Gráficos em Coordenadas Polares

Software Winplot

Usando o Winplot

Exemplo: Encontre os seguintes pontos

Gráfico

O gráfico de uma equação polar $f(r,\theta) = \theta$, é formado por todos os pontos cujas coordenadas polares (r,θ) satisfazem a equação acima. É comum apresentar a equação na forma explícita:

$$r = f(\theta)$$
.

Para traçar o gráfico de uma equação polar, atribuímos valores ao θ , encontramos r e formamos uma tabela. Usamos as mesmas técnicas utilizadas no esboço dos gráficos em coordenadas cartesianas.

1- Equação da Reta

Seja $\theta = \theta_0$ onde $\theta_0 \ge 0$. Esta equação representa os pontos $P = (r, \theta_0)$ onde r é um número real qualquer. Logo, $\theta = \theta_0$ representa uma reta passando pelo polo e que forma um ângulo de θ_0 com o eixo polar.

2- Equação da Circunferência

a) Se r =a com $a \in \Re$ esta equação representa os pontos do plano, cuja distância ao polo é a. É uma circunferência de raio a e centro no polo.

Exemplo:

r = 2

b) r=a.cos(θ) com $a \in \Re$ sendo **a** o <u>diâmetro</u> da circunferência:

i) Caso: a > 0

Ex: $r = 3\cos(\theta)$

• ii) Caso a < 0

Ex: $r = -3\cos(\theta)$

c) r=asen(θ) com $a \in \Re$ sendo a o diâmetro da circunferência:

i) Caso a > 0

Ex: $r=5sen(\theta)$

ii) Caso a < 0

Ex: $r=-5sen\theta$)

3 Limaçon

A equação é do tipo $r = a \pm b \cos(\theta)$ ou $r = a \pm b \sin(\theta)$. Existem quatro tipos de limaçon e cada tipo depende da razão $\frac{a}{b}$ onde a e b são números positivos.

- 1) Se $0 < \frac{a}{b} < 1$ limaçon com um laço
- 2) Se $\frac{a}{b}$ = 1 cardióide (formato de um coração)
- 3) Se $1 < \frac{a}{b} < 2$ limaçon com um dente
- 4) Se $\frac{a}{b} \ge 2$ limaçon convexo (sem dente)

i) Se a > b. Simetrias:

 $r \rightarrow -r$, a equação muda, portanto, não existe simetria em relação ao pólo.

 θ → - θ $cos(-\theta) = cos(\theta)$; a equação não muda, logo, existe simetria em relação ao eixo polar.

 $\theta \to \pi - \theta$ $\cos(\pi - \theta) = -\cos(\theta)$; a equação muda, não existe simetria em relação ao eixo $\frac{\pi}{2}$.

• Exemplo: r = 3 +

r = 3 +	$2 \cos(\theta)$
---------	------------------

θ	ľ					
0	5					
$\pi/6$	4,73					
$\pi/3$	4					
$\pi/2$	3					
$2\pi/3$	2					
5π/6	1,27					
π	1					
$7\pi/6$	1,27					
$4\pi/3$	2					
$3\pi/2$	3					
5π/3	4					
$11\pi/6$	4,73					
2π	5					

Lápis e papel

Usando Winplot

Simetria em relação ao eixo polar

ii) Se a < b. Simetrias:

 $r \rightarrow -r$, a equação muda (não existe simetria em relação ao pólo).

 $\theta \to -\theta$ $sen(-\theta) = -sen(\theta), \ r = 1 - 2 sen(\theta)$ a equação muda (não existe simetria em relação ao eixo polar).

 $\theta \to \pi - \theta$ $sen(\pi - \theta) = sen(\pi) cos(\theta) - sen(\theta) cos(\pi) = sen(\theta)$, a equação não muda (existe simetria em relação ao eixo $\frac{\pi}{2}$).

• Exemplo: $r = 1 + 2 \operatorname{sen}(\theta)$

ângulo	θ	r
0	0	1
30	$\pi/6$	2
60	$\pi/3$	2,73
90	$\pi/2$	3
120	$2\pi/3$	2,73
150	$5\pi/6$	2
180	π	1
210	$7\pi/6$	0
240	$4\pi/3$	-0,73
270	$3\pi/2$	-1
300	$5\pi/3$	-0,73
330	$11\pi/6$	0
360	2π	1

Lápis e papel

Usando Winplot

Simetria em relação ao eixo $\frac{\pi}{2}$

 $\frac{\pi}{2}$

iii) Se a = b. O gráfico tem e forma de um coração

Cardióide

• Exemplo: $r = 1 - cos(\theta)$.

