Midterm 2

Name: Zixin Ouyang

Exercise 1

	Eigenvectors										
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	
P8	166236	0.039328	009197	0.625540	294128	0.523399	182878	0.429786	006502	0.027807	
P14	089460	187912	0.339155	0.472037	0.742821	072435	120778	160556	0.038799	0.141213	
P19	0.545314	024147	0.076008	0.134847	083643	0.025923	157669	105567	0.728618	321766	
P33	0.064589	515988	0.298212	318988	0.151838	0.465421	0.438439	0.277941	0.023017	170935	
P37	<mark>547799</mark>	067063	0.064587	160692	108765	103608	0.072318	0.092574	0.651062	0.452967	
P49	029693	0.431937	0.158808	467937	0.296445	0.426946	537417	0.086435	0.033870	0.027684	
P55	0.162722	0.382532	0.438313	0.021434	0.033598	436718	0.181235	0.639449	018906	025742	
P64	051561	0.519120	392682	0.118426	0.345019	0.240771	0.581250	049082	0.182651	094876	
P70	0.574987	016432	094100	003945	000794	0.147689	0.090486	0.033741	051681	0.791479	
P80	045951	0.298600	0.636881	0.081593	334332	0.199988	0.248893	522136	074968	0.066964	

	Eigenv	alues of the C	Correlation Ma	ntrix
	Eigenvalue	Difference	Proportion	Cumulative
1	2.27750411	1.08677128	0.2278	0.2278
2	1.19073284	0.08921380	0.1191	0.3468
3	1.10151904	0.04420932	0.1102	0.4570
4	1.05730972	0.09600690	0.1057	0.5627
5	0.96130282	0.04521848	0.0961	0.6588
6	0.91608433	0.02283080	0.0916	0.7504
7	0.89325353	0.04258669	0.0893	0.8398
8	0.85066684	0.43036599	0.0851	0.9248
9	0.42030086	0.08897494	0.0420	0.9669
10	0.33132591		0.0331	1.0000

- a. Firstly, in order to retain at least 50% of the total variation from the original variables, 4 principal components would need to be kept. Secondly, when we use the average eigenvalue criterion, 4 components would be kept (average eigenvalue = 1). Lastly when checking the scree plot, the "elbow" of the curve can be found at 2 and we would keep 1 component (elbow-1).
- b. We proceed with the components chosen based on the 50% criterion, so we look at the first 4 components. PC1 has positive coefficients for P19 and P70 and negative coefficients for P37; PC2 has positive coefficients for P49 and P64 and negative coefficients for P33; PC3 has positive coefficients for P55 and P80; PC4 has positive coefficients for P8 and P14 and negative coefficients for P49.
- c. Following are scatter plots for the first two components for group 1(healthy) and group 2(cancerous). Firstly, PC1 values of group 1(healthy) are most negative and its range is [-3, 2]. In contrast, PC1 values of group 2(cancerous) are most positive and its range is [-2, 3]. Secondly, For PC2, the range of group 1 is narrower than the range of group 2. We can say that group 2(cancerous) has larger contrasts between P49, P64 and P33.

Exercise 2

	Summary of Stepwise Selection										
	Effect										
Step	Entered	Removed	DF	Number In	Score Chi-Square	Wald Chi-Square	Pr > ChiSq				
1	P19		1	1	80.9167		<.0001				
2	P70		1	2	16.1643		<.0001				
3	P55		1	3	4.8450		0.0277				

a. The predictors chosen based on the stepwise selection method are P19, P70, and P55.

Hosmer Goodn	and Ler ess-of-F	
Chi-Square	DF	Pr > ChiSq
10.4627	8	0.2340

b. In diagnostic plots, we find no unduly influential points. All Cbar measures are less than 1. Also we can see that all absolute values of deviance residuals are around or less than 2 with no pattern. There is no issue on diagnostic plots. To test goodness of fit for a model we refer to the result from the Hosmer and Lemeshow test. The p- value is 0.2340 which is greater than 0.05, thus we conclude that there is no lack of fit issue and our fitted model is adequate.

