ЭЛЕКТРОННЫЕ ПРИБОРЫ

4. Полупроводниковые диоды

- Полупроводниковым диодом называют электропреобразовательный прибор, содержащий один или несколько переходов и два вывода для подключения к внешней цепи.
- Принцип работы большинства диодов основан на использовании физических явления в переходе.
- **ж** В диодах применяются электронно-дырочный переход, контакт металл-полупроводник, гетеропереход.
- Полупроводниковый диод как элемент электрической цепи является нелинейным двухполюсником: имеет два вывода и нелинейную ВАХ.
- Большинство полупроводниковых диодов выполняют на основе несимметричных p−n переходов. Низкоомная область диодов называется эмиттером, а высокоомная – базой.

- Полупроводниковые диоды классифицируются по роду исходного материала, конструкторско-технологическим особенностям, назначению и др.
- По типу исходного материала диоды бывают:
 - германиевые,
 - кремниевые,
 - селеновые,
 - карбид-кремниевые,
 - арсенид-галлиевые и др.

- По конструкторско-технологическим особенностям диоды бывают:
 - точечные,
 - сплавные,
 - микросплавные,
 - диффузионные,
 - эпитаксиальные,
 - с барьером Шоттки,
 - поликристаллические и др.

- По конструкторско-технологическим особенностям диоды бывают:
 - точечные,
 - сплавные,
 - микросплавные,
 - диффузионные,
 - эпитаксиальные,
 - с барьером Шоттки,
 - поликристаллические и др.

- По назначению диоды делятся на:
- * 1. Выпрямительные (силовые), предназначенные для преобразования переменного напряжения источников питания промышленной частоты в постоянное.
- 2.Стабилитроны (опорные диоды), предназначенные для стабилизации напряжений, имеющие на обратной ветви ВАХ участок со слабой зависимостью напряжения от протекающего тока.
- З. Варикапы, предназначенные для использования в качестве емкости, управляемой электрическим напряжением.

- **×** 4. Импульсные диоды, предназначенные для работы в быстродействующих импульсных схемах.
- * 5. Туннельные и обращенные диоды, предназначенные для усиления, генерирования и переключения высокочастотных колебаний.
- Сверхвысокочастотные, предназначенные для преобразования, переключения, генерирования сверхвысокочастотных колебаний.
- 7. Светодиоды, предназначенные для преобразования электрического сигнала в световую энергию.
- **×** 8. Фотодиоды, предназначенные для преобразования световой энергии в электрический сигнал.

4.2. ПРОИЗВОДСТВО

- Электронно-дырочный переход получается путём легирования примесями части монокристалла.
- **х** Легирование осуществляется путём:
 - **диффузии** атомов примеси из внешней среды при высокой температуре,
 - **ионным внедрением** при бомбардировке кристалла пучком ионов примесей, ускоренных в электрическом поле,
 - *вплавлением* в полупроводник металла, содержащего нужные примеси,
 - методом **эпитаксии** наращиванием на поверхность кристалла-подложки тонкой плёнки полупроводника с противоположным типом проводимости.
- Переходы металл-полупроводник формируются вакуумным напылением тонкой металлической плёнки на очищенную поверхность полупроводника.

4.2. ПРОИЗВОДСТВО

 На рисунке показано устройство планарно-эпитаксиального диода.
 Базу изготавливают путём наращивания на подложке 4 из низкоомного кремния тонкого слоя 3 высокоомного полупроводника, повторяющего структуры подложки.

- Этот слой, называемый эпитаксиальным, покрывают плотной защитной плёнкой 2 двуокиси кремния SiO2 толщиной до 1 мкм.
- В пленке протравливается окно, через которое путем диффузии бора или алюминия создается p-n-переход 1, вывод которого на поверхность защищен пленкой окисла.

4.2. ПРОИЗВОДСТВО

- На рисунке а приведена структура кремниевого р-п-перехода, полученного методом диффузии акцепторов в полупроводник п-типа через маску из плёнки двуокиси кремния. Распределение концентрации доноров N_Д − на рис. б и акцепторов N_A по вертикали − рис. в.
- $m{ iny N}_{
 m A}=N_{
 m Д},$ называется металлургической границей X_0 .

Эффективная концентрация примеси на ней равна нулю.

