

目录

- 概述
- 建模思路
- 特征工程
- 训练和融合
- 参赛感想

概述

- 本题要求根据题目中提供的用户数据(包括关联关系、危险行为、标签类型、app情况,均已脱敏),通过数据挖掘技术,组合出有显著效果的特征,并利用这些特征构建模型预测用户的逾期情况。
- 评价指标为AUC,初赛成绩为0.7149,排名第一

特征挖掘				
排名	预测评分	参赛队伍	所属单位	提交时间
1	0.7149	SupervisedLearning	仰望星空大学	2018-11-10
2	0.7087	ZZZZ	ZZ	2018-11-10
3	0.7081	bee	null	2018-11-10
4	0.7071	EST	P2C	2018-11-10
5	0.7065	ylx	互联网公司	2018-11-10

建模思路

- 用户本身
 - 关联关系
 - App
 - 标签类型
 - 危险行为
- 周围联系人
 - 一度
 - 二度

数据集	用户数量
Train	18959
Valid	4000
Test	6000
all	28959

数据集	用户数量	Id ∩ all
APP	2759440	6966
关联关系	33728365	28442
标签类型	2266640	1544
危险行为	7437689	18735

特征工程-关联关系

- 网络表示学习(network embedding)
 - 网络节点→低维向量
 - 随机游走 + word2vec
 - 一阶邻接性 + 二阶邻接性
 - Window = 5, dim=128, 192, 256

https://github.com/thunlp/OpenNE

Algorithm	Time	Micro-F1	Macro-F1
DeepWalk	52s	0.669	0.560
LINE 2nd	70s	0.576	0.387
node2vec	32s	0.651	0.541
GraRep	19.6s	0.633	0.476

特征工程-关联关系

- 链接分析
 - PageRank
 - HITS
- 度特征
 - 出度、入度、度中心性
 - 以num、weight作为权重求和
 - "互粉关系"->"好友圈"的大小

特征工程-APP

- 计算用户安装APP的数量
- 统计train + valid + test中各个APP的用户数量
- 计算用户安装的APP中用户数的最大值、最小值、中位数、方差等统计量
- 保留用户量最多的前4000个APP,进行onehot编码,再进行降维
 - pca——使得降维后的分布最接近原始分布
 - Ida——将每个APP看做单词,一个用户安装的APP构成一篇文档,得到安装APP的主题分布
 - nmf——利用非负矩阵分解,分解用户-APP矩阵,获得用户表示

特征工程-危险行为

- 计算危险行为的总数
- 计算各种危险行为占总数的比例

特征工程-标签类型

- 分别对一级类别和二级类别进行onehot
- 一级类别有24个,二级类别有44个
- 实际训练中发现只使用一级类别效果比较好

特征工程-一度联系人特征

- 2是1的一度联系人, 3, 4是1的二度联系人
- 对于从节点i出发的边(i, j),按照num加权,特征F 对应的一度联系人特征F'的计算公式如下所示:

$$F'_{i}_num_mean = \frac{\sum_{j \in edge_from_{i}} num_{i,j} * F_{j}}{\sum_{j \in edge_from_{i}} num_{i,j}}$$

$$F'_{i}_num_sum = \sum_{j \in edge_from_{i}} num_{i,j} * F_{j}$$

• $F \in \mathbb{R}$ 除embedding以外的自身特征

特征工程-二度联系人特征

- 对所有的一度联系人计算一度联系人特征F'
- 按同样的方法,计算二度联系人特征

$$F_i''_num_mean = \frac{\sum_{j \in edge_from_i} num_{i,j} * F_j'}{\sum_{j \in edge_from_i} num_{i,j}}$$

$$F_{i}^{\prime\prime}_num_sum = \sum_{j \in edge_from_i} num_{i,j} * F_{j}^{\prime\prime}$$

• $F \in$ 链接分析特征和度特征

特征工程-小结

- 用户自身特征
 - 网络表示学习
 - 链接分析
 - PageRank、HITS
 - 度特征
 - 度中心性、度统计量
- 周围联系人
 - 一度联系人
 - 除embedding之外的自身特征
 - 二度联系人
 - 链接分析、度特征

来源	记号	说明
关联关系-网络表示学习	dp_128	
	dp_192	
	dp_256	
关联关系-链接分析	pr	PageRank 值
	hits	HITS 算法计算的权威值和枢纽值
关联关系-度特征	dc	度中心性
	graph_info	出度入度的统计量
危险行为	risk	
标签类型	symbol	
app 安装情况	app_pca_16	
	app_lda_16	
	app_nmf_16	
	app_info	app 的统计信息
一度联系人	pr_1d	pagerank 值
	hits_1d	枢纽值和权威值
	dc_1d	度中心性
	graph_info_1d	
	app_graph_pca	
	app_graph_1da	
	app_graph_nmf	
	symbol_graph	
	risk_graph	
二度联系人	pr_2d	PageRank 值
	hits_2d	枢纽值和权威值
	dc_2d	度中心性
	graph_info_2d	出度入度的统计量

训练和融合

• 训练

- 采用XgBoost和Lightgbm训练,5折交叉验证结果取平均
- 使用hyperopt调整参数
- 6个模型×5组参数
- 最好单模型:

CV: 0.7038 LB(valid): 0. 7078

Stacking

- 预测概率、1/rank, 共60维特征
- 特征选择
 - 皮尔逊相关系数、卡方值、RF特征重要度、递归删除特征(REF)
 - 最好的9个特征
- 二层分类器使用LR CV: 0.7157 LB(test): 0.7149

分类器	记号	特征维数
Lightgbm	lgb_572	572
	lgb_585	585
	lgb_628	628
	lgb_692	692
XGBoost	xgb_572	572
	xgb_652	652

lgb单模型上分曲线

参赛感想

- 相信交叉验证的结果,减小线上线下差距
- 被人赶超不要慌,坚持就是胜利
- 感谢融360组织这次比赛,我们学习到了很多知识和经验