

ESCOLA Superior De Tecnologia E cestão Tipo de Prova: Teste Modelo Curso: Engenharia Informática Unidade Curricular: Matemática

Computacional I

Ano Letivo 2017/2018 Data: 27/04/2018 Hora: Duração:

Observações: Nas respostas às questões deve apresentar todos os cálculos que efetuar e todas as justificações necessárias.

- 1. Considere a função definida por $f(x) = (x^2 1) \ln(1 x^2)$.
 - (a) Determine o domínio de f.
 - (b) Determine os pontos onde a tangente ao gráfico de f é horizontal.
- 2. Considere a função $\sin(x+y)=y^2\cos(x)$ definida implicitamente, calcule $\frac{dy}{dx}$ no ponto (π,π) .
- 3. Considere a sequinte função tabelada.

- (a) Usando a fórmula de diferenciação dos 3 pontos adequada calcule uma aproximação para f'(1.8).
- (b) Usando a fórmula de diferenciação dos 5 pontos adequada calcule uma aproximação para f'(2.0) considerando um espaçamento h=-0.1.
- 4. Use a regra de L'Hôpital para calcular $\lim_{x\to +\infty} \frac{\ln(x^2+1)}{\ln(x^4+x+1)}$.
- 5. Considere a função g(x)=2 arctg $\left(\frac{x}{x+1}\right)$.
 - (a) Estude g quanto à existência de extremos e pontos de inflexão, monotonia e concavidades.
 - (b) Determine as assintotas ao gráfico de g.
- 6. Considere a equação $4(x^2-x)-\cos(x)=0$ que no intervalo [-0.9,-0.1], admite uma única raíz real α , e no intervalo [1,2] admite uma única raíz real β .
 - (a) Utilizando o método de Newton e escolhendo convenientemente a aproximação inicial x_0 calcule uma iteração para aproximar β .
 - (b) Calcule uma iteração pelo método da bissecção para aproximar α .
 - (c) Quantas iterações teria que executar pelo método da bissecção para aproximareta com um erro inferior 10^{-5} .

ESTGF-PROS-Mod013V2 Página 1 de 1