Optimization Problems

Lecture 5, Convex Optimization

National Taiwan University

March 25, 2021

Table of contents

Conjugate functions (§3.3)Conjugate functions

- 2 Quasiconvex functions (§3.4)
 - Quasiconvex functions

Conjugate functions

Conjugate functions

Let $f: \mathbb{R}^n \to \mathbb{R}$. The function $f^*: \mathbb{R}^n \to \mathbb{R}$, defined as

$$f^*(y) = \sup_{x \in \text{dom } f} \left(y^T x - f(x) \right), \text{ it down } f \text{ in } X, \text{ s.t. } \sup (y^T x - f(x))$$

is called the **conjugate** of the function f. The domain of f^* is

$$\mathbf{dom} \ f^* = \left\{ y \in \mathbf{R}^n \ \big| \ \exists z \in \mathbf{R} \ \mathrm{s.t.} \ \forall x \in \mathbf{dom} \ f, \ y^\mathsf{T} x - f(x) < z \right\}.$$

Example:

$$f: \mathbb{R}^1 \to \mathbb{R}, f^*: \mathbb{R}^1 \to \mathbb{R}$$

$$f^*(y) = \max_{x \in \mathbb{R}} (xy - f(x))$$

$$f^*(y) = \min_{x \in \mathbb{R}} (f(x) - xy)$$

Conjugate functions

A conjugate function

$$f^*(y) = \sup_{x \in \text{dom } f} \left(y^T x - f(x) \right)$$

is always convex.

- : it is the pointwise supremum of a family of convex (indeed, affine) functions of y. : X and f(x) are argument in y
- This is true whether or not f is convex.
- Note that when f is convex, the subscript $x \in \operatorname{dom} f$ is not necessary since $y^Tx f(x) = -\infty$ for $x \notin \operatorname{dom} f$.

Conjugate Functions – Examples for $f : \mathbf{R} \to \mathbf{R}$

- Affine function. f(x) = ax + b. The function yx ax b is bounded if and only if y = a. Therefore dom $f^* = \{a\}$, and $f^*(a) = -b$.
- Negative logarithm. $f(x) = -\log x$, with dom $f = R_{++}$. The function $xy + \log x$ is unbounded above if $y \ge 0$ and reaches its maximum at x = -1/y otherwise. Therefore, dom $f^* = \{y \mid y < 0\} = -R_{++}$ and $f^*(y) = -\log(-y) 1$ for y < 0.
- Exponential. $f(x) = e^x$. The function $xy e^x$ is unbounded above if y < 0. It can be shown that $\operatorname{dom} f^* = R_+$ and

$$f^*(y) = \begin{cases} y \log y - y, & y > 0 \\ 0, & y = 0 \end{cases}.$$

	ე	1	* ,	4.)		0	(xi					7	≥0	; 1	not	in c	lom	t*	24)						
	۷٠		, ι	, y) :	(ک	ap.	נגני	/ (1	9	Х)	\$ \	lu	ر ح ک	:	diffe	neit	iate:		1+1	L =0	,				
					χŧ	=K+1						J	•		- ()			_) / X≃	_ y	1				
		Α.	¥				(Xı		0.	. `		5	4<0	t t	(m)	ound	ed	(x	EIZ	(0	, as	well	را		
	3	+	" (y)=	51	up	(Kı	 -	tlx))	=)		1	_	. X 61	ا مقرط	b	<u> </u>							
					χε	R						1 4	130	: e	اك را	e K 4	t								

Conjugate Functions – Examples for $f: \mathbb{R} \to \mathbb{R}$

- Negative entropy. $f(x) = x \log x$, with dom $f = \mathbb{R}_+$ (and f(0) = 0). The function $xy - x \log x$ is bounded above on \mathbb{R}_+ for all y, hence dom $f^* = R$. It attains its maximum at $x = e^{y-1}$, and substituting we find $f^*(y) = e^{y-1}$.
- Inverse. f(x) = 1/x on \mathbb{R}_{++} . For y > 0, yx 1/x is unbounded above. For y = 0, this function has supremum 0; for y < 0, the supremum is attained at $x = (-y)^{-1/2}$. Therefore we have $f^*(y) = -2(-y)^{1/2}$, with dom $f^* = -\mathbf{R}_+$.

