

수학 계산력 강화

(3)원의 접선의 방정식

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2018-06-04

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 기울기가 주어진 원의 접선의 방정식

(1) 공식을 이용

① 기울기가 m이고, 원 $x^2 + y^2 = r^2$ 에 접하는 접선의 방정식

- $\Rightarrow y = mx \pm r\sqrt{m^2 + 1}$
- ② 기울기가 m이고, 원 $(x-a)^2 + (y-b)^2 = r^2$ 에 접하는 접선의 방정식
- **→** $y-b=m(x-a)\pm r\sqrt{m^2+1}$

(2) 판별식 D = 0임을 이용

접선의 방정식을 y=mx+b로 놓고 이것을 원의 방정식에 대입하여 x에 대한 이차방정식으로 정리한 다음 판별식 D=0을 이용하여 b의 값을 구한다.

(3) 원의 성질을 이용

접선의 방정식을 y = mx + b로 놓고 (원의 중심에서 접선까지의 거리)=(반지름의 길이)에서 b의 값을 구한다.

☑ 다음 원에 접하고 기울기가 m인 접선의 방정식을 구하여라.

1. 원
$$x^2 + y^2 = 1, m = 2$$

2. 원
$$x^2 + y^2 = 1$$
, $m = \sqrt{3}$

3. 원
$$x^2 + y^2 = 2$$
, $m = 1$

4. 월
$$x^2 + y^2 = 4$$
, $m = \sqrt{2}$

5.
$$2 + y^2 = 4, m = 3$$

7. 원
$$x^2 + y^2 = 9, m = 2$$

8. 원
$$x^2 + y^2 = 9$$
, $m = -1$

9.
$$\Rightarrow x^2 + y^2 = 10, m = -3$$

10.
$$\Re (x-1)^2 + (y-2)^2 = 5, m = -2$$

11.
$$\Re (x-1)^2 + (y+2)^2 = 9$$
, $m=2$

12.
$$\aleph(x-2)^2 + (y+1)^2 = 2, m = -1$$

13.
$$\Re(x-2)^2+(y-4)^2=4$$
, $m=2$

14.
$$\Re (x+2)^2 + (y+3)^2 = 8, m = 1$$

02 / 원 위의 점에서의 접선의 방정식

- ① 원 $x^2 + y^2 = r^2$ 위의 점 $P(x_1, y_1)$ 을 지나는 접선의 방정식
 - $\rightarrow x_1 x + y_1 y = r^2$
- ② 원 $(x-a)^2 + (y-b)^2 = r^2$ 위의 점 $P(x_1, y_1)$ 을 지나는 접선의 방정식
 - → $(x_1-a)(x-a)+(y_1-b)(y-b)=r^2$
- ③ 원 $x^2 + y^2 + Ax + By + C = 0$ 위의 점 $P(x_1, y_1)$ 을 지나는 접선의 방정식

$$\Rightarrow x_1 x + y_1 y + A \cdot \frac{x_1 + x}{2} + B \cdot \frac{y_1 + y}{2} + C = 0$$

☑ 다음의 원 위의 점에서의 접선의 방정식을 구하여라.

15. 원
$$x^2 + y^2 = 2$$
, $(1,1)$

16.
$$\exists x^2 + y^2 = 3, (1, -\sqrt{2})$$

17.
$$\exists x^2 + y^2 = 4$$
, $(-2,0)$

18. 원
$$x^2 + y^2 = 5$$
, $(2,1)$

19. 8
$$x^2 + y^2 = 8$$
, $(2, -2)$

20.
$$\exists x^2 + y^2 = 10, (1,3)$$

21. 원
$$x^2 + y^2 = 10$$
, $(-3,1)$

22.
$$\exists x^2 + y^2 = 18, (-3, -3)$$

23.
$$\Re x^2 + y^2 = 20$$
, $(-2,4)$

24.
$$\Re x^2 + y^2 = 25$$
, $(3, -4)$

25.
$$\Re x^2 + y^2 = 25$$
, $(-3,4)$

26.
$$\Re (x-1)^2 + (y-1)^2 = 10$$
, $(-2,2)$

27.
$$\forall (x-1)^2 + (y-2)^2 = 5$$
, $(2,0)$

28. 원
$$(x-2)^2 + (y+1)^2 = 10$$
, $(3,2)$

29.
$$\exists (x+1)^2 + (y-2)^2 = 5$$
, $(1,3)$

03 / 원 밖의 한 점에서의 접선의 방정식

원 $x^2+y^2=r^2$ 밖의 점 (a,b)에서 그은 접선의 방정식은

(1) 원 위의 점에서의 접선의 방정식을 이용

접점을 (x_1,y_1) 이라 하면 접선의 방정식은

$$x_1x + y_1y = r^2$$
이므로

연립방정식
$$\left\{egin{array}{l} ax_1+by_1=r^2 \\ x_1^2+y_1^2=r^2 \end{array}
ight.$$
을 풀어 x_1 , y_1 의 값을

구하다.

(2) 원점과 접선 사이의 거리를 이용

접선의 기울기를 m, 접점을 (x_1, y_1) 이라 하면 접선의 방정식은 $y-y_1=m(x-x_1)$

- ① 원의 중심과 접선 사이의 거리가 반지름의 길이와 같음을 이용한다.
- ② 접선의 식을 원의 방정식에 대입하여 얻은 이차방정식의 판별식을 D라 할 때, D=0임을 이용한다.
- ☑ 다음의 원 밖의 한 점에서 원에 그은 접선의 방정식 을 구하여라.

30.
$$(3,-1)$$
, $\exists x^2+y^2=1$

31.
$$(-3,-1)$$
, $\exists x^2+y^2=2$

32.
$$(0,2)$$
, $\exists x^2+y^2=2$

33.
$$(1,-2)$$
, 원 $x^2+y^2=4$

34.
$$(0,4)$$
, $\exists x^2 + y^2 = 4$

35.
$$(2,4)$$
, 원 $x^2+y^2=4$

36.
$$(4,3)$$
, 원 $x^2+y^2=5$

37.
$$(3,0)$$
, 원 $x^2+y^2=6$

38.
$$(7,-1)$$
, 원 $x^2+y^2=25$

39.
$$(0,2)$$
, 원 $(x-1)^2+y^2=4$

40.
$$(0,-1)$$
, 원 $(x-1)^2+(y-2)^2=5$

41.
$$(2,5)$$
, $\Re(x+1)^2 + (y-3)^2 = 4$

04 / 자취의 방정식

- ① 조건을 만족하는 점의 좌표를 (x,y)로 놓는다.
- ② 주어진 조건을 이용하여 x, y 사이의 관계식을 구한다.
- ightharpoons 다음 점 A와 원 위의 임의의 점 P를 이은 선분 AP의 중점의 자취의 방정식을 구하여라.
- **42.** A(-2,4), 원 $x^2+y^2=8$
- **43.** A(6,0), $\exists x^2+y^2=9$
- **44.** A(-3,2), $\exists x^2+y^2=12$
- **45.** A(-2,0), $B(x-2)^2+(y+2)^2=4$
- **46.** A(-1,3), 원 $x^2+y^2-2x+4y=0$
- **47.** A(2,4), $\exists x^2+y^2-4x-2y+1=0$
- **48.** A(3,0), 원 $x^2+y^2+6x-2y-6=0$

