CS 747, Autumn 2020: Week 4, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

Markov Decision Problems

- Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation

Markov Decision Problems

- 1. Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation

An MDP $M = (S, A, T, R, \gamma)$ has these elements. S: a set of states.

An MDP $M = (S, A, T, R, \gamma)$ has these elements.

S: a set of states.

Let us assume $S = \{s_1, s_2, \dots, s_n\}$, and hence |S| = n.

An MDP $M = (S, A, T, R, \gamma)$ has these elements. A: a set of actions.

An MDP $M = (S, A, T, R, \gamma)$ has these elements.

A: a set of actions.

Let us assume $A = \{a_1, a_2, \dots, a_k\}$, and hence |A| = k.

Here $A = \{RED, BLUE\}$.

An MDP $M = (S, A, T, R, \gamma)$ has these elements. T: a transition function.

An MDP $M = (S, A, T, R, \gamma)$ has these elements.

T: a transition function.

- For $s, s' \in S$, $a \in A$: T(s, a, s') is the probability of reaching s' by starting at s and taking action a.
- Thus, $T(s, a, \cdot)$ is a probability distribution over S.

An MDP $M = (S, A, T, R, \gamma)$ has these elements. R: a reward function.

An MDP $M = (S, A, T, R, \gamma)$ has these elements.

R: a reward function.

- For $s, s' \in S$, $a \in A$: R(s, a, s') is the (numeric) reward for reaching s' by starting at s and taking action a.
- Assume rewards are from $[-R_{\text{max}}, R_{\text{max}}]$ for some $R_{\text{max}} \geq 0$.

An MDP $M = (S, A, T, R, \gamma)$ has these elements. γ , a discount factor—coming up shortly.

t = 0

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent t = 0next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is in state s^1 , takes action a^1 . Environment generates and provides the agent t = 1next state $s^2 \sim T(s^1, a^1, \cdot)$ and reward $r^1 = R(s^1, a^1, s^2)$.

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is in state s^1 , takes action a^1 . Environment generates and provides the agent next state $s^2 \sim T(s^1, a^1, \cdot)$ and reward $r^1 = R(s^1, a^1, s^2)$.

:

t = 1

t = 0

Agent is born in some state s^0 , takes action a^0 . Environment generates and provides the agent next state $s^1 \sim T(s^0, a^0, \cdot)$ and reward $r^0 = R(s^0, a^0, s^1)$.

Agent is in state s^1 , takes action a^1 . Environment generates and provides the agent next state $s^2 \sim T(s^1, a^1, \cdot)$ and reward $r^1 = R(s^1, a^1, s^2)$.

:

Resulting trajectory: s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , s^2 ,

• How does the agent pick a^t?

• How does the agent pick a^t ? In principle, it can decide by looking at the preceding history $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t$.

How does the agent pick a^t?
 In principle, it can decide by looking at the preceding history

$$s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t.$$

For now let us assume that a^t is picked based on s^t alone.

• How does the agent pick a^t ? In principle, it can decide by looking at the preceding history $s^0 \cdot a^0 \cdot r^0 \cdot s^1 \cdot a^1 \cdot r^1 \cdot s^2 \cdot \dots \cdot s^t.$

For now let us assume that a^t is picked based on s^t alone.

• In other words, the agent follows a policy $\pi: S \to A$.

• How does the agent pick a^t ? In principle, it can decide by looking at the preceding history $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t$.

For now let us assume that a^t is picked based on s^t alone.

In other words, the agent follows a policy π : S → A.
 Observe that π is Markovian, deterministic, and stationary.

How does the agent pick a^t?
 In principle, it can decide by looking at the preceding history

$$s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t.$$

For now let us assume that a^t is picked based on s^t alone.

In other words, the agent follows a policy π : S → A.
 Observe that π is Markovian, deterministic, and stationary.
 We will justify this choice in due course!

• Illustrated policy π such that

$$\pi(s_1) = \text{RED}; \pi(s_2) = \text{RED}; \pi(s_3) = \text{BLUE}.$$

• Illustrated policy π such that

$$\pi(s_1) = \text{RED}; \pi(s_2) = \text{RED}; \pi(s_3) = \text{BLUE}.$$

What happens by "following" π , starting at s_1 ?

