《概率论与数理统计(A)》随机变量部分测验

- 一、离散型随机变量(第1,2小题必做,第3,4小题可任选其一)
- 1. 设 X 与 Y 的联合概率分布律为

Y	0	1	2
1	0. 1	0. 2	0
2	0.3	0.05	а
3	0. 15	0	0. 1

- (1) 求 a 的值; (2) 求 X 与 Y 的边缘分布律,并判断 X 与 Y 是否相互独立;
- (3) 求 2X+3Y 的分布律.
- 2. 一整数 X 随机地在 1,2,3,4 四个数中取一个值,另一整数 Y 随机地在 $1\sim X$ 中取一个值,写出 (X,Y) 的联合分布律、X+Y 的分布律和 EX.
- 3.设 $R.V.\xi$, η 独立同分布, 分布律均为 $P\{\xi=i\}=1/3$, i=1,2,3. 设 $X=\max\{\xi,\eta\}$, $Y=\min\{\xi,\eta\}$ 求 (X,Y) 的联合分布律(给出分析过程).
- 4. 已知 X, Y 以及 XY 的分布律如下表,求 (X, Y) 的联合分布律(给出分析过程).

X	0	1	2
Р	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

Y	0	1	2
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

XY	0	1	2	4
P	$\frac{7}{12}$	$\frac{1}{3}$	0	1/12

二、连续型随机变量

- 2. 设 R.V.X 的概率密度为 $f(x) = \begin{cases} \frac{A}{\sqrt{1-x^2}} & |x| < 1 \\ 0 & 其它 \end{cases}$, 求 (1) 系数 A, (2) 分布函数 F(x), (3) D(X)
- 3. 设 $R.V.X \sim U[-2,2]$, 求 $Y = X^2$ 的概率密度函数 $f_Y(y)$.
- 4. 设二维 R.V.(X, Y) 的联合概率密度函数为 $f(x, y) = \begin{cases} a(x+y), & 0 \le x \le y \le 1 \\ 0, & \text{其他} \end{cases}$

求(1)常数a;(2)X,Y的边缘密度函数;(3)E(XY);

三、填空题

1. 设
$$X_1, X_2, \dots, X_n$$
 独立且同服从 $N(0,1)$, $Y = \sum_{i=1}^n X_i^2$, 则 $D(Y) = \underline{\hspace{1cm}}$

2. 设
$$X_1, X_2, \dots, X_n$$
 独立,且都服从 $B(4,0.5)$,随机变量 $T = \frac{1}{n} \sum_{i=1}^n X_i^2$,则 $ET = \underline{\hspace{1cm}}$

3. 设随机变量
$$X_1, X_2, X_3$$
 相互独立, $Y = X_1 - 2X_2 + 3X_3 - 1$ 且 $X_1 \sim U(0,6)$, $X_2 \sim N(1,3)$, $X_3 \sim \pi(3)$,则 $EY = _$ ___, $DY = _$ ___

- 4. 随机变量 X 和 Y 独立,且方差分别为 4 和 2 ,则随机变量 D(3X 2Y) =
- 5. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & 其他 \end{cases}$,则 $Y = X^2$ 的概率密度 $f_Y(y) =$ _____
- 6. 设X与Y相互独立,且 $X \sim \pi(1)$, $Y \sim \pi(2)$,则Z = X + Y的密度函数 $f_{Z}(z) =$ _______

四、附加题(任选做)

- 1. 设随机变量 $X \sim N(\mu, \sigma^2)$, Y = aX + b(a > 0), 则 $\rho_{XY} =$ _____.
- 2. 设随机变量 X 的可能取值为: -2, 0, 1, 且有 E(X) = 0.5, $P\{X = 0\} = 0.2$ 则 $P\{X = 1\} = ___.$
- 3. 设随机变量 X,Y 有相同的分布律如下,并且 P(XY=0)=1,则 $P(X \neq Y)=$ _____

X		0	1
p	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

4. (10 分) 设事件 A, B满足 $P(A) = \frac{1}{4}$, $P(B|A) = P(A|B) = \frac{1}{2}$,

求(1)(X,Y)的分布律;(2)X,Y是否相互独立?为什么?(3)相关系数 ρ_{XY} .

- 5. 设二维 R.V.(X, Y) 的联合概率密度为 $f(x,y) = \begin{cases} e^{-x-y}, & x > 0, y > 0 \\ 0, & \text{其它} \end{cases}$
 - (1) 求 X, Y 的边缘概率密度函数, 并判断 X 与 Y 是否相互独立; (2) 求 EX, EY