Adventures in Scientific Computing: A Safari for Pure Mathematicians

Adam Larios

6 June 2019

Western Washington University Bellingham, WA, USA

Outline

- 1 An Invitation to Computation: Some Observations
- 2 Example Problem: $A\vec{x} = \vec{b}$
- 3 Example Problem: Meshing
- 4 Example Problem: Variational Methods

Adam Larios (UNL) Scientific Computing 6 June 2019

Outline

- An Invitation to Computation: Some Observations
- 2 Example Problem: $A\vec{x} = \vec{b}$
- 3 Example Problem: Meshing
- 4 Example Problem: Variational Methods

Adam Larios (UNL) Scientific Computing 6 June 2019

"The purpose of computing isn't numbers. It is insight."

-R.W. Hamming


```
FED COLOR OF THE PROPERTY OF T
```

Adam Larios (UNL) Scientific Computing 6 June 2019 4/37

```
FE30—20 84 FC 90 F7 60 81 3C $450 60 $36 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $450 60 $4
```


6 June 2019

Exercise. Find f(x) such that:

•
$$f'(x) = 1 + x$$

Exercise. Find f(x) such that:

•
$$f'(x) = 1 + x$$

Exercise. Find f(x) such that:

$$\bullet \qquad f'(x) = 1 + x$$

$$\bullet \qquad f'(x) = \frac{1}{1+x}$$

Exercise. Find f(x) such that:

$$\bullet \qquad f'(x) = 1 + x$$

$$\bullet \qquad f'(x) = \frac{1}{1+x}$$

•
$$f'(x) = \frac{1}{1 + x^{2.1}}$$

Exercise. Find f(x) such that:

$$\bullet \qquad f'(x) = 1 + x$$

$$\bullet \qquad f'(x) = \frac{1}{1+x}$$

•
$$f'(x) = \frac{1}{1 + x^{2.1}}$$

Exercise. Find f(x) such that:

$$f'(x) = 1 + x$$

•
$$f'(x) = \frac{1}{1 + x^{2.1}}$$

Exercise. **Approximate**:

$$\bullet \int_0^t 1 + x \, dx$$

$$\bullet \int_0^t \frac{1}{1+x} \, dx$$

$$\bullet \int_0^t \frac{1}{1+x^2} \, dx$$

$$\bullet \int_0^t \frac{1}{1+x^{2.1}} dx$$

Exercise. Find f(x) such that:

$$f'(x) = 1 + x$$

$$\bullet \qquad f'(x) = \frac{1}{1+x^2}$$

•
$$f'(x) = \frac{1}{1 + x^{2.1}}$$

Exercise. **Approximate**:

$$\bullet \int_0^t 1 + x \, dx$$

$$\bullet \int_0^t \frac{1}{1+x} \, dx$$

$$\bullet \int_0^t \frac{1}{1+x^2} \, dx$$

$$\bullet \int_0^t \frac{1}{1+x^{2.1}} dx$$

Observation 1

• Exactness is a specialized tool.

Solution (?):

•
$$x = \pm \sqrt{2}$$

Solution (?):

- $x = \pm \sqrt{2}$
- $x \approx \pm 1.414213562373 \cdots$

Solution (?):

•
$$x = \pm \sqrt{2}$$

- $x \approx \pm 1.414213562373 \cdots$
- $x_0=1$ and then $x_{n+1}=x_n-\frac{x_n^2-2}{2x_n}$

Solution (?):

•
$$x = \pm \sqrt{2}$$

- $x \approx \pm 1.414213562373 \cdots$
- $x_0=1$ and then $x_{n+1}=x_n-\frac{x_n^2-2}{2x_n}$

Solution (?):

- $x = \pm \sqrt{2}$
- $x \approx \pm 1.414213562373 \cdots$
- $x_0 = 1$ and then $x_{n+1} = x_n \frac{x_n^2 2}{2x_-}$

Observation 2

• Exactness is often a *placeholder* for an algorithm.

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem: Solve y'' - 4y' + 13y = 0; y(0) = y'(0) = 1

Problem: Solve
$$y'' - 4y' + 13y = 0$$
; $y(0) = y'(0) = 1$

•
$$y(t) = e^{-2t} \sin(3t) - e^{-2t} \cos(3t)$$
.

