一、填空题(共6题,每题3分,共18分)

- 1. 已知 P(A) = 0.5, $P(A \cup B) = 0.8$, A 和 B 相互独立,则 P(B) = 0.8
- 2. 将不同的两封信随机地投入3个邮筒中,则第一个邮筒中有一封信的概率是 .
- 3. 随机变量 X 服从期望是 2 的指数分布,则 P(X < 1) = .
- 4. 设随机变量 X 服从正态分布 N(1,4) , Y 服从 N(2,1) , 且 X 和 Y 相互独立,则 2X-3Y服从 分布(要求分布包括参数).
- 5. 设总体 X 服从正态 N(0,1), X_1, X_2, X_3, X_4 是来自总体 X 的简单随机样本,统计量

$$Y = \frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2}}$$
 服从_____分布(要求包括自由度).

6. 设总体 X 服从正态分布 $N(\mu,1)$, 样本容量 n=16, 样本均值的观察值为 5. 2, 则 μ 的置 信水平为 0.95 的置信区间为_____(已知 $z_{0.025} = 1.96, t_{0.025}(15) = 2.1315$).

二、单项选择题(共 6 题, 每题 3 分,共 18 分)

1. 下列函数中,可作为随机变量的概率密度函数的是(

(A)
$$f(x) = \begin{cases} x^2, 0 < x < 1, \\ 0, 其他 \end{cases}$$

(B)
$$f(x) = \begin{cases} \cos x, 0 < x < \pi, \\ 0, 其他 \end{cases}$$

(C)
$$f(x) = \begin{cases} \sin x, 0 < x < \frac{\pi}{2} \\ 0, 其他 \end{cases}$$

(C)
$$f(x) = \begin{cases} \sin x, 0 < x < \frac{\pi}{2}, \\ 0, \sharp \text{ th} \end{cases}$$
 (D) $f(x) = \begin{cases} \sin x, -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ 0, \sharp \text{ th} \end{cases}$

2. 设随机变量 $X \sim N(0,1), Y = e^X$, 关于 Y 的概率密度函数,正确的是(

(A)
$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}y}e, & y > 0\\ \frac{1}{\sqrt{2\pi}y}e^{-\frac{(\ln y)^{2}}{2}}, & y \leq 0 \end{cases}$$
 (B) $f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}y}e^{-\frac{(\ln y)^{2}}{2}}, & y > 0\\ 0, & y \leq 0 \end{cases}$ (C) $f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}}e^{-\frac{(\ln y)^{2}}{2}}, & y > 0\\ 0, & y \leq 0 \end{cases}$ (D) $f_{Y}(y) = \begin{cases} 0, & y > 0\\ \frac{1}{\sqrt{2\pi}y}e^{-\frac{(\ln y)^{2}}{2}}, & y \leq 0 \end{cases}$

(B)
$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi}y} e^{\frac{-(\ln y)^2}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

(C)
$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{(\ln y)^2}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

(D)
$$f_Y(y) = \begin{cases} 0, & y > 0 \\ \frac{1}{\sqrt{2\pi}y} e^{-\frac{(\ln y)^2}{2}}, & y \le 0 \end{cases}$$

3. 若方差 D(X + Y) = D(X) + D(Y) , 则下列一定正确的是().

- (A) D(XY) = D(X)D(Y) (B) X 与 Y 相互独立

+------ 概率统计 ------ 第1页 共3页 +

(C	'n .	X 与]	$V \mathcal{A}$	「相」	БΧ	中 子	7
u.	. 1	$\Delta - 1$	<i>l</i> /	' /I'H	4 7	エ・	1.

(D) E(XY) = E(X)E(Y)

4. 随机的掷6个骰子,利用切比雪夫不等式估计, 6个骰子出现点数之和在15点到27点之间 的概率不小于().

