Chain rule, Tangents and Higher order derivatives

Department of Mathematics IIT Guwahati

Chain rule

Theorem-A: Let $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ be differentiable at t_0 and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} := \mathbf{x}(t_0)$. Then $f \circ \mathbf{x}$ is differentiable at t_0 and

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x})|_{t=t_0} = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(t_0) = \sum_{i=1}^n \partial_i f(\mathbf{a}) \frac{\mathrm{d}x_i(t_0)}{\mathrm{d}t}.$$

Chain rule

Theorem-A: Let $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ be differentiable at t_0 and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} := \mathbf{x}(t_0)$. Then $f \circ \mathbf{x}$ is differentiable at t_0 and

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x})|_{t=t_0} = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(t_0) = \sum_{i=1}^n \partial_i f(\mathbf{a}) \frac{\mathrm{d}x_i(t_0)}{\mathrm{d}t}.$$

Proof: Use
$$\mathbf{h} := \mathbf{x}(t) - \mathbf{x}(t_0) = \mathbf{x}(t) - \mathbf{a}$$
 in

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h} + e(\mathbf{h}) \|\mathbf{h}\|$$

and the fact that $e(\mathbf{h}) \to 0$ as $\mathbf{h} \to 0$.

Chain rule

Theorem-A: Let $\mathbf{x}: \mathbb{R} \to \mathbb{R}^n$ be differentiable at t_0 and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} := \mathbf{x}(t_0)$. Then $f \circ \mathbf{x}$ is differentiable at t_0 and

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x})|_{t=t_0} = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(t_0) = \sum_{i=1}^n \partial_i f(\mathbf{a}) \frac{\mathrm{d}x_i(t_0)}{\mathrm{d}t}.$$

Proof: Use
$$\mathbf{h} := \mathbf{x}(t) - \mathbf{x}(t_0) = \mathbf{x}(t) - \mathbf{a}$$
 in

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h} + e(\mathbf{h}) \|\mathbf{h}\|$$

and the fact that $e(\mathbf{h}) \to 0$ as $\mathbf{h} \to 0$.

Remark:
$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x}(t_0)) = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(t_0) = \sum_{i=1}^n \partial_i f(\mathbf{a}) \frac{\mathrm{d}x_i(t_0)}{\mathrm{d}t}$$

sometimes referred to as total derivative.

Chain rule for partial derivatives

Theorem-B: If $\mathbf{x}: \mathbb{R}^2 \to \mathbb{R}^n$, $(u, v) \mapsto (x_1(u, v), \dots, x_n(u, v))$ has partial derivatives at (a, b) and $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{p} := \mathbf{x}(a, b)$ then $F(u, v) := f(\mathbf{x}(u, v))$ has partial derivatives at (a, b) and

$$\partial_u F(a,b) = \nabla f(\mathbf{p}) \bullet \partial_u \mathbf{x}(a,b) = \sum_{j=1}^n \frac{\partial_j f(\mathbf{p})}{\partial x_j} \frac{\partial x_j(a,b)}{\partial u},$$

$$\partial_{\nu}F(a,b) = \nabla f(\mathbf{p}) \bullet \partial_{\nu}\mathbf{x}(a,b) = \sum_{j=1}^{n} \frac{\partial_{j}f(\mathbf{p})}{\partial x_{j}} \frac{\partial x_{j}(a,b)}{\partial \nu}.$$

Chain rule for partial derivatives

Theorem-B: If $\mathbf{x}: \mathbb{R}^2 \to \mathbb{R}^n$, $(u, v) \mapsto (x_1(u, v), \dots, x_n(u, v))$ has partial derivatives at (a, b) and $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{p} := \mathbf{x}(a, b)$ then $F(u, v) := f(\mathbf{x}(u, v))$ has partial derivatives at (a, b) and

$$\partial_u F(a,b) = \nabla f(\mathbf{p}) \bullet \partial_u \mathbf{x}(a,b) = \sum_{j=1}^n \frac{\partial_j f(\mathbf{p})}{\partial x_j} \frac{\partial x_j(a,b)}{\partial u},$$

$$\partial_{\nu}F(a,b) = \nabla f(\mathbf{p}) \bullet \partial_{\nu}\mathbf{x}(a,b) = \sum_{j=1}^{n} \frac{\partial_{j}f(\mathbf{p})}{\partial x_{j}} \frac{\partial x_{j}(a,b)}{\partial \nu}.$$

Proof: Apply Theorem-A.

