APPENDIX A PSEUDO-LIPSCHITZ FUNCTION

Definition 1. For a k > 1, a function $f: \mathbb{R}^{n \times 1} \to \mathbb{R}$ is said pseudo-Lipschitz of order k if there exists a constant L > 0 such that $|f(\mathbf{x}) - f(\mathbf{y})| \le L(1 + ||\mathbf{x}||^{k-1} + ||\mathbf{y}||^{k-1})||\mathbf{x} - \mathbf{y}||$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n \times 1}$; the first order derivative of f is bounded by a polynomial of order (k-1), i.e., polynomial smoothness.

APPENDIX B PROOF OF PROPOSITION 1

This follows from $\sum_{m=1}^n \mathbb{E}\big[X_{n,m}^2;|X_{n,m}|>\epsilon\big] \leq \sum_{m=1}^n \mathbb{E}\Big[\frac{X_{n,m}^{2+2\alpha}}{\epsilon^{2\alpha}}\Big]$, where the right-hand side converges to zero because $\frac{n}{\epsilon^{2\alpha}}o(n^{-1})\to 0$ as $n\to\infty$.

APPENDIX C PROOF OF PROPOSITION 3

Recalling the following subspace decomposition $\mathbf{A} = \mathbf{P}_{\mathbf{M}}^{\perp} \mathbf{A} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{A} \mathbf{P}_{\mathbf{Q}} + \mathbf{P}_{\mathbf{M}} \mathbf{A} - \mathbf{P}_{\mathbf{M}} \mathbf{A} \mathbf{P}_{\mathbf{Q}},$ the orthogonal projection of \mathbf{A} onto $\mathcal{P}_{\mathbf{X},\mathbf{Y}}$ is given by $\mathbf{A}|_{\mathcal{P}_{\mathbf{X},\mathbf{Y}}} = \mathbf{P}_{\mathbf{M}}^{\perp} \mathbf{A} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{B}.$ For any integrable function ψ , $\mathbb{E}\left[\psi(\mathbf{A}|_{\mathcal{P}_{\mathbf{X},\mathbf{Y}}})\right] = \mathbb{E}\left[\psi(\mathbf{P}_{\mathbf{M}}^{\perp} \mathbf{A} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{B})\right] = \mathbb{E}\left[\psi(\mathbf{P}_{\mathbf{M}}^{\perp} \mathbf{A} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{B})\right] = \mathbb{E}\left[\psi(\mathbf{P}_{\mathbf{M}}^{\perp} \mathbf{A} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{B})\right] = \mathbb{E}\left[\psi(\mathbf{P}_{\mathbf{M}}^{\perp} \mathbf{A} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{B})\right]$, where the second equality follows from the fact that $\mathbf{A} \stackrel{d}{=} \widetilde{\mathbf{A}}$. Hence, $\mathbf{A}|_{\mathcal{P}_{\mathbf{X},\mathbf{Y}}} \stackrel{d}{=} \mathbf{P}_{\mathbf{M}}^{\perp} \widetilde{\mathbf{A}} \mathbf{P}_{\mathbf{Q}}^{\perp} + \mathbf{B}$, which completes the proof.

APPENDIX D PROOF OF PROPOSITION 4

Denoting $B=\sqrt{n}A(n)\sim \mu$ yields $\mathbb{E}\big[A^{2+2\alpha}(n)\big]=\mathbb{E}\big[B^{2(1+\alpha)}\big]n^{-(1+\alpha)}=o(n^{-2}),$ where the last step uses the facts that $\mathbb{E}\big[B^{2(1+\alpha)}\big]$ is independent of n and $\alpha>1$.

APPENDIX E PROOF OF PROPOSITION 5

Denoting $X_{N,ij}=A_{ij}(N)v_j(N)$, then $\{X_{N,ij}\colon 1\leq j\leq N\}$ is an independent zero-mean triangular array, for $i=1,2,\ldots,n$. We claim that $\{X_{N,ij}\colon 1\leq j\leq N\}$ satisfies two conditions in Proposition 2, $\forall i$. First, we note that $\sum_{j=1}^N \mathbb{E}[X_{N,ij}^2] = \sum_{j=1}^N \mathbb{E}[A_{ij}^2(N)]v_j^2(N) = \frac{1}{n}\sum_{j=1}^N v_j^2(N) = \frac{1}{\rho}\langle \mathbf{v}^2(N)\rangle \to \frac{s_0^2}{\rho}$ as $n\to\infty$. Second, applying Proposition 4 to $A_{ij}(N)$ gives $\mathbb{E}[A_{ij}^{2+2\alpha}(N)] = o(n^{-2})$, leading to $\mathbb{E}[X_{N,ij}^{2+2\alpha}] = \mathbb{E}[A_{ij}^{2+2\alpha}(N)]|v_j(N)|^{2+2\alpha} \leq o(n^{-2})\frac{n}{\rho}\frac{1}{N}\|\mathbf{v}(N)\|_{2+2\alpha}^{2+2\alpha} = o(n^{-1})$, where the last equality holds because $\limsup_{N\to\infty}\frac{1}{N}\|\mathbf{v}(N)\|_{2+2\alpha}^{2+2\alpha} < \infty$ and ρ is a constant. Applying Proposition 2 to $\{X_{N,ij}\colon 1\leq j\leq N\}$ leads to $[\mathbf{A}(N)\mathbf{v}(N)]_i = \sum_{j=1}^N X_{N,ij} \overset{\mathrm{d}}{\to} \mathcal{N}\left(0,\frac{s_0^2}{\rho}\right)$ as $N\to\infty$, $\forall i$. Hence, $\mathbf{A}(\widehat{N})\mathbf{v}(N) \overset{\mathrm{d}}{\to} \mathcal{N}\left(0,\frac{s_0^2}{\rho}\right)$ as $N\to\infty$.

APPENDIX F WELL-KNOWN LEMMAS

Lemma 2. (Stein's Lemma [38]) For jointly zero-mean Gaussian random variables Z_1 and Z_2 , and any function $\phi: \mathbb{R} \to \mathbb{R}$, where $\mathbb{E}[\phi'(Z_2)]$ and $\mathbb{E}[Z_1\phi(Z_2)]$ exist, the following holds $\mathbb{E}[Z_1\phi(Z_2)] = \operatorname{Cov}(Z_1, Z_2)\mathbb{E}[\phi'(Z_2)]$, where $\operatorname{Cov}(Z_1, Z_2)$ is the covariance between Z_1 and Z_2 .

Lemma 3. (Strong Law of Large Number [39]) Let $\{X_{n,m}: 1 \leq m \leq n\}$ be a triangular array of random variables with $(X_{n,1},X_{n,2},\ldots,X_{n,n})$ mutually independent with zero-mean for each n and $\frac{1}{n}\sum_{m=1}^n \mathbb{E}[|X_{n,m}|^{2+\kappa}] \leq cn^{\kappa/2}$ for some $0 < \kappa < 1$ and $c < \infty$. Then $\lim_{n \to \infty} \frac{1}{n}\sum_{m=1}^n X_{n,m} \stackrel{a.s.}{=} 0$.

Lemma 4. (Holder's inequality [40]) For random variables X and Y, $\mathbb{E}[|X+Y|^r] \leq c_r(\mathbb{E}[|X|^r] + \mathbb{E}[|Y|^r])$, where $c_r = 1$ if $0 < r \leq 1$ and $c_r = 2^{r-1}$ otherwise. In particular, the inequality becomes $\mathbb{E}[|X+y|^r] \leq c_r(\mathbb{E}[|X|^r] + |y|^r])$ when Y = y being a constant.

