Chapitre 8 : Espaces vectoriels

Dans tout ce chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} (ou un sous corps de \mathbb{C}). (Muni des lois + et × naturelles)

I Définitions

A) Définition

Soit E un ensemble, muni d'une loi de composition interne \oplus et d'une loi externe à opérateurs dans \mathbb{K} , notée \cdot , c'est-à-dire :

$$E \times E \to E \text{ et } \overline{\mathbb{K}} \times E \to E \\ (u,v) \mapsto u \oplus v \qquad (\lambda,u) \mapsto \lambda \cdot u$$

On dit que (E, \oplus, \cdot) est un espace vectoriel sur \mathbb{K} /un \mathbb{K} -espace vectoriel $(\mathbb{K}$ -ev) lorsque :

- (E, \oplus) est un groupe commutatif
- Pour tous $u, v \in E$, $\lambda, \mu \in \mathbb{K}$, on a:

$$(\lambda + \mu) \cdot u = \lambda \cdot u \oplus \mu \cdot u$$

$$\lambda \cdot (u \oplus v) = \lambda \cdot u \oplus \lambda \cdot v$$

$$(\lambda \times \mu) \cdot u = \lambda \cdot (\mu \cdot u)$$

$$1 \cdot u = u$$

Exemples:

$$(\mathbb{R},+,\times)$$
, $(\mathfrak{F}(\mathbb{R},\mathbb{R}),+,\cdot)$, $(\mathbb{C},+,\times)$ sont des \mathbb{R} -ev.

$$(\mathbb{K}[X],+,\times)$$
 est un \mathbb{K} -ev.

B) Règles de calcul

Soit (E, \oplus, \cdot) un \mathbb{K} -ev. Alors :

(1) $\forall u \in E, 0 \cdot u = 0_E$ (neutre pour \oplus du groupe (E, \oplus) appelé le vecteur nul de E)

Démonstration:

$$\forall u \in E, 0 \cdot u = (0+0) \cdot u = 0 \cdot u \oplus 0 \cdot u$$
.

Donc
$$0 \cdot u = 0_E$$

(2)
$$\forall \lambda \in \mathbb{K}, \lambda \cdot 0_E = 0_E$$

Démonstration:

$$\lambda \cdot 0_E = \lambda \cdot (0_E \oplus 0_E) = \lambda \cdot 0_E \oplus \lambda \cdot 0_E$$

Donc $\lambda \cdot 0_E = 0_E$.

(3)
$$\forall u \in E, \forall \lambda \in \mathbb{K}, \lambda \cdot u = 0_E \iff \lambda = 0 \text{ ou } u = 0_E$$

Démonstration:

Le sens \Leftarrow a été vu avec (1) et (2).

Pour \Rightarrow : Supposons que $\lambda \cdot u = 0_E$ et que $\lambda \neq 0$.

Montrons qu'alors $u = 0_E$.

On introduit λ^{-1} (ce qui est possible car $\lambda \neq 0$).

Alors $\lambda^{-1} \cdot (\lambda \cdot u) = (\lambda^{-1} \times \lambda) \cdot u = 1 \cdot u = u$ d'une part,

Et
$$\lambda^{-1} \cdot (\lambda \cdot u) = \lambda^{-1} \cdot 0_E = 0_E$$
 d'autre part.

Donc $u = 0_E$

(4) $\forall u \in E, \forall \lambda \in \mathbb{K}, (-\lambda) \cdot u = \widehat{-}(\lambda \cdot u) = \lambda \cdot (\widehat{-}u)$

Démonstration:

$$(\lambda \cdot u) \oplus ((-\lambda) \cdot u) = (\lambda + (-\lambda)) \cdot u = 0_E$$
. Donc $(-\lambda) \cdot u = -(\lambda \cdot u)$

$$(\lambda \cdot u) \oplus (\lambda \cdot (\widehat{-}u)) = \lambda \cdot (u \oplus \widehat{-}u) = \lambda \cdot 0_E = 0_E. \text{ Donc } \lambda \cdot (\widehat{-}u) = \widehat{-}(\lambda \cdot u).$$

(5) $\forall u \in E, \forall n \in \mathbb{Z}, n.u = n \cdot u$

(A gauche de l'égalité : itération dans (E, \oplus) ; à droite : produit externe)

Démonstration:

Par récurrence pour les $n \ge 0$, puis la proposition (4) pour $n \le 0$.

Ces règles permettent des écritures simplifiées :

+ pour \oplus , . pour \cdot voire omis, $-\lambda u$ pour la valeur commune de $(-\lambda) \cdot u$, $= (\lambda \cdot u)$ et $\lambda \cdot (=u)$.

Vocabulaire:

Dans un \mathbb{K} -ev $(E,+,\cdot)$, les éléments de E sont appelés des vecteurs, et les éléments de \mathbb{K} des scalaires.

C) Exemple important

Soit $n \in \mathbb{N}^*$

On munit \mathbb{K}^n ($\mathbb{K} \times \mathbb{K} \times ... \times \mathbb{K}$) de la loi \oplus et de la loi externe · à opérateurs dans \mathbb{K} définis ainsi :

Pour tous
$$\begin{cases} (x_1, x_2, ... x_n) \in \mathbb{K}^n \\ (y_1, y_2, ... y_n) \in \mathbb{K}^n \\ \lambda \in \mathbb{K} \end{cases}$$
:

$$(x_1, x_2,...x_n) \oplus (y_1, y_2,...y_n) = (x_1 + y_1, x_2 + y_2,...x_n + y_n)$$

$$\lambda \cdot (x_1, x_2, ... x_n) = (\lambda x_1, \lambda x_2, ... \lambda x_n).$$

Alors $(\mathbb{K}^n, \oplus, \cdot)$ est un \mathbb{K} -ev.

Démonstration:

Déjà, (\mathbb{K}^n, \oplus) est un groupe commutatif :

Le neutre pour \oplus est évidemment (0,0,...0), qui est bien dans \mathbb{K}^n .

Associativité:

Soient $x, y, z \in \mathbb{K}^n$. Alors $x = (x_1, x_2, ... x_n)$, $y = (y_1, y_2, ... y_n)$ et $z = (z_1, z_2, ... z_n)$ où $x_1, x_2, ... x_n, y_1, y_2, ... y_n, z_1, z_2, ... z_n \in \mathbb{K}$

Alors:

$$x \oplus (y \oplus z) = (x_1, x_2, ... x_n) \oplus ((y_1, y_2, ... y_n) \oplus (z_1, z_2, ... z_n))$$

$$= ... = (x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), ... x_n + (y_n + z_n))$$

$$= ((x_1 + y_1) + z_1, (x_2 + y_2) + z_2, ... (x_n + y_n) + z_n)$$

$$= ... = (x \oplus y) \oplus z$$

Commutativité:

Soient
$$x, y \in \mathbb{K}^n$$
, $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$. Alors:

$$x \oplus y = (x_1, x_2, ... x_n) \oplus (y_1, y_2, ... y_n)$$

$$= (x_1 + y_1, x_2 + y_2, ... x_n + y_n)$$

$$= (y_1 + x_1, y_2 + x_2, ... y_n + x_n)$$

$$= y \oplus x$$

Existence d'un inverse pour \oplus de tout élément de \mathbb{K}^n .

Soit $x \in \mathbb{K}^n$, $x = (x_1, x_2, ... x_n)$.

Alors $x' = (-x_1, -x_2, \dots - x_n)$ est dans \mathbb{K}^n et est évidemment inverse de x pour \oplus .

Soient maintenant $x, y \in \mathbb{K}^n$, $\lambda, \mu \in \mathbb{K}$, avec $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$.

