Metody przetwarzania i analizy danych w R $_{\mathit{Lukasz~Wawrowski}}$

Contents

Wprowadzenie		5
1	Wprowadzenie	7
	1.1 Narzędzie	7
	1.2 Cele analiz	7
2	Testowanie hipotez	9
	2.1 Hipoteza statystyczna	9
	2.2 Poziom istotności i wartość p	
	2.3 Testy parametryczne i nieparametryczne	9
3	Regresja	11
	3.1 Regresja prosta	11
	3.1 Regresja prosta	11
4	Grupowanie	13
	4.1 Metoda k-średnich	13
	4.2 Metoda hierarchiczna	
5	Klasyfikacja	15
•	5.1 Drzewa klasyfikacyjne	
	5.2 KNN	
	5.2 KNN	- 1

4 CONTENTS

Wprowadzenie

Literatura podstawowa:

- Przemysław Biecek $Przewodnik\ po\ pakiecie\ R$
- Marek Gągolewski Programowanie w języku R. Analiza danych, obliczenia, symulacje.
- Garret Grolemund, Hadley Wickham R for Data Science (polska wersja)

Literatura dodatkowa:

- inne pozycje po polsku
- inne pozycje po angielsku

Internet:

- R-bloggers
- rweekly

6 CONTENTS

Wprowadzenie

1.1 Narzędzie

- darmowe
- wszechstronne
- wsparcie społeczności
- wersja desktopowa i serwerowa

czyli ${f R}$ - środowisko do obliczeń statystycznych i wizualizacji wyników

- strona projektu: r-project.org
- świetne IDE: RStudio
- wersja przeglądarkowa: rstudio.cloud

R + Python

1.2 Cele analiz

Podstawowe:

- wnioskowanie statystyczne porównywanie grup
- regresja poszukiwanie związków
- klasyfikacja przyporządkowanie do grup
- grupowanie poszukiwanie grup
- prognozowanie patrzenie w przyszłość

Inne:

- analiza języka naturalnego
- rozpoznawanie obrazów
- analiza koszykowa
- ..

1.2.1 Eksporacja danych

Pakiet tidyverse

library(tidyverse)

- analiza częstości dla zmiennych jakościowychanaliza struktury dla zmiennych ilościowych

Case study: Wybory 2018

Testowanie hipotez

2.1 Hipoteza statystyczna

Przypuszczenie dotyczące własności analizowanej cechy, np. średnia w populacji jest równa 10, rozkład cechy jest normalny.

Formuluje się zawsze dwie hipotezy: hipotezę zerową (H_0) i hipotezę alternatywną (H_1) . Hipoteza zerowa jest hipotezą mówiącą o równości:

 $H_0: \bar{x} = 10$

Z kolei hipoteza alternatywna zakłada coś przeciwnego:

 $H_1: \bar{x} \neq 10$

Zamiast znaku nierówności (\neq) może się także pojawić znak mniejszości (<) lub większości (>).

2.2 Poziom istotności i wartość p

Hipotezy statystyczne weryfikuje się przy określonym poziomie istotności α , który wskazuje maksymalny poziom akceptowalnego błędu (najczęściej $\alpha = 0,05$).

Większość programów statystycznych podaje w wynikach testu wartość p. Jest to prawdopodobieństwo uzyskania obserwowanych wyników przy założeniu prawdziwości hipotezy zerowej.

Generalnie jeśli $p < \alpha$ - odrzucamy hipotezę zerową.

Krytyka wartości p

2.3 Testy parametryczne i nieparametryczne

Testy statystyczne dzielą się na dwie grupy:

- parametryczne, które wymagają spełnienia założeń, ale są dokładniejsze,
- nieparametryczne, które nie wymagają tylu założeń, ale są mniej dokładne.

Regresja

3.1 Regresja prosta

Na podstawie danych dotyczących informacji o doświadczeniu i wynagrodzeniu pracowników zbuduj model określający 'widełki' dla potencjalnych pracowników o doświadczeniu równym 8, 10 i 11 lat.

regresja_prosta.Rmd

cały projekt

3.1.1 Zadanie

Dla danych dotyczących sklepu nr 77 opracuj model zależności sprzedaży od liczby klientów. Ile wynosi teoretyczna sprzedaż w dniach, w których liczba klientów będzie wynosiła 560, 740, 811 oraz 999 osób?

