

COMP 3 - 1 (RC)

S.E. (Computer Engg.) (Semester – III) Examination, May/June 2013 APPLIED MATHEMATICS – III (Revised Course)

	(Hevised O	ourse)	
Durati	on: 3 Hours	Total Marks: 100)
	Instructions: 1) Answer five question. 2) Figures to the right in 3) Make suitable assum, 4) Use statistical tables	ndicate full marks. otions wherever required.	
	MODULE	en balagotus illwe yeonid (ili	
I. a	i) Define adjoint of a square matrix.ii) If A is a non-singular n × n matrix th		6
b	Reduce the matrix given below to its no		6
	$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$		
С	Solve the following line an system of e	quations after testing for consistency: 8	3
	x + y + z = 1		
	x + 3y + 2z = 2		
	2x + 2y + z = 3		
→ II. a	Find the minimum polynomial of the ma		
	A = 1 5 1		
	3 1 1	87 88 78 78 88 88 78 7 Y	6
b	For the real symmetric matrix A given I such that P ⁻¹ AP is a diagonal-matrix:		8
	Diff 3 -1 d 1) et d'impreg a d		
	A 4 E 4		

c) Verify the Cayley-Hamilton theorem for the matrix,

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$

6

MODULE-2

- III. a) The probability that an individual suffers a bad reaction an taking a certain drug is 0.002. Determine the probability that out of 1000 individuals
 - i) Exactly 3 will suffer a bad reaction, and
 - ii) More than 2 will suffer a bad reaction. Use the Poisson distribution.

8

b) A continuous random variable X has the following probability density function: 6

$$f(x) = cx^2e^{-x}, x > 0$$

= 0, $x \le 0$

- i) Find C, and
- ii) Compute the mean of X.
- c) In a random experiment, $P(A) = \frac{1}{6}$, $P(B) = \frac{1}{3}$, $P(B/A) = \frac{3}{4}$. Find $P(A \cup B)$.
- IV. a) Compute the moment generating function of a Binomial random variable X with probability mass function $P(X = r) = {}^{n}c_{r}$ p^{r} q^{n-r} , r = 0, ..., n, where 0 and <math>q = 1 p. Hence find the mean and variance.

b) Find the coefficient of correlation for the following data:

6

c) Random samples of 200 bolts manufactured by machine A and of 100 bolts manufactured by machine B, showed 19 and 5 defective bolts respectively. Test the hypothesis that machine B is performing better than A, at the 0.05 significance level.

7

MODULE-3

V. a) Find the Laplace transform of the following:

i)
$$f(t) = e^{-2t} \cos^2 3t$$

ii)
$$g(t) = \frac{\sinh t}{t}$$

iii) $h(t) = \int_{0}^{t} u \sin 3u \, du$.

b) Find the inverse Laplace transform of the following :

i)
$$\bar{f}(s) = \frac{s}{s^2 + 4s + 5}$$

 $ii) \ \overline{g}(s) = \frac{1}{s} \log \left(\frac{s^2 + 4}{s^2 + 9} \right)$

c) Let f(t) be periodic with period "p". Prove that,

5

$$L\big(f(t)\big) = \frac{1}{1 - e^{-sp}} \, \int\limits_0^p \, e^{-st} \, \, f(t) \, dt \, .$$

6

VI. a) Use the Laplace transform to evaluate $\int t e^{-2t} \sin 3t dt$

b) Use the convolution theorem to fond the inverse Laplace transform of ,

$$\overline{f}(s) = \frac{s}{\left(s^2 + 4\right)^2}.$$

6

c) Use the Laplace transform to solve the differential equation

$$y''(t) + y'(t) - 2y(t) = 3 \cos 3t - 11 \sin 3t$$
, $y(0) = 0$ and $y'(0) = 6$.

8

COMP 3-1 (RC)

-4-

MODULE-4

VII. a) Find the Fourier transform of

$$f(x) = 1$$
, $|x| \le a$
= 0, $|x| > a$

Where a > 0. Hence find the value of $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

8

b) Find the inverse Fourier transform of , $\hat{f}(s) = a - |s|$, $|s| \le a$, where a > 0. 6 = 0, |s| > a

c) Solve for f(x) the integral equation,

$$\int\limits_{0}^{\infty}f(x)\cos\,\lambda x\,\,dx=1-\lambda,\,0<\lambda<1=0,\,\lambda\geq1\,.$$

0

VIII. a) Find the Z-transform of the following :

8

i)
$$f(n) = n$$

ii) $g(n) = 2^n$.

b) Find the inverse Z-transform of $\overline{g}(z) = \frac{8z^2}{(2z-1)(4z+1)}$

6

c) Use the Z-transform to solve the difference equation,

$$y(n + 2) + 3y(n + 1) - 4y(n) = 0$$
, $n \ge 0$, and $y(0) = 3$, $y(1) = -2$.

6