Глава V

КОМПЛЕКСНЫЕ ЧИСЛА

§ 20. Комплексные числа в алгебраической форме

20.1. Вычислить выражения:

a)
$$(2+i)(3-i)+(2+3i)(3+4i)$$
;

6)
$$(2+i)(3+7i) - (1+2i)(5+3i);$$

$$_{A}) \frac{(5+i)(3+5i)}{2i}; \qquad e) \frac{(1+3i)(8-i)}{(2+i)^2};$$

$$_{X}) \frac{(2+i)(4+i)}{1+i}; \qquad 3) \frac{(3-i)(1-4i)}{2-i};$$

m)
$$1+i$$
 , 3 , $2-i$, 1

J)
$$\frac{(1+i)^5}{(1-i)^3}$$
; M) $\left(-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)^3$.

20.2. Вычислить i^{77} , i^{98} , i^{-57} , i^n , где n — целое число.

20.3. Доказать равенства:

a)
$$(1+i)^{8n} = 2^{4n}$$
, $n \in \mathbb{Z}$; 6) $(1+i)^{4n} = (-1)2^{2n}$, $n \in \mathbb{Z}$.

20.4. Решить систему уравнений:

a)
$$\begin{cases} (1+i)z_1 + (1-i)z_2 = 1+i, \\ (1-i)z_1 + (1+i)z_2 = 1+3i; \end{cases}$$

$$(1-i)z_1 + (1+i)z_2 = 2+2i,$$
b)
$$\begin{cases} iz_1 + (1+i)z_2 = 2+2i, \\ 2iz_1 + (3+2i)z_2 = 5+3i; \end{cases}$$
B)
$$\begin{cases} (1-i)z_1 - 3iz_2 = -i, \\ 2z_1 - (3+3i)z_2 = 3-i; \end{cases}$$

$$\Gamma) \left\{ \begin{array}{l} 2z_1 - (2+i)z_2 = -i, \\ (4-2i)z_1 - 5z_2 = -1 - 2i; \end{array} \right. \qquad \Pi) \left\{ \begin{array}{l} x+iy-2z=10, \\ x-y+2iz=20, \\ ix+3iy-(1+i)z=30. \end{array} \right.$$

 ${\bf 20.5.}$ Найти вещественные числа x и y, удовлетворяющие уравне-

a)
$$(2+i)x + (1+2i)y = 1-4i;$$
 6)

$$y = 1 - 4i;$$
 6) $(3 + 2i)x + (1 + 3i)y = 4 - 9i$

20.6. Доказать, что:

а) комплексное число z является вещественным тогда и только гогда, когда $\overline{z}=z;$

б) комплексное число z является чисто мнимым тогда и только гогда, когда $\overline{z} = -z$.

20.7. Доказать, что:

а) произведение двух комплексных чисел является вещественным тогда и только тогда, когда одно из них отличается от сопряжённого к другому вещественным множителем;

 сумма и произведение двух комплексных чисел являются вещественными тогда и только тогда, когда данные числа или сопряжены, или оба вещественны.

20.8. Найти все комплексные числа, сопряжённые:

а) своему квадрату; б) своему кубу.

20.9. Доказать, что если из данных комплексных чисел z_1, z_2, \ldots, z_n при применении конечного числа операций сложения, вычитания, умножения и деления получается число z, то из чисел $\overline{z}_1, \overline{z}_2, \ldots, \overline{z}_n$ при применении тех же операций получается число \overline{z} .

20.10. Доказать, что определитель

$$\begin{vmatrix} z_1 & \overline{z}_1 & a \\ z_2 & \overline{z}_2 & b \\ z_3 & \overline{z}_3 & c \end{vmatrix},$$

где z_1, z_2, z_3 — комплексные и a,b,c — вещественные числа, является чисто мнимым числом.

20.11. Решить уравнения:

a)
$$z^2 = i$$
; 6) $z^2 = 3 - 4i$;

A)
$$z^2 - 5z + 4 + 10i = 0$$
; e) $z^2 + (2i - 7)z + 13 - i = 0$.

