Remark and Solutions

Sheet 1

Problem 14

1.

To construct a Lie algebra homomorphism $\varphi \colon \mathfrak{g} \to \mathfrak{sl}_{n+1}(\mathbb{C})$ we only need to specify the images E_i , H_i , F_i of the generators e_i , h_i , f_i and then check that these proposed images satisfy the given relations (22)–(27). (This is what it means for \mathfrak{g} to be given by the generators $\{e_i, h_i, f_i\}_{i=1}^n$ and relations (22)–(27).)

In the case n=1 we know that the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$ has the standard basis e, f, h constisting of the matrices

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 , $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

These three basis vectors satisfy the relations [h, e] = 2e, [h, f] = -2f and [e, f] = h. Motivated by this example we will choose for arbitrary $n \ge 1$ the proposed images $E_i, F_i, H_i \in \mathfrak{sl}_{n+1}(\mathbb{C})$ as

$$E_i \coloneqq E_{i,i+1}, \quad F_i \coloneqq E_{i+1,i}, \quad H_i \coloneqq E_{ii} - E_{i+1,i+1}.$$

We need to check that these elements satisfy the relations (22)–(27):

- (22) We find $[H_i, H_j] = 0$ because both H_i and H_j are diagonal matrices and hence commute with each other.
- (23) We find

$$\begin{split} [E_i, F_j] &= E_i F_j - F_j E_i \\ &= E_{i,i+1} E_{j+1,j} - E_{j+1,j} E_{i,i+1} \\ &= \delta_{i+1,j+1} E_{ij} - \delta_{ij} E_{j+1,i+1} \\ &= \delta_{ij} (E_{ii} - E_{i+1,i+1}) \\ &= \delta_{ij} H_i \end{split}$$

where we used that $\delta_{i+1,j+1} = \delta_{ij}$ and $\delta_{ij}E_{ij} = \delta_{ij}E_{ii}$.

(24) We find

$$\begin{split} [H_i,E_j] &= [E_{ii}-E_{i+1,i+1},E_{j,j+1}] \\ &= (E_{ii}-E_{i+1,i+1})E_{j,j+1}-E_{j,j+1}(E_{ii}-E_{i+1,i+1}) \\ &= E_{ii}E_{j,j+1}-E_{i+1,i+1}E_{j,j+1}-E_{j,j+1}E_{ii}+E_{j,j+1}E_{i+1,i+1} \\ &= \delta_{ij}E_{i,j+1}-\delta_{i+1,j}E_{i+1,j+1}-\delta_{i,j+1}E_{ji}+\delta_{i+1,j+1}E_{j,i+1} \\ &= \delta_{ij}(E_{i,j+1}+E_{j,i+1})-\delta_{i+1,j}E_{i+1,j+1}-\delta_{i,j+1}E_{ji} \\ &= 2\delta_{ij}E_{j,j+1}-\delta_{i+1,j}E_{j,j+1}-\delta_{i,j+1}E_{j,j+1} \\ &= (2\delta_{ij}-\delta_{i+1,j}-\delta_{i,j+1})E_{j,j+1} \\ &= a_{ji}E_{j} \,. \end{split}$$

(25) This relation can be checked in the same way as (24). But we can also observe that $F_j = E_j^T$ and $H_i = H_i^T$ whence

$$[H_i, F_j] = [H_i^T, E_i^T] = [E_j, H_i]^T = a_{ij}E_i^T = -a_{ij}F_j$$
.

(26) We find

$$ad(E_i)(E_j) = [E_i, E_j]$$

$$= [E_{i,i+1}, E_{j,j+1}]$$

$$= E_{i,i+1}E_{j,j+1} - E_{j,j+1}E_{i,i+1}$$

$$= \delta_{i+1,j}E_{i,j+1} - \delta_{i,j+1}E_{j,i+1}.$$

We find for $|i-j| \geq 2$ that $\delta_{i+1,j} = \delta_{i,j+1} = 0$ and hence

$$ad(E_i)^{-a_{ji}+1}(E_j) = ad(E_i)(E_j) = 0.$$

as desired. If i = j - 1 then $ad(E_i)(E_j) = E_{i,j+1} = E_{i,i+2}$ and $a_{ji} = -1$ and thus

$$ad(E_i)^{-a_{ji}+1}(E_j) = ad(E_i)^2(E_j)$$

$$= [E_i, [E_i, E_j]]$$

$$= [E_i, E_{i,i+2}]$$

$$= [E_{i,i+1}, E_{i,i+2}]$$

$$= E_{i,i+1}E_{i,i+2} - E_{i,i+2}E_{i,i+1}$$

$$= \delta_{i,i+1}E_{i,i+2} - \delta_{i,i+2}E_{i,i+1}$$

$$= 0$$

The case i = j + 1 works the same.

(27) This can be done by similar calculations as (26) but can also be directly derived from (26) by again using the matrix transpose.

Remark 1.

