

SAR TEST REPORT

Product Name	Tablet
Model Name	P1988
FCC ID	VOB-P1988
Client	NVIDIA CORPORATION
Manufacturer	NVIDIA CORPORATION
Date of issue	April 28, 2014

TA Technology (Shanghai) Co., Ltd.

GENERAL SUMMARY

	FCC 47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices ANSI C95.1, 1992: Safety Levels with Respect to Human Exposure to Radio Frequency
	Electromagnetic Fields, 3 kHz to 300 GHz.(IEEE Std C95.1-1991)
	IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
	KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz
	KDB 447498 D01 General RF Exposure Guidance v05r02: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
Reference Standard(s)	KDB 941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA
	KDB 941225 D02 HSPA and 1x Advanced v02r02 SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced
	KDB 941225 D03 SAR Test Reduction GSM/GPRS/EDGE v01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE
	KDB 616217 D04 SAR for laptop and tablets v01r01: SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
	KDB 941225 D05 SAR for LTE Devices v02r03 SAR Test Considerations for LTE Handsets and Data Modems
	KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters.
	This portable wireless equipment has been measured in all cases requested by the
Conclusion	relevant standards. Test results in Chapter 7 of this test report are below limits specified in the relevant standards for the tested bands only.
	General Judgment: Pass
Comment	The test result only responds to the measured sample.
V	Neizhong Yang Minbaw Ling Ti Zhung

Approved by_

Weizhong Yang Director Revised by_

Minbao Ling SAR Manager Performed by_

Yi Zhang SAR Engineer

TABLE OF CONTENT

1.	Ger	neral Information	. 5
•	1.1.	Notes of the Test Report	. 5
•	1.2.	Testing Laboratory	. 5
•	1.3.	Applicant Information	. 6
•	1.4.	Manufacturer Information	. 6
•	1.5.	Information of EUT	. 7
	1.6.	The Maximum Reported SAR _{1q}	10
	1.7.	Test Date	10
2.	SAF	R Measurements System Configuration	11
	2.1.	SAR Measurement Set-up	
2	2.2.	DASY5 E-field Probe System	
	2.2.	1. EX3DV4 Probe Specification	12
	2.2.	2. E-field Probe Calibration	13
2	2.3.	Other Test Equipment	13
	2.3.	·	
	2.3.	2. Phantom	14
2	2.4.	Scanning Procedure	
2	2.5.	Data Storage and Evaluation	
	2.5.	-	
	2.5.	-	
3.		oratory Environment	
		sue-equivalent Liquid	
	1.1.	Tissue-equivalent Liquid Ingredients	
	1.2.	Tissue-equivalent Liquid Properties	
		stem Check	
	5.1.	Description of System Check	
	5.2.	System Check Results	
		erational Conditions during Test	
	-	General Description of Test Procedures	
	5.2.	SAR sensor working	
	5.3.	Test Configuration	
	6.3.	•	
	6.3.	-	
	6.3.	-	
	6.3.		
	6.3.	-	
	6.3.	-	
	6.3.	· · · · · · · · · · · · · · · · · · ·	
6	6.4.	Measurement Variability	
	6.5.	Test Positions	
•	6.5.		
	6.5.	·	
7.		t Results	
• •	.00	C COOLO	

Report No. RXC1402-0026SAR01R1	Page 4 of 213
7.1. Conducted Power Results	40
7.2. SAR Test Results	69
7.2.1. GSM 850 (GPRS/EGPRS)	69
7.2.2. GSM 1900 (GPRS/EGPRS)	
7.2.3. UMTS Band II (WCDMA/HSDPA/HSUPA)	
7.2.4. UMTS Band IV (WCDMA/HSDPA/HSUPA)	
7.2.5. UMTS Band V (WCDMA/HSDPA/HSUPA)	
7.2.6. LTE Band 2	78
7.2.7. LTE Band 4	80
7.2.8. LTE Band 5	82
7.2.9. LTE Band 7	84
7.2.10. LTE Band 17	86
7.2.11. WIFI (802.11b, WIFI)	87
7.3. Simultaneous Transmission Conditions	88
8. Measurement Uncertainty	102
9. Main Test Instruments	104
ANNEX A: Test Layout	105
ANNEX B: System Check Results	109
ANNEX C: Graph Results	115
ANNEX D: Probe Calibration Certificate (SN:3677)	137
ANNEX E: Probe Calibration Certificate (SN:3816)	148
ANNEX F: D750V3 Dipole Calibration Certificate	159
ANNEX G: D835V2 Dipole Calibration Certificate	167
ANNEX H: D1900V2 Dipole Calibration Certificate	175
ANNEX I: D2450V2 Dipole Calibration Certificate	183
ANNEX J: D2600V2 Dipole Calibration Certificate	192
ANNEX K: DAE4 Calibration Certificate	200
ANNEX L: The EUT Appearances and Test Configuration	205

Report No. RXC1402-0026SAR01R1

Page 5 of 213

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report alone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

If the electronic report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No. RXC1402-0026SAR01R1

Page 6 of 213

1.3. Applicant Information

Company: NVIDIA CORPORATION

Address: 2701 SAN TOMAS EXPRESSWAY, SANTA CLARA, CALIFORNIA 95050

UNITED STATES OF AMERICA

1.4. Manufacturer Information

Address:

Company: NVIDIA CORPORATION

2701 SAN TOMAS EXPRESSWAY, SANTA CLARA, CALIFORNIA 95050

UNITED STATES OF AMERICA

Page 7 of 213

1.5. Information of EUT

General Information

Device Type:	Portable Device		
Exposure Category:	Uncontrolled Environment / General Population		
State of Sample:	Prototype Unit		
IMEI:	004402351232826		
Hardware Version:	A00		
Software Version:	4.4.2		
Antenna Type:	Internal Antenna		
Device Operating Configurations:			
Tested Mode(s):	GSM 850/ GSM 1900; UMTS Band II/ UMTS Band IV/ UMTS Band V; LTE Band 2/4/5/7/17; Bluetooth; WiFi(802.11b/g/n HT20/n HT40);		
Test Modulation:	(GSM)GMSK; (UMTS)QPSK; (LTE) QPSK, 1	6QAM	
Device Class:	В		
HSDPA UE Category:	8		
HSUPA UE Category:	6		
DC-HSDPA UE Category:	24		
LTE UE Category:	3		
	Max Number of Timeslots in Uplink	4	
GPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4	
	Max Total Timeslot	5	
	Max Number of Timeslots in Uplink	4	
EGPRS Multislot Class(12):	Max Number of Timeslots in Downlink	4	
	Max Total Timeslot	5	
	GSM 850: 4		
	GSM 1900: 1		
	UMTS Band II: 3		
	UMTS Band IV: 3		
Power Class:	UMTS Band V: 3		
	LTE Band 2: 3		
	LTE Band 4: 3		
	LTE Band 5: 3		
	LTE Band 7: 3		
	LTE Band 17: 3		

Report No. RXC1402-0026SAR01R1

Page 8 of 213

	GSM 850: tested with po	ower level 5				
	GSM 1900: tested with power level 0					
	UMTS Band II: tested with power control all up bits					
	UMTS Band IV: tested w	vith power control all u	ıp bits			
		•	•			
Power Level:	UMTS Band V: tested with power control all up bits LTE Band 2: tested with max power					
		LTE Band 4: tested with max power				
		•				
	LTE Band 5: tested with	<u> </u>				
	LTE Band 7: tested with	max power				
	LTE Band 17: tested with	n max power				
	128 – 190 – 251	(GSM 850)				
	512 – 661 – 810	(GSM 1900)				
	9262 – 9400 – 9538	(UMTS Band II)				
	1312 – 1412 – 1513	(UMTS Band IV)				
	4132 – 4183 – 4233	(UMTS Band V)				
	18607 – 18900 – 19193	(LTE Band 2, 1	.4M)			
	18615 – 18900 – 19185	(LTE Band 2, 3	M)			
	18625 – 18900 – 19175	(LTE Band 2, 5	M)			
	18650 – 18900 – 19150	(LTE Band 2, 10M)				
	18675 – 18900 – 19125	(LTE Band 2, 1	5M)			
	18700 – 18900 – 19100	(LTE Band 2, 2	OM)			
	19957 – 20175 – 20393	(LTE Band 4, 1	.4M)			
	19965 – 20175 – 20385	(LTE Band 4, 3	M)			
	19975 – 20175 – 20375	(LTE Band 4, 5	M)			
Test Channel:	20000 – 20175 – 20350	(LTE Band 4, 1	OM)			
(Low - Middle - High)	20025 – 20175 – 20325	(LTE Band 4, 1	5M)			
	20050 - 20175 - 20300	(LTE Band 4, 20	OM)			
	20407 - 20525 - 20643	(LTE Band 5, 1	.4M)			
	20415 - 20525 - 20635	(LTE Band 5, 3	M)			
	20425 - 20525 - 20625	(LTE Band 5, 5	M)			
	20450 - 20525 - 20600	•	•			
	20775 – 21100 – 21425	•	,			
	20800 – 21100 – 21400	(LTE Band 7, 10	•			
	20825 – 21100 – 21375	(LTE Band 7, 15	,			
	20850 – 21100 – 21350	(LTE Band 7, 20	•			
	23755 – 23790 – 23825	•	•			
	23780 – 23790 – 23800	•	•			
	0 – 39 – 78	(Bluetooth)	,			
	1 – 6 – 11	(802.11b/g/n HT	20)			
	3-6-9	(802.11n HT40)	- /			
Test Frequency Range(s):	Mode	Tx (MHz)	Rx (MHz)			
	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8			
	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8			
	COIVI 1900	1000.2 1909.0	1000.2 1909.0			

Report No. RXC1402-0026SAR01R1 Page 9 of 213

UMTS Band II	1852.4 ~ 1907.6	1932.4 ~ 1987.6
UMTS Band IV	1712.4 ~ 1752.6	2112.4 ~ 2152.2
UMTS Band V	826.4 ~ 846.6	871.4 ~ 891.6
LTE Band 2(1.4MHz)	1850.7 ~ 1909.3	1930.7 ~ 1989.3
LTE Band 2(3MHz)	1851.5 ~ 1908.5	1931.5 ~ 1988.5
LTE Band 2(5MHz)	1852.5 ~ 1907.5	1932.5 ~ 1987.5
LTE Band 2(10MHz)	1855 ~ 1905	1935 ~ 1985
LTE Band 2(15MHz)	1857.5 ~ 1902.5	1937.5 ~ 1982.5
LTE Band 2(20MHz)	1860 ~ 1900	1940 ~ 1980
LTE Band 4(1.4MHz)	1710.7 ~ 1754.3	2110.7 ~ 2154.3
LTE Band 4(3MHz)	1711.5 ~ 1753.5	2111.5 ~ 2153.5
LTE Band 4(5MHz)	1712.5 ~ 1752.5	2112.5 ~ 2152.5
LTE Band 4(10MHz)	1715 ~ 1750	2115 ~ 2150
LTE Band 4(15MHz)	1717.5 ~ 1747.5	2117.5 ~ 2147.5
LTE Band 4(20MHz)	1720 ~ 1745	2120 ~ 2145
LTE Band 5(1.4MHz)	824.7 ~ 848.3	869.7 ~ 893.3
LTE Band 5(3MHz)	825.5 ~ 847.5	870.5 ~ 892.5
LTE Band 5(5MHz)	826.5 ~ 846.5	871.5 ~ 891.5
LTE Band 5(10MHz)	829 ~ 844	874 ~ 889
LTE Band 7(5MHz)	2502.5 ~ 2567.5	2622.5 ~ 2687.5
LTE Band 7(10MHz)	2505 ~ 2565	2625 ~ 2685
LTE Band 7(15MHz)	2507.5 ~ 2562.5	2627.5 ~ 2682.5
LTE Band 7(20MHz)	2510 ~ 2560	2630 ~ 2680
LTE Band 17(5MHz)	706.5 ~ 713.5	736.5 ~ 743.5
LTE Band 17(10MHz)	709 ~ 711	739 ~ 741
Bluetooth	2402 ~ 2480	2402 ~ 2480
WIFI	2412 ~ 2462	2412 ~ 2462

Equipment Under Test (EUT) has a main GSM/UMTS/LTE antenna that is used for Tx/Rx, the second is BT/WIFI antenna that can be used for Tx/Rx, and the third is GSM/UMTS/LTE/GPS antenna that is used for Rx.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer.

Report No. RXC1402-0026SAR01R1

Page 10 of 213

1.6. The Maximum Reported SAR_{1g}

Body SAR Configuration

				Limit SAR _{1g} 1.6 W/kg	
Mode	Test Position	Distance	Channel /Frequency(MHz)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
2Txslots GPRS 850	Test Position 1	0mm	251/848.8	0.855	0.918
4Txslots GPRS 1900	Test Position 1	0mm	512/1850	0.846	0.919
UMTS Band II	Test Position 1	0mm	9400/1880	1.120	1.186
UMTS Band IV	Test Position 1	0mm	1413/1732.6	1.060	1.141
UMTS Band V	Test Position 1	10mm	4183/836.6	0.527	0.586
LTE Band 2	Test Position 1	0mm	19100/1900	1.380	1.419
LTE Band 4	Test Position 1	0mm	20300/1745	1.020	1.113
LTE Band 5	Test Position 1	0mm	20525/836.5	1.010	1.087
LTE Band 7	Test Position 1	10mm	20850/2510	1.300	1.374
LTE Band 17	Test Position 1	0mm	23790/710	0.750	0.843
WiFi(802.11b)	Test Position 1	0mm	11/2462	0.656	0.716

1.7. Test Date

The test performed from March 13, 2014 to March 26, 2014.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

Figure 1. SAR Lab Test Measurement Set-up

Report No. RXC1402-0026SAR01R1 Page 12 of 213

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal

to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g Linearity:

 \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers:

1 mm

Application High precision dosimetric

measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz

with precision of better 30%.

Figure 2.EX3DV4 E-field Probe

Figure 3. EX3DV4 E-field probe

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.) It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4 and SAM v6.0 Phantoms.

Material: POM, Acrylic glass, Foam

2.3.2. Phantom

Phantom for compliance testing of handheld andbody-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG do simetric probes and dipoles.

Shell Thickness 2±0.2 mm

Filling Volume Approx. 30 liters

Dimensions 190×600×0 mm (H x L x W)

Figure 4.ELI4 Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Report No. RXC1402-0026SAR01R1

Page 15 of 213

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing is set according to FCC KDB Publication 865664. During scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- · extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

 A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01

	Maximum Area	Maximum Zoom	Maximum Zoom	Minimum Zoom	
Erequency	Scan	Scan	Scan Spatial	Scan	
Frequency	Resolution (mm)	Resolution (mm)	Resolution (mm)	Volume (mm)	
	($\Delta \mathbf{x}_{area}, \Delta \mathbf{y}_{area}$)	($\Delta \mathbf{x}_{zoom}, \Delta \mathbf{y}_{zoom}$)	$\Delta \mathbf{z}_{zoom}(\mathbf{n})$	(x,y,z)	
≤ 2 GHz	≤ 15	≤ 8	≤ 5	≥ 30	
2-3 GHz	≤ 12	≤ 5	≤ 5	≥ 30	
3-4 GHz	≤ 12	≤ 5	≤ 4	≥ 28	
4-5 GHz	≤ 10	≤ 4	≤ 3	≥ 25	
5-6 GHz	≤ 10	≤ 4	≤ 2	≥ 22	

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, a_{i0}, a_{i1}, a_{i2}

Conversion factor ConvF_i
 Diode compression point Dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)²] for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 \mathbf{E}_{i} = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

- = conductivity in [mho/m] or [Siemens/m]
- = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{\text{tot}}^2 / 3770$$
 or $P_{\text{pwe}} = H_{\text{tot}}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 2: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance $< 0.5 \Omega$		
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. Table 3 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB 865664 D01.

Table 3: Composition of the Body Tissue Equivalent Matter

	•		
MIXTURE%	FREQUENCY(Body) 750MHz		
Water	52.49		
Sugar	45		
Salt	1.41		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=750MHz ε=55.5 σ=0.96		

MIXTURE%	FREQUENCY(Body) 835MHz		
Water	52.5		
Sugar	45		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97		

MIXTURE%	FREQUENCY(Body) 1750MHz				
Water	69.91				
Glycol	29.97				
Salt	0.12				
Dielectric Parameters Target Value	f=1750MHz ε=53.4 σ=1.49				

MIXTURE%	FREQUENCY (Body) 1900MHz			
Water	69.91			
Glycol monobutyl	29.96			
Salt	0.13			
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52			

Report No. RXC1402-0026SAR01R1

Page:	20 c	of 2	13
-------	------	------	----

MIXTURE%	FREQUENCY(Body) 2450MHz			
Water	73.2			
Glycol	26.7			
Salt	0.1			
Dielectric Parameters	f=2450MHz ε=52.7 σ=1.95			
Target Value	1-2400MHZ C-02.7 0-1.30			

MIXTURE%	FREQUENCY (Body) 2600MHz			
Water	72.6			
Glycol monobutyl	27.3			
Salt	0.1			
Dielectric Parameters	f=2600MHz ε=52.5 σ=2.16			
Target Value	1-2000WIF12			

Report No. RXC1402-0026SAR01R1 Page 21 of 213

4.2. Tissue-equivalent Liquid Properties

Table 4: Dielectric Performance of Tissue Simulating Liquid

		T		Measured Dielectric		Target Dielectric		Limit	
Frequency	Test Date	Temp	Para	meters	Param	neters	(Within ±5%)		
litequency	Tool Buto	°C	٤r	σ(s/m)	٤r	σ(s/m)	Dev	Dev	
			۲	0(9/111)	٥r	0(3/111)	ε _r (%)	σ(%)	
750MHz	2014-3-17	21.5	54.3	0.97	55.5	0.96	-2.16	1.04	
(body)	2014-3-17	21.5	34.3	0.97	55.5	0.90	-2.10	1.04	
835MHz	2014-3-14	21.5	55.9	0.98	55.2	0.97	1.27	1.03	
(body)	2014-3-14	21.5	55.9	0.90	55.2	0.97	1.21	1.03	
1750MHz	2014 2 16	24 5	F2.0	1.50	E2 4	1 10	0.04	0.67	
(body)	2014-3-16	21.5	52.9	1.50	53.4	1.49	-0.94	0.67	
1900MHz	2014 2 12	24 5	E2 1	1 50	E2 2	1 50	0.20	0.00	
(body)	2014-3-13	21.5	53.1	1.52	53.3	1.52	-0.38	0.00	
2450MHz	2014 2 26	24.5	FO 1	1.00	F0.7	1.05	1 1 1	2.05	
(body)	2014-3-26	21.5	52.1	1.99	52.7	1.95	-1.14	2.05	
2600MHz	2014 2 20	24.5	E0.0	2.20	E0 E	0.46	0.20	1.05	
(body)	2014-3-20	21.5	52.3	2.20	52.5	2.16	-0.38	1.85	

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 5.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Figure 5. System Check Set-up

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole D750V3 SN: 1045							
	Body Liquid						
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$							
9/29/2011 -27.5 / 49.5 /							
9/28/2012 -26.9 2.2% 48.2 1.3Ω							
9/27/2013	-25.4	7.6%	47.6	1.9Ω			

Dipole D835V2 SN: 4d020						
Body Liquid						
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$						
8/26/2011 -25.1 / 48.7 /						
8/25/2012 -24.3 3.2% 50.6 1.9Ω						
8/24/2013	-24.7	1.6%	51.1	2.4Ω		

Dipole D1900V2 SN: 5d060							
Body Liquid							
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$							
8/31/2011 -21.3 / 47.3 /							
8/30/2012 -20.9 1.9% 45.9 1.4Ω							
8/29/2013	-20.4	4.4%	44.8	2.5Ω			

Dipole D2450V2 SN: 786						
Body Liquid						
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$						
8/29/2011 -29.0 / 50.4 /						
8/28/2012 -29.9 3.1% 52.1 1.7Ω						
8/27/2013	-28.2	2.8%	52.7	2.3Ω		

Dipole D2600V2 SN: 1012						
Body Liquid						
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) $\Delta\Omega$						
5/2/2012 -23.6 / 45 /						
5/1/2013 -24.5 3.8% 43.2 1.8Ω						

Report No. RXC1402-0026SAR01R1

Page 24 of 213

5.2. System Check Results

Table 5: System Check in Body Tissue Simulating Liquid

Frequency	Test Date	Dielectric Parameters		Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g}	Limit (±10%
		ε _r	σ(s/m)	(℃)		(W/kg)		Deviation)
750MHz	2014-3-17	54.3	0.97	21.5	2.22	8.88	8.80	0.91%
835MHz	2014-3-14	55.9	0.98	21.5	2.52	10.08	9.46	6.55%
1750MHz	2014-3-16	52.9	1.50	21.5	9.24	36.96	38.80	-4.74%
1900MHz	2014-3-13	53.1	1.52	21.5	9.82	39.28	41.7	-5.80%
2450MHz	2014-3-26	52.1	1.99	21.5	13.20	52.80	51.7	2.13%
2600MHz	2014-3-20	52.3	2.20	21.5	13.50	54.00	54.30	-0.55%

Note: 1. The graph results see ANNEX B.

