Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6

по дисциплине «Основы профессиональной деятельности» Вариант №2315

Выполнил:

Студент группы Р3113

Султанов Артур Радикович

Проверил:

Блохина Елена Николаевна

г. Санкт-Петербург 2023г.

Оглавление

Оглавление	2
Задание	3
Часть 1. Текст исходной программы	4
Часть 2. Описание программы	6
Назначение программы	6
ОПИ, ОДЗ	6
Расположение данных	6
Адреса первой и последней выполняемой команды	7
Часть 3. Методика проверки	7
Заключение	10

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения Х должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение Х в вариантом соответствии c задания, a также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна декрементировать содержимое X (ячейки памяти с адресом 0x036) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-1 осуществлять вывод результата вычисления функции F(X)=2X+2 на данное ВУ, а по нажатию кнопки готовности ВУ-3 выполнить операцию побитового 'ИЛИ-НЕ' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

Часть 1. Текст исходной программы

		Код команд		
Адрес	Метка	Ы	Мнемоника	Комментарии
050	START	1000	DI	Запрет прерываний
051		0200	CLA	Очистка аккумулятора
052		AF09	LD #0x9	Вектор 1 и разрешение прерываний
053		1303	OUT 0x3	на MR ВУ-1
054		AF0B	LD #0xB	Вектор 3 и разрешение прерываний
055		1307	OUT 0x7	на MR ВУ-3
056		1100	EI	Разрешение прерываний
057	DEC_LOOP	AEDE	LD X	Основная программа. Загрузка X в аккумулятор
058		0740	DEC	Декрементация
059		DE08	CALL NORM_X	Вызов подпрограммы-нормализатора
05A		EEDB	ST X	Сохранение аккумулятора в Х
05B		CEFB	JUMP DEC_LOOP	Безусловный переход на 0х57
05C		0100	HLT	Останова
05D	F	AC01	LD &1	Функция F. Загрузка значения по адресу SP+1 в АС
05E		0500	ASL	Сдвиг влево (умножение на 2)
05F		4F02	ADD #2	Сложение с числом 2
060		EC01	ST &1	Сохранение аккумулятора на стек (SP+1)
061		0A00	RET	Возврат
062	NORM_X	7ED4	CMP X_MIN	Сравнить переданный (через АС) аргумент с мин.значением по ОДЗ
063		F803	BLT NORM_X_FIX	Если аргумент меньше минимума, то переход на исправление
064		7ED3	CMP X_MAX	Сравнить переданный (через АС) аргумент с макс.значением по ОДЗ

065		F004	BEQ NORM_X_RET	Если аргумент меньше или равен
066		F803	BLT NORM_X_RET	максимуму, то он лежит в ОДЗ. Переход к возврату.
067	NORM_X_FIX	0000	NOP	Отладочная точка останова (NOP/HLT)
068		AECF	LD X_MAX	Исправление - загрузка максимального по ОДЗ значения в АС.
069		0000	NOP	Отладочная точка останова (NOP/HLT)
06A	NORM_X_RET	0A00	RET	Возврат
06B	INT1	1000	DI	Запрет прерываний
06C		AEC9	LD X	Загрузить Х
06D		0000	NOP	Отладочная точка останова (NOP/HLT)
06E		0C00	PUSH	
06F		DEED	CALL F	
070		0800	POP	Вызов функции F
071		0000	NOP	Отладочная точка останова (NOP/HLT)
072		1302	OUT 0x2	Запись аккумулятора (результата F) в ВУ-1
073		1100	EI	Разрешение прерываний
074		0B00	IRET	Возврат из обрабоки прерывания
075	INT3	1000	DI	Запрет прерываний
076		1206	IN 0x6	Чтение с ВУ-3 в аккумулятор
077		0000	NOP	Отладочная точка останова (NOP/HLT)
078		3EBD	OR X	
079		0280	NOT	Логичское ИЛИ-НЕ с X
07A		DEE7	CALL NORM_X	Вызов подпрограммы нормализации Х

07B	EEBA	ST X	Сохранение аккумулятора в Х
		1700	Отладочная точка останова
07C	0000	NOP	(NOP/HLT)
07D	1100	EI	Разрешение прерываний
07E	0B00	IRET	Возврат из обрабоки прерывания

Часть 2. Описание программы

Назначение программы

- 1. Основная программа должна декременитирует Х в цикле.
- 2. По нажатию кнопки готовности BУ-1 должен осуществиться вывод результата вычисления функции F(X)=2X+2 на данное BУ
- 3. По нажатию кнопки готовности ВУ-3 в X должен записаться результат побитового 'ИЛИ-НЕ' содержимого РД данного ВУ и X.
- 4. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать максимальное по ОДЗ число.

