IIT RESEARCH INST CHICAGO ILL F/G 10/2 HYDROGEN GENERATOR SUBSYSTEM. CATALYST AND EQUIPMENT DEVELOPMEN--ETC(U) AD-A068 452 NOV 78 R HENRY DAAG53-76-C-0081 NL IITRI-C6363-33 UNCLASSIFIED OBB452 11 U - Shipping

MEESSION	*
8158	MAND Souther X
380	Bell beller D
MANHOUSE	
JUSTIFICAT	
97 9/378/99	THE /AVAILABILITY COOK
	THE AVAILABILITY WHE

AD A 0 68452

REPORT NO. C6363-33 FINAL REPORT FOR PERIOD: 13 January 1976 -30 September 1978

HYDROGEN GENERATOR SUBSYSTEM

CATALYST AND EQUIPMENT DEVELOPMENT FOR A THERMO-CATALYTIC CRACKER

U.S.A. MERADCOM Fort Belvoir, Virginia 22060

FILE COPY

III E

Prepared by

IIT Research Institute 10 West 35th Street Chicago, Illinois 60616

November, 1978

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER PE OF REPORT & PERIOD COVERED HYDROGEN GENERATOR SUBSYSTEM Catalyst and Equipment Development for Final Mechnical Report ORG. REPORT NUMBE Thermo-Catalytic Cracker, IITRI-C6363-33 AUTHOR(s) Henry DAAG53-76-C-0081 PERFORMING ORGANIZATION NAME AND ADDRESS IIT Research Institute 63702A L26370 10 West Thirty-Fifth Street **007EF** Chicago, Illinois 60616 11. CONTROLLING OFFICE NAME AND ADDRESS US Army Mobility Equipment Research & Nov Development Command, ATTN: DRDME-EC, Fort Belvoir, VA 22060 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified US Army Mobility Equipment Research & 154. DECLASSIFICATION/DOWNGRADING Development Command, ATTN: DRDME-EC Fort Belvoir, VA 22060 16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release and sale. Its distribution is unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Re 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) **Energy Conversion** Catalytic Pyrolysis Hydrogen Generation Catalytic Cracking Fuel Cells ABSTRACT (Continue on reverse side if necessary and identity by block number) Future Army plans call for generation of silent electrical power in field situations. Hydrogen/air fuel cells are considered viable electrical power generators. Currently available logistic fuels are hydrocarbon; requiring a fuel conditioning process to free hydrogen for use by the fuel cell. This report concerns one such process to obtain hydrogen from hydrocarbon fuels. Experimental work is aimed at optimizing a catalyst for catalytic cracking and the development of a breadboard hydrogen generator. Further work is needed in both these areas. DD . 1000 1473 IS OBSOLETE EDITION OF ! HOV CURITY CLASSIFICATION OF THIS PAGE (When Date Entere

DISCLAIMER

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

SUMMARY

8

3

80

0

C

0

0

An important alternative in future Army plans for generation of electric power in field situations is the hydrogen air fuel cell. Viability of this alternative depends on generation of hydrogen from logistically available fuels in "fuel conditioners".

A developmental fuel conditioner has been built to generate hydrogen from hydrocarbon fuels. A thermo-catalytic process scheme is used to isolate hydrogen during cyclic operation of twin catalyst beds in a unit which uses a limited air-off gas mixture for regeneration.

A new catalyst composition like this barium stabilized nickel on alumina - was developed to better withstand process conditions and tolerate carbon deposition during hydrogen generation.

Further work is necessary to evaluate design factors and catalyst performance in sustained cyclic operation. Catalyst composition and preparation methods should be optimized and component designs upgraded for a prototype unit.

PREFACE

This final Technical Report was prepared by the IIT Research Institute, 10 West 35th Street, Chicago, Illinois 60616 and is submitted as part of the requirements of the United States Army Mobility Equipment Research and Development Command Contract DAAG 53-76-C-0081. Technical work was performed during the period from January 13, 1976 to September 30, 1978.

Earlier efforts were conducted both internally at USAMERADCOM and by contractors under the following contracts:

1. DAAK 02-69-C-0425 Institute of Gas Technology

0

0

0

0

0 .

- 2. DAAK 02-70-C-0547
 Engelhard Minerals and Chemicals
- 3. DAAK 02-69-C-0453
 Pratt and Whitney Aircraft
- 4. DAAK 02-70-C-0518

 Pratt and Whitney Aricraft

This work was conducted to further development of a hydrogen generator sub-system to produce hydrogen by thermo-catalytic cracking of hydrocarbon fuels.

This Technical Report has been reviewed and is approved for publication.

TABLE OF CONTENTS

				P	age
Summary					ii
Preface					iii
I. INTRODUCTION					1
Scope					1
Historical Background					2
II. BASES FOR CURRENT WORK					3
III. EXPERIMENTAL WORK					
Introduction					5
Bench Unit Experiments					6
- Equipment and Procedure					
- Bench Unit Results					
Vycor Tube Furnace Experiments					
- Euipment and Procedure					
- Vycor Tube Furnace Results					
IV. EQUIPMENT DESIGN WORK					
V. CONCLUSIONS					
VI. RECOMMENDATIONS					
VII. EVALUATION OF EQUIPMENT					
APPENDIX -					
A. Summary of Previous Contract Work					
B. Compositions of Catalysts and Substrates					
C. Preliminary Design Basis	•	•	•	•	79

a

0

O

LIST OF ILLUSTRATIONS

											Page
Figure	1	Bench Ur	nit F	low Sc	heme .						7
Figure :	2	Vycor Tu	ibe l	Init .							15
Figure	3	Product	Gas	Analys	es -	Runs	From	Table	16		50
Figure .	4	Product	Gas	Analys	es -	Runs	from	Table	16		
Figure	5	Product	Gas	Analys	es -	Runs	from	Table	16		51
Figure	6	Product	Gas	Analys	es -	Runs	from	Table	16		51
Figure	7	Product	Gas	Analys	es -	Runs	from	Table	17		52
Figure :	8	Product	Gas	Analys	es -	Runs	from	Table	17		52
Figure :	9	Product	Gas	Analys	es -	Runs	from	Table	18		53
Figure	10	Product	Gas	Analys	es -	Runs	from	Table	18		53
Figure	11	Product	Gas	Analys	es -	Runs	from	Table	18		54
Figure	12	Product	Gas	Analys	es -	Runs	from	Table	18		54
Figure	13	Product	Gas	Analys	es -	Runs	from	Table	19		55
Figure	14	Product	Gas	Analys	es -	Runs	from	Table	19		55
Figure	15	Product	Gas	Analys	es -	Runs	from	Table	18		56
Figure	16	Product	Gas	Analys	es -	Runs	from	Table	18		56
Figure	17	Product	Gas	Analys	es -	Runs	from	Table	19		57
Figure	18	Product	Gas	Analys	es -	Runs	from	Table	19		58
Figure	19	Product	Gas	Analys	es -	Runs	from	Table	19		59
Figure	20	Product	Gas	Analys	es -	Runs	from	Table	19		60
Figure :	21	Product	Gas	Analys	es -	Runs	from	Table	20		61
Figure :	22	Product	Gas	Analys	es -	Runs	from	Table	20		61
Figure :	23	Summary	of 1	ube F	urnace	Data					62
Figure :	24	Breadboa	rd	Unit -	Side	View					63
Figure :	25	Breadboa	rd	Unit -	Top \	liew .					64
Figure	26	Breadboa	ird	Unit -	Front	. View					65
Figure :	27	Heat Exc	hang	e Sect	ion .						66
Figure :	28	Overal1	View	- Rea	ctors						66

0

0

Q

0

LIST OF TABLES

	Page
Table 1	Sum. of BA307/SA5203 Results - MERADCOM Used Catalysts 25
Table 2	Sum. of SA5503 Results
Table 3	Sum. of Denstone 57/SA5503 Results 28
Table 4	Sum. of Denstone 57/SA5203 Results 28
Table 5	Sum. of BA307/SA5203 Results - Fresh Catalysts 29
Table 6	Sum. of BA307/BA307-SA5203/SA5203 Results
Table 7	Sum. of BA307/SA5203HT/BA307 Results
Table 8	Sum. of BA307/SA5503HT/BA307 Results
Table 9	Sum. of BA307/SA5503HT (New & Used)/BA307 Results 32
Table 10	Sum. of BA307/SA5203HT/BA307 Results - Second Loading 32
Table 11	Sum. of BA307/SA5203 HT + Ni/BA307 Results
Table 12	Sum. of Methane Reforming Catalyst Nickel/Pure α Al $_2$ O $_3$ Results
Table 13	Sum. of BA307 Results - With Internal and External Heating . 33
Table 14	Sum. of BA307 Results - Second Loading with External Heating. 34
Table 15	Sum. of BA307 Results - Lower Temperature Performance 34
Table 16	Sum. of BA307 Results - With Multiple Sampling 35
Table 17	Sum. of High Al ₂ O ₃ Results - With Non-Catalytic 35 Material ,
Table 18	Sum. of BA307 Results - Change in Performance with Bed Volume and Feed Rates Varied
Table 19	Sum. of BA307 Results - Damage Evaluation at Lower Temperature
Table 20	Sum. of SA5202 Results - Performance of Barium Stabilized Nickel Catalyst
Table 21	Sum. of a Al ₂ O ₃ Ring Results - Performance of Barium Stabilized Nickel Catalyst
Table 22	Sum. of SA5202 Results Performance of Barium Stabilized Nickel Catalyst
Table 23	Sum. of Vycor Fube Furnace Results - Various Materials 39
Table 24	Sum. of Barium Stabilized Nickel Results
Table 25	Platinum Stabilized Nickel Catalyst Pairs Prepared by C. H. Bartholomew

0.

LIST OF TABLES (con't)

		raye
	Table 26	X-ray Microprobe Analyses Ni/Denstone 57 Treated
		at 1470°F
	Table 27	X-ray Microprobe Analyses Ni/BA307 Treated at
		1290°F
•	Table 28	X-ray Microprobe Analyses Ni/BA307 Treated at
		1470°F
	Table B-1	Substrate Constitutents
	Table B-2	Nickel Content of Various Catalysts
1	Table B-3	Analytical Results by Atomic Absorption on
		Barium Stabilized Nickel Catalysts 78

3

11

U

0

Ø.

INTRODUCTION

SCOPE

1

0

Q.

0

O

0

63

The objective of work performed during this contract period was to develop prototype hardware for a thermo-catalytic cracker in accordance with pruchase descriptions and other information provided by USAMERADCOM.

Original requirements for this development work were outlined as part of a long range plan summarized as project SLEEP (Silent Lightweight Electric Energy Plant). Project SLEEP concepts were based on use of hydrogen fuel cells with appropriate "fuel conditioners" to derive hydrogen from logistic hydrocarbon fuels. It was envisioned that these "sets" would provide electrical power to maintain equipment in ready condition, operate command posts, provide power for surveillance equipment in remote locations, and allow use of electrically-powered equipment in general.

Units were to be designed for missions up to 100 hours and have capability of fast start up (15 minutes), operation on any fuel (gasoline, jet fuel, and diesel fuel) was desirable, as was a low level of detectability (noise and heat). Other desirable characteristics included high hydrogen purity, good efficiency, light weight, and small size.

Previous work has addressed process and equipment development tasks, but an acceptable prototype hydrogen generator sub-system unit has not as yet been developed.

HISTORICAL BACKGROUND

17

0

O

O

O

63.

Recent developments in hydrogen fuel cells have made silent generation of electricity a reality. It is logical to consider these fuel cells for field use in military applications. This application of fuel cells depends on availability of hydrogen--with the obvious source being the hydrogen in logistic hydrocarbon fuels. However, to make the overall concept workable, a process for isolation of hydrogen from these fuels is necessary.

Several candidate process are available, including steam reforming, partial oxidation, thermal, and catalytic cracking. Previous work has shown the process most likely to be an over-all success is a combination called thermocatalytic cracking.

Thermo-catalytic cracking is conducted at a lower temperature than straight thermal cracking and at a higher temperature than straight catalytic cracking. This "compromise" process has some of the problems and merits of each of its forerunners. For example; usual catalysts from refinery catalytic cracking are not stable enough to provide long life. Previous work has indicated metallic nickel to be the catalyst of choice. Operating temperatures are not as severe as in thermal cracking, but equipment and material selection is still critical to long term operability.

A more thorough summary of previous contract work and conclusions is given in Appendix A.

BASES FOR CURRENT WORK

Thermo-catalytic cracking as a process for fuel conditioning, i.e. production of hydrogen from hydrocarbon fuels, was found to be workable but not without equipment and catalyst problems. Results of previous work were used to present a starting point for design work at a preaward-bidders conference associated with this current request for proposal and contract. This information included definition of several suggested design parameters for the thermo-catalytic cracker reactor:

- Kinetic data were interpreted as indicative of diffusion controlled reaction.
- 2. Reactor length to diameter ratio-a minimum of six was indicated.
- Reactor diameter to particle diameter a minimum of eight was indicated.
- 4. Bed type fixed, cylindrical.

10

0

0

0

D

0

62 .

 Catalysts - 0.5-1% wt. nickel on Norton BA 307; 5-10% wt. nickel on Norton SA 5203.

Desired physical and operating characteristics were summarized in "purchase description" documentation and included; weight, size, fuel specifications, product purity, and yield requirements.

IITRI formulated a concept for an improved thermo-catalytic fuel conditioner to fulfill these requirements. Cyclic operation of two cracker beds was envisioned, with each being regenerated, purged, and fed fuel in turn to provide the hydrogen requirements of a 1.5 KW fuel cell.

A new regeneration concept was proposed to improve temperature control in which a limited air/off-gas mixtures would be used instead of ambient air to moderate regeneration reactions.

A conceptual design layouts and a program plan for development of final design data were also presented in IITRI's proposal.

Q

IIT RESEARCH INSTITUTE

EXPERIMENTAL WORK

INTRODUCTION

0

0

0

O

0

O.

Initial emphasis of the experimental program was on development of design data for the prototype unit. A "bench" unit was constructed with a prototype-size reactor to develop information about heat transfer rates, regeneration requirements and product purity/kinetic limitations on cycle time, temperatures and gas production rates.

