Where to open an American Restaurant in Alabama?

Introduction – Problem Statement

- National American restaurant chain seeking to add restaurant locations in every state in the Southern United States
 - · Client experiencing sales growth in all currently existing restaurant locations and is interested in expanding
- Study focuses on the best location to open a restaurant in the state of Alabama.
 - Alabama is the 24th most populous state in the United States of America
 - In 2019, the population of Alabama increased 0.3%, which was the 26th fastest rate of growth in the United States of America

Southern population change

Introduction – Growing Cities

- Fastest growing cities within Alabama are not concentrated in any one particular area
- Population growth in the Northern, Southern, Eastern, and Central regions of Alabama

Introduction – Shrinking Cities

- Slowest growing cities within Alabama are concentrated in the central region of Alabama
- Best to avoid opening any new businesses in cities with declining populations

Alabama's shrinking cities

Data

- Alabama cities with Latitude and Longitude Coordinates
 - https://simplemaps.com/data/us-cities
 - Top 200 most populous Alabama cities used
- Foursquare Developer Account
 - Client ID
 - Client Secret

All 584 Cities in Alabama

Top 200 Most Populous Cities in Alabama

- A Python Notebook was created to write code and perform data analysis
- City and Latitude/Longitude data was imported into the Notebook via .csv file
- A function was created to find all of the venues for the 200 most populous Alabama cities
 - 590 Venues were found in total

Let's run the above function on each city in Alabama and create a new dataframe called al_venues.

```
al_venues = getNearbyVenues(names=al_cities['City'],
                                      latitudes=al_cities['Latitude'],
                                      longitudes=al_cities['Longitude']
       Birmingham
       Huntsville
       Mobile
       Montgomery
       Tuscaloosa
       Auburn
       Hoover
       Florence
       Anniston
       Dothan
       Daphne
       Decatur
       Gadsden
       Madison
       Enterprise
       Albertville
       Foley
       Phenix City
       Prattville
       Vestavia Hills
```

Let's check the size of the resulting dataframe.

In [78]: print(al_venues.shape)
al_venues

(590, 7)

Out[78]:

	City	City Latitude	City Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Birmingham	33.5277	-88.7987	The Pit Barbeque	33.530252	-86.800837	BBQ Joint
1	Birmingham	33.5277	-88.7987	Sarris	33.526543	-86.794331	American Restaurant
2	Birmingham	33.5277	-88.7987	Subway	33.526873	-86.801567	Sandwich Place
3	Birmingham	33.5277	-88.7987	Birm/Jeff Bus Barn	33.528248	-86.794528	Bus Station
4	Huntsville	34.6988	-88.6412	Redstone Pool	34.695808	-86.643733	Pool
***	***	***		***	***		***
585	Bridgeport	34.9495	-85.7243	MeMaw's	34.949116	-85.721802	American Restaurant
586	Greensboro	32.7014	-87.5950	PieLab	32.704189	-87.595226	Café
587	Greensboro	32.7014	-87.5950	CVS pharmacy	32.700775	-87.594643	Pharmacy
588	Greensboro	32.7014	-87.5950	Dollar General	32.705495	-87.595302	Discount Store
589	Greensboro	32.7014	-87.5950	McDonald's	32.699021	-87.595802	Fast Food Restaurant

590 rows x 7 columns

 One Hot Encoding was used to create a binary integer column for each venue category to enable K Means clustering analysis

```
# one hot encoding
al_onehot = pd.get_dummies(al_venues[['Venue Category']], prefix="", prefix_sep="")

# add City column back to dataframe
al_onehot['City'] = al_venues['City']

# move neighborhood column to the first column
fixed_columns = [al_onehot.columns[-1]] + list(al_onehot.columns[:-1])
al_onehot = al_onehot[fixed_columns]
al_onehot.head()

12]:
```

	City	Accessories Store	American Restaurant		Arcade	Arts & Crafts Store	Asian Restaurant		Automotive Shop	BBQ Joint		Thrift / Vintage Store	Toy / Game Store	Trail	Train Station	Transportat Serv
0	Birmingham	0	0	0	0	0	0	0	0	1		0	0	0	0	
1	Birmingham	0	1	0	0	0	0	0	0	0		0	0	0	0	
2	Birmingham	0	0	0	0	0	0	0	0	0		0	0	0	0	
3	Birmingham	0	0	0	0	0	0	0	0	0	***	0	0	0	0	
4	Huntsville	0	0	0	0	0	0	0	0	0		0	0	0	0	

5 rows x 150 columns

- The One Hot dataframe was next grouped by Alabama city and the mean of the frequency of occurrence of each category
 was derived
 - The grouped dataframe contained 123 Alabama cities and 150 unique venue categories
- Although 200 Alabama cities were in the source dataset, only 123 of the cities contained Venue data in Foursquare

```
al_onehot.shape
.3]: (590, 150)
```

