IMIĘ i NAZWISKO (DRUKOWANE):	
Nr grudy:	40 pkt.

Kolokwium II – 3 lutego 2023 r. – Zestaw A

1. W zbiorze $\mathbb Z$ określono relację równoważności R:

$$xRy \iff x^4 \equiv y^4 \pmod{7}.$$

10 pkt.

Wyznacz klasy abstrakcji względem tej relacji.

Rozwiązanie: Wystarczy sprawdzić, do których klas należą liczby postaci 7k+i dla $i\in\{0,1,\ldots,6\}$. Otrzymujemy

$$[0] = \{x \in \mathbb{Z} \colon x^4 \equiv 0 \pmod{7}\} = \{7k \colon k \in \mathbb{Z}\},$$

$$[1] = [6] = \{x \in \mathbb{Z} \colon x^4 \equiv 1 \pmod{7}\} = \{7k + 1 \colon k \in \mathbb{Z}\} \cup \{7k + 6 \colon k \in \mathbb{Z}\},$$

$$[2] = [5] = \{x \in \mathbb{Z} \colon x^4 \equiv 2 \pmod{7}\} = \{7k + 2 \colon k \in \mathbb{Z}\} \cup \{7k + 5 \colon k \in \mathbb{Z}\},$$

$$[3] = [4] = \{x \in \mathbb{Z} \colon x^4 \equiv 4 \pmod{7}\} = \{7k + 3 \colon k \in \mathbb{Z}\} \cup \{7k + 4 \colon k \in \mathbb{Z}\}.$$

2. Rozwiąż układ kongruencji

$$\begin{cases} x \equiv 4 \pmod{9}, \\ 3x \equiv 2 \pmod{11}, \\ 6x \equiv 5 \pmod{29}. \end{cases}$$

10 pkt.

Rozwiązanie: Zacznijmy od rozwiązania ostatniej kongruencji. Ponieważ $6\cdot 5\equiv 1\pmod{29},$ to $x\equiv 25\pmod{29}$ lub równoważnie

$$x = 25 + 29k, \qquad k \in \mathbb{Z}.$$

Mamy więc $3x=75+87k\equiv -2-k\pmod{11}$ i, wykorzystując drugą kongruencję, otrzymujemy $-2-k\equiv 2\pmod{11}$, co daje

$$k = -4 + 11m, \qquad m \in \mathbb{Z}.$$

W konsekwencji $x = -91 + 11 \cdot 29m$. Wstawiając ten wynik do pierwszej kongruencji, dostajemy $-1 + 4m \equiv 4 \pmod{9}$. Skoro $4 \cdot 2 \equiv -1 \pmod{9}$, to $-m \equiv 1 \pmod{9}$, co daje

$$m = -1 + 9l, \qquad l \in \mathbb{Z}.$$

Ostatecznie

$$x = -410 + 9 \cdot 11 \cdot 29l = 2461 + 9 \cdot 11 \cdot 29l', \qquad l, l' \in \mathbb{Z}.$$

3. Uzasadnij, że liczba

$$2^{3^{2023}} - 8$$

10 pkt.

jest podzielna przez 29.

Rozwiązanie: Ponieważ 29 jest liczbą pierwszą, to z małego twierdzenia Fermata wynika, że $2^{28} \equiv 1 \pmod{29}$. Stąd $2^{28k} \equiv 1 \pmod{29}$ dla dowolnego $k \in \mathbb{N}$, co implikuje

$$2^n \equiv 2^{n \bmod 28} \pmod{29}, \qquad n \in \mathbb{N}.$$

Ponadto $3^3=27\equiv -1\pmod{28},$ więc $3^6\equiv 1\pmod{28},$ skąd $3^{6k}\equiv 1\pmod{28}$ dla $k\in\mathbb{N}$ i w konsekwencji

$$3^n \equiv 3^{n \bmod 6} \pmod{28}.$$

Ostatecznie

$$2^{3^{2023}} = 2^{3^{6 \cdot 337 + 1}} \equiv 2^3 = 8 \pmod{29},$$

więc
$$2^{3^{2023}} - 8 \equiv 0 \pmod{29}$$
.

4. Wyznacz, przy pomocy algorytmu Dijkstry, najkrótsze ścieżki łączące wierzchołek v_1 ze wszystkimi pozostałymi dla grafu

10 pkt.

Rozwiązanie: Postępując zgodnie z algorytmem Dijkstry, otrzymujemy

L	D(2)	D(3)	D(4)	D(5)	D(6)	D(7)	D(8)	D(9)	D(10)
Ø	2	6	∞	8	13	∞	∞	∞	∞
$\overline{\{v_2\}}$	2	5	3	8	13	∞	∞	∞	∞
$\boxed{\{v_2,v_4\}}$	2	5	3	7	13	∞	17	∞	∞
$\{v_2, v_4, v_3\}$	2	5	3	6	11	∞	17	∞	∞
$\{v_2, v_4, v_3, v_5\}$	2	5	3	6	9	19	17	14	∞
$\{v_2, v_4, v_3, v_5, v_6\}$	2	5	3	6	9	19	17	12	∞
$\{v_2, v_4, v_3, v_5, v_6, v_9\}$	2	5	3	6	9	19	14	12	18
$\{v_2, v_4, v_3, v_5, v_6, v_9, v_8\}$	2	5	3	6	9	19	14	12	15
	2	5	3	6	9	19	14	12	15
	2	5	3	6	9	17	14	12	15