2-1

1.

列出下述集合的成员。

a) $\{x \mid x$ 是使得 $x^2 = 1$ 的实数 $\}$

b){x | x 是小于 12 的正整数}

 \mathbf{c} $\langle x \mid x$ 是一个整数的平方且 $x < 100 \rangle$ \mathbf{d} $\langle x \mid x$ 是整数且 $x^2 = 2 \rangle$

解: a) {1,-1} b) {1,2,3,4,5,6,7,8,9,10,11} c) {0,1,4,9,16,25,36,49,64,81} d) Ø

3.

判断下面每对集合是否相等。

 $a)\{1, 3, 3, 3, 5, 5, 5, 5, 5\}, \{5, 3, 1\}$

b){{1}}, {1, {1}}

 $c)\emptyset, \{\emptyset\}$

解: a) 相等 b)不相等 c) 不相等

5.

判断下列语句是真还是假。

 $\mathbf{a})0 \in \emptyset$

 $\mathbf{b}) \varnothing \in \{0\}$

c){0}⊂∅

d)∅⊂{0}

e) $\{0\} \in \{0\}$ **f**) $\{0\} \subset \{0\}$

 $g)\{\emptyset\}\subseteq\{\emptyset\}$

解:用T表示真,F表示假

a) F b)F c)F d)T e)F f)Fg) T

7.

用文氏图说明在一年所有的月份集合中月份名称中不包含字母R的所有月份的集合。

解: 文氏图:

下列各集合的基数是什么?

10. **a**) $\{a\}$

c) $\{a, \{a\}\}$

b) $\{\{a\}\}$

 \mathbf{d}) $\{a, \{a\}, \{a, \{a\}\}\}$

解: a) 1 b) 1 c) 2 d) 3

11.

找出下列各集合的幂集。

a) {a}

b) $\{a, b\}$ c) $\{\emptyset, \{\emptyset\}\}$

解: a) { {a}, ∅ } b) { {a,b}, {a}, {b}, ∅ } c) { { ∅ }, {{∅}}, { ∅, { ∅ }}, ∅ }

12.

下列集合各有多少个元素?

a) $\mathcal{P}(\{a, b, \{a, b\}\})$ b) $\mathcal{P}(\{\emptyset, a, \{a\}, \{\{a\}\}\})$ c) $\mathcal{P}(\mathcal{P}(\emptyset))$

解: a) 8 b) 16 c) 2

13. 证明 $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ 当且仅当 $A \subseteq B$ 。

证明: $P(A) \subseteq P(B)$ 当且仅当 $A \subseteq B$

先证 $P(A) \subseteq P(B) \rightarrow A \subseteq B$

 $\forall x \in A$, $\{x\} \in P$ (A),而P(A) $\subseteq P$ (B),所以 $\{x\} \in P$ (B),

即 $\{x\} \subseteq B$, 即 $x \in B$,故 $A \subseteq B$.

再证 $A \subset B \rightarrow P(A) \subset P(B)$

对于A的任意一个子集C,有 C \subseteq A \subseteq B, \bigvee C \in P(A),

所以 $C \in P$ (B), 即 P (A) $\subseteq P$ (B).

证毕!

14.

$$\diamondsuit A = \{a, b, c, d\}, B = \{y, z\}, \bar{x}$$

 $\mathbf{a})A \times B$

 $\mathbf{b})B\times A$

解:

- a) { (a,y), (a,z), (b,y), (b,z), (c,y), (c,z), (d,y), (d,z) }
- b) { (y,a), (y,b), (y,c), (y,d), (z,a), (z,b), (z,c), (z,d) }

24. 给出一个能列出一个有限集合所有子集的步骤。

解:假设有限集为S={ $a_1,a_2,.....a_n$ }. 由于S的子集有 2^n 个,所以可以考虑用n位的二进制串来表达, 其中第i位为1当且仅当a; ∈ S, 所以只要按递增顺序写出所有的二进制串,就可以写出相应的子集。

2-2

2.

解:

a) $A \cup B = \{0,1,2,3,4,5,6\}$ b) $A \cap B = \{3\}$

c) $A - B = \{1,2,4,5\}$

d) B - A = $\{0,6\}$

6.

令 A 和 B 为两个集合。试证明表 1 中的交换律:

$$a)A \cup B = B \cup A$$

 $\mathbf{b})A \cap B = B \cap A$

证明:

- a) $A \cup B \equiv \{ x \mid x \in A \lor x \in B \} \equiv \{ x \mid x \in B \lor x \in A \} \equiv B \cup A \}$
- b) $A \cap B \equiv \{x \mid x \in A \land x \in B\} \equiv \{x \mid x \in B \land x \in A\} \equiv B \cap A$

9.

