

Projeto 04

Movimento oscilatório

Jefter Santiago Mares n° USP:12559016

12 de novembro de 2022

Conteúdo

1	Tarefa A	2
2	Tarefa B	8
3	Tarefa C	15
4	Tarefa D	15
5	Tarefa E	15
\mathbf{A}	Demonstração da integral eliptíca	j

Tarefa A

O objetivo dessa tarefa é implementar o método de Euler e o método de Euler-Cromer para discretização do sistema do pêndulo simples. Primeiramente vamos analisar as equações diferenciais que descrevem o sistema.

A força atuando no sistema pode ser escrita como $ma_{\theta} = ml\frac{d^2}{dt^2}\theta = -gm\sin\theta$ e podemos aproximar o seno fazendo uma expansão de Taylor, temos então

$$\sin \theta = \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!} = \theta - \frac{1}{3!} \theta^3 + \frac{1}{5!} \theta^5 + \cdots$$

para $\theta \to 0 \Rightarrow \sin \theta \approx \theta$, segue que

$$\frac{d^2}{dt^2}\theta \approx -\frac{g}{l}\theta\tag{1}$$

a (1) é uma EDO linear e pode ser representada por um sistema de equação diferenciais acopladas

$$\frac{d^2}{dt^2}\theta = \begin{cases} \omega = \frac{d}{dt}\theta\\ \frac{d}{dt}\omega = -\frac{g}{l}\theta \end{cases}$$
 (2)

discretizando as (1) temos o método de Euler

$$\omega_{i+1} = \omega_i - \left(\frac{g}{l}\right)\theta_i \Delta t \tag{3}$$

$$\theta_{i+1} = \theta_i + \omega_i \Delta t \tag{4}$$

o método de Euler-Cromer é uma variação do anterior, é representado pelas equações abaixo

$$\omega_{i+1} = \omega_i - \left(\frac{g}{l}\right)\theta_i \Delta t \tag{5}$$

$$\theta_{i+1} = \theta_i + \omega_i \Delta t \tag{6}$$

Código em Fortran

```
implicit real * 8 (a-h, o-z)
1
2
          parameter(n = 10000)
3
          parameter(tt = 100)
          parameter(pi = acos(-1.0d0))
5
6
          Gravidade
7
          parameter(p = 9.8d0)
8
          Comprimento
9
          parameter(s = 9.8d0)
10
          p/s = 1.0d0
11
          dt = (tt * 1.0d0) / (n * 1.0d0)
13
14
          tt1 = (2 * pi) / 48d0
15
          omg1 = 0.0d0
16
          e1 = -p * cos(tt1)
^{17}
          tt2 = tt1
19
          omg2 = omg1
20
          e2 = e1
21
22
          open(10, file="data-oscilacoes.dat")
23
          open(11, file="data-energias.dat")
24
25
                implicit real * 8 (a-h, o-z)
28
                parameter(n = 1000)
29
                parameter(tt = 50)
30
                parameter(pi = acos(-1.0d0))
31
32
                Gravidade
                parameter(p = 9.8d0)
                Comprimento
35
                parameter(s = 9.8d0)
36
                dt = (tt * 1.0d0) / (n * 1.0d0)
37
38
                tt1 = (2 * pi) / 48d0
39
                omg1 = 0.0d0
40
                e1 = (1.0d0/2.0d0)*s**2
                tt2 = tt1
43
                omg2 = omg1
44
                e2 = e1
45
46
                open(10, file="data-oscilacoes.dat")
47
                open(11, file="data-energias.dat")
```

