Codurile Luby-Transform (LT)

TACCFDRT Curs 2

Codurile Luby-Transform (LT)

- Codurile LT reprezintă prima realizare practică a codurilor rateless; nu trebuie definită o rată fixă înainte de codare
- Se poate construi un flux infinit de pachete codate din pachetele informaţionale

Principiul de codarea LT [3]

101011101

- Pentru pachetul codat care urmează să fie generat se alege aleator un grad d, conform unei distribuţii predefinite
- Se aleg aleator d pachete din mulţimea pachetelor informaţionale
- Pachetul codat se obţine adunând modulo doi pachete selecţionate la pasul anterior

Graful asociat codului

Principiul de decodare

- Regula de decodare
 - Dacă există minim un simbol codat care are un singur vecin, atunci valoarea vecinului respectiv este o copie a simbolului codat.
 - Valoarea simbolului de intrare recuperat va fi adunat modulo 2 cu toate simbolurile codate rămase care au ca şi vecin acel simbol de intrare
 - gradul simbolurilor codate, la care a fost adunat simbolul informațional recuperat este redus cu unu, și acest simbol de intrare este eliminat din lista vecinilor

 Pt studierea distribuţiilor se reformulează procesul de decodare:

La început toate simbolurile informaționale sunt descoperite

1100010010/0

 În prima etapă toate simbolurile codate care sunt formate dintrun singur simbol informațional, "acoperă" singurul lor vecin.
 Mulțimea formată din simbolurile acoperite, care încă nu au fost procesate, se numește "riplu"

- În pașii următor este luat câte un simbol informațional din riplu, este adunat la simbolurile codate la care este vecin și se reduce gradul acestor simboluri.
- Dacă un simbol codat astfel va avea grad 1, acest simbol va acoperi vecinul său, iar acest simbol codat astfel va fi "achitat" Dacă acest vecin acoperit nu a fost acoperit mai devreme, de un alt simbol codat, atunci dimensiunea riplului crește.

- Procesul se termină când riplul se golește
 - Procesul de decodare este cu succes dacă la golirea riplului nu mai sunt simboluri de intrare neacoperite.

Pachet achitat în momentul k-L

• Probabilitatea q(d,L) ca un pachet cu gradul inițial d să fie achitat când mai sunt L pachete informaționale neprocesate este: q(1,k)=1

pentru
$$d = 2,...,k$$
 si $L = k - d + 1,...,1$

$$q(d,L) = \frac{\binom{k - (L+1)}{d-2} \cdot \binom{L}{1}}{\binom{k-1}{d}} = \frac{d(d-1) \cdot L \prod_{j=0}^{d-3} k - (L+1) - j}{\prod_{j=0}^{d-1} k - j}$$

pentru celelalte valori d si L

$$q(d,L)=0;$$

17

- Probabilitatea r(d,L) este probabilitatea ca un simbol codat să aibă gradul d, și să fie achitat când mai sunt L simboluri de intrare neprocesate
 - r(d,L)=p(d)q(d,L)
- Probabilitatea r(L) ca un pachet să fie achitat când mai sunt L pachete informaționale neprocesate este:

$$r(L) = \sum_{d} r(d, L) = \sum_{d=2}^{k} p(d) \frac{d(d-1) \cdot L \prod_{j=0}^{d-3} k - (L+1) - j}{\prod_{j=0}^{d-1} k - j}$$

- Cerințele impuse unei distribuții de graduri sunt:
 - Un număr mediu de simboluri codate cât mai mic posibil pentru a asigura succesul procesului LT.
 - Gradul mediu al simbolurilor cât mai mic posibil.
 Gradul mediu definește numărul operațiilor de simbol necesare pentru generarea unui simbol codat, iar k*(grad mediu) este numărul operațiilor necesare pentru recuperarea completă a datelor.

- O proprietate elementară a unei distribuții "ideale" este ca la procesul de decodare, la procesarea unui simbol informațional la riplu să fie adăugat un simbol acoperit.
- Asta asigură că dimensiunea riplului să nu fie niciodată prea mică sau prea mare.
- r(L) –este
 probabilitatea ca la
 riplu să fie adunat un
 singur simbol la
 procesarea simbolului
 k-(L+1)

21

Ţinând cont că:

COLL CAL
$$r(L) = \sum_{d=2}^{k} r(d, L) = \sum_{d=2}^{k} p(d) \frac{d(d-1) \cdot L \prod_{j=0}^{d-3} k - (L+1) - j}{\prod_{j=0}^{d-1} k - j}$$

