

# 图论

第四讲:图的矩阵表示

方聪

2024 年秋季



1 关联矩阵



1 关联矩阵

## 有向图关联矩阵

- 设  $D = \langle V, E \rangle$  是无环有向图,  $V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
- 关联矩阵 (incidence matrix):

$$M(D) = [m_{ij}]_{n \times m}, m_{ij} =$$

$$\begin{cases} 1, v_i \notin e_j \text{的起点} \\ 0, v_i \notin e_j \text{不关联} \\ -1 v_i \notin e_j \text{的终点} \end{cases}$$

• D与 M(D) 是相互唯一确定的

## 有向图关联矩阵 (例)





图 1: 有向图关联矩阵

## 有向图关联矩阵(性质)

- 每列和为零:  $\sum_{i=1}^{n} m_{ii} = 0$ (每条边关联两个顶点)
- 每行绝对值和为  $d(v_i): d(v_i) = \sum_{j=1}^m m_{ij}$ , 其中 1 的个数为  $d^+(v)$ , -1 的个数为  $d^-(v)$
- 握手定理:  $\sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} = 0$  (各项点入度之和等于出度之和)
- 平行边: 相同两列

## 无向图关联矩阵

- 设 G < V, E >是无环无向图,  $V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
- 关联矩阵 (incidence matrix):

$$M(G) = [m_{ij}]_{n \times m}, m_{ij} = \begin{cases} 1, v_i \leq e_j \Leftrightarrow \mathbb{K} \\ 0, v_i \leq e_j \end{cases}$$

• G与 M(G) 是相互唯一确定的

## 无向图关联矩阵 (例)

例:



图 2: 无向图关联矩阵

## 无向图关联矩阵 (性质)

- 每列和为 2:  $\sum_{i=1}^{n} m_{ij} = 2$
- 每行和为  $d(v):d(v_i)=\sum_{j=1}^m m_{ij}$
- 每行所有 1 对应的边组成的集合为 v; 的关联集
- 平行边: 相同两列
- 伪对角阵: 若 G 有 k 个连通分支,则 G 的关联矩阵 M(G) 为伪对角阵

$$M(G) = \begin{bmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ v_4 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} M(G) = \begin{bmatrix} M(G_1) & & & & \\ M(G_2) & & & \\ & M(G_k) & & \\ & & & M(G_k) \end{bmatrix}$$

图 3: 无向图的关联矩阵

### 无向图基本关联矩阵

- 设 G < V, E >是无环无向图,  $V = \{v_1, v_2, ..., v_n\}, E = \{e_1, e_2, ..., e_m\}$
- 任意 1 个顶点
- 基本关联矩阵 (fundamental incidence matrix): 从 M(G) 删 除参考点对应的行,记作  $M_f(G)$

### 无向图关联矩阵的秩

#### 定理

n 阶无向连通图 G 的关联矩阵的秩 r(M(G)) = n - 1

## 证明.

在关联矩阵中删掉一行,依然可以复原原始矩阵,因此  $r \leq n-1$ ,下面证明  $r \geq n-1$ 。取 M 的前 n-1 行,记为  $M_1, \cdots, M_{n-1}$ ,他们是线性无关的,否则必定存在不全为 0 的  $k_1, \cdots, k_{n-1} \in \{0,1\}$ ,在模 2 加法意义下使得  $\sum_{i=1}^{n-1} k_i M_i = 0$ ,不妨设其中  $k_1, \cdots, k_s = 1$  其余为 0,此处  $s \neq 1$ ,否则  $v_1$  为孤立点与连通矛盾;此时 M 的子阵  $[M_1, \cdots, M_s]^{\mathsf{T}}$  每列恰有两个 1 或者每列均为 0,可以得到 G 至少有两个连通分支,矛盾

### 无向图基本关联矩阵的秩

#### 定理

n 阶无向连通图 G 的基本关联矩阵的秩  $r(M_f(G)) = n-1$ 

## 推论

- 推论 1: G 有 p 个连通分支,则  $r(M(G)) = r(M_f(G)) = n p$ ,其中  $M_f(G)$  是从 M(G) 的每个对角块中删除任意 1 行而得到的
- 推论 2: G 连通  $\Leftrightarrow r(M(G)) = r(M_f(G)) = n-1$

### 基本关联矩阵与生成树

#### 定理

设  $M_f(G)$  是 n 阶连通图 G 的一个基本关联矩阵。 $M_f'$  是  $M_f(G)$  中任意 n-1 列组成的方阵,则  $M_f'$  各列所对应的边集  $\left\{e_{i_1},e_{i_2},...,e_{i_{n-1}}\right\}$  的导出子图  $G\left[\left\{e_{i_1},e_{i_2},...,e_{i_{n-1}}\right\}\right]$  是 G 的生成 树当且仅当  $M_f'$  的行列式  $\left|M_f'\right| \neq 0$ 

### 用关联矩阵求所有生成树

- 忽略环, 求关联矩阵
- 任选参考点, 求基本关联矩阵
- 求所有 n-1 阶子方阵, 计算行列式, 行列式非 0 的是生成树