Sélection de variables pour la classification non supervisée des données mixtes

Université Paris-Saclay

18 mars 2022

Plan

- Sélection de variables en clustering
 - Clustering
 - Contexte
 - Notations
 - La sélection
- Deux critères d'information
 - Optimisation de BIC directement
 - Optimisation du critère ICL sans MLE
- 3 Expérimentations numériques
 - Simulations
 - Données réelles

Outlines

- Sélection de variables en clustering
 - Clustering
 - Contexte
 - Notations
 - La sélection
- 2 Deux critères d'information
 - Optimisation de BIC directement
 - Optimisation du critère ICL sans MLE
- Expérimentations numériques
 - Simulations
 - Données réelles

Clustering

Donne		Objectif : z						
12.91	grand	3		Ì (Γ0	1	0	Ì
15.00	petit	5			1	0	0	
11.66	grand	4			0	0	1	
12.50	grand	6			0	1	0	
13.00	moyen	6			0	0	1	
:	:	:	٠			:		

- $\mathbf{x} = (x_i; i = 1, ..., n)$: les données observées.
- Chaque observation $x_i = (x_{i1}, \dots, x_{id})^{\top} \in \mathcal{X}_1 \times \dots \times \mathcal{X}_d$,
- \mathcal{X}_j dépend de la nature de la variable, *i.e* $\mathcal{X}_j = \mathbb{R}$, \mathbb{N} ou $\{1, \dots, m_j\}$.

Contexte

Idée principale:

Certaines variables ne sont pas discriminantes

Objectif:

Identifier les variables discriminantes (i.e. possédant une distribution variable d'une composante à une autre du mélange) + identifier les classes (les clusters).

Avantages:

- Améliorer l'estimation des paramètres.
- Interprétation simple.

Remarque:

Lorsqu'on observe un grand nombre de variables (n < d), l'information de dépendance intra-classes est en général difficile à observer. On se restreint aux modèles de mélange avec indépendance conditionnelle.

Notations

Données

- $X = (X_1, \ldots, X_d)^{\top} \in \mathcal{X}_1 \times \ldots \times \mathcal{X}_d$.
- $\mathbf{x} = (x_1, \dots, x_n)$ des réalisations iid de X.

La densité de probabilité

$$f(x_i|g,\theta) = \sum_{k=1}^g \tau_k f_k(x_i|\alpha_k) \text{ with } f_k(x_i|\alpha_k) = \prod_{j=1}^d f_{kj}(x_{ij}|\alpha_{kj}),$$

- $\theta = \{\tau_k, \alpha_k; k = 1, \dots, g\}$ regroupe les paramètres, τ_k est la taille de la composante k tel que $0 < \tau_k \le 1$ et $\sum_{k=1}^g \tau_k = 1$.
- f_{kj} peut être une normale $\mathcal{N}(\mu_{kj}, \sigma_{kj}^2)$, Poisson $\mathcal{P}(\alpha_{kj})$ ou multinomiale $\mathcal{M}(\alpha_{kj1}, \dots, \alpha_{kjm_i})$.

Variable discriminante vs bruit

Un modèle

Le rôle d'une variable

Un vecteur binaire $\boldsymbol{\omega} = (\omega_j; j=1,\ldots,d)$ tel que

$$\omega_j = \left\{ egin{array}{ll} 1 & ext{si } X_j ext{ est discriminante} \\ 0 & ext{sinon.} \end{array}
ight. \quad ext{ou} \quad \omega_j = \left\{ egin{array}{ll} 0 & ext{si } lpha_{1j} = \ldots = lpha_{gj} \\ 1 & ext{sinon.} \end{array}
ight.$$

Un modèle

Le rôle d'une variable

Un vecteur binaire $\boldsymbol{\omega} = (\omega_j; j=1,\ldots,d)$ tel que

$$\omega_j = \left\{ egin{array}{ll} 1 & ext{si } X_j ext{ est discriminante} \\ \mathbf{0} & ext{sinon.} \end{array}
ight. \quad ext{ou} \quad \omega_j = \left\{ egin{array}{ll} \mathbf{0} & ext{si } \boldsymbol{\alpha}_{1j} = \ldots = \boldsymbol{\alpha}_{gj} \\ \mathbf{1} & ext{sinon.} \end{array}
ight.$$

Un modèle

Le couple ${m m}=(g,\omega)$ définit un modèle, $\emph{i.e.}$ la vraisemblance est donnée par

$$f(x_i|\boldsymbol{m},\boldsymbol{\theta}) = \prod_{j \in \Omega^c} f_{1j}(x_{ij}|\alpha_{1j}) \sum_{k=1}^g \tau_k \prod_{j \in \Omega} f_{kj}(x_{ij}|\alpha_{kj}),$$

où
$$\Omega = \{j : \omega_j = 1\}$$
 et $\Omega^c = \{1, \dots, d\} \setminus \Omega$.