Problem: Solve
$$y'' - 4y' + 13y = 0$$
; $y(0) = y'(0) = 1$

•
$$y(t) = e^{-2t} \sin(3t) - e^{-2t} \cos(3t)$$
.

Problem: Solve
$$y'' - 4y' + 13y = 0$$
; $y(0) = y'(0) = 1$

•
$$y(t) = e^{-2t} \sin(3t) - e^{-2t} \cos(3t)$$
.

Problem: Solve
$$y'' - 4y' + 13y = 0$$
; $y(0) = y'(0) = 1$

•
$$y(t) = e^{-2t} \sin(3t) - e^{-2t} \cos(3t)$$
.

Observation 3

Solutions are not always this simple. . .

Scientific Computing 6 June 2019

The Incompressible Navier-Stokes Equations

Claude L.M.H. Navier

George G. Stokes

Momentum Equation

$$\underbrace{\frac{\partial}{\partial t}\mathbf{u}}_{Acceleration} + \underbrace{(\mathbf{u} \cdot \nabla)\mathbf{u}}_{Advection} = \underbrace{-\nabla p}_{Pressure} + \underbrace{\nu \triangle \mathbf{u}}_{Diffusion} + \underbrace{\mathbf{f}}_{Body}_{Force}$$

Continuity Equation

$$\nabla \cdot \mathbf{u} = 0$$

Unknowns

 $\mathbf{u} := \mathsf{Velocity}$ (vector) $\nu := \mathsf{Kinematic}$ Viscosity

 $p := \mathsf{Pressure} (\mathsf{scalar})$

Parameter

8 / 37

Problem (Leray 1933)

Existence and uniqueness of strong solutions in 3D for all time. (\$1,000,000 Clay Millennium Prize Problem)

J. Fluid Mech. (1983), vol. 130, pp. 411–452Printed in Great Britain

411

9/37

Small-scale structure of the Taylor-Green vortex

By MARC E. BRACHET†, DANIEL I. MEIRON, STEVEN A. ORSZAG,

Massachusetts Institute of Technology, Cambridge, MA 02139

B. G. NICKEL.

University of Guelph, Guelph, Ontario

RUDOLF H. MORF

R.C.A. Laboratories, Zurich, Switzerland

AND URIEL FRISCH

CNRS, Observatoire de Nice, 06-Nice, France

(Received 5 February 1982 and in revised form 14 June 1982)

The dynamics of both the inviscid and viscous Taylor–Green (TG) three-dimensional vortex flows are investigated. This flow is perhaps the simplest system in which one can study the generation of small scales by three-dimensional vortex stretching and the resulting turbulence. The problem is studied by both direct spectral numerical solution of the Navier–Stokes equations (with up to 256³ modes) and by power-series analysis in time.

Adam Larios (UNL) Scientific Computing 6 June 2019

M. E. Brachet and others

Figure 20. A plot of the maximum vorticity ω_{\max}^2 as a function of the distance from the walls of the impermeable cube for t=1-9 (1). Here we compute ω_{\max}^2 over the faces of subcubes nested in such a way that the distance from the nearest wall of the impermeable cube is d. Thus d=0 corresponds to the maximum vorticity on the faces of the impermeable cube while $d=\frac{1}{2}$ corresponds to the vorticity at the centre of this cube. Observe that for early times the vorticity is concentrated near the walls of the impermeable cube. As t increases beyond 6, there is significant vorticity generation in the main body of the cube.

Commun. Math. Phys. 94, 61-66 (1984)

Communications in Mathematical Physics
© Springer-Verlag 1984

Remarks on the Breakdown of Smooth Solutions for the 3-D Euler Equations

- J. T.Beale^{1*}, T. Kato^{2**}, and A. Majda^{2***}
- 1 Department of Mathematics, Duke University, Durham, NC 27701, USA
- 2 Department of Mathematics, University of California, Berkeley, CA 94720, USA

Abstract. The authors prove that the maximum norm of the vorticity controls the breakdown of smooth solutions of the 3-D Euler equations. In other words, if a solution of the Euler equations is initally smooth and loses its regularity at some later time, then the maximum vorticity necessarily grows without bound as the critical time approaches; equivalently, if the vorticity remains bounded, a smooth solution persists.

