Part 3 Syntax analysis

Outline

- 1. Introduction
- 2. Context-free grammars
- 3. Top-down parsing
- 4. Bottom-up parsing
- 4.1 Shift/reduce parsing
- 4.2 LR parsers
- 4.3 Operator precedence parsing
- 4.4 Using ambiguous grammars
- 5. Conclusion and some practical considerations

3.1 Introduction

Structure of a compiler

Syntax analysis

- Goals of the syntax analysis
 - Recombine the tokens provided by the lexical analysis into a structure (called a syntax tree)
 - Reject invalid texts by reporting syntax errors.
- Like lexical analysis, syntax analysis is based on
 - ▶ the definition of valid programs based on some formal languages,
 - the derivation of an algorithm to detect valid words (programs) from this language
- Formal language: context-free grammars
- Two main algorithm families: Top-down parsing and Bottom-up parsing

Example

(Keith Schwarz)

Example

(Keith Schwarz)

3.2 Context-free grammars

Reminder: grammar

- A grammar is a 4-tuple $G = (V, \Sigma, R, S)$, where:
 - V is an alphabet,
 - ▶ $\Sigma \subseteq V$ is the set of terminal symbols $(V \Sigma)$ is the set of nonterminal symbols,
 - ▶ $R \subseteq (V^+ \times V^*)$ is a finite set of production rules
 - ▶ $S \in V \Sigma$ is the start symbol.

■ Notations:

- ▶ Nonterminal symbols are represented by uppercase letters: A,B,...
- ► Terminal symbols are represented by lowercase letters: a,b,...
- Start symbol written as S
- Empty word: ε
- ▶ A rule $(\alpha, \beta) \in R : \alpha \to \beta$
- ▶ Rule combination: $A \rightarrow \alpha \mid \beta$

Reminder: grammar

■ Example:
$$\Sigma = \{a,b,c\},\ V - \Sigma = \{S,R\},\ R =$$

$$\begin{array}{cccc} S & \to & R \\ S & \to & aSc \\ R & \to & \varepsilon \\ R & \to & RbR \end{array}$$

Reminder: derivation and language

Definitions:

- v can be derived in one step from u by G (noted $u \Rightarrow v$) iff u = xu'y, v = xv'y, and $u' \rightarrow v'$
- v can be *derived in several steps* from u by G (noted $u \stackrel{*}{\Rightarrow} v$) iff $\exists k \geq 0$ and $v_0 \ldots v_k \in V^+$ such that $u = v_0, \ v = v_k, \ v_i \Rightarrow v_{i+1}$ for $0 \leq i < k$
- The *language generated by a grammar G* is the set of words that can be derived from the start symbol:

$$L = \{ w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w \}$$

Example: derivation of aabcc from the previous grammar

$$S \Rightarrow aSc \Rightarrow aaScc \Rightarrow aaRcc \Rightarrow aaRbRcc \Rightarrow aabcc$$

Reminder: type of grammars

Chomsky's grammar hierarchy:

- Type 0: free or unrestricted grammars
- Type 1: context sensitive grammars
 - ▶ productions of the form $\alpha X\beta \to \alpha \gamma \beta$, where α , β , γ are arbitrary strings of symbols in V, with γ non-null, and X a single nonterminal
- Type 2: context-free grammars (CFG)
 - ▶ productions of the form $X \to \alpha$ where α is an arbitrary string of symbols in V, and X a single nonterminal.
- Type 3: regular grammars
 - ▶ Productions of the form $X \to a$, $X \to aY$ or $X \to \varepsilon$ where X and Y are nonterminals and a is a terminal (equivalent to regular expressions and finite state automata)

Context-free grammars

- Regular languages are too limited for representing programming languages.
- Examples of languages not representable by a regular expression:
 - ► $L = \{a^n b^n \mid n > 0\}$
 - Balanced parentheses

$$L = \{\varepsilon, (), (()), ()(), ((())), (())() \dots \}$$

Scheme programs

$$L = \{1, 2, 3, \dots, (lambda(x)(+x 1))\}$$

- Context-free grammars are typically used for describing programming language syntaxes.
 - ▶ They are sufficient for most languages
 - ► They lead to efficient parsing algorithms

Context-free grammars for programming languages

- Terminals of the grammars are typically the tokens derived by the lexical analysis (in **bold** in rules)
- Divide the language into several syntactic categories (sub-languages)
- Common syntactic categories:

 $Exp \rightarrow (Exp)$

- ► Expressions: calculation of values
- ▶ Statements: express actions that occur in a particular sequence
- ▶ Declarations: express properties of names used in other parts of the program

Derivation for context-free grammar

- Like for a general grammar
- Because there is only one nonterminal in the LHS of each rule, their order of application does not matter (but the chosen rules do)
- Two particular derivations:
 - left-most: always expand first the left-most nonterminal (important for parsing)
 - right-most: always expand first the right-most nonterminal (canonical derivation)

Left-most derivation:

■ Examples:

$$S \Rightarrow aTb \Rightarrow acSSb \Rightarrow accSb \Rightarrow$$
 $S \Rightarrow aTb \Rightarrow acSSb \Rightarrow accSb \Rightarrow$
 $accaTbb \Rightarrow accaSbb \Rightarrow accacbb$
 $T \Rightarrow cSS \mid S$
 $w = accacbb$
 $S \Rightarrow aTb \Rightarrow accaSbb \Rightarrow accacbb$

Right-most derivation:
 $S \Rightarrow aTb \Rightarrow acSSb \Rightarrow acSaTbb \Rightarrow$
 $acSaSbb \Rightarrow acSacbb \Rightarrow accacbb$

Parse tree

- A parse tree abstracts the order of application of the rules
 - ► Each interior node represents the application of a production
 - ▶ For a rule $A \to X_1 X_2 \dots X_k$, the interior node is labeled by A and the children from left to right by X_1, X_2, \dots, X_k .
 - ► Leaves are labeled by nonterminals or terminals and, read from left to right, represent a string generated by the grammar
- A derivation encodes how to produce the input
- A parse tree encodes the structure of the input
- Syntax analysis = recovering the parse tree from the tokens

Parse trees

$$S \rightarrow aTb \mid c$$

$$T \rightarrow cSS \mid S$$

$$w = accacbb$$

Left-most derivation:

$$S \Rightarrow aTb \Rightarrow acSSb \Rightarrow accSb \Rightarrow accaTbb \Rightarrow accaSbb \Rightarrow accacbb$$

Right-most derivation:

$$S \Rightarrow aTb \Rightarrow acSSb \Rightarrow acSaTbb \Rightarrow acSaSbb \Rightarrow acSacbb \Rightarrow acSacbb$$

Parse tree

Ambiguity

- The order of derivation does not matter but the chosen production rules do
- Definition: A CFG is ambiguous if there is at least one string with two or more distinct parse trees
- Ambiguity is not problematic when dealing with flat strings. It is when dealing with language semantics

Detecting and solving Ambiguity

- There is no mechanical way to determine if a grammar is (un)ambiguous (this is an undecidable problem)
- In most practical cases however, it is easy to detect and prove ambiguity.
 - E.g., any grammar containing $N \to N\alpha N$ is ambiguous (two parse trees for $N\alpha N\alpha N$).
- How to deal with ambiguities?
 - Modify the grammar to make it unambiguous
 - ► Handle these ambiguities in the parsing algorithm
- Two common sources of ambiguity in programming languages
 - Expression syntax (operator precedences)
 - Dangling else

Operator precedence

■ This expression grammar is ambiguous

(it contains $N \to N\alpha N$)

■ Parsing of 2 + 3 * 4:

Operator associativity

- Types of operator associativity:
 - ▶ An operator \oplus is left-associative if $a \oplus b \oplus c$ must be evaluated from left to right, i.e., as $(a \oplus b) \oplus c$
 - An operator \oplus is right-associative if $a \oplus b \oplus c$ must be evaluated from right to left, i.e., as $a \oplus (b \oplus c)$
 - ▶ An operator \oplus is non-associative if expressions of the form $a \oplus b \oplus c$ are not allowed

■ Examples:

- ► and / are typically left-associative (a b c = (a b) c)
- ► + and * are mathematically associative (left or right). By convention, we take them left-associative as well
- List construction in functional languages is right-associative
- ► The assignment operator in C is right-associative (a = b = c is equivalent to a = (b = c))
- In Java, comparison operators are non-associative (you can not write 2 < 3 < 4)</p>

