Results

Descriptives

Descriptives

	Revise	Exam	Anxiety
N	103	103	103
Missing	0	0	0
Mean	19.9	56.6	74.3
Std. error mean	1.79	2.56	1.69
95% CI mean lower bound	16.3	51.5	71.0
95% CI mean upper bound	23.4	61.6	77.7
Median	15.0	60.0	79.0
Mode	4.00	70.0 a	82.3 ª
Standard deviation	18.2	25.9	17.2
Variance	330	673	295
Minimum	0.00	2.00	0.0560
Maximum	98.0	100	97.6

Note. The CI of the mean assumes sample means follow a t-distribution with N - 1 degrees of freedom

Plots

Revise

^a More than one mode exists, only the first is reported

Exam

Anxiety

Descriptives

Descriptives

	Sex
N	103
Missing	0
Mean	1.50
Median	1
Standard deviation	0.502
Minimum	1
Maximum	2

Plots

Sex

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a numeric variable for Variable 2 / Independent Variables. Hence, the <u>Pearson correlation coefficient</u>, which is a measure for the strength of the linear relationship between two variables, seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Correlation Matrix

- Drop your two variables in the white box at the right
- Under Correlation Coefficients, select Pearson (selected by default)
- Under Hypothesis, select your alternative hypothesis

Alternatively, you could perform a <u>linear regression analysis</u>. The test outcomes of both methods will be equivalent. Click on the links to learn more about these methods!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Scatterplot

Scatterplot

Scatterplot

Correlation Matrix

Correlation Matrix

		Revise	Exam	Anxiety
Revise	Pearson's r	_		
	p-value	_		
	95% CI Upper	_		
	95% CI Lower	_		
	N	_		
Exam	Pearson's r	0.397 ***	_	
	p-value	< .001	_	
	95% CI Upper	0.548	_	
	95% CI Lower	0.220	_	
	N	103	_	
Anxiety	Pearson's r	-0.709 ***	-0.441 ***	_
	p-value	< .001	< .001	_
	95% CI Upper	-0.598	-0.271	_
	95% CI Lower	-0.794	-0.585	_
	N	103	103	_

Note. * p < .05, ** p < .01, *** p < .001

References

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).