

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In the nonaqueous electrolyte rechargeable battery which consists of a negative electrode which consists a lithium of occlusion and a carbonaceous ingredient which can be emitted, a positive electrode, and the electrolytic solution which comes to dissolve lithium salt in a non-aqueous solvent at least A negative electrode uses as karyomitome the carbon material whose d value of the lattice plane (002nd page) in an X diffraction is 0.335-0.338nm. The carbonaceous object with large d value of a part of front face of the karyomitome or a lattice plane [in / all are boiled and / from said karyomitome / an X diffraction] (002nd page) has adhered. And a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitome and said karyomitome is the rate of 99 / 1 - 80/20 in a weight ratio. Furthermore, the nonaqueous electrolyte rechargeable battery characterized by containing at least the vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with the following general formula (I) in said non-aqueous solvent, and the following general formula (II) a kind every.

[Formula 1]

(I)

(R1 and R2 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively.)

[Formula 2]

(II)

(R3, R4, and R5 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively, and R6, R7, and R8 express independently a hydrogen atom, the alkyl group of carbon numbers 1-4, or the alkenyl radical of carbon numbers 2-7, respectively.)

[Claim 2] The carbon material whose d value of the lattice plane (002nd page) in an X diffraction is 0.335-0.338nm is used as karyomitome. The carbonaceous object with large d value of a part of front face of the karyomitome or a lattice plane [in / all are boiled and / from said karyomitome / an X diffraction] (002nd page) has adhered. The lithium with which 99 / 1 - 80/20 come out comparatively by the weight ratio, and a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitome and said karyomitome contains a certain carbonaceous ingredient And occlusion and the negative electrode which can be emitted, It is the nonaqueous electrolyte for nonaqueous electrolyte rechargeable batteries

equipped with the positive electrode at least. This nonaqueous electrolyte consists of a non-aqueous solvent and lithium salt at least. The nonaqueous electrolyte characterized by containing at least the vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with the following general formula (I) in said non-aqueous solvent, and the following general formula (II) a kind every.

[Formula 3]

(I)

(R1 and R2 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively.)

[Formula 4]

(II)

(R3, R4, and R5 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively, and R6, R7, and R8 express independently a hydrogen atom, the alkyl group of carbon numbers 1-4, or the alkenyl radical of carbon numbers 2-7, respectively.)

[Translation done.]

* NOTICES *

JPO and INPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to a nonaqueous electrolyte rechargeable battery. According to this invention, offer of the nonaqueous electrolyte rechargeable battery which was excellent in the preservation property and the cycle property with high capacity is attained by using the nonaqueous electrolyte by which the specific negative electrode and the compound of specific structure were added.

[0002]

[Description of the Prior Art] Development of a lithium secondary battery with a high energy density is furthered with lightweight--izing of an electric product in recent years, and a miniaturization. Moreover, the improvement of a cell property is also demanded with expansion of Field of application of a lithium secondary battery. Research is briskly done for many years as a cell by which the rechargeable battery which uses a metal lithium as a negative electrode can attain high capacity--ization. However, a metal lithium grows in the shape of a dendrite by the repeat of charge and discharge, finally reaches a positive electrode and has the problem that a short circuit will arise in the interior of a cell. This problem is the biggest technical problem at the time of putting a metal lithium secondary battery in practical use.

[0003] To this, the nonaqueous electrolyte rechargeable battery which used occlusion and the carbonaceous ingredient which can be emitted is proposed in lithiums, such as corks, an artificial graphite, and a natural graphite, by the negative electrode. In such a nonaqueous electrolyte rechargeable battery, since a lithium does not exist in the state of a metal, formation of a dendrite is controlled, and a battery life and safety can be improved. Especially the nonaqueous electrolyte rechargeable battery using graphite system carbonaceous ingredients, such as an artificial graphite and a natural graphite, attracts attention as what meets the demand of high-capacity--izing.

[0004] In the lithium secondary battery which uses the above-mentioned carbonaceous ingredient, annular carbonate, such as propylene carbonate and ethylene carbonate, is usually widely used as a high dielectric constant solvent of a nonaqueous electrolyte. In the nonaqueous electrolyte rechargeable battery using non-graphite system carbonaceous ingredients, such as corks, the solvent containing propylene carbonate can use suitably. On the other hand, in the nonaqueous electrolyte rechargeable battery which is independent, or mixed the graphite system carbonaceous ingredient with other negative-electrode material which can emit [occlusion and] a lithium, and was used as the negative electrode, if the solvent containing propylene carbonate is used, the decomposition reaction of propylene carbonate will advance violently in an electrode surface at the time of charge, and the occlusion and emission of the smooth lithium to a graphite system carbonaceous negative electrode will become impossible.

[0005] On the other hand, since there is little such decomposition, as the electrolytic solution of the nonaqueous electrolyte rechargeable battery using a graphite system carbonaceous negative electrode, as for ethylene carbonate, ethylene carbonate is used abundantly as a high dielectric constant solvent. However, in order that the electrolytic solution might decompose [in / as a main solvent / a charge-and-discharge process] ethylene carbonate in an electrode surface,

there were problems, such as decline in charge-and-discharge effectiveness, a fall of a cycle property, and a rise of the cell internal pressure by the generation of gas.

[0006] Then, using combining a crystalline low carbonaceous ingredient rather than a graphite with low decomposition activity is proposed as the graphite system carbonaceous ingredient to the electrolytic solution. For example, it covers with the organic substance which can carbonize graphite system carbonaceous, and the amorphous covering graphite system carbon matter carbonized by calcinating the covering object is manufactured and used. As for this carbon matter, the further amelioration is desired although effectiveness is looked at by decomposition control of the electrolytic solution.

[0007] About the electrolytic solution, various additives are proposed for the improvement in a property of a nonaqueous electrolyte rechargeable battery. In order to control disassembly of the electrolytic solution of the nonaqueous electrolyte rechargeable battery using a graphite system negative electrode, the electrolytic solution (JP,2000-40526,A) which contains in the electrolytic solution (JP,8-45545,A) containing vinylene carbonate and its derivative or a side chain the ethylene carbonate derivative which has a disconjugation unsaturated bond is proposed. Reduction decomposition of said compound is carried out on a negative-electrode front face, the electrolytic solution containing these compounds forms a coat, and too much disassembly of the electrolytic solution is controlled by this coat. However, these compounds are necessarily unsatisfying about the preservation property under hot environments 80 degrees C or more. Moreover, the positive-electrode material of a charge condition tends to react, and a vinylene carbonate compound is in the inclination for a preservation property to fall, when an addition increases.

[0008]

[Problem(s) to be Solved by the Invention] This invention is made in view of said trouble, suppresses disassembly of the electrolytic solution of the nonaqueous electrolyte rechargeable battery using the negative electrode containing a carbonaceous ingredient to the minimum, and its charge-and-discharge effectiveness is high, and it offers the nonaqueous electrolyte rechargeable battery of the high energy consistency which excelled [bottom / of an elevated temperature] in the preservation property and the cycle property.

[0009]

[Means for Solving the Problem] In order to attain the above-mentioned purpose, as a result of repeating various examination, this invention person etc. finds out that disassembly of the electrolytic solution can be suppressed to the minimum, charge-and-discharge effectiveness can be raised, and a preservation property and a cycle property can be raised by using the negative electrode which consists of a specific carbon material, and the specific electrolytic solution, and came to complete this invention.

[0010] The negative electrode which this invention is completed based on such knowledge, and consists a lithium of occlusion and a carbonaceous ingredient which can be emitted, In the nonaqueous electrolyte rechargeable battery which consists of a positive electrode and the electrolytic solution which comes to dissolve lithium salt in a non-aqueous solvent at least A negative electrode uses as karyomitome the carbon material whose d value of the lattice plane (002nd page) in an X diffraction is 0.335-0.338nm. The carbonaceous object with large d value of a part of front face of the karyomitome or a lattice plane [in / all are boiled and / from said karyomitome / an X diffraction] (002nd page) has adhered. And a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitome and said karyomitome is the rate of 99 / 1 - 80/20 in a weight ratio. Furthermore, the vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with the following general formula (I) in said non-aqueous solvent and the following general formula (II) is characterized by containing a kind every at least.

[0011]

[Formula 5]

JP,2002-324580.A [DETAILED DESCRIPTION]

3/11 ページ

(I)

[0012] (R1 and R2 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively.)

[0013]

[Formula 6]

(II)

[0014] (R3, R4, and R5 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively, and R6, R7, and R8 express independently a hydrogen atom, the alkyl group of carbon numbers 1-4, or the alkenyl radical of carbon numbers 2-7, respectively.)

