How many physical qubits are needed exactly for fault-tolerant quantum computing?

Preprint · December 2021		
CITATIONS 0		READS 38
1 author:		
	Faisal Shah Khan Dark Star Quantum Lab Inc. 46 PUBLICATIONS 269 CITATIONS SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project	Quantum Computing and Socio-Economic Solutions View project	
Project	Financial Portfolio Management View project	

How many physical qubits are needed *exactly* for fault-tolerant quantum computing?

Faisal Shah Khan Dark Star Quantum Lab, Apex, North Carolina

December 26, 2021

Abstract

Physical implementation of quantum computing is a continuing challenge. The main obstacle is understanding how to map abstract qubits and quantum operations into physical hardware without decoherence, that is, losing quantum information. A solution is proposed here.

To manufacture quantum computers, abstract *logical* qubits require realization as *physical* qubits in the classical world. But this mapping has to be done in a way that the resulting physical qubits are *fault-tolerant* [1, 2], that is, they stay coherent when a quantum computation is performed on them.

The idea that one can perform a quantum computation on physical qubits in the classical world requires elaboration. Logical quantum computing occurs in the quantum physical realm, a notion described mathematically by the pair $\{\mathbb{C}P^{n-1},Q\}$ where the $\mathbb{C}P^{n-1}$ is the quantum register of n qubits, the state of which is transformed by the unitary operation Q. To implement the logical quantum computation $\{\mathbb{C}P^{n-1},Q\}$ in physical hardware in the classical world requires mapping into physical quantum computation, a notion captured mathematically by the pair $\{\mathbb{R}^d,R\}$ where \mathbb{R}^d is the physical register for the n qubits, the state of which is transformed by the operation R.

For the physical quantum computation to be fault-tolerant, the mapping from $\{\mathbb{C}P^{n-1},Q\}$ to $\{\mathbb{R}^d,R\}$ should be robust against fundamental notions of faults that arise when traversing the classical-quantum physical divide. From a general mathematical perspective, faults in the traversal of the classical-quantum physical divide are due to changes in the topology, geometry, or differential structure. If the traversal function from $\{\mathbb{C}P^{n-1},Q\}$

Figure 1: Nash embedding e of the initial and final state of the quantum register, together with unitarity of quantum computations Q, requires that the physical quantum computation R is in fact an orthogonal, reversible computation

to $\{\mathbb{R}^d, R\}$ preserves topology, geometry, and differential structure, than the resulting physical quantum computation will be considered fault-tolerant.

The class of functions $e: \{\mathbb{C}P^{n-1}, Q\} \longrightarrow \{\mathbb{R}^d, R\}$ preserving topology, geometry, and differential structure are Nash embeddings [3]. A Nash embedding is a one-to-one map that is a homeomorphism (preserves topological features), diffeomorphism (preserves differential structures), and an isometry (preserves disntances). These properties of e imply, as shown in Figure 1, that the physical quantum computation R emulating the logical quantum computation Q is necessarily a reversible computation, that is, an orthogonal transformation.

Nash embedding gives the exact number of fault-tolerant physical qubits needed to implement coherent quantum computation in hardware in the form of the number d. As per Nash's theorem

$$d = \max\left\{\frac{k(k+5)}{2}, \frac{k(k+3)}{2} + 5\right\}. \tag{1}$$

where k is the dimension of the quantum register $\mathbb{C}P^{n-1}$ as a Riemannian manifold [4]. This number is $k=2^{n+1}-2$ (where n is the number of qubits). This means that one qubit register $\mathbb{C}P^1$ maps to the fault-tolerant physical register \mathbb{R}^{10} ; therefore, 1 logical qubit maps into 10 fault-tolerant physical qubits. Similarly, 2 logical qubits map into 19 fault-tolerant physical qubits, 3 logical qubits map into 52 fault-tolerant physical qubits, and 4 logical qubits map into 168 fault-tolerant physical qubits, ...

Any meaningful effort in fault-tolerant physical qubit design and manufacturing should account for these *Nash values*, despite how large they get for even a small number of qubits. For example, 20 logical qubits give k=2,097,150, and hence map into 2,199,024,304,125 fault-tolerant physical qubits!

References

- [1] Shor, P., Fault-tolerant quantum computation, Proceedings of the 37th Symposium on Foundations of Computing, IEEE Computer Society Press, pp. 56-65 (1996).
- [2] Egan, L., Debroy, D.M., Noel, C. et al. Fault-tolerant control of an error-corrected qubit, Nature 598, 281–286 (2021).
- [3] Nash, J. The imbedding problem for Riemannian manifolds, Annals of Mathematics, 63 (1): 20–63 (1956).
- [4] Bengtsson, I., Życzkowski, K., Geometry of Quantum States: An Introduction to quantum entanglement, Publisher: Cambridge University Press (2007).