PART C4 SITE INFORMATION

SI.1
SI 3

C4.1 SITE INFORMATION

C4.1.1 Introduction

The project entails construction of a transloading facility at Mkuze Rail siding, where cane will be transferred from road trucks to rail wagons and transported by Transnet Freight Rails to the mill, a total journey length of 350kms.

Parameter	Data
Site Co-ordinates	S 27°36'55.80" and E 32° 1'58.13
Altitude	116 m above mean sea level
Minimum Average Temperature	8.3 °C
Maximum Average Temperature	31.6°C
Warmest month	February
Coldest month	July
Minimum Relative Humidity	62 %
Maximum Relative Humidity	82%
Rainfall Period	Oct to Feb
Maximum Average monthly precipitation	67mm
Minimum Average monthly precipitation	5mm
Maximum wind speed	32.2 kph
Maximum average wind speed	24.4 kph
Minimum wind speed	15.8 kph

C4.1.2 Background

The cane grown in the Makhathini region currently being transported to the Felixton mill by road requires a more economically, sustainable, and efficient way of transporting the cane to the mill as of March 2021.

C4.1.3 Ground Conditions

The Tenderer shall satisfy themselves of the existing ground conditions during the site briefing. The tenderer can come at any stage to site to verify existing ground conditions to assist them to price accurately.

A draft Geotech report is attached here in as a guide.

The Tenderer shall be responsible for the general stormwater management in and around the sites. This will include for diversion of run-off away from the site and the maintenance thereof.

C4.1.4 Existing Services

There are existing services near the site and these are to be proved by the Contractor prior to construction. We will share information on existing services from the client if it becomes available.

C4.2 DRAFT GEOTECH REPORT

Refer document overleaf

Shardesh Sewlal & Associates cc t/a

SHARDESH SEWLAL ENGINEERS

Geotechnical and Civil Engineering Consultants

Est. 2002

REPORT TO BOSCH PROJECTS (PTY) LTD ON THE RESULTS OF A GEOTECHNICAL INVESTIGATION CARRIED OUT FOR THE UPGRADING OF THE MKUZE RAILWAY SIDING

REPORT №: GEO/20/21/785 DATE: 8 DECEMBER 2020 REPORT STATUS: DRAFT

CARRIED OUT BY:

Shardesh Sewlal and Associates cc T/A Shardesh Sewlal Engineers
Suite 3007
3rd Floor
Building 2
34 Essex Terrace
Westville
3629

AUTHOR:

Shardesh Sewlal

Tel: +27 31 266 7299 Fax: +27 86 641 8113

Email1: geotech@shardesh.co.za
Email2: shardesh.sewlal@shardesh.co.za

CLIENT:

Bosch Projects (Pty) Ltd I Holwood Park 5 Canegate Road La Lucia Ridge Office Estate 4320

CLIENT CONTACT PERSON:

Mr Songezo Ndzamela

Tel: +27 31 535 6212 Mobile: +27 83 536 1792

Email1: ndzamelas@boschprojects.co.za

Email 2:

QUALITY VERIFICATION

This report has been prepared under the controls established by a quality management system that meets the requirements of ISO 9001:2015 which has been independently certified by Trans Pacific Certifications Ltd under Certificate No. 15396.

ISO 9001:2015

©COPYRIGHT: SHARDESH SEWLAL ENGINEERS

Contents

1.	INT	FRODUCTION AND TERMS OF REFERENCE	3
2.	INF	FORMATION SUPPLIED	3
3.	SIT	TE DESCRIPTION	3
		ELD WORK AND NATURE OF THE INVESTIGATION	
		TE GEOLOGY	
		STRATIGRAPHY	
		ABILITY	
		OUNDWATER	
		BORATORY TEST RESULTS	
		ASSIFICATION OF MATERIALS	
		DEVELOPMENT RECOMMENDATION	
	ے .0.1		
_	0.2.		
	_	UPGRADING RECOMMENDATIONS	
		SURFACE DRAINAGE	
		SUB-SURFACE DRAINAGE	
11	C	CONCLUSIONS	11

REPORT TO BOSCH PROJECTS (PTY) LTD ON THE RESULTS OF A GEOTECHNICAL INVESTIGATION CARRIED OUT FOR THE UPGRADING OF THE MKUZE RAILWAY SIDING

1. INTRODUCTION AND TERMS OF REFERENCE

Shardesh Sewlal Engineers was requested by Mr Barry Kriel, acting on behalf of Bosch Projects (Pty) Ltd to provide a quotation for the geotechnical investigation for the upgrading of the Mkuze Railway Siding. Shardesh Sewlal Engineers submitted the quotation, referenced Q1012 on 1 December 2020 and was subsequently appointed by Bosch Projects (Pty) Ltd on 2nd December 2020 to proceed with the geotechnical investigation and reporting.

The proposed upgrade includes:

- i. Refurbishing of the existing building.
- ii. Construction of a new hardstand / truck staging (parking zone for trucks).
- iii. Construction of a new hardstand for cane handling using an excavator.
- iv. Construction of a new Hilo 50T cane off-loader.
- v. Construction of two weigh bridges, one for trucks coming in and the other for trucks going out.
- vi. Gravelling of the surface leading to the cane off-loading area and construction of the service road.

This report presents the findings of the geotechnical investigation and based on these findings, recommendations for earthworks, excavatability, materials usage, subgrade improvements, foundations and site drainage are provided.

2. INFORMATION SUPPLIED

The following information was drawn upon for the purposes of this investigation:

- The 1: 250 000 Geological Map of St. Lucia issued by the Council for Geoscience.
- Google Imagery of the site.
- Drawing No 10969 011 002 GGL showing the overall site layout.
- Plan No. LS / EMG / MKD0021L /1 showing the aerial photo of the site and the locality plan prepared by Transnet.

3. SITE DESCRIPTION

The Mkuze Railway Siding is located north of the Mkuze Central Business District on Main Road P2 Section 9. The site can be accessed by travelling north along the National Route N2, then turn right at Mkuze onto Kingfisher Avenue, travel 1.8km, then turn left onto Main Road P2/9 and then travel for approximately 900m before entering the site on the left hand side.

The site currently is occupied by an existing dilapidated building which has been vandalised. The existing railway line is located adjacent the building to the south.

The area proposed for the service road and truck staging area is vegetated with short to medium growing bush and trees

Topographically, the natural ground slopes very gently in an easterly direction.

4. FIELD WORK AND NATURE OF THE INVESTIGATION

The fieldwork for the upgrading of the Mkuze Railway Siding was carried out on 6 December 2020 and comprised the following:

Description	Test Pits	DCP / DPL
Refurbishment of Existing Building	3No. to 2m depth - TLB	3No. DPL Tests
New Hard Stand for Cane off-loading	2No. to 1m depth - TLB	2No. DCP Tests
New Hilo 50T Cane off-loading	1No. to 3.170m - TLB	1No. DPL Test
Weigh Bridge-in / Weigh Bridge-out	2No. to 3.180m/2.380m - TLB	2No. DPL Tests
Truck Staging Area	2No. to 1.3m - TLB	4No. DCP Tests

Three hand auger tests were performed in the vicinity of the steel columns to determine the depth of the bases for the columns.

The test pits were profiled according to The South African Guidelines for Soil and Rock Logging. The test pit logs are presented in Appendix B. The purpose of the test pitting was to:

- Profile the subsoils across the investigated area and identify and identify soil types regarding foundation and stormwater drainage.
- Identify problems related to potential slope stability.
- Establish the depth to bedrock if occurring at shallow depth.
- Determine the presence of any perched or shallow ground water tables.

The aim of the DPL testing was to:

- Establish the consistency of the subsoils.
- Establish the depth to bedrock if occurring at shallow to moderate depth.

In order to facilitate an interpretation of the DPL results in respect to the consistency of the non-cohesive soils underlying the investigated area, the following table is provided. It must be however noted that it is only a guide to DCP equipment.

Table 1: Subsoil Consistency Inferred from DCP Results

Cohesi	ve Soils	Non-Cohe	esive Soils
DCP Blow Count Blow / 300mm			
0 – 4	Very Soft	0 – 8	Very Loose
4 – 8	Soft	8 – 18	Loose
8 – 15	Firm	18 – 54	Medium Dense
15 – 24	Stiff	54 – 90	Dense
24 – 54	Very Stiff	>90	Very Dense
>54	Hard		

The positions of the test pits and DCP tests are shown on the plan attached in Appendix A.

5. SITE GEOLOGY

5.1. GENERAL GEOLOGY

According to the 1:250 000 Geological Map of St. Lucia issued by The Department of Mines and Mineral Affairs, Map No. 27¹/₂32, the site is underlain by Lebombo Group Lethaba Formation Basalt.

Fig 1: Geological Map of Mkuze, Taken from Map No 27¹/₂32 St. Lucia

5.2. STRATIGRAPHY

On the basis of the field investigation, the following stratigraphy may be identified under the .

Existing Building

The hand augers indicate the existing building to be founded at 2.1m depth. The three tests pit performed around the existing building indicate the underlying soils to comprise dry, orangey pale red brown, dense, fine grained silty sand. These in-situ subsoils are observed to possess low plasticity and considered to possess low potential expansiveness. The DPL tests indicate that these subsoils are medium dense to dense, and these subsoils are therefore considered to possess low potential to compress under structural loading.

New Cane off-loading area

This area is located on an elevated platform that has been filled. A layer of approximately 190mm of imported coarse grained clayey sandy gravel overlies fill material comprising dark orangey red brown, medium dense clayey silt.

Weigh Bridge In / Weigh Bridge Out

The proposed weigh bridge in is underlain by orangey pale red brown, dense silty sand. These subsoils are observed to possess low plasticity and low potential to undergo cycles of heave and shrink with seasonal fluctuations in soil moisture contents.

The proposed weigh bridge out is underlain by 1.630m of fill material comprising several different layers. The upper layer comprises a medium dense clayey gravelly sand gravel wearing course below which a thin layer of recycled asphalt (RA) mixed with ash was encountered. Below the recycled asphalt layer, a deep layer of fill comprising medium dense, orangey brown, fine grained silty sand was recorded. A thin fill layer of blue grey yellow brown, medium dense, coarse grained sandy gravel is recorded below the silty sand fill. Insitu subsoils comprising pale orangey brown, medium dense silty sand was recorded below the fill layer. The insitu subsoils are recorded to possess low plasticity and low potential to undergo cycles of heave and shrink.

New Hilo 50T Cane off-loader

This area is located adjacent the elevated platform along an existing service road. Dense, pale orange brown, silty sand underlies this site with shallow fill comprising pale red, fine grained dense sand overlying the insitu silty sand.