2. Target Values used $\underline{\text{derive from the calibration certificate}}$

6. Operational Conditions during Test

6.1. General Description of Test Procedures

Connection to the EUT is established via air interface with CMW 500, and the EUT is set to maximum output power by CMW 500. Using CMW 500 the power lever is set to "5" in SAR of GSM 850, set to "0" in SAR of GSM 1900, power control is set "All Up Bits" of UMTS, power control is set "Max power" of LTE. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. SAR sensor working

When the SAR sensor active, the active distance as below:

Test Position	Active distance(mm)
Test position 1	11
Test position 2	6
Test position 3	NA
Test position 4	NA
Test position 5	11

the SAR power reduce as below:

Band	Reduce power(dBm)
GSM850	3
GSM 1900	1
WCDMA V 850	3
WCDMA IV 1700	4
WCDMA II 1900	4
LTE Band 2 1900	4
LTE Band 4 1700	4
LTE Band 5	3
LTE Band 17 700	3
LTE Band 7 2600	4.5

6.3. Test Configuration

6.3.1. GSM Test Configuration

For the body SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. The EUT is commanded to operate at maximum transmitting power. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. Since the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following:

Table 6: The allowed power reduction in the multi-slot configuration

Number of timeslots in uplink assignment	Permissible nominal reduction of maximum output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

6.3.2. UMTS Test Configuration

6.3.2.1. WCDMA Test Configuration

As the SAR body tests for WCDMA Band II/ WCDMA Band IV/WCDMA Band V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

- 1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to all up bits
- 2) Test loop Mode 1

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

	Channel Bit Rate(kbps)	Channel Symbol Rate(ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640

Table 7: The configurations for the DPCCH and DPDCH₁

SAR is tested with 12.2kps RMC and not required for other spreading codes (64,144, and 384 kbps RMC) and multiple $DPDCH_n$, because the maximum output power for each of these other configurations<0.25dB higher than 12.2kbps RMC and the multiple $DPDCH_n$ is not applicable for the EUT.

6.3.3. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the "Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be

configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors($\beta c, \beta d$), and HS-DPCCH power offset parameters(\triangle ACK, \triangle NACK, \triangle CQI)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 8: Subtests for UMTS Release 5 HSDPA

Sub cot	eta_{c}	R	β_{d}	Q /Q	eta_{hs}	CM(dB)	MPR(dB)	
Sub-set		β_d	(SF)	β_c/β_d	(note 1, note 2)	(note 3)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15	15/15	64	12/15	24/15	1.0	0.0	
	(note 4)	(note 4)	04	(note 4)	24/15		0.0	
3	15/15	8/15	64	15/8	30/15	1.5	0.5	
4	15/15	4/15	64	15/4	30/15	1.5	0.5	

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c =30/15 \Leftrightarrow β_{hs} =30/15* β_c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 8 (A_{hs} =30/15) with β_{hs} =30/15* β_{c} ,and \triangle_{CQI} = 7 (A_{hs} =24/15) with β_{hs} =24/15* β_{c} .

Note3: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

Table 9: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (N _{INF})	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	1	0.67
Number of Physical Channel Codes	Codes	5
Modulation	1	QPSK

Report No. RXC1402-0026SAR01R1

Page 29 of 213

6.3.4. DC-HSDPA Test Configuration

When the maximum average output power of each RF channel with (uplink) HSPA+ or DC-HSDPA active is $\leq 1/4$ dB higher than that measured without HSPA+ or DC-HSDPA using 12.2 kbps RMC, or the maximum *reported* SAR for 12.2 kbps RMC without HSPA+ or DC-HSDPA is $\leq 75\%$ of the SAR limit, SAR evaluation for HSPA+ or DC-HSDPA is not required.

Configure DC-HSDPA parameters for base station

- a) Set up the HSDPA RB Test Mode Parameters
 - RB Test HS-DSCH Configuration Type = User Defined
 - RB Test User Defined HS-DSCH MAC entity = MAC-ehs (Note 1)
 - RB Test User Defined HARQ Processes = 6 (Note 2)
 - RB Test User Defined UE IR Buffer Allocation = Implicit
 - RB Test User Defined DC-HSDPA State = On
 - RB Test Mode DC-HSDPA DPCH Loopback State = On
- b) Set up the Serving Cell Parameters
 - RB Test User Defined 64QAM State =On
 - RB Test User Defined Active HS-PDSCHs =15
 - RB Test User Def Transport Block Size Index =62
 - RB Test User Defined Modulation Type =64QAM
 - RB Test User Defined Inter-TTI Interval =1
- c) Set up the Secondary Serving Cell Parameters
 - RB Test User Def Secondary Cell 64QAM State =On
 - RBTM User Def Sec Cell Active HS-PDSCHs = 15
 - RBTM User Def Sec Cell TB Size Index = 62
 - RBTM User Def Sec Cell Modulation Type =64QAM
 - RBTM User Def Sec Cell Inter-TTI Interval = 1
- d) Set the HSDPA Conn DL Channel Levels
 - HSDPA Cell 1 Connected CPICH Level = -8
 - HSDPA Cell 1 Connected P-CCPCH/SCH Level = -20
 - HSDPA Cell 1 Connected PICH Level = off
 - HSDPA Cell 1 Connected DPCH Level = -30
 - HSDPA Cell 1 Connected HS-PDSCH Level (Sum) = -1 dBm
 - HSDPA Cell 1 Connected HS-SCCH 1 to 4 Level = -20,-20,off,off
 - Secondary Cell HSDPA Conn CPICH Level = -8
 - Secondary Cell HSDPA Conn PCCPCH/SCH Level = -20
 - Secondary Cell HSDPA Conn PICH Level = off
 - Secondary Cell HSDPA Conn HS-PDSCHs Lvl (Sum) = -1 dBm
 - Secondary Cell HSDPA Conn HS-SCCH 1 to 4 Level = -20,-20,off,off

Table 10: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800	1		
Category 3	5	2	7298	28800			
Category 4	5	2	7298	38400	1		
Category 5	5	1	7298	57600	ODCK 40044		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	1	14411	115200	1	Not	
Category 8	10	1	14411	134400	1	(MIMO not	
Category 9	15	1	20251	172800			
Category 10	15	1	27952	172800	1	supported)	
Category 11	5	2	3630	14400	o Dole		
Category 12	5	1	3630	28800	QPSK		
Category 13	15	1	35280	259200	QPSK,		
Category 14	15	1	42192	259200	16QAM, 64QAM		
Category 15	15	1	23370	345600	ODCK 4	20111	
Category 16	15	1	27952	345600	QPSK, 16	MADO	
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	supported)
NOTE 2		100	23370	345600	-	QPSK, 16QAM	
Category 18	15	1	42192	259200	QPSK, 16QAM, 64QAM	-	
NOTE 3	1.6700		27952	345600	-	QPSK, 16QAM	
Category 19	15	1	35280	518400	ODEK 400A	M CAOAM	
Category 20	15	1	42192	518400	QPSK, 16QAI	WI, 04QAM	j
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600	1		16QAM
Category 23	15	1	35280	518400	-	- 1	QPSK,
Category 24	15	1	42192	518400		(6)	16QAM, 64QAM

6.3.5. HSUPA Test Configuration

Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E- DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of 3 G device.

Report No. RXC1402-0026SAR01R1 Page 31 of 213

Table 11: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	β_{c}	β_{d}	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	eta_{ec}	$eta_{ ext{ed}}$	β _{ed} (SF)	β_{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} 47/15 β_{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \square A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \square \underline{\beta}_{hs} = 30/15 *\beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-

DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to βc = 14/15 and βd = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 12: HSUPA UE category

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
	2	8	2	4	2798	4.4500	
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	2		11484	5.76	
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00	
7	4	8	2	2 SF2 & 2 SF4	22996	?	
(No DPDCH)	4	4	10	2 3 5 2 & 2 3 5 4	20000	?	

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

6.3.6. LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A)Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B)MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C)A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤

Report No. RXC1402-0026SAR01R1

Page 33 of 213

0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Report No. RXC1402-0026SAR01R1

Page 34 of 213

6.3.7. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. The Tx power is set to 16 for 802.11 b mode by software, This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g/n SAR tests, a communication link is set up with the test mode software for WIFI mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel;

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Report No. RXC1402-0026SAR01R1 Page 35 of 213

6.4. Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 36 of 213

6.5. Test Positions

6.5.1. Test Positions Requirements

The overall diagonal dimension of the display section of a tablet is 22.5 cm > 20 cm, Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. SAR evaluation for the front surface of tablet display screens are generally not necessary. The SAR Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

6.5.2. SAR test reduction and exclusion guidance

(1) The SAR exclusion threshold for distances <50mm is defined by the following equation:

(max. power of channel, including tune-up tolerance, mW) ☐ √ Frequency (GHz) ≤3.0 (min. test separation distance, mm)

- (2) The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:
 - a) at 100 MHz to 1500 MHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) · (f (MHz)/150)] mW

b) at > 1500 MHz and ≤ 6 GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) ·10] mW

The location of the antennas inside EUT is shown in ANNEX L:

Tested position	Proximity Sensor function triggers distance
Tested position 1	11mm
Tested position 2	6mm
Tested position 3	Not trigger
Tested position 4	Not trigger
Tested position 5	11mm

 Test Position 1: The back surface of the EUT towards to the bottom of the flat phantom. (ANNEX L Picture 9).

SAR is required for GSM/UMTS/LTE/WiFi antenna in this position.

SAR is not required for BT antenna in this position.

Test Position 1 Evaluation $_{(GSM)} = [10^{((26-6.02)/10)}/5] * (0.8488^{1/2}) = 18.3 > 3.0$

Test Position 1 Evaluation $_{(UMTS)} = [10^{(19.5/10)}/5] * (0.8466^{1/2}) = 16.4 > 3.0$

Test Position 1 Evaluation (LTE) = $[10^{(20.5/10)}/5] * (0.844^{1/2}) = 20.6 > 3.0$

Test Position 1 Evaluation $_{(WiFi)} = [10^{(16.5/10)}/5] * (2.462^{1/2}) = 14.0 > 3.0$

Test Position 1 Evaluation $_{(BT)} = [10^{(2.5/10)}/5] * (2.480^{1/2}) = 0.56 < 3.0$

 Test Position 2: The left edge of the EUT towards the bottom of the flat phantom. (ANNEX L Picture 12).

SAR is required for GSM/UMTS/LTE antenna in this position.

SAR is not required for BT/WIFI antenna in this position.

Test Position 2 Evaluation $_{(GSM)} = [10^{((26-6.02)/10)}/15] * (0.8488^{1/2}) = 6.1 > 3.0$

Test Position 2 Evaluation $_{(UMTS)} = [10^{(19.5/10)}/15] * (0.8466^{1/2}) = 5.5 > 3.0$

Test Position 2 Evaluation (LTE) = $[10^{(20.5/10)}/15] * (0.844^{1/2}) = 6.9 > 3.0$

Test Position 2 Evaluation (WIFI) =96+ (91-50)*10=506mW=27.0 dBm>16.5 dBm (max.power)

Test Position 2 Evaluation $_{(BT)}$ = 96+ (91-50)*10=506mW=27.0 dBm > 2.5 dBm (max.power)

 Test Position 3: The right edge of the EUT towards the bottom of the flat phantom. (ANNEX L Picture 15).

SAR is required for WIFI antenna in this position.

SAR is not required for BT/GSM/UMTS/LTE antenna in this position.

Test Position 3 evaluation $_{(GSM 850)}$ = 164+ (51-50)*(848.8/150)=169.7mW=22.3 dBm> (26-6.02) dBm=19.98 dBm (max.power)

Test Position 3 evaluation $_{(GSM 1900)} = 109 + (51-50)*10=119 \text{mW} = 20.8 \text{ dBm} > (22-3.01) \text{ dBm} = 18.99 \text{(max.power)}$

Test Position 3 evaluation (UMTS Band II) = 109+(51-50)*10=119mW =20.8dBm>18.5 dBm (max.power)

Test Position 3 Evaluation (UMTS Band IV) = 113+(51-50)*10=123mW =20.9dBm>18.5 dBm (max.power)

Test Position 3 evaluation (UMTS Band V) = 164 + (51-50)*(846.6/150) = 169.6 mW = 22.3 dBm > 19.5 dBm (max.power)

Test Position 3 Evaluation (LTE Band 2) = 109+(51-50)*10=119mW = 20.8dBm>18.32 dBm (max.power)

Test Position 3 Evaluation $_{(LTE\ Band\ 4)} = 113+(51-50)*10=123 \text{mW} = 20.9 \text{dBm} > 18.7 \text{ dBm (max.power)}$

Test Position 3 Evaluation (LTE Band 5) = 164 + (51-50)*(846.6/150) = 169.6 mW = 20.5 dBm

Test Position 3 Evaluation (LTE Band 7) = 93+(51-50)*10=103mW = 20.1dBm>17.3 dBm (max.power)

Test Position 3 Evaluation $_{(LTE Band 17)} = 173 + (51-50)*10 = 183 \text{mW} = 22.6 \text{dBm} > 20.5 \text{dBm} \text{ (max.power)}$

Test Position 3 evaluation $_{(WIEI)} = [10^{(16.5/10)}/16] * (2.462^{1/2}) = 4.4 > 3.0$

Test Position 3 evaluation $_{(BT)} = [10^{(2.5/10)}/16] * (2.480^{1/2}) = 0.17 < 3.0$

 Test Position 4: The top edge of the EUT towards the bottom of the flat phantom. (ANNEX L Picture 18).

SAR is not required for GSM/UMTS/LTE/BT/WIFI antenna in this position.

Test Position 4 evaluation $_{(GSM 850)} = 164 + (178-50)*(848.8/150) = 888.3 \text{mW} = 29.5 \text{ dBm} > (26-6.02)$ dBm=19.98 dBm (max.power)

Test Position 4 evaluation $_{(GSM 1900)} = 109 + (178-50)*10=1389 \text{mW}=31.4 \text{ dBm}>(22-3.01) \text{ dBm}$ =18.99(max.power)

Test Position 4 evaluation (UMTS Band II) = 109+(178-50)*10=1389mW = 31.4dBm>18.5 dBm (max.power)

Test Position 4 Evaluation (UMTS Band IV) = 113+(178-50)*10=1393mW =31.4dBm>18.5 dBm (max.power)

Test Position 4 evaluation (UMTS Band V) = 164 + (178-50)*(846.6/150) = 888.3 mW = 29.5 dBm > 19.5 dBm (max.power)

Report No. RXC1402-0026SAR01R1

Page 39 of 213

```
Test Position 4 Evaluation (LTE Band 2) = 109+(178-50)*10=1389mW =31.4dBm>18.32 dBm (max.power)

Test Position 4 Evaluation (LTE Band 4) = 113+(178-50)*10=1393mW =31.4dBm>18.7 dBm (max.power)

Test Position 4 Evaluation (LTE Band 5) = 164+ (178-50)*(846.6/150)=888.3mW=29.5 dBm>20.5 dBm

Test Position 4 Evaluation (LTE Band 7) = 93+(178-50)*10=1373mW =31.4dBm>17.3 dBm (max.power)

Test Position 4 Evaluation (LTE Band 17) = 173+(178-50)*10=1453mW =31.6dBm>20.5 dBm (max.power)

Test Position 4 Evaluation (WIFI) = 96+ (178-50)*10=1376mW=31.4 dBm >16.5 dBm (max.power)

Test Position 4 Evaluation (BT) = 96+ (178-50)*10=1376mW=31.4 dBm >2.5 dBm (max.power)
```

 Test Position 5: The bottom edge of the EUT towards the bottom of the flat phantom. . (ANNEX L Picture 21).

SAR is required for GSM/UMTS/LTE/WiFi antenna in this position.

SAR is not required for BT antenna in this position.

Test Position 5 Evaluation $_{(GSM)} = [10^{((26-6.02)/10)}/5] * (0.8488^{1/2}) = 18.3 > 3.0$

Test Position 5 Evaluation $_{(UMTS)} = [10^{(19.5/10)}/5] * (0.8466^{1/2}) = 16.4 > 3.0$

Test Position 5 Evaluation (LTE) = $[10^{(20.5/10)}/5] * (0.844^{1/2}) = 20.6 > 3.0$

Test Position 5 Evaluation (WIFI) = $[10^{(16.5/10)}/5] * (2.462^{1/2}) = 14.0 > 3.0$

Test Position 5 Evaluation $_{(BT)} = [10^{(2.5/10)}/5] * (2.480^{1/2}) = 0.56 < 3.0$

