Predictions of Film Success Based on Script Content

Flatiron School Capstone Project
By: William Newton

Business Problem

- 50,000 scripts are registered with WGA per year ¹
 - 150 movies are released per year
 - 0.3% of screenplays are made into films which leaves 49,850 unproduced screenplays
- Scripts for a 2-hour plus movie are between 7,500 and 20,000 words long
- Average person reads at 300 words per minute
 - ~45 minutes to read screenplay, and up to 3 hours to complete report on screenplay ²
- Almost 200,000 man hours per year wasted on reading unproduced screenplays
 - Freelance script readers make ~ \$50/hour ²
- That is \$10 million in wasted expense every year
- How Hollywood Chooses Scripts: The Insider List That Led to 'Abduction', The Atlantic,
 - https://www.theatlantic.com/entertainment/archive/2011/09/how-hollywood-chooses-scripts-the-insider-list-that-led-to-abduction/245541/
- 2. How to Become a Script Reader, StudioBinder, https://www.studiobinder.com/blog/how-to-become-a-script-reader/

Solution:

Build Model To Read Scripts and Determine if They Are a Good Investment

Data and Methodology

SCREEN BLACK:


```
JACK (V.O.)
People were always asking me, did I
know Tyler Durden.
FADE IN:
INT. SOCIAL ROOM - TOP FLOOR OF HIGH RISE -- NIGHT
TYLER has one arm around Jack's shoulder; the other hand
holds a HANDGUN with the barrel lodged in JACK'S MOUTH.
Tyler is sitting in Jack's lap.
They are both sweating and disheveled, both around 30; Tyler
is blond, handsome; and Jack, brunette, is appealing in a
dry sort of way. Tyler looks at his watch.
TYLER:
One minute.
(looking out window)
This is the beginning. We're at
ground zero. Maybe you should say a
few words, to mark the occasion.
JACK:
... i... ann....iinn.. ff....nnyin...
JACK (V.O.)
With a gun barrel between your teeth,
you only speak in vowels.
Jack tongues the barrel to the side of his mouth.
```

Next »

Data and Methodology

- Data containing film production budget and box office gross was obtained from TheNumbers.com and OMDBapi.com
- Script text data was web scraped from Internet Movie Scripts Database,
 Scripts.com, and SubsLikeScript.com
 - Final features that made it into the model were...
 - Raw text data converted to numerical values
 - Total word count
 - Words per minute
 - Unique word count
 - Vocabulary Diversity
- Film was considered success or failure based on profit, critic ratings, and audience ratings
- Methodology for the project outline was ROSE-MED

What Constitutes a Film's Success?

- 65% ROI Metric
 - Profit = Worldwide Box Office Gross Production Budget
 - ROI = Profit / Production Budget
- 20% Audience Score
 - User score from IMDB.com
- 15% Critic Score
 - Aggregate score from Metacritic.com
 - Combines review scores from dozens of established critics

Model Results

Model Results

notes	positive_f-1	negative_f_1	positive_recall	negative_recall	test_accuracy	train_accuracy	model_type	odel_#	п
Vanilla model very basic, needs tuning	57.0	58.0	54.0	62.0	57.8	67.5	Vanilla XGBoost RFC	1	0
GridSearch performed better, no longer overfit	58.0	57.0	56.0	59.0	57.5	61.1	XGBoost GridSearched RFC	2	0
Fit better than RFC, continue with GridSearch	58.0	59.0	55.0	62.0	58.3	60.8	Vanilla SVC	3	0
No longer overfits	62.0	52.0	65.0	49.0	57.5	58.0	GridSearch SVC	4	0
Massive overfitting	49.0	69.0	37.0	86.0	61.4	86.3	Multinomial Naive Bayes	5	0

Exploring the Data

Word Clouds

Success

Failure

Success Metric / Vocabulary Diversity

Bigrams

Success

Failure

Conclusion

Conclusion & Future Work

Conclusion

- The dataset that I gathered for this project was not large enough to reliably predict whether a film would be a future success
- The model's output however leads me to believe that with additional data, a successful model could be built

- Future Work

- Gather more data and re-train model
- Break down scripts on a scene-by-scene level to model accurate future production budget prediction
- Explore additional modeling options with neural networks to see if that boosts accuracy

Thank you and I look forward to working together!