The motion of an ideal incompressible fluid is governed by a system of partial differential equations known as the Euler equations. For two-dimensional flow,

• Thus, computations can give mathematicians insight.

- Thus, computations can give mathematicians insight.
- Even if we don't want to use computations ourselves, it can benefit us to learn how they work (and learn to recognize when they fail.)

Outline

- An Invitation to Computation: Some Observations
- 2 Example Problem: $A\vec{x} = \vec{b}$
- 3 Example Problem: Meshing
- 4 Example Problem: Variational Methods

<u>Problem</u>: Solve $A\vec{x} = \vec{b}$, where A is an invertible matrix.

(Note: We don't bother to find or store A^{-1} .)

Adam Larios (UNL) Scientific Computing 6 June 2019 13/37

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

Works for any matrix!

Adam Larios (UNL) Scientific Computing 6 June 2019 13/37

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.

Adam Larios (UNL) Scientific Computing 6 June 2019

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- For an $N \times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Adam Larios (UNL) Scientific Computing 6 June 2019

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- For an $N \times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Adam Larios (UNL) Scientific Computing 6 June 2019

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- \bullet For an $N\times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Let's use a top-of-the-line Intel i7 processor:

 $\approx 3\times 10^{11}$ multiplications/divsions per second!

N Time

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- For an $N \times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Let's use a top-of-the-line Intel i7 processor:

 $\approx 3 \times 10^{11}$ multiplications/divsions per second!

Time 100 1μ s

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- \bullet For an $N\times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Let's use a top-of-the-line Intel i7 processor:

 $\approx 3\times 10^{11}$ multiplications/divsions per second!

N	Time
100	1μ s
1000	0.0039

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- \bullet For an $N\times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Let's use a top-of-the-line Intel i7 processor:

 $\approx 3\times 10^{11}$ multiplications/divsions per second!

N	<u>Time</u>
100	1μ s
1000	0.003s
10^{6}	12 days

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- For an $N \times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Let's use a top-of-the-line Intel i7 processor:

 $\approx 3 \times 10^{11}$ multiplications/divsions per second!

N	<u>Time</u>
100	1μ s
1000	0.003s
10^{6}	12 days
10^{7}	35 years

(Note: We don't bother to find or store A^{-1} .)

Gaussian Elimination

- Works for any matrix!
- Algorithm is "unstable": tiny round-off errors are strongly amplified.
- \bullet For an $N\times N$ matrix, cost $\approx \frac{1}{3}N^3$ multiplications/divisions.

Let's use a top-of-the-line Intel i7 processor:

 $pprox 3 imes 10^{11}$ multiplications/divsions per second!

N	<u>Time</u>
100	1μ s
1000	0.003s
10^{6}	12 days
10^{7}	35 years
10^{9}	35 million years!

$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$

Adam Larios (UNL) Scientific Computing 6 June 2019 14/37

$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
$$\begin{cases} 5x + 6y + 4z = 3 \\ 7x + 9y + 3z = 1 \\ 2x + 1y + 8z = 2 \end{cases}$$

Adam Larios (UNL) Scientific Computing 6 June 2019 14/37

$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
$$\begin{cases} 5x + 6y + 4z = 3 \\ 7x + 9y + 3z = 1 \\ 2x + 1y + 8z = 2 \end{cases}$$
$$\begin{cases} 5x = 3 - 6y - 4z \\ 9y = 1 - 7x - 3z \\ 8z = 2 - 2x - 1y \end{cases}$$

Adam Larios (UNL) Scientific Computing 6 June 2019 14/37

$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
$$\begin{cases} 5x + 6y + 4z = 3 \\ 7x + 9y + 3z = 1 \\ 2x + 1y + 8z = 2 \end{cases}$$
$$\begin{cases} 5x = 3 - 6y - 4z \\ 9y = 1 - 7x - 3z \\ 8z = 2 - 2x - 1y \end{cases}$$

$$\begin{cases} x = \frac{1}{5}(3 - 6y - 4z) \\ y = \frac{1}{9}(1 - 7x - 3z) \\ z = \frac{1}{8}(2 - 2x - 1y) \end{cases}$$

