

Professor: José Carlos Althoff

Seja b um número real. Uma função constante é uma função tal que:

que para cada x em R, associa f(x) = b.

f: $R \rightarrow R/f(x) = b$

Exemplos

a)
$$f(x) = 1$$

X	f(x)
-1	1
0	1
0,5	1
1	1
10	1

b)
$$f(x) = -3$$

X	f(x)
-1	-3
0	-3
0,5	-3
1	-3
10	-3

O gráfico de uma função constante

Generalizando: f(x) = b neste exemplo b = 2

X	f(x)
-2	2
-0,5	2
1	2
3	2

Função constante teremos sempre uma reta paralela ao eixo das abscissas (eixo x)

Função Linear ou Função do Primeiro Grau

Seja m um número real. Uma função linear é uma função $f: \mathbb{R} \rightarrow \mathbb{R}$ que para cada $x \in \mathbb{R}$, associa f(x) = mx + n. Onde $m \neq 0$ e $n \in \mathbb{R}$.

Obs: A função é também escrita como: f(x) = ax+b; a = m e b = n

O gráfico de uma função linear é uma reta.

Ao lado apresentamos uma função linear não completa. f(x) = x

Coeficiente angular

• Como o próprio nome indica, coeficiente angular esta relacionado ao ângulo, ou seja: determina a inclinação da reta.

$$f(x) = mx + n.$$

No caso representado pela letra m.

A letra n representa o coeficiente Linear

Exemplo: Seja a função linear ou função do primeiro grau representada no gráfico abaixo. Determinar sua lei de formação.

Solução

$$tag(\propto) = \frac{C.O}{C.A}$$

$$tag(\propto)=m$$

$$m = \frac{c.o}{c.A}$$

$$\mathbf{m} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{5-2}{3-0}$$

$$f(x) = mx + n$$

$$f(x) = 1x + n$$

$$f(x) = x + 2$$

n indica onde cruza o eixo das ordenadas

Exercício

- 1) Construa o gráfico da função f(x) = 2x + 10.
- 2) Determine a função a partir do gráfico.

Função quadrática

Sejam a, b e c números reais, com a não nulo. Uma função quadrática é uma função f: $R \rightarrow R$ que para cada x em R, associa $f(x)=ax^2+bx+c$ Onde a, b e c são constantes reais e a deve ser diferente de zero (a \neq 0).

O gráfico de uma função quadrática é uma curva denominada parábola

Obs: A função do segundo grau ou quadrática pode ter a concavidade voltada para baixo ou para cima. O vértice da função determina o ponto mínimo e/ou o ponto máximo.

A função do segundo grau pode cortar o eixo das abscissas (eixo x) em dois pontos. A intersecção da parábola com o eixo x é encontrado através da igualdade y = 0. Ou seja ax² +bx +c = 0 logo estamos diante de uma equação do segundo grau. Utilizamos a fórmula de Bhaskara para encontrar a intersecção.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Os vértices da parábola podem ser encontrados por:

$$x_{v} = \frac{-b}{2a}$$
 $y_{v} = \frac{-(b^{2} - 4ac)}{4a}$

$$\Delta = b^2 - 4ac > 0$$

A parábola intercepta o eixo x em dois pontos.

$$\Delta = b^2 - 4ac < 0$$

A parábola não inercepta o eixo das abscissas (x)

$$\Delta = b^2 - 4ac = 0$$

A parábola intercepta o eixo dos x em um único ponto.

Exercícios

1) Construa o gráfico da função $f(x) = x^2 + 5$

Função polinomial

É toda função cuja a imagem é um polinômio da variável x, isto é, f é uma função polinomial de grau n se:

$$f(x) = a_o x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x^1 + a_n$$

Em que $a_0, a_1, a_2, \dots, a_n$ são todos números reais com $a_0 \neq 0$

Exemplos:

- a) A função f(x) = 5 é uma função polinomial de grau 0
 (função constante)
- a) A função f(x) = 2x + 3 é uma função polinomial de grau 1. (Função do primeiro grau).
- b) A função $f(x) = x^2 7x + 12$ é uma função polinomial de grau 2. (função do segundo grau).
- c) A função $f(x) = x^3$ é uma função polinomial de grau 3.