- \blacksquare 다음 두 점 A, B에 대하여 주어진 조건을 만족하는 점 P의 자취의 방정식을 구하여라.
- **49.** $A(0,2), B(0,-4), \overline{AP}: \overline{BP} = 1:2$
- **50.** $A(3,-1), B(-3,2), \overline{AP} : \overline{BP} = 1:2$
- **51.** $A(-3,0), B(3,0), \overline{AP} : \overline{BP} = 2:1$
- **52.** $A(-3,1), B(3,4), \overline{AP}: \overline{BP} = 2:1$
- **53.** $A(2,1), B(-4,7), \overline{AP}: \overline{BP} = 2:1$
- **54.** $A(1,0), B(4,0), \overline{AP}: \overline{BP} = 2:1$
- **55.** $A(1,0), B(6,0), \overline{AP}: \overline{BP} = 2:3$
- **56.** $A(-2,0), B(2,0), \overline{AP}: \overline{BP} = 3:1$
- **57.** $A(-1,0), B(4,0), \overline{AP} : \overline{BP} = 3:2$

58. $A(-4,0), B(1,0), \overline{AP} : \overline{BP} = 3:2$

59. $A(-1,0), B(2,3), \overline{AP}: \overline{BP} = 2:1$

05 / 공통외접선과 공통내접선의 길이

두 원의 반지름의 길이가 각각 r, r'이고 중심거리가 d일 때,

(1) 공통외접선의 길이는

$$\overline{AB} = \overline{A'O'} = \sqrt{d^2 - (r-r')^2}$$

(2) 공통내접선의 길이는

$$\overline{AB} = \overline{A'O'} = \sqrt{d^2 - (r+r')^2}$$

☑ 다음 두 원의 공통내접선의 길이를 구하여라.

63. $(x-1)^2 + y^2 = 1$, $(x-4)^2 + (y-3)^2 = 4$

64. $(x+5)^2 + y^2 = 5^2$, $(x-5)^2 + y^2 = 3^2$

65. $x^2 + (y-4)^2 = 4$, $(x-5)^2 + (y+1)^2 = 9$

☑ 다음 두 원의 공통외접선의 길이를 구하여라.

68.
$$(x-1)^2 + y^2 = 1$$
, $(x-4)^2 + (y-3)^2 = 4$

69.
$$(x+5)^2 + y^2 = 5^2$$
, $(x-5)^2 + y^2 = 3^2$

70.
$$x^2 + (y-4)^2 = 4$$
, $(x-5)^2 + (y+1)^2 = 9$

4

정답 및 해설

- 1) $y = 2x \pm \sqrt{5}$ $\Rightarrow r = 1, m = 2$ 이므로 $y = 2x \pm 1 \cdot \sqrt{2^2 + 1}$ $\therefore y = 2x \pm \sqrt{5}$
- 2) $y = \sqrt{3}x \pm 2$ $\Rightarrow y = \sqrt{3}x \pm 1 \cdot \sqrt{(\sqrt{3})^2 + 1}$ $\therefore y = \sqrt{3}x \pm 2$
- 3) $y=x\pm 2$ $\Rightarrow y=x\pm \sqrt{2}\cdot \sqrt{1^2+1} \text{ 에서 } y=x\pm 2$
- 4) $y = \sqrt{2} x \pm 2\sqrt{3}$ $\Rightarrow y = \sqrt{2} x \pm 2 \cdot \sqrt{(\sqrt{2})^2 + 1}$ $\therefore y = \sqrt{2} x \pm 2\sqrt{3}$
- 5) y=3x±2√10, y=3x±2√10
 ⇒ 기울기가 3인 접선의 방정식을 y=3x+a ··· □
 으로 놓고, 이 식을 원의 방정식 x²+y²=4에 대입하면
 x²+(3x+a)²=4
 ∴10x²+6ax+a²-4=0
 이 이차방정식의 판별식을 D라고 하면
- $$\begin{split} \frac{D}{4} &= (3a)^2 10(a^2 4) \\ &= 9a^2 10a^2 + 40 \\ &= 40 a^2 = 0 \\ a^2 &= 40 \quad \therefore a = \pm 2\sqrt{10} \\ a &= \pm 2\sqrt{10}$$
 을 예 대입하면 $y = 3x \pm 2\sqrt{10}$ r = 2, m = 3이므로 $y = 3x \pm 2\sqrt{3^2 + 1}$ $y = 3x \pm 2\sqrt{10}$
- 6) $y = 2x \pm 5$ $\Rightarrow y = 2x \pm \sqrt{5} \cdot \sqrt{2^2 + 1}$ $y = 2x \pm 5$
- 7) $y = 2x \pm 3\sqrt{5}$ \Rightarrow 기울기가 2인 접선의 방정식을 y = 2x + a \cdots ①
 으로 놓고, 이 식을 원의 방정식 $x^2 + y^2 = 9$ 에 대입하면 $x^2 + (2x + a)^2 = 9$ $\therefore 5x^2 + 4ax + a^2 9 = 0$ 이 이차방정식의 판별식을 D라고 하면 $\frac{D}{4} = (2a)^2 5(a^2 9) = 0$ $a^2 = 45$ $\therefore a = \pm 3\sqrt{5}$

- $a=\pm 3\sqrt{5}$ 를 \bigcirc 에 대입하면 $y=2x\pm 3\sqrt{5}$
- 원 $x^2+y^2=9$ 에 접하고 기울기가 2인 원의 접선의 방정식은
- r=3, m=2이므로
- $y = 2x \pm 3\sqrt{2^2 + 1}$
- $y = 2x \pm 3\sqrt{5}$
- 8) $y = -x \pm 3\sqrt{2}$ $\Rightarrow y = -x \pm 3 \cdot \sqrt{(-1)^2 + 1}$ $\therefore y = -x \pm 3\sqrt{2}$
- 9) $y = -3x \pm 10$ $\Rightarrow y = -3x \pm \sqrt{10} \cdot \sqrt{(-3)^2 + 1}$ oil $\Rightarrow y = -3x \pm 10$
- 10) y=-2x+9 또는 y=-2x-1
 ⇒ 구하는 직선의 방정식을 y=-2x+n이라 하면
 원의 중심 (1,2)와 직선 y=-2x+n,
 즉 2x+y-n=0 사이의 거리가 반지름의 길이와 같으므로

$$\begin{split} \frac{|2+2-n|}{\sqrt{2^2+1^2}} &= \sqrt{5} \;, \; \frac{|n-4|}{\sqrt{5}} = \sqrt{5} \\ |n-4| &= 5 \; \therefore n=9 \; \text{또는} \; n=-1 \\ \text{따라서 구하는 직선의 방정식은} \\ y=&-2x+9 \; \text{또는} \; y=&-2x-1 \end{split}$$