Rewriting ambiguous expression grammars

■ Let's consider the following ambiguous grammar:

$$E \rightarrow E \oplus E$$
 $E \rightarrow num$

- If \oplus is left-associative, we rewrite it as a left-recursive (a recursive reference only to the left).
- If ⊕ is right-associative, we rewrite it as a right-recursive (a recursive reference only to the right).
 - ⊕ left-associative

$$\begin{array}{ccc} E & \rightarrow & E \oplus E' \\ E & \rightarrow & E' \\ E' & \rightarrow & num \end{array}$$

⊕ right-associative

$$E \rightarrow E' \oplus E$$

$$E \rightarrow E'$$

$$E' \rightarrow num$$

Mixing operators of different precedence levels

■ Introduce a different nonterminal for each precedence level

$$Exp \rightarrow Exp + Term$$

$$Exp \rightarrow Exp - Term$$

$$Exp \rightarrow Term$$

$$Term \rightarrow Term * Factor$$

$$Term \rightarrow Factor$$

$$Term \rightarrow Factor$$

$$Factor \rightarrow num$$

$$Factor \rightarrow (Exp)$$

■ In this example, the nonterminals *Exp*, *Term* and *Factor* define the application order of the operators in an expression without parentheses.

Dangling else

Else part of a condition is typically optional

 $Stat \rightarrow$ if Exp then Stat else Stat $Stat \rightarrow$ if Exp then Stat

■ How to match if p then if q then s1 else s2?

■ Convention: else matches the closest not previously matched if.

Dangling else

Unambiguous grammar:

 $Stat \rightarrow Matched \mid Unmatched$ $Matched \rightarrow \mathbf{if} \ Exp \ \mathbf{then} \ Matched \ \mathbf{else} \ Matched$ $Matched \rightarrow "Any other statement"$ *Unmatched* \rightarrow **if** *Exp* **then** *Stat* $Unmatched \rightarrow \mathbf{if} \ Exp \ \mathbf{then} \ Matched \ \mathbf{else} \ Unmatched$ Stat Unmatched Matched if then

Matched

s1

else

Matched

s2

Syntax analysis

then

End-of-file marker

- Parsers must read not only terminal symbols such as + , , **num** but also the end-of-file
- We typically use \$ to represent end of file
- If S is the start symbol of the grammar, then a new start symbol S' is added with the rule $S' \rightarrow S$ \$.

```
S \rightarrow Exp $
  Exp \rightarrow Exp + Term
  Exp \rightarrow Exp - Term
  Exp \rightarrow Term
 Term → Term * Factor
 Term \rightarrow Term / Factor
 Term \rightarrow Factor
Factor \rightarrow num
Factor \rightarrow (Exp)
```

Non context-free languages

- Some syntactic constructs from typical programming languages cannot be specified with CFG
- Example 1: in C and Java, variables must be declared before their use
 - ▶ $L_1 = \{wcw \mid w \text{ is in } (a \mid b)^*\}$ is not context-free
 - As a consequence, one can prove that there is no CFG that checks whether a variable is declared before its use
- Example 2: checking that a function is called with the right number of arguments
 - ▶ $L_2 = \{a^n b^m c^n d^m \mid n \ge 1 \text{ and } m \ge 1\}$ is not context-free
 - As a consequence, one can prove that there is no CFG that checks whether a function call is consistent with its definition
 - ▶ In C, the grammar does not count the number of function arguments

$$\begin{array}{ccc} \textit{Stmt} & \rightarrow & \textbf{id} \; (\textit{Expr_list}) \\ \textit{Expr_list} & \rightarrow & \textit{Expr_list}, \textit{Expr} \\ & | & \textit{Expr} \end{array}$$

■ These constructs are typically dealt with during semantic analysis

Backus-Naur Form

- BNF is a text format for describing context-free languages
- We ask you to provide the source grammar for your project in this format
- Example:

■ More information:

http://en.wikipedia.org/wiki/Backus-Naur_form

Syntax analysis

Goals:

- Checking that a program is accepted by the context-free grammar
- Building the parse tree
- Reporting syntax errors

■ Two ways:

- ► Top-down: from the start symbol to the word
- Bottom-up: from the word to the start symbol

Top-down and bottom-up: example

Grammar:

$$S \rightarrow AB$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow b \mid bB$$

Top-down parsing of aaab

S AB $S \rightarrow AB$ aAB $A \rightarrow aA$ aaAB $A \rightarrow aA$ aaaAB $A \rightarrow aA$ aaaeB $A \rightarrow e$ aaab $B \rightarrow b$

