FMI, Mate, Anul I Logică matematică

Nume:	Examen
Prenume:	
Grupa	

P1	P2	P3	P4	P5	P6	P7	P8	P9	Oficiu	TOTAL
/1	/2	/1	/1	/1	/1,5	/1,5	/3	/2	1	/15

1 Teoria multimilor

(P1) [1 punct] Fie α un cardinal infinit și β un cardinal nenul astfel încât $\beta \leq \alpha$. Demonstrați că $\alpha \cdot \beta = \alpha$.

Demonstrație: Din Propoziția 2.26.(iv),(iii) și Propoziția. 2.27, obținem că

$$\alpha \le \alpha \cdot \beta \le \alpha \cdot \alpha = \alpha.$$

Deci, $\alpha \leq \alpha \cdot \beta$ și $\alpha \cdot \beta \leq \alpha$. Aplicând Teorema Cantor-Schröder-Bernstein, rezultă că $\alpha \cdot \beta = \alpha$.

(P2) [2 puncte] Fie α un cardinal infinit şi β un cardinal astfel încât $2 \leq \beta \leq 2^{\alpha}$. Demonstrați că $\beta^{\alpha} = 2^{\alpha}$.

Demonstrație: Deoarece $2 \le \beta$, aplicăm Propoziția 2.35.(ii) pentru a obține că $2^{\alpha} \le \beta^{\alpha}$. Avem, de asemenea, că

$$\beta^{\alpha} \leq (\mathbf{2}^{\alpha})^{\alpha}$$
 din ipoteză și Propoziția 2.35.(ii)
= $\mathbf{2}^{\alpha \cdot \alpha}$ din Propoziția 2.35.(i)
= $\mathbf{2}^{\alpha}$ conform Propoziției 2.27.

Aplicăm acum Teorema Cantor-Schröder-Bernstein pentru a obține că $\beta^{\alpha} = 2^{\alpha}$.

(P3) [1 punct] Fie $a,b \in \mathbb{R}, a < b$. Demonstrați că

$$|(a,b)| = |[a,b)| = |(a,b]| = |[a,b]| = \mathfrak{c}.$$

Demonstrație: Conform (S2.4), $|(a,b)| = \mathfrak{c}$. Avem că

$$\begin{split} |[a,b)| &= |(a,b) \cup \{a\}| = |(a,b)| + |\{a\}| = \mathfrak{c} + \mathbf{1} = \mathfrak{c} \\ |(a,b]| &= |(a,b) \cup \{b\}| = |(a,b)| + |\{b\}| = \mathfrak{c} + \mathbf{1} = \mathfrak{c} \\ |[a,b]| &= |(a,b) \cup \{a,b\}| = |(a,b)| + |\{a,b\}| = \mathfrak{c} + \mathbf{2} = \mathfrak{c}. \end{split}$$

2 Logica propozițională

(P4) [1 punct] Reamintim că $V = \{v_n \mid n \in \mathbb{N}\}$ este mulțimea variabilelor din logica propozițională. Fie $W := \{v_{2n} \mid n \in \mathbb{N}\}$. Să se demonstreze că W este numărabilă.

Demonstrație: Fie $2\mathbb{N}$ mulțimea numerelor pare. Deoarece $f: \mathbb{N} \to 2\mathbb{N}$, f(n) = 2n este o bijecție, rezultă că $2\mathbb{N}$ este numărabilă. Fie

$$g: 2\mathbb{N} \to W, \ g(2n) = v_{2n}.$$

Cum g este bijecție, obținem că W este de asemenea numărabilă.

(P5) [1 punct] Arătați că pentru orice formule φ , ψ , χ , avem:

$$\varphi \to (\psi \lor \chi) \sim (\varphi \to \psi) \lor (\varphi \to \chi).$$

Demonstrație: Fie $e: V \to \{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \lor \chi)) = e^+((\varphi \to \psi) \lor (\varphi \to \chi)),$$

deci că

$$e^{+}(\varphi) \to (e^{+}(\psi) \vee e^{+}(\chi)) = (e^{+}(\varphi) \to e^{+}(\psi)) \vee (e^{+}(\varphi) \to e^{+}(\chi)).$$

Avem cazurile:

(i) $e^+(\varphi) = 1$. Atunci

$$\begin{split} e^+(\varphi) & \rightarrow (e^+(\psi) \vee e^+(\chi)) &= 1 \rightarrow (e^+(\psi) \vee e^+(\chi)) = e^+(\psi) \vee e^+(\chi) \\ (e^+(\varphi) \rightarrow e^+(\psi)) \vee (e^+(\varphi) \rightarrow e^+(\chi)) &= (1 \rightarrow e^+(\psi)) \vee (1 \rightarrow e^+(\chi)) \\ &= e^+(\psi) \vee e^+(\chi). \end{split}$$

