Méthodes Numériques pour une Reconstruction et un Recalage Couplés

En Mammographie Numérique par Tomosynthèse (MNT)

Alex Delalande, Baptiste Doyen, Lorenzo Croissant Mercredi 28 Novembre 2018

Introduction à l'Imagerie Médicale

Introduction

Le Dépistage du Cancer du Sein

La MNT promet d'améliorer l'image fournie aux radiologues et ainsi :

- Augmenter la sensibilité de l'examen
- o Réduire le taux de rappel
- Produire des coupes synthétiques
- Cacher les structures hors d'une coupe

FIGURE 1 – À gauche, mammographie; à droite, MNT. Source : Yang et al.^[2]

La Mammographie Numérique par Tomosynthèse

On dénote:

- ∘ Le volume réel, f_r
- o Le système d'acquisition, A
- Les projections acquises, $p := Af_r$.

La MNT induit deux problèmes :

- \circ La reconstruction : trouver \hat{f} tel que $A\hat{f}\approx p$.
- Le **recalage** trouver la transformation T telle que $f_2 = T(f_1)$.

FIGURE 2 – Principe de la MNT.

Source : Mall et al.^[1]

Une table des matières

Méthodes

- Méthode Conventionnelle
- Méthode Itérative
- Méthode Couplée

Implementation & Resultats

Discussion

Méthodes

Méthode Conventionnelle

On traite traditionnellement les deux problèmes complètement séparément.

- ∘ Sont connus : A, p₁, p₂.
- o On initialise avec: $\hat{f}_{1,0}, \hat{f}_{2,0}, \hat{\theta}_{0}$.
- On reconstruit les deux images: f̂₁, f̂₂.
- On recale \hat{f}_1 sur \hat{f}_2 en trouvant $\hat{\theta}$.

Méthode Conventionnelle

$$\begin{split} \hat{f}_1 &= \underset{f_1}{\operatorname{argmin}} \left(\frac{1}{2} || A f_1 - p_1 ||_F^2 \right) \\ \hat{f}_2 &= \underset{f_2}{\operatorname{argmin}} \left(\frac{1}{2} || A f_2 - p_2 ||_F^2 \right) \\ \hat{\theta} &= \underset{\theta}{\operatorname{argmin}} \left(\frac{1}{2} || T_{\theta} (\hat{f}_2) - \hat{f}_1 ||_F^2 \right) \end{split}$$

Méthode Itérative

Méthode Itérative - Gradients

Pendant *j* étapes :

$$\begin{aligned} \hat{\mathbf{f}}_{1,k} &= \underset{f_1}{\text{argmin}} \left(\frac{1}{2} || A f_1 - \mathbf{p}_1 ||_F^2 \right) \\ \hat{\mathbf{f}}_{2,k} &= \underset{f_2}{\text{argmin}} \left(\frac{1}{2} || A f_2 - \mathbf{p}_2 ||_F^2 \right) \end{aligned}$$

Puis:

$$\begin{split} \hat{\theta}_k &= \underset{\theta}{\text{argmin}} \left(\frac{1}{2}||T_{\theta}(\hat{\mathbf{f}}_{2,k}) - \hat{\mathbf{f}}_{1,k}||_F^2\right) \\ \hat{\mathbf{f}}_{1,k+1} &= T_{\theta_k}(\hat{\mathbf{f}}_{2,k}) \end{split}$$

Méthode Couplée

Méthode Couplée

$$\begin{split} \hat{\mathbf{f}}_1, \hat{\theta} &= \underset{f_1, \theta}{\operatorname{argmin}} J(f_1, \theta) \quad \text{où} \\ J(f_1, \theta) &= \frac{1}{2} \left(\|Af_1 - \mathbf{p}_1\|_F^2 + \|AT_{\theta}(f_1) - \mathbf{p}_2\|_F^2 \right) \end{split}$$

Minimisation alternée découplée :

$$\hat{\mathbf{f}}_{1,k+1} = \underset{f_1}{\operatorname{argmin}} J(f_{1,k}, \theta_k)$$

$$\hat{\theta}_{k+1} = \underset{\theta}{\operatorname{argmin}} J(f_{1,k+1}, \theta_k)$$

