احتمال پیشرفته			
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع	
صفحه 6	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

هفتهی دوم - جلسهی چهارم

مجموعهی ${\mathcal J}$ از زیرمجموعههای Ω را یک شبهجبر (نیمجبر) گویند هرگاه

- $\emptyset, \Omega \in \mathcal{J}$

$$\bigcap_{i=1}^n A_i\in\mathcal{J}$$
 نسبت به اشتراک متناهی بسته است؛ یعنی اگر \mathcal{J} اگر $A_1,\dots,A_n\in\mathcal{J}$ نسبت به اشتراک متناهی بسته است؛ یعنی اگر $A^c=\bigcup_{i=1}^m A_i$ و $A^c=\emptyset$ و $A^c=\bigcup_{i=1}^m A_i$ و $A^c=\emptyset$ و اگر $A^c=\emptyset$ و اگر و اگر $A^c=\emptyset$ و اگر و اگر $A^c=\emptyset$ و اگر و اگر

 Ω مثال ۱: اگر $\Omega = [0,1]$ و $\mathcal T$ مجموعهی همهی بازههای درون Ω باشد، آنگاه $\mathcal T$ یـک شـبهجبر از زیرمجموعههـای Ω است.

مثال ۲: فرض کنید
$$\Omega=\{(r_1,r_2,r_3,\ldots):r_i\in\{0,1\}\}$$
 و $\mathcal{J}=\{A_{a_1a_2\cdots a_n}:n\in\mathbb{N},a_1,\ldots,a_n\in\{0,1\}\}\cup\{\emptyset,\Omega\}$

که در آن

$$A_{a_1 a_2 \cdots a_n} = \{ (r_1, r_2, r_3, \ldots) \in \Omega : r_1 = a_1, \ldots, r_n = a_n \}$$

 Ω استوانهای با قاعدهی $a_1,\dots,a_n\in\{0,1\}$ را تعریف میکند. در این صورت $a_1,\dots,a_n\in\{0,1\}$ است.

مثال ۳: اگر
$$\Omega = [0,1] imes [0,1] imes \Omega$$
 و

$$\mathcal{J} = \{[a,b] \times [c,d] : 0 \leq a \leq b \leq 1, 0 \leq c \leq d \leq 1\} \cup \emptyset$$

 Ω است. Ω است. آنگاه $\mathcal J$ بک شبهجبر از زیرمجموعههای

قضیه (قضیه توسیع): فرض کنید $\mathcal J$ یک شبهجبر از زیرمجموعههای Ω و [0,1] و تابع مجموعهای باشد که $P(\emptyset)=0$ و به علاوه در دوشرط زیر صدق کند

برای هر
$$A_i\in\mathcal{J}$$
 داشته باشیم نامی هر $A_i\in\mathcal{J}$ و $A_i\in\mathcal{J}$ و که که که $A_1,\dots,A_n\in\mathcal{J}$ داشته باشیم •

$$P\left(\bigcup_{i=1}^{n}\right) \ge \sum_{i=1}^{n} P(A_i)$$

i=1d اشیم $A\subset igcup_{i=1}^\infty A_i$ که $A,A_1,A_2,\ldots\in \mathcal{J}$ داشته باشیم •

$$P(A) \le \sum_{i=1}^{\infty} P(A_i)$$

احتمال پیشرفته			
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع	
صفحه 7	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

در این صـورت سـیگماجبر $\mathcal M$ از زیرمجموعههـای Ω و انـدازهی احتمـال P^* روی $\mathcal M$ موجــود هسـتند بهطـوری کـه $P^*(A)=P(A)$ ، $A\in\mathcal J$ و به ازای هر $\mathcal J\subset\mathcal M$

P ایده قضیه: ساختن سهتایی احتمال (Ω,\mathcal{M},P^*) بر اساس شبهجبر \mathcal{J} و تابع مجموعه ای