

AD-A105 306 HOSKINS-WESTERN-SONDEREGGER INC LINCOLN NE
NATIONAL DAM SAFETY PROGRAM, ELLIOT DAVIS LAKE DAM (MO 10129), --ETC(U)
SEP 78 H P HOSKINS F/B 13/18
UNCLASSIFIED DACW43-78-C-0155
NL

| 14 |
2005200

END
DATE FILMED
11-81
DTIC

MISSOURI LEVEL I
MISSOURI-KANSAS CITY BASIN

ELLIOT DAVIS LAKE DAM
HOWARD COUNTY, MISSOURI
MO 10129

ADA105306

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

DTIC FILE COPY

DTIC
ELECTED
OCT 9 1981
S D

PREPARED BY: HOSKINS-WESTERN-SONDEREGGER, INC.
FOR: STATE OF MISSOURI

SEPTEMBER, 1978

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

81 10 7 068

~~UNCLASSIFIED~~

~~UNCLASSIFIED~~ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER		2. GOVT ACCESSION NO.
		AD-A105 306
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Phase I Dam Inspection Report National Dam Safety Program Elliot Davis Lake Dam (MO 10129) Howard County, Missouri		Final Report.
7. AUTHOR(s)		6. PERFORMING ORG. REPORT NUMBER
Hoskins-Western-Sonderegger, Inc.		
8. CONTRACT OR GRANT NUMBER(s)		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		11. J 148
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101		September 1978
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES
National Dam Safety Program. Elliot Davis Lake Dam (MO 10129), Missouri - Kansas City Basin, Howard County, Missouri. Phase I Inspection.		Approximately 45
16. DISTF		15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
Approved for release; distribution unlimited.		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
Dam Safety, Lake, Dam Inspection, Private Dams		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.		

DD FORM 1 JAN 73 1473

EDITION OF 1 MAY 95 IS OBSOLETE

374131

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

IN REPLY REFER TO

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 NORTH 12TH STREET
ST. LOUIS, MISSOURI 63101

SUBJECT: Elliot Davis Lake Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Elliot Davis Lake dam:

It was prepared under the National Program of Inspection of Non-Federal Dams

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

- 1) Spillway will not pass 50 percent of the Probable Maximum Flood
- 2) Overtopping could result in dam failure.
- 3) Dam failure significantly increases the hazard to loss of life downstream

SIGNED

12 MAR 1979

SUBMITTED BY:

Chief, Engineering Division

Date

SIGNED

APPROVED BY:

Colonel, CE, District Engineer

12 MAR 1979
Date

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A	

STC FILED
S OCT 9 1981
D

PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam Elliot Davis Lake Dam
State Located Missouri
County Located Howard County
Stream Tributary to Adams Fork
Date of Inspection September 14, 1978

Elliot Davis Lake Dam was inspected by an interdisciplinary team of engineers, from ~~Hoskins-Western-Sonderegger, Inc.~~ The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers and developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam is classified as an intermediate size dam with a high downstream hazard potential. Failure would threaten life and property. The estimated damage zone extends three miles downstream of the dam. Within the first two miles downstream of the dam are three to four houses, one county road, one state road and one railroad crossing.

Our inspection and evaluation indicates that the spillway does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. The spillway will not pass the flood expected to be exceeded once in one hundred years without overtopping the dam. The spillway will pass 17% of the Probable Maximum Flood without overtopping the dam. The Probable Maximum Flood (PMF) is defined as the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These analyses should be obtained in the future.

Other deficiencies visually observed by the inspection team were willows growing along the waterline on upstream slope, seepage emerging from the toe of the dam near the right abutment, water ponded downstream of the dam in the area of the seep, dense growth of grass and rushes enclosing the concrete weir inlet to the spillway, erosion around the outlet end of the spillway, a reported break in the spillway pipe, and the lack of an emergency spillway.

Several items of preventive maintenance need to be initiated by the owner. These are described in detail in the body of the report.

Harold P. Hoskins
Harold P. Hoskins, P.E.
Hoskins-Western-Sonderegger, Inc.
Lincoln, Nebraska

PHOTO NO. 1
OVERVIEW TAKEN
FROM RIGHT SIDE

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
ELLIOT DAVIS LAKE DAM
ID NO. MO. 10129

TABLE OF CONTENTS

<u>Paragraph No.</u>	<u>Title</u>	<u>Page No.</u>
SECTION 1 - PROJECT INFORMATION		
1.1	General	1
1.2	Description of Project	1
1.3	Pertinent Data	2
SECTION 2 - ENGINEERING DATA		
2.1	Design	4
2.2	Construction	4
2.3	Operation	4
2.4	Evaluation	4
SECTION 3 - VISUAL INSPECTION		
3.1	Findings	5
3.2	Evaluation	6
SECTION 4 - OPERATIONAL PROCEDURES		
4.1	Procedures	7
4.2	Maintenance of Dam	7
4.3	Maintenance of Operating Facilities	7
4.4	Description of Any Warning System in Effect	7
4.5	Evaluation	7
SECTION 5 - HYDRAULIC/HYDROLOGIC		
5.1	Evaluation of Features	8
SECTION 6 - STRUCTURAL STABILITY		
6.1	Evaluation of Structural Stability	9
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES		
7.1	Dam Assessment	10
7.2	Remedial Measures	10

APPENDIX A - MAPS

Plate 1
Plate 2

Vicinity Topography
Location Map

APPENDIX B - PHOTOGRAPHS

Photographs of Dam and Lake (No. 2 through No. 11)

APPENDIX C - PLAN, SECTION AND PROFILE

Phase I

Plan, Section and
Profile

APPENDIX D - HYDROLOGIC COMPUTATIONS

Plate D1

Inflow Hydrographs

Sheets 1, 2 and 3 of 16
Sheets 4 and 5 of 16
Sheet 6 of 16
Sheets 7, 8 and 9 of 16
Sheets 10 and 11 of 16
Sheets 12, 13 and 14 of 16
Sheet 15 of 16
Sheet 16 of 16

Computer Input (PMF and 0.5 PMF)
Computer Output (PMF)
Computer Output (0.5 PMF)
Computer Input (100 Year)
Computer Output (100 Year)
Principal Spillway Flow Computations
Flow Computations Over Dam
Outfall Rating Computations

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

- a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection of the Elliot Davis Lake Dam be made.
- b. Purpose of Inspection. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.
- c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams." These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations, and private engineers.