Listing 1: Declaração das variáveis utilizadas.

```
do i = 1, n
2
             t = t + dt
3
4
          Metodo de Euler
             tmp_omg1 = omg1 - tt1 * dt
             tmp_tt1 = tt1 + omg1 * dt
8
             omg1 = tmp_omg1
9
             tt1 = tmp_tt1
10
11
          Metodo de Euler-Cromer
12
             tmp_omg2 = omg2 - tt2 * dt
             tmp_tt2 = tt2 + tmp_omg2 * dt
14
15
             omg2 = tmp_omg2
16
             tt2 = tmp_tt2
17
18
          Energia do sistema
19
             e1 = (1.0d0/2.0d0) * s **2 * omg1**2 + p * s * cos(tt1)
20
             e2 = (1.0d0/2.0d0) * s **2 * omg2**2 + p * s * cos(tt2)
             write(10, *) t, omg1, tmp_tt1, omg2, tmp_tt2
23
             write(11, *) t, e1, e2
24
25
          end do
^{26}
          close(10)
27
          close(11)
          end
```

Listing 2: Estrutura dos cálculos e impressão nos arquivos saida-oscilacoes.dat e saida-energias.dat

Resultados

Apesar do sistema ser oscilatório e sem presença forças dissipativas, o método de Euler apresenta um comportamento contrário ao esperado. A amplitude das oscilações aumenta com o tempo. O método pode não apresentar esse comportamento se a escala de tempo utilizada for muito curta, mas para periodo maiores de tempo fica aparente.

Para entender essa instabilidade do método podemos ánalisar o comportamento da energia mecânica do sistema.

$$E = \Delta K + \Delta U$$

$$E = \frac{1}{2}mv^2 + mg\Delta h$$

$$E = \frac{1}{2}m\omega^2 l^2 + mgl\cos\theta \tag{7}$$

Note que essa equação cresce pra qualquer valor de θ conforme t aumenta, essa é a fonte da instabilidade do método de Euler. Ao contrário do método de Euler-Cromer, que consegue conservar energia sob periodos inteiros de oscilação, ele aumenta a energia do mais rapidamente e uma consequência disso é o aumento da amplitude da oscilação a cada iteração, como está claro no gráfico (1).

Figura 1: Valores de θ pelo tempo t usando método de Euler e o método de Euler-Cromer.

Pelo gráfico das energias calculadas pelos métodos podemos ver que o método de Euler-Cromer mantém uma energia constante, como esperdo para um sistema conservativo e o método de Euler não.

Figura 2: Energia do sistema calculada pelo método de Euler e Euler-Cromer.

Por fim, o método de Euler não é um método bom para problemas desse tipo, onde queremos analisar o comportamento oscilatórios. Para problemas que envolvem oscilações os método de Euler-Cromer apresenta maior estabilidade.

Tarefa B

B1

Para as condições dadas temos a seguinte relação

$$\frac{d}{dt}\omega = -\frac{g}{l}\sin\theta\tag{8}$$

usaremos o método de Euler-Cromer para avaliar o período do movimento do pêndulo simples em função de um θ_0 , sabemos que o sistema (8) é um pêndulo simples e então o esperado é que tenha um período equivalente a

 $T = 2\pi \sqrt{\frac{l}{g}}$

no programa implementado em fortran foi feita uma modificação em relação ao código (2), nesse algoritmo foi utilizada a noção de busca direta para realizar uma contagem de raízes da função cálculada, ou seja, foi contado o número de vezes que o gráfico do movimento corta o eixo horizontal e por fim feito uma média que nos dá o período de oscilação. No código abaixo temos a implementação desse método

```
count = 0
   do i = 1, n
3
       t = t + dt
5
       tmp_omg = omg - sin(tt) * dt
       tmp_tt = tt + tmp_omg * dt
8
       if(tmp_tt * tt < 0) then
9
          count = count + 1
10
       end if
11
12
       omg = tmp_omg
13
       tt = tmp_tt
14
   end do
15
16
   T = (2 * t) / count
```

Listing 3: Método de Euler-Cromer para o cálculo de período de oscilação do pêndulo simples.

O objetivo desse problema é cálcular o período de um pêndulo físico usando duas fórmulas, a primera é a (8), implemntada no código acima, e a segunda usando a integral eliptíca (14), para isso, é necessário fazer a discretização dessa função.