- 1. We used for (25) that that $[A, B]^T = (AB BA)^T = B^T A^T A^T B^T = [B^T, A^T].$
- 2. For (24) and (25) it is useful to understand how a commutator [D, A] looks like if D is a diagonal matrix with diagonal entries $\lambda_1, \ldots, \lambda_n \in k$:

The matrix DA results from A by multiplying for every i = 1, ..., n the i-th row of A by the corresponding diagonal entry λ_i . Similarly the matrix AD results from A by multiplying for every j = 1, ..., n the jth column of A by the corresponding diagonal entry λ_i . This means in formulae that

$$(DA)_{ij} = \lambda_i A_{ij}$$
 and $(AD)_{ij} = \lambda_j A_{ij}$

for all i, j = 1, ..., n, and thus

$$[D, A]_{ij} = (DA - AD)_{ij} = (DA)_{ij} - (AD)_{ij} = \lambda_i A_{ij} - \lambda_j A_{ij} = (\lambda_i - \lambda_j) A_{ij}$$

for all $i, j = 1, \ldots, n$.

It follows that

$$[H_i, E_j] = [H_i, E_{j,j+1}] = ((H_i)_{jj} - (H_i)_{j+1,j+1})E_{j,j+1}$$

where

$$(H_i)_{jj} - (H_i)_{j+1,j+1} = \begin{cases} 0 & \text{if } j+1 < i, \\ -1 & \text{if } j+1 = i, \\ 2 & \text{if } j = i, \\ -1 & \text{if } j = i+1, \\ 0 & \text{if } j > i+1. \end{cases}$$

Hence $[H_i, E_j] = a_{j,i}E_j$ as desired.

We have shown that E_i, F_i, H_i with i = 1, ..., n satisfy the given relations, and all these matrices are contained in $\mathfrak{sl}_{n+1}(\mathbb{C})$. There hence exists a unique homomorphism of Lie algebras $\varphi \colon \mathfrak{g} \to \mathfrak{sl}_{n+1}(\mathbb{C})$ with $\varphi(e_i) = E_i$, $\varphi(f_i) = F_i$ and $\varphi(h_i) = H_i$. It remains to show that φ is surjective.

The image of φ is a Lie subalgebra of $\mathfrak{sl}_{n+1}(\mathbb{C})$. It therefore suffices to show that $\mathfrak{sl}_{n+1}(\mathbb{C})$ is generated by the elements $\{E_i, F_i, H_i\}_{i=1}^n$ as a Lie algebra. Let \mathfrak{s} be the Lie subalgebra of $\mathfrak{sl}_{n+1}(\mathbb{C})$ generated by these elements. We know that $\mathfrak{sl}_{n+1}(\mathbb{C})$ has a basis the diagonal matrices H_1, \ldots, H_n together with the off-diagonal matrices E_{ij} where $1 \leq i \neq j \leq n+1$. It sufficies to show that these matrices are contained in \mathfrak{s} . This holds for H_1, \ldots, H_n by construction of \mathfrak{s} .

Let us consider the off-diagonal matrices E_{ij} with j > i. We fix the index i and show that $E_{i,i+1}, E_{i,i+2}, \ldots, E_{i,n+1} \in \mathfrak{s}$. This holds for $E_{i,i+1} = E_i$ by construction of \mathfrak{s} . If $E_{ij} \in \mathfrak{s}$ for some $i+1 \leq j < n+1$ then we find inductively that the matrix

$$[E_{ij}, E_j] = [E_{ij}, E_{i,j+1}] = E_{ij}E_{i,j+1} - E_{i,j+1}E_{ij} = E_{i,j+1}$$

is again contained \mathfrak{s} . This shows that all off-diagonal matrices E_{ij} with j > i are contained in \mathfrak{s} .

For the off-diagonal matrices E_{ij} with i < j we can argue in the same way by using the matrices F_i instead of E_i . But we could also observe that the Lie algebra generating set $\{E_i, F_i, H_i\}_{i=1}^n$ of \mathfrak{s} is closed under matrix transpose whence \mathfrak{s} is closed under matrix transpose (because matrix transpose is a Lie algebra anti-isomorphism). It thus follows for all i < j from $E_{ji} \in \mathfrak{s}$ that also $E_{ij} \in \mathfrak{s}$.

2.

We construct an inverse $\psi \colon \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{g}$ to φ . We define ψ to be the unique linear map with $\psi(e) = e_1$, $\psi(f) = f_1$ and $\psi(h) = h_1$. Recall that [h, e] = 2e, [h, f] = -2f and [e, f] = h. The relations (23), (24), (25) therefore ensure that ψ is a homomorphism of Lie algebras. Then $\psi\varphi = \mathrm{id}_{\mathfrak{sl}_2(\mathbb{C})}$ because this holds on the basis e, h, f of $\mathfrak{sl}_2(\mathbb{C})$ and $\varphi\psi = \mathrm{id}_{\mathfrak{g}}$ because this holds on the Lie algebra generators e_1, h_1, f_1 of \mathfrak{g} .