GRAPH COLOURING PROBLEM

 \longrightarrow

OPTIMIZATION METHODS - II

-Dikshant Joshi

- Overview
- Application of Graph Coloring Problem
- Problem Statement
- Algebraic Formulation
- Modelling using Python
- Modelling using Excel
- Results

OVERVIEW

- The graph coloring problem is a well-known problem in computer science and graph theory.
- It is the problem of assigning colors to the vertices of a graph such that no two adjacent vertices have the same color, while using the fewest number of colors possible

APPLICATION OF GCP

- Timetabling
- Register allocation
- Airline Scheduling

Note: Graph coloring problem is NP Hard . This means that there is no known algorithm that can solve it in polynomial time for all instances

PROBLEM STATEMENT

- There are 6 nodes in a graph given and we need to colour these node in a way that adjacent nodes do not have same colour.
- The adjacency matrix is shown in the below graph which tells if two nodes are connected (1) or not(0).
- Based on the given problem we need to find optimum number of colors required to color the nodes of the graph

	0	1	2	3	4	5
0	0	1	0	0	1	1
1	1	0	0	1	1	0
2	0	0	0	1	1	0
3	0	1	1	0	0	0
4	1	1	1	0	0	1
5	1	0	0	0	1	0

Xij

Decision Variables

- Yj: a binary variable that indicates whether color j has been used or not (1 if used, 0 otherwise)
- » Xij: a binary variable that indicates whether node i is colored with color j or not

Objective Function:

» Minimize $Z: \sum_i Y_i$ $i \in \mathbb{N}$,

Where N is the set of all nodes.

	0	1	2	3	4	5
0	O	0	0	0	0	0
1	O	O	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

$$\sum_{j} X_{ij} = 1$$
 for all i

Constraints

$$\sum_{j} X_{ij} = 1$$
 for all i

Constraints

$$\sum_{j} X_{ij} = 1$$
 for all i

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

$$\sum_{j} X_{ij} = 1$$
 for all j

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

» Each node should have only one color:

$$\sum_{j} X_{ij} = 1$$
 for all j

» Adjacent nodes must have different color:

$$X_{ik} + X_{jk} \le 1$$
 for all $A_{ij} = 1$, $k \in \mathbb{N}$ where A is adjacency matrix

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

» Each node should have only one color:

$$\sum_{j} X_{ij} = 1$$
 for all j

» Adjacent nodes must have different color:

 $X_{ik} + X_{jk} \le 1$ for all $A_{ij} = 1$, $k \in \mathbb{N}$ where A is adjacency matrix

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

» Each node should have only one color:

$$\sum_{j} X_{ij} = 1$$
 for all j

$$X_{ik} + X_{jk} \le 1$$
 for all $A_{ij} = 1$, $k \in \mathbb{N}$ where A is adjacency matrix

$$\sum_{i} X_{ij} \ll n * Y_{j}$$
 for all j

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

» Each node should have only one color:

$$\sum_{j} X_{ij} = 1$$
 for all j

$$X_{ik} + X_{jk} \le 1$$
 for all $A_{ij} = 1$, $k \in \mathbb{N}$ where A is adjacency matrix

$$\sum_{i} X_{ij} \ll n * Y_{i}$$
 for all j

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

» Each node should have only one color:

$$\sum_{j} X_{ij} = 1$$
 for all j

$$X_{ik} + X_{jk} \le 1$$
 for all $A_{ij} = 1$, $k \in \mathbb{N}$ where A is adjacency matrix

$$\sum_{i} X_{ij} \ll n * Y_{i}$$
 for all j

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Constraints

» Each node should have only one color:

$$\sum_{j} X_{ij} = 1$$
 for all j

$$X_{ik} + X_{jk} \le 1$$
 for all $A_{ij} = 1$, $k \in \mathbb{N}$ where A is adjacency matrix