Truck Staging Area

This area is underlain by completely weathered Rhyolitic Basalt recovered as sandy gravel. Above the completely weathered Rhyolitic Basalt, clayey sand with nodules and silty sand was recorded in the test pits. Colluvium comprising brown, medium dense silt overlies the area.

6. STABILITY

No signs of gross instability that may fatally flaw the proposed upgrade was recorded on site.

7. GROUNDWATER

No groundwater seepage was encountered in the test pits and or anywhere else on site.

8. LABORATORY TEST RESULTS

Laboratory tests were conducted on selected materials sampled from the inspection pits in order to classify them and assess their suitability for use in the proposed upgrade.

The following laboratory tests were conducted on the materials sampled:

- (i) Particle size distribution and Atterberg Limits;
- (ii) Maximum Dry Density (MDD) and Optimum Moisture Content Tests (OMC);
- (iii) California Bearing Ratio (CBR) Tests;
- (iv) Shear Box Tests

The complete laboratory tests are attached in Appendix F but summarised below in Table 2.

Table 2 Summary of Results of Particle Size Distribution Analysis, Atterberg Limit Determinations and CBR tests

Test Pit Kr No.				Particle Size %			Atterberg Limits			Modified AASHTO													
	Km	Depth (m)	Depth (m)	Depth (m)			Depth (m)	Coarse Sand Coarse / Fine sand Medium / Medium /	Medium / Fine Sand	Fine / Fine Sand	Silt & Clay	L	PI	LS	GM	MDD (kgm	OM C (%)	90	93	95	98	100	Swell (%)
TP4		190 - 1460																					
TP10		410 - 1200																					

Abbreviations used:

LL Liquid Limit

Ы Plasticity Index

LS Linear Shrinkage

GM **Grading Modulus**

Maximum Dry Density MDD -

OMC -Optimum Moisture Content

TINGRESUL UCS Unconfined Compressive Street

ITS Indirect Tensile Strength

Cannot Be Determined CBD -

Classification in Terms

TRH 14 (1985)

Unified Soil AA&HTO Classification System

Table 3

Summary of Results of Shear Box Tests

Test Pit No	Depth (mm)	Description	Maximum Shear Stress (kN/m²)	Angle of Friction (°)	Apparent Cohesion (kPa)
TP7	670 - 3170				

9. CLASSIFICATION OF MATERIALS

Test Pit	Description	erimente
TP4		
TP10		
10. DE	VELOPMENT RECOMMENDATION	AMA

10.1. RIPPABILITY AND TRENCHABILITY

Soft excavation in terms of SABS 1200 is generally anticipated to a depth of 4.0m below existing ground level using hand held equipment and light earth moving equipment such as a Tractor Loader Backhoe (TLB).

More difficult excavation may be encountered below 2.0m in the area proposed for the truck stage due to the presence of the weathered Basalt occurring at shallow depth and this may require heavier earthmoving equipment such as an excavator or small dozer.

10.2. EARTHWORKS

To promote the long-term stability of the site, all earthworks should be carried out to engineer's design and details; and in accordance with the guidelines provided in SABS 1200.

It is important the earthworks for the different upgrade initiatives are properly planned and supervised. The indiscriminate cutting and filling of the site without reference to predetermined levels could cause irrevocable damage which would be costly to remedy.

All vegetation should be removed before any cutting or filling is undertaken.

Recommendations for earthworks are given below in item 10.3.

10.3 UPGRADING RECOMMENDATIONS

The following recommendations are given for the proposed upgrading initiatives:

Existing Building

No enhancements to the foundations of the existing building is considered essential. An inspection of the building did not reveal any defects that may suggest that that the underlying soils possess undergo heave and shrink cycles or that the soils are susceptible to compression. The hand augers indicate that the foundations have been placed in the dense silty sands.

New Cane off-loading area - Concrete Platform

This area is underlain by deep fill comprising medium dense clayey silt. We recommend that the concrete slab be supported on at least 350mm of imported material that would qualify to yield the following layerworks structure:

200mm G5 compacted to 98% Mod AASHTO Density

150mm G7 compacted to 96% Mod AASHTO Density

Insitu – Rip 150mm and compact to 93% Mod AASHTO Density

Weigh Bridge In / Weigh Bridge Out

Soft excavations are expected to the required depths for the weigh bridges. As a precautionary measure, we recommend that a soil raft comprising 200mm to 300mm of G5 material be placed below all concrete surfaces. The in-situ materials are susceptible to a rapid loss of strength with increase in soil moisture contents.

New Hilo 50T Cane off-loader

The geotechnical investigation reveals that the upper 1.2m is very dense becoming medium dense to 5m. It is recommended that the Hilo be supported on both compression piles and tension piles which will require to be designed by a structural engineer with experience in such works. To enhance the performance of the concrete slab, we recommend that a 350mm soil raft below the concrete slab, similar to the layerworks recommendation for the new cane off-loading area.

Truck Staging Area / New Gravel Service Road

For the construction of the Truck Staging Area, the existing colluvium which ranges between 330mm and 410mm is to be removed to stockpile. The silty sand below the topsoil is considered suitable for use as subgrade material. Acceptable gravel material of at least G6 quality as per TRH 14 is recommended to be imported as a gravel wearing course.

10.4 SURFACE DRAINAGE

An effective stormwater management plan is essential to ensure storm water does not accumulate and pond on surfaces on site. Ingress of moisture into the silty sands will result in rapid and sudden decrease in strength of the in-situ materials and this will adversely affect the performance of the proposed upgrades. As far as practically possible, all storm water should be directed away from the site.

10.5 SUB-SURFACE DRAINAGE

Although no groundwater seepage was encountered during the geotechnical investigation, there is the possibility of a perched water table forming at the interface of the colluvium/silty sands and the weathered Rhyolitic Basalt in the vicinity of the proposed truck staging area. Should ground water be encountered during construction, it is recommended that Shardesh Sewlal Engineers be contacted to further investigate the site and provide recommendations.

11 CONCLUSIONS

This report presents the results of a geotechnical investigation carried out for the upgrading of the Mkuze Railway Siding.

The proposed upgrade includes:

- i. Refurbishing of the existing building.
- ii. Construction of a new hardstand / truck staging (parking zone for trucks).
- iii. Construction of a new hardstand for cane handling using an excavator.
- iv. Construction of a new Hilo 50T cane off-loader.
- v. Construction of two weigh bridges, one for trucks coming in and the other for trucks going out.
- vi. Gravelling of the surface leading to the cane off-loading area and construction of the service road.

The geotechnical investigation concludes the site is stable for the proposed upgrade. Geologically the area is underlain by Lebombo Group Lethaba Formation Rhyolitic Basalt. Most of the site is underlain by fine grained, medium dense to dense silty sand. Recommendations for earthworks, layerworks and subgrade treatment are provided in this report.

Finally, the ground conditions described in this report refer specifically to those encountered in the inspection pits. It is possible that conditions at variance to those described in this report can be encountered elsewhere on site. It is recommended that Shardesh Sewlal & Associates cc undertake periodic inspections during the construction operations to confirm appropriate founding conditions and materials suitability.

ATTACHED:

Appendix A: Plan showing the positions of test pits and dynamic cone penetrometer tests

Appendix C: Profiles of the test pits

Appendix D: Dynamic cone penetrometer tests – DPL Appendix E: Dynamic cone penetrometer tests – DCP

Appendix F: Laboratory Test Results

SIGNED BY:

SHARDESH SEWLAL

(PR. SCI. NAT 400082/00)

PLAN SHOWING POSITIONS OF THE INSPECTION PITS AND DYNAMIC CONE PENETROMETER TESTS

T: Test Pit
Dynamic Cone Penetrometer (DPL): D1, D2, D3, D6, D7, D8,
Dynamic Cone Penetrometer (Structural): D4, D5, D9, D10, D11, D12

PROFILE OF TEST PITS

TEST PIT PROFILE HOLE: PROJECT: UPGRADING OF MKUZE RAILWAY SIDING T1 **LOCATION: MKUZE CLIENT: BOSCH PROJECTS (PTY) LTD** SHARDESH SEWLAL EX. BUILDING **ENGINEERS DATE: 6 DECEMBER 2020** Description Depth (m) Sample (Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit) N. T. S 0.000 Slightly Moist, Pinkish Pale Reddish, Medium Dense to Dense, Fine Grained, Silty Sand and Brown, Fine Grained, Sand (FILL) 1.610 1.610 Dry, Brown, Medium Dense to Dense, Fine Grained, Intact, Silty Sand (COLLUVIUM) 2.210 2.210 NOTES: 1. No refusal encountered. 2. No Groundwater seepage encountered. 3. No bedrock encountered. 4. No sidewall collapse encountered.

Elevation:

Coord. (S): ""S

Coord. (E): "" E

HOLE:

T1

Method:

Hand

Profiled By: S. Sewlal

Captured By: S. Kalpee

Inclination:

Diam:

TEST PIT PROFILE HOLE: PROJECT: UPGRADING OF MKUZE RAILWAY SIDING T2 **LOCATION: MKUZE CLIENT: BOSCH PROJECTS (PTY) LTD** EX. BUILDING **ENGINEERS DATE: 6 DECEMBER 2020** Description Depth (m) Sample (Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit) N. T. S 0.000 Slightly Moist to Moist, Brown, Medium Dense to Dense, Silty Sand with abundant roots, leaves, organic debris and building rubbles (FILL) 0.460 0.460 Dry, Brown, Medium Dense to Dense, Fine Grained, Intact, Silty Sand (COLLUVIUM) 0.700 0.700 Slightly Moist, Orangey Pale Reddish, Medium Dense to Dense, Intact, Fine to Slightly Medium Fine Grained, Sandy Silt 2.310 2.310 NOTES: 1. No refusal encountered. 2. No Groundwater seepage encountered. 3. No bedrock encountered. 4. No sidewall collapse encountered. 5. Dis-used electric cable encountered at 300mm BGL.

Elevation:

Coord. (S): ""S

Coord. (E): "" E

HOLE:

T2

16	ΙP	а	g	E

Method:

Profiled By:

Captured By: S. Kalpee

Hand

S. Sewlal

Inclination:

Diam:

TEST PIT PROFILE HOLE: PROJECT: UPGRADING OF MKUZE RAILWAY SIDING Т3 **LOCATION: MKUZE CLIENT: BOSCH PROJECTS (PTY) LTD** EX. BUILDING **ENGINEERS DATE: 6 DECEMBER 2020** Description Depth (m) Sample (Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit) N. T. S 0.000 Slightly Moist, Dark Brown Black, Firm, Clayey Gravel, Imported Gravel (Leucocratic Granitic Gneiss) with abundant organic matter 0.120 0.120 Slightly Moist, Pale Reddish Pinkish, Medium Dense to Dense, Intact, Fine to Slightly Medium Fine Grained, Sandy Silt 2.400 2.400 NOTES: 1. No refusal encountered. 2. No Groundwater seepage encountered.

