Sheet 1

Discussion of the sheet: Tue./Wed.,

This exercise sheet is concerned with the topic

- Vector spaces
- 1. Show that the set $\mathbb{S} := \{B \in \mathbb{R}^{2 \times 2} : B \text{ symmetric } \}$ of all real symmetric $\mathbb{R}^{2 \times 2}$ -matrices is a vector space. Find 3 linearly independent vectors in \mathbb{S} . Can you find a fourth one?

Remark: A matrix $B \in \mathbb{R}^{2 \times 2}$ is symmetric if $B = B^T$, where B^T is the transposed matrix.

2. Show that none of the three sets below are vector spaces.

Show that the following mappings are norms on \mathbb{R}^n :

- a) $||x||_{\infty} := \max\{|x_1|, \dots, |x_n|\}.$
- **b)** $||x||_1 := |x_1| + \dots + |x_n| = \sum_{i=1}^n |x_i|.$

Draw the sets $\{x \in \mathbb{R}^2 : \|x\|_1 \le 1\}, \{x \in \mathbb{R}^2 : \|x\|_2 \le 1\}, \text{ and } \{x \in \mathbb{R}^2 : \|x\|_\infty \le 1\}.$

4. Lorentz-Minkowski space: In relativistic physics a way to describe space-time is to actually use \mathbb{R}^n (n=1,2,3) in space and \mathbb{R} in time, e.g. the space \mathbb{R}^{n+1} with a special 'inner'-product, the so-called Minkowski product. For $u=(t,x_1,\ldots,x_n)$ and $v=(s,y_1,\ldots,y_n)$ this is defined as

$$(u,v) = c^2 ts - x_1 y_1 - \dots - x_n y_n,$$

where c > 0 is the speed of light.

Even though it is often called a scalar product, not all three axioms in the definition of an inner product hold. Check which ones do or do not hold!

Vectors u with (u, u) > 0 are called **timelike**, vectors with (u, u) < 0 are called **spacelike** and vectors with (u, u) = 0 are called **lightlike**.

Take n = 1 and n = 2 and draw the sets of timelike, spacelike and lightlike vectors.

5. Let $(V, (\cdot, \cdot))$ be an inner product space and let $\{v_1, \ldots, v_n\} \subset V$ be an orthonormal set. Suppose that $w \in V$ is a linear combination of the v_i -s, that is, there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that

$$\alpha_1 v_1 + \ldots + \alpha_n v_n = w.$$

Show that one can compute the coefficients by the formula $\alpha_i = (w, v_i)$. (Hint: what happens when taking the inner product with v_i of both sides of the equality?) From this formula, prove the statement from the lecture: "Every orthonormal set of vectors is also linearly independent."

6. Take the vectors

$$v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Show that $\{v_1, v_2\}$ is and orthonormal set in \mathbb{R}^2 and compute the coefficients α_1, α_2 from the previous exercise.