1.2 DESCRIPTION OF PROJECT

- a. Description of Dam and Appurtenances.
 - (1) This dam is an earth fill about 1050 feet in length and 42 feet in height. Topography around the dam is moderately steep. Materials on the slopes consist of loess or re-worked loess soils underlain by limestone. Surface materials in the dam are lean clays (CL).
 - (2) The spillway consists of a 30 inch diameter corrugated metal pipe (CMP) riser connected to a 12 inch CMP outlet passing through the dam and/or abutment on the right (south) end.
 - (3) A 4 inch steel pipe with a valve at the downstream end passes through the base of the dam at about centerline station 7+00.
 - (4) Pertinent physical data are given in Paragraph 1.3 below.
- b. Location. The dam is located in the central portion of Howard County, Missouri, as shown on Plate 2. The dam is shown on Plate 1 in the SW $\frac{1}{4}$ of Section 10, T50N, R16W. The lake formed by the dam is shown in the W $\frac{1}{2}$ of Section 10 and the E $\frac{1}{2}$ of Section 9, T50N, R16W.

- c. Size Classification. Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1c above. Based on these criteria, this dam and impoundment is in the intermediate size category.
- d. Hazard Classification. Guidelines for determining hazard classification are presented in the same guidelines as referenced in paragraph c above. Based on referenced guidelines, this dam is in the High Hazard Classification. The estimated damage zone extends three miles downstream of the dam. Within the first two miles downstream of the dam are three to four houses, one county road, one state road and one railroad crossing.
- e. Ownership. This dam is owned by Westown Lake, Inc., 124 East Morrison, Fayette, Missouri 65248. Attention: John Edwards.
- f. Purpose of Dam. The dam forms a 47 acre \pm recreational lake.
- g. Design and Construction History. No design or construction data were available. The dam was constructed in 1962 for Mr. Elliot Davis. It was reported that materials for the dam came from the reservoir area, that it has a foundation cut off and that a sheepfoot roller was used to compact the fill.
- h. Normal Operating Procedure. There are no controlled outlet works for this dam. No information was available on the fluctuation of the lake level. It was reported that flow passed over the top of the dam for about 2 hours in 1973. This overtopping resulted from a 9 to 12 inch rain in the area.

1.3 PERTINENT DATA

- a. Drainage Area - 0.55 sq. mi. (351.3 acres).
- b. Discharge at Damsite.
 - (1) All discharge at the damsite is through a 30 inch CMP drop inlet pipe (capped with a 30 inch square concrete weir) with a 12 inch CMP conduit outlet pipe.
 - (2) Estimated flood at damsite - 300 c.f.s. \pm in 1973; based on estimated depths furnished by owner over the low portions at the dam and using current rating.
 - (3) The principal spillway capacity varies from 0 c.f.s. at elevation 699 ft. to 7 c.f.s. at elevation 701.2 feet (low point on dam crest and maximum pool elevation).
 - (4) There is no emergency spillway.

c. Elevations (Feet above M.S.L.)

- (1) Top of dam (low point) - 701.2; normal - 703.
- (2) Principal spillway crest - 699.0.
- (3) Emergency spillway crest - None.
- (4) Streambed at centerline of dam - 660±.
- (5) Maximum tailwater - unknown.

d. Reservoir. Length of maximum pool - 3,600 ft.±.

e. Storage (Acre-feet).

- (1) Top of dam (701.2 feet) - 895.
- (2) Normal pool (699.0 feet) - 778.

f. Reservoir Surface (Acres)

- (1) Top of dam - 51±.
- (2) Spillway crest - 47±.

g. Dam

- (1) Type - Earth embankment.
- (2) Length - 1050 feet±.
- (3) Height - 42 feet±.
- (4) Top width - 18 feet.
- (5) Side Slopes.
 - (a) Downstream - 3.1H to 3.5H on 1V (measured)
 - (b) Upstream - Exposed section - 3.8H on 1V (measured)
Reported to be 4H on 1V
- (6) Zoning - Unknown.
- (7) Impervious Core - Unknown.
- (8) Cutoff - Reported as present.
- (9) Grout curtain - unknown.
- (10) Wave Protection - Riprap, limestone rock.

h. Diversion and regulation - None

i. Spillway

(1) Principal

- (a) Type - 30 inch CMP drop inlet with concrete weir cap and 12 inch CMP outlet conduit.
- (b) Size of weir - 30 inch square opening.
- (c) Crest elevation - 699.0 feet, M.S.L.

(2) Emergency - None.

j. Regulating Outlet - None.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

No design data were available.

2.2 CONSTRUCTION

The dam was constructed in 1962. No construction data were available. It was reported that the embankment was compacted with sheepfoot rollers.

2.3 OPERATION

No data on operation of the spillway were available. It was reported that the dam overtopped in 1973.

