

中国电信 SIP 协议规范——信令流程

(试行)

2004年4月发布 2004年4月试行

中国电信集团公司发布

前言

SIP 协议是下一代网络中的接口协议之一 "属于应用控制协议。本标准是以 IETF 和 ITU-T 的相关标准为基础,结合中国电信网络的实际情况,并综合中国电信集团 公司对下一代网络的实验成果制定的。

它是中国电信在下一代网络建设中引进、测试和研发软交换设备、SIP 终端设备以及其他基于 SIP 协议相关设备的规范和依据。鉴于 SIP 协议应用范围广泛,项目组在编写时将整个协议规范分为 3 个分册:

第一分册:《总体要求》

第二分册:《协议细则》

第三分册:《信令流程》

本分册为《信令流程》分册。

本标准由中国电信集团公司提出。

本标准由中国电信集团公司归口。

本标准 2004 年 4 月首次发布。

本标准由中国电信集团公司负责解释

目 录

1.	編制	间说明	1
	1.1	范围	
	1.2	参考文献	
2.	环境	竟说明	1
3.	用户	□注册	2
	3.1	成功的注册	
	3.1.		
	3.1.		
	3.1.	3 注销	∠
	3.2	不成功的注册	
4			
4.		又认证	
	4.1	注册鉴权	5
	4.2	呼叫鉴权(假定对 Invite 消息的鉴权)	5
5.	基本	b.呼叫	5
	5.1	SIP 用户-SIP 用户	4
	5.1.		
	5.1.	2 不成功的呼叫建立	12
	5.1.	3 定时器检验	14
	5.2	SIP 用户-PSTN 用户(采用 Profile B)	16
	5.2.		
	5.2.	2 不成功的呼叫建立	18
	5.3	PSTN 用户-SIP 用户(采用 Profile B)	21
	5.3.		
	5.3.	2 不成功的呼叫建立	23
	5.4	PSTN 用户-PSTN 用户(Profile C , 要求临时性响应可靠传送)	25
	5.4.	•	
	5.4.	2. 不成功的呼叫建立	28

6. 业务	控制30
6.1	SIP 用户-SIP 用户30
6.1.1	Presence
6.1.2	Fork 应用
6.1.3	通过重定向实现的业务(类似呼叫前转)43
6.1.4	呼叫保持46
6.1.5	呼叫等待47
6.1.6	主叫显示禁止(CLIR)49
6.2	SIP 用户-PSTN 用户(SIP-ISUP 互通,Profile B)50
6.2.1	呼叫前转(包括立即前转、无应答前转、遇忙前转)50
6.2.2	呼叫保持53
6.2.3	呼叫等待53
6.2.4	主叫显示禁止(CLIR)53
6.3	PSTN 用户-SIP 用户(SIP-ISUP 互通, Profile B)54
6.3.1	通过重定向实现的业务(类似于呼叫前转业务)54
6.3.2	呼叫保持54
6.3.3	呼叫等待55
6.3.4	主叫显示禁止(CLIR)55
6.4	PSTN 用户-PSTN 用户(SIP-ISUP 互通,Profile C)56
6.4.1	呼叫前转(包括立即前转、无应答前转、遇忙前转)56
6.4.2	呼叫保持59
6.4.3	呼叫等待59
6.4.4	主叫显示禁止(CLIR)59

1. 编制说明

1.1 范围

本分册对基本语音业务、典型补充业务的实现作了流程说明,同时做出规定的还包括 Presence、并行/串行的呼叫流程,涉及的用户包括 PSTN 用户、SIP 用户等。

对于 IAD 用户参与的呼叫流程,其局间信令的处理可参照 PSTN 用户参与呼叫的情形。

当涉及到呼叫建立的情形,都以2个交换机的情形进行说明。

在本分册中,为了说明上的方便,软交换充当呼叫、路由实体时,以 Proxy 的行为进行说明,但并不表明必须通过 Proxy 实现。当实体以 B2BUA 的形式实现时,其行为应当满足第一分册、第二分册对 B2BUA 的行为要求。

T7、T9 定时器参照原有 PSTN 网络的定义

T1、T2 定时器参照 RFC3261 的定义

1.2 参考文献

《中国电信 SIP 企业规范第一分册》

《中国电信 SIP 企业规范第二分册》

2. 环境说明

表 2-1 环境说明

网络乳	实体说明	IP 地址	号码分配	所属域
软交换 1 及其下	软交换 1	1.1.1.1		Guangzhou.com
的相关资源(软交	SIP 用户 A	1.1.1.100	801-020-800001	
换同时具备注册服	PSTN 用户 B		020-900001	
务器功能)	媒体资源服务器 M1	1.1.1.150		

软交换 2 及其下	软交换 2	2.2.2.2		Beijing.com
面的用户(软交换	SIP 用户 C	2.2.2.200	801-010-600002	
同时具备注册服务	PSTN 用户 D		010-700002	
器功能)	媒体资源服务器 M2	2.2.2.150		

