Equilibre chimique

1. Compléter le tableau d'avancement (en $\operatorname{mol} \cdot \operatorname{L}^{-1}$) ci-dessous. On note x l'avancement volumique.

 $=10^{-5}$

Équation	Cu _(s)	$+ 2 \operatorname{Fe_{(aq)}^{3+}} =$	$= Cu_{(aq)}^{2+} -$	$-2 \operatorname{Fe^{2+}_{(aq)}}$	K
État initial (mol·L ⁻¹)	excès	0,3	0	0,1	
En cours $(\text{mol} \cdot L^{-1})$	excès				
État final (mol·L ⁻¹)	excès				

- 2. La réaction est-elle a priori très avancée ? très peu avancée ? Justifier.
- 3. Faire une hypothèse sur l'avancement final. En déduire les concentrations à l'équilibre.

I Détermination d'une constante d'équilibre

On introduit $n_0 = 50 \,\mathrm{mmol}$ de $\mathrm{N_2O_{4(g)}}$ dans un récipient initialement vide de volume $V = 3 \,\mathrm{L}$ dont la température est maintenue constante à $T = 300 \,\mathrm{K}$. On considère la réaction

$$N_2O_{4(g)} = 2NO_{2(g)}$$

- 1. Sachant que la pression finale est $P_f = 0.6$ bar, calculer l'avancement final ξ_f .
- 2. Exprimer la constante d'équilibre K° à la température 300 K en fonction de ξ_f et des données du problème. Faire l'application numérique. Commenter.

Donn'ees: on prendra $R=8\,\mathrm{SI}.$

Formation du monoxyde d'azote

On introduit $17\,\mathrm{g}$ d'ammoniac $\mathrm{NH_3}$ avec $32\,\mathrm{g}$ de dioxygène pour former de l'eau et du monoxyde d'azote NO . On suppose la réaction totale.

1. Déterminer les masses des différents composés à l'état final. On donne les masses molaires :

$$M(H) = 1.0 \,\mathrm{g \cdot mol^{-1}}$$
; $M(N) = 14 \,\mathrm{g \cdot mol^{-1}}$; $M(O) = 16 \,\mathrm{g \cdot mol^{-1}}$

On étudie en phase gazeuse l'équilibre de dimérisation de FeCl₃, de constante d'équilibre $K^{\circ}(T)$ à une température T donnée et d'équation-bilan

$$2 \operatorname{FeCl}_{3_{(g)}} = \operatorname{Fe}_2 \operatorname{Cl}_{6_{(g)}}$$

La réaction se déroule sous une pression totale constante $p_{\text{tot}} = 2p^{\circ} = 2$ bars. À la température $T_1 = 750$ K, la constante d'équilibre vaut $K^{\circ}(T_1) = 20,8$. Le système est maintenu à la température $T_1 = 750$ K. Initialement le système contient n_0 moles de FeCl₃ et de Fe₂Cl₆. Soit n_{tot} la quantité totale de matière d'espèces dans le système.

- 1. Exprimer la constante d'équilibre en fonction des pressions partielles des constituants à l'équilibre et de p° .
- 2. Exprimer le quotient de réaction Q_r en fonction de la quantité de matière de chacun des constituants, de la pression totale p_{tot} et de p° . Calculer la valeur initial $Q_{r,0}$ du quotient de réaction.
- 3. Le système est-il initialement à l'équilibre thermodynamique ? Justifier la réponse. Si le système n'est pas à l'équilibre, dans quel sens se produira l'évolution ?

On considère désormais une enceinte indéformable, de température constante $T_1 = 750 \,\mathrm{K}$, initialement vide. On y introduit une quantité n de FeCl₃ gazeux et on laisse le système évoluer de telle sorte que la pression soit maintenu constante et égale à $p = 2p^{\circ} = 2$ bars. On désigne par ξ l'avancement de la réaction.

4. Calculer à l'équilibre la valeur du rapport $z = \xi/n$.

I | Utilisation du quotient de réaction (**)

Un récipient de volume $V_0=2,00$ ·l contient initialement 0,500·mol de COBr₂, qui se décompose à une température de $T_0=300$ ·K selon la réaction :

$$COBr_2(g) = CO(g) + Br_2(g).$$

Tous les gaz sont supposés parfaits. La réaction se fait à température et à volume constants.

- 1. Déterminer la pression initiale du système en Pa, puis en bar.
- 2. Déterminer le quotient de réaction initial de ce système chimique. En déduire le sens d'évolution de ce système.
- 3. Exprimer la pression totale du système à l'équilibre en fonction de l'avancement à l'équilibre x, T_0 et V_0 .
- 4. Quelle est la composition du système à l'équilibre, sachant que la constante d'équilibre de la réaction précédemment citée vaut $K^{\circ} = 5$ à 300·K ?
- 5. Calculer le pourcentage de COBr₂(g) décomposé à cette température. Conclure.
- 6. L'équilibre précédent étant réalisé, on ajoute 2,00·mol de monoxyde de carbone CO, sans modifier la température ni le volume du système. Calculer le quotient de réaction $Q_{r,int}$ juste après l'introduction du monoxyde de carbone et conclure quant à l'évolution ultérieure du système.