$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
$$\begin{cases} 5x + 6y + 4z = 3 \\ 7x + 9y + 3z = 1 \\ 2x + 1y + 8z = 2 \end{cases}$$
$$\begin{cases} 5x = 3 - 6y - 4z \\ 9y = 1 - 7x - 3z \\ 8z = 2 - 2x - 1y \end{cases}$$

$$\begin{cases} x = \frac{1}{5}(3 - 6y - 4z) \\ y = \frac{1}{9}(1 - 7x - 3z) \\ z = \frac{1}{8}(2 - 2x - 1y) \end{cases}$$

$$\begin{bmatrix} 3 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
$$\begin{cases} 5x + 6y + 4z = 3 \\ 7x + 9y + 3z = 1 \\ 2x + 1y + 8z = 2 \end{cases}$$
$$\begin{cases} 5x = 3 & -6y - 4z \\ 9y = 1 - 7x & -3z \\ 8z = 2 - 2x - 1y \end{cases}$$

$$\begin{cases} x = \frac{1}{5}(3 - 6y - 4z) \\ y = \frac{1}{9}(1 - 7x - 3z) \\ z = \frac{1}{8}(2 - 2x - 1y) \end{cases}$$

$$\begin{cases} x_{n+1} = \frac{1}{5}(3 - 6y_n - 4z_n) \\ y_{n+1} = \frac{1}{9}(1 - 7x_n - 3z_n) \\ z_{n+1} = \frac{1}{8}(2 - 2x_n - 1y_n) \end{cases}$$

$$\begin{bmatrix} 5 & 6 & 4 \\ 7 & 9 & 3 \\ 2 & 1 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$$
$$\begin{cases} 5x + 6y + 4z = 3 \\ 7x + 9y + 3z = 1 \\ 2x + 1y + 8z = 2 \end{cases}$$
$$\begin{cases} 5x = 3 - 6y - 4z \\ 9y = 1 - 7x - 3z \\ 8z = 2 - 2x - 1y \end{cases}$$

$$\begin{cases} x = \frac{1}{5}(3 - 6y - 4z) \\ y = \frac{1}{9}(1 - 7x - 3z) \\ z = \frac{1}{8}(2 - 2x - 1y) \end{cases}$$

$$\begin{cases} x_{n+1} = \frac{1}{5}(3 - 6y_n - 4z_n) \\ y_{n+1} = \frac{1}{9}(1 - 7x_n - 3z_n) \\ z_{n+1} = \frac{1}{8}(2 - 2x_n - 1y_n) \end{cases}$$

14 / 37

This is Jacobi's iteration method.

Jacobi Iteration In Detail

<u>Problem</u>: Solve $A\vec{x} = \vec{b}$ via

$$\operatorname{diag}(A)\vec{x}_{n+1} + (A - \operatorname{diag}(A))\vec{x}_n = \vec{b}.$$

Rewrite as:

$$\begin{split} \vec{x}_{n+1} &= (\mathsf{diag}(A))^{-1} (\vec{b} - (A - \mathsf{diag}(A)) \vec{x}_n) \\ &= (\mathsf{diag}(A))^{-1} (\vec{b} - A \vec{x}_n) + \vec{x}_n \\ &= \vec{x}_n + (\mathsf{diag}(A))^{-1} (\vec{b} - A \vec{x}_n) \end{split}$$

Adam Larios (UNL) Scientific Computing 6 June 2019

Jacobi Iteration In Detail

<u>Problem</u>: Solve $A\vec{x} = \vec{b}$ via

$$\operatorname{diag}(A)\vec{x}_{n+1} + (A - \operatorname{diag}(A))\vec{x}_n = \vec{b}.$$

Rewrite as:

$$\begin{split} \vec{x}_{n+1} &= (\operatorname{diag}(A))^{-1} (\vec{b} - (A - \operatorname{diag}(A)) \vec{x}_n) \\ &= (\operatorname{diag}(A))^{-1} (\vec{b} - A \vec{x}_n) + \vec{x}_n \\ &= \vec{x}_n + (\operatorname{diag}(A))^{-1} (\vec{b} - A \vec{x}_n) \end{split}$$

