# Appunti di Analisi Matematica II corso della prof.ssa B.Noris

Politecnico di Milano



F. Piazza

21 ottobre 2022

Gli esami non finiscono mai, amico mio! Così è la vita.

- Denis Ivanovič Fonvizin

## Indice

| 0 | Cen                  |                                    | nalisi I e Algebra Lineare                                         | 5  |  |  |
|---|----------------------|------------------------------------|--------------------------------------------------------------------|----|--|--|
|   | 0.1                  | Regole                             | e di integrazione e derivazione                                    | 5  |  |  |
|   | 0.2                  | Serie r                            | numeriche                                                          | 5  |  |  |
|   | 0.3                  | Deterr                             | minante di una matrice                                             | 5  |  |  |
| 1 | Equ                  | Equazioni differenziali (          |                                                                    |    |  |  |
|   | 1.1                  | Equaz                              | ioni differenziali del 1° ordine                                   | 6  |  |  |
|   |                      | 1.1.1                              | Soluzioni costanti di EDO del 1° ordine                            | 7  |  |  |
|   |                      | 1.1.2                              | EDO a variabili separabili                                         | 7  |  |  |
|   |                      | 1.1.3                              | Problema di Cauchy                                                 | 8  |  |  |
|   |                      | 1.1.4                              | Come si risolve?                                                   | 8  |  |  |
|   |                      | 1.1.5                              | EDO 1° ordine lineari                                              | 8  |  |  |
|   |                      | 1.1.6                              | Principio di sovrapposizione                                       | 9  |  |  |
|   |                      | 1.1.7                              | Esistenza e unicità globale di Cauchy                              | 9  |  |  |
|   |                      | 1.1.8                              | Teorema Formula risolutiva per EDO lineari 1° ordine               | 9  |  |  |
|   |                      | 1.1.9                              | Equazione di Bernoulli                                             | 10 |  |  |
|   |                      | 1.1.10                             | Equazione Logistica                                                | 11 |  |  |
|   | 1.2                  | EDO 2                              | $2^{\circ}$ ordine lineari                                         | 13 |  |  |
|   |                      | 1.2.1                              | Teorema di struttura dell'integrale generale di EDO del 2° ordine  |    |  |  |
|   |                      |                                    | lineari omogenee                                                   | 13 |  |  |
|   |                      | 1.2.2                              | Struttura dell'integrale generale di EDO del 2° ordine lineari non |    |  |  |
|   |                      |                                    | omogenee                                                           | 14 |  |  |
|   | 1.3                  | Sistem                             | ni differenziali lineari                                           | 15 |  |  |
|   |                      | 1.3.1                              | Risultati teorici                                                  | 15 |  |  |
|   | 1.4                  | Sistem                             | ii non omogenei                                                    | 16 |  |  |
|   |                      | 1.4.1                              | Struttura dell'int. gen. dei sistemi non omogenei                  | 16 |  |  |
| 2 | Seri                 | Serie di funzioni 17               |                                                                    |    |  |  |
|   | 2.1                  | Generalità sulle serie di funzioni |                                                                    |    |  |  |
|   |                      | 2.1.1                              | Convergenza totale di una serie di funzioni                        | 18 |  |  |
|   |                      | 2.1.1                              | Conseguenze della convergenza totale                               | 19 |  |  |
|   | 2.2                  | serie d                            | li potenze                                                         | 19 |  |  |
|   | 2.3                  | Lezione del 12/10/2022             |                                                                    |    |  |  |
|   | 2.4 serie di Fourier |                                    |                                                                    | 24 |  |  |
|   |                      | 2.4.1                              | Formule di ortogonalità                                            | 25 |  |  |
|   |                      | 2.4.2                              | Costruzione della serie di Fourier di una funzione periodica       | 26 |  |  |
|   |                      | 2.4.1                              | Convergenza della seride di Fourier                                | 28 |  |  |

| 2.5 | Lezione del $21/10/2022$ |  |
|-----|--------------------------|--|
|     |                          |  |

## 0 Cenni di Analisi I e Algebra Lineare

- 0.1 Regole di integrazione e derivazione
- 0.2 Serie numeriche
- 0.3 Determinante di una matrice

## 1 Equazioni differenziali

## 1.1 Equazioni differenziali del 1° ordine

**Definizione 1.** Una equazione differenziale o EDO del 1° ordine è una relazione tra una funzione y e la sua derivata y' che può essere scritta come

$$y' = f(y)$$

dove f è una funzione continua su un intervallo  $I \subseteq \mathbb{R}$ .

#### Esempi:

- Tema d'esame gennaio 2021  $y' = t\sqrt{y_{(t^2)} + 1}$  è in forma normale con  $f(t, s) = t\sqrt{s^2 + 1}$ . Il dominio di f è  $I = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ .
- $y'_{(t)} = \frac{1}{t}$  con t > 0 diventa  $f(t,s) = \frac{1}{t}$ . Oss: f non dipende esplicitamente da s. Il dominio di f è  $\{(t,s) \in \mathbb{R}^2 : s \in \mathbb{R}, t \in \mathbb{R}^*\}$ , dunque è diviso in due parti. Dovrò quindi risolvere la EDO separatamente nelle due regioni.

$$\begin{cases} y'(0) = \frac{1}{t}, t > 0 \Rightarrow y(t) = \ln(t) + c \\ y'(0) = \frac{1}{t}, t < 0 \Rightarrow y(t) = \ln(-t) + c \end{cases}$$

**Definizione 2.** Si chiama integrale generale l'insieme delle soluzioni.

**Definizione 3.** Si chiama soluzione particolare una specifica soluzione.

Una EDO del 1° ordine ha  $\infty^1$ , soluzioni, cioè avrà una costante arbitraria. In modo analogo, una EDO del 2° ordine avrà  $\infty^2$  soluzioni, cioè avrà due costanti arbitrarie. Esempi:

- integrale generale  $ce^t$  con c costante arbitraria. Esempi di soluzioni particolari:  $e^t$ ,  $2e^t$ ,  $-e^t$ .
- $z_{(t)} = -1 + arctan(t)$  con  $t \in \mathbb{R}^*$ . Esempio di soluzione:  $z' = 0 + \frac{1}{1+t^2}$ .

