· (() ·

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/15, C07K 14/81, C12N 1/21,
5/10, A61K 48/00, 38/57, 38/43, 38/17,
38/48, C07K 16/38

(11) International Publication Number: WO 95/09918

(43) International Publication Date: 13 April 1995 (13.04.95)

(21) International Application Number: PCT/US94/11241 (81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, IP, KP, KR, KZ, LK, LT, LU, LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(30) Priority Data:

08/134,231

6 October 1993 (06.10.93)

OK, SD, SE, SK, GK, GZ, KI, Edge Park (11.1 Dec.)

CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Applicant: AMGEN INC. [US/US]; Amgen Center, 1840 Pu Dehavilland Drive, Thousand Oaks, CA 91320-1789 (US).

(72) Inventors: SILBIGER, Scott, M.; 21520 Burbank Boulevard #114, Woodland Hills, CA 91367 (US). KOSKI, Raymond, A.; 7 Meeting House Lane, Old Lyme Road, CT 06371 (US).

(74) Agents: ODRE, Steven, M. et al.; Amgen Inc., 1840 Dehavilland Drive, Thousand Oaks, CA 91320-1789 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TISSUE INHIBITOR METALLOPROTEINASE TYPE THREE (TIMP-3)

(57) Abstract

According to the present invention, a class of novel tissue inhibitors of metalloproteinase are provided. For convenience, the present polypeptides are referred to as "TIMP-3", as these polypeptides represent a new class of members of the tissue inhibitors of metalloproteinases. Also provided are DNA sequences coding for all or part of the present TIMP-3's, vectors containing such DNA sequences, and host cellstransformed or transfected with such vectors. Also comprehended by the invention are methods of producing recombinant TIMP-3's, and methods of treating disorders. Additionally, pharmaceutical compositions including TIMP-3's and antibodies selectively binding TIMP-3's are provided.

Best Available Copy

PCT(USD4/08661

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	EU	Hungary	NO	Norway
		TE.	freland	NZ	New Zealand
BG	Bulgaria Benin	n	Italy	PL	Poland
BJ		JP	Japan	PT	Portugal
BR	Brazil	KЕ	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Pederation
CA	Canada	KCP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	ы	of Kores	SE	Sweden
CG	Congo	KR	Republic of Korea	SI	Slovenia
CH	Switzerland	KZ	Kazakhstan	SK	Slovakia
CI	Côte d'Ivoire		Liechtenstein	SN	Senegal
CM	Сащегооп	LI		110	Chad
CN	China	LK	Sri Lanka	TG	Togo
CS	Czechoslovakia	LU	Luxembourg	T.J	Tajikistan
CZ	Czech Republic	LV	Latvia	TT	Trimidad and Tobago
DE	Germany	MC	Monaco		Ukraine
DK	Denmark	MD	Republic of Moldova	UA	United States of America
ES	Spain	MG	Madagascar	US	
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MIN	Mongolia	VN	Viet Nam
GA	Gabon	•			
311					

- 1 -

TISSUE INHIBITOR METALLOPROTEINASE TYPE THREE (TIMP-3).

Field of the Invention

5

10

15

20

25

35

The present invention relates in general to metalloproteinase inhibitors and to polynucleotides encoding such factors. In particular, the invention relates to novel mammalian tissue inhibitors of metalloproteinase (herein designated as type three, or "TIMP-3"), to fragments, derivatives, and analogs thereof and to polynucleotides encoding the same. In another aspect, the present invention relates to novel methods of producing such compositions, and methods of using such compositions.

Background of the Invention

Connective tissues are maintained in dynamic equilibrium by the opposing effects of extracellular matrix synthesis and degradation. The extracellular connective tissue matrix consists predominantly of collagens, with proteoglycans, fibronectin, laminin and other minor components making up the remainder.

Degradation of the matrix is brought about by the release of neutral metalloproteinases from resident connective tissue cells and invading inflammatory cells that are capable of degrading at physiological pH most of the matrix macromolecules. See Table 1, below. The proteinases include the mammalian tissue collagenases, gelatinases, and proteoglycanases; leukocyte collagenase and gelatinase (Murphy et al. Biochem. J. 283: 289-221 (1982); Hibbs et al., J. Biol. Chem. 260: 2493-2500 (1985)); macrophage collagenase and elastase (Werb et al. J. Exp. Med. 142: 346-360 (1975); Banda et al.,

- 2 -

Biochem. J. 193: 589-605 (1981)); and tumour collagenases (Liotta et al., PNAS-USA 76: 2268-2272 (1979); Liotta et al., Biochem. Biophys. Res. Commun. 98: 124-198 (1981); and Salo et al., J. Biol. Chem. 258: 3058-3063 (1983)). For a general review of collagenases and their role in normal and pathological connective tissue turnover see Collagenase in Normal and Pathological Connective Tissues, David E. Woolley and John M. Evanson, eds., John Wiley & Sons Ltd. (1988).

10

15

20

There are over five different collagen types (I, II, III, IV, V, etc.) which are differentially distributed among tissues. There is considerable homology and structural similarity among the various collagen types. Particular collagenases show some specificity for particular collagen types. See Table 1, below; Matrisian, Trends In Genetics 6: 121-125 (1990). With regard to inhibition of collagenases and other matrix-degrading metalloproteinases, it is possible that, depending on the actual enzymes, substrates, and inhibitory mechanisms, an inhibitor could act on just one, on several, or on all collagenases and metalloproteinases.

TABLE 1
MATRIX-degrading metalloproteinases

	Siza (kDa)	Degrades	Ref.
Name(S)	SIZE (NUA)	11 11 11 11	Coholty of al Concer Res 48:5539.
(1) Interstitial collagenase (Type I collagenase)	52 dechased 52, 57 secreted	I, II, III collagen	5545 (1988)
(MMP-1) PMN Collagenase	75 secreted	I, II, III collagen	Macarney et al., Evr. J. Biochem. 130: 71-78 (1983).
(MMP-8) (2) 72 kDA Type IV collagenase (72 kDa gelatinase)	72 secreted	IV,V, VII collagen, fibronectin, gelatins	Collicr et al., J. Biol. Chem. 263:6579-6587 (1988)
(MMP-2) 92 kDa Type IV collagenase (92 kDa gelatinase)	78 deduced 92 secreted	IV, V collagen, gelatins	Withelm et al., J. Biol. Chem. 263: 17213-17221 (1989)
(MMP-9) (3) Stromelysin (transin)	53 dechased 57,60 secreted	Proteoglycans, laminin, fibronectin, III, IV, V collagen, gelatins	Chin et al., J. Biol. Chem. <u>260</u> : 12367-12376 (1985)
(proteoglycanase) (procollagen-activiating factor) (MMP 3) Stromelysin-2 (ransin-2)	53 deduced	III, IV, V collagen, fibronectin, gelatins	Nicholson et al., Biochemistry 28: 5195-5203 (1989)
(MMP-10) PUMP-1 (MMP-7)	28 deduced 28 secreted	Gelatins, fibronectin	Quantin et al., Biochemistry 28: 5327-5333 (1989)
(Small metalloprotemase of uterus)			

The matrix metalloproteinases are divided into three major subclasses, indicated with arabic numerals, on the basis of their substrate specificities. The enzymes in each class are bold, and alternative names are shown in parentheses. MMP, matrix metalloproteinase; PMN, polymorphonuclear leukocyte.

- 4 -

The underlying basis of degradative diseases of connective tissue points to the matrix-specific metalloproteinases as having a fundamental role in the etiology of these diseases. Such diseases include dystrophic epidermolysis bullosa; rheumatoid arthritis; corneal, epidermal or gastric ulceration; peridontal disease; emphysema; bone disease; and tumor metastasis or invasion.

Most studies on connective tissue degradation

and diseases involving such degradation have limited the
measurement of metalloproteinases to collagenase (the
most widely studied of this group of
metalloproteinases). It is understood however, that the
simultaneous effects of collagenase and the other

matrix-degrading metalloproteinases will exacerbate the
degradation of the connective tissue over that achieved
by collagenase alone.

Specific natural inhibitors of collagenase were discovered in crude medium from cultured connective tissues. A metalloproteinase inhibitor known as TIMP 20 (tissue inhibitor of metalloproteinases) has been studied with regard to physicochemical properties and the biochemistry of its interaction with collagenase, Murphy et al., J. Biochem. 195: 167-170 (1981); Cawston et al., J. Biochem. 211: 313-318 (1983); Stricklin et 25 al., J. Biol. Chem. 258: 12252-12258 (1983), and DNA encoding it has been isolated, Docherty et al., Nature 318: 65-69 (1985); Carmichael et al., PNAS-USA 83: 2407-2411 (1986). In an in vitro cell culture model of tumor cell migration through a natural basement membrane, TIMP 30 was able to arrest migration of a collagenase-secreting tumor cell line, Thorgeirsson et al., J. Natl. Canc. Inst. <u>69</u>: 1049-1054 (1982). <u>In vivo</u> mouse lung colonization by murine B16-F10 melanoma cells was inhibited by injections of TIMP, Schultz et al., Cancer 35

- 5 -

Research $\underline{48}$: 5539-5545 (1988). European Patent Publication No. EP O 189 784 also relates to TIMP.

5

25

30

35

McCartney et al., Eur. J. Biochem. <u>130</u>: 79-83 (1983) reported the purification of a metalloproteinase inhibitor from human leukocytes.

DeClerck et al., Cancer Research <u>46</u>: 3580-3586 (1986) described the presence of two inhibitors of collagenase in conditioned medium from bovine aortic endothelial cells.

Murray et al., J. Biol. Chem. <u>261</u>: 4154-4159 (1986) reported the purification and partial amino acid sequence of a bovine cartilage-derived collagenase inhibitor.

Langley, et al., EP 0 398 753

("Metalloproteinase Inhibitor," published November 22, 1990) discloses a novel metalloproteinase inhibitor and analogs, polynucleotides encoding the same, methods of production, pharmaceutical compositions, and methods of treatment. The polypeptide of Figure 2 therein has been referred to as TIMP-2, designating a molecule distinct from TIMP-1, supra. EP 0 398 753 describes both bovine and human recombinant TIMP-2.

Staskus et al., J. Biol. Chem. 266: 449-454 (1991) reports a 21 kDa avian metalloproteinase inhibitor obtained from chicken fibroblasts. The authors note the biochemical similarities with other members of the TIMP and TIMP-2 group of proteins and state that the avian material may be a TIMP variant or may represent a third protein within the metalloproteinase inhibitor family. (This material is referred to herein as "ChIMP-3")

Pavloff et al., J. Biol. Chem. 267: 17321-17326 (1992) discloses the cDNA and primary structure of a metalloproteinase inhibitor from chicken embryo fibroblasts.

- 6 -

Yang et al., PNAS-USA <u>89</u>: 10676-10680 (1992) reports on the role of a 21 kDa protein chicken TIMP-3.

The present work relates to a third type of metalloproteinase inhibitor polypeptides. In one aspect, the present invention involves the cloning of recombinant human TIMP-3 nucleic acid and expression thereof.

Summary of the Invention

10

According to the present invention, a class of novel tissue inhibitors of metalloproteinase are provided. For convenience, the present polypeptides are referred to as "TIMP-3," as these polypeptides represent a new class of members of the tissue inhibitors of 15 metalloproteinases. Also provided are DNA sequences coding for all or part of the present TIMP-3's, vectors containing such DNA sequences, and host cells transformed or transfected with such vectors. Also comprehended by the invention are methods of producing 20 recombinant TIMP-3's, and methods of treating disorders. Additionally, pharmaceutical compositions including TIMP-3's and antibodies selectively binding TIMP-3's are provided.

25

Brief Description of the Drawings

Figure 1 shows the cDNA sequence and amino acid sequence of a recombinant human tissue inhibitor of metalloproteinase type 3 ("TIMP-3"). The entire 1240 base pair sequence encoding a full-length polypeptide of 211 amino acids is presented. A hydrophobic leader sequence is found at position -23 to -1. The initial cysteine of the mature protein is numbered +1. The amino acids corresponding to the degenerate

- 7 -

oligonucleotides which identified the original PCR products are underlined, except that the oligo corresponding to YTIK was used analytically to confirm the identity of the PCR products prior to sequencing. A potential glycosylation site is italicized. A variant polyadenylation signal sequence is marked with asterisks. (The abbreviations used herein for amino acids, either single letter or triple letter abbreviations, and nucleic acids are those conventionally used, as in Stryer, Biochemistry, 3d ed. 1988, W.H. Freeman, N.Y., inside back cover.)

Figure 2 is a photograph of an agarose gel of first-strand cDNA PCR products, which demonstrate

15 amplification of human nucleic acid. Lane of 1 presents PCR products from human fetal kidney first strand cDNA primed with primers 449-15 (Seq. ID No. 1) and 480-27 (Seq. ID No. 2). Lane 2 presents the results of PCR amplification of fetal kidney first strand cDNA primed

20 with primers 449-15 (Seq. ID No. 12) and 480-28 (Seq. ID No. 3). Lane 3 is the PCR kit (Perkin-Elmer-Cetus) control. Lane 4 is TIMP-2 DNA primed with primers 449-15 (Seq. ID No. 1) and 480-27 (Seq. ID No. 2). Lane 5 is molecular weight markers.

25

10

Figure 3 is a photograph of a silver stained SDS-PAGE gel containing material as follows: Lane 1, molecular weight markers; lane 2, TIMP-2, reduced; lane 3, blank; lane 4, E. coli derived TIMP-3 of Figure 1, reduced, post-dialysis; lane 5, E. coli derived TIMP-3 of Figure 1, reduced, post-dialysis, lanes 6, 7, 8, blank; lane 9, E. coli derived TIMP-3 of Figure 1, unreduced, pre-dialysis; lane 10, E. coli derived TIMP-3 of Figure 1, unreduced, post-dialysis.

35

- 8 -

Figure 4 is a comparison table of human TIMP-3 amino acid sequence of Figure 1 with other TIMP family The numbering begins with the first cysteine of the mature protein. As can be seen, the alignment contains gaps for some TIMP family members. The numbering used here is consistent for the numbering used for the recombinant human TIMP-3 of Figure 1. Boldface letters indicate conserved amino acids; asterisks represent potential glycosylation sites of TIMP-1; underlined letters indicate potential glycosylation 10 sites of TIMP-3; the left bracket indicates the beginning of the mature proteins. A bullet (.) indicates those amino acids which are unique to recombinant human TIMP-3. The amino acid sequences were found in the literature as follows: Bovine TIMP-1, 15 Freudenstein et al., Biochem. Physic. Res. Comm. 171: 250-256 (1990); Human TIMP-1, Docherty et al., Nature 318: 65-69 (1985); Rabbit TIMP-1, Horowitz et al., J. Biol. Chem. <u>264</u>: 7092-7095 (1989); Mouse TIMP-1, Edwards et al., Nucleic Acid. Res. 14: 8863-8878 (1986); Johnson 20 et al., Mol. Cell. Biol. 7: 2821-2829 (1978); Gewert et al., EMBO 6: 651-657 (1987); Bovine TIMP-2, Boone et al., PNAS-USA 87: 2800-2804 (1990); Human TIMP-2, Boone et al., PNAS-USA 87: 2800-2804 (1990); Mouse TIMP-2, Shimizu et al., Gene 114: 291-292 (1992); Chicken 25 TIMP-3, Pavloff et al., J. Biol. Chem. <u>267</u>: 17321-17326 (1992). Unless otherwise indicated, these sequences referred to from time to time herein were found in these references.

30

35

Figure 5 is a comparison table of the amino acid sequence for the chicken metalloproteinase inhibitor of Staskus et al., J. Biol. Chem. <u>266</u>: 449-454 (1991) and the recombinant human TIMP-3 of Figure 1. A solid line between amino acids indicates identity,

- 9 -

double dots indicates similarity. A single dot indicates a lesser degree of similarity, and no dot indicates total difference, as described by Grivskov et al., Nucl. Aud. Res. 14: 6745-6763 (1986).

5

Figure 6 shows the overall homology between the Figure 1 nucleic acid sequence encoding TIMP-3 and that encoding ChIMP-3.

10 Figure 7 shows the maximal homology between the Figure 1 nucleic acid sequence encoding TIMP-3 and that encoding ChIMP-3.

Figure 8 shows the amino acid sequence
15 alignment of human recombinant TIMP-3 of Figure 1 and
human TIMP-2.

Figure 9 shows the overall homology of the Figure 1 nucleic acid sequence of human recombinant 20 TIMP-3 and that encoding human TIMP-2.

Figure 10 shows the maximal homology regions of the Figure 1 nucleic acid sequence encoding human recombinant TIMP-3 and that encoding human TIMP-2.

25

Figure 11 shows the amino acid sequence alignment of human recombinant TIMP-3 of Figure 1 and human TIMP-1.

Figure 12 shows the overall homology of the Figure 1 nucleic acid sequence encoding human recombinant TIMP-3 and that encoding human TIMP-1.

- 10 -

Figure 13 shows the maximal homology regions of the Figure 1 nucleic acid sequence encoding human recombinant TIMP-3 and that encoding human TIMP-1.

5 Figures 14 A and B shows Northern blot analyses performed on RNAs from a variety of cells, using a TIMP-3 DNA fragment as a probe.

Figure 15 shows a modified zymogram. Lane 1 (from the left hand side) contains a protein molecular 10 weight standard (see Figure 3). Lane 2 is a control lane containing conditioned medium with collagenases (72 kDa and interstitial collagenases, pAPMA activated). ("Coll" refers to interstitial collagenase.) Lane 3 contains TIMP-2. Lane 4 contains a TIMP-2 analog 15 lacking the six C-terminal cysteines. Lanes 5, 6, and 7 contain E. coli derived TIMP-3 of Figure 1, lane 5 being undiluted and lanes 6 and 7 being consecutive 2-fold serial dilutions. As can be seen, the lack of a clear zone at the location where the control (lane 2) showed 20 clearing indicates that TIMP-3 inhibits collagenase activity.

Figure 16 shows the cDNA and amino acid sequence of variants obtained using the present method.

Figure 17 shows an illustration of a proposed secondary structure of members of the TIMP family of proteins.

30

35

Numerous aspects and advantages of the invention will be apparent to those skilled in the art upon consideration of the following detailed description which provides illustrations of the practice of the invention in its presently preferred embodiments.

- 11 -

Detailed Description of the Invention

According to the present invention, novel 5 metalloproteinase inhibitors (herein called, collectively, TIMP-3) and DNA sequences coding for all or part of such TIMP-3 are provided. Such sequences include the incorporation of codons "preferred" for expression by selected nonmammalian hosts; the provision 10 of sites for cleavage by restriction endonuclease enzymes; and the provision of additional initial, terminal or intermediate DNA sequences which facilitate construction of readily expressed vectors. The present invention also provides DNA sequences coding for 15 polypeptide analogs or derivatives of TIMP-3 which differ from naturally-occurring forms in terms of the identity or location of one or more amino acid residues (i.e., deletion analogs containing less than all of the residues specified for TIMP-3; substitution analogs, 20 wherein one or more residues specified are replaced by other residues; and addition analogs wherein one or more amino acid residues is added to a terminal or medial portion of the polypeptide) and which share some or all the biological properties of mammaliam TIMP-3. 25

Novel nucleic acid sequences of the invention include sequences useful in securing expression in procaryotic or eucaryotic host cells of polypeptide products having at least a part of the primary structural conformation and one or more of the biological properties of recombinant human TIMP-3. The nucleic acids may be purified and isolated, so that the desired coding region is useful to produce the present polypeptides, for example, or for diagnostic purposes, as described more fully below. DNA sequences of the

30

35

- 12 -

invention specifically comprise: (a) the DNA sequence set forth in Figure 1 (and complementary strands); (b) a DNA sequence which hybridizes (under hybridization conditions disclosed in the cDNA library screening section below, or equivalent conditions or more stringent conditions) to the DNA sequence in Figure 1 or to fragments thereof; and (c) a DNA sequence which, but for the degeneracy of the genetic code, would hybridize to the DNA sequence in Figure 1. Also contemplated are fragments of (a), (b) or (c) above which are at least 10 long enough to selectively hybridize to human genomic DNA encoding TIMP-3, under conditions disclosed for the cDNA library screening, below. Specifically comprehended in parts (b) and (c) are genomic DNA sequences encoding allelic variant forms of human TIMP-3 15 and/or encoding TIMP-3 from other mammalian species, and manufactured DNA sequences encoding TIMP-3, fragments of TIMP-3, and analogs of TIMP-3 which DNA sequences may incorporate codons facilitating transcription and translation of messenger RNA in microbial hosts. 20 manufactured sequences may readily be constructed according to the methods of Alton et al., PCT published application WO 83/04053.

Genomic DNA encoding the present TIMP-3's may contain additional non-coding bases, or introns, and such genomic DNAs are obtainable by hybridizing all or part of the cDNA, illustrated in Figures 1 and 16, to a genomic DNA source, such as a human genomic DNA library. Such genomic DNA will encode functional TIMP-3 polypeptide; however, use of the cDNAs may be more practicable in that, since only the coding region is involved, recombinant manipulation is facilitated.

