Semantic and Proof-Theoretic Investigation of Noncommutative Geometric Logic

Daniel Rogozin

- 1 Background
- 2 Definitions

3 Quantale, Cover Systems and Other Concepts

Definition 3.1. A quantale is a structure $Q = (Q, \bigvee, \cdot, \varepsilon)$ where (Q, \cdot, ε) is a monoid and (Q, \bigvee) is a sup-lattice such that the following holds for each $a \in Q$ and for each indexed family $\{a_i \in Q \mid i \in I\}$

$$a \cdot \bigvee_{i \in I} a_i = \bigvee_{i \in I} (a \cdot a_i)$$
$$\bigvee_{i \in I} a_i \cdot a = \bigvee_{i \in I} (a_i \cdot a)$$

Definition 3.2. Let \mathcal{Q} be a quantale, a function $j: \mathcal{Q} \to \mathcal{Q}$ is a quantic nucleus, if j satisfies the following for each $a, b \in \mathcal{Q}$

- j is order-preserving,
- $a \leq ja$,
- $jja \leq ja$,
- $ja \cdot jb \leq j(a \cdot b)$,
- $j\varepsilon \leq \varepsilon$.

An element $a \in \mathcal{Q}$ is *j-closed* if ja = a. Let:

$$Q_j = \{ a \in \mathcal{Q} \mid ja = a \}$$

Proposition 3.1. Let $j: \mathcal{Q} \to \mathcal{Q}$ be a closure operator on a quantale \mathcal{Q} , then j is a quantic nucleus iff for each $a, b \in \mathcal{Q}$ $j(a \cdot b) = j(ja \cdot jb)$.

Proof. Take any $a, b \in \mathcal{Q}$. Assume $j(a \cdot b) = j(ja \cdot jb)$, then

$$ja \cdot jb \le j(ja \cdot jb) = j(a \cdot b).$$

Assume j is a quantic nucleus, then

$$\frac{a \leq ja \qquad b \leq jb}{a \cdot b \leq ja \cdot jb} \qquad \frac{ja \cdot jb \leq j(a \cdot b)}{j(ja \cdot b) \leq j(ja \cdot b)}$$
$$\frac{j(a \cdot b) \leq j(ja \cdot b)}{j(a \cdot b) = j(a \cdot b)}$$

Proposition 3.2. Q_j forms a subquantale of Q. Moreover, the map $a \mapsto ja$ defined a surjective homomorphism from Q onto Q_j .

Proof. See the complete proof in [Ros90, Theorem 3.1.1]. Take any elements $a, b \in \mathcal{Q}_j$, any indexed family $\{a_i \in \mathcal{Q}_j \mid i \in I\}$ and define the operations the following way:

- $a \cdot_{\mathcal{Q}_i} b = j(a \cdot_{\mathcal{Q}} b)$
- $\bullet \bigvee_{i \in I_{\mathcal{Q}_j}} a_i = j(\bigvee_{i \in I_{\mathcal{Q}}} a_i)$

Note that the identity element is already closed by the definition of a quantic nucleus. $\hfill\Box$

Let $\mathcal{P} = (P, \leq)$ be a poset and $x \in \mathcal{P}$, the upper cone generated by x is the set $\uparrow x = \{y \in P \mid x \leq y\}$. Let $A \subseteq \mathcal{P}$, define $\uparrow A$ as

$$\uparrow A = \bigcup_{x \in A} \uparrow x$$

A subset set A is upward closed whenever $\uparrow A = A$. We say that y refines x if $x \leq y$, or, equivalently, $\uparrow y \subseteq \uparrow x$. We say that a subset Y refines if $Y \subseteq \uparrow X$, that is, every element of y refines some element of X. The set $\operatorname{Up}(\mathcal{P})$ is the set of all upward closed subsets of \mathcal{P} .

4 Monoidal Grothendieck Topologies and Noncommutative Sites

Let \mathcal{C} be a category and let $X \in \mathcal{C}$, then $\mathcal{C}^{(0)}/_X$ is the full category of $\mathcal{C}/_X$ generated by those maps $U \to X$ which factor through some $V \in \mathcal{C}$.

A presheaf is a functor $F: \mathcal{C}^{op} \to \operatorname{Set}$. The category of all presheaves on \mathcal{C} is the category of functors $\operatorname{PSh}(\mathcal{C}) = \operatorname{Set}^{\mathcal{C}^{op}}$ and their natural transformations. The Hom-functor is a bifunctor Hom: $\mathcal{C}^{op} \times \mathcal{C} \to \operatorname{Set}$ defined as:

$$\operatorname{Hom}_{\mathcal{C}}: (A,B) \mapsto \{ f \in \operatorname{Mor}(\mathcal{C}) \mid f : A \to B \}$$

With each $C \in \mathrm{Ob}(\mathcal{C})$ we can associate a presheaf $\mathbf{y}_C \in \mathrm{PSh}(\mathcal{C})$ on \mathcal{C} defined as:

$$\mathbf{y}_C(D) = \operatorname{Hom}_{\mathcal{C}}(D, C) \text{ for } D \in \operatorname{Ob}(\mathcal{C})(\mathcal{C}).$$

 $\mathbf{y}_C(f) : \operatorname{Hom}_{\mathcal{C}}(D, C) \to \operatorname{Hom}_{\mathcal{C}}(D', C)$

such that $\mathbf{y}_C(f)(g) = g \circ f$ for $f: D' \to D$ and $g: D \to C$. Functors of the form of \mathbf{y}_C (up to isomorphism) are called *representable* functors.