Moreover, this invention uses as karyomitorne the carbon material whose d value of the lattice plane (002nd page) in an X diffraction is 0.335-0.338nm. The carbonaceous object with large d value of a part of front face of the karyomitorne or a lattice plane L in / all are boiled and / from said karyomitorne / an X diffraction] (002nd page) has adhered. The lithium with which 99 / 1 - 80/20 come out comparatively by the weight ratio, and a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitorne and said karyomitorne contains a certain carbonaceous ingredient. And occlusion and the negative electrode which can be emitted, it is the nonaqueous electrolyte for nonaqueous electrolyte rechargeable batteries equipped with the positive electrode at least. This nonaqueous electrolyte consists of a non-aqueous solvent and lithium salt at least. The vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with the following general formula (I) in said non-aqueous solvent and the following general formula (II) is characterized by containing a kind every at least.

[0015]

[Formula 7]

(I)

[0016] (R1 and R2 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively.)

[0017]

[Formula 8]

(II)

[0018] (R3, R4, and R5 express independently a hydrogen atom or the alkyl group of carbon numbers 1-4 among a formula, respectively, and R6, R7, and R8 express independently a hydrogen atom, the alkyl group of carbon numbers 1-4, or the alkenyl radical of carbon numbers 2-7, respectively.)

In the rechargeable battery whose offer is attained in this invention From the time of early charge, the compound coat of the reduction resultant of the vinylene carbonate compound origin and the reduction resultant of the vinyl ethylene carbonate compound origin generates efficiently to the part where the electrolytic-solution decomposition activity on said front face of a negative electrode is high. Although it is not clear, since the reduction resultants of a vinylene carbonate compound and a vinyl ethylene carbonate compound differ, the compound coat of a reason is stable also under hot environments, and he controls disassembly of too much electrolytic solution, and it is thought that charge-and-discharge effectiveness, a preservation property, and a cycle property are raised.

[0019]

[Embodiment of the Invention] The negative electrode which this invention is completed based on such knowledge, and consists a lithium of occlusion and a carbonaceous ingredient which can be emitted, In the nonaqueous electrolyte rechargeable battery which consists of a positive electrode and the electrolytic solution which comes to dissolve lithium salt in a non-aqueous solvent at least A negative electrode uses as karyomitome the carbon material whose d value of the lattice plane (002nd page) in an X diffraction is 0.335-0.338nm. The carbonaceous object with large d value of a part of front face of the karyomitome or a lattice plane [in / all are boiled and / from said karyomitome / an X diffraction] (002nd page) has adhered. And a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitome and said karyomitome is the rate of 99 / 1 ~ 80/20 in a weight ratio. Furthermore, the vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with a general formula (I) in said non-aqueous solvent and a general formula (II) is characterized by containing a kind every at least.

[0020] The artificial graphite with which the carbon material of a graphite system was manufactured as a carbon material used as karyomitome by elevated-temperature heat treatment of the easy graphite pitch obtained from various raw materials preferably, for example, suitably, a natural graphite, the purification natural graphite which high-grade-ized this, or kish graphite is mainly used. As for d value (distance between layers) of the lattice plane (002nd page) which asked for these carbon materials by the X diffraction by Gakushin method, it is desirable that it is 0.335-0.338nm and is 0.335-0.337nm. It is desirable that it is 1 or less % of the weight, as for ash content, it is more desirable that it is 0.5 or less % of the weight, and it is desirable that it is especially 0.1 or less % of the weight. Moreover, it is desirable that it is 30nm or more, as for the microcrystal size (Lc) for which it asked by the X diffraction by Gakushin method, it is more desirable that it is 50nm or more, and it is desirable that it is especially 100nm or more.

[0021] Moreover, it is more desirable that it is 3-50 micrometers, it is desirable that it is 1-100 micrometers, and it is [as for the median size of the carbon material fine particles by the method of laser diffracting / being scattered about, it is still more desirable that it is 5-40 micrometers, and] desirable [a median size] that it is especially 7-30 micrometers. It is more desirable that it is 0.5-20.0m²/g, it is desirable that they are 0.3-25.0m² / g, and it is [as for BET adsorption method specific surface area, it is still more desirable that they are 0.7-15.0m² / g, and] desirable that they are especially 0.8-10.0m² / g. Moreover, when [in used Ar-ion-laser light for the fine particles adjusted to said path] Raman spectrum analysis is carried out, intensity ratio R=I_B of the peak PA of the range of 1570-1620cm⁻¹, and (peak intensity I_A) the peak PB (peak intensity I_B) of the range of 1300 1400cm⁻¹ / I_A 0.01-0.5 are desirable. As for especially the full width at half maximum of the range of 1570-1620cm⁻¹, it is [one or less / 26cm⁻¹] desirable that it is one or less [25cm⁻¹].

[0022] About the carbonaceous object adhering to the front face of this karyomitome where d value of the lattice plane (002nd page) in an X diffraction is larger than the carbon material used as karyomitome, although it will not be limited especially if crystallinity is lower than the carbon material used as karyomitome, that to which d value (distance between layers) of the lattice plane (002nd page) for which it asked by the X diffraction by Gakushin method exceeds 0.338nm is desirable. Usually, as for d value, the thing to about 0.36nm is used.

[0023] a carbonaceous object with larger d value of the lattice plane (002nd page) in an X

diffraction than karyomitome and said karyomitome — comparatively (karyomitome / surface carbonaceous object) — ***** — it is desirable from improvement in energy density, and the point of a cycle property 99 / 1 - 80/20, and to be preferably referred to as 99 / 1 - 85/15 by the weight ratio. Although not limited especially about the gestalt of a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitome and said karyomitome, the "polyphase structure graphite system carbonaceous object" which is the gestalt which the carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than said karyomitome adhered or covered to surface some or surface all of a karyomitome particle is desirable.

[0024] The above-mentioned polyphase structure graphite system carbonaceous object can mix and calcinate a graphite system carbon material with the organic substance etc., or can make amorphous carbon form in a front face using a CVD method etc. As the organic substance, petroleum system heavy oil, such as ethylene tar division=into=equal=parts solution system heavy oil which carries out a byproduct, is mentioned at the time of pyrolyses, such as straight run system heavy oil, such as coal system heavy oil, such as a coal-tar pitch from a soft pitch to a hard pitch, and a pyrolysis oil, and ordinary pressure residual oil; reduced pressure residual oil, a crude oil, and naphtha. Moreover, what was ground to 1 micrometer - 100 micrometers can use the solid-state-like residue object which distilled these heavy oil at 200 degrees C - 400 degrees C, and was obtained. Furthermore, vinyl chloride resin, phenol resin, and imide resin are also used.

[0025] Mixing with a graphite system carbon material and the organic substance can use further the V type mixer which used the moving vane and which stirs, and can use kneading type mixing equipments, such as a formula mixer, a kneader, a paddle form kneading machine, and a coil form kneading machine, and is mixed by rotation of the container itself, a cylindrical shape mixer, a double cone mixer, the ribbon mixer using a mixed wing, the paddle dryer using a rotation paddle, etc.

[0026] In this way, the polyphase structure graphite system carbonaceous object which is the carbonaceous ingredient which the mixture of the graphite system carbon material and the organic substance which were obtained was calcinated [ingredient] in the inert gas ambient atmosphere, and made amorphous carbon form in a front face can be obtained. Nitrogen, an argon, etc. can be used as inert gas. Moreover, as a burning temperature, the range of 400-2000 degrees C is desirable, and, in addition, the range which is 700-1500 degrees C is desirable.

[0027] The polyphase structure graphite system carbonaceous object after baking processes grinding, a crack, a classification, etc. with a suitable means, and is good also as fine particles, it is desirable that it is 1-100 micrometers, and it is [it is more desirable that it is 3-50 micrometers, and / as for the median size of fine particles according to the method of laser diffracting / being scattered about in that case, it is still more desirable that it is 5-40 micrometers and] desirable [median size] that it is especially 7-30 micrometers. It is more desirable that they are 0.5-20.0m² / g, it is desirable that they are 0.3-25.0m² / g, and it is [as for BET adsorption method specific surface area, it is still more desirable that they are 0.7-15.0m² / g, and] desirable that they are especially 0.8-10.0m² / g. moreover, the case which used Ar-ion-laser light for the fine particles adjusted to said path where Raman spectrum analysis is carried out — intensity ratio R=IB of the peak PA of the range of 1570-1620cm⁻¹, and (peak intensity IA) the peak PB (peak intensity IB) of the range of 1300-1400cm⁻¹ / [A 0.1-1.2 are desirable and, as for the full width at half maximum of the range of 1570-1620cm⁻¹, it is desirable that it is 25-45cm⁻¹.]

[0028] It can mix in the polyphase structure graphite system carbonaceous object obtained by the graphite system carbon material or the above used as the aforementioned nucleus further, and the negative-electrode material which can emit [occlusion and] other lithiums can also be used for it. As negative-electrode material which can emit [occlusion and] other lithiums, metal silicides, such as a lithium alloy of metallic sulfide ingredients, such as metallic-oxide ingredients, such as tin oxide and oxidization silicon, and sulfuration tin, a lithium metal, a lithium, and various metals, such as aluminum, silicon, tin, and antimony, and silicification magnesium, and silicification copper, can be illustrated. Two or more kinds may be mixed and these negative-electrode

ingredients may be used.