Example: Find $\partial w/\partial u$ and $\partial w/\partial v$ when $w = x^2 + xy$ and $x = u^2v$, $y = uv^2$.

Chain rule for derivatives

Fact: If $f: \mathbb{R}^n \to \mathbb{R}^m$ differentiable at \mathbf{a} and $g: \mathbb{R}^m \to \mathbb{R}^p$ differentiable at $\mathbf{c} := f(\mathbf{a})$ then $g \circ f$ differentiable at \mathbf{a} and

$$D(g \circ f)(\mathbf{a}) = Dg(\mathbf{c})Df(\mathbf{a}), \ J_{g \circ f}(\mathbf{a}) = J_g(\mathbf{c})J_f(\mathbf{a}).$$

Chain rule for derivatives

Fact: If $f: \mathbb{R}^n \to \mathbb{R}^m$ differentiable at \mathbf{a} and $g: \mathbb{R}^m \to \mathbb{R}^p$ differentiable at $\mathbf{c} := f(\mathbf{a})$ then $g \circ f$ differentiable at \mathbf{a} and

$$D(g \circ f)(\mathbf{a}) = Dg(\mathbf{c})Df(\mathbf{a}), \ J_{g \circ f}(\mathbf{a}) = J_g(\mathbf{c})J_f(\mathbf{a}).$$

Example: Consider $g(x, y) := (xy, x^2 - y^2)$ and $f(r, \theta) := (r \cos \theta, r \sin \theta)$. Then

$$J_{g}(x,y) = \begin{bmatrix} y & x \\ 2x & -2y \end{bmatrix}, J_{f}(r,\theta) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix},$$

Chain rule for derivatives

Fact: If $f: \mathbb{R}^n \to \mathbb{R}^m$ differentiable at \mathbf{a} and $g: \mathbb{R}^m \to \mathbb{R}^p$ differentiable at $\mathbf{c} := f(\mathbf{a})$ then $g \circ f$ differentiable at \mathbf{a} and

$$D(g \circ f)(\mathbf{a}) = Dg(\mathbf{c})Df(\mathbf{a}), \ J_{g \circ f}(\mathbf{a}) = J_g(\mathbf{c})J_f(\mathbf{a}).$$

Example: Consider $g(x, y) := (xy, x^2 - y^2)$ and $f(r, \theta) := (r \cos \theta, r \sin \theta)$. Then

$$J_g(x,y) = \begin{bmatrix} y & x \\ 2x & -2y \end{bmatrix}, J_f(r,\theta) = \begin{bmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{bmatrix},$$

$$J_{g \circ f}(r, \theta) = \begin{bmatrix} r \sin \theta & r \cos \theta \\ 2r \cos \theta & -2r \sin \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}.$$

Graph and level set

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then $G(f) := \{(\mathbf{x}, f(\mathbf{x})) : \mathbf{x} \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$ is the graph of f. G(f) represents a hyper-surface in \mathbb{R}^{n+1} .

Graph and level set

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then $G(f) := \{(\mathbf{x}, f(\mathbf{x})) : \mathbf{x} \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$ is the graph of f. G(f) represents a hyper-surface in \mathbb{R}^{n+1} .

The set $S(f, \alpha) := \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = \alpha \}$ is called a level set of f and represents a hyper-surface in \mathbb{R}^n .

Graph and level set

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then $G(f) := \{(\mathbf{x}, f(\mathbf{x})) : \mathbf{x} \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$ is the graph of f. G(f) represents a hyper-surface in \mathbb{R}^{n+1} .

