

00B01

2019/07/10

前言

概述

本文主要针对神经网络应用人员简要描述了 Easynet 编译器及其使用方法。让读者了解到如何使用工具完成编译模型、给定指定的输入文件查看网络每层输出等功能。

关键字

CNN 卷积神经网络

产品版本

与本文档相对应的产品版本如下。

产品名称	版本
GM6721	В

适用对象

本文档主要适用于以下人员:

• 深度学习应用人员

约定

在本文中可能出现下列标志,它们所代表的含义如下

符号	说明		
★注	强调,表示对正文的特别说明或强调,需引起注意		
②注	诀窍,表示该说明能帮忙快速解决问题或节约时间		

修订记录

修订记录累积了每次文档更新的说明。

日期	版本	作者	修改描述
2019/07/10	00B01	Angrad. Yang	第一次版本发布

目 录

目	录	iv
1 C	ompiler 简介	1
	1.1 特性	
2 J	力能介绍	2
	2.1 主要功能	
	2.2 编译	2
	2.2.1 编译输入	
	2.2.2 编译输出	
	2.2.3 界面操作	
	2.3 预测	
	2.3.1 预测输入	
	2.3.2 预测输出	
	2.3.3 界面操作	
	2.4 演示	
	2.4.1 演示输入	
	2.4.2 演示输出	
	2.4.3 界面操作	
	2.5 模型	
	2.5.1 模型输入	
	2.5.2 模型输出	
	2.5.3 界面操作	
	=.c.c / Pri v k	

$oldsymbol{1}$ Compiler 简介

EasynetCompiler,针对神经网络模型进行编译、前向计算、仿真、演示等功能为一体的跨平台工具套件。使用该工具可更容易、高效地将 AI 应用运行于嵌入式端。

1.1 特性

支持网络类型: Yolo、Resnet、Posenet、Mobilenet 等 CNN 网络

支持模型框架: Easynet、Keras

2 功能介绍

2.1 主要功能

编译 (COMPILE)

将模型编译成 operation 二进制文件, 拷贝至小机端使用。

预测(PREDICT)

给模型一个输入,做前向运算,查看每层输出结果。

演示(DEMO)

根据输入做 easynet 后处理, 直观显示演示画面。

分析 (ANALYSIS)

解析 operation,帮助调试。

模型(MODEL)

显示模型结构。

2.2 编译

2.2.1 编译输入

1) Easynet 模型

EasynetCompiler 支持自有模型结构描述格式.cfg(如下图 2.2.1 所示)和权重存储文件.wt。

图 2.2.1 easynet 可识别模型 cfg

2) Keras 模型

EasynetCompiler 支持 Keras 到 Easynet 模型转换(即 hdf5 转换为.cfg 和.wt 文件)

2.2.2 编译输出

编译输出文件为 seq_ai.ops,包含嵌入式小机端运行的命令序列和量化后的权重集合。

2.2.3 界面操作

·编译 easynet 模型

- 1) 切换至"编译"功能;
- 2) 选择 Easynet .cfg 文件;
- 3) 选择 Easynet .wt 文件;
- 4) 启动编译;
- 5) 等待编译完成提示框;

•编译 keras 模型

- 1) 选择 keras 类型;
- 2) 选择 keras 模型;
- 3) 启动编译; (编译过程会先自动将 Keras 转换至 Easynet 的.cfg 和.wt)
- 4) 等待编译完成提示框;

2.3 预测

2.3.1 预测输入

输入格式为 Easynet 支持的. in 文件。 亦可直接选择图片文件, compiler 会自动转换图片为. in 文件。

2.3.2 预测输出

输出结果为神经网络每层计算结果,通过在界面选择不同的 layer,可切换至对应输出结果。

2.3.3 界面操作

2.4 演示

当前演示仅支持 yolo 后处理。

2.4.1 演示输入

输入在编译与预测阶段已确定, 无需额外输入。

2.4.2 演示输出

输出原图及对应的结果框和文本结果。

2.4.3 界面操作

2.5 模型

2.5.1 模型输入

输入在编译阶段已确定。

2.5.2 模型输出

输出整个模型结构,点击网络节点可看具体参数。

2.5.3 界面操作