2.4 EVALUATION

- a. Availability. No data were available.
- b. Seepage and Stability Analyses. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

- a. General. A visual inspection of Davis Lake Dam was made on September 14, 1978. Engineers from Hoskins-Western-Sonderegger, Inc., Lincoln, Nebraska making the inspection were: Rey Decker, Geology and Soil Mechanics; Garold Ulmer, Civil Engineer; Richard Walker and Gordon Jamison, Hydrology. Specific observations are discussed below.
- b. Dam. Rough measurements along the crest of the dam indicate that the ends of the dam are 1 to 2 feet lower in elevation than the central section of the dam.

The upstream slope appears to be quite flat (measured at 3.8H on 1V) and is covered from the waterline down with durable limestone riprap up to 36 inches in diameter. No bedding material was noted under the riprap. A few small willows were observed along the waterline. No excessive erosion was noted on the upstream slope. The downstream slope is covered with a dense growth of grasses and clover that made it difficult to evaluate surface conditions. The abutments are mantled with silty clay (CL) soils. However, limestone bedrock outcrops at and above the water level toward the upper end of the lake. No animal burrows, cracks, slides or abnormal deformations were noted on the embankment or abutments.

A fairly large seep area, approximately 20x75 feet in size, was observed at the downstream toe of the dam near the right abutment-embankment trough downstream from about center line station 8+50 (see Appendix C for stationing). Water was ponded in the lower part (approximately 20x20 feet) of this area and the ground surface was very unstable.

- c. Appurtenant Structures. The principal spillway consists of a 30 inch corrugated metal riser connected to a 12 inch CMP outlet passing through the dam or abutment at about 6 station 10+50. A dense growth of tall grass and rushes encloses the screen around the concrete weir inlet to the spillway. The spillway outlets on the right abutment about 13 feet above the elevation of the valley floor. A hole about 20 feet in diameter has eroded around the outlet end and exposed about 4 feet of the spillway pipe. The exposed c/m pipe appeared to be in good condition. However, it was reported by one of the owners that the 12 inch spillway conduit pipe is broken and leaks. Leakage from the spillway outlet could contribute to the seep area along the toe of the dam.

The water level in the reservoir was at the elevation of the spillway weir crest at the time of inspection with a slight trickle of water discharging from the spillway outlet.

A 4 inch steel pipeline passes through the base of the dam at about center line station 7+00. This pipeline outlets near the downstream toe of the dam and is controlled by a valve at the outlet end. It was reported that this valve is opened once or twice each year to be sure that it is operable.

- d. Reservoir Area. No wave wash, excessive erosion or slides were noted along the shoreline of the reservoir.
- e. Downstream Channel. The spillway outlets onto a well vegetated slope and thence into a wooded channel approximately 400 feet downstream from the dam.
- f. Downstream Hazards. Downstream hazards are described in Section 5. In addition to those in Section 5, it was noted that a sewage lagoon approximately 250 x 50 feet is located in the valley floor downstream from about station 7+00. It was reported that additional lagoons are to be constructed adjacent to the present lagoon.

3.2 EVALUATION

The erosion around and leakage in the spillway outlet could lead to potential of failure if left uncorrected. Additional studies would be required to determine the affect of seepage on stability of the dam. The flat side slopes on this embankment would ordinarily provide adequate safety against shear failures for a dam of this height.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

There are no controlled outlet works for this dam. It was reported that water flowed over the top of the dam in 1973.

4.2 MAINTENANCE

The growth of small trees and shrubs on the upstream face of the dam, heavy grass growth on the downstream slope, erosion at the spillway outlet, and reported leaks in the spillway conduit indicate the lack of regular maintenance.

4.3 MAINTENANCE AND OPERATING FACILITIES

No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

The inspection team is not aware of any warning system in effect for this dam.

4.5 EVALUATION

A potential of failure may result if deficiencies in the spillway and control of tree growth on the upstream face are not corrected.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

- a. Design Data. No design data were found for this dam.
- b. Experience Data. The drainage area, lake surface area, and elevation-storage data were developed from the USGS Fayette, Mo. 7 1/2 minute topographic quadrangle map. The hydraulic computations for spillway and dam overtopping discharge ratings were based on data obtained from surveys made at the time of the field inspection.
- c. Visual Observations.
 - (1) The principal spillway outlet channel is eroded and the approach to the weir is blocked by heavy grass matted against the protective fence. It was also reported that the spillway outlet conduit is broken and leaks.
- d. Overtopping Potential. The principal spillway is too small to pass either the 100-year or one-half probable maximum flood without overtopping. The principal spillway will pass the 0.17 PMF without overtopping the dam. The results of the routings through the reservoir are tabulated in regards to the following conditions.

<u>Frequency</u>	<u>Peak Inflow Discharge c.f.s.</u>	<u>Peak Outflow Discharge c.f.s.</u>	<u>Maximum Pool Elevation</u>	<u>Freeboard Top of Dam Min. Elev. 701.2</u>	<u>Time Dam Overtopping Hrs.</u>
100-Yr.	690	110	701.8	-0.6	14+
1/2 PMF	1660	1400	702.9	-1.7	14+
PMF	3340	3220	703.5	-2.3	15+
0.17 PMF	530	9	701.2	0	-

According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, this dam is classified as having a high hazard rating and a intermediate size. Therefore, the PMF is the test for the adequacy of the dam and its spillways.

