Chapter 22

Six Wedges to Curing Disease

病気治療の6つの楔

Michael E. Hochberg

BEAS | biological etiological agents

生物学的 病因学的 作用因子

寄生生物、病原体、がん細胞など

The Magic Bullet

【魔法の弾丸】標的のBEAのみに効き、病気を治す特効薬 多くの臨床医の究極の目標

直感的には"hit hard and fast"が効果的な手法だが、 他の手法も含め、議論の余地あり

また、個体を治すことができる方法であっても、 個体群にとっては最適でないかもしれない

薬剤耐性の変異株が出現し、広がったりする

Curing Disease Is an Ecological Problem

病気の治療は生態学的問題

ヒトの健康にとって最大の脅威となる病気の中には、 寄生体によって引き起こされるものがある

microparasite:ウイルス、細菌、原虫(細胞内寄生)

macroparasite:寄生ぜん虫 (細胞外寄生)

microparasite 個体数が大きく、急速な進化的反応のポテンシャルあり

大きく多様な個体群に薬剤を投与した場合、 薬の投与に対する反応は、感性・耐性サブ個体群への 絶対的 (growth)・相対的 (selection) 影響によって いくらか決定される

耐性が遺伝子発現に依存していると仮定すると、 化学療法が成功するか失敗するかの理解には、 環境(より一般的に生態学)を組み込む必要がある 個体内の疾病管理は、生態学的問題である

しかし、そのように見られることはほとんどない

ほとんどの場合、 治療(主に薬剤)とBEAの直接的関係に注目

治療成功→薬剤がBEAの除去に貢献した 治療失敗→薬剤の選択・用量・投与スケジュールを誤っていた 耐性株が存在した

環境という観点が欠落している

実際に、陸上や水中で見られる関係と同様なものが 疾病個体の中でも見られている 種間・種内競争、資源制約、共生、facilitation、捕食 このchapterでは、 (BEAsと薬を含む)
disease ecosystemにおける 生物・非生物的相互作用を 組み込むフレームワークを論じる

- このコンセプトについて簡単に議論
- 治療失敗に関係するメカニズムについていくつか提示 すべてBEAのclonal escapeに関係
- clonal escapeを組み入れた治療成功の閾値を、単純な数式で定式化
- evolutional rescueとcompetitive releaseを議論
- 疾病管理のための6つの相補的な戦略 ("wedges")を提案

主に細菌性病原体, マラリア原虫. HIV, ガンを参照している。それぞれの特徴はTable 1にまとめてある

The Disease Ecosystem

疾病生態系

出生、成長、生残

個体間·個体群間相互作用

- 捕食(免疫システム)
- ・協力(細胞間シグナル伝達など)
- ・直接的競争 間接的競争(資源制約:宿主細胞、ブドウ糖、酸素など)
- 資源補充 resource replenishment (血管形成)
- 腐食(食作用)
- ・外部からの介入(治療)

Figure 1 ガンのdisease ecosystem

腫瘍細胞は、 酸素とブドウ糖を十分利用でき、 十分な空間がある限り成長できる

お互いおよび周囲の健常な上皮細胞と競争 細胞間距離が近いほど、 毛細血管からの離れているほど 競争は強くなる

十分な資源がないと、壊死する

ストレス環境下では、血管系にシグナルを送り、 腫瘍内に毛細血管を伸ばさせる

免疫反応(食細胞やリンパ球)により捕食される

非自己のBEAs (HIV、細菌性病原体、マラリア原虫など) でも同様

Figure 1は BEAsと宿主細胞の局所的な相互作用が中心になっているが、 より現実的には 局所的および大域的な相互作用も含まれる (免疫、ホルモン、他の病気、宿主の健康や行動)

感染症の場合は、外部環境との相互作用も

BEAsの間のdisease ecosystemの違いや共通点を知ることは 病気を治す方法の理論や予測の発展に貢献する

BEA Escape

治療失敗の主な原因はBEA escapeである(誤診などを除く)

BEA escapeの起きる仕組み

- ・BEAが不活性化または休眠状態になる
- ・受容体の感受性の低下などにより耐性をもつ
- ・薬剤の修飾などにより、直接的に抵抗する
- ・空間的なrefugiaや積極的な逃避
- ・高い変異率(もともと高い、または選択された)