§ 21. Тригонометрическая форма

Комплексные числа в тригонометрической форме

a) 5; 6)
$$i$$
; B) -2 ; Γ) $-3i$;

21.1. Найти тригонометрическую форму числа: a) 5; б)
$$i$$
; в) -2 ; г) $-3i$; д) $1+i$; е) $1-i$; ж) $1+i\sqrt{3}$; з) $-1+i\sqrt{3}$; и) $-1-i\sqrt{3}$; к) $1-i\sqrt{3}$; л) $\sqrt{3}+i$; м) $-\sqrt{3}+i$;

$$(n) -1 - i\sqrt{3};$$
 $(k) 1 - i\sqrt{3};$ $(l) \sqrt{3} + i;$ $(l) -\sqrt{3} + i$

H)
$$-\sqrt{3} - i;$$
 o) $\sqrt{3} - i;$ II) $1 + i\frac{\sqrt{3}}{3};$ p) $2 + \sqrt{3} + i;$

$$(2 + \sqrt{3})i; \quad \text{T}) \cos \alpha - i \sin \alpha; \quad \text{y)} \sin \alpha + i \cos \alpha$$

c)
$$1 - (2 + \sqrt{3})i$$
; T) $\cos \alpha - i \sin \alpha$; y) $\sin \alpha + i \cos \alpha$;
 Φ) $\frac{1 + i \log \alpha}{1 - i \log \alpha}$; x) $1 + \cos \varphi + i \sin \varphi$, $\varphi \in [-\pi, \pi]$;

$$\Pi \frac{\cos \varphi + i \sin \varphi}{\cos \psi + i \sin \psi}.$$

a)
$$(1+i)^{1000}$$
; 6) $(1+i\sqrt{3})^{150}$; B) $(\sqrt{3}+i)^{30}$;

21.2. Вычислить выражения:
a)
$$(1+i)^{1000}$$
, 6) $(1+i\sqrt{3})^{150}$, B) $(\sqrt{3}+i)^{30}$,
г) $\left(1+\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{24}$, д) $(2-\sqrt{3}+i)^{12}$, e) $\left(\frac{1-i\sqrt{3}}{1+i}\right)^{12}$;
ж) $\left(\frac{\sqrt{3}+i}{1-i}\right)^{30}$, 3) $\frac{(-1+i\sqrt{3})^{15}}{(1-i)^{20}} + \frac{(-1-i\sqrt{3})^{15}}{(1+i)^{20}}$.

$$\text{ж}) \left(\frac{\sqrt{3} + i}{1 - i} \right)^{30}; \quad \text{3)} \frac{(-1 + i\sqrt{3})^{15}}{(1 - i)^{20}} + \frac{(-1 - i\sqrt{3})^{15}}{(1 + i)^{20}}.$$

21.3. Решить уравнения:

a)
$$|z| + z = 8 + 4i$$
; 6) $|z| - z = 8 + 12i$.

21.4. Доказать следующие свойства модуля комплексных чисел:

в) $|z_1+z_2|=|z_1|+|z_2|$ тогда и только тогда, когда векторы z_1 a) $|z_1 \pm z_2| \leqslant |z_1| + |z_2|$; 6) $||z_1| - |z_2|| \leqslant |z_1 \pm z_2|$; и 22 имеют одинаковые направления; г) $|z_1+z_2|=||z_1|-|z_2||$ тогда и только тогда, когда векторы z_1 и z_2 имеют противоположные направления.

21.5. Доказать, что:

a) echu
$$|z| < 1$$
, to $|z^2 - z + i| < 3$;
6) echu $|z| \le 2$, to $1 \le |z^2 - 5| \le 9$;

$$|e_{\text{CTW}}|z| \le 2$$
. To $1 \le |z^2 - 5| \le 9$:

в) если
$$|z| < 1/2$$
, то $|(1+i)z^3 + iz| < 3/4$.

21.6. Доказать неравенство

$$|z_1 - z_2| \le ||z_1| - |z_2|| + \min\{|z_1|, |z_2|\} \cdot |\arg z_1 - \arg z_2|.$$

В каком случае это неравенство обращается в равенство?