11) y=2x-4±3√5
 ⇒ 구하는 접선의 방정식을 y=2x+n이라 하면
 원의 중심 (1,-2)와 직선 2x-y+n=0 사이의 거리가 반지름의 길이와 같으므로

$$\begin{split} \frac{|2+2+n|}{\sqrt{2^2+(-1)^2}} = &3, \quad |n+4| = 3\sqrt{5} \\ n+4 = &\pm 3\sqrt{5} \quad \therefore n = -4 \pm 3\sqrt{5} \\ \text{따라서 구하는 접선의 방정식은 } y = 2x - 4 \pm 3\sqrt{5} \end{split}$$

- 12) y=-x+3 또는 y=-x-1 \Rightarrow 구하는 직선의 방정식을 y=-x+n이라 하면 원의 중심 (2,-1)과 직선 y=-x+n, 즉 x+y-n=0사이의 거리가 반지름의 길이와 같으므로 $\frac{|2-1-n|}{\sqrt{1^2+1^2}} = \frac{|n-1|}{\sqrt{2}} = \sqrt{2}$ |n-1|=2 $\therefore n=3$ 또는 n=-1 따라서 구하는 직선의 방정식은 y=-x+3 또는 y=-x-1
- 원의 중심 (2,4)와 직선 y=2x+n, 즉 2x-y+n=0사이의 거리가 반지름의 길이와 같으므로

$$\frac{|4-4+n|}{\sqrt{2^2+(-1)^2}} = 2, \quad \frac{|n|}{\sqrt{5}} = 2, \quad |n| = 2\sqrt{5}$$

$$\therefore n = \pm 2\sqrt{5}$$

따라서 구하는 직선의 방정식은 $y=2x\pm2\sqrt{5}$

- 14) y = x + 3 또는 y = x 5
- ightharpoonup 구하는 직선의 방정식을 y=x+n이라 하면 원의 중심 (-2,-3)과 직선 y=x+n,
- 즉 x-y+n=0 사이의 거리가 반지름의 길이와 같으므로

$$\frac{|-2+3+n|}{\sqrt{1^2+(-1)^2}} = 2\sqrt{2}, \quad \frac{|n+1|}{\sqrt{2}} = 2\sqrt{2}$$

|n+1|=4 : n=3 또는 n=-5

따라서 구하는 직선의 방정식은

y = x + 3 또는 y = x - 5

- 15) x+y-2=0
- $\Rightarrow 1 \cdot x + 1 \cdot y = 2 \quad \therefore x + y 2 = 0$
- 16) $x \sqrt{2}y 3 = 0$
- 원 $x^2+y^2=3$ 위의 점 $(1,-\sqrt{2})$ 에서의 접선의 방정식은

$$1 \cdot x + (-\sqrt{2}) \cdot y = 3$$
 : $x - \sqrt{2}y - 3 = 0$

- 17) x = -2
- \Rightarrow $(-2)\cdot x + 0\cdot y = 4$ $\therefore x = -2$
- 18) 2x+y-5=0
- \Rightarrow 원 $x^2 + y^2 = 5$ 위의 점 (2,1)에서의 접선의 방정 식은
- $2 \cdot x + 1 \cdot y = 5$
- $\therefore 2x + y 5 = 0$
- 19) x-y-4=0
- $\Rightarrow 2 \cdot x + (-2) \cdot y = 8 \quad \therefore x y 4 = 0$
- 20) x+3y-10=0
- \Rightarrow 원 $x^2 + y^2 = 10$ 위의 점 (1,3)에서의 접선의 방정 식은
- $1 \cdot x + 3 \cdot y = 10$
- $\therefore x + 3y 10 = 0$
- 21) 3x y + 10 = 0

 \Rightarrow

원 $x^2+y^2=10$ 위의 점 P(-3,1)에서의 접선을 l이 라고 하면 직선 OP와 접선 l은 서로 수직이고 직선 OP의 기울기는

$$\frac{1-0}{-3-0} = -\frac{1}{3}$$

이때, 직선 l의 기울기를 m이라고 하면 두 직선의 수직 조건에 의하여

(직선OP의 기울기) $\times m = -1$

$$\left(-\frac{1}{3}\right) \times m = -1$$
 $\therefore m = 3$

따라서 기울기가 3이고 점 P(-3,1)을 지나는 접선 의 방정식은 y-1=3(x+3)

- $\therefore 3x y + 10 = 0$
- 22) x+y+6=0
- 원 $x^2+y^2=18$ 위의 점 (-3,-3)에서의 접선의 방정식은 $-3\cdot x+(-3)\cdot y=18$
- $\therefore x + y + 6 = 0$
- 23) x-2y=-10
- $\Rightarrow -2x+4y=20$ $\Rightarrow x-2y=-10$
- 24) 3x 4y 25 = 0
- \Rightarrow 원 $x^2 + y^2 = 25$ 위의 점 (3, -4)에서의 접선의 방 정식은
- $3 \cdot x + (-4) \cdot y = 25$
- $\therefore 3x 4y 25 = 0$
- 25) 3x 4y + 25 = 0
- \Rightarrow 원 $x^2 + y^2 = 25$ 위의 점 (-3, 4)에서의 접선의 방 정식은
- $(-3) \cdot x + 4 \cdot y = 25 \qquad \therefore 3x 4y + 25 = 0$
- 26) y = 3x + 8
- 당 원의 중심 (1,1)과 접점 (-2,2)를 이은 직선의 기울기는 $\frac{2-1}{-2-1}$ = $-\frac{1}{3}$ 이므로 이와 수직인 접선 의 기울기는 3이다. 접선의 방정식을 y=3x+a라 하면 이 접선이 점 (-2,2)를 지나므로 $2=3\cdot(-2)+a$ $\therefore a=8$

따라서 접선의 방정식은 y=3x+8이다.

