# Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

Ing. Karel Ulovec, Ph.D. ČVUT, Fakulta elektrotechnická xulovec@fel.cvut.cz

Tyto podklady k přednášce slouží jako pomůcka pro studenty předmětu B2M37DTRA Žádné jiné využití (zveřejňování, kopírování, apod.) není povoleno bez projednání s autorem!



Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



1/24



B2M37DTRA

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

Technické prostředky rádiových systémů, základní principy přenosu signálu

- Obecné schéma přenosu informace komunikačním kanálem, radiokomunikační řetězec
- Přenosová kapacita kanálu (definice, souvislosti)

Základní vlastnosti a vliv přenosového kanálu

- Základní vlastnosti rádiových kanálů
- Vliv přenosového kanálu na přenos analogové a digitální TV

Rozšířená témata pro přípravu studentů ke zkoušce





Obecné schéma přenosu informace komunikačním kanálem, radiokomunikační řetězec

Kanálem se přenáší spojitý analogový signál ... úprava pomocí zdrojového a kanálového zpracování



#### Zdroj informace

- Generuje zprávy (signál, data), které se mají přenést do místa reprodukce
- Míra vygenerovaných dat za jednotku času = bitová rychlost (b/s)

Zdrojové zpracování (kódování) – získat signál pro přenos

- Snímání (obrazu, zvuku, řeči)
- Digitalizace
- Komprese dat (zdrojové kódování)
- Signál v základním pásmu (BB, Baseband), nízkofrekvenční signál (LF, Low Frequency), informační signál, modulační signál / datový tok (často ve formátu multiplexu více typů obsahu)

Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



3/24



B2M37DTRA 2023-10

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu

Obecné schéma přenosu informace komunikačním kanálem, radiokomunikační řetězec



Kanálové zpracování (kódování) – přizpůsobení informačního signálu/datového toku k přenosu

- Přizpůsobení datového tiku (tvoření rámců, hlavičky)
- Znáhodnění datového toku
- Protichybové zabezpečení (ochranné kanálové kódování)
- Zabezpečený datový tok (rámce, multiplex)

#### Modulace

- Ke konkrétním stavům datového toku (bity, skupiny bitů) informačního signálu jsou přiřazeny konkrétní stavy z modulačního prostoru, symboly (stavy) modulovaného signálu, vhodné pro přenos komunikačním kanálem ... mapování
- Vysokofrekvenční signál (HF, High Frequency), rádiový signál (RF, Radio Frequency), modulovaný signál





Obecné schéma přenosu informace komunikačním kanálem, radiokomunikační řetězec



#### Kanálové kódování společné s modulací

- V moderních systémech lze těžko jednoznačně oddělit kanálové kódování a modulaci
- (Popřípadě zjednodušené schéma přenosu vypouští blok modulace)

#### Komunikační kanál

- Prostředek zajišťující přenos informace VF vedení, koaxiální kabel, optický kabel, bezdrátový spoj (terestrický, satelitní), světelný paprsek
- Nezanedbatelně může ovlivnit přenos informace způsobení chyb v datovém toku

#### Demodulátor

Inverzním způsobem vůči modulátoru získat z modulovaného signálu (zabezpečený) datový tok – ke každému konkrétnímu stavu modulačního prostoru (+ vliv kanálu) přiřadit (například nejpravděpodobnější) stav informačního datového toku

Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



5/24



B2M37DTRA

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu

Obecné schéma přenosu informace komunikačním kanálem, radiokomunikační řetězec



#### Kanálové dekódování

 Známý způsob zpracování při kanálovém kódování (např. doplněná redundance) je při dekódování využit pro detekci či opravu chyb v datovém toku

#### Zdrojové dekódování

 Z komprimovaného datového toku je rekonstruován datový tok (pokud možno co nejvíce podobný původnímu)

6/24

#### Reprodukce

Datový tok (informační signál) je převeden na obraz, zvuk způsobující fyziologický vjem





