Проблема качества данных

Содержание

- 1) Описание основных проблем с данными
- 2 Определение валидности и правильности данных
- 3) Работа с пропущенными значениями
- 4) Обработка категориальных переменных
- 5 Практика.

Введение

Недостаточное количество данных

Нерепрезентативные данные

Данные плохого качества аномалии, выбросы, нулевые значения

Большая размерность пространства данных

Чем больше данных, тем лучше

"Scaling to Very Very Large Corpora for Natural Language Disambiguation"

Michele Banko and Eric Brill 2001, Microsoft Research

Создание новых параметров

- 1. Метод мозгового штурма и экспертное мнение или/и проверка признаков;
- 2. Решение, какие признаки создавать;
- 3.Создание признаков;
- 4.Проверка, какие признаки работают с вашей моделью;
- 5.Улучшение признаков, если требуется;
- 6.Возврат к методу мозгового штурма/создание других признаков, пока работа не будет завершена.

Дисбаланс данных

Перекос данных

- 90 % данных класс A, 10 % данных класс В
- Модель всегда отвечает
 A accuracy 90 %

Как бороться? Часть методов

- Oversampling and undersampling
- Синтетические данные
- Другие метрики *AUC*, *F1-score*
- Другие способы machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset

Нерепрезентативные данные

The Literary Digest

Topics of the day

LANDON, 1,293,669; ROOSEVELT, 972,897

Final Returns in The Digest's Poll of Ten Million Voters

Well, the great battle of the ballots in the Poll of ten million voters, scattered throughout the forty-eight States of the

lican National Committee purchased The Literary Digest?" And all types and varieties, including: "Have the Jews purchased returned and let the people of the Nation draw their conclusions as to our accuracy. So far, we have been right in every Poll. Will we be right in the current Poll? That, as Mrs. Roosevelt said concerning the President's reelection, is in the 'lap of the gods.'

"We never make any claims before election but we respectfully refer you to the

Данные и сопутствующие проблемы Проклятье размерности

Проклятье размерности

Одно измерение - 5 точек

Два измерение - 25 точек

Три измерения - 125 точек

Первичный анализ данных. Визуальный анализ данных

- 1. Как собираются данные?
- 2. Сколько и каких переменных?
- 3. Что обозначает каждая переменная, какие единицы измерения и как она собирается?
- 4. Есть ли пропущенные значения и как они появились?
- 5. Есть ли аномалии в распределениях?
- 6. Есть ли корреляции и другие зависимости?

Первичный анализ данных. Визуальный анализ данных

EDA - это критический важный процесс первоначального исследования данных с помощью сводной статистики и визуализаций с 4 основными целями:

- Выявить паттерны/зависимости
- Заметить аномалии
- Сформировать гипотезы
- Проверить первичные предположения

Первичный анализ данных. Типы признаков

0 1 2 3 4
5 6 7 8 9

Количественные

Бинарные

Категориальные

- Номинальные
- Порядковые

Первичный анализ данных. Основные статистические характеристики

Меры центральной тенденции

Сре́днее арифмети́ческое — число, равное сумме всех чисел множества, делённой на их количество. Обычно так оценивают математическое ожидание.

Mó∂а — значение во множестве наблюдений, которое встречается наиболее часто (мода = типичность.)

Медиа́на набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию

Первичный анализ данных. Основные статистические характеристики

Меры разброса

Максимум— максимальное значение величины в выборке

Минимум— минимальное значение величины в выборке

Квантиль — значение, которое заданная величина не превышает с определенной вероятностью. Если вероятность задана в процентах, то квантиль называется **процентилем** или **перцентилем**.

Дисперсия случайной величины — мера разброса значений случайной величины относительно её математического ожидания

Среднеквадратическое отклонение — показатель рассеивания значений величины относительно её математического ожидания. Обычно он означает квадратный корень из дисперсии величины.

Обработка нулевых значений

Приводит к потере информации.

- -Удалять столбец содержащий нулевое значение
- -Удалять строки, в которых атрибут равен нулевому значению

Внесение собственных данных (можно внести искажения)

- Заменять на среднее значение, медиану, моду
- Indicator Method замена пропущенных значений нулями и создание новой переменной индикатора (где она принимает значение 1 при наличие пропуска и 0 в остальных случаях)
- Повторить результат последнего наблюдения
- Восстановление пропусков на основе моделей
- Интерполировать или экстраполировать данные (временные ряды)

Обработка количественных переменных.