- 3. No bedrock encountered.
- 4. No sidewall collapse encountered.

Inclination: Method: Hand Elevation: Diam: Profiled By: S. Sewlal Coord. (S): ""S Captured By: S. Kalpee Coord. (E): "" E

HOLE: Т3

TEST PIT PROFILE

ENGINEERS

PROJECT: UPGRADING OF MKUZE RAILWAY SIDING

LOCATION: MKUZE

CLIENT: BOSCH PROJECTS (PTY) LTD

DATE: 6 DECEMBER 2020

HOLE: **T4**

Cane offloading surface

		DATE: 0 DECEMBER 2020	Surface	
Sample	Depth (m)	Description		
N. T. S		(Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Ur	nit)	
	0.000	Slightly Moist, Light Grey Pink Brown, Medium Dense, Fine to Coars Clayey Sandy Gravel (Imported Gravel) with abundant organic matter		
	0.190			0.19
2 x BB		Slightly Moist, Dark Orangey Pinkish Red Brown, Fine Grained, Med Intact, Clayey Silt (Fill)	ium Dense,	J
	1.460		,	1.460

NOTES:

- 1. No refusal encountered.
- 2. No Groundwater seepage encountered.
- 3. No bedrock encountered.
- 4. No sidewall collapse encountered.
- 5. Sample: 2 x Big Bags for Full Classification.

Inclination: Method: Hand Elevation: Diam: Coord. (S): "" S Profiled By: S. Sewlal Captured By: S. Kalpee Coord. (E): "" E

TEST PIT PROFILE

PROJECT: UPGRADING OF MKUZE RAILWAY SIDING

LOCATION: MKUZE

CLIENT: BOSCH PROJECTS (PTY) LTD

DATE: 6 DECEMBER 2020

HOLE: T5

Cane offloading surface

		Surface Surface	
Sample	Depth (m)	Description	_
	N. T. S	(Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit)	
	0.000	Slightly Moist, Brown, Medium Dense, Medium Coasre Grained, Silty Sand w Gravel (Imported Gravel)	ith
	0.100		0.100
		Recycled Asphalt, Ash	-
	0.310		0.310
		Slightly Moist, Pale Orangey Red, Medium Dense to Dense, Fine Grained, Silt Sand (FILL) with isolated Granite rock fragments	ty
	1.450		1.450
	NOTES:		

NOTES:

- 1. No refusal encountered.
- 2. No Groundwater seepage encountered.
- 3. No bedrock encountered.
- 4. No sidewall collapse encountered.

Method:HandInclination:Elevation:mProfiled By:S. SewlalDiam:Coord. (S):°'" SCaptured By:S. KalpeeCoord. (E):"" E

TEST PIT PROFILE HOLE: PROJECT: UPGRADING OF MKUZE RAILWAY SIDING Т6 LOCATION: MKUZE **CLIENT: BOSCH PROJECTS (PTY) LTD** Weigh Bridge Out **ENGINEERS DATE: 6 DECEMBER 2020** Description Depth (m) Sample (Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit) N. T. S 0.000 Slightly Moist, Brown, Medium Dense, Fine to Medium Coarse Grained, Clayey Gravelly Sand (Imported Gravel Wearing Course) 0.210 0.210 Recycled Asphalt, Ash 0.300 0.300 Slightly Moist, Pinkish Orangey Brown, Medium Dense to Dense, Fine Grained, Silty Sand (FILL) 1.520 1.520 Dry, Blue, Grey Yellow Brown, Dense, Fine to Coarse Grained Sandy Gravel (Imported Gravel) 1.630 1.630 Slightly Moist, Pale Orangey Red, Dense, Fine Grained, Silty Sand 3.180 3.180 NOTES: 1. No refusal encountered. 2. No Groundwater seepage encountered. 3. No bedrock encountered. 4. No sidewall collapse encountered.

Elevation:

Coord. (S): ""S

Coord. (E): "" E

HOLE:

Т6

20	ΙP	а	g	Е

Method:

Profiled By:

Captured By: S. Kalpee

Hand

S. Sewlal

Inclination:

Diam:

TEST PIT PROFILE HOLE: PROJECT: UPGRADING OF MKUZE RAILWAY SIDING **T7 LOCATION: MKUZE CLIENT: BOSCH PROJECTS (PTY) LTD** Hilo Unloader **ENGINEERS DATE: 6 DECEMBER 2020** Description Depth (m) Sample (Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit) N. T. S 0.000 Dry, Pale Red Brown, Dense, Fine Grained, Silty Sand (FILL) with a thin layer of cemented layer and Granite gravel 0.670 0.670 Slightly Moist, Pale Orangey Red, Dense, Fine Grained, Silty Sand 2 x BB 3.170 3.170 NOTES: 1. No refusal encountered. 2. No Groundwater seepage encountered. 3. No bedrock encountered. 4. No sidewall collapse encountered. 5. Samples: 2 x Big Bags for Shear Box Test

Elevation:

Coord. (S): ""S

Coord. (E): "" E

HOLE:

T7

Method:

Hand

Profiled By: S. Sewlal

Captured By: S. Kalpee

Inclination:

Diam:

TEST PIT PROFILE

PROJECT: UPGRADING OF MKUZE RAILWAY SIDING

LOCATION: MKUZE

CLIENT: BOSCH PROJECTS (PTY) LTD

DATE: 6 DECEMBER 2020

HOLE: T8

Weigh Bridge In

Sample	Depth (m)	Description							
Sample	N. T. S	(Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit)							
	0.000	Dry to Slightly Moist, Pale Orange Pale Red Brown, Dense to Very Dense, Fine Grained, Silty Sand							
	2.370	2.37(

NOTES:

- 1. Excavation stopped at 2.310m. TLB experienced difficulty excavating through the dense sand.
- 2. No Groundwater seepage encountered.
- 3. No bedrock encountered.
- 4. No sidewall collapse encountered.
- 5. Rubble encountered along the northern wall between 0.0m and 1.790m

Method:HandInclination:Elevation:mProfiled By:S. SewlalDiam:Coord. (S):°'"SCaptured By:S. KalpeeCoord. (E):°'"E

TEST PIT PROFILE

PROJECT: UPGRADING OF MKUZE RAILWAY SIDING

LOCATION: MKUZE

CLIENT: BOSCH PROJECTS (PTY) LTD

DATE: 6 DECEMBER 2020

HOLE: T9

Truck Staging Area

	ii (EEi (O	DATE: O DEGLINDER 2020	
Sample	Depth (m)	Description	
	N. T. S	(Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit)	
	0.000	Dry, Brown, Medium Dense, Fine Grained, Intact, Silt (COLLUVIUM)	
	0.330	0.0	330
		Dry, Orangey Brown Speckled Red Yellow, Fine to Medium Grained, Dense, Clay Sand with abundant nodules and irregular Granitic Gneiss rock fragments	/ey
	0.830	0.	830
		Completely Weathered, Highly Fractured, Dark Grey Red Orange Brown, Very Son Rock Rhyolitic Basalt recovered as Coarse Gravel with cobble size rock fragment	
	1.290	1.:	290

NOTES:

- 1.No refusal encountered.
- 2. No Groundwater seepage encountered.
- 3. Completely weathered Rhyolitic Basalt bedrock encountered in test pit.
- 4. No sidewall collapse encountered.

Method:HandInclination:Elevation:mProfiled By:S. SewlalDiam:Coord. (S):°'"SCaptured By:S. KalpeeCoord. (E):""E

TEST PIT PROFILE

PROJECT: UPGRADING OF MKUZE RAILWAY SIDING

LOCATION: MKUZE

CLIENT: BOSCH PROJECTS (PTY) LTD

DATE: 6 DECEMBER 2020

HOLE: T10

Truck Staging Area

			_				
Sample	Depth (m)	Description					
Cample	N. T. S	(Moisture, Colour, Consistency, Structure, Soil Type, Origin, Strat Unit)					
	0.000	Dry, Brown, Medium Dense, Fine Grained, Intact, Silt (COLLUVIUM)					
	0.410	0.4	10				
2 x BB	0.410	Dry, Orangey Brown Speckled Red Yellow, Fine to Medium Grained, Dense, Claye Silty Sand					
	1.200	1.2	00				
		Completely Weathered, Orange Red Brown Black, Very Dense Completely Weathered Rhyolitic Basalt recovered as Coarse Sandy Gravel					
	1.290	1.2	90				

NOTES:

- 1.No refusal encountered.
- 2. No Groundwater seepage encountered.
- 3. Completely weathered Rhyolitic Basalt bedrock encountered in test pit.
- 4. No sidewall collapse encountered.
- 5. Samples: 2 x Big Bags for Material Classification

Method:HandInclination:Elevation:mProfiled By:S. SewlalDiam:Coord. (S):""SCaptured By:S. KalpeeCoord. (E):""E

APPENDIX C

DYNAMIC CONE PENETROMETER TESTS - DPL

LOCATION: MKUZE

DPL NO. 1

SHARDESH SEWLAL ENGINEERS

DATE: 6 DECEMBER 2020 Elevation: Coord. (S): "'S

DPL NO. 1 Coord. (E): ""E

DYNAMIC CONE PENETROMETER TEST RESULTS

N 0 1 :								
	Non - Cohesive							
	Penetration Guide							
SPT	DCP	Consistency						
mm/blow	DN	Consistency						
< 5	132-210	Very Dense						
5 - 10	78-132	Dense						
10 - 30	25-78	Med Dense						
30 - 75	10 25	Loose						
75 -100	<10	Very Loose						

NOTE: A minimum of 4 readings is required!

Depth of hole in which DCP was taken : 0 mm below NGL Applied Factor : 1,0 times Terzaghi's value

Remarks :

Reading	Layer	Layer	Average	DCP	Level	DCP	Equiv.	Approx	Approx
No.	From	To	Layer	DN	Below NG	Lpenetration	SPT N	In-situ	EASBP
			Depth	lows/300mi	mm	mm/blow	Value	CBR	kPa
1	0	300	150	39	150	8	15	32	204
2	300	600	450	27	450	11	10	20	147
3	600	900	750	29	750	10	11	22	157
4	900	1200	1050	31	1050	10	12	24	166
5	1200	1500	1350	34	1350	9	13	27	180
6	1500	1800	1650	35	1650	9	13	28	185
7	1800	2100	1950	43	1950	7	16	36	223

LOCATION: MKUZE

DPL NO. 2

DPL NO. 2

SHARDESH SEWLAL ENGINEERS

6 DECEMBER 2020 DATE: Elevation:

Coord. (S): "'S Coord. (E): "" E

DYNAMIC CONE PENETROMETER TEST RESULTS

Non - Cohesive								
	Penetration Guide							
SPT	DCP	Consistency						
mm/blow	DN	Consistency						
< 5	132-210	Very Dense						
5 - 10	78-132	Dense						
10 - 30	25-78	Med Dense						
30 - 75	10 25	Loose						
75 -100	<10	Very Loose						

NOTE: A minimum of 4 readings is required!

