Chapter 1 - Introduction

computer graphics - any use of computers to create or manipulate images

Graphics Areas

modeling - mathematical specification of shape and appearance properties rendering - creation of shaded images from 3D computer models animation - illusion of motion through sequences of images

Related areas:

- user interaction
- virtual reality
- visualisation
- image processing
- 3D scanning
- computational photography
- 2. Major Applications
 - video games
 - cartoons
 - visual effects
 - animated films
 - CAD/CAM (computer aided design/manufacturing)
 - simulation
 - medical imaging
 - information visualisation
- 3. Graphics APIs

API (application program interface) - collection of function performing a set

of related operations

graphics API - performs basic operations such as drawing images and 3D

surfaces into windows on the screen

graphics program - 2 related APIs:

- graphics API for visual output
- user-interface API for input

- 4. Graphics Pipeline
- software/hardware subsystem efficiently drawing 3D primitives
 - optimised for processing 3D triangles with shared vertices
- basic operations map the 3D vertex location to 2D screen position and shade the triangle
 - use z-buffer, special memory buffer to brute-force problems
- 4th homogeneous (perspective) coordinate => 4x4 matrices and 4-vectors
- 5. Numerical Issues IEEE floating-point:
- 1. Infinity (∞)
 - 2. Minus infinity (-∞)
 - 3. Not a number (NaN)
 - +/- 0:
 - $+a / +\infty = +0$
 - $+a / -\infty = -0$ $-a / + \infty = -0$

 $-a / -\infty = +0$

- other rules: $\infty + \infty = +\infty$
 - $\infty \infty = NaN$
 - $\infty \times \infty = \infty$
 - $\infty / \infty = NaN$
 - ∞ / a = ∞
- $\infty / 0 = \infty$
- - 0 / 0 = NaN
- most importantly: $+a / +0 = + \infty$
 - $-a / +0 = \infty$

- 6. Efficiency
 memory access patterns > operations count
 1. Straightforward code (intermediate results on the fly rather than stored)
 2. Compile in optimised mode
 3. Profiling tools for critical bottlenecks
 4. Data structures for locality
- 5. Access assembly code for numeric computation bottlenecks7. Graphics Programs
- 7.1. Class Design
 vector2 2D vector (x,y), stored in length-2 array
 - vector3 3D vector (x,y,z), analogous to vector2
 hvector homogeneous vector with 4 components
- -> (vector) addition, subtraction, dot and cross product, scalar
- multiplication and division

 rgb colour that stores 3 components
- -> (RGB) addition, subtraction, multiplication, scalar multiplication and division
- transform 4x4 matrix for transformations
- surface normal vectors
 image 2D arrays of RGB pixels with output operation

-> matrix multiply + member functions for locations, directions and

- optional classes: unit-length vectors, intervals, orthonormal bases, coordinate frames
- 7.2. Float vs. Double
 - 7.3. Debugging
 - 7.3.1. Scientific Method examine output and hypothesise 7.3.2. Images output values
 - 7.3.3. Debugger
 - 7.3.4. Data Visualisation

Chapter 19 - Colour

photon - carrier of optical information
propagating through media -> waves
interacting with surface boundary matter -> particles
retina - optical information to electrical signal

 $\lambda\Delta E = 1239.9$

λ - wavelength

 ΔE - amount of energy (eV)

spectrum - number of photons (energy) plotted against wavelength

colour - aspect of visual perception by which an observer may distinguish differences between two structure-free fields of view of the same size and shape, such as may be caused by differences in the spectral composition of the radiant energy concerned in the observation

1. Colorimetry

matches B + C

 the science of colour measurement and description photodetectors in human retina - rods and cones rods - highly sensitive, low-light conditions cones - normal lighting conditions,3 types

1.1. Grassmann's Laws

trichromatic generalisation - any colour stimulus can be matched completely with an additive mixture of three appropriately modulated colour sources

Symmetry law: colour stimulus A matches stimulus B, then B matches A

Transitive law: A matches B and B matches C, then A matches C

Proportionality law: A matches B, then aA matches aB (a - pos. scalar)

Additivity law: A matches B, C matches D, A + C matches B + D, then A + D

1.2. Cone Responses

each cone type - sensitive to a range of wavelengths

sensitivity to wavelength - has peak wavelength with greatest sensitivity

$$L = \int \Phi(\lambda) L(\lambda) d\lambda$$

$$M = \int \Phi(\lambda) M(\lambda) d\lambda$$

$$S = \int \Phi(\lambda)S(\lambda) d\lambda$$

1.3. Colour Matching Experiments

compositions $\Phi 1(\lambda)$, $\Phi 2(\lambda)$ yield the same

metamerism - two spectral different

response (L, M, S) after integration

- key feature allowing construction of colour reproducing devices

1.5. Chromaticity Coordinates three primaries = three axes colour space

spatial volume = colour gamut
y-axis = luminance => 2D chromatic information

$$X = (x/y) Y$$

 $Z = (1-x-y)/y * Y$

chromatic locus ->

 Φ_2

M

0.9

0.8

0.6

0.5

0.4

0.3

Chapter 4 - Ray Tracing

rendering -> making 2D image of 3D objects

object-order - consider all pixels each object influences

image-order - consider all objects each pixel is influenced from (ray-tracing)

- 1. Basic Ray-Tracing Algorithm
 - 1) ray generation computes origin and direction of each pixel's viewing ray
 - 2) ray intersection finds closest object intersecting the viewing ray
 - 3) shading computes pixel colour based on ray intersection

example of 2 -> only T2 is printed