21.7. Доказать, что если $u = \sqrt{z_1 z_2}$, то

$$|z_1| + |z_2| = \left| \frac{z_1 + z_2}{2} - \sqrt{z_1 z_2} \right| + \left| \frac{z_1 + z_2}{2} + \sqrt{z_1 z_2} \right|.$$

21.8. Доказать формулу Муавра

$$[r(\cos \varphi + i \sin \varphi)]^n = r^n(\cos n\varphi + i \sin n\varphi)$$

цля целых $n \neq 0$.

21.9. При
$$n \in \mathbb{Z}$$
 вычислить выражения: a) $(1+i)^n$; 6) $\left(\frac{1-i\sqrt{3}}{2}\right)^n$;

B)
$$\left(\frac{1-i\operatorname{tg}\alpha}{1+i\operatorname{tg}\alpha}\right)^n$$
; r) $(1+\cos\varphi+i\sin\varphi)^n$.

21.10. Доказать, что если $z+z^{-1}=2\cos\varphi$, то $z^n+z^{-n}=2\cos n\varphi$, де $n\in\mathbb{Z}$.

21.11. Представить в виде многочленов от $\sin x$ и $\cos x$ функции: a) $\sin 4x$; b) $\cos 4x$; b) $\sin 5x$; г) $\cos 5x$.

6)
$$\cos 4x$$
:

B)
$$\sin 5x$$
: Γ) (3

21.12. Доказать равенства:

a)
$$\cos nx = \sum_{k=0}^{[n/2]} (-1)^k \binom{n}{2k} \cos^{n-2k} x \cdot \sin^{2k} x;$$

6) $\sin nx = \sum_{k=0}^{[(n-1)/2]} (-1)^k \binom{n}{2k+1} \cos^{n-2k-1} x \cdot \sin^{2k+1} x.$

21.13. Выразить через первые степени синуса и косинуса аргументов, кратных x, функции:
а) $\sin^4 x$; б) $\cos^4 x$; в) $\sin^5 x$; г) $\cos^5 x$.

a)
$$\sin^4 x$$
; 6) $\cos^4 x$; B) \sin

$$s^4 x;$$
 B) $\sin^5 x;$

21.14. Доказать равенства:
a)
$$\cos^{2m} x = \frac{1}{2^{2m-1}} \left[\sum_{k=0}^{m-1} {2m \choose k} \cos(2m-2k)x + \frac{1}{2} {2m \choose m} \right];$$

6) $\cos^{2m+1} x = \frac{1}{2^{2m}} \sum_{k=0}^{m} {2m+1 \choose k} \cos(2m+1-2k)x;$

§ 22. Извлечение корней

B)
$$\sin^{2m} x =$$

$$= \frac{(-1)^m}{2^{2m-1}} \left[\sum_{k=0}^{m-1} (-1)^k {2m \choose k} \cos(2m-2k)x + \frac{(-1)^m}{2} {2m \choose m} \right];$$

r)
$$\sin^{2m+1} x = \frac{(-1)}{2^{2m}} \sum_{k=0}^{m} (-1)^k {2m+1 \choose k} \sin(2m+1-2k)x.$$

§ 22. Корни из комплексных чисел и многочлены деления круга

22.1. Доказать, что если комплексное число z является одним из корней степени n из числа вещественного a, то и сопряжённое число \overline{z} является одним из корней степени n из a.

22.2. Lokasate, 4to echi $\sqrt[n]{z} = \{z_1, z_2, \dots, z_n\}$, to $\sqrt[n]{z} = \{\overline{z}_1, \overline{z}_2, \dots, \overline{z}_n\}$.

22.3. Какие из множеств $\sqrt[n]{z}$ содержат хотя бы одно вещественное число?

- в) $\sqrt[n]{zw} = u\sqrt[n]{w}$, где u одно из значений $\sqrt[n]{z}$.
- **22.5.** Доказать, что объединение множеств $\sqrt[n]{z}$ и $\sqrt[n]{-z}$ естьмножество $\sqrt[2n]{z}$.

22.6. Верно ли равенство " $\sqrt[s]{z^s} = \sqrt[s]{z}$ " (s > 1)?

