3 Neural Networks

PVK 2019: <u>MAD</u>

bacdavid@student.ethz.ch

gitlab.ethz.ch/bacdavid

Schedule

1. Theory

- 1. Setup
- 2. Neurons
- 3. Neural Networks
- 4. Operations on Neural Networks
- 5. Gradient Descent
- 6. Backpropagation
- 2. Exercises
- 3. Homework

Theory

Setup

- Dataset
- Inputvector
- Weightvector
- Weightmatrix
- Biasvector
- Intermediate output
- Final output
- Activation function
- Elementwise activation function

$$D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$$

$$\vec{x} = [x_1, ..., x_n]^T$$

$$\vec{w} = [w_1, ..., w_n]^T$$

$$W = [\vec{w}_1, ..., \vec{w}_k]^T$$

$$\vec{b} = [b_1, ..., b_k]^T$$

$$\vec{o} = [o_1, ..., o_k]^T$$

$$y$$

$$f(\cdot)$$

$$\vec{F}(\vec{v}) = [f(v_1), ...]$$

4 Neural Networks

1

Neurons

- Operation of each neuron:
 - 1. Each input x_i is weighted by w_i
 - 2. Then summed over
 - 3. Then an activation function f is applied

Neurons cont. Example

• Write the output of the neuron using \vec{x} , \vec{w}

Neural Network

- Layers of interconnected neurons
- Universal function approximator
- Can approximate any function

Neural Networks cont. Example

- Describe W and $\vec{F}(\cdot)$
- Write the output of one layer of a neural network using W, \vec{x}

Gradient Descent

• Minimize the error:

$$e(w) = \sum_{i=1}^{N} (y_i - y(w))^2$$

• Use gradient descent for each weight:

$$w_j \leftarrow w_j - \eta \cdot \frac{d \ e(w_j)}{dw_j}$$

Back propagation

- Method to use gradient descent in neural network efficiently
- Use chain rule of the gradient
- How it is done:
- Do a forward pass: Check what output is being produced
- 2. Compare the output with the target (check the error)
- 3. Check how every weight is responsible for the produced error: Gradient
- 4. Use the chain rule to propagate the error back through the network and adjust the weights accordingly (learning rate η)

$$\frac{\partial error}{\partial w_i} = \underbrace{\frac{\partial error}{\partial o_i}}_{} \cdot \frac{\partial o_i}{\partial w_i}$$

$$\frac{\partial \ o_{i+1}}{\partial \ o_{i}} \cdot \frac{\partial \ error}{\partial \ o_{i+1}}$$

4 Neural Networks

10

Back propagation cont. Example

• Given:

• 2D input, 1 neuron on hidden layer, RELU activation; 1 neuron on readout, Linear activation

Task:

- Draw the system
- Compute the gradients
- Compute one weight update starting with $w_1=w_2=w_3=1$ and $x_1=x_2=2$ and $\eta=0.1$ and $y_{target}=2$ of $w_1\leftarrow w_1-\eta\cdot\frac{d\ e(w_1)}{dw_1}$.

- Task:
 - What operations does the neural network perform on a forward pass?
 - What operation can be performed on a backward pass?
 - Does a backward pass require a forward pass for optimization?

- Task:
 - Will we find a global minimum with Gradient descent?
 - What does the derivative intuitively mean?
 - What's the derivative in higher dimensions?

- o_1 uses a $f(x) = \max(x, 0)$ (called ReLU) activation function, y a linear one
- The neural network on the right can be written as layers: $o_1 = f(\vec{w}_1^T \vec{x})$ and $y = \vec{w}_2^T \vec{o}$. What are the entries in $\vec{w}_1, \vec{w}_2, \vec{x}$, and \vec{o} ?
- Define the error as $(y \tilde{y})^2$. Compute $\frac{d e}{dw_1}$.
- Assume $w_1=w_2=w_3=w_4=1$ and $x_1=x_2=x_3=1$ and $\eta=0.1$ and $y_{target}=2$. Compute one gradient update step as $w_1\leftarrow w_1-\eta\cdot\frac{d\ error(w_1)}{dw_1}$.
- Compute the gradient of the error ∇e and all relevant terms for the back propagation.

- Task:
 - Draw the following network:
 - 1. Input with 3 entries
 - 2. Hidden layer with 4 neurons and ReLU activation
 - 3. Second hidden layer with 2 neurons and ReLU activation
 - 4. Readout layer with 2 outputs and linear activation
 - Write down the matrices
 - Write down the gradient of the error $\nabla error$, (don't decompose the derivatives)

Homework

HW 1

Consider the following neural network with two logistic hidden units h_1 , h_2 , and three inputs x_1 , x_2 , x_3 . The output neuron f is a linear unit, and we are using the squared error cost function $E = (y - f)^2$. The logistic function is defined as $\rho(x) = 1/(1 + e^{-x})$.

[Note: You can solve part (c) without using the solution for part (b).]

- (a) Consider a single training example $x = [x_1, x_2, x_3]$ with target output (label) y. Write down the sequence of calculations required to compute the squared error cost (called forward propagation).
- (b) A way to reduce the number of parameters to avoid overfitting is to tie certain weights together, so that they share a parameter. Suppose we decide to tie the weights w_1 and w_4 , so that $w_1 = w_4 = w_{\text{tied}}$. What is the derivative of the error E with respect to w_{tied} , i.e. $\nabla_{w_{\text{tied}}} E$?