Конспект по курсу

Дифференциальные уравнения

Contributors: Андрей Степанов Анастасия Торунова Лектор: Дубинская В.Ю.

МФТИ

Последнее обновление: 25 февраля 2015 г.

Содержание

1	Основные понятия теории ОДУ. Методы решения некоторых уравнений первого порядка	2
2	Интегрирование некоторых ОДУ первого порядка	3
3	Интегрирующие множители и уравнения, не разрешенные относительно производной. 3.1 ОДУ первого порядка, не разрешенные относительно производной. 3.2 Метод введения параметра	6
4	Общее решение однородных ЛДУ	7
5	Теорема о существовании и единственности решения задачи Коши	9
հ	Банаховы пространства. Теорема Банаха	12

1 Основные понятия теории ОДУ. Методы решения некоторых уравнений первого порядка

Рассмотрим функцию $y:\mathbb{R}\mapsto\mathbb{C}.$ Будем обозначать $\frac{dy}{dx}$ как $y',\dots,\frac{d^ny}{dx^n}$ как $y^{(n)}.$

Определение 1.1. Уравнение вида

$$F(x, y, y', ..., y^{(n)}) = 0 (1)$$

называется обыкновенным дифференциальным уравнением (ОДУ) порядка n.

Определение 1.2. Рассмотрим промежуток $I \subset \mathbb{R}$. Функция $\varphi(x)$, определенная на I, называется решением ОДУ порядка n на I, если

- а) $\varphi(x)$ определена и непрерывна на I со всеми своими производными до порядка $\mathbf n$.
 - б) $F(x, \varphi(x), \varphi'(x), ..., \varphi^{(n)}(x)) \equiv 0$ на I.

Определение 1.3. График функции $y = \varphi(x)$ называется интегральной кривой уравнения 1.

Если ОДУ первого порядка имеет вид

$$y' = f(x, y), \tag{2}$$

то оно называется разрешенным относительно производной.

Определение 1.4. Рассмотрим уравнение 2, где f(x,y) определена на некоторой области $G \subset \mathbb{R}$. Изоклиной называется ГМТ таких, что f(x,y) = c, где $c \in \mathbb{R}$.

Определение 1.5. Функция $\varphi(x,c)$, где $c\in\mathbb{R}$ - параметр, называется общим решением ОДУ первого порядка, если:

- а) $\forall c \ \varphi(x,c)$ решение этого ОДУ.
- б)любое решение этого ОДУ представимо в виде $\varphi(x,c)$.

Определение 1.6. Уравнением в дифференциалах называется

$$M(x,y)dx + N(x,y)dy = 0, (3)$$

где $M^{2}(x,y) + N^{2}(x,y) \neq 0$ в некоторой области G.

Определение 1.7. Задача Коши для уравнений 2 и 3 (если задана точка $(x_0, y_0) \in G$) состоит в нахождении решения, при котором интегральная кривая проходит через (x_0, y_0) .

Теорема 1.1. Пусть в области G определены f(x,y) и $\frac{\partial f}{\partial y}(x,y)$. Пусть $(x_0,y_0) \in G$. Тогда $\exists !$ решение уравнения 2,такое,что $y(x_0) = y_0$ на любом подмножестве G.

Определение 1.8. Уравнением с разделяющимися переменными называется уравнение вида y' = f(x)g(y) или вида $f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$.

Алгоритм 1.1 (решения уравнения с разделяющимися переменными). Случай g(y)=0 понятен и так. Рассмотрим случай, когда $g(y)\neq 0$. $\frac{y'}{g(y)}=f(x)\Rightarrow \int \frac{y'}{g(y)}dx=\int f(x)dx\Rightarrow \int \frac{dy}{g(y)}=\int f(x)dx\Rightarrow H(y)=F(x)+C\Rightarrow y=H^{-1}(F(x)+C)$ Обратная функция существует, так как в этом случае g знакопостоянна, а значит H монотонна.

2 Интегрирование некоторых ОДУ первого порядка

Определение 2.1. Пусть $n \in \mathbb{N}, k \in \mathbb{Z}$. Функция $F : \mathbb{R}^n \to \mathbb{R}$ называется однородной функцией степени (порядка) k, если: $\forall \lambda \in \mathbb{R} \setminus \{0\}, v \in \mathbb{R}^n : F(\lambda v) = \lambda^k F(v)$

Определение 2.2. ОДУ первого порядка y' = f(x, y) называется однородным, если f – однородная функция нулевого порядка.