Масштабирование

• Standard
$$x' = \frac{x - \overline{x}}{\overline{o}}$$

• Min-Max
$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Перевод в категориальные

Обработка категориальных переменных. One-hot/ Label encoding

Company Name	Categorical value	Price
VW	1	20.000
Acura	2	10.011
Honda	3	50.000
Honda	3	10.000

VW	Acura	Honda	Price
1	0	0	20.000
0	1	0	10.011
0	0	1	50.000
0	0	1	10.000

Обработка категориальных переменных. Bins to number

Обработка категориальных переменных. Bins to number

Co o acces	Age	Gender	Product_ID	User_ID
Средняя	0-17	F	P00069042	1000001
медиана	0-17	F	P00248942	1000001
_	0-17	F	P00087842	1000001
	0-17	F	P00085442	1000001
	55+	М	P00285442	1000002
Popyua	26-35	М	P00193542	1000003
Верхня	46-50	М	P00184942	1000004
Н	46-50	М	P00346142	1000004
	46-50	М	P0097242	1000004
	26-35	М	P00274942	1000005
	26-35	М	P00251242	1000005

я или

я или ІИЖНЯЯ раница

Oca	New_Age	Age	Gender	Product_ID	User_ID
1	14	0-17	F	P00069042	1000001
1	14	0-17	F	P00248942	1000001
1	14	0-17	F	P00087842	1000001
4	14	0-17	F	P00085442	1000001
)	60	55+	M	P00285442	1000002
)	30	26-35	M	P00193542	1000003
7	47	46-50	M	P00184942	1000004
7	47	46-50	M	P00346142	1000004
7	47	46-50	M	P0097242	1000004
	30	26-35	M	P00274942	1000005
	30	26-35	M	P00251242	1000005

User ID	Product ID	Gender	Age	Lower Age	Upper_Age
	P00069042	F	0-17	0	17
1000001	P00248942	F	0-17	0	17
1000001	P00087842	F	0-17	0	17
1000001	P00085442	F	0-17	0	17
1000002	P00285442	M	55+	55	80
1000003	P00193542	M	26-35	26	35
1000004	P00184942	M	46-50	46	50
1000004	P00346142	M	46-50	46	50
1000004	P0097242	M	46-50	46	50
1000005	P00274942	M	26-35	26	35
1000005	P00251242	M	26-35	26	35

Обработка категориальных переменных. По бизнес-логике

По бизнес логике

Zip Code	District
110044	South Delhi
110048	South Delhi
110049	South Delhi
110006	North Delhi
110007	North Delhi
110058	West Delhi
110059	West Delhi
110063	West Delhi
110064	West Delhi

По доле таргетинга

Based on Response Rate

Levels	Response_Rate	New_Level
HA014	98%	1
HA001	97%	1
HA003	93%	1
HA009	81%	2
HA015	75%	3
HA010	73%	3
HA006	66%	4
HA017	60%	4
HA007	49%	5
HA004	36%	6
HA005	31%	6
HA012	28%	7

Обработка категориальных переменных.

Weights of Evidence WOE

$$W \ eighto f \ Evidence = \ln(\frac{DistributionGood_i}{DistributionBad_i})$$

$$IV = \sum (DistributionGood_i - DistributionBad_i) \times ln(\frac{DistributionGood_i}{DistributionBad_i})$$

 $IV = \sum (DistributionGoodi - DistributionBad_i) \times WOE_i$

DistributionGood (p_good) — отношение количества хороших в категории к числу всех хороших

DistributionBad (p_bad) — отношение количества плохих в категории к числу всех плохих

Обработка категориальных переменных.

Information value

```
W \ eighto \ f \ Evidence = \ln(\frac{DistributionGood_i}{DistributionBad_i})
IV = \sum (DistributionGood_i - DistributionBad_i) \times \ln(\frac{DistributionGood_i}{DistributionBad_i})
IV = \sum (DistributionGood_i - DistributionBad_i) \times WOE_i
```

- Мера прогностической силы переменной
- Оценка информативности переменной

ПРАКТИКА

Спасибо за внимание!

