In [61]:	HEART DISEASE PREDICTION BY NIKITA I. IMPORTING THE ESSENTIAL LIBRARIES import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns *matplotlib inline import warnings warnings.filterwarnings('ignore')
In [2]: In [3]: Out[3]: In [4]:	II. IMPORTING AND UNDERSTANDING OUR DATASET df = pd.read_excel("1645792390_cep1_dataset.xlsx") Shape of Dataset df.shape (303, 14) Printing few Columns df.head()
Out[4]: In [5]: Out[5]:	age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target 0 63 1 3 145 233 1 0 150 0 2.3 0 0 1 1 1 37 1 2 130 250 0 1 187 0 3.55 0 0 2 1 2 41 0 1 130 204 0 0 172 0 1.4 2 0 2 1 3 56 1 1 120 236 0 1 178 0 0.8 2 0 2 1 Description The color of the co
In [6]:	count 303,000000 303,00000 303,00000 303,00000 303,00000 303,000000 303,00000 303,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00000 300,00
	# Column Non-Null Count Dtype
In [7]:	<pre>dtypes: float64(1), int64(13) memory usage: 33.3 KB info = ["age","1: male, 0: female","chest pain type, 1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic","resting blood pressure"," se for i in range(len(info)): print(df.columns[i]+":\t\t\t\"+info[i]) age:</pre>
In [8]: Out[8]:	exang: exercise induced angina oldpeak: oldpeak = ST depression induced by exercise relative to rest slope: the slope of the peak exercise ST segment ca: number of major vessels (0-3) colored by flourosopy thal: that: 3 = normal; 6 = fixed defect; 7 = reversable defect Analysing the target variable df["target"].describe() count 303.000000 mean 0.544554 std 0.498835 min 0.000000 25% 0.000000 55% 1.000000 75% 1.000000 75% 1.000000
<pre>In [9]: Out[9]: In [10]:</pre>	<pre>max 1.000000 Name: target, dtype: float64 df["target"].unique() array([1, 0], dtype=int64) Checking Corelation between columns print(df.corr()["target"].abs().sort_values(ascending=False)) target 1.000000 exang 0.436757 cp 0.433798 oldpeak 0.430696 thalach 0.421741 ca 0.391724</pre>
In [11]:	slope 0.345877 thal 0.344029 sex 0.280937 age 0.225439 trestbps 0.144931 restecg 0.137230 chol 0.085239 fbs 0.028046 Name: target, dtype: float64 #'fbs' is weakely corelated Eploratory Data Analytics (EDA) Analysing the target Variable
In [12]:	<pre>y = df["target"] sns.countplot(y) target_temp = df.target.value_counts() print(target_temp) 1</pre>
In [13]:	print("Percentage of patience without heart problems: "+str(round(target_temp[0]*100/303,2))) print("Percentage of patience without heart problems: "+str(round(target_temp[1]*100/303,2))) Percentage of patience without heart problems: 45.54 Descentage of patience without heart problems: 45.54
<pre>In [14]: Out[14]: In [15]: Out[15]:</pre>	III. We'll analyse 'sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca' and 'thal' features Analysing the 'Sex' feature df["sex"].unique() array([1, 0], dtype=int64) sns.barplot(df["sex"],y) <axessubplot:xlabel='sex', ylabel="target"></axessubplot:xlabel='sex',>
	0.8 0.7 0.6 0.5 0.7 0.1 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 Sex We notice that Female have more chances of getting heart problems
<pre>In [16]: Out[16]: In [17]: Out[17]:</pre>	Analysing the chest pain feature* df["cp"].unique() array([3, 2, 1, 0], dtype=int64) We notice here cp have values between o to 3 sns.barplot(df["cp"],y) <axessubplot:xlabel='cp', ylabel="target"></axessubplot:xlabel='cp',>