The St. Louis District, Corps of Engineers, in a letter dated 11 August, 1978 has estimated the damage zone as extending three miles downstream from the dam. Within the damage zone are three to four homes, one county road, one state highway and one railroad crossing.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

- a. Visual Observations. Visual observations of features which could adversely affect structural stability of this dam are discussed in Section 3.
- b. Design and Construction Data. No data were available.
- c. Operating Records. There are no controlled outlets for this dam.
- d. Post Construction Changes. The inspection team is not aware of any post construction changes on this dam.
- e. Seismic Stability. This dam is located in Seismic Zone 1. An earthquake of this magnitude is not expected to cause a structural failure of this dam.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

- a. Safety. The erosion and reported leakage associated with the spillway outlet should be corrected. The flatter than normal embankment slopes should provide adequate safety against shear failures in a dam of this height. However, additional studies would be required to determine the effects of the observed seepage on the stability of the dam. The floods caused by the 100-year storm will overtop the dam to a depth of 0.6 foot and the 0.5 probable maximum flood will overtop the dam to a depth of 1.7 feet.
- b. Adequacy of Information. Due to the lack of engineering data, the conclusions in this report are based upon performance history and visual observations. These data are considered sufficient to support these conclusions. Neither seepage nor stability analysis were found which is a deficiency that should be corrected in the future.
- c. Urgency. The remedial measures recommended in paragraph 7.2 should be accomplished in the near future. If the deficiencies in the present spillway listed in paragraph "a" are not corrected, they could ultimately lead to potential of failure.
- d. Necessity for Phase II. Phase II investigations do not seem to be necessary. However, additional engineering data should be obtained at the owner's expense to evaluate the effects of seepage on the stability of the dam.
- e. Seismic Stability. An earthquake of the magnitude expected in this area should not be hazardous to this dam.

7.2 REMEDIAL MEASURES

a. Alternatives.

- (1) Raising the low sections on each end of the dam up to the normal crest elevation of 703 would prevent overtopping by the 0.5 PMF.
- (2) An emergency spillway should be constructed to pass the probable maximum flood without overtopping the dam.
- (3) If the present spillway is to remain in service, the outlet pipe should be repaired. The erosional damage at the outlet end of the spillway should be corrected and measures taken to control erosion from future spillway discharges.

- (4) Seepage and stability analyses comparable to the requirements of the guidelines should be performed.
- (5) The services of an engineer experienced in the design of dams should be obtained to evaluate seepage and stability conditions and to design the new spillway and/or modifications to the embankment that are required to prevent overtopping of the dam and erosion from spillway discharges.

b. O & M Maintenance and Procedures.

- (1) The deficiencies in the present spillway and the tree growth on the upstream face of the dam should be corrected.
- (2) Mowing the downstream slope of the dam would allow better evaluation of downstream slope conditions.
- (3) A schedule of regular inspection and maintenance should be initiated. Maintenance measures should include control of vegetation on the structure and of excessive erosion in the present and/or new spillway.

APPENDIX A
MAPS

SCALE IN FEET
2000 1000 0 2000 4000
1000 500 0 1000
SCALE IN METERS

ELLIOT DAVIS
LAKE DAM

VICINITY TOPOGRAPHY
PLATE 1

APPENDIX B
PHOTOGRAPHS

PHOTO NO. 2
SEEPAGE SPRING
OPPOSITE STA. 8+85

PHOTO NO. 3
OVERVIEW OF DAM
TAKEN UPSTREAM
FROM RIGHT ABUTMENT.

PHOTO NO. 4
PRINCIPAL SPILLWAY
INLET.

PHOTO NO. 5
DOWNSTREAM SLOPE
OF DAM.

PHOTO NO. 6
OUTLET END OF
PRINCIPAL SPILLWAY

PHOTO NO. 7
OUTLET END 4" PIPE
WITH VALVE CONTROL

PHOTO NO. 8
LOOKING DOWNSTREAM
FROM CENTERLINE
STATION 7+00

PHOTO NO. 9
LOOKING UPSTREAM
ACROSS RESERVOIR
FROM STATION 7+00.

PHOTO NO. 10
UPSTREAM SLOPE
FROM LEFT ABUTMENT.

PHOTO NO. 11
CREST OF DAM
TAKEN FROM
LEFT ABUTMENT

APPENDIX C
PLAN, SECTION AND PROFILE

**ELLIOT DAVIS LAKE DAM
NATIONAL DAM SAFETY PROGRAM
PHASE I**

APPENDIX D
HYDROLOGIC COMPUTATIONS

HYDROLOGIC COMPUTATIONS

1. The Mockes dimensionless standard curvilinear unit hydrograph and the SCS TR-20 program were used to develop the inflow hydrographs (see Plate D1). The inflow hydrograph for the 100-year flood was generated by the consultant using the TR-20 program.
 - a. Six-hour, twelve-hour, and twenty-four hour 100-year rainfall for the dam location was taken from NOAA Technical Paper 40. The 24-hour probable maximum precipitation was taken from the curves of Hydro-meteorological Report No. 33 and current Corps of Engineers and St. Louis District policy and guidance for hydraulics and hydrology.
 - b. Drainage area = 0.55 square mile.
 - c. Time of concentration of runoff = 31 minutes.
 - d. The antecedent storm conditions were heavy rainfall and low temperatures which occurred on the previous 5 days (SCS AMCIII). The initial pool elevation was assumed at the crest of the principal spillway.
 - e. The total 24-hour storm duration losses for the 100-year storm were 1.14 inches. The total losses for the 24-hour duration 1/2 PMF storm were 1.23 inches. The total losses for the PMF storm were 1.27 inches. These data are based on use of soils groups B and D; grazing, homesites, and woodlands weighted to produce SCS input runoff curve No. 79 from SCS AMCII converted by TR-20 to computed curve No. 90.4 SCS AMCIII.
 - f. Average soil loss rates = 0.05 inch per hour approximately.
2. The weir/drop-inlet discharge ratings were developed using standard formulas. The flows over the dam crest were based on the broad-crested weir equation $Q = CLH^{3/2}$, where H is the head on the dam crest; the coefficient C , which varies with head, was taken from the USGS publication "TWRI, Book 3, Chapter 5, Measurement of Peak Discharge at Dams by Indirect Methods" (C values varied from 2.52 to 3.04). Sample calculations are attached.
3. Floods were routed through the reservoir using the TR-20 program to determine the capabilities of the spillway and dam embankment crest. The unit hydrograph computation duration interval is computed as $0.17 T_c$ by the TR-20 program. Copies of the input-output data from the TR-20 program used to develop the hydrographs for the PMF, 0.5 PMF, and 100-year flood are attached. The storm rainfall patterns, inflow hydrographs and routed outflow hydrographs are shown on Plate D1.