• Illustrated policy π such that

$$\pi(s_1) = \mathsf{RED}; \pi(s_2) = \mathsf{RED}; \pi(s_3) = \mathsf{BLUE}.$$

What happens by "following" π , starting at s_1 ?

- \triangleright s_1 , RED, s_1 , RED, s_2 , RED, s_3 , BLUE, s_1 ,
- ▶ s_1 , RED, s_2 , RED, s_1 , RED, s_1 , RED, s_1 , ...

Let
 ☐ denote the set of all policies.

- Let
 ☐ denote the set of all policies.
- What is |Π|?

- Let
 Π denote the set of all policies.
- What is $|\Pi|$? k^n .

- Let
 ☐ denote the set of all policies.
- What is $|\Pi|$? k^n .
- Which $\pi \in \Pi$ is a "good" policy?

State Values for Policy π

$$ullet$$
 For $oldsymbol{s} \in S$, $V^\pi(oldsymbol{s}) \stackrel{ ext{def}}{=} \mathbb{E}_\pi \left[r^0 + r^1 + r^2 + r^3 + \ldots | oldsymbol{s}^0 = oldsymbol{s}
ight]$

State Values for Policy π

• For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.

State Values for Policy π

- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP. Larger γ , farther "lookahead".

- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP. Larger γ , farther "lookahead".

- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP. Larger γ , farther "lookahead".

- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP. Larger γ , farther "lookahead".

• $V^{\pi}(s)$ is the value of state s under policy π .

- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP. Larger γ , farther "lookahead".

• $V^{\pi}(s)$ is the value of state s under policy π . $V^{\pi}: S \to \mathbb{R}$ is the Value Function of π .

- For $s \in S$, $V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} \left[r^0 + \gamma r^1 + \gamma^2 r^2 + \gamma^3 r^3 + \dots | s^0 = s \right]$ where $\gamma \in [0, 1)$ is a discount factor.
- γ is an element of the MDP. Larger γ , farther "lookahead".

• $V^{\pi}(s)$ is the value of state s under policy π . • $V^{\pi}: S \to \mathbb{R}$ is the Value Function of π . "Larger is better".

Markov Decision Problems

- Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- Alternative formulations
- 4. Applications
- 5. Policy Evaluation

Here are value functions from our example MDP.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$
RRR	4.45	6.55	10.82
RRB	-5.61	-5.75	-4.05
RBR	2.76	4.48	9.12
RBB	2.76	4.48	3.48
BRR	10.0	9.34	13.10
BRB	10.0	7.25	10.0
BBR	10.0	11 .0	14.45
BBB	10.0	11.0	10.0

• Here are value functions from our example MDP.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$
RRR	4.45	6.55	10.82
RRB	-5.61	-5.75	-4.05
RBR	2.76	4.48	9.12
RBB	2.76	4.48	3.48
BRR	10.0	9.34	13.10
BRB	10.0	7.25	10.0
BBR	10.0	11 .0	14.45
BBB	10.0	11.0	10.0

Which policy would you prefer?

• Here are value functions from our example MDP.

				•
π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$	
RRR	4.45	6.55	10.82	
RRB	-5.61	-5.75	-4.05	
RBR	2.76	4.48	9.12	
RBB	2.76	4.48	3.48	
BRR	10.0	9.34	13.10	
BRB	10.0	7.25	10.0	
BBR	10.0	11.0	14.45	← Optimal policy
BBB	10.0	11.0	10.0	

Which policy would you prefer?

Here are value functions from our example MDP.

π	$V^{\pi}(s_1)$	$V^{\pi}(s_2)$	$V^{\pi}(s_3)$	
RRR	4.45	6.55	10.82	-
RRB	-5.61	-5.75	-4.05	
RBR	2.76	4.48	9.12	
RBB	2.76	4.48	3.48	
BRR	10.0	9.34	13.10	
BRB	10.0	7.25	10.0	
BBR	10.0	11.0	14.45	← Optimal policy
BBB	10.0	11.0	10.0	

Which policy would you prefer?

Every MDP is guaranteed to have an optimal policy π^* s.t.

$$\forall \pi \in \Pi, \forall s \in S : V^{\pi^*}(s) \geq V^{\pi}(s).$$

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi$: $V^{\pi^*}(s) \geq V^{\pi}(s)$.

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi$: $V^{\pi^*}(s) \geq V^{\pi}(s)$.

 Every MDP is guaranteed to have a deterministic, Markovian, stationary optimal policy.

