

The overall design of the unmanned pure electric logistics vehicle

Liu Li Yu Houyu

Institute of International Education

Li0121582@gmail.com

Introduction

Electric vehicle can be divided into two types, namely electric vehicles using pure batteries as power sources and electric vehicles with auxiliary power sources.

Overall design of electric vehicles

Environmental awareness system

The top of the car is equipped with a 16-line laser radar; the second layer of two RTK antennas, the middle binocular camera; the third layer is equipped with four cameras surrounding the body; the bottom layer is the ultrasonic sensor surrounding the body.

Decision planning system

Decision-making algorithm based on combination of rules and learning and GPS/DR combined positioning system.

Control execution system

Gear mechanism and ball screw mechanism.

Motor parameter design

$$P_{mr} = \sum_{u_{amax}} P$$

$$= \left(\frac{Mgf}{3600} u_{amax} + \frac{C_d A u_{amax}^3}{76140}\right) / \eta_t$$

$$\sum_{i} P = \left(\frac{Mgf}{3600} u_a + \frac{C_d A u_a^3}{76140} + \frac{Mgi}{3600} u_a\right) / \eta_t$$

Motor selection

Driveline ratio

$$\sum i \le \frac{0.377 n_{max} r}{u_{amax}} \qquad \sum i \ge \frac{F_{uamax} r}{\eta_t T_{nmax}}$$

Check maximun grade, speed and acceleration performance

Battery pack capacity design

Evaluation of brake performance

$$E_{f} = \frac{z}{\psi_{f}} = \frac{b}{L\beta - \psi_{f}h_{g}}$$

$$a_{max} = E_{f} \cdot \psi$$

$$S = \frac{1}{3.6} \left(\tau'_{2} + \frac{\tau''_{2}}{2}\right) u_{a} + \frac{u_{a}^{2}}{25.92 a_{max}}$$

Evaluation of passability

Minimum ground clearance: 200mm Approach angle: 42.86

Departure angle: 37.97
Minimum turning diameter: 6m
Longitudinal pass radius: 2.2m

Simulation of Vehicle Handling Stability

Automotive Ride Comfort Simulation

	c80 a	1
$a_w = [$	$\int_{0.5}^{80} W^2(f) G_a(f) d$	$[f]^{\overline{2}}$

The relationship between L_{aw} and a_w and human subjective sensation

Weighted root mean square acceleration $a_w/(m/s^2)$	Weighted vibration level $L_{aw}/{ m dB}$	Subjective Feeling
< 0.315	110	No discomfort
0.315-0.63	110-116	Some discomforts.
0.5-1.0	114-120	Quite uncomfortable
0.8-1.6	118-124	Discomfort
1.25-2.5	122-128	Great discomfort
>2.0	126	Extremely uncomfortable

Conclusions

Vehicle parameters

Basic parameters		
Energy type	Pure electric	
Driving range	100km	
Maximum speed	50km/h	
Acceleration time (0-50km/h)	7.7s	
Maximum gradient (%)	20	
Curb weight (kg)	700	
Full load total mass (kg)	1000	
body		
Length / width / height (mm)	2500/1000/1800	
Wheelbase (mm)	1730	
Front wheel pitch (mm)	820	
Rear wheel pitch (mm)	820	
Minimum ground clearance (mm)	200	
Frame type	Side girder frame	
Motor		
Motor type	Permanent magnet synchronous moto	
Rated voltage (V)	60	
Rated power (kw)	6	
Peak power (kw)	12	
Rated speed (rpm)	3000	
Peak speed (rpm)	5300	
Rated torque (Nm)	20	
Peak torque (Nm)	72	
Number of driving motors	1	
Motor layout	Front transverse	
Battery		
Battery type	Ternary lithium battery	
Core nominal capacity (Ah)	70	
Nominal voltage (V)	3.65	
Internal resistance (Ω)	≤ 0.001	
Standard discharge current (A)	70	
Retarder		
Number of gears	1	
Type of reducer	Fixed Tooth Ratio Two-stage	
Chassis and Steering		
Driving mode	Front-end precursor	
Front suspension type	McPherson independent	
Rear suspension type	Torsion beam type independent	
Assistance type	Electric power assist	
Car body structure	Unloaded body	
Tire and Braking		
Type of front brake	Vented Disc	
Type of rear brake	Drum type	
Parking brake	Wheel brake drum parking brake	
Front tire specification	115/70 R16	
Rear tire specification	115/70 R16	

Acknowledgments

I am used to admiring great men and celebrities, but I am more eager to dedicate my respect to no ordinary person than my teacher, Yu Houyu. I may not be your best student, but I have much respect for you. What impressed me the most was that you dedicated your time to answer all our question during this graduation project design period, which takes several hours and sometime affect your lunch time. For a small problem, you will think carefully and discuss it with us. This gives us a model for rigorous study.

References

[1]Tian Pengfei,Luo Yiping,Zhou Feng,et al.CATIA-Based Urban Mini EV Design[J].The Open Mechanical Engineering Journal,2015,9:346-350.