

Preliminary datasheet

EasyPACK™ module with CoolSiC™ Trench MOSFET and PressFIT / NTC

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 75 A / I_{DRM} = 150 A$
 - Low inductive design
 - Low switching losses
 - High current density
 - Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder
- Mechanical features
 - PressFIT contact technology
 - Integrated NTC temperature sensor
 - Rugged mounting due to integrated mounting clamps
 - Package with CTI > 600
 - High current pin

Potential applications

- High-frequency switching application
- DC/DC converter
- · DC charger for EV

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyPACK™ module

Table of contents

	Description
	Features
	Potential applications
	Product validation
	Table of contents
1	Package
2	MOSFET, T1 / T2
3	Body diode (MOSFET, T1 / T2)
4	MOSFET, T3 / T4
5	Body diode (MOSFET, T3 / T4)
6	NTC-Thermistor
7	Characteristics diagrams
8	Circuit diagram
9	Package outlines
10	Module label code
	Revision history
	Disclaimer

EasyPACK™ module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Isolation test voltage NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Comparative tracking index	СТІ		> 600	
Relative thermal index	RTI	frame	130	°C
(electrical)		lid	130	

Table 2 Characteristic values

Parameter	Symbol	Note or test condition	Values			
			Min.	Тур.	Max.	
Stray inductance module	L_{sCE}			19		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch		2.6		mΩ
Storage temperature	$T_{\rm stg}$		-40		130	°C
Mounting force per clamp	F		40		80	N
Weight	G			38		g

Note: The current under continuous operation is limited to 50 A rms per connector pin.

2 MOSFET, T1 / T2

Table 3 Maximum rated values

Parameter	Symbol Note or test condition		Values	Unit	
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			75	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 25 °C	95	А
Repetitive peak drain current	/ _{DRM}	verified by design, t _p lim	verified by design, t _p limited by T _{vjmax}		А
Gate-source voltage, max. transient voltage	V _{GS}	D < 0.01		-10/25	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

EasyPACK™ module

2 MOSFET, T1 / T2

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 75 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		8.3		mΩ
			V _{GS} = 18 V, T _{vj} = 125 °C		13		
			V _{GS} = 18 V, T _{vj} = 175 °C		16.8		
			V _{GS} = 15 V, T _{vj} = 25 °C		10		
Gate threshold voltage	V _{GS(th)}	$I_D = 33 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V}.$		3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		0.237		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			3.5		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		7.21		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.293		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.02		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		121		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.3	296	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 10 \Omega,$	T _{vj} = 25 °C		50.4		ns
(inductive load)		$V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ V}_{GS}$	T _{vj} = 125 °C		45.7		
		to 0.1 I _D	T _{vj} = 175 °C		43.8		
Rise time (inductive load)	t _r	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 10 \Omega,$	T _{vi} = 25 °C		24.5		ns
		$V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V},$	T _{vj} = 125 °C		22.1		
		$t_{\rm dead} = 1000$ ns, 0.1 $t_{\rm D}$ to	T _{vi} = 175 °C		21.5		1

(table continues...)

