

Capítulo I

ANÁLISE VETORIAL

1.1 - CONCEITOS GERAIS

• *Grandeza Escalar* – Representada por um <u>número real</u>, positivo ou negativo, acompanhado ou não de unidade de medida.

<u>Ex.</u>: Tensão ou potencial, corrente, carga, tempo, massa, volume, temperatura, pressão, índice de refração, etc.

• *Grandeza Vetorial* – Representada por uma <u>magnitude</u>, <u>direção</u> e <u>sentido</u>.

Ex.: Densidade de corrente, velocidade, aceleração, força, torque, etc.

Atenção: No curso de Eletromagnetismo não será feita distinção entre a magnitude, módulo, intensidade e valor absoluto de um vetor. A magnitude de um vetor é um valor sempre positivo.

• Campo Escalar – Cada ponto da região é representado por um escalar.

Ex.: Campo de potenciais, campo de temperaturas, campo de pressões, etc.

Notação: Seja $\phi = x^2 + y^2 + z^2 = 100$ definindo um campo escalar.

Se ϕ = potencial \Rightarrow temos uma superfície equipotencial esférica.

Se ϕ = temperatura \Rightarrow temos uma superfície isotérmica esférica.

Se ϕ = pressão \Rightarrow temos uma superfície isobárica esférica.

• Campo Vetorial - Cada ponto da região equivale a um vetor.

Ex.: Campo elétrico, campo magnético, campo gravitacional, etc.

<u>Notação</u>: Seja $\vec{E} = 3\vec{a}_x + 4\vec{a}_y + 5\vec{a}_z$ definindo um campo vetorial.

Se $\vec{E}=$ campo elétrico \Rightarrow temos uma região onde o campo elétrico é uniforme, possuindo módulo igual a $|\vec{E}|=5\sqrt{2}$ e direção fixa definida pelos vetores unitários (também chamados de versores): \vec{a}_x , \vec{a}_y e \vec{a}_z .

Atenção: No curso de Eletromagnetismo adota-se a seguinte notação para vetores: \vec{A} ou \overline{A} , sendo que seu módulo pode ser representado por $|\vec{A}|$ ou $|\overline{A}|$, ou, simplesmente, A.

1.2 - O PRODUTO ESCALAR (OU PRODUTO INTERNO)

O produto escalar entre 2 vetores \overline{A} e \overline{B} é definido como:

$$\overrightarrow{A} \bullet \overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \theta$$
 ($\theta = \text{menor ângulo entre } \overline{A} \in \overline{B}$)

Propriedades do produto escalar:

- (a) $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ (propriedade comutativa)
- (b) $\vec{A} \cdot \vec{B} = 0 \Leftrightarrow \vec{A} \perp \vec{B}$ (o produto escalar entre 2 vetores perpendiculares é nulo)

(c)
$$\vec{A} \cdot \vec{A} = \left| \vec{A} \right|^2 = A^2$$

(i) Aplicação do produto escalar: obtenção da componente ou projeção de um vetor (ex.: B) numa dada direção (ex.: o vetor \overline{A} ou o eixo $x \rightarrow$ ver figuras).

A <u>projeção</u> (ou componente) <u>escalar</u> do vetor \overline{B} sobre o vetor \overline{A} é:

$$B_{a} = \overline{B} \bullet \overline{a} = \overline{B} \bullet \left(\frac{\overline{A}}{|\overline{A}|} \right)$$

 $\frac{A}{|\overline{A}|}$ | $(\overline{a} = \text{vetor unitário na direção de } \overline{A})$

A projeção (ou componente) vetorial do vetor \overline{B} sobre \overline{A} é:

$$\boxed{\overline{B}_{a} = (\overline{B} \bullet \overline{a}) \overline{a}} \Rightarrow \overline{B}_{a} = \left(B \bullet \frac{\overline{A}}{|\overline{A}|}\right) \frac{\overline{A}}{|\overline{A}|}$$

A projeção escalar (B_x) do vetor \overline{B} sobre o eixo x é:

$$B_{x} = \overline{B} \bullet \overline{a}_{x}$$

 $B_{\mathbf{x}} = \overline{B} \bullet \overline{a}_{\mathbf{x}}$ $(\overline{a}_{\mathbf{x}} = \text{vetor unitation a direção do eixo } x)$

A projeção vetorial (\overline{B}_x) do vetor \overline{B} sobre o eixo x é:

$$\overline{\overline{B}}_{x} = \overline{B}_{x} \overline{a}_{x} = (\overline{B} \bullet \overline{a}_{x}) \overline{a}_{x}$$

(ii) Aplicação do produto escalar: obtenção do <u>ângulo</u> compreendido entre 2 vetores quaisquer.

