Skaitiniai metodai II. Laboratoriniai darbai

3 darbas. Parabolinių ir hiperbolinių lygčių sprendimas

1. Parabolinių lygčių sprendimas.

1.1. Testinių parabolinių uždavinių tikslieji sprendiniai

Skaitinius sprendinius lyginsime su duotųjų uždavinių tiksliaisiais sprendiniais. 1 uždavinys:

$$u_t = u_{xx}, \quad 0 < t \le T, \quad 0 < x < 1,$$

 $u(x,0) = 0, \quad 0 \le x \le 1,$
 $u(t,0) = 0, \quad u(t,1) = 1, \quad 0 \le t \le T.$

Tikslus sprendinys:

$$u(x,t) = x + 2\sum_{k=1}^{\infty} (-1)^k (\pi k)^{-1} e^{-(k\pi)^2 t} \sin(k\pi x).$$

2 uždavinys:

$$u_t = u_{xx}, \quad 0 < t \le T, \quad 0 < x < 1,$$

 $u(x,0) = \sin \pi x, \quad 0 \le x \le 1,$
 $u(t,0) = 0, \quad u(t,1) = 0, \quad 0 \le t \le T.$

Tikslus sprendinys:

$$u(x,t) = e^{-\pi^2 t} \sin(\pi x).$$

3 uždavinys:

$$u_t = u_{xx} + \sin \pi x, \quad 0 < t \le T, \quad 0 < x < 1,$$

 $u(x,0) = 0, \quad 0 \le x \le 1,$
 $u(t,0) = 0, \quad u(t,1) = 0, \quad 0 \le t \le T.$

Tikslus sprendinys:

$$u(x,t) = \frac{1}{\pi^2} (1 - e^{-\pi^2 t}) \sin(\pi x).$$

1.2. Užduotys (paraboliniai)

Nagrinėjant pavyzdžius, ištirkite skaitinių sprendinių savybęs ir ypatumus priklausomai nuo pradinių duomenų, baigtinių skirtumų metodo pasirinkimo, diskretizavimo parametrų k ir h.

Vienmačiai parabolinio tipo tiesinei lygčiai pritaikykite baigtinių skirtumų schemas (pasirinkite testinį uždavinį ir 2 schemas):

- 1) šešių taškų parametrinė schema,
- 2) Diuforto ir Frankelio schema,
- 3) Richardsono schema,
- 4) išreikštinė centrinė keturių taškų schema,
- 5) Aleno ir Čeno schema,
- 6) necentrinė išreikštinė keturių taškų schema.

Sprendžiant neišreikštiniais metodais reikia **panaudoti perkelties algoritmą.** Gautus skaitinius sprendinius palyginkite su tiksliais sprendiniais modeliniams uždaviniams.

Užduočių pavyzdžiai:

1. Ištirkite tiesinės šilumos laidumo lygties skaitinio sprendinio priklausomybę nuo parametro $\lambda=k/h^2$, imdami 1 diferencialinio uždavinio pradines ir kraštines sąlygas. Apskaičiuokite sprendinį imdami visas skirtumų schemas su tokiais parametrais:

1.
$$\lambda = 0.5$$
; $M = 50$;

2.
$$\lambda = 20, M = 50$$
:

3.
$$\lambda = 1,01, M = 50.$$

Palyginkite gautus rezultatus su tiksliu sprendiniu, ištirkite schemų stabilumą.

- 2. Ištirkite tiesinės šilumos laidumo lygties skaitinio sprendinio priklausomybė nuo integravimo žingsnio didžio, imdami 1 uždavinio pradines ir kraštines sąlygas. Apskaičiuokite sprendinį imdami visas stabilias skirtumų schemas su parametrais: $\lambda=1;\ M=6,12,60.$ Palyginkite gautus rezultatus su tiksliu sprendiniu.
- 3. Raskite tiesinės šilumos laidumo lygties (2 uždavinys) skaitinį sprendinį su skirtingomis pradinėmis sąlygomis, imdami skirtingas skirtumų schemas. Ištirkite skaitinio sprendinio konvergavimą į tikslų sprendinį, mažinant žingsnio dydį (tinklo smulkinimas).
 - 4. Naudojant vieną iš schemų, ištirkite homogeninės šilumos laidumo lygties

$$u_t = u_{xx}, \quad 0 < t \le T, \quad 0 < x < 1,$$

 $u(x,0) = 0, \quad 0 \le x \le 1,$
 $u(t,0) = 0, \quad 0 \le t \le T$
 $u(t,1) = \sin \omega t, \quad 0 \le t \le T.$

skaitinį sprendinį prie skirtingų ω , $10 < \omega < 10^5$, M = 50.

