programming

กุญแจ (key)

1 second, 128 megabytes

และแล้วคำแนะนำที่ดีเยี่ยมก็โผล่มาดั่งอัศวินขี่ม้าขาว นักเลงคอมพิวเตอร์นิรนามผู้หนึ่งได้ช่วยให้คุณเจาะเข้าไปถึง โครงสร้างข้อมูลซึ่งมีลักษณะเป็นตาราง คุณทราบจากนักเลงคอมพิวเตอร์นิรนามว่ากุญแจสุดท้ายที่จะไขเข้าไปสู่ระบบ ฐานข้อมูลของ TOI.C อยู่ในกระจายอยู่ในตารางนี้ นั่นคือรหัสซึ่งมีทั้งหมด N ตัว กระจายอยู่ตามแต่ละช่องในตาราง นี้

ถึงเวลาที่จะต้องไขพาสเวิร์ดให้ได้ ตารางข้อมูลนี้มีรูปเป็นสี่เหลี่ยมจัตุรัสขนาด $1\,001 \times 1\,001$ หน่วย มุมล่างซ้ายของ ตารางอยู่ที่ช่อง (0,0) และมุมขวาบนของตารางอยู่ที่ช่อง $(1\,000,\,1\,000)$ ในระนาบ 2 มิติ คุณไม่สามารถท่องเข้าไป ในตารางข้อมูลนี้ได้ เนื่องจากการระบบการป้องกันภัยขั้นสูง

สิ่งที่คุณทำได้คือการเจาะไปยังช่องใดช่องหนึ่งในตารางตำแหน่ง (X,Y) แล้วกระจายตัวเองออกไปรอบทิศด้วย พลังงาน K คุณจะได้รหัสพาสเวิร์ดทุกตัว ที่อยู่ภายในรูปสี่เหลี่ยมจัตุรัสที่มีจุด (X-K,Y-K) เป็นมุมล่างซ้าย และ จุด (X+K,Y+K) เป็นมุมบนขวา ทั้งนี้เป็นไปได้ที่จะมีการแกะรหัสพาสเวิร์ดตัวเดิมเกิดขึ้นหลายครั้ง

เคราะห์ร้ายที่คุณต้องเหนื่อยอีกครั้ง เมื่อพบว่าคุณสามารถเจาะตารางนี้ได้เพียง M ครั้งเท่านั้น

ครั้งนี้ สิ่งที่คุณต้องทำคือทราบให้ได้ว่าการเจาะเข้าไปยังตำแหน่งใดในตารางด้วยพลังงานเท่าไหร่ จะทำให้สามารถ แกะรหัสมาได้กี่ตัว

<u>โจทย์</u> เขียนโปรแกรมรับตำแหน่งของรหัสแต่ละตัว และตำแหน่งในการเจาะตาราง แล้วคำนวณว่า การทดลองเจาะ ตารางแต่ละครั้งแกะรหัสได้ทั้งสิ้นกี่ตัว

ข้อมูลนำเข้า

บรรทัดแรก ระบุจำนวนเต็ม N $(1 \leq N \leq 1\,000\,000)$ แทนจำนวนตัวของรหัส และจำนวนเต็ม M $(1 \leq M \leq 1\,000\,000)$ แทนจำนวนครั้งของการเจาะ

บรรทัดที่ 2 **ถึง** N+1 มีข้อมูลของรหัสทั้ง N ตัว โดยในบรรทัดที่ i+1 ระบุจำนวนเต็ม X_i และ Y_i ($0 \le X_i, Y_i \le 1\,000$) ซึ่งเป็นตำแหน่งช่องที่รหัสนั้นอยู่ในตาราง ทั้งนี้อาจมีรหัสสองตัวใดๆ อยู่ในตำแหน่งเดียวกันได้

บรรทัดที่ N+2 **ถึง** N+M+1 มีข้อมูลการเจาะตาราง โดยในบรรทัดที่ N+j+1 มีจำนวนเต็ม X_j และ Y_j และ K_j $(0 \le X_j, Y_j \le 1\,000; 0 \le K_j \le 1\,000)$ หมายความว่าในการเจาะตารางครั้งที่ j มีการเจาะที่ตำแหน่ง (X_j, Y_j) ด้วยพลังงาน K_j เนื่องจากคุณง่วงและเบลอ เป็นไปได้ที่คุณจะเจาะตารางซ้ำที่เดิมด้วยพลังงานเดิม

programming in.th

ข้อมูลส่งออก

มี M **บรรทัด** ในบรรทัดที่ j แสดงจำนวนเต็ม B_j แทนจำนวนรหัสที่ทราบมาจากการเจาะตารางครั้งที่ j

ตัวอย่างข้อมูลนำเข้าและข้อมูลส่งออก

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
5 2	5
0 0	2
0 10	
10 0	
10 10	
5 5	
5 5 5	
10 10 5	
5 2	4
0 0	2
2 0	
1 1	
3 0	
6 6	
2 1 2	
6 6 5	

การให้คะแนน

50% ของชุดข้อมูลทดสอบ: $N, M \leq 10\,000$

100% ของชุดข้อมูลทดสอบ: $N, M \leq 1\,000\,000$

แหล่งที่มา

พศิน มนูรังษี

TOI.C:01-2009