(A)
$$\frac{37}{72}$$
 (B) $\frac{53}{72}$ (C) $\frac{25}{36}$ (D) $\frac{29}{36}$

(B)
$$\frac{53}{72}$$

(C)
$$\frac{25}{36}$$

(D)
$$\frac{29}{36}$$

5. 设 $\Phi(x)$ 是 标 准 正 态 分 布 函 数 , $X_i = \begin{cases} 1, & \text{事件A发生} \\ 0, & \text{否则} \end{cases}$, $i=1,2,\cdots$, 100 , 且

P(A)=0.8 , X_1 , X_2 ,..., X_{100} 相互独立。令 $Y=\sum_{i=1}^{100}X_i$,则由中心极限定理知, $P(Y\leq y)$ 的

值近似于().

(A)
$$\Phi(\frac{y-80}{4})$$
 (B) $\Phi(y)$ (C) $\Phi(16y+80)$ (D) $\Phi(\frac{y-80}{16})$

(B)
$$\Phi(y)$$

(C)
$$\Phi(16y+80)$$

(D)
$$\Phi(\frac{y-80}{16})$$

6. 在假设检验问题中,显著性水平 α 的意义是(

- (A) 原假设 H_0 成立,经检验被拒绝的概率 (B) 原假设 H_0 成立,经检验被接受的概率
- (C) 原假设 H_0 不成立,经检验被拒绝的概率 (D) 原假设 H_0 不成立,经检验被接受的概率

三、 计算题(共 5 题, 共 58 分)

- 1. (12分)某人去外地参加会议,乘火车、轮船、汽车、飞机的概率分别为 0.3、0.2、0.1 和 0.4, 若乘飞机不会迟到,乘火车、轮船、汽车迟到的概率分别为0.25、0.5和0.5,求
 - (1) 此人迟到的概率. (2) 若此人迟到,求他乘火车去开会的概率.
- 2. (8分) 设随机变量 X 和 Y 的联合概率密度 $f(x,y) = \begin{pmatrix} 6, x^2 < y < x \\ 0 & \pm h \end{pmatrix}$.
- (1) 求X和Y的边缘概率密度 $f_X(x), f_Y(y)$.
- (2) 判断 X 和 Y 是否相互独立, 并说明原因.
- 3. (12 分)随机变量 X 的分布律为 $\begin{pmatrix} X & -1 & 1 \\ & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$, 随机变量 Y 的概率密度是

$$f(y) = \begin{cases} 2y, & 0 < y < 1, \\ 0, & 其它. \end{cases}$$
 , $X = Y$ 相互独立, $Z = XY$, 求

(1) Y 的分布函数 . (2) 概率 $P\{Y < E(Y)\}$. (3) 协方差 Cov(X, Z) .

4. (18 分)设总体 X 的概率密度为 $f(x,\theta) = \begin{pmatrix} \frac{1}{\theta-1}, 1 \le x \le \theta \\ 0, \quad \\ \end{bmatrix}$, 其中 θ 为未知参数,

 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。求:

- $\hat{\theta}$ (1) 求 θ 的矩估计 $\hat{\theta}$,并判断 $\hat{\theta}$ 是否为无偏估计,说明原因.
- (2) 求 θ 的最大似然估计 $\hat{\theta}_2$, 并求 $\hat{\theta}_2$ 的概率密度函数.
- 5. (8分) 设某次考试的考生成绩服从期望是 μ 的正态分布。从中随机地抽取 36 位考生的成绩,算得这 36 位考生的平均成绩为 66.5分,样本标准差为 15分。在显著水平 0.05下,试检验假设: $H_0: \mu = 70$, $H_1: \mu \neq 70$. (已知 $t_{0.025}(35) = 2.0301; t_{0.05}(35) = 1.6896$;

$$t_{0.025}(36) = 2.0281; t_{0.05}(36) = 1.6883$$
).

四、证明题(共6分)

设总体 X 服从正态分布 $N(0,\sigma^2)$, X_1 , X_2,\cdots,X_n 是来自总体 X 的一组简单随机样本。记 $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n X_i^2 \ , \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \ , \ \text{证明} \ \hat{\sigma^2} \ \text{和} \ S^2 \ \text{都是} \ \sigma^2 \ \text{的无偏估计}.$

+------ 概率统计 ------ 第3页 共3页 +