3. 用户注册

3.1成功的注册

3.1.1 基本注册过程

1) SIP 用户 A 向所属域的注册服务器发起注册请求

REGISTER sip: 1.1.1.1 SIP/2.0

From: sip:801020800001@1.1.1.1; tag=25486

To: sip: 801020800001@1.1.1.1

CSeq: 1 REGISTER

Call-ID: 10000000@1.1.1.100

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK1063644978

Maxforward: 70

Contact: sip: 801020800001@1.1.1.100:5060

Expires: 3600 Content-Length: 0

2) 注册服务器要求用户进行鉴权

SIP/2.0 401 Unauthorized

From: sip:801020800001@1.1.1.1; tag=25486
To: sip:801020800001@1.1.1.1; tag=254863455

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK1063644978

CSeq: 1 REGISTER

Call-ID: 10000000@1.1.1.100

WWW-Authenticate: Digest real m="1.1.1.1",

nonce="ca019edffb7551683c2136eb2dd10537", stal e=FALSE, al gori thm=MD5

Content-Length: 0

3) 带有鉴权信息的注册请求

REGISTER sip: 1.1.1.1 SIP/2.0

From: sip:801020800001@1.1.1.1; tag=25ER486

To: sip: 801020800001@1.1.1.1

CSeq: 2 REGISTER

Call-ID: 10000000@1.1.1.100

Vi a: SIP/2.0/UDP 1.1.1.10:5060; branch=z9hG4bK1063644978

Maxforward: 70

Contact: sip: 801020800001@1.1.1.100:5060

Expires: 3600

WWW-Authorization: Digest username="801020800001", real m="1.1.1.1",

nonce="ca019edffb7551683c2136eb2dd10537", uri = "sip: 801020800001@1.1.1.1",

response= " dffb7551683c2136e "

Content-Length: 0

4) 注册成功

SIP/2.0 200 0K

From: sip:801020800001@1.1.1.1; tag=25ER486
To: sip: 801020800001@1.1.1.1; tag=2343244332

CSeq: 2 REGISTER

Call-ID: 10000000@1.1.1.10

Via: SIP/2.0/UDP 1.1.1.10:5060; branch=z9hG4bK1063644978

Contact: sip: 801020800001@1.1.1.100:5060

Expires: 3600

流程说明:建议第2个Register消息与第1个Register消息Call-id相同, Cseq增加

3.1.2 注册信息的更新

流程说明:

- 1) 假定注册周期为1个小时,终端在1个小时之内发起注册更新的消息
- 2) 要求周期更新中带有注册鉴权信息
- 3) 注册更新请求时,要求 Call-id 不变, Cseq 增加

3.1.3 注销

参照 3.1.1 流程

注销请求中,expire 值为 0。

3.2 不成功的注册

参照 3.1.1 的流程,此时针对第二次的注册请求,注册服务器将会回应 4**消息

不成功的注册包括:没有通过认证或注册请求的 expire 值太小

4. 鉴权认证

4.1 注册鉴权

参见 3.1.1 的流程

4.2 呼叫鉴权(假定对Invite消息的鉴权)

用户鉴权通过后的流程,参照5.1.1.1的流程

5. 基本呼叫

5.1SIP用户-SIP用户

根据第一分册的要求,当被叫用户为 SIP 用户时,此时主叫侧提供回铃音,因此临时响应的可靠传送不是必须的。

在 5.1 所示的各流程中,不要求临时响应的可靠传送,因此没有 PRACK 流程的出现。

5.1.1 成功呼叫

5.1.1.1 基本呼叫, 主叫释放

1) 用户 A 向软交换 1 发起请求

INVITE sip: 801010600002@1.1.1.1:5060 SIP/2.0

Via: SIP/2.0/UDP 1.1.1.100:5060; branch= z9hG4bK020836764600000

From: $801020800001 < \sin p$: 801020800001@1.1.1.1:5060 > ; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060

Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 1 INVITE Max-foward: 70

 ${\tt Contact: 801020800001 < sip: 801020800001@1.1.1.100:5060>}$

Content-Type: application/sdp

Content-Length: 222

v=0

o=801020800001 2890844526 2890844526 IN IP4 1.1.1.100

S=-

c=IN IP4 1.1.1.100

t=0 0

m=audio 49172 RTP/AVP 0 a=rtpmap:0 PCMU/8000

2) 软交换 1 接收到请求后向用户 A 发送确认信号,表示正在对收到的请求进行处理

SIP/2.0 100 Trying

Via: SIP/2.0/UDP 1.1.1.100:5060; branch= z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060

Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 1 INVITE
Content-Length: 0

3) 软交换 1 经过路由分析,将请求转发到软交换 2

INVITE sip: 801010600002@2.2.2.2:5060 SIP/2.0

Via: SIP/2.0/UDP 1.1.1.1:5060; branch=gdasdd00023324334

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060

Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 1 INVITE Max-forward: 69

Contact: 801020800001 <sip: 801020800001@1.1.1.100;5060>

Record-route: <sip:1.1.1.1; | r>
Content-Type: application/sdp

Content-Length: 222

v=0

o=801020800001 2890844526 2890844526 IN IP4 1.1.1.100

S=-

c=IN IP4 1.1.1.100

t=0 0

m=audio 49172 RTP/AVP 0 a=rtpmap:0 PCMU/8000

4) 软交换 2 向软交换 1 发送确认消息 (表示已经接收到请求消息),同时将请求转发到用户 C

INVITE sip: 801010600001@2.2.2.200:5060 SIP/2.0 Via: SIP/2.0/UDP 2.2.2.2:5060; branch=sdfasdfsdf9898709 Via: SIP/2.0/UDP 1.1.1.1:5060; branch=gdasdd00023324334 Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000 From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27 To: sip:801010600002@1.1.1.1:5060 Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100 CSeq: 1 INVITE Max-forward: 68 Contact: 801020800001 <sip: 801020800001@1.1.1.100;5060> Record-route: <sip: 2. 2. 2. 2; lr> Record-route: <sip:1.1.1.1; lr> Content-Type: application/sdp Content-Length: 222 v=0 o=801020800001 2890844526 2890844526 IN IP4 1.1.1.100 c=IN IP4 1.1.1.100 t = 0.0m=audio 49172 RTP/AVP 0

5) 用户 C 振铃(回铃音由主叫方本地放送)

SIP/2.0 180 Ringing

a=rtpmap: 0 PCMU/8000

Vi a: SIP/2.0/UDP 2.2.2.2:5060; branch=sdfasdfsdf9898709 Vi a: SIP/2.0/UDP 1.1.1.1:5060; branch=gdasdd00023324334

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060

Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 1 INVITE
Content-Length: 0

6) 软交换 2 向软交换 1 转发此信号

7) 软交换 1 向用呼 A 转发此信号

8) 用户 C 摘机

SIP/2.0 200 0K

Via: SIP/2.0/UDP 2.2.2.2:5060; branch=sdfasdfsdf9898709 Via: SIP/2.0/UDP 1.1.1.1:5060; branch=gdasdd00023324334

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060; tag=568549reter9998 Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 1 INVITE

Contact: 801010600002 <sip: 801010600002@2.2.2.2.200:5060>

Record-route: <sip: 2.2.2.2; lr>
Record-route: <sip: 1.1.1.1; lr>
Content-Type: application/sdp

Content-Length: 200

v=0

o=801010600002 2890844526 2890844526 IN IP4 2.2.2.200

S=-

c=IN IP4 2.2.2.200

t=0 0

m=audio 9000 RTP/AVP 0
a=rtpmap: 0 PCMU/8000

9) 用户 A 接收到 200 消息后发送确认信号

ACK 801010600002@2.2.2.200:5060 SIP/2.0

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060; tag=568549reter9998 Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 1 ACK
Maxforward: 70

Contact: 801020800001 <sip: 801020800001@1.1.1.1:5060>

Route: <sip: 1.1.1.1; | r> Route: <sip: 2.2.2.2; | r>

Content-Length: 0

10) 软交换 1、软交换 2 将此信号转发到用户 C

11) 主叫用户挂机,软交换将拆线信号转发到被叫用户C处

BYE 801010600002@2. 2. 2. 200: 5060 SIP/2. 0

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip: 801010600002@1.1.1.1:5060; tag=568549reter9998 Call-ID: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 2 BYE
Maxforward: 70

Route: <si p: 1. 1. 1. 1; | r> Route: <si p: 2. 2. 2. 2; | r>

Content-Length: 0

12) 被叫用户发送确认信号表示收到拆线信号

SIP/2.0 200 0K

Via: SIP/2.0/UDP 2.2.2.2:5060; branch=sdfasdfsdf9898709 Via: SIP/2.0/UDP 1.1.1.1:5060; branch=gdasdd00023324334

Via: SIP/2.0/UDP 1.1.1.100:5060; branch=z9hG4bK020836764600000

From: 801020800001<sip: 801020800001@1.1.1.1:5060>; tag=22af9be9d1eac27

To: sip:801010600002@1.1.1.1:5060; tag=568549reter9998

Cal I - I D: e9aedcb152bbe1903ddd5eed2b111a71@1.1.1.100

CSeq: 2 BYE

Content-Length: 0

流程说明:

- 1) 对 SIP—SIP 之间的呼叫,由于回铃音由主叫侧提供,因此本流程没有要求 支持 18*消息的可靠传送
- 2) 当网络实体为 Proxy 实现时
 - 为了确保后续的请求消息不旁路网络中的服务器,要求服务器增加 Record-route 域,同时需要支持 Loose router 方式
 - 由于 UAS 收到的 Invite 中带有 Record-route 域,因此对于 180 消息: 如果带有 Contact 域,则必须带有 Record-route 域
- 3) 当软交换按照 B2BUA 的逻辑实现时
 - ACK 响应 200 消息 (以及 Bye 响应 200 消息)时为 Hop by Hop 的过程
 - 其 Via、From、To、Contact 应当根据《第二分册----协议细则》的要求 生成,以能够保证呼叫的所有消息都经过该网络实体

5.1.1.2 基本呼叫,被叫释放

- 1) 拆线信号由被叫发出, BYE 消息中的 From、to 域与初始 Invite 消息中的 From、To 域发生颠倒
- 2) Cseq 的取值应当比本终端发送的初始请求消息的 Cseq 值增加 1