Depth of hole in which DCP was taken : 0 mm below NGL Applied Factor : 1,0 times Terzaghi's value

Remarks :

· tomanto i									
Reading	Layer	Layer	Average	DCP	Level	DCP	Equiv.	Approx	Approx
No.	From	To	Layer	DN	Below NG	Lpenetration	SPT N	In-situ	EASBP
			Depth	lows/300mi	mm	mm/blow	Value	CBR	kPa
1	0	300	150	36	150	8	14	29	190
2	300	600	450	21	450	14	8	14	96
3	600	900	750	32	750	9	12	25	171
4	900	1200	1050	29	1050	10	11	22	157
5	1200	1500	1350	42	1350	7	16	35	218
6	1500	1800	1650	60	1650	5	23	56	303
7	1800	2100	1950	72	1950	4	27	72	359

ENGINEERS

LOCATION: MKUZE

DPL NO. 3

SHARDESH SEWLAL

6 DECEMBER 2020 DATE:

Elevation: Coord. (S): "'S

DPL NO. 3 Coord. (E): "" E

DYNAMIC CONE PENETROMETER TEST RESULTS

Non - Cohesive								
Penetration Guide								
SPT	DCP	Consistency						
mm/blow	DN	Consistency						
< 5	132-210	Very Dense						
5 - 10	78-132	Dense						
10 - 30	25-78	Med Dense						
30 - 75	10 25	Loose						
75 -100	<10	Verv Loose						

NOTE: A minimum of 4 readings is required!

Depth of hole in which DCP was taken : 0 mm below NGL Applied Factor : 1,0 times Terzaghi's value

Remarks :

Reading	Layer	Layer	Average	DCP	Level	DCP	Equiv.	Approx	Approx
No.	From	To	Layer	DN	Below NG	Lpenetration	SPT N	In-situ	EASBP
			Depth	lows/300mi	mm	mm/blow	Value	CBR	kPa
1	0	300	150	57	150	5	22	53	289
2	300	600	450	29	450	10	11	22	157
3	600	900	750	33	750	9	13	26	175
4	900	1200	1050	30	1050	10	11	23	161
5	1200	1500	1350	36	1350	8	14	29	190
6	1500	1800	1650	28	1650	11	11	21	152
7	1800	2100	1950	43	1950	7	16	36	223

LOCATION: MKUZE

DPL NO. 6

DPL NO. 6

6 DECEMBER 2020 DATE:

Elevation: Coord. (S): "'S Coord. (E): "" E

SHARDESH SEWLAL ENGINEERS

DYNAMIC CONE PENETROMETER TEST RESULTS

Non - Cohesive									
	Penetration Guide								
SPT	DCP	Consistency							
mm/blow	DN	Consistency							
< 5	132-210	Very Dense							
5 - 10	78-132	Dense							
10 - 30	25-78	Med Dense							
30 - 75	10 25	Loose							
75 -100	<10	Very Loose							

NOTE: A minimum of 4 readings is required!

Depth of hole in which DCP was taken : 0 mm below NGL Applied Factor : 1,0 times Terzaghi's value

Remarks:									
Reading	Layer	Layer	Average	DCP	Level	DCP	Equiv.	Approx	Approx
No.	From	To	Layer	DN		Lpenetration	SPT N	In-situ	EASBP
			Depth	lows/300m	ı mm	mm/blow	Value	CBR	kPa
1	0	300	150	38	150	8	14	31	199
2	300	600	450	27	450	11	10	20	147
3	600	900	750	28	750	11	11	21	152
4	900	1200	1050	34	1050	9	13	27	180
5	1200	1500	1350	35	1350	9	13	28	185
6	1500	1800	1650	26	1650	12	10	19	114
7	1800	2100	1950	33	1950	9	13	26	175
8	2100	2400	2250	39	2250	8	15	32	204
9	2400	2700	2550	41	2550	7	16	34	213
10	2700	3000	2850	32	2850	9	12	25	171
11	3000	3300	3150	37	3150	8	14	30	194
12	3300	3600	3450	54	3450	6	21	49	274
13	3600	3900	3750	59	3750	5	22	55	298
14	3900	4200	4050	86	4050	3	33	90	425
15	4200	4500	4350	61	4350	5	23	58	307
16	4500	4800	4650	75	4650	4	29	76	373
17	4800	5100	4950	73	4950	4	28	73	364

LOCATION: MKUZE

DPL NO. 7

SHARDESH SEWLAL ENGINEERS

6 DECEMBER 2020 DATE: Elevation:

Coord. (S): "'S DPL NO. 7 Coord. (E): "" E

DYNAMIC CONE PENETROMETER TEST RESULTS

Non - Cohesive									
	Penetration Guide								
SPT	DCP	Consistency							
mm/blow	DN	Consistency							
< 5	132-210	Very Dense							
5 - 10	78-132	Dense							
10 - 30	25-78	Med Dense							
30 - 75	10 25	Loose							
75 -100	<10	Very Loose							

NOTE: A minimum of 4 readings is required!

Depth of hole in which DCP was taken : 0 mm below NGL Applied Factor : 1,0 times Terzaghi's value

Remarks:									
Reading	Layer	Layer	Average	DCP	Level	DCP	Equiv.	Approx	Approx
No.	From	To	Layer			Lpenetration	SPT N	In-situ	EASBP
			Depth	lows/300mi	mm	mm/blow	Value	CBR	kPa
1	0	300	150	68	150	4	26	67	340
2	300	600	450	71	450	4	27	70	355
3	600	900	750	112	750	3	43	110	548
4	900	1200	1050	129	1050	2	49	110	628
5	1200	1500	1350	97	1350	3	37	106	477
6	1500	1800	1650	61	1650	5	23	58	307
7	1800	2100	1950	52	1950	6	20	47	265
8	2100	2400	2250	49	2250	6	19	43	251
9	2400	2700	2550	53	2550	6	20	48	270
10	2700	3000	2850	54	2850	6	21	49	274
11	3000	3300	3150	56	3150	5	21	52	284
12	3300	3600	3450	63	3450	5	24	60	317
13	3600	3900	3750	65	3750	5	25	63	326
14	3900	4200	4050	71	4050	4	27	70	355
15	4200	4500	4350	54	4350	6	21	49	274
16	4500	4800	4650	69	4650	4	26	68	345
17	4800	5100	4950	83	4950	4	32	86	411

LOCATION: MKUZE

DPL NO. 8

6 DECEMBER 2020 DATE:

Elevation: Coord. (S): "'S

SHARDESH SEWLAL ENGINEERS

Coord. (E): "" E DPL NO. 8

DYNAMIC CONE PENETROMETER TEST RESULTS

Non - Cohesive						
Penetration Guide						
SPT	DCP	Consistency				
mm/blow	DN	Consistency				
< 5	132-210	Very Dense				
5 - 10	78-132	Dense				
10 - 30	25-78	Med Dense				
30 - 75	10 25	Loose				
75 -100	<10	Very Loose				

NOTE: A minimum of 4 readings is required!

Depth of hole in which DCP was taken : ____mm below NGL
Applied Factor : ____1,0 __times Terzaghi's value
Remarks : DPL STOPPED AT 2.1M DUE TO VERY DENSE CONDITIONS

Reading	Layer	Layer	Average	DCP	Level	DCP	Equiv.	Approx	Approx	
No.	From	To	Layer	DN Below NGLpenetration			SPT N	In-situ	EASBP	
			Depth	lows/300m	mm	mm/blow	Value	CBR	kPa	
1	0	300	150	79	150	4	30	81	392	
2	300	600	450	111	450	3	42	110	543	
3	600	900	750	127	750	2	48	110	618	
4	900	1200	1050	127	1050	2	48	110	618	
5	1200	1500	1350	125	1350	2	48	110	609	
6	1500	1800	1650	131	1650	2	50	110	637	
7	1800	2100	1950	131	1950	2	50	110	637	

DYNAMIC CONE PENETROMETER TESTS - DCP

LABORATORY TEST RESULTS

Region: Project date: DURBAN 08 December, 2020 Road number: Print date: MKUZE RAILWAY SIDING

08 December, 2020

Measurements included in analysis

Measurement Name	Measurement Date Position	Distance (km)	Condition	Rutting	Pumping	Long, Crack	Croc. Crack	Deform	Other
Crane Off loading Area-D4	06 December 2020 5 - MID	0	Overstressed	No	No	No	No	No	No

Design Structure Number in blows (DSN800):

92

Selected DCP Design Curve:

Moisture condition of base:

Heavy traffic

Rut Limit:

20mm 0.2 Road catagory Base type:

ory

Granular Optimum

Structural capacity (MISA):

(MISA = MIllion Standard Axles, 80 kN)

	Depth (mm)	W. Ave. Pen. * (mm/blow)	Blows	SD (mm/blow)	95P (mm / blow)	CBR ** (%)	UCS *** (kPa)	Ave. E-Moduli (MPa)	5P - 95P (MPa)
 	0 - 150	11.78	!6	4.3	18.9	18	190	81	19 - 570
	51 - 300	7.47	22	2,0	10.7	32	316	132	34 - 629
	01 - 450	9.54	16	1.2	11.6	23	240	102	31 - 346
- 1	.51 - 600	10.15	. 16	2.6	14.4	22	224	95	25 - 448
	.01 - 800	9.20	22	1.0	10.9	24	250	106	34 - 346

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

Depth	W. Ave. Pen. *	Blows	SD	95P	CBR **	UCS ***	1	E-Moduli Range
(mm)	(mm / blow)	22.07.0	(mm / blow)	(mm/blow)	(%)	(kPa)	(MPa)	5P - 95P (MPa)
0 - 112	13.72	9	2.9	18.4	15	160	69	19 - 285
113 - 280	7.00	26	2.2	10.6	35	339	141	35 - 793
	9.61	24	1.1	11.4	23	238	101	32 - 334
281 - 504	1	6	2.3	10.5	36	350	145	35 - 891
505 - 544	6.81	0	1.6	14.1	19	197	84	26 - 295
545 - 640	11.40	9	1	9,1	29	292	123	40 - 381
641 - 688	8.00	6	0.7		23	236	100	35 - 286
689 - 736	9.71	5	0.4	10.4		1	104	35 - 308
737 - 800	9.39	7	0.6	10.4	24	245	104	55 500