22.7. Belthochith: a) $\sqrt[6]{i}$, 6) $\sqrt[10]{512(1-i\sqrt{3})}$; b) $\sqrt[8]{2\sqrt{2}(1-i)}$; r) $\sqrt[3]{1}$, π) $\sqrt[4]{1}$, e) $\sqrt[6]{1}$; ж) $\sqrt[3]{i}$; a) $\sqrt[4-4]{i}$, ii) $\sqrt[6]{64}$; k) $\sqrt[8]{16}$; π) $\sqrt[6]{-27}$; iii) $\sqrt[4]{8\sqrt{3}i-8}$; H) $\sqrt[4]{-72(1-i\sqrt{3})}$; o) $\sqrt[3]{1+i}$; ii) $\sqrt[3]{2-2i}$; p) $\sqrt[4]{-\frac{18}{1+i\sqrt{3}}}$; c) $\sqrt[4]{\frac{7-2i}{1+i\sqrt{2}}+\frac{4+14i}{\sqrt{2}+2i}-(8-2i)}$;

T)
$$\sqrt[3]{\frac{1-5i}{1+i}} - 5\frac{1+2i}{2-i} + 2;$$
 y) $\sqrt[4]{\frac{-2+2\sqrt{3}i}{2+i\sqrt{5}}} - 5\frac{\sqrt{3}+i}{2\sqrt{5}+5i}.$

22.8. Найти двумя способами корни степени 5 из единицы и выразить в радикалах:

B) $\cos \frac{4\pi}{5}$; r) $\sin \frac{4\pi}{5}$. a) $\cos \frac{2\pi}{5}$; 6) $\sin \frac{2\pi}{5}$;

22.9. Решить уравнения:

22.10. Выразить в радикалах вещественные и мнимые части корней из единицы степеней 2, 3, 4, 6, 8, 12. a) $(z+1)^n + (z-1)^n = 0$; 6) $(z+1)^n - (z-1)^n = 0$; B) $(z+i)^n + (z-i)^n = 0$.

22.11. Найти произведение всех корней степени n из единицы

22.12. Hyctb $\varepsilon_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$ $(0 \leqslant k < n)$. Aokaaatb, 4To:

a) $\sqrt{1} = \{\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1}\};$ b) $\varepsilon_k = \varepsilon_1^k \ (0 \leqslant k < n);$

 $(0 \le k < n, \ 0 \le l < n);$ B) $\varepsilon_k \varepsilon_l = \begin{cases} \varepsilon_{k+l}, & \text{ecim } k+l < n, \\ \varepsilon_{k+l-n}, & \text{ecim } k+l \geqslant n \end{cases}$ г) множество \mathbf{U}_n корней степени n из единицы является цикли ческой группой порядка n относительно умножения; д) всякая циклическая группа порядка n изоморфна группе $\mathbf{U}_n.$

22.13. Доказать, что:

а) если числа r и s взаимно просты и $\alpha^r = \alpha^s = 1$, то $\alpha = 1$;

6) если d — наибольший общий делитель чисел r и s, то $\mathbf{U}_r \cap \mathbf{U}_s$

цы степени rs однозначно представляется в виде произведения корня в) если числа r и s взаимно просты, то всякий корень из единистепени r на корень степени s.

22.14. Доказать, что следующие утверждения равносильны:

а) ε является первообразным корнем из единицы степени n;

6) порядок ε в группе \mathbf{U}_n равен n;

в) ε является порождающим элементом группы \mathbf{U}_n .

22.15. Доказать, что если ε является первообразным корнем степени n из единицы, то $\overline{\varepsilon}$ также является первообразным корнем степени п из единицы.

 $^{^1}$ Множество zA есть по определению $\{za|\ a\in A\}.$

тогда, когда є является произведением первообразного корня степени ляется первообразным корнем степени rs из единицы тогда и только **22.16.** Доказать, что если числа r и s взаимно просты, то ε явг и первообразного корня степени в. **22.17.** а) Пусть z — первообразный корень n-й степени из 1. Вы

$$1 + 2z + 3z^2 + \ldots + nz^{n-1}.$$

6) Пусть z — первообразный корень степени 2n из 1. Вычислить

$$1+z+\ldots+z^{n-1}.$$

в) Пусть z — корень из 1 и $z^n \pm z^m \pm 1 = 0$. Найти n и m.

