Logical Foundations of Cyber-Physical Systems

01: Cyber-Physical Systems: Overview

André Platzer

- CPS: Introduction
 - Hybrid Systems & Cyber-Physical Systems
 - Applications
 - Robot Labs
- Course: Logical Foundations of Cyber-Physical Systems
 - Educational Approach
 - Objectives
 - Outline
 - Labs
 - CPS V&V Grand Prix
 - Assessment
 - Resources
- 3 Summary

- CPS: Introduction
 - Hybrid Systems & Cyber-Physical Systems
 - Applications
 - Robot Labs
- Course: Logical Foundations of Cyber-Physical Systems
 - Educational Approach
 - Objectives
 - Outline
 - Labs
 - CPS V&V Grand Prix
 - Assessment
 - Resources
- Summary

Which control decisions are safe for aircraft collision avoidance?

Cyber-Physical Systems

CPSs combine cyber capabilities with physical capabilities to solve problems that neither part could solve alone.

Prospects: Safe & Efficient

Driver assistance Autonomous cars Pilot decision support Autopilots / UAVs Train protection
Robots near humans

Prerequisite: CPSs need to be safe

How do we make sure CPSs make the world a better place?

Can you trust a computer to control physics?

Can you trust a computer to control physics?

- Depends on how it has been programmed
- And on what will happen if it malfunctions

Rationale

- Safety guarantees require analytic foundations.
- A common foundational core helps all application domains.
- Foundations revolutionized digital computer science & our society.
- Need even stronger foundations when software reaches out into our physical world.

CPSs deserve proofs as safety evidence!

CPSs are Multi-Dynamical Systems

CPS Dynamics

CPS are characterized by multiple facets of dynamical systems.

CPS Compositions

CPS combines multiple simple dynamical effects.

Descriptive simplification

Tame Parts

Exploiting compositionality tames CPS complexity.

Analytic simplification

CPSs are Multi-Dynamical Systems

hybrid systems

HS = discrete + ODE

stochastic hybrid sys.

 $\mathsf{SHS} = \mathsf{HS} + \mathsf{stochastics}$

distributed hybrid sys.

 $\mathsf{DHS} = \mathsf{HS} + \mathsf{distributed}$

hybrid games

HG = HS + adversary

Challenge (CPS)

Fixed rule describing state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

a

0.2

-0.2

-0.4

-0.8

Challenge (CPS)

Fixed rule describing state evolution with both

- Discrete dynamics (control decisions)
- Continuous dynamics (differential equations)

a

-0.2 -0.4 -0.6

Hybrid Systems Versus Cyber-Physical Systems

Mathematical model for complex physical systems:

Definition (Hybrid Systems)

Systems with interacting discrete and continuous dynamics

Technical characteristics:

Definition (Cyber-Physical Systems)

(Distributed networks of) computerized control for physical system Communication, computation, and control for physics

What CPSs are around us?

What CPSs will be around us in the future?

Which CPSs do we trust with our lives?

- ✓ Design, model
- ✓ Verify

- ✓ Design, model
- ✓ Verify

- ✓ Design, model
- ✓ Verify

- ✓ Design, model
- ✓ Verify

- / Design, model
- Verify

- / Design, model
- Verify

- ✓ Design, model
- ✓ Verify

0.2

 Dynamic obstacles (other agents)

 Avoid collisions (define safety)

a

0.4

0.2

-0.2

-0.4

-0.6

-1.0

-0.6

- CPS: Introduction
 - Hybrid Systems & Cyber-Physical Systems
 - Applications
 - Robot Labs
- Course: Logical Foundations of Cyber-Physical Systems
 - Educational Approach
 - Objectives
 - Outline
 - Labs
 - CPS V&V Grand Prix
 - Assessment
 - Resources
- 3 Summary

Onion Model

- Going outside in
- Unpeel layer by layer
- Progress when all prereqs are covered
- First study CS ∧ math ∧ engineering
- Talk about CPS in the big finale

Scenic Tour Model

- Start at the heart: CPS
- Go on scenic expeditions into various directions
- Explore the world around us as we find the need
- Stay on CPS the whole time
- Leverage CPS as the guiding motivation for understanding more about connected areas

Logical scrutiny, formalization, and correctness proofs are critical for CPS!

- CPSs are so easy to get wrong.
- Retrofitting CPSs for safety is not possible.
- These logical aspects are an integral part of CPS design.
- Oritical to your understanding of the intricate complexities of CPS.
- Tame complexity by a simple programming language for core aspects.