Şİ

$$\sum_{d=2}^{k} \frac{L \prod_{j=0}^{d-3} k - (L+1) - j}{\prod_{j=0}^{d-1} k - j} = 1 \quad pt \ orice \ L > 1$$

Rezultă distribuția Soliton ideală:

$$p(d) = \begin{cases} \frac{1}{k}; & \text{pt } d = 1\\ \frac{1}{d(d-1)}; & \text{pt } d = 2, \dots, k \end{cases}$$

- Sunt necesare exact k simboluri codate pentru reconstruirea celor k simboluri de intrare
- Dimensiunea riplului este 1 pe toată durata decodări
- PERFORMAŢE FOARTE SLABE în practică
 - Deoarece riplul este foarte scurt, riplul poate să se golească înaintea decodării tuturor mesajelor informaționale

- Cu cât dimensiunea riplului este mai mare cu atât probabilitatea ca riplul să se golească înaintea recuperării tuturor simbolurilor informaționale este mai mică
- Pentru a minimiza numărul total de simbolul codate utilizate la recuperarea simbolurilor informaționale dimensiunea riplului trebuie să fie cât mai mic posibil

- Cât trebuie să fie suma gradurilor pachetelor recepționate ca fiecare pachet informațional să fie acoperit cu probabilitate 1-δ?
 - Problema este echivalentă cu problema "clasică" coşuri şi mingi:
 - avem k coşuri
 - se aruncă K mingi, fiecare minge intră într-unul dintre coșuri
 - Câte mingi trebuie aruncate ca probabilitatea ca în fiecare coş să intre cel puțin o minge să fie 1-δ

- Câte mingi trebuie aruncate ca probabilitatea ca în fiecare coş să intre cel puţin o minge să fie 1-δ
- Probabilitatea ca o minge să intre în coșul i este 1/k
- Probabilitatea ca după N încercări să existe un coş gol este:

 $k\left(1-\frac{1}{k}\right)^{N}$

 Probabilitatea ca după N încercări să existe un coş gol trebuie să fie δ

$$k\left(1 - \frac{1}{k}\right)^{N} = \delta$$

Logaritmând ecuația obținem:

$$\ln\left(1 - \frac{1}{k}\right)^{N} = \ln\left(\frac{\delta}{k}\right)$$

$$\ln\left(1 - \frac{1}{k}\right)^{N} = \ln\left(\frac{\delta}{k}\right)$$

Dar....

$$N \ln \left(1 - \frac{1}{k} \right)^{\frac{k}{k}} = \ln \left(\frac{\delta}{k} \right)$$

Adică....

$$N\frac{1}{k}\ln\left(1 - \frac{1}{k}\right)^{k} = \ln\left(\frac{\delta}{k}\right)$$

Dacă k este suficient de mare atunci:

$$\left(1 - \frac{1}{k}\right)^{k} \approx \frac{1}{e} \quad \text{i} \quad N \frac{1}{k} \ln\left(\frac{1}{e}\right) = \ln\left(\frac{\delta}{k}\right)$$

$$N\frac{1}{k}\ln\left(\frac{1}{e}\right) = \ln\left(\frac{\delta}{k}\right)$$

Dar....

$$N \ln (e) = k \cdot \ln \left(\frac{k}{\delta}\right)$$

Adică

$$N = k \cdot \ln\left(\frac{k}{\delta}\right)$$

- Dacă dimensiunea riplului este $\ln\left(\frac{k}{\delta}\right)\sqrt{k}$ atunci probabilitatea de golire a riplului înainte de terminarea decodării este maxim δ
 - Cu procesarea unui nod riplul poate să scadă sau poate să crească cu unu
 - Asta este echivalent cu un "random walk" unidimensional care are lungimea pasului egală cu unu
 - În cazul unui "random walk" de lungime k, o deviație față de valoarea medie mai mare ca $\ln\left(\frac{k}{\delta}\right)\sqrt{k}$ apare cu probabilitatea δ