(ii) $e^+(\varphi) = 0$. Atunci

$$\begin{array}{rcl} e^+(\varphi) \to (e^+(\psi) \ \mathsf{V} \ e^+(\chi)) & = & 0 \to (e^+(\psi) \ \mathsf{V} \ e^+(\chi)) = 1 \\ (e^+(\varphi) \to e^+(\psi)) \ \mathsf{V} \ (e^+(\varphi) \to e^+(\chi)) & = & (0 \to e^+(\psi)) \ \mathsf{V} \ (0 \to e^+(\chi)) = 1 \ \mathsf{V} \ 1 = 1. \end{array}$$

(P6) [1,5 puncte] Fie φ , $\psi \in Form$. Să se arate sintactic:

$$\vdash (\varphi \land \psi) \rightarrow (\psi \land \varphi).$$

Demonstrație: Avem:

(P7) [1,5 puncte] Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulţime finită de formule. Demonstrați următoarele:

(i) Pentru orice formulă ψ ,

$$\Gamma \vdash \psi$$
 dacă și numai dacă $\vdash \varphi_1 \land \ldots \land \varphi_n \to \psi$ dacă și numai dacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.

(ii) Γ este consistentă dacă şi numai dacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Demonstraţie:

(i) Avem că

$$\begin{split} \Gamma \vdash \psi &\iff \{\varphi_1, \dots, \varphi_n\} \vdash \psi \\ &\iff \vdash \varphi_1 \to (\varphi_2 \to \dots \to (\varphi_n \to \psi) \dots) \quad \text{aplicăm Teorema deducției de n ori} \\ &\iff \vdash \varphi_1 \land \dots \land \varphi_n \to \psi \\ &\qquad \qquad \varphi_1 \to (\varphi_2 \to \dots \to (\varphi_n \to \psi) \dots) \sim \varphi_1 \land \dots \land \varphi_n \to \psi \text{ și Propoziția 3.56} \\ &\iff \{\varphi_1 \land \dots \land \varphi_n\} \vdash \psi \quad \text{aplicăm Teorema deducției.} \end{split}$$

(ii) Γ este inconsistentă ddacă $\Gamma \vdash \bot$ (conform Propoziției 3.59) ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \bot$ (din (i)) ddacă $\{\varphi_1 \land \ldots \land \varphi_n\}$ este inconsistentă.

(P8) [3 puncte]

- (i) Să se aducă formula $\varphi := (v_3 \wedge v_1) \to ((\neg v_1 \to v_2) \wedge (v_3 \to \neg v_4))$ la FND şi FNC folosind transformări sintactice.
- (ii) Să se aducă formula $\psi := v_3 \to (\neg v_1 \leftrightarrow v_2)$ la FND și FNC folosind funcția booleană asociată.

Demonstrație:

(i) Avem

$$\varphi \sim (v_3 \wedge v_1) \rightarrow ((\neg \neg v_1 \vee v_2) \wedge (v_3 \rightarrow \neg v_4)) \quad \text{Pasul 1 (înlocuirea implicației)}$$

$$\sim (v_3 \wedge v_1) \rightarrow ((\neg \neg v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_4)) \quad \text{Pasul 1 (înlocuirea implicației)}$$

$$\sim \neg (v_3 \wedge v_1) \vee ((\neg \neg v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_4)) \quad \text{Pasul 1 (înlocuirea implicației)}$$

$$\sim \neg (v_3 \wedge v_1) \vee ((v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_4)) \quad \text{Pasul 2 (eliminarea dublei negații)}$$

$$\sim (\neg v_3 \vee \neg v_1) \vee ((v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_4)) \quad \text{Pasul 2 (de Morgan)}.$$

Obţinem FNC astfel:

$$\varphi \sim (\neg v_3 \vee \neg v_1) \vee ((v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_4))$$

$$\sim ((\neg v_3 \vee \neg v_1) \vee (v_1 \vee v_2)) \wedge ((\neg v_3 \vee \neg v_1) \vee (\neg v_3 \vee \neg v_4)) \quad \text{Pasul 3}$$

$$\sim (\neg v_3 \vee \neg v_1 \vee v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_1 \vee \neg v_3 \vee \neg v_4) \quad \vee \text{ asociativă}$$

Prin urmare,

$$\varphi^{FNC} = (\neg v_3 \lor \neg v_1 \lor v_1 \lor v_2) \land (\neg v_3 \lor \neg v_1 \lor \neg v_3 \lor \neg v_4).$$

