多元函数微分学

Didnelpsun

目录

1	基本	基本概念														1											
	1.1	1 二元函数																1									
	1.2	复合函	對数	Į.																							1
		1.2.1	每	生式	法	则																					1
		1.2.2	朱		k值	反	代																				2
	1.3	积分与微分															2										
		1.3.1	利	只分	到	微	分																				2
		1.3.2	待) 分	到	积	分																				2
	1.4	全微分) .																								3
		1.4.1	<u> </u>	参	数	. •																					3
		1.4.2	材	逐	建定	义																					3
		1.4.3	K	逐	数	. •																					4
2	多元	· 还函数极值最值 5																									
	2.1	无条件	卡极	ն值	. •	•											•					•					5
3	多元	· · · · · · · · · · · · · · · · · · ·															5										
	3.1	空间曲	自线	的	切	线」	与洗	去	平	面	i																5
		3.1.1	参	⋛数	方	程																					5
		3.1.2	ヹ	を面	ī式	方	程																				5
	3.2	2 空间曲面的切平面与法线															6										
		3.2.1	隱	左总	٠ ,																						6
		3.2.2	7 F	起式	٠ ,	•																					6

1 基本概念

1.1 二元函数

函数以 f(u,v) 的形式来出现,需要分别对其求偏导。

例题: 设 $z = e^{xy} + f(x+y,xy)$, f(u,v) 有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。

解: 令 x+y 为 u, xy 为 v, f(u,v) 对 u 求导就是 f'_1 , 对 v 求导就是 f'_2 , 求 uv 依次求导就是 f''_{12} , 以此类推。

首先求一次偏导:
$$\frac{\partial z}{\partial x} = ye^{xy} + \frac{\partial f(u,v)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f(u,v)}{\partial v} \frac{\partial v}{\partial x} = ye^{xy} + f'_1 + f'_2 y$$
。接着对 y 求偏导: $\frac{\partial^2 z}{\partial x \partial y} = e^{xy} + xye^{xy} + \frac{\partial f'_1}{\partial y} + \frac{\partial f'_2 y}{\partial y}$

$$= e^{xy} + xye^{xy} + \frac{\partial f'_1}{\partial y} + \frac{\partial f'_2}{\partial y} y + f'_2 \frac{\partial y}{\partial y} = e^{xy} + xye^{xy} + \frac{\partial f'_1}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial f'_1}{\partial v} \frac{\partial v}{\partial y} + \frac{\partial f'_2}{\partial v} \frac{\partial v}{\partial y} + \frac{\partial f'_2}{\partial v} \frac{\partial v}{\partial y} + f'_2 = e^{xy} + xye^{xy} + f''_{11} + f''_{12}x + f''_{21}y + f''_{22}xy + f'_2$$
。
$$\nabla f(u,v)$$
具有两阶连续偏导数,所以 $f''_{12} = f''_{21}$ 。

 $\mathcal{N}_{f}(u,v)$ $\mathcal{N}_{f}(u,v)$

1.2 复合函数

函数以复合函数形式 f(q(x,y)) 出现,函数的变量是一个整体。

1.2.1 链式法则

若是给出相应的不等式可以通过链式法则求出对应的表达式。

例题: 设 $u=u(\sqrt{x^2+y^2})$ $(r=\sqrt{x^2+y^2}>0)$ 有二阶连续的偏导数,且满足 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}-\frac{1}{x}\frac{\partial u}{\partial x}+u=x^2+y^2$,则求 $u(\sqrt{x^2+y^2})$ 。

解: 这个函数是复合函数 u=u(r) 和 $r=\sqrt{x^2+y^2}$ 而成。根据复合函数求导法则:

$$\frac{\partial u}{\partial x} = \frac{\mathrm{d}u}{\mathrm{d}r} \frac{\partial r}{\partial x} = \frac{\mathrm{d}u}{\mathrm{d}r} \frac{x}{\sqrt{x^2 + y^2}} = \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{x}{r}, \quad \frac{1}{x} \cdot \frac{\partial u}{\partial x} = \frac{1}{r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} \circ$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{x}{r} \right) = \frac{x}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{x}{r} \right) = \frac{x}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{x}{r} \right) = \frac{x}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{x}{r} \right) = \frac{x}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{x}{r} \right) = \frac{x}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial y} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{y}{r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial y} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\partial}{\partial x} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \right) + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot$$

