

19 février, 2018

Architecture du processeur

TP1 – INF1600 : Architecture des micro-ordinateurs Groupe 1 (B1)

Présenté à M Ulrich Dah-Achinanon

Table des matières

Architecture du processeur	1
Exercice 1	3
1.	3
2.	3
3.	3
4.	3
5.	3
6.	4
Exercice 2	4
1.	4
2.	4
3.	5
4.	5
Exercice 3	5
1.	5
2.	5
Exercice 4	6
Simulation d'une instruction avec Electric	6
Questions	6
1.	6
a)	6
b)	6
c)	6
2.	7
a)	7
b)	7
c)	7

Exercice 1

1.

Tableau I : Réponses à la question 1 de l'exercice 1

ID	Numéros	Type	DEC
а	11110101	Binaire	-11
b	00101010	Binaire	42
С	4517	Octal	4751
d	CAFE	Hexadécimal	103 678
е	10000000	Binaire	-128

2.

Tableau I : Réponses à la question 2 de l'exercice 1

ID	Numéros	BIN	OCT	DEC	HEX
а	5781			\checkmark	\checkmark
b	10000000	V		$\sqrt{}$	
С	1600			$\sqrt{}$	
d	B747				
е	00000000			$\sqrt{}$	

3.

Ici nous faisons une addition binaire de la valeur de x avec 3 décalé de 4 bits vers la gauche (0000 0011 << 4 = 0011 0000). Nous affectons le résultat de l'addition à y.

4.

ID	Numéro	luméro Complément à 2						
а	-1234	1111101100101110	84D2					
b	32767	0000000000000001	7FFF					
С	-32	1111111111100000	8020					

5.

ID	Opération	Résultat	Débordement ?
а	7C + 4F	0CB	Oui
b	89 + 11	C4	Non

6.

a) big-endian:

		Adr. vue par prog.										
Adr.		0	1	2	3							
sur puce	0	8	97	194	187							
	1	56	160	158	236							

b) little-endian:

		Adr. vue par prog										
Adr.		3	2	1	0							
sur puce	0	8	97	194	187							
	1	56	160	158	236							

Exercice 2

1.

Mem tot = Z1 + Z2 + Z3 + Z4

Z1 = 624 pistes/zone * 792 secteurs/piste * 512 byte/secteur = 253,03 MB

Z2 = 1424 * 780 * 512 = 568,69 MB

Z3 = 1680 * 760 * 512 = 653,72 MB

Z4 = 1815 * 720 * 512 = 669,08 MB

Mem tot = 253,03 + 568,69 + 653,72 + 669,08 = 2 144,52 MB

2.

% par zone = mém zone / mém total

Z1 = 253,03 / 2144,52 = 0,118 = 11,8%

Z2 = 568,69 / 2144,52 = 0,265 = 26,5%

Z3 = 653,72 / 2144,52 = 0,305 = 30,5%

Z4 = 669,08 / 2144,52 = 0,312 = 31,2%

Pondéré (%):

```
TTM = [RPM / 60 sec. * 512 byte/secteur] * [(Z1 secteurs/piste * 11,8%) + (Z2 secteurs/piste * 26,5%) + (Z3 secteurs/piste * 30,5%) + (Z4 secteurs/piste * 31,2%)]

= [(5400/60) * 512] * [ (792 * 0,118) + (780 * 0,265) + (760 * 0,305) + (720 * 0,312) ]

= 34,86 MB/s * (8 bits/byte) * (1/ 2^20)
```

Non-pondéré:

= 265,96 Mb/s

```
TTM = (Z1 + Z2 + Z3 + Z4) secteurs/piste * (\frac{1}{4} \text{ zones}) * (RPM / 60sec.) * (512 byte/secteur) = (792 + 780 + 760 + 720) * (\frac{1}{4}) * (5400/60) * 512 = 35,16 MB/s * 8 * (1/2^20) = 268,25 Mb/s
```

3.

Le TTM sera largement plus grand, puisque le bus PCle permet un transfert de données beaucoup plus rapide.

4.

Non, car le nombre de surfaces disponibles influence uniquement l'espace sur le disque. Le taux de transfert moyen demeure quasiment inchangé.

Exercice 3

```
1. op <4..0> := IR <31..27> a <4..0> := IR <26..22> b <4..0> := IR <21..17> c <4..0> := IR <16..12> k <16..0> := IR <16..0> SUBMUL (:=op=5) \rightarrow R[a] \leftarrow (R[a] - R[b]) * (R[k] = 8) ;
```

Exercice 4

Simulation d'une instruction avec Electric

Incapable de faire une simulation avec *Electric* à cause de problèmes avec le logiciel. Les sous-questions d) n'ont donc pas pu être faites.

Questions

```
1.

r1 <- Memoire2 [r3] + r3

a)

0a 01 80 00
4a 20 00 00

b)

T <- R[IR<17..15>];

R[IR<23..21>] <- T + M2[T];

[IR<17..15>] vaut 3 (011)

[IR<23..21>] vaut 1 (001)
```

Instruction	Α	В	С	D	Е	F	G	UAL	ecrireEIP	ecrireT	ecrireRegistre
1	1	11	0	0	1	0	0	0a	1	1	0
2	1	00	0	0	0	1	0	4a	1	1	1

```
2.
r1 <- ( Memoire2 [r3] + 0x23 ) >> r2

a)
0a 01 80 00
4a 01 82 30
11 29 82 30

b)

T <- R[IR<17..15>];
T <- M2[T] + IR<12..0>;
R[IR<23..21>] <- T >> R[IR<20..18>];

[IR<17..15>] vaut 3 (011)
[IR<12..0>] vaut 0x23 (230)
```

c)

[IR<20..18>] vaut 2 (010) [IR<23..21>] vaut 1 (001)

Instruction	Α	В	С	D	Е	F	G	UAL	ecrireEIP	ecrireT	ecrireRegistre
1	1	11	0	0	1	0	0	0a	1	1	0
2	1	00	0	1	0	1	0	4a	1	1	0
3	1	01	0	0	1	0	0	11	1	0	1