1 Field extensions and algebraic elements

1.1 Field extensions

Definition 1 (Field extension). When K and L are fields, we say that L is an <u>extension</u> of K if there is a homomorphism $\varphi: K \to L$. We then talk about the field extension (φ, K, L) .

Definition 2 (Degree, finite extension). Suppose that L: K is a field extension. We define the <u>degree</u> of L: K to be the dimension of L as a vector space over K. We use the notation [L:K] to denote the <u>degree</u> of L: K. Further, we say that L: K is a finite extension if $[L:K] < \infty$.

Definition 3 (Tower, intermediate field). We say that M:L:K is a <u>tower</u> of field extensions if M:L and L:K are field extensions, and in this case we say that L is an <u>intermediate field</u> (relative to the extension M:K)

1.2 Algebraic elements

Definition 4 (Algebraic/transcendental element). Suppose that L: K is a field extension with associated embedding φ . Suppose also that $\alpha \in L$.

- (i) We say that α is algebraic over K when α is the root of $\varphi(f)$ for some non-zero polynomial $f \in K[t]$.
- (ii) If α is not algebraic over K, then we say α is <u>transcendental</u> over K.
- (iii) When every element of L is algebraic over K, we say that the field L is algebraic over K.

Definition 5 (Evaluation map). Suppose that L: K is a field extension with $K \subseteq L$, and that $\alpha \in L$. We define the evaluation map $E_{\alpha}: K[t] \to L$ by putting $E_{\alpha}(f) = f(\alpha)$ for each $f \in K[t]$.

Definition 6 (Minimal polynomial). Suppose that L: K is a field extension with $K \subseteq L$, and suppose that $\alpha \in L$ is algebraic over K. Then the minimal polynomial of α over K is the unique monic polynomial $m_{\alpha}(K)$ in K[t] having the property that $\ker(E_{\alpha}) = (m_{\alpha}(K))$.

Definition 7 (Smallest subring/subfield). Let L: K be a field extension with $K \subseteq L$.

- (i) When $\alpha \in L$, we denote by $K[\alpha]$ the <u>smallest subring of L containing K and α </u>, and by $K(\alpha)$ the smallest subfield of L containing K and α ;
- (ii) More generally, when $A \subseteq L$, we denote by K[A] the <u>smallest subring of L containing K and A</u>, and by K(A) the smallest subfield of L containing K and \overline{A} .

2 Review of finite fields and tests for irreducibility

Definition 8 (Characteristic). Let K be a field with additive identity 0_K and multiplicative identity 1_K . When $n \in \mathbb{N}$, we write $n \cdot 1_K$ to denote $1_K + \ldots + 1_K$ (as an n-fold sum). We define the <u>characteristic</u> of K, denoted by $\operatorname{char}(K)$, to be the smallest positive integer m with the property that $m \cdot 1_K = 0_K$; if no such integer m exists, we define the characteristic of K to be 0.

Definition 9 (Highest common factor, content, primitive). Let R be a UFD. When $a_0, \ldots, a_n \in R$ are not all 0, we define as a highest common factor of a_0, \ldots, a_n (written $hcf(a_0, \ldots, a_n)$) any element $c \in R$ satisfying

- (i) $c \mid a_i \ (0 \le i \le n)$, and
- (ii) whenever $d \mid a_i \ (0 \le i \le n)$, then $d \mid c$.

When $f = a_0 + a_1X + \ldots + a_nX^n$ is a non-zero polynomial in R[X], we define a <u>content</u> of f to be any $hcf(a_0, \ldots, a_n)$. We say that $f \in R[X]$ is <u>primitive</u> if $f \neq 0$ and the content of f is divisible only by units of R.