22.18. Доказать, что:

а) число первообразных корней степени n из единицы равно $\varphi(n)$

б) если числа m и n взаимно просты, то $\varphi(mn) = \varphi(m)\varphi(n)$.

22.19. Доказать, что если z — первообразный корень нечётной степени n из единицы, то -z — первообразный корень степени 2n.

22.20. Обозначим через $\sigma(n)$ сумму всех первообразных корней степени n из единицы. Доказать, что:

- a) $\sigma(1) = 1$;
- 6) если n > 1, то $\sum_{d|n} \sigma(d) = 0$;
- в) $\sigma(p) = -1$, если p простое число;
- г) $\sigma(p^k) = 0$, если p простое число, k > 1;
- д) $\sigma(rs) = \sigma(r) \cdot \sigma(s)$, если числа r и s взаимно просты;
- е) функция $\sigma(n)$ совпадает с функцией Мёбиуса $\mu(n)$.
- **22.21.** Пусть d (положительный) наибольший общий делитель целого числа s и натурального числа n, ε_i — первообразный корень степени n из единицы $(i=1,2,\ldots, arphi(n))$. Доказать равенство

$$\sum_{i=1}^{\varphi(n)} \varepsilon_i^s = \frac{\varphi(n)}{\varphi(n/d)} \, \mu\left(\frac{n}{d}\right).$$

22.22. Является ли число $\frac{2+i}{2-i}$ корнем некоторой степени из еди-

§ 23. Вычисления с помощью комплексных чисел

22.23. Найти многочлены деления круга (круговые многочлены) $\Phi_n(x)$ для n, равного:

a) 1; 6) 2; B) 3; Γ) 4; Π) 6;

ж) p, где p — простое число;

з) p^k , где p — простое число, k > 1.

22.24. Доказать следующие свойства круговых многочленов:

a)
$$\prod \Phi_d(x) = x^n - 1;$$

б) $\Phi_{2n}(x) = \Phi_n(-x)$ (n — нечётное число, большее 1); в) $\Phi_n(x) = \prod (x^d-1)^{\mu(n/d)};$

$$\mathbf{b})\ \Phi_n(x) = \prod (x^d - 1)^{\mu(n/d)}$$

г) если k делится на любой простой делитель числа n, то

$$\Phi_n(x) = \Phi_k(x^{n/k});$$

д) если n делится на простое число p и не делится на p^2 , то

$$\Phi_n(x) = \Phi_{n/p}(x^p) \left(\Phi_{n/p}(x)\right)^{-1}$$

22.25. Найти круговые многочлены для n, равного 10, 14, 15, 30, 36, 100, 216, 288, 1000.

22.26. Доказать, что у всякого кругового многочлена:

а) все коэффициенты — целые числа;

6) старший коэффициент равен 1;

в) свободный член равен -1 при n=1 и равен 1 при n>1.

22.27. Найти сумму коэффициентов кругового многочлена $\Phi_n(x)$

§ 23. Вычисления с помощью комплексных чисел

23.1. Вычислить суммы:

a)
$$1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \dots;$$

a)
$$1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots;$$

6) $\binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \binom{n}{7} + \cdots;$

§ 24. Связь комплексных чисел с геометрией на плоскости

B)
$$1 + \binom{n}{4} + \binom{n}{8} + \dots$$
; Γ) $\binom{n}{1} + \binom{n}{5} + \binom{n}{9} + \dots$

23.2. Доказать равенства:

a)
$$\cos x + \cos 2x + \ldots + \cos nx = \frac{\sin \frac{nx}{2} \cos \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$
 $(x \neq 2k\pi, k \in \mathbb{Z});$