The set $S(f, \alpha) := \{ \mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) = \alpha \}$ is called a level set of f and represents a hyper-surface in \mathbb{R}^n .

Level curve (isothermal contour)

The distribution of surface air temperature in the month of July

Let $L: \mathbb{R}^n \to \mathbb{R}$ be a linear map. Then $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is said to be tangent hyperplane to the hyper-surface $y = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a}))$ if

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{|f(\mathbf{x})-[f(\mathbf{a})+L(\mathbf{x}-\mathbf{a})]|}{\|\mathbf{x}-\mathbf{a}\|}=0.$$

Let $L: \mathbb{R}^n \to \mathbb{R}$ be a linear map. Then $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is said to be tangent hyperplane to the hyper-surface $y = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a}))$ if

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{|f(\mathbf{x})-[f(\mathbf{a})+L(\mathbf{x}-\mathbf{a})]|}{\|\mathbf{x}-\mathbf{a}\|}=0.$$

The tangent hyperplane $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is called a linearization of f at \mathbf{a} or a linear approximation of f at \mathbf{a} .

Let $L: \mathbb{R}^n \to \mathbb{R}$ be a linear map. Then $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is said to be tangent hyperplane to the hyper-surface $y = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a}))$ if

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{|f(\mathbf{x})-[f(\mathbf{a})+L(\mathbf{x}-\mathbf{a})]|}{\|\mathbf{x}-\mathbf{a}\|}=0.$$

The tangent hyperplane $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is called a linearization of f at \mathbf{a} or a linear approximation of f at \mathbf{a} .

Fact: $y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$ is tangent to the hyper-surface $y = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a})) \Leftrightarrow f$ is differentiable at \mathbf{a} .

Let $L: \mathbb{R}^n \to \mathbb{R}$ be a linear map. Then $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is said to be tangent hyperplane to the hyper-surface $y = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a}))$ if

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{|f(\mathbf{x})-[f(\mathbf{a})+L(\mathbf{x}-\mathbf{a})]|}{\|\mathbf{x}-\mathbf{a}\|}=0.$$

The tangent hyperplane $y = f(\mathbf{a}) + L(\mathbf{x} - \mathbf{a})$ is called a linearization of f at \mathbf{a} or a linear approximation of f at \mathbf{a} .

Fact: $y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$ is tangent to the hyper-surface $y = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a})) \Leftrightarrow f$ is differentiable at \mathbf{a} .

Example: $z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$ is a tangent plane to the surface z = f(x, y) at (a, b, f(a, b)).

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Suppose that \mathbf{a} is point on the hyper-surface $f(\mathbf{x}) = \alpha$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Suppose that \mathbf{a} is point on the hyper-surface $f(\mathbf{x}) = \alpha$.

Let $\mathbf{x}: (-\epsilon, \epsilon) \to \mathbb{R}^n$ be a curve on the hyper-surface $f(\mathbf{x}) = \alpha$ passing through \mathbf{a} , i.e, $\mathbf{x}(0) = \mathbf{a}$ and $f(\mathbf{x}(t)) = \alpha$ for $t \in (-\epsilon, \epsilon)$.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Suppose that \mathbf{a} is point on the hyper-surface $f(\mathbf{x}) = \alpha$.

Let $\mathbf{x}: (-\epsilon, \epsilon) \to \mathbb{R}^n$ be a curve on the hyper-surface $f(\mathbf{x}) = \alpha$ passing through \mathbf{a} , i.e, $\mathbf{x}(0) = \mathbf{a}$ and $f(\mathbf{x}(t)) = \alpha$ for $t \in (-\epsilon, \epsilon)$.

Suppose that $\mathbf{x}(t)$ differentiable at 0. Then

$$\frac{\mathrm{d}f}{\mathrm{d}t}(\mathbf{x}(t))|_{t=0} = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(0) = 0 \Rightarrow \nabla f(\mathbf{a}) \perp \mathbf{x}'(0)$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Suppose that \mathbf{a} is point on the hyper-surface $f(\mathbf{x}) = \alpha$.