Bottom-up parsing of aaab

 $egin{array}{lll} \hbox{aaab} & \hbox{aaaeb} & \hbox{(insert $arepsilon)} \ \hbox{aaaAb} & A
ightarrow arepsilon \ \hbox{aaAb} & A
ightarrow aA \ \hbox{aAb} & A
ightarrow aA \ Ab & A
ightarrow aA \ AB & B
ightarrow b \ S & S
ightarrow AB \ \end{array}$

3.3 Top-down parsing

A naive top-down parser

■ A very naive parsing algorithm:

- Generate all possible parse trees until you get one that matches your input
- ▶ To generate all parse trees:
 - Start with the root of the parse tree (the start symbol of the grammar)
 - 2. Choose a non-terminal A at one leaf of the current parse tree
 - 3. Choose a production having that non-terminal as LHS, eg., $A \to X_1 X_2 \dots X_k$
 - 4. Expand the tree by making X_1, X_2, \dots, X_k , the children of A.
 - 5. Repeat at step 2 until all leaves are terminals
 - Repeat the whole procedure by changing the productions chosen at step 3

(Note: the choice of the non-terminal in Step 2 is irrevelant for a context-free grammar)

■ This algorithm is very inefficient, does not always terminate, etc.

Top-down parsing with backtracking

- Modifications of the previous algorithm:
 - Depth-first development of the parse tree (corresponding to a left-most derivation)
 - 2. Process the terminals in the RHS during the development of the tree, checking that they match the input
 - 3. If they don't at some step, stop expansion and restart at the previous non-terminal with another production rules (backtracking)
- Depth-first can be implemented by storing the unprocessed symbols on a stack
- Because of the left-most derivation, the inputs can be processed from left to right

Backtracking example

	Stack	Inputs	Action
	S	bcd	Try $S o bab$
	bab	bcd	match b
$\mathcal{S} \hspace{0.1cm} o \hspace{0.1cm} \mathit{bab}$	ab	cd	dead-end, backtrack
$S \rightarrow bA$	S	bcd	Try $S o bA$
$A \rightarrow d$	bА	bcd	match <i>b</i>
	Α	cd	Try $A o d$
$A \rightarrow cA$	d	cd	dead-end, backtrack
	Α	cd	Try $A o cA$
	сA	cd	match <i>c</i>
w = bcd	Α	d	Try $A o d$
	d	d	$match\ d$
			Success!

Top-down parsing with backtracking

 \blacksquare General algorithm (to match a word w):

```
Create a stack with the start symbol
X = POP()
a = GETNEXTTOKEN()
while (True)
    if (X is a nonterminal)
         Pick next rule to expand X \to Y_1 Y_2 \dots Y_k
         Push Y_k, Y_{k-1}, \dots, Y_1 on the stack
         X = POP()
    elseif (X == \$  and a == \$)
         Accept the input
    elseif (X == a)
         a = GETNEXTTOKEN()
         X = POP()
    else
         Backtrack
```

- Ok for small grammars but still untractable and very slow for large grammars
- Worst-case exponential time in case of syntax error

Top-down parsing with backtracking

■ A top-down parser (even with backtracking) can go into an infinite loop if the grammar is left-recursive:

$$Exp
ightarrow Exp + Term \mid Term$$
 $Term
ightarrow Term * Factor \mid Factor$
 $Factor
ightarrow num \mid id \mid (Exp)$
 $w = (id + id) * num$

Stack	Inputs	Action
Ехр	(id + id) * num	Try $Exp \rightarrow Exp + Term$
Exp + Term	(id + id) * num	Try $Exp o Exp + Term$
Exp + Term + Term	(id + id) * num	Try $Exp o Exp + Term$

 Such grammars have to be reformulated in order to avoid left-recursion (see later)

Another example

		Stack	Inputs	Action
C .	CLT	5	accbbadbc	Try $S o aSbT$
$S \rightarrow$	a5b1	aSbT	accbbadbc	match <i>a</i>
$S \rightarrow$	cT	SbT	accbbadbc	Try $S o aSbT$
$S \rightarrow$	d	aSbTbT	accbbadbc	match a
		SbTbT	ccbbadbc	Try $S o cT$
$T \rightarrow$	a I	cTbTbT	ccbbadbc	match c
$T \rightarrow$	bS	TbTbT	cbbadbc	Try $T ightarrow c$
$T \rightarrow$		cbTbT	cbbadbc	match <i>cb</i>
$I \rightarrow$	C	TbT	badbc	Try $T o bS$
		bSbT	badbc	match b
		SbT	adbc	Try $S o aSbT$
		aSbT	adbc	match a
		С	С	match c
w = acc	bbadbc			Success!

