MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Fixed domain CBC is PRF). Let \mathcal{M} is an Abelian group and let \mathcal{F}_{all} be a family of all functions $f: \mathcal{M} \to \mathcal{M}$. Show that functions

$$g_1(m_1) = f(m_1)$$
,
 $g_2(m_1, m_2) = f(g_1(m_1) + m_2)$,
 $g_3(m_1, m_2, m_3) = f(g_2(m_1, m_2) + m_3)$,

are pseudorandom functions. Explain why these functions are easily distinguishable from random if you can query two functions simultaneously, i.e., evaluate CBC construction on different input sizes.

Solution. Recall that \mathcal{F} is (t, q, ε) -pseudorandom function family if any t-time adversary \mathcal{A} that makes at most q oracle queries finds

SIMPLIFIED PROBLEM. Let us prove the pseudorandomness of g_2 For clarity let (x_1, y_1) ..., (x_q, y_q) be the queries to the oracle $g_2(\cdot, \cdot)$. Let $z_i = f(x_i)$ and $w_i = z_i + y_i$. Now for a moment assume that all x_i are different. Then by the definition of \mathcal{F}_{all} , we get ... and thus we can replace g_2 with a random function...

GENERAL SOLUTION. The analysis done above is suitable for any i. Indeed, let g_{i-1} be

QUALITATIVE ANALYSIS. Note that the success bound grows ...