

Занятие 10. Градиентный бустинг. XGBoost, Catboost, LightGBM

Колмагоров Евгений ml.hse.dpo@yandex.ru

План лекции

- 1. Идея бустинга в машинном обучении
- 2. Аппроксимация градиента функции потерь
- 3. Настройка алгоритмов
- 4. Современные реализации: XGBoost, CatBoost, LigthGBM

Напоминание. Bias - Variance decomposition

На прошлом занятии была рассмотрена формула ошибка для любой задачи машинного обучения в виде декомпозиции состоящей из трёх частей:

- Смещение от целевой функции
- Дисперсию алгоритма
- Случайного шума в самих данных

$$\mathbb{E}_X[Err] = bias_X^2(a(x,X)) + Var_X[a(x,X)] + \sigma^2$$

Напоминание. Построение независимых моделей

Для улучшения дисперсии модели предлагалось использовать ассамблирование, при этом обучая как можно более независимые алгоритмы $\{b_{1}(X_{1}, Y_{1}), ..., b_{m}(X_{m}, Y_{m})\}$ и усредняя их ответы

$$a(x) = rac{1}{K} \sum_{j=1}^K b_j(x)$$

Напоминание. Построение независимых моделей

Для построения таких моделей использовался беггинг, который строит одинаковые модели на разных подвыборках исходных данных.

Беггинг улучшает дисперсию модели, но никак не меняет её смещение.

Вопрос: как можно улучшить смещение модели?

Знакомьтесь: бустинг

Бустинг — подход основанный на том, что строится последовательный набор моделей $\{b_0(X, Y), b_1(X, Y_1), ..., b_m(X, Y_m)\}$, в котором каждая последующая модель $b_{i+1}(x)$ учится исправлять ошибки предыдущей $b_i(x)$.

Предсказание строится как линейная комбинация М базовых алгоритмов:

$$a(x) = b_0(x) + c_1 \cdot b_1(x) \ldots + c_m \cdot b_m(x)$$

Наглядный пример

Предположим, что первая модель $b_0(x)$ ошибается на объекте x_l некоторую заданную величину, например, 10 относительно целевой переменной y_l :

$$\bullet \quad b_0(x_l) = y_l + 10$$

Теперь если обучить новую модель $b_1(x)$ на то, чтобы она на x_1 объекте предсказывала ошибку y_1 - $b_0(x_1) = -10$, то композиция

•
$$a(x_l) = b_0(x_l) + b_1(x_l) = (y_l + 10) + (-10) = y_l$$

Таким образом композиция предсказаний будет давать нулевую ошибку!

Визуализация пример работы

При увеличении числа базовых моделей ошибка на обучении непреклонно уменьшается

Решаем задачу регрессии с минимизацией квадратичной ошибки:

$$L(a,y) = rac{1}{2} \sum_{i=1}^N (a(x_i) - y_i)^2
ightarrow min_a$$

Ищем алгоритм а(х) в виде суммы т базовых алгоритмов:

$$a(x) = \sum_{k=1}^m b_k(x)$$

Все базовые алгоритмы $b_k(x)$ принадлежат одному семейству А

• Шаг 1: Ищем алгоритм $b_0(x)$, минимизирующий ошибку:

$$b_1(x) = argmin_{b \in A} rac{1}{2} \sum_{i=1}^N (b(x) - y_i)^2$$

• Вычислим ошибку на объекте х:

$$s=y-b_1(x)$$

• Шаг 1: Ищем алгоритм $b_0(x)$, минимизирующий ошибку:

$$b_1(x) = argmin_{b \in A} rac{1}{2} \sum_{i=1}^N (b(x) - y_i)^2$$

• Вычислим ошибку на объекте х:

$$s^1 = y - b_1(x)$$

Следующий алгоритм будет настраиваться на эту ошибку, т.е. целевая переменная для следующего алгоритма – это вектор ошибок s^1 : $s^1=(s_1^1,s_2^1,\ldots,s_N^1)$