25

30

35

According to another aspect of the present invention, the DNA sequences described herein which encode TIMP-3 polypeptides are valuable for the

- 13 -

information which they provide concerning the amino acid sequence of the mammalian protein which have heretofore been unavailable. Put another way, DNA sequences provided by the invention are useful in generating new and useful viral and circular plasmid DNA vectors, new and useful transformed and transfected procaryotic and eucaryotic host cells (including bacterial and yeast cells and mammalian cells grown in culture), and new and useful methods for cultured growth of such host cells capable of expression of TIMP-3 and its related products.

5

10

15

20

25

30

35

The DNA provided herein (or corresponding RNAs) may also be used for gene therapy for, example, treatment of emphysema. For example, transgenic mice overexpressing collagenase exhibit symptoms pulmonary emphysema, D'Armiento et al., Cell <u>71</u>: 955-961 (1992), indicating that inhibition of collagenase may ameliorate some of the symptoms of emphysema. Currently, vectors suitable for gene therapy (such as retroviral or adenoviral vectors modified for gene therapy purposes and of purity and pharmaceutical acceptability) may be administered for delivery into the lung. Such vectors may incorporate nucleic acid encoding the present polypeptides for expression in the lung. Additionally, one may use a mixture of such vectors, such as those containing genes for one or more TIMPs, elastase inhibitors or other proteins which ameliorate the symptoms of emphysema. Gene therapy may involve a vector containing more than one gene for a desired protein.

Alternatively, one may use no vector so as to facilitate relatively stable presence in the host. For example, homologous recombination may facilitate integration into a host genome. The nucleic acid may be placed within a pharmaceutically acceptable carrier to

- 14 -

facilitate cellular uptake, such as a lipid solution carrier (e.g., a charged lipid), a liposome, or polypeptide carrier (e.g., polylysine). A review article on gene therapy is Verma, Scientific American, November 1990, pages 68-84 which is herein incorporated by reference.

As mentioned above, target cells may be within the lungs of the recipient, but other target cells may be bone marrow cells, blood cells, liver (or other organ) cells, muscle cells, fibroblasts, or other cells. The desired nucleic acid may be first placed within a cell, and the cell may be administered to a patient (such as a transplanted tissue) or the desired nucleic acid may be administered directly to the patient for uptake in vivo.

10

15

30

35

The cells to be transferred to the recipient may be cultured using one or more factors affecting the growth or proliferation of such cells, as for example, SCF.

Administration of DNA of the present invention to the lung may be accomplished by formation of a dispersion of particles, or an aerosol. Typically some type of bulking agent will be involved, and a carrier, such as a lipid or polypeptide. These materials must be pharmaceutically acceptable. One may use a nebulizer for such delivery, such an ultrasonic or dry powder nebulizer. Alternatively, one may use a propellant based system, such as a metered dose inhaler, which may deliver liquid or a suspension of particles.

For gene therapy dosages, one will generally use between one copy and several thousand copies of the present nucleic acid per cell, depending on the vector, the expression system, the age, weight and condition of the recipient and other factors which will be apparent to those skilled in the art.

- 15 -

DNA sequences of the invention are also suitable materials for use as labeled probes in isolating human genomic DNA encoding TIMP-3, as mentioned above, and related proteins as well as cDNA and genomic DNA sequences of other mammalian species. DNA sequences may also be useful in various alternative methods of protein synthesis (e.g., in insect cells) or, as described above, in genetic therapy in humans and other mammals. DNA sequences of the invention are expected to be useful in developing transgenic mammalian species which may serve as eucaryotic "hosts" for production of TIMP-3 and TIMP-3 products in quantity. See, generally, Palmiter et al., Science 222: 809-814 (1983).

10

15

20

25

30

35

Also, one may prepare antisense nucleic acids against the present DNAs. <u>Compare</u>, Khokho et al., Science <u>243</u>: 947-950 (1989), whereby antisense RNA inhibitor of TIMP conferred oncogenicity on Swiss 3T3 cells. Antisense nucleic acids may be used to modulate or prevent expression of endogenous TIMP-3 nucleic acids.

The present invention provides purified and isolated polypeptide products having part or all of the primary structural conformation (i.e., continuous sequence of amino acid residues) and one or more of the biological properties (e.g., immunological properties and in vitro biological activity) and physical properties (e.g., molecular weight) of naturally-occurring mammalian TIMP-3 including allelic variants thereof. The term "purified and isolated" herein means substantially free of unwanted substances so that the present polypeptides are useful for an intended purpose. For example, one may have a recombinant human TIMP-3 substantially free of other human proteins or pathological agents. These polypeptides are also

- 16 -

characterized by being the a product of mammalian cells, or the product of chemical synthetic procedures or of procaryotic or eucaryotic host expression (e.g., by bacterial, yeast, higher plant, insect and mammalian cells in culture) of exogenous DNA sequences obtained by genomic or cDNA cloning or by gene synthesis. products of expression in typical yeast (e.g., Saccharomyces cerevisiae) or procaryote (e.g., E. coli) host cells are free of association with any mammalian The products of expression in vertebrate proteins. (e.g., non-human mammalian (e.g. COS or CHO) and avian) cells are free of association with any human proteins. Depending upon the host employed, and other factors, polypeptides of the invention may be glycosylated with mammalian or other eucaryotic carbohydrates or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue (at position -1 with respect to the first amino acid residue of the polypeptide).

10

15

20

25

30

35

In addition to naturally-occurring allelic forms of TIMP-3, the present invention also embraces other TIMP-3 products such as polypeptide analogs of TIMP-3 and fragments of TIMP-3. Following the procedures of the above noted published application by Alton et al. (WO 83/04053), one can readily design and manufacture genes coding for microbial expression of polypeptides having primary conformations which differ from that herein specified for in terms of the identity or location of one or more residues (e.g., substitutions, terminal and intermediate additions and deletions). Alternately, modifications of cDNA and genomic genes may be readily accomplished by well-known site-directed mutagenesis techniques and employed to generate analogs and derivatives of TIMP-3. products would share at least one of the biological

- 17 -

properties of mammalian TIMP-3 but may differ in others. As examples, projected products of the invention include those which are foreshortened by e.g., deletions; or those which are more stable to hydrolysis (and, therefore, may have more pronounced or longer lasting effects than naturally-occurring); or which have been altered to delete one or more potential sites for glycosylation (which may result in higher activities for yeast-produced products); or which have one or more cysteine residues deleted or replaced by, e.g., alanine 10 or serine residues and are potentially more easily isolated in active form from microbial systems; or which have one or more tyrosine residues replaced by phenylalanine and bind more or less readily to target proteins or to receptors on target cells. Also 15 comprehended are polypeptide fragments duplicating only a part of the continuous amino acid sequence or secondary conformations within TIMP-3, which fragments may possess one activity of mammalian TIMP-3 (e.g., immunological activity) and not others (e.g., 20 metalloproteinase inhibiting activity).

The present TIMP-3 may bind to the extracellular matrix, a characteristic not shared by TIMP-1 and TIMP-2. Thus, polypeptides exhibiting only a part of the continuous amino acid sequence or secondary conformations within TIMP-3 possessing the ability to bind to the extracellular matrix are also specifically contemplated herein.

25

It is noteworthy that activity is not

necessary for any one or more of the products of the invention to have therapeutic utility (see, Weiland et al., Blut 44: 173-175 (1982) or utility in other contexts, such as in assays of TIMP-3 antagonism.

Competitive antagonists may be quite useful in, for example, cases of overproduction of TIMP-3.

- 18 -

Of applicability to TIMP-3 fragments and polypeptide analogs of the invention are reports of the immunological activity of synthetic peptides which substantially duplicate the amino acid sequence extant in naturally-occurring proteins, glycoproteins and 5 nucleoproteins. More specifically, relatively low molecular weight polypeptides have been shown to participate in immune reactions which are similar in duration and extent to the immune reactions of physiologically significant proteins such as viral 10 antigens, polypeptide hormones, and the like. Included among the immune reactions of such polypeptides is the provocation of the formation of specific antibodies in immunologically active animals. See, e.g., Lerner et al., Cell 23: 309-310 (1981); Ross et al., Nature 294: 15 654-656 (1981); Walter et al., PNAS-USA 77: 5197-5200 (1980); Lerner et al., PNAS-USA, 78: 3403-3407 (1981); Walter et al., PNAS-USA 78: 4882-4886 (1981); Wong et al., PNAS-USA 79: 5322-5326 (1982); Baron et al., Cell 28: 395-404 (1982); Dressman et al., Nature 295: 185-160 20 (1982); and Lerner, Scientific American 248: 66-74 (1983). <u>See</u>, <u>also</u>, Kaiser et al. Science <u>223</u>: 249-255 (1984) relating to biological and immunological activities of synthetic peptides which approximately share secondary structures of peptide hormones but may 25 not share their primary structural conformation.

One type of analog is a truncated TIMP-3 having capacity to bind to the zinc binding domain of collagenase. For example, the zinc binding domain on interstitial collagenase is located at amino acids 218, 222 and 228 at the pro enzyme. Goldberg, G.I., J. Biol. Chem. 261: 660-6605 (1986). The zinc binding domain of the 72 kDa species of procollagenase is located at amino acids 403-407. Collier et al., Genomics 2: 429-434 (1991). The zinc binding domain of the 92 kDa species

30

35

- 19 -

of procollagenase is at amino acids 401-405. Van Ranst et al., Cytokene 3: 231-239 (1991). Interestingly, the zinc binding domain is fairly well conserved among enzymes: H E F G H (92 kDa collagenase), H E F G H (72 kDa collagenase) and H E L G H (interstitial collagenase). Thus, the motif for zinc binding is H E X G H wherein X is either F or L. A selective binding molecule, such as an antibody or small molecule would block such zinc binding and therefore inhibit enzymatic activity. (The term "selective binding molecule" as used here indicating a composition which selectively binds to its target.) One may prepare a monoclonal antibody or a recombinant antibody, for example.

10

TIMP-2 deletion analogs have been prepared which have retained the ability to inhibit 15 metalloproteinase activity. Willenbrock et al., Biochemistry 32: 4330-4337 (1993). For TIMP-2, the C-terminus was shortened to delete six C-terminal cysteines (three disulfide-bonded loops). Thus, in view of the homology among the various zinc binding domains, 20 one could prepare analogous TIMP-3 analogs with similarly shortened C-terminal sequences. The TIMP-3 analog 1-121 (using the numbering of Figure 1 herein) includes the first six cysteines residues, but not the last six. One may optionally lengthen the C-terminus 25 up to the full length molecule of 188 amino acids. Such analogs may also be prepared for any species, such as ChIMP-3.

This is further demonstrated below in the

examples, as a TIMP-2 deletion variant is shown to
inhibit interstitial collagenase. (Example 3 below).

The zinc binding domain of interstitial collagenase is
similarly situated as that of the 72 kDa species
collagenase (which was shown by Willenbrock et al.,

supra, to be affected by the TIMP-2 truncated analogs).

- 20 -

Also, since it is apparent that the C-terminus is not necessary for enzyme inhibition activity, one may chemically modify the C-terminus. One may desire, for example, a sustained release preparation whereby one or more polymer molecules such as polyethylene glycol molecules are attached. Other chemical modifications include attachment of an additional polypeptide for the creation of a fusion molecule. Thus, another aspect of the present invention is chemically modified TIMP-3.

5

10

15

The present invention also includes that class of polypeptides coded for by portions of the DNA complementary to the protein-coding strand of the human cDNA or genomic DNA sequences of TIMP-3 i.e., "complementary inverted proteins" as described by Tramontano et al. Nucleic Acid Res. 12: 5049-5059 (1984). Polypeptides or analogs thereof may also contain one or more amino acid analogs, such as peptidomimetics.

Also comprehended by the invention are pharmaceutical compositions comprising effective amounts 20 of polypeptide products of the invention together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers useful in TIMP-3 therapy. Such compositions include diluents of various buffer content (e.g., Tris-HCl, 25 acetate, phosphate), pH and ionic strength; additives such as detergents and solubilizing agents (e.g., Tween 80, Polysorbate 80), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimersol, benzyl alcohol) and bulking substances (e.g., lactose, 30 mannitol); covalent attachment of polymers such as polyethylene glycol to the protein (as discussed supra, see, for example U.S. patent 4,179,337 hereby incorporated by reference); incorporation of the material into particulate preparations of polymeric 35

- 21 -

compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. Such compositions will influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of TIMP-3. See, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated by reference.

Generally, an effective amount of the present TIMP-3 polypeptides will be determined by the age, weight and condition or severity of disease of the 10 recipient. See, Remingtons Pharmaceutical Sciences, supra, at pages 697-773, herein incorporated by reference. Typically, a dosage of between about 0.001g/kg body weight to about 1g/kg body weight, may be used, but more or less, as a skilled practitioner will 15 recognize, may be used. For local (i.e., non-systemic) applications, such as topical applications, the dosing may be between about 0.001g/cm² to about 1g/cm². Dosing may be one or more times daily, or less frequently, and may be in conjunction with other compositions as 20 described herein. It should be noted that the present invention is not limited to the dosages recited herein.

A plurality of agents act in concert in order to maintain the dynamic equilibrium of the extracellular matrix and tissues. In treatment of conditions where the equilibrium is skewed, one or more of the other agents may be used in conjunction with the present TIMP-3. These other agents may be co-administered or administered in seriatim, or a combination thereof. Generally, these other agents may be selected from the list consisting of the metalloproteinases, serine proteases, inhibitors of matrix degrading enzymes, intracellular enzymes, cell adhesion modulators, and factors regulating the expression of extracellular matrix degrading proteinases and their inhibitors.

25

30

35

- 22 -

While specific examples are listed below, one skilled in the art will recognize other agents performing equivalent functions, including additional agents, or other forms of the listed agents (such as those produced synthetically, via recombinant DNA techniques, and analogs and derivatives).

Metalloproteinases and serine proteases degrade the extracellular matrix, as discussed above. Thus, use of enzymes in therapy may be to counteract effects of the present TIMP-3, which inhibits such degradation. Enzymes include collagenases, PMN (polymorphonuclear leukocyte) collagenase, stromelysin I, II/transin, matrilysin, invadolysin, putative metalloproteinase (PUMP-1), urokinase type plasminogen activator (UPA), tissue plasminogen activator (TPA), and plasmin. PD-ECGF may also be used.

10

15

20

25

30

35

Other degradation inhibitors may also be used if increased or more specific prevention of extracellular matrix degradation is desired. Inhibitors may be selected from the group consisting of α_2 macroglobulin, pregnancy zone protein, ovostatin, α_1 -proteinase inhibitor, α_2 -antiplasmin, aprotinin, protease nexin-1, plasminogen activator inhibitor (PAI)-1, PAI-2, TIMP-1, and TIMP-2. Others may be used, as one skilled in the art will recognize.

Intracellular enzymes may also be used in conjunction with the present TIMP-3. Intracellular enzymes also may affect extracellular matrix degradation, and include lysozomal enzymes, glycosidases and cathepsins.

Cell adhesion modulators may also be used in combination with the present TIMP-3. For example, one may wish to modulate cell adhesion to the extracellular matrix prior to, during, or after inhibition of degradation of the extracellular matrix using the

- 23 -

present TIMP-3. Cells which have exhibited cell adhesion to the extracellular matrix include osteoclasts, macrophages, neutrophils, eosinophils, killer T cells and mast cells. Cell adhesion modulators include peptides containing an "RGD" motif or analog or mimetic antagonists or agonists.

Factors regulating expression of extracellular matrix degrading proteinases and their inhibitors include cytokines, such as IL-1 and TNF- α , TGF- β , glucocorticoids, and retinoids. Other growth factors 10 effecting cell proliferation and/or differentiation may also be used if the desired effect is to inhibit degradation of the extracellular matrix using the present TIMP-3, in conjunction with such cellular effects. For example, during inflammation, one may 15 desire the maintenance of the extracellular matrix (via inhibition of enzymatic activity) yet desire the production of neutrophils; therefore one may administer G-CSF. Other factors include erythropoietin, 20 interleukin family members, SCF, M-CSF, IGF-I, IGF-II, EGF, FGF family members such as KGF, PDGF, and others. One may wish additionally the activity of interferons, such as interferon alpha's, beta's, gamma's, or consensus interferon. Intracellular agents include G-proteins, protein kinase C and inositol phosphatases. 25 While the field of inflammation research is presently under development, and the precise interactions of the described compositions in vivo is not throughly understood, the use of the present polypeptides may provide therapeutic benefit with one or more agents 30 involved in inflammation therapy.

Cell trafficking agents may also be used. For example, inflammation involves the degradation of the extracellular matrix, and the movement, or trafficking of cells to the site of injury. Prevention of

35

PCT/US94/11241 WO 95/09918

degradation of the extracellular matrix may prevent such cell trafficking. Use of the present TIMP-3 in conjunction with agonists or antagonists of cell trafficking-modulation agents may therefore be desired in treating inflammation. Cell trafficking-modulating agents may be selected from the list consisting of endothelial cell surface receptors (such as E-selectins and integrins); leukocyte cell surface receptors (L-selectins); chemokins and chemoattractants. For a review of compositions involved in inflammation, see Carlos et al., Immunol. Rev. 114: 5-28 (1990), which is herein incorporated by reference.

10

15

20

Moreover, compositions may include neu differentiation factor, "NDF," and methods of treatment may include the administration of NDF before, simultaneously with, or after the administration of TIMP-3. NDF has been found to stimulate the production of TIMP-2, and the combination of NDF, TIMP -1, -2 and/or -3 may provide benefits in treating tumors.

Polypeptide products of the invention may be "labeled" by association with a detectable marker substance (e.g., radiolabeled with ^{125}I) to provide reagents useful in detection and quantification of TIMP-3 in solid tissue and fluid samples such as blood or urine. Nucleic acid products of the invention may also 25 be labeled with detectable markers (such as radiolabels and non-isotopic labels such as biotin) and employed in hybridization processes to locate the human TIMP-3 gene position and/or the position of any related gene family in a chromosomal map. Nucleic acid sequences which 30 selectively bind the human TIMP-3 gene are useful for this purpose. They may also be used for identifying human TIMP-3 gene disorders at the DNA level and used as gene markers for identifying neighboring genes and their

- 25 -

disorders. Contemplated herein are kits containing such labelled materials.

The TIMP-3 compositions described herein modify the pathogenesis and provide a beneficial therapy for diseases of connective tissues characterized by matrix degradation. Also, the present TIMP-3 compositions may be useful in the treatment of any disorder where excessive matrix loss is caused by metalloproteinase activity. The TIMP-3 compositions may be used alone or in conjunction with one or more of the agents discussed herein.

5

10

Polypeptide products of the present invention are useful, alone or in combination with other drugs, in the treatment of various disorders such as dystrophic epidermolysis bullosa where the disease is linked to the 15 overproduction of collagenase, Bauer et al., J. Exp. Med. 148: 1378-1387 (1978). The products of the present invention may also be useful in the treatment of rheumatoid arthritis. Evanson et al. J. Clin. Invest. 47: 2639-2651 (1968) noted that large amounts of 20 collagenase are produced, in culture, by excised rheumatoid synovial tissue, this led to immunolocalization studies by Woolley et al., Arthritis and Rheumatism 20: 1231-1239 (1977), with monospecific antibodies directed against human rheumatoid synovial 25 collagenase which detected high levels of immunoreactive collagenase at the sites of joint erosion (cartilagepannus junctions) but not in the cartilage of associated chondrocytes, and not in the synovium at sites remote from the resorbing front. Collagenases 30 have also been demonstrated using many other different preparations derived from human rheumatoid joints and using tissues characterized by other types of arthritis such as osteoarthritis, Reiter's syndrome, pseudogout, juvenile rheumatoid arthritis, and scleroderma. 35

- 26 -

In periodontal disease affecting the tooth supporting apparatus, elevation of collagenolytic enzymes is evident, and destruction of collagen and connective tissue. See V.-J. Uitto, pp. 211-223 in Proteinases in Inflammation and Tumor Invasion, H. Tschesche, ed., Walter de Gruyter & Co., Berlin, N.Y. (1988).

5

10

25

30

35

Collagenases have been implicated in ulceration including corneal, epidermal, or gastric ulceration, Brown et al., American J. of Ophthalmology 72: 1139-1142 (1971), and, indeed, metalloproteinase inhibitors are used in the treatment of corneal ulceration. Slansky et al., Annals of Ophthalmology 2: 488-491 (1970).

15 In wound healing after surgery, TIMP-3 may have particular application for restenosis.

Metalloproteinases contribute to the rearrangement of arterial cells, including blockage of the artery. Use of the present TIMP-3 may inhibit such arterial wall rearrangement. Delivery of antisense TIMP-3 nucleic acid may also provide benefit.

