HBD FEE test result summary+ production schedule

- 16mv test pulse result
 - 5X attenuator + 20:1 resistor divider at input
 - (to reduce the noise on the test pulse input)
- Result on the digitized baseline noise
- Large input pulse
- Digital filter
 - A nice, necessary, feature to remove the low frequency noise.
- First look of the production schedule

FEE testing block diagram

HBD ADC board

Test stand

ADC module

Preamp test jig

Digitized 16mv test pulse result

2 samples at rising edge1-2 ns time jitter on the test pulse

Reverse the signal cable

RMS on the baseline in varies conditions

16mv test pulse generated about 210 ADC counts

condition	RMS ADC distribution on the baseline
Preamp + test jig	1.4 counts
Nothing connected to the FEM	.34 counts
Cable connected to the FEM with two 50ohms termination	.31 counts
cable connected to the test jig with 2 50ohms termination without preamp	.43 counts
Preamp + test jig shielded	

Preamp pulse seen by channel 4 with noisy power line (100 events)

Digital filtered preamp pulse on channel 4 data with noisy power line (100 events)

First look at production

- Assume RUN 7 electronics installation in Sept 06.
 - One month contingency → August
- 2 months → PCB production + assembly
 - We only have to build 50 FEMs. This time could be shorten.
 - Schedule final design review on the electronics.
 - chain test with detector
 - To understand ground, gain/shaping time of the FEM etc
 - Once the parts is solder to the PCB, it is final...
- 3 months → parts procurements
 - 1 month to generate P.O. and 2 months to get the parts
- March is the time to buy parts.
 - Once we send out RFQ, we will know how good is the 3 months estimate.
- Risks
 - March is the time to get ready for the RUN 6 test
 - Split manpower and attention