MEDIATEK

CONFIDENTIAL B

MT6771 AF introduction

Revision

Revision	Date	Description
V1.0	2017.12.26	The first version of AF document
V1.1	2018.01.23	 •Add Hybrid AF and Point Light AF improvement •Add dynamic threshold example case

Improvement

Category	Description	Improved issue
Low contrast improvement	 Add dynamic threshold 	• Flat scene
PD Improvement	•PD new core •Add dynamic Search Range	• PD performance
Face AF improvement	• Accuracy – Landmark extension	Small face
Face AF improvement	 Smoothness – FD tracking by PD 	•FDAF trigger time
	•Dynamic weak threshold by LV	
Hybrid AF improvement	•Hybrid scene change	
	•Mid-low Confidence Handling	
Point light improvement	•PL core update	

Low contrast improvement

Dynamic threshold

Concept

- Each sample add to curve HW TH re-calculated a appropriate value for new curve
- More control method for flat scene

Version	Threshold type	Detail
AF v4.6	Fixed	Main/sub threshold from parameter directly
AF v5.0	Dynamic	Main/sub threshold is calculated by parameter each step

Some known AF issue from customer

Flat scene move to false peak

Converge at flat area of curve (local maximum)

CONFIDENTIAL B

Previous solution

Tuning AF parameters

```
8, // i4ISONum
    {100, 150, 200, 300, 400, 600, 800, 1600},
    // SGG1~7
(20, 19, 19, 19, 18, 18, 17, 16,
 29, 29, 29, 28, 28, 27, 27, 25,
 43, 42, 42, 42, 41, 41, 40, 39,
 62, 61, 61, 61, 60, 60, 59, 58,
 88, 88, 88, 88, 87, 87, 86, 85,
 126, 126, 126, 126, 125, 125, 125, 124,
 180, 180, 180, 180, 180, 179, 179, 179),
    // horizontal FV min. threshold
    {2000, 2000, 2000, 1000, 1000, 1000, 800, 800}
    // horizontal FV threshold
{2, 2, 2, 2, 2, 2, 2, 3},
    // horizontal FV min. threshold
    {2000, 2000, 2000, 1000, 1000, 1000, 800, 800},
    // horizontal FV threshold
{2, 2, 2, 2, 2, 2, 2, 3},
    // vertical FV min. threshold
    {2000, 2000, 2000, 1000, 1000, 1000, 800, 800}.
    // vertical FV threshold
{2, 2, 2, 2, 2, 2, 2, 2, },
```

Some trade off must happened

Compare different FV curve of gray level flat area

& weak edge area

Dynamic converge ratio threshold

Dynamic converge ratio threshold

Copyright © Mediate Inc. All rights reserved.

Dynamic TH = Main/Sub TH + Sample additional TH + Peak additional TH

Sample additional TH = (Left(Right) range - Base range) * Ratio Per Sample

Peak additional TH = (Peaknum - Base peak) * Ratio Per Peak

If Dynamic HW TH > TH limit, Dynamic HW TH = TH limit

For example, Tuning parameters as right bracket and above curve TH calculated as below:

Sample additional TH (Main)= (26-4)*2=44

Sample additional TH (Sub)= (14-4)*2=20

Peak additional TH = (4-1)*3=9

Main TH = 15 + 44 + 9 = 68 > 50 Main TH = 50Sub TH = 10 + 20 + 9 = 39

Tuning parameters

Ex:

Base range = 4

Ratio Per Sample = 2

Base peak = 1

Ratio Per Peak = 3

Threshold Limit = 50

Dynamic converge ratio threshold - ex

Ex:

Base range = 3 Ratio Per Sample = 3 Base peak = 1 Ratio Per Peak = 2 Threshold Limit = 50

Dynamic/TH = Main/Sub TH + Sample additional TH + Peak additional TH

Left sample addith Right sample addith

```
peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
[DYTH]MaxIdx:0 CurrIdx:1
[DYTH]MaxIdx:1 CurrIdx:1
                          peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
                          peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
[DYTH]MaxIdx:2 CurrIdx:2
[DYTH]MaxIdx:2 CurrIdx:3 peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
[DYTH]MaxIdx:4 CurrIdx:4
                          peak num: 2 Ratio P: 2 Ratio 1:3 Ratio 2:0 Mian ratio: 17 Sub ratio: 10
[DYTH]MaxIdx:5 CurrIdx:5
                          peak num: 2 RatioP: 2 Ratio1:6 Ratio2:0 Mian ratio: 20 Sub ratio: 10
[DYTH]MaxIdx:6 CurrIdx:6
                          peak num: 2 RatioP: 2 Ratio1:9 Ratio2:0 Mian ratio: 23 Sub ratio: 10
                          peak num: 2 RatioP: 2 Ratio1:12 Ratio2:0 Mian ratio: 26 Sub ratio: 10
[DYTH]MaxIdx:7 CurrIdx:7
[DYTH]MaxIdx:8 CurrIdx:8
                          peak num: 2 RatioP: 2 Ratio1:15 Ratio2:0 Mian ratio: 29 Sub ratio: 10
[DYTH]MaxIdx:9 CurrIdx:9 peak num:2 RatioP:2 Ratio1:18 Ratio2:0 Mian ratio:32 Sub ratio:10
[DYTH] MaxIdx: 9 CurrIdx: 10 peak num: 2 RatioP: 2 Ratio1: 18 Ratio2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH] MaxIdx: 9 CurrIdx: 11 peak num: 2 RatioP: 2 Ratio1: 18 Ratio2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH] MaxIdx: 9 CurrIdx: 12 peak num: 2 RatioP: 2 Ratio1: 18 Ratio2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH] MaxIdx: 9 CurrIdx: 13 peak num: 2 RatioP: 2 Ratio1: 18 Ratio2: 3 Mian ratio: 32 Sub ratio: 13
```

ldx 1:

Main ratio = 12+ peak+sample = 12+(1-1)*2+(0)*3=12Sub ratio = 8+peak+sample =8+(1-1)*2+0=8

