Industry, we constructed e_1, \dots, e_n of K with expansion $\lambda_1 \dots \lambda_n$ such that $|\lambda_j| = ||K_j||, ||E_j| = n$. This can be customer if $K_n \neq 0$ of $K_n = 0$, the construction stop and we get $y = X - \sum_{j=1}^{n-1} (x_j, e_j) e_j. \in H_n$

=) 0= Kg = Kg = Kg = Kg (x, e,) (Le) (x, e,) (Le)

=) (cx = \frac{\gamma-1}{2}\frac{1}{2}(\x,e_j)e_j. We are done with print sum

Uf Kinto An, Cerville XXX and Yn= X-\frac{\sqrt{2}}{2}(\x,e_j)e_j.

Then Yn+Xn, white X= Yn+\frac{\sqrt{2}}{2}(\x,e_j)e_j.

=> 11 Kx-1 2; 1x, e; >e; 11 = 1100 K y 11 = 11 Cn y 1 = 11 Cn y 11 = 11 Cn y 11

So | (x = \frac{12}{2} \lambda_j (x, e_j) e_j.

(ii) We need to (low the coupled not) when the Kis apprahed!
We know that $\forall x \in X$, $Kx = \sum_{i=1}^{\infty} \lambda_i i x$, enten.

We con assure that Into. Here a en is a finck or orfuste Otherwal requesse. Each en is eigen brution Then let of for he a complete veloreral basis for land, which is

attillent que produ. Here we home X = 14r K & (4r K)

Thus I for Ulen 4 is a contain oclonoral cet in X. .

In my 11 (- X, X = - \(\sum \) (x, enlen = \(\Sum \) (x, fm) fm

- Somy Usen't is a complete reborded of let in X. O

Remole: O+O Hermon un un birllut space x. let K he pourture Ex: let K he a spt peratur on a birllut space x. let K he positive

country number ((C)(,)() >0 Hx+x. Then we an define a

squen met A= K/2 such exut A2 = K

Prong = UX = \(\text{Xn (x1, enila, \text{Xn > 0})}

Repre AXI = 5 Th (x, In) In.

Ex: (Convival from at cot accords) let A he get record on X.

Then there is obsonound let I en you, I for you and possible

New numbers In with kn to so that

AX= = > An(x100 en) fn.

Then in anecalled aguer war of An

Math 175 (Week 9)

Chap 9: Sturm-Liouville systems.

We apply the Hilbert space theones to ODEs. then weltudy PDE later,

I) Sturm-Librarile seigen who problem.

For uf C2 ((a, b]) (thice touthours differentiable functions on [a.b]). Consider a differential operator Lu = (pn1)'+ qu = pqu'+ qu

where PECI([a.b],)R); P>0 and q EC°([a.67] iR).

Def: Sturm-Liouville eigenvalue problem:

on [4,6]

 $-Lu = \lambda u$ $\propto u(a) + \beta u(a) = 0$ $\beta f(ch) + \beta u(h) = 0$

when, α , α' , β' are real constants and $\alpha = \alpha' = 0$, $\beta = \beta' = 0$ i's excluded.

An expensionation to a scalar 2 1's a non-teno C2 further re.

Liscalled eigenvalue it such fution exist.

Tr: Fro let [a.h] = [0, T], =0, p=1 on [0.T] Conviden

) - 山" = 入4 On [hih] 1 (10) =0 以下)=0

Her 9=0, P=1, x=1, =0, =1, B1=0. (so b, = 0)

Find all expensable and elegen furthers.

Sol: We seen for all positive values

· 2>0 => general columnis u(x) = A cos Jx x + B sm Jx x.

(how de ue trou this?)

me tourday uneliha, U(0) =0 => A=0, U(2) =0 => Barely

[RBCUSTAZ=0 @. 0 1 B=0, U=0 third so B=0 =)

COSJAR =0 => R= 32, 3=1,2, So correspondly expendentialing

Uj-Banj*. (not umpre!)

·N=0 => W= Ax+B, Use B.C. => A= B=0.

·200 => u"-2n=0 => n=Ae+Ax +BeIXx =>A=B=0.

We find that expensions $\lambda j = j^2$, j=1,2,... exportation

Uj = Binjx. Remerk: O Notice that uj form a complete velormet

backs for [2 ((0,2); 112).