O ângulo θ compreendido entre 2 vetores \overline{A} e \overline{B} é obtido por:

Ângulo agudo se $\cos \theta$ for positivo

$$\theta$$
 \overline{B}
 \hat{A} ngulo reto
se $\cos \theta$ for zero

se $\cos \theta$ for negativo

Ângulo obtuso

1.3 - O PRODUTO VETORIAL (OU PRODUTO EXTERNO)

O produto vetorial entre 2 vetores \overline{A} e \overline{B} é definido como:

$$|\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| sen\theta \vec{a}_n \qquad (\theta = \text{menor ângulo entre } \overline{A} \text{ e } \overline{B})$$

 \vec{a}_n = vetor unitário (versor) normal ao plano formado pelos vetores \overline{A} e \overline{B} , cuja direção (e sentido) é obtida pela regra do saca-rolhas (mão direita) indo de \overline{A} para \overline{B} .

Propriedades do produto vetorial:

- (a) $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ (propriedade não-comutativa)
- (b) $\vec{A} \times \vec{B} = 0 \Leftrightarrow \vec{A} // \vec{B}$ (o produto vetorial entre 2 vetores paralelos é nulo)
- (c) $\vec{A} \times \vec{A} = 0$

(i) Aplicação do produto vetorial:

Obtenção do <u>vetor</u> ou<u>versor normal</u> a um plano formado por 2 vetores \overline{A} e \overline{B} .

$$\vec{A} = \vec{A} \times \vec{B}$$
 (vetor normal)
 $\vec{A}_n = \frac{\vec{N}}{|\vec{N}|} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}$ (versor normal)

(ii) Aplicação do produto vetorial:

Obtenção da <u>área</u> de um <u>paralelogramo</u> (ou <u>triângulo</u>) cujos lados são as magnitudes dos vetores \overline{A} e \overline{B} .

$$\begin{split} &S_{paralelogramo} = Base \times Altura = \left| \vec{B} \right| \left| \vec{A} \right| \text{ sen} \theta = \left| \vec{A} \times \vec{B} \right| \\ &S_{triângulo} = \frac{1}{2} S_{paralelogramo} = \frac{1}{2} \left| \vec{A} \times \vec{B} \right| \end{split}$$

Exercício: Demonstrar que o volume de um paralelepípedo pode ser obtido através do produto misto, expresso por:

$$vol = \left| \left(\vec{A} \times \vec{B} \right) \bullet \vec{C} \right|$$

 $com \left| \vec{A} \right|, \left| \vec{B} \right| e \left| \vec{C} \right|$ representando, respectivamente, o comprimento, a largura e a altura do paralelepípedo.

 $\underline{\textbf{Solução:}} \left| \left(\vec{A} \times \vec{B} \right) \bullet \vec{C} \right| = \left| \left(\left| \vec{A} \right| \right| \vec{B} \middle| sen \theta \left| \vec{a}_n \right| \bullet \vec{C} \right) \right| = \left| \left(\vec{A} \middle| \vec{B} \middle| sen \theta \left| \vec{a}_n \right| \bullet \vec{C} \right) \right| = \left| \left(\vec{A} ea \ da \ base \right) \left($