During early operations with the bench unit, catalyst stability problems were encountered. Physical damage-disruption of catalyst particles-was occurring. Several attempts to solve this problem by heat treating and use of alternative catalyst supports proved fruitless. To more fully evaluate possible mechanisms of failure, a smaller scale apparatus was designed. Advice of consultants and further literature studies let to experiments which showed that a nickel-carbon interaction was responsible for catalyst damage. Several stabilized nickel catalyst compositions were then tried. A barium-stabilized nickel catalyst was prepared by a method similar to that described in several Universal Oil Products patents and showed promise in a small scale test. A sample of this catalyst was then evaluated in the bench unit and appeared move stable than previous catalysts, but with some sacrifice of activity.

Design work for a "breadboard" of the prototype unit was then finished, the "breadboard" was built, and loaded with this "preferred" catalyst. This breadboard will be used to fully evaluate this catalyst as well as the operational characteristics of the IITRI process concept.

A list of catalyst and subtacts used is presented in Appendix B. Also included are analytical results and a procedure for preparation of the barium stabilized nickel

BENCH UNIT EXPERIMENTS

8

13

育

17

O

O.

O

Bench unit experiments were planned to characterize performance of a prototype-sized catalyst bed at conditions necessary to achieve desired product purity and production rates. Evaluation of the limited air-off gas concept was possible, as were measurements of bed pressure drop and temperature profiles. Regeneration times, flow rates and air/off-gas mixtures could be varied to attain desired carbon management conditions.

The bench unit was capable of production of sufficient gas product to allow gas chromatrographic analyses during regeneration as well as during hydrogen production. These analyses allowed characterization of product purity and impurity contents during cyclic operation so that cycle times, heat balances, and purge requirements could be estimated.

The bench unit provided capability to evaluate overall performance and allowed manipulation of macroscopic variables, but no indications of local performance within the bed were available. Physical handling of equipment during operation and catalyst change-out was hampered by peripheral piping, insulation, and electrical connections, which made evaluation of many samples on a short time basis inconvenient.

EQUIPMENT AND PROCEDURE

The bench unit reactor was made from a section of three inch diameter 347 stainless steel furnace tube which was two feet long. Fuel was fed through an electrically heated vaporizer to the reactor. A mixture of air and carbon dioxide was preheated in electric heaters and either fed to the reactor for regeneration or bypassed during the fuel cracking portion of a cycle. A schematic flow diagram is shown in Figure 1.

In general, bench unit operations were conducted for a given catalyst material loading. Different fuels could be used, starting temperatures and fuel feed times were chosen, and regeneration gas flow rates and composition were adjusted to control temperature. Regeneration times were

usually chosen to allow complete carbon burnoff. Product gases were analysed by gas chromatography.

In early experiments, a single sample was taken for G.C. analysis, in later tests, multiple samples were collected. After a number of cycles, catalyst materials were evaluated for damage and weight loss after removal from the reactor.

BENCH UNIT RESULTS

8

0

0

13

13

10

8 .

The first bench unit experiment was performed with a catalyst loading of one-third low nickel on Norton BA 307 and two-thirds high nickel on Norton SA 5203. Diesel fuel (No. 2) and jet fuel (JP-4) were each fed for various cycle times and several rates. Temperature, product analyses, fuel and regeneration times were recorded. Summaries of these data are shown in Table 1. Hydrogen purities were less than 80 percent.

At the conclusion of this test series - about five hours of total operating time-catalyst bed volume had decreased by about one-fourth.

Catalyst particles had been damaged to the point that regeneration gas could "fluidize" the fragments and entrain them out of the bed. This damage was thought to be due to the SA 5203 support material break up.

Attempts to improve performance and purity were made during the next series of runs: catalyst support material with a higher surface to volume ratic was used in a single catalyst bed of SA 5503 rings which had been impregnated with 10 weight percent nickel. As may be seen in Table 2, hydrogen purities of nearly 90 percent were obtained several times during 11 hours of operation, but at the end of the series, bed volume was only one half of that loaded.

Once again, damage was such that fragments of catalyst particles and support were entrained in regeneration gases. Higher activity was apparent, but catalyst integrity was not maintained.

A candidate material for replacement of BA 307 was evaluated in the next series of runs. Denstone 57 was impregnated with one percent nickel and used as the bottom layer in the catalyst bed. SA 5503 rings with about 10 percent nickel were used as the upper portion of the bed. Acceptable hydrogen purity, as shown in Table 3, was obtained with JP-4 but not with hexane, which was the lightest hydrocarbon conveniently available. Significant damage occurred to the rings but apparently no damage to the Denstone 57.

A second run with Denstone: was aborted when reactor and furnace burnout occurred during the first regeneration. For this series, which was the first in which diesel fuel (No. 1) was used, limited data was available, and is presented in Table 4.

Fresh samples of low nickel/BA 307 and high nickel/SA 5203 catalyst were loaded for the next series of runs. Diesel fuel (No. 1) was fed for a total of 25 cycles. Hydrogen purity of 82 percent was obtained during the first day's operation, but increasing pressure drop was noted as shown in Table 5. When the reactor was opened, only 30 percent of the high nickel catalyst remained.

8

10

20

0

隐.

In the next series, which may be seen in Table 6, a mixture of low nickel/BA 307 and high nickel/SA 5203 catalyst was used. This mixed bed was preceded by a layer of low nickel on BA 307 and followed by a layer of nickel on SA 5203. This configuration was used to minimize and contain damaged catalyst. About 60 percent of the SA 5203 catalyst was lost in 22 cycles.

In order to increase the physical strength of high nickel catalyst particles, a heat treating operation was carried out. This heat treating caused formation of nickel aluminate from the nickel oxide and alumina present. This spinel structure-NiAl $_2$ O $_4$ -is quite strong and heat treated catalyst did hold up better, however, hydrogen purities were quite low as Table 7 indicates. This is presumed to be because nickel is tied up as a compound and is no longer catalytically active for hydrocarbon cracking reactions. During this series of runs, the reactor was opened several times. Damage was minimal at first, but as increased temperatures and

higher hydrogen purities were reached, more damage began to occur. Acceptable purity was obtained rarely. Ultimately, nearly one third of the heat treated catalyst was lost in 80 cycles of operation.

8

3

2

0

0

0

13

A similiar heat treating step was carried out with high nickel/SA 5503 ring catalyst. Two-thirds-loss of catalyst occurred while acceptable hydrogen purity was only occassionally attained during 71 cycles of operation. These results may be seen in Table 8.

A series of runs in which a combination of new and used heat treated rings was tried. Hopes were that nickel on used catalyst was "activated". Results were disappointing, as apparent in Table 9, hydrogen purity was still not acceptable and nearly 10 percent of the catalyst was lost in 26 cycles.

A series of experiments, summarized in Table 10, aimed at characterizing performance of heat treated catalyst was tried next. At lower temperatures with fresh materials hydrogen purity was low. As time on stream was accumulated and higher temperatures used, purity improved, but never exceeded 80 percent. Once again, as hydrogen production, or activity, improved, degradation started and two percent of the high nickel catalyst was lost. Somewhat improved stability was apparent, but at the expense of activity.

A series of runs with heat treated high nickel on SA 5203 which had an additional 3.5 percent nickel added after heat treatment showed this nickel addition greatly improved activity, but once again severe degradation occurred. Hydrogen purity was acceptable, as seen in Table 11, but about one half the catalyst bed was lost in 30 cycles of operation.

A high-purity alumina-based catalyst was used in the next series of runs. A sample of methane reforming catalyst obtained from Katalco was used for seven cycles with diesel fuel (No. 1). Acceptable hydrogen purity was obtained at low fuel rates but dropped to 35 percent at high fuel feed rate as indicated in Table 12. Nearly 40 percent damage occurred during seven cycles of operation.

Studies of mixed bed performance were temporarily stopped at this point to allow evaluation of each separate material for stability and performance. The reactor was filled with low nickel/BA 307 catalyst and provisions made for internal as well as the usual external pre-heating. Fuel was burned with air below the bed support plate to provide a more uniform temperature profile, that is, to bring the inlet temperature up to a level such that the entire bed would be catalytically active. Most of the runs in this series were not well controlled, but hydrogen purity reached 80 percent prior to a reactor burnout. Table 13 contains these results. This indicated a single-catalyst bed with low nickel catalyst was adequate if maintained at high enough temperatures.

Single catalyst bed work was continued with internal heating. Hydrogen purity reached 89 percent in a shorter bed of low nickel catalyst during a run with temperatures more carefully adjusted and controlled. Once again, a single-catalyst bed was shown to be more than adequate. Results may be seen in Table 14. An attempt to monitor temperature profiles failed when insulation caused the thermocouple to stick in the 1/8 inch well which had been installed along the length of the bed.

10

0

0

2

A larger thermowell (1/4 inch o.d.) was installed for the next study. A shielded 1/8 inch thermocouple was placed in the well to allow temperature measurement throughout the length of the bed. To improve uniformity of profiles measured by this technique, additional insulation was added around the reactor bottom and inlet valves. Several experiments were conducted in this closely monitored bed. Hydrogen purity varied from 64 percent with bed temperatures 1250-1400°F to 71 percent with bed temperature of 1370-1400°F. These data are in Table 15.

The bench unit was loaded with 12 inches of low nickel on BA 307 catalyst. This was the first time that a multiple sampling technique was used to describe the entire gas generation portion of a cycle. Samples were taken and stored in glass sampling containers. Gas chromatographic cycle time limited on-line sampling, but many samples could be taken and subsequently analyzed to allow plotting of concentration versus cycle time. In the

first sampled cycle, shown in Figure 3, carbon dioxide was used to flush air out of the reactor before hydrogen generation started. Note the presence of two peaks for carbon dioxide: the first is residual CO₂ in the reactor and the second is from reduction of oxide sites on the catalysts. Figure 5 shows that cracking JP-4 may be much easier than cracking diesel fuel since the hydrogen peak maximum occurred much sooner. Table 16 contains data from these runs.

Uncoated high $\mathrm{Al}_2\mathrm{O}_3$ balls were loaded into the reactor. This support, was no nickel, provided a basis for comparison with other runs. Thermal cracking and catalytic effects from the stainless steel reactor wall produced hydrogen but with a large amount of contaminants. Brown liquid observed in the sample tubes was presumably water with soot and uncracked fuel. Hydrogen content dropped rapidly with time. Upon removal, the catalyst had a brown color similiar to that observed in liquid, probably due to oxidation of the reactor walls. See Table 17 for these results.

8

10

13

顶

13

D

13 .

A bed of twelve inches of low nickel/BA 307 was weighed and loaded into the bench unit. Seven cycles were run before the bed was increased to 18 inches in height to evaluate effects of increase in catalyst volume on product purity. A decrease in C_2 's resulted. Higher fuel rates were also tried on the longer bed and yielded approximately the same results as lower fuel rates on the smaller bed. After 11 cycles, the bed was removed. A 2.17 percent weight loss of catalyst was observed. Table 18 containes these results.

A weighed bed of 12 inches of low nickel/BA 307 catalyst was again loaded and operated at a slightly lower temperature (700°C) to see if damage occurred. These four runs are shown in Table 19. Hydrogen purity fell from over 85 percent during the first cycle, shown in figure 17, to less than 80 percent during the fourth cycle, shown in figure 20. A corresponding increase in C_2 's was noted to nearly five percent. A six percent weight loss was noted after only four cycles. No apparent solution to catalyst damage problems was indicated by these changes in operating conditions.

At this point in time, emphasis was shifted to more fundamental studies (described in the following section) to characterize catalyst damage and

possible means to solve stability problems. Literature reviews, consultants evaluations, suggestions, and counseling led to preparation of more stable catalyst compositions.

The first trial with one of these "stabilized" compositions in the bench unit was a barium stabilized nickel impregnated catalyst on SA 5202 support. These spheres had more integrity, but activity was lower than non-stabilized nickel catalyst. Results are in Table 20.

This same impregnation of barium and nickel was tried on pure alumina rings. Activity was even lower than the previous batch, presumably due to channeling through the larger rings. See Table 21.

8

8

A new batch of catalyst was prepared - SA 5202 spheres were impregnated with barium nitrate instead of barium hydroxide. This led to higher levels of nickel and barium. Propane was used as fuel at a flow rate such that the same amount of hydrogen was produced as with JP-4. This provided a "cross check" with smaller scale experiments in which propane was used as fuel. No damage was observed and hydrogen concentrations were comparable. See Table 22.

VYCOR TUBE FURNACE EXPERIMENTS

Experimental work in the VYCOR tube furnace was planned to evaluate mechanisms of catalyst degradation with small samples. The smaller scale of these experiments allowed for better and more uniform temperature control. The use of a VYCOR tube removed uncertainties associated with the metal wall of the bench unit. The smaller scale also facilitated use of different gases and mixtures for stability studies. Repeated cycling was also facilitated, and in later experiments, use of the Cahn balance allowed continuous sample weight measurement during this cycling to observe changes caused by carbon deposition, carbon burn off, active metal oxidation and reduction, and physical losses of metal or substrate.

The ease of handling allowed by the smaller scale of these experiments also allowed evaluation of many more samples in a shorter time. Sample integrity could be maintained for subsequent microscopic evaluation, since it was not necessary to empty a large bed of catalyst as with the bench unit.

EQUIPMENT AND PROCEDURE

8

8

8

10

13

0 .

0

Small scale experiments were conducted by suspending samples in a VYCOR Tube which was enclosed in electric heating elements. In early experiments, catalyst samples were placed in a "basket" and temperatures measured with an optical pyrometer. Handling of samples and measurement of temperature proved to be somewhat difficult with these methods, but some useful results were obtained. Later the system was improved by the addition of a CAHN balance and other instrumentation. Schematic flow diagrams are shown in Figure 2.

Fuel, usually propane, was admitted at the bottom of the tube. Regeneration air was also admitted at the bottom in early tests, but later stainless steel tubing which passed from the top to the bottom of the VYCOR tube was used as a pre-heater.

VYCOR TUBE UNIT

VYCOR TUBE UNIT WITH CAHN BALANCE (T.G.A.)

8

T-Thermocouple

V-Variac

Flows of fuel and air were measured with rotameters. Samples were weighed before, after, and during experiments with the CAHN balance to determine weight changes.

VYCOR TUBE FURNANCE RESULTS

意

18

0

0

0

0

The Vycor tube furnace was usually operated by placing material to be evaluated on the support wires, allowing temperature to stabilize and then introducing a flow. Early experiments were conducted to evaluate possible mechanisms of degradation. Later, relative stabilities were evaluated as a function of time, temperature, and composition. A complete list of results is given in table 23.

The first proposed mechanism was hydrogen attack of the silica portion of SA 5203 catalyst support. Six hours in hydrogen at over 2000°F caused a slight greying of the white spheres, but no noticeable weight loss. This mechanism of damage was eliminated.