これらは体外での実験により推測されており、 これらメカニズムの、治療失敗における詳細な役割については ほとんど分かっていない

A Simple Criterion

化学療法の第一の目的は、 疾病の影響を永続的に和らげるまたは取り除くために BEAsに作用すること

系がとても複雑である可能性があり、結末の予測は難しい

BEA個体群の成長速度を0以下に減らすなどの単純な閾値は、 化学療法が成功するか失敗するかの理解において あまり役に立たないかもしれない

それよりも、 重要な現象であるBEA escapeを組み込んだモデルが この問題に洞察を与えるかもしれない 無性・半倍数体のBEA n株 を想定

株の感受性が含まれる

株iにおける

 $N_{i,t}$:現在の個体群サイズ λ_i :最大成長速度

 f_i :密度依存的制約 (競争や捕食) φ_i :化学療法による出生の減少

もっとも多い株iの初期個体群サイズ $N_{i,0}$ は大きいと仮定

微小時間 Δ 後の株iの個体数は $N_{i,t+\Delta}$ = $\lambda_i \varphi_i f_{i,t} \{N_{i,t}\} N_{i,t}$

化学療法開始後すぐに、密度依存性は無視できるようになると仮定治療を開始してから $x\Delta$ 時間後の株i個体数は $N_{i,t+x\Delta} = (\lambda_i \phi_i)^x N_{i,0}$

すべてのiで $\varphi_i < 1/\lambda_i$ なら、個体群密度は減少する 治療成功とされる目標密度 T 未満に個体群を制御できる閾値は $W=\Sigma_i(\lambda_i \ \varphi_i)^x \ N_{i,0} < T$ $W = \Sigma_{i}(\lambda_{i} \varphi_{i})^{x} N_{i,0} < T$

治療初期は、目的関数 W < T を達成できるかもしれない 単にrefuge個体群が小さく、感知できるほどの成長も見られないため

refuge個体群を十分抑えることができなかったら、 個体群は再び多くなり、閾値が変わるかもしれない

このモデルは単純化しすぎであり、 より現実的な密度依存的な相互作用などが 治療の結果に影響する可能性がある

複雑な関係の例:ガンにおける先住効果

Rescue and Release

disease ecosystemを組み込んだ枠組みを提案する前に 治療失敗の理解に有用な2つの現象について説明する

evolutionary rescue 進化的救助

competitive release 競合解放

evolutionary rescue 進化的救助

薬剤は、感受性個体群を絶滅させる

しかし、耐性変異が存在、出現していたら その変異は個体群を"救助"する Gonzalez et all 2013

(BEAの可塑性や空間的レフュージア、不十分な投与量などにより)

- ・薬剤が感受性個体群の一部のみに影響する場合
- ・初期段階で根絶できなかった場合
- →薬剤抵抗性の進化が起きうる

BEA個体群サイズが小さく、変異も少なかったら、 高用量投与での治療が最善であるだろう

competitive release 競合解放

個体群は限られた空間や資源を巡り競争している

薬剤による競争相手の減少は、耐性個体群の成長に貢献する Greene & Reid 2013

competitive releaseは、disease ecosystemの文脈においてあまり理解が進んでいない

competitive release (とevolutionary rescue) の危険の1つ 拡大した耐性個体群が、

- ・補償的形質を進化させたり MacLearn et al. 2010; Schulz et al. 2010
- ・適応度を増加させる形質を獲得したりすること Ding et al. 2012

Ecological and Evolutionary Wedges to Vanquish Disease

慣例的な常識:hit hard and fast

主な制約は、毒性(副作用)と費用 失敗したときのリスクは、感染症なら耐性株の伝播

disease ecologyに基づいた枠組みに組み込む必要がある

治療を改善するであろう6つの変数・戦略 (wedges) を説明する

- 1. Dosing 投薬
- 2. Combination therapies 併用治療
- 3. Increasing the costs of resistance 耐性のコストを増加させる
- 4. Dynamic agents 動的作用因子
- 5. Tweaking different interactions in the disease ecosystem 相互作用の調節
- 6. Adapt to the situation 状況への順応

