放在多个商店销售,每个商店销售一种商品,有月销售量;

財 🥰 🤚 🥽 🤏 🏋

📔 <u>毛</u> 👊 👳 " 🎁 🔞 A A 🕀 🧟 tà) 🗾 📵

8 6 4 2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 38 38 40 42 44 48 48

显考核试卷(A卷)-2014年秋数据库-打印: 1,396 个字符。(受保护的视图)

8 6 4 2 2 4 6 8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44 48 48

课号: 10014502 课名: 数据库系统原理 考试考查: 考试

年级_____专业__

一、 数据库设计(共10分)

某商业集团的销售管理中,有如下情况。

此卷选为:期中考试()、期终考试()、重考()试卷

商店信息包括: 商店编号、商店名、地址;

商品信息包括: 商品号、商品名、规格、单价;

职工信息包括:职工编号、姓名、性别、业绩。

商店与商品间存在"销售"联系,每个商店可销售多种商品,每种商品也可 放在多个商店销售,每个商店销售一种商品,有月销售量;

商店与职工间存在着"聘用"联系,每个商店有许多职工,每个职工只能在 一个商店工作,商店聘用职工有聘期和月薪。

- 1)请画出 E-R 图,并在图上注明属性、联系的类型。(6分)
- 2) 将 E-R 图转换成关系模型。(4分)

呈考核试卷(A卷)-2014年秋数据库-打印: 1,396 个字符。(受保护的视图)

里输入你要搜索的内容

8 8 4 2 2 2 4 8 8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44 48 48

在某一教学数据库中, 有如下三个关系:

S(SNO, SNAME, AGE, SEX, SDEPT), 其属性依次代表: 学生编号、学生姓

名、学生年龄、学生性别和学生所在院系;

二、 关系代数运算(共16分)

SC (SNO, CNO, GRADE), 其属性依次代表: 学生编号、课程编号和成绩; C(CNO, CNAME, TNAME), 其属性依次代表: 课程编号、课程名称和教师 名称。

试用关系代数写出下列查询:

- 1) 查询年龄大于23岁的男生学的学号与姓名;(5分)
- 2) 查询学号为89757学生所学课程的课程名与任课教师名;(5分)
- 3) 查询选修课程包含"李丽"老师所授课程的学生学号(6分)

8 6 4 2 2 4 6 8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44 48 48

三、 关系数据理论 (共48分)

- 1. 设有关系模式:
- R (职工名,项目名,工资,部门名,部门经理)

如果规定,每个职工可参加多个项目,各领一份工资;

每个项目只属于一个部门管理;

每个部门只有一个经理。

请回答以下问题:

- 1) 根据上述规定,写出关系模式 R 的基本函数依赖。(3分)
- 2) 找出关系模式 R 的主码。(3分)
- 3) 关系模式 R 最高达到了第几范式? 为什么? (5分)

如果 R 不属于 3NF, 请将 R 分解成 3NF。(5分)

8 8 4 2 2 4 8 8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44 45 48

请注意·来目 Internet 的文件可能包含病毒。除非蛇素要编辑,否则保持在受保护视图中比较安全, 启用编辑(E)

3. 已知关系模式 R<U, F>, U={A, B, C}, F = {A \rightarrow C, B \rightarrow C}。现有 R 的一 个分解ρ={AB, AC},请ρ是否具有无损连接性和保持函数依赖的分解特性,若 没有保证无损连接或没有保持函数依赖,请指出丢失了哪些信息或依赖关系。(12 分)

Ι

里输入你要搜索的内容

8 8 4 2 2 4 8 8 10 12 14 18 18 20 22 24 28 28 30 32 34 38 38 40 42 44 48 49

四、 并发控制理论 (共26分)

假设某银行卡交易数据库中,某客户的卡内有余额 X = 800 元,事务 T1 存 入 200 元, 事务 T2 取走 300 元, 具体执行时间如下。

T1	时间	T2
读以	tl	
	τ2.	读X
更新 X = X + 200	τ3	
	τ4	更新 X = X - 300

共6页,第5页

试完成下列要求:

- 1) 给出一种可串行调度,并给出执行结果; (9分)
- 2) 给出一种不可串行化的调度,并给出执行结果;(9分)
- 3)请说明并发控制是为了使得 DBMS 满足事务的 ACID 特性中的哪(几) 种特性?数据库恢复技术中的 REDO 和 UNDO 操作是为了保证 ACID 特性中的 哪两个? (8分)

同济大学课程考核试卷(A卷) 2015 - 2016 学年第一学期

号: 10014502 课名:数据库系统原理 考试考查:考试 此 为:期中考试()、期终考试(~)、重考()试卷

专业

关系数据理论 (共74分)

汇利超市信息系统中有如下关系模式 R.