The possibility of damage due to high local temperature excursions was evaluated next by artificially impregnating particles with carbon black. This carbon was then burned off in air at over 1800°F. Once again, no noticeable weight loss or damage was observed.

Pure alumina rings which had been impregnated with nickel (Katalco 23-1 methane reforming catalyst) showed damage when exposed to propane gas/air cycles but no damage when exposed to hydrogen/air cycles. This damage was similar to that which had occurred in bench unit tests with vaporized liquid hydrocarbon fuels and justified use of propane as fuel for further small scale material evaluations. This allowed much simpler apparatus and operations than would have been necessary if liquid fuels were required to reproduce damage results seen in the bench unit.

Pure nickel metal balls showed no weight loss when exposed to hydrogen/air cycles at over 1650°F, although slight oxidation was evident.

The second secon

Several tests were conducted with pressed pellets of powdered nickel, nickel oxide and mixtures of each with carbon. In hydrogen, no damage occurred. In air, some dusting was evident with nickel and some damage occurred as carbon was burned from the mixed materials. Hydrocarbon/air cyclic exposure caused severe damage to both nickel and nickel oxide pellets and dusting of nickel balls.

All of these results indicated that damage was occurring during hydrocarbon cracking and not during regeneration. Further experimental work was carried out with several different hydrocarbon fuels. Operation with methane and air showed no apparent damage, while all other hydrocarbons caused damage to both pure alumina and SA 5203 based catalyst. Several tests were performed in which only hydrocarbon was fed to the catalyst bed. No visible damage was detected at short contact times (200 seconds) but at longer times (15 minutes) considerable damage was noted. Results of repeated cycling did indicate that even though damage was not detected in 200 seconds some must have occurred, as a cumulative effect was seen in later repeated cyclic runs.

Damage caused by cyclic hydrocarbon/air operation was demonstrated with several catalyst materials which contained nickel, including nickel on BA 307, nickel on SA 5203, nichrome wire and a new support from Norton, 06233 which had been impregnated with nickel. Catalyst materials without active nickel, BA 307/Pt, SA 5203/NoNi and SA 5203/Ni which had been heat treated to form NiAl $_2$ 0 $_4$, did not show damage. These materials also did not give appreciable hydrogen concentrations under conditions of these tests.

*

2

2

Several ten-cycle runs were made with nickel on SA 5203 catalyst samples to characterize damage as a function of operating temperature. Start of run temperatures were varied from 1400°F to 1740°F while other operating parameters were constant. Damage ranged from less than one to over 10 percent as shown in Figure 23.

Several individual catalyst spheres were each exposed to hydrocarbon for different times. Each catalyst particle was suspended by a nichrome wire

in the hot zone of the VYCOR reactor. After the desired fuel exposure, particles were lowered out of the hot zone. Results ranged from a small weight gain with nickel on BA 307 to severe damage with nickel on SA 5203. X-ray microprobe analyses showed rapid nickel depletion on BA 307 and Denstone when treated in propane at 1470°F, but essentially no damage at 1290°F. See Table 26-28. No changes in surface composition were noted with SA 5203 catalyst, but damage was evident in that the spheres "shrank" as time progressed.

Methane was found to deposit carbon more slowly than propane at identical temperature. In a series of tests in which nickel on SA 5203 spheres which had carbon deposited for 300 seconds were held at temperature in nitrogen, initial carbon build-up was followed by a weight loss and carbon disappearance. These particular results are not fully understood.

.

3

3

3

100

0

0.

0

The VYCOR tube reactor was adapted for thermogravimetric analyses (T.G.A.) by the addition of the CAHN micro-balance. The first runs of this kind were performed on BA 307. Practically all the balls lost weight, but more dramatic were changes in the surfaces of the balls. A yellowish-green fluffy powder of nickel oxide was present upon the removal of the balls. The powder had little integrity and no adhesion to the surface of the balls, although ball weight increases during fuel cycles still showed activity from carbon deposition.

A variety of other metals were then tried in T.G.A. tests. Unsupported cobalt metal was tried. Samples yielded lower carbon peaks, indicating less activity. Chromium and solid nickel balls were also tried with poor results. Lower apparent activity was thought to be due to low surface area of the solid metal compared to metal on a ceramic support, which provides much more surface area. Platinum was tried on the BA 307 support and also showed low activity.

Tighter controls were tried on the runs by trying to bring all the different catalyst types to the same state of oxide prior to a test. First, attempts were made to completely reducing the ball to pure metal by passing heated hydrogen over it. This attempt failed due to the hydrogen flame melting the support wire. Different support wires were tried but no practical means was found to hold the catalyst ball. The method then used was to try to have the catalyst in its oxide form when starting a run.

Runs were made on BA 307 in an effort to optimize cycle time and temperature such that minimum damage occurred. Runs were made at temperatures between 700 and 900°C and cycle times from 100 to 500 seconds. Results showed that only at low temperatures and short fuel contact times would damage be low, but hydrogen production would also be low.

3

0

-

2

0

0

0 .

0

A cobalt catalyst was tried in the form of SA 5202 balls coated with cobalt nitrate which was heated to form cobalt oxide. Again, a temperature-time damage distribution was obtained showing results similar to BA 307. Nickel treated SA 5202 was also tried for a direct comparison to the cobalt balls and cobalt was applied to a stripped BA 307 substrate. Damage occurred to all samples.

A very non-porous catalyst, Denstone 57 was then tried to test the hypothesis that a non-porous catalyst would suffer less damage. Damage still occurred at all temperatures tried.

Several catalyst prepared by a consultant, C.H. Bartholomew, were examined. These catalyst were in matched pairs to see the results of adding platinum to stabilize a nickel catalyst. Damage occurred on most samples--results were somewhat inconclusive, but indicated no outstanding improvement in stability. These results may be seen in Table 25.

A barium stabilized nickel catalyst was then tried. Initial weight change results did not look encouraging, but there was a great improvement in surface integrity. Additional batches were made varying the procedure slightly each time. Analytical results of metal content for some of these "developmental" catalysts are shown in Table 29.

*

In one test, 40 fuel/air cycles resulted in only one quarter of one percent weight loss with a barium stabilized nickel on alumina composition. This remarkable improvement in stability led to trial of a similiar composition in bench unit tests and use of this composition in the breadboard unit.

IV

EQUIPMENT DESIGN WORK

A preliminary prototype design was prepared during the proposal stages of this contract work. This design was based on best available information at that time and was refined somewhat during the first months of the contract. A summary of some supporting calculations for this preliminary design is given in Appendix C and includes estimated heat balances, mass balances, and flow requirements for heat-up and operation. Plans were to finalize and optimize design parameters during the period of contract work.

3

0

*

0

0

0.

0

When problems with catalyst stability became evident, design work was stopped in order to concentrate efforts on catalyst development. When an improved catalyst composition was developed, design work was resumed, but sufficient time did not remain to allow for refinement of design concepts.

As a result of these circumstances, the current "breadboard" of the prototype incorporates some of these concepts in a "preliminary" form. Assembly drawings of the breadboard unit are shown in Figures 24, 25 and 25, and pictures in Figures 27 and 28. The reactor or process portion of the breadboard is approximately as envisioned for a prototype, but the heat exchange and heat-up section is still more of a developmental entity. As such, considerable refinement of component designs should be possible and some of the goals set for the prototype have not been met, e.g., weight and size. Once operability of the design features is established, further refinements can be made to more nearly approach desired characteristics as listed in the purchase description.

CONCLUSIONS

Development work on catalyst materials and equipment for thermo-catalytic cracking of hydrocarbon fuels to produce hydrogen for fuel cell use has resulted in some improvement of catalyst stability. A "breadboard" unit has been constructed to utilize this new catalyst composition in a dual reactor system which will be evaluated for process concept and equipment viability. Further design refinements will then be possible to enable attainment of equipment goals such as size, weight, etc.

3

0

0

0.

0

The second of the second of the second of the

RECOMMENDATIONS

Further work should be carried out to evaluate "breadboard" unit and catalyst for stability, operability and overall performance. If "breadboard" evaluations are satisfactory, design refinements should be undertaken to adapt components for prototype unit and catalyst life should be evaluated.

3

0

3

0

0

0 .

VII

EVALUATION OF EQUIPMENT

Operation of the breadboard unit will be described in a "Test and Demonstration Report" to be written after testing is carried out.

Detailed drawings are available as "Engineering Data for Research and Prototype Hardware"

3

0

0

.

0

0

0.

Photographs of the breadboard unit are available as "Still Photographic Records".

Each of these items is a separate data requirement of Contract Number DAAG53-76-C-0081.

Table 1 SUMMARY OF BA307 LOW NICKEL SPHER

		FUE	EL	TEMPE FUFL	REGENE- RATION	TEMPERATURE REGENERATION				
Fuel Type	No. of Cycles	Feed Rate cc/min	Total	Inlet	4"	Тор	Total min	Inlet	4"	Тор
D#2	1	22	8	1100	1150	-	20	840	1250	-
				1100	1160	-		1120	>1800	-
D#2	2	22	12.5	1130	1310	_	19	1050	1400	-
				1250	1640	-		1225	1725	-
JP4	2	34.3	13	1080	1160	1515	13	1080	1505	1515
				1200	1505	>1800		1140	1560	1725
D#2	1	22	5	1200	1365	1375	24	925	1285	1050
				1275	1640	1400		1255	1840	1540
D#2	3	22	19	950	990	1125	25	950	1050	1120
				1130	1225	1725		1140	1460	1725
JP4	2	34.4	10	950	1035	1015	14	910	990	1100
strater is				1140	1600	1630		1140	1525	>1800
D#2	2	22	7	980	1210	1460	13	1050	1145	1550
-"-	_			1125	1590	>1800		1140	1415	1810
JP4	3	34.3	10	900	1015	950	15	900	1235	950
		34.3	-10	1030	1600	1330	13	1050	1690	1480
D#2	4	22	14	970	1375	1425	27	990	1330	1520
DIL			14	1160	1420	>1800	21	1160		>1800

Bed loading was used BA307 and SA5203 obtained from MERADCOM.

C

O

25

When the bed was opened to evaluate catalyst condition, large portion of catalyst particles and dust were evident. Bed volume had decreased by 20 JP4 fuel was fed to the bed so that regeneration could be used for heat u major concerns were 1) heating the bed up rapidly, 2) obtaining a high en

²Tube sample.

Le 1 SUMMARY OF BA307/SA5203 RESULTS 1, LOW NICKEL SPHERES/HIGH NICKEL SPHERES

EGENE-	TEM	PERATUR	Œ	NO.OF G.C.		MAJO	R COMPO	NENTS (*	
MILLA	REGE	NERATIO	ON	TAKEN	H ₂	CH4	CO	C2H4	C2H6	ΔΡ
otal min	Inlet	4"	Тор	Fuel Cycle Only	Range	Range	Range	Range	Range	Range in H ₂ O
20	840	1250	-	1	55.4	28.2	0.4	5.0	3.1	-
	1120	>1800	-		55.4	28.2	0.4	5.0	3.1	-
19	1050	1400	_	4	53.2	5.0	1.3	.3	.1	-
	1225	1725	-		65.4	26.7	12.9	7.6	1.0	-
13	1080	1505	1515	3	45.41	2.4	.1-	-		_
	1140	1560	1725		74.9	11.3	6.1			-
24	925	1285	1050	3	43.5	21.5	.8	8.0	1.2	-
	1255	1840	1540		55.9	25.5	1.4	11.9	2.2	-
25	950	1050	1120	5	28.2	13.2	.3	1.5	1.2	_
	1140	1460	1725		78.0	25.8	1.7	13.5	5.5	-
14	910	990	1100	-						-
	1140	1525	>1800							•
13	1050	1145	1550	3	34.91	26.6	.5	6.2	1.8	-
	1140	1415	1810		52.7	27.0	2.5	10.2	3.4	-
15	900	1235	950	-						-
	1050	1690	1480							
27	990	1330	1520	3	38.41	6.0	2.1			
	1160	1940	>1800		77.8	10.9	9.9			-

from MERADCOM.

adition, large portion of the SA5203 spheres were spalled, small olume had decreased by 20-30%.

could be used for heat up. During this run, the y, 2) obtaining a high enough bed temperature to get improved H2 production.

Table 2 SUMMARY OF HIGH NICKEL

		L	TEMPERATURE OF FUEL PROFILE			REGENE- RATION	TEMPERATURE REGENERATION			
Fuel Type	No. of Cycles	Feed Rate cc/min	Total min	Inlet	4"	Тор	Total	Inlet	4"	Тор
JP4	3	34.3	13	755 915	1040 1440	750 ¹ 1010	37	750 9 0 0	1440 1710	750 ¹ >1800
D#2	3	22	6	870 925	1250 1325	-	36	845 865	1250 1910	-
D#2	3	22	14	1070 1275	1200 2175	1180 1750	30	1250 1335	1260 2000	1180 >1800
D#2	4	22	18	880 1150	1175 2250	1140 >1800	24 -	1 075 1160	1120 1880	1425 >1800
HEX	3	58	12	900 1075	900 1220	1080 1500	50	990 1160	1260 2005	1080 >1800
HEX	3	58	12	1025 1250	1175 1485	990 1590	41	1075 1270	965 1635	990 >1800
JP4	1	34.3	5	995 1200	1415	1350 1500	12	995 1290	1440	1460 >1800
JP5	1		3	1010 1100	1120 1200	1330	10	1010 1210	1280 1620	1060 >1800

The second secon

Table 2 SUMMARY OF SA5503 RESULTS HIGH NICKEL RINGS

CENE-		PERATU		NO.OF G.C.		MA.	TOR COM	PONENTS	(%)	
LION	REGI	ENERAT	ION	TAKEN	H ₂	CH4	CO	C ₂ H ₄	C ₂ H ₆	ΔΡ
tal In	Inlet	4"	Тор	Fuel Cycle Only	Range	Range	Range	Range	Range	Range in H ₂ O
7	750	1440		-	-	-	AND .		-	-
	900	1710	>1800		•	-	-	-	-	-
6	845	1250	-	_	_	_	_	_	-	_
	865	1910	-		-	-	-	-	-	-
0	1250	1260	1180	2	_	_		_	_	_
	1335	2000	>1800		-	-	-	-	-	-
4	1075	1120	1425	1	73.1	9.4	0.6	_	_	_
	1160	1880	>1800		73.1	9.4	0.6	-	-	-
0	990	1260	1080	2	71.3	11.4		_	_	
	1160	2005	>1800		73.2	14.9	-	-	-	-
1	1075	965	990	2	72.1	6.4	.3	_		6
	1270	1635	>1800		80.3	11.4	2.7	-	-	14
2	995	1440	1460	2	83.5	1.9	.2	-	_	_
	1290	•	>1800		83.8	8.1	4.6	-	-	-
0	1010	1280	1060			-	-	-	-	5
	1210		>1800			-	-	-	-	-

Table 2 (cont.) SUMMARY OF S HIGH NICKEL

		FUE	L		TEMPERATURE OF FUEL PROFILE		REGENE- RATION	TEMPERATURE REGENERATION		
Fuel Type	No. of Cycles	Feed Rate cc/min	Total min	Inlet	4"	Тор	Total min	Inlet	4"	Тор
JP4	2	34.3	8	1040 1260	1100 1180	1360 1700	23	1135 1310	1335 1750	1200 >1800
D#2	1	22	5	1130 1220	1330 1350	1560 1690	15	1120 1220	1340 1685	1385 1660
D#2	2	22	6	950 1120	1100 1350	950 1330	22	1030 1170	1075 1840	900 1635
JP4	4	34.3	17	885 1200	990 1400	840 1680	45	905 1225	1110 2010	865 1680
D#2	4	22	20	1040 1335	1225 1420	1255 1680	41	1050 1210	1200 1835	1285 1725
D#2	12	22	50	825 1260	1075 1680	820 1685	81	925 1265	1310 2220	990 1825
D#2	4	22	16	970 1160	1200 1700	1050 1440	25	1015 1180	1160 1910	1050 1530

¹Top Thermocouple inoperative after first regeneration.

