Stat 346/446: Theoretical Statistics II: Homework 7 Solutions

Textbook Exercises

7.62 Let X_1, \ldots, X_n be a random sample from a $\mathcal{N}(\theta, \sigma^2)$ population, σ^2 known. Consider estimating θ using squared error loss. Let $\pi(\theta)$ be a $\mathcal{N}(\mu, \tau^2)$ prior distribution on θ and let δ^{π} be the Bayes estimator of θ . Verify the following formulas for the risk function and Bayes risk.

(a) (346 : 2 pts, 446 : 1 pts.) For any constants a and b, the estimator $\delta(x) = a\bar{X} + b$ has risk function

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + (b - (1 - a)\theta)^2.$$

Let $\delta(\mathbf{X}) = a\bar{X} + b$, where \bar{X} is the sample mean. We compute the risk under squared error loss:

$$R(\theta, \delta) = \mathbb{E}_{\theta}[(\delta(\mathbf{X}) - \theta)^2].$$

Since $\bar{X} \sim \mathcal{N}(\theta, \sigma^2/n)$, we have:

$$\mathbb{E}[\delta(\mathbf{X})] = a\theta + b, \quad \operatorname{Var}[\delta(\mathbf{X})] = a^2 \cdot \frac{\sigma^2}{n}.$$

By the bias-variance decomposition:

$$R(\theta, \delta) = \operatorname{Var}(\delta(\mathbf{X})) + (\mathbb{E}[\delta(\mathbf{X})] - \theta)^2 = a^2 \frac{\sigma^2}{n} + (a\theta + b - \theta)^2.$$

Simplifying the squared bias term:

$$(a\theta + b - \theta)^2 = (b - (1 - a)\theta)^2.$$

Therefore, the risk is:

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + (b - (1 - a)\theta)^2.$$

(b) (346:2 pts, 446:1 pts.) Let $\eta = \frac{\sigma^2}{n\tau^2 + \sigma^2}$. The risk function for the Bayes estimator is

$$R(\theta, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 (\theta - \mu)^2.$$

The Bayes estimator under squared error loss is the posterior mean. Posterior:

$$\theta \mid \bar{X} \sim \mathcal{N} \left(\frac{n\tau^2 \bar{X} + \sigma^2 \mu}{n\tau^2 + \sigma^2}, \quad \frac{\sigma^2 \tau^2}{n\tau^2 + \sigma^2} \right)$$

So the Bayes estimator $\delta^{\pi}(X)$ is:

$$\delta^{\pi}(X) = \mathbb{E}[\theta \mid \bar{X}] = (1 - \eta)\bar{X} + \eta\mu$$

where

$$\eta = \frac{\sigma^2}{n\tau^2 + \sigma^2}$$

This is of the form $a\bar{X} + b$ with: $a = 1 - \eta$ and $b = \eta \mu$. Using the result from part (a), we get:

$$R(\theta, \delta^{\pi}) = (1 - \eta)^{2} \frac{\sigma^{2}}{n} + (\eta \mu - \eta \theta)^{2} = (1 - \eta)^{2} \frac{\sigma^{2}}{n} + \eta^{2} (\theta - \mu)^{2}.$$

So the risk function is:

$$R(\theta, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 (\theta - \mu)^2.$$

(c) (346 & 446 : 1 pts.) The Bayes risk for the Bayes estimator is

$$B(\pi, \delta^{\pi}) = \tau^2 \eta.$$

The Bayes risk is the expected risk under the prior:

$$B(\pi, \delta^{\pi}) = \mathbb{E}_{\pi}[R(\theta, \delta^{\pi})].$$

Using the expression from (b):

$$B(\pi, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 \mathbb{E}_{\pi} [(\theta - \mu)^2].$$

Since $\theta \sim \mathcal{N}(\mu, \tau^2)$, we have $\mathbb{E}_{\pi}[(\theta - \mu)^2] = \tau^2$, so:

$$B(\pi, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 \tau^2.$$

Now recall:

$$\eta = \frac{\sigma^2}{n\tau^2 + \sigma^2} \Rightarrow (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 \tau^2 = \tau^2 \eta.$$

Therefore, the Bayes risk is:

$$B(\pi, \delta^{\pi}) = \tau^2 \eta$$

7.65 A loss function investigated by Zellner (1986) is the LINEX (LINear-EXponential) loss, a loss function that can handle asymmetries in a smooth way. The LINEX loss is given by

$$L(\theta, a) = e^{c(a-\theta)} - c(a-\theta) - 1,$$

where c is a positive constant. As the constant c varies, the loss function varies from very asymmetric to almost symmetric.