ELLIOT DAVIS LAKE DAM, MO.

REASIN-ESTER

20F/16

0.6500
1.6700
3.2200
5.6100
5.5600
15.0100
26.0000
31.6500
32.1100

0.5000
0.6400
1.2700
3.2200
5.1600
11.1200
11.2400
12.6500
14.05400
31.1100
32.1100

0.5000
0.6300
1.7900
4.6100
9.4700
24.6600
29.4400
32.0000

0.0000000000
0.0000000000
2.4710000000
4.6710000000
19.6710000000
31.0000000000

0.3500
0.7300
0.0500
0.0500
0.0500
0.2460
2.2710000000
31.0000000000

ENDTHL

STANDARD CONTROL INSTRUCTIONS

		HYDROGRAPHIS						OUTPUT OPTIONS	
SUBRIN	XSECTN	SYRCI	IN1	IN2	OUT	DATA NO.	NU.	PK	H
0	0	1	6	0	6	1	0.550	79.000	0.500
RUNOFF			0	0	7	0	0.000	0.000	0.000
RESVOR			0	0	699.000	0	0.000	1	1
ENDATA								1	1
END OF LISTING								0	0

ADDITIONS TO TABULAR DATA FOLLOW

STRUCTURE NO. 1

699.0001	0.0000
699.2000	5.1000
699.4000	7.1000
699.6000	7.1000
700.0001	7.2000
700.5001	655.0001
701.0001	7.3000
701.5000	681.0001
701.7500	695.0001
701.9000	707.0001
701.9400	13.3000
701.9600	143.4000
701.9800	103.0000
702.0000	1027.0000
702.0200	97.0001
702.0400	949.0001
702.0600	1926.0002
702.0800	1005.0002
702.1000	1062.0002
702.1200	1005.0002
702.1400	1062.0002
702.1600	1005.0002
702.1800	1062.0002
702.2000	1005.0002
702.2200	1062.0002
702.2400	1005.0002
702.2600	1062.0002
702.2800	1005.0002
702.3000	1062.0002
702.3200	1005.0002
702.3400	1062.0002
702.3600	1005.0002
702.3800	1062.0002
702.4000	1005.0002
702.4200	1062.0002
702.4400	1005.0002
702.4600	1062.0002
702.4800	1005.0002
702.5000	1062.0002
702.5200	1005.0002
702.5400	1062.0002
702.5600	1005.0002
702.5800	1062.0002
702.6000	1005.0002
702.6200	1062.0002
702.6400	1005.0002
702.6600	1062.0002
702.6800	1005.0002
702.7000	1062.0002
702.7200	1005.0002
702.7400	1062.0002
702.7600	1005.0002
702.7800	1062.0002
702.8000	1005.0002
702.8200	1062.0002
702.8400	1005.0002
702.8600	1062.0002
702.8800	1005.0002
702.9000	1062.0002
702.9200	1005.0002
702.9400	1062.0002
702.9600	1005.0002
702.9800	1062.0002
703.0000	1005.0002
703.0200	1062.0002
703.0400	1005.0002
703.0600	1062.0002
703.0800	1005.0002
703.1000	1062.0002
703.1200	1005.0002
703.1400	1062.0002
703.1600	1005.0002
703.1800	1062.0002
703.2000	1005.0002
703.2200	1062.0002
703.2400	1005.0002
703.2600	1062.0002
703.2800	1005.0002
703.3000	1062.0002
703.3200	1005.0002
703.3400	1062.0002
703.3600	1005.0002
703.3800	1062.0002
703.4000	1005.0002
703.4200	1062.0002
703.4400	1005.0002
703.4600	1062.0002
703.4800	1005.0002
703.5000	1062.0002
703.5200	1005.0002
703.5400	1062.0002
703.5600	1005.0002
703.5800	1062.0002
703.6000	1005.0002
703.6200	1062.0002
703.6400	1005.0002
703.6600	1062.0002
703.6800	1005.0002
703.7000	1062.0002
703.7200	1005.0002
703.7400	1062.0002
703.7600	1005.0002
703.7800	1062.0002
703.8000	1005.0002
703.8200	1062.0002
703.8400	1005.0002
703.8600	1062.0002
703.8800	1005.0002
703.9000	1062.0002
703.9200	1005.0002
703.9400	1062.0002
703.9600	1005.0002
703.9800	1062.0002
704.0000	1005.0002

EXECUTIVE CONTROL CARD
EXECUTIVE CONTROL CARD
SUBROUTINE RUNOFF STRUCTURE INPUT RUNOFF CURVE = 90.4
COMPUTED CURVE NO. = 90.4
OPERATION INCRMNT: RAIN DEPTH = 1.00
STARTING TIME = 0.00
ALTERNATE NO. = 1
STORM NO. = 1

