COSTANTI FISICHE

Massa elettrone m_e =9x10⁻³¹ kg; carica elettrone -e=1.6x10⁻¹⁹ C; $ε_0$ =8.85x10⁻¹² (SI); 1/4π $ε_0$ =9x10⁹ (SI); $μ_0$ =4π 10⁻⁷ (SI)

QUESITO 1

Dare le leggi di Maxwell per il campo elettromagnetico in generale e spiegare il significato fisico.

ESERCIZIO 1

Un conduttore sferico cavo di raggio interno R_2 =5cm e raggio esterno R_3 =6cm, contiene, in modo concentrico, una sfera conduttrice di raggio R_1 =2cm con densità di carica superficiale σ =6.67 10^{-10} Cm⁻². Il sistema è isolato.

1- Ricavare il campo elettrico e il potenziale nello spazio in funzione della distanza r dall'asse del sistema. Dare la rappresentazione grafica delle funzioni E(r) e V(r).

Si consideri la nuova situazione in cui a distanza R_P =10cm dall'asse del sistema, in punti diametralmente opposti, vengono posti un'elettrone e un protone (trascurare gli effetti induttivi).

2- Calcolare il lavoro totale del campo per portare il protone e l'elettrone dal punto P all'infinito.

Successivamente l'armatura esterna del conduttore viene collegata a terra.

3- Calcolare nella nuova situazione di equilibrio l'energia del campo elettrico nella regione esterna e interna al sistema.

Mantenendo il sistema isolato, l'intercapedine tra R_1 e R_2 viene riempita di un materiale dielettrico lineare e omogeneo di costante dielettrica **K=3**.

- 4- Determinare la distribuzione di carica di polarizzazione nel dielettrico.
- 5- Calcolare il lavoro delle forze del campo nel processo di riempimento.

QUESITO 2

Dare l'equazione di continuità della carica elettrica e spiegare il significato fisico.

ESERCIZIO 2

Un solenoide rettilineo di raggio **R=10cm** e lunghezza L>>R da considerarsi indefinito ha **n=10**² spire per metro ed è percorso da una corrente elettrica stazionaria **i=2A**.

- 1- Ricavare il campo magnetico nello spazio generato dal sistema.
- 2- Calcolare il coefficiente di autoinduzione per unità di lunghezza del sistema.
- 3- Calcolare la quantità di energia del campo magnetico per unità di lunghezza immagazzinata nel solenoide.

Si consideri il sistema in cui un secondo solenoide di raggio R_2 =4cm e eguale lunghezza, percorso da corrente i_2 =1A viene inserito in modo coassiale.

4- Calcolare l'energia magnetica del sistema per unità di lunghezza.

ESERCIZIO 3

Un circuito quadrato di lato **I=5cm** è immerso in un campo magnetico uniforme ma non stazionario **B(t)=at+b**, con **a=0.2Ts-1** e **b=0.1T**, ortogonale al circuito.

- 1- Determinare il valore della forza elettromotrice indotta nel circuito.
- 2- Qual è l'origine fisica di questa f.e.m?

Con riferimento alle due diverse situazioni in cui:

A) Il circuito viene chiuso con un condensatore $C=100\mu F$ e una resistenza $R=5\Omega$ in serie - si trascuri ogni fenomeno di autoinduzione;

- B) Il circuito viene chiuso con un'induttanza $L=10^{-2}H$ e una resistenza $R=5\Omega$ in serie.
 - 3- Ricavare la legge di variazione temporale della corrente indotta i(t).
 - 4- Discutere nel dettaglio il bilancio energetico: potenza erogata, potenza immagazzinata e dissipata negli elementi del circuito

QUESITO 3

1. Dare le leggi di Maxwell che descrivono il comportamento del campo elettromagnetico nel VUOTO [= ASSENZA DI SORGENTI] e spiegarne le importanti conseguenze.