On a:

$$(\lambda + \mu) \cdot x = (\lambda + \mu) \cdot (x_1, x_2, \dots x_n)$$

$$= ((\lambda + \mu)x_1, (\lambda + \mu)x_2, \dots (\lambda + \mu)x_n)$$

$$= (\lambda x_1 + \mu x_1, \lambda x_2 + \mu x_2, \dots \lambda x_n + \mu x_n)$$

$$= (\lambda x_1, \lambda x_2, \dots \lambda x_n) \oplus (\mu x_1, \mu x_2, \dots \mu x_n)$$

$$= \lambda \cdot (x_1, x_2, \dots x_n) \oplus \mu \cdot (x_1, x_2, \dots x_n)$$

$$= \lambda \cdot x \oplus \mu \cdot x$$

$$\lambda \cdot (x \oplus y) = \lambda \cdot (x_1 + y_1, x_2 + y_2, \dots x_n + y_n)$$

$$= (\lambda(x_1 + y_1), \lambda(x_2 + y_2), \dots \lambda(x_n + y_n))$$

$$= (\lambda x_1 + \lambda y_1, \lambda x_2 + \lambda y_2, \dots \lambda x_n + \lambda y_n)$$

$$= (\lambda x_1, \lambda x_2, \dots \lambda x_n) \oplus (\lambda y_1, \lambda y_2, \dots \lambda y_n)$$

$$= \lambda \cdot x \oplus \lambda \cdot y$$

$$(\lambda \mu) \cdot x = ((\lambda \mu)x_1, (\lambda \mu)x_2, ...(\lambda \mu)x_n)$$

$$= (\lambda(\mu x_1), \lambda(\mu x_2), ...\lambda(\mu x_n))$$

$$= \lambda \cdot (\mu x_1, \mu x_2, ...\mu x_n)$$

$$= \lambda \cdot (\mu \cdot x)$$

$$1 \cdot x = (1x_1, 1x_2, \dots 1x_n)$$
$$= (x_1, x_2, \dots x_n) = x$$

Généralisation:

Si E et F sont deux \mathbb{K} -ev, on peut munir naturellement $E \times F$ d'une structure de \mathbb{K} -ev en posant, pour tous $u, u' \in E, v, v' \in F, \lambda \in \mathbb{K}$:

$$\begin{cases} (u,v) + (u',v') = (u+u',v+v') \\ \lambda \cdot (u,v) = (\lambda \cdot u, \lambda \cdot v) \end{cases}$$

Et plus généralement $E_1 \times E_2 \times ... \times E_n$ où les E_i sont des \mathbb{K} -ev.

D) Vecteurs, combinaisons linéaires

Ici, $(E,+,\cdot)$ désigne un \mathbb{K} -ev.

Définition:

Soit $(u_1, u_2, ... u_n)$ une famille finie d'éléments de E.

Une combinaison linéaire de la famille $(u_1, u_2, ... u_n)$ des $u_i, i \in [1, n]$ est un

élément de E du type $\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + ... + \lambda_n \cdot u_n$, c'est-à-dire $\sum_{i=1}^n \lambda_i \cdot u_i$ où les λ_i sont des

éléments de K.

Définition:

Soit $u \in E$.

Si $u = 0_E$, tout élément de E est dit colinéaire à u.

Si $u \neq 0_E$, les vecteurs de E colinéaires à u sont les $\lambda \cdot u, \lambda \in \mathbb{K}$.

Proposition:

La relation « être colinéaire à » est une relation d'équivalence.

En effet:

- Déjà, elle est réflexive...
- Symétrique : Supposons *v* colinéaire à *u* :

Si $u = 0_E$, u est bien colinéaire à v car $u = 0 \cdot v$

Si $u \neq 0_E$, alors v s'écrit $\lambda \cdot u$ où $\lambda \in \mathbb{K}$.

Donc soit $\lambda = 0$ et alors $v = 0_E$ et donc u est colinéaire à v,

Soit $\lambda \neq 0$, et alors $u = \lambda^{-1}v$ donc u est colinéaire à v.

- Transitivité : immédiate.

Définition équivalente :

Soient $u, v \in E$. On a l'équivalence :

$$u$$
 et v sont colinéaires $\Leftrightarrow u = 0_E$ ou $\exists \lambda \in \mathbb{K}, v = \lambda \cdot u$ (1) $\Leftrightarrow \exists (\alpha, \beta) \in \mathbb{K} \setminus \{(0, 0)\}, \alpha \cdot u + \beta \cdot v = 0_E$ (2)

Démonstration:

(1) est simplement une autre façon d'écrire la définition.

Montrons que $(1) \Rightarrow (2)$. Supposons (1).

Si $u = 0_E$, on peut prendre $(\alpha, \beta) = (1,0)$

Si $u \neq 0_E$, alors il existe $\lambda \in \mathbb{K}$ tel que $v = \lambda \cdot u$.

Ainsi, avec $(\alpha, \beta) = (\lambda, -1)$, on a bien $\alpha \cdot u + \beta \cdot v = 0_E$

Montrons maintenant que $(2) \Rightarrow (1)$. Supposons (2).

Soit $(\alpha, \beta) \in \mathbb{K} \setminus \{(0,0)\}$ tel que $\alpha \cdot u + \beta \cdot v = 0_E$.

Si $\beta \neq 0$, alors $v = \frac{-\alpha}{\beta} \cdot u$

Si $\beta = 0$, alors $\alpha \cdot u = 0_E$. Or, $\alpha \neq 0$ car $(\alpha, \beta) \neq (0, 0)$. Donc $u = 0_E$.

II Sous-espace vectoriel

 $(E,+,\cdot)$ désigne toujours un \mathbb{K} -ev.

A) Définition

Soit F une partie de E.

On dit que F est un sous-espace vectoriel (sev) de E lorsque :

- F contient 0_E .
- F est stable par +: $\forall u, v \in F, u + v \in F$
- F est stable par \cdot : $\forall u \in F, \forall \lambda \in \mathbb{K}, \lambda \cdot u \in F$.

Proposition:

Si F est un sous-espace vectoriel de E, alors + constitue une loi de composition interne sur F, · constitue une loi externe à opérateurs dans $\overline{\mathbb{K}}$, et $(F,+,\cdot)$ est un $\overline{\mathbb{K}}$ -ev :

- Déjà, (F,+) est bien un groupe commutatif puisque F est un sous-groupe de (E,+) car $0_E \in F$, F est stable par + et $\forall u \in F, -u = (-1) \cdot u \in F$.
- De plus, on vérifie immédiatement que les quatre règles sont bien vérifiées...

Exemples:

- \mathbb{R}^2 est un \mathbb{R} -ev. Quels en sont les sous-espaces vectoriels ?
- $\{0_{\mathbb{R}^2}\}$
- Pour $u \in \mathbb{R}^2 \setminus \{0_{\mathbb{R}^2}\}$, $\{\lambda \cdot u, \lambda \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 .
- \mathbb{R}^2 .

Il n'y en a pas d'autres : si un sous-espace vectoriel de \mathbb{R}^2 contient deux vecteurs non colinéaires, c'est \mathbb{R}^2 .

- Si E est un \mathbb{K} -ev quelconque :
- $\{0_E\}$ et E sont deux sous-espaces vectoriels de E.

Si $u \in E \setminus \{0_E\}$, $\{\lambda \cdot u, \lambda \in \mathbb{R}\}$ est un sous-espace vectoriel de E appelé la droite vectorielle de E engendrée par u.

- Les sous-espaces vectoriels de \mathbb{R}^3 sont exactement :
- $-\{0_{\mathbb{R}^3}\}$
- Pour $u \in \mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}, \{\lambda \cdot u, \lambda \in \mathbb{R}\}.$
- Pour $u, v \in \mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}$ avec u et v non colinéaires, $\{\lambda \cdot u + \mu \cdot v, \lambda, \mu \in \mathbb{R}\}$ (plan vectoriel)
 - \mathbb{R}^3
 - Des sous-espaces vectoriels de $\mathfrak{F}(\mathbb{R},\mathbb{R})$:

 $H_a = \{ f \in \Re(\mathbb{R}, \mathbb{R}), f(a) = 0 \}$ où a est un élément de \mathbb{R} fixé.

A = 1'ensemble des fonctions du type $x \mapsto a \cdot x + b$, $a, b \in \mathbb{R}$.

Ou même $\mathbb{R}[X]$, $\mathbb{R}_n[X]$ (où $n \in \mathbb{N}$)

 $C^0(\mathbb{R},\mathbb{R}), D^1(\mathbb{R},\mathbb{R}), \dots$

L'ensemble des fonctions paires, impaires...

