Journées des Doctorants 2017

Practical resolution of the coherence of formulae in modal logic

Valentin Montmirail

CRIL-CNRS UMR 8188, F62300 Lens, France

Le Touquet - May 29th 2017

Thesis Subject

Thesis goal

Create an efficient solver to answer modal logic satisfiability problems [BvBW06] (Called here Modal-SAT)

- Reduction from Modal-SAT to an existing problem for which there are already solvers (SAT [SV09], SMT [AFM15], ASP [ON04], ...)
- Create an "ad-hoc" solver for Modal-SAT by adapting the techniques of the best solvers above

Preliminaries: Modal Logic

Modal Logic = Propositional Logic + \square and \diamondsuit

Modal Logic

- $ightharpoonup \Box \phi$ means ϕ is necessarily true
- $\triangleright \diamond \phi$ means ϕ is possibly true

$$\Diamond \phi \leftrightarrow \neg \Box \neg \phi$$
$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

$$\Box \phi \leftrightarrow \neg \Diamond \neg \phi$$

Preliminaries: Kripke Structure

▶ P finite non-empty set of propositional variables

Kripke Structure [Kri59]

 $M = \langle W, R, V \rangle$ with:

- ► W, a non-empty set of possible worlds;
- R, a binary relation on W;
- ▶ V, a function that associate to each $p \in \mathbb{P}$, the set of possible worlds where p is true.

Pointed Kripke Structure: $\langle \mathcal{K}, w \rangle$

- ► K: Kripke Structure
- w is a possible world in W

Preliminaries: Satisfaction Relation

Definition (Satisfaction Relation)

The relation ⊨ between Kripke Structures and formulae is recursively defined as follows:

$$\begin{split} \langle \mathcal{K}, w \rangle &\models p & \text{iff} & w \in V(p) \\ \langle \mathcal{K}, w \rangle &\models \neg \phi & \text{iff} & \langle \mathcal{K}, w \rangle \not\models \phi \\ \langle \mathcal{K}, w \rangle &\models \phi_1 \land \phi_2 & \text{iff} & \langle \mathcal{K}, w \rangle \models \phi_1 \text{ and } \langle \mathcal{K}, w \rangle \models \phi_2 \\ \langle \mathcal{K}, w \rangle &\models \phi_1 \lor \phi_2 & \text{iff} & \langle \mathcal{K}, w \rangle \models \phi_1 \text{ or } \langle \mathcal{K}, w \rangle \models \phi_2 \\ \langle \mathcal{K}, w \rangle &\models \Box \phi & \text{iff} & (w, w') \in R \text{ implies } \langle \mathcal{K}, w' \rangle \models \phi \\ \langle \mathcal{K}, w \rangle &\models \Diamond \phi & \text{iff} & (w, w') \in R \text{ and } \langle \mathcal{K}, w' \rangle \models \phi \end{split}$$

 $\mathcal K$ that satisfied a formula ϕ will be called "Kripke model of ϕ "

Preliminaries: Example of a Kripke Structure

$$\checkmark \phi_1 = \Box(\bullet)$$

$$\times \phi_2 = \Box \diamondsuit (\bullet)$$

Figure: Example K

Preliminaries: Different axioms ↔ Different logics

Axioms Schemata and corresponding properties

Name	Condition on ${\mathcal K}$	First Order constraint
Axiom (K)	None	
Axiom (T)	Reflexivity	$\forall w.R(w,w)$
Axiom (B)	Symmetry	$\forall w_1. \forall w_2. (R(w_1, w_2) \to R(w_2, w_1))$
Axiom (D)	Seriality	$\forall w_1.\exists w_2.R(w_1,w_2)$
Axiom (4)	Transitivity	$\forall w_1. \forall w_2. \forall w_3. ((R(w_1, w_2) \land R(w_2, w_3)) \rightarrow R(w_1, w_3))$
Axiom (5)	Euclideanity	$\forall w_1. \forall w_2. \forall w_3. ((R(w_1, w_2) \land R(w_1, w_3)) \rightarrow R(w_2, w_3))$