1.4 – SISTEMAS DE COORDENADAS CARTESIANAS, CILÍNDRICAS E ESFÉRICAS

1.4.1 - Representação de um ponto nos 3 sistemas de coordenadas

1.4.2 - Transformações entre os 3 sistemas de coordenadas

Quadro das transformações entre os três sistemas de coordenadas

SISTEMA	Cartesiano	Cilíndrico	Esférico
Cartesiano	x = x	$x = \rho \cos \phi$	$x = r sen \theta cos \phi$
	y = y	$y = \rho \operatorname{sen} \phi$	$y = rsen\theta sen\phi$
	z = z	z = z	$z = r\cos\theta$
Cilíndrico	$\rho = \sqrt{x^2 + y^2}$ $\rho > 0$	$\rho = \rho$	$\rho = r \operatorname{sen} \theta$
	$\rho = \sqrt{x^2 + y^2} \qquad \rho \ge 0$ $\phi = \tan^{-1}(y/x) 0 \le \phi \le 2\pi$	$\phi = \phi$	$\phi = \phi$
	$\phi = \tan^{-1}(y/x) 0 \le \phi \le 2\pi$	z = z	$z = r\cos\theta$
	z = z		
Esférico	$r = \sqrt{x^2 + y^2 + z^2} \qquad r \ge 0$	$r = \sqrt{\rho^2 + z^2} \qquad r \ge 0$	r = r
	$\theta = \tan^{-1} \left(\sqrt{x^2 + y^2} / z \right) 0 \le \theta \le \pi$	$\theta = \tan^{-1}(\rho/z)$ $0 \le \theta \le \pi$	$\theta = \theta$
	$\phi = \tan^{-1}(y/x) \qquad 0 \le \phi \le 2\pi$	$\phi = \phi \qquad 0 \le \phi \le 2\pi$	$\phi = \phi$

1.4.3 - Vetores unitários nos 3 sistemas de coordenadas

1.4.4 – Produtos escalares entre vetores unitários nos 3 sistemas de coordenadas

Coordenadas cartesianas e cilíndricas

_	$\vec{a}_{ m p}$	\vec{a}_{ϕ}	\vec{a}_z
$\vec{a}_x \bullet$	cosф	- senф	0
a _y •	senф	cosф	0
\vec{a}_z •	0	0	1

Coordenadas cartesianas e esféricas

		\vec{a}_r	\vec{a}_{θ}	\vec{a}_{ϕ}
\vec{a}_{x}	•	sen0 cos\$	cosθ cosφ	- sen
\vec{a}_y	•	senθsenφ	cosθsenφ	cosф
\vec{a}_z	•	cosθ	- sen0	0

Nota: O produto escalar entre o vetor unitário \vec{a}_x (ou \vec{a}_y) e o vetor unitário \vec{a}_r (ou \vec{a}_θ) do sistema de coordenadas esféricas, é dado pelo cosseno do ângulo formado entre o vetor unitário esférico \vec{a}_r (ou \vec{a}_θ) e sua projeção no plano xy, multiplicado pelo cosseno do ângulo formado por esta projeção e o vetor unitário \vec{a}_x (ou \vec{a}_y).

Exercício: Completar o quadro abaixo relativo ao produto escalar entre vetores unitários dos sistemas de coordenadas cilíndricas e esféricas

	\vec{a}_r	\vec{a}_{θ}	\vec{a}_{ϕ}
ā _ρ •			
\vec{a}_{ϕ} •			
$\vec{a}_z \bullet$			

1.4.5 - Elementos diferenciais de linha, área e volume nos 3 sistemas de coordenadas