代入不等式:
$$\frac{x^2+y^2}{r^2} \cdot \frac{\mathrm{d}u^2}{\mathrm{d}r^2} + \frac{\mathrm{d}u}{\mathrm{d}r} \cdot \frac{2r^2-x^2-y^2}{r^3} - \frac{1}{r} \cdot \frac{\mathrm{d}u}{\mathrm{d}r} + u = x^2 + y^2$$
。
代入 $x^2+y^2=r^2$: $\frac{\mathrm{d}^2u}{\mathrm{d}r^2} + u = r^2$, 为二阶线性常系数微分方程。
通解为 $u = C_1 \cos r + C_2 \sin r + r^2 - 2$ 。
即 $u(\sqrt{x^2+y^2}) = C_1 \cos \sqrt{x^2+y^2} + C_2 \sin \sqrt{x^2+y^2} + x^2 + y^2 - 2$ 。

1.2.2 特殊值反代

若是给出的不等式后还给出对应的特殊值,可以直接代入然后反代求出函数,而不用链式法则。

例题: 设
$$z = e^x + y^2 + f(x+y)$$
,且当 $y = 0$ 时, $z = x^3$,则求 $\frac{\partial z}{\partial x}$ 。
解: 已知 $y = 0$ 时, $z = e^x + f(x) = x^3$,∴ $f(x) = x^3 - e^x$, $f(x+y) = (x+y)^3 - e^{x+y}$, $z = e^x + y^2 + (x+y)^3 - e^{x+y}$ 。
∴ $\frac{\partial z}{\partial x} = e^x + 3(x+y)^2 - e^{x+y}$ 。

1.3 积分与微分

1.3.1 积分到微分

可能一个函数是积分的形式,又包含多个变量,要求其多元微分值。

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b(x)} f(t) \, \mathrm{d}t = b'(x) f[b(x)] - a'(x) f[a(x)] \, .$$

例题: 设 $z = \int_0^1 |xy - t| f(t) dt$, $0 \le x \le 1$, $0 \le y \le 1$, 其中 f(x) 为连续函数,求 $z''_{xx} + z''_{yy}$ 。

解: 首先因为 z 是一个绝对值的形式,所以根据积分的性质可以拆开积分区间去掉绝对值: $z=\int_0^{xy}(xy-t)f(t)\,\mathrm{d}t+\int_{xy}^1(t-xy)f(t)\,\mathrm{d}t=xy\int_0^{xy}f(t)\,\mathrm{d}t-\int_0^{xy}tf(t)\,\mathrm{d}t+\int_{xy}^1tf(t)\,\mathrm{d}t-xy\int_{xy}^1f(t)\,\mathrm{d}t$ 。

$$\begin{split} z_x' &= y \int_0^{xy} f(t) \, \mathrm{d}t + x y^2 f(xy) - x y^2 f(xy) - x y^2 f(xy) - y \int_{xy}^1 f(t) \, \mathrm{d}t + x y^2 f(xy) = y \int_0^{xy} f(t) \, \mathrm{d}t - y \int_{xy}^1 f(t) \, \mathrm{d}t \, \cdot \end{split}$$

 $z''_{xx}=y^2f(xy)+y^2f(xy)=2y^2f(xy)$,同理根据变量对称性 $z''_{yy}=2x^2f(xy)$, $z''_{xx}+z''_{yy}=2(x^2+y^2)f(xy)$ 。

1.3.2 微分到积分

注意多元函数进行积分的适合多出来的常数 C 不再是常数,而是与积分变量相关的 C(x), C(y),因为对其中一个变量积分时,另一个变量是看作常数的。

例题: 设 z=f(x,y) 满足 $\frac{\partial^2 z}{\partial x \partial y}=x+y$,且 f(x,0)=x, $f(0,y)=y^2$,求 f(x,y)。

解:根据 $\partial x \partial y$ 的求导顺序反向积分:

$$\frac{\partial z}{\partial x} = \int (x+y) \, \mathrm{d}y = xy + \frac{1}{2}y^2 + C_1(x). \quad (x 看作常数)$$

再次积分 $z = \int \left(xy + \frac{1}{2}y^2 + C_1(x) \right) dx = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + \int C_1(x) dx + C_2(y)$ 。(y 看作常数)

又
$$f(x,0) = x$$
,代入 $\int C_1(x) dx + C_2(0) = x$,两边求导 $C_1(x) = 1$,即 $\int C_1(x) dx = \int dx = x$, $z = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + x + C_2(y)$ 。
又 $f(0,y) = y^2$,代入 $C_2(y) = y^2$ 。

$$\therefore z = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + x + y^2.$$

1.4 全微分

1.4.1 含参数

基本上是用含参数的全微分来求参数。有多种方法。

例题: 设 $(ax^2y^2 - 2xy^2)dx + (2x^3y + bx^2y + 1)dy$ 是函数 f(x,y) 的全微分,求参数。

解: 由全微分定义可知, $f'_x = ax^2y^2 - 2xy^2$, $f'_y = 2x^3y + bx^2y + 1$ 。 分别对其积分: $f(x,y) = \int (ax^2y^2 - 2xy^2) dx = \int (2x^3y + bx^2y + 1) dy$ 。 从而 $\frac{a}{3}x^3y^2 - x^2y^2 + C(y) = x^3y^2 + \frac{b}{2}x^2y^2 + y + C(x)$,解得 a = 3,b = -2, $f(x) = x^3y^2 - x^2y^2 + y$ 。