- * Выпрямительные диоды преобразуют переменный ток в пульсирующий.
- В связи с этим к емкости, быстродействию и стабильности параметров этих диодов не предъявляется жестких требований.
- Основой выпрямительного диода является несимметричный p-n переход с большой площадью поперечного сечения, которая необходима для получения большого прямого тока.
- Сопротивление базовой области у реальных диодов составляет единицы − десятки Ом.
- Работа выпрямительных диодов основана на вентильных свойствах перехода.

На рисунке представлены:

ВАХ Ge и Si диодов (a),

их УГО (б).

- **ж** В высоковольтных источниках питания применяют выпрямительные столбы и блоки.
- * Выпрямительные столбы представляют собой последовательное соединение выпрямительных диодов, находящихся в одном корпусе, чем достигается повышение допустимого обратного напряжения. Для повышения $I_{\Pi P}$ несколько диодов включают параллельно.
- Выпрямительные блоки это конструктивно завершенные устройства соединенных определенным образом выпрямительных диодов.

- По мощности, рассеиваемой p-n переходом, диоды бывают:
 - малой ($I_{\Pi P CP} \leq 0,3 A$),
 - средней (0,3 $< I_{\Pi P CP} \le 10 A$),
 - большой ($I_{\Pi P \ CP} > 10 \ A$) мощности.

- Сравнение характеристик германиевых и кремниевых диодов показывает:
- * 1. Значение обратного тока германиевых диодов на два-три порядка больше, чем у кремниевых, при одинаковой площади перехода. Это объясняется различной шириной запрещенной зоны.
- **х** 2. Допустимое обратное напряжение, за счет этого, у кремниевых диодов больше, чем у германиевых.
- З. Падение напряжения на кремниевых диодах больше, чем на германиевых при одинаковых токах нагрузки, что обусловлено большим сопротивлением базовой области кремниевых диодов.

- На характеристики диодов влияние оказывает температура окружающей среды.
- При увеличении температуры на 10° С $I_{\rm OBP}$ германиевых диодов удваивается, а у кремниевых возрастает в два с половиной раза.
- Абсолютная величина приращения Тобр у германиевых диодов с ростом температуры в несколько раз больше, чем у кремниевых, что приводит к увеличению мощности, потребляемой диодом, и уменьшению напряжения теплового пробоя.
- * У кремниевых диодов Іобр мало и мала вероятность теплового пробоя, в связи с чем вначале развивается электрический пробой, который при больших обратных напряжениях может перерасти в тепловой.

4.3. ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ - ПАРАМЕТРЫ

- 1. Средний выпрямленный ток I_{ПР СР} среднее за период значение выпрямленного тока, который может длительно протекать через диод при допустимом его нагреве (сотни мА – десятки А).
- * 2. Среднее прямое напряжение диода $U_{\Pi P CP}$ среднее значение прямого падения напряжения, определяемое при среднем выпрямленном токе, для германиевых $U_{\Pi P CP} < 1$ В, для кремниевых $U_{\Pi P CP} < 1$,5 В.
- * 3. Максимально допустимое обратное напряжение диода $U_{\rm OBP\ max}$ максимально допустимое обратное напряжение, которое длительно выдерживает диод без нарушения нормальной работы, $U_{\rm OBP\ max}$ на 20 % меньше напряжения пробоя $U_{\rm ПРОБ}$.

 $U_{\Pi POB} = 100 \dots 400 \text{ B}$ для Ge диодов;

 $U_{\Pi ext{POB}} = 1000 \dots 1500 ext{ B}$ для Si диодов.

4.3. ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ - ПАРАМЕТРЫ

- \star 4. *Максимальный обратный ток I_{\mathrm{OBP}\,max}* максимальное значение обратного тока диода при $U_{\mathrm{OBP}\,max}$.
- * 5. Средняя рассеиваемая мощность диода $P_{\rm CP}$ средняя за период мощность, рассеиваемая диодом при протекании $I_{\rm \Pi P \ CP}$ и $I_{\rm OBP}$ (сотни мВт десятки Вт).
- ★ 6. Диапазон рабочих температур: для германиевых диодов −60...+85 °C; для кремниевых диодов −60...+125 °C.

4.3. ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ - ПАРАМЕТРЫ

- Тарьерная емкость диода при подаче на него номинального обратного напряжения составляет десятки пФ.
- × 8. Диапазон рабочих частот.
- \star 9. Дифференциальное сопротивление диода $R_{\text{ДИФ}}$ сопротивление диода протекающему переменному току, которое вычисляется как отношение приращения напряжения на диоде к вызвавшему его малому приращению тока (единицы сотни Ом).

