Intro to immune repertoire sequencing and analysis

Maggie Russell

- 1. learn about immune repertoire sequencing
- 2. familiarize with immune repertoire data
- 3. work through an example analysis

1. learn about immune repertoire sequencing

- 1. learn about immune repertoire sequencing
 - what are immune repertoires?

Adaptive immunity is essential for our survival

T cell receptors recognize antigen fragments bound to MHC

- 1. learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?

Repertoire composition is influenced by generation, selection, and exposures

Let's use a water pipe as an analogy for TCR repertoire formation...

Repertoire composition is influenced by generation, selection, and exposures

Repertoire composition is influenced by generation, selection, and exposures

Repertoire composition is influenced by generation, selection, and exposures

Repertoire composition is influenced by generation, selection, and exposures

Repertoire composition is influenced by generation, selection, and exposures

Repertoire composition is influenced by generation, selection, and exposures

We can sample a repertoire using sequencing

We can sample a repertoire using sequencing

- 1. learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?
 - how are they sequenced?

	Bulk	Single-cell
Repertoire coverage (e.g. total # of unique sequences that can be identified)	High	Low

	Bulk	Single-cell
Repertoire coverage (e.g. total # of unique sequences that can be identified)	High	Low
Chain pairing (e.g. each receptor consists of two protein chains)	No	Yes

	Bulk	Single-cell
Repertoire coverage (e.g. total # of unique sequences that can be identified)	High	Low
Chain pairing (e.g. each receptor consists of two protein chains)	No	Yes
Sample size	High	Low

	Bulk	Single-cell
Repertoire coverage (e.g. total # of unique sequences that can be identified)	High	Low
Chain pairing (e.g. each receptor consists of two protein chains)	No	Yes
Sample size	High	Low
Cost	Low	High

	Bulk	Single-cell
Repertoire coverage (e.g. total # of unique sequences that can be identified)	High	Low
Chain pairing (e.g. each receptor consists of two protein chains)	No	Yes
Sample size	High	Low
Cost	Low	High

Processed bulk repertoire sequencing example output

curs_nucseq	curs	v_gene	a_gene	J_gene	v_trim	ao_trim	a i_trim	J_trim	va_insert	aj_insert	va_insert_nucs	aj_insert_nucs
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
TGTGCCAGCAGCTTGAATCACGAGCAGTACTTC	CASSLNHEQYF	TRBV5-6*01	TRBD2*02	TRBJ2-7*01	1	3	13	5	4	0	AATC	
TGCGCCAGCAGCTTGGCAGAGACCCAGTACTTC	CASSLAETQYF	TRBV5-1*01	TRBD1*01	TRBJ2-5*01	2	9	0	4	0	0		
TGCGCCAGTCGAGCGGCGAGCTCCTACAATGAGCAGTTCTTC	CASRAASSYNEQFF	TRBV5-1*01	TRBD2*01	TRBJ2-1*01	9	6	5	0	4	2	GTCG	GC
TGTGCCAGCAGCTTAAATCTGGTGAGGTACGAGCAGTACTTC	CASSLNLVRYEQYF	TRBV7-2*01	TRBD2*02	TRBJ2-7*01	2	11	1	4	8	0	AATCTGGT	
TGTGCCTGGTCAGGGGCCCAAACACTGAAGCTTTCTTT	CAWSGGPNTEAFF	TRBV30*01	TRBD1*01	TRBJ1-1*01	5	4	0	2	1	3	Т	ACC
TGTGCCACCGAACGAGGCCCCAAGAGACCCAGTACTTC	CATERGPQETQYF	TRBV2*03	TRBD1*01	TRBJ2-5*01	10	5	3	1	7	2	CCGAACG	CC
TGTGCCAGCATAGCGGGAGGTGAGCAGTTCTTC	CASIAGGEQFF	TRBV28*01	TRBD2*02	TRBJ2-1*01	7	6	3	9	1	2	Т	GG
TGTGCCTGGAGCTCCCTCCCTGGCGGGAGAACAATGAGCAGTTCTTC	CAWSSLPGGENNEQFF	TRBV30*01	TRBD2*01	TRBJ2-1*01	3	7	3	5	11	3	CTCCCTCCCTG	AGA
TGTGCCAGCAGTTATCAGGTCACTGAAGCTTTCTTT	CASSYQVTEAFF	TRBV6-6*02	TRBD1*01	TRBJ1-1*01	4	4	5	4	2	2	AT	TG
TGTGCCAGCGCCCAGGGCTCGGATACAATCAGCCCCAGCATTTT	CASGPGLGYNQPQHF	TRBV5-5*01	TRBD2*02	TRBJ1-5*01	7	12	0	3	5	8	GGCCC	ATAGGCTC
TGTGCCAGTGCGGGATTCTATGGCTACACCTTC	CASAGFYGYTF	TRBV6-1*01	TRBD1*01	TRBJ1-2*01	9	7	2	4	3	3	TGC	TTA

- 1. learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?
 - how are they sequenced?
 - what are some common areas of repertoire analysis?

T cell receptors

B cell receptors/ antibodies

- 1. learn about immune repertoire sequencing
 - what are immune repertoires?
 - how are they formed?
 - how are they sequenced?
 - what are some common areas of repertoire analysis?

3. work through an example analysis