Определение 2.3. Уравнение в дифференциалах P(x,y)dx+Q(x,y)dy=0 называется однородным, если P и Q – однородные функции одного и того же порядка.

Утверждение 2.1. Определения 2.2 и 2.3 эквивалентны.

Доказательство. Пусть, скажем, дано уравнение y' = f(x,y), причем f однородная функция порядка 0. Тогда это уравнение эквивалентно уравнению $1 \cdot dy = f(x,y)dx$, причем 1 и f(x,y) — функции порядка 0.

Наоборот, если дано уравнение P(x,y)dx + Q(x,y)dy = 0, где P и Q – однородные функции одного и того же порядка, то такое уравнение эквивалентно уравнению $y' = -\frac{P(x,y)}{Q(x,y)}$, причем $-\frac{P(x,y)}{Q(x,y)}$ – однородная функция порядка 0.

Замечание. Приведем алгоритм решения уравнения P(x,y)dx + Q(x,y)dy = 0, где P и Q — однородные функции степени n.

Перенесем Q(x,y)dy в правую часть:

$$P(x,y)dx = -Q(x,y)dy$$

Проверим решения вида x = const или y = const, далее считаем, что $dx \neq 0$, $dy \neq 0$. Рассмотрим следующую замену: y(x) = xz(x). Тогда dy = zdx + xdz. Уравнение можно переписать в виде:

$$P(x,zx) = -Q(x,zx)(zdx + xdz)$$
$$x^{n}P(1,z)dx = -x^{n}Q(1,z)(zdx + xdz)$$
$$(P(1,z) + zQ(1,z))dx = -Q(1,z)xdz$$

$$\frac{dx}{x} = -\frac{Q(1,z)dz}{P(1,z) + zQ(1,z)}$$
$$ln|x| + C = -\int_{z_0}^{z} \frac{Q(1,t)dt}{P(1,t) + tQ(1,t)}$$
$$x = Cexp\left[-\int_{z_0}^{z} \frac{Q(1,t)dt}{P(1,t) + tQ(1,t)}\right]$$

Замечание. Приведем теперь алгоритм решения уравнения y' = f(x,y), где f(x,y) – однородная функция нулевого порядка. Опять же рассмотрим замену y = xz. Тогда y' = z'x + z, $f(x,y) = f(x,zx) = x^0 f(1,z)$. Перепишем уравнение в виде:

$$z'x + z = f(1, z)$$
$$\frac{dz}{f(1, z) - z} = \frac{dx}{x}$$

Если f(1,z)-z=0 в точках z_1,\ldots,z_k , то получили решения вида $y=z_1x,\ldots,y=z_kx$. Общее решения получаем, проинтегрировав последнее уравнение.

Утверждение 2.2. Уравнение $y'=f(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2})$ сводится κ однородному в случае, когда прямые $a_1x+b_1y+c_1=0$ и $a_2x+b_2y+c_2=0$ пересекаются.

Доказательство. Пусть (x_0, y_0) — точка пересечения. Рассмотрим замену коордиант:

$$\begin{cases} \xi = x - x_0 \\ \eta = y = y_0 \end{cases}$$

Тогда $\eta' = y'$, а следовательно:

$$\eta' = f(\frac{a_1x + b_1y + c_1 - (a_1x_0 + b_1y_0 + c_1)}{a_2x + b_2y + c_2 - (a_2x_0 + b_2y_0 + c_2)})$$

$$\eta' = f(\frac{a_1\xi + b_1\eta}{a_2\xi + b_2\eta}) = f(\frac{a_1 + b_1\frac{\eta}{\xi}}{a_2 + b_2\frac{\eta}{\xi}})$$

Но $f(\frac{a_1+b_1\frac{\eta}{\xi}}{a_2+b_2\frac{\eta}{\xi}})$ — однородная функция степени 0. Значит, мы свели исходное уравнение к однородному.

