

BASIC DATA ANALYSIS WITH

Pandas - Data manipulation tool

- Pandas is a efficient tool for handling and manipulating "relational" or "labelled" data in Python in a easy and intuitive way.
 - Several file format are supported ('.csv', '.json', '.txt', '.xlsx',...)
 - Good for both ordered and unordered time series data.
 - Great tool for observational and statistical data sets.
- Pandas is built upon two main objects:
 - **DataFrame**
 - Series

ICHEC Pandas Series Pandas Series

- Intuitively series are comparable to Python dictionaries but data processing and storing is more efficient.
- Creating a series:

```
>>> pd.Series(data, index=index)
```

o From a list:

```
>>> series = pd.Series([1, 2, 3, 4],
... index=['a', 'b', 'c', 'd'])
... print(series)
a     1
b     2
c     3
d     4
dtype: int64
```


ICHEC Pandas Series

- Intuitively series are comparable to Python dictionaries but data processing and storing is more efficient.
- Creating a series:

```
>>> pd.Series(data, index=index)
```

o From a dictionary:

ICHEC Pandas Series Pandas Series

- Intuitively series are comparable to Python dictionaries but data processing and storing is more efficient.
- Creating a series:

```
>>> pd.Series(data, index=index)
```

Series with special indexing:

ICHEC Pandas DataFrame

- Whereas Series are single columns, a DataFrame can be thought as a relational database, with several rows and named columns.
- A general syntax for creating a DataFrame:

```
>>> pd.Series(data, index=index)
```

An example creating a DataFrame from an existing Pandas series:

ICHEC Pandas DataFrame

• DataFrame.head(n) and DataFrame.tail(n) will display the n first and last rows of the DataFrame, respectively.

We can easily graph our data. For example, if we want to plot the

histogram distribution of a column:

```
>>> import matplotlib.pyplot as plt
... plt.show()
... hist = Iris.hist('petal_width')
```


ICHEC Pandas DataFrame I/O

 More often, DataFrames are created from data files. We have several methods for different formats:

```
o read_json()
```

- o read_html()
- read_sql()
- o read_pickle()

>>	>>> Iris = pd.read_csv('iris.csv')										
>>	>>> Iris.head()										
	sepal_length	sepal_width	petal_length	petal_width	species						
0	5.1	3.5	1.4	0.2	setosa						
1	4.9	3.0	1.4	0.2	setosa						
2	4.7	3.2	1.3	0.2	setosa						
3	4.6	3.1	1.5	0.2	setosa						
4	5.0	3.6	1.4	0.2	setosa						

ICHEC Pandas DataFrame 1/0

 Read methods offer many options to customize how pandas should read the file. We can choose the delimiter, desired columns, header...

```
>>> pandas.read_csv(filepath_or_buffer, delimiter=',',
... header='infer',
... names=0,
... index_col='index_col_name',
... usecols=['col1','col2'])
```

Similarly, a DataFrame can be written into a file using:

```
>>> MyDataFrame.to_csv(r'path\filename.csv', index = False, header=True)
```


• Let's consider the following DataFrame:

```
PeopleDF = pd.DataFrame(dict(
        AGE=np.random.randint(10,80, size=n),
        HEIGHT=np.random.randint(150, 200, size=n)),
        index = ['Person'+str(i+1) for i in range(n)])
    print(PeopleDF.head())
         AGE HEIGHT
Person1
                 180
Person2
                 189
                 158
Person3
Person4
                 197
          17
                 160
Person5
```

- Accessing a column
- Accessing a row
- Manipulating values
- Renaming columns
- o Re-indexing

ICHEC INST CONTROL Accessing and manipulating data

Accessing a column

Original DataFrame:

	AGE	HEIGHT
Person1	40	180
Person2	52	189
Person3	47	158
Person4	19	197
Person5	17	160

>>> People	DF.head()['AGE']
Person1	40
Person2	52
Person3	47
Person4	19
Person5	17
Name: AGE,	dtype: int32

The result is a Pandas Series:

```
type(PeopleDF.head()['AGE'])
<class 'pandas.core.series.Series'>
```


Accessing a row

Original DataFrame:

	AGE	HEIGHT
Person1	40	180
Person2	52	189
Person3	47	158
Person4	19	197
Person5	17	160

Two ways to do this:

```
>>> PeopleDF.loc['Person1']
AGE 40
HEIGHT 180
Name: Person1, dtype: int32
```

```
>>> PeopleDF.iloc[0]
AGE 40
HEIGHT 180
Name: Person1, dtype: int32
```


Accessing the elements of the DataFrame

Original DataFrame:

	AGE	HEIGHT		
Person1	40	180		
Person2	52	189		
Person3	47	158	We need to	
Person4	19	197	specify the	
Person5	17	160	columns first, and then the rows.	Slicing rules for lists still apply.

