Efficient UQ for Chemical Systems using Active Subspaces

Manav Vohra[†], Sankaran Mahadevan[†]

Collaborators: Alen Alexanderian§, Hailey Guy§

†Vanderbilt University §North Carolina State University

July 1, 2018

BACKGROUND & MOTIVATION

Active Subspaces

Idea: Discover and Exploit a low-dimensional structure in the model. Active Subspaces

ı			
	Parameters	Model Runs	Time (1s/run)
ĺ	1	10	10 s
	2	10 ²	1.6 min
	3	10 ³	16 min
	4	10^4	2.7 hours
	5	10 ⁵	1.1 days
	6	10 ⁶	1.6 weeks

■ **Definition**: Dominant eigenspace of a matrix derived from the model's gradient.

$$\int \nabla f((x)) \nabla f(x)^\top \rho(x) dx = W \Lambda W^\top$$

$$f(x) = g(w_1^\top x) \quad \text{[P. Constantine, 2015]}$$

GRADIENT-BASED APPROACH

Active Subspaces

RESULTS

GRADIENT-FREE APPROACH

Active Subspaces

H₂/O₂ REACTION KINETICS

Reaction Rate:

Active Subspaces

$$k_i(T) = A_i T^{n_i} \exp(-E_{a,i}/RT)$$

 A_i : Pre-exponent $E_{a,i}$: Activation Energy

- Uniform Priors: $A_i \in [0.9A_i^*, 1.1A_i^*]$, $E_{a,i} \in [0.9E_{a,i}^*, 1.1E_{a,i}^*]$
- Global Reaction:

$$2H_2{+}O_2 \rightarrow 2H_2O$$

Equivalence Ratio (ϕ):

$$\phi = \frac{(M_{\rm H_2}/M_{\rm O_2})_{\rm obs}}{(M_{\rm H_2}/M_{\rm O_2})_{\rm st}} \quad \phi > 1 : {\rm Rich}, \ \phi < 1 : {\rm Lean}$$

Reaction #	Reactants		Products
\mathcal{R}_1	H + O ₂	\rightleftharpoons	O + OH
\mathcal{R}_2	O + H ₂	\rightleftharpoons	H + OH
\mathcal{R}_3	H_2 + OH	\rightleftharpoons	$H_2O + H$
\mathcal{R}_4	OH + OH	\rightleftharpoons	O + H ₂ O
\mathcal{R}_5	$H_2 + M$	\rightleftharpoons	H + H + M
\mathcal{R}_6	O + O + M	\rightleftharpoons	$O_2 + M$
\mathcal{R}_7	O + H + M	\rightleftharpoons	OH + M
\mathcal{R}_8	H + OH +M	\rightleftharpoons	$H_2O + M$
\mathcal{R}_9	$H + O_2 + M$	\rightleftharpoons	$HO_2 + M$
\mathcal{R}_{10}	$HO_2 + H$	\rightleftharpoons	$H_2 + O_2$
\mathcal{R}_{11}	$HO_2 + H$	\rightleftharpoons	OH + OH
\mathcal{R}_{12}	$HO_2 + O$	\rightleftharpoons	O_2 + OH
\mathcal{R}_{13}	$HO_2 + OH$	\rightleftharpoons	$H_2O + O_2$
\mathcal{R}_{14}	$HO_2 + HO_2$	\rightleftharpoons	$H_2O_2 + O_2$
\mathcal{R}_{15}	$H_2O_2 + M$	\rightleftharpoons	OH + OH + M
\mathcal{R}_{16}	$H_2O_2 + H$	\rightleftharpoons	$H_2O + OH$
\mathcal{R}_{17}	$H_2O_2 + H$	\rightleftharpoons	$HO_2 + H_2$
\mathcal{R}_{18}	$H_2O_2 + O$	\rightleftharpoons	OH + HO ₂
\mathcal{R}_{19}	$H_2O_2 + OH$	\rightleftharpoons	$HO_2 + H_2O$
	D/ 11 1 1	400	41

[Yetter et al., 1991]

COMPARATIVE ANALYSIS

Active Subspaces

SENSITIVITY ANALYSIS

Sobol total effect index

$$\begin{split} \mathcal{T}(\theta_i) &= 1 - \frac{\mathbb{V}_{\boldsymbol{\theta}_{\sim i}}(\mathbb{E}_{\theta_i}[\mathcal{G}|\boldsymbol{\theta}_{\sim i}])}{\mathbb{V}(\mathcal{G})} \\ &= \frac{\frac{1}{N} \sum_{k=1}^{N} f(\boldsymbol{A})_k (f(\boldsymbol{A})_k - f(\boldsymbol{A}_{\boldsymbol{B}}^i)_k)}{\mathbb{V}(\mathcal{G})} \end{split}$$

- ► A, B: Matrices comprising independent samples of θ .
- ► Aⁱ_B: ith column of A is replaced by the ith column of B.

Activity scores

$$\alpha_i(n) = \sum_{j=1}^n \lambda_j v_{i,j}^2$$

