NP-Completeness, NP-hardness for Optimization

Techniques for reductions, Proof writing guide, NP-hard optimization problems

Last Lecture

- P: decision problems that can be decided efficiently
- NP: decision problems that can be verified efficiently
- Reduction is an effective tool to show one problem is "weakly harder" than another.
- NP-Completeness describes the hardest problems in NP.
- Cook-Levin Theorem. SAT is NP-complete.
- 3SAT, VertexCover, IndependentSet, SubsetSum, HamiltonianPath are NP-complete.

This Lecture

- Show more important NP-complete problems.
- Learn some elementary techniques for reduction.
- Learn how to write a formal proof for NP-completeness.
- NP-hard optimization problems.

Note 1: Choose the Right Problem to Reduce from.

- Want to show an **NP** problem f is NP-complete.
- Need to show $g \leq_k f$ for some NP-complete problem g.
- Conceptually and in principle, $g \leq_k f$ should hold for any NP problem g.
 - Choosing any NP-complete problem should work, e.g., SAT.
- However, choosing a suitable problem makes your life much easier!
- If possible, choose g that "looks similar to" f.

Dominating Set

• Given an undirected graph G = (V, E), a dominating set is a subset of vertices S such that, for any $v \in V \setminus S$, there is a vertex $u \in S$ that is adjacent to v.

Dominating Set Problem

- [DominatingSet] Given an undirected graph G = (V, E) and an integer $k \in \mathbb{Z}^+$, decide if G contains a dominating set with size k.
- Problem: Show that DominatingSet is NP-complete.
- Question: Which problem should we reduce from?

Our Reduction Graph

Reduction from VertexCover

- A dominating set is similar to a vertex cover:
 - Vertex cover: S covers edges
 - Dominating set: S covers vertices
- An idea for reduction:
 - Introduce an intermediate vertex for each edge
 - cover the edge ⇒ cover the intermediate vertex

Does it work?

Does it work? NO!

- New vertices are covered, but original vertices may not be covered!
- Can we fix it?

Note 2: Fix your reduction if it doesn't work.

- All we have to do: make the original vertices a clique!
- Now, selecting a single vertex in the original vertex set covers all the original vertices.

How to write a NP-Completeness Proof

Four Parts for proving f is NP-complete:

- 1. Prove that *f* is in **NP**
- 2. Present the reduction $g \leq_k f$ for an NP-complete problem g
- 3. Show that yes instances of g are mapped to yes instances of f
- 4. Show that no instances of g are mapped to no instances of f
 - Most of the time, it is easier to prove its contrapositive: if an instance x of g is mapped to a yes instance of f, then x is a yes instance of g.

DominatingSet is NP-complete – a formal proof

<u>Proof.</u> First of all, DominatingSet is in **NP**, as a dominating set S can be served as a certificate, and it can be verified in polynomial time whether S is a dominating set and whether |S| = k.

To show that DominatingSet is NP-complete, we present a reduction from VertexCover. Given a VertexCover instance (G = (V, E), k), we construct a DominatingSet instance (G' = (V', E'), k') as follows.

The vertex set is $V' = \overline{V} \cup \overline{E}$, which is defined as follows. For each vertex $v \in V$ in the VertexCover instance, construct a vertex $\overline{v} \in \overline{V} \subseteq V'$; for each edge $e \in E$ in the VertexCover instance, construct a vertex $w_e \in \overline{E} \subseteq V'$.

The edge set E' is defined as follows. For each edge e = (u, v) in the VertexCover instance, build two edges $(\overline{u}, w_e), (\overline{v}, w_e) \in E'$. For any two vertices $\overline{u}, \overline{v}$ in \overline{V} , build an edge $(\overline{u}, \overline{v})$.

Define k' = k.

DominatingSet is NP-complete – a formal proof (continued)

Proof (Continued).

Suppose (G = (V, E), k) is a yes VertexCover instance. There exists a vertex cover $S \subseteq V$ with |S| = k. We will prove \overline{S} corresponding S is a dominating set in G'.

