(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-313705

(43)公開日 平成8年(1996)11月29日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ	技術表示箇所
G02B 1/1	10		G 0 2 B 1/10	Z
CO3C 17/2	245		C 0 3 C 17/245	A
CO9K 3/1	18		C 0 9 K 3/18	
C 2 3 C 14/0	08		C 2 3 C 14/08	E

審査請求 未請求 請求項の数3 OL (全3頁)

(21)出願番号 特願平7-122818 (71)出願人 000002369

セイコーエプソン株式会社 (22)出顧日 平成7年(1995) 5月22日

東京都新宿区西新宿2丁目4番1号

(72)発明者 岡上 悦男

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(72)発明者 河西 嘉彦

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外1名)

(54) 【発明の名称】 防暴性物品及びその製造方法

(57)【要約】

【目的】眼鏡レンズ・窓ガラスなどの物品に対し、その 表面硬度、反射防止などの光学特性を損なうことなく、 持続性に優れた防曇効果をもたせる。

【構成】物品の表面に酸化チタンを主成分とする層を設 ける。

【効果】酸化チタンを含む層は、薄くても耐摩耗性があ るため、耐摩耗性を低下させることなく防曇が実現でき る。また、層が薄いため反射防止の光学特性にも大きな 影響を与えない。

10

1

【特許請求の範囲】

【請求項1】物品表面に酸化チタンを主成分とする層を 設けたことを特徴とする防曇性物品。

【請求項2】物品表面に、白金が添加された酸化チタン を主成分とする層を設けたことを特徴とする防暴性物 品。

【請求項3】物品表面に真空蒸着法、スパッタ法、CV D法またはゾル・ゲル法により、酸化チタンを主成分と する層を形成することを特徴とする防曇性物品の製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、防曇性能を有するメガ ネ・カメラ等のレンズ、または窓ガラス、車のフロント ガラス、ヘルメットのシールド、水中メガネ等の物品、 または浴室内で使用する鏡等に関するものである。 [0002]

【従来の技術】物品に防曇性能を付与する方法として、 従来から次に述べる様な種々の方法がとられている。

【0003】合成樹脂基材自体に界面活性剤を練り込ん 20 だり、親水性の単量体を共重合して合成樹脂基材を形成 して防曇性能を付与する方法は、特開昭51-1078 41,特開昭55-102632,特公昭57-317 35,特開昭58-160325,特開昭60-141 727, 特開昭61-114201, 特開昭61-11 4202, 特開昭62-2202, 特開昭62-220 3などに開示されている。

【0004】物品に防曇性能を有するコーティングを施 す方法も良く知られ、特公昭45-18972,特公昭 50-1710, 特開昭52-146791, 特開昭5 3-39347, 特開昭55-99930, 特開昭55 -750,特開昭55-148283,特開昭57-1 19973, 特公昭58-1688, 特開昭59-15 473, 特公昭62-28986, 特開平1-2498 18,特開平2-18048,特開平2-17307 8, などに開示されている。

【0005】以上に示した方法は、基材自体、あるいは 厚いコーティング層に、親水性と吸水性を付与して防曇 性能を達成しようとするものである。

【0006】吸水性の悪いガラスなどの無機質に、直接 40 防曇性能を付与する方法として、最表面を処理して親水 性または疎水性を持たせる方法や、無機質を多孔性にし て吸水性を持たせる方法が知られ、特公昭52-113 21,特開昭53-56177,特開昭54-1051 20,特開昭60-210641,特開昭62-574 84,特公平1-58481,特開平2-22341. などに開示されている。

【0007】表面改質の方法としてのグラフト重合は、 特開平1-230644,特開平2-38431,特開 平4-225301に開示されている。

【0008】以上に示した方法も含め、物品に防曇性能 を付与するには、1)基材に吸水性を持たせる。2)基 材表面を親水性にする。3)基材表面を疎水性にする。 4)物品の表面温度を高くし、空気中の水分が表面で凝 結しない様にする。の4点の方法が過去から提案され、 色々な試みがなされている。

[0009]

【発明が解決しようとする課題】しかしながら、従来の 方法では次に述べる様な問題点を有していた。

【0010】樹脂基材自体や樹脂コーティング層に防曇 性能を付与する方法は、防曇性能としては十分な性能が 得られるが、親水性・吸水性を持つ樹脂は吸水すると柔 らかくなり、非常に傷がつき易いものとなっていた。こ れでは眼鏡レンズなど耐摩耗性が要求される部分に使用 した場合、傷によって光学特性が劣化し、実用に耐えら れない。さらに、空気中の汚れ、例えばタバコの煙など も吸着し易く、光学物品が着色してしまうなどの欠点も あった。

【0011】さらに、これらの方法の最大の欠点は、反 射防止層などの光学的特性を向上する為の表面処理を最 表面に施すことができないことである。現在広く使用さ れいて、性能の良い反射防止膜は、無機物からなる反射 防止膜であり、酸化ケイ素などの無機物に防曇性能を持 たせなければならない。

【0012】ガラス表面や無機物表面に防曇性能を付与 する方法としては、一般に用いられている界面活性剤を 表面に塗布する方法があるが、持続性に問題があり、水 によって界面活性剤が容易に脱落してしまう。

【0013】そのほかに、ガラス表面や無機物表面に親 水性の物質を用いて薄膜を形成し、防曇性能を達成する 方法があるが、従来技術に従うとそれらの物質と表面と の結合が弱く、簡単にそれらの物質が脱落して長期間防 曇性能が維持できなかった。さらに、従来の様に水酸基 を露出させることによって親水性を付与した場合、耐水 ヤケ性との両立が難しい。