- Стабилитроны предназначены для стабилизации напряжения в электрических цепях.
- Принцип работы стабилитрона основан на явлении электрического пробоя р-п перехода при подаче на диод обратного напряжения.
- * В связи с этим на вольт-амперной характеристике имеется участок со слабой зависимостью напряжения от протекающего тока. На рисунке приведена ВАХ стабилитрона (a), УГО и схема включения (б).

Стабилитрон всегда включается параллельно нагрузке.

- В качестве исходного материала для изготовления стабилитронов используется кремний, имеющий большую ширину запрещенной зоны и соответственно малый обратный ток, в связи с чем вероятность возникновения теплового пробоя очень мала.
- Величина пробоя р-п перехода зависит от удельного сопротивления базы диода. Низковольтные стабилитроны изготавливаются из сильнолегированного материала, и у них более вероятен туннельный пробой. Высоковольтные стабилитроны изготавливаются из слаболегированного материала, и у них вероятен лавинный вид пробоя.
- * По величине допустимой мощности рассеивания P_{max} стабилитроны подразделяются на стабилитроны малой ($P_{max} < 0.3 \; \mathrm{Br}$), средней ($0.3 \; \mathrm{Br} < P_{max} < 5 \; \mathrm{Br}$) и большой ($P_{max} > 5 \; \mathrm{Br}$) мощности.

- Выпускаются следующие разновидности стабилитронов:
 - общего назначения,
 - прецизионные,
 - импульсные,
 - двухдиодные,
 - стабисторы.
- Стабилитроны общего назначения используются в схемах стабилизаторов источников питания, ограничителей, фиксаторов уровня напряжения. Прецизионные стабилитроны используются в качестве источников опорного напряжения с высокой степенью стабилизации и термокомпенсации.

- Импульсные стабилитроны используются для стабилизации постоянного и импульсного напряжения, а также ограничения амплитуды импульсов напряжения малой длительности.
- Двухдиодные стабилитроны работают в схемах стабилизации, ограничителях напряжения различной полярности, в качестве источников опорного напряжения.
- Стабисторы используются для стабилизации малых значений напряжения, причем рабочим является прямое смещение диода.

- * 1. Номинальное напряжение стабилизации $U_{\rm CT\ HOM}$ падение напряжения на стабилитроне в области стабилизации при номинальном значении тока $I_{\rm CT\ HOM}$ (единицы десятки В).
- 2. Минимальный ток стабилизации I_{CT min} минимальное значение тока, протекающего через стабилитрон при устойчивом пробое перехода (доли мА десятки мА).
- З. Максимальный ток стабилизации I_{CT max} максимально допустимый ток стабилизации, ограничиваемый допустимой мощностью рассеивания (единицы мА единицы А).

4. Номинальный ток стабилизации

$$I_{\text{CT HOM}} = \frac{I_{\text{CT }max} - I_{\text{CT }min}}{2}$$

* 5. Дифференциальное сопротивление – отношение приращения напряжения стабилизации к вызвавшему его приращению тока (единицы – десятки Ом). $R_{\text{ДИФ}} = \frac{d U_{\text{CT}}}{d U_{\text{CT}}}$

 $dI_{\rm CT}$

Чем меньше $R_{{
m ДИ\Phi}}$ – тем лучше стабилизация напряжения.

* 6. Статическое сопротивление стабилитрона в данной рабочей точке, характеризует омические потери в заданной рабочей точке $R_{\rm CT} = \frac{U_{\rm CT}}{I_{\rm CT}}$

- 7. Коэффициент качества стабилитрона
 - $Q = \frac{R_{\text{ДИФ}}}{R_{\text{СТ}}}$ определяет не только наклон ВАХ, но и отношение изменения напряжения стабилизации к напряжению стабилизации (Q = 0,01...0,05 и ниже).
- * 8. Температурный коэффициент напряжения стабилизации (ТКН) $\alpha_{\rm CT}$ отношение относительного изменения напряжения стабилизации $\Delta U_{\rm CT}/U_{\rm CT}$ при изменении температуры окружающей среды ΔT и постоянном токе стабилизации к изменению температуры, вызвавшему это изменение

$$\alpha_{\rm CT} = \frac{\Delta U_{\rm CT}}{U_{\rm CT}} \frac{1}{\Delta T} \ 100\%$$