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi$: $V^{\pi^*}(s) \geq V^{\pi}(s)$.

- Every MDP is guaranteed to have a deterministic, Markovian, stationary optimal policy.
- An MDP can have more than one optimal policy.

MDP Planning problem: Given $M = (S, A, T, R, \gamma)$, find a policy π^* from the set of all policies Π such that $\forall s \in S, \forall \pi \in \Pi$: $V^{\pi^*}(s) \geq V^{\pi}(s)$.

- Every MDP is guaranteed to have a deterministic, Markovian, stationary optimal policy.
- An MDP can have more than one optimal policy.
- However, the value function of every optimal policy is the same, unique "optimal value function" V*.

Markov Decision Problems

- 1. Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation

$$T: S \times A \times S \rightarrow [0,1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

We had assumed

$$T: S \times A \times S \rightarrow [0, 1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

• You might encounter alternative definitions of R, T.

$$T: S \times A \times S \rightarrow [0, 1], R: S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}].$$

- You might encounter alternative definitions of R, T.
- Sometimes R(s, a, s') is taken as a random variable bounded in $[-R_{\text{max}}, R_{\text{max}}]$.

$$T: S \times A \times S \rightarrow [0,1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

- You might encounter alternative definitions of R, T.
- Sometimes R(s, a, s') is taken as a random variable bounded in $[-R_{\text{max}}, R_{\text{max}}]$.
- Sometimes there is a reward R(s, a) given on taking action a from state s, regardless of next state s'.

$$T: S \times A \times S \rightarrow [0,1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

- You might encounter alternative definitions of R, T.
- Sometimes R(s, a, s') is taken as a random variable bounded in $[-R_{\text{max}}, R_{\text{max}}]$.
- Sometimes there is a reward R(s, a) given on taking action a from state s, regardless of next state s'.
- Sometimes there is a reward R(s') given on reaching next state s', regardless of start state s' and action a.

$$T: S \times A \times S \rightarrow [0,1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

- You might encounter alternative definitions of R, T.
- Sometimes R(s, a, s') is taken as a random variable bounded in $[-R_{\text{max}}, R_{\text{max}}]$.
- Sometimes there is a reward R(s, a) given on taking action a from state s, regardless of next state s'.
- Sometimes there is a reward R(s') given on reaching next state s', regardless of start state s' and action a.
- Sometimes T and R are combined into a single function $\mathbb{P}\{s', r|s, a\}$ for $s' \in S, r \in [-R_{\text{max}}, R_{\text{max}}]$.

$$T: S \times A \times S \rightarrow [0,1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

- You might encounter alternative definitions of R, T.
- Sometimes R(s, a, s') is taken as a random variable bounded in $[-R_{\text{max}}, R_{\text{max}}]$.
- Sometimes there is a reward R(s, a) given on taking action a from state s, regardless of next state s'.
- Sometimes there is a reward R(s') given on reaching next state s', regardless of start state s' and action a.
- Sometimes T and R are combined into a single function $\mathbb{P}\{s', r|s, a\}$ for $s' \in S, r \in [-R_{\text{max}}, R_{\text{max}}]$.
- Some authors minimise cost rather than maximise reward.

$$T: S \times A \times S \rightarrow [0,1], R: S \times A \times S \rightarrow [-R_{max}, R_{max}].$$

- You might encounter alternative definitions of R, T.
- Sometimes R(s, a, s') is taken as a random variable bounded in $[-R_{\text{max}}, R_{\text{max}}]$.
- Sometimes there is a reward R(s, a) given on taking action a from state s, regardless of next state s'.
- Sometimes there is a reward R(s') given on reaching next state s', regardless of start state s' and action a.
- Sometimes T and R are combined into a single function $\mathbb{P}\{s', r|s, a\}$ for $s' \in S, r \in [-R_{\text{max}}, R_{\text{max}}]$.
- Some authors minimise cost rather than maximise reward.
- It is relatively straightforward to handle all these variations.

 We considered continuing tasks, in which trajectories are infinitely long.

- We considered continuing tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_{\top} from which there are no outgoing transitions on rewards.

- We considered continuing tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_{\top} from which there are no outgoing transitions on rewards.

- We considered continuing tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_{\top} from which there are no outgoing transitions on rewards.

 Additionally, from every non-terminal state and for every policy, there is a non-zero probability of reaching the terminal state in a finite number of steps.

