Prolog, pt 2: Unification; Resolution; Arithmetic

CS 440: Programming Languages and Translators, Spring 2020

4/9: posted

1. Sources for Study¹

- Read Chapters 1 and 2 of *Learn Prolog Now*: www.learnprolognow.org/
- SWI Prolog: http://www.swi-prolog.org/

2. Review

- Prolog is a programming language based on logic.
 - Its core is as a **declarative** language: Instead of writing a program, you write out the specification for what a legal output looks like.
 - To execute a query (answer the question "Is there a value that satisfies ...(property)...?"), Prolog does a backtracking search to find a value that satisfies the query.
 - For efficiency, Prolog does have some imperative features (ordering of the database of facts and rules; left-to-right search to satisfy the requirements of a rule). (Plus cuts, later today.)
- To form predicates, Prolog builds up from primitive predicates $P(a_1, a_2, ..., a_n)$, (and $e_1 < e_2$, etc.).
 - A fact declares that some predicate is true. E.g., food(pizza).
 - A rule declares an implication. A rule has the form $q : -p_1, p_2, ..., p_n$ where q is the conclusion and the p's are the antecedents. The semantics are that if all the p's are true, then q is true.
 - E.g., mammal(X) := dog(X). % if X is a dog then X is a mammal; i.e., all dogs are mammals.

3. Atoms

- Not mentioned last time (see Ch. 1 of Learn Prolog Now)
- Atoms are basically symbols
 - Named constants like x_yz or 'xy z' (spaces are ok if in single quotes). First symbol is lower-case letter; underscores and digits ok
 - Numerals like 27. (Note '27' is not a numeral.)
 - Variables like X yz, XYZ. First symbol is upper-case letter or underscore.
 - Note just plain underscore _ is treated differently. (Basically as a don't-care variable; we'll look at this later.)
 - Special symbols like @,; Generally have some special meaning.

¹ I also used *Programming Language Pragmatics*, 4th ed., Michael L. Scott as a reference.

4. Unification in Prolog

- The same as unification in Lecture 16 and in the Final Project.²
 - Textual operation where we try to match terms built up from constants, numerals, variables, compound terms (have a "functor" name and parenthesized arguments, as in f(a, b)).
 - (Not seen yet: Prolog also has lists.)
- Terms without variables have to match exactly: $f(1, 2) \equiv f(1, 2)$ but $\equiv f(2, 1)$.
- Variables inside terms may have to be given values to get matching ("instantiating" variables). These might be ground terms (with no variables) or might include other variables.
 - E.g., $f(X, Y) \equiv f(g(z), h(W))$ by using $X \equiv g(z)$ and $Y \equiv h(W)$.
- If used multiple times in the same terms, a variable must be instantiated to the same value everywhere.
 - E.g., $f(X, X) \equiv f(3, 3)$ is okay but $f(X, 5) \equiv f(5, 3)$ is not.
- Matching is syntactic, not semantic: $2+2 \not\equiv 4$ because they are different as pieces of text.

Unification Algorithm

- Review of the unification algorithm from Lecture 16:
- We're given some pairs of terms ("equations") and want to find a collection of substitutions that, when applied, makes each pair match simultaneously. E.g., $X \equiv g(Y)$, $g(g(8)) \equiv g(X)$ unify if $X \equiv g(8)$ and $Y \equiv 8$ because then the equations become $g(8) \equiv g(8)$, $g(g(W)) \equiv g(g(8))$.
- Given two terms, we can check for unification
 - Two named constants or two numerals must be exactly the same: $xyz \equiv xyz$ and $7 \equiv 7$.
 - (Evaluation of expressions is not taken into account, so $6+1 \not\equiv 7$.)
 - For two compound terms to unify, they must have the same function name ("functor," in Prolog), the same number of arguments, and the arguments must match elementwise.
 - E.g., for $f(t1, t2) \equiv f(u1, u2)$, we need $t1 \equiv u1$ and $t2 \equiv u2$. (The t's and u's are italicized to help make it clearer that they stand for terms; they aren't terms themselves.)
 - Similarly, $f(t1, t2, t3) \equiv f(u1, u2, u3)$ exactly when $t1 \equiv u1$, etc.
 - If we have a variable, say $X \equiv t$ (where t is a term), then we add a substitution $[X \mapsto t]$ to our set of substitutions. (This is true even if t is also a variable.)
 - However, before adding it to the set of substitutions, we apply [X → t] to all the substitutions
 we've built up so far and also to all the equations we're still trying to solve. We'll discuss this
 more in a moment.
 - If we don't have a variable, the only cases remaining can't unify because the two sides of the equation involve different kinds of terms. E.g., we might have a xyz ≡ 17, which fails to unify, so the whole attempt fails.

² Don't forget to look at the final project — the parser should be pretty easy to write. Pretty printing is annoying but not deep, conceptually. Unification is the hardest part.

