Динамическое программирование: перемножение последовательности матриц

Александр Куликов

Перемножение последовательности матриц

 $\mathsf{B}\mathsf{xog}$: последовательность n матриц A_1,\ldots,A_n ,

которые нужно перемножить.

Выход: порядок умножения, минимизирующий

стоимость умножения.

Замечания

lacktriangle Обозначим размеры матриц A_1,\ldots,A_n через

$$m_0 \times m_1, m_1 \times m_2, \ldots, m_{n-1} \times m_n$$

соответственно. То есть размер A_i есть $m_{i-1} \times m_i$.

• Умножение матриц не коммутативно (в общем случае, $A \times B \neq B \times A$), но ассоциативно:

$$A \times (B \times C) = (A \times B) \times C$$
.

lacksquare Значит, A imes B imes C imes D может быть вычислено как

$$(A \times B) \times (C \times D)$$
 или $(A \times (B \times C)) \times D$.

• Стоимость умножения двух матриц размеров $p \times q$ и $q \times r$ будем считать pqr.

Пример: $A \times ((B \times C) \times D)$

стоимость:

Пример: $A \times ((B \times C) \times D)$ $B \times C \times D$ 50×20 20×100

стоимость: $20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100$

4/11

Пример: $A \times ((B \times C) \times D)$

$$A \times B \times C \times D$$

 50×100

стоимость: $20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100 = 120200$

Пример:
$$(A \times B) \times (C \times D)$$
 $\times \times \times - \times$
 $A \times B \times C \times D$
 $50 \times 20 \times 1 \times 1 \times 10 \times 100$

Пример: $(A \times B) \times (C \times D)$

$$\begin{array}{c}
A \times B \times C \times D \\
50 \times 100
\end{array}$$

стоимость: $50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100 = 7000$

Порядки как строго двоичные деревья

$$((A \times B) \times C) \times D \quad A \times ((B \times C) \times D) \quad (A \times (B \times C)) \times D_{6/11}$$

Подзадачи и рекуррентное соотношение

lacksquare Для $1 \leq i \leq j \leq n$, пусть

$$D[i,j] =$$
 мин. стоимость вычисления $A_i \times A_{i+1} \times \ldots \times A_j$.

- Корень поддерева разбивает его на два поддерева: $A_i \times \ldots \times A_k$ и $A_{k+1} \times \ldots \times A_j$ (для некоторого $i \leq k < j$).
- Рекуррентное соотношение:

$$D[i,j] = \min_{i \le k < j} \{D[i,k] + D[k+1,j] + m_{i-1} \cdot m_k \cdot m_j\}.$$

Дин. прог. сверху вниз

Инициализация

создать таблицу $D[1\dots n,1\dots n] \leftarrow [\infty,\dots,\infty]$

Дин. прог. сверху вниз

Инициализация

```
создать таблицу D[1\dots n,1\dots n] \leftarrow [\infty,\dots,\infty]
```

Функция MATRIXMULTTD(i,j)

```
если D[i,j]=\infty:
если i=j: D[i,j]\leftarrow 0
иначе:
для k от i до j-1:
\ell \leftarrow \texttt{MATRIXMULTTD}(i,k)
r \leftarrow \texttt{MATRIXMULTTD}(k+1,j)
D[i,j] \leftarrow \min(D[i,j], \ell+r+m_{i-1}m_km_j)
вернуть D[i,j]
```

Дин. прог. сверху вниз

Инициализация

```
создать таблицу D[1\dots n,1\dots n] \leftarrow [\infty,\dots,\infty]
```

Функция MATRIXMULTTD(i,j)

```
если D[i,j]=\infty:
если i=j: D[i,j]\leftarrow 0
иначе:
для k от i до j-1:
\ell \leftarrow \texttt{MATRIXMULTTD}(i,k)
r \leftarrow \texttt{MATRIXMULTTD}(k+1,j)
D[i,j] \leftarrow \min(D[i,j], \ell+r+m_{i-1}m_km_j)
вернуть D[i,j]
```

Время работы: $O(n^3)$.

Порядок подзадач

- Хотим идти от меньших подзадач к бо́льшим.
- Размером подзадачи естественно считать требующееся количество умножений: j-i.
- Возможный порядок:

Дин. прог. снизу вверх

Функция MATRIXMULTBU (m_0, m_1, \ldots, m_n)

```
создать массив D[1\dots n,1\dots n] \leftarrow [\infty,\dots,\infty] для i от 1 до n: D[i,i] \leftarrow 0 для s от 1 до n-1: для i от 1 до n-s: j \leftarrow i+s для k от i до j-1: D[i,j] \leftarrow \min(D[i,j],D[i,k]+D[k+1,j]+m_{i-1}m_km_j) вернуть D[1,n]
```

Дин. прог. снизу вверх

Функция MATRIXMULTBU (m_0, m_1, \ldots, m_n)

```
создать массив D[1\dots n,1\dots n] \leftarrow [\infty,\dots,\infty] для i от 1 до n: D[i,i] \leftarrow 0 для s от 1 до n-1: для i от 1 до n-s: j \leftarrow i+s для k от i до j-1: D[i,j] \leftarrow \min(D[i,j],D[i,k]+D[k+1,j]+m_{i-1}m_km_j) вернуть D[1,n]
```

Время работы: $O(n^3)$.

Пример

$$m_0 = 50$$
, $m_1 = 20$, $m_2 = 1$, $m_3 = 10$, $m_4 = 100$

	1	2	3	4
1	0	1000	1500	7000
2		0	200	3000
3			0	1000
4				0