The state of the s

The bed was repacked with SA5503 rings which had been impregnated with 10% N Diesel #2 fuel. Again JP4 was used with Air/CO₂ mix to bring the bed up to to withstand thermal stresses better, after the 11.6 hours of operating time decreased by about 1/2.

2 (cont.) SUMMARY OF SA5503 RESULTS HIGH NICKEL RINGS

ENE-		PERATU ENERAT		NO.OF G.C. TAKEN	H ₂	CH4	СО	C ₂ H ₄	C ₂ H ₆	ΔΡ
al n	Inlet	4".	Тор	Fuel Cycle .	Range	Range	Range	Range	Range	Range in H ₂ O
3	1135		1200	2	84.1	6.9	.3	_	_	2
	1310	1750	>1800		86.9	7.5	.7 -		-	14
5	1120	1340	1385	2	84.5	2.7	.9	-	_	6
	1220	1685	1660		88.4	5.4	1.8	-	-	8
2	1030	1075	900	_	_	_	_	-	_	
	1170	1840	1635		-	-	-	-	-	-
5	905	1110	865	3	74.6	6.0	0.4	2.6	_	
	1225	2010	1680		88.2	15.0	2.1	6.2	-	-
1	1050	1200	1285	2	80.5	4.3	5.3	_	_	5
	1210	1835	1725		85.5	6.3	7.5	-	-	15
1	925	1310	990	2	74.7	3.7	5.3	-	_	
	1265	2220	1825		76.4	18.3	15.1	-	-	-
5	1015	1160	1050	_	_	_	_	_	_	_
	1180	1910	1530		-	-	-	-	-	-

on.

m impregnated with 10% Ni. Good H, production was obtained from to bring the bed up to operating temperature. Although the rings were expected hours of operating time, they were also found spalled and the bed volume had

Table 3 SUMMARY OF DENST LOW NICKEL SPHER

		F	UEL		ERATURI PROFII		REGENE- RATION	TEMPERATURE REGENERATION		
Fuel Type	No. of Cycles	Feed Rate cc/min	Total min	Inlet	4"	Тор	Total	Inlet	4"	Тор
HEX	5	58	16	950 1120	1005 1100	860 1660	67 -	990 1170	995 1120	1035 1800
HEX	4	58	16	-	=	-	64	-	-	-
JP4 [']	6	34.3	23	990 1250	-	935 1615	95 -	950 1280	950 1280	1035 2025

128 in H2O at end of final cycle.

Catalyst charged to the reactor was $4\frac{1}{2}$ -5" of Denstone 57^R (1% Ni), covering originally packed 1" from the top with catalyst, upon opening on 8/3/76, aft $2\frac{1}{2}$ "-3" below the top. Catalyst degradation and loss was apparent.

Initially, the catalyst was treated with hydrogen, 4 H₂-air cycles covering to reduce and stabilize the catalyst entirely before start-up.

Table 4 SUMMARY OF DENSTONE 5
LOW NICKEL SPHERES/HI

		FUEL TEMPERATURE OF FUEL PROFILE			REGEN RATIO		TEMPERATURE REGENERATION			
	No. of Cycles	Rate	Total min	Inlet	4"	Тор	Total min	Inlet	4"	Тор
Hydro	gen Trea	atment o	f catal	yst bed	. 2 2	air-H2	cycles	were run	total	time
Ď#1	2	32.6	9 '	925 1080	1050 1220	1015 1590	33	940 1165	1045 1310	1030 1800

The experimental bed was charged with 5" of Denstone 57^R (1% Ni) and cover 12% Ni. Only two cycles were run because the Stainless Steel tube was melt had melted.

3 SUMMARY OF DENSTONE 57/SA5503 RESULTS LOW NICKEL SPHERES/HIGH NICKEL RINGS

TEM	TEMPERATURE			NO.OF G.C.		MAJ	OR COMP	ONENTS	(%)	
	ENERAT		TAKEN	H ₂	CH4	СО	C2H4	C ₂ H ₆	ΔΡ	
Inlet	4"	Тор	Fuel Cycle Only	Range	Range	Range	Range	Range	Range in H ₂ O	
990	995	1035	2	73.6	10.8	.4	2.5	.4	5	
1170	1120	1800	-	77.6	14.8	.7	6.1	.9	20	
_	_	-		_	_	-	-	-	1	
-	-	-	•	-	-	-	-	•	- 7	
950	950	1035	2	84.4	7.6	.3		-	9,	
1280	1280	2025	-	89.5	9.0	.8	-	•	28 ¹	

57^R (1% Ni), covering the T.C. which is 4" up. Though the bed was opening on 8/3/76, after 4.6 hours of run the bed top was found was apparent.

 H_2 -air cycles covering a period of 104 min were run. Purpose was start-up.

SUMMARY OF DENSTONE 57/SA5203 RESULTS LOW NICKEL SPHERES/HIGH NICKEL SPHERES

Marie Control Control	MPERAT GENERA		NO. OF G.C. TAKEN	H ₂	CH ₄	со	C ₂ H ₄	C ₂ H ₆	ΔΡ
Inlet	4"	Тор	Fuel Cycle Only	Range	Range	Range	Range	Range	Range in H ₂ O
were run	total	time	77 min.						
940	1045	1030	-	-	-	-	-	-	-
1165	1310	>1800	-	-	-	-	-	-	-

 $57^{
m R}$ (1% Ni) and covered with 13½" of SA5203 balls with balls with ss Steel tube was melted in specific areas, also the heater wires

		FUI	EL		PERATUR L PROFI		REGEN RATIO				
Fuel Type	No. of Cycles	Feed Rate cc/min	Total	Inlet	4"	Тор	Total min	Inlet	4"	Тор	
Newly	packed	bed was	treated	with	hydrog	en. 3	Air-H ₂	cycles	were r	un takir	
D#1	3	32.6	12	1150 1250	1085 1320	1300 1710	45	1125 1245	1190 2140	1275 >1800	
D#1	5	32.6	15	970 1215	1025 1225	1250 1735	70	870 1190	980 1480	1235 >1800	
D#1	4	32.6	12	865 1100	990 1160	1220 1 600	37	770 1060	865 1310	1180 1950	
D#1	7	32.6	25	835 950	975 1000	1435 1800	41	835 960	1015 1220	1035 2010	
D#1	6	32.6	22	900 1100	975 1210	1185 1660	30 ¹ 2	885 1085	1025 1350	1375 1835	

The first 2" of catalyst at the bed entrance was BA 307 with the remaining 1 to about 900°F and pure H₂ was passed through the bed to reduce the cataly subsequently noted that the catalyst bed was not performing well, product than cracking. On 9/30/76 the experimental bed was cooled and disassemble the bed was empty. Serious deterioration of SA5203 catalyst was apparent.

Table 6 SUMMARY OF BA307/BA3

		FUEL			PROFIL		REGENE- RATION	TEMPERATURE REGENERATION		
Fuel Type	No. of Cycles	Feed Rate cc/min	Total	Inlet	4"	Тор	Total	Inlet	4"	Top
.D#1	É	32.6	15	1075 1150	1115 1180	1650 1890	53.5	1065 1120	1075 1180	150 175
D#1	The second second)32.6)13.0	33.5	925 1225	1040 1285	1290 1560	65.5	940 1225	985 1285	104 175
D#1	3	13.0	221/2	1160 1290	1420 1650	1125 1725	41	1065 1255	1375 1580	140 172
D#1)32.6)13.0	37	1060 1250	1140 1320	1525 1770	85	1100 1230	1160 1310	120 178

The bed was packed on 10/6/76 with BA307 (1% Ni) for the first 45" above (equal volume) containing BA307 and SA5203. The final portion of the bed run the bed was opened and discharged noting that a number of fueling per 58% of the high Ni catalyst was lost.

5 SUMMARY OF BA307/SA5203 RESULTS

ENE		PERATU ENERAT		NO.OF G.C. TAKEN		OT.	20	<i>a 11</i>	C.W.	ΔΡ
al	Inlet	4"	Тор	Fuel Cycle	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	Range In H ₂ O
12 C	ycles	were r	un taki	ng 46 min.						
5	1125	1190	1275	-	-	<u>:</u>	_	-	-	•
	1245	2140	>1800		-	-	-	-	•	\ =
0	870	980	1235	1	82.1	5.0	2.0	-		
	1190	1480	>1800		82.1	5.0	2.0	-	•	12
,	770	865	1180	1	77.8	8.1	2.7	-		11
	1060	1310	1950		77.8	8.1	2.7	-	-	28
	835	1015	1035	1	71.8	4.5	6.7	_		6.7
	960	1220	2010		71.8	4.5	6.7		-	221
01/2	885	1025	1375	1	79.6	10.4	2.3	2.7	.8	8
	1085	1350	1835		79.6	10.4	2.3	2.7	.8	221
	1003	1330	1033		73.0	10.4	2.5			

307 with the remaining 15 1/4" being SA5203. The bed was first heated ed to reduce the catalyst. 25 cycles of kerosene were run. It was performing well, product gas was more the result of a thermal degradation cooled and disassembled for inspection of the catalyst. The top 10" of catalyst was apparent.

SUMMARY OF BA307/BA307-SA5203/SA5203 RESULTS

GENE- TION		RATURE ERATIO		NO.OF G.C. TAKEN						
tal in	Inlet	4"	Тор	Fuel Cycle Only	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	ΔP Range in H ₂ O
53.5	1065	1075	1500	2	72.6	15.7	0	.5	.7	8
	1120	1180	1750		78.0	22.8	2.3	1.9	1.5	13
5.5	940	985	1045	2	G.C. W	ere ana	lyzed i	ncorrec	tlv	. 5
	1225	1285	1750		-	•		-		5
51	1065	1375	1400	2	76.0	12.4	.7	-		18
	1255	1580	1725		84.4	15.3	5.3	-	•	>24
5	1100	1160	1200	4	34.6	2.6	1.5			6
	1230	1310	1780		82.9	19.8	5.3	-		14

or the first 4½" above the fuel entrance. The next 9" was a homogenous mixture inal portion of the bed contained 4½" of SA5203. After "? cycles of fuel were number of fueling periods were 7-8 minutes long. It is discovered that

Table 7 SUMMARY OF BA307/SA5203HT LOW NICKEL SPHERES/N1A120 NICKEL SPHERES

		FUE	iL .		ERATUR PROFI		REGENE- RATION		PERATUR	
Fuel Type		Feed of Rate es cc/min	Total min	Inlet	4"	Тор	Total min	Inlet	4"	Тор
D#1	6	(1)32.6 (5)13.0	38	960 1230	1050 1625	1425 1800	73	920 1185	1045 1625	1500 1820
D#1	4	13.0	36	1090 1180	1150 1215	1230 1355	40 ¹ 2	1040 1180	1120 1230	1230 1355
D#1	10	13.0	62.5	1170 1420	1225 1730	1515 1700	102 ¹ 2	1170 1220	1250 1620	1515 1800

Reactor was disassembled because the pressure drop during regeneration was on the catalysts spheres. All the spheres appeared to be intact. The bed bed height was 1/2" lower than upon charging. The run was continued with

	 FUI	EL		ERATUR PROFI		REGENE- RATION	TEMP	7 (con ERATUR NERATI	E
Fuel Type	Feed f Rate s cc/min	Total	Inlet	4"	Тор	Total	Inlet	4"	Тор
D#1 .	(2)32.6 (4)13.0	28	990 1110	1140 1200	1380 1765	30	910 1100	1080 1335	1390 1870
D#1	(1)13.0 (7)32.6	24	925 1080	915 1280	1440 1675	35	910 1090	1045 1250	1500 1850
D#1	(2)13.0 (3)32.6	15	970 1040	1120 1165	1290 1485	23	880 1030	1120 1190	1315 2130
D#1	(7)32.6 (4)13.0	40.5	960 1200	1075 1420	1210 1750	50.5	950 1035	1050 1530	160 193

The catalyst bed was opened, the bed height was found 2" below the origin of which 3.6% was dust. The bed was recharged with the same catalyst re

MARY OF BA307/SA5203HT/BA307 RESULTS INICKEL SPHERES/N1A1204 SPHERES/LOW CKEL SPHERES

ME-		PERATUR ENERATI		NO.OF G.C. TAKEN					•	
1	Inlet	4"	Тор	Fuel Cycle Only	H ₂ Range	CH4 Range	CO Range	C ₂ H ₄ Range	1000	ΔP Range in H ₂ O
	920	1045	1500	6	49.6	23.0	5.5	1.1	.3	4.4
	1185	1625	1820		69.1	36.7	5.5	9.7	1.4	5.4
4	1040	1120	1230	2	10.6	24.0	-	17.4	5.8	3.6
	1180	1230	1355		11.2	28.1	-	20.7	7.7	3.8
1	1170	1250	1515	6	56.7	12.3	4.1	.1	-	4.3
	1220	1620	1800		75.1	30.9	6.9	6.9		7.2

during regeneration was increasing. This problem was due to carbon build-up to be intact. The bed weight had increased by 8% due to the build up. The run was continued with the same charge.

