

(2)

NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A257 579

S DTIC ELECTED
A DECO 4 1992 D
THESIS

AN EXAMINATION OF THE PERFORMANCE
OF A NATURAL TRUNCATION POINT AND
ACCEPTANCE RULE FOR A CURTAILED WALD
SEQUENTIAL SAMPLING PLAN WITH
BERNOULLI PARAMETERS

by

Cameron J. Lewis
September 1992

Thesis Advisor

Prof. Glenn F. Lindsay

Approved for public release; distribution is unlimited.

92-30825

92 1

079

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS Unclassified	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/ AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Naval Postgraduate School		6b. OFFICE SYMBOL (If Applicable) OR	
6c. ADDRESS (city, state, and ZIP code) Monterey, CA 93943-5000		7a. NAME OF MONITORING ORGANIZATION Naval Postgraduate School	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION		8b. OFFICE SYMBOL (If Applicable)	
8c. ADDRESS (city, state, and ZIP code)		9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
		10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO.	
11. TITLE (Include Security Classification) AN EXAMINATION OF THE PERFORMANCE OF A NATURAL TRUNCATION POINT AND ACCEPTANCE RULE FOR A CURTAILED WALD SEQUENTIAL SAMPLING PLAN WITH BERNOUlli PARAMETERS (U)			
12. PERSONAL AUTHOR(S) Lewis, Cameron J.			
13a. TYPE OF REPORT Master's Thesis		13b. TIME COVERED FROM TO 1992 September	
14. DATE OF REPORT (year, month, day) 15. PAGE COUNT 1992 September 128			
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.			
17. COSATI CODES		18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)	
FIELD	GROUP	SUBGROUP	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) This paper examines the performance of a proposed truncation and acceptance rule for the Wald Sequential Probability Ratio test for Bernoulli parameters and the rules influence on errors of the first and second kind as well as the average number of items sampled for inspection. The proposed truncation and acceptance rule suggest that there exists a natural truncation point for every Sequential Probability Ratio test such that the desired error probabilities are not exceeded or that one of the true errors is smaller than desired and the other will be exceeded by an insignificant amount. A computer program is used to simulate the sampling process and provide estimates of the true values of a plan's Operating Characteristic curve, its average sample number , as well as the probability of implementing the truncation and acceptance rule. Results suggest that truncation and rejection of a lot at the natural truncation point will maintain a plan's desired Operating Characteristic curve. The cases examined also suggest that any modifications to the natural truncation point truncation and acceptance rule may cause an unacceptable deviation from the desired Operating Characteristic curve. Finally, a linear equation was developed which provides an estimate of the upper limit on the probability of implementing a truncation and acceptance rule and that in most cases, this upper limit is less than 0.15.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION Unclassified	
22a. NAME OF RESPONSIBLE INDIVIDUAL G. F. Lindsay		22b. TELEPHONE (Include Area Code) (408) 646-2688	
22c. OFFICE SYMBOL Code OR/RL			

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

AN EXAMINATION OF THE PERFORMANCE OF A NATURAL
TRUNCATION POINT AND ACCEPTANCE RULE FOR A
CURTAILED WALD SEQUENTIAL SAMPLING PLAN WITH
BERNOULLI PARAMETERS

by

Cameron J. Lewis

Lieutenant, United States Coast Guard
B.S., United States Coast Guard Academy, 1985

Submitted in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author:

Cameron J. Lewis

Approved by:

Glenn F. Lindsay, Thesis Advisor

So Young Sohn, Second Reader

Peter Purdue, Chairman,
Department of Operations Research

ABSTRACT

This paper examines the performance of a proposed truncation and acceptance rule for the Wald Sequential Probability Ratio test for Bernoulli parameters, and the rule's influence on errors of the first and second kind as well as the average number of items sampled for inspection. The proposed truncation and acceptance rule suggests that there exists a natural truncation point for every sequential probability ratio test such that the desired error probabilities are not exceeded or that one of the true errors is smaller than desired and the other will be exceeded by an insignificant amount. A computer program is used to simulate the sampling process and provide estimates of the true values of a plan's Operating Characteristic curve, its average sample number, as well as the probability of implementing the truncation and acceptance rule. Results suggest that truncation and rejection of a lot at the natural truncation point will maintain a plan's desired Operating Characteristic curve. The cases examined also suggest that any modification to the natural truncation point truncation and acceptance rule may cause an unacceptable deviation from the desired Operating Characteristic curve. Finally , a linear equation was developed which provides an estimate of the upper limit on the probability of implementing a truncation and acceptance rule, and that in most cases, this upper limit is less than 0.15.

Accession For	
NTIS	CRA&I <input checked="" type="checkbox"/>
DTIC	TAB <input type="checkbox"/>
Unannounced <input type="checkbox"/>	
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail a la/cr Special
A-1	

TABLE OF CONTENTS

I.. INTRODUCTION -----	1
II. WALDS SEQUENTIAL PROBABILITY RATIO TEST -----	3
A. BERNOUlli PARAMETERS AND ERRORS OF THE FIRST AND SECOND KIND -----	3
B. SEQUENTIAL PROBABILITY RATIO -----	5
C. SEQUENTIAL SAMPLING CHART -----	6
D. THE OC CURVE FOR A SPR SAMPLING PLAN -----	9
E. THE AVERAGE SAMPLE NUMBER CURVE -----	10
III. NATURAL TRUNCATION POINT AND ACCEPTANCE RULE -	12
A. THE NATURAL TRUNCATION POINT -----	12
B. ACCEPTANCE RULES -----	16
IV. EXPERIMENTAL PROCEDURES -----	19
A. PARAMETER SPECIFICATION -----	19
B. DEFINITION OF CONFORMING AND NONCONFORMING -	20
C. COMPUTER SIMULATION -----	22
V. RESULTS AND CONCLUSIONS -----	25
A. NATURAL TRUNCATION POINT -----	25
B. THE $(h_1 - m)$ ACCEPTANCE RULE -----	27
C. THE EXTENDED $(h_1 - m)$ ACCEPTANCE RULE -----	29
D. PROBABILITY OF IMPLEMENTING THE $(h_1 - 1)$ ACCEPTANCE RULE -----	30
E. AREAS FOR FURTHER STUDY -----	31
LIST OF REFERENCES -----	122
INITIAL DISTRIBUTION LIST -----	123

I. INTRODUCTION

Quality control has been a part of every industry for as long as there has been industry. Statistical quality control, on the other hand, is a relatively new thing with its greatest developments occurring in just the past 80 or so years [Ref. 1]. During those 80 years, the military played a major role in forcing industry to adopt statistical quality controls as a way of assuring that the quality of products they were buying met their specific requirements. A number of procedures were developed for sample inspection, most of which required inspectors to randomly draw a fixed number of sample items from a lot and inspect each one. If from these drawn items the number of defective or nonconforming items exceeded a specified critical value the lot was rejected , otherwise it was accepted.

During the late 1940's , Abraham Wald indicated that there could be a fairly large economy in the average number of items inspected , or the Average Sample Number (ASN) , sometimes as much as 50%, through the use of sequential statistics [Ref. 1]. However there is one shortfall of this sequential method and that is that the number of items sampled typically has a large variance and the maximum number of items that may need to be inspected before a decision can be made is unbounded. Wald suggested a way of truncating the process but warned that this could change the probabilities of the errors of the first and second kind [Ref. 6]. In recent years there have been a number of papers written about this problem , suggesting decision rules and methods for truncation. One of these papers , by Jurgen Petersen , suggests that there is a natural truncation point (NTP) for every

Sequential Probability Ratio (SPR) test at which a decision can be such that the desired errors will not be exceeded or that one of the true errors will be smaller than required and the other will be exceeded by an insignificant amount [Ref. 5].

This paper shall examine and evaluate the effects of using the NTP and decision rule on the Operating Characteristic (OC) and ASN of given SPR plans. It will also attempt to find the probability that in any given lot of items the truncation and acceptance rule may need to be implemented , that is , that decision to accept or reject will not have been made prior to the truncation point.

In order to evaluate the proposed truncation and acceptance rules, a computer program was written to simulate a SPR sampling process using these rules. This program provides estimates of the probability of acceptance , the ASN , and the probability that the rule will be implemented for a number of specified sampling plans. These computed values will then be compared to Wald's theoretical values for the same SPR plans when no truncation rule is used.

This study will proceed in the following way: Chapter II will describe the Wald Sequential Probability Ratio Test for a Bernoulli parameter. It will include a description of planned errors of the first and second kind, the testing procedure and sequential-sampling chart , the development of OC curves, and the calculation of the theoretical ASN . The third chapter will be a description of the NTP and decision rule that will be used and a brief explanation of how the NTP was obtained. Chapter IV will describe the simulation and the SPR plans that were evaluated and in the final chapter, the results of the simulation will be discussed and conclusions drawn.

II. WALD'S SEQUENTIAL PROBABILITY RATIO TEST

The sequential method of quality control is a hypothesis test in which items are drawn from a lot sequentially and where one of three decisions can be made at any point during the test: (1) to accept the null hypothesis , (2) to reject the null hypothesis , (3) to continue the test by sampling more items. If either the first or second decision is made, the testing is terminated. If the third decision is made, the process is continued, selecting one item at a time until either the first or second decision is made. This testing method as well as definitions of the null hypothesis , Bernoulli parameters , and possible errors will be described in the following sections.

A. BERNOULLI PARAMETERS AND ERRORS OF THE FIRST AND SECOND KIND

Like most quality control plans, Wald's SPR test requires that a number of parameters be specified. The first of these parameters is the Acceptable Quality Level or AQL. The AQL is the proportion of nonconforming items that may be found in a lot and still have the lot called acceptable. This acceptable proportion is designated as the Bernoulli parameter P_1 . P_1 is usually specified by the consumer as well as a value for α such that:

$$\Pr (\text{Rejecting a lot} \mid P_a = P_1) = \alpha \quad , \quad (1a)$$

or

$$\Pr (\text{Accepting a lot} \mid P_a = P_1) = 1 - \alpha , \quad (1b)$$

where P_a is the actual proportion of nonconforming items in the lot. These equations describe the Type I error associated with acceptance sampling. Stated in terms of a hypothesis test, the null hypothesis is that the actual proportion nonconforming is P_1 , and α is the significance level for the test.

The value of α is often known as the "producers risk" for it is the chance that the producer takes of having a lot consisting of satisfactory items rejected by the test. The consumer also has a risk associated with acceptance sampling. This consumer's risk is designated as β such that the

$$\Pr (\text{Accepting a lot} \mid P_a = P_2) = \beta , \quad (2)$$

where P_2 is greater than P_1 and is a value of the lot fraction nonconforming that the consumer is willing to take a $\beta(100)\%$ chance of accepting. The consumer's risk equation describes a value of a Type II error associated with acceptance sampling.

The hypothesis test associated with acceptance sampling is

$$H_0: P_a = P_1$$

$$H_a: P_a > P_1$$

with α , β , P_1 , and P_2 specified as discussed above. The values of P_2 and β define a point on the test's Operating Characteristic (OC) curve. Note that the hypothesis test is only a one-sided test for it would make little sense to test for P_a being less than the AQL. The typical values for α and β are 0.05 and 0.10 respectively, and when

used in Equations (1b) and (2) , define two points on the test's OC curve.

B. SEQUENTIAL PROBABILITY RATIO

In the Wald Sequential plan, items are drawn randomly from a lot one item at a time and inspected. After the n th item is inspected with c nonconforming items having been found, the sequential probability ratio is computed, compared against two test values A and B, and a decision is made as follows:

$$SPR = \frac{\Pr(\text{reaching } n, c / P_a = P_2)}{\Pr(\text{reaching } n, c / P_a = P_1)} = \left[\frac{P_2(1-P_1)}{P_1(1-P_2)} \right]^c * \left[\frac{1-P_2}{1-P_1} \right]^n, \quad (3)$$

and if $SPR \geq A$ then stop sampling and reject H_0 ,
if $SPR \leq B$ then stop sampling and accept H_0 , and
if $B \leq SPR \leq A$ then continue sampling .

The constants A and B are derived so that the test will meet the requirements of Equations (1) and (2) . An upper limit for the constant A is found to be the ratio of the probability of rejecting the null hypothesis H_0 when the alternative hypothesis H_a is true divided by the probability of rejecting H_0 when H_0 is true, yielding

$$A \leq \frac{1 - \beta}{\alpha} \quad . \quad (4)$$

A lower limit for B is found to be the ratio of the probability that H_0 is accepted given that H_a is true divided by the probability that H_0 is accepted given that H_0 is

true or written as an inequality:

$$B \geq \frac{\beta}{1 - \alpha} \quad . \quad (5)$$

Wald showed that when the inequalities in Equations (4) and (5) are replaced by equalities, we have conservative values for A and B. [Ref. 6]

C. SEQUENTIAL SAMPLING CHART

Wald then greatly simplified the SPR test by removing the requirement of computing the SPR every time a sample is taken. He removed this requirement by developing a chart on which an inspector needed only to plot a point, where the abscissa is the total number of items inspected up to that time and the ordinate is the total number of those items which were found to be nonconforming [Ref. 1]. If the plotted point stays between the two parallel lines on the sampling chart, no decision is made about the lot and the inspection is continued. If a point is plotted and it falls on or above the upper parallel line the inspection is terminated and the lot rejected, but if a point is plotted and it falls on or below the lower of the two parallel lines, the inspection is terminated and the lot is accepted. Figure 1 shows what a typical

sequential sampling chart may look like and how the points are plotted until a decision can be made. In Figure I , the decision would be made is to reject the lot.

Figure 1 -AN EXAMPLE OF A SEQUENTIAL SAMPLING CHART

The values of h_1 , h_2 , and s are arbitrary labels for constants which can be derived by setting the values for A and B equal to the right hand side of Equation (3) and then solving for c. When the value for A is set equal to the right hand side of Equation (3) and c is solved for, the result takes the form of $c= -h_1+sn$. When B is set equal to the right hand side of Equation (3) and c is solved for, the result takes the form of $c=h_2+sn$ where [Ref. 1]

$$h_1 = \frac{\ln \left[\frac{1-\alpha}{\beta} \right]}{\ln \left[\frac{P_2(1-P_1)}{P_1(1-P_2)} \right]}, \quad (6)$$

$$h_2 = \frac{\ln \left[\frac{1-\beta}{\alpha} \right]}{\ln \left[\frac{P_2(1-P_1)}{P_1(1-P_2)} \right]}, \quad \text{and} \quad (7)$$

$$s = \frac{\ln \left[\frac{(1-P_1)}{(1-P_2)} \right]}{\ln \left[\frac{P_2(1-P_1)}{P_1(1-P_2)} \right]}. \quad (8)$$

There are a number of items to note about the sequential sampling chart. The first item to note is that there is a minimum number of samples that need to be taken before a decision can be made. The second item worthy of being pointed out is that not all values of n represent an opportunity for accepting or rejecting H_0 . Acceptance can occur only at those values of n where $-h_1+s(n-1) < X \leq -h_1+sn$, where both X and n are non-negative integers. The values of n that meet this condition will be called acceptance points. The final item worth noting is that since the acceptance and rejection lines are parallel to each other, the maximum number of items that need to be sampled before a decision can be made is unbounded. It is this difficulty with sequential sampling that led to the truncation and acceptance rule that will be discussed in the next chapter.

D. THE OC CURVE FOR A SPR SAMPLING PLAN

The Operating Characteristic (OC) curve for SPR sampling plan is a curve that shows the probability of accepting a lot of items given the actual proportion of nonconforming items in that lot (P_a). This OC curve should reflect the desired parameters such that

$$\Pr(\text{accepting } H_0 \mid P_a = P_1) = 1 - \alpha ,$$

and

$$\Pr(\text{accepting } H_0 \mid P_a = P_2) = \beta$$

are two points on the plan's curve. It also has been shown that a third point on the curve is [Ref. 1]

$$\Pr(\text{accepting } H_0 / P_a = s) = \frac{h_2}{h_1 + h_2} .$$

Other points on the OC curve can be obtained from the parametric equations

$$P_a = \frac{1 - \left[\frac{1 - P_2}{1 - P_1} \right]^\theta}{\left[\frac{P_2}{P_1} \right]^\theta - \left[\frac{1 - P_2}{1 - P_1} \right]^\theta} , \quad (9)$$

$$\text{and } \Pr(\text{accept } H_0 / P_a) = \frac{\left[\frac{1 - \beta}{\alpha} \right]^\theta - 1}{\left[\frac{1 - \beta}{\alpha} \right]^\theta - \left[\frac{\beta}{1 - \alpha} \right]^\theta} , \quad (10)$$

where θ is an arbitrary value which ranges from negative infinity to infinity such

that for $\epsilon = 1$, we have $P_a = P_1$, for $\epsilon = -1$ we have $P_a = P_2$ and for $\epsilon = 0$, $P_a = s$. An example of an Operating Characteristic curve is shown in Figure 2.

Figure 2 - AN OPERATING CHARACTERISTIC CURVE

E. THE AVERAGE SAMPLE NUMBER (ASN) CURVE

As discussed earlier in this paper, the number of items that will be required to be sampled before a decision can be made is a random variable, but Wald showed that it is possible to compute its expected value as a function of the plan's parameters and P_a . The equation for computing the ASN is as follows [Ref 1]:

$$ASN(P_a) = \frac{\Pr(\text{accept} | P_a) h_1 - (1 - \Pr(\text{accept} | P_a)) h_2}{s - P_a} \quad . \quad (11)$$

Equation (11) can be simplified at specific values of P_a such that $ASN(P_a = 0) = h_1/s$, $ASN(P_a=1) = h_2/(1-s)$, and $ASN(P_a=s) = h_1 h_2 / s(1-s)$.

There are several items that should be noted about the ASN for any given SPR plan. The first of these is that the maximum ASN for any given plan will occur around the point where $P_a = s$ and it is possible that this ASN will be larger than the sample numbers for some other types of sampling plans [Ref. 1]. Second is that the larger the difference between P_1 and P_2 , the smaller the ASN. A final observation is that the greater the values of α and β , the smaller the ASN. Figure 3 shows what a typical ASN curve might look like.

Figure 3 - AN ASN CURVE

III. THE NATURAL TRUNCATION POINT AND ACCEPTANCE RULE

It has been shown that the probability that a sequential test will eventually terminate is 1.0, but we have also seen that the maximum value for n at which this termination will occur is unbounded [Ref. 6, p. 157-158]. It is because this maximum value is unbounded that we may find it necessary to set a definite upper limit, n_0 , for the number of items to be inspected. It is at this truncation point that the test will be terminated and a decision on whether to accept or reject H_0 will be made. Wald warns that if we truncated the sequential process at the n_0 th trial, we will be changing the probabilities of errors of the first and second kind by some unknown amount, but as n_0 becomes larger, the effect of this change will be smaller [Ref. 6].

In his paper, Petersen suggested that for every SPR plan there exists a natural truncation point (NTP) at which the test may be stopped and neither of the two error probabilities will be exceeded, or that the error of the second kind will be insignificantly greater than β [Ref. 5, p 22]. In the following sections we will give a brief description of the NTP and the decision rules that will be used when it is reached.

A. THE NATURAL TRUNCATION POINT

We have seen that not every point on the sequential sampling chart represents an opportunity to accept the null hypothesis. The only points at which the null hypothesis can be accepted are the values of n at which the equation $(-h_1 + s_n)$ is

equal to or has just become greater than a value of X , which is the number of nonconforming items that have been found in the sample of size n . These special values of sample number n are called acceptance points and are designated as A_0, A_1, A_2, \dots , where at each sample number A_i there is an unconditional probability that the test will be terminated given that the null hypothesis is true [Ref. 5].

A similar observation can be made about the opportunity to reject the null hypothesis. There are a number of points at which the number of nonconforming items needed to reject the null hypothesis increases by one. Analogous to above, these special values of sample number n are called rejection points. While these rejection points are interesting to note, we will see that they do not play a role in identifying the natural truncation points. Figure 4 shows the location of some acceptance and rejection points on a typical SPR chart.

Figure 4 - SEQUENTIAL PROBABILITY RATION CHART
WITH ACCEPTANCE AND REJECTION POINTS HIGHLIGHTED

If there is no truncation, the sum of the acceptance probabilities for all the values of A_i up to and including n is the probability that H_0 will be accepted when

at most n samples are drawn. Given that $n < A_{i+1}$, the following statements can be made about the acceptance probability when at most n samples have been drawn [Ref. 5 , p 16]:

- (i) Since $-h_1 < 0$, the $\Pr(\text{accept } H_0 \mid n = 0) = 0$.
- (ii) As n increases in size, the $\Pr(\text{accept } H_0 \mid n)$ never decreases , and only increases at acceptance points.
- (iii) For all sample numbers between A_i and A_{i+1} , the $\Pr(\text{accept } H_0 \mid n)$ is a constant and is equal to the $\Pr(\text{accept } H_0 \mid n = A_i)$.

Figure 4 shows how the acceptance probability accumulates for an arbitrary sampling plan when the null hypothesis is true , that is $P_a = P_1$ [Ref. 5].

Figure 4 - ACCUMULATED ACCEPTANCE PROBABILITY

In the above example, the acceptance point A_2 is the first point where the probability of acceptance exceeds the $(1- \alpha_c)$ requirement. It is this point that is designated as

this plan's natural truncation point , n_0 .

At n_0 , α can be considered as an upper bound for the probability of a Type I error. It is also possible to compute an upper bound for the probability of an error of the second kind as n approaches n_0 . It has been shown that as n increases , the upper limit for the probability of a Type II error decreases , approaching β from above [Ref. 6, p 62-64].

It is also possible to show that the sum of the acceptance probabilities, when the alternate hypothesis is true , approaches β as n increases . In addition, it has been suggested that the true probability of a Type II error will be at most, insignificantly greater than the planned error when n is equal to the natural truncation point [Ref. 5]. Figure 5 shows how the acceptance probability may accumulate for an arbitrary sampling plan when the alternate hypothesis is true , that is $P_a = P_2$.

Figure 5 - ACCUMULATED ACCEPTANCE PROBABILITY
WHEN THE ALTERNATE HYPOTHESIS IS TRUE

If the true probability of a Type II error does not significantly exceed β for any sample number n , it is then not necessary to specify a special truncation point to control it.

B. ACCEPTANCE RULES

Once the natural truncation point is reached , a decision must be made as whether to accept or reject the null hypothesis. We will examine three related rules starting with the simplest and working toward slightly more complicated ones. The simplest and most conservative rule is that if no decision has been made after the last item has been sampled the null hypothesis should be rejected. By rejecting H_0 , we insure that the true probability of errors of the first and second kind are as close to the desired values as possible [Ref. 6].

The second decision rule is known as the (h_1-m) rule. This rule divides the region between the upper rejection and lower acceptance lines into two parts. The line which makes this division is the line $-(h_1-m)+sn$ where m is a positive integer such that $0 \leq m \leq (h_2 - (-h_1))$. Figure 6 shows how the region is divided when $m=2$.

Figure 6 - AN EXAMPLE OF DIVIDING THE SAMPLING CHART
USING THE $(h_1 - m)$ ACCEPTANCE RULE.

Under this rule, if the natural truncation point is reached before a decision has been made, the null hypothesis is rejected only if the plot of the number of

nonconforming items found falls on or above the $-(h_1-m)+sn$ dividing line. If the number of nonconforming items is less than $-(h_1-m)+sn$, then H_0 is accepted.

The final rule that will be examined is an extension of the (h_1-m) acceptance rule and attempts to reduce the ASN of a plan by finding earlier truncation points..