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weighhed average penetration rate

P = Percentile value in %

Depth (mm)	Avc. E-Moduli (MPa)	E-Moduli Range (MPa) 5P - 95P	CBR (%)	UCS (kPa)
0 - 150	81	19 - 570	18	190 316
151 - 300	132	34 - 629	32	240
301 - 450	102	31 - 346	23 22	224
451 - 600	95	25 - 448 34 - 346	24	250
601 - 800	106	34 - 346		1250

Depth (mm)	Avc. E-Moduli (MPa)	E-Moduli Range (MPa) 5P - 95P	CBR (%)	UCS (kPa) 160
0 - 112	69	19 - 285	15	339
113 - 280	141	35 - 793	35	
281 - 504	101	32 - 334	23	238
	145	35 - 891	36	350
505 - 544	84	26 - 295	19	197
545 - 640		40 - 381	29	292
641 - 688	123	35 - 286	23	236
689 - 736	100		24	245
737 - 800	104	35 - 308	24	210

Summary of + and - Areas (Curve fitting table - Existing structure)

Depth (mm)	Cumulative Area (%.mm), A
0 - 240	-694
241 - 448	159
449 - 520	-41
521 - 584	41
585 - 680	-52
681 - 720	4
721 - 752	-1
753 - 792	4
Absolute Area	995

From-To (mm)	Depth (mm)	Blows	DN (mm / blow)	CBR (%)	UCS (kPa)	Avc. E-Moduli (MPa)
	per 5 blows		15.60	13	139	60
0 - 78	78	5	9.40	24	244	103
78 - 125	125	10		66	601	243
125 - 146	146	15	4.20		473	194
146 - 172	172	20	5.20	51	233	99
172 - 221	221	25	9.80	23		186
221 - 248	248	30	5.40	48	454	155
248 - 280	280	35	6.40	39	375	
280 - 324	324	40	8.80	26	263	111
324 - 375	375	45	10.20	21	223	95
	414	50	7.80	30	301	126
375 - 414		55	11.00	20	205	87
414 - 469	469	60	9.60	23	239	101
469 - 517	517	65	5,20	51	473	194
517 - 543	543		12.60	16	176	76
543 - 606	606	70 75	9.20	24	250	106
606 - 652	652	75	7.60	31	310	130
652 - 690	690	80		23	233	99
690 - 739	739	85	9.80	25	256	108
739 - 784	784	90	9.00		218	93
784 - 836	836	95	10.40	21	210	,,

Region: Project date: DURBAN

08 December, 2020

Road number: Print date:

MKUZE RAILWAY SIDING

08 December, 2020

Measurements included in analysis

ivieasurement (vanc	Measurement Date Position 06 December 2020 5 - MID	Distance (km)	Condition Overstressed	Rutting No	Pumping No	Long. Crack No	Croc. Crack	Deform No	Other No
Crane Off loading Area -D5	06 December 2020 13 - Wild						- -		

Design Structure Number in blows (DSN₈₀₀):

91

Selected DCP Design Curve:

Heavy traffic

Rut Limit:

Road catagory

Structural capacity (MISA):

20mm 0.2

Base type: Moisture condition of base: Granular Optimum

(MISA = Million Standard Axles, 80 kN)

Depth (mm)	W. Ave. Pen. *	Blows	SD (mm / blow)	95P (mm / blow)	CBR ** (%)	UCS *** (kPa)		E-Moduli Range 5P - 95P (MPa) 20 - 541
0 - 150 151 - 300 301 - 450 451 - 600	11.20 7.43 8.88 9.47	15 22 17 16	3.8 1.9 0.3 0.6 0.5	17.5 10.5 9.4 10.4 10.3	19 32 26 24 24	318 260 242 243	133 110 103 103	35 - 615 39 - 307 35 - 301 35 - 302

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

	-						735 1 1	E 34 - JE Dange
Depth	W. Ave. Pen. *	Blows	SD (mm / blow)	95P (mm / blow)	CBR ** (%)	(kľa)	(MPa)	5P - 95P (MPa)
(mm) 0 - 72	(mm / blow) 15.00	5 25	0.0	15.0 9.3	13 36	145 352	63 146	· 24 - 166 40 - 635
73 - 232 233 - 464	6.78 9.02	25 26	0.5 0.0	9,8 8,8	25 26	256 263	108 111	38 - 313 42 - 292
465 - 504 505 - 608	8.80 9.77	5 11	0.4	10.5	23 24	234 243	99 103	35 - 283 35 - 302
609 - 800	9.43	20	0.5	10.3	Z-1	1 2.5		

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

Depth (mm) 0 - 150 151 - 300	Ave. E-Moduli (MPa) 86 133 110	E-Moduli Range (MPa) 5P - 95P 20 - 541 35 - 615 39 - 307	CBR (%) 19 32 26	UCS (kPa) 201 318 260 242
301 - 450 451 - 600 601 - 800	103	35 - 301 35 - 302	24 24	242 243

	E Maduli	E-Moduli Range (MPa)	CBR	UCS
Depth (mm)	Ave. E-Moduli (MPa)	5P - 95P 24 - 166	<u>(%)</u> 13	(kPa) 145
0 - 72 73 - 232	63 146	40 - 635	36 25	352 256
233 - 464	108	38 - 313 42 - 292	26	263 234
465 - 504 505 - 608	99	35 - 283 35 - 302	23 24	243
609 - 800	103	30 - 302		

<u>Summary of + and - Areas (Curve fitting table - Existing structure)</u>

Depth (mm)	Cumulative Area (%.mm), A
0 - 200	-626
201 - 440	60
441 - 496	-3
497 - 512	0
513 - 712	-61
713 - 792	11
Absolute Area	760

From-To (mm)	Depth (mm)	Blows	DN (mm / blow)	CBR (%)	UCS (kPa)	Ave. E-Moduli (MPa)
	per 5 blows		15.00	13	145	63
) - 75	75	5	15.00	35	340	141
75 - 110	110	10	7.00 7.80	30	301	126
10 - 149	149	15	5.80	44	419	173
49 - 178	178	20	4.60	59	543	221
78 - 201	201	25	7.00	35	340	141
201 - 236	236	30	9,60	23	239	101
236 - 284	284	35	8.80	26	263	111
284 - 328	328	40	8.80	26	263	111
328 - 372	372	45 50	8.60	27	270	114
372 - 415	415	55	9.40	24	244	103 111
415 - 462	462	60	8.80	26	263	103
462 - 506	506	65	9.40	24	244	95
506 - 553	553	70	10.20	21	223	106
553 - 604	604	75 75	9.20	24	250	108
604 - 650	650	80	9.00	25	256	108
650 - 695	695	85	9.00	25	256	95
695 - 740	740	90	10.20	21	223	93 93
740 - 791	791	95	10.40	21	218	2.3
791 - 843	843	73				

Region: Project date: DURBAN

08 December, 2020

Road aumber: Print date:

MKUZE RAILWAY SIDING

08 December, 2020

Measurements included in analysis

		List a dimit	Condition	Rutting	Pumping	Long, Crack	Croc. Crack	Deform	Other
Measurement Name	Measurement Date Position	Distance (km)	Overstressed	No	No	No	No	No	No
Truck Staging -D9	06 December 2020 5 - MID	10	Oversitessed	110	110			l, "	

Design Structure Number in blows (DSN800):

535

Selected DCP Design Curve:

Heavy traffic

Road catagory

Rut Limit:

20mm 106.3

Base type: Moisture condition of base: Granular Optimum

Structural capacity (MISA):

(MISA = MIllion Standard Axles, 80 kN)

Depth (gum)	W. Ave. Pen. * (mm / blow)	Blows	SD (mm / blow)	95P (mm / blow)	CBR ** (%)	UCS *** (kPa) 282	Ave. E-Moduli (MPa)	E-Moduli Range 5P - 95P (MPa) 211
0 - 150 151 - 300 301 - 450 451 - 600	8.25 3.83 4.56 3.78	29 40 33 40 393	5.2 0.4 0.3 0.5	16.7 4.4 5.1 4.5 4.6	28 75 60 76 158	667 548 676 1293	269 223 272 503	87 - 853 75 - 666 85 - 906 851

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

				95P	CBR **	UCS ***		E-Moduli Range
Depth	W. Ave. Pen. * (mm / blow)	Blows	SD (mm/blow)	(mm / blow)	(%)	(kPa)		5P - 95P (MPa)
(mm) 0 - 56	13.80	4	0.0	13.8	15 64	159 582	69 236	48 - 3686
57 - 344	4.32	74	2.1 0.7	7.8 4.9	75	669	269	79 - 1007
345 - 720 721 - 800	3.82 0.42	102 356	0.7	1.5	435	3148	2768	2731

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

Depth (mm) 0 - 150 151 - 300	Ave. E-Moduli (MPa) 119 269	E-Moduli Range (MPa) 5P - 95P 211 87 - 853 75 - 666	CBR (%) 28 75 60	UCS (kPa) 282 667 548
	269 223 272 503	87 - 853 75 - 666 85 - 906 851		548 676 1293

Depth (mm) 0 - 56 57 - 344 345 - 720	Ave. E-Moduli (MPa) 69 236 269	E-Moduli Rauge (MPa) 5P - 95P 26 - 181 48 - 3686 79 - 1007	CBR (%) 15 64 75 435	UCS (kPa) 159 582 669 3148
721 - 800	2768	2731	435	3.10

<u>Summary of + and - Areas (Curve fitting table - Existing structure)</u>

Depth (mm)	Cumulative Area (%.mm), A
0 - 72	-8
73 - 592	2112
593 - 784	-1659
785 - 792	0
Absolute Area	3779

