

FAQAS Framework - DAMAt Verification Report ESAIL-ADCS Case Study

O. Cornejo, F. Pastore, E. Viganò Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg

ITT-1-9873-ESA-FAQAS-VR-ESAIL-AD

Issue 1, Rev. 1

November 12, 2021

EUROPEAN SPACE AGENCY. CONTRACT REPORT.

The work described in this report was done under ESA contract. Responsibility for the contents resides in the author or organisation that prepared it.

Contents

1	Exec	cutive Summary	3
	1.1	Terms, definitions and abbreviated terms	3
2	Con	figuration of the toolset	4
	2.1	Probe insertion	4
	2.2	Fault Model	5
3	Resu	ults	9
	3.1	Metrics	9
	3.2	Uncovered Fault Models	9
	3.3	Unapplied Mutants	11
	3 /	Live Mutants	1 2

Chapter 1

Executive Summary

This document is a report on the issues identified via Data-driven Mutation Analysis, on the ESAIL-ADCS case study using the *DAMAt* tool, which has been developed in the context of the FAQAS-framework.

DAMAt is a data-driven mutation analysis tool. It generates mutants by modiying the data contained in the SUT buffers throught the insertion in the source code of Mutation Probes. The mutation probes generate mutants following mutation operators defined in a Fault Model.

The code we analyzed was the ESAIL SVF test suite, which evaluetes the ESAIL OBSW and in particular the test cases regarding the interaction between the ADCS (Attitude Determination and Control System) component and the OBSW (On Board Software).

1.1 Terms, definitions and abbreviated terms

- FAQAS: activity ITT-1-9873-ESA
- FAQAS-framework: software system to be released at the end of WP4 of FAQAS.
- SUT: Software under test, i.e, the software that should be mutated by means of mutation testing.
- FMC: Fault model coverage, the percentage of fault models covered by the test suite.
- MOC: Mutation operation coverage, the percentage of data items that have been mutated at least once, considering only those that belong to the data buffers covered by the test suite.
- MS: Mutation Score, the percentage of mutants killed by the test suite (i.e., leading to at least one test case failure) among the mutants that target a fault model and for which at least one mutation operation was successfully performed.
- SVF: Software Validation Facility.
- ADCS: Attitude Control and Determination Software.

Chapter 2

Configuration of the toolset

2.1 Probe insertion

In the *ESAIL-ADCS* case study the mutation probes were inserterted in the function of the *ADCS_IF_SW* that manages the communication between the ADCS and the OBC, i.e., *ObcRecvBlockCb*. The function is implemented in the file *AdcsIf.c*.

ObcRecvBlockCb mainly consists of a switch command that generates a response for the OBC after invoking a data generation method selected according to the request received on the data link. For example, method *GetlfStatus* prepares a response packet containing the information about the ADCS status.

Each data generation method receives as input an object of type *std::vector* that will be used to store the data to be sent to the OBC. The vector is called *newBlock* and acts as a buffer and it contains elements of type UInt8.

Each invocation of a data generation method generates a response that may either contain the desired result or an error code. The response generated in the first case is referred to as a nominal response message, the response generated in the second case is an error response message.

In both cases, a *Mutation Probe* has been inserted to mutate the data contained in the buffer.

An example of this probe insertion strategy is reported in Listing 2.1.

```
if(Status->ADRD || ((cmdId == 1) && (subcmdId < 3)))</pre>
           switch(cmdId)
           case 1:
                switch(subcmdId)
               case 0:
                    cr = GetIfStatus(newBlock);
12
13
14
                    //MANUALLY INSERTED PROBES
15
                    if(cr != CR_Failure){
                      mutate_FM_IfStatus(&newBlock);
18
19
20
                    //END PROBES
```

} 23 **break**;

Listing 2.1: Probe insertion Strategy

2.2 Fault Model

The Fault Model for the *ESAIL-ADCS* case study was defined in the .csv file format. It is reported in Table 2.1.