Idx 4: Main ratio = 12+ peak+sample = 12+(2-1)*2+(4-3)* 3 =12+2+3 = 17 Sub ratio = 8+peak+sample =8+(2-1)*2+0 = 10

Idx 5:

Main ratio = 12+ peak+sample = 12+(2-1)*2+(5-3)*30.7812+2+6=20Sub ratio = 8+peak+sample =8+(2-1)*2+0=10

MEDIATEK

CONFIDENTIAL B

Dynamic converge ratio threshold - ex

Ex: Base range = 3 Ratio Per Sample = 3 Base peak = 1

Ratio Per Peak = 2 Threshold Limit = 50

Dynamic TH = Main/Sub TH + Sample additional TH + Peak additional TH

```
peak num: 1 RatioP: 0 Ratio1: 0 Ratio2: 0 Mian ratio: 12 Sub ratio: 8
DYTH1MaxIdx:0 CurrIdx:1
[DYTH]MaxIdx:1 CurrIdx:1
                          peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
[DYTH] MaxIdx: 2 CurrIdx: 2 peak num: 1 Ratio P: 0 Ratio 1: 0 Ratio 2: 0 Mian ratio: 12 Sub ratio: 8
[DYTH] MaxIdx: 2 CurrIdx: 3 peak num: 1 RatioP: 0 Ratio1: 0 Ratio2: 0 Mian ratio: 12 Sub ratio: 8
[DYTH] MaxIdx: 4 CurrIdx: 4 peak num: 2 RatioP: 2 Ratio1: 3 Ratio2: 0 Mian ratio: 17 Sub ratio: 10
[DYTH]MaxIdx:5 CurrIdx:5 peak num:2 RatioP:2 Ratio1:6 Ratio2:0 Mian ratio:20 Sub ratio:10
[DYTH]MaxIdx:6 CurrIdx:6
                          peak num: 2 RatioP: 2 Ratio1: 9 Ratio2: 0 Mian ratio: 23 Sub ratio: 10
[DYTH]MaxIdx:7 CurrIdx:7 peak num:2 RatioP:2 Ratio1:12 Ratio2:0 Mian ratio:26 Sub ratio:10
[DYTH]MaxIdx:8 CurrIdx:8 peak num:2 RatioP:2 Ratio1:15 Ratio2:0 Mian ratio:29 Sub ratio:10
[DYTH]MaxIdx:9 CurrIdx:9 peak num:2 RatioP:2 Ratio1:18 Ratio2:0 Mian_ratio:32 Sub_ratio:10
[DYTH]MaxIdx:9 CurrIdx:10 peak num:2 RatioP:2 Ratio1:18 Ratio2:0 Mian ratio:32 Sub ratio:10
[DYTH]MaxIdx:9 CurrIdx:11 peak num:2 RatioP:2 Ratio1:18 Ratio2:0 Mian ratio:32 Sub ratio:10
[DYTH] MaxIdx: 9 CurrIdx: 12 peak num: 2 RatioP: 2 Ratio1: 18 Ratio2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH] MaxIdx: 9 CurrIdx: 13 peak num: 2 RatioP: 2 Ratio1:18 Ratio2: 3 Mian ratio: 32 Sub ratio: 13
```

Idx 6: Main ratio = 12+ peak+sample = 12+(2-1)*2+(6-3)*3

=12+2+9= 23

Idx 7:

Main ratio = 12+ peak+sample = 12+(2-1)*2+(7-3)*3=12+2+12=26

MEDIATEK

Dynamic converge ratio threshold - ex

Ex:

Base range = 3
Ratio Per Sample = 3
Base peak = 1
Ratio Per Peak = 2
Threshold Limit = 50

Dynamic TH = Main/Sub TH + Sample additional TH + Peak additional TH

```
[DYTH]MaxIdx:0 CurrIdx:1 peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
                          peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
[DYTH]MaxIdx:1 CurrIdx:1
[DYTH]MaxIdx:2 CurrIdx:2 peak num:1 RatioP:0 Ratio1:0 Ratio2:0 Mian ratio:12 Sub ratio:8
                          peak num: 1 RatioP: 0 Ratio1: 0 Ratio2: 0 Mian ratio: 12 Sub ratio: 8
[DYTH]MaxIdx:2 CurrIdx:3
[DYTH]MaxIdx:4 CurrIdx:4
                          peak num: 2 RatioP: 2 Ratio1:3
                                                         Ratio2:0 Mian ratio:17 Sub ratio:10
                          peak num: 2 RatioP: 2 Ratio1: 6 Ratio2: 0 Mian ratio: 20 Sub ratio: 10
[DYTH]MaxIdx:5 CurrIdx:5
[DYTH]MaxIdx:6 CurrIdx:6
                          peak num: 2 RatioP: 2 Ratio1:9 Ratio2:0 Mian ratio: 23 Sub ratio: 10
[DYTH]MaxIdx:7 CurrIdx:7
                          peak num: 2 RatioP: 2 Ratio1:12 Ratio2:0 Mian ratio: 26 Sub ratio: 10
[DYTH|MaxIdx:8 CurrIdx:8 peak num:2 RatioP:2 Ratio1:15 Ratio2:0 Mian ratio:29 Sub ratio:10
[DYTH]MaxIdx:9 CurrIdx:9
                          peak num: 2 RatioP:2 Ratio1:18 Ratio2:0 Mian ratio:32 Sub ratio:10
[DYTH] MaxIdx: 9 CurrIdx: 10 peak num: 2 RatioP: 2 Ratio1:18 Ratio2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH] MaxIdx: 9 CurrIdx: 11 peak num: 2 RatioP: 2 Ratio1: 18 Ratio2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH] MaxIdx: 9 CurrIdx: 12 peak num: 2 Ratio P: 2 Ratio 1: 18 Ratio 2: 0 Mian ratio: 32 Sub ratio: 10
[DYTH]MaxIdx:9 CurrIdx:13 peak num:2 RatioP:2 Ratio1:18 Ratio2:3 Mian ratio:32 Sub ratio:13
```

ldx 8:

Main ratio = 12+ peak+sample = 12+(2-1)*2+(8-3)* 3 =12+2+15= 29

Idx 9:

Main ratio = 12+ peak+sample = 12+(2-1)*2+(9-3)* 3 =12+2+18 = 32

Idx 13:

Main ratio = 12+ peak+sample = 12+(2-1)*2+(9-3)* 3 =12+2+18 = 32 Subratio = 8+peak+sample

=8+(2-1)*2+(4-3)*3 =13

Dynamic converge ratio threshold

- Compatible with previous version
 - Configure base sample and base peak to very large
 - For example, configure to 30.

