Výroková a predikátová logika - XIII

Petr Gregor

KTIML MFF UK

ZS 2018/2019

Izomorfismus struktur

Nechť A, B jsou struktury jazyka $L = \langle F, R \rangle$.

- Bijekce $h: A \to B$ je *izomorfismus* struktur A a B, pokud platí zároveň
 - $\begin{array}{ll} (\emph{\textbf{i}}) & h(f^A(a_1,\ldots,a_n)) = f^B(h(a_1),\ldots,h(a_n)) \\ & \text{pro každý } n\text{-\'arn\'i funkčn\'i symbol } f \in \mathcal{F} \text{ a každ\'e } a_1,\ldots,a_n \in A, \end{array}$
 - $\begin{array}{ll} (\it{ii}) & R^A(a_1,\ldots,a_n) & \Leftrightarrow & R^B(h(a_1),\ldots,h(a_n)) \\ & \text{pro každý } \textit{n-}\text{ární relační symbol } R \in \mathcal{R} \text{ a každé } a_1,\ldots,a_n \in A. \end{array}$
- A a B jsou izomorfní (via h), psáno A ≃ B (A ≃_h B), pokud existuje izomorfismus h struktur A a B. Říkáme rovněž, že A je izomorfní s B.
- Automorfismus struktury A je izomorfismus A s A.

Např. potenční algebra $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ s X = n je izomorfní s Booleovou algebrou $\underline{^n2} = \langle ^n2, -_n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ via $h: A \mapsto \chi_A$, kde χ_A je charakteristická funkce množiny $A \subseteq X$.

Izomorfismus a sémantika

Uvidíme, že izomorfismus zachovává sémantiku.

Tvrzení Nechť \mathcal{A} , \mathcal{B} jsou struktury jazyka $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Bijekce $h: A \to B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když platí zároveň

- $(i) \quad h(t^A[e]) = t^B[e \circ h] \qquad \qquad ext{pro každý term } t \; a \; e \colon ext{Var} o A,$
- $(\emph{ii}) \quad \mathcal{A} \models \varphi[e] \ \Leftrightarrow \ \mathcal{B} \models \varphi[e \circ h] \qquad \textit{pro každou formuli } \varphi \textit{ a } e \colon \mathrm{Var} \to A.$

Důkaz (\Rightarrow) Indukcí dle struktury termu t, respektive formule φ .

- (\Leftarrow) Dosazením termu $f(x_1,\ldots,x_n)$ do (i) či atomické formule $R(x_1,\ldots,x_n)$
- do (ii) pro ohodnocení $e(x_i)=a_i$ máme, že h vyhovuje def. izomorfismu.

Důsledek Pro každé struktury A, B stejného jazyka,

$$A \simeq B \Rightarrow A \equiv B$$
.

Poznámka Obrácená implikace obecně neplatí, např. $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, ale $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$, neboť $|\mathbb{Q}| = \omega$ a $|\mathbb{R}| = 2^{\omega}$.

Konečné modely s rovností

Tvrzení Pro každé konečné struktury A, B stejného jazyka s rovností,

$$\mathcal{A} \equiv \mathcal{B} \Rightarrow \mathcal{A} \simeq \mathcal{B}.$$

Důkaz Je |A| = |B|, neboť lze vyjádřit "existuje právě n prvků".

- Nechť \mathcal{A}' je expanze \mathcal{A} do jazyka $L' = L \cup \{c_a\}_{a \in A}$ o jména prvků z A.
- Ukážeme, že \mathcal{B} lze expandovat na \mathcal{B}' do jazyka L' tak, že $\mathcal{A}' \equiv \mathcal{B}'$. Pak zřejmě $h \colon a \mapsto c_a^{\mathcal{B}'}$ je izomorfismus \mathcal{A}' s \mathcal{B}' a tedy i izomorfismus \mathcal{A} s \mathcal{B} .
- Stačí ukázat, že pro každé $c_a^{A'}=a\in A$ existuje $b\in B$ t.ž. $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.
- Označme Ω množinu formulí $\varphi(x)$ t.ž. $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, tj. $\mathcal{A} \models \varphi[e(x/a)]$.
- Jelikož je A konečné, existuje konečně formulí $\varphi_0(x), \ldots, \varphi_m(x)$ tak, že pro každé $\varphi \in \Omega$ je $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$ pro nějaké i.
- Jelikož $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \leq m} \varphi_i$, existuje $b \in B$ t.ž. $\mathcal{B} \models \bigwedge_{i \leq m} \varphi_i[e(x/b)]$.
- Tedy pro každou $\varphi \in \Omega$ je $\mathcal{B} \models \varphi[e(x/b)]$, tj. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \square

Důsledek Má-li kompletní teorie jazyka s rovností konečný model, jsou všechny její modely izomorfní.

