

Simulation of Electric Drives using the Machines Library and the SmartElectricDrives Library

J.V. Gragger, H. Giuliani, H. Kapeller, T. Bäuml arsenal research, Vienna 04.09.2006

Monitoring, Energy and Drive Technologies

Contents

- Chapter 1: The SmartElectricDrives Library Introduction
- Chapter 2: DC Machines
- Exercise 1: Examples with a Chopper and a DC Machine
- · Chapter 3: AC Circuits
- Chapter 4: Permanent Magnet
 Synchronous Induction Machines (PMSM)
- Exercise 2: Example with a Permanent Magnet Synchronous Induction Machine

Chapter 1: The SmartElectricDrives library - Introduction

Overview

- Major components of the SED library
 - Asynchronous induction machines, permanent magnet synchronous induction machines, dc machines
 - Field oriented control, brushless dc control
 - Converters (ideal, switching), sources (batteries, supercaps, fuel cells)
- Application examples
 - Hybrid electric vehicles (HEVs), electric vehicles (EVs)
 - Starter / generator, electrically operated auxiliaries
 - Machine-tools and robotics
 - Paper mills, mining
 - Construction machinery, assembly lines
 - etc.

Application Specific Drive Design I

Practical Considerations

- Various technologies (e.g. batteries, supercaps, fuel cells etc.)
- · Matching the right components based on their specifications
- · Maximizing the efficiency of the entire drive system
- · Comprehensive analysis of dynamic effects
- · Component security (currents, voltages, etc.)
- Controller calibration (dynamic characteristics and static characteristics)

5

Monitoring, Energy and Drive Technologies

Chapter 1: The SmartElectricDrives library - Introduction

Application Specific Drive Design II

Software Requirements

- Hybrid systems
 - Simulation of mechanical and electrical components at the same time
 - User friendliness
- · High processing effort
 - Definition of different layers of abstraction
- Short development cycles
 - Automation of development procedures with 'Ready to use' models

6

Chapter 1: The SmartElectricDrives library - Introduction

Key Advantages of the SED library

- Comprehensive library for electric drive simulation in automotive applications
- Applicable for hardware in the loop (HIL) and real time simulations
- 'Ready to use' models
- · Controller parameter estimation functions for easy controller handling
- Models at different layers of abstraction
- SED bus concept for easy coupling with other Dymola libraries
- Many examples, extensive documentation and intelligible SED library structure

14

Chapter 2: DC Machines

Torque and Power

- Armature current I_a
- Main flux Φ
- Induced voltage

$$V_i = k \cdot \Phi \cdot \Omega_m$$

• Torque $T = k \cdot \Phi \cdot I_a$

· Mechanical power

$$P_m = V_i \cdot I_a = T_{el} \cdot \Omega_m$$

17

Monitoring, Energy and Drive Technologies

Chapter 2: DC Machines

DC Drive Turn-on

- Excitation winding (switch on separate excitation first)
- · Maximum turn-on current

$$- I_a \le \frac{V_a}{R_a}$$

- Turn-on current limitation
 - Starter resistors
 - Variable armature voltage

18

Examples with a Chopper and a DC Machine

Exercise 1

23

Chopper01: Component Paths

- · SmartElectricDrives.Sources.Batteries.Batteryldeal
- Modelica.Electrical.Analog.Basic.Ground
- SmartElectricDrives.Converters.IdealSwitching.DCDC.Chopper
- Modelica.Blocks.Continuous.Integrator
- Modelica.Blocks.Math.Feedback
- Modelica.Blocks.Sources.Ramp
- Modelica.Mechanics.Rotational.Sensors.SpeedSensor
- Modelica. Electrical. Machines. BasicMachines. DCMachines. DC_PermanentMagnet
- Modelica.Mechanics.Rotational.Inertia
- Modelica.Mechanics.Rotational.QuadraticSpeedDependentTorque
- Modelica.Electrical.Analog.Sensors.VoltageSensor
- · SmartElectricDrives.Sensors.Mean

25

Monitoring, Energy and Drive Technologies

Exercise 1: Examples with a Chopper and a DC Machine

Chopper01: Parameter Settings

- Batteryldeal
 - VCellNominal = 100V
 - ICellMax = 150A
 - RsCell = 0Ω
 - ns = 1
 - np = 1
 - Chopper

 f = 1000Hz
 - IConverterMax = 150A
 - VDC = 100V

- Integrator
 - k = 5
- Ramp
 - height = 149
 - duration = 10s
- DCPM
 - Nominal values
- Inertia
 - J = 0.15kgm²