In the field of tumor invasion and metastasis, the metastatic potential of some particular tumors correlates with the increased ability to synthesize and secrete collagenases, Liotta et al., Nature 284: 67-68 (1980), and with the inability to synthesize and secrete significant amounts of a metalloproteinase inhibitor, Hicks et al., Int. J. Cancer 33: 835-844 (1984). These processes are related to the passage of tumor cells through connective tissue layers (basement membrane) from tissue sites to the circulation and vice versa, which could be retarded by TIMP-3. TIMP-3 similarly has therapeutic application in inhibiting tumor cell dissemination during removal of primary tumors, during chemotherapy and radiation therapy, during harvesting of

- 27 -

contaminated bone marrow, and during shunting of carcinomatous ascites.

A limiting factor in the use of bone marrow transplantation for many advanced cancers with bone marrow involvement is the absence of adequate purging techniques. For example, metastatic interstitial pneumonitis following infusion of improperly purged bone marrow cells has been noted, Glorieux et al., Cancer 58: 2136-2139 (1986); Graeve et al., Cancer 62: 2125-2127

10 (1988). TIMP-3 administered during infusion of unpurged bone marrow cells will alleviate the need for developing expensive purging techniques.

15

20

25

30

35

Diagnostically, correlation between absence of TIMP-3 production in a tumor specimen and its metastatic potential is useful as a prognostic indicator as well as an indicator for possible prevention therapy.

Tumors may also become more or less encapsulated or fibrotic due to increased collagen deposition (or inhibition of breakdown) by both cancer cells and/or surrounding normal cells. Increased encapsulation promoted by TIMP-3 aids in clean tumor excision.

Other pathological conditions in which excessive collagen degradation may play a role and thus where TIMP-3 can be applied, include emphysema, Paget's disease of bone, osteoporosis, scleroderma, pressure atrophy of bone or tissues as in bedsores, cholesteatoma, and abnormal wound healing. TIMP-3 can additionally be applied as an adjunct to other wound healing promoters, e.g., to modulate the turnover of collagen during the healing process.

TIMP-3 also may have erythroid potentiating activity (i.e., stimulation of differentiation of early erythroid progenitors), and thus TIMP-3 may be useful in the treatment of various anemias.

- 28 -

In addition TIMP-3 may have application in the treatment of immunological disorders such as autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis) based upon a potential ability to suppress B-cell differentiation as determined by the method of Pisko et al., J. Immunol. 136: 2141-2150 (1986).

Based on its ability to inhibit connective tissue degradation, TIMP-3 and/or other TIMP molecules have application in cases where inhibition of angiogenesis is useful, e.g., in preventing or retarding tumor development, and the prevention of the invasion of parasites. In addition, the present compositions and methods may be applicable for cosmetic purposes, in that localized inhibition of connective tissue breakdown may alter the appearance of tissue.

The present compositions and methods may also be useful in birth control or fertilization modulation as the TIMPs have been shown to prevent or retard follicular rupture, Branstrom et al., Endocrinology 122: 1715-1721 (1988), and interfere with embryo preimplantation development.

20

25

The present compositions and methods may be useful in the treatment of nerve cell disorders in that TIMP-3 may protect nerve cells from damage by preserving the basement membrane surrounding nerve cells.

Therefore, uses may involve BDNF, NT-3, NGF, CNTF, NDF, SCF, or other nerve cell growth or proliferation modulation factors.

As described above, the present TIMP-3 has

wide application in a variety of disorders. Thus,
another embodiment contemplated herein is a kit
including the present polypeptides and optionally one or
more of the additional compositions described above for
the treatment of a disorder involving the degradation of
extracellular matrix. An additional embodiment is an

- 29 -

article of manufacture comprising a packaging material and a pharmaceutical agent within said packaging material, wherein said pharmaceutical agent contains the present polypeptide(s) and wherein said packaging material comprises a label which indicates that said pharmaceutical agent may be used for an indication selected from the group consisting of: cancer, inflammation, arthritis, dystrophic epidermolysis bullosa, periodontal disease, ulceration, emphysema, bone disorders, scleroderma, wound healing, erythrocyte 10 deficiencies, cosmetic tissue reconstruction, fertilization or embryo implant modulation, and nerve cell disorders. This article of manufacture may optionally include other compositions or label descriptions of other compositions. 15

The nucleic acids provided herein may also be embodied as part of a kit or article of manufacture. Contemplated is an article of manufacture comprising a packaging material and a pharmaceutical agent, wherein said pharmaceutical agent contains the presently 20 provided nucleic acids and wherein said packaging material comprises a label which indicates that said pharmaceutical composition may be used for an indication benefiting from the modulation of said DNA expression, such as a gene therapy indication. Such gene therapy 25 indications, as discussed above, include the treatment of emphysema. A kit containing the nucleic acid(s) may include, optionally, additional factors affecting the ex vivo growth of recipient cells, such as SCF. See, e.g., Zsebo et al., PCT WO 91/05795, herein incorporated 30 by reference.

A further embodiment of the invention is selective binding molecules, such as monoclonal antibodies specifically binding TIMP-3. The hybridoma technique described originally by Kohler and Milstein

35

- 30 -

Eur. J. Immunol. <u>6</u>, 511-519 (1976) has been widely applied to produce hybrid cell lines that secrete high levels of monoclonal antibodies against many specific antigens. Recombinant antibodies, (<u>see</u> Huse et al., Science <u>246</u>: 1275 (1989)) may also be prepared. Such antibodies may be incorporated into a kit for diagnostic purposes, for example.

The following examples are offered to more fully illustrate the invention, but are not to be construed as limiting the scope thereof.

EXAMPLE 1

15 Cloning and Expression of Human TIMP-3 cDNA

10

20

25

30

35

The overall cloning strategy involved two steps, the first, obtaining a fragment using PCR from a human fetal kidney cDNA library, and the second, using this partial clone to screen two different cDNA libraries for full length cDNA sequences.

Degenerate PCR primers derived from highly conserved regions of the TIMP gene family were used to amplify TIMP-3 cDNA from human fetal kidney cDNA. This product was then used as a probe to isolate clones from a human fetal kidney cDNA library and a normal human colonic mucosa cDNA library. Clones of 1240, 963 and 827 bp have been isolated and sequenced. The longest clone encodes the entire 211 amino acid pro-polypeptide, having a mature polypeptide of 188 amino acids. The intermediate size clone is truncated but encodes the entire mature protein. The smallest clone is missing the region encoding the first 24 amino acids of the mature polypeptide. Also demonstrated is the expression and purification of mature polypeptide.

- 31 -

MATERIALS AND METHODS

Primers and Initial TIMP-3 DNA Source Used

15

Degenerate PCR primers were used in a first round screening of first strand cDNAs to obtain a partial TIMP-3 cDNA clone. The degenerate PCR primers were derived from highly conserved regions of the TIMP family of proteins were selected, (see Figure 4). They were also chosen because of the relatively low degeneracy of their codons.

The forward primer was derived from a sequence (VIRA) which is ubiquitous throughout the TIMP family and is found at positions 18-21 of the mature proteins. This 96-fold degenerate forward primer had 11 bases that encoded the TIMP sequence plus 6 bases for an *EcoRI* site and 2 extra bases (underlined) 449-15: SEQ. ID No. 1: 5'-CGG AAT TCG TNA THM GNG C-3'

A reverse primer corresponding to a region of ChIMP-3 (CIWTDM) was synthesized. This primer, 480-27, included a *BamHI* site and two extra bases (underlined): SEQ. ID No. 2 5'-CGG GAT CCC ATR TCN GTC CAD ATR CA-3'.

An alternative reverse primer was also used: 25 SEQ. ID No. 3 480-28 CGG GAT CCR TCN GTC CAD ATR CA

The corresponding region is somewhat variant. Amino acids 163-168 of ChIMP-3 are encoded by the version used here, and these were chosen because the M and I distinguished the ChIMP-3 from other TIMPs. It was not initially known if these differences would also be present in human TIMP-3 (if such TIMP did indeed exist), however, a bias away from TIMP-1 and TIMP-2 was used to limit unwanted amplifications. The M at position 168 was especially useful. As a result of its location at

- 32 -

the 5' end of the reverse primer, it would not interfere with the PCR process if there were mismatches and it would favor TIMP-3 amplification over other DNAs if this choice were correct.

5

10

15

20

25

30

35

Amplification of First Strand cDNAs Using Primers

First, the degenerate primers were used to amplify PCR products from the two first strand cDNAs. After a second round of amplification the PCR products of these were subcloned, and one was selected which was used as a probe for cDNA libraries, as described below.

Oligonucleotide synthesis. Oligonucleotides were synthesized on Applied Biosystems 394 automated synthesizers using standard phosphoramidite chemistry. Degenerate oligonucleotides, which were synthesized in greater than 200 nmole quantities, were purified by butanol extraction. Nondegenerate oligonucleotide were synthesized in smaller amounts and were purified Tritylon using Poly-pak (Glen Research Corp., Sterling, VA) cartridges following the manufacturer's instructions. Trityl-off purification was done using 1 x 25 cm Sephadex G-50 chromatography columns and TEAB as the elution buffer.

Polymerase Chain Reaction. All PCR was performed on Perkin Elmer model 9600 instruments using Perkin Elmer Cetus (Norwalk, CT) GeneAmp kits according to the manufacturer's instructions which are herein incorporated by reference.

The first round of PCR consisted of 5 cycles at 94°C for 20 seconds, 50°C for 20 seconds and 72°C for 30 seconds. This was followed by 30 cycles at 94°C for 20 seconds, 50°C for 20 seconds and 72°C for 30 seconds. The PCR products were run on a 2% agarose (SeaKem GTG, FMC, Rockland, ME) gel, prestained with ethicium bromide

- 33 **-**

(Sigma, St. Louis, MO), and the bands in the predicted size range were punched out of the gel using a Pasteur pipette. The PCR products were then re-amplified directly from the gel fragments using the same PCR primers and the following program: 1 cycle of 5 minutes at 95°C followed by 25 cycles of 94°C for 20 seconds, 50°C for 20 seconds, and 72°C for 30 seconds. This process was performed a second time in an effort to obtain large quantities of relatively pure material for subcloning and restriction analysis.

10

15

20

25

30

First Strand cDNA Sources Oligo dT-primed first strand cDNA from human colonic mucosa (Dr. Gene Finley, Pittsburgh VA Medical Center) as well oligo dT-primed first strand cDNA from 22 week old human fetal kidney (Clontech, Palo Alto, CA) were used as first-round sources of TIMP-3 cDNA. When the colonic mucosa cDNA source was used, the same banding pattern was observed as that observed with the fetal kidney cDNAs, which confirmed those results. These fetal kidney PCR products were then used for subcloning.

Purification and Subcloning of PCR Products. The PCR products were run through Centricon-100 columns (Amicon, Beverly, MA) to facilitate the DNA to be cleaved with restriction endonucleases. The DNA was then cut with EcoRI and BamHI to ensure that they would not be internally cleaved during the subcloning process. PCR products were cloned into pUC19 after treatment with proteinase K (Crowe et al., 1991) to enhance the cloning efficiency. Colonies were rapidly screened by PCR amplification with vector primers 382-3 SEQ. ID No. 4 (5'-GTT TTC CCA GTC ACG ACG-3') and 382-4 SEQ. ID No.5 (5'-GAA TTG TGA GCG GAT AAC-3'). These products were purified using Centricon-100 concentrators and were sequenced.

- 34 -

Results. As shown in Figure 2 three bands resulted from amplification with the degenerate primers. Cloned DNA from two of the bands was sequenced; the third band could not be purified sufficiently to allow subcloning and sequencing.

The smaller of the two sequenced bands was the desired 402 bp fragment and the larger band presumably resulted from false priming to the region encoding CSWYRG (amino acids 169-174 of the mature polypeptide of Figure 1) and was 489 bp. The 402 bp fragment corresponds to the nucleic acid encoding the region encompassing VallleArgAla(Lys) to CysLeuTrpThrAspMet of Figure 1, with an *EcoRI* on the 5' side, and an *BamHI* on the 3' side. Also, the codon for isoleucine on the 3' end is replaced with the codon for leucine.

cDNA library screening

5

10

15

20

Screening of a first cDNA library.

Library. The first library screened was an the oligo(dT)-primed λ gtll Clontech human 20 and 24 week fetal kidney cDNA library (Clontech).

25 Probes. The first round of cDNA screening was done with the insert of one of the cloned degenerate PCR products previously described, the 402 bp insert. A low level of background was observed as a result of contamination with pUC19 vector DNA.

Consequently, the phage supernatant from a partially purified λgtll clone obtained from the first round of cDNA screening was used as a PCR template. Friedman et al., Nucl. Acids Res. 17: 8718 (1988). This provided a probe of high quality and purity. The Primer 495-21, SEQ. ID No. 6 5'-CGG AAT TCT GGT CTA CAC CAT CAA GC-3'

corresponded approximately to the YTIK domain and including an *EcoRI* site and two additional bases.

Primer 496-16, SEQ. ID No. 7 5'-CAT GTC GGT CCA GAG ACA CTC G-3', corresponded to the CLWTDM region and did not include any restriction sites. This resulted in a 333 bp fragment. The sequence of the 333 bp fragment was a portion of the 402 bp fragment sequence. The 333 bp fragment was used as a probe for all of the northern blot analyses and for all further cDNA library screening. The 333 bp fragment corresponds to the region of Figure 1 encoding TyrThrIleLys through CysLeuTrpThrAspMet and the *EcoRI* site mentioned above.

Plaque Hybridization About 200,000 phage were

plated on ten 150 mm plates, lifted in duplicate onto
Schleicher & Schuell supported nitrocellulose membranes
and probed with a randomly primed, ³²P-labeled
(Stratagene) 402 bp fragment described above.

Prehybridizations and hybridizations were performed
overnight at 42°C using the following reagents (for 50 ml of solution):

	12.5 ml	20X SSPE
	5 ml	0.5 N NaHPO ₄ pH 6.8
25	0.1 ml	0.50 M EDTA pH 8.0
	25 ml	formamide
	2.5 ml	50X Denhardt's
	0.25 ml	20% SDS
	0.5 ml	10 mg/ml tRNA (calf's liver)
30	1 ml	10 mg/ml salmon sperm DNA (not used in
		the pre-hybridization solution)
	4.15 ml	$\rm H_{2}O$ (3.15 ml used in the hybridization
		solution)

35

The filters were washed in 0.25 X SSC at 42°C. Two positively hybridizing plaques were purified, resulting in 2 independent clones here named Timp3clone7 and Timp3clone2. DNA from bacteriophage lambda was purified using a Qiagen Lambda DNA purification kit (Chatsworth, CA). Plate lystates from 10 confluent 135 mm petri dishes were pooled for each specimen. 300 µl of a solution containing 20 mg/ml RNase, 6 mg/ml DNase I, 0.2 mg/ml BSA, 10 mM EDTA, 100 mM Tris-HCl, 300 mM NaCl, pH 7.5 were added and incubated at 37°C for 30 minutes. 10 ml of ice cold 30% polyethylene glycol (PEG 6000), 3 M NaCl were mixed in and incubated on ice for 60 minutes.

After centrifugation at $10,000 \times g$ for 10minutes, the supernatant was discarded. The pellet was 15 resuspended in 10 ml of a solution containing 100 mM Tris-HCl, 100 mM NaCl and 25 mM EDTA, pH 7.5. 10 ml of a solution containing 4% SDS was gently added and the mixture was heated at 70°C for 10 minutes and then cooled on ice. 10 ml of 2.55 M potassium acetate, pH 20 4.8 was mixed in quickly and the solution was centrifuged at 4°C at 15,000 x g for 30 minutes. The supernatant was run on a Qiagen tip-500 column which had been equilibrated with 10 ml of 750 mM NaCl, 50 mM MOPS, 15% ethanol, pH 7.0. The column was then washed with 30 25 ml 1.0 M NaCl, 50 mM MOPS, 15% ethanol, pH 7.0. Finally, the column was eluted with 15 ml of 1.25 M $\,$ NaCl, 50 mM MOPS, 15% ethanol, pH 8.2. The eluate was precipitated in 0.7 volumes of isopropanol and The pellet was air centrifuged at 4°C for 30 minutes. 30 dried for 5 minutes and cut with Boehringer Mannheim (Mannheim, Germany) high concentration EcoRI.

The inserts which had hybridized to the 333 bp probe were purified from agarose gel slices using a Qiaex DNA extraction kit (Qiagen, Chatsworth, CA). A

- 37 -

solution of 3 M NaI, 4 M NaClO4, 5 mM Tris-H, pH 7.5 at three times the volume of the gel slice was added, along with 0.1 times the gel slice volume of 1 M mannitol and 10 ml of Qiaex resin in a 1.5 ml microcentrifuge tube. This mixture was heated at 50°C for 10 minutes or until the agarose is completely dissolved. The DNA was allowed to adsorb at room temperature for 5 minutes and then the tubes were briefly centrifuged (6 seconds). After the supernatants were discarded, the Qiaex resin in the tubes were washed in a solution containing 8 M NaClO₄, and centrifuged (6 seconds). This wash and centrifugation was repeated and was followed by 2 washes (each followed by 6-second centrifugations) in a solution containing 70% ethanol, 100 mM NaCl, 10 mM Tris-HCl, 1 mM EDTA, pH 7.5. The resin was air dried and eluted in 20 μ l of water.

5

10

15

20

25

35

The purified inserts were cloned into pUC19 (New England Biolabs) using Boeringer Mannheim's T4 DNA polymerase. There was an insert to vector (molar) ratio of approximately 5:1. Ligations were performed overnight at 14°C. The ligated material was ethanol precipitated in the presence of glycogen to increase the recovery. This material was then electroporated into BRL's (Gibco-BRL, Gathersburg, MD) electroporation competent DH10B cells.

Preparations of plasmid DNA were made using using Qiagen plasmid DNA purification kit. A 10 ml overnight culture of a single bacterial colony was grown in terrific broth [Tartoff and Hobbs, Bethesda Res. Lab. Focus 9:12 (1987). Per liter: 12 g bacto-tryptone, 24 g bacto-yeast extract, 4 ml glycerol] with 50 μ g/ml ampicillin. The overnight growth was used to inoculate a 250 ml culture in a sterile 1-liter baffled flask containing terrific broth with 50 μ g/ml ampicillin. After this grew to saturation, the medium was

- 38 -

centrifuged at 5000 rpm for 10 minutes. The bacterial pellet was resuspended in 10 ml of 100 μ g/ml RNaseA, 50 mM Tris-HCl. 10 ml of 200 mM NaOH, 1% SDS was added to the resuspended pellet and the mixture was incubated at room temperature for 5 minutes. 10 ml of 2.55 M KAc, pH 4.8 was added and mixed gently. The material was immediately centrifuged at 10000 rpm for 10 minutes. The supernatant was filtered through a cotton gauze pad and the lysate that was particle-free was added to a Qiagen tip-500 column following the same procedure as per the lambda DNA preparation procedure.

10

15

20

Screening of a second cDNA library. A cDNA library from human colonic mucosa, kindly provided by Jim Pipas of the University of Pittsburgh, was the second library screened for TIMP-3 cDNA. This library used Uni-Zap (Stratagene, La Jolla, CA) as the vector and had a titer of 2.4 x 10¹⁰ pfu/ml. Hybridization was performed as with the kidney library, using the 333 bp probe. The Uni-Zap vector has a pBluescript phagemid which was excised from the phage to which the probes hybridized, and sequenced directly.

Phage particles were isolated and amplified as follows. Phage particles were released into the SM buffer by incubating for 2 hours at room temperature.

In a 50 ml test tube, 200 µl of 0.D.600=1.0 XL1-Blue cells and 200 µl of the lambda Zap phage were combined with 1 ml of R408 helper phage which had a titer of 10¹⁰ pfu/ml. This mixture was incubated at 37°C for 15 minutes. 3 ml of 2xYT medium (per liter: 16 g bactotryptone, 10 g bacto-yeast extract, 5 g NaCl) were added and the mixture was then incubated for 2.5 hours at 37°C with shaking. The tube was heated at 70°C for 20 minutes and then centrifuged at 4000 x g for 5 minutes.

To rescue the phagemid, 50 μl of the heat- disrupted phage stock were incubated with 200 μl of

- 39 -

0.D.600=1.0 XL1-Blue cells in a 1.5 ml tube. Additionally, 10 μ l of a 10^{-2} dilution of heat-disrupted phage were incubated with 200 μ l of 0.D.600=1.0 XL1-Blue cells in a separate 1.5 ml tube. The tubes were incubated at 37° C for 15 minutes and the cells were then plated on LB ampicillin plates and incubated overnight at 37° C. Colonies appearing on the plate contained the pBluescript SK- double stranded phagemid with the cloned DNA insert.

This screening resulted in one clone, here named "TIMP3HCM3," (see Figure 16), lacking a portion encoding the N-terminus of the mature polypeptide.

DNA Sequencing

15

20

25

10

All sequencing was performed on Applied Biosystems, Inc. (ABI) 373A Automated Sequencers. PCR products were sequenced using nested pUC vector dyerimers and ABI's catalyst to perform the reactions.

