Finding GCD

- We already computed it using Euclid's algorithm $gcd(a, 0) = a \quad gcd(a, b) = gcd(b, a \mod b)$
- Remember aso: $a \mod b = a b \left[\frac{a}{b} \right]$
- gcd(a = 1180, b = 482)
 - 1180 = 482 * 2 + 216
 - $= \gcd(482, 1180\%482 = 216) = 2$
- Notice the equation:
 - = 216 = 1180 482 * 2 = 1180 + 482 * (-2)
- Extended algorithm utilizes the quotient to compute following

$$ax + by = \gcd(a, b).$$

Finding GCD

GCD(A, B)	A % B	[A/B] A % B = A - BQ = A + B(-Q)		
(1180, 482)	216	2 216 = 1180 + 482 * (-2)		
(482, 216)	50	2	50 = 482 + 216 (-2)	
(216, 50)	16	4	16 = 216 + 50 (-4)	
(50, 16)	2	3 2 = 50 + 16 (-3)		
(16, 2)	0	8 0 = 16 + 2 (-8)		
(2, 0)	gcd(A, B) = 2			

Extended GCD

GCD(A, B)	A % B = A + B (- Q)	Replace A%B with its equation	
(1180, 482)	216 = 1180 + 482 * (-2)	2 = 482 (13)+ [1180 + 482 * (-2)] (-29) = 1180 (-29) + 482 * (71)	
(482, 216)	50 = 482 + 216 (-2)	2 = 216 (-3) + [482 + 216 (-2)] (13) = 482 (13)+ 216 (-29)	
(216, 50)	16 = 216 + 50 (-4)	2 = 50 + [216 + 50 (-4)] (-3) = 216 (-3) + 50 (13)	
(50, 16)	2 = 50 + 16 (-3)	2 = 50 + 16 (-3) => Replace 16 with its equation	
(16, 2)	0 = 16 + 2 (-8)		
(2, 0)	gcd(A, B) = 2		

We can now write code to do this replacements from bottom to up...it will be annoying code Let's make observations based on x and y

Extended GCD

GCD(A, B)	[A/B]	gcd(a, b) = a * x + b * y	x = prev_y	y = prev_x - q * x
(1180, 482)	2	2 = 1180 (-29) + 482 * (71)	-29	13 - 2 * (-29) = 71
(482, 216)	2	2 = 482 (13)+ 216 (-29)	13	-3 - 2 * 13 = -29
(216, 50)	4	2 = 216 (-3) + 50 (13)	-3	1 - 4 * (-3) = 13
(50, 16)	3	2 = 50 + 16 (-3)	1	0 - 3 * 1 = -3
(16, 2)	8	2 = 0 * 16 + 1 * 2	0	1
(2, 0)		2 = 1 * 2 + 0 * 0	1	0 (base case)

Extended GCD: Code

```
ax + by = g = gcd(a, b)
ll extended euclid(ll a, ll b, ll &x, ll &y)
   if (b == \theta) {
       x = 1, y = 0;
       return a;
    // swap b, a and swap their x, y
   ll g = extended euclid(b, a % b, y, x);
   // now our x = previous y
   v = (a / b) * x;
   return g;
```

Note: Wiki has other iterative approach...but that should be easier to code and prove

Your turn: Update code to handle if a < 0 or b < 0

Your turn: Extend of case we have multiple integers [e.g. ax + by + cz = gcd(a, b, c)]

- Assume a > 0 and b > 0
- = ax + by = g = gcd(a, b) => we know that
- Can we generate further solutions?
- Is following valid:
- a(x+b) + b(y-a) = g
 - Yes, we added ab ab, so same equation
- a(x+b/g) + b(y-a/g) = g
- a(x+kb/g) + b(y-ka/g) = g
- With easy math, we can generate!

When one pair of Bézout coefficients (x, y) has been computed, further pairs can be represented in the form

```
 \begin{array}{lll} \vdots \\ 12 \times -10 & + \ 42 \times 3 & = 6 \\ 12 \times -3 & + \ 42 \times 1 & = 6 \\ 12 \times 4 & + \ 42 \times -1 & = 6 \\ 12 \times 11 & + \ 42 \times -3 & = 6 \\ 12 \times 18 & + \ 42 \times -5 & = 6 \\ \vdots \\ \end{array} \right. \left( x + k \frac{b}{\gcd(a,b)}, \ y - k \frac{a}{\gcd(a,b)} \right),
```

 Among these pairs of Bézout coefficients, exactly two of them satisfy

$$|x| < \left| \frac{b}{\gcd(a,b)} \right|$$
 and $|y| < \left| \frac{a}{\gcd(a,b)} \right|$.

- The Extended Euclidean algorithm always produces one of these two minimal pairs.
 - Extended (a = 12, b = 42): (x = -3, y = 1): 12*-3+42*1 = 6
 - b / 6 = 7 a / 6 = 2
 - |x| = 3 < 7 |y| = 1 < 2

- Bézout's identity plays role in some problems when comes to proving them
- Read its proof on wiki or may be <u>here</u>
- Remember x + kb /g and y ka/g are equations
- E.g. we can arrange them to force value on X
 - X' = x + (k*b)/g > 0 = -x*g/b < k
 - Y' = y-(k*a)/gcd > 0 => y*gcd/a > k