LEC-3: Multi-Tasking vs Multi-Threading

Program: A Program is an executable file which contains a certain set of instructions written to complete the specific job or operation on your computer.

- It's a compiled code. Ready to be executed.
- Stored in Disk

Process: Program under execution. Resides in Computer's primary memory (RAM).

Thread:

- Single sequence stream within a process.
- An independent path of execution in a process.
- Light-weight process.
- Used to achieve parallelism by dividing a process's tasks which are independent path
 of execution.
- E.g., Multiple tabs in a browser, text editor (When you are typing in an editor, spell-checking, formatting of text and saving the text are done concurrently by multiple threads.)

Multi-Tasking	Multi-Threading
The execution of more than one task	A process is divided into several different
simultaneously is called as multitasking.	sub-tasks called as threads, which has its
	own path of execution. This concept is
	called as multithreading.
Concept of more than 1 processes being	Concept of more than 1 thread. Threads are
context switched.	context switched.
No. of CPU 1.	No. of CPU >= 1. (Better to have more than
	1)
Isolation and memory protection exists.	No isolation and memory protection,
OS must allocate separate memory and	resources are shared among threads of that
resources to each program that CPU is	process.
executing.	OS allocates memory to a process; multiple
	threads of that process share the same
	memory and resources allocated to the
	process.

Thread Scheduling:

Threads are scheduled for execution based on their priority. Even though threads are executing within the runtime, all threads are assigned processor time slices by the operating system.

Difference between Thread Context Switching and Process Context Switching:

Thread Context switching	Process context switching
OS saves current state of thread & switches	OS saves current state of process &
to another thread of same process.	switches to another process by restoring its
	state.

Doesn't includes switching of memory	Includes switching of memory address
address space.	space.
(But Program counter, registers & stack are	
included.)	
Fast switching.	Slow switching.
CPU's cache state is preserved.	CPU's cache state is flushed.

Since in threads share the same memory space, therefore, address space switching needed for context switching is removed from the step, making Thread context switching a lot faster

