NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

> JAN 15 924 MAILED

TO: Juscatt

TECHNICAL NOTES

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

No. 175

TESTS ON A MODEL OF THE D AIRPLANE T 39 OF THE "DEUTSCHE FLUGZEUG WERKE" (GERMAN AIRPLANE WORKS).

By Wilhelm Molthan.

From Technische Berichte, Volume III, No.7.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

TECHNICAL NOTE NO. 175.

TESTS ON A MODEL OF THE D AIRPLANE T 39 OF THE "DEUTSCHE FLUGZEUG WERKE" (GERMAN AIRPLANE WORKS).*

By Wilhelm Molthan.

Experiments similar to those carried out with the A.E.G. (Allgemeine Elektrizitats-Gesellschaft) DI airplane** were made in the small wind tunnel of the Göttingen laboratory on a model of the D.F.W. airplane T.29.

The model, which is shown in Figure 1, was built on the same plan as that of the A.E.G. DI model, except that the steel rod forming the front wing spar was, of necessity, somewhat lighter. This was, however, offset by the introduction of a rear spar, also made of steel, so that sufficient strength was obtained when the spaces between the sheet metal ribs were filled in. The scale of the model was 1/17, in order to correspond to the dimensions of the wind tunnel.

Three series of tests were carried out on the model with a velocity head (or dynamic pressure) of 5 kg/m^2 (1.02 lb/ft²), during which one of the movable surfaces was deflected at various angles, while both the others were retained in their central positions.

^{*} From Technische Berichte, Vol. III, No.7, pp. 253-260.
(23d report of the Göttingen Aerodynamical Institute.)

** See Technische Berichte, Vol. III, No.2, p.30.

The horizontal stabilizer was set, in all these tests, at a positive angle of 1.50 to the engine crankshaft axis.

The forces and moments are indicated by their coefficients, as in the case of the A.E.G. model, and the portion cut out of the lower plane by the fuselage (60 cm² - 9.3 in²), has been restored to the main supporting surface. The area of the main supporting surface is 1515 cm²(234.83 in²). The moments are referred to this surface and to the maximum chord (10.3 cm - 4.06 in) of the upper wing. The following three axes, at right angles to one another through the center of gravity, have been chosen as axes for the moments, in the same manner as in previous tests.*

The axis of the pitching moment is at right angles to the plane of symmetry and is positive to the left. The axis of the rolling moment is parallel to the engine crankshaft and is positive rearward. The axis of the yawing moment is at right angles to the two above and is positive in an upward direction. The moments are reckoned as positive when the direction of turning is clockwise, as viewed in the direction of the positive axis. A positive pitching moment therefore tends to raise the tail of the airplane and a positive rolling moment tends to raise the right wing, while a positive yawing moment tends to force the tail to the right. The center of gravity, in accordance with the dimensions shown in Figure 1, is in the plane of

^{*} This information is not given in the report on the A.E.G. model, since it was given in another report that should have preceded it but which has not vet been published.

symmetry of the model, 0.3 cm (.118 in) above the axis of the engine crankshaft and 12.3 cm (4.84 in) behind the nose of the fuselage.

The forces and moments are shown in exactly the same way as for the A.E.G. model in Figures 2 to 7. The angular deflections of the elevator and rudder are reckoned from the mean plane of the corresponding fixed surfaces and that of the ailerons from the direction of the chord of the upper wing.

Of special interest among the results of the tests is the different run of the elevating moments. The curves for the A.E.G. model, rising to the right, denote stability with the elevator locked, while the slight inclination to the left with the D.F.W. model denotes a slight instability. For the maximum CL values, the stability of the A.E.G. model continues to increase and the instability of the D.F.W. model is converted into stability. The rolling moments shown when the angular deflection of the ailerons is OO, are due in both series of tests, to the unequal distribution of the air velocity over the cross-section of the wind tunnel, rather than to lack of symmetry in the model.

Table 1. Elevator Deflection.