26

Chopper01: Parameter Settings

- QuadraticSpeedDependentTorque
 - tau Nominal = -63.66Nm
 - w_Nominal = 149 rad^-1
- Mean
 - f = 1000Hz
 - yStart = 0
- Simulation time
 - t = 15s

2

Monitoring, Energy and Drive Technologies

Exercise 1: Examples with a Chopper and a DC Machine

Chopper01: System Analyses

- Integrator gain changed; k = 1,
 - Compare: DCPM.w_mechanical, DCPM.ia, dcdc.vRef
 - The armature current decreases
 - The shaft acceleration is delayed
 - The reference voltage raise is delayed
- Ramp duration changed; t = 2s,
 - The shaft acceleration increases
 - The armature current increases

28

DCPMQS01: Component Paths

- · SmartElectricDrives.Sources.Batteries.Batteryldeal
- · Modelica.Electrical.Analog.Basic.Ground
- Modelica.Blocks.Sources.Ramp
- Modelica.Blocks.Sources.TimeTable
- · SmartElectricDrives.Interfaces.BusAdaptors.WRefIn
- SmartElectricDrives.QuasiStationaryDrives.DCPMSupplyDC
- Modelica.Mechanics.Rotational.QuadraticSpeedDependentTorque
- · SmartElectricDrives.ProcessControllers.SpeedController
- SmartElectricDrives.AuxiliaryComponents.Functions. parameterEstimationDCPMControllers

30

DCPMQS01: Parameter Settings

- Batteryldeal
 - VCellNominal = 1.5V
 - ICellMax = 400A
 - RsCell = 0.004Ω
 - ns = 80
 - np = 2

- DCPMQS
 - Jr = 0.15 kgm²
 - VaNominal = 100V
 - IaNominal = 100A
 - rpmNominal = 1425rpm
 - (wNominal = 149s^-1)
 - (TauNominal = 63.66Nm)
 - Ra = 0.05Ω
 - La = 0.0015Ω
 - TiConverter = 0.001s
 - vMachineMax = 1.1 VaNominal
 - iMachineMax = 1.5 laNominal
 - IConverterMax = 2.5 IaNominal

31

Monitoring, Energy and Drive Technologies

Exercise 1: Examples with a Chopper and a DC Machine

DCPMQS01: Parameter Settings

- TimeTable
 - table=[0, 0; 0, 0; 0.2, wNominal/2;1, wNominal/2; 1.2, wNominal; 2, wNominal]
- QuadraticSpeedDependentTorque
 - tau_Nominal = -63.66Nm
 - w_Nominal = 149 rad^-1
- parameterEstimationDCPMControllers
 - kdynaCurrent = 5
 - kdynSpeed = 1
- · Speed Controller
 - kpSpeed = 29.3
 - TiSpeed = 0.024s
 - TauMax = 1.2 tau_nominal = 76Nm
- · Simulation time
 - t = 2s

3

DCPMQS01: System Analyses

- The machine does not reach the desired acceleration close to w_Nominal.
 - Display from dcpmqs.controlBus: vMachine, vMachineMax, vDC, iMachine, iMachineMax, wMechanical, wRef, TauRef
 - **Display furthermore:** speedController.TauMax
 - The torque limit TauMax is too low.
 - Increase TauMax

3

Chapter 3: AC Circuits

arsenal research

AC Signal Values

$$- V_{RMS} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$

· Rectified mean value

$$- \quad \overline{|V|} = \frac{1}{T} \int_0^T |v(t)| \, dt$$

Mean value

$$\overline{V} = 0$$

Peak value

$$- v(t)|_{\omega t = \frac{\pi}{2}} = \hat{V} = \hat{V} \cdot \sin(\omega t)$$

Monitoring, Energy and Drive Technologies

Three Phase Star Connection

RMS values - symmetrical conditions:

$$V_{line\ to\ line} = \sqrt{3} \cdot V_{phase}$$

 $I_{lead} = I_{phase}$

Finding the nominal shaft speed

• Example1: PMSM $n_{Nominal} = 1500 \text{rpm}, p = 2$

$$\Omega_{m,Nominal} = \frac{2\pi}{60} n_{Nominal} = 157 \frac{rad}{s}$$

$$\omega_{el,Nominal} = \Omega_{m,Nominal} \cdot p = 314 \frac{rad}{s} \Rightarrow f_{Nominal} = \frac{\omega_{el,Nominal}}{2\pi} = 50 \text{Hz}$$

