Identify the surfaces represented by the equations in Exercises 1–16 and sketch their graphs.

$$1. \ x^2 + 4y^2 + 9z^2 = 36$$

2.
$$x^2 + y^2 + 4z^2 = 4$$

1. ellisoid
(0,0,4)
(0,9,5)

3.
$$2x^2 + 2y^2 + 2z^2 - 4x + 8y - 12z + 27 = 0$$

4.
$$x^2 + 4y^2 + 9z^2 + 4x - 8y = 8$$

3. 7,7

4. ??

5.
$$z = x^2 + 2y^2$$

6.
$$z = x^2 - 2y^2$$

7.
$$x^2 - y^2 - z^2 = 4$$

$$8. -x^2 + y^2 + z^2 = 4$$

6.

elliptic parabilitid

hyperbolic paraboloted

7.

hyperboloid

two sheet

x²-y¹ >4 x² >4+y²

$$\begin{cases}
7. & -x^2 + y^2 + z^2 = 4 \\
2^2 = 4 + x^2 - y^2
\end{cases}$$

$$2^2 = x^2 - y^2 + 4$$

$$2 = \sqrt{x^2 - y^2 + 4}$$

EXERCISES 10.5

Identify the surfaces represented by the equations in Exercises 1-16 and sketch their graphs.

1.
$$x^2 + 4y^2 + 9z^2 = 36$$
 2. $x^2 + y^2 + 4z^2 = 4$

2.
$$x^2 + y^2 + 4z^2 = 4$$

3.
$$2x^2 + 2y^2 + 2z^2 - 4x + 8y - 12z + 27 = 0$$

4.
$$x^2 + 4y^2 + 9z^2 + 4x - 8y = 8$$

5.
$$z = x^2 + 2y^2$$

6.
$$z = x^2 - 2y^2$$

7.
$$x^2 - y^2 - z^2 = 4$$

8.
$$-x^2 + y^2 + z^2 = 4$$

9.
$$z = xy$$

10.
$$x^2 + 4z^2 = 4$$

11.
$$x^2 - 4z^2 = 4$$
 12. $y = z^2$

13.
$$x = z^2 + z$$

14.
$$x^2 = y^2 + 2z^2$$

15.
$$(z-1)^2 = (x-2)^2 + (y-3)^2$$

16.
$$(z-1)^2 = (x-2)^2 + (y-3)^2 + 4$$

Describe and sketch the geometric objects represented by the systems of equations in Exercises 17-20.

17.
$$\begin{cases} x^2 + y^2 + z^2 = 4 \\ x + y + z = 1 \end{cases}$$

18.
$$\begin{cases} x^2 + y^2 = 1 \\ z = x + y \end{cases}$$

19.
$$\begin{cases} z^2 = x^2 + y^2 \\ z = 1 + x \end{cases}$$

20.
$$\begin{cases} x^2 + 2y^2 + 3z^2 = 6 \\ y = 1 \end{cases}$$

21. Find two one-parameter families of straight lines that lie on the hyperboloid of one sheet

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

22. Find two one-parameter families of straight lines that lie on the hyperbolic paraboloid z = xy.

23. The equation $2x^2 + y^2 = 1$ represents a cylinder with elliptical cross-sections in planes perpendicular to the z-axis. Find a vector a perpendicular to which the cylinder has circular cross-sections.

11. 24. The equation $z^2 = 2x^2 + y^2$ represents a cone with elliptical cross-sections in planes perpendicular to the z-axis. Find a vector a perpendicular to which the cone has circular cross-sections. Hint: Do Exercise 23 first and use its result.

2. 2x2+2y2+2=2-4x+8y-12=+17=0

つ可以complete squares 成:

Cross-section 是 Semi-axises為形, 框的椭圆。

> hyperbolsTo paraboloTd 雙曲抛制面

5. $(x^2 - y^2 - z^2 = 4)$ $(x^2 - y^2 - z^2 = 4)$ $(x^2 - 4 + y^2 + z^2)$ X = N 44 y 3 22 > hyperboloid of two sheets, vertex/3 ±2
(Sub y, 2 =0),

CNOSS section = 图形, radius /2, 垂自於 x-axis

6.
$$-x^{2}+y^{2}+z^{2}=4$$

 $-x^{2}=4-y^{2}-z^{2}$
 $x^{2}=-4+y^{2}+z^{2}$
 $x=\sqrt{y^{2}+z^{2}-4}$

Section 10.5 Quadric Surfaces (page 598)

1.
$$x^2 + 4y^2 + 9z^2 = 36$$

 $\frac{x^2}{6^2} + \frac{y^2}{2^2} + \frac{z^2}{2^2} = 1$

 $\frac{x^2}{6^2} + \frac{y^2}{3^2} + \frac{z^2}{2^2} = 1$ This is an ellipsoid with centre at the origin and semi-

2. $x^2 + y^2 + 4z^2 = 4$ represents an oblate spheroid, that is, an ellipsoid with its two longer semi-axes equal. In this case the longer semi-axes have length 2, and the shorter one (in the z direction) has length 1. Cross-sections in planes perpendicular to the z-axis between z = -1 and z = 1 are circles.