2 the eyen who is >00 us j >00.

(3) the "expenselu" of the different operator?

(Unbounded operator).

Q: How to find there for general SAmm-Livuille problem? The idea is to look at the "inverce" L' of L. We show that L' is an integral operator (Green's function) It is upt, cultaryout here we can opply spectful them to get eigenvalue of L-1. Thally, we connect them to L.

5) Green's function

I walky though the might be useful

Consider the solution of the DD & problem

 $\begin{cases} L\omega = g \\ \omega(\alpha) + \omega' \omega'(\alpha) = 0 \end{cases}$ $\beta \omega(b) + \beta' \omega'(b) = 0$ (*)

The shurk at L is that given of we find w. There is a stonolud way to first solve this ONE called variation of parameters.

Near good

Lu=0, Lv=0. The general (obth 14) w= 0 author. (is thir somthing we know? or tale this

Then we look for a solution of EX) of the form forganded) W = P(x) U(x) + Y(x) U(x).

Othere 4, of to be determined (tod)

Tale de l'edre => W = qu'+ @ 4 v' + w u + 4'v

W = qu/+qv/. nd get 41 v=0 We doore

(Lw) (hu do regat thin?)
Then (pw')' + 9w = topo (pu' + x/pv' = g So # Sp (4'u' + 2'u') = 4 and | y'u + y'v =0 Pu' Pv') => detA= P(u'v - 0 uv'). (Flus is ideal).

what ther ray? Purp: Exprise that u, v ((2 ((a.h.)) are not identially Fero. Sippue etat Lu=0, Lv=0. Then either u= cv for some Constant c or p(u'v - uv) + 0 for our + + (a,b]. Mue over P(u'v-uv') = constant

(For this was need a existence remot for OUE). Pront: We amide d (p(uv'-vu')) = d ((pv')u - (pu')v) = (pv')'u + pv'u' - pu'v' - (pw)'v = + grow = guv = 0 So the quantity is a unitant. Now we convide the problem at to + (a1b). Let p(u'v-uv') to

=) warrangly trail t. If p(u'v-uv')(to) =0 => 2 (u(to)) and (v'(to)) are liverly dependent => i = (i for some constant c. Then Lu = 0 Sutretos $u(t_0) = c v(t_0)$, $u'(t_0) = c v'(t_0)$ $Lv = 0 - - v(t_0) = v(t_0)$ $v'(t_0) = v'(t_0)$ =) W= U- (V SL+4/y LW=0, W(+)=0, W(+)=0 =) W=0 by unpuny

Then
$$\alpha \omega(\alpha) + \alpha' \omega(\alpha) = (\alpha \omega(\alpha) + \alpha' \alpha'(\alpha)) = (\alpha \omega(\alpha) + \alpha'(\alpha)) = (\alpha \omega(\alpha)) =$$

uf us substitues the BC. at a.

of up substitutes the BC. on
$$a(7) d7$$
, $a(1) d7 = \frac{U'(b)}{C} \int_{a}^{b} g_{(7)}u_{(1)} d7$

2f there are substitud, we get $w(t) = \frac{1}{C} \frac{b}{a} g(s) \left(H(s-t)u(t)v(s) - H(t-s)u(s)v(t)\right) ds$ $= \int_{a}^{b} |c(s,t)| g(s) ds \left(C(t) = \frac{1}{2}\right) ds$ where H(s) is the Henrison further $H(s) = \frac{1}{2} \int_{a}^{b} c(s,t) ds$

bleve (CCS-+) is the integral (cernel. 1+is a symmetric further, real valuel, continues on [a,b] × [a-b].

Now we need to that that the derived u.v can be found.

7hm: (Existence and uniformers at 01) 5)

Let $g: (a,h) \rightarrow IR$ be a given C° function and suppose that $u(tv) = C_1$, $u'(tv) = C_2$ at some to f[a,b]. Then there is a unique solution $C^2([a,b])$ with $u(tv) = C_1$, $u'(tv) = C_2$.

They this result, we can find u with

 $\left\{ \begin{array}{l} L u = 0 \\ u(a) = 0 \\ u'(a) = 0 \end{array} \right.$

Such that $x(1+\beta x') = 0!$ handly for v'. This shows that the inverse sperator is found.