Сравнение производительности сортировок на массивах и списках

Зарипов Данил Алмазович

Асимптотический анализ

- Асимптотика алгоритма математическая граница его производительности на основе размера входных данных.
- О-нотация, О («О»-большое): описывает верхнюю границу времени (время выполнения «не более, чем...»).
- Алгоритмы могут иметь одинаковую сложность, но при этом значительно отличаться в производительности

Сортировка

- Алгоритм сортировки алгоритм для упорядочивания элементов в списке
- Алгоритм сортировки классический объект для различного вида оценок времени и эффективности использования памяти

Постановка задачи

Цель — проанализировать производительность сортировок Задачи:

- Выявить самую быструю сортировку среди быстрых(O(nlogn)) и среди медленных($O(n^2)$)
- Выяснить разницу в производительности аналогичных сортировок на массивах и односвязных списках

Объекты исследования

Быстрые сортировки:

- Сортировка слиянием Худшее, лучшее и среднее время O(n*log*n)
- «Быстрая» сортировка Худшее время $O(n^2)$, лучшее и среднее O(nlogn)

Медленные сортировки:

- Сортировка «пузырьком» Худшее, лучшее и среднее время $O(n^2)$
- Сортировка вставками Худшее, лучшее и среднее время O(n²)

Как проводился эксперимент

- Платформа .NET, язык F#, библиотека BenchmarkDotNet
- Для медленных сортировок количество элементов от 5000 до 15000 с шагом в 1000, для быстрых от 50 тыс. до 150 тыс. с шагом 10000. Элементы генерируются псевдо-случайно.
- Исходный код сортировок и бенчмарков в репозитории:

Время работы сортировок

Ниже – лучше.

Объем данных для медленных в десять раз меньше, но время работы в сто раз больше

Сравнение медленных сортировок с сортировкой пузырьком на массиве

Сортировка пузырьком в 4 раза медленнее сортировки вставками

Сравнение быстрых сортировок с «быстрой» сортировкой на массиве

Сортировки на массивах быстрее обеих сортировок на списках «Быстрая» сортировка медленнее сортировки слиянием

Сравнение отношения производительности алгоритма на списке к производительности на массиве

Разница производительности на массиве и списке зависит от алгоритма

Результаты

- «Быстрые» сортировки сильно быстрее «медленных». Асимптотический анализ дал приближенную, но верную оценку.
- Самая быстрая среди быстрых на массивах и списках сортировка слиянием, среди медленных сортировка вставками
- Сортировки на массивах в среднем в 2 раза быстрее сортировок на списках.