У задачах 1.23–1.34 необхідно з'ясувати геометричний зміст вказаних співвідношень.

Задача 1.23.
$$|z - z_0| < R; |z - z_0| > R; |z - z_0| = R.$$

Розв'язок. Внутрішність круга з центром z_0 і радіусом R, зовнішність цього круга, і коло яке є межею цього круга:

Задача 1.24. |z-2|+|z+2|=5.

Розв'язок. Еліпс з фокусами -2, 2 і "радіусом" 5:

Задача 1.25. |z-2|-|z+2|>3.

Розв'язок. Внутрішність "лівої" гілки гіперболи з фокусами -2, 2 і "радіусом" 3:

Задача 1.26. $|z-z_1|=|z-z_2|$.

Розв'язок. Серединний перпендикуляр до відрізку, що сполучає точки z_1 і z_2 :

Задача 1.27. Re z > C; Im z < C.

Розв'язок. "Права" (замкнена, тобто із прямою, що є границею) півплощина відносно прямої x = C.

"Нижня" (відкрита, тобто без прямої, що є границею) півплощина відсносно прямої y=C.

Задача 1.28. 0 < Re(iz) < 1.

Розв'язок. $\operatorname{Re}(iz) = \operatorname{Re}(i(x+iy)) = -y$, тому вказаний об'єкт – (відкрита) горизонтальна смуга -1 < y < 0.

Задача 1.29. $\alpha < \arg z < \beta$; $\alpha < \arg(z - z_0) < \beta \ (-\pi < \alpha < \beta \le \pi)$.

Розв'язок. (Відкритий) кут від α до β з центром в 0 та z_0 відповідно.

Задача 1.30. |z| = Re z + 1.

Розв'язок. Парабола з фокусом 0 і директрисою x = -1.

Задача 1.31. Re z + Im z < 1.

Розв'язок. "Ліва нижня" півплощина відносно прямої x + y = 1.

Задача 1.32. $\operatorname{Im} \frac{z-z_1}{z-z_2} = 0$; $\operatorname{Re} \frac{z-z_1}{z-z_2} = 0$;

Розв'язок. Іт $\frac{z-z_1}{z-z_2}=0\iff \arg(z-z_1)=\arg(z-z_2)$, тобто z належить прямій, що сполучає точки z_1 та z_2 .

 $\operatorname{Re} rac{z-z_1}{z-z_2}=0\iff \operatorname{arg}(z-z_1)=\pi/2+\operatorname{arg}(z-z_2),$ тобто відрізки, що сполучають точки z і z_1 та z і z_2 перпендикулярні, тобто z належить колу, побудованому на відрізку, що сполучає точки z_1 і z_2 , як на діаметрі.

Задача 1.33. $|2z| > |1 + z^2|$.

Розв'язок.

$$|2z| > |1 + z^2| \iff (|z - i| - \sqrt{2}) \cdot (|z + i| - \sqrt{2}) < 0,$$

тому вказана множина $\in \mathcal{K}_{\sqrt{2}}(-i)\Delta\mathcal{K}_{\sqrt{2}}(i)$.