Let $\mathbf{x}: (-\epsilon, \epsilon) \to \mathbb{R}^n$ be a curve on the hyper-surface $f(\mathbf{x}) = \alpha$ passing through \mathbf{a} , i.e, $\mathbf{x}(0) = \mathbf{a}$ and $f(\mathbf{x}(t)) = \alpha$ for $t \in (-\epsilon, \epsilon)$.

Suppose that $\mathbf{x}(t)$ differentiable at 0. Then

$$\frac{\mathrm{d}f}{\mathrm{d}t}(\mathbf{x}(t))|_{t=0} = \nabla f(\mathbf{a}) \bullet \mathbf{x}'(0) = 0 \Rightarrow \nabla f(\mathbf{a}) \perp \mathbf{x}'(0)$$

Since the line $\mathbf{a} + t \mathbf{x}'(0)$ is tangent to the curve $\mathbf{x}(t)$ at \mathbf{a} , $\nabla f(\mathbf{a})$ is normal to the hyper-surface $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

Tangent and normal to level set

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Then the line $\mathbf{x} = \mathbf{a} + t \nabla f(\mathbf{a})$ is normal to the hyper-surface $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

Tangent and normal to level set

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Then the line $\mathbf{x} = \mathbf{a} + t \nabla f(\mathbf{a})$ is normal to the hyper-surface $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

The hyperplane $(\mathbf{x} - \mathbf{a}) \bullet \nabla f(\mathbf{a}) = 0$ is tangent to the hyper-surface $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

Tangent and normal to level set

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at $\mathbf{a} \in \mathbb{R}^n$. Then the line $\mathbf{x} = \mathbf{a} + t \nabla f(\mathbf{a})$ is normal to the hyper-surface $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

The hyperplane $(\mathbf{x} - \mathbf{a}) \bullet \nabla f(\mathbf{a}) = 0$ is tangent to the hyper-surface $f(\mathbf{x}) = \alpha$ at \mathbf{a} .

Note that $(\nabla f(\mathbf{a}), -1)$ is normal to the hyper-surface $F(x, z) := f(\mathbf{x}) - z = 0$ at $(\mathbf{a}, f(\mathbf{a}))$. Hence

$$(\mathbf{x} - \mathbf{a}, z - f(\mathbf{a})) \bullet (\nabla f(\mathbf{a}), -1) = 0$$

$$\Rightarrow z = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet (\mathbf{x} - \mathbf{a})$$

is tangent to the hyper-surface $z = f(\mathbf{x})$ at $(\mathbf{a}, f(\mathbf{a}))$.

• $(x-a)f_x(a,b)+(y-b)f_y(a,b)=0$ is the equation of the tangent line to $f(x,y)=\alpha$ at (a,b).

- $(x-a)f_x(a,b)+(y-b)f_y(a,b)=0$ is the equation of the tangent line to $f(x,y)=\alpha$ at (a,b).
- $(x-a)f_x(a,b,c)+(y-b)f_y(a,b,c)+(z-c)f_z(a,b,c)=0$ is the equation of the tangent plane to $f(x,y,z)=\alpha$ at (a,b,c).

- $(x-a)f_x(a,b)+(y-b)f_y(a,b)=0$ is the equation of the tangent line to $f(x,y)=\alpha$ at (a,b).
- $(x-a)f_x(a,b,c)+(y-b)f_y(a,b,c)+(z-c)f_z(a,b,c)=0$ is the equation of the tangent plane to $f(x,y,z)=\alpha$ at (a,b,c).

Let
$$f(x, y, z) = x^2 + 2xy - y^2 + z^2$$
. Then $f(1, -1, 3) = 7$ and $\nabla f(1, -1, 3) = (0, 4, 6)$.

- $(x-a)f_x(a,b)+(y-b)f_y(a,b)=0$ is the equation of the tangent line to $f(x,y)=\alpha$ at (a,b).
- $(x-a)f_x(a,b,c)+(y-b)f_y(a,b,c)+(z-c)f_z(a,b,c)=0$ is the equation of the tangent plane to $f(x,y,z)=\alpha$ at (a,b,c).