SUBROUTINE RUNOFF STRUCTURE INPUT RUNOFF CURVE = 79.0

TIME	DISCHG	PEAK TIMES
1.75	DISCHG	0.00
4.25	DISCHG	2.513
6.75	DISCHG	4.922
9.25	DISCHG	7.256
11.75	DISCHG	9.594
14.25	DISCHG	12.923
16.75	DISCHG	16.252
19.25	DISCHG	19.581
21.75	DISCHG	22.910
24.25	DISCHG	26.239
26.75	DISCHG	29.568
29.25	DISCHG	32.897
31.75	DISCHG	36.226
34.25	DISCHG	39.555
36.75	DISCHG	42.884
39.25	DISCHG	46.213
41.75	DISCHG	49.542
44.25	DISCHG	52.871
46.75	DISCHG	56.200
49.25	DISCHG	59.529
51.75	DISCHG	62.858
54.25	DISCHG	66.187
56.75	DISCHG	69.516
59.25	DISCHG	72.845
61.75	DISCHG	76.174
64.25	DISCHG	79.503
66.75	DISCHG	82.832
69.25	DISCHG	86.161
71.75	DISCHG	89.490
74.25	DISCHG	92.819
76.75	DISCHG	96.148
79.25	DISCHG	99.477
81.75	DISCHG	102.806
84.25	DISCHG	106.135
86.75	DISCHG	109.464
89.25	DISCHG	112.793
91.75	DISCHG	116.122
94.25	DISCHG	119.451
96.75	DISCHG	122.780
99.25	DISCHG	126.109
101.75	DISCHG	129.438
104.25	DISCHG	132.767
106.75	DISCHG	136.096
109.25	DISCHG	139.425
111.75	DISCHG	142.754
114.25	DISCHG	146.083
116.75	DISCHG	149.412
119.25	DISCHG	152.741
121.75	DISCHG	156.070
124.25	DISCHG	159.400
126.75	DISCHG	162.729
129.25	DISCHG	166.058
131.75	DISCHG	169.387
134.25	DISCHG	172.716
136.75	DISCHG	176.045
139.25	DISCHG	179.374
141.75	DISCHG	182.703
144.25	DISCHG	186.032
146.75	DISCHG	189.361
149.25	DISCHG	192.690
151.75	DISCHG	196.019
154.25	DISCHG	199.348
156.75	DISCHG	202.677
159.25	DISCHG	206.006
161.75	DISCHG	209.335
164.25	DISCHG	212.664
166.75	DISCHG	215.993
169.25	DISCHG	219.322
171.75	DISCHG	222.651
174.25	DISCHG	225.980
176.75	DISCHG	229.309
179.25	DISCHG	232.638
181.75	DISCHG	235.967
184.25	DISCHG	239.296
186.75	DISCHG	242.625
189.25	DISCHG	245.954
191.75	DISCHG	249.283
194.25	DISCHG	252.612
196.75	DISCHG	255.941
199.25	DISCHG	259.270
201.75	DISCHG	262.600
204.25	DISCHG	265.929
206.75	DISCHG	269.258
209.25	DISCHG	272.587
211.75	DISCHG	275.916
214.25	DISCHG	279.245
216.75	DISCHG	282.574
219.25	DISCHG	285.903
221.75	DISCHG	289.232
224.25	DISCHG	292.561
226.75	DISCHG	295.890
229.25	DISCHG	299.219
231.75	DISCHG	302.548
234.25	DISCHG	305.877
236.75	DISCHG	309.206
239.25	DISCHG	312.535
241.75	DISCHG	315.864
244.25	DISCHG	319.193
246.75	DISCHG	322.522
249.25	DISCHG	325.851
251.75	DISCHG	329.180
254.25	DISCHG	332.509
256.75	DISCHG	335.838
259.25	DISCHG	339.167
261.75	DISCHG	342.496
264.25	DISCHG	345.825
266.75	DISCHG	349.154
269.25	DISCHG	352.483
271.75	DISCHG	355.812
274.25	DISCHG	359.141
276.75	DISCHG	362.470
279.25	DISCHG	365.800
281.75	DISCHG	369.129
284.25	DISCHG	372.458
286.75	DISCHG	375.787
289.25	DISCHG	379.116
291.75	DISCHG	382.445
294.25	DISCHG	385.774
296.75	DISCHG	389.103
299.25	DISCHG	392.432
301.75	DISCHG	395.761
304.25	DISCHG	399.090
306.75	DISCHG	402.419
309.25	DISCHG	405.748
311.75	DISCHG	409.077
314.25	DISCHG	412.406
316.75	DISCHG	415.735
319.25	DISCHG	419.064
321.75	DISCHG	422.393
324.25	DISCHG	425.722
326.75	DISCHG	429.051
329.25	DISCHG	432.380
331.75	DISCHG	435.709
334.25	DISCHG	439.038
336.75	DISCHG	442.367
339.25	DISCHG	445.696
341.75	DISCHG	449.025
344.25	DISCHG	452.354
346.75	DISCHG	455.683
349.25	DISCHG	459.012
351.75	DISCHG	462.341
354.25	DISCHG	465.670
356.75	DISCHG	469.000
359.25	DISCHG	472.329
361.75	DISCHG	475.658
364.25	DISCHG	479.000
366.75	DISCHG	482.329
369.25	DISCHG	485.658
371.75	DISCHG	489.000
374.25	DISCHG	492.329
376.75	DISCHG	495.658
379.25	DISCHG	499.000
381.75	DISCHG	502.329
384.25	DISCHG	505.658
386.75	DISCHG	509.000
389.25	DISCHG	512.329
391.75	DISCHG	515.658
394.25	DISCHG	519.000
396.75	DISCHG	522.329
399.25	DISCHG	525.658
401.75	DISCHG	529.000
404.25	DISCHG	532.329
406.75	DISCHG	535.658
409.25	DISCHG	539.000
411.75	DISCHG	542.329
414.25	DISCHG	545.658
416.75	DISCHG	549.000
419.25	DISCHG	552.329
421.75	DISCHG	555.658
424.25	DISCHG	559.000
426.75	DISCHG	562.329
429.25	DISCHG	565.658
431.75	DISCHG	569.000
434.25	DISCHG	572.329
436.75	DISCHG	575.658
439.25	DISCHG	579.000
441.75	DISCHG	582.329
444.25	DISCHG	585.658
446.75	DISCHG	589.000
449.25	DISCHG	592.329
451.75	DISCHG	595.658
454.25	DISCHG	599.000
456.75	DISCHG	602.329
459.25	DISCHG	605.658
461.75	DISCHG	609.000
464.25	DISCHG	612.329
466.75	DISCHG	615.658
469.25	DISCHG	619.000
471.75	DISCHG	622.329
474.25	DISCHG	625.658
476.75	DISCHG	629.000
479.25	DISCHG	632.329
481.75	DISCHG	635.658
484.25	DISCHG	639.000
486.75	DISCHG	642.329
489.25	DISCHG	645.658
491.75	DISCHG	649.000
494.25	DISCHG	652.329
496.75	DISCHG	655.658
499.25	DISCHG	659.000
501.75	DISCHG	662.329
504.25	DISCHG	665.658
506.75	DISCHG	669.000
509.25	DISCHG	672.329
511.75	DISCHG	675.658
514.25	DISCHG	679.000
516.75	DISCHG	682.329
519.25	DISCHG	685.658
521.75	DISCHG	689.000
524.25	DISCHG	692.329
526.75	DISCHG	695.658
529.25	DISCHG	699.000
531.75	DISCHG	702.329
534.25	DISCHG	705.658
536.75	DISCHG	709.000