Пример. $2x^2y' = y^3 + xy$

Определение 2.4. Уравнение вида y' + a(x)y = b(x), где a(x) и b(x) - функции, непрерывные на некотором промежутке I, называется линейным уравнение первого порядка.

Если $b(x) \equiv 0$, то уравнение называется однородным, иначе – неоднородным.

Замечание. Решим сначала однородное уравнение y' + a(x)y = 0. Это уравнение является уравнением с разделяющимися переменными. Перенеся все с игреком вправо, а все с иксом — влево, получаем:

$$\frac{dy}{y} = -a(x)dx$$

$$y = Cexp\left[-\int_{y_0}^{y} a(t)dt\right]$$

Будем искать решение неоднородного уравнения y'+a(x)y=b(x) в виде $y=C(x)exp\left[-\int_{y_0}^y a(t)dt\right]$. Это не сужает множество решений, т.к. если, скажем u(x) является решением, то положив $C(x)=\frac{u(x)}{exp\left[-\int_{y_0}^y a(t)dt\right]}$ мы получим решение u(x) в желаемом виде. После подстановки в уравнение, получаем:

$$C'(x)exp\left[-\int_{y_0}^y a(t)dt\right] = b(x)$$

$$C(x) = \int_{x_0}^x b(\tau)exp\left[-\int_{\tau_0}^\tau a(t)dt\right]d\tau + const$$

Если теперь подставить C(x) в формулу для y(x), получим:

$$y(x) = \left(\int_{\tau_0}^x b(\tau) exp \left[-\int_{\tau_0}^\tau a(t) dt \right] d\tau + const \right) exp \left[-\int_{y_0}^y a(t) dt \right]$$

Пример. y' - y = x

Определение 2.5 (Уравнение Бернулли). Уравнение $y' = a(x)y = b(x)y^m$, где $m \neq 1, m > 0$ называется уравнением Бернулли.

Утверждение 2.3. Уравнение Бернулли сводится к линейному уравнение первой степени

Доказательство. Заметим, что y=0 является решением. Поделив уравнение Бернулли на y^m и сделав замену $z=y^{1-m}$, получаем уравнение:

$$\frac{z'}{1-m} + a(x)z = b(x)$$

Определение 2.6 (Уравнение Рикатти). Уравнение $y' + a(x)y^2 + b(x)y = c(x)$ называют уравнение Рикатти.

Утверждение 2.4. Если известно $y_0(x)$ – частное решение уравнения Рикатти, то оно сводится к уравнению Бернулли с m=2 Доказательство. Сделаем замену $z = y - y_0$:

$$z' + y'_0 + a(x)(z + y_0)^2 + b(x)(z + y_0) = c(x)$$
$$z' + y'_0 + a(x)z^2 + 2a(x)zy_0 + a(x)y_0^2 + b(x)z + b(x)y_0 = c(x)$$
$$z' + (2a(x)y_0 + b(x))z + a(x)z^2 = 0$$

Определение 2.7. Уравнения вида P(x,y)dx + Q(x,y)dy = 0 называются уравнением в полных дифференциалах, если в рассматриваемой области D: $\exists u(x,y): du = Pdx + Qdy$. Тогда это уравнение также можно переписать в виде: u(x,y) = const.

Теорема 2.5. Пусть G – область, функции $P,\ Q,\ \frac{\partial P}{\partial y},\ \frac{\partial Q}{\partial x}$ определены и непрерывны на G. Тогда $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \Leftrightarrow \exists u : du = Pdx + Qdy$

Доказательство. Пусть в условиях теоремы $\exists u: du = Pdx + Qdy$. Тогда $P = \frac{\partial u}{\partial x}, Q = \frac{\partial u}{\partial y}$. Но тогда $\frac{\partial P}{\partial y} = \frac{\partial^2 u}{\partial y\partial x}, \frac{\partial Q}{\partial x} = \frac{\partial^2 u}{\partial x\partial y}$. Поскольку все вышеперечисленные функции непрерывны, то в силу теоремы о смешанных производных, имеем: $\frac{\partial P}{\partial y} = \frac{\partial^2 u}{\partial y\partial x} = \frac{\partial^2 u}{\partial x} = \frac{\partial^2 u}{\partial x\partial y}$.

