

Основы искусственного интеллекта

Лекция 3

Процедура обучения моделей на основе машинного обучения. Метрики качества

к.ф.-м.н., доцент кафедры ИСиЦТ Корнаева Е.П.

Целевая функция – функция, подлежащая минимизации (максимизации)

В ML целевая функция называется функцией потерь (loss function)

Параметры модели определяются в ходе решения задачи МО.

Например, в задачах регрессии параметрами являются компоненты матрицы весовых коэффициентов $\boldsymbol{\theta}$.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения а / Learning rate
- 3. Погрешность δ и количество итераций $N_{\rm max}$ / Error and # of iterations
- 4. Регуляризация / Regularization

Общая процедура построения приближенных моделей

Обучение валидация тест

Процедура валидации:

На отложенной выборке

Обучение

валидация

Подбор гиперпараметров:

- Построить l-моделей для каждого значения гиперпараметра по обучающей выборке;
- Рассчитать точность моделей на новой выборке (проверочной, валидационной);
- Выбрать значение *гиперпараметра*, для которого точность максимальная.

Кросс-валидация

валидация

валидация

fold = 3

валидация

Каждая из l моделей строиться fold раз. Считается средняя точность по всем fold моделям.

Выбирается модель с максимальной точностью. Обычно fold = 3 (5)

Процедура тестирования:

Проверяется точность выбранной модели на новой (тестовой выборке)!!!

Параметры модели определяются в ходе решения задачи МО. Например, в задачах регрессии параметрами являются компоненты матрицы весовых коэффициентов $\boldsymbol{\theta}$.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения а / Learning rate
- 3. Погрешность δ и количество итераций N_{max} / Error and # of iterations
- 4. Регуляризация / Regularization

$$J(\theta_0, \theta_j) = \frac{1}{2n} \left[\sum_{i=1}^n (H(\theta, X_i) - Y_i)^2 + \lambda \sum_{j=1}^m \theta_j^2 \right] \Rightarrow \min$$

$$h(\theta_0, \theta_j) = \theta_0 + \theta_k x^k,$$

(j, k = 1 ... m).

Параметры модели определяются в ходе решения задачи МО. Например, в задачах регрессии параметрами являются весовые коэффициенты Θ .

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения α / Learning rate
- 3. Погрешность δ и количество итераций N_{max} / Error and # of iterations
- 4. Регуляризация / Regularization

Метод k-ближайших соседей для задачи классификации

Пример бинарной классификации: $Y \in \{0; 1\}$

Двумерный случай: $X = [[x_1, x_2]]$

+ $y_i = 1$: зачислен $y_i = 0$: не зачислен

Метод k-ближайших соседей для задачи классификации

Обучающая выборка: $\{(X_{ij}, Y_i)\}$

Пример

 X_2

 \mathbf{X}_{12}

 \mathbf{X}_{22}

 X_{n2}

 \mathbf{y}_1

 y_2

 y_n

 \mathbf{X}_{11}

 \mathbf{x}_{21}

 x_{n1}

i — номер объекта; j — номер признака;

 X_{ij} — значение j^{ro} признака для i^{ro} объекта;

 Y_i — значение класса для $i^{\text{го}}$ объекта (дискретная величина);

n — кол-во объектов;

т – кол-во признаков (факторов);

Матричная форма записи:

	X ₁	X_2		X _m	$Y_{[n\times 1]}$
1	X ₁₁	X ₁₂		x _{1m}	y_1
2	X ₂₁	X ₂₂		X _{2m}	y ₂
			•••		
n	X _{n1}	X_{n2}		X _{nm}	y _n
	•	V	•		

 $X_{[n\times(m+1)]}$

Метод k-ближайших соседей для задачи классификации

✓ Гипотеза компактности: предположение о том, что схожие объекты гораздо чаще лежат в одном классе, чем в разных

Обучение:

- Сохраняется обучающая выборка $\{X_i, Y_i\};$

Классификация нового объекта:

- Измерить расстояние от всех объектов до нового объекта X_q ;
- Упорядочить объекты в порядке возрастания дальности до нового объекта:

$$\rho(X_l, X_q) \le \dots \le \rho(X_i, X_q) \le \dots \le \rho(X_r, X_q)$$

- Выбрать первые к объектов (к ближайших соседей):

$$\{X_1, ..., X_k\}$$

- Назначить новому объекту модальный класс (самый частый) среди k ближайших соседей:

$$Y(X_q) = \underset{y_{cl} \in Y}{\operatorname{argmax}} \sum_{i=1}^{k} [y_i == y_{cl}]$$

Метод к-ближайших соседей для задачи классификации

Виды метрик $\rho(X_i, X_q)$ между объектами X_i, X_q

Вид расстояний	Расчет $\rho(X_i, X_k)$
Евклидова норма	$\sqrt{\sum_{j=1}^{m} (x_{ij} - x_{qj})^2}$
Степенное расстояние	$\left(\sum_{j=1}^{m} (x_{ij} - x_{qj})^p\right)^{1/p}$
Расстояние Чебышева	$\max_{j} x_{ij} - x_{qj} $
L1 – метрика	$\sum_{j=1}^{m} x_{ij} - x_{qj} $

Метрики качества модели классификации

Accuracy – относительное количество верно предсказанных классов (доля верных ответов):

$$Accuracy = \frac{1}{n} \sum_{i=1}^{n} [y_{\mathsf{T}_i} == y_i]$$

Пример.

