Theoretische Physik 1 (Mechanik)

Klausur

Prof. Dr. Norbert Kaiser

7. August 2020	
Arbeitszeit: 90 Minuten	Name:

Diese Klausur enthält 3 Seiten (Einschließlich dieses Deckblatts) und 4 Aufgaben. Die Gesamtpunktzahl beträgt 46.

Punkteverteilung

1 diffice verteering		
Aufgabe	Punkte	Erreicht
1	14	
2	8	
3	16	
4	8	
Gesamt:	46	

1. (14 Punkte) Ein Teilchen der Masse m bewege sich im Zentralpotential $U(r) = \frac{\Gamma}{r^2}$, wobei $\Gamma > 0$. Gegeben sind der Stoßparameter b und die (asymptotische) Geschwindigkeit v_{∞} für $r \to \infty$. Neben der Energie $E = \frac{mv_{\infty}^2}{2}$ und dem Drehimpuls $L = mbv_{\infty}$ existiert für die Bewegung im $1/r^2$ -Potential noch eine weitere Erhaltungsgröße, nämlich:

$$K = m\vec{r} \cdot \dot{\vec{r}} - 2Et.$$

- (a) (5 Punkte) Zeigen Sie, dass K eine Konstante der Bewegung ist. Weisen Sie allgemein $\vec{r} \cdot \dot{\vec{r}} = r\dot{r}$ nach. Welchen Wert hat K, wenn zur Zeit t = 0 der minimale Radius $r(0) = r_0$ erreicht wird?
- (b) (3 Punkte) Bestimmen Sie mithilfe des Erhaltungssatzes für K den Bahnradius r(t), ausgedrückt durch die Parameter r_0 und v_{∞} .
- (c) (2 Punkte) Berechnen Sie im nächsten Schritt den Winkel $\varphi(t)$ zur Anfangsbedingung $\varphi(0)=0.$

Hinweis:
$$\int \frac{1}{c^2 + t^2} dt = \frac{1}{c} \arctan\left(\frac{t}{c}\right)$$
.

(d) (4 Punkte) Zeigen Sie, dass für die ebene Bahnkurve $r(\varphi)$ den minimalen Radius r_0 folgende Beziehungen gelten:

$$r(\varphi) = \frac{r_0}{\cos(\frac{\varphi r_0}{b})}, \quad r_0 = \sqrt{b^2 + \frac{\Gamma}{E}}.$$

2. (8 Punkte) Eine homogene, starre Kreisscheibe mit Radius R, Masse M und vernachlässigbarer Dicke ist an einem festen Punkt im homogenen Schwerefeld der Erde aufgehängt. Die Scheibe kann nur in der vertikalen xy-Ebene schwingen (siehe Abbildung).

- (a) (3 Punkte) Berechnen Sie das Trägheitsmoment Θ der Scheibe für Drehungen um den Aufhängepunkt.
- (b) (3 Punkte) Geben Sie die Lagrangefunktion des Systems in Abhängigkeit von der generalisierten Koordinate ϕ an und leiten Sie die Bewegungsgleichung ab.
- (c) (2 Punkte) Bestimmen Sie die Gleichgewichtslage ϕ_0 und die Frequenz ω kleiner Schwingungen um diese.
- 3. (16 Punkte) Zwei gleiche Punktmassen m bewegen sich in einer Ebene reibungsfrei auf einer Vertikalen bzw. auf einer um 60° geneigten Geraden. Sie stehen unter dem Einfluss der Schwerkraft und sind mit einer idealen Feder (Federkonstante f und ungestreckte Länge $l_0 = 0$) verbunden (siehe Abbildung).

- (a) (5 Punkte) Geben Sie die Zwangsbedingungen an und stellen Sie die Lagrangefunktion in den Variablen (y_1, y_2) , den Vertikalpositionen der Massen, auf.
- (b) (4 Punkte) Leiten Sie die Bewegungsgleichungen ab und bestimmen Sie die Gleichgewichtslage (y_1^0, y_2^0) .
- (c) (1 Punkt) Führen Sie neue Koordinaten (η_1, η_2) für die Auslenkungen aus der Gleichgewichtlage ein. Zeigen Sie, dass die Bewegungsgleichungen nun die Form

$$4m\ddot{\eta}_1 + f(4\eta_1 - \eta_2) = 0, \quad m\ddot{\eta}_2 + f(\eta_2 - \eta_1) = 0.$$

- (d) (6 Punkte) Bestimmen Sie die Eigenrequenzen ω_1 , ω_2 und die (unnormierten) Amplitudenvektoren \vec{A}_1 , \vec{A}_2 des Systems.
- 4. (8 Punkte) Ein zylindrisches Rohr der Höhe h hat den Innenradius r und den Außenradius R > r. Berechnen Sie für diesen homogenen, starren Körper der Masse M den Trägheitstensor Θ_{ij} bezüglich seines Schwerpunkts S. Wählen Sie das Koordinatensystem mit dem Ursprung in S und der z-Achse als Symmetrieachse.