[0029] It is not limited especially about the method of manufacturing a negative electrode using these negative-electrode ingredients. For example, it can apply to the substrate of a charge collector, and by drying, a negative electrode can be manufactured and roll forming of this negative-electrode ingredient is carried out as it is, and a binder, a thickener, electric conduction material, a solvent, etc. can be added to a negative-electrode ingredient if needed, and it can consider as the shape of a slurry, and can also consider [it can consider as a sheet electrode or] as a pellet electrode with compression molding.

[0030] About the binder used for manufacture of an electrode, to the solvent or the electrolytic solution which are used at the time of electrode manufacture, if it is a stable ingredient, it will not be limited especially. As the example, polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, polyisoprene rubber, butadiene rubber, etc. can be mentioned. As a thickener, carboxyl methyl cellulose, methyl cellulose, a hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidization starch, phosphorylation starch, GAZEIN, etc. are mentioned.

[0031] As electric conduction material, carbon materials, such as metallic materials, such as copper and nickel, graphite, carbon black, and a carbon fiber, are mentioned. The quality of the material of the charge collector for negative electrodes has the point of metals, such as copper, nickel, and stainless steel, being used and being easy to process it into a thin film in these, and the point of cost to desirable copper foil. The non-aqueous solvent used for this invention contains the vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with the following general formula (I), and the following general formula (II).

[0032]

[Formula 9]

(I)

(II)

[0033] It sets to a general formula (I) and is R1 and R2. A hydrogen atom or the alkyl group of carbon numbers 1-4 is expressed independently, respectively. R1 and R2 When it is the alkyl group of carbon numbers 1-4, as the example, a methyl group, an ethyl group, n-propyl group, i-propyl group, n-butyl, sec-butyl, and tert-butyl are mentioned. A methyl group and an ethyl group are desirable in these.

[0034] And as an example of a vinylene carbonate compound expressed with such a general formula (I), vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4, 5-dimethyl vinylene carbonate, 4, and 5-diethyl vinylene carbonate etc. can be mentioned.

Especially, vinylene carbonate, 4, and 5-dimethyl vinylene carbonate is desirable, and especially vinylene carbonate is desirable. Two or more sorts may be mixed and these may be used.

[0035] It sets to a general formula (II) and is R3 and R4. And R5 A hydrogen atom or the alkyl group of carbon numbers 1-4 is expressed, and it is R6 and R7 independently, respectively. And R8 A hydrogen atom, the alkyl group of carbon numbers 1-4, or the alkenyl radical of carbon numbers 2-7 is expressed independently, respectively. R3, R4, R5, R6, and R7 And R8 When it is the alkyl group of carbon numbers 1-4, as the example, a methyl group, an ethyl group, n-propyl group, i-propyl group, n-butyl, sec-butyl, and tert-butyl are mentioned. A methyl group and an ethyl group are desirable in these.

[0036] Moreover, R6 and R7 And R8 When it is the alkenyl radical of carbon numbers 2-7, as the example, a vinyl group, 1-methylvinyl radical, 2-methylvinyl radical, a propenyl radical, 1-methyl

propenyl radical, 2-methyl propenyl radical, 3-methyl propenyl radical, a butenyl group, etc. are mentioned. And as an example of a vinyl ethylene carbonate compound expressed with such a general formula (II), 4-vinyl ethylene carbonate, 4-methyl-4-vinyl ethylene carbonate, 4-ethyl-4-vinyl ethylene carbonate, 4-n-propyl-4-vinyl ethylene carbonate, 5 methyl 4 vinyl ethylene carbonate, 4, and 4-divinyl ethylene carbonate, 4, and 5-divinyl ethylene carbonate etc. can be mentioned.

[0037] Especially, 4-vinyl ethylene carbonate, 4-methyl-4-vinyl ethylene carbonate, 4, and 5-divinyl ethylene carbonate is desirable, and especially 4-vinyl ethylene carbonate is desirable. Two or more sorts may be mixed and these may be used. In this invention, the content of the vinylene carbonate compound expressed with the general formula in a non-aqueous solvent (I) has 0.05 - 5 desirable % of the weight, and especially its 0.1 - 4 % of the weight is desirable. The content of the vinyl ethylene carbonate compound expressed with a general formula (II) has 0.05 - 5 desirable % of the weight, and especially its 0.1 - 4 % of the weight is desirable. In this invention, the total quantity of the compound expressed with the above-mentioned general formula (I) and a general formula (II) is usually 0.2 - 5 % of the weight preferably 0.1 to 6% of the weight.

[0038] It is not limited especially in the non-aqueous solvent used for this invention. For example, ethylene carbonate, Annular carbonate, such as propylene carbonate and butylene carbonate, Dimethyl carbonate, diethyl carbonate, G n-propyl carbonate, Dialkyl (thing of carbon numbers 1-4 is desirable) carbonate, such as ethyl methyl carbonate, Cyclic ether, such as a tetrahydrofuran and 2-methyl tetrahydrofuran, The chain-like ether, such as dimethoxyethane and dimethoxymethane, gamma-butyrolactone, Phosphorus-containing organic solvents, such as sulfur-containing organic solvents, such as chain-like ester, such as cyclic ester, such as gamma-valerolactone, methyl acetate, and ethyl propionate, sulfolane, and diethyl sulfone, trimethyl phosphate, and phosphoric-acid triethyl, etc. are mentioned. Two or more kinds may be mixed and these solvents may be used.

[0039] That whose non-aqueous solvent is a mixed solvent with which the chain-like carbonate chosen from the group which the carbon number of an alkylene group becomes from the annular carbonate chosen from the group which consists of alkylene carbonate of 2-4, and the dialkyl carbonate whose carbon numbers of an alkyl group are 1-4 is contained more than 20 capacity %, respectively, and these carbonate occupies more than the whole 70 capacity % here has the high conductivity of the electrolytic solution, and a cycle property and its high current discharge property are highly desirable.

[0040] The carbon number of an alkylene group can mention ethylene carbonate, propylene carbonate, butylene carbonate, etc. as an example of the alkylene carbonate of 2-4, for example, and ethylene carbonate and propylene carbonate are desirable in these. As an example of the dialkyl carbonate which is 1-4, the carbon number of an alkyl group can mention dimethyl carbonate, diethyl carbonate, G n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, etc. Dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are desirable in these. In addition, solvents other than carbonate may be contained in a mixed non-aqueous solvent.

[0041] As a mode of the non-aqueous solvent of other desirable electrolytic solutions, the own boiling point of a solvent of what contains especially one sort or two sorts or more of with a specific inductive capacity of 25 or more solvents at a rate more than 85 capacity % more than 60 capacity % is comparatively high, and, as for the problem of volatilization or a liquid spill, it is desirable few also in hot use. Moreover, what ethylene carbonate, propylene carbonate, gamma-butyrolactone, and gamma-valerolactone are mentioned as a with a specific inductive capacity of 25 or more non-aqueous solvent and contains especially ethylene carbonate is desirable, the mixed solvent which occupies more than 5 capacity % and gamma-butyrolactone for ethylene carbonate more than 55 capacity % also in it, and the solvent which occupies more than 30 capacity % and propylene carbonate for ethylene carbonate more than 30 capacity % have little generation of gas at the time of elevated-temperature preservation, and the balance of a cycle property, a high current discharge property, etc. has it. [still more desirable well]

[0042] Although it is originally easy to decompose propylene carbonate, gamma-butyrolactone,

etc. on a graphite front face when a graphite system carbon negative electrode is used, decomposition can be controlled by forming a stable coat in a graphite system carbon front face to the minimum by making a vinylene carbonate compound and a vinyl ethylene carbonate compound contain a kind every at least.

[0043] To a non-aqueous solvent, when the compound chosen from the group which consists of nitrogen-containing compounds, such as carboxylic anhydrides, such as sulfonates, such as ape fights, such as an ethylene ape fight, and a propane sultone, a succinic anhydride, a maleic anhydride, and phthalic anhydride, 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, and N-methyl succinimide, is added so that it may become a non-aqueous solvent with 0.01 ~ 3 % of the weight, it is still more desirable at the point whose cycle property improves.

