gcmstools Documentation

Release 0.1.0

Ryan Nelson

CONTENTS

1	Getting started	
2	Installation 2.1 Python	
3	Basics of working with GCMS data files 3.1 Set up the processing environment 3.2 Note on Conventions 3.3 AIA Files 3.4 Read a Data File 3.5 Simple plotting 3.6 Working with multiple data sets	6
4	Reference and Fitting 4.1 Non-negative Least Squares	11 11
	5.1 Calibration Data	
6	Process Sample Data	17
7	7.1 Using the Command Line	

ONE

GETTING STARTED

gcmstools is a Python package that reads some GCMS file formats and does simple fitting. The source code for this project can be found on GitHub. If you are reading this in PDF format, there is online documentation as well.

This user guide is broken into a few sections.

- 1. Installation: Information about getting a Python installation up and running and installing gemstools.
- 2. Basic Usage: This section covers the usage of gemstools to manipulate and plot GCMS data.
- 3. *Referenceing and Fitting*: Incorportate reference data into your GCMS data set, and use this to manually fit the GCMS data set.
- 4. Calibration: Make a calibration file and use this to extract generate concentration information from your data.
- 5. *Batch Processing*: Covers a simple function for automating this entire process. You can skip to this final sections if all you want to do is automate some data extractions. It is not necessary to understand the basics of data manipulation/plotting.
- 6. *Appendix A*: Command line basics. The examples presented in this document require a basic working knowledge of a command-line terminal interface and running Python commands from an IPython interpreter. This section covers some of the basics.
- 7. Appendix B: Examples. Basic data extraction and plotting examples are presented.

INSTALLATION

Gcmstools requires Python and a number of third-party packages. Below is a complete list of packages and minium versions:

- Python >=3.4 (2.x versions not supported any longer)
- Pip >=6.0.6 (might be part of new Python releases)
- Setuptools >=11.3.1 (might be part of newer Python releases)
- Numpy >=1.9.1
- Matplotlib >= 1.4.2
- Pandas >=0.15.2
- IPython >= 2.3.1
- netCDF4 >=1.0.4
- PyTables >= 3.1.1
- Scipy >=0.14.0
- Sphinx >=1.2.2 (Optional for documentation.)
 - numfig is a Sphinx extensiion that is needed to autonumber figures references in the documentation.

IPython also provides a very useful advanced interactive Python interpreter, and examples in this documentation assume that you are using this environment. See the *IPython* section of *Appendix A* for more details.

2.1 Python

The most convenient installation method for Python other third-party packages is the all-in-one Anaconda Python distribution. It combines a large number of Python packages for scientific data analysis and a program (conda) for managing package updates (in addition to many other advanced features). The Anaconda developers (Continuum Analytics) provide a lot of useful documentation for installing Anaconda and using conda. There are other ways to install Python and it's packages, but for this documentation, it will be assumed that your are using Anaconda.

Note: On Mac/Linux, Python is already part of the operating system. Do not try to install these third-party packages into the builtin Python distribution unless you really know what you are doing. You might overwrite an important file, which can cause problems for your system. Confusion between the system and Anaconda Python installation is a common source of problems for beginners, so make sure that your Anaconda Python is "activated" before running the commands in this document. (See the Anaconda documentation for more information on the activation process.)

Note: On Windows, Anaconda may not install netCDF4. In this case, you can get a prebuilt installer from Christoph

Gohlke; be sure to get the Python 2.7 ("cp27") 64-bit ("amd64") build for the most recent version.

Learning the usage of all of these Python packages is far beyond the scope of this document. However, excellent documentation for most of the packages as well as full tutorials are easily discovered.

2.2 gcmstools

To install *gcmstools* from the main repository, there are two options: 1) install using git (recommended) or 2) download the source file and install the package.

Option 1 (recommended)

First, install the version-control software Git. gcmstools can now be downloaded and installed with one command.

home>\$ pip install git+https://github.com/rnelsonchem/gcmstools.git

The advantage here is that the same command will update your *gcmstools* installation with any any changes that have been made to the main repository.