The Yoneda embedding is the following (full and faithful) functor from C to the category of presheaves:

$$\mathbf{y}: \mathcal{C} \to \operatorname{Set}^{\mathcal{C}^{op}}$$

 $\mathbf{y}(C) = \operatorname{Hom}_{\mathcal{C}}(-, C) = \mathbf{y}_{C}$

The following isomorphism

$$\theta : \operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(\mathbf{y}_C, P) \cong P(C)$$

is folklore.

We need some basics of coends and the Day convolution, the reader can find more details in [Lor21], [Rie14, Chapter 1] or [Bor94, Chapter 6].

Definition 4.1 (Coend). Let $P: \mathcal{C}^{op} \times \mathcal{C} \to \text{Set}$ be a profunctor, the coend

$$\int_{-\infty}^{X \in \mathcal{C}} P(X, X)$$

is a set with a family of arrows $i_X : P(X, X) \to \int^Z P(Z, Z)$ for each $X \in \text{Ob}(\mathcal{C})$ such that following square commutes for each $f : X \to Y$:

$$\begin{array}{c|c} H(Y,X) & \xrightarrow{f_*} & H(Y,Y) \\ f^* \middle\downarrow & & \bigvee_{i_Y} \\ H(X,X) & \xrightarrow{i_X} & \int^Z P(Z,Z) \end{array}$$

Equivalently, the coend $\int^Z P(Z,Z)$ can be equivalently defined as the coequaliser of the following diagram:

$$\bigsqcup_{f} H(\operatorname{cod}(f), \operatorname{dom}(f)) \Longrightarrow \bigsqcup_{X \in \operatorname{Ob}(\mathcal{C})} H(X, X) - - \succ \int^{Z} H(Z, Z)$$

Definition 4.2 (Day convolution). Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let $F, G : \mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ be presheaves. The Day convolution of F and G is the following coend, for each $X \in \mathrm{Ob}(\mathcal{C})$:

$$(F \star G)(X) := \int^{X_1, X_2} \operatorname{Hom}_{\mathcal{C}}(X, X_1 \otimes X_2) \times F(X_1) \times F(X_2).$$

The following is due to Day, see [Day70].

Proposition 4.1. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category, then:

- 1. $(PSh(\mathcal{C}), \star, \mathbf{y}(1))$ is a monoidal category,
- 2. \mathcal{C} embeds into $(PSh(\mathcal{C}), \star, \mathbf{y}(1))$ by the Yoneda embedding.

Definition 4.3 (Monoidal Localisation).

Definition 4.4. Let \mathcal{C} be a category, a collection of morphisms $S \subseteq \operatorname{Hom}(\mathcal{C})$ with a common codomain $X \in \operatorname{Ob}(\mathcal{C})$ is called a *sieve on* X if $f \in S$ implies $g \circ f \in S$ whenever such a composition is well-defined. Let S be a sieve on X and $f: Y \to X$ be an arrow, then the set

$$f^*(S) = \{ g \in \operatorname{Hom}(\mathcal{C}) \mid g \circ f \in S \}$$

is a sieve on D.

Let $X \in \mathrm{Ob}(\mathcal{C}),$ then the maximal sieve generated by X is the following collection:

$$t_X = \{ f \mid \operatorname{cod}(f) = X \},\$$

Definition 4.5. Let $\{f_i: U_i \to U\}_{i \in I}$ be a family of arrows in a category \mathcal{C} . A refinement $\{f_j: U_j \to U\}_{j \in J}$ is a family of arrows in \mathcal{C} if for each $j \in J$ there is $i \in I$ such that $f_j: U_j \to U$ factors through $f_i: U_i \to U$:

There is also a more general definition of refinement for different codomains.

Definition 4.6. Let $U = \{U_i \to X\}_{i \in I}$ be a family of morphisms in \mathcal{C} , then $V = \{U_j \to Y\}_{j \in J}$ is a refinement of U is a family of morphisms such that for each $j \in J$ there is $i \in I$ such that the following square commutes

$$U_{j} \xrightarrow{f_{j}} Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$U_{i} \xrightarrow{f_{i}} X$$

Definition 4.7. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category, a monoidal Grothendieck topology is a function Cov mapping each $X \in \text{Hom}(\mathcal{C})$ to some collections of sieves $\{f: U_i \to X\}_{i \in I}$ called coverings sieves of X. Cov satisfies the following properties for each $X, Y \in \text{Ob}(\mathcal{C})$:

- 1. (Existence) $t_X \in Cov(X)$.
- 2. (Transitivity) Let $S_1 \in \text{Cov}(X)$ and let S_2 be a sieve on X such that $f^*(S_2) \in \text{Cov}(Y)$ for any $f: Y \to X$ in S_1 , then $S_2 \in \text{Cov}(X)$.
- 3. (Stability) If $S \in \text{Cov}(X)$, then for any arrow $f: X \to Y$ one $f^*(S) \in \text{Cov}(Y)$.
- 4. (Multiplicativity) If $S_1 \in \text{Cov}(X)$ and $S_2 \in \text{Cov}(Y)$, then there exists a covering sieve $S \in \text{Cov}(X \otimes Y)$ that refines $S_1 \otimes S_2$.
- 5. (Identity axiom) $Cov(1) = t_1$.