A	j	T ====================================	1 0	1 0	
Angle of <u>attack</u>	Lg	D _g	$^{\mathrm{C}}^{\mathrm{L}}$	$^{\mathrm{C}}\mathrm{D}$	C _m
Eleva	tor 0°	Ruc	lder 00	Ail	eron 0°
-90 -6.5 -3.5 -01.34.6 912	-86 116 201 290 366 452 522 606 677 752 872 911	65.0 48.3 44.9 46.0 51.5 68.4 79.6 124.2 179.2	-11.3 15.3 26.5 38.2 48.4 59.6 68.9 79.9 89.1 99.2 115.0 120.2	8.60 6.38 5.92 5.79 6.82 7.71 9.02 10.4 12.2 16.4 23.6	-2.7 -3.0 -3.8 -4.8 -5.8 -6.6 -4.7 0.3
Elevat	tor 5°	· Rud	der O ^O	Aile	ron 0 ⁰
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 9 12	-76 122 211 299 374 456 530 612 690 764 880 916	64.7 47.5 43.8 44.0 46.2 51.1 58.9 69.6 80.4 93.8 126.4 185.0	-10.0 16.1 28.8 39.5 49.3 60.0 70.0 80.7 91.0 101.0 116.5 121.0	8.55 6.26 5.78 5.80 6.07 6.73 7.76 9.17 10.6 12.4 16.7 24.3	0.0 -1.0 -0.3 -1.5 -2.9 -2.5 -3.6 -3.2 -0.8 8.7

Table 1. Elevator Deflection (Cont.)

Angle of attack	Lg	Dg	C ^L	c_{D}	C _m
	vator 10°	 	der 0°	Ail	eron O ^O
-9° -6.5 -4.5 -1.5 0.5 4.6 9 12	-72 135 214 308 382 470 541 628 700 770 883 933	64.1 47.0 43.5 44.2 47.8 53.3 60.2 70.5 83.2 96.6 129.6	-9.4 17.8 28.2 40.7 50.6 62.1 71.5 82.9 92.5 102.0 116.7 123.4	8.47 6.21 5.75 5.83 6.32 7.05 7.95 9.31 11.0 12.8 17.1 25.3	3.7 4.2 2.6 1.8 2.1 1.3 0.9 1.7 -0.2 1.1 6.1
Elev	ator 150	Rud	der 00	Ail	eron 0º
-9° -6.5 -1.5 -1.5 -1.5 -1.5 -1.5	-62 138 218 310 384 473 544 626 704 776 888 930	62.9 47.1 44.8 44.4 47.7 54.2 61.9 71.5 83.5 98.2 122.7 190.6	-8.3 18.2 28.9 41.0 50.7 62.4 72.0 82.7 93.1 102.3 117.0 122.6	8.30 6.25 5.91 5.87 6.30 7.17 8.18 9.43 11.0 13.0 16.2 25.2	5.1 4.7 4.0 3.2 3.8 2.7 2.6 8.9 3.4 9.3
Eleva	ator 20 ⁰	Rudo	ier 0 ⁰	Aile	eron 0°
-9° -6.5 -3.5 -1.5 -5.5 -5.5 9	-48 154 236 331 406 490 560 650 716 796 912	64.4 50.0 49.4 48.6 51.9 57.9 65.8 77.6 89.1 104.8 138.2	-6.4 20.4 31.1 43.6 53.6 65.4 73.7 85.6 94.5 105.0	8.49 6.60 6.50 6.40 6.85 7.63 8.66 10.2 11.8 13.8	9.4 8.9 9.1 7.7 6.8 9.4 7.5 6.8 7.5

Table 1. Elevator Deflection (Cont.)

Angle of attack	Lg	Dg	O.T.	c_{D}	C _m
Eleva	tor 25°;	Rudd	er 0°	Aile	ron 0°
-9° -6 -4.5 -3 5 0 1.5 4.5 6	-33 160 245 335 412 498 570 652 726 799 910	67.3 51.1 49.3 50.8 54.2 61.1 69.8 81.6 94.0 103.8 142.2	-4.4 21.1 32.4 44.3 54.5 66.0 75.0 86.0 106.0	8.88 6.75 6.50 6.71 7.15 8.06 9.21 10.8 12.4 14.4 18.8	11.8 11.5 10.6 10.2 9.4 8.9 9.4 8.5 8.1 7.6
Eleva	tor 30°.	Rudd	er 0°	Ailer	on O ^O
9° -6.5 -3.5 -01.5 4.6 9	-33 169 254 340 423 511 580 658 730 799 902	69.1 55.1 53.7 55.4 60.0 67.4 76.3 88.8 101.5 114.0 145.0	-4.4 22.3 33.6 45.0 55.8 67.5 76.5 87.0 96.4 105.6 119.1	9.12 7.28 7.09 7.31 7.93 8.90 10.1 11.7 13.4 15.1	13.8 14.0 12.8 13.1 12.5 12.6 12.9 11.1 10.1 7.9 6.6
Eleva	tor -5°	Rudd	er 0 ⁰	Ailer	on OO
-9° -6.5 -3.5 -1.5 -3.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1	-96 104 189 278 352 438 514 594 668 744 860 904	68.3 50.2 47.0 46.1 48.2 52.8 59.5 69.4 80.2 93.7 125.1	-12.5 13.8 24.9 36.6 46.4 57.7 67.7 78.2 87.8 98.0 113.0 119.0	9.01 6.62 6.20 6.36 6.96 7.84 9.15 10.6 12.3 16.5 24.1	-5.8 -6.1 -7.7 -8.9 -9.0 -9.3 -9.3 -9.3

