Chapter 7

Modeling binary, nominal and count data

Modeling binary variables

Practical question: a bank should decide about granting loans to new clients, i.e. forecast of the solvency

$$Y_i = \begin{cases} 0, & \text{the client } i \text{ is solvent} \\ 1, & \text{the client } i \text{ is insolvent} \end{cases}$$

debt-to-income ratio ($\times 100$);

years with the current employer; other debts (in 1000 Euro);

as soul > lower chances of beary.

Question: can we use a linear regression model for binary variales? \(\simeq \)

Note:

ullet (+) the forecast \hat{Y}_i can be seen as probability u

$$E(Y_i|X_i) = 1 \cdot P(Y_i = 1|X_i) + 0 \cdot P(Y_i = 0|X_i) = p_i$$

- (-) \hat{Y}_i may lie outside of $[0,1] \Rightarrow \text{ of } = \hat{Y}_i$
- (-) R² is useless as a goodness-of-fit measure (k=1 and a distributed)
 (-) the residuals are not normally distributed (large =) (a distributed)
- (-) $Var(Y_i|X_i) = p_i(1-p_i) \neq const \rightsquigarrow heteroscedastic$

Universität Augsburg

Transition to Logit/Probit

Let Y_i be the observed binary variable and Y_i^* the corresponding > continuous => LIR is OV unobserved metric variable. For Y_i^* it holds:

$$Y_i^* = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki} + u_i = \mathbf{X}_i' \boldsymbol{\beta} + u_i.$$

Example: Y_i^* is an unobserved solvency of the client i with

$$Y_{i} = 1 \text{ if } Y_{i}^{*} > 0 \text{ and } Y_{i} = 0 \text{ if } Y_{i}^{*} \leq 0.$$

$$P(Y_{i} = 1 | \mathbf{X}_{i}) = P(Y_{i}^{*} > 0 | \mathbf{X}_{i}) = P(\mathbf{X}_{i}^{*} \boldsymbol{\beta} + u_{i} > 0 | \mathbf{X}_{i})$$

$$= P(-u_{i} < \mathbf{X}_{i}^{*} \boldsymbol{\beta} | \mathbf{X}_{i}) = F(\mathbf{X}_{i}^{*} \boldsymbol{\beta}),$$

$$P(Y_{i} = 1 | \mathbf{X}_{i}) = P(\mathbf{X}_{i}^{*} \boldsymbol{\beta}),$$

where $F(\cdot)$ is the cdf of the residuals.

- $F(z) = \frac{1}{1+e^{-z}}$ the cdf of the logistic distribution $\rightsquigarrow \frac{\log t}{1+e^{-z}}$
- F(z) the cdf of the normal distribution \rightsquigarrow probit

$$P(Y_i = \iota(X_i)) = F(X_i \land X_i)$$

Logistic regression

Idea: transformation with the logistic function

F (or calf of the logistic distribution) Logistic model $P(Y_i = 1 | \mathbf{X}_i) = \frac{1}{1 + e^{-z_i}};$ for logits z_i it holds $z_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$ Imported: No kindleds hore!!! P(Vi=1) is a probability, so no RVIs allowed on the

Note: Alternatively we may use the CDF $\Phi(z_i)$ of $N(0,1) \rightsquigarrow$ probit-model

$$P(Y_i = 1 | X_i) = P(x_i)$$

Estimation of the parameters

The parameters are estimated using ML:

$$L = \prod_{i=1}^{n} \underbrace{\left(\frac{1}{1+e^{-z_i}}\right)^{y_i}}_{P(Y_i=1)} \cdot \underbrace{\left(1-\frac{1}{1+e^{-z_i}}\right)^{1-y_i}}_{P(Y_i=0)} \longrightarrow max, \text{ w.r.t. } \underline{\beta_0, \dots, \beta_k}.$$

Note:

- In contrary to the LR the estimation is always numeric.
- Likelihood-Ratio tests can be used to check the significance of the parameters.
- \mathbb{R} : glm(y \sim X,data=data, family=binomial(logit))