B) Intersection de sous-espaces vectoriels

Théorème:

Toute intersection de sous-espaces vectoriels de *E* en est un sous-espace vectoriel.

Démonstration:

Soit $(F_i)_{i\in I}$ une famille de sous-espaces vectoriels de E.

Soit
$$F = \bigcap_{i \in I} F_i = \{u \in E, \forall i \in I, u \in F_i\}$$

Alors $0_E \in F$ car $\forall i \in I, 0_E \in F_i$

F est stable par +:

Soient $u, v \in F$. Alors $\forall i \in I, u \in F_i, v \in F_i$, donc $\forall i \in I, u + v \in F_i$. Donc $u + v \in F$ F est stable par \cdot :

Soient $u \in F, \lambda \in \mathbb{K}$. Alors $\forall i \in I, u \in F_i$, donc $\forall i \in I, \lambda \cdot u \in F_i$, donc $\lambda \cdot u \in F$.

C) Définitions équivalentes

Soit $F \subset E$. Alors:

$$F \text{ est un sev de } E \Leftrightarrow \begin{cases} 0_E \in F & (0) \\ \forall u, v \in F, u + v \in F & (1) \\ \forall \lambda \in \mathbb{K}, \forall u \in F, \lambda \cdot u \in F & (2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 0_E \in F & (0) \\ \forall \alpha, \beta \in \mathbb{K}, \forall u, v \in F, \alpha \cdot u + \beta \cdot v \in F & (3) \end{cases}$$

$$\Leftrightarrow \begin{cases} 0_E \in F & (0) \\ \forall \lambda \in \mathbb{K}, \forall u, v \in F, u + \lambda \cdot v \in F & (3b) \end{cases}$$

$$\Leftrightarrow \begin{cases} 0_E \in F & (0) \\ \forall \lambda \in \mathbb{K}, \forall u, v \in F, u + \lambda \cdot v \in F & (3b) \end{cases}$$

$$\Leftrightarrow \begin{cases} 0_E \in F & (0) \\ \forall \lambda \in \mathbb{K}, \forall u, v \in F, u + \lambda \cdot v \in F & (3b) \end{cases}$$

Pour (3t):
$$\forall n \in \mathbb{N}^*, \forall (u_1, u_2, ... u_n) \in F^n, \forall (\lambda_1, \lambda_2, ... \lambda_n) \in \mathbb{K}^n, \sum_{i=1}^n \lambda_i \cdot u_i \in F$$

Démonstration:

(1) et $(2) \Rightarrow (3)$: évident.

 $(3) \Rightarrow (3b)$: immédiat.

 $(3) \Rightarrow (3t)$: immédiat par récurrence.

 $(3t) \Rightarrow (3)$: cas particulier.

(3b) et (0) \Rightarrow (1) et (2):

Si on a (3b) et (0), on applique (3b) avec $u = 0_E$ et on obtient (2), puis (3b) avec $\lambda = 1$ et on obtient (1).

D'où toutes les équivalences.

De plus, on peut partout remplacer (0) par (0b) : « $F \neq \emptyset$ ».

D) Sous-espace vectoriel engendré par

Définition:

Soit $A \subset E$. Le sous-espace vectoriel engendré par A, noté Vect(A), est le plus petit des sous-espaces vectoriels de E contenant A.

Justification:

L'ensemble ε des sous-espaces vectoriels de E contenant A n'est pas vide, puisqu'il contient E, et l'intersection $\bigcap_{X \in \varepsilon} X$ est un sous-espace vectoriel de E contenant A, et est contenu dans chaque X de ε , c'est donc bien le plus petit éléments de ε .

Proposition:

- $\operatorname{Vect}(\emptyset) = \{0_E\}$
- Si $u \in E \setminus \{0_E\}$, Vect $(\{u\}) = \{\lambda \cdot u, \lambda \in \mathbb{K}\}$, noté aussi Vect(u).
- A est un sous-espace vectoriel de E si et seulement si Vect(A) = A.
- Si F est un sous-espace vectoriel de E, et si $A \subset F$, alors $\mathrm{Vect}(A) \subset F$ (En effet, $F \in \mathcal{E}$ et $\mathrm{Vect}(A) = \min_{X \in \mathcal{X}} \{X\}$)
- Si $A \subset B$, alors $Vect(A) \subset Vect(B)$:

 $A \subset B \subset Vect(B)$.

Donc $A \subset \text{Vect}(B)$. Donc $\text{Vect}(A) \subset \text{Vect}(B)$ (d'après le point précédent).

Cas particulier:

Sous-espace vectoriel engendré par une partie finie :

Soient $u_1, u_2, ... u_n$ des vecteurs de E.

Alors $Vect(\{u_1, u_2, ... u_n\})$, plutôt noté $Vect(u_1, u_2, ... u_n)$, est appelé le sous-espace vectoriel de E engendré par la famille $(u_1, u_2, ... u_n)$ ou « par les u_i »

Proposition:

 $Vect(u_1, u_2, ... u_n)$ est l'ensemble des combinaisons linéaires des u_i , c'est-à-dire :

$$\left\{\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n, (\lambda_1, \lambda_2, \dots \lambda_n) \in \mathbb{K}^n\right\}$$

Démonstration:

Notons $C(u_1, u_2, ... u_n) = \{\lambda_1 u_1 + \lambda_2 u_2 + ... + \lambda_n u_n, (\lambda_1, \lambda_2, ... \lambda_n) \in \mathbb{K}^n\}.$

Alors $C(u_1, u_2, ... u_n)$ contient 0_E et est stable par + et ·

$$\left(\operatorname{car} \sum_{i=1}^{n} \lambda_{i} u_{i} + \sum_{i=1}^{n} \lambda'_{i} u_{i} = \sum_{i=1}^{n} (\lambda_{i} + \lambda'_{i}) u_{i} \text{ et } \lambda \cdot \sum_{i=1}^{n} \lambda_{i} u_{i} = \sum_{i=1}^{n} (\lambda \lambda_{i}) u_{i}\right)$$

Donc $C(u_1, u_2, ... u_n)$ est un sous-espace vectoriel de E contenant les u_i , et c'est le plus petit car si un sous-espace vectoriel de E contient les u_i , il en contient alors toutes les combinaisons linéaires. Donc $Vect(u_1, u_2, ... u_n) = C(u_1, u_2, ... u_n)$.

Vocabulaire:

- Si F est le sous-espace vectoriel engendré par une famille (finie) $\mathfrak{F} = (u_1, u_2, ... u_n)$ de vecteurs de E, on dit que \mathfrak{F} est une famille génératrice de F.
- Si un espace vectoriel *E* admet une famille génératrice finie, on dit que *E* est de type fini.

Exemple:

 \mathbb{K}^n est de type fini, une famille génératrice étant [(1,0,...0),(0,1,0,...,0),...,(0,0,...,1)] $\mathbb{K}[X]$ n'est pas de type fini. En effet, supposons qu'il admette une famille génératrice finie $(P_1,P_2,...P_m)$; si on prend $N = \max_{i \in [1,m]} (\deg(P_i))$, on aurait alors $\forall P \in \mathbb{K}[X], \deg P \leq N$ ce qui est faux.

Propriétés:

Pour tout $(u_1, u_2, ... u_m) \in E^m$, on a:

• Pour tous $i, j \in [1, m]$ avec $i \neq j$:

 $Vect(u_1, u_2, ..., u_i, ..., u_m) = Vect(u_1, u_2, ..., u_i, ..., u_m)$

• Pour tout $i \in [1, m]$ et tout $a \in \mathbb{K} \setminus \{0\}$:

 $Vect(u_1, u_2, ..., au_i, ..., u_m) = Vect(u_1, u_2, ..., u_i, ..., u_m)$

• Pour tout $i, j \in [1, m]$ distincts et tout $\lambda \in \mathbb{K}$:

 $Vect(u_1, u_2, ..., u_i + \lambda u_i, ..., u_m) = Vect(u_1, u_2, ..., u_i, ..., u_m)$

Démonstration (3^{ème} point):

Soit $w \in \text{Vect}(\underbrace{u_1, u_2, ..., u_i + \lambda u_j}_{u'_1, u'_2}, ..., \underbrace{u_m}_{u'_m})$

Alors
$$w = \sum_{k=1}^{m} \lambda_k u'_k = \sum_{k \neq i} \lambda_k u_k + \lambda_i (u_i + \lambda u_j)$$

= $\sum_{k=1}^{m} \mu_k u_k$

Avec
$$\mu_k = \begin{cases} \lambda_k & \text{si } k \neq j \\ \lambda_j + \lambda \lambda_i & \text{si } k = j \end{cases}$$

L'autre inclusion est analogue.