Under this rule, one of the two desired errors is fixed and the other is allowed to vary in an attempt to lower the value of the truncation point. Petersen describes a sample number n_i^* which is strictly less than the NTP but at which we are assured that the probability of a Type I error will not exceed α . He also describes n_i^{**} which is the smallest sample number for which β is not exceeded. These sample numbers can be found using the following equations:

$$n_i^* = \text{int} \left[\frac{\log[1-\alpha - \Pr(\text{accept } \oplus A_i | H_0)] + A_i \log(1-P_1) - \log[\Pr(X(A_i) = i+m)]}{\log(1-P_1)} \right] \quad (11)$$

$$n_i^{**} = \text{int} \left[A_i + \frac{\log[\beta - \Pr(\text{accept } \oplus A_i | H_0)] - \log[\Pr(X(A_i) = i+m)]}{\log(1-P_1)} + 1 \right] \quad (12)$$

where $\Pr(X(A_i) = i+m)$ is the probability that the number of nonconforming items at acceptance point A_i will be less then or equal to $i+m$, given that the null hypothesis is true in Equation (11) and that the alternate hypothesis is true in Equation (12). [Ref. 5]

While the derivation of Equations (11) and (12) is fairly complicated and will not be discussed here, there are several items that should be noted about using the

extended (h₁-m) acceptance rule. The first item to note is that it is possible that n_i^* and n_i^{**} may not exist for every given sampling plan. Second is that if the new truncation points do exist, once n_i^* or n_i^{**} is reached, decisions are made in the same way as the non-extended (h₁-m) rule, and finally while this plan fixes one error at a desired value , the amount by which the alternate error will vary from its desired value is unknown and possibly can be quite large.

Theoretically the above truncation rules should reduce the ASN of an given plan by truncating a sampling process at a specific point while maintaining the desired operating characteristic. The following section will describe the experimental procedures and computer simulation used to test the validity of the claims made above.

IV. EXPERIMENTAL PROCEDURES

In any sequential sampling procedure, there are a number of steps that must be taken before the actual sampling and testing of items begin. First, the plan's parameters must be specified. Second, the definition of conforming and nonconforming must be clarified, and finally a procedure for random sampling and testing must be determined. It is only after these three steps have been accomplished that the actual testing may begin and decisions as whether to accept or reject lots may be made. The following section will discuss these three steps in detail as well as describe the computer simulation that was used to simulate the sampling process.

A. PARAMETER SPECIFICATION

Before the beginning of any sampling process , the parameters α , β , P1, and P2 must be specified. These values are used in Equations (6) , (7) , and (8) to compute the values of h_1 , h_2 , and s which in turn are used to determine the acceptance and rejection zones on the sequential sampling chart. For the work presented in this paper, α and β were set at 0.05 and 0.10 respectively and remained constant throughout the test. These values were selected because they are typical values used in quality control. For the parameters P1 and P2 , twenty six pairs of P1 and P2 values were arbitrarily selected. The values for P1 and P2 were selected to provide a good range for testing the truncation points and stopping rules. For ease of testing , the parameters were divided into four "Plan Sets" according to the four values of P1 that were used. Table I provides a list of the parameter pairs used as well as their

natural truncation point and extended rule truncation points n_i^* , and n_i^{**} . The truncation points for the extended rule were computed using the (h_1-1) extended rule for reasons that will be discussed later.

Table I - PARAMETER VALUES USED IN THE SIMULATION
AND THEIR TRUNCATION POINTS.

	P1	P2	NTP	n_i^*	n_i^{**}		P1	P2	NTP	n_i^*	n_i^{**}
Plan Set 1	0.005	0.01	4605	4346	4352	Plan Set 3	0.015	0.03	1523	*	*
		0.02	702	530	579			0.04	636	*	527
		0.03	375	163	218			0.05	371	*	280
		0.04	182	71	116			0.06	233	178	186
		0.05	151	76	96			0.07	179	138	140
		0.06	129	83	83		0.020	0.03	4192	*	*
		0.07	74	71	71			0.04	1148	*	*
Plan Set 2	0.010	0.03	714	*	*	Plan Set 4	0.05	560	*	471	
		0.04	350	*	281		0.06	356	273	277	
		0.05	215	138	164		0.07	243	209	211	
		0.06	151	82	106		0.08	174	134	140	
		0.07	133	84	91		0.09	134	102	106	
		0.08	90	36	57		0.10	107	79	88	
		* Does not exist under (h_1-1) rule									

B. DEFINITION OF CONFORMING AND NONCONFORMING

In quality control an item may be considered nonconforming if a specific measurement does not fall within required parameters. These parameters usually fall into one of two types of tests, one-way or two-way tests. A test that is one-way requires the item being inspected to meet some minimum or maximum limit. As long as this maximum or minimum is met, the item is considered good or

acceptable. For example, if a chain company may require a quarter-inch chain to have a minimum breaking strength of two thousand pounds, that is what they will test for. They may not care that the actual breaking strength is twenty-six hundred pounds , all they care is that the chains meet the minimum requirements.

A two-way test has two parameters that must be met, a minimum and a maximum. The most common two-way test measures to see if a specific characteristic of an item falls between these two parameters. If the measurement falls between the minimum and maximum , the item is considered acceptable, otherwise it is rejected as unacceptable . An example of a two-way test may be a potato chip company measuring to see if a twelve ounce bag of chips is actually being filled with 12 oz. of chips. If a bag has too few ounces of chips in it the law may not allow them to call it a 12 oz. bag. If a bag has much more then 12 oz. in it , the company may be losing money. Not wanting to break the law or lose money, the company specifies a minimum and maximum weight for the number of ounces of chips that a bag should have. The company then tests bags of chips one at a time. If enough bags of chips meet the specified requirements, the machine that fill the bags is working properly. On the other hand if enough bags of chips do not meet the requirements, the company may decide that the filling machine requires adjustments or repairs.

While the above two tests are not the only type of examinations used in quality control, they are probably the most common. For the purpose of this paper, the two-way test will be used in the examination of the proposed truncation rules. In a computer simulation, a lot of 5000 numbers will be created from a normal

distribution. Each number represents some attribute of the item being tested. From this lot of numbers, one item at a time will be drawn , without replacement , and compared to a set of parameters such that the probability of the items falling outside these parameters is a fixed and known. If the item falls within the specific parameters it is classified as acceptable or conforming, otherwise it is classified as a nonconforming item. Inspection continues one item at a time until a decision can be made. Details of the simulation will be discussed in the following section.

C. COMPUTER SIMULATION

A computer program was written to simulate the Wald SPR sampling process and compute the ASN and its standard deviation , the Operating Characteristic, and number of times the stopping rule was utilized for each SPR plan. The computer simulation was written in VS FORTRAN 77 and utilized the AMDAHL 5990-500 Dual-Processor mainframe computer system at the Naval Postgraduate School (NPS) Computer Center during the period of April to September 1992. The simulation also utilized the NPS Random Number Package with double precision written by P.A. Lewis and L. Uribe.

The input variables for the simulation consisted of five parameters denoted by P_1 , P_2 , Pa , NTP , and Za . With the exception of Za , all the parameters are the same as the ones discussed earlier in this paper. The parameter Za is the measurement parameter used in the two-way test discussed above such that the probability that an items measurement falls outside $-Za$ and Za is Pa .

As discussed before, twenty-six pairs of parameters P_1 and P_2 were used in the

simulation and were divided into four "Plan Sets" according to the four different values of P1 that were used. Each pair of parameters P1 and P2 within a Plan Set is called a plan since each different pair of P1 and P2 will have a different OC curve. For each plan , six to eighteen OC points, designated by Pa, were used to develop each Plan's OC and ASN curves. Table II gives an example of two plans and the values for Pa that were used in the simulation.

Table II - EXAMPLE OF THE PARAMETERS FROM PLAN SET 1
PLANS C AND D

Plan C			Plan D		
P1	P2	Pa	P1	P2	Pa
0.005	0.03	0.005	0.005	0.04	0.005
		0.007			0.007
		0.010			0.010
		0.013			0.013
		0.016			0.016
		0.019			0.019
		0.022			0.022
		0.025			0.025
		0.028			0.028
		0.030			0.031
					0.034
					0.037
					0.040

A lot of 5000 random numbers was created from a normal distribution with a mean of zero and variance of one for each value of Pa. Each number represented an arbitrary measurement of some attribute of the items being tested. From one lot at a time, items were randomly selected one item at a time without replacement and tested against the parameter Za. This selection process continued until a decision as

whether to accept or reject the lot could be made. The process was then repeated 5000 times so that the final estimate of each OC point was the result of 5000 lots of 5000 items going through the SPR process.

One of the sets of rules that should be kept in mind when conducting any random sampling process is that the method by which items are selected should ensure that each member of a lot has an equal chance of being selected. It should also avoid using any method of selection that associates the selection of the item with the classification of the item being selected. Since the items in the lots came from a normal distribution a sampling order was created for each lot from a uniform[0,5000] distribution. By selecting items according to a sampling order from a different distribution, we were assured that the sampling process was as close to random as possible.

V. RESULTS AND CONCLUSIONS

When a Wald SPR sampling process is truncated its operating characteristics will vary with the location of the truncation point and the type of acceptance rule used. As the location of the truncation point becomes larger, the true values of the OC curve will approach the values of the OC curve of the nontruncated sampling plan. For this paper, the values obtained from the simulation for the OC and ASN curves will be known as the true values for a plan. These values will be compared to the values of the nontruncated SPR sampling process obtained from Equations (10) and (11). The values for the OC curve and ASN obtained from Equations (10) and (11) will be known as a plan's theoretical values.

A. NATURAL TRUNCATION POINT

As discussed earlier in this paper, the first truncation and acceptance rule examined was an automatic rejection of a lot if the sampling process reaches the NTP. The normal approximation for the two-sided test for the Difference of Two Proportions (DTP), at a 0.05 level of significance, was used to compare the theoretical and true values of the operating characteristic at each value of P_a such that:

$$H_0: P(\text{accept} | P_a)_{\text{true}} = P(\text{accept} | P_a)_{\text{theo.}}$$

$$H_a: P(\text{accept} | P_a)_{\text{true}} \neq P(\text{accept} | P_a)_{\text{theo.}}$$

According to test statistics, there appears to be no difference between the theoretical

and true values for any of the plans tested. In other words, for plans with parameter values in the range of those studied here, the NTP stopping rule provides a point at which the SPR sampling process can be truncated while maintaining the errors of the first and second kind at their desired values. The results of the above testing can be found in Tables III and IV of Appendix B under the heading $m=0$.

The true ASN and theoretical ASN at each value of Pa were also compared but this time a one-sided Paired Difference T test (PDT), at a 0.05 level of significance, was used. The associated hypothesis test was

$$H_0: ASN_{true} = ASN_{theo.}$$

$$H_a: ASN_{true} < ASN_{theo.}$$

which when rewritten as a PDT is

$$H_0: (ASN_{true} - ASN_{theo.}) = 0$$

$$H_a: (ASN_{true} - ASN_{theo.}) < 0.$$

The paired difference statistic has a student's t distribution with $n-1$ degrees of freedom. In the above testing, $n=5000$ and therefore the t statistic is essentially normal. Results of the tests using the normal distribution can be found in Tables VI, IX, XII, and XV of Appendix B and showed that in almost all of the plans, the true ASN did not show any statistical savings over the theoretical values.

There are two items worthy of noting when discussing the two comparison tests used above. The first item is that the use of a two-sided test is not entirely appropriate for the DTP test because at different areas of the OC curve the alternate

hypothesis , $P(\text{accept} \mid Pa)_{\text{true}} \neq P(\text{accept} \mid Pa)_{\text{theo.}}$, may be desirable. For example, it may be desirable for the $P(\text{accept} \mid Pa \text{ is near } P1)_{\text{true}} > P(\text{accept} \mid Pa \text{ is near } P1)_{\text{theo.}}$. or $P(\text{accept} \mid Pa \text{ is near } P2)_{\text{true}} < P(\text{accept} \mid Pa \text{ is near } P2)_{\text{theo.}}$ because then the probability of either type of error would be less than required and therefore better. The second item worthy of noting is that while the differences between the true and theoretical values of a number may be statistically significant, the numerical differences may often be fairly small. When the sample size being used in the test is large, in this case 5000 , a small difference between numbers may often lead to rejection of the null hypothesis. It is therefore important to look at the actual numerical differences as well as the Z values obtained from the test statistics. These items will also hold true in the following sections.

B. THE $(h_1 - m)$ ACCEPTANCE RULE

The second truncation and acceptance rule examined was the $(h_1 - m)$ acceptance rule. As discussed before, if no decision has been made prior to reaching the NTP the lot is accepted if the number of nonconforming items found up to that point is less than $-(h_1 - m) + sn$, where n is the NTP. If the number of nonconforming items found up to that point is equal to or greater than $-(h_1 - m)+sn$ the lot is rejected. For this set of rules, the simulation was run using the same lots and sampling order used to test the first rule but was with $m=1$, $m=2$, $m=3$, and then $m=4$. Using the same lots and sampling order allowed direct comparison between runs with different values of m.

The results from this set of tests can also be found in Tables XVII through XX of Appendix B and show that as m increases in value, the probability of a Type I error decreases at a decreasing rate. That is for every increase in m , the decrease in the probability of a Type I error becomes smaller and smaller and approaches zero as m approaches $(h_2 - (-h_1))$. On the other hand, as m increases in value, the probability of a Type II error increases. Like the decreases in the probability of a Type I error, the increases in the probability of a Type II error becomes smaller as m increases but do not approach zero as quickly as alpha. In other words, every increase in the probability of a Type II error is not necessarily accompanied by an equal decrease in the probability of a Type I error.

For all values of $m > 0$ the $\Pr(\text{accept } H_0 \mid P_a = P_2)$ was greater than β . The differences between the true values of the probability of a Type II error and their desired values are statistically significant in all the plans tested but as discussed above, the actual numerical differences are not always that great. It is therefore necessary to make a decision as to how much you may be willing to let the probability of a Type II error vary from its desired value of β in order to obtain some improvement in the probability of a Type I error. Since all the true values along a given the OC curve varied similarly when m is changed, the 95% confidence interval (CI) for the probability of a Type II error and a number of other OC points was computed for the different values of m . The computed CI for the probability of a Type II error at $m=1$ was $\{0.106, 0.118\}$ with a maximum value of 0.128. The CI for the probability of a Type II error at $m=2$ was $\{0.12, 0.137\}$ with a maximum value of 0.148. Since the true values for β and the other OC points using $m=1$ are generally

very close to the theoretical values, the $(h_1 - 1)$ truncation and acceptance rule is recognized as a reasonable truncation and acceptance rule for a Wald SPR sampling process. Unlike the $m=1$ rule , the deviations of the theoretical OC values from the true OC values for the rules using $m \geq 2$ are considered too great and therefore the $(h_1 - m)$ truncation and acceptance rule for $m \geq 2$ is rejected as reasonable truncation and acceptance rule. Results of testing can be found in Tables V through XVI of Appendix B.

C. THE EXTENDED $(h_1 - m)$ ACCEPTANCE RULE

As discussed earlier , the extended $(h_1 - m)$ acceptance rule attempts to reduce the ASN of a plan by finding truncation points which are strictly less then the NTP. To do this, only one of the true errors will be guaranteed to equal the desired value. The point n_i^* holds alpha constant, for it is smallest sample number at which the probability of a Type I error is equal to alpha. The point n_i^{**} holds beta constant for it is the smallest sample number at which the probability of a Type II error is equal to beta. Since only the $(h_1 - 1)$ acceptance rule is being recognized as an acceptable truncation and acceptance rule , the values for n_i^* and n_i^{**} were computed only for the extended $(h_1 - 1)$ acceptance rule.

The performance of the extended $(h_1 - 1)$ acceptance rule in most test cases was poor. While it did a good job holding one error close to the required value , the

other operating characteristics quickly deviated from their theoretical values so that by the time the alternate error was reached, its true value was usually more than twice its desired value. In addition, for most cases the extended acceptance rule provided only a small savings in ASN , and for a small number of points, the ASN for the nonextended acceptance rule was actually smaller. Results of the testing can be found in Tables XVII through XX of Appendix B.

Overall, the performance of the extended $(h_1 - 1)$ acceptance rule was poor and the rule is not recommended as a truncation and acceptance rule with one possible exception. If the difference between P_1 and P_2 is large and it is known that P_a is very close to P_1 , then using the extended acceptance rule may provide some savings in ASN. In all other cases, the nonextended $m=0$ or $m=1$ rule is recommended.

D. PROBABILITY OF IMPLEMENTING $(h_1 - 1)$ ACCEPTANCE RULE

The probability that a truncation and acceptance rule will need to be implemented depends greatly on the true value of the actual proportion of nonconforming items in the lot, P_a , which is itself a unknown. Even though the actual probability of implementing a truncation and acceptance rule is unknown, it is possible to get a rough upper limit for it by using some known parameters such as P_1 , P_2 , and s .

We have seen that as the difference between P_1 and P_2 increases, the ASN of a plan decreases and that the maximum value for the ASN of a plan occurs when P_a is approximately equal to s . It is when P_a is approximately equal to s that we have the greatest probability of reaching a truncation point and therefore a need to implement a truncation and acceptance rule. Using this knowledge and the computed

probabilities of implementing a truncation rule found from the simulation , a number of models were fitted to the values P1 , P2 , and s using the SAS stepwise logistic regression [Ref. 7] resulting in the following fitted model

$$\hat{Pr}(\text{reaching NTP}) = \frac{\text{Exp}[-2.3415+0.294113\ln(P2-P1)-0.158121\ln(s)]}{1+\text{Exp}[-2.3415+0.294113\ln(P2-P1)-0.158121\ln(s)]} .(13)$$

The Chi-square test for goodness-of-fit for the Equation (13) resulted in p-value , 0.0001 and testing of the equation against the actual results from the simulation proved it to be quite accurate over the simulated range. Results of this testing can be seen in Table XXI of Appendix E. Further testing showed that it provided reasonable predictions for parameter α outside of the simulation range. A 95% confidence limit for the maximum probability was also computed and found to be approximately [0.101 , 0.138].

One point to remember is that this equation only provides a rough upper limit for the probability of implementing a truncation rule and that if P_a is closer to P_1 or P_2 , the actual probability will most likely be quite a bit smaller. graphs of the actual probabilities for each plan can be found in Appendix E, Figures 46 through 51.

E. AREAS FOR FURTHER STUDY

This paper studied the curtailed Wald SPR sampling plan using only one set of values for alpha and beta. A further area of studied might be on how changing the values of alpha and beta impacts on these test results. It is hoped that the work provided in this paper will be beneficial to those interested in sequential sampling and quality control.

APPENDIX A

Computer Program Wald2

PROGRAM WALD2

```
C THE FOLLOWING PROGRAM SIMULATES THE USE OF A WALD  
C SEQUENTIAL SAMPLING PLAN AND EVALUATES THE MEAN AND  
C VARIANCE OF THE AVERAGE NUMBER OF ITEMS SAMPLED FOR A GIVEN  
C PROBABILITY OF A NONCONFORMING ITEM.  
C ie. Pr(item is nonconforming) = Pa  
C  
C THE PROGRAM CREATES LOTS OF 5000 ITEMS FROM WHICH ONE ITEM AT  
C A TIME WILL BE RANDOMLY SAMPLED WITHOUT REPLACEMENT AND  
C COMPARED TO A SPECIFIED ITEM REQUIREMENT. THE NUMBER OF  
C NONCONFORMING ITEMS WILL BE COUNTED UNTIL A DECISION TO  
C ACCEPT OR REJECT THE LOT CAN BE MADE. THE PROCESS WILL BE  
C REPEATED FOR DIFFERENT STOPPING RULES AS DISCUSSED IN THE  
C THESIS PAPER.  
C  
INCLUDE 'SEQDAT DEF'  
INCLUDE 'LOTSEED DEF'  
INCLUDE 'COUNTER DEF'  
INCLUDE 'STATS DEF'  
C  
INTEGER I  
SEED1(1) = #####  
SEED2(1) = #####  
C  
C STARTING SEED VALUES CAN BE CHANGED AT ANY TIME AND WILL  
C CHANGE AUTOMATICALLY EVERY TIME A NEW LOT IS CREATED  
C  
C//////////STARTPLANSET1//////////  
C  
DO 10 I=1,5  
C  
C THE FOLLOWING SUBROUTINE INITIALIZES VARIABLE THAT WILL BE  
C USED IN THE SIMULATION  
C  
CALL INITOC1  
C  
C THE FOLLOWING SUBROUTINE CREATES THE SPECIFICS OF EACH PLAN  
C  
CALL SPECS
```

```
C  
C THE FOLLOWING SECTION STARTS THE SIMULATION FOR PLAN SET 1  
C  
DO 20 N = 1 , 82  
DO 30 R = 1 , 1000  
C  
C THE FOLLOWING FORMS THE LOTS AND SAMPLING SCHEDULE  
C  
CALL FORMLOT  
C  
C THE FOLLOWING SUBPROGRAM INSPECTS EACH LOT  
C  
CALL OCINSP  
C  
30 CONTINUE  
20 CONTINUE  
C  
C THE FOLLOWING SUBPROGRAMS COMPUTE THE DESIRED STATISTICS  
C AND DISPLAYS THEM  
C  
CALL STATCOMP  
CALL DISPLAY1  
10 CONTINUE  
C  
C//////////ENDPART1//////////  
C  
C//////////STARTPLANSET2//////////  
C  
DO 40 I = 1 , 5  
C  
C THE FOLLOWING SUBROUTINE INITIALIZES VARIABLE THAT WILL BE  
C USED IN THE SIMULATION  
C  
CALL INITOC2  
C  
C THE FOLLOWING SUBROUTINE CREATES THE SPECIFICS OF EACH PLAN  
C  
CALL SPECS  
C  
C THE FOLLOWING SECTION STARTS THE SIMULATION FOR PLAN SET 1  
C  
DO 50 N = 1 , 82  
DO 60 R = 1 , 1000  
C  
C THE FOLLOWING FORMS THE LOTS AND SAMPLING SCHEDULE  
C
```

```

        CALL FORMLOT
C
C THE FOLLOWING SUBPROGRAM INSPECTS EACH LOT
C
        CALL OCINSP
C
30      CONTINUE
20      CONTINUE
C
C THE FOLLOWING SUBPROGRAMS COMPUTE THE DESIRED STATISTICS
C AND DISPLAYS THEM
C
        CALL STATCOMP
        CALL DISPLAY2
10      CONTINUE
C
C//////////ENDPART2//////////C
C

*** SAME AS ABOVE FOR PLAN SETS 3 AND 4 *****

C-----
C          SUBROUTINE INITOC1
C
INCLUDE 'SEQDAT2 DEF'
INCLUDE 'STATS2 DEF'
INCLUDE 'LOUTS DEF'
C
INTEGER I , J
C
DO 10 I = 1 , 82
    P1 = 0.0
    P2 = 0.0
    Pa = 0.0
    Za(I) = 0.0
    NTP(I) = 0
    DO 20 J = 1 , 1000
        NINSP(I , J) = 0
        RULE(I , J) = .FALSE.
        REJECT2(I , J) = .FALSE.
20      CONTINUE
10      CONTINUE
OPEN( 13 , FILE = '/OCPLAN1 DATA')
WRITE(* , *) " "
WRITE(* , *) P1    P2    Pa    NTP   "
DO 30 I = 1 , 82

```

```

        READ( 13 , * ) P1(I) , P2(I) , Pa(I) , NTP(I)
        WRITE( 15 , * ) P1(I) , P2(I) , Pa(I) , NTP(I)
15      FORMAT(1X , F5.3 , 2X , F4.2 , 2X , F5.3 , 2X , I4)
30      CONTINUE
            CLOSE(13)
            RETURN
            END
C-----SUBROUTINE INITOC2
C
INCLUDE 'SEQDAT2 DEF'
INCLUDE 'STATS2 DEF'
INCLUDE 'LOUTS DEF'
C
INTEGER I , J
C
DO 10 I = 1 , 82
    P1 = 0.0
    P2 = 0.0
    Pa = 0.0
    Za(I) = 0.0
    NTP(I) = 0
    DO 20 J = 1 , 1000
        NINSP(I , J) = 0
        RULE(I , J) = .FALSE.
        REJECT2(I , J) = .FALSE.
20    CONTINUE
10    CONTINUE
OPEN( 13 , FILE = '/OCPLAN2 DATA')
    WRITE(* , * ) " "
    WRITE(* , * ) " P1    P2    Pa    NTP  "
    DO 30 I = 1 , 82
        READ( 13 , * ) P1(I) , P2(I) , Pa(I) , NTP(I)
        WRITE( 15 , * ) P1(I) , P2(I) , Pa(I) , NTP(I)
15      FORMAT(1X , F5.3 , 2X , F4.2 , 2X , F5.3 , 2X , I4)
30      CONTINUE
            CLOSE(13)
            RETURN
            END
C-----***** SAME FOR PLAN SETS 3 AND 4 *****
C-----SUBROUTINE SPECS
C
INCLUDE 'SEQDAT2 DEF'
INCLUDE 'PLAN2 DEF'