Option 2

Download a zip file of the current state of the repository. (Look for the button shown below (Figure 2.1)at the main repository.) Unzip this package wherever you'd like.

Figure 2.1: The zipfile download button.

From the command line, navigate the newly extracted folder and use pip to install the package. In this case, *path-to-gemstools-folder* is the location of the newly unzipped *gemstools* folder. Be sure to put a dot (.) at the end of that pip command.

```
home>$ cd path-to-gcmstools-folder
gcmstools>$ pip install .
```

Uninstall

Uninstallation of *gcmstools* is trivial. It may be a good idea to run this command before installing updates as well to ensure that the most recent version of *gmcstools* is being installed.

home>\$ pip uninstall gcmstools

BASICS OF WORKING WITH GCMS DATA FILES

3.1 Set up the processing environment

In these examples, we will run *gcmstools* form a *terminal IPython* session in a folder "gcms", which is located in your home directory.

```
home>$ cd gcms

gcms>$ ipython

Python 3.4.1 (default, Oct 10 2014, 15:29:52)

Type "copyright", "credits" or "license" for more information.

IPython 2.3.1 -- An enhanced Interactive Python.

-> Introduction and overview of IPython's features.

%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In:
```

Some example files are provided with the *gcmstools* installation. These files can be moved into the current directory using the get_sample_data function.

```
In : from gcmstools.general import get_sample_data
In : get_sample_data()
```

This invocation copies all of the example files to the current directory. Individual file names can be passed to this function, if you only want a few data files.

```
In : get_sample_data('datasample1.CDF')
```

3.2 Note on Conventions

There are potentially many types of GCMS files; however, all file importing objects discussed in this section should have identical properties. This is important for later sections of the documentation, because fitting routines, etc., usually do not require a specific file type importer. All of the import objects are constructed with a single string input, which is the name of the file to process. This file name string can also contain path information if the file is not located in the current directory.

3.3 AIA Files

AIA, ANDI, or CDF are all related types of standard GCMS files that are all derived from the Network Common Data Format (netCDF). They may have the file extension "AIA" or "CDF". This file type may not be the default for your instrument, so consult the documentation for your GCMS software to determine how to export your data in these formats.

To import this type of data, use the AiaFile object, which is located in the gcmstools.filetypes module.

```
In : from gcmstools.filetype import AiaFile
```

3.4 Read a Data File

First of all, you will need to import a file reader from gcmstools.filetypes module. In this example, we'll use the AIA file reader, AiaFile; however, the results should be identical with other readers. To read a file, you can create a new instance of this object with a filename given as a string.

```
In : from gcmstools.filetype import AiaFile
In : data = AiaFile('datasample1.CDF')
Building: datasample1.CDF
```

The variable data now contains our processed GCMS data set. You can see its contents using *tab completion* in IPython.

```
In: data.<tab>
data.filename data.intensity data.tic data.index data.masses
data.filetype data.int_extract data.index data.times
```

Most of these attributes are data that describe our dataset. You can inspect these attributes very easily in IPython by just typing the name at the prompt.

```
In : data.times
Out:
array([0.08786667, ..., 49.8351])
In : data.tic
Out:
array([158521., ..., 0.])
In : data.filetype
Out: 'AiaFile'
```

This is a short description of these initial attributes:

- *filename*: This is the name of the file that you imported.
- times: A Numpy array of the times that each MS was collected.
- tic: A Numpy array of the total ion chromatogram intensities.
- *masses*: A Numpy array the masses that cover the data collected by the MS.
- *intensity*: This is the 2D Numpy array of raw MS intensity data. The columns correspond to the masses in the masses array and the rows correspond to the times in the times array.
- filetype: This is the type of file importer that was used.

The *index* and *int_extract* methods are used for finding the indices from an array and extracting integrals, respectively. Their usage is described later.

