ECE8 Robotics Notes 10-20-22

- See file: PlanarPositionDiscreteTimeWithStepInput.m
 - o Contains all the relevant information and examples for today's lecture
- Class begins with MATLAB
- Prof. makes several changes to this file over the course of the class
- Prof.'s 1st Question:
 - o In code, how would we assign the desired location?
 - o Answer: as simple as letting some variables be those values

```
px_desired = #

py_desired = #

Professors notation:

pxd = #

pyd = #
```

- MATLAB results:
 - o Professor adds code like the one above to set the desired location "ending locations" for the robot
 - After plotting it we see that the path did not pass through the target
 - this means we missed our target
 - the remaining parts of this lecture are on how to fix our code to force the robot to find the desired location
 - the final code is uploaded to canvas
- Prof's 2nd Question:
- What can we do the code to make the robot get to the correct position?
 - o student response: change the slope
 - Answer by Prof:
 - We CAN adjust the slope (aka the velocities)
 - this is adjusting the speed and direction of the robot (code) as we approach
 - However that would require that we know the angle at which we approach the desired location
- Prof's 3rd Question:
 - O What if the robot is close to the target?
 - Answer:
 - we can adjust the allowed movements to stay within the target distance
 - this means adding (if-statements/conditions) to the code when it is near the correct values
 - we can also set a tolerance value

- Today we will learn to design the input to 2 discrete-time model to reach a target location
 - o this statement the professor wrote didn't make sense
- Recall from the previous lecture:
 - o In MATLAB, we obtained the following position plot:
 - \circ see prof. notes where he draws a graph of px vs py
 - where px is on the horizontal
 - py is on the vertical
 - red line begins at (1,0) and moves upward to the point (2,1)
 - $(p_{x0}, p_{y0}) = (1,0)$
 - $\bullet \quad (p_{xd}, p_{yd}) = (2,1)$
 - o prof added two graphs to the right of the position graph
 - $v_x \text{ vs } k$
 - $v_y \text{ vs } k$
 - where k is our discrete time variable that increments in integer steps
 - where v_x and v_y are velocity in the x and y directions respectively
 - these graphs look like straight lines because they represent constant motion (constant velocity)
- Prof.'s 4th Question:
 - \circ what does k = 0 represent and where is this time on these graphs?
 - Answer:
 - k=0 is the initial time value, we always start at zero
 - \circ This value is found in the positions: p_x vs p_y (starting position)
 - o $(p_{x,k}, p_{y,k}) = (p_{x,0}, p_{y,0}) = (1,0)$ "formal notation"
 - positions at initial time k=0
- professor proceeds to connects how the 2 velocity graphs correspond to the position graph
 - o he draws lines connecting them
 - lack a a flat line in v_x with it being flat at zero means the robot is only moving vertically
 - lack a a flat line in $v_{
 m v}$ with it being flat at zero means the robot is only moving horizontally
- To use the Planar Model
 - O Where planar = plane model, i.e., working only in 2D e.g. $(p_{x,k}, p_{y,k})$ (2 coordinates)
 - Model:
 - \circ With given desired positions (p_{xd}, p_{yd})
 - \circ We want to find inputs $\frac{v_{x,k}}{v_{x,k}}$ and $\frac{v_{y,k}}{v_{y,k}}$ so that $(\frac{p_{x,k}}{p_{y,k}}, \frac{p_{y,k}}{p_{y,k}})$ reaches $\frac{p_{x,k}}{p_{y,k}}$ at some discrete time k
 - Another way to say this is: for some time/value k we get
 - \bullet $p_{x,k} = p_{xd}$
 - "Current x position" = "desired x position"
 - $\bullet \quad p_{y,k} = p_{yd}$
 - "Current y position" = "desired y position"
 - aka: The Robot reached its goal position
 - E.g.: the drone reaches the height you want it to reach
- Goal for today:
 - figure out a way to reach a particular point with MATLAB

Solve the Q: reaching a particular point

- prof. returns to MATLAB
 - Difficult to write what he is doing but in summary:
 - in the code we have several if-statements that control the speed in x and y directions
 - we kept adjusting their values and conditions to change the path of the robot
 - This was done while checking the 2 velocity graphs that generate
 - The professor kept adjusting until our path hit the target
 - New issue:
 - the robot hit the target but continued to moving we want it to stop moving
- Option: Simulation Horizon
 - o In our code this is represented by
 - # of steps "N"
 - We can reduce the number of steps to make the robot stop operating
 - o The professor reduced the number of steps to make the robot stop operating once it reached its target