Lemma 5. (Lyapunov's inequality [40]) Suppose a random variable X and a constant κ with $0 < \kappa < 1$, then $|\mathbb{E}[X]|^{2+\kappa} \leq \mathbb{E}[|X|^{2+\kappa}]$.

Proposition 7. Suppose the $\mathbf{P}_{\mathbf{M}(n)} = \left(\frac{1}{\sqrt{n}}\mathbf{V}(n)\right)\left(\frac{1}{\sqrt{n}}\mathbf{V}(n)\right)^*$, where $\mathbf{M}(n) \in \mathbb{R}^{n \times t}$ $(t \leq n)$, t is a fixed constant, and $\mathbf{V}(n) = [\mathbf{v}_1(n), \mathbf{v}_2(n), \dots, \mathbf{v}_t(n)] \in \mathbb{R}^{n \times t}$ is an orthogonal basis of $\mathbf{M}(n)$ such that $\mathbf{V}^*(n)\mathbf{V}(n) = n\mathbf{I}$. If we let $\mathbf{a}(n) \in \mathbb{R}^{n \times 1}$ be a random vector with independent entries, which have zero mean and finite variance σ_a^2 , then $\lim_{n \to \infty} \mathbf{P}_{\mathbf{M}}(n)\mathbf{a}(n) \stackrel{a.s.}{=} \mathbf{0}_n$, where $\mathbf{0}_n$ is the $n \times 1$ all-zero vector.

Proof. Denoting $\widetilde{\mathbf{a}}(n) = \frac{\mathbf{a}(n)}{\|\mathbf{a}(n)\|_2}$ yields $\mathbf{P}_{\mathbf{M}(n)}\mathbf{a}(n) = \mathbf{V}(n)\frac{\|\mathbf{a}(n)\|_2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}\mathbf{V}^*(n)\right)\widetilde{\mathbf{a}}(n)$. The proposition follows from the fact that $\frac{\|\mathbf{a}(n)\|_2}{\sqrt{n}}\stackrel{a.s.}{=} \sigma_a$ and $\left(\frac{1}{\sqrt{n}}\mathbf{V}^*(n)\right)\widetilde{\mathbf{a}}(n)\stackrel{a.s.}{=} \mathbf{0}_n$ as $n \to \infty$.

APPENDIX G PROOF OF SE IN (7) THEOREM 1

Substituting $\phi_b(\mathbf{u}_i^t) = (b_i^t)^2$ into (16) gives $\lim_{n \to \infty} \langle \mathbf{b}^t, \mathbf{b}^t \rangle \stackrel{a.s}{=} \mathbb{E} \left[\sigma_t^2 \widetilde{Z}_t^2 \right] = \sigma_t^2$. Using (14) with $t_1 = t_2 = t$ yields $\lim_{N \to \infty} \frac{1}{\rho} \langle \mathbf{q}^t, \mathbf{q}^t \rangle = \sigma_t^2$. Then substituting $\phi_h(\mathbf{v}_i^{t-1}) = f_t^2(h_i^t, x_{0i}) = (q_i^t)^2$ into (17) leads to $\lim_{N \to \infty} \langle \mathbf{q}^t, \mathbf{q}^t \rangle \stackrel{a.s}{=} \mathbb{E} \left[f_t^2(\tau_{t-1} Z_{t-1}, X_0) \right]$, resulting in $\sigma_t^2 = \frac{1}{\rho} \mathbb{E} \left[f_t^2(\tau_{t-1} Z_{t-1}, X_0) \right]$. Showing the rest half $\tau_t^2 = \mathbb{E} \left[g_t^2(\sigma_t Z, W) \right]$ of the SE in (7) follows from the exactly same procedure as the above. Setting $\phi_h(\mathbf{v}_i^t) = (h_i^{t+1})^2$ in (17) gives $\lim_{N \to \infty} \langle \mathbf{h}^{t+1}, \mathbf{h}^{t+1} \rangle = \tau_t^2$. Using (15) with $t_1 = t_2 = t$ yields $\lim_{N \to \infty} \langle \mathbf{m}^t, \mathbf{m}^t \rangle = \tau_t^2$. Applying (16) to $\phi_b(\mathbf{u}_i^t) = g_t^2(b_i^t, w_i)$ yields $\lim_{N \to \infty} \langle \mathbf{m}^t, \mathbf{m}^t \rangle = \mathbb{E} \left[g_t^2(\sigma_t Z, W) \right]$. Therefore, $\tau_t^2 = \mathbb{E} \left[g_t^2(\sigma_t Z, W) \right]$, concluding the proof.

APPENDIX H PROOF OF THEOREM 1: STEPS 3 AND 4

A. Step 3: We show a), b), c), and d) of Theorem 1 conditioning on $\mathcal{F}_{t,t} = \{\mathbf{b}^0, \dots, \mathbf{b}^{t-1}, \mathbf{m}^0, \dots, \mathbf{m}^{t-1}, \mathbf{h}^1, \dots, \mathbf{h}^t, \mathbf{q}^0, \dots, \mathbf{q}^t, \mathbf{x}_0, \mathbf{w}\}.$

a) Note that conditioning on $\mathcal{F}_{t,t}$ is equivalent to conditioning on $\mathcal{P}_{\mathbf{X}_t,\mathbf{Y}_t} = \{\mathbf{A}|\mathbf{A}^*\mathbf{M}_t = \mathbf{X}_t, \mathbf{A}\mathbf{Q}_t = \mathbf{Y}_t\}$. Applying Proposition 3 to obtain the conditional distribution $\mathbf{A}|_{\mathcal{F}_{t,t}}$

and following the same procedure as in [26, Lemma 1a], the conditional distribution of \mathbf{b}^t on $\mathcal{F}_{t,t}$ is expressed as

$$\mathbf{b}^{t}|_{\mathcal{F}_{t,t}} \stackrel{d}{=} \sum_{i=0}^{t-1} \beta_{j} \mathbf{b}^{j} + \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t} - \mathbf{P}_{\mathbf{M}_{t}} \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t} + \mathbf{M}_{t} \overrightarrow{\mathbf{o}}_{t}^{t} (1). \quad (29)$$

By Proposition 7 in Appendix F, the third term on the right-hand side of (29) converges to $\lim_{n\to\infty}\mathbf{P}_{\mathbf{M}_t}\mathbf{\widetilde{A}}\mathbf{q}_\perp^t\stackrel{a.s.}{=}\mathbf{0}_n$. Similar to part a) of Step 2, we verify the convergence $\lim_{n\to\infty}\mathbf{M}_t\overrightarrow{\mathbf{o}}_t(1)\stackrel{a.s.}{=}\mathbf{0}_n$ by characterizing the expectation and variance of its empirical distribution $\mathbf{M}_t\overrightarrow{\mathbf{o}}_t(1)$ as $n\to\infty$. Indeed, $\lim_{n\to\infty}|\langle\mathbf{M}_t\overrightarrow{\mathbf{o}}_t(1)\rangle|\leq \lim_{n\to\infty}|o(1)|\frac{1}{n}\sum_{i=1}^n\left|\sum_{j=0}^{t-1}m_i^j\right|\leq \lim_{n\to\infty}|o(1)|\sum_{j=0}^{t-1}\frac{1}{n}\sum_{i=1}^n|m_i^j|\stackrel{a.s.}{=}0$, where the last equality holds because applying $\phi_b(b_i^j,w_i)=g_j(b_i^j,w_i)$ to the induction hypothesis of (16), for j< t, leads to $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n|m_i^j|\stackrel{a.s.}{=}\mathbb{E}[|g_j(\sigma_j\widetilde{Z}_j,W)|]<\infty$. Hence, $\lim_{n\to\infty}\langle\mathbf{M}_t\overrightarrow{\mathbf{o}}_t(1)\rangle\stackrel{a.s.}{=}0$. For the variance of $\mathbf{M}_t\overrightarrow{\mathbf{o}}_t(1)$, we get