Предсказанные	Реальные	$y_{\mathrm{T}i} == y_i$
1	0	0
0	0	1
1	1	1
0	0	1
1	0	0
0	0	1
0	0	1
1	1	1
0	0	1
0	0	1

- (1) Редкий класс
- 0 Частый класс

$$Accuracy = 80\%$$

$${\textstyle\sum_{i=1}^{10}}[y_{_{\rm T}}_i == y_i] = 8$$

Метрики качества модели классификации. Перекошенные классы

Accuracy – относительное количество верно предсказанных классов (доля верных ответов):

Пример плохой модели c высокой долей верных ответов: $Y_{\rm T}(X)=0$

Предсказанные	Реальные
0	0
0	0
0	1
0	0
0	0
0	0
0	0
0	1
0	0
0	0

Accuracy = 80%

$Accuracy = \frac{1}{2}$	$\sum_{i=1}^{n} [y_{T_{i}} == y_{i}]$
n	$\sum_{i=1}^{L/T_i} L^{JT_i}$

	Реальный класс			
Предсказанный класс		«1» (*редкий класс)	«O»	
	«1» (*редкий класс)	True positive (TP)	False positive (FP) Ошибка 1го рода	
Пре	«O»	False negative (FN)	True negative (TN)	

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Метрики качества модели классификации. Перекошенные классы

Матрица ошибок (confusion matrix). Точность и полнота модели классификации

	Реальный класс			
) <u>Z</u>		«1» (*редкий класс)	«O»	
Предсказанный класс	«1» (*редкий класс)	True positive (TP)	False positive (FP) Ошибка 1го рода	$Precision = \frac{TP}{TP + FP}$
/әdЦ	«O»	False negative (FN) Ошибка 2го рода	True negative (TN)	

$$Recall = \frac{TP}{TP + FN}$$

$$F1-score = \frac{2PrecisionRecall}{Precision + Recall}$$

Метрики качества модели классификации. Перекошенные классы

Матрица ошибок (confusion matrix). Чувствительность и специфичность модели

	Реальный класс			
ž		«1» (*редкий класс)	«O»	
Предсказанный класс	«1» (*редкий класс)	True positive (TP)	False positive (FP) Ошибка 1го рода	
/ded⊔	«O»	False negative (FN) Ошибка 2го рода	True negative (IN)	
$Sensitivity(Recall) = \frac{TP}{TP + FN}$ $Specificity = \frac{TN}{TN + FR}$ i/Confusion_matrix				

Определение гиперпараметров на примере k-ближайших соседей

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Лекции К.В. Воронцова http://www.machinelearning.ru/wiki/index.php?title=MO

Определение гиперпараметров на примере k-ближайших соседей

Процедура валидации:

На отложенной выборке

Обучение

валидация

Подбор гиперпараметра k:

- Построить l-моделей для каждого значения гиперпараметра k по обучающей выборке;
- Рассчитать точность моделей на новой выборке (проверочной, валидационной);
- Выбрать значение *k*, для которого точность максимальная.

Каждая из l моделей строиться fold раз. Считается средняя точность по всем fold моделям.

Выбирается модель с максимальной точностью.

Обычно кол-во fold: 3, 5

Процедура тестирования:

Проверяется точность выбранной модели на новой (тестовой выборке)!!!

Общая процедура построения приближенных моделей

Обучение валидация тест

Исходная выборка делится на три части:

- Обучающая (определение параметров модели);
- Валидационная (подбор гиперпараметров на основе валидации или кросс-валидации);
- Тестовая (расчет точности модели).

Метод к-ближайших соседей для задачи регрессии

У Гипотеза компактности: предположение о том, что схожие объекты гораздо чаще лежат в одном классе, чем в разных

Обучение:

- Сохраняется обучающая выборка $\{X_i, Y_i\}$;

Предсказание отклика для новой точки:

- Измерить расстояние от всех объектов до нового объекта X_a ;
- Упорядочить объекты в порядке возрастания дальности до нового объекта:

$$\rho(X_l, X_q) \le \dots \le \rho(X_i, X_q) \le \dots \le \rho(X_r, X_q)$$

- Выбрать первые к объектов (к ближайших соседей):

$$\{X_1,\ldots,X_k\}$$

- Рассчитать среднее значение отклика среди k ближайших соседей:

$$Y(X_q) = \frac{1}{k} \sum_{i=1}^k y_i$$

Метод к-ближайших соседей для задачи регрессии

Метрики качества для задач регрессии:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y(x_i) - y_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y(x_i) - y_i)^2}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y(x_i) - y_i|$$

- Определение гиперпараметров на примере k-ближайших соседей

Валидация/кросс-валидация аналогично такой же процедуре для классификации, только рассматриваются метрики качества для регрессии.