A monoidal Grothendieck topology is strong if it satisfies the following extraproperty: let S_1, S_2 be family of arrows and let $X \in \text{Ob}(\mathcal{C})$ such that there exists $S \in \text{Cov}(X)$ such that S refines $S_1 \otimes S_2$, then there exist $X_1, X_2 \in \text{Ob}(\mathcal{C})$ and $f: X_1 \otimes X_2 \to X$ such that there are $S'_i \subseteq S_i$ and $S'_i \in \text{Cov}(X_i)$ for $i \in \{1, 2\}$.

Proposition 4.2. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let $Cov : Hom(\mathcal{C}) \to Set$ be a function mapping each object to some collection of sieves, then the following are equivalent:

- 1. Cov is a monoidal Grothendieck topology,
- 2. Cov satisfies the axioms of Grothendieck topology, the identity axiom and the following property: if $X \in \mathrm{Ob}(\mathcal{C})$ and $S \in \mathrm{Cov}(X)$, then if $Y \in \mathrm{Ob}(\mathcal{C})$, then $Y \otimes S \in \mathrm{Cov}(Y \otimes X)$ and $S \otimes Y \in \mathrm{Cov}(X \otimes Y)$.

Proof.

1. Assume Cov defines a monoidal Grothendieck topology. Let $X, Y \in \text{Cov}(\mathcal{C})$ and let $S = \{f_i : U_i \to X\}_{i \in I} \in \text{Cov}(X)$, then Consider

$$S \otimes Y = \{ f_i \otimes \mathbf{id}_Y : U_i \otimes Y \to X \otimes Y \}$$

then it can be refined to some cover of $X \otimes Y$ by the multiplicativity axiom.

2. Assume Cov defines a Grothendieck topology on \mathcal{C} satisfying the identity axiom and the functors $Y \otimes _$ and $_ \otimes Y$ commute with Cov. Take $\{f_i: U_i \to X\}_{i \in I} \in \operatorname{Cov}(X)$ and $\{f_j: U_j \to Y\}_{j \in J} \in \operatorname{Cov}(Y)$, then, in particular one has

$$S = \{ f_i \otimes id_Y : U_i \otimes Y \to X \otimes Y \} \in Cov(X \otimes Y)$$

Fix any $i \in I$ and $j \in J$ and take $f_i \otimes f_j : U_i \otimes U_j \to X \otimes Y$. The triangle following triangle

$$U_i \otimes U_j \xrightarrow{f_i \otimes f_j} X \otimes Y$$

$$\mathbf{id}_{U_i} \otimes f_j \xrightarrow{f_i \otimes \mathbf{id}_Y} I_i \otimes \mathbf{id}_Y$$

obviously commutes, so S refines $\{f_i \otimes f_j\}_{i \in I, j \in I}$.

Definition 4.8. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category with a monoidal Grothendieck topology Cov. A *sheaf* is a presheaf $F: \mathcal{C}^{op} \to \text{Set}$ such that for every $C \in \text{Ob}(\mathcal{C})$, for every covering sieve $S \in \text{Cov}(C)$ and for every family of the form

$$\{x_f \in F(\text{dom}(f)) \mid f \in S\}$$

such that

$$F(g)(x_f) = x_{g \circ f}$$

for each $f \in S$ and for each arrow g composable with f, there exists a unique $x \in F(C)$ such that $x_f = P(f)(x)$ for each $f \in S$.

The category of monoidal sheaves $\mathbf{MSh}(\mathcal{C}, \mathbf{Cov})$ is the category of sheaves $P: \mathcal{C}^{op} \to \mathbf{Set}$ with natural transformations as morphisms.

Proposition 4.3. Let $(\mathcal{C}, \otimes, \mathbb{1}, \text{Cov})$ be a noncommutative site and let $F : \mathcal{C}^{\text{op}} \to \text{Set}$, then the following are equivalent:

- 1. F is a sheaf,
- 2. For every covering $\{U_i \to X\}_{i \in I}$, the following diagram

$$F(X) \longrightarrow \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j \in I} F(U_i \times_X U_j)$$

is an equaliser.

3. For every covering sieve $\mathcal{C}^0/X \subseteq \mathcal{C}/X$ the map $F(X) \to \operatorname{colim}_{U \in \mathcal{C}^0/X} F(U)$ is a bijection.

