Cpt S 422: Software Engineering Principles II Black-box testing – Part 3

Dr. Venera Arnaoudova

Black-box testing methods

- ✓ Equivalence Class Partitioning
- ✓ Boundary-Value Analysis
- ✓ Category-Partition
- ✓ Decision tables
- Cause-Effect Graphs
- Logic Functions

Cause-Effect Graphs Testing

Definition

- Graphical technique that helps derive decision tables
- Aim at supporting interaction with domain experts and the reverse engineering of specifications, for the purpose of testing.
- □ Identify causes (conditions on inputs, stimuli) and effects (outputs, changes in system state)
- Causes have to be stated in such a way to be either true or false (Boolean expression)
- Specifies explicitly (environmental, external) constraints on causes and effects
- Help select more "significant" subset of input-output combinations and build smaller decision tables

Structure of Cause-Effect Graphs

- A node is drawn for each cause and effect
- Nodes placed on opposite side of a sheet
- A line from a cause to an effect indicates that the cause is a necessary condition for the effect
- If a single effect has two or more causes, the logical relationship of the causes is annotated by symbols for logical and (^) and logical or (\vee) placed between lines
- □ A cause whose negation is necessary is shown by a logical not (~)
- A single cause may be necessary for many effects; a single effect may have many necessary causes.
- Intermediate nodes may be used to simplify the graph and its construction

Notation

Insurance Renewal Example

Another Table Example Insurance Renewal

	Condition Section		Action Section		
Variant	Claims	Age	Premium Increase \$	Send Warning	Cancel
1	0	25-	50	No	No
2	0	26+	25	No	No
3	1	25-	100	Yes	No
4	1	26+	50	No	No
5	2 to 4	25-	400	Yes	No
6	2 to 4	26+	200	Yes	No
7	5+	Any	0	No	Yes

Additional Constraints

EXACTLY ONE of A and B must be true

AT MOST ONE of A and B may be true

AT LEAST ONE of A and B must be true

A MASKS B, i.e., A => NOT B

A REQUIRES B, i.e., $A \Rightarrow B$

Another Example

- □ Input: The syntax of the function is LEVEL(A,B) where A is the height in meters of the water behind the dam and B is the number of centimeters of rain in the last 24-hour period.
- □ Processing: The function calculates whether the water level is (1) within a normal range, (2) too high, (3) too low
- □ Outputs: one of the following messages
 - > LEVEL = SAFE (for normal and low)
 - > LEVEL = HIGH
 - > INVALID SYNTAX

Identifying Causes

- Five first characters of command: LEVEL
- 2. The two parameters separated by a comma and enclosed in parentheses
- 3. The parameters A and B are real numbers such that the water level is calculated to be LOW
- 4. The parameter A and B are real numbers such that the water level is calculated to be NORMAL
- 5. The parameter A and B are real numbers such that the water level is calculated to be HIGH

Identifying Effects

- 1. "LEVEL = SAFE"
- 2. "LEVEL = HIGH"
- 3. "INVALID SYNTAX"

Cause-Effect Graph for LEVEL

Causes:

- 1. Five first characters of command: LEVEL
- 2. The two parameters separated by a comma and enclosed in parentheses
- 3. The parameter A and B are real numbers such that the water level is calculated to be LOW
- 4. The parameter A and B are real numbers such that the water level is calculated to be NORMAL
- 5. The parameter A and B are real numbers such that the water level is calculated to be HIGH

Effects:

- 1. "LEVEL = SAFE"
- 2. "LEVEL = HIGH"
- "INVALID SYNTAX"

Deriving a Decision Table

- □ A row for each cause or effect
- ☐ The columns correspond to test cases (variants)
- We define columns by examining each effect and listing all combinations (conjunctions) of causes that can lead to that effect
- E.g., two separate lines flow into effect E3, each corresponding to a test case, four lines flow into E1 but correspond to only two combinations

LEVEL Decision Table

Decision Table for Cause-and-effect Graph								
	Test 1	Test 2	Test 3	Test 4	Test 5			
Cause 1	T	T	T	F	T			
Cause 2	T	T	T	-	F			
Cause 3	T	F	F	-	-			
Cause 4	F	T	F	-	-			
Cause 5	F	F	T	-	-			
Effect 1	P	P	A	A	A			
Effect 2	A	A	P	A	A			
Effect 3	A	\mathbf{A}	A	P	P			

Discussion

- □ The Cause-Effect graph can be used to generate all possible combinations of causes and checking whether the effect corresponds to the specification
- It provides a test oracle and specifies constraints on outputs (effects), helping detecting wrong system states and action combinations
- If the graph is too large, for each admissible combination of effects, find some combinations of causes that cause that combination of effects by tracing back through the graph
- □ Because of additional constraints on graph, can be more restrictive than straight decision tables