Report No. RXC1402-0026SAR01R1 Page 40 of 213

7. Test Results

7.1. Conducted Power Results

Table 13: GSM Band Conducted Power Measurement Results SAR sensor not active

		Burst Cor	nducted Pov	ver(dBm)		Average power(dBm)			
GSM	1 850	Channel	Channel	Channel	1	Channel	Channel	Channel	
	ı	128	190	251		128	190	251	
	1Txslot	31.54	31.25	31.19	-9.03dB	22.51	22.22	22.16	
GPRS	2Txslots	28.53	28.40	28.39	-6.02dB	22.51	22.38	22.37	
(GMSK)	3Txslots	26.71	26.60	26.58	-4.26dB	22.45	22.34	22.32	
	4Txslots	25.46	25.37	25.38	-3.01dB	22.45	22.36	22.37	
	1Txslot	31.53	31.26	31.21	-9.03dB	22.50	22.23	22.18	
EGPRS	2Txslots	28.52	28.42	28.41	-6.02dB	22.50	22.40	22.39	
(GMSK)	3Txslots	26.70	26.62	26.61	-4.26dB	22.44	22.36	22.35	
	4Txslots	25.50	25.41	25.42	-3.01dB	22.49	22.40	22.41	
	1Txslot	25.42	25.43	25.53	-9.03dB	16.39	16.40	16.50	
EGPRS	2Txslots	22.38	22.36	22.44	-6.02dB	16.36	16.34	16.42	
(8PSK)	3Txslots	20.26	20.26	20.30	-4.26dB	16.00	16.00	16.04	
	4Txslots	19.18	19.17	19.08	-3.01dB	16.17	16.16	16.07	
		Burst Cor	nducted Pov	ver(dBm)		Avei	rage power(dBm)	
GSM	1900	Channel	Channel	Channel	1	Channel	Channel	Channel	
GSM	T	Channel 512	Channel 661	Channel 810				Channel 810	
GSM	1900 1Txslot	Channel	Channel	Channel	/ -9.03dB	Channel	Channel	Channel	
GPRS	T	Channel 512	Channel 661	Channel 810		Channel 512	Channel 661	Channel 810	
	1Txslot	Channel 512 28.56	Channel 661 28.60	Channel 810 28.61	-9.03dB	Channel 512 19.53	Channel 661 19.57	Channel 810 19.58	
GPRS	1Txslot 2Txslots	Channel 512 28.56 25.69	Channel 661 28.60 25.69	Channel 810 28.61 25.60	-9.03dB -6.02dB	Channel 512 19.53 19.67	Channel 661 19.57 19.67	Channel 810 19.58 19.58	
GPRS	1Txslot 2Txslots 3Txslots	Channel 512 28.56 25.69 23.93	Channel 661 28.60 25.69 23.78	Channel 810 28.61 25.60 23.77	-9.03dB -6.02dB -4.26dB	Channel 512 19.53 19.67 19.67	Channel 661 19.57 19.67 19.52	Channel 810 19.58 19.58 19.51	
GPRS	1Txslot 2Txslots 3Txslots 4Txslots	Channel 512 28.56 25.69 23.93 22.74	Channel 661 28.60 25.69 23.78 22.69	Channel 810 28.61 25.60 23.77 22.59	-9.03dB -6.02dB -4.26dB -3.01dB	Channel 512 19.53 19.67 19.67 19.73	Channel 661 19.57 19.67 19.52 19.68	Channel 810 19.58 19.58 19.51 19.58	
GPRS (GMSK)	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot	Channel 512 28.56 25.69 23.93 22.74 28.57	Channel 661 28.60 25.69 23.78 22.69 28.62	Channel 810 28.61 25.60 23.77 22.59 28.60	-9.03dB -6.02dB -4.26dB -3.01dB -9.03dB	Channel 512 19.53 19.67 19.67 19.73 19.54	Channel 661 19.57 19.67 19.52 19.68 19.59	Channel 810 19.58 19.58 19.51 19.58 19.57	
GPRS (GMSK) EGPRS	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots	Channel 512 28.56 25.69 23.93 22.74 28.57 25.67	Channel 661 28.60 25.69 23.78 22.69 28.62 25.67	Channel 810 28.61 25.60 23.77 22.59 28.60 25.58	-9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB	Channel 512 19.53 19.67 19.67 19.73 19.54 19.65	Channel 661 19.57 19.67 19.52 19.68 19.59 19.65	Channel 810 19.58 19.58 19.51 19.58 19.57 19.56	
GPRS (GMSK) EGPRS	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots	Channel 512 28.56 25.69 23.93 22.74 28.57 25.67 23.91	Channel 661 28.60 25.69 23.78 22.69 28.62 25.67 23.85	Channel 810 28.61 25.60 23.77 22.59 28.60 25.58 23.75	-9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB	Channel 512 19.53 19.67 19.67 19.73 19.54 19.65 19.65	Channel 661 19.57 19.67 19.52 19.68 19.59 19.65 19.59	Channel 810 19.58 19.58 19.51 19.58 19.57 19.56 19.49	
GPRS (GMSK) EGPRS	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots	Channel 512 28.56 25.69 23.93 22.74 28.57 25.67 23.91 22.72	Channel 661 28.60 25.69 23.78 22.69 28.62 25.67 23.85 22.66	Channel 810 28.61 25.60 23.77 22.59 28.60 25.58 23.75 22.55	-9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB	Channel 512 19.53 19.67 19.67 19.73 19.54 19.65 19.65 19.71	Channel 661 19.57 19.67 19.52 19.68 19.59 19.65 19.65	Channel 810 19.58 19.58 19.51 19.58 19.57 19.56 19.49 19.54	
GPRS (GMSK) EGPRS (GMSK)	1Txslot 2Txslots 3Txslots 4Txslots 1Txslot 2Txslots 3Txslots 4Txslots 4Txslots	Channel 512 28.56 25.69 23.93 22.74 28.57 25.67 23.91 22.72 25.33	Channel 661 28.60 25.69 23.78 22.69 28.62 25.67 23.85 22.66 25.14	Channel 810 28.61 25.60 23.77 22.59 28.60 25.58 23.75 22.55 25.45	-9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB	Channel 512 19.53 19.67 19.67 19.73 19.54 19.65 19.65 19.71 16.30	Channel 661 19.57 19.67 19.52 19.68 19.59 19.65 19.65 19.65 16.11	Channel 810 19.58 19.58 19.51 19.58 19.57 19.56 19.49 19.54 16.42	

SAR sensor active

		Burst Cor	nducted Pov	ver(dBm)		Average power(dBm)		
GSN	1 850	Channel 128	Channel 190	Channel 251	I	Channel 128	Channel 190	Channel 251
	1Txslot	28.65	28.36	28.3	9.03	19.62	19.33	19.27
GPRS	2Txslots	25.39	25.53	25.69	6.02	19.37	19.51	19.67
(GMSK)	3Txslots	23.82	23.74	23.62	4.26	19.56	19.48	19.36
	4Txslots	22.57	22.48	22.42	3.01	19.56	19.47	19.41
	1Txslot	28.61	28.31	28.23	9.03	19.58	19.28	19.2
EGPRS	2Txslots	25.63	25.49	25.48	6.02	19.61	19.47	19.46
(GMSK)	3Txslots	23.81	23.74	23.62	4.26	19.55	19.48	19.36
	4Txslots	22.54	22.48	22.42	3.01	19.53	19.47	19.41
	1Txslot	22.49	22.52	22.61	9.03	13.46	13.49	13.58
EGPRS	2Txslots	19.48	19.45	19.51	6.02	13.46	13.43	13.49
(8PSK)	3Txslots	17.33	17.31	17.37	4.26	13.07	13.05	13.11
	4Txslots	16.25	16.21	16.18	3.01	13.24	13.2	13.17
		Burst Conducted Power(dBm)				Average power(dBm)		
GSM	1900	Channel	Channel	Channel	1	Channel	Channel	Channel
	T	512	661	810		512	661	810
	1Txslot	27.53	27.61	27.63	9.03	18.5	18.58	18.6
GPRS	2Txslots	24.62	24.64	24.61	6.02	18.6	18.62	18.59
(GMSK)	3Txslots	22.87	22.72	22.72	4.26	18.61	18.46	18.46
	4Txslots	21.64	21.75	21.61	3.01	18.63	18.74	18.60
	1Txslot	27.51	27.63	27.62	9.03	18.48	18.6	18.59
EGPRS	2Txslots	24.63	24.61	24.66	6.02	18.61	18.59	18.64
(GMSK)	3Txslots	22.96	22.71	22.76	4.26	18.7	18.45	18.5
	4Txslots	21.79	21.75	21.66	3.01	18.78	18.74	18.65
	1Txslot	24.38	24.22	24.52	9.03	15.35	15.19	15.49
EGPRS	2Txslots	20.9	20.72	21	6.02	14.88	14.7	14.98
(8PSK)	3Txslots	19.11	18.77	19.02	4.26	14.85	14.51	14.76
	4Txslots	17.7	17.53	17.66	3.01	14.69	14.52	14.65
Note:								

1) Division Factors

To average the power, the division factor is as follows:

1Txslot = 1 transmit time slot out of 8 time slots

=> conducted power divided by (8/1) => -9.03 dB

2Txslots = 2 transmit time slots out of 8 time slots

Report No. RXC1402-0026SAR01R1

Page 42 of 213

=> conducted power divided by (8/2) => -6.02 dB

3Txslots = 3 transmit time slots out of 8 time slots

=> conducted power divided by (8/3) => -4.26 dB

4Txslots = 4 transmit time slots out of 8 time slots

=> conducted power divided by (8/4) => -3.01 dB

2) Average power numbers

The maximum power numbers are marks in bold.

Table 14: WCDMA Band Conducted Power Measurement Results SAR sensor not active

LIMTS	S Band II	С	onducted Power (dBn	n)	
OWITS	Dallu II	Channel 9262	Channel 9400	Channel 9538	
	12.2kbps RMC	22.24	24 22.08 23 22.07 21 22.05 20 22.06 22 22.05 21 22.06 19 22.04 18 22.05 89 20.68 10 19.89 40 20.19 11 19.92 88 20.67	22.23	
RMC	64kbps RMC	22.23	22.07	22.21	
RIVIC	144kbps RMC	22.21	22.05	22.18	
	384kbps RMC	22.20	22.06	22.15	
	Sub - Test 1	22.22	22.05	22.21	
HSDPA	Sub - Test 2	22.21	22.06	22.19	
ПЭБРА	Sub - Test 3	22.19	22.04	22.16	
	Sub - Test 4	22.18	22.05	22.14	
	Sub - Test 1	20.89	20.68	20.81	
	Sub - Test 2	20.10	19.89	20.03	
HSUPA	Sub - Test 3	20.40	20.19	20.33	
	Sub - Test 4	20.11	19.92	20.01	
	Sub - Test 5	20.88	20.67	20.79	
	Sub - Test 1	22.15	21.98	22.13	
DC-HSDPA	Sub - Test 2	22.13	21.98	22.09	
рс-порга	Sub - Test 3	22.08	22.05 22.06 22.04 22.05 20.68 19.89 20.19 19.92 20.67 21.98 21.98 21.97 21.96	22.16	
	Sub - Test 4	22.09	21.96	22.14	
IIMTS	Band IV	С	onducted Power (dBn	n)	
OWITS	Ballu IV	Channel 1312	Channel 1412	Channel 1513	
	12.2kbps RMC	22.23	22.26	22.05	
RMC	64kbps RMC	22.21	22.24	22.03	
KIVIC	144kbps RMC	22.20	22.23	22.01	
	384kbps RMC	22.22	22.05 22.06 22.04 22.05 20.68 20.19 20.67 21.98 21.98 21.97 21.96 21.96 22.26 22.24 22.23 22.25 22.25 22.25 22.25 22.25	22.04	
HSDPA	Sub - Test 1	22.22	22.25	22.03	
	Sub - Test 2	22.20	22.23	22.02	

Report No. RXC1402-0026SAR01R1

Page 43 of 213

	Sub - Test 3	22.19	22.21	22.00
	Sub - Test 4	22.21	22.21	22.01
	Sub - Test 1	20.89	20.88	20.65
	Sub - Test 2	20.12	20.09	19.88
HSUPA	Sub - Test 3	20.40	20.38	20.15
	Sub - Test 4	20.11	20.10	19.90
	Sub - Test 5	20.87	20.85	20.61
	Sub - Test 1	22.13	22.16	21.99
DC-HSDPA	Sub - Test 2	22.14	22.13	21.97
DC-HSDPA	Sub - Test 3	22.04	22.15	21.95
	Sub - Test 4	22.13	22.11	21.96
LIMTO	S Band V	С	onducted Power (dBn	n)
OWITS	b band v	Channel 4132	Channel 4183	Channel 4233
	12.2kbps RMC	21.57	22.04	21.65
RMC	64kbps RMC	21.58	22.03	21.63
RIVIC	144kbps RMC	21.56	22.01	21.62
	384kbps RMC	21.57	22.03	21.61
	Sub - Test 1	21.54	22.03	21.62
HSDPA	Sub - Test 2	21.57	22.01	21.62
ПЭДРА	Sub - Test 3	21.54	22.02	21.63
	Sub - Test 4	21.55	22.01	21.62
	Sub - Test 1	20.15	20.70	20.28
	Sub - Test 2	19.37	19.96	19.49
HSUPA	Sub - Test 3	19.67	20.21	19.79
	Sub - Test 4	19.38	19.97	19.51
	Sub - Test 5	20.13	20.68	20.25
	Sub - Test 1	21.46	21.92	21.55
DC-HSDPA	Sub - Test 2	21.69	21.97	21.53
DC-NSDFA	Sub - Test 3	21.46	21.96	21.54
	Sub - Test 4	21.44	21.95	21.53

SAR sensor active

SAR sensor a		C	conducted Power (dBr	m)
UNITS	S Band II	Channel 9262	Channel 9400	Channel 9538
	12.2kbps RMC	18.21	18.25	18.39
RMC	64kbps RMC	18.09	17.93	18.07
RIVIC	144kbps RMC	18.08	17.91	18.07
	384kbps RMC	18.07	17.92	18.01
	Sub - Test 1	18.24	18.09	18.23
HSDPA	Sub - Test 2	18.26	18.08	18.21
ПЭДРА	Sub - Test 3	18.21	18.01	18.18
	Sub - Test 4	18.15	18.07	18.13
	Sub - Test 1	16.81	16.63	16.74
	Sub - Test 2	16.06	15.82	15.93
HSUPA	Sub - Test 3	16.33	16.15	16.26
	Sub - Test 4	16.04	15.85	15.97
	Sub - Test 5	16.84	16.62	16.72
	Sub - Test 1	18.21	18.04	18.16
DC-HSDPA	Sub - Test 2	18.17	18.04	18.15
DC-NSDPA	Sub - Test 3	18.14	18.08	18.24
	Sub - Test 4	18.19	18.02	18.2
LIMTS	Band IV	C	onducted Power (dBr	n)
OWITS	ballu IV	Channel 1312	Channel 1412	Channel 1513
	12.2kbps RMC	18.18	18.27	18.36
RMC	64kbps RMC	18.07	18.12	17.99
RIVIC	144kbps RMC	18.06	18.13	17.98
	384kbps RMC	18.09	18.12	17.99
	Sub - Test 1	18.27	18.25	18.05
HSDPA	Sub - Test 2	18.25	18.21	18.07
HOUPA	Sub - Test 3	18.21	18.23	18.02
	Sub - Test 4	18.24	18.25 18.21 18.23	18.08
HSUPA	Sub - Test 1	16.85	16.86	16.58
	Sub - Test 2	16.02	16.02	15.83
	Sub - Test 3	16.31	16.35	16.05
	Sub - Test 4	16.04	16.03	15.81

Report No. RXC1402-0026SAR01R1

Page 45 of 213

	Sub - Test 5	16.8	16.78	16.54
	Sub - Test 1	18.18	18.22	18.09
DC-HSDPA	Sub - Test 2	18.22	18.13	18.05
DC-NSDPA	Sub - Test 3	18.1	18.23	18.01
	Sub - Test 4	18.19	18.15	18.02
LIMTO	Band V	C	onducted Power (dBn	n)
OWITS	Dallu V	Channel 4132	Channel 4183	Channel 4233
	12.2kbps RMC	18.67	19.17	18.78
RMC	64kbps RMC	18.72	19.15	18.75
RIVIC	144kbps RMC	18.61	19.16	18.72
	384kbps RMC	18.69	19.15	18.71
	Sub - Test 1	18.46	18.92	18.45
HSDPA	Sub - Test 2	18.41	18.88	18.44
ПЭПРА	Sub - Test 3	18.41	18.89	18.52
	Sub - Test 4	18.44	18.85	18.49
	Sub - Test 1	17.07	17.57	17.15
	Sub - Test 2	16.21	16.81	16.31
HSUPA	Sub - Test 3	16.59	17.03	16.66
	Sub - Test 4	16.25	16.89	16.33
	Sub - Test 5	17.01	17.55	17.11
	Sub - Test 1	18.42	18.82	18.51
DC-HSDPA	Sub - Test 2	18.61	18.91	18.49
DC-NSDFA	Sub - Test 3	18.42	18.92	18.55
	Sub - Test 4	18.43	18.91	18.42

Table 15: LTE Band 2 Conducted Power Measurement Results SAR sensor not active

isor not active	LTE FDD Band 2					Conducted Power(dBm)			
		RB	DD " ,	Channel	Channel	Channel			
Bandwidth	Modulation	size	RB offset	18607	18900	19193			
		1	0	22.08	22.04	21.85			
		1	2	22.15	22.16	21.86			
		1	5	22.06	22.14	22.00			
	QPSK	3	0	22.01	21.09	21.93			
		3	2	21.96	21.61	21.94			
		3	3	21.87	20.81	21.95			
1.4MHz		6	0	20.90	19.93	20.93			
1. 4 1VITZ		1	0	21.41	21.39	21.02			
		1	2	21.50	21.11	21.27			
		1	5	21.57	21.15	21.33			
	16QAM	3	0	21.28	20.44	21.38			
		3	2	21.14	20.33	21.14			
		3	3	21.30	20.46	21.10			
		6	0	20.33	19.42	19.91			
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel			
Banawiatii	Woddiation	size	ND Ollset	18615	18900	19185			
		1	0	22.30	22.08	22.05			
		1	7	22.39	22.24	21.94			
		1	14	22.33	22.31	22.09			
	QPSK	8	0	21.19	21.11	21.10			
		8	4	21.23	21.21	21.09			
		8	7	21.24	21.17	21.05			
3MHz		15	0	21.22	21.12	20.90			
• • • • • • • • • • • • • • • • • • •		1	0	21.32	21.27	20.86			
		1	7	21.45	20.88	21.02			
		1	14	19.91	21.22	20.70			
	16QAM	8	0	20.24	20.13	19.94			
		8	4	20.24	20.09	19.95			
		8	7	20.18	20.04	19.95			
		15	0	20.35	20.06	19.82			
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel			
		size		18625	18900	19175			
5MHz	QPSK	1	0	22.05	22.09	22.32			
		1	13	22.09	21.93	22.37			
		1	24	22.10	21.86	22.35			
		12	0	21.17	20.92	22.04			

Report No. RXC1402-0026SAR01R1

Page 47 of 213

		12	6	21.17	20.83	22.14
		12	13	21.17	20.73	22.21
		25	0	21.15	21.02	21.08
		1	0	21.69	21.24	21.73
		1	13	21.29	21.07	21.07
		1	24	21.59	20.88	20.91
	16QAM	12	0	20.03	20.00	20.04
		12	6	20.00	19.88	20.01
		12	13	20.12	19.87	20.13
		25	0	20.24	19.86	20.30
Danduridth	Modulation	RB	RB offset	Channel	Channel	Channel
Bandwidth	Modulation	size	KD OIISEL	18650	18900	19150
		1	0	22.19	22.13	22.14
		1	25	22.17	22.02	22.20
		1	49	22.20	22.00	22.16
	QPSK	25	0	21.15	20.92	20.94
		25	13	21.11	20.89	20.96
		25	25	21.02	20.82	20.99
10MHz		50	0	20.99	20.97	21.09
TOWITIZ		1	0	21.49	21.74	21.96
		1	25	20.77	21.73	21.86
		1	49	21.37	21.85	21.73
	16QAM	25	0	20.04	19.83	20.04
		25	13	20.07	19.81	20.10
		25	25	20.09	19.94	20.00
		50	0	20.14	19.86	20.01
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danaman	Woddiation	size	TE OHOOT	18675	18900	19125
15MHz		1	0	22.21	22.17	22.24
		1	38	22.31	22.18	22.28
		1	74	22.12	22.21	22.32
	QPSK	36	0	21.22	20.98	21.05
		36	18	21.31	20.90	21.09
		36	39	21.15	20.84	21.13
		75	0	21.07	20.94	21.03
	16QAM	1	0	21.43	20.79	22.21
		1	38	21.58	20.84	21.71
		1	74	21.46	20.02	21.70
		36	0	20.21	19.90	19.81
		36	18	20.00	19.88	19.86
		36	39	20.00	19.94	19.80

Report No. RXC1402-0026SAR01R1

Page 48 of 213

		75	0	20.19	19.97	20.11
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwiutii	iviodulation	size	KD Ollget	18700	18900	19100
		1	0	22.35	22.05	22.15
		1	50	22.35	21.89	22.13
		1	99	22.24	21.98	22.08
	QPSK	50	0	21.48	21.28	21.36
		50	25	21.46	21.25	21.31
		50	50	21.41	21.19	21.32
20MHz		100	0	21.09	20.89	21.03
ZUIVIFIZ		1	0	21.65	21.25	21.69
		1	50	21.72	20.93	21.86
		1	99	21.83	21.32	21.98
	16QAM	50	0	19.93	20.86	19.87
		50	25	19.94	20.89	19.82
		50	50	19.89	20.96	19.91
		100	0	20.27	19.92	20.11

