Project Development Phase Performance Test

Date	17 November 2022
Team ID	PNT2022TMID37882
Project Name	Project - University Admit Eligibility Predictor
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE – 0.31649 MSE – 0.12189 RMSE –0.3491 R2 score -1.0	<pre>from sklearn.metrics import mean_squared_error, r2_score,mean_ import numpy as np print('Mean Absolute Error:', mean_absolute_error(y_test, y_pr print('Mean Squared Error:', mean_squared_error(y_test, y_pred print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y Mean Absolute Error: 0.3164910838782627 Mean Squared Error: 0.1218910658729976 Root Mean Squared Error: 0.3491290103571996 y_train = (y_train>0.5)</pre>
		Classification Model: Confusion Matrix – [[0 9] [0 66]] Accuracy Score-0.88	<pre>from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, confusion_matrix print('Accuracy Score:', accuracy_score(y_test, y_pred)) print('Recall Score:', recall_score(y_test, y_pred)) print('Roc AUC Score:', roc_auc_score(y_test, y_pred)) print('Confussion Matrix:\n', confusion_matrix(y_test, y_pred)) Accuracy Score: 0.88 Recall Score: 0.88 Recall Score: 0.5 Confussion Matrix: [[0 9] [0 66]]</pre>
		Classification report:	from sklearn.metrics import classification_report print(classification_report(y_pred , lr.predict(X_test))) Description recall f1-score support False 1.00 1.00 1.00 1 True 1.00 1.00 59 accuracy 1.00 60 macro avg 1.00 1.00 1.00 60 weighted avg 1.00 1.00 1.00 60

2.	Tune the Model	Hyper parameter Tuning - Validation Method -	from numpy.core.numeric import cross
			<pre>from sklearn import datasets from sklearn.linear_modellogistic import LogisticRegression from sklearn.model_selection import StratifiedKFold,cross_val_score X,y = datasets.load_iris(return_X_y=True) lore = LogisticRegression(random_state=0, max_iter=1000) sk_folds = StratifiedKFold(n_splits= 5) scores = cross val score(lore,X,y,cv= sk folds)</pre>
			<pre>print("Cross Validation Scores:",scores) print("Average CV Scores:",scores.mean()) print("Number of CV Scores used in Average:",len(scores))</pre>
			Cross Validation Scores: [0.96666667 1. 0.93333333 0.96666667 1.] Average CV Scores: 0.97333333333334 Number of CV Scores used in Average: 5