Solutions for Math 311 Assignment #3

(1) Compute the limits:

(a)
$$\lim_{z \to i} \frac{iz^3 - 1}{z^2 + 1}$$
;
(b) $\lim_{z \to \infty} \frac{4z^2}{(z - 1)^2}$.

(b)
$$\lim_{z \to \infty} \frac{4z^2}{(z-1)^2}$$
.

Solution. (a)

$$\lim_{z \to i} \frac{iz^3 - 1}{z^2 + 1} = \lim_{z \to i} \frac{i(z^3 - i^3)}{z^2 + 1}$$

$$= \lim_{z \to i} \frac{i(z - i)(z^2 + iz + i^2)}{(z - i)(z + i)}$$

$$= \lim_{z \to i} \frac{i(z^2 + iz + i^2)}{z + i} = -\frac{3}{2}$$

or by complex L'Hospital,

$$\lim_{z \to i} \frac{iz^3 - 1}{z^2 + 1} = \lim_{z \to i} \frac{3iz^2}{2z} = -\frac{3}{2}$$

(b)

$$\lim_{z \to \infty} \frac{4z^2}{(z-1)^2} = \lim_{z \to 0} \frac{4z^{-2}}{(z^{-1}-1)^2}$$
$$= \lim_{z \to 0} \frac{4}{(1-z)^2} = 4$$

(2) Show that the limit of the function

$$f(z) = \left(\frac{z}{\overline{z}}\right)^2$$

as z tends to 0 does not exist.

Solution. Let z = x + yi. When $x \to 0$ and y = 0,

$$\lim_{\substack{x \to 0 \\ x = 0}} \left(\frac{z}{\overline{z}}\right)^2 = \lim_{x \to 0} \frac{x^2}{x^2} = 1$$

When x = y and $x \to 0$,

$$\lim_{\substack{x \to 0 \\ x = y}} \left(\frac{z}{\overline{z}}\right)^2 = \lim_{x \to 0} \frac{(x + xi)^2}{(x - xi)^2} = -1$$

Therefore, $\lim_{z\to 0} f(z)$ does not exist.

(3) Let

$$T(z) = \frac{az+b}{cz+d}$$

where $ad - bc \neq 0$. Show that

- (a) $\lim_{z \to \infty} T(z) = \infty$ if c = 0;
- (b) $\lim_{z \to \infty} T(z) = \frac{a}{c}$ if $c \neq 0$ and $\lim_{z \to -d/c} T(z) = \infty$ if $c \neq 0$.

Proof. Since

$$\lim_{z \to \infty} \frac{1}{T(z)} = \lim_{z \to 0} \frac{1}{T(z^{-1})}$$

$$= \lim_{z \to 0} \frac{cz^{-1} + d}{az^{-1} + b}$$

$$= \lim_{z \to 0} \frac{c + dz}{a + bz} = \frac{c}{a}$$

it follows that $\lim_{z\to\infty} T(z) = \infty$ when c = 0 and $\lim_{z\to\infty} T(z) =$ a/c if $c \neq 0$.

Since $ad - bc \neq 0$, $a(-d/c) + b \neq 0$. Therefore,

$$\lim_{z \to -d/c} \frac{1}{T(z)} = \lim_{z \to -d/c} \frac{cz+d}{az+b} = 0$$

and hence $\lim_{z\to -d/c} T(z) = \infty$ when $c \neq 0$.

(4) Find f'(z) when

(a)
$$f(z) = 3z^2 - 2z + 4$$
;

(b)
$$f(z) = (1 - 4z^2)^3$$
:

Find
$$f(z)$$
 when
(a) $f(z) = 3z^2 - 2z + 4$;
(b) $f(z) = (1 - 4z^2)^3$;
(c) $f(z) = \frac{z - 1}{2z + 1} (z \neq -\frac{1}{2})$;

(d)
$$f(z) = \frac{(1+z^2)^4}{z^2} \ (z \neq 0).$$

Answer. (a) 6z - 2 (b) $-24z(1 - 4z^2)^2$ (c) $3(2z + 1)^{-2}$ (d) $2(3z^2 - 1)(1 + z^2)^3 z^{-3}$

(5) Show that f'(z) does not exist at any point when

(a)
$$f(z) = \operatorname{Im}(z)$$
;

(b)

$$f(z) = \begin{cases} \overline{z}^2/z & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Proof. (a) Since

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)f = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)(x - yi) = 2 \neq 0$$

for all z = x + yi, f'(z) does not exist at any point. (b) For $z = x + yi \neq 0$,