Table 1. Elevator Deflection (Cont.)

Angle of attack	Lg	Dg	C _L	$c^{\mathbb{D}}$	C _m
	ator-10°	Rud	der 0°	Ail	eron 0°
90 -6.5 -3.5 -0.3 -0.3 46 92	-103 100 184 274 346 435 507 590 664 741 857 900	71.2 51.7 48.4 47.3 48.6 53.4 59.8 69.3 79.7 92.4 124.0 182.9	-13.6 13.2 24.4 36.1 45.8 57.5 67.0 78.0 88.0 98.0 113.0	9.40 6.82 6.39 6.43 7.05 7.90 9.25 10.5 12.2 16.4 24.1	-7.0 -8.0 -9.4 -9.7 -10.2 -11.8 -11.6 -11.8 -11.6 -5.0
Eleva	ator-15 ⁰	Rud	der O ^O	Ail	eron 0°
-9° -6,5 -3,5 -1,5 -1,5 -3,6 912	-112 86 170 258 332 420 497 578 649 725 844 894	74.8 56.7 52.1 50.4 51.7 56.1 63.0 71.5 81.1 93.6 123.6 179.8	-14.9 11.4 22.5 34.1 43.9 55.6 65.8 76.3 85.8 96.0 111.9 118.2	9.90 7.50 6.80 6.68 6.82 7.42 8.33 9.48 10.7 12.4 16.4 23.7	-11.0 -12.6 -13.2 -15.4 -15.0 -14.5 -14.8 -15.7 -15.8 -15.6 -14.1 -7.5
Eleva	ator-20°	Rud	der 00	Ail	eron 0°
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	-117 72 158 244 321 404 473 556 630 705 824 888	81.4 62.8 56.5 57.7 60.5 65.8 75.0 83.9 95.6 123.7 176.5	-15.5 9.6 20.0 32.1 42.5 53.2 62.4 73.4 83.2 93.1 108.8 117.2	10.9 8.30 7.70 7.48 7.61 8.00 8.69 9.91 11.1 12.6 16.4 23.4	-14.2 -15.0 -16.2 -16.8 -17.7 -17.8 -18.2 -19.6 -19.5 -21.4 -19.9 -8.1

Table 1. Elevator Deflection (Cont.)

Angle of attack	Lg	Dg	C _L ,	СD	Cm
	or-25 ⁰	Rudo	ler O ^O	Aile	ron 0°
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 9 12	-125 74 156 243 314 396 472 552 624 700 815 876	83.3 63.3 59.7 58.6 62.4 76.6 86.0 96.0 125.9	-16.5 9.8 20.5 32.1 41.5 52.3 62.4 72.9 82.4 92.3 107.5 115.6	11.0 8.35 7.79 7.63 7.74 8.22 9.03 10.1 11.4 12.7 16.6 23.0	-13.7 -14.3 -15.9 -16.8 -17.6 -19.6 -19.0 -21.0 -21.1 -21.2 -21.5 -14.2
Elevat	tor-30°	Rudo	ler 0 ⁰	Ail	eron 0°
-9° -6 -4.5 -3 -1.5 0 1.5 3 4.6 9 12	-126 68 157 245 320 405 472 554 626 699 808 866	88.6 66.9 62.0 60.0 60.3 64.4 69.4 79.4 88.3 100.9 128.7 178.0	-16.7 9.0 20.7 32.4 42.1 53.5 62.3 73.1 82.6 92.2 107.0 114.0	11.7 8.82 8.19 7.92 7.95 8.50 9.15 10.4 11.7 13.3 16.9 23.5	-13.7 -14.7 -15.1 -16.1 -17.0 -17.7 -19.2 -19.0 -20.7 -21.2 -23.6 -16.0

Table 2. Rudder Deflection.

