Take Home Assignment 2 Due Monday, March 23

With everthing going on right now the Monday deadline is flexible. That being said, if you are going to need extra time please let me know, I will be granting extensions no questions asked but I need to know when to expect your assignment so that nothing falls between the cracks. Good luck and stay safe.

In this set of problems we will study the quaternion group Q_8 . It is a nonabelian group with very interesting properties.

Definition 1. The quaternion group of order 8, denoted Q_8 is the group of the following 8 elements:

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$

subject to the relations:

$$i^2 = j^2 = k^2 = -1$$
,

$$ij = k,$$
 $ji = -k$

$$ij = k,$$
 $ji = -k,$
 $jk = i,$ $kj = -i,$

$$ki = j,$$
 $ik = -j.$

- 1. Let's start with a few simple facts. Much of this is worked out in the book.
 - (a) Write the entire multiplication table for Q_8 .
 - (b) Find a presentation for Q_8 with 2 generators and 3 relations.
 - (c) Prove that Q_8 is not isomorphic to D_8 .
 - (d) Find all the subgroups of Q_8 , and draw its lattice. (Hint: there are 6 total subgroups).
 - (e) Prove that every subgroup of Q_8 is normal.
 - (f) Prove that every subgroup and quotient group of Q_8 is abelian (Hint: use the classification of groups of order 4 and 2, as well as Lagrange's theorem).
 - (g) Compute $Z(Q_8)$ and $Q_8/Z(Q_8)$ (Hint for the second part: you can do this by hand, but it might be slicker to apply Homework 6 problem 5(b)).
 - (h) Write a composition series for Q_8 .
- 2. Now let's follow the proof of Cayley's theorem to exhibit Q_8 as a subgroup of S_8 .
 - (a) Label $\{1,-1,i,-i,j,-j,k,-k\}$ as the numbers $\{1,2,\cdots,8\}$. Then the action of Q_8 on itself by left multiplication gives an injective map $Q_8 \to S_8$. Write the permutation representations for -1 and i as elements $\sigma_{-1}, \sigma_i \in S_8$, and verify that $\sigma_i^2 = \sigma_{-1}$. (Using the multiplication table from question 1 will make this easier).
 - (b) Use the generators from question 1(b) to give two elements of S_8 which generate a subgroup $H \leq S_8$ isomorphic to Q_8 .
 - (c) Is σ_i even or odd?
 - (d) $A_8 \cap H$ is isomorphic to a subgroup of Q_8 . Which one?
- 3. Cayley's theorem says that if |G| = n then G embeds at S_n . But might not be the smallest symmetric group that G embeds in. For example, D_8 embeds in S_4 (thinking about symmetries of the square as permutations of the vertices). Nevertheless, for Q_8 the symmetric group given by Cayley's theorem is the smallest.

- (a) Let Q_8 act an a set A with $|A| \leq 7$. Let $a \in A$. Show that the stabilizer of a, $(Q_8)_a \leq Q_8$ must contain the subgroup $\{\pm 1\}$.
- (b) Deduce that the kernel of the action of Q_8 on A contains $\{\pm 1\}$.
- (c) Conclude that Q_8 cannot embed into S_n for $n \leq 7$.
- 4. Finally let's say a few things about the automorphism group of Q_8 .
 - (a) By counting possible places where the generators may go, show that $|\operatorname{Aut}(Q_8)| \leq 24$.
 - (b) What is $Inn(Q_8)$? (Hint: You already did this in question 1(g)!)
 - (c) Use parts (a) and (b) to conclude that $|\operatorname{Aut}(Q_8)|$ must be one of $\{4, 8, 12, 16, 20, 24\}$. (Note: it will turn out that it is 24, but the proof of this fact is more involved).