For each vertex in \overline{V} , it is covered by any vertex in \overline{S} as \overline{V} forms a clique.

For each vertex w_e in \overline{E} , let $e = (u, v) \in E$ be the corresponding edge in the VertexCover instance. We have either $u \in S$ or $v \in S$ (or both), as S is a vertex cover. This implies either $\overline{u} \in \overline{S}$ or $\overline{v} \in \overline{S}$ (or both), which further implies w_e is covered as $(\overline{u}, w_e), (\overline{v}, w_e) \in \overline{E}$ by our construction.

Since $|\overline{S}| = |S| = k = k'$, the DominatingSet instance we constructed is a yes instance.

DominatingSet is NP-complete – a formal proof (continued)

Suppose (G' = (V', E'), k') is a yes DominatingSet instance. There exists a dominating set $S' \subseteq V' = \overline{V} \cup \overline{E}$ with |S'| = k' = k. We aim to show that (G = (V, E), k) is a yes VertexCover instance. First of all, we can assume $S' \subseteq \overline{V}$ without loss of generality. If we have $w_e \in S'$ for some $w_e \in \overline{E}$ we can replace w_e with either \overline{u} or \overline{v} for the edge e = (u, v) in

for some $w_e \in \overline{E}$, we can replace w_e with either \overline{u} or \overline{v} for the edge e = (u, v) in the VertexCover instance. (In the case \overline{u} and \overline{v} have already been included in S', we can replace w_e with any unpicked vertex in \overline{V} .) It is easy to see that S' is still a dominating set after the change, as the set of vertices covered by either \overline{u} or \overline{v} is a superset of the set of vertices covered by w_e (which is just $\{\overline{u}, \overline{v}\}$).

Next, since $S' \subseteq \overline{V}$, S' corresponds to a vertex set $S \subseteq V$ in the VertexCover instance with |S| = |S'| = k' = k. It remains to show S is a vertex cover. For any edge e = (u, v), we have either $\overline{u} \in S'$ or $\overline{v} \in S'$ (or both) since S' is a dominating set and \overline{u} , \overline{v} are the only two vertices that can cover w_e . This implies $u \in S$ or $v \in S$ (or both), so S is a vertex cover.

Some Additional Notes

- Note 3: To prove a no instance is mapped to a no instance, we often prove the contrapositive.
- Note 4: When proving the above-mentioned contrapositive for $g \le_k f$, a common technique is to show that we can assume the yes instance of f is "well-behaved" that corresponds to the yes instance of g.
 - E.g., we prove that we can assume $S' \subseteq \overline{V}$ just now.
- Note 5: Do not mess up with the direction: a common mistake is to construct a instance of g from f, which only shows $f \le_k g$ (which is not helpful).

Our Reduction Graph

Note 6: Find an intermediate problem

- $g \leq_k f$ where g and f look quite different.
- Find an intermediate problem h that has similarities to both g and f.
- Show that $g \leq_k h$ and $h \leq_k f$.

$VertexCover \leq_k SubsetSum$

- We first consider the following "vector version" of SubsetSum.
- [VectorSubsetSum] Given a collection of integer vectors $S = \{a_1, ..., a_n : a_i \in \mathbb{Z}^m\}$ and a vector $k \in \mathbb{Z}^m$, decide if there exists $T \subseteq S$ with $\sum_{a_i \in T} a_i = k$.
- We will show that
 - 1. VertexCover \leq_k VectorSubsetSum
 - 2. VectorSubsetSum \leq_k SubsetSum

$VertexCover \leq_k VectorSubsetSum$

- Taskt
 - Given a Vertex Cover instance (G = (V, E), k).
 - Construct a Vector Subset Sum instance (S, k).
- For each $v_i \in V$, construct a (|E|+1)-dimensional vector $\mathbf{a}_i \in S$ such that $\mathbf{a}_i[0] = 1$ and for each j = 1, ..., |E|: $\mathbf{a}_i[j] = \begin{cases} 1 & \text{if } v_i \text{ is an endpoint of edge } j \\ 0 & \text{otherwise} \end{cases}$
- Let $\mathbf{k} = (k, 1, 1, ..., 1)$.