Angle of attack	Ľg	Dg	C _L	$\mathtt{C}_{\mathbf{D}}$	Cn	Cni
Elevat	tor O ^o	\	Rudder 5 ⁰		Aile	ron O ^C
-12° - 9 - 6 - 4.5 - 3 - 1.5 - 3.5 6 9 12 15	-264 - 78 120 206 291 368 450 520 675 746 866 904 924	93.6 59.8 44.2 41.7 42.5 45.5 52.6 61.0 70.7 82.3 112.3 156.2 277.6	-34.7 -10.3 15.7 27.2 38.6 60.6 89.1 98.0 119.0 122.0	12.4 7.87 5.83 5.42 5.50 6.94 8.05 10.8 10.8 20.6	2.05 1.51 1.79 1.67 1.60 1.38 1.08 1.17 0.92 1.14 0.71 0.92 -4.86	550612C56665597 -2.334444-4.54597 -4.44-4.54597
Elevat	tor O ^O		Rudder 100			ron 0°
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-264 - 77 118 205 288 364 445 520 600 676 748 859 904 882	94.5 61.1 45.0 41.5 40.9 42.3 47.2 52.8 62.4 73.5 85.6 112.9 169.6 268.8	-34.8 -10.2 15.6 27.1 38.0 48.1 58.8 68.7 79.2 89.1 98.8 113.6 120.0 116.3	12.5 8.10 5.94 5.50 5.40 6.22 7.00 8.25 9.70 11.3 14.9 22.4 35.5	2.69 2.06 2.31 2.33 2.01 1.66 1.72 1.25 1.44 1.00 0.91 0.22 -0.83 -3.02	-2.159263090691 -3.34.63090691 -4.54.90691

Table 2. Rudder Deflection (Cont.)

Angle of attack	Lg	Dg	CL	CD	Cn	C _m	
Eleva	tor 0°		Rudder 1	50	Ailer	on 00	
-12° - 5 5 5 5 - 5 15 15	-263 - 82 119 204 288 362 446 517 597 666 738 858 900 880	96.2 62.8 45.6 41.9 42.4 47.9 54.5 62.6 72.6 83.9 115.4 272.8	-34.8 -10.8 15.7 26.9 38.9 58.2 78.8 88.0 97.3 113.4 119.2	12.6 8.30 6.02 5.53 5.60 5.83 7.21 8.27 9.60 11.1 15.2 22.0 36.1	3.64 3.02 3.90 2.95 2.95 2.31 1.90 1.97 1.94 1.18 -0.32 -2.01	52072677051205 -3.3444-5554205	
Eleva	tor Oo		Rudder 20	00	Aileron OO		
-12° - 9 - 6 - 5 - 5 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5	-267 - 80 113 204 284 366 446 516 604 666 744 861 901 686	96.7 64.2 46.6 43.8 43.8 49.7 56.8 65.5 75.6 117.9 170.7 274.5	-35.2 -10.5 14.9 27.0 37.6 48.4 58.9 68.1 79.8 88.0 98.2 114.0 119.0 117.0	12.8 8.47 6.15 5.72 5.65 5.79 6.55 7.49 8.61 9.94 11.6 15.5 22.6 36.1	4.35 - 3.65 3.42 3.45 3.26 3.18 3.02 3.03 2.86 2.86 2.57 1.88 0.76 -2.28	7.6886754728758 -3.34.45.55.55.8758	

Table 2. Rudder Deflection (Cont.)