Пусть наоборот, в условиях теоремы выполнено $\frac{\partial}{\partial y}P = \frac{\partial Q}{\partial x}$. ТО ВЕ

CONTINUED...

3 Интегрирующие множители и уравнения, не разрешенные относительно производной.

Определение 3.1. Функция $\mu(x,y)$, определенная в области G, называется интегрирующим множителем для уравнения P(x,y)dx+Q(x,y)dy=0, если:

- 1. $\mu(x,y) \neq 0$ в G
- 2. $\exists U(x,y): dU = \mu P dx + \mu Q dy$

Частный случай:

Если P(x,y) и Q(x,y) однородные функции степени $n \neq -1$, то $\mu(x,y) = \frac{1}{xP(x,y)+yQ(x,y)}$

3.1ОДУ первого порядка, не разрешенные относительно производной.

Теорема 3.1. Если в некотором параллелепипеде в \mathbb{R}^3 , содержащем точку (x_0, y_0, y_0') , где y_0' – действительное решение уравнения $F(x_0, y_0, y') = 0$, выполнены следующие условия:

1. F(x, y, y') определена и непрерывна по совокупности переменных вме $cme\ c\ npouзводными\ rac{\partial F}{\partial y}\ u\ rac{\partial F}{\partial y'}$

2.
$$\frac{\partial F}{\partial y'}|_{(x_0,y_0,y_0')} \neq 0$$

Тогда в некоторой окрестности $x_0 \exists !$ решение y = y(x) уравнения F(x, y, y') = $0 \text{ makoe}, \text{ umo } y(x_0) = y_0 \text{ u } y'(x_0) = y'_0.$

 \mathcal{A} оказательство. Согласно теореме о неявной функции $\exists!$ функция y'=f(x,y), удовлетворяющая уравнению F(x,y,y')=0, такая, что $\frac{\partial f}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x-J}}$ Тогда по аналогичной теореме для уравнений, разрешенных относительно производной, получаем требуемое.

3.2Метод введения параметра

Пусть есть уравнение F(x, y, y') = 0. Тогда:

$$F(x, y, y') = 0 \Leftrightarrow \begin{cases} F(x, y, p) = 0 \\ dy = pdx \end{cases}$$

 $F(x,y,y')=0\Leftrightarrow \left\{egin{aligned} F(x,y,p)=0\ dy=pdx \end{aligned}
ight.$ Пусть $x=arphi(t),y=\psi(t)$ — решение F(x,y,y')=0. Тогда p=p(t)=0

 $\frac{\psi'(t)}{\varphi'(t)}=y_x'\Rightarrow dy=p(t)dx$, а также $F(x,y,p)\equiv 0$, что и требовалось. В обратную сторону, если $x=\varphi(t),y=\psi(t)$ – решение системы, то из второго $p=\frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)}\Rightarrow F(x,y,p)\equiv 0$, что и требовалось.

Пример. Рассмотрим уравнения, разрешенные относительно у:y = f(x, y').

Тогда
$$y-f(x,y')=F(x,y,y')=0$$

$$\begin{cases} dy=pdx\\ y=f(x,p) \end{cases}$$
 Продифференцируем исходное уравнение по х: $\frac{dy}{dx}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial p}\frac{\partial p}{\partial x}=p(x)$

Получили линейное дифференциальное уравнение относительно p(x). Решаем его, получаем $p(x) = \chi(x,c)$. Теперь подставляем это в исходное уравнение и решаем.

Определение 3.2. Множество точек, являющихся решениями уравнения $\frac{\partial F}{\partial p}=0$, называется дискриминантной кривой уравнения.

4 Общее решение однородных ЛДУ

Лемма 4.1 (принцип суперпозиции). Пусть $y_1(x), y_2(x)$ – решения ЛДУ c постоянными коэффициентами L(D)y=0. Тода $\forall \alpha,\beta \in \mathbb{C}: L(D)(\alpha y_1+$ $\beta y_2) = 0.$

Доказательство. В самом деле, $L(D)(\alpha y_1 + \beta y_2) = \alpha L(D)y_1 + \beta L(D)y_2$ в силу линейности. А последнее выражение равно нулю в силу того, что y_1, y_2 – решения уравнения L(D)y = 0.

