SGGS: conflict-driven first-order reasoning¹

Maria Paola Bonacina

Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy, EU

26th June 2018

¹Joint work with David Plaisted

Motivation: conflict-driven reasoning from PL to FOL

SGGS: model representation and FO clausal propagation

SGGS inferences: instance generation and conflict solving

Discussion

Logical methods for machine intelligence

- Theorem provers for higher-order (HO) reasoning
- Theorem provers for first-order (FO) reasoning
- Solvers for satisfiability modulo theories (SMT)
- Solvers for satisfiability in propositional logic (SAT)
- **....**
- ► Traditionally: HO provers supported by solvers
- Matryoshka: HO provers supported by FO provers

Motivation

- ▶ Objective: automated reasoning in first-order logic (FOL)
- Observation: Conflict-Driven Clause Learning (CDCL) played a key role in bringing SAT-solving from theoretical hardness to practical success

```
[Marques-Silva, Sakallah: ICCAD 1996, IEEE Trans. on Computers 1999], [Moskewicz, Madigan, Zhao, Zhang, Malik: DAC 2001] [Marques-Silva, Lynce, Malik: SAT Handbook 2009]
```

- Question: Can we lift CDCL to FOL?
- Answer: Semantically-Guided Goal-Sensitive (SGGS) reasoning

The big picture: conflict-driven reasoning

- ► For SAT: Conflict-Driven Clause Learning (CDCL)
- ► For several fragments of arithmetic: conflict-driven *T*-satisfiability procedures
- ► For SMT: Model Constructing Satisfiability (MCSAT) [Jovanović, de Moura: VMCAI 2013], [Jovanović, Barrett, de Moura: FMCAD 2013]
- For SMT with combination of theories and SMA:
 Conflict-Driven Satisfiability (CDSAT)
 [Bonacina, Graham-Lengrand, Shankar: CADE 2017, CPP 2018]
- For FOL: Semantically-Guided Goal-Sensitive (SGGS) reasoning

Model representation in FOL

- Clauses have universally quantified variables:
 - $\neg P(x) \lor R(x, g(x, y))$
- ▶ P(x) has infinitely many ground instances: P(a), P(f(a)), P(f(f(a))) ...
- Infinitely many interpretations where each ground instance is either true or false
- ▶ What do we guess?! How do we get started?!
- Answer: Semantic guidance

Semantic guidance

- ightharpoonup Take $\mathcal I$ with all positive ground literals true
- ▶ $\mathcal{I} \models S$: done! $\mathcal{I} \not\models S$: modify \mathcal{I} to satisfy S
- How? Flipping literals from positive to negative
- ▶ Flipping P(f(x)) flips P(f(a)), P(f(f(a))) ... at once, but not P(a)
- SGGS discovers which negative literals are needed
- ► Initial interpretation *I*: starting point in the search for a model and default interpretation

Uniform falsity

- ▶ Propositional logic: if P is true (e.g., it is in the trail), $\neg P$ is false; if P is false, $\neg P$ is true
- ▶ First-order logic: if P(x) is true, $\neg P(x)$ is false, but if P(x) is false, we only know that there is a ground instance P(t) such that P(t) is false and $\neg P(t)$ is true
- ▶ Uniform falsity: Literal L is uniformly false in an interpretation \mathcal{J} if all ground instances of L are false in \mathcal{J}
- ▶ If P(x) is true in \mathcal{J} , $\neg P(x)$ is uniformly false in \mathcal{J} If P(x) is uniformly false in \mathcal{J} , $\neg P(x)$ is true in \mathcal{J}

Truth and uniform falsity in the initial interpretation

- $ightharpoonup \mathcal{I}$ -true: true in \mathcal{I}
- $ightharpoonup \mathcal{I}$ -false: uniformly false in \mathcal{I}
- ▶ If L is \mathcal{I} -true, $\neg L$ is \mathcal{I} -false if L is \mathcal{I} -false, $\neg L$ is \mathcal{I} -true
- $ightharpoonup \mathcal{I}$ all negative: negative literals are \mathcal{I} -true, positive literals are \mathcal{I} -false
- ▶ \mathcal{I} all positive: positive literals are \mathcal{I} -true, negative literals are \mathcal{I} -false