超市编号,商品编号,商品库存量,区域编号,区域负责人)

如下的规定:

超市的每种商品只在该超市的一个区域销售。

超市的每个区域只有一个区域负责人。

超市的每种商品只有一个库存量。

!答以下问题:

- 1) 根据上述规定,写出关系模式 R 的基本函数依赖。(4分)
- 2) 找出关系模式 R 的候选码。(3分)
- 3) 关系模式 R 最高达到了第几范式? 为什么? (4分)
- 4) 如果 R 不属于 3NF, 请将 R 分解成 3NF。(4分)

【参考答案】

- 1) 每一种规定对应着一种函数依赖:
- (超市编号, 商品编号) →区域编号
- (超市编号,区域编号)→区域负责人
- (超市编号, 商品编号) →商品库存量
- 2) 由以上基本函数依赖可以得出 R 的候选码为: (超市编号,商品编号)
- 3) 由第二个函数依赖可以看出,存在非主属性对码的部分函数依赖,因此其 于第一范式, 即 1NF。
- 4) 若要满足 3NF, 需不存在非主属性对码的部分依赖和传递依赖。因此可将 分成如下两个关系模式:
- RI (超市编号,商品编号,区域编号,商品库存数量)
- R2(超市编号,区域编号,部门负责人)

里输入你要搜索的内容

T

找出关系模式 R 的候选码。(3分)

关系模式 R 最高达到了第几范式? 为什么?(4分)

根据上述规定,写出关系模式 R 的基本函数依赖。(4分)

加果 R 不属于 3NF,请将 R 分解成 3NF。(4分)

考答案】

与一种规定对应着一种函数依赖:

市编号,商品编号)→区域编号

市编号,区域编号)→区域负责人

市编号, 商品编号) →商品库存量

由以上基本函数依赖可以得出 R 的候选码为: (超市编号,商品编号)

由第二个函数依赖可以看出,存在非主属性对码的部分函数依赖,因此其只属

一范式,即 INF。

告要满足 3NF,需不存在非主属性对码的部分依赖和传递依赖。因此可将 R 拆

边心下两个关系模式:

(超市编号,商品编号,区域编号,商品库存数量)

(超市编号,区域编号,部门负责人)

居用编辑(E)

2. 有属性集 U = (A, B, C, D, E), 其上的函数依赖 F = {A → B, AB → CE → E, D → C), 求A', (12分)

【参考答案】

初始A的闭包集为(A);

对于 $A \rightarrow B$,因为 $A \leftarrow A$ 的闭包集中,因此将 B 加入,则 A 的闭包集为 $\{A,$ 对于 AB → CE, 首先将其分解为 AB → C 和 AB → E, 因为 AB 在 A 的闭包集 因此将 C、E 加入,则 A 的闭包集为 (A, B, C, E); 对于 $D \rightarrow C$,因为 D 不在 A 的闭包集中,因此本次求解结束;

再次扫描所有的函数依赖,已不能向闭包集中添加任何属性,因此 AT, = {A, C. El.

3. 已知关系模式 R<U, F>, U={A, B, C}, F = {A → C, B → C}。现有 R 的 分解ρ={AB, AC}] 请ρ是否具有无损连接性和保持函数依赖的分解特性,若 保证无损连接或没有保持函数依赖,请指出丢失了哪些信息或依赖关系。(15

【参考答案】

无损分解,但不保持函数依赖, B→C 的依赖关系丢失了。 判断过程参照教材 189 页的算法 6.4和 185 页的引理 6.3

(1)影响(1)

有属性集 U = (A, B, C, D, E), 其上的函数依赖 F = (A → B, AB → CE, C E, D → C), 求 A'... (12 分)

专答案】

A的闭包集为(A)。

 $FA \to B$, 因为 A 在 A 的团包集中,因此将 B 加入,则 A 的团包集为 $\{A, B\}_1$ $FAB \to CB$, 首先将其分解为 AB $FAB \to CB$, 因为 AB 在 A 的团包集中, $CB \to CB$ 和入,则 A 的团包集为 $\{A, B, C, E\}_1$