	· 							
Angle of attack	Lg	Dg	CL.	$\mathtt{c}_{\mathtt{D}}$	C _n	C _m i		
Elevat	sor O ^O		Rudder 250			Aileron 00		
-129 -64.5 -31.5 -31.5 -34.6 9215	-266 - 82 112 197 284 364 444 517 593 662 738 852 895 879	99.6 65.8 48.7 45.1 44.6 46.2 50.9 56.5 66.3 75.4 87.9 116.6 169.1 274.1	-35.1 -10.8 14.8 26.0 37.5 48.0 58.6 68.2 78.4 87.5 97.5 112.5 118.0 116.0	13.2 8.70 6.43 5.96 5.90 6.71 7.46 8.75 9.6 15.4 23.2	5.30 4.35 4.38 4.38 4.03 3.59 3.48 3.39 3.75 4.018	21264488689860 84445555555406		
Elevat	or 0°	<u> </u>	Rudder -5	7	Ailer	on 00	·	
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-258 - 78 122 206 288 362 453 514 398 660 734 852 892 874	91.4 58.7 43.2 40.6 39.8 40.0 45.3 50.4 69.0 81.9 112.2 174.7 252.0	-34.0 -10.4 16.0 27.1 38.1 47.9 59.9 68.0 79.0 87.3 97.0 112.5 117.9 115.4	12.1 7.73 5.70 5.37 5.29 5.66 7.85 9.11 10.8 14.8 23.4	-1.41 -1.77 -1.34 -1.23 -1.16 -1.24 -1.90 -2.25 -2.21 -2.63 -2.63 -3.04 -6.61 -2.67	-7.0 -2.4 -2.9 -3.5 -3.7 -4.1 -4.8 -4.9 -3.6 -3.7 -4.9 -3.6 -3.7	· · · · · · · · · · · · · · · · · · ·	

Table 2. Rudder Deflection (Cont.)

Angle of attack	ΓĘ	Dg	C _L	c_{D}	Cn	C _m	
Elevat	Elevator OO		Rudder -	10 ⁰	Ailer	on OO	
-12° - 9 - 6 - 4.5 - 3.5 - 0.5 3.5 9 12 15	-262 -78 113 206 286 355 440 516 596 666 742 852 893 883	93.3 62.1 46.7 42.4 41.8 43.5 48.0 54.2 62.5 72.2 85.5 111.9 165.7 269.3	-34.6 -10.3 14.9 27.2 37.8 46.8 58.0 78.6 98.0 98.0 112.4 118.0 116.5	12.3 8.20 6.16 5.51 5.74 6.33 7.15 8.25 9.53 11.3 14.8 21.8	-1.93 -1.81 -1.73 -2.07 -2.30 -2.37 -2.66 -2.90 -3.34 -3.66 -4.15 -5.58 -7.62	-6.7 -3.2 -3.4 -4.6 -4.5 -4.8 -4.6 -4.5 -4.6 -5.6 -4.6 -5.6 -6.5 -6.8 -6.5 -6.5 -6.8 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5	
Elevat	or OO		Rudder -19	50	Ailer	on OO	
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-262 - 76 116 200 283 356 438 508 584 664 731 844 888 867	91.8 62.4 46.3 40.9 41.6 43.2 47.5 53.1 62.1 72.1 84.5 112.7 164.8 267.1	-34.6 -10.0 15.2 26.4 37.4 47.0 57.9 67.1 77.0 87.5 96.5 111.2 117.1 114.3	12.1 8.24 6.11 5.40 5.49 5.70 6.26 7.00 8.20 9.51 11.1 14.9 21.7 35.2	-2.98 -2.73 -2.64 -3.02 -3.22 -3.18 -3.29 -3.42 -4.04 -4.66 -5.79 -7.93	-6.7 -3.4 -3.8 -4.3 -4.5 -4.5 -4.5 -4.5 -4.7 -4.5 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7	

Table 2. Rudder Deflection (Cont.)

Angle of attack	Lg	Dg	c ^r	CD	C _n	C _m	
Eleva	tor OO	<u> </u>	Rudder -	30°	Ailer	on 00	- <u>-</u>
-12° - 9 - 6 - 4.5 - 3.5 - 1.5 - 3.5 9 125	-260 - 80 114 197 280 352 440 506 590 659 734 845 892 872	94.7 63.2 47.7 44.1 43.5 44.3 48.9 54.7 65.0 73.2 85.9 113.6 166.2 270.0	-34.4 -10.6 15.0 26.0 37.0 46.5 58.0 66.9 78.0 96.9 111.4 117.9 115.2	12.5 8.33 6.30 5.82 5.73 5.84 6.44 7.20 8.58 9.67 11.3 15.0 22.0 35.6	-3.88 -4.21 -3.79 -4.08 -4.56 -4.81 -4.70 -5.03 -5.27 -5.29 -5.47 -6.73 -11.9	-7.46797600544239 -4.555544239	
			į	1	į	; f	
İ	:						·
				1	ł		• ••