5 OF 16

12.25	DISCHG ELEV	702.12	704.52	705.69	704.342	701.93	157.25	157.13	145.02	139.14	119.62	111.04	701.74
21.75	DISCHG ELEV	101.79	101.392	101.78	101.34	101.76	95.67	94.372	93.41	92.61	701.76	701.76	701.76
24.25	DISCHG ELEV	86.95	86.61	701.71	706.31	701.692	65.30	59.43	54.05	49.172	701.61	701.61	701.61
	TOTAL WATER. IN INCHES ON DRAINAGE AREA =	26.2071	LFS-HRS=	9302.29	ACR-EFT=	701.74							

ENDCHP 1

EXECUTIVE CONTROL CARD
STARTING TIME = 0.00
ALTERNATE NO. = 1
STORM NO. = 2

SUBROUTINE RUNOFF STRUCTURE INPUT¹ RUNOFF CURVE = 79.0
 AREA = 0.55 COMPUTED CURVE NO. = 90.4
 PEAK TIMES PEAK DISCHANGES PEAK ELEVATIONS
 10.05 122.900 (TRUE) (TRUE)
 12.52 165.615 (TRUE) (TRUE)
 13.42 142.303 (TRUE) (TRUE)

SUBROUTINE RESUME STRUCTURE 69.00 PEAK DISCHARGES PEAK ELEVATIONS
PEAK TIMES SURFACE ELEVATION 69.00

JOURNAL OF CLINICAL MEDICINE 2021, 10, 3120

JOB NUMBER 78/3095 PHASE 0
DATE RAII 10/ 5/78 QUEUE 107

卷之三

6 OF 16

8 OF 16

ENDNOTES

STANDARD CONTROL INSTRUCTIONS
SUBRIN
XSECTN 8
STRUCT 6
HYDROGRAPHS
IN1 0
IN2 6
OUT 7
END OF LISTING

SURFACE
RUNOFF
ALSVOR
ENDATA

DATA NO. 1
0.550
0.000
699.000

DATA NO. 2
79.000
0.000

DATA NO. 3
0.520
0.000

DATA NO. 4
1.0
1.0
1.0
1.0
0.0

19.25	DISCHG ELEV	91.42	85.93	80.72	76.35	72.39	68.65	65.44	62.14	59.43	56.09
21.75	DISCHG ELEV	701.75	701.74	701.72	701.71	701.69	701.68	701.67	701.66	701.65	701.64
21.75	DISCHG ELEV	54.45	52.38	50.60	48.84	47.13	45.73	44.56	43.35	42.21	41.50
24.25	DISCHG ELEV	701.63	701.63	701.62	701.61	701.61	701.60	701.60	701.59	701.59	701.58
24.25	DISCHG ELEV	40.27	38.36	35.65	32.79	30.05	27.51	25.17	23.04	21.07	19.26
26.75	DISCHG ELEV	701.57	701.56	701.54	701.52	701.51	701.49	701.47	701.46	701.45	701.45
26.75	DISCHG ELEV	17.64	16.13	14.76	13.50	13.18	13.05	12.91	12.78	12.65	12.52
26.75	DISCHG ELEV	701.42	701.41	701.40	701.40	701.39	701.39	701.39	701.38	701.37	701.37

TOTAL WATER. IN INCHES ON DRAINAGE AREA = 1.8151

CFS-HRS = 644.29

ACME-FT = 55.24

ENDMAP 1

11 OF 16

IOSKINS-WESTERN-SONDEREGGER

CALCULATIONS FOR

Flow over Prince Spillway -
Drop Inlet

COMPUTED BY SGJ DATE 0/3/79 SHEET NO. 1 OF 4
CHECKED BY _____ DATE _____ JOB NUMBER 79/3005

PROJECT _____

Elliott Davis Jan 15, 1979

Concrete Box over 30" CMP

Abutment board

699 ft Elev.

$$\text{Crest length} = 4 \times 30" = 120" = 10 \text{ ft}$$

$C = 3.5$ from CoffE Hyd Chan. of Res. Outlets, no. 2

699.4 h

Q

.2	3
.4	9
.6	16
1.0	35
1.5	64
2.0	99
2.5	138
3.0	182
4.0	280
5.0	391

12 OF 16

HOSKINS-WESTERN-SONDEREGGER

COMPUTED BY CG DATE 10/3/73 SHEET NO. 1 OF 1
CHECKED BY DATE JOB NUMBER 3305

CALCULATIONS FOR

PROJECT Dam Ins.