ENE-	TEMP	7 (cor ERATUR NERATI	E	NO.OF G.C. TAKEN						
tal In	Inlet	4"	Тор	Fuel Cycle Only	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ .	ΔP Range in H ₂ O
30	910	1080	1390	3	32.0	7.1	2.4	18.4	3.1	3.5
	1100	1335	1870		82.2	33.4	9.2	18.4	3.1	5.7
35	910	1045	1500	2	70.6	11.5	9.20	- (-	4.5
	1090	1250	1850		74.9	25.3	9.20	• (-	5.0
23	880	1120	1315	-	-		_	-	-	3.0
	1030	1190	2130		-	 -	•	•	•	7.6
50.5	950	1050	1600	2	78.5 +	6.9	11.8	-		4.2
	1035	1530	1935		86.2	11.6	11.8	- 1		6.6

and 2" below the original charge height. The total charge weight was recovered the same catalyst removed.

		FU	EL		ERATUR PROFI		REGENE- RATION	TEME	ERATUR NERATI		NO
Fuel Type		f Rate	Total	Inlet	4"	Тор	Total min	Inlet	4"	Тор	Fu
D#1	13 (12)13.0 (1)32.6	45	900 1075	1010 1160	1180 1635	56.5	870 1055	1095 1160	1380 2100	
D#1	17	13	67½	865 1050	970 1120	1290 1760	90	750 1040	990 1150	1120 2200	

After 6 hrs. of operation the spheres still appeared whole, though after 14 ho 30% weight loss and extensive degradation.

Heat treated balls (blue balls) - Work had been done to improve the strength to 2700°F for 4 hours. This treatment was to improve the catalyst strength and no NiO remained. Initially the bed was charged with 3" of BA307 catalyst treated SA5203, topped off by another 2" of BA307 catalyst.

		FUE	iL		T PERATUI L PROF		SUMMARY REGENE- RATION	TEMP	307/SA ERATUR NERATI	E	/BA3
Fuel Type	No. of Cycles	Feed Rate cc/min	Total min	Inlet	4"	Тор	Total min	Inlet	4"	Тор	Fu
D#1		3)23.0 3)13.0	56 ¹ 2	950 1165	1080 1500	1360 1965	67	1050 1165	1120 1250	1440 1880	
D#1	10	13.0	41	985 1135	1080 1230	1450 1940	47	1015 1140	1080 1245	1485 1940	
D#1	6	13.0	22	1060 1125	1145 1195	1420 1500	31½	1050 1125	1155 1210	1285 1785	
D#1	17	13.0	74	1040 1180	1250 1465	<u> </u>	79 ¹ 2	1080 1205	1320 1550	:	
D#1.	6	13.0	24	950 1080	1070 1220	1:	26 ¹ 2	930 1035	1035 1290		
D#1	. 16		641/2	950 1035	995 1085	= =	72 ¹ 2	960 1045	985 1120		-

The experimental bed was charged with heat treated SA5503 rings and nickel conthat 550g supported the rings and 295g were placed on top to prevent the loss run over a period of 10 hours. The bed was evaluated after the 55th and 71st 6% HiNi-rings had deteriorated. This weight loss was reclaimed as dust. The a configuration similar to the original. After the 71st cycle the bed was or

Table 7 (cont.)

E-		ERATUR NERATI		NO.OF G.C. TAKEN	Н2	СН	СО	C ₂ H ₄	C ₂ H ₆	ΔΡ
	Inlet	4"	Тор	Fuel Cycle Only		Range	Range	Range	Range	Range in H ₂ O
5	870	1095	1380	4	71.2	19.5	-	-		1.8
		1160			76.2	22.6	-	-	- 5	6.6
	750	990	1120	6	58.3	17.6	_	_	-	3.0
	1040	1000	2200	A Section Section 1	-	-	-	-	- 1	6.0

whole, though after 14 hours of run even the heat treated 5203 balls showed

to improve the strength of Ni coated 5203 catalyst. The catalyst was heated the catalyst strength. X-ray analysis showed that NiAl₂O₄ had formed and with 3" of BA307 catalyst at the fuel entrance covered by 9 1/4" of heat talyst.

ARY OF BA307/SA5503HT/BA307 RESULTS

	ERATUR NERATI		NO. of G.C. TAKEN						
Inlet	4"	Тор	Fuel Cycle Only	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	ΔP Range in H ₂ O
1050	1120	1440	5	62.6	20.2	-	_	- 1	4.2
1165	1250	1880		76.1	29.0	-	-	-1	6.9
1015	1080	1485	5	69.8	18.0		-	- 1	6.4
1140	1245	1940		79.2	24.0	-	•	-	8.3
1050	1155	1285	2	73.1	17.7	-	-	-	6.6
1125	1210	1785		79.5	21.8	-	-	- 1	9.5
1080	1320	-	6	55.9	6.4	-	-	-	5.0
1205	1550	•		90.3	22.1	-	-	-	7.4
930	1035		3	72.2	13.0	-		-	2.0
1035	1290	-		82.8	21.3	-	•	-	15.4
960	985		6	63.0	14.6	-	-		5.1
1045	1120	-		81.8	32.0	-	-	-	18.5

5503 rings and nickel coated BA307 spheres. The BA307 catalyst was divided such top to prevent the loss of any ring fragments during operation. 71 cycles were after the 55th and 71st cycles. After the 55th cycle the 1% LoNi BA307 and reclaimed as dust. The intact catalyst particles were returned to the bed in 1st cycle the bed was opened and the catalyst removed. 67.4% of NiHi rings were lost.

The second of th

Table 9 SUMMARY OF BA307/SA5503HT (N

		FUEL Feed of Rate Total					REGENE RATION	1	PERATURE ENERATION		
Fuel Type		Rate		Inlet	4"	Тор	Total	Inlet	4"	Тор	
D#1	26	-	78	-	-		78				

The bed was recharged with 3" LoNi BA307 at the entrance, covered with 11 1/2 and finally by 2" LoNi BA307. The bed was run for 2 1/2 hrs and then discharged were lost.

Table 10 SUMMARY OF BA307/SA5203H

		FUEI			ERATUF PROFI		REGENE-	The second second	ERATUI NERAT	
Fuel Type	No. of Cycles	Feed Rate cc/min	Total	Inlet	4"	Тор	Total	Inlet	4"	Top
D#1	52	12	156	-	-	-	156		-	_

The experimental bed was loaded with LoNi BA307 at the fuel entrance, heat A total of 52-6 min fuel on-off cycles were run, with the bed being examinated was intact. After 52 cycles bed examination showed that about 1% of the B the first 14 cycles the bed was operated between 1000-1800 with H_2 purity run at 1050-1900 , with improved H_2 purity ranging from 60-78% for the la

Table 11 SUMMARY OF BA307/SA5

		FUEL			ERATUR PROFI		REGENE- RATION	The second secon	RATUR ERATI	100
Fuel Type	No. of Cycles		Total min	Inlet	4"	Тор	Total	Inlet	4"	Тор
D#1		(5) 32.6 (8) 13	39	-	-	-	39	-	-	-
D#1	17	12	· 51	-	-	-	51	-	-	-

Bed was charged on 1/28/77 with LoNi BA307 at fuel entrance covered with and topped off with LoNi BA307. 30 cycles were run, the bed was examined showed 0.95% weight loss of BA307 and 52% weight loss of SA5203 balls.

Company of the Party of the Par

OF BA307/SA5503HT (NEW & USED)/BA307 RESULTS

	PERATU ENERAT		NO.OF G.C. TAKEN						4.0
Inlet	4"	Тор	Fuel Cycle Only	H ₂ Range	CH4 Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	ΔP Range in H ₂ O
-	-	-	7	52.1 78.5	16.8 29.8	-	-	-	-

nce, covered with 11 1/4" new, 2 1/2" old SA5503 heat treated rings 1/2 hrs and then discharged. 9.3% of the HiNi heat treated rings (SA5503)

UMMARY OF BA307/SA5203HT/BA307 RESULTS - SECOND LOADING

GENE- TION		ERATUR NERATI		NO.of G.C. TAKEN						
tal	Inlet	4"	Тор	Fuel Cycle only	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	ΔP Range In H ₂ O
56	-	-	-	10	1.3	3.8	-	.3	3.2	-
					45.0	46.1	-	20.0	11.5	-
				12	30.2	11.6	-	1.7	-	-
					77.8	28.0	-	13.5	1 -	-

the fuel entrance, heat treated SA5203 spheres, and topped off with LoNi BA307. Ith the bed being examined after 14 cycles -- finding that the catalyst still that about 1% of the BA307 and 2% of the heat treated SA5203 were lost. During 0-1800°F with H₂ purity ranging from 1.3-36%. The remaining 38 cycles were from 60-78% for the last 20 cycles.

1 SUMMARY OF BA307/SA5203HT+N1/BA307 RESULTS

ENE-		eratur Nerati		NO.of G.C. TAKEN		CH.	СО	C ₂ H ₄	C ₂ H ₆	ΔΡ
tal in	Inlet	4"	Тор	Fuel Cycle only	H ₂ Range	Range		Range	Range	Range In H ₂ O
19		•	- J.	5	76.0 81.2	8.2 16.5	•	- (è		-
51	-	•	-	3	82.9 88.7	10.3 12.0				

entrance covered with heat treated HiNi 5203 which was re-impregnated with 3.5% Ni, the bed was examined and found to be 5½" below its initial loading point. Weighing as of SA5203 balls.

Table 12 Sum, of Methane

		FUE Feed	<u>IL</u>		PROF1		REGENE- RATION		ERATUR NERATI	7-19
Fuel Type	No. of Cycles		Total	Inlet	4"	Тор	Total	Inlet	4"	Тор
D#1,-	6	12	50	-	-	-	87		_	_

The experimental bed was loaded with c cial methane reforming catalyst of run time. The bed was opened 38.7% of the high Ni catalyst had been lo

Table 13 SUMMARY OF BA307 RESUINTERNAL AND EXTERNAL

No. of	Feed Rate								
Cycles	cc/min	Total	Inlet	4"	Тор	Total	Inlet	4"	Тор
1	12	5	1500 >1800	=	1400 1500				
3	12	24	1250 1750	-	1100 1400	26	750 1750	-	1080 1500
1	12	11	1400	Ξ	1600 >1800				
	1	1 12 3 12	1 12 5 3 12 24	1 12 5 1500 >1800 3 12 24 1250 1750	1 12 5 1500 - >1800 - 3 12 24 1250 - 1750 - 1 12 11 1400 -	1 12 5 1500 - 1400 >1800 - 1500 3 12 24 1250 - 1100 1750 - 1400 1 12 11 1400 - 1600	1 12 5 1500 - 1400 >1800 - 1500 3 12 24 1250 - 1100 26 1750 - 1400 1 12 11 1400 - 1600	1 12 5 1500 - 1400 >1800 - 1500 3 12 24 1250 - 1100 26 750 1750 - 1400 1750 1 12 11 1400 - 1600	1 12 5 1500 - 1400 >1800 - 1500 3 12 24 1250 - 1100 26 750 - 1750 - 1400 1750 - 1400

Reactor burned out on regeneration cycle. No record of catalyst condition Loading was all BA307 low nickel spheres. Heating was partially by fuel

w

0

0

0

1

NEW PROPERTY OF THE

le 12 Sum. of Methane Reforming Catalyst Nickel/Pure of Al203

NE-		ERATUR NERATI		NO.of G.C. TAKEN	Н2	СН	со	C2H4	C ₂ H ₆	ΔP
1	Inlet	4"	Тор	Fuel Cycle only	The Contract of the Contract o	Range		Range	Range	Range In H ₂ O
	-	-	-	5	80.0	1.8	-		-	-
					90.1 34.8	12.7	-	9.62	2.9	•

ane reforming catalyst and run for 7 cycles of fuel-air totaling about 24 hours I catalyst had been lost.

SUMMARY OF BA307 RESULTS INTERNAL AND EXTERNAL HEATING

INE-		RATUR		NO.of G.C. TAKEN		CII.	со	C ₂ H ₄	C ₂ H ₆	ΔΡ
e1 0	Inlet	4"	Тор	Fuel Cycle only	H ₂ Range	CH4 Range		Range	Range	Range In H ₂ O
	750 1750	:	1080 1500	3	27.3 73.8	.8	1.2	:	=	-

of catalyst condition. Reactor was rebuilt and reloaded. as partially by fuel burning at in et.

SUMMARY OF B

AND EXTERNAL

		FUE	L	-	PROF	RE OF	REGENE- RATION		PERATU	
Fue1	No. of Cycles	Feed Rate cc/min	Total	Inlet	4"	Тор	Total min	Inlet	4"	•
D#1	2	11	7	1600	-	1350	21	1200	-	13
			7	1660	-	1460	21	1600	-	14

Loading was 12" BA307 low nickel catalyst. Heating was partially by but

Table 15 SUMMARY OF BA307
TEMPERATURE PURP

		FUE	L		PROFI		REGENE- RATION		PERAT	
Fuel Type	No. of Cycles	Feed Rate cc/min	Total min	Inlet	4"	Тор	Total	Inlet	4"	1
D#1	1	11 11	3 6	1373 1255	-	1412 1410	9	1400 1250	:	>1 >1

Loading was 12" BA307 low nickel catalyst. Thermowell was fitted throu profile measurement.

34

SUMMARY OF BA307 RESULTS
SECOND LOADING WITH INTERNAL
AND EXTERNAL HEATING

EGENE- ATION		PERATI ENERA		NO.of G.C. TAKEN						
otal min	Inlet	4"	Тор	Fuel Cycle only	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	ΔP Range In H ₂ O
21 21	1200 1600	-	1300 1400	2	80.4 89.0	4.1 5.8	6.7 7.8	.1 4.1	.1 1.9	. 1.0

g was partially by burning of fuel at reactor inlet.