[0044] Furthermore, to a nonaqueous electrolyte, in order [with a separator or electrode material] to be smeared and to improve a sex, a surfactant may be added so that it may become a non-aqueous solvent with 0.01 ~ 2 % of the weight. Lithium salt is used as a solute of the electrolytic solution used by this invention. Although especially limitation will not be carried out if it can be used as a solute about lithium salt, as the example for example LiClO₄, LiPF₆, and LiBF₄ from — the inorganic lithium salt or LiCF₃ SO₃ chosen — LiN(CF₃ SO₂)₂, LiN(CF₃ CF₂ SO₂)₂, LiN(CF₃ SO₂) (C₄ F₉ SO₂), and LiC(CF₃ SO₂)₃ etc. — fluorine-containing organic lithium salt is mentioned. The inside of these, and LiPF₆ and LiBF₄ It is desirable. In addition, two or more kinds may be mixed and these solutes may be used.

[0045] As for the lithium salt mol concentration of the solute in the electrolytic solution, it is desirable that it is 0.5 ~ mols/l. When exceeding i. in less than 0.5 mols [l.] / or three mols /, since the conductivity of the electrolytic solution falls and the engine performance of a cell falls, it is not desirable. Although it is not restricted but a well-known ingredient can be used especially as an ingredient of the positive electrode which constitutes the cell of this invention, the desirable ingredient which emits [occlusion and] lithiums, such as lithium transition-metals multiple oxide ingredients, such as lithium cobalt oxide, a lithium nickel oxide, and a lithium manganic acid ghost, can be used.

[0046] Especially about the manufacture approach of a positive electrode, it is not limited but can manufacture according to the manufacture approach of the above-mentioned negative electrode. Moreover, about the configuration, after mixing, a well-known binder, electric conduction material, a solvent, etc. can be added to a positive-electrode ingredient if needed, and it applies to the substrate of a charge collector, and it can consider as a sheet electrode or can consider [press forming can be performed and] as a pellet electrode. As for the quality of the material of the charge collector for positive electrodes, metals, such as aluminum, titanium, and a tartalum, or the alloy of those is used. In these, since especially aluminum or its alloy is lightweight, it is desirable in respect of energy density.

[0047] It is not limited especially about the quality of the material or the configuration of a separator which are preferably used for the cell of this invention. However, it is stable to the electrolytic solution, and choosing from the solution retention outstanding ingredients is desirable, and it is desirable to use a porous sheet or a nonwoven fabric etc. which uses polyolefines, such as polyethylene and polypropylene, as a raw material. Especially about the method of manufacturing the cell of this invention which has a negative electrode, a positive electrode, and a nonaqueous electrolyte at least, it is not limited but can choose suitably from the approaches usually adopted.

[0048] Moreover, the coin type which carried out the laminating of the cylinder type, pellet electrode, and separator of the inside-out configuration which combined the cylinder type, pellet electrode, and separator which were not limited especially about the configuration of a cell but made the sheet electrode and the separator the shape of a spiral is usable.

[0049]

[Example] Although an example and the example of a comparison are given to below and this invention is explained to it still more concretely, this invention is not limited to these examples, unless the summary is exceeded.

d value of the lattice plane (002nd page) in an X diffraction 0.336nm, (Example 1) 100nm or more

(652nm) and ash content 0.07 % of the weight, [crystallite size (Lc)] 12 micrometers and BET adsorption method specific surface area 7.5m² / g, [the median size by the method of laser diffracting / being scattered about] In the Raman spectrum analysis using Ar-ion-laser light The peak PA of the range of 1570-1620cm⁻¹ The full width at half maximum of the range of 0.12 and 1570-1620cm⁻¹ (Peak intensity IA) And 2kg of 19.9cm⁻¹ natural-graphite powder which is 1 [intensity ratio R=IB of the peak PB (peak intensity IB) of the range of 1300-1400cm⁻¹ / IA] It mixed with petroleum system pitch 1kg, and the mixture of the shape of an acquired slurry was held at a temperature up and this temperature to 1100 degrees C under the inert atmosphere with the batch process heating furnace for 2 hours in 2 hours. This was ground, particle size was prepared to 18-22 micrometers with the oscillating-type sieve, and the "polyphase structure graphite system carbonaceous object" which finally covered the natural-graphite front face with 7% of amorphous carbon was obtained. d value of the lattice plane (002nd page) in the X diffraction of an amorphous carbon part was 0.345nm.

[0050] What mixed the polyvinylidene fluoride 6 weight section in the "polyphase structure graphite system carbonaceous object" 94 weight section, was made to distribute by the N-methyl-2-pyrrolidone, and was made into the shape of a slurry by using a book "a polyphase structure graphite system carbonaceous object" as a negative-electrode active material was applied to homogeneity on copper foil with a thickness of 18 micrometers which is a negative-electrode charge collector, and after desiccation, it pierced to discoid with a diameter of 12.5mm, and considered as the negative electrode.

[0051] The carbon black 5 weight section and the polyvinylidene fluoride (Kureha chemistry company make, trade name:KF-1000) 9 weight section were added to the LiCoO₂ 85 weight section as positive active material, and it mixed, and distributed by the N-methyl-2-pyrrolidone, and what was made into the shape of a slurry was applied to homogeneity on aluminium foil with a thickness of 20 micrometers which is a positive-electrode charge collector, and after desiccation, it pierced to discoid with a diameter of 12.5mm, and considered as the positive electrode.

[0052] About the electrolytic solution, it adds into the mixture (3:7 capacity factors) of ethylene carbonate and ethyl methyl carbonate at a rate of 1 % of the weight of vinylene carbonate, and 1 % of the weight of vinyl ethylene carbonate, using as a solute LiPF₆ which fully dried under desiccation argon atmosphere, and is LiPF₆ further. It dissolved and prepared at a rate of one mol/l.

[0053] The positive electrode was held in the can made from stainless steel which serves as a positive-electrode charge collector using these positive electrodes, a negative electrode, and the electrolytic solution, and the negative electrode was laid through the separator which infiltrated the electrolytic solution on it. the obturation plate which serves both as this can and a negative-electrode conductor — the gasket for an insulation — minding -- it sealed in total and the coin mold cell was produced.

(Example 1 of a comparison) Vinylene carbonate is added at a rate 2% of the weight into the mixture (3:7 capacity factors) of ethylene carbonate and ethyl methyl carbonate, and it is LiPF₆ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of one mol/l.

[0054] (Example 2 of a comparison) Vinyl ethylene carbonate is added at a rate 2% of the weight into the mixture (3:7 capacity factors) of ethylene carbonate and ethyl methyl carbonate, and it is LiPF₆ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of one mol/l.

[0055] (Example 2) Vinylene carbonate is added into the mixture (1:9 capacity factors) of ethylene carbonate and gamma-butyrolactone at a rate of 1 % of the weight and 1 % of the weight of vinyl ethylene carbonate, and it is LiBF₄ further. It dissolved and prepared at a rate of two mol/l.

(Example 3 of a comparison) Vinylene carbonate is added at 2% of the weight of a rate into the mixture (1:9 capacity factors) of ethylene carbonate and gamma-butyrolactone, and it is LiBF₄ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of two mole/l.

[0056] (Example 4 of a comparison) Vinyl ethylene carbonate is added at 2% of the weight of a rate into the mixture (1:9 capacity factors) of ethylene carbonate and gamma-butyrolactone, and it is LiBF₄ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of two mol/l.

[0057] (Example 3) It adds into the mixture (5:5 capacity factors) of ethylene carbonate and propylene carbonate at a rate of 1 % of the weight of vinylene carbonate, and 1 % of the weight of vinyl ethylene carbonate, and is LiPF₆ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of one mol/l.

[0058] (Example 5 of a comparison) Vinylene carbonate is added at a rate 2% of the weight into the mixture (5:5 capacity factors) of ethylene carbonate and propylene carbonate, and it is LiPF₆ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of one mol/l.

[0059] (Example 6 of a comparison) Vinyl ethylene carbonate is added at a rate 2% of the weight into the mixture (5:5 capacity factors) of ethylene carbonate and propylene carbonate, and it is LiPF₆ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of one mol/l.

[0060] (Example 4) It adds at a rate of 1 % of the weight of vinylene carbonate, and 1 % of the weight of vinyl ethylene carbonate into the mixture (2:1:7 capacity factors) of ethylene carbonate, propylene carbonate, and gamma-butyrolactone, and is LiBF₄ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of 1.5 mol/l.

[0061] (Example 7 of a comparison) It adds at a rate of 2 % of the weight of vinylene carbonate into the mixture (2:1:7 capacity factors) of ethylene carbonate, propylene carbonate, and gamma-butyrolactone, and is LiBF₄ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of 1.5 mol/l.

[0062] (Example 8 of a comparison) It adds at a rate of 2 % of the weight of vinyl ethylene carbonate into the mixture (2:1:7 capacity factors) of ethylene carbonate, propylene carbonate, and gamma-butyrolactone, and is LiBF₄ further. The coin mold cell was produced like the example 1 except having used the electrolytic solution dissolved and prepared at a rate of 1.5 mol/l.

