Analysis Techniques

Ellie Thompson and Anna Schroder

Overview

- Introduction: using analysis techniques to gain biomedical insights from diffusion MRI
- Practical 1: Diffusion tensor imaging
- Practical 2: Ball-and-stick model
- Practical 3: Constrained spherical deconvolution
- Summary

What can we do with diffusion MRI?

Acute stroke

CNS lymphoma

Pre-processed scans provide some clinical insight, however they lack **quantitative biomarkers** or **complex microstructural** information

What can we do with diffusion MRI?

Pre-processed scans provide some clinical insight, however they lack **quantitative biomarkers** or **complex microstructural** information

We can use analysis techniques to gain

biomedical insight from dMRI

We can use analysis techniques to gain **biomedical insight** from dMRI

e.g. VERDICT-MRI: non-invasive histology for prostate cancer

Apparent diffusion coefficient (ADC) map

VERDICT intracellular volume fraction map

Images in a 57-year-old man with targeted biopsy-proven Gleason 3+4 prostate cancer.

We can use analysis techniques to gain **biomedical insight** from dMRI

e.g. VERDICT-MRI: non-invasive histology for prostate cancer

Apparent diffusion coefficient (ADC) map

VERDICT intracellular volume fraction map

"New scanning technique reduces unnecessary biopsies by 90% meaning thousands of men could be spared pain and anxiety" - prostate cancer UK

We can use analysis techniques to gain **biomedical insight** from dMRI

e.g. modelling fibre orientations for tractography

J-D Tournier, Diffusion MRI in the brain – Theory and concepts, Progress in Nuclear Magnetic Resonance Spectroscopy, 112–113, 2019, Pages 1-16,

Why does the diffusion MRI signal reflect tissue structure?

- The diffusion of water molecules depends on the local tissue environment
- We can infer properties of the underlying tissue by fitting models to the diffusion-weighted signal

Signal representations vs models

Signal representations describe the signal through mathematical formulae (basis functions)

- General and have few assumptions independent of a theory
- Coefficients of the basis may be sensitive to pathological changes
- e.g Diffusion tensor, diffusion kurtosis

Biophysical models are based on theories that relate the signal to biological properties of the tissue

- provide key insight how biophysical parameters will affect the signal
- difficult to validate

Estimating diffusivity

- We can relate the diffusion MRI signal to the diffusivity within a voxel using a simple exponential model
- Single measure of diffusivity within a voxel

Signal after applying a diffusion-weighted gradient k in direction q_k with b-value b_k

Estimating diffusivity

Measured Imaging parameters To be estimated

B-value for gradient k

$$S_k = S_0 \exp(-b_k d)$$

Signal with no diffusion-weighted gradient applied

Diffusivity within a voxel

The Diffusion Tensor

 The diffusion tensor enables us to characterise Gaussian diffusion in 3D in each voxel

What is the diffusion tensor?

3x3 positive-definite symmetric matrix characterising displacement/diffusion in
 3D

$$\mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$$

- D_{xx} , D_{yy} , D_{zz} : diffusion along 3 orthogonal axis (always positive)
- D_{xy} , D_{xz} , D_{yz} : correlation between displacements along these orthogonal axis (positive or negative)

What is the diffusion tensor?

3x3 positive-definite symmetric matrix characterising displacement/diffusion in
 3D

$$\boldsymbol{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$$

- D_{xx} , D_{yy} , D_{zz} : diffusion along 3 orthogonal axis (always positive)
- D_{xy} , D_{xz} , D_{yz} : correlation between displacements along these orthogonal axis (positive or negative)

The elements of diffusion tensor in the brain

$$\mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$$

Ellipsoid from DT

We can decompose the Diffusion tensor into eigen-values and eigen-vectors

$$\mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$

Diffusion Tensor in real data

B0 diffusion signal

Diffusion tensors

Diffusion tensors

Diffusion tensors

Diffusion tensors

Measures derived from the diffusion tensor

Axial Diffusivity,

Radial Diffusivity

...

