第六章 网络层

合肥工业大学 计算机与信息学院 □ TCP/IP产生的背景

1972-1980

ARPnet、AlOHAnet、SNA(IBM)、Telenet(商用分

组交换网).....

各种局域网(以太网、令牌环网、令牌总线网...)

网络互连

□ 异构网络互连: 网络 的网络

- > TCP
- > UDP
- > IP

网络互连

□ 1983.1.1: TCP/IP作为ARPAnet 新的标准主机协议,正式部署,替代了NCP协议

□ TCP功能扩展, DNS出现

网络层服务

□ 核心: IP协议

□实现主机到主机的通信

□ 网络层互连设备: 路由器

- 在发送主机和接收主机对之间 传送段(segment)
- 在发送端将段封装到数据报中
- 在接收端,将段上交给传输层实体
- 网络层协议存在于每一个主机 和路由器
- 路由器检查每一个经过它的IP数据报的头部

网络层:数据平面和控制平面

- □ 数据平面
 - 局部:每个路由器功能
 - 决定从路由器输入端口到达的分组如何转发到输出端口
 - 转发表

网络层:数据平面和控制平面

- □控制平面
 - 全局: 多个路由器
 - 决定数据报如何在路由器 之间路由,决定数据报从 源到目标主机之间的端到 端路径

网络服务模型

- □ 从发送方主机到接收方主机传输数据报,网络层提供什么样的服务模型?
 - ✓ 可靠交付
 - ✓ 时延
 - ✓ 有序
 - ✓ 安全
 - **√**

虚电路 (网络层建立连接)

在分组传输之前,在两个主机之间,通过一些路由器所构成的路径上建立一个 网络层连接(涉及到路由器)

数据报 (网络层无连接)

- ✓ 虚电路和数据报都属于分组交换方式
- ✓ 虚电路和电路交换的区别

	数据报	虚电路		
延时	分组传输延时	虚电路建立延时,分组传输延时		
路由选择	每个分组单独选择路由	建立虚电路时选择路由,以后所有 分组都使用该路由		
状态信息	子网无需保存状态信息	每个结点要保存一张虚电路表		
地址	每个分组携带完整的源/目的地址	每个分组分配一个较短的虚电路号		
节点失败 的影响	除了崩溃时正在该节点处理的分 组都丢失外,无其他影响	所有经过失效节点的虚电路都要被 终止		
拥塞控制	难	容易		

- () 能保证分组的按序到达?
- A 虚电路
- B 数据报
- 电路交换

□ Internet的网络层采用了数据报方式

网络架构	服务 模型	保证?				拥塞
		带宽	丢失	保序	延迟	反馈
Internet	best effort	none	no	no	no	no (inferred via loss)

- □ 网络层
 - 1)数据平面(转发)
 - ✓ IP、转发算法
 - ✓ ARP、ICMP、NAT

- 2) 控制平面(路由)
- ✓ 路由协议 (RIP、OSPF、BGP)

IP: Internet Protocol

□ IP地址: 32bit

IP 地址 ::= { < 网络号>, < 主机号>}

✓ IP地址:对主机或路由器的接口进行编址

✓ 接口: 主机/路由器和物理 链路的连接处

如何分配IP地址

□ 网络号,由国际互联网信息中心(InterNIC)分配

□ 主机号:系统管理员分配

IP 地址 ::= { < 网络号>, < 主机号> }

□ 网络的规模(网络容纳的主机)不同

■ 网络号多长?