	We notice, that chest pain of '0', i.e. the ones with typical angina are much less likely to have heart problems
<pre>In [18]: Out[18]: In [19]: Out[19]:</pre>	Analysing the fbs feature df["fbs"].describe() count 303.000000 mean 0.148515 std 0.356198 min 0.000000 25% 0.000000 50% 0.000000 75% 0.000000 max 1.000000 Name: fbs, dtype: float64 df["fbs"].unique() array([1, 0], dtype=int64)
In [20]: Out[20]:	<pre>sns.barplot(df["fbs"],y) </pre> <pre> </pre> <pre> <pre> <pre></pre></pre></pre>
<pre>In [21]: Out[21]: In [22]: Out[22]:</pre>	<pre>sns.barplot(df["restecg"],y) <axessubplot:xlabel='restecg', ylabel="target"></axessubplot:xlabel='restecg',></pre>
	We realize that people with restecg '1' and '0' are much more likely to have a heart disease than with restecg '2'
<pre>In [23]: Out[23]: In [24]: Out[24]:</pre>	Analysing the exang feature df["exang"].unique() array([0, 1], dtype=int64) sns.barplot(df["exang"],y) <axessubplot:xlabel='exang', ylabel="target"> 07 06 05</axessubplot:xlabel='exang',>
Tn [05].	People with exang=1 i.e. Exercise induced angina are much less likely to have heart problems Analysing slope feature
<pre>In [25]: Out[25]: In [27]: Out[27]:</pre>	<pre>df["slope"].unique() array([0, 2, 1], dtype=int64) sns.barplot(df["slope"], y) <axessubplot:xlabel='slope', ylabel="target"> 0.8 0.7 0.6 0.7 0.6 0.7 0.7 0.8 0.7 0.9 0.7 0.9 0.7 0.9 0.9 0.9</axessubplot:xlabel='slope',></pre>
In [28]: Out[28]:	We observe, that Slope '2' causes heart pain much more than Slope '0' and '1' Analysing the 'ca' feature df["ca"].unique() array([0, 2, 1, 3, 4], dtype=int64)
In [29]: Out[29]:	<pre>sns.barplot(df["ca"],y) <axessubplot:xlabel='ca', ylabel="target"> 10 08 06 06 04 02 000 000 000 000 000 000 000 000 0</axessubplot:xlabel='ca',></pre>
<pre>In [30]: Out[30]: In [31]: Out[31]:</pre>	<pre>ca=4 has astonishingly large number of heart patients Analysing the 'thal' feature df["thal"].unique() array([1, 2, 3, 0], dtype=int64) sns.barplot(df["thal"], y) <axessubplot:xlabel='thal', ylabel="target"> 10</axessubplot:xlabel='thal',></pre>
In [32]:	sns.distplot(df["thal"])
Out[32]:	<pre><axessubplot:xlabel='thal', ylabel="Density"> 200 175 150 0,75 0,50 0,25 0,00 thal </axessubplot:xlabel='thal',></pre>
Out[35]:	<pre>IV. TRAIN TEST SPLIT from sklearn.model_selection import train_test_split predictors = df.drop("target" , axis=1) target = df["target"] X_train,X_test,Y_train,Y_test = train_test_split(predictors,target,test_size=0.20,random_state=0)</pre>
Out[36]: In [37]: Out[37]:	(61, 13) Y_train.shape (242,) Y_test.shape
In [41]:	<pre>from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train,Y_train) Y_pred_lr = lr.predict(X_test) Y_pred_lr.shape (61,) score_lr = round(accuracy_score(Y_pred_lr,Y_test)*100,2) print("The accuracy score achieved using Logistic Regression is: "+str(score_lr)+" %")</pre>
<pre>In [44]: In [45]: Out[45]:</pre>	The accuracy score achieved using Logistic Regression is: 85.25 % (A). Naive Bayes from sklearn.naive_bayes import GaussianNB nb = GaussianNB() nb.fit(X_train, Y_train) Y_pred_nb = nb.predict(X_test) Y_pred_nb.shape
Out[45]: In [46]: In [47]:	<pre>score_nb = round(accuracy_score(Y_pred_nb,Y_test)*100,2) print("The accuracy score achieved using Naive Bayes is: "+str(score_nb)+" %") The accuracy score achieved using Naive Bayes is: 85.25 % (B). SVM from sklearn import svm sv = svm.SVC(kernel='linear') sv.fit(X_train, Y_train) Y_pred_svm = sv.predict(X_test)</pre>
