

Correlação e regressão (revisitado)

 Ronaldo C. Prati ronaldo.prati@ufabc.edu.br

Relembrando o final a última aula...

Gráficos de dispersão

dependente: contínua

Razão indicador/anular

independente: contínua

Correlação e regressão

 As técnicas de correlação e regressão analisam dados amostrais, procurando determinar como duas (ou mais) variáveis estão relacionadas umas com as outras.

Variável Independente	Variável Dependente
Horas de treinamento	Número de acidentes
Número do sapato	Altura da pessoa
Cigarros por dia	Capacidade pulmonar
Meses do ano	Volume de vendas
Peso da pessoa	QI

Correlação e regressão

 A análise de correlação tem como resultado um número que expressa o grau de relacionamento entre duas variáveis.

 A análise de regressão expressa o resultado em uma equação matemática, descrevendo o relacionamento.

Ambas análises, geralmente utilizadas em pesquisas exploratórias.

Variável independente

A análise gráfica do comportamento entre as variáveis mostra a existência de correlação negativa, pois à medida que X cresce, Y decresce

O gráfico mostra que a empresa, ao investir em treinamento, reduz o número de acidentes na fábrica

A análise gráfica do comportamento entre as variáveis mostra a existência de correlação positiva, pois à medida que X cresce, Y também cresce.

O gráfico mostra que, com o aumento médio da renda da população, o consumo de bens duráveis aumenta.

Não há correlação linear, o gráfico mostra que não existe evidência de alguma relação entre o peso de uma pessoa com seu Q.I.

Exemplos

Correlação Linear Positiva

À medida que x cresce, y tende a crescer.

Correlação Linear Negativa

À medida que x cresce, y tende a decrescer.

Não há Correlação

- Utilizar apenas o gráfico de dispersão para interpretar a existência de uma correlação pode ser uma tarefa bastante subjetiva.
- Como medida mais objetiva, utiliza-se medir o grau e o tipo de uma correlação linear entre duas variáveis por meio do cálculo do coeficiente de correlação.

O intervalo de variação do **coeficiente de correlação r** está ente -1 à 1.

Valor de r próximo de -1: as variáveis X e Y têm forte correlação linear negativa Valor de r próximo de zero: se não existir, ou se existir pouca correlação linear entre as variáveis X e Y

Valor de r próximo de 1: as variáveis X e Y têm forte correlação linear positiva

$$r = \frac{N \sum_{i=1}^{N} XY - \sum_{i=1}^{N} X \sum_{i=1}^{N} Y}{\sqrt{N \sum_{i=1}^{N} X^2 - (\sum_{i=1}^{N} X)^2} \sqrt{N \sum_{i=1}^{N} Y^2 - (\sum_{i=1}^{N} Y)^2}}$$

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$\mathrm{cov}(X,Y) = rac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n rac{1}{2} (x_i - x_j) \cdot (y_i - y_j) = rac{1}{n^2} \sum_i \sum_{j>i} (x_i - x_j) \cdot (y_i - y_j).$$

$$-->$$
x = [8, 2, 5, 12, 15, 9, 6];

$$-->$$
y = [78, 92, 90, 58, 43, 74, 81];

- 0.9747632

$$r = \frac{N \sum_{i=1}^{N} XY - \sum_{i=1}^{N} X \sum_{i=1}^{N} Y}{\sqrt{N \sum_{i=1}^{N} X^{2} - (\sum_{i=1}^{N} X)^{2}} \sqrt{N \sum_{i=1}^{N} Y^{2} - (\sum_{i=1}^{N} Y)^{2}}}$$

Sci lab

```
-->N = length(x);

-->num = N*sum(x.*y) - sum(x)*sum(y);

-->den1 = sqrt(N*sum(x.^2)-sum(x)^2);

-->den2 = sqrt(N*sum(y.^2)-sum(y)^2);

-->r = num/(den1*den2)

- 0.9747632
```

$$r = \frac{N \sum_{i=1}^{N} XY - \sum_{i=1}^{N} X \sum_{i=1}^{N} Y}{\sqrt{N \sum_{i=1}^{N} X^2 - (\sum_{i=1}^{N} X)^2} \sqrt{N \sum_{i=1}^{N} Y^2 - (\sum_{i=1}^{N} Y)^2}}$$

Coeficiente de determinação

 O quadrado do coeficiente de correlação (de Pearson) é chamado de coeficiente de determinação (r²=[0,1]).

 É uma medida da proporção da variabilidade em uma variável que é explicada pela variabilidade da outra.

 Na prática, é pouco comum que tenhamos uma correlação perfeita r²=1

pois existem muitos fatores que determinam as relações entre variáveis na vida real.