- Foundations!
- Modeling & Control
 - Understand the core principles behind CPSs.
 - Develop models and controls.
 - Identify the relevant dynamical aspects.
- Computational Thinking
 - Identify safety specifications and critical properties of CPSs.
 - Understand abstraction in system design.
 - Express pre- and postconditions for CPS models.
 - Use design-by-invariant.
 - Reason rigorously about CPS models.
 - Verify CPS models of appropriate scale.
- CPS Skills
 - Understand the semantics of a CPS model.
 - Develop an intuition for operational effects.
 - Identify control constraints.
 - Understand opportunities and challenges in CPS and verification.
- Byproducts
 - Well-motivated exposure to numerous math and science areas in action.

identify safety specifications for CPS rigorous reasoning about CPS understand abstraction & architectures programming languages for CPS verify CPS models at scale

cyber+physics models core principles of CPS relate discrete+continuous semantics of CPS models operational effects identify control constraints opportunities and challenges

- I Part: Elementary Cyber-Physical Systems
- 2. Differential Equations & Domains
- 3. Choice & Control
- 4. Safety & Contracts
- 5. Dynamical Systems & Dynamic Axioms
- 6. Truth & Proof
- 7. Control Loops & Invariants
- 8. Events & Responses
- 9. Reactions & Delays
- II Part: Differential Equations Analysis
- Differential Equations & Differential Invariants
- 11. Differential Equations & Proofs
- 12. Ghosts & Differential Ghosts
- 13. Differential Invariants & Proof Theory
- III Part: Adversarial Cyber-Physical Systems
- -17. Hybrid Systems & Hybrid Games
 - IV Part: Comprehensive CPS Correctness

Logical Foundations of Cyber-Physical Systems

Robot Model Labs

- Robot on Rails
 - Autobots, Roll Out
 - **Charging Station**
- Robot on Highways: Follow the Leader
 - with event-triggered control
 - with time-triggered control
- Robot on Racetracks
 - stay on the circular racetrack
 - slow down to avoid collisions
- Robot in a Plane
 - with obstacle avoidance
 - Robot vs. Roguebot: don't collide with moving obstacles
- Robot in Star-lab: self-defined final project
- Final project presented at CPS V&V Grand Prix

TODO: Read Course Policies

▶ Syllabus

≈22% Theory homework

Due at midnight

ullet \approx 51% Labs, including \approx 22% final project

Betabot in first week

Due at **beginning** of lecture

Due at midnight

Veribot in second week

For final project For final project

Whitepaper

Term paper

Proposal

Due with final project

• CPS V&V Grand Prix presentation

Tue Dec 11

In class

• ≈11% Final

In class

ullet pprox5% Participation in class and in online comments

• Partner allowed for labs only and only starting in lab 2

• TODO: Theory 0 prep homework

Due this week

André Platzer (CMU) LFCPS/01: Overview LFCPS/01

Prerequisites

15-122 Principles of Imperative Computation

if-then-else

21-120 Differential and Integral Calculus

(21-241 Matrix algebra or

15-251 Great Theoretical Ideas in Computer Science or

Math proofs

18-202 Mathematical Foundations of Electrical Engineering)

Substitutes: 21-242 Matrix theory or 21-341 Linear algebra I for 21-241

- You are expected to follow extra material in the textbook.
- Further reading and background material on the course web page
- Check course web page periodically http://lfcps.org/course/lfcps.html
- KeYmaera X: aXiomatic Tactical Theorem Prover for Hybrid Systems

Piazza, Autolab, Ask!

André Platzer (CMU) LFCPS/01: Overview

- CPS: Introduction
 - Hybrid Systems & Cyber-Physical Systems
 - Applications
 - Robot Labs
- Course: Logical Foundations of Cyber-Physical Systems
 - Educational Approach
 - Objectives
 - Outline
 - Labs
 - CPS V&V Grand Prix
 - Assessment
 - Resources
- Summary

Logical foundations make a big difference for CPS, and vice versa

Numerous wonders remain to be discovered

Logical foundations make a big difference for CPS, and vice versa

Numerous wonders remain to be discovered

Logical Foundations of Cyber-Physical Systems.

Springer, Switzerland, 2018.

URL: http://www.springer.com/978-3-319-63587-3,
doi:10.1007/978-3-319-63588-0.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg, 2010.

doi:10.1007/978-3-642-14509-4.

Logics of dynamical systems.

In *LICS*, pages 13–24, Los Alamitos, 2012. IEEE.

doi:10.1109/LICS.2012.13.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143-189, 2008. doi:10.1007/s10817-008-9103-8.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219-265, 2017.

doi:10.1007/s10817-016-9385-1.

Logic & proofs for cyber-physical systems.

In Nicola Olivetti and Ashish Tiwari, editors, *IJCAR*, volume 9706 of *LNCS*, pages 15–21, Berlin, 2016. Springer. doi:10.1007/978-3-319-40229-1 3.

Differential game logic.

ACM Trans. Comput. Log., 17(1):1:1-1:51, 2015. doi:10.1145/2817824.

Differential hybrid games.

ACM Trans. Comput. Log., 18(3):19:1–19:44, 2017. doi:10.1145/3091123.