Paikallisuus hajautetuissa verkkoalgoritmeissa	
Juhana Laurinharju	
Tieteellinen kirjoittaminen Helsingin Yliopisto Tietojenkäsittelytieteen laitos	
Helsinki, 3. toukokuuta 2013	

1 Johdanto

2 Määritelmiä

2.1 Verkko

Suuntaamaton verkko on pari G=(V,E), missä V on solmujoukko ja E on kaarijoukko. Kaari solmusta $v\in V$ solmuun $u\in V$ on kaksikko $\{v,u\}\in E$. Kaarta voidaan myös merkitä lyhyemmin vu. Esimerkiksi verkko G=(V,E), missä

$$\begin{split} V &= \{a,b,c,d\} \; \; \text{ja} \\ E &= \{\{a,b\}\,,\{b,c\}\,,\{c,a\}\,,\{a,d\}\} \\ &= \{ab,bc,ca,ad\} \end{split}$$

näyttää seuraavalta

2.2 Laskennan malli

Olkoon G=(V,E) suuntaamaton verkko. Verkon jokaisessa solmussa $v\in V$ on tietokone. Laskenta koostuu kommunikaatiokierroksista. Yhden kommunikaatiokierroksen aikana jokainen solmu voi:

- 1. suorittaa mielivaltaista laskentaa
- 2. lähettää viestin jokaiselle naapurilleen
- 3. vastaanottaa naapureiden lähettämät viestit

Lisäksi jokaiselle solmulle $v \in V$ on annettu yksikäsitteinen tunniste $\mathrm{ID}(v) \in \{1,\ldots,|V|\}$. Laskennan päätyttyä jokaisen solmun tulee tietää oma tulosteensa.

TODO: motivointia sille, että tarkastellaan vain kommunikaatiokierrosten lukumäärää aikavaativuutena.

2.3 Verkon väritys

Verkko on $v\ddot{a}ritetty$, jos jokaiseen solmuun $v \in V$ on liitetty jokin $v\ddot{a}ric(v) \in \mathbb{N}$ ja kahdella vierekkäisellä solmulla ei koskaan ole samaa väriä. Tarkemmin, verkon G = (V, E) solmuväritys on kuvaus $c: V \to \{1, \ldots, k\}$

jollain luonnollisella luvulla $k \in \mathbb{N}$. Lisäksi vaaditaan, että jos verkossa on kaari solmusta v solmuun u, eli $vu \in E$, niin $c(v) \neq c(u)$.

Verkon voi värittää k:lla värillä jos löytyy yllä olevan ehdon täyttävä kuvaus $c: V \to \{1, \dots, k\}$. Tällaista väritystä kutsutaan k-väritykseksi.

Jos verkkoa väritetään hajautetulla algoritmilla, niin jokaisen solmun tulee tietää oma värinsä laskennan päätyttyä.

2.4 Sykli

Verkko on *sykli*, jos se on yhtenäinen ja sen jokaisella solmulla on tasan kaksi naapuria.

Tarkemmin sanoen, n-sykli, missä $n \geq 3$, on verkko $C_n = (V, E)$ jolla

$$V = \{v_1, v_2, \dots, v_n\}$$

$$E = \{v_i v_{i+1} \mid 1 \le i < n\} \cup \{v_n v_1\}$$

Syklin voi aina värittää kolmella värillä.

TODO: tälle lähde?

2.5 Iteroitu logaritmi log*

Iteroitu logaritmi log* kertoo kuinka monta kertaa luvusta täytyy ottaa logaritmi, kunnes lopputulos on korkeintaan yksi. Tarkemmin,

$$\log^* x = \begin{cases} 0, & \text{jos } x \le 1, \\ 1 + \log^*(\log x), & \text{muutoin.} \end{cases}$$

Esimerkiksi

$$\log^* 16 = \log^* 2^{2^2} = 1 + \log^* 2^2$$
$$= 2 + \log^* 2 = 3 + \log^* 1 = 3$$

ja

$$\log^* 65536 = \log^* 2^{2^{2^2}} = 1 + \log^* 16$$
$$= 4.$$

joten $\log^* n$ on arvoltaan pienempi kuin 5 kun $n < 2^{65536}$. Iteroitu logaritmi on siis äärimmäisen hitaasti kasvava funktio.