1. Dosing 投薬

薬剤は体内において静的でない 不均一に分布し、修飾・不活性化され、排出される

薬物動態学 pharmacokinetics

- ・パルス的な投薬
 - →耐性クローンを含む腫瘍を制御できる Foo et al. 2012
- ・免疫反応が終了するまで高用量投与
 - →低用量投与より効果的 Ankomah & Levin 2014; but see Day & Read 2016
- ・投与量は、最も適応度の高いクローンの成長を弱める以上に するべきでない Akhmetzhanov & Hochberg 2015 そうでなければ、完全な耐性を持つクローンが出現し、治療失敗に終わる可能性が高い

2. Combination therapies 併用治療

複数の治療作用因子を用いる

- ・escapeを失敗させることができる e.g. Fitzgerald et al. 2006 1種類だけ使用する場合に比べ、広範囲の個体群に効果がある
- ・効果を最大化するように、順番やスケジュール、用量を調節できる 個別のときより用量を少なくでき、治療の毒性(副作用)を抑えることができる

3. Increasing the costs of resistance 耐性のコストを増加させる

耐性のコストを増加させることで、治療の結果を改善させる

感受性BEAsにより、耐性個体群を**競合的に**制御・根絶させる

ガンの化学療法 "fake drugs" Enriquez-Navas et al. 2015

4. Dynamic agents 動的作用因子

薬剤の特異性は、欠点でもある(効く範囲が狭く耐性を選択しまう)

"生きた作用因子"の多様性を利用する 耐性の進化や、すでに進化した複数薬剤耐性を克服できる可能性

病原性細菌 vs 溶菌性ファージ Pirnay et al. 2011; Viertel et al. 2014 腫瘍溶解性ウイルス Russell et al. 2012 無発病性BEA株を用いた"トロイの木馬"戦略 Brown et al. 2009

dynamic agents の最大の利点:自己増殖と耐性株への適応

カクテル療法との併用、予防的治療などにも利用可能

5. Tweaking different interactions in the disease ecosystem disease ecosystemにおける相互作用の調節

disease ecosystemに介入することで、 BEAsへの治療の影響を大きくする方法が多数ある

例えば、免疫システム(捕食)への介入 悪性細胞への対抗 e.g. Childs & Carlsten 2015 BEAsの定着の防止 Eriksson et al. 2009

その他、多様な要因もターゲットにできる 資源、微生物叢 microbiome、細胞間協力など

6. Adapt to the situation 状況への順応

慣例的アプローチ:症状やEBAの特定、患者の特徴などの情報をもとに、 1回限りの治療法を考案

初期症状や得られ続けている情報を用いて疾病動態を予測し、 治療法を順応させるアプローチ

ガン → adaptive therapy
ファージ治療 → 既製品(prêt-à-porter)アプローチと
オーダーメイド(sur measure)アプローチ
研究室内でファージを進化させてから治療に使う

治療開始前にPlan Bを評価しておくことは賢明だろう

失敗したときのPlan BのないリスキーなPlan Aより、 進化生態学的に賢明なPlan Bを持つ、より攻撃的でなく作用の遅いPlan Aの方がよいかもしれない

The Greater Community

これまで見てきたアプローチは、 個体内のdisease ecologyに注目している

感染症の場合、少なくとも次の2つの理由から 個体群を考慮しなければならない

- ・短期的には、治療失敗は感受性株、悪い場合は耐性株の 伝播につながる
- ・長期的には、大きい個体群おける1種類の抗菌剤の使用は、 必ず耐性株の選択・拡散につながる

Heesterbeek et al. (2015)により、フレームワークが提案されている

今回示したwedgesも、疾病コントロール・根絶方策の一部を成すだろう

とはいえ、

個々の患者を治そうとすることが、集団にとって最適なのか? 集団レベルの最適プログラムが、治るはずの患者が治らないという結果を どの程度もたらすのか?

を理解するための研究が必要

まとめ

病気の治療が成功するか失敗するか理解するためには、 進化生態学的な考えを組み込む必要 disease ecology、BEAs escape、evolutionary rescue、competitive releaseなど

今回、進化生態学な考えに基づき、6つのwedgesを提案した

disease ecologyは複雑で、どの治療アプローチをとるかの決定は難しいが、 このwedgesは頑健な治療法となるだろう