3.5 Simple plotting

Now that we've opened a GCMS data set. We can easily visualize these data using the plotting package Matplotlib. As an example, let's try plotting the total ion chromatogram. In this case, data.times will be our "x-axis" data, and data.tic will be our "y-axis" data.

```
In : import matplotlib.pyplot as plt
In : plt.plot(data.times, data.tic)
Out :
[<matplotlib.lines.Line2D at 0x7f34>]
In: plt.show()
```

This produces a pop-up window with an interactive plot, Figure 3.1. (This should happen fairly quickly. However, sometimes the plot window appears behind the other windows, which makes it seem like things are stuck. Be sure to scroll through your windows to find it.) The buttons at the top of the window give you some interactive control of the plot. See the Matplotlib documentation for more information.

Figure 3.1: Total ion chromatogram.

One drawback here is that you have to type these commands every time you want to see this plot. There is another alternative, though. You can also put all of these commands into a text file and run it with Python directly. Copy the following code into a plain text file called "tic_plot.py". (See *Working with Text Files* for more information on making Python program files.)

```
import matplotlib.pyplot as plt
from gcmstools.filetypes import AiaFile
data = AiaFile('datasample1.CDF')
```

```
plt.plot(data.times, data.tic)
plt.show()
```

It is common practice to do all imports at the top of a Python program. That way it is clear exactly what code is being brought into play. Run this new file using the python command from the terminal. Again, the plot window will appear, but you will not be able to work in the terminal until you close this window.

```
gcms>$ python tic_plot.py
```

Alternatively, you can run this program directly from IPython. This has the advantage that once the window is closed, you are dropped back into an IPython session that "remembers" all of the variables and imports that you created in your program file. See *Appendix A* for more information here.

```
In : %run tic_plot.py
```

3.6 Working with multiple data sets

In the example above, we opened one dataset into a variable called data. If you want to manipulate more than one data set, the procedure is the same, except that you will need to use different variable names for your other data sets. (Again, using AiaFile importer as an example, but this is not required.)

```
In : data2 = AiaFile('datasample2.CDF')
```

These two data sets can be plot together on the same figure by doing the following:

```
In : plt.plot(data.times, data.tic)
Out:
[<matplotlib.lines.Line2D at 0x7f34>]
In: plt.plot(data2.times, data2.tic)
Out:
[<matplotlib.lines.Line2D at 0x02e3>]
In: plt.show()
```

The window shown in Figure 3.2 should now appear. (There is a blue and green line here that are a little hard to see in this picture. Zoom in on the plot to see the differences.)

Figure 3.2: Two tic plotted together

gcmstools Documentation, Release 0.1.0
<u>9</u>

FOUR

REFERENCE AND FITTING

4.1 Non-negative Least Squares

4.1.1 Collecting References for NNLS

A series of reference spectra are required if you want to do non-negative least squares (NNLS) fitting. There are two example reference files in this repository: "ref_spec.txt" and "ref_spec2.MSL". The MSL file is a type of MS library that can be exported by programs like the AMDIS or the NIST Mass Spectral Database. The format of both of these files is very important. MSL files are typically autogenerated by external software and may not need manual modification. The .txt file was hand generated; more information on this file format is provided in the next paragraph. A common feature of both formats, though, is that comment lines can be included by starting a line with #. This can be useful if you want to add some notes or to remove reference spectra without deleting them entirely.

Hand generated ".txt" reference files are made up of a series of reference compound information separated by blank lines. Information about the reference compounds are included using labels, and each compound must have two labels at the minimum: "NAME" and "NUM PEAK". "NAME" will be the reference name (probably want this to be concise), and "NUM PEAKS" is followed by (at least) two space-separated columns of MS data. The first column are m/z values, and the second column are the associated intensity information. Intensities are normalized on import, so it is not necessary to do this by hand. Other labels can also be included if you would like to incorporate extra metadata about the reference compound. Each reference compound *must* be separated by a blank line. Below is a small sample of one of these files:

```
NAME:octane
FROM:www.massbank.jp
ID_NUM: JP004695
NUM PEAKS:
    42 14.07 141
    43 99.99 999
    44 2.54 25
    45 4.03 40
    53 1.58 16
    55 19.83 198
    .
    .
```

The online MS repository massBank is a useful place to find these mass and intensity values. The data from that site is already formated correctly for this file type.

