Exercices: Variables aléatoires discrètes

Exercice 1. Soit c > 0. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* dont la loi est donnée par $\forall n \in \mathbb{N}^*$,

$$P(X=n) = \frac{c}{n!}.$$

- 1. Calculer c.
- 2. Calculer E(X) et E(X(X-1)). En déduire V(X).

Exercice 2 (Loi géométrique). Soit $X \hookrightarrow \mathcal{G}(p)$, où $p \in]0,1[$ et soit $Y = \left\lfloor \frac{X+1}{2} \right\rfloor$. Montrer que Y suit une loi géométrique dont on déterminera le paramètre.

Exercice 3 (Loi de Poisson). Soit $X \hookrightarrow \mathcal{P}(\lambda)$, où $\lambda > 0$. On pose $Y = (-1)^X$.

- 1. Déterminer $Y(\Omega)$ et montrer que $E(Y) = e^{-2\lambda}$.
- 2. En déduire la loi de Y.

Exercice 4. Au Casino, un joueur joue à un jeu d'argent. S'il dépense n euros (qui sont donc perdus) pour jouer à une partie, il gagne 2n euros avec probabilité $\frac{1}{2}$, et ne gagne rien sinon. Un joueur fortuné joue selon le protocole suivant :

- il mise initialement 1 euro;
- s'il gagne, il arrête de jouer et empoche le double de sa mise.
- s'il perd, il double sa mise et rejoue.
- 1. On suppose la fortune du joueur infinie. Montrer que le jeu s'arrête presque sûrement. Déterminer l'espérance de gain du joueur.
- 2. On suppose toujours la fortune du joueur infinie. Que se passe-t-il si au lieu de doubler, il décide de tripler sa mise lorsqu'il rejoue?
- 3. Le joueur n'est en fait pas si fortuné qu'il le prétend : il ne possède que $2^n 1$ euros ce qui l'autorise à ne pouvoir jouer que n parties. Que devient son espérance de gain?

Exercice 5 (Loi binomiale et loi de Poisson). On considère une pièce pipée, telle que la probabilité d'obtenir « Pile » à un lancer est $p \in]0,1[$.

- 1. Soit n un entier supérieur ou égal à 1. On jette n fois de suite la pièce, et on note X la variable aléatoire égale au nombre de « Pile » obtenus. Quelle est la loi de X? Déterminer son espérance et sa variance.
- 2. On suppose maintenant que le nombre de lancers effectués avec la pièce est une variable aléatoire N suivant la loi de Poisson de paramètre $\lambda > 0$. Quelle est alors la loi de X? Déterminer son espérance et sa variance.

Exercice 6 (Loi de Pascal). On lance une infinité de fois une pièce pipée, qui renvoie pile avec probabilité $p \in]0,1[$. Soit X la variable aléatoire qui vaut le temps d'attente du r-ème pile $(r \ge 2)$ s'il existe, et qui vaut 0 sinon. On pose q=1-p.

- 1. Montrer que $X(\Omega) = \{0\} \cup [r, +\infty[$.
- 2. Montrer que pour tout $k \in [r, +\infty[, P(X=k) = \binom{k-1}{r-1}q^{k-r}p^r]$.
- 3. Dans le cas où r=2, montrer que X admet une espérance qui vaut $E(X)=\frac{r}{p}$.

Exercice 7 (Loi binomiale négative). Soit X la variable aléatoire qui compte le nombre d'échecs précédant le r-ème succès dans un processus de Bernoulli de paramètre $p \in]0,1[$, et qui vaut 0 s'il n'y a pas de r-ième succès $(r \ge 2)$. On pose q = 1 - p.

- 1. Déterminer $X(\Omega)$.
- 2. Montrer que pour tout $k \in \mathbb{N}$, $P(X = k) = \binom{r+k-1}{k} q^k p^r$.
- 3. Dans le cas où r=2, montrer que X admet une espérance qui vaut $E(X)=\frac{rq}{p}$.

Exercice 8. Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. On appelle fonction génératrice des moments de X l'application définie pour tout $t \in \mathbb{R}$ tel que e^{tX} admet une espérance par

$$M_X(t) = E(e^{tX}).$$

- 1. Déterminer l'ensemble de définition E de M_X , et calculer $M_X(t)$ pour tout $t \in E$.
- 2. Montrer que M_X est dérivable en 0 et qu'on a $E(X) = M'_X(0)$.

Exercice 9. Soit u une suite à valeurs dans]0,1[. Pour tout $n \in \mathbb{N}^*$, on dit que le produit :

$$q_n = \prod_{k=1}^n (1 - u_k),$$

est convergent lorsque la suite q converge vers un réel L>0.

- 1. (a) Montrer que si le produit q converge, alors $\lim u_k = 0$.
 - (b) En déduire que le produit q converge si et seulement si la série de terme général u_k converge.
- 2. Soit X une variable aléatoire à valeurs dans \mathbb{N}^* telle que $P(X \ge n) > 0$ pour tout $n \in \mathbb{N}^*$. On appelle taux de panne associé la suite réelle définie par :

$$\forall n \in \mathbb{N}, \quad x_n = P_{[X \geqslant n]}(X = n).$$

- (a) Montrer que pour tout $n \ge 1$, $P(X \ge n+1) = (1-x_n)P(X \ge n)$.
- (b) En déduire l'expression de $p_n = P(X \ge n)$ en fonction des x_k .
- (c) Déterminer les lois de variables à valeurs dans N* ayant un taux de panne constant.
- (d) Montrer qu'une suite réelle x est un taux de panne si et seulement si $0 \le x_k < 1$ pour tout $k \in \mathbb{N}^*$ et la série de terme général x_k diverge.