Table 2.1: Fault model for the ESAIL-ADCS case study

FaultModel	DataItem	Span	Туре	FaultClass	Min	Max	Threshold	Delta	State	Value
IfStatus	0	1	BIN	BF	3	3	NA	NA	-1	1
IfStatus	0	1	BIN	BF	4	4	NA	NA	-1	1
IfStatus	0	1	BIN	BF	5	7	NA	NA	-1	1
IfStatus	1	1	BIN	BF	0	4	NA	NA	-1	1
IfStatus	4	1	BIN	BF	0	2	NA	NA	-1	1
IfStatus	4	1	BIN	BF	2	4	NA	NA	-1	1
IfStatus	4	1	BIN	BF	5	7	NA	NA	-1	1
IfStatus	5	1	BIN	BF	0	1	NA	NA	-1	1
IfStatus	5	1	BIN	BF	2	7	NA	NA	-1	1
IfHK	12	2	DOUBLE	VAT	NA	NA	3.6	0.1	NA	NA
IfHK	12	2	DOUBLE	FVAT	NA	NA	3.6	0.1	NA	NA
IfHK	14	2	DOUBLE	VAT	NA	NA	33.53	0.01	NA	NA
IfHK	14	2	DOUBLE	FVAT	NA	NA	33.53	0.01	NA	NA
IfHK	14	2	DOUBLE	VBT	NA	NA	24	1	NA	NA
IfHK	14	2	DOUBLE	FVBT	NA	NA	24	1	NA	NA
IfHK	24	2	DOUBLE	VAT	NA	NA	6	1	NA	NA
IfHK	24	2	DOUBLE	FVAT	NA	NA NA	6	1	NA	NA
IfHK	28	2	DOUBLE	VOR	-20	50	NA NA	1	NA	NA
IfHK	28	2	DOUBLE	FVOR	-20	50	NA NA	1	NA	NA
IfHK	30	2	DOUBLE	VOR	-20	50	NA NA	1	NA	NA
IfHK	30	2	DOUBLE	FVOR	-20	50	NA NA	1	NA NA	NA
IfHK	32	2	DOUBLE	VOR	-20	50	NA NA	1	NA NA	NA
IfHK	32	2	DOUBLE	FVOR	-20	50	NA NA	1	NA NA	NA
IfHK	34	2	DOUBLE	VOR	-20	50	NA NA	1	NA NA	NA
	34	2		FVOR	-20	50		1	NA NA	
IfHK	36		DOUBLE DOUBLE	VOR	-20	50	NA NA	1		NA
IfHK		2						-	NA	NA
IfHK	36	2	DOUBLE	FVOR	-20	50	NA	1	NA	NA
GYTM	0	1	BIN	BF	0	0	NA	NA	-1	1
GYTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51
GYTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x52
GYTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x53
GYTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54
GYTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x56
S.SensorTM	0	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	0	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	2	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	2	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	4	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	4	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	6	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	6	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	8	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	10	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	10	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	12	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	12	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	14	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	16	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	16	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	18	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	18	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	20	2	DOUBLE	VAT	NA	NA NA	2.6	0.1	NA	NA
S.SensorTM	20	2	DOUBLE	FVAT	NA	NA NA	2.6	0.1	NA	NA

