Discussão de Implementação do Algoritmo MINAS

Luís Henrique Puhl de Souza

Orientador: Prof. Dr. Hermes Senger

25 de agosto de 2020

Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Computação Programa de Pós-Graduação em Ciência da Computação

Introdução

Introdução

Este documento tem por objetivo apresentar o algoritmo Minas e suas implementações guiando discussões sobre os detalhes e decisões nas implementações.

Recorda-se que o contexto dessa discussão é o mesmo do sistema M-FOG:

- Um sistema para detecção de intrusão em Redes IoT implementando em névoa;
- A hipótese do trabalho é que o algoritmo MINAS pode ser distribuído em nós de nuvem e névoa reduzindo a latência e com pouco comprometimento na qualidade de detecção.
- Fundamentos
 - Métodos Detecção de Novidade;
 - Ambientes de computação Distribuída;
 - Plataformas de processamento distribuído de fluxos.

Algoritmo MINAS

Algoritmo MINAS

- Modelo de aprendizado Offline-Online;
- Transformação dos dados analisados para o espaço \mathbb{R}^d ;
- Modelo de classificação com Clusters;
- Função de classificação baseada em distância euclideana;
- Algoritmo de agrupamento para identificação de novos padrões;
- Classificação de novos padrões entre recorrência, extensão e novidade;

Proposta

Proposta da Pesquisa

- Implementar a distribuição do algoritmo MINAS em nuvem e névoa conforme arquitetura IDSA-IoT;
- Paralelizar o método de classificação do algoritmo MINAS.

Metodologia

- Plataforma de processamento distribuído;
- Estratégias de implementação da arquitetura IDSA-IoT;
- Experimentação com a distribuição do algoritmo MINAS em ambientes;
- Métricas de qualidade de classificação para validação da implementação;
- Métricas de escalabilidade.

Proposta

O sistema M-FOG é dividido em 5 módulos subdivididos em 2 grupos.

Módulos principais implementam o algoritmo MINAS

- módulo treinamento (Training Module);
- módulo classificador (Classification Module);
- módulo detector de novidades (Novelty Detection Module).

Módulos auxiliares, utilizados para avaliação

- módulo auxiliar source (fonte);
- módulo auxiliar sink (sorvedouro, consumidor final).

Proposta

Figura 1: Arquitetura e fluxos de dados do sistema M-FOG.

Método de Avaliação

Métricas e Ambientes

- Métricas de qualidade de classificação:
 - Avaliação do fluxo de saída do classificador;
 - Uso de uma matriz de confusão ou erro;
 - Taxa de desconhecidos;
 - Macro F-score;

$$\mathsf{E}_n = \begin{pmatrix} e_{1,1} & e_{1,2} & \cdots & e_{1,J} \\ e_{2,1} & e_{2,2} & \cdots & e_{2,J} \\ \vdots & \vdots & \ddots & \vdots \\ e_{M,1} & e_{M,2} & \cdots & e_{M,J} \end{pmatrix} \qquad \begin{aligned} & \textit{UnkR}_n = \frac{1}{M} \sum_{i=1}^M \frac{\# \textit{Unk}_i}{\# \textit{ExC}_i} \\ & \text{Fscore1}_n = 2 \cdot \frac{\textit{Precision-Recall}}{\textit{Precision+Recall}} \end{aligned}$$

Método de Avaliação

Métricas e Ambientes

- Métricas de escalabilidade:
 - Número e tipo de processadores;
 - Uso de memória;
 - Tempo de processamento;
 - Taxa de eventos;
 - Latência entre a produção e classificação.
- Ambientes de teste:
 - Computador Pessoal (para desenvolvimento);
 - Nuvem UFSCar;
 - Nevoa composta de SBC (Sigle Board Computer) ARM 4 núcleos;

Primeira Implementação com Python e Apache Kafka

- Python é acessível e fornece bibliotecas diversas;
- Apache Kafka é um sistema de mensagens distribuído;
 - Interface de programação com cliente produtor e consumidor;
 - Mensagens organizadas em tópicos que são distribuídos em partições;
- A hipótese de que a carga seria distribuída entre os consumidores, uma vez que o consumidor pode selecionar uma partição para leitura;
- Em experimento com um produtor, 8 partições e 8 consumidores, observou-se que um consumidor processava a maior parte das mensagens, poucos consumidores recebiam algumas mensagens e a maioria dos consumidores não recebia mensagem alguma.

