Cadenas de Markov Cadenas de Markov de Monte Carlo

Mauricio Junca

Noviembre de 2023

Mapa aleatorio de representación

Un **mapa aleatorio de representación** de una cadena con matriz de transición P es una función $f: \mathbb{X} \times \Lambda \to \mathbb{X}$, junto con una variable aleatoria Z que toma valores en Λ , tal que para todo $x,y\in \mathbb{X}$ se tiene que

$$\mathbf{P}(f(x,Z)=y)=P(x,y).$$

Ahora, si tomamos una sucesión i.i.d Z_1, Z_2, \ldots con la misma distribución de Z, y X_0 con distribución μ e independiente de las Z's, podemos construir la cadena de Markov así:

$$X_t = f(X_{t-1}, Z_t).$$

Notemos que la propiedad de Markov se sigue del hecho de que Z_{t+1} es independiente de X_0 y Z_1, \ldots, Z_t , y por lo tanto de X_0, \ldots, X_t .

Mapa aleatorio de representación

Construyamos ahora un mapa aleatorio de representación, para esto notamos $\mathbb{X}=\{x_0,x_1,\ldots\}$, y tomamos $\Lambda=[0,1]$ y Z variable uniforme sobre Λ . Para $i,j\in\mathbb{N}$, definimos $F_{i,j}=\sum\limits_{k=0}^{j}P(x_i,x_k)$ y

$$f(x_i,z)=x_j\quad \text{si }z\in (F_{i,j-1},F_{i,j}],$$

luego

$$\mathbf{P}(f(x_i, Z) = x_j) = \mathbf{P}(Z \in (F_{i,j-1}, F_{i,j}]) = P(x_i, x_j).$$

La construcción anterior nos da una forma de simular cualquier cadena de Markov. Notemos que los mapas aleatorios de representación no son únicos y es posible encontrar formas más eficientes de simulación en varias ocasiones.

Supongamos ahora que queremos generar una muestra aleatoria con distribución π sobre un conjunto finito \mathbb{X} , pero posiblemente muy grande y del cual ni siguiera sabemos su tamaño. Por ejemplo, considere G = (V, E) un grafo no dirigido y $q \in \mathbb{N}$, \mathbb{X} puede ser el conjunto de q-coloraciones de G, es decir, asignaciones $c: V \to \{1, 2, \dots, q\}$ tal que si $x \sim y$, entonces $c(x) \neq c(y)$, y π puede ser la distribución uniforme sobre X. Una posibilidad para lograr esta muestra aleatoria es construir una cadena de Markov sobre $\mathbb X$ de tal forma que π sea estacionaria para la cadena. Como veremos más adelante, bajo ciertas hipótesis, se tiene que después de cierto tiempo $\mu_t \approx \pi$, sin importar la distribución inicial de la cadena.

Cadenas de Metrópolis

Sea $\mathbb X$ finito y Ψ una matriz de transición irreducible. Queremos modificar Ψ y encontrar una matriz P que tengo a la distribución objetivo π como estacionaria. Consideremos la siguiente dinámica: Cuando la cadena está en x se selecciona y con probabilidad $\Psi(x,y)$ y se acepta este estado con probabilidad a(x,y), en cuyo caso la cadena pasa al estado y, o se rechaza con probabilidad 1-a(x,y) y en este caso la cadena permanece en x. Definimos entonces

$$P(x,y) = \begin{cases} \Psi(x,y)a(x,y) & \text{si } y \neq x \\ 1 - \sum\limits_{z \neq x} \Psi(x,z)a(x,z) & \text{si } y = x. \end{cases}$$

Cadenas de Metrópolis

La forma de escoger las probabilidades de aceptación/rechazo va a depender de la distribución π y una forma de hacerlo es que P y π satisfagan las ecuaciones de balance detallado, esto es, para $x \neq y$ tales que $\Psi(x,y)>0$,

$$\pi(x)P(x,y) = \pi(x)\Psi(x,y)a(x,y) = \pi(y)\Psi(y,x)a(y,x) = \pi(y)P(y,x),$$

luego $a(x,y) = a(y,x) \frac{\pi(y)\Psi(y,x)}{\pi(x)\Psi(x,y)} \le \frac{\Psi(y,x)\pi(y)}{\Psi(x,y)\pi(x)} \land 1$, pues son probabilidades.

Cadenas de Metrópolis

Ahora, valores pequeños de a(x,y) hace que la cadena evolucione muy lentamente y sea ineficiente para la simulación, luego la **cadena de Metrópolis** está dada por

$$P(x,y) = \begin{cases} \Psi(x,y) \left(\frac{\pi(y)\Psi(y,x)}{\pi(x)\Psi(x,y)} \wedge 1 \right) & \text{si } y \neq x \\ 1 - \sum_{z \neq x} \Psi(x,z) \left(\frac{\pi(z)\Psi(z,x)}{\pi(x)\Psi(x,z)} \wedge 1 \right) & \text{si } y = x. \end{cases}$$

Supongamos que tenemos un grafo G=(V,E) del cual no conocemos exactamente su tamaño ni la cantidad de aristas, pero dado un vértice x podemos conocer sus vecinos, es decir, tenemos solo información local del grafo. Queremos generar una muestra uniforme sobre V, luego $\pi(x)=\pi(y)$ para todo $x,y\in V$, aunque no sabemos cuál es su valor. Así, si $x\sim y$, la matriz de transición dada por

$$P(x,y) = \frac{1}{\deg(x)} \left(\frac{\deg(x)}{\deg(y)} \land 1 \right) = \frac{1}{\deg(y)} \land \frac{1}{\deg(x)}$$

tiene la distribución uniforme como estacionaria.

