12.03.2004

UNIVERSITÄT KARLSRUHE Institut für Industrielle Informationstechnik

- Prof. Dr.-Ing. habil. K. Dostert -

Vordiplomprüfung im Fach

Mikrorechnertechnik

Aufgabe 1: A/D- und D/A-Wandlung

(12 Punkte)

b)
$$2^{N}$$
 (1)

$$c) (2)$$

1. FSM statt Zähler

2. zusätzlich sukzessives Approximationsregister

d)
$$N$$
 (1)

e)
$$I_{3} = \frac{U_{ref}}{2R}, \quad I_{2} = \frac{U_{ref}}{4R}, \quad I_{1} = \frac{U_{ref}}{8R}, \quad I_{0} = \frac{U_{ref}}{16R}$$
 (2)

f)
$$I = I_3 + I_1 + I_0 = \frac{11}{16} \frac{U_{ref}}{R}$$
 (1)

g)
$$U_A = R \cdot I = \frac{11}{16} U_{ref} \tag{1}$$

Aufgabe 2: Zahlendarstellung in Mikrorechnerprogrammen

(8 Punkte)

Dogiston	Inhalt (dazimal)	Inhalt (binär)	
Register	Inhalt (dezimal)	MSB	LSB
R0	-6	11111010	
R1	19	00010011	
A	-114	10001110	

c)
$$-6/128 = -0.046875$$
 (1)

d)
$$-6 = (-1)^{1} \cdot 1, 1_{2} \cdot 2^{129-127}$$

$$\Rightarrow \text{ Vorzeichenbit: } 1$$

$$19 = (-1)^{0} \cdot 1,0011_{2} \cdot 2^{131-127}$$

$$\Rightarrow \text{ Vorzeichenbit: } 0$$
(4)

Exponent: $129_{10} = 10000001_2$ Exponent: $131_{10} = 10000011_2$

Mantisse: 100...0 Mantisse: 001100...0

Register	Inhalt														In	ha	lt	(bi	inä	ir)													
Register	(dezimal)	M	[S]	В]	LS	В
R0	-6	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R1	19	0	1	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Aufgabe 3: Verlustleistung von CMOS-Schaltungen

(10 Punkte)

Umschalten von Invertern und Gattern entstehen
Umladeverluste: Verluste beim Umladen von Kapazitäten (z. B. Busleitungen)

b)
$$\overline{I} = N_{inv} \cdot \frac{1}{T} \int_{0}^{T} i_{d}(t) dt = N_{inv} \cdot f \cdot 2 \cdot \int_{0}^{t_{r}} i_{d}(t) dt = N_{inv} \cdot f \cdot 2 \cdot \frac{1}{2} \cdot t_{r} \cdot I_{DP} = N_{inv} \cdot f \cdot t_{r} \cdot I_{DP}$$

$$\Rightarrow I_{DP} = \frac{\overline{I}}{N_{inv} \cdot f \cdot t_{r}} = \frac{40 \text{ mA}}{20000 \cdot 10 \text{ MHz} \cdot 1 \text{ ns}} = 200 \,\mu\text{A}$$
(2)

(2)

c)
$$I_{\text{max}} = N_{\text{inv}} \cdot I_{DP} = 20.000 \cdot 200 \,\mu\text{A} = 4 \,\text{A}$$

$$P_{\text{max}} = U \cdot I_{\text{max}} = 3,3 \,\text{V} \cdot 4 \,\text{A} = 13,2 \,\text{W}$$

- d)
 Kondensator parallel zur Versorgungsspannung

 (1)
- e) Die Höhe einer Stromspitze ist unabhängig von der Taktfrequenz. Für den mittleren Strom gilt: $\overline{I} = N_{inv} \cdot f \cdot I_{DP} \cdot t_r \Rightarrow \overline{I} \sim f$ D. h. der mittlere Strom verdoppelt sich auf 80 mA

f)
$$P_{L} = f^{*} \cdot C^{*} \cdot U^{2} = 10 \text{ MHz} \cdot 6 \text{ nF} \cdot (3,3 \text{ V})^{2} = 653,4 \text{ mW}$$
 (1)

Aufgabe 4: **CMOS-Transfergates**

(8 Punkte)

(4)

Aufgabe 5: Multiplizierer

(10 Punkte)

a) (1)

25 UND-Gatter

b) 10 NAND-Gatter (1)

c)

-211	2 ¹⁰	29	28	27	26	2 ⁵	24	2 ³	2 ²	21	20
							a_0b_4	a_0b_3	a_0b_2	a_0b_1	a_0b_0
					1	a_1b_4	a_1b_3	a_1b_2	a_1b_1	a_1b_0	
					a_2b_4	a_2b_3	a_2b_2	a_2b_1	a_2b_0		
				a_3b_4	a_3b_3	a_3b_2	a_3b_1	a_3b_0			
			a_4b_4	a_4b_3	a_4b_2	a_4b_1	a_4b_0				
		$\overline{a_5b_4}$	$\overline{a_5b_3}$	$\overline{a_5b_2}$	$\overline{a_5b_1}$	$\overline{a_5b_0}$					
1	$a_{5}b_{5}$	$\overline{a_4b_5}$	$\overline{a_3b_5}$	$\overline{a_2b_5}$	$\overline{a_1b_5}$	$\overline{a_0}\overline{b_5}$					

d) (4)