15 SUMMARY OF BA307 RESULTS LOWER TEMPERATURE PERFORMANCE

EGENE- ATION		PERAT ENERA	7 ()	NO.of G.C. TAKEN						
otal	Inlet	4"	Тор	Fuel Cycle only	H ₂ Range	CH ₄ Range	CO Range	C ₂ H ₄ Range	C ₂ H ₆ Range	ΔP Range In H ₂ O
9	1400	-	>1800	2	71	23	.7	-		
16	1250	-	>1800	-	64	-	-	-	-	- 1

well was fitted through reactor bed to enable temperature

Summary of BA307 Results Performance of Single-Catalyst Bed with Multiple Sampling Technique 91 Table

3

4

D

0

5

0

O

0

O

				Reg	Regeneration		
	Fuel		Initial Temp		Max. Temp	Number Ma	ix. Percentage
Type	Rate cc/min	Time sec.	Top/6"/Inlet OF	Time .	Tdp/6"/Inlet	of G.C.'s	of G.C.'s H2/CH4/CO
D #1	11	300	1400/1430/1260	1310	1725/-/1350	•	
D #1	11:	300	1450/-/1300	1930	1725/-/1350		
D #1	11	300	- 1-1 -	1030	- /-/ -	3	77.5/22.3/1.2
D #1	11	330	- 1-1 -	1560	- /-/ -	2	78.8/15.1/0.8
D #1	11	300	1550/1600/1375	1350	- 1-1 -	•	•
D #1	==	300	1460/1500/1290	970	- /-/ -	15	Fig 3
D #1	#	300	1580/1570/1326	1090	- /-/ -	15	Fig 4
D #1	11	360	1505/1525/1305	•	- /-/ -	•	, '
JP4	11	300	1550/1490/1175	1000	1625/-/1250	•	•
JP4	=	300	1470/1480/1250	1520	1625/-/1350	15	Fig 5
JP4	11	009	1475/1490/1275	1750	1625/-/1300	13	F1g 6
			The bed was dis	smantled and d	The bed was dismantled and discharged on 8/10/77	,	

The Ded Was dismantled and discharged on 8/19///. Summary of High Al₂0₃ Results Performance of Single-Catalyst Bed With Non-Catalytic Material Table 17

	Fuel			R	egeneration	Number	Max. Fercentag
Type	Rate Time cc/min sec.	Time sec.	Top/ 6" /Inlet	Time sec.	Max. Temp of Top/ 6" /Inlet	of G.C.'s	s H ₂ /CH ₄ /CO
JP4	п	220	1470/1523/1250	800	1425/-/1125	4	Fig 7
JP4	11	150	1475/1500/1250		1400/-/1175	2	•
D #1	11	125	1450/-/1250	•	1500/-/1300	7	Fig 8
D #1	11	100	1470/1520/1230	300	1500/-/1300	2	•

age

The bed was emptied and much of the balls obtained a brown color.

Table 18 Summary of BA307 Results Change in Performance with Bed Volume and Feed Rates Varied

D

8

郡

13

O

ø

D

Max. Percentage H ₂ /CH ₄ /CO%	•	F1g 9	•	Fig 11	F1g 12		F1g 10	F1g 13	F1g 14	F1g 15	F1g 16
Number of G.C.'s	12	15	1	15	15	1	15	15	15	12	. 15
Regeneration Max. Temp of Top/ 6" /Inlet	1600/-/1300	1625/-/1300	- /-/ -	1625/-/1275	1600/-/1300	- /-/ -	1625/-/1300	1600/-/1275	1650/-/1300	1650 /-/1275	- /-/ -
Time sec.	1730	1500	1	1680	2040		1770	1810	2110	1485	1
Initial Temp. Top/ 6" /Inlet	03617 70371	1480/1475/1230	1430/1425/1240	1486/1475/1235	1500/-/1250	- 1-1 -	1505/1515/1255	1485/1460/1255	1510/1490/1245	1515/1470/1255	1520/1505/1255
Time	900	320	200	320	360	120	360	340	330	315	325
Fuel Type Rate		1 =	11	11	=======================================	==	11	1	16.2	11	16.4
Туре		D #1	JP4	JP4	JP4	0 #1	D #1	D #1	D #1	JP4	JP4

The bed was removed after eleven cycles, and a 2.17% weight loss was noted.

Table 19 Summary of BA307 Results
Damage Evaluation at
Lower Temperature

Max. Percentage	H ₂ /CH ₄ /CU	F1g 17	F1g 18	F1g 19	F1g 20
Number		13	7	7	00
generation	Max. Temp of Top/ 6" /Inlet	1450/-/1175	1500/-/1273	1500/-/1175	1475/-/1175
Re	Time sec.	1660	1760	1420	1490
Initial Temp.	Top/ 6" /Inlet	1274/1328/1130	1292/1275/1184	1274/1328/1148	1292/1346/1148
	Time sec.	400	310	310	310
Fuel	Rate cc/min	11	7	11	=======================================
	Type	JP4	JP4	JP4	. JP4

The bed was discharged and a 6.0% weight loss was noted.

Summary of SA5202 Results	Performance of Barium Stabiliz	Nickel Catalyst
20		
Table		

3

50 0,8

O

0

0

O

O

0 .

Number Max. Percentage	27 (11) (2)	73.9/24.4/3.2	F1g 21	78.6/23.1/5.9	F1g 22	77 5/23.3/5.0
Number	10	7	9	9	4	2
Regeneration	Top/ 6" /Inlet	1600/1600/1250	1675/1700/1275	1650/1725/1300	1625/1750/1300	1625/1700/1300
	Time sec.	•	1	072	840	965
Initial Temp.	Top/ 6" /Inlet	1425/-/1200	1475/1450/1250	1525/1675/1275	1525/1475/1275	1500/1450/1275
	Time sec.	220	220	310	300	300
Fuel	Rate cc/min	=	1 =	1:	1 =	::
	Type	741	7 2	1 1 1	10,	JP4

The bed was discharged and a 2.0% weight loss was noted.

Table 21 Summary of "Al₂O₃ Ring Results Performance of A Barium Stablized Nickel Catalyst

74.5/26.8/5.6
416
1650/1550/1275 1650/1600/1325 1700/1650/1300
590 730 1455
1525/1425/1300 1525/1450/1275 1550/1500/1300
215 300 300
===
JP4 JP4 JP4

Suspect channeling past the larger rings lowered performance.

Table 22 Summary of SA5202 Results
Performance of Barium Stablized:
Nickel Catalyst - Propane Fuel

8

3

0

23

0

O

Ø

U.

U

Number Max. Percentage	H2/CH4/CO	80.6/22.8/91
		1161
egeneration	ime Max. Temp of ec. Top/ 6" /Inlet	1550/1500/1250 1575/1550/1300 1650/1550/1275 1700/1675/1300
R	Time sec.	525 450 1300 1500
Initial Temp.	Top/ 6" /Inlet 0F	1500/1475/1250 1600/1525/1275 1500/1450/1225 1550/1500/1300
	Time sec.	3000
Fue1	ype Rate Time ft ³ /min sec.	Propane 0:156 Propane 0.156 Propane 0.156 Propane 0.156
	-	H H H H

A weight gain was noted upon discharging the bed.

Table 23 SUMMARY OF VYCOR TUBE FURNACE RESULTS VARIOUS MATERIALS

NA RP

ij.

17

7

13

O

O

0

Material	Temperature OF	Gases	Cycles/time	Comments/results
5203 Non1	1760-1830	H2	6 hours	White 5203 turned gray
5203 NoNi	2100-2150	H2	6. hours	negligible weight change
5203 NoN1/C	1905-1920.	Air	10 minutes	carbon burned off
Al ₂ O ₃ NoNi/C	1905-1920	Air	10 minutes	negligible weight change
Al ₂ O ₃ /Ni (rings)	1740 start	C3/air	9-3-4min/3-4 min	cracking and dusting
Al203/Ni (rings)	1740 start	H ₂ /air	10-4 min/4 min	Jessentially no changes
Ni Balls	1740 start	H ₂ /air	10-4 min/4 min	
Ni powder (pelletized)	1670-1715	H ₂	30 minutes	slightly sintered
NiO powder (pelletized)	1670-1715	H ₂	30 minutes	slightly sintered
Ni/C powder (pelletized)	1670-1715	H ₂	30 minutes	slightly sintered
NiO/C powder (pelletized)	1670-1715	H2	30 minutes	slightly sintered
Ni powder (pelletized)	1700-1790	Air	10 min - heated in helium	some dusting
Ni/C powder (pelletized)	1700-1790	Air	10 min - heated in helium	some damage (carbon gone)
NiO/C powder (pelletized)	1700-1790	Air	10 min - heated in helium	some damage (carbon gone)
Ni powder (pelletized)	1750 start	C3/air	3 - 200 sec/200 sec cycles	much damage
NiO powder (pelletized)	1750 start	C3/air	3 - 200 sec/200 sec cycles	much damage
Ni metal balls	1690 start	C3/air	3 - 200 sec/200 sec cycles	slight dusting
Al ₂ O ₃ /Ni (rings)	1535 start	CH4/air	9 - 2 min/2 min	no damage
Al ₂ O ₃ /Ni (rings)	1700 start	C2H2/air	4 - 2 min/2 min	inconclusive
5203/Ni (partially NiAl204	1660 start	C,H10/air	9 - 3 min/5-10 min	11% wt. loss
Al ₂ O ₃ /Ni (rings)	1800 start	C3H6/air	9 - 200 sec/300-400 sec	much degradation
Al ₂ O ₃ /Ni (rings)	1815 start	CH,/air	9 - 200 sec/200 sec	no damage
5203/Ni	1815 start (CH,/air	9 - 200 sec/200 sec	no damage

The state of the s

-
į.
=
0
con
-
23
~
A
1e
•
Tab
H

O

C

Material	Temperature OF	Gases	Cycles/time	Comments/results
\$202/N1	1470	C ₃ /Air	10-300/300	24.22% wt. loss
5202/N1	1290	C ₃ /Air	10-300/300	Much destruction/74.45% wt. loss
5202/N4	1290	C ₃ /Air	10-100/100	8.58% wt. loss
5202/N4	1290	C ₃ /Air	10-500/500	N.A.
307/N1 Retreat	1470	C ₃ /Air	10-300/300	0.61% wt. loss
307/N4 Retreat	1470	C ₃ /Air	10-500/500	0.39% wt. loss
307/NA Retreat	1293	C ₃ /Air	10-100/100	0.24% wt. loss
307/N1 Retreat	1290	C ₃ /Air	10-500/500	0.50% wt. loss
307/N1 Retreat	. 1650	C ₃ /Air	10-100/100	0.21% wt. loss
307/Ni Retreat	1650	C ₃ /Air	10-500/500	0.47% wt. loss
307/00	1470	C3/Air	10-300/300	0.26% wt. loss
307/50	1473	C ₃ /Air	10-500/500	0.14% wt. loss
307/Co	1470	C ₃ /Air	10-100/100	0.27% wt. loss
307/Co	1650	C ₃ /Air	10-500/500	0.107% wt. loss
307/00	1650	C ₃ /Air	10-100/100	0.30% wt. loss
307/Co	1650	C ₃ /Air	10-300/300	1.24% wt. loss
307/N4	1470	C ₃ /Air	5-300/300	0.25% wt. loss
Denstone 57/N1	1470	C ₃ /Air	10-300/300	0.88% wt. loss
Denstone 57/Ni	1380	C3/Air	10-300/300	0.68% wt. loss
Denstone 57/N1	1560	C3/Air	10-300/300	0.10% wt. loss
Denstone 57/Ni	1650	C3/Air	10-300/300	0.80% wt. loss
23-1/N±	1470	C3/Air	4-200/400	0.30% wt. loss
307/N£	1470	C3/Air	15-*	2.269% wt. loss
* A waring Air and CO.	Poor our contrato	of choronous of		

Material	Temperature OF	Tal	<pre>Table 23 (cont.) Cycles/time</pre>	Comments/results
rings)	1740-1790	CH.	/15 min at temp - heated	destroyed
5203/NI	1740-1790	CH,	and cooled in CH4	damaged
Al ₂ O ₃ /Ni (rings)	1770	СзНв	/15 min at temp - heated	damaged
5203/Ni	0771	C3H8	land cooled in -C3H8	damaged
Al ₂ O ₃ /Ni (rings)	1725	ďH,	/200 sec - heated and	no damage
5203/Ni	1725	CH,	cooled in Helium	no damage
Al203/Ni (rings)	1650	СзНв	/200 sec - heated and	no damage
5203/Ni	1650	C3H8	\cooled in Helium	no damage
307/Ni	7715-start	C3/air	5 - 200 sec/200 sec	1.47% wt. loss- most of the nickel
5203/Ni(NiA1204)	1650 start	C3/air	10 - 200 sec/200 sec	no damage (low hydrogen purity)
307/Ni	1365 start	C3/air	10 - 200 sec/200 sec	dusting - Ni content reduced 0.6-0.12%
307/5203	1570 start	C3/air	10 - 200 sec/200 sec	307 lost wt. 2.4%; 5203 lost 35%
NiCr Wire	1470 start	C3/air	11 - 200 sec/200 sec	2% wt. loss
307/Pt	1545 start	C3/air	10 - 200 sec/200 sec	no damage (25-27% H ₂)
5203/N1	1645 start	C3/air	5 - 200 sec/400-900 sec	200 sec/400-900 sec 2.8% wt. loss- 65-80% H ₂
307/Ni	1645 start	C3/air	5 - 200 sec/200-400 sec 1.7% wt. loss	1.7% wt. loss
5203/N1	1520 start	C3/air	4 - 200 sec/400-800 sec	200 sec/400-800 sec 5.3% wt. loss *(one fuel cycle 550 sec)
5203/Ni	1535 start	C3/air	11 - 200 sec/400 sec	4.6% wt. loss (50-70% H ₂) 60-80% H ₂
5203/NoN1	1545 start	C3/air	4 - 200 sec/200 sec	no damage $(27\% H_2)$
5203/N1 (N1A1204)	1545 start	C3/air	4 - 200 sec/200 sec	no damage (25 - 30% H ₂)
5203/N1	1510 start	C3/air	30 - 200 sec/400 sec	3.7% wt. loss
Empty Tube	**	C ₃		(23.5% H ₂)
Wire support only	*	C ₃		(26% H ₂)
96233/N1(0.59%)	1560 start	C3/air		0.45% wt. loss (23% H2)
	1.			

O

ij.

** Same furnace setting as previous run.

The state of the s

(cont.)	
23	
Table	

O

0 .