(UPS-U1018)

La sélection de modèles

Un grand nombre de modèles en compétition

$$\operatorname{card}(\mathcal{M}) = g_{\max} 2^d \text{ si } \mathcal{M} = \{ \boldsymbol{m} = (g, \boldsymbol{\omega}); \ 1 \leq g \leq g_{\max}, \ \boldsymbol{\omega} \in \{0, 1\}^d \}$$

Difficulté:

On cherche le modèle m^* qui maximise un critère d'information (IC)

$$m^* = \underset{m \in \mathcal{M}}{\operatorname{argmax}} \mathsf{IC}(m).$$

9/32

La sélection de modèles

Un grand nombre de modèles en compétition

$$\operatorname{card}(\mathcal{M}) = g_{\max} 2^d \text{ si } \mathcal{M} = \{ \boldsymbol{m} = (g, \boldsymbol{\omega}); \ 1 \leq g \leq g_{\max}, \ \boldsymbol{\omega} \in \{0, 1\}^d \}$$

Difficulté:

On cherche le modèle m^* qui maximise un critère d'information (IC)

$$m^* = \underset{m \in \mathcal{M}}{\operatorname{argmax}} \mathsf{IC}(m).$$

Classiquement: IC est BIC ou ICL.

Approches exhaustive ou sous-optimales:

Méthodes pour sélectionner m^* :

- Exhaustive, impossible lorsque d est grand $card(\mathcal{M}) = g_{max}2^d$.
- Backward, forward (Raftery, A. and Dean, D., 2006).

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

Optimisation en deux étapes

On vise m^* tel que

$$m^* = \underset{m \in \mathcal{M}}{\operatorname{arg \, maxl \, C}}(m).$$

Soit \mathcal{M}_g la restriction de \mathcal{M} au sous-ensemble de modèles avec g composantes. Ainsi, on définit \pmb{m}_g^\star par

$$m_g^{\star} = \underset{\boldsymbol{m} \in \mathcal{M}_g}{\operatorname{arg \, maxIC}}(\boldsymbol{m}).$$

À partir des $extbf{ extit{m}}_g^\star$ pour $g=1,\ldots,g_{\mathsf{max}}$, on obtient $extbf{ extit{m}}^\star$ tel que

$$\mathbf{m}^* = \underset{g=1,...,g_{\text{max}}}{\operatorname{arg \, max}} \mathsf{IC}(\mathbf{m}_g^*).$$

Outlines

- Sélection de variables en clustering
 - Clustering
 - Contexte
 - Notations
 - La sélection
- Deux critères d'information
 - Optimisation de BIC directement
 - Optimisation du critère ICL sans MLE
- Expérimentations numériques
 - Simulations
 - Données réelles

Bayesian Information Criterion

Objectif

En supposant une loi a priori uniforme sur \mathcal{M} , nous avons

$$p(\boldsymbol{m}|\mathbf{x}) \propto p(\mathbf{x}|\boldsymbol{m}),$$

οù

$$p(\mathbf{x}|\mathbf{m}) = \int p(\mathbf{x}|\mathbf{m}, \theta)p(\theta|\mathbf{m})d\theta.$$

- La vraisemblance intégrée $p(\mathbf{x}|\mathbf{m})$ est inaccessible.
- BIC est l'approximation de Laplace de In $p(\mathbf{x}|\mathbf{m})$

$$BIC(\boldsymbol{m}) = \ell(\hat{\boldsymbol{\theta}}_{\boldsymbol{m}}; \boldsymbol{m}, \mathbf{x}) - \frac{\nu_{\boldsymbol{m}}}{2} \ln n,$$

où $\hat{\boldsymbol{\theta}}_{\boldsymbol{m}}$ est le MLE et $\nu_{\boldsymbol{m}}$ est le nombre de paramètres du modèle \boldsymbol{m} .