Definovatelnost a automorfismy

Množina definovaná formulí $\varphi(\overline{x}, \overline{y})$ s parametry $\overline{b} \in A^{|\overline{y}|}$ ve struktuře \mathcal{A} je $\varphi^{\mathcal{A}, \overline{b}}(\overline{x}, \overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})]\}.$

Tvrzení Nechť $D \subseteq A^n$ je množina definovatelná ve struktuře \mathcal{A} z parametrů \overline{b} a h je automorfismus \mathcal{A} , který je identický na \overline{b} . Pak h[D] = D.

Důkaz Nechť $D=\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}).$ Pak pro každé $\overline{a}\in A^{|\overline{x}|}$

$$\overline{a} \in D \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$$

$$\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \Leftrightarrow h(\overline{a}) \in D.$$

Např. graf $\mathcal G$ má právě jeden netriv. automorfismus h zachovávající vrchol 0.

Navíc množiny $\{0\}$, $\{1,4\}$, $\{2,3\}$ jsou definovatelné z parametru 0. Tedy

 $\mathrm{Df}^1(\mathcal{G},\{0\}) = \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$

Kategoričnost

- *Izomorfní spektrum* teorie T je počet $I(\kappa, T)$ navzájem neizomorfních modelů teorie T pro každou kardinalitu κ .
- Teorie T je κ -kategorická, pokud má až na izomorfismus právě jeden model kardinality κ , tj. $I(\kappa,T)=1$.

Tvrzení Teorie DeLO (tj. "bez konců") je ω -kategorická.

Důkaz Nechť \mathcal{A} , $\mathcal{B} \models DeLO$ s $A = \{a_i\}_{i \in \mathbb{N}}$, $B = \{b_i\}_{i \in \mathbb{N}}$. Indukcí dle n lze nalézt prosté parciální funkce $h_n \subseteq h_{n+1} \subset A \times B$ zachovávající uspořádání tak, že $\{a_i\}_{i < n} \subseteq \operatorname{dom}(h_n)$ a $\{b_i\}_{i < n} \subseteq \operatorname{rng}(h_n)$. Pak $\mathcal{A} \simeq \mathcal{B}$ via $h = \cup h_n$.

Obdobně dostaneme, že např. $\mathcal{A}=\langle\mathbb{Q},\leq\rangle$, $\mathcal{A}\upharpoonright(0,1]$, $\mathcal{A}\upharpoonright[0,1)$, $\mathcal{A}\upharpoonright[0,1]$ jsou až na izomorfismus všechny spočetné modely teorie $DeLO^*$. Pak

$$I(\kappa, \textit{DeLO}^*) = egin{cases} 0 & \mathsf{pro} \ \kappa \in \mathbb{N}, \ 4 & \mathsf{pro} \ \kappa = \omega. \end{cases}$$

ω -kategorické kritérium kompletnosti

Věta Nechť jazyk L je spočetný.

- (i) Je-li teorie T jazyka L bez rovnosti ω -kategorická, je kompletní.
- (ii) Je-li teorie T jazyka L s rovností ω -kategorická a bez konečného modelu, je kompletní.

Důkaz Každý model teorie T je elementárně ekvivalentní s nějakým spočetně nekonečným modelem T, ale ten je až na izomorfismus jediný. Tedy všechny modely T jsou elementárně ekvivalentní, tj. T je kompletní.

Např. teorie $DeLO^+$, $DeLO^+$, $DeLO^+$ jsou kompletní a jsou to všechny (navzájem neekvivalentní) jednoduché kompletní extenze teorie $DeLO^*$.

Poznámka Obdobné kritérium platí i pro vyšší kardinality než ω .

Axiomatizovatelnost

Zajímá nás, zda se daná část světa dá "dobře" popsat.

Nechť $K \subseteq M(L)$ je třída struktur jazyka L. Řekneme, že K je

- axiomatizovatelná, pokud existuje teorie T jazyka L s M(T) = K,
- konečně axiomatizovatelná, pokud je axiomatizovatelná konečnou teorií,
- otevřeně axiomatizovatelná, pokud je axiomatizovatelná otevřenou teorií,
- ullet teorie T je konečně (otevřeně) axiomatizovatelná, pokud M(T) je konečně (respektive otevřeně) axiomatizovatelná.

Pozorování Je-li K axiomatizovatelná, je uzavřená na elem. ekvivalenci.