From-16 (mm) per 5 blows 13.80 15 159 69		<u> </u>	Blows	DN (mm / blow)	CBR (%)	UCS (kPa)	Ave. E-Moduli
0 - 69 69 5 13.80 13 13 13 13 13 13 13 13 13 14 286 29 - 91 91 10 4.40 62 570 231 231 28 29 - 91 19 109 15 3.60 81 714 286 112 - 135 1123 440 109 - 121 121 20 2.40 135 1123 440 109 - 121 121 20 2.40 135 1123 440 109 - 121 121 20 2.40 135 1123 440 140 3.60 81 75 761 304 140 33.60 87 761 304 141 286 113 714 286 114 286 117 14 286 114 286 114 286 114 286 114 286 114 286 114 286 114 286 114 286 114 286 114 <th>From-To (mm)</th> <th>Depth (mm)</th> <th>Diows</th> <th>,</th> <th></th> <th></th> <th>(MPa)</th>	From-To (mm)	Depth (mm)	Diows	,			(MPa)
6-69 69 91 91 10 4.40 62 570 231 69-91 91 109 15 3.60 81 714 286 109-121 121 20 2.40 135 1123 440 109-121 121 20 3.20 94 814 325 121-137 137 25 3.20 94 814 325 137-154 154 30 3.40 87 761 304 154-173 173 35 3.80 75 672 270 154-173 191 191 40 3.60 81 714 286 173-191 191 40 3.60 81 714 286 210-228 228 228 50 3.50 81 714 286 210-228 228 228 50 3.80 75 672 270 244-263 263 60 3.80 75 672 270 244-263 263 60 <th></th> <th></th> <th></th> <th>13.80</th> <th>15</th> <th>159</th> <th></th>				13.80	15	159	
69 - 91 91 10 3.60 81 714 286 91 - 109 109 15 3.60 81 714 286 109 - 121 121 20 2.40 135 1123 440 121 - 137 137 25 3.20 94 814 325 137 - 154 154 30 3.40 87 761 304 137 - 154 154 30 3.80 75 672 270 154 - 173 173 35 3.80 75 672 270 154 - 173 173 35 3.80 75 672 270 154 - 173 173 35 3.80 75 672 270 154 - 173 191 40 3.60 81 714 286 173 - 191 191 40 3.60 81 714 286 210 - 228 228 228 20 360 81 714					62	570	
91-109 109 121 121 20 2.40 135 1123 440 109-121 121 20 3.20 94 814 325 121-137 137 25 3.20 94 814 325 121-137 137 137 25 3.20 94 814 325 137-154 154 30 3.40 87 761 304 154-173 173 35 3.80 75 672 270 154-173 173 35 3.80 75 672 270 191-210 210 45 3.80 75 672 270 191-210 210 45 3.80 75 672 270 191-210 228 228 50 3.60 81 714 286 228-244 244 55 3.20 94 814 325 228-244 244 55 3.20 94 814 325 228-244 244 55 3.80 75 672 270 231 263-285 285 65 4.40 62 570 231 285-307 307 70 4.40 62 570 231 307-331 331 75 4.80 56 518 211 307-331 331 354 354 80 4.60 59 543 22 331-354 354 354 80 4.60 59 543 22 331-354 354 354 80 4.60 59 543 22 377-401 401 90 4.80 56 518 21 377-401 401 90 4.80 56 518 21 377-401 401 90 4.80 56 518 21 4.40 420 420 420 95 3.80 75 672 270 270 2443 443 443 100 4.80 56 518 21 4.40 420 420 420 420 420 420 420 420 420 4						714	
109 - 121 121 25 3.20 94 814 325 121 - 137 137 25 3.20 87 761 304 137 - 154 154 30 3.40 87 761 304 154 - 173 173 35 3.80 75 672 270 154 - 173 173 35 3.80 75 672 270 173 - 191 191 40 3.60 81 714 286 191 - 210 210 45 3.80 75 672 270 210 - 228 228 50 3.60 81 714 286 228 - 244 244 55 3.20 94 814 325 228 - 244 244 55 3.20 94 814 325 224 - 263 263 60 3.80 75 672 270 244 - 263 263 60 3.80 75 672 270 245 - 263 285 285 65 4.40 62 570 231 263 - 285 285 65 4.40 62 570 231 263 - 285 285 65 4.80 56 518 211 307 - 331 331 75 4.80 56 518 211 307 - 331 331 75 4.80 56 518 221 331 - 354 354 80 4.60 59 543 22 331 - 354 354 80 4.60 59 543 22 331 - 354 354 80 4.60 59 543 22 401 - 420 420 95 3.80 75 672 270 401 - 420 420 95 3.80 75 672 270 401 - 420 420 95 3.80 75 672 270 402 - 443 443 100 4.60 59 543 22 403 - 467 467 105 4.80 56 518 21 443 - 467 467 467 105 4.80 56 518 21 443 - 467 467 467 105 4.80 56 518 21 446 - 485 485 110 3.60 81 714 28 446 - 485 485 485 110 3.60 81 714 28 446 - 485 485 485 110 3.60 81 714 28 447 - 485 485 485 485 485 480 56 81 714 28 448 - 467 46	91 - 109					1123	440
121 - 137 137 23 3.40 87 761 304 137 - 154 154 30 3.40 87 761 304 154 - 173 173 35 3.80 75 672 270 173 - 191 191 40 3.60 81 714 286 191 - 210 210 45 3.80 75 672 270 210 - 228 228 50 3.60 81 714 286 228 - 244 244 55 3.20 94 814 325 244 - 263 263 60 3.80 75 672 270 244 - 263 263 60 3.80 75 672 270 245 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 307 - 331 331 75 4.80 56 518 21 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75	109 - 121					814	325
137 - 154 154 30 35 3.80 75 672 270 154 - 173 173 35 3.80 75 672 270 173 - 191 191 40 3.60 81 714 286 191 - 210 210 45 3.80 75 672 270 210 - 228 228 50 3.60 81 714 286 228 - 244 244 55 3.20 94 814 325 244 - 263 263 60 3.80 75 672 270 244 - 263 263 60 3.80 75 672 270 285 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 285 - 307 307 70 4.80 56 518 211 307 - 331 331 75 4.80 56 518 21 331 - 354 354 80 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 4.80	121 - 137	137				761	304
154 - 173 173 35 3.60 81 714 286 173 - 191 191 40 3.60 81 714 286 191 - 210 210 45 3.80 75 672 270 210 - 228 228 50 3.60 81 714 286 210 - 228 228 50 3.60 81 714 286 228 - 244 244 55 3.20 94 814 325 224 - 263 263 60 3.80 75 672 270 244 - 263 263 65 4.40 62 570 231 263 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 331 - 354 354 80 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 <	137 - 154	154				672	270
173 - 191 191 40 3.80 75 672 270 191 - 210 210 45 3.80 75 672 270 210 - 228 228 50 3.60 81 714 286 228 - 244 244 55 3.20 94 814 325 244 - 263 263 60 3.80 75 672 270 245 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 307 - 331 331 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75 672 270 402 - 443 443 100 4.60 59 543 22 403 - 467 467 105 4.80 56 518 21 443 - 467 467 105 4.80 56	154 - 173	173					286
191 - 210 210 45 3.60 81 714 286 210 - 228 228 50 3.60 81 714 286 228 - 244 244 55 3.20 94 814 325 244 - 263 263 60 3.80 75 672 270 244 - 263 263 65 4.40 62 570 231 263 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 307 - 331 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75 672 276 401 - 420 443 443 100 4.60 59	173 - 191	191				672	270
210 - 228 228 50 3.00 94 814 325 228 - 244 244 55 3.20 94 814 325 244 - 263 263 60 3.80 75 672 270 243 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 307 - 331 354 80 4.60 59 543 22 331 - 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75 672 276 402 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 <td>191 - 210</td> <td>210</td> <td></td> <td></td> <td></td> <td></td> <td>286</td>	191 - 210	210					286
228 - 244 244 55 3.20 75 672 270 244 - 263 263 60 3.80 75 672 270 263 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 307 - 331 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 354 - 377 377 85 4.80 56 518 21 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75 672 276 402 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 4467 - 485 485 110 3.60 81 714 28 </td <td>210 - 228</td> <td>228</td> <td></td> <td></td> <td></td> <td></td> <td>325</td>	210 - 228	228					325
244 - 263 263 60 3.80 70 263 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 307 - 331 331 80 4.60 59 543 22 331 - 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75 672 270 402 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 110 3.60 81 714 28	228 - 244	244					270
263 - 285 285 65 4.40 62 570 231 285 - 307 307 70 4.40 62 570 231 307 - 331 331 75 4.80 56 518 211 331 - 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 377 - 401 401 90 3.80 75 672 276 401 - 420 420 95 3.80 75 672 276 420 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 110 3.60 81 714 28		263					231
285 - 307 307 70 4.40 62 518 211 307 - 331 331 75 4.80 56 518 22 331 - 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 377 - 401 401 90 3.80 75 672 276 401 - 420 420 95 3.80 75 672 276 420 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 110 3.60 81 714 28		285					231
307 - 331 331 75 4.60 59 543 22 331 - 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 377 - 401 401 90 3.80 75 672 276 401 - 420 420 95 3.80 75 672 276 420 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 110 3.60 81 714 28	285 - 307	307					211
331 - 354 354 80 4.60 59 543 22 354 - 377 377 85 4.60 59 543 22 377 - 401 401 90 4.80 56 518 21 401 - 420 420 95 3.80 75 672 276 420 - 443 443 100 4.60 59 543 22 443 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 115 3.60 81 714 28	307 - 331	331					221
354 - 377 377 85 4.60 39 377 - 401 401 90 4.80 56 518 21 377 - 401 401 90 4.80 56 518 27 401 - 420 420 95 3.80 75 672 276 420 - 443 443 100 4.60 59 543 22 43 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 115 3.60 81 714 28		354					221
377 - 401 401 90 4.80 36 401 - 420 420 95 3.80 75 672 276 401 - 420 420 95 3.80 75 672 276 420 - 443 443 100 4.60 59 543 22 43 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 115 3.60 81 714 28		377					211
401 - 420 420 95 3.80 73 420 - 443 443 100 4.60 59 543 22 420 - 443 443 105 4.80 56 518 21 443 - 467 467 105 3.60 81 714 28 467 - 485 485 110 3.60 81 714 28 115 3.60 81 714 28		401					270
420 - 443 443 100 4.80 35 443 - 467 467 105 4.80 56 518 21 467 - 485 485 110 3.60 81 714 28 467 - 485 485 115 3.60 81 714 28		420					221
443 - 467 467 105 4.80 36 467 - 485 485 110 3.60 81 714 28 467 - 485 485 115 3.60 81 714 28		443	100				211
467 - 485 485 110 3.60 81 714 28		467	105				286
115 3.00			110				286
	485 - 503	503	115			601	243
502 524 524 120 4.20 60			120				286
524 542 542 125 3,60 61			125				304
524 - 542 542 542 542 542 559 559 130 3.40 87 761 30			130	3.40	87	701	304