Zdrojové zpracování – digitalizace, komprese

- Digitalizace vzorkování, kvantování, vyjádření kódovým slovem
  - Minimální vzorkovací kmitočet = 2 x maximální kmitočet přenášeného signálu
    - Příklady: obraz (pouze jas) 2 x 6,5 MHz; zvuk 2 x 20 kHz; řeč: 2 x 3 kHz
  - Počet kvantizačních hladin = 2 počet bitů slova
- Bitové rychlosti nekomprimovaného datového toku příklady
  - Video SDTV 4:2:2 (CCIR 601, ITU 601, SDI sériový přenos nekomprimovaného digitalizovaného obrazového signálu) 270 Mb/s; HDTV cca 1 Gb/s
  - Zvuk (2 kanály) 1.5 Mb/s



Bitové rychlosti komprimovaného datového toku – příklady



Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu

Kanálové zpracování – znáhodnění datového toku

- Zrovnoměrnění rozložení energie; zamezí shluku jedniček či nul
- Pomocí sčítání (binární, modulo 2) dat bit po bitu s pseudonáhodnou posloupností (PRBS = Pseudo-random Binary Sequence); příklad: ... 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 ...
- Na přijímací straně opětovné sčítání tím získáme původní posloupnost dat



| а | р | a XOR p<br>= b |
|---|---|----------------|
| 0 | 0 | 0              |
| 0 | 1 | 1              |
| 1 | 0 | 1              |
| 1 | 1 | 0              |

| b | р | b XOR p<br>= a |
|---|---|----------------|
| 0 | 0 | 0              |
| 1 | 1 | 0              |
| 1 | 0 | 1              |
| 0 | 1 | 1              |





Kanálové zpracování – protichybové zabezpečení

- BER (Bit Error Ratio) = počet chybně přenesených bitů / počet celkově přenesených bitů za jednotku času
- Prokládání rozptýlení shluku chyb, rovnoměrné rozprostření informace do časově-kmitočtového prostoru
- Ochranné kanálové kódování zavedení úmyslné redundance pro možnost opravy (korekční) či alespoň detekce (detekční) chyb (samoopravné kódy FEC, Forward Error Correction)
- Využívání diverzity (viz dále MIMO, MISO, SIMO)
- Opakování přenosu vyžaduje zpětný kanál (ARQ, Automatic Repeat Request)
- Hybridní ARQ (HARQ, Hybrid ARQ) kombinuje FEC a ARQ (je výhodné využít i částečně porušená data a kombinovat je s daty opakovaně přenášenými, při opakovaném přenosu je možno data více zabezpečit)
- Adaptivní modulace/kódování podle stavu kanálu; nutno provádět měření a předávání "naměřených hodnot"

Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



9/24



B2M37DTRA 2023-10

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu

#### Modulace

- Úprava signálu do formy vhodné pro přenos komunikačním kanálem (vyslat / přijmout anténou) signálu
  - Signál v základním pásmu nelze vyzářit anténou (25 Hz až 6.5 MHz vs. rozměry antény) modulací se signál přeloží do vysokých frekvencí, k vyzáření pak postačí jediná anténa
  - Využitím nosných vln s různými kmitočty se do frekvenčního prostoru poskládá několik přenosů (ačkoli
    existují rovněž různé techniky umožňující přenos více různých informací společným rádiovým kanálem)
- Ovlivňování vysokofrekvenčního signálu (nosné vlny) signálem přenášejícím informaci (informačním signálem, modulačním signálem), získáme modulovaný signál



$$\lambda = \frac{c}{f} \ldots f = 25 \text{ Hz až } 6.5 \text{ MHz} \rightarrow \lambda = 12000 \text{ km}$$
 "až" 46 m 100 MHz  $\rightarrow \lambda = 3 \text{ m}$ 





Přenosová kapacita kanálu

Ve smyslu Shannonova teorému (1948): C je maximální počet bitů přenesených za 1 sekundu (bit/s) s chybovostí BER blížící se k nule, v rádiovém kanálu o šířce pásma B, za přítomnosti pouze šumu, SNR ... poměr výkonů užitečného signálu ku šumu

 $C = B \log_2(1 + SNR)$ 

- Základ logaritmu je 2
- SNR se ve vztahu vyskytuje ve smyslu poměru výkonů (nikoliv dB hodnota)
- Např. pro B = 8 MHz:







Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



11/24



B2M37DTRA 2023-10

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu

Přenosová kapacita kanálu  $C = B \log_2(1 + SNR)$  – důsledky a souvislosti

- Není možné přenášet data vyšší rychlostí (než C) a zároveň dosáhnout přijatelně nízké hodnoty chybovosti (blížící se nule)
- SNR ve vzorci představuje kritickou mez pokud se šum zvýší nad limitní (SNR se sníží pod kritickou mez), než pro který je systém navržen, chybovost značně narůstá
  - Mohou existovat systémy, které přizpůsobují kanálové zpracování signálu (např. volbou modulace) aktuálnímu stavu kanálu, tj. hodnotě SNR, a tedy C je optimální vzhledem k vlastnostem kanálu
  - Mohou existovat systémy, které přizpůsobují využitou B maximálně aktuálním možnostem, a tedy umožňují přenos s co nejvyšší C
- Při uvážení časově omezeného kanálového kódování v systému s rušením nelze přenést informaci zcela bez chyb, tak jako v ideálním systému bez rušení, vhodnou volbou kanálového kódování se můžeme limitně přiblížit; podstatné rovněž je zpoždění zpracování signálu vlivem kanálového kódování a dekódování
- Pokud se rychlost přenosu dat blíží kapacitě, vlastnosti modulovaného signálu se blíží vlastnostem sumu
- Srovnání teoretických a reálných hodnot (např. <u>C</u> a skutečné, užitečné, bitové rychlosti přenosu dat) poskytuje představu o míře využití kanálu





Přenosová kapacita kanálu  $C = B \log_2(1 + SNR)$  – příklady

- 1) Digitální vysílání terestrické televize DVB-T v 8 MHz kanále (při volbě parametrů 64QAM, CR 3/4, GI 1/8) dosahuje užitečnou bitovou rychlost 24,9 Mb/s a pro příjem vyžaduje je minimální *SNR* = 19 dB.
  - a) Podle teorému je kapacita *C* pro *SNR* = 19 dB v šířce 8 MHz přibližně 50,6 Mb/s. Systém dokáže využít teoretickou kapacitu na 49,2 procenta.
  - b) Teoretické minimální *SNR* je při *C* = 24,9 Mb/s v šířce 8 MHz přibližně 8,8 dB. Skutečná hodnota minimálního *SNR* je vzdálena od teoretické hodnoty o 10,2 dB.
- Digitální vysílání terestrické televize DVB-T2
  v 8 MHz kanále (256QAM, CR 5/6, GI 1/32)
  dosahuje užitečnou bitovou rychlost 47,3 Mb/s
  (v rozšířeném módu) a pro příjem vyžaduje
  minimální SNR = 23 dB.
  - a) Podle teorému je kapacita C pro SNR = 23 dB v šířce 8 MHz přibližně 61,2 Mb/s.
     Systém dokáže využít teoretickou kapacitu na 77,3 procenta.
  - b) Teoretické minimální SNR je při C = 47,3 Mb/s
     v šířce 8 MHz přibližně 17,7 dB.
     Systém je vzdálen od teoretického min. SNR o 5,3 dB.



Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



13/24



B2M37DTRA 2023-10

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Technické prostředky rádiových systémů, základní principy přenosu signálu

Systémy s jedinou vysílací a přijímací anténou

Jediná vysílací a přijímací anténa Single-Input Single-Output (SISO)

Systémy s více anténami

- Jen na přijímací straně Single-Input Multiple-Output (SIMO)
- Jen na vysílací straně Multiple-Input Single-Output (MISO)
- Na vysílací i přijímací straně Multiple-Input Multiple-Output (MIMO)
- Vzniká více nezávislých přenosových cest (nekorelované úniky)
- Lze rovněž využít různé polarizace antén

