

les transformations dans le plan page

Transformations dans le plan :

a. Définition :

Toute relation qui associe à tout point M du plan (P) au point M' de (P) tel que M' vérifie une ou plusieurs conditions on l'appelle transformation du plan (P), on la note t ou h et $S_{(D)}$ ou S_{O} ou r ... On écrit t(M) = M' (pour t) ou h(M) = M' (pour h) ou $S_{(D)}(M) = M'$ (pour $S_{(D)}(M) = M'$)

• On écrit :
$$t : (P) \rightarrow (P)$$

 $M \mapsto t(M) = M$

- On dit que t transforme le point M au point M' ou encore le point M' est le transformé de M par la transformation t . au lieu d'écrire h(M) = M' on écrit $t : M \mapsto M'$.
- On dit que le point M a pour image M' par la transformation t, ou encore le point M' est l'image du point M.

<u>b.</u> Exemple :

Soient A et B deux points donnés (c.à.d. fixes du plan (P)).

Soit la transformation f du plan (P) définie par f (M) = M' tel que $\overrightarrow{MM'} = 2\overrightarrow{MA} - 3\overrightarrow{AB}$.

Transformation nommée symétrie axiale :

a. Activité:

Soit (D) une droite donnée du plan (P) et M un point de (P).

1. Comment on construit le point M'le symétrique de M par rapport à la symétrie axiale d'axe (D).

b. Définition

La symétrie axiale S_D de droite (D) du plan (P) est la transformation qui transforme tout point M de (P) au point M' tel que la droite (D) soit la médiatrice du segment [MM']. On écrit $S_D(M) = M'$.

les transformations dans le plan page

c. Exemple:

Transformation nommée symétrie centrale :

a. Activité:

Soit I un point donné du plan (P) et M un point de (P).

1. Comment on construit le point M'le symétrique de M par rapport à la symétrie centrale de centre I.

b. Définition :

La symétrie centrale S_I de centre le point I du plan (P) est la transformation qui transforme tout point M de (P) au point M' tel que le point I soit le milieu du segment [MM']. On écrit $S_I(M) = M'$.

c. Exemple:

d. Remarque:

- $S_I(M) = M'$ est équivaut à le point I soit le milieu du segment [MM'].
- $S_{I}(M) = M'$ est équivaut à $\overline{IM'} = -\overline{IM}$.
- $S_{\tau}(M) = M'$ est équivaut à $S_{\tau}(M') = M$.
- I est le seul point invariant par la symétrie centrale S_I d'où $S_I(I) = I$.

les transformations dans le plan page

IV.

Transformation nommée translation:

a. Activité:

Soit u un vecteur donné du plan (P) et M un point de (P).

- 1. Construit le point M'le symétrique de M tel que $\overrightarrow{MM'} = \overrightarrow{u}$.
- 2. Donner la nature de cette transformation.

b. Définition :

La translation du vecteur u du plan (P) est la transformation qui transforme tout point M de (P) au point M' tel que le point $\overline{MM'} = u$, on note la translation par t_{ij} . On écrit $t_{ij}(M) = M'$

......

c. Exemple:

d. Remarque:

- $\mathbf{t}_{\vec{a}}(\mathbf{M}) = \mathbf{M}'$ est équivaut à le quadrilatère ABM'M est parallélogramme (avec $\overrightarrow{AB} = \overrightarrow{u}$)
- $\mathbf{t}_{\vec{\mathbf{u}}}(\mathbf{M}) = \mathbf{M}'$ est équivaut à $\overline{\mathbf{MM}'} = \overline{\mathbf{u}}$.
- $t_{\vec{n}}(M) = M'$ est équivaut à $t_{\vec{n}}(M') = M'$.
- Si $\vec{u} \neq \vec{0}$ aucun point de (P) est invariant.
- Tous les points du plan sont invariant par la translation de vecteur nul $(\mathbf{u} = \mathbf{0})$. $\mathbf{t}_{z}(\mathbf{M}) = \mathbf{M}$

V. Transformation nommée homothétie:

a. Activité:

Soit Ω un point donné du plan (P) et k un nombre réel non nul et M un point de (P).

- 1. Construit le point M'tel que $\overline{\Omega M'} = 3\overline{\Omega M}$.
- 2. Donner la nature de cette transformation.

les transformations dans le plan page

b. Définition :

L'homothétie de centre un point Ω donné du plan (P) et de rapport k est la transformation qui transforme tout point M de (P) au point M' tel que $\overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$, on note

L'homothétie par $h(\Omega, k)$. On écrit h(M) = M'

c. Exemple:

d. Remarque:

- h(M) = M' ona M et M' et Ω sont alignés.
- Si k = 0 on a $h(M) = \Omega$ tous les points ont pour image Ω . (l'homothétie n'est pas intéressante)
- Si k = 1 on a h(M) = M tous les points sont invariant (chaque point reste à sa place)..(l'homothétie n'est pas intéressante)
- Pour cela on prend $k \in \mathbb{R} \setminus \{0,1\}$
- Si k=-1 on a h(M)=M' avec Ω est le milieu de [MM'] l'homothétie h est la symétrie centrale S_{Ω} de centre Ω ou encore $dh(\Omega,-1)=S_{\Omega}$.
- Si k > 0 on a h(M) = M' avec $M' \in [\Omega M)$ (demi droite $[\Omega M)$).
- Si k < 0 on a h(M) = M' avec M' appartienne à la demi droite opposée à $[\Omega M]$).

