0.1 Bestimmung der Reaktionsordnung

Probe 1 1. Ordnung

0.2 Bestimmung der Ionenstärke und K_{ps}

$$I = \frac{1}{2} \sum c_i z_i^2$$
 $B = \sqrt{\frac{2e_0^2 N_A}{\epsilon_0 \epsilon_r k_b T}}$ $g(I) = \frac{\sqrt{I}}{1 + Br\sqrt{I}}$

Temp. [C]	Ionenstärke $[\text{mol}/m^3]$	В	g(l)
25	45	104407920,2	4,501326352
25	45	104407920,2	4,501326352
25	45	104407920,2	4,501326352
25	60	104407920,2	4,945965598
25	130	104407920,2	$6,\!219240179$
30	130	105245280,4	$6,\!196650778$
30	130	105245280,4	6,196650778

0.3 Bestimmung der Teilreaktionsordnung von OH^-

K_{ps}	$\ln(K_{ps})$	Konz. OH^-	$\ln(\text{Konz.})$
-0,0015	-6,502290171	0,015	-4,199705078
-0,0024	-6,032286542	0,03	-3,506557897
-0,006	-5,11599581	0,045	-3,101092789

Die experimentell bestimmte Reaktionsordnung m ist 1,199, also 1.

0.4 Bestimmung der Geschwindigkeitskonstante k

$$k = \frac{k_{ps}}{c[OH^-]}$$

Temp. [C]	K_{ps}	K
25	0,0015	0,1
25	0,0022	0,0733333333
25	0,006	$0,\!1333333333$
25	0,0035	$0,\!116666667$
25	0,0025	0,0833333333
30	0,0026	0,086666667
30	0,0025	0,0833333333

0.4.1 Graphische Beschreibung der Ionenstärkeabhängigkeit von k

Ionenstärkeabhängigkeit von I

Lösung	ln(k)	g(l)
2	-2,0149	4,501326352
4	-2,484	$6,\!219240179$
5	-2,4456	$6,\!196650778$

 $\ln k_0 = -0.8259$ damit beträgt $k_0 = 0.438$

0.5 Bestimmung der Temperaturabhängigkeit von k