On a donc un algorithme pour déterminer le Vect (sur un exemple) :

$$\begin{aligned} \operatorname{Vect}[(1,2,3,4),(4,6,0,2),(1,4,9,2)] &= \operatorname{Vect}[(1,2,3,4),\underbrace{(0,-2,-12,-14)}_{u_2-4u_1},\underbrace{(0,2,6,-2)}_{u_3-u_1}] \\ &= \operatorname{Vect}[(1,2,3,4),(0,1,3,-1),(0,0,-6,-16)] \\ &= \operatorname{Vect}[(1,2,3,4),(0,1,3,-1),(0,0,3,8)] \\ &= \operatorname{Vect}[(1,2,0,-4),(0,1,0,-9),(0,0,3,8)] \\ &= \operatorname{Vect}[(1,0,0,14),(0,1,0,-9),(0,0,3,8)] \\ &= \operatorname{Vect}[(1,0,0,14),(0,1,0,-9),(0,0,1,\frac{8}{3})] \\ &= \left\{ (x,y,z,14x-9y+\frac{8}{3}z),x,y,z \in \mathbb{R} \right\} \end{aligned}$$

Ainsi, on a l'équivalence :

Pour tout $(x, y, z, t) \in \mathbb{R}^4$,

$$(x, y, z, t) \in \text{Vect}[(1,2,3,4), (4,6,0,2), (1,4,9,2)] \iff t = 14x - 9y + \frac{8}{3}z$$

Autre résultat :

Si $1 \le p \le m$, alors $\operatorname{Vect}(u_1, u_2, ..., u_p) \subset \operatorname{Vect}(u_1, u_2, ..., u_m)$.

Pour tout $v \in E$, $v \in \text{Vect}(u_1, u_2, ..., u_m) \Leftrightarrow \text{Vect}(u_1, u_2, ..., u_m, v) = \text{Vect}(u_1, u_2, ..., u_m)$

III Sommes et sommes directes

 $(E,+,\cdot)$ désigne ici encore un \mathbb{K} -ev.

Définition et proposition :

Soient F et G deux sous-espaces vectoriels de E.

La somme de F et G est :

$$F+G\mathop{=}_{\mathrm{def}}\left\{u+v,u\in F,v\in G\right\}=\left\{w\in E,\exists (u,v)\in F\times G,w=u+v\right\}$$

Alors F+G est un sous-espace vectoriel de E, et c'est même $\operatorname{Vect}(F \cup G)$.

En effet:

Déjà, F+G est un sous-espace vectoriel de E, car il contient 0_E et est stable par +, (évident en utilisant la deuxième égalité de la définition de F+G)

De plus, F + G contient F (car tout u de F s'écrit $u + 0_E$ où $0_E \in G$) et G.

Il contient donc $F \cup G$.

Enfin, si un sous-espace vectoriel de E contient $F \cup G$, alors il contient au moins F + G car il contient tous les éléments de F, tous les éléments de F et est stable par F, donc contient tous les F0 pour F1 et F2 et F3 et F4 et F5 et F6 et F6.

Exemple:

- Dans $E = \mathfrak{F}(\mathbb{R}, \mathbb{R})$:

Soit F l'ensemble des fonctions polynomiales de degré ≤ 3 , G l'ensemble des fonctions de classe C^2 et négligeables devant $x \mapsto x^2$ au voisinage de 0.

Alors $F + G = C^2(\mathbb{R}, \mathbb{R})$. En effet:

Une première implication est déjà évidente. Pour l'autre :

Soit $f \in C^2(\mathbb{R}, \mathbb{R})$. Alors f admet un DL à l'ordre 2 en 0 :

$$\forall x \in \mathbb{R}, f(x) = \underbrace{a_0 + a_1 x + a_2 x^2}_{P(x)} + \underbrace{x^2 \mathcal{E}(x)}_{h(x)}$$

Alors h est de classe C^2 car h = f - P, et de plus $h = o(x^2)$ en 0.

D'où l'autre inclusion et l'égalité.

- Dans
$$\mathbb{R}^4$$
: $F = \text{Vect}((1,2,0,0)), G = \{(x, y, z, t) \in \mathbb{R}^4, x - z = y - t = 0\}$

Alors
$$G = \{(x, y, x, y), x, y \in \mathbb{R}\} = \text{Vect}((1,0,1,0),(0,1,0,1))$$

Et donc F + G = Vect((1,2,0,0),(1,0,1,0),(0,1,0,1)).

Somme directe, définition :

Soient *F* et *G* deux sous-espaces vectoriels de *E*.

On dit que la somme F+G est directe lorsque tout élément de F+G s'écrit de manière unique sous la forme u+v avec $u \in F$ et $v \in G$.

Autrement dit, étant donné qu'on connaît déjà l'existence (par définition) de l'écriture, la définition devient :

La somme de
$$F$$
 et G est directe $\Leftrightarrow \forall (u,v) \in F \times G, \forall (u',v') \in F \times G,$
 $(u+v=u'+v' \Rightarrow u=u' \text{ et } v=v')$

Exemple:

La somme de deux droites vectorielles distinctes dans \mathbb{R}^2 .

Proposition:

On a l'équivalence entre les propositions suivantes :

- (1) La somme de F et G est directe (expression de la définition précédente)
- (2) $\forall (u, v) \in F \times G, (u + v = 0_E \implies u = 0_E \text{ et } v = 0_E)$
- (3) $F \cap G = \{0_E\}$
- $((1): \forall (u,v) \in F \times G, \forall (u',v') \in F \times G, (u+v=u'+v' \Rightarrow u=u' \text{ et } v=v'))$

Démonstration:

- On voit déjà que (1) \Rightarrow (2) (c'est un cas particulier avec $(u', v') = (0_E, 0_E)$)
- Montrons que $(2) \Rightarrow (3)$. Supposons (2):

Soit alors $w \in F \cap G$

On a: $w+(-w)=0_E$. Or, $w \in F$ et $-w \in G$ (car $w \in G$ et G est stable par ·)

Donc, d'après (2), $w = 0_E$ (et $-w = 0_E$), d'où une inclusion et l'égalité.

- Montrons que $(3) \Rightarrow (1)$. Supposons (3).

Soient $(u, v) \in F \times G$, $(u', v') \in F \times G$. Supposons que u + v = u' + v'.

Alors
$$u-u'=v'-v$$
, et $u-u'\in F, v'-v\in G$, donc $u-u'\in F\cap G, v'-v\in F\cap G$.

Donc $u-u'=0_E$ et $v'-v=0_E$, c'est-à-dire u=u' et v=v'.

D'où les équivalences.

Notation:

Si la somme de F et G est directe, on peut la noter $F \oplus G$.

Définition:

Soient F et G deux sous-espaces vectoriels de E.

On dit que F et G sont supplémentaires dans E lorsque :

$$\begin{cases} F + G = E \\ F \cap G = \{0_E\} \end{cases}$$

Ainsi, lorsque F et G sont supplémentaires dans E, on peut noter $E = F \oplus G$.

Deux sous-espaces vectoriels F et G sont supplémentaires dans E si et seulement si tout élément de E s'écrit de manière unique u+v, où $u \in F$ et $v \in G$.

IV Applications linéaires

Dans ce paragraphe, E, F et G sont trois \mathbb{K} -ev.

A) Définition

Soit $\varphi: E \to F$.

On dit que φ est linéaire/un morphisme du \mathbb{K} -ev E vers le \mathbb{K} -ev F lorsque :

$$\forall u, u' \in E, \varphi(u + u') = \varphi(u) + \varphi(u')$$

$$\forall u \in E, \forall \lambda \in \mathbb{K}, \varphi(\lambda \cdot u) = \lambda \cdot \varphi(u)$$

Proposition:

Si φ est une application linéaire de E dans F, alors φ est un morphisme du groupe (E,+) vers (F,+).