Base range = 30 Ratio Per Sample = 2 Base peak = 30 Ratio Per Peak = 3 Threshold Limit = 50

Dynamic TH = Main/Sub TH + Sample additional TH + Peak additional TH Sample additional TH =0

Peak additional TH =0

Keep original threshold

New HW threshold-Calibration method

New HW threshold-Calibration result compare

8, 7/14130 Num. {100, 200, 400, 800, 1600, 2400, 3200, 6400}, // SGG1~7 {{21, 20, 19, 18, 17, 11, 7, 6}, {30, 29, 28, 27, 26, 19, 14, 11}, {43, 42, 41, 40, 39, 32, 25, 21}, {62, 61, 60, 59, 58, 51, 43, 37}, {89, 88, 87, 87, 86, 78, 71, 64}, {127, 126, 126, 125, 124, 118, 112, 106}, {180, 180, 180, 179, 179, 175, 171, 167}}, // horizontal FV1 min. threshold {2000, 2000, 2000, 1000, 1000, 1000, 800, 800},

(hedizental FV1 threshold New threshold is not as critical as previous because of new HW function's smoothness.

Copyright © Mediate Inc. All rights reserved.

Although the value may be larger than before, It would not cause curve to become too flat.

Dynamic threshold tuning parameters

Locate at i4Coefs[100]

```
//----
// name: m_i4DvBaseSample
// range: 0~30
// default: 3
// effect: While AF search sample(one side) larger than base sample, dynamic threshold will be raised.
// name: m_i4DyRatioPerSample
                                                                                                                         Base range(Base Sample) = 3
// range: 0~10
// default: 3
                                                                                                                         Ratio Per Sample = 3
// effect: While AF search sample(one side) larger than base sample, dynamic threshold will be raised this ratio per over samples
                                                                                                                         Base peak = 1
        // [31] m_i4DyRatioPerSample
                                                                                                                         Ratio Per Peak = 2
// name: m i4DvBasePeak
// range: 0~5
                                                                                                                         Threshold Limit = 50
// default: 1
// effect: While AF search peak number larger than base peak number, dynamic threshold will be raised.
        // [32] m_i4DyBasePeak
// name: m_i4DyRatioPerPeak
// range: 0~10
// default: 2
// effect: While AF search peak number larger than base peak number, dynamic threshold will be this ratio per over peak number
        // [33] m I4DvRatioPerPeak
// name: m_i4DyLimitTH
// range: 15~80
// default: 50
// effect: If dynamic threshold larger than limit the final threshold will be limit threshold
         // [34] m_i4DyLimitTH
```

Default value for no parameters in NVRAM

```
m_i4DyBaseSample = (m_sAFNvram.i4Coefs[30]==0) ? 3 : clipValue(m_sAFNvram.i4Coefs[30], 0, 30);
m_i4DyRatioPerSample = (m_sAFNvram.i4Coefs[31]==0) ? 3 : clipValue(m_sAFNvram.i4Coefs[31], 0, 10);
m_i4DyBasePeak = (m_sAFNvram.i4Coefs[32]==0) ? 1 : clipValue(m_sAFNvram.i4Coefs[32], 0, 5);
m_i4DyRatioPerPeak = (m_sAFNvram.i4Coefs[33]==0) ? 2 : clipValue(m_sAFNvram.i4Coefs[33], 0, 10);
m_i4DyLimitTH = (m_sAFNvram.i4Coefs[34]==0) ? 50 : clipValue(m_sAFNvram.i4Coefs[34], 15, 80);
```


Dynamic threshold debug log

Search keyword "DYTH"

[DYTH]MaxIdx:6 CurrIdx:6 peak_num:2 RatioP:2 Ratio1:12 Ratio2:0 Mian_ratio:29 Pub_ratio:12 [DYTH]MaxIdx:6 CurrIdx:6 peak_num:2 RatioP:2 Ratio1:12 Ratio2:0 Mian_ratio:29 Pub_ratio:12 [DYTH]MaxIdx:6 CurrIdx:6 peak_num:2 RatioP:2 RatioP:2 Ratio1:12 Ratio2:0 Mian_ratio:29 Pub_ratio:12 [DYTH]MaxIdx:6 CurrIdx:6 peak_num:2 RatioP:2 RatioP:2

[mThr] value <ratio> [sThr] value <ratio>

CONFIDENTIAL B

Dynamic threshold exif debug parser

Original exif has included dynamic threshold info

Update main/sub threshold each frame

PD improvement

PD core tuning introduction

PD core tuning

- 1. PD confidence is calculated by PD core library (MTK lib or sensor vendor lib like SONY lib)
- 2. By MTK lib, there is some tuning guide to influence PD confidence value.

PD tuning flow

Check PD core setting

Modify **block size** by sensor density / PD win %

Modify confidence table by curvature and gradient

Check **saturated pixel** to determine to set zero conf

Check PD core setting

- 1. For AF v5.0 : enable new core
- 2. For AF v5.0 new feature : enable dynamic search range

Modify block size

- 1. Modified by sensor density spec
- 2. Tuning the percentage: PD win / image size

Modify confidence table

- 1. Tuning confidence table by gradient value
- 2. Keep default similarity setting is recommended

Check saturated pixel

1. If saturated pixel number exceeds threshold, confidence will be set to zero.

Modify **block size** by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check saturated pixel

to determine to set zero conf

- PD ALG 5.0 has two different cores. We strongly recommend using the new core.
- Parameter
 - 201 or 401 (enable): The new core is used.
 To set 201 or 401 depends on sensor density.
 - 0 (disable): The old core is used.