IP 地址 ::= { < 网络号>, < 主机号> }

■ 分类: A(8)、B(16)、C(24)三类

分类IP地址

本网广播地址

- ✓ 32bit 全1: 255.255.255.255
- ✓ 主机号全1: ***.***. 255.255

- ✓ 主机号全0: 为网络号,不作为主机IP地址分配
- ✓ 网络号全0: 本网络的某个主机

- 127.*.*.*: 回环地址
 - ✓ 允许运行在同一台主机上的客户程序和服务器程序通过 T C P / I P进行通信
 - ✓ 网络层检测到目的地址为回环地址,则不发送到链路层,而是 放入IP回环接口,传给本机的上层TCP

某主机IP地址: 180.172.32.12

- 1) 所在网络的分类[填空1]
- 2) 该网络的网络号 [填空2]
- 3) 该网络的广播地址 [填空3]
- 4)可分配的IP地址范围 [填空4] [填空5]

IP: Internet Protocol

□ IP分组/IP数据报

32 bits						
Version	Header length	Type of service	Datagram length (bytes)			
	16-bit Identifier			13-bit Fragmentation offset		
Time-t	o-live	Upper-layer protocol	Header checksum			
	32-bit Source IP address					
	32-bit Destination IP address					
Options (if any)						
Data						

IP: Internet Protocol

□路由器转发

٠			
	网络号。	下一跳地址。	接口。
	₽	₽	₽
	₽	₽	₽
	₽	₽	₽

□ 转发表

- ✓ 网络号:路由器为每一个网络指定路由,而不是为每个主机 指定路由,极大缩小了转发表的规模
- ✓ 下一跳: 相邻路由器的IP地址(相邻: 两个路由器直接相连 或连在同一个物理网络中)
- ✓ 接口:路由器的端口标识

转发

- □主机
 - 目的主机与源主机在一个物理网络中(如以太网) ,直接交到链路层,
 - 否则,发给默认路由器,由路由器转发
- □路由器
 - 根据IP数据报中的目的地址,提取网络号,查找转 发表,向对应接口转发

- □ 网络层: 转发
 - IP协议(IP地址、IP数据报首部格式)
 - ✓ 分层的IP地址(32bit)
 - ✓ 源IP, 目的IP, TTL, 首部长度,
 - 路由器:转发表 网络号、下一跳、端口号

IP: Internet Protocol

- □ 分片与重组
 - 不同网络,链路层的MTU(最大传输单元)不同
 - 分片: 一个IP数据报被分成 若干小的数据报
 - 重组:在目的主机进行

□ 标志位

3位, DF (Don't Fragment): "0"能分片; "1" 不能分片 MF (More Fragment): "1"后面还有分片; "0" 最后一个分片

□ 偏移量 (13bit), 单位: 8bytes

32 bits					
Header length	Type of service	Datagram length (bytes)			
16-bit Identifier			13-bit Fragmentation offset		
o-live	Upper-layer protocol		Datagram length (bytes) 13-bit Fragmentation offset Header checksum dress address		
32-bit Source IP address					
32-bit Destination IP address					
Options (if any)					
Data					
	length	Header length 16-bit Identifier Co-live Upper-layer protocol 32-bit Source Options	Header length Type of service 16-bit Identifier Flags To-live Upper-layer protocol 32-bit Source IP ad 32-bit Destination IP Options (if any		

IP分片与重组

例

Length: 2400← ID=X← DF:0 MF:0← Offset: 0←

- □ 2400字节数据报
 - 固定首部: 20字节
 - 数据长度: 2380字节
- □ MTU: 1000字节
 - 1) 20字节+976字节
 - 2) 20字节+976字节
 - 3) 20字节+428字节

Length: 996←	ID=X⊲	DF:0	MF:1←	Offset: 0←
Length: 996←	ID=X←	DF:0	MF:1⊲	Offset: 122⊲
Length: 448←	ID=X←	DF:0	MF:0⊲	Offset: 244

路由器数据平面(转发)工作在()

- A 物理层
- B 链路层
- **6** 网络层
- □ 应用层

一个C类网能容纳的主机数最多为()

- A 65535
- (B) 256
- 65534
- 254

路由器根据()进行IP分组的转发

- A)源主机的IP地址
- B 源主机所在的网络号
- 目的主机的IP地址
- り 目的主机所在的网络号

IP: Internet Protocol

□ 子网 (subnet)