$$\mathbf{k} = (3, 1, 1, 1)$$

a Vertex Cover instance

k = 3

a Vertex Cover instance

a Vertex Cover instance

$VertexCover \leq_k VectorSubsetSum$

- Taskt
 - Given a Vertex Cover instance (G = (V, E), k).
 - Construct a Vector Subset Sum instance (S, k).
- For each $v_i \in V$, construct a (|E|+1)-dimensional vector $\mathbf{a}_i \in S$ such that $\mathbf{a}_i[0] = 1$ and for each j = 1, ..., |E|: $\mathbf{a}_i[j] = \begin{cases} 1 & \text{if } v_i \text{ is an endpoint of edge } j \\ 0 & \text{otherwise} \end{cases}$
- For each edge j, construct $\mathbf{b}_j \in S$ where $\mathbf{b}_j[j] = 1$ is the only non-zero entry.
- Let $\mathbf{k} = (k, 2, 2, ..., 2)$.

$$\mathbf{a}_1 = (1, 1, 1, 0, 0)$$
 $\mathbf{a}_2 = (1, 1, 0, 1, 0)$
 $\mathbf{a}_3 = (1, 0, 1, 1, 1)$
 $\mathbf{a}_4 = (1, 0, 0, 0, 0, 1)$
 $\mathbf{b}_1 = (0, 1, 0, 0, 0)$
 $\mathbf{b}_2 = (0, 0, 1, 0, 0)$
 $\mathbf{b}_3 = (0, 0, 0, 1, 0)$
 $\mathbf{b}_4 = (0, 0, 0, 0, 1)$
 $\mathbf{k} = (3, 2, 2, 2, 2)$

a Vertex Cover instance

a Vertex Cover instance

Ideas Behind the Reduction

- Picking $a_i \in T$ represents picking v_i in the vertex cover.
- The 0-th entry of \mathbf{k} is set to k, enforcing exactly k vertices must be picked.
- The *j*-th entry of **k** is set to 2 enforcing edge *j* must be covered:
 - Say, edge j is (v_{i_1}, v_{i_2})
 - If \mathbf{a}_{i_1} , $\mathbf{a}_{i_2} \in T$, we are fine, as the *j*-th entries already add up to 2.
 - If one of \mathbf{a}_{i_1} , \mathbf{a}_{i_2} is chosen in T, we are also fine, as we can include $\mathbf{b}_j \in T$.
 - If \mathbf{a}_{i_1} , $\mathbf{a}_{i_2} \notin T$, we are <u>not</u> fine: the *j*-th entries add up to at most 1 even if we include $\mathbf{b}_i \in T$.
- We are done! VertexCover \leq_k VectorSubsetSum

$VectorSubsetSum \leq_k SubsetSum$

- We can convert a vector $\mathbf{a} = (\mathbf{a}[0], ..., \mathbf{a}[m])$ to a large number.
- For example, convert a = (1, 4, 5, 3) to number 1453
 - $-1453 = \mathbf{a}[0] \times 1000 + \mathbf{a}[1] \times 100 + \mathbf{a}[2] \times 10 + \mathbf{a}[3] \times 1$
- We are using decimal representation in the above example...
- To avoid carry, use N-ary representation instead (for sufficiently large N)?
- Additions with vectors are now equivalent to additions with numbers, since we do not have carry issue.
- VectorSubsetSum \leq_k SubsetSum

SubsetSum is NP-complete

- We have seen SubsetSum is in NP.
- We have proved
 - 1. VertexCover \leq_k VectorSubsetSum
 - 2. VectorSubsetSum $≤_k$ SubsetSum