Testing Global Null Hypothesis: BETA=0								
Test	Chi-Square	DF	Pr > ChiSq					
Likelihood Ratio	125.7887	3	<.0001					
Score	95.3430	3	<.0001					
Wald	48.2645	3	<.0001					

	Analysis of Maximum Likelihood Estimates											
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq							
Intercept	1	-7.3931	2.5172	8.6265	0.0033							
P19	1	0.2217	0.0442	25.1494	<.0001							
P55	1	-0.0677	0.0316	4.6037	0.0319							
P70	1	0.1224	0.0321	14.4974	0.0001							

Odds Ratio Estimates								
Effect	Point 95% Wald Estimate Confidence Limits							
P19	1.248	1.145	1.361					
P55	0.935	0.878	0.994					
P70	1.130	1.061	1.204					

c. The global test shows p-values less than 0.05 for three kinds of asymptotic tests, Likelihood Ratio, Score and Wald test, thus we can conclude that there exists at least one predictor whose coefficient is significantly different from zero. The odds ratio of P19, P55 and P70 are 1.248, 0.935 and 1.130, respectively. We can say that one-unit increase in P19 changes the odds of having grp=2 by a multiplicative factor of 1.248 (or one-unit increase in P19 leads to 24.8% (=124.8%-100.0%) increase in odds of having grp=2). One-unit increase in P55 changes the odds of having grp=2 by a multiplicative factor of 0.935 (or one-unit increase in P55 leads to 6.5% (=100%-93.5%) decrease in odds of having grp=2). One-unit increase in P70 changes the odds of having grp=2 by a multiplicative factor of 1.13 (or one-unit increase in P70 leads to 13% (=113%-100%) increase in odds of having grp=2).

Obs	P8	P14	P19	P33	P37	P49	P55	P64	P70	P80	grp	id	_LEVEL_	pred
1	12.49	24.73	29.65	49.89	47.98	62.11	93.42	93.35	26.97	102.71	1	1	2	0.02090
2	21.70	21.05	35.01	50.76	40.50	65.59	78.67	88.94	46.54	92.25	1	2	2	<mark>0.67602</mark>
3	15.53	14.78	35.31	49.32	47.47	72.40	82.64	94.45	34.72	104.90	1	3	2	0.28634
4	17.65	23.51	31.71	49.72	62.91	69.46	77.56	97.51	29.72	101.46	1	4	2	0.12141
5	23.63	18.31	31.13	51.01	54.72	56.55	84.47	86.03	35.18	105.45	1	5	2	0.12924
6	19.63	12.86	24.82	49.64	57.99	59.66	75.11	88.78	38.86	97.43	1	6	2	0.09774
7	19.33	8.45	38.80	50.05	69.26	67.28	67.73	92.04	32.26	96.12	1	7	2	0.63868
8	19.48	26.56	33.48	48.25	65.94	59.75	84.58	89.24	24.91	100.52	1	8	2	0.06594
9	25.55	21.07	32.56	50.26	42.81	76.13	91.15	86.40	27.37	97.66	1	9	2	0.04748
10	19.25	7.78	33.11	49.90	65.33	70.53	75.39	84.12	28.18	97.78	1	10	2	0.15314

Frequency	Table of grp by _INTO_								
		Value (_INTO_(Formatted Value of the Predicted Response)						
	grp	1	2	Total					
	1	70	7	77					
	2	8	77	85					
	Total	78	84	162					

d. If the predicted probability is larger than 0.5, the patient is classified as cancerous. Therefore, patient 1, 3, 4, 5, 6, 8, 9, 10 are healthy, patient 2 and patient 7 is cancerous. The total number of misclassified observations is 7+8=15. The misclassification error is (7+8)/162=0.0926. It means that 9.26% of the total number of observations is misclassified. The separation performance of the logistic regression model is good.

Exercise 3 Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
310.928330	55	<.0001

Multivar	Multivariate Statistics and Exact F Statistics										
S=1 M=4 N=74.5											
Statistic	Value	F Value	Num DF	Den DF	Pr > F						
Wilks' Lambda	0.36693488	26.05	10	151	<.0001						
Pillai's Trace	0.63306512	26.05	10	151	<.0001						
Hotelling-Lawley Trace	1.72527918	26.05	10	151	<.0001						
Roy's Greatest Root	1.72527918	26.05	10	151	<.0001						

a. The p-value for the test of homogeneity of within covariance is less than 0.1. Thus we can conclude that two groups have the different covariance and quadratic discriminant analysis needs to be implemented. The MANOVA tests show p-values less than 0.05, thus we can conclude that there are significant differences in some attributes between healthy and cancerous group. This implies that discrimination between groups based on these variables should be a reasonable approach and provide some separation between groups.