Example log

```
PdAlgo : KenrEn = 1, DZFctr = 4, SmplFctr = 1
```

Dynamic Search Range

- The search range can be dynamically determined according to the current position, minimum position, and maximum position.
- The following problems can be alleviated.

Modify **block size** by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf

The ideal PD value is very small (not The ideal PD value is very large (not within the search range).

```
//-----/
// Section: Dynamic Search Range (PD Core 5.0)
// Description: The search range will be dynamically determined according to current position,
// min position, and max position.
//
// [17] name: m_i4DSREn
// range: 0 to 1
// default: 1 (enable)
// constraints:
// effect: as the description
//-------/
1, //[17]
```

Example log

Parameter

```
PdAlgo : [DSR] En=1
```

Block Size

Modified by tuning Modified by sensor spec

- Size_X = (Width_{RAW} \times M %) / density_X
 - E.g., $(4640 \times 12 \%) / 16 = 34.8$
 - The largest multiple of 4 that is less than 34.8: 32
- Size_Y = (Height_{RAW} \times N %) / density_Y
 - E.g., $(3488 \times 12 \%) / 16 = 26.2$
 - The largest multiple of 4 that is less than 26.4: 24
- Parameter

Example log

Check PD core setting

Modify **block size** by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf

Confidence Level

Check PD core setting

The confidence is determined by the gradient and the curvature.

Modify **block size** by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf


```
// ---- Confidence Table ----
// ---- PD Core 5.0 ----
{0, 4, 8, 12, 16, 20},
{10, 20, 23, 25, 28, 30},
{15, 30, 33, 35, 38, 40},
{20, 40, 45, 50, 55, 60},
{25, 60, 65, 70, 75, 80},
{30, 80, 85, 90, 95, 100}
```

High Confidence

- The gradient and curvature thresholds can be adjusted.
- The higher the threshold, the lower the confidence.
- Example log

```
PdAlgo : [calConf] conf=36, curv=0.00124, grad=207, idx=(3,4), sat=0.00000 PdAlgo : [calConf] conf=86, curv=0.00405, grad=590, idx=(5,5), sat=0.00000
```

Curvature (1/2)

 The curvature of the similarity function is used as the primary index for determining the confidence.

Check PD core setting

Modify block size by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf

Curvature (2/2)

Check PD core setting

Modify **block size** by sensor density / PD win %

Parameter

Modify confidence table

by curvature and gradient

Check **saturated pixel** to determine to set zero conf

Gradient 0.00005 0 40 80 160 320 640 0.00060 10 20 23 25 28 30 0.00120 15 30 33 35 38 40 0.00240 20 40 45 50 55 60 0.00360 25 60 65 70 75 80 0.00480 30 80 85 90 95 100

Example log

```
PdAlgo : CurvThd = 0.00005 0.00060 0.00120 0.00240 0.00360 0.00480

PdAlgo : [calConf] conf=36, curv=0.00124, grad=207, idx=(3,4), sat=0.00000

PdAlgo : [calConf] conf=86, curv=0.00405, grad=590, idx=(5,5), sat=0.00000
```

The gradient is used as the secondary index for

High Gradient

determining the confidence.

Low Gradient

Modify **block size** by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf

Parameter

```
// Section: Gradient Threshold (PD Core 5.0)
                                                                                                 Gradient
// Description: The gradient is compared with these thresholds.
                                                                               0.00005
//[11] name: m i4GradThd[0]
                                                                               0.00060 10
//[12] name: m i4GradThd[1]
//[13] name: m i4GradThd[2]
                                                                               0.00120 15
//[14] name: m i4GradThd[3]
                                                                               0.00240 20
//[15] name: m i4GradThd[4]
//[16] name: m i4GradThd[5]
                                                                               0.00360 25
      range: 1 to 16368
      default: [11] 10 [12] 40 [13] 80 [14] 160 [15] 320 [16] 640
                                                                               0.00480 30
      constraints: The latter should be larger than the former.
          [6] should be larger than [5]. [7] should be larger than [6].
      effect: The higher the threshold, the lower the confidence.
10, 40, 80, 160, 320, 640,
```

Example log

```
PdAlgo : GradThd = 10 40 80 160 320 640
```

MEDI

PdAlgo : [calConf] conf=36, curv=0.00124, **grad=207**, idx=(3,4), sat=0.00000 PdAlgo : [calConf] conf=86, curv=0.00405, **grad=590**, idx=(5,5), sat=0.00000

Saturation Level

Modify **block size**by sensor density / PD win %

Check PD core setting

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf

 If the value of a pixel is larger than or equal to the saturation level, the pixel will be determined as a saturated pixel.

Parameter

Example log

```
PdAlgo : m_tuningData.SI = 240, m_tuningData.ST = 512

PdAlgo : [sPDBlock] PD block = (2040, 1544, 576, 384), S var. = 268, S Cnt. = 201
```


Saturation Threshold

- If the percentage (= the number of saturated pixels / the number of all pixels) is larger than or equal to the threshold, the confidence level will be set to zero.
- The number of all pixels = $Size_x \times Size_y$
- Parameter

Modify **block size** by sensor density / PD win %

Modify **confidence table** by curvature and gradient

Check **saturated pixel** to determine to set zero conf

Example log

```
PdAlgo : m_tuningData.SL = 240, m_tuningData.ST = 512
```

```
PdAlgo : [sPDBlock] PD block = (2040, 1544, 576, 384), S var. = 268, S Cnt. = 201
PdAlgo : [calConf] conf=35, curv=0.00121, grad=204, idx=(3,4), sat=0.05815
```


Log

- The log can be enabled via the following command.
 - adb shell setprop debug.pd.enable 1
- Example log

PD Value

```
PdAlgo : [sPDBlock] PD block = (2072, 1544, 512, 384), S var. = 1759, S Cnt. = 0
PdAlgo : [calSrchRng] Start=-20, End=20, En=1, MinPos=0, MaxPos=0
PdAlgo : [cPD2D] pd=11.29095] r.=0.99470, r var.=0.00381
PdAlgo : [calF] cur.=760, s=10.75738, foc.=639
PdAlgo : [calConf] conf=82, curv=0.00381, grad=586, idx=(5,5), sat=0.00000
```

Confidence

Target Position

MEDIATEK

Face af improvement

Face AF v5.0 – ROI setting

Accuracy

Face type	Ratio (of TG)	ROI (v5.0 new)	ROI (v4.6)
Small	<= 10%	LM extension	FD extension
Normal	> 10%	Finer LM selection	LM selection (6x6)

Copyright © Mediate Inc. All rights reserved.