1.4.2 极限定义

全微分形式:
$$\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \frac{\Delta z - (A\Delta x + B\Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$$
。

要求 $\mathrm{d}z|_{(a,b)}$,就要求 $\lim_{(x,y)\to(a,b)}f(x,y)-f(a,b)=cx+dy+o(\rho)$,c 和 d 就是 $\mathrm{d}x\mathrm{d}y$ 的参数。

例题: 连续函数
$$z = f(x,y)$$
 满足 $\lim_{\substack{x \to 0 \ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$,求 $\mathrm{d}z|_{(0,1)}$ 。

解: 当
$$x \to 0$$
, $y \to 1$ 时 $\sqrt{x^2 + (y-1)^2} \to 0$, 又 $\lim_{\substack{x \to 0 \ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$,

$$\therefore \lim_{\substack{x \to 0 \\ y \to 1}} f(x, y) - 2x + y - 2 = 0.$$

又 f(x,y) 连续,则 f(0,1)+1-2=0, f(0,1)=1。将值代入,并按分子配方:

$$\lim_{\substack{x\to 0\\y\to 1}}\frac{f(x,y)-f(0,1)-2x+(y-1)}{\sqrt{x^2+(y-1)^2}}=0, \text{ If } f(x,y)-f(0,1)=2x-(y-1)+o(\rho)\circ$$

根据全微分的定义偏导数就是其系数, $f'_x(0,1) = 2$, $f'_y(0,1) = -1$ 。

$$\therefore dz|_{(0,1)} = 2dx - dy.$$

例题: 设 f(x,y) 在 (0,0) 处连续,且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-a-bx-cy}{\ln(1+x^2+u^2)}=1$,其 中 a, b, c 为常数, 求 $df(x, y)|_{(0,0)}$ 。

解:根据全微分的定义,分母应该是根号的形式,所以对于极限使用等价无穷 小替换 $\ln(x+1) \sim x$, $\ln(1+x^2+y^2) = x^2+y^2$, $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-a-bx-cy}{x^2+y^2} = 1$ 。 又 $(x,y)\to 0$ 时 $x^2+y^2\to 0$, $\therefore f(x,y)-a-bx-cy\to 0$ 。

又 f(x,y) 在 (0,0) 处连续,f(0,0)=a。根据极限和无穷小的关系将其代回: $\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-bx-cy}{x^2+y^2}=1+o(1)$ $\lim_{(x,y)\to(0,0)}f(x,y)-f(0,0)-bx-cy=x^2+y^2+o(1)\cdot(x^2+y^2)=o(\rho)$ 。

$$\lim_{(x,y)\to(0,0)} f(x,y) - f(0,0) - bx - cy = x^2 + y^2 + o(1) \cdot (x^2 + y^2) = o(\rho) \cdot o(x^2 + y^2) = o(\rho) \cdot o(\rho) = o(\rho)$$

$$\lim_{(x,y)\to(0,0)} f(x,y) - f(0,0) = bx + cy + o(\rho).$$

1.4.3 隐函数

二元隐函数求导公式:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'}$$
。

三元隐函数求导公式:
$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}$$
, $\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}$ 。 **例题:** 设 $f(x,y,z) = e^x + y^2z$,其中 $z = z(x,y)$ 由 $x + y + z + xyz = 0$ 确

定, 求 $f'_x(0,1,-1)$ 。

解:
$$f'_x(x,y,z) = e^x + y^2 z'_x$$
。

又
$$x+y+z+xyz=0$$
 对 x 求导: $1+z'_x+yz+xyz'_x=0$,代入 $(0,1,-1)$, $1+z'_x-1=0$, $z'_x=0$ 。代入 $f'_x(x,y,z)=e^0=1$ 。

2 多元函数极值最值

无条件极值 2.1

3 多元函数微分应用

空间曲线的切线与法平面 3.1

3.1.1参数方程

设空间曲线 Γ 由参数方程 $\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases}$ 给出,其中 $\phi(t), \psi(t), \omega(t)$ 均可导, $z = \omega(t)$

 $P_0(x_0, y_0, z_0)$ 为 Ω 上的点,且当 $t = t_0$

- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的切向量为 $\vec{\tau} = (\phi'(t_0), \psi'(t_0), \omega'(t_0))$ 。
- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的切线方程为 $\frac{x x_0}{\phi'(t_0)} = \frac{y y_0}{\psi'(t_0)} = \frac{z z_0}{\psi'(t_0)}$.
- 曲线 Γ 在点 $P_0(x_0, y_0, z_0)$ 处的法平面 (过 P_0 且与切线垂直的平面) 方程 为 $\phi'(t_0)(x-x_0) + \psi'(t_0)(y-y_0) + \omega'(t_0)(z-z_0) = 0$ 。

