Probability and Random Process

COSE382

Definition 6.2.1 (Moments). Let X be a r.v. with mean μ and variance σ^2 . For any positive integer n;

- The (nth) moment of X is $E(X^n)$ E(X): [St. moment.
- The *n*th central moment is

$$E((X-\mu)^n)$$

- The nth standardized moment is

$$E\left(\left(\frac{X-\mu}{\sigma}\right)^n\right)$$

Throughout the previous sentence, if it exists is left implicit.

Moment Generating Functions

MGF

Definition 6.4.1 (Moment generating function). The moment generating function (MGF) of a r.v. X is

as a function of t_{ℓ} if this is finite valued on some open interval (-a,a)

containing 0. Otherwise we say the MGF of X does not exist.

Note that M(0) = 1 for any valid MGF M;

$$M_{X}(t) = E(etX) = \int \underbrace{etX}_{X}(x)dx = \underbrace{\sum_{X}(x)}_{X}(x)$$

$$\underbrace{t=0}_{X} \text{ then } 1$$

Example 6.4.2 (Bernoulli MGF). For $X \sim \text{Bern}(p)$,

$$M(t) = E(e^{tX}) = e^{t \cdot 1}p + e^{t \cdot 0}(1 - p) = e^{t}p + 1 - p$$
, for all $t \in \mathbb{R}$

Example 6.4.3 (Geometric MGF). For $X \sim \text{Geom}(p)$,

$$M(t) = E(e^{tX}) = \sum_{k=0}^{\infty} e^{tk} (1-p)^k p = p \sum_{k=0}^{\infty} ((1-p)e^t)^k$$
$$= \frac{p}{1-(1-p)e^t}, \text{ for } (1-p)e^t < 1 \longrightarrow \pm \angle \text{Iof}\left(\frac{1}{1-p}\right)$$

i.e., for $t \in (-\infty, \log(1/(1-p)))$, which is an open interval containing 0.

Example 6.4.4 (Uniform MGF). Let $U \sim \text{Unif}(a, b)$.

$$M(t) = E(e^{tU}) = \frac{1}{b-a} \int_a^b e^{tu} du = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{for } t \neq 0 \\ 1 & \text{for } t = 0 \end{cases}$$

Theorem 6.4.5 (Moments via derivatives of the MGF). Given the MGF of X, we can get the nth moment of X by evaluating the nth derivative of the MGF at 0

$$E(X^n) = \frac{d^n}{dt^n} M(t) \bigg|_{t=0} = M^{(n)}(0)$$

Proof. This can be seen by noting that the Taylor expansion of M(t) at 0 is

$$\int_{(\xi)^2} \underbrace{M(t)} = \sum_{n=0}^{\infty} M^{(n)}(0) \frac{t^n}{n!}, \qquad \int_{(\xi)^2} \underbrace{\int_{(\xi)^2} C_n}_{(\xi)^2} \frac{\chi^n}{n!}.$$
hand, we also have

while on the other hand, we also have

he other hand, we also have
$$\underline{M(t)} = \underbrace{E(e^{tX})} = E\left(\sum_{n=0}^{\infty} X^n \frac{t^n}{n!}\right) = M(t) = \sum_{n=0}^{\infty} E(X^n) \frac{t^n}{n!}.$$

Matching the coefficients of the two expansions, we get $E(X^n) = M^{(n)}(0)$.

Pres 312 barlet

PDF21 75 = 12Invelse

MOTE M_X(t), = M_Y(t)

a) containing 0, they must

Theorem 6.4.6 (MGF determines the distribution).

If two r.v.s have the same MGF even in a tiny interval (-a, a) containing 0, they must have the same distribution.

This is a difficult result in analysis, so we will not prove it here.

Theorem 6.4.7 (MGF of a sum of independent r.v.s). If X and Y are independent, then the MGF of X + Y is the product of the individual MGFs:

$$\underline{M_{X+Y}(t)} = E(e^{t(X+Y)}) = \underline{E(e^{tX})E(e^{tY})} = \underline{M_X(t)M_Y(t)} : \exists E(\mathcal{C}^{tX}, \mathcal{C}^{tY})$$

If X and Y are independent, we have $E(e^{t(X+Y)}) = E(e^{tX})E(e^{tY})$

Example 6.4.8 (Binomial MGF). The MGF of a Bern(p) r.v. is $pe^t + q^t$, so the MGF of a Bin(n, p) r.v. is

$$M(t) = (\underline{pe^t + q})^{\underline{p}}.$$

$$M_Y(t) = E(e^{tY})$$

 $Y = E(e^{ta+btX})$

Proposition 6.4.11 If X has MGF
$$M(t)$$
 then the MFG of $\underline{a+bX}$ is
$$E(e^{t(a+bX)}) = e^{at}E(e^{btX}) = e^{at}M(bt) = e^{at}A(bt)$$