MEDIATEK CONFIDENTIAL B

LM extension

FaceAF v4.6 [@P23]

FD info

AF-stats. area

AF ROI

AF-stats. area

AF ROI "

FaceAF v5.0 [@P40]

FD info + LM info

AF-stats. area

AF ROI

Use **LM info** to determine **AF ROI**

LM extension

Face AF v5.0 – FDAF Trigger

Parameter Name	Description
[1] face_af_tracking_enable	Enable pd tracking for FaceAF
	(0:CAF, 1:PDAF, 2:TrackingAF)

Smoothness

- V4.6 Need to wait for stable and then trigger FDAF
- V5.0 Trigger FDAF if PD is reliable
- Fast trigger with smoothness approval by PD
- Face AF tracking
 - Enable: i4PDAFCoefs[1] set to 2
 - Once enable, it can work without other tuning.

TUNING PARAME

Face AF - NVRAM

Name	Description	Default Value	Note
fd_win_percent	no-used		
fd_size_diff	no-used		
fd_detect_cnt	no-used		
fd_none_cnt	no-used		
face_fv_extract_enable	faceAF fv metering	1	
face_fv_extract_thr	voting threshold	50	

FDAF — Overview

Name	Description	Default Value	Note
[0] face_af_enable	Enable FaceAF v5.0	2	0~2
[1] face_af_tracking_enable	Enable pd tracking for FaceAF (0:CAF, 1:PDAF, 2:TrackingAF)	1	0~2
[2] face_reliable_weight	Add more detect cnt for reliable FD result (MTK FD only)	1	1~3
[3] face_detect_num	Face detected cnt > face_detect_num and stable, FD status = 1	3	3~20
[4] face_none_num	Face not detected cnt > face_none_num and stable, FD status = 0	3	3~20
[5] face_no_input_num	Face no input cnt > face_no_input_num, FD status = 0	30	3~20
[6] face adv ext mode	LM-faceAF(+2), small face handling(+1)	3	0~15
[7] face small face ratio	Small face threshold ratio (%) of TG width, ex: default 10%	15	
[8] ~[10]	Keep default	0	

FDAF — Overview

Name	Description	Default Value	Note
[11] change_mode	FD horizontal movement AF re-trigger	0	0 or 1
[12] change_threshold	FD change when ratio < change_threshold	70 (%)	1~99
[13] change_range	FD change check range, should >= change_num	3	3~20
[14] change_num	FD change check number, should <= change_range	3	3~20
[15] stable_mode	Reserved	0	0
[16] stable_threshold	FD stable when ratio > stable_threshold	80 (%)	1~99
[17] stable_range	FD stable check range, should >= stable_num	5	3~20
[18] stable_num	FD stable check number, should <= stable_range	5	3~20
[19] timeout_num	When FD unstable count > timeout_num, re-trigger AF	30	3~60
[20] ~ [30]	Reserved	0,0,0,0,0, 0,0,0,0,0,0,	

Hybrid AF improvement

DYNAMIC WEAK THRESHOLD BY LV

Dynamic Weak Threshold by LV

- Determine the next state by confidence level
 - There are two method to set weak threshold: Fix and dynamic

Dynamic Weak Threshold by LV - fixed

Strong/weak threshold are fixed by parameter setting

Dynamic Weak Threshold by LV - dynamic

Strong/weak threshold are calculated by current LV

DYNAMIC WEAK THRESHOLD BY LV

- Dynamic weak threshold can use lower confidence in outdoor and use higher confidence in night scene
- Once this section Config. Original fix weak trehsold coef[2] will lose effectiveness

Hybrid AF – Dynamic Weak Threshold by LV

Name	Description	Default Value	Note
[51] pd_dynamic_weak_lv_high	Dynamic weak threshold – Hight LV define	70	
[52] pd_dynamic_weak_lv_mid	Dynamic weak threshold – Mid LV define	50	
[53] pd_dynamic_weak_lv_low	Dynamic weak threshold – Low LV define	20	
[54] pd_dynamic_weak_threshold_high	Dynamic weak threshold at LV Hight	30	
[55] pd_dynamic_weak_threshold_mid	Dynamic weak threshold at LV Mid	40	
[56] pd_dynamic_weak_threshold_low	Dynamic weak threshold at LV Low	50	

HYBRID SCENE CH CONFIDENTIAL B

Hybrid scene change

- In this state, scene change detection is the same to CDAF except hybrid scene change.
- Scene Change and Trigger

AF v5.0 change

- V5.0 : Use *variance* to check if scene change or not
- V4.0 : Use PD target difference

Hybrid scene change

Hybrid AF – Hybrid scene change

Name	Description	Default Value	Note
[21] pd_scene_enable	set 1 to let PD target change as scene change.	0	0 or 1
[22] pd_change_frame	increased this value to improve PDAF trigger stability; decreased to improve sensitivity.	10	>0
[23] pd_change_thr	increased this value to improve PDAF trigger stability; decreased toimprove sensitivity.	90	>=0
[24] pd_stable_frame	pd_stable_frame	10	>0
[25] pd_stable_thr	pd_stable_thr	90	>0
[26] pd_valid_confidence_chg	set what's confidence level data will use for PD scene change.	70	0~100
[27] pd_valid_confidence_stb	set what's confidence level data will use for PD scene stable.	70	0~100
[44] pd_trigger_variance_frame	Trigger variance check frame number	3	
[45] pd_trigger_variance	Variance under this value will give trigger signal	100	

MID-LOW CONFIDENCE HANDLING

New item

- Weighted PD Target
- Adjust Speed by Defocus and Confidence
- Fit Peak Protection

CONFIDENTIAL B

Weighted PD Target

- Purpose
 - Apply weighted PD target by smooth frames

Weighted PD Target

- Weighted PD target calculation
 - Final weighting = temporal weight x confidence weight

Set value by parameter

By past 5 frame's confidence

Final PD target: tarPos * final weighting for 5 frames

Weighted PD Target

- Weight table setting by parameter
 - Set a temporal smooth weight table for past 5 frame at each confidence level region.

