HASHING FUNCTIONS

Hashing Function

- Hashing function is a function which is applied on a key by which it produces an integer, which can be used as an address in hash table.
- A simple hashing function: h(k) = k mod m

Properties of Hashing Functions

- Easy to compute
- Uniform distribution
- Less collisions

Hash Table: Example

- **Example:** phone book with table size N = 5
- hash function h(w) = (length of the word w) mod 5

- **Problem:** collisions
- Where to store Joe (collides with Ria)

UCS405 "Discrete Mathematical Structures"

Collisions

- Collisions occur when different elements are mapped to the same cell.
- Keys k_1 , k_2 with $h(k_1) = h(k_2)$ are said to collide

What should we do now?

- Find a better hashing algorithm
- Use a bigger table
- Need a system to deal with collisions

Resolving Collisions

- Two different methods for collision resolution:
 - **Separate Chaining**: Use a dictionary data structure (such as a linked list) to store multiple items that hash to the same slot.
 - Closed Hashing (or Open Addressing): search for empty slots using a second function and store item in first empty slot that is found.

Separate Chaining

- Each cell of the hash table points to a linked list of elements that are mapped to this cell.
- Simple, but requires additional memory outside of the table

Closed Hashing or Open Addressing

- Open addressing does not introduce a new structure.
- If a collision occurs then we look for availability in the next spot generated by an algorithm.
- There are many implementations of open addressing, using different strategies for where to probe next:
- Linear Probing
- Quadratic Probing
- 3. Double Hashing

Contd..

- Given an item X, try cells $h_0(X)$, $h_1(X)$, $h_2(X)$, ..., $h_i(X)$
 - $h_i(X) = (Hash(X) + F(i)) \mod TableSize$
 - F(0) = 0
- F is the *collision resolution* function. Some possibilities:
 - **Linear**: F(i) = i
 - Quadratic: $F(i) = i^2$
 - Double Hashing: F(i) = i*Hash₂(X)

Linear Probing Example

UCS405 "Discrete Mathematical Structures"

Quadratic Probing Example

UCS405 "Discrete Mathematical Structures"

Double Hashing

- Double hashing can be done using:
 (hash I (key) + i * hash2(key)) % TABLE_SIZE
- First hash function is typically

A popular second hash function is:

where PRIME is a prime smaller than the TABLE_SIZE.

Double Hashing Example

	ert(19 613 =	/	nsert(27%13	· ·	nsert(6%13		nsert(
0		0		0		0		
I		I	27	1	27	I	27	Collision 2
2		2		2		2		
3		3		3		3		Let Hash2(key)=7-(key % 7)
4		4		4		4		
5		5		5		5	10	Hash1(10)=10%13=10 (Collision1) Hash 2(10)=7-(10%7)=4
6	19	6	19	6	19	6	19	-145112(10)-7-(10/67)-7
7		7		7		7		(Hash1(10)+1*Hash2(10))%13=1(Collision 2)
8		8		8		8		(Hash1(10)+2*Hash2(10))%13=5
9		9		9		9		
10		10)	10	36	10	36	Collision I
11		11		- 11		11		
12		12	2	12] 12		UCS405 "Discrete Mathematical Structures"

PRACTICE QUESTIONS ON GROWTH OF FUNCTIONS

UCS405 "Discrete Mathematical Structures"

Q1. Give a big-O notation to estimate the sum of the first n positive integers.

Q2. Give a big-O estimate for the factorial function. UCS405 "Discrete Mathematical Structures"

Q3. Give a big-O estimate for the following function: $f(n) = 3n \log (n!) + (n^2 + 3) \log n$ Q4. Give a big-O estimate for the following function:

 $f(x) = (x + 1) \log (x^2 + 1) + 3x^2$

As mentioned before, big-O notation is used to estimate the number of operations needed to solve a problem using a specified procedure or algorithm. The functions used in these estimates often include the following:

1, $log n, n, n log n, n^2, 2^n, n!$

Using calculus it can be shown that each function in the list is smaller than the succeeding function, in the sense that the ratio of a function and the succeeding function tends to zero as *n grows without bound*. Figure displays the graphs of these functions, using a scale for the values of the functions that doubles for each successive marking on the graph. That is, the

vertical scale in this graph is logarithmic.

A Display of the Growth of Functions Commonly Used in Big-O Estimates.

Thank You