TITLE

$\begin{array}{c} {\rm Radu\ IOSIF\ \&\ Xiao\ XU} \\ from\ {\rm CNRS\ VERIMAG,\ FRANCE} \end{array}$

DATE

1 Alternating Data Automata

1.1 $Th(\mathcal{D})$

Given a possibly infinite data domain \mathcal{D} , we denote by $Th(\mathcal{D}) = \langle \mathcal{D}, f_1, f_2, ..., f_m \rangle$ the set of syntactically correct first-order formulae with function symbols $f_1, f_2, ..., f_m$.

1.2 $\mathcal{B}^{\mathcal{Q}}$

Denote by the symbol \mathcal{B} the two-element Boolean algebra $\mathcal{B} = (\{0,1\}, \vee, \wedge, \neg, 0, 1)$.

Let \mathcal{Q} be a set, then $\mathcal{B}^{\mathcal{Q}}$ is the set of all mappings from \mathcal{Q} to \mathcal{B} .

1.3 Definition

An Alternating Data Automaton (ADA) is a tuple $\mathcal{A} = \langle \mathcal{D}, \mathcal{X}, \Sigma, \mathcal{Q}, i, \mathcal{F}, g \rangle$ where [1]:

- \mathcal{D} is an initial data domain;
- $\mathcal{X} = \{x_1, x_2, ..., x_n\}$ is a set of variables;
- Σ is a finite alphabet of input events;
- Q is a finite set of states;
- $i \in \mathcal{Q}$ is an initial state;
- $\mathcal{F} \subseteq \mathcal{Q}$ is a set of final states;
- g is a function of \mathcal{Q} into the set of all functions of Σ into functions $\mathcal{D}^{\mathcal{X}} \times \mathcal{D}^{\mathcal{X}} \to (\mathcal{B}^{\mathcal{Q}} \to \mathcal{B}).$

We define $\mathbf{f} \in \mathcal{B}^{\mathcal{Q}}$ by the condition: $\mathbf{f}(q) = 1$ iff $q \in \mathcal{F}$.

Function g

For each $q \in \mathcal{Q}$, $a \in \Sigma$, $v \in \mathcal{D}^{\mathcal{X}}$, $v' \in \mathcal{D}^{\mathcal{X}}$, $u \in \mathcal{B}^{\mathcal{Q}}$, $\mathbf{g}(q)(a)(v,v')(u)$ is a Boolean combination of $u(q_t)$ and $\phi_t(v, v')$ where $q_t \in \mathcal{Q}$ is the successor of q with symbol a and $\phi_t \in Th(\mathcal{D})$.

In the cases where v' is not used, we write g(q)(a)(v)(u) instead of g(q)(a)(v,v')(u).

For example, we define an ADA $\mathcal{A} = \langle \mathcal{D}_{\mathcal{A}}, \mathcal{X}_{\mathcal{A}}, \Sigma_{\mathcal{A}}, \mathcal{Q}_{\mathcal{A}}, i_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}, g_{\mathcal{A}} \rangle$, where:

- $\mathcal{D}_{\mathcal{A}} = \mathcal{N}$;
- $\bullet \ \mathcal{X}_{\mathcal{A}} = \{x\};$
- $\Sigma_{\mathcal{A}} = \{a, b\};$
- $Q_A = \{q_0, q_1, q_2, q_3\};$
- $i_{\mathcal{A}} = q_0$;
- $\mathcal{F}_{\mathcal{A}} = \{q_0\};$

 $u(q_1) \wedge (x > 3 \wedge x' = x + 1) \vee$ q_0 $u(q_2) \wedge (x < 3 \wedge x' = x + 1) \vee$ $u(q_3) \wedge (x < 1 \wedge x' = x + 1)$ • g_A is given by: 0 q_1

 $u(q_0) \wedge x < 5$ 0 $u(q_0) \wedge x = 3$ q_2 0 $u(q_1) \wedge x = 0$ q_3

0

 $g(q_0)(a)(2,3)(f)$

=
$$f(q_1) \wedge (2 > 3 \wedge 3 = 2 + 1) \vee f(q_2) \wedge (2 < 3 \wedge 3 = 2 + 1) \vee f(q_3) \wedge (2 < 1 \wedge 3 = 2 + 1)$$