EasyPACK™ module

3 Body diode (MOSFET, T1 / T2)

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-off delay time	t _{d off}	$I_D = 75 \text{ A}, R_{Goff} = 2.7 \Omega,$ $V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V},$ $0.9 V_{GS} \text{ to } 0.9 I_D$	T _{vj} = 25 °C		63		ns
(inductive load)			T _{vj} = 125 °C		71.4		
		0.5 VGS to 0.5 ID	T _{vj} = 175 °C		76.4		
Fall time (inductive load)	t _f	$I_{\rm D} = 75 \text{ A}, R_{\rm Goff} = 2.7 \Omega,$	T _{vj} = 25 °C		28.7		ns
		$V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V},$ 0.9 I _D to 0.1 I _D	T _{vj} = 125 °C		31		
		0.5 10 to 0.1 10	<i>T</i> _{vj} = 175 °C		32.5		
Turn-on energy loss per E _{on} pulse	E _{on}	$I_{\rm D} = 75 \text{ A}, V_{\rm DD} = 800 \text{ V},$	<i>T</i> _{vj} = 25 °C		2.57		mJ
		$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 10 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		2.74		
	$4.11 \text{ kA/}\mu\text{s} (T_{\text{vj}} = 175 \text{ °C}),$ $t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		2.94			
Turn-on energy loss per		/ - 15 pU // - 2/10 //	T _{vj} = 25 °C		1.01		mJ
pulse, optimized			T _{vj} = 125 °C		1.11		
		10.6 kA/ μ s (T _{vj} = 175 °C), t_{dead} = 100 ns	T _{vj} = 175 °C		1.27		
Turn-off energy loss per	E _{off}	$I_{\rm D} = 75 \text{A}, V_{\rm DD} = 800 \text{V},$	T _{vj} = 25 °C		0.8		mJ
pulse		$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2.7 \Omega, \text{ dv/dt} = 28.2$	T _{vj} = 125 °C		0.86		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		0.91		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, $\lambda_{\text{grease}} = 5 \text{ W}$	/(m·K)		0.635		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C
Temperature under overload switching conditions	T _{vj over}	Overload, cumulative ma	x. 100 h			200	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2025-02 must be considered to ensure sound operation of the device over the planned lifetime.

3 Body diode (MOSFET, T1 / T2)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _H = 25 °C	50	А

EasyPACK™ module

4 MOSFET, T3 / T4

Table 7 Characteristic values

Parameter	Symbol	Note or test condition	Note or test condition		Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V _{SD}	V_{SD} $I_{SD} = 75 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.35	5.35	V
			T _{vj} = 125 °C		4.05		
			T _{vj} = 175 °C		3.9		
current 4.11 kA/	$I_{SD} = 75 \text{ A}, di_s/dt =$	T _{vj} = 25 °C		35.2		Α	
		4.11 kA/ μ s, V_{DD} = 800 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		50		
			T _{vj} = 175 °C		61.5		
Recovered charge	Qrr	4 1 1 1 1 1 1 1 - 000 1	T _{vj} = 25 °C		0.51		μC
			T _{vj} = 125 °C		1.12		
			T _{vj} = 175 °C		1.59		
Reverse recovery energy	E _{rec}	$I_{SD} = 75 \text{ A}, di_s/dt = 4.11$	T _{vj} = 25 °C		0.13		mJ
		$kA/\mu s$ ($T_{vj} = 175 ^{\circ}C$), $V_{DD} = 800 ^{\circ}V$, $V_{GS} = -3 ^{\circ}V$,	T _{vj} = 125 °C		0.34		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		0.5		
Reverse recovery energy, optimized	E _{rec,o}	$I_{SD} = 75 \text{ A}, di_s/dt = 10.6$	T _{vj} = 25 °C		0.89		mJ
		$kA/\mu s$ ($T_{vj} = 175$ °C),	T _{vj} = 125 °C		1.73		1
	ν_{DD} – 800 v, ν_{GS} – -3 v,	T _{vj} = 175 °C		2.6		1	

4 MOSFET, T3 / T4

Table 8 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			75	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 25 °C	85	А
Repetitive peak drain current	I _{DRM}	verified by design, t _p lim	nited by T _{vjmax}	150	А
Gate-source voltage, max. transient voltage	V _{GS}	D < 0.01		-10/25	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