Segunda Implementação com Apache Flink

- Implementação escrita em Scala ou Java;
- Processamento de fluxos Stateful;
- Falta de bibliotecas que distribuam algoritmos base como K-means;
- Ambiente de execução (Flink Cluster) consome mais memória do que disponível no hardware;
- Tempo de execução não foi melhor que a implementação original mesmo sem o trecho de detecção de novidades;

Terceira Implementação com OpenMPI

- Implementação escrita em C;
- Versão serial e versão paralela e distribuída com MPI;
- Reimplementação de algoritmos base como K-means;
- Sistema M-FOG em desenvolvimento, atualmente na fase de validação através das métricas de qualidade de classificação.
 - Diferença entre os modelos iniciais gerados pelo algoritmo K-means:re
 - Diferença na matriz de confusão resultante da avaliação dos fluxos de saída;

Terceira Implementação com OpenMPI

Desafios Passados

- Diferença entre double e float; Use Float, diferença para o dataset pequena, economize os bits.
- Formato do fluxo de saída; Estrutura de dados X;
- Tratamento de exemplos com etiqueta desconhecido utilizados para atualização do modelo;
- Diferença entre incluir ou não a borda do cluster;
 - Usar desvio padrão na classificação;
 - Usar máximo após ND para buffer de desconhecidos;
- Definição de raio;

Desafios Atuais

- Distribuição e paralelização para minimização de latência entre novo item no fluxo e sua classificação:
 - Tempo de passagem da instancia pelo classificador;
 - Volume máximo do sistema;
 - Diferenças de precisão de acordo com a carga;
- Detecção de novidades e manutenção de modelo em ambiente distribuído:
 - Mecanismo de ND local (síncrono) vs nuvem quanto à atraso de definição de modelo;
 - Mecanismo de esquecimento local vs global (modelo único ou por nó);
 - Atraso na reclassificação dos desconhecidos;

Notas de Implementação

Algoritmo MINAS

Outras abordagens e implementações

- FuzzyND por Da Silva 2018;
- Minas-LC e Minas-BR por Costa 2019;
- Implementação em Java por Douglas (douglas.m.cavalcanti@gmail.com) em Jul 2 09:37:42 2019
- Implementação em Python por Vitor Sexto Bernardes (vitorsb@gmail.com) em May 11 23:51:09 2020

Implementação referência

Parâmetros

```
class br.ufu.noveltydetection.minas.MinasOg with
        filenameOffline = datasets/training.csv
        filenameOnline = datasets/test.csv
        outputDirectory = out/minas-og//2020-07-20T12-18-21.758/
        algClusteringOff = kmeans
        algClusteringOnl = kmeans
        threshold = 2.0
        flagEvaluationType = 1
        thresholdForgettingPast = 10000
        numMicro = 100
        flagMicroClusters = true
        minExCluster = 20
        validationCriterion = dec
        skipNd = false
```

Nova Implementação

Parâmetros

```
params->kParam = 100;
params->dimension = 22;
params->noveltyThreshold = 2;
params->minExCluster = 20;
params->maxUnkSize = params->kParam * params->minExCluster;
params->thresholdForgettingPast = 10000;
```

Implementação Referência e Avaliação de Referência

A implementação de referência gera um arquivo (fluxo) de saída e arquivo de matriz de confusão.

Além disso é gerado um gráfico das métricas (*Err, FNew, Mnew*) calculadas para cada item do fluxo.

Implementação Referência e Avaliação de Referência

Implementação Referência e Avaliação de Referência

Matriz de confusão gerada pela Implementação referência

	C N	C A
CN	199263	439530
N 1	0	123
N 2	79	145
N 3	44	368
N 4	0	8
N 5	0	52
N 6	0	165
N 7	229	1
N 8	181	1046
N 9	826	2133
N 10	5088	3467
N 11	289	71
N 12	0	26
Unk	279	44

Aplicando a técnica de associação de etiquetas à classes descrita em ??), tem-se que 208935 itens foram etiquetados corretamente (*true positive*). Portanto a *taxa de acerto* é 208935/653457 = 0.319737948.

O fluxo de saída da implementação de referência pode ser consumido pelo módulo de avaliação da nova implementação (sistema M-FOG).

Fluxo de saída Original, Grafico da Nova Avaliação

Matriz de confusão e avaliação, Fluxo de saída Original

Classes (act)	Α	N
Labels (pred)		
-	3774	8206
1	123	0
10	2489	4066
11	71	289
12	26	0
2	145	79
3	368	44
4	8	0
5	52	0
6	165	0
7	1	229
8	1046	181
9	161	154
N	438750	193030

Métrica	Valor	
Total examples	653457	
Total matches	653457	
Hits	199708	0.30561766
Misses	441769	0.67604907
Unknowns	11980	0.01833326
Unk. reprocessed	0	0.00000000

Além do consumo do fluxo com formato original, foi adicionado à implementação de referência o passo de reprocessamento e saída no novo formato.

Implementação referência

Matriz de confusão e avaliação, Novo formato Fluxo de saída

Classes (act) Labels (pred)	Α	N
	3774	8206
1	123	0
10	3520	5130
11	71	289
12	26	0
2	152	82
3	368	44
4	8	0
5	82	1
6	165	0
7	8	396
8	1054	183
9	161	154
N	441395	199715

Métrica	Valor	
Total examples	653457	
Total matches	665107	
Hits	207669	0.31223397
Misses	445458	0.66975389
Unknowns	11980	0.01801214
Unk. reprocessed	11650	0.97245409

Implementação Baseline e Nova Avaliação

Implementação serial, não distribuída, do algorítmo MINAS em C que serve de base (biblioteca) para a implementação sistema M-FOG e para cálculo de speed-up.

