Библиотека алгоритмов сильного ИИ RU.CHAБ.00853

Протокол проведения экспериментальных исследований

г. Санкт-Петербург

«23» декабря 2023 г.

Объект экспериментальных исследований: компонент RU.CHAБ.00853-01 01 11 Компонент библиотеки алгоритмов сильного ИИ в части алгоритмов интеллектуального анализа поведения человека на основе его мультимодальных данных, обеспечивающих оценивание уровня отдельных персональных качеств личности человека (ОСЕАN-AI).

Цель экспериментальных исследований:

Определение достижения требований Программы ИЦИИ в части состава, показателей назначения и функциональных характеристик объекта экспериментальных исследований.

Участники экспериментальных исследований:

Рюмина Е.В., младший научный сотрудник, СПб ФИЦ РАН; аспирант, Университет ИТМО.

Рюмин Д.А., старший научный сотрудник, СПб ФИЦ РАН.

Карпов А.А., главный научный сотрудник, СПб ФИЦ РАН; профессор, Университет ИТМО.

Место проведения экспериментальных исследований:

СПб ФИЦ РАН, Санкт-Петербург, 14-я линия В.О., д. 39, ауд. 201

Документы, предъявленные на экспериментальные исследования:

- Программа ИЦИИ «Сильный ИИ в промышленности».
- Библиотека алгоритмов сильного ИИ RU.CHAБ.00853. Технический проект.
- Библиотека алгоритмов сильного ИИ RU.CHAБ.00853. Описание программы.
- Библиотека алгоритмов сильного ИИ RU.CHAБ.00853. Руководство программиста.
- Библиотека алгоритмов сильного ИИ RU.CHAБ.00853. Текст программы.

Результаты экспериментальных исследований:

1. Исследование полноты состава и содержания объекта разработки

Рисунок 1 – Скриншот структуры каталогов проекта

https://gitlab.actcognitive.org/itmo-sai-code/oceanai

2. Исследование работы модульных и интеграционных тестов

Модульные и интегральные тесты располагаются по адресу: https://gitlab.actcognitive.org/itmo-sai-code/oceanai/-/tree/main/test в двух файлах unit_tests_fi_en.py и unit_tests_mupta_ru.py.

Рисунок 2 – Скриншот выполнения модульных и интегральных тестов

3. Исследование возможностей решения прикладных задач ИИ в промышленности

Компонент OCEAN-AI реализует алгоритмы для автоматического персональных качеств личности человека (ПКЛЧ) по его лицевым, голосовым и текстовым характеристикам (мультимодальное оценивание аудио-, видео- и текстовой информации). В качестве модели оценивания ПКЛЧ используется модель OCEAN, включающая пять качеств: «Открытость опыту» (Openness to experience/Openness), «Добросовестность» (Conscientiousness), «Экстраверсия» (Extraversion), «Доброжелательность» (Agreeableness), «Эмоциональная стабильность» (Non-Neuroticism). Компонент решает три прикладные задачи.

Задача 1: ранжирование потенциальных кандидатов для выполнения профессиональных обязанностей

Пример решения задачи 1 расположен по адресу: https://gitlab.actcognitive.org/itmo-sai-code/oceanai/-/blob/main/docs/source/user_guide/notebooks/Pipeline_practical_task_1.ipynb. Задача решается в два этапа.

Этап 1: Получение гипотез предсказаний

Рисунок 3 — Скриншот выполнения первого этапа: получение оценок ПКЛЧ (общий этап для всех прикладных задач)

Этап 2: Ранжирование потенциальных кандидатов по профессиональным обязанностям

Внешние параметры

Рисунок 4 — Скриншот выполнения второго этапа: ранжирование потенциальных кандидатов по профессиональным обязанностям инженера-проектировщика

Задача 2: прогнозирование потребительских предпочтений по выбору промышленных потребительских товаров

Пример решения задачи 2 расположен по адресу: https://gitlab.actcognitive.org/itmo-sai-code/oceanai/-/blob/main/docs/source/user_guide/notebooks/Pipeline_practical_task_2.ipynb.

Задача решается в два этапа. Первый этап аналогичен задаче 1.