3.
$$2x^2 + 2y^2 + 2z^2 - 4x + 8y - 12z + 27 = 0$$

 $2(x^2 - 2x + 1) + 2(y^2 + 4y + 4) + 2(z^2 - 6z + 9)$
 $= -27 + 2 + 8 + 18$
 $(x - 1)^2 + (y + 2)^2 + (z - 3)^2 = \frac{1}{2}$

This is a sphere with radius $1/\sqrt{2}$ and centre (1, -2, 3).

4.
$$x^2 + 4y^2 + 9z^2 + 4x - 8y = 8$$

 $(x+2)^2 + 4(y-1)^2 + 9z^2 = 8 + 8 = 16$
 $\frac{(x+2)^2}{4^2} + \frac{(y-1)^2}{2^2} + \frac{z^2}{(4/3)^2} = 1$
This is an ellipsoid with centre $(-2, 1, 0)$ and semi-axes

5. $z = x^2 + 2y^2$ represents an elliptic paraboloid with vertex at the origin and axis along the positive z-axis. Crosssections in planes z = k > 0 are ellipses with semi-axes \sqrt{k} and $\sqrt{k/2}$.

Fig. 10.5.5

6. $z = x^2 - 2y^2$ represents a hyperbolic paraboloid.

Fig. 10.5.6

7. $x^2 - y^2 - z^2 = 4$ represents a hyperboloid of two sheets with vertices at $(\pm 2, 0, 0)$ and circular cross-sections in planes x = k, where |k| > 2.

$$\kappa^{2} = 4 + y^{2} + 2^{2}$$

$$\kappa^{2} = 4 + y^{2} + 2^{2}$$

$$\kappa^{2} = 4 + y^{2} + 2^{2}$$

$$\kappa^{3} = 4 + y^{2} + 2^{2}$$

$$\kappa^{4} = 4 + y^{2} + 2^{2}$$

Fig. 10.5.7

Fig. 10.5.10

- **8.** $-x^2 + y^2 + z^2 = 4$ represents a hyperboloid of one sheet, with circular cross-sections in all planes perpendicular to the *x*-axis.
- 11. $x^2 4z^2 = 4$ represents a hyperbolic cylinder with axis along the y-axis.

Fig. 10.5.8

z = xy represents a hyperbolic paraboloid containing the

12. $y = z^2$ represents a parabolic cylinder with vertex line along the x-axis.

x- and y-axes.

 $y=x^2$

I

Fig. 10.5.9

Fig. 10.5.12

- **10.** $x^2 + 4z^2 = 4$ represents an elliptic cylinder with axis along the *y*-axis.
- 13. $x = z^2 + z = \left(z + \frac{1}{2}\right)^2 \frac{1}{4}$ represents a parabolic cylinder with vertex line along the line z = -1/2, x = -1/4.

409

Copyright © 2014 Pearson Canada Inc.

$$k^{2} = y^{2} + 2z^{2}$$
 $k^{3} = y^{2} + 2z^{2}$
 $k^{4} = y^{2} + 2z^{2}$
 $k^{5} = \sqrt{y^{2} + 2z^{2}}$

ok × 10.5 exercises × Webwork × 55718_1922772_Wor... × ESA Program_Applic... × MATH2023 Ebook Sol

SECTION 10.5 (PAGE 598)

Fig. 10.5.13

14. $x^2 = y^2 + 2z^2$ represents an elliptic cone with vertex at the origin and axis along the x-axis.

Fig. 10.5.14

15. $(z-1)^2 = (x-2)^2 + (y-3)^2$ represents a circular cone with axis along the line x = 2, y = 3, and vertex at (2, 3, 1)

Fig. 10.5.15

16. $(z-1)^2 = (x-2)^2 + (y-3)^2 + 4$ represents a hyperboloid of two sheets with centre at (2, 3, 1), axis along the line x = 2, y = 3, and vertices at (2, 3, -1) and (2, 3, 3).

Fig. 10.5.16

17. $\begin{cases} x^2 + y^2 + z^2 = 4 \\ x + y + z = 1 \end{cases}$ represents the circle of intersection of a sphere and a plane. The circle lies in the plane $x + y + z = 1, \text{ and has centre } (1/3, 1/3, 1/3) \text{ and radius } \sqrt{4 - (3/9)} = \sqrt{11/3}.$

Fig. 10.5.17

18. $\begin{cases} x^2 + y^2 = 1 \\ z = x + y \end{cases}$ is the ellipse of intersection of the plane $z = x + y \text{ and the circular cylinder } x^2 + y^2 = 1.$ The centre of the ellipse is at the origin, and the ends of the major axis are $\pm (1/\sqrt{2}, 1/\sqrt{2}, \sqrt{2})$.

Fig. 10.5.18

410

Copyright © 2014 Pearson Canada Inc.