Double stranded cDNAs cloned into pUC19 were sequenced using ABI's Prism Ready Reaction Dye-Deoxy Terminator Cycle Sequencing Kit using the protocol that came with the kit. For areas of high GC content leading to hairpin loops, reactions were done with the following changes from the standard kit protocol: denaturation at 98°C for 30 seconds, 12 U Amplitaq, substitution of New England Biolabs (NEB) Vent Polymerase buffer for the ABI TACS buffer and, 30 cycles instead of 25 cycles.

30 <u>Sequence Analysis</u>

DNA and deduced amino acid analyses used the Genetics Computer Group (GCG) sequence analysis software package from the University of Wisconsin Department of Genetics, Genetic Computer Group, Inc., University

PCT/US94/11241 WO 95/09918

- 40 -

Research Park, 575 Science Drive, Suite B, Madison, Wisconsin 53711.

Expression of Recombinant Human TIMP-3 in E. coli

5

10

15

20

25

35

The coding sequence of Timp3clone7 was amplified by PCR using standard kit protocol. Primer 544-29 SEQ. ID No.8 (5'-AAC AAA CAT ATG TGC ACA TGC TCG CCC AGC C-3') consists of nucleotides 351 to 369, which encodes TIMP-3 amino acids 24-29 (1-6 of the mature protein of Figure 1). An NdeI site and 6 extra bases (underlined) were included to facilitate subcloning into a bacterial expression vector. The methionine initiator codon, (italics), was added to facilitate expression. The downstream primer, 532-13, SEQ. ID No.9 (5'-CGG GAT CCT ATT AGG GGT CTG TGG CAT TGA TG-3') corresponds to nucleotides 896 to 914 (of Figure 1) with an added BamHI site and 2 additional bases (underlined) as well as two stop codons (italicized). The naturally occurring stop codon, TGA (TCA on the reverse complement) was changed to TAA (TTA on the reverse complement), since it is a more efficient stop in E. coli. The second stop codon, TAG, (CTA on the reverse complement) was added as a backup.

The vector pCFM3102, as described below, was digested with NdeI and BamHI overnight as was the 589 bp PCR fragment encoding TIMP-3. The reaction was stopped by extraction with phenol/chloroform followed by extraction with chloroform alone. The aqueous layer was then passed through a 1 ml Sephadex G-50 spin column (in 30 a 1 ml syringe) that was equilibrated with 200 μ l 10 mM Tris-HCl, 1 mM EDTA pH 8.0. The flow-through from the column was collected and precipitated with 0.1 volumes of 3 M NaAc, pH 5.4 and 2.5 volumes of 100% ethanol. After centrifugation, the pellet was washed in 70%

- 41 -

ethanol and dried in a Speed-Vac (Savant). The pellets were resuspended in 20 μ l Super-Q water.

A mock ligation containing cut pCFM3102 with no insert was done in addition the TIMP-3::pCFM3102 ligation. Ligations were performed overnight at 14°C, using Boehringer Mannheim T4 DNA ligase. They were then precipitated, washed and dried as above. The pellets were then resuspended in 5 μ l of Super-Q water. 2.5 μ l of each ligation was used to electroporate 40 μ l of electroporation competent cells.

Electroporation of plasmid into E. coli occurred in 0.1 cm cuvettes (Bio-Rad) at 1.9 kV, 200 ohms, 25 µF using a Bio-Rad Gen Pulser and with immediate recovery in 5 ml of SOC medium. The cells recovered at 28°C for 11.3 hours and were plated out 15 onto LB plates containing kanamycin. The plates were incubated at 28°C overnight. Colonies were screened for inserts by PCR using vector-specific primers 315-21 SEQ. ID No. 10 (5'-ACC ACT GGC GGT GAT ACT GAG-3') and 315-22 SEQ. ID No.11 (5'-GGT CAT TAC TGG ACC GGA TC-3'). 20 Colonies having inserts gave PCR products that are 589 bp larger than the PCR product derived from the original vector without an insert.

25 Construction of expression plasmid pCFM3102

10

30

35

Expression of the mature protein was accomplished in <u>E. coli</u> using a plasmid vector. A culture of this <u>E. coli</u>, containing plasmid encoding a mature polypeptide as presented in Figure 1, is deposited at the ATCC, accession no. ______.

The plasmid used was derived from pCFM836, which is fully described in U.S. Patent No. 4,710,473, herein incorporated by reference. The construction for the present plasmid (denominated pCFM3102) from the described pCFM836 plasmid (U.S. Patent No. 4,710,473) was by destroying the two

- 42 -

endogenous NdeI restriction sites, by end filling with T4 polymerase enzyme followed by blunt end ligation, by replacing the DNA sequence between the unique AatII and ClaI restriction sites containing the synthetic P_L promoter with a similar fragment obtained from pCFM636 (Patent No. 4,710,473) containing the P_L promoter, by substituting the small DNA sequence between the unique ClaI and KpnI restriction sites with an oligonucleotide containing a number of restriction sites, and by making a series of site directed base changes by PCR overlapping oligonucleotide mutagenesis through the intermediate pCFM1656 vector (4799 base pair).

Fermentation

15

20

25

The inoculum for the fermentation was started by transferring 0.1 ml of a glycerol stock at 1 0.D./ml in LB + 17% glycerol of ATCC Accession No. _____ (E. coli host cells containing the pCFM3102 with inserted TIMP-3 coding sequences) into a 2-L nippled flask containing 500 ml of Luria Broth (10 g/L Trypticase-Peptone, 10 g/L yeast extract, and 5 g/L sodium chloride). The culture was placed in a shaking platform incubator at 30°C for 16 hours at 250 rpm. The culture was then transferred to 8 liters of sterile medium in a BioLafitte 15-L fermentor.

The 8 liters of medium that were sterilized in place in the fermentor consisted of the following:

30	10 g/L	yeast extract
	5.25 g/L	ammonium sulfate
	3.5 g/L	dibasic potassium phosphate
	4.0 g/L	monobasic potassium phosphate
	1.25 g/L	sodium chloride

- 43 -

After the sterilized medium cooled to 30°C the following was added:

	40 g	glucose
5	8 g	magnesium sulfate-heptahydrate
	16 ml	trace metals solution1

The pH of the medium was then adjusted to 7.0 using concentrated phosphoric acid. The other

10 parameters of the fermentation during this batch phase were set as follows:

air flow rate = 31.0 L/min

agitation = 350 rpm

dissolved oxygen readout set at 60%

oxygen flow rate = 0

back pressure = 0.5 bar

Once the culture in the fermentation vessel
reached at 0.D.600 of 6.0, a concentrated solution of
glucose and organic nitrogen was started using a
schedule that ramps the feed flow according to the 0.D.
of the culture. This concentrated feed (Feed 1)
consisted of the following:

2	5

	50 g/L	Trypticase-peptone
	50 g/L	yeast extract
	450 g/L	glucose
	8.5 g/L	Magnesium-heptahydrate
30	10 ml	trace metals solution ¹
	10 ml	vitamin solution ²

At the time that the concentrated feed was first introduced into the fermentor, the following changes were made:

- 44 -

agitation raised to 850 rpm back pressure raised to 0.8 bar

Using the concentrated feed, the O.D. was increased to 30. At that point the culture was induced by raising the temperature to 42°C. Other changes were made as follows:

air flow rate decreased to 24 L/ min oxygen flow rate increased to 3 L/min feed 1 decreased to 0 feed 2 started at 300 ml/hr

15 Feed 2 consisted of the following:

200 g/L Trypticase-peptone

100 g/L yeast extract

110 g/L glucose

After 4 hours at 42°C the fermentation was halted and the cells were harvested by centrifugation into plastic bags contained within a one liter centrifuge bottle. Centrifugation was at 400 rpm for 60 minutes. At the end of this period, the supernatant was removed and the remaining cell paste was frozen at -90°C.

¹Trace metals solution:

	27 g/L	FeCl ₃ ·6H ₂ O
30	2 g/L	ZnCl ₂ ·4H ₂ O
	2 g/L	$CaCl_2 \cdot 6H_2O$
	2 g/L	$Na_2. MoO_4.2H_2O$
	1.9 g/L	CuSO ₄ .5H ₂ O
	0.5 g/L	H ₃ BO ₃
35	100 ml/L	concentrated HCl

- 45 -

²Vitamin solution:

	0.42 g/L	riboflavin
	5.4 g/L	pantothenic acid
5	6 g/L	niacin
	1.4 g/L	pyridoxine hydrochloride
	0.06 g/L	biotin
	0.04 g/L	folic acid

10 NH2-terminal amino acid sequencing

NH2-terminal amino acid sequence of E. coliderived recombinant TIMP-3 protein was determined to be
identical to the sequence deduced from the cDNA clones.

The methionine initiator from the construct was cleaved
off. There was no other detected proteolytic processing
at the TIMP-3 NH2-terminus. No assignment was made for
cys-1 and cys-2 since the protein sample was reduced and
reduced cysteines cannot readily be detected by this
method. Therefore, the sequence read as follows: X-TX-S-P-S-H-P-Q-D-A-F-

Methods

in E. coli inclusion bodies was electrophoresed on an SDS polyacrylamide gel and electroblotted onto a PVDF membrane for sequence analysis. NH2-terminal amino acid analysis was performed on a gas-phase sequenator (model 477, Applied Biosystems, Foster City, CA) according to published protocols. Hewick et al., J. Biol. Chem., 256: 2814-2818 (1981). The sequenator was equipped with an on-line phenylthiohydantoin (PTH) amino acid analyzer and a model 900 data analysis system (Hunkapiller et al., Methods of Protein Microcharacterization, Clifton, NJ: pp. 223-247 (1986)). The PTH-amino acid analysis

- 46 -

was performed with a micro liquid chromatography system (model 120) using dual syringe pumps and reversed phase (C-18) narrow bore columns (Applied Biosystems, Inc.), with the dimensions of 2.1 mm \times 240 mm.

5

Protein Purification

Approximately 435 g wet weight of E. coli cell paste, harvested from the fermentation run was resuspended to a volume of 1760 ml in water and broken 10 by two passes through a microfluidizer. The cell lysate was centrifuged at $17,700 \times g$ for 30 min, and the pellet fraction was washed once with water (by resuspension and by recentrifugation). A portion of the washed pellet material (3.1% of the total) was 15 resuspended in 10 ml of 50 mM Tris-HCl/50 mM dithiothreitol/2% (w/v) sodium N-lauroylsarcosine, pH 8.5. After incubation at 50°C for 5 min, and at room temperature for 3 hr, the mixture was centrifuged at 20,000 x g for 60 min. The supernatant was applied to a 20 Sephacryl S-200 gel filtration column (Pharmacia; 2 x 23 cm) equilibrated in 20 mM Tris-HCl/1% sodium Nlauroylsarcosine, pH 8.0, at room temperature. Fractions of 1 ml were collected at a flow rate of 5 ml/hr and analyzed by A_{280} and by SDS/polyacrylamide gel 25 electrophoresis (PAGE). Fractions 43-53 were pooled, and the pool was dialyzed over a 3-day period against 20 mM Tris-HCl (pH 8.0), 0.02 % (w/v) sodium azide, at 4° C.

Figure 3 presents a silver stained SDS-PAGE gel of the partially purified expression product from this fermentation. Lanes 3 and 4 contain reduced E. coli derived TIMP-3, pre- and post- dialysis. Lanes 9 and 10 contain unreduced E. coli derived TIMP-3, pre- and post- dialysis. As can be seen, the apparent

- 47 -

molecular weight for reduced material is approximately 22kDa.

As can be seen from Figure 3, the post-dialysis yield was reduced; the polypeptide appeared to be somewhat unamenable to solubilization. In the present process, the presence of inclusion bodies containing relatively insoluble material resulted in a reduced yield of purified and isolated TIMP-3. Although this resulted in a partially purified product, one skilled in the act will recognize methods to obtain a purified and isolated polypeptide. For example, one may use different detergents as solubilizing agents, or use a different expression system, for example, one which permits secretion of the polypeptide (and thus elimination of inclusion bodies).

Expression and purification was also attempted using eucaryotic cells (COS-7 cells), however no active recombinant TIMP-3 polypeptide was observed. This may have been due to adherence of the recombinant TIMP-3 polypeptide to extracellular matrix material produced by COS-7 cells. One possible way to obtain active protein from a mammalian host cell may be to use cells which are non-adherent, and therefore produce no significant amount of extracellular matrix material. The recombinant polypeptide would then be found in the conditioned culture medium. For example Jurkat cells or U937 cells may be used for recombinant polypeptide expression, and other non-adherent host cells and expression systems will be apparent to those skilled in the art.

30

10

15

20

25

Results of Screening Two cDNA Libraries and Expression of Recombinant Human TIMP-3

The work herein presents the cloning and expression of a third class of mammalian TIMP family members, herein collectively referred to as "TIMP-3".

- 48 -

The nucleotide sequence obtained from a human fetal kidney cDNA library is presented in Figure 1. Seq. ID No. 12 As can be seen, the nucleic acid sequence obtained contains 1240 base pairs. The predicted amino acid sequence is also presented. Seq. ID No. 13 (The amino acid sequence is predicted, as the polypeptide itself was not fully sequenced. One skilled in the art may sequence the expression product of the E. coli deposited at the ATCC, accession no. ____). The predicted initial cysteine of the mature protein is number +1. This prediction is based upon comparison to other members of the TIMP family.

Figure 4 presents this comparison among the known members of the TIMP family. Bullet points (*) indicate those amino acid residue which are unique to the TIMP-3 of Figure 1 obtained from expression of human cDNA, and bold-face type indicates conserved residues.

15

20

As can be see, the present human recombinant TIMP-3 of Figure 1 is distinct from all other members of the TIMP family. While possessing the conserved cysteine residues and other conserved amino acids within the family (39, total), at least 23 amino acid residues are unique to the illustrated human recombinant TIMP-3.

Figures 5-13 illustrate the differences

25 between the present human recombinant TIMP-3 of Figure 1 and chicken TIMP-3 ("ChIMP-3," Figures 5-7), human TIMP-2 (Figures 8-10), and human TIMP-1 (Figures 11-13), at both the amino acid and nucleic acid levels. The Figures contain a solid line between amino acid residues which are identical, and dots indicating the degree of evolutionary distance. (For Figures 5, 8, and 11, illustrating amino acid alignment, the numbering at position "1" is for the mature polypeptide.)

At the amino acid level, TIMP-3 and ChIMP-3 are approximately 80% identical, with identical amino

- 49 -

acids being more or less dispersed discontinuously, (Figure 5). Figure 6 shows that, at the nucleic acid level, Figure 1 TIMP-3 DNA is approximately 74% homologous with ChIMP-3 DNA, between nucleic acids 151-1087 (TIMP-3) and 1-886 (ChIMP-3). Figure 7 shows that even analyzing the region of maximal homology, base pairs 282-1040 from Figure 1 TIMP-3, and 113-884 for ChIMP-3), there is approximately 78% identity.

Figures 8-10 illustrate a comparison between

10 human recombinant TIMP-3 of Figure 1 and human TIMP-2.

At both the amino acid level and the nucleic acid level,
there are greater distinctions than with ChIMP-3.

Figure 8 shows that there is approximately 46% identity
at the amino acid level. Figure 9 shows that, at the

15 nucleic acid level, the overall homology is
approximately 52% overall, and approximately 60% in the
region of maximal homology (Figure 10).

Figures 11-13 illustrate a comparison between human recombinant TIMP-3 of Figure 1 and human TIMP-1. At the amino acid level, there is approximately 39% identity (Figure 11), and approximately 47% overall homology at the nucleic acid level. There is approximately 65% identity in the region of maximal homology.

20

Biochemically, the calculated isoelectric points (pI) of the mature TIMP-3 polypeptide and its pre-cursor are 9.16 and 8.80, respectively. There is a potential glycosylation site at the carboxy-terminal sequence (184:NAT). While naturally occurring ChIMP-3 is reported to be non-glycosylated (Pavloff et al., supra, J. Biol. Chem. 267: at 17323), it is not currently known whether naturally occurring human TIMP-3 is glycosylated. Regardless, the present invention includes polypeptides with additional chemical moieties, such as carbohydrates. The hydrophobic leader of the

- 50 -

Figure 1 material is 23 amino acids long. Sequencing of the N-terminus confirmed the identity of the first 12 amino acids of the mature recombinant polypeptide.

The cloning and expression described herein demonstrates that the present TIMP-3 polypeptides represent new members in the TIMP family.

EXAMPLE 2

10 Expression of TIMP-3 In Various Cell Types

A variety of cells were tested for the expression of TIMP-3 RNA (which would indicate polypeptide expression). The results show that among normal (i.e., non-cancerous) cells, expression is 15 observed in cells associated with extracellular matrix activity (i.e., growth or degradation). The normal cells (or tissues) where TIMP-3 RNA expression was seen (Figures 14A and B) are placenta, stromal cells, embryonic lung, newborn foreskin (one of two samples 20 being slightly positive), and (slightly positive) adult lung. Among the cancer cells tested, some were positive, some were negative. For example, various breast adenocarinoma cell lines yielded disparate results; with one was positive, one was negative, one 25 was slightly positive. This may indicate temporal expression, in that TIMP-3 expression may vary over the course of disease progression, although the significance is unclear. Table 2, below, presents a description of the cells tested and the results. Below are the 30 methods.

In many of the positive cell lines three mRNA bands of approximate 2.2, 2.5 and 4.4 kb size were detected. The significance of the different mRNA bands is unknown but may represent alternative splicing or extended 3' or 5' untranslated regions. These may be RNAs encoding different naturally occurring variants.

TABLE 1

MATRIX-degrading metalloproteinases

Nemo(c)	Size (kDa)	Degrades	Ref.
(1) Interstitial collagenase (Type I collagenase)	52 deduced 52, 57 secreted	I, II, III collagen	Scholtz et al., Cancer Res. 48:5539-5545 (1988)
(MMP-1) PMN Collagenase	75 secreted	I, II, III collagen	Macartney et al., Evr. J. Biochem. 130: 71-78 (1983).
(MMP-8) (2) 72 kDA Type IV collagenase (72 kDa gelatinase)	72 secreted	IV,V, VII collagen, fibronectin, gelatins	Collier et al., J. Biol. Chem. 263:6579-6587 (1988)
(MMP-2) 92 kDa Type IV collagenase (92 kDa gelatinase)	78 declured 92 secreted	IV, V collagen, gelatins	Withelm et al., J. Biol. Chem. <u>263</u> : 17213-17221 (1989)
(MMP-9) (3) Stromelysin (tensin)	53 deduced 57,60 secreted	Proteoglycans, larninin, fibronectin, III, IV, V collagen, gelatins	Chin et al., J. Biol. Chem. <u>260</u> : 12367-12376 (1985)
(proteoglycanase) (procollagen-activiating factor) (MMP 3) Stronelysln-2	53 deduced	III, IV, V collagen, fibronecim, gelatins	Nicholson et al., Biochemistry <u>28</u> : 5195-5203 (1989)
(Barsur-2) (MMP-10) PUMP-1 (MMP-7)	28 deduced 28 secreted	Gelatins, fibronectin	Quantin et al., Biochemistry 28: 5327-5333 (1989)

The matrix metalloproteinases are divided into three major subclasses, indicated with arabic numerals, on the basis of their substrate specificities. The enzymes in each class are bold, and alternative names are shown in parentheses. MMP, matrix metalloproteinase; PMN, polymorphonuclear leukocyte.

- 53 -

Methods

Two types of Northern blots were performed, one on total RNA transcripts, and one using poly A+ tailed transcripts.

5

10

15

20

25

30

Total RNA Preparation. Total RNA for the total RNA northern was extracted from cells using a modification of a published protocol (Chomczynski and Sacchi, Anal. Biochem. 162: 156-159 (1987).

Cells grown in 2 x 10cm petri dishes (approximately 2 x 10^6 cells), were washed two times with cold 1x PBS. After all of the PBS was aspirated off, 500 μ l of an aqueous solution containing the following was added to each dish: 4 M guanidinium thiocyanate (Fluka), 25 mM sodium citrate pH 7.0 (Mallinckrodt), 0.5% sarcosyl (Sigma, St. Louis, MO) 0.1M β -mercaptoethanol (Sigma, St. Louis, MO). The cell lysate was pipetted into a 1.5 ml Eppendorf microfuge tube and was sheared with a 25 gauge needle.

Sodium acetate (pH 4) was added to the 500 μ l lysate to make a final concentration of 0.2 M. mixture was shaken vigorously by hand. 1/5 volume of chloroform was added and mixed thoroughly. The tubes were spun at 15,000 rpm for 5 minutes at 20°C in a Tomy MTX-100 centrifuge. The tubes were inverted to allow the white precipitate layer to separate from the aqueous layer instead of respinning. The RNA was re-extracted with phenol and chloroform two additional times and was extracted one final time with chloroform. 1 ml of isopropanol was added to the microfuge tube and the mixture was precipitated at -20°C overnight. day it was spun at 15,000 rpm for 15 minutes. pellet was washed with 1 volume of 80% ethanol, re-spun, and dried in a Speed Vac (Savant, Farmingdale, NY).