S.SensorTM	22	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	22	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	24	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	24	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	26	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	26	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	28	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	28	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	30	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	30	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	32	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	32	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	34	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	34	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	36	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	36	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	38	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	38	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	40	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	40	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	42	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	42	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	44	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	44	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	46	2	DOUBLE	VAT	NA	NA	2.6	0.1	NA	NA
S.SensorTM	46	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA
S.SensorTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51
S.SensorTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54
S.SensorTMFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x56
SSTP	0	2	DOUBLE	VOR	-70	100	NA	1	NA	NA
SSTP	0	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA
SSTP	2	2	DOUBLE	VOR	-70	100	NA	1	NA	NA
SSTP	2	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA
SSTP	4	2	DOUBLE	VOR	-70	100	NA	1	NA	NA
SSTP	4	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA
SSTP	6	2	DOUBLE	VOR	-70	100	NA	1	NA	NA
SSTP	6	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA
SSTP	8	2	DOUBLE	VOR	-70	100	NA	1	NA	NA
SSTP	8	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA
SSTP	10	2	DOUBLE	VOR	-70	100	NA	1	NA	NA
SSTP	10	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA
SSTPFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51
SSTPFail.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54
SSTPFail.	0	1	HEX	IV	NA	NA	NA 2.2	NA 0.1	NA	0x56
SpaceCraftHK	0	2	DOUBLE	VAT	NA	NA	3.3	0.1	NA	NA
SpaceCraftHK	0	2	DOUBLE	FVAT	NA	NA	3.3	0.1	NA	NA
SpaceCraftHK	0	2	DOUBLE	VBT	NA	NA	0	0.1	NA	NA
SpaceCraftHK	0	2	DOUBLE	FVBT	NA 0.5	NA	0	0.1	NA	NA
SpaceCraftHK	2	2	DOUBLE	VOR	0.5	2.75	NA	0.01	NA	NA
SpaceCraftHK	2	2	DOUBLE	FVOR	0.5	2.75	NA	0.01	NA	NA
SpaceCraftHK	4	2	DOUBLE	VOR	0	50	NA	1	NA	NA
SpaceCraftHK	4	2	DOUBLE	FVOR	0	50	NA	1	NA	NA
SpaceCraftHK	6	2	DOUBLE	VOR	0	50	NA	1	NA	NA
SpaceCraftHK	6	2	DOUBLE	FVOR	0	50	NA	1	NA	NA
SpaceCraftHK	8	2	DOUBLE	VOR	0	50	NA	1	NA	NA
SpaceCraftHK	8	2	DOUBLE	FVOR	0	50	NA	1	NA	NA
SpaceCraftHK	10	2	DOUBLE	VOR	0	50	NA	1	NA	NA
SpaceCraftHK	10	2	DOUBLE	FVOR	0	50	NA	1 0.0001	NA	NA
SpaceCraftHK	12	2	DOUBLE	VOR	9.9253	29.9979	NA	0.0001	NA	NA
SpaceCraftHK	12	2	DOUBLE	FVOR	9.9253	29.9979	NA	0.0001	NA	NA
SpaceCraftHK	14	2	DOUBLE	VOR	9.9253	29.9979	NA	0.0001	NA	NA
SpaceCraftHK	14	2	DOUBLE	FVOR	9.9253	29.9979	NA	0.0001	NA	NA 1
M.SetPWMRSP	0	1	BIN	BF	0	0	NA	NA 0.01	0	1
M.SetPWMRSP	16	2	DOUBLE	VOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	16	2	DOUBLE	FVOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	18	2	DOUBLE	VOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	18	2	DOUBLE	FVOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	20	2	DOUBLE	VOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	20	2	DOUBLE	FVOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	22	2	DOUBLE DOUBLE	VOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP		1 9	LIVIDIE	FVOR	0	0.2	NA	0.1	NA	NA

M.SetPWMRSP	24	2	DOUBLE	VOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	24	2	DOUBLE	FVOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	26	2	DOUBLE	VOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	26	2	DOUBLE	FVOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	28	2	DOUBLE	VOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	28	2	DOUBLE	FVOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	30	2	DOUBLE	VOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	30	2	DOUBLE	FVOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	32	2	DOUBLE	VOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	32	2	DOUBLE	FVOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	34	2	DOUBLE	VOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	34	2	DOUBLE	FVOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	36	2	DOUBLE	VOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	36	2	DOUBLE	FVOR	0.14	0.21	NA	0.01	NA	NA
M.SetPWMRSP	38	2	DOUBLE	VOR	0	0.2	NA	0.1	NA	NA
M.SetPWMRSP	38	2	DOUBLE	FVOR	0	0.2	NA	0.1	NA	NA

Every line of the file represents a mutation operator, while every column represents a configuration parameter for that operator.

- Column *FaultModel* contains the name of the Fault Model containing the operator. Typically the user shall define a fault model for every different kind of message exchanged through the buffer.
- Column *DataItem* refers to the index of the first element of the targeted data item in the array representing the buffer.
- Column *Span* reports the number of array elements that make up the data item target by the mutation.
- Column Type reports about the type of data targeted by the mutation: INT, LONG, FLOAT, DOUBLE, BIN or HEX.
- Column *FaultClass* contains the type of fault that the mutation will emulate, depending on the chosen mutation operator. A summary of the mutation operators can be found in Table 2.2.
- The other columns represent configuration parameters and assume different meanings depending on the mutation operator they refer to. More details on the data-driven mutation operators and their configuration can be found in Table 2.2.

A mutation operator can generate one or more mutants performing a *Mutation Operation*.