Table 9 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

EasyPACK™ module

4 MOSFET, T3 / T4

Table 10 Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 75 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		8.3		mΩ
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		13		
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 175 ^{\circ}\text{C}$		16.8		
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		10		
Gate threshold voltage	V _{GS(th)}	$I_D = 33 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$		3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		0.237		μC
Internal gate resistor	R_{Gint}	T _{vj} = 25 °C			3.5		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		7.21		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.293		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.02		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		121		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.3	296	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 5.6 \Omega,$	T _{vj} = 25 °C		46		ns
(inductive load)		$V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ V}_{GS}$	T _{vj} = 125 °C		42.9		
		to 0.1 I _D	T _{vj} = 175 °C		41.1		
Rise time (inductive load)	t _r	$I_{\rm D} = 75 \text{A}, R_{\rm Gon} = 5.6 \Omega,$	T _{vj} = 25 °C		19.9		ns
		$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -3/18 V, $t_{\rm dead}$ = 1000 ns, 0.1 I _D to	T _{vj} = 125 °C		17.8		
		0.9 I _D	T _{vj} = 175 °C		17.1		
Turn-off delay time	t _{d off}	$I_{\rm D} = 75 \text{ A}, R_{\rm Goff} = 2.7 \Omega,$	T _{vj} = 25 °C		64.1		ns
(inductive load)		$V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V},$ 0.9 V_{GS} to 0.9 I_{D}	T _{vj} = 125 °C		73.5		
		0.0 163 10 0.0 10	T _{vj} = 175 °C		79.2		
Fall time (inductive load)	t_{f}	$I_{\rm D} = 75 \text{A}, R_{\rm Goff} = 2.7 \Omega,$	T _{vj} = 25 °C		30.7		ns
		$V_{DD} = 800 \text{ V}, V_{GS} = -3/18 \text{ V}, T_{DS} = -3/18 \text{ V}, $	T _{vj} = 125 °C		31.9		
		טיייט	T _{vj} = 175 °C		32.3		

7

(table continues...)

EasyPACK™ module

5 Body diode (MOSFET, T3 / T4)

Table 10 (continued) Characteristic values

Parameter	Symbol	Note or test condition	Values			Unit	
				Min.	Тур.	Max.	
Turn-on energy loss per	E _{on}	$I_D = 75 \text{ A}, V_{DD} = 800 \text{ V},$ $L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 5.6 \Omega, \text{ di/dt} =$	T _{vj} = 25 °C		2.02		mJ
pulse			T _{vj} = 125 °C		2.19		
		4.95 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 1000 ns	T _{vj} = 175 °C		2.43		
Turn-on energy loss per pulse, optimized	E _{on,o}	$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon,o} = 0.0 \Omega, \text{ di/dt} =$	T _{vj} = 25 °C		0.81		mJ
			T _{vj} = 125 °C		0.85		
			T _{vj} = 175 °C		0.99		
Turn-off energy loss per	L_{σ}	$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2.7 \Omega, \text{ dv/dt} = 25.8$	T _{vj} = 25 °C		0.83		mJ
pulse			T _{vj} = 125 °C		0.92		
			T _{vj} = 175 °C		0.98		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, $\lambda_{\text{grease}} = 5 \text{ W/(m·K)}$			0.79		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C
Temperature under overload switching conditions	T _{vj over}	Overload, cumulative max. 100 h				200	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2025-02 must be considered to ensure sound operation of the device over the planned lifetime.

5 Body diode (MOSFET, T3 / T4)

Table 11 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _H = 25 °C	40	Α
current					

Table 12 Characteristic values

Parameter	Symbol	Note or test condition	n	Values			Unit
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 75 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.35	5.35	V
			T _{vj} = 125 °C		4.05		
			T _{vj} = 175 °C		3.9		1

(table continues...)