如果 $A \setminus B \setminus C$ 为集合, 试用下面的方法证明 $\overline{A \cap B \cap C} = \overline{A \cup B \cup C}$ b)使用成员表。 a) 通讨证明两边互为子集。

证明:

a)
$$\mathbf{x} \in \overline{A \cap B \cap C} \equiv \mathbf{x} \notin \mathbf{A} \cap \mathbf{B} \cap \mathbf{C} \equiv \neg \ (\mathbf{x} \in \mathbf{A} \wedge \mathbf{x} \in \mathbf{B} \wedge \mathbf{x} \in \mathbf{C})$$

$$\equiv \mathbf{x} \notin \mathbf{A} \vee \mathbf{x} \notin \mathbf{B} \vee \mathbf{x} \notin \mathbf{C} \equiv \mathbf{x} \in \overline{A} \vee \mathbf{x} \in \overline{B} \vee \mathbf{x} \in \overline{C}$$

$$\equiv \mathbf{x} \in \overline{A} \cup \overline{B} \cup \overline{C}$$

b) 成员表证明:

Α	В	С	$A \cap B \cap C$	$\overline{A\cap B\cap C}$	\overline{A}	\overline{B}	\overline{C}	$\overline{A} \cup \overline{B} \cup \overline{C}$
1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	1	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	1	0	1
0	0	0	0	1	1	1	1	1

16.

令 $A \cap B$ 为全集 U 的子集。证明 $A \subseteq B$ 当且仅当 $\overline{B} \subseteq \overline{A}$ 。

集合 A 和 B 的对称差,用 $A \oplus B$ 表示,是属于 A 或属于 B 但不同时属于 A 与 B 的元素组成的集合。

证明:

 $A \subseteq B \equiv x \in A \to x \in B$

 $\equiv \neg$ ($x \in A$) \lor ($x \in B$)

 $\equiv x \notin A \vee \neg (x \notin B)$

 $\equiv \mathsf{x} \in \overline{A} \lor \neg (\mathsf{x} \in \overline{B})$

 $\equiv \neg (x \in \overline{B}) \lor x \in \overline{A}$

 $\equiv \mathbf{x} \in \overline{B} \rightarrow \mathbf{x} \in \overline{A}$

 $\equiv \overline{B} \subseteq \overline{A}$

18. 证明 $A \oplus B = (A \cup B) - (A \cap B)$ 。

证明: $x \in (A \cup B) - (A \cap B)$ 如果x属于A和B的并集但不属于A和B的交集;

而A ⊕ B 正是这样的定义。

28. 对应于两个集合之差的位串是什么?

如果第一个位串的第i位是1而第二个位串的第i位为0,则两个集合之差的位串的第i位是1,否则为0.

下面我用成员表来演示对应于两个集合之差(A-B)的位串:

Α	В	A— B
1	1	0
1	0	1
0	1	0
0	0	0

2-3

1.

为什么下列问题中的 f 不是从 R 到 R 的函数?

a)
$$f(x) = 1/x$$

b)
$$f(x) = \sqrt{x}$$

c)
$$f(x) = \pm \sqrt{(2x+1)}$$

解:

- a) x不能取到0
- b) x不能取到负数
- c) 对于每个x 都指派了两个不同的值,f(x)不是函数

3.

求下列函数的定义域和值域。(注意在每种情况下,为了求函数定义域,只需确定被该函数指派了值的元素集合。)

- a)函数为每个位串指派串中1的位数与0的位数之差。
- b)函数为每个位串指派串中 0 的位数的 2 倍。
- c)函数为每个位串指派当把串分成字节(8位为1个字节)时不够一个字节的位数。
- d)函数为每个正整数指派不超过该整数的最大完全平方数。

解:

- a)定义域是所有位串集合,值域是整数集合
- b) 定义域是所有位串集合, 值域是非负偶整数集合
- c) 定义域是所有位串集合, 值域是{1,2,3,4,5,6,7}
- d)定义域是正整数集合,值域是{1,4,9,16,25......}

8.

判断在下列情况下函数 $f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$ 是否是映上的。

a)
$$f(m, n) = m + n$$

b)
$$f(m, n) = m^2 + n^2$$

c)
$$f(m, n) = m$$

$$\mathbf{d}$$
) $f(m, n) = |n|$

$$\mathbf{e}) f(m, n) = m - n$$

解:

a) 映上的 b)不映上的 c) 映上的 d) 不映上的 e) 映上的

12.