Oss: La EDO  $y'_{(t)} = f(t, y_{(t)})$  è definita per  $(t, y) \in dom(f)$ 

## 1.1.1 Soluzioni costanti di EDO del 1° ordine

**Definizione 4.** Una soluzione costante di una EDO del 1° ordine è una funzione y(t) che sia soluzione.

Quando y(t) = c è soluzione? Sostituisco c a y:

$$y'(t) = f(t, y(t)) \forall t$$

Quindi <u>le soluzioni costanti sono</u>  $y(t) = c \underline{\text{con } c \text{ tale che }} f(t, c) = 0 \forall t.$ 

Esempi:

- Eq. Logistica:  $y'(t) = ky(t) hy^2(t)$   $f(t,y) = ky - hy^2$   $f(t,c) = 0 \forall t \quad ky - hy^2 = 0 = y(k - hy)$ Soluzioni costanti: y = 0 o  $y = \frac{k}{h}$
- $y'(t) = te^{y(t)}$   $te^{y(t)} = 0$  non ha soluzione.

## 1.1.2 EDO a variabili separabili

Definizione 5. Una EDO del 1° ordine è detta a variabili se parabili se è del tipo

$$y' = f(t) \cdot g(y(t))$$

dove f e g sono funzioni continue su intervalli  $J_1, J_2 \subseteq \mathbb{R}$ .

Esempio 
$$y'(t)=rac{1}{t}$$
  $h(t)=rac{1}{t}$   $j_1=(-\infty,0)U(0,\infty)=\mathbb{R}$ -0

## 1.1.3 Problema di Cauchy

**Definizione 6.** Data una EDO del 1° ordine  $y'_{(t)} = f(t, y_{(t)})$  sia  $(t_0, y_0)$  dove la EDO è definita. Cioè  $(t_0, y_0) \in dom(f)$ 

 $Si\ chiama$  problema di Cauchy  $il\ problema\ di\ determinare\ y: I\subseteq \mathbb{R}\to \mathbb{R}\ che\ soddisfa:$ 

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

Nota: il sistema ha una condizione perché è del 1° ordine. La condizione trova la soluzione particolare che passa per  $(t_0, y_0)$ .

#### 1.1.4 Come si risolve?

Step:

- 1. Trova l'integrale generale. ( $\infty^1$  soluzioni dipendenti da 1 parametro)
- 2. Impongo la condizione  $y(t_0) = y_0$  e la costante c
- 3. Sostituisco c in 1.

#### Esempi

Aggiungi Esempi

#### 1.1.5 EDO 1° ordine lineari

**Definizione 7.** Una EDO del 1° ordine lineare in forma normale è:

$$y'_{(t)} = a(t)y_{(t)} + b(t)$$

dove a e b sono funzioni continue su un intervallo J di  $\mathbb{R}$ .

**N.B.** J è il più grande intervallo di  $\mathbb{R}$  tale che  $a, b \in J$ .

Definizione 8. Si chiama EDO omogenea associata

$$y'_{(t)} = a(t)y_{(t)}$$

Esempio:

Aggiungi esempi

## 1.1.6 Principio di sovrapposizione

Sia  $a: J \subseteq \mathbb{R} \to \mathbb{R}$  una funzione continua su J. L'applicazione  $\mathcal{L}(y) = y' - a(t) \cdot y$  è lineare.

Più esplicitamente, dati  $c_1, c_2 \in \mathbb{R}$ :

 $\mathcal{L}(c_1y_1 + c_2y_2) = c_1\mathcal{L}(y_1) + c_2\mathcal{L}(y_2) \forall y_1, y_2 \text{ funzioni derivabili.}$ 

Ancora più esplicitamente: se  $\mathcal{L}(y_1) = b_1$  cioè  $y_1' = a(t)y_1 + b_1$ 

se  $\mathcal{L}(y_2) = b_2$  cioè  $y_2' = a(t)y_2 + b_2$ 

allora  $\mathcal{L}(c_1y_1 + c_2y_2) = c_1b_1 + c_2b_2$  cioè  $y'_{(t)} = a(t)(c_1y_1 + c_2y_2) + c_1b_1 + c_2b_2$ 

cioè  $(c_1y_1 + c_2y_2)' = a(t)(c_1y_1 + c_2y_2) + c_1b_1 + c_2b_2$ 

Oss:

- Prendo due soluzioni distinde della EDO
- y' = a(t)y + b(t)

## 1.1.7 Esistenza e unicità globale di Cauchy

Siano  $J\subseteq\mathbb{R}$  intervallo e  $a,b:J\to\mathbb{R}$  continue.

Per ogni  $t_0 \in J, y_0 \in \mathbb{R}$  il problema di Cauchy:

$$\begin{cases} y'(t) = a(t)y(t) + b(t) \\ y(t_0) = y_0 \end{cases}$$

ha una soluzione unica  $y: J \to \mathbb{R}$  definita su J.

Aggiungi parte in blu lezione 16/09/2022

## 1.1.8 Teorema Formula risolutiva per EDO lineari 1° ordine

 $a, b: J \subseteq \mathbb{R} \to \mathbb{R}$  y'(t) = a(t)y(t) + b(t)

L'integrale generale è dato dalla formula:

$$y(t) = e^{A(t)} + \left( \int e^{-A(x)}b(x)dx + c \right) \quad \forall c \in \mathbb{R}$$

9

dove A(t) è una primitiva di a.

