Multi-Objective Optimization Problems

in Statistical Machine Translation

Kevin Duh (Nara Institute of Science and Technology, Japan)
Baskaran Sankaran, Anoop Sarkar (Simon Fraser U., Canada)

Introduction

There are 6000 languages in the world.

Our interest:

Multi-objective Optimization for building these software systems

Hay 6.000 lenguas en el mundo.

Statistical Machine Translation

A bit of History

1960s-now:

Rule-Based Machine Translation e.g. SYSTRAN

2000s-now:

Statistical Machine Translation e.g. Google Translate, Bing

Warry Wear

Architecture of Statistical Machine Translation

Spanish sentence (s)

Frequency

dlrow-eht 3

✓ dlrow-eht 1

si 2

|S SI

Where is the Optimization Problem?

Optimize weights w_k so that s_{pred} is similar to s_{true}
Usually, non-convex piecewise linear objective

$$s_{predict} = \underset{s \in spanish}{\operatorname{argmax}} prob(s \mid e) = \underset{s \in spanish}{\operatorname{argmax}} \sum_{k=1}^{K} w_k f_k(s, e)$$

MAXIMIZE similarity(s_{pred},s_{true})

Please give us advice!

Better Evaluation?

- How to visualize/compare methods with 3+ objectives?
- What to conclude when Pareto Frontiers of diff. methods cross?

- Ideally, humans determine similarity(s_{pred}, s_{true})
- 2. But humans cost \$\$\$
- 3. So we resort to automatic similarity metrics on strings
- 4. Each metric has pros/cons, so we hope to optimize all

Multi-Objective Optimization Techniques

1. Lateen Technique:

Alternate among single-objective problems.

2. Linear combination:

Combination weights are set to correlate w/ human scores

3. Pareto Support Vector Machine:

- K. Duh+, Learning to Translation with Multiple Objectives, Proc. of Association for Computational Linguistics (ACL2012)
- B. Sankaran+, Multi-metric Optimization using Ensemble Tuning, Proc. of North American Assoc. for Computational Linguistics (NAACL 2013)