[0063] (Cell performance test) In 25 degrees C, the cell of these examples 1~4 and the examples 1~8 of a comparison was saved for three days at 85 degrees C in the state of charge, after 5 cycle lines are stabilized in charge termination electrical-potential-difference 4.2V in 0.5mA constant current and stabilized charge and discharge in discharge-final-voltage 3V. After making the cell after preservation discharge to discharge-final-voltage 3V by 0.5mA constant current in 25 degrees C, charge termination electrical-potential-difference 4.2V were performed by 0.5mA constant current, charge and discharge were performed by discharge-final-voltage 3V, and the preservation property was examined. The discharge capacity after the preservation at the time of setting discharge capacity before preservation to 100 is shown in Table 1.

[0064]

[Table 1]

表 1

	保存前の容量を100とした場合の保存後の容量 (%)
実施例 1	91
比較例 1	89
比較例 2	88
実施例 2	91
比較例 3	88
比較例 4	83
実施例 3	89
比較例 5	85
比較例 6	80
実施例 4	89
比較例 7	87
比較例 8	93

[0065] The discharge capacity of the cell of this example after the preservation to the discharge capacity before preservation is improving, and effectiveness is in improvement in the preservation property in an elevated temperature so that clearly from Table 1.

[0066]

[Effect of the Invention] In the nonaqueous electrolyte rechargeable battery equipped with the negative electrode containing a carbonaceous ingredient, a negative electrode uses as karyomitome the carbon material whose d value of the lattice plane (002nd page) in an X diffraction is 0.335–0.338nm. The carbonaceous object with large d value of a part of front face of the karyomitome or a lattice plane [in / all are boiled and / from said karyomitome / an X diffraction] (002nd page) has adhered. And a carbonaceous object with larger d value of the lattice plane (002nd page) in an X diffraction than karyomitome and said karyomitome is the rate of 99 / 1 – 80/20 in a weight ratio. At least the vinyl ethylene carbonate compound expressed with the vinylene carbonate compound expressed with a general formula (I) in said non-aqueous solvent, and a general formula (II) a kind every furthermore, by containing While suppressing disassembly of the electrolytic solution to the minimum and obtaining a high capacity, the cell which was excellent in the preservation property and the cycle property under the elevated temperature can be produced, and it can contribute to the miniaturization of a nonaqueous electrolyte rechargeable battery, and high performance-ization.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-324580

(P2002-324580A)

(43)公開日 平成14年11月8日(2002.11.8)

(51)Int.Cl.⁷

H 01 M 10/40
4/02
4/58

識別記号

F I

H 01 M 10/40
4/02
4/58

テマコード(参考)

A 5 H 0 2 9
D 5 H 0 5 0

審査請求 未請求 請求項の数2 OL (全9頁)

(21)出願番号 特願2002-38703(P2002-38703)

(22)出願日 平成14年2月15日(2002.2.15)

(31)優先権主張番号 特願2001-48065(P2001-48065)

(32)優先日 平成13年2月23日(2001.2.23)

(33)優先権主張国 日本 (JP)

(71)出願人 000005968

三菱化学株式会社
東京都千代田区丸の内二丁目5番2号

(72)発明者 古田土 稔

茨城県稲敷郡阿見町中央八丁目3番1号
三菱化学株式会社筑波研究所内

(72)発明者 佐藤 秀治

茨城県稲敷郡阿見町中央八丁目3番1号
三菱化学株式会社筑波研究所内

(74)代理人 100103997

弁理士 長谷川 曜司

最終頁に続く

(54)【発明の名称】 非水系電解液二次電池

(57)【要約】

【課題】 高容量で保存特性、サイクル特性に優れた非水系電解液二次電池を提供する。

【解決手段】 リチウムを吸蔵・放出することが可能な炭素質材料からなる負極と、正極と、非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池において、負極がX線回折における d_{002} 値が0.335~0.338 nmである炭素材料を核材とし、その核材の表面の一部又は全部に前記核材よりも d_{002} 値が大きい炭素質物が付着しており、かつ核材と前記核材よりも d_{002} 値が大きい炭素質物が重量比で99/1~80/20の割合であり、更に前記非水溶媒中にビニレンカーボネート化合物類とビニルエチレンカーボネート化合物類とを少なくとも一種ずつ含有することを特徴とする非水系電解液二次電池。

【特許請求の範囲】

【請求項1】 リチウムを吸蔵・放出することが可能な炭素質材料からなる負極と、正極と、非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池において、負極がX線回折における格子面(002面)のd値が0.335~0.338 nmである炭素材料を核材とし、その核材の表面の一部又は全部に前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が付着しており、かつ核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が重量比で99/1~80/20の割合であり、更に前記非水溶媒中に下記一般式(I)で表されるビニレンカーボネート化合物と下記一般式(II)で表されるビニルエチレンカーボネート化合物とを少なくとも一種ずつ含有することを特徴とする非水系電解液二次電池。

【化1】

(式中、R¹、R²は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。)

【化2】

(式中、R³、R⁴及びR⁵は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表し、R⁶、R⁷及びR⁸は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基又は炭素数2~7のアルケニル基を表す。)

【請求項2】 X線回折における格子面(002面)のd値が0.335~0.338 nmである炭素材料を核材とし、その核材の表面の一部又は全部に前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が付着しており、かつ核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が重量比で99/1~80/20の割合である炭素質材料を含むリチウムを吸蔵・放出することが可能な負極と、正極とを少なくとも備えた非水系電解液二次電池用の非水系電解液であって、該非水系電解液が非水溶媒とリチウム塩とから少なくとも構成され、前記非水溶媒中に下記一般式(I)で表されるビニレンカーボネート化合物と下記一般式(II)で表されるビニルエチレンカーボネート化合物とを少なくとも一種ずつ含有すること

を特徴とする非水系電解液。

【化3】

(式中、R¹、R²は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。)

【化4】

(式中、R³、R⁴及びR⁵は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表し、R⁶、R⁷及びR⁸は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基または炭素数2~7のアルケニル基を表す。)

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、非水系電解液二次電池に関する。本発明によれば、特定の負極と特定の構造の化合物が添加された非水系電解液を使用することにより、高容量で保存特性、サイクル特性に優れた非水系電解液二次電池の提供が可能となる。

【0002】

【従来の技術】近年の電気製品の軽量化、小型化にともない、高いエネルギー密度を持つリチウム二次電池の開発が進められている。また、リチウム二次電池の適用分野の拡大に伴い電池特性の改善も要望されている。金属リチウムを負極とする二次電池は高容量化を達成できる電池として古くから盛んに研究が行われている。しかし、金属リチウムは充放電の繰り返しによりデンドライト状に成長し、最終的には正極に達して電池内部において短絡が生じてしまうという問題がある。この問題は金属リチウム二次電池を実用化する際の最大の技術的な課題となっている。

【0003】これに対しては負極に、例えばコークス、人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出することが可能な炭素質材料を用いた非水系電解液二次電池が提案されている。このような非水系電解液二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。特に人造黒鉛、天然黒鉛等の黒鉛系炭素質材料を用いた非水系電解液二次電池は、高容量化の要求に応えるものとして注目されている。

【0004】上記炭素質材料を使用するリチウム二次電

池においては、非水系電解液の高誘電率溶媒として通常、プロピレンカーボネートやエチレンカーボネート等の環状カーボネートが広く用いられている。コードなどとの非黒鉛系炭素質材料を用いた非水系電解液二次電池では、プロピレンカーボネートを含む溶媒が好適に用いることができる。一方、黒鉛系炭素質材料を単独で、或いは、リチウムを吸蔵・放出可能な他の負極材と混合して負極とした非水系電解液二次電池では、プロピレンカーボネートを含む溶媒を用いると、充電時に電極表面でプロピレンカーボネートの分解反応が激しく進行して、黒鉛系炭素質負極への円滑なリチウムの吸蔵・放出が不可能になる。

【0005】一方、エチレンカーボネートはこのような分解が少ないとから、黒鉛系炭素質負極を用いた非水系電解液二次電池の電解液としては、エチレンカーボネートが高誘電率溶媒として多用されている。しかしながら、エチレンカーボネートを主溶媒としても、充放電過程において電極表面で電解液が分解するために充放電効率の低下、サイクル特性の低下、ガス発生による電池内圧の上昇等の問題があった。

【0006】そこで黒鉛系炭素質材料と、電解液に対して分解活性の低い黒鉛よりも結晶性の低い炭素質材料を組み合わせて用いることが提案されている。例えば黒鉛系炭素質を炭素化可能な有機物で被覆し、その被覆体を焼成することで炭素化した非晶質被覆黒鉛系炭素物質を製造し、使用するものである。この炭素物質は、電解液の分解抑制に効果が見られるが、更なる改良が望まれている。