#### Dimostrazione 1. da sapere all'esame

- Porto ay sulla sinistra y' ay = b
- Moltiplico l'equazione per  $e^{-A}$  $e^{-A}y' - e^{-A}ay = e^{-A}b$

• Riconosco 
$$y'(t)e^{-A(t)} - a(t)y(t)e^{-A(t)} = (y(t)e^{-A(t)})$$
 Quindi la EDO iniziale si riscrive equivalentemente: 
$$(ye^{-A})' = be^{-A}$$

• Integro 
$$y(t)e^{-A(t)} = \int be^{-A(t)}dt + c$$

• Moltiplico tutto per 
$$e^{A(t)}$$
  
 $y(t) = e^{A(t)} \left( \int be^{-A(t)} dt + c \right)$ 

## 1.1.9 Equazione di Bernoulli

**Definizione 9.** Si chiamano equazione di Bernoulli le EDO del 1° ordine lineari di forma:

$$y'_{(t)} = k(t)y_{(t)} + h(t)y^{\alpha}_{(t)} \quad \forall \alpha \in \mathbb{R} \setminus \{0, 1\}$$

 $con \ k, y : J \subseteq \mathbb{R} \to \mathbb{R} \ continue.$ 

#### Premesse:

- 1. Per semplificare ci occupiamo solo di soluzioni  $y \geq 0$
- 2. nel caso  $\alpha < 1$ accadono fenomeni strani, però la tecnica risolutiva è comunque valida

Procedimento di risoluzione:

- 1. Cerchiamo le soluzioni costanti (c'è sempre almeno quella nulla)
- 2. divido per  $y^{\alpha}$

$$y'(t) = k(t)y(t) + h(t)$$
  
$$y'(t) = k(t)y(t)^{1-\alpha} + h(t)$$

3. Pongo  $z(t) = y(t)^{1-\alpha}$ 

Quale è l'equazione soddisfatta da z?

$$z'(t) = (1 - \alpha) \left[ k(t)y(t)^{1-\alpha} + h(t) \right]$$

$$z'(t) = (1 - \alpha) k(t) z(t) + (1 - \alpha) h(t)$$

- 4. Risolvo l'equazione lineare in z
- 5. Torno alla variabile  $y = z(t)^{\frac{1}{1-\alpha}}$

## 1.1.10 Equazione Logistica

y(t) = numero di individui infetti al tempo t  $y: J \subseteq \mathbb{R}^+ \to \mathbb{R}^+$ 

### 1° Modello: Malthus (inizio '800)

Il tasso di crescita della popolazione è proporzionale alla popolazione stessa.

$$y'(t) = ky(t)$$

dove  $k \in \mathbb{R}^+$  è la tasso di crescita e k è il coefficiente di proporzionalità, dato dalla differenza tra tasso di natalità e tasso di mortalità.

integrale generale:  $y(t) = y(0)e^{kt}$ conc > 0

## 2° Modello: Verhulst (metà '800)

$$y'(t) = ky(t) - hy(t)^2 \quad \text{con } k, h > 0$$

Il modello prende anche in considerazione la competizione per le risorse al crescere della popolazione.

Simulazione numerica per k = h = 1



## Integrale generale dell'Equazione Logistica

Trovo l'integrale generale risolvendo come Bernoulli

1. Soluzioni costanti 
$$y(t) = 0, \quad y(t) = \frac{k}{h}$$

2. Divido per 
$$y^2$$
: 
$$\frac{y'(t)}{y^2(t)} = \frac{k}{y(t)} - h$$

3. Pongo 
$$z'(t) = \frac{1}{y(t)} = -\frac{k}{y(t)} + h = -kz(t) + h$$
ricavo che  $z'(t) + kz(t) = h$ 

4. 
$$z(t) = e^{-\int k} [\int e^{\int k} h dx + c]$$
  
=  $e^{-kt} [h \int e^{kx} dx + c]$ 

$$= e^{-kt} \left[ \frac{h}{k} e^{kt} + c \right]$$

$$= \frac{\frac{h}{k}e^{kt} + c}{e^{kt}}$$

5. 
$$y(t) = \frac{1}{z(t)} = \frac{e^{kt}}{\frac{h}{k}e^{kt} + c} = \frac{ke^{kt}}{he^{kt} + kc}$$
 possiamo scrivere  $kc = c'$  in quanto costante arbitraria

## 1.2 Equazioni differenziali ordinarie del 2° ordine lineari

## 1.2.1 Teorema di struttura dell'integrale generale di EDO del 2° ordine lineari omogenee

Siano  $a, b, c: I \subseteq \mathbb{R} \to \mathbb{R}$  funzioni continue e  $a \neq 0$  in I. L'integrale generale dell'eq. omogenea

$$a(t)y''(t) + b(t)y'(t) + c(t)y(t) = 0$$

è uno spazio vettoriale di dimensione 2, cioè le soluzioni sono tutte e sole della forma:

$$y_0(t) = c_1 y_{0_1} + c_2 y_{0_2} \quad \text{con } c_1, c_2 \in \mathbb{R}^n$$

dove  $y_{0_1}, y_{0_2}$  sono due soluzioni linearmente indipendenti.

Oss: Dire che due soluzioni sono linearmente indipendenti significa che non esiste un coefficiente c tale che  $c \cdot y_1 = y_2$ , ovvero che non sono una multipla dell'altra. Premesse:

- 1. Spazio vettoriale  $V = C^2(I)$
- 2.  $I \subseteq \mathbb{R}$  funzione di 1 variabile y(t)
- 3.  $C^2(I) = \{y : I \to \mathbb{R}, \text{ derivabili in } I \in y' \text{ continua in } I\}$
- 4.  $C^2(I) = \{ y \in C^1(I), \text{ derivabili due volte in } I \text{ con } y'' \text{ continua in } I \}$
- 5.  $C^2(I)$  è uno spazio vettoriale con le operazioni usuali di somma di funzioni e prodotto di funzione per uno scalare.

## Dimostrazione 2. da sapere all'esame

- L'integrale generale dell'omogenea è:  $W = \{y \in V : ay''(t) + by'(t) + cy(t) = 0\}$
- Wè un sottospazio vettoriale di V ⇔ è chiuso rispetto alla somma e rispetto al prodotto per uno scalare. Questo è vero grazie al principio di sovrapposizione (caso particolare dell'omogenea).
- Devo dimostrare che W ha dimensione 2.
  - i) Determinare 2 soluzioni lineari indipendenti dell'equazione  $y_{0_1}, y_{0_2}$
  - ii) Dimostrare che ogni soluzione y della EDO si scrive come combinazione lineare di  $y_{0_1}, y_{0_2}$

i) Scelgo  $y_{0_1}$  soluzione del problema di Cauchy.

$$\begin{cases} ay_{0_1}''(t) + by_{0_1}'(t) + cy_{0_1}(t) = 0 \\ y_{0_1}(0) = 1 \\ y_{0_1}'(0) = 0 \end{cases}$$