Discretização da integral eliptíca

$$T(\theta_0) = \sqrt{\frac{2l}{g}} \int_{-\theta_0}^{\theta_0} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

Para evitar problemas que podem ocorrer quando o denominador ficar muito próximo de zero adicionamos uma constante ϵ aos limites de integração, temos então

$$T(\theta_0) = \sqrt{\frac{2l}{g}} \int_{-\theta_0 + \epsilon}^{\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$
(9)

podemos separar a integral em 3, e com isso encontramos podemos reduzir o cálculo dela à uma função analítica

$$T(\theta_0) = \underbrace{\sqrt{\frac{2l}{g}} \int_{-\theta_0 + \epsilon}^{\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}}_{\text{Numérica}} + \underbrace{\sqrt{\frac{2l}{g}} \int_{-\theta_0}^{-\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}}_{\text{Analiticas}} + \sqrt{\frac{2l}{g}} \int_{\theta_0 - \epsilon}^{\theta_0} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

Nesses limites de integração temos que

$$\sqrt{\frac{2l}{g}} \int_{-\theta_0}^{-\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}} = \sqrt{\frac{2l}{g}} \int_{\theta_0 - \epsilon}^{\theta_0} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

podemos então considerar apenas uma das duas integrais, fazendo

$$A = 2\sqrt{\frac{2l}{g}} \int_{-\theta_0}^{-\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}}$$

Resolvendo a integral temos que, $\theta\to\theta_0$, com $\theta=-\theta_0+\varphi$ e $\varphi\to0,$ então

$$\cos \theta - \cos \theta_0 = \cos(-\theta_0 + \varphi) - \cos \theta = \cos \theta_0 \cos \varphi + \sin \theta_0 \sin \varphi - \cos \theta_0$$
$$\cos \theta - \cos \theta_0 = \varphi \sin \theta_0$$

com essa relação podemos avaliar a integral no intervalo de integração $[0,\epsilon]$, fazendo a mudança de variáveis temos

$$\int_{-\theta_0}^{\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}} = \int_0^{\epsilon} \frac{1}{\sqrt{\sin \varphi}} \frac{1}{\varphi} d\varphi$$
$$A = 2\sqrt{\frac{2l}{g}} \sqrt{\frac{\epsilon}{\sin \theta_0}}$$

A fórmula final do periódo discretizado é

$$T(\theta_0) = \sqrt{\frac{2l}{g}} \int_{-\theta_0}^{\theta_0 + \epsilon} \frac{d\theta}{\sqrt{\cos \theta - \cos \theta_0}} + 2\sqrt{\frac{2l}{g}} \sqrt{\frac{\epsilon}{\sin \theta_0}}$$
 (10)

Método de Boole

Com o ferramental adquirido no projeto anterior podemos utilizar um método de integração (nesse caso o método de Boole foi o escolhido) para avaliar a integral eliptíca (14), este é dado pela seguinte relação

$$\int_{a}^{b} f(x)dx = \frac{2h}{45} \left(7f(x) + 32f(x+h) + 12f(x+2h) + 32f(x+3h) + f(x+4h) \right), h = \frac{b-a}{N}$$
 (11)

onde N é o número de iterações utilizadas para o cálculo da integral.

Ajustando a discretização da (9) para usar o método de boole temos que $h = \frac{b-a}{N}$, onde [a, b] é o intervalo de integração $[a, b] = [\theta_0 + \epsilon, -\theta_0 + \epsilon]$, segue que $h = \frac{2\theta_0}{N}$. Sabemos pelo projeto anterior sobre **Cálculo Numérico** que o método de Boole pode apresentar melhor precisação para h na ordem de 10^{-5} , portanto essa será a ordem usada nessa implementação.