Этап 2: Прогнозирование потребительских предпочтений на промышленные товары

	Trai	Performance	Classic car featur	res Luxury addit	ons Fashion and	attention	Recreation	Technology	Family friendly	Safe and reliable	Practical and easy to use	Economical/low of	ost Basic feature
)													
1	Opennes	0.020000	-0.0333	33 -0.030	000	-0.050000	0.033333	0.013333	-0.030000	0.136667	0.106667	0.093	333 0.00666
2 (Conscientiousnes	0.013333	-0.1933	33 -0.063	333	-0.096667	-0.096667	0.086667	-0.063333	0.280000	0.180000	0.130	000 0.14333
3	Extraversion	0.133333	0.0600	0.106	667	0.123333	0.126667	0.120000	0.090000	0.136667	0.043333	0.073	333 0.05000
4	Agreeablenes	-0.036667	-0.1933	33 -0.133	333	-0.133333	-0.090000	0.046667	-0.016667	0.240000	0.160000	0.120	0.08333
5	Neuroticism	0.016667	-0.0066	67 -0.010	000	-0.006667	-0.033333	0.046667	-0.023333	0.093333	0.046667	0.046	667 -0.04000
Ξ							Выходн	ые данные					
езу	ультат прогн	озирования:											
		Pati	n Openness Cons	cientiousness Extra	ersion Agreeablene	s Non-Neu	uroticism	Priority	1 Pric	ority 2 Pr	ority 3 Trait importance 1	Trait importance 2 Tra	it importance 3
	Person ID												
	1 spe	ker_01_center_83.mo	v 0.564985	0.539052 0.	40615 0.5925	1	0.488763 Pra	ictical and easy to us	e Economical/lo	w cost Family	friendly Agreeableness	Openness	Non-Neuroticism
	2 spe	ker_07_center_83.mo	v 0.435976	0.486683 0.	13828 0.41544	6	0.396618	Classic car feature	s Fashion and atte	ention Luxury ac	ditions Agreeableness	Conscientiousness	Openness
	3 spe	ker_10_center_83.mo	v 0.498542	0.511243 0.	12592 0.46894	7	0.44399	Classic car feature	s Fashion and att	ention Luxury ac	ditions Agreeableness	Conscientiousness	Openness
		ker 29 center 83 mo	0.557074	0.551706 0	86066 0.59802	0	0.508621	Cafe and reliable	Dractical and easy	to use Economical/l	ow cost Conscientiousness	Agreeableness	Onenness

Рисунок 5 — Скриншот выполнения второго этапа: прогнозирование потребительских предпочтений на промышленные товары на примере характеристик автомобиля

Задача 3: формирование эффективных рабочих коллективов

Пример решения задачи 3 расположен по адресу: https://gitlab.actcognitive.org/itmo-sai-code/oceanai/-/blob/main/docs/source/user_guide/notebooks/Pipeline_practical_task_3.ipynb.

Задача решается в два этапа. Первый этап аналогичен задаче 1.

Этап 2: Формирование эффективных рабочих коллективов

Рисунок 6 — Скриншот выполнения второго этапа: формирования эффективных рабочих коллективов на примере поиска подходящего старшего или младшего коллеги

Замечания и рекомендации: нет

Выводы:

- 1) Экспериментальные исследования компонента RU.CHAБ.00853-01 01 11 проведены в полном объеме.
- 2) Компонент RU.CHAБ.00853-01 01 11 обеспечивает достижение требований Программы ИЦИИ в части состава, показателей назначения и функциональных характеристик объекта экспериментальных исследований в рамках мероприятия М1 «Выполнение опережающих исследований и разработок в области алгоритмов сильного ИИ» (1.1.6-1.1.7 Разработка и испытания экспериментального образца библиотеки алгоритмов сильного ИИ в части интеллектуальной детекции событий и смыслов на основе мультимодальных данных (текст, звук, изображения в разных диапазонах) для задач распознавания режимов работы и неисправностей оборудования) согласно Плану ИЦ ИИ «Сильный ИИ в промышленности» в рамках федерального проекта «Искусственный интеллект».

Испытания проводили:

Рюмина Е.В.	
Рюмин Д.А.	
Карпов А.А.	