Quadro dos elementos diferenciais nos 3 sistemas de coordenadas

	Quadro dos etementos diferencias	is nos o sistemas ac coo	racraaas
Sistema	Linha $(d\overline{L})$	Área $(d\overline{S})$	Volume(dv)
Cartesiano	$d\overline{L} = dx \overline{a}_x + dy \overline{a}_y + dz \overline{a}_z$	$d\overline{S}_x = dydz\overline{a}_x$	dv = dx dy dz
		$d\overline{S}_{y} = dxdz\overline{a}_{y}$	
		$d\overline{S}_z = dxdy\overline{a}_z$	
Cilíndrico	$d\overline{L} = d\rho \overline{a}_{\rho} + \rho d\phi \overline{a}_{\phi} + dz \overline{a}_{z}$	$d\overline{S}_{\rho} = \rho d\phi dz \overline{a}_{\rho}$	$dv = \rho d\rho d\phi dz$
		$d\overline{S}_{\phi} = d\rho dz \overline{a}_{\phi}$	
		$d\overline{S}_{z} = \rho d\rho d\phi \overline{a}_{z}$	
Esférico	$d\overline{L} = dr\overline{a}_r + rd\theta\overline{a}_\theta + r sen\theta d\phi \overline{a}_\phi$	$d\overline{S}_{r} = r^{2} \operatorname{sen} \theta d\theta d\phi \overline{a}_{r}$	$dv = r^2 \sin \theta dr d\theta d\phi$
		$d\overline{S}_{\theta} = r \operatorname{sen} \theta dr d\phi \overline{a}_{\theta}$	
		$d\overline{S}_{\phi} = rdrd\theta \overline{a}_{\phi}$	

1.5 - EXERCÍCIOS PROPOSTOS

- 1.1) As superfícies que delimitam um volume são definidas por: $\rho = 5$ e $\rho = 10$, $\phi = 2\pi/9$ e $\phi = 7\pi/9$, z = 2 e z = 20. Determinar:
 - a) O volume determinado pelas superfícies em questão, utilizando integração;
 - b) O comprimento de um segmento linear que une dois vértices opostos do volume.

Respostas: a) Volume = 375π ; b) PQ = 21,59.

- 1.2) Um vetor $\vec{\bf E} = \vec{\bf a}_{\rho} + \vec{\bf a}_{\phi} + \vec{\bf a}_{z}$ está aplicado no ponto P(x = 0, y = 1, z = 1) da superfície plana x + y + z = 2. Determinar:
 - a) o vetor $\vec{\mathbf{E}}$ no sistema de coordenadas cartesianas;
 - b) o ângulo θ que o vetor ${\bf E}$ faz com o vetor normal à superfície plana;
 - c) as duas componentes vetoriais de $\vec{\mathbf{E}}$ normal e tangencial à superfície plana.

Respostas: a) $\vec{E} = -\vec{a}_x + \vec{a}_y + \vec{a}_z$; b) $\theta = 70.53^{\circ}$;

c)
$$\vec{\mathbf{E}}_{N} = \frac{1}{3} (\vec{\mathbf{a}}_{x} + \vec{\mathbf{a}}_{y} + \vec{\mathbf{a}}_{z}) e \ \vec{\mathbf{E}}_{T} = \frac{1}{3} (-4\vec{\mathbf{a}}_{x} + 2\vec{\mathbf{a}}_{y} + 2\vec{\mathbf{a}}_{z}).$$

- 1.3) Um vetor \vec{A} , com módulo igual a 10, está orientado do ponto $P(r = 5; \theta = \pi/4; \phi = \pi/4)$ à origem de um sistema de coordenadas cartesianas. Expressar este vetor em:
 - a) coordenadas esféricas no ponto P.
 - b) coordenadas cartesianas no ponto P.

Respostas:a) $\vec{\mathbf{A}} = -10\vec{\mathbf{a}}_{\mathrm{r}}$; b) $\vec{\mathbf{A}} = -5\vec{\mathbf{a}}_{\mathrm{x}} - 5\vec{\mathbf{a}}_{\mathrm{y}} - 5\sqrt{2}\vec{\mathbf{a}}_{\mathrm{z}}$.

- 1.4) Dado o vetor $\vec{A} = \vec{a}_x + \vec{a}_y + \vec{a}_z$ aplicado ao ponto $P(x = -\sqrt{3}, y = 1, z = 2)$, determinar:
 - a) As coordenadas esféricas r, θ e ϕ do ponto P;
 - b) O ângulo α que \vec{A} faz com a superfície esférica, centrada na origem, que passa por P;
 - c) O ângulo β que \vec{A} faz com a superfície cônica, coaxial com o eixo z, que passa por P;
 - d) O ângulo γ que \vec{A} faz com o semi-plano radial, partindo do eixo z, que passa por P.