- У низковольтных стабилитронов с ростом температуры вероятность туннельного переноса возрастает, а напряжение пробоя падает. Поэтому низковольтные стабилитроны имеют отрицательный ТКН. У слаболегированных р-п переходов с ростом температуры скорость носителей заряда уменьшается, поскольку уменьшается их подвижность. Поэтому, чтобы носителю сообщить необходимую скорость для ударной ионизации, необходимо увеличить напряженность электрического поля в обедненном слое.
- f x Таким образом, у высоковольтных стабилитронов $U_{\Pi POB}$ увеличивается с возрастанием температуры, и они имеют положительный ТКН.
- Для уменьшения ТКН последовательно со стабилитроном включают полупроводниковые диоды в прямом направлении или терморезисторы с ТКС противоположного знака.

- ★ Для уменьшения температурного коэффициента напряжения стабилизации используют прецизионные стабилитроны, у которых имеются три последовательно соединенных p-n перехода. Один из них – стабилизирующий и включен в обратном направлении, а два других – термокомпенсирующие и включены в прямом направлении.
- * Для стабилизации или ограничения коротких импульсов напряжения используют импульсные стабилитроны. Они должны обладать большим быстродействием, которое определяется временем перезарядки барьерной емкости.

- * Двуханодные стабилизаторы применяются в схемах стабилизации и двухстороннего ограничения напряжения, устройствах защиты элементов электрических цепей от перенапряжений обеих полярностей. Они имеют два р- n перехода, включенных встречно, а их внешние выводы сделаны от p-областей.
- * Стабисторами называют диоды, у которых для стабилизации напряжения используется прямая ветвь ВАХ. Особенностью стабисторов является малое напряжение стабилизации $U_{\rm CT} \approx (0,35 \dots 1,9)$ В, которое определяется прямым падением напряжения на диоде. Для увеличения напряжения стабилизации используют последовательное соединение нескольких стабисторов, смонтированных в одном корпусе или в одном кристалле.

- Импульсный полупроводниковый диод это диод, имеющий малую длительность переходных процессов и предназначенный для работы в импульсных режимах работы.
- Основное назначение импульсных диодов работа в качестве коммутирующих элементов электронных схем, детектирования высокочастотных сигналов и др.
- УГО импульсного диода идентично обозначению выпрямительного диода

- * Переходные процессы в диодах связаны в основном с двумя явлениями, происходящими при быстром изменении напряжения на диоде или тока через диод.
- Первое из них это накопление неосновных носителей заряда в базе при его прямом включении и их рассасывание при уменьшении напряжения.
- Второе явление это перезарядка барьерной ёмкости,
 что также влияет на свойства диода.

- При больших плотностях прямого тока переходные процессы определяются в основном накоплением неосновных носителей в базе, а перезарядка барьерной ёмкости является второстепенным процессом.
- При малых плотностях тока существенное влияние на переходные процессы оказывает перезарядка барьерной ёмкости. Напряжение и ток, характеризующие переходные процессы в диоде, зависят также от сопротивления внешней цепи, в которую включён диод.

 На рисунке приведена простейшая схема диодного ключа, работающего на активную нагрузку.

Сопротивление нагрузки обычно значительно больше прямого сопротивления диода и принято считать, что схема питается от генератора тока. При таком генераторе ток не зависит от сопротивления внешней по отношению к нему цепи, т.е. от сопротивления диода и нагрузки.

 В момент включения импульса прямого тока сопротивление базы диода определяется равновесной концентрацией носителей заряда, и на

диоде происходит максимальное падение напряжения $U_{\Pi P \ max}$.

- \star По мере увеличения инжектированных носителей в базе, сопротивление базы уменьшается, что приводит к уменьшению падения напряжения на диоде до установившегося значения $U_{\Pi P}$.
- \star Промежуток времени с момента подачи входного импульса до момента, когда напряжение на диоде уменьшится до 1,2Uпр, называется *временем установления* прямого сопротивления диода $t_{\rm YCT}$.
- \star При выключении прямого тока падение напряжения на сопротивлении базы становится равным нулю, и напряжение на диоде скачком уменьшается до значения $U_{\Pi P}$.
- Инжектированные носители рекомбинируют и напряжение на диоде уменьшается.

