机器学习

第5章 Emsemble Methods

Bagging and Boosting

Adaptive Boosting

Bootstrapping as Re-weighting Process

$$\mathcal{D} = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_3, y_3), (\mathbf{x}_4, y_4) \}$$

$$\stackrel{bootstrap}{\Longrightarrow} \mathcal{D}_t = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_4, y_4) \}$$

•
$$E_{in}$$
 on \mathcal{D}_t : $E_{in}(h) = \frac{1}{4} \sum_{(\mathbf{x},y) \in \mathcal{D}_t} ind\{y \neq h(\mathbf{x})\}$

• weighted E_{in} on \mathcal{D}

$$E_{in}(\alpha, h) = \frac{1}{4} \sum_{i=1}^{4} \alpha_i \cdot ind\{y_i \neq h(\mathbf{x}_i)\}$$

$$(\mathbf{x}_1, y_1) : \alpha_1 = 2 \quad (\mathbf{x}_2, y_2) : \alpha_2 = 1 \quad (\mathbf{x}_3, y_3) : \alpha_3 = 0 \quad (\mathbf{x}_4, y_4) : \alpha_4 = 0$$

- each diverse g_t in bagging:
 - by minimizing bootstrap-weighted error

Re-weighting for More Diverse Hypothesis

- improving bagging for binary classification:
 - how to re-weight for more diverse hypotheses?

$$g_{t} \leftarrow \underset{h \in \mathcal{H}}{argmin} \left(\sum_{i=1}^{N} \alpha_{i}^{t} \cdot ind\{y_{i} \neq h(\mathbf{x}_{i})\} \right)$$
$$g_{t+1} \leftarrow \underset{h \in \mathcal{H}}{argmin} \left(\sum_{i=1}^{N} \alpha_{i}^{t+1} \cdot ind\{y_{i} \neq h(\mathbf{x}_{i})\} \right)$$

- if g_t not good for α^{t+1} , then:
 - g_t -like hypotheses not returned as g_{t+1}
 - g_{t+1} diverse from g_t
- idea: construct α^{t+1} to make g_t random-like

$$\sum_{i=1}^{N} \alpha_i^{t+1} \cdot ind\{y_i \neq g_t(\mathbf{x}_i)\} = \frac{1}{2} \sum_{i=1}^{N} \alpha_i^{t+1}$$

Optimal Re-weighting

- Let: $e^{t+1} = \sum_{i=1}^N \alpha_i^{t+1} \cdot ind\{y_i \neq g_t(\mathbf{x}_i)\}$ denotes total α_i^{t+1} of incorrect
- Let : $r^{t+1} = \sum_{i=1}^N \alpha_i^{t+1} \cdot ind\{y_i = g_t(\mathbf{x}_i)\}$ denotes total α_i^{t+1} of correct
- Want: $\sum_{i=1}^{N} \alpha_i^{t+1} \cdot ind\{y_i \neq g_t(\mathbf{x}_i)\} = \frac{1}{2} \sum_{i=1}^{N} \alpha_i^{t+1}$
- one possibility by re-scaling (multiplying) weights, if
 - \rightarrow total α_i^t of incorrect = 1126; total α_i^t of correct = 6211
 - → weighted incorrect rate = 1126 / 7337
 - \rightarrow incorrect: $\alpha_i^{t+1} \leftarrow \alpha_i^t \cdot 6211 \rightarrow \text{correct:} \ \alpha_i^{t+1} \leftarrow \alpha_i^t \cdot 1126$

Decision Stump

want: a 'weak' base learning algorithm \mathcal{A} that minimizes $E_{\text{in}}^{\mathbf{u}}(h) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_n \cdot [\![\mathbf{y}_n \neq h(\mathbf{x}_n)]\!]$ a little bit

a popular choice: decision stump

• in ML Foundations Homework 2, remember? :-)

$$h_{\mathbf{s},i,\theta}(\mathbf{x}) = \mathbf{s} \cdot \operatorname{sign}(x_i - \theta)$$

- positive and negative rays on some feature: three parameters (feature i, threshold θ, direction s)
- physical meaning: vertical/horizontal lines in 2D
- efficient to optimize: O(d · N log N) time

decision stump model:

allows efficient minimization of E_{in}^{u} but perhaps too weak to work by itself

Teacher-like algorithm works!