401491451451

Integrated Complete-data Likelihood (ICL)

Objectif

Prise en compte de l'objectif de clustering

Classiquement, on fait appel au critère ICL donné par

$$ICL(\mathbf{m}) = \ln p(\mathbf{x}, \hat{\mathbf{z}} | \mathbf{m}) \text{ où } p(\mathbf{x}, \mathbf{z} | \mathbf{m}) = \int p(\mathbf{x}, \mathbf{z} | \mathbf{m}, \theta) p(\theta | \mathbf{m}) d\theta.$$

Une approximation

$$\mathsf{ICL}(\boldsymbol{m}) \simeq \mathsf{BIC}(\boldsymbol{m}) + \sum_{i=1}^n \sum_{k=1}^g \hat{z}_{ik} \ln t_{ik}(\hat{\boldsymbol{\theta}}_{\boldsymbol{m}}).$$

- **z** est la partition donnée par la règle du Maximum A Posteriori.
- Un EM pour calculer le MLE pour chaque modèle en compétition!!

10110111111

13 / 32

Optimiser BIC directement

Principe

L'hypothèse d'indépendance conditionnelle permet de maximiser directement le critère BIC.

Idée

On peut faire appel à une version modifiée de l'algorithme EM pour maximiser la log-vraisemblance pénalisée

$$\ell_{\mathsf{pen}}(\boldsymbol{\theta}|\boldsymbol{m}, \mathbf{x}) = \ell(\boldsymbol{\theta}|\boldsymbol{m}, \mathbf{x}) - \nu_{\boldsymbol{m}}c,$$

pour toute constante c.

Green, P. J. (1990). On use of the em for penalized likelihood estimation. *Journal of the Royal Statistical Society. Series B (Methodological), pages 443–452.*

EM pour optimiser BIC

La log-vraisemblance pénalisée complétée

$$\ell_{\mathsf{pen}}(oldsymbol{ heta}|oldsymbol{m},\mathbf{x},\mathbf{z}) = \ell(oldsymbol{ heta}|oldsymbol{m},\mathbf{x},\mathbf{z}) - (g-1)c - c\sum_{j=1}^d
u_j(g\omega_j + 1 - \omega_j),$$

où ν_j est le nombre de paramètres de la marginale univariée de la variable j.

- Cette version modifiée de l'algorithme EM maximise la log-vraisemblance pénalisée à g fixé.
- ullet Un point initial aléatoire $(m{m}^{[0]},m{ heta}^{[0]})$ où $m{m}^{[0]}=(g,m{\omega}^{[0]}).$

Expressions de $\ell(\boldsymbol{\theta}|\boldsymbol{m},\mathbf{x})$ et $\ell(\boldsymbol{\theta}|\boldsymbol{m},\mathbf{x},\mathbf{z})$

$$\ell(\boldsymbol{\theta}|\boldsymbol{m},\mathbf{x}) = \left(\sum_{j \in \Omega^c} \sum_{i=1}^n \ln f_{1j}(x_{ij}|\boldsymbol{\alpha}_{1j})\right) + \left(\sum_{i=1}^n \ln \left(\sum_{k=1}^g \tau_k \prod_{j \in \Omega} f_{kj}(x_{ij}|\boldsymbol{\alpha}_{kj})\right)\right).$$

$$\ell(\boldsymbol{\theta}|\boldsymbol{m}, \mathbf{x}, \mathbf{z}) = \sum_{j \in \Omega^c} \sum_{i=1}^n \ln f_{1j}(x_{ij}|\alpha_{1j}) + \sum_{k=1}^g \sum_{i=1}^n z_{ik} \ln \tau_k$$
$$+ \sum_{i \in \Omega} \sum_{k=1}^g \sum_{i=1}^n z_{ik} \ln f_{kj}(x_{ij}|\alpha_{kj})$$

Étape E d'une itération [r]

Calcul de la partition floue

Étape E

 $t_{ik}^{[r]} := \mathbb{E}[Z_{ik}|oldsymbol{x}_i, oldsymbol{m}, oldsymbol{ heta}^{[r-1]}]$, donnée par

$$t_{ik}^{[r]} := \frac{\tau_k^{[r-1]} \prod_{j=1}^d f_{kj}(x_{ij} | \boldsymbol{\alpha}_{kj}^{[r-1]})}{\sum_{\ell=1}^g \tau_\ell^{[r-1]} \prod_{j=1}^d f_{\ell j}(x_{ij} | \boldsymbol{\alpha}_{\ell j}^{[r-1]})},$$