- При переключении диода с прямого напряжения на обратное в начальный момент через диод идёт большой обратный ток, создаваемый неосновными носителями в базе, накопленными вблизи p-n-перехода при прямом напряжении.
- Этот ток ограничивается в основном объёмным сопротивлением базы и нагрузки, поэтому некоторое время обратный ток остаётся постоянным (при идеальном генераторе напряжения). С течением времени накопленные в базе неосновные носители заряда рекомбинируют или уходят из базы через p-n-переход, после чего обратный ток уменьшается до своего стационарного значения.

4.4. ИМПУЛЬСНЫЕ ДИОДЫ

- Интервал времени от момента прохождения тока через нуль после переключения диода с прямого тока в состояние заданного обратного напряжения до момента достижения обратным током заданного значения называется временем восстановления обратного сопротивления t_{BOC}.
- Время установления прямого напряжения и время восстановления обратного сопротивления определяют быстродействие диода, поэтому их стремятся уменьшать.

4.4. ИМПУЛЬСНЫЕ ДИОДЫ

- Производство импульсных диодов основано на современных производительных и контролируемых методах формирования p-n-перехода с использованием планарной технологии, эпитаксиального наращивания, а также ионнолучевой технологии.
- Основными исходными материалами служат кремний и арсенид галлия.
- Для ускорения переходных процессов и увеличения быстродействия в исходный полупроводник вводят примесь, например золото, уменьшающую время жизни неосновных носителей.

4.4. ИМПУЛЬСНЫЕ ДИОДЫ - ПАРАМЕТРЫ

- * 1. Максимальное импульсное прямое падение напряжения $U_{\Pi P \ max}$ максимальное падение напряжения на диоде в прямом направлении при заданном прямом токе.
- 2. Время установления прямого сопротивления t_{уст} время от момента включения прямого тока диода до момента достижения заданного уровня прямого напряжения на диоде.
- st 3. Время восстановления обратного сопротивления t_{BOC} время с момента переключения диода с прямого на обратное импульсное напряжение до достижения обратным током заданного значения.
- 4. Емкость диода Сд емкость между выводами диода при заданном обратном напряжении.

4.4. ИМПУЛЬСНЫЕ ДИОДЫ - ПАРАМЕТРЫ

- ★ 5. Постоянный обратный ток I_{ОБР} ток диода при заданном обратном напряжении.
- \star 6. *Постоянное прямое напряжение* $U_{\Pi P}$ падение напряжения на диоде при заданном прямом токе.
- * 7. Заряд переключения Q избыточный заряд, вытекающий во внешнюю цепь при изменении направления тока с прямого на обратный.

4.4. ДИОДЫ С НАКОПЛЕНИЕМ ЗАРЯДА

- Разновидностью импульсных диодов являются диоды с накоплением заряда (ДНЗ) или диоды с резким восстановлением обратного тока (сопротивления).
- Импульс обратного тока имеет почти прямоугольную форму.
- \star При этом значение t_1 может быть значительным, но t_2 должно быть чрезвычайно малым.

4.4. ДИОДЫ С НАКОПЛЕНИЕМ ЗАРЯДА

- Получение малой длительности t2 связано с созданием внутреннего электрического поля в базе около обеднённого слоя p-n-перехода путём неравномерного распределения примесей.
- Это поле является тормозящим для неосновных носителей, пришедших при прямом напряжении, и поэтому препятствует уходу инжектированных носителей от границы обеднённого слоя, заставляя их накапливаться, концентрироваться вблизи границы.
- При подаче обратного напряжения на диод внутреннее поле будет способствовать дрейфу неосновных носителей и обеднению слоя p-n-перехода.

4.4. ДИОДЫ ШОТТКИ

- В качестве переключающих диодов используются диоды с барьером Шоттки (ДБШ), выполненные на основе контакта металл-полупроводник (МДП). В этих диодах процессы прямой проводимости определяются только основными носителями заряда. В них отсутствует диффузионная ёмкость, связанная с накоплением и рассасыванием носителей заряда в базе, чем определяются хорошие высокочастотные свойства.
- Вольт-амперная характеристика диодов Шоттки такая же, как и у обычных диодов, а обратные токи составляют сотни пА – десятки нА

4.4. ДИОДЫ ШОТТКИ

- х Диоды Шоттки обладают следующими преимуществами:
- Для получения того же тока требуется более низкое прямое напряжение.
- 2. Электропроводность создается только основными носителями (электронами). Отсутствует накопление неосновных носителей, и время восстановления диода при переключении напряжения с прямого на обратное очень мало.
- Недостатки:
- х 1. Ток утечки немного больше, чем у обычных диодов, использующих p−n переход.
- 2. Максимальное обратное напряжение ниже, чем у обычных кремниевых диодов.