EasyPACK™ module

6 NTC-Thermistor

Table 12 (continued) Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Max.	
Peak reverse recovery	I _{rrm}	I_{SD} = 75 A, di _s /dt = 4.95 kA/µs, V_{DD} = 800 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 25 °C		40.7		Α
current			T _{vj} = 125 °C		58.1		
		VGS - 3 V, tdead - 1000 113	T _{vj} = 175 °C		70.5		
Recovered charge	Q _{rr}	4 OF 1/4/10 1/ - 000 1/	T _{vj} = 25 °C		0.55		μC
			T _{vj} = 125 °C		1.18		
			T _{vj} = 175 °C		1.61		
Reverse recovery energy	E _{rec}	$I_{SD} = 75 \text{ A}, \text{ di}_{s}/\text{dt} = 4.95$ $kA/\mu s (T_{vj} = 175 ^{\circ}\text{C}),$ $V_{DD} = 800 \text{V}, V_{GS} = -3 \text{V},$ $t_{dead} = 1000 \text{ns}$	T _{vj} = 25 °C		0.14		mJ
			T _{vj} = 125 °C		0.37		
			T _{vj} = 175 °C		0.49		
Reverse recovery energy, optimized	kA	$I_{SD} = 75 \text{ A}, \text{ di}_{s}/\text{dt} = 11.1$ kA/µs ($T_{vj} = 175 ^{\circ}\text{C}$),	T _{vj} = 25 °C		0.88		mJ
			T _{vj} = 125 °C		1.47		
		$V_{\rm DD} = 800 \text{ V}, V_{\rm GS} = -3 \text{ V},$ $t_{\rm dead} = 100 \text{ ns}$	T _{vj} = 175 °C		1.92		

6 NTC-Thermistor

Table 13 Characteristic values

Parameter	Symbol	Note or test condition	Values			Unit
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	$\Delta R/R$	$T_{\rm NTC}$ = 100 °C, R_{100} = 493 Ω	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		К
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$ 341:		3411		К
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		К

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4

EasyPACK™ module

7 Characteristics diagrams

7 Characteristics diagrams

Output characteristic (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

T_{vj} = 175 °C

Drain source on-resistance (typical), MOSFET, T1 / T2 $\,$

 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})} = \mathsf{f}(\mathsf{T}_{\mathsf{v}\mathsf{j}})$

EasyPACK™ module

7 Characteristics diagrams

Transfer characteristic (typical), MOSFET, T1 / T2

$$I_D = f(V_{GS})$$

$$V_{DS} = 20 V$$

Gate-source threshold voltage (typical), MOSFET, T1/

$$V_{GS(th)} = f(T_{vj})$$

$$V_{GS} = V_{DS}$$

Gate charge characteristic (typical), MOSFET, T1 / T2

$$V_{GS} = f(Q_G)$$

$$I_D = 75 A$$
, $T_{vj} = 25 °C$

Capacity characteristic (typical), MOSFET, T1 / T2

$$C = f(V_{DS})$$

$$f = 100 \text{ kHz}, T_{vj} = 25 \,^{\circ}\text{C}, V_{GS} = 0 \,^{\circ}\text{V}$$

11

EasyPACK™ module

Switching times (typical), MOSFET, T1 $\!\!/$ T2

 $t = f(I_D)$

 V_{DD} = 800 V, R_{Gon} = 10 Ω , $R_{Gon,o}$ = 1 Ω , T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET, T1 $\!\!\!/$ T2

 $t = f(I_D)$

 $R_{Goff} = 2.7 \Omega$, $V_{DD} = 800 V$, $T_{vi} = 175 °C$, $V_{GS} = -3/18 V$

Switching times (typical), MOSFET, T1 / T2

 $t = f(R_G)$

 V_{DD} = 800 V, t_{dead} = 1000 ns, I_D = 75 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Current slope (typical), MOSFET, T1 / T2

 $di/dt = f(R_G)$

 V_{DD} = 800 V, t_{dead} = 1000 ns, I_{D} = 75 A, V_{GS} = -3/18 V

EasyPACK™ module

7 Characteristics diagrams

Voltage slope (typical), MOSFET, T1 / T2

 $dv/dt = f(R_G)$

$$V_{DD}$$
 = 800 V, I_{D} = 75 A, V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(I_D)$

$$V_{DD}$$
 = 800 V, R_{Gon} = 10 Ω , $R_{Gon,o}$ = 1 Ω , V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T1 / T2

