Seminar 5 Decizie cu mai multe eșantioane

Rămase de data trecută:

2. Un semnal poate avea două valori, $s_0(t) = 0$ (ipoteza H_0) sau $s_1(t) = 6$ (ipoteza H_1).

Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 1)$.

La recepție se iau 5 eșantioane, cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.

- a. Ce decizie se ia cu criteriul ML?
- b. Ce decizie se ia cu criteriul MPE, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
- c. Care e intervalul de valori posibile ale lui $P(H_0)$ pentru ca decizia cu criteriul MPE să fie D_0 ?

Exerciții noi:

- 1. Fie detecția unui semnal $s_1(t) = 3\sin(2\pi f_1 t)$ care poate fi prezent (ipoteza H_1) sau absent ($s_0(t) = 0$, ipoteza H_0). Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Valoarea lui $f_1 = 1$. La recepție se iau două eșantioane la momentele de timp t_1 și t_2 .
 - b. La recepție se iau citesc două eșantioane cu valorile $\{1.1, 4.4\}$, la momentele de timp $t_1 = 0.125$ și $t_2 = 0.625$. Ce decizie se ia cu criteriul Minimum Probability of Error?
- 2. Un semnal transmis poate avea forma $s_0(t)$ sau $s_1(t)$, conform figurilor. La recepție se primește semnalul r(t) reprezentat în figură. Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 2)$. Se consideră $P(H_0) = \frac{1}{4}$ și $P(H_0) = \frac{3}{4}$. Găsiți decizia conform criteriului MPE, în două cazuri distincte:
 - a. folosind trei eșantioane luate la momentele de timp $t_1=0.5,\ t_2=1.5$ și $t_2=3.5$

b. folosind metoda observației continue (fără eșantionare)

- 3. Fie următorul set de 10 vectori, compus din 5 vectori din clasa A și 5 vectori din clasa B:
 - Clasa A:

$$\vec{v}_1 = \begin{bmatrix} 2 \\ -4 \end{bmatrix} \ \vec{v}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix} \ \vec{v}_3 = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \ \vec{v}_4 = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \ \vec{v}_5 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

• Clasa B:

$$\vec{v}_6 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \ \vec{v}_7 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \ \vec{v}_8 = \begin{bmatrix} -4 \\ -3 \end{bmatrix} \ \vec{v}_9 = \begin{bmatrix} -3 \\ 0 \end{bmatrix} \ \vec{v}_{10} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

Calculați clasa vectorului $\vec{x} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ folosind algoritmul k-NN, pentru diverse valori ale lui k: $k=1,\ k=3,\ k=5,\ k=7$ and k=9

4. Fie următoarele zece valori numerice:

$$\vec{v} = \{v_i\} = [1.1, 0.9, 5.5, 0.6, 5, 6, 1.3, 4.8, 6, 0.8]$$

Efectuați cinci iterații ale algoritmul k-Means pentru a găsi doi centroizi \vec{c}_1 și \vec{c}_2 , pornind de la două valori aleatoare $\vec{c}_1=0.95$ și $\vec{c}_2=0.96$.