	Stepwise Selection Summary											
Step	Number In	Entered	Removed	Partial R-Square	F Value	Pr > F	Wilks' Lambda	Pr < Lambda	Average Squared Canonical Correlation	Pr > ASCC		
1	1	P19		0.4995	159.67	<.0001	0.50051423	<.0001	0.49948577	<.0001		
2	2	P70		0.1562	29.44	<.0001	0.42231297	<.0001	0.57768703	<.0001		
3	3	P37		0.0483	8.02	0.0052	0.40190775	<.0001	0.59809225	<.0001		
4	4	P55		0.0290	4.69	0.0319	0.39025604	<.0001	0.60974396	<.0001		

Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
29.980274	10	0.0009

1	Number of Observations and Percent Classified into grp						
From grp							
1	69	8	77				
	89.61	10.39	100.00				
2	<mark>8</mark>	77	85				
	9.41	90.59	100.00				
Total	77	85	162				
	47.53	52.47	100.00				
Priors	0.47531	0.52469					

Error Count Estimates for grp						
	1 2 To					
Rate	0.1039	0.0941	0.0988			
Priors	0.4753	0.5247				

b. Based on the stepwise discrimination procedure, the predictors selected are P19, P70, P37 and P55. The p-value for the test of homogeneity of within covariance is less than 0.1. Thus we can

conclude that two groups have the different covariance and quadratic discriminant analysis needs to be implemented. The cross-validation estimated overall error rate is 0.0988 based on proportional-prior discriminant analysis and the individual group error rate estimates are 10.39% and 9.41% respectively. It is easy to misclassify data point in healthy group compared to cancerous group. The total number of misclassified observations is 8+8=16.

Observation Profile for Test Data				
Number of Observations Read	50			
Number of Observations Used	50			

	Number of Observations and Percent Classified into grp						
From grp 1 2 Tota							
1	22	<mark>1</mark>	23				
	95.65	4.35	100.00				
2	<mark>5</mark>	22	27				
	18.52	81.48	100.00				
Total	27	23	50				
	54.00	46.00	100.00				
Priors	0.48214	0.51786					

Error Count Estimates for grp						
	2	Total				
Rate	0.0435	0.1852	0.1169			
Priors	0.4821	0.5179				

c. The cross-validation estimated overall error rate is 0.1169 based on proportional-prior discriminant analysis and the individual group error rate estimates are 4.35% and 18.52% respectively. It is easy to misclassify data point in cancerous group compared to healthy group. The total number of misclassified observations is 1+5=6.

Exercise 4

Based on the results from exercises 2-3, logistic regression best classifies cancerous vs healthy population in this particular dataset. According to the logistic regression in exercise 2, the total number of misclassified observations is 7+8=15. The misclassification error 0.0926. Based on the quadratic discriminant analysis in exercise 3b, the total number of misclassified observations is 8+8=16, and the cross-validation estimated overall error rate is 0.0988. Based on the quadratic discriminant analysis in exercise 3c, the cross-validation estimated overall error rate is 0.1169.

Exercise 5

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
Deviance	492	18.3157	0.0372		
Scaled Deviance	492	509.0340	1.0346		
Pearson Chi-Square	492	20.2702	0.0412		
Scaled Pearson X2	492	563.3557	1.1450		
Log Likelihood		-1415.3170			
Full Log Likelihood		-1415.3170			
AIC (smaller is better)		2860.6340			
AICC (smaller is better)		2861.6135			
BIC (smaller is better)		2924.0320			

LR Statistics For Type 3 Analysis					
Source	DF	Chi-Square	Pr > ChiSq		
crim	1	49.60	<.0001		
zn	1	5.83	0.0157		
indus	1	0.80	0.3722		
chas	1	10.29	0.0013		
nox	1	30.67	<.0001		
rm	1	28.03	<.0001		
age	1	0.21	0.6429		
dis	1	45.51	<.0001		
rad	1	31.57	<.0001		
tax	1	15.54	<.0001		
ptratio	1	53.38	<.0001		
b	1	13.96	0.0002		
Istat	1	192.68	<.0001		

a. From the Type 3 Analysis table, we can see crim, an, chas, nox, rm, dis, rad, tax, ptratio, b and lstat are significant predictors with p-values less than 0.05, while indus and age are not significant in the model.