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.434785
                          0.482326 - 2.975
                                               0.00293 **
                          0.019023 6.381 1.76e-10 ***
              0.121391
debtinc
                                                         migrificent
employer +0.161795
                       0.023742 -6.815 9.44e-12 ***
                        0.045045 2.075 0.03801
debts
          0.093460 /
                        0.014212 -0.309 (0.75701) insymbociat
          -0.004397
age
                         -> age has no impact on the probablely of sain solvent / insolvent.
      Do, ... By
  Interpretedion: LR: Xi changes G L => y changes by Si
    Mere: difficult is changes by L => P(4=1) - changes by ????
```

Example: a data set with 700 observations

debtinc debts employer age

 $\hat{\beta}_i$ | 0.121^* -0.162* $\hat{\beta}_i$ | 0.121^* -0.851 -0.0040.093*0.8511.098 0.996

(*) - significant with $\alpha = 0.05$

then probabily

Odds of the logistic regression

Odds =
$$\frac{P(Y=1|X)}{P(Y=0|X)} = e^{z}$$

$$= e^{z}$$
Logit (z) Odds $P(Y=1|X)$

Logit (z)Odds $P(Y=1|\boldsymbol{X})$ $\rightarrow \beta > 0$ | rises by β rises by e^{β} rises $\beta < 0$ | falls by β falls by e^{β} falls debtile and debts - increase the prob. of indency the years with the coverest coupleyer decrease the prob. of instrony.

age is Insignificent.

Augsburg

Forecasts:

probability
$$P(\widehat{Y_0=1}|\boldsymbol{X}_0) = \hat{\pi}_0 = \frac{1}{1+e^{-\hat{b}_0-\hat{b}_1X_{10}-...-\hat{b}_kX_{k0}}}$$
 of kery instant

of play-in entracted

Goodness of the model

R2=1 canot be attained

Problem: classical measures, such as R^2 , cannot be used \rightsquigarrow pseudo- R^2 ; classification tables; graphical measures (ROC-curve)

- pseudo-R²: 7 25% god; 25% bad diants = for a new client feet
 - Let LL_0 be the Log-Likelihood of the null model $(b_1 = \cdots = b_k = 0)$ • Let LL_v be the Log-Likelihood of the full model (with all variables)
 - Let LL_s be the Log-Likelihood of the saturated model (model with perfect fit, here $LL_s=0$)
 - Deviance: $D = -2 \cdot LL_v$ (close 0)
 - Mc-Faddens- R^2 : $1 LL_v/LL_0$ (starting from 0.4)
- Null deviance: 804.36 on 699 degrees of freedom

Residual deviance: 626.49 on 695 degrees of freedom

• Classification table

predicted

 $\hat{Y} = 0$

 $n_{01} = FN$

truth

g = 1g = 0 $\begin{array}{c|c}
n_{11} = TP \\
n_{10} = FP
\end{array}$

Y=1

 n_1 .

 $n_{00} = TN \quad n_{\cdot 0} = N$

 n_0 .

Let $\hat{y}_i = 1$ if $P(\widehat{Y}_i = 1 | X_i) \ge 0.5$ and 0 else.

no = 36 => solvent predicted as involvent not = 1/1 => involvent

$$Y = 1$$
 $V = 0$

$$\begin{array}{ccc}
\hat{Y} = 1 & \hat{Y} = 0 \\
\hline
72 & (11) & (11) & (12) & (12) & (13) & (14)$$

f imporent, who are
predicted to be
insolvent.
Noo 193 - short predicted
as solvent.

medicted to be solvent

 $n_{.1} = P$

 \rightarrow (479+72)/700 = 78,71% are correctly predicted. \Rightarrow in 23% of corest and a correct section with our by

But: there are 73,86% solvent clients in the sample.

38+479 \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 35% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 25% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 25% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 25% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 25% \$\Rightarrow\$ fix 20in \$\int \text{in the sample.} \\