Verifico che  $y_{0_1},y_{0_2}$  sono soluzioni lineari indipendenti. Se per assurdo fossero una multiplo dell'altra

$$y_{0_1}(t) = \lambda y_{0_2}(t) \quad \forall t$$

In particolare, per t=0 avrei  $y_{0_1}(0)=\lambda y_{0_2}(0)$  avrei trovato  $1=\lambda\cdot 0$  assurdo.

ii) Sia  $y_0(t)$  soluzione dell'EDO, cerco  $c_1, c_2 \in \mathbb{R}$  tali che  $y_0(t) = c_1 y_{0_1}(t) + c_2 y_{0_2}(t)$ 

$$y_0(t) = c_1 y_{0_1}(t) + c_2 y_{0_2}(t) = c_1$$

$$y_0'(t) = c_1 y_{0_1}'(t) + c_2 y_{0_2}'(t) = c_2$$

In conclusione la funzione:

$$z(t) = y_0(0) \cdot y_{0_1}(t) + y_0'(0) \cdot y_{0_2}(t)$$

risolve lo stesso problema di Cauchy di  $y_0(t)$  e quindi, grazie al teorema di esistenza e unicità di Cauchy, coincidono:

$$y_0(t) = z(t) \quad \forall t,$$

cioè  $y_0(t)$  si scrive come combinazione lineare di  $y_{0_1}, y_{0_2}$  con coefficienti  $c_1 = y_0(0)$  e  $c_2 = y'_0(0)$ .

## 1.2.2 Struttura dell'integrale generale di EDO del 2° ordine lineari non omogenee

Siano  $a, b, c : \mathbb{R} \to \mathbb{R}$  con  $a \neq 0$  in IL'integrale generale dell'eq. completa

$$ay''(t) + by'(t) + cy(t) = f(t)$$

è:

$$y(t) = y_0(t) + y_p(t)$$

dove la  $y_0(t)$  è l'integrale dell'eq. omogenea, come nel teorema precedente, e la  $y_p(t)$  è una soluzione particolare dell'eq. compleata.

Oss: L'integrale generale di una EDO del secondo ordine lineare non omogenea è quindi uno spazio affine (cioè il translato di uno spazio vettoriale) di dimensione 2.

Fine lezione 21/09 c'è una scritta in fondo in rosso che non so cosa sia.

## 1.3 Sistemi differenziali lineari

Esempio introduttivo F = ma

$$y''(t) = \frac{F}{m}$$

Trasformo in un sistema di due equazioni differenziali di primo ordine:  $y_1(t) = y(t)$ : posizione e  $y_2(t) = y'(t) = y'_1(t)$ : velocità.

$$\left\{ \begin{array}{ll} y_1'(t)=y_2(t) & \text{la velocità è la derivata della posizione} \\ y_2'(t)=\frac{F}{m} & \text{l'accelerazione è la derivata della velocità} \end{array} \right.$$

In forma matriciale:

E mo come la disegno?

...

In forma compatta:  $y'(t) = Ay(t) + \underline{b}(t)$ 

$$\underline{y'}(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} \quad A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \underline{b} = \begin{pmatrix} 0 \\ \frac{F}{m} \end{pmatrix}$$

Esercizi:

#### Esercizi qua

**Definizione 10.** Sistema differenziale lineare è un sistema di equazioni differenziali di primo ordine con coefficienti costanti, cioè:

$$y'(t) = Ay(t) + \underline{b}(t)$$

dove A è una matrice quadrata di ordine n e  $\underline{b}$  è un vettore di dimensione n.

#### 1.3.1 Risultati teorici

Come si scrive un problema di Cauchy per un sistema?  $Esempio: y''(t) - 2y'(t) = t \text{ con } y(0) = y_0 \text{ e } y'(0) = v_0$ Trasformo la EDO in sistema

$$\begin{cases} y_1'(t) = y_2(t) \\ y_2'(t) = 2y_2(t) + t \end{cases}$$

Un problema di Cauchy è

$$\begin{array}{ll} y_1(t_0) = y_0 \\ y_2(t_0) = v_0 \end{array} \qquad \underline{y}(t_0) = \begin{pmatrix} y_0 \\ v_0 \end{pmatrix}$$

**Definizione 11.** Dato  $\underline{y}'(t) = A\underline{y}(t) + \underline{b}(t)$  con A matrice quadrata di ordine n e  $\underline{b}$  vettore di dimensione n chiamiamo problema di Cauchy:

$$\left\{ \begin{array}{l} \underline{y}'(t) = A \cdot y(t) + \underline{b}(t) \\ \underline{y}(t_0) = \underline{y}_0 \end{array} \right.$$

#### Esempi

C'è una pagina che non so se è spiegazione o esercizi, ci sono parti scritte in LaTeX e altre a mano.

\*

Prosegue poi con i sistemi omogenei.

## 1.4 Sistemi non omogenei

## 1.4.1 Struttura dell'int. gen. dei sistemi non omogenei

Manca la definizione.

Praticamente, per risolvere un sistema non omogeneo:

- 1. Si risolve il sistema omogeneo associato. Cioè determino una matrice Wronskiana  $W(t) = [y_{0_1}(t) \dots y_{0_n}(t)]$  Integrale generale:  $y(t) = W(t) \cdot \underline{c}, \quad \underline{c} \in \mathbb{R}^n$
- 2. Due possibilità:
  - cerco una soluzione particolare con il metodo di somiglianza  $\underline{y}(t) = \underline{y}_0(t) + \underline{y}_p(t) = W(t) \cdot \underline{c} + \underline{y}_p(t)$
  - uso W(t) per trovare direttamente l'integrale generale tramite la formula:  $\underline{y}(t) = W(t) \left( \int [W(\tau)]^{-1} \cdot \underline{b}(\tau) \right) = W(t) \int [W(\tau)]^{-1} \cdot \underline{b}(\tau) d\tau + W(t) \cdot \underline{c}$  Confronto le due soluzioni.

Nella prima ho  $W(t) \cdot \underline{c}$  e anche nella seconda, ed è l'integrale generale dell'omogenea.

Quindi  $y_p(t) = \underline{y}(t) - W(t) \int [W(\tau)]^{-1} \cdot \underline{b}(\tau) d\tau$  perché è ciò che resta da uguagliare.