$$\lim_{n \to \infty} \langle \mathbf{M}_t \overrightarrow{\mathbf{o}}_t(1) \rangle_2 = \lim_{n \to \infty} \frac{1}{n} [o(1)]^2 \sum_{i=1}^n \left(\sum_{j=0}^{t-1} m_i^j \right)^2,$$

$$\leq \lim_{n \to \infty} [o(1)]^2 t \frac{1}{n} \sum_{i=1}^n \sum_{j=0}^{t-1} (m_i^j)^2, \quad (30a)$$

$$= \lim_{n \to \infty} [o(1)]^2 t \sum_{j=0}^{t-1} \langle \mathbf{m}^j, \mathbf{m}^j \rangle \stackrel{a.s.}{=} 0, (30b)$$

where (30a) follows from the Cauchy-Schwarz inequality and (30b) holds because $\lim_{n\to\infty} \langle \mathbf{m}^j, \mathbf{m}^j \rangle \stackrel{a.s.}{=} \mathbb{E}[g_j^2(\sigma_j \widetilde{Z}_j, W)] < \infty$, $\forall j$, which is a direct consequence of the induction hypothesis of (16) with $\phi_b(b_i^j, w_i) = g_j^2(b_i^j, w_i)$. Hence, (30b) is equivalent to $\lim_{n\to\infty} \langle \mathbf{M}_t \overrightarrow{\mathbf{o}}_t(1) \rangle_2 \stackrel{a.s.}{=} 0$. Therefore, $\lim_{n\to\infty} \mathbf{M}_t \overrightarrow{\mathbf{o}}_t(1) \stackrel{a.s.}{=} \mathbf{0}_n$, implying

$$\mathbf{b}^{t}|_{\mathcal{F}_{t,t}} \stackrel{d}{\Longrightarrow} \sum_{j=0}^{t-1} \beta_{j} \mathbf{b}^{j} + \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t}. \tag{31}$$

b) Note that by the induction hypothesis of (17) for $\phi_h(h_t^t, x_{0i}) = f_t^{1+\alpha}(h_i^t, x_{0i})$, we get $\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N |q_i^t|^{2+2\alpha} \stackrel{a.s.}{=} \mathbb{E}[f_t^{2+2\alpha}(\tau_{t-1}Z_{t-1}, X_0)] < \infty$. On the other hand, $\sum_{i=1}^N |q_{\perp i}^t|^{2+2\alpha} < \sum_{i=1}^N |q_i^t|^{2+2\alpha}$. Thus, we have $\limsup_{N \to \infty} \frac{1}{N} \sum_{i=1}^N |q_{\perp i}^t|^{2+2\alpha} < \infty$, which concludes (12).

c) For $t_1 < t$ and $t_2 = t$, we obtain

$$\lim_{n \to \infty} \langle \mathbf{b}^{t_1}, \mathbf{b}^{t} \rangle \stackrel{d}{=} \lim_{n \to \infty} \sum_{j=0}^{t-1} \beta_j \langle \mathbf{b}^{t_1}, \mathbf{b}^{j} \rangle + \lim_{n \to \infty} \langle \mathbf{b}^{t_1}, \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t} \rangle, (32a)$$

$$\stackrel{a.s.}{=} \sum_{j=0}^{t-1} \beta_j \lim_{N \to \infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}^{j} \rangle}{\rho} + \lim_{n \to \infty} \frac{\mathbf{b}^{t_1^*} \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t}}{n}, (32b)$$

where (32a) follows from (31) and (32b) results from the induction hypothesis (14) for $t_1 < t$ and $t_2 = j < t$. Now,

using Proposition 6, we get $\frac{\mathbf{b}^{t_1^*}}{\|\mathbf{b}^{t_1}\|_2}\widetilde{\mathbf{A}}\frac{\mathbf{q}_{\perp}^t}{\|\mathbf{q}_{\perp}^t\|_2}\overset{d}{=}\frac{Z}{\sqrt{n}}, \text{ where } Z\sim\mathcal{N}(0,1). \text{ Hence, } \frac{\mathbf{b}^{t_1^*}\widetilde{\mathbf{A}}\mathbf{q}_{\perp}^t}{n}\overset{d}{=}\frac{\|\mathbf{b}^{t_1}\|_2}{\sqrt{n}}\frac{\|\mathbf{q}_{\perp}^t\|_2}{\sqrt{N}}\frac{1}{\sqrt{\rho}}\frac{Z}{\sqrt{n}}, \text{ i.e.,}$

$$\frac{\mathbf{b}^{t_1^*} \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^t}{n} \stackrel{d}{=} \frac{1}{\sqrt{\rho}} \sqrt{\langle \mathbf{b}^{t_1}, \mathbf{b}^{t_1} \rangle \langle \mathbf{q}_{\perp}^t, \mathbf{q}_{\perp}^t \rangle} \frac{Z}{\sqrt{n}}.$$
 (33)

By the induction hypothesis of (14), we have $\lim_{n \to \infty} \langle \mathbf{b}^{t_1}, \mathbf{b}^{t_1} \rangle = \lim_{n \to \infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}^{t_1} \rangle}{\rho} < \infty$. Moreover, the $\langle \mathbf{q}^t_{\perp}, \mathbf{q}^t_{\perp} \rangle$ converges to $\lim_{N \to \infty} \langle \mathbf{q}^t_{\perp}, \mathbf{q}^t_{\perp} \rangle < \lim_{N \to \infty} \langle \mathbf{q}^t, \mathbf{q}^t \rangle < \infty$ because using the induction hypothesis (17) we have $\langle \mathbf{q}^t, \mathbf{q}^t \rangle = \frac{1}{N} \sum_{i=1}^N f_t^2(h_i^t, x_{0i}) \stackrel{a.s.}{=} \mathbb{E}[f_t^2(\tau_{t-1}Z_{t-1}, X_0)] < \infty$. Thus, for $t_1 < t$,

$$\lim_{n \to \infty} \langle \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^t, \mathbf{b}^{t_1} \rangle \stackrel{a.s.}{=} 0.$$
 (34)

Substituting (34) into (32b) gives $\lim_{n\to\infty} \langle \mathbf{b}^{t_1}, \mathbf{b}^t \rangle \stackrel{a.s.}{=} \sum_{j=0}^{t-1} \beta_j \lim_{n\to\infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}^j \rangle}{\rho} = \lim_{N\to\infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}^j_{||} \rangle}{\rho}$ due to (8), implying

$$\lim_{n \to \infty} \langle \mathbf{b}^{t_1}, \mathbf{b}^{t} \rangle \stackrel{a.s.}{=} \lim_{N \to \infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}_{||}^t \rangle}{\rho} + \lim_{N \to \infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}_{\perp}^t \rangle}{\rho}, (35a)$$

$$= \lim_{N \to \infty} \frac{\langle \mathbf{q}^{t_1}, \mathbf{q}^t \rangle}{\rho}, \qquad (35b)$$

where (35a) follows from the fact that \mathbf{q}^j is orthogonal to \mathbf{q}_{\perp}^t , for j < t, and (35b) holds due to (9), concluding (14) when $t_1 < t$ and $t_2 = t$.

