

TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü BİL265/264/264L – Mantıksal Devre Tasarımı

2023-2024 Öğretim Yılı Yaz Dönemi Lab Ödev 2 30.07.2024

[100 Puan] Konvolüsyon İşlemi

[60 Puan] a-) Konvolüsyon Birimi

Her bir elemanı 8 bitlik değerden oluşan 4x4'lük matris üzerinde, her bir elemanı 8 bitlik değerden oluşan 3x3'lük filtre ile konvolüsyon işlemi gerçekleştiren ve her bir elemanı 8 bitlik değerden oluşan 4x4'lük sonuç matrisini veren bir verilog modülü yazmanız istenmektedir. Modülü verilogda davranışsal modelleme kullanarak yazın. Oluşturacağınız modüle konvolusyon_birimi (oluşacak dosya konvolusyon_birimi.v) ismini verin. Modüle ait ister, giriş ve çıkışlar aşağıdaki gibidir.

Devrenin Girişleri:

• saat: 1 bitlik saat sinyali

• reset: 1 bitlik reset sinyali (senkron)

• basla: 1 bitlik devrede işlemi başlatan giriş sinyali

matris: 128 bitlik matris girişi
filtre: 72 bitlik filtre girişi

Devrenin Çıkışları:

• sonuc: 128 bitlik sonuç matrisi çıkışı

• hazir: 1 bitlik sonucun hazır olduğunu belirten çıkış

Modül İsterleri:

- Eş zamanlı atamalar saatin yükselen kenarında yapılacaktır.
- reset sinyali etkin olduğunda, modül başlangıç durumuna dönmelidir.
- basla sinyali 1 olduğu çevrim dahil olmak üzere toplam 16 çevrimde konvolüsyon işlemi tamamlanacaktır. Her bir çevrimde sonuç matrisinin 1 tane elemanı (her 8 bitlik kısım) hesaplanacaktır.
- basla sinyalinin 1 olduğu çevrimde sonuç matrisinin ilk elemanı hesaplanacaktır.
- Sonuç matrisinin son elemanının hesaplandığı 16. çevrimde *hazir* sinyali mantık-1 yapılarak sonuç dışarıya verilecektir.
- 16. çevrimden sonraki çevrim, modül yeni bir girdi almaya hazır hale gelmelidir.
- hazir sinyali sonucun verildiği çevrim haricinde her zaman mantık-0 değerini verecektir.
- Konvolüsyon sırasında kenar ve köşelerde yapılan filtrelemeler için zero-padding yapılacaktır.
- Konvolüsyon sırasında yapılan toplama ve çarpma sonucunda 8 bitlik değer üzerinde oluşabilecek taşma (-ing, overflow) durumlarını **önemsemeyin**.
- 8 bitlik değerler her zaman pozitiftir.
- 128 bitlik matris girişi ve 128 bitlik sonuç çıkışı Tablo 1'deki gibi yorumlanmalıdır.

	<u> 28-bit Ile Ifade Edilei</u>		<u>in Gösterimi</u>
M[127:120]	M[119:112]	M[111:104]	M[103:96]
1.Eleman	$2. { m Eleman}$	3.Eleman	4.Eleman
M[95:88]	M[87:80]	M[79:72]	M[71:64]
5.Eleman	6.Eleman	7.Eleman	8.Eleman
M[63:56]	M[55:48]	M[47:40]	M[39:32]
9.Eleman	10.Eleman	11.Eleman	12.Eleman
M[31:24]	M[23:16]	M[15:8]	M[7:0]
13.Eleman	14.Eleman	15.Eleman	16.Eleman

TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü BİL265/264/264L – Mantıksal Devre Tasarımı

2023-2024 Öğretim Yılı Yaz Dönemi Lab Ödev 2 30.07.2024

• 72 bitle ifade edilen 3x3'lük filtre, Tablo 1'deki gösterim ile aynı mantıkta gösterilmektedir. (İlk 8 bitlik kısım (filtre[71:64]) sol üst köşede olacak şekilde)

Şekil 1'de, zero-padding ile konvolüsyon işleminin nasıl yapıldığını gösteren örnek bir görsel bulunmaktadır.

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel				
0	-1	0		
-1	5	-1		
0	-1	0		

114		

Şekil 1: Zero-padding Konvolüsyon İşlemi

https://miro.medium.com/v2/resize:fit:720/format:webp/1*006nY1U7zoP4vE5AZEnxKA.gif

[40 Puan] b-) Ardışık Konvolüsyon Birimi

a şıkkında yazdığınız konvolusyon_birimi modülünden 2 tane kullanarak art arda iki tane konvolüsyon yapan bir boru hattı oluşturmanız istenmektedir. Modülü verilogda davranışsal modelleme kullanarak yazın. Oluşturacağınız modüle ardisik_konvolusyon_birimi (oluşacak dosya ardisik konvolusyon birimi.v) ismini verin. Modüle ait ister, giriş ve çıkışlar aşağıdaki gibidir.

Devrenin Girişleri:

 \bullet saat: 1 bitlik saat sinyali

• reset: 1 bitlik reset sinyali (senkron)

• basla: 1 bitlik devrede işlemi başlatan giriş sinyali

• matris: 128 bitlik matris girişi

• filtre1: 72 bitlik ilk devre için verilen filtre girişi

• filtre2: 72 bitlik ikinci devre için verilen filtre girişi

Devrenin Çıkışları:

• sonuc: 128 bitlik sonuç matrisi çıkışı

• hazir: 1 bitlik sonucun hazır olduğunu belirten çıkış

TOBB Ekonomi ve Teknoloji Üniversitesi Bilgisayar Mühendisliği Bölümü BİL265/264/264L – Mantıksal Devre Tasarımı

2023-2024 Öğretim Yılı Yaz Dönemi Lab Ödev 2 30.07.2024

Modül İsterleri:

- Eş zamanlı atamalar saatin yükselen kenarında yapılacaktır.
- reset sinyali etkin olduğunda, modül başlangıç durumuna dönmelidir.
- Girdi olan matris önce 1. konvolüsyon biriminde *filtre_1* kullanılarak işlendikten sonra, ilk birimin sonuç matrisi 2. konvolüsyon birimine iletilerek *filtre_2* kullanılarak işlenecektir ve nihai sonuç dışarıya verilecektir
- basla sinyalinin 1 olduğu çevrimden sonra 32. çevrimde hazir sinyali mantık-1 yapılarak sonuç dışarıya verilecektir.
- Boru hattı, bir işlem başladıktan 16 çevrim sonra yeni bir işlem alabilmelidir.
- Yeni bir işlem başladıktan en erken 16 çevrim sonra yeni bir girdi geleceğini (*basla* sinyali **mantık-1** yapılıp) varsayın.

Şekil 2'de tasarlanacak boru hatlı sistemin blok şeması görülebilir.

Şekil 2: Ardışık Konvolüsyon Blok Şeması

Ödev Teslimi (Son Teslim Tarihi: 10.07.2024 23.59)

- 1-) konvolusyon birimi.v
- 2-) ardisik konvolusyon birimi.v

dosyalarını sıkıştırmadan https://uzak.etu.edu.tr'ye yükleyin.