Let
$$f(x, y, z) = x^2 + 2xy - y^2 + z^2$$
. Then $f(1, -1, 3) = 7$ and $\nabla f(1, -1, 3) = (0, 4, 6)$.

The tangent plane to f(x, y, z) = 7 at (1, -1, 3) is given by

$$0 \times (x-1) + 4 \times (y+1) + 6 \times (z-3) = 0$$
, i.e. $, 2y + 3z = 7$.

- $(x-a)f_x(a,b)+(y-b)f_y(a,b)=0$ is the equation of the tangent line to $f(x,y)=\alpha$ at (a,b).
- $(x-a)f_x(a,b,c)+(y-b)f_y(a,b,c)+(z-c)f_z(a,b,c)=0$ is the equation of the tangent plane to $f(x,y,z)=\alpha$ at (a,b,c).

Let
$$f(x, y, z) = x^2 + 2xy - y^2 + z^2$$
. Then $f(1, -1, 3) = 7$ and $\nabla f(1, -1, 3) = (0, 4, 6)$.

The tangent plane to f(x, y, z) = 7 at (1, -1, 3) is given by

$$0 \times (x-1) + 4 \times (y+1) + 6 \times (z-3) = 0$$
, i.e. $, 2y + 3z = 7$.

The normal line to f(x, y, z) = 7 at (1, -1, 3) is given by

$$(x, y, z) = (1, -1, 3) + t(0, 4, 6)$$
 for $t \in \mathbb{R}$.

Continuous partial derivatives

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Suppose that $\partial_i f(\mathbf{x})$ exists for $\mathbf{x} \in U$ and i = 1: n. Then each $\partial_i f$ defines a function on U.

If $\partial_i f: U \to \mathbb{R}$, $\mathbf{x} \mapsto \partial_i f(\mathbf{x})$ is continuous for i = 1: n then f is said to be continuously differentiable (in short, C^1).

Continuous partial derivatives

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$. Suppose that $\partial_i f(\mathbf{x})$ exists for $\mathbf{x} \in U$ and i = 1: n. Then each $\partial_i f$ defines a function on U.

If $\partial_i f: U \to \mathbb{R}$, $\mathbf{x} \mapsto \partial_i f(\mathbf{x})$ is continuous for i = 1: n then f is said to be continuously differentiable (in short, C^1).

Fact:
$$f$$
 is $C^1 \iff \nabla f : U \subseteq \mathbb{R}^n \to \mathbb{R}^n, \mathbf{x} \mapsto \nabla f(\mathbf{x})$ is continuous.

Recall: f is $C^1 \Rightarrow f$ is differentiable $\not\Rightarrow f$ is C^1 .

- Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + e^{xy} + y^2$. Then f is C^1 .
- Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(0,0) = 0 and $f(x,y) := (x^2 + y^2) \sin(1/(x^2 + y^2))$ if $(x,y) \neq (0,0)$. Then f is differentiable but NOT C^1 .

Higher order partial derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable so that $\partial_i f: \mathbb{R}^n \to \mathbb{R}$ for j=1:n.

If the partial derivatives of $\partial_j f$ exist at $\mathbf{a} \in \mathbb{R}^n$ for j = 1 : n, that is, $\partial_i \partial_j f(\mathbf{a})$ exists for $i, j = 1, 2, \dots, n$, then f is said to have second order partial derivatives at \mathbf{a} .

Higher order partial derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable so that $\partial_i f: \mathbb{R}^n \to \mathbb{R}$ for j=1:n.

If the partial derivatives of $\partial_j f$ exist at $\mathbf{a} \in \mathbb{R}^n$ for j = 1 : n, that is, $\partial_i \partial_j f(\mathbf{a})$ exists for $i, j = 1, 2, \dots, n$, then f is said to have second order partial derivatives at \mathbf{a} .

