CS1026 – Digital Logic Design More Synchronous Logic

Alistair Morris ¹

¹Distributed Systems Group Trinity College Dublin

March 22, 2016

Today's Overview

- 1 One more example
- 2 How fast can we go
- 3 Adding an Enable

One more example How fast can we go Adding an Enable

Classical Design Revisted [Nelson et al., 1995] I

Example Style Question

Design a synchronous sequential circuit called Div-by-3 having an output Z that divides the system clock frequency f CLK by 3.

- Use an output duty cycle of two-thirds
 - 2 CLK cycle high, 1 cycle low
- Design the circuit using positive-edge-triggered flip-flops

Classical Design Revisted [Nelson et al., 1995] II

Step 1: Start with a timing diagram

Classical Design Revisted [Nelson et al., 1995] III

Step 2: Determine the number of flip-flop based on the number of State

- No. states = $3 \le 2$
- Assuming Full Coding

Classical Design Revisted [Nelson et al., 1995] IV

Step 3: Assign a unique code to each state

- A 00
- B 01
- C 10

Classical Design Revisted [Nelson et al., 1995] V

Step 4: Write the excitation-input equations

■ The D flip flop excitation equation: D = Y +

Classical Design Revisted [Nelson et al., 1995] VI

More step 4..

■ We need the composite K-map for each of the desired outputs: Y1, Y2, Z

Classical Design Revisted [Nelson et al., 1995] VII

Step 5: Draw the Circuit Schematic

- We skip steps 6 and 7..
 - But you should do this in the lab/exam!

One more example How fast can we go Adding an Enable

Classical Design Revisted [Nelson et al., 1995] VIII

The Last Lab

Design a synchronous sequential circuit identical to the previous example, except implement the design using JK flip-flops instead of D flip-flops

Determining the Maximum Clock I

The maximum clock frequency that a system can handle is driven by the set-up, hold and margin times required by the flip flops in the synchronous system.

Determining the Maximum Clock II

We can see that the clock frequency becomes limited by:

$$f_{max} = 1/T_{CLK(min)}$$

One more example How fast can we go Adding an Enable

Determining the Maximum Clock III

$$T_{CLK(min)} = t_{pff(max)} + t_{pcomb(max)} + t_{h(marg)} + t_{su} + t_h$$
 where:

- $t_{pff(max)}$ Maximum propagation delay time through flip-flop from the clock tick to Q output
- t_{pcomb(max)} Maximum propagation delay time through combinational logic
- $t_{h(marg)}$ Margin time, it is always a good design practice to allow for tolerances.
- t_{su} Set-up time requirement
- t_h Hold time requirement

Determining the Maximum Clock IV

An Example

Determine the absolute maximum clock frequency for the divide-by-3 synchronous machine

Determining the Maximum Clock V

Remember the Schematic!

Determining the Maximum Clock VI

Going through the ICs:

- 74LS08 AND gate
 - t_{pcomb} : Min at 3 ns and Max. at 18 ns
- 75LS175 D-flip-flop
 - t_{pff} : Min at 0 ns and Max. at 42 ns
 - t_{su} : Min at 20 ns
 - t_h : Min at 0 ns

Determining the Maximum Clock VII

So let's find the fastest clock speed:

- $T_{CLK(min)} = t_{pff(max)} + t_{pcomb(max)} + t_{h(marg)} + t_{su} = 42 + 18 + 0 + 20 = 80 \text{ ns}$
- $T_{CLK(max)} = 1/T_{CLK(min)} = 1/80 \times 10^{-9} = 12.5 \text{ MHz}$

How does this compare?

- 12.5 MHz \Longrightarrow Slow
 - In comparison to modern tech

Using Enables I

Used to stop the count at times and then continue counting

- Basis of Full-Encoded Stoppable Counter
 - Counter will count up as long as EN high
 - Else STOP counting

Using Enables II

State Diagram for a three-bit (Y1, Y2, Y3)

■ Also called a *Full-Encoded Stoppable Counter*

Using Enables III

Composite K-map for a 3-bit binary up stoppable counter with:

- Enable input EN
- Asynchronous clear input CLR
- Ripple-carry out RCO.

Y ₁ Y ₂ Y ₃	000	001	011	010		100	101	111	110)
0	000	001	011	010		100	101	111	110		Y ₁ Y ₂ Y ₃
1	001	010	100	011		101	110	000	111		
										,	
	0	0	0	0		0	0	1	0		RCO

Note: $CLR=1 \rightarrow Y_1Y_2Y_3 = 000$

Using Enables IV

We derive the flip-flop input excitation equation and RCO output equation from the composite K-map or (need 3 flip-flops):

$$D1 = Y1^+ = EN.Y1'.Y2.Y3 + Y1.Y2' + Y1.Y3' + EN'.Y1$$

$$D2 = Y2^{+} = EN.Y2'.Y3 + Y2.Y3' + EN'.Y2$$

$$D3 = Y3^+ = EN.Y3' + EN'.Y3$$

$$RCO = Y1.Y2.Y3$$

Using Enables V

In order to maintain the benefits of a synchronous system (avoiding clock glitches), it is important that the clock to all of the components remains the same.

■ I.E. NOT TO DO THIS!

Using Enables VI

Instead, if you need to enable a flip-flop, use one with enable capability designed in or use the MUX as shown

Using Enables VII

Moral of the story:

- Flip-flops with enable allows the designers to focus on input/output sync
- Enabled flip-flops simply require a connection to the enable pin

References (Homework) I

Nelson, V. P., Nagle, H. T., Carroll, B. D., and Irwin, J. D. (1995).

Digital logic circuit analysis and design.

Prentice-Hall, Inc.