Next, let's group rows by city and by taking the mean of the frequency of occurrence of each category

```
al_grouped = al_onehot.groupby('City').mean().reset_index()
al_grouped
```

	City	Accessories Store	American Restaurant	Antique Shop		Arts & Crafts Store	Asian Restaurant	Athletics & Sports	Automotive Shop	BBQ Joint	 Thrift / Vintage Store	Toy / Game Store	Trail	Train Station	Transp
0	Abbeville	0.0	0.142857	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	
1	Alabaster	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	
2	Albertville	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	
3	Alexander City	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	1.000000	 0.0	0.0	0.0	0.000	
4	Alexandria	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	

118	Tuscumbia	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	
119	Union Springs	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	
120	Vestavia Hills	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.000	
121	Wetumpka	0.0	0.250000	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	 0.0	0.0	0.0	0.125	
122	Winfield	0.0	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.333333	 0.0	0.0	0.0	0.000	

123 rows × 150 columns

Let's confirm the new size

al_grouped.shape

.5]: (123, 150)

 To take a closer look at the city data, each city was printed along with its top 10 most common venues

Fast Food Restaurants are the most common venue type in the city of Auburn, Alabama making up 22% of

all venues.

```
num_top_venues = 10
for hood in al_grouped['City']:
    print("----"+hood+"----")
    temp = al_grouped[al_grouped['City'] == hood].T.reset_index()
    temp.columns = ['venue', 'freq']
    temp = temp.iloc[1:]
    temp['freq'] = temp['freq'].astype(float)
    temp = temp.round({'freq': 2})
    print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues))
    print('\n')
    ----Auburn----
                          venue freq
           Fast Food Restaurant 0.22
                    Coffee Shop 0.11
             Mexican Restaurant 0.11
      Mediterranean Restaurant 0.11
                   Liquor Store 0.11
                Sandwich Place 0.11
                Discount Store 0.11
               Piercing Parlor 0.00
             Photography Studio 0.00
```

 To prepare the data for K Means Clustering, a function was written to put the grouped data into a pandas dataframe that displayed the top 10 venues for each Alabama city

```
num top venues = 10
indicators = ['st', 'nd', 'rd']
# create columns according to number of top venues
columns = ['City']
for ind in np.arange(num_top_venues):
     try:
         columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
     except:
         columns.append('{}th Most Common Venue'.format(ind+1))
# create a new dataframe
city_venues_sorted = pd.DataFrame(columns=columns)
city_venues_sorted['City'] = al_grouped['City']
for ind in np.arange(al_grouped.shape[0]):
    city_venues_sorted.iloc[ind, 1:] = return_most_common_venues(al_grouped.iloc[ind, :], num_top_venues)
city_venues_sorted
6]:
                        1st Most
                                    2nd Most
                                                 3rd Most
                                                             4th Most
                                                                          5th Most
                                                                                      6th Most
                                                                                                  7th Most
                                                                                                               8th Most
                                                                                                                           9th Most
                                                                                                                                       10th Most
                        Common
                                    Common
                                                 Common
                                                             Common
                                                                         Common
                                                                                      Common
                                                                                                  Common
                                                                                                              Common
                                                                                                                          Common
                                                                                                                                       Common
                                       Venue
                                                   Venue
                                                               Venue
                                                                           Venue
                                                                                        Venue
                                                                                                    Venue
                                                                                                                 Venue
                                                                                                                             Venue
                                                                                                                                          Venue
                                                                                                  Women's
                                                                                                           Fish & Chips
                                                                                                                          Fast Food
                                                                                                                                         Farmers
                                     American
                                                              Discount
                                                                          Business
            Abbeville
                      Gas Station
                                                    Diner
                                                                                         Bank
                                    Restaurant
                                                                           Service
                                                                                                                          Restaurant
                                                                                                                                         Market
                                                              Chinese
                                                                         Fast Food
                                                                                                                                      Department
                                                                                               Convenience
                      Pizza Place
                                               Gas Station
                                                                                                          Dessert Shop
                                                                                                                              Diner

    Alabaster

                                    Pharmacv
                                                            Restaurant
                                                                        Restaurant
                                                                                                                                           Store
                      Construction
                                      Grocery
                                                 Discount
                                                            Performing
                                                                                                 Fast Food
                                                                                                               Farmers
                                                                                                                                       Electronics
                                                                          Women's
       2 Albertville
                                                                                                                              Farm
                                        Store
                                                            Arts Venue
                                                                                                 Restaurant
                                                                                                                Market
                                                                                                                                           Store
                      Landscaping
```