Material	Temperature OF	Gases	Cycles/time	Comments/results
307/NA	1290	ເລ	12 Balls/50 sec	Fuel only for S.E.M.
Denstone 57/Ni	1470		12 Balls/50 sec	Fuel only for S.E.M.
307/N1	1290	C3/Air	13-300/300	2.27% wt. loss
307 /N£	1290	C3/Air	5-300 / 300	0.19% wt. Gain
307/N4	1290	C 3/Air	5-300/300	No change
307/N4	1320	C3/Air	5-300/to level*	0.52% wt. loss
307/N±	1320	C3/Air	3-300/300	No change
5203/N1	1305	C3/Air	10-300/400**	1.50% wt. loss
307/114	1275	C3/Air	10-300/to level*	0.05% wt. loss
307 /N4	1455	C3/Air	10-300/300	2.7% Wt. loss
5203/N±	1489	C3/Air	5-300/400	4.09% wt. loss
307/N±	1505	C3/Air	10-300/300	3.91% wt. loss
307/N4	1485	C3/Air	10-300/300	3.5% Wt. loss
5203/No N1	1490	C3/Air	2-300/300	0.33% wt. gain
307/NA	1400	C3/Air	10-300/300	0.4% wt. loss
Solid/Co	1490	C3/Air	10-300/300	1.3% wt. loss
Solid/Ni	1525	C3/Air	10-300/300	1.06% wt. loss
Solid/Cr	1510	C3/Air	8-300/300	No change
Solid/Co	1290	C3/Air	10-300/300	0.87% wt. gain
Solid/Ni	1275	C3/Atr	6-300/300	0.24% wt. loss
307/Pt	1275	C3/Air	5-300/300	0.99% wt. loss
vanaration Unti	1 Complete			

* Regeneration Until Complete
** Regneration Air Rate Reduced by 33%

H
con
=
0
•
-
-
-
3
2
6.4
100
1e
•
_
_
ap
10
-

Į,

D

Comments/results	Pre-reduced/N.A.	0.758% wt. loss	0.328% wt. loss	2.66% wt. loss	0.09% wt. loss	1.02% wt. loss	0.76% wt. loss	2.80% wt. loss	0.94% wt. loss	0.51% wt. loss	1.21% wt. loss	No change	Flaking of surface/3.75% wt. loss	Flaking of surface/0.717% wt. loss	7.16% wt. loss	0.317% wt. loss	51.39% wt. loss	3.86% wt. loss	10.57% wt. gain	Fell apart/75.28% wt. loss	0.09% wt. loss	0.02% wt. loss	2.71% wt. loss	2.11% wt. loss
Cycles/time	8-300/300	10-300/300	10-300/300	9-200/200	10-100/100	10-300/300	2-500/500	3-500/500	4-300/300	4-300/300	10-500/500	10-100/100	10-500/500	10-300/300	10-300/300	10-100/100	2-500/500	10-100/100	10-300/300	3-300/300	10-300/300	10-100/100	10-300/300	10-500/500
Temperature OF Gases	1479 C3/Air	1470 C3/Air	1650 C3/Air	1650 C3/Air	1290 C3/Air	1290 C3/Air	1110 C3/Air	1209 C3/Air	1290 C3/Air	1290 C3/Air	1569 C3/Air	1290 C3/Air	1290 C3/Air	129:) C3/Air	1470 C3/Air	1479 C3/Air	1470 C3/Air	1650 C3/Air	1200 C3/Air	1659 C3/Air	1380 C3/Air	1470 C3/Air	1470 C3/Adr	1470 C3/Air
	307/NH	307/N4	307/N4	307/N4	307/NA	307/N4	307/N£	307/N4	307/N4	307/N4	307/N4	5202/Co	5202/Co	5202/Co	5202/Co	5202/Co	5202/Co	5202/Co	5202/Co	5202/Co	5202/Co	307/N4	307/N4	307/N4

The second section of the second seco

Table 23 (cont.)

*

-				
^ Material	Temperature OF Gases	Gases	Cycles/time	Comments/results
307/Pt/5203/N1	1550 start	C3/air	10 - 200 sec/400 sec	0.06/6.14% wt. losses (60-75% H ₂)
5203/N4	1550 start	C3/air	10 - 200 sec/400 sec	2.9% wt. loss (45-65% Hz)
5203/N1	1550 start	C3/air**	10 - 200 sec/400 sec	1.2% wt. loss (55-60% H ₂)
\$203/N4	1400 start	C3/air	10 - 200 sec/400 sec	.7% .wt. loss (45-60% H2)
5203/N1	1740 start	C3/air	10 - 200 sec/400 sec	5.9% wt. loss (65-80% H2)
307/N±	1470	ເວ	50,100,150,200,250,300,400, 500,600,700,800,900 sec	Small carbon buildup (0-1%)
5203/N1 (N1A1204)	1470	ເວ	30,125,160,200,250,300,400, 500,600,700,800,975 sec	negligible change
5203/N±	1470	ະົວ	50,100,150,200,250,300,400, 500,600,700,800,900 sec	50,100,150,200,250,300,400, wt. gain followed by severe loss 500,600,700,800,900 sec
5203/N±	1479	CH.	50,100,150,200,250,300,400, 500,600,700,800,900 sec	slower buildup of carbon than from C3
5203/N1		C3/N2	300/600,900,1200,1500, 1800 sec	carbon buildup followed by wt. loss
307/N1		. 63	12 Balls/ 50 sec	Fuel Only for S.E.M. Samples
57/N1		ເລ	12 Balls/ 50 sec	Fuel Only for S.E.M. Samples
307/N1		Catr	13-300/300	2.2% wt loss
307/N1		C_3air	5-300/300	0.19% wt gain
307/N1		Cair	5-300/300	No change
307/N±	1320 C	Catr	5-300/to level*	0.55% Wt. Loss

*regeneration until complete ***double C3 rate

Table 24 SUMMARY OF BARIUM STABILIZED NICKEL RESULTS

ij.

	COMMENTS			intact damaged flaking,	dusting.		surface degradation	evidence of powder	gained weight		surface degradation	cracking.		surface showed powder	no damage	surface degradation	evidence of cracking		some visible dusting	surface degradation	cracking					light yellow			visible dusting	fell apart, cracking				
	WEIGHT LOSS Z	0.258	0.222	0.140	2.456	0.217	1.319		0.476	0.211	0.265		0.294	3.790	0.488	0.545		0.257	0.319	1.195		0.092	0.294	0.264	0.223	2.474		0.250	1.116	N.A.	0.180	0.329	0.127	only.
RUN SUMMARY	CICLE-FUEL/ALK LIME SECONDS	10-200/400	10-200/400	10-200/400	10-200/400	10-200/400	10-200/400		10-300/400	10-300/400	10-300/400		10-300/400	10-300/400	10-300/400	10-300/400		10-300/400	10-300/400	10-300/400		10-100/400	10-100/400	10-100/400	10-100/400	10-200/400		10-200/400	10-200/400	10-200/400	10-200/400	10-200/400	10-200/400	All others made for T.G.A. runs only.
	TEMPERATURE OF	1479	1470	1479	14.7.)	1673	1470		1470	1479	1479		1470	1470	1470	1470		1470	1470	1470		1470	1470	1470	1479	1470	1479	1383	1380	1380	1380	1380		
		N1+Ba	Ba/N1	N1/Ba	N1/Ba	N1+Ba	Ba/N1		N1+Ba	Ba/Ni	N4/Ba		Ni+Ba	N1/Ba	N1/Ba	Nf/Ba		N1/Ba	N1/Ba	N1/Ba		N1+Ba	N1/Ba	N1+Ba	Ba/N1	N1/Ba (Ba(NO3)2)	N1/Ba (Ba(NO3)2)	N1+Ba	Ba/Nf	N1/Ba	N1/Ba	N1+Ba	Ba/Ni	Unit made catalyst
	CATALYST	SA5202	SA5202	SA5202	*SA5202	QA1203	aA1203		SA5202	SA5202	SA5202		Q-A1203	Q-A1203	*SA5202	*SA5202				*SA5202		SA5202	SA5202	0-A1203	QA1203	SA5202	SA5202	SA5202	SA5202	SA5202	*SA5202			-

Table 25 PLATINUM STABLIZED NICKEL CATALYST PAIRS PREPARED BY C.H. BARTHOLOMEW

ŋ

CATALYST TYPE TEN	STARTING TEMPERATURE ^O F	CYCLES-PROPANE/AIR TIMESSECONDS	WEIGHT LOSS %	% COMMENTS
12% N1/A1203 ASTM	1479	10-200/400	26.82 de	destroyed cracking and dusting
0.5% Pt 12% Ni/Al203ASTM	1479	10-200/400	12.05 bi	black color flaking and dusting
KATALCO Al2031% Ni	1470	10-200/400	0	
KATALCO 0.9% Ni 0.1% Pt/Al203	1470	10-200/400	0.376	dusting
4.5% Ni 0.5% Pt on Al ₂ O ₃ Reduced 4 hrs 1470	s 1470	10-200/500+1100*	gained	intact but crisp
4.5% Ni 0.5% Pt on Al203 Reduced 5 hrs 1479	s 1479	10-200/500+1300*	3.62	intact
5% N1/Al ₂ 0 ₃ Conoco Catapol Al ₂ 0 ₃	1470	10-200/400+800	gained	cracked

* Air time until complete regeneration

Table 26 X-RAY MICROPROBE ANALYSES N1/Denstone 57 Treated At 1470°F

D

8

23

0

U

0 .

ø

Ball # *	Time (sec)	Mg%	A12	S1%	쾨	N1%	T12	FeX
0	0	3.04	4.24	60.6	•	83.61	•	•
•	0	1.74	5.73	9.90	1	82.62	1	•
1	50	2.93	13.87	19.77	2.66	92.09	•	•
1	20	1.65	12.28	16.88	3.42	92.59	•	•
9	150	1.89	32.15	46.81	4.83	12.62	0.64	1.06
9	150	4.30	32.02	20.59	2.78	38.47	97.0	1.07
5	250	2.11	36.36	53.04	4.61	1.98	1.31	0.38
5	250	1.09	42.35	48.26	4.94	1.40	1.16	0.78
80	400	0.83	34.33	53.34	5.74	3.80	1.03	0.92
8	400	0.94	32.94	54.33	5.83	3.37	1.40	1.18
10	200	1.74	36.77	48.52	6.03	5.55	1.87	•
10	200	3.72	35.03	51.38	5.01	2.20	1.71	0.94
12	009	1.10	35.14	55.10	5.05	1.39	1.44	0.77
12	009	1.48	32.93	69.44	10.08	3.76	4.61	2.44

The state of the s

* Two different areas of same ball.

Denstone 57
Fuel Only
FueloPropane

Table 27 X-RAY MICROPROBE AWALYSES N1/Ba307 Treated at 1290 F

Ca Z N1 Z													
SIX													
ALZ	27.59	19.76	22.42	28.74	21.50	34.47	56.33	22.28	22.16	29.14	33.97	24.91	26.71
Time (sec)	0	20	82	150	150	250	250	007	700	200	200	009	009
Ball # *	•	1	1	3	3	5	5	80	80	10	10	12	12

^{*} Two different areas of same ball

BA 307 Fuel Only Fuel Propane

Table 28 X-RAY MICROPROBE ANALYSES Ni/BA307 TREATED AT 1470°F

5.0

8

8

8

Time (sec)	A1Z	N12
0	17	83
20	18	82
150	31	69
250	89	32
400	91	6

BA 307 Fuel Only Fuel Propane 1470°F

The state of the s

B

8

8

13

13

0

D

Product Gas Analyses - Runs from Table 16

The second of th

8 .

Product Gas Analyses - Runs from Table 16

Company of the Compan

.

.

Product Gas Analyses - Runs from Table 17

-

0.

Product Gas Analyses - Runs from Table 18

and the state of t

Product Gas Analyses - Runs from Table 18

The state of the s

8

ı

0

8

8

ß

D

0.

Product Gas Analyses - Runs From Table 18

The state of the s

O

.

and the second second

0

0

15

D

13

D .

Figure 18 Product Gas Analyses - Runs from Table 19

The state of the s

O

Figure 19 Product Gas Analyses - Runs from Table 19

and the state of t

60

The second section is a second second

Product Gas Analyses - Runs from Table 20

and the second second

Figure 23 SUMMARY OF TUBE FURNACE DATA

SA5203 High Nickel Catalyst Propane/Air 10 Cycles

The state of the s

Figure 24 Breadboard Unit - Side View

Figure 25 Breadb

Figure 25 Breadboard Unit - Top View

8

was the second of the second of the

Figure 27 - Heat Exchange Section

Figure 28 - Overall View - Reactors

APPENDIX A SUMMARY OF PREVIOUS CONTRACT WORK

SUMMARY OF PREVIOUS CONTRACT WORK

IITRI's work on a "Hydrogen Generator Subsystem" was influenced by previous work performed by:

Institute of Gas Technology Engelhard Minerals and Chemicals Corporation Pratt and Whitney Aircraft

Several system concepts were evaluated on paper and in some cases experimentally. Among these concepts were steam reforming, partial oxidation and thermal or catalytic cracking. Prototype hardware was constructed by Pratt and Whitney to further evaluate thermo-catalytic cracking as a "combined" process.

2

×

10

10

0 .

Steam reforming is a continuous process which involves conversion of hydrocarbon fuels and water vapor to hydrogen, carbon monoxide, and carbon dioxide over a suitable catalyst. This process was considered to have the highest yield with excellent product purity, contaminated by only a low level of carbon monoxide. The need forwater in this system posed logistic problems. Since a self-contained unit was desired an outside source of water was ruled out and recycle water was necessary. This recycling would involve large heat exchangers to condense water from exhaust gases. In extremely dry operating areas, exhaust gases would have to be cooled to near or below ambient temperatures. Steam-reforming catalyst could not withstand lead or sulfur found in fuel. Pretreating of the fuel would require added equipment in the hydrogen generator "package". High efficiency and product purity were offset by need for complicated equipment which dictates large unit sizes.

The second type of fuel conditioner considered was partial oxidation of hydrocarbons to carbon monoxide, hydrogen, and water with subsequent processing over a shift catalyst to produce carbon dioxide and water.

Again, as in the steam reforming case, the shift catalyst is poisoned by sulfur and lead, and thus, a pre-conditioner is needed. Weight could be saved, compared to the reforming type, since there is no need for water, but efficiency and product purity are lower. To remove carbon monoxide, more air is necessary, this adds to the nitrogen which acts as a diluent. This lowers the hydrogen concentration and efficiency of the fuel cell. Also, as the fuel cell uses up hydrogen, the concentration drops below the useful limit and product must be discarded or burned for heat. Purification processes are available for the hydrogen stream, such as diffusion though metal films, but these involve complicated equipment or high working pressures. Potential advantages of light weight of a partial oxidation system are offset by poorer product purity and lower efficiency.