3.2 Regresja wieloraka

Na podstawie danych dotyczących zatrudnienia opracuj model, w którym zmienną zależną jest bieżące wynagrodzenie. Jaka cecha ma największy wpływ na tę wartość?

Opis zbioru:

- id kod pracownika
- plec płeć pracownika (0 mężczyzna, 1 kobieta)
- data urodz data urodzenia
- edukacja wykształcenie (w latach nauki)
- kat pracownika grupa pracownicza (1 ochroniarz, 2 urzędnik, 3 menedżer)
- bwynagrodzenie bieżące wynagrodzenie
- pwynagrodzenie początkowe wynagrodzenie
- staz staż pracy (w miesiącach)
- doswiadczenie poprzednie zatrudnienie (w miesiącach)
- zwiazki przynależność do związków zawodowych (0 nie, 1 tak)
- wiek wiek (w latach)

regresja_wieloraka.Rmd

cały projekt

3.2.1 Zadanie

Na podstawie zbioru dotyczącego 50 startupów określ jakie czynniki w największym stopniu wpływają na przychód startupów.

Grupowanie

Metody grupowania są wykorzystywane np. do segmentacji klientów, w przypadku, gdy nie jest znany końcowy podział.

4.1 Metoda k-średnich

Algorytm:

- 1. Wskaź liczbę grup k.
- 2. Wybierz dowolne k punktów jako centra grup.
- 3. Przypisz każdą z obserwacji do najbliższego centroidu.
- 4. Oblicz nowe centrum grupy.
- 5. Przypisz każdą z obserwacji do nowych centroidów. Jeśli któraś obserwacja zmieniła grupę przejdź do kroku nr 4, a w przeciwnym przypadku zakończ algorytm.

Zalety:

- dobrze działa zarówno na małych, jak i dużych zbiorach
- efektywny

Wady:

- trzeba wskazać liczbę grup
- · losowy wybór punktów początkowych

4.2 Metoda hierarchiczna

Algorytm:

- 1. Każda obserwacji stanowi jedną z N pojedyńczych grup.
- 2. Na podstawie macierzy odległości połącz dwie najbliżej leżące obserwacje w jedną grupę (N-1 grup).
- 3. Połącz dwa najbliżej siebie leżące grupy w jedną (N-2 grup).
- 4. Powtórz krok nr 3, aż do uzyskania jednej grupy.

Zalety:

- prosty sposób ustalenia liczby grup
- praktyczny sposób wizualizacji

Wady:

• nieodpowiedni dla dużych zbiorów

4.2.1 Zadanie

Na podstawie zbioru zawierającego informacje o klientach sklepu dokonaj grupowania klientów.

Opis zbioru:

- klientID identyfikator klienta
- plec płeć
- wiek wiek
- roczny_dochod roczny dochód wyrażony w tys. dolarów
- wskaznik_wydatkow klasyfikacja sklepu od 1 do 100

grupowanie.Rmd

cały projekt

4.2.2 Zadanie 2

Dokonaj grupowania danych dotyczących 32 samochodów według następujących zmiennych: pojemność, przebieg, lata oraz cena.

4.2.3 Zadanie 3

Rozpoznawanie czynności na podstawie danych z przyspieszeniomierza w telefonie: User Identification From Walking Activity Data Set

Klasyfikacja

A visual introduction to machine learning - niestety powstała tylko jedna część.

5.1 Drzewa klasyfikacyjne

Zalety:

- łatwa interpretacja
- nie trzeba normalizować cech
- rozwiązuje problemy liniowe i nieliniowe

Wady:

- mała efektywność przy małych zbiorach danych
- łatwo można przeuczyć

5.2 KNN

Algorytm:

- 1. Określ liczbę sąsiadów K
- 2. Wyznacz K sąsiadów dla nowego punktu na podstawie wybranej odległości
- 3. Oblicz liczbę sąsiadów, w każdej z grup
- 4. Przypisz nową obserwację do grupy, w której ma więcej najbliższych sąsiadów

Zalety:

- łatwa interpretacja
- szybki i efektywny

Wady:

• trzeba określić liczbę sąsiadów

5.2.1 Zadanie

Zbuduj model klasyfikacyjny dla zbioru danych dotyczących cech internautów oraz informacji czy zamówili reklamowany produkt czy nie.

Przeprowadź imputację braków danych dla zbioru pracowników.