Vocabulaire:

- L'ensemble des applications linéaires de E vers F est noté L(E,F)
- Une application linéaire de E vers E s'appelle aussi un endomorphisme de E, et L(E,E) est plutôt noté L(E).
- Une application linéaire de E vers \mathbb{K} s'appelle forme linéaire de E. $L(E,\mathbb{K})$ est noté E^* . L'ensemble des formes linéaires de E s'appelle le dual de E.

Caractérisations équivalentes :

Soit $\varphi: E \to F$.

$$(1)\varphi\in L(E,F) \Leftrightarrow \forall (\alpha,\beta)\in \mathbb{K}^2, \forall (u,u')\in E^2, \varphi(\alpha.u+\beta.u')=\alpha.\varphi(u)+\beta.\varphi(u')(2)$$

$$\Leftrightarrow \forall \lambda \in \mathbb{K}, \forall (u, u') \in E^2, \varphi(u + \lambda u') = \varphi(u) + \lambda \varphi(u')$$
 (3)

En effet:

 $(1) \Rightarrow (2) \Rightarrow (3)$: évident.

Montrons que $(3) \Rightarrow (1)$.

On applique (3) avec $\lambda = 1$. Donc $\forall (u, u') \in E^2$, $\varphi(u + u') = \varphi(u) + \varphi(u')$

Donc avec $(u, u') = (0_E, 0_E), \varphi(0_E) = 0_F$.

Donc $\forall \lambda \in \mathbb{K}, \forall u \in E, \varphi(0_E + \lambda \cdot u) = \varphi(0_E) + \lambda \cdot \varphi(u) = 0_E + \lambda \cdot \varphi(u) = \lambda \cdot \varphi(u)$

Exemple:

- L'application nulle de E dans F est linéaire.
- L'application identité de *E* dans *E* est linéaire.
- Les applications linéaires de $\mathbb R$ dans $\mathbb R$ sont exactement les applications de la forme $x \mapsto a \cdot x$ où $a \in \mathbb R$:
 - o Déjà, si f est de la forme $f: x \mapsto a \cdot x$, alors f est linéaire, car :

$$\forall \lambda \in \mathbb{R}, \forall x, x' \in \mathbb{R}, f(x + \lambda . x') = a(x + \lambda . x') = ax + \lambda . (ax') = f(x) + \lambda . f(x')$$

o Inversement, soit $f \in L(\mathbb{R})$.

Alors, pour tout $x \in \mathbb{R}$, f(x) = f(x.1) = x.f(1)

Ainsi, avec a = f(1), on a bien $\forall x \in \mathbb{R}$, f(x) = a.x.

- L'application $D: D^1(\mathbb{R}, \mathbb{R}) \to \mathfrak{F}(\mathbb{R}, \mathbb{R})$ est linéaire. $f \mapsto f'$
- L'application $S_C(\mathbb{N}, \mathbb{R}) \to \mathbb{R}$ est une forme linéaire de $S_C(\mathbb{N}, \mathbb{R})$ $u \mapsto \lim(u)$

 $(S_c(\mathbb{N},\mathbb{R}))$ est l'ensemble des suites convergentes)

• L'application $\psi : \Re(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ est linéaire : $f \mapsto f(\pi)$

Pour tous $f, g \in \mathfrak{F}(\mathbb{R}, \mathbb{R})$, $\psi(f+g) = (f+g)(\pi) = f(\pi) + g(\pi) = \psi(f) + \psi(g)$ Pour tout $f \in \mathfrak{F}(\mathbb{R}, \mathbb{R})$ et $\lambda \in \mathbb{R}$, $\psi(\lambda.f) = (\lambda.f)(\pi) = \lambda.f(\pi) = \lambda.\psi(f)$.

• L'application $\mathbb{R}^2 \to \mathbb{R}$ n'est pas linéaire. $(x,y) \mapsto xy$

Mais, à x fixé, $\mathbb{R} \to \mathbb{R}$ est linéaire (idem si y est fixé)

On dit alors que $\mathbb{R}^2 \to \mathbb{R}$ est bilinéaire.

B) Noyau et image

Soit $\varphi \in L(E,F)$.

Le noyau de φ , c'est le noyau du morphisme de groupe :

 $\ker \varphi = \{ x \in E, \varphi(x) = 0_E \}.$

Alors $\forall u, u' \in E, (\varphi(u) = \varphi(u') \Leftrightarrow u - u' \in \ker \varphi$.

Donc φ est injective $\Leftrightarrow \ker \varphi = \{0_E\}$.

En effet:

- Si φ est injective :

Soit $u \in \ker \varphi$. Alors $\varphi(u) = 0_F = \varphi(0_E)$. Donc $u = 0_E$.

D'où une première inclusion, et l'égalité, l'autre inclusion étant évidente.

- Supposons maintenant que $\ker \varphi = \{0_E\}$.

Si $\varphi(u) = \varphi(u')$, alors $u - u' \in \ker \varphi$, donc $u - u' = 0_E$. Donc u = u'.

Donc φ est injective.

Proposition:

 $\ker \varphi$ est un sous-espace vectoriel de E.

Démonstration:

Déjà, $\ker \varphi \subset E$, et $0_E \in \ker \varphi$.

Soient $u, u' \in E, \lambda \in \mathbb{K}$. On a:

$$\varphi(u + \lambda . u') = \varphi(u) + \lambda . \varphi(u') = 0_F + \lambda . 0_F = 0_F$$

L'image de φ est Im $\varphi = \varphi(E) = \{ \varphi(u), u \in E \} = \{ v \in F, \exists u \in E, \varphi(u) = v \}.$

Alors φ est surjective si et seulement si $\operatorname{Im} \varphi = F$.

Proposition:

 $\operatorname{Im} \varphi$ est un sous-espace vectoriel de F.

Démonstration:

Déjà, $\operatorname{Im} \varphi \subset F$ et $0_F \in \operatorname{Im} \varphi$ car $\varphi(0_E) = 0_F$.

Im φ est stable par + et \cdot :

Soient $v, v' \in \operatorname{Im} \varphi, \lambda \in \mathbb{K}$.

Il existe alors $u, u' \in E$ tels que $v = \varphi(u), v' = \varphi(u')$.

Alors $v + \lambda v' = \varphi(u) + \lambda \varphi(u') = \varphi(u + \lambda u')$. Donc $v + \lambda v' \in \text{Im } \varphi$.

C) Image directe, image réciproque d'un sous-espace vectoriel

Proposition:

Soit $\varphi \in L(E,F)$.

L'image directe par φ d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.

L'image réciproque par φ d'un sous-espace vectoriel de F est un sous-espace vectoriel de E.

Cas particulier:

 $\varphi(E)$ est un sous-espace vectoriel de F (c'est Im φ)

 $\varphi^{-1}(\{0_E\})$ est un sous-espace vectoriel de E (c'est ker φ)

(On adapte aisément la démonstration de ces cas particuliers pour le cas général de la proposition)

D) Structure sur des ensembles d'applications linéaires

1) Somme, produit par un réel

Soient $\varphi, \psi \in L(E, F)$, $\lambda \in \mathbb{K}$.

On définit :

$$\varphi + \psi : E \to F$$
 et $\lambda \cdot \varphi : E \to F$ $u \mapsto \lambda \cdot \varphi(u)$

Alors $\varphi + \psi, \lambda \varphi \in L(E, F)$.

On peut donc considérer $(L(E,F),+,\cdot)$, et $(L(E,F),+,\cdot)$ est un \mathbb{K} -ev (et même un sous-espace vectoriel de $(\mathfrak{F}(E,F),+,\cdot)$).

Démonstration :

Déjà, on vérifie que $(\Re(E,F),+,\cdot)$ est un \mathbb{K} -ev...

L(E,F) est une partie de $\mathfrak{F}(E,F)$, contient $x\mapsto 0_F$ et est stable par + et \cdot : Soient $\varphi,\psi\in L(E,F)$, $\lambda\in\mathbb{K}$.