Write $B = (\operatorname{diag}(A))^{-1}$. Then

$$\vec{x}_{n+1} = \vec{x}_n + B(\vec{b} - A\vec{x}_n)$$
$$= (I - BA)\vec{x}_n + B\vec{b}$$

Adam Larios (UNL) Scientific Computing 6 June 2019

Jacobi Iteration In Detail

<u>Problem</u>: Solve $A\vec{x} = \vec{b}$ via

$$\operatorname{diag}(A)\vec{x}_{n+1} + (A - \operatorname{diag}(A))\vec{x}_n = \vec{b}.$$

Rewrite as:

$$\begin{split} \vec{x}_{n+1} &= (\operatorname{diag}(A))^{-1} (\vec{b} - (A - \operatorname{diag}(A)) \vec{x}_n) \\ &= (\operatorname{diag}(A))^{-1} (\vec{b} - A \vec{x}_n) + \vec{x}_n \\ &= \vec{x}_n + (\operatorname{diag}(A))^{-1} (\vec{b} - A \vec{x}_n) \end{split}$$

Write $B = (diag(A))^{-1}$. Then

$$\vec{x}_{n+1} = \vec{x}_n + B(\vec{b} - A\vec{x}_n)$$
$$= (I - BA)\vec{x}_n + B\vec{b}$$

To generalize, write $Q = B^{-1} = diag(A)$ and rearrange:

$$Q\vec{x}_{n+1} = (Q - A)\vec{x}_n + \vec{b}$$

Adam Larios (UNL)

Convergence for Iterative Methods

Problem: Solve $A\vec{x} = \vec{b}$.

 $\underline{\mathsf{Algorithm}} \text{: } \mathsf{Choose an invertible, easy-to-compute } \textit{preconditioner } \mathsf{matrix} \ B.$

Iterate with $\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$.

Convergence for Iterative Methods

Problem: Solve $A\vec{x} = \vec{b}$.

Algorithm: Choose an invertible, easy-to-compute preconditioner matrix B. Iterate with $\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$.

- We can now consider other choices for $B = Q^{-1}$.
- ullet Q is called the *splitting* of A.
- $B = Q^{-1}$ is called the *preconditioner* of A.

Adam Larios (UNL) Scientific Computing 6 June 2019

Convergence for Iterative Methods

Problem: Solve $A\vec{x} = \vec{b}$.

Algorithm: Choose an invertible, easy-to-compute *preconditioner* matrix B. Iterate with $\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$.

- We can now consider other choices for $B = Q^{-1}$.
- ullet Q is called the *splitting* of A.
- $B = Q^{-1}$ is called the *preconditioner* of A.

Idea: If $\vec{x}_n \to \vec{x}$ for some \vec{x} , then:

$$\vec{x} = (I - BA)\vec{x} + B\vec{b}$$

$$\Rightarrow \vec{x} = \vec{x} - BA\vec{x} + B\vec{b}$$

$$\Rightarrow BA\vec{x} = B\vec{b}$$

$$\Rightarrow A\vec{x} = \vec{b}$$

So x is the solution to our problem!

Algorithm:
$$\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$$
.

Algorithm:
$$\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$$
.

<u>Idea</u>: Let error $= \vec{e}_n = \vec{x}_n - \vec{x}$. A little algebra shows,

$$e_{n+1} = (I - BA)e_n.$$

Algorithm:
$$\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$$
.

<u>Idea</u>: Let error = $\vec{e}_n = \vec{x}_n - \vec{x}$. A little algebra shows,

$$e_{n+1} = (I - BA)e_n.$$

Thus,

$$\vec{e}_{n+1} = (I - BA)\vec{e}_n = (I - BA)^2\vec{e}_{n-1} = \dots (I - BA)^n\vec{e}_0.$$

Scientific Computing 6 June 2019

Algorithm:
$$\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$$
.

<u>Idea</u>: Let error = $\vec{e}_n = \vec{x}_n - \vec{x}$. A little algebra shows,

$$e_{n+1} = (I - BA)e_n.$$

Thus,

$$\vec{e}_{n+1} = (I - BA)\vec{e}_n = (I - BA)^2\vec{e}_{n-1} = \dots (I - BA)^n\vec{e}_0.$$

- Worst-case scenario: When \vec{e}_0 is an eigenvector of I BA with $|\lambda| > 1$.
- Strategy: Show spectral radius of I BA, $\rho(I BA) < 1$.

