## OMCIT 592 Module 13 Self-Paced 02 (instructor Val Tannen)

One reference to this self-paced segment in the lecture segment "No odd cycles".

This is a segment that contains material meant to be learned at your own pace. We are trying to assist you in this endeavor by organizing the material in a manner similar to the way it is outlined in the recorded segments, however with one additional suggestion.

When you see the following marker:



we suggest that you stop and make sure you thoroughly understood the material presented so far before you proceed further.

## Proof of 2-colorability

In the lecture segment "No odd cycles" stated the following chracterization of bipartite graphs:

**Proposition.** A graph is bipartite iff it does not contain a cycle of odd length (an odd cycle).

We proved one of the directions in lecture, showing that a bipartite graph cannot have odd cycles. For the other direction we observed in lecture that w.l.o.g. we can assume that the graph is **connected**. Indeed, since no edges go between connected components, a graph has a proper coloring iff each of its connected components have a proper coloring.

And, we defined in lecture for any connected graph the concept of distance in a graph as follows.

Let G = (V, E) be a connected graph. The **distance** between two vertices  $u, v \in V$ , notation d(u, v), is the length of a shortest path from u to v (the existence of such a path is guaranteed by the Well-Ordering Principle).

Further, in lecture, using the concept of distance we embarked on showing that a connected graph G = (V, E) without odd cycles is bipartite. Specifically, we continued as follows.

Fix an arbitrary vertex  $w_o$ . Now color the vertices of G:

- w is colored **red** when  $d(w_0, w)$  is **even** (in particular,  $w_0$  is colored red).
- w is colored blue when  $d(w_0, w)$  is odd.

So, this is a 2-coloring, but is it **proper**? And we promised a proof of propriety in this segement. Here it goes.

We need another useful observation:

**Lemma (Locality of shortest paths).** Consider a shortest path p from u to v and let x and y be two vertices in this path. Then the portion x- $\cdots$ -y of p is a shortest path from x to y, so  $d(x,y) \le d(u,v)$ .

**Proof (of Lemma).** Indeed, if there exists a strictly shorter path from x to y then we can replace the portion  $x-\cdots-y$  of p with that shorter path and get a strictly shorter path from u to v.



## Proof of 2-colorability (continued)

Back to the proof of the remaining direction of the proposition. We have a connected graph G = (V, E) without odd cycles and the only thing left to show is that the 2-coloring defined using the even/odd parity of distance is proper.

Suppose, toward a contradiction, that we have an edge u- $v \in E$  such that both u and v are colored blue. (Later we consider the case when they are both colored red.) Our hope is to show that this implies that G has an odd cycle, hence we have a contradiction.

Note that  $w_0, u, v$  are pairwise distinct. Let  $p_1$  be a shortest path  $w_0 - \cdots - u$  and  $p_2$  be a shortest path  $w_0 - \cdots - v$ . Since u, v are colored blue the lengths of both  $p_1$  and  $p_2$  are odd.

It is is true that from  $p_1$ , u-v and (reversing)  $p_2$  we get a closed walk  $w_0$ -w-v-w-v-w-v of length  $d(w_0, u) + 1 + d(w_0, v)$ , which is odd. But this walk is, in general, not a cycle because  $p_1$  and  $p_2$  may have intermediate vertices in common and having a closed walk of odd length does not, by itself, imply that we have an odd cycle.

Let S be the set of vertices that  $p_1$  and  $p_2$  have in common. Suppose  $u \in S$ . Then, by the lemma above (locality of shortest paths) we have  $d(w_0, v) = d(w_0, u) + 1$ , but both  $d(w_0, v)$  and  $d(w_0, u)$  are odd, contradiction. Hence  $u \notin S$ . Similarly  $v \notin S$ .

S is not empty because  $w_0 \in S$ . Let  $w \in S$  be the vertex "closest" to u, i.e., all the nodes in the portion  $w-\cdots-u$  of  $p_1$  are not in S. It follows that all the nodes in the portion  $w-\cdots-v$  of  $p_2$  are also not in S. Thus the closed walk  $w-\cdots-u-v-\cdots-w$  forms a cycle, C. We shall prove that C has odd length.

By the lemma above (locality of shortest paths) the portion  $w_0$ -···-w of  $p_1$  has length  $d(w_0, w)$ . Similarly, the portion  $w_0$ -···-w of  $p_2$  has length  $d(w_0, w)$ . Hence the length of C is  $d(w_0, u) - d(w_0, w) + 1 + d(w_0, v) - d(w_0, w) = d(w_0, u) + 1 + d(w_0, v) - 2d(w_0, w)$  which is odd, since  $d(w_0, u)$  and  $d(w_0, v)$  are both odd.

So we proved that u and v cannot both be colored blue.



Now suppose, again toward a contradiction, that we have an edge u- $v \in E$  such that u and v are both colored red. Then  $u \neq w_0$ , otherwise  $d(w_0, v) = 1$  and v should be blue. Similarly  $v \neq w_0$ .

Now that we have established that  $w_0, u, v$  are pairwise distinct the proof proceeds as in the earlier case, again resulting in a cycle of length  $d(w_0, u) + 1 + d(w_0, v) - 2d(w_0, w)$  which is again odd, even though now  $d(w_0, u)$  and  $d(w_0, v)$  are both even.

