Clustering

COMP462/561: Computational Biology Methods

Fall 2016

M & W: 10:00 am – 11:30 am

Motivation

Given: A collection of <u>unlabeled</u> samples $X_i ... X_n$, where X_i represents the data for sample i

Goal: Partition samples into groups that are similar within themselves but dissimilar between

	X_1	···	X_n
gene1			
gene2			
gene3			
•••			
gene _{k-1}			
gene _k			

Similarity (or Distance) Measures

Given: Two expression profiles, X_i and X_j

Euclidean Distance

$$d_E(X_i, X_j) = \sqrt{\sum_{g=1...k} (X_{i,g} - X_{j,g})^2}$$

Pearson Correlation Coefficient

Similarity Measure

$$Sim(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i) \times Var(X_j)}}$$

$$= \frac{\sum (X_i(g) - \overline{X_i})(X_j(g) - \overline{X_j})}{\sqrt{(\sum (X_i(g) - \overline{X_i})^2) \times (\sum (X_j(g) - \overline{X_j})^2)}}$$

Pearson Correlation Coefficient Cont'd

- Different expression level
 - But always goes in the same direction

Hierarchical Clustering

- 1. Start with each data point in its own cluster
- 2. Find the two clusters that are the closest and merge them
- 3. Repeat step two until all data points belong to a single cluster

Measuring Similarity Between Clusters

1) Single Linkage approach

$$Sim(c_1, c_2) = max_{x \in c_1, y \in c_2} \{sim(x, y)\}$$

Problem

Given the following data points:

- Apply single linkage approach to clustering
- Get long and skinny clusters by having one point near the others
 - Shouldn't the two clusters on the right pair better together?

Measuring Similarity Between Clusters

2) Average linkage

Measuring Similarity Between Clusters

3) Complete linkage

Makes very compact clusters

$$Sim(c_1, c_2) = min_{x \in c_1, y \in c_2} sim(x, y)$$

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- 2. Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- 2. Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

Cluster Validation

• **Cohesion:** measures how closely related data points in a cluster are (i.e., within cluster Sum of Squares [WSS])

$$WSS = \sum_{i} \sum_{x \in c_i} ||x - m_i||^2$$

• **Separation:** measures how distinct or well-separated a cluster is from others (i.e., between cluster Sum of Squares [BSS])

$$BSS = \sum_{i} \sum_{j} |c_{i}| \cdot |c_{j}| \cdot ||m_{i} - m_{j}||^{2}$$

Cohesion and Separation

Cohesion

Separation