Example 6.4.12 (Normal MGF). The MGF of a standard Normal r.v. Z is $\mathcal{MO}(I) = I$

$$M_Z(t) = E(e^{tZ}) = \int_{-\infty}^{\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = e^{t^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-(z-t)^2/2} dz = \underbrace{e^{t^2/2}}_{t} \mathcal{M}(t)$$

The MGF of
$$X = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$$
 is
$$M_X(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu} e^{(\sigma t)^2/2} = e^{\mu t + \frac{1}{2}\sigma^2 t^2} \longrightarrow \mathcal{N}(\mathcal{S}_C)$$

$$M_X(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu} e^{(\sigma t)^2/2} = e^{\mu} e^{(\tau t)^2/2} \longrightarrow \mathcal{N}(\mathcal{S}_C)$$

$$M_X(t) = e^{\mu t} M_Z(\sigma t) = e^{\mu} e^{(\sigma t)^2/2} = e^{\mu} e^{(\tau t)^2/2} \longrightarrow \mathcal{N}(\mathcal{S}_C)$$

Example 6.4.13 (Exponential MGF). The MGF of $X \sim \text{Expo}(1)$ is

$$M(t) = E(e^{tX}) = \int_0^\infty e^{tx} e^{-x} dx = \int_0^\infty e^{-x(\frac{1-t}{2})} dx = \frac{1}{1-t} \quad \text{for} \quad t < 1.$$

So the MGF of
$$Y=X/\lambda\sim \operatorname{Expo}(\lambda)$$
 is $M_Y(t)=M_X(\frac{t}{\lambda})=\frac{\lambda}{\lambda-t}$ for $t<\lambda$. Moments

Moments

Generating moments with MGFs

Example 6.5.1 (Exponential moments).

Let $X \sim \text{Expo}(1)$. The MGF of X is M(t) = 1/(1-t) for t < 1. For |t| < 1,

Hence, $E(X^n) = n!$ for all n.

For $Y \sim \text{Expo}(\lambda)$, we have $Y = X/\lambda$, $Y^n = X^n/\lambda^n$, and

$$E(Y^n) = \frac{n!}{\lambda^n}.$$

Example 6.5.2 (Standard Normal moments). Let $Z \sim \mathcal{N}(0,1)$.

$$\underline{M(t)} = e^{t^2/2} = \sum_{n=0}^{\infty} \frac{(t^2/2)^n}{n!} = \sum_{n=0}^{\infty} \frac{t^{2n}}{2^n n!} = \sum_{n=0}^{\infty} \frac{(2n)!}{2^n n!} \frac{t^{2n}}{(2n)!}.$$

Therefore

$$E(Z^n) = \begin{cases} \frac{n!}{2^{n/2}(n/2)!} & \text{for } \underline{\text{even}(n)} \\ 0 & \text{for } \underline{\text{odd}} n \end{cases}$$

Or,

$$E(Z^{2n}) = (2n-1)!!$$

$$E(Z) = 0, E(Z^2) = 1, E(Z^3) = 0, E(Z^4) = 1 \cdot 3, E(Z^5) = 0, E(Z^6) = 1 \cdot 3 \cdot 5, \cdots$$

Sum of independent r.v.s via MGFs

Example 6.6.1 (Sum of independent Poissons). Sum of independent Poissons is Poisson: First let's find the MGF of $X \sim Pois(\lambda)$:

$$E(e^{tX}) = \sum_{k=0}^{\infty} e^{tk} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!} = e^{-\lambda} e^{\lambda e^t} = e^{\lambda(e^t - 1)}.$$

Now let $Y \sim \text{Pois}(\mu)$ be independent of X. The MGF of X + Y is

$$E(e^{tX})E(e^{tY}) = e^{\lambda(e^t - 1)}e^{\mu(e^t - 1)} = e^{(\lambda + \mu)(e^t - 1)},$$

Example 6.6.3 (Sum of independent Normals). If we have $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ independently, then the MGF of $X_1 + X_2$ is

$$M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_2}(t) = e^{\mu_1 t + \frac{1}{2}\sigma_1^2 t^2} \cdot e^{\mu_2 t + \frac{1}{2}\sigma_2^2 t^2} = e^{(\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2}$$

which is the $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ MGF. Thus the sum of independent Normals is Normal, and the means and variances simply add.

Example 6.6.4 (Sum is Normal). A converse to the previous example also holds: If X_1 and X_2 are independent and $X_1 + X_2$ is Normal, then X_1 and X_2 must be Normal.

Proof. I.i.d. case only (general version is known as *Cramer's theorem*). Let X_1 and X_2 be i.i.d. with MGF M(t). Without loss of generality, we can assume $X_1 + X_2 \sim \mathcal{N}(0,1)$, and then its MGF is

$$e^{t^2/2} = E(e^{t(X_1 + X_2)}) = E(e^{tX_1})E(e^{tX_2}) = (M(t))^2,$$

so $M(t) = e^{t^2/4}$, which is the $\mathcal{N}(0, 1/2)$ MGF. Thus, $X_1, X_2 \sim \mathcal{N}(0, 1/2)$.