2.6 Näkymä

Määritelmä 1. Verkon G polku on jono $P = (p_1, \ldots, p_n)$, missä jokainen $p_i \in V(G)$ on verkon G solmu ja lisäksi kahden jonon perättäisen solmun välillä täytyy aina olla kaari. Siis kaikilla $i \in \{1, \ldots, n-1\}$ täytyy olla voimassa ehto $u_i u_{i+1} \in E(G)$. Polku P on polku solmusta p_1 solmuun p_n .

TODO: kuva polusta

Määritelmä 2. Polun $P = (p_1, \dots, p_n)$ pituus on sen kaarten lukumäärä. Siis polun P pituus on n-1.

TODO: kuvan polun pituus

Määritelmä 3. Kahden verkon G solmun $u, v \in V(G)$ välinen $et \ddot{a} i s y y s$ verkossa G, $d_G(u, v)$, on lyhimmän solmusta u solmuun v kulkevan polun pituus.

TODO: tarvitaanko notaatiota $d_G(u, v)$?

TODO: kuva lyhimmästä polusta ja etäisyydestä

Hajautetussa algoritmissa solmu $v \in V$ saa k:ssa kierroksessa selville oman k-ympäristönsä. Toisaalta solmu ei pysty tässä ajassa saamaan mitään selville solmuista, joiden etäisyys v:stä on yli k.

TODO: kuvasarja havainnollistamaan tätä

Hajautettu algoritmi, jonka ajoaika on k kierrosta on siis funktio, jonka lähtöjoukkona on solmujen mahdolliset k-ympäristöt.

TODO: tää kaipaa varmaan vähän selvennystä

Erityisesti syklissä algoritmi, jonka ajoaika on k kierrosta, tekee päätöksensä k:n edeltäjän, k:n seuraajan ja oman tunnisteensa perusteella. Toisin sanoen solmun $v_l \in V(C_n)$ tuloste on funktio arvoilta

$$(ID(v_{l-k}), ID(v_{l-k+1}), \dots, ID(v_{l-1}), ID(v_l), ID(v_{l+1}), \dots, ID(v_{l+k})),$$

Missä yhteen- ja vähennyslaskut suoritetaan modulo n.

TODO: Kuvasarja solmun näkymästä syklissä.

Erityisesti jos algoritmi tuottaa 3-värityksen syklissä k:ssa kierroksessa, niin täytyy olla olemassa sellainen funktio $f:[n]^{2k+1} \to [3]$, joka tuottaa laillisen 3-värityksen riippumatta siitä miten solmuille on annettu tunnisteet.

2.7 Naapurustoverkot

TODO: liitä tää syklien näkymiin

Naapurustoverkko $B_{t,n}=(V,E)$, missä V on kaikkien vektoreiden (x_1,\ldots,x_{2t+1}) joukko joilla x_i :t ovat keskenään erisuuria kokonaislukuja joukosta [n]. Verkossa $B_{t,n}$ solmut muotoa

$$(x_1,\ldots,x_{2t+1})$$
 ja (y,x_2,\ldots,x_{2t})

ovat naapureita, kun $y \neq x_{2t+1}$.

TODO: esittele [n] merkintä, tai älä käytä sitä ollenkaan

TODO: pari kuvaa näistä verkoista pienillä parametrien arvoilla

Määritelmä 4. Solmun $v \in V(G)$ asteluku on sen naapureiden lukumäärä verkossa G. Tarkemmin, solmun $v \in V(G)$ asteluku on $|\{e \in E(G) \mid v \in e\}|$.

Verkossa $B_{t,n}$ on $n(n-1)(n-2)\cdots(n-2t)$ solmua ja sen kaikkien solmujen asteluku on 2(n-2t-1).

TODO: onko asteluvusta puhuminen olennaista?

TODO: epäkonsistenttia: kierrosmäärä on välillä k ja välillä t

Hajautettu algoritmi, joka 3-värittää syklin t kierroksessa on funktio $c: V(B_{t,n}) \to [3]$.

TODO: tätä vois perustella

Nyt c on myös laillinen 3-väritys verkolle $B_{t,n}$, sillä jos c antaa solmuille

$$(x_1,\ldots,x_{2t},x_{2t+1})$$
 ja (y,x_1,\ldots,x_{2t})

saman värin, niin se antaa myös syklissa kahdelle vierekkäiselle solmulle saman värin kun syklissä esiintyy pätkä

$$y, x_1, x_2, \ldots, x_{2t+1}$$
.