Adam Larios (UNL) Scientific Computing

Algorithm:
$$\vec{x}_{n+1} = (I - BA)\vec{x}_n + B\vec{b}$$
.

<u>Idea</u>: Let error $= \vec{e}_n = \vec{x}_n - \vec{x}$. A little algebra shows,

$$e_{n+1} = (I - BA)e_n.$$

Thus,

$$\vec{e}_{n+1} = (I - BA)\vec{e}_n = (I - BA)^2\vec{e}_{n-1} = \dots (I - BA)^n\vec{e}_0.$$

- Worst-case scenario: When \vec{e}_0 is an eigenvector of I BA with $|\lambda| > 1$.
- Strategy: Show spectral radius of I-BA, $\rho(I-BA)<1$. Requires spectral analysis!

Adam Larios (UNL) Scientific Computing 6 June 2019

Partial Answer: Gershgoin Discs

For any matix A with eigenvalue λ , choose eigenvector \mathbf{x} so that $x_i=1$ for some i and $|x_j|\leq 1$ for all j. Rewrite $A\mathbf{x}=\lambda\mathbf{x}$ as

$$\sum_{j} a_{ij} x_j = \lambda x_i = \lambda.$$

Then, since again $x_i = 1$,

$$\sum_{j \neq i} a_{ij} x_j + a_{ii} = \lambda.$$

Thus,

$$|\lambda - a_{ii}| = \left| \sum_{j \neq i} a_{ij} x_j \right| \le \sum_{j \neq i} |a_{ij}| =: R_i.$$

Thus, every eigenvalue must lie in one of the Gershgorin discs $D_I := D(a_{ii}, R_i)!$

Adam Larios (UNL) Scientific Computing 6 June 2019

Theorem: The Jacobi method is convergent for any strictly diagonally dominant matrix A, i.e., $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$.

Proof.

Jacobi matrix is

$$I - BA = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -\frac{a_{i1}}{a_{ii}} & \cdots & 0 & \cdots & -\frac{a_{in}}{a_{ii}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Gershgorin Discs: $D_i=\left\{z\in\mathbb{C}:|z-0|\leq\sum_{j\neq i}\left|\frac{a_{ij}}{a_{ii}}\right|\right\}\subset B(0,1).$ Thus, ho(I-BA)<1!

3D Vortex Structures

Adam Larios (UNL) Scientific Computing 6 June 2019 22/37

Mappings

Adam Larios (UNL) Scientific Computing 6 June 2019

Mappings

Adam Larios (UNL) Scientific Computing 6 June 2019 24/37

Outline

- An Invitation to Computation: Some Observations
- 2 Example Problem: $A\vec{x} = \vec{b}$
- 3 Example Problem: Meshing
- 4 Example Problem: Variational Methods

Meshes

Delaunay Mesh

Delaunay Mesh

26 / 37

Delaunay condition

ullet Three points $p,\ q,\ r,$ in S form a Delaunay triangle if and only if the circumcircle of these points contains no other point of S.

Delaunay Mesh

Delaunay condition

• Three points p, q, r, in S form a Delaunay triangle if and only if the circumcircle of these points contains no other point of S.

Convex hull condition

• Three points p_0 , q_0 , r_0 in S_0 form a face of the convex hull of S_0 if and only if the plane passing through p_0 , q_0 , r_0 has all the points of S_0 lying to one side.

Efficient Delaunay Computation

Efficient Delaunay Computation

• Computational problems can lead to new ideas!

Mesh Labeling

Given f=f(x,y), find u=u(x,y) such that $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=f$. Write $u_{i,j}=u(x_i,y_j)$.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j-1} + u_{i,j+1} + u_{i-1,j} + u_{i+1,j} - 4u_{i,j}}{\Delta x \Delta y}$$

Adam Larios (UNL) Scientific Computing

Note

• Tightly "banded" structure is more efficient for computation.

A more challenging mesh

• Efficient preconditioners.

- Efficient preconditioners.
- New iteration methods.

- Efficient preconditioners.
- New iteration methods.
- Ideas that exploit "sparse" structure.

