人工智能实验 第九周

一、实验题目

利用感知机算法在给定数据集完成购房预测训练,选择合适的损失函数,画出数据可视化图,Loss曲线图

二、实验内容

1.算法原理

本实验使用多层感知机(MLP)实现,包含了一个隐藏层,用于学习输入特征与输出目标之间的非线性映射关系(房价与收入房龄的关系不一定是线性)。使用反向传播和梯度下降对损失函数最小化从而完成任务。其中损失函数除了使用一般的均方误差(MSE)外,加入了正则误差防止过拟合。同时本实验对输入X以及最后的输出y进行了归一化,避免特征值差异过大。

模型结构:输入层(2维) -> 隐藏层(16个神经元, ReLu激活) -> 输出层(1维,线性输出)

模型具体计算,X为输入的数据 1. 第一层线性变换,前向传播部分:

$$Z_1 = XW_1 + b_1$$

2. ReLu激活,增加非线性表达能力:

$$A_1 = max(0, Z_1)$$

3. 输出层, 隐藏层输出乘以第二层权重得到预测值:

$$Z_2 = A_1 W_2 + b_2 \quad \hat{y} = Z_2$$

4. 损失函数, 利用均方误差加正则损失:

$$MSE = rac{1}{2n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i
ight)^2$$

$$L_2 = \lambda \left(\|W_1\|^2 + \|W_2\|^2
ight)$$
 $L = MSE + L_2$

- 5. 反向传播部分:
 - 输出层误差项:

$$\frac{\partial L}{\partial Z_2} = \frac{1}{n}(Z_2 - y)$$

• 输出层权重与偏置梯度:

$$egin{aligned} rac{\partial L}{\partial W_2} &= A_1^ op \cdot rac{\partial L}{\partial Z_2} + \lambda W_2 \ rac{\partial L}{\partial b_2} &= \sum_{i=1}^n rac{\partial L}{\partial Z_2^{(i)}} \end{aligned}$$

• 反传到隐藏层:

$$egin{aligned} rac{\partial L}{\partial A_1} &= rac{\partial L}{\partial Z_2} \cdot W_2^ op \ rac{\partial L}{\partial Z_1} &= rac{\partial L}{\partial A_1} \odot \mathrm{ReLU}'(Z_1) \end{aligned}$$

• 第一层权重与偏置梯度:

$$egin{aligned} rac{\partial L}{\partial W_1} &= X^{ op} \cdot rac{\partial L}{\partial Z_1} + \lambda W_1 \ & rac{\partial L}{\partial b_1} &= \sum_{i=1}^n rac{\partial L}{\partial Z_1^{(i)}} \end{aligned}$$

• 更新公式:

$$W = W - \eta \frac{\partial L}{\partial w}$$
 $b = b - \eta \frac{\partial L}{\partial b}$

具体代码位于函数 train_mlp 中,接受参数 X 输入数据, y 预测值, hidden_dim 隐 藏层维度, lr 学习率, epochs 训练轮数。该函数循环 epochs 次,根据前面给出的公式进行计算,最终得到权重并以字典 model 形式返回。

2.关键代码

下面给出计算的核心代码函数 train_mlp

```
In [1]:
    def train_mlp(X, y, hidden_dim=16, lr=0.01, epochs=1000, reg_lambda=0.001):
        n_samples, n_features = X.shape
        W1 = np.random.randn(n_features, hidden_dim) * 0.1
        b1 = np.zeros((1, hidden_dim))
        W2 = np.random.randn(hidden_dim, 1) * 0.1
        b2 = np.zeros((1, 1))
        losses = []

    for i in range(epochs):
        Z1 = X @ W1 + b1
        A1 = relu(Z1)
        Z2 = A1 @ W2 + b2
        y_pred = Z2
```

```
mse_loss = np.mean((y_pred - y) ** 2) / 2
    reg_loss = reg_lambda * (np.sum(W1**2) + np.sum(W2**2))
    loss = mse_loss + reg_loss
    losses.append(loss)
    dZ2 = (y_pred - y) / n_samples
    dW2 = A1.T @ dZ2 + reg lambda * W2
    db2 = np.sum(dZ2, axis=0, keepdims=True)
   dA1 = dZ2 @ W2.T
    dZ1 = dA1 * relu derivative(Z1)
    dW1 = X.T @ dZ1 + reg lambda * W1
    db1 = np.sum(dZ1, axis=0, keepdims=True)
   W1 -= lr * dW1
    b1 -= 1r * db1
   W2 -= 1r * dW2
    b2 -= 1r * db2
return {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "losses": losses}
```

在实验过程中发现有一系列的等于于500000的房价不随房龄改变而改变,可以认为是数据出现了问题,故考虑舍去。舍去代码如下:

```
mask = y_raw.flatten() < price_upper_limit
X_raw, y_raw = X_raw[mask], y_raw[mask]</pre>
```

三、实验结果分析

1.实验结果展示

实验每隔100次训练输出Loss值,同时最后可视化输出:1房价收入图,2训练误差图,3 预测房价-收入图,下面给出一个测试代码,参数如下:

```
In [2]: import sys
import os
import numpy as np

sys.path.append(r"D:\Desktop\人工智能\实验\Homework\homework5")

from predict_price_new import run_mlp

model = run_mlp(csv_path=r"D:\Desktop\人工智能\实验\Homework\homework\homework5\MLP_data.
```

Epoch	0 L	oss 0.4993
Epoch	100	Loss 0.4823
Epoch	200	Loss 0.4650
Epoch	300	Loss 0.4452
Epoch	400	Loss 0.4218
Epoch	500	Loss 0.3952
Epoch	600	Loss 0.3678
Epoch	700	Loss 0.3427
Epoch	800	Loss 0.3225
Epoch	900	Loss 0.3084
Epoch	1000	Loss 0.2997
Epoch	1100	Loss 0.2948
Epoch	1200	Loss 0.2922
Epoch	1300	Loss 0.2909
Epoch	1400	Loss 0.2903
Epoch	1500	Loss 0.2899
Epoch	1600	Loss 0.2898
Epoch	1700	Loss 0.2896
Epoch	1800	Loss 0.2895
Epoch	1900	Loss 0.2895

训练误差

3D散点图: 真实房价 (原始坐标)

3D曲面图: 预测房价(原始坐标)

2.性能分析

由上图的预测房价-收入图以及损失函数Loss可以看到。预测值大部分接近实际值,并且Loss下降平滑最终达到0.28。故可以认为其的预测效果达标。由于单隐藏层的限制,预测图仍存在一定的锯齿状波动。