SGGS clause sequence

- Γ: sequence of clauses
 Every literal in Γ is either *I*-true or *I*-false (invariant)
- ▶ SGGS-derivation: $\Gamma_0 \vdash \Gamma_1 \vdash \dots \vdash \Gamma_i \vdash \Gamma_{i+1} \vdash \dots$
- ▶ In every clause in Γ a literal is selected: $C = L_1 \lor L_2 \lor \ldots \lor L \lor \ldots \lor L_n$ denoted C[L]
- $ightharpoonup \mathcal{I} ext{-false}$ literals are preferred for selection (to change \mathcal{I})
- ► An *I*-true literal is selected only in a clause whose literals are all *I*-true: *I*-all-true clause

Examples

- ▶ I: all negative
- A sequence of unit clauses: $[P(a,x)], [P(b,y)], [\neg P(z,z)], [P(u,v)]$
- A sequence of non-unit clauses: $[P(x)], \neg P(f(y)) \lor [Q(y)], \neg P(f(z)) \lor \neg Q(g(z)) \lor [R(f(z), g(z))]$
- A sequence of constrained clauses: $[P(x)], top(y) \neq g \triangleright [Q(y)], z \not\equiv c \triangleright [Q(g(z))]$

Candidate partial model represented by Γ

- ▶ Get a partial model $\mathcal{I}^p(\Gamma)$ by consulting Γ from left to right
- ▶ Have each clause $C_k[L_k]$ contribute the ground instances of L_k that satisfy ground instances of C_k not satisfied thus far
- Such ground instances are called proper
- Literal selection in SGGS corresponds to decision in CDCL

Candidate partial model represented by Γ

- ▶ If Γ is empty, $\mathcal{I}^p(\Gamma)$ is empty
- ▶ $\Gamma|_{k-1}$: prefix of length k-1
- ▶ If $\Gamma = C_1[L_1], \ldots, C_i[L_k]$, and $\mathcal{I}^p(\Gamma|_{k-1})$ is the partial model represented by $C_1[L_1], \ldots, C_{k-1}[L_{k-1}]$, then $\mathcal{I}^p(\Gamma)$ is $\mathcal{I}^p(\Gamma|_{k-1})$ plus the ground instances $L_k\sigma$ such that
 - $C_k \sigma$ is ground
 - $ightharpoonup \mathcal{I}^p(\Gamma|_{k-1}) \not\models C_k \sigma$
 - $ightharpoonup \neg L_k \sigma \notin \mathcal{I}^p(\Gamma|_{k-1})$

 $L_k \sigma$ is a proper ground instance

Example

```
Sequence Γ: [P(a,x)], [P(b,y)], [¬P(z,z)], [P(u,v)]
Partial model I<sup>p</sup>(Γ):
I<sup>p</sup>(Γ) ⊨ P(a,t) for all ground terms t
I<sup>p</sup>(Γ) ⊨ P(b,t) for all ground terms t
```

 $\mathcal{I}^p(\Gamma) \models \neg P(t,t)$ for t other than a and b $\mathcal{I}^p(\Gamma) \models P(s,t)$ for all distinct ground terms s and t

Candidate model represented by Γ

Consult first $\mathcal{I}^p(\Gamma)$ then \mathcal{I} :

- ► Ground literal L
- ▶ Determine whether $\mathcal{I}[\Gamma] \models L$:
 - ▶ If $\mathcal{I}^p(\Gamma)$ determines the truth value of L: $\mathcal{I}[\Gamma] \models L$ iff $\mathcal{I}^p(\Gamma) \models L$
 - ▶ Otherwise: $\mathcal{I}[\Gamma] \models L$ iff $\mathcal{I} \models L$
- $ightharpoonup \mathcal{I}[\Gamma]$ is \mathcal{I} modified to satisfy the clauses in Γ by satisfying the proper ground instances of their selected literals
- ▶ *I*-false selected literals makes the difference

Example (continued)

- ▶ I: all negative
- ► Sequence Γ : $[P(a,x)], [P(b,y)], [\neg P(z,z)], [P(u,v)]$
- ▶ Represented model I[[]:
 - $\mathcal{I}[\Gamma] \models P(a,t)$ for all ground terms t
 - $\mathcal{I}[\Gamma] \models P(b,t)$ for all ground terms t
 - $\mathcal{I}[\Gamma] \models \neg P(t, t)$ for t other than a and b
 - $\mathcal{I}[\Gamma] \models P(s,t)$ for all distinct ground terms s and t
 - $\mathcal{I}[\Gamma] \not\models L$ for all other positive literals L