Predictive parsing

- Predictive parser:
 - In the previous example, the production rule to apply can be predicted based solely on the next input symbol and the current nonterminal
 - Much faster than backtracking but this trick works only for some specific grammars
- Grammars for which top-down predictive parsing is possible by looking at the next symbol are called LL(1) grammars:
 - L: left-to-right scan of the tokens
 - L: leftmost derivation
 - ▶ (1): one token of lookahead
- Predicted rules are stored in a parsing table M:
 - ► M[X, a] stores the rule to apply when the nonterminal X is on the stack and the next input terminal is a

Example: parse table

$$S \rightarrow E\$$$

 $E \rightarrow int$
 $E \rightarrow (E Op E)$
 $Op \rightarrow +$
 $Op \rightarrow *$

	int	()	+	*	\$
S	E\$	E\$				
Е	int	(E Op E)				
Ор				+	*	

(Keith Schwarz)

Example: successfull parsing

- 1. $S \rightarrow E\$$
- 2. $E \rightarrow \mathtt{int}$
- 3. $E \rightarrow (E Op E)$
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

(int + (int * int))\$
(int + (int * int))\$
(int + (int * int))\$
int + (int * int))\$
int + (int * int))\$
+ (int * int))\$
+ (int * int))\$
(int * int))\$
(int * int))\$
int * int))\$
int * int))\$
* int))\$
* int))\$
int))\$
int))\$
))\$
)\$
\$

(Keith Schwarz)

Example: erroneous parsing

1. $S \rightarrow E\$$

2. $E \rightarrow int$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
int Op E)\$	int (int))\$
Op E) \$	(int))\$

(Keith Schwarz)

Table-driven predictive parser

(Dragonbook)

Table-driven predictive parser

```
Create a stack with the start symbol
X = POP()
a = GETNEXTTOKEN()
while (True)
     if (X is a nonterminal)
         if (M[X, a] == NULL)
              Frror
         elseif (M[X, a] == X \rightarrow Y_1 Y_2 \dots Y_k)
              Push Y_k, Y_{k-1}, \dots, Y_1 on the stack
              X = POP()
     elseif (X == \$ \text{ and } a == \$)
         Accept the input
     elseif (X == a)
         a = GETNEXTTOKEN()
         X = POP()
     else
         Frror
```

LL(1) grammars and parsing

Three questions we need to address:

- How to build the table for a given grammar?
- How to know if a grammar is LL(1)?
- How to change a grammar to make it LL(1)?

Syntax analysis 15:

Building the table

- It is useful to define three functions (with A a nonterminal and α any sequence of grammar symbols):
 - *Nullable*(α) is true if $\alpha \stackrel{*}{\Rightarrow} \varepsilon$
 - First(α) returns the set of terminals c such that $\alpha \stackrel{*}{\Rightarrow} c\gamma$ for some (possibly empty) sequence γ of grammar symbols
 - ► Follow(A) returns the set of terminals a such that $S \stackrel{*}{\Rightarrow} \alpha Aa\beta$, where α and β are (possibly empty) sequences of grammar symbols

 $(c \in First(A) \text{ and } a \in Follow(A))$

Example

```
First(C) = \{ public, final, class \}
                                               First(P) = \{ public \}
                                               First(F) = \{ final \}
                                               First(X) = \{ extends \}
C \rightarrow P F  class id X Y $
                                                First(I) = \{ id \}
P \rightarrow \mathsf{public} \mid \varepsilon
                                               First(J) = \{', '\}
F \rightarrow \text{final} \mid \varepsilon
X \rightarrow extends id \mid \varepsilon
                                             Follow(C) = \{\}
Y \rightarrow \text{implements } I \mid \varepsilon
                                             Follow(P) = \{ final, class \}
 I \rightarrow \mathsf{id} J
                                             Follow(F) = \{ class \}
J \rightarrow I \mid \varepsilon
                                            Follow(X) = \{ implements, \$ \}
                                            Follow(Y) = \{\$\}
                                             Follow(I) = \{\$\}
                                             Follow(J) = \{\$\}
                                                                                  (Carnahan)
```

Building the table from First, Follow, and Nullable

To construct the table:

- 1. Start with the empty table
- 2. For each production $A \rightarrow \alpha$:
 - 2.1 add $A \rightarrow \alpha$ to M[A, a] for each terminal a in $First(\alpha)$
 - 2.2 if $Nullable(\alpha)$ then add $A \to \alpha$ to M[A, a] for each a in Follow(A)

Illustration:

	public	final	class	
С	P F class id X Y \$	P F class id X Y \$	P F class id X Y \$	
P	public	ε	ε	
F		final	ε	

LL(1) grammars

■ Three situations:

- ► *M*[*A*, *a*] is empty: no production is appropriate. We can not parse the sentence and have to report a syntax error
- ► M[A, a] contains one entry: perfect!
- ► *M*[*A*, *a*] contains two entries: the grammar is not appropriate for predictive parsing (with one token lookahead)
- Definition: A grammar is LL(1) if its parsing table contains at most one entry in each cell or, equivalently, if for all production pairs $A \rightarrow \alpha \mid \beta$
 - $First(\alpha) \cap First(\beta) = \emptyset$,
 - $Nullable(\alpha)$ and $Nullable(\beta)$ are not both true,
 - if $Nullable(\beta)$, then $First(\alpha) \cap Follow(A) = \emptyset$

Example of a non LL(1) grammar

```
Exp 
ightarrow Exp + Term
Exp 
ightarrow Exp - Term
Exp 
ightarrow Term
Term 
ightarrow Term * Factor
Term 
ightarrow Factor
Factor 
ightarrow num
Factor 
ightarrow (Exp)
```

 $(First(\alpha))$ is the same for all RHS α of the productions for Exp and Term

Computing Nullable

Algorithm to compute *Nullable* for all grammar symbols:

```
Initialize Nullable to False. 

repeat for each production X \to Y_1 Y_2 \dots Y_k if Y_1 \dots Y_k are all nullable (or if k = 0) Nullable(X) = True until Nullable did not change in this iteration.
```

Algorithm to compute *Nullable* for any string $\alpha = X_1 X_2 \dots X_k$:

```
if X_1 ... X_k are all nullable

Nullable(\alpha) = True

else

Nullable(\alpha) = False
```

Computing First

Algorithm to compute First for all grammar symbols:

```
Initialize First to empty sets.
    for each terminal z
          First(z) = \{z\}
    repeat
          for each production X \to Y_1 Y_2 \dots Y_k
               for i = 1 to k
                     if Y_1 \dots Y_{i-1} are all nullable (or i = 1)
                           First(X) = First(X) \cup First(Y_i)
    until First did not change in this iteration.
Algorithm to compute First for any string \alpha = X_1 X_2 \dots X_k:
    Initialize First(\alpha) = \emptyset
    for i = 1 to k
         if X_1 \dots X_{i-1} are all nullable (or i=1)
               First(\alpha) = First(\alpha) \cup First(X_i)
```

Computing Follow

Algorithm to compute *Follow* for all nonterminal symbols:

```
Initialize Follow to empty sets.
repeat
     for each production X \rightarrow Y_1 Y_2 \dots Y_k
           for i = 1 to k, for j = i + 1 to k
                if Y_{i+1} \dots Y_k are all nullable (or i = k)
                      Follow(Y_i) = Follow(Y_i) \cup Follow(X)
                if Y_{i+1} \dots Y_{i-1} are all nullable (or i+1=j)
                      Follow(Y_i) = Follow(Y_i) \cup First(Y_i)
```

until Follow did not change in this iteration.

Example

Compute the parsing table for the following grammar:

$$S \rightarrow E\$$$

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \varepsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow *F T'$$

$$T' \rightarrow F T'$$

$$T' \rightarrow \varepsilon$$

$$F \rightarrow id$$

$$F \rightarrow num$$

$$F \rightarrow (E)$$

Example

Nonterminals	Nullable	First	Follow
S	False	{(, id , num }	Ø
E	False	$\{(, id, num \}$	$\{),\$\}$
E'	True	$\{+, -\}$	$\{), \$\}$
Т	False	$\{(, id, num \}$	$\{),+,-,\$\}$
T'	True	$\{*,/\}$	$\{),+,-,\$\}$
F	False	{(, id , num }	$\{),*,/,+,-,\$\}$

Transforming a grammar for LL(1) parsing

- Ambiguous grammars are not LL(1) but unambiguous grammars are not necessarily LL(1)
- Having a non-LL(1) unambiguous grammar for a language does not mean that this language is not LL(1).
- But there are languages for which there exist unambiguous context-free grammars but no *LL*(1) grammar.
- We will see two grammar transformations that improve the chance to get a LL(1) grammar:
 - Elimination of left-recursion
 - Left-factorization

Left-recursion

■ The following expression grammar is unambiguous but it is not LL(1):

- Indeed, $First(\alpha)$ is the same for all RHS α of the productions for Exp et Term
- This is a consequence of *left-recursion*.