- Efficient preconditioners.
- New iteration methods.
- Ideas that exploit "sparse" structure.
- Mesh Relabeling...

6 June 2019

Space Filling Curves

Example Problem: Linear Systems

Outline

- An Invitation to Computation: Some Observations
- 2 Example Problem: $A\vec{x} = \vec{b}$
- 3 Example Problem: Meshing
- 4 Example Problem: Variational Methods

Problem

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem

- Solve $A\mathbf{x} = \mathbf{b}$.
- Wrong way: $\mathbf{x} = A^{-1}\mathbf{b}$.

Problem

- Solve $A\mathbf{x} = \mathbf{b}$.
- Wrong way: $\mathbf{x} = A^{-1}\mathbf{b}$.
- Better way:

$$Q\mathbf{x}_{k+1} = (Q - A)\mathbf{x}_k + \mathbf{b}$$

$$\mathbf{x}_{k+1} = (I - Q^{-1}A)\mathbf{x}_k + Q^{-1}\mathbf{b}$$

Problem

- Solve $A\mathbf{x} = \mathbf{b}$.
- Wrong way: $\mathbf{x} = A^{-1}\mathbf{b}$.
- Better way:

$$Q\mathbf{x}_{k+1} = (Q - A)\mathbf{x}_k + \mathbf{b}$$

$$\mathbf{x}_{k+1} = (I - Q^{-1}A)\mathbf{x}_k + Q^{-1}\mathbf{b}$$

• Fundamental Theorem of Iterative Methods: Iteration will converge if and only if spectral radius of $(I-Q^{-1}A)$ is <1.

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem

- Solve $A\mathbf{x} = \mathbf{b}$.
- Wrong way: $\mathbf{x} = A^{-1}\mathbf{b}$.
- Better way:

$$Q\mathbf{x}_{k+1} = (Q - A)\mathbf{x}_k + \mathbf{b}$$

$$\mathbf{x}_{k+1} = (I - Q^{-1}A)\mathbf{x}_k + Q^{-1}\mathbf{b}$$

• Fundamental Theorem of Iterative Methods: Iteration will converge if and only if spectral radius of $(I-Q^{-1}A)$ is <1.

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem

- Solve $A\mathbf{x} = \mathbf{b}$.
- Wrong way: $\mathbf{x} = A^{-1}\mathbf{b}$.
- Better way:

$$Q\mathbf{x}_{k+1} = (Q - A)\mathbf{x}_k + \mathbf{b}$$

$$\mathbf{x}_{k+1} = (I - Q^{-1}A)\mathbf{x}_k + Q^{-1}\mathbf{b}$$

• Fundamental Theorem of Iterative Methods: Iteration will converge if and only if spectral radius of $(I-Q^{-1}A)$ is <1.

Problem 2

 \bullet Design Q with $\rho(I-Q^{-1}A)<1$ so that the iteration converges fast.

Problem

- Solve $A\mathbf{x} = \mathbf{b}$.
- Wrong way: $\mathbf{x} = A^{-1}\mathbf{b}$.
- Better way:

$$Q\mathbf{x}_{k+1} = (Q - A)\mathbf{x}_k + \mathbf{b}$$

$$\mathbf{x}_{k+1} = (I - Q^{-1}A)\mathbf{x}_k + Q^{-1}\mathbf{b}$$

• Fundamental Theorem of Iterative Methods: Iteration will converge if and only if spectral radius of $(I-Q^{-1}A)$ is <1.

Problem 2

- \bullet Design Q with $\rho(I-Q^{-1}A)<1$ so that the iteration converges fast.
- Now we get to play with spectral theory!

Problem (Again)

• Solve $A\mathbf{x} = \mathbf{b}$.

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem (Again)

• Solve $A\mathbf{x} = \mathbf{b}$.

Easy 1D version

- Solve 3x = 2.
- Let $f(x) = \frac{3}{2}x^2 2x$.

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem (Again)

• Solve $A\mathbf{x} = \mathbf{b}$.

Easy 1D version

- Solve 3x = 2.
- Let $f(x) = \frac{3}{2}x^2 2x$.

• Then f'(x) = 3x - 2.

Adam Larios (UNL) Scientific Computing

Problem (Again)

• Solve $A\mathbf{x} = \mathbf{b}$.