 $E_{off} = f(I_D)$

$$R_{Goff} = 2.7 \Omega$$
, $V_{DD} = 800 V$, $V_{GS} = -3/18 V$

Switching losses (typical), MOSFET, T1 / T2

 $E = f(R_G)$

$$V_{DD} = 800 \text{ V}, t_{dead} = 1000 \text{ ns}, I_D = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$$

EasyPACK™ module

7 Characteristics diagrams

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(V_{GS(off)})$

$$R_{Goff}$$
 = 2.7 $\Omega,$ V_{DD} = 800 V, R_{Gon} = 10 $\Omega,$ $V_{GS(on)}$ = 18 V, I_D = 75 A, $R_{Gon,o}$ = 1 $\Omega,$ T_{vj} = 175 °C

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(t_{dead})$

$$R_{Gon}$$
 = 10 Ω , I_D = 75 A, V_{DD} = 800 V, V_{GS} = -3/18 V

Reverse bias safe operating area (RBSOA), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

$$R_{Goff} = 3.3 \Omega, T_{vi} = 175 \,^{\circ}C, V_{GS} = -3/18 \,^{\circ}V$$

Reverse bias safe operating area (RBSOA), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

EasyPACK™ module

7 Characteristics diagrams

Transient thermal impedance, MOSFET, T1 / T2

 $Z_{th} = f(t)$

Forward characteristic body diode (typical), MOSFET, T1 / T2

$$I_{SD} = f(V_{SD})$$

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(V_{GS(off)})$

 R_{Goff} = 2.7 Ω , R_{Gon} = 10 Ω , $V_{GS(on)}$ = 18 V, I_{SD} = 75 A, $R_{Gon,o}$ = 1 Ω , V_{DD} = 800 V, T_{vj} = 175 °C

Switching losses body diode (typical), MOSFET, T1 / T2

$$E_{rec} = f(t_{dead})$$

$$R_{Gon} = 10 \Omega$$
, $I_D = 75 A$, $V_{DD} = 800 V$, $V_{GS} = -3/18 V$

EasyPACK™ module

Output characteristic (typical), MOSFET, T3 / T4

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET, T3 / T4

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET, T3 / T4

 $I_D = f(V_{DS})$

 $T_{vi} = 175 \,^{\circ}\text{C}$

Drain source on-resistance (typical), MOSFET, T3 / T4

 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})} = \mathsf{f}(\mathsf{T}_{\mathsf{v}\mathsf{j}})$

EasyPACK™ module

7 Characteristics diagrams

Transfer characteristic (typical), MOSFET, T3 / T4

$$I_D = f(V_{GS})$$

$$V_{DS} = 20 V$$

Gate-source threshold voltage (typical), MOSFET, T3 /

$$V_{GS(th)} = f(T_{vj})$$

$$V_{GS} = V_{DS}$$

Gate charge characteristic (typical), MOSFET, T3 / T4

$$V_{GS} = f(Q_G)$$

$$I_D = 75 A$$
, $T_{vj} = 25 °C$

Capacity characteristic (typical), MOSFET, T3 / T4

$$C = f(V_{DS})$$

$$f = 100 \text{ kHz}, T_{vj} = 25 \,^{\circ}\text{C}, V_{GS} = 0 \,^{\circ}\text{V}$$

EasyPACK™ module

Switching times (typical), MOSFET, T3 / T4

 $t = f(I_D)$

 V_{DD} = 800 V, R_{Gon} = 5.6 Ω , $R_{Gon,o}$ = 0.0 Ω , T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET, T3 / T4

 $t = f(I_D)$

 $R_{Goff} = 2.7 \Omega$, $V_{DD} = 800 V$, $T_{vj} = 175 °C$, $V_{GS} = -3/18 V$

Switching times (typical), MOSFET, T3 / T4

 V_{DD} = 800 V, t_{dead} = 1000 ns, I_{D} = 75 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Current slope (typical), MOSFET, T3 / T4