#### MIMO, MISO, SIMO

- Diverzitní příjem
  - Vysílají / přijímají se kopie signálu (např. při přijímací diverzitě výběr nejkvalitnějšího / kombinace signálů)
  - Snižuje se tím BER
  - Vhodné pro malé odstupy SNR
- Řízení anténních svazků
  - Vhodným napájením anténní řady lze ovlivnit celkovou vyzařovací charakteristiku
- Prostorový multiplex
  - Nekorelované přenosové cesty lze využít k násobnému užití kanálu (více uživatelů, násobná přenosová rychlost)







| rozsah vln<br>kmitočtový rozsah      | názvy a zkratky dle vlny (česky) /<br>kmitočtu (anglicky)          | příklady využití                                                                                                    |
|--------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 100000 km – 10000 km<br>3 Hz – 30 Hz | extrémně dlouhé vlny, EDV<br>Extremely Low Frequency ELF           | komunikace s ponorkami                                                                                              |
| 10000 km – 1000 km<br>30 Hz – 300 Hz | superdlouhé vlny, SDV<br>Super Low Frequency SLF                   | komunikace s ponorkami                                                                                              |
| 1000 km – 100 km<br>300 Hz – 3 kHz   | ultradlouhé vlny, UDV<br>Ultra Low Frequency ULF                   | komunikace v dolech                                                                                                 |
| 100 km – 10 km<br>3 kHz – 30 kHz     | velmi dlouhé vlny, VDV<br>Very Low Frequency VLF                   | navigace, kmitočtové a časové normály, bezdrátové měřiče pulsu                                                      |
| 10 km – 1 km<br>30 kHz – 300 kHz     | dlouhé (kilometrové), DV<br>Low Frequency LF                       | AM rozhlas, DRM, námořní komunikace, letecká dálková navigace, komunikace v energetice                              |
| 1 km – 100 m<br>300 kHz – 3 MHz      | střední (hektametrové), SV<br>Medium Frequency MF                  | AM rozhlas, DRM, amatérské pásmo                                                                                    |
| 100 m – 10 m<br>3 MHz – 30 MHz       | krátké (dekametrové), KV<br>High Frequency HF                      | AM rozhlas, DRM, vojenská komunikace, občanské pásmo (CB)                                                           |
| 10 m – 1 m<br>30 MHz – 300 MHz       | velmi krátké (metrové), VKV<br>Very High Frequency VHF             | FM rozhlas, TV (I., II., III. pásmo), DAB, letecká, lodní komunikace, amatérské pásmo                               |
| 1 m – 10 cm<br>300 MHz – 3 GHz       | ultrakrátké (decimetrové), UKV<br>Ultra High Frequency UHF         | <b>TV (IV., V. pásmo)</b> , <b>DAB</b> , radar, GSM, CDMA, GPS, průmyslové aplikace, Bluetooth, Zigbee, WiFi, WiMax |
| 10 cm – 1 cm<br>3 GHz – 30 GHz       | superkrátké (centimetrové), SKV<br>Super High Frequency SHF        | pozemské směrové spoje, <b>družicové spoje (také TV, rozhlas)</b> , radary, UWB, WiFI, WiMax                        |
| 1 cm – 1 mm<br>30 GHz – 300 GHz      | extrémně krátké (milimetrové), EKV<br>Extremely High Frequency EHF | radary, naváděcí systémy, radioastronomie, vysokorychlostní<br>mikrovlnný přenos dat, výzkum                        |
| 1 mm – 0,1 mm<br>300 GHz – 1 THz     | decimilimetrové                                                    | výzkum                                                                                                              |

Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



15/24



B2M37DTRA

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Základní vlastnosti a vliv přenosového kanálu

### Základní vlastnosti rádiových kanálů

#### Útlum

• Modelování útlumu vlivem ztrát při šíření pomocí útlumu  $d^{-\gamma}$ , kde d je vzdálenost mezi vysílačem a přijímačem,  $\gamma$  je koeficient ztrát šířením mezi 2 (volné prostředí) až 7 (členité prostředí), útlum v dB:  $P_{\rm L} = 10\gamma \log(d)$ 

#### – Šum

- Vliv šumu vzhledem k systému zpracovávaná šířka pásma kmitočtů  $B_{syst}$
- Výkon šumu  $P_{\breve{s}}=N_{\theta}\cdot B_{syst}$ ,  $N_{\theta}$  je spektrální výkonová hustota šumu Poměr výkonů užitečného signálu a šumu  $SNR=P_{sig}/P_{\breve{s}}$
- V decibelové míře  $SNR_{(dB)} = 10 \log_{10} (P_{sig} / P_{s})$
- Modelování pomocí AWGN kanálu:

