Attention

Introduction

$$egin{aligned} h_0 &= UW_{ ext{embed}} + W_{ ext{position}} \ h_l &= ext{transformer-block}(h_{l-1}) orall l \in [1,n] \ P(u) &= ext{softmax}(h_n W_{ ext{embed}}^T) \end{aligned}$$

where $U=(u_{-k},\ldots,u_{-1})$ is the context vector of tokens(one hot encodings), n is the number of layers, W_{embed} is the token embedding matrix, and W_{position} is the position embedding matrix. Let d_n be the length of the input and d_{model} be the dimension of the embedding. $W_{embed} \in \mathbb{R}^{d_{ntokens} \times d_{\mathrm{model}}}$ and $U \in \mathbb{R}^{d_n \times d_{\mathrm{ntokens}}}$. So $h_0 \in \mathbb{R}^{d_n \times d_{\mathrm{model}}}$.

Output Probabilities

TransFormer Block

```
transformer-block:
```

input: h_{in}

output: h_{out}

 $h_{mid} = \text{LayerNorm}(h_{in} + \text{MultiHead}(h_{in}))$

 $h_{out} = \text{LayerNorm}(h_{mid} + \text{FFN}(h_{mid}))$

where $h_{in}, h_{out} \in \mathbb{R}^{d_n \times d_{\mathrm{model}}}$. d_n is the length of the input and d_{model} is the dimension of the model (e.g., embedding dimension). LayerNorm is layer normalization.

Attention

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

where the $Q, K \in \mathbb{R}^{d_n imes d_k}$ and $V \in \mathbb{R}^{d_n imes d_v}$

输入X经历3次线性变换得到Q,K,V

Every row in the X matrix corresponds to a word in the input sentence. We again see the difference in size of the embedding vector (512, or 4 boxes in the figure), and the q/k/v vectors (64, or 3 boxes in the figure)

具体运算细节

Multi-Head Attention

 $ext{MultiHead}(h) = ext{Concat}[head_1, \dots, head_m]W^O$ where $head_i = ext{Attention}(Q, K, V)$ where $Q, K, V = hW_i^Q, hW_i^K, hW_i^V$

where m is the number of heads, $h \in \mathbb{R}^{d_n \times d_{\mathrm{model}}}$ is the input, the $W_i^Q \in \mathbb{R}^{d_{\mathrm{model}} \times d_k}, W_i^K \in \mathbb{R}^{d_{\mathrm{model}} \times d_k}, W_i^V \in \mathbb{R}^{d_{\mathrm{model}} \times d_v}$, and $W^O \in \mathbb{R}^{m*d_v \times d_{\mathrm{model}}}$. The output of the Attention is $head_i \in \mathbb{R}^{d_n \times d_v}$ and the output of the MultiHead is $Head_i \in \mathbb{R}^{d_n \times d_{\mathrm{model}}}$.

THX

And any questions?