Statistical Method Bivariate Association

I-Chen Lee, STAT, NCKU

Chapter 4 of Cleff, T. (2014). Exploratory Data Analysis in Business and Economics.

Chapters 3 of An Introduction to Statistical Learning with R.

October 31, 2023

- Introduction
- 2 Two metric variables
- 3 Regression
- 4 Test for significant
- 5 Example: Advertising data

Bivariate association

Introduction

- In the first stage of data analysis we learned how to examine variables and survey traits individually, or univariately. (Univariate Data)
- It is a task how to assess the association between two variables using methods known as bivariate analyses.
- The methods of bivariate analysis depend on the scale of the observed traits or variables.
 - Association between two metric variables
 - Association between two ordinal variables
 - Association Between two ordinal Variables

Textbook: Cleff, T. (2014). Exploratory Data Analysis in Business and Economics.

Bivariate association

Introduction

Table 4.1 Scale combinations and their measures of association

		Nominal	Ordinal	Metric	
Nominal	Dichotomous	Phi; Cramer's V	Biserial rank correlation; Cramer's V	of metric variables and	
		[Sect. 4.2]	[Sect. 4.5.2]	[Sect. 4.5.1]	
	Non- dichotomous	Cramer's V; contingency coefficient	Cramer's V; contingency coefficient	Classification of metric variables and application of Cramer's V	
		[Sect. 4.2]	[Sect. 4.2]	[Sect. 4.2]	
Ordinal			Spearman's rho (ρ); Kendall's tau (τ)	Ranking of metric variables and application of ρ or τ	
			[Sect. 4.4]	[Sect. 4.4]	
Metric				Pearson's correlation (r)	
				[Sect. 4.3.2]	

Two metric variables

- A metric variable is a variable measured quantitatively. The distance between the values is equal.
- How can one tell whether there's an actual association? If so, what is its strength?
- Graphical method: scatterplot. A scatterplot expresses three aspects of the association between two metric variables.
 - The direction of the relationship: positive or negative.
 - The form of the relationship: linear or non-linear.
 - The strength of the relationship:

Scatterplot

Fig. 4.13 The scatterplot

1. The **Direction** of the relationship

2. The **form** of the relationship

Fig. 4.15 Different representations of the same data (3)....

Covariance of two variables

- A correlation coefficient is a measure that gives us the relationship between two metric variables, including the direction (positive or negative) and the strength (from -1 to 1).
- Ideas: Covariance of two variables is the measure of the deviation between each value pair from the bivariate centroid in a scatterplot.

Fig. 4.16 Relationship of heights in married couples

Covariance and correlation (definition in probability theory)

Definition: The covariance of two random variables X and Y, denoted by Cov(X,Y), is defined by

$$Cov(X, Y) = E[(X - \mu_x)(Y - \mu_y)],$$

where $\mu_{x} = E(X)$ and $\mu_{y} = E(Y)$.

• Cov(X, Y) = E(XY) - E(X)E(Y).

Definition: The correlation of two random variables X and Y, denoted by Corr(X,Y), is defined by

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}.$$

Sample covariance and sample correlation

The sample covariance of two random variables X and Y, is defined by

$$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} [(x_i - \bar{x})((y_i - \bar{y}))].$$

The sample correlation r of two random variables X and Y, is defined by

$$r = \frac{\sum_{i=1}^{n} \left[(x_i - \bar{x})((y_i - \bar{y})) \right]}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}, -1 \le r \le 1,$$

where \bar{x} is the sample mean of X and \bar{y} is the sample mean of Y. Note that r is called the Pearson's correlation.