Étape M d'une itération [r]

Maximisation de l'espérance de la log-vraisemblance complétée sur (ω,θ)

Étape M

$$\begin{split} \mathbf{m}^{[r]} &= (g, \omega^{[r]}) \text{ où } \tau_k^{[r]} = \frac{\sum_{i=1}^n t_{ik}^{[r]}}{n}, \\ \omega_j^{[r]} &= \left\{ \begin{array}{l} 1 & \text{si } \Delta_j^{[r]} > 0 \\ 0 & \text{sinon} \end{array} \right., \text{ et } \alpha_{jk}^{[r]} = \left\{ \begin{array}{l} \alpha_{kj}^{\star [r]} & \text{si } \omega_j^{[r]} = 1 \\ \tilde{\alpha}_{kj} & \text{sinon} \end{array} \right., \end{split}$$

où
$$\Delta_{j}^{[r]} = \sum_{k=1}^{g} \sum_{i=1}^{n} t_{ik}^{[r]} \left(\ln f_{kj}(x_{ij} | \alpha_{kj}^{*[r]}) - \ln f_{1j}(x_{ij} | \tilde{\alpha}_{1j}) \right) - (g-1)\nu_{j}c$$

- $lpha_{jk}^{\star[r]} = rg \max_{lpha_{kj}} \sum_{i=1}^n t_{jk}^{[r]} \ln f_{kj}(x_{ij}|lpha_{kj})$ si j est discriminante
- $\tilde{\alpha}_{1j} = \arg\max_{\alpha_{1i}} \sum_{i=1}^{n} \ln f_{1j}(x_{ij}|\alpha_{1j})$ sinon.

Objectif : éviter de calculer le MLE

Un autre nom

$$\mathsf{MICL}(\boldsymbol{m}) = \ln p(\mathbf{x}, \mathbf{z}^* | \boldsymbol{m}) \text{ with } \mathbf{z}^* = \arg \max_{\mathbf{z}} \ln p(\mathbf{x}, \mathbf{z} | \boldsymbol{m}).$$

$$p(\mathbf{x}, \mathbf{z} | \mathbf{m}) = p(\mathbf{z} | g) \prod_{j=1}^{d} p(\mathbf{x}_{\bullet j} | g, \omega_j, \mathbf{z}),$$

Plus précisément

$$p(\mathbf{x}_{\bullet j}|g,\omega_j,\mathbf{z}) = \int p(\boldsymbol{\alpha}_{\bullet j}|g,\omega_j) \prod_{k=1}^g \prod_{i=1}^n f_{kj}(x_{ij}|\boldsymbol{\alpha}_{kj})^{z_{ik}} d\boldsymbol{\alpha}_{\bullet j}.$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

$$p(\mathbf{z}|g)$$
 et $p(\mathbf{x}_{\bullet j}|g,\omega_j,\mathbf{z})$

Expression de $p(\mathbf{z}|g)$

$$p(\mathbf{z}|g) = \frac{\Gamma(\frac{g}{2})}{\Gamma(\frac{1}{2})^g} \frac{\prod_{k=1}^g \Gamma(n_k + \frac{1}{2})}{\Gamma(n + \frac{g}{2})}, \text{ où } n_k = \sum_{i=1}^n z_{ik}.$$

Expression de $p(\mathbf{x}_{\bullet j}|g,\omega_j,\mathbf{z})$ lorsque la variable j est continue

$$p(\mathbf{x}_{\bullet j}|g,\omega_{j},\mathbf{z}) = \begin{cases} \pi^{-n/2} \left(\frac{b_{j}^{a_{j}/2} d_{j}^{1/2}}{\Gamma(a_{j}/2)} \right)^{g} \prod_{k=1}^{g} \frac{\Gamma(A_{kj}/2)}{B_{kj}^{A_{kj}} D_{kj}^{1/2}} & \text{if } \omega_{j} = 1 \\ \pi^{-n/2} \frac{b_{j}^{a_{j}} d_{j}^{1/2}}{\Gamma(a_{j}/2)} \frac{\Gamma(A_{j}/2)}{B_{j}^{A_{j}} D_{j}^{1/2}} & \text{if } \omega_{j} = 0 \end{cases},$$

