Introduction to Database Systems

2023-Fall

4. Database Management Systems (2/5)

Overview: Files of Pages of Records

- Tables stored as logical files
 - Consist of pages
 - Pages contain a collection of records
- Pages are managed
 - On disk by the disk space manager: pages read/written to physical disk/files
 - In memory by the buffer manager: higher levels of DBMS only operate in memory

Database Files

4.2 Database Access Management

The access to database is transferred to the operations on files (of OS) eventually. The *file structure* and *access route* offered on it will affect the speed of data access directly. It is impossible that one kind of file structure will be effective for all kinds of data access.

- Access types
- File organization
- Index technique

Access Types

- Query all or most records of a file (>15%)
- Query some special record
- Query some records (<15%)
- Scope query
- Update

File Organization

- **Heap file:** records stored according to their inserted order, and retrieved sequentially. This is the most basic and general form of file organization.
- **Direct file:** the record address is mapped through hash function according to some attribute's value.
- Dynamic hashing
- Indexed file: index + heap file/cluster
- Grid structure file: suitable for multi attributes queries
- Raw disk (notice the difference between the logical block and physical block of file. You can control physical blocks in OS by using raw disk)

Many DB File Structures

- Unordered Heap Files
 - Records placed arbitrarily across pages
- Clustered Heap Files
 - Records and pages are grouped
- Sorted Files
 - Pages and records are in sorted order
- Index Files
 - B+ Trees, Linear Hashing, ...
 - May contain records or point to records in other files

Records

Record Formats

- Relational Model →
 - Each record in table has some fixed type
- Assume System Catalog stores the Schema
 - No need to store type information with records (save space!)
 - Catalog is just another table ...
- Goals:
 - Records should be compact in memory & disk format
 - Fast access to fields (why?)
- Easy Case: Fixed Length Fields
- Interesting Case: Variable Length Fields

- Simple approach:
 - Store record i starting from byte n * (i 1), where n is the size of each record.
 - Record access is simple but records may cross blocks
 - Modification: do not allow records to cross block boundaries

record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 3	22222	Einstein	Physics	95000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000
record 11	98345	Kim	Elec. Eng.	80000

- Deletion of record *i*: alternatives:
 - move records i + 1, . . . , $n ext{ to } i, \ldots, n-1$
 - move record *n* to *i*
 - do not move records, but link all free records on a free list

Record 3 deleted

10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
	12121 15151 32343 33456 45565 58583 76543 76766 83821	12121 Wu 15151 Mozart 32343 El Said 33456 Gold 45565 Katz 58583 Califieri 76543 Singh 76766 Crick 83821 Brandt	12121 Wu Finance 15151 Mozart Music 32343 El Said History 33456 Gold Physics 45565 Katz Comp. Sci. 58583 Califieri History 76543 Singh Finance 76766 Crick Biology 83821 Brandt Comp. Sci.

- Deletion of record *i*: alternatives:
 - move records *i* + 1, . . . , *n* to *i*, . . . , *n* − 1
 - move record n to i
 - do not move records, but link all free records on a free list

Record 3 deleted and replaced by record 11

_				
record 0	10101	Srinivasan	Comp. Sci.	65000
record 1	12121	Wu	Finance	90000
record 2	15151	Mozart	Music	40000
record 11	98345	Kim	Elec. Eng.	80000
record 4	32343	El Said	History	60000
record 5	33456	Gold	Physics	87000
record 6	45565	Katz	Comp. Sci.	75000
record 7	58583	Califieri	History	62000
record 8	76543	Singh	Finance	80000
record 9	76766	Crick	Biology	72000
record 10	83821	Brandt	Comp. Sci.	92000

- Deletion of record *i*: alternatives:
 - move records i + 1, ..., n to i, ..., n 1
 - move record *n* to *i*
 - do not move records, but link all free records on a free list

header					
record 0	10101	Srinivasan	Comp. Sci.	65000	
record 1				Ą	
record 2	15151	Mozart	Music	40000	
record 3	22222	Einstein	Physics	95000	
record 4					
record 5	33456	Gold	Physics	87000	
record 6				<u> </u>	
record 7	58583	Califieri	History	62000	
record 8	76543	Singh	Finance	80000	
record 9	76766	Crick	Biology	72000	
record 10	83821	Brandt	Comp. Sci.	92000	
record 11	98345	Kim	Elec. Eng.	80000	

