МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №_1

з дисципліни «Дискретна математика»

Виконала:

Студентка групи КН-112 Гудз Юлія

Викладач:

Мельникова Н.І.

Львів – 2019 р.

Тема: моделювання основних логічних операцій

Мета роботи: ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Варіант № 3

1). Формалізувати речення. Заперечення диз'юнкції двох висловлювань еквівалентно кон'юнкції заперечень кожного з цих висловлювань.

р-I висловлення q-II висловлення ¬(p∨q)<=>¬p^¬q

2.) Побудувати таблицю істинності для висловлювань: $(\overline{x} <=> \overline{y}) => (((y <=> z) => (z <=> x)) => (x \lor z))$

x	у	Z	x	y	x̄<=> y	y<=>z	z<=>x	x∨z	(y<=>z)=> (z<=>x)	((y<=>z)=>(z<=>x)) =>(x ^v z)	$(\overline{x} <=> \overline{y}) => (((y <=> z) => (z <=> x)) => (x^{\vee} z))$
0	0	0	1	1	1	1	1	0	1	0	0
0	0	1	1	1	1	0	0	1	1	1	1
0	1	0	1	0	0	0	1	0	1	0	1
0	1	1	1	0	0	1	0	1	0	1	1
1	0	0	0	1	0	1	0	1	0	1	1
1	0	1	0	1	0	0	1	1	1	1	1
1	1	0	0	0	1	0	0	1	1	1	1
1	1	1	0	0	1	1	1	1	1	1	1

3.) Побудувою таблиці істинності вияснити чи висловлювання є тавтологією або протиріччям:

$$\neg((p=>q)\lor(q=>r))\land(p\lor\neg r)$$

р	q	r	¬r	p=>q	q=>r	(p=>q) ^V (q=>r)	¬((p=>q) ^v (q=>r))	p∨¬r	¬((p=>q)^(q=>r))^ (p^¬r)
0	0	0	1	1	1	1	0	1	0
0	0	1	0	1	1	1	0	0	0
0	1	0	1	1	0	1	0	1	0
0	1	1	0	1	1	1	0	0	0
1	0	0	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	0
1	1	0	1	1	0	1	0	1	0
1	1	1	0	1	1	1	0	1	0

Дане висловлювання-протиріччя

4.) За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити чи є тавтологією висловлення:

$$(((p^q)=>\overline{p})^((q^r)=>r))=>(p=>r)$$

Припустимо, що дана формула не є тавтологією. Імплікація буде хибною лише якщо T=>F,отже:

Підставимо значення у першу частину висловлювання:

$$(((T^q)=>F)^((q^T)=>F))$$

Отримаємо Т якщо q=F:

$$(F^T)=>F$$

Отже, якщо p=T; r=F; q=F-висловлення хибне і не є тавтологією.

5.) Довести, що формули еквівалентні:

$$p=>(q^{\vee}r)$$
 i $(p=>q)^{\vee}(p=>r)$
 $p=>(q^{\vee}r) = \overline{p}^{\vee}(q^{\vee}r)$
 $(p=>q)^{\vee}(p=>r) = (\overline{p}^{\vee}q)^{\vee}(\overline{p}^{\vee}r) = \overline{p}^{\vee}(q^{\vee}r)$
 $\overline{p}^{\vee}(q^{\vee}r) = \overline{p}^{\vee}(q^{\vee}r)$

Додаток 2

Завдання:

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступної формули:

Х	У	Z	Z	<u>y</u>	x<=>y	y<=>z	z<=>x	x∨z	(y<=>z)=>	((y<=>z)=>	$(\overline{x} \le \overline{y}) = > ((y \le z) = >$
									(z<=>x)	$(z <=> x)) => (x \lor z)$	(z<=>x))=>(x ^v z)
0	0	0	1	1	1	1	1	0	1	1	1
0	0	1	0	1	0	0	0	1	1	1	1
0	1	0	1	0	0	0	1	0	1	0	1
0	1	1	0	0	1	1	0	1	0	1	1
1	0	0	1	1	1	1	0	1	0	1	1
1	0	1	0	1	0	0	1	1	1	1	1
1	1	0	1	0	0	0	0	1	1	1	1
1	1	1	0	0	1	1	1	1	1	1	1

```
main.c X
     4
           int main()
         □{
     5
               int x, y, z;
     6
     7
               do
     8
    9
               printf ("\nEnter 0 or 1");
               printf ("\nx=");
    10
    11
               scanf ("%i", &x);
               printf("\ny=");
    12
               scanf ("%i", &y);
    13
               printf("\nz=");
   14
   15
               scanf ("%d", &z);
    16
    17
               while (((x!=1) \&\& (x!=0)) || ((y!=1) \&\& (y!=0)) || ((z!=1) \&\& (z!=0)));
    18
               if ((x==0)||(y==0)||(z==0)||(x==1)||(y==1)||(z==1))
         自
    19
    20
                   printf("\n The result is 1\n");
    21
    22
                   else
    23
    24
                       printf ("the result is 0");
    25
                   7
    26
               return 0;
    27
                   }
    28
```

"C:\Users\user\Labs\lab1 (discretna)\bin\Debug\lab1 (discretna).exe"

```
Enter 0 or 1
x=1
y=0
z=0
The result is 1
Process returned 0 (0x0) execution time : 2.778 s
Press any key to continue.
```