5. Išspręskite šilumos laidumo lygtį (3 uždavinys), kai dėšinėje pusėje

a)
$$f(x,t) = \sin \pi x$$
, $0 \le x < 1$

b)
$$f(x,t) = -|x-1| + 1$$
, $0 < x < 1$

c)
$$f(x,t) = e^{x^3} - 1$$
, $0 < x < 1$.

- 6. Parazitinių osciliacijų atsiradimas skaitiniame sprendinyje. Išspręskite šilumos laidumo lygtį, kai $\lambda=25$ ir
- a) 1 uždavinys;

b)
$$a = 1$$
, $u(t, 0) = u(t, 1) = 0$, $f(x, t) = 0$;

$$u(0,x) = \frac{1}{\cosh(99(x-0,5))},$$

imdami skirtumų schemas:

- a) šešių taškų parametrinė schema ($\sigma = 0, 5; 1; 0$);
- b) Diuforto ir Frankelio schema;
- c) Aleno ir Čeno schema.

Kuri iš skirtumų schemų leidžia parazitinių osciliacijų atsiradimą skaitiniame sprendinyje?

2. Hiperbolinių lygčių sprendimas.

2.1. Hiperbolinio testinio uždavinio tikslusis sprendinys

Skaitinius sprendinius lyginsime su duotojo uždavinio tikslųjų sprendinių. **Koši uždavinys pernešimo lygčiai** (žr. pavyzdį paskaitoje):

Sukonstruokite pavyzdį, kai uždavinio

$$u_t + cu_x = 0, \quad 0 < t \le T, \quad 0 < x < 1,$$

 $u(x,0) = \varphi(x), \quad 0 \le x \le 1$
 $u(0,t) = \psi(t), \quad 0 \le x \le 1$

tikslus sprendinys yra žinomas ir jį galima lyginti su diskrečiuojų sprendinių. Užduokite funkciją $\varphi(x): -\infty \leq x \leq \infty$. Nesunku patikrinti, kad jei $u(x,0) = \varphi(x)$, kai $0 \leq x \leq 1$, ir $u(0,t) = \varphi(-ct)$, kai $0 \leq x \leq 1$ tai diferencialinio uždavinio sprendinys yra

$$u(x,t) = \varphi(x-ct).$$

Imdami skirtingos funkcijas φ , pavyzdžiui, φ yra glodi arba tik tolydi funkcija, sukonstruokite modelinius uždavinius.

2.2. Užduotys (hiperboliniai)

Ištirkite skaitinių sprendinių savybės ir ypatumus priklausomai nuo pradinių salygų, baigtinių skirtumų metodo pasirinkimo ir Kuranto skaičiaus $\sigma = ck/h$. Pernešimo lygčiai pritaikykite baigtinių skirtumų schemas (**pasirinkite 2 schemas**):

- 1) Išreikštinis kairysis kampas,
- 2) Lakso ir Fridrikso schema,
- 3) Kuranto, Izaksono ir Riso schema,
- 4) Lakso ir Vendrofo schema,
- 5) Makormako (MacCormack) schema.
- 1. Homogeninėi pernešimo lygčiai intervale [0,T] raskite skaitinį sprendinį taikant skirtingas baigtinių skirtumų schemas. Gautus homogeninės lygties skaitinius sprendinius palyginkite su tiksliais sprendiniais modeliniams uždaviniams. Paaiškinkite sprendinio elgesio priklausomybę nuo skirtingų Kuranto skaičiaus dydžių, pavyzdžiui, $\sigma=1;0,5;1,01$.
- 2. Išnagrinėkite pernešimo lygties skaitinio sprendinio elgesį priklausomai nuo pradinių duomenų tipo, taikant skirtingas baigtinių skirtumų schemas.