Respostas:a) $P(r = 2\sqrt{2}; \theta = 45^{\circ}; \phi = 150^{\circ}); b) \alpha = 75^{\circ}; c) \beta = 123.9^{\circ}; d) \gamma = 142.06^{\circ}.$

- 1.5) Um vetor $\vec{\bf A}$, de módulo igual 8, está situado sobre a linha reta que passa pelos pontos $P(r=10,\,\theta=30^{\circ},\,\phi=0^{\circ})$ e $Q(r=20,\,\theta=60^{\circ},\,\phi=90^{\circ})$, e orientado no sentido de P a Q. Determinar:
 - a) O vetor $\vec{\mathbf{A}}$ expresso em coordenadas cartesianas;
 - b) O ângulo que o vetor \vec{A} faz com o vetor normal à superfície plana z = 0;
 - c) O módulo da projeção do vetor $\vec{\mathbf{A}}$ sobre a superfície plana z=0.

Respostas:a) $\vec{\mathbf{A}} = -2.21 \vec{\mathbf{a}}_{x} + 7.67 \vec{\mathbf{a}}_{y} + 0.59 \vec{\mathbf{a}}_{z}$; b) $\alpha = 85.75^{\circ}$; c) $|\text{Proj }\vec{\mathbf{A}}| = 7.98$.

Capítulo I: ÁNÁLISE VETORIAL

- 1.6) Transformar o vetor $\vec{\mathbf{E}} = 5x \, \vec{\mathbf{a}}_x$ para coordenadas esféricas nos seguintes pontos:
 - a) $A(r = 4, \theta = 30^{\circ}, \phi = 120^{\circ});$
 - b) B(x = $-\sqrt{2}$, y = $\sqrt{2}$, z = -2).

Respostas:a)
$$\vec{\mathbf{E}} = \frac{5}{4}\vec{\mathbf{a}}_{\mathrm{r}} + \frac{5\sqrt{3}}{4}\vec{\mathbf{a}}_{\theta} + \frac{5\sqrt{3}}{2}\vec{\mathbf{a}}_{\phi}$$
; b) $\vec{\mathbf{E}} = \frac{5\sqrt{2}}{2}\vec{\mathbf{a}}_{\mathrm{r}} - \frac{5\sqrt{2}}{2}\vec{\mathbf{a}}_{\theta} + 5\vec{\mathbf{a}}_{\phi}$.

- 1.7) Sejam dados os pontos A(r = 1, $\theta = \pi/3$, $\phi = \pi/6$) e B(r = 3, $\theta = \pi/2$, $\phi = \pi/4$), os quais representam 2 vértices extremos da porção de um volume esférico formado com estes pontos. Determinar, usando integração quando possível, o seguinte:
 - a) O volume total (vol) da porção de volume esférico formado;
 - b) Os vetores normais de área, $\vec{\mathbf{S}}_{\mathrm{r}}$, $\vec{\mathbf{S}}_{\theta}$ $\vec{\mathbf{S}}_{\phi}$, que saem da superfície da porção de volume esférico nas direções dos vetores unitários $\vec{\mathbf{a}}_{\mathrm{r}}$, $\vec{\mathbf{a}}_{\theta}$ e $\vec{\mathbf{a}}_{\phi}$, respectivamente;
 - c) O comprimento do segmento AB ("diagonal principal" da porção de volume esférico);
 - d) O vetor \overrightarrow{AB} , localizado em A e dirigido de A para B, expresso em coordenadas esféricas.

Respostas: a) vol. =
$$\frac{13\pi}{36}$$
; b) $\vec{\mathbf{S}}_{r} = \frac{3\pi}{8}\vec{\mathbf{a}}_{r}$, $\vec{\mathbf{S}}_{\theta} = \frac{\pi}{3}\vec{\mathbf{a}}_{\theta}$, $\vec{\mathbf{S}}_{\phi} = \frac{2\pi}{3}\vec{\mathbf{a}}_{\phi}$; c) AB = 2,2318 d) $\vec{\mathbf{AB}} = 1,3713\vec{\mathbf{a}}_{x} + 1,6883\vec{\mathbf{a}}_{y} - 0,5\vec{\mathbf{a}}_{z} = 1,5093\vec{\mathbf{a}}_{r} + 1,4487\vec{\mathbf{a}}_{\theta} + 0,7786\vec{\mathbf{a}}_{\phi}$.

