Sorting in Linear Time

Prepared by Suk Jin Lee

- Insertion sort:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - $O(n^2)$ worst case
 - $O(n^2)$ average (equally-likely inputs) case
 - $O(n^2)$ reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - Linear-time merge step
 - O(*n* lg *n*) worst case
 - Doesn't sort in place

- Heapsort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children's keys
 - O(*n* lg *n*) worst case
 - Sorts in place
 - Fair amount of shuffling memory around

- Quicksort:
 - Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - All of first subarray < all of second subarray
 - No merge step needed!
 - O(*n* lg *n*) average case
 - Fast in practice
 - $O(n^2)$ worst case
 - Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort

How Fast Can We Sort?

- We will provide a lower bound, then beat it by playing a different game
 - How do you suppose we'll beat it?
- First, an observation: all of the sorting algorithms so far are *comparison sorts*
 - The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
 - All sorts seen so far are comparison sorts: insertion sort, selection sort, merge sort, quicksort, heapsort

Decision Trees

- Decision trees provides an abstraction of comparison sorts
 - A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
 - What do each internal node represent?
 - What do the leaves represent?
 - How many leaves must there be?

Decision Trees

Decision tree for insertion sort operating on three elements

Each leaf must be reachable from the root by a downward path

Decision Trees

- Decision trees can model comparison sorts.
 For a given algorithm:
 - One tree for each n
 - Tree paths are all possible execution traces
 - What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
 - Answer: $\Omega(n \lg n)$

- **Theorem**. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- What's the minimum # of leaves?
- What's the maximum # of leaves of a binary tree of height h?

- **Theorem**. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- What's the minimum # of leaves?
 - Answer: *n*!
- What's the maximum # of leaves of a binary tree of height h?

- **Theorem**. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- What's the minimum # of leaves?
 - Answer: *n*!
- What's the maximum # of leaves of a binary tree of height h?
 - Answer: 2^h
- Clearly the minimum # of leaves is less than or equal to the maximum # of leaves

- **Theorem**. Any decision tree to sort n elements requires $\Omega(n \lg n)$ comparisons in the worst case
- *Proof.* The tree must contain $\geq n!$ leaves, since there are n! possible permutations. A height-h binary tree has no more than 2^h leaves. Thus, $n! \leq 2^h$

```
∴ h \ge \lg (n!) (lg is mono. Increasing)

\ge \lg((n/e)^n) (Stirling's approximation)

= n \lg n - n \lg e

= \Omega (n \lg n) \square
```

Thus the minimum height of a decision tree is $\Omega(n \lg n)$

• Thus the time to comparison sort n elements is $\Omega(n \lg n)$

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- **Corollary**. Heapsort and merge sort are asymptotically optimal comparison sorts.
- *Proof.* The O(n lg n) upper bounds on the running times for heapsort and merge sort match the $\Omega(n \log n)$ worst-case lower bound from Theorem
- How can we do better than $\Omega(n \lg n)$?

Counting Sort

Prepared by Suk Jin Lee

Sorting in linear time

- Counting sort:
 - No comparisons between elements
 - Input: A[1 ... n], where $A[j] \in \{1, 2, ..., k\}$
 - Output: *B*[1 . . *n*], sorted
 - Auxiliary storage: C[1 ... k]

Counting Sort

- COUNTING-SORT(A, B, k)
 - 1. Let C[0...k] be a new array
 - **2. for** i = 0 to k
 - 3. $C[i] \leftarrow 0$
 - **4. for** j = 1 to A.length
 - 5. $C[A[j]] \leftarrow C[A[j]] + 1$
 - 6. // *C*[*i*] now contains the number of elements equal to *i*
 - **7. for** i = 1 to k
 - 8. $C[i] \leftarrow C[i] + C[i-1]$
 - 9. //C[i] now contains the number of elements less than or equal to i
 - 10. for j = A.length downto 1
 - 11. $B[C[A[j]]] \leftarrow A[j]$ // C[A[j]] is the correct final position of A[j]
 - 12. $C[A[j]] \leftarrow C[A[j]] 1$

Counting Sort

- COUNTING-SORT(A, B, k)
 - 1. Let C[0...k] be a new array

```
\mathbf{2.} \quad \mathbf{for} \ i = 0 \ \mathbf{to} \ k
```

3. $C[i] \leftarrow 0$

4. **for**
$$j = 1$$
 to A.length $\Theta(n)$

- 5. $C[A[j]] \leftarrow C[A[j]] + 1$
- 6. //C[i] now contains the number of elements equal to i

```
7. for i = 1 to k
```

- 8. $C[i] \leftarrow C[i] + C[i-1]$
- 9. //C[i] now contains the number of elements less than or equal to i