Elevat	tor OO		Rudder -2	5 ⁰	Ailer	on 0°
-12° - 9 - 6 - 4.5 - 3.5 - 1.5 0 1.5 34.5 6 9 12 15	-260 - 82 114 198 278 356 436 508 585 662 730 844 890 865	98.9 66.9 50.1 47.5 46.0 51.4 57.8 65.9 114.1 169.5	-34.4 -10.8 15.1 26.2 36.8 47.0 57.5 67.2 87.2 96.5 111.5 117.5	13.0 8.84 6.82 6.26 6.15 6.79 7.65 8.70 10.0 11.3 15.0 23.4	-3.85 -4.44 -4.32 -4.13 -4.41 -4.56 -5.81 -5.97 -5.97 -6.74 -7.52 -10.0	-8.2 -4.9 -4.8 -5.6 -5.9 -5.9 -5.8 -5.8 -5.8 -5.8 -5.8 -6.1 +6.1

Table 3. Aileron Deflection.

Angle of	Lg	D _g .	C _L	c_{D}	c_l	$\mathtt{c_n}$	C _m		
<u>attack</u> Eleva	tor 00		Rudde	er O ^O		Aile	ron 0°		
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-263 - 58 126 216 296 374 454 528 608 678 748 864 902 808	87.4 56.7 42.9 38.6 37.9 41.0 45.6 62.7 71.1 81.1 113.6 168.1 271.3	-34.7 -7.7 16.6 28.5 39.1 49.4 60.0 69.7 80.1 89.3 98.7 114.0 119.2 106.5	11.5 7.48 5.66 5.10 5.00 5.41 6.01 7.07 8.27 9.39 10.7 15.0 22.2 35.8	-1.10 -3.66 -2.65 -3.56 -4.23 -4.99 -5.77 -5.71 -6.36 -6.69 -7.11 -8.90 -10.2 -12.0	0.04 0.22 0.02 -0.23 -0.52 -0.63 -0.63 -0.78 -1.38 -0.98 -2.40 -3.37	-5.1 -2.5 -3.6 -3.8 -4.3 -4.8 -5.3 -4.4 -4.7 -3.5 -3.1 -17.5		
Eleva	tor 0°		Rudde	Rudder O ^O			Aileron 50		
-12° - 9 - 6 - 4.5 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 15 - 1	-262 - 76 122 206 292 364 448 516 603 668 745 856 898 877	92.7 62.2 43.0 39.6 39.3 40.4 44.4 50.3 59.9 69.3 80.8 110.4 163.4 264.7	-34.6 -10.1 +16.2 27.3 38.5 48.1 59.1 68.1 79.9 88.1 98.3 113.0 118.5	12.2 8.21 5.68 5.23 5.19 5.33 5.65 7.90 9.17 10.7 14.6 21.6 35.0	0.41 1.66 2.12 1.45 2.46 2.44 2.13 2.22 2.30 1.58 0.65 -1.46 -2.50 -4.95		-6.6 -2.7 -2.9 -3.5 -3.8 -4.1 -4.6 -4.7 -4.6 -3.5 1.5		

Table 3. Aileron Deflection (Cont.)

