Signali i sustavi

Ponovljeni završni ispit - 3. srpnja 2007.

- 1. Diskretni kauzalni LTI sustav opisan je jednadžbom y(n) 0.5y(n-1) = u(n).
 - a) Odredite prisilni odziv ako je pobuda $u(n) = 2\sin(n\pi/2) + 3\sin(n\pi + 0.1\pi)$.
 - b) Izračunajte i skicirajte amplitudnu i faznu karakteristiku sustava.
- 2. Prijenosna funkcija kauzalnog diskretnog LTI sustava je

$$H(z) = \frac{z^3}{(z - \frac{1}{2})(z + \frac{1}{2})(z - \frac{3}{4})}.$$

Odredite matrice **A**, **B**, **C** i **D** kaskadne realizacije. Redoslijed sekcija kaskade neka bude prema redoslijedu polova, $z_1 = \frac{1}{2}, z_2 = -\frac{1}{2}$ i $z_3 = \frac{3}{4}$.

3. Kontinuirani sustav s više ulaza i izlaza (MIMO) opisan je matricama

$$\mathbf{A} = \begin{bmatrix} 0 & -4 \\ -4 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{i} \quad \mathbf{D} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

- a) Odredite prijenosnu matricu sustava.
- b) Odredite matricu impulsnog odziva sustava.
- c) Odredite odziv na pobudu $\mathbf{u}(t) = \begin{bmatrix} 4 \,\mu(t) \\ \delta(t) \end{bmatrix}$
- 4. Na slici je prikazan složeni diskretni kauzalni LTI sustav. Ako je odziv cijelog sustava na jedinični skok $\mu(n)$ signal $y(n) = \{\frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \frac{3}{8}, \dots\}$ i ako znate da je impulsni odziv drugog sustava $h_2(n) = \frac{1}{2}(-\frac{1}{2})^n + \frac{1}{2}(\frac{1}{2})^n$, $n \ge 0$ odredite prijenosnu funkciju prvog podsustava $H_1(z)$!

- 5. Zadan je signal $x(t) = e^{2t} \mu(-t)$.
 - a) Nađite Fourierovu transformaciju zadanog signala.
 - b) Nacrtajte amplitudni i fazni spektar.
 - c) Odredite energiju signala u vremenskoj domeni.
 - d) Odredite energiju signala u frekvencijskoj domeni korištenjem Parsevalove jednakosti.