4.4. P-I-N-ДИОДЫ

- Ж Широкое применение в качестве переключающих получили диоды с *p-i-n-структурой*, в которой сильнолегированные области p- и n-типа разделены достаточно широкой областью с проводимостью, близкой к собственной (i-область).
- i-область с низкой концентрацией примеси можно рассматривать как конденсатор, обкладками которого служат узкие (из-за большой концентрации носителей в р- и n-областях) слои зарядов доноров и акцепторов.

4.4. P-I-N-ДИОДЫ

- Барьерная ёмкость p-i-n-диода определяется размерами i-слоя и практически не зависит от приложенного постоянного напряжения.
- При прямом напряжении вследствие инжекции дырок и электронов прямое сопротивление мало, а при обратном – резко возрастает по сравнению с равновесным состоянием.
- Поэтому для p-i-n-диодов характерно очень большое отношение прямого и обратного сопротивлений, что важно при использовании их в переключающих режимах.

- х Варикапами называются полупроводниковые диоды, в которых используется зависимость барьерной ёмкости р-n-перехода от обратного напряжения. Электрический переход варикапов имеет структуру типа р+-n-n+, р-in, МДП и др.
- Варикапы применяют в устройствах управления частотой колебательного контура, в параметрических схемах усиления, деления и умножения частоты, в схемах частотной модуляции, управляемых фазовращателях и др.
- * Предпочтение отдаётся варикапам на основе барьерной ёмкости p-n-перехода.

- На рисунке представлена вольт-фарадная характеристика и одна из схем включения.
- При изменении напряжение смещения, подаваемого на варикап с помощью резистора R1, изменяется емкость диода.
- Изменение емкости варикапа приводит к изменению частоты колебательного контура при изменении емкости диода включается резистор R2.

На рисунке показана эквивалентная схема варикапа,

где $r_{\rm 6}$ – объемное сопротивление базы; $R_{\rm ofp}$ – учитывает дифференциальное сопротивление и сопротивление утечки перехода; $C_{\rm fap}$ – эквивалент барьерной емкости диода.

 На частотах до нескольких десятков МГц индуктивность выводов и емкость корпуса диода не учитываются из-за их малых значений.

 \star Анализ эквивалентной схемы варикапа в частотном диапазоне показывает на изменение сопротивления потерь, которые определяют добротность варикапа $Q_{\rm B}$

$$\times Q_{\rm B} = \frac{X_C}{R_{\Pi {\rm OT}}}$$

где $X_{\mathcal{C}}$ – реактивная составляющая сопротивления варикапа;

 $R_{\Pi O T}$ – сопротивление потерь.

* На высоких частотах $X_C = \frac{1}{\omega C_{\rm бар}} \ll R_{\rm обр}$, поэтому шунтирующим действием обратного сопротивления p-n перехода можно пренебречь.

4.5. ВАПРИКАПЫ - ПАРАМЕТРЫ

- \star 1. *Максимальная емкость* $C_{\rm B\,max}$ емкость варикапа при заданном минимальном $U_{\rm OBP}$ и ограничена значением емкости $C_{\rm O}$.
- floor 2. **Минимальная емкость** $C_{\rm B\,min}$ емкость варикапа при заданном максимальном $U_{\rm OBP}$ и ограничивается обратным допустимым напряжением p-n перехода $U_{\rm OBP}$ доп.
- × 3. Коэффициент перекрытия по емкости

$$K = \frac{C_{\rm B\,max}}{C_{\rm B\,min}}$$

К = единицы - десятки.

* 4. Сопротивление потерь $R_{\Pi O T}$ – суммарное активное сопротивление, включая сопротивление кристалла, контактных соединений и выводов.

4.5. ВАПРИКАПЫ - ПАРАМЕТРЫ

* 5. Температурный коэффициент емкости ТКЕ – представляет собой отношение относительного изменения емкости к вызвавшему его абсолютному изменению температуры окружающей среды. $\Delta C 1$

$$TKE = \frac{\Delta C}{C} \frac{1}{\Delta T}$$

- $m{ iny 6.}$ Номинальная емкость $C_{
 m B\; Hom}$ представляет собой барьерную емкость перехода при заданном номинальном $U_{
 m OBP}$.
- 7. Добротность варикапа $Q_{\rm B}$ отношение реактивного сопротивления варикапа на заданной частоте переменного сигнала к сопротивлению потерь при заданном значении емкости или обратного напряжения $Q_{\rm B} = \frac{X_{\rm C}}{R_{\rm HOT}}$.

