PTC5611 - Controle Digital de Sistemas Dinâmicos

Lista de Exercícios 1

Prof. Bruno A. Angélico

Exercício 1: Sobre a amostragem periódica de sinais de tempo contínuo...

- a) Considere que a sequência $x[n] = \cos\left(\frac{\pi}{4}n\right)$ foi gerada a partir de um sinal de tempo contínuo $x_c(t) = \cos(\omega t)$. Determine ω dado que a frequência de amostragem é $f_s = 1 \, k\text{Hz}$.
- b) Dado que a sequência $x[n] = \cos\left(\frac{\pi}{3}n\right)$ foi obtida a partir do sinal de tempo contínuo $x_c(t) = \cos(4000\pi t)$ com uma frequência de amostragem f_s , determine a frequência de amostragem f_s . Considerando um filtro de reconstrução passa-baixas ideal, verifique se sinal $x_c(t)$ pode ser perfeitamente recuperado a partir de x[n]. Justifique!
- c) Considere a sequência $x[n] = \cos\left(n\frac{\pi}{8}\right)$. Encontre dois sinais senoidais de tempo contínuo, $x_1(t)$ e $x_2(t)$, que poderiam produzir a sequência x[n] quando amostrados com $f_s = 10$ Hz.
- d) Um sinal analógico de tempo contínuo $x_c(t)$ possui espectro $X_c(\omega)$ apresentado na Fig. 1. Represente graficamente:
 - o esboço do espectro de amplitude do sinal amostrado, assumindo frequência de amostragem $\omega_s = \omega_M$, bem como o esboço do espectro do sinal reconstruído com filtro ideal de banda ω_M ;
 - o esboço do espectro de amplitude do sinal amostrado, assumindo frequência de amostragem $\omega_s = 3\omega_M$, bem como o esboço do espectro do sinal reconstruído com filtro ideal de banda $\omega_s/2$.

Figura 1: Figura referente ao Exercício 1.c.

Exercício 2: Sobre a transformada-z...

- a) Mostre que $\mathcal{Z}\left\{\sum_{k=0}^{n}x[k]\right\} = \frac{1}{1-z^{-1}}X(z)$, que $\mathcal{Z}\left\{\sum_{k=0}^{n}x[k-1]\right\} = \frac{z^{-1}}{1-z^{-1}}X(z)$, e que $\sum_{k=0}^{\infty}x[k] = \lim_{z\to 1}X(z)$.
- b) Obtenha analiticamente a Transformada-z de $x_1(t) = \frac{1}{a}(1 e^{-at})$ e $x_2(t) = t^2e^{-at}$; ambos com período de amostragem T_s .
- c) Um sistema LIT causal é descrito pela seguinte equação de diferenças

$$\begin{array}{c} y\left[n \right] - 0,9737y\left[{n - 1} \right] + 0,8151y\left[{n - 2} \right] - 0.0515y\left[{n - 3} \right] = 0,4108x\left[n \right] \\ - 1,0094x\left[{n - 1} \right] + 1,0094x\left[{n - 2} \right] - 0,4108x\left[{n - 3} \right] \end{array}$$

Determine sua função de transferência discreta G(z) = Y(z)/X(z). Com auxílio do MATLAB determine seus polos e zeros e ilustre o gráfico do plano-z.

Exercício 3: Encontre a função de transferência discreta, G(z) = Y(z)/X(z), e equação de diferenças do sistema da Fig. 2. O sistema é estável? Justifique. Com auxílio do MATLAB/Simulink, obtenha o gráfico da resposta para um pulso de entrada de T_s segundos e amplitude 1, com início e $t=3T_s$. Assuma $T_s=0,1$ segundos e faça o gráfico com a varável n na escala de tempo, tal que $t=nT_s$.

Figura 2: Figura referente ao Exercício 3.

Exercício 4: Obtenha a func. de transferência discreta em malha fechada para o sistema da Fig. 3.

Figura 3: Figura referente ao Exercício 4.