Conjugate Functions – Examples for $f: \mathbb{R}^n \to \mathbb{R}$

Q : PSD • Strictly convex quadratic function. Consider $f(x) = \frac{1}{2}x^TQx$, with $Q \in \mathbf{S}_{++}^n$. The function $y^T x - \frac{1}{2} x^T Q x$ is bounded above as a function of x for all y. It attains its maximum at (x) PSD

$$x = Q^{-1}y, \text{ so}$$

$$f^*(y) = \frac{1}{2}y^TQ^{-1}y.$$

$$f^*(y) = \frac{1}{2}y^TQ^{-1}y.$$

$$f^*(y) = \frac{1}{2}y^TQ^{-1}y.$$

Log-sum-exp function. Consider

$$f(x) = \log \left(\sum_{i=1}^{n} e^{x_i} \right).$$

$$f(x) = \log \left(\sum_{i=1}^{n} e^{x} \right)$$

Then, $f^*(y) = \sum_{i=1}^n y_i \log y_i$ with

$$\mathbf{dom}\ f^* = \left\{ y \mid \mathbf{1}^T y = 1, y \succeq 0 \right\}.$$

=) f*(y)= yTQTy- = (QTy)TQ(QTy)

Conjugate Functions – Examples for $f: \mathbb{R}^n \to \mathbb{R}$

• Norm. Let $||\cdot||$ be a norm on \mathbb{R}^n , with dual norm $||\cdot||_*$. We will show that the conjugate of f(x) = ||x|| is

$$f^*(y) = \left\{ \begin{array}{ll} 0, & ||y||_* \leq 1 \\ \infty, & \text{otherwise} \end{array} \right.,$$

i.e., the conjugate of a norm is the indicator function of the dual norm unit ball.

• The definition of the dual norm of a given norm is defined in the following pages.

Introduction to Dual Norms (1/3)

• Let $||\cdot||$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $||\cdot||_*$, is defined as

$$||z||_* = \sup\left\{z^Tx \mid ||x|| \le 1\right\}.$$

It can be shown that

$$||z||_* = \sup\left\{|z^Tx| \; ig| \; ||x|| \leq 1
ight\}$$
 max value §# if t

and

$$||z||_* = \sup_{x \neq 0} \frac{z^T x}{||x||}.$$

• A dual norm is also a norm (why?).

• Hint:
$$||u+v||_* = \sup \{(u+v)^T x \mid ||x|| \le 1\} \le \sup \{v^T \chi \mid ||u|| \le 1\}$$

9/21

• From the definition of dual norm we have the inequality

$$z^T x \le ||x|| \, ||z||_*,$$

for all x and z.

- The dual of the dual norm is the original norm: we have $||x||_{**} = ||x||$ for all x.
 - Hint: $||x||_{**} = \sup_{z \neq 0} \frac{x^T z}{||z||_{**}}$
- The dual of the Euclidean norm is the Euclidean norm, since $\sup \{z^T x \mid ||x||_2 \le 1\} = ||z||_2$.
 - This follows from the Cauchy-Schwarz inequality.
 - For nonzero z, the value of x that maximizes $z^T x$ over $||x||_2 \le 1$ is $||x||_2 \le 1$.

• The dual of the ℓ_{∞} -norm is the ℓ_1 -norm:

$$\sup \left\{ z^T x \mid ||x||_{\infty} \le 1 \right\} = \sum_{i=1}^n |z_i| = ||z||_1.$$

- The dual of the ℓ_1 -norm is the ℓ_{∞} -norm.
- More generally, the dual of the ℓ_p -norm is the ℓ_q -norm, where q satisfies

$$\frac{1}{p} + \frac{1}{q} = 1,$$

- i.e., q = p/(p-1).
 - Hint: Hölder's inequality: $u^T v \leq ||u||_p ||v||_q$.

• Come back to the example of the conjugate function of a norm. Let $||\cdot||$ be a norm on \mathbb{R}^n , with dual norm $||\cdot||_*$. We now show that the conjugate of f(x) = ||x|| is

$$f^*(y) = \begin{cases} 0, & ||y||_* \le 1 \\ \infty, & \text{otherwise} \end{cases}.$$

- Proof: If $||y||_* > 1$, then by definition of the dual norm, there is a $z \in \mathbb{R}^n$ with $||z|| \le 1$ and $y^Tz > 1$. Taking x = tz and letting $t \to \infty$, we have $y^Tx ||x|| = t(y^Tz ||z||) \to \infty$, which shows that $f^*(y) = \infty$.
- Conversely, if $||y||_* \le 1$, then we have $y^T x \le ||x||||y||_*$ for all x, which implies for all x, $y^T x ||x|| \le 0$. Therefore x = 0 is the value that maximizes $y^T x ||x||$, with maximum value 0.