Disjoint prefix

The disjoint prefix $dp(\Gamma)$ of Γ is

- ▶ The longest prefix of Γ where every selected literal contributes to $\mathcal{I}[\Gamma]$ all its ground instances
- That is, where all ground instances are proper
- No two selected literals in the disjoint prefix intersect
- ▶ Intuitively, a polished portion of Γ

Examples

```
[P(a,x)], [P(b,y)], [\neg P(z,z)], [P(u,v)]: the disjoint prefix is [P(a,x)], [P(b,y)] [P(x)], \neg P(f(y)) \lor [Q(y)], \neg P(f(z)) \lor \neg Q(g(z)) \lor [R(f(z),g(z))]: the disjoint prefix is the whole sequence [P(x)], top(y) \neq g \rhd [Q(y)], z \not\equiv c \rhd [Q(g(z))]: the disjoint prefix is the whole sequence
```

First-order clausal propagation

- ▶ Consider literal M selected in clause C_j in Γ , and literal L in C_i , i > j:

 ..., ... \vee ... [M] ... \vee ..., ... \vee ... L ... \vee ..., ...

 If all ground instances of L appear negated among the proper ground instances of M, L is uniformly false in $\mathcal{I}[\Gamma]$
- ▶ L depends on M, like $\neg L$ depends on L in propositional clausal propagation when L is in the trail
- ▶ Since every literal in Γ is either \mathcal{I} -true or \mathcal{I} -false, M will be one and L the other

Example

- ▶ I: all negative
- ► Sequence **\Gamma**:

$$[P(x)], \neg P(f(y)) \lor [Q(y)], \neg P(f(z)) \lor \neg Q(g(z)) \lor [R(f(z), g(z))]$$

- $ightharpoonup \neg P(f(y))$ depends on [P(x)]
- $ightharpoonup \neg P(f(z))$ depends on [P(x)]
- ▶ $\neg Q(g(z))$ depends on [Q(y)]

First-order clausal propagation

Conflict clause:

$$L_1 \lor L_2 \lor \ldots \lor L_n$$
 all literals are uniformly false in $\mathcal{I}[\Gamma]$

Unit clause:

$$C = L_1 \lor L_2 \lor \ldots \lor L_j \lor \ldots \lor L_n$$

all literals but one (L_i) are uniformly false in $\mathcal{I}[\Gamma]$

▶ Implied literal: L_j with $C[L_j]$ as justification

Semantically-guided first-order clausal propagation

- ▶ SGGS employs assignments to keep track of the dependences of \mathcal{I} -true literals on selected \mathcal{I} -false literals
- ▶ An assigned literal is true in \mathcal{I} and uniformly false in $\mathcal{I}[\Gamma]$
- ► Non-selected *I*-true literals are assigned (invariant)
- ► Selected *I*-true literals are assigned if possible
- All justifications are in the disjoint prefix

How does SGGS build clause sequences?

- ► Inference rule: SGGS-extension
- ▶ $\mathcal{I}[\Gamma] \not\models C$ for some clause $C \in S$
- ▶ $\mathcal{I}[\Gamma] \not\models C'$ for some ground instance C' of C
- ▶ Then SGGS-extension uses Γ and C to generate a (possibly constrained) clause $A \triangleright E$ such that
 - ► E is an instance of C
 - ▶ C' is a ground instance of $A \triangleright E$

and adds it to Γ to get Γ'

How can a ground literal be false

```
\mathcal{I}[\Gamma] \not\models C' (C' ground instance of C \in S)
Each literal L of C' is false in \mathcal{I}[\Gamma]:
```

- Either L is I-true and it depends on an I-false selected literal in Γ
- ▶ Or L is \mathcal{I} -false and it depends on an \mathcal{I} -true selected literal in Γ
- ▶ Or L is \mathcal{I} -false and not interpreted by $\mathcal{I}^p(\Gamma)$

SGGS-extension

- ▶ Clause $C \in S$: main premise
- ▶ Unify literals $L_1, ..., L_n$ ($n \ge 1$) of C with \mathcal{I} -false selected literals $M_1, ..., M_n$ of opposite sign in $dp(\Gamma)$: most general unifier α
- ▶ Clauses where the M_1, \ldots, M_n are selected: side premises
- Generate instance $C\alpha$ called extension clause

