Optimasi Tanpa Kendala: Multivariat

Pertemuan ke-5

STA1373- Optimisasi Statistika

Akbar Rizki, S.Stat., M.Si

METODE

 Table 6.1
 Unconstrained Minimization Methods

Direct search methods ^a	Descent methods ^b
Random search method	Steepest descent (Cauchy) method
Grid search method	Fletcher-Reeves method
Univariate method	Newton's method
Pattern search methods	Marquardt method
Powell's method	Quasi-Newton methods
	Davidon-Fletcher-Powell method
	Broyden-Fletcher-Goldfarb-Shanno method
Simplex method	

^aDo not require the derivatives of the function.

^bRequire the derivatives of the function.

SIMPLEX METHOD

- This method was originally given by Spendley, Hext, and Himsworth; and was developed later by Nelder and Mead.
- **Definisi Simplex:** The geometric figure formed by a set of n + 1 points in an n-dimensional space is called a simplex. When the points are equidistant, the simplex is said to be regular. Thus in two dimensions, the simplex is a triangle, and in three dimensions, it is a tetrahedron.
- Basic idea simplex method: compare the values of the objective function at the n + 1 vertices of a general simplex and move the simplex gradu ally toward the optimum point during the iterative process.
- The movement of the simplex is achieved by using three operations, known as **reflection**, **contraction**, **and expansion**.

REFLECTION

• If X_h is the vertex corresponding to the highest value of the objective function among the vertices of a simplex, we can expect the point X_r obtained by reflecting the point X_h in the opposite face to have the smallest value. If this is the case, we can construct a new simplex by rejecting the point X_h from the simplex and including the new point X_h .

REFLECTION

- Reflection point: $\mathbf{X}_r = (1 + \alpha)\mathbf{X}_0 \alpha\mathbf{X}_h$
- Vertex corresponding to the maximum function value (X_h)

$$f(\mathbf{X}_h) = \max_{i=1 \text{ to } n+1} f(\mathbf{X}_i),$$

- $f(\mathbf{X}_h) = \max_{i=1 \text{ to } n+1} f(\mathbf{X}_i),$ Centroid of all the points $\boldsymbol{X_i}$ except $i = h(\boldsymbol{X_0})$: $\mathbf{X}_0 = \frac{1}{n} \sum_{i=1}^{n+1} \mathbf{X}_i$
- Reflection coefficient (α):

$$\alpha = \frac{\text{distance between } \mathbf{X}_r \text{ and } \mathbf{X}_0}{\text{distance between } \mathbf{X}_h \text{ and } \mathbf{X}_0} ; \alpha > 0$$

Thus X_r will lie on the line joining X_h and X_0 , on the far side of X_0 from X_h with $|\mathbf{X}_r - \mathbf{X}_0| = \alpha |\mathbf{X}_h - \mathbf{X}_0|$. If $f(\mathbf{X}_r)$ lies between $f(\mathbf{X}_h)$ and $f(\mathbf{X}_l)$, where \mathbf{X}_l is the vertex corresponding to the minimum function value,

$$f(\mathbf{X}_l) = \min_{i=1 \text{ to } n+1} f(\mathbf{X}_i)$$

 X_h is replaced by X_r and a new simplex is started.

REFLECTION

Certain difficulties:

if one of the simplexes (triangles in two dimensions) straddles a valley and if the reflected point Xr happens to have an objective function value equal to that of the point Xh, we will enter into a closed cycle of operations.

EXPANSION

• If a reflection process gives a point X_r for which $\mathrm{f}(X_r) < \mathrm{f}(X_l)$, (i.e., if the reflection produces a new minimum), one can generally expect to decrease the function value further by moving along the direction pointing from X_0 to X_r . Hence we expand X_r to X_e .

$$\mathbf{X}_e = \gamma \mathbf{X}_r + (1 - \gamma) \mathbf{X}_0$$

- γ is expansion coefficient: $\gamma = \frac{\text{distance between } \mathbf{X}_e \text{ and } \mathbf{X}_0}{\text{distance between } \mathbf{X}_r \text{ and } \mathbf{X}_0} > 1$
- If $f(X_e) < f(X_l)$, we replace the point X_h by Xe and restart the process of reflection. On the other hand, if $f(X_e) > f(X_l)$, it means that the expansion process is not successful and hence we replace point X_h by X_r and start the reflection process again.

CONSTRACTION

• If the reflection process gives a point X_r for which $\mathrm{f}(X_r) > \mathrm{f}(X_i)$ for all i except i=h, and $\mathrm{f}(X_r) < \mathrm{f}(X_h)$, we replace point X_h by X_r . Thus the new X_h will be X_r . In this case we contract the simplex as follows:

$$\mathbf{X}_c = \beta \mathbf{X}_h + (1 - \beta) \mathbf{X}_0$$

where β is called the contraction coefficient (0 $\leq \beta \leq 1$):

$$\beta = \frac{\text{distance between } \mathbf{X}_e \text{ and } \mathbf{X}_0}{\text{distance between } \mathbf{X}_h \text{ and } \mathbf{X}_0}$$

• If $f(X_r) > f(h)$, we still use Eq. to find X_c without changing the previous point X_h . If the contraction process produces a point X_c for which $f(X_c) < \min[f(X_h), f(X_r)]$, we replace the point X_h in $X_1, X_2, \ldots, X_{n+1}$ by X_c and proceed with the reflection process again. On the other hand, if $f(X_c) \ge \min[f(X_h), f(X_r)]$, the contraction process will be a failure, and in this case we replace all X_i by $(X_i + X_l)/2$ and restart the reflection process.

CONVERGENCY

• The method is assumed to have converged whenever the standard deviation of the function at the n+1 vertices of the current simplex is smaller than some prescribed small quantity ε .

$$Q = \left\{ \sum_{i=1}^{n+1} \frac{[f(\mathbf{X}_i) - f(\mathbf{X}_0)]^2}{n+1} \right\}^{1/2} \le \varepsilon$$

Example

Example 6.7 Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$. Take the points defining the initial simplex as

$$\mathbf{X}_1 = \begin{cases} 4.0 \\ 4.0 \end{cases}, \quad \mathbf{X}_2 = \begin{cases} 5.0 \\ 4.0 \end{cases}, \quad \text{and} \quad \mathbf{X}_3 = \begin{cases} 4.0 \\ 5.0 \end{cases}$$

and $\alpha = 1.0$, $\beta = 0.5$, and $\gamma = 2.0$. For convergence, take the value of ε as 0.2.