Recent Progress on Active Learning

Sheng-Jun Huang (黄圣君)

Nanjing University of Aeronautics and Astronautics

Learning with Fewer Labeled Data

$$R(h) \leq R_{ ext{emp}}(h) + \sqrt{rac{\ln |\mathcal{H}| + \ln rac{2}{\delta}}{2m}}$$

2 years for 4000 sentences in Penn Chinese Treebank

time consuming

only experts can provide accurate annotations

high expertise

Labeled data is **important** but **expensive**

→ Can we learn with fewer labeled data?

Active Learning

Goal: train an effective model with least labeling cost

Active Learning

Which instance to select?

- Informative instances
- Representative instances
- Informative & representative instances

More Practical and More Systematic

- Collaborative labeling from crowds
 - Labeler quality estimation
 - Ensemble kernel machine classifier
 - Robust to label noise

- Pairwise comparison from noisy labelers
 - Leverage both types of oracles
 - Lower querying complexity under different noise conditions

Table 2: Comparison of various methods for learning of halfspaces (Omit			
Label Noise	Work	# Label	# Query
Massart	[8]	$ ilde{\mathcal{O}}(d)$	$ ilde{\mathcal{O}}(d)$
Massart	[5]	$\operatorname{poly}(d)$	$\operatorname{poly}(d)$
Massart	Ours	$ ilde{\mathcal{O}}(1)$	$ ilde{\mathcal{O}}(d)$
Tsybakov (κ)	[19]	$\tilde{\mathcal{O}}(\left(\frac{1}{\varepsilon}\right)^{2\kappa-2}d\theta)$	$\tilde{\mathcal{O}}(\left(\frac{1}{\varepsilon}\right)^{2\kappa-2}d\theta)$
Tsybakov (κ)	Ours	$ ilde{\mathcal{O}}\left(\left(rac{1}{arepsilon} ight)^{2\kappa-2} ight)$	$\tilde{\mathcal{O}}\left(\left(\frac{1}{\varepsilon}\right)^{2\kappa-2}+d\right)$
Adversarial ($\nu = \mathcal{O}(\varepsilon)$)	[34]	$\mathcal{ ilde{O}}(d)$	$ ilde{\mathcal{O}}(d)$
Adversarial ($\nu = \mathcal{O}(\varepsilon)$)	[6]	$ ilde{\mathcal{O}}(d^2)$	$ ilde{\mathcal{O}}(d^2)$
Adversarial ($\nu = \mathcal{O}(\varepsilon)$)	Ours	$\tilde{\mathcal{O}}(1)$	$\widetilde{\mathcal{O}}(d)$

- Self-paced active learning
 - Self-annotation for high-confident instances
 - Oracle annotation for low-confident instances

Lin et al. Active Self-Paced Learning for Cost-Effective and Progressive Face Identification. PAMI 2018.

- Active query from source domains
 - Oracle is not available in the target domain
 - Insufficient labeled data in all domains

Cost-Sensitive Active Learning

- Oracles are cost-sensitive
 - Different oracles have diverse prices
 - Selecting both instance and oracle
 - Accurate yet cheap annotations

- Low overall quality
- Low price
- Expert for this query

- High overall quality
- High price
- Less familiar with it

Cost-Sensitive Active Learning

- Labels are cost-sensitive
 - Labels have hierarchies
 - Bi-objective optimization to balance the cost and information

Yan et al. Cost-Effective Active Learning for Hierarchical Multi-Label Classification. IJCAI 2018.

Cost-Sensitive Active Learning

- Learning task is cost-sensitive
 - Query the cost of predicting a specific label
 - Guarantee a polynomial improvement on label complexity for low noise case

Theorem 6. Assume the Massart noise condition holds. With probability at least $1 - 2\delta$ the label complexity of the algorithm over n examples is at most,

$$L_1 = \mathcal{O}\left(\frac{25^{1/\beta}}{\tau^2} \left(n^{\beta} K \log(n) \nu_n \theta_1 + \log(1/\delta)\right)\right)$$
$$L_2 = \mathcal{O}\left(\frac{25^{1/\beta} K}{\tau^2} \left(n^{\beta} \log(n) \nu_n \left[K\theta_1 + \theta_2\right] + \log(1/\delta)\right)\right)$$

Krishnamurthy et al. Active Learning for Cost-Sensitive Classification. ICML 2017.

Active Learning with Deep Models

- Active model adaptation
 - A novel criterion "distinctiveness"
 - Reuse of pre-trained models
 - Less training data

Select based on

 $g(Distinctiveness(\mathbf{x}), Uncertainty(\mathbf{x}))$

Huang et al. Cost-Effective Training of Deep CNNs with Active Model Adaptatio. arXiv 2018.

selected data *Q*

fine-tune

unlabeled

data U

Active Learning with Deep Models

- Active annotation with deep generative models
 - Deep generative model to create novel instances
 - Oracle directly annotates the decision boundary

K-dimensional feature space embedding:

Huijser et al. Active Decision Boundary Annotation with Deep Generative Models. ICCV 2017.

Active Learning for Various Applications

- Human Pose Estimation [Liu & Ferrari ICCV'17]
- Face Identification [Lin et al. PAMI'18]
- Semantic Role Labeling [Wang et al. IJCAI'17]
- Biomedical Image Analysis [Zhou et al. CVPR'17]
- Quadcopter Control [Andersson et al. AAAI'17]
- Sentiment Analysis [Wu et al. ACL'17]
- Recommendation [Zhao et al. AlJ'17]
- Surveying [Lewenberg et al. AAAI'17]

•

Thank You!

huangsj@nuaa.edu.cn

http://parnec.nuaa.edu.cn/huangsj