SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯNG YÊN

ĐỀ CHÍNH THỨC (Đề thi gồm 04 trang)

KỲ THI CHỌN HỌC SINH GIỚI CẤP TỈNH THCS Năm học 2021-2022

Môn: TIN HỌC

Thời gian làm bài: 150 phút (không kể thời gian giao đề)

Tổng quan đề thi

	Tên bài	Tên file chương trình	Dữ liệu vào	Dữ liệu ra	Điểm
Bài 1	Thuê pin	Thuê pin PIN.***		PIN.OUT	5
Bài 2	Trượt giải	FAIL.***	FAIL.INP	FAIL.OUT	3
Bài 3	Cắt xâu	CUT.***	CUT.INP	CUT.OUT	4
Bài 4	Số phong phú	RICHNUM.***	RICHNUM.INP	RICHNUM.OUT	4
Bài 5	Tìm vị trí	POST.***	POST.INP	POST.OUT	4

Luu ý:

- Dấu *** trong phần tên chương trình tương ứng với ngôn ngữ lập trình mà thí sinh sử dụng, ví dụ PAS, CPP,....
- Thí sinh bắt buộc phải đặt tên file chương trình như trên.
- Thí sinh đọc, ghi dữ liệu như ví dụ không thêm ký tự nào khác.

Hãy lập trình giải các bài toán sau:

Bài 1. Thuê pin

Vinh vừa mua một chiếc xe ô tô điện thương hiệu VF. Công ty VF đưa ra chính sách thuê pin với mức phí cố định X đồng một tháng với mức di chuyển không quá 500 km. Nếu xe của Vinh di chuyển quá 500 km trong tháng thì Vinh phải trả thêm số tiền là Y đồng trên mỗi km phát sinh thêm.

 $Y\hat{e}u$ cầu: Cho biết tháng vừa qua ô tô của Vinh di chuyển với quãng đường N km. Hãy xác định số tiền thuê pin mà Vinh phải trả cho công ty trong tháng đó.

Dữ liệu: Đọc vào từ file PIN.INP ghi ba số nguyên dương X Y N. Các số in cách nhau một dấu cách

Kết quả: Ghi ra file PIN.OUT một số nguyên duy nhất xác định số tiền Vinh phải trả để thuê pin.

Vi du 1

PIN.INP	PIN.OUT
650000 2000 400	650000

Vi du 2

PIN.INP	PIN.OUT
650000 2000 540	730000

Giải thích:

Trong ví dụ 1: do quãng đường di chuyển của Vinh là 400 km, chưa đạt tới định mức 500 km nên số tiền thuê pin của Vinh được tính theo mức cố định là 650000 đồng.

Trong ví dụ 2: Vinh di chuyển 540 km, vượt 40 km so với định mức 500 km nên Vinh phải trả số tiền là: $650000 + 40 \times 2000 = 730000$ đồng.

Ràng buộc:

- Có 90% test tương ứng 90% số điểm có $N \le 10^3$; $X, Y \le 10^6$
- Có 10% test tương ứng 10% số điểm có $N, X, Y \le 10^9$.

Bài 2. Trượt giải

Kỳ thi chọn Học sinh giỏi năm nay có n thí sinh tham gia ở môn Tin học. Sau khi công bố kết quả, thí sinh thứ i trong danh sách đạt a_i điểm. Ban tổ chức thông báo sẽ trao giải cho các học sinh đạt từ k điểm trở lên.

Yêu cầu: Hãy xác định điểm số cao nhất của thí sinh không đoạt giải.

Dữ liệu: Đọc vào từ file FAIL.INP

- Dòng đầu tiên chứa hai số nguyên dương $n, k \ (n \le 1000, k \le 100)$.
- Dòng thứ hai chứa n số nguyên dương $a_1, a_2, ..., a_n$ với a_i xác định số điểm của thí sinh thứ i ($a_i \le 100$ với $\forall i = 1, 2, ..., n$).