Other notations: $\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}), \quad f_{x_i x_j}(\mathbf{a}).$

Higher order partial derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable so that $\partial_i f: \mathbb{R}^n \to \mathbb{R}$ for j=1:n.

If the partial derivatives of $\partial_j f$ exist at $\mathbf{a} \in \mathbb{R}^n$ for j = 1 : n, that is, $\partial_i \partial_j f(\mathbf{a})$ exists for $i, j = 1, 2, \dots, n$, then f is said to have second order partial derivatives at \mathbf{a} .

Other notations: $\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a}), \quad f_{x_i x_j}(\mathbf{a}).$

f is said to be C^2 (twice continuously differentiable) if $\partial_i \partial_j f(\mathbf{x})$ exists for $\mathbf{x} \in \mathbb{R}^n$ and $\partial_i \partial_j f: \mathbb{R}^n \to \mathbb{R}$ is continuous for $i,j=1,2,\ldots,n$.

• *p*-th order partial derivatives of *f* are defined similarly.

Mixed partial derivatives

Fact: $f: \mathbb{R}^n \to \mathbb{R}$ is $C^2 \Rightarrow \nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable.

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has second order partial derivatives. Then $\partial_i \partial_j f(\mathbf{x})$ for $i \neq j$ is called mixed partial derivative of order 2.

Mixed partial derivatives

Fact: $f: \mathbb{R}^n \to \mathbb{R}$ is $C^2 \Rightarrow \nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable.

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has second order partial derivatives. Then $\partial_i \partial_j f(\mathbf{x})$ for $i \neq j$ is called mixed partial derivative of order 2.

Example: Consider $f(x, y) := x^2 + xy^2 + y^3$. Then $f_x = 2x + y^2 \Rightarrow f_{xy} = 2y$ and $f_y = 2xy + 3y^2 \Rightarrow f_{yx} = 2y$ showing that $f_{xy} = f_{yx}$.

Mixed partial derivatives

Fact: $f: \mathbb{R}^n \to \mathbb{R}$ is $C^2 \Rightarrow \nabla f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable.

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has second order partial derivatives. Then $\partial_i \partial_j f(\mathbf{x})$ for $i \neq j$ is called mixed partial derivative of order 2.

Example: Consider $f(x, y) := x^2 + xy^2 + y^3$. Then $f_x = 2x + y^2 \Rightarrow f_{xy} = 2y$ and $f_y = 2xy + 3y^2 \Rightarrow f_{yx} = 2y$ showing that $f_{xy} = f_{yx}$.

Question: Is $\partial_i \partial_j f(\mathbf{x}) = \partial_j \partial_i f(\mathbf{x})$?

Unequal mixed partial derivatives

Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(0,0) = 0 and

$$f(x,y) := xy \frac{x^2 - y^2}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$

Then

Unequal mixed partial derivatives

Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(0,0) = 0 and

$$f(x,y) := xy \frac{x^2 - y^2}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$

Then

$$\partial_x f(0,y) = -y \Rightarrow \partial_y \partial_x f(0,0) = -1$$

and

$$\partial_y f(x,0) = x \Rightarrow \partial_x \partial_y f(0,0) = 1.$$

This shows that

$$\partial_x \partial_y f(0,0) \neq \partial_y \partial_x f(0,0).$$

Equality of mixed partial derivatives

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$. Suppose that $\partial_i \partial_j f$ is continuous at \mathbf{a} for i, j = 1, 2, ..., n. Then for all $i \neq j$,

$$\partial_i \partial_j f(\mathbf{a}) = \partial_j \partial_i f(\mathbf{a}).$$

In particular, if f is C^2 then $\partial_i \partial_j f(\mathbf{a}) = \partial_j \partial_i f(\mathbf{a})$.

Equality of mixed partial derivatives

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$. Suppose that $\partial_i \partial_j f$ is continuous at \mathbf{a} for i, j = 1, 2, ..., n. Then for all $i \neq j$,

$$\partial_i \partial_j f(\mathbf{a}) = \partial_j \partial_i f(\mathbf{a}).$$

In particular, if f is C^2 then $\partial_i \partial_j f(\mathbf{a}) = \partial_j \partial_i f(\mathbf{a})$.