A Complicated Data Set

AdaBoost-Stump: non-linear yet efficient

Quize

For four examples with $\alpha_i^{(1)}=1/4$ for all examples. If g_1 predicts the first example wrongly but all the other three examples correctly. After the optimal re-weighting, what is $\alpha_1^{(2)}/\alpha_2^{(2)}$

(1) 4 (2) 3 (3) 1/3 (4) 1/4

By optimal re-weighting, α_1 is scaled proportional to 3/4 and every other α_i is scaled proportional to 1/4. So example 1 is now three times more important than any other example.

Bagging: Bootstrap Aggregation

- optimal re-weighting: let $\epsilon_t = \sum_{i=1}^N \alpha_i^{t+1} \cdot ind\{y_i \neq g_t(\mathbf{x}_i)\} / \sum_{i=1}^N \alpha_i^{t+1}$
 - multiply incorrect $\propto (1-\epsilon_t)$; multiply correct $\propto \epsilon_t$

- define scaling factor: $\lambda_t = \sqrt{(1-\epsilon_t)/\epsilon_t}$
 - incorrect ← incorrect $\cdot \lambda_t$; correct ← correct $/\lambda_t$
 - equivalent to optimal re-weighting: $\lambda_t \geq 1 \text{ iff } \epsilon_t \leq 1/2$
 - physical meaning: scale up incorrect; scale down correct
- scaling-up incorrect examples leads to diverse hypotheses!

A Preliminary Algorithm

- for $t = 1, 2, \dots, T$
 - 1. obtain g_t by $A(D, \alpha^{(t)})$ where A tries to minimize $\alpha^{(t)}$ -weighted 0/1 error
 - 2. update $\alpha^{(t)}$ to $\alpha^{(t+1)}$ by $\lambda_t = \sqrt{(1-\epsilon_t)/\epsilon_t}$ where ϵ_t = weighted error (incorrect) rate of g_t
- return G(x)
- $\alpha^{(1)}$ =? want g_1 "best" for E_{in} : $\alpha_i^{(1)} = 1/N$
- G(x) = ? uniform? -- but g_2 very bad for E_{in} (why? :-))
 - linear, non-linear? as you wish!

Linear Aggregation on the Fly

- $\alpha^{(1)} = [1/N, 1/N, \dots, 1/N]$, for $t = 1, 2, \dots, T$
 - 1. obtain g_t by $A(D, \alpha^{(t)})$
 - 2. update $\alpha^{(t)}$ to $\alpha^{(t+1)}$ by $\lambda_t = \sqrt{(1-\epsilon_t)/\epsilon_t}$
 - 3. compute $\beta_t = \ln(\lambda_t)$
- return $G(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t g_t(\mathbf{x})\right)$
- wish: large β_t for good $g_t \Rightarrow \beta_t = f(\lambda_t)$ monotonic
- will take $\beta_t = \ln(\lambda_t)$
 - $-\epsilon_t = 0.5 \Rightarrow \lambda_t = 1 \Rightarrow \beta_t = 0$ (bad g_t zero weight)
 - $\epsilon_t = 0 \Rightarrow \lambda_t = \infty \Rightarrow \beta_t = \infty$ (super gt superior weight)

Linear Aggregation on the Fly

• wish: large β_t for good $g_t \Rightarrow \beta_t = f(\lambda_t)$ monotonic

Essentially, the weight of the classifier in the ensemble is proportional to the log-odds of it being correct vs making an error

assuming
$$0 < \epsilon_t < 0.5$$

Adaptive Boosting

Adaptive Boosting = weak base learning algorithm A

optimal re-weighting factor λ_t

"magic" linear aggregation β_t

AdaBoost: provable boosting property

Theoretical Guarantee of AdaBoost

From VC bound

$$E_{out}(G) \le E_{in}(G) + O\left(\sqrt{O(d_{VC}(\mathcal{H}) \cdot T \log T) \cdot \frac{\log N}{N}}\right)$$

 d_{VC} of all possible G

- $E_{in}(G)$ can be small:
 - $E_{in}(G) = 0$ after $T = O(\log N)$ iterations if: $\epsilon_t \le \epsilon < 0.5$
- second term can be small:
 - overall d_{VC} grows "slowly" with T

boosting view of AdaBoost:

- if \mathcal{A} is weak but always slightly better than random ($\epsilon_t \leq \epsilon < 0.5$),
- then (AdaBoost+ \mathcal{A}) can be strong ($E_{in}=0$ and E_{out} small)

A toy example from Schapire's tutorial

The second round:

The first round:

The third round:

The final classifier

AdaBoost Algorithm

- $\alpha^{(1)} = [1/N, 1/N, \dots, 1/N]$, for $t = 1, 2, \dots, T$
 - 1. obtain g_t by $A(D, \alpha^{(t)})$ where A tries to minimize $\alpha^{(t)}$ -weighted 0/1 error
 - 2. update $\alpha^{(t)}$ to $\alpha^{(t+1)}$ by $\lambda_t = \sqrt{(1-\epsilon_t)/\epsilon_t}$ incorrect examples : $\alpha^{(t+1)} = \alpha^{(t)} \cdot \lambda_t$ incorrect examples : $\alpha^{(t+1)} = \alpha^{(t)}/\lambda_t$

where:
$$\epsilon_t = \sum_{i=1}^N \alpha_i^t \cdot ind\{y_i \neq g_t(\mathbf{x}_i)\} / \sum_{i=1}^N \alpha_i^t$$

- 3. compute $\beta_t = \ln(\lambda_t)$
- return $G(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t g_t(\mathbf{x})\right)$

Quize

According to $eta_t = \ln(\lambda_t)$ and $\lambda_t = \sqrt{(1-\epsilon_t)/\epsilon_t}$,

when would $\beta_t > 0$?

(1)
$$\epsilon_t < 0.5$$
 (2) $\epsilon_t > 0.5$ (3) $\epsilon_t \neq 1$ (4) $\epsilon_t \neq 0$

Reference Answer: 1

The math part should be easy for you, and it is interesting to think about the physical meaning: $\beta_t > 0$ (gt is useful for G) if and only if the weighted error rate of gt is better than random!

Quize

For a data set of size 9876 that contains $\mathbf{x}_n \in \mathbb{R}^{5566}$, after running AdaBoost-Stump for 1126 iterations, what is the number of distinct features within \mathbf{x} that are effectively used by G?

- $0 \le \text{number} \le 1126$
- 2 1126 < number ≤ 5566</p>
- 3 $5566 < number \le 9876$
- 4 9876 < number</p>

Each decision stump takes only one feature. So 1126 decision stumps need at most 1126 distinct features.

Reference Answer: 1

Decision Tree

What We Have Done

- blending: aggregate after getting gt;
- learning: aggregate as well as getting gt

aggregation type	blending	learning
uniform	voting/averaging	Bagging
non-uniform	linear	AdaBoost
conditional	stacking	Decision Tree

decision tree: a traditional learning model that realizes conditional aggregation

Decision Tree: Path View

$$G(\mathbf{x}) = \sum_{t=1}^{N} q_t(\mathbf{x}) \cdot g_t(\mathbf{x})$$

- base hypothesis g_t (x): leaf at end of path t, a constant here
- condition q_t (x): ind (is x on path t?)
- usually with simple internal nodes

Decision Tree: Recursive View

- G(x): full-tree hypothesis
- b(x): branching criteria
- G_c(x): sub-tree hypothesis at the c-th branch

Disclaimers about Decision Tree

Usefulness

- human-explainable: widely used in business/medical data analysis
- simple: easy to be implemented
- efficient in prediction and training
- However.....
 - heuristic: mostly little theoretical explanations
 - heuristics: 'heuristics selection' confusing to beginners
 - arguably no single representative algorithm
- decision tree: mostly heuristic but useful on its own

Quize

```
The following C-like code can be viewed as a decision tree of three leaves.
   if (income > 100000) return true;
   else {
      if (debt > 50000) return false;
      else return true;
                                              Reference Answer: 2
What is the output of the tree for (income, debt) = (98765; 56789)?
```