Supongamos que tenemos un grafo regular G=(V,E), es decir, todo nodo tiene el mismo grado, y una función $f:V\to\mathbb{R}$, el objetivo es encontrar los vértices donde se maximiza esta función. Un primera opción es, dado un vértice del grafo, explorar los vecinos y moverse a un vecino si tiene un valor de la función estrictamente mayor. Este procedimiento puede estancarse en máximos locales, para evitar esto se pueden escoger vértices con valores de f más bajos con poca probabilidad, así dado $\lambda>1$ definimos la distribución

$$\pi(x) = \frac{\lambda^{f(x)}}{Z(\lambda)},$$

donde $Z(\lambda)$ es la constante de normalización, la cual no es necesario conocerla.

Como el grafo es regular, la caminata aleatoria sobre G es simétrica, luego Ψ es una matriz simétrica, y tenemos que si $x \sim y$ con f(y) < f(x) la cadena de Metrópolis acepta el paso de x a y con probabilidad $\lambda^{f(y)-f(x)}$. Se puede mostrar que si $\lambda \to \infty$ se obtiene el proceso descrito inicialmente, es decir, que solo se puede pasar a vértices con valor de f mayor. Cómo escoger el parámetro λ es parte esencial para la velocidad y convergencia del método.

Dinámica de Glauber

La dinámica de Glauber o el *Gibbs sampler* es una cadena de Markov donde el espacio de estados $\mathbb X$ es un subconjunto de **configuraciones** sobre un grafo G=(V,E) dado, esto es, un subconjunto de $S^V=\{f:V\to S\}$, donde S es un conjunto finito. Un ejemplo son las q-coloraciones que son un subconjunto de $\{1,\ldots,q\}^V$. Dada una distribución π sobre $\mathbb X\subset S^V$, la dinámica de Glauber es una cadena reversible con π como distribución estacionaria y probabilidades de transición de la siguiente forma:

Dinámica de Glauber

Dada una configuración $f \in X$

- ▶ Escogemos uniformemente un vértice $x \in V$.
- ▶ Definimos el conjunto $\mathbb{X}(f,x) = \{g \in \mathbb{X} : g(y) = f(y), \forall y \neq x\}$, el conjunto de configuraciones en \mathbb{X} que coinciden con f en todo los vértices distintos a x.
- Escogemos $g \in \mathbb{X}(f,x)$ de acuerdo a la distribución $\frac{\pi(g)}{\pi(\mathbb{X}(f,x))}$.

De lo anterior tenemos que
$$P(f,g) = \frac{1}{|V|} \sum_{x \in V} \frac{\pi(g)}{\pi(\mathbb{X}(f,x))} \mathbb{1}_{g \in \mathbb{X}(f,x)}$$
.

Ejercicio

3.2 de [LP]

Volvamos al caso de las q-coloraciones, vamos a describir la dinámica de Glauber cuando π es la distribución uniforme. Empezamos por describir el conjunto $\mathbb{X}(c,x)$ para una coloración $c \in \mathbb{X}$ y un vértice $x \in V$, y para esto definimos el conjunto $fact(c,x) = \{1,\ldots,q\} \setminus \{c(y):y\sim x\}$, esto es, el conjunto de colores factibles para el vértice x con la coloración c. Así que, dada una coloración c, escogemos un vértice x uniformemente, escogemos un color x0 uniformemente del conjunto x1 y se define x2 define x3.

Otro ejemplo importante es el modelo de Ising. Sea G=(V,E) y $\mathbb{X}=\{-1,1\}^V$, dada un configuración $\sigma\in\mathbb{X}$ definimos su energía como:

$$H(\sigma) = -\sum_{x \sim y} \sigma(x)\sigma(y).$$

Se puede ver que la energía disminuye cuando vértices adyacentes tienen el mismo *spin*. Vamos a construir la dinámica de Glauber que tenga como distribución estacionaria a la distribución de Gibbs dada por

$$\mu(\sigma) = \frac{e^{-\beta H(\sigma)}}{Z(\beta)},$$

con $\beta \ge 0$ y $Z(\beta)$ la constante de normalización.

Notemos que para $\beta=0$ la distribución de Gibbs es la uniforme y por tanto las variables $\{\sigma(x)\}_{x\in V}$ son independientes. Cuando β aumenta, la distribución de Gibbs se va concentrando en configuraciones con poca energía. Ahora, dada una configuración σ y un vértice $x\in V$ denotamos por $S(\sigma,x)=\sum\limits_{y\sim x}\sigma(y)$ y notemos

que $|\mathbb{X}(\sigma,x)|=2$, cuando el valor en x es +1 y cuando es -1, así que la probabilidad de escoger el valor -1 está dado por

$$\frac{e^{-\beta S(\sigma,x)}}{e^{-\beta S(\sigma,x)}+e^{\beta S(\sigma,x)}}.$$