

Métodos Numéricos//Métodos Computacionales

Derivación e integración numérica

Bibliografía:

Métodos Numéricos para ingenieros. Chapra y Canale. Ed. Mc Graw Hill. 5ta. Edición.

Métodos Numéricos – G. Pacce – Editorial EUDENE -1997. Analisis Numerico – Burden and Faires- Editorial Sudamericana – 1996.

ı

DIFERENCIACIÓN NUMÉRICA

- ✓ Polinomio de interpolación es aplicable para la resolución de problemas de diferenciación, en general y el cálculo de derivadas, en particular.
- ✓ Dada una tabla de valores de la función f(x) para diversos valores de x, se puede determinar el polinomio de interpolación que, satisfaciendo a los valores dados, represente con cierto grado de aproximación a f(x).
- ✓ De acuerdo a lo anterior, es posible calcular, de manera más o menos precisa, la derivada f'(x), de la función en cuestión.
- ✓ Se puede hallar en general y por única vez, las derivadas sucesivas de la fórmula de interpolación y aplicarlas a cada caso particular.

DERIVACIÓN NUMÉRICA

- ☐ Se trata de evaluar numéricamente la derivada de una función f(x) a partir de valores numéricos de dicha función.
- ☐ Se puede comenzar con una aproximación intuitiva y geométrica.
 - De la definición de derivada como límite, se puede aproximar la derivada:
 - Geométricamente se pueden considerar tres variantes:

Derivación numérica

□ En el cálculo numérico de derivadas se cometen errores importantes.

- En principio, parece evidente que al disminuir h se reduce el error.

- Ejemplo: derivada de e^x en x=1 (valor exacto 2.71828182845905)

h	f(x+h)	f(x+h)-f(x)	f'(x)	error
1e-01	3.00416602394643	0.28588419548739	2.85884195487388	-0.14056012641483
1e-02	2.74560101501692	0.02731918655787	2.73191865578708	-0.01363682732803
1e-03	2.72100146988158	0.00271964142253	2.71964142253278	-0.00135959407374
1e-04	2.71855367023375	0.00027184177471	2.71841774707848	-0.00013591861944
1e-05	2.71830901141324	0.00002718295420	2.71829541991231	-0.00001359145326
1e-06	2.71828454674223	0.00000271828319	2.71828318698653	-0.00000135852748
1e-07	2.71828210028724	0.00000027182820	2.71828196396484	-0.00000013550580
1e-08	2.71828185564186	0.00000002718282	2.71828177744737	0.00000005101167
1e-09	2.71828183117733	0.00000000271828	2.71828159981169	0.00000022864736
1e-10	2.71828182873087	0.00000000027183	2.71827893527643	0.00000289318262
1e-11	2.71828182848623	0.00000000002718	2.71827005349223	0.00001177496681
1e-12	2.71828182846176	0.00000000000272	2.71827005349223	0.00001177496681
1e-13	2.71828182845932	0.000000000000027	2.71338507218388	0.00489675627516
1e-14	2.71828182845907	0.000000000000003	2.66453525910038	0.05374656935867

- El error disminuye con h al principio, pero hay un momento en que aumenta.

CONCEPTOS PREVIOS:

La Serie de Taylor proporciona un medio para predecir el valor de una función en un punto, en términos del valor de la función y sus derivadas en otro punto.

Considerando $h = x_{i+1} - x_i$

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \dots + \frac{f^{(n)}(x_i)}{n!}h^n + R_n$$

$$R_n = \frac{f^{(n+1)}(\varepsilon)}{(n+1)!} h^{n+1} \qquad donde \ \varepsilon \ es \ un \ vale$$

donde ε es un valor de x que se encuentra entre x_i y x_{i+1}

Análisis del Error:

- ☐ Fórmulas Avanzadas:
- Se pueden obtener a partir del desarrollo en serie de Taylor:

$$\frac{f(x+h) = f(x) + f'(x)h + \frac{f''(\varepsilon)}{2!}h^2 \to f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(\varepsilon)}{2!}h$$

y en este caso se dice que el error es de orden 1 ó orden h: O(h).