4.1.2 Loading Reference Spectra

There are two objects located in gcmstools.reference for loading reference data, TxtReference and MslReferece, which are used for ".txt" and ".MSL" reference files, respectively. In this example, we'll use TxtReferece, but the other object behaves in the same manner.

First, we'll need some data, and we'll use an AiaFile object for this example.

```
In: from gcmstools.filetypes import AiaFile
In: data = gcms.AIAFile('datasample1.CDF')
Building: datasample1.CDF
```

Next, import the reference object and create an active instance, which requires that the name of the reference file is passed into the constructor. In this example, we have a reference file called "ref_specs.txt".

As you can see, several attributes have been created for this new instance. In most cases, you will not need to work with any of these yourself. To add this reference information to a GCMS data set, call the reference instance with a GCMS file object or list of objects to process several files simultaneously.

```
In : ref(data)
Referencing: datasample1.CDF
In : ref([data, otherdata1, otherdata2]) # If these other data sets exist.
Referencing: datasample1.CDF
Referencing: otherdata1.CDF
Referencing: otherdata2.CDF
In : data.<tab>
data.filename
              data.index
                                 data.masses
                                                   data.ref meta
                                                                     data.times
data.filetype data.int_extract data.ref_array
                                                    data.ref_type
                                                                      data.tic
data.intensity data.ref_cpds
```

Several new attributes have been added to our GCMS data object. Here is a short description of each.

- ref_cpds: A list of reference compound names.
- ref_array: A 2D Numpy array of the reference mass spectra. Shape(# of ref compounds, # of masses)
- ref_meta: Associated meta data for each reference compound.
- ref_type: The name of the reference object type that was used to generate this information. (In this example, this would be "TxtReference".)

4.1.3 Fitting the data

A Nnls fitting object is provided in gcmstools.fitting for performing the non-negative least squares fit. To apply this fitting to a data set, simply call the fitting instance with a data object or list of objects.

```
In : from gcmstools.fitting import Nnls
```

```
In : fit = Nnls()
In : fit(data)
Fitting: datasample1.CDF
In : fit([data, otherdata1, otherdata2]) # If these other data sets exist.
Fitting: datasample1.CDF
Fitting: otherdata1.CDF
Fitting: otherdata2.CDF
In : data.<tab>
data.filename
               data.tic
                                data.int_sim
                                                 data.ref_cpds
                                data.intensity
data.filetype
               data.index
                                               data.ref_meta
                             data.masses
data.fits
               data.int_cum
                                                data.ref_type
data.fittype
              data.int_extract data.ref_array
                                                 data.times
```

Again, several new attributes describing the fit have been added to our data set.

- fittype: A string that names the fitting object used to generate this data. (In this case, it would be "Nnls".)
- fits: These are the raw fitting numbers from the NNLS routine. They do not correspond to proper integrations, so they should be used with caution.
- *int_sim*: This is a 2D numpy array of simulated GCMS curves that were generated from the fit. Shape(# of time points, # of reference compounds)
- *int_cum*: This is a cumulative summation of *int_sim*, so it has the same shape as that array. The difference between any two points in this array can be used to determine the integral over that region.

4.1.4 Plotting the Fit

You can do a quick check of how the data looks using Matplotlib. More advanced examples are presented in Appendix B. The output of the commands below is shown in Figure 4.1.

Figure 4.1: An interactive check of our fit. This has been zoomed in a little to highlight the fit and data.

FIVE

AUTOMATED CALIBRATION AND INTEGRATION

5.1 Calibration Data

If you have calibration data for a particular reference compound, you must create a csv file and folder that have the same base name as the reference MS file from above. Again, an examples are provided in this repository called refcpd.csv and the folder refcpd. All of your calibration AIA files for this compound need to be stored in the newly created folder. In order for these new data files to be processed, the refcpd.csv file must be appropriately modified.

