QCD and Monte Carlo event generators

Monte Carlo course seminar - Milan, February 2021

Outline

- Hadron collisions and strong interactions
 - Hadron collisions and strong interactions
 - Renormalization group
 - IR divergences
- MC and Parton Showers
 - Factorization theorem
 - Final state radiation
 - Initial state radiation
- Hadronization: some basics

QCD from e^+e^- annihilation

Quantum Chromodynamics (QCD) \rightarrow theory describing the interaction between quarks and gluons (strong interactions)

QCD arises already from e^+e^- annihilation $\to R_0$ ratio

$$R_0 = \frac{\sigma(\gamma^* \to \text{hadrons})}{\sigma(\gamma^* \to \mu^+ \mu^-)} = 3 \sum_f c_f^2$$

- Color factor (3 color for each quark)
- Sum over charges of different flavors
- Threshold and higher order corrections

QCD from e^+e^- annihilation

Questions for a field theory

- $\textbf{ Oan we go to arbitrarily large energies?} \rightarrow \text{divergences arise,} \\ \text{renormalization / factorization needed}$
- ② Can we compute R_0 for every process? \rightarrow IR observables

Renormalization group

• Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_{s}(\mu)}{d\mu} = \beta(\alpha_{s}(\mu)) = -\sum_{n=0}^{\infty} \beta_{n} \left(\frac{\alpha_{s}}{\pi}\right)^{n+1}$$

- Coupling $lpha_s$ evolves with scale μ as given by RGE ightarrow LO behavior driven by eta_0
- $eta_0^{\rm QCD}>0$ \Longrightarrow weakly coupled at large energies, asymptotic freedom
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent!

Renormalization group

 Running coupling given by Renormalization Group Equation (RGE)

$$\alpha_s(\mu) = \frac{1}{b_0 \log\left(\frac{\mu^2}{\Lambda_s^2}\right)}$$

- β₀
- Λ_s

QCD is weakly coupled for $\mu >> \Lambda_s \longrightarrow$ asymptotically free

Perturbative Quantum Chromodynamics (pQCD)

Factorization theorem

QCD factorization

Separate process PDFs and partonic (hard) interaction

$$\sigma^{F}(p_{1}, p_{2}) = \int_{0}^{1} dx_{1} dx_{2} f_{\alpha}(x_{1}, \mu_{F}^{2}) * f_{\beta}(x_{2}, \mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1}, x_{2}p_{2}, \alpha_{s}(\mu_{R}^{2}), \mu_{F}^{2})$$

MC Parton showers

Partons in the initial and final state emit radiation. State Radiation (ISR) and Final State Radiation (FSR)

Shower Monte Carlo programs (HERWIG, PYTHIA)

- Libraries for computing SM and BSM cross sections
- Shower algorithms produce the parton shower from final state or initial state partons
- Hadronization models, underlying event, decays of unstable hadrons, etc

Collinear limit

- An emitted parton is collinear to an incoming or outgoing parton (θ small)
- Measurement not sensitive to such small scales
- ullet σ dominated by collinear emission $q o qg, g o gg, g o qar{q}$

Collinear factorization \longrightarrow Factor out tree level amplitude and splitting

$$|M_{n+1}|^2 d\Phi_{n+1} \Rightarrow |M_n|^2 d\Phi_n \quad \frac{\alpha_S}{2\pi} \frac{dt}{t} P_{q,qg}(z) dz \frac{d\phi}{2\pi}.$$

Kinematics of splitting

- Kinematics of splitting (t, z, ϕ)
 - t has dimensions of energy (virtuality, p_{\perp} , angular variable)
 - z represents the fraction of momentum of radiated parton
 - ϕ represents azimuth of the k, l plane
- Factorization holds for small angles. Applied recursively

AP splitting functions

Altarelli-Parisi splitting functions

$$\begin{split} P_{\text{q,qg}}(z) &= C_{\text{F}} \frac{1+z^2}{1-z} \\ P_{\text{g,gg}}(z) &= C_{\text{A}} \left(\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right) \\ P_{\text{g,qq}}(z) &= T_{\text{f}}(z^2 + (1-z)^2) \end{split}$$

We can proceed in an iterative way

$$|M_{n+2}|^2d\Phi_{n+2} = |M_n|^2d\Phi_n\frac{\alpha_{\rm s}(t')}{2\pi}P_{\rm q,qg}(z')\frac{dt'}{t'}dz'\frac{d\phi'}{2\pi}\frac{\alpha_{\rm s}(t)}{2\pi}P_{\rm q,qg}(z)\frac{dt}{t}dz\frac{d\phi}{2\pi}$$

Exclusive final state: limit to the most singular terms, in ordered sequence of angles Collinear approximation \longrightarrow Leading log approximation

General structure

Approximated description of a hadronic final state. Model a given hard scattering with arbitrary number of enhanced radiations

- Choose hard interaction with specified Born kinematics.
- Consider all possible splittings for each coloured parton.
- Assign the variables t, z, ϕ at each splitting vertex, t ordered in decreasing way.
- At each splitting vertex assign the weight (...)
- Each line has a weight known as Sudakov factor (...)