Schritt 1

							X	X	X	X	X
					X	X	X	X	X	X	
					X	X	X	X	X		
				X	X	X	X	X			
			X	X	X	X	X				
		X	X	X	X	X				·	·
X	X	X	X	X	X	X				·	·

Schritt 2

						X	X	X	X	X	X
				X	X	X	X	X	X		
				X	X	X	X	X			
	X	X	X	X	X	X					
X	X	X	X	X	X						

Schritt 3

			X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X			
X	X	X	X	X	X	X					

Abschlussaddition

	X	X	X	X	X	X	X	X	X	X	X
X	X	X	X	X	X		X	X			

Aufgabe 6: Beschreibung einer FSM

(12 Punkte)

a), b) (2), (6)

(4) c)

Befehl	OPC3	OPC2	OPC1
unbedingte Verzweigung	0	1	0
Sprung in Unterprogramm	1	1	0
Reset	0	0	0
bedingter Sprung	1	0	1

Aufgabe 7: A/D-Wandlung mit dem Mikrocontroller ADuC832 (10 Punkte)

(3) a) Add48:

mov A,R0 add A,#48 mov R0,A

ret

b) (4) Divider:

> mov A,R1 rrc A

mov R1,A

mov A,R0

rr A

mov ACC.7,C

mov R0,A

ret

c) (3)

Senden:

warten:

jnb TI, warten

clr TI

mov SBUF, A

ret

Aufgabe 8: Programmierung der seriellen Schnittstelle im 8051 (10 Punkte)

(3) a)

	Bit 7							Bit 0
SCON	0	1	1/X	1	X	X	0	0
TCON	X	1	X	X	X	X	X	X
TMOD	0	0	1	0	X	X	X	X
IE	1	X	X	1	0	X	X	X

Überlaufrate von Timer 1 im Autoreload-Modus: $\frac{f_{osc}}{12} \cdot \frac{1}{256 - \text{TH1}}$

Wegen SMOD = 1 werden die Timer 1-Überläufe durch 16 dividiert

$$\Rightarrow \text{ Baudrate} = \frac{f_{osc}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256 - \text{TH1}}$$

aufgelöst nach TH1: TH1 =
$$256 - \frac{10 \text{ MHz}}{12 \cdot 16 \cdot 600 \text{ bit/s}} = 169,19 \approx 169$$

c) tatsächliche Baudrate:
$$\frac{10 \text{ MHz}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256 - 169} = 598,66 \text{ Baud}$$

rel. Fehler:
$$\frac{600 - 598,66}{600} = 2,23 \cdot 10^{-3}$$

(2)

Minimale Baudrate: TH1 = 0 \Rightarrow Baudrate = $\frac{10 \text{ MHz}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256} = 203,45 \text{ Baud}$

Aufgabe 9: Digitale Signalprozessoren

(10 Punkte)

(4) a)

Register	nach Befehl 1	nach Befehl 2
R1	\$ 0000	\$ 0003
X0	\$ 300000	\$ 300000
R6	\$ 0001	\$ 0001
Y0	\$ 000001	\$ C00000

b) (6)

Inhalte der Register vor MAC-Operation:

X0: \$200000 = 0010000...000_b =
$$\frac{1}{4}$$

Y0:
$$EC0000 = 11101100...0000_b = -1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{32} = -\frac{5}{32}$$

A: $\$00400000000000 = 000000001000000...0000_b = \frac{1}{2}$

MAC-Operation:

$$A + X0 \cdot Y0 = \frac{1}{2} - \frac{1}{4} \cdot \frac{5}{32} = \frac{59}{128} = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{64} + \frac{1}{128} = 001110110000...0000_b = \$3B0...0$$

Ergebnis:

A2	A1	A0
\$ 00	\$ 3B0000	\$ 000000

Aufgabe 10: Schaltungsbeschreibung mit VHDL

(10 Punkte)

```
ENTITY Automat is
 PORT (clk, res: IN std_logic;
       ein:
                 IN
                     std_logic_vector (1 downto 0);
                 OUT std_logic_vector (1 downto 0)
       aus:
      );
END Automat;
```

```
b)
                                                                  (5)
     FSM: PROCESS (akt_zust, ein)
     BEGIN
       case akt_zust IS
         WHEN SO =>
           CASE ein IS
             WHEN "00" => folg_zust <= $0;
             WHEN "01" => folg_zust <= $3;
             WHEN "10" => folg_zust <= $1;
             WHEN "11" => folg_zust <= $2;
             WHEN others => folg_zust <= null;
           END CASE;
         WHEN S1 =>
           CASE ein IS
             WHEN "00"
                         => folg_zust <= S0;
             WHEN "10" => folg_zust <= S2;</pre>
             WHEN others => folg_zust <= S1;
           END CASE;
         WHEN S2 =>
           CASE ein IS
             WHEN "00"
                       => folg_zust <= S1;
             WHEN "01" => folg_zust <= S1;
             WHEN others => folg_zust <= S3;
           END CASE;
         WHEN S3 =>
           CASE ein IS
             WHEN "01" => folg_zust <= $0;
                         => folg_zust <= S0;
             WHEN "11"
             WHEN others => folg_zust <= S3;
           END CASE;
         WHEN others => folg_zust <= S0;
       END CASE;
     END PROCESS FSM;
c)
                                                                  (2)
     AUSGABE: PROCESS (akt_zust)
     BEGIN
       CASE akt_zust is
         WHEN SO => aus <= "00";
         WHEN S1
                     => aus <= "11";
                     => aus <= "01";
         WHEN S2
         WHEN S3
                     => aus <= "10";
         WHEN others => aus <= "00";
       END CASE;
     END PROCESS AUSGABE;
```