In particolare, se A è diagonalizzabile reale, allora una matrice Wronskiana è  $W(t)=e^{At}$ 

$$\underline{\underline{y}}(t) = e^{At} \left[ \int e^{-At} \cdot \underline{b}(\tau) d\tau + \underline{c} \right]$$

 $Osservazioni\ da\ aggiungere.$ 

Esempio da aggiungere.

## 2 Serie di funzioni

## 2.1 Generalità sulle serie di funzioni

Esempio: Sviluppi di Taylor:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$

## Definizione 12.

Date delle funzioni  $f: J \subseteq \mathbb{R} \to \mathbb{R}$  n = (0, 1, 2, ...)

• La serie di funzioni a termine generale  $f_n(x)$  è la successione delle somme parziali

 $S_n(x) = \sum_{k=0}^n f_k(x)$ 

Oss: Fissato  $\overline{x} \in J$  si tratta di una serie numerica

• La serie di funzioni converge puntualmente (o semplicemente) nel punto  $\overline{x}_0 \in J$  se la serie numerica di termini generale  $f_n(\overline{x})$  è convergente, cioè se esiste finito il limite:

 $\lim_{n\to\infty} S_n(\overline{x}) = \sum_{k=0}^{\infty} f_k(\overline{x})$ 

• Chiamiamo insieme di convergenza puntuale (o semplice) l'insieme  $E \subseteq J$  dei punti  $\overline{x}_0$  in cui la serie di funzioni converge puntualmente.

Nell'insieme E risulta così definita una nuova funzione, detta somma della serie, che si indica con il simbolo:

$$f(x) = \sum_{k=0}^{\infty} f_k(x) \quad (x \in E)$$

Significa:

$$f(x) = \lim_{n \to \infty} S_k(x) \quad (x \in E)$$

• La serie di funzioni converge assolutamente in  $\overline{x} \in J$  se la serie numerica di termine generale  $f_n(\overline{x})$  converge.

Oss: la convergenza assoluta...

Esempio fondamentale: Serie geometrica.  $\sum_{n=0}^{\infty} x^n$ 

Oss. Servirà per la serie di potenze:  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  insieme convergenza puntuale  $E=(-1,1)=\{|x|<1\}$ Per  $x\leq -1$  è indeterminata per  $x\geq 1$  è divergente per ...

#### Serie di Riemann

$$\sum_{n=0}^{\infty}\frac{1}{n^x}$$
  $f_n(x)=\frac{1}{n^x}=\left(\frac{1}{n}\right)^x$  L'insieme di convergenza puntuale è:  $E=(1,\infty)=\{x>1\}$ 

La convergenza è anche assoluta in E perché per  $x \in E$   $|f_n(x)| = f_n(x)$ 

Se x = 1 è la serie armonica  $\sum_{n=1}^{\infty} \frac{1}{n}$  che diverge.

*Problema:* se le funzioni  $f_n$  sono continue, anche f lo è? **Segue...** 

## 2.1.1 Convergenza totale di una serie di funzioni

copiare appunti della prof, formule e grafici

### Definizione 13. Importante

Diciamo che la serie di termine generale  $f_n(x), x \in J$  converge totale in  $I \in J$  se esiste una successione numerica  $a_n$  tale che:

$$i) \lim_{n\to\infty} |f_n(x) - a_n| = 0 \quad \forall x \in I \quad \forall n$$

$$ii) \sum_{n=0}^{\infty} a_n < \infty$$

Oss:

- La nozione di convergenza totale riguarda un intervallo, mai un punto.
- La convergenta totale in *I* implica la convergenza assoluta (quindi anche puntuale) in ogni punto di *I*.
- Attenzione: non vale il viceversa: se una serie converge assolutamente in ogni punto di I non è detto che converga totalmente in I.

## inizio lezione 05/10/2022

Oss: Se una serie di funzioni converge totalmente in I allora converge totalmente in ogni sottoinsieme di I.

Esercizio: Studiare la convergenza totale della serie:

$$\sum_{n=0}^{\infty} \frac{\sin\left(nx\right)}{n^3}$$

Esercizio: Studiare la convergenza totale della serie geometrica:

$$\sum_{n=0}^{\infty} x^n$$

Appunti su convergenza semplice, assoluta, puntuale, e totale

## 2.1.1 Conseguenze della convergenza totale

Teorema 1. Continuità della somma

Siano  $f_n(x)$  funzioni definite su un intervallo  $I \subseteq \mathbb{R}$ . Se:

- i)  $f_n(x)$  è continua in I per ogni n
- ii) la serie di funzioni  $\sum_{n=0}^{\infty} f_n(x)$  converge totalmente in I

Allora la funzione somma  $f(x) = \sum_{n=0}^{\infty} f_n(x)$  è continua in I.

Oss: in particolare, f è integrabile in ogni sottoinsieme chiuso e limitato  $[c,d] \subseteq I$ 

Teorema 2. Integrabilità termine a termine

Nelle stesse ipotesi del teorema precedente f è integrabile in ogni  $[c,d] \subseteq I$  chiuso e limitato e inoltre:

$$\int_{c}^{d} f(x)dx = \int_{c}^{d} \left(\sum_{n=0}^{\infty} \int_{c}^{d} f_{n}(x)\right) dx = \sum_{n=0}^{\infty} \left(\int_{c}^{d} f_{n}(x)dx\right)$$

Quindi posso scambiare il simbolo di serie e quello di integrale.

Oss: Se f(n) derivabili in I e  $\sum_{n=0}^{\infty} f'_n$  converge totalmente in I allora  $(\sum_{n=0}^{\infty} f_n(x))' = \sum_{n=0}^{\infty} f'_n(x)$ 

## 2.2 serie di potenze

**Definizione 14.** Una serie di potenze è una serie di funzioni della forma:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

Con  $a_n \in \mathbb{R}$  coefficienti della serie

 $x_0 \in \mathbb{R}$  centro della serie

Convenzione: se  $x = x_0$  e n = 0  $(x_0 - x_0)^0 = 1$ . Quindi, per  $x = x_0$  la serie di potenze diventa:

$$\sum_{n=0}^{\infty} a_n (x_0 - x_0)^n = a_0 + a_1 (x_0 - x_0) + a_2 (x_0 - x_0)^2 + \dots = a_0$$

Cioè tutte le serie di potenze convergono almeno nel loro centro  $x = x_0$ .