For the case of $t_1=t_2=t$, it is similarly given by $\lim_{n\to\infty}\langle \mathbf{b}^t,\mathbf{b}^t\rangle \stackrel{d}{=} \sum_{i,j=0}^{t-1}\beta_i\beta_j\lim_{n\to\infty}\langle \mathbf{b}^i,\mathbf{b}^j\rangle + 2\sum_{i=0}^{t-1}\beta_i\lim_{n\to\infty}\langle \mathbf{b}^i,\widetilde{\mathbf{A}}\mathbf{q}_\perp^t\rangle + \lim_{n\to\infty}\langle \widetilde{\mathbf{A}}\mathbf{q}_\perp^t,\widetilde{\mathbf{A}}\mathbf{q}_\perp^t\rangle$ due to (31). Then, by (34), the following holds

$$\lim_{n \to \infty} \langle \mathbf{b}^t, \mathbf{b}^t \rangle \stackrel{a.s.}{=} \sum_{i,j=0}^{t-1} \beta_i \beta_j \lim_{n \to \infty} \langle \mathbf{b}^i, \mathbf{b}^j \rangle + \lim_{n \to \infty} \langle \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^t, \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^t \rangle.$$
(36)

Using Proposition 5, $\widehat{\widetilde{\mathbf{A}}} \mathbf{q}_{\perp}^t \stackrel{d}{\Rightarrow} \mathcal{N}\left(0, \lim_{N \to \infty} \frac{\langle \mathbf{q}_{\perp}^t, \mathbf{q}_{\perp}^t \rangle}{\rho}\right)$. Thus, the second moment of $\widehat{\widetilde{\mathbf{A}}} \mathbf{q}_{\perp}^t$ is

$$\lim_{n \to \infty} \langle \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t}, \widetilde{\mathbf{A}} \mathbf{q}_{\perp}^{t} \rangle \stackrel{a.s.}{=} \lim_{N \to \infty} \frac{\langle \mathbf{q}_{\perp}^{t}, \mathbf{q}_{\perp}^{t} \rangle}{\rho}.$$
 (37)

Now, incorporating (37) in (36), $\lim_{\substack{n \to \infty \\ i,j=0}} \langle \mathbf{b}^t, \mathbf{b}^t \rangle \stackrel{a.s.}{=} \sum_{\substack{t=1\\ i,j=0}}^{t-1} \beta_i \beta_j \lim_{\substack{n \to \infty \\ \rho}} \langle \mathbf{b}^i, \mathbf{b}^j \rangle + \lim_{\substack{N \to \infty \\ \rho}} \langle \frac{\mathbf{q}_{\perp}^t, \mathbf{q}_{\perp}^t}{\rho} \rangle$, resulting in

$$\lim_{n \to \infty} \langle \mathbf{b}^{t}, \mathbf{b}^{t} \rangle \stackrel{a.s.}{=} \sum_{i,j=0}^{t-1} \beta_{i} \beta_{j} \lim_{N \to \infty} \frac{\langle \mathbf{q}^{i}, \mathbf{q}^{j} \rangle}{\rho} + \lim_{N \to \infty} \frac{\langle \mathbf{q}_{\perp}^{t}, \mathbf{q}_{\perp}^{t} \rangle}{\rho}, (38a)$$

$$\stackrel{a.s.}{=} \lim_{N \to \infty} \frac{\langle \mathbf{q}_{\parallel}^{t}, \mathbf{q}_{\parallel}^{t} \rangle}{\rho} + \lim_{N \to \infty} \frac{\langle \mathbf{q}_{\perp}^{t}, \mathbf{q}_{\perp}^{t} \rangle}{\rho},$$

$$\stackrel{a.s.}{=} \lim_{N \to \infty} \frac{\langle \mathbf{q}^{t}, \mathbf{q}^{t} \rangle}{\rho},$$

where (38a) is due to the induction hypothesis (14) for $0 \le t_1 = i, t_2 = j \le t - 1$. This completes the proof of (14) at the tth iteration.

d) Defining $\lim_{N\to\infty}\frac{\langle \mathbf{q}_{\perp}^t,\mathbf{q}_{\perp}^t\rangle}{\rho}\stackrel{a.s.}{=}\gamma_t^2$, we can write by (37) that $\widehat{\widetilde{\mathbf{A}}}\mathbf{q}_{\perp}^t\stackrel{d}{\Longrightarrow}\mathcal{N}(0,\gamma_t^2)$. Using (31) in conjunction with the latter, we get

$$b_i^t|_{\mathcal{F}_{t,t}} \stackrel{d}{\Longrightarrow} \sum_{i=0}^{t-1} \beta_j b_i^j + \gamma_t Z$$
, for $i = 1, 2, \dots, n$, (39)

where $Z \sim \mathcal{N}(0,1)$. Similar to Step 1d), using (39) $\mathbf{u}_i^t \stackrel{d}{\Rightarrow} \widetilde{\mathbf{u}}_i^t$, where $\mathbf{u}_i^t = (b_i^0 \dots, b_i^t, w_i)$ and $\widetilde{\mathbf{u}}_i^t = (b_i^0, \dots, b_i^{t-1}, \sum_{j=0}^{t-1} \beta_j b_i^j + \gamma_t Z, w_i)$, $\forall i$. To prove (16), we first claim that $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \phi_b(\widetilde{\mathbf{u}}_i^t) - \mathbb{E} \Big[\phi_b(\sigma_0 \widetilde{Z}_0, \dots, \sigma_t \widetilde{Z}_t, W) \Big] \stackrel{a.s.}{=} 0$. By the triangular inequality, $\Big| \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \phi_b(\widetilde{\mathbf{u}}_i^t) - \mathbb{E} \Big[\phi_b(\sigma_0 \widetilde{Z}_0, \dots, \sigma_t \widetilde{Z}_t, W) \Big] \Big| \leq X_1^t + X_2^t$, where $X_1^t = \Big| \frac{1}{n} \sum_{i=1}^n \Big(\phi_b(\widetilde{\mathbf{u}}_i^t) - \widetilde{\phi}_b(\mathbf{u}_i^{t-1}) \Big) \Big|$, $X_2^t = \Big| \frac{1}{n} \sum_{i=1}^n \widetilde{\phi}_b(\mathbf{u}_i^{t-1}) - \mathbb{E} [\phi_b(\sigma_0 \widetilde{Z}_0, \dots, \sigma_t \widetilde{Z}_t, W)] \Big|$, and $\widetilde{\phi}_b(\mathbf{u}_i^{t-1}) = \mathbb{E}_Z[\phi_b(\widetilde{\mathbf{u}}_i^t)]$. Similar to Step 1d), we verify $\lim_{n \to \infty} X_1^t \stackrel{a.s.}{=} 0$ and $\lim_{n \to \infty} X_2^t \stackrel{a.s.}{=} 0$.

 $\begin{array}{ll} \phi_b(\mathbf{u}_i^-) &= \mathbb{E}_Z[\phi_b(\mathbf{u}_i^-)]. \text{ Similar to Step Td.), we verify} \\ \lim_{n \to \infty} X_1^t \overset{a.s.}{=} 0 \text{ and } \lim_{n \to \infty} X_2^t \overset{a.s.}{=} 0. \\ \text{First showing } \lim_{n \to \infty} X_1^t \overset{a.s.}{=} 0 \text{ is of interest. By (5),} \\ |\phi_b(\widetilde{\mathbf{u}}_i^t)| &\leq c_1^t \exp\left[c_2^t \left(\sum_{j=0}^{t-1} |\beta_j b_i^j|^\lambda + \gamma_t^\lambda |Z|^\lambda + |w_i|^\lambda\right)\right], \\ \text{where } c_1^t &> 0, \ c_2^t &> 0, \ \text{and } 1 &\leq \lambda &< 2 \text{ are constant. Hence, } \mathbb{E}_Z[|\phi_b(\widetilde{\mathbf{u}}_i^t)|^{2+\kappa}] &\leq c_3^t \exp\left[c_4^t \left(\sum_{j=0}^{t-1} |\beta_j b_i^j|^\lambda + |w_i|^\lambda\right)\right] \mathbb{E}_Z\left[\exp(c_4^t \gamma_t^\lambda |Z|^\lambda)\right], \\ \text{where } 0 &< \kappa < 1, \ c_3^t = (c_1^t)^{2+\kappa}, \ c_4^t = c_2^t (2+\kappa), \text{ resulting in} \end{array}$

