			M	-15M	
re-Mr3	1	1-A+1	1-2M-	3) 0	•	0	7.5	1-1311	
re-Mr3	1-11		$\overline{}$						

Example 2 for mixed constraints

Example 2 for mixed constraints

Therefore: $s_1^*=15, x_3^*=5, x_2^*=5, c^*=10, x_1^*=a_1^*=a_2^*=e_2^*=0.$ Check: $c^*=x_1^*-x_2^*+3x_3^*=0-5+3(5)=10$

The final answer for maximum actual cost is (we add back the DC value): $c^* = 10 + 4 = 14$.

The reason for the tableau method

$$\label{eq:continuous} \begin{array}{ll} \underset{x_1,x_2,x_3,x_4}{\text{maximize}} & c = 4x_1 + 6x_2 - 5x_4 \\ \text{subject to} & x_1 + x_2 + x_3 \leq 50, \\ & 2x_1 + 3x_2 + x_4 \leq 42, \\ & 3x_3 - x_4 \leq 250, \\ & x_1,x_2,x_3,x_4 \geq 0. \end{array}$$

is converted to:

$$\begin{array}{ll} \underset{x_1,x_2,x_3,x_4,s_1,s_2,s_3}{\text{maximize}} & c = 4x_1 + 6x_2 - 5x_4 \\ \text{subject to} & x_1 + x_2 + x_3 + s_1 = 50, \\ & 2x_1 + 3x_2 + x_4 + s_2 = 42, \\ & 3x_3 - x_4 + s_3 = 250, \\ & x_1,x_2,x_3,x_4,s_1,s_2,s_3 \geq 0. \end{array}$$

- # variables: 7, # equations: 3
- We can set 7-3=4 variables to zero (non-basic variables) and find the other 3 variables (basic variables).
- How many ways can we choose the three variables out of the 7 variables? $\binom{7}{3} = 35$.

Example variables to choose

One of the ways:

non-basic variables:
$$x_1=x_2=x_3=x_4=0$$
, basic variables: s_1,s_2,s_3 .
$$\begin{aligned} &\max &\max_{s_1,s_2,s_3} & c=0 \\ &\text{subject to} & s_1=50, \\ &s_2=42, \\ &s_3=250, \\ &s_1,s_2,s_3>0. \end{aligned}$$

Therefore, $s_1 = 50$, $s_2 = 42$, $s_3 = 250$. The cost function becomes: c = 0.

Example variables to choose

One of the ways:

Therefore, $x_2 = 14$, $x_3 = 36$, $s_3 = 142$. The cost function becomes: c = 6(14) = 84.

The reason for the pivot column

Which variable should we increase which maximizes the cost function the most?

$$c = 4x_1 + 6x_2 - 5x_4$$
.

Increasing the variable x_2 has the most effect because it has the biggest multiplication factor, i.e., 6.

Recall that we had:

$$c - 4x_1 - 6x_2 + 5x_4 = 0.$$

That is why, in the tableau method, we find the most negative value in the c row. This is the reason for the **pivot column**.

The reason for the min test

How much can we increase the x_2 variable?

- In the first constraint, the worst case scenario is $x_1 = x_3 = s_1 = 0$ and the most we can increase $x_2 : x_2 = 50$
- In the second constraint, the worst case scenario is $x_1 = x_4 = s_2 = 0$ and the most we can increase x_2 : $3x_2 = 42 \implies x_2 = 42/3 = 14$
- In the third constraint, the worst case scenario is $x_3=x_4=s_3=0$ and the most we can increase $x_2\colon 30x_2=250 \implies x_2=\infty$
- Therefore, the minimum increase we can have for x_2 is: $min(50, 42, \infty) = 42$.

43 / 59

An example minimization linear problem is:

minimize
$$12x_1 + 16x_2$$

subject to $x_1 + 2x_2 \ge 40$, $x_1 + x_2 \ge 30$, $x_1, x_2 \ge 0$.

- When we have a minimization linear programming, we can convert the minimization problem to a maximization problem.
- We should find the dual problem for the minimization problem. The dual for the minimization is a maximization problem. We will learn the dual problem of linear programming soon.

