计算机组成



第六章 计算机的运算方法

#### **Contents**



#### (一)数制与编码

- 1. 进位计算制及其数据之间的相互转换
- 2. 定点数的编码表示

#### (二)运算方法和运算电路

- 1. 基本运算部件 加法器,算术逻辑部件 (ALU)
- 2. 加/减法运算 补码加减法运算器, 标志位的生成
- 3. 乘除法运算的基本原理, 乘法电路和除法电路的基本结构

#### (三)整数的表示和运算

- 1. 无符号整数的表示和运算
- 2. 带符号整数的表示和运算

#### (四) 浮点数的表示和运算

- 1.浮点数的表示 IEEE754标准
- 2. 浮点数的加/减运算

## 数制与编码

- 1. 进位计算制及其相 互转换
  - 1). 基r数制:用r个基本符号(如0,1,2,...,r-1)表示数值N。 r为基数

$$N = D_{m-1}D_{m-2} \dots D_1 D_0 D_{-1} D_{-2} \dots D_{-k}$$

其中, D<sub>i</sub> (-k≤i≤m-1) 为基本符号,小数点位置隐含在 **D**<sub>0</sub>与**D**<sub>-1</sub>之间。

2). 有权基r数制:每个Di的单位都赋以固定权值wi,wi为Di 的权。

如果该数制是逢r进位,则有

$$N = \sum_{i=-k}^{m-1} D_i \times r^i$$

其中ri为位权,称该数制为r进位数制,简称r进制,

## 数制与编码

#### 3). 进制转换

(1) R进制数 => 十进制数

按"权"展开 (a power of R)

例1: 
$$(10101.01)_2$$
=1×2<sup>4</sup>+1×2<sup>2</sup>+1×2<sup>0</sup>+1×2<sup>-2</sup>=(21.25)<sub>10</sub>

例2: 
$$(307.6)_8$$
=3×8<sup>2</sup>+7×8<sup>0</sup>+6×8<sup>-1</sup>=(199.75)<sub>10</sub>

(2)十进制数 => R进制数

#### 整数部分和小数部分分别转换

- ① 整数(integral part)----"除基取余,上右下左"
- ② 小数(fractional part)----"乘基取整,上左下右"

#### 二、十进制转换

### 例1:(835.6785)<sub>10</sub>=(1101000011.1011)<sub>2</sub>

整数----"除基取余,上右下左"

小数----"乘基取整,上左下右"





# 例2:(835.63)<sub>10</sub>=(1503.50243...)<sub>8</sub>

整数----"除基取余,上右下左"小数----"乘基取整,上左下右"



有可能乘积的小数部分总得不到0,此时得到一个近似值。

| 0.63×8=5.04              | 整数部分=5 | (高位) |
|--------------------------|--------|------|
| 0.04×8=0.32              | 整数部分=0 |      |
| 0.32×8=2.56              | 整数部分=2 |      |
| 0.56×8 <del>=</del> 4.48 | 整数部分=4 |      |
| 0.48×8=3.84              | 整数部分=3 | (低位) |

#### (3) 二/八/十六进制数的相互转换

- ①八进制数转换成二进制数
- $(13.724)_{8}$ = $(001\ 011\ .\ 111\ 010\ 100\ )_{2}$ = $(1011.1110101)_{2}$
- ② 十六进制数转换成二进制数
- $(2B.5E)_{16} = (00101011 . 01011110)_{2} = (101011.0101111)_{2}$
- ③二进制数转换成八进制数
- $(0.10101)_2 = (0.00.101.010)_2 = (0.52)_8$
- ④ 二进制数转换成十六进制数
- $(11001.11)_2 = (0001 1001.1100)_2 = (19.C)_{16}$

### 信息的二进制编码

- 计算机的外部信息与内部机器级数据
- ■机器级数据分两大类:
  - 数值数据: 无符号整数、带符号整数、浮点数(实数)、十进制数
  - 非数值数据:逻辑数(包括位串)、西文字符和汉字
- ■计算机内部所有信息都用二进制(即: 0和1)进行编码
- ■用二进制编码的原因:
  - 制造二个稳定态的物理器件容易
  - 二进制编码、计数、运算规则简单
  - 正好与逻辑命题对应,便于逻辑运算,并可方便地用逻辑电路实现 算术运算

#### 数值数据的表示



## 数值数据的表示

- 数值数据表示的三要素
  - ■进位计数制
  - ■定、浮点表示
  - 如何用二进制编码

即:要确定一个数值数据的值必须先确定这三个要素。 例如, 机器数 01011001的值是多少? 答案是: 不知道!