• In the last analytical step, K Means Clustering was run to cluster the cities into 9 clusters and a new dataframe was created that included both the Cluster Labels and the top 10

```
venues for each city | al_merged = al_merged.join(city_venues_sorted.set_index('City'), on='City')
                                   al merged = al merged.dropna() #drop NaN rows without Cluster Label values
                                   al merged = al merged.reset index(drop=True) #Reset index
                                   al merged = al merged.astype({"Cluster Labels":'int'}) #Convert 'Cluster Label' column from Float to Int so the map works
                                   print(al_merged.shape)
                                   al merged.head() # check the last columns!
                                   (123, 14)
```

2nd Most 3rd Most

	City	Latitude	Longitude	Cluster Labels	Common	Common Venue	Common Venue	Common Venue	Common Venue	Common Venue	Common Venue	Common Venue	Common Venue	Con \
0	Birmingham	33.5277	-86.7987	5	American Restaurant	Bus Station	Sandwich Place	BBQ Joint	Women's Store	Dry Cleaner	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	
1	Huntsville	34.6988	-86.6412	5	Pool	Food	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Drugstore	
2	Mobile	30.6783	-88.1162	5	Breakfast Spot	Intersection	Fast Food Restaurant	Flower Shop	Brazilian Restaurant	Chinese Restaurant	Jewelry Store	Bank	Japanese Restaurant	Autor
3	Montgomery	32.3473	-86.2666	5	Steakhouse	Gym	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	CI
4	Tuscaloosa	33.2348	-87.5267	5	Food & Drink Shop	Food	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Drugstore	

7th Most 8th Most

Results – Cluster Map

- Below is a cluster map of the cities in Alabama clustered by similar venue makeups.
 - 9 unique clusters
 - 123 total clusters
 - Highest populated cluster contains 76 clusters

Cluster 1 is primarily composed of Fast Food and Pizza Restaurants.

me	rged.loc[a	al_merged['	Cluster Lab	els'] == 0,	al_merged.c	columns[[0]	+ list(rang	ge(4, al_mer	rged.shape[1]))]] #fast	food/pizz
	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
5	Auburn	Fast Food Restaurant	Deli / Bodega	Discount Store	Liquor Store	Sandwich Place	Mediterranean Restaurant	Mexican Restaurant	Coffee Shop	Doctor's Office	Dog Run
7	Alabaster	Pizza Place	Pharmacy	Gas Station	Chinese Restaurant	Fast Food Restaurant	Gym	Convenience Store	Dessert Shop	Diner	Department Store
1	Muscle Shoals	Fast Food Restaurant	Video Store	Convenience Store	Mexican Restaurant	Medical Center	Women's Store	Dry Cleaner	Fish & Chips Shop	Farmers Market	Farm
32	Hartselle	Pizza Place	Discount Store	Fast Food Restaurant	Video Store	Food	Pharmacy	Asian Restaurant	Gas Station	Supermarket	Women's Store
34	Talladega	Fast Food Restaurant	Mexican Restaurant	Pharmacy	Liquor Store	Café	Pizza Place	Video Store	Diner	Discount Store	Doctor's Office

• Cluster 2 has Parks as its most common venue. All 10 of their most common venue types share similar frequencies (e.g. Fast Food Restaurant is either the 5th or 6th most common venue for all cities in Cluster 2).

	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
13	Foley	Park	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
59	Montevallo	Park	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
99	Livingston	Bookstore	Park	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
115	Taylor	Hardware Store	Park	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner

• In Cluster 3, every city except 1 has Construction & Landscaping as its most common venue.

1_	merged.loc[al_merged['C	luster Labe	ls'] == 2,	al_merged.	columns[[0]	+ list(rang	e(4, al_me	rged.shape[1]))]] #cons	struction o
	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
8	Dothan	Construction & Landscaping	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
10	Decatur	Construction & Landscaping	Fast Food Restaurant	Women's Store	Drugstore	Fish & Chips Shop	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
23	Oxford	Construction & Landscaping	Discount Store	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
44	Robertsdale	Construction & Landscaping	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop

Cluster 4 contains cities that have Baseball Field as its 1st or 2nd most common venue.

	ter 4	[al_merged['	Cluster La	oels'] == 3	, al_merged	.columns[[0] + <mark>li</mark> st(ran	ge(4, al_me	ged.shape[1]))]] ## bo	aseball fie
	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
28	Sylacauga	Baseball Field	Women's Store	Dry Cleaner	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Drugstore
85	Holtville	Baseball Field	Women's Store	Dry Cleaner	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Drugstore
96	Heflin	Gym / Fitness Center	Baseball Field	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
118	Good Hope	Intersection	Baseball Field	Women's Store	Dry Cleaner	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store

• In Cluster 5, Discount Stores, Women's Stores, and Drugstores are the most common venues.