6)
$$\sin x + \sin 2x + \dots + \sin nx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$
 $(x \neq 2k\pi, k \in \mathbb{Z});$

$$\pi \qquad 3\pi \qquad 5\pi \qquad (2n-1)\pi$$

3)
$$\cos \frac{\pi}{n} + \cos \frac{3\pi}{n} + \cos \frac{5\pi}{n} + \dots + \cos \frac{(2n-1)\pi}{n} = 0;$$

B)
$$\cos \frac{\pi}{n} + \cos \frac{3\pi}{n} + \cos \frac{5\pi}{n} + \dots + \cos \frac{(2n-1)\pi}{n} = 0;$$

r) $\sin \frac{\pi}{n} + \sin \frac{3\pi}{n} + \sin \frac{5\pi}{n} + \dots + \sin \frac{(2n-1)\pi}{n} = 0;$

д)
$$\frac{1}{n}\sum_{k=0}^{n-1}(x+\varepsilon_ky)^n=x^n+y^n$$
 $(\varepsilon_0,\varepsilon_1,\dots,\varepsilon_{n-1}$ — корни степени n из единицы);

e)
$$x^{2n+1} - 1 = (x-1) \prod_{k=1}^{n} \left(x^2 - 2x \cos \frac{\pi k}{2n+1} + 1 \right);$$

 $(x^2 - 2x \cos \frac{\pi k}{2n+1} + 1);$
 $(x^2 - 2x \cos \frac{\pi k}{n} + 1);$

23.3. Решить уравнение

$$\cos \varphi + \binom{n}{1} \cos(\varphi + \alpha)x + \binom{n}{2} \cos(\varphi + 2\alpha)x^2 + \dots$$

$$\dots + \binom{n}{n} \cos(\varphi + n\alpha)x^n = 0.$$

a)
$$1 + \binom{n}{3} + \binom{n}{6} + \dots = \frac{1}{3} \left(2^n + 2 \cos \frac{\pi n}{3} \right);$$

6)
$$\binom{n}{1} + \binom{n}{4} + \binom{n}{7} + \dots = \frac{1}{3} \left(2^n + 2 \cos \frac{(n-2)\pi}{4} \right);$$

B)
$$\binom{n}{2} + \binom{n}{5} + \binom{n}{8} + \dots = \frac{1}{3} \left(2^n + 2 \cos \frac{(n-4)\pi}{3} \right);$$

r)
$$2\cos mx = (2\cos x)^m - \frac{m}{1}(2\cos x)^{m-2} + \frac{m(m-3)}{1\cdot 2}(2\cos x)^{m-4} + \dots$$

 $\dots + (-1)^k \frac{m(m-k-1)\dots(m-2k+1)}{k!}(2\cos x)^{m-2k} + \dots$

23.5. Найти суммы:

a)
$$\cos x + \binom{n}{1} \cos 2x + \ldots + \binom{n}{n} \cos(n+1)x$$
;

5)
$$\sin x + \binom{n}{1} \sin 2x + \ldots + \binom{n}{n} \sin(n+1)x;$$

B)
$$\sin^2 x + \sin^2 3x + \ldots + \sin^2 (2n-1)x$$
;
 Γ) $\cos x + 2\cos 2x + 3\cos 3x + \ldots + n\cos nx$;

$$\Gamma$$
) $\cos x + 2\cos 2x + 3\cos 3x + \ldots + n\cos nx$

д)
$$\sin x + 2\sin 2x + 3\sin 3x + \ldots + n\sin nx$$
. **23.6.** Доказать, что:

a)
$$\cos^2 x + \cos^2 2x + \dots + \cos^2 nx = \frac{n}{2} + \frac{\cos(n+1)x\sin nx}{2\sin x}$$
;

a)
$$\cos x + \cos 2x + \dots + \cos nx - \frac{1}{2} + \frac{2\sin x}{2\sin x}$$
,
6) $\sin^2 x + \sin^2 2x + \dots + \sin^2 nx = \frac{n}{2} - \frac{\cos(n+1)x\sin nx}{2\sin x}$.
23.7. Доказать, что для нечётного натурального числа m

$$\frac{\sin mx}{\sin x} = (-4)^{(m-1)/2} \prod_{1 \le j \le (m-1)/2} \left(\sin^2 x - \sin^2 \frac{2\pi j}{m} \right).$$