3.1.2 交面式方程

设空间曲线 Γ 由交面方程 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 给出,则:

• 曲线
$$\Gamma$$
 在点 $P_0(x_0, y_0, z_0)$ 处的切向量为
$$\vec{\tau} = \begin{pmatrix} \begin{vmatrix} F_y' & F_z' \\ G_y' & G_z' \end{vmatrix}_{P_0}, \begin{vmatrix} F_z' & F_x' \\ G_z' & G_x' \end{vmatrix}_{P_0}, \begin{vmatrix} F_x' & F_y' \\ G_z' & G_x' \end{vmatrix}_{P_0}, \begin{vmatrix} F_x' & F_y' \\ G_x' & G_y' \end{vmatrix}_{P_0} \end{pmatrix} .$$

$$\frac{x - x_0}{\left|\begin{array}{ccc} F'_y & F'_z \\ G'_y & G'_z \end{array}\right|_{P_0}}, \frac{y - y_0}{\left|\begin{array}{ccc} F'_z & F'_x \\ G'_z & G'_x \end{array}\right|_{P_0}}, \frac{z - z_0}{\left|\begin{array}{ccc} F'_x & F'_y \\ G'_x & G'_y \end{array}\right|_{P_0}} \circ$$

5

3.2 空间曲面的切平面与法线

3.2.1 隐式

设空间曲面 Σ 由方程 F(x,y,z)=0 给出, $P_0(x_0,y_0,z_0)$ 是 Σ 上的点,则:

- 曲面 Σ 在点 $P_0(x_0,y_0,z_0)$ 处的法向量为 $\vec{n}=(F_x'(x_0,y_0,z_0),F_y'(x_0,y_0,z_0),F_z'(x_0,y_0,z_0))$ 且法线方程为 $\frac{x-x_0}{F_x'(x_0,y_0,z_0)}=\frac{y-y_0}{F_y'(x_0,y_0,z_0)}=\frac{z-z_0}{F_z'(x_0,y_0,z_0)}$ 。
- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的切平面方程为 $F'_x(x_0, y_0, z_0)(x x_0) + F'_y$ $(x_0, y_0, z_0)(y y_0) + F'_z(x_0, y_0, z_0)(z z_0) = 0$ 。

3.2.2 显式

设空间曲面 Σ 由方程 z=f(x,y) 给出,令 F(x,y,z)=f(x,y)-z,假定法向量的方向向下,即其余 z 轴正向所成的角为钝角,即 z 为-1,则:

- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的法向量为 $\vec{n} = (f'_x(x_0, y_0), f'_y(x_0, y_0), -1)$,且 法线方程为 $\frac{x x_0}{f'_x(x_0, y_0)} = \frac{y y_0}{f'_y(x_0, y_0)} = \frac{z z_0}{-1}$ 。
- 曲面 Σ 在点 $P_0(x_0, y_0, z_0)$ 处的切平面方程为 $f'_x(x_0, y_0)(x x_0) + f'_y(x_0, y_0)$ $(y y_0) (z z_0) = 0$ 。

若是反之成锐角,则将里面所有的-1都换成1。

若用 α , β , γ 表示曲面 z=f(x,y) 在点 (x_0,y_0,z_0) 处的法向量的方向角,并这里假定法向量的方向是向上的,即其余 z 轴正向所成的角 γ 为锐角,则法向量**方向余弦**为 $\cos\alpha=\frac{-f_x}{\sqrt{1+f_x^2+f_y^2}}$, $\cos\beta=\frac{-f_y}{\sqrt{1+f_x^2+f_y^2}}$, $\cos\gamma=\frac{1}{\sqrt{1+f_x^2+f_y^2}}$,其中 $f_x=f_x'(x_0,y_0)$, $f_y=f_y'(x_0,y_0)$ 。

例题: 设直线 L $\begin{cases} x+y+b=0 \\ x+ay-z-3=0 \end{cases}$ 在平面 π 上,而平面 π 与曲面 $z=x^2+y^2$ 相切于 (1,-2,5),求 ab 的值。

解: L 在 π 上且与曲面相切,则 π 为 L 的切平面。设曲面方程 $F(x,y,z)=x^2+y^2-z$ 。

曲面法向量为 $\vec{n} = \{F_x', F_y', F_z'\} = \{2x, 2y, -1\}$,代入 (1, -2, 5),则法向量为 $\{2, -4, -1\}$ 。

又点法式: $\pi: 2(x-1)-4(y+2)-(z-5)=0$,即 2x-4y-z-5=0。 联立直线方程,得到: (5+a)x+4b+ab-2=0,又 x 是任意的。 解得 a=-5,b=-2。