4.6 Mean Value Theorem

Theorem (Rolle's Theorem)

Let f be a function that satisfies the following:

- of is continuous on [a, b]
- 2 f is differentiable on (a, b)

Then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem (Mean Value Theorem)

Let f be a function that satisfies the following:

- f is continuous on [a, b]
- 2 f is differentiable on (a, b)

Then there exits $c \in (a, b)$ such that

$$\frac{f(b)-f(a)}{b-a}=f'(c)$$

or, equivalently,

$$f(b) - f(a) = f'(c)(b - a).$$

 There must be a point at which the instantaneous rate of change is equal to the average rate of change. • Suppose that f(0) = -3 and $f'(x) \le 5$ for all x. How large can f(2) possibly be?

A. -3

B. 0

C. 7

D. 10

E. 100

Theorem

If f'(x) = 0 for all $x \in (a, b)$, then f is constant on (a, b).

Proof. Let x_1 and x_2 be any two numbers in (a, b) with $x_1 < x_2$. Now use the MVT.

Corollary

If f'(x) = g'(x) for all $x \in (a, b)$, then f(x) = g(x) + c where c is a constant.