ОПИ, ОДЗ

$$X \in [-65; 62]$$
 (ограничено F: (-65) * 2 + 2 = -128, 62 * 2 + 2 = 126)

Расположение данных

Адрес	Значение
0x36	X
0x37	X_MIN
0x38	X_MAX
0x39	X_MASK

Адреса первой и последней выполняемой команды

Адрес первой выполняемой команды	Адрес последней выполняемой команды
0x50	-

Часть 3. Методика проверки

Исходный код в удобном для копирования формате:

https://raw.githubusercontent.com/sultanowskii/itmo-edu/master/opd/lab6/task/task.bcomp

Проверка 1: Основная программа

- 1. В исходном коде программы изменить NOP на HLT по метке NORM_X_FIX и по NORM_X_FIX+2
- 2. Загрузить получившийся код в БЭВМ (скомпилировать)
- 3. Поменять STOP на RUN
- 4. Запустить программу в автоматическом режиме (START)
- 5. Следить за регистром AC в графическом интерфейсе он должен уменьшаться на 1
- 6. Дождаться точки останова
- 7. Убедиться, что в аккумуляторе лежит значение 0xFFBE. Это значит, что подпрограмма "исправления" X заметила вылет за минимальное значение и теперь исправит X
- 8. Продолжить выполнение программы, дождаться следующей точки останова
- 9. В аккумуляторе должно находиться максимальное по ОДЗ значение (0х3E), т.к. подпрограмма должна исправить вылет за ОДЗ, внеся в X его максимальное значение
- 10. Продолжить выполнение программы
- 11. Проделать шаги 5-7

12. Программа остановлена. Проверка завершена

Проверка 2: ВУ-1

- 1. В исходном коде программы изменить NOP на HLT по меткам INT1+2 и INT1+6
- 2. В исходном коде программы поменять значение X на необходимое (должно лежать в вышеуказанном ОДЗ), изменив значение ячейки по адресу 0х36 (метка X)
- 3. Загрузить получившийся код в БЭВМ (скомпилировать)
- 4. Поменять STOP на RUN
- 5. Установить "Готовность ВУ-1" (заранее, чтобы программа обработала прерывание именно для изначального, введенного значения X)
- 6. Запустить программу в автоматическом режиме (START)
- 7. Дождаться точки останова
- 8. Убедиться, что в аккумуляторе лежит изначально введенное значение X
- 9. Продолжить выполнение программы, дождаться следующей точки остановы
- 10. Убедиться, что в аккумуляторе лежит F=(X * 2) + 2
- 11. Программа остановлена. Проверка завершена.

Проверка 3: ВУ-3

- 1. В исходном коде программы изменить NOP на HLT по меткам INT3+2 и INT3+7
- 2. В исходном коде программы поменять значение X на необходимое (должно лежать в вышеуказанном ОДЗ), изменив значение ячейки по адресу 0х36 (метка X)
- 3. Загрузить получившийся код в БЭВМ (скомпилировать)
- 4. Поменять STOP на RUN

- 5. Ввести интересующее значение Y в ВУ-3. Установить "Готовность ВУ-3" (заранее, чтобы программа обработала прерывание именно для изначального, введенного значения X)
- 6. Запустить программу в автоматическом режиме (START)
- 7. Дождаться точки останова
- 8. Убедиться, что в аккумуляторе лежит Ү
- 9. Продолжить выполнение программы, дождаться следующей точки остановы
- 10. Убедиться, что в аккумуляторе лежит $Z = \neg (Y \mid X)$. Если $\neg (Y \mid X)$ не вписывается в ОДЗ, проверить, что в аккумуляторе лежит максимальное значение X по ОДЗ.
- 11. Программа остановлена. Проверка завершена.

Заключение

В рамках данной лабораторной работы я познакомился с прерываниями и векторами прерывания (обработкой) в БЭВМ, а также вводом-выводом, управляемым прерываниями.