On a, pour tous $u, u' \in E$ et tout $\mu \in \mathbb{K}$:

$$(\varphi + \psi)(u + \mu u') = \varphi(u + \mu u') + \psi(u + \mu u')$$

$$= \varphi(u) + \mu . \varphi(u') + \psi(u) + \mu . \psi(u')$$

$$= (\varphi + \psi)(u) + \mu . (\varphi + \psi)(u')$$

$$(\lambda . \varphi)(u + \mu . u') = \lambda . \varphi(u + \mu . u')$$

$$= \lambda . (\varphi(u) + \mu . \varphi(u'))$$

$$= \lambda . (\varphi(u)) + \lambda . (\mu . \varphi(u'))$$

$$= (\lambda . \varphi)(u) + \mu . ((\lambda . \varphi)(u'))$$

Donc $\varphi + \psi, \lambda. \varphi \in L(E, F)$, et L(E, F) est un sous-espace vectoriel de $(\Re(E, F), +, \cdot)$, donc un \mathbb{K} -ev.

2) Composition

Proposition:

La composée, quand elle est définie, de deux applications linéaires est linéaire.

Démonstration:

Soient $\varphi \in L(E,F)$ et $\psi \in L(F,G)$. Alors $\psi \circ \varphi$ est bien définie et va de E dans G. Et de plus, elle est linéaire :

Pour tous $u, u' \in E$ et tout $\mu \in \mathbb{K}$, on a :

$$(\psi \circ \varphi)(u + \mu.u') = \psi(\varphi(u + \mu.u'))$$

$$= \psi(\varphi(u) + \mu.\varphi(u'))$$

$$= \psi(\varphi(u)) + \mu.\psi(\varphi(u'))$$

$$= (\psi \circ \varphi)(u) + \mu.(\psi \circ \varphi)(u')$$

Propriétés :

Pour tous $\varphi, \varphi' \in L(E, F)$, $\psi, \psi' \in L(F, G)$ et tout $\lambda \in \mathbb{K}$, on a :

$$\psi \circ (\varphi + \varphi') = \psi \circ \varphi + \psi \circ \varphi' \quad (1)$$

$$(\psi + \psi') \circ \varphi = \psi \circ \varphi + \psi' \circ \varphi \qquad (2)$$

$$\psi \circ (\lambda . \varphi) = \lambda . (\psi \circ \varphi) \tag{3}$$

$$(\lambda.\psi) \circ \varphi = \lambda.(\psi \circ \varphi) \tag{4}$$

Démonstration:

Déjà, les applications sont bien définies et vont de E dans G.

De plus, pour tout $u \in E$:

•
$$[\psi \circ (\varphi + \varphi')](u) = \psi[(\varphi + \varphi')(u)] = \psi[\varphi(u) + \varphi'(u)]$$

$$= \psi(\varphi(u)) + \psi(\varphi'(u)) = (\psi \circ \varphi)(u) + (\psi \circ \varphi')(u)$$

$$= [\psi \circ \varphi + \psi \circ \varphi'](u)$$

D'où (1).

•
$$[(\psi + \psi') \circ \varphi](u) = (\psi + \psi')(\varphi(u)) = \psi(\varphi(u)) + \psi'(\varphi(u))$$

$$= (\psi \circ \varphi)(u) + (\psi' \circ \varphi)(u) = [\psi \circ \varphi + \psi' \circ \varphi](u)$$

D'où (2) (ici, on n'a pas utilisé la linéarité...)

•
$$[\psi \circ (\lambda \cdot \varphi)](u) = \psi[(\lambda \cdot \varphi)(u)] = \psi[\lambda \cdot \varphi(u)] = \lambda \cdot \psi(\varphi(u)) = \lambda \cdot (\psi \circ \varphi)(u)$$

= $[\lambda \cdot (\psi \circ \varphi)](u)$

D'où (3)

•
$$[(\lambda.\psi) \circ \varphi](u) = (\lambda.\psi)(\varphi(u)) = \lambda.(\psi(\varphi(u)) = \lambda.(\psi \circ \varphi)(u)$$

= $[\lambda.(\psi \circ \varphi)](u)$

D'où (4) (on n'a pas non plus utilisé la linéarité)

Conséquence :

 \circ définit une loi de composition interne sur L(E), et $(L(E),+,\circ)$ est un anneau :

(L(E),+) est un groupe commutatif (car $(L(E),+,\cdot)$ est un \mathbb{K} -ev).

De plus, il résulte de (1) et (2) que \circ est distributive sur +, et on sait que \circ est associative (vrai dans $\Re(E,E)$).

Enfin, il y a un neutre, à savoir Id_E .

Attention, l'anneau n'est ni commutatif ni intègre en général.

Exemple:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $g: \mathbb{R}^2 \to \mathbb{R}^2$
 $(x,y) \mapsto (x,x)$, $g: \mathbb{R}^2 \to \mathbb{R}^2$

Alors $f \in L(\mathbb{R}^2)$:

Soient $u, u' \in \mathbb{R}^2, \lambda \in \mathbb{R}$, u = (x, y), u' = (x', y'). Alors:

$$f(u + \lambda u') = f((x, y) + \lambda .(x', y')) = f(x + \lambda .x', y + \lambda .y')$$
$$= (x + \lambda .x', x + \lambda .x') = (x, x) + \lambda .(x', x')$$
$$= f(u) + \lambda . f(u')$$

Et $g \in L(\mathbb{R}^2)$:

Soient $u, u' \in \mathbb{R}^2, \lambda \in \mathbb{R}, u = (x, y), u' = (x', y')$. Alors:

$$g(u + \lambda u') = g((x, y) + \lambda .(x', y')) = g(x + \lambda .x', y + \lambda .y')$$

= $(x + \lambda .x' - (y + \lambda .y'), 0) = (x - y, 0) + \lambda .(x' - y', 0)$
= $g(u) + \lambda .g(u')$

On a alors:

$$f \circ g : \mathbb{R}^2 \to \mathbb{R}^2 \to \mathbb{R}^2$$
 et $g \circ f : \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (0,0)$

Ce qui montre la non commutativité et la non intégrité.

3) Inversion (éventuelle)

Proposition:

Soit $\varphi \in L(E,F)$. Si φ est bijective, alors $\varphi^{-1} \in L(F,E)$. On dit alors que φ est un isomorphisme de E vers F.

Deux espaces vectoriels sont dis isomorphes lorsqu'il existe un isomorphisme de l'un vers l'autre.

Démonstration:

Soient $v, v' \in F$ et $\lambda \in \mathbb{K}$.

On doit montrer que $\varphi^{-1}(v + \lambda . v') = \varphi^{-1}(v) + \lambda . \varphi^{-1}(v')$, c'est-à-dire que $v + \lambda . v'$ a pour antécédent $\varphi^{-1}(v) + \lambda . \varphi^{-1}(v')$ par φ , ce qui est vrai car $\varphi(\varphi^{-1}(v) + \lambda . \varphi^{-1}(v')) = \varphi(\varphi^{-1}(v)) + \lambda . \varphi(\varphi^{-1}(v')) = v + \lambda . v'$

Vocabulaire:

Automorphisme de E = application linéaire bijective de E dans E.

= isomorphisme de E dans E.

= endomorphisme bijectif de E.

L'ensemble des automorphismes de E est noté GL(E).

Alors GL(E) est stable \circ , et $(GL(E), \circ)$ est un groupe (le groupe linéaire de E). C'est le groupe des éléments inversibles de l'anneau $(L(E), +, \circ)$.

Attention, ce groupe n'est pas non plus commutatif en général.

Exemple:

Soient
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 et $g: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (x+y,x-y)$

Alors f et g sont linéaires et bijectives

(g est bijective car involutive, et $f \circ f = 2Id_{\mathbb{R}^2}$, donc $f^{-1} = \frac{1}{2}f$)

Et:

$$\begin{cases}
f \circ g : (x,y) \mapsto (y+x,y-x) \\
g \circ f : (x,y) \mapsto (x-y,x+y)
\end{cases} g \circ f \neq f \circ g \operatorname{car} \begin{cases}
g \circ f(1,1) = (0,2) \\
f \circ g(1,1) = (2,0)
\end{cases}$$

4) Autre opération

Soit f une application linéaire de E dans $\mathbb K$ (une forme linéaire de E).

