Маршрутен протокол OSPF

Общи положения

- Open Shortest Path First (OSPF) е динамичен протокол за маршрутизация.
- Той е протокол със следене на състоянието на връзката (link-state routing protocol)
- Попада в групата на протоколите за вътрешна маршрутизация (interior gateway protocols IGP), т.е в рамките на една автономна система autonomous system (AS).
- OSPF Version 2 за IPv4 е дефиниран в RFC 2328 (1998).
- OSPF е най-широко приложимия IGP в големите корпоративни мрежи; IS-IS, е по-приложим в големи мрежи на доставчици на мрежови услуги.
- Optimized Link State Routing Protocol (OLSR) е оптимизиран за мобилни и др. безжични ad-hoc мрежи.

Характеристики на OSPF

OSPF изгражда маршрутни таблици по destination IP адресите в IP пакетите.

Поддържа VLSM, респ. CIDR.

- OSPF разпознава промени в топологията като отпадане на връзки много бързо и се конвергира, за секунди, в нова топология, без зацикляния (loop-free).
- За целта всеки OSPF рутер събира информация състоянието на връзките (linkstate information), за да изгради цялостната топология на мрежата, състояща се от области (areas).

Характеристики на OSPF

- Топологията граф, върховете на който са рутерите, а дъгите комуникационните линии между рутерите.
- На дъгите се присвояват стойности, които са обратно пропорционални на скоростта на линиите. Т.е по-бързата връзка е с по-малка стойност.
- От тази пълна топология се изчислява "дървото на най-късия път" (shortest path tree), по най-ниската стойност, за всеки маршрут по алгоритъма на Dijkstra.
- Информацията за състоянието на връзките се поддържа във всеки рутер под формата база от данни за състояние на връзките (link-state database LSDB). Това е базата от данни, съдържаща топологията на мрежата, пълния граф на мрежата.

OSPF. Принцип на работа.

OSPF съседство

OSPF първо установява съседство (adjacency) между директно свързани рутери с цел обмен на маршрутна информация.

Hello протоколът отговаря за установяване и поддържане на съседството.

Hello пакети се изпращат периодически през всички активни интерфейси.

Съседство между рутерите в LAN

Съседство между рутерите в LAN

Рутерите в Ethernet локална мрежа избират designated router (DR) и резервен, backup designated router (BDR)

DR установява съседство с останалите рутери. Така се намалява служебния трафик. BDR държи копие на базата на DR

Състояния на OSPF. Down.

DOWN. От съседа все още не се получава информация.

Състояния на OSPF. Init.

Init е еднопосочен (one-way) Hello.

R1 изпраща Hello пакет.

R2 обявява one-way, защото не вижда своя router ID в Hello пакета.

Състояния на OSPF. 2-Way.

2-way състояние при установяване на двупосочни комуникации – начало на OSPF съседство. Избор на DR и BDR. router ID на R2 е по-голям, избран е за DR. (Designated Router или Master)

Състояния на OSPF. Exstart.

Exstart инициализира процеса на синхронизация на топол. Б.Д. Избират се Master и slave (или DR и BDR).

DBD (Data Base Description пакети)

Състояния на OSPF. Exchange.

Exchange. Рутерът описва цялата си link-state database чрез DBD пакети. Всеки DBD Seq (пореден номер) се потвърждава.

Състояния на OSPF. Loading.

Loading. LS Request се изпращат да заявят по-нови състояния на връзките (LSA - link state advertisement), които не са били получени по време на exchange.

Състояния на OSPF. Full.

Full. Между OSPF съседите R1 и R2 е обменена пълната топологична база от данни (LSDB).

След това копия на LSDB периодически се обновяват чрез "наводняване" между рутерите в дадена OSPF област (area).

OSPF работи по multicast

- Multicast адресите 224.0.0.5 (всички SPF/link state рутери, AllSPFRouters) и 224.0.0.6 (всички Designated рутери, AllDRouters) са резервирани за OSPF (RFC 2328).
- OSPF не се базира на TCP (BGP) или UDP (RIP).
- Директно използва IP (IP protocol 89).
- OSPF има собствени механизми за откриване и корекция на грешките, които липсват при IP протокола.