SGGS-extension

- ▶ $L_1\alpha, ..., L_n\alpha$ are \mathcal{I} -true and all other literals of $C\alpha$ are \mathcal{I} -false
- ▶ $M_1, ..., M_n$ are the selected literals that make the \mathcal{I} -true literals of C' false in $\mathcal{I}[\Gamma]$
- Assign the \mathcal{I} -true literals of $C\alpha$ to the side premises
- ▶ $M_1, ..., M_n$ are \mathcal{I} -false but true in $\mathcal{I}[\Gamma]$: instance generation is guided by the current model $\mathcal{I}[\Gamma]$

Example

- ▶ S contains $\{P(a), \neg P(x) \lor Q(f(y)), \neg P(x) \lor \neg Q(z)\}$
- ▶ I: all negative
- ▶ Γ_0 is empty $\mathcal{I}[\Gamma_0] = \mathcal{I} \not\models P(a)$
- ▶ $\Gamma_1 = [P(a)]$ with α empty
- ► $\Gamma_2 = [P(a)], \neg P(a) \lor [Q(f(y))]$ with $\alpha = \{x \leftarrow a\}$

How can a ground clause be false

$\mathcal{I}[\Gamma] \not\models C'$:

- Either C' is *I*-all-true: all its literals depend on selected
 I-false literals in Γ;
 C' is instance of an *I*-all-true conflict clause
- Or C' has I-false literals and all of them depend on selected I-true literals in Γ;
 C' is instance of a non-I-all-true conflict clause
- ▶ Or C' has \mathcal{I} -false literals and at least one of them is not interpreted by $\mathcal{I}^p(\Gamma)$: C' is a proper ground instance of C

Three kinds of SGGS-extension

The extension clause is

- \blacktriangleright Either an \mathcal{I} -all-true conflict clause: need to solve the conflict
- ➤ Or a non-I-all-true conflict clause: need to explain and solve the conflict
- ▶ Or a clause that is not in conflict and extends $\mathcal{I}[\Gamma]$ into $\mathcal{I}[\Gamma']$ by adding the proper ground instances of its selected literal

Example (continued)

- ▶ S contains $\{P(a), \neg P(x) \lor Q(f(y)), \neg P(x) \lor \neg Q(z)\}$
- ▶ I: all negative
- After two non-conflicting SGGS-extensions: $\Gamma_2 = [P(a)], \neg P(a) \lor [Q(f(y))]$
- $ightharpoonup \mathcal{I}[\Gamma_2] \not\models \neg P(x) \lor \neg Q(z)$
- ▶ $\Gamma_3 = [P(a)], \neg P(a) \lor [Q(f(y))], \neg P(a) \lor [\neg Q(f(w))]$ with $\alpha = \{x \leftarrow a, z \leftarrow f(y)\}$ plus renaming
- ► Conflict! with *I*-all-true conflict clause

First-order conflict explanation: SGGS-resolution

- ▶ It resolves a non- \mathcal{I} -all-true conflict clause E with a justification D[M]
- ▶ The literals resolved upon are an \mathcal{I} -false literal L of E and the \mathcal{I} -true selected literal M that L depends on

Example of SGGS-Resolution

- ▶ I: all negative
- ightharpoonup $\Gamma \vdash \Gamma'$
- ► Γ : [P(x)], [Q(y)], $x \not\equiv c \rhd \neg P(f(x)) \lor \neg Q(g(x)) \lor [R(x)]$, $[\neg R(c)]$, $\neg P(f(c)) \lor \neg Q(g(c)) \lor [R(c)]$

First-order conflict explanation: SGGS-resolution

- Each resolvent is still a conflict clause and it replaces the previous conflict clause in Γ
- SGGS-resolution corresponds to resolution in CDCL
- It continues until all *I*-false literals in the conflict clause have been resolved away and it gets either □ or an *I*-all-true conflict clause
- ▶ If \Box arises, S is unsatisfiable

First-order conflict-solving: SGGS-move

- ▶ It moves the \mathcal{I} -all-true conflict clause E[L] to the left of the clause D[M] such that L depends on M
- ▶ It flips at once from false to true the truth value in $\mathcal{I}[\Gamma]$ of all ground instances of L
- ► The conflict is solved, L is implied, E[L] is satisfied, it becomes the justification of L and it enters the disjoint prefix
- SGGS-move corresponds to learn and backjump in CDCL

