Bayesian Econometrics PC Tutorial 02

Tutor: Richard Schnorrenberger richard.schn@stat-econ.uni-kiel.de

Institute for Statistics and Econometrics
Kiel University

Winter Term 2024/25

Exercise 1

Consider the house price example discussed in the textbook and in the lecture. Try to replicate the results. To this end, proceed in the following steps.

- (a) Write a Matlab function normgam_posterior.m that computes the normal-gamma posterior of a multiple regression model with normal-gamma prior. Specifically, the user should supply data y and X as well as prior parameters $\underline{\beta}$, $\underline{\kappa}$, \underline{s}^2 , and $\underline{\nu}$. Then the function should compute and hand back posterior parameters, posterior means of β and h, and posterior variances of β and h.
- ▶ (b) Write a Matlab script that opens the data file HPRICE.txt, sets informative prior parameters $\underline{\beta}$, $\underline{\kappa}$, \underline{s}^2 , and $\underline{\nu}$ (e.g., those discussed in the lecture), calls the function normgam_posterior.m, and displays the results.
- (c) Add to the Matlab script a part that sets noninformative priors, calls the function normgam_posterior.m, and displays the results. Note: make sure that the function can handle zeros for κ and ν .

Exercise 1

- ▶ (d) Write a Matlab function t_interval.m that computes symmetric $100*(1-\alpha)\%$ intervals for each of the k random variables of a k-dimensional t distribution with parameters μ , Σ , and ν .
- ▶ (e) Add to the Matlab script a part that calls the function t_interval.m and displays 95% and 99% HPDI intervals for β_1 to β_5 .
- ▶ (f) Add to the Matlab script a part that computes $p(\beta_i > 0|y)$, i = 1,...,5, both based on the informative and noninformative priors.
- ▶ (g) (*) Add to the Matlab script a part that computes posterior odds ratios for models $M_i: \beta_i = 0$ compared to the unrestricted model.