16BS1003 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMET, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular & Supplementary Examinations, December-2017 ENGINEERING PHYSICS

(Common to ECE, CSE, & IT Branches)

Time: 3 Hours Max Marks: 70M

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of question must be answered at one place only

		<u>UNIT-I</u>	
1.	a)	Define Interference?	2M
	b)	Derive the condition for path difference for interference in parallel thin film due to reflected light?	8M
	c)	In a Newton's rings experiment the diameter of the 15 th and 5 th rings were 0.59 and 0.336 cm. If the wave length of light used is 5890 A°. Calculate the radius of the plano-convex lens?	4M
•	,	(\mathbf{OR})	43.5
2.	a)	Distinguish between Interference and Diffraction	4M
	b)	Explain Fraunhofer Diffraction due to a single slit and derive conditions for principle maxima, secondary maxima and minima. Draw intensity distribution curve.	10M

UNIT-II

3. a)	Explain the three quantum processes that may occur when	6M
	light radiation interacts with matter with neat diagrams	
b)	Explain construction and working of Ruby laser with help of	8M
	neat diagrams	
	(\mathbf{OD})	

- 4. a) Define acceptance angle and numerical aperture. Derive the 8M expression for both of them
 - b) Explain the differences between the step index fiber and graded 6M index fiber

UNIT-III

- 5. a) State Heisenberg uncertainty principle. Show that electrons 8M cannot exist within the nucleus on the basis of the above principle.
 - b) An electron beam is accelerated from rest through a potential 4M difference of 10000 V. Calculate the associated wavelength.
 - c) Why is the wave nature of matter not apparent to our daily 2M observation? Give a suitable example to illustrate the point.

(OR)

- 6. a) Derive the Eigen values and Eigen functions for a particle in one 8M dimensional box.
 - b) Give the comparison between the MB, BE, FD statistics.

UNIT-IV

6M

6M

4M

4M

- 7. a) What are the properties of dia, para and ferromagnetic materials? 8M
 - b) What is the Bohr magneton? Derive the expression for the Bohr 6M magneton.

(OR)

8. a) Give an account of domain theory of ferromagnetism.

b) Distinguish between soft and hard magnetic materials. 4M

c) Explain the concept of magnetostriction and its applications.

UNIT-V

- 9. a) Define the terms i) electric field intensity ii) electric 6M displacement iii) Dielectric constant iv) susceptibility v) Relation between D,E and P
 - b) Describe the phenomenon of electronic polarization and obtain 8M an expression for electronic Polarizability in terms of radius of the atom.

- 10. a) Explain the phenomenon of Ferro electricity with particular 6M reference to the BaTio₃.
 - b) Explain the frequency dependence of polarization.
 - c) Explain the various applications of dielectric materials. 4M

CODE: 16BS1004 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Regular & Supplementary Examinations, December-2017

ENGINEERING CHEMISTRY

(Common to CE, EEE & ME Branches)

Time: 3 Hours Max Marks: 70

> Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place.

UNIT-I

1.	(a)	Differentiate between addition polymerisation and condensation polymerisation with suitable examples	6M
	(b)	Describe a moulding method for thermoplastic resins with a neat diagram	8M
(OR)			
2.	(a)	Explain the role of gypsum in setting and hardening of cement	6M
	(b)	What are the different steps involved in the manufacture of cement by the "wet process"? Discuss various reactions taking place in rotating kiln?	8M
		<u>UNIT-II</u>	
3.	(a)	What is meant by sterilisation of water? Explain how sterilisation of water is carried out by using Chlorine & Ozone	6M
	(b)	What is hardness? State the Zeolite process for the removal	8M
		of hardness of water	
		(\mathbf{OP})	

- 4. (a) A water sample contains $Ca(HCO_3)_2 = 32.4 \text{ mg/l}$; 9M $Mg(HCO_3)_2 = 29.2 \text{ mg/l}$; $CaSO_4 = 13.5 \text{ mg/l}$. Calculate the temporary and permanent hardness of water in ppm and °Clarke and °French
 - (b) What is reverse osmosis? How is seawater purified using 5M this technique?

UNIT-III

5.	(a)	Explain the rusting of Iron with the help of electrochemical theory of corrosion	8M
	(b)	Discuss the following (i) A copper equipment should not possess a small steel bolt (ii) Impure metal corrodes faster than pure metal under identical conditions	3M 3M
		(OR)	
6.	(a)	Differentiate between chemical corrosion and electrochemical corrosion	6M
	(b)	Explain the mechanism of differential aeration corrosion. Give two examples where differential aeration effects are seen	8M
		<u>UNIT-IV</u>	
7.	(a)	With the help of a labelled diagram describe the fractional distillation of crude petroleum and name the various products	8M
	(b)	obtained with their industrial uses What is meant by knocking? Describe the function of TEL	6M
		(OR)	
8.	(a)	Define a Lubricant. How does lubrication occur by thin film boundary lubrication?	6M
	(b)	What is viscosity? Explain the determination of the viscosity index of lubricating oil. Suggest measures to improve the viscosity index of an oil sample	8M
		<u>UNIT-V</u>	
9.	(a)	What is single electrode potential? Explain construction and working of a calomel electrode	7M
	(b)	Explain Faraday's law of electrolysis	7M
		(OR)	
10.	(a)	How can you obtain electricity from solar energy? Explain the principle and working of a solar cell.	7M
	(b)		7M