Soit $w_0 \in F$.

Alors l'application $\phi: E \to F$ est linéaire. $u \mapsto f(u).w_0$

En effet:

Soient $u, v \in E, \lambda \in \mathbb{K}$. Alors:

$$\phi(u+\lambda.v) = f(u+\lambda.v).w_0 = f(u).w_0 + \lambda.f(v).w_0 = \phi(u) + \lambda.\phi(v)$$

Exemple:

L'application $P_1: \mathbb{R}^3 \to \mathbb{R}$ est linéaire :

Pour tous $u = (x, y, z), u' = (x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$, on a:

$$P_1(u + \lambda u') = P_1((x + \lambda x', y + \lambda y', z + \lambda z')) = x + \lambda x' = P_1(u) + \lambda P_1(u')$$

 P_1 est la « première projection canonique de \mathbb{R}^3 sur \mathbb{R} »

De même, $P_2: \mathbb{R}^3 \to \mathbb{R}$ et $P_3: \mathbb{R}^3 \to \mathbb{R}$ sont linéaires. $(x,y,z) \mapsto z$

- Il résulte du 1) que pour tous $a,b,c \in \mathbb{R}$, $f: \mathbb{R}^3 \to \mathbb{R}$ $(x,y,z) \mapsto a.x+b.y+c.z$

linéaire, car $f = aP_1 + bP_2 + cP_3$.

- Et du <u>4</u>) que pour tout $a,b,c \in \mathbb{R}$, $f_1: \mathbb{R}^3 \to \mathbb{R}^2$ $(x,y,z) \mapsto (a.x+b.y+c.z,0)$

linéaire, car $f_1 = f.(1,0)$: $f_1: \mathbb{R}^3 \to \mathbb{R}$ $u \mapsto f(u).(1,0)$

De même,
$$f_2: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x,y,z) \mapsto (0,a'x+b'.y+c'.z)$

De même,
$$f_2: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x,y,z) \mapsto (0,a'.x+b'.y+c'.z)$
D'où $F: \mathbb{R}^3 \to \mathbb{R}^2$ est linéaire.
 $(x,y,z) \mapsto (a.x+b.y+c.z,a'.x+b'.y+c'.z)$

On verra que toutes les applications de \mathbb{R}^3 dans \mathbb{R}^2 sont de ce type. (On peut généraliser le résultat à \mathbb{K}^n , \mathbb{K}^p)

V Quelques endomorphismes intéressants

E désigne toujours un K-ev.

A) Homothétie (vectorielle)

Définition:

Une homothétie de E est une application du type : $E \to E$, où $\alpha \in \mathbb{K}$.

Proposition:

Pour tout $\alpha \in \mathbb{K}$, l'application $f_{\alpha} : E \to E$, appelée homothétie de rapport α est linéaire. Elle est nulle si $\alpha = 0$, sinon elle est bijective, d'inverse $f_{1/\alpha}$

B) Projecteurs (vectoriels)

Définition:

Soient F, G deux sous-espaces vectoriels supplémentaires de E. Le projecteur sur F selon G est l'application $p: E \to E$, où v est l'élément de E tel que u = v + w avec $v \in F, w \in G$. (la définition a bien un sens, car tout élément de E s'écrit v+w de manière unique avec $v \in F$ et $w \in G$)

On écrit parfois $p: E = F \oplus G \rightarrow E$.

Proposition:

L'application p est linéaire, de noyau G et d'image F.

Démonstration:

Soient
$$u, u' \in E, \lambda \in \mathbb{K}$$
. Alors $u = \underbrace{v}_{\in F} + \underbrace{w}_{\in G}, u' = \underbrace{v'}_{\in F} + \underbrace{w'}_{\in G}$.

Donc
$$u + \lambda . u' = \underbrace{v + \lambda . v'}_{\in F} + \underbrace{w + \lambda . w'}_{\in G}$$
, soit $p(u + \lambda . u') = v + \lambda . v' = p(u) + \lambda . p(u')$.

Noyau:

Soit $u \in E$, $u = \underbrace{y}_{\in F} + \underbrace{w}_{\in G}$. On a les équivalences :

 $u \in \ker p \Leftrightarrow p(u) = 0_F \Leftrightarrow v = 0_F \Leftrightarrow u \in G$

Image:

On voit déjà que $\operatorname{Im} p \subset F$. Inversement, $F \subset \operatorname{Im} p$ car tout élément v de F est l'image d'un élément de E, par exemple lui-même.

Définition:

Soit $f: E \to E$. On dit que f est un projecteur lorsqu'il existe deux sous-espaces vectoriels supplémentaires dans E tels que f est le projecteur sur F selon G.

Vocabulaire:

p est le projecteur sur F selon G.

Pour $u \in E$, p(u) est la projection de u sur F selon G.

Théorème:

Soit $f \in L(E)$.

Alors f est un projecteur $\Leftrightarrow f \circ f = f$.

Démonstration :

Soit f un projecteur, disons sur F selon G où $F \oplus G = E$

Alors $f^2 = f$:

Soit $u \in E$. $u = \underbrace{v}_{\in F} + \underbrace{w}_{\in G}$, et f(u) = v.

De plus, $f \circ f(u) = f(f(u)) = f(v) = v = f(u)$.

C'est valable pour tout u, donc $f^2 = f$.

Soit $f \in L(E)$, supposons que $f \circ f = f$.

Posons $F = \operatorname{Im} f$ et $G = \ker f$.

Alors déjà F et G sont deux sous-espaces vectoriels de E. Montrons qu'ils sont supplémentaires.

Soit $u \in E$. Alors $f(u) \in F$, et on a :

$$u = \underbrace{f(u)}_{\in F} + u - f(u)$$

$$f(u-f(u)) = f(u) - f(f(u)) = 0_E$$
, donc $u - f(u) \in G$

Donc déjà F + G = E.

Montrons maintenant que $F \cap G = \{0_E\}$:

Soit $u \in F \cap G$.

 $u \in F$. Donc u = f(u') où $u' \in E$.

Comme $u \in G$, $f(u) = 0_E$, soit $f(f(u')) = 0_E$. Comme $f^2 = f$, $f(u') = 0_E$.

Donc $u = f(u') = 0_E$, d'où une première inclusion, et l'égalité, l'autre inclusion étant évidente.

Donc $F \oplus G = E$

Montrons maintenant que f es le projecteur sur F selon G.

Soit $u \in E$.

Alors $u = \underbrace{f(u)}_{\in F} + \underbrace{(u - f(u))}_{\in G}$. Donc f(u) est la composante selon F dans la

décomposition de u sous la forme $\underbrace{v}_{\in F} + \underbrace{w}_{\in G}$

Remarque:

Si p est le projecteur sur F selon G, alors :

$$F = \{ u \in E, p(u) = u \}$$

= ensemble des invariants par p

$$= \ker(p - \operatorname{Id}_E)$$

En effet,
$$\underbrace{p(u) = u}_{(p-\operatorname{Id}_E)(u)=0_E} \Leftrightarrow v = u \Leftrightarrow w = 0 \Leftrightarrow u \in F$$

Définition:

Soit *p* la projection sur *F* selon *G*.

Le projecteur associé à p est le projecteur q sur G selon F.

Ainsi,
$$p + q = Id_E$$
.

u = p(u) + q(u)

Cas particuliers:

Le projecteur sur E selon $\{0_E\}$ est l'identité sur E.

Le projecteur sur $\{0_E\}$ selon E est l'application nulle.

C) Symétries (vectorielles)

Définition:

Soient F et G deux sous-espaces vectoriels de E supplémentaires. La symétrie par rapport à F selon G est l'application $f: E = F \oplus G \to E$.

Proposition:

Si f est le symétrique par rapport à F selon G, alors :

 $f \in L(E)$.

En effet, on remarque que $f = p - q = 2p - \text{Id}_E$, où p est le projecteur sur F selon G et q le projecteur associé à p)

• f est bijective, et même involutive.

