Exercise 12. Answer Sheet

Student's Name:	Tran Thi Thoa	Student's ID:	s1242006

Problem 1. (40 points) Implement the randomized algorithm for calculating π given in the lecture.

- Calculate π using your program 10 times using N number of points from the next table. Fill in the results you got.

N	1	2	3	4	5	6	7	8	9	10
1	4	4	4	4	4	4	4	4	4	4
10	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
100	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92
1000	3.164	3.164	3.164	3.164	3.164	3.164	3.164	3.164	3.164	3.164
10000	3.1472	3.1472	3.1472	3.1472	3.1472	3.1472	3.1472	3.1472	3.1472	3.1472
100000	3.14408	3.14408	3.14408	3.14408	3.14408	3.14408	3.14408	3.14408	3.14408	3.14408

- Upload your code.

The implementation is on the file findPi.cpp

To compile and run the program, run the following command lines:

The output for N = 1, 10, 100, 1000, 10000, 100000 respectively:

```
week12 — -bash — 80×14

[(base) Thoas-MacBook-Pro:week12 thoatran$ ./findPi
Number of points: 1
The value of pi:
4
4
4
4
4
4
4
4
4
4
4
4
4
```



```
week12 — -bash — 80×14
[(base) Thoas-MacBook-Pro:week12 thoatran$ ./findPi
Number of points: 10000
The value of pi:
3.1472
3.1472
3.1472
3.1472
3.1472
3.1472
3.1472
3.1472
3.1472
3.1472
                              week12 — -bash — 80×14
[(base) Thoas-MacBook-Pro:week12 thoatran$ ./findPi
Number of points: 100000
The value of pi:
3.14408
3.14408
3.14408
3.14408
3.14408
3.14408
3.14408
3.14408
3.14408
3.14408
```

Problem 2. (60 points) Write a program implementing the quicksort algorithm. Make two versions:

- a) Randomized quicksort, where the pivot element is chosen at random.
- b) Deterministic quicksort, where the pivot element is always the first element of the array.
- Generate random sequence of length N (as given in the Table)
- Measure the time each quicksort version needs to sort the sequences (fill in the average of 100 runs).

N	100	1000	10000	100000	1000000
Randomized	5.14	105.28	1301.16	21846	1.08873E+06
Deterministi c	4.26	105.56	1325.89	22132.3	1.08776E+06

All the durations above are in microsecond

- Upload your code.

The implementations of quick sort with the first element as pivot and choosing a random element as pivot are in the file quickSortRand.cpp

To compile and run the file, run the following command line: g++ -std=c++11 -o quickSortRand quickSortRand.cpp ./quickSortRand

The output will be like:

```
week12 — -bash — 80×24
quickSortRand.cpp:125:58: error: use of undeclared identifier 'start2'
       duration2 += duration_cast<microseconds>(stop2 - start2).count();
8 errors generated.
[(base) Thoas-MacBook-Pro:week12 thoatran$ g++ -std=c++11 -o quickSortRand quickS]
ortRand.cpp
[(base) Thoas-MacBook-Pro:week12 thoatran$ ./quickSortRand
     _____N = 100____
The time for quick sort with the first element as pivot: 4.26microseconds
The time for quick sort with the random element as pivot: 5.14microseconds
          ____N = 1000__
The time for quick sort with the first element as pivot: 105.56microseconds
The time for quick sort with the random element as pivot: 105.28microseconds
     .____N = 10000_____
The time for quick sort with the first element as pivot: 1325.89microseconds
The time for quick sort with the random element as pivot: 1301.16microseconds
 _____N = 100000____
The time for quick sort with the first element as pivot: 22132.3microseconds
The time for quick sort with the random element as pivot: 21846microseconds
     _____N = 1000000_____
The time for quick sort with the first element as pivot: 1.08876e+06microseconds
The time for quick sort with the random element as pivot: 1.08773e+06microsecond
(base) Thoas-MacBook-Pro:week12 thoatran$
```