Newtheorem and theoremstyle test recreated with the Pandoc Statement filter

Michael Downes, updated by Barbara Beeton

1 Test of standard theorem styles

Ahlfors' Lemma gives the principal criterion for obtaining lower bounds on the Kobayashi metric.

Ahlfors' Lemma. Let $ds^2 = h(z)|dz|^2$ be a Hermitian pseudo-metric on \mathbf{D}_r , $h \in C^2(\mathbf{D}_r)$, with ω the associated (1,1)-form. If $\mathrm{Ric}\,\omega \geq \omega$ on \mathbf{D}_r , then $\omega \leq \omega_r$ on all of \mathbf{D}_r (or equivalently, $ds^2 \leq ds_r^2$).

Lemma 1.1 (negatively curved families). Let $\{ds_1^2, \ldots, ds_k^2\}$ be a negatively curved family of metrics on \mathbf{D}_r , with associated forms $\omega^1, \ldots, \omega^k$. Then $\omega^i \leq \omega_r$ for all i.

Then our main theorem:

Theorem 1.2. Let d_{max} and d_{min} be the maximum, resp. minimum distance between any two adjacent vertices of a quadrilateral Q. Let σ be the diagonal pigspan of a pig P with four legs. Then P is capable of standing on the corners of Q iff

$$\sigma \ge \sqrt{d_{\max}^2 + d_{\min}^2}.$$

Corollary 1.3. Admitting reflection and rotation, a three-legged pig P is capable of standing on the corners of a triangle T iff 1.1 holds.

Remark. As two-legged pigs generally fall over, the case of a polygon of order 2 is uninteresting.

2 Custom theorem styles

Exercise 1: Generalize Theorem 1.1 to three and four dimensions.

Note 1: This is a test of the custom theorem style note. It is supposed to have variant fonts and other differences.

B-Theorem 1. Test of the 'linebreak' style of theorem heading.

This is a test of a citing theorem to cite a theorem from some other source.

(Theorem 3.6 in Dummy (1900)). No hyperlinking available here yet but that's not a bad idea for the future.

3 The proof environment

Proof. Here is a test of the proof environment.

Proof of Theorem 1.1. And another test.

Proof of necessity. And another.

Proof of sufficiency. And another, ending with a display:

$$1+1=2$$
.

4 Test of number-swapping

This is a repeat of the first section but with numbers in theorem heads swapped to the left. *Markdown: not possible to define swapnumbers on a per-theorem basis.*

Ahlfors' Lemma gives the principal criterion for obtaining lower bounds on the Kobayashi metric.

Ahlfors' Lemma. Let $ds^2 = h(z)|dz|^2$ be a Hermitian pseudo-metric on \mathbf{D}_r , $h \in C^2(\mathbf{D}_r)$, with ω the associated (1,1)-form. If $\mathrm{Ric}\,\omega \geq \omega$ on \mathbf{D}_r , then $\omega \leq \omega_r$ on all of \mathbf{D}_r (or equivalently, $ds^2 \leq ds_r^2$).

Lemma 4.1 (negatively curved families). Let $\{ds_1^2, \ldots, ds_k^2\}$ be a negatively curved family of metrics on \mathbf{D}_r , with associated forms $\omega^1, \ldots, \omega^k$. Then $\omega^i \leq \omega_r$ for all i.

Then our main theorem:

Theorem 4.2. Let d_{\max} and d_{\min} be the maximum, resp. minimum distance between any two adjacent vertices of a quadrilateral Q. Let σ be the diagonal pigspan of a pig P with four legs. Then P is capable of standing on the corners of Q iff

$$\sigma \ge \sqrt{d_{\max}^2 + d_{\min}^2}.$$

Corollary 4.3. Admitting reflection and rotation, a three-legged pig P is capable of standing on the corners of a triangle T iff 1.1 holds.

Remark. As two-legged pigs generally fall over, the case of a polygon of order 2 is uninteresting.

References

Dummy, D. 1900. "Dummy Reference." Journal~1~(1):~1–10.~https://doi.org/10~.1038/171737a0.