Easy 1D version

- Solve 3x = 2.
- Let $f(x) = \frac{3}{2}x^2 2x$.

- Then f'(x) = 3x 2.
- Minimum occurs when 0 = f'(x) = 3x 2, i.e., 3x = 2.

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem (Again)

• Solve $A\mathbf{x} = \mathbf{b}$.

Easy 1D version

- Solve 3x = 2.
- Let $f(x) = \frac{3}{2}x^2 2x$.

- Then f'(x) = 3x 2.
- Minimum occurs when 0 = f'(x) = 3x 2, i.e., 3x = 2.
- The minimizer is the solution!

Adam Larios (UNL) Scientific Computing 6 June 2019

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

ullet This will work, so long as A is symmetric and positive-definitive.

Convergence?

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!

Convergence?

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:

Convergence?

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:
 - Steepest Descent (Multivariable Calculus)

Convergence?

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:
 - Steepest Descent (Multivariable Calculus)
 - Conjugate Gradient (Krylov Subspaces)

Convergence?

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:
 - Steepest Descent (Multivariable Calculus)
 - Conjugate Gradient (Krylov Subspaces)

Convergence?

Problem: Rate depends heavily on eigenvalue structure.

Scientific Computing Adam Larios (UNL) 6 June 2019

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:
 - Steepest Descent (Multivariable Calculus)
 - Conjugate Gradient (Krylov Subspaces)

Convergence?

- Problem: Rate depends heavily on eigenvalue structure.
- Idea: Solve MAx = Mb (M invertible) instead.

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:
 - Steepest Descent (Multivariable Calculus)
 - Conjugate Gradient (Krylov Subspaces)

Convergence?

- Problem: Rate depends heavily on eigenvalue structure.
- Idea: Solve MAx = Mb (M invertible) instead.
- ullet New problem: Find M so that MA has a better eigenvalue structure.

Problem 1

• Solve $A\mathbf{x} = \mathbf{b}$.

Problem 2

• Minimize $\frac{1}{2}A\mathbf{x} \cdot \mathbf{x} - \mathbf{b} \cdot \mathbf{x}$.

36 / 37

- ullet This will work, so long as A is symmetric and positive-definitive.
- We can now have fun with optimization techniques!
- Examples:
 - Steepest Descent (Multivariable Calculus)
 - Conjugate Gradient (Krylov Subspaces)

Convergence?

- Problem: Rate depends heavily on eigenvalue structure.
- Idea: Solve MAx = Mb (M invertible) instead.
- ullet New problem: Find M so that MA has a better eigenvalue structure.
- Again we can play with spectral theory!

•
$$A\mathbf{x} = \mathbf{b}$$

$$Q\mathbf{x}_{k+1} = (Q-A)\mathbf{x}_k + \mathbf{b}$$

Observations

• Computers can do simple mathematics quickly.

•
$$A\mathbf{x} = \mathbf{b}$$

$$Q\mathbf{x}_{k+1} = (Q-A)\mathbf{x}_k + \mathbf{b}$$

Observations

- Computers can do simple mathematics quickly.
- One must find creative solutions to make mathematics simple.

•
$$A\mathbf{x} = \mathbf{b}$$

$$Q\mathbf{x}_{k+1} = (Q-A)\mathbf{x}_k + \mathbf{b}$$

Observations

- Computers can do simple mathematics quickly.
- One must find creative solutions to make mathematics simple.
- Computational math presents new challenges. These problems can open doors to new mathematics!

•
$$A\mathbf{x} = \mathbf{b}$$

$$Q\mathbf{x}_{k+1} = (Q-A)\mathbf{x}_k + \mathbf{b}$$

Observations

- Computers can do simple mathematics quickly.
- One must find creative solutions to make mathematics simple.
- Computational math presents new challenges. These problems can open doors to new mathematics!

- $A\mathbf{x} = \mathbf{b}$
- $Q\mathbf{x}_{k+1} = (Q-A)\mathbf{x}_k + \mathbf{b}$

37 / 37

Observations

- Computers can do simple mathematics quickly.
- One must find creative solutions to make mathematics simple.
- Computational math presents new challenges. These problems can open doors to new mathematics!

Thank you!