Código da implementação do método de Boole

```
Metodo de Boole
18
             h = (2 * tt0)/n
19
             do i = 0, (n/4) - 1
20
21
                tt = - tt0 + 2*i*h + e
                f0 = f(tt, tt0)
                f1 = f(tt + h, tt0)
25
                f2 = f(tt + 2*h, tt0)
26
                f3 = f(tt + 3*h, tt0)
27
                f4 = f(tt + 4*h, tt0)
28
29
                sum = sum + (7*f0+32*f1+12*f2+32*f3+7*f4)
30
             end do
             sum = sum*(2*h/45)
33
             sum = sqrt(2d0) * sum + 2 * sqrt(2d0) * sqrt(e/sin(tt0))
34
```

Listing 4: Calculo da integral usando método de Boole

```
function f(tt, tt0)
function f(tt0)
function f(tt0)
function f(tt0)
function f(tt0)
function f(tt0)
f
```

Listing 5: Função da integral.

Resultados B1 e B2

Os métodos implementados fornecem as seguintes aproximações para alguns ângulos iniciais:

Tabela 1: Cálculo do período de oscilação para um ângulo θ_0 inicial utilizando aproximações numéricas.

θ_0	Aproximação pelo método Euler-Cromer	Integral Eliptica
$7\pi/18$	6.944444444455478	6.9470463343391113
$\pi/3$	6.7567567567578299	6.7566483723506163
$\pi/2$	7.4074074074085843	7.4566305768269627
$5\pi/6$	11.111111111112876	11.217766346528297

Para valores iniciais de $\theta_0 \leq \pi/6$, nota-se que o ângulo inicial é irrelevante na determinação do período, foram feitas aproximações afim de demonstrar que para θ_0 pequenos o período é dado por

$$T \approx 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{\theta_0^2}{16} \right) \tag{12}$$

θ_0	Aproximação pelo método de Euler-Cromer	Integral Eliptíca	Forma analítica
$\pi/12$	6.3291139240516383	6.3149738926809489	6.3101004779090131
$\pi/24$	6.2893081761016276	6.2715816787230629	6.2899140998619432
$\pi/48$	6.2893081761016276	6.2508046777271904	6.2848675053501752
$\pi/96$	6.2893081761016276	6.2390644294801740	6.2836058567222342

Como esperado o comportamento do período para ângulos iniciais pequenos pode ser aproximado pela (12) e nas simulações feitas obtive até a aproximação para um erro de até 10^{-2} .

B3

Sabemos que a fórmula geral da oscilação de um do pêndulo simples é dada por

$$\frac{d\omega}{dt} = -\frac{g}{l}\sin\theta - \gamma\frac{d\theta}{dt} + F_o\sin(\Omega t) \tag{13}$$

até agora foram realizadas simulações considerando o sistema não dissipativo, nessa tarefa vamos implementar o cálculo para o caso de $\gamma=1/2$ afim de analizar o comportamento do sistema com forças dissipativas atuando nele.

O γ é chamado fator de amortecimento e determina o quão abrupta será a diminuição do movimento, é esperado que um sistema desse tipo, com $\gamma = \frac{1}{2}$ apresente amortecimento sub-critíco.

Código em Fortran

O código para realizar essa simulação é apenas uma alteração do método de Euler-Cromer com adição dos novos valores utilizados.

```
tt = 7 * pi / 18
      do i = 1, n
2
3
      t = t + dt
4
      tmp_omg = omg - sin(tt) * dt - gamma*omg*dt
      tmp_tt = tt + tmp_omg * dt
9
      omg = tmp_omg
      tt = tmp_tt
10
      write(10, *) t, tmp_tt
11
   end do
^{12}
```

Listing 6: Rotina que realiza o cálculo com $\gamma = \frac{1}{2}$

A partir dos resultados desse programa foi gerado o gráfico (3) , que constata o que esperavamos, que o comportamento das oscilações para o γ escolhido é subcritíco.

Figura 3: Gráfico de $\theta \times t$ com $\gamma = \frac{1}{2}$

B4

Analisando o sistema para o caso onde $\gamma = \frac{1}{2}$, $\Omega = \frac{3}{2}$ com $\Delta t = 0.03$ para $F_0 = 0$, $F_0 = \frac{1}{2}$ e $F_0 = \frac{6}{5}$ temos os gráficos conjuntos de para o θ e ω em função do tempo.

