Electronic Devices

Lecture 5
P-N Junction

Dr. Roaa Mubarak

Diode Models

The diode as a circuit elements:

- Ideal Diode Model
- Large Signal model
- Small Signal model

Large Signal Diode Model "Piecewise Linear Model"

Large Signal Diode Model "Piecewise Linear Model"

Reverse biased

$$R_r\gg 100 \mathrm{K}\Omega \!\!\!\!
ightarrow \infty$$
 Open Circuit OFF

$$+V_{Y}$$
 $-R_{F}$

Forward biased

$$V_{\rm Y}=0.7{
m v}$$
 Si or = 0.3v Ge R_F = 5 \rightarrow 50 Ω

Example

• Determine the output voltage Vo in the circuit with silicon diodes have R_F =30 Ω , $V_{\rm Y}$ =0.6 $\rm v$, Rr= $\rm \infty$ for the following values of inputs voltages.

a)
$$V_1 = V_2 = 5v$$

b)
$$V_1 = 5v$$
, $V_2 = 0$

c)
$$V_1 = V_2 = 0$$

Solution:

a)
$$V_1 = V_2 = 5v$$

Assume D1 & D2 are off replacing diode with Rr= ∞ , means open circuit, the Vo=5V

VD1&VD2 =0 our assumption is true.

b)
$$V_1 = 5v$$
, $V_2 = 0$

Assume D1 is off & D2 is on

Applied KVL

$$-5 + 4700I + 0.6 + 30I + 270I = 0$$

$$I = \frac{5-0.6}{4700+30+270} = 0.88 \text{ mA} ----- I > 0 \text{ our assumption is true.}$$

$$c) V_1 = V_2 = 0$$

Assume D1 & D2 are on

$$Vo = 5 - 4700 (2I)$$

Applied KVL

$$-5 + 4700(2I) + 0.6 + 30I + 270I = 0$$

$$I = \frac{5-0.6}{4700(2)+30+270} = 0.454 \text{ mA} ----- I > 0 \text{ our assumption is true}$$

$$Vo = 5-4700 (2I) = 0.736 V$$

V1	V2	Vo
0	0	0.736
0	5	0.864
5	0	0.864
5	5	5

V1	V2	Vo
0	0	0
0	1	0
1	0	0
1	1	1

AND GATE

OR GATE

V1	V2	Vo
0	0	0
0	1	1
1	0	1
1	1	1

Load Line Concept (Graphical Analysis)

As shown in the circuit by applying KVL

$$-V_{DD} + I_D R + V_D = 0$$

$$I_D R + V_D = V_{DD}$$

$$I_D R = V_{DD} - V_D$$

$$I_D = -\frac{1}{R} V_D + \frac{V_{DD}}{R}$$

At
$$V_D = 0 \rightarrow I_D = \frac{V_{DD}}{R}$$

At
$$I_D = 0 \rightarrow V_D = V_{DD}$$