【0007】電解液については、非水系電解液二次電池の特性向上のために種々の添加剤が提案されている。黒鉛系負極を用いた非水系電解液二次電池の電解液の分解を抑制するために、ビニレンカーボネート及びその誘導体を含有する電解液（特開平8-45545号公報）や側鎖に非共役不飽和結合を有するエチレンカーボネート誘導体を含む電解液（特開2000-40526号公報）が提案されている。これらの化合物を含む電解液は、前記化合物が、負極表面で還元分解されて皮膜を形成し、この皮膜により電解液の過度の分解が抑制される。しかしこれらの化合物は、80°C以上の高温環境下での保存特性については、必ずしも満足できるものではない。また、ビニレンカーボネート化合物は充電状態の正極材とも反応しやすく、添加量が多くなると保存特性が低下する傾向にある。

【0008】

【発明が解決しようとする課題】本発明は前記問題点を鑑みてなされたものであり、炭素質材料を含む負極を用いた非水系電解液二次電池の電解液の分解を最小限に抑えて、充放電効率が高く、高温下でも保存特性、サイクル特性の優れた高エネルギー密度の非水系電解液二次電池を提供するものである。

【0009】

【課題を解決するための手段】本発明者等は、上記目的を達成するために種々の検討を重ねた結果、特定の炭素材料からなる負極と特定の電解液とを用いることで、電解液の分解を最小限に抑えて充放電効率を向上させ、保存特性、サイクル特性を向上させることができることを見いだし、この発明を完成させるに至った。

【0010】本発明は、このような知見に基づいて完成されたものであり、リチウムを吸蔵・放出することが可能な炭素質材料からなる負極と、正極と、非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池において、負極がX線回折における格子面（002面）のd値が0.335~0.338nmである炭素材料を核材とし、その核材の表面の一部又は全部に前記核材よりもX線回折における格子面（002面）のd値が大きい炭素質物が付着しており、かつ核材と前記核材よりもX線回折における格子面（002面）のd値が大きい炭素質物が重量比で99/1~80/20の割合であり、更に前記非水溶媒中に下記一般式（I）で表されるビニレンカーボネート化合物と下記一般式（II）で表されるビニルエチレンカーボネート化合物とを少なくとも一種ずつ含有することを特徴とするものである。

【0011】

【化5】

【0012】（式中、R¹、R²は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。）

【0013】

【化6】

【0014】（式中、R³、R⁴及びR⁵は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表し、R⁶、R⁷及びR⁸は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基又は炭素数2~7のアルケニル基を表す。）

また本発明は、X線回折における格子面（002面）のd値が0.335~0.338nmである炭素材料を核材とし、その核材の表面の一部又は全部に前記核材よりもX線回折における格子面（002面）のd値が大きい炭素質物が付着しており、かつ核材と前記核材よりもX

線回折における格子面(002面)のd値が大きい炭素質物が重量比で99/1~80/20の割合である炭素質材料を含むリチウムを吸蔵・放出することが可能な負極と、正極とを少なくとも備えた非水系電解液二次電池用の非水系電解液であって、該非水系電解液が非水溶媒とリチウム塩とから少なくとも構成され、前記非水溶媒中に下記一般式(I)で表されるビニレンカーボネート化合物と下記一般式(II)で表されるビニルエチレンカーボネート化合物とを少なくとも一種ずつ含有することを特徴とするものである。

【0015】

【化7】

(I)

【0016】(式中、R¹、R²は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。)

【0017】

【化8】

(II)

【0018】(式中、R³、R⁴及びR⁵は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を表し、R⁶、R⁷及びR⁸は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基または炭素数2~7のアルケニル基を表す。)

本発明において提供可能となる二次電池においては、初期の充電時から、前記負極表面の電解液分解活性の高い部位に、ビニレンカーボネート化合物由来の還元反応生成物とビニルエチレンカーボネート化合物由来の還元反応生成物の複合被膜が効率よく生成し、理由は明確でないがビニレンカーボネート化合物とビニルエチレンカーボネート化合物の還元反応生成物が異なるためにその複合被膜が高温環境下でも安定であり、過度の電解液の分解を抑制し、充放電効率や保存特性、サイクル特性向上させるとと思われる。

【0019】

【発明の実施の形態】本発明は、このような知見に基づいて完成されたものであり、リチウムを吸蔵・放出することが可能な炭素質材料からなる負極と、正極と、非水溶媒にリチウム塩を溶解してなる電解液とから少なくとも構成される非水系電解液二次電池において、負極がX線回折における格子面(002面)のd値が0.335~0.338nmである炭素材料を核材とし、その核材

の表面の一部又は全部に前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が付着しており、かつ核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が重量比で99/1~80/20の割合であり、更に前記非水溶媒中に一般式(I)で表されるビニレンカーボネート化合物と一般式(II)で表されるビニルエチレンカーボネート化合物とを少なくとも一種ずつ含有することを特徴とするものである。

【0020】核材として用いる炭素材料としては、黒鉛系の炭素材料が好ましく、例えば好適には種々の原料から得た易黒鉛性ピッチの高温熱処理によって製造された人造黒鉛、天然黒鉛、これを高純度化した精製天然黒鉛或いはキッシュ黒鉛が主として使用される。これらの炭素材料は学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は0.335~0.338nmであり、0.335~0.337nmであるのが好ましい。灰分は1重量%以下であるのが好ましく、0.5重量%以下であるのがより好ましく、0.1重量%以下であるのが特に好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は30nm以上であるのが好ましく、50nm以上であるのがより好ましく、100nm以上であるのが特に好ましい。

【0021】また、レーザー回折・散乱法による炭素素材粉体のメジアン径は、1~100μmであるのが好ましく、3~50μmであるのがより好ましく、5~40μmであるのが更に好ましく、7~30μmであるのが特に好ましい。BET法比表面積は、0.3~25.0m²/gであるのが好ましく、0.5~20.0m²/gであるのがより好ましく、0.7~15.0m²/gであるのが更に好ましく、0.8~10.0m²/gであるのが特に好ましい。また、前記径に調整された粉体をアルゴンイオンレーザー光を用いたラマンスペクトル分析した場合、1570~1620cm⁻¹の範囲のピークP_A(ピーク強度I_A)及び1300~1400cm⁻¹の範囲のピークP_B(ピーク強度I_B)の強度比R=I_B/I_Aは0.01~0.5が好ましく、1570~1620cm⁻¹の範囲のピークの半値幅は26cm⁻¹以下、特に25cm⁻¹以下であるのが好ましい。

【0022】核材として用いる炭素材料よりもX線回折における格子面(002面)のd値が大きい、該核材の表面に付着している炭素質物については、核材として用いる炭素材料より結晶性が低ければ特に限定されないが、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.338nmを越えるものが好ましい。通常d値は、0.36nm程度までのものが使用される。

【0023】核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物の割合(核材/表面炭素質物)については、重量比で99/1~80

/20、好ましくは99/1~85/15、とするのがエネルギー密度の向上とサイクル特性の点から好ましい。核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物の形態については特に限定されないが、核材粒子の表面の一部又は全部に、前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が付着又は被覆した形態である「多相構造黒鉛系炭素質物」が好ましい。

【0024】上記多相構造黒鉛系炭素質物は、黒鉛系炭素材料を有機物等と混合・焼成し、あるいはCVD法などを用いて表面に非晶質炭素を形成させることができ。有機物としては、軟ピッチから硬ピッチまでのコルタールピッチや乾留液化油などの石炭系重質油や、常圧残油、減圧残油等の直留系重質油、原油、ナフサなどの熱分解時に副生するエチレンタール等分解系重質油等の石油系重質油が挙げられる。また、これら重質油を200°C~400°Cで蒸留して得られた固体状残渣物を1μm~100μmに粉碎したものも用いることができる。さらに塩化ビニル樹脂や、フェノール樹脂やイミド樹脂も用いられる。

【0025】黒鉛系炭素材料と有機物との混合は、回転羽根を用いたかき混ぜ式混合機、ニーダー、かい形ねりませ機、ロール形ねりませ機などのねりませ式混合装置が使用でき、また、容器自身の回転により混合するV形混合機、円筒形混合機、二重円錐形混合機、さらには、混合羽根を用いたリボン形混合機や、回転パドルを用いたパドルドライヤなども使用できる。

【0026】こうして得られた黒鉛系炭素材料と有機物との混合物を不活性ガス雰囲気で焼成して表面に非晶質炭素を形成させた炭素質材料である多相構造黒鉛系炭素質物を得ることができる。不活性ガスとしては、窒素、アルゴンなどを用いることができる。また、焼成温度としては400~2000°Cの範囲が好ましく、700~1500°Cの範囲がなお好ましい。