SAR sensor active

LTE I	FDD Band 2	2		Conducted Power(dBm)			
Dan duvid!	Madulatics	RB	DD offers	Channel	Channel	Channel	
Bandwidth	Modulation	size	RB offset	18607	18900	19193	
		1	0	18.15	18.13	17.98	
		1	2	18.22	18.25	17.99	
		1	5	18.13	18.23	18.13	
	QPSK	3	0	18.08	17.18	18.06	
		3	2	18.03	17.70	18.07	
		3	3	17.94	16.90	18.08	
1.4MHz		6	0	16.97	16.02	17.06	
1.4111112		1	0	17.48	17.48	17.15	
		1	2	17.57	17.20	17.40	
		1	5	17.64	17.24	17.46	
	16QAM	3	0	17.35	16.53	17.51	
		3	2	17.21	16.42	17.27	
		3	3	17.37	16.55	17.23	
		6	0	16.40	15.51	16.04	
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel	
Danawiath	Modulation	size	ND Olloct	18615	18900	19185	
3MHz	QPSK	1	0	18.37	18.17	18.18	

Report No. RXC1402-0026SAR01R1

Page 49 of 213

		1	7	18.46	18.33	18.07
		1	14	18.40	18.40	18.22
		8	0	17.26	17.20	17.23
		8	4	17.30	17.30	17.22
		8	7	17.31	17.26	17.18
		15	0	17.29	17.21	17.03
		1	0	17.39	17.36	16.99
		1	7	17.52	16.97	17.15
		1	14	15.98	17.31	16.83
	16QAM	8	0	16.31	16.22	16.07
		8	4	16.31	16.18	16.08
		8	7	16.25	16.13	16.08
		15	0	16.42	16.15	15.95
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Daniuwiutii	Modulation	size	VD 011861	18625	18900	19175
		1	0	18.12	18.18	18.45
		1	13	18.16	18.02	18.50
		1	24	18.17	17.95	18.48
	QPSK	12	0	17.24	17.01	18.17
		12	6	17.24	16.92	18.27
		12	13	17.24	16.82	18.34
5MHz		25	0	17.22	17.11	17.21
JIVII IZ		1	0	17.76	17.33	17.86
		1	13	17.36	17.16	17.20
		1	24	17.66	16.97	17.04
	16QAM	12	0	16.10	16.09	16.17
		12	6	16.07	15.97	16.14
		12	13	16.19	15.96	16.26
		25	0	16.31	15.95	16.43
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
		size		18650	18900	19150
10MHz		1	0	18.26	18.22	18.27
		1	25	18.24	18.11	18.33
		1	49	18.27	18.09	18.29
	QPSK	25	0	17.22	17.01	17.07
		25	13	17.18	16.98	17.09
		25	25	17.09	16.91	17.12
		50	0	17.06	17.06	17.22
	16QAM	1	0	17.56	17.83	18.09
		1	25	16.84	17.82	17.99
		1	49	17.44	17.94	17.86

Report No. RXC1402-0026SAR01R1

Page 50 of 213

		25	0	16.11	15.92	16.17
		25	13	16.14	15.90	16.23
		25	25	16.16	16.03	16.13
		50	0	16.21	15.95	16.14
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwium	IVIOGUIALIOIT	size	KD UIISEL	18675	18900	19125
		1	0	18.28	18.26	18.37
		1	38	18.38	18.27	18.41
		1	74	18.19	18.30	18.45
	QPSK	36	0	17.29	17.07	17.18
		36	18	17.38	16.99	17.22
		36	39	17.22	16.93	17.26
45MU-		75	0	17.14	17.03	17.16
15MHz		1	0	17.50	16.88	18.34
		1	38	17.65	16.93	17.84
		1	74	17.53	16.11	17.83
	16QAM	36	0	16.28	15.99	15.94
		36	18	16.07	15.97	15.99
		36	39	16.07	16.03	15.93
		75	0	16.26	16.06	16.24
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwium	IVIOGUIALIOIT	size	KD OIISEL	18700	18900	19100
		1	0	18.33	18.32	18.38
		1	50	18.32	17.98	18.26
		1	99	18.31	18.07	18.21
	QPSK	50	0	17.38	17.32	17.41
		50	25	17.36	17.34	17.38
		50	50	17.32	17.28	17.39
20MHz		100	0	17.16	16.98	17.16
ZUIVITZ	16QAM	1	0	17.72	17.34	17.82
		1	50	17.79	17.02	17.99
		1	99	17.90	17.41	18.11
		50	0	16.00	16.95	16.00
		50	25	16.01	16.98	15.95
		50	50	15.96	17.05	16.04
		100	0	16.34	16.01	16.24

Table 16: LTE Band 4 Conducted Power Measurement Results SAR sensor not active

LTE	FDD Band			Condu	cted Powe	r(dBm)
Developed 10	Modulatian	RB	DD affact	Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	19957	20175	20393
		1	0	22.13	22.33	22.26
		1	2	22.12	22.35	22.17
		1	5	22.18	22.33	22.17
	QPSK	3	0	22.20	22.32	22.18
		3	2	22.02	22.22	22.14
		3	3	22.17	22.32	22.28
1.4MHz		6	0	21.11	21.29	21.15
1.4111112		1	0	21.39	21.30	21.49
		1	2	21.68	21.75	21.86
		1	5	21.35	21.56	21.76
	16QAM	3	0	21.87	21.86	21.90
		3	2	21.86	22.00	22.27
		3	3	21.89	21.95	22.00
		6	0	20.80	20.50	20.79
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
		size	112 011001	19965	20175	20385
		1	0	22.43	22.32	22.15
		1	7	22.40	22.46	22.24
		1	14	22.39	22.31	22.31
	QPSK	8	0	21.14	21.29	21.03
		8	4	21.13	21.31	21.18
		8	7	21.10	21.19	21.18
3MHz		15	0	21.12	21.34	21.05
		1	0	22.44	21.58	21.05
		1	7	22.12	22.12	21.05
		1	14	22.22	21.72	21.30
	16QAM	8	0	20.36	20.33	20.43
		8	4	20.18	20.41	20.45
		8	7	20.36	20.38	20.38
		15	0	20.22	20.30	19.95
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
		size		19975	20175	20375
5MHz	QPSK	1	0	22.08	22.26	22.26
		1	13	22.04	22.25	22.24
		1	24	21.97	22.27	22.22
		12	0	21.05	21.29	21.17

Report No. RXC1402-0026SAR01R1

Page 52 of 213

		12	6	21.12	21.25	21.15
		12	13	21.05	21.34	21.20
		25	0	21.06	21.21	21.19
		1	0	22.08	21.06	21.93
		1	13	21.37	20.88	21.94
		1	24	21.85	21.26	22.17
	16QAM	12	0	20.17	20.33	20.16
		12	6	20.14	20.55	20.13
		12	13	20.12	20.45	20.13
		25	0	20.01	20.36	20.21
_		RB		Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	20000	20175	20350
		1	0	22.17	22.16	22.36
	QPSK	1	25	22.44	22.11	22.15
		1	49	22.17	21.26	22.21
		25	0	21.01	21.22	21.04
		25	13	21.12	21.38	20.85
		25	25	21.13	21.53	20.90
40MU-		50	0	21.06	21.31	21.10
10MHz		1	0	21.30	21.93	21.79
		1	25	21.31	22.09	21.95
		1	49	21.11	22.05	21.70
	16QAM	25	0	20.17	20.48	20.12
		25	13	20.17	20.42	20.04
		25	25	20.19	20.36	20.12
		50	0	19.94	20.27	19.98
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danawiatii	Modulation	size	ND Ollset	20025	20175	20325
15MHz		1	0	21.99	22.27	22.40
		1	38	21.96	22.27	22.10
		1	74	22.21	22.07	22.38
	QPSK	36	0	21.00	21.15	20.96
		36	18	21.08	21.18	20.90
		36	39	21.18	21.15	20.92
		75	0	20.09	21.23	20.93
	16QAM	1	0	21.62	21.83	21.77
		1	38	21.40	22.22	21.75
		1	74	21.75	22.26	22.02
		36	0	20.09	20.29	19.97
		36	18	20.09	20.34	20.01
		36	39	20.08	20.37	19.98

Report No. RXC1402-0026SAR01R1

Page 53 of 213

		75	0	20.09	20.06	19.84
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwiutii	Modulation	size	VD 011961	20050	29175	20300
		1	0	22.24	22.36	22.27
		1	50	22.24	22.31	22.21
		1	99	22.15	22.34	22.22
	QPSK	50	0	20.98	21.24	20.95
		50	25	21.10	21.24	20.87
		50	50	21.34	21.23	20.90
20MHz		100	0	21.22	21.15	20.94
ZUIVITZ		1	0	21.95	20.72	21.54
		1	50	22.04	21.19	21.53
		1	99	21.89	21.50	21.59
	16QAM	50	0	20.19	20.06	20.00
		50	25	20.16	20.19	19.89
		50	50	20.15	20.03	19.88
		100	0	20.07	20.15	19.92

SAR sensor active

sor active							
LTE	FDD Band 4			Condu	cted Powe	r(dBm)	
Bandwidth	Modulation	RB	B DD -#+	Channel	Channel	Channel	
Danuwiuin	Modulation	size	RB offset	19957	20175	20393	
		1	0	18.17	18.38	18.28	
		1	2	18.16	18.40	18.19	
		1	5	18.22	18.38	18.19	
	QPSK	3	0	18.24	18.37	18.20	
		3	2	18.06	18.27	18.16	
		3	3	18.21	18.37	18.30	
1.4MHz		6	0	17.15	17.34	17.17	
1. 4 1VITZ		1	0	17.43	17.35	17.51	
		1	2	17.72	17.80	17.88	
		1	5	17.39	17.61	17.78	
	16QAM	3	0	17.91	17.91	17.92	
		3	2	17.90	18.05	18.29	
		3	3	17.93	18.00	18.02	
		6	0	16.84	16.55	16.81	
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel	
Danuwidin	Modulation	size	ND Ollset	19965	20175	20385	
3MHz	QPSK	1	0	18.47	18.37	18.17	
		1	7	18.44	18.51	18.26	

Report No. RXC1402-0026SAR01R1

Page 54 of 213

		1	14	18.43	18.36	18.33
		8	0	17.18	17.34	17.05
		8	4	17.17	17.36	17.20
		8	7	17.14	17.24	17.20
		15	0	17.16	17.39	17.07
		1	0	18.48	17.63	17.07
		1	7	18.16	18.17	17.07
		1	14	18.26	17.77	17.32
	16QAM	8	0	16.40	16.38	16.45
		8	4	16.22	16.46	16.47
		8	7	16.40	16.43	16.40
		15	0	16.26	16.35	15.97
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwiutii	Wodulation	size	ND Ollset	19975	20175	20375
		1	0	18.12	18.31	18.28
		1	13	18.08	18.30	18.26
	QPSK	1	24	18.01	18.32	18.24
		12	0	17.09	17.34	17.19
		12	6	17.16	17.30	17.17
		12	13	17.09	17.39	17.22
5MHz		25	0	17.10	17.26	17.21
OWNIZ		1	0	18.12	17.11	17.95
		1	13	17.41	16.93	17.96
		1	24	17.89	17.31	18.19
	16QAM	12	0	16.21	16.38	16.18
		12	6	16.18	16.60	16.15
		12	13	16.16	16.50	16.15
		25	0	16.05	16.41	16.23
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
400000		size		20000	20175	20350
10MHz		1	0	18.21	18.21	18.38
		1	25	18.48	18.16	18.17
	QPSK	1	49	18.21	17.31	18.23
		25	0	17.05	17.27	17.06
		25	13	17.16	17.43	16.87
		25 50	25 0	17.17 17.10	17.58 17.36	16.92 17.12
	16QAM	1	0	17.10	17.36	17.12
	IUQAW	1	25	17.34	18.14	17.81
		1	49	17.35	18.10	17.97
		25	0	16.21	16.10	16.14
		20	U	10.21	10.33	10.14

Report No. RXC1402-0026SAR01R1

Page 55 of 213

		25	13	16.21	16.47	16.06
		25	25	16.23	16.41	16.14
		50	0	15.98	16.32	16.00
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danawiatii	Modulation	size	ND 0113Ct	20025	20175	20325
		1	0	18.03	18.32	18.42
		1	38	18.00	18.32	18.12
		1	74	18.25	18.12	18.40
	QPSK	36	0	17.04	17.20	16.98
		36	18	17.12	17.23	16.92
		36	39	17.22	17.20	16.94
15MHz		75	0	16.13	17.28	16.95
1011112		1	0	17.66	17.88	17.79
		1	38	17.44	18.27	17.77
		1	74	17.79	18.31	18.04
	16QAM	36	0	16.13	16.34	15.99
		36	18	16.13	16.39	16.03
		36	39	16.12	16.42	16.00
		75	0	16.13	16.11	15.86
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danawiath	Modulation	size	ND onoct	20050	20175	20300
		1	0	18.32	18.39	18.33
		1	50	18.28	18.36	18.23
		1	99	18.19	18.39	18.24
	QPSK	50	0	17.02	17.45	16.97
		50	25	17.14	17.29	16.89
		50	50	17.38	17.28	16.92
20MHz		100	0	17.26	17.20	16.96
ZOMITZ	16QAM	1	0	17.99	16.77	17.56
		1	50	18.08	17.24	17.55
		1	99	17.93	17.55	17.61
		50	0	16.23	16.11	16.02
		50	25	16.20	16.24	15.91
		50	50	16.19	16.08	15.90
		100	0	16.11	16.20	15.94

Table 17: LTE Band 5 Conducted Power Measurement Results SAR sensor not active

LTE I	DD Band 5	5		Condu	cted Powe	r(dBm)
Developed 10	Modulatian	RB	DD affact	Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	20407	20525	20643
		1	0	22.67	22.99	22.73
		1	2	22.71	22.98	22.70
		1	5	22.79	22.94	22.70
	QPSK	3	0	22.63	22.79	22.86
		3	2	22.61	22.89	22.70
		3	3	22.68	22.84	22.63
1.4MHz		6	0	21.70	22.07	21.90
1.4111112		1	0	22.91	22.05	23.51
		1	2	22.62	21.95	22.93
		1	5	22.96	21.65	22.90
	16QAM	3	0	22.39	22.01	22.11
		3	2	22.62	22.00	22.12
		3	3	22.48	21.94	22.00
		6	0	21.46	21.56	21.33
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Banawiath		size		20415	20525	20635
		1	0	22.67	22.91	22.72
		1	7	22.68	23.00	22.82
		1	14	22.54	22.84	22.63
	QPSK	8	0	21.80	22.02	21.82
		8	4	21.71	21.89	21.77
		8	7	21.70	21.83	21.80
3MHz		15	0	21.68	22.03	21.74
J		1	0	22.51	22.78	22.06
		1	7	22.61	22.58	22.05
		1	14	22.38	22.93	22.05
	16QAM	8	0	20.95	21.46	21.54
		8	4	20.85	21.21	21.48
		8	7	20.90	21.08	21.14
		15	0	20.89	21.29	20.91
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
		size		20425	20525	20625
5MHz	QPSK	1	0	22.44	22.75	22.58
		1	13	22.29	22.74	22.62
		1	24	22.49	22.59	22.65
		12	0	21.65	21.92	21.74

Report No. RXC1402-0026SAR01R1

Page 57 of 213

		12	6	21.75	21.95	21.61
		12	13	21.68	22.04	21.70
		25	0	21.63	21.83	21.70
		1	0	22.60	22.99	21.48
		1	13	21.98	22.49	21.91
		1	24	22.25	22.77	21.85
	16QAM	12	0	20.80	21.18	21.02
		12	6	21.09	21.06	20.93
		12	13	20.96	21.24	21.03
		25	0	20.74	21.02	21.21
Bandwidth	Modulation	RB	RB offset F	Channel	Channel	Channel
Danuwiutii	Modulation	size		20450	20525	20600
		1	0	22.71	22.87	22.41
		1	25	22.77	22.65	22.67
		1	49	22.57	22.57	22.52
	QPSK	25	0	21.64	21.94	21.65
		25	13	21.61	21.92	21.53
		25	25	21.68	21.93	21.62
10MHz		50	0	21.87	21.96	21.73
TOWN 12		1	0	22.21	22.21	22.48
		1	25	22.30	22.05	22.40
		1	49	21.82	22.37	22.36
	16QAM	25	0	20.84	21.26	20.94
		25	13	20.86	21.13	20.94
		25	25	20.96	21.08	20.94
		50	0	20.76	20.94	20.59

SAR Sensor active

LTE I	LTE FDD Band 5			Conducted Power(dBm)		
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwium	Modulation	size	KD OIISEL	20407	20525	20643
1.4MHz		1	0	19.78	20.00	19.86
		1	2	19.82	19.99	19.83
		1	5	19.90	19.95	19.83
	QPSK	3	0	19.74	19.80	19.99
		3	2	19.72	19.90	19.83
		3	3	19.79	19.85	19.76
		6	0	18.81	19.08	19.03
	16QAM	1	0	20.02	19.06	20.64

Report No. RXC1402-0026SAR01R1

Page 58 of 213

		1	2	19.73	18.96	20.06
		1	5	20.07	18.66	20.03
		3	0	19.50	19.02	19.24
		3	2	19.73	19.01	19.25
		3	3	19.59	18.95	19.13
		6	0	18.57	18.57	18.46
Dan aloni altin	Madulatian	RB	DD affact	Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	20415	20525	20635
		1	0	19.78	19.92	19.85
		1	7	19.79	20.01	19.95
		1	14	19.65	19.85	19.76
	QPSK	8	0	18.91	19.03	18.95
		8	4	18.82	18.90	18.90
		8	7	18.81	18.84	18.93
2MU-		15	0	18.79	19.04	18.87
3MHz		1	0	19.62	19.79	19.19
		1	7	19.72	19.59	19.18
		1	14	19.49	19.94	19.18
	16QAM	8	0	18.06	18.47	18.67
		8	4	17.96	18.22	18.61
		8	7	18.01	18.09	18.27
		15	0	18.00	18.30	18.04
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwiulii	Modulation	size	KD 011361	20425	20525	20625
		1	0	19.55	19.76	19.71
		1	13	19.40	19.75	19.75
		1	24	19.60	19.60	19.78
	QPSK	12	0	18.76	18.93	18.87
		12	6	18.86	18.96	18.74
		12	13	18.79	19.05	18.83
5MHz		25	0	18.74	18.84	18.83
OWITE		1	0	19.71	20.00	18.61
		1	13	19.09	19.50	19.04
16QAM	1	24	19.36	19.78	18.98	
	12	0	17.91	18.19	18.15	
	12	6	18.20	18.07	18.06	
	12	13	18.07	18.25	18.16	
		25	0	17.85	18.03	18.34
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
	Modulation	size	RD Oliset	20450	20525	20600
10MHz	QPSK	1	0	20.22	20.18	20.13

Report No. RXC1402-0026SAR01R1

Page	59	of	21	3
------	----	----	----	---

	1	25	19.88	19.88	19.80
	1	49	19.68	19.58	19.65
	25	0	18.95	19.25	19.17
	25	13	18.72	18.93	18.66
	25	25	18.79	18.94	18.75
	50	0	18.98	18.97	18.86
	1	0	19.32	19.22	19.61
	1	25	19.41	19.06	19.53
	1	49	18.93	19.38	19.49
16QAM	25	0	17.95	18.27	18.07
	25	13	17.97	18.14	18.07
	25	25	18.07	18.09	18.07
	50	0	17.87	17.95	17.72

