

# Basics of Neural Network Programming

# **Binary Classification**

#### Binary Classification



1 (cat) vs 0 (non cat)



### Notation



# Basics of Neural Network Programming

# Logistic Regression

# Logistic Regression



# Basics of Neural Network Programming

# Logistic Regression cost function

### Logistic Regression cost function

$$\hat{y} = \sigma(w^T x + b)$$
, where  $\sigma(z) = \frac{1}{1 + e^{-z}}$ 

Given 
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want  $\hat{y}^{(i)} \approx y^{(i)}$ .

Loss (error) function:



# Basics of Neural Network Programming

#### **Gradient Descent**

#### Gradient Descent

Recap: 
$$\hat{y} = \sigma(w^T x + b)$$
,  $\sigma(z) = \frac{1}{1 + e^{-z}}$ 

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize I(w, b)



#### Gradient Descent





# Basics of Neural Network Programming

Derivatives

deeplearning.ai

#### Intuition about derivatives





# Basics of Neural Network Programming

More derivatives examples

#### Intuition about derivatives



# More derivative examples



# Basics of Neural Network Programming

# Computation Graph

### Computation Graph



# Basics of Neural Network Programming

Derivatives with a Computation Graph

deeplearning.ai

### Computing derivatives



### Computing derivatives





# Basics of Neural Network Programming

deeplearning.ai

# Logistic Regression Gradient descent

### Logistic regression recap

$$z = w^{T}x + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

### Logistic regression derivatives





# Basics of Neural Network Programming

Gradient descent on m examples

## Logistic regression on m examples

## Logistic regression on m examples



# Basics of Neural Network Programming

Vectorizing Logistic Regression

### Vectorizing Logistic Regression

$$z^{(1)} = w^T x^{(1)} + b$$
  $z^{(2)} = w^T x^{(2)} + b$   $z^{(3)} = w^T x^{(3)} + b$   
 $a^{(1)} = \sigma(z^{(1)})$   $a^{(2)} = \sigma(z^{(2)})$   $a^{(3)} = \sigma(z^{(3)})$ 



# Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

# Vectorizing Logistic Regression

#### Implementing Logistic Regression

```
J = 0, dw_1 = 0, dw_2 = 0, db = 0
for i = 1 to m:
      z^{(i)} = w^T x^{(i)} + h
      a^{(i)} = \sigma(z^{(i)})
      J = -[y^{(i)} \log a^{(i)} + (1 - y^{(i)}) \log(1 - a^{(i)})]
      dz^{(i)} = a^{(i)} - v^{(i)}
      dw_1 += x_1^{(i)} dz^{(i)}
      dw_2 += x_2^{(i)} dz^{(i)}
      db += dz^{(i)}
J = J/m, dw_1 = dw_1/m, dw_2 = dw_2/m
db = db/m
```



# Basics of Neural Network Programming

# Broadcasting in Python

#### Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

```
cal = A.sum(axis = 0)
percentage = 100*A/(cal.reshape(1,4))
```

### Broadcasting example

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + 100$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 & 200 & 300 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 100 \\ 200 \end{bmatrix}$$

# General Principle



# Basics of Neural Network Programming

A note on python/ numpy vectors

# Python Demo

### Python / numpy vectors

```
import numpy as np
a = np.random.randn(5)
a = np.random.randn((5,1))
a = np.random.randn((1,5))
assert (a.shape = (5,1))
```