The csv file is a simple comma-separated text file, but again the structure is important. The first row in this file is critical. At the end, there are two values that define the starting and stopping time points for integration. Change these values based on the time range that you've determined from the TIC of a calibration run. The rest of the rows are data file information. The first column is the name of a calibration data file, and the second column needs to be the concentration of the reference compound associated with that run. You don't have to add all of the calibration files here, but if they are not in this list, they won't be processed. Alternatively, any line that starts with a '#' is a comment, and will be ignored. In this way, you can comment out samples, and add some notes as to why that sample was not used or whatever.

5.2 Run Calibrations

Once you've updated the calibration information from above. You can run the program 'calibration.py'. This runs through all of the reference spectra defined in the 'reference_files.txt' file. If a '.csv' file exists for a particular reference file, then a calibration will be performed.

All of the calibration data files listed in the csv file will be processed and a calibration curve generated. For each calibration sample, a plot of the reference-extracted data will be generated in the calibration folder (refcpd_fits.png). In addition, a calibration curve plot is also generated (refcpd_cal_curve.png'), which plots the integrated intensities and calibrated intensities vs the concentrations. In addition, the calibration information is printed on the graph for quick visual inspection. There is no need to write down this calibration information.

This program has some important command line arguments that will change the programs defaults. The first argument, '-nobkg', is a simple flag for background fitting. By default, the fitting routine will select a MS slice from the data set and use that as a background in the non-negative least squares fitting. This procedure can change the integrated values. If you use this flag, then a background MS will not be used in the fitting. Using a background slice in the fitting may or may not give good results. It might be a good idea to look at your data with and without the background subtraction to see which is better.

The second command line argument is '-bkg_time'. By default, the fitting program uses the first MS slice as a background for fitting. However, if there is another time that looks like it might make a better background for subtraction, then you can put that number here.

Here's a couple of example usages of this script:

```
# This will run the calibration program with all defaults
$ python calibration.py
# This shuts off the background subtraction
$ python calibration.py --nobkg
# This sets an alternate time for the background subtraction
# In this case, the time is set to 0.12 minutes
$ python calibration.py --bkg_time 0.12
```

Another file is also generated during this process: cal.h5. This is a HDF5 file that contains all of the calibration information for each standard. Do not delete this file; it is essential for the next step. This is a very simple file, and there are many tools for looking at the internals of an HDF5 file. For example, ViTables is recommended. The background information, such as whether a background was used and the time point to use as a background spectrum, are stored as user attributes of the calibration table.

SIX

PROCESS SAMPLE DATA

Put all of your data files in a folder that must be called 'data'. Once you've done this, run the program 'data.py' to process every AIA data file in that folder using the calibration information that was determined from the steps above.

This program opens the AIA file for the sample and performs non-negative least squares analysis of the full data set using the reference spectra that are listed in the 'reference_files.txt' file. Using the calibration information that was determined above, it finds the concentrations of those components in the sample data. For every reference compound that has associated calibration information, a plot is generated that overlays the TIC (gray) and extracted reference fit (blue). The title of the plot provides the calibrated concentration information. Visual inspection of these files is recommended.

This file also accepts the same command line arguments as 'calibration.py' from the section above. You will be warned if you try to analyze your data with different background information than the calibration samples. This may not impact your data much, but it is good to know if you are doing something different.

This file also generates another HDF5 file called 'data.h5', which contains the integration and concentration information for every component. This information is identical to what is printed on the extraction plots above. However, this tabular form of the data is a bit more convenient for comparing many data sets. See the Calibration section for a recommended HDF5 file viewer.

APPENDIX A: RUNNING CODE SAMPLES

7.1 Using the Command Line

Running the code samples in this documentation requires a rudimentary knowledge of the command-line terminal (command prompt on Windows). The terminal can seem very "texty" and confusing at first; however, with a little practice it gets to be fairly intuitive and *efficient*. There are many tutorials online, for example, The Command Line Crash Course. However, A few basic command line concepts are covered here, for reference.