Pearson's correlation

Researchers commonly draw the following distinctions:

- 0 < |r| < 0.3 negligible association
- $0.3 \le |r| \le 0.5$ weak linear association
- $0.5 \le |r| \le 0.7$ moderate linear association
- $0.7 \le |r| \le 0.9$ high linear association
- $0.9 \le |r| \le 1$ strong linear association

Higher value of correlation coefficient sometimes is not meaningful. Please still check scatter plots again to see the relationship.

https://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm

Estimation: fitted simple regression

Fig. 5.4 Lines of best fit with a minimum sum of deviations

Introduction to regression

Simple linear regression:

- *Y* is the dependent variable (response, outcome, output).
- x is the independent variable (covariate, input).
- \bullet ε is the error which is the distance between the observation to the true function.

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, \ldots, n.$$

Introduction to the multiple regression

If we can estimate the value of $\beta = \{\beta_0, \beta_1, \dots, \beta_p\}^T$, then the fitted model is

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}.$$

• Model assumption:

$$Y_i = f(\mathbf{x}_i) + \epsilon_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i, i = 1, \dots, n,$$

where $\epsilon_i \sim N(0, \sigma^2)$.

- $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.
- Let $\mathbf{x}_i = \{x_{i1}, \dots, x_{ip}\}^T$ and $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}^T$.
- The regression function E(Y|X) is linear on β .
- Note that the linear model may be a reasonable approximation.
- Ref: http://www.estat.me/estat/eStatU/index.html

Textbook: Chapters 1-4 of Faraway, Linear Models Using R.

Linear models

What are the predictors **X**?

- quantitative inputs;
- transformation of quantitative inputs: $log(X), X^2, ...;$
- polynomial terms or interactions terms;
- qualitative inputs or dummy variables.

Estimation

The common method is called *Least Squares*. The objective function is defined as the residual sum of squares:

$$RSS(\beta) = \sum_{i=1}^{n} [y_i - f(\mathbf{x}_i)]^2.$$

Estimation by linear algebra

Let
$$\boldsymbol{\beta} = \{\beta_0, \beta_1, \dots, \beta_p\}^T$$
,

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}, \text{ and } \boldsymbol{\epsilon} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

Then, the model is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

and the residual sum of squares is

$$\mathsf{RSS}(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\beta).$$

Estimation by linear algebra

- Obtain the estimator of β by minimizing RSS(β).
- Take the first derivatives of $RSS(\beta)$ with respect to β .

•
$$\frac{\partial \mathsf{RSS}(\beta)}{\partial \beta} = -2 \boldsymbol{X}^{\mathsf{T}} (\boldsymbol{y} - \boldsymbol{X}\beta) =^{Let} \boldsymbol{0}.$$

- $\bullet \ \hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{T} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}.$
- The point estimator is

$$\hat{oldsymbol{eta}} = \left(oldsymbol{X}^{ au} oldsymbol{X}
ight)^{-1} oldsymbol{X}^{ au} oldsymbol{y}.$$

How to read reports?

Use **Im()** in R to run the result of regression.

```
call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = ad)
Residuals:
   Min
           10 Median
                         3Q
                                Max
-8 8277 -0 8908 0 2418 1 1893 2 8292
coefficients:
           Estimate Std. Error t value Pr(>|t|)
          (Intercept)
TV
           0.045765   0.001395   32.809   <2e-16 ***
Radio 0.188530 0.008611 21.893 <2e-16 ***
Newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF. p-value: < 2.2e-16
```

Other information?

Which model is better?

How to judge a model?

•
$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- Adjusted $R^2 = 1 \frac{SSE/(n-p-1)}{SST/(n-1)}$
- Residual sum of square: $\sum_{i=1}^{n} (y_i \hat{y})^2$
- Mean square error: $\frac{\sum_{i=1}^{n}(y_i \hat{y})^2}{n n 1}$

Important questions

- **1** Is at least one of the predictors x_1, x_2, \ldots, x_p useful in predicting the response?
- 2 Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- Mow well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

- Null hypothesis:
- Test statistic:
- Under H_0 , the distribution of F_0 is

Reject region:

How to read reports?