Kết quả: Ghi ra file FAIL.OUT một số nguyên duy nhất là điểm số cao nhất của thí sinh không đoạt giải.

Trường hợp tất cả các thí sinh đều được xét giải, đưa ra số -1.

Vi du 1

FAIL.INP								FAIL.OUT
5	8						6	
6	8	10	3	9				

Vi du 2

	FAIL.INP					FAIL.OUT
5	3				-1	
5	3	8	3	10		

Giải thích: Trong ví dụ 1: với k = 8, có 2 thí sinh không đoạt giải với số điểm là 6 và 3. Nên điểm số cao nhất của thí sinh không đoạt giải là 6.

Trong ví dụ 2: với k = 3, tất cả các thí sinh đều có điểm số từ 3 trở lên, nên tất cả đều được xét giải.

Bài 3. Cắt xâu

Cho 2 xâu ký tự S, P. Tìm cách cắt xâu S thành các xâu con liên tiếp sao cho trong số các xâu con được tạo ra, số lần xuất hiện của xâu P là nhiều nhất có thể.

Dữ liệu: Đọc vào từ file CUT.INP

- Dòng đầu tiên chứa xâu S độ dài không quá 106 ký tự.
- Dòng thứ hai chứa xâu P độ dài không quá 10 ký tự.

Các ký tự xuất hiện trong 2 xâu S, P đều là các chữ cái latin in thường.

Kết quả: Ghi ra file CUT.OUT một số nguyên là số lần xuất hiện nhiều nhất của xâu P trong cách cắt tìm được.

Vi du 1

CUT.INP	CUT.OUT		
hungyenhyhy	3		

vi au	2
	CUT

CUT.INP	CUT.OUT			
mmumumumm	2			
mum				

Giải thích:

Trong ví dụ 1: ta cắt xâu S = h + ungyen + h + y + h + y

Trong ví dụ 2: ta cắt xâu S = m + mum + u + mum + m. Trong trường hợp này, xâu P xuất hiện tại 3 vị trí trong S, tuy nhiên khi cắt xâu S chỉ có thể tạo thành tối đa 2 xâu P

Ràng buộc:

Có 50% số test tương ứng 50% số điểm có độ dài xâu S không vượt quá 10^3 và xâu Pchỉ gồm 1 ký tự.

Có 30% số test khác tương ứng 30% số điểm có độ dài xâu S không vượt quá 10^3 .

Có 20% số test còn lại tương ứng 20% số điểm có độ dài xâu S không quá 106

Bài 4. Số phong phú

Trong số học, số phong phú là các số mà tổng các ước số tự nhiên của số đó (không kể chính nó) lớn hơn nó. Ví dụ:

- Số 12 có tổng các ước số (không kể 12) là 1 + 2 + 3 + 4 + 6 = 16 > 12. Do đó 12 là một số phong phú.

Số 10 có tổng các ước (không kể 10) là 1+2+5=8<10 nên 10 không phải là một số phong phú.

Yêu cầu: cho Q trường hợp, mỗi trường hợp gồm 2 số nguyên dương L,R ($L \le R \le 10^5$). Với mỗi trường hợp, hãy xác định số lượng số phong phú trong đoạn [L, R].

Dữ liệu: Đọc vào từ file RICHNUM.INP

Dòng đầu tiên chứa số nguyên dương Q xác định số trường hợp.

Q dòng tiếp theo, dòng thứ i chứa 2 số nguyên dương L, R xác định yêu cầu trường hợp thứ i.

Kết quả: Ghi ra file RICHNUM.OUT gồm Q dòng, dòng thứ i là một số nguyên xác định số lương số phong phú nằm trong đoạn [L, R] tương ứng yêu cầu trường hợp thứ i trong file dữ liêu vào.