- 27) $y = \frac{1}{2}x 1$
- \Rightarrow 원의 중심 (1,2)와 접점 (2,0)을 이은 직선의 기 울기는 $\frac{0-2}{2-1}$ =-2이므로 이와 수직인 접선의 기 울기는 $\frac{1}{2}$ 이다.
- 접선의 방정식을 $y = \frac{1}{2}x + a$ 라 하면 이 접선이 점 (2.0)을 지나므로
- $0 = \frac{1}{2} \cdot 2 + a \quad \therefore a = -1$
- 따라서 접선의 방정식은 $y = \frac{1}{2}x 1$

28)
$$y = -\frac{1}{3}x + 3$$

 \Rightarrow 원의 중심 (2,-1)과 접점 (3,2)를 이은 직선의

$$\frac{2-(-1)}{3-2} = 3$$
이므로 이와 수직인 접선의 기울기는
$$-\frac{1}{3}$$
이다. 접선의 방정식을 $y = -\frac{1}{3}x + a$ 라 하면 이 접선이 점 $(3,2)$ 를 지나므로 $2 = -\frac{1}{3} \cdot 3 + a$ $\therefore a = 3$

따라서 접선의 방정식은 $y=-\frac{1}{3}x+3$ 이다.

29) y = -2x + 5

 \Rightarrow 원의 중심 (-1,2)와 접점 (1,3)을 이은 직선의 기울기는 $\frac{3-2}{1-(-1)} = \frac{1}{2}$ 이므로 이와 수직인 접선 기울기는 -2이다. 접선의 y = -2x + a라 하면 이 접선이 점 (1,3)를 지나므 $= 3 = -2 \cdot 1 + a$: a = 5

따라서 접선의 방정식은 y = -2x + 5이다.

30)
$$y = -1 + 3x + 4y - 5 = 0$$

 \Rightarrow 접선의 기울기가 m이므로 접선의 방정식은

$$y-(-1) = m(x-3)$$
 : $mx-y-3m-1=0$

원의 중심 (0,0)과 접선 mx-y-3m-1=0 사이의 거리는 반지름의 길이 1과 같으므로

$$\frac{|-3m-1|}{\sqrt{m^2+(-1)^2}} = 1, \ |-3m-1| = \sqrt{m^2+1}$$

양변을 제곱하여 정리하면

$$4m^2 + 3m = 0, m(4m+3) = 0$$

$$\therefore m = 0 \quad \text{EL} \quad m = -\frac{3}{4}$$

접선의 방정식은

$$y = -1$$
 또는 $3x + 4y - 5 = 0$

31)
$$x+7y+10=0$$
 또는 $x-y+2=0$

 \Rightarrow 접선의 기울기를 m이라 하면 접선의 방정식은 $y-(-1)=m\{x-(-3)\}$

$$\therefore mx - y + 3m - 1 = 0$$

원의 중심 (0,0)과 접선 mx-y+3m-1=0 사이의 거리는 반지름의 길이 $\sqrt{2}$ 와 같으므로

$$\frac{|3m-1|}{\sqrt{m^2+(-1)^2}} = \sqrt{2}, |3m-1| = \sqrt{2m^2+2}$$

양변을 제곱하여 정리하면

$$7m^2 - 6m - 1 = 0$$
, $(7m+1)(m-1) = 0$

$$\therefore m = -\frac{1}{7} \quad \text{El} \quad m = 1$$

따라서 접선의 방정식은

$$x+7y+10=0$$
 또는 $x-y+2=0$

[다른풀이]

접점을 (x_1, y_1) 으로 놓으면 접선의

$$x_1x + y_1y = 2$$

접선이 점 (-3, -1)을 지나므로

$$-3x_1-y_1=2$$
 : $y_1=-3x_1-2\cdots$

또, 접점 (x_1,y_1) 은 원 $x^2+y^2=2$ 위의 점이므로

$$x_1^2 + y_1^2 = 2 \cdots$$

①을 (L)에 대입하면

$$x_1^2 + (-3x_1 - 2)^2 = 2$$
, $5x_1^2 + 6x_1 + 1 = 0$

$$(5x_1+1)(x_1+1)=0 \quad \therefore x_1=-\frac{1}{5} \quad \text{ \pm $\stackrel{\smile}{=}$ } \quad x_1=-1$$

$$x_1 = -\frac{1}{5}$$
일 때 $y_1 = -\frac{7}{5}$ 이고, $x_1 = -1$ 일 때 $y_1 = 1$ 이

므로 구하는 접선의 방정식은 x+7y+10=0 $\pm \frac{1}{2}$ x-y+2=0

32)
$$x+y=2$$
, $-x+y=2$

 \Rightarrow 직선 $x_1x+y_1y=2$ 가 점 (0,2)를 지나므로

$$2y_1 = 2$$
 : $y_1 = 1$

또 점 $(x_1,1)$ 이 원 $x^2+y^2=2$ 위의 점이므로

$$x_1^2 + 1^2 = 2$$
 , $x_1^2 = 1$ $\therefore x_1 = \pm 1$

$$\therefore x_1 = 1, y_1 = 1 \quad \text{£} \stackrel{\vdash}{\sqsubseteq} \quad x_1 = -1, y_1 = 1$$