## inizio lezione 07/10/2022

 $ripasso\ convergenza\ totale$  integra

- vedremo in dettaglio che la serie esponenziale  $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$   $a_n = \frac{1}{n!}$  ha come insieme di convergenza  $\mathbb{R}$  la serie mettiserie converge rapidamente. Criterio del rapporto  $l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$
- la serie logaritmica  $ln(1+x)=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}x^n$   $a_n=\frac{(-1)^{n+1}}{n}$  ha come insieme di convergenza E=(-1,1)

## Teorema 3. Raggio di convergenza

La serie di potenze reale  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  si verifica sempre una delle tre:

- 1. raggio di convergenza nullo: la serie converge solo nel suo centro  $x=x_0$
- 2. raggio di convergenza infinito: la serie converge assolutamente  $\forall x \in \mathbb{R}$
- 3. raggio di convergenza  $0 < R < +\infty$ : esiste R > 0 tale che:
  - la serie converge assolutamente  $\forall x \text{ tale che } |x x_0| < R$
  - la serie non converge per  $|x-x_0| > R$

Oss:  $in |x_0 + R| e |x_0 - R|$  potrebbe convergere o no, va studiato a parte in ogni esercizio.

**Teorema 4.** Calcolo del raggio di convergenza Data una serie di potenze reale  $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ 

i) se il limite esiste.
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

allora la serie di potenze ha raggio di convergenza R.

ii) se esiste il limite  $R = \lim_{n\to\infty} \frac{1}{\sqrt[n]{|a_n|}}$  allora la serie di potenze ha raggio di convergenza R.

## Dimostrazione 3. da sapere all'esame

La serie di potenze converge assolutamente nel punto  $\overline{x} \in \mathbb{R}$  se e solo se  $\sum_{n=0}^{\infty} |a_n| |\overline{x} - x_0|^n$  converge.

- se il criterio del rapporto è applicabile, ho convergenze se e solo se  $\lim_{n\to\infty}\frac{b_{n+1}}{b_n}<1\Leftrightarrow |\overline{x}-x_0|<\frac{1}{\lim_{n\to\infty}\frac{a_{n+1}}{a_n}}=\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}=R$
- se il criterio della radice è applicabile, la serie converge se e solo se  $\lim_{n\to\infty} \sqrt[n]{b_n} < 1$  manca roba

**Teorema 5.** Data una serie di potenze avente raggio di convergenza  $0 < R \le +\infty$  si ha:

- i) se  $R = +\infty$  la serie converge totalmente in ogni intervallo chiuso e limitato [c,d]
- ii) se  $0 < R < +\infty$  la serie converge totalmente in ogni intervallo chiuso  $[c, d] \subset (x_0 R, x_0 + R)$

**Teorema 6.** Data una serie di potenze reale  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  avente raggio di convergenza  $0 < R < +\infty$ , per ogni  $x \in (x_0 - R, x_0 + R)$  vale la formula di integrazione termine a termine:

$$\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n (t - x_0)^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1}$$

La serie di potenze integrata  $\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$  converge per  $x \in (x_0-R, x_0+R)$ .

Osservazione Importante: Se la serie di potenze iniziale converge in  $x_0 - R$  (o  $x_0 + R$ ) posso integrare termine a termine fino a  $x_0 - R$  (o  $x_0 + R$ ).

. . .

**Teorema 7.** Derivabilità termine a termine per serie di potenze reali Data una serie di potenze reale  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  avente raggio di convergenza  $0 < R < +\infty$ , per ogni  $x \in (x_0 - R, x_0 + R)$  vale la formula di derivazione termine a termine.

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)' = \sum_{n=1}^{\infty} a_n n (x - x_0)^{n-1}$$

e la serie di potenze derivata ha raggio di convergenza R.

Si~può~iterare~per~ottenere~serie~derivate~di~ogni~ordine,~tutte~con~raggio~di~convergenza~R.

Conseguenza: la somma di una serie di potenze è derivabile ad ogni ordine.

Oss: la serie derivata ha ancora raggio di convergenza R, ma il comportamente ai bordi  $x_0 \pm R$  può variare rispetto alla serie inerziale.

## 2.3 Lezione del 12/10/2022

**Definizione 15.** Una funzione di una variabile reale f è detta analitica reale nell'intevallo non vuoto (a,b) se è somma di una serie di potenze in (a,b), cioè se esistono  $x_0 \in (a,b), a_n \in \mathbb{R}$  e tale che:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ per ogni } x \in (a, b).$$

Se f è analitica in (a, b):

- Qual è la regolarità minima di f? Risposta: f derivabile ad ogni ordine in (a, b).
- Chi sono i coefficienti  $a_n$ ?  $Risposta: f(x_0) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0$   $f'(x_0) = \sum_{n=1}^{\infty} a_n n (x - x_0)^{n-1} = a_1$   $f''(x_0) = \sum_{n=2}^{\infty} a_n n (n-1) (x - x_0)^{n-2} = 2a_2$  $a_n = \frac{f^{(n)}(x_0)}{n!}$

#### Teorema 8. Funzioni analitiche reali

Se f è analitica reale nell'intervallo non vuoto (a,b) allora è derivabile ad ogni ordine in (a,b) e per ogni  $x_0 \in (a,b)$  è sviluppabile in serie di Taylor. Cioè:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \quad x \in (a, b)$$

Inoltre, detto R il raggio di convergenza della serie, l'identità è verificata per ogni  $x \in (x_0 - R, x_0 + R)$ .