- ☐ Para la fórmula centrada:
- Se realiza el desarrollo en serie de Taylor en x+h y en x-h:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(\varepsilon_1)}{3!}h^3$$
$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2!}h^2 - \frac{f'''(\varepsilon_2)}{3!}h^3$$

Restando miembro a miembro y suponiendo que f'" es continua:

$$f(x+h)-f(x-h)=2hf'(x)+\left(f'''(\varepsilon_1)+f'''(\varepsilon_2)\right)\frac{h^3}{3!}=2hf'(x)+2f'''(\varepsilon)\frac{h^3}{3!}$$
 de donde se llega finalmente a:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - f'''(\varepsilon) \frac{h^2}{3!} = \frac{f(x+h) - f(x-h)}{2h} - O(h^2)$$

La fórmula centrada es de orden 2 y por tanto más precisa que las otras dos.

DERIVACION MEDIANTE FORMULAS DE INTERPOLACION

La metodología descripta implica el uso de cualquiera de las fórmulas de interpolación antes estudiadas. Se desarrolla un caso particular.

La fórmula de *NEWTON-GREGORY Ascendente*, en la cual se ha hecho la transformación $x=x_0 + hu$, para facilitar su uso:

$$f(x) = f(x_0 + hu) = f(x_0) + \Delta f(x_0)u + \Delta^2 f(x_0) \frac{u(u-1)}{2!} + \Delta^3 f(x_0) \frac{u(u-1)(u-2)}{3!} + \Delta^4 f(x_0) \frac{u(u-1)(u-2)(u-3)}{4!} + \cdots$$

DERIVACION MEDIANTE FORMULAS DE INTERPOLACION (2)

Derivando respecto de la variable u, se obtiene:

$$hf'(x_0 + hu) = \Delta f(x_0) + \Delta^2 f(x_0) \frac{2u - 1}{2} + \Delta^3 f(x_0) \frac{3u^2 - 6u + 2}{6} + \Delta^4 f(x_0) \frac{4u^3 - 18u^2 + 22u - 6}{24} + \cdots$$

y para $x=x_0$; vale decir, para u=0, resulta la ecuación:

$$hf'(x_0) = \Delta f(x_0) - \frac{1}{2}\Delta^2 f(x_0) + \frac{1}{3}\Delta^3 f(x_0) - \frac{1}{4}\Delta^4 f(x_0) + \cdots$$

DERIVACION MEDIANTE FORMULAS DE INTERPOLACION (3)

Análogamente, para la derivada segunda se obtiene la expresión:

$$h^2 f''(x_0 + hu) = \Delta^2 f(x_0) + \Delta^3 f(x_0)(u - 1) + \Delta^4 f(x_0) \frac{6u^2 - 18u + 11}{12} + \dots$$

y para $x=x_0$; o sea, haciendo u=0, resulta la ecuación:

$$h^{2} f''(x_{0}) = \Delta^{2} f(x_{0}) - \Delta^{3} f(x_{0}) + \frac{11}{12} \Delta^{4} f(x_{0}) - \dots$$
 (8.3)

Este procedimiento puede ser iterado tantas veces como se necesite, para obtener derivadas de mayor orden.

DERIVACION MEDIANTE FORMULAS DE INTERPOLACION (4)

Si se parte de la fórmula de *NEWTON-GREGORY Descendente* o, de las de *GAUSS, LAGRANGE, BESSEL*, etc., se encontraran, nuevas fórmulas de derivación para cada caso en particular, las que, ofrecerán mayor o menor precisión según la posición relativa del valor de la variable para el cual se desea calcular las derivadas

DERIVACION MEDIANTE FORMULAS DE INTERPOLACION (5)

La aplicación de idéntico criterio para la fórmula de *NEWTON-GREGORY Descendente*:

$$f(x_n + hu) = f(x_n) + u\nabla f(x_n) + \frac{u(u+1)}{2!}\nabla^2 f(x_n) + \frac{u(u+1)(u+2)}{3!}\nabla^3 f(x_n) + \frac{u(u+1)(u+2)(u+3)}{4!}\nabla^4 f(x_n) + \cdots$$

da como resultado derivando con respecto a u e igualando a cero:

$$hf'(x_n) = \nabla f(x_n) + \frac{1}{2} \nabla^2 f(x_n) + \frac{1}{3} \nabla^3 f(x_n) + \frac{1}{4} \nabla^4 f(x_n) + \cdots$$

como así también:

$$h^2 f''(x_n) = \nabla^2 f(x_n) + \nabla^3 f(x_n) + \frac{11}{12} \nabla^4 f(x_n) + \dots$$

