import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px

sns.displot(data["Shell weight"], color='blue')

8

<seaborn.axisgrid.FacetGrid at 0x1b4a9c96fd0>

sns.violinplot(data["Rings"], color='red')

 $\label{lem:c:star} C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future\Warning warnings.\warn($

<AxesSubplot:xlabel='Rings'>

sns.barplot(x=data.Length,y=data.Height)

sns.scatterplot(x=data.Rings,y=data.Height)

<AxesSubplot:xlabel='Rings', ylabel='Height'>

sns.pointplot(x=data.Diameter,y=data.Length, color="pink")

sns.heatmap(data.corr(),annot=True)

<AxesSubplot:>

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype		
0	Sex	4177 non-null	object		
1	Length	4177 non-null	float64		
2	Diameter	4177 non-null	float64		
3	Height	4177 non-null	float64		
4	Whole weight	4177 non-null	float64		
5	Shucked weight	4177 non-null	float64		
6	Viscera weight	4177 non-null	float64		
7	Shell weight	4177 non-null	float64		
8	Rings	4177 non-null	int64		
$dtypes \cdot float64(7) int64(1) object(1)$					

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000

```
data.isnull().any()
     Sex
                       False
     Length
                       False
     Diameter
                       False
     Height
                       False
     Whole weight
                       False
     Shucked weight
                       False
     Viscera weight
                       False
     Shell weight
                       False
     Rings
                       False
     dtype: bool
```

```
fig = px.histogram(data, x='Whole weight')
fig.show()
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data["Sex"] = le.fit_transform(data["Sex"])
data["Sex"]

0 2
```

1

2

```
2
             0
     3
             2
             1
     4172
            0
     4173
             2
     4174
             2
     4175
             0
             2
     4176
     Name: Sex, Length: 4177, dtype: int32
x=data.iloc[:,0:8].values
y=data.iloc[:,8:9].values
x=data.iloc[:,0:8]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)
x_train.shape
     (2923, 8)
x_test.shape
     (1254, 8)
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train)
     LinearRegression()
y_pred = lr.predict(x_test)
print((y_test)[0:6])
print((y_pred)[0:6])
     [[13]
      [ 8]
      [11]
      [ 5]
      [12]
      [11]]
     [[13.11640829]
      [ 9.65691091]
      [10.35350972]
      [ 5.63648715]
      [10.67436485]
      [11.95341338]]
```

```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print("RMSE value : {:.2f}".format(rmse))

RMSE value : 2.26

from sklearn.model_selection import cross_val_score
cv_scores = cross_val_score(lr, x, y, cv=5)
sco=cv_scores.round(4)
print(cv_scores.round(4))
print("Average",sco.sum()/5)

[0.4113 0.1574 0.4807 0.5046 0.4362]
Average 0.3980399999999995
```