Теорема 4.2 (о структуре решения ЛДУ). Верны следующие утверждения:

1. Если y_1, y_2 – решения уравнения L(D)y = f(x), то $y_1 - y_2$ – решение y равнения L(D)y = 0.

2. Любое решение у уравнения L(D)y = f(x) представимо в виде $y = y_0 + y_h$, где y_0 — заранее фиксированное частное решение уравнения L(D)y = f(x), а y_h — какое-то решение однородного уравнения L(D)y = 0

Доказательство. Докажем сначала пункт 1. Пусть $L(D)y_1 = f(x)$, $L(D)y_2 = f(x)$. Вычитая первое уравнение из второго, получаем: $L(D)y_1 - L(D)y_2 = 0$. В силу линейности оператора L(D): $L(D)(y_1 - y_2) = 0$.

Теперь докажем пункт 2. Обозначим $y_h = y - y_0$, где y_0 – заранее фиксированное решение уравнения L(D)y = f(x), а y – какое-то решение уравнения L(D)y = f(x). Тогда в силу пункта 1, y_h – решение однородного уравнения L(D)y = 0. Получили, что $y = y_0 + y + h$.

Определение 4.1. Многочлен $L(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_0$ назовем характерестическим многочленом ЛДУ L(D) = 0. Уравнение $L(\lambda) = 0$ назовем характерестическим уравнением.

Замечание. Над $\mathbb C$ характерестический многочлен раскладывается в произведение одночленов: $L(\lambda) = (\lambda - \lambda_1) \dots (\lambda - \lambda_n)$. В дальнейшем будем обозначать через $\lambda_1, \dots, \lambda_n$ корни характерестического уравнения.

Теорема 4.3 (об общем решении однородного ЛДУ без кратных корней). Пусть харктерестическое уравнение $L(\lambda) = 0$ не имеет кратных корней. Тогда верны следующие утверждения:

1.
$$\forall C_1, \ldots, C_n \in \mathbb{C} : \sum_{i=1}^n C_i e^{\lambda_i x} - pewenue.$$

2.
$$\forall y(x)$$
 – решения: $\exists C_1, \dots, C_n \in \mathbb{C} : y(x) = \sum_{i=1}^n C_i e^{\lambda_i x}$.

Доказательство. Для пункта 1 достаточно показать, что $e^{\lambda_i x}$ является решением L(D)y=0. Так как $L(\lambda)=(\lambda-\lambda_1)\dots(\lambda-\lambda_n)$, то $L(D)=(\frac{d}{dx}-\lambda_1)\dots(\frac{d}{dx}-\lambda_n)$. Рассмотрим

$$L(D)e^{\lambda_i x} = (\frac{d}{dx} - \lambda_1) \dots (\frac{d}{dx} - \lambda_n)e^{\lambda_i x} = (\frac{d}{dx} - \lambda_1) \dots (\frac{d}{dx} - \lambda_{n-1})(\frac{d}{dx}e^{\lambda_i x} - \lambda_n e^{\lambda_i x})$$

$$= \left(\frac{d}{dx} - \lambda_1\right) \dots \left(\frac{d}{dx} - \lambda_{n-1}\right) (\lambda_i - \lambda_n) e^{\lambda_i x} = (\lambda_i - \lambda_1) \dots (\lambda_i - \lambda_n) e^{\lambda_i x} = 0$$

Для доказательства пункта 2 проведем индукцию по n. Для n=1 это верно, т.к. в случае n=1, L(D)=0 – это просто ЛДУ первой степени вида $y'=\lambda y$. Докажем переход от n-1 к n. Обозначим $L_{n-1}(D)=(\frac{d}{dx}-\lambda_1)\dots(\frac{d}{dx}-\lambda_{n-1}),$ $z(x)=y'(x)-\lambda_n y$. Тогда L(D)y=0 эквивалентно уравнению $L_{n-1}(D)z=0$. Последнее уравнению является ЛДУ с постоянными коэффициентами степени n-1. Для него верно, что $\exists \alpha_1,\dots\alpha_{n-1}\in$

 $\mathbb{C}: z(x) = \sum_{i=1}^{n-1} \alpha_i e^{\lambda_i x}$. Если подставить в это выражение z(x), то мы получим неоднородное ЛДУ первой степени:

$$y' - \lambda_n y = \sum_{i=1}^{n-1} \alpha_i e^{\lambda_i x}$$

Общим решением однородного уравнения $y' - \lambda_n y = 0$ является семейство функций $Ce^{\lambda^n x}$. Попытаемся найти частное решение неоднородного ЛДУ первой степени. Утверждается, что одно из решений, это:

$$e^{lambda_n x} \sum_{i=1}^{n-1} \frac{\alpha_i}{\lambda_i - \lambda_n}$$

TO BE CONTINUED...