■ 分类IP地址存在的问题

B类网: 128.10.0.0

将一个网络划分若干地址空间不重复的网络——subnet

□子网划分

■ 从主机号取若干位,与网络号一起作为子网号

B类网: 128.10.0.0

划分成2个子网

例: 128.10.0.0

4个子网

8个子网

□划分子网后带来的问题

B类网: 128.10.0.0

划分成2个子网

□ 子网掩码(subnet mask)

32位:对应网络号的位置1,对应主机号的位置0

网络号=IP地址∩子网掩码

B类网: 128.10.0.0

划分成2个子网

子网掩码:

A类、B类、C类

____255.0.0.0

----255.255.0.0

----255.255.255.0

网络号。	子网掩码。	下一跳地址。	接口。
47	47	47	47
4J	4	4	4

□ 固定长度子网

- ✓ 子网号长度固定,子网掩码相同
- ✓ 每个子网的主机数相同

口 变长子网

P184

□ 202.120.224.0,划分成5个子网,3个子网容纳 主机数50台,2个子网容纳主机数30台

子网号能否为全0和全1?

□ 路由器转发表示例

网络号⇨	子网掩码。	下一跳地址。	接口₽
特定主机。	255.255.255.2554	R1₽	E1₽
223.1.1.00	255.255.255.0₽	直连。	E0₽
223.1.2.00	255.255.255.0₽	R1₽	E1₽
默认路由↩	0.0.0.0₽	R2₽	E2₽

转发算法

- 1. 路由器从IP数据报的首部提取目的IP地址,与子网掩码"与"运算,获得网络号N
- 2. 判断是否可直接交付
- 3. 判断是否为特定主机路由
- 4. 判断是否为间接路由
- 5. 默认路由/报告错误

网络号。	子网掩码。	下一跳地址。	接口。
特定主机。	255.255.255.255	R 1₽	E1₽
223.1.1.00	255.255.255.0	直连。	E0₽
223.1.2.00	255.255.255.0	R1¢	E1₽
默认路由↩	0.0.0.0₽	R2ø	E2₽

- □ 分类IP地址
 - 子网划分,缓解地址空间的分配

- ➤ A类和B类越来越少
- > C类网络增多,路由表规模不断增长

□ 无类别域间路由选择(CIDR: Classes InterDomain Routing)

——取消分类IP地址的网络号长度规定,网络号可以为任意长度

CIDR

□ 斜线记法:在 IP 地址面加上一个斜线 "/", 写上网络号(网络前缀) 所占的位数

128.14.32.0/20

子网掩码: 11111111 1111111 11110000 00000000

根据需要分配适当大小的 CIDR 地址块,分配到一个CIDR地址块的组织,仍可以根据需要划分子网

CIDR 前缀长度	点分十进制	包含的地址数	相当于包含分类的网络数
/13	255.248.0.0	512 K	8 个 B类或 2048 个 C 类
/14	255.252.0.0	256 K	4 个 B 类或1024 个 C 类
/15	255.254.0.0	128 K	2 个 B 类或512 个 C 类
/16	255.255.0.0	64 K	1 个 B 类或256 个 C 类
/17	255.255.128.0	32 K	128 个 C 类
/18	255.255.192.0	16 K	64 个 C 类
/19	255.255.224.0	8 K	32 个 C 类
/20	255.255.240.0	4 K	16 个 C 类
/21	255.255.248.0	2 K	8 个 C 类
/22	255.255.252.0	1 K	4个C类
/23	255.255.254.0	512	2 个 C 类
/24	255.255.255.0	256	1个C类
/25	255.255.255.128	128	1/4 个 C 类
/26	255.255.255.192	64	1/4 个 C 类
/27	255.255.255.224	32	1/8 个 C 类

