TPC#3

Data de entrega: 18 de Maio de 2023

Autores: Diogo Alexandre Mousinho dos Reis#1 (100%); Pedro Coelho Fróis Silva#2

(100%); Teresa Moral Fernandez#3 (100%)

1. Considere o problema de valor de fronteira

$$-\epsilon u'' + u' = 1 \quad em \quad (0,1), \qquad u(0) = u(1) = 0, \tag{1}$$

onde $\epsilon > 0$.

• Verifique que a solução exacta é dada por

$$u(x) = x - \frac{e^{\frac{x}{\epsilon}} - 1}{e^{\frac{1}{\epsilon}} - 1}$$

Para verificar se a função u(x) é a solução exacta do problema (1), temos de verificar primeiro se u(x) satisfaz:

$$-\epsilon u'' + u' = 1 \tag{2}$$

Por outro lado, as duas condições iniciais também devem ser satisfeitas: u(1) = u(0) = 0. Comecemos por verificar a primeira condição. Para o fazer, derivamos a função u duas vezes e substituímo-la em (2).

$$u'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[x - \frac{e^{\frac{x}{\epsilon}} - 1}{e^{\frac{1}{\epsilon}} - 1} \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[x \right] - \frac{1}{e^{\frac{1}{\epsilon}} - 1} \left(\frac{\mathrm{d}}{\mathrm{d}x} \left[e^{\frac{x}{\epsilon}} \right] + \frac{\mathrm{d}}{\mathrm{d}x} \left[-1 \right] \right)$$

$$= 1 - \frac{e^{\frac{x}{\epsilon}} \cdot \frac{1}{\epsilon} \cdot 1}{e^{\frac{1}{\epsilon}} - 1}$$

$$= 1 - \frac{e^{\frac{x}{\epsilon}}}{\epsilon \cdot (e^{\frac{1}{\epsilon}} - 1)}$$

$$(3)$$

Agora vamos calcular a segunda derivada:

$$u''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[1 - \frac{e^{\frac{x}{\epsilon}}}{\epsilon \cdot (e^{\frac{1}{\epsilon}} - 1)} \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[1 \right] - \frac{1}{\epsilon \cdot (e^{\frac{1}{\epsilon}} - 1)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{\frac{x}{\epsilon}} \right]$$
$$= -\frac{e^{\frac{x}{\epsilon} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{x}{\epsilon} \right]}}{\epsilon \cdot (e^{\frac{1}{\epsilon}} - 1)} = \frac{\frac{1}{\epsilon} \cdot e^{\frac{x}{\epsilon}}}{\epsilon \cdot (e^{\frac{1}{\epsilon}} - 1)}$$
$$= -\frac{e^{\frac{x}{\epsilon}}}{\epsilon^2 \cdot (e^{\frac{1}{\epsilon}} - 1)}$$
(4)

Substituir as derivadas em (2) e verificar se:

$$-\epsilon u'' + u' = 1 \iff -\epsilon \cdot \left(-\frac{e^{\frac{x}{\epsilon}}}{\epsilon^2 \cdot \left(e^{\frac{1}{\epsilon}} - 1\right)} \right) + \left(1 - \frac{e^{\frac{x}{\epsilon}}}{\epsilon \cdot \left(e^{\frac{1}{\epsilon}} - 1\right)} \right) = 1$$

$$\iff \frac{e^{\frac{x}{\epsilon}}}{\epsilon \cdot \left(e^{\frac{1}{\epsilon}} - 1\right)} + 1 - \frac{e^{\frac{x}{\epsilon}}}{\epsilon \cdot \left(e^{\frac{1}{\epsilon}} - 1\right)} = 1$$

É evidente que ambas as fracções se anulam e, portanto, a solução verifica a equação inicial. Vejamos agora que satisfaz as condições iniciais;

$$u(0) = 0 - \frac{e^0 - 1}{e^{\frac{1}{\epsilon}} - 1} = 0 \quad \checkmark$$

$$u(1) = 1 - \frac{e^{\frac{1}{\epsilon}} - 1}{e^{\frac{1}{\epsilon}} - 1} = 0 \quad \checkmark$$