- Pentru un compromis se acceptă că din K pachete recepţionate, decodorul LT nu reuşeşte să determine informaţiile originale cu probabilitatea δ
- pentru asigurarea ca probabilitatea de eroare să fie maxim δ, dimensiunea riplului trebuie să fie:

$$\ln\left(\frac{k}{\delta}\right)\sqrt{k}$$

 Iar numărul pachetelor codate necesare pentru decodare este:

$$K = k + O\left(\ln^2\left(\frac{k}{\delta}\right)\sqrt{k}\right)$$

30

Se alege lungimea riplului dorit ca fiind:

$$R = c \ln\left(\frac{k}{\delta}\right) \sqrt{k} \quad unde \ c > 0$$

Se definește τ(d) ca fiind

$$\tau(d) = \begin{cases} \frac{R}{dk} & \text{pt } d = 1, \dots, \frac{k}{R} - 1\\ \ln\left(\frac{R}{\delta}\right) & \text{pt } d = \frac{k}{R}\\ 0 & \text{pt } d = \frac{k}{R} + 1, \dots, k \end{cases}$$

 Se adună distribuția ideală p(d) la T(d), normalizând această sumă cu β se obține distribuția robustă μ(d)

$$\beta = \sum_{d=1}^{k} p(d) + \tau(d)$$

$$\mu(d) = \frac{p(d) + \tau(d)}{\beta}$$

- Valoarea medie a gradurilor este c/n(k)
- Ovearheadul necesar este proporţional cu K

$$p(d) = \begin{cases} \frac{1}{k}; & pt \ d = 1 \\ \frac{1}{d(d-1)}; & pt \ d = 2, ..., k \end{cases}$$

$$\tau(d) = \begin{cases} \frac{R}{dk} & pt \ d = 1, ..., \frac{k}{R} - 1 \\ \frac{\ln\left(\frac{R}{\delta}\right)}{k} & pt \ d = \frac{k}{R} \\ 0 & pt \ d = \frac{k}{R} + 1, ..., k \end{cases}$$

 Distribuţia soliton ideală şi robustă pentru k=10000, c=0.2, δ=0.05, R=244, k/R=41, iar β≈1.3 [1]

[1] MacKay, D.J.C.: 'Information theory, inference, and learning algorithms' -Cambridge

- În articolul lui Luby (2002) a demonstrat că primele valori a distribuției τ(d) (d mic) asigură pornirea procesului de decodare, adică asigură ca la începutul decodării riplul să "crească" la dimensiunea dorită
- iar valoarea relativ ridicată a funcției $\tau(d)$ pentru d = k/R este inclus pentru a asigura ca fiecare simbol (pachet) informațional are cel puțin un vecin între simbolurile recepționate, adică acest "vârf" asigură ca suma gradurilor să fie suficient de mare ca cele $K = k + O\left(\ln^2\left(\frac{k}{\delta}\right)\sqrt{k}\right)$ pachete recepționate să acopere toate cele k simboluri informaționale

- Deoarece gradul pachetelor nu este constant
 - Timpul de codare/decodare nu este liniară
 - Probabilitatea de pierdere a pachetelor nu este uniformă
- Problema este rezolvată de codurile Raptor introduse de Amin Shokrollahi

Coduri Tornado

 Codurile Tornado sunt construite pe baza unor grafuri bipartite

[2] John W.Byers, Michael Luby, Michael Mitzenmacher, Ashutosh Rege; "A Digital Fountain Approach to Reliable Distribution of Bulk Data" - Proceedings of the ACM SIG@@44M '98

35 TACCFDRT - Curs 2

Coduri Tornado

- în prima etapă din cele k pachete informaționale se obțin βk pachete de control (β număr pozitiv subunitar) conform grafului B1
- în a doua etapă pornind de la cele βk pachete de control obținute în etapa anterioară se obțin alte ββk pachete de control conform grafului B2

Coduri Tornado

- în ultima (m-a) etapă se utilizează un cod corector de ștergeri "clasic", C, cu rata 1- β care poate să corecteze β ștergeri
- Codul C are β^{m-1}k simboluri (pachete) la intrare, și generează β
 β^{m-1}k/(1- β) simboluri de control adiționale
- Numărul simbolurilor de control generate în cele m etape este

$$\sum_{i=1}^{m-1} \beta^i k + \frac{\beta^m k}{1-\beta} = \frac{k\beta}{1-\beta}$$

Coduri Tornado

rata globală va fi:

$$R = \frac{k}{k + \frac{k\beta}{1 - \beta}} = \frac{k}{\frac{k - k\beta + k\beta}{1 - \beta}} = 1 - \beta$$

• Codul global C(B₁,B₂,....B_{m-1},C) este un corector de ștergeri cu rata 1-β, care poate să corecteze cu probabilitate mare orice stergere până la lungime B

