Yeo Ying Xuan 1003835

50.007 Machine Learning Homework 4

Q1

Case: All nodes take 2 different values

Node	Number of free parameters
Α	2 - 1 = 1
В	2 - 1 = 1
С	2 - 1 = 1
D	2 - 1 = 1
E	$2 \cdot 2 \cdot 2 \cdot (2-1) = 8$
F	2 - 1 = 1
G	$2\cdot 2\cdot (2-1)=4$
Н	$2 \cdot 2 \cdot (2-1) = 4$
I	$2 \cdot 2 \cdot (2-1) = 4$

Number of free parameters in this Bayesian network = 1+1+1+1+8+1+4+4+4= 25

Case: Nodes D and F take 4 different values, all other nodes take 2 different values

Node	Number of free parameters
Α	2 - 1 = 1
В	2 - 1 = 1
С	2 - 1 = 1
D	4 - 1 = 3
E	$2 \cdot 2 \cdot 2 \cdot (2-1) = 8$
F	4 - 1 = 3
G	$4 \cdot 2 \cdot (2-1) = 8$
Н	$4 \cdot 2 \cdot (2-1) = 8$
I	$2 \cdot 2 \cdot (2-1) = 4$

Number of free parameters in this Bayesian network = 1+1+1+3+8+3+8+4= 37 Without knowing the actual value of any node, A and F are independent of each other. There are two possible paths to get from node A to node F.

- Looking at the path $A \to E \to H \to F$, there is a closed gate at node H (ie. $\to H \leftarrow$).
- Looking at the path $A \to E \to G \to I \to H \to F$, there is a closed gate at node I (ie. $\to I \leftarrow$).

If we know the value of node C and I, A and F are dependent of each other.

- Looking at the path $A \to E \to G \to I \to H \to F$, the gate at node I (ie. $\to I \leftarrow$) is now an open gate.

Q3

$$P(E = 1 | C = 2) = \frac{P(E = 1, C = 2)}{P(C = 2)}$$

$$P(E, C) = \sum_{A,B} P(E | A, B, C) \cdot P(C) \cdot P(A) \cdot P(B)$$

$$P(E = 1, C = 2)$$

$$= \sum_{A,B} P(E = 1|A, B, C = 2) \cdot P(C = 2) \cdot P(A) \cdot P(B)$$

$$= P(E = 1|A = 1, B = 1, C = 2) \cdot P(C = 2) \cdot P(A = 1) \cdot P(B = 1)$$

$$+P(E = 1|A = 1, B = 2, C = 2) \cdot P(C = 2) \cdot P(A = 1) \cdot P(B = 2)$$

$$+P(E = 1|A = 2, B = 1, C = 2) \cdot P(C = 2) \cdot P(A = 2) \cdot P(B = 1)$$

$$+P(E = 1|A = 2, B = 2, C = 2) \cdot P(C = 2) \cdot P(A = 2) \cdot P(B = 2)$$

$$= 0.3 \cdot 0.8 \cdot 0.2 \cdot 0.5$$

$$+0.0 \cdot 0.8 \cdot 0.2 \cdot 0.5$$

$$+0.6 \cdot 0.8 \cdot 0.8 \cdot 0.5$$

$$+0.5 \cdot 0.8 \cdot 0.8 \cdot 0.5$$

$$= 0.024 + 0.0 + 0.192 + 0.16$$

$$= 0.376$$

$$P(E = 1 | C = 2)$$

$$= \frac{P(E = 1, C = 2)}{P(C = 2)}$$

$$= \frac{0.376}{0.8}$$

$$= 0.47$$

Node A

1	2
2	1
3	3

Node B

1	2	
1	1	
$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{2}$	

Node C

1	2
7	5
12	$\overline{12}$

Node D

1	2
7	5
$\overline{12}$	$\overline{12}$

Node E

11000 E				
Α	В	С	E	
			1	2
1	1	1	0	1
1	1	2	1	1
			$\overline{2}$	$\overline{2}$
1	2	1	1	2
			$\frac{\overline{3}}{3}$	$\frac{\overline{3}}{3}$
1	2	2	0	1
2	1	1	1	0
2	1	2	1	0
2	2	1	1	0
2	2	2	0	1

Node F

1	2
1	1
$\frac{\overline{2}}{2}$	7

Node G

D	E	G		
		1	2	
1	1	0	1	
1	2	5	1	
		- 6	- 6	
2	1	1	3	
		$\overline{4}$	$\overline{4}$	
2	2	0	1	

Node H

Е	F	Н	
		1	2
1	1	1	0
1	2	3_	1_
		4	4
2	1	3	2
		5	5
2	2	1	1
		$\overline{2}$	$\overline{2}$

Node I

G	Н	I	
		1	2
1	1	$\frac{1}{2}$	$\frac{1}{2}$
1	2	$\frac{1}{2}$	$\frac{1}{2}$
2	1	$\frac{1}{2}$	$\frac{1}{2}$
2	2	$\frac{1}{2}$	$\frac{1}{2}$