5 Теорема о существовании и единственности решения задачи Коши

Определение 5.1. Назовем нормальной системой дифференциальных уравнений порядка m следующую систему:

$$\begin{cases} y'_1(x) = f_1(x, y_1, \dots, y_n) \\ \dots \\ y'_m(x) = f_m(x, y_1, \dots, y_n) \end{cases}$$

Причем функции f_i непрерывны в некоторой области $G \subset \mathbb{R}^{n+1}$. Пусть также $y_1(x_0) = y_1^0, \dots, y_m(x_0) = y_m^0$.

Определение 5.2. Пусть $y = \varphi(x)$ определена на некотором промежутке $I \subset \mathbb{R}$, обладает следующими свойствами:

- 1. Она непрерывно дифференцируема.
- 2. $(x_0, \varphi(x_0)) \in G$
- 3. $\forall x \in I : \varphi'(x) = f(x, y)$

Тогда она является решением системой дифференциальных уравнений порядка m.

Пример. Рассмотрим уравнение n-го порядка: $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$, причем f - непрерывна по всем аргументам. Если также добавить условие $y(x_0) = y_1^{(0)}, \dots, y(x_0)^{(n-1)} = y_n^{(0)}$, то поставленная задача называется задачей Коши.

Замечание. От первой задачи Коши можно перейти ко второй, и наоборот, если обозначить:

$$y_1 = y$$
...
$$y_n = y^{(n-1)}$$

Замечание. Поскольку решение задачи Коши для системы сводится к решению задачи Коши для уравнения n-го порядка, в дальнейшем будем рассматривать решение системы.

Определение 5.3. Функция f(x, y) определенная в области G называется удовлетворяющей условию Липшица относительно у равномерно по x, если:

$$\exists L > 0 : \forall (x, y_1), (x, y_2) : |f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

3амечание. Условию Липшица удовлетворяют непрерывно дифференцируемые функции,|x|, дифференцируемые с ограниченной производной, но не все дифференцируемые.

Лемма 5.1. Пусть выполнены следующие условия:

- 1. Область G выпукла по переменной y (т.е. ограничение на переменную y выпукло).
- 2. Функция f(x,y) непрерывна в области G.
- 3. Все частные производные $(\frac{\partial_i f}{\partial_j y}$ непрерывны в G).
- 4. $\exists k > 0 : \forall (x, y) \in G : \frac{\partial_i f}{\partial_i y} \leq k$

Tогда функция f(x,y) удовлетворяет в области G условию Липшица.

Доказательство. Рассмотрим $1 \le i \le n$, рассмотрим

$$|f_i(x, y_1) - f_i(x, y_2)| = |\int_0^1 \frac{d}{d\theta} (f_i(x, y_2 + \theta(y_1 - y_2))) d\theta|$$
$$= |\int_0^1 (gradf_i, y_2 - y_1) d\theta| \le k|y_2 - y_1|n$$

Для f:

$$|f(x, y_2) - f(x, y_1)| \le n^{3/2}k|y_1 - y_2|$$

Лемма 5.2 (Гронуолла). Рассмотрим функцию $\varphi(x)$ определенную на интервале $I \subset \mathbb{R}, \ \varphi(x) \geq 0$ на I, непрерывна на I, u:

$$\exists A \ge 0, B \ge 0 : \forall x_0, x \in I : \varphi(x) \le A + B \left| \int_{x_0}^x \varphi(t) dt \right|$$

. Torda: $\forall x \in I : \varphi(x) \leq Ae^{B|x-x_0|}$.