Exercício 5: Considere a função de transferência $X(s) = \frac{s+1}{s+10}$. Obtenha, na mão, os equivalentes discretos no domínio-z, com $T_s = 0, 1$ segundos e:

- a) retangular para frente;
- b) retangular para trás;
- c) Tustin;
- d) Tustin com pre-distorção em $\omega_c = 3 \text{ rad/s}.$
- e) casamento polo-zero.

Exercício 6: Leia o apêndice A da apostila. Considere um sistema (planta) com a seguinte função de transferência:

$$G(s) = \frac{1}{s(s+0,7)}$$

Projete um controlador C(s), tal que o sistema em malha fechada apresente as seguintes características para entrada degrau:

- a) tempo de subida de 1,0 s;
- b) sobressinal de 20%.

Discretize o controlador utilizando o método de Tustin e frequências de amostragem de 4 e 20Hz. Faça as simulações destes casos programando equação de diferenças do controlador no bloco "Matlab function". Compare com a resposta do sistema em tempo contínuo.

Em seguida, refaça o projeto dos controladores para as frequências de amostragem de 4 e 20Hz, e considerando a aproximação de Padé de primeira ordem para o ZOH. Faça novamente as simulações destes casos. Compare com a resposta do sistema em tempo contínuo.

Note que ao todo são quatro simulações do sistema de controle digital, mais a simulação do sistema de controle em tempo contínuo. Interprete os resultados obtidos.

Exercício 7: Considere o sistema apresentado no arquivo PID_Control_DC_Motor.zip que contém o arquivo dcIntrocomplete.mdl (Copyright (c) 2010, The MathWorks, Inc. All rights reserved). Trata-se de um sistema de controle digital de um motor CC. Faça inicialmente simulações do PID digital para entender o modelo.

Atividades: substitua o controlador original por um a ser programado utilizando o bloco "Matlab function" e a eq. de diferenças do controlador. Coloque um ZOH na saída do controlador digital e um bloco saturador em ± 50 V, conforme a Fig. 4.

Figura 4: Figura referente ao Exercício 7. Adaptado de dcIntrocomplete.mdl (Copyright (c) 2010, The MathWorks, Inc. All rights reserved).

Considere os seguintes casos:

- a) PID posicional, com retangular para trás nos termos I e D, sem anti-windup em I e com derivada da saída e sem polo adicional em D;
- b) PID posicional, com retangular para trás nos termos I e D, com anti-windup em I e com derivada da saída e sem polo adicional em D;
- c) PID posicional, com retangular para trás nos termos I e D, com anti-windup em I e com derivada da saída e polo adicional em D, tal que N=3.

Em todos os casos, assuma que:

- o período de amostragem seja $T_s = 0.01$ s;
- a simulação dure 35 segundos.
- o sinal de entrada seja um degrau com amplitude 3, com início em t=5s.
- o distúrbio seja um pulso retangular com amplitude 0, 25, com início em t=10 e término em t=25.
- o ruído de medição tenha variância igual a 0,01.
- Parâmetros do controlador: $K_P = 18$, $T_I = 0,42$ e $T_D = 0,05$:

Ao todo são três simulações. Interprete os resultados obtidos.

Exercício 8: Escreva uma função no MATLAB para discretização pelo método retangular para tráz e outra pelo método retangular para frente, com as seguinte sintaxes: G_D = backward(G,Ts) e G_D = forward(G,Ts), sendo G um sistema na forma de função de transferência contínua, G_D um sistema na forma de função de transferência discreta e Ts o período de amostragem.

Exercício 9: Considere o sistema da Figura 5.

Figura 5: Figura referente ao Exercício 8.

Mostre que para o sistema ser estável, o ganho K precisa set tal que $0 < K < \sqrt{2\left(1 - \cos\left[\frac{\pi}{2N-1}\right]\right)}$. Dicas:

- Plote o lugar das raízes para o sistema em malha aberta e verifique o comportamento do sistema.
- Avalie a equação característica $z=e^{j\theta},$ ou seja, no limiar de estabilidade.