θ	r					
0	0					
$\pi/6$	0,13					
$\pi/3$	0,5					
$\pi/2$	1					
$2\pi/3$	1,5					
5π/6	1,87					
π	2					

Lápis e papel

4 Lemniscatas

São funções do tipo $r^2 = \pm k \cos(2\theta)$ ou $r = \pm k \sin(2\theta)$ em que $k \in \Re$ Exemplo:

a)
$$r^2 = 3\cos(2\theta)$$

Simetrias:

 $r \rightarrow -r$, a equação não muda, logo, existe simetria em relação ao pólo.

 $\theta \rightarrow -\theta$ $\cos(-2\theta) = \cos(2\theta)$, $r = 3\cos(2\theta)$ a equação não muda, logo, existe simetria em relação ao eixo polar.

 $\theta \to \pi - \theta$ $\cos(2(\pi - \theta)) = \cos(2\pi)\cos(2\theta) + \sin(2\theta)\sin(2\pi) = \cos(2\theta)$, a equação não muda, logo, existe simetria em relação ao eixo $\frac{\pi}{2}$.

• Exemplo $r^2 = 3\cos(2\theta)$

θ	R
0	1,73
π/8	1,45
π/6	1,22,
$\pi/4$	0

Lápis e papel

Usando Winplot

Simetria em relação a todos os eixos polares

• Exemplo $r^2 = 8sen(2\theta)$

Simetrias:

 $r \rightarrow -r$, a equação não muda, logo, existe simetria em relação ao pólo.

 $\theta \rightarrow -\theta$ $sen(-2\theta) = -sen(2\theta)$, $r = -8sen(2\theta)$ a equação muda, logo, não existe simetria em relação ao eixo polar.

 $\theta \to \pi - \theta$ $sen(2(\pi - \theta)) = sen(2\pi)cos(2\theta) - sen(2\theta)cos(2\pi) = -sen(2\theta)$, a

equação muda, logo, não existe simetria em relação ao eixo $\frac{\pi}{2}$.

• Exemplo $r^2 = 8sen(2\theta)$

Simetria em relação ao polo

5 Rosáceas

São funções do tipo $r = \cos(a\theta)$ ou $r = sen(a\theta)$.

O número de pétalas depende do valor de a. Se for par o número de pétalas será 2.a

Se for impar o número de pétalas será a.

Exemplo 1 $r = sen(2\theta)$

Exemplo 2 $r = \cos(2\theta)$

Exemplo 3 $r = sen(3\theta)$

6 Espirais

r = θ Representa os pontos P(r,r) onde r , ou seja, os pontos P tais que a distância de P ao polo é igual ao ângulo, em radianos, entre o eixo polar e o segmento OP. A equação geral da espiral é dada por r =a considerando

Este tipo de gráfico também é conhecido como Espiral de Arquimedes

Exemplo
$$r = 2\theta$$
 com $0 \le \theta \le \frac{5\pi}{2}$

Outros tipos de Espirais

$$r = \frac{a}{\theta}$$
 Espiral hiperbólica

$$r = a^{b\theta}, a > 0$$
 Espiral Logarítimica

$$r = a^n \sqrt{\theta}$$
 Espiral parabólica quando n=2

Esboçar o gráfico de $r=1+\frac{6\theta}{\pi}$, com $0 \le \theta \le 2\pi$.

θ	0	$\pi/6$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$2\pi/3$	$5\pi/6$	π	$7\pi/6$	$4\pi/3$	$3\pi/2$	$5\pi/3$	$11\pi/6$	2π
r	1	2	3	4	5	6	7	8	9	10	11	12	13

• Faça o esboço dos seguintes gráficos:

a)
$$r = \frac{3}{\theta}$$
 $0 \le \theta \le 3\pi$

b)
$$r=2^{\frac{\theta}{2}}$$
 $0 \le \theta \le 2\pi$

c)
$$r = 2\sqrt{\theta}$$
 $0 \le \theta \le 10\pi$

Sistema Tridimensional

- É aquele que pode ser definido como tendo três dimensões (altura, profundidade e largura), o que na prática indica relevo.
- Os povos da antiguidade trabalhavam com formas volumétricas, mas o estudo metódico do tema pode ser encontrado nos livros de <u>Euclides</u>. Embora a maior parte da <u>geometria euclidiana</u> se dedique aos problemas da <u>geometria plana</u>, que inclui o espaço euclidiano, ela trabalhava com o tridimensional quando realizava estudo dos <u>sólidos</u>.