Use **Im()** in R to run the result of regression.

```
call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = ad)
Residuals:
   Min
           10 Median
                         3Q
                                Max
-8 8277 -0 8908 0 2418 1 1893 2 8292
coefficients:
           Estimate Std. Error t value Pr(>|t|)
          (Intercept)
TV
           0.045765   0.001395   32.809   <2e-16 ***
Radio 0.188530 0.008611 21.893 <2e-16 ***
Newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF. p-value: < 2.2e-16
```

Test for one predictor

Before the testing for significant, the covariance-variance matrix of $\hat{\beta}$ is

$$\mathsf{Cov}(\hat{\boldsymbol{\beta}}) = \left(\boldsymbol{X}^\mathsf{T} \boldsymbol{X}\right)^{-1} \sigma^2.$$

Q: What is the value of σ^2 ?

We use an unbiased estimator to estimate σ^2 :

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - p - 1}.$$

Then.

$$\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \sigma^2\right),$$

because

$$\mathsf{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}.$$

Test for significant

From above, the variance of $\hat{\beta}_i$ is

$$\operatorname{Var}(\hat{eta}_i) = \left(\boldsymbol{X}^T \boldsymbol{X} \right)_{(i+1)(i+1)}^{-1} \sigma^2, \ i = 0, \dots p.$$

- Null Hypothesis v.s. Alternative Hypothesis
- H_0 : $\beta_i = 0$ v.s. H_{Δ} : $\beta_i \neq 0$
- If σ^2 is known, the test statistics under H_0 is

$$Z_i = rac{\hat{eta}_i - 0}{\sqrt{\mathsf{Var}(\hat{eta}_i)}} \sim N(0, 1).$$

• If σ^2 is unknown, the test statistics under H_0 is

$$T_i = rac{\hat{eta}_i - 0}{\sqrt{\left(oldsymbol{X}^Toldsymbol{X}
ight)_{(i+1)(i+1)}^{-1}\hat{\sigma}^2}} \sim t(n-p-1).$$

Test for significant

If σ^2 is unknown, the test statistics under H_0 is

$$\mathcal{T}_i = rac{\hat{eta}_i - 0}{\sqrt{\left(oldsymbol{X}^Toldsymbol{X}
ight)_{(i+1)(i+1)}^{-1}\hat{\sigma}^2}} \sim t(n-p-1).$$

Reject H_0 if

$$p\{|T_i| > t_{1-\alpha/2}(n-p-1)\} \leq \alpha.$$

Usually, we set the significant level $\alpha = 0.05$.

How to read reports?

Use **Im()** in R to run the result of regression.

```
call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = ad)
Residuals:
   Min
           10 Median
                         3Q
                                Max
-8 8277 -0 8908 0 2418 1 1893 2 8292
coefficients:
           Estimate Std. Error t value Pr(>|t|)
          (Intercept)
TV
           0.045765   0.001395   32.809   <2e-16 ***
Radio 0.188530 0.008611 21.893 <2e-16 ***
Newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF. p-value: < 2.2e-16
```

How to read reports?

Use Im() in SPSS to run the result of regression.

Tests of Between-Subjects Effects

Dependent Variable: Sales

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	4860.323ª	3	1620.108	570.271	.000
Intercept	252.218	1	252.218	88.780	.000
TV	3058.010	1	3058.010	1076.406	.000
Radio	1361.737	1	1361.737	479.325	.000
Newspaper	.089	1	.089	.031	.860
Error	556.825	196	2.841		
Total	44743.250	200			
Corrected Total	5417.149	199			

a. R Squared = .897 (Adjusted R Squared = .896)

Types of sum of squares

The full model is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon.$$

The sources of sum of squares are x_1 , x_2 , x_1x_2 and error.

