1

Assignment 6

Sairam V C Rebbapragada

 $\begin{subarray}{c} Abstract$ —This document uses vector algebra to trace a given curve.

Download Python code from

https://github.com/Sairam13001/AI5106/tree/main/ Assignment 6/assignment 6 fig.py

Download latex-tikz codes from

https://github.com/Sairam13001/AI5106/tree/main/ Assignment_6/assignment_6.tex

1 Problem

Trace the curve

$$14x^2 - 4xy + 11y^2 - 44x - 58y + 71 = 0 (1.0.1)$$

2 Explanation

The general equation of second degree is given by

$$ax^2 + 2bxy + cy^2 + 2dx + 2ey + f = 0$$
 (2.0.1)

and can be expressed as

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.2}$$

where

$$\mathbf{V} = \mathbf{V}^T = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \tag{2.0.3}$$

$$\mathbf{u}^T = \begin{pmatrix} d & e \end{pmatrix} \tag{2.0.4}$$

3 Solution

Comparing (1.0.1) with (2.0.1), we get

$$\mathbf{V} = \begin{pmatrix} 14 & -2 \\ -2 & 11 \end{pmatrix} \tag{3.0.1}$$

$$\mathbf{u}^T = \begin{pmatrix} -22 & -29 \end{pmatrix} \tag{3.0.2}$$

If $|\mathbf{V}| > 0$, then (2.0.2) is an ellipse.

$$|V| = \begin{vmatrix} 14 & -2 \\ -2 & 11 \end{vmatrix} = 150 > 0 \tag{3.0.3}$$

(2.0.2) can be expressed as

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f \qquad |V| \neq 0 \qquad (3.0.4)$$

$$\mathbf{y}^T \mathbf{D} \mathbf{y} = -\eta \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{y} \qquad |V| = 0 \qquad (3.0.5)$$

with center as

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |V| \neq 0 \tag{3.0.6}$$

Calculating the center for given curve we get,

$$\mathbf{c} = -\frac{1}{|14 * 11 - (-2 * -2)|} \begin{pmatrix} 11 & 2\\ 2 & 14 \end{pmatrix} \begin{pmatrix} -22\\ -29 \end{pmatrix}$$
 (3.0.7)

$$=\frac{1}{150} \binom{300}{450} \tag{3.0.8}$$

$$= \begin{pmatrix} 2\\3 \end{pmatrix} \tag{3.0.9}$$

For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0, \lambda_2 > 0$ (3.0.10)

(3.0.4) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_1^2 = \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f$$
 (3.0.11)

which is the equation of an ellipse with major and minor axes parameters

$$\sqrt{\frac{\lambda_1}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}, \sqrt{\frac{\lambda_2}{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}}$$
 (3.0.12)

The characteristic equation of V is obtained by evaluating the determinant

$$\left|\lambda \mathbf{I} - \mathbf{V}\right| = \begin{vmatrix} \lambda - 14 & 2 \\ 2 & \lambda - 11 \end{vmatrix} = 0 \tag{3.0.13}$$

$$\implies \lambda^2 - 25\lambda + 150 = 0 \tag{3.0.14}$$

The eigenvalues are the roots of (3.0.14) given by

$$\lambda_1 = 15, \lambda_2 = 10 \tag{3.0.15}$$

Calculating the major and minor axes lengths using (3.0.12), we get

$$\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} = \\ = (-22 - 29) \frac{1}{150} \begin{pmatrix} 11 & 2 \\ 2 & 14 \end{pmatrix} \begin{pmatrix} -22 \\ -29 \end{pmatrix} \\ = \frac{1}{150} \begin{pmatrix} 300 & 450 \end{pmatrix} \begin{pmatrix} 22 \\ 29 \end{pmatrix} \\ = 131 \\ \mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} - f = 131 - 71 = 60 \qquad (3.0.16) \\ \sqrt{\frac{\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_{1}}} = \sqrt{\frac{60}{15}} = 2 \qquad (3.0.17) \\ \sqrt{\frac{\mathbf{u}^{T}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_{2}}} = \sqrt{\frac{60}{10}} = \sqrt{6} \qquad (3.0.18)$$

Fig. 0: Ellipse with center (2 3) and having the axes lengths as $\sqrt{6}$ and 2.