- □ 分类IP地址
 - 子网划分,缓解地址空间的分配

- ➤ A类和B类越来越少 -----CIDR
- > C类网络增多,路由表规模不断增长

□ CIDR支持路由聚合(地址聚会),减小路由表的规模

目的网络	掩码	下一跳
192.60.128.0/24	255.255.255.0	R1
192.60.129.0/24	255.255.255.0	R1
192.60.130.0/24	255.255.255.0	R1
192.60.131.0/24	255.255.255.0	R1

□ 路由聚合带来的问题:一个IP数据报可能会匹配到 多个选项

目的网络	掩码	下一跳
192.60.128.0/24	255.255.255.0	R1
192.60.129.0/24	255.255.255.0	R1
192.60.130.0/24	255.255.255.0	R1
192.60.131.0/24	255.255.255.0	R1

最长网络前缀匹配

某路由表中的4条路由选项,下一跳相同,

35.230.32.0/21

35.230.40.0/21

35.230.48.0/21

35.230.56.0/21

聚合后的路由: [填空1], Mask [填空2]

ARP: Address Resolution Protocol

□ 每台主机或路由器在内存中维持一个ARP表

< IP address; MAC address; TTL>

A向B发送IP数据报,B的MAC地址不在ARP表中?

- □ 则A构造ARP查询分组
 - ✓ 查询分组: A的IP地址、A的MAC地址、B的IP地址、B的MAC地址(全0)
 - ✓ 封装成帧(目的MAC地址: FF-FF-FF-FF-FF)

□ B收到ARP查询分组,回复ARP响应分组(单播)

< IP address; MAC address; TTL>

ARP分组

硬件类型: 值1(以太网)

协议类型: 值0800 (IPv4)

硬件地址长度:值6

协议地址长度:值4

操作:请求1,响应2

- 发送方硬件地址(以太网:6个字节)
- 发送方协议地址(IP: 4个字节)
- 目标硬件地址(以太网:6个字节)
- 目标协议地址(IP: 4个字节)

不在一个LAN?

ARP

□ 网络层协议?

□ 链路层协议?

——跨链路层和网络层的协议

ICMP: Internet Control Message

- □ Internet 控制报文协议
 - ✔ 路由器转发或交付出错,向源主机发送差错报告
 - ✔ 传递网络层信息

□差错报告

- ✓ 不可达 (网络/主机/协议/端口)
- ✓ 超时(TTL为0)
- ✓ 路由重定向
- **√**

□ ICMP查询报文

——测试主机或路由器在网络层是否可达

Echo请求报文 Echo响应报文

- □ Ping: ICMP 的Echo请求和响应报文
- ☐ Traceroute/Tracert
 - ✓ ICMP差错报文(TTL超时)
 - ✓ ICMP差错报文(端口不可达)

NAT: Internet Control Message

- □ 内部网络(private: 专有)地址
 - ✓ 仅在机构内部使用的 IP 地址,可以由本机构自行分配,不 需要向互联网管理机构申请(仅在机构内网中有意义,区分 不同的设备)

Class A 10.0.0.0-10.255.255.255
 MASK 255.0.0.0

• Class B 172.16.0.0-172.31.255.255 MASK 255.255.0.0

• Class C 192.168.0.0-192.168.255.255 MASK 255.255.255.0

NAT: 网络地址转换

- □ NAT的动机:本地网络只有1个或几个外部IP地址
 - 节省地址空间(省钱):不需要从ISP申请一个地址 块,将1个或几个IP地址用于局域网所有设备
 - 安全: 局域网内部设备对外不可见
 - 互不影响:内部地址和外部ISP地址更换,不会互相 影响

NAT 转换表		
WAN side addr	LAN side addr	
138.76.29.7	10.0.0.1	

NAT translation table		
WAN side addr	LAN side addr	
138.76.29.7, 5001	10.0.0.1, 3345	

- □ 对NAT(NAPT)的争议
 - ✓ NAPT: 路由器转发工作在网络层,使用了传输层的端口号
 - ✓ 外网到内网的访问(P2P)——NAT穿越

地址空间不足: IPv6

作业

P249: 5.1

P250: 5.8, 5.11, 5.12, 5.13