Table 2.2: Data-driven mutation operators

Fault Class	Types	Parameters	Description
Value above threshold (VAT)	I,L,F,D,H	T: threshold \(\Delta : \text{delta, difference with respect to threshold} \)	Replaces the current value with a value above the threshold T for a delta (Δ). It simulates a value that is out of the nominal case and shall trigger a response from the system that shall be verified by the test case (e.g., the system may continue working but an alarm shall be triggered). Not applied if the value is already above the threshold. Data mutation procedure: $v' = (T + \Delta)(ifv \leq T); v' = v(otherwise);$
Value below threshold (VBT)	I,L,F,D,H	T: threshold Δ: delta, difference with respect to threshold	Replaces the current value with a value below the threshold T for a delta (Δ) . It simulates a value that is out of the nominal case and shall trigger a response from the system that shall be verified by the test case (e.g., the system may continue working but an alarm shall be triggered). Not applied if the value is already below the threshold. Data mutation procedure: $v' = (T - \Delta)(ifv \ge T); v' = v(otherwise)$
Value out of range (VOR)	I,L,F,D,H	MIN: minimum valid value MAX: maximum valid value Δ: delta, difference with respect to minimum/maximum valid value	Replaces the current value with a value out of the range $[MIN;MAX]$. It simulates a value that is out of the nominal range and shall trigger a response from the system that shall be verified by the test case (e.g., the system may continue working but an alarm shall be triggered). Not applied if the value is already out of range. Data mutation procedure 1: $v' = (MIN - \Delta)(ifMIN \le v \le MAX); v' = v(otherwise)$ Data mutation procedure 2: $v' = (MAX + \Delta)(ifMIN \le v \le MAX); v' = v(otherwise)$
Bit flip (BF)	В	MIN: lower bit MAX: higher bit STATE: mutate only if the bit is in the given state (i.e., 0 or 1). VALUE: number of bits to mutate	A number of bits randomly chosen in the positions between MIN and MAX (included) are flipped. If STATE is specified, the mutation is applied only if the bit is in the specified state; the value -1 indicates that any state shall be considered for mutation. Parameter VALUE specifies the number of bits to mutate. Data mutation procedure: the operator flips VALUE randomly selected bit if they are in the specified state.
Invalid nu- meric value (INV)	I,L,F,D,H	MIN: lower valid value MAX: higher valid value	Replace the current value with a mutated value that is legal (i.e., in the specified range) but different than current value. It simulates the exchange of data that is not consistent with the state of the system. Data mutation procedure: Replace the current value with a different value randomly sampled in the specified range.
Illegal Value (IV)	I,L,F,D,H	VALUE: illegal value that is observed	Replace the current value with a value that is equal to the parameter VALUE. Data mutation procedure: $v' = VALUE(ifv \neq VALUE); v' = v(otherwise)$
Anomalous Signal Am- plitude (ASA)	I,L,F,D,H	T: change point Δ: delta, value to ad- d/remove VALUE: value to multiply	The mutated value is derived by amplifying the observed value by a factor V and by adding/removing a constant value Δ from it. It is used to either amplify or reduce a signal in a constant manner to simulate unusual signals. The parameter T indicates the observed value below which instead of adding we subtract . Data mutation procedure: $v' = T + ((v - T) * VALUE) + \Delta(if \ v \ge T); v' = T - ((T - v) * VALUE) - \Delta(if \ v < T);$
Signal Shift (SS)	I,L,F,D,H	Δ: delta, value by which the signal should be shifted	The mutated value is derived by adding a value Δ to the observed value. It simulates an anomalous shift in the signal. Data mutation procedure: $v'=v+\Delta$
Hold Value (HV)	I,L,F,D,H	V: number of times to repeat the same value	This operator keeps repeating an observed value for V times. It emulates a constant signal replacing a signal supposed to vary. Data mutation procedure: $v' = previous \ v'(if \ counter \le V); v' = votherwise$
Fix value above threshold (FVAT)	I,L,F,D,H	T: threshold Δ: delta, difference with respect to threshold	It is the complement of VAT and implements the same mutation procedure as VBT but we named it differently because it has a different purpose. Indeed, it is used to verify that test cases exercising exceptional cases are verified correctly. In the presence of a value above the threshold, it replaces the current value with a value below the threshold T for a delta Δ . Data mutation procedure: $v' = v(ifv > T); V' = (T - \Delta)(otherwise)$
Fix value be- low thresh- old (FVBT)	I,L,F,D,H	T: threshold \[\Delta: \text{ delta, difference with respect to threshold} \]	It is the counterpart of FVAT for the operator VBT. Data mutation procedure: $v' = v(\textit{if} v < T); v' = (T + \Delta)(\textit{otherwise})$
Fix value out of range (FVOR)	I,L,F,D,H	MIN: minimum valid value MAX: maximum valid value	It is the complement of VOR and implements the same mutation procedure as INV but we named it differently because it has a different purpose. Indeed, it is used to verify that test cases exercising exceptional cases are verified correctly. Data mutation procedure: $v' = v(ifMIN \le v \le MAX); v' = random(MIN, MAX)(otherwise)$