Definition 4.9. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category, then \mathcal{C} is a *monoidal topos* if the following axioms are satisfied:

- 1. \mathcal{C} admits all coproducts and all of them are disjoint,
- 2. Effective epimorphisms are closed under pullback,
- 3. Let $f: X \to Y$ in \mathcal{C} , the pullback functor $f^*: \mathcal{C}/_Y \to \mathcal{C}/_X$ preserves all coproducts,
- 4. Every equivalence relation is effective,
- 5. There exists a set $U \subseteq \text{Ob}(\mathcal{C})$ such that for each $X \in \text{Ob}(\mathcal{C})$ there exists a covering $\{U_i \to X\}_{i \in I}$ where for each $i \in I$ each $U_i \in U$. That is, a covering $\{U_i \to X\}_{i \in I}$ is generated by U.
- 6. For $X \in \text{Ob}(\mathcal{C})$ and for any indexed family $\{X_i \in \text{Ob}(\mathcal{C}) \mid i \in I\}$ for any index set $I \neq \emptyset$, then there are natural isomorphisms:

$$X \otimes (\operatorname{colim}_{i \in I} X_i) \cong (\operatorname{colim}_{i \in I} (X \otimes X_i)),$$

$$(\operatorname{colim}_{i \in I} X_i) \otimes X \cong (\operatorname{colim}_{i \in I} (X_i \otimes X)).$$

5 Sheafification and Giraud's Theorem

Fix a category \mathcal{X} such that there is an equivalence $\mathcal{X} \simeq \mathrm{MShv}(\mathcal{C})$ for some monoidal category \mathcal{C} .

5.1 Sheafification

First of all, we show the following fact:

Theorem 5.1. Let $(\mathcal{C}, \otimes, \mathbb{1}, \text{Cov})$ be a non-commutative site, then the inclusion function $F : \text{MShv}(\mathcal{C}) \hookrightarrow \text{PSh}(\mathcal{C})$ has a left adjoint $L : \text{PSh}(\mathcal{C}) \to \text{MShv}(\mathcal{C})$. Moreover L is a monoidal functor.

Given a presheaf P, LP is the sheafification of P.

Proof. First of all, let us describe the sheafification procedure explicitly. Let $F: \mathcal{C}^{\text{op}} \to \text{Set}$ be a presheaf, for $X \in \text{Ob}(\mathcal{C})$ we let

$$F^*(X) := \operatornamewithlimits{colim}_{\mathcal{C}^0/X} \lim_{U \in \mathcal{C}^0/X} F(U)$$

As far as \mathcal{C}/X is always a covering, we have the following canonical map:

$$F(X) \cong \lim_{U \in \mathcal{C}^0/X} F(U) \xrightarrow{\alpha_F} \operatorname{colim}_{\mathcal{C}^0/X} \lim_{U \in \mathcal{C}^0/X} \cong F^*(X)$$

We conclude the theorem from the following claim:

Claim 5.1. Let $F: \mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ be a presheaf, then the following holds:

1. The composite map of the form

$$F \xrightarrow{\alpha_F} F^* \xrightarrow{\alpha_{F^*}} F^{**}$$

is a sheafification of F. Moreover, the following canonical map is a bijection for every sheaf $G: \mathcal{C}^{\text{op}} \to \operatorname{Set}$

$$\operatorname{Hom}_{\operatorname{Shv}(\mathcal{C})}(F^**,G) \longrightarrow \operatorname{Hom}_{\operatorname{PSh}(\mathcal{C})}(F,G).$$

2. The functor $F \mapsto F^*$ is left exact and monoidal.

Proof.

- 1. Let us define a category $Cov(\mathcal{C})$ the following way:
 - Ob(Cov(\mathcal{C})) consists of pairs $(X, \mathcal{C}^0/X)$ where $X \in \mathcal{C}$ and $\mathcal{C}^0/X \subseteq \mathcal{C}/X$ is a covering sieve.
 - Given $(X, \mathcal{C}^0/X)$ and $(Y, \mathcal{C}^0/Y)$, a morphism $(X, \mathcal{C}^0/X) \to (Y, \mathcal{C}^0/Y)$ is a morphism $f: X \to Y$ in \mathcal{C} such that if a morphism $g: U \to X$ belongs to $(X, \mathcal{C}^0/X)$, then $f \circ g$ belongs to $(Y, \mathcal{C}^0/Y)$.

Let us observe that Cov(C) is a monoidal category indeed, let

$$(X, \mathcal{C}^0/X) \otimes (Y, \mathcal{C}^0/Y) := (X \otimes Y, \mathcal{C}^0/(X \otimes Y)).$$

Note that such a product is well-defined since $C^0/(X \otimes Y)$ is a covering sieve by the multiplicativity axiom. Further, observe that we have functors $i: \mathcal{C} \to \text{Cov}(\mathcal{C})$ and $\rho: \text{Cov}(\mathcal{C}) \to \mathcal{C}$

