

CSE 5255

INTRODUCTION TO COMPUTER GRAPHICS CLASS NOTES

Dr. William D. Shoaff

Spring 1996

Table of Contents

Introduction
Data Structures for Graphics 1.1
Basic Math for Graphics
Transformations
View Coordinates4.1
Projections and Normalized Device Coordinates5.1
Clipping 6.1
Scan Conversion
Rendering and Illumination Models8.1
Visible Object Algorithms9.1
Color Models10.1
Exams and Quizzes
Bibliography B.1
0 1 0

The Viewing Transformation

- A 3D scene can be viewed from any position in 3D space
- The viewing operation is broken up into two steps
 - Define the view orientation (what we'll do in this section)
 - Projecting the view volume to normalized device coordinates (later)
- To define the view orientation we need to specify:
 - View reference point e the origin of view coordinates
 - View plane normal \vec{N} (unit length) the z axis of view coordinates
 - View up vector \vec{V}_{up} (unit length) projects onto the y axis of view coordinates
- \bullet \vec{N} and e determine a plane orthogonal to \vec{N} containing e
- ullet The perpendicular projection of $ec{V}_{up}$ onto this plane determines $ec{V}$ (the y axis of view coordinates)
- ullet The x axis of view coordinates, called \vec{U} , is orthogonal to \vec{V} and \vec{N} (i.e., their cross-product)
- View coordinate system is left-handed

The Viewing Transformation

- For perspective views it is convenient to think of
 - the view reference point as the eye's (camera's) position $e=(e_x,\ e_y,\ e_z)$
 - the view plane normal as a unit vector from eye to a "look-at point" $a=(a_x,\,a_y,\,a_z)$, so

$$\vec{N} = \frac{1}{\|a - e\|} \langle a_x - e_x, a_y - e_y, a_z - e_z \rangle$$

where

$$||a - e|| = \sqrt{(a_x - e_x)^2 + (a_y - e_y)^2 + (a_z - e_z)^2}$$

- The view up vector as the tilt (rotation) of the head (camera)
- For parallel views it is convenient to think of the view plane normal as determining the direction of projection

View Coordinate System

- ullet Given an object, defined in world coordinate space, we want to express its world coordinate vertices $(x,\,y,\,z)$ in term of view coordinates $(u,\,v,\,n)$
- Break the transformation from world to view coordinates into a sequence of transformations:
 - Translate the view reference point e to the origin
 - Rotate about world coordinate y axis to bring the view coordinate \vec{N} axis into the yz plane of world coordinates
 - Rotate about the world coordinate x axis until the z axes of both systems are aligned
 - Rotate about the world coordinate z axis to align the \vec{V} axis with the y
 - Reflect relative to the xy plane, reversing sign of each z coordinate to change into a left-handed coordinate system
- The viewing transformation is

$$V = T \cdot R(y) \cdot R(x) \cdot R(z) \cdot F$$

Example of the Viewing Transformation

- Let (1, 1, 1) be the view reference point.
- Let (0, 0, 0) be the look-at point.
- Let (0, 1, 0) be the up vector.
 - Translate:

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & -1 & -1 & 1
\end{bmatrix}$$

- Rotate about y:

$$\begin{bmatrix} \sqrt{2}/2 & 0 & \sqrt{2}/2 & 0 \\ 0 & 1 & 0 & 0 \\ -\sqrt{2}/2 & 0 & \sqrt{2}/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Rotate about x:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sqrt{2}/\sqrt{3} & 1/\sqrt{3} & 0 \\ 0 & -1/\sqrt{3} & \sqrt{2}/\sqrt{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Rotate about z: Identity

Example of the Viewing Transformation

– Reflection:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Composite transform V:

$$\begin{bmatrix} \sqrt{2}/2 & -1/\sqrt{6} & -1/\sqrt{3} & 0 \\ 0 & 2/\sqrt{6} & -1/\sqrt{3} & 0 \\ -\sqrt{2}/2 & -1/\sqrt{6} & -1/\sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} & 1 \end{bmatrix}$$

Alternative Construction of Viewing Transform

- ullet Let $e=(e_x,e_y,e_z)$ be the eye position (view reference point)
- Let $a=(a_x,a_y,a_z)$ be the "look-at" point.
- Unit length view plane normal is

$$\vec{N} = \frac{a - e}{\|a - e\|}$$

• Let M be a 3×3 rotation matrix that maps the view plane normal \vec{N} to the z axis.

$$\vec{N}M = (0, 0, 1)$$

Thus, the third column of M is \vec{N}

$$\vec{N} = (0, 0, 1)M^T = (m_{1,3}, m_{2,3}, m_{3,3}) = m_3$$

ullet Let $ec{V}_{up}$ be the unit length view up vector. We want M to map $ec{V}_{up}$ into the yz plane. Thus,

$$\vec{V}_{up}M = (0, A, B)$$

for some A, B such that $A^2 + B^2 = 1$.

$$\vec{V}_{up} = (0, A, B)M^T = Am_2 + Bm_3$$

where m_2 and $m_3 = \vec{N}$ are the second and third columns of M .