Left-recursion

- Recursive productions are productions defined in terms of themselves. Examples: $A \rightarrow Ab$ or $A \rightarrow bA$.
- When the recursive nonterminal is at the left (resp. right), the production is said to be left-recursive (resp. right-recursive).
- Left-recursive productions can be rewritten with right-recursive productions
- Example:

Right-recursive expression grammar

```
Exp \rightarrow Term Exp'
                                                          Exp' \rightarrow + Term Exp'
   Exp \rightarrow Exp + Term
                                                          Exp' \rightarrow - Term \ Exp'
   Exp \rightarrow Exp - Term
                                                          Exp' \rightarrow \varepsilon
   Exp \rightarrow Term
 Term → Term * Factor
                                                          Term \rightarrow Factor Term'
                                                         Term' \rightarrow *Factor Term'
 Term \rightarrow Term / Factor
 Term \rightarrow Factor
                                            \Leftrightarrow
                                                         Term' \rightarrow / Factor Term'
                                                         Term' \rightarrow \varepsilon
Factor \rightarrow num
Factor \rightarrow (Exp)
                                                        Factor \rightarrow num
                                                        Factor \rightarrow (Exp)
```

Left-factorisation

■ The RHS of these two productions have the same *First* set.

```
Stat \rightarrow  if Exp then Stat else Stat Stat \rightarrow  if Exp then Stat
```

■ The problem can be solved by left factorising the grammar:

Note

The resulting grammar is ambiguous and the parsing table will contain two rules for M[ElseStat, else] (because else ∈ Follow(ElseStat) and else ∈ First(else Stat))

▶ Ambiguity can be solved in this case by letting M[ElseStat, else] = {ElseStat → else Stat}.

Hidden left-factors and hidden left recursion

- Sometimes, left-factors or left recursion are hidden
- **■** Examples:
 - ▶ The following grammar:

$$A \rightarrow da \mid acB$$

 $B \rightarrow abB \mid daA \mid Af$

has two overlapping productions: $B \to daA$ and $B \stackrel{*}{\Rightarrow} daf$.

► The following grammar:

$$S \rightarrow Tu \mid wx$$

 $T \rightarrow Sq \mid vvS$

has left recursion on T ($T \stackrel{*}{\Rightarrow} Tuq$)

■ Solution: expand the production rules by substitution to make left-recursion or left factors visible and then eliminate them

Summary

Construction of a LL(1) parser from a CFG grammar

- Eliminate ambiguity
- Eliminate left recursion
- Left factorization
- lacksquare Add an extra start production S' o S\$ to the grammar
- Calculate First for every production and Follow for every nonterminal
- Calculate the parsing table
- Check that the grammar is LL(1)

Recursive implementation

 From the parsing table, it is easy to implement a predictive parser recursively (with one function per nonterminal)

```
T \rightarrow aTc \\ R \rightarrow \epsilon \\ R \rightarrow bR else reportError() R \rightarrow bR function parseT() = if next = 'b' or next = parseR() T' T' \rightarrow T\$ T' \rightarrow T\$ T' \rightarrow T\$ T' \rightarrow T\$ \\ T \rightarrow aTc T \rightarrow R T \rightarrow R T \rightarrow R \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon \\ R \rightarrow \epsilon \\ R \rightarrow bR R \rightarrow \epsilon \\ R \rightarrow \epsilon \\
```

 $T' \rightarrow T$ \$

 $T \rightarrow R$

```
function parseT'() =
  if next = 'a' or next = 'b' or next = '$' then
   parseT() ; match('$')
 else reportError()
function parseT() =
  if next = 'b' or next = 'c' or next = '$' then
  parseR()
    match('a') ; parseT() ; match('c')
  else reportError()
function parseR() =
  if next = 'c' or next = '$' then
    (* do nothing *)
  else if next = 'b' then
    match('b'); parseR()
  else reportError()
```

(Mogensen)