We can use the dual program to solve the primal. Once $\lambda \geq 0, \mu \geq 0$ have been found, w is given by

$$w = -X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j,$$

but b is not determined by the dual.

The complementary slackness conditions imply that if $\epsilon_i > 0$, then $\lambda_i = K$, and if $\xi_j > 0$, then $\mu_j = K$. Consequently, if $\lambda_i < K$, then $\epsilon_i = 0$ and u_i is correctly classified, and similarly if $\mu_j < K$, then $\xi_j = 0$ and v_j is correctly classified.

A priori nothing prevents the situation where $\lambda_i = K$ for all nonzero λ_i or $\mu_j = K$ for all nonzero μ_j . If this happens, we can rerun the optimization method with a larger value of K. If the following mild hypothesis holds then b can be found.

Standard Margin Hypothesis for (SVM_{s2}). There is some support vector u_{i_0} of type 1 on the blue margin, and some support vector v_{i_0} of type 1 on the red margin.

If the **Standard Margin Hypothesis** for (SVM_{s2}) holds then $\epsilon_{i_0} = 0$ and $\mu_{j_0} = 0$, and then we have the active equations

$$w^{\mathsf{T}}u_{i_0} - b = 1$$
 and $-w^{\mathsf{T}}v_{j_0} + b = 1$,

and we obtain

$$b = \frac{1}{2} w^{\top} (u_{i_0} + v_{j_0}).$$

(2) Basic Soft margin ν -SVM Problem (SVM_{s2'}).

This a generalization of Problem (SVM_{s2}) for a version of the soft margin SVM coming from Problem (SVM_{h2}), obtained by adding an extra degree of freedom, namely instead of the margin $\delta = 1/||w||$, we use the margin $\delta = \eta/||w||$ where η is some positive constant that we wish to maximize. To do so, we add a term $-K_m\eta$ to the objective function. We have the following optimization problem:

minimize
$$\frac{1}{2}w^{\top}w - K_m\eta + K_s\left(\epsilon^{\top} \quad \xi^{\top}\right) \mathbf{1}_{p+q}$$
subject to
$$w^{\top}u_i - b \ge \eta - \epsilon_i, \quad \epsilon_i \ge 0 \qquad i = 1, \dots, p$$

$$-w^{\top}v_j + b \ge \eta - \xi_j, \quad \xi_j \ge 0 \qquad j = 1, \dots, q$$

$$\eta \ge 0,$$

where $K_m > 0$ and $K_s > 0$ are fixed constants that can be adjusted to determine the influence of η and the regularizing term.