

Basics on Computer Vision

Jikai Wang

Geometric Primitives

Geometry in Image Generation

2D Points and 3D Points

A 2D point is usually used to indicate pixel coordinates of a pixel

$$\mathbf{x} = (x, y) \in \mathcal{R}^2$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

A 3D point in the real world

$$\mathbf{x} = (x, y, z) \in \mathcal{R}^3$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

Homogeneous Coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array}
ight]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad (x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad = w \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix}$$

homogeneous scene coordinates

Up to scale

Conversion

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

2D Transformation

2D Transformations

2D Translation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
 2×3

Homogeneous coordinate

$$\mathbf{ar{x}}' = egin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \mathbf{ar{x}}$$

augmented vector $\bar{\mathbf{x}} = (x, y, 1)$

2D Rotation

$$\mathbf{x}' = \mathbf{R}\mathbf{x}$$

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$[\hat{\mathbf{x}}_{b} \ \hat{\mathbf{y}}_{b}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

orthonormal rotation matrix

$$\mathbf{R}\mathbf{R}^T = \mathbf{I}$$
 and $|\mathbf{R}| = 1$

2D Euclidean Transformation

2D Rotation + 2D translation

$$\mathbf{x'} = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

$$\begin{bmatrix} x' \ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} \qquad \qquad \begin{aligned} x' &= x \cos \theta - y \sin \theta \ y' &= x \sin \theta + y \cos \theta \end{aligned}$$

2D Euclidean Transformation

2D Rotation + 2D translation

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{\bar{x}}$$
$$2 \times 3$$

$$\bar{\mathbf{x}} = (x, y, 1)$$

- Degree of freedom (DOF)
 - The maximum number of logically independent values
 - 2D Rotation?
 - 2D Euclidean transformation?

2D Similarity Transformation

Scaled 2D rotation + 2D translation

$$\mathbf{x'} = s\mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\mathbf{R} = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$

$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \end{bmatrix} \bar{\mathbf{x}} \qquad \bar{\mathbf{x}} = (x, y, 1)$$

The similarity transform preserves angles between lines.

2D Affine Transformation

Arbitrary 2x3 matrix

$$\mathbf{x}' = \mathbf{A}\bar{\mathbf{x}}$$

$$\bar{\mathbf{x}} = (x, y, 1)$$

$$\mathbf{x'} = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \mathbf{\bar{x}}$$

Parallel lines remain parallel under affine transformations.

2D Projective Transformation

Also called perspective transform or homography

$$\mathbf{ ilde{x}}' = \mathbf{ ilde{H}}\mathbf{ ilde{x}}$$
 homogeneous coordinates $3 imes 3$ $\mathbf{ ilde{H}}$ is only defined up to a scale

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}} \quad \text{and} \quad y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

Perspective transformations preserve straight lines.

Hierarchy of 2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$egin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$egin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	3	lengths	
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{2\times 3}$	4	angles	
affine	$\left[\mathbf{A} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{3 imes 3}$	8	straight lines	

3D Transformation

3D Translation

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}}$$

$$3 \times 4$$

augmented vector $\bar{\mathbf{x}} = (x, y, z, 1)$

3D Rotation Representations

Rotation matrix

- Axis-angle
- Unit quaternion

$$R_{3\times3} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

$$\omega = \theta \hat{n}$$

$$q = w + xi + yj + zk$$

3D Euclidean Transformation SE(3)

3D Rotation + 3D translation

$$x' = Rx + t$$

$$x' = [R|t]\bar{x}$$

$$3 \times 4$$

$$\bar{x} = (x, y, z, 1)$$

3D Similarity Transformation

Scaled 3D rotation + 3D translation

$$\mathbf{x}' = s\mathbf{R}\mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix} \bar{\mathbf{x}} \qquad \bar{\mathbf{x}} = (x, y, z, 1)$$
 3×4

This transformation preserves angles between lines and planes.

3D Affine Transformation

$$\mathbf{x'} = \mathbf{A}\bar{\mathbf{x}}$$
 $\bar{\mathbf{x}} = (x, y, z, 1)$

$$\mathbf{x}' = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \end{bmatrix} \bar{\mathbf{x}}$$

$$\begin{bmatrix} a_{20} & a_{21} & a_{22} & a_{23} \end{bmatrix}$$

 3×4

Parallel lines and planes remain parallel under affine transformations.

3D Projective Tranformation

Also called 3D perspective transform or homography

$$\mathbf{ ilde{x}}' = \mathbf{ ilde{H}}\mathbf{ ilde{x}}$$
 homogeneous coordinates $4 imes4$ $\mathbf{ ilde{H}}$ is only defined up to a scale

Perspective transformations preserve straight lines.

3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$egin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$egin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	6	lengths	
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{3\times4}$	7	angles	
affine	$\left[\mathbf{A} ight]_{3 imes4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes4}$	15	straight lines	

Perspective Camera Model

Perspective Camera Model

Camera intrinsics

$$K = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix}$$

Camera extrinsics

$$\mathbf{X}_{\mathrm{cam}} = R\mathbf{X} + \mathbf{t}$$

camera coordinates

world coordinates

Camera Projection Matrix

$$P = K[R|\mathbf{t}]$$

World space point to image plane pixel

$$\mathbf{x} = P\mathbf{X}$$

Camera space point to image plane pixel

$$\mathbf{x} = K[I|\mathbf{0}]\mathbf{X}_{cam}$$

Back-projection to a 3D Point in Camera Coordinates

$$K = egin{bmatrix} f_x & 0 & c_x \ 0 & f_y & c_y \ 0 & 0 & 1 \end{bmatrix}$$

$$K^{-1} = egin{bmatrix} 1/f_x & 0 & -c_x/f_x \ 0 & 1/f_y & -c_y/f_y \ 0 & 0 & 1 \end{bmatrix}$$

$$egin{bmatrix} x \ y \ z \end{bmatrix} = K^{-1} \cdot egin{bmatrix} u \ v \ 1 \end{bmatrix} \cdot z$$

$$egin{bmatrix} x \ y \ z \end{bmatrix} = egin{bmatrix} (u-c_x) \cdot rac{z}{f_x} \ (v-c_y) \cdot rac{z}{f_y} \ z \end{bmatrix}$$

Thank You!