1_m	erged.loc	[al_merged[ˈ	Cluster Labe	els'] == 4,	, al_merged.	columns[[0]	+ list(rang	e(4, al_me	rged.shape[1]))]] #diso	count store
	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
51	Forestdale	Grocery Store	Discount Store	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
62	Theodore	Discount Store	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
76	Glencoe	Discount Store	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
84	Holt	Fish & Chips Shop	Discount Store	Women's Store	Drugstore	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop
109	Moundville	Discount Store	Video Store	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner

• Cluster 6 is the largest cluster with 76 cities. It also contains the most populous cities in the state of Alabama (e.g. Birmingham, Huntsville, Mobile). All of these cities in this cluster contain a large mix of venues.

	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Mos Common Venue
0	Birmingham	American Restaurant	Bus Station	Sandwich Place	BBQ Joint	Women's Store	Dry Cleaner	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm
1	Huntsville	Pool	Food	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Drugstore	Donut Shop
2	Mobile	Breakfast Spot	Intersection	Fast Food Restaurant	Flower Shop	Brazilian Restaurant	Chinese Restaurant	Jewelry Store	Bank	Japanese Restaurant	Automotive Shop
3	Montgomery	Steakhouse	Gym	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
4	Tuscaloosa	Food & Drink Shop	Food	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Drugstore	Donut Shop

Cluster 7

• Cluster 7 contains 2 cities, both with Golf Course as the most common venue. These cities are known as vacation destinations.

Ciu.	ster /										
al_	merged.lo	oc[al_merge	d['Cluster L	abels'] ==	6, al_merge	d.columns[[0] + list(ran	ge(4, al_me	rged.shape[1]))]]#golf	course/vacat
	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
36	Gulf Shores	Golf Course	Women's Store	Donut Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Drugstore
65	Grayson Valley	Golf Course	Candy Store	Women's Store	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner

• The 3 cities in Cluster 8 all share the same venues for their 1st through 10th most common venues.

1_m	erged.loc[al_merged['	Cluster Lab	els'] == 7	, al_merged	.columns[[0]	+ list(rang	ge(4, al_mer	ged.shape[1]))]] # ame	erican rest
	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
114	Point Clear	American Restaurant	Women's Store	Drugstore	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
119	Midland City	American Restaurant	Women's Store	Drugstore	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner
121	Bridgeport	American Restaurant	Women's Store	Drugstore	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner

• Cluster 9 cities all have Home Service as their most common venue. They also share the same venue categories as their 4th through 9th most common categories.

Cluster 9

al_merged.loc[al_merged['Cluster Labels'] == 8, al_merged.columns[[0] + list(range(4, al_merged.shape[1]))]] #home service

	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
11	Madison	Home Service	Cave	Donut Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Drugstore
47	Rainbow City	Home Service	Drugstore	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Women's Store
49	Meadowbrook	Home Service	Drugstore	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Women's Store
86	Mount Olive	Home Service	Drugstore	Flower Shop	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Women's Store
97	Piedmont	Home Service	Café	Drugstore	Fish & Chips Shop	Fast Food Restaurant	Farmers Market	Farm	Electronics Store	Dry Cleaner	Donut Shop

Discussion

- Based on the clustering results, the national American Restaurant chain should open their restaurant in Auburn, Alabama.
 - Auburn is contained in Cluster 1, which has Fast Food and Pizza Restaurants as their most common venues.
 - It is a popular city for restaurants generally with Deli/Bodega, Sandwich Place, Fast Food, Mediterranean, and Mexican Restaurants ranking among its top 10 most common venues.
 - There currently exists no other competition from other American Restaurants in its top 10 most common venues.
- Auburn also has a large population of 62,996 and is the 6th fastest growing city in Alabama.
 - Provides a large and growing customer base that will be interested in dining at a new location.
 - Because it is not contained in Cluster 6, the largest cluster containing the most populous cities, the new restaurant would have little competition from other restaurants that may have an insurmountable presence in these existing large markets.

Alabama's growing cities The top 10 fastest growing cities with at least 10,000 people (2010-2018) Fastest growing 1. Fairhope (44.1%) 2. Chelsea (32.9%) 3. Foley (29.5%) 4. Gulf Shores (28.5%) 5 Calora (23.8%) growth 6. Auburn (23.2%) 7. Daprine (ZZ.7/0) 8. Athens (19.9%) 9. Madison (17.5%) **16%** 10. Helena (16.3%)

*data from the U.S.

	City	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
5	Auburn	Fast Food Restaurant	Deli / Bodega	Discount Store	Liquor Store	Sandwich Place	Mediterranean Restaurant	Mexican Restaurant	Coffee Shop	Doctor's Office	Dog Run

Conclusion

Alabama is ripe for new growth and the market research in this presentation has identified Auburn, Alabama as the best city in Alabama to open a new American Restaurant. Through the use of the Data Science techniques used in this analysis, further research can be completed to further enable expansion throughout the United States.