2. To show that the functor is (lax) monoidal, let $F, G: \mathcal{C}^{op} \to \operatorname{Set}$, then

$$(F^*\star G^*)(X) = \int_{X_1,X_2}^{X_1,X_2} \operatorname{Hom}_{\mathcal{C}}(X,X_1\otimes X_2)\times F^*(X_1)\times G^*(X_2) = \int_{C^0/X_1}^{X_1,X_2} \operatorname{Hom}_{\mathcal{C}}(X,X_1\otimes X_2)\times \operatorname*{colim}_{\mathcal{C}^0/X_1} \operatorname*{lin}_{U_1} F(U_1)\times \operatorname*{colim}_{\mathcal{C}^0/X_2} \operatorname*{lin}_{U_2} G(U_2)\cong \int_{C^0/X_1,C^0/X_2}^{X_1,X_2} \operatorname{Hom}_{\mathcal{C}}(X,X_1\otimes X_2)\times \operatorname*{colim}_{\mathcal{C}^0/X_1,\mathcal{C}^0/X_2} (\operatorname*{lin}_{U_1} F(U_1)\times \operatorname*{lin}_{U_2} G(U_2))\cong \int_{C^0/X_1,\mathcal{C}^0/X_2}^{X_1,X_2} \operatorname{Hom}_{\mathcal{C}}(X,X_1\otimes X_2)\times \operatorname*{colim}_{\mathcal{C}^0/X_1,\mathcal{C}^0/X_2} \operatorname*{lin}_{U_1,U_2} (F(U_1)\times G(U_2))\cong \operatorname*{colim}_{\mathcal{C}^0/X_1,\mathcal{C}^0/X_2} \operatorname*{lin}_{U_1,U_2} \int_{C^0/X_1}^{X_1,X_2} \operatorname{Hom}_{\mathcal{C}}(X,X_1\otimes X_2)\times F(U_1)\times G(U_2)\cong \operatorname*{colim}_{\mathcal{C}^0/X_1} \operatorname*{lin}_{U} (F\star G)(U)=(F\star G)^*(X).$$

5.2 Giraud's axioms

Further let us show the following:

Theorem 5.2. \mathcal{X} satisfies:

- 1. \mathcal{X} has arbitrary colimits and limits.
- 2. Every equivalence relation in \mathcal{X} is effective.
- 3. Coproducts in \mathcal{X} are disjoint.
- 4. Tensors are preserved under arbitrary colimits.
- 5.

Before proving theorem 5.1, we show the following lemmas.

Lemma 5.1. $\mathcal X$ has arbitrary colimits and limits.

Proof. \mathcal{X} has colimits since $PSh(\mathcal{C})$ has colimits computed pointwise for $X \in Ob(\mathcal{C})$:

$$(\operatorname{colim} F_{\alpha})(X) = \operatorname{colim}(F_{\alpha}(X))$$

Lemma 5.2. Every equivalence relation in \mathcal{X} is effective.

Proof.

Lemma 5.3. Coproducts in \mathcal{X} are disjoint.

Proof.

Lemma 5.4. Colimits in \mathcal{X} are universal and there are canonical isomorphisms:

$$\operatorname{colim}_{i}(X \otimes X_{i}) \to X \otimes \operatorname{colim}_{i} X_{i}
\operatorname{colim}_{i}(X_{i} \otimes X) \to \operatorname{colim}_{i} X_{i} \otimes X$$

Proof.

6 Proof of Theorem 5.1

Fix a non-commutative site $(\mathcal{C}, \otimes, \mathbb{1}, \text{Cov})$.

Let $F: \mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ be a sheaf and let $X \in \mathrm{Ob}(\mathcal{C})$, then we call $x \in F(X)$ a section of F over X.

Definition 6.1. Let $X \in \text{Ob}(\mathcal{C})$, a *sieve* on X is a full subcategory $\mathcal{C}^{(0)}/_X \subseteq \mathcal{C}/_X$ with the following property: if $U \to V \in \mathcal{C}/_X$ and $V \in \mathcal{C}^{(0)}/_X$, then $U \in \mathcal{C}^{(0)}/_X$.

A sieve $C^{(0)}$ is a covering if it contains $\{U_i \to X\} \in Cov(X)$.

Proposition 6.1. Let $\{f_i: U_i \to X\}$ be a family of morphisms with a common codomain X and let $\mathcal{C}^{(0)}/_X$ be a sieve generated by those maps $U \to V$ that factor through some f_i . Then $\mathcal{C}^{(0)}/_X$ is a covering sieve if and only if $\{f_i: U_i \to X\} \in \operatorname{Cov}(X)$.

Proof.

Proposition 6.2. Let $\{f_i: U_i \to X\}$ be a family of morphisms and let $\mathcal{C}^{(0)}/_X$ be a sieve as in Proposition 6.1. Let $Y \in \mathrm{Ob}(\mathcal{C})$, then $Y \otimes \mathcal{C}^{(0)}/_X$ and $\mathcal{C}^{(0)}/_X \otimes Y$ are covering sieves.

Proof.

7 Giraud's Theorem

Theorem 7.1. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category, then the following statements are equivalent:

1. C is equivalent to the category of sheaves with a monoidal Grothendieck topology,

- 2. There exists a small monoidal category \mathcal{D} such that there is a fully faithful embedding $F: \mathcal{C} \hookrightarrow \mathrm{PSh}(\mathcal{D})$ with the Day convolution monoidal structure such that there is $F^*: \mathrm{PSh}(\mathcal{D}) \to \mathcal{C}$ such that $F^* \dashv F$ and F^* is a monoidal functor preserving finite limits.
- 3. C is a monoidal topos.

Proof.

- 1. $(1) \Rightarrow (2)$
- $2. (2) \Rightarrow (3)$
- $3. (3) \Rightarrow (1)$

The idea of the above lemma is adapted from, for example, [Car18, Theorem 1.1.13].