 $di/dt = f(R_G)$

18

 V_{DD} = 800 V, t_{dead} = 1000 ns, I_{D} = 75 A, V_{GS} = -3/18 V

EasyPACK™ module

7 Characteristics diagrams

Voltage slope (typical), MOSFET, T3 / T4

 $dv/dt = f(R_G)$

$$V_{DD}$$
 = 800 V, I_{D} = 75 A, V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T3 / T4

 $E_{on} = f(I_D)$

$$V_{DD}$$
 = 800 V, R_{Gon} = 5.6 Ω , $R_{Gon,o}$ = 0.0 Ω , V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T3 / T4

 $E_{off} = f(I_D)$

$$R_{Goff} = 2.7 \Omega$$
, $V_{DD} = 800 V$, $V_{GS} = -3/18 V$

Switching losses (typical), MOSFET, T3 / T4

 $E = f(R_G)$

$$V_{DD} = 800 \text{ V}, t_{dead} = 1000 \text{ ns}, I_{D} = 75 \text{ A}, V_{GS} = -3/18 \text{ V}$$

EasyPACK™ module

7 Characteristics diagrams

Switching losses (typical), MOSFET, T3 / T4

 $E_{on} = f(V_{GS(off)})$

Switching losses (typical), MOSFET, T3 / T4

 $E_{on} = f(t_{dead})$

Reverse bias safe operating area (RBSOA), MOSFET, T3 / T4

 $V_{GS(off)}(V)$

-1

 $I_D = f(V_{DS})$

4

2

0

-5

 $R_{Goff} = 3.6 \Omega, T_{vi} = 175 \,^{\circ}C, V_{GS} = -3/18 \,^{\circ}V$

-4

Reverse bias safe operating area (RBSOA), MOSFET, T3 / T4

 $I_D = f(V_{DS})$

 $R_{Goff} = 2.7 \Omega$, $T_{vi} = 175 \,^{\circ}$ C, $V_{GS} = -3/18 \,^{\circ}$ V

EasyPACK™ module

7 Characteristics diagrams

Transient thermal impedance, MOSFET, T3 / T4

 $Z_{th} = f(t)$

Forward characteristic body diode (typical), MOSFET, T3 / T4 $\,$

 $I_{SD} = f(V_{SD})$

Switching losses body diode (typical), MOSFET, T3 / T4

 $E_{rec} = f(V_{GS(off)})$

 R_{Goff} = 2.7 $\Omega,$ R_{Gon} = 5.6 $\Omega,$ $V_{GS(on)}$ = 18 V, I_{SD} = 75 A, $R_{Gon,o}$ = 0 $\Omega,$ V_{DD} = 800 V, T_{vj} = 175 °C

 $E_{rec} = f(t_{dead})$

 $R_{Gon} = 5.6 \Omega$, $I_D = 75 A$, $V_{DD} = 800 V$, $V_{GS} = -3/18 V$

EasyPACK™ module

7 Characteristics diagrams

8 Circuit diagram

8 Circuit diagram

Figure 1

9 Package outlines

9 Package outlines

Figure 2

EasyPACK™ module

10 Module label code

10 Module label code

Module label cod			1			
Code format	Data Matrix		Barcode C	Barcode Code128		
Encoding	ASCII text		Code Set A	A		
Symbol size	16x16		23 digits			
Standard	IEC24720 and IEC16022	IEC24720 and IEC16022				
Code content	Content	Digit		Example		
	Module serial number	1-5		71549		
	Module material number	6 - 11		142846		
	Production order number	12 - 19		55054991		
	Date code (production year)	20 – 21		15		
	Date code (production week)	30				
Example						

Figure 3

EasyPACK™ module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2025-01-29	Target datasheet
0.20	2025-06-17	Preliminary datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-06-17 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABM587-002

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.