HW 6Posted Wednesday March 14th Due Monday March 19^h EE40 Maharbiz

Spring 2012

1. Relate v_{out} to v_i in the circuit below. Assume v_C = 0 at t = 0.

2. After having been in position 1 for a long time, the switch in the circuit below was moved to position 2 at t = 0. Determine $i_1(t)$ and $i_2(t)$ for $t \ge 0$ given that $I_0 = 6$ mA, $R_0 = 12$ Ω , $R_1 = 10$ Ω , $R_2 = 40$ Ω , $L_1 = 1$ H, and $L_2 = 2$ H.

- 3. Express the sinusoidal waveform $v(t) = -4\sin(8\pi \times 10^3 t 45^\circ) \text{ V}$ in standard cosine form and then determine its amplitude, frequency, period, and phase angle.
- 4. Problem 7.11b and 7.11e in U&M
- 5. The circuit below is in the phasor domain. Determine the following:
 - (a) The equivalent input impedance **Z** at terminals (a,b).
 - (b) The phasor current I, given that $Vs = 25 \angle 45^{\circ} V$.