【0027】焼成後の多相構造黒鉛系炭素質物は適当な手段により粉碎、解碎、分級等の処理を行って粉体としても良く、その場合、レーザー回折・散乱法による粉体のメジアン径は、1~100μmであるのが好ましく、3~50μmであるのがより好ましく、5~40μmであるのが更に好ましく、7~30μmであるのが特に好ましい。BET法比表面積は、0.3~25.0m²/gであるのが好ましく、0.5~20.0m²/gであるのがより好ましく、0.7~15.0m²/gであるのが更に好ましく、0.8~10.0m²/gであるのが特に好ましい。また、前記径に調整された粉体をアルゴンイオンレーザー光を用いたラマンスペクトル分析した場合、1570~1620cm⁻¹の範囲のピークP_A(ピーク強度I_A)及び1300~1400cm⁻¹の範囲のピークP_B(ピーク強度I_B)の強度比R=I_B/I_Aは0.1~1.2が好ましく、1570~1620

cm⁻¹の範囲のピークの半値幅は25~45cm⁻¹であるのが好ましい。

【0028】前記の核となる黒鉛系炭素材料又は上記で得た多相構造黒鉛系炭素質物にその他のリチウムを吸蔵・放出可能な負極材を更に混合して用いることもできる。その他のリチウムを吸蔵・放出可能な負極材としては、酸化錫、酸化珪素等の金属酸化物材料、硫化錫等の金属硫化物材料、リチウム金属、リチウムとアルミニウム、珪素、錫、アンチモン等の種々の金属とのリチウム合金及び、珪化マグネシウム、珪化銅等の金属珪化物を例示することができる。これらの負極材料は二種類以上混合して用いても良い。

【0029】これらの負極材料を用いて負極を製造する方法については、特に限定されない。例えば、負極材料に、必要に応じて結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体の基板に塗布し、乾燥することにより負極を製造することができるし、また、該負極材料をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。

【0030】電極の製造に用いられる結着剤については、電極製造時に使用する溶媒や電解液に対して安定な材料であれば、特に限定されない。その具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソブレンゴム、ブタジエンゴム等を挙げることができる。増粘剤としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スター、リン酸化スター、ガゼイン等が挙げられる。

【0031】導電材としては、銅やニッケル等の金属材料、グラファイト、カーボンブラック、カーボンファイバー等のような炭素材料が挙げられる。負極用集電体の材質は、銅、ニッケル、ステンレス等の金属が使用され、これらの中で薄膜に加工しやすいという点とコストの点から銅箔が好ましい。本発明に使用される非水溶媒は、下記一般式(I)で表されるビニレンカーポネート化合物と下記一般式(II)で表されるビニルエチレンカーポネート化合物とを含有する。

【0032】

【化9】

【0033】一般式(I)において、R¹、R²は、それぞれ独立して、水素原子又は炭素数1～4のアルキル基を表す。R¹、R²が炭素数1～4のアルキル基である場合、その具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。これらの中、メチル基、エチル基が好ましい。

【0034】そして、このような一般式(I)で表されるビニレンカーボネート化合物の具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4, 5-ジメチルビニレンカーボネート、4, 5-ジエチルビニレンカーボネート等を挙げることができる。中でもビニレンカーボネート、4, 5-ジメチルビニレンカーボネートが好ましく、ビニレンカーボネートが特に好ましい。これらは2種以上混合して用いてもよい。

【0035】一般式(II)において、R³、R⁴及びR⁵は、それぞれ独立して、水素原子又は炭素数1～4のアルキル基を表し、R⁶、R⁷及びR⁸は、それぞれ独立して、水素原子又は炭素数1～4のアルキル基又は炭素数2～7のアルケニル基を表す。R³、R⁴、R⁵、R⁶、R⁷及びR⁸が炭素数1～4のアルキル基である場合、その具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が挙げられる。これらの中、メチル基、エチル基が好ましい。

【0036】また、R⁶、R⁷及びR⁸が炭素数2～7のアルケニル基である場合、その具体例としては、ビニル基、1-メチルビニル基、2-メチルビニル基、プロペニル基、1-メチルプロペニル基、2-メチルプロペニル基、3-メチルプロペニル基、ブテニル基等が挙げられる。そしてこのような一般式(II)で表されるビニルエチレンカーボネート化合物の具体例としては、4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-ブロピル-4-ビニルエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4, 4-ジビニルエチレンカーボネート、4, 5-ジビニルエチレンカーボネート等を挙げること

ができる。

【0037】中でも4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4, 5-ジビニルエチレンカーボネートが好ましく、4-ビニルエチレンカーボネートが特に好ましい。これらは2種以上混合して用いてもよい。本発明において、非水溶媒中の一般式(I)で表されるビニレンカーボネート化合物の含有量は0.05～5重量%が好ましく、0.1～4重量%が特に好ましい。一般式(II)で表されるビニルエチレンカーボネート化合物の含有量は0.05～5重量%が好ましく、0.1～4重量%が特に好ましい。本発明においては、上記一般式(I)と一般式(II)で表される化合物は、その合計量が通常0.1～6重量%、好ましくは0.2～5重量%である。

【0038】本発明に使用される非水溶媒では、特に限定されず、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート等のジアルキル（炭素数1～4のものが好ましい）カーボネート、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル、アーブチロラクトン、アーバレロラクトン等の環状エステル、酢酸メチル、プロピオン酸エチル等の鎖状エステル、スルフォラン、ジエチルスルホン等の含硫黄有機溶媒、リン酸トリメチル、リン酸トリエチル等の含磷有機溶媒等が挙げられる。これらの溶媒は二種類以上混合して用いても良い。

【0039】ここで非水溶媒が、アルキレン基の炭素数が2～4のアルキレンカーボネートからなる群から選ばれた環状カーボネートと、アルキル基の炭素数が1～4であるジアルキルカーボネートよりなる群から選ばれた鎖状カーボネートとをそれぞれ20容量%以上含有し、且つこれらのカーボネートが全体の70容量%以上を占める混合溶媒であるものが電解液の電気伝導率が高く、サイクル特性と大電流放電特性が高く好ましい。

【0040】アルキレン基の炭素数が2～4のアルキレンカーボネートの具体例としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等を挙げることができ、これらの中、エチレンカーボネート、プロピレンカーボネートが好ましい。アルキル基の炭素数が1～4であるジアルキルカーボネートの具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等を挙げができる。これらの中、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。なお混合非水溶媒中には、カーボネート以外の溶媒を含有

してもよい。

【0041】他の好ましい電解液の非水溶媒の態様として、比誘電率2.5以上の1種又は2種以上の溶媒を60容量%以上、特に85容量%以上の割合で含有するものが、溶媒自身の沸点が比較的高く、高温の使用においても揮発や液漏れの問題が少なく好ましい。また、比誘電率2.5以上の非水溶媒としてはエチレンカーボネート、プロピレンカーボネート、アーブチロラクトン、アーバレロラクトンが挙げられ、特にエチレンカーボネートを含有するものが好ましく、その中でもエチレンカーボネートを5容量%以上かつアーブチロラクトンを55容量%以上占める混合溶媒や、エチレンカーボネートを30容量%以上かつプロピレンカーボネートを30容量%以上占める溶媒が、高温保存時のガス発生が少なく、サイクル特性と大電流放電特性等のバランスが良く更に好ましい。

【0042】本来、プロピレンカーボネートやアーブチロラクトン等は黒鉛系炭素負極を用いた場合に黒鉛表面で分解しやすいものであるが、ビニレンカーボネート化合物とビニルエチレンカーボネート化合物とを少なくとも一種ずつ含有させることにより、黒鉛系炭素表面に安定な被膜が形成されることにより、分解を最小限に抑制することができる。

【0043】非水溶媒には、更に、エチレンサルファイト等のサルファイト、プロパンスルトン等のスルホン酸エステル、無水コハク酸、無水マレイン酸、無水フタル酸等のカルボン酸無水物、1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシンイミド等の含窒素化合物からなる群から選ばれる化合物を、非水溶媒に0.01~3重量%となるように添加すると、サイクル特性が向上する点で好ましい。

【0044】更に、非水系電解液には、セパレータや電極材との塗れ性を良くするために、界面活性剤を非水溶媒に0.01~2重量%となるように添加してもよい。本発明で使用される電解液の溶質としては、リチウム塩が用いられる。リチウム塩については、溶質として使用し得るものであれば特に限定はされないが、その具体例としては例えば、LiClO₄、LiPF₆、LiBF₄から選ばれる無機リチウム塩又はLiCF₃SO₃、LiN(CF₃SO₂)₂、LiN(CF₃CF₂SO₂)₂、LiN(CF₃SO₂)(C₄F₉SO₂)、LiC(CF₃SO₂)₃等の含フッ素有機リチウム塩が挙げられる。これらの中、LiPF₆、LiBF₄が好ましい。なおこれらの溶質は2種類以上混合して用いても良い。

【0045】電解液中の溶質のリチウム塩モル濃度は、0.5~3モル/リットルであることが望ましい。0.5モル/リットル未満もしくは3モル/リットルを超

る場合は、電解液の電気伝導率が低下し、電池の性能が低下するため好ましくない。本発明の電池を構成する正極の材料としては、特に制限されず、公知の材料が使用できるが、好ましくはリチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム遷移金属複合酸化物材料等のリチウムを吸蔵及び放出可能な材料を使用することができる。