Obţinem FND astfel:

$$\varphi \sim (\neg v_3 \vee \neg v_1) \vee ((v_1 \vee v_2) \wedge (\neg v_3 \vee \neg v_4))$$

$$\sim (\neg v_3 \vee \neg v_1) \vee ((v_1 \wedge \neg v_3) \vee (v_1 \wedge \neg v_4) \vee (v_2 \wedge \neg v_3) \vee (v_2 \wedge \neg v_4)) \quad \text{Pasul 3}$$

$$\sim \neg v_3 \vee \neg v_1 \vee (v_1 \wedge \neg v_3) \vee (v_1 \wedge \neg v_4) \vee (v_2 \wedge \neg v_3) \vee (v_2 \wedge \neg v_4) \quad \vee \text{ asociativă}$$
Prin urmare,

$$\varphi^{FND} = \neg v_3 \lor \neg v_1 \lor (v_1 \land \neg v_3) \lor (v_1 \land \neg v_4) \lor (v_2 \land \neg v_3) \lor (v_2 \land \neg v_4).$$

(ii) Alcătuim tabelul de valori al funcției asociate

$$F_{\psi}: \{0,1\}^3 \to \{0,1\}, \quad F_{\psi}(\varepsilon_1, \varepsilon_2, \varepsilon_3) = \varepsilon_3 \to (\neg \varepsilon_1 \leftrightarrow \varepsilon_2).$$

ε_1	ε_2	ε_3	$\neg \varepsilon_1$	$\neg \varepsilon_1 \leftrightarrow \varepsilon_2$	$F_{\psi}(\varepsilon_1, \varepsilon_2, \varepsilon_3)$	
1	1	1	0	0	0	$D_1 = \neg v_1 \lor \neg v_2 \lor \neg v_3$
1	1	0	0	0	1	$C_1 = v_1 \wedge v_2 \wedge \neg v_3$
1	0	1	0	1	1	$C_2 = v_1 \land \neg v_2 \land v_3$
1	0	0	0	1	1	$C_3 = v_1 \land \neg v_2 \land \neg v_3$
0	1	1	1	1	1	$C_4 = \neg v_1 \wedge v_2 \wedge v_3$
0	1	0	1	1	1	$C_5 = \neg v_1 \wedge v_2 \wedge \neg v_3$
0	0	1	1	0	0	$D_2 = v_1 \vee v_2 \vee \neg v_3$
0	0	0	1	0	1	$C_6 = \neg v_1 \land \neg v_2 \land \neg v_3.$

Aplicând raționamentul din demonstrațiile Teoremelor 3.74 și 3.75, obținem că:

$$\psi^{FND} = C_1 \vee C_2 \vee C_3 \vee C_4 \vee C_5 \vee C_6$$

este o formă normală disjunctivă a lui ψ și că

$$\psi^{FNC} = D_1 \wedge D_2$$

este o formă normală conjunctivă a lui ψ .

3 Logica de ordinul întâi

(P9) [2 puncte] Să se arate că pentru orice limbaj \mathcal{L} de ordinul I și orice formule φ , ψ ale lui \mathcal{L} , avem:

- (i) $\exists x(\varphi \land \psi) \vDash \exists x\varphi \lor \exists x\psi$, pentru orice variabilă x.
- (ii) $\exists x(\varphi \land \psi) \vDash \varphi \land \exists x\psi$, pentru orice variabilă $x \notin FV(\varphi)$.

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$.

(i) Obţinem $\mathcal{A} \vDash \exists x (\varphi \land \psi)[e]$

$$\Leftrightarrow \text{ există } a \in A \text{ a.î. } \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}]$$

$$\Leftrightarrow \ \text{există} \ a \in A \ \text{ a.î. } (\mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \ \text{și} \ \mathcal{A} \vDash \psi[e_{x \leftarrow a}])$$

$$\Rightarrow$$
 există $a \in A$ a.î. $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$ şi există $a \in A$ a.î. $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$

$$\Leftrightarrow \mathcal{A} \vDash (\exists x \varphi)[e] \text{ si } \mathcal{A} \vDash (\exists x \psi)[e]$$

$$\Rightarrow \mathcal{A} \vDash (\exists x \varphi)[e] \text{ sau } \mathcal{A} \vDash (\exists x \psi)[e]$$

$$\Leftrightarrow \quad \mathcal{A} \vDash (\exists x \varphi \lor \exists x \psi)[e].$$

(ii) Obţinem

$$\mathcal{A} \vDash \exists x (\varphi \land \psi)[e] \Leftrightarrow \text{există } a \in A \text{ a.i. } \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}]$$

$$\Leftrightarrow$$
 există $a \in A$ a.î. $(A \vDash \varphi[e_{x \leftarrow a}]$ și $A \vDash \psi[e_{x \leftarrow a}])$

$$\Leftrightarrow$$
 există $a \in A$ a.î. $(A \models \varphi[e]$ şi $A \models \psi[e_{x \leftarrow a}])$ conform Propoziției 4.21

$$\Leftrightarrow \quad \mathcal{A} \vDash \varphi[e] \text{ și există } a \in A \quad \text{a.î. } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]$$

$$\Leftrightarrow \mathcal{A} \vDash \varphi[e] \text{ si } \mathcal{A} \vDash \exists x \psi[e]$$

$$\Leftrightarrow \mathcal{A} \vDash (\varphi \land \exists x \psi)[e].$$