·D → C. 因为 D 不在 A 的闭包集中,因此本次求解结束。

(扫描所有的函数依赖、已不能向闭包集中添加任何属性、因此 A*, = (A, B, B)。

已知关系模式 R<U, F>,U={A, B, C},F = {A \rightarrow C, B \rightarrow C}。现有 R 的一个 $\stackrel{?}{\downarrow}$ P = {AB, AC},请 P 是否具有无损连接性和保持函数依赖的分解特性,若没有 E无损连接或没有保持函数依赖,请指出丢失了哪些信息或依赖关系。(15 分)

大考答案】

l分解,但不保持函数依赖。B→C 的依赖关系丢失了。

f过程参照教材 189 页的算法 6.4和 185 页的引理 6.3

构造初始表如下。

A	3	¢.
a ,	4.	b
k ,	ba	•

对于 A → C. 可使 b.. 改为 a.. 即

A	3	c
•	A,	4
A.	bio	a .

对于 B → C. 每一行的第二列分量没有相同的. 所以表不改变。

此时可以发现,表中第一行成为 ai、ai、ai,所以分解具有无损连接性。

分解后的两个关系模式中 {A, B}和 {A, C}分别对应的函数依赖集为 {Φ}和 {C},其闭包不等价于 F的闭包,因此其不保持函数依赖,实际上是丢失了。

【参考答案】

首先求出 F 的极小化依赖 F={A → C, C → A, B → A};

不存在F中没出现的属性,也不存在依赖 X->A E F,且 XA=U,所以需要继续;

3	С
E:	b _{ij}
à	a ;

T使 ba改为 aa, 即

5	С
£;	£;
Ď _{tž}	E :

一行的第二列分量没有相同的,所以表不改变。

表中第一行成为 az、az、az,所以分解具有无损连接性。

系模式中{A, B}和{A, C}分别对应的函数依赖集为{Φ}和{A → 等价于 F 的闭包,因此其不保持函数依赖,实际上是丢失了 B →

 $\text{et}(R(U, F), U = \{A, B, C\}, F = \{A \rightarrow C, C \rightarrow A, B \rightarrow AC\},$,要求保持函数依赖且具有无损连接性。(15分)

小化依赖 $F_{a=}$ (A → C, C → A, B → A);

现的属性,也不存在依赖 X->A(F,且 XA=U,所以需要继续分解;

对现有的3个函数依赖按照相同左部的原则进行分组,应该有3组,但由于有两 组相同, 所以只有 2 组: [A, C] 和 [B, A];

将 Fin 在各个属性分组上做一个投影,得到如下几个结果:

 $U_i = \{A, C\}, F_i = \{A \rightarrow C, C \rightarrow A\}$

 $U_z = \{A, B\}, F_z = \{B \rightarrow A\}$

 $\rho = \{R_1 \langle U_1, F_2 \rangle, R_2 \langle U_1, F_2 \rangle\}$ 为保持函数依赖的 3NF 分解。

原始的关系模式 R的码为 B, Uz、Uz和 Uz中已经包含了码, 因此ρ = {Rz 〈Uz, Fz〉, R. (U., F.) 为既有无损连接性又保持函数依赖性的 3NF 分解。

- 5. 已知关系模式 R<U, F>, U={A, B, C, D, E}, F={AB→CDE, AC→BDE, B→C, C→D, B→E}。请解答以下问题: (共12分)
- _(1) 求关系模式 R 的最小函数依赖集;(6分)
- (2) 求 R 的候选码,分析其达到第几范式,给出理由;(6分)

- (1)参照定理 6.3 的证明过程,求关系模式 R 的最小函数依赖集,为 Fm={AC→B。 $B \rightarrow C, C \rightarrow D, B \rightarrow E$
- (2) 判定 R 属于第几范式:

III II II II II

里输入你要提索的内容

華

[有的3个函数依赖按照相同左卸的原则进行分组,应该有3组,但由于有两 詞,所以只有2组,4、C)和(B, A);

□ 在各个属性分组上做一个投影,得到如下几个结果。

 $\{A, C\}, F_1 = \{A \rightarrow C, C \rightarrow A\}$

 $\{A, B\}, F_2 = \{B \rightarrow A\}$

= {B, (U, F), B, (U, F)}为保持函数依赖的 31㎡分解。

的关系模式 R的码为 B, Ci、Ci和 Ci中已经包含了码,因此户 = (B, <Ci, F,),

E。ED)为既有无损连接性又保持函数依赖性的 3NF 分解。

已知关系模式 RKU、FD、U=(A、B、C、D、B)、F=(AB→CDE、AC→BDE、B→C、

- 9、B→日。请解答以下问题:(共12分)
-)求关系模式 R 的最小函数依赖集;(6 分)
- ,求 R 的侯选码,分析其达到第几范式,给出理由;(6分)