```

```

C
C THE SUBROUTINE COMPUTE h1 , h2 , and s FOR EACH PLAN
C
C      INTEGER I
C      REAL DENOM
C
DO I = 1 , 82
    DENOM = LOG( ( P2(I)*(1.0-P1(I)) ) / ( P1(I)*( 1.0-P2(I)) ) )
    H1(I) = 2.25129 / DENOM
    H2(I) = 2.89037 / DENOM
    S(I) = LOG9 (1.0 - P1(I)) / ( 1.0 - P2(I)) / DENOM
10   CONTINUE
      RETURN
      END
C-----SUBROUTINE FORMLOT
C
C THIS SUBPROGRAM USES THE NAVAL POSTGRADUATE SCHOOLS
C RANDOM NUMBER GENERATOR TO CREATE A LOT OF 5000 ITEMS FROM
C A NORMAL DIST. AND THE RANDOM ORDER IN WHICH THE WILL BE
C SAMPLED
C
INCLUDE 'LOUTS DEF'
INCLUDE 'LOTSEED DEF'
INCLUDE 'COUNTER DEF'
C
INTEGER I
C
CALL SNOR( SEED1(1) , LOT , 5000 , 2 , 0 )
CALL SLINT( SEED2(1) , RANHLD , 5000 , 2 )
C
DO 10 I = 1 , 5000
    SAMPNUM(I) = NINT(RANHLD(I) * 0.00000232)
10   CONTINUE
      RETURN
      END
C-----SUBROUTINE OCINSP
C
C THIS SUBROUTINE INSPECTS THE ITEMS IN THE LOTS AND COLLECTS THE
C DATA THAT WILL BE USED TO DETERMINE THE OC CURVE AND ASN.
C
INCLUDE 'SEQDAT2 DEF'
INCLUDE 'STATS2 DEF'
INCLUDE 'COUNTER DEF'
INCLUDE 'LOUTS DEF'

```

```

INCLUDE 'PLAN2 DEF'
C
INTEGER SUMX , C , M
REAL UPX , LOWX , ITEM
LOGICAL STPINSP
C
ITEM = 0.0
SUMX = 0
C = 0
M = 1
C NOTE THAT THIS IS THE M IN THE H1-M RULE , M=0 MEANS REJECT AT
C NTP
STPINSP = .FALSE.
C
99 IF( .NOT.STPINSP ) THEN
    C = C+ 1
    ITEM = ABS( LOT ( SAMPNUM ( C ) ) )
    IF (ITEM .GT. Za (N) ) THEN
        SUMX = SUMX + 1
    ENDIF
    UPX = H2(N) + C * S(N)
    LOWX = C * S(N) - H1(N)
C
    IF( C .GE. NTP(N) ) THEN
        RULE(N , R ) = .TRUE.
        STPINSP = .TRUE.
        NINSP( N , R ) = C
        IF ( SUMX .GT. LOWX + M ) THEM
            REJECT2(N , R ) = .TRUE
        ENDIF
        ELSEIF( SUMX . GE. UPX) THEN
            REJECT2(N , R ) = .TRUE.
            STPINSP = .TRUE.
            NINSP( N , R ) = C
        ELSEIF( SUMX . LE. LOWX) THEN
            STPINSP = .TRUE.
            NINSP( N , R ) = C
        ENDIF
        GOTO 99
    ENDIF
    RETURN
END
C-----
SUBROUTINE STATCOMP
C
C THIS SUBROUTINE COMPUTES THE DESIRED STATISTICS SUCH AS ASN

```

```

C
INCLUDE 'SEQDAT2 DEF'
INCLUDE 'STATS2 DEF'
INCLUDE 'PLAN2 DEF'
C
INTEGER I , J , SUMINSP(82)
REAL EXSQ(82)
C
DO 10 I = 1 , 82
    SUNINSP (I) = 0
    EXSQ(I) = 0.0
    NREJ2(I) = 0
    NSTP2(I) = 0
    CI2(I) = 0.0
    DO 20 J = 1 , 1000
        SUMINSP(I) = SUMINSP(I) + NINSP( I , J )
        IF(RULE( I , J ) ) THEN
            NSTP2(I) = NSTP2(I) + 1
        ENDIF
20   CONTINUE
        AVEN2(I) = SUMINSP(I) / 1000.0
        DO 25 J = 1 , 1000
            EXSQ(I) = EXSQ(I) + (( NINSP(I , J) - AVEN2(I) ) **2)
25   CONTINUE
        SAVEN2(I) = SQRT( EXSQ(I) / 1000.0 )
        CI2 = ( SAVEN2(I) / 100.0 ) * 1.95996
        UPCI2(I) = AVEN2(I) + CI2(I)
        LOWCI2(I) = AVEN2(I) - CI2(I)
10   CONTINUE
C
RETURN
END
C-----SUBROUTINE DISPLAY1
C
C THIS SUBROUTINE DISPLAYS THE STATISTICS AND WRITES THEM INTO
C A FILE
C
INCLUDE 'STATS2 DEF'
INCLUDE 'SEQDAT2 DEF'
C
INTEGER I
C
IF( I .EQ. 1) THEN
    OPEN(31 , FILE= '/OCOUT1A DATA')
IF( I .EQ. 2) THEN

```

```

        OPEN(32 , FILE= '/OCOUT1B DATA')
IF(I .EQ. 3) THEN
        OPEN(33 , FILE= '/OCOUT1C DATA')
IF(I .EQ. 4) THEN
        OPEN(34 , FILE= '/OCOUT1D DATA')
ELSE
        OPEN(35 , FILE = '/OCOUT1E DATA')
ENDIF

C
DO 10 I = 1 , 82
    WRITE(*,*) -----
    WRITE(*,*)          SEQUENTIAL PLAN
    WRITE(*,*)          P1      P2      Pa      NTP
    WRITE(*, 11) P1(I) , P2(I) , Pa(I) , NTP(I)
11   FORMAT( 4X , F5.3 , 4X , F5.3 , 5X , F5.3 , 7X , I4 )
        WRITE(*,13) AVEN2(I)
13   FORMAT( 1X , 'MEAN NUMBER INSPECTED. ' , 2X , F10.3)
        WRITE(*,15) SAVEN2(I)
15   FORMAT( 1X , 'STD DEV OF NUM INSP ' , 2X , F10.3)
        WRITE(*, 17) LOWCI2(I) , UPCI2(I)
17   FORMAT(1X , '95% CI ON MEAN (' , 1X , F10.3 , 1X , ',' 1X , F10.3 , 1X , ')')
        WRITE(*,19) NREJ2(I)
19   FORMAT(1X , 'NUMBER OF LOTS REJECTED ' , 2X , F8.1)
        WRITE(*,20) NSTP2(I)
20   FORMAT(1X , '# OF TIMES STOPPING RULE WAS USED' , 2X , F8.1)

C
IF (I .EQ. 1 ) THEN
    WRITE(31 , 21 ) P1(I) , P2(I) , Pa(I) AVEN2(I) , SAVEN2(I), NREJ2(I) ,
&NSTP2(I)
21   FORMAT(1X , 3(F5.3 , 1X) , 3(F10.3 , 1X) , F8.1)
    IF (I .EQ. 1 ) THEN
        WRITE(31 , 22 ) P1(I) , P2(I) , Pa(I) AVEN2(I) , SAVEN2(I), NREJ2(I) ,
&NSTP2(I)
22   FORMAT(1X , 3(F5.3 , 1X) , 3(F10.3 , 1X) , F8.1)
    IF (I .EQ. 1 ) THEN
        WRITE(31 , 23 ) P1(I) , P2(I) , Pa(I) AVEN2(I) , SAVEN2(I), NREJ2(I) ,
&NSTP2(I)
23   FORMAT(1X , 3(F5.3 , 1X) , 3(F10.3 , 1X) , F8.1)
    IF (I .EQ. 1 ) THEN
        WRITE(31 , 24 ) P1(I) , P2(I) , Pa(I) AVEN2(I) , SAVEN2(I), NREJ2(I) ,
&NSTP2(I)
24   FORMAT(1X , 3(F5.3 , 1X) , 3(F10.3 , 1X) , F8.1)
    ELSE
        WRITE(31 , 25 ) P1(I) , P2(I) , Pa(I) AVEN2(I) , SAVEN2(I), NREJ2(I) ,
&NSTP2(I)
25   FORMAT(1X , 3(F5.3 , 1X) , 3(F10.3 , 1X) , F8.1)

```

ENDIF

C
10 CONTINUE
CLOSE(31)
CLOSE(32)
CLOSE(33)
CLOSE(34)
CLOSE(35)
RETURN
END

C-----
**** SAME TYPE OF SUBROUTINE FOR DISPLAYING PLAN SETS 2 , 3, AND 4
JUST NEED TO CHANGE THE OUTPUT FILES *****
C-----

APPENDIX B

Table III - OC CURVE DATA FOR PLAN SET I
(h₁-m) ACCEPTANCE RULE FOR m={0, 1, 2}

P ₁	P ₂	P ₃	ACCORDI	m = 0			m = 1			m = 2		
				% Loss	Z	P' & P''	% Loss	Z	P' & P''	% Loss	Z	P' & P''
0.005	0.01	0.005	0.000	0.007	-0.20		0.000	-0.00		0.010	-0.01	
			0.001	0.020	0.782	-0.00	0.784	-0.78	0.782	-0.17		
			0.007	0.024	0.620	-0.48	0.620	-0.58	0.670	-0.01		
			0.009	0.026	0.602	1.78	REG.	0.604	1.00	REG.	0.610	2.27
			0.009	0.022	0.200	0.00	REG.	0.200	0.47	REG.	0.210	0.55
			0.010	0.100	0.110	1.03	REG.	0.110	1.02	REG.	0.120	2.02
0.005	0.02	0.005	0.000	0.005	-0.44		0.000	0.00		0.010	0.71	
			0.000	0.785	0.781	-2.00	0.782	-0.22	REG.	0.810	1.82	REG.
			0.010	0.827	0.827	0.00	REG.	0.828	0.41	REG.	0.720	0.10
			0.012	0.497	0.492	-0.32	REG.	0.497	1.00	REG.	0.524	0.24
			0.014	0.320	0.247	1.14	REG.	0.272	2.85	REG.	0.493	0.79
			0.016	0.224	0.281	2.01		0.262	2.00		0.200	0.70
			0.018	0.140	0.100	1.50	REG.	0.175	2.32	REG.	0.182	2.70
			0.020	0.100	0.112	1.33	REG.	0.122	2.21	REG.	0.123	2.35
0.005	0.03	0.005	0.000	0.051	0.15		0.000	0.00		REG.	0.050	1.87
			0.007	0.892	0.816	0.48		0.824	0.89		0.820	2.00
			0.010	0.787	0.740	-1.88	REG.	0.786	1.44	REG.	0.891	0.81
			0.013	0.899	0.805	-0.20	REG.	0.850	0.00	REG.	0.885	0.83
			0.016	0.497	0.489	1.39	REG.	0.515	0.04	REG.	0.537	0.43
			0.018	0.341	0.280	2.57		0.495	4.10		0.427	0.80
			0.022	0.246	0.272	2.02		0.282	2.00		0.205	0.25
			0.025	0.170	0.100	0.82	REG.	0.212	2.71	REG.	0.220	2.70
			0.028	0.120	0.122	0.39	REG.	0.141	1.80	REG.	0.151	2.10
			0.030	0.100	0.110	1.03	REG.	0.120	2.02	REG.	0.122	2.10
0.005	0.04	0.005	0.000	0.052	0.20		0.000	0.777	4.85		0.890	0.10
			0.007	0.895	0.800	-0.82	REG.	0.821	0.00		0.827	2.78
			0.010	0.812	0.798	-1.12	REG.	0.861	4.10		0.875	0.49
			0.013	0.794	0.899	-0.00	REG.	0.781	5.42		0.899	7.82
			0.016	0.594	0.624	-0.02		0.661	4.30		0.807	0.81
			0.018	0.392	0.300	1.00	REG.	0.310	7.00		0.845	0.77
			0.022	0.299	0.289	-1.05	REG.	0.471	4.80		0.814	2.80
			0.025	0.210	0.314	-0.34	REG.	0.380	4.42		0.414	0.23
			0.028	0.254	0.257	0.22	REG.	0.322	5.40		0.370	7.82
			0.031	0.190	0.200	0.00	REG.	0.250	2.87		0.200	0.26
			0.034	0.150	0.162	-0.01	REG.	0.198	2.00		0.217	0.80
			0.037	0.125	0.123	-0.10	REG.	0.160	2.21		0.160	2.02
			0.040	0.100	0.103	0.31	REG.	0.120	2.70		0.143	0.10
0.005	0.05	0.005	0.000	0.050	0.79		0.000	0.37		0.002	0.00	
			0.008	0.891	0.800	1.87	REG.	0.822	4.00	REG.	0.838	0.00
			0.011	0.812	0.820	1.02	REG.	0.872	0.00	REG.	0.801	0.00

Table III - OC CURVE DATA FOR PLAN SET I
(h₁-m) ACCEPTANCE RULE FOR m={0, 1, 2}
(CONTINUED)

	0.014	0.726	0.999	-1.82	REG.	0.774	2.88	0.782	0.18	
	0.017	0.640	0.929	-0.12	REG.	0.709	4.69	0.723	0.62	
	0.020	0.562	0.886	0.10	REG.	0.644	5.87	0.653	0.46	
	0.023	0.472	0.605	2.02		0.574	8.20	0.582	0.02	
	0.026	0.392	0.434	2.26		0.491	9.88	0.516	7.42	
	0.029	0.320	0.359	1.92	REG.	0.412	8.62	0.428	0.30	
	0.032	0.268	0.278	-0.70	REG.	0.326	8.61	0.340	0.54	
	0.035	0.241	0.204	1.87	REG.	0.262	4.41	0.216	0.22	
	0.038	0.202	0.249	2.28		0.205	8.04	0.220	0.22	
	0.041	0.171	0.188	1.24	REG.	0.214	2.45	0.220	0.02	
	0.044	0.142	0.145	0.37	REG.	0.167	2.10	0.179	0.10	
	0.047	0.119	0.139	1.09	REG.	0.167	2.68	0.182	0.00	
	0.050	0.100	0.087	-1.61	REG.	0.101	0.11	0.102	0.21	0.00
0.005	0.00	0.005	0.050	0.00		0.004	0.42	0.004	0.42	
	0.009	0.070	0.012	0.82		0.031	5.70	0.031	5.70	
	0.013	0.700	0.012	0.95		0.057	8.04	0.058	0.05	
	0.017	0.625	0.710	1.48	REG.	0.768	4.47	0.788	4.62	
	0.021	0.500	0.650	2.09		0.710	7.72	0.717	7.29	
	0.025	0.400	0.542	2.72		0.594	0.93	0.598	0.10	
	0.029	0.423	0.458	2.23		0.592	5.91	0.598	5.39	
	0.032	0.352	0.398	2.00		0.439	8.62	0.442	0.82	
	0.037	0.282	0.321	1.82	REG.	0.382	8.04	0.372	0.37	
	0.041	0.248	0.250	0.37	REG.	0.285	2.87	0.288	0.04	
	0.045	0.202	0.213	0.78	REG.	0.239	2.74	0.241	0.00	
	0.049	0.167	0.188	-0.68	REG.	0.162	1.26	0.163	1.23	0.00
	0.053	0.127	0.124	-1.22	REG.	0.135	-0.18	0.138	0.00	0.00
	0.057	0.110	0.125	0.87	REG.	0.127	2.00	0.128	2.00	
	0.060	0.100	0.124	2.41		0.127	2.89	0.128	2.79	
0.005	0.07	0.005	0.050	0.059		0.004	0.92	0.004	0.92	
	0.010	0.000	0.071	0.47	REG.	0.038	7.68	0.039	7.70	
	0.015	0.767	0.700	1.00	REG.	0.872	0.72	0.874	0.21	
	0.020	0.600	0.602	-0.47	REG.	0.760	0.37	0.761	0.44	
	0.025	0.561	0.577	1.02	REG.	0.797	0.58	0.799	0.72	
	0.030	0.464	0.498	1.52	REG.	0.617	0.71	0.620	10.00	
	0.035	0.307	0.390	2.10	REG.	0.504	7.44	0.508	7.70	
	0.040	0.221	0.297	-1.04	REG.	0.404	8.48	0.408	8.72	
	0.045	0.200	0.230	-2.10		0.330	8.21	0.335	8.58	
	0.050	0.210	0.211	-0.62	REG.	0.285	0.01	0.299	0.00	
	0.055	0.181	0.180	0.00	REG.	0.242	0.00	0.240	0.10	
	0.060	0.148	0.163	0.44	REG.	0.217	0.05	0.222	0.02	
	0.065	0.121	0.110	-1.32	REG.	0.166	0.12	0.157	0.00	
	0.070	0.100	0.110	2.02	REG.	0.141	2.00	0.145	2.04	

Table IV - OC CURVE DATA FOR PLAN SET II
 (h1-m) ACCEPTANCE RULE FOR m=(0, 1, 2)

P1	P2	Pm	m=0			m=1			m=2			
			Accept	S.1000	Z	Pm'	S.1000	Z	Pm'	S.1000	Z	Pm'
0.01	0.02	0.010	0.000	0.002	1.00	acc.	0.007	2.70	acc.	0.071	3.41	
		0.012	0.001	0.003	1.10	acc.	0.017	2.30	acc.	0.025	2.81	
		0.014	0.002	0.003	2.20		0.052	2.20		0.071	0.11	
		0.016	0.700	0.714	0.60	acc.	0.732	1.82	acc.	0.766	0.48	
		0.018	0.001	0.002	-1.10	acc.	0.009	0.48	acc.	0.009	1.00	
		0.020	0.040	0.054	0.30	acc.	0.476	2.71	acc.	0.507	2.10	
		0.022	0.262	0.211	-0.70		0.201	-1.60	acc.	0.202	0.70	
		0.024	0.260	0.274	1.70	acc.	0.204	0.40		0.201	0.81	
		0.026	0.188	0.199	-1.67	acc.	0.174	-1.10	acc.	0.167	-0.00	
		0.028	0.120	0.162	1.17	acc.	0.180	1.00	acc.	0.182	2.12	
		0.030	0.100	0.110	1.82	acc.	0.124	0.41		0.124	0.35	
0.01	0.04	0.010	0.000	0.000	1.21	acc.	0.009	0.95	acc.	0.070	0.23	
		0.012	0.004	0.001	-0.20	acc.	0.007	1.82	acc.	0.009	2.00	
		0.014	0.700	0.700	-1.00	acc.	0.000	0.70	acc.	0.022	0.30	
		0.016	0.002	0.043	-2.60		0.002	0.81	acc.	0.731	2.24	
		0.022	0.510	0.520	-1.27	acc.	0.200	1.00	acc.	0.522	0.30	
		0.025	0.420	0.397	-2.50		0.426	-0.80	acc.	0.474	2.41	
		0.028	0.226	0.221	0.40	acc.	0.266	2.07		0.402	0.00	
		0.031	0.250	0.267	0.81	acc.	0.202	2.00		0.399	0.00	
		0.034	0.185	0.179	-0.40	acc.	0.100	1.12	acc.	0.227	0.30	
		0.037	0.187	0.124	-0.80	acc.	0.147	0.00	acc.	0.164	0.30	
		0.040	0.100	0.000	-1.00	acc.	0.007	-0.32	acc.	0.104	0.42	
0.01	0.05	0.010	0.000	0.000	-1.01	acc.	0.004	0.50	acc.	0.002	2.02	
		0.012	0.000	0.001	-0.02	acc.	0.027	2.04		0.027	0.20	
		0.015	0.020	0.047	1.93	acc.	0.200	2.84		0.000	2.50	
		0.018	0.742	0.741	-0.14	acc.	0.701	2.50		0.026	0.30	
		0.022	0.004	0.000	0.00	acc.	0.732	2.02		0.768	2.05	
		0.025	0.502	0.572	0.87	acc.	0.320	2.82		0.000	0.00	
		0.028	0.497	0.450	-0.87	acc.	0.510	2.72		0.002	0.01	
		0.031	0.007	0.076	-0.70	acc.	0.624	2.80		0.499	0.87	
		0.034	0.003	0.200	-0.21	acc.	0.237	2.00		0.074	4.74	
		0.037	0.284	0.262	-0.07	acc.	0.200	2.40		0.320	0.81	
		0.040	0.203	0.100	-0.30	acc.	0.217	1.00	acc.	0.247	3.32	
		0.042	0.177	0.162	-1.20	acc.	0.184	2.60	acc.	0.210	2.84	
		0.044	0.184	0.144	-0.00	acc.	0.157	0.26	acc.	0.183	0.45	
		0.047	0.126	0.121	0.57	acc.	0.198	2.12		0.160	0.85	
		0.050	0.100	0.124	2.41		0.125	2.44		0.140	4.42	
0.01	0.06	0.010	0.000	0.000	0.74	acc.	0.074	2.87	acc.	0.070	0.00	
		0.012	0.000	0.017	1.07	acc.	0.052	2.00		0.042	7.00	
		0.015	0.000	0.047	-0.71	acc.	0.001	2.62		0.010	0.00	

Table IV - OC CURVE DATA FOR PLAN SET I
(h₁-m) ACCEPTANCE RULE FOR m={0, 1, 2}
(CONTINUED)