3 Extending field homomorphisms and the Galois group of an extension

3 Extending field homomorphisms and the Galois group of an extension

Definition 16 (Extension of field homomorphism, isomorphic field extensions). For i = 1 and 2, let $L_i : K_i$ be a field extension relative to the embedding $\varphi_i : K_i \to L_i$. Suppose that $\sigma : K_1 \to K_2$ and $\tau : L_1 \to L_2$ are isomorphisms. We say that $\underline{\tau}$ extends $\underline{\sigma}$ if $\tau \circ \varphi_1 = \varphi_2 \circ \sigma$. In such circumstances, we say that $L_1 : K_1$ and $L_2 : K_2$ are isomorphic field extensions.

When $\sigma: K_1 \to K_2$ and $\tau: L_1 \to L_2$ are homomorphisms (instead of isomorphisms), then $\underline{\tau}$ extends σ as a homomorphism of fields when the isomorphism $\tau: L_1 \to L'_1 = \tau(L_1)$ extends the isomorphism $\sigma: K_1 \to \overline{K'_1} = \sigma(K_1)$.

Definition 17 (F-homomorphism). Let L: K be a field extension relative to the embedding $\varphi: K \to L$, and let M be a subfield of L containing $\varphi(K)$. Then, when $\sigma: M \to L$ is a homomorphism, we say that σ is a K-homomorphism if σ leaves $\varphi(K)$ pointwise fixed, which is to say that for all $\alpha \in \varphi(K)$, one has $\sigma(\alpha) = \alpha$.

4 Algebraic closures

4.1 The definition of an algebraic closure, and Zorn's Lemma

Definition 18 (Algebraically closed field, algebraic closure). Let M be a field.

- (i) We say that M is algebraically closed if every non-constant polynomial $f \in M[t]$ has a root in M.
- (ii) We say that M is an algebraic closure of K if M:K is an algebraic field extension having the property that M is algebraically closed.

Definition 19 (Chain). Suppose that X is a nonempty, partially ordered set with \leq denoting the partial ordering. A <u>chain</u> C in X is a collection of elements $\{a_i\}_{i\in I}$ of X having the property that for every $i, j \in I$, either $a_i \leq a_i$ or $a_j \leq a_i$.

4.2 The existence of an algebraic closure

Definition 20 (Algebraic closure of K). When K is a field, an algebraic extension \overline{K} : K that is algebraically closed is called an algebraic closure of K.

5 Splitting field extensions

Definition 21 (Splitting field, splitting field extension). Suppose that L: K is a field extension relative to the embedding $\varphi: K \to L$, and $f \in K[t] \setminus K$.

- (i) We say that f splits over L if $\varphi(f) = \lambda(t \alpha_1) \cdots (t \alpha_n)$, for some $\lambda \in \varphi(K)$ and $\alpha_1, \ldots, \alpha_n \in L$.
- (ii) Suppose that f splits over L, and let M be a field with $\varphi(K) \subseteq M \subseteq L$. We say that M: K is a splitting field extension for f if M is the smallest subfield of L containing $\varphi(K)$ over which f splits.
- (iii) More generally, suppose that $S \subseteq K[t] \setminus K$ has the property that every $f \in S$ splits over L. Let M be a field with $\varphi(K) \subseteq M \subseteq L$. We say that M : K is a splitting field extension for S if M is the smallest subfield of L containing $\varphi(K)$ over which every polynomial $f \in S$ splits.

6 Normal extensions and composita

6.1 Normal extensions

Definition 22 (Normal extension). The extension L: K is <u>normal</u> if it is algebraic, and every irreducible polynomial $f \in K[t]$ either splits over L or has no root in L.

6.2 Composita of field extensions

Definition 23 (Compositum). Let K_1 and K_2 be fields contained in some field L. The <u>compositum</u> of K_1 and K_2 in L, denoted by K_1K_2 , is the smallest subfield of L containing both K_1 and K_2 .

7 Separability

Definition 24 (Separable). Let K be a field.

