Polynomial Fit

April 12, 2020 12:30 AM

Polynamial Fit

with a single polynomial of degree m-1

-> For m < n: following data points are given: (x, y,),..., (xn, yn) -> Lack for LS soletian

- Fit puly romide m-1; p(x) = a, x -1 + az x m-2+ -- + a m-1 x + am

-> for
$$p(x_i) = g_i$$
 and $n = n$, $Va = g$ where:

- $a = [a_1, ..., a_m]^T$ (coeff of $p(x_i)$)

- $g = [g_1, ..., g_n]^T$ (dute values)

Matrix V has Vandermande Matrix

: Columns of V are like dependent as long as x; + x; when i + ; Corresponding least square equation UTVa = UTy has unique sulution given by aus = (UTV) Uy

Special Cuse:

- Bast fitting (Inear regression)
$$m=z$$
, polynomial is $p(x) = a_1 x rax \rightarrow polynomial bly. I

 $v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- If ni's distinct, UTV - invertible and US sultin given by: and = \[\begin{aligned} & \frac{1}{2} & \fr