Table 18: LTE Band 7 Conducted Power Measurement Results SAR sensor not active

LTE FDD Band 7				Conducted Power(dBm)		
Day d. 110	Madriatic	RB BB effect		Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	20775	21100	21425
		1	0	21.08	21.62	22.01
	_ _ _	1	13	21.65	21.62	22.12
		1	24	21.37	21.70	21.98
	QPSK	12	0	20.50	20.46	20.47
		12	6	20.45	20.43	20.47
		12	13	20.61	20.48	20.46
CNALL-		25	0	20.53	20.46	20.47
5MHz		1	0	20.36	20.84	21.22
		1	13	20.42	20.88	20.72
		1	24	20.26	20.86	20.65
	16QAM	12	0	19.54	19.55	19.52
		12	6	19.53	19.55	19.37
		12	13	19.37	19.59	19.42
		25	0	19.45	19.46	19.30
Dan duvidáh	Madulation	RB	RB offset	Channel	Channel	Channel
Bandwidth	Modulation	size		20800	21100	21400
		1	0	21.80	21.72	21.57
		1	25	21.43	21.50	21.37
		1	49	21.64	21.53	21.27
	QPSK	25	0	20.72	20.50	20.29
		25	13	20.75	20.51	20.25
		25	25	20.62	20.53	20.25
10MHz		50	0	20.87	20.49	20.38
IUWINZ		1	0	21.62	21.05	21.20
		1	25	21.56	21.01	21.31
		1	49	21.50	20.95	20.90
	16QAM	25	0	19.38	19.61	19.58
		25	13	19.57	19.61	19.38
		25	25	19.39	19.61	19.53
		50	0	19.44	19.43	19.14
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danawiath	iviodulation	size	VD 011961	20825	21100	21375
15MHz	QPSK	1	0	21.72	21.55	21.52
		1	38	21.61	21.47	21.45
		1	74	21.54	21.22	21.34
		36	0	20.39	20.14	20.29

Report No. RXC1402-0026SAR01R1

Page 61 of 213

		36	18	20.26	20.02	20.32
		36	39	20.13	20.05	20.20
		75	0	20.51	20.25	20.10
		1	0	21.37	21.41	21.33
		1	38	21.89	21.87	20.77
		1	74	21.73	21.44	20.86
	16QAM	36	0	19.33	19.12	19.33
		36	18	19.32	19.11	19.21
		36	39	19.24	19.09	19.19
		75	0	19.16	19.14	19.17
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwiutii	iviodulation	size	IVD Ollset	20850	21100	21350
		1	0	21.56	21.55	21.52
		1	50	21.37	21.31	21.31
		1	99	21.20	21.21	21.28
	QPSK	50	0	20.41	20.57	20.54
		50	25	20.24	20.24	20.17
		50	50	20.22	20.20	20.19
20MHz		100	0	20.43	20.10	20.19
ZUWII IZ		1	0	20.82	20.47	21.17
		1	50	20.68	20.77	21.18
		1	99	20.19	20.76	21.18
	16QAM	50	0	19.33	19.00	19.24
		50	25	19.27	19.02	19.17
		50	50	19.19	19.13	19.11
		100	0	19.32	19.11	19.27

SAR Sensor active

LTE FDD Band 7				Conducted Power(dBm)		
Bandwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Danuwiutii	iviodulation	size	RD Ollset	20775	21100	21425
5MHz		1	0	16.60	17.13	17.59
		1	13	17.17	17.13	17.70
		1	24	16.89	17.21	17.56
	QPSK	12	0	16.02	15.97	16.05
		12	6	15.97	15.94	16.05
		12	13	16.13	15.99	16.04
		25	0	16.05	15.97	16.05
	16QAM	1	0	15.88	16.35	16.80
		1	13	15.94	16.39	16.30
		1	24	15.78	16.37	16.23

Report No. RXC1402-0026SAR01R1

Page 62 of 213

		12	0	15.06	15.06	15.10
		12	6	15.05	15.06	14.95
		12	13	14.89	15.10	15.00
		25	0	14.97	14.97	14.88
Dondwidth	Modulation	RB	RB offset	Channel	Channel	Channel
Bandwidth	iviodulation	size	KD UIISEL	20800	21100	21400
		1	0	17.32	17.23	17.15
		1	25	16.95	17.01	16.95
		1	49	17.16	17.04	16.85
	QPSK	25	0	16.24	16.01	15.87
		25	13	16.27	16.02	15.83
		25	25	16.14	16.04	15.83
10MHz		50	0	16.39	16.00	15.96
TOWNIZ		1	0	17.14	16.56	16.78
		1	25	17.08	16.52	16.89
		1	49	17.02	16.46	16.48
	16QAM	25	0	14.90	15.12	15.16
		25	13	15.09	15.12	14.96
		25	25	14.91	15.12	15.11
		50	0	14.96	14.94	14.72
Bandwidth	Modulation	RB	RR offset	Channel	Channel	Channel
Bandwidth	Modulation	size	RB offset	Channel 20825	Channel 21100	21375
Bandwidth	Modulation		RB offset			
Bandwidth	Modulation	size		20825	21100	21375
Bandwidth	Modulation	size 1	0	20825 17.24	21100 17.06	21375 17.10
Bandwidth	Modulation QPSK	size 1 1	0 38	20825 17.24 17.13	21100 17.06 16.98	21375 17.10 17.03
Bandwidth		size 1 1 1	0 38 74	20825 17.24 17.13 17.06	21100 17.06 16.98 16.73	21375 17.10 17.03 16.92
Bandwidth		size 1 1 1 36	0 38 74 0	20825 17.24 17.13 17.06 15.91	21100 17.06 16.98 16.73 15.65	21375 17.10 17.03 16.92 15.87
		size 1 1 1 36 36	0 38 74 0 18	20825 17.24 17.13 17.06 15.91 15.78	21100 17.06 16.98 16.73 15.65 15.53	21375 17.10 17.03 16.92 15.87 15.90
Bandwidth 15MHz		size 1 1 1 36 36 36	0 38 74 0 18 39	20825 17.24 17.13 17.06 15.91 15.78 15.65	21100 17.06 16.98 16.73 15.65 15.53 15.56	21375 17.10 17.03 16.92 15.87 15.90 15.78
		size 1 1 1 36 36 36 75	0 38 74 0 18 39	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68
		size 1 1 1 36 36 36 75 1	0 38 74 0 18 39 0	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91
		size 1 1 1 36 36 36 75 1	0 38 74 0 18 39 0 0	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35
	QPSK	size 1 1 1 36 36 36 75 1 1	0 38 74 0 18 39 0 0 0 38 74	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44
	QPSK	size 1 1 1 36 36 36 75 1 1 36	0 38 74 0 18 39 0 0 0 38 74	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25 14.85	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95 14.63	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44 14.91
	QPSK	size 1 1 1 36 36 36 75 1 1 1 36 36 36	0 38 74 0 18 39 0 0 0 38 74 0	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25 14.85 14.84	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95 14.63 14.62	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44 14.91 14.79
15MHz	QPSK 16QAM	size 1 1 1 36 36 36 75 1 1 36 36 36 75 RB	0 38 74 0 18 39 0 0 38 74 0 18 39 0	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25 14.85 14.84	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95 14.63 14.62	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44 14.91 14.79
	QPSK	size 1 1 1 36 36 36 75 1 1 36 36 36 75	0 38 74 0 18 39 0 0 0 38 74 0 18 39	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25 14.85 14.84 14.76 14.68	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95 14.63 14.62 14.60 14.65	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44 14.91 14.79 14.77
15MHz	QPSK 16QAM	size 1 1 1 36 36 36 75 1 1 36 36 36 75 RB	0 38 74 0 18 39 0 0 38 74 0 18 39 0	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25 14.85 14.84 14.76 14.68 Channel	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95 14.63 14.62 14.60 14.65 Channel	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44 14.91 14.79 14.77 14.75 Channel
15MHz Bandwidth	QPSK 16QAM Modulation	size 1 1 1 36 36 36 75 1 1 36 36 36 75 RB size	0 38 74 0 18 39 0 0 38 74 0 18 39 0	20825 17.24 17.13 17.06 15.91 15.78 15.65 16.03 16.89 17.41 17.25 14.85 14.84 14.76 14.68 Channel	21100 17.06 16.98 16.73 15.65 15.53 15.56 15.76 16.92 17.38 16.95 14.63 14.62 14.60 14.65 Channel	21375 17.10 17.03 16.92 15.87 15.90 15.78 15.68 16.91 16.35 16.44 14.91 14.79 14.77 14.75 Channel 21350

Report No. RXC1402-0026SAR01R1

Page 63 of	f 213
------------	-------

		50	0	16.02	16.11	16.03
		50	25	15.76	15.75	15.75
		50	50	15.74	15.71	15.77
		100	0	15.95	15.61	15.77
		1	0	16.34	15.98	16.75
		1	50	16.20	16.28	16.76
		1	99	15.71	16.27	16.76
	16QAM	50	0	14.85	14.51	14.82
		50	25	14.79	14.53	14.75
		50	50	14.71	14.64	14.69
		100	0	14.84	14.62	14.85

Table 19: LTE Band 17 Conducted Power Measurement Results SAR sensor not active

	LTE FDD Band 17					r(dBm)
Danishuri dili	Modulation	DP oi=s	DD offs of	Channel	Channel	Channel
Bandwidth	Modulation	RB size	RB offset	23755	23790	23825
		1	0	22.92	22.93	22.62
		1	13	22.87	22.92	22.68
		1	24	22.91	22.83	22.62
	QPSK	12	0	21.80	21.78	21.72
		12	6	21.78	21.78	21.74
		12	13	21.79	21.76	21.71
5MHz		25	0	21.76	21.80	21.68
SIVITIZ		1	0	22.64	21.62	22.33
		1	13	22.56	21.63	22.30
		1	24	22.54	21.65	22.30
	16QAM	12	0	20.85	20.82	20.66
		12	6	20.88	20.80	20.68
		12	13	20.86	20.89	20.75
		25	0	20.92	20.70	20.61
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Banawiath	Woddiation	110 3120	ND Ollset	23780	23790	23800
		1	0	22.99	22.99	22.69
		1	25	22.92	22.90	22.64
		1	49	22.97	22.98	22.65
	QPSK	25	0	21.69	21.76	21.65
		25	13	21.67	21.69	21.66
		25	25	21.62	21.68	21.62
10MHz		50	0	21.60	21.74	21.65
10111112		1	0	22.99	21.74	22.64
		1	25	22.90	21.74	22.56
		1	49	22.95	21.76	22.57
	16QAM	25	0	20.69	20.84	20.73
		25	13	20.64	20.84	20.78
		25	25	20.67	20.77	20.72
		50	0	20.49	20.65	20.64

Report No. RXC1402-0026SAR01R1

Page 65 of 213

SAR sensor active

	Conducted Power(dBm)					
Danish dala	NA alvilation	DD -:	DD -#4	Channel	Channel	Channel
Bandwidth	Modulation	RB size	B size RB offset		23790	23825
		1	0	20.03	20.00	19.69
		1	13	19.98	19.99	19.75
		1	24	20.02	19.90	19.69
	QPSK	12	0	18.91	18.85	18.79
		12	6	18.89	18.85	18.81
		12	13	18.90	18.83	18.78
5MHz		25	0	18.87	18.87	18.75
SIVITIZ		1	0	19.75	18.69	19.40
		1	13	19.67	18.70	19.37
		1	24	19.65	18.72	19.37
	16QAM	12	0	17.96	17.89	17.73
		12	6	17.99	17.87	17.75
		12	13	17.97	17.96	17.82
		25	0	18.03	17.77	17.68
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
Bandwidth	Woddiation	TO SIZE	ND 0113Ct	23780	23790	23800
		1	0	20.02	19.99	20.13
		1	25	19.67	19.97	19.71
		1	49	19.67	20.05	19.72
	QPSK	25	0	18.64	19.12	18.72
		25	13	18.73	18.83	18.73
		25	25	18.69	18.75	18.69
10MHz		50	0	18.71	18.81	18.72
1011112		1	0	20.10	18.81	19.71
		1	25	20.01	18.81	19.63
		1	49	20.06	18.83	19.64
	16QAM	25	0	17.80	17.91	17.80
		25	13	17.75	17.91	17.85
		25	25	17.78	17.84	17.79
		50	0	17.60	17.72	17.71

The average output power of BT antenna is as following:

Channel	Ch 0	Ch 39	Ch 78
GFSK(dBm)	0.69	-0.23	0.67
EDR 3M-8DPSK(dBm)	1.44	0.19	2.36
BT 4.0	Ch 0	Ch 19	Ch 39
GFSK(dBm)	1.73	0.88	2.45

The average output power of WIFI antenna is as following: WIFI Antenna

WIFI Mode	Channel	Data rate (Mbps)	AV Power
		4	(dBm)
		1	13.51
	1	2	13.49
		5.5	13.47
		11	13.45
		1	14.13
11h	G	2	14.11
11b	6	5.5	14.09
		11	14.07
	11	1	15.43
		2	15.41
		5.5	15.38
		11	15.35
11g		6	8.79
		9	8.60
		12	8.58
		18	8.55
	1	24	8.53
		36	8.51
		48	8.48
		54	8.46
	6	6	13.26
		9	13.24

Report No. RXC1402-0026SAR01R1

Page 67 of 213

	I		
		12	13.22
		18	13.20
		24	13.18
		36	13.16
		48	13.14
		54	13.12
		6	11.73
		9	11.71
		12	11.69
	44	18	11.66
	11	24	11.64
		36	11.62
		48	11.60
		54	11.58
11n HT20		MCS0	8.62
	1	MCS1	8.60
		MCS2	8.57
		MCS3	8.55
		MCS4	8.52
		MCS5	8.50
		MCS6	8.48
		MCS7	8.45
		MCS8	8.43
		MCS0	13.01
		MCS1	12.98
		MCS2	12.96
		MCS3	12.94
	6	MCS4	12.92
		MCS5	12.90
		MCS6	12.88
		MCS7	12.86
		MCS8	12.84
	11	MCS0	12.15
		MCS1	12.13
		MCS2	12.10

Report No. RXC1402-0026SAR01R1

Page 68 of 213

	ı	ı	
		MCS3	12.08
		MCS4	12.05
		MCS5	12.03
		MCS6	12.00
		MCS7	11.98
		MCS8	11.95
		MCS0	12.10
		MCS1	12.08
		MCS2	12.05
		MCS3	12.03
	3	MCS4	12.01
		MCS5	11.99
		MCS6	11.97
		MCS7	11.95
		MCS8	11.93
		MCS0	13.87
		MCS1	13.85
		MCS2	13.82
		MCS3	13.80
11n HT40	6	MCS4	13.78
		MCS5	13.75
		MCS6	13.73
		MCS7	13.71
		MCS8	13.69
		MCS0	10.25
	9	MCS1	10.23
		MCS2	10.20
		MCS3	10.18
		MCS4	10.15
		MCS5	10.13
		MCS6	10.11
	_	MCS7	10.09
		MCS8	10.07

Report No. RXC1402-0026SAR01R1

Page 69 of 213

7.2. SAR Test Results

7.2.1. GSM 850 (GPRS/EGPRS)

Table 20: SAR Values [GSM 850 (GPRS/EGPRS)]

Test	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Drift ± 0.21dB	Limit SAR _{1g} 1.6 W/kg				
Position						Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
Test Position of Body (SAR Sesor active, Distance 0mm)											
	251/848.8	2Txslots	1:4.15	26	25.69	0.050	0.855	1.07	0.918	Figure 12	
Test Position 1	190/836.6	2Txslots	1:4.15	26	25.53	0.020	0.719	1.11	0.801	/	
	128/824.2	2Txslots	1:4.15	26	25.39	-0.180	0.676	1.15	0.778	/	
Test Position 2	190/836.6	2Txslots	1:4.15	26	25.53	0.032	0.058	1.11	0.064	/	
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 5	190/836.6	2Txslots	1:4.15	26	25.53	0.022	0.057	1.11	0.063	/	
	Worst Case Position of Body with EGPRS (SAR Sesor active, Distance 0mm)										
Test Position 1	251/848.8	2Txslots	1:4.15	26	25.69	0.080	0.783	1.07	0.841	1	
	Test Position of Body(SAR Sesor not active, Distance 5mm)										
Test Position 2	190/836.6	2Txslots	1:4.15	29	28.4	0.130	0.084	1.15	0.096	1	
	Test Position of Body(SAR Sesor not active, Distance 0mm)										
Test Position 3	190/836.6	2Txslots	1:4.15	29	28.4	0.080	0.093	1.15	0.106	/	
Test Position of Body (SAR Sesor not active, Distance 10mm)											
Test Position 1	190/836.6	2Txslots	1:4.15	29	28.4	-0.060	0.282	1.15	0.324	/	
Test Position 5	190/836.6	2Txslots	1:4.15	29	28.4	0.030	0.259	1.15	0.297	1	
	Worst Cas	se Positio	n of Boo	ly (1 st Repe	ated SAR, SA	AR Sesor a	ctive, Distar	nce 0mm))		
Test Position 1	251/848.8	2Txslots	1:4.15	26	25.69	0.055	0.839	1.07	0.901	/	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 4. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

Report No. RXC1402-0026SAR01R1 Page 70 of 213

Table 21: SAR Measurement Variability Results [GSM 850 (GPRS/EGPRS)]

Test Position	Timeslots	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	2Txslots	251/848.8	0.855	0.839	1.02	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 71 of 213

7.2.2. GSM 1900 (GPRS/EGPRS)

Table 22: SAR Values [GSM 1900 (GPRS/EGPRS)]

Test	Channel/ Frequency (MHz)	Time slot	Duty Cycle	Maximum Allowed Power (dBm)	Conducted	Drift \pm 0.21dB	Limit SAR _{1g} 1.6 W/kg				
Position					Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
Test Position of Body (SAR Sesor active, Distance 0mm)											
	810/1909.8	4Txslots	1:4.14	22	21.61	0.170	0.726	1.09	0.794	1	
Test Position 1	661/1880	4Txslots	1:4.14	22	21.75	-0.043	0.789	1.06	0.836	1	
	512/1850	4Txslots	1:4.14	22	21.64	0.105	0.846	1.09	0.919	Figure 13	
Test Position 2	661/1880	4Txslots	1:4.14	22	21.75	-0.120	0.139	1.06	0.147	1	
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 5	661/1880	4Txslots	1:4.14	22	21.75	-0.120	0.529	1.06	0.560	1	
	Wors	t Case Pos	sition of	Body with E	GPRS (SAR	Sesor acti	ve, Distance	e 0mm)			
Test Position 1	512/1850	4Txslots	1:4.14	22	21.64	0.080	0.783	1.09	0.851	1	
		Test Po	sition of	Body(SAR	Sesor not a	ctive, Dista	nce 5mm)				
Test Position 2	661/1880	4Txslots	1:4.14	23	22.69	0.110	0.087	1.07	0.094	1	
		Test Po	sition of	Body(SAR	Sesor not a	ctive, Dista	nce 0mm)				
Test Position 3	661/1880	4Txslots	1:4.14	23	22.69	-0.048	0.030	1.07	0.032	1	
Test Position of Body (SAR Sesor not active, Distance 10mm)											
Test Position 1	661/1880	4Txslots	1:4.14	23	22.69	-0.020	0.255	1.07	0.274	/	
Test Position 5	661/1880	4Txslots	1:4.14	23	22.69	0.050	0.194	1.07	0.208	1	
Worst Case Position of Body (1 st Repeated SAR, SAR Sesor active, Distance 0mm)											
Test Position 1	512/1850	4Txslots	1:4.14	22	21.64	0.160	0.820	1.09	0.891	1	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.
- 4. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

Report No. RXC1402-0026SAR01R1

Page 72 of 213

Table 23: SAR Measurement Variability Results [GSM 1900 (GPRS/EGPRS)]

Test Position	Timeslots	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	4Txslots	512/1850	0.846	0.820	1.03	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is \geq 1.20.
 - 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 73 of 213

7.2.3. UMTS Band II (WCDMA/HSDPA/HSUPA)

Table 24: SAR Values [UMTS Band II (WCDMA/HSDPA/HSUPA)]

Toot	Channel/	Channel	Duty	Maximum Allowed	Conducted	Drift \pm 0.21dB	L	imit SAR	_{1g} 1.6 W/kg			
Test Position	Frequency (MHz)	Туре	Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results		
		Test Po	osition o	of Body (SA	AR Sesor act	ive, Distand	ce 0mm)					
	9538/1907.6 RMC 1:1 18.5 18.39 0.010 1.150 1.03 1.179 /											
Test Position 1	9400/1880	RMC	1:1	18.5	18.25	0.010	1.120	1.06	1.186	Figure 14		
	9262/1852.4	RMC	1:1	18.5	18.21	-0.130	1.080	1.07	1.155	1		
Test Position 2	9400/1880	RMC	1:1	18.5	18.15	0.090	0.138	1.08	0.150	1		
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Test Position 5	9400/1880	RMC	1:1	18.5	18.15	-0.160	0.523	1.08	0.567	1		
		Test Pos	ition of	Body (SAR	Sesor not a	ctive, Dista	nce 5mm)					
Test Position 2	9400/1880	RMC	1:1	22.5	22.08	-0.040	0.101	1.10	0.111	1		
		Test Pos	sition of	Body(SAR	Sesor not a	ctive, Dista	nce 0mm)					
Test Position 3	9400/1880	RMC	1:1	22.5	22.08	0.042	0.073	1.10	0.081	1		
		Test Pos	ition of	Body (SAR	Sesor not ac	tive, Distar	nce 10mm)					
Test Position 1	9400/1880	RMC	1:1	22.5	22.08	-0.170	0.487	1.10	0.536	1		
Test Position 5	9400/1880	RMC	1:1	22.5	22.08	-0.040	0.383	1.10	0.422	1		
	Worst Case Position of Body (1 st Repeated SAR, SAR Sesor active, Distance 0mm)											
Test Position 1	9538/1907.6	RMC	1:1	18.5	18.39	-0.040	1.150	1.03	1.179	1		

Note: 1.The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WCDMA mode was tested under RMC 12.2kbps with HSPA (HSDPA/HSUPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more than 0.25 dB higher than the RMC level or the maximum measured SAR for 12.2kbps RMC was less than 75% SAR limit.
- 4. WCDMA mode was tested under RMC 12.2kbps with DC-HSDPA inactive per KDB Publication 941225 D02. DC-HSDPA SAR for body was not required since the average output power of the DC-HSDPA subtests was not more than 0.25 dB higher than the RMC level or the maximum reported SAR for 12.2kbps RMC was less than 75% SAR limit.