따라서
$$x_1 = 1, y_1 = 1$$
일 때, $x + y = 2$

$$x_1 = -1, y_1 = 1$$
일 때, $-x+y=2$

33)
$$y = -2$$
 또는 $4x - 3y - 10 = 0$

 \Rightarrow 접선의 기울기를 m이라 하면 접선의 방정식은

$$y-(-2) = m(x-1)$$

$$\therefore mx - y - m - 2 = 0$$

원의 중심 (0,0)과 접선 mx-y-m-2=0 사이의 거리는 반지름의 길이 2와 같으므로

$$\frac{|-m-2|}{\sqrt{m^2+(-1)^2}} = 2, \quad |-m-2| = 2\sqrt{m^2+1}$$

양변을 제곱하여 정리하면

$$3m^2 - 4m = 0$$
, $m(3m - 4) = 0$

$$\therefore m = 0 \quad \exists \exists m = \frac{4}{3}$$

따라서 접선의 방정식은

$$y = -2 + 4x - 3y - 10 = 0$$

34) $\sqrt{3}x+y-4=0$ 또는 $\sqrt{3}x-y+4=0$

$$\Rightarrow$$
 접점이 (x_1,y_1) 이므로 접선의 방정식은

 $x_1 x + y_1 y = 4$

접선이 점 (0,4)를 지나므로

$$4y_1 = 4$$
 $\therefore y_1 = 1 \cdots \bigcirc$

또, 접점 (x_1, y_1) 은 원 $x^2 + y^2 = 4$ 위의 점이므로

$$x_1^2 + y_1^2 = 4 \cdots 0$$

①을 Q에 대입하면

$$x_1^2 + 1^2 = 4$$
, $x_1^2 = 3$ $\therefore x_1 = \pm \sqrt{3}$

접선의 방정식은

$$\sqrt{3}x+y-4=0$$
 또는 $\sqrt{3}x-y+4=0$

35) $x = 2 \quad \exists \frac{1}{x} \quad 3x - 4y + 10 = 0$

접점을 (x_1, y_1) 으로 놓으면 접선의 방정식은

 $x_1x + y_1y = 4 \cdots \bigcirc$

이 접선이 점 (2,4)를 지나므로

 $2x_1 + 4y_1 = 4$

 $\therefore x_1 + 2y_1 = 2 \cdots \bigcirc$

또, 접점 (x_1, y_1) 은 원 $x^2 + y^2 = 4$ 위에 있으므로 $x_1^2 + y_1^2 = 4 \cdots \bigcirc$

 \bigcirc 에서 $x_1 = 2 - 2y_1$ 을 \bigcirc 에 대입하면

$$(2-2y_1)^2+{y_1}^2=4 \ , \ 5{y_1}^2-8y_1=0$$

$$y_1(5y_1-8)=0$$
 $\therefore y_1=0$ $\Xi \succeq y_1=\frac{8}{5}$

$$\therefore x_1 = 2\,, y_1 = 0 \ \, \Xi \, \buildrel \, = \, -\, \frac{6}{5} \,, y_1 = \frac{8}{5} \, (\, \because \, \bigcirc)$$

따라서 구하는 접선의 방정식은

$$2x = 4 + \frac{6}{5}x + \frac{8}{5}y = 4(\because \bigcirc)$$

$$\therefore x = 2$$
 또는 $3x - 4y + 10 = 0$

36) 2x-11y+25=0 $\pm \frac{1}{2}$ 2x-y-5=0

 \Rightarrow 접선의 기울기를 m이라 하면 접선의 방정식은 y-3 = m(x-4) : mx-y-4m+3 = 0

원의 중심 (0,0)과 접선 mx-y-4m+3=0 사이의 거리는 반지름의 길이 $\sqrt{5}$ 와 같으므로

$$\frac{|-4m+3|}{\sqrt{m^2+(-1)^2}} = \sqrt{5}, \ |-4m+3| = \sqrt{5m^2+5}$$

양변을 제곱하여 정리하면

$$11m^2 - 24m + 4 = 0$$
, $(11m - 2)(m - 2) = 0$

$$\therefore m = \frac{2}{11} \quad \text{£} \quad m = 2$$

따라서 접선의 방정식은

$$2x-11y+25=0$$
 또는 $2x-y-5=0$

37)
$$2x + \sqrt{2y} - 6 = 0$$
 또는 $2x - \sqrt{2y} - 6 = 0$

접점의 좌표를 (x_1, y_1) 으로 놓으면 접선의 방정식은

 $x_1x + y_1y = 6 \cdots \bigcirc$

이 접선이 점 (3,0)을 지나므로

 $3x_1 = 6$: $x_1 = 2$

또, 접점 (x_1,y_1) 은 원 $x^2+y^2=6$ 위에 있으므로

$$x_1^2 + y_1^2 = 6 \cdots \bigcirc$$

 $x_1 = 2$ 를 \bigcirc 에 대입하면

$$4 + {y_1}^2 = 6$$
 , ${y_1}^2 = 2$ $\therefore y_1 = \pm \sqrt{2}$

따라서 구하는 접선의 방정식은

 $2x + \sqrt{2y} - 6 = 0 \quad \text{£} = 2x - \sqrt{2y} - 6 = 0 \quad \text{(} : \text{(})\text{)}$

[다른풀이]

접선의 기울기를 m이라고 하면, 기울기가 m이고 점 (3,0)을 지나는 직선의 방정식은 y = m(x-3)

 $\therefore mx - y - 3m = 0 \cdots \bigcirc$

원과 직선이 접하려면 원의 중심 (0,0)과 직선 \bigcirc 사 이의 거리가 원의 반지름의 길이 $\sqrt{6}$ 과 같아야 하므로

$$\frac{|-3m|}{\sqrt{m^2 + (-1)^2}} = \sqrt{6}$$

 $|-3m| = \sqrt{6} \cdot \sqrt{m^2 + 1}$

양변을 제곱하면 $9m^2 = 6m^2 + 6$

 $3m^2 = 6$, $m^2 = 2$: $m = \pm \sqrt{2}$

따라서 구하는 접선의 방정식은

$$\sqrt{2x} - y - 3\sqrt{2} = 0 \quad \text{EL} \quad -\sqrt{2x} - y + 3\sqrt{2} = 0 \quad \text{CO}$$

- 38) $3x 4y = 25 \pm 4x + 3y = 25$
- \Rightarrow 접점의 좌표를 (x_1,y_1) 이라고 하면 접선의 방정식 은

 $x_1x + y_1y = 25 \cdots \bigcirc$

이 접선이 점 (7,-1)을 지나므로

 $7x_1 - y_1 = 25 \cdots \bigcirc$

또, 접점 (x_1,y_1) 은 원 ${x_1}^2+{y_1}^2=25$ 위에 있으므로

 $x_1^2 + y_1^2 = 25 \cdots \bigcirc$

©에서 $y_1 = 7x_1 - 25$ 를 ©에 대입하면

$$x_1^2 + (7x_1 - 25)^2 = 25$$
, $50x_1^2 - 350x_1 + 600 = 0$

$$x_1^2 - 7x_1 + 12 = 0$$
 , $(x_1 - 3)(x_1 - 4) = 0$

 $\therefore x_1 = 3 \quad \text{£} \stackrel{\vdash}{\vdash} \quad x_1 = 4$

 $\therefore x_1 = 3, y_1 = -4 \quad \text{£} = 1, y_1 = 3$

따라서 구하는 접선의 방정식은

 $3x-4y=25 \quad \text{£} \pm 4x+3y=25 (\because \bigcirc)$

39) $y=2 \oplus 4x-3y+6=0$

 \Rightarrow 접선의 기울기를 m이라 하면 접선의 방정식은

y-2 = m(x-0) : mx-y+2=0

원의 중심 (1,0)과 접선 mx-y+2=0 사이의 거리 는 반지름의 길이 2와 같으므로

$$\frac{|m+2|}{\sqrt{m^2+(-1)^2}} = 2$$
, $|m+2| = 2\sqrt{m^2+1}$

양변을 제곱하여 정리하면

$$3m^2-4m=0, m(3m-4)=0$$

$$\therefore m = 0 \quad \underline{\Xi} \stackrel{\sqsubseteq}{\sqsubseteq} \quad m = \frac{4}{3}$$