VI. Propriété caractéristique de $t_{\bar{u}}$ et S_{Ω} et $h(\Omega,k)$:

a. Propriété

Soit f une transformation dans le plan (P) tel que pour tous points A et B de (P) on a f(A) = A' et f(B) = B'.

.........

- © La transformation f est une translation si et seulement si $\overrightarrow{A'B'} = \overrightarrow{AB}$
- \odot La transformation f est une homothétie si et seulement si $\overrightarrow{A'B'} = k\overrightarrow{AB}$ et $k \in \mathbb{R} \setminus \{0,1\}$.
- © La transformation f est une symétrie centrale si et seulement si $\overrightarrow{A'B'} = -\overrightarrow{AB}$.

les transformations dans le plan page

VII. Les images de certains figures géométriques par les transformations $t_{\bar{u}}$ et S_{Ω} et $h(\Omega,k)$ et S_{D} :

<u>a.</u> Activité :				
$\begin{array}{c} \text{transformation} \\ \text{f} \rightarrow \end{array}$	$\mathbf{S}_{ exttt{D}}$	$t_{\overrightarrow{u}}$	S_{Ω}	$\mathbf{h}_{\left(\Omega\;,\;\mathbf{k=2} ight)}$
Figures → Construire les images des figures	***	***	Φ.* **B (*°)	Ω*, *
	Images par $S_{\scriptscriptstyle D}$	lmages par t _u ↓	Images par ${f S}_{\Omega}$ \downarrow	lmages par h _(Ω, k=2) ↓
La droite (AB)				•
Le segment [AB]				
Le cercle C(O,2)				
Angle géométrique [AIB]				
Le vecteur $\frac{2}{3}\overrightarrow{AB}$				
transformation f → conserve (oui ou non) ↓ Les distances	S_{D}	t _u	${f S}_{\Omega}$	$\mathbf{h}_{\left(\Omega\;,\;\mathbf{k=2} ight)}$
Le milieu				
Coefficient de colinéarité parallélisme				
orthogonalité				
Mesures des angles géométriques Intersection des				
figures				

les transformations dans le plan page

b. Propriétés :

Soient A et B deux points du plan (P) et A' et B' leurs images par l'une des transformations suivantes : symétrie axiale S_D ou symétrie centrale S_Ω ou translation $t_{\vec{n}}$ ou homothétie $h(\Omega,k)$.

- 1. L'mage de la droite (AB) par les transformations précédentes est la droite (A'B') et (AB)//(A'B').
- 2. L'mage du segment [AB] par les transformations précédentes est le segment [A'B'] et A'B' = AB . sauf l'homothétie on a A'B' = kAB .
- 3. L'mage du vecteur $\alpha \overrightarrow{AB}$ par les transformations précédentes est le vecteur $\alpha \overrightarrow{A'B'}$. sauf l'homothétie on a $k\alpha \overrightarrow{A'B'}$.
- 4. L'mage du cercle $\mathcal{C}(A,r)$ par les transformations précédentes est le cercle $\mathcal{C}'(A',r)$ et A'B'=AB . sauf l'homothétie est le cercle $\mathcal{C}''(A',|\mathbf{k}|\times r)$.
- 5. L'mage de l'angle géométrique AOB par les transformations précédentes est l'angle géométrique A'O'B' de mêmes mesure.
- 6. les transformations précédentes conservent les distance (sauf l'homothétie), et le milieu , et les mesures des angles géométriques , et le coefficient de colinéarité , et le parallélisme , et l'orthogonalité , et l'intersection des figures .

c. remarque:

Image d'une droite (Δ) par une : symétrie axiale S_p est une droite (Δ') tel que :

- Si $(\Delta)//(D)$ alors $(\Delta')//(\Delta)//(D)$.
- Si $(\Delta) \perp (D)$ alors $(\Delta') = (\Delta)$.

Image d'une droite (Δ) par une : symétrie centrale S_{Ω} est une droite (Δ') tel que :

- Si $\Omega \notin (\Delta)$ alors $(\Delta')//(\Delta)$.
- Si $\Omega \in (\Delta)$ alors $(\Delta') = (\Delta)$.