Physical Chemistry (Chem 132A)

Lecture 15 Friday, November 3

Homework #5 will be due November 4

Additional Problems you should look at in the text, from Topic 5C. (not for credit but important for midterm 2 and final.

Exercises: 5c.3a, 5c.3b, 5c.4a, 5c.7a

Problems: 5c.5, 5c.7

Midterm Exam #1

You should have received your exam pdf file (eee dropbox)

You should:

- 1. Check that the scores for each question were properly transferred to the coversheet of the exam
- 2. Check the addition of the scores on the coversheet
- 3. Compare your total on the coversheet with the score you received via eee.
- 4. Look at the posted answers (course site on CANVAS)
- 5. Make sure you understand what we were looking for in the answers.

I am happy to fix any clerical errors (send email to me with copy to Shane and Moises).

NO Re-grades for changes in partial credit.

Schedule:

Week	Dates	Topics	Readings	
0	Before Sept 28	The Properties of Gases	Chapter 1 A, B, C	
1	October 1-7	The First Law of Thermodynamics	Chapter 2	
2	October 8-14	The First and Second Laws	Chapter 2, 3	
3	Oct 15-Oct 21	Third Law; Physical Transformations	Chapter 3, 4	
4	October 22-28	Physical Transformations; Mixtures	Chapter 4, 5	
Midterm 1 (Chapters 1-4, 5A), Wednesday, October 25				
5	Oct. 29-Nov. 4	Mixtures; Chemical Equilibrium	Chapter 5, 6	
6	Nov. 5-11	Chemical Equilibrium	Chapter 6	
7	Nov. 12-18	Molecular Motion	Chapter 19	
8	Nov. 19-25	Molecular Motion	Chapter 19	
Midterm 2 (Chapters 1-6, 19), November 22				
9	Nov. 26-Dec. 2	Chemical Kinetics	Chapter 20	
10	Dec. 3-Dec. 9	Chemical Kinetics, Collision Theory	Chapter 20, 21A	
Final Exam (Chapters 1-6, 19, 20, 21A), Friday, Dec. 15, 8:00Am-10:00Am				

Liquid-Solid Phase Diagrams

Figure 5C.27 The temperature–composition phase diagram for two almost immiscible solids and their completely miscible liquids. Note the similarity to Fig. 5C.25. The isopleth tl

Temperature

| Composition | Page | Composition | P

Cooling Curves

ACTIVITIES

Solvent:

$$\mu_A = \mu_A^* + RT \ln \frac{p_A}{p_A^*}$$

Ideal Solution (Raoult's Law:) $p_A = x_A p_A^*$ and $\mu_A = \mu_A^* + RT \ln x_A$ **Non-ideal solution**

$$\mu_A = \mu_A^* + RT \ln a_A$$

$$a_A = \frac{p_A}{p_A^*}$$
a is called the "activity"

Convention is to define "activity coeficient" γ (gamma)

$$a_A = \gamma_A x_A$$

$$\mu_A = \mu_A^* + RT \ln x_A + RT \ln \gamma_A$$

Activities (cont.)

Solutes: similar definition but in terms of Henry's Law

$$\mu_B = \mu_B^0 + RT \ln a_B$$

$$a_B = \gamma_B x_B$$

Often activities are written in terms of molalities not mole fractions.

Ionic Solutions

$$G_m^{ideal} = \mu_+^{ideal} + \mu_-^{ideal}$$

$$G_m = \mu_+^{ideal} + \mu_-^{ideal} + RT \ln \gamma_+ + RT \ln \gamma_-$$

$$G_m = \mu_+^{ideal} + \mu_-^{ideal} + RT \ln \gamma_+ \gamma_-$$

Typically re-write this as:

$$\gamma_{\pm} = (\gamma_{+}\gamma_{-})^{\frac{1}{2}}$$

$$\mu_{i} = \mu_{i}^{ideal} + RT \ln \gamma_{\pm}$$

Debye-Huckel Law:

$$\log \gamma_{\pm} = -0.509 |z_{+}z_{-}| I^{1/2}$$

$$I = \frac{1}{2} \sum_{i} z_{i}^{2} \left(\frac{b_{i}}{b^{0}} \right)$$
 I is called the "ionic strength"

Ionic Strength

$$\log \gamma_{\pm} = -0.509 |z_{+}z_{-}| I^{1/2}$$

$$I = \frac{1}{2} \sum_{i} z_i^2 \left(\frac{b_i}{b^0} \right)$$

$$\log \gamma_{\pm} = -0.509 |z_{+}z_{-}| I^{1/2}$$

$$I = \frac{1}{2} \left(b_+ z_+^2 + b_- z_-^2 \right) / b^0$$
 For solution with 2 types of ions

How big is the effect of the ion interactions

Table 5F.2* Mean activity coefficients in water at 298 K

b/b^{\ominus}	KC1	CaCl ₂
0.001	0.966	0.888
0.01	0.902	0.732
0.1	0.770	0.524
1.0	0.607	0.725

$$\mu_i = \mu_i^{ideal} + RT \ln \gamma_{\pm}$$

Extensions to Debye-Huckel Theory

Book discusses, don't worry about it for this course

Chemical Equilibrium and Spontaneous Reactions -

A simple reaction: $A \rightleftharpoons B$

$$dn_A = -d\xi$$

$$dn_{\scriptscriptstyle R} = +d\xi$$

 $dn_R = +d\xi$ Where ξ is the "extent of reaction"

$$\Delta_r G = \left(\frac{\partial G}{\partial \xi}\right)_{p,T}$$

$$\Delta_r G = \mu_B - \mu_A$$

Free Energy Change as a Function of Extent of Reaction

Extent of reaction, ξ

Simple Case: Ideal Gases

$$\Delta_r G = \mu_B - \mu_A$$

$$\Delta_r G = \left(\mu_B^0 + RT \ln p_B\right) - \left(\mu_A^0 + RT \ln p_A\right)$$

$$\Delta_r G = \Delta_r G^0 + RT \ln \left(\frac{p_B}{p_A}\right)$$

$$\Delta_r G = \Delta_r G^0 + RT \ln Q$$

At equilibrium: $\Delta G_r = 0$

So: $\Delta G^0 = -RT \ln Q_{equilibrium}$

$$\Delta G^{0} = -RTlnK$$

$$K = \left(\frac{p_{B}}{p_{A}}\right)_{equilibrium}$$

For A↔B (ideal gases) Mixing is important

SEE YOU Monday