5.1.2 不成功的呼叫建立

5.1.2.1 建立阶段,后向释放

5.1.2.1.1 被叫用户忙

- 1) 用户 C 下只带有 1 个终端, 因此不考虑 Fork 情况的存在
- 2) 失败新号由被叫处的网络服务器发出,本规范建议此种方式

5.1.2.1.2 久叫不应

流程说明:任何网络服务器都会启动业务层面的定时器保护,此时假定拆线信号由被叫侧网络服务器发出

5.1.2.2 建立阶段,被叫应答前,前向释放

5.1.3 定时器检验

5.1.3.1 INVITE 消息的定时器 (没有收到任何响应消息)

- 1) 本例说明的是软交换机发送 Invite 消息后没有收到任何响应的情况,同时假定不考虑业务层面的定时器存在。
- 2) 假定 T1=500 毫秒,如果网络服务器同时存在业务层面保护器,INVITE 的次数可能少于7个。根据网络实际运营的需要,可对 T1 进行修改
- 3) 对终端而言,当发送 Invite 消息后没有任何消息时,其重发行为也参照该流程

5.1.3.2 200 消息的定时器 (等待 ACK 消息)

- 1) 本例说明的是软交换机发送 200 消息后没有收到 ACK 响应的情况。
- 2) 当终端发送 200 消息没有接收到 ACK 消息时, 其重发行为参照该流程
- 3) 假定 T1=500 毫秒, T2=4 秒。可根据实际运营的需要对 T1 进行修改

5.1.3.3 BYE 消息的定时器 (等待 200 消息)

流程说明:

- 1) 本例说明的是软交换机发送 BYE 消息后没有收到 200 响应的情况。
- 2) 当终端发送 BYE 消息没有接收到 200 消息时, 其重发行为参照该流程
- 3) 假定 T1=500 毫秒, T2=4 秒。可根据实际运营的需要对 T1 进行修改

5.2SIP用户-PSTN用户(采用Profile B)

- 1) 根据第一分册的要求,当被叫用户为 PSTN 用户时,由被叫端局提供回铃音,因此要求临时响应可靠传送。
- 2) 此时主叫用户发送的 INVITE 的 Supported 域中,必须带有 100 rel 参数
- 3) 被叫用户发送的 18*消息的 Require 域中,必须带有 100 rel 参数

5.2.1 成功的呼叫

5.2.1.1 基本呼叫, 主叫释放(要求临时响应可靠传送)

- 1) 软交换 2 处的 SIP-ISUP 互通单元采用 B 配置
- 2) 根据第一分册的要求,此时的回铃音由被叫端局播放。因此 180 信号中带有 SDP,建立后向通道。为了保证 18*信号的可靠传送,要求必须支持RFC3262。
- 3) 按照协议要求,被叫应答时的 200 响应,不应当带有 SDP 描述。如果在被叫应答前,需要对媒体资源地址进行修改,通过 Update 进行修改

5.2.1.2 基本呼叫,被叫释放(要求临时响应可靠传送)

流程说明:呼叫建立过程参见 5.2.1.1

5.2.2 不成功的呼叫建立

5.2.2.1 建立阶段,后向释放

5.2.2.1.1 被叫用户忙(被叫端局播放语音通知音)

- 1) 根据第一分册、第二分册的要求, 软交换 2 将会根据收到的 ACM 消息映射成 183 消息, 并且 183 消息中带有 SDP, 建立后向通道
- 2) 主叫用户听到语音通知后,如果挂机,将会发送 Cancel 消息
- 3) 如果主叫用户没有挂机,被叫端局在一定时限后将会发送拆线信号,软交

换 2 根据接收到的 REL 消息发送失败消息到主叫侧,结束本次呼叫

5.2.2.1.2 等待 PSTN 域的 ACM 信号

- 1) 由于 PSTN 网络本身存在 T7 定时器,因此此时的拆线信号可能由 PSTN 网络中的任何一个局发出,本流程假设被叫侧的软交换发出拆线信号
- 2) 软交换 2 根据 Q.1912 的要求生成相应的 4**消息

5.2.2.1.3 久叫不应

流程说明:由于 PSTN 网络本身存在 T9 定时器,因此此时的拆线信号可能由 PSTN 网络中的任何一个局发出,本项目假设由被叫侧的软交换发出拆线信号

软交换1 (Prony) 软交换2 SIP用户A PSTN INVITE [SDP] INVITE [SDP] 100 Trying IAM 100 Trying ACIE 180 Ringing [SDP] 180 Ringing [SDP] PRACE PRACK. 200 OK (PRACK) 200 OK (PRACK) CANCEL CANCEL REL 200 OK (CANCEL) 200 OK (CANCEL) RLC 487 Request Terminated 487 Request Terminated ACK.