			2.40	87	761	304
559 - 576	576	135	3.40	75	672	270
576 - 595	595	140	3.80 3.00	102	875	348
595 - 610	610	145	3,80	75	672	270
610 - 629	629	150	3.60	81	714	286
629 - 647	647	155	2.60	122	1027	405
647 - 660	660	160	2.80	111	945	374
660 - 674	674	165	3.40	87	761	304
674 - 691	691	170		122	1027	405
691 - 704	704	175	2.60	81	714	286
704 - 722	722	180	3.60	206	1630	677
722 - 730	730	185	1.60	500	3558	6161
730 - 731	731	190	0.20	500	3558	6161
731 - 732	732	195	0.20	500	3558	6161
732 - 733	733	200	0.20	500	3558	6161
733 - 734	734	205	0.20	500	3558	6161
734 - 735	735	210	0.20	500	3558	6161
735 - 736	736	215	0.20	500	3558	6161
736 - 737	737	220	0.20	500	3558	6161
737 - 738	738	225	0.20	500	3558	6161
738 - 739	739	230	0.20	500	3558	6161
739 - 740	740	235	0.20	500	3558	6161
740 - 741	741	240	0.20	500	3558	6161
741 - 742	742	245	0.20	500	3558	6161
742 - 743	743	250	0.20	500	3558	6161
743 - 744	744	255	0.20	500	3558	6161
744 - 745	745	260	0.20	500	3558	6161
745 - 746	746	265	0.20	500	3558	6161
746 - 747	747	270	0.20	500	3558	6161
747 - 748	748	275	0.20	500	3558	6161
748 - 749	749	280	0.20		3558	6161
749 - 750	750	285	0.20	500	3558	6161
750 - 751	751	290	0.20	500	3558	6161
751 - 752	752	295	0.20	500	3558	6161
752 - 753	753	300	0.20	500	3558	6161
753 - 754	754	305	0,20	500	3558	6161
754 - 755	755	310	0.20	500	3558	6161
755 - 756	756	315	0.20	500	3558	6161
	757	320	0.20	500	3558	6161
756 - 757	758	325	0.20	500	3558	6161
757 - 758	759	330	0.20	500	3558	6161
758 - 759	760	335	0.20	500	3558	6161
759 - 760	761	340	0.20	500	3558	6161
760 - 761	762	345	0.20	500	3558	6161
761 - 762	763	350	0.20	500		6161
762 - 763	764	355	0.20	500	3558	6161
763 - 764		360	0.20	500	3558	6161
764 - 765	765 766	365	0.20	500	3558	6161
765 - 766		370	0.20	500	3558	6161
766 - 767	767	375	0.20	500	3558	6161
767 - 768	768	380	0.20	500	3558	6161
768 - 769	769	385	0.20	500	3558	6161
769 - 770	770	390	0.20	500	3558	6161
770 - 771	771	395	0.20	500	3558	6161
771 - 772	772	400	0.20	500	3558	6161
772 - 773	773	405	0.20	500	3558	6161
773 - 774	774	410	0.20	500	3558	
774 - 775	775	415	0.20	500	3558	6161
775 <i>-</i> 776	776	420	0.20	500	3558	6161
<i>776 - 777</i>	777	425	0.20	500	3558	6161
<i>777 - 7</i> 78	778	430	0.20	500	3558	6161
778 <i>-</i> 779	779	435	0.20	500	3558	6161
779 - 780	780	440	0.20	500	3558	6161
780 - 781	781	445	0.20	500	3558	6161
781 - 782	782		0.20	500	3558	6161
782 - 783	783	450 455	0.20	500	3558	6161
783 - 784	784	433 460	0.20	500	3558	6161
784 - 785	785	460 465	0.20	500	3558	6161
785 - 786	786	465 470	0.20	500	3558	6161
786 - 787	787		0.20	500	3558	6161
787 - 788	788	475	0.20	500	3558	6161
788 - 789	789	480	0.20	500	3558	6161
789 - 790	790	485	0.20	500	3558	6161
790 - 791	791	490	0.20	500	3558	6161
791 - 792	792	495 500	0.20	500	3558	6161
792 - 793	793	500				
			/cin			

793 - 794 794 - 795 795 - 796 796 - 797 797 - 798 798 - 799 799 - 800	794 795 796 797 798 799 800	505 510 515 520 525 530 535	0.20 0.20 0.20 0.20 0.20 0.20 0.20	500 500 500 500 500 500 500	3558 3558 3558 3558 3558 3558 3558 3558	6161 6161 6161 6161 6161 6161
---	---	---	--	---	--	--

Region: Project date: DURBAN

08 December, 2020

Road number: Print date:

MKUZE RAILWAY SIDING

08 December, 2020

Measurements included in analysis

Measurement Name	Measurement Date Position	Distance (km)	Condition	Rutting	Pumping	Long. Cracl	Croc. Crack	Deform	Other
Truck Staging- D10	06 December 2020 5 - MID	0	Overstressed	No	No	No	No	No	No

Design Structure Number in blows (DSN800):

118

Selected DCP Design Curve:

Heavy traffic

Rut Limit:

Road catagory Base type:

Structural capacity (MISA):

20mm 0.5

Moisture condition of base:

Granular Optimum

(MISA = MIllion Standard Axies, 80 kN)

Depth	W. Ave. Pen. *	Blows	SD	95P	CBR **	UCS ***	1	E-Moduli Range
(mm)	(mm / blow)		(mm / blow)	(mm / blow)	(%)	(kPa)	(MPa)	5P - 95P (MPa)
0 - 150	16.50	10	3.9	23.0	12	130	57	15 - 254
151 - 300	9.91	16	1.6	12.5	22	230	98	29 - 357
-	6.85	23	1.4	9.1	36	348	145	40 - 586
301 - 450			0.7	6.2	52	485	198	61 - 679
451 - 600	5.09	30			51	481	197	65 - 610
601 - 800	1 5.12	39	0.4	5.8	- 21	401	1	

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weighhed average penetration rate

P = Percentile value in %

Depth	W. Ave. Pen. *	Blows	SD	95P (mm / blow)	CBR **	UCS ***	Ave. E-Moduli (MPa)	E-Moduli Range 5P - 95P (MPa)
(mm) 0 - 256 257 - 800	(mm / blow) 14.16 5.79	20 98	(mm / blow) 4.1 1.3	20.9 7.9	14 44	154 419	67 173	17 - 350 47 - 744

^{*} Weighted average penetration rate

P = Percentile value in %

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

Depth (mm)	Ave, E-Moduli (MPa)	E-Moduli Range (MPa) 5P - 9SP	CBR (%)	UCS (kPa)
0 - 150 151 - 300 301 - 450	57 98 145	15 - 254 29 - 357 40 - 586 61 - 679	12 22 36 52	230 348 485
451 - 600 601 - 800	198 197	65 - 610	51	481

E-Moduli (MPa) and Layer Strength Diagram (Redefined Payement Structure)

2 1,200				
Depth (mm) 0 - 256 257 - 800	Ave, E-Moduli	E-Moduli Range (MPa)	CBR	UCS
	(MPa)	5P - 95P	(%)	(kPa)
	67	17 - 350	14	154
	173	47 - 744	44	419

Summary of + and - Areas (Curve fitting table - Existing structure)

Depth (mm)	Cumulative Area (%,mm), A
0 - 448	-1097
449 - 792	1059
Absolute Area	2157

From-To (mm)	Depth (mm)	Blows	DN (mm / blow)	CBR (%)	UCS (kPa)	Ave. E-Moduli (MPa)
0 - 97 97 - 153 153 - 209 209 - 261 261 - 297 297 - 340 340 - 366 366 - 403	97 153 209 261 297 340 366 403	10 15 20 25 30 35 40	19.40 11.20 11.20 10.40 7.20 8.60 5.20 7.40	9 19 19 21 33 27 51	109 201 201 218 329 270 473 319	48 86 86 93 137 114 194

403 - 435 435 - 458 458 - 489 489 - 509 509 - 535 535 - 560 560 - 585 585 - 608 608 - 636 636 - 660 660 - 685 685 - 708 708 - 734 734 - 757	435 458 489 509 535 560 585 608 636 660 685 708 734 757	45 50 55 60 65 70 75 80 85 90 95 100 105 110 115	6.40 4.60 6.20 4.00 5.20 5.00 4.60 5.60 4.80 5.90 4.60 5.20 4.60 5.20	39 59 40 70 51 53 53 59 46 56 53 59 51 59 44	375 543 389 635 473 495 495 543 436 518 495 543 473 543	155 221 161 256 194 202 202 221 179 211 202 221 194 221
757 - 786 786 - 813	786 813	115 120	5.80 5.40	48	454	186

Region: Project date: DURBAN

08 December, 2020

Road number: Print date:

MKUZE RAILWAY SIDING

08 December, 2020

Measurements included in analysis

	Measurement Date Position	Distance (km)	Condition	Rutting	Pumping	Long. Cracl	Crec. Crack	Deform	Other
Measurement Name Truck Staging - D11	Measurement Date Position 06 December 2020 5 - Mil)	0	Overstressed	No	No	No	No	No	No
Truck Staging " Dit		' -							

Design Structure Number in blows (DSN₈₀₀):

122

Selected DCP Design Curve:

Heavy traffic

Rut Limit:

Road catagory Base type:

Structural capacity (MISA):

20mm 0.6

Moisture condition of base:

Granular Optimum

(MISA = Million Standard Axles, 80 kN)

Depth	W. Ave. Pen. *	Biows	SD (mm/blow)	95P (mm / blow)	CBR ** (%)	UCS *** (kPa)	(MPa)	E-Moduli Range 5P - 95P (MPa)
(mm) 0 - 150 151 - 300	17.40 9.91	10 15 30	4.7 1.4 1.9	25.2 12.1 8.9	11 22 45	123 230 424	54 98 175	14 - 266 30 - 337 41 - 1088
301 - 450 451 - 600 601 - 800	5.73 7.18 4.96	24 44	1.9 1.2	10.3 6.9	34 54	330 499	138 204	36 - 669 55 - 911

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

	-	<u> </u>				TICO 444	Avo E Moduli	E-Moduli Range
Depth (mm)	W. Ave. Pen. * (mm / blow)	Blows	SD (mm/blow)	95P (mm / blow)	CBR ** 	UCS *** (kPa)	(MPa)	5P - 95P (MPa)
0 - 328	13.21	28 25	5.1 1.7	21.6 7.7	15 53	167 492	201	48 - 1207 38 - 404
329 - 440 441 - 488	8.10	6	1.0 2.0	9.7 8.1	29 56	288 518	123 211	46 - 1867
489 - 512 513 - 584	4.80 7.79	9	0.2	8.1	30 54	301 502	126 205	46 - 348 53 - 1014
585 - 800	4.93	48	1.3	1.1	J			

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

Depth	Avc. E-Moduli	E-Moduli Range (MPa)	CBR	UCS
	(MPa)	5P - 95P	(%)	(kPa)
(mm) 0 - 150	54	14 - 266 30 - 337	11 22	123 230
151 - 300 301 - 450	98 175	41 - 1088	45	424 330
451 - 600	138	36 - 669	34	499
601 - 800	204	55 - 911	54	

Depth	Ave. E-Moduli	E-Moduli Rauge (MPa)	CBR	UCS
(mm)	(MPa)	5P - 95P	(%)	(kPa)
0 - 328 329 - 440 441 - 488 489 - 512 513 - 584 585 - 800	72 201 121 211 126 205	16 - 554 48 - 1207 38 - 404 46 - 1867 46 - 348 53 - 1014	53 29 56 30 54	492 288 518 301 502

