Internet Addressing

Dept. of Computer Science and Engineering Sogang University

Internet address

To send a message, we need a destination address

Every host connecting to the Internet needs to have a unique address

서울특별시 마포구 백범로35 아담샬관 810호

163.239.27.151

Internet address

IPv4

- the address system used today
- 32 bits
- possible number of hosts: 4,294,967,296

private ip address 192.168.0.2 집마다 ip address를 kt가 주는데, 공유기가 하나의 ip address로 내부망을 구축 원래는 기계마다 ip address를 주어야함

IPv6

- a new address system designed to replace IPv4
 - IPv4 address exhaustion
- Still not used widely, but eventually will
- Routers need to be upgraded in order to support IPv6
 - takes time
- 128 bits

IP address: notations

binary notation

dotted-decimal notation

IP address: exercise

 Convert the following IPv4 addresses into dotteddecimal representation

— 10000001 00001011 00001011 11100111

— 11000001 10000011 00011011 11111111

IP address: exercise

- Dotted-decimal notation: wrong use case
 - **111.56.045.78**
 - -221.34.7.8.20
 - -75.45.301.14
 - **-** 11100010.23.14.67

IP address: hierarchical structure

- Network address + Host address
- Nodes in the same network has the same network address

Ethernet address: flat (no structure)

IP address: allocation

- IP address allocation system
 - Administrator: IANA (Internet Assigned Numbers Authority)
 - allocates address space to continents
 - Asia: APNIC (Asia-Pacific Network Information Center)
 - APNIC allocates IP addresses to countries in Asia
 - Republic of Korea: KRNIC (Korea Network Information Center)
 - KRNIC allocates address space to ISPs (Internet Service Providers) and organizations in Korea

Classful addressing

 system used to allocate address space based on network size

a. Binary notation

b. Dotted-decimal notation

Classful addressing

- class A: IP address (binary notation) starts with '0'
- class B: starts with '10'
- class C: starts with '110'

Classful addressing: exercise

- What are the classes of the following addresses?
 - 00000001 00001011 00001011 11101111
 - 11000001 10000011 00011011 11111111
 - -14.23.120.8
 - -210.115.229.74

Classful addressing

- Network address: indicates a network as a "group of hosts"
 - Class A: 7 bits
 - Class B: 14 bits
 - Class C: 21 bits
- Host address: indicates a host inside a network
 - Class A: 24 bits
 - Class B: 16 bits
 - Class C: 8 bits

Classful addressing

 For large ISPs or organizations, a class A address space is allocated

 For smaller ISPs or organizations, a class B or class C address space is allocated

Class	Number of Blocks	Block Size	Application
A	128	16,777,216	Unicast
В	16,384	65,536	Unicast
С	2,097,152	256	Unicast
D	1	268,435,456	Multicast
Е	1	268,435,456	Reserved

Subnetting

- An organization can re-allocate its address space to organize multiple subnets
- Subnet masks define partition of host part to subnet ID and host ID

- "Supernetting"
 - 여러 c type을 받아서 subnet을 더 큰걸로 해서 합침
 - Similar to subnetting, it is also possible to use subnet mask to <u>combine multiple network addresses</u>
- Using subnet mask, we can define a network of any size → Classless addressing

모두가 subnet mask를 쓰니까 이젠 subnet으로 네트워크를 구분

- Classless addressing is also called "CIDR"
 - Classless Interdomain Routing
 - Widely used in today's routers

- Problem with classful addressing
 - class A and B: too large
 - class C: too small
 - For a network of 1000-2000 hosts, a class C address space is not enough, but a class B address space is too wasteful
- As the number of networks increase, address space should be efficiently allocated
- Classful addressing is inefficient

A newer approach of address allocation

No class: addresses allocated as an address block

- Three rules of address allocation
 - address space should be continuous
 - should not be partitioned
 - Number of addresses should be a power of 2
 - The first address in the block should be divided by number of addresses in the block

