Well-Ordering and Induction

Written by Hosein Rahnama

Axiom 1. Every nonempty subset S of the natural numbers \mathbb{N} has a minimum. This is called the well-ordering principle.

Axiom 2. Let S be a subset of \mathbb{N} such that $1 \in S$ and $n \in S$ implies that $n + 1 \in S$. Then S is equal to \mathbb{N} . This is called the induction principle.

Theorem 1. The well-ordering principle is equivalent to the induction principle.

Proof. Both proofs are by contradiction. First, let us show that the well-ordering principle implies the induction principle. Let S be a subset of $\mathbb N$ such that $1 \in S$ and $n \in S$ implies that $n+1 \in S$. We want to prove that $S = \mathbb N$. Suppose that it is not true then the complement of S defined as $T = \mathbb N - S$ is nonempty, and by the well-ordering principle has a minimum $t_{\min} \in T$. Since $1 \notin T$ then $1 < t_{\min}$ and $t_{\min} - 1 \in \mathbb N$. Furthermore, $t_{\min} - 1 < t_{\min}$ which implies that $t_{\min} - 1 \notin T$ since for every $t \in T$ we have $t_{\min} \le t$. Consequently, $t_{\min} - 1$ should belong to the complement of T which is $\mathbb N - T = \mathbb N - (\mathbb N - S) = S$ so $t_{\min} - 1 \in S$. The inductive property of S tell us that $(t_{\min} - 1) + 1 = t_{\min} \in S$, which is in contradiction with $t_{\min} \in T$ and we should have $S - \mathbb N$