• Шаг 2: Ищем алгоритм $b_2(x)$, настраивающийся на ошибки первого алгоритма:

$$b_2(x) = argmin_{b \in A} rac{1}{2} \sum_{i=1}^N (b(x) - s_i^1)^2$$

• Вычисляем ошибку $b_2(x)$:

$$s^2 = s^1 - b_2(x) = \{s^1 = y - b_1(x)\} = y - (b_1(x) + b_2(x))$$

Таким образом ошибка s^2 есть ошибка композиции алгоритмов $b_1(x)$ и $b_2(x)$

• Шаг К: Ищем алгоритм $b_k(x)$, настраивающийся на ошибки $b_{k-1}(x)$ алгоритма:

$$b_k(x) = argmin_{b \in A} rac{1}{2} \sum_{i=1}^N (b(x_i) - s_i^{k-1})$$

• Вычисляем ошибку $b_k(x)$:

$$s^k = s^{k-1} - b_k(x) = y - \sum_{j=1}^k b_j(x) = y - a_k(x)$$

Об одном свойстве бустинга

Посчитаем производную функции потерь по предсказанию $z = a_k(x)$:

$$rac{\partial L(z,y_i)}{\partial z}|_{z=a_k(x)}=rac{\partial}{\partial z}rac{1}{2}(y-z)^2|_{z=a_k(x)}=y-a_k(x)$$

Можно заметить, что ошибка, на которую обучается k+1 базовый алгоритм, выражается через производную:

$$s^k = y_i - a_k(x) = -rac{\partial L(z,y_i)}{\partial z}|_{z=a_k(x)}$$

Об одном свойстве бустинга

Посчитаем производную функции потерь по предсказанию $z = a_{\nu}(x)$:

$$rac{\partial L(z,y_i)}{\partial z}|_{z=a_k(x)}=rac{\partial}{\partial z}rac{1}{2}(y-z)^2|_{z=a_k(x)}=y-a_k(x)$$

Можно заметить, что ошибка, на которую обучается k+1 базовый алгоритм, выражается через производную:

$$s^k = y_i - a_k(x) = -rac{\partial L(z,y_i)}{\partial z}|_{z=a_k(x)}$$

Таким образом очередной алгоритм в бустинге обучается предсказывать антиградиент функции потерь в точке $a_k(x)$, что соответствует текущей композиции базовых моделей. Именно поэтому бустинг называют градиентным

Основная теорема бустинга

Утверждение: Ошибка на K-ом шаге для квадратичной функции потерь – это антиградиент функции потерь по ответу модели, вычисленной в точке ответа уже построенной композиции

$$|s_i^k=y_i-a_k(x_i)=-rac{\partial}{\partial z}rac{1}{2}(z-y)^2|_{z=a_k(x)}$$

Визуализация работы

Более общий случай

В предыдущем примере вся математика основывалась на том допущении, что в качестве функции потерь была использована среднеквадратичная ошибка.

В более общем случае такого совпадения ошибки и антиградиента нет, но тем не менее приближать антиградиент имеет смысл и вот почему...

Антиградиент и приближение ошибки

Иной взгляд

Так как композиция алгоритмов строится последовательно, то

$$a_k(x) = a_{k-1}(x) + b_k(x)$$

Обучение $b_k(x)$ производится так, чтобы улучшить ответы текущей композиции:

$$b_k(x) = argmin_{b \in A} \sum_{i=1}^N L(y_i, a_{k-1}(x) + b(x_i))$$

Разложим $L(y_i, a_{k-1}(x_i) + b(x_i))$ в ряд Тейлора до первого члена в окрестности точки $(y_i, a_{k-1}(x))$:

$$egin{align} L(y_i,a_{k-1}(x_i)+b(x_i))&pprox L(y_i,a_{k-1}(x_i))+b(x_i)rac{\partial L(y_i,z)}{\partial z}|_{z=a_{k-1}(x_i)}=\ &=L(y_i,a_{k-1}(x_i))+b(x_i)g_i^{k-1} \end{aligned}$$