When you start a terminal, you will be presented with a window to type commands. In this documentation, the terminal command prompt will be denoted as home>\$, where "home" indicates the current folder where the commands will be executed and ">\$" is just a separator. These things do not need to be typed when entering commands. A similar format is common in a lot of online documentation. Some commands generate output. The output will occur after the command prompt, but will not be preceded by a command prompt symbol.

The most important thing you'll want to be able to do is move to different directories (i.e. folders). To do this there are a couple of useful terminal commands: "change directory" (cd) and "present working directory" (pwd). When you open the terminal, you will usually start in your "home" directory. This will probably be "/Users/username" on Mac, "/home/username" on Linux, or "C:\Users\username" on Windows. To move to a different directory, use the cd command; to find out the location of the current folder, use pwd. Here's an example.

```
home$> pwd
/home/username/
home$> cd folder1

folder1$> pwd
/home/username/folder1
```

The second command here moved active directory to the folder *folder1*. There are also a few special directory shortcuts:

- ~ This refers to the home directory.
- . . (Double dot) This refers to the parent directory of the current directory.
- . (Single dot) This refers to the current directory.
- \ or / Separators to combine directory names. The first works on Linux/Mac (and in IPython, see below), the second is required on Windows.

Here's these shortcuts in action.

```
home>$ cd folder1/folder2
folder2>$ pwd
/home/username/folder1/folder2
```

```
folder2>$ cd .

folder2>$ pwd
/home/username/folder1/folder2

folder2>$ cd ../..

home>$ pwd
/home/username

home>$ cd folder1/folder2

folder2>$ cd ~
home>$ pwd
/home/username

home>$ cd folder1/folder2

folder2>$ cd ~
folder1/folder2

folder2>$ cd ~/folder3

folder3>$ pwd
/home/username/folder3
```

The other important command is ls, which lists the contents of the current directory. (In Windows, the equivalent command is dir.)

```
folder3>$ ls
file1 file2 folder4
```

7.2 IPython

7.2.1 Start IPython

One of Python's strengths as a data analysis language is its interactive interpreter. This mode is accessed from a terminal by typing python.

```
home>$ python
Python 3.4.1 (default, Oct 10 2014, 15:29:52)
[GCC 4.7.3] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

Any command that is typed at the >>> prompt is treated as Python code, and executed appropriately. That means you can interactively write and explore code in this manner.

```
>>> 2 + 2
4
>>> print('Hello World')
Hello World
```

The default Python interpreter is very limited, which is why IPython was developed. IPython is an advanced Python interpreter, which has several advanced features like autocompletion and introspection, just to name two. Over the years, this project has grown substantially, and in addition to a terminal based interpreter, there is now a GUI version and a very cool web-based Notebook as well. To learn more about the other features, consult the IPython documentation.

IPython is started from the terminal using the ipython command:

```
home>$ ipython
Python 3.4.1 (default, Oct 10 2014, 15:29:52)
Type "copyright", "credits" or "license" for more information.

IPython 2.3.1 -- An enhanced Interactive Python.

-> Introduction and overview of IPython's features.

%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: 2 + 2
Out[1]: 4

In [2]: print('Hello World')
Hello World
```

The In [#]: prompt now takes the place of >>> in the regular Python interpreter. In addition, certain types of output are preceded by an Out [#]: prompt. The numbers in brackets help you to determine the order that commands are processed. For this documentation, though, the numbers will be stripped for clarity, e.g. In : and Out:. If you see these prompts, you should know that the commands are being run in an IPython session.

7.2.2 Autocompletion and Introscpection

The take home message of this section is use the Tab key a lot! It will make you much more productive.

Two very nice aspect of the IPython interpreter are autocompletion and object introspection. Both of these will make use of the Tab key on your keyboard; in code snippets, this key will be denoted as <tab>, which means you should press the Tab key rather than typing it out. To see these two operations in action, we can first create a new string object.

