Midterm Study Guide

Zack Traczyk CSE 102 - Vaggos, Spring 2024

Contents

1	Revi	ew - Asymptotic Bounds	2
2	Review - Inductive Proofs		2
3	Solv 3.1 3.2	ing Recurrence Relations Master Theorem	
	3.3	Substitution	2
	3.4	Guess and Verify	2
	3.5	Practice Problems	2
4	Algorithms		3
	4.1	Binary Search	3
	4.2	Sorting	3
		4.2.1 Lower Bounds	3
	4.3	Merge Sort	3
	4.4	Number of leaves / depth as proof for lower asymptotic bounds	3
	4.5	Quick Select	3
	4.6	Dynamic Programming	3
		4.6.1 Fibonacci	3
		4.6.2 Binomial Coefficients	3
		4.6.3 Maximize independent set	3

1 Review - Asymptotic Bounds

Definition 1.1 (Big-O). f(n) = O(g(n)) if there exists a positive constant c and an integer n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Definition 1.2 (Big- Ω). $f(n) = \Omega(g(n))$ if there exists a positive constant c and an integer n_0 such that $c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

Definition 1.3 (Big- Θ). $f(n) = \Theta(g(n))$ if there exists positive constants c_1 , c_2 , and an integer n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

2 Review - Inductive Proofs

3 Solving Recurrence Relations

- 3.1 Master Theorem
- 3.2 Unpacking Tree / Algebraic Pattern
- 3.3 Substitution
- 3.4 Guess and Verify

3.5 Practice Problems

HW3 - Ex.4 Like in many previous exercises and homeworks, find tight asymptotic bounds (big-Theta) for T(n) in each of the cases.

- $T(n) = 2T(n/4) + n^2\sqrt{n}$
- $T(n) = T(n-1) + \frac{1}{n}$
- T(n) = 1600T(n/4) + n! (hint: answering this shouldn't require too many, if any, difficult calculations)
- $T(n) = 6T(n/3) + n^4/\log^{25} n$ (hint: answering this shouldn't require too many, if any, difficult calculations)
- $T(n) = \sqrt{n}T(\sqrt{n}) + n$ (hint: when everything fails, you guess and check)
- $T(n) = T(n/2) + n(5 \cos^2 n \sin^{20} n)$ (hint: answering this shouldn't require too many, if any, difficult calculations, just think the most basic trigonometric inequality)
- $T(n) = \alpha T(n/4) + n^2$ (hint: your answer should depend on the α parameter)
- $T(n) = 5T(n/5) + \frac{n}{\log_5 n}$ (hint: think of $n = 5^m$. Also the recursion $T(n) = T(n-1) + \frac{1}{n}$ above may come in handy.)

4 Algorithms

- 4.1 Binary Search
- 4.2 Sorting
- 4.2.1 Lower Bounds
- 4.3 Merge Sort
- 4.4 Number of leaves / depth as proof for lower asymptotic bounds
- 4.5 Quick Select
- 4.6 Dynamic Programming
- 4.6.1 Fibonacci
- 4.6.2 Binomial Coefficients
- 4.6.3 Maximize independent set