An example minimization linear problem is:

$$\label{eq:minimize} \begin{aligned} & \underset{x_1, x_2}{\text{minimize}} & & 12x_1 + 16x_2 \\ & \text{subject to} & & x_1 + 2x_2 \geq 40, \\ & & x_1 + x_2 \geq 30, \\ & & x_1, x_2 \geq 0. \end{aligned}$$

Consider the constraints:

$$x_1 + 2x_2 \ge 40 \xrightarrow{\times y_1} y_1x_1 + 2y_1x_2 \ge 40y_1,$$

 $x_1 + x_2 \ge 30 \xrightarrow{\times y_2} y_2x_1 + y_2x_2 \ge 30y_2,$

where $y_1, y_2 \ge 0$. Summing the sides together gives:

$$(y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2$$
.

Summing the sides together gives:

$$(y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

On the other hand, the cost of dual problem is a lower bound on the cost of the primal problem:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2$$
.

Therefore:

$$12x_1 + 16x_2 \ge (y_1 + y_2)x_1 + (2y_1 + y_2)x_2 \ge 40y_1 + 30y_2.$$

Hence:

$$y_1 + y_2 \le 12$$
,
 $2v_1 + v_2 \le 16$.

We want to find the best (maximum) lower bound, so:

maximize
$$40y_1 + 30y_2$$
.

Therefore:

maximize
$$40y_1 + 30y_2$$

subject to $y_1 + y_2 \le 12$, $2y_1 + y_2 \le 16$, $y_1, y_2 \ge 0$.

is the dual problem for the following problem:

$$\begin{array}{ll} \underset{x_{1},x_{2}}{\text{minimize}} & 12x_{1}+16x_{2} \\ \text{subject to} & x_{1}+2x_{2}\geq 40, \\ & x_{1}+x_{2}\geq 30, \\ & x_{1},x_{2}\geq 0. \end{array}$$

This maximization problem can be solved as explained before.

Solving the problem by tableau method

$$\begin{array}{ll} \underset{y_{1},y_{2}}{\text{maximize}} & c = 40y_{1} + 30y_{2} \\ \text{subject to} & y_{1} + y_{2} + s_{1} = 12, \\ & 2y_{1} + y_{2} + s_{2} = 16, \\ & y_{1}, y_{2} \geq 0. \end{array}$$

	(2)	yz	51	52	RHS
	1	1	1	D	12
152	2	1	0		16)
c	40	-30	0	0	0
	1 91	ኃኒ	51	SZ	RHS
· 1/2 51	10	0.5	1	_0.5	4
>1				_	

min	test
12/1 =	12
16/2 =	= 8

Solving the problem by tableau method

	١	91	(9z)	ک ا	Sz	RHS	min test
,	-	-	0.5	1	_0.5	4	4/0.5=8
C	3/	1	0.5	b	0.5	8	8,5=16
	7	0	-10/	0	20	320	
	٠,	•			¢_	1 RHS	
		וליו	yz	۶۱	52	L KITS	
2r1		,	1	2	-1	8	
	Yz Yl	ľ	٠	-1	1	4	
$\frac{r_2 - r_1}{r_3 + 20r_1}$	-	<u> </u>			10	400	
Y2 + 2011	C	0	0	20		,	
3 '			all	positive			

Therefore:
$$y_2^* = 8$$
, $y_1^* = 4$, $s_1^* = 0$, $s_2^* = 0$, $c^* = 400$.
Check: $c^* = 40y_1^* + 30y_2^* = 40(4) + 30(8) = 400$

The strong duality holds for linear programming, so:

 $c^* = 400$ for the primal problem, too.

Dual Simplex Method

Why we need the dual simplex method?

- We converted the minimization linear problem to its dual problem which is the maximization linear problem. Then, we solved it using the simplex method for maximization.
- However, it only gave us the optimal cost function c^* and not the optimum primal variables $\{x_1^*, \ldots, x_n^*\}$.
- For finding these optimum primal variables in the minimization linear programming, we can use the dual simplex method.
- The dual simplex method only works for the minimization linear problem if:
 - all its multiplication factors in the cost function are non-negative.
 - ▶ at least one of the inequality constraints is ≥.