• Example2: PMSM $f_{Nominal} = 120 \text{Hz}, p = 4$

$$\omega_{el,Nominal} = f_{Nominal} \cdot 2\pi = 754 \frac{rad}{s}$$

$$\Omega_{m,Nominal} = \frac{\omega_{el,Nominal}}{p} = 188 \frac{rad}{s} \Rightarrow n_{Nominal} = 1800 \mathrm{rpm}$$

Example with a PM Synchronous Machine

Exercise 2

47

Exercise 2: Examples with a Permanent Magnet Synchronous Machine

SMPMQS01: Component Paths

- · Modelica.Electrical.Analog.Basic.Ground
- Modelica.Electrical.MultiPhase.Basic.Star
- Modelica.Electrical.MultiPhase.Sources.SineVoltage
- · Modelica.Electrical.MultiPhase.Basic.Resistor
- Modelica.Electrical.MultiPhase.Basic.Inductor
- $\bullet \quad {\sf SmartElectricDrives.Converters.IdealSwitching.ACDC.ThreePhaseDiodeBridge}$
- SmartElectricDrives.Converters.AuxiliaryComponents.BufferingCapacitor
- SmartElectricDrives.QuasiStationaryDrives.SMPMSupplyDC
- Modelica.Blocks.Sources.TimeTable
- SmartElectricDrives.Interfaces.BusAdaptors.TauRefln
- · Modelica.Mechanics.Rotational.Inertia
- Modelica.Mechanics.Rotational.QuadraticSpeedDependentTorque

49

Monitoring, Energy and Drive Technologies

Exercise 2: Examples with a Permanent Magnet Synchronous Machine

SMPMQS01: Parameter Settings

- SMPMQS
 - m = 3
 - p = 2
 - Jr = 0.29kgm²
 - V0 = 112.3V
 - INominal = 100A
 - fNominal = 50Hz
 - (wNominal = 157s^-1)
 - (tauNominal = 214Nm)
 - (VNominal =122V)

- SMPMQS
 - Rs = 0.03Ω
 - Lssigma = 3.1847e-4H
 - Lmd = 9.549e-4H
 - Lmq = 9.549e-4H
 - Lrsigma = 1.5923e-4H
 - Rr = 0.04Ω
 - TiConverter = 0.001s
 - vMachineMax = VNominal
 - iMachineMax = INominal
 - IConverterMax = 400A

50

Exercise 2: Examples with a Permanent Magnet Synchronous Machine

SMPMQS01: Parameter Settings

- AC supply grid
 - m = 3
 - V = 110V
 - frequHz = 50Hz
 - $R = 1e-5\Omega$
 - L = 1e-4H
- Diode bridge
 - IConverterMax = 400A
 - f = 50Hz
- Buffer
 - C = 0.07F
 - R = $1e5\Omega$
 - V0 = 3 sqrt(3) 110V / pi

- TimeTable
 - table=[0,0; 0.1,0; 0.3,tauNominal/4;
 0.5,tauNominal/4; 0.6,tauNominal;
 0.8,tauNominal]
- QuadraticSpeedDependentTorque
 - tau_Nominal = -214Nm
 - w_Nominal = 157 rad^-1
- Inertia
 - J = 0.01kgm²
 - t = 2s

51

Monitoring, Energy and Drive Technologies

Exercise 2: Examples with a Permanent Magnet Synchronous Machine

SMPMQS01: System Analyses

- The electric torque of the machine follows the desired torque with satisfactory precision.
 - Display from smpmqs.controlBus: vMachine, vMachineMax, vDC, iMachine, iMachineMax, wMechanical, TauRef
 - Display furthermore: smpmqs.tauElectrical, smpmqs.isd, smpmqs.isq

52

Thanks for your time

mail: sed@arsenal.ac.at

web: www.arsenal.ac.at/modelica

phone: +43-50-550 6282 fax: +43-50-550 6595

5