Mean Diffusivity (MD) = mean of the tensor eigenvalues

Fractional Anisotropy (FA) = normalised variance of tensor eigenvalues

Fitting the diffusion tensor from an image

- Fitting the 6 variables of the diffusion tensor (Dxx,Dxy,Dxz,Dyy,Dyz,Dzz) from the diffusion image requires a minimum of 6 diffusion directions (+S(0))
- Methods:
 - Linear least squared
 - Weighted linear least squares
 - Non-linear least squares, etc

Fitting the diffusion tensor from an image

- Fitting the 6 variables of the diffusion tensor (Dxx,Dxy,Dxz,Dyy,Dyz,Dzz) from the diffusion image requires a minimum of 6 diffusion directions (+S(0))
- Methods:
 - Linear least squared
 - Weighted linear least squares
 - o Non-linear least squares, etc
- Minimise the following function:

$$S_k - S_0 \exp(-b_k \widehat{\boldsymbol{g}}_k^T \boldsymbol{D} \widehat{\boldsymbol{g}}_k)$$

Coding practicals

- Three coding practicals:
 - Diffusion tensor
 - Ball-and-stick model
 - Spherical deconvolution
- Estimate model parameters in each voxel of the FiberCup dataset¹

https://github.com/ethompson93/dmri_analysis_techniques

¹Poupon, C., Laribiere, L., Tournier, G., Bernard, J., Fournier, D., Fillard, P., Descoteaux, M., et al. (2010). <u>A Diffusion Hardware Phantom Looking Like a Coronal Brain Slice</u>. *Proceedings of the International Society for Magnetic Resonance in Medicine*.

FiberCup Data

 Built as part of a MICCAI challenge and mimics the coronal section (3 slices) of the brain with deep and superficial U-fibre bundles Diffusion MRI simulated from known ground truth fibre bundles

			grad.txt			
0	0	0	0			
1	0	0	2000			
0	-0.9	87414	-0.15	8158	2000	
-0.026	5007	-0.76	51231	0.64	796 2000	
0.5911	L36	0.71	5668	0.37	0062	2000
-0.236	5071	0.388	3148	0.89	0848	2000
-0.893	3021	0.197	7543	0.40	434 2000	
0.7961	L84	-0.22	20899	0.56	329 2000	
0.2339	964	-0.96	53062	0.13	3318	2000
0.9356	586	-0.18	39418	0.29	768 2000	

fibrecup.nii.gz

wm_mask.nii.gz

Poupon, C., Laribiere, L., Tournier, G., Bernard, J., Fournier, D., Fillard, P., Descoteaux, M., et al. (2010). A Diffusion Hardware Phantom Looking Like a Coronal Brain Slice. Proceedings of the International Society for Magnetic Resonance in Medicine.

Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A., et al. (2011). Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom. Neurolmage, 56(1), 234–220.

Making your own copy of the practicals

https://github.com/ethompson93/dmri_analysis_techniques

Uploading the data

- Upload to "files"

Diffusion Tensor: Coding Exercise

Estimate the diffusion tensor in each voxel in a phantom dataset

$$S_k = S_0 \exp(-b_k \widehat{\boldsymbol{g}}_k^T \boldsymbol{D} \widehat{\boldsymbol{g}}_k)$$

Measured
Imaging parameters
To be estimated

$$\boldsymbol{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$$

https://github.com/ethompson93/dmri_analysis_techniques

Compartment models

- Different tissues characterised by different biophysical models
- The signal is represented as a liner combination of the different compartments
- Exchange between compartments assumed to be negligible

Figure from: Ferizi, U., Schneider, T., Panagiotaki, E., Nedjati-Gilani, G., Zhang, H., Wheeler-Kingshott, C.A.M. and Alexander, D.C. (2014), A ranking of diffusion MRI compartment models with in vivo human brain data. Magn. Reson. Med., 72: 1785-1792. https://doi.org/10.1002/mrm.25080

A simple compartment model: Ball and Stick Model

Anisotropic compartment, representing a fibre population with orientation v

ball

Isotropic compartment, representing free water in the voxel

A simple compartment model: Ball and Stick Model

Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M. and Smith, S.M. (2003), Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med., 50: 1077-1088. https://doi.org/10.1002/mrm.10609

This allows us to model crossing fibre populations, which is not possible with DTI

Tensor

signal measured for a diffusion weighted gradient with direction \mathbf{g}_k and b-value b_k :

$$S_k = S_0[(1-f)\exp(-b_k d) + f\exp(-b_k d(\mathbf{g}_k \cdot \mathbf{v})^2)]$$
 signal from "ball" signal from "stick" compartment compartment: fibre population with direction \mathbf{v}

signal measured for a diffusion weighted gradient with direction \mathbf{g}_k and b-value b_k :

signal measured for a diffusion weighted gradient with direction \mathbf{g}_k and b-value b_k :