- 54 -

The pellet was resuspended in 400 μ l of the guanidinium solution which contained β -mercaptoethanol (Sigma, St. Louis, MO). 800 μ l of ethanol was added to this mixture, which was then spun at 15,000 rpm for 15 minutes and washed with 80% ethanol. This pellet was resuspended in 20 μ l of water and the O.D. was determined.

Poly A+ RNA Preparation. Poly A+ RNA was prepared using Clontech (Palo Alto, CA) oligo dT
10 cellulose spun columns. 2 x 1 ml of a high salt buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA, 0.5 M NaCl) was washed through the columns and drained by gravity.

Total RNA, isolated as described above, was resuspended in 1 ml of elution buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA) and was heated at 68°C for 3 minutes. 0.2 ml of sample buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA, 3M NaCl) was added to the RNA solution, which was then placed on ice.

The samples were loaded onto the freshly equilibrated columns and allowed to soak under gravity. 20 The columns were placed inside 50 ml tubes and were centrifuged at $350 \times g$ for 2 minutes. The eluates were discarded. 0.25 ml of the high salt buffer (see above) was added to each column and the columns were centrifuged at 350 x g for 2 minutes. This wash was 25 repeated once. In each case, the eluates were discarded. The columns were then washed 3 times with low salt buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA, 0.1 M NaCl) and centrifuged each time at 350 \times g for 2 minutes. The eluates were discarded in each instance. 30 Sterile 1.5 ml microcentrifuge tubes were placed inside of the 50 ml tubes to collect subsequent elutions. 0.25 ml of elution buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA,) warmed to 65°C were applied to the columns, which were then spun at 350 \times g for 2 minutes. This procedure 35

- 55 -

was repeated 3 times for a total of 4 elutions per column. For each column, all of the elutions were collected in a microcentrifuge tube. The eluents were ethanol precipitated as above.

5

10

Northern Blotting. 10 µg of total RNA was loaded in each lane. The sample buffer included 10 µl of formamide, 3.5 µl of formaldahyde, 2 µl of 10x MOPS, 2 µl of loading dye, 0.2 µl of ethidium bromide, and 6.5 µl of RNA sample in water. The poly A+ RNA blot had 3 µg of mRNA loaded in each lane.

The gels for the northern blots consisted of 1.5 g of agarose melted in 95 ml of water and then cooled to 60°C. 30 ml of 5x MOPS and 25 ml of formaldehyde (pH 4.7) were added to the cooling agarose 15 solution. Prior to transfer, the gels were trimmed to remove excess gel. They were then soaked in distilled water for 5 minutes, followed by a 10 minute soak in 50 mM NaOH, 10 mM NaCl at room temperature. The gels were neutralized in 0.1 M Tris-HCl, pH 7.5 for 45 minutes and 20 then soaked in 20% SSC for 1 hour. Transfer occurred overnight in 10% SSC. The gels were blotted onto Schleicher & Scheull (Keene, NH) nitrocellulose membranes. The total RNA gel was blotted onto pure nitrocellulose and fixed by UV crosslinking using a 25 Stratalinker (Stratagene, La Jolla, CA). The poly A+ gel was blotted onto supported nitrocellulose and was baked in a vacuum oven for 2 hours at 80°C.

The blots were hybridized in a manner similar

to the screening of the cDNA library. The sole
difference is that for the northern blot analysis,
RNase-free reagents were used wherever possible.

PCT/US94/11241 WO 95/09918

- 56 -

EXAMPLE 3

In Vitro Activity of Human Recombinant TIMP-3

Modified Zymogram

5

10

30

DeClerck et al. J. Biol. Chem. 266: 17445-17453 (1991) showed that TIMP-2 will bind to pAPMAactivated rabbit fibroblast interstitial collagenase in complexes that are stable in SDS. The 52 kDa inactive presursor was cleaved to an active 42 kDa protein by the organomercurial. Although the active protein primarily degrades type I, II and III collagen, it will also degrade gelatin to a lesser degree.

Conditioned medium (CM) from rabbit synovial fibroblasts contains interstitial collagenase as well as 72 kDa type IV gelatinase. The CM was incubated in 5 μ l 15 of 50 mM Tris-HCl, 200 mM NaCl, 10 mM CaCl2, pH 7.5 for 15 minutes in either the presence or absence of TIMP-2 (according to EP 0 398 753), TIMP-2 Δ or the Figure 1 TIMP-3. Note that TIMP-2 Δ refers to a trucated biologically active form of TIMP-2 with amino acids 128-20 194 of the mature protein deleted. Tolley et al., J. Mol. Biol. 229: 1163-1164(1993); Willenbrock et al., Biochemistry 32: 4430-4437 (1993). It has previously been shown that TIMP-2 interacts preferentially with 72 kDa procollagenase but that these complexes were not 25 stable in 0.1% (w/v) SDS. Stetler-Stevenson, J. Biol. Chem., 264: 17374-17378 (1989). The TIMP-3 tested was

In the absence of TIMPs, 2 zones of clearing are visible when CM from rabbit synovial fibroblasts is run on a 10% acrylamide, 0.1% gelatin gel. Figure 15. One of the bands corresponds to 42 kDa pAPMA-activated interstitial collagenase. This clearing was absent in the presence of CM incubated with TIMP-2, TIMP2 Δ , or the

Figure 1 TIMP-3. The other zone of clearing was not 35

the dialyzed TIMP-3 of Figure 3.

- 57 -

affected, meaning that it did not form as SDS-stable complex with the TIMP. In a separate experiment using the present methods (data not shown) a zone of clearing generated by the collagenase in medium conditioned by COS-7 cells was not inhibited by the presence of TIMP-2, TIMP-2 Δ or TIMP-3.

EXAMPLE 4

10 Preparation of TIMP-3 Polypeptide Analogs and Nucleic Acid Variants

The amino acid sequence of full length TIMP-3 is presented in Figure 1. Using the numbering of Figure 1, the full length sequence is 188 amino acids long.

15 The amino acid sequence at -23 through -1 is a leader sequence, and thus the pro version of the polypeptide is 211 amino acids in length.

The coding region of the TIMP-3 DNA of Figure 1 is -69 through position 564 of the nucleic acid sequence illustrated.

Alternatively, for either variant, one may construct a signal peptide sequence for eucaryotic cell expression. As can be seen from Figure 16, two additional cDNA clones have been isolated, TIMP3clone2. Seq. ID Nos. 14, 15 (ATCC Accession No. ____) and TIMP3HCM-3 Seq. ID Nos. 16, 17 (ATCC Accession No. ____). These clones represent natural variants. Timp3clone2 lacks part of the region encoding the N-terminus of the leader sequence of TIMP3clone7. As such, this would be preferably expressed in a procaryote, such as E. coli. TIMP3HCM-3 lacks a portion of the region encoding the NH2-terminus of the mature protein. Since this clone lacks the hydrophobic leader sequence, it

would be preferably expressed in a procaryote, such as

35 E. coli.

20

25

PCT/US94/11241 WO 95/09918

- 58 -

Figure 16 shows that there are some differences among the three cDNA clones. At nucleotide 320, there is an A in TIMP3clone 2 and a T in TIMP3clone 7. This would result in a change in the amino acid sequence from a trp to an arg at position 14 in the 5 hydrophobic leader sequence. This difference may be a cloning artifact due to its location at the 5' end of that clone. ChIMP-3 also has a trp at this position. Another divergence can be found at base 529, in which 10 clone 2 has a C and clones 7 and HCM-3 have a T. This polymorphism does not result in an amino acid change because both CAT and CAC encode his. Other polymorphisms are found in or near the poly A tail. The poly A tail of HCM-3 is preceded by a single G, whereas in the other 2 clones it is preceded by GG. The poly A 15 tail of clone 7 is 15 bases long and the poly A tail of HCM-3 is 18 bases long. The poly A tail of clone 2 is 17 bases long, is interrupted by 3 other bases, and is followed by 32 nucleotides of additional 5' untranslated 20 sequence.

PCR product 29 (TIMP3PCR29 Seq. ID Nos. 18, 19, see Figure 16) was also obtained from the human fetal kidney cDNA screening, using one insert specific primer and one vector specific primer as follows: Seq. ID No. 7 (496-16) (CLWTDM forward): 5'- CGG AAT TCT GTC TCT GGA CCG ACA TGC TCT CC 3' Seq. ID No.20 (489-23) (lambda gt11 reverse): 5' GAC ACC AGA CCA ACT GGT AAT G 3'

25

As can be seen from Figure 16, this may represent a naturally occurring C-terminal variant. At 30 Figures 16B, bottom, to 16C, top, differences in amino acid sequence between TIMP3clone7 and TIMP3PCR29 are TIMP3PCR29, cloned into pUC19 and placed indicated. into E. coli has been deposited at the ATCC with accession no. _____. A full cDNA clone encompassing

- 59 -

this PCR product has not been found in the fetal kidney cDNA library, however. It is unknown if TIMP3PCR29 represents a full or partial variant or a PCR artifact.

Other TIMP-3 analogs may be prepared. One

5 type of analog is a truncated form which exhibits
binding to the portion of a metalloproteinase which
binds zinc. As indicated <u>supra</u>, the conserved region
for this zinc binding domain may be represented by H E X
G H, wherein X is either F or L. By analogy to TIMP-2

10 deletion analogs which have been prepared, TIMP-3
analogs maintaining enzyme inhibition activity may also
be prepared.

Figure 17 is an illustration of the proposed secondary structure for the TIMP family of proteins. See Alexander et al., Extracellular Matrix Degradation, in, 15 Cell Biology of Extracellular Matrix (2d ed., Hay, ed.), Plenum Press, New York, pp. 255-302. As can be seen, the six C-terminal cysteines form a secondary structure which is somewhat separate from the structure formed by the region encompassing the first six cysteines. 20 Previously, TIMP-2 analogs lacking the C-terminus up to and including the 6th cysteine in from the C-terminus have been shown to have activity. Willenbrock et al., Biochemistry 32: 4330-4337 (1993). TIMP-3 analogs lacking one or more of the C-terminal cysteines are 25 those having the sequence (referring to the numbering of Figure 1) of 1-121, and any of 1-122 through 1-188. Additions, deletions, and substitutions may also be made to amino acids 122-188, as well as attachment of chemical moieties, such as polymers. 30

While the present invention has been described in terms of preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended

- 60 -

claims cover all such equivalent variations which come within the scope of the invention as claimed.

- 61 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: AMGEN INC.
 - (ii) TITLE OF INVENTION: Tissue Inhibitor Metalloproteinase Type
 Three (TIMP-3) Composition and Methods
 - (iii) NUMBER OF SEQUENCES: 21
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Amgen Inc./Patent Operations/KMP
 - (B) STREET: 1840 Dehavilland Drive
 - (C) CITY: Thousand Oaks
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 91320-1789
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

(2) INFORMATION FOR SEQ ID NO:2:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
CGGGATCCCA TRTCNGTCCA DATRCA	26
(2) INFORMATION FOR SEQ ID NO:3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	23
CGGGATCCRT CNGTCCADAT RCA	23
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CTTTTCCCAC TCACGACG	18

(2) INFORMATION FOR SEQ ID NO:5:

CATGTCGGTC CAGAGACACT CG

(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
GAATTGTGAG	G CGGATAAC	18
(2) INFORM	MATION FOR SEQ ID NO:6:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	٠
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CGGAATTCT	G GTCTACACCA TCAAGC	26
(2) INFOR	MATION FOR SEQ ID NO:7:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:7:	
CATGTCGGT	C CAGAGACACT CG	22

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 31 base pairs(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
AACAAACATA TGTGCACATG CTCGCCCAGC C	31
(2) INFORMATION FOR SEQ ID NO:9:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
CGGGATCCTA TTAGGGGTCT GTGGCATTGA TG	32
(2) INFORMATION FOR SEQ ID NO:10:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
ACCACTGGCG GTGATACTGA G	21

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGTCATTACT GGACCGGATC

20

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1240 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGCGGCGGC GCTCAGACGG CTTCTCCTCC TCCTCTTGCT CCTCCAAGCT CCTGCTCCTT 60 CGCCGGGAGC CCGCCGCCG AGTCCTGCGC CAGCGCCGAG GCAGCCTCGC TGCGCCCCAT 120 180 CCCGTCCCGC CGGGCACTCG GAGGGCAGCG CGCCGGAGGC CAAGGTTGCC CCGCACGGCC CGGCGGGCGA GCGAGCTCGG GCTGCAGCAG CCCCGCCGGC GGCGCGCACG GCAACTTTGG 240 AGAGGCGAGC AGCAGCCCCG GCAGCGGCGG CAGCAGCGGC AATGACCCCT TGGCTCGGGC 300 TCATCGTGCT CCTGGGCAGC TGGAGCCTGG GGGACTGGGG CGCCGAGGCG TGCACATGCT 360 CGCCCAGCCA CCCCCAGGAC GCCTTCTGCA ACTCCGACAT CGTGATCCGG GCCAAGGTGG 420 TGGGGAAGAA GCTGGTAAAG GAGGGGCCCT TCGGCACGCT GGTCTACACC ATCAAGCAGA 480 TGAAGATGTA CCGAGGCTTC ACCAAGATGC CCCATGTGCA GTACATCCAT ACGGAAGCTT 540 CCGAGAGTCT CTGTGGCCTT AAGCTGGAGG TCAACAAGTA CCAGTACCTG CTGACAGGTC 600 GCGTCTATGA TGGCAAGATG TACACGGGGC TGTGCAACTT CGTGGAGAGG TGGGACCAGC 660 TCACCCTCTC CCAGCGCAAG GGGCTGAACT ATCGGTATCA CCTGGGTTGT AACTGCAAGA 720

TCAAGTCCTG	CTACTACCTG	CCTTGCTTTG	TGACTTCCAA	GAACGAGTGT	CTCTGGACCG	780
ACATGCTCTC	CAATTTCGGT	TACCCTGGCT	ACCAGTCCAA	ACACTACGCC	TGCATCCGGC	840
AGAAGGGCGG	CTACTGCAGC	TGGTACCGAG	GATGGGCCCC	CCCGGATAAA	AGCATCATCA	900
ATGCCACAGA	CCCCTGAGCG	CCAGACCCTG	CCCCACCTCA	CTTCCCTCCC	TTCCCGCTGA	960
GCTTCCCTTG	GACACTAACT	CTTCCCAGAT	GATGACAATG	AAATTAGTGC	CTGTTTTCTT	1020
GCAAATTTAG	CACTTGGAAC	ATTTAAAGAA	AGGTCTATGC	TGTCATATGG	GGTTTATTGG	1080
GAACTATCCT	CCTGGCCCCA	CCCTGCCCCT	TCTTTTTGGT	TTTGACATCA	TTCATTTCCA	1140
CCTGGGAATT	TCTGGTGCCA	TGCCAGAAAG	AATGAGGAAC	CTGTATTCCT	CTTCTTCGTG	1200
ATAATATAAT	CTCTATTTTT	TTAGGAAAAA	AAAAAAAAA			1240

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 211 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Thr Pro Trp Leu Gly Leu Ile Val Leu Leu Gly Ser Trp Ser Leu 1 5 10 15

Gly Asp Trp Gly Ala Glu Ala Cys Thr Cys Ser Pro Ser His Pro Gln
20 25 30

Asp Ala Phe Cys Asn Ser Asp Ile Val Ile Arg Ala Lys Val Val Gly
35 40 45

Lys Lys Leu Val Lys Glu Gly Pro Phe Gly Thr Leu Val Tyr Thr Ile 50 55 60

Lys Gln Met Lys Met Tyr Arg Gly Phe Thr Lys Met Pro His Val Gln 65 70 75 80

Tyr Ile His Thr Glu Ala Ser Glu Ser Leu Cys Gly Leu Lys Leu Glu 85 . 90 95

PCT/US94/11241 WO 95/09918

- 67 -

Val	Asn	Lys	Tyr	Gln	Tyr	Leu	Leu	Thr	Gly	Arg	Val	Tyr	Asp	Gly	Lys
		_	100					105					110		

Met Tyr Thr Gly Leu Cys Asn Phe Val Glu Arg Trp Asp Gln Leu Thr 115 125

Leu Ser Gln Arg Lys Gly Leu Asn Tyr Arg Tyr His Leu Gly Cys Asn 135

Cys Lys Ile Lys Ser Cys Tyr Tyr Leu Pro Cys Phe Val Thr Ser Lys 150 145

Asn Glu Cys Leu Trp Thr Asp Met Leu Ser Asn Phe Gly Tyr Pro Gly 170

Tyr Gln Ser Lys His Tyr Ala Cys Ile Arg Gln Lys Gly Gly Tyr Cys

Ser Trp Tyr Arg Gly Trp Ala Pro Pro Asp Lys Ser Ile Ile Asn Ala 200 205

Thr Asp Pro 210

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 963 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CAGGAGCCTG GGGGACTGGG GCGCCGAGGC GTGCACATGC TCGCCCAGGC ACCCCCAGGA 60 CGCCTTCTGC AACTCCGACA TCGTGATCCG GGCCAAGGTG GTGGGGAAGA AGCTGGTAAA GGAGGGGCCC TTCGGCACGC TGGTCTACAC CATCAAGCAG ATGAAGATGT ACCGAGGCTT CACCAAGATG CCCCATGTGC AGTACATCCA CACGGAAGCT TCCGAGAGTC TCTGTGGCCT 240 TAAGCTGGAG GTCAACAAGT ACCAGTACCT GCTGACAGGT CGCGTCTATG ATGGCAAGAT 300 GTACACGGGG CTGTGCAACT TCGTGGAGAG GTGGGACCAG CTCACCCTCT CCCAGCGCAA 360 GGGGCTGAAC TATCGGTATC ACCTGGGTTG TAACTGCAAG ATCAAGTCCT GCTACTACCT GCCTTGCTTT GTGACTTCCA AGAACGAGTG TCTCTGGACC GACATGCTCT CCAATTTCGG 480

TTACCCTGGC	TACCAGTCCA	AACACTACGC	CTGCATCCGG	CAGAAGGGCG	GCTACTGCAG	540
CTGGTACCGA	GGATGGGCCC	CCCCGGATAA	AAGCATCATC	AATGCCACAG	ACCCCTGAGC	600
GCCAGACCCT	GCCCCACCTC	ACTTCCCTCC	CTTCCCGCTG	AGCTTCCCTT	GGACACTAAC	660
TCTTCCCAGA	TGATGACAAT	GAAATTAGTG	CCTGTTTTCT	TGCAAATTTA	GCACTTGGAA	720
CATTTAAAGA	AAGGTCTATG	CTGTCATATG	GGGTTTATTG	GGAACTATCC	TCCTGGCCCC	780
ACCCTGCCCC	TTCTTTTTGG	TTTTGACATC	ATTCATTTCC	ACCTGGGAAT	TTCTGGTGCC	840
ATGCCAGAAA	GAATGAGGAA	CCTGTATTCC	TCTTCTTCGT	GATAATATAA	TCTCTATTTT	900
TTTAGGAAAA	CAAAAATGAA	AAACTACTCC	ATTTGAGGAT	TGTAATTCCC	AACACCACCT	960
GCT						. 963

(2) INFORMATION FOR SEQ ID NO:15:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 198 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Arg Ser Leu Gly Asp Trp Gly Ala Glu Ala Cys Thr Cys Ser Pro Ser 1 5 10 15

His Pro Gln Asp Ala Phe Cys Asn Ser Asp Ile Val Ile Arg Ala Lys 20 25 30

Val Val Gly Lys Lys Leu Val Lys Glu Gly Pro Phe Gly Thr Leu Val 35 40 45

Tyr Thr Ile Lys Gln Met Lys Met Tyr Arg Gly Phe Thr Lys Met Pro 50 55 60

His Val Gln Tyr Ile His Thr Glu Ala Ser Glu Ser Leu Cys Gly Leu 65 70 75 80

Lys Leu Glu Val Asn Lys Tyr Gln Tyr Leu Leu Thr Gly Arg Val Tyr 85 90 95

WO 95/09918

- 6	9	
-----	---	--

qzA	Gly	Lys	Met	Tyr	Thr	Gly	Leu	Суз	Asn	Phe	Val	Glu	Arg	Trp	Asp
•	•	-	100					105					110		

- Gln Leu Thr Leu Ser Gln Arg Lys Gly Leu Asn Tyr Arg Tyr His Leu 120
- Gly Cys Asn Cys Lys Ile Lys Ser Cys Tyr Tyr Leu Pro Cys Phe Val
- Thr Ser Lys Asn Glu Cys Leu Trp Thr Asp Met Leu Ser Asn Phe Gly 155 150
- Tyr Pro Gly Tyr Gln Ser Lys His Tyr Ala Cys Ile Arg Gln Lys Gly 170
- Gly Tyr Cys Ser Trp Tyr Arg Gly Trp Ala Pro Pro Asp Lys Ser Ile 185