Por conseguinte, demonstra-se que a solução exacta de (2) é

$$u(x) = x - \frac{e^{\frac{x}{\epsilon}} - 1}{e^{\frac{1}{\epsilon}} - 1}$$

b) Nesta alínea, é pedido que traçemos o gráfico da solução para $\epsilon = 10^{-k}, k = 1, 2, 3$ utilizando uma abordagem inteligente de modo a evitar o overflow para o caso em que $\epsilon = 10^{-3}$.

A abordagem utilizada foi multiplicar e dividir a fração $\frac{e^{\frac{x}{\epsilon}}-1}{e^{\frac{1}{\epsilon}}-1}$ por $e^{-\frac{1}{\epsilon}}$. Obtemos assim que a solução u(x) a utilizar no código é:

$$u(x) = x - \frac{e^{\frac{x-1}{\epsilon}} - e^{-\frac{1}{\epsilon}}}{1 - e^{-\frac{1}{\epsilon}}}$$

O plot do gráfico da solução para os três valores de ϵ é o seguinte:

Figura 1: Gráfico com as soluções numéricas para diferentes ϵ

O código utilizado foi o seguinte:

```
for k = 1:3
    eps = 10^{(-k)};
    u = Q(x) \times - (exp((x-1)/eps) - exp(-1/eps)) / (1 - exp(-1/eps));
    fplot(u, [0, 1], 'LineWidth', 1.5)
    hold on
ylim([0, 1])
xlim([0, 1]) legend('\epsilon = 10^{-1}', '\epsilon = 10^{-2}', '\epsilon = 10^{-3}');
title('Soluções numéricas para diferentes \epsilon') xlabel('x')
ylabel('u(x)')
```

Figura 2: Código utilizado na alínea b) $\frac{2}{2}$

c)

Na presente alínea, pretendemos calcular e traçar o gráfico da solução do problema de valor de fronteira através da implementação de um método das diferenças finitas numa rede uniforme de espaçamento $h = \frac{1}{N+1}$.

O método de diferenças finitas discretiza o domínio em pontos internos equidistantes, representados por $\mathbf{x}=(0:h:1)$ '. Implementamos um ciclo for que calcula e traça o gráfico da solução exata e da solução do método para cada valor de ϵ . A solução aproximada u(x) é calculada usando a seguinte abordagem:

1. Construção da matriz esparsa A:

Tivemos de proceder à discretização das derivadas. Usando o desenvolvimento de taylor. Temos que

$$\begin{cases} -u''(x_k) = \frac{1-u'(x_k)}{\epsilon}, & k = 1, ..., n \\ u(0) = u(1) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{\epsilon}{h^2}(-u(x_{k+1}) + 2u(x_k) - u(x_{k-1}) + \frac{1}{h}(u(x_{k+1}) - u(x_k)), \\ u(0) = u(1) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{h^2}(u(x_{k+1})(h - \epsilon) + u(x_k)(2\epsilon - h) - u(x_{k-1})(-\epsilon)), \\ u(0) = u(1) = 0 \end{cases}$$

Os elementos da diagonal principal de A são definidos como: $\frac{2\epsilon}{h^2} - \frac{1}{h}$.

Os elementos da diagonal inferior são definidos como: $-\frac{\epsilon}{h^2}$.

Os elementos da diagonal superior são definidos como $-\frac{\epsilon}{h^2} + \frac{1}{h}$.

A matriz A é construída usando a função spdiags para aproveitar sua estrutura esparsa.

2. Cálculo do vetor de termos independentes b:

O vetor b é inicializado com a função f(x) = 1 para todos os pontos internos.