SubsetSum+

- [SubsetSum+] Given a collection of positive integers $S = \{a_1, ..., a_n\}$ and $k \in \mathbb{Z}^+$, decide if there is a sub-collection $T \subseteq S$ such that $\sum_{a_i \in T} a_i = k$.
- SubsetSum+ is NP-complete
 - The same proof for SubsetSum can prove this!
- Test your "sense of direction": Which one holds trivially?
 - A. SubsetSum \leq_k SubsetSum+
 - B. SubsetSum $+ \le_k$ SubsetSum

Our Reduction Graph

Partition Problem

- [Partition] Given a collection of integers S, decide if there is a partition of S to A and B such that $\sum_{a \in A} a = \sum_{b \in B} b$.
- [Partition+] Given a collection of positive integers S, decide if there is a partition of S to A and B such that $\sum_{a \in A} a = \sum_{b \in B} b$.
- Exercise: Prove that both Partition and Partition+ are NPcomplete.

Our Reduction Graph

HamiltonianPath is NP-complete

- We have seen HamiltonianPath ∈ NP. It remains to show its NP-hardness.
- Intermediate problem: DirectedHamiltonianPath
 - [DirectedHamiltonianPath] Given a directed graph G = (V, E), a source $s \in V$ and a sink $t \in V$, decide if there is a Hamiltonian path from s to t.
- We will show:
 - 1. $3SAT \leq_k DirectedHamiltonianPath$
 - 2. DirectedHamiltonianPath \leq_k HamiltonianPath

Note 7: constructing "gadgets" – be creative!

 $3SAT \leq_k DirectedHamiltonianPath$

- Given a 3SAT instance ϕ , we will construct a DirectedHamiltonianPath instance.
- Let n and m be the number of variables and clauses respectively.
- "Variable Gadget"

$3SAT \leq_k DirectedHamiltonianPath$

- There are two ways to go from "entrance" to "exit" that visit the middle vertices.
- They will represent x_i = true and x_i = false respectively.

$3SAT \leq_k DirectedHamiltonianPath$

Connect all the variable gadgets.

$3SAT \leq_k DirectedHamiltonianPath$

- Connect all the variable gadgets.
- An s-t simple path visiting all middle vertices corresponds to an assignment to all variables.

$3SAT \leq_k DirectedHamiltonianPath$

- Connect all the variable gadgets.
- An s-t simple path visiting all middle vertices corresponds to an assignment to all variables.
- Build a vertex v_j for each clause j.

 v_1

lacksquare v_z

 $\bullet v_3$

 v_m

$3SAT \leq_k Directed Hamiltonian Path$

• Inside the variable gadget, build 3m + 1 middle vertices such that every two vertices corresponds to a clause separated by a "separator".

$3SAT \leq_k Directed Hamiltonian Path$

• If x_i is in j-th clause, connect the gadget to v_j as follows.

$3SAT \leq_k DirectedHamiltonianPath$

- If x_i is in j-th clause, connect the gadget to v_j as follows.
- If $x_i = \text{true}$, j-th clause is satisfied, we can take a detour and visit v_j .

$3SAT \leq_k Directed Hamiltonian Path$

• If $\neg x_i$ is in j-th clause, connect the gadget to v_j as follows.

$3SAT \leq_k Directed Hamiltonian Path$

- If $\neg x_i$ is in j-th clause, connect the gadget to v_j as follows.
- If $x_i = \text{false}$, j-th clause is satisfied, we can take a detour and visit v_j .

$3SAT \leq_k DirectedHamiltonianPath$

If ϕ is a yes instance, the graph has a Hamiltonian path:

- For each clause, choose a representative true literature.
- Go from s to t, and visit each v_j from its representative by taking a detour.

If the graph has a Hamiltonian path, ϕ is a yes instance:

- The Hamiltonian path has to go from s to t.
- Each v_j has to be visited by a detour from a variable.
- The variable's value is then determined.

