Stochastic Processes: Homework 0

Martín Prado

November 2023 Universidad de los Andes — Bogotá Colombia

Exercise 1

Consider a sequence of i.i.d. random variables $(X_i)_{i\in\mathbb{N}}$ with $\mathbf{E}\,X_i=0$ and $\mathbf{Var}\,X_i=1$ for every $i\in\mathbb{N}$.

1. Show with th Law of Large Numbers that,

$$\lim_{n\to\infty} \|X_1,\dots,X_n\|_2 - \sqrt{n} \to 0$$

- (a) in \mathbb{P} ,
- (b) a.e.,
- (c) in distribution,
- (d) Show that if $X_i \in L^p$ for some p > 1, then it converges in L^q for every $q \in [1 \le p)$.
- 2. Infer from the previous results that for

$$\text{Law}(X_1, \dots, X_n) \approx \text{UNI}(\sqrt{n}\mathbb{S}^{n-1})$$

Solution Part 1

Exercise 2

Show that for every random variable $X \in L^2$,

$$\mathbf{E} |X - \mathbf{E} X|^2 \le \mathbf{E} |X|^2$$

Exercise 3

Let $f:[0,1]\to\mathbb{R}$ be a continuos function. Show with the Law of Large Numbers that there exists a sequence of polynomial $(P_n)_{n\in\mathbb{N}}$ such that $\deg(P_n)=n$ and,

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f(x) - P_n(x)| = 0.$$