<pre>In [48]: Out[48]: In [49]: In [50]:</pre>	Y_pred_svm.shape (61,) score_svm = round(accuracy_score(Y_pred_svm,Y_test)*100,2) print("The accuracy score achieved using Linear SVM is: "+str(score_svm)+" %") The accuracy score achieved using Linear SVM is: 81.97 % (C). K Nearest Neighbours from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=7)
Out[51]:	<pre>knn.fit(X_train,Y_train) Y_pred_knn.knn.predict(X_test) Y_pred_knn.shape (61,) score_knn = round(accuracy_score(Y_pred_knn,Y_test)*100,2) print("The accuracy score achieved using KNN is: "+str(score_knn)+" %") The accuracy score achieved using KNN is: 67.21 % (D). Decision Tree</pre>
In [53]:	<pre>from sklearn.tree import DecisionTreeClassifier max_accuracy = 0 for x in range(200): dt = DecisionTreeClassifier(random_state=x) dt.fit(X_train,Y_train) Y_pred_dt = dt.predict(X_test) current_accuracy = round(accuracy_score(Y_pred_dt,Y_test)*100,2) if(current_accuracy=max_accuracy): max_accuracy = current_accuracy best_x = x dt = DecisionTreeClassifier(random_state=best_x) dt.fit(X_train,Y_train) Y pred_dt = dt.predict(X_test)</pre>
In [54]: In [55]: In [56]:	<pre>print(Y_pred_dt = dt.predict(X_test) print(Y_pred_dt.shape) (61,) score_dt = round(accuracy_score(Y_pred_dt,Y_test)*100,2) print("The accuracy score achieved using Decision Tree is: "+str(score_dt)+" %") The accuracy score achieved using Decision Tree is: 81.97 % (E). Random Forest from sklearn.ensemble import RandomForestClassifier max_accuracy = 0</pre>
	<pre>max_accuracy = 0 for x in range(2000): rf = RandomForestClassifier(random_state=x) rf.fit(X_train, Y_train) Y_pred_rf = rf.predict(X_test) current_accuracy = round(accuracy_score(Y_pred_rf, Y_test)*100,2) if(current_accuracy) = accuracy): max_accuracy = current_accuracy best_x = x #print(max_accuracy) #print(best_x) rf = RandomForestClassifier(random_state=best_x) rf.fit(X_train, Y_train) Y_pred_rf = rf.predict(X_test)</pre>
<pre>In [57]: Out[57]: In [58]: In [62]:</pre>	<pre>Y_pred_rf.shape (61,) score_rf = round(accuracy_score(Y_pred_rf,Y_test)*100,2) print("The accuracy score achieved using Decision Tree is: "+str(score_rf)+" %") The accuracy score achieved using Decision Tree is: 90.16 % XGBOOSt import xgboost as xgb xgb_model = xgb.XGBClassifier(objective="binary:logistic", random_state=42)</pre>
Out[63]:	<pre>xgb_model.fit(X_train, Y_train) Y_pred_xgb = xgb_model.predict(X_test) [11:52:22] WARNING: D:\bld\xgboost-split_1645118015404\work\src\learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the object ive 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. Y_pred_xgb.shape (61,) score_xgb = round(accuracy_score(Y_pred_xgb,Y_test)*100,2) print("The accuracy score achieved using XGBoost is: "+str(score_xgb)+" %") The accuracy score achieved using XGBoost is: 78.69 %</pre>
In [71]:	<pre>plt.xlabel("Algorithms") plt.ylabel("Accuracy score")</pre>
Out[72]:	<pre>sns.barplot(algorithms, scores) </pre> <pre><axessubplot:xlabel='algorithms', ylabel="Accuracy score"> 80 80 80 80 80 80 80 80 80 8</axessubplot:xlabel='algorithms',></pre>
	20 Logistic Regression Naive Bayes Support Vector Machine K-Nearest Neighbors Algorithms Decision Tree Random Forest XGBoost
In []:	Here, Random Forest is giving Best accuracy