

CSC1/2562

เอกสารเค้าโครงโครงการวิจัยทางวิทยาการคอมพิวเตอร์

การวิเคราะห์รูปแบบการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสาน สรรพสิ่งด้วยเทคนิคการเรียนรู้ของเครื่อง

Pattern Analysis of Denial of Service Attack in Internet of Things Networks using Machine Learning

โดย

593021270-9 นางสาวฑิตยา ศรีวุฒิทรัพย์

อาจารย์ที่ปรึกษา : ผศ.ดร.ชิตสุธา สุ่มเล็ก ตำแหน่ง ผู้ช่วยศาสตราจารย์ สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

รายงานนี้เป็นส่วนหนึ่งของการศึกษาวิชา 322 498 โครงการวิจัยทางวิทยาการคอมพิวเตอร์ ภาคเรียน 1 ปีการศึกษา 2562 สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น (เดือน กันยายน พ.ศ. 2562)

การเสนอเค้าโครงโครงงานคอมพิวเตอร์

สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น

ชื่อ นางสาวฑิตยา ศรีวุฒิทรัพย์ รหัสประจำตัว 593021270-9

Miss Titaya Sriwuttisap

นักศึกษาระดับปริญญาตรี วิทยาการคอมพิวเตอร์

อาจารย์ที่ปรึกษาโครงงาน ผศ.ดร.ชิตสุธา สุ่มเล็ก

Project Advisor Asst. Prof. Chitsutha Soomlek

1. ชื่อหัวข้อโครงงาน

ภาษาไทย การวิเคราะห์รูปแบบการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งด้วยเทคนิค การเรียนรู้ของเครื่อง

ภาษาอังกฤษ Pattern Analysis of Denial of Service Attack in Internet of Things Networks using Machine Learning

2. หลักการและเหตุผล

ปัจจุบันอยู่ในยุคที่เทคโนโลยีกำลังพัฒนาไปได้อย่างก้าวไกล การเชื่อมต่ออินเทอร์เน็ตไม่จำกัดอยู่เพียงบนคอมพิวเตอร์หรือ โทรศัพท์อีกต่อไป สังเกตได้ว่าอุปกรณ์ที่เชื่อมต่อกับอินเทอร์เน็ตนอกจากคอมพิวเตอร์และโทรศัพท์มีจำนวนมากขึ้น เช่น กล้อง วงจรปิด นาฬิกาข้อมือ รถยนต์ เป็นต้น เพื่ออำนวยความสะดวกต่อผู้ใช้งาน แต่ทว่าเมื่ออุปกรณ์เหล่านี้มีมากขึ้นก็มักนำมาซึ่งภัย คุกคามต่าง ๆ อุปกรณ์ IoT เคยถูกควบคุมเพื่อใช้ในการโจมตีทางไซเบอร์อยู่หลายครั้ง สาเหตุหลักเกิดจากอุปกรณ์จำนวนมากถูก ติดตั้งโดยใช้รหัสผ่านที่มาจากโรงงาน ทำให้ผู้ประสงค์ร้ายสามารถล็อกอินเข้าไปติดตั้งมัลแวร์ในอุปกรณ์ดังกล่าวเพื่อควบคุมมาใช้ใน การโจมตีได้ หนึ่งในเหตุการณ์ที่เคยเกิดขึ้นคือมีการใช้มัลแวร์ชื่อ Mirai ควบคุมอุปกรณ์ IoT ไปโจมตีแบบ DDoS ความรุนแรงสูงถึง 1.1 Tbps [1] จากเหตุการณ์ดังกล่าวทำให้รู้ว่าควรให้ความสำคัญกับความปลอดภัยบนอุปกรณ์ IoT อย่างมาก

ดังนั้นในงานวิจัยนี้ผู้วิจัยจึงทำการนำชุดมูลจากการโจมตีแบบ Mirai บนอุปกรณ์ IoT มาวิเคราะห์รูปแบบการโจมตีเพื่อหาวิธี ตรวจจับที่แม่นยำขึ้น

3. วัตถุประสงค์ของโครงงาน

- 3.1 เพื่อวิเคราะห์รูปแบบการโจมติโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งด้วยเทคนิค การเรียนรู้ของเครื่อง
- 3.2 เพื่อสร้างโมเดลการตรวจจับการโจมติโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งด้วยเทคนิค การเรียนรู้ของเครื่อง

4. ทฤษฎีและผลงานวิจัยที่เกี่ยวข้อง

4.1 Internet of Things (IoT)

IoT คือ การที่อุปกรณ์ต่าง ๆ เชื่อมต่อกับอินเทอร์เน็ต และอุปกรณ์ยังสามารถสื่อสารกันเองผ่านทางโปรโตคอล IP ซึ่ง อุปกรณ์จำเป็นต้องทำงานร่วมกับ Radio Frequency Identification (RFID), Quick Response (QR) และเซ็นเซอร์เพื่อเปิดใช้ การสื่อสารระหว่างอุปกรณ์ [2]

ลักษณะของ Internet of Things (IoT) มี 6 ประการดังนี้ [3]

- 1. เชื่อมโยงถึงกัน (Interconnected) คือ อำนวยความสะดวกให้มนุษย์กับอุปกรณ์ และอุปกรณ์เชื่อมต่อระหว่างอุปกรณ์
- 2. การตรวจจับอัจฉริยะ (Smart Sensing) คือ อุปกรณ์ที่เชื่อมต่อกับ IoT จะมีความสามารถในการตรวจจับอัจฉริยะ เช่น การตรวจจับการเคลื่อนไหว หรืออุณหภูมิจากนั้นทำการตอบสนองต่อสิ่งเหล่านี้ตามที่ได้ถูกตั้งโปรแกรม
- 3. สติปัญญา (Intelligence) คือ อุปกรณ์ที่เชื่อมต่อ IoT สามารถมีสติปัญญาโดยอุปกรณ์อาจถูกติดตั้งปัญญาประดิษฐ์ (Artificial Intelligence – AI) เพื่อเพิ่มความฉลาดของอุปกรณ์ให้มากขึ้น
- 4. ประหยัดพลังงาน (Save Energy) คือ อุปกรณ์จะพยายามประหยัดพลังงานอย่างมีประสิทธิภาพ เช่น การที่เปิดไฟเมื่อ มีการเคลื่อนไหว ทำให้ช่วงเวลาที่ไม่มีคนอยู่ไฟจะปิดเองอัตโนมัติเป็นการลดการใช้พลังงานลง
- 5. การแสดงออก (Expressing) คือ อุปกรณ์ที่เชื่อมต่อ IoT มีความสามารถพิเศษในการบอกสถานะปัจจุบันไปยังอุปกรณ์ ที่เชื่อมต่ออื่น ๆ ในบริเวณโดยรอบ มันอำนวยความสะดวกในการสื่อสารที่ดีขึ้นระหว่างมนุษย์และเครื่องจักร
- 6. ความปลอดภัย (Safety) คือ อุปกรณ์ที่เชื่อมต่อ IoT สามารถช่วยรับรองความปลอดภัยของชีวิตบุคคล เช่น การแจ้ง เตือนผ่านระบบ เมื่ออุปกรณ์มีการทำงานที่ผิดปกติ
 - 4.2 Denial of Service (DoS) และ Distributed Denial of Service (DDoS)

Denial of Service คือ การพยายามทำให้บริการของเครื่องเหยื่อไม่สามารถให้บริการได้ทั้งแบบชั่วคราวหรือถาวร [4]

Distributed Denial of Service คือ การพยายามทำให้บริการของเครื่องเหยื่อไม่สามารถให้บริการได้ทั้งแบบชั่วคราว หรือถาวร โดยแทนที่จะเป็นคอมพิวเตอร์หนึ่งเครื่องกลับใช้เป็นคอมพิวเตอร์จำนวนมากแทน ซึ่งผู้โจมตีจะใช้เครื่องมือที่จะใช้ในการ โจมตีไปติดตั้งบนคอมพิวเตอร์ที่ถูกควบคุมไว้แล้ว จากนั้นทำการออกคำสั่งให้คอมพิวเตอร์จำนวนมากโมตีไปยังเป้าหมาย [4]

ซึ่งสามารถแบ่งการโจมตีแบบ Denial of Service (DoS) และ Distributed Denial of Service (DDoS) ได้เป็น 5 ประเภทดังนี้

- 1. SYN flood คือ ประเภทของการโจมตี Dos ที่ผู้โจมตีส่งชุดของการร้องขอ syn ไปยังระบบเป้าหมายในความพยายาม ที่จะใช้ทรัพยากรเชิร์ฟเวอร์จำนวนมากเพื่อให้ระบบไม่ตอบสนองต่อการรับส่งข้อมูลที่ถูกกฎหมาย [4]
- 2. Teardrop Attacks คือ การส่งแพ็กเก็ตที่ไม่สามารถประกอบได้ไปให้เครื่องเป้าหมายเพื่อให้เกิดความสับสน ตามปกติหามีข้อมูลขนาดใหญ่ต้องการส่งผ่านเราเตอร์จะต้องทำการแบ่งเป็นส่วนย่อยโดยการ Fragment ก่อน จากนั้นเมื่อปลายทางได้ครบจะทำการประกอบเข้าด้วยกันเพื่อให้ได้ข้อมูลที่สมบูรณ์ แต่การจะรวมได้ต้องใช้ค่า Offset ที่ปรากฏอยู่ในแพ็กเก็ตแรกและแพ็กเก็ตถัดไป สำหรับการโจมตีแบบ Teardrop นี้ ผู้โจมตีจะส่งค่า Offset ในแพ็กเก็ตที่สองและต่อ ๆ ไปที่จะทำให้เครื่องรับปลายทางเกิดความสับสน หากระบบปฏิบัติการไม่สามารถรับมือ กับปัญหานี้ก็จะทำให้ระบบหยุดการทำงานในทันที [5]

- 3. Low-rate Denial-of-Service attacks (LDoS) คือ การออกแบบมาเพื่อใช้ประโยชน์จากอัตราส่วนของเวลาใน ระดับซ้าของ TCP ความสามารถในการดำเนินการกลไกการหมดเวลาส่งสัญญาณ (RTO) เพื่อลดปริมาณงาน TCP ใน ระยะสั้น ผู้โจมตีสามารถสร้าง TCP overflow ได้โดยการเข้าสู่สถานะ RTO ซ้ำ ๆ ผ่านการส่งอัตราสูงและจำนวนมาก ในขณะที่ RTO ทำการจับเวลาซ้า ปริมาณข้อมูล TCP ที่โหนดของเป้าหมายจะลดลงอย่างมากในขณะที่ผู้โจมตีจะมี อัตราเฉลี่ยต่ำจึงทำให้ตรวจจับได้ยาก [4]
- 4. Internet Control Message Protocol (ICMP) flood คือ โปรโตคอลไร้การเชื่อมต่อที่ใช้สำหรับการดำเนินงาน IP การวินิจฉัยและข้อผิดพลาด ICMP Flood การส่งแพ็คเก็ต ICMP จำนวนมากอย่างผิดปกติทุกประเภท (โดยเฉพาะการ ทดสอบแพ็คเก็ต "ping") สามารถแฝงเครือข่ายเชิร์ฟเวอร์เป้าหมายที่พยายามประมวลผลคำขอ ICMP ที่เข้ามาทั้งหมด และอาจส่งผลให้เกิดการปฏิเสธ เงื่อนไขการให้บริการสำหรับเชิร์ฟเวอร์เป้าหมาย [4]
- 5. Peer-to-peer attacks คือ เครือข่ายแบบกระจายซึ่งแต่ละโหนดในเครือข่าย (peer) ทำหน้าที่เป็นทั้งผู้จัดหา (seed) และผู้บริโภค (leeches) ของทรัพยากร ตรงกันข้ามกับโมเดลไคลเอนต์ เซิร์ฟเวอร์ส่วนกลางที่ไคลเอ็นต์ เซิร์ฟเวอร์หรือโหนดระบบปฏิบัติการร้องขอการเข้าถึงทรัพยากรจากเซิร์ฟเวอร์ส่วนกลาง [4]

4.3 Naive Bayes

หลักการของวิธี Naive Bayes จะใช้การคำนวณความน่าจะเป็นซึ่งจะมีการใช้สมการที่เรียกว่า Bayes' theorem [6] หรือทฤษฎีของเบย์โดยมีสมการดังนี้

$$P(h \mid D) = P(D \mid h)*P(h) / P(D)$$
 (1)

จากสมการข้างต้นสามารถสร้างตำนวณความน่าจะเป็นชองการจำแนกประเภทอย่างง่ายได้ดังนี้

$$P(d \mid h) = P(a,...,a \mid h) = P(a \mid h)$$
 (2)

4.4. Generalize Linear Model (GLM)

GLM เป็นวิธีการทางสถิติที่ใช้ในการวิเคราะห์ข้อมูลที่มีการติดตามระยะยาว (Longitudinal data) และมีการวัดซ้ำค่า สังเกตของตัวแปรตามที่สนใจที่เกิดขึ้นภายใต้หน่วยศึกษาเดียวกัน (Cluster/Subject) ที่มักพบว่าค่าสังเกตดังกล่าวมีความสัมพันธ์ กันเอง (Correlated data) โดยได้ขยายวิธีการดังกล่าวมาจากตัวแบบเชิงเส้นนัยทั่วไป (Generalized Linear Model: GLM) [7] ด้วยการนำรูปแบบความสัมพันธ์ของค่าสังเกตที่สนใจ (Working Correlation Structure) ไปพิจารณาในการวิเคราะห์สมการหรือ ตัวแบบ อีกทั้งยังมีข้อดีกว่า GLM คือค่าสังเกตหรือตัวแปรตามไม่จำเป็นต้องมีการแจกแจงในวงเลขชี้กำลัง (exponential family) ซึ่งทำให้สามารถนำไปวิเคราะห์ข้อมูลที่ไม่ใช่ค่าต่อเนื่องได้ โดยเฉพาะข้อมูลเชิงกลุ่ม (Count data)ที่มีการเก็บรวบรวมไว้ในด้าน ต่าง ๆ

ไม่ว่าจะเป็นทางการเกษตร การแพทย์ การสาธารณสุข หรือแม้แต่ในด้านธุรกิจ เช่น การศึกษาติดตามระยะยาวจำนวน การเกิดอุบัติเหตุบนทางหลวง การศึกษาติดตามระยะยาวจำนวนการเรียกค่าสินไหมทดแทนการประกันภัย เป็นต้น

4.5 Logistic Regression

Logistic Regression [8] เป็นการพยากรณ์ความน่าจะเป็นของผลลัพธ์ที่จะเกิดขึ้นซึ่งสามารถเป็นได้เพียง 2 ค่า โดยการ พยากรณ์จะขึ้นกับตัวแปรที่ส่งผลต่อเหตุการณ์นั้นๆซึ่งอาจจะมีเพียงหนึ่งตัวหรือมากกว่า

4.6 Neural Network

Neural Network มีโครงสร้างและการทำงานของการประมวลผลเหมือนกับสมองของสิ่งมีชีวิตซึ่งมีปรับเปลี่ยนตัวเองต่อ การตอบสนองของอินพุตตามกฎของการเรียนรู้ (Learning rule) หลังจากที่โครงข่ายได้เรียนรู้สิ่งที่ต้องการแล้ว โครงข่ายนั้นจะ สามารถทำงานที่กำหนดไว้ได้โครงข่ายประสาทเทียมได้ถูกพัฒนาคิดค้นจากการทำงานของสมองมนุษย์โดยสมองมนุษย์ประกอบไป ด้วยหน่วยประมวลผลเรียกว่า นิวรอน (เซลล์ประสาท หรือ Neuron) จำนวนนิวรอลในสมองมนุษย์มีอยู่ประมาณและมีการ เชื่อมต่อกันอย่างมากมาย สมองมนุษย์จึงสามารถกล่าวได้ว่าเป็นคอมพิวเตอร์ที่มีการปรับตัวเอง (Adaptive) ไม่เป็นเชิงเส้น (Nonlinear) และทำงานแบบขนาน (Parallel) ในการดูแลจัดการการทำงานร่วมกันของนิวรอนในสมอง การคำนวณเชิงนิวรอล เป็นการคำนวณที่เลียนแบบมาจากการทำงานของสมองมนุษย์นั่นเอง [9]

4.7 k-Nearest Neighbors (k-nn)

หนึ่งในวิธีสำหรับการจำแนกรูปแบบคือ k- Nearest Neighbors (k-NN) [10] แยกประเภทของวัตถุที่ไม่มีชื่อแต่ละอัน ตามป้ายกำกับ k-Nearest Neighbors แม้จะมีความเรียบง่าย แต่กฎของ k-NN มักให้ผลการแข่งขันและในบางโดเมนเมื่อรวมเข้า กับความรู้ก่อนหน้านี้อย่างชาญฉลาดจะมีความก้าวหน้าอย่างมีนัยสำคัญขั้นสูง

ผลของ k-NN จัดหมวดหมู่ขึ้นอย่างมีนัยสำคัญเกี่ยวกับตัวชี้วัดที่ใช้ในการคำนวณระยะทางระหว่างเวกเตอร์คุณลักษณะที่ แตกต่างกัน [10] ในการศึกษานี้ใช้ระยะทางแบบยุคลิด ระยะห่างระหว่างจุดสอง X(x1,x2,x3,...,xn) และ Y(y1,y2,y3,...,yn) อธิบายได้ดังนี้

$$d = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
(3)

4.8 Decision Tree

หลักการของวิธี Decision Tree [11] เป็นการเรียนรู้โดยการจำแนกประเภท (Classification) ข้อมูลออกเป็นกลุ่ม (Class) ต่าง ๆ โดยใช้คุณลักษณะ (Attribute) ข้อมูลในการจำแนกประเภท ซึ่งทำให้สามารถทราบได้ว่าคุณลักษณะมาเป็นตัว กำหนดการจำแนกประเภท และคุณลักษณะแต่ละตัวมีความสำคัญมากน้อยเท่าใด

4.9 Random Forest

หลักการของวิธี Random Forest [12] ใช้การสุ่มข้อมูล และสุ่มเลือกคุณลักษณะต่าง ๆ ออกมาเป็นหลาย ๆ ชุดและ จากนั้นนำมาสร้างโมเดลด้วยเทคนิค Decision Tree หลาย ๆ ต้น

4.10 Receiver Operating Characteristic (ROC)

การวิเคราะห์ประเมินความถูกต้อง และประสิทธิภาพของแบบจำลองที่ใช้ทำนายข้อมูลด้วย ROC [13] (Receiver Operating Characteristic) เป็นการทดสอบประสิทธิภาพแบบจำลองที่ทำการพิจารณาในรูปแบบของกราฟ โดยวิธีการสร้าง ROC curve มาใช้เพื่อเลือกจุดตัดที่เหมาะสม เป็นความสัมพันธ์ระหว่าง True positive rate (Sensitivity) กับ False positive rate (1–Specificity) ด้วยการแปรค่าจุดตัด (Cut – off point) ซึ่งอาจจะยังไม่สามารถให้ผลลัพธ์ที่ได้ดีนัก โดยรวมเหมาะกับการ วิเคราะห์ปัญหาที่มีคำตอบเป็นค่าบวกหรือลบ

4.11 Extreme Learning Machine (ELM)

ELM เป็นขั้นตอนวิธีที่มีความเร็ว มีโครงสร้างการทำงานแบบ Single-hidden layer feed forward neural networks (SLFNs) แต่ทว่า ELM [14] ยังคงใช้หลักการสุ่มเพื่อทำการกำหนดค่าน้ำหนักในชั้นนำเข้าข้อมูล และค่าเอนเอียงในชั้นช่อน ทำให้มี โอกาสที่จะนำไปสู่ค่าเหมาะสมเฉพาะที่ (Local optimal)

4.12 Confusion Matrix

Confusion Matrix คือ การประเมินผลลัพธ์การทำนาย (หรือผลลัพธ์จากโปรแกรม) เปรียบเทียบกับผลลัพธ์จริง ๆ ที่หา โดยคน [15]

True Positive (TP) คือ สิ่งที่โปรแกรมทำนายว่าจริง และคนบอกว่ามันจริง

True Negative (TN) คือ สิ่งที่โปรแกรมทำนายว่าไม่จริง และคนบอกว่ามันไม่จริง

False Positive (FP) คือ สิ่งที่โปรแกรมทำนายว่าจริง แต่คนบอกว่าไม่จริง

False Negative (FN) คือ สิ่งที่โปรแกรมทำนายว่าไม่จริง แต่คนบอกว่าจริง

การหาค่าต่าง ๆ จาก Confusion Matrix มีดังนี้ [16]

- 1. Accuracy คือ ค่าที่บอกว่าโปรแกรมสามารถทำนายได้แม่นยำขนาดไหน หาได้จาก (TP+TN)/(TP+TN+FP+FN)
- 2. Recall (True Positive Rate) คือ ค่าที่บอกว่าโปรแกรมทำนายได้ว่าจริง เป็นอัตราส่วนเท่าไรของจริงทั้งหมด หาได้ จาก TP/(TP+FN)
- 3. True Negative Rate (TNR) คือ ค่าที่บอกว่าโปรแกรมทำนายได้ว่าไม่จริง เป็นอัตราส่วนเท่าไรของจริงทั้งหมด หาได้ จาก TN/(TN+FP)
- 4. False Positive Rate (TPR) คือ ค่าที่บอกว่าโปรแกรมทำนายว่าจริง เป็นอันตราส่วนเท่าไรของไม่จริงทั้งหมด หาได้ จาก FP/(TN+FP)
- 5. False Negative Rate (FNR) คือ ค่าที่บอกว่าโปรแกรมทำนายว่าไม่จริง เป็นอันตราส่วนเท่าไรของจริงทั้งหมด หาได้ จาก FN/(TP+FN)
 - 6. Precision คือ ค่าที่บอกว่าโปรแกรมทำนายว่าจริง ถูกต้องเท่าไร หาได้จาก TP/(TP+FP)

4.13 Area Under < ROC > Curve (AUC)

AUC [16] เป็นอีกหนึ่ง Metric ยอดนิยมที่ใช้กันแทบทุกงานเลย AUC มีค่าอยู่ระหว่าง 0-1 ยิ่งเข้าใกล้ 1 แปลว่าโมเดลใน ภาพรวมสามารถทำนาย y ได้ดีมาก

AUC = 0.50 ไม่ต่างอะไรกับการเดาสุ่มเลย

AUC > 0.70 คือเกณฑ์มาตรฐานสำหรับโมเดลส่วนใหญ่

AUC > 0.80 โมเดลทำงานได้ดี

AUC > 0.90 โมเดลทำงานได้ดีมาก

4.14 F-measure

ค่าประสิทธิภาพโดยรวม (F-measure) หมายถึง การวัดประสิทธิภาพโดยรวมของทั้งสองค่าระหว่างค่าความแม่นยำ และ ค่าความครบถ้วนซึ่งนำ ค่าทั้งสองมาค่านวณร่วมกัน [17]

F-Measure =
$$2 \times Precision \times Recall / (Precision + Recall)$$
 (4)

4.15 Survey on Android Malware Detection and Protection using Data Mining Algorithms [18]

ในงานวิจัยนี้ศึกษาเกี่ยวกับประสิทธิภาพของอัลกอริธึมการทำเหมืองข้อมูลเช่น Naive Bayes, J48, Multiclass Classifier, Random Tree, SVM, Decision Tree อัลกอริทึมแต่ละอันถูกประเมินโดยเกณฑ์ต่าง ๆ เพื่อระบุว่าอันไหนที่เหมาะสม ในการตรวจจับซอฟต์แวร์ที่เป็นอันตราย ชุดข้อมูลจะถูกเปรียบเทียบและประเมินผลโดยใช้ Confusion matrix เพื่อหาค่าความ ถูกต้อง (Accuracy)

สรุปผลการทดลองได้ว่า Multiclass ทำงานได้ดีกว่าอัลกอริธึมอื่น แต่ Naive Bayes ช่วยลดความซับซ้อนของเวลาใน กระบวนการตรวจจับ

4.16 Machine learning-based recommendation trust model for machine-to-machine communication [19] ในงานวิจัยนี้ทำการวิเคราะห์เปรียบเทียบจะดำเนินการกับห้าวิธีการเรียนรู้ของเครื่องที่แตกต่างกัน คือ Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN) และ Random Forest (RF) เพื่อตรวจสอบประสิทธิภาพการทำงานของโมเดลเหล่านี้มีการใช้มาตรการการคำนวณความน่าเชื่อถือสองแบบ Receiver Operating Characteristics (ROCs), Precision and Recall ซึ่งโปรแกรมที่ใช้ในการทดลอง คือ Matlab กำหนด โหนดที่เป็นอันตรายมีการเปลี่ยนแปลงในช่วง 10%, 20%, 30%, 40%

4.17 Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep Belief Network Computing [20]

ในงานวิจัยนี้เสนอกลไกในการตรวจจับการโจมตีที่ไม่เหมาะสมใน IoT LLNs โดยใช้วิธีการMultilayer Perceptron (MLP) เป็นเครื่องมือในการจำแนกประเภท MLP จะแบ่งประเภทข้อมูลเป็นเครือข่ายตามปกติหรือภายใต้การโจมตี ซึ่งกลไกยังระบุ ถึงโหนดที่ได้รับผลกระทบจากการโจมตีและระบุโหนดของผู้โจมตี

กลไกที่เสนอเพื่อตรวจจับ Misappropriation Attack ใน IoT

- 1. สร้างคุณสมบัติในการตรวจจับ Misappropriation Attack ใน IoT คือ คุณสมบัติที่เลือกเป็นอินพุตสำหรับโมเดลการ ตรวจจับใด ๆ ควรมีความสัมพันธ์อย่างมากกับเป้าหมาย
 - 2 แบบจำลอง มี 3 องค์ประกอบหลักคือ

- สภาพแวดล้อมการจำลอง Cooja : การจำลอง Cooja เป็นแพลตฟอร์มการจำลองที่จัดทำโดย Contiki OS เพื่อจำลองเครือข่ายเซ็นเซอร์ไร้สาย Cooja จัดเตรียมไบนารีเพื่อเรียกใช้งานโหนดเซ็นเซอร์ประเภทต่างๆ ในการจำลอง ของเราเรามีมลทินท้องฟ้า
 - Mote output Collector : Mote output ของการจำลองถูกรวบรวมเพื่อวิเคราะห์และตรวจจับการโจมตี
- หน่วยตรวจจับการโจมตี : นี้เป็นเครือข่าย Multilayer Perceptron ซึ่งจะมีความแตกต่างของจุดข้อมูล สำหรับโหนดทั้งหมดใน DODAG และจัดประเภทพวกเขาเป็นปกติ (0) หรือภายใต้การโจมตี (1)
- 3. หน่วยตรวจจับการโจมตีโดยอิงจาก Multilayer Perceptron

ภาพที่ 1 โครงสร้างการทำงาน [20]

วิธีดำเนินการวิจัย

- 5.1 การรวบรวมข้อมูลจากงานวิจัยที่เกี่ยวกับหัวข้อ รวบรวมบทวิจัยจากแหล่งข้อมูลงานวิชาการต่าง ๆ ที่เป็นประโยชน์งานที่ศึกษา และนำมาใช้ในการวิเคราะห์รูปแบบการ โจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งด้วยเทคนิคการเรียนรู้ของเครื่อง
 - 5.2 การศึกษาข้อมูลที่ได้งานวิจัยและทดลองใช้เครื่องมือ

ศึกษากระบวนการทำงานของการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่ง โดยศึกษา วิธีการทำงานแต่ละโมเดลในการจำแนกและทำนายประเภทของข้อมูล จากนั้นทดลองทำและนำมาวิเคราะห์ข้อมูลในการทำนาย

5.3 การสรุปข้อมูลจากการศึกษางานวิจัย

สรุปข้อมูลเนื้อหาต่าง ๆ ที่ได้จากการศึกษา เพื่อให้เข้าใจหลักการทำงานของวิธีการทำเหมืองข้อมูลเพื่อหาวิธีตรวจจับการ โจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งจากนั้นเลือกใช้เครื่องมือและรูปแบบตัวโมเดลที่ใช้ในการ วิเคราะห์ข้อมูลตามความเหมาะสม

5.4 ทำเหมืองข้อมูลเพื่อหาวิธีตรวจจับการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่ง
นำชุดข้อมูลมาทำเหมืองข้อมูลเพื่อหาความสัมพันธ์ของข้อมูลต่าง ๆ แล้วนำมาวิเคราะห์เพื่อหาปัจจัยที่มีผลต่อการ
ป้องกันการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่ง ซึ่งจะสามารถใช้หารูปแบบที่เหมาะสมในการ
ป้องกันได้

5.5 ทดลอง ทดสอบและปรับปรุง

ทดลองหาวิธีการป้องกันใหม่ ๆ ที่มีประสิทธิภาพดีกว่าวิธีการเดิม จากนั้นทดลองใช้งานโดยการป้อนข้อมูลใส่แบบจำลอง เพื่อทดสอบว่าสามารถให้ผลลัพธ์ที่ถูกต้องได้ทั้งหมดร้อยละเท่าใด และทำการปรับปรุงแบบจำลองเพื่อให้ได้ผลลัพธ์ที่ดีที่สุด

5. 6 สรุปผลการทำทำเหมืองข้อมูลเพื่อหาวิธีตรวจจับการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสาน สรรพสิ่ง

สรุปผลการทำเหมืองข้อมูลเพื่อหาวิธีตรวจจับการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพ สิ่งที่สามารถได้ผลลัพธ์ถูกต้องและผิดพลาดว่ามีร้อยละเป็นเท่าใดจากข้อมูลที่ได้ทำการทดสอบทั้งหมด

5.7 สร้างโมเดล

จัดทำโมเดลตรวจจับการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่ง

6. ขอบเขตและข้อจำกัดของการวิจัย

ชุดข้อมูลที่ 1 [21]

เครื่อข่ายการเฝ้าระวังวิดีโอกล้อง IP จริงประกอบด้วยการตั้งค่ากล้องวงจรปิด HD สองแบบ จำนวนแบบละ 4 ตัว ใช้ พลังงานผ่าน PoE และเชื่อมต่อกับ DVR ผ่านอุโมงค์ VPN ในแต่ละสถานที่ DVR ที่ไซต์ระยะไกลช่วยให้ผู้ใช้สามารถเข้าถึงสตรีม วิดีโอไปทั่วโลกผ่านการเชื่อมต่อ VPN แบบไคลเอ็นต์ถึงไซต์ กล้องที่ใช้ในเครือข่ายและการกำหนดค่าต่างๆได้อธิบายไว้ในภาพที 3

การโจมตีจำนวนหนึ่งซึ่งสามารถดำเนินการบนเครือข่ายกล้องวงจรปิดได้ การโจมตีที่สำคัญที่สุดส่งผลกระทบต่อความ พร้อมใช้งานและความสมบูรณ์ของอัปลิงค์วิดีโอ เช่น SYN flood ในกล้องเป้าหมาย man in the middle attack เกี่ยวข้องกับ การฉีดวิดีโอลงในสตรีมวิดีโอสด ดังนั้นในการประเมินจึงมุ่งเน้นไปที่การโจมตีประเภทนี้ ภาพที่ 2 สรุปชุดข้อมูลการโจมตีที่ใช้ในการ ทดลอง

การตั้งค่า wiretap ที่ใช้งานอยู่ใช้ Raspberry PI 3B เป็นบริดจ์เครือข่ายทางกายภาพ PI ได้รับอะแดปเตอร์ USB ต่อ อีเธอร์เน็ตเพื่อข้ามพอร์ตอีเธอร์เน็ตที่สองจากนั้นในทางกายภาพได้วางไว้ตรงกลางของสายเคเบิล เครือข่ายเพิ่มเติมคือเครือข่าย Wi-Fi ที่มีอุปกรณ์ 9 IoT และพีซีสามเครื่อง อุปกรณ์ IoT ประกอบไปด้วย Thermostat , มอนิเตอร์สำหรับจับตาดูเด็กทารก webcam กระดิ่งประตู 2 ตัว และกล้องรักษาความปลอดภัยราคาถูก 4 ตัว จากนั้นติดตั้งหนึ่งในกล้องรักษาความปลอดภัยด้วย ตัวอย่างจริงของ Mirai botnet malware

ไฟล์ pcap มีข้อมูลจำนวน 764,137 แถว เป็นปกติ 121,621 แถว และโจมตี 642,516 แถว

Attack Type	Attack Name	Tool	Description: The attacker	Violation	Vector	# Packets	Train [min.]	Execute [min.]
D	OS Scan	Nmap	scans the network for hosts, and their operating systems, to reveal possible vulnerabilities.	C	1	1,697,851	33.3	18.9
Recon.	Fuzzing	Fuzzing SFuzzsearches for vulnerabilities in the camera's web servers by sending random commands to their cgis.				2,244,139	33.3	52.2
	Video Injection	Video Jack	injects a recorded video clip into a live video stream.	C, I	1	2,472,401	14.2	19.2
Man in the Middle	ARP MitM	Ettercap	intercepts all LAN traffic via an ARP poisoning attack.	C	1	2,504,267	8.05	20.1
	Active Wiretap	Raspberry PI 3B	intercepts all LAN traffic via active wiretap (network bridge) covertly installed on an exposed cable.	C	2	4,554,925	20.8	74.8
	SSDP Flood	Saddam	overloads the DVR by causing cameras to spam the server with UPnP advertisements.	A	1	4,077,266	14.4	26.4
Denial of Service	SYN DoS	Hping3	disables a camera's video stream by overloading its web server.	A	1	2,771,276	18.7	34.1
	SSL Renegotiation	THC	disables a camera's video stream by sending many SSL renegotiation packets to the camera.	A	1	6,084,492	10.7	54.9
Botnet Malware	Mirai	Telnet	infects IoT with the Mirai malware by exploiting default credentials, and then scans for new vulnerable victims network.	C, I	Х	764,137	52.0	66.9

ภาพที่ 2 ชุดข้อมูล [21]

	SNC- EM602RC	SNC- EM600	SNC- EB600	SNC- EB602R					
Resolution Codec		H.264/1	x720 MPEG4						
Frames/Sec	15								
Avg. Packets/Sec	195	350	290	320					
Avg. Bandwidth	1.8 Mbit/s	1.4 Mbit/s	1.8 Mbit/s	1.8 Mbit/s					
Protocol	RTP	RTP	Https (TLSv1)	Http/TCP					

ภาพที่ 3 ข้อมูลจำเพาะและสถิติของกล้องที่ใช้ในการทดลอง [21]

ภาพที่ 4 ซ้าย SNC-EM602RC. ขวา SNC-EB602R [21]

ภาพที่ 5 เครือข่ายเฝ้าระวัง (บนสุด) และเครือข่าย IoT (ด้านล่าง) [21]

ชุดข้อมูลที่ 2 [22]

ไฟล์เหล่านี้ถูกสร้างขึ้นในห้องปฏิบัติการ Stratosphere ซึ่งเป็นส่วนหนึ่งของโครงการ Aposemat เพื่อรวบรวมมัลแวร์ IoT ที่ถูกจับที่ Done ในมหาวิทยาลัย CVUT ที่ปราก สาธารณรัฐเซ็ก เพื่อจัดเก็บปริมาณการใช้มัลแวร์ IoT ที่มีอายุการใช้งาน ยาวนานและเพื่อสร้างไฟล์ netflows ที่มีป้ายกำกับ

- Infected device: 192.168.1.195

- Default GW: 192.168.1.1

ไฟล์ pcap มีข้อมูลจำนวน 233,865 แถว เป็นปกติ 5,396 แถว และโจมตี 228,469 แถว

ขอบเขตงาน

วิเคราะห์ข้อมูลโดยใช้โมเดลดังนี้ Decision Tree ,Random Forest ,Neural Networks, k nearest neighbor, Logistic Regression ,Naïve Bayes ,Support Vector Machine และใช้ชุดข้อมมูลจากสองแหล่ง [21] [22] ที่อธิบายจากข้างต้น เมื่อได้โมเดลแล้วจะวัดผลโมเดลโดยใช้ Accuracy Recall Precision และ F-measure

7. สถานที่ทำวิจัย

สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น หรืออื่นๆ

ประโยชน์ที่คาดว่าจะได้รับ

โมเดลสามารถตรวจจับการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งได้

9. แผนและระยะเวลาดำเนินการ

ตารางการดำเนินงานและระยะเวลา

กิจกรรม	กรก ม	ฎาค	สิงหาคม				กันยายน				ตุลาคม						
	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
1. การรวบรวมข้อมูลจาก																	
งานวิจัยที่เกี่ยวกับหัวข้อ																	
2. การศึกษาข้อมูลที่ได้																	
งานวิจัยและทดลองใช้																	
เครื่องมือ																	
3. การสรุปข้อมูลจาก																	
การศึกษางานวิจัย																	
4. ทำเหมืองข้อมูลเพื่อหา																	
วิธีตรวจจับการโจมตีโดย																	
ปฏิเสธการให้บริการบน																	
เครือข่ายอินเทอร์เน็ต																	
ประสานสรรพสิ่ง																	
5. ทดลอง ทดสอบและ																	
ปรับปรุง																	
6. สรุปผลการทำทำเหมือง																	
ข้อมูลเพื่อหาวิธีตรวจจับ																	
การโจมตีโดยปฏิเสธการ																	
ให้บริการบนเครือข่าย																	
อินเทอร์เน็ตประสาน																	
สรรพสิ่ง																	
7. สร้างโมเดล	_																

10. งบประมาณ

หมวดวัสดุอุปกรณ์

- ค่าวัสดุสำนักงาน (กระดาษ ปากกา และอื่นๆ)	20 บาท
- ค่าวัสดุคอมพิวเตอร์ (แผ่นดิสก์ ซีดี และอื่นๆ)	20 บาท
หมวดค่าใช้สอย	
- ค่าถ่ายเอกสาร	20 บาท
- ค่าจัดรูปเล่ม	100 บาท
หมวดค่าใช้จ่ายอื่นๆ	

11. เอกสารอ้างอิง

- [1] "ThaiCERT ไทยเซิร์ต Botnet of Things ภัยคุกคามจาก Internet of Things และแนวทางการรับมือ." Accessed September 10, 2019. https://www.thaicert.or.th/papers/general/2016/pa2016ge001.html.
- [2] Singh, S., and N. Singh. "Internet of Things (IoT): Security Challenges, Business Opportunities Reference Architecture for E-Commerce." In 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 1577–81, 2015. https://doi.org/10.1109/ICGCIoT.2015.7380718.
- [3] "Internet of Things: Six Key Characteristics." Frog (blog), August 23, 2014. https://designmind.frogdesign.com/2014/08/internet-things-six-key-characteristics/.
- [4] "5 Major Types of DOS Attack | Learn & Know Them." Concise Courses, December 13, 2018. https://www.concise-courses.com/5-major-types-of-dos-attack/.
- [5] "ตัวอย่างประเภทการโจมตีในระบบเครือข่าย Internet." sssangtopo (blog), October 19, 2012. https://sssangtopo.wordpress.com/about/ตัวอย่างประเภทการโจมตี/
- [6] Richard, J. R. and Geatz, M. W. (2003). Data Mining a Tutorial-Based Primer. Pearson Education Inc.
- [7] "สมการการประมาณค่านัยทั่วไปสำหรับการวิเคราะห์ข้อมูลเชิงกลุ่ม." Accessed August 15, 2019. http://www.stat.mju.ac.th/nucs2018/Stat_Html/notice_3.php.
- [8] จิราภา เลาหะวรนันท์, รชต ลิ้มสุทธิวันภูมิ และ บัณฑิต ฐานะโสภณ. [ม.ป.ป]. การใช้เทคนิคการทำเหมืองข้อมูลในการ จำแนกและคัดเลือกแขนงวิชาสำหรับนักศึกษาคณะเทคโนโลยีสารสนเทศ. กรุงเทพฯ : คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
- [9] "มหาวิทยาลัยเทคโนโลยีมหานคร." Accessed August 15, 2019. http://www.mut.ac.th/research-detail-92.
- [10] Udovychenko, Y., A. Popov, and I. Chaikovsky. "Ischemic Heart Disease Recognition by K-NN Classification of Current Density Distribution Maps." In 2015 IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO), 402–5, 2015. https://doi.org/10.1109/ELNANO.2015.7146919.
- [11] จิราพร วังหอม, ญาดา พรภักดี, เนรัญชิรา สาครเจริญ, วิราวรรณ พุทธมาตย์, สนธยา เลิศสงคราม, อุทุมพร บุญจำรูญ. [ม.ป.ป.]. ค้นเมื่อ 20 พฤศจิกายน 2561, จาก http://home.kku.ac.th/wichuda/DMining/Sudent/DT.ppt
- [12] ศริญณา มาปลูก. (2559). การวิเคราะห์ข้อมูลด้วยเทคนิค Data Mining โดยซอฟต์แวร์ RapidMiner Studio 6. ค้น เมื่อ 20 พฤศจิกายน 2561, จาก https://erp.mju.ac.th/acticleDetail.aspx?qid=579
- [13] Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. http://wixtedlab.ucsd.edu/publications/Psych%20218/Swets_1988.pdf)
- [14] มุสิกะวัน, ภัคราช, สิรภัทร เชี่ยวชาญวัฒนา, and คำรณ สุนัติ. "เครื่องจักรเรียนรู้เอ็กซ์ตรีมเชิงวิวัฒนาการโดยใช้พื้นฐาน ของขั้นตอนการค้นหาค่าที่เหมาะสมแบบสเต็บไซส์แรนดอมและขั้นตอนวิธีแบบหิ่งห้อย." Information Technology Journal 8, no. 2 (2012): 26–32.
- [15] "Confusion Matrix." Plagad's Blog (blog), August 26, 2010. https://plagad.wordpress.com/2010 /08/26/confusion-matrix/.

- [16] Satangmongkol, Kasidis. "อธิบาย 10 Metrics พื้นฐานสำหรับวัดผลโมเดล Machine Learning." DataRockie, March 30, 2019. https://datarockie.com/2019/03/30/top-ten-machine-learning-metrics/.
- [17] รวมทรัพย์, ธวัช. "การจำแนกใบพืชโดยการใช้คุณลักษณะรูปทรงและพื้นผิวของใบพืชด้วย ขั้นตอนวิธีเชิงพันธุกรรม." Thesis, ธวัช รวมทรัพย์, 2560. http://dspace.spu.ac.th/handle/123456789/5155.
- Uma, K. V., and E. S. Blessie. "Survey on Android Malware Detection and Protection Using Data Mining Algorithms." In 2018 2nd International Conference on 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 209–12, 2018. https://doi.org/10.1109/I-SMAC.2018.8653720.
- [19] Eziama, E., L. M. S. Jaimes, A. James, K. S. Nwizege, A. Balador, and K. Tepe. "Machine Learning-Based Recommendation Trust Model for Machine-to-Machine Communication." In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 1–6, 2018. https://doi.org/10.1109/ISSPIT.2018.8705147..
- [20] Sahay, R., G. Geethakumari, K. Modugu, and B. Mitra. "Traffic Convergence Detection in IoT LLNs: A Multilayer Perceptron Based Mechanism." In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 1715–22, 2018. https://doi.org/10.1109/SSCI.2018.8628921.
- [21] Mirsky, Yisroel, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. "Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection." ArXiv:1802.09089 [Cs], February 25, 2018. http://arxiv.org/abs/1802.09089.
- [22] "Malware on IoT Dataset." Stratosphere IPS. Accessed September 25, 2019. https://www.stratosphereips.org/datasets-iot.

ชื่อ นางสาวฑิตยา ศรีวุฒิทรัพย์ รหัสประจำตัว 593021270-9

Miss Titaya Sriwuttisap

นักศึกษาระดับปริญญาตรี วิทยาการคอมพิวเตอร์

อาจารย์ที่ปรึกษาโครงงาน ผศ.ดร.ชิตสุธา สุ่มเล็ก

Project Advisor Asst. Prof. Chitsutha Soomlek

ชื่อหัวข้อโครงงาน

ภาษาไทย การวิเคราะห์รูปแบบการโจมตีโดยปฏิเสธการให้บริการบนเครือข่ายอินเทอร์เน็ตประสานสรรพสิ่งด้วยเทคนิค การเรียนรู้ของเครื่อง

ภาษาอังกฤษ Pattern Analysis of Denial of Service Attack in Internet of Things Networks using Machine Learning

ผลลัพธ์การทดลอง

นำข้อมูลแหล่งที่ 1 [1] และแหล่งที่ 2 [2] มาเตรียมการดังนี้

- 1. ไฟล์ที่ได้จากต้นฉบับเป็นไฟล์ Pcap ดังนั้นทำการส่งออกไฟล์เป็นไฟล์ CSV โดยแอตตริบิวท์ที่นำมาใช้ คือ Label ,Time ,Protocol ,Length ,Sourceport ,Winsize ,SEQ ,FLAGACK ,TCPACK , timestamptsecr ,sack_re .FLAG
 - Label 0 หมายถึง การใช้งานทั่วไป
 - 1 หมายถึง การโจมตี
 - FLAGACK 1 หมายถึง not set
 - 2 หมายถึง set
- 2. ข้อมูลสำหรับฝึก แหล่งที่ 1 และ 2 นำข้อมูลการใช้งานทั่วไปมาจำนวน 2500 นำข้อมูลการโจมตีมาจำนวน 2500
- 3. ข้อมูลสำหรับทดสอบ แหล่งที่ 1 และ 2 นำข้อมูลการใช้งานทั่วไปมาจำนวน 1250 นำข้อมูลการโจมตีมาจำนวน 1250
- 4. ทำการนอร์มอลไลซ์ข้อมูลให้อยู่ระหว่าง 0 1
- 5. ช่องที่ว่างทั้งหมดทำการเติม 2
- 6. ทำการฝึกข้อมูลโดยวิธี k-fold คือนำข้อมูลแบ่งเป็น 10 ส่วน 9 ส่วนใช้เทรนนิ่ง อีกหนึ่งส่วนใช้ทดสอบ ทำจนครบ สิบรอบจะได้ค่าเฉลี่ย Train accuracy
- 7. ทำการทดสอบโมเดลที่ได้โดยใช้ข้อมูลที่เตรียมไว้ค่าเฉลี่ย Test accuracy

	Decision Tree	Random Forest	Neural Networks	knn	LogisticRe gression	Naïve Bayes	Support Vector Machine	ELM
Time	0.113 59357 83386 2305	0.075 79660 41564 9414	7.834 53822 13592 53	0.117 83933 63952 6367	0.446 30789 75677 49	0.002 99072 26562 5	1.262 62402 53448 486	0.037 23073 00567 62695
accuracy	94.67 00000 00000 02	94.72	76.78	92.94	76.51	74.36	76.66 99999 99999 99	49.84 99999 99999 994

อ้างอิง

- [1] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, "Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection," in NDSS, 2018.
- [2] "CTU-13 Dataset." Stratosphere IPS. Accessed September 10, 2019. https://www.stratosphereips.org/datasets-ctu13.