Proposition 7.1. Let \mathcal{C} be a monoidal topos, let $C, D \in \mathrm{Ob}(\mathcal{C})$ and let $f: C \to D$, then:

- 1. Sub(C) forms a quantale.
- 2. The pullback function $f^*: \operatorname{Sub}(D) \to \operatorname{Sub}(C)$ has a left adjoint $\exists_f: \operatorname{Sub}(C) \to \operatorname{Sub}(D)$ and a right adjoint $\forall_f: \operatorname{Sub}(C) \to \operatorname{Sub}(D)$.

Proof. 1. (a) Sub(C) is a sup-lattice.

- (b) $(Sub(\mathcal{C}), \cdot, \varepsilon)$ is a monoid.
- (c) The monoidal distributivity law.

2.

Definition 7.1. Let \mathcal{C} be a monoidal topos with a subobject classifier $\Omega \in \mathrm{Ob}(\mathcal{C})$, then a noncommutative Lawvere-Tierney topology is an arrow $j:\Omega \to \Omega$ satisfying the following axioms:

1. $j = j \circ \text{true}$:

2. $j \circ j = j$:

3. $j \circ \cdot = j \circ \cdot \circ j \otimes j$:

4. $j \circ \varepsilon = \varepsilon$:

A noncommutative site is a monoidal topos \mathcal{C} equipped with a noncommutative Lawvere-Tierney topology.

Proposition 7.2. Let \mathcal{C} be a monoidal category, then $(\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}, \star, \mathbf{y}(\mathbb{1}))$ has a monoidal subobject classifier.

Proof. As usual, let

$$\Omega(X) = \{ S \mid S \text{ is a sieve on } X \text{ in } \mathcal{C} \}$$

for $X \in \text{Ob}(\mathcal{C})$. Let $f: Y \to X$ be a morphism, then the morphism $\Omega(f): \Omega(X) \to \Omega(Y)$ is defined as follows, for S, a sieve on X:

$$\Omega(f)(S) = \{g \mid g \circ f \in S\}.$$

Theorem 7.2. Let $(\mathcal{C}, \otimes, I)$ be a monoidal category, then $(\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}, \star, \mathbf{y}(\mathbb{1}))$ is a monoidal topos.

The following is a categorical generalisation of [Gol06, Theorem 5]. One can think of it as a noncommutative generalisation of [MM12, §V.1, Theorem 2].

Theorem 7.3. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category with a monoidal Grothendieck topology Cov, then Cov determines a noncommutative Lawvere-Tierney topology on Set^{\mathcal{C}^{op}}.

Moreover

Theorem 7.4. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category, then there is a bijection between noncommutative Grothendieck topologies on \mathcal{C} and noncommutative Lawvere-Tierney topologies on the monoidal topos $(\operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}, \star, \mathbf{y}(\mathbb{1}))$.

8 Infinitary Substructural Logic

Definition 8.1. A first-order signature is a triple $\Omega = (Sort, Fn, Rel)$ where

- Sort is a set of *sorts*,
- Fn is a set of function symbols. We associate a type with every $f \in \text{Fn}$ written as

$$f: A_1, A_2, \ldots, A_n \to A$$

where $A_1, A_2, \ldots, A_n, A \in Sort$,

Rel is a set of relation symbols. As above, we associate a type with every $R \in \text{Rel}$:

$$R \hookrightarrow A_1, A_2, \dots, A_n$$
.

We associate the set of individual variables $\{v_n : A \mid n < \omega\}$ with each sort $A \in \text{Sort}$, so we define terms the following way:

Definition 8.2. The collection of terms over a signature Σ is defined inductively:

- Every variable v:A is a term of sort A,
- Let $t_1: A_1, \ldots, t_n: A_n$ be Σ -terms and let $f: A_1, A_2, \ldots, A_n \to A$ be a function symbol, then $f(t_1, \ldots, t_n)$ is a term of sort A.

Let t be a term, then the set of free variables FV is defined by induction on t:

$$FV(v:A) = \{v:A\}$$

$$FV(f(t_1,...,t_n)) = \bigcup_{1 \le k \le n} FV(t_k)$$

Definition 8.3. Let Σ be a first-order signature, the collection of atomic formulas $\operatorname{At}(\Sigma)$ is defined as follows. Let $R \hookrightarrow A_1, \ldots, A_n$ be a relation symbol and let $t_1 : A_1, \ldots, t_n : A_n$ be terms of the corresponding sorts, then

$$R(t_1,\ldots,t_n)$$

is an atomic formula. The set of free variables of an atomic formula is defined as

$$FV(R(t_1,\ldots,t_n)) = \bigcup_{1 \le k \le n} FV(t_k).$$

Definition 8.4. Let us define a class F of formulas over a signature Σ is defined by joint induction with the corresponding finite sets of free variables:

1. $(Truth): \top \in F \text{ with } FV(\top) = \emptyset,$

- 2. (Falsity): $\bot \in F$ with $FV(\bot) = \emptyset$,
- 3. (*Identity*): $\mathbf{1} \in F$ with $FV(\mathbf{1}) = \emptyset$,
- 4. (Fusion): if $\varphi, \psi \in F$, then $\varphi \bullet \psi \in F$ with $FV(\varphi \bullet \psi) = FV(\varphi) \cup FV(\psi)$,
- 5. (Residuals): if $\varphi, \psi \in F$, then $\varphi \setminus \psi, \varphi/\psi \in F$ and $FV(\varphi \setminus \psi) = FV(\psi/\varphi) = FV(\varphi) \cup FV(\psi)$.
- 6. (Universal Quantifier) Let v_i be a variable and let $\varphi \in F$, then $\forall v_i \varphi$ and $FV(\forall v_i \varphi) = FV(\varphi) \{v_i\}.$
- 7. (Existential Quantifier) Let v_i be a variable and let $\varphi \in F$, then $\exists v_i \varphi$ and $FV(\exists v_i \varphi) = FV(\varphi) \{v_i\}$.
- 8. (Infinitary Disjunction and Infinitary Conjunction) Let $\{\varphi_i \mid i \in I\}$ be an indexed set of formulas such that $|\bigcup_{i \in I} FV(\varphi_i)| < \omega$, then

$$\bigvee_{i\in I}\varphi_i, \bigwedge_{i\in I}\varphi_i\in F$$

Fix a monoidal topos \mathcal{C} . Let $\alpha:U\to X$ be a generalised element with $\operatorname{Im}\alpha\in\operatorname{Sub}(X)$, let

$$U \Vdash \varphi(\alpha) \text{ iff } \operatorname{Im} \alpha \leq \{x \mid \varphi(x)\}.$$

TODO: draw a proper diagram.

Proposition 8.1. The following holds:

- 1. (Monotonicity) If $U \Vdash \varphi(\alpha)$, then for every $f: U' \to U$ in \mathcal{C} , then $U' \Vdash \varphi(\alpha \circ f)$.
- 2. (Local character) If $f: U' \to U$ and $U' \Vdash \varphi(f \circ \alpha)$, then $U \Vdash \varphi(\alpha)$.

Theorem 8.1. Let $X \in \text{Ob}(\mathcal{X})$ and $\alpha : U \to X$ a generalised element of X. Let $\varphi(x), \psi(x)$ be formulas with a free variable x of sort X, then

- 1. $U \Vdash \mathbf{1} \text{ iff } \mathbf{1} \dots$
- 2. $U \Vdash \bot \text{ iff } X = \text{colim } \emptyset.$
- 3. $U \Vdash \top \text{ iff } X = \lim \emptyset$
- 4. $U \Vdash (\varphi \bullet \psi)(\alpha)$ iff there $U_1, U_2 \in \text{Ob}(\mathcal{C})$ such that there is arrow $f: U \to U_1 \otimes U_2$ such that $U_1 \Vdash \varphi(\alpha)$ and $U_2 \Vdash \varphi(\alpha)$. TODO: probably wrong.
- 5. $U \Vdash (\varphi \setminus \psi)(\alpha)$ iff $U_1 \Vdash \varphi(\alpha)$ implies $U_1 \otimes U \Vdash \psi(\alpha)$.
- 6. $U \Vdash (\psi/\varphi)(\alpha)$ iff $U_1 \Vdash \varphi(\alpha)$ implies $U \otimes U_1 \Vdash \psi(\alpha)$.
- 7. $U \Vdash (\bigvee_{i} \varphi)(\alpha)$ iff there exists $\{f_i : U_i \to U\}_{i \in I} \in \text{Cov}(U)$ such that $\bigsqcup_{i} U_i \twoheadrightarrow U$ is epic and for each $i \in I$ one has $U_i \Vdash \varphi_i(\alpha \circ f_i)$.

- 8. $U \Vdash (\bigwedge_i \varphi_i)(\alpha)$ iff for each $U \Vdash \varphi_i(\alpha)$.
- 9. $U \Vdash \exists y \varphi(y, \alpha)$ iff there is $\{U_i \to U\} \in \text{Cov}(U)$ and there is a generalised element $\beta : \bigsqcup_i U_i \to Y$...
- 10. $U \Vdash \forall y \varphi(y, \alpha)$ iff for every $V \in \mathrm{Ob}(\mathcal{C})$ and $p : V \to U$ and for every generalised element $\beta : V \to Y$ such that $V \Vdash \varphi(p \circ \alpha, \beta)$.
- 11. $U \Vdash \varphi \Rightarrow \psi$ iff $U \Vdash \varphi$ implies $U \Vdash \psi$.

9 Completeness via Morleyisation

10 On Noncommutative Geometric Logic

10.1 One-sorted Version

Let $\{v_i \mid i < \omega\}$ be a set of individual variables and let $\{P_i^k \mid k, i < \omega\}$ be a set of predicate letters where upper indices are the corresponding arities. The grammar of *atomic formulas* is the set At of all words of the form

$$P_i^k(v_{n_1},\ldots,v_{n_k})$$

where v_{n_1}, \ldots, v_{n_k} are individual variables and P_i^k is a predicate letter of arity k. A *preformula* is an expression of one of the following form:

- Every atomic formula is a preformula,
- 1 is a preformula,
- If φ and ψ are preformulas, so is $\varphi \bullet \psi$,
- Let Φ be any set of preformulas, then $\bigvee \Phi$ is a preformula,
- Let v be an individual variable and let φ be a preformula, then $\exists v \varphi$,
- Nothing else is a preformula.

Such definitions as free and bound variables are standard.

A formula is a preformula with finitely many free variables.