Siis jos näytetään, että verkkoa $B_{t,n}$ ei voi 3-värittää, niin ei voi myöskään olla hajautettua algoritmia joka värittäisi n-syklin kolmella värillä t kierroksessa.

2.8 Suunnattu verkko

Suunnatto verkko G=(V,E) on verkko, jossa kaarilla on suunta. Suunnatussa verkossa on kaari solmusta $u \in V$ solmuun $v \in V$ jos $(u,v) \in E$. Suunnatulla kaarella $e=(u,v) \in E$ on $k\ddot{a}rki$

$$head(e) = v$$

ja *häntä*

$$tail(e) = u$$

TODO: onks kärki ja häntä oikeet käännökset?

TODO: kuva suunnatusta verkosta ja havainnollistava kuva kärjestä ja hännästä

2.9 Väritysluku $\chi(G)$

Verkon G väritysluku $\chi(G)$ on pienin määrä värejä, jolla sen voi värittää.

3 Sykliä ei voi 3-värittää alle $\log^* n$ kierroksessa

Väritysluvun $\chi(B_{t,n})$ alaraja todistetaan käyttäen suunnattujen verkkojen $D_{s,n}$ perhettä. Suunnatut verkot $D_{s,n}$ liittyvät läheisesti naapurustoverkkoihin $B_{t,n}$. Verkon $D_{s,n}$ solmujoukon V muodostavat kaikki vektorit muotoa

$$(a_1, a_2, \ldots, a_s),$$

joilla pätee

$$1 \le a_1 < a_2 < \dots < a_s \le n.$$

Solmusta (a_1, \ldots, a_s) lähtee kaari muotoa

$$(a_2,\ldots,a_s,b)$$

oleviin solmuihin, joilla $a_s < b \le n$.

Nyt naapurustoverkko $B_{t,n}$ pitää sisällään aliverkkona suunnatun verkon $D_{2t+1,n}$.

TODO: avaa tätä

TODO: pitäskö aliverkko määritellä?

Tästä erityisesti seuraa, että $\chi(B_{t,n}) \geq \chi(D_{2t+1})$.

TODO: selvennä tätä

3.1 Suunnatun verkon kaariverkko

Suunnatun verkon G kaariverkko DL(G) on verkko, jonka solmuja ovat alkuperäisen verkon G kaaret ja kahden kaariverkon solmun

$$u, v \in V(DL(G)) = E(G)$$

välillä on kaari, jos head(u) = tail(v).

TODO: havainnollistava kuva

Tarkemmin ilmaistuna,

$$V(\mathrm{DL}(G)) = E(G)$$

$$E(\mathrm{DL}(G)) = \{(v, u) \in E(G) \times E(G) \mid \mathrm{head}(v) = \mathrm{tail}(u)\}.$$

Lemma 5. $D_{1,n}$ on n:n solmun täydellinen verkko, jossa kaaret on suunnattu pienemmästä solmusta isompaan.

Todistus. Verkon $D_{s,n}$ määritelmä s:n arvolla 1 antaa seuraavan verkon:

$$V(D_{1,n}) = \{(k) \mid 1 \le k \le n\}$$

$$E(D_{1,n}) = \{((k), (l)) \mid k < l\}.$$

Tässä verkossa jokaisen kahden solmun välillä on kaari tasan yhteen suuntaan.

Lemma 6. Verkko $D_{s+1,n}$ on verkon $D_{s,n}$ kaariverkko. Tarkemmin,

$$D_{s+1,n} = DL(D_{s,n}).$$

Todistus. Ideana on samaistaa kaariverkon $\mathrm{DL}(D_{s,n})$ kaari

$$((x_1,\ldots,x_s),(x_2,\ldots,x_s,y))$$

verkon $D_{s+1,n}$ solmun

$$(x_1,\ldots,x_s,y)$$

kanssa. Määritellään siis verkkojen välille kuvaus

$$\varphi \colon V(\mathrm{DL}(D_{s,n})) \to V(D_{s+1,n})$$

asettamalla

$$\varphi((x_1,\ldots,x_s),(x_2,\ldots,x_s,y))=(x_1,\ldots,x_s,y).$$

TODO: näytä että φ on bijektio ja erityisesti isomorfismi

TODO: isomorfismi pitänee määritellä

Lemma 7.

$$\chi(D_{s+1,n}) \ge \log \chi(D_{s,n}).$$

4 Lähteet