Иной взгляд

Так как член $L(y_i, a_{k-1}(x_i))$ никак не зависит от b(x), то

$$b_k = argmin_{b \in A} \sum_{i=1}^N b(x_i) g_i^{k-1}$$

Минимум такого скалярного произведения будет достигаться векторе **b**, который равен антиградиенту:

$$b_k = (-g_1^{k-1}, -g_2^{k-1}, \dots, -g_N^{k-1})$$

Темп обучения

Чтобы уменьшить возможность переобучения добавляют шаг смещения в сторону градиента γ:

$$a_k(x) = a_{k-1}(x) + \gamma_k \cdot b_k(x)$$

При этом шаг градиента можно подбирать так, чтобы

$$\gamma_k = argmin_{\gamma \in R} \sum_{i=1}^N L(y_i, a_{k-1}(x_i) + \gamma b_k(x))$$

И формула итогового предсказания выглядит как

$$a(x)=b_1(x)+\gamma_2b_2(x)+\ldots+\gamma_Kb_K(x)$$

Переобучение бустинга

В отличие от беггинга бустинг может переобучаться!

Сжатие (shrinkage)

В качестве дополнительного средства регуляризации добавляют гиперпараметр $\alpha \in (0, 1]$, который несёт смысл уровня доверия новому алгоритму:

$$a_k(x) = a_{k-1}(x) + lpha \cdot \gamma \cdot b_k(x)$$

чем выше его значение тем больший вклад новый алгоритм вносит в общую композицию

Влияние сжатия на ошибку

Стохастический градиентный бустинг

Обучаем базовый алгоритм b_K не по всей выборке X, а по случайной подвыборке $X^k \in X$:

- Более быстрое построение базовых моделей
- Базовые модели становятся более разнообразными, что повышает итоговое качество работы
- Можно вычислять Out-of-bag ошибку

Обычно берут $|X^k| = \frac{1}{2}|X|$

Влияние размера семпла на качество обучения

Выбор базовых алгоритмов

При выборе семейства базовых алгоритмов возникают следующие вопросы:

- Что произойдёт с предсказаниями бустинга, если базовые алгоритмы слишком простые?
- Что будет, если базовые алгоритмы наоборот слишком сложные?

Вопрос: Почему в качестве базового алгоритма не стоит брать линейную функцию?

Выбор базовых алгоритмов

- Если базовые алгоритмы очень простые, то они плохо приближают антиградиент антиградиент функции потерь, т.е. градиентный бустинг будет смещаться в слишком отличную от антиградиента сторону
- Если базовые алгоритмы слишком сложные, то за несколько шагов бустинг подгонится под обучающую выборку, и получится переобученный алгоритм

Деревья решений в качестве базовых алгоритмов

Чаще всего в качестве базовых алгоритмов используются решающие деревья небольшой глубины (в среднем глубины 3-6), чтобы иметь достаточную обобщающую способность и быть при этом не переобученными.

Бустинг, использующий деревья решений в качестве базовых алгоритмов, называется градиентным бустингом над решающими деревьями (Gradient Boosting on Decision Trees, GBDT)

Оценка градиента деревьями решений

При построении следующего решающего дерева для оценки качества приближения вектора антиградиента g на i-ом объекте используют следующие функции:

$$egin{aligned} L_2(g,p) &= \sum_{i=1}^N \left(p_i - g_i
ight)^2, \ Cosine(g,p) &= -rac{\sum\limits_{i=1}^N (p_i \cdot g_i)}{\sqrt{\sum\limits_{i=1}^N p_i^2} \cdot \sqrt{\sum\limits_{i=1}^N g_i^2}}, \end{aligned}$$

, где p_i – предсказание на антиградиента на i-ом объекте, а его g_i истинное значение

Популярные имплементации

При построении градиентного бустинга над решающими деревьями существует множество способов сделать композиции деревьев.