Alternative Construction of Viewing Transform

ullet Inner product of $ec{V}_{up}$ and m_3 gives

$$\vec{V}_{up} \cdot m_3 = A(m_2 \cdot m_3) + B(m_3 \cdot m_3) = B$$

ullet Both $ec{V}_{up}$ and $m_3=ec{N}$ are known, so B is known and

$$A = \sqrt{1 - B^2}$$

. Thus, solving for m_2

$$m_{2} = \frac{\vec{V}_{up} - B\vec{N}}{\sqrt{1 - B^{2}}}$$

$$m_{2} = \frac{\vec{V}_{up} - (\vec{V}_{up} \cdot \vec{N})\vec{N}}{\sqrt{1 - (\vec{V}_{up} \cdot \vec{N})^{2}}}$$

 \bullet Finally, we can compute the first column of M via cross products

$$m_1 = m_3 \times m_2$$

$$= \frac{m_3 \times \vec{V}_{up}}{\sqrt{1 - (\vec{V}_{up} \cdot \vec{N})^2}}$$

(Note: (1) the order of the cross product produces a left-handed system, (2) a vector crossed with itself is zero.)

Constructing the Viewing Transform

• First translate view reference point to the origin

$$T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -e_x & -e_y & -e_z & 0 \end{bmatrix}$$

- ullet Second construct the rotation matrix M
- The viewing transform is given by

$$V = T \begin{bmatrix} m_{11} & m_{12} & m_{13} & 0 \\ m_{21} & m_{22} & m_{23} & 0 \\ m_{31} & m_{32} & m_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example – Constructing Viewing Transform

- Let (1, 1, 1) be the view reference point.
- Let (0, 0, 0) be the look-at point.
- Let $\vec{V}_{up} = \langle 0, 1, 0 \rangle$ be the up vector.
- Translate:

$$\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 -1 & -1 & -1 & 1
 \end{bmatrix}$$

- ullet compute third column of M
 - step 1: view plane normal

$$\vec{N} = \frac{a - e}{\|a - e\|}$$

$$= (-1/\sqrt{3}, -1\sqrt{3}, -1\sqrt{3})$$

$$= m_3$$

- ullet compute second column of M
 - step 1:

$$(\vec{V}_{up} \cdot m_3) = -1/\sqrt{3} = B$$

- step 2:

$$m_2 = \frac{\vec{V}_{up} - B\vec{N}}{\sqrt{1 - B^2}}$$

 $m_2 = (-1/\sqrt{6}, 2/\sqrt{6}, -1/\sqrt{6})$

Example – Constructing Viewing Transform

ullet compute first column of M

$$m_1 = m_3 \times m_2 = (\sqrt{2}/2, 0, -\sqrt{2}/2)$$

 \bullet The matrix M is

$$\begin{bmatrix} \sqrt{2}/2 & -1/\sqrt{6} & -1/\sqrt{3} & 0 \\ 0 & 2/\sqrt{6} & -1/\sqrt{3} & 0 \\ -\sqrt{2}/2 & -1/\sqrt{6} & -1/\sqrt{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• compute V = TM:

$$\begin{bmatrix} \sqrt{2}/2 & -1/\sqrt{6} & -1/\sqrt{3} & 0 \\ 0 & 2/\sqrt{6} & -1/\sqrt{3} & 0 \\ -\sqrt{2}/2 & -1/\sqrt{6} & -1/\sqrt{3} & 0 \\ 0 & 0 & \sqrt{3} & 1 \end{bmatrix}$$

Problems

- 1. Find the viewing transformation matrix given a view reference point of (1, 2, 1), a look-at point (0, 1, 0), and a view-up vector $\vec{V}_{up} = \langle 1, 0, 0 \rangle$.
- 2. Find the viewing transformation given eye position $e=(1,\,1,\,1)$, look-at point $e=(1,\,0,\,0)$ and up-vector $\vec{V}_{up}=\langle 0,\,1,\,0\rangle$.
- 3. Find the viewing transformation given eye position $e=(1,\,1,\,1)$, look-at point $e=(1,\,0,\,0)$ and up-vector $\vec{V}_{up}=\langle 1,\,0,\,0\rangle$.
- 4. Find the viewing transformation given eye position $e=(1,\,0,\,0)$, look-at point $e=(0,\,1,\,0)$ and up-vector $\vec{V}_{up}=\langle 0,\,0,\,1\rangle$.
- 5. If r_1 and r_2 are two different rows of a rotation matrix (a) what is their inner product, (b) what can be said about their cross product?