Ile Asn Ala Thr Asp Pro 195

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 820 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GGGAAGAAGC TGGTAAAGGA GGGGCCCTTC GGCACGCTGG TCTACACCAT CAAGCAGATG AAGATGTACC GAGGCTTCAC CAAGATGCCC CATGTGCAGT ACATCCATAC GGAAGCTTCC 120 GAGAGTETET GTGGCETTAA GETGGAGGTE AACAAGTACE AGTACETGET GACAGGTEGE 180 GTCTATGATG GCAAGATGTA CACGGGGCTG TGCAACTTCG TGGAGAGGTG GGACCAGCTC ACCCTCTCCC AGCGCAAGGG GCTGAACTAT CGGTATCACC TGGGTTGTAA CTGCAAGATC 300 AAGTCCTGCT ACTACCTGCC TTGCTTTGTG ACTTCCAAGA ACGAGTGTCT CTGGACCGAC 360 ATGCTCTCCA ATTTCGGTTA CCCTGGCTAC CAGTCCAAAC ACTACGCCTG CATCCGGCAG 420 AAGGGCGGCT ACTGCAGCTG GTACCGAGGA TGGGCCCCCC CGGATAAAAG CATCATCAAT 480 GCCACAGACC CCTGAGCGCC AGACCCTGCC CCACCTCACT TCCCTCCCTT CCCGCTGAGC 540

PCT/US94/11241 WO 95/09918

- 70 -

TTCCCTTGGA	CACTAACTCT	TCCCAGATGA	TGACAATGAA	ATTAGTGCCT	GTTTTCTTGC	600
AAATTTAGCA	CTTGGAACAT	TTAAAGAAAG	GTCTATGCTG	TCATATGGGG	TTTATTGGGA	660
ACTATCCTCC	TGGCCCCACC	CTGCCCCTTC	TTTTTGGTTT	TGACATCATT	CATTTCCACC	720
TGGGAATTTC	TGGTGCCATG	CCÁGAAAGAA	TGAGGAACCT	GTATTCCTCT	TCTTCGTGAT	780
AATATAATCT	CTATTTTTT	AGAAAAAAA	ААААААААА			820

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- Gly Lys Lys Leu Val Lys Glu Gly Pro Phe Gly Thr Leu Val Tyr Thr
- Ile Lys Gln Met Lys Met Tyr Arg Gly Phe Thr Lys Met Pro His Val 25
- Gln Tyr Ile His Thr Glu Ala Ser Glu Ser Leu Cys Gly Leu Lys Leu
- Glu Val Asn Lys Tyr Gln Tyr Leu Leu Thr Gly Arg Val Tyr Asp Gly
- Lys Met Tyr Thr Gly Leu Cys Asn Phe Val Glu Arg Trp Asp Gln Leu
- Thr Leu Ser Gln Arg Lys Gly Leu Asn Tyr Arg Tyr His Leu Gly Cys
- Asn Cys Lys Ile Lys Ser Cys Tyr Tyr Leu Pro Cys Phe Val Thr Ser
- Lys Asn Glu Cys Leu Trp Thr Asp Met Leu Ser Asn Phe Gly Tyr Pro
- Gly Tyr Gln Ser Lys His Tyr Ala Cys Ile Arg Gln Lys Gly Gly Tyr

- 71 -

Cys Ser Trp Tyr Arg Gly Trp Ala Pro Pro Asp Lys Ser Ile Ile Asn 155 150 145

Ala Thr Asp Pro

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 92 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CTCTGGACCG ACATGCTCTC CAATTTCGGT TACCCTGGCT ACCAGTCCAA ACACTACACA 60 TGCTCGCCCA GCCACCCCCG CACGCGCTCC CG

92

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Leu Trp Thr Asp Met Leu Ser Asn Phe Gly Tyr Pro Gly Tyr Gln Ser

Lys His Tyr Thr Cys Ser Pro Ser His Pro Arg Thr Arg Ser Thr 25 20

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

PCT/US94/11241

- 72 -

(ii)	MOLECULE	TYPE:	DNA	(genomic)
------	----------	-------	-----	-----------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GACACCAGAC CAACTGGTAA TG

22

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CGGAATTCTG TCTCTGGACC GACATGCTCT CC

- 73 -

WHAT IS CLAIMED IS:

- 1. Purified and isolated mammalian TIMP-3.
- 5 2. Human TIMP-3 free of association with other human protein.
- 3. A purified and isolated polypeptide having part or all of the primary structure of mammalian TIMP-3 as presented in Figure 1, and at least one of the biological properties of mammalian TIMP-3.
- A polypeptide according to claim 3
 wherein said biological property is the inhibition of a
 metalloproteinase.
 - 5. A polypeptide according to claim 3 wherein said biological property is the binding to the extracellular matrix material.
 - 6. A polypeptide according to claim 3 wherein said polypeptide is the product of procaryotic or eucaryotic expression of an exogenous DNA sequence.
- 7. A polypeptide according to claim 6 wherein said exogenous DNA sequence is a cDNA sequence.
- 8. A polypeptide according to claim 6 wherein said exogenous DNA sequence is a genomic DNA sequence.
 - 9. A polypeptide according to claim 6 wherein said polypeptide is recombinant human TIMP-3.

- 74 -

- 10. A polypeptide according to claim 6 wherein said exogenous DNA sequence is carried on an autonomously replicating DNA plasmid or viral vector.
- 5 11. A purified and isolated polypeptide having the amino acid sequence presented in Figure 1.
- 12. A purified and isolated polypeptide having the amino acid sequence of amino acids 1-188 as presented in Figure 1, optionally having a methionyl residue at position -1.
- 13. A polypeptide according to claims 1, 2 or 3 further characterized by being covalently associated 15 with a detectable label substance.
 - 14. An isolated DNA sequence for use in securing expression in a procaryotic or eucaryotic host cell of a polypeptide product having an amino acid sequence sufficiently duplicative of that of mammalian TIMP-3 to allow possession of a metalloproteinase inhibition activity of mammalian TIMP-3, said DNA sequence selected from among:

- 25 (a) the DNA sequence set forth in Figure 1 (and complementary strands);
- (b) a DNA sequence which hybridizes to the DNA in Figure 1, wherein said hybridization conditions are those allowing detection of human TIMP-3 cDNA using a ChIMP-3 DNA probe or more stringent conditions;
- (c) a DNA sequence of subpart (b) which, but for the degeneracy of the genetic code, would hybridize 35 to the DNA in Figure 1; or

- (d) a fragment of the DNA sequences of subpart (a), (b) or (c) above which is at least long enough to selectively hybridize to human genomic DNA encoding TIMP-3.
 - 15. A procaryotic or eucaryotic host cell transformed or transfected with a DNA sequence according to claim 14 in a manner allowing the host cell to express said polypeptide product.
 - 16. A polypeptide product of expression of a DNA sequence of claim 14 in a procaryotic or eucaryotic host cell.
- 17. A vector containing the DNA sequence according to claim 14.

- 18. A vector according to claim 17 wherein 20 said vector is a plasmid vector.
 - 19. A vector according to claim 17 wherein said vector is a viral vector.
- 20. A vector according to claim 19 wherein said viral vector is selected from the group consisting of a bacteriophage vector, a retroviral vector, and an adenoviral vector.
- 30 21. A composition containing a DNA sequence according to claim 14 and a pharmaceutically acceptable carrier.

- 76 -

- 22. A composition of claim 21 wherein said carrier is selected from the group consisting of a lipid solution carrier, a liposome, and a polypeptide.
- 5 23. A cDNA sequence according to claim 14.
 - 24. A genomic DNA sequence according to claim 14.
- 10 25. A DNA sequence according to claim 14 which encodes human TIMP-3.
 - 26. An antisense DNA with respect to the DNA according to claim 14.
- 27. A DNA sequence according to claim 14, the expression of which is optimized by the inclusion of one or more codons preferred for expression in bacterial cells.
- 28. A DNA sequence according to claim 14 the expression of which is optimized by the inclusion of one or more codons preferred for expression in mammalian cells.

- 29. A DNA sequence according to claim 14 the expression of which is optimized by the inclusion of one or more codons preferred for expression in yeast cells.
- 30. A DNA sequence according to claim 14 covalently associated with a detectable label substance.

- 77 -

31. A DNA sequence as set forth in Figure 1 or Figure 16, said sequence encoding at least amino acids 1-188 as set forth in Figure 1, and optionally encoding an additional methionyl residue at the -1 position.

32. A procaryotic or eucaryotic host cell transformed or transfected with a DNA sequence according to claim 31 in a manner allowing the host cell to express said polypeptide product.

10

33. A polypeptide product of expression of a DNA sequence of claim 31 in a procaryotic or eucaryotic host cell.

 $$34.\ \ A$$ vector containing the DNA sequence according to claim 31.

35. A vector according to claim 34 wherein 20 said vector is a plasmid vector.

- 36. A vector according to claim 34 wherein said vector is a viral vector.
- 25 37. A vector according to claim 36 wherein said viral vector is selected from the group consisting of a bacteriophage vector, a retroviral vector, and an adenoviral vector.
- 38. A composition containing a DNA sequence according to claim 31 and a pharmaceutically acceptable carrier.

- 39. A composition of claim 38 wherein said carrier is selected from the group consisting of a lipid solution carrier, a liposome, and a polypeptide.
- 5 40. An antisense DNA with respect to the DNA sequence according to claim 31.
- 41. A DNA sequence according to claim 31, the expression of which is optimized by the inclusion of one or more codons preferred for expression in bacterial cells.
- 42. A DNA sequence according to claim 31 the expression of which is optimized by the inclusion of one or more codons preferred for expression in mammalian cells.
- 43. A DNA sequence according to claim 31 the expression of which is optimized by the inclusion of one or more codons preferred for expression in yeast cells.
 - 44. A DNA sequence according to claim 31 covalently associated with a detectable label substance.
- 25
 45. The host cell selected from the group consisting of those with ATCC designations
 (Timp3clone7/pCFM, Timp3clone7/puCl9, Timp3clone2/puCl9, Timp3HCM3, Timp3pCR29) ____, ____, and ____.
- 30 46. A process for the production of TIMP-3 comprising: growing, under suitable conditions, procaryotic or eucaryotic host cells transformed or transfected with a DNA according to claim 14 or 31, and isolating desired polypeptide products of the expression of said DNA sequences.

- 79 -

47. A pharmaceutical composition comprising purified and isolated human TIMP-3 in a pharmaceutically acceptable diluent, adjuvant or carrier.

5

10

- 48. An article of manufacture comprising a packaging material and a pharmaceutical agent, wherein said pharmaceutical agent contains human TIMP-3 and wherein said packaging material comprises a label which indicates that said pharmaceutical agent may be used for an indication selected from the group consisting of cancer, inflammation, arthritis, dystrophic epidermolysis bullosa, peridontal disease, ulceration, emphysema, bone disorders, scleroderma, wound healing, erythrocyte deficiencies, cosmetic tissue reconstruction, fertilization or embryo implant modulation and nerve cell disorders.
- 49. A kit containing a preparation of human
 20 TIMP-3 and one or more additional compositions
 beneficial for the treatment of a disorder involving the
 degradation of extracellular matrix.
- 50. A kit of claim 49 wherein said additional composition is selected from the group consisting of: metalloproteinases, serine proteases, inhibitors of matrix degrading enzymes, intracellular enzymes, cell adhesion modulators, and factors regulating the expression of extracellular matrix degrading proteinases and their inhibitors.
 - 51. A kit of claim 50 wherein said additional composition is selected from the group consisting of collagenases, PMN collagenase, stromelysin I,

- 80 -

II/transin, matrilysin, invadolysin, PUMP-1, UPA, TPA, and plasmin.

- 52. A kit of claim 50 wherein said additional composition is selected from the group consisting of α_2 -macroglobulin, pregnancy zone protein, ovostatin, α_1 -proteinase inhibitor, α_2 -antiplasmin, aprotinin, protease nexin-1, PAI-1, PAI-2, TIMP-1 and TIMP-2.
- 10 53. A kit of claim 50 wherein said additional composition is selected from the group consisting of lysozomal enzymes, glycosidases and cathepsins.
- 54. A kit of claim 50 wherein said additional composition is a cell adhesion modulator.
 - 55. A kit of claim 50 wherein said additional composition is a factor regulating expression of extracellular matrix degrading proteinases and their inhibitors.

- 56. A kit of claim 50 wherein said additional composition is selected from the group consisting of an interleukin, TNFα, TGF-β, glucocorticoids, retinoids,
 25 EPO, SCF, M-CSF, IGF-I, IGF-II, EGF, an FGF, KGF, PDGF, an interferon, protein kinase C, and inositol phosphatases.
- 57. A kit of claim 49 wherein said additional composition is selected from the group consisting of E-selectins, integrins, L-selectins, chemokines, and chemoattractants.

- 81 -

- 58. A kit of claim 49 wherein said additional composition is selected from the group consisting of BDNF, NT-3, NGF, CNTF, and NDF.
- 5 59. A method of treating conditions characterized by extracellular matrix degradation in a mammal comprising administering an effective amount of the polypeptide according to claim 1.
- 10 60. A method according to claim 59 wherein said condition is selected from the group consisting of cancer, inflammation, arthritis, dystrophic epidermolysis bullosa, peridontal disease, ulceration, emphysema, bone disorders, scleroderma, wound healing, erythrocyte deficiencies, cosmetic tissue reconstruction, fertilization or embryo implant modulation and nerve cell disorders.
- 61. A method of treating a lung disorder
 20 characterized by undue extracellular matrix degradation in a mammal comprising administering to the lungs of said mammal an effective amount of a DNA encoding human TIMP-3.
- 25 62. A method according to claim 61 wherein said disorder is emphysema.
- 63. A method of treating emphysema in a mammal comprising administering to the lungs of said 30 mammal an effective amount of a DNA encoding human TIMP-3, said DNA optionally within a vector or associated with a pharmaceutically acceptable carrier.
- 64. An article of manufacture comprising a packaging material and a pharmaceutical agent, wherein

- 82 -

said pharmaceutical agent contains a DNA encoding human TIMP-3 and wherein said packaging material comprises a label which indicates that said pharmaceutical composition may be used for an indication benefitting from genetic therapy using such DNA.

- 65. An article of manufacture of claim 64 wherein said indication is emphysema.
- 10 66. A kit including a DNA encoding human TIMP-3 and one or more additional factors affecting the ex vivo growth of cells transformed or transfected with said DNA.
- 15 67. A kit of claim 66 including SCF.
 - 68. Anti-human TIMP-3 antibody.
- 69. A kit containing an anti-human TIMP-3 20 antibody.
 - 70. A selective binding molecule prepared against the amino acid sequence H E X G H where X is either F or L.

25

71. A mature human TIMP-3 polypeptide as set forth in Figure 1, optionally having a methionyl residue at position -1, lacking one or more of the six C-terminal cysteine residues.

30

72. A human TIMP-3 polypeptide as set forth in Figure 1, optionally having a methionyl residue at position -1, having the amino acid sequence 1-121 and optionally all or part of amino acids 122-188.

- 83 -

- 73. A human TIMP-3 polypeptide of claim 72 having the capacity to bind the zinc binding domain of collagenase.
- 5 74. A human TIMP-3 polypeptide of claim 72 having a chemical modification located at one or more of amino acids 122-188.

FIG. I

GGCGGCGGCGCTCAGACGGCTTCTCCTCCTCCTCTTGCTCCTCCAAGCTCCTGCTCCTT	60
CGCCGGAGCCCGCCGAGTCCTGCGCCAGCGCCGAGGCAGCCTCGCTGCGCCCCAT	120
CCCGTCCCGCCGGGCACTCGGAGGGCAGCCGCGGAGGCCAAGGTTGCCCCGCACGGCC	180
CGGCGGCGAGCTCGGGCTGCAGCAGCCCCGCCGGCGCGCGC	240
AGAGGCGAGCAGCCCCGGCAGCGGCGGCAGCAGCGGCAATGACCCCTTGGCTCGGGC	300
MetThrProTrpLeuGlyLeu	-17
-23	:
TCATCGTGCTCCTGGGCAGCTGGAGCCTGGGGGACTGGGGCGCCGAGGCGTGCACATGCT	360
<pre>IleValLeuLeuGlySerTrpSerLeuGlyAspTrpGlyAlaGluAlaCysThrCysSer</pre>	• 4
CGCCCAGCCACCCCAGGACGCCTTCTGCAACTCCGACATCGTGATCCGGGCCAAGGTGG	420
ProSerHisProGlnAspAlaPheCysAsnSerAspIleValIleArgAlaLysValVal	24
TGGGGAAGAAGCTGGTAAAGGAGGGCCCTTCGGCACGCTGGTCTACACCATCAAGCAGA	480
GlyLysLysLeuValLysGluGlyProPheGlyThrLeuVal <u>TyrThrIleLys</u> GlnMet	44
TGAAGATGTACCGAGGCTTCACCAAGATGCCCCATGTGCAGTACATCCATACGGAAGCTT	540
LysMetTyrArgGlyPheThrLysMetProHisValGlnTyrIleHisThrGluAlaSer	64
Dysmetry rangely File III by smetrion is varieting interest and called	0.
CCGAGAGTCTCTGTGGCCTTAAGCTGGAGGTCAACAAGTACCAGTACCTGCTGACAGGTC	600
GluSerLeuCysGlyLeuLysLeuGluValAsnLysTyrGlnTyrLeuLeuThrGlyArg	84
GCGTCTATGATGGCAAGATGTACACGGGGCTGTGCAACTTCGTGGAGAGGTGGGACCAGC	660
ValTyrAspGlyLysMetTyrThrGlyLeuCysAsnPheValGluArgTrpAspGlnLeu	104
TCACCCTCTCCCAGCGCAAGGGGCTGAACTATCGGTATCACCTGGGTTGTAACTGCAAGA	720
ThrLeuSerGlnArgLysGlyLeuAsnTyrArgTyrHisLeuGlyCysAsnCysLysIle	124
INTHEODETOTIME gay bory accumulating all announced and a management of the second and a management of the second and a management of the second and a second and	
TCAAGTCCTGCTACTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCG	780
${\tt LysSerCysTyrTyrLeuProCysPheValThrSerLysAsnGl\underline{uCysLeuTrpThrAsp}}$	144
ACATGCTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACGCCTGCATCCGGC	840
MetLeuSerAsnPheGlyTyrProGlyTyrGlnSerLysHisTyrAlaCysIleArgGln	164
Mec Ded Ser Ash Friedly Tyl Flodiy Tyl Ginser Dyshis Tyl Middy Strong goth	
AGAAGGCCGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCCGGATAAAAGCATCATCA	900
LysGlyGlyTyrCysSerTrpTyrArgGlyTrpAlaProProAspLysSerIleIleAsn	184
, , , , , , , , , , , , , , , , , , ,	0.00
ATGCCACAGACCCCTGAGCGCCAGACCCTGCCCCACCTCACTTCCCCTCCCT	960
AlaThrAspProEnd	188
GCTTCCCTTGGACACTAACTCTTCCCAGATGATGACAATGAAATTAGTGCCTGTTTTCTT	1020
GCAAATTTAGCACTTGGAACATTTAAAGAAAGGTCTATGCTGTCATATGGGGTTTATTGG	1080
GAACTATCCTCCTGGCCCCACCCTGCCCCTTCTTTTTGGTTTTGACATCATTCAT	1140
CCTGGGAATTTCTGGTGCCATGCCAGAAAGAATGAGGAACCTGTATTCCTCTTCTTCGTG	1200
<u> Α ΤΑ ΣΤΑΤΆ ΣΤΟΤΟ ΤΑΤΤΤΤΤΤΤΤΑ GGAAAAAAAAAAAAA </u>	1240