Ainsi, $f \circ f = \text{Id}_E$, Im f = E (car f est surjective), et $\ker f = \{0_E\}$ (car f est injective)

•
$$F = \{u \in E, f(u) = u\} = \ker(f - \operatorname{Id}_E)$$

 $G = \{u \in E, f(u) = -u\} = \ker(f + \operatorname{Id}_E)$

Théorème:

Soit $f \in L(E)$.

Alors f est une symétrie $\Leftrightarrow f \circ f = Id_E$

 $(\Leftrightarrow f \text{ est involutive})$

 $(\Leftrightarrow f \text{ est \'el\'ement d'ordre } \leq 2 \text{ du groupe } GL(E))$

Démonstration:

⇒ a déjà été vu.

 \Leftarrow : supposons que $f^2 = \mathrm{Id}_E$.

Posons $F = \ker(f - \operatorname{Id}_E)$ et $G = \ker(f + \operatorname{Id}_E)$.

Alors F et G sont deux sous-espaces vectoriels de E, car ce sont des noyaux d'endomorphismes de E.

 $F \cap G = \{0_E\}$ car si $u \in F \cap G$, alors f(u) = u et f(u) = -u,

donc $2.u = 0_E$, soit $u = 0_E$ (car $2 \neq 0$)

De plus tout élément u de E s'écrit $u = \underbrace{v}_{\in F} + \underbrace{w}_{\in G}$, car $u = \frac{1}{2}(u + f(u)) + \frac{1}{2}(u - f(u))$. Or, $u + f(u) \in F$ car $f(\underbrace{u + f(u)}_{x}) = f(u) + f(f(u)) = f(u) + u = \underbrace{u + f(u)}_{x}$

Et $u - f(u) \in G$ car f(u - f(u)) = f(u) - f(f(u)) = f(u) - u = -(u + f(u))

Enfin, f est la symétrie par rapport à F selon G. En effet :

Si u = y + w, on a $v = \frac{1}{2}(u + f(u))$ et $w = \frac{1}{2}(u - f(u))$.

Donc v - w = f(u).

VI Familles libres (finies)

E désigne toujours un K-ev.

A) Définition

Soit $\mathfrak{F} = (u_1, u_2, ... u_n)$ une famille de vecteurs de E.

F est libre \Leftrightarrow la seule combinaison linéaire des u_i qui donne 0_E est celle dont tous les coefficients sont nuls.

$$\Leftrightarrow \forall (\lambda_1, \lambda_2, ... \lambda_n) \in \mathbb{K}^n, \left(\sum_{k=1}^n \lambda_k u_k = 0_E \Rightarrow \forall i \in [1, n], \lambda_i = 0\right)$$

Vocabulaire:

- $(u_1, u_2, ... u_n)$ est liée $\Leftrightarrow_{\text{def}} (u_1, u_2, ... u_n)$ n'est pas libre.
- Lorsque $(u_1, u_2, ... u_n)$ est liée, une relation du type $\sum_{k=1}^{n} \lambda_k u_k = 0_E$ où les λ_k sont non tous nuls s'appelle une relation de dépendance linéaire.
- Pour dire que $(u_1, u_2, ... u_n)$ est libre, on dit parfois que les u_i sont linéairement indépendants.

Exemples:

- Par convention, une famille vide est libre.
- Cas d'une famille de 1 vecteur u_1 .

La famille (u_1) est libre $\Leftrightarrow u_1 \neq 0_E$

- Cas d'une famille de 2 vecteurs u_1, u_2

 (u_1, u_2) est libre si et seulement si u_1 et u_2 ne sont pas colinéaires.

B) Propriétés générales

• Si une famille contient 0_E , elle est liée :

Si $u_i = 0_E$, alors $\underset{\neq 0}{\overset{\cdot}{\downarrow}} . u_i = 0_E$

• Si une famille contient deux vecteurs égaux, elle est liée :

Si $u_i = u_j$ (avec $i \neq j$), alors $u_i - u_j = 0_E$

- Si une sous-famille d'une famille & est liée, alors & est liée.
- Si $\mathfrak{F} = (u_1, u_2, ... u_n)$ est libre, alors $\forall \sigma \in \mathfrak{S}_n(u_{\sigma(1)}, u_{\sigma(2)}, ... u_{\sigma(n)})$ est libre.
- Si $(u_1, u_2, ... u_n)$ est libre et $(u_1, u_2, ... u_n, v)$ est liée, alors $v \in \text{Vect}(u_1, u_2, ... u_n)$.

En effet:

Il existe $\lambda_1, \lambda_2, ... \lambda_n, \mu$ scalaires non tous nuls tels que :

$$\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n + \mu v = 0_E.$$

Alors $\mu \neq 0$, car sinon l'un des λ_i au moins serait non nul et on aurait alors une

relation de dépendance entre les $u_i, 1 \le i \le n$. Donc $v = \mu^{-1} \sum_{k=1}^{n} \lambda_k u_k$

• $(u_1, u_2, ... u_n)$ est liée si et seulement si l'un au moins des u_i est combinaison linéaire des autres.

VII Bases (finies)

Définition, proposition :

Soit $(u_1, u_2, ... u_n)$ une famille de vecteurs de E.

 $(u_1, u_2, ... u_n)$ est une base de $E \iff_{\text{def}} (u_1, u_2, ... u_n)$ est une famille libre et génératrice de E.

 \Leftrightarrow tout vecteur v de E s'écrit de manière unique comme

combinaison linéaire des $u_i, 1 \le i \le n$, sous la forme $\sum_{k=1}^n x_k u_k$. Les x_k s'appellent alors les composantes de v dans la base $(u_1, u_2, ... u_n)$.

Démonstration:

 \Rightarrow : supposons que $(u_1, u_2, ... u_n)$ est une base de E.

Soit alors $v \in E$.

Comme $(u_1, u_2, ... u_n)$ est génératrice de E, il existe $(x_1, x_2, ... x_n) \in \mathbb{K}^n$ tel que $v = \sum_{k=1}^n x_k u_k$.

Supposons qu'on ait aussi $v = \sum_{k=1}^{n} x_k' u_k$.

Alors $\sum_{k=1}^{n} (x_k - x_k') u_k = 0_E$. Comme $(u_1, u_2, ... u_n)$ est libre, on a $\forall k \in [1, n], x_k - x_k' = 0$, soit $\forall k \in [1, n], x_k = x_k'$.

D'où l'existence et l'unicité de l'écriture.

 \Leftarrow : Supposons que tout vecteur v de E s'écrit de manière unique...

Déjà, $(u_1, u_2, ... u_n)$ est génératrice de E.

Ensuite, si $\sum_{i=1}^{n} \lambda_i u_i = 0_E$, alors nécessairement $\forall i \in [1, n], \lambda_i = 0$, car sinon on aurait deux

écritures différentes de 0_E , à savoir $\sum_{i=1}^n \lambda_i u_i$ et $\sum_{i=1}^n 0.u_i$.

Exemples:

[(1,0,0),(0,1,0),(0,0,1)] est une base de \mathbb{R}^3 , on l'appelle la base canonique de \mathbb{R}^3 .

[(-1,1,1),(1,-1,1),(1,1,-1)] en est aussi une. Le triplet des composantes d'un vecteur

$$(x, y, z)$$
 de \mathbb{R}^3 dans cette base est $\left(\frac{z+y}{2}, \frac{z+x}{2}, \frac{x+y}{2}\right)$.

$$[\underbrace{(1,\sqrt{\pi},12)}_{u},\underbrace{(e,4,1)}_{v},\underbrace{(1,0,0)}_{w}]$$
 est aussi une base de \mathbb{R}^{3} :

Soit
$$\vec{x} = (a, b, c) \in \mathbb{R}^3$$
.

On doit montrer qu'il existe un unique triplet de \mathbb{R}^3 tel que $\vec{x} = x.u + y.v + z.w$ L'équation vectorielle équivaut au système :

$$(S) \begin{cases} x + e \cdot y + z = a \\ \sqrt{\pi}x + 4y = b \\ 12x + y = c \end{cases}$$

Or,
$$(S) \Leftrightarrow \begin{cases} x + e.y + z = a \\ x = \frac{b - 4c}{\sqrt{\pi} - 48} \\ y = c - 12 \frac{b - 4c}{\sqrt{\pi} - 48} \end{cases}$$

Donc (S) a bien une unique solution.