

Study of a new kinematic weighting algorithm for the measurement of CP asymmetries in charm decays

LHCb Collaboration

Georgios Christou

 $7^{th} \text{ Week} \\ 24/07/2023 - 28/07/2023$

1 Introduction

We use a high statistics sample to calculate more accurately the weighting function which is given by

$$Q(\vec{p}_{D^{\star}}, \vec{p}_{\pi_s}) \simeq \frac{\Gamma_{D^0}^{\pi\pi}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s}) + \Gamma_{\bar{D}^0}^{\pi\pi}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s})}{\Gamma_{D^0}^{KK}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s}) + \Gamma_{\bar{D}^0}^{KK}(\vec{p}_{D^{\star}} - \vec{p}_{\pi_s})}$$
(1)

Figure 1: Normalized distributions for $D^0 \to K^-K^+$ (top) and $D^0 \to \pi^-\pi^+$ (bottom) without detection asymmetry.

Using the weighting function Eq. 1 we assign weights to the low statistics $D^0 \to K^-K^+$ sample,

thus, we equalize the kinematic distributions of D^0 .

Figure 2: We present the kinematic distributions p_T , η and ϕ of D^0 for the two decay modes, before and after weighting.

We can compare how the total asymmetry is affected. The total asymmetry can be measured using

$$A_{\text{total}} = \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \tag{2}$$

and the error can be estimated using the standard error propagation

$$\sigma A_{\text{total}}^2 = \left(\frac{\partial A_{\text{total}}}{\partial N^+} \sigma N^+\right)^2 + \left(\frac{\partial A_{\text{total}}}{\partial N^-} \sigma N^-\right)^2 \tag{3}$$

For the weighted sample, $N^\pm = \sum_i w_i^\pm$ and $\sigma N^\pm = \sqrt{\sum_i (w_i^\pm)^2}$

	Asymmetry	Weighted	Unweighted
With Detection Asymmetry	$A_{ m total}$	0.14994 ± 0.00066	0.16268 ± 0.00064
Without Detection Asymmetry	$A_{ m total}$	0.14726 ± 0.00066	0.16268 ± 0.00064

Table 1: Total asymmetry for $D^0 \to K^-K^+$ sample with and without weights.

For the $D^0 \to \pi^-\pi^+$ sample the total calculated asymmetry is

$$A_{\text{total}} = 0.24571 \pm 0.00067 \tag{4}$$

The total asymmetry difference results are shown in Tab. 2

With detection asymmetryWeightedUnweighted ΔA_{total} -0.09578 ± 0.00094 -0.08304 ± 0.00092 Deviation (σ) 4.494.59Without detection asymmetryWeightedUnweighted

Table 2: Total asymmetry for $D^0 \to K^-K^+$ sample with and without weights.

where the CP asymmetry for each sample is

Furthermore, we compare the kinematics of D^* and π_s to see whether or not the distributions are equalized after the weighting.

As we can see, the kinematics of $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ samples match after the weighting which is expected, thus we conclude that the weighting is done correctly.

Figure 3: We present the kinematic distributions p_T , η and ϕ of D^* for the two decay modes, before and after weighting.

Figure 4: We present the kinematic distributions p_T , η and ϕ of π_s for the two decay modes, before and after weighting.