산업컴퓨터비전실제

기말 텀프로젝트 - LCD 숫자 검출 및 인식

개요

기말 텀프로젝트

- 중간 프로젝트 때 정한 문제 혹은 새롭게 정한 현업에서의 컴퓨터 비전 문제에 대해서 최종 프로젝트를 진행함
- 14주차 강의까지 배운 내용들을 활용해서 특징 추출, 대응점 탐색, 옵티 컬 플로우, 파노라마 스티칭, 카메라 캘리브레이션, 스테레오 매칭 등을 적용
- 12월 15일 강의시간에 각자 5page 내외로 발표
- 발표자료와 소스코드를 e-campus를 통해 제출 (제출 기한 12/15 11:59PM)

주제

- LCD에 표시된 온도 인식
- ✓ LCD 영역 추출
- ✓ 개별의 숫자 분리
- ✓ 숫자 인식(knn 이용)

영상 처리 순서

원본 영상

학습 영상

영상 처리 순서

영상 처리 순서에 따른 이미지

원본 영상

LCD 영역 추출

숫자 영역 추출

숫자 분리

LCD 영역 추출 code

숫자 인식 및 결과

knn train

Train 영상 (train_numbers.png)

```
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```

개별 영상 사이즈

40 0

code

```
def kNN_train(train_fname, nclass, nsample):
    size = (40, 40) # 숫자 영상 크기
    train_img = cv2.imread(train_fname, cv2.IMREAD_GRAYSCALE) # 학습 영상 적재
    h, w = train_img.shape[:2]
    dy = h \% size[1]//_2
    dx = w \% size[\theta]// 2
    train_img = train_img[dy:h-dy-1, dx:w-dx-1]
                                                           # 학습 영상 여백 제거
    cv2.threshold(train_img, 32, 255, cv2.THRESH_BINARY, train_img)
    cells = [np.hsplit(row, nsample) for row in np.vsplit(train_img, nclass)]
    nums = [find_number(c) for c in np.reshape(cells, (-1, 40,40))]
    trainData = np.array([place_middle(n, size) for n in nums])
    labels = np.array([i for i in range(nclass) for j in range(nsample)], np.float32)
    knn = cv2.ml.KNearest_create()
    knn.train(trainData, cv2.ml.ROW_SAMPLE, labels) # k-NN 학습 수행
    return knn
```

숫자 영역 추출 및 인식

숫자 영역 추출

숫자 인식

```
#太자...있싓
digit_img = th_lcd_image[y_digit_min:y_digit_max, x_digit_min: x_digit_max]
                                                                                                       numbers = [find_number(cell) for cell in roi_imgs]
                                                                                                       datas = [place_middle(num, (40,40)) for num in numbers]
fcimg, contours, hierarchy = cv2.findContours(digit_img.copy(), cv2.RETR_LIST_cv2.CHAIN_APPROX_SIMPLE)
                                                                                                       _, resp1, _, _ = nknn.findNearest(datas, K1)
digitCnts = []
roi_imgs =[]
                                                                                                       print(resp1)
contours.reverse()
 or cnt in contours:
    area = cv2.contourArea(cnt)
   [x, y, w, h] = cv2.boundingRect(cnt)
        digitCnts.append(cnt)
       each_digit_img = digit_img[y:y+h, x: x+w]
       roi_imgs.append(each_digit_img)
       cv2.rectangle(digit_img, (x, y), (x + w, y + h), (\theta, \theta, 255))
```

문제점 및 추가 과제

숫자 영역 추출

- •현재 절대 좌표 입력
- •향후 자동 추출 할 수 있는 방법 고려

인식 알고리즘 개선

- 현재 knn 적용
- 많은 데이터 추출 필요
- 데이터 추출 후 다른 알고리즘 적용 및 인식률 비교/개선 필요

물리적 환경 변화에 대응 가능한 전처리 방법 개선

- 다양한 영상 Skew에 대한 테스트 필요
- Skew 보정 알고리즘 적용 필요