Report No. RXC1402-0026SAR01R1

Page 74 of 213

Table 25: SAR Measurement Variability Results [UMTS Band II (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	9538/1907.6	1.120	1.150	1.03	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
 - 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 75 of 213

7.2.4. UMTS Band IV (WCDMA/HSDPA/HSUPA)

Table 26: SAR Values [UMTS Band IV (WCDMA/HSDPA/HSUPA)]

Test	Channel/	Channel	Duty	Maximum Allowed	Conducted	Drift ± 0.21dB	L	imit SAR	_{1g} 1.6 W/kg			
Position	Frequency (MHz)	Туре	Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results		
		Test Po	osition	of Body (S	AR Sesor ac	tive, Distar	ice 0mm)					
1513/1752.6 RMC 1:1 18.5 18.36 0.060 0.876 1.03 0.905 /												
Test Position 1	1413/1732.6	RMC	1:1	18.5	18.27	0.150	0.895	1.05	0.944	1		
	1312/1712.4	RMC	1:1	18.5	18.18	-0.080	0.888	1.08	0.956	1		
Test Position 2	1413/1732.6	RMC	1:1	18.5	18.27	-0.060	0.377	1.05	0.398	1		
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Test Position 5	1413/1732.6	RMC	1:1	18.5	18.27	-0.080	0.562	1.05	0.593	1		
		Test Pos	ition o	f Body (SAI	R Sesor not a	active, Dist	ance 5mm)					
Test Position 2	1413/1732.6	RMC	1:1	22.5	22.26	0.025	0.201	1.06	0.212	1		
		Test Pos	ition o	f Body(SAI	R Sesor not a	active, Dist	ance 0mm)					
Test Position 3	1413/1732.6	N/A	N/A	22.5	22.26	0.021	0.096	1.06	0.101	1		
		Test Pos	ition of	Body (SAR	Sesor not a	ctive, Dista	nce 10mm)					
Test Position 1	1413/1732.6	RMC	1:1	22.5	22.26	-0.050	0.549	1.06	0.580	1		
Test Position 5	1413/1732.6	RMC	1:1	22.5	22.26	0.090	0.454	1.06	0.480	1		
	Worst Case Position of Body (1 st Repeated SAR, SAR Sesor active, Distance 0mm)											
Test Position 1	1413/1732.6	RMC	1:1	18.5	18.18	0.054	1.060	1.08	1.141	Figure 15		

Note: 1.The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WCDMA mode was tested under RMC 12.2kbps with HSPA (HSDPA/HSUPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more than 0.25 dB higher than the RMC level or the maximum measured SAR for 12.2kbps RMC was less than 75% SAR limit.
- 4. WCDMA mode was tested under RMC 12.2kbps with DC-HSDPA inactive per KDB Publication 941225 D02. DC-HSDPA SAR for body was not required since the average output power of the DC-HSDPA subtests was not more than 0.25 dB higher than the RMC level or the maximum reported SAR for 12.2kbps RMC was less than 75% SAR limit.

Report No. RXC1402-0026SAR01R1

Page 76 of 213

Table 27: SAR Measurement Variability Results [UMTS Band IV (WCDMA/HSDPA/HSUPA)]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	1413/1732.6	0.895	1.060	1.18	NA	NA

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
 - 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 77 of 213

7.2.5. UMTS Band V (WCDMA/HSDPA/HSUPA)

Table 28: SAR Values [UMTS Band V (WCDMA/HSDPA/HSUPA)]

Test	Channel/	Channal	Duty	Maximum Allowed	Conducted	Drift ± 0.21dB	ι	imit SAR	1.6 W/kg	
Position	Frequency (MHz)	Channel Type	Duty Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
		Test Po	osition	of Body (S	AR Sesor ac	tive, Distar	nce 0mm)			
Test Position 1	4183/836.6	RMC	1:1	19.5	19.17	0.166	0.211	1.08	0.228	/
Test Position 2	4183/836.6	RMC	1:1	19.5	19.17	0.033	0.127	1.08	0.137	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 5	4183/836.6	RMC	1:1	19.5	19.17	0.047	0.050	1.08	0.054	1
		Test Pos	ition o	f Body (SAI	R Sesor not a	active, Dist	ance 5mm)			
Test Position 2	4183/836.6	RMC	1:1	22.5	22.04	0.060	0.128	1.11	0.142	1
		Test Pos	ition o	f Body(SAI	R Sesor not a	active, Dist	ance 0mm)			
Test Position 3	4183/836.6	RMC	1:1	22.5	22.04	0.131	0.003	1.11	0.004	1
		Test Pos	ition of	Body (SAF	R Sesor not a	ctive, Dista	nce 10mm)			
Test Position 1	4183/836.6	RMC	1:1	22.5	22.04	-0.010	0.527	1.11	0.586	Figure 16
Test Position 5	4183/836.6	RMC	1:1	22.5	22.04	-0.120	0.255	1.11	0.283	1

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. WCDMA mode was tested under RMC 12.2kbps with HSPA (HSDPA/HSUPA) inactive per KDB Publication 941225 D01. HSPA (HSDPA/HSUPA) SAR for body was not required since the average output power of the HSPA (HSDPA/HSUPA) subtests was not more than 0.25 dB higher than the RMC level or the maximum measured SAR for 12.2kbps RMC was less than 75% SAR limit.
- 4. WCDMA mode was tested under RMC 12.2kbps with DC-HSDPA inactive per KDB Publication 941225 D02. DC-HSDPA SAR for body was not required since the average output power of the DC-HSDPA subtests was not more than 0.25 dB higher than the RMC level or the maximum reported SAR for 12.2kbps RMC was less than 75% SAR limit.

Report No. RXC1402-0026SAR01R1

Page 78 of 213

7.2.6. LTE Band 2

Table 29: SAR Values (LTE Band 2/20MHz/1RB/50%RB)

Tool	Channel/		Duta	Maximum	Conducted	Drift \pm 0.21dB		Limit SAI	R _{1g} 1.6 W/k	g
Test Position	Frequency (MHz)	Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
		Test position of B	ody wit	h 1RB, QPS	SK (SAR Ses	or active,	Distance 0r	nm)		
	19100/1900	1RB 0 Offset	1:1	18.5	18.38	-0.035	1.380	1.03	1.419	Figure17
Test Position 1	18900/1880	1RB 0 Offset	1:1	18.5	18.32	0.018	1.040	1.04	1.084	1
	18700/1860	1RB 0 Offset	1:1	18.5	18.33	0.020	1.350	1.04	1.404	1
Test Position 2	18900/1880	1RB 0 Offset	1:1	18.5	18.32	-0.140	0.265	1.04	0.276	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 5	18900/1880	1RB 0 Offset	1:1	18.5	18.32	0.190	0.402	1.04	0.419	1
	Te	est position of Bo	dy with	50%RB, QI	PSK (SAR S	esor active	, Distance	0mm)		
	19100/1900	50%RB 0 Offset	1:1	17.5	17.41	-0.030	1.280	1.02	1.307	1
Test Position 1	18900/1880	50%RB 0 Offset	1:1	17.5	17.32	0.025	0.953	1.04	0.993	1
	18700/1860	50%RB 0 Offset	1:1	17.5	17.38	0.027	1.260	1.03	1.295	1
Test Position 2	18900/1880	50%RB 0 Offset	1:1	17.5	17.32	0.080	0.112	1.04	0.117	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 5	18900/1880	50%RB 0 Offset	1:1	17.5	17.32	0.020	0.402	1.04	0.419	1
	Те	st Position of Boo	dy with	1RB, QPSK	(SAR Seso	r not active	, Distance	5mm)		
Test Position 2	18900/1880	1RB 0 Offset	1:1	22.5	22.05	0.140	0.180	1.11	0.200	1
	Te	st Position of Boo	ly with	1RB, QPSK	(SAR Seso	r not active	e, Distance	0mm)		
Test Position 3	18900/1880	1RB 0 Offset	1:1	22.5	22.05	-0.140	0.086	1.11	0.095	1
	Tes	st Position of Bod	y with 1	IRB, QPSK	(SAR Sesor	not active	, Distance	l0mm)		
Test Position 1	18900/1880	1RB 0 Offset	1:1	22.5	22.05	-0.050	0.440	1.11	0.488	1
Test Position 5	18900/1880	1RB 0 Offset	1:1	22.5	22.05	-0.030	0.506	1.11	0.561	1
	Test	t Position of Body	with 5	0%RB, QPS	K (SAR Ses	or not acti	ve, Distanc	e 5mm)		
Test Position 2	18900/1880	50%RB 0 Offset	1:1	21.5	21.28	0.010	0.141	1.05	0.148	1
	Test	Position of Body	with 50	%RB, QPS	K (SAR Ses	or not acti	ve, Distanc	e 0mm)	- '	
Test Position 3	18900/1880	50%RB 0 Offset	1:1	21.5	21.28	-0.060	0.068	1.05	0.072	1
	Test	Position of Body	with 50	%RB, QPS	K (SAR Ses	or not activ	e, Distance	10mm)	- '	
Test Position 1	18900/1880	50%RB 0 Offset	1:1	21.5	21.28	-0.060	0.368	1.05	0.387	1
Test Position 5	18900/1880	50%RB 0 Offset	1:1	21.5	21.28	0.040	0.411	1.05	0.432	1
,	Norst Case P	osition of Body w	ith 1RE	B, QPSK (1 ^s	t Repeated S	SAR, SAR S	Sesor active	e, Distanc	e 0mm)	
Test Position 1	19100/1900	1RB 0 Offset	1:1	18.5	18.38	-0.150	1.370	1.03	1.408	1

lote: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No. RXC1402-0026SAR01R1

Page 79 of 213

Table 30: SAR Measurement Variability Results (LTE Band 2/20MHz/1RB/50%RB)

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	19100/1900	1.380	1.370	1.01	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 80 of 213

7.2.7. LTE Band 4

Table 31: SAR Values (LTE Band 4/20MHz/1RB/50%RB)

Teet	Channel/	-	Dute	Maximum Allowed	Conducted	Drift \pm 0.21dB		Limit SAI	R _{1g} 1.6 W/k	g			
Test Position	Frequency (MHz)	Mode	Duty Cycle		Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results			
	Te	est position of Bo	dy witl	h 1RB, QPS	K (SAR Ses	or active,	Distance 0r	nm)					
	20300/1745 1RB 0 Offset 1:1 18.7 18.32 0.150 0.998 1.09 1.089 /												
Test Position 1	20175/1732.5	1RB 0 Offset	1:1	18.7	18.39	0.080	0.767	1.07	0.824	1			
	20050/1720	1RB 0 Offset	1:1	18.7	18.33	0.032	0.971	1.09	1.057	/			
Test Position 2	20175/1732.5	1RB 0 Offset	1:1	18.7	18.39	0.020	0.384	1.07	0.412	1			
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Test Position 5	20175/1732.5	1RB 0 Offset	1:1	18.7	18.39	-0.100	0.576	1.07	0.619	1			
	Tes	t position of Boo	y with	50%RB, QF	SK (SAR Se	sor active	, Distance	0mm)					
Test Position 1	20175/1732.5	50%RB 0 Offset	1:1	17.7	17.45	0.120	0.589	1.06	0.624	1			
Test Position 2	20175/1732.5	50%RB 0 Offset	1:1	17.7	17.45	0.030	0.308	1.06	0.326	1			
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Test Position 5	20175/1732.5	50%RB 0 Offset	1:1	17.7	17.45	-0.100	0.447	1.06	0.473	1			
	Tes	t Position of Bod	y with '	IRB, QPSK	(SAR Seson	not active	e, Distance	5mm)					
Test Position 2	20175/1732.5	1RB 0 Offset	1:1	22.7	22.36	0.010	0.186	1.08	0.201	1			
	Test	Position of Body	y with 1	RB, QPSK	(SAR Seso	r not active	e, Distance	0mm)					
Test Position 3	20175/1732.5	1RB 0 Offset	1:1	22.7	22.36	0.034	0.111	1.08	0.120	1			
	Test	Position of Body	with 1	RB, QPSK	(SAR Sesor	not active	, Distance '	10mm)					
Test Position 1	20175/1732.5	1RB 0 Offset	1:1	22.7	22.36	-0.100	0.623	1.08	0.674	1			
Test Position 5	20175/1732.5	1RB 0 Offset	1:1	22.7	22.36	-0.140	0.468	1.08	0.506	1			
	Test I	Position of Body	with 50	%RB, QPS	K (SAR Ses	or not acti	ve, Distanc	e 5mm)					
Test Position 2	20175/1732.5	50%RB 0 Offset	1:1	21.7	21.24	0.034	0.141	1.11	0.157	1			
	Test F	Position of Body	with 50	%RB, QPSI	K (SAR Ses	or not acti	ve, Distanc	e 0mm)					
Test Position 3	20175/1732.5	50%RB 0 Offset	1:1	21.7	21.24	0.042	0.086	1.11	0.096	1			
	Test P	osition of Body v	with 50	%RB, QPSI	(SAR Sesc	r not activ	e, Distance	10mm)					
Test Position 1	20175/1732.5	50%RB 0 Offset	1:1	21.7	21.24	0.030	0.487	1.11	0.541	1			
Test Position 5	20175/1732.5	50%RB 0 Offset	1:1	21.7	21.24	0.040	0.355	1.11	0.395	1			
,	Norst Case Po	sition of Body wi	th 1RB	, QPSK (1 st	Repeated S	AR, SAR S	Sesor active	e, Distanc	e 0mm)				
Test Position 1	20300/1745	1RB 0 Offset	1:1	18.7	18.32	-0.028	1.020	1.09	1.113	Figure18			
			•				•						

lote: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No. RXC1402-0026SAR01R1

Page 81 of 213

Table 32: SAR Measurement Variability Results [LTE Band 4/20MHz/1RB/50%RB]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	20300/1745	0.998	1.020	1.02	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 82 of 213

7.2.8. LTE Band 5

Table 33: SAR Values (LTE Band 5/10MHz/1RB/50%RB)

Toot	Channel/		Duty	Maximum Allowed	Conducted	Drift \pm 0.21dB		Limit SAF	R _{1g} 1.6 W/k	9
Test Position	Frequency (MHz)	Mode	Duty Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Te	est position of Bo	dy with	1RB, QPS	K (SAR Ses	or active, l	Distance 0n	nm)		
	20600/844	1RB 0 Offset	1:1	20.5	20.13	0.140	0.940	1.09	1.024	1
Test Position 1	20525/836.5	1RB 0 Offset	1:1	20.5	20.18	0.060	1.010	1.08	1.087	Figure19
	20450/829	1RB 0 Offset	1:1	20.5	20.22	0.021	0.921	1.07	0.982	1
Test Position 2	20525/836.5	1RB 0 Offset	1:1	20.5	20.18	-0.010	0.287	1.08	0.309	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 5	20525/836.5	1RB 0 Offset	1:1	20.5	20.18	-0.020	0.448	1.08	0.482	1
	Tes	t position of Bod	y with	50%RB, QP	SK (SAR Se	sor active	, Distance (Omm)		
	20600/844	50%RB 0 Offset	1:1	19.5	19.17	-0.020	0.691	1.08	0.746	1
Test Position 1	20525/836.5	50%RB 0 Offset	1:1	19.5	19.25	0.070	0.767	1.06	0.812	1
	20450/829	50%RB 0 Offset	1:1	19.5	18.95	0.038	0.707	1.14	0.802	1
Test Position 2	20525/836.5	50%RB 0 Offset	1:1	19.5	19.25	0.028	0.215	1.06	0.228	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 5	20525/836.5	50%RB 0 Offset	1:1	19.5	19.25	0.010	0.346	1.06	0.367	1
	Tes	t Position of Bod	y with 1	RB, QPSK	(SAR Sesor	not active	, Distance	5mm)		
Test Position 2	20525/836.5	1RB 0 Offset	1:1	23.5	22.87	0.040	0.135	1.16	0.156	1
	Test	Position of Body	with 1	RB, QPSK	(SAR Seso	r not active	e, Distance	0mm)		
Test Position 3	20525/836.5	1RB 0 Offset	1:1	23.5	22.87	-0.110	0.147	1.16	0.170	1
	Test	Position of Body	with 1	RB, QPSK	(SAR Sesor	not active	Distance 1	l0mm)		
Test Position 1	20525/836.5	1RB 0 Offset	1:1	23.5	22.87	-0.030	0.591	1.16	0.683	1
Test Position 5	20525/836.5	1RB 0 Offset	1:1	23.5	22.87	0.110	0.309	1.16	0.357	1
	Test I	Position of Body	with 50	%RB, QPS	K (SAR Ses	or not activ	e, Distance	e 5mm)		
Test Position 2	20525/836.5	50%RB 0 Offset	1:1	22.5	21.94	0.020	0.107	1.14	0.122	1
	Test F	Position of Body	with 50	%RB, QPSI	(SAR Ses	or not acti	ve, Distanc	e 0mm)		
Test Position 3	20525/836.5	50%RB 0 Offset	1:1	22.5	19.25	0.020	0.117	2.11	0.247	1
	Test Position of Body with 50%RB, QPSK (SAR Sesor not active, Distance 10mm)									
Test Position 1	20525/836.5	50%RB 0 Offset	1:1	22.5	21.94	0.110	0.494	1.14	0.562	1
Test Position 5 20525/836.5 50%RB 0 Offset 1:1 22.5 21.94 -0.039 0.328 1.14 0.373 /										
V	Vorst Case Po	sition of Body wi	th 1RB	, QPSK (1 st	Repeated S	AR, SAR S	esor active	e, Distanc	e 0mm)	
Test Position 1	20525/836.5	1RB 0 Offset	1:1	20.5	20.18	-0.050	0.961	1.08	1.034	1

ote: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No. RXC1402-0026SAR01R1

Page 83 of 213

Table 34: SAR Measurement Variability Results [LTE Band 5/10MHz/1RB/50%RB]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	20525/836.5	1.010	0.961	1.05	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Report No. RXC1402-0026SAR01R1