où
$$A_{j} = n + a_{j}$$
, $B_{j}^{2} = b_{j}^{2} + \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})^{2} + \frac{(c_{j} - \bar{x}_{j})^{2}}{d_{j}^{-1} + n^{-1}}$, $D_{j} = n + d_{j}$, $\bar{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$, $A_{kj} = n_{k} + a_{j}$, $B_{kj}^{2} = b_{j}^{2} + \sum_{i=1}^{n} z_{ik} (x_{ij} - \bar{x}_{jk})^{2} + \frac{(c_{j} - \bar{x}_{jk})^{2}}{d_{j}^{-1} + n_{k}^{-1}}$, $D_{kj} = n_{k} + d_{j}$, $\bar{x}_{jk} = \frac{1}{n_{k}} \sum_{i=1}^{n} z_{ik} x_{ij}$ et $n_{k} = \sum_{i=1}^{n} z_{ik}$.

(UPS-U1018)

20 / 32

Optimisation du critère MICL

Optimisation alternée pour trouver m_g^{\star} . Chaque itération [r] consiste à alterner deux étapes:

Étape de partition (transfert):

On cherche $\mathbf{z}^{[r]}$ tel que

$$\ln p(\mathbf{x}, \mathbf{z}^{[r]} | \boldsymbol{m}^{[r]}) \ge \ln p(\mathbf{x}, \mathbf{z}^{[r-1]} | \boldsymbol{m}^{[r]}).$$

Étape modèle (explicite):

On cherche $m{m}^{[r+1]} = \mathop{\mathrm{argmax}}_{m{m} \in \mathcal{M}_g} \ln p(\mathbf{x}, \mathbf{z}^{[r]} | m{m})$, où

$$m{m}^{[r+1]} = (g, m{\omega}^{[r+1]}) \text{ with } \omega_j^{[r+1]} = \underset{\omega_j \in \{0,1\}}{\operatorname{argmax}} p(\mathbf{x}_{ullet}j | g, \omega_j, \mathbf{z}^{[r]}).$$

Plus de détails sur l'étape partition

À l'itération [r]: $\mathbf{z}^{[r]}$ est initialisé à $\mathbf{z}^{(0)} = \mathbf{z}^{[r-1]}$. On fait S itérations où une itération (s) est donnée par:

- Tirage individuel: $i^{(s)} \sim \mathcal{U}\{1,\ldots,n\}$.
- **Optimisation de la partition:** conserver les affectations $\mathcal{Z}^{(s)} = \{\mathbf{z} : \mathbf{z}_i = \mathbf{z}_i^{(s-1)}, \ \forall i \neq i^{(s)}\}$ et affecter $\mathbf{z}^{(s)}$ tel que

$$\mathbf{z}^{(s)} = \operatorname{argmax}_{\mathbf{z} \in \mathcal{Z}^{(s)}} \ln p(\mathbf{x}, \mathbf{z} | \mathbf{m}^{[r]}).$$

On arrête si : $\ln p(\mathbf{x}, \mathbf{z} | \mathbf{m}^{[r]})$ n'augmente pas après S itérations

Plus de détails sur l'étape partition

À l'itération [r]: $\mathbf{z}^{[r]}$ est initialisé à $\mathbf{z}^{(0)} = \mathbf{z}^{[r-1]}$. On fait S itérations où une itération (s) est donnée par:

- Tirage individuel: $i^{(s)} \sim \mathcal{U}\{1, \dots, n\}$.
- Optimisation de la partition: conserver les affectations

$$\mathcal{Z}^{(s)} = \{\mathbf{z} : \mathbf{z}_i = \mathbf{z}_i^{(s-1)}, \ \forall i \neq i^{(s)}\}$$
 et affecter $\mathbf{z}^{(s)}$ tel que

$$\mathbf{z}^{(s)} = \operatorname{argmax}_{\mathbf{z} \in \mathcal{Z}^{(s)}} \ln p(\mathbf{x}, \mathbf{z} | \mathbf{m}^{[r]}).$$

On arrête si : $\ln p(\mathbf{x}, \mathbf{z} | \mathbf{m}^{[r]})$ n'augmente pas après S itérations

Bilan

- Deux étapes rapides et simples.
- À chaque itération, $\ln p(\mathbf{x}, \mathbf{z} | \mathbf{m})$ augmente.
- Nous avons besoin d'un grand nombre d'initialisations aléatoires.

