Maschinelles Lernen Symbolische Ansätze: Projekt Aufgaben 4-6

Aufgabe 4 - Entscheidungsbäume

Benutzte Datensätze

ROC Kurven

Accuracy und Baumgröße

Aufgabe 5 - Nearest Neighbour

Benutzte Datensätze

Resultat

Aufgabe 6 - Regressionsbäume

Benutzte Datensätze

Pruning

Model Trees

Datensatz "regression"

Aufgabe 4 - Entscheidungsbäume Benutzte Datensätze

- ► Breast Cancer Data
- ▶ 1984 United States Congressional Voting Records Database

- \rightarrow Auf beide Datensätze unsupervised Filter "ReplaceMissingValues" auf unvollständige Attribute anwenden
- → Danach Lernen mit ID3 und J48 und Vergleich der Ergebnisse

Abbildung: ID3 - ROC-Kurve für "breast-cancer"

Abbildung: J48 (unpruned) - ROC-Kurve für "breast-cancer"

Abbildung: J48 (pruned) - ROC-Kurve für "breast-cancer"

Abbildung: ID3 - ROC-Kurve für "vote"

Abbildung: J48 (unpruned) - ROC-Kurve für "vote"

Abbildung: J48 (pruned) - ROC-Kurve für "vote"

Area Under ROC:

Datensatz	ID3	J48 (unpruned)	J48 (pruned)
breast-cancer	0.5368	0.5742	0.5823
vote	0.9363	0.9647	0.9546

- ► Der Datensatz *breast-cancer* scheint mit den verwendeten Klassifizieralgorithmen nicht gut lernbar zu sein
- ▶ J48 hat generell eine deutlich bessere Performance als ID3
 - Aber hier ist zumindest im Bezug auf die Area under ROC kein eindeutiger Unterschied bei Pruning erkennbar

Aufgabe 4 - Entscheidungsbäume Accuracy und Baumgröße

Datensatz	ID3	J48 (unpruned)	J48 (pruned)
breast-cancer	57% Accuracy	68.5% Accuracy	75.5% Accuracy
	~465 Knoten	~180 Knoten	6 Knoten
vote	93% Accuracy	95% Accuracy	96% Accuracy
	~60 Knoten	25 Knoten	6 Knoten

- ▶ J48 erreicht eine höhere Genauigkeit als ID3
- Pruning erhöht die erzielte Genauigkeit weiter
 - Resultierender Baum generalisiert besser und vermeidet Overfitting
- ▶ Die Bäume von ID3 sind viel größer als die von J48
 - ► Ziel von ID3: In jedem Blatt nur Beispiele einer einzigen Klasse
- ► (Post-)Pruning bei J48 reduziert die Baumgröße deutlich
 - Knoten entfernen, wenn dadurch der erwartete Fehler geringer wird
 - Verhindern von Fragmentierung (Minimalanzahl an Instanzen in Knoten)

Aufgabe 5 - Nearest Neighbour Benutzte Datensätze

- ► Breast Cancer Data
- ▶ 1984 United States Congressional Voting Records Database

ightarrow Auf beide Datensätzen den unsupervised Filter "ReplaceMissingValues" anwenden ightarrow Danach anwenden und evaluieren von IBk

Aufgabe 5 - Nearest Neighbour Resultat

Cross Validation Accuracy:

Datensatz	k=1	k=3	k=5	k=7	k=9	k=11	Aufg. 4
breast-cancer	71.7%	74.1%	73.8%	73.8%	73.8%	72.7%	75.5%
vote	93.6%	93.1%	94.0%	93.3%	92.9%	92.6%	96%

- ► Es gibt keinen allgemeinen besten Wert für k
 - ► Dieser muss experimentell festgestellt werden
- ▶ Bei beiden Datensätzen führen zu kleine und zu große Werte für k zu einer schlechteren Genauigkeit (Noise bzw. zu große Neighborhood)

Aufgabe 6 - Regressionsbäume Benutzte Datensätze

- ► Auto Price Dataset
- ► Concrete Compressive Strength
- Boston Housing Data
- ► Stock Prices Dataset
- ▶ Wine Quality

→ Benutzen von M5P mit verschiedenen Optionen

Aufgabe 6 - Regressionsbäume Pruning

Datensatz	Unpruned	Pruned
autoprice	MAE 2075, RMSE 3287	MAE 2096, RMSE 3336
	Number of Rules 62	Number of Rules 8
concrete	MAE 6.5, RMSE 8.3	MAE 6.9, RMSE 8.7
	Number of Rules 405	Number of Rules 60
housing	MAE 3.2, RMSE 4.7	MAE 3.3, RMSE 4.8
	Number of Rules 193	Number of Rules 26
stock	MAE 1.2, RMSE 1.6	MAE 1.2, RMSE 1.6
	Number of Rules 253	Number of Rules 88
winequality	MAE 0.5, RMSE 0.7	MAE 0.6, RMSE 0.7
	Number of Rules 1562	Number of Rules 73

- Pruning verringert die Größe des Baumes deutlich, während der Fehler nur geringfügig größer wird
- ► Bei Regression Trees ist Pruning sinnvoll, um fast ohne Performanceverlust die Interpretierbarkeit zu erhöhen

Aufgabe 6 - Regressionsbäume Model Trees

Datensatz	Pruned	Model Tree
autoprice	MAE 2096, RMSE 3336	MAE 1467, RMSE 2171
	Number of Rules 8	Number of Rules 10
concrete	MAE 6.9, RMSE 8.7	MAE 4.7, RMSE 6.4
	Number of Rules 60	Number of Rules 10
housing	MAE 3.3, RMSE 4.8	MAE 2.5, RMSE 3.8
	Number of Rules 26	Number of Rules 19
stock	MAE 1.2, RMSE 1.6	MAE 0.7, RMSE 0.9
	Number of Rules 88	Number of Rules 47
winequality	MAE 0.6, RMSE 0.7	MAE 0.5, RMSE 0.7
	Number of Rules 73	Number of Rules 24

- ▶ Model Trees scheinen noch besser zu sein
 - ► fast immer kleiner und zusätzlich weisen sie kleineren Fehler auf
- Ursache könnte umfassendere Betrachtung der einzelnen Attribute im linearen Modell sein, anstatt nur den Mittelwert der Instanzen zu verwenden

Abschlussüberblick

Aufgabe 4 - Entscheidungsbäume

Benutzte Datensätze

ROC Kurven

Accuracy und Baumgröße

Aufgabe 5 - Nearest Neighbour

Benutzte Datensätze

Resultat

Aufgabe 6 - Regressionsbäume

Benutzte Datensätze

Pruning

Model Trees

Datensatz "regression"

Gruppenmitglieder

Joachim Brehmer, 1766932

Jeannine Endreß, 1669152

Uli Fahrer, 1664571