Trabajo Práctico Nº6

1) Dada la siguiente tabla de valores:

x	12	13	14	15	16	17
У	0.96262	0.94718	0.93108	0.92221	0.91181	0.90151

a) Construir la tabla de diferencias.

Tabla de diferencias:

$$x$$
 y
 Δy
 $\Delta^2 y$
 $\Delta^3 y$
 $\Delta^4 y$
 $\Delta^5 y$

 12
 0,96262
 -0,01544
 -0,00066
 -0,0161
 0,00789

 13
 0,94718
 -0,0161
 0,00789
 -0,01665
 0,01665

 14
 0,93108
 -0,00876
 0,01039
 0,02704

 15
 0,92221
 -0,0104
 0,00163
 0,01039

 16
 0,91181
 0,00001
 -0,0103

 17
 0,90151
 -0,0103

 b) Calcular f'(12) con la fórmula de Gregory Newton Ascendente:

$$hf'(x_0 + hu) = \Delta f(x_0) + \Delta^2 f(x_0) \frac{2u-1}{2} + \Delta^3 f(x_0) \frac{3u^2 - 6u + 2}{6} + \Delta^4 f(x_0) \frac{4u^3 - 18u^2 + 22u - 6}{24} + \cdots$$

$$Como u = \frac{x - x_0}{h} \rightarrow u = \frac{12 - 12}{1} = 0$$

$$hf'(x_0) = \Delta f(x_0) - \frac{1}{2} \Delta^2 f(x_0) + \frac{1}{3} \Delta^3 f(x_0) - \frac{1}{4} \Delta^4 f(x_0) + \cdots$$

$$1f'(12) = -0.01544 - \frac{1}{2} \cdot (-0.00066) + \frac{1}{3} \cdot 0.00789 - \frac{1}{4} \cdot (-0.01665) + \cdots$$

f'(12) = -0.0083175

c) Calcular f'(12,4)

$$hf'(x_0 + hu) = \Delta f(x_0) + \Delta^2 f(x_0) \frac{2u - 1}{2} + \Delta^3 f(x_0) \frac{3u^2 - 6u + 2}{6} + \Delta^4 f(x_0) \frac{4u^3 - 18u^2 + 22u - 6}{24} + \cdots$$

Como
$$u = \frac{x - x_0}{h} \to u = \frac{12,4 - 12}{1} = 0,4$$

$$1f'(12,4) = -0.01544 + (-0.00066) \frac{2 \cdot 0.4 - 1}{2} + 0.00789 \frac{3 \cdot 0.4^2 - 6 \cdot 0.4 + 2}{6} + (-0.01665) \frac{4 \cdot 0.4^3 - 18 \cdot 0.4^2 + 22 \cdot 0.4 - 6}{24} + \cdots$$

$$f'(12,4) = -0.01544 + 0.000066 + 0.0001052 - 0.0001221$$

$$f'(12,4) = -0.0153909$$

d) Utilizar la fórmula de Gregory Newton descendente para calcular f´´(17)

$$hf'(x_n) = \nabla f(x_n) + \frac{1}{2} \nabla^2 f(x_n) + \frac{1}{3} \nabla^3 f(x_n) + \frac{1}{4} \nabla^4 f(x_n) + \cdots$$

$$h^2 f''(x_n) = \nabla^2 f(x_n) + \nabla^3 f(x_n) + \frac{11}{12} \nabla^4 f(x_n) + \dots$$

$$\nabla^2 f(17) = 0,0001$$

$$\nabla^3 f(17) = 0,00163$$

$$\nabla^4 f(17) = 0.01039$$

$$1^2 f''(17) = 0,0001 + 0,00163 + \frac{11}{12} \cdot 0,01039 + \cdots$$

$$f''(17) = 0.011254$$