Devoir maison nº 2 - A rendre sur feuille le 23 février

Problème 1. Soit $A \in M_n(\mathbb{R})$. Montrer qu'il existe une unique matrice symétrique B et une unique matrice antisymétrique C telles que A = B + C. (On dit que B est symétrique si ${}^tB = B$, on dit que C est antisymétrique si ${}^tC = -C$).

Problème 2. Soit V le sous-espace vectoriel de $C^{\infty}(\mathbb{R}, \mathbb{R})$ engendré par $f_1(x) = \sin(x)$, $f_2(x) = \cos(x)$, $f_3(x) = e^{-x}$. Soit \mathcal{J} l'opérateur

$$(\mathcal{J}f)(x) = \cos x \int_0^{\pi} f(y)dy + \frac{df(x)}{dx} + f(0)\sin x.$$

- 1. Ecrire la matrice J de \mathcal{J} dans la base f_1, f_2, f_3 .
- 2. Trouver les valeurs propres et les vecteurs propres de J. En déduire les valeurs propres et les vecteurs propres de \mathcal{J} .

Problème 3. Soit $V = \mathbb{R}_2[t]$.

1. Soient $f^1, f^2, f^3 \in V^*$ les formes linéaires définies comme suit :

$$f^{1}(P) = P(0), \quad f^{2}(P) = \frac{dP}{dt}(0), \quad f^{3}(P) = \frac{d^{2}P}{dt^{2}}(0), \quad P \in V.$$

Montrer que f^1 , f^2 , f^3 constituent une base de V^* et déterminer sa base préduale f_1 , f_2 , f_3 (on appele f_1 , f_2 , f_3 une base préduale de la base f^1 , f^2 , f^3 si f^1 , f^2 , f^3 est la base duale de f_1 , f_2 , f_3).

2. Soient $g^1,\,g^2,\,g^3\in V^*$ les formes linéaires définies comme suit :

$$g^{1}(P) = \int_{0}^{1} P(t)dt, \quad g^{2}(P) = \int_{0}^{1} tP(t)dt, \quad g^{3}(P) = \int_{0}^{1} t^{2}P(t)dt, \quad P \in V.$$

Montrer que g^1 , g^2 , g^3 constituent une base de V^* et déterminer sa base préduale g_1 , g_2 , g_3 .

3. Trouver la matrice de passage de la base f^1 , f^2 , f^3 à la base g^1 , g^2 , g^3 .

Problème 4. Soit $A \in M_n(\mathbb{C})$ et $P \in \mathbb{C}[t]$ un polynôme tel que $P(0) \neq 0$, P(A) = 0. Montrer que A est inversible.

Problème 5 (Facultatif). Soit $A = \mathbf{k}[x_1, x_2, \dots, x_n]$ l'algèbre de polynômes en x_1, \dots, x_k . Vu comme un espace vectoriel, A est la somme directe :

$$A = A[0] \oplus A[1] \oplus A[2] \oplus \cdots$$

où A[k] désigne l'espace vectoriel de polynômes homogènes du degré k. On pose

$$f(t) = \dim A[0] + \dim A[1]t + \dim A[2]t^2 + \cdots$$

Calculer f(t) (la série de Hilbert pour $\mathbf{k}[x_1,\ldots,x_n]$). (Indication: le nombre $\binom{n}{k}$ de k-combinaisons avec répétition d'un ensemble à n éléments est égal à $(-1)^k \binom{-n}{k}$, où $\binom{-n}{k}$ est le coefficient binomial standard qui survient dans le développement de Taylor de ...).