

Advanced Computer Vision

Практический курс

Ссылка на таблицу с баллами

https://docs.google.com/spreadsheets/d/1-_4iKUuXzvFh87U5Ns8GY5VXiIPkN7K6ZnfjcffHiT8/edit?usp=sharing

Ссылка на материалы курса

https://github.com/luliiaSaveleva/Advanced_computer_vision_course_students_2021

Bitbucket

<u>i.o.saveleva.kpfu@gmail.com</u> IuliiaSaveleva

Text Recognition

Данные

Скачать Synthetic Word Dataset (MJSynth):

https://www.robots.ox.ac.uk/ ~vgg/data/text/#sec-synth

Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman Visual Geometry Group, Department of Engineering Science, University of Oxford, UK

2. SYNTHETIC DATA ENGINE 1. OVERVIEW

1. Font rendering

GENERATOR

generator

2. Border/shadow & colour

3. Composition

GENERATOF

generato

GENERATOR

Text recognition in natural scene images.

Contributions

- A synthetic data engine to generate unlimited training data.
- Three deep convolutional neural network (CNN) architectures for holistic image classification.
- A resulting set of state-of-the-art reading systems in language constrained and unconstrained scenarios.

Existing scene text datasets are very small, and cover a small number of words.

Use a synthetic data engine to generate training

Fonts selected from 1400 Google Fonts.

Projective distortion, elastic distortion, and noise

Random crops of natural images alpha-blended with image-layers to generate texture and lighting.

Download at:

Dataset Available!

Covering 90k English words

9 million word images

www.robots.ox.ac.uk/~vgg/data/text/

3. MODELS

DICTIONARY ENCODING (DICT)

Multi-class classification, one class for each word w in dictionary W(constrained language model):

(movie subtities) $P(w|\mathcal{L})$ as learning progresses.

5k classes, incrementally increase number of classes

CHARACTER SEQUENCE ENCODING (CHAR)

Single CNN with multiple independent classifiers, inspired by Goodfellow et al ICLR'14. Each classifier predicts the character at each position of the word.

No language model, suitable for unconstrained recognition.

4. EXPERIMENTAL SETUP

BAG OF N-GRAMS ENCODING (NGRAM)

Represent a string as a bag-of-N-grams.

E.g. $G(spires) = \{s, p, i, r, e, s, sp, pi, ir, re, es, spi, pir, ire, res, spire, pires \}$

Two ways to recover words:

DICT: western CHAR: western

- Find nearest neighbour of output with ideal outputs of dictionary words.
- Train a linear SVM for each dictionary word, using training data outputs.

5. EVALUATION

tion, atio, izat, zati

Text Recognition

Препроцессинг

Реализовать:

Test (no augmentation):

- 1. Vertical resize (с сохранением пропорций изображения до высоты 32 пикселя)
- 2. Horizontal resize (в случае, если ширина превышает фиксированный максимальный размер, например, 500 пикселей)
- 3. Image whitening (посчитать среднее значение по каждому каналу на части обучающей выборки), а затем вычитать соответствующее среднее из каждого канала и делить на 255 (для каждого пикселя на изображении)

Train (augmentation):

- 1
- a) Random horizontal crop (с очень маленькими отступами от левого правого края)
- b) Random horizontal resize (от 0.8 до 1.2 от исходной ширины, не забываем про ограничение из пункта 2)
- c) Random Gaussian noise
- 3

Text Recognition

Архитектура

Реализовать fully-convolutional нейронную сеть:

https://openaccess.thecvf.com/ content_ICCV_2017/papers/ Busta_Deep_TextSpotter_An_ICC V_2017_paper.pdf

Type	Channels	Size/Stride	Dim/Act
input	C	-	$\overline{W} imes 32$
conv	32	3×3	leaky ReLU
conv	32	3×3	leaky ReLU
maxpool		$2 \times 2/2$	$\overline{W}/2 \times 16$
conv	64	3×3	leaky ReLU
BatchNorm			
recurrent conv	64	3×3	leaky ReLU
maxpool		$2 \times 2/2$	$\overline{W}/4 \times 8$
conv	128	3×3	leaky ReLU
BatchNorm			
recurrent conv	128	3×3	leaky ReLU
maxpool		$2 \times 2/2 \times 1$	$\overline{W}/4 \times 4$
conv	256	3×3	leaky ReLU
BatchNorm			
recurrent conv	256	3×3	leaky ReLU
maxpool		$2 \times 2/2 \times 1$	$\overline{W}/4 \times 2$
conv	512	3 imes 2	leaky ReLU
conv	512	5×1	leaky ReLU
conv	$ \hat{\mathcal{A}} $	7×1	$\overline{W}/4 \times 1$
log softmax			

Table 1. Fully-Convolutional Network for Text Recognition

Дедлайн 21.09.2020 00:00