Term 1

Lesson 1011 Binary & Octal Numbers

Bits

Computers store information using electricity, which has two states

ON or OFF

Bits

Representing numbers

So to represent zero - the light bulb is off

Challenge Question

If you had two lightbulbs, how many numbers could you represent?

The Answer:

The Answer:

Base Ten Numbers

Lets look at the number 8237

```
7 \times 1 = 7
3 \times 10 = 30
2 \times 100 = 200
8 \times 1000 = 8000
```

Base Ten Numbers

So the number 53027:

10 ⁴	10 ³	10 ²	10 ¹	10°
10000	1000	100	10	1

Binary

means base two uses the digits 0 and 1

1 represents an ON state 0 represents an OFF state

Binary

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°

Binary

So to change a binary number to base ten:

2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°
128	64	32	16	8	4	2	1

The Algorithm:

- 1 Start from the left pick the first power of two smaller than the decimal value. Put a 1.
- 2 Subtract the power of two from the original decimal number.
- 3 Repeat until you get to the 20 column.

Octal - base eight

Works on the same pattern as binary

3	2	1	0
83	82	81	80
512	64	8	1
	8 ³	8 ³ 8 ²	8 ³ 8 ² 8 ¹

Octal - base eight

Translate 95 to octal

4	3	2	1	0
84	83	82	81	80
4096	512	64	8	1

Octal - base eight

Translate 172₈ to base ten

4	3	2	1	0
84	83	82	81	80
4096	512	64	8	1