ECE227 HW1

1. 9!/2! + 12!/2! = 102

2.

For such a rhombus, the diameter is determined by the distance between the diagonal vertices. In each side of thombus we have k nodes. The path from one vertex to another can be understand as crossing 2 edges of the rhombus, which means passing k-1+k-1=2k-2 nodes. And thus we get $2\sqrt{n}-2$, close to $2\sqrt{n}$, as diameter.

3. a.

	1	2	3	4	5
1	0	1	0	0	1
2	0	0	1	0	0
3	1	0	0	0	0
4	1	0	0	0	1
5	0	0	1	1	0

b. $1 \rightarrow 2 \rightarrow 5$

$$2 \rightarrow 3$$

$$3 \rightarrow 1$$

$$4 \rightarrow 1 \rightarrow 5$$

$$5 \rightarrow 3 \rightarrow 4$$

4. Scenario 1: When n=1 and 2, we let N=3 where (N+1-n) out of N edges are self-connected edges. Therefore each node connects to (n-1) other nodes and (N+1-n) times to itself, (n-1) + (N+1-n) = N = 3 nodes in total, and they are all inter-connected. Thus clustering coefficient is 1.

Scenario 2: When $n \ge 3$, that is when N>3, we let n = 3k+t where t=0, 1, or 2. We construct a graph that consists of k separated triangles and t nodes. If t=0, the graph is simply k independent triangles; otherwise, we treat that t nodes in a same way as in scenario 1, which is drawing 3 edges, including self-connected edges. In this way, the total edges of the graph is 3k+3 or 3k = O(N). In each triangle, all 3 nodes are interconnected, so each of them has a clustering coefficient as 1. For the t nodes aside, according to scenario 1, they can have clustering coefficients as 1 with respect to self-connected edges.

5. a. the graph has $\binom{n}{3}$ sets of triangle vertices (with or without edges). To form a triangle, all 3 edges should occur, with a probability of p^3. The number of expected triangles is $\binom{n}{3}*p^3=\binom{n}{3}*(\frac{c}{n-1})^3=(\frac{c^3}{6})*(\frac{n^2-2n}{n^2-2n+1})$. When n is very large, $\frac{n^2-2n}{n^2-2n+1}\approx 1$. Therefore we get $\frac{c^3}{6}$. b. To form a connected triple, 2 edges should occur. $3*\binom{n}{3}*p^2=(\frac{c^2}{2})*$

 $(\frac{n(n-2)}{n-1})$. When n is large, $\frac{n(n-2)}{n-1} \approx 1$. Thus we get $\frac{1}{2}nc^2$.

c. Cl(G) = $3*\frac{c^3}{6}/\frac{1}{2}nc^2$ = $\frac{c}{n}$, when n is large n \approx n-1, $CI(G) = \frac{c}{n-1} \approx p$