Méthode Couplée

Remarque : différent de la méthode alternée

- o Une seule forme estimée
- o Gradient de la fonction objectif :

$$\frac{\partial J}{\partial f_1} = A^{\mathsf{T}} (A f_1 - p_1) + T_{\theta}^* A^{\mathsf{T}} (A T_{\theta} f_1 - p_2)$$
$$\frac{\partial J}{\partial \theta} = (A \frac{d T_{\theta}}{d \theta} f_1)^{\mathsf{T}} (A T_{\theta} f_1 - p_2)$$

Implementation & Resultats

Implémentation

- Transformations: affine + B-spline
- Tomosynthèse d'un volume exemple, d'une MNT simulée et d'un IRM mammaire réel non comprimé

Résultats sur un tore plein

13

Résultats sur un IRM Mammaire non comprimé

Résultats quantitatifs

	Initial	Sequential Method	Simultaneous Method
Toroid Phantom	1	0.0057	0.0002
Uncompressed Breast MRI	1	0.0051	0.0026
In-vivo DBT simulation	1	0.0058	0.0051

FIGURE 3 – Erreur relative (
$$\frac{\left\|\mathbf{f}_1-\hat{\mathbf{f}}_1\right\|^2}{\left\|\mathbf{f}_1\right\|^2}$$
)

Résultats des B-splines

Discussion

Résultats et évaluations

- Méthode couplée : génération d'artefacts ⇒ nuisible à la détection des lésions
- Pas d'évaluation des recalages (parfois impossible!)

Méthodes

- Méthodes d'optimisation peuvent être coûteuses pour des données de haute résolution
- o Couplage vu comme comme une augmentation du nombre de projections : peut diminuer les différences entre f_1 et f_2 qui sont essentielles au suivi
- Objectifs pourraient intégrer la tâche de détection des lésions

Perspectives

- o Evaluations des recalages
- Evaluation de l'influence du type et du niveau de transformation
- Prise en compte de la tâche de détection et suivi des lésions
- o Optimisation distribuée

Merci de votre attention!

Problèmes

$$\begin{split} \hat{\mathbf{f}}_1 &= \operatorname*{argmin}_{f_1} \left(\frac{1}{2} \left\| A f_1 - \mathbf{p}_1 \right\|_F^2 \right) & \text{(Conventionnelle)} \\ \hat{\mathbf{f}}_2 &= \operatorname*{argmin}_{f_2} \left(\frac{1}{2} \left\| A f_2 - \mathbf{p}_2 \right\|_F^2 \right) & \text{(Conventionnelle)} \\ \hat{\theta} &= \operatorname*{argmin}_{\theta} \left(\frac{1}{2} \left\| T_{\theta}(\hat{\mathbf{f}}_2) - \hat{\mathbf{f}}_1 \right\|_F^2 \right) & \text{(Conventionnelle)} \end{split}$$

$$\hat{\mathbf{f}}_1, \hat{\theta} = \underset{f_1, \theta}{\operatorname{argmin}} \frac{1}{2} \left(\|Af_1 - \mathbf{p}_1\|_F^2 + \|AT_{\theta}(f_1) - \mathbf{p}_2\|_F^2 \right)$$
 (Couplée)

Gradients

$$\frac{\partial J}{\partial f_1} = A^{\mathsf{T}} (Af_1 - p_1) + T_{\theta}^* A^{\mathsf{T}} (AT_{\theta} f_1 - p_2)$$
 (Couplée)
$$\frac{\partial J}{\partial \theta} = (A \frac{dT_{\theta}}{d\theta} f_1)^{\mathsf{T}} (AT_{\theta} f_1 - p_2)$$
 (Couplée)

Appendix - Bibliographie

Références

- [1] Mall, S., S. Lewis, P. Brennan, J. Noakes, and C. Mello-Thoms 2017. The role of digital breast tomosynthesis in the breast assessment clinic: A review. *Journal of medical radiation sciences*.
- [2] Yang, G., J. H. Hipwell, D. J. Hawkes, and S. R. Arridge 2013. Numerical methods for coupled reconstruction and registration in digital breast tomosynthesis. CoRR, abs/1307.6008.