따라서 접선의 방정식은 y=2 또는 4x-3y+6=0

40) x-2y-2=0 또는 2x+y+1=0

 \Rightarrow 접선의 기울기를 m이라 하면 접선의 방정식은 y-(-1) = m(x-0)

$$\therefore mx - y - 1 = 0$$

원의 중심 (1,2)와 접선 mx-y-1=0 사이의 거리 는 반지름의 길이 $\sqrt{5}$ 와 같으므로

$$\frac{|m-2-1|}{\sqrt{m^2+(-1)^2}} = \sqrt{5}, |m-3| = \sqrt{5m^2+5}$$

양변을 제곱하여 정리하면

$$2m^2+3m-2=0$$
, $(2m-1)(m+2)=0$

$$\therefore m = \frac{1}{2} \quad \text{for } m = -2$$

따라서 접선의 방정식은

$$x-2y-2=0$$
 또는 $2x+y+1=0$

41) y = 5 $\pm \frac{1}{2}$ 12x - 5y + 1 = 0

 \Rightarrow 접선의 기울기를 m이라 하면 접선의 방정식은 y-5 = m(x-2)

$$\therefore mx - y - 2m + 5 = 0$$

원의 중심 (-1,3)과 접선 mx-y-2m+5=0 사이 의 거리는 반지름의 길이 2와 같으므로

$$\frac{|-m-3-2m+5|}{\sqrt{m^2+(-1)^2}} = 2, \ |-3m+2| = \sqrt{4m^2+4}$$

양변을 제곱하여 정리하면

$$5m^2 - 12m = 0$$
, $m(5m - 12) = 0$

$$\therefore m = 0 \quad \text{£} \stackrel{\sqsubseteq}{\sqsubseteq} \quad m = \frac{12}{5}$$

따라서 접선의 방정식은

$$y=5$$
 또는 $12x-5y+1=0$

42)
$$(x+1)^2 + (y-2)^2 = 2$$

 \Rightarrow 원 위의 점을 P(a,b), \overline{AP} 의 중점의 좌표를 (x,y)라 하면

$$x = \frac{-2+a}{2}, y = \frac{4+b}{2}$$

$$\therefore a = 2x + 2, b = 2y - 4$$

점 P(a,b)는 원 $x^2+y^2=8$ 위의 점이므로

$$(2x+2)^2 + (2y-4)^2 = 8$$

$$(x+1)^2 + (y-2)^2 = 2$$

43)
$$(x-3)^2 + y^2 = \frac{9}{4}$$

 \Rightarrow 원 위의 점을 P(a,b), \overline{AP} 의 중점의 좌표를 (x,y)라 하면

$$x = \frac{6+a}{2}$$
, $y = \frac{0+b}{2}$ $\therefore a = 2x-6, b = 2y$

점 P(a,b)는 원 $x^2+y^2=9$ 위의 점이므로

$$(2x-6)^2 + (2y)^2 = 9$$
 : $(x-3)^2 + y^2 = \frac{9}{4}$

44)
$$\left(x+\frac{3}{2}\right)^2+(y-1)^2=3$$

 \Rightarrow 원 위의 점을 P(a,b), \overline{AP} 의 중점의 좌표를

$$x = \frac{-3+a}{2}$$
, $y = \frac{2+b}{2}$: $a = 2x+3$, $b = 2y-2$

점 P(a,b)는 원 $x^2+y^2=12$ 위의 점이므로

$$(2x+3)^2 + (2y-2)^2 = 12$$
 $\therefore \left(x+\frac{3}{2}\right)^2 + (y-1)^2 = 3$

45) $x^2 + (y+1)^2 = 1$

 \Rightarrow 주어진 원 위의 점을 P(a,b), 선분 AP의 중점을 Q(x,y)라고 하면

$$x = \frac{-2+a}{2}, \ y = \frac{0+b}{2}$$

$$\therefore a = 2x + 2, b = 2y \cdots \bigcirc$$

이때 P(a,b)가 원 $(x-2)^2+(y+2)^2=4$ 위의 점이므

$$(a-2)^2 + (b+2)^2 = 4 \cdots \bigcirc$$

○을 ○에 대입하면

$$(2x+2-2)^2+(2y+2)^2=4$$

$$\therefore x^2 + (y+1)^2 = 1$$

46)
$$x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{5}{4}$$

 \Rightarrow 주어진 원 위의 점을 P(a,b), 선분 AP의 중점을 Q(x,y)라고 하면

$$x = \frac{-1+a}{2}, y = \frac{3+b}{2}$$

$$\therefore a = 2x + 1, b = 2y - 3 \cdots \bigcirc$$

이때. P(a,b)가 원 $x^2+y^2-2x+4y=0$ 위의 점이므

$$a^2 + b^2 - 2a + 4b = 0$$
 ... (1)

그을 (L)에 대입하면

$$(2x+1)^2 + (2y-3)^2 - 2(2x+1) + 4(2y-3) = 0$$

$$4x^2+4y^2-4y-4=0$$
, $x^2+y^2-y-1=0$

$$\therefore x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{5}{4}$$

47)
$$(x-2)^2 + (y-\frac{5}{2})^2 = 1$$

 \Rightarrow 주어진 원 위의 점을 P(a,b), 선분 AP의 중점을 Q(x,y)라고 하면

$$x = \frac{2+a}{2}, y = \frac{4+b}{2}$$

$$\therefore a = 2(x-1), b = 2(y-2) \cdots \bigcirc$$

이때,
$$P(a,b)$$
가 원 $x^2+y^2-4x-2y+1=0$ 위의 점이 므로

$$a^2 + b^2 - 4a - 2b + 1 = 0 \cdots \bigcirc$$

$$4(x-1)^2+4(y-2)^2-8(x-1)-4(y-2)+1=0$$

$$x^2+y^2-4x-5y+\frac{37}{4}=0$$

$$(x-2)^2 + (y-\frac{5}{2})^2 = 1$$

48)
$$x^2 + \left(y - \frac{1}{2}\right)^2 = 4$$

$$ightharpoonup$$
 주어진 원 위의 점을 $P(a,b)$, 선분 AP 의 중점을 $Q(x,y)$ 라고 하면

$$x = \frac{3+a}{2}, y = \frac{0+b}{2}$$

$$\therefore a = 2x - 3, b = 2y \cdots \bigcirc$$

이때,
$$P(a,b)$$
가 원 $x^2+y^2+6x-2y-6=0$ 위의 점이 므로

$$a^2 + b^2 + 6a - 2b - 6 = 0$$
 ... ©

$$(2x-3)^2 + (2y)^2 + 6(2x-3) - 2 \cdot 2y - 6 = 0$$

$$4x^2+4y^2-4y-15=0$$
, $x^2+y^2-y-\frac{15}{4}=0$

$$\therefore x^2 + \left(y - \frac{1}{2}\right)^2 = 4$$

49)
$$x^2 + y^2 - 8y = 0$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라 하면

$$\overline{AP} = \sqrt{x^2 + (y-2)^2}$$
, $\overline{BP} = \sqrt{x^2 + (y+4)^2}$

$$\overline{AP}$$
: \overline{BP} =1:2에서 $2\overline{AP}$ = \overline{BP} 이므로 $4\overline{AP}^2=\overline{BP}^2$

