Final Evaluation LELEC2103

Bronchain Olivier Schellekens Vincent

Ecole Polytechnique de Louvain

December 6, 2015

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical results

OFDIA

Frame detection & Frequency Offset Correction

Objectives and method Practical results

OFDM

Narrowband vs wideband channels OFDM overview Sensitivity to frequency offset Parameters of a OFDM modulation

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical results

OFDM

OFDM

Frame detection & Frequency Offset Correction Objectives and method

Practical results

OFDIV

Narrowband vs wideband channels OFDM overview Sensitivity to frequency offset Parameters of a OFDM modulation

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

Objectives and method

Practical result

OFDM

Frame detection & frequency offset correction : what for?

- ► Goal of frame detection : locate the beginning of the frame despite the signal suffering an unknown delay
- ▶ Goal of frequency offset correction : even small Δf at Tx and $Rx \Rightarrow$ distortions that need to be corrected

We will (again) use training sequences to do these operations

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

Objectives and method

Practical result

OFDM

Frame detection by correlation

Idea: use a training sequence with strong *autocorrelation* properties

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

Objectives and method

Practical resul

OFDM

Frame detection & Frequency Offset Correction

Objectives and method

Practical results

OFDIV

Narrowband vs wideband channels OFDM overview Sensitivity to frequency offset

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method

Practical results

OFDM

Frame detection & Frequency Offset Correction Objectives and method Practical results

OFDM

Narrowband vs wideband channels

OFDM overview
Sensitivity to frequency offset
Parameters of a OFDM modulation

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical result

OFDM

Narrowband vs wideband channels

To use a narrowband channel we take:

► Sample rate: 4MSample/s

Oversampling factor: 20

▶ Bandwidth: 0,1*MHz*

To use a wideband channel we take:

► Sample rate: 20*MSample/s*

► Oversampling factor: 4

▶ Bandwidth: 2.5*MHz*

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical results

OFDM

Narrowband vs wideband channels

Sensitivity to frequency offset Parameters of a OFDM modulation

Power delay

(a) Narrowband channel

(b) Wideband channel

Figure: Power delay

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frequency Offset Correction Objectives and method Practical results

OFDM

Channel frequency response

(b) Wideband channel

Figure: Channel frequency response

Final Evaluation

Bronchain Olivier, Schellekens Vincent

-rame detection of Frequency Offset Correction Objectives and

Practical re

OFDM

▶ A Narrowband channel is flat because $L_h = 0$

$$H[k] = \sum_{l=0}^{L_h} e^{-j2\pi kl/N} = h[0]e^{-j2\pi kl/N} = h[0]\forall k$$

A Wideband channel is frequency selective because $L_h > 0$.

$$k_1 = 0$$
 and $k_2 = N/2$ $H[k_1] = \sum_{I=0}^{I} L_h h[I]$ and $H[k_2] = \sum_{I=0}^{I} L_h (-1)^I h[I]$ $H[k_1] \neq H[k_2]$

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method
Practical results

OFDM

Narrowband vs wideband channels

Sensitivity to frequency offset Parameters of a OFDM modulation

Frame detection & Frequency Offset Correction
Objectives and method
Practical results

OFDM

Narrowband vs wideband channels

OFDM overview

Sensitivity to frequency offset Parameters of a OFDM modulation

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical result

OFDM

Varrowband vs

OFDM overview

Sensitivity to frequency offset Parameters of a

$$w[n] = iDFT(s[m])$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} s[m] e^{j2\pi \frac{m(n-L_c)}{N}} \quad n = 0, ..., N + L_c - 1$$

Due to channel response we receive signal:

$$\overline{y}[n] = \sum_{l=0}^{L} h[l]w[n-l] + v[n]$$

His DFT gives:

$$\overline{Y}[k] = DFT[\overline{y}[n]]$$

= $H[k]s[k] + V[k]$

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical results

OFDM

Narrowband vs wideband channels

OFDM overview

Sensitivity to frequency offset Parameters of a OFDM modulation

OFDM

Narrowband vs wideband channels

Sensitivity to frequency offset

Final Evaluation

Bronchain Olivier. Schellekens Vincent

Sensitivity to frequency offset

Frequency offset influence

Figure: Influence of frequency offset in OFDM

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical results

OFDM

Narrowband vs wideband channels OFDM overview

Sensitivity to frequency offset

FDM modulation

Number of subcarriers influence

What happen when the number of subcarriers grows?

- ▶ There is more subcarriers for a certain bandwidth
- Less resistant against frequency offset

Figure: BER vs frequency offset for different subcarriers

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method
Practical results

OEDM

OFDM

Narrowband vs wideband channels Parameters of a OFDM modulation Final Evaluation

Bronchain Olivier. Schellekens Vincent

Parameters of a OFDM modulation

Parameters of a OFDM modulation

We can choose at least 3 parameters for a OFDM modulation:

- Increasing the number of subcarriers:
 - ▶ Make the channel less frequency selective
 - Increase OFDM frequency offset sensibility
- Increasing the bandwith
 - ▶ Make the channel more frequency selective
 - Decrease OFDM frequency offset sensibility
- ► The length of the cyclic prefix
 - Avoid ICI
 - \triangleright Should be at least greater then L_h

Final Evaluation

Bronchain Olivier, Schellekens Vincent

Frame detection & Frequency Offset Correction

method Practical results

OFDM

Narrowband vs wideband channe OFDM overview Sensitivity to

Parameters of a OFDM modulation