- We considered continuing tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_{\top} from which there are no outgoing transitions on rewards.

- Additionally, from every non-terminal state and for every policy, there is a non-zero probability of reaching the terminal state in a finite number of steps.
- Hence, trajectories or episodes almost surely terminate after a finite number of steps.

• We defined $V^{\pi}(s)$ as an **Infinite discounted reward**:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s].$$

• We defined $V^{\pi}(s)$ as an **Infinite discounted reward**:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s].$$

There are other choices.

Total reward:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + r^{1} + r^{2} + \dots | s^{0} = s].$$

Can only be used on episodic tasks.

• We defined $V^{\pi}(s)$ as an **Infinite discounted reward**:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s].$$

There are other choices.

Total reward:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + r^{1} + r^{2} + \dots | s^{0} = s].$$

Can only be used on episodic tasks.

Finite horizon reward:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + r^{1} + r^{2} + \cdots + r^{T-1}|s^{0} = s].$$

Horizon $T \ge 1$ specified, rather than γ .

Optimal policies for this setting need not be stationary.

• We defined $V^{\pi}(s)$ as an **Infinite discounted reward**:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s].$$

There are other choices.

Total reward:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + r^{1} + r^{2} + \dots | s^{0} = s].$$

Can only be used on episodic tasks.

Finite horizon reward:

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + r^{1} + r^{2} + \cdots + r^{T-1}|s^{0} = s].$$

Horizon $T \ge 1$ specified, rather than γ .

Optimal policies for this setting need not be stationary.

Average reward (withholding some technical details):

$$V^{\pi}(s) \stackrel{ ext{ iny def}}{=} \mathbb{E}_{\pi}[\lim_{m o \infty} rac{r^0 + r^1 + \cdots + r^{m-1}}{m} | s^0 = s].$$

Markov Decision Problems

- Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation

Controlling a Helicopter (Ng et al., 2003)

• Episodic or continuing task? What are S, A, T, R, γ ?

[1]

^{1.} https://www.publicdomainpictures.net/pictures/20000/velka/police-helicopter-8712919948643Mk.jpg.

Succeeding at Chess

• Episodic or continuing task? What are S, A, T, R, γ ?

[1]

^{1.} https://www.publicdomainpictures.net/pictures/80000/velka/chess-board-and-pieces.jpg.

Preventing Forest Fires (Lauer et al., 2017)

• Episodic or continuing task? What are S, A, T, R, γ ?

[1]

^{1.} https://www.publicdomainpictures.net/pictures/270000/velka/firemen-1533752293Zsu.jpg.

A Familiar MDP?

- Single state. *k* actions.
- For $a \in A$, treat R(s, a, s') as a random variable.

Annotation: "probability, reward distribution".

A Familiar MDP?

- Single state. *k* actions.
- For $a \in A$, treat R(s, a, s') as a random variable.

Annotation: "probability, reward distribution".

Such an MDP is called a

A Familiar MDP?

- Single state. k actions.
- For $a \in A$, treat R(s, a, s') as a random variable.

Annotation: "probability, reward distribution".

Such an MDP is called a multi-armed bandit!

Markov Decision Problems

- Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- Alternative formulations
- 4. Applications
- Policy Evaluation

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s]$$

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s]$$

$$= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s']$$

$$egin{aligned} V^{\pi}(m{s}) &\stackrel{ ext{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | m{s}^{0} = m{s}] \ &= \sum_{m{s}' \in m{S}} T(m{s}, \pi(m{s}), m{s}') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | m{s}^{0} = m{s}, m{s}^{1} = m{s}'] \ &= \sum_{m{s}' \in m{S}} T(m{s}, \pi(m{s}), m{s}') \mathbb{E}_{\pi}[r^{0} | m{s}^{0} = m{s}, m{s}^{1} = m{s}'] \ &+ \gamma \sum_{m{s}' \in m{S}} T(m{s}, \pi(m{s}), m{s}') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | m{s}^{0} = m{s}, m{s}^{1} = m{s}'] \end{aligned}$$

$$\begin{split} V^{\pi}(s) &\stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s] \\ &= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s'] \\ &= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} | s^{0} = s, s^{1} = s'] \\ &+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{0} = s, s^{1} = s'] \\ &= \sum_{s' \in S} T(s, \pi(s), s') R(s, \pi(s), s') \\ &+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{1} = s'] \end{split}$$

