

陳瑞奇(Rikki) 亞洲大學資訊工程學系

Adapted from Computer Networks, Andrew S. Tanenbaum, Vrije University, Netherlands & Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross

Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

The Data Link Layer data **Application** H: header T: trail Presentation PH 6 Each may be empty. Session 5 SH TH | SH **Transport** 4 Network SHNH 3 Data link DH NH TH SH PH Physical bit streams **OSI Reference Model**

- Too risky to count on timing to mark the start and end of each frame
- Other methods:
 - Byte Count (rarely used anymore)
 - 2. Flag bytes with byte stuffing (PPP)
 - 3. Flag bits with bit stuffing
 - 4. Physical layer coding violations

ç


```
Error-Detecting Codes (3)
     CRC (Cyclic Redundancy Check)
                                   Modulo 2 division
 CRC Code = Polynomial Code
                                   (add/sub = XOR)
   110001 = x^5 + x^4 + x^0
 Original Message (dividend): M(x)
Generator (divisor): G(x)
 Degree of G(x): r
 Quotient: Q(x)
Remainder (CRC): R(x)
 Transmitted Message: T(x)
                                           R(x)
  T(x) = x^{r}M(x) - R(x) = M(x)&R(x)
  T(x)/G(x) = 0
  If T'(x)/G(x) = 0 then Correct, otherwise Error
```


Error Correction (1)

- Two types of errors
 - Lost frame never arrives
 - Damaged frame error in bits
- Automatic Repeat reQuest (ARQ)
 - Error detection
 - Positive acknowledgment (ACK) if received
 - Retransmission after time-out if not ACK
 - Negative ACK (NACK) and retransmission if error
- Error-Correcting Codes

35

Hamming code (example)

An 8-bit byte with binary value 10101111

		D0			D1 D2 D3				D4 D5 D6 D7			
	1	2	3	4	5	6	7	8	9	10	11	12
•			1		0	1	0		1	1	1	1
•	H0 1	H1 0		H2 0				H3 0				

Codeword:

 $H0 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$

 $H1 = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 0$

 $H2 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$

 $H3 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

The encoded value (codeword) is 101001001111. 44

Flow Control

Necessary when data is being sent faster than it can be processed by receiver

 Usually a buffer is filled, and transfer is stopped until buffer is emptied

45

Stop-and-Wait Flow Control

- Simplest form of Frame-Oriented Control
- Source may not send new frame until receiver acknowledges previous one
- Very inefficient, especially when a single message is broken into many small frames
 - buffer size of receiver is limited
 - if error, detected sooner and less data need be retransmitted

53

Sliding-Window Flow Control

- Allows multiple frames to be in transit
- Receiver sends acknowledgement with sequence number of next frame
- Sender maintains list of sequence numbers it can send, receiver maintains list of sequence numbers it can receive