【0046】正極の製造方法については、特に限定されず、上記の負極の製造方法に準じて製造することができる。また、その形状については、正極材料に必要に応じて公知の接着剤、導電材、溶媒等を加えて混合後、集電体の基板に塗布してシート電極としたり、プレス成形を施してペレット電極とすることができます。正極用集電体の材質は、アルミニウム、チタン、タンタル等の金属又はその合金が用いられる。これらの中で、特にアルミニウム又はその合金が軽量であるためエネルギー密度の点で望ましい。

【0047】本発明の電池に好ましく使用されるセパレーターの材質や形状については、特に限定されない。但し、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等を用いるのが好ましい。負極、正極及び非水系電解液を少なくとも有する本発明の電池を製造する方法については、特に限定されず、通常採用されている方法の中から適宜選択することができる。

【0048】また、電池の形状については特に限定されず、シート電極及びセパレーターをスパイラル状にしたシリンドータイプ、ペレット電極及びセパレーターを組み合わせたインサイドアウト構造のシリンドータイプ、ペレット電極及びセパレーターを積層したコインタイプ等が使用可能である。

【0049】

【実施例】以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を越えない限りこれらの実施例に限定されるものではない。

(実施例1) X線回折における格子面(002面)のd値が0.336nm、晶子サイズ(Lc)が、100nm以上(652nm)、灰分が0.07重量%、レーザー回折・散乱法によるメジアン径が12μm、BET法比表面積が7.5m²/g、アルゴンイオンレーザー光を用いたラマンスペクトル分析において1570~1620cm⁻¹の範囲のピークP_A(ピーク強度I_A)及び1300~1400cm⁻¹の範囲のピークP_B(ピーク強度I_B)の強度比R=I_B/I_Aが0.12、1.570~1.620cm⁻¹の範囲のピークの半値幅が19.9cm⁻¹である天然黒鉛粉末2kgを石油系ピッチ1kgと混合し、得られたスラリー状の混合物を回分式加熱炉で不活性雰囲気下にて1100℃まで2時間で昇温、同温度で2時間保持した。これを粉碎し、振動式篩いによ

り粒径を18~22μmに整え、最終的に7%の非晶質炭素で天然黒鉛表面を被覆した「多相構造黒鉛系炭素質物」を得た。非晶質炭素部位のX線回折における格子面(002面)のd値は0.345nmであった。

【0050】本「多相構造黒鉛系炭素質物」を負極活物質として、「多相構造黒鉛系炭素質物」94重量部にポリフッ化ビニリデン6重量部を混合し、N-メチル-2-ピロリドンで分散させスラリー状としたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて負極とした。

【0051】正極活物質としてLiCoO₂ 85重量部にカーボンブラック6重量部、ポリフッ化ビニリデン(吳羽化学社製、商品名:KF-1000)9重量部を加え混合し、N-メチル-2-ピロリドンで分散し、スラリー状としたものを正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて正極とした。

【0052】電解液については、乾燥アルゴン雰囲気下で、十分に乾燥を行ったLiPF₆を溶質として用い、エチレンカーボネートとエチルメチルカーボネートの混合物(3:7容量比)にビニレンカーボネート1重量%とビニルエチレンカーボネート1重量%の割合で添加し、更にLiPF₆を1モル/リットルの割合で溶解して調製した。

【0053】これらの正極、負極、電解液を用いて、正極集電体を兼ねるステンレス鋼製の缶体に正極を収容し、その上に電解液を含浸させたセバレーターを介して負極を置換した。この缶体と負極導電体を兼ねる封口板とを、絶縁用のガスケットを介してかしめて密封し、コイン型電池を作製した。

(比較例1) エチレンカーボネートとエチルメチルカーボネートの混合物(3:7容量比)にビニレンカーボネートを2重量%割合で添加し、更にLiPF₆を1モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0054】(比較例2) エチレンカーボネートとエチルメチルカーボネートの混合物(3:7容量比)にビニルエチレンカーボネートを2重量%割合で添加し、更にLiPF₆を1モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0055】(実施例2) エチレンカーボネートとアーブチロラクトンの混合物(1:9容量比)にビニレンカーボネートを1重量%とビニルエチレンカーボネート1重量%の割合で添加し、更にLiBF₄を2モル/リットルの割合で溶解して調製した。

(比較例3) エチレンカーボネートとアーブチロラクトンの混合物(1:9容量比)にビニレンカーボネートを2重量%の割合で添加し、更にLiBF₄を2モル/リ

ットルの割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にしてコイン型電池を作製した。

【0056】(比較例4) エチレンカーボネートとアーブチロラクトンの混合物(1:9容量比)にビニルエチレンカーボネートを2重量%の割合で添加し、更にLiBF₄を2モル/リットルの割合で溶解して調製した電解液を用いたこと以外は実施例1と同様にしてコイン型電池を作製した。

【0057】(実施例3) エチレンカーボネートとプロピレンカーボネートの混合物(5:5容量比)にビニレンカーボネート1重量%とビニルエチレンカーボネート1重量%の割合で添加し、更にLiPF₆を1モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0058】(比較例5) エチレンカーボネートとプロピレンカーボネートの混合物(5:5容量比)にビニレンカーボネートを2重量%割合で添加し、更にLiPF₆を1モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0059】(比較例6) エチレンカーボネートとプロピレンカーボネートの混合物(5:5容量比)にビニルエチレンカーボネートを2重量%割合で添加し、更にLiPF₆を1モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0060】(実施例4) エチレンカーボネートとプロピレンカーボネートとアーブチロラクトンの混合物(2:1:7容量比)にビニレンカーボネート1重量%とビニルエチレンカーボネート1重量%の割合で添加し、更にLiBF₄を1.5モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0061】(比較例7) エチレンカーボネートとプロピレンカーボネートとアーブチロラクトンの混合物(2:1:7容量比)にビニレンカーボネート2重量%の割合で添加し、更にLiBF₄を1.5モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0062】(比較例8) エチレンカーボネートとプロピレンカーボネートとアーブチロラクトンの混合物(2:1:7容量比)にビニルエチレンカーボネート2重量%の割合で添加し、更にLiBF₄を1.5モル/リットルの割合で溶解して調製した電解液を用いた以外は実施例1と同様にしてコイン型電池を作製した。

【0063】(電池性能試験) これらの実施例1~4及び比較例1~8の電池を25°Cにおいて、0.5mAの定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を5サイクル行って安定させた後、充電状態で85°Cで3日間保存した。保存後の電池を25°Cにおいて

0.5mAの定電流で放電終止電圧3Vまで放電させた後に、0.5mAの定電流で充電終止電圧4.2V、放電終止電圧3Vで充放電を行って保存特性を検討した。保存前の放電容量を100とした場合の保存後の放電容量を表1に示す。

【0064】

【表1】

表1

	保存前の容量を100とした場合の保存後の容量 (%)
実施例1	91
比較例1	89
比較例2	88
実施例2	91
比較例3	88
比較例4	83
実施例3	89
比較例5	85
比較例6	80
実施例4	89
比較例7	87
比較例8	83

【0065】表1から明らかなように、本実施例の電池は、保存前の放電容量に対する保存後の放電容量が向上しており、高温での保存特性の向上に効果がある。

【0066】

【発明の効果】炭素質材料を含む負極を備えた非水系電解液二次電池において、負極がX線回折における格子面(002面)のd値が0.335~0.338nmである炭素材料を核材とし、その核材の表面の一部又は全部に前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が付着しており、かつ核材と前記核材よりもX線回折における格子面(002面)のd値が大きい炭素質物が重量比で99/1~80/20の割合であり、更に前記非水溶媒中に一般式(I)で表されるビニレンカーポネート化合物と一般式(II)で表されるビニルエチレンカーポネート化合物とを少なくとも一種ずつ含有することにより、電解液の分解を最小限に抑え、高い容量を得られると共に、高温下においても、保存特性、サイクル特性の優れた電池を作製することができ、非水系電解液二次電池の小型化、高性能化に寄与することができる。

フロントページの続き

(72)発明者 藤井 隆

茨城県稲敷郡阿見町中央八丁目3番1号
三菱化学株式会社筑波研究所内

(72)発明者 鈴木 仁

茨城県稲敷郡阿見町中央八丁目3番1号
三菱化学株式会社筑波研究所内

Fターム(参考) 5H029 AJ03 AJ04 AJ05 AK03 AL06

AL07 AM03 AM05 AM07 BJ03

DJ16 DJ17 DJ18 HJ01 HJ13

5H050 AA07 AA08 AA09 BA17 CA08

CB07 CB08 FA17 FA18 FA19

FA20 HA01 HA13