E assim sucessivamente

O gráfico da função cúbica do item (d), se assemelha a uma parábola tanto no primeiro como no terceiro quadrante, mas no primeiro os valores de f(x) são positivos e no terceiro os valores de f(x)

são negativos.

Acabamos adotando que funções Polinomiais iniciam a partir de ordem 3

Exercício

Construir o gráfico da função: $f(x) = x^3 + 5$. $x^2 - 2x + 50$ no intervalo [-5; 3].

f(x)
60
69,125
74
75,375
74
70,625
66
60,875
56
52,125
50
50,375
54
61,625
74
91,875
116

Função Exponencial

Dado um número real a, tal que $1 \neq a > 0$

a função f: R→R definida como

$$f(x) = a^x$$
 com a > 0 e a \neq 1

é dita função exponencial.

Seu gráfico é do tipo:

Exemplo:

Exercício.

Construa o gráfico da função $f: \to R$ definida por $f(x) = \left(\frac{1}{2}\right)^x$

►Solução.

X	f(x)
-2	4
-1	2
0	1
1	0,5
2	0,25
3	0,125
4	0,0625
5	0,03125
6	0,015625
7	0,007813
8	0,003906
9	0,001953

O número "e" é denominado número natural; ou número neperiano.

Ele tem infinitas casas decimais, por isto é representado pela letra e.

Seu valor aproximado é : 2,71828.....

Muitas funções exponenciais utilizam este número.

A função exponencial com número neperiano

$$y=e^x$$

$$f(x) = e^{x}$$

Construir o gráfico da função: $f(x) = \frac{e^x}{e}$

Solução

X		f(x)
	-1	0,135363
	0	0,367918
	1	1
	2	2,718
	3	7,387524
	4	20,07929

Logaritmos

Definição:

$$\log_a^b = c$$

Onde

c = logaritmo

a = base

b = logaritmando

$$\log_a^b = c \longleftrightarrow a^c = b$$

Propriedades.

Primeira propriedade

$$\log_a^{(b1.b2.b3...bn)} = \log_a^{b1} + \log_a^{b2} + \log_a^{b3} + ... + \log_a^{bn}$$

$$com \quad 0 < a \ne 1 \quad e \quad b1, b2, b3, ..., bn > 0$$

Segunda propriedade

$$\log_a^{\frac{b}{c}} = \log_a^b - \log_a^c \text{ desde que}$$

$$0 < a \neq 1 \text{ e b, c} > 0$$

Terceira propriedade

$$\log_a^{b^a} = \alpha . \log_a^b \text{ desde que}$$

$$0 < a \neq 1 \text{ e b} > 0 \text{ e } \alpha \in \Re$$

Quarta propriedade (conhecida como mudança de base)

$$\log_a^b = \frac{\log_c^b}{\log_a^a}$$

Função Logarítmica.

É toda função:

$$f: R_+^* \to R$$
 definida por $f(x) = \log_a^x$
 Com a > 0 e a \neq 1

O gráfico de uma função logarítmica

$$y = \log_a^x$$

Exercício

Construir o gráfico da função $f(x) = \log_3(x)$

Solução

x	f(x)
0,1	-2,0959
1	0
2	0,63093
3	3 1
2	1,26186
5	1,464974
6	1,63093
7	1,771244
8	1,892789
ç	2

O domínio das Funções na Análise de Algoritmos Quando trabalhamos com algoritmos estamos pensando nos dados que serão trabalhados pelo algoritmo.

Bom, estes dados na análise de algoritmos chamamos de N (Nossa entrada).

Quando trabalhamos com as funções a variável x esta ligada ao domínio da função.

Ou seja o x passa a ser o valor N (valor da entrada).

Usando a Planilha Excel Para Construir Gráficos da Funções Básicas.

Atividade

Construir o gráfico das funções através do Excel. Obs: (considerar N>0), observar o que ocorre com o gráfico para valores N grandes.

a)
$$f(N) = 2N + 30$$

b)
$$f(N) = \frac{N^2}{10} - n + 20$$

c)
$$f(N) = N^3 + N^2 - 5N$$

d)
$$f(N) = log(N)$$

e)
$$f(N)=2^N + N^2$$

$$f(N) = N \cdot \log(N)$$

$$g)$$
 $f(N) = log^2(N)$