Suppose that f(x, y) has second order partial derivatives at $\mathbf{p} := (a, b)$. Then the matrix

$$H_f(\mathbf{p}) := \begin{bmatrix} \partial_x \partial_x f(\mathbf{p}) & \partial_y \partial_x f(\mathbf{p}) \\ \partial_x \partial_y f(\mathbf{p}) & \partial_y \partial_y f(\mathbf{p}) \end{bmatrix} = \begin{bmatrix} f_{xx}(\mathbf{p}) & f_{xy}(\mathbf{p}) \\ f_{yx}(\mathbf{p}) & f_{yy}(\mathbf{p}) \end{bmatrix}$$

is called the Hessian of f at \mathbf{p} .

Hessian

Fact: Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is C^2 and $\mathbf{a} \in \mathbb{R}^n$. Then the Hessian

$$H_f(\mathbf{a}) := \left[egin{array}{ccc} \partial_1 \partial_1 f(\mathbf{a}) & \cdots & \partial_n \partial_1 f(\mathbf{a}) \\ dots & \cdots & dots \\ \partial_1 \partial_n f(\mathbf{a}) & \cdots & \partial_n \partial_n f(\mathbf{a}) \end{array}
ight]$$

is symmetric. Also $H_f(\mathbf{a}) = J_{\nabla f}(\mathbf{a}) = \text{Jacobian of } \nabla f$ at \mathbf{a} .

Hessian

Fact: Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is C^2 and $\mathbf{a} \in \mathbb{R}^n$. Then the Hessian

$$H_f(\mathbf{a}) := \left[egin{array}{ccc} \partial_1 \partial_1 f(\mathbf{a}) & \cdots & \partial_n \partial_1 f(\mathbf{a}) \\ dots & \cdots & dots \\ \partial_1 \partial_n f(\mathbf{a}) & \cdots & \partial_n \partial_n f(\mathbf{a}) \end{array}
ight]$$

is symmetric. Also $H_f(\mathbf{a}) = J_{\nabla f}(\mathbf{a}) = \text{Jacobian of } \nabla f$ at \mathbf{a} .

Example: Consider
$$f(x, y) = x^2 - 2xy + 2y^2$$
. Then

$$H_f(x,y) = \left[\begin{array}{cc} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{array} \right] = \left[\begin{array}{cc} 2 & -2 \\ -2 & 4 \end{array} \right].$$

Extended Mean Value Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 and $\mathbf{a} \in \mathbb{R}^n$. Then there exists $0 < \theta < 1$ such that

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h} + \frac{1}{2} \mathbf{h}^{\top} H_f(\mathbf{a} + \theta \mathbf{h}) \mathbf{h},$$

$$= f(\mathbf{a}) + \sum_{i=1}^n \partial_i f(\mathbf{a}) h_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \partial_i \partial_j f(\mathbf{a} + \theta \mathbf{h}) h_i h_j.$$

Extended Mean Value Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^2 and $\mathbf{a} \in \mathbb{R}^n$. Then there exists $0 < \theta < 1$ such that

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h} + \frac{1}{2} \mathbf{h}^{\top} H_f(\mathbf{a} + \theta \mathbf{h}) \mathbf{h},$$

$$= f(\mathbf{a}) + \sum_{i=1}^n \partial_i f(\mathbf{a}) h_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \partial_i \partial_j f(\mathbf{a} + \theta \mathbf{h}) h_i h_j.$$

Proof: Define $\phi(t) := f(\mathbf{a} + t\mathbf{h})$ for $t \in [0, 1]$. Then ϕ is twice continuously differentiable. By chain rule

$$\phi'(t) = \nabla f(\mathbf{a} + t\mathbf{h}) \bullet \mathbf{h} \text{ and } \phi''(t) = \mathbf{h}^{\top} H_f(\mathbf{a} + t\mathbf{h}) \mathbf{h}. \blacksquare$$
*** End***