Manipulating values

Original DataFrame:

	AGE	HEIGHT
Person1	40	180
Person2	52	189
Person3	47	158
Person4	19	197
Person5	17	160

- useful if we want to modify entries without affecting the original DataFrame.
- Python arithmetic functions can be applied to Pandas Series, and most NumPy operations are also supported:

```
PeopleDF2 = PeopleDF.copy()
PeopleDF2['HEIGHT_IN_M']=PeopleDF['HEIGHT']/100
Print(PeopleDF2.head())
AGE HEIGHT HEIGHT_IN_M
Person1 40 180 1.80
Person2 52 189 1.89
Person3 47 158 1.58
Person4 19 197 1.97
Person5 17 160 1.60
```


Manipulating values: Apply

Original DataFrame:

AGE	HEIGHT
40	180
52	189
47	158
19	197
17	160
	40 52 47 19

 Apply function allow for more complex data manipulation with series:

• We can alsouse apply with custom functions:

Manipulating values: Apply

Original DataFrame:

	AGE	HEIGHT
Person1	40	180
Person2	52	189
Person3	47	158
Person4	19	197
Person5	17	160

 Apply function can also be applied to a DataFrame, and we can specify if we want to use columns or rows:

```
def countmissing(x):
        return sum(x.isnull())
    print(PeopleDF2.apply(countmissing, axis=0))
    print(PeopleDF2.apply(countmissing, axis=1).head())
AGE
HEIGHT
HEIGHT_IN_M
ADULT
BIRTHYEAR
dtype: int64
Person1
Person2
Person3
Person4
Person5
dtype: int64
```


Manipulating values: Map

Original DataFrame:

-		
	AGE	HEIGHT
Person1	40	180
Person2	52	189
Person3	47	158
Person4	19	197
Person5	17	160

• The pd.Series.map() function can be used for substituting each value in a Series with another value, that may be derived from a function, a dictionary or another Series.

```
PeopleDF2['ADULT'] = PeopleDF2['ADULT'].map({True: 'Yes', False: 'No'})
   print(PeopleDF2.head())
             HEIGHT HEIGHT_IN_M ADULT
                                         BIRTHYEAR
Person1
          40
                             1.80
                             1.89
Person2
                             1.58
Person3
                             1.97
                                              2002
Person4
                             1.60
                                              2004
Person5
```


- Manipulating values: Filtering data
 - In the following example values are filtered according to boolean expressions:

```
FilteredDF = PeopleDF2.loc[(PeopleDF2['ADULT']=='No') & (PeopleDF2['HEIGHT']<180)]
    print(FilteredDF)
          AGE HEIGHT
                       HEIGHT_IN_M ADULT
                                          BIRTHYEAR
Person5
                              1.60
                                                2004
                              1.61
                                                2004
Person6
Person16
                                                2008
Person17
                              1.56
                                                2006
Person18
                              1.60
                                                2003
```

```
___ print(FilteredDF.index)
Index(['Person5', 'Person6', 'Person16', 'Person17', 'Person18'], dtype='object')
```

```
FilteredDF =FilteredDF.reset_index()

FilteredDF.drop(columns=['index'])

AGE HEIGHT HEIGHT_IN_M ADULT BIRTHYEAR

17 160 1.60 No 2004

1 17 161 1.61 No 2004

2 13 171 1.71 No 2008

3 15 156 1.56 No 2006

4 18 160 1.60 No 2003
```


Useful Pandas methods

pd.DataFrame.describe() returns descriptive statistics of the data in a Pandas DataFrame or Series.

```
        PeopleDF2.describe()

        AGE
        HEIGHT
        HEIGHT_IN_M
        BIRTHYEAR

        count
        20.00000
        20.00000
        20.00000

        mean
        41.350000
        171.30000
        1.71300
        1979.650000

        std
        22.269344
        16.939832
        0.169398
        22.269344

        min
        13.000000
        150.00000
        1.500000
        1944.000000

        25%
        17.750000
        158.00000
        1.550000
        1959.500000

        50%
        38.000000
        161.50000
        1.615000
        1983.000000

        75%
        61.50000
        189.00000
        1.890000
        2003.250000

        max
        77.000000
        198.000000
        1.98000
        2008.000000
```

- astype() is used to cast a Python object to a particular data type
- to_datetime() converts a Python object to datetime format. It can take an integer, floating point number, list, Pandas Series, or Pandas DataFrame as argument.