## Serie esponenziale

La funzione  $e^x$  è analitica in  $\mathbb{R}$  (non dimostriamo) La sua serie di Taylor con  $x_0 = 0$  è:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Il raggio di convergenza è  $R=+\infty$ 

oss: Non tutte le funzioni derivabili ad ogni ordine in un intervallo sono analitiche in quell'intervallo. [es. BCFTV II.4]

## 2.4 serie di Fourier

Segnale sonoro periodico:

$$f(x) = 3\cos(x) - \sin(2x) - \cos(10x)$$



Per trasmettere il segnale basta comunicare i coefficienti:

integra

## Lezione del 14/10/2022

Funzioni periodiche, polinomi e serie trigonometriche Ricordiamo che  $f: \mathbb{R} \to \mathbb{R}$  è periodica di periodo T se f(x) = f(x+T) per ogni  $x \in \mathbb{R}$ . Oss:

- Non ci sono ipotesi di regolarità su f.
- Se f è periodica di periodo T allora è anche periodica di periodo  $2T, 3T, 4T \cdots$
- Se f è periodica di periodo T ed è pari (rispettivamente dispari) sul suo periodo, allora è anche pari (rispettivamente dispari) su  $\mathbb{R}$ .

**Definizione 16.** Chiamiamo armoniche n-esime le funzioni:

$$\cos(nx), \sin(nx)$$
  $x \in \mathbb{R}n = 1, 2, 3, \cdots$ 

Ogni armonica n-esima è periodica di periodo  $\frac{2\pi}{n}$ .

Oss: Tutte le armoniche n-esime sono anche periodiche di periodo  $2\pi$  Caso speciale: n=0 la funzione costante 1.

#### 2.4.1 Formule di ortogonalità

$$\int_{-\pi}^{\pi} \cos(nx) \cos(kx) dx = \begin{cases} 0 & \text{se } n \neq k \\ \pi & \text{se } n = k \neq 0 \end{cases}$$
$$\int_{-\pi}^{\pi} \sin(nx) \sin(kx) dx = \begin{cases} 0 & \text{se } n \neq k \\ \pi & \text{se } n = k \neq 0 \end{cases}$$
$$\int_{-\pi}^{\pi} \cos(nx) \sin(kx) dx = 0$$

**Definizione 17.** Un polinomio trigonometrico di ordine n è una combinazione lineare di armoniche n-esime con  $n = 0, 1, 2, \dots, m$ , cioè:

$$a_0 + \sum_{n=1}^m (a_n \cos(nx) + b_n \sin(nx)) a_0, a_n, b_n \in \mathbb{R} \ e \ x \in \mathbb{R}$$

Oss:

- un polinomio trigonometrico è periodico di periodo  $2\pi$
- la somma, differenza, prodotto di due polinomi trigonometrici è ancora un polinomio trigonometrico.

Definizione 18. Una serie trigonometrica è:

$$\sum_{n=0}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

Con  $a_0, a_n, b_n \in \mathbb{R}$ 

Ogni polinomio trigonometrico è  $2\pi$ -periodico, quindi la somma di una serie trigonometrica è  $2\pi$ -periodica.

Per questo motivo supporremo sempre che la funzione che vogliamo decomporre sia  $2\pi$ periodica.

Derivando termine a termine una serie trigonometrica si può perdere regolarità. Questo differenzia le serie trigonometriche dalle serie di potenze, che sono sempre derivabili ad ogni ordine dentro il raggio di convergenza.

**Teorema 9.** Convergenza totale di una serie trigonometrica Data la serie trigonometrica  $a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ 

i) Se  $\sum_{n=1}^{\infty} (|a_n| + |b_n|) < +\infty$  allora la serie converge totalmente in  $\mathbb{R}$ . In particolare, la funzione somma è continua in  $\mathbb{R}$  e posso integrare termine a termine in ogni sottoinsieme limitato.

ii) Se  $\sum_{n=1}^{\infty} n \cdot (|a_n| + |b_n|) = +\infty$  allora la funzione somma è derivabile in  $\mathbb{R}$  e posso derivare termine a termine.

Oss: ci interesseranno anche le serie di Fourier che non convergono totalmente in  $\mathbb{R}$ , cioè tali che  $\sum_{n=1}^{\infty} (|a_n| + |b_n|) = +\infty$  Infatti se il segnale periodico f(x) che voglio comporre non è continuo su  $\mathbb{R}$  allora la convergenza della serie trigonometrica non può essere totale in  $\mathbb{R}$ .

## 2.4.2 Costruzione della serie di Fourier di una funzione periodica

Teorema 10. Calcolo dei coefficienti di Fourier

Sia  $f: \mathbb{R} \to \mathbb{R}, 2\pi$  una funzione periodica e somma di una serie trigonometrica

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos(nx) + b_n \sin(nx) \right)$$

Supponiamo inoltre di poter integrare termine a termine. Allora:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

#### Dimostrazione 4. da sapere all'esame

• Integro f in  $(-\pi,\pi)$ , uso integrazione temrine a termine e formula di ortogonalità:

$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} \left( a_0 + \sum_{n=1}^{\infty} \left( a_n \cos(nx) + b_n \sin(nx) \right) \right) dx$$

$$= \int_{-\pi}^{\pi} a_0 dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos(nx) dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin(nx) dx$$

$$a_0 = \int_{-\pi}^{\pi} 1 dx = 2\pi a_0$$

• Per trovare  $a_n$ , moltiplico f per  $\cos nx$ , integro in  $(-\pi,\pi)$ , uso l'integrabilità termine a termine ele formule di ortogonalità:

$$\int_{-\pi}^{\pi} f(x) \cos(nx) dx = \int_{-\pi}^{\pi} \left( a_0 + \sum_{k=1}^{\infty} \left( a_k \cos(kx) + b_k \sin(kx) \right) \right) \cos(nx) dx$$

$$= a_0 \int_{-\pi}^{\pi} \cos(nx) dx + \sum_{k=1}^{\infty} a_k \int_{-\pi}^{\pi} \cos(kx) \cos(nx) dx + \sum_{k=1}^{\infty} b_k \int_{-\pi}^{\pi} \sin(kx) \cos(nx) dx$$
$$= a_0 \int_{-\pi}^{\pi} \cos^2(nx) dx = a_n \pi$$

• Per trovare  $b_n$ , moltiplico per  $\sin(nx)$ 

Piano di lavoro: data  $f: \mathbb{R} \to \mathbb{R}$ ,  $2\pi$ -periodica integrabile in  $[-\pi, \pi]$ :

- 1. Calcolo i coefficienti  $a_0, a_n, b_n$  con le formule trovate nel teorema precedente
- 2. Con questi coefficienti costruisco la serie trigonometrica
- 3. Studio la convergenza della serie trigonometrica e, in particolare cerco di stabilire se la somma coincide con f in ogni punto