Additive – průchod signálu kanálem se šumem je modelován přičtením náhodného signálu White – náhodný signál má rovnoměrnou spektrální výkonovou hustotu  $N_0$ Gaussian – náhodný signál nabývá hodnot Gaussovského rozdělení (střední hodnota je 0 a rozptyl souvisí s výkonem)

16/24

Noise





Základní vlastnosti rádiových kanálů

- Vícecestné šíření
  - Vlivem odrazů (od nepohyblivých a pohyblivých objektů)
  - Výsledkem je únik na přijímací anténě jsou sčítány příspěvky s uvážením fáze; je-li fázový posuv mezi přímým a odraženým signálem lichým násobkem 180°, výsledný signál je zeslaben
  - Pokud zpoždění odraženého signálu (případně délka rozptylu signálu v čase) se blíží či přesahuje dobu trvání symbolu, dochází k překrývání sousedních datových symbolů – mezisymbolová interference ISI (Inter-Symbol Interference)
  - Modelování pomocí součtu opožděných replik původního signálu s(t) v každé cestě jsou definovány relativní útlum  $l_i$  a relativní zpoždění  $\tau_i$  (relativní vůči první cestě)

$$v(t) = \sum_{i} l_{i} e^{j2\pi f \tau_{i}} s(t)$$

Dva základní typy dle ne/existence přímé cesty šíření: Kanál typu Rician ... obsahuje základní nejsilnější přímou cestu (příjem na kvalitní směrové anténě) Kanál typu Rayleigh ... není obsažena základní nejsilnější přímá cesta (příjem na všesměrovou anténu)



Dopplerův efekt

- Pokud jsou vysílač a/nebo přijímač (či překážka způsobující odraz) v pohybu vlivem pohybu dochází ke změně frekvence – u systému s více nosnými vlnami může docházet k mezinosné interferenci ICI (Inter-Carrier Interference)
- Modelování pomocí posunutí (či rozmítání) kmitočtu nosné vlny

Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



17/24



B2M37DTRA

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

# Základní vlastnosti a vliv přenosového kanálu

Základní dělení kanálu s únikem

Podle vlastností přenosové funkce (ve frekvenční doméně)

Kmitočtově plochý



Podle rychlosti změn v časové doméně

Časově plochý

Časově selektivní – změny (amplitudy a fáze) rychlejší než doba symbolu





Vliv přenosového kanálu – experiment s přenosem analogové a digitální TV

Shodný výkon obou přijímaných signálů cca -58,5 dBm



Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



19/24



B2M37DTRA 2023-10

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

### Základní vlastnosti a vliv přenosového kanálu

Vliv přenosového kanálu – experiment s přenosem analogové a digitální TV

- Shodný výkon obou přijímaných signálů cca -73 dBm





Vliv přenosového kanálu – experiment s přenosem analogové a digitální TV

Shodný výkon obou přijímaných signálů cca -76 dBm



Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

### Základní vlastnosti a vliv přenosového kanálu

Vliv přenosového kanálu – experiment s přenosem analogové a digitální TV

- Se snižující kvalitou rádiového signálu (SNR, BER) postupně klesá vnímaná kvalita obrazu analogové TV
- Kvalita obrazu digitální TV (daná zpracováním zdrojového signálu a kompresí) se nemění až do určité kritické hranice (minimální *SNR*, maximální BER). Je nutno připustit, že za touto hranicí je obraz analogové TV ještě rozpoznatelný ovšem s velmi zhoršenou kvalitou







# Témata pro přípravu studentů ke zkoušce

Základní principy přenosu signálu

- Obecné schéma přenosu informace komunikačním kanálem (význam jednotlivých bloků)
- Přenosová kapacita kanálu (definice, důsledky a souvislosti)

Základní vlastnosti rádiových kanálů (útlum, šum, vícecestné šíření, Dopplerův efekt)

Karel Ulovec, ČVUT FEL, xulovec@fel.cvut.cz



23/24



B2M37DTRA 2023-10

Technické prostředky rádiových systémů, základní principy přenosu signálu, základní vlastnosti a vliv přenosového kanálu

Děkuji za pozornost,



prosím vaše dotazy ...