Issue with adjusting the Event Horizon

- This method does not work for any initial condition
- It only works for the specific one we fiddle around with
- Meaning this code is limited to one trial
- Prof.'s 5th Question:
 - Consider wanting to walk to the door across the room, What would we need to do in order to get to a
 particular location, like the door?
 - o "what is the 1st thing to do to get to the door?"
 - Answer:
 - examine/assess the desired location
 - plan the route
 - this is called: Determining the Error signal

- Error signal of the door:
 - o Example:
 - determine the error between where you are <u>relative</u> to the door
 - "I am 5 ft from the door" sample 1
 - "I am now 10 ft from the door" sample 2
 - o (Alert!, you're error is larger, you're farther from the door)
 - "I am now 2 ft from the door" sample 3
 - (Error is decreasing, you're closer to desired door)
 - "I am at the door" sample 4
 - o (Error is zero- You are at desired door)
 - o Zero Error:
 - if error is zero then this means we are at the desired location.
 - o Error:
 - this will tell us/robot how well we're doing at reaching the location
 - the larger the error the father way we are and the worse we are doing
 - the closer the better and this is a smaller error
 - Equation for error in our code:
 - error in x = desired x location current location
 - $err_x = p_{xd} p_x$ • $err_y = p_{yd} - p_y$
 - The professor added the necessary code that accounts for this sort of error
 - the result is now going to tell us how much error we encounter as we loop through the computation
 - We need to:
 - turn this into a form of feedback
 - o we will take the error and tell the loop to adjust before each new step
 - o so the output of each step is sent to the next starting input
 - o "a full loop / feedback loop"
- Student Q:
 - \circ Why did he pick N = 600 vs N = 60
 - Prof. Answer:
 - N represents how many samples we do, or steps we take fully
 - when N is too low we may not get to the position but the direction will show it tried
 - with too many N it would still get to the location but we will have more sample points
 - more dots on the graph
 - Conclusion: the number of N can be anything, just need it to be enough to reach the desired point

- The class is RECORDED?? I HAD NO IDEA
- During our initial work in MATLAB we tried to find $v_{x,k}$ and $v_{y,k}$ to steer us towards the desired points
 - o $p_{x,k}$ to p_{xd}
 - o $p_{y,k}$ to p_{yd}
 - though, this will require multiple tries. More importantly this will require that we recalculate $v_{x,k}$ and $v_{y,k}$ if either p_{xd} , p_{yd} or p_{x0} phase change
 - This was using only the Event Horizon

Introduction to feedback

- See Block/boxed diagrams in Prof.'s notes
 - "Closed loop system"
 - because the code we used "shown with lines/wires in the drawing" feeds back the current positions $p_{x,k}$, $p_{y,k}$ to the inputs
 - consider the planar model this is placed in the "controller box"

 - $p_{y,k+1} = p_{y,k} + \Delta * v_{y,k}$
 - o and, desired positions
 - $\mathbf{p}_{xd}, \mathbf{p}_{yd}$
- we compute the input velocities $rac{v_{x,k}}{v_{x,k}}$ and $rac{v_{y,k}}{v_{y,k}}$ using the error signals

$$ex = p_{xd} - p_x$$

$$ey = p_{yd} - p_y$$

- o Professor used ex and ey in his code
- o in the above notes they were err_x and err_y

Changing the code to have one with for-loop and one with while-loop

- The professor included files that show how to do the same operation with both a for-loop and while-loop
- Tolerance:
 - A parameter to set a level of closeness
 - Say we want a very small error basically zero
 - \circ we can set a variable called tol = 0.0001 "desired closeness"
 - e.g.:

while ex >= tol && ey >= tol % while the tolerance is too large keep running

- where && means and (both must apply)
 - o review Boolean logic for more insight
 - A && B means:
 - work but only if both A and B are true
- o ex and ey can be negative depending on position so we wil need to use
- o abs(ex) and abs(ey) to remove negatives from ex and ey to just compare the size to tol