Definition 10.1. Noncommutative geometric logic consists of pairs of formulas $\varphi \Rightarrow \psi$ called *sequents*, where \Rightarrow is the metaimplication sign defined with the following axiom schemes and inference rules:

Let \mathcal{Q} be a quantale and let D be a domain of individuals. With every predicate letter P of arity $k < \omega$, we associate its interpretation in \mathcal{Q} which is a k-ary function $[\![P]\!]: D^k \to \mathcal{Q}$. Triples of the form $\mathfrak{Q} = (\mathcal{Q}, D, [\![.]\!])$ are called quantale models. A variable valuation is a function $\sigma: \omega \to D$. The value of a geometric formula φ in a quantale model \mathfrak{Q} under a valuation σ is denoted as $[\![\varphi]\!]_{\sigma}^{\mathfrak{Q}}$ and defined by induction:

- $[P_i^k(v_{n_1},\ldots,v_{n_k})]_{\sigma}^{\mathfrak{Q}} = [P_i^k]_{\sigma}^{\mathfrak{Q}}(\sigma(n_1),\ldots,\sigma(n_k)),$
- $[\![\mathbf{1}]\!] = \varepsilon$,
- $\bullet \ \llbracket \bigvee \Phi \rrbracket_{\sigma}^{\mathfrak{Q}} = \bigvee_{\varphi \in \Phi} \llbracket \varphi \rrbracket_{\sigma}^{\mathfrak{Q}},$
- $\bullet \ \llbracket \exists v_n \varphi \rrbracket_{\sigma}^{\mathfrak{Q}} = \bigvee_{d \in D} \llbracket \varphi \rrbracket_{\sigma(n \mapsto d)}^{\mathfrak{Q}}.$

A sequent $\varphi \Rightarrow \psi$ is true in a quantale model $\mathfrak Q$ if $[\![\varphi]\!]_\sigma^{\mathfrak Q} \leq [\![\psi]\!]_\sigma^{\mathfrak Q}$.

Theorem 10.1 (Soundness). If a sequent $\varphi \vdash \psi$ is provable, then $\llbracket \varphi \rrbracket_{\sigma}^{\mathfrak{Q}} \leq \llbracket \psi \rrbracket_{\sigma}^{\mathfrak{Q}}$ in every quantale model.

Proof. The proof is standard.

In particular, when \mathcal{C} is an ordered monoid, that is, for each $a,b\in\mathcal{C}$ the set $\mathrm{Hom}_{\mathcal{C}}(a,b)$ is at most singleton, we instantiate the above construction the following way.

Thus we have:

Proposition 10.1. Every ordered monoid is embeddable to some quantale.

The proof of the following is a modification of [Gol06, Theorem 4].

Theorem 10.2 (Completeness). If $\llbracket \varphi \rrbracket_{\sigma}^{\mathfrak{Q}} \leq \llbracket \psi \rrbracket_{\sigma}^{\mathfrak{Q}}$ in every quantale model \mathfrak{Q} , then $\varphi \vdash \psi$ is provable.

Proof. A fragment \mathcal{F} is a set of formulas such that:

- \bullet 1 $\in \mathcal{F}$.
- $\varphi, \psi \in \mathcal{F}$ implies $\varphi \bullet \psi \in \mathcal{F}$,
- $\varphi \in \mathcal{F}$ implies $\exists v_n \varphi$,
- $\varphi \in \mathcal{F}$ implies $Sub(\varphi) \subseteq \mathcal{F}$,
- $\varphi(x) \in \mathcal{F}$ implies $\varphi(x := v_n) \in \mathcal{F}$.

Any set of formulas F can be extended to a fragment the following way by induction. Construct a sequence of increasing sets:

$$F_0 \subseteq F_1 \subseteq \ldots \subseteq F_n \subseteq F_{n+1} \subseteq \ldots$$
 for $n < \omega$.

where

- $F_0 = F \cup At$,
- $F_{n+1} = F_n \cup \{ \varphi \bullet \psi \mid \varphi, \psi \in F_n \} \cup \{ \exists v_n \varphi(v_n) \mid \varphi(v_n) \in F_n \}.$

Then we let

$$\mathcal{F} = \bigcup_{n < \omega} F_n$$

and \mathcal{F} is the smallest fragment extending F.

As usual, we define the following equivalence relation on \mathcal{F}

$$\varphi \approx \psi$$
 iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$.

Definition 10.2.

TODO: monoidal localisation

References

- [Bor94] Francis Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures, volume 2. Cambridge University Press, 1994.
- [Car18] Olivia Caramello. Theories, Sites, Toposes: Relating and studying mathematical theories through topos-theoretic 'bridges'. Oxford University Press, 2018.

- [Day70] Brian John Day. Construction of biclosed categories. PhD thesis, University of New South Wales PhD thesis, 1970.
- [Gol06] Robert Goldblatt. A Kripke-Joyal semantics for noncommutative logic in quantales. Advances in modal logic, 6:209–225, 2006.
- [Lor21] Fosco Loregian. (Co)end calculus, volume 468. Cambridge University Press, 2021.
- [MM12] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory. Springer Science & Business Media, 2012.
- [Rie14] Emily Riehl. Categorical homotopy theory, volume 24. Cambridge University Press, 2014.
- [Ros90] Kimmo I. Rosenthal. *Quantales and their applications*. Longman Scientific & Technical, Essex, 1990.