**Definizione 19.** Sia  $f: \mathbb{R} \to \mathbb{R}$ ,  $2\pi$ -periodica, integrabile in  $[-\pi, \pi]$ .

- Chiamiamo coefficenti di Fourier di f i valori  $a_0, a_n, b_n$  definiti nel teorema precedente
- ullet polinomio di Fourier di f di ordine m il polinomio trigonometrico

$$F_m(x) = a_0 + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx))$$

• Serie di Fourier di f la serie trigonometrica

$$F(x) = \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) = \lim_{m \to \infty} F_m(x)$$

Importantissimo per gli esercizi:

- se f è pari, si sviluppa in soli coseni, cioè  $b_n = 0$  per ogni n.
- se f è dispari, si sviluppa in soli seni, cioè  $a_n = 0$  per ogni n.

## Lezione del 19/10/2022

Esempio: dente di sega

f(x) = x

per  $x \in (-\pi, \pi]$  Essendo f dispari:

- si sviluppa in soli seni, cioè  $a_0 = a_n = 0 \quad \forall n$
- $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx = -2 \frac{(-1)^n}{n}$

La serie di Fourier di f è:

$$-2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(nx)$$

Esempio: Tenda

 $f:\mathbb{R}\to\mathbb{R},\,2\pi\text{-periodica}$ e

 $f(x) = (x - \pi)^2 \text{ per } x \in (0, 2\pi]$ 

f pari, quindi:

- $b_n = 0 \quad \forall n$
- $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_0^{\pi} (x \pi)^2 \cos nx dx$

Quindi:

$$a_0 = \frac{1}{2\pi} \int_0^{\pi} (x - \pi)^2 dx = \frac{\pi^2}{3}$$

$$a_n =$$

### 2.4.1 Convergenza della seride di Fourier

Data  $f: \mathbb{R} \to \mathbb{R}$ ,  $2\pi$ -periodica, integrabile in  $[-\pi, \pi]$ :

**Definizione 20.** Data  $f: [-\pi, \pi] \to \mathbb{R}$ . Diciamo che f è regolare a tratti in  $[-\pi, \pi]$  se esiste un numero finito di punti  $x_0, x_1, \dots, x_n$  in  $[-\pi, \pi]$  tali che f e derivabile in  $(x_i, x_{i+1})$   $\forall i = 0, 1, \dots, n-1$  ed esistono finiti i limiti:

$$\lim_{x \to x_i^-} f'(x) \quad \forall i = 0, 1, \cdots, n-1$$

$$\lim_{x \to x_i^+} f'(x) \quad \forall i = 0, 1, \cdots, n-1$$

Oss: Se f è periodica e regolare a tratti in  $[-\pi, \pi]$ , allora:

 $\bullet$  f è regolare a tratti in qualunque intervallo limitato.

• Si avrà anche che f è continua in  $(x_i, x_{i+1})$   $\forall i = 0, 1, \dots, n-1$ . ed esistono finiti i limiti:

$$\lim_{x \to x_i^-} f(x) \quad \forall i = 0, 1, \cdots, n-1$$

$$\lim_{x \to x_i^+} f(x) \quad \forall i = 0, 1, \cdots, n-1$$

- f è integrabile su qualunque intervallo limitato.
- Facoltativo: BCFTV, esercizio II.12. La sua serie di Fourier è integrabile termine a termine.

**Teorema 11.** Della convergenza puntuale delle serie di Fourier Sia  $f: \mathbb{R} \to \mathbb{R}$ ,  $2\pi$ -periodica, regolare a tratti in  $[-\pi, \pi]$ . Allora la serie di Fourier di f converge puntualmente  $\forall \mathbb{R}$  e inoltre

$$\lim_{m \to +\infty} F_m(x) = \frac{1}{2} \left[ \lim_{s \to x^+} f(s) + \lim_{s \to x^-} f(s) \right]$$

Parafrasando: la serie di F converge puntualmente alla media tra  $f(x^+)$  e  $f(x^-)$ . In particolare:

$$f$$
 continua in  $x \Longrightarrow \lim_{m \to +\infty} F_m(x) = f(x)$ 

**Teorema 12.** Convergenza totale della serie di Fourier Sia  $f: \mathbb{R} \to \mathbb{R}$ ,  $2\pi$ -periodica, regolare a tratti in  $[-\pi, \pi]$ . Se inoltre f è continua in tutto  $\mathbb{R}$ , allora la serie di Fourier di f converge totalmente a f in tutto  $\mathbb{R}$ .

## 2.5 Lezione del 21/10/2022

Ripasso tde 16/02/2021

$$f(x) = \begin{cases} \pi - x & x \in (0, \pi] \\ 0 & x = 0 \end{cases}$$

f regolare a tratti, quindi al serie di Fourier converge  $\forall x$ Funzione somma  $S(x) = \lim_{x \to +\infty} F_m(x)$ Se f è continua in x, allora S(x) = f(x)Nei punti dove f è discontinua, cioè  $x = 2k\pi$ ,

$$S(x) = \frac{1}{2} \left( \lim_{s \to x^{+}} f(s) + \lim_{s \to x^{-}} f(s) \right) = 0 = f(x)$$

Conclusione:  $S(x) = f(x) \ \forall x$ Riguardo la convergenza totale:

In ogni intervallo dove S è discontinua, la convergenza non può essere totale

Teorema 13. Convergenza in media quadratica

Sia  $f: \mathbb{R} \to \mathbb{R}$ ,  $2\pi$ -periodica, regolare a tratti in  $[-\pi, \pi]$ . Allora:

$$\lim_{m \to +\infty} \int_{-\pi}^{\pi} (F_m(x) - f(x))^2 dx = 0$$

Spiegazione: si può dimostrare che la convergenza media quadratica implica:

$$\lim_{m \to +\infty} \int_{-\pi}^{\pi} F_m(x)^2 dx = \int_{-\pi}^{\pi} f(x)^2 dx$$

L'area sottesa al grafico di  $F_m^2$  converge all'area sottesa al grafico di  $f^2$  (per  $m \to +\infty$ )