···	,	·			,		
Angle of attack	Lg	Dg	c^{Γ}	CD	Cl	C _m	<u>-</u>
Eleva	tor 0°		Rudder O)	Aile	ron 10°	
-12° - 9 6 4.5 - 4.5 - 1.5 - 0 1.5 - 6 9 2 15	-264 - 84 - 115 - 195 - 287 - 361 - 439 - 513 - 597 - 671 - 746 - 857 - 893 - 865	96.7 61.5 45.6 40.7 41.5 43.8 53.5 71.9 84.8 114.5 166.2 267.4	-34.9 -11.1 15.1 25.8 37.9 47.6 58.0 67.7 78.7 88.5 98.6 113.0 123.0	12.7 8.15 6.05 5.38 5.50 5.78 6.20 7.10 8.21 9.54 11.2 15.2 23.1 35.5	9.03 10.4 10.3 9.77 9.87 9.55 10.2 9.54 9.64 9.11 7.13 5.88 3.88	-6.3 -3.9 -3.9 -3.9 -4.4 -4.6 -4.6 -4.6 -7.1 -7.5	2
Eleva	tor O ^O		Rudder OO		Aile	-	
-12° - 9 - 6 - 5 - 3 - 1.5 - 5 - 3 4.5 - 9 2 15	-276 - 88 109 193 278 352 439 510 594 660 734 846 881 855	96.3 64.6 47.8 44.0 42.6 44.7 49.3 55.9 65.4 74.3 86.3 113.4 164.5 264.4	-36.2 -11.6 14.4 25.5 36.7 46.5 58.0 67.3 78.3 87.1 97.0 111.0 117.0	12.6 8.50 6.30 5.81 5.63 5.90 6.52 7.40 8.67 9.85 11.4 15.0 21.7 35.0	13.3 15.0 14.8 15.3 15.5 16.3 15.5 16.3 15.7 14.7 11.1 8.5	-10.3692888853369914 	

Table 3. Aileron Deflection (Cont.)

	,		· · · · · · · · · · · · · · · · · · ·				
Angle of attack	Lg	Dg	c^{Γ}	CD	Gl	C _m	
Eleva	tor 0°		Rudder OO		Aileron 20°		
-12° -96.5 -4.5 -3.5 -1.5 -3.5 -3.5 -92.15	-283 -102 92 178 267 342 421 495 580 650 724 833 874	97.7 65.8 48.4 47.0 45.6 48.0 52.7 58.1 68.8 76.8 88.5 115.7 162.4 261.6	-37.4 -13.4 12.2 23.5 35.2 45.1 55.6 65.2 76.5 85.8 95.8 110.0 115.5 106.0	12.9 8.68 6.38 6.20 6.33 6.95 7.70 9.10 10.2 11.7 15.2 21.5 34.6	15.2 19.1 20.1 20.3 20.4 21.0 20.0 22.1 21.4 19.6 16.8 1.4	-6.8 -2.8 -3.8 -4.6 -4.6 -5.5 -5.6 -5.6 -1.1 +5.1	
Eleva	tor 00	Rudder 00			Aileron 25°		
-12° - 9 - 6.5 - 4.5 - 3.5 - 0.5 3.5 925	-290 -111 85 168 256 331 414 482 570 637 709 818 864 846	102.9 71.3 55.3 51.0 51.4 52.5 56.7 63.8 71.7 80.1 90.9 117.8 174.7 259.7	-38.4 -14.7 11.2 22.1 33.8 43.7 54.6 63.7 75.1 84.1 93.6 108.0 114.0 111.8	13.6 9.41 7.30 6.74 6.79 6.93 7.49 8.42 9.47 10.6 12.0 15.6 23.0 34.3	19.1 23.7 25.7 26.4 25.4 25.3 24.1 221.3 18.4	-8.4 -3.6 -3.4 -3.7 -4.5 -4.0 -4.3 -4.3 -4.3 -4.2 -3.9 0.8 8.7	

Table 3. Aileron Deflection (Cont.)

		ı -						
Angle of attack	Lg	Dg	$\mathtt{C}^{\mathbf{\Gamma}}$	c^{D}	Cl	C _m		
Elevat	Elevator O ^O		Rudder OO			Aileron →5°		
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-251 - 62 127 210 296 372 454 522 606 673 746 854 898 892	91.9 60.5 44.1 40.6 40.0 46.9 53.0 63.3 71.3 83.6 113.2 168.4 269.5	-33.0 -8.2 16.8 27.7 39.0 49.1 60.0 69.0 88.9 98.5 113.0 118.5 118.0	12.1 8.00 5.82 5.36 5.38 5.54 6.19 7.00 8.37 9.42 11.0 15.0 235.6	-11.0 -11.1 -12.2 -13.0 -14.4 -15.1 -16.0 -17.2 -16.6 -17.2 -18.5 -19.5 -19.7 -21.7	-6.5.5.0.6.8.2.7.2.4.7.9.5.0 -4.7.9.5.0		
Elevat	or Oo	Rudder 0°			Aileron -10°			
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-250 - 70 +120 210 292 369 456 520 602 666 747 864 894 872	92.6 61.7 46.0 42.8 42.2 49.5 56.4 64.5 73.3 86.0 115.5 172.5 271.4	-33.0 - 9.3 15.8 27.8 38.6 48.8 60.3 68.8 79.5 88.0 98.8 114.0 118.3 115.5	12.2 8.15 6.10 5.66 5.59 5.98 6.55 7.45 8.52 9.70 11.4 15.3 22.8 35.9	-16.0 -15.2 -16.6 -18.7 -19.3 -20.7 -23.7 -23.6 -27.3 -25.7 -25.7	-6.6.6.0 -2.6.6.0 -4.4.5.5.3.2.0.8.0 -4.5.5.3.2.0.8.0 7.4.0.8.0		

Table 3. -Aileron Deflection (Cont.)