Například

- a) lineární uspořádání jsou konečně i otevřeně axiomatizovatelná,
- b) tělesa jsou konečně axiomatizovatelná, ale ne otevřeně,
- c) nekonečné grupy jsou axiomatizovatelné, ale ne konečně.

Důsledek kompaktnosti

Věta *Má-li teorie* T *pro každé* $n \in \mathbb{N}$ *alespoň* n-prvkový model, má i nekonečný model.

Důkaz V jazyce bez rovnosti je to zřejmé, uvažme jazyk s rovností.

- Označme $T' = T \cup \{c_i \neq c_j \mid \text{pro } i \neq j\}$ extenzi teorie T v rozšířeném jazyce o spočetně nekonečně mnoho nových konstantních symbolů c_i .
- Dle předpokladu má každá konečná část teorie T' model.
- Tedy dle věty o kompaktnosti má T' model, ten je nutně nekonečný.
- Jeho redukt na původní jazyk je hledaný nekonečný model teorie T.

Důsledek Má-li teorie T pro každé $n \in \mathbb{N}$ alespoň n-prvkový model, není třída všech jejích konečných modelů axiomatizovatelná.

Např. nelze axiomatizovat konečné grupy, konečná tělesa, atd. Avšak třída nekonečných modelů teorie T jazyka s rovností je axiomatizovatelná.

Konečná axiomatizovatelnost

Věta Nechť $K \subseteq M(L)$ a $\overline{K} = M(L) \setminus K$, kde L je jazyk. Pak K je konečně axiomatizovatelná, právě když K i \overline{K} jsou axiomatizovatelné.

extstyle ext

- Nechť T, S jsou teorie jazyka L takové, že M(T) = K, $M(S) = \overline{K}$.
- Pak $M(T \cup S) = M(T) \cap M(S) = \emptyset$ a dle věty o kompaktnosti existují konečné $T' \subseteq T$ a $S' \subseteq S$ takové, že $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Jelikož

$$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$$

je M(T) = M(T'), tj. konečná T' axiomatizuje K.

Konečná axiomatizovatelnost - příklad

Nechť T je teorie těles. Řekneme, že těleso $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ je

- *charakteristiky* 0, neexistuje-li žádné $p \in \mathbb{N}^+$ takové, že $\mathcal{A} \models p1 = 0$, kde p1 značí term $1+1+\cdots+1$ (+ aplikováno (p-1)-krát).
- *charakteristiky p*, kde p je prvočíslo, je-li p je nejmenší t.ž. $A \models p1 = 0$.
- Třída těles charakteristiky p pro p prvočíslo je konečně axiomatizována teorií $T \cup \{p1 = 0\}$.
- Třída těles charakteristiky 0 je axiomatizována (nekonečnou) teorií $T' = T \cup \{ p1 \neq 0 \mid p \in \mathbb{N}^+ \}.$

Tvrzení Třída K těles charakteristiky 0 není konečně axiomatizovatelná.

Důkaz Stačí dokázat, že \overline{K} není axiomatizovatelná. Kdyby $M(S) = \overline{K}$, tak $S' = S \cup T'$ má model \mathcal{B} , neboť každá konečná $S^* \subseteq S'$ má model (těleso prvočíselné charakteristiky větší než jakékoliv p vyskytující se v axiomech S^*). Pak ale $\mathcal{B} \in M(S) = \overline{K}$ a zároveň $\mathcal{B} \in M(T') = K$, což není možné.

Otevřená axiomatizovatelnost

Věta Je-li teorie T otevřeně axiomatizovatelná, pak každá podstruktura modelu T je rovněž modelem T.

Důkaz Nechť T' je otevřená axiomatika M(T), $\mathcal{A} \models T'$ a $\mathcal{B} \subseteq \mathcal{A}$. Víme, že pro každé $\varphi \in T'$ je $\mathcal{B} \models \varphi$, neboť φ je otevřená. Tedy \mathcal{B} je modelem T'. \square

Poznámka Platí i obrácená implikace, tj. je-li každá podstruktura modelu teorie T rovněž modelem T, pak T je otevřeně axiomatizovatelná.

Např. teorie DeLO není otevřeně axiomatizovatelná, neboť např. konečná podstruktura modelu DeLO není modelem DeLO.

Např. nejvýše n-prvkové grupy pro pevné n>1 jsou otevřeně axiomatizovány

$$T \cup \{ \bigvee_{\substack{i,j \leq n \\ i \neq j}} x_i = x_j \},\,$$

kde T je (otevřená) teorie grup.