CODE: 13BS1004 SET-1
ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI
(AUTONOMOUS)
I B.TECH I SEM SUPPLEMENTARY EXAMINATIONS, DECEMBER-2017

ENGINEERING PHYSICS (Common to CIVIL, MECH, CSE, IT)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) What is the Principle of super position of waves.
 - b) Define diffraction of light.
 - c) What is meant by population inversion.
 - d) What is the acceptance angle of optical fibre.
 - e) What is unit cell.
 - f) Define Miller indices.
 - g) Define magnetic permeability.
 - h) Define electric filed.
 - i) Define mobility of electrons.
 - j) What is the physical significance of wave function.

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- 2. a) Derive the expressions for diameters of dark and bright rings 8M in Newton's rings experiment.
 - b) In Newton's rings experiment the diameter of 8th ring was 0.35 cm and diameter of 18th ring was 0.65cm. If the wavelength of light used is 6000A⁰. Find the radius of curvature of plano convex lens.

- 3. a) Describe Fraunhoffer diffraction due to single slit and deduce **8M** the expressions for maxima and minima.
 - b) Comparison between Fresnel and Fraunhofer diffractions of light.

UNIT-II

4.	a) b)	What are characteristics of laser light. With the suitable diagrams explain the construction and working of Ruby Laser.	4M 8M
5.	a) b)		4M 8M
		<u>UNIT-III</u>	
6.	a) b)	Define i) Space lattice and ii) Basis Deduce the packing fraction of BCC structure. (OR)	4M 8M
7.	a)		6M
	b)	Derive an expression for inter planar spacing between parallel planes having Miller indices (h k l).	6M
		<u>UNIT-IV</u>	
8.	a)b)	and ferro materials Find the relative permeability of ferromagnetic material if field of strength 220A/m produces magnetisation of 3300A/m	8M 4M
		in it. (OR)	
9.	a) b)	Define i) Displacement vector and ii) Dielectric constant. Describe the phenomenon of electronic polarization and obtain the expression for electronic polarizability.	4M 8M
<u>UNIT-V</u>			
10	. a) b)		4M 8M
11	. a)		4M
	b)		8M

CODE: 13BS1005 SET-2 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.TECH I SEM SUPPLEMENTARY EXAMINATIONS, December-2017 ENGINEERING CHEMISTRY

(Common to ECE, EEE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) Define addition polymerization?
 - b) What is a gypsum plaster?
 - c) What are the uses of P.V.C.
 - d) What is meant by hardness of water?
 - e) What is concentration cell corrosion?
 - f) Give examples for metals used as sacrificial anodes.
 - g) What is meant by cracking?
 - h) Write the importance of neutralization number of a lubricant.
 - i) What is green house effect?
 - j) What are photo voltaic cells?

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- 2. a) Discuss the preparation, properties and applications of i) Teflon ii) Nylon 6:6
 - b) Describe the manufacturing process of cement with a neat diagram. (6+6)

- 3. a) Discuss the chemistry of setting and hardening of cement.
 - b) Discuss about the moulding constituents of plastics. (6+6)

UNIT-II

- 4. a) What is break point chlorination? Explain
 - b) Explain reverse osmosis method.
 - c) What is the role of coagulants in purification of water? (4+4+4)

(OR)

- 5. a) Discuss zeolite method for softening of water. Mention its drawbacks.
 - b) Explain hot lime soda method for softening of water. Write the disadvantages. (6+6)

UNIT-III

- 6. a) Explain the mechanism of electrochemical corrosion of iron in the presence of acid.
 - b) What are the factors affecting the rate of corrosion? Suggest some prevention methods. (6+6)

(OR)

- 7. a) Explain i) Sacrificial anode method ii) Impressed current method.
 - b) Explain the role of corrosion inhibitors in prevention of corrosion. (6+6)

UNIT-IV

- 8. a) Discuss fractional distillation of petroleum with a neat diagram.
 - b) Explain the mechanism of hydrodynamic lubrication. (6+6) (OR)
- 9. a) Write the significance of i) Cloud and Pour point ii) Flash and Fire point.
 - b) Discuss about octane number and cetane number of fuels. (6+6)

UNIT-V

- 10. a) Write the 12 principles of green chemistry
 - b) Write the biomedical applications of nano materials (8+4) (OR)
- a) Explain preparation, properties and applications of carbon nano tubes.
 - b) Write engineering applications of green synthesis. (8+4)