 The default value is the higher confidence the lower smooth weighting.

i4PDAFCoefs	[46]	[47]	[48]	[49]	[50]
Confidence	100~80	79~60	59~40	39~20	19~0
Default	1	1	2	2	3 <
Ex: no smooth	1	1	1	1	1
Ex: smooth all	5	5	5	5	5

This table is fixed. Only selection by parameter

37	N	N-1	N-2	N-3	N-4
1	100	0	0	0	0
2	70	20	10	0	0
3	50	30	20	0	0
4	40	30	20	10	0
5	25	25	20	20	10

Table: 50 30 20 0 0

PDAF – Weighted PD target

Name	Description	Default Value	Note
[46] pd_temp_smooth_conf_80_100	select a temporal smooth weighting table for each confidence level	1	1~5
[47] pd_temp_smooth_conf_60_79	select a temporal smooth weighting table for each confidence level	1	1~5
[48] pd_temp_smooth_conf_40_59	select a temporal smooth weighting table for each confidence level	2	1~5
[49] pd_temp_smooth_conf_20_49	select a temporal smooth weighting table for each confidence level	2	1~5
[50] pd_temp_smooth_conf_0_19	select a temporal smooth weighting table for each confidence level	3	1~5

```
-----n, --n-1, --n-2, -n-3, -n-4
```


Purpose

- Move large step when far away form target; move quick when close to target
- Add new moving mode Mode 9
- Concept (Mode 9)
 - Final moving speed = defocus speed x confidence

Speed calculation

W: weighting, set by parameter

Speed calculation Speed (%)

Get defocus speed by right curve

Calculate final speed by conf weighting

i4PDAFCoefs	Description	Default
[11]	Set moving speed mode 9 to enable. (inf direction)	9
[12]	speed for long defocus size (inf direction)	40
[13]	Set moving speed mode 9 to enable. (mac direction)	9
[14]	speed for long defocus size (mac direction)	40
[15]	speed for short defocus size (inf direction)	100
[16]	speed for short defocus size (mac direction)	100
[59]	Long defocus threshold (% of af table size)	50
[60]	short defocus threshold (% of af table size)	5

Speed calculation

Get defocus speed by right curve

Let confidence weighting = W

Final Speed =
$$\frac{(100-W) \times speed \ by \ defocus + W \times PD \ confidence}{100}$$

Calculate final speed by conf weighting

i4PDAFCoefs	Description
[61] pd_move_speed_conf_weighting	Confidence weighting (1~100)

Name	Description	Default Value	Note
[11] pd_move_mode_inf	Set moving speed mode 9 to enable. (inf direction)	9	
[12] pd_move_speed_inf	speed for long defocus size (inf direction)	40	
[13] pd_move_mode_mac	Set moving speed mode 9 to enable. (mac direction)	9	
[14] pd_move_speed_mac	speed for long defocus size (mac direction)	40	
[15] pd_move_ext_inf	speed for short defocus size (inf direction)	100	
[16] pd_move_ext_mac	speed for short defocus size (mac direction)	100	
[59] pd_move_ext2	Long defocus threshold (% of af table size)	50	
[60] pd_move_ext3	short defocus threshold (% of af table size)	5	
[61] pd_move_speed_conf_weighting	Confidence weighting (1~100)	40	

Fit Peak Protection

Purpose

 Check each condition when peak found, if not satisfy check item, keep finesearch

Check item

- Item1 : Gyro < threshold
- Item2: FV is not flat when mid-low confidence
- Item3: Position after adaptive damping compensation is normal

Expected fit pos.: 325 -> 304 -> 294

Damping fit pos. : 313 -> 316 -> 299

Fit Peak Protection

Parameter

Expected fit pos.: 325 -> 304 -> 294 Damping fit pos.: 313 -> 316 -> 299

	i4HybridAFCoefs	Description	Default
Item2	[49] flat fv	FV protection ratio (0~100 %)	2
Item1	[64] gyro stable	Gyro stable protection	10
	[68] mid-low confidence	Mid-Low confidence threshold	50

FV protection function[49] active when confidence < mid-low confidence threshold[68]

Hybrid AF - Fit Peak Protection

Name	Description	Default Value	Note
[49] flat fv	FV protection ratio (0~100 %)	2	
[64] gyro stable	Gyro stable protection	10	
[68] mid-low confidence	Mid-Low confidence threshold	50	

MEDIATEK

PLAF — Introduction

- Spatial sharpness image filter can generate focus value (FV) for auto focus (AF) to find best focus lens position.
- Since it is effective and simple, it is widely used in camera system.
- However, the point light (PL) scene can confuse it, and make AF miss-focused.

PL scenes contain saturated (over-exposure) spots/bar/area, and the saturated parts will get bigger & bigger with image blur.

550,000

500,000

It causes FV growing with image blur, and AF fail.

PL detector

Detect PL scene

- Check the changes ratio of area when normal AF searching.
 - PL scene should have sufficient area changes ratio.
- For realization, we use 32-histogram weighted result for area, and get

the ratio.

