CS461 Homework 2

Mannan Shukla

Due: October 20, 2024

Problem 1: Linear Models and MMSE Regression

1.1 Data Matrix

Write out the data matrix Φ based on the given data points.

$$\Phi = \begin{bmatrix} 1 & 4 & 1 & 1 \\ 1 & 7 & 0 & 2 \\ 1 & 10 & 1 & 3 \\ 1 & 13 & 0 & 4 \end{bmatrix}$$

1.2 Exact or MMSE Solution

We can figure out whether or not not the normal equation will yield an exact solution based on Φ . If $\Phi^T\Phi$ is invertible, the equation can be solved without the need for any estimation. To find invertibility, we need to see if Φ has any linearly dependent columns. We can see that there aren't any linearly dependent columns in Φ above, so the normal equation will have an exact solution.

1.3 Solving the Normal Equation

We figured out in 1.2 that Φ is invertible because there are no linearly dependent columns present. To solve for \mathbf{w} we calculate values for the equation $\Phi^T \Phi \vec{w} = \Phi^T y$ where y is the output matrix. We can rearrange this to be $\vec{w} = (\Phi^T \Phi)^{-1} \Phi^T y$ We can solve this using numpy. The code 1-3.py contains the code to solve for \mathbf{w} . $\mathbf{w} = [1, 0, 1, 0]$

1.4 Comparing the Models

Compare the original model $y = 1 + 2x_1 + 3x_2 + 4x_3$ with your solution and discuss the differences.

1.5 Adding New Data Points

Add the new data points and solve for w. Discuss the chance of obtaining the original model.

1.6 Column Removal for Unique Solution

Examine the data matrix and identify which column to remove to ensure a unique solution.

Problem 2: Lagrangian Function and KKT Conditions

2.1 MMSE Objective Function

Define the MMSE objective function $J(\mathbf{w})$ and solve for the optimal solution (w_0, w_1) .

2.2 Lagrangian Function

Define the Lagrangian function for the constrained optimization problem.

2.3 Solving for λ and \mathbf{w}^*

Based on KKT conditions, compute the optimal Lagrangian parameter λ and \mathbf{w}^* for $C = \{0.5, 1, 2, 3\}$.

Problem 3: Learning Sinusoidal Functions

3.1 Implementing Ordinary MMSE Regression

Describe your code implementation in 'ols_regression.py' for the MMSE regression model. Report the average validation error across five cross-validations.

3.2 Ridge Regression

Describe your code implementation in 'ridge_regression.py' for the ridge regression model. Plot the averaged validation error for different values of λ .

Figure 1: Validation Error vs. λ

3.3 Plot the Models

Plot the models $w(\lambda = 0)$ and $w(\lambda^*)$ over the range $0 \le x \le 1$.

3.4 Evaluate with Test Data

Evaluate both models on the test dataset and report the test MSE for each.

3.5 Larger Dataset

Explain the regression model you implemented in 'ols_regression_largeset.py' and plot the model over the range $0 \le x \le 1$.

3.6 Controlling Effective Complexity

Propose two solutions to control the effective complexity in machine learning.

Problem 4: Eigenface and Spectral Decomposition

4.1 Covariance Matrix and Spectral Decomposition

Compute the covariance matrix COV(X, X) and its eigenvalue decomposition.

4.2 Approximating the Test Image

Approximate the test image using different M values (2, 10, 100, 1,000, 4,000). Present the corresponding images in your report.

Figure 2: Approximations with different M values

4.3 Eigenvectors for the Largest Eigenvalues

Show the grayscale images of the eigenvectors corresponding to the ten largest eigenvalues and explain how they capture facial features.

Problem 5: Extra Points - Year of Made Prediction

5.1 Dimensional Reduction and Whitening

Reproduce the scatter plots for M=1 and M=2. Discuss why the 2-D projection is more promising for year prediction.

5.2 Training the Model

Explain your implementation in 'year_train.py' and describe how you selected the polynomial basis and validated the model.

5.3 Testing the Model

Report the test MSE and identify the most and least accurate predictions.