MAT215: Complex Variables And Laplace Transformations

Emon Hossain¹

¹Lecturer MNS department Brac University

Lecture-04

Motivation: Real vs. Complex Roots

In \mathbb{R} :

- For a > 0, the equation $x^n = a$ has:
 - one positive real root if n is even,
 - **one** real root if *n* is odd.
- Roots can be chosen *continuously* on $(0,\infty)$: $x = \sqrt[n]{a}$.
- No ambiguity from angles; order is total; ℝ is simply connected.

In \mathbb{C} :

- For w ≠ 0, the equation
 zⁿ = w has exactly n distinct roots.
- Formula uses multi-valued argument: $\theta \sim \theta + 2\pi k$.
- Any continuous branch must exclude a ray (branch cut) from 0.
- Going once around 0 ⇒ you land on a different branch.

(University of Dhaka) 2/6

Polar Form & the Source of Multivaluedness

Every nonzero $w \in \mathbb{C}$ can be written as

$$w = r e^{i\theta}, \qquad r = |w| > 0, \quad \theta = \arg w.$$

But arg is **not single-valued**:

$$arg w = \theta + 2\pi k, \quad k \in \mathbb{Z}.$$

Polar Form & the Source of Multivaluedness

Every nonzero $w \in \mathbb{C}$ can be written as

$$w = re^{i\theta}, \qquad r = |w| > 0, \quad \theta = \arg w.$$

But arg is **not single-valued**:

$$arg w = \theta + 2\pi k, \quad k \in \mathbb{Z}.$$

$$\Rightarrow$$
 $w^{1/n} = r^{1/n} e^{i(\theta + 2\pi k)/n}, k = 0, 1, ..., n-1.$

- All n roots lie on the circle of radius $r^{1/n}$, equally spaced at angle $2\pi/n$.
- The "strangeness": arg forces n consistent choices (branches) to define $z \mapsto z^{1/n}$.

(University of Dhaka) 3/6

Geometry: Roots as a Regular Polygon

Takeaway

For each fixed $w \neq 0$, the *n*-th roots form a regular *n*-gon centered at the origin with radius $|w|^{1/n}$.

(University of Dhaka) 4/6

Monodromy of $z^{1/3}$: an explicit loop example

Let $f(z)=z^{1/3}$ with the principal argument $\operatorname{Arg} z\in (-\pi,\pi]$ (branch cut along $(-\infty,0]$). Write $z=re^{i\theta}\Rightarrow f(z)=r^{1/3}e^{i\theta/3}$.

Start. Take $z_0 = 1 = e^{i \cdot 0}$. Then $f(z_0) = 1^{1/3}e^{i \cdot 0} = 1$.

One full loop around the origin. Move along the unit circle $z=e^{i\theta}$ as $\theta:0\to 2\pi.$

$$f_{
m after~1~loop} = {
m e}^{i(\theta+2\pi)/3} = {
m e}^{i heta/3} \underbrace{{
m e}^{i2\pi/3}}_{
m rotation~by~120^\circ}$$

Thus f is multiplied by $e^{i2\pi/3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$: we land on a <u>different branch</u>.

Two and three loops.

after 2 loops: $f \mapsto f e^{i4\pi/3}$, after 3 loops: $f \mapsto f e^{i6\pi/3} = f e^{i2\pi} = f$

Only after 3 loops do we return to the original value. https://www.geogebra.org/m/rrnT76DX.

(University of Dhaka) 5/6

continued...

Takeaway (monodromy)

Each circuit adds 2π to the argument, so $z^{1/3}$ is multiplied by $e^{2\pi i/3}$. The three branches form a 3-sheeted helical Riemann surface around 0. (For $z^{1/n}$: rotation $e^{2\pi i/n}$; return after n loops.)

(University of Dhaka) 6/6