\frac{38+479}{700} \$\approx\$ 25% \$\Rightarrow\$ fix 20in \$\approx\$ fix 20in \$\a

Quaestion: is the threshold 0.5 a good choice? - offective to the find the threshold 20%

Goodness of the model and the choice of the threshold

• ROC (receiver operating characteristics), Lift and Gain curves are used to visualize and to quantify the goodness of the classification algorithms.

sensitivity =
$$\frac{n_{11}}{n_{\cdot 1}} = \frac{n_{11}}{(n_{11} + n_{01})}$$
 number of involve to specifity =
$$\frac{n_{00}}{n_{\cdot 0}} = \frac{n_{00}}{(n_{10} + n_{00})}$$
 where of involve to show that

Sensitivity: the fraction of correctly classified 1-values

among all true 1-objects.

Specifity: the fraction of correctly classified 0-values

among all true 0-object.

=> 61% of instruct are devanticed as solvent => there get maney
from the Bank, but cannot pay it back !!

- Sensitivity= 72/(72+111) = 0.39 only 39% of insolvent clients are classified as insolvent
- Specifity= $\frac{1}{479}/(\frac{1}{479} + \frac{n}{38}) = 0.92 \frac{92\%}{92\%}$ of solvent clients are classified as solvent

=) only 8% of solvent are described as insolvent.

That our model works well for solvent dients, but has
a very low detection rate for insolvent!!!

Ain: increase sensitivity of the model. (this will obsionally decrease the specifity).

PPV or PV+ =
$$\frac{n_{11}}{n_{1.}} = \frac{n_{11}}{(n_{11} + n_{10})}$$
 put of dish periodical as periodical as NPV or PV- = $\frac{n_{00}}{n_{0.}} = \frac{n_{00}}{(n_{01} + n_{00})}$ presided as disast

PPV: the fraction of correctly classified 1-values among all objects classified as 1.

the fraction of correctly classified 0-values NPV: among all objects classified as 0.

(PPV-positive predicted value, NPV-negative predicted value) $\frac{35\%}{3}$ $\frac{37}{3}$ $\frac{37}{$

- clients are really insolvent NPV= $\frac{h \cdot e}{479/(479+111)} = 0.81$ 81% of all as solvent classified
- A 19 in of duried as solvent are insolvent clients are really solvent

ROC-curve: senstitivity values as a function of specifity

- The steeper the function, the better the algorithm. ROC-value is the square under the curve.
- If the curve is close to the diagonal, then the algorithm is as good as random assignments.

Now let $\hat{y}_i = 1$ if $P(\widehat{Y}_i = 1 | \boldsymbol{X}_i) > 0.245$ and 0 else.

72 111 38 479.

479 \ 359 so worth job in detaily solvent clients year: 92% \ 69,6%

72/140 = Bethr job in detecting inslant dem: 19% / 26.5%

atistics for CS|DS@UCU -- Yarema Okhrin 402

Gain-curve:

- If Gain equals 46% for 20%, this implies that if 20 % of the clients are classified as insolvent, then the algorithm will detect 46% of really insolvent clients .
- \bullet The digonal shows a model-free classification: If 20 % of the clients are classified as insolvent, then the algorithm detects 20% of really insolvent clients.

 $\bullet\,$ The steeper the curve, the better (with a single kink).

Lift curve: how much better is the predictive model compared to the model free classification?

• If lift is 2.1 for 20%, this implies that the model detection rate of insolvent clients is larger by 2.1 compared to model-free classification.

The CART method can be applied to binary data: classification trees

Modelling nominal data

Practical question:

- Choice of the political party depending of the characteristics of the voters;
- Choice of a product brand depending on the characteristics of the client;