<u>Summary of + and - Areas (Curve fitting table - Existing structure)</u>

Depth	Cumulative Area
(mm)	(%.mm), A
0 - 408	-1619
409 - 560	163
561 - 592	-21
593 - 792	411
Absolute Area	2215

E To (mm)	Depth (mm)	Biows	DN (mm / blow)	CBR (%)	UCS (kPa)	Ave. E-Moduli (Ml'a)
From-To (mm)	per 5 blows					45
		5	20.60	9	102	93
0 - 103	103	10	10,40	21	218	
103 - 155	155	15	10.60	20	214	91
155 - 208	208	20	7.60	31	310	130
208 - 246	246	25 25	10.80	20	209	89
246 - 300	300		8.40	27	277	116
300 - 342	342	30	4.40	62	570	231
342 - 364	364	35	4.60	59	543	221
364 - 387	387	40	4.20	66	601	243
387 - 408	408	45	2,20	151	1238	483
408 - 419	419	50	6.20	40	389	161
419 - 450	450	55	8.60	27	270	114
450 - 493	493	60	3.80	75	672	270
493 - 512	512	65	7.60	31	310	130
512 - 550	550	70	8.00	29	292	123
550 - 590	590	75	2.60	122	1027	405
590 - 603	603	80	2,40	135	1123	440
603 - 615	615	85	5.40	48	454	186
615 - 642	642	90	6.60	37	363	150
642 - 675	675	95	3.00	102	875	348
675 - 690	690	100	4.60	59	543	221
690 - 713	713	105		56	518	211
713 - 737	737	110	4.80	44	419	173
737 - 766	766	115	5.80	62	570	231
766 - 788	788	120	4.40	53	495	202
788 - 813	813	125	5.00	33	.,,,	

08:01 AM, 08 December, 2020

Region: Project date: DURBAN 08 December, 2020 Road number: Print date:

MKUZE RAILWAY SIDING

08 December, 2020

Measurements included in analysis

Measurement Name	Measurement Date Position	Distance (km)	Condition	Rutting	Pumping	Long, Crack	Croc. Crack	Deform	Other
1,101,001	06 December 2020 5 - MID	0	Overstressed	No	No	No	No	No	No

Design Structure Number in blows (DSN₈₀₀):

595

Selected DCP Design Curve:

Heavy traffic

Rut Limit:

20mm

Road catagory Base type:

Granular

Structural capacity (MISA):

154.1

Moisture condition of base:

Optimum

(MISA = Million Standard Axles, 80 kN)

Depth (mm)	W. Ave. Pen. * (mm / blow)	Blows	SD (mm/blow)	95P (mm / blow)	CBR ** (%)	UCS *** (kPa)	Ave. E-Moduli (MPa)	E-Moduli Range 5P - 95P (MPa)
0 - 150	5.89	33	2.5	10.1	43	412	170	36 - 1665
151 - 300	5.03	34	1.7	7.8	53	492	201	48 - 1215
1	4.79	34	1.4	7.0	56	519	212	54 - 1082
301 - 450 451 - 600	5.82	28	1.8	8.8	44	417	172	42 - 973
601 - 800	2.01	466	2.1	5.5	169	1369	532	701

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

Depth (mm)	W. Ave. Pen. * (mm / blow)	Blows	SD (mm/blow)	95P (mm / blow)	CBR ** (%)	UCS *** (kPa) 484	Ave. E-Moduli (MPa)	E-Moduli Range 5P - 95P (MPa) 43 - 1827
0 - 360 361 - 712 713 - 800	5.10 5.04 0,23	85 90 420	2.2 2.0 0.1	8.6 8.3 0.4	52 53 490	490 3498	200 5267	45 - 1570 1007 - 173421

^{*} Weighted average penetration rate

^{**} California Bearing Ratio - calculated from weigthed average penetration rate

^{***} Unconfined Compressive Strength - calculated from weigthed average penetration rate

P = Percentile value in %

Depth	Ave. E-Moduli	E-Moduli Range (MPa)	CBR	UCS
	(MPa)	5P - 95P	(%)	(kPa)
(mm) 0 - 150 151 - 300 301 - 450 451 - 600	170 201 212 172	36 - 1665 48 - 1215 54 - 1082 42 - 973 701	43 53 56 44 169	412 492 519 417 1369

Depth (mm) 0 - 360 361 - 712	Ave. E-Moduli	E-Moduli Rauge (MPa)	CBR	UCS
	(MPa)	5P - 95P	(%)	(kPa)
	198	43 - 1827	52	484
	200	45 - 1570	53	490
	5267	1007 - 173421	490	3498
713 - 800	5267	1007 - 175421		

Summary of + and - Areas (Curve fitting table - Existing structure)

Depth (mm)	Cumulative Area (%.mm), A
0 - 568	2144
569 - 760	-1453
761 - 792	65
Absolute Area	3661

		Tal.	DN (mm / blow)	CBR (%)	UCS (kPa)	Ave. E-Moduli
From-To (mm)	Depth (mm)	Blows	Dit (mint / bion)	(/s)	`	(MPa)
	per 5 blows		7.60	31	310	130
0 - 38	38	5	8.60	27	270	114
38 - 81	81	10	3,00	102	875	348
81 - 96	96	15	2.40	135	1123	440
96 - 108	108	20	4.40	62	570	231
108 - 130	130	25	1.80	185	1485	598
130 - 139	139	30		87	761	304
139 - 156	156	35	3.40	75	672	270
156 - 175	175	40	3.80	122	1027	405
175 - 188	188	45	2.60	75	672	270
188 - 207	207	50	3.80	75 75	672	270
207 - 226	226	55	3.80	7 <i>3</i> 37	363	150
226 - 259	259	60	6.60	35	340	141
259 - 294	294	65	7.00	87	761	304
294 - 311	311	70	3.40	111	945	374
311 - 325	325	75	2.80	87	761	304
325 - 342	342	80	3,40	81	714	286
342 - 360	360	85	3.60	56	518	211
360 - 384	384	90	4.80	44	419	173
384 - 413	413	95	5.80	37	363	150
413 - 446	446	100	6.60	62	570	231
446 - 468	468	105	4.40		454	186
468 - 495	495	110	5.40	48	761	304
495 - 512	512	115	3.40	87	419	173
512 - 541	541	120	5.80	44	543	221
541 - 564	564	125	4.60	59	263	111
564 - 608	608	130	8.80	26	672	270
608 - 627	627	135	3.80	75	0/2	2410

	Z41	140	2.80	111	945	374
627 - 641	641	145	3.80	75	672	270
641 - 660	660 680	150	4.00	70	635	256
660 - 680	691	155	2.20	151	1238	483 781
680 - 691 691 - 698	698	160	1.40	232	1810	919
698 - 704	704	165	1.20	263	2024	1414
704 - 708	708	170	0.80	342	2547 2547	1414
708 - 712	712	175	0.80	342	2547	1414
712 - 716	716	180	0.80	342	3192	2952
716 - 718	718	185	0.40	442	3558	6161
718 - 719	719	190	0.20	500	3558	6161
719 - 720	720	195	0.20	500 500	3558	6161
720 - 721	721	200	0.20	500	3558	6161
721 - 722	722	205	0.20	500	3558	6161
722 - 723	723	210	0.20	500	3558	6161
723 - 724	724	215	0.20	500	3558	6161
724 - 725	725	220	0.20	500	3558	6161
725 - 726	726	225	0.20 0.20	500	3558	6161
726 - 727	727	230	0.20	500	3558	6161
727 - 728	728	235		500	3558	6161
728 - 729	729	240	0.20 0.20	500	3558	6161
729 - 730	730	245	0.20	500	3558	6161
730 - 731	731	250	0.20	500	3558	6161
731 - 732	732	255	0.20	500	3558	6161
732 - 733	733	260	0.20	500	3558	6161
733 - 734	734	265	0.20	500	3558	6161
734 - 735	735	270 275	0.20	500	3558	6161
735 - 736	736	275	0.20	500	3558	6161
736 - 737	737	280	0.20	500	3558	6161
737 - 738	738	285 290	0.20	500	3558	6161
738 - 739	739	290	0.20	500	3558	6161
739 - 740	740	300	0.20	500	3558	6161
740 - 741	741	305	0.20	500	3558	6161
741 - 742	742	310	0.20	500	3558	6161
742 - 743	743	315	0.20	500	3558	6161
743 - 744	744 745	320	0.20	500	3558	6161
744 - 745		325	0.20	500	3558	6161
745 - 746	746	330	0.20	500	3558	6161
746 - 747	747 748	335	0.20	500	3558	6161 6161
747 - 748	749	340	0.20	500	3558	6161
748 - 749 749 - 750	750	345	0.20	500	3558	6161
	751	350	0.20	500	3558	6161
750 - 751 751 - 752	752	355	0.20	500	3558 3558	6161
752 - 753	753	360	0.20	500		6161
753 - 754	754	365	0.20	500	3558	6161
754 - 755	755	370	0.20	500	3558 3558	6161
755 - 756	756	375	0.20	500	3558	6161
756 - 757	757	380	0.20	500	3558	6161
757 - 758	758	385	0.20	500 500	3558	6161
758 - 759	759	390	0.20	500	3558	6161
759 - 760	760	395	0.20	500	3558	6161
760 - 761	761	400	0.20 0.20	500	3558	6161
761 - 762	762	405	0.20	500	3558	6161
762 - 763	763	410	0.20	500	3558	6161
763 - 764	764	415	0.20	500	3558	6161
764 - 765	765	420	0.20	500	3558	6161
765 - 766	766	425	0.20	500	3558	6161
766 - 767	7 67	430	0.20	500	3558	6161
767 - 768	768	435 440	0.20	500	3558	6161
768 - 769	769	445	0.20	500	3558	6161
769 - 770	770	450	0.20	500	3558	6161
770 - 771	771	455	0.20	500	3558	6161
771 - 772	772	460	0.20	500	3558	6161
772 - 773	773	465	0.20	500	3558	6161
773 - 774	774 775	470	0.20	500	3558	6161
774 - 775	775 776	475	0.20	500	3558	6161 6161
775 - 776	776 777	480	0.20	500	3558	6161
776 - 777	777 778	485	0.20	500	3558	6161
777 - 778	778 779	490	0.20	500	3558	6161
778 - 779	779 780	495	0.20	500	3558 3558	6161
779 - 780 780 - 781	780 781	500	0.20	500	3558	6161
780 - 781 781 - 782	782	505	0.20	500	3330	0.0.
101-104	, 02					