- Type I: sequential sum of squares $SS(x_1) \rightarrow SS(x_2|x_1) \rightarrow SS(x_1|x_2|x_1,x_2) \rightarrow SSE(x_1,x_2,x_3).$ $SS(x_2) \rightarrow SS(x_1|x_2) \rightarrow SS(x_1|x_2|x_1,x_2) \rightarrow SSE(x_1,x_2,x_3).$
- ▶ Type II: Only main effects $SS(x_1|x_2) \rightarrow SS(x_2|x_1) \rightarrow SS(x_1x_2|x_1,x_2) \rightarrow SSE(x_1,x_2,x_3).$
- ▶ Type III: partial sum of squares $SS(x_1|x_2,x_1x_2) \rightarrow SS(x_2|x_1,x_1x_2) \rightarrow SS(x_1x_2|x_1,x_2) \rightarrow SSE(x_1,x_2,x_3).$

SPSS: Types of sum of squares

Question 4: Confidence and prediction interval

The least squares plane:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p,$$

is an "estimate" for the true regression plane.

Again, the inaccuracy in the coefficient estimates is related to samples, and We can compute a confidence interval in order to determine how close \hat{Y} will be to f(X). (Red: True regression; Blue: Least squares regression.)

Confidence interval for β_i

Alternative, we can evaluate the confidence interval:

$$CI = \left[\hat{\beta}_i - t_{1-\alpha/2}^{(n-p-1)} \sqrt{\mathsf{Var}(\hat{\beta}_i)}, \hat{\beta}_i + t_{1-\alpha/2}^{(n-p-1)} \sqrt{\mathsf{Var}(\hat{\beta}_i)}\right].$$

Reject H_0 if

$$0 \not\in CI$$
,

which means the effect of x_i is significant with evidence.

Question 4: Confidence interval for β_i

Parameter Estimates

Dependent Variable: Sales

						95% Confide	ence Interval
	Parameter	В	Std. Error	t	Siq.	Lower Bound	Upper Bound
•	Intercept	2.939	.312	9.422	.000	2.324	3.554
	TV	.046	.001	32.809	.000	.043	.049
	Radio	.189	.009	21.893	.000	.172	.206
	Newspaper	001	.006	177	.860	013	.011

> confint(fit0)

2.5 % 97.5 % (Intercept) 2.32376228 3.55401646 TV 0.04301371 0.04851558 Radio 0.17154745 0.20551259 Newspaper -0.01261595 0.01054097

Significant? oooooooooo

Confidence interval for the mean response $f(x_0)$ and prediction

Given a set of predictors x_0 , the fitted mean response is

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \dots + \hat{\beta}_p x_{0p}.$$

The CI for $f(\mathbf{x}_0)$ is

$$\left[\hat{y}_0 - t_{1-\alpha/2}^{(n-p-1)}\hat{\sigma}\sqrt{\mathbf{x}_0'(X'X)^{-1}\mathbf{x}_0}, \hat{y}_0 + t_{1-\alpha/2}^{(n-p-1)}\hat{\sigma}\sqrt{\mathbf{x}_0'(X'X)^{-1}\mathbf{x}_0}\right].$$

The CI for a single prediction at \mathbf{x}_0 is

$$\left[\hat{y}_0 - t_{1-\alpha/2}^{(n-p-1)}\hat{\sigma}\sqrt{1+\mathbf{x}_0'(X'X)^{-1}\mathbf{x}_0},\hat{y}_0 + t_{1-\alpha/2}^{(n-p-1)}\hat{\sigma}\sqrt{1+\mathbf{x}_0'(X'X)^{-1}\mathbf{x}_0}\right].$$

Prediction interval in R

Significant?

