

Universidad Nacional de Cuyo - Facultad de Ingeniería

Química General – Química General e Inorgánica

Reacciones Redox

RESPUESTAS

Profesora Titular: Dra. Graciela Valente

Profesora Adjunta: Dra. Cecilia Medaura

Jefes de Trabajos Prácticos:

Lic. Sebastián Drajlin Gordon

Lic. Liliana Ferrer
Prof. Inés Grillo
Ing. Carina Maroto
Dra. Rebeca Purpora
Ing. Alejandra Somonte
Ing. Silvina Tonini

RESPUESTAS

1.

$$CuSO_{4 (ac)} + Fe_{(s)} \rightarrow Cu_{(s)} + FeSO_{4 (ac)}$$
 Reacción global $Cu^{2+} + 2e^{-} \rightarrow Cu^{0}$ Hemireacción de reducción $Fe^{0} \rightarrow Fe^{2+} + 2e^{-}$ Hemireacción de oxidación Cu^{2+} : Agente Oxidante; Fe^{0} : Agente Reductor

2.

$$Cl_{2 (g)} + 2 IK_{(ac)} \rightarrow 2 KCl_{(ac)} + I_{2 (s)}$$
 Reacción global $Cl_{2} + 2e \rightarrow 2 Cl^{-}$ Hemireacción de reducción $2 I^{-} \rightarrow I_{2} + 2e$ Hemireacción de oxidación Cl_{2} : Agente Oxidante; I⁻: Agente Reductor

3.

4 HNO_{3 (cc)} + CdS (ac) → 2 NO_{2 (g)} + 2 H₂O (
$$_{0}$$
) + S ($_{0}$) + Cd(NO₃)_{2 (ac)} Reacción global 2 (NO₃- + 2 H⁺ + 1e- → NO₂ + H₂O) Hemireacción de reducción S²⁻ → S + 2e- Hemireacción de oxidación

HNO₃: Agente Oxidante; S²: Agente Reductor

4.

$$KCIO_{3 (ac)} + 6 KBr_{(ac)} + 3 H_2SO_{4 (ac)} \rightarrow KCI_{(ac)} + 3 Br_{2 (\ell)} + 3 H_2O_{(\ell)} + 3 K_2SO_{4 (ac)}$$
 Reacción global $CIO_{3}^{-} + 6 H^{+} + 6e^{-} \rightarrow CI^{-} + 3 H_2O$ Hemireacción de reducción $3 (2 Br^{-} \rightarrow Br_{2} + 2e^{-})$ Hemireacción de oxidación

KCIO₃: Agente Oxidante; Br-: Agente Reductor

5.

6.

Cu
$$_{(s)}$$
 + 4 HNO_{3 (ac)} \rightarrow 2 NO_{2 (g)} + 2 H₂O ($_{\ell}$) + Cu(NO₃)_{2 (ac)} Reacción global 2 (NO₃⁻ + 2 H⁺ + 1e- \rightarrow NO₂ + H₂O) Hemireacción de reducción Cu⁰ \rightarrow Cu²⁺ + 2e- Hemireacción de oxidación

HNO₃: Agente Oxidante; Cu⁰: Agente reductor

7.

Reacción global:

$$K_2Cr_2O_7_{(ac)} + 7 H_2SO_4_{(ac)} + 6 FeSO_4_{(ac)} \rightarrow K_2SO_4_{(ac)} + Cr_2(SO_4)_3_{(ac)} + 7 H_2O_{(\ell)} + 3 Fe_2(SO_4)_3_{(ac)}$$
 $Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2 Cr^{3+} + 7 H_2O)$ Hemireacción de reducción
$$6 (Fe^{2+} \rightarrow Fe^{3+} + 1e^-)$$
 Hemireacción de oxidación

Cr₂O₇²⁻: Agente Oxidante; Fe²⁺: Agente Reductor

8.

2 KMnO_{4 (ac)} + 16 HCl _(ac)
$$\rightarrow$$
 2 MnCl_{2 (ac)} + 2 KCl _(ac) + 8 H₂O _(ℓ) + 5 Cl_{2 (g)}
2 (MnO₄⁻ + 8 H⁺ + 5e- \rightarrow Mn²⁺ + 4 H₂O) Hemireacción de reducción
5 (2 Cl⁻ \rightarrow Cl₂ + 2e-) Hemireacción de oxidación

MnO₄: Agente Oxidante; Cl: Agente Reductor