Implementação Baseline e Nova Avaliação

Baseline Output Stream, Evaluation

Implementação Baseline e Nova Avaliação

Matriz de confusão e avaliação, Novo formato Fluxo de saída

Classes (act) Labels (pred)	A	N
-	10263	3122
0	1798	48
1	315	0
2	1098	156
3	0	318
4	1510	20
5	2	53
6	1560	2
7	31	0
8	31	3
9	58	3
N	440712	205476

Métrica	Valor	
Total examples	653457	
Total matches	666579	
Hits	212248	0.31841387
Misses	440946	0.66150599
Unknowns	13385	0.02008014
Unk. reprocessed	13122	0.98035114

```
k=100; radiusF = 0.25;
minExamplesPerCluster = 20;
noveltyF = 1.4
```

Implementação Referência versus Baseline

Matriz de confusão e avaliação na Referência versus Avaliação sistema M-FOG

Nota-se que como o novo método de avaliação utiliza o fluxo de saída do algoritmo, as métricas tem valores semelhantes mas não idênticos.

Em especial, a soma de todas as células da matriz de confusão na referência é de 653457 (contagem de itens no fluxo de entrada) e na avaliação atual (sistema M-FOG) é de 665107 (contagem de itens no fluxo de saída).

O mesmo acontece no número de acertos: Na referência 208935 com taxa 0.319737948 e na avaliação atual 207669 com taxa 0.31223397.

Notas de Implementação

Algoritmo MINAS vs Implementação referência

- Definição de raio: desvio padrão das distâncias versus distancia máxima;
- Atualização do micro-cluster limita-se à atualização do atributo T;
- Remoção de exemplos na implementação de referência é feita somente para o algoritmo CluStream;
- Inclusão de borda: algoritmo inclui (<=), referência não inclui (<);

Notas de Implementação

Algoritmo MINAS vs Nova Implementação

- Seguiu-se as mesmas divergências anteriores para comparação dos resultados com a implementação referência;
- Inclusão da borda;
- Comportamento do mecânismo de sleep-model não está definido, portanto não está ativo;
- Processo de clusterização é limitado ao algoritmo K-Means.
 Algoritmo CluStream não está implementado;

Otimizações

Parâmetros:

- A: Número mínimo de exemplos por Cluster válido;
- R: Fator de raio. Multiplica o desvio padrão das distâncias dos elementos do Cluster e seu centro:
- Q: Fator de novidade. Para distinção entre padrões novidade e extensões;

Métricas:

- Unk: Contagem de items classificados como desconhecidos;
- Repro: Contagem de items classificados como desconhecidos e reprocessados com nova etiqueta;
- Lbs: Contagem de etiquetas distintas no fluxo de saída;
- Hits: Contagem de items na matriz de confusão onde a classe atribuída à etiqueta é igual à classe real dos exemplos (true positive);
- Online: Tempo em segundos (wall clock) de execução da fase online;

Atualização constante do centro e raio

Use floating cluster. Meaning the summary is updated for each match.

A	R	Q	Unk.	Repro.	Lbs.	Hits	Online
20 (1)	0.10	2.0	72830	72587	8	208056 (28%)	18.63111e
20	0.10	2.0	622312	622066	24	213911 (16%)	86.12032e
50 (1)	0.05	0.20	186433	185853	102	294306 (35%)	30.56771e
50	0.05	0.20	614597	613930	95	295251 (23%)	64.90573e

1. Sans moving cluster.

Moving cluster, better but only 10k more matches.

Otimizações

Complexidade do cálculo de distância mínima (Nearest neighbor search – NNS) de O(nd) para $O(n \log d)$ com integração do cálculo de distância evitando percorrer todas as dimensões se a distância não for mínima;

function	common	fast	ratio
training	6.850 990e1	3.009816e1	0.439 325 703
noveltyDetection	2.555810e-1		
minasOnline	1.187 446e1	1.674746e1	1.410 376 556

Otimizações: Manipulação de Parâmetros

Maximização do número de items classificados corretamente (true positive) por manipulação dos parâmetros

Α	R	Q	Unk.	Repro.	Lbs.	Hits	Online
20	1.0 ¹	2.02	15020	0	16	197285 (30.190969%)	52.964
20	0.25	1.4	12844		15	31.134635%	16.74746
20	0.25	1.4	13385	13122	12	212248 (31.8%)	8.180662
50	0.05	0.20	186433	185853	102	294306 (35%)	30.56771
50	0.05	0.25	186433	185853	74	273008 (32%)	32.22774
25	0.05	0.20	175904	175642	204	279672 (33%)	34.10292
100	0.05	0.20	167496	166759	49	242318 (29%)	29.80112

Obrigado!

Referências i