Training Day-10 Report:

NumPy

NumPy is a Python library used for working with arrays. It also has functions for working in domain of linear algebra, fourier transform, and matrices. NumPy was created in 2005 by Travis Oliphant. It is an open source project and you can use it freely. NumPy stands for Numerical Python.

Why Use NumPy?

In Python we have lists that serve the purpose of arrays, but they are slow to process. NumPy aims to provide an array object that is up to 50x faster than traditional Python lists. The array object in NumPy is called ndarray, it provides a lot of supporting functions that make working with ndarray very easy. Arrays are very frequently used in data science, where speed and resources are very important.

Create a NumPy ndarray Object

NumPy is used to work with arrays. The array object in NumPy called ndarray. We can create a NumPy ndarray object by using the array() function.

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)
print(type(arr))
```

Access Array Elements

Array indexing is the same as accessing an array element. You can access an array element by referring to its index number. The indexes in NumPy arrays start with 0, meaning that the first element has index 0, and the second has index 1 etc.

```
import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[0])
```

Slicing arraysSlicing in python means taking elements from one given index to another given index.We pass slice instead of index like

```
this: [start:end]. We can also define the step, like this: [start:end:step]. If we don't pass start its considered 0 If we don't pass end its considered length of array in that dimension If we don't pass step
```

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5])
```

its considered 1

Data Types in PythonBy default Python have these data types:

- strings used to represent text data, the text is given under quote marks. e.g. "ABCD"
- integer used to represent integer numbers. e.g. -1, -2, -3
- float used to represent real numbers. e.g. 1.2, 42.42
- boolean used to represent True or False.
- complex used to represent complex numbers. e.g. 1.0 + 2.0j, 1.5 + 2.5j

The Difference Between Copy and View

The main difference between a copy and a view of an array is that the copy is a new array, and the view is just a view of the original array. The copy *owns* the data and any changes made to the copy will not affect original array, and any changes made to the original array will not affect the copy.

Copy

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 42
print(arr)
print(x)

view

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
x[0] = 31
print(arr)
print(x)
```

Shape of an Array

The shape of an array is the number of elements in each dimension.

```
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)
```

Reshaping arrays

Reshaping means changing the shape of an array. The shape of an array is the number of elements in each dimension. By reshaping we can add or remove dimensions or change number of elements in each dimension.

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
print(newarr)
```