(4) 56789

- You can simply trace the code.
- The tree expresses a complicated boolean condition
 - income > 100000 or debt <= 50000</p>

(1) True (2) False (3) 98765

A Basic Decision Tree Algorithm

$$G(\mathbf{x}) = \sum_{c=1}^{C} ind\{b(\mathbf{x}) = c\} \cdot G_c(\mathbf{x})$$

- function DecisionTree (data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1 \cdots N$)
- if termination criteria met
 - return base hypothesis $g_t(\mathbf{x})$
- else
- 1. learn branching criteria $b(\mathbf{x})$
- 2. split \mathcal{D} to C parts $\mathcal{D}_c = \{(\mathbf{x}_i, \mathbf{y}_i) : b(\mathbf{x}_i) = c\}$
- 3. build sub-tree $G_c \leftarrow \text{DecisionTree}(\mathcal{D}_c)$
- 4. return $G(\mathbf{x}) = \sum_{c=1}^{C} ind\{b(\mathbf{x}) = c\} \cdot G_c(\mathbf{x})$

Classification and Regression Tree (C&RT)

- function DecisionTree (data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1 \cdots N$)
- if termination criteria met : return base hypothesis $g_t(\mathbf{x})$
- else : (1) learn branching criteria $b(\mathbf{x})$
- (2) split \mathcal{D} to \mathbf{C} parts $\mathcal{D}_c = \{(\mathbf{x}_i, \mathbf{y}_i) : b(\mathbf{x}_i) = c\}$
- two simple choices CART™: California Statistical Software
 - C = 2 : binary tree
 - $g_t(\mathbf{x}) = E_{in}$ -optimal constant
 - binary/multiclass classification (0/1 error): majority of $\{y_i\}$
 - regression (squared error): average of $\{y_i\}$

Branching in C&RT: Purifying

- function DecisionTree (data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1 \cdots N$)
- if termination criteria met : return base hypothesis $g_t(\mathbf{x})$
- else : (1) learn branching criteria $b(\mathbf{x})$
- (2) split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(\mathbf{x}_i, \mathbf{y}_i) : b(\mathbf{x}_i) = c\}$
- more simple choices
 - simple internal node for C = 2 : {1,2} output decision stump
 - 'easier' sub-tree: branch by purifying

$$b(\mathbf{x}) = \underset{\text{decision stumps } h(\mathbf{x})}{\operatorname{argmin}} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \operatorname{impurity}(\mathcal{D}_c \text{ with } h)$$

C&RT: bi-branching by purifying

Impurity Functions

by E_{in} of optimal constant

– regression error:

impurity(
$$\mathcal{D}$$
) = $\frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2$

- with $\bar{y} = \text{average of } \{y_i\}$
- classification error:

impurity(
$$\mathcal{D}$$
) = $\frac{1}{N} \sum_{i=1}^{N} ind(y_i \neq y^*)$

• with $y^* = \text{majority of } \{y_i\}$

Impurity Functions

- for classification
 - classification error:

$$1 - \max_{1 \le k \le K} \frac{\sum_{i=1}^{N} ind(y_i = k)}{N}$$

- optimal k = y* only
- Gini index:

$$1 - \sum_{k=1}^{K} \left(\frac{\sum_{i=1}^{N} ind(y_i = k)}{N} \right)^2$$

all k considered together

Quize

For the Gini index $1-\sum\limits_{k=1}^K\left(\frac{\sum_{i=1}^Nind(y_i=k)}{N}\right)^2$. Consider K = 2, and let $\mu=\frac{N_1}{N}$,

where N_1 is the number of examples with $y_n=1$. Which of the following

formula of μ equals the Gini index in this case?