 $AC_{Ratio} = Area(R) / Area(r)$ Area = $Hist_{255}W_{255} + Hist_{248}W_{248}...$

FLOW DESCRIP CONFIDENTIAL B

PL Algorithm Flow – Hybrid Mode

PL CAF CASE CONFIDENTIAL B

PL detector - CAF Case

PL_SCENE 0: Non-PL
PL_SCENE 1: PL abort
PL_SCENE 2: CAF PL
PL_SCENE 3: PDAF PL

PL detector – CAF Case

打閃是否偵測點光源

i4PLAFCoefs[7]

ISO TH調整參數

i4PLAFCoefs[7]

bit[03]	ISO threshold for TAF. (x100)	3 (ISO 300)
bit[47]	ISO threshold for CAF. (x100)	3 (ISO 300)

PL detector - CAF Case

如何判斷點光源太小顆

(PL_WMinArea<limitWArea && ISO<PLISOHigh) or (PL_WMinArea<100 && ISO>PLISOHigh)

如何算limitWArea

[20]	PllsoHigh	800
[21]	PlisoLow	100
[22]	PlAreaHigh	500
[23]	PlAreaLow	1000

PL detector – CAF Case

如何定義影像四周

中心點(x,y) +- 影像長寬一半的pl_bound_limit % 定義為中間

X Corner case

Х	Х	Х
х	pl_bound_limit	. % X
Х	Х	Х

[6]	pl_bound_limit	70
-----	----------------	----

PL detector – CAF Case

對焦向下時,first pos 靠近焦,則abort 否則,提高進PL 區的難度 (提高Rs,Rb,Rtop)

i4PLAFCoefs[7]

bit[1215]	If the angle threshold is satisfied, this value determine how many times for raising PL detect line.	3 (1.3x)
bit[1619]	Camera angle of depression threshold. x(-10)	4 (-40)

PL detector - CAF Case

(Cur_pos > Mid_pos) && (TotInd < PlShotStep) 步數少時,ratio變化可能較小,進PL的條件要變鬆

Mid_pos = 整個AF table *3/4

Rs = Rs * PlShortDca/100 Rb= Rb * PlShortDca/100 Rtop = Rtop * PlShortDca/100 最小不能小於PlShortStepRatio

[14]	PlShortStepRatio	110
[15]	PlShortStep	4
[16]	PlShortDca	80

PL detector - CAF Case

使用Ratio/MinArea查表判定是否為PL景

[1]	pl_tuning_point_r_top	2500
[2]	pl_tuning_point_ a_s	2000000
[3]	pl_tuning_point_ r_s	300
[4]	pl_tuning_point_ a_b	8000000
[5]	pl_tuning_point_ r_b	140

如何判定

Wmin_pos < TotMin_pos => 使用WminArea Else => 使用Scnt (挑選靠近遠焦的來用)

如何找到peaK

使用3點curve fitting

如果curve fitting pos < Inf_pos 則還是使用Inf_pos

如何判定

PI_pos < far_pos (pos 離遠焦太遠) PI_pos>mid_pos (pos 離近焦太近) PL_enableExt()&& (DiffWcnt >TotWcnt)

far_pos =(table第一步*(m_u4PlToIncFarTBLRat -1)+table最後步)/ m_u4PlToIncFarTBLRat

mid_pos =(table第一步*(m_u4PlToIncNearTBLRat -1)+table最後步)/ m_u4PlToIncNearTBLRat

PL_enableExt() = i4PLAFCoefs[7]bit 8

TotWcnt = MinUsableCnt* m_u4PlUsablCntTolncRat

Inf_pos = OTP_pos + pl_temperature_error (OTP可能K歪,所以手動加個shif值)

[11]	m_u4PlToIncFarTBLRat	4
[12]	m_u4PlToIncNearTBLRat	1
[17]	m_u4PIUsablCntToIncRat	10
[8]	pl_temperature_error	5

PL PD CASE CONFIDENTIAL B

IsEnableDafFsPI = 沒人臉&& 角度不向下&& pos靠遠焦 && Conf 大於weak && ISO夠大 && 對焦框不在影像邊緣

DafFsPl_Detect = i4HybridAFCoefs [51] (default = 1)

角度tuning參數 i4PLAFCoefs[7]

bit[1619]	Camera angle of depression threshold.	4
DIL[1019]	x(-10)	(-40)

對焦bound參數 i4PLAFCoefs[64]

[6]	pl_bound_limit	70
[6]	pl_bound_limit	70

ISO參數 i4PLAFCoefs[7]

[03]	ISO threshold for TAF. (x100)	3 (ISO 300)
bit[47]	ISO threshold for CAF. (x100)	3 (ISO 300)

PL_SCENE 0: Non-PL
PL_SCENE 1: PL abort
PL_SCENE 2: CAF PL
PL_SCENE 3: PDAF PL

(Gsum[0]-Gsum[1])/Max_Gsum > abortGsum_TH && (Scnt[0]-GScnt[1])/Max_Scnt > abortScnt_TH

i4HybridAFCoefs[128]

[56] Abnormal Gsum threshold	150	
[57] Abnormal SCnt threshold	150	

Pl_MinScnt < Pl_MinScnt_TH

i4HybridAFCoefs[128]

[54] Fine search PL scnt min threshold 200

Diff_Gsum/Max_Gsum > Gsum_TH
Diff_Scnt/Max_Scnt > Scnt_TH

i4HybridAFCoefs[128]

[52] Fine search PL gsum threshold	150
[53] Fine search PL scnt threshold	200

PD confidence > HbPI_PDconfTH 的frame個數 > HbPI_PDconfTH, 表示PD target可信,可在PD target附近search 準焦點

若PD不可信,則在OTP Inf附近search準焦點

[29]	HbPl_PDconfTH	60
[30]	HbPl_PDCntTH	2

在(PD target - HbPlSearchRange_PD, PD target +HbPlSearchRange_PD) 的range 内search peak

[27]	HbPlSearchRange_PD	40
[28]	HbPlSearchRange_Inf	60

TUNING PARAME

i4HybridAFCoefs[128]

No	Description	Default
[51]	Fine search PL check	1
[52]	Fine search PL gsum threshold	150
[53]	Fine search PL scnt threshold	200
[54]	Fine search PL scnt min threshold	200
[55]	Fine search PL HW threshold	220
[56]	Abnormal Gsum threshold	150
[57]	Abnormal SCnt threshold	150
[58]	Daf Sample	3