Coeficiente de determinação

Relação entre o número de faltas dos alunos por semestre, e

suas notas finais.

Faltas por semestre (X)	Nota Final (Y)			
8	78			
2	92			
5	90			
12	58			
15	43			
9	74			
6	81			

$$r = -0.975$$

$$r^2 = 0.9501633$$
 (ou 95%)

Coeficiente de determinação

Relação entre o número de faltas dos alunos por semestre, e

suas notas finais.

Faltas por semestre (X)	Nota Final (Y)			
8	78			
2	92			
5	90			
12	58			
15	43			
9	74			
6	81			

$$r = \frac{7(3.751) - (57)(516)}{\sqrt{7(579) - (57)^2}\sqrt{7(39.898) - (516)^2}}$$

$$r = -0.975$$

$$r^2 = 0.9501633$$
 (ou 95%)

Então cerca de 5% da variabilidade da nota final **não pode ser descrito ou explicado** pela variabilidade do número de faltas por semestre e vice-versa.

Linearidade e normalidade

Somente relações lineares são detectadas pelo coeficiente de correlação que acabados de descrever (também chamado de coeficiente de correlação de Pearson).

Aqui o coef. De correlação é igual a zero, mas vemos que existe uma clara relação não-linear entre ambas as variáveis.

Linearidade e normalidade

Em alguns casos pode ser apropriado transformar x e/ou y.

Escala linear

Escala log-log

Linearidade e normalidade

N	Log(N)
1	0,0000000
2	0,3010300
3	0,4771213
4	0,6020600
5	0,6989700
6	0,7781513
7	0,8450980
8	0,9030900
9	0,9542425
10	1,0000000

Causalidade?

Causalidade e correlação

Correlação não necessariamente implica em causalidade.

- Pesquisadores frequentemente são tentados a inferir uma relação de causa e efeito entre X e Y, quando eles ajustam um modelo de regressão, ou realizam uma análise de correlação
- Uma associação significativa entre X e Y não necessariamente implica em uma relação de causa e efeito

Causalidade e correlação

Correlação não necessariamente implica em causalidade.

Causalidade e correlação

Correlação não necessariamente implica em causalidade.

O número de pessoas usando óculos-de-sol e a quantidade de sorvete consumido em um particular dia são altamente correlacionados.

Isto não significa que usar óculos-de-sol causa a compra de sorvetes ou vice-versa!

É extremamente difícil estabelecer relações causais a partir de dados observacionais. Precisamos realizar experimentos para obter mais evidências de uma relação causal.

Curvas de regressão

Reta de regressão linear

Depois de constatar que existe uma correlação linear significante, é possível escrever uma equação que descreva a relação linear entre as variáveis X e Y.

Essa equação chama-se reta de regressão, ou reta do ajuste ótimo

Pode-se escrever a equação de uma reta como y = mx + b, onde m é a inclinação da reta e b, o intercepto y. Assim, a reta de regressão é:

$$\hat{Y} = mX + b$$

A inclinação m é dada por:

$$m = \frac{N\sum_{i=1}^{N} XY - \sum_{i=1}^{N} X\sum_{i=1}^{N} Y}{N\sum_{i=1}^{N} X^{2} - (\sum_{i=1}^{N} X)^{2}}$$

E o intercepto y é:

$$b = \overline{Y} - m\overline{X}$$


```
-->X = [8, 2, 5, 12, 15, 9, 6];
-->Y = [78, 92, 90, 58, 43, 74, 81];
-->[a,b] = reglin(X,Y)
b =
     1.6
a =
     3.2571429
```


Criando Scripts

- Até agora estávamos digitando os comandos direto no prompt do scilab
- Uma outra maneira de interagir com o scilab é criar um script, em que uma série de comandos é incluída, pare serem executados em sequência

Criação de Scripts

Criação de scripts

Exercício

Para estudar a relação entre:

- X (número total de operações de furar e rebitar), e
- Y (número total de horas necessárias à montagem da parte de uma estrutura), Registraram-se os dados da tabela abaixo.

estudo	A	В	С	D	Е	F	G	Н	I
X	236	80	127	445	180	343	305	488	170
Y	5,1	1,7	3,3	6,0	2,9	5,9	7,0	9,4	4,8

Vamos fazer um script que:

- Faça o gráfico destes dados com número total de operações no eixo x.
- Calcule o coeficiente de correlation (r) para estes dados e cheque se o valor obtido parece consistente com seu gráfico.
- Qual proporção da variabilidade no total de operações de furar e rebitar que pode ser explicada pelo número total de horas necessárias à montagem da parte de uma estrutura?
- Calcule a reta de regressão, imprima seus coeficientes, e a adicione ao gráfico