10. for
$$j = A.length$$
 downto 1 $\Theta(n)$

- 11. $B[C[A[j]]] \leftarrow A[j]$ // C[A[j]] is the correct final position of A[j]
- 12. $C[A[j]] \leftarrow C[A[j]] 1$

	1	2	3	4	5	6	7	8
<i>A</i> :	2	5	3	0	2	3	0	3

• Loop 1

	1	2	3	4	5	6	7	8
A:	2	5	3	0	2	3	0	3

i:	0	1	2	3	4	5
<i>C</i> :	0	0	0	0	0	0

$$\mathbf{for}\ i = 0 \text{ to } k$$
$$C[i] \leftarrow 0$$

• Loop 2

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

• Loop 2

$$j$$
: 1 2 3 4 5 6 7 8 i : 0 A: 2 5 3 0 2 3 0 3 C : 0

$$\mathbf{for} j = 1 \text{ to } A.length$$

$$C[A[j]] \leftarrow C[A[j]] + 1$$

• Loop 2

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

• Loop 2

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

• Loop 2

$$j$$
: 1 2 3 4 5 6 7 8 i : A: 2 5 3 0 2 3 0 3 C :

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

• Loop 2

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

• Loop 2

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

• Loop 2

$$j$$
: 1 2 3 4 5 6 7 8

A: 2 5 3 0 2 3 0 3

for
$$j = 1$$
 to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$

Loop 3

for
$$i = 1$$
 to k

$$C[i] \leftarrow C[i] + C[i-1]$$

Loop 3

for
$$i = 1$$
 to k
 $C[i] \leftarrow C[i] + C[i-1]$

Loop 3

for
$$i = 1$$
 to k

$$C[i] \leftarrow C[i] + C[i-1]$$

Loop 3

for
$$i = 1$$
 to k

$$C[i] \leftarrow C[i] + C[i-1]$$

Loop 3

for
$$i = 1$$
 to k

$$C[i] \leftarrow C[i] + C[i-1]$$

Loop 4

for j = A.length **downto** 1

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Loop 4

for j = A.length **downto** 1

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

• Loop 4
$$A[j]$$
 j : 1 2 3 4 5 6 7 8 i : 0 1 2 3 4 5
 A : 2 5 3 0 2 3 0 3 C : 2 0 2 3 0 1

1 2 3 4 5 6 7 8 i : 0 1 2 3 4 5
 B : 0 0 2 3 3 3 5 C : 0 2 3 4 7 7
 $C[A[j]]$

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

• Loop 4

j: 1 2 3 4 5 6 7 8

A: 2 5 3 0 2 3 0 3

C: 2 0 2 3 0 1

1 2 3 4 5 6 7 8

B: 0 0 2 2 3 3 3 5

C: 0 2 2 4 7 7

C[A[j]]

$$B[C[A[j]]] \leftarrow A[j]$$
 // $C[A[j]]$ is the correct final position of $A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

• Counting-Sort(A, B, k)

for
$$i = 0$$
 to k
 $C[i] \leftarrow 0$
for $j = 1$ to $A.length$
 $C[A[j]] \leftarrow C[A[j]] + 1$
 $\Theta(n)$

for
$$i = 1$$
 to k $\Theta(k)$
 $C[i] \leftarrow C[i] + C[i-1]$

for
$$j = A$$
.length downto 1 $\Theta(n)$
 $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$
 $\Theta(n + k)$

Running time

- If k = O(n), then counting sort takes $\Theta(n)$ time.
 - Counting sort beats the lower bound of $\Theta(n \lg n)$ comparison sort
 - Counting sort is not a comparison sort
- Stable sorting
 - Counting sort is a *stable* sort: it preserves the input order among equal elements.

Counting Sort

- Cool!
- Why don't we always use counting sort?
 - Because it depends on range *k* of elements
- Could we use counting sort to sort 32 bit integers?
 Why or why not?
 - Answer: no, k too large ($2^{3^2} = 4,294,967,296$)

```
j: 1 2 3 4 5 6 7 8 9 10 11
A: 6 0 2 0 1 3 4 6 1 3 2
```

j:	1	2	3	4	5	6	7	8	9	10	11	i:
<i>A</i> :	6	0	2	0	1	3	4	6	1	3	2	C

i:	0	1	2	3	4	5	6
<i>C</i> :	2	2	2	2	1	0	2

i:	0	1	2	3	4	5	6
<i>C</i> :	2	2	2	2	1	0	2

i:	0	1	2	3	4	5	6
<i>C</i> :	2	2	2	2	1	0	2

				4							
<i>B</i> :	0	0	1	1	2	2	3	3	4	6	6