5.2.2.2 建立阶段,被叫应答前,前向释放

5.3PSTN用户-SIP用户(采用Profile B)

根据第一分册的呼叫模型,此时 NNI 接口上可采用 SIP 也可采用 SIP-I ,本流程假定 NNI 接口上采用 SIP

根据第一分册的要求,当被叫用户为 SIP 用户时,此时主叫侧提供回铃音,因此临时响应的可靠传送不是必须的。

在 5.3 所示的各流程中,没有 PRACK 流程的出现。

5.3.1 成功的呼叫

5.3.1.1 基本呼叫, 主叫挂机

- 1) 本流程假定所有 SIP 用户的号码为特殊号码。当软交换 1 接收到呼叫后,通过号码分析,确定为被叫为 SIP 用户,软交换 1 与软交换 2 之间的 NNI接口采用 SIP 信令
- 2) 由于被叫用户为 SIP 用户,回铃音由主叫侧提供。因此当软交换 1 收到 180 消息后(没有 SDP),软交换 1 通过控制其下的媒体资源服务器向主叫用户播放回铃音。

5.3.1.2 基本呼叫,被叫挂机

5.3.2 不成功的呼叫建立

5.3.2.1 建立阶段,后向释放

5.3.2.1.1 被叫用户忙

- 1) 用户 C 下只带有 1 个终端, 因此不考虑 fork 情况的存在
- 2) 失败信号由被叫处的网络服务器发出,本规范建议此种方式

5.3.2.1.2 久叫不应

流程说明:任何网络设备都会启动 T9 定时器,本例假设由软交换 2 发出拆线信号

5.3.2.2 建立阶段,被叫应答前,前向释放

流程说明:

- 1) 本例假定 180 消息不带有 tag 参数,即此时没有建立 Early Dialog。
- 2) 根据 Q.1912 的规定 ,如果软交换 1 接收到的 180 消息的 to 域带有 tag 参数 ,则软交换 1 应当发送 Bye 消息

5.4 PSTN用户-PSTN用户(Profile C,要求临时性响应可靠传送)

根据第一分册的要求,当被叫用户为 PSTN 用户时,由被叫端局提供回铃音,因此要求临时响应的可靠传送。

5.4.1 成功的呼叫

5.4.1.1 基本呼叫, 主叫释放

- 1) PSTN 网络侧发送 IAM 消息到软交换 1, 请求路由
- 2) 软交换 1 通过号码分析,不能够判别被叫用户为 SIP 用户,因此 NNI 接口上采用 SIP-I 信令。此时初始发送的 Invite 消息中除了封装 PSTN 发送的 IAM消息外,还带有主叫侧媒体网关 SDP 信息。
- 3) 软交换 1 将 INVITE 消息发送到软交换 2
- 4) 软交换 2 通过号码分析,确认被叫用户为 PSTN 用户。软交换 2 提取出封 装在 Invite 消息中的 IAM 消息并结合相应的本地策略生成新的 IAM 消息发送到 PSTN 网络
- 5) 被叫用户空闲。
- 6) 软交换 2 根据接收到的 ACM 消息,映射成 180 消息,由于此时的回铃音由被叫端局提供,因此此时 180 消息中除了封装 ACM 消息外,还带有被

叫侧媒体网关 SDP 信息。

- 7) 软交换 2 将此消息发送到软交换 1
- 8) 软交换 1 根据接收到的 180 消息,提取出 ACM 消息并结合本地策略,生成新的 ACM 消息,发送到主叫侧的 PSTN 网络
- 9) 由于媒体资源由后向提供,需要临时响应信号(18*)消息的可靠传送。因此软交换1在向主叫侧发送 ACM 的同时向软交换2发送确认消息,表明已收到18*消息。
- 10) 被叫用户应答
- 11) 软交换 2 接收到被叫侧 PSTN 网络发送的 ANM 消息后,由于主、被叫双方已建立的通道不需要修改,此时发送的 200 中只需封装 ANM 消息而不需要带有 SDP 信息
- 12) 软交换 1 接收到 200 消息后,提取出 ANM 消息并结合本地策略,发送到 主叫侧的 PSTN 网络
- 13) 软交换 1 向软交换 2 发送 ACK 消息 ,表示已收到软交换 2 发送的 200 消息
- 14) 主、被叫用户间建立通话
- 15) 一定时间后,会话结束,主叫用户挂机。主叫侧 PSTN 网络向软交换 1 发送 REL 消息
- 16) 软交换 1 接收到 REL 消息后,向主叫侧发送 RLC 消息;同时将 REL 消息 封装在 BYE 消息中,发送到软交换 2
- 17) 软交换 2 接收到 BYE 消息后,向软交换 1 发送封装 RLC 的 200 消息;同时向被叫侧 PSTN 网络发送 REL 消息,同时接受被叫侧 PSTN 网络发送的 RLC 消息

5.4.1.2 基本呼叫,被叫释放(要求临时性响应的可靠传送)

呼叫成功建立前的流程与 4.4.1.1 的相同,只是此时的拆线信号由被叫侧发起。

5.4.2 不成功的呼叫建立

5.4.2.1 建立阶段,后向释放

5.4.2.1.1 被叫用户忙

5.4.2.1.2 久叫不应

流程说明:由于 PSTN 网络本身存在 T9 定时器,因此此时的拆线信号可能由 PSTN 网络中的任何一个局发出,本项目假设由被叫侧的软交换发出拆线信号

5.4.2.2 建立阶段,在早期对话建立后,前向释放

- 1) 由于 180 消息已经建立了媒体通道,如果主叫方在被叫应答前拆线,软交换 1 发送 Bye 消息
- 2) BYE 消息中应当封装 REL 消息

6. 业务控制

6.1SIP用户-SIP用户

6.1.1 Presence

6.1.1.1 体系结构

SIP 终端 1 和 SIP 终端 2 互为 Watcher 和 Presentity。

软交换作为呈现业务代理,主要有以下作用:

- 1) 作为 SIP 终端的呈现业务代理,收集 SIP 终端的注册和注销状态信息,并向呈现业务服务器发布此信息。
- 2) 作为其他终端的呈现业务代理,收集其他终端的状态信息,并向呈现业务服务器发布此信息。

6.1.1.1.1 信令流程

6.1.1.1.2 呈现业务服务器启动

- 1) 呈现业务服务器启动时,会根据自身管理的信息向软交换机发送 Subscribe 消息请求软交换机当 SIP 或其他终端注册或注销时,由软交换机将此状态信息通知呈现业务服务器。
- 2) 如果软交换机和呈现业务服务器存在互信关系,软交换机将终端的状态信息(注册或者注销)通知呈现业务服务器。

6.1.1.1.3 用户登录

- 1) SIP 终端 1 向软交换机发送注册请求,通过鉴权后软交换机回送 200 OK 响应。
- 2) 软交换机发现呈现业务服务器已经订阅了此终端的状态通知,就发送 Notify(reg)消息通知呈现业务服务器。
- 3) SIP 终端 1 发送 Subscibe (winfo)消息请求订阅 watcher 的信息。
- 4) 呈现业务服务器通过 Notify (winfo)消息将订阅者(watcher)的信息发送

给 SIP 终端。

- 5) SIP 终端 1 按照一定的鉴权策略 (可参考 XCAP) 对于订阅者鉴权后发送 Notify (authwinfo) 消息给呈现业务服务器,呈现业务服务器将根据鉴权结果决定是否发送终端 1 的状态信息给订阅者。
- 6) SIP 终端通过一定的方式(可参考 XCAP)获取 Presentity 的信息后,发送 Subscribe (presence)消息给呈现业务服务器订阅 Presentity 的状态信息。
- 7) 呈现业务服务器通过终端 2 和其他 Presentity 的授权后会发送终端 2 和其他 Presentity 的状态信息给终端 1。

6.1.1.1.4 增加 Presentity

- 1) SIP 终端 1 发送 Subscribe (presence)请求呈现业务服务器订阅终端 2 的状态信息。
- 2) 如果终端 2 已经登录,则呈现业务服务器发送 Nofity (winfo)消息通知终

端2订阅者的信息。

- 3) 终端 2 按照一定的鉴权策略鉴权通过后发送 Notity (authwinfo) 通知呈现业务服务器鉴权结果。
- 4) 呈现业务服务器发送 Notify (presence)消息通知终端 1 关于终端 2 的状态信息。

6.1.1.1.5 状态改变通知

- 1) 用户状态改变后,终端1发送 Publish 消息通知呈现业务服务器状态改变信息。
- 2) 呈现业务服务器发送 Notify (presence)消息给所有终端 1 的订阅者通知终端 1 的状态信息。

6.1.2 Fork 应用

6.1.2.1 并行寻址

6.1.2.1.1 成功呼叫,只有一个200信号

流程说明:

1) 在软交换 2 上,对于用户 E,有两个地址,分别是终端 1、终端 2。当软交换 2 接收到对用户 E的寻址请求时,将同时向终端 1、终端 2的两个地址发送请求消息

- 2) 根据第一分册的要求,此时软交换 2 并没有保留用户 E 下所有终端的状态信息。以下示例也是如此。
- 3) 对"注1"处180消息的处理上
 - 根据第一分册的要求,此处的 180 消息由软交换 2 生成,180 消息的 to 域中不应当带有 tag 参数。但软交换 2 需要缓存接收到所有 18*消息。
 - 软交换 2 在生成 180 消息的时间上,存在两种选择。选择一,在已知被叫用户的状态下发送,此时接收到被叫用户发送的 180 信号;选择二,未知被叫用户状态的情况下发送 180 消息,即软交换 2 在向被叫方转发请求的同时向主叫侧发送 180 消息,提示向用户播放振铃音,类似于现在的 Early Acm。本例显示的为后一种情况
 - 主叫用户听到的回铃音由主叫侧提供。即如果主叫用户为 SIP 或 IAD (AG)用户,则回铃音由主叫用户自己提供;如果主叫用户为 PSTN 用户,则回铃音由主叫侧的媒体网关提供
- 4) 对"注2"处200消息的处理上
 - 根据第一分册的要求, 软交换 2 只向前向发送一个 200 消息。即当接收到一个 200 消息后, 将向后向的被叫侧其他地址发送拆线信息
 - 软交换 2 根据缓存的 18*消息和接收到 200 消息,向主叫侧发送带有被叫用户 SDP 信息的 200 消息。
- 5) 从整个流程看,虽然寻址方式为点对多点,但会话最终仍然建立在点对点的情形下。
- 6) 对于 200----ACK 与 BYE---200 的处理上, 软交换 2 也可以是一种 Hop By Hop 的行为。对 6.1.3 节有关 200---ACK 与 BYE---200 的处理都遵循此原则

