No linealidad en Redes Neuronales. Aproximación Universal

Teorema(s) de Cybenko

- Dados
 - Red
 - 2 capas
 - Fully connected
 - \blacksquare Act. sigmoidea (σ)
 - Conj. de datos
 - Función de error
- Aumentando #parámetros
 - Decrementa error
 - de forma arbitraria
- Teoremas
 - Para otras f. activación

Función sigmoidea

- Sigmoidea
 - $\circ \sigma(x) = 1 / (1 + e^{-x})$
 - $\circ \sigma(x) = 1 / (1 + e^{-(wx+b)})$
- Variando w y b
 - o Cambia salida

- w varia pendiente
 - $\circ \sigma(x)$
 - \circ $\sigma(10x)$
 - \circ $\sigma(1000x)$ (función step)

Función sigmoidea

- Sigmoidea
 - $\circ \sigma(x) = 1 / (1 + e^{-x})$
 - $\circ \sigma(x) = 1 / (1 + e^{-(wx+b)})$
- Variando w y b
 - o Cambia salida

- b varia posición
 - $\circ \sigma(x)$
 - \circ $\sigma(x+10)$
 - \circ $\sigma(x-10)$

Función sigmoidea

- Sigmoidea
 - $\circ \sigma(x) = 1 / (1 + e^{-x})$
 - $\circ \sigma(x) = 1 / (1 + e^{-(wx+b)})$
- Variando w y b
 - o Cambia salida

- w y b combinadas
 - $\circ \ \ \sigma(1000x)$
 - \circ $\sigma(1000x+1000)$
 - \circ $\sigma(1000x-1000)$

Truco: combinación de sigmoideas

- Sigmoidea
 - $\circ \sigma(x) = 1 / (1 + e^{-x})$
- Selector de región
 - \circ $\sigma(1000x)$
 - o σ(1000x+1000)
 - \circ $\sigma(1000x+1000)-\sigma(1000x)$

Teorema(s) de Cybenko - Intuición

- Problema de regresión 1D
 - Predecir y en base a x
- Red:
 - $o y = w_2 \sigma(w_1 x + b_1) + b$
 - Equivalente

 - $= y = w_2 o + b_2$
- Estrategia
 - σ(w₁x+b): selector de región de x
 - o w₂ o + b₂: valor y para región

Teorema(s) de Cybenko - Intuición

- Ejemplo con 4 neuronas ocultas
 - \circ w₁ es de 1x4
 - o b₁es de 4
 - \circ w₂ es de 4x1
 - \circ b_2 es de 1
- 4/2=2 regiones
 - 2 neuronas por región
 - Selectores de región
- Región 1: **x** de 0 a 0.5
 - o valor = 5
- Región 2: **x** de 0.5 a 1
 - o valor = 3

Selector de región 1

Sigmoidea

$$\circ \sigma(x) = 1 / (1 + e^{-x})$$

o
$$\sigma(x) = 1 / (1+e^{-x})$$

o $\sigma(x) = 1 / (1+e^{-(wx+b)})$

- $g(x) = \sigma(20x-10)$
- $h(x) = \sigma(20x-2)$

Valor para región 1: 5

Sigmoidea

$$\circ \sigma(x) = 1 / (1 + e^{-x})$$

o
$$\sigma(x) = 1 / (1+e^{-x})$$

o $\sigma(x) = 1 / (1+e^{-(wx+b)})$

- $g(x) = \sigma(20x-10)$
- $h(x) = \sigma(20x-2)$

Selector región 2 (0.5 a 1) y valor (3)

Sigmoidea

$$\circ \sigma(x) = 1 / (1 + e^{-x})$$

o
$$\sigma(x) = 1 / (1+e^{-x})$$

o $\sigma(x) = 1 / (1+e^{-(wx+b)})$

- $g(x) = \sigma(20x-20)$
- $h(x) = \sigma(20x-10)$

Función final

•
$$y = 5 \sigma(20x-10) - 5 \sigma(20x-2)$$

+ $3 \sigma(20x-20) - 3 \sigma(20x-10)$

¿Usando más regiones?

- Más regiones
 - Más parámetros
- Aproximación arbitraria

Teorema(s) de Cybenko - Resumen

- Red 2 capas
 - Aproximador universal
- Capa 1
 - Selectores de región
- Capa 2
 - Asignan valor por región
- + regiones
 - + neuronas
 - + parámetros
 - + precisión
- ¿Otros problemas? ¿más salidas?
- ¿Reutilización de cómputo?

Recursos

- Visor interactivo de sigmoidea
- Visor interactivo de selector de región y asignador de valor con 2 sigmoideas
- Explicación más detallada (Lorke et al)
- Explicación con visualizaciones interactivas (Nielsen)