A aproximação numérica para a frequência do caso onde $F_0 = 0$ nós dá f = 6.4516129032256053, esse é o caso do pêndulo com apenas forças dissipativas presentes (sistema analisado no **B3**), portanto, sabemos que a frequência tende a ser nula, já que o sistema é amortecido até não haver mais oscilação.

Para o caso de $F_0 = \frac{1}{2}$ as oscilações forçadas tem energia mantida a mesma durante toda evolução do sistema, por isso o comportamento do gráfico é o de um pêndulo simples, como estudado nas seções anteriores.

Já para $F_0 = \frac{6}{5}$ o sistema tem comportamento caótico. Uma forma de mostrar que o sistema pode ser caótico para um F_0 podemos analisar o comportamento do sistema para difentes valores iniciais de θ , isto é, mostrar que o sistema é sensível a valores iniciais e que valores minimamente diferentes

podem fazer com que o sistema evolua de formas muito diferentes. O gráfico (4) ilustra bem esse fenômeno.

Figura 4: Gráfico de $\theta \times t$ para diferentes θ_s com $\gamma=\frac{1}{2}, \Omega=\frac{2}{3}$ e $F_0=\frac{6}{5}$.

Por causa desse comportamento do gráfico não é possível cálcular a frequência já que o sistema não é periódioco durante toda sua evolução temporal.

Tarefa C

Tarefa D

Tarefa E

Demonstração da integral eliptíca

Sabemos que a energia do sistema do pêndulo é dada pela fórmula $E = \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos\theta$ e a energia inicial do sistema é $E = -mgl\cos\theta_0$, fazendo

$$-mgl\cos\theta_0 = \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos\theta$$

multiplicando a equação por (1/m) temos

$$-gl\cos\theta_0 = \frac{1}{2}l^2\dot{\theta}^2 - gl\cos\theta$$

como queremos chegar numa relação que nos permite escrever o período em função do angulo θ_0 , então vamos isolar a derivada da equação, então

$$gl(\cos\theta - \cos\theta_0) = \frac{1}{2}l^2\dot{\theta}^2$$

$$\frac{2g}{l}(\cos\theta - \cos\theta_0) = \dot{\theta}^2$$

$$\dot{\theta} = \sqrt{\frac{2g}{l}}\sqrt{\cos\theta - \cos\theta_0} = \frac{d\theta}{dt}$$

$$dt = \frac{d\theta}{\sqrt{\frac{2g}{l}}\sqrt{\cos\theta - \cos\theta_0}} = \sqrt{\frac{l}{2g}}\frac{1}{\sqrt{\cos\theta - \cos\theta_0}}d\theta$$

integrando ambos lados no intervalo [0, T/2], ou seja $[-\theta_0, \theta_0]$, temos

$$\int_{0}^{T/2} dt = \sqrt{\frac{l}{2g}} \int_{-\theta_{0}}^{\theta_{0}} \frac{1}{\sqrt{\cos \theta - \cos \theta_{0}}} d\theta$$

$$\frac{T}{2} = \sqrt{\frac{l}{2g}} \int_{-\theta_{0}}^{\theta_{0}} \frac{1}{\sqrt{\cos \theta - \cos \theta_{0}}} d\theta$$

$$T = 2\sqrt{\frac{l}{2g}} \int_{-\theta_{0}}^{\theta_{0}} \frac{1}{\sqrt{\cos \theta - \cos \theta_{0}}} d\theta = \sqrt{\frac{4l}{2g}} \int_{-\theta_{0}}^{\theta_{0}} \frac{1}{\sqrt{\cos \theta - \cos \theta_{0}}} d\theta$$

$$T(\theta_{0}) = \sqrt{\frac{2l}{g}} \int_{-\theta_{0}}^{\theta_{0}} \frac{1}{\sqrt{\cos \theta - \cos \theta_{0}}} d\theta$$
(14)