Доказательство. Пусть $x>x_0$, пусть $F(x)=\int_{x_0}^x \varphi(\tau)d\tau$. Тогда $F(x_0)=0$. Тогда по условию: $0\leq F'(x)\leq A+BF(x)$. Домножим это неравенство на $e^{-B(x-x_0)}$:

$$F'(x)e^{-B(x-x_0)} \le Ae^{-B(x-x_0)} + BF(x)e^{-B(x-x_0)}$$
$$F'(x)e^{-B(x-x_0)} - BF(x)e^{-B(x-x_0)} \le Ae^{-B(x-x_0)}$$
$$(F(x)e^{-B(x-x_0)})' \le Ae^{-B(x-x_0)}$$

. Проинтегрируем это неравенство на промежутке $[x_0, x]$.

$$F(x)e^{-B(x-x_0)} - F(x_0)e^{-B(x_0-x_0)} \le \frac{Ae^{-B(x-x_0)}}{-B} from x_0 tox$$
$$F(x)e^{-B(x-x_0)} \le -\frac{A}{B} (e^{-B(x-x_0)} - 1)$$

Умножим обе части уравнения на $e^{B(x-x_0)}$:

$$F(x) \le -\frac{A}{B}(1 - e^{B(x - x_0)})$$

. Подставив эту оценку в $\varphi(x) \leq A + B |\int_{x_0}^x \varphi(t) dt|$ получаем то, что нужно.

Рассмотрим систему уравнений:

$$y(x) = y_0 + \int_{x_0}^x f(\tau, y(\tau)) d\tau$$

где f(x,y) непрерывна на области $G, (x_0,y_0) \in G$.

Определение 5.4. Вектор функция $y = \varphi(x)$ называется решением системы уравнений, данной выше, на промежутке I, если:

- 1. у непрерывна на I
- 2. Точка $(x_0, \varphi(x_0)) \in G$
- 3. $\varphi(x) \equiv y_0 + \int_{x_0}^x f(\tau, y(\tau)) d\tau$ на I.

Лемма 5.3 (об эквивалентности). Вектор функция $\varphi(x)$ является решением задачи Коши (1), (2) тогда и только тогда, когда $y=\varphi(x)$ является решением интегральной системы уравнений (5).

Доказательство. \Leftarrow Проинтегрируем тождество $\varphi'(x) \equiv f(x, \varphi(x))$. Учитывая начальные условия $y(x_0) = y_0$. Получаем, что $y(x) = y_0 + \int_{x_0}^x f(\tau, y(\tau)) d\tau$. \Rightarrow Продифференцируем

$$y(x) = y_0 + \int_{\tau_0}^x f(\tau, y(\tau)) d\tau$$

и получим, что нужно.

6 Банаховы пространства. Теорема Банаха

Определение 6.1. Нормой ||x|| на линейном пространствен называется функция $||x||:V\mapsto \mathbb{R}$, такая, что:

- 1. $\forall x : ||x|| > 0, ||x|| = 0 \Leftrightarrow x = 0$
- 2. $\forall x, \lambda : ||\lambda x|| = |\lambda|||x||$
- 3. $\forall x, y : ||x + y|| \le ||x|| + ||y||$

Определение 6.2. Последовательность $\{x_n\}$ называется сходящейся, если $\exists x \in \mathbb{L} : \lim_{n \to \infty} ||x_n - x|| = 0$

Определение 6.3. Фундаментальная последовательность определяется аналогично

Определение 6.4. Нормированное пространство, в котором каждая фундаментальная последовательность является сходящейся, называется полным (банаховы)

Определение 6.5. Отображение $\Phi: X \subset \mathbb{L}_1 \mapsto \mathcal{L}_2$ называется непрерывным в точке $x_0 \in X$: Аналогичное

Определение 6.6. Точка x^* называется неподвижной точкой отображения $\varphi: X \subset \mathcal{L} \mapsto \mathcal{L},$ если $\varphi(x^*) = x^*.$

Определение 6.7. Отображение φ назывется сжимающим, если $\exists q: ||\varphi(x_1) - \varphi(x_2)|| < q||x_1 - x_2||$

Теорема 6.1 (Принцип сжимающих отображений, теорма Банаха). Пусть замкнутое $U_r(x_0) \subset \mathcal{L}$, φ является сжимающим на $U_r(x_0)$ с коэффициентом q. Тогда, если выполнено условие $||\varphi(x_0) - x_0|| \leq (1-q)r$, то отображение φ имеет единственную неподвижную точку.