- $0 \land 0 \lor 0 \land 1 \lor 0 \land 0$
- $0 \lor 0 \lor 0$

$$g(q_1)(b)(4)(f)$$

$$= f(q_0) \wedge 4 < 5$$

- $1 \wedge 1$
- 1

1.5 Extension of Function g

Now we extend \boldsymbol{g} to $\mathcal{Q} \to ((\mathcal{D}^{\mathcal{X}} \times \Sigma)^* \times \mathcal{B}^{\mathcal{Q}} \to \mathcal{B})$. Giving $q \in \mathcal{Q}, w \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^*, u \in \mathcal{B}^{\mathcal{Q}}$, we have:

- If $w = \lambda$, then $\mathbf{g}(q)(w, u) = u(q)$;
- If $w = \langle v, a \rangle$ with $v \in \mathcal{D}^{\mathcal{X}}$ and $a \in \Sigma$, then $\mathbf{g}(q)(w, u) = \mathbf{g}(q)(a)(v)(u)$;
- If $w = \langle v, a \rangle \langle v', b \rangle w'$ with $v, v' \in \mathcal{D}^{\mathcal{X}}$ and $a, b \in \Sigma$ and $w' \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^*$, then $\mathbf{g}(q)(w, u) = \mathbf{g}(q)(a)(v, v')(u)_{[u(q_t)/\mathbf{g}(q_t)(\langle v', b \rangle w', u)]}$ where $q_t \in \mathcal{Q}$ is the successor of q with symbol a.

1.6 Acceptance of a Word

Let $\mathcal{A} = \langle \mathcal{D}, \mathcal{X}, \Sigma, \mathcal{Q}, i, \mathcal{F}, g \rangle$ be an ADA, a word $w \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^*$ is accepted by \mathcal{A} iff g(i)(w, f).

Let's take the example in last page, and we try the following words:

$$g(q_{0})(\langle v_{0}, a \rangle \langle v_{1}, b \rangle, \mathbf{f})$$

$$= g(q_{1})(\langle v_{1}, b \rangle, \mathbf{f}) \wedge (v_{0} > 3 \wedge v_{1} = v_{0} + 1)$$

$$\vee g(q_{2})(\langle v_{1}, b \rangle, \mathbf{f}) \wedge (v_{0} < 3 \wedge v_{1} = v_{0} + 1)$$

$$\vee g(q_{3})(\langle v_{1}, b \rangle, \mathbf{f}) \wedge (v_{0} < 1 \wedge v_{1} = v_{0} + 1)$$

$$= \mathbf{f}(q_{0}) \wedge v_{1} < 5 \wedge v_{0} > 3 \wedge v_{1} = v_{0} + 1$$

$$\vee \mathbf{f}(q_{0}) \wedge v_{1} = 3 \wedge v_{0} < 3 \wedge v_{1} = v_{0} + 1$$

$$\vee \mathbf{f}(q_{1}) \wedge v_{1} = 0 \wedge v_{0} < 1 \wedge v_{1} = v_{0} + 1$$

$$= 1 \wedge v_{1} < 5 \wedge v_{0} > 3 \wedge v_{1} = v_{0} + 1$$

$$\vee 1 \wedge v_{1} = 3 \wedge v_{0} < 3 \wedge v_{1} = v_{0} + 1$$

$$\vee 0 \wedge v_{1} = 0 \wedge v_{0} < 1 \wedge v_{1} = v_{0} + 1$$

$$= v_{1} < 5 \wedge v_{0} > 3 \wedge v_{1} = v_{0} + 1 \vee v_{1} = 3 \wedge v_{0} < 3 \wedge v_{1} = v_{0} + 1$$

$$= v_{1} < 5 \wedge v_{0} > 3 \wedge v_{1} = v_{0} + 1 \vee v_{1} = 3 \wedge v_{0} < 3 \wedge v_{1} = v_{0} + 1$$

$$= v_{1} = 3 \wedge v_{0} < 3 \wedge v_{1} = v_{0} + 1$$

$$= v_{0} = 2 \wedge v_{1} = 3$$

Therefore, the automaton \mathcal{A} accepts the word $\langle 2, a \rangle \langle 3, b \rangle$.

