Sensitivity Analysis

In LP, the parameters (input data) of the model can change within certain limits without causing the optimum solution to change. This is referred to as sensitivity analysis.

Graphical Sensitivity Analysis:

- ™ Two cases will be considered:
 - Sensitivity of the optimum solution to changes in the availability of the resources (right-hand side of the constraints)
 - Sensitivity of the optimum solution to changes in unit profit or unit cost (coefficients of the objective function)

Changes in the Right-Hand Side

A unit of product 1 requires 2 hours on machine 1 and 1 hour on machine 2. For product 2, a unit requires 1 hour on machine 1 and 3 hours on machine 2. The revenues per unit of products 1 and 2 are \$30 and \$20, respectively. The total daily processing time available for each machine is 8 hours.

- x1 = the daily number of units of products 1
- x2 = the daily number of units of products 2
- The LP model is given as

Maximize
$$z = 30x1 + 20x2$$

Subject to

$$2x1 + x2 \le 8 \ x1$$
 (Machine 1)
+ $3x2 \le 8$ (Machine 2)
 $x1, x2 \ge 0$

First: change in resources

If the daily capacity is increased from 8 hours to 9 hours, the new optimum will occur at point G. The rate of change in optimum z resulting from changing machine 1 capacity from 8 hours to 9 hours can be computed as follows:

Rate of revenue change (point C to point G)

$$= \frac{zG - zC}{Capacity\ change} = \frac{142 - 128}{9 - 8} = \$\ 14.00\ /hr$$

Done by: T.Alkhansaa Abuhashim

Shadow Price

- Dual or Shadow price/unit worth of resource: is the change in the optimal objective value per unit change in the availability of the resource.
- e.g. a unit increase (decrease) in machine I capacity will increase (decrease) revenue by \$14.00

Feasibility Range

- We can see that the dual price of \$14.00/hr remains valid for changes (increases or decreases) in machine 1 capacity that move its constraint parallel to itself to any point on the line segment BF.
- Minimum machine 1 capacity [at B = (0, 2.67)] = 2×0+1×2.67 = 2.67 hr
- Maximum machine 1 capacity [at F = (8,0)] = 2×8+1×0=16 hr
- The dual price of \$14.001hr will remain valid for the range
 - 2.67 hr ≤ Machine 1 capacity ≤ 16 hr
- ⊗ Changes outside this range will produce a different dual price.

- You can verify that the dual price for machine 2 capacity is \$2.00/hr and it remains valid for changes (increases or decreases) that move its Constraint parallel to itself to any point on the line segment DE.
- Minimum machine 2 capacity [at D = (4, 0)] =
 1×4+3×0 = 4 hr
- Maximum machine 2 capacity [at E = (0,8)] = 1×0+3×8=24 hr
- The dual price of \$2.00/hr for machine 2 will remain applicable for the range

4 hr ≤ Machine 2 capacity ≤ 24 hr

Second: Changes in the Objective Coefficients

- Changes in revenue units (i.e., objective-function coefficients) will change the slope of z.
- The optimum solution will remain at point C so long as the objective function lies between lines BF and DE, the two constraints that define the optimum point.

- We can write the objective function in the general format Maximize z = c1x1 + c2x2
- The optimum solution will remain at point C so long as z=c1x1 + c2x2 lies between the two lines

```
\approx x1+3x2 = 8
\approx 2x1+x2 = 8
```

 This means that the ratio c1/c2 can vary between 1/3 and 2/1, which yields the following condition:

$$(1/3) \le (c1/c2) \le (2/1)$$
 or $.333 \le (c1/c2) \le 2$

Optimality Range

 The unit revenue of product 2 is fixed at its current value of c2 = \$20.00. The associated range for c1:

```
[\underline{\text{remember:}}\ (1/3) \le (c1/c2) \le (2/1)]
(1/3) \times 20 \le c1 \le 2 \times 20 \text{ or } 6.67 \le c1 \le 40
```

Similarly, if we fix the value of c1 at \$30.00 c2
 ≤ 30×3 and c2 ≥ (30/2) or 15 ≤ c2 ≤ 90

- Suppose that the unit revenues for products 1 and 2 are changed to \$35 and \$25, respectively.
 Will the optimum remain the same?
- The new objective function is Maximize z = 35x1 + 25x2
- The solution will remain optimal: c1/c2 = 35/ 25= 1.4 → within the optimality range (.333,2)