4D > 4A > 4B > 4B > B 900

Outlines

- Sélection de variables en clustering
 - Clustering
 - Contexte
 - Notations
 - La sélection
- Deux critères d'information
 - Optimisation de BIC directement
 - Optimisation du critère ICL sans MLE
- 3 Expérimentations numériques
 - Simulations
 - Données réelles

Hypothèse d'indépendance conditionnelle : cas gaussien

Un modèle à deux composantes gaussiennes à proportions égales. Sous la composante k, r=6 variables suivant une gaussienne $\mathcal{N}(\mu_k, \Sigma_k)$ où

$$\mu_{kj} = \left\{ egin{array}{ll} (-1)^k \delta & \mathrm{si} j \leq 6 \ 0 & \mathrm{sinon} \end{array}
ight. \ \mathrm{et} \ \Sigma_k[j,j'] = \left\{ egin{array}{ll} 1 & \mathrm{if} \ j = j' \
ho & \mathrm{if} \ |j-j'| = 1 \ 0 & \mathrm{sinon} \end{array}
ight.
ight.$$

Hypothèse d'indépendance conditionnelle : cas gaussien

				ICL/MICL			
ρ	d	no clustvarsel			VarSelLCM	no	VarSelLCM
		selection	forward	backward		selection	
	10	0.78	0.53	0.71	0.78	0.78	0.78
0	25	0.31	0.34	0.71	0.77	0.04	0.77
U	50	0.00	0.13	0.04	0.80	0.00	0.80
	100	0.00	0.10	0.00	0.77	0.00	0.77
	10	0.78	0.52	0.69	0.72	0.78	0.78
0.4	25	0.78	0.44	0.63	0.77	0.78	0.78
0.4	50	0.50	0.30	0.03	0.79	0.08	0.80
	100	0.00	0.18	0.00	0.73	0.00	0.77

ARI moyen sur 50 réplications. δ est choisi pour un taux de mauvais classement de 5%.

Sélection de g et des variables

		BIC						ICL/MICL			
ρ	d	no clustva			varsel	arsel VarSelLCM			no	VarSe	eILCM
		selection	forward		backward				selection		
		g	g	rel.	g	rel.	g	rel.	g	g	rel.
	10	2.00	2.45	0.52	2.55	0.66	2.00	0.60	2.00	2.00	0.60
0	25	1.40	2.80	0.22	2.40	0.50	2.00	0.25	1.05	2.00	0.24
U	50	1.00	2.90	0.08	2.95	0.43	2.00	0.13	1.00	2.00	0.12
	100	1.00	2.95	0.04	3.00	0.72	2.00	0.06	1.00	2.00	0.06
	10	2.00	2.60	0.28	2.55	0.40	2.25	0.61	2.00	2.00	0.60
0.4	25	2.00	2.85	0.17	2.65	0.40	2.05	0.25	2.00	2.00	0.24
0.4	50	1.65	2.85	0.12	2.85	0.44	2.05	0.13	1.10	2.00	0.12
	100	1.00	2.95	0.04	3.00	0.70	2.15	0.06	1.00	2.00	0.06

0.60, 0.25, 0.13 et 0.06 sont les vraies proportions de variables pertinentes pour d=10, 25, 50 et 100.

ANR : Mode de vie humain, variation génétique et épigénétique

Données de l'étude

Étude sur les populations d'agriculteurs bantous (31 populations échantillonnées) et les chasseurs-cueilleurs (6 populations échantillonnées) de l'Afrique centrale. Les deux classes sont de tailles 1003 et 232 respectivement.

En tout n = 1235 et d = 160470 toutes catégorielles (SNPs) codées 0, 1 et 2.

ANR : Mode de vie humain, variation génétique et épigénétique

Alleles of SNP rs123456 (located on chromosome 1)