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s]$$

$$= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s, s^{1} = s']$$

$$= \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{0} | s^{0} = s, s^{1} = s']$$

$$+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{0} = s, s^{1} = s']$$

$$= \sum_{s' \in S} T(s, \pi(s), s') R(s, \pi(s), s')$$

$$+ \gamma \sum_{s' \in S} T(s, \pi(s), s') \mathbb{E}_{\pi}[r^{1} + \gamma r^{2} + \dots | s^{1} = s']$$

$$= \sum_{s' \in S} T(s, \pi(s), s') \{R(s, \pi(s), s') + \gamma V^{\pi}(s')\}.$$

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

For $\pi \in \Pi$, $s \in S$:

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

• Recall that $S = \{s_1, s_2, ..., s_n\}$.

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}$.
- n equations, n unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \dots V^{\pi}(s_2)$.

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}.$
- n equations, n unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \dots V^{\pi}(s_2)$.
- Linear!

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}.$
- n equations, n unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \dots V^{\pi}(s_2)$.
- Linear!
- Guaranteed to have a unique solution if $\gamma < 1$.

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}.$
- n equations, n unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \dots V^{\pi}(s_2)$.
- Linear!
- Guaranteed to have a unique solution if γ < 1.
- If task is episodic, guaranteed to have a unique solution even if $\gamma = 1$, after we fix $V^{\pi}(s^{\top}) = 0$.

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left\{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \right\}.$$

- Recall that $S = \{s_1, s_2, ..., s_n\}.$
- n equations, n unknowns— $V^{\pi}(s_1), V^{\pi}(s_2), \dots V^{\pi}(s_2)$.
- Linear!
- Guaranteed to have a unique solution if $\gamma < 1$.
- If task is episodic, guaranteed to have a unique solution even if $\gamma = 1$, after we fix $V^{\pi}(s^{\top}) = 0$.
- Policy evaluation: computing V^{π} for a given policy π .

• We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .
- Can you put the two ideas together and construct an algorithm to find π^* ?

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .
- Can you put the two ideas together and construct an algorithm to find π^* ?
- Yes! Evaluate each policy and identify one that has a value function dominating all the others'.

- We claimed that among all the policies for a given MDP, there must be an optimal policy π^* .
- Now you know how to compute the value function of any given policy π .
- Can you put the two ideas together and construct an algorithm to find π^* ?
- Yes! Evaluate each policy and identify one that has a value function dominating all the others'.
- This approach needs $poly(n, k) \cdot k^n$ arithmetic operations. We hope to be more efficient (wait for next week).

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}[r^{0} + \gamma r^{1} + \gamma^{2} r^{2} + \dots | s^{0} = s; a^{0} = a; a^{t} = \pi(s^{t}) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

• Q^{π} needs $O(n^2k)$ operations to compute if V^{π} is available.

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) = \sum_{s' \in S} T(s,a,s') \{ R(s,a,s') + \gamma V^{\pi}(s') \}.$$

For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

- Q^{π} needs $O(n^2k)$ operations to compute if V^{π} is available.
- All optimal policies have the same action value function Q^* .

• For $\pi \in \Pi$, $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) \stackrel{\text{\tiny def}}{=} \mathbb{E}[r^0 + \gamma r^1 + \gamma^2 r^2 + \dots | s^0 = s; a^0 = a; a^t = \pi(s^t) \text{ for } t \geq 1].$$

 $Q^{\pi}(s, a)$ is the expected long-term reward from starting at s, taking a at t = 0, and following π for $t \ge 1$.

 $Q^{\pi}: S \times A \to \mathbb{R}$ is called the action value function of π .

Observe that Q^{π} satisfies, for $s \in S$, $a \in A$:

$$Q^{\pi}(s,a) = \sum_{s' \in S} T(s,a,s') \{ R(s,a,s') + \gamma V^{\pi}(s') \}.$$

For $\pi \in \Pi$, $s \in S$: $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$.

- Q^{π} needs $O(n^2k)$ operations to compute if V^{π} is available.
- All optimal policies have the same action value function Q^* .
- We will find use for Q^{π} and Q^{*} next week.

Markov Decision Problems

- Definitions
 - Markov Decision Problem
 - Policy
 - Value Function
- 2. MDP planning
- Alternative formulations
- 4. Applications
- Policy Evaluation