$$4\{x^2+(y-2)^2\}=x^2+(y+4)^2$$

$$\therefore x^2 + y^2 - 8y = 0$$

50)
$$(x-5)^2 + (y+2)^2 = 20$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라고 하면

$$\overline{AP} = \sqrt{(x-3)^2 + (y+1)^2}$$
, $\overline{BP} = \sqrt{(x+3)^2 + (y-2)^2}$

$$\overline{AP}$$
: \overline{BP} =1:2에서 $2\overline{AP}$ = \overline{BP} 이므로

$$4\overline{AP}^2 = \overline{BP}^2$$

$$4\{(x-3)^2+(y+1)^2\}=(x+3)^2+(y-2)^2$$

$$3x^2 - 30x + 3y^2 + 12y + 27 = 0$$

$$x^2 - 10x + y^2 + 4y + 9 = 0$$

$$\therefore (x-5)^2 + (y+2)^2 = 20$$

51)
$$(x-5)^2 + y^2 = 16$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라고 하면

$$\overline{AP} = \sqrt{(x+3)^2 + y^2}$$
, $\overline{BP} = \sqrt{(x-3)^2 + y^2}$

$$\overline{AP}$$
: \overline{BP} = 2:1에서 \overline{AP} = 2 \overline{BP} 이므로

$$\overline{AP}^2 = 4\overline{BP}^2$$

$$(x+3)^2 + y^2 = 4\{(x-3)^2 + y^2\}$$

$$3x^2 + 3y^2 - 30x + 27 = 0$$
, $x^2 + y^2 - 10x + 9 = 0$

$$\therefore (x-5)^2 + y^2 = 16$$

52)
$$x^2 + y^2 - 10x - 10y + 30 = 0$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라 하면

$$\overline{AP} = \sqrt{(x+3)^2 + (y-1)^2}$$
, $\overline{BP} = \sqrt{(x-3)^2 + (y-4)^2}$

$$\overline{AP}$$
: \overline{BP} = 2:1에서 \overline{AP} = 2 \overline{BP} 이므로 \overline{AP}^2 = 4 \overline{BP}^2

$$(x+3)^2 + (y-1)^2 = 4\{(x-3)^2 + (y-4)^2\}$$

$$\therefore x^2 + y^2 - 10x - 10y + 30 = 0$$

53)
$$x^2 + y^2 + 12x - 18y + 85 = 0$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라고 하면

$$\overline{AP} = \sqrt{(x-2)^2 + (y-1)^2}$$
, $\overline{BP} = \sqrt{(x+4)^2 + (y-7)^2}$ 이므로

$$\overline{AP}$$
: \overline{BP} = 2:1에서 \overline{AP} = 2 \overline{BP} 이므로

양변을 제곱하면
$$\overline{AP}^2 = 4\overline{BP}^2$$

$$(x-2)^2 + (y-1)^2 = 4\{(x+4)^2 + (y-7)^2\}$$

$$3x^2 + 3y^2 + 36x - 54y + 255 = 0$$

$$\therefore x^2 + y^2 + 12x - 18y + 85 = 0$$

54)
$$x^2 + y^2 - 10x + 21 = 0$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라 하면

$$\overline{AP} = \sqrt{(x-1)^2 + y^2}$$
, $\overline{BP} = \sqrt{(x-4)^2 + y^2}$

$$\overline{AP}$$
: \overline{BP} = 2:1에서 \overline{AP} = 2 \overline{BP} 이므로 \overline{AP}^2 = 4 \overline{BP}^2

$$(x-1)^2+y^2=4\big\{(x-4)^2+y^2\big\}$$

$$\therefore x^2 + y^2 - 10x + 21 = 0$$

55)
$$x^2 + y^2 + 6x - 27 = 0$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라 하면

$$\overline{AP} = \sqrt{(x-1)^2 + y^2}$$
, $\overline{BP} = \sqrt{(x-6)^2 + y^2}$

$$\overline{AP}$$
: \overline{BP} = 2:3에서 3 \overline{AP} = 2 \overline{BP} 이므로

$$9\overline{AP}^2 = 4\overline{BP}^2$$

$$9{(x-1)^2+y^2}=4{(x-6)^2+y^2}$$

$$\therefore x^2 + y^2 + 6x - 27 = 0$$

56)
$$\left(x - \frac{5}{2}\right)^2 + y^2 = \frac{9}{4}$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라고 하면

$$\overline{AP} = \sqrt{(x+2)^2 + y^2}$$
, $\overline{BP} = \sqrt{(x-2)^2 + y^2}$

$$\overline{AP}$$
: \overline{BP} = 3:1에서 \overline{AP} = 3 \overline{BP} 이므로

양변을 제곱하면
$$\overline{AP}^2 = 9\overline{BP}^2$$

$$(x+2)^2 + y^2 = 9\{(x-2)^2 + y^2\}$$

$$8x^2 + 8y^2 - 40x + 32 = 0$$
, $x^2 + y^2 - 5x + 4 = 0$

$$\left(x - \frac{5}{2}\right)^2 + y^2 = \frac{9}{4}$$

57)
$$x^2 + y^2 - 16x + 28 = 0$$

$$\Rightarrow$$
 점 P 의 좌표를 (x,y) 라고 하면

$$\overline{AP} = \sqrt{(x+1)^2 + y^2}$$
. $\overline{BP} = \sqrt{(x-4)^2 + y^2}$ oluş.

 \overline{AP} : \overline{BP} = 3:2에서 $2\overline{AP}$ = $3\overline{BP}$ 이므로

양변을 제곱하면 $4\overline{AP}^2 = 9\overline{BP}^2$

$$4\{(x+1)^2+y^2\}=9\{(x-4)^2+y^2\}$$

$$\therefore x^2 + y^2 - 16x + 28 = 0$$

58)
$$x^2 + y^2 - 10x - 11 = 0$$

 \Rightarrow 점 P의 좌표를 (x,y)라고 하면

$$\overline{AP} = \sqrt{(x+4)^2 + y^2}$$
, $\overline{BP} = \sqrt{(x-1)^2 + y^2}$

$$\overline{AP}$$
: \overline{BP} = 3:2에서 $2\overline{AP}$ = 3 \overline{BP} 이므로

양변을 제곱하면 $4\overline{AP}^2 = 9\overline{BP}^2$

$$4\{(x+4)^2+y^2\}=9\{(x-1)^2+y^2\}$$

$$\therefore x^2 + y^2 - 10x - 11 = 0$$

59)
$$(x-3)^2 + (y-4)^2 = 8$$

 \Rightarrow 점 P의 좌표를 (x,y)라 하면

$$\overline{AP} = \sqrt{(x+1)^2 + y^2}$$
, $\overline{BP} = \sqrt{(x-2)^2 + (y-3)^2}$