$$\mathbb{E}_{Z}[|\phi_{b}(\widetilde{\mathbf{u}}_{i}^{t})|^{2+\kappa}] \leq c_{5}^{t} \exp\left[c_{4}^{t} \left(\sum_{j=0}^{t-1} |\beta_{j} b_{i}^{j}|^{\lambda} + |w_{i}|^{\lambda}\right)\right],\tag{40}$$

and $c_5^t = c_3^t \mathbb{E}_Z \left[\exp(c_4^t \gamma_t^\lambda |Z|^\lambda) \right]$ is constant. We define $X_{n,i}^t = \phi_b(\widetilde{\mathbf{u}}_i^t) - \widetilde{\phi}_b(\mathbf{u}_i^{t-1}) = \phi_b(\widetilde{\mathbf{u}}_i^t) - \mathbb{E}_Z [\phi_b(\widetilde{\mathbf{u}}_i^t)]$ such that $X_1^t = |\frac{1}{n} \sum_{i=1}^n X_{n,i}^t|$. To prove $\lim_{n \to \infty} X_1^t \stackrel{a.s.}{=} 0$, we show that $\{X_{n,i}^t\}_{i=1}^n$ satisfy Lemma 3 in Appendix F. Indeed, $\mathbb{E}_Z[|X_{n,i}^t|^{2+\kappa}]$ is upper bouned as follows,

$$\mathbb{E}_{Z}[|X_{n,i}^{t}|^{2+\kappa}] \leq 2^{1+\kappa} \left[\mathbb{E}_{Z} \left[|\phi_{b}(\widetilde{\mathbf{u}}_{i}^{t})|^{2+\kappa} \right] + \left| \mathbb{E}_{Z} [\phi_{b}(\widetilde{\mathbf{u}}_{i}^{t})] \right|^{2+\kappa} \right], (41a)$$

$$\leq 2^{1+\kappa} \left[\mathbb{E}_{Z} \left[|\phi_{b}(\widetilde{\mathbf{u}}_{i}^{t})|^{2+\kappa} \right] + \mathbb{E}_{Z} \left[|\phi_{b}(\widetilde{\mathbf{u}}_{i}^{t})|^{2+\kappa} \right] \right], (41b)$$

$$\leq 2^{2+\kappa} \left[\mathbb{E}_{Z} \left[|\phi_{b}(\widetilde{\mathbf{u}}_{i}^{t})|^{2+\kappa} \right] \right],$$

$$\leq c_6^t \exp\left[c_4^t \left(\sum_{j=0}^{t-1} |\beta_j b_i^j|^{\lambda} + |w_i|^{\lambda}\right)\right],\tag{41c}$$

where (41a) follows from Lemma 4 (Holder's inequality) in Appendix F, (41b) follows from Lemma 5 (Lyapunov's inequality) in Appendix F, and (41c) follows from (40) with $c_6^t = 2^{2+\kappa}c_5^t$. We denote the last term of (41c) as $\psi_b(\mathbf{u}_i^{t-1}) = c_6^t \exp\left[c_4^t \left(\sum_{j=0}^{t-1} |\beta_j b_i^j|^\lambda + |w_i|^\lambda\right)\right]$. Then, $\psi_b(\mathbf{u}_i^{t-1})$ is a controlled function. From (41c), we get, for n is sufficiently large,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z}[|X_{n,i}^{t}|^{2+\kappa}] \leq \frac{1}{n} \sum_{i=1}^{n} \psi_{b}(\mathbf{u}_{i}^{t-1}),$$

$$\stackrel{a.s.}{=} \mathbb{E}[\psi_{b}(\sigma_{0}\widetilde{Z}_{0}, \dots, \sigma_{t-1}\widetilde{Z}_{t-1}, W)], (42a)$$

$$< cn^{\kappa/2}, \qquad (42b)$$

where c is a positive constant, (42a) is due to the induction hypothesis (16), and (42b) holds because $\mathbb{E}[\psi_b(\sigma_0\widetilde{Z}_0,\ldots,\sigma_{t-1}\widetilde{Z}_{t-1},W)]=c_7^t<\infty$ and there exists n_t , a positive constant, such that $c_7^t< cn^{\kappa/2}$ for $n>n_t$. By Lemma 3 in Appendix F, we get $\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n X_{n,i}^t\stackrel{a.s.}{=}0$, implying

$$\frac{1}{n} \sum_{i=1}^{n} \left(\phi_b(\widetilde{\mathbf{u}}_i^t) - \widetilde{\phi}_b(\mathbf{u}_i^{t-1}) \right) \stackrel{a.s.}{=} 0, \tag{43}$$

which proving $\lim_{n\to\infty} X_1^t \stackrel{a.s.}{=} 0$.

Now, showing $\lim_{n\to\infty} X_2^t \stackrel{a.s.}{=} 0$ is of interest. By the induction hypothesis (16), $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \widetilde{\phi}_b(\mathbf{u}_i^{t-1}) \stackrel{a.s.}{=} \mathbb{E}[\widetilde{\phi}_b(\sigma_0 \widetilde{Z}_0, \dots, \sigma_{t-1} \widetilde{Z}_{t-1}, W)]$, resulting in

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \widetilde{\phi}_{b}(\mathbf{u}_{i}^{t-1})$$

$$= \mathbb{E} \left[\mathbb{E}_{Z} \left[\phi_{b}(\sigma_{0} \widetilde{Z}_{0}, \dots, \sigma_{t-1} \widetilde{Z}_{t-1}, \sum_{j=0}^{t-1} \beta_{j} \sigma_{j} \widetilde{Z}_{j} + \gamma_{t} Z, W) \right] \right],$$

$$= \mathbb{E} \left[\phi_{b}(\sigma_{0} \widetilde{Z}_{0}, \dots, \sigma_{t-1} \widetilde{Z}_{t-1}, \sum_{j=0}^{t-1} \beta_{j} \sigma_{j} \widetilde{Z}_{j} + \gamma_{t} Z, W) \right],$$
(44)

where (44) follows from the substitution $\widetilde{\phi}_b(\mathbf{u}_i^{t-1}) = \mathbb{E}_Z[\phi_b(\widetilde{\mathbf{u}}_i^t)]$. Therefore, showing $\lim_{n\to\infty} X_2^t \stackrel{a.s.}{=} 0$ is equivalent to proving $\sum_{j=0}^{t-1} \beta_j \sigma_j \widetilde{Z}_j + \gamma_t Z = \sigma_t \widetilde{Z}_t$, where $\widetilde{Z}_t \sim \mathcal{N}(0,1)$ and σ_t is defined in (7).