Legend: I: INT, L: LONG INT, F: FLOAT, D: DOUBLE, B: BIN, H: HEX

Chapter 3

Results

3.1 Metrics

Starting from the Fault Model represented in Table 2.1, *DAMAt* generated 666 mutants. The mutated version of the program was executed against the *ESAIL-ADCS* case study test suite.

The results were expressed with the following three metrics:

- 1. **FMC**: Fault model coverage, the percentage of fault models covered by the test suite.
- 2. **MOC**: Mutation operation coverage, the percentage of data items that have been mutated at least once, considering only those that belong to the data buffers covered by the test suite.
- 3. **MS**: Mutation Score, the percentage of mutants killed by the test suite (i.e., leading to at least one test case failure) among the mutants that target a fault model and for which at least one mutation operation was successfully performed.

A low score in one of the metrics indicate one of following scenarios, repsectively:

- 1. The **message type** targeted by a fault model is **never exercised**.
- 2. The message type is covered by the test suite, but it is not possible to perform some of the mutation operations. It depends on the fact that **not all the input partitions are exercised** by the test suite.
- 3. The mutation is performed but the test suite does not fail. It may depend on two reasons: (1) **the oracles are imprecise** (e.g., they do not verify all the state variables), (2) the system is not brought into a state where the effect of the mutation is noticeable: **the scenarios exercised are insufficient**.

The aforementioned metrics for the ESAIL-ADCS case study are reported in Table 3.1

3.2 Uncovered Fault Models

The **FMC** is **91.67**%. There is **1** fault model that is not covered by the test suite of the *ESAIL-ADCS* case study.

MS	42.857%
Killed mutants	45
Applied Mutants	105
MOC	75.00%
Applied Mutants	105
Covered Mutants	140
FMC	91.67%
Covered Fault Models	11
Fault Models	12

Table 3.1: DAMAt metrics for the ESAIL-ADCS case study

The uncovered Fault Model is *MagnetorquerSetPWMRSP* (reported in Table 2.1 as *M.SetPWMRSP*). This implies that the function implementing the mutation probe linked to this fault model has never been called during the execution of the test suite.

This means that the code for that message type, reported in Listing 3.1, was not covered.

```
case 8:
   {
       switch(subcmdId)
       {
       case 0:
       {
           cr = SetMgtqPwm(newBlock);
10
           //MANUALLY INSERTED PROBES
12
           if(cr == CR_Failure){
             mutate_FM_MagnetorquerSetPWMRSPFailure(&newBlock);
13
14
15
           //END PROBE
17
           if(cr == CR Success)
18
19
20
               if(newBlock[2] == 0x55)
                    // Bypass Magnetometer response
                   newBlock.resize(2);
                   cr = GetMgtqTm(newBlock);
24
                    //MANUALLY INSERTED PROBE
26
                   mutate_FM_MagnetorquerSetPWMRSP( &newBlock);
28
                    //END PROBE
29
30
               }
31
                   cr = BuildMgtmDataRequestCmd(newBlock);
33
                   cr = GetMgtmTm(newBlock);
36
           }
37
       break:
38
```

Listing 3.1: Uncovered portion of source code

Suggested Action Item 1: check the code coverage of the *AdcsIf.c.* file and, if necessary, write a test case that exercises the missing message type.