Useful Pandas methods

- value_counts()
 returns a Pandas Series containing the counts of unique values.
- returns a Pandas DataFrame with duplicate rows removed. Even among duplicates, there is an option to keep the first occurrence (record) of the duplicate or the last.
- Sort_values() sorts a Series or DataFrame by values in ascending or descending order. By specifying the inplace attribute as True, you can make a change directly in the original DataFrame.
- WeatherDF['TEMP'].fillna(24, inplace=True) helps to replace all NaN values in a DataFrame or Series by imputing these missing values with appropriate values.

Aggregation functions

Pandas has a number of aggregating functions that reduce the dimension of the grouped object. We can then use groupby() to split the DataFrame into groups. It

is similar to a SQL database.

0	mean(): Compute mean of	of groups
---	-------------------------	-----------

- O sum(): Compute sum of group values
- O size(): Compute group sizes
- count(): Compute count of group
- std(): Standard deviation of groups
- var(): Compute variance of groups
- O sem(): Standard error of the mean of groups
- O describe(): Generates descriptive statistics
- first(): Compute first of group values
- O last(): Compute last of group values
- o nth(): Take nth value, or a subset if n is a list
- min(): Compute min of group values
- max(): Compute max of group values

>>> Peopl	eDF2.gr	oupby('B	<pre>IRTHYEAR').mean()</pre>
	AGE	HEIGHT	HEIGHT_IN_M
BIRTHYEAR			
1944	77.0	193.0	1.930
1951	70.0	151.0	1.510
1952	69.0	161.0	1.610
1954	67.0	158.0	1.580
1955	66.0	189.0	1.890
1961	60.0	162.0	1.620
1962	59.0	155.0	1.550
1969	52.0	189.0	1.890
1974	47.0	158.0	1.580
1981	40.0	180.0	1.800
1985	36.0	150.0	1.500
1986	35.0	193.0	1.930
1987	34.0	198.0	1.980
2002	19.0	197.0	1.970
2003	18.0	160.0	1.600
2004	17.0	160.5	1.605
2005	16.0	184.0	1.840
2006	15.0	156.0	1.560
2008	13.0	171.0	1.710

Combining data: merge, join, concat

concat(): used for combining DataFrames across rows or columns.

Result = pd.concat([df1,df4])

df1						dt	4			Result						
										Α	В	С	D	В	D	F
	Α	В	С	D		В	D	F	0	A0	В0	ω	D0	NaN	NaN	NaN
0	A0	В0	α	D0	2	B2	D2	F2	1	A1	B1	C1	D1	NaN	NaN	NaN
1	Al	B1	Cl	D1	3	В3	D3	F3	2	A2	B2	C2	D2	B2	D2	F2
2	A2	B2	C2	D2	6	B6	D6	F6	3	A3	В3	C3	D3	В3	D3	F3
3	A3	В3	СЗ	D3	7	B7	D7	F7	6	NaN	NaN	NaN	NaN	B6	D6	F6
									7	NaN	NaN	NaN	NaN	B7	D7	F7

Combining data: merge, join, concat

- merge(): for combining data on common columns or indices.
 - When using merge, we provide a left and a right DataFrame.
 - Additional arguments define how they are merged:
 - O How: {'left', 'right', 'outer', 'inner', 'cross'}
 - On: Column or index level names to join on.
 - O ...

Combining data: merge, join, concat

- .join(): for combining data on a key column or an index
 - While merge() is a module function, .join() is an object function.
 - It uses merge under the hood, but the only required parameter is the other DataFrame we want to join.
 - As in the previous case, additional parameters define how they are joined:
 - O other: The other DataFrame to be joined.
 - O on: They column or index that will be taken as common. Default is None
 - O how: This has the same options as how from merge(). The difference is that it is index-based unless you also specify columns with on....
- O This topic includes many cases and it is better understood with some hands-on code: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

ICHEC CONCLUSIONS

- Pandas is a great tool to handle diverse types data and relational databases.
- Series and DataFrames are the basic objects. They are flexible data structures that can storage different kind of data.
- Pandas support most of NumPy functionalities that can be applied to Series.
- Pandas can be integrated with machine learning libraries like sklearn.