Page 84 of 213

7.2.9. LTE Band 7

Table 35: SAR Values (LTE Band 7/20MHz/1RB/50%RB)

14516	oo. OAR van	ues (LIE Band			O 701 CD 7	Drift				
	Channel/			Maximum	Conducted			Limit SAF	R _{1g} 1.6 W/kថ	9
Test Position	Frequency (MHz)	Mode	Duty Cycle	Allowed Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
	Te	est position of Bo	dy with	1 1RB, QPS	K (SAR Ses	or active,	Distance 0r	nm)		
	21350/2560	1RB 0 Offset	1:1	17.3	17.15	-0.057	1.120	1.04	1.159	1
Test Position 1	21100/2535	1RB 0 Offset	1:1	17.3	17.02	0.067	1.270	1.07	1.355	1
	20850/2510	1RB 0 Offset	1:1	17.3	17.16	0.038	1.210	1.03	1.250	1
Test Position 2	21100/2535	1RB 0 Offset	1:1	17.3	17.02	-0.070	0.173	1.07	0.185	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	21350/2560	1RB 0 Offset	1:1	17.3	17.15	0.035	0.941	1.04	0.974	1
Test Position 5	21100/2535	1RB 0 Offset	1:1	17.3	17.02	-0.080	1.070	1.07	1.141	1
	20850/2510	1RB 0 Offset	1:1	17.3	17.16	0.047	1.170	1.03	1.208	1
	Tes	st position of Bod	y with	50%RB, QF	SK (SAR Se	esor active	, Distance (Omm)		
	21350/2560	50%RB 0 Offset	1:1	16.3	16.03	0.027	0.681	1.06	0.725	1
Test Position 1	21100/2535	50%RB 0 Offset	1:1	16.3	16.11	0.053	0.737	1.04	0.770	1
	20850/2510	50%RB 0 Offset	1:1	16.3	16.02	0.130	0.957	1.07	1.021	1
Test Position 2	21100/2535	50%RB 0 Offset	1:1	16.3	16.11	0.060	0.136	1.04	0.142	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	21350/2560	50%RB 0 Offset	1:1	16.3	16.03	0.040	0.725	1.06	0.772	1
Test Position 5	21100/2535	50%RB 0 Offset	1:1	16.3	16.11	0.049	0.819	1.04	0.856	1
	20850/2510	50%RB 0 Offset	1:1	16.3	16.02	0.046	0.911	1.07	0.972	1
	Tes	t Position of Bod	y with 1	IRB, QPSK	(SAR Sesoi	not active	, Distance	5mm)		
Test Position 2	21100/2535	1RB 0 Offset	1:1	21.8	21.55	0.110	0.222	1.06	0.235	1
	Test	Position of Body	with 1	RB, QPSK	(SAR Seso	r not active	e, Distance	0mm)		
Test Position 3	21100/2535	1RB 0 Offset	1:1	21.8	21.55	-0.080	0.018	1.06	0.019	1
	Test	Position of Body	with 1	RB, QPSK	(SAR Sesor	not active	, Distance 1	l0mm)		
	21350/2560	1RB 0 Offset	1:1	21.8	21.52	0.140	1.180	1.07	1.259	1
Test Position 1	21100/2535	1RB 0 Offset	1:1	21.8	21.55	0.050	1.290	1.06	1.366	1
	20850/2510	1RB 0 Offset	1:1	21.8	21.56	0.067	1.300	1.06	1.374	Figure20
	21350/2560	1RB 0 Offset	1:1	21.8	21.52	0.170	0.865	1.07	0.923	1
Test Position 5	21100/2535	1RB 0 Offset	1:1	21.8	21.55	0.023	1.010	1.06	1.070	1
	20850/2510	1RB 0 Offset	1:1	21.8	21.56	0.060	1.140	1.06	1.205	1
	Test	Position of Body	with 50	%RB, QPS	K (SAR Ses	or not activ	ve, Distanc	e 5mm)		
Test Position 2	21100/2535	50%RB 0 Offset	1:1	20.8	20.57	0.180	0.284	1.05	0.299	1
	Test F	Position of Body	with 50	%RB, QPSI	K (SAR Ses	or not acti	ve, Distanc	e 0mm)		
Test Position 3	21100/2535	50%RB 0 Offset	1:1	20.8	20.57	-0.140	0.019	1.05	0.020	1
	Test F	Position of Body v	with 50°	%RB, QPSI	(SAR Sesc	r not activ	e, Distance	10mm)	. <u>I</u>	
	21350/2560	50%RB 0 Offset	1:1	20.8	20.54	-0.020	0.788	1.06	0.837	1
Test Position 1	21100/2535	50%RB 0 Offset	1:1	20.8	20.57	-0.010	0.879	1.05	0.927	1
	20850/2510	50%RB 0 Offset	1:1	20.8	20.41	-0.050	0.951	1.09	1.040	1
	•		-							

Report No. RXC1402-0026SAR01R1

Page 85 of 213

	21350/2560	50%RB 0 Offset	1:1	20.8	20.54	-0.010	0.623	1.06	0.661	/
Test Position 5	21100/2535	50%RB 0 Offset	1:1	20.8	20.57	0.180	0.739	1.05	0.779	1
	20850/2510	50%RB 0 Offset	1:1	20.8	20.41	0.027	0.867	1.09	0.948	1
Worst Case Position of Body with 1RB, QPSK (1 st Repeated SAR, SAR Sesor active, Distance 10mm)										
Test Position 1	20850/2510	1RB 0 Offset	1:1	21.8	21.56	-0.080	1.280	1.06	1.353	1

ote: 1.The value with blue color is the maximum SAR Value of each test band.

Table 36: SAR Measurement Variability Results [LTE Band 7/20MHz/1RB/50%RB]

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Test Position 1	20850/2510	1.410	1.280	1.1	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

^{2.} Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No. RXC1402-0026SAR01R1

Page 86 of 213

7.2.10. LTE Band 17

Table 37: SAR Values (LTE Band 17/10MHz/1RB/50%RB)

Toot	Channel/		Duty	Maximum Allowed	Conducted	Drift \pm 0.21dB		Limit SAI	R _{1g} 1.6 W/k	g
Test Position	Frequency (MHz)	Mode	Cycle	Power (dBm)	Power (dBm)	Drift (dB)	Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results
Test position of Body with 1RB, QPSK (SAR Sesor active, Distance 0mm)										
	23800/711	1RB 0 Offset	1:1	20.5	20.13	0.120	0.773	1.09	0.842	1
Test Position 1	23790/710	1RB 0 Offset	1:1	20.5	19.99	-0.020	0.750	1.12	0.843	Figure21
	23780/709	1RB 0 Offset	1:1	20.5	20.02	0.002	0.624	1.12	0.697	/
Test Position 2	23790/710	1RB 0 Offset	1:1	20.5	19.99	-0.032	0.101	1.12	0.114	1
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Test Position 5	23790/710	1RB 0 Offset	1:1	20.5	19.99	-0.080	0.348	1.12	0.391	1
	Tes	st position of Bod	y with	50%RB, QF	SK (SAR Se	esor active	, Distance	0mm)		
Test Position 1	23790/710	50%RB 0 Offset	1:1	19.5	19.12	0.026	0.553	1.09	0.604	1
Test Position 2	23790/710	50%RB 0 Offset	1:1	19.5	19.12	0.080	0.081	1.09	0.088	/
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	/
Test Position 5	23790/710	50%RB 0 Offset	1:1	19.5	19.12	-0.010	0.272	1.09	0.297	1
	Tes	t Position of Bod	y with 1	IRB, QPSK	(SAR Sesoi	r not active	e, Distance	5mm)		
Test Position 2	23790/710	1RB 0 Offset	1:1	23.5	22.99	0.050	0.0473	1.12	0.053	1
	Test	t Position of Body	with 1	RB, QPSK	(SAR Seso	r not activ	e, Distance	0mm)		
Test Position 3	23790/710	1RB 0 Offset	1:1	23.5	22.99	-0.070	0.081	1.12	0.091	1
	Test	Position of Body	with 1	RB, QPSK	(SAR Sesor	not active	, Distance '	10mm)		
Test Position 1	23790/710	1RB 0 Offset	1:1	23.5	22.99	-0.090	0.256	1.12	0.288	1
Test Position 5	23790/710	1RB 0 Offset	1:1	23.5	22.99	0.098	0.108	1.12	0.121	1
	Test	Position of Body	with 50	%RB, QPS	K (SAR Ses	or not acti	ve, Distanc	e 5mm)	,	
Test Position 2	23790/710	50%RB 0 Offset	1:1	22.5	21.76	-0.040	0.037	1.19	0.044	1
	Test F	Position of Body	with 50	%RB, QPSI	K (SAR Ses	or not acti	ve, Distanc	e 0mm)	,	
Test Position 3	23790/710	50%RB 0 Offset	1:1	22.5	21.76	-0.030	0.083	1.19	0.098	1
	Test F	Position of Body v	vith 50°	%RB, QPS	(SAR Sesc	or not activ	e, Distance	e 10mm)		
Test Position 1	23790/710	50%RB 0 Offset	1:1	22.5	21.76	0.150	0.201	1.19	0.238	1
Test Position 5	23790/710	50%RB 0 Offset	1:1	22.5	21.76	-0.060	0.085	1.19	0.101	1

ote: 1.The value with blue color is the maximum SAR Value of each test band.

Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Report No. RXC1402-0026SAR01R1

Page 87 of 213

7.2.11. WIFI (802.11b, WIFI)

Table 38: SAR Values (802.11b)

Test	Channel/		Duty	Maximum utv Allowed	Conducted	Drift \pm 0.21dB	Limit of SAR 1.6 W/kg				
Position	Frequency (MHz)	Mode	Duty Cycle	Power (dBm)	Power (dBm)		Measured SAR _{1g} (W/kg)	Scaling Factor	Reported SAR _{1g} (W/kg)	Graph Results	
Test Position of Body (Distance 0mm)											
Test Position 1	11/2462	DSSS	1:1	16.5	16.12	0.126	0.656	1.09	0.716	Figure 22	
Test Position 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 3	11/2462	DSSS	1:1	16.5	16.12	-0.064	0.179	1.09	0.195	1	
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 5	11/2462	DSSS	1:1	16.5	16.12	0.110	0.073	1.09	0.080	/	
			Test	Position o	f Body (Dista	nce 10mm)					
Test Position 1	11/2462	DSSS	1:1	16.5	16.12	0.022	0.106	1.09	0.116	1	
Test Position 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 3	11/2462	DSSS	1:1	16.5	16.12	0.025	0.010	1.09	0.011	1	
Test Position 4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Test Position 5	11/2462	DSSS	1:1	16.5	16.12	0.050	0.019	1.09	0.020	1	

Note: 1. The value with blue color is the maximum SAR Value of each test band.

- 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3. KDB 248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than measured on the corresponding 802.11b channels.

Report No. RXC1402-0026SAR01R1

Page 88 of 213

7.3. Simultaneous Transmission Conditions

Band	Туре	SimultaneousTransmissions	Voice Over Digital Transport (Data)
GPRS/EGPRS	DT		(Data)
UMTS II/IV/V	DT	Yes	NA
LTE 2/4/5/7/17	DT	BT or WIFI	
WIFI 2.4G	DT	Yes LTE, GPRS,EGPRS, HSDPA, HSUPA, DC-HSDPA	Yes
Bluetooth (BT)	DT	Yes LTE, GPRS,EGPRS, HSDPA, HSUPA , DC-HSDPA	NA
Note: VO Voice Service	•		
DT Digital Tran	sport		

DT Digital Transpor

The location of the antennas inside EUT is shown in ANNEX L:

Report No. RXC1402-0026SAR01R1

Page 90 of 213

Estimated SAR

(1) for test separation distances ≤ 50 mm

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter for test separation distances ≤ 50 mm.

(2) for test separation distances >50 mm

0.4 W/kg for 1-g SAR

Body Estimated SAR_{Max.BT. Test Position 1} = $[10^{(2.5/10)}/5]*(2.48^{0.5}/7.5) = 0.075$ W/kg

Body Estimated SAR_{Max. BT. Test Position 2} ≤ 0.4W/kg

Body Estimated SAR_{Max. BT. Test Position 3} = $[10^{(2.5/10)}/13]*(2.48^{0.5}/7.5) = 0.029W/kg$

Body Estimated SAR_{Max. BT. Test Position 4} ≤ 0.4 W/kg

Body Estimated SAR_{Max. BT. Test Position 5} = $[10^{(2.5/10)}/5]*(2.48^{0.5}/7.5) = 0.075$ W/kg

Per FCC KDB 447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio =
$$\frac{(SAR_1 + SAR_2)^{1.5}}{(min. test separation distance, mm)} < 0.04$$

Report No. RXC1402-0026SAR01R1

Page 91 of 213

GSM/UMTS&WIFI Mode

SAR Sesor active

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	LTE 2	LTE 4	LTE 5	LTE 7	LTE 17	WIFI	MAX. Σ SAR _{1g}
Test Position 1	0.918	0.919	1.186	1.141	0.228	1.419	1.113	1.087	1.355	0.843	0.716	2.135
Test Position 2	0.064	0.147	0.150	0.398	0.137	0.276	0.412	0.309	0.185	0.114	0.4	0.812
Test Position 3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.195	0.595
Test Position 4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.8
Test Position 5	0.063	0.560	0.567	0.593	0.054	0.419	0.619	0.482	1.208	0.391	0.080	1.288

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

2. MAX. ΣSAR_{1g} = Reported $SAR_{Max.WIFI}$ + Reported $SAR_{Max.UMTS}$

MAX. ΣSAR_{1g} = 2.135W/kg >1.6 W/kg, so the SAR to peak location separation ratio should be considered

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	LTE 2	LTE 4	LTE 5	LTE 7	LTE 17	WIFI	$\begin{array}{c} \text{MAX.} \\ \Sigma \\ \text{S} \\ \text{A} \\ \text{R}_1 \\ \text{g} \end{array}$
	0.918	/	/	1	1	1	1	1	1	1	0.716	1.634
	/	0.919	/	1	1	1	1	1	1	1	0.716	1.635
	/	/	1.186	1	1	1	1	1	1	1	0.716	1.902
	/	1	/	1.141	1	/	1	1	1	1	0.716	1.857
Test Position 1	1	1	1	1	0.228	/	1	/	/	/	0.716	0.944
rest Position i	/	/	/	1	1	1.419	/	/	/	/	0.716	2.135
	/	/	/	1	1	/	1.113	1	/	/	0.716	1.829
	/	/	1	1	1	/	/	1.087	/	/	0.716	1.803
	/	/	1	/	1	/	/	/	1.355	/	0.716	2.071
	1	1	1	1	/	/	1	/	1	0.843	0.716	1.559

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.

2. MAX. ΣSAR_{1g} = Reported $SAR_{Max.WIFI}$ + Reported $SAR_{Max.GSM/UMTS/LTE}$

Pair Simultaneous Transmission for GSM 850 Band and Wifi

Reported SAR _{1g} (W/kg) Test Position	GSM 850	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	0.918	0.716	1.634

The position SAR_{GSM 850} is $(x_1 = 31.5, y_1 = -76.5, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{\text{Max.GSM 850}}$ and SAR $_{\text{Max.WIFI}}$ is 77.22mm.

Ratio =[(Reported SAR $_{Max.GSM/UMTS}$) 0.918W/kg +(Reported SAR $_{Max.WIFI}$) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =1.634 $^{3/2}$ /77.22=0.03 <0.04

So Simultaneous SAR testing for GSM 850 and Wifi is not required.

Pair Simultaneous Transmission for GSM 1900 Band and Wifi

Reported SAR _{1g} (W/kg) Test Position	GSM 1900	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	0.919	0.716	1.635

The position SAR_{GSM 1900} is $(x_1 = 27, y_1 = -85.5, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{\text{Max.GSM 1900}}$ and SAR $_{\text{Max.WIFI}}$ is 74.59mm.

Ratio =[(Reported SAR $_{Max.GSM/UMTS}$) 0.919W/kg +(Reported SAR $_{Max.WIFI}$) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =1.635 $^{3/2}$ /74.59=0.03 <0.04

So Simultaneous SAR testing for GSM 1900 and Wifi is not required.

Pair Simultaneous Transmission for UMTS Band II and Wifi

Reported SAR _{1g} (W/kg) Test Position	UMTS Band II	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	1.186	0.716	1.902

The position SAR_{UMTS Band II} is $(x_1 = 25.5, y_1 = -63, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{\text{Max.UMTS Band II}}$ and SAR $_{\text{Max.WIFI}}$ is 70.57mm.

Ratio =[(Reported SAR_{Max.GSM/UMTS}) 1.186W/kg +(Reported SAR_{Max.WIFI}) 0.716W/kg]^{3/2} /Peak SAR Location Separation = $1.902^{3/2}$ /70.57=0.039 \approx 0.04

So Simultaneous SAR testing for UMTS Band II and Wifi is not required.

Pair Simultaneous Transmission for UMTS Band IV and Wifi

Reported SAR _{1g} (W/kg) Test Position	UMTS Band IV	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	1.141	0.716	1.857

The position SAR_{UMTS Band IV} is $(x_1 = 33, y_1 = -67, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{\text{Max.UMTS Band V}}$ and SAR $_{\text{Max.WIFI}}$ is 78.01mm.

Ratio =[(Reported SAR $_{Max.GSM/UMTS}$) 1.141W/kg +(Reported SAR $_{Max.WIFI}$) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =1.857 $^{3/2}$ /78.01=0.03<0.04

So Simultaneous SAR testing for UMTS Band IV and Wifi is not required.

Pair Simultaneous Transmission for LTE Band II and Wifi

Reported SAR _{1g} (W/kg) Test Position	LTE Band II	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	1.419	0.716	2.135

The position SAR_{LTE Band II} is $(x_1 = 37, y_1 = -53.5, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{Max,LTE}$ Band II and SAR $_{Max,WIFI}$ is 83.03mm.

Ratio =[(Reported SAR_{Max.LTE}) 1.419W/kg +(Reported SAR_{Max.WIFI}) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =2.135 $^{3/2}$ /83.03=0.038 \approx 0.04

So Simultaneous SAR testing for LTE Band II and Wifi is not required.

Pair Simultaneous Transmission for LTE Band IV and Wifi

Reported SAR _{1g} (W/kg) Test Position	LTE Band IV	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	1.113	0.716	1.829

The position SAR_{LTE Band IV} is $(x_1 = 34.5, y_1 = -79, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{\text{Max.LTE}}$ Band IV and SAR $_{\text{Max.WIFI}}$ is 80.56mm.

Ratio =[(Reported SAR $_{Max.LTE}$) 1.113W/kg +(Reported SAR $_{Max.WIFI}$) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =1.829 $^{3/2}$ /80.56=0.03<0.04

So Simultaneous SAR testing for LTE Band IV and Wifi is not required.

Pair Simultaneous Transmission for LTE Band V and Wifi

Reported SAR _{1g} (W/kg) Test Position	LTE Band V	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	1.087	0.716	1.803

The position SAR_{LTE Band V} is $(x_1 = 34.5, y_1 = -79, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{Max,LTE}$ Band V and SAR $_{Max,WIFI}$ is 63.56mm.

Ratio =[(Reported SAR_{Max.LTE}) 1.087W/kg +(Reported SAR_{Max.WIFI}) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =1.803 $^{3/2}$ /64.56=0.037 \approx 0.04

So Simultaneous SAR testing for LTE Band V and Wifi is not required.

Pair Simultaneous Transmission for LTE Band VII and Wifi

Reported SAR _{1g} (W/kg) Test Position	LTE Band VII	WIFI	MAX. Σ SAR _{1g}
Body, Back Side	1.355	0.716	2.071

The position SAR_{LTE Band VII} is $(x_1 = 40.5, y_1 = -89, z_1 = -179.2)$,

The position SAR_{Max.WIFI} is $(x_2 = -45, y_2 = -66, z_2 = -179.2)$

so the distance between the SAR $_{\text{Max.LTE}}$ Band VII and SAR $_{\text{Max.WIFI}}$ is 88.54mm.