3.3 Unapplied Mutants

The *mutation operation coverage* was **75.00**%. A total of **35** mutants were not applied: the function implementing the mutation probe was called, so the message type is covered by the test suite, but it was not possible to perform the corresponding mutation operation. The conditions for this are summarized in Table 2.2 for all the operators. The mutants are presented in Table 3.2, which contains the definition of the mutation operator that generated them and a description of the targeted data item.

Table 3.2: Mutants covered by the *ESAIL-ADCS* case study test suite, but unable to apply the mutation.

#	FaultModel	D.Item	Span	Туре	F.Class	Min	Max	Thresh.	Delta	State	Value	Description
10	IfHK	12	2	DOUBLE	FVAT	NA	NA	3.6	0.1	NA	NA	VCCb
12	IfHK	14	2	DOUBLE	FVAT	NA	NA	33.53	0.01	NA	NA	VBUS
13	IfHK	14	2	DOUBLE	VBT	NA	NA	24	1	NA	NA	VBUS
16	IfHK	24	2	DOUBLE	FVAT	NA	NA	6	1	NA	NA	VCC Soft- ware 1
39	SunSensorTM	0	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q1 ADC3
41	SunSensorTM	2	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q2 ADC3
43	SunSensorTM	4	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q3 ADC3
45	SunSensorTM	6	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q4 ADC3
47	SunSensorTM	10	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q2 ADC2
49	SunSensorTM	12	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q3 ADC2
51	SunSensorTM	14	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q4 ADC2
53	SunSensorTM	16	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q1 ADC6
55	SunSensorTM	18	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q2 ADC6
57	SunSensorTM	20	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q3 ADC6
59	SunSensorTM	22	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q4 ADC6
61	SunSensorTM	24	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q1 ADC5
63	SunSensorTM	26	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q2 ADC5
65	SunSensorTM	28	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q3 ADC5
67	SunSensorTM	30	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q4 ADC5
69	SunSensorTM	32	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q1 ADC4
71	SunSensorTM	34	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q2 ADC4
73	SunSensorTM	36	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q3 ADC4
75	SunSensorTM	38	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q4 ADC4
77	SunSensorTM	40	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q1 ADC4
79	SunSensorTM	42	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q2 ADC4
81	SunSensorTM	44	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q3 ADC4
83	SunSensorTM	46	2	DOUBLE	FVAT	NA	NA	2.6	0.1	NA	NA	Photodiode Q4 ADC4
109	SpaceCraftHK	0	2	DOUBLE	FVAT	NA	NA	3.3	0.1	NA	NA	TMTC Soft- ware 1
111	SpaceCraftHK	0	2	DOUBLE	FVBT	NA	NA	0	0.1	NA	NA	TMTC Soft- ware 1

112	SpaceCraftHK	2	2	DOUBLE	VOR	0.5	2.75	NA	0.01	NA	NA	TMTC Soft-
												ware 2
113	SpaceCraftHK	2	2	DOUBLE	VOR	0.5	2.75	NA	0.01	NA	NA	TMTC Soft-
												ware 2
127	SpaceCraftHK	12	2	DOUBLE	VOR	9.9253	29.9979	NA	0.0001	NA	NA	SC Tempera-
												ture 5
128	SpaceCraftHK	12	2	DOUBLE	VOR	9.9253	29.9979	NA	0.0001	NA	NA	SC Tempera-
												ture 5
130	SpaceCraftHK	14	2	DOUBLE	VOR	9.9253	29.9979	NA	0.0001	NA	NA	SC Tempera-
												ture 6
131	SpaceCraftHK	14	2	DOUBLE	VOR	9.9253	29.9979	NA	0.0001	NA	NA	SC Tempera-
												ture 6

Suggested Action Item 2: check if the input partitions of the tests are covered for all the necessary scenarios.

3.4 Live Mutants

The *mutation score* was **42.85**%. A total of **60** mutants were applied but not killed. This implies that the mutation was performed but it did not lead to failures in the test suite; this situation could be due to absent or not well-defined oracles, or to not properly exercised scenarios. The mutants are presented in Table 3.2, which contains the definition of the mutation operator that generated them and a description of the targeted data item.