19. $\begin{cases} z^2 = x^2 + y^2 \\ z = 1 + x \end{cases}$ is the parabola in which the plane

z = 1 + x intersects the circular cone $z^2 = x^2 + y^2$. (It is a parabola because the plane is parallel to a generator of the cone, namely the line z = x, y = 0.) The vertex of the parabola is (-1/2, 0, 1/2), and its axis is along the line y = 0, z = 1 + x.

Fig. 10.5.19

20. $\begin{cases} x^2 + 2y^2 + 3z^2 = 6 \\ y = 1 \end{cases}$ is an ellipse in the plane y = 1. Its projection onto the xz-plane is the ellipse $x^2 + 3z^2 = 4$. One quarter of the ellipse is shown in the

Fig. 10.5.20

- **21.** $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{y^2}{b^2}$ $\left(\frac{z}{a} + \frac{z}{c}\right)\left(\frac{x}{a} - \frac{z}{c}\right) = \left(1 + \frac{y}{h}\right)\left(1 - \frac{y}{h}\right)$ Family 1: $\begin{cases} \frac{x}{a} + \frac{z}{c} = \lambda \left(1 + \frac{y}{b}\right) \\ \lambda \left(\frac{x}{c} - \frac{z}{c}\right) = 1 - \frac{y}{b}. \end{cases}$
 - Family 2: $\begin{cases} \frac{x}{a} + \frac{z}{c} = \mu \left(1 \frac{y}{b} \right) \\ \mu \left(\frac{x}{c} \frac{z}{c} \right) = 1 + \frac{y}{c}. \end{cases}$
- **22.** z = xyFamily 1: $\begin{cases} z = \lambda x \\ \lambda = y. \end{cases}$

Family 2:
$$\begin{cases} z = \mu y \\ \mu = x. \end{cases}$$

- 23. The cylinder $2x^2 + y^2 = 1$ intersects horizontal planes in ellipses with semi-axes 1 in the y direction and $1/\sqrt{2}$ in the x direction. Tilting the plane in the x direction will cause the shorter semi-axis to increase in length. The plane z = cx intersects the cylinder in an ellipse with principal axes through the points $(0, \pm 1, 0)$ and $(\pm 1/\sqrt{2}, 0, \pm c/\sqrt{2})$. The semi-axes will be equal (and the ellipse will be a circle) if $(1/2) + (c^2/2) = 1$, that is, if $c = \pm 1$. Thus cross-sections of the cylinder perpendicular to the vectors $\mathbf{a} = \mathbf{i} \pm \mathbf{k}$ are circular.
- The plane z = cx + k intersects the elliptic cone $z^2 = 2x^2 + y^2$ on the cylinder

$$c^{2}x^{2} + 2ckx + k^{2} = 2x^{2} + y^{2}$$

$$(2 - c^{2})x^{2} - 2ckx + y^{2} = k^{2}$$

$$(2 - c^{2})\left(x - \frac{ck}{2 - c^{2}}\right)^{2} + y^{2} = k^{2} + \frac{c^{2}k^{2}}{2 - c^{2}} = \frac{2k^{2}}{2 - c^{2}}$$

$$\frac{(x - x_{0})^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,$$

where
$$x_0 = \frac{ck}{2 - c^2}$$
, $a^2 = \frac{2k^2}{(2 - c^2)^2}$, and $b^2 = \frac{2k^2}{2 - c^2}$.

As in the previous exercise, z = cx + k intersects the cylinder (and hence the cone) in an ellipse with principal axes joining the points

$$(x_0 - a, 0, c(x_0 - a) + k)$$
 to $(x_0 + a, 0, c(x_0 + a) + k)$,
and $(x_0, -b, cx_0 + k)$ to $(x_0, b, cx_0 + k)$.

The centre of this ellipse is $(x_0, 0, cx_0 + k)$. The ellipse is a circle if its two semi-axes have equal lengths, that is,

$$a^2 + c^2 a^2 = b^2$$
,

that is,

$$(1+c^2)\frac{2k^2}{(2-c^2)^2} = \frac{2k^2}{2-c^2},$$

or $1 + c^2 = 2 - c^2$. Thus $c = \pm 1/\sqrt{2}$. A vector normal to the plane $z = \pm (x/\sqrt{2}) + k$ is $\mathbf{a} = \mathbf{i} \pm \sqrt{2}\mathbf{k}$.

Section 10.6 Cylindrical and Spherical Coordinates (page 602)

1. Cartesian: (2, -2, 1);

Cylindrical: $[2\sqrt{2}, -\pi/4, 1]$; Spherical: $[3, \cos^{-1}(1/3), -\pi/4]$.

- **2.** Cylindrical: $[2, \pi/6, -2]$; Cartesian: $(\sqrt{3}, 1, -2]$; Spherical: $[2\sqrt{2}, 3\pi/4, \pi/6]$.
- Spherical: $[4, \pi/3, 2\pi/3]$; Cartesian: $(-\sqrt{3}, 3, -2)$; Cylindrical: $[2\sqrt{3}, 2\pi/3, 2]$.