На сегодняшний день наиболее популярны следующие реализации:

- XGBoost
- CatBoost
- LightGBM

XGBoost, Catboost & LightGBM

XGBoost: https://github.com/dmlc/xgboost

CatBoost: https://github.com/catboost LightGBM: https://github.com/catboost

XGBoost (eXtreme Gradient Boosting)

В данном подходе функционала ошибки раскладывается в ряд Тейлора до второго члена:

$$egin{split} L(y_i, a_{k-1}(x_i) + b(x_i)) &pprox L(y_i, a_{k-1}(x_i)) + b(x_i) rac{\partial L(y_i, z)}{\partial z}|_{z = a_{k-1}(x_i)} + rac{b^2(x_i)}{2} rac{\partial^2 L(y_i, z)}{\partial z^2}|_{z = a_{k-1}(x_i)} \ & \ g_i^{k-1} = rac{\partial L(y_i, z)}{\partial z}|_{z = a_{k-1}(x_i)} \ & \ h_i^{k-1} = rac{\partial^2 L(y_i, z)}{\partial z^2}|_{z = a_{k-1}(x_i)} \end{split}$$

Оптимальный базовый алгоритм ищется, как

$$b_k(x) = argmin_{b \in A} \sum_{i=1}^N [b(x_i) \cdot g_i^{k-1} + rac{1}{2}b(x_i) \cdot h_i^{k-1}]$$

XGBoost (eXtreme Gradient Boosting)

+ добавляется регуляризационные члены на структуру решающих деревьев

$$b_k(x) = argmin_{b \in A} \sum_{i=1}^N [b(x_i) \cdot g_i^{k-1} + rac{1}{2} b(x_i) \cdot h_i^{k-1}] + \mu T + rac{\lambda}{2} \sum_{i=1}^T b_i^2(x)$$

+ Деревья строятся слой за слоем последовательно до достижения максимальной глубины

XGBoost (eXtreme Gradient Boosting)

$$b_k(x) = argmin_{b \in A} \sum_{i=1}^N [b(x_i) \cdot g_i^{k-1} + rac{1}{2} b(x_i) \cdot h_i^{k-1}] + \mu T + rac{\lambda}{2} \sum_{i=1}^T b_i^2(x)$$

Основные особенности:

- Приближает направление сдвига с учётом второй производной
- Добавляется регуляризация, которая штрафует за число листьев дереве
- Устойчив к переобучению, так как пытается строить дерево минимальной глубины

CatBoost (Categorical Boosting)

Развитие XGBoost подхода разработанное в Яндексе, и в отличии от последнего способен обрабатывать категориальные признаки, и имеет дополнительные встроенные инструменты улучшающие качество обучения

Особенности CatBoost

• Используются симметричные деревья с одним и тем же решающим правилом на одном и том же уровне

Особенности CatBoost

• При кодировании категориальных признаков используются набор методов: one-hot encoding, счётчики, комбинации признаков и тд.

Особенности CatBoost

- Поддержка пропусков в данных
- Обучается быстрее, чем xgboost
- Показывает хороший результат даже без тонкой настройки гиперпараметров
- Есть детекция переобучения, вычисление значений метрик, встроенная кроссвалидация

LightGBM (Light Gradient Boosting Machine)

LightGBM строит деревья, добавляя на каждом шаге один лист, и позволяет добиться более высокой точности работы.

LightGBM (Light Gradient Boosting Machine)

Ключевые особенности LightGBM:

- Как правило деревья решений имеет несимметричную форму
- Хорошо оптимизирован и не требует большого количества вычислительных ресурсов
- Может работать с категориальными признаками, и делает разбиение их на два подмножества достаточно эффективно за O(k*log k) операций

Выводы градиентный бустинг

- Позволяет существенно улучшить смещение базовой модели
- В отличии от беггинга требует более аккуратной настройки, так как может переобучаться
- Из-за последовательного построения базовых алгоритмов сложнее распределённо обучать базовые алгоритмы
- На текущий момент алгоритмы градиентного бустинга показывают наилучшее качество при обработке табличных данных, выигрывая даже у нейросетевых подходов
- Имеет различные эффективно работающие реализации на языке Python

Выводы ансамблирование

	разброс (model's variance)	смещение (model's bias)	функциональна я выразимость	основа техники
Bagging	уменьшает			bootstrap
«среднее»				bootstrap
Boosting				градиентный
«взвешенное		уменьшает	(увеличивает)	спуск
среднее»				(сейчас)
Stacking	(уменьшает)	(уменьшает)	увеличивает	суперпозиция
Мета-алгоритм				алгоритмов