Coduri Tornado

- Procesul de codare constă în sumarea modulo 2 a pachetelor conform grafului "generator"
- Pachetele recepţionate sunt "substituite" în ecuaţiile de control
- Prin înlocuirea variabilelor în ecuații de control, se pot reconstitui pachetele pierdute, utilizând adunări modulo 2
- De regulă primele k pachete sosite generează un număr redus de "rezolvări", dar când numărul pachetelor recepționate este mai mare de k, un pachet recepționat generează o avalanșă de "rezolvări" permițând reconstrucția pachetelor informaționale

- Deoarece nodurile din graf au un număr redus de vecini (ecuații cu putini termeni) operațiunea de codare și decodare nu necesită multe operații
- Numărul de operații pentru obținerea pachetelor redundante depinde numai de gradul nodului respectiv
- Complexitatea decodării depinde tot de gradul nodurilor și de "poziția" pachetelor recepționate în graf
- Codurile Tornado sunt tot coduri cu lungime finită, deci pentru utilizarea lor ca DF pachetele codate se transmit întrețesute ciclic

Comparaţie între timpii de codare şi decodare

Timpul de codare, pachete 1K		
Size	Reed-Solomon	Tornado
250 K	4.6 sec.	0.11 sec.
500 K	19 sec.	0.18 sec.
1 MB	93 sec.	0.29 sec.
2 MB	442 sec.	0.57 sec.
4 MB	30 min.	1.01 sec.
8 MB	2 hrs.	1.99 sec.
16 MB	8 hrs.	3.93 sec.

Timpul de decodare		
Size	Reed-Solomon	Tornado
250 K	2.06 sec.	0.18 sec.
500 K	8.4 sec.	0.24 sec.
1 MB	40.5 sec.	0.31 sec.
2 MB	199 sec.	0.44 sec.
4 MB	13 min.	0.74 sec.
8 MB	1 hr.	1.28 sec.
16 MB	4 hrs.	2.27 sec.

[1] John W.Byers, Michael Luby, Michael Mitzenmacher, Ashutosh Rege; "A Digital Fountain Approach to Reliable Distribution of Bulk Data" -Proceedings of the ACM

SIOOOM '98

TACCFDRT - Curs 2

Tornado vs LT

- Atât codurile RS cât şi codurile Tornado sunt coduri sistematice, în schimb codurile LT sunt nesistematice
- memoria necesară pentru codarea decodarea codurilor tornado este mult mai mare decât în cazul codurilor LT
- codurile LT sunt coduril rateless iar codurile tornado au rata finită
- Codurile Tornado sunt generate pe baza grafurilor cu grad maxim constant, în schimb codurile LT au grafuri cu densitate logaritmică

Coduri Raptor(RAPide TORnado)

- Primul cod DF cu timp de codare şi decodare liniară
- au fost inventate in 2000/2001 publicate in 2004
- Se acceptă ca o fracțiune maxim δ din simbolurile de intrare a unui cod LT să nu fie acoperite la terminarea procesului de decodare LT
- Aceste simboluri "pierdute" se pot recupera utilizând un cod corector de ştergeri clasic
 - Se cunoaște numărul maxim de ștergeri posibile
- Implică o precodare cu un cod corector de ștergeri clasic

Codare cu cod corector de ștergeri

LT-"light"

decodor LT

Codare cu cod corector de ștergeri

- Dacă precodorul este ales în mod corespunzător, atunci se poate utiliza un cod LT cu gradul mediu constant, care asigură timp de codare liniară
- Un cod Raptor (k,C, Ω (d))este definit de numărul de pachete informaționale k, codul corector de ștergeri C și distribuția gradurilor al codului LT Ω (d)

Coduri Raptor

- Parametrii principali de performanță ai codului Raptor sunt definite după cum urmează:
 - Spaţiul de memorie: Codurile Raptor necesită spaţiu de stocare pentru simbolurile intermediare, Consumul de spaţiu al codurilor Raptor este k/R, unde R este rata pre-codului.
 - Overhead: Overheadul este o funcție a algoritmului de decodare folosit, și este definit ca numărul de simboluri de ieșire pe care trebuie să aibă decodorul pentru a recupera cu probabilitate mare simbolurile de intrare. Un overhead de 1+ε însemnă că trebuie recepționate k(1+ε) simboluri de ieșire pentru a asigura o decodare cu succes cu o probabilitate mare.
 - Costul: Costul procesului de codare şi de decodare.

Probleme legate de DF

- Implementarea oricărei aplicații, se poate face numai cu acordul DF inc.
- "...but networking people do not want to deal with developing codes." [1]
- datorită drepturilor de autor aplicațiile cu DF sunt foarte puțin cunoscute