(1)
$$2\mu(1-\mu)$$
 (2) $2\mu^2(1-\mu)$ (3) $2\mu(1-\mu)^2$ (4) $2\mu^2(1-\mu)^2$

Reference Answer: 1

$$1 - (\mu^2 + (1 - \mu)^2) = 1 - \mu^2 - 1 + 2\mu - \mu^2 = 2\mu - 2\mu^2$$

Termination in C&RT

- function DecisionTree (data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1 \cdots N$)
- if termination criteria met : return base hypothesis $g_t(\mathbf{x})$
- else : (1) learn branching criteria $b(\mathbf{x})$
- (2) split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(\mathbf{x}_i, \mathbf{y}_i) : b(\mathbf{x}_i) = c\}$
- forced to terminate when
 - all y_i the same: impurity = $0 \Rightarrow g_t(\mathbf{x}) = y_i$
 - all x_i the same: no decision stumps

C&RT: fully-grown tree with constant leaves that come from bi-branching by purifying

Basic C&RT Algorithm

- function DecisionTree (data $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}, i = 1 \cdots N$)
- if cannot branch anymore : return $g_t(\mathbf{x}) = E_{in}$ -optimal constant
- else : (1) learn branching criteria $b(\mathbf{x})$

$$b(\mathbf{x}) = \underset{\text{decision stumps } h(\mathbf{x})}{\operatorname{argmin}} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \operatorname{impurity}(\mathcal{D}_c \text{ with } h)$$

- (2) split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(\mathbf{x}_i, \mathbf{y}_i) : b(\mathbf{x}_i) = c\}$
- (3) build sub-tree $G_c \leftarrow \text{DecisionTree}(\mathcal{D}_c)$
- (4) return $G(\mathbf{x}) = \sum_{c=1}^{2} ind\{b(\mathbf{x}) = c\} \cdot G_c(\mathbf{x})$

easily handle binary classification, regression, & multi-class classification

Regularization by Pruning

- fully-grown tree: $E_{in}(G) = 0$ if all \mathbf{x}_i different
- but overfit (large E_{out}) because low-level trees built with small \mathcal{D}_c
- need a regularizer, say, $\Omega(G) = \text{NumberOfLeaves}(G)$
- want regularized decision tree:

argmin
$$E_{in}(G) + \lambda \Omega(G)$$

all possible G

- called pruned decision tree
- cannot enumerate all possible G computationally -- often consider
 - $-G^{(0)} = \text{fully-grown tree}$
 - $-G^{(i)}=argminE_{in}(G)$ such that G is one-leaf removed from $G^{(i-1)}$

Branching on Categorical Features

numerical features

- Eg. blood pressure: 130, 98, 115, 147, 120
- branching for numerical features
 - decision stump $b(\mathbf{x}) = ind(\mathbf{x}_i \leq \theta) + 1 \text{ with } \theta \in \mathbb{R}$
- categorical features
 - major symptom: fever, pain, tired, sweaty
- branching for categorical features
 - decision subset $b(\mathbf{x}) = ind(\mathbf{x}_i \in S) + 1$ with $S \subset \{1, 2, \dots, K\}$
- decision trees usually handle categorical features easily

Missing Features by Surrogate Branch

$$b(\mathbf{x}) = ind(\text{weight} \le 50kg)$$

- if weight missing during prediction:
 - what would human do?
 - o go get weight
 - o or, use threshold on height instead
 - → because threshold on height ≈ threshold on weight
 - surrogate branch:
 - maintain surrogate branch during training

$$b_1(\mathbf{x}), b_2(\mathbf{x}), \ldots \approx \text{best branch } b(\mathbf{x})$$

 allow missing feature for b(x) during prediction by using surrogate instead

Quize

For a categorical branching criteria $b(\mathbf{x}) = [x_i \in S] + 1$ with $S = \{1, 6\}$. Which of the following is the explanation of the criteria?

- 1) if *i*-th feature is of type 1 or type 6, branch to first sub-tree; else branch to second sub-tree
- if i-th feature is of type 1 or type 6, branch to second sub-tree; else branch to first sub-tree
- 3 if i-th feature is of type 1 and type 6, branch to second sub-tree; else branch to first sub-tree
- 4 if i-th feature is of type 1 and type 6, branch to first sub-tree; else branch to second sub-tree

Reference Answer: 2

AdaBoost-Stump

Practical Specialties of C&RT

- human-explainable
- multiclass easily
- categorical features easily
- missing features easily
- efficient non-linear training (and testing)

almost no other learning model share all such specialties, except for other decision trees

another popular decision tree algorithm: C4.5, with different choices of heuristics