6.1.2.1.2 成功呼叫,存在失败信号

- 1) "注1"处的 180 消息生成原则,参照 6.1.3.1.1
- 2) 软交换 2 接收到后向发送的失败信号后,不应当立即向前向转发
- 3) 软交换 2 接收到 200 与失败信号 (4**、5**或 6**消息)情况下,向前向转发 200 消息,因此"注2"处生成的 200 消息为终端 1 的 SDP 信息

6.1.2.1.3 不成功呼叫

6.1.2.1.3.1 代理服务器取消请求(例如久叫不应)

- 1) 本例示例的情况为,用户 E 终端 1 处为空闲状态,但久叫不应;终端 2 处于忙的状态
- 2) 软交换 2 根据实际呼叫的情况,向主叫用户发送失败信号。(此时发送 486 较好,表明已知用户的状态)

6.1.2.1.3.2 主叫方取消请求

6.1.2.2 串行寻址

6.1.2.2.1 成功呼叫,第一个地址成功

- 1) 在软交换 2 上,对于用户 E,有两个地址,分别是终端 1、终端 2。当软交换 2 接收到对用户 E的寻址请求时,将首先向终端 1 所在的地址发送请求
- 2) 图例中"注1"处的 180 消息由软交换 2 生成,180 消息中不应当带有 tag 参数。相应的放音信号由主叫侧提供。180 信号的产生存在两种情况,参见6.1.3.1.1 的说明。本例说明的是软交换 2 未知被叫状态的情况下向主叫侧发送振铃提示
- 3) 当有地址应答后,软交换2将不会向其他地址发送呼叫请求

6.1.2.2.2 成功呼叫,存在失败信号

流程说明:本例所示的情况是,用户终端1处被叫用户忙,软交换2接到失败信号后,并没有后向发送,而是对此失败原因进行了缓存;软交换2同时向终端2进行呼叫,终端进行应答,用户C与终端2处的用户建立了通话。

6.1.2.2.3 不成功呼叫

流程说明:用户终端1处被叫用户忙,软交换2接到失败信号后,并没有后向发送,而是对此失败原因进行了缓存;软交换2同时向终端2进行呼叫,终端2处的用户也处于忙的状态。软交换2与已经缓存的失败信号进行比较,选择一合适的失败码发送到主叫侧。本例发送486信号。

6.1.3 通过重定向实现的业务(类似呼叫前转)

6.1.3.1 无条件重定向

- 1) 本例所示的业务由终端实现
 - 用户终端 E 通过数据配置,当有呼叫请求时,通过发送重定向消息到 网络服务器,由网络服务器将呼叫路由到其他地址
 - 该业务类似于原有的无条件呼叫转移业务
- 2) 如果由网络实现无条件呼叫转移业务,则用户需要通过一定的手段进行业务配置,例如通过网页配置,由网络服务器直接实现呼叫的路由

6.1.3.2 遇忙重定向

- 1) 该流程所示的业务由终端实现
 - 如果没有启动新业务根据第一分册的要求在用户或终端忙的情况下,网络将不会透传请求消息到终端。因此该业务需要用户通过某种方式告知网络,此时启动特殊业务
 - 终端启动该业务时,需要考虑由终端实现的呼叫等待业务的相关性
 - 该业务类似于原有的遇忙呼叫转移业务
- 2) 如果由网络实现遇忙重定向业务,则用户需要通过一定的手段进行业务配置,例如通 过网页配置,由网络服务器直接实现呼叫的重定向

6.1.3.3 无应答重定向

- 1) 该流程所示业务由终端实现
 - 终端需要启动自己的业务判别,在无应答的情况下,发送 302 消息给软交换 2.由软交换 2 重新发起路由请求。
 - 终端启动的无应答定时器应当小于网络服务器的 T9 定时器,以免网络服务器发生拆线的情况
 - 该业务类似于原有的无应答呼叫转移业务
- 2) 如果由网络实现无条件呼叫转移业务,则用户需要通过一定的手段进行业务配置,例如通过网页配置,由网络服务器直接实现呼叫的路由

6.1.4 呼叫保持

6.1.5 呼叫等待

- 1) 本业务由终端实现,要求终端提供相应的业务选择界面。
- 2) 要求终端通过某种手段在网络服务器上进行业务配置,例如通过网页配置
- 3) 网络服务器在已知被叫用户处于通话状态,同时被叫用户启动呼叫等待业务的情况下,应当向被叫用户发送呼叫请求
- 4) 沿用现有 PSTN 网络的做法,用户 A、B 处于通话状态时,C 用户呼叫 A 用户,如果 A 用户启动呼叫等待业务,则用户 A 对当前呼叫状态存在三种选择:
 - 拒绝 C 用户的呼叫
 - 保持与 B 用户的通话, 改与 C 用户通话
 - 结束与 B 用户的通话, 改与 C 用户通话

6.1.5.1 先前呼叫被保持(保持与B用户的通话,与C建立通话)

流程提示:终端 A 需要提供相应的业务选择界面

6.1.5.2 先前呼叫被拒绝(拒绝B用户的呼叫,与C建立通话)

- 1) 与 6.1.6.2 相比,用户 A 向用户 C 发送振铃提示的同时,向用户 B 发送拆 线信号
- 2) 终端 A 需要提供相应的业务选择界面

6.1.5.3 拒绝 C 用户的呼叫

- 1) 终端 A 可提供相应的业务选择界面
- 2) 终端 A 也可启动一定时器, 定时器终了时向用户 C 发送失败信号

6.1.6 主叫显示禁止(CLIR)