Vertex Gadget:

a vertex and its incident edges DirectedHamiltonianPath instance

a vertex gadget and its incident edges HamiltonianPath instance

If G is a yes DirectedHamiltonianPath instance, G' is a yes HamiltonianPath instance:

- Hamiltonian path in $G: s \to u_1 \to u_2 \to \cdots \to u_n \to t$
- Hamiltonian path in $G': s^{in} \to s^{mid} \to s^{out} \to u_1^{in} \to u_1^{mid} \to u_1^{out} \to u_2^{in} \to \dots \to u_n^{out} \to t^{in} \to t^{mid} \to t^{out}$

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

Show that the yes HamiltonianPath instance is "well-behaved"

• Lemma 1. The path in G' must start at s^{in} and end at t^{out} .

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

- Lemma 1. The path in G' must start at s^{in} and end at t^{out} .
- Proof. s^{in} and t^{out} have degree 1, so they must be starting and ending vertices.
- We can assume the path goes from s^{in} to t^{out}
 - Going from t^{out} to s^{in} is equivalent, as the graph is undirected.

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

- Lemma 1. The path in G' must start at s^{in} and end at t^{out} .
- **Lemma 2**. If we first enter a vertex gadget at u^{in} (or u^{out}) we must proceed to u^{mid} and then to u^{out} (or u^{in}).

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

- Lemma 1. The path in G' must start at s^{in} and end at t^{out} .
- **Lemma 2**. If we first enter a vertex gadget at u^{in} (or u^{out}) we must proceed to u^{mid} and then to u^{out} (or u^{in}).
- Proof. If we go to u^{in} and do not proceed to u^{mid} , we have nowhere to go when we reach u^{mid} in the future.
- u^{mid} must be an endpoint of the path, contradicting to Lemma 1.

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

- Lemma 1. The path in G' must start at s^{in} and end at t^{out} .
- **Lemma 2**. If we first enter a vertex gadget at u^{in} (or u^{out}) we must proceed to u^{mid} and then to u^{out} (or u^{in}).
- **Lemma 3**. The pattern of the path must be $in \rightarrow mid \rightarrow out \rightarrow in \rightarrow mid \rightarrow out \rightarrow \cdots$

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

- Lemma 1. The path in G' must start at s^{in} and end at t^{out} .
- **Lemma 2**. If we first enter a vertex gadget at u^{in} (or u^{out}) we must proceed to u^{mid} and then to u^{out} (or u^{in}).
- **Lemma 3**. The pattern of the path must be $in \rightarrow mid \rightarrow out \rightarrow in \rightarrow mid \rightarrow out \rightarrow \cdots$
 - Proof. We start at s^{in} (Lemma 1) and we must go to s^{mid} and s^{out} (Lemma 2).
 - Each u^{out} is only connected to an v^{in} , and we need to proceed to v^{mid} and v^{out} (Lemma 2).

If G' is a yes HamiltonianPath instance, G is a yes DirectedHamiltonianPath instance:

- Lemma 1. The path in G' must start at s^{in} and end at t^{out} .
- **Lemma 2**. If we first enter a vertex gadget at u^{in} (or u^{out}) we must proceed to u^{mid} and then to u^{out} (or u^{in}).
- **Lemma 3**. The pattern of the path must be $in \rightarrow mid \rightarrow out \rightarrow in \rightarrow mid \rightarrow out \rightarrow \cdots$
- Now we have a Hamiltonian path in G' corresponding to a path in G.

Web of NP-complete Problems

Hamiltonian Cycle

- Given an undirected graph G = (V, E), a Hamiltonian cycle is a cycle that visits each vertex exactly once.
- [HamiltonianCycle] Given an undirected graph G = (V, E), decide if G contains a Hamiltonian cycle.
- Exercise: Prove that HamiltonianCycle is NP-complete.

Web of NP-complete Problems

Five Most Important NP-Complete Problems

Most NP-complete problems can be reduced from...

- 3SAT
- IndependentSet (Clique)
- VertexCover
- SubsetSum (Partition)
- HamiltonianPath (HamiltonianCycle)

Techniques we have seen...