Paul: CTTAGATTCAT G TCACTAGCTAGG

CTTAGATTCAT G TCACTAGCTAGG

Jose: CTTAGATTCAT G TCACTAGCTAGG

CTTAGATTCAT A TCACTAGCTAGG

Julia: CTTAGATTCAT G TCACTAGCTAGG

CTTAGATTCAT G TCACTAGCTAGG

Roger: CTTAGATTCAT C TCACTAGCTAGG

CTTAGATTCAT C TCACTAGCTAGG

ANR : Mode de vie humain, variation génétique et épigénétique

Modèle sélectionné

```
\hat{g} = 2 avec 58954 SNP (ou variables).
```

Références

- Dean, N. and Raftery, A. E. (2010). Latent class analysis variable selection. Annals of the Institute of Statistical Mathematics, 62(1):11–35.
- Green, P. J. (1990). On use of the em for penalized likelihood estimation. *Journal of the Royal Statistical Society. Series B (Methodological), pages 443–452.*
- Marbac, M. and Sedki, M. (2016). Variable selection for model-based clustering using the integrated complete-data likelihood. Statistics and Computing, pages 1–15.
- Maugis, C., Celeux, G., and Martin-Magniette, M.-L. (2009b). Variable selection in model-based clustering: A general variable role modeling. *Computational Statistics and Data Analysis*, 53:3872–3882.

Annexe: cas catégoriel et comptage

$$\rho(\mathbf{x}_{\bullet j}|g,\omega_{j},\mathbf{z}) = \left\{ \begin{array}{ll} \frac{1}{\prod_{i=1}^{n}\Gamma(x_{ij}+1)} \left(\frac{b_{j}^{a_{j}}}{\Gamma(a_{j})}\right)^{g} \prod_{k=1}^{g}\Gamma(A_{kj})B_{kj}^{-A_{kj}} & \text{si } \omega_{j}=1 \\ \frac{1}{\prod_{i=1}^{n}\Gamma(x_{ij}+1)} \frac{b_{j}^{a_{j}}}{\Gamma(a_{j})}\Gamma(A_{j})B_{j}^{-A_{j}} & \text{si } \omega_{j}=0 \end{array} \right. , \\ \text{où } A_{j} = \sum_{i=1}^{n}x_{ij}+a_{j}, \ B_{j} = b_{i}^{2}+n, \ A_{kj} = \sum_{i=1}^{n}z_{ik}x_{ij}+a_{j} \ \text{et } B_{j} = b_{i}^{2}+\sum_{i=1}^{n}z_{ik}. \end{array}$$

$$p(\mathbf{x}_{\bullet j}|g,\omega_j,\mathbf{z}) = \left\{ \begin{array}{ll} \left(\frac{\Gamma(m_j a)}{\Gamma(a)^{m_j}} \right)^g \prod\limits_{k=1}^g \frac{\prod\limits_{h=1}^{m_j} \Gamma\left(\sum_{i=1}^n z_{ik} \mathbbm{1}_{\{x_{ij}=h\}} + a_j\right)}{\Gamma\left(\sum_{i=1}^n z_{ik} + m_j a_j\right)} & \text{si } \omega_j = 1 \\ \frac{\Gamma(m_j a)}{\Gamma(a)^{m_j}} \frac{\prod\limits_{h=1}^{m_j} \Gamma\left(\sum_{i=1}^n \mathbbm{1}_{\{x_{ij}=h\}} + a_j\right)}{\Gamma(n+m_j a_j)} & \text{si } \omega_j = 0 \end{array} \right. .$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 からで

Annexe : lois a priori conjuguées

- $m{\cdot}$ $m{ au}|m{m}$ suit une loi de Dirichlet $\mathcal{D}_g(u_1,\ldots,u_g)$
- Cas continue : $p(\alpha_{kj}) = p(\sigma_{kj}^2)p(\mu_{kj}|\sigma_{kj}^2)$ où σ_{kj}^2 suit une loi $\mathcal{IG}(a_j/2,b_j^2/2)$ et $\mu_{kj}|\boldsymbol{m},\sigma_{kj}^2\sim\mathcal{N}(c_j,\sigma_{kj}^2/d_j)$.
- Cas entier : α_{kj} suit une loi gamma $\mathcal{G}a(a_j,b_j)$ où α_{kj} suit une loi de Dirichlet $\mathcal{D}_{m_j}(a_j,\ldots,a_j)$ si j est une variables catégorielle à m_j modalités.
- Jeffreys pour les proportions (*i.e.*, $u_k = 1/2$) et les hyper-paramètres des variables catégorielles (*i.e.*, $a_{jk} = 1/2$).
- Aucune règle pour les autres paramètres.
- $a_j = 1$, $b_j = 1$, $c_j = \text{mean}(\mathbf{x}_{\bullet j})$ et $d_j = 0.01$ et $a_j = b_j = 1$ for les hyper-paramètres de la loi de Poisson.