	0.010	0.700	0.702	-1.01	DEC.	0.010	0.02		0.044	0.72
	0.020	0.711	0.805	-1.11	DEC.	0.750	2.44		0.795	0.10
	0.020	0.842	0.812	-1.00	DEC.	0.875	2.12		0.721	0.00
	0.020	0.888	0.844	-1.24	DEC.	0.899	2.03		0.862	0.00
	0.021	0.900	0.894	-2.00		0.515	1.82	DEC.	0.886	0.07
	0.024	0.902	0.887	-2.21		0.420	1.72	DEC.	0.899	0.07
	0.029	0.900	0.890	-2.07	DEC.	0.882	2.01		0.896	0.10
	0.042	0.894	0.848	-1.10	DEC.	0.290	1.04	DEC.	0.888	0.10
	0.045	0.824	0.815	-0.00	DEC.	0.250	1.02	DEC.	0.897	0.07
	0.049	0.105	0.102	-0.25	DEC.	0.212	2.22		0.247	0.72
	0.061	0.197	0.179	0.26	DEC.	0.190	2.29		0.210	0.00
	0.064	0.192	0.180	-1.11	DEC.	0.180	2.72	DEC.	0.170	0.04
	0.067	0.110	0.102	-1.00	DEC.	0.114	-0.00	DEC.	0.185	1.02
	0.069	0.100	0.075	-2.00		0.070	-2.02	DEC.	0.093	-0.76
0.01	0.07	0.010	0.000	0.74	DEC.	0.000	2.52		0.000	2.06
	0.011	0.026	0.002	1.74	DEC.	0.024	4.20		0.020	0.07
	0.020	0.700	0.010	2.04		0.857	5.00		0.875	7.00
	0.025	0.700	0.007	-0.21	DEC.	0.762	2.00		0.788	0.07
	0.029	0.597	0.577	-0.04	DEC.	0.642	2.04		0.671	0.00
	0.035	0.496	0.472	-0.44	DEC.	0.520	2.10		0.570	0.02
	0.040	0.392	0.382	0.00	DEC.	0.447	2.00		0.471	0.00
	0.045	0.291	0.293	-0.41	DEC.	0.340	2.00		0.368	0.04
	0.050	0.200	0.244	-0.44	DEC.	0.270	1.44	DEC.	0.330	2.71
	0.055	0.100	0.102	-1.07	DEC.	0.210	0.00	DEC.	0.230	0.00
	0.060	0.102	0.100	-1.00	DEC.	0.180	0.01	DEC.	0.187	0.00
	0.065	0.120	0.110	-0.77	DEC.	0.120	0.00	DEC.	0.144	1.07
	0.070	0.100	0.100	0.02	DEC.	0.111	1.12	DEC.	0.110	1.02
0.01	0.08	0.010	0.000	0.00	DEC.	0.072	2.70		0.074	2.07
	0.015	0.002	0.001	-1.10	DEC.	0.021	2.15		0.020	2.00
	0.020	0.000	0.700	-1.00	DEC.	0.005	2.07		0.075	0.00
	0.025	0.727	0.726	-0.14	DEC.	0.811	2.20		0.830	7.04
	0.030	0.612	0.622	1.81	DEC.	0.714	2.76		0.735	0.23
	0.035	0.512	0.544	0.06	DEC.	0.612	4.00		0.646	0.02
	0.040	0.464	0.430	-1.02	DEC.	0.524	4.02		0.560	0.40
	0.045	0.387	0.393	0.00	DEC.	0.400	2.02		0.514	0.07
	0.050	0.210	0.202	-1.05	DEC.	0.200	0.05		0.420	7.10
	0.055	0.241	0.270	2.74		0.320	2.02		0.373	2.05
	0.060	0.224	0.226	0.20	DEC.	0.274	2.01		0.304	2.74
	0.065	0.185	0.180	-1.41	DEC.	0.205	1.00	DEC.	0.221	2.00
	0.070	0.181	0.182	-2.07		0.162	0.00	DEC.	0.187	2.04
	0.075	0.123	0.110	-0.20	DEC.	0.100	2.12		0.162	0.01
	0.080	0.100	0.100	0.00	DEC.	0.100	2.01		0.160	0.01

Table V - DATA OUTPUT PLAN SET I
 (h1-1) ACCEPTANCE RULE

P1	P2	P3	NOD	Plan 01			Mean Cl. (+ -)	Accept.	% Loss	# Times	Plan 01 Rate	
				Mean P	Std Dev	Min P						
0.005	0.01	0.005	4895	1207	1212.5	923.0	49.0	0.950	0.922	10.6	0.020	
		0.006		1803	1812.2	1182.7	50.0	0.820	0.778	82.5	0.062	
		0.007		2003	1743.0	1206.0	52.0	0.824	0.692	81.5	0.064	
		0.008		1704	1899.7	1197.0	52.0	0.375	0.991	82.5	0.067	
		0.009		1605	1888.2	1126.4	49.4	0.822	0.940	61	0.069	
		0.010		1226	1821.2	1022.2	44.0	0.100	0.147	22	0.072	
		0.005	782	284	277.5	184.0	7.2	0.992	0.921	84	0.024	
				201	282.4	182.0	0.0	0.795	0.992	80.5	0.067	
				826	220.1	199.0	0.7	0.937	0.662	127	0.127	
				202	218.1	199.0	0.0	0.487	0.692	121	0.121	
				270	288.0	188.0	0.7	0.230	0.357	89	0.066	
				241	288.0	182.1	0.0	0.234	0.272	78.5	0.077	
				212	282.5	179.5	7.0	0.140	0.180	45	0.064	
				186	224.5	184.0	7.2	0.100	0.123	80.5	0.091	
			0.005	275	122	124.2	84.0	2.0	0.950	0.982	20	0.000
				124	124.4	82.0	2.0	0.992	0.915	49.5	0.000	
				146	158.0	98.0	4.2	0.797	0.785	84.5	0.000	
				160	162.2	101.0	4.5	0.990	0.662	100.5	0.001	
				120	154.0	102.0	4.5	0.487	0.514	84.5	0.000	
				126	146.0	100.0	4.4	0.341	0.379	87.5	0.000	
				112	126.0	87.4	4.2	0.245	0.288	59	0.000	
				100	123.4	81.7	4.0	0.170	0.194	24	0.000	
				88	107.0	83.0	2.7	0.120	0.130	10	0.010	
				92	102.1	79.0	2.6	0.100	0.110	12.5	0.014	
0.005	0.04	0.005	182	90	79.0	24.0	1.0	0.950	0.972	82.5	0.004	
		0.007		24	99.0	41.0	1.0	0.995	0.925	115	0.115	
		0.010		98	95.1	68.4	2.1	0.812	0.662	170	0.170	
		0.013		99	94.0	69.0	2.2	0.795	0.780	104.5	0.105	
		0.016		93	98.0	81.0	2.2	0.594	0.662	100	0.100	
		0.019		92	92.0	64.0	2.4	0.392	0.461	101	0.101	
		0.022		79	99.4	84.2	2.4	0.292	0.391	102	0.100	
		0.025		74	99.1	82.0	2.3	0.210	0.289	144.5	0.105	
		0.028		98	79.7	82.1	2.3	0.204	0.216	110.5	0.117	
		0.031		93	76.0	82.0	2.3	0.100	0.252	104	0.104	
0.005	0.05	0.005	161	59	99.3	26.0	1.2	0.950	0.982	62	0.003	
		0.006		92	97.6	84.0	1.0	0.991	0.924	100	0.000	
		0.011		93	71.1	87.0	1.0	0.812	0.872	100	0.100	

Table V - DATA OUTPUT PLAN SET I
(h1-1) ACCEPTANCE RULE
(CONTINUED)

0.014	83	70.0	39.5	1.7	0.726	0.794	124.5	0.125
0.017	83	72.1	41.4	1.8	0.640	0.795	142.5	0.143
0.020	70	71.8	42.5	1.9	0.582	0.837	146.5	0.148
0.023	62	70.7	42.0	1.9	0.472	0.882	120	0.120
0.026	57	69.0	42.1	1.9	0.392	0.923	121	0.121
0.029	55	68.3	41.7	1.9	0.330	0.423	100	0.104
0.032	49	62.0	41.6	1.9	0.288	0.245	87	0.087
0.035	49	60.4	41.2	1.9	0.241	0.200	82.5	0.081
0.038	43	59.7	39.7	1.7	0.202	0.250	85.5	0.085
0.041	41	52.2	37.1	1.6	0.171	0.191	60.5	0.061
0.044	29	49.9	35.6	1.6	0.142	0.162	55	0.055
0.047	26	48.5	34.0	1.6	0.110	0.124	24.5	0.025
0.050	24	42.3	31.0	1.4	0.100	0.091	12.5	0.012
0.005	0.06	0.005	120	0.0	0.050	0.078	24.5	0.025
0.009	48	52.8	37.0	1.2	0.070	0.038	85.5	0.048
0.013	49	50.0	30.8	1.4	0.080	0.059	92	0.062
0.017	50	50.0	32.3	1.4	0.092	0.070	104	0.104
0.021	50	50.2	34.3	1.5	0.090	0.075	111.5	0.112
0.025	49	50.8	34.5	1.5	0.080	0.067	101	0.101
0.029	42	55.1	34.5	1.5	0.422	0.816	82.5	0.087
0.033	40	61.0	34.1	1.5	0.352	0.422	82	0.082
0.037	28	40.0	32.0	1.4	0.292	0.371	92	0.062
0.041	25	47.7	33.4	1.5	0.245	0.289	60	0.050
0.045	23	42.2	30.2	1.3	0.202	0.224	54	0.034
0.049	21	41.2	29.1	1.3	0.187	0.180	22	0.020
0.053	20	37.5	27.3	1.2	0.137	0.152	17.5	0.012
0.057	27	25.0	26.7	1.2	0.116	0.115	12.5	0.014
0.060	25	24.4	25.0	1.1	0.100	0.090	10.5	0.011
0.005	0.07	0.005	74	0.7	0.050	0.070	150	0.150
0.010	29	42.0	17.6	0.9	0.060	0.039	82.5	0.023
0.015	40	44.5	19.0	0.9	0.767	0.970	205.5	0.205
0.020	41	44.4	20.1	0.9	0.668	0.785	270.5	0.277
0.025	42	44.7	20.5	0.9	0.661	0.699	230.5	0.260
0.030	28	42.7	20.0	0.9	0.484	0.570	222.5	0.222
0.035	24	40.0	21.2	0.9	0.397	0.495	200.5	0.200
0.040	21	28.7	21.2	0.9	0.321	0.423	170.5	0.177
0.045	20	26.0	20.0	0.9	0.280	0.342	140	0.140
0.050	27	25.5	20.7	0.9	0.210	0.294	127.5	0.120
0.053	25	22.0	20.4	0.9	0.181	0.244	100	0.100
0.060	23	21.7	19.9	0.9	0.140	0.192	80.5	0.080
0.065	21	20.0	19.1	0.9	0.121	0.167	60.5	0.067
0.070	20	20.0	19.0	0.9	0.100	0.131	50.5	0.050

Table VI - ASN TESTING , PLAN SET I
 (h1-1) ACCEPTANCE RULE

P1	P2	P ₀	ASN(P ₀)	Plan 01		Computed			H ₀ : μ ₁ = μ ₂		H ₀ : μ ₁ < μ ₂	
				Mean ₁	Mean ₂	Difference	Statistic	T(0.05)	H ₀ : μ ₁ > μ ₂	T(0.01)	H ₀ : μ ₁ < μ ₂	
0.005	0.01	0.005	1287	1312.5	25.35	1.21	-1.646	Accept	-2.328	Acc.		
		0.006	1603	1813.2	10.47	0.41	-1.646	Accept	-2.328	Acc.		
		0.007	2085	1743.9	-341.08	-12.64	-1.646	R	-2.328	R		
		0.008	1784	1699.7	-84.03	-2.39	-1.646	R	-2.328	R		
		0.009	1485	1555.2	70.04	2.78	-1.646	Accept	-2.328	Acc.		
		0.010	1225	1321.2	96.46	4.22	-1.646	Accept	-2.328	Acc.		
0.005	0.02	0.006	284	277.5	13.85	3.76	-1.646	Accept	-2.328	Acc.		
		0.008	301	302.4	1.80	0.37	-1.646	Accept	-2.328	Acc.		
		0.010	325	329.1	3.73	0.84	-1.646	Accept	-2.328	Acc.		
		0.012	302	318.1	16.30	3.88	-1.646	Accept	-2.328	Acc.		
		0.014	270	288.0	28.12	6.34	-1.646	Accept	-2.328	Acc.		
		0.016	241	288.8	47.80	11.00	-1.646	Accept	-2.328	Acc.		
		0.018	213	252.5	39.95	9.95	-1.646	Accept	-2.328	Acc.		
		0.020	186	224.5	38.85	10.89	-1.646	Accept	-2.328	Acc.		
0.005	0.03	0.005	122	124.3	1.87	1.29	-1.646	Accept	-2.328	Acc.		
		0.007	134	144.4	10.50	5.88	-1.646	Accept	-2.328	Acc.		
		0.010	146	155.8	10.21	4.74	-1.646	Accept	-2.328	Acc.		
		0.013	150	163.2	13.19	5.80	-1.646	Accept	-2.328	Acc.		
		0.016	138	154.5	16.81	7.23	-1.646	Accept	-2.328	Acc.		
		0.019	126	148.8	21.20	8.42	-1.646	Accept	-2.328	Acc.		
		0.022	113	136.0	23.89	10.74	-1.646	Accept	-2.328	Acc.		
		0.025	100	123.4	23.48	11.45	-1.646	Accept	-2.328	Acc.		
		0.028	88	107.6	19.41	10.36	-1.646	Accept	-2.328	Acc.		
		0.030	82	102.1	19.82	11.12	-1.646	Accept	-2.328	Acc.		
0.005	0.04	0.005	60	79.8	9.26	0.33	-1.646	Accept	-2.328	Acc.		
		0.007	84	86.8	2.49	2.86	-1.646	Accept	-2.328	Acc.		
		0.010	88	95.1	7.11	6.57	-1.646	Accept	-2.328	Acc.		
		0.013	89	94.9	5.91	4.96	-1.646	Accept	-2.328	Acc.		
		0.016	83	96.6	13.92	11.99	-1.646	Accept	-2.328	Acc.		
		0.019	83	93.8	10.89	8.03	-1.646	Accept	-2.328	Acc.		
		0.022	79	90.4	11.71	8.95	-1.646	Accept	-2.328	Acc.		
		0.025	74	88.1	14.80	12.16	-1.646	Accept	-2.328	Acc.		
		0.028	88	79.7	11.81	9.79	-1.646	Accept	-2.328	Acc.		
		0.031	83	76.9	13.74	11.84	-1.646	Accept	-2.328	Acc.		
		0.034	88	71.3	13.87	11.87	-1.646	Accept	-2.328	Acc.		
		0.037	83	66.7	13.20	11.97	-1.646	Accept	-2.328	Acc.		
		0.040	49	61.1	11.82	11.49	-1.646	Accept	-2.328	Acc.		
0.005	0.05	0.005	60	60.3	2.02	3.43	-1.646	Accept	-2.328	Acc.		
		0.008	62	67.5	5.49	7.06	-1.646	Accept	-2.328	Acc.		
		0.011	63	71.1	7.84	9.40	-1.646	Accept	-2.328	Acc.		

Table VI - ASN TESTING , PLAN SET I

(h1-1) ACCEPTANCE RULE

(CONTINUED)

0.014	63	70.9	8.04	8.34	-1.646	Accord	-2.328	Acc.		
0.017	63	72.1	8.02	8.52	-1.646	Accord	-2.328	Acc.		
0.020	70	71.8	2.06	2.16	-1.646	Accord	-2.328	Acc.		
0.023	62	70.7	8.05	8.21	-1.646	Accord	-2.328	Acc.		
0.026	57	69.0	11.89	12.62	-1.646	Accord	-2.328	Acc.		
0.029	55	86.3	11.19	12.01	-1.646	Accord	-2.328	Acc.		
0.032	49	63.8	14.50	15.83	-1.646	Accord	-2.328	Acc.		
0.035	46	60.4	13.92	15.11	-1.646	Accord	-2.328	Acc.		
0.038	43	56.7	13.24	14.92	-1.646	Accord	-2.328	Acc.		
0.041	41	52.2	11.49	13.87	-1.646	Accord	-2.328	Acc.		
0.044	38	49.0	10.70	13.45	-1.646	Accord	-2.328	Acc.		
0.047	36	45.5	9.47	12.48	-1.646	Accord	-2.328	Acc.		
0.050	34	42.3	8.40	11.81	-1.646	Accord	-2.328	Acc.		
0.005	0.06	0.005	48	3.17	6.85	-1.646	Accord	-2.328	Acc.	
0.009	48	53.5	5.20	8.82	-1.646	Accord	-2.328	Acc.		
0.013	49	56.8	7.89	11.59	-1.646	Accord	-2.328	Acc.		
0.017	50	58.0	7.81	10.53	-1.646	Accord	-2.328	Acc.		
0.021	56	58.2	2.13	2.78	-1.646	Accord	-2.328	Acc.		
0.025	49	56.6	7.20	9.34	-1.646	Accord	-2.328	Acc.		
0.029	43	55.1	12.22	15.82	-1.646	Accord	-2.328	Acc.		
0.033	40	51.9	11.46	15.02	-1.646	Accord	-2.328	Acc.		
0.037	38	49.3	11.60	15.92	-1.646	Accord	-2.328	Acc.		
0.041	35	47.7	12.79	17.12	-1.646	Accord	-2.328	Acc.		
0.045	33	43.3	10.89	15.82	-1.646	Accord	-2.328	Acc.		
0.049	31	41.3	10.83	18.62	-1.646	Accord	-2.328	Acc.		
0.053	29	37.5	8.91	14.61	-1.646	Accord	-2.328	Acc.		
0.057	27	35.9	9.37	15.72	-1.646	Accord	-2.328	Acc.		
0.060	25	34.4	9.09	15.76	-1.646	Accord	-2.328	Acc.		
0.005	0.07	0.005	37	40.2	2.92	8.48	-1.646	Accord	-2.328	Acc.
0.010	39	43.0	3.91	8.99	-1.646	Accord	-2.328	Acc.		
0.015	40	44.5	4.90	11.67	-1.646	Accord	-2.328	Acc.		
0.020	41	44.4	2.99	8.85	-1.646	Accord	-2.328	Acc.		
0.025	42	44.7	2.36	5.15	-1.646	Accord	-2.328	Acc.		
0.030	38	42.7	5.07	10.86	-1.646	Accord	-2.328	Acc.		
0.035	34	40.8	7.18	15.02	-1.646	Accord	-2.328	Acc.		
0.040	31	38.7	7.69	18.17	-1.646	Accord	-2.328	Acc.		
0.045	28	36.8	8.43	18.04	-1.646	Accord	-2.328	Acc.		
0.050	27	35.5	8.86	18.39	-1.646	Accord	-2.328	Acc.		
0.055	25	33.9	9.23	20.24	-1.646	Accord	-2.328	Acc.		
0.060	23	31.7	8.78	19.75	-1.646	Accord	-2.328	Acc.		
0.065	21	29.8	8.14	19.04	-1.646	Accord	-2.328	Acc.		
0.070	20	28.3	8.35	19.85	-1.646	Accord	-2.328	Acc.		

Table VII - OC CURVE TESTING , PLAN SET I

(h1-1) ACCEPTANCE RULE

			PLAN S1		Z(L02)	Z(L03)	No: P1 + P2	Z(L02)	Z(L03)	No: P1 + P2
P1	P2	Pn	Accord	No: Pn						
			P2	P1						
0.005	0.01	0.006	0.000	0.022	0.005	-0.12	1.000	R	2.054	S
			0.008	0.020	0.009	-0.07	1.000	R	2.054	S
			0.007	0.024	0.011	-1.78	1.000	Accord	2.054	Accord
			0.008	0.026	0.011	2.30	1.000	R	2.054	S
			0.009	0.022	0.009	0.05	1.000	R	2.054	S
			0.010	0.100	0.007	0.22	1.000	R	2.054	S
0.005	0.02	0.008	0.000	0.021	0.005	1.70	1.000	Accord	2.054	Accord
			0.008	0.026	0.009	0.02	1.000	Accord	2.054	Accord
			0.010	0.037	0.011	2.30	1.000	R	2.054	S
			0.012	0.067	0.011	0.14	1.000	R	2.054	S
			0.014	0.220	0.011	0.40	1.000	R	2.054	S
			0.018	0.224	0.010	0.02	1.000	R	2.054	S
			0.019	0.140	0.009	0.53	1.000	R	2.054	S
			0.020	0.100	0.007	2.20	1.000	R	2.054	S
0.005	0.03	0.005	0.000	0.002	0.005	2.62	1.000	R	2.054	S
			0.007	0.002	0.015	0.20	1.000	R	2.054	S
			0.010	0.767	0.009	1.00	1.000	Accord	2.054	Accord
			0.013	0.699	0.011	0.01	1.000	R	2.054	S
			0.016	0.667	0.011	0.22	1.000	R	2.054	S
			0.019	0.341	0.011	0.40	1.000	R	2.054	S
			0.022	0.245	0.010	2.20	1.000	R	2.054	S
			0.025	0.176	0.009	0.05	1.000	R	2.054	Accord
			0.028	0.128	0.008	0.20	1.000	Accord	2.054	Accord
			0.030	0.100	0.007	1.40	1.000	Accord	2.054	Accord
0.005	0.04	0.005	0.000	0.072	0.004	5.35	1.000	R	2.054	S
			0.007	0.005	0.025	4.00	1.000	R	2.054	S
			0.010	0.012	0.009	7.00	1.000	R	2.054	S
			0.013	0.706	0.010	7.60	1.000	R	2.054	S
			0.016	0.664	0.011	0.00	1.000	R	2.054	S
			0.019	0.302	0.011	0.12	1.000	R	2.054	S
			0.022	0.200	0.011	0.51	1.000	R	2.054	S
			0.025	0.110	0.011	0.52	1.000	R	2.054	S
			0.028	0.054	0.010	0.01	1.000	R	2.054	S
			0.031	0.100	0.009	0.02	1.000	R	2.054	S
			0.034	0.160	0.009	2.02	1.000	R	2.054	S
			0.037	0.125	0.008	0.20	1.000	R	2.054	S
			0.040	0.100	0.007	4.73	1.000	R	2.054	S
0.005	0.05	0.005	0.000	0.062	0.004	7.00	1.000	R	2.054	S
			0.008	0.001	0.024	0.02	1.000	R	2.054	S
			0.011	0.012	0.072	0.00	1.000	R	2.054	S

Table VII - OC CURVE TESTING , PLAN SET I
 (h1-1) ACCEPTANCE RULE

		0.014	0.725	0.704	0.010	7.27	1.000	R	2.064	R
		0.017	0.640	0.705	0.010	6.24	1.000	R	2.064	R
		0.020	0.582	0.627	0.011	7.00	1.000	R	2.064	R
		0.023	0.572	0.582	0.011	7.10	1.000	R	2.064	R
		0.025	0.399	0.423	0.011	6.45	1.000	R	2.064	R
		0.028	0.339	0.423	0.011	6.87	1.000	R	2.064	R
		0.032	0.289	0.345	0.010	4.42	1.000	R	2.064	R
		0.035	0.241	0.300	0.010	5.49	1.000	R	2.064	R
		0.038	0.223	0.299	0.009	5.95	1.000	R	2.064	R
		0.041	0.171	0.181	0.009	5.32	1.000	R	2.064	R
		0.044	0.142	0.162	0.009	5.81	1.000	R	2.064	R
		0.047	0.119	0.124	0.007	1.00	1.000	Accept	2.064	Accept
		0.050	0.100	0.091	0.007	-1.37	1.000	Accept	2.064	Accept
0.005	0.06	0.005	0.959	0.976	0.004	0.02	1.000	R	2.064	R
		0.009	0.878	0.928	0.006	0.35	1.000	R	2.064	R
		0.013	0.798	0.858	0.009	0.44	1.000	R	2.064	R
		0.017	0.695	0.775	0.010	0.09	1.000	R	2.064	R
		0.021	0.600	0.675	0.011	0.05	1.000	R	2.064	R
		0.025	0.499	0.597	0.011	0.09	1.000	R	2.064	R
		0.029	0.422	0.515	0.011	0.21	1.000	R	2.064	R
		0.033	0.352	0.432	0.011	7.25	1.000	R	2.064	R
		0.037	0.292	0.371	0.011	7.38	1.000	R	2.064	R
		0.041	0.245	0.296	0.010	4.12	1.000	R	2.064	R
		0.045	0.202	0.224	0.009	2.26	1.000	R	2.064	R
		0.049	0.167	0.182	0.009	3.30	1.000	R	2.064	R
		0.053	0.137	0.152	0.009	3.00	1.000	R	2.064	R
		0.057	0.110	0.116	0.007	-0.11	1.000	Accept	2.064	Accept
		0.060	0.100	0.093	0.007	-0.37	1.000	Accept	2.064	Accept
0.005	0.07	0.005	0.959	0.976	0.004	0.58	1.000	R	2.064	R
		0.010	0.866	0.929	0.007	10.89	1.000	R	2.064	R
		0.015	0.767	0.870	0.009	11.02	1.000	R	2.064	R
		0.020	0.689	0.785	0.010	11.04	1.000	R	2.064	R
		0.025	0.681	0.828	0.011	12.42	1.000	R	2.064	R
		0.030	0.634	0.879	0.011	10.27	1.000	R	2.064	R
		0.035	0.587	0.885	0.011	9.71	1.000	R	2.064	R
		0.040	0.521	0.823	0.011	9.47	1.000	R	2.064	R
		0.045	0.299	0.842	0.010	7.00	1.000	R	2.064	R
		0.050	0.210	0.894	0.010	8.58	1.000	R	2.064	R
		0.055	0.181	0.844	0.009	8.00	1.000	R	2.064	R
		0.060	0.140	0.895	0.009	8.00	1.000	R	2.064	R
		0.065	0.121	0.867	0.009	8.04	1.000	R	2.064	R
		0.070	0.100	0.821	0.007	8.24	1.000	R	2.064	R

Table VIII - DATA OUTPUT PLAN SET II

(h1-1) ACCEPTANCE RULE

P1	P2	P3	NCO	ABN(PA)	Plan 02		Mean Cl (+ -)	Accept # Pn	% Loss Associated	Avg # Times Rejection Made	Avg Run Time
					Inspected	# Run					
0.01	0.02	0.010	714	217	218.4	181.4	5.0	0.000	0.000	14.0	0.016
		0.012		246	247.0	159.1	7.0	0.000	0.010	8.7	0.007
		0.014		271	271.0	179.2	7.7	0.012	0.020	8.8	0.008
		0.016		288	282.7	189.2	8.2	0.700	0.707	77.5	0.078
		0.018		282	287.1	189.2	8.7	0.001	0.002	82.8	0.004
		0.020		288	287.0	200.0	9.0	0.000	0.000	82.8	0.000
		0.022		287	291.0	199.5	9.0	0.002	0.005	84	0.004
		0.024		280	282.0	188.2	9.1	0.000	0.000	84.5	0.000
		0.026		282	280.2	179.0	7.0	0.100	0.101	48	0.000
		0.028		189	226.2	181.0	7.1	0.120	0.121	82.5	0.024
		0.030		181	207.0	189.0	9.0	0.100	0.120	82.5	0.021
0.01	0.04	0.010	250	121	120.7	98.5	8.0	0.000	0.000	81	0.021
		0.012		124	122.0	92.0	8.0	0.004	0.001	87	0.007
		0.014		145	156.0	92.0	4.1	0.700	0.000	85	0.000
		0.016		162	162.2	98.0	4.2	0.002	0.004	110	0.110
		0.018		165	164.0	101.0	4.5	0.040	0.070	120.5	0.120
		0.020		180	181.0	101.2	4.4	0.420	0.454	121.0	0.122
		0.022		120	151.0	98.0	4.2	0.325	0.350	85	0.005
		0.024		122	149.0	95.0	4.2	0.200	0.221	78.0	0.019
		0.026		112	127.0	90.0	4.0	0.100	0.002	80.5	0.000
		0.027		192	119.2	96.2	3.0	0.127	0.147	62	0.000
		0.040		92	107.0	78.2	3.5	0.100	0.101	24	0.004
0.01	0.05	0.010	216	81	85.2	88.2	2.0	0.000	0.004	69.5	0.002
		0.012		89	90.0	88.1	2.2	0.000	0.020	64.8	0.000
		0.014		92	97.2	84.0	2.4	0.020	0.002	101.5	0.102
		0.016		94	102.7	87.0	2.5	0.743	0.700	124.0	0.125
		0.022		97	104.1	89.0	2.7	0.554	0.710	126.5	0.120
		0.025		99	106.0	91.5	2.7	0.502	0.614	127	0.127
		0.028		99	102.0	92.0	2.7	0.007	0.814	126.0	0.120
		0.031		91	99.5	92.0	2.7	0.207	0.424	122.0	0.122
		0.034		99	95.0	98.7	2.7	0.202	0.250	102	0.102
		0.037		99	99.7	98.0	2.6	0.254	0.201	82.5	0.004
		0.040		76	95.0	98.1	2.6	0.202	0.222	82.0	0.004
		0.042		71	91.0	98.0	2.5	0.177	0.187	60.5	0.000
		0.044		87	81.1	94.0	2.4	0.154	0.100	60.5	0.007
		0.047		82	78.7	94.0	2.4	0.126	0.142	58	0.000
		0.050		89	79.4	98.0	2.2	0.100	0.110	82.5	0.000
0.01	0.09	0.010	181	89	81.2	90.0	1.0	0.000	0.000	82	0.000
		0.012		82	80.0	98.0	1.0	0.000	0.040	87	0.007
		0.016		83	79.0	98.1	1.7	0.065	0.002	111	0.111

Table VIII - DATA OUTPUT PLAN SET II
(h1-1) ACCEPTANCE RULE
(CONTINUED)

0.010		70	74.0	40.0	1.0	0.700	0.840	140	0.160	
0.022		72	76.0	42.4	1.0	0.711	0.851	162	0.182	
0.025		70	76.4	42.4	1.0	0.642	0.685	167	0.187	
0.028		70	76.7	42.9	1.0	0.635	0.691	169.5	0.189	
0.031		70	76.0	44.7	2.0	0.602	0.647	162.5	0.188	
0.035		68	72.1	46.2	2.0	0.602	0.620	160.5	0.181	
0.040		68	70.2	44.0	1.0	0.590	0.560	110.5	0.111	
0.042		68	69.1	42.9	1.0	0.594	0.591	162.5	0.184	
0.045		68	68.7	42.2	1.0	0.524	0.447	87.5	0.060	
0.048		61	69.4	41.7	1.0	0.505	0.222	72	0.072	
0.051		69	69.4	40.9	1.0	0.487	0.201	69	0.069	
0.054		68	69.7	39.9	1.7	0.462	0.184	81.5	0.068	
0.057		62	61.7	39.2	1.7	0.419	0.121	48.5	0.061	
0.060		61	60.0	37.2	1.0	0.400	0.091	31	0.051	
0.01 0.07	0.010	123	47	40.1	22.5	1.0	0.950	0.989	20.5	0.201
	0.015	52	55.0	20.2	1.2	0.955	0.923	52	0.200	
	0.020	56	59.2	24.4	1.6	0.788	0.642	110	0.110	
	0.025	50	51.2	25.9	1.0	0.700	0.752	110.5	0.110	
	0.030	57	52.2	27.5	1.0	0.687	0.641	120.5	0.121	
	0.035	56	50.4	28.1	1.7	0.686	0.641	120.5	0.125	
	0.040	49	57.0	37.1	1.0	0.592	0.455	300.5	0.304	
	0.045	47	56.2	38.9	1.0	0.592	0.592	51	0.201	
	0.050	63	51.0	35.0	1.0	0.559	0.552	70.5	0.271	
	0.055	59	47.0	34.2	1.0	0.488	0.226	52	0.062	
	0.060	58	44.7	32.1	1.0	0.452	0.167	42	0.068	
	0.065	52	51.0	32.2	1.4	0.426	0.124	22	0.030	
	0.070	51	38.2	34.3	1.6	0.190	0.190	22	0.020	
0.01 0.08	0.010	60	49.3	17.0	0.0	0.950	0.976	60	0.200	
	0.015	42	42.2	21.4	0.0	0.892	0.923	110	0.110	
	0.020	42	47.0	23.9	1.0	0.893	0.864	170.5	0.177	
	0.025	44	49.4	24.9	1.1	0.727	0.705	172.5	0.172	
	0.030	45	47.0	28.5	1.1	0.612	0.716	180.5	0.180	
	0.035	49	47.1	26.0	1.1	0.542	0.617	170.5	0.177	
	0.040	44	45.0	26.2	1.2	0.454	0.534	172	0.172	
	0.045	59	44.4	26.7	1.2	0.397	0.489	152	0.182	
	0.050	57	43.0	27.1	1.2	0.319	0.323	157	0.187	
	0.055	55	42.1	26.0	1.1	0.241	0.320	125	0.188	
	0.060	52	38.2	26.2	1.1	0.224	0.274	52	0.062	
	0.065	59	39.0	26.5	1.1	0.195	0.210	21.5	0.032	
	0.070	59	35.6	24.7	1.1	0.161	0.162	70.5	0.271	
	0.075	56	32.1	23.5	1.0	0.123	0.130	54	0.034	
	0.080	55	30.0	22.0	1.0	0.100	0.124	50	0.030	

Table IX - ASN TESTING , PLAN SET II

(h1-1) ACCEPTANCE RULE

P1	P2	Pn	Plan 02		Computed		Ho: u1 = u2		Ho: u1 < u2	
			Mean	n	Statistic	t(0.05)	Ho: u1 < u2	t(0.01)	Ho: u1 < u2	
0.01	0.03	0.010	217	216.5	-0.26	-0.09	-1.846	Accord	-2.328	Acc.
		0.012	245	247.5	2.02	0.57	-1.846	Accord	-2.328	Acc.
		0.014	271	271.6	0.77	0.19	-1.846	Accord	-2.328	Acc.
		0.016	295	292.7	-2.27	-0.53	-1.846	Accord	-2.328	Acc.
		0.018	363	297.1	-85.43	-14.76	-1.846	R	-2.328	R
		0.020	299	297.8	-0.54	-0.12	-1.846	Accord	-2.328	Acc.
		0.022	257	291.6	34.75	7.91	-1.846	Accord	-2.328	Acc.
		0.024	250	282.0	12.37	2.99	-1.846	Accord	-2.328	Acc.
		0.026	222	250.2	28.26	7.02	-1.846	Accord	-2.328	Acc.
		0.028	199	225.2	25.75	7.11	-1.846	Accord	-2.328	Acc.
		0.030	181	207.9	26.85	7.80	-1.846	Accord	-2.328	Acc.
0.01	0.04	0.010	121	120.7	0.15	0.10	-1.846	Accord	-2.328	Acc.
		0.013	134	138.0	3.86	1.95	-1.846	Accord	-2.328	Acc.
		0.016	145	165.0	9.81	4.73	-1.846	Accord	-2.328	Acc.
		0.018	162	163.3	1.02	0.46	-1.846	Accord	-2.328	Acc.
		0.022	165	164.9	0.05	0.02	-1.846	Accord	-2.328	Acc.
		0.025	150	161.0	11.02	4.87	-1.846	Accord	-2.328	Acc.
		0.028	138	151.6	13.85	6.33	-1.846	Accord	-2.328	Acc.
		0.031	123	140.6	17.00	8.31	-1.846	Accord	-2.328	Acc.
		0.034	112	127.3	15.22	7.50	-1.846	Accord	-2.328	Acc.
		0.037	102	118.2	18.70	8.88	-1.846	Accord	-2.328	Acc.
		0.040	92	107.6	15.41	8.70	-1.846	Accord	-2.328	Acc.
0.01	0.05	0.010	81	85.2	4.13	4.00	-1.846	Accord	-2.328	Acc.
		0.013	88	80.8	2.59	2.36	-1.846	Accord	-2.328	Acc.
		0.016	92	97.2	4.76	3.89	-1.846	Accord	-2.328	Acc.
		0.019	94	102.7	9.31	6.42	-1.846	Accord	-2.328	Acc.
		0.022	97	104.1	7.46	5.50	-1.846	Accord	-2.328	Acc.
		0.025	88	105.0	7.93	5.11	-1.846	Accord	-2.328	Acc.
		0.028	92	102.8	3.98	2.85	-1.846	Accord	-2.328	Acc.
		0.031	91	99.5	8.35	6.92	-1.846	Accord	-2.328	Acc.
		0.034	80	86.9	6.23	5.11	-1.846	Accord	-2.328	Acc.
		0.037	80	90.7	10.39	7.89	-1.846	Accord	-2.328	Acc.
		0.040	75	85.6	10.83	8.19	-1.846	Accord	-2.328	Acc.
		0.042	71	81.8	10.89	8.40	-1.846	Accord	-2.328	Acc.
		0.044	67	81.1	13.77	11.23	-1.846	Accord	-2.328	Acc.
		0.047	62	75.7	13.28	10.88	-1.846	Accord	-2.328	Acc.
		0.050	88	70.4	12.35	10.93	-1.846	Accord	-2.328	Acc.
0.01	0.06	0.010	80	81.2	0.98	1.00	-1.846	Accord	-2.328	Acc.
		0.013	83	82.0	5.40	6.80	-1.846	Accord	-2.328	Acc.
		0.016	88	70.8	2.77	3.25	-1.846	Accord	-2.328	Acc.

Table IX - ASN TESTING , PLAN SET II

(h1-1) ACCEPTANCE RULE

(CONTINUED)

0.019	70	74.8	4.83	5.32	-1.846	Accept	-2.328	Acc.		
0.022	72	75.8	3.80	4.00	-1.846	Accept	-2.328	Acc.		
0.025	76	75.4	-0.62	-0.84	-1.846	Accept	-2.328	Acc.		
0.028	80	75.7	-4.75	-4.84	-1.846	R	-2.328	R		
0.031	76	74.6	-1.39	-1.39	-1.846	Accept	-2.328	Acc.		
0.035	85	73.1	7.80	7.72	-1.846	Accept	-2.328	Acc.		
0.040	60	70.2	10.29	10.47	-1.846	Accept	-2.328	Acc.		
0.043	56	68.1	9.86	9.85	-1.846	Accept	-2.328	Acc.		
0.046	53	63.7	10.42	10.79	-1.846	Accept	-2.328	Acc.		
0.049	51	60.4	9.53	10.21	-1.846	Accept	-2.328	Acc.		
0.051	49	58.4	9.81	10.73	-1.846	Accept	-2.328	Acc.		
0.054	46	55.7	9.94	11.18	-1.846	Accept	-2.328	Acc.		
0.057	43	51.7	8.49	9.93	-1.846	Accept	-2.328	Acc.		
0.060	41	48.0	7.05	8.47	-1.846	Accept	-2.328	Acc.		
0.01	0.07	0.010	47	49.1	1.82	3.08	-1.846	Accept	-2.328	Acc.
		0.015	52	55.9	4.14	6.11	-1.846	Accept	-2.328	Acc.
		0.020	55	60.3	5.29	6.88	-1.846	Accept	-2.328	Acc.
		0.025	58	61.3	3.16	3.94	-1.846	Accept	-2.328	Acc.
		0.030	57	62.2	5.40	6.44	-1.846	Accept	-2.328	Acc.
		0.035	55	60.4	5.39	6.33	-1.846	Accept	-2.328	Acc.
		0.040	49	57.8	8.55	10.32	-1.846	Accept	-2.328	Acc.
		0.045	47	54.2	8.87	9.32	-1.846	Accept	-2.328	Acc.
		0.050	43	51.5	8.87	10.89	-1.846	Accept	-2.328	Acc.
		0.055	39	47.8	8.18	10.70	-1.846	Accept	-2.328	Acc.
		0.060	36	44.7	8.72	11.78	-1.846	Accept	-2.328	Acc.
		0.065	33	41.9	9.41	11.64	-1.846	Accept	-2.328	Acc.
		0.070	31	38.3	7.49	9.88	-1.846	Accept	-2.328	Acc.
0.01	0.08	0.010	39	40.3	1.27	3.18	-1.846	Accept	-2.328	Acc.
		0.015	42	43.2	1.28	2.89	-1.846	Accept	-2.328	Acc.
		0.020	42	47.6	5.44	10.18	-1.846	Accept	-2.328	Acc.
		0.025	44	48.4	2.43	4.62	-1.846	Accept	-2.328	Acc.
		0.030	46	47.9	1.90	3.34	-1.846	Accept	-2.328	Acc.
		0.035	49	47.1	-1.72	-2.88	-1.846	R	-2.328	Acc.
		0.040	44	45.8	1.72	2.83	-1.846	Accept	-2.328	Acc.
		0.045	39	44.4	5.89	8.83	-1.846	Accept	-2.328	Acc.
		0.050	37	43.6	8.76	11.15	-1.846	Accept	-2.328	Acc.
		0.055	35	42.1	7.07	12.24	-1.846	Accept	-2.328	Acc.
		0.060	32	38.3	8.85	11.78	-1.846	Accept	-2.328	Acc.
		0.065	30	36.0	8.99	12.25	-1.846	Accept	-2.328	Acc.
		0.070	28	35.5	7.72	13.97	-1.846	Accept	-2.328	Acc.
		0.075	26	32.1	8.02	11.45	-1.846	Accept	-2.328	Acc.
		0.080	25	29.0	8.24	10.84	-1.846	Accept	-2.328	Acc.

Table X - OC CURVE TESTING , PLAN SET II
 (h1-1) ACCEPTANCE RULE

			PLAN 02									
P1	P2	P0	Accord	Sc. Loss	SE(P)	Z	Z(0.05)	No: P1 = P2	Z(0.02)	No: P1 < P2	Z(0.02)	No: P1 > P2
			Accorded	Accorded		Statistic	+ SE -	No: P1 = P2	+ SE -	No: P1 < P2		
P1	P2	P0	P2	P1								
0.01	0.02	0.010	0.050	0.004	0.005	2.00	1.000	R	2.054	R		
		0.012	0.055	0.010	0.007	2.10	1.000	R	2.054	R		
		0.014	0.052	0.020	0.008	2.00	1.000	R	2.054	R		
		0.016	0.058	0.027	0.010	2.12	1.000	R	2.054	R		
		0.018	0.051	0.002	0.011	2.00	1.000	Accord	2.054	Accord		
		0.020	0.048	0.005	0.011	2.01	1.000	R	2.054	R		
		0.022	0.052	0.025	0.011	-1.00	1.000	Accord	2.054	Accord		
		0.024	0.058	0.005	0.010	1.00	1.000	Accord	2.054	Accord		
		0.026	0.059	0.101	0.009	2.22	1.000	Accord	2.054	Accord		
		0.028	0.130	0.151	0.008	1.40	1.000	Accord	2.054	Accord		
		0.030	0.100	0.120	0.007	2.05	1.000	R	2.054	R		
0.01	0.04	0.010	0.050	0.008	0.004	4.00	1.000	R	2.054	R		
		0.012	0.054	0.001	0.007	2.20	1.000	R	2.054	R		
		0.018	0.700	0.000	0.009	1.00	1.000	Accord	2.054	Accord		
		0.019	0.682	0.004	0.010	0.97	1.000	Accord	2.054	Accord		
		0.022	0.542	0.572	0.011	2.62	1.000	R	2.054	R		
		0.025	0.438	0.484	0.011	1.05	1.000	Accord	2.054	Accord		
		0.028	0.325	0.359	0.011	2.10	1.000	R	2.054	R		
		0.031	0.250	0.261	0.010	1.10	1.000	Accord	2.054	Accord		
		0.034	0.185	0.202	0.002	2.04	1.000	R	2.054	Accord		
		0.037	0.127	0.147	0.008	1.32	1.000	Accord	2.054	Accord		
		0.040	0.100	0.101	0.007	0.07	1.000	Accord	2.054	Accord		
0.01	0.05	0.010	0.050	0.004	0.005	0.04	1.000	Accord	2.054	Accord		
		0.012	0.000	0.020	0.002	4.40	1.000	R	2.054	R		
		0.018	0.020	0.002	0.008	4.32	1.000	R	2.054	R		
		0.019	0.742	0.702	0.001	0.00	1.000	R	2.054	R		
		0.022	0.654	0.712	0.010	0.10	1.000	R	2.054	R		
		0.025	0.582	0.614	0.011	4.01	1.000	R	2.054	R		
		0.028	0.487	0.514	0.011	4.17	1.000	R	2.054	R		
		0.031	0.397	0.424	0.011	2.81	1.000	R	2.054	R		
		0.034	0.303	0.360	0.011	5.10	1.000	R	2.054	R		
		0.037	0.254	0.281	0.010	2.64	1.000	R	2.054	R		
		0.040	0.202	0.222	0.002	2.10	1.000	R	2.054	R		
		0.042	0.177	0.187	0.002	1.11	1.000	Accord	2.054	Accord		
		0.044	0.154	0.166	0.001	1.30	1.000	Accord	2.054	Accord		
		0.047	0.125	0.162	0.001	2.23	1.000	R	2.054	R		
		0.050	0.100	0.110	0.007	2.72	1.000	R	2.054	R		
0.01	0.06	0.010	0.050	0.002	0.004	4.31	1.000	R	2.054	R		
		0.012	0.000	0.040	0.001	0.21	1.000	R	2.054	R		
		0.016	0.055	0.002	0.007	5.10	1.000	R	2.054	R		

Table X - OC CURVE TESTING , PLAN SET II
 (h1-1) ACCEPTANCE RULE

		0.010	0.706	0.840	0.900	8.16	1.060	R	2.054	R
		0.022	0.711	0.751	0.810	4.02	1.060	R	2.054	R
		0.025	0.843	0.885	0.911	4.02	1.060	R	2.054	R
		0.028	0.885	0.921	0.911	2.10	1.060	R	2.054	R
		0.031	0.486	0.547	0.611	5.43	1.060	R	2.054	R
		0.035	0.402	0.420	0.611	2.44	1.060	R	2.054	R
		0.040	0.300	0.350	0.611	4.88	1.060	R	2.054	R
		0.043	0.264	0.291	0.610	2.67	1.060	R	2.054	R
		0.046	0.224	0.247	0.609	2.42	1.060	R	2.054	R
		0.048	0.188	0.222	0.609	2.20	1.060	R	2.054	R
		0.051	0.167	0.201	0.609	2.05	1.060	R	2.054	R
		0.054	0.142	0.184	0.608	2.82	1.060	R	2.054	R
		0.057	0.118	0.121	0.607	0.14	1.060	Accept	2.054	Accept
		0.060	0.100	0.091	0.607	-1.37	1.060	Accept	2.054	Accept
0.01	0.07	0.010	0.050	0.060	0.004	4.31	1.060	R	2.054	R
		0.015	0.098	0.023	0.007	5.82	1.060	R	2.054	R
		0.020	0.700	0.842	0.008	5.46	1.060	R	2.054	R
		0.025	0.700	0.762	0.010	5.10	1.060	R	2.054	R
		0.030	0.597	0.641	0.011	4.98	1.060	R	2.054	R
		0.035	0.488	0.541	0.011	5.94	1.060	R	2.054	R
		0.040	0.393	0.455	0.011	5.60	1.060	R	2.054	R
		0.045	0.309	0.362	0.011	5.65	1.060	R	2.054	R
		0.050	0.250	0.292	0.010	3.21	1.060	R	2.054	R
		0.055	0.199	0.226	0.009	2.01	1.060	R	2.054	R
		0.060	0.162	0.167	0.008	0.51	1.060	Accept	2.054	Accept
		0.065	0.128	0.134	0.008	1.92	1.060	Accept	2.054	Accept
		0.070	0.100	0.100	0.007	1.32	1.060	Accept	2.054	Accept
0.01	0.08	0.010	0.050	0.070	0.004	5.02	1.060	R	2.054	R
		0.015	0.092	0.023	0.009	4.76	1.060	R	2.054	R
		0.020	0.008	0.004	0.008	5.76	1.060	R	2.054	R
		0.025	0.727	0.725	0.010	7.00	1.060	R	2.054	R
		0.030	0.612	0.716	0.011	5.74	1.060	R	2.054	R
		0.035	0.543	0.617	0.011	5.95	1.060	R	2.054	R
		0.040	0.454	0.534	0.011	7.12	1.060	R	2.054	R
		0.045	0.387	0.458	0.011	7.81	1.060	R	2.054	R
		0.050	0.319	0.392	0.011	5.82	1.060	R	2.054	R
		0.055	0.241	0.320	0.010	5.89	1.060	R	2.054	R
		0.060	0.224	0.274	0.010	5.17	1.060	R	2.054	R
		0.065	0.185	0.216	0.009	3.52	1.060	R	2.054	R
		0.070	0.151	0.182	0.008	1.64	1.060	Accept	2.054	Accept
		0.075	0.122	0.130	0.007	0.01	1.060	Accept	2.054	Accept
		0.080	0.100	0.124	0.007	0.39	1.060	R	2.054	R

Table XI - DATA OUTPUT PLAN SET III

(hi-1) ACCEPTANCE RULE

P1	P2	P3	NOD	ABR(kPa)	Plan 03		Mean Cl ± 1	Accept @ Pn	% Loss Accepted	Ave # Times Succ. Rate	Plan 03 Rate
					Mean A Measured	Std Dev ± 1 Std.					
0.015	0.03	0.015	1532	423	424.8	201.4	13.2	0.950	0.947	18.6	0.917
		0.016		487	459.0	224.3	14.2	0.920	0.912	20.0	0.928
		0.018		842	849.9	200.5	16.7	0.935	0.906	20.0	0.949
		0.020		685	687.3	400.6	17.8	0.999	0.998	64.0	0.954
		0.022		812	823.7	423.2	18.0	0.920	0.902	78.8	0.977
		0.024		820	874.3	401.6	17.0	0.978	0.907	61.0	0.932
		0.026		820	842.1	285.9	19.0	0.945	0.941	60.5	0.947
		0.028		652	659.3	250.1	16.3	0.167	0.164	25.6	0.926
		0.030		682	659.5	228.7	16.0	0.160	0.120	24.0	0.924
0.015	0.04	0.015	820	120	124.0	124.0	0.0	0.950	0.950	18.8	0.918
		0.017		210	213.0	123.3	0.1	0.912	0.917	21.0	0.931
		0.018		230	226.7	153.0	0.7	0.956	0.905	44.0	0.944
		0.022		264	269.2	170.3	7.6	0.730	0.750	75.0	0.976
		0.025		288	277.0	178.9	7.0	0.694	0.698	90.5	0.987
		0.028		280	280.1	178.6	7.0	0.442	0.467	74.0	0.975
		0.031		220	253.7	174.1	7.0	0.310	0.303	60.0	0.955
		0.034		207	223.2	157.5	6.0	0.210	0.220	45.0	0.946
		0.037		186	204.7	148.0	6.5	0.147	0.152	24.0	0.924
		0.040		184	198.0	127.5	0.0	0.100	0.114	19.5	0.922
0.015	0.05	0.015	271	114	117.2	70.3	2.1	0.950	0.952	10.5	0.919
		0.017		122	128.7	89.0	2.0	0.922	0.927	20.0	0.926
		0.018		122	136.0	86.5	2.0	0.904	0.891	44.0	0.947
		0.022		142	147.4	85.3	4.2	0.900	0.932	65.0	0.988
		0.025		148	152.4	87.3	4.2	0.711	0.747	85.0	0.988
		0.028		182	168.2	102.5	4.0	0.912	0.927	85.0	0.986
		0.031		146	157.0	102.4	4.0	0.488	0.520	82.5	0.984
		0.034		125	148.0	102.3	4.0	0.406	0.399	70.0	0.978
		0.037		122	144.2	98.1	4.2	0.314	0.320	67.0	0.988
		0.040		126	128.7	95.7	4.2	0.254	0.260	60.0	0.969
		0.042		110	120.7	91.7	4.0	0.198	0.213	43.0	0.944
		0.044		110	124.0	99.2	4.0	0.171	0.184	31.5	0.932
		0.047		101	118.0	95.0	2.0	0.121	0.144	25.0	0.928
		0.050		92	105.4	77.0	2.4	0.100	0.106	18.0	0.918
0.015	0.06	0.015	233	70	83.0	46.7	2.0	0.950	0.961	21.5	0.932
		0.017		84	87.0	61.7	2.0	0.920	0.942	40.5	0.947
		0.019		89	99.5	64.4	2.4	0.900	0.912	57.0	0.967
		0.022		94	101.0	60.4	2.0	0.830	0.844	62.0	0.984
		0.025		101	102.2	61.0	2.7	0.777	0.794	67.0	0.989
		0.028		102	105.0	62.0	2.0	0.695	0.724	102.0	0.984
		0.031		111	107.0	65.0	2.0	0.612	0.626	112.5	0.916

Table XI - DATA OUTPUT PLAN SET III
(h1-1) ACCEPTANCE RULE

	0.024		100	105.4	87.4	2.0	0.824	0.821	122.0	9.122	
	0.027		94	105.0	88.5	2.0	0.448	0.482	110.0	9.111	
	0.040		91	104.2	88.2	2.0	0.376	0.390	110.0	9.110	
	0.043		86	101.8	88.7	2.0	0.314	0.345	100.0	9.108	
	0.046		82	98.9	84.4	2.0	0.289	0.304	81.0	9.091	
	0.049		77	98.7	83.2	2.0	0.211	0.235	62.5	9.080	
	0.051		74	93.0	80.1	2.0	0.185	0.190	51.0	9.051	
	0.054		69	79.6	87.7	2.5	0.151	0.174	49.5	9.041	
	0.057		65	78.1	88.2	2.4	0.122	0.144	32.0	9.032	
	0.060		61	87.0	83.0	2.4	0.102	0.105	27.0	9.027	
0.015	0.07	0.015	170	90	83.4	22.6	1.0	0.959	0.955	21.0	9.022
	-0.017		62	93.0	87.1	1.0	0.924	0.947	25.0	9.025	
	0.018		66	92.0	87.1	1.0	0.905	0.924	48.0	9.028	
	0.022		70	72.0	42.3	1.0	0.882	0.902	50.0	9.026	
	0.025		72	70.4	44.1	1.0	0.893	0.905	52.0	9.023	
	0.028		74	70.2	47.0	2.1	0.743	0.765	102.0	9.103	
	0.031		75	82.8	49.0	2.1	0.970	0.721	110.0	9.117	
	0.034		78	82.2	50.6	2.2	0.899	0.951	115.0	9.116	
	0.037		79	81.0	50.2	2.2	0.837	0.897	110.0	9.110	
	0.040		76	78.0	50.0	2.2	0.473	0.510	102.0	9.102	
	0.043		70	80.1	50.0	2.2	0.411	0.452	100.0	9.100	
	0.046		68	78.0	50.1	2.2	0.352	0.380	62.5	9.084	
	0.049		62	72.7	48.0	2.1	0.309	0.331	81.0	9.081	
	0.051		62	70.6	48.6	2.1	0.273	0.297	72.0	9.073	
	0.054		60	88.3	47.0	2.1	0.236	0.247	62.0	9.063	
	0.057		58	82.5	48.8	2.0	0.199	0.223	47.0	9.047	
	0.060		52	81.3	44.0	2.0	0.171	0.171	30.0	9.030	
	0.063		50	80.0	42.0	1.0	0.145	0.149	21.0	9.021	
	0.066		48	87.2	42.6	1.0	0.120	0.123	21.0	9.022	
	0.069		46	82.0	39.0	1.7	0.111	0.117	10.0	9.018	
	0.070		44	82.5	39.5	1.7	0.100	0.111	21.0	9.021	

Table XII - ASN TESTING , PLAN SET III

(h1-1) ACCEPTANCE RULE

P1	P2	P0	ASN(Pa)	Plan 03		Computed		Ho: $\mu_1 = \mu_2$		Ho: $\mu_1 < \mu_2$	
				Mean f	Inspected	Difference	Statistic	t(0.05)	t(0.01)	t(0.01)	t(0.01)
0.015	0.03	0.015	423	434.8	11.62	1.72	-1.646	Accept	-2.328	Accept	
	0.016		467	458.0	-9.04	-1.25	-1.646	Accept	-2.328	Accept	
	0.018		542	544.9	3.04	0.36	-1.646	Accept	-2.328	Accept	
	0.020		565	587.3	22.31	2.49	-1.646	Accept	-2.328	Accept	
	0.022		612	603.7	-8.28	-0.87	-1.646	Accept	-2.328	Accept	
	0.024		580	574.3	-5.39	-0.59	-1.646	Accept	-2.328	Accept	
	0.026		530	542.1	11.69	1.35	-1.646	Accept	-2.328	Accept	
	0.028		453	489.3	36.75	4.70	-1.646	Accept	-2.328	Accept	
	0.030		403	459.6	56.96	7.52	-1.646	Accept	-2.328	Accept	
0.015	0.04	0.015	188	194.0	5.49	1.07	-1.646	Accept	-2.328	Accept	
	0.017		210	213.8	4.12	1.33	-1.646	Accept	-2.328	Accept	
	0.019		230	226.7	-3.59	-1.04	-1.646	Accept	-2.328	Accept	
	0.022		254	259.2	5.56	1.46	-1.646	Accept	-2.328	Accept	
	0.025		298	277.6	-20.27	-5.07	-1.646	R	-2.328	R	
	0.028		250	280.1	8.76	2.44	-1.646	Accept	-2.328	Accept	
	0.031		220	253.7	26.04	6.89	-1.646	Accept	-2.328	Accept	
	0.034		207	223.2	15.76	4.48	-1.646	Accept	-2.328	Accept	
	0.037		186	204.7	19.06	5.73	-1.646	Accept	-2.328	Accept	
	0.040		164	186.0	22.29	7.25	-1.646	Accept	-2.328	Accept	
0.015	0.05	0.015	114	117.2	3.24	2.06	-1.646	Accept	-2.328	Accept	
	0.017		123	128.7	5.52	3.05	-1.646	Accept	-2.328	Accept	
	0.019		132	135.8	4.10	2.12	-1.646	Accept	-2.328	Accept	
	0.022		142	147.4	5.01	2.35	-1.646	Accept	-2.328	Accept	
	0.025		149	152.4	3.89	1.70	-1.646	Accept	-2.328	Accept	
	0.028		153	158.2	3.22	1.39	-1.646	Accept	-2.328	Accept	
	0.031		145	157.6	12.93	5.59	-1.646	Accept	-2.328	Accept	
	0.034		135	148.8	13.47	5.89	-1.646	Accept	-2.328	Accept	
	0.037		132	144.2	12.25	5.88	-1.646	Accept	-2.328	Accept	
	0.040		125	136.7	11.73	5.48	-1.646	Accept	-2.328	Accept	
	0.042		119	130.7	11.74	5.73	-1.646	Accept	-2.328	Accept	
	0.044		110	124.8	14.86	7.37	-1.646	Accept	-2.328	Accept	
	0.047		101	116.8	18.11	8.40	-1.646	Accept	-2.328	Accept	
	0.050		92	108.4	13.92	8.00	-1.646	Accept	-2.328	Accept	
0.015	0.06	0.015	79	83.0	3.84	3.38	-1.646	Accept	-2.328	Accept	
	0.017		84	87.8	3.78	3.25	-1.646	Accept	-2.328	Accept	
	0.019		89	90.5	1.00	0.89	-1.646	Accept	-2.328	Accept	
	0.022		94	101.6	7.88	5.88	-1.646	Accept	-2.328	Accept	
	0.025		101	103.2	1.80	1.39	-1.646	Accept	-2.328	Accept	
	0.028		103	105.5	2.30	1.82	-1.646	Accept	-2.328	Accept	
	0.031		111	107.3	-1.23	-2.26	-1.646	R	-2.328	R	

Table XII - ASN TESTING , PLAN SET III

(h1-1) ACCEPTANCE RULE

(CONTINUED)

Table XIII - OC CURVE TESTING , PLAN SET III
 (h1-1) ACCEPTANCE RULE

			PLAN 02								
P1	P2	P0	Z1(0.01)	Sigma(P)	Z	Z1(0.05)	No: P1 + P2	Z1(0.2)	No: P1 + P2		
			(P1)	Acceptable	Statistic	- or +	No: P1 + P2	- or +	No: P1 + P2		
P1	P2	P0	Z1(0.01)	Sigma(P)	Z	Z1(0.05)	No: P1 + P2	Z1(0.2)	No: P1 + P2		
0.015	0.02	0.015	0.050	0.047	0.005	-0.01	1.000	Accept	2.054	Accept	
			0.020	0.012	0.005	-2.00	1.000	R	2.054	R	
			0.015	0.025	0.002	-3.44	1.000	R	2.054	R	
			0.020	0.005	0.010	-0.15	1.000	Accept	2.054	Accept	
			0.022	0.030	0.011	-1.05	1.000	Accept	2.054	Accept	
			0.024	0.275	0.011	1.02	1.000	R	2.054	Accept	
			0.025	0.241	0.010	-0.45	1.000	Accept	2.054	Accept	
			0.028	0.187	0.002	1.02	1.000	Accept	2.054	Accept	
			0.030	0.100	0.120	0.007	2.00	1.000	R	2.054	R
0.015	0.04	0.015	0.050	0.050	0.005	-0.10	1.000	Accept	2.054	Accept	
			0.017	0.012	0.017	0.005	0.05	1.000	Accept	2.054	Accept
			0.019	0.055	0.005	1.12	1.000	Accept	2.054	Accept	
			0.022	0.728	0.780	0.010	1.22	1.000	Accept	2.054	Accept
			0.025	0.594	0.008	0.011	1.22	1.000	Accept	2.054	Accept
			0.028	0.442	0.467	0.011	2.21	1.000	R	2.054	R
			0.031	0.310	0.303	0.010	-1.02	1.000	Accept	2.054	Accept
			0.034	0.210	0.220	0.002	1.02	1.000	Accept	2.054	Accept
			0.037	0.147	0.152	0.008	0.72	1.000	Accept	2.054	Accept
			0.040	0.100	0.114	0.007	1.00	1.000	Accept	2.054	Accept
0.015	0.05	0.015	0.050	0.052	0.005	0.21	1.000	Accept	2.054	Accept	
			0.017	0.022	0.027	0.002	0.02	1.000	Accept	2.054	Accept
			0.019	0.004	0.001	0.007	0.02	1.000	Accept	2.054	Accept
			0.022	0.001	0.002	0.008	0.05	1.000	R	2.054	R
			0.025	0.711	0.747	0.010	2.65	1.000	R	2.054	R
			0.028	0.612	0.627	0.011	1.27	1.000	Accept	2.054	Accept
			0.031	0.499	0.520	0.011	1.02	1.000	Accept	2.054	Accept
			0.034	0.405	0.399	0.011	-0.55	1.000	Accept	2.054	Accept
			0.037	0.314	0.326	0.010	1.15	1.000	Accept	2.054	Accept
			0.040	0.234	0.250	0.010	-0.45	1.000	Accept	2.054	Accept
			0.042	0.190	0.212	0.002	1.07	1.000	Accept	2.054	Accept
			0.044	0.171	0.184	0.002	1.82	1.000	Accept	2.054	Accept
			0.047	0.121	0.144	0.002	1.01	1.000	Accept	2.054	Accept
			0.050	0.100	0.106	0.007	0.81	1.000	Accept	2.054	Accept
0.015	0.06	0.015	0.050	0.061	0.005	0.27	1.000	R	2.054	R	
			0.017	0.020	0.042	0.005	2.00	1.000	R	2.054	R
			0.019	0.000	0.010	0.000	2.00	1.000	R	2.054	R
			0.022	0.020	0.064	0.000	2.10	1.000	R	2.054	R
			0.025	0.777	0.794	0.002	1.02	1.000	Accept	2.054	Accept
			0.028	0.595	0.724	0.010	0.00	1.000	R	2.054	R
			0.031	0.612	0.628	0.011	1.27	1.000	Accept	2.054	Accept

Table XIII - OC CURVE TESTING , PLAN SET III
(h1-1) ACCEPTANCE RULE
(CONTINUED)

0.034	0.524	0.521	0.011	-0.27	1.000	Accordi	2.054	Accordi		
0.037	0.448	0.462	0.011	1.26	1.000	Accordi	2.054	Accordi		
0.040	0.376	0.390	0.011	1.30	1.000	Accordi	2.054	Accordi		
0.043	0.314	0.345	0.011	2.00	1.000	R	2.054	R		
0.046	0.258	0.284	0.010	2.45	1.000	R	2.054	R		
0.049	0.211	0.235	0.009	2.61	1.000	R	2.054	R		
0.051	0.185	0.199	0.009	2.67	1.000	Accordi	2.054	Accordi		
0.054	0.151	0.174	0.008	2.76	1.000	R	2.054	R		
0.057	0.123	0.144	0.008	2.88	1.000	R	2.054	R		
0.060	0.100	0.095	0.007	-0.74	1.000	Accordi	2.054	Accordi		
0.015	0.07	0.018	0.009	0.005	2.21	1.000	R	2.054	R	
		0.017	0.020	0.047	0.005	2.75	1.000	R	2.054	R
		0.019	0.005	0.024	0.005	2.00	1.000	R	2.054	R
		0.022	0.063	0.002	0.007	2.82	1.000	R	2.054	R
		0.025	0.008	0.020	0.009	2.22	1.000	R	2.054	R
		0.028	0.743	0.765	0.010	2.27	1.000	R	2.054	R
		0.031	0.678	0.721	0.010	4.17	1.000	R	2.054	R
		0.034	0.609	0.651	0.011	2.84	1.000	R	2.054	R
		0.037	0.537	0.587	0.011	4.45	1.000	R	2.054	R
		0.040	0.473	0.510	0.011	2.95	1.000	R	2.054	R
		0.043	0.411	0.452	0.011	2.69	1.000	R	2.054	R
		0.046	0.352	0.390	0.011	2.86	1.000	Accordi	2.054	Accordi
		0.049	0.309	0.331	0.010	2.14	1.000	R	2.054	R
		0.051	0.273	0.297	0.010	1.20	1.000	Accordi	2.054	Accordi
		0.054	0.236	0.247	0.010	1.06	1.000	Accordi	2.054	Accordi
		0.057	0.199	0.223	0.009	2.53	1.000	R	2.054	R
		0.060	0.171	0.171	0.008	-0.01	1.000	Accordi	2.054	Accordi
		0.063	0.145	0.149	0.008	0.41	1.000	Accordi	2.054	Accordi
		0.066	0.138	0.123	0.008	-2.06	1.000	R	2.054	R
		0.068	0.111	0.117	0.007	0.76	1.000	Accordi	2.054	Accordi
		0.070	0.100	0.111	0.007	1.82	1.000	Accordi	2.054	Accordi

Table XIV - DATA OUTPUT PLAN SET IV

(h1-1) ACCEPTANCE RULE

P1	P2	Pa	NCO	ABN(Pa)	Plan 04		Mean Cl (+ -)	Accord @ Pa	% Lotn Accepted	Ave # Times Stop Rule	Pinned Rate
					Mean S	Std Dev S Max.					
0.02	0.02	0.020	4182	1020	1030.0	0.16.1	25.0	0.950	0.924	14.0	0.016
		0.021		1102	1090.0	0.47.0	27.1	0.907	0.898	10.0	0.019
		0.022		1210	1200.0	0.25.5	40.0	0.848	0.820	20.0	0.021
		0.023		1494	1377.2	1020.1	45.1	0.782	0.729	30.0	0.022
		0.024		1802	1423.2	1020.0	45.4	0.654	0.628	42.0	0.022
		0.025		1461	1410.3	1043.5	45.7	0.406	0.403	37.5	0.025
		0.027		1428	1372.4	1015.3	44.8	0.393	0.394	31.5	0.022
		0.029		1219	1202.0	0.00.1	42.0	0.207	0.224	20.0	0.022
		0.030		1200	1182.0	0.00.1	38.4	0.138	0.182	17.0	0.018
		0.030		1072	1161.6	0.00.3	37.2	0.100	0.130	15.0	0.018
0.02	0.04	0.020	1148	215	212.0	202.0	0.2	0.950	0.947	0.0	0.020
		0.023		287	205.4	202.4	11.5	0.978	0.974	31.5	0.022
		0.027		483	422.2	281.5	12.0	0.883	0.702	64.5	0.026
		0.031		432	405.6	220.1	14.0	0.436	0.454	71.0	0.071
		0.034		401	432.5	287.0	12.1	0.278	0.324	49.5	0.028
		0.037		251	270.5	271.2	11.0	0.167	0.171	31.5	0.022
		0.040		300	325.0	240.2	10.5	0.100	0.100	15.0	0.015
0.02	0.05	0.020	680	165	160.2	111.3	4.0	0.950	0.949	18.0	0.018
		0.025		202	200.0	127.1	6.0	0.853	0.851	45.5	0.046
		0.030		234	224.7	149.0	6.5	0.883	0.874	78.0	0.075
		0.035		220	228.6	157.1	6.0	0.467	0.481	89.5	0.091
		0.040		204	210.2	147.1	6.4	0.293	0.324	58.0	0.058
		0.045		172	192.1	127.1	6.0	0.177	0.178	38.5	0.048
		0.050		148	188.0	121.0	6.2	0.100	0.112	18.0	0.018
0.02	0.06	0.020	255	108	109.0	67.0	3.0	0.950	0.932	19.5	0.020
		0.025		124	120.4	64.1	3.7	0.878	0.873	47.0	0.047
		0.030		138	130.0	62.1	4.1	0.782	0.765	88.5	0.088
		0.035		148	140.7	67.0	4.3	0.812	0.815	89.0	0.089
		0.040		141	147.7	67.3	4.3	0.454	0.481	89.5	0.079
		0.045		130	142.1	68.1	4.3	0.818	0.819	78.0	0.078
		0.050		114	124.0	68.0	3.0	0.224	0.218	38.0	0.028
		0.055		101	100.4	78.0	3.4	0.151	0.142	22.0	0.022
		0.060		89	101.7	72.0	3.4	0.100	0.102	18.5	0.017
0.02	0.07	0.020	243	70	77.1	60.0	2.1	0.950	0.957	21.0	0.021
		0.026		80	82.0	59.0	2.6	0.878	0.889	63.5	0.064
		0.032		88	100.0	64.0	2.0	0.782	0.824	88.5	0.088
		0.038		105	104.0	68.2	2.0	0.818	0.858	100.0	0.100
		0.044		97	104.0	67.2	2.0	0.467	0.504	88.5	0.088
		0.050		89	100.7	67.0	2.0	0.841	0.865	88.0	0.088
		0.056		83	88.0	81.0	2.7	0.280	0.282	48.5	0.028

Table XIV - DATA OUTPUT PLAN SET IV

(h1-1) ACCEPTANCE RULE

(CONTINUED)

		0.060		75	85.7	90.7	2.7	0.185	0.205	41.5	0.042
		0.065		85	77.2	87.5	2.5	0.137	0.140	28.5	0.020
		0.070		91	89.0	81.3	2.2	0.100	0.090	14.5	0.015
0.02	0.08	0.020	174	89	81.2	85.7	1.8	0.050	0.059	32.5	0.022
		0.025		85	80.2	40.4	1.8	0.002	0.029	50.5	0.051
		0.030		71	73.8	44.0	2.0	0.031	0.052	28.0	0.026
		0.035		73	78.7	47.0	2.1	0.078	0.085	112.0	0.112
		0.040		80	78.0	48.0	2.1	0.042	0.085	110.5	0.117
		0.045		76	78.0	48.3	2.1	0.030	0.061	104.0	0.104
		0.050		71	78.0	50.0	2.2	0.026	0.076	122.0	0.122
		0.055		67	78.0	49.0	2.1	0.047	0.090	100.5	0.101
		0.060		63	70.5	49.5	2.0	0.073	0.093	71.0	0.071
		0.065		69	80.4	49.2	2.0	0.216	0.217	58.0	0.066
		0.070		64	80.0	42.1	1.8	0.184	0.182	27.5	0.028
		0.075		69	82.4	42.2	1.8	0.121	0.125	32.0	0.022
		0.080		69	82.7	39.0	1.7	0.100	0.102	23.5	0.024
0.02	0.09	0.020	137	47	48.0	28.4	1.2	0.050	0.063	27.5	0.028
		0.025		52	54.0	21.0	1.4	0.007	0.011	58.0	0.020
		0.030		55	55.0	24.5	1.5	0.016	0.056	58.0	0.026
		0.035		60	63.0	27.0	1.6	0.725	0.707	114.5	0.115
		0.044		62	62.0	29.5	1.7	0.610	0.681	127.5	0.120
		0.050		68	64.0	29.4	1.7	0.595	0.659	121.5	0.122
		0.056		65	61.7	29.0	1.7	0.411	0.459	104.0	0.104
		0.062		62	60.7	28.2	1.7	0.325	0.354	91.0	0.091
		0.068		68	65.7	27.5	1.6	0.264	0.277	73.5	0.074
		0.074		69	62.2	28.6	1.6	0.192	0.198	54.0	0.064
		0.080		41	47.4	22.7	1.6	0.184	0.171	44.0	0.044
		0.085		29	44.7	22.4	1.4	0.123	0.124	29.0	0.029
		0.090		25	42.1	28.7	1.3	0.100	0.102	29.5	0.021
0.02	0.1	0.020	107	39	41.0	21.0	1.0	0.050	0.065	29.5	0.049
		0.025		43	40.0	24.0	1.1	0.002	0.040	58.0	0.020
		0.032		46	67.0	27.2	1.2	0.035	0.071	87.0	0.097
		0.038		48	60.7	28.1	1.2	0.752	0.787	121.5	0.122
		0.044		50	51.0	29.0	1.2	0.660	0.710	123.5	0.124
		0.050		64	52.0	21.2	1.4	0.597	0.605	151.0	0.151
		0.056		48	51.1	31.1	1.4	0.480	0.502	130.5	0.130
		0.062		44	50.7	21.1	1.4	0.393	0.437	125.5	0.120
		0.068		42	47.4	20.7	1.3	0.319	0.354	104.0	0.106
		0.074		39	44.7	24.5	1.3	0.259	0.268	74.5	0.076
		0.080		39	42.0	20.0	1.3	0.211	0.222	70.0	0.070
		0.085		34	40.7	27.0	1.2	0.174	0.189	52.5	0.063
		0.090		32	39.0	27.7	1.2	0.146	0.155	52.0	0.062
		0.095		30	39.5	25.5	1.1	0.121	0.122	32.0	0.022
		0.100		29	33.0	24.0	1.1	0.100	0.117	29.5	0.027

Table XV - ASN TESTING , PLAN SET IV

(h₁-1) ACCEPTANCE RULE

P ₁	P ₂	P ₀	Plan 04		Computed		H ₀ : μ ₁ = μ ₂		H ₀ : μ ₁ < μ ₂	
			Mean #	Inspected	Difference	Statistic	t(0.05)	H ₀ : μ ₁ > μ ₂	t(0.01)	H ₀ : μ ₁ < μ ₂
0.02	0.03	0.020	1028	1036.6	8.95	0.49	-1.645	Accept	-2.328	Accept
		0.021	1163	1099.6	-63.01	-3.33	-1.645	R	-2.328	R
		0.022	1316	1208.8	-106.74	-5.16	-1.645	R	-2.328	R
		0.023	1484	1377.2	-106.82	-4.64	-1.645	R	-2.328	R
		0.024	1502	1423.2	-78.84	-3.40	-1.645	R	-2.328	R
		0.026	1481	1419.3	-61.75	-1.79	-1.645	R	-2.328	Accept
		0.027	1428	1372.4	-55.89	-2.45	-1.645	R	-2.328	R
		0.028	1319	1303.6	-15.01	-0.89	-1.645	Accept	-2.328	Accept
		0.029	1208	1193.8	-14.06	-0.70	-1.645	Accept	-2.328	Accept
		0.030	1073	1151.5	78.58	4.14	-1.645	Accept	-2.328	Accept
0.02	0.04	0.020	315	313.0	-1.75	-0.38	-1.645	Accept	-2.328	Accept
		0.023	387	385.4	-1.76	-0.30	-1.645	Accept	-2.328	Accept
		0.027	483	423.3	-39.35	-6.04	-1.645	R	-2.328	R
		0.031	432	485.5	33.13	4.63	-1.645	Accept	-2.328	Accept
		0.034	401	432.5	31.75	4.77	-1.645	Accept	-2.328	Accept
		0.037	351	378.5	27.23	4.69	-1.645	Accept	-2.328	Accept
		0.040	300	325.0	24.87	4.63	-1.645	Accept	-2.328	Accept
0.02	0.05	0.020	165	169.3	4.57	1.84	-1.645	Accept	-2.328	Accept
		0.025	202	206.8	4.48	1.48	-1.645	Accept	-2.328	Accept
		0.030	234	224.7	-9.18	-2.75	-1.645	R	-2.328	R
		0.035	238	235.6	-2.09	-0.59	-1.645	Accept	-2.328	Accept
		0.040	204	218.3	14.50	4.41	-1.645	Accept	-2.328	Accept
		0.045	172	192.1	20.14	6.57	-1.645	Accept	-2.328	Accept
		0.050	148	168.6	22.15	8.18	-1.645	Accept	-2.328	Accept
0.02	0.06	0.020	106	109.5	3.35	2.20	-1.645	Accept	-2.328	Accept
		0.025	124	129.4	5.48	2.91	-1.645	Accept	-2.328	Accept
		0.030	138	139.6	1.17	0.56	-1.645	Accept	-2.328	Accept
		0.035	146	149.7	3.88	1.89	-1.645	Accept	-2.328	Accept
		0.040	141	147.7	6.28	2.88	-1.645	Accept	-2.328	Accept
		0.045	130	142.1	11.28	8.41	-1.645	Accept	-2.328	Accept
		0.050	114	124.0	9.93	5.11	-1.645	Accept	-2.328	Accept
		0.055	101	109.4	8.51	4.85	-1.645	Accept	-2.328	Accept
		0.060	89	101.7	12.35	7.18	-1.645	Accept	-2.328	Accept
0.02	0.07	0.020	76	77.1	0.62	0.60	-1.645	Accept	-2.328	Accept
		0.026	89	92.8	4.08	3.08	-1.645	Accept	-2.328	Accept
		0.032	98	100.9	2.26	2.25	-1.645	Accept	-2.328	Accept
		0.038	105	104.8	-0.06	-0.04	-1.645	Accept	-2.328	Accept
		0.044	97	104.0	7.85	5.03	-1.645	Accept	-2.328	Accept
		0.050	89	100.7	12.05	7.97	-1.645	Accept	-2.328	Accept
		0.055	83	88.3	5.13	3.71	-1.645	Accept	-2.328	Accept

Table XV- ASN TESTING , PLAN SET IV
(h1-1) ACCEPTANCE RULE
(CONTINUED)

Table XVI - OC CURVE TESTING , PLAN SET IV
 (h1-1) ACCEPTANCE RULE

			PLAN IV		SE(P)	Z	Z(LSS)	Mo: P1 + P2		Z(LSS)		Mo: P1 + P2	
P1	P2	P ₀	% LSS	Accrpt				Statistic	+ SE -	Mo: P1 + P2	+ SE -	Mo: P1 + P2	+ SE -
			P ₀	P ₁	P ₂	P ₁		Z	Z(LSS)	Mo: P1 + P2	Z(LSS)	Mo: P1 + P2	
0.02	0.02	0.020	0.950	0.934	0.005	-2.98	1.000	II	2.054	II			
		0.021	0.957	0.938	0.007	-1.64	1.000	Accrpt	2.054	Accrpt			
		0.022	0.964	0.940	0.009	-1.28	1.000	Accrpt	2.054	Accrpt			
		0.023	0.782	0.729	0.010	-0.44	1.000	II	2.054	II			
		0.024	0.654	0.598	0.011	-1.64	1.000	Accrpt	2.054	Accrpt			
		0.025	0.695	0.643	0.011	-0.19	1.000	Accrpt	2.054	Accrpt			
		0.026	0.293	0.264	0.010	1.00	1.000	Accrpt	2.054	Accrpt			
		0.027	0.297	0.224	0.009	1.77	1.000	Accrpt	2.054	Accrpt			
		0.028	0.130	0.102	0.008	5.12	1.000	II	2.054	II			
		0.029	0.100	0.100	0.007	5.24	1.000	II	2.054	II			
0.02	0.04	0.020	0.950	0.947	0.005	-0.81	1.000	Accrpt	2.054	Accrpt			
		0.023	0.979	0.974	0.007	-0.95	1.000	Accrpt	2.054	Accrpt			
		0.027	0.993	0.702	0.010	1.75	1.000	Accrpt	2.054	Accrpt			
		0.031	0.426	0.434	0.011	1.65	1.000	Accrpt	2.054	Accrpt			
		0.034	0.279	0.224	0.010	4.42	1.000	II	2.054	II			
		0.037	0.167	0.171	0.009	0.40	1.000	Accrpt	2.054	Accrpt			
		0.040	0.100	0.100	0.007	1.10	1.000	Accrpt	2.054	Accrpt			
0.02	0.05	0.020	0.950	0.949	0.005	-0.51	1.000	Accrpt	2.054	Accrpt			
		0.025	0.852	0.851	0.008	-0.21	1.000	Accrpt	2.054	Accrpt			
		0.030	0.892	0.874	0.010	-0.30	1.000	Accrpt	2.054	Accrpt			
		0.035	0.497	0.481	0.011	1.20	1.000	Accrpt	2.054	Accrpt			
		0.040	0.292	0.224	0.010	2.02	1.000	II	2.054	II			
		0.045	0.177	0.170	0.009	0.01	1.000	Accrpt	2.054	Accrpt			
		0.050	0.100	0.112	0.007	1.67	1.000	Accrpt	2.054	Accrpt			
0.02	0.06	0.020	0.950	0.952	0.005	2.60	1.000	II	2.054	II			
		0.025	0.970	0.983	0.007	2.07	1.000	II	2.054	II			
		0.030	0.782	0.765	0.009	0.27	1.000	Accrpt	2.054	Accrpt			
		0.035	0.812	0.815	0.011	0.21	1.000	Accrpt	2.054	Accrpt			
		0.040	0.454	0.461	0.011	0.85	1.000	Accrpt	2.054	Accrpt			
		0.045	0.210	0.210	0.010	-0.02	1.000	Accrpt	2.054	Accrpt			
		0.050	0.224	0.210	0.009	-0.50	1.000	Accrpt	2.054	Accrpt			
		0.055	0.181	0.142	0.008	-1.17	1.000	Accrpt	2.054	Accrpt			
		0.060	0.100	0.102	0.007	0.30	1.000	Accrpt	2.054	Accrpt			
0.02	0.07	0.020	0.950	0.957	0.005	1.30	1.000	Accrpt	2.054	Accrpt			
		0.025	0.970	0.980	0.007	1.42	1.000	Accrpt	2.054	Accrpt			
		0.032	0.782	0.824	0.010	-18.43	1.000	II	2.054	II			
		0.036	0.610	0.681	0.011	2.51	1.000	II	2.054	II			
		0.044	0.467	0.504	0.011	3.20	1.000	II	2.054	II			
		0.050	0.241	0.225	0.011	2.10	1.000	II	2.054	II			
		0.056	0.260	0.282	0.010	2.21	1.000	II	2.054	II			

Table XVI - OC CURVE TESTING , PLAN SET IV
 (h1-1) ACCEPTANCE RULE
 (CONTINUED)

		0.000	0.105	0.205	0.009	2.26	1.980	R	2.054	R
		0.055	0.137	0.140	0.009	0.44	1.980	Accord	2.054	Accord
		0.070	0.100	0.090	0.007	-1.53	1.980	Accord	2.054	Accord
0.02	0.02	0.020	0.050	0.050	0.005	1.02	1.980	Accord	2.054	Accord
		0.025	0.092	0.020	0.008	4.21	1.980	R	2.054	R
		0.030	0.031	0.052	0.008	2.52	1.980	R	2.054	R
		0.035	0.730	0.705	0.010	2.78	1.980	R	2.054	R
		0.040	0.042	0.005	0.011	0.02	1.980	R	2.054	R
		0.045	0.520	0.601	0.011	2.75	1.980	R	2.054	R
		0.050	0.425	0.476	0.011	2.49	1.980	R	2.054	R
		0.055	0.347	0.300	0.011	2.06	1.980	R	2.054	R
		0.060	0.270	0.202	0.010	0.92	1.980	Accord	2.054	Accord
		0.065	0.215	0.217	0.009	0.14	1.980	Accord	2.054	Accord
		0.070	0.164	0.162	0.008	-0.29	1.980	Accord	2.054	Accord
		0.075	0.131	0.125	0.007	-0.39	1.980	Accord	2.054	Accord
		0.080	0.100	0.102	0.007	0.20	1.980	Accord	2.054	Accord
0.02	0.02	0.020	0.050	0.053	0.005	2.05	1.980	R	2.054	R
		0.025	0.097	0.011	0.007	2.07	1.980	R	2.054	R
		0.032	0.016	0.050	0.006	4.05	1.980	R	2.054	R
		0.038	0.725	0.707	0.010	4.26	1.980	R	2.054	R
		0.044	0.010	0.001	0.011	2.00	1.980	R	2.054	R
		0.050	0.605	0.550	0.011	4.05	1.980	R	2.054	R
		0.056	0.411	0.450	0.011	4.32	1.980	R	2.054	R
		0.062	0.325	0.354	0.011	2.72	1.980	R	2.054	R
		0.068	0.264	0.277	0.010	2.20	1.980	R	2.054	R
		0.074	0.190	0.198	0.009	-0.39	1.980	Accord	2.054	Accord
		0.080	0.164	0.171	0.008	1.06	1.980	Accord	2.054	Accord
		0.085	0.123	0.124	0.007	0.03	1.980	Accord	2.054	Accord
		0.090	0.100	0.102	0.007	0.20	1.980	Accord	2.054	Accord
0.02	0.1	0.020	0.050	0.055	0.005	2.32	1.980	R	2.054	R
		0.025	0.002	0.040	0.008	0.16	1.980	R	2.054	R
		0.032	0.035	0.071	0.008	4.46	1.980	R	2.054	R
		0.038	0.753	0.707	0.009	3.59	1.980	R	2.054	R
		0.044	0.060	0.710	0.010	4.78	1.980	R	2.054	R
		0.050	0.587	0.605	0.011	3.44	1.980	R	2.054	R
		0.056	0.480	0.502	0.011	1.97	1.980	R	2.054	Accord
		0.062	0.393	0.437	0.011	2.09	1.980	R	2.054	R
		0.068	0.310	0.354	0.011	2.24	1.980	R	2.054	R
		0.074	0.250	0.268	0.010	0.86	1.980	Accord	2.054	Accord
		0.080	0.211	0.222	0.009	1.17	1.980	Accord	2.054	Accord
		0.085	0.174	0.169	0.009	1.75	1.980	Accord	2.054	Accord
		0.090	0.145	0.155	0.008	1.10	1.980	Accord	2.054	Accord
		0.095	0.121	0.132	0.007	1.45	1.980	Accord	2.054	Accord
		0.100	0.100	0.117	0.007	2.37	1.980	R	2.054	R

Table XVII - OC TESTING , PLAN SET I
EXTENDED (h1-1) ACCEPTANCE RULE

P1	P2	P0	Accept @ P0	NTP	Tuncation		NTP	Tuncation	
					m=1	Mold m		Pr(ace)	Pr(ace)
						Actual		NTP	Actual
0.005	0.01	0.005	0.980	4805	4246	0.912	0.900	4352	0.928
		0.005	0.920	4805	4246	0.766	0.754	4352	0.826
		0.007	0.624	4805	4246	0.579	0.569	4352	0.697
		0.008	0.375	4805	4246	0.406	0.404	4352	0.439
		0.009	0.203	4805	4246	0.200	0.209	4352	0.247
		0.010	0.100	4805	4246	0.121	0.110	4352	0.134
0.005	0.02	0.005	0.900	702	530	0.900	0.926	570	0.885
		0.005	0.785	702	530	0.765	0.792	570	0.760
		0.010	0.697	702	530	0.648	0.668	570	0.686
		0.012	0.467	702	530	0.470	0.497	570	0.429
		0.014	0.330	702	530	0.363	0.373	570	0.330
		0.016	0.224	702	530	0.207	0.206	570	0.252
		0.018	0.148	702	530	0.173	0.175	570	0.185
		0.020	0.100	702	530	0.128	0.122	570	0.118
0.005	0.03	0.005	0.950	375	183	0.952	0.956	210	0.924
		0.007	0.892	375	183	0.892	0.924	210	0.898
		0.010	0.767	375	183	0.757	0.788	210	0.715
		0.013	0.609	375	183	0.646	0.650	210	0.599
		0.016	0.467	375	183	0.533	0.515	210	0.424
		0.018	0.341	375	183	0.442	0.405	210	0.329
		0.022	0.245	375	183	0.343	0.288	210	0.240
		0.025	0.179	375	183	0.257	0.213	210	0.168
		0.028	0.128	375	183	0.189	0.141	210	0.114
		0.030	0.100	375	183	0.176	0.120	210	0.109
0.005	0.04	0.005	0.950	182	71	0.950	0.977	110	0.938
		0.007	0.905	182	71	0.911	0.931	110	0.948
		0.010	0.812	182	71	0.847	0.861	110	0.786
		0.013	0.706	182	71	0.773	0.781	110	0.624
		0.015	0.584	182	71	0.887	0.861	110	0.530
		0.019	0.492	182	71	0.642	0.610	110	0.425
		0.021	0.390	182	71	0.546	0.471	110	0.337
		0.025	0.310	182	71	0.460	0.386	110	0.278
		0.028	0.254	182	71	0.410	0.333	110	0.232
		0.031	0.199	182	71	0.359	0.280	110	0.182
		0.034	0.159	182	71	0.295	0.195	110	0.162
		0.037	0.125	182	71	0.262	0.148	110	0.148
		0.040	0.100	182	71	0.221	0.128	110	0.111
0.005	0.05	0.005	0.950	151	70	0.955	0.961	80	0.943
		0.008	0.891	151	70	0.901	0.933	80	0.943
		0.011	0.851	151	70	0.815	0.973	80	0.939

Table XVII - OC TESTING , PLAN SET I
EXTENDED (h₁-1) ACCEPTANCE RULE
(CONTINUED)

		0.014	0.725	151	76	0.697	0.774	86	0.707	
		0.017	0.840	151	76	0.859	0.798	86	0.671	
		0.020	0.853	151	76	0.878	0.844	86	0.693	
		0.023	0.473	151	76	0.834	0.874	86	0.825	
		0.026	0.399	151	76	0.478	0.491	86	0.445	
		0.029	0.330	151	76	0.400	0.413	86	0.349	
		0.032	0.289	151	76	0.326	0.326	86	0.263	
		0.035	0.241	151	76	0.309	0.303	86	0.287	
		0.038	0.203	151	76	0.298	0.285	86	0.233	
		0.041	0.171	151	76	0.238	0.214	86	0.190	
		0.044	0.142	151	76	0.192	0.167	86	0.183	
		0.047	0.119	151	76	0.174	0.157	86	0.160	
		0.050	0.100	151	76	0.114	0.101	86	0.116	
0.005	0.06	0.005	0.950	120	83	0.992	0.994	83	0.948	
		0.009	0.878	120	83	0.874	0.931	83	0.885	
		0.013	0.786	120	83	0.756	0.857	83	0.778	
		0.017	0.695	120	83	0.667	0.768	83	0.702	
		0.021	0.600	120	83	0.608	0.716	83	0.578	
		0.025	0.499	120	83	0.504	0.594	83	0.471	
		0.029	0.423	120	83	0.424	0.502	83	0.441	
		0.033	0.362	120	83	0.376	0.439	83	0.374	
		0.037	0.293	120	83	0.304	0.368	83	0.278	
		0.041	0.245	120	83	0.244	0.285	83	0.220	
		0.045	0.203	120	83	0.203	0.239	83	0.186	
		0.049	0.167	120	83	0.154	0.182	83	0.148	
		0.053	0.137	120	83	0.121	0.135	83	0.130	
		0.057	0.116	120	83	0.126	0.137	83	0.120	
		0.060	0.100	120	83	0.120	0.127	83	0.100	
0.005	0.07	0.005	0.950	74	71	0.992	0.994	71	0.959	
		0.010	0.886	74	71	0.878	0.938	71	0.883	
		0.015	0.767	74	71	0.798	0.873	71	0.792	
		0.020	0.689	74	71	0.664	0.760	71	0.670	
		0.025	0.581	74	71	0.555	0.707	71	0.569	
		0.030	0.484	74	71	0.503	0.617	71	0.482	
		0.035	0.387	74	71	0.399	0.504	71	0.418	
		0.040	0.321	74	71	0.302	0.404	71	0.323	
		0.045	0.269	74	71	0.291	0.330	71	0.290	
		0.050	0.219	74	71	0.217	0.285	71	0.238	
		0.055	0.181	74	71	0.181	0.243	71	0.191	
		0.060	0.148	74	71	0.158	0.217	71	0.126	
		0.065	0.121	74	71	0.114	0.155	71	0.110	
		0.070	0.100	74	71	0.110	0.141	71	0.114	

Table XVIII - OC TESTING , PLAN SET II
EXTENDED (h₁-1) ACCEPTANCE RULE

P ₁	P ₂	P _a	Accept @ P _a	Tuncation			Tuncation		
				MTP	m=1	Pr(ace) Actual	MTP	m=1	Pr(ace) Actual
0.01	0.03	0.010	0.050	714	603	0.037	0.057	570	0.028
		0.012	0.055	714	603	0.070	0.017	570	0.068
		0.014	0.012	714	603	0.700	0.052	570	0.772
		0.016	0.706	714	603	0.092	0.732	570	0.673
		0.018	0.581	714	603	0.588	0.588	570	0.578
		0.020	0.448	714	603	0.443	0.475	570	0.446
		0.022	0.352	714	603	0.332	0.331	570	0.378
		0.024	0.250	714	603	0.281	0.284	570	0.268
		0.026	0.188	714	603	0.187	0.174	570	0.197
		0.028	0.139	714	603	0.180	0.158	570	0.151
		0.030	1.000	714	603	0.112	0.124	570	0.097
0.01	0.04	0.010	0.050	260	265	0.045	0.069	281	0.048
		0.013	0.084	260	265	0.004	0.007	281	0.078
		0.016	0.700	260	265	0.770	0.800	281	0.742
		0.018	0.683	260	265	0.670	0.692	281	0.668
		0.022	0.540	260	265	0.568	0.568	281	0.527
		0.025	0.436	260	265	0.444	0.435	281	0.422
		0.028	0.325	260	265	0.328	0.356	281	0.306
		0.031	0.250	260	265	0.261	0.283	281	0.248
		0.034	0.185	260	265	0.212	0.198	281	0.187
		0.037	0.137	260	265	0.180	0.147	281	0.150
		0.040	0.100	260	265	0.102	0.067	281	0.105
0.01	0.05	0.010	0.050	215	138	0.050	0.054	164	0.023
		0.013	0.000	215	138	0.005	0.027	164	0.040
		0.016	0.028	215	138	0.023	0.086	164	0.778
		0.018	0.743	215	138	0.757	0.791	164	0.762
		0.022	0.654	215	138	0.680	0.733	164	0.620
		0.025	0.583	215	138	0.623	0.630	164	0.571
		0.028	0.487	215	138	0.490	0.510	164	0.465
		0.031	0.387	215	138	0.421	0.424	164	0.427
		0.034	0.303	215	138	0.330	0.337	164	0.300
		0.037	0.254	215	138	0.311	0.289	164	0.234
		0.040	0.203	215	138	0.212	0.217	164	0.195
		0.042	0.177	215	138	0.100	0.184	164	0.192
		0.044	0.154	215	138	0.181	0.187	164	0.158
		0.047	0.126	215	138	0.150	0.148	164	0.100
		0.050	0.100	215	138	0.126	0.135	164	0.090
0.01	0.06	0.010	0.050	151	82	0.043	0.074	106	0.010
		0.013	0.000	151	82	0.014	0.052	106	0.000
		0.016	0.055	151	82	0.006	0.003	106	0.022

Table XVIII - OC TESTING , PLAN SET II
EXTENDED (h₁-1) ACCEPTANCE RULE
(CONTINUED)