	Function: 1m()			
Model fit	Package: stats			
component to	Object: lm.fit			
be extracted	Class: lm			
Summary	(summ <- summary(lm.fit))			
Est. method				
$\widehat{m{eta}}$	<pre>coef(lm.fit)</pre>			
$\widehat{\boldsymbol{\beta}}$ $\widehat{\boldsymbol{\beta}}$, se $(\widehat{\boldsymbol{\beta}})$, t -test	coef(summ)			
$\widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}})$	vcov(lm.fit)			
95% CI for $\boldsymbol{\beta}$	<pre>confint(lm.fit) summ\$sigma</pre>			
95% CI for σ	-			

Short summary

Make the steps:

- EDA
- Do simple linear regressions.
- O multiple regression.
- Do necessary hypotheses with conclusion.
- Decide the final fitted model and do the further conclusion with confidence interval.

From p.23, the predictor TV has higher correlation with the response Sales. Do the 3 simple regressions as follows:

```
coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594  0.457843  15.36  <2e-16 ***
           0.047537 0.002691 17.67 <2e-16 ***
TV
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.31164 0.56290 16.542 <2e-16 ***
Radio
            0.20250
                       0.02041 9.921 <2e-16 ***
Residual standard error: 4.275 on 198 degrees of freedom
Multiple R-squared: 0.332. Adjusted R-squared: 0.3287
F-statistic: 98.42 on 1 and 198 DF, p-value: < 2.2e-16
coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.35141
                      0.62142 19.88 < 2e-16 ***
Newspaper 0.05469 0.01658 3.30 0.00115 **
Residual standard error: 5.092 on 198 degrees of freedom
Multiple R-squared: 0.05212, Adjusted R-squared: 0.04733
F-statistic: 10.89 on 1 and 198 DF, p-value: 0.001148
```

Take the TV as the predictor, draw the prediction intervals of mean response.

Multiple regression (refer to fit0)

```
Call:
lm(formula = Sales ~ TV + Radio + Newspaper. data = ad)
Residuals:
   Min
          10 Median
                        30
                              Max
-8.8277 -0.8908 0.2418 1.1893 2.8292
coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.938889 0.311908 9.422
                                   <2e-16 ***
          TV
Radio
          Newspaper -0.001037 0.005871 -0.177 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972. Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

Question: Why Newspaper is not significant here, but is significant in the simple regression?

Example: Advertising data

0000000

Because the predictor Newspaper is not significant, we drop off Newspaper and fit the model again. (Refer to fit12)

Residual standard error: 1.681 on 197 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962 F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16

Evidence to say fit12 is good enough compared to fit0? Use the analysis of variance (ANOVA). What is the null hypothesis?

```
> anova(fit12, fit0)
Analysis of Variance Table
```

```
Model 1: Sales ~ TV + Radio

Model 2: Sales ~ TV + Radio + Newspaper

Res.Df RSS Df Sum of Sq F Pr(>F)

1 197 556.91

2 196 556.83 1 0.088717 0.0312 0.8599
```

Question: Can we use "adjusted R^2 " or mean square error to show the evidence?

The better model is Sales TV + Radio. Give the confidence intervals for the observations that (TV, Radio) = (50, 10) and (290, 20).

```
> CI.fit12 <- predict(fit12,</pre>
                    newdata=data.frame(TV = c(50, 290).
                                        Radio = c(10, 20),
                    interval="confidence", level = 0.95)
 CT.fit12
        fit
                 lwr
                            upr
  7.088783 6.68398
                      7.493586
2 19.949881 19.48780 20.411960
 data.frame(TV = c(50, 290),
             Radio = c(10, 20),
+
             cI.fit12)
   TV Radio
                  fit
                            lwr
                                      upr
   50
         10 7.088783 6.68398
                                 7.493586
2 290
         20 19.949881 19.48780 20.411960
```

Exercise: Credit data

Analysis the Credit data set. The response is balance (average credit card debt for each individual) and there are predictors: age, cards (number of credit cards), education (years of education), income (in thousands of dollars), limit (credit limit), rating (credit rating), own (house ownership), student (student status), status (marital status), and region (East, West or South).

Following the principle of the regression, fit the more appropriate model for the data set.