In this short note will be described the modifications needed in hoppet package in order to evolve (leading order only, for now) chiral—odd Fragmentation Functions. I started from hoppet-1.1.2.

1 File dglap_choices.f90

Just a declaration added:
integer, parameter, public :: factscheme_FragCOddMSbar = 5

2 File dglap_holders.f90

In function InitDglapHolder added a case (factscheme_FragCOddMSbar) statement. Inside, the subroutine (InitSplitMatFragCOddLO) needed to initialize the splitting matrix for the chiral—odd evolution is called.

3 File dglap_objects.f90

Here is where the subroutine InitSplitMatFragCOddLO is defined. I just copied InitSplitMatLO and replaced sf_Pgg... functions with the new ones, codd_Pgg, etcetera.

4 File splitting_functions.f90

Four new functions are defined: codd_Pgg, codd_Pqq, codd_Pgq and codd_Pqg. codd_Pqq is the only one returning a non-zero value.

5 Check

The program has been tested against the "Kumano" program. I took a fake u-distribution (x(1-x)) and evolved it, in both programs, from $Q_0 = 70$ GeV to Q = 100 GeV, with LO evolution. A special care has been devoted to match α_s , since "Kumano" evolution equation is based on an explicit value for $\Lambda_{\rm QCD}$. We checked that setting $\Lambda_{\rm QCD} = 0.2$ GeV, we obtain, to one loop,

 $\alpha_s(M_Z)=0.133861$ (with $M_Z=91.187$ GeV), and so we put this values in the initializing section of the "Hoppet" program.

The results coincide with a precision better than 10^{-6} .