Review:

Perpendicular Bisector: A line ______ to a segment at its _____.

You try: Draw \overline{OK} . Draw line M that that is the perpendicular bisector of \overline{OK} .

Angle Bisector: A _____ that divides an angle into two congruent _____.

You try: Draw $\angle ABC$. Draw \overrightarrow{BX} that is the angle bisector.

Equidistant: When a point is the same ______ from two or more objects.

Angle Review:

- 2) If \overrightarrow{WY} bisects $\angle XWZ$, then which two angles are congruent? ______
- 3) Draw obtuse $\angle CAT$. Draw the angle bisector \overrightarrow{AS} . Which two angles are congruent?
- 4) Name the numbered angles:

***The middle letter of an angle represents the ______

Perpendicular Bisector Theorem:

	THEOREM	HYPOTHESIS	CONCLUSION
5-1-1	Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.	$ \begin{array}{c} \ell \downarrow \chi \\ A & Y & B \end{array} $ $ \begin{array}{c} \overline{XY} \perp \overline{AB} \\ \overline{YA} \cong \overline{YB} \end{array} $	XA = XB
5-1-2	Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.	$A \qquad Y \qquad B$ $XA = XB$	$\frac{\overline{XY} \perp \overline{AB}}{\overline{YA} \cong \overline{YB}}$

Examples:

4) Given that line l is the perpendicular bisector of \overline{DE} and EG = 14.6, then DG = _____.

5) Given that DE = 20.8, DG = 36.4, and E EG = 36.4, then EF = _____.

Angle Bisector Theorem:

	THEOREM	HYPOTHESIS	CONCLUSION
5-1-3	Angle Bisector Theorem If a point is on the bisector of an angle, then it is equidistant from the sides of the angle.	P B ∠APC ≅ ∠BPC	AC = BC
5-1-4	Converse of the Angle Bisector Theorem If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.	AC = BC	∠APC ≅ ∠BPC

**Remember: The distance between a point and a line is the length of the ______segment from the point to the line.

Examples:

2) If
$$m \angle ABC = 112^{\circ}$$
, then $m \angle ABD = \underline{\hspace{1cm}}$

3) $m \angle TSU = \underline{\hspace{1cm}}$

4) Given that $m \angle WYZ = 63^{\circ}$, XW = 5.7, and ZW = 5.7, then $m \angle XYZ =$ _____.

Summary:

Theorem	Example	Conclusion
Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.	F S	
Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.	F S	
Angle Bisector Theorem If a point is on the bisector of an angle, then it is equidistant from the sides of the angle.	N Z	
Converse of the Angle Bisector Theorem If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.	N Z	

Practice:

Find each measure.

1. *RT* = _____

2. *AB* = _____

3.*HJ* = _____

4. *EH* = _____

5. m∠QRS=_____

6. m∠*WXZ* = _____

5.1 Practice B

Perpendicular Bisectors and Angle Bisectors

Name ______ Date _____

Use the figure for #1-2.

1. Given that line m is the perpendicular bisector of \overline{FH} and $\overline{EH} = 100$, find \overline{EF} .

2.Given that *EF* = 13, *FH* = 10, and *EH* = 13, find *GH*.

Use the figure for #3-6.

- 3. Given that line p is the perpendicular bisector of \overline{XZ} and XY = 15.5, find ZY.
- 4. Given that XZ = 38, YX = 27, and YZ = 27, find ZW.

6. Given that XY = ZY, WX = 6x - 1, and XZ = 10x + 16, find ZW.

Use the figure for Exercises #7-8.

7. Given that $J\bar{L}$ bisects $\angle KJM$ and KL = 42, find ML.

Use the figure for Exercises #9-12.

- 9. Given that FG = HG and $m\angle FEH = 56^{\circ}$, find $m\angle GEH$.
- 10. Given that \overline{EG} bisects $\angle FEH$ and $GF = \sqrt{2}$, find GH.