	, — — — — — — — — — — — — — — — — — — —				,,		
Angle of artack	Lg	Dg	$\mathtt{G}^{\mathbf{\Gamma}}$	c^D	ol	C _m	
Elevat	or O ^O]	Rudder O ^O		Aileron -15°		
-12° - 9 - 6 - 4.5 - 3.5 - 0.5 3 4.5 9 125	-264 - 80 +122 308 289 368 453 521 587 648 724 834 868 850	95.5 65.6 49.2 46.6 45.7 52.0 57.8 64.6 74.6 86.0 114.8 169.4 261.5	-34.8 -10.6 16.0 27.5 38.5 59.8 68.7 77.6 95.5 111.5 114.5 112.2	12.6 6.50 6.15 6.95 6.87 7.65 8.85 11.24 15.24 34.6	-17.0 -18.1 -21.7 -23.5 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -28.7	64.93704155886 -4.5558886	
Elevat	or 0°	# · · · · · · · · · · · · · · · · · · ·	Rudder O ^O		Ailer	on -20°	
-12° - 9 - 6 - 4.5 - 3 - 1.5 0 1.5 3 4.5 6 9 12 15	-278 - 84 +110 +198 279 354 438 508 590 655 732 838 876 804	101.1 67.4 51.9 49.7 49.3 52.0 55.5 61.1 72.1 80.8 92.8 122.0 163.6 270.0	-36.5 -11.0 14.5 26.0 36.8 46.8 57.7 67.1 77.7 85.8 96.5 111.0 115.0 106.0	13.3 8.90 6.85 6.58 6.50 6.85 7.32 8.07 9.52 10.7 12.2 16.1 21.6 35.6	-18.8 -21.6 -26.4 -27.0 -28.0 -29.6 -30.9 -32.1 -32.4 -33.0 -33.1 -34.3 -31.3 -28.2	-7.6 -3.0 -3.4 -4.4 -4.8 -5.7 -6.5 -6.6 -5.8 -6.6 -5.7 -4.6	

Table 3. Aileron Deflection (Cont.)

Angle of attack	Lg	Dg	$^{\mathrm{c}_{\mathrm{L}}}$	C _D	Cl	C _m	
Elevator 0°		. Rudder O ^O			Aileron -25°		
-12° - 9 - 6 - 4.5 - 3 - 5 - 1.5 - 1.5 - 92 15	-283 - 94 98 182 267 340 428 500 584 648 722 831 864 850	105.6 74.2 57.8 54.0 53.8 56.0 60.1 74.1 83.4 94.1 125.5 176.7 276.9	-37.4 -12.4 12.7 24.1 35.3 44.9 56.2 77.2 85.6 95.4 109.9 114.0 112.5	14.0 9.80 7.65 7.13 7.12 7.40 7.93 8.74 9.80 11.0 12.4 16.6 23.3 36.7	-22.2 -25.2 -30.7 -31.8 -33.5 -34.6 -33.4 -35.1 -34.2 -35.1 -34.2 -35.5	-8.7 -3.7 -3.4 -5.00 -6.00 -6.6 -6.4 -5.5 -6.4 -5.5 1.5	

·	Fin		Control surface		Maximum			
					Span		Chord	
Elevator	cm ² 83.8	in ² 12.99	cm ² 56.4	in ² 8.74	mm 178	in 7.01	mm 118	in 4.65
Rudder	14.0	2.17	25.8	4.00	66	2.60	95	3.74
Ailerons			80.0	12.40	143	5.63	29	1.14
	-							

Figs.2 & 3.

Elevator deflection.

Pitching moment coefficient.

Figs.4 & 5.

Rudder deflection.

Figs.6 & 7.