1.7 Language

The language accepted by an alternating automaton $\mathcal{A} = \langle \mathcal{D}, \mathcal{X}, \Sigma, \mathcal{Q}, i, \mathcal{F}, g \rangle$ is the set $\mathcal{L}(\mathcal{A}) = \{ w \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^* \mid g(i)(w, f) = 1 \}.$

1.8 Complementation

Let $\mathcal{A} = \langle \mathcal{D}, \mathcal{X}, \Sigma, \mathcal{Q}, i, \mathcal{F}, g \rangle$ be an ADA, we can now construct another ADA $\overline{\mathcal{A}} = \langle \mathcal{D}', \mathcal{X}', \Sigma', \mathcal{Q}', i', \mathcal{F}', g' \rangle$ such that $\mathcal{L}(\overline{\mathcal{A}}) = \overline{\mathcal{L}(\mathcal{A})}$:

- $\mathcal{D}' = \mathcal{D};$
- $\mathcal{X}' = \mathcal{X}$;
- $\Sigma' = \Sigma$;
- Q' = Q;
- i' = i:
- $\mathcal{F}' = \mathcal{Q} \mathcal{F}$ therefore for each state $q \in \mathcal{Q}$, f'(q) = 1 iff $q \in \mathcal{F}'$;
- For each $q \in \mathcal{Q}$, $a \in \Sigma$, $v \in \mathcal{D}^{\mathcal{X}}$, $v' \in \mathcal{D}^{\mathcal{X}}$, $u \in \mathcal{B}^{\mathcal{Q}}$, $u' \in \mathcal{B}^{\mathcal{Q}}$ and $u'(q) = \overline{u(q)}$, we have $\mathbf{g}'(q)(a)(v,v')(u') = \overline{\mathbf{g}(q)(a)(v,v')(u)_{[u(q_t)/\overline{u'(q_t)}]}}$ where $q_t \in \mathcal{Q}$ is the successor of q with symbol a.

Hence, for the extension of function g', we have:

- If $w = \lambda$, then: $\mathbf{g}'(q)(w, u') = u'(q)$;
- If $w = \langle v, a \rangle$ with $v \in \mathcal{D}^{\mathcal{X}}$ and $a \in \Sigma$, then: $\mathbf{g}'(q)(w, u') = \mathbf{g}'(q)(a)(v)(u') = \overline{\mathbf{g}(q)(a)(v)(u)_{[u(q_t)/\overline{u'(q_t)}]}}$ where $q_t \in \mathcal{Q}$ is a successor of q with symbol a;
- If $w = \langle v, a \rangle \langle v', b \rangle w'$ with $v \in \mathcal{D}^{\mathcal{X}}$, $v' \in \mathcal{D}^{\mathcal{X}}$, $a \in \Sigma$, $b \in \Sigma$ and $w' \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^*$, then: $\mathbf{g}'(q)(w, u') = \mathbf{g}'(q)(a)(v, v')(u')_{[u'(q_t)/\mathbf{g}'(q_t)(\langle v', b \rangle w', u')]} = \overline{\mathbf{g}(q)(a)(v, v')(u)_{[u(q_t)/\overline{\mathbf{g}'(q_t)(\langle v', b \rangle w', u')]}}}$ where $q_t \in \mathcal{Q}$ is the successor of q with symbol a.

Let's still take the example in previous pages, now we construct the $\overline{\mathcal{A}} = \langle \mathcal{D}', \mathcal{X}', \Sigma', \mathcal{Q}', i', \mathcal{F}', g' \rangle$ such that $\mathcal{L}(\overline{\mathcal{A}}) = \overline{\mathcal{L}(\mathcal{A})}$:

- $\mathcal{D}' = \mathcal{N}$;
- $\bullet \ \mathcal{X}' = \{x\};$
- $\Sigma' = \{a, b\};$
- $Q' = \{q_0, q_1, q_2, q_3\};$
- $i' = q_0$;
- $\mathcal{F}' = \{q_1, q_2, q_3\};$

		a	b
	q_0	$(u(q_1) \lor (x \le 3 \lor x' \ne x+1)) \land$	1
		$(u(q_2) \lor (x \ge 3 \lor x' \ne x+1)) \land$	
• g' is given by:		$(u(q_3) \lor (x \ge 1 \lor x' \ne x + 1))$	
	q_1	1	$u(q_0) \lor x \ge 5$
	q_2	1	$u(q_0) \lor x \neq 3$
	q_3	1	$u(q_1) \lor x \neq 0$