```
Example:
```

```
mode - "car", "air", "train", oder "bus"
choice - decision = the slecked transport
wait - waituring time, 0 for "car"
vcost - variable costs
travel - time
gcost - total costs
income - income
size - number of persons
```


different rol	transfer to the state of the st
deffet.	

characterise the person, not the franchist.

							~			
	individu	ıal	mode	choice	wait	vcost	travel	gcost	income	size
1		1	air	no	69	59	100	70	35	1
2		1	train	no	34			71	35	1
3		1	bus	no	35	25	Compt 417	70	35	1
1)	1	car	yes	0	10	180	30	35	1
5	Ì	2	air	no	64	58	68	68	30	2
3		2	train	no	44	31	354	84	30	2

Multinomial logit model

For the simple logit model it holds:

model it holds:
$$P(Y=1|\mathbf{x}) = \frac{exp(\mathbf{x}'\boldsymbol{\beta})}{1 + exp(\mathbf{x}'\boldsymbol{\beta})} = \frac{1}{1 + e^2}$$

$$\ln\left(\frac{P(Y=0|\mathbf{x})}{P(Y=1|\mathbf{x})}\right) = \mathbf{x}'\boldsymbol{\beta} = \frac{1}{1 + e^2}$$

$$\lim_{\mathbf{x} \in \mathbb{R}} \left(\frac{P(Y=0|\mathbf{x})}{P(Y=1|\mathbf{x})}\right) = \mathbf{x}'\boldsymbol{\beta} = \frac{1}{1 + e^2}$$

$$\lim_{\mathbf{x} \in \mathbb{R}} \left(\frac{P(Y=0|\mathbf{x})}{P(Y=1|\mathbf{x})}\right) = \frac{1}{1 + e^2}$$

For the k categories of Y we define:

with
$$\ln\left(\frac{P(Y=r|\boldsymbol{x})}{P(Y=k|\boldsymbol{x})}\right) = \boldsymbol{x}'\boldsymbol{\beta}_{r}^{\text{pl}} \qquad r=1,...,k-1$$
 with

he
$$k$$
 categories of Y we define:
$$\ln\left(\frac{P(Y=r|x)}{P(Y=k|x)}\right) = x'\beta_r \qquad r=1,...,k-1$$

$$P(Y=r|x) = \begin{bmatrix} exp(x'\beta_r) & \text{of the reference category} \\ 1+\sum_{s=1}^{k-1} exp(x'\beta_s) & \text{of the reference category} \end{bmatrix}$$

$$P(Y=k|x) = \frac{1}{1+\sum_{s=1}^{k-1} exp(x'\beta_s)}$$

One category, i.e. the k-th, is the reference category.

Note:

- Estimation via ML assuming independence of the observations. This is a questionable assumption:

 similar categories;

 trin bod him

 both him

 land on other categories, etc.

 box private (and)

 - Solution: Hausmann/McFadden test
- Goodness-of-fit, tests as for logit.

I subcollegions and be highly concloted

Global and category specific variables

- Global variables (income, number of persons) do not depend on the categories and have individual parameters for each category: $x'_{glob}\beta^*_r$. \Rightarrow income seemst separate an category \Rightarrow the parameter has be dependent. The sign of the parameters cannot be interpreted.
- The category specific variables (waiting time, costs) depend on the categories and are evaluated relatively to the reference category.

) vertily depends on its own on the category is no tent to save the cornecter depend
$$(x_{spec,r}-x_{spec,k})'lpha$$
 or $x_{spec,r}'lpha$

The sign of the parameters can be interpreted.

Let *gcost* and *wait* be category specific and *income* and *size* are global variables. The reference category is *air*.