Доказательство. Докажем сначала, что шар отображается сам в себя: рассмотрим $x \in U_r(x_0)$:

$$||\varphi(x) - x_0|| = ||\varphi(x) - \varphi(x_0) + \varphi(x_0) - x_0|| \le ||\varphi(x) - \varphi(x_0)|| + ||\varphi(x_0) - x_0||$$
$$q||x - x_0|| + (1 - q)r \le qr + (1 - q)r = r$$

Мы доказали, что образ шара – это шар. Рассмотрим реккурентную последовательность $x_n = \varphi(x_{n-1}).$

$$||x_n - x_m|| = ||x_{n+p} - x_n|| = ||x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} + \dots|| \le \sum_{i=0}^p ||x_{n+i} - x_{n+i-1}||$$

$$||x_2 - x_1|| = ||\varphi(x_1) - \varphi(x_0)|| \le q||x_1 - x_0||$$

Проводя аналогичные рассуждения, имеем:

$$||x_n - x_{n-1}|| = q^{n-1}||\varphi(x_0) - x_0||$$

Суммируя это, получаем:

$$q^{n+p-1}l + \dots + q^n l = q^n l \frac{q^p - 1}{q - 1}$$

Значит, эта последовательность является фундаментальной, существует предел x^* и так как шар замкнут, то предел принадежит шару. Заметим, что φ является равномерно непрерывной. Кроме того,

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \varphi(x_n) = \varphi(x^*)$$

. Докажем единственность. Пусть $\exists x^O: \varphi(x^O) = x^O.$ Рассмотрим норму разности между ними:

$$||x^O - x^*|| = ||\varphi(x^O) - \varphi(x^*)|| \le q||x^O - x^*||$$

Теорема 6.2 (о существовании и единственности решения задачи Коши). Рассмотрим область $G \subset \mathbb{R}^{n+1}$. Пусть вектор функция f(x,y) удовлетворяет условию Липшица на любом компакте в G по переменной у равномерно по x. И пусть $(x_0, y_0) \in G$. Тогда:

- 1. $\exists \delta > 0$: $\exists y$ определенная на $[x_0 \delta, x_0 + \delta]$: y является решением задачи Коши.
- 2. Решение задачи Коши единственно в том смысле, что если y_1 является решением задачи Коши на отрезке $[x_0-\delta_1,x_0+\delta_1]$, а y_2 решением задачи Коши на отрезке $[x_0-\delta_2,x_0+\delta_2]$, то их огранечения на наименьший из отрезков тождественно равны

Доказательство. G — область, следовательно любая точка (x,y) принадлежит вместе со своей окрестностью, в том числе и замыкание некоторой окрестности U(x,y). Заметим, что все f_i непрерывны и ограничены. Рассмотрим норму

$$||f|| = \max_{1 \le i \le n} \sup_{(x,y)} f_i(x,y)$$

. Вложим в каждый замкнутый шар цилиндр:

$$T_{r'}(x,y) = \{(x,y) \in U(x,y) : x \in [x_0 - \delta, x_0 + \delta], ||y - y_0|| \le r\}$$

При этом выберем r' и δ соответственно, чтобы цилиндр лежал внутри шара. Рассмотрим уравнение

$$y(x) = y_0 + \int_{x_0}^x f(\tau, y(\tau)) d\tau$$

для которого мы решаем задачу Коши. Рассмотрим оператор Φ действующий из пространства функций на шаре в себя, такой что:

$$\Phi(y)(x) = y_0 + \int_{x_0}^x f(\tau, y(\tau)) d\tau$$

Докажем, что этот оператор опять сжимает. Пусть у и z – две различные вектор функции.

$$||\Phi(y) - \Phi(z)|| = \max \sup_{[x_0 - \delta_{\tau'}, x_0 + \delta_{\tau'}]} |\int_{x_0}^x (f_i(\tau, y(\tau) - f_i(\tau, z(\tau))) d\tau|$$

$$\leq \sup \int_{x_0}^x ||f(\tau, y) - f(\tau, z)|| d\tau \leq \sup \int_{x_0}^x c||y - z|| d\tau \leq \delta c||y - z||$$