Dual simplex method: example

$$\begin{array}{ll} \underset{x_1,x_2}{\text{minimize}} & c = 3x_1 + 4x_2 \\ \\ \text{subject to} & 2x_1 + x_2 \leq 600, \\ & x_1 + x_2 \leq 225, \\ & 5x_1 + 4x_2 \leq 1000, \\ & x_1 + 2x_2 \geq 150, \\ & x_1, x_2 \geq 0. \end{array}$$

For inequality \geq , we have:

$$x_1 + 2x_2 > 150 \implies -x_1 - 2x_2 < -150$$

Using slack variables:

$$\begin{array}{ll} \underset{x_1,x_2}{\text{minimize}} & c-3x_1+4x_2=0 \\ \\ \text{subject to} & 2x_1+x_2+s_1=600, \\ & x_1+x_2+s_2=225, \\ & 5x_1+4x_2+s_3=1000, \\ & -x_1-2x_2+s_4=-150, \\ & x_1,x_2\geq 0. \end{array}$$

Dual simplex method: example

$$\label{eq:minimize} \begin{array}{ll} \underset{x_1,x_2}{\text{minimize}} & c-3x_1+4x_2=0 \\ \\ \text{subject to} & 2x_1+x_2+s_1=600, \\ & x_1+x_2+s_2=225, \\ & 5x_1+4x_2+s_3=1000, \\ & -x_1-2x_2+s_4=-150, \\ & x_1,x_2\geq 0. \end{array}$$

- 1 Pivot row: Pick the most negative value in RHS
- 2 min test: Divide the non-zero values of c row by the negative values of the pivot row. Take absolute value in division.

Dual simplex method: example

min test:
$$\{\frac{-3}{-2}\} = 3$$

Therefore: $s_1^* = 525$, $s_2^* = 150$, $s_3^* = 700$, $x_2^* = 75$, $c^* = 300$, $x_1^* = 0$, $s_4^* = 0$. Check: $c^* = 3x_1^* + 4x_2^* = 3(0) + 4(75) = 300$

Dual simplex method for > constraints in maximization

We can also use the dual simplex method for handling \geq constraints in maximization. Example:

$$\label{eq:maximize} \begin{array}{ll} \underset{x_1,x_2,x_3}{\text{maximize}} & c = 60x_1 + 30x_2 + 20x_3 \\ \text{subject to} & 8x_1 + 6x_2 + x_3 \leq 48, \\ & 4x_1 + 2x_2 + 1.5x_3 \leq 20, \\ & 2x_1 + 1.5x_2 + 0.5x_3 \leq 8, \\ & x_2 \geq 1, \\ & x_1,x_2,x_3 \geq 0. \end{array}$$

We can convert the \geq constraints to \leq constraints by multiplying the sides of inequality by -1:

$$x_2 > 1 \implies -x_2 < -1 \implies -x_2 + s_4 = -1$$
.

So, the problem is converted to:

$$\begin{array}{ll} \underset{x_1,x_2,x_3,s_1,s_2,s_3,s_4}{\text{maximize}} & c = 60x_1 + 30x_2 + 20x_3 \\ \\ \text{subject to} & 8x_1 + 6x_2 + x_3 + s_1 = 48, \\ & 4x_1 + 2x_2 + 1.5x_3 + s_2 = 20, \\ & 2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 8, \\ & -x_2 + s_4 = -1, \\ & x_1,x_2,x_3,s_1,s_2,s_3,s_4 \geq 0. \end{array}$$

ear Programming 56 / 59

Dual simplex method for \geq constraints in maximization

57 / 59

Acknowledgment

This lecture is inspired by the lectures of Prof. Shokoufeh Mirzaei on linear programming: [Link]

References

[1] G. B. Dantzig, "Reminiscences about the origins of linear programming," in *Mathematical Programming The State of the Art*, pp. 78–86, Springer, 1983.