```
> library("mlogit")
> mlogit(choice~wait+gcost|income+size, ...)
                      ~ category specific
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
train:(intercept) -2.3115942  0.7525161 -3.0718  0.0021276 **
bus:(intercept)
                  -3.4504941 0.9064886 -3.8064 0.0001410 ***
car:(intercept)
                  -7.8913907 0.9880615 -7.9867 1.332e-15 ***
               -0.1013180 0.0112207 -9.0296 < 2.2e-16 ***
                  -0.0197064 0.0053844 -3.6599 0.0002523 ***
train:income
                  -0.0589804 0.0154532 -3.8167 0.0001352 ***
                  -0.0277037
                              0.0169812 -1.6314 0.1027991
bus:income
                  -0.0041153 0.0127301 -0.3233 0.7464866
car:income
train:size
                   1.3289497 0.3141683 4.2301 2.336e-05 ***
bus:size
                   1.0090796 0.3952899 2.5528 0.0106874 *
car:size
                   1.0392585 0.2665513 3.8989 9.663e-05 ***
                   Category specific parametes for global variables
```

Log-Likelihood: -176.77 McFadden R^2: 0.37705

Likelihood ratio test : chisq = 213.98 (p.value = < 2.22e-16)

> the same goodness of fit measure as for Logit.

With the estimated paremeters we can estimate the probabilities $P(Y_i = r | x_i)$ for all r.

Ordered response models

Aim: Y can take M different ordered (!) values (credit ratings, grades, income classes, etc)

Using a single latent variable we can specify

$$Y_i^* = x_i'\beta + u_i$$

$$Y_i = j \text{ if } \gamma_{j-1} < Y_i^* \le \gamma_j$$

for some unknown threshold values γ_i with $\gamma_0 = -\infty$ and $\gamma_M = \infty$.

Assuming logistic cdf for u_i we obtain ordered logit model and assuming normality we obtain ordered probit model.

Example: a (simplified) rating of companies - Y=1 - lowest, Y=2 - average, Y=3 - highest

MARKET_VALUE DIV_PER_SHR TOTAL_DEBT	rating
-0.08911931 -0.08063048 -0.02276501	1
-0.09350059 -0.08148114 -0.14012151	3
-0.09452652 -0.08019333 -0.13869093	2
-0.09633656 -0.08090222 -0.13784721	2
-0.09254201 -0.08130392 -0.13822051	2
0.95192265 -0.06091170 13.33345544	3

$$Y^* = x'\beta + u$$

$$Y = 1 \text{ if } y^* \le \gamma_{1|2}$$

$$= 2 \text{ if } \gamma_{1|2} < y^* \le \gamma_{2|3}$$

$$= 3 \text{ if } \gamma_{2|3} < y^*$$

Assuming normal error terms we can state the corresponding prob's

$$\begin{array}{lcl} P(Y_i \leq k | \boldsymbol{x}_i) & = & P(Y_i^* \leq \gamma_{(k-1)|k} | \boldsymbol{x}_i) = \Phi(\gamma_{(k-1)|k} - \boldsymbol{x}_i' \boldsymbol{\beta}) \\ P(Y_i = 1 | \boldsymbol{x}_i) & = & P(Y_i^* \leq \gamma_{1|2} | \boldsymbol{x}_i) = \Phi(\gamma_{1|2} - \boldsymbol{x}_i' \boldsymbol{\beta}) \\ P(Y_i = 3 | \boldsymbol{x}_i) & = & P(Y_i^* > \gamma_{2|3} | \boldsymbol{x}_i) = 1 - \Phi(\gamma_{2|3} - \boldsymbol{x}_i' \boldsymbol{\beta}) \\ P(Y_i = 2 | \boldsymbol{x}_i) & = & P(\gamma_{1|2} < Y_i^* \leq \gamma_{2|3} | \boldsymbol{x}_i) = \Phi(\gamma_{2|3} - \boldsymbol{x}_i' \boldsymbol{\beta}) - \Phi(\gamma_{1|2} - \boldsymbol{x}_i' \boldsymbol{\beta}) \end{array}$$

The log-likelihood function is then given by

$$LL(oldsymbol{eta}|oldsymbol{X}) = \sum_{i=1}^{N} \log P(Y_i = y_i|oldsymbol{x}_i)
ightarrow max, ext{ w.r.t. } oldsymbol{eta}$$

The inferences follow in a similar fashion as for the simple logit.

P(

Example:

Coefficients:

```
Value Std. Error t value
MARKET_VALUE 2.14118
                         0.6803 3.1474
DIV PER SHR -0.70836
                         0.3189 -2.2212
TOTAL_DEBT
            0.05553
                         0.1367 0.4063
Intercepts:
   Value
           Std. Error t value
1|2 -0.0309 0.0789 -0.3916
2|3 1.0181 0.0879
                       11.5797
Residual Deviance: 1480.408
AIC: 1490,408
> ordlog.pred = predict(ordlog, type="probs")
> ordlog.pred
   5.259901e-01 2.340771e-01 0.2399328
   5.298021e-01 2.330434e-01 0.2371545
   5.305567e-01 2.328364e-01 0.2366069
   5.313852e-01 2.326083e-01 0.2360065
   5.292958e-01 2.331818e-01 0.2375224
   5.453970e-02 8.685558e-02 0.8586047
```


Modelling for count data

Y= {0,1,2,3... } = a few volues , out the set is not linked.

I count apply ordered Copy to fixed number of cappoints

Practical questions:

- the number of claims by an insurance company per time period;
- the number of cosultations by a doctor per year;
- the number of insolvent companies per time period;
- occurrences of a seldom disease per season; \Rightarrow
-

Note: the modelling is particularly important for small values of the target variable (rare events) and the distribution is heavily skewed.

Poisson distribution

The Poisson distribution is frequently used to model rare events

$$P(Y=y) = \begin{cases} \frac{\lambda^y}{y!} e^{-y}, & \text{for } y=0,1,2,\dots \text{ any instant} \\ 0, & \text{else}, \end{cases}$$

with the intensity parameter λ . It fulfils the *equidispersion*-condition:

Poisson regression model

Let Y_i, x_i be independent realisations, while Y_i follows Poisson distribution with

$$E(Y_i|\boldsymbol{x}_i) = h(\boldsymbol{x}_i'\boldsymbol{\beta}) = exp(\boldsymbol{x}_i'\boldsymbol{\beta}) = \lambda_i.$$

- The interpretation of the parameters follows as for the logit model.
- The parameters are estimated via ML:

$$LL(\beta) = \sum_{i=1} y_i \ln(h(\mathbf{x}_i'\beta)) - h(\mathbf{x}_i'\beta) - \ln(y_i!) \longrightarrow \max, \text{ w.r.t. } \beta$$

$$\rho(\forall_i = \ell, \forall_i = \ell, \forall_s = 0) = \rho(\forall_i = \ell) \cdot \rho(\forall_s = 0) = \frac{\left(h(\mathbf{x}_i'\beta)\right)^2}{2!} e^{-h(\mathbf{x}_i'\beta)} \frac{\left(h(\mathbf{x}_i'\beta)\right)^l}{2!} e^{-h(\mathbf{x}_i'\beta)} \frac{\left(h(\mathbf{x}_i'\beta)\right)^l}{2!} e^{-h(\mathbf{x}_i'\beta)} e^{-h(\mathbf{x}_i'\beta)} e^{-h(\mathbf{x}_i'\beta)}$$

$$\Rightarrow \max \quad \text{w.r.t. } \beta$$

Goodness of the model

To measure the goodness of the model we use deviance, i.e. the difference between the log-likelihood for the actual observations (perfect/saturiertes model) and the log-likelihood for the predicted values:

$$D = -2\sum_{i=1}^{n}[LL_{i}(\hat{Y}_{i}) - LL_{i}(Y_{i})] = 2\sum_{i=1}^{n}\left[Y_{i}\ln(Y_{i}/\hat{\lambda}_{i})\right] \sim \chi_{n-p}^{2}$$
 limited and of your mobile of the special and for legit and for legit.

Example: number of children

child - number of children

age - age of the woman

dur - years at school/college

nation - nationality, 0 = german, 1 = else

god - trust in God: $1 = \text{strong}, \dots, 6 = \text{never thought about it}$

univ - university degree: $0 = \text{no}, 1 = \text{yes} \implies \text{dury}$

mean(children\$child) regardy easier [1] 1.57297 respectly in the or less var(children\$child) fulfilled [1] 1.552769 $E(Y) = Var(Y) = \lambda \quad \text{folson}$