- 进位计数制
  - 十进制、二进制、十六进制、八进制数及其相互转换
- 定/浮点表示(解决小数点问题)
  - 定点整数、定点小数
  - 浮点数(可用一个定点小数和一个定点整数来表示)
- 定点数的编码(解决正负号问题)
  - ■原码、补码、反码、移码 (反码很少用)

# 6.1 无符号数和有符号数

一、无符号数

寄存器的位数(机器字长)

反映无符号数的表示范围



8位

 $0 \sim 255$ 



16位

 $0 \sim 65535$ 

## 1. 机器数与真值

真值

带符号的数

+0.1011

-0.1011

+ 1100

-1100

机器数

符号数字化的数



小数点的位置



小数点的位置



小数点的位置



小数点的位置

# 2. 原码表示法

## (1) 定义

整数
$$[x]_{\mathbb{R}} = \begin{cases} 0, & x & 0 \le x < 2^n \\ 2^n - x & -2^n < x \le 0 \end{cases}$$

$$x 为真值 \quad n 为整数的位数$$



$$[x]_{\mathbb{R}} = \begin{cases} x & 1 > x \ge 0 \\ 1 - x & 0 \ge x > -1 \end{cases}$$

#### x 为真值

如

$$x = +0.1101$$

$$[x]_{\mathbb{R}} = 0$$
, 1101

用 小数点 将符号 · 位和数值部分隔开

$$x = -0.1101$$
  $[x]_{\mathbb{R}} = 1 - (-0.1101) = 1.1101$ 

$$x = +0.1000000$$

$$[x]_{\mathbb{R}} = 0 + 1000000$$

用 小数点 将符号 -位和数值部分隔开

$$x = -0.1000000$$
  $[x]_{\mathbb{R}} = 1 - (-0.1000000) = 1.1000000$ 

# (2) 举例

例 6.1 已知 
$$[x]_{\mathbb{R}} = 1.0011$$
 求  $x - 0.0011$  解. 由完义得

解:由定义得

$$x = 1 - [x]_{\text{ff}} = 1 - 1.0011 = -0.0011$$

例 6.2 已知 
$$[x]_{\mathbb{R}} = 1,1100$$
 求  $x - 1100$  解: 由定义得

$$x = 2^4 - [x]_{\text{ff}} = 10000 - 1,1100 = -1100$$

# (2) 举例

例 6.1 已知 
$$[x]_{\mathbb{R}} = 1.0011$$
 求  $x - 0.0011$ 

解: 由定义得

$$x = 1 - [x]_{\text{ff}} = 1 - 1.0011 = -0.0011$$

例 6.2 已知 
$$[x]_{\mathbb{R}} = 1,1100$$
 求  $x \to 1100$  解: 由定义得

$$x = 2^4 - [x]_{\text{ff}} = 10000 - 1,1100 = -1100$$

# 原码的特点:简单、直观

但是用原码作加法时,会出现如下问题:

| 要求 | 数1 | 数2 | 实际操作 | 结果符号 |
|----|----|----|------|------|
| 加法 | 正  | 正  | 加    | 正    |
| 加法 | 正  | 负  | 減    | 可正可负 |
| 加法 | 负  | 正  | 减    | 可正可负 |
| 加法 | 负  | 负  | 加    | 负    |

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数 就可使 减 —— 加

# 3. 补码表示法

# (1) 补的概念

 $-5 \equiv +7 \pmod{12}$ 

- 一负数加上 "模" 即得该负数的补数
- > 两个互为补数的数 它们绝对值之和即为 模 数

记作 
$$-1011 \equiv +0101 \pmod{2^4}$$

同理 
$$-011 \equiv +101 \pmod{2^3}$$

$$-0.1001 \equiv +1.0111 \pmod{2}$$

自然去掉

# (2) 正数的补数即为其本身

6.1

```
+ 0101 \pmod{2^4}
两个互为补数的数
                  -1011
分别加上模
                               + 10000
                  + 10000
                  +0101
                               + 10101
结果仍互为补数
                             (\text{mod}2^4)
       .. + 0101 \equiv + 0101
                                           丢掉
   可见 + 0101 → + 0101
                    - 1011
           0.0101 \rightarrow + 0.101
          0101 \longrightarrow -1011
          \overline{-1011} = 100000
                     -1011
                                  用 逗号 将符号位
                    1.0101
                                  和数值位隔开
```