Criteria For Assessing Goodness Of Fit				
Criterion DF Value Value/D				
Deviance	493	18.3234	0.0372	

493	509.0353	1.0325
493	20.2842	0.0411
493	563.5070	1.1430
	-1415.4245	
	-1415.4245	
	2858.8489	
	2859.7043	
	2918.0205	
	493	493 20.2842 493 563.5070 -1415.4245 -1415.4245 2858.8489 2859.7043

LR Statistics For Type 3 Analysis						
Source	DF	Chi-Square	Pr > ChiSq			
crim	1	49.52	<.0001			
zn	1	5.65	0.0175			
indus	1	0.81	0.3694			
chas	1	10.53	0.0012			
nox	1	31.40	<.0001			
rm	1	29.85	<.0001			
dis	1	51.62	<.0001			
rad	1	31.38	<.0001			
tax	1	15.44	<.0001			
ptratio	1	53.17	<.0001			
b	1	14.10	0.0002			
Istat	1	204.20	<.0001			

Criteria For Assessing Goodness Of Fit					
Criterion	DF	Value	Value/DF		
Deviance	494	18.3524	0.0372		
Scaled Deviance	494	509.0401	1.0304		
Pearson Chi-Square	494	20.3011	0.0411		
Scaled Pearson X2	494	563.0906	1.1399		
Log Likelihood		-1415.8274			
Full Log Likelihood		-1415.8274			
AIC (smaller is better)		2857.6547			
AICC (smaller is better)		2858.3946			
BIC (smaller is better)		2912.5997			

LR Statistics For Type 3 Analysis							
Source	DF	Chi-Square	Pr > ChiSq				
crim	1	49.87	<.0001				
zn	1	5.23	0.0222				
chas	1	11.25	0.0008				
nox	1	31.11	<.0001				
rm	1	29.21	<.0001				
dis	1	56.62	<.0001				
rad	1	31.06	<.0001				
tax	1	15.42	<.0001				
ptratio	1	52.37	<.0001				
b	1	13.90	0.0002				
Istat	1	203.51	<.0001				

b. The gamma model including all predictors shows AIC as 2860.634 and type3 analysis gives age as an insignificant predictor with p-value of 0.6429. Thus we first remove age and fit the gamma model again. After removing age, the AIC is 2858.8489, and type3 analysis gives indus as an insignificant predictor with p-value of 0.3694. So we remove indus in the second step and refit the gamma model. Now the AIC is 2857.6547, and all p-values of predictor are less than 0.05. The final model contains crim, an, chas, nox, rm, dis, rad, tax, ptratio, b and lstat.

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq		
Intercept	1	4.1879	0.1978	3.8003	4.5755	448.45	<.0001		
crim	1	-0.0100	0.0013	-0.0125	-0.0075	60.46	<.0001		
zn	1	0.0012	0.0005	0.0002	0.0023	5.22	0.0224		
chas	1	0.1135	0.0342	0.0466	0.1805	11.05	0.0009		
nox	1	-0.7942	0.1391	-1.0669	-0.5215	32.59	<.0001		
rm	1	0.0848	0.0154	0.0546	0.1150	30.26	<.0001		
dis	1	-0.0562	0.0072	-0.0703	-0.0421	60.68	<.0001		
rad	1	0.0145	0.0025	0.0095	0.0194	32.87	<.0001		
tax	1	-0.0005	0.0001	-0.0008	-0.0003	15.94	<.0001		
ptratio	1	-0.0384	0.0052	-0.0485	-0.0282	55.22	<.0001		
b	1	0.0004	0.0001	0.0002	0.0006	14.34	0.0002		
Istat	1	-0.0282	0.0018	-0.0317	-0.0247	250.66	<.0001		
Scale	1	27.7369	1.7334	24.5393	31.3512				

