Reduserte enheter

May 3, 2016

Variabler er redusert slik at redusert gitterstørrelser blir $\Delta t^*=1$ og $\Delta x^*=1$, hvor Δt og Δx er tidssteget og gitteravstanden.

Monado	Redusert enhet
Mengde	
Varmestrøm	$q^* = q\Delta t^3$
Termisk diffusivitet	$\alpha^* = \alpha \frac{dt}{dx^2}$
Termisk konduktivitet	$\kappa^* = \kappa \frac{\Delta t^3}{\Delta x}$
Spesifikk varmekapasitet	$c_p^* = c_p \frac{\Delta t^2}{\Delta x^2}$
Tetthet	$\rho^* = \rho \Delta x^3$
Varmeoverføringskoeffisient	$h^* = h \Delta t^3$
Latent varme	$L^* = L \frac{\Delta t^2}{\Delta x^2}$
Kinematisk viskositet	$\nu^* = \nu \frac{\Delta t}{\Delta x^2}$
Fart	$v^* = v \frac{\Delta t}{\Delta x}$
Lengde	$l^* = l \frac{1}{\Delta x}$
Trykk	$p^* = p\Delta x \Delta t^2$
Psykometrisk konstant	$\gamma^* = \gamma \Delta x \Delta t^2$
Stefan-Boltzmanns konstant	$\sigma^* = \sigma \Delta t^3$
Gasskonstanten	$R^* = R \frac{\Delta t^2}{\Delta x^2}$