Комбинаторика

Принцип на Дирихле

- Нека имаме 15 предмета и 10 чекмеджета.
 Трябва да разпределим всички предмети, така че да не останат празни чекмеджета. При това положение винаги ще има чекмедже с поне 2 предмета в него.
- Друг пример: От биологията е известно, че човешката коса се състои приблизително от 200000 косъма.
 - => В Бургас има поне 2-ма човека с еднакъв брой косми на главата си
 - населението на Бургас е малко над 203 000 души към 2019-та
- Нарича се още Принцип на чекмеджетата или Pigeonhole principle

Принцип на Дирихле

Комбинаторика

- Комбинаториката е изкуството да броим неща (групи от неща)
- Примери:
 - Въпросът "по колко начина?"
 - Въпросът "колко ..., които ... съществуват?"
 - Въпросът "съществува ли …, така че… ?" и др.
 - Има сериозно значение за игрите с карти, хазартните игри и др.
- Комбинаториката е пряко свързана с Теорията на вероятностите, както и Теорията на графите и редица други клонове на математиката
- Комбинаториката е от сериозно значение и за работата на програмиста.

Означение в комбинаториката

Комбинаториката обикновено работи с множества и техните елементи. В този смисъл:

- N общ брой елементи в множеството
- К избран брой елементи от множеството
 - Обикновено N е фиксирано, а K е в зависимост от разглеждания проблем
- Комбинаторно съединение избрани елементи от дадено множество, съгласно правилата на комбинаториката
 - С повторение и без повторение
 - о Подредени и неподредени

Какво означава с повторение и без повторение?

Ако вземем топче от кутията ще го върнем ли вътре след като сме видели цвета му?

- Да => с повторение
 - Възможно е отново да изтеглим същото топче при последващо тегелене
- Не => без повторение
 - Не е възможно да изтеглим отново същото топче

Правила в комбинаториката

- Правило на събирането
 - Възможно е да направим избор на обект А по n начина, а на друг обект В
 по m начина. Тогава общия брой на възможните избори, включващи А и
 В е n + m
- Правило на умножението
 - Възможно е да направим избор на обект А по n начина, след всеки такъв избор можем да изберем обект В по m начина. Тогава общия брой възможни избори е n * m

Пример: 3 хвърляния на монети

- Част от комбинаторните задачи могат да се решат чрез диаграма на дървото
 - Рисуват се всички междинни резултати
 - Път през дървото показва един възможен изход
 - Удачен начин, когато възможностите са малко
- Пример: Каква е вероятността при 3 хвърляния да се падне тора (tails) и трите пъти?
 - Отговор: 1/8

Пример: Хапване в ресторант

- Ресторант предлага:
 - 5 предястия
 - 8 основни ястие
 - 4 десерта
 - Може да изберете 1 курс, 2 курса или всичките 3 курса едновременно.
- По колко възможни начина може да се стори това?
 - Един курс = предястие или основно или десерт = 5 + 8 + 4 = 17
 - Два курса = предястие и основно, предястие или десерт, основно или десерт
 - Предястие и основно = 5 * 8 = 40
 - Предястие и десерт = 5 * 4 = 20
 - Основно и десерт = 8 * 4 = 32
 - Три курса = предястие, основно и десерт = 5 * 8 * 4 = 160
 - Общо = 17 + 92 + 160 = 269 начина

Какво означава подреден и неподреден?

			АВТОМАТИЧНО									
	1	2	3	4	5	6	7					
	8	9	10	11	12	13	14					
	15	16	17	18	19	20	21					
CA3		23										
E	29	30	31	32	33	34	35					
	36	37	38	39	40	41	42					
	43	44	45	46	47	48	49					

		АВТОМАТИЧНО										
	7	6	5	4	3	2	1					
	14	13	12	11	10	9	8					
	21	20	19	18	17	16	15					
CA3	28	27	26	25	24	23	22					
ē	35	34	33	32	31	30	29					
	42	41	40	39	38	37	36					
	49	48	47	46	45	44	43					

	1	2	3	4	5	6	7			
	8	9	10	11	12	13	14			
CA3	15	16	17	18	19	20	21			
6	22	23	24	25	26	27	28			
	29	30	31	32	33	34	35			
	36	37	38	39	40	41	42			
	43	44	45	46	47	48	49			
		АВТОМАТИЧНО								

