Introduction to Electrical Engineering Practice

Course Code: EE 113

Department: Electrical Engineering

Instructor Name: B.G. Fernandes

E-mail id: bgf@ee.iitb.ac.in

Introduction to the Course

- Covers various aspects of Electrical and Electronics Engineering
 - basic circuits to control systems.
- Main objective:
 - to motivate EE students to pursue further studies and a career in EE.
- Involves practical aspects of day-to-day Electrical/Electronics engineering in our lives.
- Will have demonstration of experiments to reinforce classroom learnings.

Five Modules

Analog Electronics

Digital Electronics

Signals & Systems

Energy Systems

Control systems

Marks Distribution(Tentative):

First mid-semester exam 25%

End Semester exam 45%

Laboratory 20%

Quiz 10%

Plan:

One Quiz per module

Midsem and End sem examinations

Broad outline and plan

- Five lectures per module Total of 26 lectures
- Two lab experiments per module 10 experiments

- Timings:
 - Lectures: Monday 9:30-10:25 Hrs and Tuesday 10:35-11:30 Hrs
 - Tutorial: Thursday 10:35-11:30 Hrs
 - Lab Demos: Thursday 11:35-12:30 Hrs
 - Doubt clearing session 5:00-6:00 PM from 8th December

Reference Material

- Reference material
 - Will be uploaded on Moodle and Teams

 Home Practice problems will also be uploaded

Remember...

'Not everything that counts can be counted and not everything that is counted truly counts'

Create a meaningful purposeful fulfilling lives for yourselves and learn how to use that to make an impact and a difference in the lives of others..

- Day in the life of hibiscus mutabilis aka China rose/Confederate rose/Bettada Tavare/Neladavare. It is pure white in the morning when it blooms and slowly turns pink as the sun comes up and is bright pink by sunset.
- Here is a series of pictures taken at 6:30 am, 8:30 am, 11:30 am and 6:00 pm. Wonderful creation of nature.

• The sun has set and I have done my bit to add beauty and colour to the world I existed in, although just for a day.

Finally,

'They can because they think they can...'

Good luck to all of you....

Analog Electronics: Syllabus

KCL, KVL fundamentals, network theorems

PN diodes, and other special diodes, transistors

Opamp Circuits

Review of DC Circuit Analysis & Network Theorems:

Electric Circuit ⇒ Closed path composed of active & passive elements.

Active Elements ⇒ Capable of delivering power to some external device

Two types Independent source

Dependent source

Independent Source Independent V source Independent I source

Independent V source \longrightarrow Terminal V is INDEPENDENT of I flowing through it.

- Ideal V source can "source and sink" any current within its rated value
- Current through V source can change instantaneously

Precautions:

- Never short-circuit a V source
- Do not connect two V sources of different magnitude in parallel

Independent I source: I is independent of 'V' across it

- Ideal I source can have any voltage across it (within its rated value)
- Voltage across the I source can change instantaneously

Precautions:

- Never open-circuit a I source
- Do not connect two I sources of different magnitude in series

How to realize a current source??

When S at position 1

$$di_L = \left(\frac{V_1 - V_2}{L}\right) dt$$

When S at position 2

$$di_L = \left(\frac{-V_2}{L}\right)dt$$

Dependent source: Source quantity depends on either 'V' or 'I' existing at some other location in the circuit.

$$\left\{ \begin{array}{c} V_1 \\ V_2 \end{array} \right\} \left[\left\{ \begin{array}{c} V_2 \\ V_2 \end{array} \right]$$

