方程求解

St Maxwell

2018年10月1日

问题: 求方程 $f(x) = x^2 + x - 0.39 = 0$ 的根。

上图为 f(x), 方程 $f(x) = x^2 + x - 0.39 = 0$ 的两个根分别为 0.3 和 -1.3。

1 二分法

对于两个根,我们分别取 [0,1] 和 [-2,-1] 作为初猜的区间。假定结果精确到小数点后 6 位(其余方法也是如此),所需步数可计算得到:

$$|x_c - r| < \frac{1}{2^{(n+1)}} < 0.5 \times 10^{-6}$$

得到

$$n > \frac{7}{\lg 2} \approx 19.9 = 20$$

2 不动点迭代 2

因此进行 20 次二分便可达到精度要求。下面以右侧的根求解为例:

表 1: 二分法迭代过程

	衣 I: 一分法达代过程			
n	a_n	c_n	b_n	
1	0.0000000	0.5000000	1.0000000	
2	0.0000000	0.2500000	0.5000000	
3	0.2500000	0.3750000	0.5000000	
4	0.2500000	0.3125000	0.3750000	
5	0.2500000	0.2812500	0.3125000	
6	0.2812500	0.2968750	0.3125000	
7	0.2968750	0.3046875	0.3125000	
8	0.2968750	0.3007812	0.3046875	
9	0.2968750	0.2988281	0.3007812	
10	0.2988281	0.2998047	0.3007812	
11	0.2998047	0.3002930	0.3007812	
12	0.2998047	0.3000488	0.3002930	
13	0.2998047	0.2999268	0.3000488	
14	0.2999268	0.2999878	0.3000488	
15	0.2999878	0.3000183	0.3000488	
16	0.2999878	0.3000031	0.3000183	
17	0.2999878	0.2999954	0.3000031	
18	0.2999954	0.2999992	0.3000031	
19	0.2999992	0.3000011	0.3000031	
20	0.2999992	0.3000002	0.3000011	

如表 1所示,函数的解在 (0.2999992, 0.3000011) 之间,区间中点 $c_{20}=0.3000002$ 为最佳估计值。

2 不动点迭代

首先可以简单地将方程改写为:

$$x = 0.39 - x^2 = g_1(x)$$

由此可以构造不动点迭代函数 $g_1(x)$, 其图像见图 2。

2 不动点迭代 3

可以看出函数应当有两个不动点,即对应方程的两个解。但并非每个在不动点附近进行不动点迭代都能够收敛:

$$g_1'(x) = -2x$$

$$|g_1'(0.3)| = 0.6 < 1, \quad |g_1'(-1.3)| = 2.6 > 1$$

因此仅有右边的不动点进行不动点迭代可收敛,而且由于迭代速度 S=0.6>0.5,表明收敛速度小于二分法。

表 2: 不动点迭代过程		
n	x_n	$g_1(x_n)$
1	0.5000000	0.1400000
2	0.1400000	0.3704000
3	0.3704000	0.2528038
4	0.2528038	0.3260902
	:	
25	0.3000010	0.2999994
26	0.2999994	0.3000004
27	0.3000004	0.2999998
28	0.2999998	0.3000001

可以看到,不动点迭代经过28步才收敛。

2 不动点迭代 4

所以我们需要考虑构造更好的不动点迭代函数:

$$g_2(x) = \frac{0.39}{x+1}, \quad g_3(x) = \frac{0.39 - x}{x}$$

 $g_2(x)$ 和 $g_3(x)$ 函数图像

图 3: $g_2(x)$ 和 $g_3(x)$

$$|g_2'(0.3)| = 0.23 < 1, \quad |g_2'(-1.3)| = 4.33 > 1$$

 $|g_3'(0.3)| = 4.33 > 1, \quad |g_3'(-1.3)| = 0.23 < 1$

虽然我们构造的两个新函数同样无法同时用于得到两个根,但对于可收敛 的不动点而言,其收敛速度将会更快。

表 3: 不动点迭代过程

表 3: 个动点迭代过程				
n	x_n	$g_2(x_n)$	x_n'	$g_3(x_n')$
1	0.5000000	0.2600000	-1.5000000	-1.2600000
2	0.2600000	0.3095238	-1.2600000	-1.3095238
3	0.3095238	0.2978182	-1.3095238	-1.2978182
4	0.2978182	0.3005043	-1.2978182	-1.3005043
5	0.3005043	0.2998837	-1.3005043	-1.2998837
6	0.2998837	0.3000269	-1.2998837	-1.3000269
7	0.3000269	0.2999938	-1.3000269	-1.2999938
8	0.2999938	0.3000014	-1.2999938	-1.3000014
9	0.3000014	0.2999997	-1.3000014	-1.2999997
10	0.2999997	0.3000001	-1.2999997	-1.3000001

这两个新的函数均只用了 10 步便收敛成功,比二分法的速度更快。

3 NEWTON 法 5

3 Newton 法

Newton 法的迭代公式为:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

其示意图如下:

图 4: Newton 法

Newton 法通常比之前的两个线性收敛方法更快:

表 4: Newton 法迭代过程

	表 ii itemeni idel (定社			
n	x_n	x_{n+1}	x_n'	x'_{n+1}
1	1.0000000	0.4633333	-1.0000000	-1.3900000
2	0.4633333	0.3138466	-1.3900000	-1.3045506
3	0.3138466	0.3001178	-1.3045506	-1.3000129
4	0.3001178	0.3000000	-1.3000129	-1.3000000
5	0.3000000	0.3000000	-1.3000000	-1.3000000

仅用了5步收敛到方程的解。

4 重根的情况

对于多重根的情况,Newton 法是线性收敛的。 以函数 $f(x)=2\mathrm{e}^{x-1}-x^2-1$ 为例,其 x=1 的根为三重根。 4 重根的情况 6

图 5:
$$f(x) = 2e^{x-1} - x^2 - 1$$

$$f(x) = 2e^{x-1} - x^2 - 1$$
$$f'(x) = 2e^{x-1} - 2x$$
$$f''(x) = 2e^{x-1} - 2$$
$$f'''(x) = 2e^{x-1}$$

f(x)、f'(x)、f''(x) 在 x=1 处均为零, $f'''(1)=2\neq 0$,因此是三重根。 先测试二分法与牛顿法。

二分法的初始区间宽度为 1 ([0.6,1.6]),精度要求与之前相同,因此设定为 20 步。得到的输出结果为 1.0000239,实际上并没有达到我们要求的精度。主要原因是在根附近的函数相当平缓,因此数值误差的影响很大。

而对于 Newton 法,由于这是一个三重根的情况,m=3。所以可以估计其线性收敛速度为 2/3。以下为其前 5 步:

表 5: Newton 法迭代过程

x_n	e_i/e_{i-1}
1.34049846677307	
1.23029037451719	0.676333073389934
1.15502223254582	0.673159843831200
1.10402251421791	0.671016747144078
1.06965098327047	0.669576041245875
	1.34049846677307 1.23029037451719 1.15502223254582 1.10402251421791

4 重根的情况 7

最终经过 30 步迭代,得到的解为 1.0000010。

作为对比,还使用割线法与改进的 Newton 法进行计算。作为对比,将各方法的收敛情况作图:

图 6: 四种方法收敛情况

其中改进 Newton 法使用的迭代公式如下:

$$x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$