Formal representation of a shower

Approximated description of a hadronic final state. Model a given hard scattering with arbitrary number of enhanced radiations

Forward evolution equation

$$S_i(t,E) = \Delta_i(t,t_0) S_i(t_0,E) + \sum_{jl} \int_{t_0}^t \frac{dt'}{t'} \int_0^1 dz \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{a_{\rm S}(t')}{2\pi} \Delta_i(t',t_0) S_j(t',zE) S_i(t',(1-z)E)$$

Probabilistic interpretation

 $S(t,E) = \Delta_t(t,\epsilon_0)S_t(t_0,E) + \sum_{i'} \int_{\epsilon_0}^t \frac{dt'}{t'} \int_0^1 dz \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{\alpha_0(t')}{2\pi} \Delta_t(t',\epsilon_0)S_t(t',zE)S_t(t',(1-z)E)$

$$S_i(t, E) = \frac{t, E}{i}$$

FSR IV - MC programs

15 / 26

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- Set scale t = Q, hard scale of the process
- ② Generate random number 0 < r < 1
- 3 Solve $r = \Delta_i(t, t')$ for t'
- ullet i) if $t' < t_0$, no further branching and stop shower
- **10** ii) if $t' \geq t_0$, one branching into partons j, l with energies $E_j = zE_i$ and $E_l = (1-z)E_i$, z following the $P_{i,jl}(z)$ distribution and ϕ uniform in the interval $[0, 2\pi]$ (variables, ...)
- **o** For each branched partons set t = t' and start from (2)

General structure

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Formal representation

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Forward evolution equation. Great amount of computation time to generate configurations -¿ the scattering that we want

Formal representation

$$\mathcal{S}_{i}(m,x,t,E) = \frac{ extbf{\emph{to,E}}}{i}$$
 m,t,xE

- Lines between t_1 and t_2 (consecutive radiations) are spacelike (*)
- Difference in Sudakov factors and Splitting functions start at NLO

Backward evolution equation

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- ullet Set scale t to Q, hard scale of the process
- ② Generate random number 0 < r < 1
- Solve (...) for t'
- \bullet i) if $t' < t_0$, no further branching and stop shower
- ii) if $t' \geq t_0$, one branching into partons j, I with energies $E_j = zE_i$ and $E_l = (1-z)E_i$, z following the $P_{i,jl}(z)$ distribution and ϕ uniform in the interval $[0,2\pi]$
- For parton j (...), for parton I generate a timelike parton shower according to the algorithm shown previously

Hadronization

Basics

Hadronization

Lund string model

Hadronization

Clustering models

Formal representation of a shower

Ensemble of all possible radiations as the sum of no radiation, with radiation and shower from radiated partons

Ansatz for Sudakov

$$\Delta_i(t,t') = \exp\left\{-\int_{t'}^t rac{dt''}{t''} \int dz \sum_{jl} P_{i,jl}(z) rac{lpha_s(t')}{2\pi}
ight\}$$

• Therefore $\partial \Delta(t,t')/\partial t \propto \Delta(t,t')$ \longrightarrow apply shower recursively

Jesús Urtasun Elizari

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- lacktriangledown Set scale t to Q, hard scale of the process
- ② Generate random number 0 < r < 1
- 3 Solve $r = \Delta_i(t, t')$ for t'
- lacktriangledown i) if $t' < t_0$, no further branching and stop shower
- **10** ii) if $t' \geq t_0$, one branching into partons j, l with energies $E_j = zE_i$ and $E_l = (1-z)E_i$, z following the $P_{i,jl}(z)$ distribution and ϕ uniform in the interval $[0, 2\pi]$
- **⑤** For each branched partons set t = t' and start from (2)

Initial state radiation

ISR already important in QED \longrightarrow Used to determine the Z peak at LEP

- ullet QCD coupling much larger \longrightarrow QCD ISR even more important
- Specially large for small momentum transfer
- Same as final state partons always manifest as jets, initial state ones always lead to ISR

25/26

Ordering variables

HERWIG

- Ordering variable $t = E^2 \theta^2 / 2$
- Order of transverse momentum as "angular ordering"
- IR cut-off needed

PYTHIA

- There is not angular ordering
- More natural kinematics
- ullet Unphysical increase of number of partons \longrightarrow solve by imposing veto to branchings that violate angular ordering