Table 3.3: Mutants that applied the mutation and were not killed by the test suite of the *ESAIL-ADCS* case study

#	FaultModel	D.Item	Span	Туре	F.Class	Min	Max	Thresh.	Delta	State	Value	Description
1	IfStatus	0	1	BÍN	BF	4	4	NA	NA	-1	1	OBC com- munication error
2	IfStatus	0	1	BIN	BF	5	7	NA	NA	-1	1	Unit commu- nication error
3	IfStatus	1	1	BIN	BF	0	4	NA	NA	-1	1	Unit in error
4	IfStatus	4	1	BIN	BF	0	2	NA	NA	-1	1	Gyroscope enable
5	IfStatus	4	1	BIN	BF	2	4	NA	NA	-1	1	Reaction Wheel en- able
6	IfStatus	4	1	BIN	BF	5	7	NA	NA	-1	1	3 axis Mag- netorquer en- able
8	IfStatus	5	1	BIN	BF	2	7	NA	NA	-1	1	S. Sensor board ADC enable
9	IfHK	12	2	DOUBLE	VAT	NA	NA	3.6	0.1	NA	NA	VCCb
11	IfHK	14	2	DOUBLE	VAT	NA	NA	33.53	0.01	NA	NA	VBUS
14	IfHK	14	2	DOUBLE	FVBT	NA	NA	24	1	NA	NA	VBUS
15	IfHK	24	2	DOUBLE	VAT	NA	NA	6	1	NA	NA	VCC Soft- ware 1
20	lfHK	30	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper- ature 2
21	lfHK	30	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper- ature 2
22	IfHK	30	2	DOUBLE	FVOR	-20	50	NA	1	NA	NA	PCB Temper- ature 2
23	IfHK	32	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper- ature 3a
24	IfHK	32	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper- ature 3a
25	IfHK	32	2	DOUBLE	FVOR	-20	50	NA	1	NA	NA	PCB Temper- ature 3a
26	IfHK	34	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper- ature 3b

27	IfHK	34	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper-
2.0	161.114	2.4		BOURIE	FLOR							ature 3b
28	IfHK	34	2	DOUBLE	FVOR	-20	50	NA	1	NA	NA	PCB Temper- ature 3b
29	IfHK	36	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper-
			-									ature 4
30	IfHK	36	2	DOUBLE	VOR	-20	50	NA	1	NA	NA	PCB Temper- ature 4
31	IfHK	36	2	DOUBLE	FVOR	-20	50	NA	1	NA	NA	PCB Temper- ature 4
32	GYTM	0	1	BIN	BF	0	0	NA	NA	-1	1	Unit identi- fier
33	GYTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51	Error type
34	GYTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x52	Error type
35	GYTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x53	Error type
36	GYTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54	Error type
37	GYTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x56	Error type
84	S.SensorTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51	Error type
85	S.SensorTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54	Error type
86	S.SensorTMF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x56	Error type
87	SSTP	0	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 3
88	SSTP	0	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 3
89	SSTP	0	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 3
93	SSTP	4	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 6
94	SSTP	4	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 6
95	SSTP	4	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 6
96	SSTP	6	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 5
97	SSTP	6	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 5
98	SSTP	6	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 5
99	SSTP	8	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 4
100	SSTP	8	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 4
101	SSTP	8	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 4
102	SSTP	10	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 7
103	SSTP	10	2	DOUBLE	VOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 7
104	SSTP	10	2	DOUBLE	FVOR	-70	100	NA	1	NA	NA	Temperature reading from ADC 7
105	SSTPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51	Error type
106	SSTPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54	Error type
107 108	SSTPF. SpaceCraftHK	0	1 2	HEX DOUBLE	IV VAT	NA NA	NA NA	NA 3.3	NA 0.1	NA NA	0x56 NA	Error type TMTC Soft-
110	SpaceCraftHK	0	2	DOUBLE	VBT	NA	NA	0	0.1	NA	NA	ware 1 TMTC Soft-
	,											ware 1

114	SpaceCraftHK	2	2	DOUBLE	FVOR	0.5	2.75	NA	0.01	NA	NA	TMTC Soft-
												ware 2
170	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x51	Error type
171	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x52	Error type
172	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x53	Error type
173	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x54	Error type
174	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x56	Error type
175	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x5d	Error type
176	M.SetPWMRSPF.	0	1	HEX	IV	NA	NA	NA	NA	NA	0x5e	Error type

Suggested Action Item 2: check if the oracles are well defined for all the data items targeted by these mutants and if the tests exercise all the necessary software states.