Example (continued)

- ▶ S contains $\{P(a), \neg P(x) \lor Q(f(y)), \neg P(x) \lor \neg Q(z)\}$
- ▶ I: all negative

$$\qquad \qquad \Gamma_3 = [P(a)], \ \neg P(a) \lor [Q(f(y))], \ \neg P(a) \lor [\neg Q(f(w))]$$

$$\qquad \qquad \Gamma_5 = [P(a)], \ \neg P(a) \lor [\neg Q(f(w))], \ [\neg P(a)]$$

$$ightharpoonup \Gamma_6 = [\neg P(a)], [P(a)], \neg P(a) \lor [\neg Q(f(w))]$$

$$ightharpoonup \Gamma_7 = [\neg P(a)], \ \Box, \ \neg P(a) \lor [\neg Q(f(w))]$$

Refutation!

Further elements

- ► There's more to SGGS: first-order literals may intersect having ground instances with the same atom
- SGGS uses partitioning inference rules to partition clauses and isolate intersections that can then be removed by SGGS-resolution (different sign) or SGGS-deletion (same sign)
- ▶ Partitioning introduces constraints that are a kind of Herbrand constraints (e.g., $x \not\equiv y \triangleright P(x,y)$, $top(y) \neq g \triangleright Q(y)$)
- ▶ SGGS-deletion removes $C_k[L_k]$ satisfied by $\mathcal{I}^p(\Gamma|_{k-1})$: model-based redundancy

SGGS makes progress: fairness

- ▶ If $\mathcal{I}[\Gamma] \not\models C$ for some clause $C \in S$ and $\Gamma = dp(\Gamma)$, SGGS-extension applies to Γ
- ▶ If $\Gamma \neq dp(\Gamma)$, an SGGS inference rule other than SGGS-extension applies to Γ
- Every conflicting SGGS-extension is bundled with explanation by SGGS-resolution and conflict solving by SGGS-move
- ► Fairness also ensures that the procedure does not ignore inferences on shorter prefixes to work on longer ones

SGGS: Semantically-Guided Goal-Sensitive reasoning

- ► SGGS lifts CDCL to first-order logic (FOL)
- S: input set of clauses
- ► Refutationally complete: if *S* is unsatisfiable, SGGS generates a refutation
- ► Model-complete: if *S* is satisfiable, the limit of the derivation (which may be infinite) is a model

Initial interpretation ${\cal I}$

- All negative (as in positive hyperresolution)
- All positive (as in negative hyperresolution)
- Goal-sensitive interpretation:
 - ▶ $S = T \uplus SOS$ where SOS contains the clauses in the clausal form of the negation of the conjecture
 - ▶ $S = T \uplus SOS$ where T is the largest consistent subset
 - If $\mathcal{I} \not\models SOS$ and $\mathcal{I} \models T$ then SGGS is goal-sensitive: all generated clauses deduced from SOS
- $ightharpoonup \mathcal{I}$ satisfies the axioms of a theory \mathcal{T}

Current and future work

- Implementation of SGGS: algorithms and strategies
- Heuristic choices: literal selection, assignments
- Simpler SGGS? More contraction?
- Extension to equality
- Initial interpretations not based on sign
- ► SGGS for decision procedures for decidable fragments
- SGGS for FOL model building

References for SGGS

- Semantically-guided goal-sensitive reasoning: inference system and completeness. *Journal of Automated Reasoning*, 59(2):165–218, August 2017.
- ► Semantically-guided goal-sensitive reasoning: model representation. Journal of Automated Reasoning 56(2):113–141, February 2016.
- ► SGGS theorem proving: an exposition. 4th Workshop on Practical Aspects in Automated Reasoning (PAAR), Vienna, July 2014. EPiC 31:25-38, July 2015.
- Constraint manipulation in SGGS. 28th Workshop on Unification (UNIF), Vienna, July 2014. TR 14-06, RISC, 47-54, 2014.

Outline
Motivation: conflict-driven reasoning from PL to FOL
SGGS: model representation and FO clausal propagation
SGGS inferences: instance generation and conflict solving
Discussion

Thanks

Thank you!