Therefore, the automaton \overline{A} does not accept the word $\langle 2, a \rangle \langle 3, b \rangle$.

$$\boldsymbol{g}'(q_0)(\lambda, \boldsymbol{f}') = \boldsymbol{f}'(q_0) = 0$$

Therefore, the automaton $\overline{\mathcal{A}}$ accepts the empty word.

References

[1] Grzegorz Rozenberg and Arto Salomaa. *Handbook of Formal Languages*. 1996.

A Length of a Word

The length of a word w is defined as below: length(w) = k iff $w \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^k$

Hence, $length(\lambda) = 0$.

B Proof of the Correctness of Complementation

It is same to prove $g(i)(w, f) = \overline{g'(i)(w, f')}$ with $w \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^*$:

• If $w = \lambda$, then for each $q \in \mathcal{Q}$:

$$g(q)(w, \mathbf{f})$$

$$= \mathbf{f}(q)$$

$$= q \in \mathcal{F}$$

$$= \overline{q \in \mathcal{F}'}$$

$$= \overline{\mathbf{f}'(q)}$$

$$= \overline{\mathbf{g}'(q)(w, \mathbf{f}')}$$

• If $w = \langle v, a \rangle$ with $v \in \mathcal{D}^{\mathcal{X}}$ and $a \in \Sigma$, then for each $q \in \mathcal{Q}$:

$$g(q)(w, \mathbf{f})$$

$$= g(q)(a)(v)(\mathbf{f})$$

$$= g(q)(a)(v)(\mathbf{f})_{[\mathbf{f}(q_t)/\overline{\mathbf{f}'(q_t)}]} \Leftrightarrow$$

$$= \overline{g(q)(a)(v)(\mathbf{f})_{[\mathbf{f}(q_t)/\overline{\mathbf{f}'(q_t)}]}}$$

$$= g'(q)(a)(v)(\mathbf{f}')$$

$$= g'(q)(w, \mathbf{f}')$$

 $\Diamond q_t \in \mathcal{Q}$ is the successor of q with symbol a.

Now, let's suppose that for each k-length non-empty $(k \ge 1)$ word $w' = \langle v', a' \rangle w''$ with $v' \in \mathcal{D}^{\mathcal{X}}$ and $a' \in \Sigma$ and $w'' \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^{k-1}$, we always have $g(q)(w', f) = \overline{g'(q)(w', f')}$, then for any (k+1)-length word $w = \langle v, a \rangle w' = \langle v, a \rangle \langle v', a' \rangle w''$ with $v \in \mathcal{D}^{\mathcal{X}}$ and $a \in \Sigma$, we can have:

$$g(q)(w, f) = g(q)(\langle v, a \rangle \langle v', a' \rangle w'', f)$$

$$= g(q)(a)(v, v')(f)_{[f(q_t)/g(q_t)(\langle v', a' \rangle w'', f)]}$$

$$= g(q)(a)(v, v')(f)_{[f(q_t)/g(q_t)(w', f)]}$$

$$= g(q)(a)(v, v')(f)_{[f(q_t)/\overline{g'(q_t)(w', f')}]}$$

$$= \overline{g(q)(a)(v, v')(f)_{[f(q_t)/\overline{g'(q_t)(w', f')}]}}$$

$$= \overline{g'(q)(a)(v, v')(f')_{[f'(q_t)/g'(q_t)(w', f')]}}$$

$$= g'(q)(w, f')$$

We already have $g(q)(w, f) = \overline{g'(q)(w, f')}$ when the length is 1. Therefore, we can have it for all the length $k \geq 1$.

Hence,
$$g(i)(w, f) = \overline{g'(i)(w, f')}$$
 with $w \in (\mathcal{D}^{\mathcal{X}} \times \Sigma)^*$.