FIG. 2

FIG. 3

4/26

FIG. 4

```
-23
                                                                                                                               24
Bovine TIMP-1

Human TIMP-1

Rabbit TIMP-1

Mouse TIMP-1

Bovine TIMP-2

Human TIMP-2

MGAAARSLPL AFCLLLLGTL LPRADA CSCS PVHPQQAFCN ADIVIRAKEV

MGAAARSLPL ALGLLLATL LRPADA CSCS PVHPQQAFCN ADIVIRAKAV

MOUSE TIMP-2

MGAAARSLRL ALGLLLASL VRPADA CSCS PVHPQQAFCN ADIVIRAKAV

MGAAARSLRL ALGLLLASL VRPADA CSCS PVHPQQAFCN ADIVIRAKAV

MGAAARSLRL ALGLLLASL VRPADA CSCS PVHPQQAFCN ADIVIRAKAV

MTAMICEI AV ELCSUSIPPI VAFA (CTCV PIHPQDAFCN SDIVIRAKAV
Mouse TIMP-2
Chick TIMP-3
                          MTAWLGFLAV FLCSWSLRDL ..VAEA[CTCV PIHPQDAFCN SDIVIRAKVV MTPWLGLI.V LLGSWSLGDW ..GAEA[CTCS PSHPQDAFCN SDIVIRAKVV
Human TIMP-3
Bovine TIMP-1 GTAEVNETAL Y......QR YEIKMTKMFK GFSALRDAPD IRFIYTPAME
                           GTPEVNOTTL Y.....QR YEIRMTKMYK GFQALGDAAD IRFVYTPAME
Human TIMP-1
 Rabbit TIMP-1 GAPEVNHTTL Y......QR YEIKTTKMFK GFDALGHATD IRFVYTPAME
                           GSPEINETTL Y.....QR YKIKMTKMLK GFKAVGNAAD IRYAYTPVME
Mouse TIMP-1
Bovine TIMP-2 NKKEVDSGND IYGNPIKRIQ YEIKQIKMFK GPDQ. . . . D IEFIYTAPAA Human TIMP-2 SEKEVDSGND IYGNPIKRIQ YEIKQIKMFK GPEK. . . D IEFIYTAPSS Mouse TIMP-2 SEKEVDSGND IYGNPIKRIQ YEIKQIKMFK GPDK. . . . D IEFIYTAPSS Chick TIMP-3 GKKLMKDG. . . . PFGTMR YTVKQMKMYR GFQIM . . PH VQYIYTEASE Human TIMP-3 GKKLVKEG. . . . PFGTLV YTIKQMKMYR GFTKM . . PH VQYIHTEASE
                           66
                           SVCGYFHRSQ NRSEEFLIAG QLSNGHLHIT TCSFVAPWNS MSSAQRRGFT
 Bovine TIMP-1
 Human TIMP-1
                           SVCGYFHRSH NRSEEFLIAG KLQDGLLHIT TCSFVAPWNS LSLAQRRGFT
 Rabbit TIMP-1 SVCGYSHKSQ NRSEEFLIAG QLRNGLLHIT TCSFVVPWNS LSFSQRSGFT Mouse TIMP-1 SLCGYAHKSQ NRSEEFLITG RLRNGNLHIS ACSFLVPWRT LSPAQQRAFS
 Bovine TIMP-2 AVCGVSLDIG GKKEYLIAGK AEGNGNMHIT LCDFIVPWDT LSATQKKSLN
 Human TIMP-2
                           AVCGVSLDVG GKKEYLIAGK AEGDGKMHIT LCDFIVPWDT LSTTQKKSLN
                           AVCGVSLDVG GKKEYLIAGK AEGDGKMHIT LCDFIVPWDT LSITQKKSLN
 Mouse TIMP-2
                           SLCGVKLEV. NKYQYLITGR VY.EGKVYTG LCNWYEKWDR LTLSQRKGLN SLCGLKLEV. NKYQYLLTGR VY.DGKMYTG LCNFVERWDQ LTLSQRKGLN
 Chick TIMP-3
 Human TIMP-3
                            114
 Bovine TIMP-1 KTYAAGCEEC TVFPCSSIPC KLQSDTHCLW TDQLLTGSDK GFQSRHLACL
                          KTYAAGCEEC TVFPCSSIPC KLQSDTHCLW TDQLLTGSDK GFQSRHLACL
KTYTVGCEEC TVFPCLSIPC KLQSGTHCLW TDQLLQGSEK GFQSRHLACL
KTYAAGCDMC TVFACASIPC HLESDTHCLW TDSSL.GSDK GFQSRHLACL
KTYSAGCGVC TVFPCLSIPC KLESDTHCLW TDQVLVGSE. DYQSRHFACL
HRYQMGCE.C KITRCPMIPC YISSPDECLW MDWVTEKNIN GHQAKFFACI
HRYQMGCE.C KITRCPMIPC YISSPDECLW MDWVTEKNIN GHQAKFFACI
HRYQMGCE.C KITRCPMIPC YISSPDECLW MDWVTEKSIN GHQAKFFACI
HRYHLGCG.C KIRPCYYLPC FATSKNECIW TDMLSNFGHS GHQAKHYACI
 Human TIMP-1
 Rabbit TIMP-1
 Mouse TIMP-1
 Bovine TIMP-2
 Human TIMP-2
 Mouse TIMP-2
Chick TIMP-3
                           YRYHLGCN.C KIKSCYYLPC FVTSKNECLW TDMLSNFGYP GYQSKHYACI
 HumanTIMP-3
                                                                        188
                            163
 Bovine TIMP-1 PREPGLCTWQ SLRAQMA........
Human TIMP-1 PREPGLCTWQ SLRSQIA.......
                            PQEPGLCAWE SLRPRKD.......
 Rabit TIMP-1
 Mouse TIMP-1
                            PRNPGLCTWR SLGAR.....
 Bovine TIMP-2 KRSDGSCAWY RGAAPPKQEF LDIEDP
                            KRSDGSCAWY RGAAPPKQEF LDIEDP
 Human TIMP-2
                            KRSDGSCAWY RGAAPPKOEF LDIEDP
 Mouse TIMP-2
 Chick Timp-3
                            ORVEGYCSWY RGWAPPDKTI INATDP
                            ROKGGYCSWY RGWAPPDKSI INATDP
 Human TIMP-3
```

FIG. 5

TIMP-3	1	MTPWLGLI.VLLGSWSLGDWGAEACTCSPSHPQDAFCNSDIVIRAKVVGK	49
ChIMP-3	1	: :: : . :.	50
TIMP-3	50	KLVKEGPFGTLVYTIKOMKMYRGFTKMPHVQYIHTEASESLCGLKLEVNK	99
ChIMP-3	51	: : : :	100
TIMP-3	100	YOYLLTGRVYDGKMYTGLCNFVERWDQLTLSQRKGLNYRYHLGCNCKIKS	149
ChIMP-3	101	: : : : : : : : :: ::	150
TIMP-3	151	CYYLPCFVTSKNECLWTDMLSNFGYPGYQSKHYACIRQKGGYCSWYRGWA	200
ChIMP-3	150	. : . . :	199
TIMP-3	200	PPDKSIINATDP 211	
ChIMP-3	201	. PPDKTIINATDP 212	

FIG. 6A

TIMP-3	151	CGCCGGAGGCCAAGGTTGCCCCGCACGGCCGGCGGGGGGGG	200
ChIMP-3	1	CGCGAGAGAGAGGCGGTGTGAGGAGGGAGCGAGCAGCG	42
TIMP-3	201	GCTGCAGCAGCCCGCCGCGCGCGCGCACGCAACTTTGGAGAGGCGAGC	250
ChIMP-3	43	AACAGGCGAGGCTCGAGTTAGGCGAACAGAACAGCGGCTGCAGCTCGAAG	92
TIMP-3		AGCAGCCCGGCAGCGGCAGCAGCGGCAATGACCCCTTGGCTCGG	
Chimp-3	393		131
TIMP-3	299	.GCTCATCGTGCTCCTGGGCAGCTGGAGCCTGGGGGACTGGGGCGCCGAG	347
ChIMP-3	132	TCCTCGCCGTGTTCCTGTGCAGCTGGAGCCTGCGGGACCTGGTGGCGGAG	181
TIMP-3	348	GCGTGCACATGCTCGCCCAGCCACCCCCAGGACGCCTTCTGCAACTCCGA	39.7
ChIMP-3	182	GCGTGCACTTGCGTCCCCATCCACCCGCAGGACGCGTTCTGCAACTCCGA	231
TIMP-3	398	CATCGTGATCCGGGCCAAGGTGGTGGGGAAGAAGCTGGTAAAGGAGGGGC	447
Chimp-3	232	CATCGTGATCCGTGCTAAAGTTGTGGGGAAGAAGCTCATGAAAGATGGAC	281
TIMP-3	448	CCTTCGGCACGCTGGTCTACACCATCAAGCAGATGAAGATGTACCGAGGC	497
ChIMP-3	282	CATTTGGAACAATGCGATACACAGTCAAGCAGATGAAGATGTACAGGGGC	331
TIMP-3	498	TTCACCAAGATGCCCCATGTGCAGTACATCCATACGGAAGCTTCCGAGAG	547
ChIMP-3	332	TTCCAGATAATGCCACACGTTCAGTACATCTACACAGAAGCCTCAGAGAG	381
TIMP-3	548	TCTCTGTGGCCTTAAGCTGGAGGTCAACAAGTACCAGTACCTGCTGACAG	597
ChIMP-3	382	TCTTTGTGGTGTGAAACTGGAGGTCAACAAATACCAGTATCTGATTACAG	431
TIMP-3	598	GTCGCGTCTATGATGGCAAGATGTACACGGGGCTGTGCAACTTCGTGGAG	647
ChIMP-3	432	GCCGCGTGTACGAAGGGAAGGTTTACACTGGCCTGTGCAATTGGTATGAG	481
TIMP-3	648	AGGTGGGACCAGCTCACCCTCTCCCAGCGCAAGGGGCTGAACTATCGGTA	697
ChIMP-3	482	AAATGGGACCGACTGACTCTGTCCCAGCGTAAAGGACTGAATCATCGTTA	531
TIMP-3	698	TCACCTGGGTTGTAACTGCAAGATCAAGTCCTGCTACTACCTGCCTTGCT	747
ChIMP-3	532	TCATCTGGGCTGTGGATGCAAGATTCGGCCCTGCTACTATTTGCCCTGCT	581

FIG. 6B

TIMP-3	748	TTGTGACTTCCAAGAACGAGTGTCTCTGGACCGACATGCTCTCCAATTTC 7	97
ChIMP-3	582	TTGCCACCTCCAAGAATGAGTGCATTTGGACAGACATGCTCTCCAACTTC 6	31
TIMP-3	798	GGTTACCCTGGCTACCAGTCCAAACACTACGCCTGCATCCGGCAGAAGGG 8-	47
ChIMP-3	632	GGCCACTCAGGACACCAAGCGAAGCACTATGCCTGCATCCAGAGGGTGGA 6	81
TIMP-3	848	CGGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCGGATAAAAGCATCA 8	97
ChIMP-3	682	AGGTTACTGCAGCTGGTATAGAGGATGGGCGCCTCCAGATAAAACGATCA 7	31
TIMP-3	898	TCAATGCCACAGACCCTGAGCGC.CAGACCCTGCCCCACCTCACTTC 9	44
ChIMP-3	732	TCAATGCCACAGATCCCTGAGCACGCTGTACCTTCCTTATCTTCCCTCTC 7	81
TIMP-3	945	CCTCCCTTCCCGCTGAGCTTCCCTTGGACACTAACTCTTCCCAG 9	88
ChIMP-3	782	CCTTACTTGTGGCTGATCTTCCTTTGGACACTAACTCTTACCCGATCATG 8	31
TIMP-3	989	ATGATGACAATGAAATTAGTGCCTGTTTTCTTGCAAATT.TAGCACTTGG 10	37
ChIMP-3	832	ATGATGACAATGAAATTAGTGCCTGTTTTCTTGCAAATTCTAGCACTTCG 8	81
TIMP-3 1	1038	AACATTTAAAGAAAGGTCTATGCTGTCATATGGGGTTTATTGGGAACTAT 10	87
ChIMP-3	882	AACCG	86

FIG. 7A

TIMP-3	282	ATGACCCCTTGGCTCGGGCTCATCGTGCTCCTGGGCAGCTGGAGCCT 328
ChIMP-3	113	ATGACGGCGTGGCTCCTCGCCGTGTTCCTGTGCAGCTGGAGCCT 162
TIMP-3	329	GGGGGACTGGGGCGCGAGGCGTGCACATGCTCGCCCAGCCACCCCCAGG 378
ChIMP-3	163	GCGGGACCTGGTGGCGGAGGCGTGCACTTGCGTCCCCATCCACCCGCAGG 212
TIMP-3	379	ACGCCTTCTGCAACTCCGACATCGTGATCCGGGCCAAGGTGGTGGGGAAG 428
ChIMP-3	213	ACGCGTTCTGCAACTCCGACATCGTGATCCGTGCTAAAGTTGTGGGGAAG 262
TIMP-3 .	429	AAGCTGGTAAAGGAGGGCCCTTCGGCACGCTGGTCTACACCATCAAGCA 478
ChIMP-3	263	AAGCTCATGAAAGATGGACCATTTGGAACAATGCGATACACAGTCAAGCA 312
TIMP-3	479	GATGAAGATGTACCGAGGCTTCACCAAGATGCCCCATGTGCAGTACATCC 528
ChIMP-3	313	GATGAAGATGTACAGGGGCTTCCAGATAATGCCACACGTTCAGTACATCT 362
TIMP-3	529	ATACGGAAGCTTCCGAGAGTCTCTGTGGCCTTAAGCTGGAGGTCAACAAG 578
ChIMP-3	363	ACACAGAAGCCTCAGAGAGTCTTTGTGGTGTGAAACTGGAGGTCAACAAA 412
TIMP-3	579	TACCAGTACCTGCTGACAGGTCGCGTCTATGATGGCAAGATGTACACGGG 628
ChIMP-3	413	TACCAGTATCTGATTACAGGCCGCGTGTACGAAGGGAAGGTTTACACTGG 462
TIMP-3	629	GCTGTGCAACTTCGTGGAGAGGTGGGACCAGCTCACCCTCTCCCAGCGCA 678
ChIMP-3	463	CCTGTGCAATTGGTATGAGAAATGGGACCGACTGACTCTGTCCCAGCGTA 512
TIMP-3	679	AGGGGCTGAACTATCGGTATCACCTGGGTTGTAACTGCAAGATCAAGTCC 728
ChIMP-3	513	AAGGACTGAATCATCGTTATCATCTGGGCTGTGGATGCAAGATTCGGCCC 562
TIMP-3	729	TGCTACTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGAC 778
ChIMP-3	563	TGCTACTATTTGCCCTGCTTTGCCACCTCCAAGAATGAGTGCATTTGGAC 612
TIMP-3	779	CGACATGCTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACG 828
ChIMP-3	613	AGACATGCTCTCCAACTTCGGCCACTCAGGACACCAAGCGAAGCACTATG 662
TIMP-3	829	CCTGCATCCGGCAGAAGGGCGGCTACTGCAGCTGGTACCGAGGATGGGCC 878
ChIMP-3	663	CCTGCATCCAGAGGGTGGAAGGTTACTGCAGCTGGTATAGAGGATGGGCG 712

FIG. 7B

TIMP-3	879	CCCCCGGATAAAAGCATCATCAATGCCACAGACCCCTGAGCGC.CAGACC	927
ChIMP-3	713	COMOON CAMANAN COMON MONTH OF THE CAMANAN COMON COMO	762
TIMP-3	928	CTGCCCCACCTCACTTCCCTCCCTTCCCGCTGAGCTTCCCTTGGACAC	975
ChIMP-3	763	CTTCCTTATCTTCCCTCTCCCTTACTTGTGGCTGATCTTCCTTTGGACAC	812
TIMP-3	976	TAACTCTTCCCAGATGATGACAATGAAATTAGTGCCTGTTTTCT	1019
ChIMP-3	813	TAACTCTTACCCGATCATGATGATGACAATGAAATTAGTGCCTGTTTTCT	862
TIMP-3	1020	TGCAAATT.TAGCACTTGGAAC 1040	
ChIMP-3	863	TGCAAATTCTAGCACTTCGAAC 884	

FIG. 8

TIMP-3	1	MTPWLGLIVLLGSWSLGDWGAEACTCSPSHPQDAFCNSDIVIRAK	45
TIMP-2	1	MGAAARTLRLALGLLLLATLLRPADACSCSPVHPQQAFCNADVVIRAK	48
TIMP-3	46	VVGKKLVKEGPFGTLVYTIKQMKMYRGFTKMPHVQYIHTEASES	89
TIMP-2	49	AVSEKEVDSGNDIYGNPIKRIQYEIKQIKMFKGPEKDIEFIYTAPSSA	96
TIMP-3	90	LCGLKLEV.NKYQYLLTGRVY.DGKMYTGLCNFVERWDQLTLSQRKGLNY: : : : :	137
TIMP-2	97	VCGVSLDVGGKKEYLIAGKAEGDGKMHITLCDFIVPWDTLSTTQKKSLNH	146
TIMP-3	138	RYHLGCNCKIKSCYYLPCFVTSKNECLWTDMLSNFGYPGYQSKHYACIRQ	187
TIMP-2	147	:: : . :. : :.: . :	196
TIMP-3	188	KGGYCSWYRGWAPPDKSIINATDP 211 .: . ::: .	
TIMP-2	197	SDGSCAWYRGAAPPKQEFLDIEDP 220	

FIG. 9A

TIMP-3	1	GGCGGCGCCTCAGACGCTTCTCCTCCTCTTGCTCCTCCAAGCT	50
TIMP-2	1	GGGGCCGCGAGAGCCGCAGCGCCGCCCCCCACC	45
TIMP-3	51	CCTGCTCCTTCGCCGGGAGCCCGCCGAGTCCTGCGCCAGCGCCGAG	100
TIMP-2	46	CCGCCGCCCGGCGAATTGCGCCCCGCGCCCTCCCCTCGCGCCCCC	95
TIMP-3	101	GCAGCCTCGCTGCGCCCATCCCGTCCCGCCGGGCACTCGGAGGGCAGCG	150
TIMP-2	96	GAGACAAAGAGGAGAAAGTTTGCGCGGCCGAGCGGCAGGTGAGGAGG	145
TIMP-3 ·	151	CGCCGGAGGCCAAGGTTGCCCCGCACGGCCCGGCGGGCGAGCTCGG	200
TIMP-2	146	GTGAGCCGCGGGAGGGGCCCGCCTCGGCCCCGCCCGC	195
TIMP-3	201	GCTGCAGCAGCCCGCCG.GCGCGCGCACGGCAACTTTGGAGAGG	245
TIMP-2	196	GCCCCCAGCCGCCGCGAGCAGCGCCCGGACCCCCCAGCGGCG	245
TIMP-3	246	CGAGCAGCCCCGGCAGCGGCGGCAGCGGCAATGACCCCTT	291
TIMP-2	246	CGCCCGCCAGCCCCGGCCATGGGCGCCGCGCCCGCACCCTGC	295
TIMP-3	292	GGCTCGGGCTCATCGTGCTCCTGGGCAGCTGGAGCCTGGGGGACTGGGGC	341
TIMP-2	296	GGCTGGCGCTCCTGCTGCTGGCGACGCTGCTTCGCCCG	339
TIMP-3	342	GCCGAGGCGTGCACATGCTCGCCCAGCCACCCCCAGGACGCCTTCTGCAA	391
TIMP-2	340	GCCGACGCCTGCAGCTCCCCGGTGCACCCGCAACAGGCGTTTTGCAA	389
TIMP-3	392	CTCCGACATCGTGATCCGGGCCAAGGTGGTGGGGAAGAAGCTGGTAAAGG	441
TIMP-2	390	TGCAGATGTAGTGATCAGGGCCAAAGCGGTCAGTGAGAAGGAAG	439
TIMP-3	442	AGGGGCCCTTCGGCACGCTGGTCTACACCATC	473
TIMP-2	440	CTGGAAACGACATTTATGGCAACCCTATCAAGAGGATCCAGTATGAGATC	489
TIMP-3	474	AAGCAGATGAAGATGTACCGAGGCTTCACCAAGATGCCCCATGTGCAGTA	523
TIMP-2	490	AAGCAGATAAAGATGTTCAAAGGGCCTGAGAAGGATATAGAGTT	533
TIMP-3	524	CATCCATACGGAAGCTTCCGAGAGTCTCTGTGGCCTTAAGCTGGAGGT	571
TIMP-2	534	TATCTACACGCCCCCCCCCCCCGCAGTGTGTGGGGGTCTCGCTGGACGTTG	583

FIG. 9B

TIMP-3	572	. CAACAAGTACCAGTACCTGCTGACAGGTCGCGTCTATGATGGCAAG	617
TIMP-2	584		633
TIMP-3	618	ATGTACACGGGGCTGTGCAACTTCGTGGAGAGGTGGGACCAGCTCACCCT	667
TIMP-2	634		683
TIMP-3	668	CTCCCAGCGCAAGGGGCTGAACTATCGGTATCACCTGGGTTGTAACTGCA	717
TIMP-2	684	CACCCAGAAGAAGAGCCTGAACCACAGGTACCAGATGGGCTGCGAGTGCA	733
TIMP-3	718	AGATCAAGTCCTGCTACTACCTGCCTTGCTTTGTGACTTCCAAGAACGAG	767
TIMP-2	734	AGATCACGCGCTGCCCCATGATCCCGTGCTACATCTCCTCCCCGGACGAG	78 3
TIMP-3	768		817
TIMP-2	784	TGCCTCTGGATGGACTGGGTCACAGAGAAGAACATCAACGGGCACCAGGC	833
TIMP-3	818	CAAACACTACGCCTGCATCCGGCAGAAGGGCGGCTACTGCAGCTGGTACC	867
TIMP-2	834	CAAGTTCTTCGCCTGCATCAAGAGAAGTGACGGCTCCTGTGCGTGC	883
TIMP-3	868	GAGGATGGGCCCCCCGGATAAAAGCATCATCAATGCCACAGACCCCTGA	917
TIMP-2	884	GCGGCGCGCCCCCAAGCAGGAGTTTCTCGACATCGAGGACCCATAA	933
TIMP-3	918	GCGCCAGACCCTGCCCCACCTCACTTCCCTCCCTTCCCGCTGAGCTTCCC	967
TIMP-2	934	GCAGGCCTCCAACGCCCCTGTGGCCAACTGCAAAAAAAGCCTCCAAGGGT	9 83
TIMP-3	968	TTGGACACTAACTCTTCCCAGATGATGACAATGAAATTAGTGCCTGTTTT	1017
TIMP-2	984	TTCGACTGGTCCAGCTCTGACATCCCTTCCTGGAAACAGCATGA	L027
TIMP-3	1018	CTTGCAAATTTAGCACTTGGAACATTTAAAGAAAGGTCTATGCTGTCATA	L067
TIMP-2	1028	ATAAAACACTCATCCCATGGGTCCAAATTAATATG	1062

