

Description

The VSM2N20 uses advanced trench technology and design to provide excellent $R_{\text{DS}(\text{ON})}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} = 200V,I_D =2A $R_{DS(ON)} < 580 \text{m}\Omega$ @ $V_{GS}=10 \text{V}$ (Typ:520m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-126

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM2N20-T6	VSM2N20	TO-126	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	200	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	2	Α
Drain Current-Pulsed (Note 1)	I _{DM}	8	Α
Maximum Power Dissipation	P _D	3	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	41.7	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA	

Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)								
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =250μA	1.2	1.7	2.5	V		
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =2A	-	520	580	mΩ		
Forward Transconductance	g FS	V _{DS} =15V,I _D =2A	-	8	-	S		
Dynamic Characteristics (Note4)								
Input Capacitance	C _{lss}	\/ -25\/\/ -0\/	-	580	-	PF		
Output Capacitance	C _{oss}	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	90	-	PF		
Reverse Transfer Capacitance	C _{rss}	F-1.0WIFIZ	-	3	-	PF		
Switching Characteristics (Note 4)								
Turn-on Delay Time	t _{d(on)}		-	10	-	nS		
Turn-on Rise Time	t _r	V_{DD} =100V, R_L =15 Ω	-	12	-	nS		
Turn-Off Delay Time	-Off Delay Time $t_{d(off)}$ V_{GS} =10V, R_{G} =		-	15	-	nS		
Turn-Off Fall Time	t _f		-	15	-	nS		
Total Gate Charge	Qg	V =100V L =2A	-	12		nC		
Gate-Source Charge	Q _{gs}	$V_{DS}=100V,I_{D}=2A,$ $V_{GS}=10V$	-	2.5	-	nC		
Gate-Drain Charge	Q_{gd}	VGS-10V	-	3.8	-	nC		
Drain-Source Diode Characteristics								
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =2A	-	-	1.2	V		
Diode Forward Current (Note 2)	Is		-	-	2	А		

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Rdson On-Resistance(Ω)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 7 Capacitance vs Vds

Vds Drain-Source Voltage (V)

Figure 8 Safe Operation Area

T_J-Junction Temperature(°C)

Figure 9 BV_{DSS} vs Junction Temperature

T_J-Junction Temperature(°ℂ)

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance