

大紫丹参的多酚类化合物*

吴志军, 欧阳明安, 杨崇仁⁺

(中国科学院昆明植物研究所, 云南昆明 650204)

摘要: 从云南丽江产大紫丹参 (*Salvia przewalskii* Maxim.) 的根部分离得到 11 个多酚类化合物, 其中 8 个鉴定为已知的原儿茶 醛, 原儿茶酸, 咖啡酸, R-(+)-β-D-(3, 4-二羟基苯基)-乳酸, 迷迭香酸, 迷迭香酸甲酯, 紫草酸和紫草酸 B。另外 3 个为紫草酸 B 的甲酯化衍生物, 即紫草酸 B 二甲酯, 9"-紫草酸 B 单甲酯和 9"-紫草酸 B 甲单酯。它们的结构通过波谱方法得到鉴定。研究结果表明, 大紫丹参含有与正品丹参相似的酚类化合物。

关键词: 鼠尾草属; 大紫丹参; 多酚类化合物

中图分类号: Q 946.82 **文献标识码:** A **文章编号:** 0253-2700(1999)04-0512-05

Polyphenolic Constituents of *Salvia przewalskii*

WU Zhi - Jun, OUYANG Ming - An, YANG Chong - Ren⁺

(Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204)

Abstract: Three lithospermic acid B ester derivatives, dimethyl lithospermate B, 9"-methyl lithospermate B and 9"-methyl lithospermate B together with nine known polyphenol compounds: protocatechualdehyde, protocatechuic acid, caffeic acid, R-(+)-β-D-(3, 4-dihydroxyphenyl)-lactic acid, rosmarinic acid, methyl rosmarinate, lithospermic acid and lithospermic acid B were isolated from the dried roots of *Salvia przewalskii*.

Key words: *Salvia*; *S. przewalskii*; Polyphenols

Salvia przewalskii Maxim. distributes in Gansu, Sichuan and Yunnan Provinces in western China. In northwest Yunnan, its roots have been used as a substitute of "Dan - Shen", a commonly used crude material of traditional Chinese medicine (Jiangsu College of New Medicine, 1979). Previously studies on this species have mainly focused on the constituents of lipophilic diterpenoid quinones (Yang *et al*, 1984, 1981). As a continuation of our chemical research on the genus *Salvia* (Tanaka *et al*, 1996, 1997; Wu *et al*, 1999), we isolated eleven polyphenols from this plant collected from Lijiang County of Yunnan Province. We report here the isolation and structural determination of these compounds.

Eleven polyphenol compounds (1~11) were isolated from the MeOH extracts of dry roots of *S.*

* Foundation item: Project supported by the Natural Science Foundation of Yunnan Province

⁺ To whom correspondence should be addressed

Received date: 1998-11-04, Accepted date: 1999-03-09

przewalskii by macro pore absorption resins, Sephadex LH-20 gel and reverse phase silica gel column chromatographies. Among them, compounds **1~8** were determined as protocatechualdehyde (**1**), protocatechuic acid (**2**), caffeic acid (**3**), R-(+)- β -D-(3, 4-dihydroxyphenyl)-lactic acid (**4**), rosmarinic acid (**5**), methyl rosmarinate (**6**), lithospermic acid (**7**) and lithospermic acid B (**8**) respectively, by spectral analysis and comparison with authentic samples (Wu *et al.*, 1999). Other three, compounds **9~11**, are lithospermic acid B ester derivatives.

Compound **9** was obtained as a yellow amorphous powder, which is in a dark green color with Fe-Cl₃ reagent on TLC. It showed a quasimolecular ion peak at m/z 745 [M(C₃₈H₃₄O₁₆) - H]⁻ in negative FAB mass spectrum. The ¹³C NMR spectrum showed the signals of a double bond at δ 143.96 and 116.48; four carbonyl groups at δ 172.18 (2 \times C), 171.19 and 167.96; three oxo-methines at δ 88.16, 74.75 and 75.61; a methine at δ 57.46; two methylenes at δ 37.39 and 37.78; two methoxy groups at δ 52.65 and 52.79; and 24 aromatic carbons at δ 113.37 ~ 149.00. Its ¹H NMR spectrum showed the signals of a pair of doublet peaks due to trans-olefinic protons at δ 6.26, 7.63 (each 1H, d, J = 15.9Hz); three oxo-methine protons at δ 4.39, 4.96 and 5.20; two methoxy groups at δ 3.65 and 3.64; two benzylic methylenes in δ 2.83 ~ 3.02; and the signals at δ 6.20 ~ 7.20 belonging to four aromatic ring protons. A comparison of the ¹H and ¹³C NMR spectral data of **9** with that of compound **8**, showed that **9** was quite similar to **8**. The difference between them is that there are only more two methoxy group signals appeared in **9**. Moreover, the carbonyl groups of C-9" and C-9'" at δ 173.52 and δ 172.17 in **8** were upfield shifted to δ 172.18 (-1.34) and δ 171.19 (-0.98) in **9**, respectively. It indicated that two additional methoxy groups were linked at the position carbonyl C-9" and C-9'" in **9**. Therefore, the structure of **9** was identified as dimethyl lithospermate B.

Compound **10** and **11** were obtained as yellow powders, both had the same quasimolecular ion peak at m/z 731 [M(C₃₇H₃₂O₁₆) - H]⁻ in their negative FAB mass spectra, which were 14 mass units larger than that of compound **8**. By comparison the spectral data of UV, IR, ¹H and ¹³C NMR, compounds **10** and **11** were closely similar to those of **8** and **9**. This suggests that both **10** and **11** are mono-methyl ester of **8**. By observation of the ¹³C NMR spectral data of **10** together with that of **8**, the C-9" carbonyl group at δ 173.52 was upfield shifted to δ 172.20 (-1.32) in **10**. It suggests that an additional methoxy group links C-9" carbonyl group and the structure of compound **10** could be 9"-methyl lithospermate B. In the same way, by comparison the ¹³C NMR spectrum of **11** with that of **8**, only the C-9'" carbonyl group at δ 172.17 was upfield shifted to δ 171.20 (-0.97), while the other carbon signals were almost unaffected. It indicates that this additional methoxy group links C-9'" carbonyl group. Therefore, the structure of **11** was established as 9'"-methyl lithospermate B.

It is the first isolation of mono-and di-methoxy esters of lithospermic acid B in natural forms.

Experimental

The instruments and chromatographic materials used throughout this work are the same as described in the reference (Wu *et al.*, 1999).

The dried roots of *Salvia przewalskii* Maxim. (10kg) which collected in Lijiang County, Yunnan Province, were extracted with 60% acetone at room temperature ($4 \times 20\text{L}$), then concentrated in vacuum to evaporate the acetone. Keeping the water solution for one day, after filtration, the filtrate was acidified with 10% HCl and then extracted with EtOAc. The 100 g of EtOAc extract (230g) was chromatographed on a silica gel column (200~300 mesh) with benzene: ethyl acetate: formic acid (5:4:1) as developed solvent system and giving three fractions (Fr. A-C). Protocatechualdehyde (1, 100mg), protocatechuic acid (2, 200mg), caffeic acid (3, 200mg) and methyl rosmarinate (6, 50mg) were obtained from fraction A (5g), after subjected to Sephadex LH-20 (30%~60% acetone) and MCI-gel CHP20P (30%~50% acetone) column chromatographies. $R - (+) - \beta - D - (3, 4 - \text{dihy roxyphenyl}) - \text{lactic acid}$ (4, 2g), rosmarinic acid (5, 7g), dimethyl lithospermate B (9, 150mg), 9''-methyl lithospermate B (10, 100mg) and 9'''-methyl lithospermate B (11, 200mg) were obtained from fraction B (30g), after separation by Sephadex LH-20 (30%~50% acetone) and MCI-gel CHP20P (30%~60% acetone) column chromatographies. The fraction C (20g) was subsequently chromatographed over MCI-gel CHP20P (30%~50% acetone) and Rp-8 gel (30%~40% acetone) column to afford lithospermic acid (7, 1.5g) and lithospermic acid B (8, 4.5g).

For the spectral data of compound 1~8, see reference (Wu et al., 1999).

Dimethyl lithospermate B (9): A yellow amorphous powder; FAB-MS m/z : 745 [$M(C_{38}H_{34}O_{16}) - H$]⁻; $[\alpha]_D^{23.8^\circ} = +93.43^\circ (c = 0.59, \text{MeOH})$; $\text{IR}_{\nu_{\text{max}}^{\text{KBr}}} \text{cm}^{-1}$: 3404, 2957, 1734, 1611, 1521, 1446, 1365, 1287, 1178, 1114, 1070, 1043, 978, 934, 867, 811, 779, 732, 687, 589; UV (MeOH) λ_{max} nm: 206, 255, 289, 304, 332; ^1H and ^{13}C NMR data in Table 1 and 2.

9''-methyl lithospermate B (10): A yellow amorphous powder, FAB-MS m/z : 731 [$M(C_{37}H_{32}O_{16}) - H$]⁻; $[\alpha]_D^{24.4^\circ} = +98.23^\circ (c = 0.68, \text{MeOH})$; $\text{IR}_{\nu_{\text{max}}^{\text{KBr}}} \text{cm}^{-1}$: 3387, 2958, 1731, 1611, 1519, 1446, 1363, 1178, 1114, 1072, 1043, 976, 935, 867, 811, 779, 724, 589; UV (MeOH) λ_{max} nm: 206, 254, 289, 306, 329; ^1H and ^{13}C NMR data in Table 1 and 2.

9'''-methyl lithospermate B (11): A yellow amorphous powder; FAB-MS m/z : 731 [$M(C_{37}H_{32}O_{16}) - H$]⁻; $[\alpha]_D^{24.50^\circ} = +98.20^\circ (c = 0.65, \text{MeOH})$; $\text{IR}_{\nu_{\text{max}}^{\text{KBr}}} \text{cm}^{-1}$: 3386,

2958, 1732, 1611, 1520, 1446, 1364, 1178, 1114, 1072, 1043, 977, 935, 867, 811, 779, 724, 589; UV (MeOH) λ_{max} nm: 206, 254, 289, 305, 328; ^1H and ^{13}C NMR data in Table 1 and 2.

Table 1 ^{13}C NMR spectral data of compounds 8, 9, 10 and 11 (100MHz, CD_3OD)

C	8	9	10	11
1	124.58	124.60	124.60	124.60
2	126.14	126.22	126.17	126.17
3	148.90	149.00	148.97	148.97
4	144.95	145.15	145.09	145.00
5	118.35	118.67	118.37	118.37
6	122.09	121.96	122.05	121.98
7	143.46	143.96	143.65	143.78
8	116.45	116.48	116.46	116.46
9	167.96	167.96	168.04	167.91
1'	133.50	133.49	133.57	133.48
2'	113.36	113.37	113.37	113.37
3'	146.49	146.70	146.46	146.64
4'	145.68	145.25	145.99	145.84
5'	116.45	116.48	116.46	116.46
6'	118.35	118.35	118.37	118.37
7'	88.12	88.16	88.17	88.17
8'	57.69	57.46	57.78	57.45
9'	172.44	172.18	172.47	172.47
1''	129.18	128.54	128.93	129.27
2''	117.54	117.49	117.29	117.51
3''	144.95	145.15	145.00	145.09
4''	146.32	146.51	146.64	146.46
5''	116.45	116.48	116.46	116.46
6''	122.21	122.16	122.05	122.23
7''	37.67	37.78	37.76	37.76
8''	74.51	74.75	74.68	74.68
9''	173.52	172.18	172.20	173.49
1'''	128.84	128.54	128.76	128.53
2'''	117.27	117.31	117.29	117.51
3'''	144.95	145.15	145.00	145.09
4'''	145.68	145.99	145.84	145.99
5'''	116.45	116.48	116.46	116.46
6'''	121.73	121.83	121.98	121.77
7'''	37.28	37.39	37.41	37.41
8'''	75.40	75.61	75.53	75.53
9'''	172.17	171.19	172.20	171.20
9'' - OCH ₃		52.79	52.82	
9''' - OCH ₃		52.65		52.66

Table 2 ^1H NMR spectral data of compounds 8, 9, 10 and 11 (400MHz, CD_3OD)

H	8	9	10	11
5	6.85(1H,d,8.4)	6.85(1H,d,8.5)	6.84(1H,d,8.4)	6.84(1H,d,8.4)
6	7.15(1H,d,8.5)	7.18(1H,d,8.5)	7.15(1H,d,8.4)	7.17(1H,d,8.3)
7	7.53(1H,d,15.9)	7.63(1H,d,15.9)	7.53(1H,d,16)	7.57(1H,d,16.0)
8	6.24(1H,d,15.9)	6.26(1H,d,15.9)	6.23(1H,d,16)	6.30(1H,d,16.0)
2'	6.79(1H,d,2.1)	6.78(1H,d,2.0) ^{a,b}	6.77(1H,d,2.0) ^{a,b}	6.77(1H,d,2.0) ^a
5'	6.77(1H,d,8.2) ^a	6.71(1H,d,8.5) ^{a,c}	6.76(1H,d,8.1) ^a	6.77(1H,d,8.2) ^a
6'	6.67(1H,dd,1.8,8.0) ^{a,b}	6.65(1H,dd,2.0,8.0) ^{a,d}	6.67(1H,dd,2.0,8.1)	6.67(1H,dd,1.8,8.0)
7'	5.87(1H,d,4.6)	5.83(1H,d,4.4)	5.80(1H,d,4.5)	5.87(1H,d,4.8)
8'	4.38(1H,d,4.7)	4.39(1H,d,4.5)	4.38(1H,d,4.6)	4.38(1H,d,4.6)
2''	6.77(1H,d,2.0) ^a	6.76(1H,d,2.0) ^{a,b}	6.76(1H,d,2.0) ^{a,b}	6.77(1H,d,2.0) ^a
5''	6.72(1H,d,8.2)	6.70(1H,d,8.5) ^{a,c}	6.71(1H,d,8.3)	6.70(1H,d,8.0)
6''	6.64(1H,dd,2.0,8.1) ^{a,b}	6.64(1H,dd,2.1,8.2) ^{a,d}	6.63(1H,dd,2.0,8.0) ^a	6.64(1H,dd,2.0,8.0)
7''	3.08(2H,dd,4.0,8.0) ^{a,c}	2.98(2H,m) ^a	2.94(2H,m) ^a	2.98(2H,m) ^a
8''	5.21(1H,dd,3.7,7.0)	5.19(1H,m)	5.18(1H,m)	5.19(1H,m)
2'''	6.54(1H,d,2.1)	6.57(1H,d,1.5)	6.54(1H,d,2.1)	6.54(1H,d,2.1)
5'''	6.60(1H,d,8.0)	6.60(1H,d,8.1)	6.61(1H,d,8.4) ^a	6.60(1H,d,8.0)
6'''	6.33(1H,dd,2.0,8.0)	6.38(1H,m)	6.30(1H,m)	6.33(1H,dd,2.0,8.0)
7'''	3.04(2H,dd,4.0,8.0) ^{a,c}	2.98(2H,m) ^a	2.94(2H,m) ^a	2.98(1H,m) ^a
8'''	5.12(1H,m)	4.96(1H,s,br.)	4.95(1H,s,br.)	4.96(1H,s,br.)
9' - OCH ₃		3.64(3H,s)	3.64(3H,s)	
9'' - OCH ₃		3.65(3H,s)		3.65(3H,s)

a) Overlapping with other signals; b - d) Assignments may be interchanged in each column

References

- Jiangsu College of New Medicine, 1979. Dictionary of Traditional Chinese Medicine [M]. Shanghai: Shanghai Science and Technology Press, 1, 478 ~ 482
- Tanaka T, Nishimura A, Kouno I et al , 1996. Isolation and characterization of yunnaneic acids A ~ D, four novel caffeic acid metabolites from *Salvia yunnanensis* [J]. *J Nat Prod* , 59: 843 ~ 849
- Tanaka T, Nishimura A, Kouno I et al , 1997. Four new caffeic acid metabolites, yunnaneic acids E ~ H, from *Salvia yunnanensis* [J]. *Chem Pharm Bull* , 45 (10): 1596 ~ 1600
- Wu Z J, OUYANG M A, Yang C R, 1999, Polyphenolic constituents of *Salvia sonchifolia* [J]. *Acta Bot Yunn* (云南植物研究), 21 (3):
- Yang B J, Huang X L, Zhou Q R, 1984. The structures of four minor diterpenquinone przewaquinones C, D, E and F from the root of *Salvia przewalskii* Maxim. var. *mandarinorum* (Diels) Stib [J]. *Acta Pharm Sin* (药学学报), 19 (4): 274 ~ 278
- Yang B J, Qin G W, Chen Z X, 1981. Study on the active principles of Dan - Shen. V. Isolation and structures of przewaquinone A and B [J]. *Acta Pharma Sin* (药学学报), 11 (6): 837 ~ 841