Using Open Source Approaches to Automate Research Data Management

Christopher Maronga

January 7, 2021

Contents

- 1 Introduction
- 2 Proposed QC model
- 3 Implementation
- 4 Fitting the pieces together
- The Gains
- 6 The reality check
- 7 The Challenges
- 8 Future thoughts

- All health research involves collecting, managing and processing of study data.
- Data management can be costly and unaffordable in developing countries.
- Good data management is important and beneficial to the success of any study.
- Potential data management issues.
 - Data from different sources
 - Complex study designs (longitudinal)
 - Multiple individuals conducting data entry
- Open source technologies can be used to monitor real time data quality checks and up-to-minute study progress.

Using Open Source Approaches to Automate Research Data Management

Introduction

CHAIN Network

- Main cohort (4,714 records, 1,563 variables over 23 unique eCRFs)
- Over seven sub-studies (2,658 records, 1,985 variables over 46 unique eCRFs)
- Variables on demographics, clinical features, mental health, socio-economic phenotyping etc.
- Lab meta-data and patients' test results (long data), approx. 0.95 million records on more than 80 non-processed variables.
- 48 hour turn-around time for data base update (KIDMS for lab data and REDCap for clinical data)

- A sub-set of risk based approaches to data management.
- Real-time check on both item and variable missingness.
- Up-to-minute capturing of data inconsistency and anomaly detection.
- Standardized yet interactive study progress reports (accrual curves, lost to follow up and missed visits summaries).
- Customized utility reports for planning future events and tracking follow up trajectories by sites.

- REDCap is a mature, secure web application for building and managing online surveys and databases.
- Kilifi Integrated Database
 Management System. Primary
 storage for laboratory meta data
 and test results.
- Rstudio and Shiny: Great combination of both packages & frameworks to produce a dashboard

└The Shiny framework

The anatomy of a shiny application consist of user interface(ui) and the server section.

library(shiny) ui <- fluidPage()

User interface

controls the layout and appearance of app

server <- function(input, output) {}</pre>

Server function

contains instructions needed to build app

shinyApp(ui = ui, server = server)

shinyApp()

Creates the Shiny app object

∟_{How it works}

• REDCap and KIDMS

- Central data storage
- Longitudinal design
- KIDMS for lab data

• RStudio server

- Task scheduling
- Extraction
- Processing

• Shiny server

- Cleaning scripts
- Reports authoring

• The Dashboard

- Web-based
- Reports and queries

Using Open Source Approaches to Automate Research Data Management

- Fitting the pieces together
 - LDashboard overview

Using Open Source Approaches to Automate Research Data Management

☐ Fitting the pieces together ☐ Sample dashboard output(1/2)

Fitting	g the pie	eces tog			e Research D	ata Manage	ment				
aily Reviews	Discharg	je & V.A	Follow up	Home Visits	Screening log	Missed visits	About Dashl	ooard			
Study Con	nclusion	Day 45 Fo	ollow Up	Day 90 Follow	Up Day 180 Fo	llow Up					
Day 180 foll		e must be b	oefore or san	ne as stud y end	I		Se	arch:			
ree	cord_id \$	site	♦ Day	180 date	Study end	date \$	comment			\$	
3	0001312	Blantyre	2019-	05-17	2019-05-16		Study end happ	pened before day 18	30		
3	0001328	Blantyre	2019-	06-19	2016-06-19		Study end happ	oened before day 18	30		
Showing 1 to	o 2 of 2 ent	ries						Previo	ous 1	Next	
Missing day	180 anthro	pometry									
Show 10	entries						Se	arch:			1
гесо	ord_id \$	fu180_vis	date 🖣 sit	te fu180_v	veight fu180_	height1 fu1	80_height2	fu180_muac1	fu180_mu	Jac2	fu
							No data availabl	e in table			
Showing 0 to	o 0 of 0 ent	ries							Previous	Next	

- Seamless data extraction and processing with no human intervention.
- Run automated cleaning scripts and monitor data quality checks in real time.
- Up-to-minute access to standardized study reports by sites' PI and study staff.
- Real time study progress reports helped planning of recruitment and other activities.
- Improved productivity of the data team and reduced over-reliance on the CHAIN central team

"I SPEND A LOT OF TIME ON THIS TASK. I SHOULD WRITE A PROGRAM AUTOMATING IT!"

Everything never went smoothly as projected, we faced various challenges

- Dataset grew exceedingly large, slowing down the app. load time.
- Server downtime, making the app. inaccessible sometimes.
- Processing data from different sources concurrently for reporting purposes within the app.

The framework presented here can easily be extended to produce robust and scalable Shiny applications:-

- Spatial data analysis and interactive visualization.
- Data products for statistical analysis and modelling.
- Highly engineered data cleaning and anomaly detection tools

BILL& MELINDA GATES foundation

KEMRI Wellcome Trust

UNIVERSITY of WASHINGTON

NAIROBI CITY COUNTY

HEALTH SERVICES

Moyo Nutritional Rehabilitation & Research Unit College of Medicine, Blantyre, Malawi

Special thanks to the patients, staff and leadership at our clinical sites.