Example: an organization needs 16 addresses

allocated: 205.16.37.32 ~ 205.16.37.47

16개의 주소가 있는데 first address in the block (205.16.37.32) 가 16으로 나누어짐

- network mask
 - IP address prefix that indicates the same network
 - IP address: 210.115.227.98
 - subnet mask: 255.255.255.0

11010010 01110011 11100011 01100010

network block address

1111111 1111111 1111111 00000000

앞 28비트가 subnet mask

- network mask
 - representation: x.y.z.t/n
 - n: subnet mask (prefix length)
 - -205.16.37.39/28

11001101 00010000 00100101 00100111

28 binary numbers from the front

Classless addressing: exercise

- An ISP was allocated an IP address block
- One of the address was 205.16.37.39/28
- What is the first address in this block?

```
205.16.37.39/28 \rightarrow 11001101 \ 00010000 \ 00100101 \ 00100111
```

The first address is 11001101 00010000 00100101 00100000

Thus, the first address is 205.16.37.32

- Usually, the first address in a block also indicates the address block itself
 - 205.16.37.32/28 can mean the address block 205.16.37.32 –
 205.16.37.47

Classless addressing: exercise

• One of the addresses allocated to an ISP is 205.16.37.39/28.

What is the last address in this block?

0010 0000 - 0010 1111

205.16.37.47

What is the number of addresses in the block?

Forwarding with CIDR

- Routing table must store entries
 - Entry: (Destination, Next Hop)
- Routing table size affects performance
 - Large size slows down processing
 - Too much space needed
- Solution: prefix routing

- Suppose 194.24.x.x indicates a host in Cambridge university, UK.
- From a router in Sogang University,
 - It is probable that destination address 194.24.1,1,
 194.24.83.72, and 194.24.235.55 will have the same next hop router.
 - Thus, for these destinations, only one route entry is maintained as the following.
 - destination: 194.24.0.0/16
 - If the first 16 bits of the destination matches 194.24.0.0,
 then this entry should be used.

Suppose addresses of hosts in universities are as follows.

University	First address	Last address	How many	Written as
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

The routing table is maintained as follows.

Cambridge: 194.24.0.0/21

– Edinburgh: 194.24.8.0/22

- Oxford: 194.24.16.0/20

- For a packet destined for 194.24.17.4
 - compare the first 21 bits with 194.24.0.0 \rightarrow no match
 - compare the first 22 bits with 194.24.8.0 \rightarrow no match
 - compare the first 20 bits with 194.24.16.0 \rightarrow match
 - Thus the route for Oxford is used.
- If there are multiple matching entries
 - The one with the longest prefix is used

- Destination IP address: 194.24.17.25
 - 11000010 00011000 00010001 00011001
 - Cambridge: 194.24.0.0/21
 - 11000010 00011000 00000000 00000000
 - Edinburgh: 194.24.8.0/22
 - 11000010 00011000 00001000 00000000
 - Oxford: 194.24.16.0/20
 - 11000010 00011000 00010000 00000000
 - Prefix match!

Longest matching prefix

• If destination IP address is 194.24.14.72, which next hop should be used?

Destination	Next Hop	
194.24.0.0/19	London	
194.24.12.0/22	San Francisco	

- Since both routes match, San Francisco is selected as the next hop
 - Longer prefix: a more specific path

Route aggregation

• For routers in Sogang university, routes to Cambridge, Edinburgh, and Oxford all have the same next hop.

• In this case, the three route entries can be aggregated. (route aggregation)

Cambridge: 194.24.0.0/21

Edinburgh: 194.24.8.0/22

• Oxford: 194.24.16.0/20 0001\0000

세 라우터의 공통 부분

aggregated: 194.24.0.0/19

Route aggregation

Used to reduce routing table size

Destination	Next Hop
194.24.12.1	210.115.227.1
194.24.12.2	210.115.227.1
194.24.12.3	210.115.227.1
194.24.12.4	210.115.227.1
194.24.12.5	210.115.227.1
194.24.12.6	210.115.227.1
194.24.12.7	210.115.227.1

Destination	Next Hop	
194.24.12.0/29	210.115.227.1	