- 1) 呼叫流程参见 5.1.1.1
- 2) 消息参数的处理上参见 Q.1912 的描述

6.2SIP用户-PSTN用户(SIP-ISUP互通, Profile B)

6.2.1 呼叫前转(包括立即前转、无应答前转、遇忙前转)

6.2.1.1 无条件前转

- 1) 根据第二分册 (0. 1912 部分) 的要求 , " 注 1 " 处的 ACM 消息不映射成 SIP 消息
- 2) 根据第一分册"语音资源播放原则"及第二分册(Q.1912部分)的要求, CPG 消息此时映射成 180 信号,同时 180 中带有软交换 2 控制下媒体网关 SDP 的信息,向主叫提供后向回铃音。

6.2.1.2 遇忙前转

- 1) 根据第二分册 (0. 1912 部分) 的要求 , " 注 1 " 处的 ACM 消息不映射成 SIP 消息
- 2) 根据第一分册"语音资源播放原则"及第二分册(Q.1912部分)的要求, CPG 消息此时映射成 180 信号,同时 180 中带有软交换 2 控制下媒体网关 SDP 的信息,向主叫提供后向回铃音

6.2.1.3 无应答前转

- 1) 用户 D1 所在的端局首先向主叫用户 A 发送振铃音,此时通过 180 消息中带有 SDP 信息建立后向通道
- 2) 注 1 处的 CPG 消息不进行映射
- 3) 当呼叫接续到用户 D2 后,由用户 D2 所在的端局向主叫用户 A 发送回铃音。

6.2.2 呼叫保持

- 1) SIP 域的呼叫保持流程见 6.1.5,SIP 用户重新发送 INVITE 消息 (其中 SDP 中的 a 参数为 sendonly)
- 2) PSTN 用户所在的软交换收到此消息后,目前存在两种做法:
 - 不需要通过信令的方式 通知所属的媒体网关将语音端口进行屏蔽或向 被叫 PSTN 用户发送相关的语音文件(例如播放一段音乐等)
 - 通过信令方式:向 PSTN 网络发送 CPG 消息,实现呼叫保持

6.2.3 呼叫等待

- 1) A (PSTN 用户) B 之间建立呼叫, C (SIP 用户)呼叫 A。A 用户启动呼叫等待业务
- 2) A 用户的业务功能描述参见原有 PSTN 网络的业务要求
- 3) A 与 C 之间的消息流程参见 5.2.1.1 的呼叫流程

6.2.4 主叫显示禁止(CLIR)

- 1) 呼叫流程参见 5.2.1.1
- 2) 消息参数的处理上参见 Q.1912 的描述

6.3PSTN用户-SIP用户(SIP-ISUP互通, Profile B)

6.3.1 通过重定向实现的业务(类似于呼叫前转业务)

- 1) SIP 域的流程参照 6.1.3
- 2) PSTN 所在的软交换根据接收到的 SIP 消息进行 ISUP 消息的映射。

6.3.2 呼叫保持

6.3.3 呼叫等待

- 1) A(SIP) B之间建立呼叫, C(PSTN用户)呼叫 A。A用户启动呼叫等 待业务
- 2) A 用户的业务功能描述参见 6.1.5 的要求
- 3) A与C之间的消息流程参见5.3.1.1的呼叫流程

6.3.4 主叫显示禁止(CLIR)

- 1) 呼叫流程参见 5.3.1.1
- 2) 消息参数的处理上参见 Q.1912 的描述

6.4PSTN用户-PSTN用户(SIP-ISUP互通, Profile C)

6.4.1 呼叫前转(包括立即前转、无应答前转、遇忙前转)

6.4.1.1 无条件

- 1) "注1"处的 ACM 消息封装在 183 消息中发送到对端
- 2) "注 2"处的 CPG 消息封装在 180 消息中发送到对端,由于此时需要被叫端局提供回铃音,因此此时需要携带 SDP 信息

6.4.1.2 遇忙

- 1) "注1"处的 ACM 消息封装在 183 消息中发送到对端
- 2) "注 2"处的 CPG 消息封装在 180 消息中发送到对端,由于此时需要被叫端局提供回铃音,因此此时需要携带 SDP 信息

6.4.1.3 无应答

- 1) " 注 1 " 处的 ACM 封装在 180 消息中发送到主叫方 , 此时的 180 消息中同时带有 SDP 信息
- 2) "注 2"处的 CPG 消息封装在 183 消息中
- 3) "注3"处的 CPG 消息封装在 180 消息中

6.4.2 呼叫保持

6.4.3 呼叫等待

- 1) A(PSTN 用户) B之间建立呼叫, C(PSTN 用户)呼叫 A。A用户启动呼叫等待业务
- 2) A 用户的业务功能描述参见原有 PSTN 网络的业务要求
- 3) A 与 C 之间的消息流程参见 5.4.1.1 的呼叫流程

6.4.4 主叫显示禁止(CLIR)

- 1) 呼叫流程参见 5.3.1.1
- 2) 消息参数的处理上参见 Q.1912 的描述