Conceito:

É um sistema no qual um ponto pode se mover livremente para todas as posições no espaço tridimensional. O espaço tridimensional aqui é entendido como o espaço ocupado pelos seres humanos.

Para localizar um ponto no espaço tridimensional, é necessário um sistema de coordenadas. Aqui serão estudados os sistemas de coordenadas retangulares no espaço, de coordenadas cilíndricas e de coordenadas esféricas, embora existam outros (por exemplo, sistema de coordenadas oblíquas no espaço).

Esse sistema tem como referencial três planos mutuamente perpendiculares que se interceptam em três retas mutuamente perpendiculares e num ponto comum O. Os planos mencionados são denominados planos coordenados, as retas são denominadas eixos coordenados e o ponto O é a origem do sistema. Os planos coordenados dividem o espaço em oito regiões denominadas octantes.

Há duas formas de representar o sistema de coordenadas retangulares no espaço.

O eixo coordenado \overrightarrow{Ox} ou simplesmente eixo x é denominado eixo das abscissas, o eixo y é o eixo das ordenadas e o eixo z é o eixo das cotas.

Um ponto P de coordenadas (x,y,z) tem abscissa x, ordenada y e cota z. As coordenadas x, y e z são marcadas sobre os respectivos eixos coordenados. O módulo de x indica a distância que P está do plano coordenado yz. O módulo de y indica a distância de P ao plano coordenado xz e o módulo de z representa a distância de P ao plano xy.

Coordenadas Polares no R³

Coordenadas Cilíndricas

Esse sistema tem como referencial o plano tridimensional, tal que cada ponto P no sistema de coordenadas cilíndricas fica determinado por duas medidas lineares (r e z) e um ângulo θ , onde r e θ são parâmetros utilizados no sistema plano de coordenadas polares.

Cada terna ordenada (r,θ,z) representa um e único ponto no sistema de coordenadas cilíndricas. É necessário restringir r>0 e $0 \le \theta \le 2\pi$ para cada ponto geométrico corresponda também uma única terna ordenada (r,θ,z) havendo assim correspondência biúnivoca entre cada ponto geométrico e uma terna ordenada de números reais.

As coordenadas cilíndricas representam um ponto P no espaço por temas ordenadas (r,θ,z) .

- r e θsão coordenadas polares para projeção vertical de P sobre o plano xy
- 2) z é a coordenada vertical cartesiana.

Relações entre coordenadas retangulares e as coordenadas cilíndricas de um ponto qualquer no espaço.

$$x = r \cos(\theta)$$
 $tg(\theta) = \frac{y}{x}$
 $y = rsen(\theta)$ $z = z$
 $r^2 = x^2 + y^2$

Coordenadas Esféricas

Esse sistema tem como referencial o plano tridimensional, tal que cada ponto P no sistema de coordenadas esféricas fica determinado por uma medida linear ρ e dois ângulos θ e ϕ onde ρ , θ , ϕ são os parâmetros dos sistema.

Cada tema ordenada (ρ,θ,ϕ) representa um único ponto no sistema de coordenadas esféricas. No entanto é necessário restringir $\rho>0$, $0\leq \theta\leq 2\pi$ e $0\leq \phi\leq \pi$, para que cada ponto geométrico corresponda também a uma única terna ordenada (ρ,θ,ϕ) havendo assim correspondência biunivoca entre cada ponto geométrico e uma terna ordenada de números reais.

As coordenadas esféricas correspondem um ponto em que:

ho é a distância da origem até P

 $r = \rho sen \phi$

heta é o mesmo ângulo em coordenadas cilíndricas

 ϕ é o ângulo entre z positivo e o segmento de reta OP

Relações entre coordenadas retangulares e as coordenadas esféricas de um ponto qualquer do espaço

$$x = \rho sen\phi \cos(\theta) \qquad \qquad \rho^2 = x^2 + y^2 + z^2$$

$$y = \rho sen\phi sen(\theta) \qquad \qquad tg\theta = \frac{y}{x}$$

$$z = \rho \cos(\phi) \qquad \qquad tg\phi = \frac{r}{z}$$