Variable-Length Records

- Variable-length records arise in database systems in several ways:
 - Storage of multiple record types in a file.
 - Record types that allow variable lengths for one or more fields such as strings (varchar)
 - Record types that allow repeating fields (used in some older data models).
- Attributes are stored in order
- Variable length attributes represented by fixed size (offset, length),
 with actual data stored after all fixed length attributes
- Null values represented by null-value bitmap

Variable-Length Records: Slotted Page Structure

- Slotted page header contains:
 - number of record entries
 - end of free space in the block
 - location and size of each record
- Records can be moved around within a page to keep them contiguous with no empty space between them; entry in the header must be updated.
- Pointers should not point directly to record instead they should point to the entry for the record in header.

Column-Oriented Storage

- Also known as columnar representation
- Store each attribute of a relation separately
- Example

10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Storage Organization in Main-Memory Databases

- Can store records directly in memory without a buffer manager
- Column-oriented storage can be used in-memory for decision support applications
 - Compression reduces memory requirement

Index Technique

- B+ Tree
- Clustering index
- Inverted file
- Dynamic hashing
- Grid structure file and partitioned hash function
- Bitmap index (used in data warehouse)
- Others

Index

An **index** is data structure that enables fast **lookup** and **modification** of **data entries** by **search key**

- Lookup: may support many different operations
 - Equality, 1-d range, 2-d region, ...
- Search Key: any subset of columns in the relation
 - Do not need to be unique
 - —e.g. (firstname) or (firstname, lastname)

Index: Basic Concepts

- Indexing mechanisms used to speed up access to desired data.
 - E.g., author catalog in library
- Search Key attribute to set of attributes used to look up records in a file.
- An index file consists of records (called index entries) of the form

- Index files are typically much smaller than the original file
- Two basic kinds of indices:
 - Ordered indices: search keys are stored in sorted order
 - **Hash indices:** search keys are distributed uniformly across "buckets" using a "hash function".

B+-Tree

Example of B⁺-Tree

- Dynamic Tree Index
 - Always Balanced
 - •Support efficient insertion & deletion
 - •Grows at root not leaves!

B⁺-Tree Index Files

A B⁺-tree is a rooted tree satisfying the following properties:

- All paths from root to leaf are of the same length
- Each node that is not a root or a leaf has **between** $\sqrt{n/2}$ and n children.
- A leaf node has between (n-1)/2 and n-1 values
- Special cases:
 - If the root is not a leaf, it has at least 2 children.
 - If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (n-1) values.

B⁺-Tree Node Structure

Typical node

- K_i are the search-key values
- P_i are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes).
- The search-keys in a node are ordered

$$K_1 < K_2 < K_3 < \ldots < K_{n-1}$$

Hashing

Example of Hash File Organization

Hash file organization of *instructor* file, using *dept_name* as key.

			•		
bucket	: 0				
bucket 1					
15151	Mozart	Music	40000		
bucket	bucket 2				
32343	El Said	History	80000		
58583	Califieri	History	60000		
		-			

bucket	: 3		
22222	Einstein	Physics	95000
33456	Gold	Physics	87000
98345	Kim	Elec. Eng.	80000

12121	Wu	Finance	90000
76543	Singh	Finance	80000
oucket	5		
76766	Crick	Biology	7200
oucket	6		
10101	Srinivasan	Comp. Sci.	65000
45565	Katz	Comp. Sci.	75000
10000		1	
	Brandt	Comp. Sci.	9200
		,	92000
83821	Brandt	,	9200
	Brandt	,	92000

Dynamic Hashing

- Periodic rehashing
 - If number of entries in a hash table becomes (say) 1.5 times size of hash table,
 - create new hash table of size (say) 2 times the size of the previous hash table
 - Rehash all entries to new table
- Linear Hashing
 - Do rehashing in an incremental manner
- Extendable Hashing
 - Tailored to disk based hashing, with buckets shared by multiple hash values
 - Doubling of # of entries in hash table, without doubling # of buckets