3. Resolução do sistema de equações lineares A * uh = b:

O código usa o operador de divisão da matriz, específico do MATLAB, para resolver o sistema de forma eficiente.

O resultado é armazenado na variável uh, que representa a solução aproximada para o valor atual de ϵ .

4. Cálculo da solução exata:

A solução exata é dada pela expressão $u(x)=x-\frac{e^{\frac{x-1}{\epsilon}}-e^{-\frac{1}{\epsilon}}}{1-e^{-\frac{1}{\epsilon}}}$, analogamente à alínea anterior, e avalia a solução nos pontos da rede para obter os valores exatos correspondentes.

5. Traçado dos gráficos:

Finalmente, o código traça os gráficos individuais da solução do método de diferenças finitas (representado pela linha azul) e da solução exata(representada pela linha vermelha a tracejado) para cada valor de ϵ . Dentro do loop, para cada valor de k, um gráfico é criado usando a função plot do MATLAB.

Figura 3: Gráfico com as soluções do método de diferenças finitas v
s solução exata para $\epsilon=0.1$

Figura 4: Gráfico com as soluções do método de diferenças finitas v
s solução exata para $\epsilon=0.01$

Figura 5: Gráfico com as soluções do método de diferenças finitas v
s solução exata para $\epsilon=0.001$

Por fim, apresentamos o código utilizado

Figura 6: Código utilizado na alínea c)

d) Nesta alínea investigamos a convergência do método numérico quando h decresce, ou seja, quando N aumenta, utilizando a norma máxima e a norma

$$||u||_p = (h \sum_{j=1}^N |u(x_j)|^p)^{\frac{1}{p}}$$

quando p = 1 e p = 2.

Calculamos os erros para seis valores de N diferentes: 100, 500, 1000, 1000, 10000 e 10000000. Os resultados podem ser observados nas seguintes tabelas:

N	$ u _{\infty}$	$ u _{1}$	$ u _{2}$
100	0.018995	0.005013	0.008057
500	0.003700	0.000997	0.001585
1000	0.001884	0.000498	0.000791
10000	0.000184	0.000050	0.000079
100000	0.000018	0.00005	0.000008
1000000	0.000002	0.000000	0.000001

Tabela 1: Erros para $\epsilon = 0.1$

N	$ u _{\infty}$	$ u _{1}$	$ u _{2}$
100	0.361639	0.005794	0.038904
500	0.040116	0.001031	0.005314
1000	0.019181	0.000508	0.002574
10000	0.001847	0.000050	0.000251
100000	0.000184	0.000005	0.000025
1000000	0.000018	0.000001	0.000002

Tabela 2: Erros para $\epsilon = 0.01$

N	$ u _{\infty}$	$ u _{1}$	$ u _{2}$
100	1.112347	0.991099	0.996105
500	0.985672	0.379697	0.451357
1000	0.367248	0.000581	0.012490
10000	0.019199	0.000051	0.000815
100000	0.001847	0.000005	0.000079
1000000	0.000184	0.000001	0.000008

Tabela 3: Erros para $\epsilon = 0.001$

À medida que N aumenta, como este $\to \infty$ então $h = \frac{1}{1+N} \to 0$, o que é possível de confirmar com os resultados obtidos nos gráficos: conseguimos observar que há medida que aumentamos os valores de N os valores dos erros diminuiem, aproximando-se de 0.

Adicionamos o seguinte código dentro do ciclo for utilizado na alínea c):

```
% Cálculo do erro
erro = norm(uh-u_exata_vals, inf);
erro1 = h*norm(uh-u_exata_vals, 1);
erro2 = (h^(1/2))*norm(uh-u_exata_vals, 2);

fprintf('Erro para epsilon = 1e-%d:\n', k);
fprintf('Erro infinito: %.6f\n', erro);
fprintf('Erro 1: %.6f\n', erro1);
fprintf('Erro 2: %.6f\n', erro2);
fprintf('\n');
```

Figura 7: Código utilizado na alínea d)