§ 24. Связь комплексных чисел с геометрией на плоскости

- **24.1.** Изобразить на плоскости точки, соответствующие числам $5, -2, -3i, \pm 1 \pm i\sqrt{3}$.
- 24.2. Найти комплексные числа, соответствующие:
- а) вершинам квадрата с центром в начале координат, со сторона ми длины 1, параллельными осям координат;
- б) вершинам правильного треугольника с центром в начале рицательной вещественной полуоси и радиусом описанного круга, координат, стороной, параллельной оси координат, вершиной на от-

. 8 24. Связь комплексных чисел с геометрией на плоскости

- в) вершинам правильного шестиугольника с центром в точке $2 + i\sqrt{3}$, стороной, параллельной оси абсцисс, и радиусом описанного круга, равным 2;
- г) вершинам правильного n-угольника с центром в начале коорцинат, одной из вершин которого является 1.
- **24.3.** Указать геометрический смысл выражения $|z_1-z_2|$, где z_1 и z_2 — заданные комплексные числа.
- **24.4.** Указать геометрический смысл числа $\arg \frac{z_1-z_2}{z_2-z_3}$, где z_2, z_3 различные комплексите писла z_3 , где z_1, z_2, z_3 — различные комплексные числа.
- 24.5. Как расположены на плоскости точки, соответствующие:
- $\mathrm{a})$ комплексным числам $z_1,\,z_2,\,z_3,\,$ для которых

$$z_1 + z_2 + z_3 = 0$$
, $|z_1| = |z_2| = |z_3| \neq 0$;

6) комплексным числам z_1, z_2, z_3, z_4 , для которых

$$z_1 + z_2 + z_3 + z_4 = 0$$
, $|z_1| = |z_2| = |z_3| = |z_4| \neq 0$;

- 24.6. Изобразить на плоскости множество точек, соответствуюцих комплексным числам г, удовлетворяющим условиям:
- a) |z| = 1; 6) $\arg z = \pi/3$; B) $|z| \le 2$;
- - n) | Re z | ≤ 1 ; 3) $|\arg z| < \pi/6$; $|\mathbf{x}| |1 \leqslant |z - 2i| < 2;$
- л) $|\operatorname{Im} z| = 1$; м) $|\operatorname{Re} z + \operatorname{Im} z| < 1$; $(\kappa) - 1 < \text{Re } iz < 0;$
- H) |z-1|+|z+1|=3; o) |z+2|-|z-2|=3; II) |z-2|=Re z+2;
- р) $\alpha < \arg(z-z_0) < \beta$, где $-\pi < \alpha < \beta \leqslant \pi$ и z_0 заданное комплексное число.
- 24.7. Доказать тождество

$$|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2$$

и указать его геометрический смысл.

- **24.8.** Пусть комплексные числа z_1, z_2, z_3 соответствуют вершинам параллелограмма $A_1,\,A_2,\,A_3.$ Найти число, соответствующее вершине A_4 , противолежащей A_2 .
- ложным вершинам квадрата, если двум его другим противополож-24.9. Найти комплексные числа, соответствующие противопоным вершинам соответствуют числа z и w.

- 24.10. Найти комплексные числа, соответствующие вершинам правильного n-угольника, если двум его соседним вершинам соот-Betctbyfot qual z_0 in z_1 .
- **24.11.** Изобразить на плоскости множество точек, соответствующих комплексным числам $z=\frac{1+ti}{1-ti},$ где $t\in\mathbb{R}.$
- 24.12. Доказать, что:
- а) точки плоскости, соответствующие комплексным числам $z_1, z_2,$ гз, лежат на одной прямой тогда и только тогда, когда существуют вещественные числа λ_1 , λ_2 , λ_3 , не все равные нулю, такие, что

$$\lambda_1 z_1 + \lambda_2 z_2 + \lambda_3 z_3 = 0, \qquad \lambda_1 + \lambda_2 + \lambda_3 = 0;$$