Flow Thru
12" Pipe

Elliot Davis Dam #10129

$$\sqrt{80^2 + 110^2} = 136'$$

$$\sqrt{136^2 + 21.8^2} = 13.8'$$

$$\begin{aligned} & 695.3 \text{ Invert @ drop inlet} \\ & - 673.5 \text{ Invert @ end of pipe} \\ & 21.8 \text{ Total drop} \end{aligned}$$

699.0 Spillway Crest

673.5 Invert @ end of pipe

$$25.5 - .5 = 25' = H_d \text{ on pipe with water at crest elev.}$$

$$\text{General Equations: } Q = A / 1.29 h^{1/1 + \sum K}$$

$$1 + \sum K = i + K_o + K_b + \left[\frac{(2A_c)^2}{(A_r + A_c)} L_r + \frac{(2A_c)^2}{(A_r + A_c)} L_c \right] R_e$$

From Engg. H.B. Sec. 5

$$K_o = 0.5 \quad K_b = 1.0 \quad K_c = 1.157$$

$$A_c = \text{Area of conduit (12')} = \pi r^2 = \pi (.5)^2 = .785 \text{ sq. ft.}$$

$$A_r = \text{Area of riser (30')} = \pi r^2 = \pi (1.25)^2 = 4.91 \text{ sq. ft.}$$

$$A_r = A_c$$

$$L_r = 699.0 - 695.3 = 3.7' - 1.0 = 2.7'$$

$$L_c = 153'$$

$$L_c = .5 + 1.25 = 1.75$$

$$1 + \sum K = 1 + 0.5 + 1.0 + \left[\frac{(1.57)^2}{9.82} (2.7) + \frac{(1.57)^2}{5.645} (1.75) + 153 \right] 1.157$$

$$= 2.5 + 17.72 = 20.22 \quad 130E16$$

MOSKINS-WESTERN-SONDEREGGER
CALCULATIONS FOR

Flow thru
12" Pipe

COMPUTED BY SS DATE 10/4/78 SHEET NO. 3 OF 4
CHECKED BY _____ DATE _____ JOB NUMBER 78/3095

PROJECT

$$Q = F_s \sqrt{\frac{2g}{1 + \frac{2f}{g}} h}$$

$$G_c = \frac{.785}{12} \frac{64.32}{20.22} h^{1/2} = 1.4 h^{1/2}$$

Elev. h m	$h_c = h_m + 25$	$Q = 1.4 h^{1/2}$
6.99	25	7.0
6.99+.2	25.2	7.03
.4	25.4	7.06
.6	25.6	7.08
1.0	26.0	7.14
1.5	26.5	7.21
2.0	27.0	7.27
.25	27.5	7.34
7.02	28.0	7.41
7.03	28.0	7.54
5.0	30.0	7.67

14 OF 16

DSKINS-WESTERN-SONDEREGGER

CALCULATIONS FOR

Flow over Embankment

$$Q = C b h^{3/2}$$

COMPUTED BY _____ DATE _____ SHEET NO. 7 OF 7

CHECKED BY _____ DATE _____ JOB NUMBER _____

PROJECT _____

10129

Use TMRIT, 8/5/3, Ch. A-5

Stan Dist. from Top. of Fisv. Dam E/er.	Depth	Min Depth	Mean	C	Q
b	h	h	b/10' Gravel		
-1+50	704.2	706.0	0		
0	55	702.0	2.2	1.1	5.15 2.85 131
1+00	100	701.9	2.3	2.25	3.00 1012
2+00	100	702.8	1.4	1.85	2.97 747
3+00	100	703.0	1.2	1.30	2.39 428
4+00	100	704.1	.1	.65	2.73 143
5+00	100	703.8	.4	.25	2.60 32
6+00	100	703.2	.0	.7	2.75 161
7+00	100	703.1	.1	1.05	2.84 306
8+00	100	703.3	.9	1.0	2.83 283
9+00	100	704.5	2.7	1.8	2.96 715
10+00	100	704.2	3.0	2.85	3.04 1463
10+50	50	702.3	1.9	2.45	3.02 579
11+00	50	704.2	706.2	0	2.82 63
		(3.0)			6113

15 OF 16

BOSKINS, WESTERN-SONDEREGGER
CALCULATIONS FOR

COMPUTED BY GGJ DATE 10/21/73 SHEET NO. 4 OF 4
CHECKED BY _____ DATE _____ JOB NUMBER 78/3095

PROJECT _____

Total Dufflow Easing Elliot Davis # 10129

Elv.	H	On	On	D	To +
699.2	.2	3.1	7		3.1
700.4	.1	9	7.1		7.1
700.6	.6	6	7.1		7.1
700.8	1.0		7.1		7.1
700.5	1.5		7.2		7.2
701.1	2.0		7.3		7.3
701.2			7.3	0	7.3
701.4			7.3	6	13.3
701.6			7.4	3.6	43.4
701.8			7.4	9.6	103.0
702.2			7.4	32.0	327.0
702.7			7.4	92.1	928.0
703.2			7.5	192.9	1937.0
704.2			7.5	611.3	6121.0

END

DATE
FILMED

11-81

DTIC