FIG. IOA

TIMP-3	208	CAGCCCCGCCGGCGCGCCACGCCAACTTTGGAGAGGCGAGCAGCAGCC	257
TIMP-2	225	CGGACCCCCAGCGGCGCCCCCCCCCCCCCCCCCCCCCC	261
TIMP-3	25	8 CCGGCAGCGGCAGCAGCGGCAATGACCCCTTGGCTCGGGCTCATCG	т 307
TIMP-2	262	CGGCCCGCCATGGGCGCCGCGCCCGCACCCTGCGGCTCGGCCT	311
TIMP-3	308	GCTCCTGGGCAGCTGGAGCCTGGGGGACTGGGGCGCGAGGCGTGCACAT	357
TIMP-2	312	CCTGCTGCTGGCGACGCTGCAGCT	355
TIMP-3	358	GCTCGCCCAGCCCCCCAGGACGCCTTCTGCAACTCCGACATCGTGATC	407
TIMP-2	356	GCTCCCCGGTGCACCCGCAACAGGCGTTTTGCAATGCAGATGTAGTGATC	405
TIMP-3	408	CGGGCCAAGGTGGTGGGGAAGAAGCTGGTAAA	439
TIMP-2	406	AGGGCCAAAGCGGTCAGTGAGAGGAAGTGGACTCTGGAAACGACATTTA	455
TIMP-3	440	GGAGGGCCCTTCGGCACGCTGGTCTACACCATCAAGCAGATGAAGATGT	489
TIMP-2	456	TGGCAACCCTATCAAGAGGATCCAGTATGAGATCAAGCAGATAAAGATGT	505
TIMP-3	490	ACCGAGGCTTCACCAAGATGCCCCATGTGCAGTACATCCATACGGAAGCT	539 -
TIMP-2	506		549
TIMP-3	540	TCCGAGAGTCTCTGTGGCCTTAAGCTGGAGGTCAACAAGTACCAGTA	586
TIMP-2	550	TCCTCGGCAGTGTGGGGGTCTCGCTGGACGTTGGAGGAAAGAAGGAATA	599
TIMP-3	587	CCTGCTGACAGGTCGCGTCTATGATGGCAAGATGTACACGGGGCTGT	633
TIMP-2	600	TCTCATTGCAGGAAAGGCCGAGGGGGGCCGAGATGCACATCACCCTCT	649
TIMP-3	634	GCAACTTCGTGGAGAGGTGGGACCAGCTCACCCTCTCCCAGCGCAAGGGG	683
TIMP-2	650	GTGACTTCATCGTGCCCTGGGACACCCTGAGCACCACCCAGAAGAAGAGC	699
TIMP-3	684	CTGAACTATCGGTATCACCTGGGTTGTAACTGCAAGATCAAGTCCTGCTA	733
TIMP-2	700		749

FIG. IOB

TIMP-3	734	CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCGACA	783
TIMP-2		CATGATCCCGTGCTACATCTCCTCCCGGACGAGTGCCTCTGGATGGA	
TIMP-3	784	TGCTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACGCCTGC	833
TIMP-2	800	GGGTCACAGAGAAGAACATCAACGGGCACCAGGCCAAGTTCTTCGCCTGC	849
TIMP-3	834	ATCCGGCAGAAGGGCGGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCC	883
TIMP-2	850	ATCAAGAGAAGTGACGGCTCCTGTGCGTGCTACCGCGGCGCGCGC	899

FIG. 11

TIMP-3	1	MAPFEPLASGILLLULIAPSRACTCVPPHPQTAFCNSDLVIRAKFV	47
TIMP-1	1	MTPWLGLIVLLGSWSLGDWGAEACTCSPSHPQDAFCNSDIVIRAKVV	47
TIMP-3	48	GTPEVNQTTL.YQRYEIKMTKMYKGFQALGDAADIRFVYTPAMESVCGYF	96
TIMP-1	48	GKKLVKEGPFGTLVYTIKQMKMYRGFTKMPHVQYIHTEASESLCGL.	93
TIMP-3	97	HRSHNRSEEFLIAGKLQDGLLHITTCSFVAPWNSLSLAQRRGFTKTYTVG : :: :	146
TIMP-1	94	.KLEVNKYQYLLTGRVYDGKMYTGLCNFVERWDQLTLSQRKGLNYRYHLG	142
TIMP-3	147	CEECTVFPCLSIPCKLQSGTHCLWTDQLLQGSEKGFQSRHLACLPREPGL :	196
TIMP-1	143	C.NCKIKSCYYLPCFVTSKNECLWTDMLSNFGYPGYQSKHYACIRQKGGY	191
		CTWQSLRSQIA 207	
TIMP-1	192	CSWYRGWAPPDKSIINATDP 211	

FIG. 12A

TIMP-3	201	GCTGCAGCAGCCCGCCGGCGCGCGCACGCAACTTTGGAGAGGCGAGC	250
TIMP-1	1	AGGGGCCTTAGCGTGCCGCATCGCCGAGATC	31
TIMP-3	251	AGCAGCCCGGCAGCGGCAGCAGCGGCAATGACCCCTTGGCTCGGGC	300
TIMP-1	32	CAGCGCCCAGAGAGACCCAGAGAACCCACCATGGCCCCCTTTGAGCCCC	81
TIMP-3	301	TCATCGTGCTCCTGGGCAGCTGGAGCCTGGGGGACTGGGGCGCCGAGGCG	350
TIMP-1	82	TGGCTTCTGGCATCCTGTTGTTGCTGTGGCTGATAGCCCCCAGCAGGGCC	131
TIMP-3	351	TGCACATGCTCGCCCAGCCACCCCCAGGACGCCTTCTGCAACTCCGACAT	400
TIMP-1	132	TGCACCTGTGTCCCACCCCACCACAGACGGCCTTCTGCAATTCCGACCT	181
TIMP-3	401	CGTGATCCGGGCCAAGGTGGTGGGGAAGAAGCTGGTAAAGGAGGGGCCCT	4.50
TIMP-1	182	CGTCATCAGGGCCAAGTTCGTGGGGACACCAGAAGTCAACCAGACCACCT	231
TIMP-3	451	TCGGCACGCTGGTCTACACCATCAAGCAGATGAAGATGTACCGA	494
TIMP-1	232	TATACCAGCGTTATGAGATCAAGATGACCAAGATGTATAAAGGGTTCCAA	281
TIMP-3	495	GGCTTCACCAAGATGCCCCATGTGCAGTACATCCATACGGAAGCTTCCGA	544
TIMP-1	282	GCCTTAGGGGATGCCGCTGACATCCGGTTCGTCTACACCCCCGCCATGGA	331
TIMP-3	545	GAGTCTCTGTGGCCTTAAGCTGGAGGTCAACAAGTACCAGTACC	588
TIMP-1	332	GAGTGTCTGCGGATACTTCCACAGGTCCCACAACCGCAGCGAGGAGTTTC	381
TIMP-3	589	TGCTGACAGGTCGCGTCTATGATGGCAAGATGTACACGGGGCTGTGCAAC	638
TIMP-1	382	TCATTGCTGGAAAACTGCAGGATGGACTCTTGCACATCACTACCTGCAGT	431
TIMP-3	639	TTCGTGGAGAGGTGGGACCAGCTCACCCTCTCCCAGCGCAAGGGGCTGAA	688
TIMP-1	432	TTCGTGGCTCCCTGGAACAGCCTGAGCTTAGCTCAGCGCCGGGGCTTCAC	481
TIMP-3	689	CTATCGGTATCACCTGGGTTGTAACTGCAAGATCAAGTCCTGCTACT	735
TIMP-1	482	CAAGACCTACACTGTTGGCTGTGAGGAATGCACAGTGTTTCCCTGTTTAT	531
TIMP-3	736	ACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCGACATC	3 78! I
TIMP-1	532	CCATCCCTGCAAACTGCAGAGTGGCACTCATTGCTTGTGGACGACCAC	58

FIG. 12 B

TIMP-3 TIMP-1		CTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACGCCTGCAT	
TIMP-3	836	CCGGCAGAAGGGCGGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCCGG	885
TIMP-1	632	GCCTCGGGAGCCAGGGCTGTGCACCTGGCAGTCCCAGATAG	681
TIMP-3	886	ATAAAAGCATCATCAATGCCACAGACCCCTGAGCGCCAGACCCTGCCCCA	935
TIMP-1	682	CCTGAATCCTGCCCGGAGTGGAACTGAAGCCTGCACAGTGTCCAC	726
TIMP-3	936	CCTCACTTCCCTTCCCGCTGAGCTTCCCTTGGACACTAACTCTTCC	985
TIMP-1	727	CCTGTTCCCACTCCCATCTTTCTTCCGGACAATGAAATAAAGAGTTACCA	776
TIMP-3	986	CAGATGATGACAATGAAATTAGTGCCTGTTTTCTTGCAAATTTAGCACTT	103
TIMP-1	777	CCCAGC	782

FIG. 13

rimp-3	347	GGCGTGCACATGCTCGCCCAGCCACCCCCAGGACGCCTTCTGCAACTCCG	396
rIMP-1	128	GGCCTGCACCTGTGTCCCACCCCACAGACGGCCTTCTGCAATTCCG	177
rIMP-3	397	ACATCGTGATCCGGGCCAAGGTGGTGGGGAAGAAGCTGGTAAAGGAGGGG	446
rimp-1	178	ACCTCGTCATCAGGGCCAAGTTCGTGGGGACACCAGAAGTCAACCAGACC	227
rIMP-3	447	CCCTTCGGCACGCTGGTCTACACCATCAAGCAGATGAAGATGTACCGAGG	496
rIMP-1	228	ACCTTATACCAGCGTTATGAGATCAAGATGACCAAGATGTATAAAGG	274
TIMP-3	497	CTTC 500	
rimp-1	275	GTTC 278	

FIG. 14A

FIG. 14B

SUBSTITUTE SHEET (RULE 26)

下 で こ の

^{22/26} FIG. 16A

FIMP3clone7 FIMP3clone2 FIMP3HCM-3 FIMP3PCR29	GGCGGCGGCGCTCAGACGGCTTCTCCTCCTCCTCTTGCTCCTCCAAGCTCCTGCTCCTT	60
FIMP3clone7 FIMP3clone2 FIMP3HCM-3 FIMP3PCR29	CGCCGGGAGCCCGCCGAGTCCTGCGCCCAGCGCCGAGGCAGCCTCGCTGCGCCCCAT	120
TiMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	CCCGTCCCGCCGGCACTCGGAGGGCAGCGCCGGAGGCCAAGGTTGCCCCGCACGGCC	180
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	CGGCGGCGAGCTCGGGCTGCAGCAGCCCCGCCGGCGCGCGC	240
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	MetThrProTrpLeuGlyL AGAGGCGAGCAGCCCCGGCAGCGGCGCAGCAGCGGCAATGACCCCTTGGCTCGGGC	-16 300
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	euIleValLeuLeuGlySerTrpSerLeuGlyAspTrpGlyAlaGluAlaCysThrCysS TCATCGTGCTCCTGGGCAGCTGGAGCCTGGGGGACTGGGGCGCCGAGGCGTGCACATGCT	5 360 40
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	erProSerHisProGlnAspAlaPheCysAsnSerAspIleValIleArgAlaLysValVCGCCCAGCCACCCCAGGACGCCTTCTGCAACTCCGACATCGTGATCCGGGCCAAGGTGG	25 420 100

FIG. 16B

TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	TGGGGAAGAAGCTGGTAAAGGAGGGCCCTTCGGCACGCTGGTCTACACCATCAAGCAGA	480 160 58
TIMP3clone7	etLysMetTyrArgGlyPheThrLysMetProHisValGlnTyrIleHisThrGluAlaS TGAAGATGTACCGAGGCTTCACCAAGATGCCCCATGTGCAGTACATCCATACGGAAGCTT	65 540 220
TIMP3HCM-3 TIMP3PCR29	TGAAGATGTACCGAGGCTTCACCAAGATGCCCCATGTGCAGTACATCCATACGGAAGCTT	118
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	erGluSerLeuCysGlyLeuLysLeuGluValAsnLysTyrGlnTyrLeuLeuThrGlyACCGAGAGTCTCTGTGGCCTTAAGCTGGAGGTCAACAAGTACCAGTACCTGCTGACAGGTCCIIIIIIIIII	85 600 280 178
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	rgValTyrAspGlyLysMetTyrThrGlyLeuCysAsnPheValGluArgTrpAspGlnL GCGTCTATGATGGCAAGATGTACACGGGGCTGTGCAACTTCGTGGAGAGGTGGGACCAGC	105 660 340 238
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	euThrLeuSerGlnArgLysGlyLeuAsnTyrArgTyrHisLeuGlyCysAsnCysLysI TCACCCTCTCCCAGCGCAAGGGGCTGAACTATCGGTATCACCTGGGTTGTAACTGCAAGA	125 720 400 298

24/26 FIG. 16 C

	leLysSerCysTyrTyrLeuProCysPheValThrSerLysAsnGluCysLeuTrpThrA	145
TIMP3clone7	TCAAGTCCTGCTACTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCG	780
TIMP3clone2	TCAAGTCCTGCTACTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCG	460
TIMP3HCM-3	TCAAGTCCTGCTACTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCG	358
TIMP3PCR29		10
	spMetLeuSerAsnPheGlyTyrProGlyTyrGlnSerLysHisTyrAlaCysIleArgG	165 840
TIMP3clone7	ACATGCTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACGCCTGCATCCGGC	040
TIMP3clone2	ACATGCTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACGCCTGCATCCGGC	520
TIMP3HCM-3	ACATGCTCTCCAATTTCGGTTACCCTGGCTACCAGTCCAAACACTACGCCTGCATCCGGC	418
TIMP3PCR29		70
TIMPJPCKZJ	Thr SerProS	
	lnLysGlyGlyTyrCysSerTrpTyrArgGlyTrpAlaProProAspLysSerIleIleA	185
TIMP3clone7	AGAAGGGCGGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCCGGATAAAAGCATCATCA	900
TIMP3clone2	AGAAGGGCGGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCGGATAAAAGCATCATCA	580
TIMP3HCM-3	AGAAGGCCGCTACTGCAGCTGGTACCGAGGATGGGCCCCCCCGGATAAAAGCATCATCA	478
TIMP3PCR29		130
	erHisProArgThrArg	
	snAlaThrAspProEnd	205
TIMP3clone7	ATGCCACAGACCCCTGAGCGCCAGACCCTGCCCCACCTCACTTCCCTCCC	960
TIMP3clone2	ATGCCACAGACCCCTGAGCGCCAGACCCTGCCCCACCTCACTTCCCCTTCCCGCTGA	640
TIMP3HCM-3		538
TIMP3PCR29	•••••	190
TIMP3clone7	GCTTCCCTTGGACACTAACTCTTCCCAGATGATGACAATGAAATTAGTGCCTGTTTTCTT	1020
TIMP3clone2		700
		598
TIMP3HCM-3 TIMP3PCR29	GCTTCCCTTGGACACTAACTCTTCCCAGATGACAATGAAATTAGTGCCTGTTTTCTT	250

FIG. 16D

TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	GCAAATTTAGCACTTGGAACATTTAAAGAAAGGTCTATGCTGTCATATGGGGTTTATTGG	760 658 310
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	GAACTATCCTCCTGGCCCCACCCTGCCCCTTCTTTTTGGTTTTGACATCATTCAT	1140 820 718 370
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	CCTGGGAATTTCTGGTGCCATGCCAGAAAGAATGAGGAACCTGTATTCCTCTTCTTCGTG	1200 880 778 430
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	ATAATATAATCTCTATTTTTTTAGGAAAAAAAAAAAAAA	940 838 490
TIMP3clone7 TIMP3clone2 TIMP3HCM-3 TIMP3PCR29	0.00	

FIG. 17

Inter nal Application No
PCT/US 94/11241

A. CLASSIF IPC 6	TCATION OF SUBJECT MATTER C12N15/15 C07K14/8 A61K38/57 A61K38/4			A61K48/00 C07K16/38	
According to	International Patent Classification (IPC)	or to both national classificat	ion and IPC		
B. FIELDS	SEARCHED				
IPC 6	cumentation searched (classification system CO7K C12N A61K				
Documentati	on searched other than minimum docume	entation to the extent that such	documents are included in	the fields scarched	
Electronic de	ata base consulted during the internationa	l search (name of data base au	nd, where practical, search	terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVA	ANT			
Category *	Citation of document, with indication, v		ant passages	Relevant to claim No.	
Y	FASEB JOURNAL,	1002 BET	UECDA	1-74	
Y	vol.7, no.3, 19 Feb MD US page A371 N. KISHNANI ET AL inhibitors in the cultured human cell abstract 2148 JOURNAL OF BIOLOGIC vol.267, no.24, 25 US pages 17321 - 1732	1-74			
	N. PAVLOFF ET AL 'A metalloproteinases cited in the appli- see the whole docu	A new inhibitor from chicken: C cation ment 	of chimp-3'		
V Fur	ther documents are listed in the continua	tion of box C.	Patent family memb	ers are listed in annex.	
	ategories of cited documents:		C' letter document publishe	d after the international filing date	
consi	nent defining the general state of the art of dered to be of particular relevance of document but published on or after the		cited to understand the invention	in conflict with the application but principle or theory underlying the relevance; the claimed invention	
"L" docum	date nent which may throw doubts on priority nent which may throw doubts on priority on created to establish the publication date on or other special reason (as specified)	daim(s) or	cannot be considered novel of cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention expect he considered to involve an inventive step when the		
O, qoen	ment referring to an oral disclosure, use, means ment published prior to the international	Gling date but	document is combined ments, such combination in the art.	with one or more differ such docu- on being obvious to a person skilled	
later	than the priority date claimed		& document member of the	ne same patent family nternational search report	
	e actual completion of the international a	search		02. 95	
	mailing address of the ISA European Patent Office, P.B. 5818	3 Patentiaan 2	Authorized officer		
	NL - 2280 HV Ripwijk Tel. (+ 31-70) 340-2040, Tx. 31 65 Fax (+ 31-70) 340-3016		Van der S	chaal, C	

. 1

INTERNATIONAL SEARCH REPORT

Inter that Application No
PCT/US 94/11241

40		
	DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
EBOLA .	Citation of document, with indication, where appropriate, of the relevant passages	Referant to claim 14th
	JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol.261, no.6, 25 February 1986, BALTIMORE, MD US pages 2814 - 2818 G. HERRON ET AL 'Secretion of metalloproteinases by stimulated capillary endothelial cells' see abstract see page 2816, left column, last paragraph - page 2817, left column see page 2818, left column, paragraph 5	1-74
	JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol.265, no.23, 15 August 1990, BALTIMORE, MD US pages 13933 - 13938 W. STETLER-STEVENSON ET AL 'Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues'	
P,X	GENE., vol.141, June 1994, AMSTERDAM NL pages 293 - 297 S. SILBIGER ET AL 'Cloning of cDNAs encoding human TIMP-3, a novel member of the tissue inhibitor of metalloproteinase family' see the whole document	1-74
P,X	CANCER RESEARCH, vol.54, 15 April 1994 pages 2091 - 2094 J. URIA ET AL 'Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family' see the whole document	1-74
E	CHEMICAL ABSTRACTS, vol. 121, no. 17, 24 October 1994, Columbus, Ohio, US; abstract no. 197175, S. APTE ET AL 'Cloning of the cDNA encoding human tissue inhibitor of metalloproteinase-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22'	1-74
P,X	see abstract & GENOMICS, vol.19, no.1, 1994 pages 86 - 90	1-74

INTERNATIONAL SEARCH REPORT

Inter nal Application No
PCT/US 94/11241

C(Continue	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.		
Ρ,Υ	JOURNAL OF BIOLOGICAL CHEMISTRY. (MICROFILMS), vol.269, no.12, 25 March 1994, BALTIMORE, MD US pages 9352 - 9360 K. LECO ET AL 'Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues' see the whole document		1-74		
	·				
	·	·			
	,		,		
	·				
		•			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.