

Semi-Supervised Deep Learning for Multiplex Networks

Anasua Mitra, Priyesh Vijayan, Sanasam Ranbir Singh, Diganta Goswami, Srinivasan Parthasarathy, Balaraman Ravindran

- 1) Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras,
- (2) Indian Institute of Technology Guwahati, (3) School of CS, McGill University & MILA, (4) Ohio State University

Contribution

A novel structure-aware InfoMax based representation learning framework on multiplex networks that use node-contextualized global graph summary for effective joint modeling of nodes and clusters across the layers of a multiplex network.

Key Intuition

In a typical InfoMax based NRL setup, methods naively maximize the MI of a node's local representations with a shared identical global context from the underlying graph — encoding trivial and noisy information found across all the nodes' local information. Considering each node is structurally connected differently within the graph, we propose a cluster-based InfoMax objective to learn node representations. The clusters encode the node-specific global graph context, with which the MI of a node's local representations is maximized.

Generating a node's perspective of graph summary

Label correlated structure-aware InfoMax

Learning

(A) Given the learned relation-wise clustering information (C_r, H_r) and local node representations, U_r , the contextual global node representation for a node i is computed as a linear combination of different cluster embeddings, C_r^k weighted by its cluster association scores $H_r^i[k], \forall k \in [1, K]$ as,

$$S_r^i = \sum_{k=1}^K H_r^i[k]C_r^k$$

(B) The node representations are made aware of nodecontextualized global graph summary representations, S_r .

$$\mathfrak{D}_{MI} = \sum_{r \in \mathcal{R}} \sum_{i \in \mathcal{V}} \left(\log(\mathfrak{D}(U_r^i, S_r^i)) + \sum_{j=1}^N \log(1 - \mathfrak{D}(\tilde{U}_r^j, S_r^i)) \right)$$

where $\mathfrak{D}: \mathbb{R}^{2d} \mapsto \mathbb{R}$ is a universal discriminator function that assigns a probability score to a pair of local-global node representations using a bi-linear scoring matrix $B \in \mathbb{R}^{d \times d}$, i.e., $\mathfrak{D}(U_r^i, S_r^i) = \sigma(U_r^{iT}BS_r^i)$, σ being the sigmoid non-linearity.

Embedding Visualizations

t-SNE Visualization of node embeddings on FLICKR (top), AMAZON (bottom) for all the SSL methods

Tick-mark based comparison.

Methods DMGC DMGI HAN MGCN RGCN GUNets SSDCM attributes within-network √ | cross-network | | labels global structure 🗸 aggregation

BASELINES

FLICKR AMAZON * Dash marks denote Not Applicable (NA).

Layers Nodes Edges(Total) Features Labels Dataset \mathbf{ACM} 7427 24536689 767 DBLP4057 17976710 8920 \mathbf{SLAP} 2695 20419 8207130 IMDB-MC 3550 2000 80216 IMDB-ML 18352 2505797 1000 10364 506051 17857 2395 2194389

DATASETS

Results

Micro-F1	\mathbf{ACM}	DBLP	SLAP	FLICKR	AMAZON	IMDB-MC	IMDB-MI
$\overline{\mathrm{DMGC}}$	42.822	84.684	29.819	50.308	69.716	56.278	44.765
RGCN	39.118	83.514	26.914	82.69	72.957	62.542	49.802
\mathbf{GUNets}	46.428	87.124	32.985	87.607	77.177	52.508	43.988
\mathbf{MGCN}	52.458	87.003	29.563	91.307	84.083	63.384	48.059
HAN	77.441	85.989	30.976	89.478	83.77	62.353	47.117
\mathbf{DMGI}	81.205	89.43	30.03	91.225	89.422	65.21	53.413
$\overline{\mathrm{SSDCM}}$	88.324	94.988	33.597	96.261	92.195	67.796	54.055

Table: Node classification results: Micro-F1 scores (%)

NMI-N	ACM	DBLP	SLAP	FLICKR	AMAZON	IMDB-MC	IMDB-M
$\overline{\mathrm{DMGC}}$	0.421	0.532	0.245	0.488	0.468	0.185	0.076
RGCN	0.324	0.559	0.24	0.715	0.405	0.193	0.102
GUNets	0.65	0.742	0.251	0.758	0.519	0.108	0.036
MGCN	0.41	0.738	0.278	0.76	0.528	0.195	0.033
HAN	0.939	0.66	0.278	0.639	0.519	0.178	0.055
\mathbf{DMGI}	0.837	0.682	0.275	0.644	0.568	0.194	0.056
$\overline{ ext{SSDCM}}$	0.947	0.819	0.284	0.822	0.635	0.223	0.085

Table: Node clustering results: NMI scores

Micro-F1 Scores	IMDB_MC	ACM	DBLP	AMAZON	FLICKR
SSDCM [global pool]	65.942	84.176	91.592	90.62	92.698
SSDCM [top-K pool]	63.908	84.218	90.683	90.34	93.714
SSDCM [SAG pool]	66.574	83.176	92.859	90.878	93.015
SSDCM [ASAP pool]	66.365	85.064	91.782	90.844	94.689
SSDCM [cluster aware	67.796	88.324	94.988	$\boldsymbol{92.195}$	96.261
graph summary			0 21000	32,100	

Table: Novelty of cluster-based graph summary

Conclusions

- 1 Our novel approach, SSDCM, incorporates a unique InfoMax based learning strategy to maximize the MI between local and contextualized global graph summaries for effective joint modeling of nodes and clusters.
- 2 It improves over the state-of-the-art in four distinct downstream tasks, namely, classification, clustering, visualization, and similarity search.

References

- [1] C. Park, D. Kim, J. Han, and H. Yu, "Unsupervised attributed multiplex network embedding.," in AAAI, pp. 5371–5378, 2020.
- [2] D. Luo, J. Ni, S. Wang, Y. Bian, X. Yu, and X. Zhang, "Deep multi-graph clustering via attentive cross-graph association," in WSDM, pp. 393–401, 2020.

Contact Information

Email: anasua.mitra@iitg.ac.in