$$\sum_{i} X_{ij} \ll n * Y_{i}$$
 for all i

	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

MODELLING USING PYTHON

```
# Define the adjacency matrix for the graph with 5 nodes
adj_matrix = np.array([[0, 1, 0, 0, 1, 1],
                       [1, 0, 0, 1, 1, 0],
                       [0, 0, 0, 1, 1, 0],
                       [0, 1, 1, 0, 0, 0],
                       [1, 1, 1, 0, 0, 1],
                       [1, 0, 0, 0, 1, 0]])
# Define the number of nodes
num nodes = 6
# Define the decision variable
#Boolean variables y[j] that colour j is used or not
#Assumption: we have n number of colours available where n = nodes
v = cp.Variable(num nodes, boolean=True)
#Boolear variable array X[i,j] that node i is coloured with colour j or not
x = cp.Variable((6,num nodes), integer=True)
# Define the objective function
obj = cp.Minimize(cp.sum(y))
# Define the constraints
#This allows to have only one color per node
constraints = []
for i in range(num nodes):
   for j in range(num nodes):
       constraints.append(x[i, j] >= 0)
   constraints.append(cp.sum(x[i, :]) == 1)
#This allows the adjacent node to have different colors
for i in range(num_nodes):
   for j in range(num_nodes):
       if adj matrix[i, j] == 1:
            for k in range(num nodes):
                constraints.append(x[i, k] + x[j, k] \leftarrow 1)
#This constraint is indirectly ensuring that if a colour is used to colour a node than it should reflect in the array y.
constraints.append(cp.sum(x, axis=0) <= num nodes * y)
```

```
# Solve the problem
problem = cp.Problem(obj, constraints)
problem.solve(solver=cp.GLPK_MI)

# Print the solution
print("Minimum number of colors:", int(obj.value))
print("Node colors:")
print(np.argmax(x.value, axis=1))
```


Minimum number of colors: 3 Node colors:

[2 3 3 2 4 3]

The Optimum Number of colours for this Graph colouring problem is : 3

With colours as:

0	1	2	3	4	5
2	3	3	2	4	3

MODELLING USING EXCEL

	Nodes	0	1	2	3	4		5		
	Color	2						0		
	Max colors	6	6	6	6	6		6		
									Minimize sum	4
Constraints										
	Each adjacent						ABS(Color			
	node should						of 2nd -			
	have different					Color of				
	colour			2nd Node	1st node	2nd node	1st)	>=	_	
	•	Node 1		1	0			2 >=	1	
	Hodeo	Node 4		4	1			1 >=	1	
	49.	Node 5						2 >=	1	
	~	Node 0						2 >=		
	Node 1	Node 4						1 >=		
		Node 3	1	3	1	. 0		1 >=	1	
	, v	Node 3	2	3	1	. 0		1 >=	1	
	Node 2	Node 4	2	4	1	. 0		1 >=	1	
	Hode 3	Node 2	3	2	0	1		1 >=	1	
	40	Node 1	. 3	1	0	1		1 >=	1	
		Node 1	4	1	0	1		1 >=	1	
	, e A	Node 2	4	2	0	1		1 >=	1	
	Hode a	Node 0	4	0	2	. 1		1 >=	1	
		Node 5	4	5	0	1		1 >=	1	
	્રહ	Node 0	5	0	2	. 0		2 >=	1	
	Modes	Node 4	- 5	4	1	. 0		1 >=	1	
				Y matrix						
Colour	0	_		_				6	No. of colors used	
Used or not	1	1	1	0	0	0		0	3	

Se <u>t</u> Obje	ctive:		\$K\$6	\$K\$6				
To:	<u>М</u> ах	○ Mi <u>n</u>	○ <u>V</u> alue Of:	0				
By Chan	ging Variable (Cells:						
\$C\$3:\$H	1\$3							
S <u>u</u> bject t	to the Constrai	nts:						
\$C\$3:\$H	I\$3 <= \$C\$4:\$ I\$3 = integer I\$24 >= \$J\$9:							
✓ Ma <u>k</u> e Unconstrained Variables Non-Negative								
S <u>e</u> lect a : Method:		GRG Nonlinear						

Nodes	0	1	2	3	4	5
Color	2	0	0	1	1	0
No. of colors used						
	3					

The Optimum Number of colours for this Graph colouring problem is : 3
With colours as:

0	1	2	3	4	5
2	0	0	1	1	0

