Análisis Numérico 1 - Parte Práctica

16 de Diciembre de 2020

1. Considere la regla de cuadratura

$$\int_{-1}^{1} f(x)dx \approx f(\alpha) + f(-\alpha).$$

- (a) ¿Para qué valores de α (si existe) esta fórmula es exacta para polinomios de grado menor o igual a 1.
- (b) ¿Para qué valores de α (si existe) esta fórmula es exacta para polinomios de grado menor o igual a 3.
- (c) ¿Para qué valores de α (si existe) esta fórmula es exacta para polinomios de la forma $a + bx + cx^3 + dx^4$?
- 2. A partir del año 2016 se censó año a año el tamaño de la población en un criadero de conejos y los datos fueron los siguientes:

- 11	\ /	2016					
	P(población)	2981	4915	8103	17155		

Se cree que los datos siguen un comportamiento dado por una función exponencial de la forma $P(t) = P_0 e^{k(t-2016)}$.

- (a) Utilice el método de cuadrados mínimos para estimar los valores de P_0 y k.
- (b) Calcule la población aproximada correspondiente al año pasado (2019) usando lo realizado en el inciso anterior.
- (c) Construir un polinomio que interpole los datos en los años 2017, 2018 y 2019. Utilizarlo para estimar la población en el año 2016. ¿Es una buena estimación? ¿Por qué?

1. Considere la regla de cuadratura
$\int_{-1}^{1} f(x)dx \approx f(\alpha) + f(-\alpha).$
(a) ¿Para qué valores de α (si existe) esta fórmula es exacta para polinomios de grado menor o igual a 1.
(b) ¿Para qué valores de α (si existe) esta fórmula es exacta para polinomios de grado menor o igual a 3.
(c) ¿Para qué valores de α (si existe) esta fórmula es exacta para polinomios de la forma $a+bx+cx^3+dx^4$?
al Pare que le regle see exacte para polinomios de grado 1 se debe cumplir la siguiente:
a) Pare que le regle see exacte para polinomios de grado 1 se debe cumplir la siguiente: • $f(x) = 1$ Id $x = f(\alpha) + f(-\alpha) = 1 + 1 = 2$ No se obtienen reestricciones
=> vale para fodo x.
$-\mathcal{L}(x) = x \qquad \int x dx = \mathcal{L}(\alpha) + \mathcal{L}(-\alpha) = \alpha - \alpha = 0$
b. Pare que le regle see exacte para polinomios de grado 3 se debe cumplir la siguiente:
$P(x) = 1 \int_{1}^{1} dx = P(\alpha) + P(-\alpha) = 1 + 1 = 2 \sqrt{2}$
$-\mathcal{L}(x) = x \int_{-1}^{1} x dx = \mathcal{L}(\alpha) + \mathcal{L}(-\alpha) = \alpha - \alpha = 0$
$f(x) = x^2 \int_{-\infty}^{\infty} x^2 dx = f(\alpha) + f(-\alpha) = \alpha^2 + \alpha^2 = 2\alpha^2 = 2/3 \Rightarrow \alpha = \sqrt{3}$
$\int_{-1}^{1} (x) = x $
$f(x) = x^3 \int_{-1}^{1} dx = f(\alpha) + f(-\alpha) = \alpha^3 - \alpha^3 = 0 = 0$ Vale para $\alpha = \sqrt{3}$.
b. Pare que le regle see exacte para polinomios de grado 4 se debe cumplir la siguiente:
$f(x) = x^2 x^2 dx = f(\alpha) + f(-\alpha) = \alpha^2 + \alpha^2 = 2\alpha^2 = 2/3 \Rightarrow \alpha = \sqrt{3}$
$f(x) = x^{3} \int_{-1}^{x^{3}} dx = f(\alpha) + f(-\alpha) = \alpha^{3} - \alpha^{3} = 0 = 0$
Sólo vale para d=0
$f(x) = x^{4} \int_{-\infty}^{4} x^{4} dx = f(\alpha) + f(-\alpha) = \alpha^{4} + \alpha^{4} = 2\alpha^{4} = \frac{7}{4}$
Pedro Villa

		I		1		I					I										
	A partic									la pob	lación	en un	1								
				nño)		2016	2017			2019											
				oblac	ión)	2981	4915	_	_	7155											
	Se cree exponer								o dad	o por	una f	unción	L								
	(a) Ut	ilice ϵ	el mé	todo d	le cuad	drados	mínin	nos pa	ra est	imar l	os valo	res de	;								
	(b) Ca	lcule	_		_			_	iente a	ıl año p	asado	(2019))								
	(c) Co				o en el omio qu				os en i	los año	s 2017	, 2018	,								
	-			_	para es ¿Por o		la pob	olación	en el	año 20)16. ¿I	Es una									
a) Pa	sio op	or OYIn	101 (no de co	tos c	าโดเด	os 70	umen	n de	bo t	con s	D(C)		fun	CION O	\ \(\lambda \)	Dia Lin	omio (
) = P ₀ (•					•													
1, 1, 0	<i>J</i> = P ₀				(() ()	t// -	11 (7 6		<u> </u>	, -	ן נון נו	76) 1	7	.201	51,00	n est	0 (UM	010 1	0 +00	<i>Q</i> .	
			FC	(۵۲۰		76	616	201:	7	81015	7	019									
			P _x (משפשפ נ	magen)		8	8,5		9	o _l	, 75									
											•										
Ahora	o plon	iteo	લ કા	stem	ς (A ^τ	A)×=	Α ^τ Υ ,	dond	૯૬												
	2019	ا[ر		-			. 3.0	٦	Γκ	1		8									
A =	7016 7017 7018 7019	ι ,	AT =	2016	6 (0)	7 701	8 CD	19 x:	= 10((62)	y =	8,5									
	7018 7019	1		1	1	1	1					9,7	5								
		7											_								
				0	9 O																
																				Pedro	√illa