- числам $z_1, z_2, z_3,$ лежат на одной прямой тогда и только тогда, когда число $\frac{z_1-z_3}{z_2-z_3}$ является вещественным; б) точки плоскости, соответствующие различным комплексным
 - в) точки плоскости, соответствующие различным комплексным числам z_1, z_2, z_3, z_4 и не лежащие на одной прямой, лежат на одной окружности тогда и только тогда, когда их двойное отношение $\frac{z_1-z_3}{z_2-z_3}$: $\frac{z_1-z_4}{z_2-z_4}$ является вещественным числом.
- щих комплексным числам z, удовлетворяющим равенству $\left| \frac{z-z_1}{z-z_2} \right| = \lambda,$ 24.13. Изобразить на плоскости множество точек, соответствуюгде $z_1, z_2 \in \mathbb{C}$ и λ — положительное действительное число.
- **24.14.** Hağtu min |3 + 2i z| при $|z| \le 1$.
- **24.15.** Hağtu max |1+4i-z| при $|z-10i+2| \leqslant 1$.
- 24.16. (Лемниската.) Изобразить на плоскости множество точек, соответствующих комплексным числам z, удовлетворяющим равенству $|z^2-1|=\lambda$. При $\lambda=1$ записать уравнение полученной кривой полярных координатах.
- 24.17. Расширенной комплексной плоскостью называется комплексная плоскость, дополненная бесконечно удаленной точкой ∞ . Доказать, что есии (z_1, z_2, z_3) и (w_1, w_2, w_3) — две тройки попарно различных точек расширенной комплексной плоскости, то существует дробно-линейное преобразование

$$w = \frac{az+b}{\frac{c}{\sigma} + d}, \qquad a,b,c,d \in \mathbb{C}, \quad ad-bc \neq 0,$$

переводящее первую тройку во вторую.

 $z_4)$ и (w_1,w_2,w_3,w_4) точек расширенной комплексной плоскости все **24.18.** Доказать, что если в каждой из двух четвёрок $(z_1, z_2, z_3,$ точки попарно различны, то дробно-линейное преобразование, переводящее одну из этих четвёрок в другую, существует тогда и только гогда, когда совпадают двойные отношения:

$$\frac{z_1-z_3}{z_2-z_3}:\frac{z_1-z_4}{z_2-z_4}=\frac{w_1-w_3}{w_2-w_3}:\frac{w_1-w_4}{w_2-w_4}.$$

- ширенной комплексной плоскости прямые и окружности переходят в 24.19. Доказать, что при дробно-линейном преобразовании распрямые и окружности.
- 24.20. Доказать, что дробно-линейное преобразование

$$w = \frac{az+b}{cz+d}, \qquad ad-bc = 1,$$

тереходит вещественную прямую в себя тогда и только тогда, когда матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ пропорциональна вещественной матрице

- 24.21. Выяснить геометрический смысл дробно-линейного преобразования w = 1/z.
- **24.22.** Выяснить геометрический смысл преобразования комплексной плоскости, заданного формулой $w=z^n \ (n\geqslant 2).$

24.23. Доказать, что функция Жуковского $w = \frac{1}{2} \left(z + \frac{1}{z} \right)$ отображает:

- а) окружность |z|=1 на отрезок [-1,1] действительной оси;
- 6) окружность $|z|=R, R\neq 1$, в эллипс с фокусами -1,1;
- в) луч $\arg z = \varphi$ в ветвь гиперболы с фокусами -1,1.
- 24.24. Доказать, что всякое дробно-линейное преобразование, отображающее открытую верхнюю полуплоскость на внутренность единичного круга с центром в начале координат, имеет вид

$$w = a \frac{z - b}{z - \overline{b}},$$
 $|a| = 1, \text{ Im } b > 0.$

24.25. Доказать, что всякое дробно-линейное преобразование, отображающее единичный круг с центром в начале координат на се-

§ 24. Связь комплексных чисел с геометрией на плоскости

$$w = a \frac{z - b}{1 - z\overline{b}},$$
 $|a| = 1, b < 1.$

бя, имеет вид

24.26. Для каких комплексных чисел a отображение $z \to z + az^2$ отображает круг $|z| \leqslant 1$ биективно в себя?