- 1.8) Sejam dados os dois pontos $A(r = 10, \theta = 45^{\circ}, \phi = 0^{\circ})$ e $B(r = 10, \theta = 60^{\circ}, \phi = 90^{\circ})$. Determinar:
 - a) A distância <u>d</u> entre os dois pontos medida em linha reta;
 - b) A distância <u>d'</u> entre os dois pontos medida ao longo da superfície esférica r = 10.

Respostas: a) d = 11,37 unidades de comprimento.

b) d' = 12,09 unidades de comprimento.

- 1.9) a) Se os vetores $\overline{A} = x\overline{a}_x + 3\overline{a}_y + 3\overline{a}_z$, $\overline{B} = 2\overline{a}_x + y\overline{a}_y + 2\overline{a}_z$, e $\overline{C} = \overline{a}_x + \overline{a}_y + z\overline{a}_z$, representam os lados de um paralelepípedo retângulo, quais os valores de x, y e z?
 - b) Determinar o volume do paralelepípedo retângulo formado acima.

Respostas: a) x = -1.5, y = -1.0, z = -0.5 unidades de comprimento; b) vol. = 20.25 unidades de volume

- 1.10) Sejam 2 pontos em coordenadas esféricas $(r = 5, \theta = 60^{\circ}, \phi = 30^{\circ})$ e $(r = 5, \theta = 30^{\circ}, \phi = 120^{\circ})$. Determinar:
 - a) A distância entre os 2 pontos medida em linha reta;
 - **b**) A distância entre os 2 pontos medida ao longo da superfície esférica r = 5;
 - c) O ângulo entre as 2 linhas que se estendem da origem até os 2 pontos;
 - **d)** A área compreendida entre estas 2 linhas e o círculo de raio r = 5.

Respostas: a) AB = 5,32 unidades de comprimento; b) AB = 5,61 unidades de comprimento; c) $64,34^{\circ} = 1,123$ rad, d) área = 14,04 unidades de área.

- 1.11) Um círculo, centrado na origem, com raio de 2 unidades, situa-se sobre o plano xy. Determinar o vetor unitário, situado sobre o plano xy, que é tangente ao círculo no pontoP $(\sqrt{3}, 1, 0)$ e está apontado no sentido de crescimento do eixo y:
 - (a) Em coordenadas cartesianas;
- (b) Em coordenadas esféricas.

Respostas:a)
$$\overline{a} = -\frac{1}{2}\overline{a}_x + \frac{\sqrt{3}}{2}\overline{a}_y$$
; b) $\overline{a} = \overline{a}_{\phi}$

1.12) Determinar uma expressão para calcular a distância entre dois pontos $P(\rho_1, \phi_1, z_1)$ e $Q(\rho_2, \phi_2, z_2)$ em função das coordenadas cilíndricas dos pontos.

Resposta:
$$d = \sqrt{\rho_1^2 + \rho_2^2 - 2\rho_1\rho_2\cos(\phi_2 - \phi_1) + (z_2 - z_1)^2}$$

1.13) Demonstrar que $\cos \alpha = \sin \theta \cos \phi$, usando produtos escalares, sendo:

 α = ângulo entre o versor \vec{a}_r (coord. esférica) e o versor \vec{a}_x (coord. cartesiana)

 θ = ângulo entre o versor \vec{a}_z (coord. cartesiana) e o versor \vec{a}_r (coord. esférica)

 ϕ = ângulo entre o versor \vec{a}_x (coord. cartesiana) e o versor \vec{a}_ρ (coord. cilíndrica).

Resposta: Sugestão: Observar que $\vec{a}_r = \vec{a}_\rho \sin \theta + \vec{a}_z \cos \theta$ e que $\vec{a}_r \cdot \vec{a}_x = \cos \alpha$, $\vec{a}_\rho \cdot \vec{a}_x = \cos \phi$ e $\vec{a}_z \cdot \vec{a}_x = 0$

Anotações