 Туннельные диоды – это полупроводниковые приборы на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на прямой ветви вольт-амперной характеристики области с отрицательным дифференциальным

сопротивлением (характеристика N-образного типа).

 Туннельные диоды используются для усиления, генерирования и переключения сигналов.

- и эта многофункциональность прибора объясняется наличием на ВАХ участка с отрицательным сопротивлением.
- Для изготовления туннельных диодов используется полупроводниковый материал с очень большой концентрацией примесей (10¹⁸-10²⁰см⁻³) и следствием этого является:
- х 1. Малая толщина перехода (около 0,01 мкм), что на два порядка меньше, чем у обычных диодов.
- 2. Расщепление примесных энергетических уровней с образованием примесных энергетических зон, которые примыкают к зоне проводимости в n-области и к валентной зоне в p-области.
- Хровень Ферми располагается у электронного полупроводника в зоне проводимости, а у дырочного − в валентной зоне.

х Для простоты рассуждений обычно считают, что все разрешенные уровни, расположенные ниже уровня Ферми, заняты электронами, а расположенные выше него - свободны. На рисунке представлены вольт-амперная характеристика, энергетические диаграммы и условное обозначение туннельного диода.

В тонких р-п переходах вследствие большей напряженности электрического поля увеличивается вероятность туннельного прохождения электронов СКВОЗЬ ТОНКИЙ потенциальный барьер. В диоде при отсутствии внешнего напряжения происходит туннелирование электронов из n-области в р-область и обратно. Встречные потоки электронов равны, поэтому суммарный ток через диод равен нулю (рис. а).

х При небольшом прямом напряжении происходит смещение энергетических зон, так что часть энергетических уровней, занятых электронами проводимости п-области, нач напротив свободных уровней р-области. Это приводит к туннельному переносу электронов из n-области в р-область и протеканию прямого туннельного тока (рис. б).

С увеличением прямого напряжения туннельный ток достигает максимального значения, когда все заполненные энергетические уровни зоны проводимости п-области располагаются напротив свободных уровней р-области (рис. в).

Дальнейшее увеличение прямого напряжения приводит к тому, что часть заполненных энергетических уровней n-области начинает располагаться против запрещенной зоны р-области, и туннельный ток убывает (рис. г)

Когда зона проводимости п-области и валентная зона р-области перестанут перекрываться, туннельный ток прекращается (рис. д).

- Наряду с туннельным переходом электронов в переходе туннельного диода течет и обычный диффузионный ток.
- Таким образом ток туннельного диода имеет две составляющие: туннельную и диффузионную. При напряжениях на диоде, когда туннельная составляющая тока не протекает, туннельный диод представляет собой обычный диод, прямой ток которого определяется током диффузии (рис. ж).

- При обратном напряжении энергетические уровни р-области смещаются вверх, и верхние уровни валентной зоны оказываются расположены напротив разрешенных незаполненных уровней зоны проводимости п-области (рис. е). При этом электроны из валентной зоны р-области туннелируют в зону проводимости п-области.
- Обратный ток диода растет с увеличением обратного напряжения по абсолютному значению.

4.6. ОБРАЩЕННЫЕ ДИОДЫ

- Обращенные диоды выполняются на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном смещении значительно больше, чем при прямом напряжении.
- на рисунке изображены:
 - а) ВАХ обращенного диода;
 - б) УГО.

4.6. ОБРАЩЕННЫЕ ДИОДЫ

- При подаче обратного напряжения происходит туннельный перенос электронов из валентной зоны р-области на свободные уровни зоны проводимости п-области, и через диод протекает большой обратный ток.

4.6. ОБРАЩЕННЫЕ ДИОДЫ

- При прямом смещении диода, перекрытия зон не происходит и прямой ток определяется только диффузионным током.
- * Рабочим участком обращенного диода является обратная ветвь ВАХ, что отражено в его названии.
- Данный тип диодов используется в детекторах, смесителях СВЧ диапазона и переключающих устройствах.