 \overline{AP} : \overline{BP} = 2:1에서 \overline{AP} = 2 \overline{BP} 이므로 \overline{AP}^2 = 4 \overline{BP}^2

$$(x+1)^2 + y^2 = 4\{(x-2)^2 + (y-3)^2\}$$

$$x^2 + y^2 - 6x - 8y + 17 = 0$$

$$\therefore (x-3)^2 + (y-4)^2 = 8$$

60) 8

 \Rightarrow 다음 그림과 같이 점 O에서 선분 O'B의 연장선 위에 내린 수선의 발을 *H*라고 하면

 $\overline{AO} = \overline{BH} = 2$

$$\therefore \overline{O'H} = 4 + 2 = 6$$

이때, $\overline{OO} = 10$ 이므로 직각삼각형 OHO'에서

$$\overline{AB} = \overline{OH} = \sqrt{10^2 - 6^2} = \sqrt{64} = 8$$

61) 8

 \Rightarrow 점 O에서 $\overline{O'B}$ 의 연장선에 내린 수선의 발을 B'이라 하면 다음 그림에서

$$\overline{AB} = \overline{OB}'$$

$$= \sqrt{17^2 - (10+5)^2}$$

62) 4

 \Rightarrow 다음 그림과 같이 점 O에서 선분 OB의 연장선 위에 내린 수선의 발을 *H*라고 하면

 $\overline{AO} = \overline{BH} = 1$

$$\therefore \overline{OH} = 2 + 1 = 3$$

이때. \overline{OO} = 5이므로 직각삼각형 OHO'에서

$$\overline{AB} = \overline{OH} = \sqrt{5^2 - 3^2} = 4$$

63) 3

 \Rightarrow 다음 그림과 같이 두 원의 중심을 각각 C, C'이라 고 하면 C(1,0), C'(4,3)

또, 점 C에서 선분 C'B의 연장선 위에 내린 수선의 발을 *H*라고 하면

 $\overline{AC} = \overline{BH} = 1$: $\overline{C'H} = 2 + 1 = 3$

이때. $\overline{CC} = \sqrt{(4-1)^2 + 3^2} = 3\sqrt{2}$ 이므로 직각삼각형 C'CH에서

$$\overline{AB} = \overline{CH} = \sqrt{(3\sqrt{2})^2 - 3^2} = 3$$

64) 6

 \Rightarrow 다음 그림과 같이 두 원의 중심을 각각 C, C'이라 고 하면

C(-5,0), C'(5,0)

또, 점 C'에서 선분 CA의 연장선 위에 내린 수선의 발을 H라고 하면 $\overline{BC} = \overline{AH} = 3$

 $\therefore \overline{CH} = \overline{CA} + \overline{AH} = 5 + 3 = 8$

이때, $\overline{CC}' = 10$ 이므로 직각삼각형 CHC'에서

$$\overline{AB} = \overline{C'H} = \sqrt{10^2 - 8^2} = 6$$

65) 5

 \Rightarrow 다음 그림과 같이 두 원의 중심을 각각 C, C'이라 고 하면

C(0,4), C'(5,-1)

또, 점 C에서 선분 C'B의 연장선 위에 내린 수선의 H라고 하면 $\overline{AC} = \overline{BH} = 2$ 발을 $\therefore \overline{C'H} = 2 + 3 = 5$

이때, $\overline{CC'} = \sqrt{(5-0)^2 + (-1-4)^2} = 5\sqrt{2}$ 이므로 직 각삼각형 C'CH에서 피타고라스의 정리에 의해 $\overline{AB} = \overline{CH} = \sqrt{(5\sqrt{2})^2 - 5^2} = 5$

66) 12

 \Rightarrow 다음 그림과 같이 점 O에서 \overline{BO} 에 내린 수선의 발을 H라고 하면 $\overline{AO} = \overline{BH}$

 $\therefore \overline{O'H} = \overline{O'B} - \overline{BH} = 7 - 2 = 5$ 따라서 $\triangle OHO'$ 에서 피타고라스의 정리에 의하여 $\overline{AB} = \overline{OH} = \sqrt{13^2 - 5^2} = 12$

67) $6\sqrt{2} \ cm$

다음 그림과 같이 점 O에서 \overline{BO} 에 내린 수선의 발을 H라고 하면 $\overline{AO} = \overline{BH}$

 $\overline{AO} = \overline{BH}$

$$\therefore \overline{O'H} = \overline{O'B} - \overline{BH}$$
$$= 5 - 2 = 3cm$$

따라서 $\triangle OHO'$ 에서 피타고라스의 정리에 의하여 $\overline{AB} = \overline{OH} = \sqrt{9^2 - 3^2} = 6\sqrt{2} cm$

68) $\sqrt{17}$

 \Rightarrow 다음 그림과 같이 두 원의 중심을 각각 C, C'이라 고 하면

C(1,0), C'(4,3)

또, 점 C에서 $\overline{BC'}$ 에 내린 수선의 발을 H라고 하면 $\overline{AC} = \overline{BH} = 1$

$$\therefore \overline{C'H} = 2 - 1 = 1$$

이때. $\overline{CC} = \sqrt{(4-1)^2 + 3^2} = \sqrt{9+9} = 3\sqrt{2}$ 이므로 직각삼각형 *CHC'* 에서

$$\overline{AB} = \overline{CH} = \sqrt{(3\sqrt{2})^2 - 1^2} = \sqrt{17}$$

69) $4\sqrt{6}$

 \Rightarrow 다음 그림과 같이 두 원의 중심을 각각 C,C'이라 고 하면

C(-5,0), C'(5,0)

또, 점 C'에서 \overline{AC} 에 내린 수선의 발을 H라고 하면 $\overline{AH} = \overline{BC} = 3$: $\overline{CH} = 5 - 3 = 2$

이때, $\overline{CC}' = 10$ 이므로 직각삼각형 CHC'에서

$$\overline{AB} = \overline{HC}' = \sqrt{10^2 - 2^2} = \sqrt{96} = 4\sqrt{6}$$

70) 7

 \Rightarrow 다음 그림과 같이 두 원의 중심을 각각 C, C'이라 고 하면

C(0,4), C'(5,-1)

또, 점 C에서 $\overline{BC'}$ 에 내린 수선의 발을 H라고 하면 $\overline{AC} = \overline{BH} = 2$

$$\therefore \overline{C'H} = 3 - 2 = 1$$

이때, $\overline{CC'} = \sqrt{5^2 + (4+1)^2} = 5\sqrt{2}$ 이므로

직각삼각형 CHC'에서

 $\overline{AB} = \overline{CH} = \sqrt{(5\sqrt{2})^2 - 1^2} = \sqrt{49} = 7$