

Universidad Politécnica de Madrid Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio Máster Universitario en Sistemas Espaciales

Milestone 1

Ampliación de Matemáticas 1

26 de septiembre de 2022

Autor:

■ Jaime Jiménez-Alfaro Piédrola

1. Introducción

Se van a estudiar las orbitas de Kepler mediante distintos metodos numericos utilizando el lenguaje informático Python.

2. Resultados

Para realizar la integración de los métodos numéricos, se ha utilizado un número de pasos N=2000 y un diferencial de tiempo adimensional $\Delta t=0,01$.

2.1. Euler

La solución que se obtiene utilizando el método de Euler diverge de la solución real.

Esta divergencia es debida a que la energía de la órbita no se conserva en este método, y a medida que transcurre el tiempo el cuerpo va ganando energía y formando una espiral hacia fuera.

Figura 1: Resultados Euler.

2.2. Runge-Kutta orden 4

El método Runge-Kutta de orden 4 tiene una gran precisión. El resultado que se obtiene no difiere mucho con la solución real que es una circunferencia de radio unidad.

Figura 2: Resultados Runge-Kutta orden 4.