To be estimated

Ball and Stick Model – extending to multiple fibre populations

$$S_k = S_0[\left(1 - \sum_{i=1}^N f_i\right) \underbrace{\exp(-b_k d)}_{\text{signal from "ball"}} + \sum_{i=1}^N f_i \underbrace{\exp(-b_k d(\mathbf{g}_k \cdot \mathbf{v}_i)^2)}_{\text{signal from "stick"}}]$$

Ball and Stick Model in real data

B0 diffusion signal

Fibre volume fraction

Sticks visualised as vectors

Sticks visualised as vectors

More advanced compartment models

White matter

- CHARMED: Composite hindered and restricted model of diffusion. Assaf and Basser (2005) Neurolmage
- NODDI: Neurite orientation dispersion and density imaging. Zhang et al (2012) Neurolmage

Grey matter

- SANDI: Soma and neurite density imaging.
 Palombo et al (2020) NeuroImage
- NEXI: neurite exchange imaging. Jelescu et al (2022) Neurolmage

Tumours

 VERDICT: Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours. Panagiotaki et al (2014), Cancer Res

CHARMED

hindered

restricted

Ball and Stick Model: Coding Exercise

- Open up the second colab notebook to begin the exercise
- You will need to upload the data again, either from gdrive or github
- This time we will be fitting the ball-and-stick model to our data

Spherical Deconvolution

- Method for obtaining a continuous fibre orientation distribution function: fODF
- Provides fibre orientations for tractography

Spherical Deconvolution

- We assume that the diffusion-weighted signal is equivalent for all fibre populations in the brain (fibre response function)
- The measured signal is a linear combination of signals from all the fibre populations within a voxel

Spherical Deconvolution

- We assume that the diffusion-weighted signal is equivalent for all fibre populations in the brain (fibre response function)
- The measured signal is a linear combination of signals from all the fibre populations within a voxel
- The fODF is obtained by deconvolving the measured signal with the fibre response function

Spherical Harmonic Basis

 We can represent the fODF as a weighted sum of spherical harmonics up to a degree l_{max}:

$$f(\theta,\phi) = \sum_{l}^{l_{\max}} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta,\phi)$$
 coefficients to spherical harmonics

By Inigo.quilez - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32782753

Advantages:

- compact representation reduces noise
- convolution is a simple product in spherical harmonic domain easier computation

Step 1: Estimating the fibre response function

- The DW signal that would be acquired for single coherent fibre population
- Model based approaches: eg. axially symmetric tensor
- Direct empirical measurements from single-fibre voxels
- Response function can be derived for each tissue type (multi-tissue)

Examples of Response Functions derived from different models

Spherical deconvolution with tissue-specific response functions and multi-shell diffusion MRI to estimate multiple fiber orientation distributions (mFODs)":https://www.sciencedirect.com/science/article/pii/S1053811920306923

Step 2: Using the fibre response function to determine the fODF

 We can deconvolve the measured signal with the response function, R, to obtain the fODF

Step 2: Using the fibre response function to determine the fODF

 We can deconvolve the measured signal with the response function, R, to obtain the fODF

Constrained Spherical Deconvolution

- The spherical deconvolution operation is ill-posed and susceptible to noise
- Tournier et al (2007) introduced a non-negativity constraint to the reconstructed fODF
- This drastically improves the robustness to noise and improves angular resolution

Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4), 1459–1472. https://doi.org/10.1016/j.neuroimage.2007.02.016

CSD in real data

B0 diffusion signal

fODFs

fODFs

CSD coding exercise

- We will use DIPY an open-source python library for diffusion MRI analysis
- We perform constrained spherical deconvolution on the Fibercup phantom
- The notebook will take you through the steps of estimating the fibre response function and running the constrained spherical deconvolution

Conclusions

- Analysis techniques unlock biological insight from diffusion MRI scans
 e.g. microstructural metrics and fibre orientations for tractography
- The diffusion tensor provides insight into the diffusion signal, but lacks microstructural specificity
- Compartment models, such as ball-and-stick, characterise different tissue environments with biophysical models
- Constrained spherical deconvolution is a method for estimating the fibre orientation distribution function

Acknowledgements

Professor Danny Alexander and the CU-MONDAI group at UCL Hawkes Institute