- (a) (446 : 1 pts.) For c = 0.2, 0.5, 1, plot $L(\theta, a)$ as a function of $a \theta$. The plot is in Figure 1
- (b) (446: 2 pts.) If $X \sim F(x|\theta)$, show that the Bayes estimator of θ , using a prior π , is given by

$$\delta^{\pi}(X) = -\frac{1}{c} \log \mathbb{E}(e^{-c\theta} \mid X).$$

We want to minimize the posterior expected loss:

$$\delta^\pi(X) = \arg\min_a \mathbb{E}[L(\theta, a) \mid X] = \arg\min_a \left\{ \mathbb{E}[e^{c(a-\theta)} \mid X] - c(a - \mathbb{E}[\theta \mid X]) - 1 \right\}.$$

Note that:

$$\mathbb{E}[L(\theta,a)\mid X] = e^{ca} \cdot \mathbb{E}[e^{-c\theta}\mid X] - ca + c\mathbb{E}[\theta\mid X] - 1.$$

Figure 1: LINEX Loss Function

Taking derivative with respect to a:

$$\frac{d}{da}\mathbb{E}[L(\theta, a) \mid X] = ce^{ca}\mathbb{E}[e^{-c\theta} \mid X] - c.$$

Setting derivative to zero:

$$e^{ca}\mathbb{E}[e^{-c\theta} \mid X] = 1 \quad \Rightarrow \quad ca = -\log \mathbb{E}[e^{-c\theta} \mid X].$$

Thus, the Bayes estimator under LINEX loss is:

$$\delta^{\pi}(X) = -\frac{1}{c} \log \mathbb{E}[e^{-c\theta} \mid X].$$

(c) (446 : 1 pts.) Let X_1, \ldots, X_n be iid $\mathcal{N}(\theta, \sigma^2)$, where σ^2 is known, and suppose that θ has the noninformative prior $\pi(\theta) = 1$. Show that the Bayes estimator versus LINEX loss is given by

$$\delta^B(\bar{X}) = \bar{X} - \left(\frac{c\sigma^2}{2n}\right).$$

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, \sigma^2)$ and $\pi(\theta) = 1$ be the noninformative prior. Then the posterior distribution is:

$$\theta \mid \bar{X} \sim \mathcal{N}\left(\bar{X}, \frac{\sigma^2}{n}\right).$$

We want to compute:

$$\delta^B(\bar{X}) = -\frac{1}{c} \log \mathbb{E}[e^{-c\theta} \mid \bar{X}].$$

Since $\theta \mid \bar{X} \sim \mathcal{N}(\bar{X}, \sigma^2/n)$, we use the moment-generating function:

$$\mathbb{E}[e^{-c\theta} \mid \bar{X}] = \exp\left(-c\bar{X} + \frac{c^2\sigma^2}{2n}\right).$$

Taking log and negating:

$$\delta^B(\bar{X}) = -\frac{1}{c} \left(-c\bar{X} + \frac{c^2 \sigma^2}{2n} \right) = \bar{X} - \frac{c\sigma^2}{2n}.$$

Thus, the Bayes estimator is:

$$\delta^B(\bar{X}) = \bar{X} - \frac{c\sigma^2}{2n}$$

8.55 Let X have a $n(\theta, 1)$ distribution, and consider testing $H_0: \theta \ge \theta_0$ versus $H_1: \theta < \theta_0$. Use the loss function (8.3.13) and investigate the three tests that reject H_0 if $X < -z_{\alpha} + \theta_0$ for $\alpha = 0.1, 0.3$, and 0.5.

(a) (346: 2 pts, 446: 1 pts.) For b = c = 1, graph and compare their risk functions. Loss function (8.3.13):

$$L(\theta, a_0) = \begin{cases} 0, & \theta \ge \theta_0 \\ b(\theta_0 - \theta), & \theta < \theta_0 \end{cases} \qquad L(\theta, a_1) = \begin{cases} c(\theta - \theta_0)^2, & \theta \ge \theta_0 \\ 0, & \theta < \theta_0 \end{cases}$$

Let $\phi_{\alpha}(\theta) = \Phi(-z_{\alpha} + \theta_{0} - \theta)$. Then the risk function is

$$R(\theta) = \begin{cases} (1 - \phi_{\alpha}(\theta)) \cdot b(\theta_0 - \theta), & \theta < \theta_0 \\ \phi_{\alpha}(\theta) \cdot c(\theta - \theta_0)^2, & \theta \ge \theta_0 \end{cases}$$

The plot is in Figure 2, labeled as "b=1,c=1"

Figure 2: Risk Function

Choosing α affects how risk is distributed:

- Small α : conservative test, low Type I risk, high Type II risk.
- Large α : aggressive test, high Type I risk, low Type II risk.
- (b) (346:2 pts, 446:1 pts.) For b=3, c=1, graph and compare their risk functions. Use:

$$R(\theta) = \begin{cases} 3(1 - \Phi(-z_{\alpha} + \theta_{0} - \theta))(\theta_{0} - \theta), & \theta < \theta_{0} \\ \Phi(-z_{\alpha} + \theta_{0} - \theta)(\theta - \theta_{0})^{2}, & \theta \ge \theta_{0} \end{cases}$$

The plot is in Figure 2, labeled as "b=3,c=1"

With asymmetric loss (b = 3, c = 1), increasing α improves power and significantly lowers risk on the left, at the cost of modestly increasing risk on the right.

(c) (346 & 446 : 1 pts.) Graph and compare the power functions of the three tests to the risk functions in parts (a) and (b).

The plot is in Figure 3.

- 1. Power functions are unaffected by loss
 - Power depends on the test procedure (e.g., the critical region defined by α), not the loss function.
 - Hence, all curves for different b, c share the same shape and location.

Figure 3: Power Function

- 2. Risk functions are shaped by the loss
 - With **symmetric loss** (b = c), the risk is more balanced.
 - With asymmetric loss (b > c), the test prefers avoiding Type II error, leading to higher risk on the left $(\theta < \theta_0)$ and lower on the right.