Vi du 1

RICHNUM.INP	RICHNUM.OUT
1	3
1 20	

Vi du 2

RICHNUM.INP	RICHNUM.OUT
2	0
7 10	2
20 25	

Giải thích: Trong ví dụ 1: có 1 trường hợp với L=1, R=20, các số phong phú là 12, 18, 20.

- Trường hợp 1: L = 7, R = 10. Các số 7,8,9,10 đều không phải là số phong phú.
- Trường hợp 2: L = 20, R = 25. Có 2 số phong phú là 20, 24.

Ràng buôc:

- 40% số test tương ứng 40% số điểm có Q = 1; $0 < L \le R \le 10^3$
- 20% số test khác tương ứng 20% số điểm có $Q=1; 0 < L \le R \le 10^5$
- 20% số test khác tương ứng 20% số điểm có $1 < Q \le 100$; $0 < L \le R \le 10^5$
- 20% số test còn lại tương ứng 20% số điểm có $1 < Q \le 10^5$; $0 < L \le R \le 10^5$

Bài 5. Tìm vị trí

Gần đường cao tốc (coi như một đường thẳng nằm ngang) có N ngôi làng. Từ ngôi làng thứ i, người ta làm một con đường dân sinh nối tới điểm x_i trên đường cao tốc. Do các con đường dân sinh này có độ dài không đáng kể nên người ta tính khoảng cách di chuyển giữa ngôi làng thứ i và ngôi làng thứ j là $|x_i - x_j|$. Công ty vận chuyển ABC Expres đang nghiên cứu khảo sát để đặt một bưu cục tại một ngôi làng nào đó trong số các ngôi làng trên. Phương án thứ i, bưu cục sẽ được đặt tại ngôi làng thứ i với tổng khoảng cách từ các ngôi làng khác là:

$$P_i = |x_1 - x_i| + |x_2 - x_i| + |x_3 - x_i| + \dots + |x_N - x_i|$$

Yêu cầu: Hãy viết chương trình xác định tổng khoảng cách tất cả các ngôi làng tới bưu cục được chọn trong từng phương án.

Dữ liệu: Đọc vào từ file POST.INP

- Dòng đầu tiên chứa số nguyên dương N ($N \le 10^5$).
- Dòng thứ hai chứa N số nguyên dương $x_1, x_2, ..., x_N$ ($x_i \le 10^6$ với $\forall i = 1, 2, ..., N$).

 $\emph{K\'et}$ quả: Ghi ra file POST.OUT gồm N số nguyên theo thứ tự $P_1, P_2, P_3, \ldots, P_N$. Các số được đưa ra cách nhau một dấu cách.

Vi du 1

POST.INP POST.OUT 6 4 4 10

Vi du 2

		PC	ST.INP	POST.OUT
4 5	3	1	6	7 7 11 9

Giải thích: Trong ví dụ 1:
$$P_1 = |1-1| + |2-1| + |2-1| + |5-1| = 6$$

$$P_2 = |1 - 2| + |2 - 2| + |2 - 2| + |5 - 2| = 4$$

$$P_3 = |1 - 2| + |2 - 2| + |2 - 2| + |5 - 2| = 4$$

$$P_4 = |1 - 5| + |2 - 5| + |2 - 5| + |5 - 5| = 10$$

$$P_4 = |1 - 5| + |2 - 5| + |2 - 5| + |5 - 5| = 10$$

Ràng buộc:

- Có 40% test tương ứng 40% số điểm có $N \leq 10^3; x_1 \leq x_2 \leq \cdots \leq x_N \leq 10^2$
- Có 20% test khác tương ứng 20% số điểm có $N \le 10^5; x_1 \le x_2 \le \cdots \le x_N \le 10^2$
- Có 20% test khác tương ứng 20% số điểm có $N \le 10^5; x_1 \le x_2 \le \cdots \le x_N \le 10^6$

Có 20% test còn lại tương ứng 20% số điểm không có ràng buộc gì thêm.

Thí sinh không sử dụng tài liệu, giám thị coi thi không giải thích gì thêm.