Ratio =[(Reported SAR $_{Max.LTE}$) 1.355W/kg +(Reported SAR $_{Max.WIFI}$) 0.716W/kg] $^{3/2}$ /Peak SAR Location Separation =2.071 $^{3/2}$ /88.54=0.034<0.04

So Simultaneous SAR testing for LTE Band VII and Wifi is not required.

Report No. RXC1402-0026SAR01R1

Page 100 of 213

SAR Sesor not active

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	LTE 2	LTE 4	LTE 5	LTE 7	LTE 17	WIFI	MAX. Σ SAR _{1g}
Test Position 1	0.324	0.274	0.536	0.580	0.586	0.488	0.674	0.683	1.374	0.288	0.116	1.490
Test Position 2	0.096	0.094	0.111	0.212	0.142	0.200	0.201	0.156	0.299	0.053	0.4	0.699
Test Position 3	0.106	0.032	0.081	0.101	0.004	0.095	0.120	0.247	0.020	0.098	0.011	0.258
Test Position 4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.8
Test Position 5	0.297	0.208	0.422	0.480	0.283	0.561	0.506	0.373	1.205	0.121	0.020	1.225

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

2. MAX. ΣSAR_{1g} = Reported $SAR_{Max.WIFI}$ + Reported $SAR_{Max.UMTS}$

MAX. ΣSAR_{1g} = 1.490W/kg <1.6 W/kg, so the Simultaneous SAR are not required for WIFI and GSM/UMTS/LTE antenna.

Report No. RXC1402-0026SAR01R1

Page 101 of 213

GSM&BT Mode

SAR Sesor active

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	LTE 2	LTE 4	LTE 5	LTE 7	LTE 17	ВТ	MAX. Σ SAR _{1g}
Test Position 1	0.918	0.919	1.186	1.141	0.228	1.419	1.113	1.087	1.355	0.843	0.075	1.494
Test Position 2	0.064	0.147	0.150	0.398	0.137	0.276	0.412	0.309	0.185	0.114	0.4	0.812
Test Position 3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.029	0.429
Test Position 4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.8
Test Position 5	0.063	0.560	0.567	0.593	0.054	0.419	0.619	0.482	1.208	0.391	0.075	1.283

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

2. MAX. ΣSAR_{1g} = Reported $SAR_{Max.BT}$ + Reported $SAR_{Max.GSM/UMTS/LTE}$

MAX. ΣSAR_{1g} =1.494W/kg <1.6 W/kg, So the Simultaneous SAR are not required for BT and GSM/UMTS/LTE antenna.

SAR Sesor not active

Reported SAR _{1g} (W/kg) Test Position	GSM 850	GSM 1900	UMTS Band II	UMTS Band IV	UMTS Band V	LTE 2	LTE 4	LTE 5	LTE 7	LTE 17	ВТ	MAX. Σ SAR _{1g}
Test Position 1	0.324	0.274	0.536	0.580	0.586	0.488	0.674	0.683	1.374	0.288	0.075	1.449
Test Position 2	0.096	0.094	0.111	0.212	0.142	0.200	0.201	0.156	0.299	0.053	0.4	0.699
Test Position 3	0.106	0.032	0.081	0.101	0.004	0.095	0.120	0.247	0.020	0.098	0.029	0.276
Test Position 4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.8
Test Position 5	0.297	0.208	0.422	0.480	0.283	0.561	0.506	0.373	1.205	0.121	0.075	1.280

Note: 1.The value with blue color is the maximum $\Sigma SAR_{1g}\ Value.$

2. MAX. ΣSAR_{1g} = Reported SAR_{Max.BT} + Reported SAR_{Max.GSM/UMTS/LTE}

MAX. ΣSAR_{1g} =1.449W/kg <1.6 W/kg, So the Simultaneous SAR are not required for BT and GSM/UMTS/LTE antenna.

WIFI antenna and BT antenna cannot transmit simultaneously.

Report No. RXC1402-0026SAR01R1

Page 102 of 213

8. Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u_i^{'}(\%)$	Degree of freedom V _{eff} or v _i			
1	System repetivity	Α	0.5	N	1	1	0.5	9			
	Measurement system										
2	-probe calibration	В	6.0	N	1	1	6.0	∞			
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞			
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	∞			
5	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	∞			
6	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞			
7	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	∞			
8	-readout Electronics	В	1.0	N	1	1	1.0	∞			
9	-response time	В	0.8	R	$\sqrt{3}$	1	0.5	∞			
10	-integration time	В	4.3	R	$\sqrt{3}$	1	2.5	8			
11	-RF Ambient noise	В	3.0	R	$\sqrt{3}$	1	1.7	∞			
12	-RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	∞			
13	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	∞			
14	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	∞			
15	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	∞			
	,	Tes	st sample Relate	d		1		T			
16	-Test Sample Positioning	Α	2.9	N	1	1	2.9	71			
17	-Device Holder Uncertainty	Α	4.1	N	1	1	4.1	5			
18	- Power drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞			
		Ph	ysical paramete	r				T			
19	-phantom Uncertainty	В	4.0	R	$\sqrt{3}$	1	2.3	∞			
20	Algorithm for correcting SAR for deviations	В	1.9	N	1	0.84	0.9	∞			

Report No. RXC1402-0026SAR01R1

Page 103 of 213

	in permittivity and conductivity							
21	-Liquid conductivity (measurement uncertainty)	В	2.5	N	1	0.71	1.8	9
22	-Liquid permittivity (measurement uncertainty)	В	2.5	N	1	0.26	0.7	9
23	-Liquid conductivity -temperature uncertainty	В	1.7	R	$\sqrt{3}$	0.71	0.7	8
24	-Liquid permittivity -temperature uncertainty	В	0.3	R	$\sqrt{3}$	0.26	0.05	8
Comb	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.34	
Expar	nded uncertainty (confidence interval of 95 %)	ı	$u_e = 2u_c$	N	k=	=2	22.68	

Report No. RXC1402-0026SAR01R1

Page 104 of 213

9. Main Test Instruments

Table 39: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 10, 2013	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Ro	equested
03	Power meter	Agilent E4417A	GB41291714	March 9, 2014	One year
04	Power sensor	Agilent N8481H	MY50350004	September 23, 2013	One year
05	Power sensor	E9327A	US40441622	January 1, 2014	One year
06	Signal Generator	HP 8341B	2730A00804	September 9,2013	One year
07	Dual directional coupler	778D-012	50519	March 28, 2013	One year
08	Dual directional coupler	777D	50146	March 28, 2013	One year
09	Amplifier	IXA-020	0401	No Calibration Ro	equested
10	Wideband radio communication tester	CMW 500	113645	August 30, 2012	One year
11	E-field Probe	EX3DV4	3677	November 28, 2013	One year
12	E-field Probe	EX3DV4	3816	June 4, 2013	One year
13	DAE	DAE4	1317	January 16, 2014	One year
14	Validation Kit 750MHz	D750V3	1045	September 29,2011	Three years
15	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Three years
16	Validation Kit 1750MHz	D1750V2	1033	January 26, 2014	Three years
17	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Three years
18	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Three years
19	Validation Kit 2600MHz	D2600V2	1012	May 02, 2012	Three years
20	Temperature Probe	JM222	AA1009129	March 10, 2013	One year
21	Hygrothermograph	WS-1	64591	September 26, 2013	One year

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Picture 2: Liquid depth in the flat Phantom (750MHz, 15.4cm depth)

Picture 3: Liquid depth in the Flat Phantom (835 MHz, 15.4cm depth)

Picture 4: Liquid depth in the flat Phantom (1750 MHz, 15.2cm depth)

Picture 5: Liquid depth in the Flat Phantom (1900 MHz, 15.1cm depth)

Picture 6: Liquid depth in the Flat Phantom (2450 MHz, 15.3cm depth)

Picture 7: Liquid depth in the flat Phantom (2600 MHz, 15.3cm depth)

ANNEX B: System Check Results

System Performance Check at 750 MHz Body TSL

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045

Date/Time: 3/17/2014 2:34:34 AM

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 750 MHz; σ = 0.97 S/m; ε_r = 54.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.72, 9.72, 9.72); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (41x121x1): Interpolated grid: dx=15mm, dy=15 mm

Maximum value of SAR (interpolated) = 2.36 W/kg

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 48.998 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 3.24 W/kg

SAR(1 g) = 2.22 W/kg; SAR(10 g) = 1.49 W/kg

Maximum value of SAR (measured) = 2.39 W/kg

Figure 6 System Performance Check 750MHz 250mW

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date/Time: 3/14/2014 11:34:34 PM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.98 mho/m; ε_r = 55.9; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014 Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.72 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.9 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.73 mW/g

Figure 7 System Performance Check 835MHz 250mW

Report No. RXC1402-0026SAR01R1

Page 111 of 213

System Performance Check at 1750 MHz Body TSL

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Date/Time: 3/16/2014 8:04:55 AM

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; σ = 1.5 mho/m; ε_r = 52.9; ρ = 1000 kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.7 ℃

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 10.6 mW/g

d=10mm, Pin=250mW/Area Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.7 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.24 mW/g; SAR(10 g) = 4.9 mW/g

Maximum value of SAR (measured) = 10.3 mW/g

Figure 8 System Performance Check 1750MHz 250mW

System Performance Check at 1900 MHz

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date/Time: 3/13/2014 8:11:01 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon_r = 53.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.8 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 11 mW/g

Figure 9 System Performance Check 1900MHz 250Mw

System Performance Check at 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date/Time: 3/26/2014 7:32:19 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.99 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (5); SEMCAD X Version 14.6.8 (7028)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 17.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.4 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.27 mW/g

Maximum value of SAR (measured) = 15 mW/g

Figure 10 System Performance Check 2450MHz 250mW

Report No. RXC1402-0026SAR01R1

Page 114 of 213

System Performance Check at 2600 MHz Body TSL

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012

Date/Time: 3/20/2014 12:30:51 PM

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; σ = 2.2 mho/m; ε_r = 52.3; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3816; ConvF(7.82, 7.82, 7.82); Calibrated: 6/4/2013

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW /Area Scan (41x71x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 17.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74 V/m; Power Drift = -0.0027 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 5.99 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

Figure 11 System Performance Check 1900MHz 250mW

ANNEX C: Graph Results

GSM 850 GPRS (2TXslots) with Test Position 1 High (Distance 0mm)

Date/Time: 3/15/2014 9:42:18 PM

Communication System: GPRS 2TX; Frequency: 848.8 MHz;Duty Cycle: 1:4.14954 Medium parameters used: f = 849 MHz; $\sigma = 1.006$ S/m; $\epsilon_r = 55.736$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side High/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.930 W/kg

Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.930 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.855 W/kg; SAR(10 g) = 0.433 W/kg

Maximum value of SAR (measured) = 0.818 W/kg

Figure 12 GSM 850 GPRS (2TXslots) with Test Position 1 Channel 251

GSM 1900 GPRS (4TXslots) with Test Position 1 Low (Distance 0mm)

Date/Time: 3/13/2014 10:37:00 PM

Communication System: GPRS 4TX; Frequency: 1850.2 MHz; Duty Cycle: 1:2.07491

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.476 \text{ S/m}$; $\varepsilon_r = 53.266$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Low/Area Scan (101x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.849 W/kg

Back Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.962 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.846 W/kg; SAR(10 g) = 0.423 W/kg

Maximum value of SAR (measured) = 0.888 W/kg

Figure 13 GSM 1900 GPRS (4TXslots) with Test Position 1 Channel 512

UMTS Band II with Test Position 1 Middle (Distance 0mm)

Date/Time: 3/13/2014 9:58:03 AM

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.137; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Middle/Area Scan (101x61x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.11 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.277 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 2.45 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.531 W/kg

Maximum value of SAR (measured) = 1.30 W/kg

Figure 14 UMTS Band II with Test Position 1 Channel 9400

UMTS Band IV with Test Position 1 Middle (1st Repeated SAR, Distance 0mm)

Date/Time: 3/16/2014 9:38:28 AM

Communication System: WCDMA; Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1733 MHz; σ = 1.489 S/m; ε_r = 52.919; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.21 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.355 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 2.15 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

Figure 15 UMTS Band IV with Test Position 1 Channel 1413

UMTS Band V with Test Position 1 Middle (Distance 10mm)

Date/Time: 3/15/2014 1:40:40 AM

Communication System: WCDMA; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 837 MHz; σ = 0.992 S/m; ε_r = 55.882; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.594 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.196 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.768 W/kg

SAR(1 g) = 0.527 W/kg; SAR(10 g) = 0.354 W/kg

Maximum value of SAR (measured) = 0.545 W/kg

Figure 16 UMTS Band V with Test Position 1 Channel 4183

LTE Band 2 1RB with Test Position 1 High (Distance 0mm)

Date/Time: 3/13/2014 3:29:01 PM

Communication System: LTE; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.524 S/m; ε_r = 53.079; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side High/Area Scan (91x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.43 W/kg

Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.950 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 2.92 W/kg

SAR(1 g) = 1.38 W/kg; SAR(10 g) = 0.668 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

Figure 17 LTE Band 2 1RB with Test Position 1 Channel 19100

LTE Band 4 1RB with Test Position 1 High (1st Repeated SAR, Distance 0mm)

Date/Time: 3/16/2014 8:33:31 PM

Communication System: LTE; Frequency: 1745 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1745 MHz; σ = 1.498 S/m; ε_r = 52.918; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.77, 7.77, 7.77); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.971 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.207 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.494 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

Figure 18 LTE Band 4 1RB with Test Position 1 Channel 20300

LTE Band 5 1RB with Test Position 1 Middle (Distance 0mm)

Date/Time: 3/15/2014 9:08:29 AM

Communication System: LTE; Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.992 \text{ S/m}$; $\varepsilon_r = 55.884$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(9.51, 9.51, 9.51); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.14 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.912 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.597 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Figure 19 LTE Band 5 1RB with Test Position 1 Channel 20525

TA Technology (Shanghai) Co., Ltd. Test Report

LTE Band 7 1RB with Test Position 1 Low (Distance 10mm)

Communication System: LTE; Frequency: 2510 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2510 MHz; σ = 2.093 S/m; ε_r = 52.611; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

Report No. RXC1402-0026SAR01R1

Date/Time: 3/20/2014 1:59:47 PM

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3816; ConvF(7.82, 7.82, 7.82); Calibrated: 6/4/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Low/Area Scan (91x151x1): Interpolated grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 1.40 W/kg

Back Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.427 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 2.59 W/kg

SAR(1 g) = 1.41 W/kg; SAR(10 g) = 0.721 W/kg

Maximum value of SAR (measured) = 1.41 W/kg

Page 131 of 213

Figure 20 LTE Band 7 1RB with Test Position 1 Channel 20850

LTE Band 17 1RB with Test Position 1 Middle (Distance 0mm)

Date/Time: 3/17/2014 4:49:01 AM

Communication System: LTE; Frequency: 710 MHz; Duty Cycle: 1:1

Medium parameters used: f = 710 MHz; σ = 0.931 S/m; ε_r = 54.734; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.72, 9.72, 9.72); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.883 W/kg

Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.312 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.750 W/kg; SAR(10 g) = 0.448 W/kg

Maximum value of SAR (measured) = 0.775 W/kg

Figure 21 LTE Band 17 1RB with Test Position 1 Channel 23790

802.11b Test Position 1 High (Distance 0mm)

Date/Time: 3/26/2014 9:09:59 PM

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 2.009 \text{ S/m}$; $\varepsilon_r = 52.109$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 – SN3677; ConvF(7.61, 7.61, 7.61); Calibrated: 11/28/2013;

Electronics: DAE4 Sn1317; Calibrated: 1/16/2014

Phantom: ELI 4.0; Type: QDOVA001BA;

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

Back Side High/Area Scan (101x151x1): Interpolated grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 0.829 W/kg

Back Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.542 V/m; Power Drift = 0.126 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.656 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.724 W/kg

Figure 22 802.11b Test Position 1 Channel 11

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXC1402-0026SAR01R1

Page 137 of 213

ANNEX D: Probe Calibration Certificate (SN:3677)

Client TA-ShangHai

Certificate No: J13-2-2971

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3677

Calibration Procedure(s)

TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

November 28, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration		
101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14		
101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14		
101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14		
BT0520	12-Dec-12(TMC, No. JZ12-867)	Dec-14		
BT0267	12-Dec-12(TMC, No. JZ12-866)	Dec-14		
SN 3846	03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Sep-14		
SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14		
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration		
6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14		
MY46110673	15-Feb-13 (TMC, No.JZ13-781)	Feb-14		
Name	Function St. 5" 5"	Signature		
Yu Zongying	SAR Test Engineer	- AM		
	101919 101547 101548 BT0520 BT0267 SN 3846 SN 777 ID # 6201052605 MY46110673	101919 01-Jul-13 (TMC, No.JW13-044) 101547 01-Jul-13 (TMC, No.JW13-044) 101548 01-Jul-13 (TMC, No.JW13-044) BT0520 12-Dec-12(TMC, No.JZ12-867) BT0267 12-Dec-12(TMC, No.JZ12-866) SN 3846 03-Sep-13(SPEAG, No.EX3-3846_Sep13) SN 777 22-Feb-13 (SPEAG, DAE4-777_Feb13) ID # Cal Date(Calibrated by, Certificate No.) 6201052605 01-Jul-13 (TMC, No.JW13-045) MY46110673 15-Feb-13 (TMC, No.JZ13-781) Name Function		

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the

Issued: November 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J13-2-2971

Page 1 of 11

TA Technology (Shanghai) Co., Ltd. Test Report

Report No. RXC1402-0026SAR01R1

Page 138 of 213

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

 NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
frequency response is included in the stated uncertainty of ConvF.

 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
probe tip (on probe axis). No tolerance required.

 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN: 3677

Calibrated: November 28, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.38	0.44	0.38	±10.8%
DCP(mV) ⁸	99.8	100.9	101.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	93.3	±2.6%
		Y	0.0	0.0	1.0		101.7	7
		Z	0.0	0.0	1.0		92.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

TA Technology (Shanghai) Co., Ltd. Test Report

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	9.94	9.94	9.94	0.16	1.13	±12%
850	41.5	0.92	9.41	9.41	9.41	0.11	1.47	±12%
1750	40.1	1.37	8.22	8.22	8.22	0.14	2.11	±12%
1900	40.0	1.40	8.15	8.15	8.15	0.14	2.34	±12%
2100	39.8	1.49	7.87	7.87	7.87	0.13	3.21	±12%
2450	39.2	1.80	7.64	7.64	7.64	0.39	0.95	±12%
5200	36.0	4.66	5.73	5.73	5.73	0.95	0.62	±13%
5300	35.9	4.76	5.68	5.68	5.68	0.87	0.67	±13%
5500	35.6	4.96	5.62	5.62	5.62	0.97	0.62	±13%
5600	35.5	5.07	5.29	5.29	5.29	0.89	0.63	±13%
5800	35.3	5.27	5.29	5.29	5.29	1.02	0.61	±13%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

TA Technology (Shanghai) Co., Ltd. Test Report

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY – Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	9.72	9.72	9.72	0.11	1.97	±12%
850	55.2	0.99	9.51	9.51	9.51	0.15	1.55	±12%
1750	53.4	1.49	7.77	7.77	7.77	0.14	3.23	±12%
1900	53.3	1.52	7.63	7.63	7.63	0.15	2.81	±12%
2100	53.2	1.62	7.97	7.97	7.97	0.16	4.09	±12%
2450	52.7	1.95	7.61	7.61	7.61	0.45	0.92	±12%
5200	49.0	5.30	4.72	4.72	4.72	0.66	1.10	±13%
5300	48.9	5.42	4.67	4.67	4.67	0.64	1.19	±13%
5500	48.6	5.65	4.34	4.34	4.34	0.73	0.80	±13%
5600	48.5	5.77	4.29	4.29	4.29	0.74	0.81	±13%
5800	48.2	6.00	4.46	4.46	4.46	0.78	0.80	±13%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2971

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: J13-2-2971