		0.019	0.788	151	82	0.784	0.810	106	0.788	
		0.022	0.711	151	82	0.768	0.759	106	0.678	
		0.025	0.643	151	82	0.678	0.675	106	0.605	
		0.028	0.588	151	82	0.612	0.600	106	0.518	
		0.031	0.536	151	82	0.516	0.516	106	0.478	
		0.035	0.492	151	82	0.477	0.429	106	0.376	
		0.040	0.398	151	82	0.361	0.353	106	0.270	
		0.043	0.264	151	82	0.228	0.200	106	0.194	
		0.046	0.224	151	82	0.226	0.250	106	0.222	
		0.049	0.188	151	82	0.278	0.213	106	0.182	
		0.051	0.167	151	82	0.202	0.196	106	0.161	
		0.054	0.142	151	82	0.232	0.150	106	0.151	
		0.057	0.118	151	82	0.174	0.114	106	0.120	
		0.060	0.100	151	82	0.188	0.070	106	0.111	
0.01	0.07	0.010	0.050	133	84	0.047	0.086	81	0.034	
		0.015	0.085	133	84	0.071	0.024	81	0.077	
		0.020	0.786	133	84	0.770	0.857	81	0.784	
		0.025	0.700	133	84	0.684	0.752	81	0.660	
		0.030	0.587	133	84	0.585	0.643	81	0.533	
		0.035	0.486	133	84	0.601	0.536	81	0.466	
		0.040	0.393	133	84	0.428	0.447	81	0.380	
		0.045	0.300	133	84	0.349	0.340	81	0.300	
		0.050	0.250	133	84	0.270	0.270	81	0.251	
		0.055	0.199	133	84	0.241	0.210	81	0.193	
		0.060	0.162	133	84	0.187	0.168	81	0.178	
		0.065	0.126	133	84	0.012	0.120	81	0.133	
		0.070	0.100	133	84	0.120	0.111	81	0.102	
0.01	0.08	0.010	0.050	80	36	0.048	0.073	57	0.005	
		0.015	0.082	80	36	0.087	0.021	57	0.053	
		0.020	0.008	80	36	0.031	0.055	57	0.730	
		0.025	0.727	80	36	0.706	0.811	57	0.646	
		0.030	0.613	80	36	0.700	0.714	57	0.657	
		0.035	0.543	80	36	0.663	0.613	57	0.488	
		0.040	0.484	80	36	0.604	0.524	57	0.394	
		0.045	0.387	80	36	0.555	0.480	57	0.322	
		0.050	0.310	80	36	0.478	0.380	57	0.268	
		0.055	0.241	80	36	0.407	0.336	57	0.230	
		0.060	0.224	80	36	0.351	0.274	57	0.212	
		0.065	0.185	80	36	0.323	0.205	57	0.161	
		0.070	0.151	80	36	0.263	0.152	57	0.120	
		0.075	0.123	80	36	0.243	0.146	57	0.116	
		0.080	0.100	80	36	0.231	0.126	57	0.091	

Table XIX - ASN TESTING , PLAN SET I
EXTENDED (h1-1) ACCEPTANCE RULE

P1	P2	Pb	ASN(Pa)	Hold as		NTP		Hold S		S Saved		Hold S	
				Mean #	Insp	Mean #	Insp	Mean #	Insp	over NTP	over NTP	over NTP	over NTP
0.005	0.01	0.005	1267	1308.2	1322.6	1203.4				13.3	10.2		
		0.006	1303	1600.2	1622.0	1518.0				13.7	104.0		
		0.007	2085	1670.7	1695.5	1750.4				16.0	-62.0		
		0.008	1764	1881.0	1894.2	1720.0				12.3	-34.8		
		0.009	1485	1488.5	1495.0	1501.5				10.3	-0.6		
		0.010	1225	1317.2	1323.4	1200.5				8.2	16.0		
0.005	0.02	0.005	264	269.0	277.5	273.0				8.6	4.6		
		0.006	301	288.7	292.4	281.3				13.7	21.1		
		0.010	325	307.8	320.1	312.0				21.8	18.3		
		0.012	302	300.0	310.1	303.1				17.2	15.0		
		0.014	270	277.2	290.0	283.5				20.8	4.6		
		0.016	241	264.7	268.8	272.5				24.1	16.3		
		0.018	213	240.1	252.5	244.0				12.4	0.6		
		0.020	186	210.0	224.5	220.1				13.7	4.4		
0.005	0.03	0.005	122	110.4	124.3	119.0				13.0	4.4		
		0.007	134	118.0	144.4	127.0				20.6	16.0		
		0.010	146	121.0	156.0	139.3				33.0	16.6		
		0.013	160	122.2	153.2	137.2				41.0	26.0		
		0.016	138	116.1	154.6	136.5				30.5	19.1		
		0.019	128	113.4	146.8	120.1				33.4	18.7		
		0.022	113	100.0	136.0	116.0				27.0	19.6		
		0.025	100	88.7	123.4	108.2				24.7	15.2		
		0.028	88	82.0	107.6	87.1				15.6	10.6		
		0.030	82	80.0	102.1	87.6				11.2	4.6		
0.005	0.04	0.005	80	84.7	79.0	78.4				16.1	4.4		
		0.007	84	84.5	86.0	78.4				22.3	0.4		
		0.010	88	84.0	85.1	80.5				31.1	14.6		
		0.013	89	83.1	84.8	81.0				31.0	13.1		
		0.016	85	81.7	86.6	82.1				24.0	14.6		
		0.019	83	81.4	82.8	78.8				32.2	14.8		
		0.022	78	88.8	80.4	76.2				31.6	14.2		
		0.025	74	87.4	88.1	72.6				30.7	15.6		
		0.028	68	84.5	79.7	71.7				26.2	0.0		
		0.031	63	84.6	78.0	68.0				22.3	18.1		
		0.034	60	80.8	71.3	63.4				20.5	7.0		
		0.037	53	68.5	68.7	69.0				18.2	6.0		
		0.040	48	66.6	61.1	67.6				14.5	3.6		
0.005	0.05	0.005	58	53.0	60.3	57.2				8.6	3.1		
		0.008	62	55.0	57.5	61.4				12.5	0.1		
		0.011	63	56.5	51.1	52.5				14.6	0.0		

Table XIX - ASN TESTING , PLAN SET I
EXTENDED (h₁-1) ACCEPTANCE RULE
(CONTINUED)

	0.014	86	86.3	70.0	64.0		14.6	6.0	
	0.017	87	86.4	72.1	62.0		16.7	10.1	
	0.020	70	66.0	71.0	61.6		15.8	10.2	
	0.023	62	53.3	70.7	62.0		17.4	6.7	
	0.026	67	53.8	69.0	69.0		18.8	10.0	
	0.029	56	62.0	66.3	66.6		14.3	6.7	
	0.032	49	49.0	63.0	65.4		14.0	6.4	
	0.035	46	49.1	60.4	62.0		11.3	7.6	
	0.038	43	47.4	56.7	51.0		8.3	6.7	
	0.041	41	45.1	52.2	49.0		7.1	4.2	
	0.044	38	43.8	49.0	47.1		6.2	1.0	
	0.047	36	41.7	45.8	42.2		3.0	2.2	
	0.050	34	38.2	42.3	40.8		3.1	1.8	
0.005	0.06	0.005	46	46.0	46.4		1.0	1.4	
		0.009	48	48.0	53.5	49.6	4.6	3.9	
		0.013	49	62.0	56.8	51.0	4.6	4.0	
		0.017	50	52.0	56.0	51.7	6.0	6.3	
		0.021	56	51.6	59.2	56.6	6.6	7.6	
		0.025	49	46.1	56.6	51.3	7.5	6.3	
		0.029	43	46.6	55.1	48.9	6.5	6.2	
		0.033	40	46.4	51.0	46.8	4.6	2.1	
		0.037	38	46.8	56.8	45.2	6.0	5.6	
		0.041	36	42.6	46.5	43.0	3.7	2.0	
		0.045	33	41.1	44.3	40.6	3.2	3.7	
		0.049	31	39.4	42.3	39.3	2.9	3.6	
		0.053	29	36.5	38.4	36.5	1.0	1.0	
		0.057	27	34.1	36.7	34.0	1.0	0.0	
		0.060	25	33.0	35.0	32.6	1.1	2.6	
0.005	0.07	0.005	37	39.0	40.2	39.6	0.5	0.0	
		0.010	39	42.1	42.6	43.0	0.7	-0.2	
		0.015	40	42.6	44.2	43.5	0.6	0.0	
		0.020	41	43.5	44.3	43.0	0.6	1.3	
		0.025	42	42.3	44.2	43.3	0.6	0.0	
		0.030	38	42.2	44.0	41.7	0.6	2.3	
		0.035	34	40.1	40.6	40.3	0.6	0.5	
		0.040	31	38.3	38.0	39.0	0.5	-0.2	
		0.045	28	37.2	37.7	37.3	0.5	0.4	
		0.050	27	34.0	35.2	35.1	0.4	0.2	
		0.055	25	32.1	32.4	33.0	0.3	-1.4	
		0.060	23	33.0	33.3	31.0	0.3	1.4	
		0.065	21	29.0	29.2	29.6	0.2	-0.0	
		0.070	20	27.4	27.6	27.3	0.1	0.2	

Table XX - ASN TESTING , PLAN SET II
EXTENDED ($h_1=1$) ACCEPTANCE RULE

P1	P2	Pn	ASN(Pn)	Hold at		NTP		Hold at		NTP	
				Mean \bar{x}	Insp	Mean \bar{x}	Insp	Mean \bar{x}	Insp	Mean \bar{x}	Insp
0.01	0.03	0.010	217	218.0	218.0	228.4				-1.2	-0.0
		0.012	245	248.7	243.8	249.8				-3.1	-0.2
		0.014	271	280.1	284.3	268.6				-4.0	-2.3
		0.016	295	271.7	294.7	277.3				23.0	17.4
		0.018	363	291.0	297.0	292.0				18.0	14.1
		0.020	288	284.0	280.3	284.5				16.3	15.6
		0.022	267	269.5	268.2	271.0				20.7	27.2
		0.024	250	268.8	264.8	254.8				0.1	10.0
		0.026	222	243.6	248.2	236.3				2.0	0.0
		0.028	199	236.3	216.4	216.0				-10.8	-0.4
		0.030	181	206.7	205.0	192.3				-1.7	12.7
0.01	0.04	0.010	121	118.0	121.5	122.6				4.7	-1.1
		0.013	134	132.7	134.7	136.5				2.1	-0.0
		0.015	145	142.0	154.6	146.7				11.0	7.0
		0.016	152	165.5	161.7	153.7				18.2	0.0
		0.022	165	148.5	168.3	152.5				17.8	12.0
		0.025	160	160.3	160.5	148.1				10.2	12.4
		0.028	138	138.4	165.1	143.7				16.6	11.4
		0.031	122	138.2	141.5	133.7				8.3	7.0
		0.034	112	121.0	132.3	123.8				10.4	0.0
		0.037	102	107.0	118.0	114.0				0.1	2.1
		0.040	82	101.0	107.1	104.3				6.4	2.0
0.01	0.05	0.010	81	78.0	87.0	82.0				8.2	8.0
		0.013	89	82.5	90.2	86.7				7.7	3.8
		0.016	92	87.3	98.2	93.0				10.0	5.2
		0.019	94	98.0	102.1	94.8				13.3	7.3
		0.022	97	95.0	104.3	98.5				13.4	5.8
		0.025	98	91.2	106.1	96.7				14.0	9.5
		0.028	99	88.1	106.2	95.1				18.1	11.0
		0.031	91	86.6	99.4	82.5				12.8	6.0
		0.034	90	84.7	95.5	90.0				10.7	4.7
		0.037	83	82.0	93.1	85.6				10.3	7.0
		0.040	78	78.0	88.6	83.7				12.7	6.0
		0.042	71	78.2	82.1	80.3				0.0	1.0
		0.044	67	76.5	78.0	76.7				0.4	3.2
		0.047	62	87.4	77.2	89.7				0.0	7.5
		0.050	60	88.3	88.8	88.8				-0.5	-0.2
0.01	0.06	0.010	60	64.0	81.8	80.2				8.6	1.3
		0.013	63	57.7	88.0	81.0				10.3	0.1
		0.016	68	58.6	78.0	84.7				10.4	8.3

Table XX - ASN TESTING , PLAN SET II
 EXTENDED (h₁-1) ACCEPTANCE RULE
 (CONTINUED)

	0.010	70	60.3	76.2	87.2			14.0	8.0	
	0.022	72	60.9	78.0	88.0			14.0	7.7	
	0.025	70	60.2	74.4	87.0			14.2	6.0	
	0.028	80	60.0	78.0	88.2			17.0	10.7	
	0.031	78	60.0	77.0	88.0			17.1	10.2	
	0.035	68	60.4	78.0	84.0			15.3	6.2	
	0.040	60	64.2	80.1	81.2			14.0	7.0	
	0.043	58	63.7	80.0	87.7			12.2	6.0	
	0.045	53	63.0	63.7	87.2			9.0	6.5	
	0.049	51	60.5	69.0	88.0			9.2	3.1	
	0.051	49	48.3	67.0	84.2			9.5	3.0	
	0.054	48	48.0	64.5	81.0			6.4	2.7	
	0.057	43	46.5	62.0	87.5			6.5	4.5	
	0.060	41	42.4	67.2	86.4			4.8	3.7	
0.01	0.07	0.010	47	40.2	48.0	48.0		2.6	6.5	
		0.015	52	50.0	54.0	50.0		4.0	4.0	
		0.020	55	53.0	58.0	54.2		6.0	4.0	
		0.025	60	54.3	61.0	58.0		7.2	6.0	
		0.030	67	52.5	61.0	55.0		9.1	6.3	
		0.035	58	52.1	58.0	53.3		7.4	6.2	
		0.040	49	50.0	57.0	52.5		6.0	5.0	
		0.045	47	49.0	54.4	49.0		6.4	5.1	
		0.050	43	46.4	50.2	48.7		3.0	1.5	
		0.055	39	45.0	48.0	44.5		1.0	2.4	
		0.060	36	41.0	48.0	42.1		3.0	2.5	
		0.065	33	38.4	42.0	38.5		4.4	3.3	
		0.070	31	36.4	38.0	36.1		2.2	2.4	
0.01	0.08	0.010	39	32.0	39.7	37.2		7.7	2.5	
		0.015	42	32.2	42.2	38.6		11.1	4.7	
		0.020	43	31.0	40.0	38.5		15.1	7.4	
		0.025	44	32.1	40.0	40.2		14.7	6.0	
		0.030	48	31.0	47.7	40.1		16.2	7.6	
		0.035	49	30.0	48.7	40.1		16.0	6.6	
		0.040	44	30.0	45.3	38.7		15.3	6.5	
		0.045	39	28.0	44.3	36.7		14.7	7.7	
		0.050	37	28.0	43.0	36.6		14.0	7.2	
		0.055	36	27.0	41.3	34.5		13.0	6.0	
		0.060	32	27.4	38.1	32.7		10.7	5.4	
		0.065	30	26.7	37.1	32.3		10.4	4.7	
		0.070	28	24.0	36.0	29.0		10.0	5.0	
		0.075	26	24.0	32.0	29.0		8.1	3.0	
		0.080	25	23.0	29.0	27.4		8.0	2.5	

APPENDIX C

PLAN 1 , OC CURVE A

Figure 8 - OC CURVE , PLAN SET I , CURVE A

Figure 9 - OC CURVE , PLAN SET I , CURVE B

Figure10 - OC CURVE , PLAN SET I , CURVE C

Figure 11 - OC CURVE , PLAN SET I , CURVE D

Figure 12 - OC CURVE , PLAN SET I , CURVE E

Figure 13 - OC CURVE , PLAN SET I , CURVE F

REPRODUCED AT GOVERNMENT EXPENSE

PLAN 2 , OC CURVES

Figure 14 - OC CURVES , PLAN SET II , CURVES A THRU D
(SOLID LINE - TRUE , DASHED - THEORETICAL)

PLAN 2 , OC CURVES

Figure 15 - OC CURVES , PLAN SET II , CURVES E AND F
(SOLID LINE - TRUE , DASHED - THEORETICAL)

Figure 16 - OC CURVES , PLAN SET III , CURVES A THRU D
(SOLID LINE - TRUE , DASHED - THEORETICAL)

PLAN 3 , OC CURVES

Figure 17 - OC CURVE , PLAN SET III , CURVES E
(SOLID LINE - TRUE , DASHED - THEORETICAL)

Figure 18 - OC CURVES , PLAN SET IV , CURVES A THRU D
(SOLID LINE - TRUE , DASHED - THEORETICAL)

PLAN 4 , OC CURVES

Figure 19 - OC CURVES , PLAN SET IV , CURVES E THRU H
(SOLID LINE - TRUE , DASHED - THEORETICAL)

APPENDIX D

REPRODUCED AT GOVERNMENT EXPENSE

AVERAGE SAMPLE NUMBERS

PLAN 1 , CURVE A

P₁ = 0.005 , P₂ = 0.01

SINGLE SAMPLING PLAN

Figure 20 - ASN CURVE , PLAN SET I , CURVE A

Figure 21 - ASN CURVE , PLAN SET I , CURVE B

Figure 22 - ASN CURVE , PLAN SET I , CURVE C

Figure 23 - ASN CURVE , PLAN SET I , CURVE D

Figure 24 - ASN CURVE , PLAN SET I , CURVE E

Figure 25 - ASN CURVE , PLAN SET I , CURVE F

Figure 26 - ASN CURVE , PLAN SET I , CURVE G

Figure 27 - ASN CURVE , PLAN SET II , CURVE A

REPRODUCED At GOVERNMENT EXPENSE

Figure 29 - ASN CURVE , PLAN SET II , CURVE C

REPRODUCED AT GOVERNMENT EXPENSE

AVERAGE SAMPLE NUMBER

CURVE E , PLAN 2

P1= 0.01 , P2= 0.07

Figure 31 - ASN CURVE , PLAN SET II , CURVE E

Figure 32 - ASN CURVE , PLAN SET II , CURVE F

AVERAGE SAMPLE NUMBER

CURVE A , PLAN 3

P₁= 0.015 , P₂=0.03

SINGLE SAMPLING PLAN

Figure 33 - ASN CURVE , PLAN SET III , CURVE A

Figure 34 - ASN CURVE , PLAN SET III , CURVE B

Figure 35 - ASN CURVE , PLAN SET III , CURVE C

REPRODUCED AT GOVERNMENT EXPENSE

Figure 36 - ASN CURVE , PLAN SET III , CURVE D

REPRODUCED AT GOVERNMENT EXPENSE

Figure 37 - ASN CURVE , PLAN SET III , CURVE E

REPRODUCED AT GOVERNMENT EXPENSE

AVERAGE SAMPLE NUMBER

CURVE A , PLAN 4

P₁= 0.020 , P₂= 0.030

SINGLE SAMPLING PLAN

Figure 38 - ASN CURVE , PLAN SET IV , CURVE A

REPRODUCED AT GOVERNMENT EXPENSE

Figure 39 - ASN CURVE , PLAN SET IV , CURVE B

Figure 40 - ASN CURVE , PLAN SET IV , CURVE C

REPRODUCED AT GOVERNMENT EXPENSE

AVERAGE SAMPLE NUMBER

CURVE D , PLAN 4

P₁= 0.020 , P₂= 0.060

SINGLE SAMPLING PLAN

Figure 41 - ASN CURVE , PLAN SET IV , CURVE D

Figure 42 - ASN CURVE , PLAN SET IV , CURVE E

AVERAGE SAMPLE NUMBER

CURVE F , PLAN 4

P₁= 0.020 , P₂= 0.080

Figure 43 - ASN CURVE , PLAN SET IV , CURVE F

Figure 44 - ASN CURVE , PLAN SET IV , CURVE G

REPRODUCED AT GOVERNMENT EXPENSE

Figure 45 - ASN CURVE , PLAN SET IV , CURVE H

APPENDIX E

PROBABILITY OF USING STOPPING RULE

Figure 46 - PROBABILITY OF IMPLEMENTING THE TRUNCATION AND ACCEPTANCE RULE . PLAN I , CURVES A THRU D.

PROBABILITY OF USING STOPPING RULE

Figure 47 - PROBABILITY OF IMPLEMENTING THE TRUNCATION
AND ACCEPTANCE RULE . PLAN I , CURVES E THRU G.

PROBABILITY OF USING STOPPING RULE

Figure 48 - PROBABILITY OF IMPLEMENTING THE TRUNCATION
AND ACCEPTANCE RULE . PLAN II , CURVES A THRU F.

PROBABILITY OF USING STOPPING RULE

Figure 49 - PROBABILITY OF IMPLEMENTING THE TRUNCATION
AND ACCEPTANCE RULE . PLAN III , CURVES A THRU E.

Figure 50 - PROBABILITY OF IMPLEMENTING THE TRUNCATION
AND ACCEPTANCE RULE . PLAN IV , CURVES A THRU D.

Figure 51 - PROBABILITY OF IMPLEMENTING THE TRUNCATION
AND ACCEPTANCE RULE . PLAN IV , CURVES E THRU H.

Table XXI - TESTING OF REGRESSION EQUATION
 FOR THE PROBABILITY OF IMPLEMENTING
 (h1-1) ACCEPTANCE RULE

P1	P2	Diff	s	Predicted	TRUE	difference
				Pr(NTP)	Pr(NTP)	
0.005	0.010	0.005	0.00722	0.088	0.057	0.03
0.005	0.020	0.015	0.01084	0.114	0.086	0.03
0.005	0.030	0.025	0.01400	0.128	0.101	0.03
0.005	0.040	0.035	0.01693	0.137	0.191	-0.05
0.005	0.050	0.045	0.01970	0.144	0.146	0.00
0.005	0.060	0.055	0.02237	0.149	0.112	0.04
0.005	0.070	0.065	0.02496	0.154	0.207	-0.05
0.010	0.030	0.020	0.01824	0.115	0.094	0.02
0.010	0.040	0.030	0.02172	0.126	0.130	0.00
0.010	0.050	0.040	0.02499	0.134	0.139	-0.01
0.010	0.060	0.050	0.02811	0.140	0.162	-0.02
0.010	0.070	0.060	0.03113	0.146	0.131	0.01
0.010	0.080	0.070	0.03406	0.150	0.189	-0.04
0.015	0.030	0.015	0.02166	0.103	0.077	0.03
0.015	0.040	0.025	0.02554	0.116	0.097	0.02
0.015	0.050	0.035	0.02917	0.126	0.095	0.03
0.015	0.060	0.045	0.03263	0.133	0.122	0.01
0.015	0.070	0.055	0.03596	0.139	0.119	0.02
0.020	0.030	0.010	0.02467	0.089	0.043	0.05
0.020	0.040	0.020	0.02889	0.107	0.071	0.04
0.020	0.050	0.030	0.03282	0.118	0.079	0.04
0.020	0.060	0.040	0.03655	0.126	0.091	0.03
0.020	0.070	0.050	0.04012	0.133	0.100	0.03
0.020	0.080	0.060	0.04359	0.138	0.177	-0.04
0.020	0.090	0.070	0.04696	0.143	0.132	0.01
0.020	0.100	0.080	0.05025	0.147	0.151	0.00

LIST OF REFERENCES

1. Duncan , A. J. , Quality Control and Industrial Statistics , 5th edition , Richard D. Irwin Inc. , 1986.
2. Koopmans , L. H. , Introduction to Contemporary Statistical Methods , 2nd Edition , Wadsworth Inc. , 1981.
3. Law , A. M. , and Kelton , D. W. , Simulation Modeling and Analysis , 2nd Edition , McGraw-Hill Inc. , 1991.
4. Murgiyanto , B. , An Examination of the Performance of Two Acceptance Decision Rules for Curtailed Wald Sequential Sampling Plans , Thesis M.S. , Operations Research , Naval Postgraduate School , March 1980.
5. Petersen , J. , Truncation and Acceptance Rules for Sequential Tests of a Bernoulli Parameter , Thesis M.S. , Operations Research , Naval Postgraduate School , September 1980.
6. Wald , A., Sequential Analysis , John Wiley and Sons , New York , 1974.
7. SAS/STAT User's Guide, v. 2 , The Sas Institute, Inc., Cary, N.C., 1989.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
2. Library Code 52 Naval Postgraduate School Monterey, California 93943-5100	2
3. Prof. G. F. Lindsay Dept. of Operations Research, Code 30 Naval Postgraduate School Monterey, California 93943-5100	1
4. Prof. So Youg Sohn Dept. of Operations Research, Code OR/SH Naval Postgraduate School Monterey, California 93943-5100	1
5. Lt Cameron J. Lewis 121 Main St. Wickford, Rhode Island 02852	1