- 1. Choose the right problem to reduce from
- 2. Fix the reduction by minor modifications
- 3. Show the contrapositive for the mapping of no instances
- 4. Show the yes instance being reduced to is "well-behaved"
- 5. Do not mess-up the direction
- 6. Introduce intermediate problems
- 7. Use gadgets be creative

NP-Hard vs NP-Complete

Difference between NP-hardness and NP-completeness:

- For decision problems: NP-complete = NP-hard + (in NP)
 - There are NP-hard problems that are not in NP; these problems are even harder than NP-complete problems.
- NP-hardness can describe optimization/search problems

NP-hard Optimization Problems (Informal)

- A maximization problem is NP-hard if there exists $k \in \mathbb{R}$ such that deciding whether OPT $\geq k$ is NP-hard.
- A minimization problem is NP-hard if there exists $k \in \mathbb{R}$ such that deciding whether OPT $\leq k$ is NP-hard.
- If there exists a polynomial time algorithm to solve an NP-hard optimization problem, then P = NP.
 - If OPT can be computed in polynomial time, whether OPT $\geq k$ (OPT $\leq k$) can also be decided in polynomial time.
 - Solving an NP-hard decision problem in polynomial time implies P = NP.

NP-hard Optimization Problem Examples

- [Max-3SAT] Maximizing the number of satisfying clauses.
 - NP-hard to decide if OPT ≥ NumOfClauses
- [Max-IndependentSet] Maximizing the size of the independent set.
 - NP-hard to decide if OPT $\geq k$
 - Note: existence of k-independent set implies OPT $\geq k$.
- [Min-VertexCover] Minimizing the size of the vertex cover.
 - NP-hard to decide if OPT $\leq k$
 - Note: existence of k-vertex cover implies OPT $\leq k$.
- [LongestPath] Maximizing the length of a simple path.
 - NP-hard to decide if $OPT \ge |V|$ (HamiltonianPath)

Makespan Minimization (Revisited)

- Makespan Minimization is NP-hard.
- Let $k = \frac{1}{2} \sum_{i=1}^{n} p_i$.
- For even two machines, it is NP-hard to decide whether optimal makespan $\leq k$.
- An obvious reduction from Partition.

Travelling Salesman Problem (TSP)

- [TSP] Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- [TSP (Formulation)] Given a weighted and complete undirected graph $G = (V, E = V \times V, w)$, find a Hamiltonian cycle with minimum length.
- Differences with HamiltonianCycle:
 - A Hamiltonian cycle always exists for TSP
 - But the graph is weighted, we need to optimize the path length

TSP is NP-hard

- Given a HamiltonianPath instance G = (V, E), we construct a TSP instance G = (V', E', w) such that
 - -V'=V
 - $-w(u,v)=1 \text{ if } (u,v) \in E$
 - $w(u, v) = |V|^{2615}$ is a very large number if $(u, v) \notin E$
- It's NP-hard to decide if optimal tour has length at most |V|.

TSP is even hard to "approximate"!

- **Theorem.** Suppose $P \neq NP$. There is no polynomial time α -approximation algorithm for TSP for any $\alpha \geq 1$ that may depend on the instance.
- Theorem holds for exponentially large α , e.g., $\alpha = (2615|V|)^{2615|V|}$.
- Proof. Change $|V|^{2615}$ to $\alpha |V| + 1$ in the previous reduction.
- Yes HamiltonianCycle instance \Rightarrow OPT_{TSP} = |V|
- No HamiltonianCycle instance \Rightarrow OPT_{TSP} $\geq \alpha |V| + 1$
- Let ALG be the output of an α -approximation algorithm \mathcal{A} .
- ALG $\leq \alpha |V| \implies$ yes HamiltonianCycle instance
- ALG $\geq \alpha |V| + 1 \implies$ no HamiltonianCycle instance

This Lecture

- Show more important NP-complete problems.
 - DominatingSet
 - SubsetSum (Partition)
 - HamiltonianPath (HamiltonianCycle)
- Learn some elementary techniques for reduction.
- Learn how to write a formal proof for NP-completeness.
- NP-hard optimization problems
 - Makespan Minimization
 - TSP