The third type of fuel conditioner involves a cyclic process of pyrolysis of the hydrocarbon to its basic elements, hydrogen and carbon. Gaseous hydrogen would then leave while carbon would be left behind. A stream of air would then be passed over the carbon to burn it and supply the heat necessary for the reaction. This cyclic process has advantages and disadvantages. One disadvantage is the need for duplicate reactors, dual sets of piping, and high temperature valves to switch reactors from a generation cycle to regeneration. One advantage of this system is that most impurities in the fuel are deposited on the bed and burned off during regeneration. In this way, the product stream is free from these impurities. Efficiency and purity are as high as the steam reformer, but higher temperatures are involved, 1500-2400°F for catalytic cracking and 2000-3000°F for straight thermal cracking. Materials of construction must then be high quality stainless steels or ceramics.

8

8

8

20

10

Each of these process options was considered for use in a "Hydrogen Generator Subsystem" by previous contract workers. A summary of work, results, and conclusions follows.

the state of the s

INSTITUTE OF GAS TECHNOLOGY-DAAK-02-69-C-0452

I.G.T. chose thermal pyrolysis over catalytic pyrolysis as they felt it would be easier to find materials and design for the high temperatures rather than find a catalyst material that will operate at "moderately" high temperature. Catalytic cracking takes place at 1500-2400°F. The lower temperature is about the minimum temperature at which carbon will oxidize, while the upper operating limit is defined by catalyst stability. Primary products of the reaction are hydrogen and methane, with higher temperatures favoring hydrogen. Kinetic effects cause more methane to form than equilibrium predicts. This advantage of higher temperature led to use of straight thermal cracking. These higher temperatures ($2500^{\circ}F$) dictated use of ceramic materials for construction. Heat loss becomes critical as one approaches adiabatic flame temperatures so regenerative heating is needed.

A ceramic test reactor and two types of high temperature valves were constructed. One valve was a four way poppet valve much like an automotive exhaust valve, but with stainless steel valves and a seat of boron nitride. The second was a rotary plug valve constructed out of Inconel and boron nitride. Both valves experienced slight leakage, but were considered acceptable for low working pressures. Carbon management in the test reactor was a problem and caused local hot spots that spalled and fused the ceramic balls.

Design information from the test reactor, together with mathematical models led to construction of a breadboard unit. Design information from this led to a prototype design.

ENGELHARD MINERALS AND CHEMICAL CORP. - DAAK-0270-C-0547

Engelhard Minerals and Chemical Corporation also worked on development of a hydrogen generator subsystem. Their approach, unlike I.G.T.'s, was based on thermo-catalytic cracking. Catalysts investigated by Engelhard were platinum on alumina, nickel on alumina, nickel on other ceramics, metallic nickel and Inconel.

The state of the s

D.

Catalyst screening was conducted in a small Inconel test reactor. Results showed no advantage was gained with platinum catalyst. Solid nickel chips were the catalyst of choice for their breadboard system.

After experimentation with a breadboard unit, some problems were observed with metalic nickel as a catalyst. Plugging was observed from carbon deposition, indicating a very active area at the front of the bed. This active area also created hot spots and melting during carbon burn off. Carbon monoxide and water were formed early in the generation cycle from reduction of nickel oxide on the surface to metalic nickel. The large amount of carbon monoxide made it necessary to add a methanator (to convert the poisonous carbon monoxide to harmless methane) to protect the fuel cell. This was done at the expense of hydrogen and lowered efficiency of the unit. A 20-30 hour initiation time was observed for the catalyst to reach full activity. The reason for this time was assumed to be nickel migration, where a layer of nickel was deposited on alumina Raschig rings which were used as a bed diluent. To solve plugging and overheating problems, a graded bed, consisting of four percent metalic nickel at the inlet increasing to 30 percent nickel at the exit, was used. This bed performed well with no plugging or hot spots.

PRATT AND WHITNEY - DAAK-02-69-C-0453

Pratt and Whitney also evaluated different methods of cracking fuel to give hydrogen for fuel cell operation. They concluded that catalytic cracking was the most advantageous method and designed a cracker based on a rotary ceramic honeycomb wheel coated with nickel.

As the wheel was slowly rotated different sectors of the wheel went through alternating generation and regeneration stages. This eliminated the need for separate high temperature valves or two reactor chambers and was light weight and compact.

This system had problems caused by fuel cracking in the vaporizer section. Carbon built up and plugged the seals to the wheel. Part of the honeycombs of the wheel also were plugged such that no air could pass through to burn off carbon.

Catalyst integrity in general was acceptable, although some wheels did develop cracks.

A new rotary cracker was designed based on data from the first model. The bed consisted of an annulus with U-shaped passages for catalyst. The catalyst was a pelletized form of supported nickel. Much higher yields resulted from the combination of more catalyst area and less leakage past the seals. Introduction of fuel directly into the bed eliminated carbon formation on the seals.

PRATT AND WHITNEY - DAAK-02-70-C-0518

Objectives were to improve performance and durability of the thermal cracker, verify suitability of the fuel cell and stack configuration, improve voltage regulator design and performance, and verify integrated operation of the several functional sections of the automatic unit.

Further catalyst investigations indicated that one half inch alumina spheres in a bed "graded" from one percent nickel at the beginning to 20 percent nickel loading at the exit of the outer space of an annular reactor provided the best performance. This kept the inside space, which served as fuel vaporizer, cool enough so as not to prematurely overheat the fuel. Tests with leaded gasoline and sulfur "doped" fuel showed no loss of performance but increased soot levels resulted with high amounts of sulfur. Prototype units were built, but performance was not adequate due to hot spots, bed plugging and other non-uniformities.

3

APPENDIX B COMPOSITION OF CATALYSTS AND SUBSTRATES

COMPOSITION OF CATALYSTS AND SUBSTRATES

Major components of substrates used in the preparation of catalysts which were evaluated in the course of work on this contract are listed in Table B-1.

Table B-2 lists free nickel content for each of the catalysts used and in bench unit studies.

A summary of barium and nickel contents of stabilized catalysts is shown in Table B-3. Methods of preparation for these catalyst materials are summarized in the following sections.

The initial preparation of a barium-stabilized nickel catalyst involved reimpregnation of Katalco 23-1 reforming catalyst in a hot saturated barium hydroxide solution. Several rings were soaked for 15 minutes in the solution which was held near the boiling point. The samples were then allowed to dry and calcined at 1350° F for two hours. A sample was then heattreated at 2200° F for three hours.

*

3

Compairson of these three samples: 1) untreated 23-1; 2) barium-treated 23-1; 3) heat-treated, barium-treated 23-1 - gave the following results in a "fuel-only" test at 1475° F: a) 13 minutes to damage, b) 23 minutes to damage, c) no activity.

Further catalyst preparations used uncoated substrates so that impregnation of both nickel and barium could be varied. Samples of alumina rings (unimpregnated Katalco 23-1) and Norton SA5202 spheres were both treated with a solution of 10.37 g Ni(N0 $_2$ ·6H20 and 1.6 g Ba(OH)2·8H20 per 100 cc water. A 15 minute soak was followed by drying at 300°F for one hour, calcining at 1100° F for an hour and hydrogen reduction at 1350° F for an hour. Two other sets of samples were prepared by similar procedures except that barium and nickel impregnation were separate. This resulted in their sets of samples, Ni + Ba together, Ni/Ba, and Ba/Ni in order.

Tests of all three types showed great improvement with fuel only tests showing no damage after an hour of exposure. However, in cycling fuel-air experiments in the TGA, samples which were impregnated with barium first tended to show lower activity and more damage. Bench unit evaluation of these samples also showed lower activity.

Slightly higher metal loading was obtained when barium nitrate was used. Solutions of 15.08 g Ni(NO₃)₂·6H₂O and 2.55 g Ba(NO₃)₂ per 100 cc water were used. Soaking times were 45 minutes in each solution and initial drying was at 350° F. Calcining was carried out at 1100° F, followed by reduction at 1350° F in hydrogen.

Table B-1
SUBSTRATE CONSTITUENTS

Substrate	Major Com	ponents
	A1,0,	510,
Norton BA307	92.6	6.0
SA5203, 5503	86.9	11.6
SA5202	99.6	<.05
Denstone 57	38,1	56.4
Katalco 23-1	Balance	<.2

Table B-2
NICKEL CONTENT OF VARIOUS CATALYSTS

<u>Туре</u>	% Nickel
BA307	0.64
SA5203	10.4
SA5203 Heat Treated	<.01
SA5203 Heat Treated, Recoated	5.25
Katalco 23-1	7.86
SA5503	11.42
Denstone 57	0.57

Table B-3 ANALYTICAL RESULTS BY ATOMIC ABSORPTION ON BARIUM STABLIZED NICKEL CATALYST

Irve	Z Nickel	% Barium	Comments
23-1 Katalco	8.236	1	Nickel coated ring
23-1 Katalco	2.468	1.381	Nickel coated ring treated with Ba(OH)2
23-1 Katalco	0.031	2.209	Same batch as above - heat treated
SA 5 2 0 2	0.484	0.019	Alumina ball treated with NI(NO3)2+ Ba(OH)2
SA5202	0.608	0.043	Alumina ball treated with Ni(NO3)2/Ba(OH)2
SA5202	0.707	0.069	Alumina ball treated with Ni(NO3)2+ Ba(NO3)2
SA5202	0.653	0.041	Same batch as above
SA5202	0.668	0.049	Alumina ball treated with Ni(NO3)2/ Ba(NO3)2
SA5202	0.564	0.045	Same batch as above.
SA5202	0.451	0.023	Same batch as above.

APENDIX C PRELIMINARY DESIGN BASIS

PRELIMINARY DESIGN BASIS

Conceptual design of the two-bed cracker subsystem was based on a cycle similar to that used previously. Use of a recycle gas - air mixture for regeneration of reactor beds was the major process change, while use of cylindrical beds with length to diameter ratio of six was the major physical change.

Initital design calculations used preliminary data taken with JP-4 fuel at USA MERADCOM. Eighty-five percent conversion at a space velocity of 0.6 volume fuel per hour per volume of bed and operating temperatures of 1600-1800 F were used as a basis. A cycle of 2.5 minutes regeneration; 0.5 minute purge; and 3 minutes hydrogen production was planned for each of the reactor beds. Production of one cubic foot of hydrogen per minute could be accomplished with a fuel flow of 26 cc/min and catalysts beds of 2600 cc (160 cubic inches) which would be about three inches in diameter by nineteen inches long.

Steady state operation of these two beds would require heat removal of about 18,000 Btu/hour and a circulating gas flow during regeneration of 11 SCFM. This would result in an estimated system pressure drop of 10 inches of water and requires heat exchange area of about one square foot.

A summary of preliminary calculations for each of these design parameters follows:

1. Hydrogen Production

26 cc fuel/minute x 0.76 g fuel/cc x 85% conversion x 15% hydrogen x 22.4 liters/2g x l ft 3 /28.32 liters = 1.0 ft /minute

2. Heat Release During Regeneration

Assume:

40% carbon to CO_2 40% x 94050 cal/mole x mole/12gC 60% carbon to CO 60% x 26420 cal/mole x mole/12gC

= 3135 1321 4456 cal/gc

26 cc fuel/minute fed x 3.5 minutes fed/3 minutes x 0.76 g fuel/cc

x 85% carbon x 85% conversion x 4456 cal/g carbon

x Btu/252cal x 60 minutes/hour

= 17670 Btu/hour

3. Pressure Brop

11 SCFM 48 ft3/minute @ 1800°F

D reactor = 3" Vs = 16.3 ft/sec

D pipe = 1" V = 147 ft/sec

L bed = 2' Dp = 3/8" $\rho 1800 = 0.018$ lb/ft $\epsilon = 0.38$ $\mu 1800 = 0.049$ cp

 ΔP bed = 1.75 L/Dp x ρV /g x 1- ϵ/ϵ

= 0.6 inch H₂0

Assume System = 5-90° turns; 4' of 1" pipe; reactor; 1-expansion; 1 contraction; neglect blower

90° turn - 30 equivalent diameters Expansion - 35 equivalent diameters Contraction - 18 equivalent diameters

Total equivalent length - 21 feet

P pipe: $N_R = VD\rho/\mu = 6700$, f = 0.033

 $\Delta P = f V^2 \Sigma L/2qD$

= 9.6 inch H₂0

Total $\Delta P = 10.2$ inches H₂0

4. Heat Transfer Requirements

ΔT: 17670 Btu/hr x hr/60 minutes x minute/11 SCF x 1b°F/0.25 Btu

x ft³/0.0808 1b

= 1325°F

Thot = 1800°F ΔThot = 1725

Tcold = $475^{\circ}F$ ΔT cold = $400^{\circ}F$ ΔT log mean = $900^{\circ}F$

A: 17670 Btu/hour x hour $ft^{20}F/20$ Btu x 1/900 F = 1 ft^{2}

DISTRIBUTION LIST

Commander (12)
Defense Documentation Center
ATTN: TISIA
Cameron Station, Bldg 5
Alexandria, VA 22314

Technical Documents Center (2)
US Army Mobility Equipment R&D Command
ATTN: DRDME-WC
Fort Belvoir, VA 22060

Power Information Center (1) University City Science Center 3624 Science Center Philadelphia, PA 19104

US Department of Energy (1) ATTN: Mr. Gary Voelker 20 Massachusetts Avenue, NW Washington, DC 20545

Engelhard Minerals & Chemical Corp (1)
Engelhard Industries Division
Government Services Department
ATTN: Mr. V.A. Forlenza
70 Wood Avenue, South
Metro Park Plaza
Iselin, NJ 08830

General Electric Company (1) 50 Fordham Road ATTN: L.J. Nuttall, Bldg 1A Wilmington, MA 01887

Institute of Gas Technology (1) 3434 South State Street ATTN: Dr. K.F. Blurton Chicago, IL 60616

Electric Power Research Institute (1)
ATTN: A.P. Fickett
PO Box 10412
Palo Alto, CA 94304

Universal Oil Products, Inc (1) Ten UOP Plaza ATTN: Stephen N. Massie Government Contract Administrator Des Plaines, IL 60016

Power Systems Division (1)
United Technologies Corporation
ATTN: Mr. Al Meyer
PO Box 109, Governor's Highway
South Windsor, CT 06074

Jet Propulsion Laboratory (1) California Institute of Technology ATIN: Dr. John Houseman, Supervisor Fuel Conversion Group 4800 Oak Drive Pasadena, CA 91103

Energy Research Corporation (1) ATTN: Dr. B. Baker 3 Great Pasture Road Danbury, CT 06810

Commanding Officer (2)
US Army Mobility Equipment R&D
Command
Electrical Power Laboratory
ATTN: DRDME-EC (Systems Group)
Fort Belvoir, VA 22060

Director (1)
US Army Ballistic Research Lab
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD 21005