```
In : my_string = 'Hello World'
In : print(my_string)
Hello World
```

To determine the methods available to a string object, we can use IPython's object introspection.

```
In : my_string.<tab>
my_string.capitalize my_string.isidentifier my_string.rindex
my_string.casefold
                    my_string.isnumeric my_string.rpartition
my_string.center
                     my_string.isprintable my_string.rsplit
my_string.count
my_string.encode
my_string.encode my_string.isspace
my_string.endswith my_string.istitle
                                            my_string.rstrip
                                            my_string.split
my_string.expandtabs my_string.isupper
                                            my_string.splitlines
                  my_string.join
my_string.ljust
my_string.find
                                            my_string.startswith
my_string.format
                                           my_string.strip
my_string.format_map my_string.lower
                                            my_string.swapcase
                    my_string.lstrip
my_string.index
                                            my_string.title
my_string.isalnum
                    my_string.maketrans
                                           my_string.translate
my_string.isalpha
                    my_string.partition
                                            my_string.upper
my_string.isdecimal
                     my_string.replace
                                            my_string.zfill
                      my_string.rfind
my_string.isdigit
```

As you can see, there are many, many things that you can do with this string object. IPython can also use the Tab key to autocomplete long names for variables, path strings, etc. Here's an example:

7.2. IPython 21

Notice that when you type tab here IPython automatically expands this to my_string.isidentifier. This works for path strings as well.

Note: It should be pointed out that tab completion also works on the regular command line terminal interface as well.

7.2.3 Magic Commands

IPython has a number of special commands that make its interpreter behave much like a command-line terminal. These commands, called Magic Commands, are preceded by % or %%. The magic command documentation covers many of them, but a few that are useful to the examples in this document are discussed here.

The magics %cd, %pwd, and %1s serve the exact same purpose as in the terminal. Another very useful magic is %run. This command executes a Python program file from inside the IPython session, and in addition to executing the code, it also loads the data and variables into the current IPython session. This is best explained by example. Create a new folder called folder1 in your home directory. Create the file test.py in folder1 and paste the following code into that file. (See Working with Text Files for some information on text files and Python programs.)

```
var1 = 7
var2 = "Hello World"
var3 = var1*var2
```

Now let's start up IPython and run this new program.

```
home>$ ipython
Python 3.4.1 (default, Oct 10 2014, 15:29:52)
Type "copyright", "credits" or "license" for more information.
IPython 2.3.1 -- An enhanced Interactive Python.
         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
     -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In: %pwd
/home/username
In : %cd folder1
/home/username/folder1
In: %ls
test.py
In : %run test.py
In:
```

At this point, it seems like nothing has happened; however, the variable that we defined in our file "test.py" are now contained in our IPython session. Assuming that the following IPython code is the same session as above.

```
In : var1
Out: 7

In : var3
Out: Hello WorldHello World World
```

As you can see, this is a very powerful way to save your work for later or to run code that is fairly repetitive.

7.2.4 Notebook Interface

Todo.

7.3 Working with Text Files

There are many instances where you will need to work with plain text files, including when writing Python programs. Plain text files are *not* word processing documents (e.g. MS Word), so you will want to use a dedicated text editor. Another source of problems for beginners is that leading white space in Python programs is important. For these reasons, a dedicated Python text editor can be very useful for beginners. Anaconda is bundled with Spyder, which has a builtin text editor. The Anaconda FAQ has information on running Spyder on your system. Spyder is actually a full development environment, so it can be very intimidating for beginners. Don't worry! The far left panel is the text editor, and you can use that without knowing what any of the other panels are doing. Some internet searches will reveal other text editors if you'd prefer something smaller. (Do *not* use MS Notepad.)

The ".py" suffix for Python programs can be important. On Windows, however, file extensions are not shown by default, which makes them difficult to modify. In these cases, you may inadvertently create a file with the extension ".py.txt", which will not behave as you expect. Consult the internet for ways to show file extensions on a Windows machine.