 $\mathcal{N}(0,1) \text{ and } \sigma_t \text{ is defined in (7).}$ In particular, for $\phi_b(\mathbf{u}_i^t) = (b_i^t)^2$, we get $\phi_b(\widetilde{\mathbf{u}}_i^t) = \left(\sum_{j=0}^{t-1} \beta_j b_i^j + \gamma_t Z\right)^2$ because $\widetilde{\mathbf{u}}_i^t = (b_i^0, \dots, b_i^{t-1}, \sum_{j=0}^{t-1} \beta_j b_i^j + \gamma_t Z, w_i)$. Combining (43) and (44),

$$\lim_{n \to \infty} \langle \mathbf{b}^{t}, \mathbf{b}^{t} \rangle = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \phi_{b}(\mathbf{u}_{i}^{t})$$

$$\stackrel{a.s.}{=} \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \phi_{b}(\widetilde{\mathbf{u}}_{i}^{t}) \stackrel{a.s.}{=} \mathbb{E} \left[\left(\sum_{j=0}^{t-1} \beta_{j} \sigma_{j} \widetilde{Z}_{j} + \gamma_{t} Z \right)^{2} \right]. \quad (45)$$

Using (14), $\lim_{n \to \infty} \langle \mathbf{b}^t, \mathbf{b}^t \rangle \stackrel{a.s.}{=} \lim_{N \to \infty} \frac{\langle \mathbf{q}^t, \mathbf{q}^t \rangle}{\rho} = \sigma_t^2$, where the last equality holds because by the induction hypothesis (17) for $\phi_h(\mathbf{v}_i^{t-1}) = f_t^2(h_i^t, x_{0i})$ in (17), $\frac{1}{\rho} \lim_{N \to \infty} \langle \mathbf{q}^t, \mathbf{q}^t \rangle \stackrel{a.s.}{=} \frac{1}{\rho} \mathbb{E}[f_t^2(\tau_{t-1}Z, X_0)] = \sigma_t^2$. Hence, $\mathbb{E}\left[\left(\sum_{j=0}^{t-1} \beta_j \sigma_j \widetilde{Z}_j + \gamma_t Z\right)^2\right] \stackrel{a.s.}{=} \sigma_t^2$, implying $\sum_{j=0}^{t-1} \beta_j \sigma_j \widetilde{Z}_j + \gamma_t Z = \sigma_t \widetilde{Z}_t$ due to (45), verifying that $\lim_{n \to \infty} X_2^t \stackrel{a.s.}{=} 0$, which completes the proof of (16).

B. Step 4: We show a), b), c), and d) of Theorem 1 conditioning on
$$\mathcal{F}_{t+1,t} = \{\mathbf{b}^0, \dots, \mathbf{b}^t, \mathbf{m}^0, \dots, \mathbf{m}^t, \mathbf{h}^1, \dots, \mathbf{h}^t, \mathbf{q}^0, \dots, \mathbf{q}^t, \mathbf{x}_0, \mathbf{w}\}.$$

The proof of Step 4 is similar to the proof of Step 3. Thus, we only present the features that are unique in Step 4.

a) Similar to Step 3a), using Proposition 3 to characterize $\mathbf{A}|_{\mathcal{F}_{t+1,t}}$ and following the same procedure as in [26, Lemma 1a], the $\mathbf{h}^{t+1}|_{\mathcal{F}_{t+1,t}}$ is

$$\mathbf{h}^{t+1}|_{\mathcal{F}_{t+1,t}} \stackrel{d}{=} \sum_{i=0}^{t-1} \alpha_{j} \mathbf{h}^{j+1} + \widetilde{\mathbf{A}}^{*} \mathbf{m}_{\perp}^{t} - \mathbf{P}_{\mathbf{Q}_{t+1}} \widetilde{\mathbf{A}}^{*} \mathbf{m}_{\perp}^{t} + \mathbf{Q}_{t+1} \overrightarrow{\mathbf{o}}_{t}(1).$$

By Proposition 7 in Appendix F, $\lim_{N\to\infty} \mathbf{P}_{\mathbf{Q}_{t+1}} \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t \stackrel{a.s.}{=} \mathbf{0}_N$. Similar to Step 3a), we verify that $\lim_{N\to\infty} \mathbf{Q}_{t+1} \overrightarrow{\sigma}_t(1) \stackrel{a.s.}{=} \mathbf{0}_N$ by characterizing (i) the expectation of the empirical distribution $\mathbf{Q}_{t+1} \overrightarrow{\sigma}_t(1)$ is bounded as $\lim_{N\to\infty} |\langle \mathbf{Q}_{t+1} \overrightarrow{\sigma}_t(1) \rangle| \leq \lim_{N\to\infty} |o(1)| \sum_{j=0}^t \frac{1}{N} \sum_{i=1}^N |q_i^j|$ $\stackrel{a.s.}{=} 0$ and (ii) the empirical variance of $\mathbf{Q}_{t+1} \overrightarrow{\sigma}_t(1)$ is bounded an converges to $\lim_{N\to\infty} \langle \mathbf{Q}_{t+1} \overrightarrow{\sigma}_t(1) \rangle_2 \leq \lim_{N\to\infty} [o(1)]^2 (t+1) \sum_{j=0}^t \langle \mathbf{q}^j, \mathbf{q}^j \rangle \stackrel{a.s.}{=} 0$. Therefore, using $\lim_{N\to\infty} \mathbf{Q}_{t+1} \overrightarrow{\sigma}_t(1) \stackrel{a.s.}{=} \mathbf{0}_N$, we get

$$\mathbf{h}^{t+1}|_{\mathcal{F}_{t+1,t}} \stackrel{d}{\Longrightarrow} \sum_{i=0}^{t-1} \alpha_j \mathbf{h}^{j+1} + \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t, \tag{47}$$

which completes the proof of (11).

- b) Using (16) for $\phi_b(b_i^t, w_i) = g_t^{1+\alpha}(b_i^t, w_i)$, we get $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n |m_i^t|^{2+2\alpha} \stackrel{a.s.}{=} \mathbb{E}[g_t^{2+2\alpha}(\sigma_t Z_t, W)] < \infty$. Because $\sum_{i=1}^n |m_{\perp i}^t|^{2+2\alpha} < \sum_{i=1}^n |m_i^t|^{2+2\alpha}$, the following holds $\limsup_{n \to \infty} \sum_{i=1}^n |m_{\perp i}^t|^{2+2\alpha} < \infty$, which concludes (13).
- c) For $t_1 < t$ and $t_2 = t$, we have $\lim_{N \to \infty} \langle \mathbf{h}^{t_1+1}, \mathbf{h}^{t+1} \rangle \stackrel{d}{=} \lim_{N \to \infty} \sum_{j=0}^{t-1} \alpha_j \langle \mathbf{h}^{t_1+1}, \mathbf{h}^j \rangle + \lim_{N \to \infty} \langle \mathbf{h}^{t_1+1}, \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t \rangle$ due to (47), resulting in

$$\lim_{N \to \infty} \langle \mathbf{h}^{t_1+1}, \mathbf{h}^{t+1} \rangle \stackrel{a.s.}{=} \sum_{j=0}^{t-1} \alpha_j \lim_{n \to \infty} \langle \mathbf{m}^{t_1}, \mathbf{m}^j \rangle + \lim_{N \to \infty} \frac{\mathbf{m}_{\perp}^{t^*} \widetilde{\mathbf{A}} \mathbf{h}^{t_1+1}}{N},$$
(48)

where (48) is by the induction hypothesis (15). Note that $\frac{\mathbf{m}_{\perp}^{t^*}}{\|\mathbf{m}_{\perp}^t\|_2} \widetilde{\mathbf{A}} \frac{\mathbf{h}^{t_1+1}}{\|\mathbf{h}^{t_1+1}\|_2} \stackrel{d}{=} \frac{Z}{\sqrt{n}}$ due to Proposition 6. The second term in (48) is represented as

$$\lim_{N \to \infty} \frac{\mathbf{m}_{\perp}^{t^*} \widetilde{\mathbf{A}} \mathbf{h}^{t_1+1}}{N} \stackrel{d}{=} \lim_{N \to \infty} \frac{\|\mathbf{m}_{\perp}^t\|_2}{\sqrt{n}} \frac{\|\mathbf{h}^{t_1+1}\|_2}{\sqrt{N}} \frac{\sqrt{n}}{\sqrt{N}} \frac{Z}{\sqrt{n}},$$

$$= \sqrt{\rho} \lim_{N \to \infty} \sqrt{\langle \mathbf{m}_{\perp}^t, \mathbf{m}_{\perp}^t \rangle \langle \mathbf{h}^{t_1+1}, \mathbf{h}^{t_1+1} \rangle} \frac{Z}{\sqrt{n}} \stackrel{a.s.}{=} 0, \quad (49)$$

Substituting (49) into (48) yields

$$\lim_{N \to \infty} \langle \mathbf{h}^{t_1+1}, \mathbf{h}^{t+1} \rangle = \lim_{n \to \infty} \langle \mathbf{m}^{t_1}, \sum_{j=0}^{t-1} \alpha_j \mathbf{m}^j \rangle = \lim_{n \to \infty} \langle \mathbf{m}^{t_1}, \mathbf{m}_{||}^t \rangle,$$

$$= \lim_{n \to \infty} \langle \mathbf{m}^{t_1}, \mathbf{m}_{||}^t \rangle + \lim_{n \to \infty} \langle \mathbf{m}^{t_1}, \mathbf{m}_{\perp}^t \rangle = \lim_{n \to \infty} \langle \mathbf{m}^{t_1}, \mathbf{m}^t \rangle,$$

concluding (15) when $t_1 < t$ and $t_2 = t$. For $t_1 = t_2 = t$, by (47),

$$\lim_{N \to \infty} \langle \mathbf{h}^{t+1}, \mathbf{h}^{t+1} \rangle \stackrel{d}{=} \sum_{i,j=0}^{t-1} \alpha_i \alpha_j \lim_{N \to \infty} \langle \mathbf{h}^{i+1}, \mathbf{h}^{j+1} \rangle
+ 2 \sum_{i=0}^{t-1} \alpha_i \lim_{N \to \infty} \langle \mathbf{h}^{i+1}, \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t \rangle + \lim_{N \to \infty} \langle \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t, \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t \rangle.$$
(50)

Then, by (49), the following holds

$$\lim_{N \to \infty} \langle \mathbf{h}^{t+1}, \mathbf{h}^{t+1} \rangle \stackrel{a.s.}{=} \sum_{i,j=0}^{t-1} \alpha_i \alpha_j \lim_{N \to \infty} \langle \mathbf{h}^{i+1}, \mathbf{h}^{j+1} \rangle + \lim_{N \to \infty} \langle \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t, \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t \rangle. \quad (51)$$

By Proposition 5, the empirical distribution of $\widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t$ converges to $\widehat{\widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t} \stackrel{d}{\Longrightarrow} \mathcal{N}(0, \lim_{n \to \infty} \langle \mathbf{m}_{\perp}^t, \mathbf{m}_{\perp}^t \rangle)$. Hence, the second moment of $\widehat{\widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t}$ converges to

$$\lim_{N \to \infty} \langle \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t, \widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t \rangle \stackrel{a.s.}{=} \lim_{n \to \infty} \langle \mathbf{m}_{\perp}^t, \mathbf{m}_{\perp}^t \rangle.$$
 (52)

Substituting (52) into (51) leads to $\lim_{N\to\infty}\langle\mathbf{h}^{t+1},\mathbf{h}^{t+1}\rangle\stackrel{a.s.}{=}\sum_{i,j=0}^{t-1}\alpha_i\alpha_j\lim_{N\to\infty}\langle\mathbf{h}^{i+1},\mathbf{h}^{j+1}\rangle+\lim_{n\to\infty}\langle\mathbf{m}_{\perp}^t,\mathbf{m}_{\perp}^t\rangle$, implying

(47)
$$\lim_{N \to \infty} \langle \mathbf{h}^{t+1}, \mathbf{h}^{t+1} \rangle \stackrel{a.s.}{=} \sum_{i,j=0}^{t-1} \alpha_i \alpha_j \lim_{n \to \infty} \langle \mathbf{m}^i, \mathbf{m}^j \rangle + \lim_{n \to \infty} \langle \mathbf{m}^t_{\perp}, \mathbf{m}^t_{\perp} \rangle,$$
$$= \lim_{n \to \infty} \langle \mathbf{m}^t_{||}, \mathbf{m}^t_{||} \rangle + \lim_{n \to \infty} \langle \mathbf{m}^t_{\perp}, \mathbf{m}^t_{\perp} \rangle = \lim_{n \to \infty} \langle \mathbf{m}^t, \mathbf{m}^t \rangle.$$

Therefore, (15) also holds for $t_1 = t_2 = t$, which completes the proof.

d) Defining $\lim_{n\to\infty} \langle \mathbf{m}_{\perp}^t, \mathbf{m}_{\perp}^t \rangle \stackrel{a.s.}{=} \Gamma_t^2$, we can write

$$\widehat{\widetilde{\mathbf{A}}^* \mathbf{m}_{\perp}^t} \stackrel{d}{\Longrightarrow} \mathcal{N}(0, \Gamma_t^2). \tag{53}$$

Using (53) and (47), the following convergence holds

$$h_i^{t+1}|_{\mathcal{F}_{t+1,t}} \stackrel{d}{\Longrightarrow} \sum_{j=0}^{t-1} \alpha_j h_i^{j+1} + \Gamma_t Z, \tag{54}$$

where $Z \sim \mathcal{N}(0,1)$. Similar to Step 3d), we can write, using (54), $\mathbf{v}_i^t \stackrel{d}{\Rightarrow} \widetilde{\mathbf{v}}_i^t$, where $\mathbf{v}_i^t = (h_i^1, ..., h_i^{t+1}, x_{0i})$ and $\widetilde{\mathbf{v}}_i^t = (h_i^1, ..., h_i^t, \sum_{j=0}^{t-1} \alpha_j h_i^{j+1} + \Gamma_t Z, x_{0i})$. Hence, to prove (17) we first claim that $\left|\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^N \phi_h(\widetilde{\mathbf{v}}_i^t) - \mathbb{E}\left[\phi_h(\tau_0 Z_0, ..., \tau_t Z_t, X_0)\right]\right| \stackrel{a.s.}{=} 0$. Similar to Step 2d), using the triangular inequality, we verify that $\lim_{N \to \infty} Y_1^t \stackrel{a.s.}{=} 0$ and $\lim_{N \to \infty} Y_2^t \stackrel{a.s.}{=} 0$, where $Y_1^t = \left|\frac{1}{N} \sum_{i=1}^N \left(\phi_h(\widetilde{\mathbf{v}}_i^t) - \widetilde{\phi}_h(\mathbf{v}_i^{t-1})\right]\right|$ and $Y_2^t = \left|\frac{1}{N} \sum_{i=1}^N \widetilde{\phi}_h(\mathbf{v}_i^{t-1}) - \mathbb{E}\left[\phi_h(\tau_0 Z_0, ..., \tau_t Z_t, X_0)\right]\right|$, and $\widetilde{\phi}_h(\mathbf{v}_i^{t-1}) = \mathbb{E}_Z[\phi_h(\widetilde{\mathbf{v}}_i^t)]$, $\forall i$.