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) \frac{(x - yi)^2}{x + yi}$$

$$= \frac{2(x - yi)(x + yi) - (x - yi)^2}{(x + yi)^2}$$

$$+ i\frac{-2i(x - yi)(x + yi) - i(x - yi)^2}{(x + yi)^2}$$

$$= \frac{4(x - yi)}{x + yi} \neq 0$$

Therefore, f'(z) does not exist for $z \neq 0$. At z=0,

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} \frac{\overline{z}^2}{z^2}$$

When $x \to 0$ and y = 0,

$$\lim_{\substack{x \to 0 \\ y = 0}} \frac{\overline{z}^2}{z^2} = \lim_{x \to 0} \frac{x^2}{x^2} = 1$$

When x = y and $x \to 0$,

$$\lim_{x \to 0} \frac{\overline{z}^2}{z^2} = \lim_{x \to 0} \frac{(x - xi)^2}{(x + xi)^2} = -1$$

Therefore, f'(0) does not exist. In conclusion, f'(z) does not exist anywhere.

- (6) Use Cauchy-Riemann equations to verify that f(z) is analytic

 - (a) $f(z) = z^3$ in \mathbb{C} ; (b) $f(z) = z^{-1}$ for $z \neq 0$; (c) $f(z) = e^{-z^2}$ in \mathbb{C} .

Proof. (a) Since

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)z^3 = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)(x+iy)^3$$
$$= 3(x+yi)^2 + i^23(x+yi)^2 = 0$$

and $\partial f/\partial x$ and $\partial f/\partial y$ are continuous everywhere, f(z) is entire. (b) Since

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)z^{-1} = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)(x+iy)^{-1}$$
$$= -(x+yi)^{-2} - i^2(x+yi)^{-2} = 0$$

and $\partial f/\partial x$ and $\partial f/\partial y$ are continuous for $z \neq 0$, f(z) is analytic for $z \neq 0$.

(c) Since

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)e^{-z^2} = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)e^{-(x+iy)^2}$$
$$= -2(x+yi)e^{-(x+iy)^2} - 2i^2(x+yi)e^{-(x+iy)^2} = 0$$

and $\partial f/\partial x$ and $\partial f/\partial y$ are continuous everywhere, f(z) is entire.

(7) Show that if both f(z) and g(z) satisfy the Cauchy-Riemann equations at z_0 , so does f(z)g(z).

Proof. Since C-R equations hold for f(z) and g(z) at z_0 ,

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = \frac{\partial g}{\partial x} + i \frac{\partial g}{\partial y} = 0$$

at z_0 . Therefore,

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)(fg) = \left(\frac{\partial f}{\partial x}g + f\frac{\partial g}{\partial x}\right) + i\left(\frac{\partial f}{\partial y}g + f\frac{\partial g}{\partial y}\right)
= \left(\frac{\partial f}{\partial x}g + i\frac{\partial f}{\partial y}g\right) + \left(f\frac{\partial g}{\partial x} + if\frac{\partial g}{\partial y}\right)
= g\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right) + f\left(\frac{\partial g}{\partial x} + i\frac{\partial g}{\partial y}\right) = 0$$

at z_0 . Therefore, C-R equations hold for f(z)g(z) at z_0 .

(8) Suppose that f(z) = u + iv is analytic at z_0 . Show that

$$f'(z_0) = -\frac{i}{z_0} \left(\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} \right)$$

at $z=z_0$, where (r,θ) are the polar coordinates.

Proof. By chain rule,

$$\frac{\partial}{\partial x} = \cos \theta \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \frac{\partial}{\partial \theta} \text{ and } \frac{\partial}{\partial y} = \sin \theta \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta}.$$

Since f(z) is analytic at z_0 ,

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)f = 0$$

and hence

$$\left(\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right)f = 0 \Rightarrow \frac{\partial f}{\partial r} = -\frac{i}{r}\frac{\partial f}{\partial \theta}$$

in $|z - z_0| < a$ for some a > 0. Therefore,

$$f'(z) = \frac{\partial f}{\partial x} = \cos \theta \frac{\partial f}{\partial r} - \frac{\sin \theta}{r} \frac{\partial f}{\partial \theta}$$
$$= -\frac{i \cos \theta}{r} \frac{\partial f}{\partial \theta} - \frac{\sin \theta}{r} \frac{\partial f}{\partial \theta}$$
$$= -i \frac{e^{-i\theta}}{r} \frac{\partial f}{\partial \theta} = -\frac{i}{re^{i\theta}} \frac{\partial f}{\partial \theta}$$
$$= -\frac{i}{z} \left(\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} \right)$$