# (3) 补码定义

### 整数

$$[x]_{\nmid k} = \begin{cases} 0, & x \\ 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值

n 为整数的位数

如 
$$x = +1010$$

$$x = -1011000$$

$$[x]_{\nmid \mid} = 2^{7+1} + (-1011000)$$

$$= 100000000$$

$$-1011000$$

$$1,0101000$$

$$[x]_{n} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

x 为真值

如 
$$x = +0.1110$$
  $x = -0.1100000$  
$$[x]_{\stackrel{?}{\uparrow}} = 0.1110$$
 
$$[x]_{\stackrel{?}{\uparrow}} = 2 + (-0.1100000)$$
 
$$= 10.00000000$$
 
$$-0.11000000$$
 
$$1.01000000$$
 和数值位隔开

# 补码说明

- 补码最高一位是符号位,符号 0 正 1 负
- 补码表示为: 2×符号位 + 数的真值
- 零的补码只有一个,故补码能表示 -1
- 补码能很好地用于加减运算,运算时,符号位与 数值位一样参加运算。

## 求特殊数的补码

#### 假定机器数有n位

① 
$$[-2^{n-1}]_{\nmid k} = 2^n - 2^{n-1} = 10...0 \quad (n-1 \uparrow 0) \pmod{2^n}$$

② 
$$[-1]_{\stackrel{}{\mathbb{A}}} = 2^{n} - 0...01 = 11...1$$
 (n个1) (mod  $2^{n}$ ) 整数补码

③ 
$$[-1.0]_{3}=2-1.0=1.00...0$$
( $(n-1 extstyle 0)$  ( $mod 2$ ) 小数补码

4 
$$[+0]_{k} = [-0]_{k} = 00...0 (n \uparrow 0)$$

# 特殊数的补码(续)

• 当补码的位数为n位时,其模为2n,所以

$$[-2^{n-1}]_{\nmid k} = 2^n - 2^{n-1} = 10...0 \quad (n-1 \uparrow 0) \pmod{2^n}$$

• 当补码的位数为n+1位时, 其模为2n+1, 所以

$$[-2^{n-1}]_{3} = 2^{n+1} - 2^{n-1} = 2^n + 2^{n-1} = 1 \ 10...0 \ (n-1 \uparrow 0) \ (mod \ 2^{n+1})$$

这说明同一个真值在不同位数的补码表示中,对应的机器数 不同,因此给定编码表示时,一定要明确编码的位数,在机器 内部编码的位数就是机器中运算部件的位数。

# (4) 求补码的快捷方式

又[
$$x$$
]<sub>原</sub> = 1,1010

当真值为负时,补码可用原码除符号位外 每位取反,末位加1求得

例 6.5 已知 
$$[x]_{ij} = 0.0001$$
 求  $x$ 

解: 由定义得 x = +0.0001

解:由定义得

$$x = [x]_{\frac{1}{2}} - 2$$

$$= 1.0001 - 10.0000$$

$$= -0.1111$$

$$[x]_{\mathbb{R}} = 1.1111$$

$$x = -0.1111$$

# 例 6.7 已知 $[x]_{3} = 1,1110$

解: 由定义得

$$x = [x]_{3} - 2^{4+1}$$

$$= 1,1110 - 100000$$

$$= -0010$$

 $[x]_{\gtrless} \xrightarrow{?} [x]_{\mathbb{R}}$ 

$$[x]_{\text{f}} = 1,0010$$

$$x = -0010$$

当真值为负时,原码可用补码除符号位外

每位取反,末位加1求得

# 求下列真值的补码

| 真值                                 | $[x]_{ eqh}$    | $[x]_{\mathbb{R}}$ |
|------------------------------------|-----------------|--------------------|
| x = +70 = 1000110                  | 0, 1000110      | 0,1000110          |
| x = -70 = -1000110                 | 1,0111010       | 1,1000110          |
| x = 0.1110                         | 0.1110          | 0.1110             |
| x = -0.1110                        | 1.0010          | 1.1110             |
| $x = \boxed{0.0000} [+0]_{?} = [-$ | - <b>0.0000</b> | 0.0000             |
| x = -0.0000                        | 0.0000          | 1.0000             |
| x = -1.0000                        | 1.0000          | 不能表示               |