Quasiconvex functions

Quasiconvex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **quasiconvex** if its domain and all its sublevel sets

$$S_{\alpha} = \{ x \in \text{dom } f \mid f(x) \leq \alpha \},$$

for $\alpha \in \mathbf{R}$, are convex sets.

Convex functions are quasiconvex functions

 For a function on R, quasiconvexity requires that each sublevel set be an interval (either a finite-length interval or an infinite interval).

 Convex functions have convex sublevel sets, and so are quasiconvex. But the converse is not true.

Quasiconcave and quasilinear functions

- A function is quasiconcave if -f is quasiconvex, i.e., every superlevel set $\{x|f(x) \ge \alpha\}$ is convex.
- A function that is both quasiconvex and quasiconcave is called quasilinear.
 μονω των μημακίης
- If a function f is quasilinear, then its domain, and every level set $\{x \mid f(x) = \alpha\}$ is convex.
- [3] BZ (met, concave > affine.

Some examples on R:

- Logarithm. $\log x$ on R_{++} is quasiconvex (and quasiconcave, hence quasilinear).
- Ceiling function. $ceil(x) = \inf \{z \in Z \mid z \ge x\}$ is quasiconvex (and quasiconcave).

An example on \mathbb{R}^n :

• The length of $x \in \mathbb{R}^n$, defined as the largest index of a nonzero component, i.e.,

$$f(x) = \begin{cases} \max\{i \mid x_i \neq 0\} & x \neq 0 \\ 0 & x = 0 \end{cases},$$

is quasiconvex.

Quasiconvex functions – Examples

• Consider $f: \mathbb{R}^2 \to \mathbb{R}$, with dom $f = \mathbb{R}^2_+$ and $f(x_1, x_2) = x_1 x_2$. Then, f is neither convex nor concave since

$$\nabla^2 f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

has eigenvalues ±1 (not definite). Convex concave: eigenvalue was positioned in the position of the concave in the contact of the concave is eigenvalue.

• But f is quasiconcave on \mathbb{R}^2_+ , since the superlevel sets

$$\left\{x \in \mathbf{R}_+^2 \mid x_1 x_2 \ge \alpha\right\} \qquad \boxed{\ }$$

are convex sets for all α .

Quasiconvex functions - Basic Properties

Jensen's inequality for quasiconvex functions

A function f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for any $x,y\in\operatorname{dom} f$ and $0\leq\theta\leq1$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}.$$

Quasiconvex functions – Basic Properties

Continuous quasiconvex functions on R

A continuous function $f : \mathbf{R} \to \mathbf{R}$ is quasiconvex if and only if at least one of the following conditions holds:

- f is nondecreasing.
- f is nonincreasing.
- There is a point $c \in \operatorname{dom} f$ such that for $t \le c$ (and $t \in \operatorname{dom} f$), f is nonincreasing, and for $t \ge c$ (and $t \in \operatorname{dom} f$), f is nondecreasing.

Differentiable quasiconvex functions

First-Order Conditions

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for all $x, y \in \operatorname{dom} f$

$$f(y) \le f(x) \Rightarrow \nabla f(x)^T (y-x) \le 0.$$

Proof idea: It suffices to prove the result for a function on R; the general result follows by restriction to an arbitrary line.

Representation via family of convex functions

We can always find a family of convex functions $\phi_t : \mathbb{R}^n \to \mathbb{R}$, indexed by $t \in \mathbb{R}$, with

$$f(x) \leq t \iff \phi_t(x) \leq 0,$$

i.e., the *t*-sublevel set of the quasiconvex function f is the 0-sublevel set of the convex function ϕ_t .

- Evidently ϕ_t must satisfy the property that for all $x \in \mathbb{R}^n$, $\phi_t(x) \leq 0 \Rightarrow \phi_s(x) \leq 0$ for $s \geq t$. This is satisfied if for each x, $\phi_t(x)$ is a nonincreasing function of t, i.e., $\phi_s(x) \leq \phi_t(x)$ whenever $s \geq t$.
- One (straightforward) example:

$$\phi_t(x) = \left\{ \begin{array}{ll} 0, & f(x) \le t \\ \infty, & \text{otherwise} \end{array} \right..$$

Another example: if the sublevel sets of f are closed, we can take

$$\phi_t(x) = \text{dist } (x, \{z \mid f(z) < t\}).$$

We are usually interested in a family ϕ_t with nice properties, such as differentiability.