【0014】逆に疎水性を付与する場合、表面に付着し た水滴を脱落させるには、水に対する接触角が180° 近く必要である。このような物質としてフッ化グラファ イトと金属の複合体が知られているが、防曇には今のと ころ利用できていない。

【0015】以上に述べた課題を解決する為に、表面を シランカップリング剤で処理した後、反応性界面活性剤 を反応させる方法も提案されているが、反応性界面活性 剤の構造によっては十分な防曇効果が得られなかった り、水ヤケ防止との両立が難しかった。

【0016】そこで、本発明は以上の様な問題点を解決 し、物品の光学特性、耐摩耗性を低下させることなく、 持続性、防汚染性、耐水ヤケ性に優れた防曇性能を有す る物品を得ることを目的とする。

50 [0017]

3

【課題を解決するための手段】本発明の防曇性物品は、 物品表面に酸化チタンを主成分とする層を設けたことを 特徴とする防曇性物品。

【0018】よく知られているように酸化チタンは、光 触媒反応を起こし、光エネルギーを化学エネルギーに変 換できる。400 nmよりも短波長の光が酸化チタンに 吸収されると、酸化チタン表面が強い酸化力を示し、い ろいろの化合物が分解される。

【0019】水も例外ではなく分解される。従って、物 品の表面に酸化チタンを主成分とする層を設けると、表 10 【表1】 面に小さな水滴が発生しても紫外線の存在によって瞬時 に水滴が分解され、曇の原因となる水滴が成長すること がない。

【0020】酸化チタンの層は、酸化チタン単体でもよ いが白金などの金属を添加して、小さな光電気化学セル を形成するとより酸化力が増し、防曇の能力も向上す

【0021】物品表面への層の形成は、色々な方法で行 うことができる。薄膜として層を形成する場合、真空蒸 着、スパッタ、CVDなどで薄膜を形成しても良いし、 ゾル・ゲル法や超微粒子の酸化チタンを含んだ熱硬化型 ハードコートで薄膜を形成する事もできる。いずれにし ても、物品の表面に酸化チタンを主成分とする層が形成 されていれば良い。

【0022】防曇性の付与される物品はどんなものでも 良いが、特にレンズ・鏡・窓・ゴーグル・水中眼鏡など の光学物品であれば用途上非常に有効である。

[0023]

【実施例】

〔実施例1〕予め水酸化ナトリウム溶液(0.1N)に 30 浸漬し、よく水洗、乾燥したジエチレングリコールビス アリルカーボネート製レンズに以下に示すコーティング 液をディッピング法で、膜厚が2.5μmになる様塗布 し、130℃で2時間加熱硬化した。

【0024】 (コーティング液の調整) 攪拌装置を備え た、反応容器中に、エタノール206g, エタノール分 散コロイダルシリカ396g (触媒化成工業株式会社製 "オスカル1232" 固形分30%), ァーグリシドキ シプロピルトリメトキシシランの部分加水分解物312 g, フローコントロール剤O. 2g(日本ユニカー (株) 製 "L-7604") 及び0.05N酢酸水溶液 86gを加え、室温で3時間攪をし、コーティング液と した。

【0025】以上のようにして得られたコーティング済 みレンズを真空槽内にセットし、真空蒸着法により、基 板温度50℃で、樹脂表面に反射防止処理を行った。膜 構成は、光学膜厚でレンズ側から、二酸化ケイ素層が入 /4,酸化ジルコニウム層と二酸化ケイ素層の合成膜厚 が、 $\lambda/4$,酸化ジルコニウム層が $\lambda/4$,最上層の二 酸化ケイ素層が入/4とした。(ここで入は520mm) 次にこの反射防止膜上に酸化チタンの層を5nmほど真 空蒸着により設けた。

【0026】得られた物品の防曇性評価方法は"JIS -S4030 眼鏡用くもり止め剤試験方法"の低温部 くもり止め性に従って1~4級で評価した。(1級が一 番防曇性能が良く、4級が一番悪い。) 使用した恒温槽 内には自然光が存在するようにした。評価結果は、表1 に実施例と比較例まとめて示した。

[0027]

	評価結果(級)
実施例1	1
実施例2	1
実施例3	1
比較例	4

【0028】 (実施例2) 実施例-1でコーティング液 の調整を行う際、エタノール分散コロイダルシリカに酸 化チタン超微粒子(粒子径8 nm)を1g分散させたも のを使用した。その後、実施例1と同様にジエチレング リコールビスアリルカーボネート製レンズにコーティン グ液を塗布し、硬化させた。

【0029】 〔実施例3〕 通常のソーダガラス板表面 を、出力400WのArプラズマで処理を行った後、光 CVD法を用いてTiCl4を表面と反応させた。Ti C14はガラス表面のSi-OHと固定化反応を示す。 この固定化反応と水処理を5回繰り返して5層のTi-〇-層を持つ固定化チタン酸化物触媒をソーダガラス表 面に調整した。

【0030】 〔比較例〕 実施例1で最上層の酸化チタン の層を設ける前のサンプルを比較例とした。

[0031]

【発明の効果】請求項1記載の発明によれば、物品表面 に光触媒作用を持つ酸化チタンが存在することになり、 温度差・湿度差によって表面に微小な水滴が付着しても 自然光によってすぐに分解して、曇の原因となる水滴が 成長する事なく防曇が達成できる。また、酸化チタン自 体が樹脂と比較して硬いため、物品の表面に使用しても 物品の耐摩耗性を低下させることがない。さらに、酸化 チタンの層は薄くても光化学反応効果があるため反射防 止の光学特性に大きな影響を与えることなく表面に形成 することができる。

40