由小数补码定义 
$$[x]_{\stackrel{}{\uparrow}} = \begin{cases} x & 1 > x \ge 0 \\ 2+x & 0 > x \ge -1 \pmod{2} \end{cases}$$

$$[-1]_{3} = 2 + x = 10.0000 - 1.0000 = 1.0000$$

# 4. 反码表示法

(1) 定义

#### 整数

$$[x]_{ar{\mathbb{Z}}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ (2^{n+1} - 1) + x & 0 \ge x > -2^n \pmod{2^{n+1} - 1} \end{cases}$$
 $x$  为真值  $x = +1101$   $x = -1101$ 

 $[x]_{\text{p}} = 0.1101$ 用 逗号 将符号位

和数值位隔开

$$[x]_{\mathbb{R}} = (2^{4+1}-1) -1101$$
  
= 11111 -1101  
= 1,0010

# 小数

$$[x]_{\mathbb{K}} = \begin{cases} x & 1 > x \ge 0 \\ (2 - 2^{-n}) + x & 0 \ge x > -1 \pmod{2-2^{-n}} \end{cases}$$

x 为真值

如

$$x = +0.1101$$
  $x = -0.1010$  
$$[x]_{\overline{\wp}} = 0.1101$$
 
$$[x]_{\overline{\wp}} = (2-2^{-4}) -0.1010$$
 
$$= 1.1111 -0.1010$$
 
$$= 1.0101$$
 和数值位隔开

例 6.8 已知 
$$[x]_{\xi} = 0,1110$$
 求  $x$  相定义得  $x = +1110$ 

例 6.9 已知 
$$[x]_{\mathbb{Z}} = 1,1110$$
 求  $x$  和 完 义  $y = x - [x]$   $y = x - [x]$ 

解: 由定义得 
$$x = [x]_{\mathbb{Z}} - (2^{4+1} - 1)$$
  
= 1,1110 - 11111  
= -0001

例 6.10 求 0 的反码

解: 设 
$$x = +0.0000$$
  $[+0.0000]_{\overline{\mathbb{D}}} = 0.0000$   $x = -0.0000$   $[-0.0000]_{\overline{\mathbb{D}}} = 1.1111$ 

同理,对于整数 
$$[+0]_{\mathbb{Z}} = 0,0000$$
  $[-0]_{\mathbb{Z}} = 1,1111$ 

$$\therefore \quad [+ \ 0]_{\mathbb{Z}} \neq [- \ 0]_{\mathbb{Z}}$$

# 三种机器数的小结

- ▶ 最高位为符号位,书写上用","(整数) 或""(小数)将数值部分和符号位隔开
- ▶ 对于正数,原码 = 补码 = 反码
- ▶ 对于负数,符号位为1,其数值部分 原码除符号位外每位取反末位加1→补码 原码除符号位外每位取反→反码

#### 例6.11 设机器数字长为8位(其中一位为符号位)

对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

| 二进制代码    | 无符号数         | 原码对应 | 补码对应 | 反码对应 |
|----------|--------------|------|------|------|
|          | 对应的真值        | 的真值  | 的真值  | 的真值  |
| 00000000 | 0            | +0   | ±0   | +0   |
| 00000001 | 1            | +1   | +1   | +1   |
| 00000010 | 2            | +2   | +2   | +2   |
| 01111111 | :<br>127     | ÷127 | ÷127 | ÷127 |
| 10000000 | 128          | -0   | -128 | -127 |
| 10000001 | 129          | -1   | -127 | -126 |
| :        | <b>:</b> 253 | :    | :    | :    |
| 11111101 |              | -125 | -3   | -2   |
| 11111110 | 254          | -126 | -2   | -1   |
| 11111111 | 255          | -127 | -1   | -0   |