Сигурност на операциите

- Има възможност за защита на операциите в OSPF чрез размяна на пароли между рутерите.
- В явен текст или хеширане Message Digest 5 (MD5) за автентикация на съседни рутери, преди да са образували съседство и са започнали да приемат link-state advertisements (LSA).

Йерархична маршрутизация с OSPF. Области.

OSPF области

- OSPF мрежата е разделена на области (areas), които се означават с 32-битови идентификатори.
- Тези идентификатори се записват подобно на IPv4 адреси, но не са.
- Повечето реализации на OSPF позволяват да се пише и в друг формат напр. при Cisco Area 0, 1, 2...

Backbone area

- Опорната област (backbone area) е ядрото на OSPF мрежата.
- Рутерите от другите области си комуникират през нея.
- Маршрутизацията между областите се осъществява чрез гранични рутери, имащи интерфейси и в опорната, и в някоя от другите области.
- Тези рутери се наричат Area Border Routers (ABRs).

Backbone area. ASBR.

- От нея се реализира и връзката на OSPF мрежата с външния свят с помощта на рутер, който има външен интерфейс Autonomous System Border Router (ASBR).
- По наследство на OSPF мрежата с всичките й области се казва "автономна система".
- Това няма нищо общо с видимите през Internet автономни системи, съгласно RFC1996, които могат да съдържат множество OSPF, RIP и др. мрежи.

Области и междуобластни рутери

Backbone Area 0

OSPF метрика

- Метриката в OSPF е сумарната стойност на пътя маршрута (*path cost*) от сорса до дестинацията.
- Стойността, присвоена на всяка дъга (комуникационна линия) се определя от скоростта (bandwidth), зададена на интерфейса, водещ към съответния маршрут.
- Метриката се изчислява по формулата: 10^8/bandwidth. Което означава, че100 Mbps ще е със стойност 1.
- Тази базова стойност 10^8 по подразбиране може да бъде променена за скорости >= 1000 Mbps (1 Gbps), защото стойността винаги трябва да е цяло число > 0.

Designated router

- Целта на избора на DR е да се намали служебния трафик в мрежата.
- Осигурява се един единствен източник на обновления на маршрутите.
- DR поддържа пълна топологична таблица и изпраща обновления (updates) до другите рутери по multicast.
- Всички маршрутизатори в областта са в slave/master отношения с DR. Те формират съседства само с DR и BDR.
- Slave рутер изпраща update към DR и BDR на multicast адрес 224.0.0.6.
- DR след това разпраща update до другите рутери в областта на multicast адрес 224.0.0.5.
- Рутер с най-висок RID (Router ID), дефиниран с IPv4 нотация, става DR, следващият BDR.

Конфигуриране на OSPF

Конфигуриране на OSPF

Имате 5 рутера, конфигурирани с OSPF:

- •Router A и Router B са вътрешни за Area (област) 1.
- •Router C e OSPF area border router (ABR). Area 1 - интерфейс E3, Area 0 - S0.
- •Router D е вътрешен за Area 0 (backbone area).
- •Router E e OSPF autonomous system boundary router (ASBR). На него е конфигуриран default route.

Router A—Internal Router

interface ethernet 1 ip address 192.168.1.1 255.255.255.0

router ospf 1 network 192.168.1.0 0.0.0.255 area 1

Wildcard mask

Забележете!

```
0.0.0.255 вместо 255.255.255.0
```

B Cisco IOS реализацията на OSPF се прилага wildcard mask (огледална на subnet mask). Т.е вместо .AND. >> .OR.

B quagga си е с префикс: /m, router ospf network 10.0.0.0/8 area 0

Router B—Internal Router

interface ethernet 2 ip address 192.168.1.2 255.255.25.0

router ospf 202 network 192.168.1.0 0.0.0.255 area 1

Router C—ABR

interface ethernet 3 ip address 192.168.1.3 255.255.25.0

interface serial 0 ip address 192.168.2.3 255.255.25.0

router ospf 999 network 192.168.1.0 0.0.0.255 area 1 network 192.168.2.0 0.0.0.255 area 0

Router D—Internal Router

interface ethernet 4 ip address 10.0.0.4 255.0.0.0

interface serial 1 ip address 192.168.2.4 255.255.250

router ospf 50 network 192.168.2.0 0.0.0.255 area 0 network 10.0.0.0 0.255.255.255 area 0

Router E – ASBR: default route

. . .

ip route 0.0.0.0 0.0.0.0 172.16.1.6

router ospf 109 network 10.0.0.0 0.255.255.255 area 0 default-information originate

OSPFv3 - OSPF 3a IPv6 (RFC 5340)

Прилики и разлики с OSPF за IPv4:

Основните механизми - flooding, избор на DR, области (area), SPF са запазени.

