TD8 - Énergie mécanique

Exercice 1 - Distance de freinage

- 1. Avec le TEC, on trouve $W = -0.14 \,\mathrm{MJ}$.
- **2.** W = -Fd, d'où F = 9.6 kN.
- 3. En supposant que la norme de la force est la même, avec le TEC, on trouve $d' \approx 30 \,\mathrm{m} = 2d$, ce qui cohérent puisque $70/50 = 1.4 \approx \sqrt{2}$.
- 4. Le TEC donne $\Delta \mathcal{E}_{c} = -Fd$, et $\mathcal{E}_{c} \propto v^{2}$. La distance de freinage est la distance nécessaire pour dissiper l'énergie cinétique de la voiture, or cette distance est proportionnelle à \mathcal{E}_{c} donc proportionnelle au carré de la vitesse.

Exercice 2 - Mouvement sur un cercle

- 1. On retrouve l'équation du pendule simple : $\ddot{\theta} + \frac{g}{R}\theta = 0$.
- 2. En utilisant la projection du PFD selon $\overrightarrow{e_r}$ et la conservation de l'énergie mécanique, on obtient le résultat demandé $N=m\left[\frac{v_0^2}{R}+g(3\cos\theta-2)\right]$.
- 3. N doit rester positive, ce qui donne $v_0 > v_{\min} = \sqrt{5gR}$.
- 4. L'angle pour lequel N=0 est $\theta=\arccos\left(\frac{2}{3}-\frac{v_0^2}{3gR}\right)$.

Exercice 3 - Masse doublement retenue

1.
$$\mathcal{E}_{p}(x) = \frac{1}{2}k_{1}(x-\ell_{0})^{2} + \frac{1}{2}k_{2}(d-x-\ell_{0})^{2}$$

- 2. $x_{\text{\'eq}} = \frac{k_2 d + (k_1 k_2) \ell_0}{k_1 + k_2}$. On retrouve bien $x_{\text{\'eq}} = d/2$ pour $k_1 = k_2$.
- 3. $\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{p}}}{\mathrm{d}c^2}(x_{\mathrm{\acute{e}q}}) = k_1 + k_2 > 0$: position d'équilibre stable.
- 4. $\ddot{x} + \frac{k_1 + k_2}{m}x = \frac{k_1 + k_2}{m}x_{\text{\'eq}}$.
- 5. $x(t) = x_{\text{éq}} + \frac{v_0}{\omega} \sin \omega t$, avec $\omega = \sqrt{\frac{k_1 + k_2}{m}}$.

Exercice 4 - Étude d'une force

Une particule de masse m astreinte à se déplacer sur un axe $(O, \overrightarrow{e_r})$ est soumise à la force :

$$\overrightarrow{F}(r) = \left(-kr + \frac{a}{r^2}\right) \overrightarrow{e_r},$$

où a et k sont des constantes positives.

- 1. Le terme -kr est analogue à une force de rappel élastique, qui ramène la masse vers O. Le terme $\frac{a}{r^2}$ est analogue à la force électrostatique entre deux particules de même charge. C'est une force répulsive, qui éloigne m de O.
- 2. La position $r_{\text{\'eq}}$ telle que la force est nulle est $r_{\text{\'eq}} = \left(\frac{a}{k}\right)^{\frac{1}{3}}$.
- 3. On peut écrire $\overrightarrow{F} = -\frac{\mathrm{d}\mathcal{E}_{\mathrm{p}}}{\mathrm{d}r}\overrightarrow{e_r}$, avec $\mathcal{E}_{\mathrm{p}}(r) = \frac{1}{2}kr^2 + \frac{a}{r}$.
- 4. On retrouve une unique position d'équilibre. Le système est forcément dans un état lié car il est piégé dans un puits de potentiel.

5. À l'aide d'un DL à l'ordre 2 avec la formule de Taylor-Young, appliquée au voisinage de $r_{\text{éq}}$, on retrouve l'équation différentielle d'un oscillateur harmonique analogue à un système masse ressort, avec un ressort de raideur $\frac{\mathrm{d}^2 \mathcal{E}_{\mathrm{p}}}{\mathrm{d}r^2}(r_{\text{éq}}) = 3k$, d'où $T = 2\pi \sqrt{\frac{m}{3k}}$.

♣ python Exercice 5 – Profil d'énergie potentielle

1. On a une position d'équilibre stable en x=0 et deux positions d'équilibre instable en $x\approx \pm 1\,\mathrm{m}.$

Une telle vitesse n'existe pas : puisqu'il n'y a pas de frottements, \mathcal{E}_m est conservée. Si le système peut franchir l'un des maximums d'énergie potentielle, il franchira nécessairement le deuxième : il est alors dans un état libre.

- 2. La profondeur du puits est $\mathcal{E}_0 \approx 0.7 \,\mathrm{J}$, ce qui correspond à $v_1 = \sqrt{\frac{2\mathcal{E}_0}{m}} \approx 1.7 \,\mathrm{m \cdot s^{-1}}$. Pour $\mathcal{E}_{\mathrm{m}} = 0.3 \,\mathrm{J}$, l'amplitude des oscillations est $\approx 0.7 \,\mathrm{m}$.
- 3. En $x = -5 \,\mathrm{m}$, $\mathcal{E}_{\mathrm{p}} \approx 0$, donc $v_2 = \sqrt{\frac{2\mathcal{E}_{\mathrm{m}}}{m}} \approx 1.1 \,\mathrm{m \cdot s^{-1}}$. Graphiquement, on lit $x_2 \approx -1.5 \,\mathrm{m}$.
- 4. Pour passer de $x = -\infty$ à $x = +\infty$, il lui faut une énergie mécanique supérieure à $\sim 0.45 \,\mathrm{J}$, ce qui correspond à $v_3 \approx 1.3 \,\mathrm{m \cdot s^{-1}}$. Au fond du puits, on a $v_4 = v_1$: avec une vitesse initiale v_3 , le système arrive au maximum d'énergie potentielle avec une vitesse nulle.