

Dynamic pricing under competition in an e-commerce scenario: a demand learning and price optimization technique

Author: Andrea Rafanelli

Supervisor: Marco L. Della Vedova

Msc.in Statistical and actuarial sciences Data analytics for business and economics

16 September, 2020

OUTLINE

- Contributions
- Oynamic pricing
 - Advantages;
- Problem description
 - Dynamic pricing competition;
- Experiment design
 - Demand learning;
 - Value iteration;
 - Runtime efficiency;
- Results
- Conclusions

GOAL AND CONTRIBUTIONS

GOAL

Predicting prices automatically by adapting to variations within the market;

Contributions

- The approximation of consumer demand and competitors' strategies;
- The continuous recalculation of the demand variables;
- The construction of a price optimization algorithm;

Dynamic pricing

"It is the study of deciding ideal prices of products or services in a setting where prices can frequently be adjusted."

Van de Geer R. et al.¹

ADVANTAGES

- Reducing prices updating costs;
- More accurate pricing decisions;
- Increase revenues;

Basic Points

- Treatment of historical data;
- Processing a demand function or learning it;
- Use of mathematical processes for price optimization;

¹Dynamic pricing and learning with competition, Journal of Revenue Pricing Management 18, 185–203, 2019.

DYNAMIC PRICING COMPETITION

• Dynamic Pricing Competition, Haensel AMS ^a

ahttps://dynamic-pricing-competition.com/

- Demand mechanism unknown: demand uncertainty;
- Heterogeneous customer behavior;
- Demand mechanism resembles a competitive e-commerce market;

Dynamic pricing Thesis 16 September, 2020 5/16

SIMULATIONS SETTINGS

- Time period: T = 1000, indexed by t = 0, 1, 2...T;
- n competitors;
- Merchant could set price $p_{i,t} \in 0, 0.001, 0.002..100$ and no costs were involved.
- After each period, sales, $s_{i,t}$ and revenues, $p_{i,t}s_{i,t}$ are generated;
- The merchant could observe his sales, his price and competitors' prices from 0 to t-1;

Demand Learning

- Exploration phase: 150 periods
 - Random prices from a Uniform discrete distribution [1,100]
- With historical data: Regression model

REGRESSION VARIABLES

- \bigcirc x_0 : intercept;
- $all x_1$: our price;
- **3** x_2 : $min(p_{1t}, p_{2t}, p_{3t}..p_{nt});$
- **1** x_3 : mean $(p_{1t}, p_{2t}, p_{3t}..p_{nt})$;
- **1** Interactions: $x_2 \cdot x_3$; $x_2 \cdot x_3$; $x_4 \cdot x_3$;

REGRESSION MODEL

$$\hat{Y}_{sales}(a, \vec{p}, \vec{\beta}) = \hat{\beta}_0 + \hat{\beta}_1 x_1^3 + \hat{\beta}_2 x_2^3 + \hat{\beta}_3 x_3^3 + \hat{\beta}_4 x_2 \cdot x_3 + \hat{\beta}_5 x_2 \cdot x_4 + \hat{\beta}_6 x_3 \cdot x_4$$

WHY REGRESSION?

- Time requirements: 0.12 secs per iteration;
- Good compromise between accuracy and timing;

WHY POLYNOMIAL?

• Avoid linear relationship between prices and quantity: *heterogeneous customers*;

SALES PROBABILITIES

Schlosser R. and Boissier M.^a

$$P(s, a, \vec{p}, \vec{\beta}) = e^{-\hat{Y}_{sales}(a, \vec{p}, \vec{\beta})} \cdot \frac{\hat{Y}_{sales}(a, \vec{p}, \vec{\beta})^s}{s!}$$

^aDynamic Pricing under Competition on Online Marketplaces, International Conference on Knowledge Discovery Data Mining, 2018.

- $\hat{Y}_{sales}(a, \vec{p}, \vec{\beta})$: mean sales per period;
- s = [0, 100] is the number of maximum sales per period;

EFFECTS

- Customer buying behavior;
- Customer arrivals;
- Competitor pricing strategies;

Model formulation

Markov Decision Process

- State space: $\vec{S} = \{0, 1, 2, 3..100\};$
- Actions: $A_t \in [1, 100]$;
- Sales probabilities: $P(s, a|\vec{p}, \vec{\beta})$;
- Reward: $R(a, \vec{p}, \vec{\beta}) = [a \cdot \hat{Y}_{sales}(a, \vec{p}, \vec{\beta})];$
- Transition probability: $P_{s,s'}(s,s',a|\vec{p},\vec{\beta})$;

VALUE ITERATION ALGORITHM

• The optimal value of each state *s* is find by performing the following update on all states:

$$V(s) = \max_{a \in A} \sum_{s=0}^{100} [P_{s,s'}(s,s',a|\vec{p},\vec{\beta}) + (a \cdot \hat{Y}_{sales}(a,\vec{p},\vec{\beta})) + \gamma V(s')]$$

• The optimal pricing decision for each state is find:

$$a^*(s) = \underset{a \in A}{\operatorname{arg \, max}} \sum_{s=0}^{100} [P_{s,s'}(s,s',a|\vec{p},\vec{\beta}) + (a \cdot \hat{Y}_{sales}(a,\vec{p},\vec{\beta})) + \gamma \ V(s')]$$

OPTIMAL POLICY

The greatest value function among all states will be chosen: the corresponding action will be the optimal price.

RUNTIME EFFICIENCY

- Reduction in number of prices;
- Increase theta value;

```
1 repeat
2 | foreach s \in S: do
3 | v \leftarrow V(s);
4 | V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) + [r + \gamma V(s')];
5 | \triangle \leftarrow \max(\triangle,|v-V(s)|);
until \triangle < \theta;
```

Value	Average runtime in ms
$\theta = 0.01$	21.94
$\theta = 0.05$	12.31
$\theta = 0.5$	11.87
$\theta = 1$	10.56

COMPETITION RESULTS

- Top half of participants;
- Competition results not fully available;

 $FIGURE\ 1:$ Merchant's average prices per simulation

FIGURE 2: Average price per competitor among all simulations

COMPETITION RESULTS

FIGURE 3: Prices trend in simulation 6

FIGURE 4: Average prices vs average revenues

Conclusions

REMARKS

- Ability to set prices and generate revenues;
- Ability to compete in different situations and market contexts;
- What seems reasonable in a simulated market may not be in a real one;

FUTURE IMPROVEMENTS

- Model customer behavior differently;
- Prediction of competitors' pricing strategies;
- Different transition probabilities;
- Lower θ value;
- Use all the available prices;

Thank You for your attention