Structure Kind	Structural Properties	Structure Kind	Structural Properties
K		(S4) KT4 = KDT4	Reflexive and Transitive
KB	Symmetric	K45	Transitive and Euclidean
KT = KDT	Reflexive	KD	Serial
K4	Transitive	KDB	Serial and Symmetric
K5	Euclidean	KD4	Serial and Transitive
KBT = KBDT	Symmetric and Reflexive	KD5	Serial and Euclidean
KB4 = KB5 = KB45	Symmetric and Transitive	KD45	Serial, Transitive and Euclidean
(S5) KT5 = KBD4 = KBD	Equivalence		
KBT45 = KDT45 = KBDT4			

Preliminaries: Different logics → Different complexities

Proofs of complexities are in [Lad77, HR07]

Modal Logic S5 solver: S52SAT

- Translation from S5-SAT to SAT.
- Polynomial reduction: S5-SAT is NP-complete [Lad77]
- ► Improvement upper-bound: Diamond-Degree (dd) [CLB+17]

$$\begin{aligned} \operatorname{tr}(\phi,n) &= \operatorname{tr}(\phi,1,n) \\ \operatorname{tr}(p,i,n) &= p_i \\ \operatorname{tr}(\neg \psi,i,n) &= \neg \operatorname{tr}(\psi,i,n) \\ \operatorname{tr}(\neg \psi,i,n) &= \neg \operatorname{tr}(\psi,i,n) \\ \operatorname{tr}(\neg \phi,i,n) &= \bigwedge_{j=1}^{n} ((\operatorname{tr}(\phi,j,n)) \\ \operatorname{tr}(\Diamond \phi,i,n) &= \bigvee_{j=1}^{n} ((\operatorname{tr}(\phi,j,n)) \\ \operatorname{tr}(\Diamond \phi,i,n) &= \bigvee_{j=1}^{n} ((\operatorname{tr}(\phi,j,n)) \\ \operatorname{dd}'(\phi \vee \psi) &= \operatorname{max}(\operatorname{dd}'(\phi),\operatorname{dd}'(\psi)) \\ \operatorname{dd}'(\Diamond \phi) &= \operatorname{dd}'(\phi) \\ \operatorname{dd}'(\Diamond \phi) &= \operatorname{dd}'(\phi) \\ \operatorname{dd}'(\Diamond \phi) &= \operatorname{dd}'(\phi) \end{aligned}$$

Modal Logic S5 solver: S52SAT

Let $\phi = \Diamond(a \land \Diamond b)$ as example (with n = 2).

Modal Logic S5 solver: S52SAT - structural caching

 $\phi = \Diamond (a \land \Diamond b)$, with caching.

Modal Logic S5 solver: S52SAT - with/without caching

Figure: Scatter plot with/without caching

Modal Logic S5 solver: S52SAT - against SotA solvers

Figure: Cactus-Plot of the runtime distributions

Different logics → Different complexities

Proofs of complexities are in [Lad77, HR07]

Modal Logic K: Translation to SAT

Translating in 'one shot' as in S5 is not efficient in K

- ► To translate into SAT will use too much memory (PSPACE)
- ► Diamond-Degree can not be used in modal logic K [LBdLM17]
- We want a framework to deal with PSPACE problems

Modal Logic K: Translation to SAT

Translating in 'one shot' as in S5 is not efficient in K

- ► To translate into SAT will use too much memory (PSPACE)
- ► Diamond-Degree can not be used in modal logic K [LBdLM17]
- We want a framework to deal with PSPACE problems

Recursive Explore and Check Abstraction Refinement

- Inspired by CEGAR [CGJ+03]
- ► Called RECAR
- Rely on 5 very important assumptions.

CounterExample Guided Abstraction Refinement: Over

CounterExample Guided Abstraction Refinement: Under

Recursive Explore and Check Abstraction Refinement

Recursive Explore and Check Abstraction Refinement

RECAR Assumptions

- 1. Function 'check' is sound, complete and terminates.
- 2. $isSAT(\hat{\phi})$ implies $isSAT(\text{refine}(\hat{\phi}))$
- 3. $\exists .n \in \mathbb{N} \text{ such that refine}^n(\hat{\phi}) \equiv_{\text{sat}}^? \phi.$
- 4. isUNSAT($\check{\phi}$) implies isUNSAT(ϕ).
- 5. $\exists .n \in \mathbb{N}$ such that underⁿ(ϕ) $\equiv_{\text{sat}}^{?}$ underⁿ⁺¹(ϕ).