- 》参照定理 63 的证明过程,求关系模式 R 的最小函数依赖集,为 Fm={AC→B,
- C, C→D, B→E}

屏幕 5-6

#

)判定R属于第几范式。

里输入你要搜索的内容

R.的侯选码有: AC、AB; 王属性为 A、B、C;

由 C→D 可见,非主属性 D 对码 AC 为部分函数依赖,故 Re2NF,Re1NF。

6. 若S表与R表作等值连接操作,采用嵌套循环连接,S表有1000页,每页 行记录; R.表有500页,每页80行记录,计算机内存不足以将全部表预先装 存中。在仅考虑10次数的情况下,请用计算说明那张表应该置于贵套循环 的外层。(5分)

【参考答案】

若 S 表在外层,则 I/O 次数为; 1000*100*500+1000=50001000 I/Os; 若 R. 外层,则 I/O 次数为: 500 * 80 * 1000 + 500 = 40000500 I/Os; 因此将小表(数少的) 放置在嵌套循环外层,即R表。

二、 并发控制理论(共26分)

假设某银行卡交易数据库中,某客户的卡内有余额 X = 1000 元,事务 T 走200元, 事务 T2 存入300元, 具体执行时间如下:

T

候选码有: AC、AB; 主属性为 A、B、C;

→D 可见,非主属性 D 对码 AC 为部分函数依赖,故 R∉2NF,R∈1NF。

吉S表与R表作等值连接操作,采用嵌套循环连接,S表有1000页,每页100 记录; R.表有 500页,每页 80 行记录,计算机内存不足以将全部表预先装入内 r。在仅考虑 I/O 次数的情况下,请用计算说明那张表应该置于嵌套循环连接 层。(5分)

考答案】

表在外层,则 I/O 次数为: 1000*100*500+1000=50001000 I/Os; 若 R 表在 E,则 I/O 次数为:500 * 80 * 1000 + 500 = 40000500 I/Os;因此将小表(记录) ·的)放置在嵌套循环外层,即 R 表。 Ι

并发控制理论 (共26分)

假设某银行卡交易数据库中,某客户的卡内有余额 X = 1000 元,事务 T1 取 00元,事务 T2 存入 300元,具体执行时间如下:

71	封何	12
@ z	11	
	±2	ær.
更新 1 - 1 - 200	±3	
	:4	更新 x - x - 300

试完成下列要求:

- 1) 给出一种可串行调度,并给出执行结果;(9分)
- 2) 给出一种不可串行化的调度,并给出执行结果;(9分)
- 3) 请叙述至少两种在 DBMS 里用来诊断发生死锁以及通常采用的解

法。(8分)

【参考答案】

1) 可串行调度

TI	时间	T2
SLOCK(x)	tl	
G r=1000	2	
UNLOCK(x)	원	
XLOCK(x)	14	
更新 x -x -200	tí	

里输入你要搜索的内容

简注意 - 宋昌 Internet 的文件可能包含病毒。除非常需要编辑,否则保持在受保护视图中比较安全。

尼用编辑(E)

x=300		
Commit	15	
UNLOCK(x)	t 7	
	tS	SLOCK(x)
	9	æ x−300
	t10	UNLOCK(x)
	tll	NLOCK(x)
	t12	更新 x=x=300
		x=1100
	t13	Commit
	tl4	UNLOCK(x)

执行结果: x = 1100。

2) 不可串行调度

T1	时间	T2
SLOCK(x)	tl.	
⊊ x=1000	2	
UNLOCK(x)	tŝ	
	:4	SLOCK(x)
XLOCK(x)	<u>,</u> ±	
等待	15	æx-1000

等待	t 7	UNLOCK(x)
更新 x=x-200	tS	
x=300		
Commit	9	
UNLOCK(x)	t10	
	tll);LOCK(z)
	t12	更新 x=1000+300
		x=1300
	t13	Commit
	tl4	UNLOCK(x)

最终执行结果为 X=1300。是错误的结果,因为事务 2 丢失了事务 1 对 1 修改。

3) DBMS 中常使用超时法和事务等待图法来诊断死锁的发生。对于超时如果一个事务的等待时间超过了规定的时限,就认为发生了死锁;等待图法果发现等待图中产生了回路,则表示出现了死锁。要想解除死锁,通常采用法是选择一个处理死锁代价最小的事务,将其撤销,使得其它事务进行下去是,对撤销事务所执行的修改操作必须加以恢复。

Ι

