

AZ4558C

General Description

The AZ4558C consists of two high performance operational amplifiers. The IC features high gain, low equivalent input noise voltage, high input resistance, excellent channel separation, wide range of operating voltage and internal frequency compensation.

It can work with \pm 18V maximum power supply voltage or single power supply up to 36V.

The AZ4558C is available in DIP-8 and SOIC-8 packages.

Features

- Internally Frequency Compensated
- Large Signal Voltage Gain: 100dB Typical
- Gain and Phase Match between Amplifiers
- Gain Bandwidth Product (at 10kHz): 5.5MHz
- Pin to Pin Compatible with MC1458

Applications

- Audio AC-3 Decoder System
- Audio Amplifier

Figure 1. Package Types of AZ4558C

Pin Configuration

Figure 2. Pin Configuration of AZ4558C (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ4558C (Each Amplifier)

AZ4558C

Ordering Information

Package	Temperature Range	Part Number		Marl	Packing	
		Lead Free	Green	Lead Free	Green	Type
SOIC-8	-40 to 85°C	AZ4558CM-E1	AZ4558CM-G1	4558CM-E1	4558CM-G1	Tube
		AZ4558CMTR-E1	AZ4558CMTR-G1	4558CM-E1	4558CM-G1	Tape & Reel
DIP-8	-40 to 85°C	AZ4558CP-E1	AZ4558CP-G1	AZ4558CP-E1	AZ4558CP-G1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit	
Cumply Voltage	V _{CC}	+20		V	
Supply Voltage	V _{EE}	-20			
Input Voltage	V _I	±15		V	
Differential Input Voltage	V _{ID}	±30		V	
Operating Junction Temperature	T_{J}	150		°C	
Storage Temperature Range	T _{STG}	-65 to 150		°C	
Lead Temperature (Soldering 10s)	$T_{ m L}$	260		°C	
n ni i i	ъ	DIP	800	mW	
Power Dissipation	P_{D}	SOIC	500	mW	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Min	Max	Unit
Supply Voltage	±2	±18	V
Operating Temperature Range	-40	85	°C

Jan. 2013 Rev. 1. 7

BCD Semiconductor Manufacturing Limited

AZ4558C

Electrical Characteristics

Operating Conditions: V_{CC} =+15V, V_{EE} =-15V, T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}			1	5	mV	
Input Offset Current	I_{IO}	V _{CM} =0V		10	100	nA	
Input Bias Current	I_{IB}	V _{CM} =0V		70	400	nA	
Large Signal Voltage Gain	$A_{ m VD}$	R_L =2 $K\Omega$, V_O =±10 V	85	100		dB	
Supply Voltage Rejection Ratio	SVR	$R_S \leq 10K\Omega$	80	100		dB	
Supply Current	I_{CC}	All Amplifiers, No Load		2.5	4.5	mA	
Input Common Mode Voltage Range	V _{ICM}		±12			V	
Common Mode Rejection Ratio	CMRR	$R_S \le 10 K\Omega$	70	95		dB	
Output Voltage Swing	V _O	$R_L \ge 10 K\Omega$	±12	±14		V	
Output Voltage Swing		$R_L \ge 2K\Omega$	±10	±13			
Slew Rate	SR	V_I =±10V, R_L =2K Ω , C_L =100pF, unity gain		1.8		V/µs	
Rise Time	T_R	V_I =±20mV, R_L =2K Ω , C_L =100pF, unity gain		0.3		μs	
Overshoot	K _{OV}	V_I =±20mV, R_L =2K Ω , C_L =100pF, unity gain		15		%	
Input Resistance	R_{I}			0.5		ΜΩ	
Output Resistance	R_{O}			45		Ω	
Unity Gain Bandwidth	В	Gain=0dB		2.8		MHz	
Gain Bandwidth Product	GBWP	V_I =±10mV, R_L =2K Ω , C_L =100pF, f=10KHz		5.5		MHz	
Total Harmonic Distortion Plus Noise	THD+N	f=1KHz, A_V =6dB, R_L =10KΩ, V_O =1 V_{RMS} ,		0.002		%	
Equivalent Input Noise Voltage Density	e_N	R _S =100Ω, f=1KHz		10		$\frac{nV}{\sqrt{Hz}}$	
Output Current	I _{SINK}	V-=1V, V+= 0V, V _O =2V		60		mA	
Output Current	I _{SOURCE}	V+=1V, V-= 0V, V _O =2V		35			
Thermal Resistance (Junction to Case)	$\theta_{ m JC}$	DIP-8		55	0.07		
(sunction to Case)		SOIC-8		81		°C/W	

Typical Performance Characteristics

Figure 4. Open Loop Voltage Gain vs. Frequency

Figure 5. Maximum Output Voltage Swing vs. Frequency

Figure 6. Maximum Output Voltage Swing vs. Load Resistance

Figure 7. Supply Current vs. Temperature

Typical Performance Characteristics (Continued)

Figure 8. Input Offset Voltage vs. Temperature

Figure 9. Input Bias Current vs. Temperature

Typical Application

Figure 10. Typical Application of AZ4558C in Audio 2nd Order Low Pass Filter (f_0 =50.6kHz, Q=0.7015, Input impedance=10K, Gain=6dB, Group delay=4.48 μ s)

AZ4558C

Mechanical Dimensions

DIP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

Mechanical Dimensions (Continued)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788