MoSaiC: Over-Approximation

$$\operatorname{over}(\phi, n) = \operatorname{over}(\phi, 0, n)$$
 $\operatorname{over}(p_i, prev, n) = p_{i,prev}$
 $\operatorname{over}(\neg \phi, prev, n) = \neg \operatorname{over}(\phi, prev, n)$
 $\operatorname{over}(\Box \phi, prev, n) = \bigwedge_{i=0}^{n} (r_{prev,i} \to \operatorname{over}(\phi, i, n))$
 $\operatorname{over}(\Diamond \phi, prev, n) = \bigvee_{i=0}^{n} (r_{prev,i} \land \operatorname{over}(\phi, i, n))$

- $ightharpoonup p_{i,j}$ means p_i is true in the world w_j .
- ▶ $r_{i,j}$ means that there is a relation between worlds w_i and w_j .

MoSaiC: Under-Approximation

Modern SAT solvers returns 'the reason' why a formula with n worlds is unsatisfiable thanks to unsatisfiable cores.

MoSaiC: Under-Approximation

```
under(p, core) = p
under(\neg p, core) = \neg p
under(\Box \phi, core) = \Box(under(\phi, core))
under(\Diamond \phi, core) = \Diamond (under(\phi, core))
under((\phi \land \psi), core) = under(\phi, core) \land under(\psi, core)
\mathsf{under}((\psi \lor \chi), \mathit{core}) = egin{cases} \mathsf{under}(\chi, \mathit{core}) & \mathsf{if} \ \psi = \neg s_i, s_i \in \mathit{core} \\ \top & \mathsf{if} \ \psi = \neg s_i, s_i \notin \mathit{core} \\ (\mathsf{under}(\psi, \mathit{core}) & \\ \lor \ \mathsf{under}(\chi, \mathit{core})) & \mathsf{otherwise} \end{cases}
```

Unsatisfiable-cores: To create our under-approximations.

MoSaiC: RECAR Modal Logic K

MoSaiC: RECAR Modal Logic K

MoSaiC: RECAR Modal Logic K

24/25

Figure: Cactus-Plot of the runtime distributions

Perspective: Other modal logics

Sum-up of complexities

NP
K5
K45
KB45
KD5
KD45
S5

PSPACE
K
KT
S4
KB
KD4
KD
K4
KDB
KBT

Perspective:

- ► How to deal with other modal logics?
- ▶ What about Diamond-Degree in other logics ?

Journées des Doctorants 2017

Practical resolution of the coherence of formulae in modal logic

Valentin Montmirail

CRIL-CNRS UMR 8188, F62300 Lens, France

Le Touquet - May 29th 2017

Bibliography I

Carlos Areces, Pascal Fontaine, and Stephan Merz. Modal satisfiability via SMT solving. In Software, Services, and Systems, pages 30–45. Springer, 2015.

Patrick Blackburn, Johan van Benthem, and Frank Wolter. Handbook of modal logic. Elsevier, 2006.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking.

Journal of the ACM, 50(5):752-794, 2003.

Bibliography II

Thomas Caridroit, Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail.

A SAT-based Approach For Solving The Modal Logic S5-Satisfiability Problem.

In Proc. of AAAI'17, 2017.

Joseph Y. Halpern and Leandro Chaves Rêgo. Characterizing the NP-PSPACE gap in the satisfiability problem for modal logic. J. Log. Comput., 17(4):795–806, 2007.

Saul Kripke.

A completences theorem in

A completeness theorem in modal logic.

J. Symb. Log., 24(1):1-14, 1959.

Bibliography III

Richard E. Ladner.

The Computational Complexity of Provability in Systems of Modal Propositional Logic.

SIAM J. Comput., 6(3):467-480, 1977.

Jean-Marie Lagniez, Daniel Le Berre, Tiago de Lima, and Valentin Montmirail.

A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem.

In Proc. of IJCAI'17, 2017.

Mauricio Osorio and Juan Antonio Navarro.

Answer set programming and S4.

In *Ibero-American Conference on Artificial Intelligence*, pages 353–363. Springer, 2004.

Bibliography IV

Roberto Sebastiani and Michele Vescovi. Automated Reasoning in Modal and Description Logics via SAT Encoding: the Case Study of K(m)/ALC-Satisfiability. Journal of Artificial Intelligence Research, 35:343–389, 2009.