```
glm(formula = child ~ age + I(age^2) + I(age^3) + I(age^4) +
   dur + I(dur^2) + nation + god + univ, family = poisson(link = log),
   data = children)
```

Deviance Residuals:

Min 1Q Median 3Q Max -2.1514 -0.7559 0.0102 0.4832 3.6715

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.228e+01 1.484e+00 -8.277 < 2e-16 ***
            9.359e-01
                     1.239e-01
                                7.553 4.26e-14 ***
age
          -2.490e-02 3.786e-03 -6.577 4.80e-11 ***
I(age^2)
I(age^3)
          2.842e-04 4.915e-05
                                5 781 7 42e-09 ***
I(age^4)
           -1.180e-06 2.297e-07 -5.137 2.80e-07 ***
dur
          1.118e-01 6.652e-02 1.680 0.092904 .
           -8.328e-03 2.997e-03 -2.779 0.005454 ** → @ Lucchin
I(dur^2)
nation1
          5 686e-02 1 386e-01
                                0.410.0.681599
          -1.025e-01 5.903e-02
                                -1.736 0.082599 .
god2
                                -2.136 0.032683 * > Miss significance
god3
          -1.448e-01 6.780e-02
god4
           -1 279e-01 7 088e-02
                                -1.805.0.071128
god5
                                -0.541 0.588569
           -3.621e-02 6.695e-02
god6
           -9.241e-02 7.505e-02
                                -1.231 0.218239
           6.372e-01 1.729e-01 3.686 0.000228 *** > 2000 C
univ1
```

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2067.4 on 1760 degrees of freedom Residual deviance: 1718.6 on 1747 degrees of freedom ATC: 5196.8

1 - 1718 = 15-00% est against Mc Fedras R2.

Note: for the Poisson distribution it should hold $E(Y_i) = Var(Y_i) = \lambda_i$.

If this assumption is not fulfilled then we have overdispersion/underdispersion.

Solution: as an alternative we can use <u>Quasi-Poisson</u>- or the negative binomial distribution (<u>negbin</u>). Both distributions allow for different expectations and variances.

For negbin it holds:

$$P(Y_i|\boldsymbol{x}_i) = \frac{\Gamma(Y_i + \nu)}{\Gamma(\nu)\Gamma(Y_i + 1)} \cdot \left(\frac{\lambda_i}{\lambda_i + \nu}\right)^{Y_i} \cdot \left(\frac{\nu}{\lambda_i + \nu}\right)^{\nu}$$
 with $E(Y_i) = \lambda_i = exp(\boldsymbol{x}_i'\boldsymbol{\beta})$ and $Var(Y_i) = \lambda_i + \lambda_i^2/\nu$ region. Its to be difficult (in the single)

```
generalized liver model
gim(formula = child ~ age + I(age^2) + I(age^3) + I(age^4) +
   dur + I(dur^2) + nation + god + univ, family = negative.binomial(theta = 1,
   link = log), data = children)
                          link function ( and exp)
Deviance Residuals:
     Min
                     Median
                                           Max
-1.56820 -0.50984 -0.01054
                                       1.90633
                             0.29990
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.338e+01 1.267e+00 -10.555 < 2e-16 ***
            1.022e+00 1.075e-01
                                   9.502
age
                                        < 2e-16 ***
           -2.730e-02
                       3.342e-03 -8.169 5.90e-16 ***
I(age^2)
I(age^3)
           3.126e-04 4.395e-05
                                  7 113 1 65e-12 ***
I(age<sup>4</sup>)
           -1.302e-06 2.074e-07 -6.277 4.34e-10 ***
dur
           1.269e-01 5.990e-02
                                 2.118 0.034294
I(dur^2)
           -9.577e-03 2.637e-03
                                 -3.632 0.000289 ***
nation1
           8 309e-02 1 349e-01
                                  0.616.0.538128
           -1.186e-01 5.849e-02
                                  -2.028 0.042743
god2
                                  -2.530 0.011483 *
god3
           -1.681e-01 6.642e-02
god4
           -1.563e-01
                       6.923e-02
                                  -2.258 0.024075 *
god5
           -3.273e-02 6.602e-02
                                 -0.496 0.620135
god6
           -1.205e-01
                      7.384e-02
                                 -1.632 0.102848
univ1
            7.749e-01 1.581e-01
                                  4 900 1 04e-06 ***
(Dispersion parameter for Negative Binomial(1) family taken to be 0.3516262)
   Null deviance: 1023.1 on 1760 degrees of freedom
Residual deviance: 852.3 on 1747 degrees of freedom
```

ATC: 5911.9