First showing $\lim_{N\to\infty} Y_1^t$ is of interest. By (5), $|\phi_h(\widetilde{\mathbf{v}}_i^t)| \leq d_1^t \exp\left[d_2^t\left(\sum_{j=0}^{t-1}|\alpha_jh_i^{j+1}|^\lambda + \Gamma_t^\lambda|Z_i|^\lambda + |x_{0i}|^\lambda\right)\right]$, where $d_1^t>0$, $d_2^t>0$, and $1\leq \lambda < 2$ are constant. Hence,

$$\mathbb{E}_{Z}\Big[|\phi_b(\widetilde{\mathbf{v}}_i^t)|^{2+\kappa}] \le d_5^t \exp\Big[d_4^t \Big(\sum_{i=0}^{t-1} |\alpha_j h_i^{j+1}|^{\lambda} + |x_{0i}|^{\lambda}\Big)\Big],$$

where $0<\kappa<1,\ d_4^t=d_2^t(2+\kappa),\ \text{and}\ d_5^t=(d_1^t)^{2+\kappa}\mathbb{E}_Z\Big[\exp(d_4^t\Gamma_t^\lambda|Z_i|^\lambda)\Big]$ are constants. Define $Y_{N,i}^t=\phi_h(\widetilde{\mathbf{v}}_i^t)-\mathbb{E}_Z[\phi_h(\widetilde{\mathbf{v}}_i^t)],\ \forall i.$ To prove the convergence $\lim_{n\to\infty}Y_1^t\stackrel{a.s.}{=}0$, we will show that $\{Y_{N,i}^t\}_{i=1}^N$ satisfy

the condition in Lemma 3 in Appendix F. Indeed, the $\mathbb{E}_Z[|Y_{N,i}^t|^{2+\kappa}]$ is upper bounded as follows.

$$\mathbb{E}_{Z}[|Y_{N,i}^{t}|^{2+\kappa}] \leq 2^{1+\kappa} \left[\mathbb{E}_{Z}[|\phi_{h}(\widetilde{\mathbf{v}}_{i}^{t})|^{2+\kappa}] + |\mathbb{E}_{Z}[\phi_{h}(\widetilde{\mathbf{v}}_{i}^{t})]|^{2+\kappa} \right],$$

$$\leq 2^{1+\kappa} \left[\mathbb{E}_{Z}[|\phi_{h}(\widetilde{\mathbf{v}}_{i}^{t})|^{2+\kappa}] + \mathbb{E}_{Z}[|\phi_{h}(\widetilde{\mathbf{v}}_{i}^{t})|^{2+\kappa}] \right],$$

$$\leq 2^{2+\kappa} \left[\mathbb{E}_{Z}[|\phi_{h}(\widetilde{\mathbf{v}}_{i}^{t})|^{2+\kappa}] \right]$$

$$\leq d_{6}^{t} \exp \left[d_{4}^{t} \left(\sum_{j=0}^{t-1} |\alpha_{j} h_{i}^{j+1}|^{\lambda} + |x_{0i}|^{\lambda} \right) \right], \quad (55a)$$

Denoting the last term of (55a) as $\psi_h(\mathbf{v}_i^{t-1}) = d_6^t \exp\left[d_4^t \left(\sum_{j=0}^{t-1} |\alpha_j h_i^{j+1}|^\lambda + |x_{0i}|^\lambda\right)\right]$, then $\psi_h(\mathbf{v}_i^{t-1})$ is a controlled function. From (55a), we get, for N is sufficiently large,

$$\frac{1}{N} \sum_{i=1}^{n} \mathbb{E}_{Z}[|Y_{N,i}^{t}|^{2+\kappa}] \leq \frac{1}{N} \sum_{i=1}^{n} \psi_{h}(\mathbf{v}_{i}^{t-1}),$$

$$\stackrel{a.s.}{=} \mathbb{E}[\psi_{h}(\tau_{0}Z_{0}, \dots, \tau_{t-1}Z_{t-1}, X_{0})],$$

$$< cN^{\kappa/2}, \qquad (56a)$$

where c is a positive constant and (56a) holds because $\mathbb{E}[\psi_b(\sigma_0\widetilde{Z}_0,\ldots,\sigma_{t-1}\widetilde{Z}_{t-1},W)]=d_7^t<\infty$ and there exists N_t , a positive constant, such that $d_7^t< cN^{\kappa/2}$ for $N>N_t$. Using Lemma 3 in Appendix F, $\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N Y_{N,i}^t\stackrel{a.s.}{=}0$, implying $\lim_{N\to\infty}Y_1^t\stackrel{a.s.}{=}0$.

We are now ready to verify the convergence $\lim_{N\to\infty}Y_2^t\stackrel{a.s.}{=}0$. Applying the induction hypothesis (17) for $\widetilde{\phi}_b(\mathbf{v}_i^{t-1})$ gives

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \widetilde{\phi}_h(\mathbf{v}_i^{t-1}) \stackrel{a.s.}{=} \mathbb{E}[\widetilde{\phi}_h(\tau_0 Z_0, \dots, \tau_{t-1} Z_{t-1}, X_0)],$$

$$= \mathbb{E}\left[\mathbb{E}_Z[\phi_h(\tau_0 Z_0, \dots, \tau_{t-1} Z_{t-1}, \sum_{j=0}^{t-1} \alpha_j \tau_j Z_j + \Gamma_t Z, X_0)]\right],$$

$$= \mathbb{E}\left[\phi_h(\tau_0 Z_0, \dots, \tau_{t-1} Z_{t-1}, \sum_{j=0}^{t-1} \alpha_j \tau_j Z_j + \Gamma_t Z, X_0)\right].$$

Therefore, showing $\lim_{N \to \infty} Y_2^t \stackrel{a.s.}{=} 0$ is equivalent to proving $\sum_{j=0}^{t-1} \alpha_j \tau_j Z_j + \Gamma_t Z = \tau_t Z_t$, where $Z_t \sim \mathcal{N}(0,1)$ and τ_t is defined in (7). Similar to the proof of $\lim_{n \to \infty} X_2^t \stackrel{a.s.}{=} 0$ in Step 3d), setting $\phi_h(\mathbf{v}_i^t) = (h_i^t)^2$, i.e., $\phi_h(\widetilde{\mathbf{v}}_i^t) = \left(\sum_{j=0}^{t-1} \alpha_j h_i^{j+1} + \Gamma_t Z\right)^2$, we get

$$\begin{split} & \lim_{N \to \infty} \langle \mathbf{h}^{t+1}, \mathbf{h}^{t+1} \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \phi_h(\mathbf{v}_i^t) \\ & \stackrel{a.s.}{=} \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \phi_h(\widetilde{\mathbf{v}}_i^t) \stackrel{a.s.}{=} \mathbb{E} \left[\left(\sum_{j=0}^{t-1} \alpha_j \tau_j Z_j + \Gamma_t Z \right)^2 \right]. \end{split}$$

Using (15), we get $\lim_{N\to\infty}\langle\mathbf{h}^{t+1},\mathbf{h}^{t+1}\rangle \stackrel{a.s.}{=} \lim_{n\to\infty}\langle\mathbf{m}^t,\mathbf{m}^t\rangle = \tau_t^2$, where the last equality holds

by the induction hypothesis (16) for $\phi_b(\mathbf{u}_i^t) = g_t^2(b_i^t, w_i)$, resulting in $\lim_{n \to \infty} \langle \mathbf{m}^t, \mathbf{m}^t \rangle \stackrel{a.s.}{=} \mathbb{E}[g_t^2(\sigma_t \widetilde{Z}_t, W)] = \tau_t^2$. Hence, $\mathbb{E}\Big[\Big(\sum_{j=0}^{t-1} \alpha_j \tau_j Z_j + \Gamma_t Z\Big)^2\Big] \stackrel{a.s.}{=} \tau_t^2$, which implies $\sum_{j=0}^{t-1} \alpha_j \tau_j Z_j + \Gamma_t Z = \tau_t Z_t$. Thus, it is verified that $\lim_{N \to \infty} Y_2^t \stackrel{a.s.}{=} 0$, which completes the proof of (17).