No	Name	Description	Default	Range
[0]	af_enable_pl	To enable PLAF or not.	1	0 or 1
[1]	pl_tuning_point_r_top	Tuning points for PL detector.	2500	
[2]	pl_tuning_point_a_s	AC _{Ratio} PL scene • :Tuning	2000000	
[3]	pl_tuning_point_r_s	PL scene points	300	<u>Detail</u>
[4]	pl_tuning_point_a_b	R _s R _b Non-PL scene	8000000	
[5]	pl_tuning_point_r_b	A _b Area	140	
[6]	pl_bound_limit	Define boundary for corner case. PLAF will have no effect when af window in corner case.	70	40 to 100
[7]	pl_control_bit	PL control bit.	0x43C33	<u>Detail</u>
[8]	pl_temperature_error	To compensate OTP infinity error if OTP infinity is always not accurate.	5	-250 to 250
[9]	pl_abnormal_warea_th	Check abnormal scene by weighted area.	500	100 to 1000
[10]	pl_abnormal_tarea_th	Check abnormal scene by saturation count.	500	100 to 1000

PLAF — Customization Guideline (1/2)

i4PLAFCoefs[1] ~ i4PLAFCoefs[5]: pl_tuning_point_xx

No	Name	Default	Range
[1]	pl_tuning_point_ r_top	2500	pl_tuning_point_ r_s to 4000
[2]	pl_tuning_point_ <mark>a_s</mark>	2000000	0 to pl_tuning_point_a_b
[3]	pl_tuning_point_ r_s	300	pl_tuning_point_ r_b to pl_tuning_point_ r_top
[4]	pl_tuning_point_ a_b	8000000	pl_tuning_point_a_s to 4294967295 (0xffffffff)
[5]	pl_tuning_point_ r_b	140	120 to pl_tuning_point_ r_s

i4PLAFCoefs[6]: pl_bound_limit

- Define boundary for corner case(x). PLAF will have no effect when af window in corner case.
- Effect: The bigger the value is, the more effective area for PLAF. (the less corner cases happen.)
- Default: 70
- Range: 40 to 100

X Corner case

Х	X	Х
Х	pl_bound_limit	Х
Х	Х	Х

^{*}It is not recommended to change value.

PLAF — Customization Guideline (2/2)

i4PLAFCoefs[7]: pl_control_bit = 0x33C33

Bit	Description	Default	Range
[03]	ISO threshold for TAF. (x100)	3 (ISO 300)	0 to 0xF
[47]	ISO threshold for CAF. (x100)	3 (ISO 300)	0 to 0xF
[8]	To enable PL extract method.	0	0 or 1
[9]	Move to infinity directly if detect PL.	0	0 or 1
[10]	PLAF will have no effect when flash on.	1	0 or 1
[11]	To enable new HW or not.	1	0 or 1
[1215]	If the angle threshold is satisfied, this value determine how many times for raising PL detect line.	3 (1.3x)	0 to 0xF = 1x, 1.1x,1.2x,2.5x
[1619]	Camera angle of depression threshold. x(-10)	4 (-40)	0 to 0xF = 0, -10, -20,150.

No	Name	Description	Default	Range
[11]	m_u4PlToIncFarTBLRat	Decide DAC for far scene, $(table[0]*(X-1) + table[N])/X$	4	1 to 100
[12]	m_u4PlToIncNearTBLRat	Decide DAC for near scene. (table[0]*(X-1) + table[N])/X	1	1 to 100
[13]	m_u4PlSatCntToIncRat	For PLFv3.0 extraction.	20	1 to 100
[14]	m_u4PlShortStepRatio	Reduce PL detector ratio (*m_u4PlShortDca/100) if search step	110	110 to 1000
[15]	m_u4PlShortStep	is less than <i>m_u4PlShortStep</i> . The final detector ratio should be greater than or equal to <i>m_u4PlShortStepRatio</i> . 走的步數少,area變化可能不夠大,所以降低進點光源的門檻	4	1 to 6
[16]	m_u4PlShortDca	值,但不能降到比m_u4PlShortStepRatio低	80	50 to 100
[17]	m_u4PlUsablCntToIncRat	For PLFv3.0 extraction.	10	1 to 100
[18]	m_i4PlMinSatV	The minimum saturation count HW threshold.	160	
[19]	m_u4PIPfmUpdateSatTH	To per-frame update saturation count HW threshold.	1	0 or 1

No	Name	Description	Default	Range
[20]	m_u4PlIsoHigh	Adjust weighted area by ISO value. Ratio 1 R'	800	0 to 1600
[21]	m_u4PllsoLow	$ISO_{low} \qquad ISO_{high} \qquad ISO$ $WArea = (Hist_{255}W_{255} + Hist_{248}W_{248} Hist_{0}W_{0}) * R'$ $*m_u4P IsoHigh must be greater than m_u4P IsoLow$	100	0 to 1600
[22]	m_u4PlAreaHigh	Ratio Dupdate limit min weighted-area. Area _{low} Limit area	500	100 to 2000
[23]	m_u4PlAreaLow	ISO _{low} ISO _{high} ISO *m_u4PlAreaHigh must be less than or equal to m_u4PlAreaLow.	1000	100 to 2000
[24]	m_u4PlOutlierCnt	Do not reference high brightness area if the count of [164~252] < outlier count.	<= 5	1 to 100

No	Name	Description	Default	Range
[25]	HBPI_convThrInf	HBPI Scene go to fine search TH for Inf	PDAF[18]	0 to 200
[26]	HBPI_convThrMac	HBPI Scene go to fine search TH for Max	PDAF[19]	0 to 200
[27]	HbPlSearchRange_PD	HBPL fine search range – base on PD target	40	0 to 200
[28]	HbPlSearchRange_Inf	HBPL fine search range—base on OTP Inf	60	0 to 200
[29]	HbPl_PDconfTH	Use PD target do HBPI fine search central point confidence TH	60	0 to 100
[30]	HbPl_PDCntTH	Use PD target do HBPI fine search central point cont TH	2	0 to 30
[31]	HbPl_LVTH	HBPL detect LV TH	150	0 to 500
[32]	HbPl_PDWin	0: use spot window to do PLAF 1: use PD select window to do PLAF	1	0 or 1

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.