(Мултикаст адреси: **FF02::5** All и **FF02::6** DR)

Ho, подобно на RIPng, OSPFv3 не е обратно съвместим с OSPFv2.

За да маршрутизира OSPF и по IPv4, и по IPv6, рутерът трябва да поддържа отделни OSPFv2 и OSPFv3 процеси.

Промени в OSPFv3. Адресна семантика. Аутентикация.

Премахната е адресната семантика в OSPF пакетите и LSAs с изключение на LSA полето за данни (payload) в Link State Update Packets.

OSPF Router IDs, Area IDs и LSA Link State IDs остават с IPv4 формат, 32-bits.

Аутентикацията с пароли или хешове между рутерите е премахната.

Прилагат се вградените в IPv6 варианти на IPsec - Authentication Header (AH) или Encapsulating Security Payload (ESP).

OSPFv3: link-ориентиран, а не IP-subnet като OSPFv2 за IPv4

Това е заради особеностите на IPv6:

IPv6 – "link" (връзка): комуникационно средство или среда (P2P или MA – CSMA/CD и др.), по която възлите комуникират на каналния слой (DLL).

Възможно е:

≥ 1 IPv6 prefix / 1 link

В IPv6 мрежа е допустимо два възела да могат да си "говорят" директно по линка, даже и да не са към един и същ IPv6 префикс.

Промени в OSPFv3. LSA.

Промени в OSPFv3. Flooding.

Имаме три отделни периметъра на мултикастване на LSAs (flooding scopes):

- Link-local scope. Link-LSA използва link-local IPv6 address (FF80::/10).
- Area scope. LSA се разпространяват само и единствено в дадена OSPF област.
- AS scope. LSA се flood-ват из целия маршрутен домейн.

Конфигуриране на OSPFv3

Конфигуриране на OSPFv3

Hedwig interface Serial 0/0

ipv6 address 2001:db8:0:8::1/64

ipv6 ospf 1 area 1

Interface fe 0/0

ipv6 address 2001:db8:0:4::1/64

ipv6 address

2001:db8:0:5::1/64

ipv6 ospf 1 area 0

Pigwidgeon

interface fe 0/0

ipv6 address

2001:db8:0:5::3/64

ipv6 ospf 1 area 0

interface Serial 0/0

ipv6 address

2001:db8:0:10::1/64

ipv6 ospf 1 area 0

Конфигуриране на OSPFv3

Hedwig (cont'd)
ipv6 router ospf 1
router-id
192.168.1.1

Pigwidgeon (cont'd) ipv6 router ospf 1 router-id 192.168.5.1

OSPFv2 c FRR (ospfd)

less /etc/frr/ospfd.conf router ospf ospf router-id 62.44.96.217 redistribute static route-map REDISTRIBUTE_STATIC network 62.44.96.216/29 area 62.44.96.216 area 62.44.96.216 range 62.44.96.216/29 default-information originate !последна команда: advertise default route

OSPFv3 c FRR (ospf6d)

```
less /etc/frr/ospf6d.conf
router ospf6
 redistribute static route-map REDISTRIBUTE_STATIC
 interface eno2.216 area 62.44.96.216
ipv6 prefix-list REDISTRIBUTE_STATIC seq 5 permit
2000::/3
route-map REDISTRIBUTE_STATIC permit 10
 match ipv6 address prefix-list REDISTRIBUTE_STATIC
```

Диагностика на протоколи за маршрутизация. Show команди.

```
#show ip[v6] protocol
Показва всички активирани IPv4[v6]
протоколи за маршрутизация, вкл.
"connected", "static", "rip", "ospf"...
#show ipv4[ipv6] ospf neighbor [detail]
Дава информация за състоянието на ospfv2[v3] съседите.
```