

ರ

Operaciones entre lenguajes

 Consideremos el alfabeto Σ = {0, 1} y los lenguajes:

A = $\{\lambda, 0, 1, 10, 11\}$ B = $\{\lambda, 1, 0110, 11010\}$

Entonces:

 $A \cup B = {\lambda, 0, 1, 10, 11, 0110, 11010}$

 $A \cap B = \{\lambda, 1\}$

 $A - B = \{0, 10, 11\}$

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

11

11

Operaciones entre lenguajes

4. Concatenación: Sean dos lenguajes definidos sobre el mismo alfabeto $L_1 \subseteq \Sigma^*$, $L_2 \subseteq \Sigma^*$, se denomina concatenación de los dos lenguajes $L_1 \cdot L_2$ ($L_1 L_2$) al conjunto de todas las cadenas formadas concatenando una palabra del primer lenguaje con una del segundo.

$$L_1 \cdot L_2 = \{ w \cdot x | w \in L_1 \ y \ x \in L_2 \}$$

– La definición anterior sólo es valida si L_1 y L_2 contienen al menos un elemento. Para la concatenación de L con el lenguaje vacío Φ se tiene que: $\Phi L = L \Phi = \Phi$

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

Teoría Computacional

Prof. Luis Enrique Hernández Olvera

Operaciones entre lenguajes

7. Cierre u operación estrella (cerradura de Kleene): La operación cierre de un lenguaje L es otro L* obtenido uniendo el lenguaje L con todas sus potencias posibles, incluso L⁰.

$$L^* = {\lambda} \cup {L} \cup {LL} \cup {LLL} \dots = \bigcup_{n=0}^{\infty} L^n$$

 Puesto que el alfabeto Σ es también un lenguaje sobre Σ, puede aplicársele esta operación.

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

17

17

Operaciones entre lenguajes

8. Cierre o clausura positiva: La operación de cierre positivo de un lenguaje L es otro lenguaje L⁺ obtenido uniendo el lenguaje L con todas sus potencias posibles, excepto L⁰.

$$L^{+} = \{L\} \cup \{LL\} \cup \{LLL\} \dots = \bigcup_{n=1}^{\infty} L^{n}$$

- Ninguna clausura positiva contiene la palabra vacía, a menos que dicha palabra este en L.
- Puesto que el alfabeto Σ es también un lenguaje sobre Σ, puede aplicársele esta operación.

 $\Sigma^+ = \Sigma^* - \{\lambda\}$

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