判断下列各函数是否是从R到R的双射函数。

a)
$$f(x) = 2x + 1$$

b)
$$f(x) = x^2 + 1$$

c)
$$f(x) = x^3$$

d)
$$f(x) = (x^2 + 1)/(x^2 + 2)$$

解:

a) 是 b)不是 c) 是 d) 不是

18.

如果 f 和 $f \circ g$ 都是映上的,能否得出结论 g 也是映上的?说明理由。

不是。

 $\diamondsuit \text{ } f: A\{a,b\} \rightarrow B\{c\} \text{ } g: C\{d\} \rightarrow A\{a,b\}; \text{ } f(a)=c, \text{ } f(b)=c, \text{ } g(d)=a$

可见f, fog 都是映上的, 而g不是。

39.

a)证明如果 S 是基数为 m 的集合,m 为正整数,则在集合 S 与集合 $\{1, 2, \dots, m\}$ 之间存在一个一一对应函数。

b)证明如果 S、T 均为基数为 m 的集合,m 为正整数,则在集合 S 与集合 T 之间存在一个一一对应函数。

解:

a) S 的基数为m , 说明S有m个不同的元素,所以可令

S的第x个元素对应整数x.这样就是一个一一对应函数。

b) 由a知存在一个从S到{1,2,3,}的双射函数f 和一个从{1,2,3,}

到T的双射函数,合成gof 就是S到T的双射函数。

2-4

4

至少找出3个不同的序列,其初始项都是1、2、4,并可用简单的公式或规则产生各项。

解: 1,每一项是前一项的两倍;2,第n项等于前一项加上n-1;

3, 是正整数但不是3的倍数;

6.

 $\Leftrightarrow a_n = 2^n + 5 \cdot 3^n, n = 0, 1, 2, \dots,$

- a)找出 ao, a1, a2, a3 和 a4。
- **b**)证明 $a_2 = 5a_1 6a_0$, $a_3 = 5a_2 6a_1$ 和 $a_4 = 5a_3 6a_2$ 。
- c)证明对于所有整数 $n, n \ge 2$, 有 $a_n = 5a_{n-1} 6a_{n-2}$.

a)
$$a_0 = 6$$
 $a_1 = 17$ $a_2 = 49$ $a_3 = 143$ $a_4 = 421$

b)
$$5a_1 - 6a_0 = 49 = a_2$$
 $5a_2 - 6a_1 = 143 = a_3$ $5a_3 - 6a_2 = 421 = a_4$

c) 证明:

依题意:

$$a_n=2^n+5\cdot 3^n$$
 , $a_{n-1}=2^{n-1}+5\cdot 3^{n-1}$, $a_{n-2}=2^{n-2}+5\cdot 3^{n-2}$
 $\therefore 5a_{n-1}-6a_{n-2}=5\cdot 2^{n-1}+25\cdot 3^{n-1}-6\cdot 2^{n-2}-30\cdot 3^{n-2}$
 $=2\cdot 2^{n-1}+15\cdot 3^{n-1}$
 $=2^n+5\cdot 3^n$
 $=a_n$

证毕!

9.

找出下面每个带有初始条件的递推关系的解。采用例 10 中所用的迭代方法求解。

$$\mathbf{a}$$
) $a_n = 3a_{n-1}$, $a_0 = 2$

c)
$$a_n = a_{n-1} + n$$
, $a_0 = 1$

$$\mathbf{e})a_n = 2a_{n-1} - 1, \ a_0 = 1$$

$$\mathbf{g})a_n = na_{n-1}, \ a_0 = 5$$

b)
$$a_n = a_{n-1} + 2$$
, $a_0 = 3$

d)
$$a_n = a_{n-1} + 2n + 3$$
, $a_0 = 4$

$$\mathbf{f}$$
) $a_n = 3a_{n-1} + 1$, $a_0 = 1$

$$\mathbf{h})a_n = 2na_{n-1}, \ a_0 = 1$$

解:

a)
$$a_n = 2 \cdot 3^n$$

b)
$$a_n = 2n + 3$$

c)
$$a_n = 1 + \frac{n(n+1)}{2}$$

d)
$$a_n = n^2 + 4n + 4 = (n+2)^2$$

f)
$$a_n = \frac{(3^{n+1}-1)}{2}$$

g) $a_n = 5n!$

h) $a_n = 2^n n!$

Over!