c. From the residual plots (standardized deviance and standardized pearson residuals), we see no pattern and no observation with large value. Thus our model assumptions are adequate to the data. In terms of parameter estimates, crim, nox, dis, tax, ptratio and lstat have negative relationships with respect to log(medv). The estimates are -0.01, -0.7942, -0.0562, -0.0005, -0.0384 and -0.0282. It implies for one unit increase of crim, nox, dis, tax, ptratio and lstat, we expect a multiplicative change in median home values of e^-0.01, e^-0.7942, e^--0.0562, e^--0.0005, e^--0.0384 and e^--0.0282. Predictors zn, chas, rm, rad and b have positive relationships with respect to log(medv). The estimates are 0.0012, 0.1135, 0.0848, 0.0145 and 0.0004. It implies for one unit increase of zn, chas, rm, rad and b, we expect a multiplicative change in median home values of e^0.0012, e^0.1135, e^0.0848, e^0.0145 and e^0.0004.

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	55	147.0216	2.6731					
Scaled Deviance	55	147.0216	<mark>2.6731</mark>					
Pearson Chi-Square	55	136.6408	2.4844					
Scaled Pearson X2	55	136.6408	2.4844					
Log Likelihood		590.6875						
Full Log Likelihood		-167.3950						
AIC (smaller is better)		342.7900						
AICC (smaller is better)		343.5307						
BIC (smaller is better)		351.1002						

Model Information					
Data Set	WORK.EPI				
Distribution	Poisson				
Link Function	Log				
Dependent Variable	Period4				

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	55	147.0216	2.6731					
Scaled Deviance	55	55.0000	1.0000					
Pearson Chi-Square	55	136.6408	2.4844					
Scaled Pearson X2	55	51.1166	0.9294					
Log Likelihood		220.9730						
Full Log Likelihood		-167.3950						
AIC (smaller is better)		342.7900						
AICC (smaller is better)		343.5307						
BIC (smaller is better)		351.1002						

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq		
Intercept	1	0.7756	0.4653	-0.1364	1.6876	2.78	0.0956		
Treat	1	-0.2705	0.1666	-0.5969	0.0560	2.64	0.1044		
BL	1	0.0221	0.0018	0.0186	0.0255	153.66	<.0001		
Age	1	0.0140	0.0140	-0.0135	0.0415	1.00	0.3168		
Scale	0	1.6350	0.0000	1.6350	1.6350				

LR Statistics For Type 1 Analysis									
Source	Deviance Num DF Den DF F Value Pr > F Chi-Square Pr > C								
Intercept	476.2487								
Treat	473.0840	1	55	1.18	0.2813	1.18	0.2766		
BL	149.6763	1	55	120.99	<.0001	120.99	<.0001		
Age	147.0216	1	55	0.99	0.3233	0.99	0.3190		

	LR Statistics For Type 3 Analysis									
Source	Num DF	Num DF Den DF F Value Pr > F Chi-Square Pr > Ch								
Treat	1	55	2.65	0.1093	2.65	0.1036				
BL	1	55	119.99	<.0001	119.99	<.0001				
Age	1	55	0.99	0.3233	0.99	0.3190				

a. In the above model we detect a potential problem with over-dispersion since the scale factor, e.g., Value/DF, is greater than 1. Therefore, we need to use over- dispersion with deviance scale. Both the type 1 analysis and the type 3 analysis tell us that only the predictor BL is significant with p-value less that 0.05, Treat and Age are insignificant. But we do need treatment in a model. A statistician would want to remove Treat and Age from the model, but do not remove those terms from the model.

b. According to the plots above, it seems there is a slight upward trend which would show a slight tendency to over-predict at the low end and under-predict at the higher end. The baseline parameter estimate is 0.0221 indicating that the seizure count after four periods of treatment increases slightly as baseline count increases. For an increase of one in the baseline count, we would expect the count after 4 periods to be multiplied by $e^{\circ}.0.0221$. The Treatment parameter estimate is -0.2705 indicating that the seizure count after four periods of treatment progabide increases slightly as placebo. For progabide treatment instead of placebo, we would expect the count after 4 periods to be multiplied by $e^{\circ}.0.2705$.