Before adding a new substitution to our solution

- Recall that if we wanted to add a new substitution $[X \mapsto t]$ to our solution, we had to "apply it to all the substitutions we've built up so far and also to all the equations we're still trying to solve."
- Applying $[X \mapsto t]$ to the equations means applying it to each pair of terms in the problem set.
- Applying $[X \mapsto t]$ to the substitutions means applying it to the new term of each substitution.
- E.g., say we have the problem set $\{X \equiv 2, f(X) \equiv f(Y), g(X) \equiv g(X)\}$ and we currently have $\{[W \mapsto g(X)]\}$ as our set of substitutions so far. The equation $X \equiv 2$ tells us to add the substitution $[X \mapsto 2]$ to our solution but before we do that, we transform the (reduced) problem set $\{f(X) \equiv f(Y), g(X) \equiv g(X)\}$ to $\{f(2) \equiv f(Y), g(2) \equiv g(2)\}$ and the substitution set $\{[W \mapsto g(X)]\}$ to $\{[W \mapsto g(2)]\}$. Then we add $[X \mapsto 2]$ to the substitutions and get $\{[W \mapsto g(2)], [X \mapsto 2]\}$.
- This is done so that the leftover equations won't have any more occurrences of X to work on and so that the terms introduced by the substitutions won't introduce any occurrences of X.
- If we left around uses of X in the problem, we'd have to use the $X \equiv 2$ substitution anyway to make sure that the uses of X are compatible. E.g., we'd eventually have to turn $f(X) \equiv f(Y)$ into $f(2) \equiv f(Y)$ in order to figure out that $Y \equiv 2$; we might as well do it now.
- The same argument applies to the substitution $[W \mapsto g(X)]$. We don't have a W in the problem any more because we removed it before we added $[W \mapsto g(X)]$ to our solution. E.g., say we originally had $W \equiv g(X)$, so we changed it to the $g(X) \equiv g(X)$ that currently appears in the problem. If we leave $g(X) \equiv g(X)$ to solve later, we'll just have to change it to $g(2) \equiv g(2)$ anyway so we might as well do it now.

The occurs check (see Chapter 2 of Learn Prolog Now)

- There's one situation where applying a new substitution could get us into trouble.
- Take the equation $X \equiv f(X)$. If we just add $[X \mapsto f(X)]$ to our substitution list, then our eventual solution set of substitutions won't remove all X's when applied to the original problem.
- If we try to expand $X \equiv f(X)$ to get rid of the X on the rhs of the equation, the only solution involves having an infinite number of f's: $X \equiv f(f(f(...)))$. Clearly, we can't build that whole term when trying to solve our problem because it's an infinitely large term.
 - Note Haskell can handle infinitely long terms as long as we build them lazily and only work with some finite initial segment of the term, as in ones = 1 : ones, which in Prolog terms might be ones = cons(1, ones).
- If we want to make sure we don't try to build an infinite terms, before we add a substitution $[X \mapsto t]$ to our solution, we would have to do an **occurs check**: We'd inspect t to make sure it doesn't have any X's in it.
 - This process takes time linear in the size of t, so depending on how many terms our program has, the total time spent doing occurs checks might be large.
 - The usual thing done is to not do an occurs check and trust the programmer to not build infinite terms.
- SWI Prolog treats the equation X = f(X) as its own solution. (Try running it in an SWI Prolog session.)

Proving Goals in Prolog — The Resolution Principle

- The general process for proving some compound term like g(t) is
 - Step 1: Search the database for g(t) as a fact. More exactly, look for a fact that unifies with g(t). E.g., if we want to solve g(X) and find the fact g(12) in the database, then our search ends successfully with X ≡ 12 as the solution.
 - Step 2: If g(t) doesn't match a fact, search through the database for a rule whose goal matches (i.e., unifies with) g(t). Say the rule is g(u): -p₁, p₂, ..., p_n. Then continue the proof process, but with p₁, p₂, ..., p_n as our list of goals.
- In the general case, we're trying to prove a list of goals $g_1, g_2, \dots g_m$. We first try to prove g_1 as above, first as a fact, then as the goal of a rule $g := p_1, p_2, \dots, p_n$. In that case, we remove g_1 from our list of goals and replace it with p_1, p_2, \dots, p_n . Our overall list of goals is now $p_1, p_2, \dots, p_n, g_2, \dots g_m$, which might be longer, but presumably the p's will be easier to prove.
- This process of replacing a goal with some (hopefully) simpler goals is called the Resolution Principle.

Arithmetic

- Arithmetic terms are written in the usual way in Prolog (numerals, +, -, *, /, parentheses).
- There is a difference between unifying with an expression and evaluating an expression.
- The query X = 2+2 succeeds and binds X to literally 2+2 because = means unification, which is a textual operation.
- The query X is 2+2 also succeeds but calculates 2+2 and binds X to the result, 4.
 - The expression to calculate must be on the right; the variable must be to the left.
 - The query 2+2 is X fails with a message about X not being instantiated (and therefore doesn't look like an expression that Prolog can evaluate. On the other hand, X = 2+2, Y is X succeeds because it instantiates X to an expression and then evaluates the expression to yield Y. with X = 2+2 and Y = 4, since X is instantiated to an expression.
 - You can have a numeral constant to the left of is, but not a complicated expression. E.g., 4 is 2+2 succeeds but 2+2 is 2+2 fails because the right hand 2+2 evaluates to 4, which does not unify with the left-hand 2+2.

Comparisons

- You can compare arithmetic expressions using and <, =<, >, and >= (where =< means ≤). Both sides
 of the operator are evaluated, e.g., 2+2 < 7*3 yields true.
- For arithmetic equality, you probably don't want = or \= because these are unification operations, e.g., 2+2 \= 4 is false and 2+2 \= 4 is true.
- For arithmetic equality, the operators are = := and = !=. (The equal signs on both sides are mnemonic that both operands get evaluated.) E.g., 2+2 = := 4 and 2+2 = := 5-1 are both true.

Activity Problems for Lecture 22

• To be posted.