- (i) An irreducible polynomial $f \in K[t]$ is <u>separable over K</u> if it has no multiple roots, meaning that $f = \lambda(t \alpha_1)(t \alpha_2) \cdots (t \alpha_d)$, where $\alpha_1, \ldots, \alpha_d \in \overline{K}$ are distinct.
- (ii) A non-zero polynomial $f \in K[t]$ is <u>separable over K</u> if its irreducible factors in K[t] are separable over K.
- (iii) When L: K is a field extension, we say that $\alpha \in L$ is <u>separable over K</u> when α is algebraic over K and $m_{\alpha}(K)$ is separable.
- (iv) An algebraic extension L: K is a separable extension if every $\alpha \in L$ is separable over K.

8 Inseparable polynomials, differentiation, and the Frobenius map

8.1 Inseparable polynomials and differentiation

Definition 25 (Inseparable). A polynomial $f \in K[t]$ is inseparable over K if f is not separable over K, meaning that f has an irreducible factor $g \in K[t]$ having the property that g has fewer than $\deg g$ distinct roots in K.

Definition 26 (Formal derivative). We define the derivative operator $\mathcal{D}: K[t] \to K[t]$ by

$$\mathcal{D}\left(\sum_{k=0}^{n} a_k t^k\right) = \sum_{k=1}^{n} k a_k t^{k-1}.$$

8.2 The Frobenius map

Definition 27 (Frobenius map). Suppose that $\operatorname{char}(K) = p > 0$. The <u>Frobenius map</u> $\phi : K \to K$ is defined by $\phi(\alpha) = \alpha^p$.

9 The Primitive Element Theorem

Definition 28 (Simple extension). Suppose L: K is a field extension relative to the embedding $\varphi: K \to L$. We say that L: K is a simple extension if there is some $\gamma \in L$ having the property that $L = \varphi(K)(\gamma)$.

10 Fixed fields and Galois extensions

Definition 29 (Fixed field). Let L: K be a field extension. When G is a subgroup of Aut(L), we define the fixed field of G to be

$$Fix_L(G) = \{ \alpha \in L : \sigma(\alpha) = \alpha \text{ for all } \sigma \in G \}.$$

Definition 30 (Galois extension). When L: K is a field extension, we say that L: K is a <u>Galois extension</u> if it is an extension that is normal and separable.

11 The main theorems of Galois theory

11.1 The Fundamental Theorem

Definition 31. Suppose that L: K is a field extension. When G is a subgroup of Aut(L), we write $\phi(G)$ for $Fix_L(G)$, and when $L: M: K_0$ is a tower of field extensions with $K_0 = \phi(Gal(L:K))$, we write $\gamma(M)$ for Gal(L:M).

Definition 32 (Galois group of polynomial). When $f \in K[t]$ and L : K is a splitting field extension for f, we define the Galois group of the polynomial f over K to be $\operatorname{Gal}_K(f) = \operatorname{Gal}(L : K)$.

12 Solvability by radicals: polynomials of degree 2, 3 and 4

Definition 33 (Radical element/extension). Suppose that L: K is a field extension, and $\beta \in L$. We say that β is <u>radical</u> over K when $\beta^n \in K$ for some $n \in \mathbb{N}$ (so $\beta = \alpha^{1/n}$ for some $\alpha \in K$ and some $n \in \mathbb{N}$). We say that L: K is an extension by <u>radicals</u> when there is a tower of field extensions $L = L_r : L_{r-1} : \cdots : L_0 = K$ such that $L_i = \overline{L_{i-1}(\beta_i)}$ with β_i radical over L_{i-1} . We say $f \in K[t]$ is <u>solvable by radicals</u> if there is a radical extension of K over which f splits.

13 Solvability and solubility

Definition 34 (Soluble group). A finite group G is <u>soluble</u> if there is a series of groups

$$\{id\} = G_0 < G_1 < \dots < G_n = G,$$

with the property that $G_i \subseteq G_{i+1}$ and G_{i+1}/G_i is abelian $(0 \le i < n)$.

Definition 35 (Cyclic extension). The extension L: K is <u>cyclic</u> if L: K is a Galois extension and Gal(L: K) is a cyclic group.