1	2	3	4	5	6	7				
8	9	10	11	12	13	14				
15	16	17	18	19	20	21	CA3			
22	23	24	25	26	27	28	ě			
29	30	31	32	33	34	35				
36	37	38	39	40	41	42				
43	44	45	46	47	48	49				
	АВТОМАТИЧНО									

- Има ли значение в какъв ред ще изберем 6 от 49 числа за евентуалната ни печалба от лотарията или не?
 - Не => неподреден
 - редът на участие на елементите не от значение
 - Да => подреден
 - Редът на участие на елементите е от значение

Пермутации

- Пермутация всяко едно разместване на елементите на едно множество
 - Участват всички елементи
 - Редът е от значение
 - Означение: P_n
- Брой на пермутациите:
 - Първият елемент може да бъде избран по **n** начина
 - Вторият елемент може да бъде избран по **n-1** начина
 - Третият елемент може да бъде избран по n-2 начина и т. н.
- Общо: n! = 1 * 2 * ... * n

Алгоритъм за генериране на пермутации

- Използва се функция с един параметър Permute(index)
- Обхождат се елементите на индекси i=0...n-1 и се проверяват дали са използвани
- Маркират се всички използвани елементи
- Извиква се рекурсивно функцията Permute(index + 1), за да се генерира останалата част от масива

Генериране на пермутации в Python

• Python разполага с библиотека itertools, която позволява лесно и удобно генериране на пермутации:

```
from itertools import permutations
```

```
items = ['red', 'green', 'blue']
shuffles = permutations(items)
```

```
for shuffle in shuffles:
    print(shuffle)
```

Комбинации

- Комбинация неподредено подмножество от k елемента избрани от общо n елемента
- Означение: C_n^k
- Брой на комбинациите на **n** елемента от **k**-ти кла $C_n^k = \frac{n!}{(n-k)!k!}$
- Известно и като "n choose k" (n избира k, биномен коефициент):

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Алгоритъм за генериране на комбинации

- Използва се функция с два параметъра comb(index, start)
- Индекса і има за начална стойност start, и крайна n-1
- Извиква се рекурсивно функцията comb(index + 1, i + 1), за да се генерира останалата част от масива


```
Comb(k, start)
Print();
Stop!
```

Генериране на комбинации в Python

from itertools import combinations

```
items = ['cian', 'magenta', 'yellow', 'key']
combos = combinations(items, 3)
```

```
for combo in combos:
    print(combo)
```

Комбинации от 3 клас от общо 4 елемента

Вариации

- Вариация подредено подмножество от k елемента избрани от общо n елемента $\frac{1}{2} \sqrt{k}$
- Означение:
- Ерой на рарманията на в апомонта от 6 ти ипас;

$$V_n^k = n.(n-1).....(n-k+1) = \frac{n!}{(n-k)!}$$

Биномни коефициенти

- За комбинация на n елемента от k- ти клас използваме означението
- Броят на всички различни комбинации на n елемента от k-ти клас съвт $\begin{pmatrix} n \\ a n \\ k \end{pmatrix}$ с
- ullet Връзка между биономните коефициенти: $egin{pmatrix} n \ k \end{pmatrix} = egin{pmatrix} n \ n-k \end{pmatrix}$
- Тези числа са известни като биномни коефициенти, тъй като те участват в Нютоновия бином (математическа теорема за разлагане на двучлен, повдигнат на степен).

$$\left(x+y
ight)^n = \sum igcup_{k=0}^n igcup_k^n x^k y^{n-k}$$

Биномни коефициенти

• Някои свойства на биномните коефициенти:

$$C_n^0=C_n^n=1$$
 $C_n^1=C_n^{n-1}=n$ $inom{n}{k}=inom{n-1}{k}+inom{n-1}{k-1}$

Биномни коефициенти

• Код на Python:

```
import scipy.special
n, k = 10, 5
result = scipy.special.comb(n, k, exact=True)
print(result)
```

• Важно: Считано от версия 3.8 нататък, math библиотеката в Python също притежава comb функция

Триъгълник на Паскал

Триъгълник на Паскал

- Аритметичен триъгълник, съдържащ биномните коефициенти.
- Позволява да разположите биномните коефициенти, като всяко число е равно на сумата от двете числа над него.

Триъгълник на Паскал

							1							
						1		1						
					1		2		1					
				1		3		3		1				
			1		4		6		4		1			
		1		5		10		10		5		1		
	1		6		15		20		15		6		1	
1		7		21		35		35		21		7		1

Благодаря за вниманието!

Автор: Петър Р. Петров, учител по програмиране, ПГЕЕ "Константин Фотинов", гр. Бургас