Paper Presentation

Adversarial training methods for semi-supervised text classification

Baodi Shan Nov 12, 2019

Something Embarrassing

1

Table of Contents

- 1. Introduction
- 2. Models
- 3. Adversarial & Virtual Adversarial Trianing
- 4. Experiment and Conclusion

Introduction

Last Week

· Have admiration for him

•

•

Last Week

- · Have admiration for him
- Confused

,

Last Week

- · Have admiration for him
- Confused
- In Despair

Story About Adversarial training

Figure 1: Dog

· Why?

Figure 2: What?

Story About Adversarial training

Figure 3: Dog

perturbations

Figure 4: Noise

Figure 5: What?

NonLinear

Linear Behavior

- The precision of an individual input feature is limited
- Example: 8 bits per pixel & 1/255 of the dynamic range
- for the classifier to respond differently to an input x than to an adversarial input $\widetilde{x}=x+\eta$ if every element of the perturbation η is smaller than the precision of the features

Models

Models

(a) LSTM-based text classification model.

(b) The model with perturbed embeddings.

Adversarial & Virtual Adversarial Trianing

Symbols

Table 1: explanation of symbols

symbol	explanation of symbols
X	input vector
1	input dimension
У	labels
Q	space of labels
$p(y x,\theta)$	input probability distributions
D_l	data with label
$D_u l$	data without label
	• • •

Adversarial Training

· loss function:

$$\begin{aligned} L_{adv} &:= D[q(y|x_l), p(y|x_l + r_{adv}, \theta)] \\ where & r_{adv} := arg & max_{r:\|r\| \leqslant \epsilon} D[q(y|x_l), p(y|x_l + r, \theta)] \end{aligned}$$

solution:

$$r_{adv} \approx \epsilon \frac{g}{\|g\|^2}$$
, where $g = \nabla_{x_l} D[h(y; y_l), p(y|x_l, \theta)]$

• or:

$$r_{adv} \approx \epsilon \text{sign}(g)$$

D? KL

- Kullback–Leibler divergence
- How one probability distribution is different from a second.

Kullback–Leibler divergence

Kullback–Leibler divergence

Adversarial Training

· loss function:

$$\begin{aligned} L_{adv} &:= D[q(y|x_l), p(y|x_l + r_{adv}, \theta)] \\ where & r_{adv} := arg \quad max_{r:||r|| \leqslant \epsilon} D[q(y|x_l), p(y|x_l + r, \theta)] \end{aligned}$$

solution:

$$r_{adv} \approx \epsilon \frac{g}{\|g\|^2}$$
, where $g = \nabla_{x_l} D[h(y; y_l), p(y|x_l, \theta)]$

• or:

$$r_{adv} \approx \epsilon \text{sign}(g)$$

target function:

$$L_{qadv} := D[q(y|x_*), p(y|x_* + r_{qadv}, \theta)]$$
 where $r_{qadv} := arg \quad max_{r:||r|| \leqslant \epsilon} D[q(y|x_*), p(y|x_* + r, \theta)]$

LDS and Regularization:

$$LDS(x_*,\theta): D[q(y|x_*,\widehat{\theta}),p(y|x_*+r_{qadv},\theta)]$$
 where
$$r_{qadv}:=arg \quad max_{r:||r||\leqslant\epsilon}D[q(y|x_*),p(y|x_*+r,\theta)]$$

17

loss function

$$R_{vadv}(D_l, D_{ul}, \theta) := \frac{1}{N_l + N_{ul}} \sum_{X_* \in D_L, D_{ul}} LDS(X_*, \theta)$$
$$loss = l(D_l, \theta) + \alpha R_{vadv}(D_l, D_{ul}, \theta)$$

Algorithm

Algorithm 1: Mini-batch SGD for $\nabla_{\theta}R_{vadv}(\theta)|_{\theta}=\widehat{\theta}$, with a one-time power iteration method

- (1) Choose M samples of $x^{(i)}$ ($i = 1, \dots, M$) from dataset D at random.
- (2) Generate a random unit vector $d^{(i)}$ in R^{I} using an iid Gaussian distribution.
- (3) Calculate r_{vadv} via taking the gradient of D with respect to r on $r = \xi d^{(i)}$ on each input data point $x^{(i)}$:

$$g^{(i)} \leftarrow \nabla_r D[p(y|x^{(i)}, \widehat{\theta}), p(y|x^{(i)} + r, \widehat{\theta})]|_{r = \xi d^{(i)}}$$

$$r_{vadv}^{(i)} \leftarrow g^{(i)} / ||g^{(i)}||_2$$

$$(4) \text{Return } \nabla_{\theta} (\frac{1}{M} \sum_{i=1}^{M} D[p(y|x^{(i)}, \widehat{\theta}), p(y|x^{(i)} + r, \widehat{\theta})])$$

19

Dataset

	Classes	Train	Test	Unlabeled	Avg. T	$\operatorname{Max} T$
IMDB	2	25,000	25,000	50,000	239	2,506
Elec	2	24,792	24,897	197,025	110	5,123
Rotten Tomatoes	2	9596	1066	7,911,684	20	54
DBpedia	14	560,000	70,000	_	49	953
RCV1	55	15,564	49,838	668,640	153	9,852

No Overfit

Result to IMDB

Method	Test error rate	
Baseline (without embedding normalization)	7.33%	
Baseline	7.39%	
Random perturbation with labeled examples	7.20%	
Random perturbation with labeled and unlabeled examples	6.78%	
Adversarial	6.21%	
Virtual Adversarial	5.91%	
Adversarial + Virtual Adversarial	6.09%	
Virtual Adversarial (on bidirectional LSTM)	5.91%	
Adversarial + Virtual Adversarial (on bidirectional LSTM)	6.02%	
Full+Unlabeled+BoW (Maas et al., 2011)	11.11%	
Transductive SVM (Johnson & Zhang, 2015b)	9.99%	
NBSVM-bigrams (Wang & Manning, 2012)	8.78%	
Paragraph Vectors (Le & Mikolov, 2014)	7.42%	
SA-LSTM (Dai & Le, 2015)	7.24%	
One-hot bi-LSTM* (Johnson & Zhang, 2016b)	5.94%	

Good or Bad?

	'good'				'bad'			
	Baseline	Random	Adversarial	Virtual Adversarial	Baseline	Random	Adversarial	Virtual Adversarial
1	great	great	decent	decent	terrible	terrible	terrible	terrible
2	decent	decent	great	great	awful	awful	awful	awful
3	\times bad	excellent	nice	nice	horrible	horrible	horrible	horrible
4	excellent	nice	fine	fine	×good	×good	poor	poor
5	Good	Good	entertaining	entertaining	Bad	poor	BAD	BAD
6	fine	\times bad	interesting	interesting	BAD	BAD	stupid	stupid
7	nice	fine	Good	Good	poor	Bad	Bad	Bad
8	interesting	interesting	excellent	cool	stupid	stupid	laughable	laughable
9	solid	entertaining	solid	enjoyable	Horrible	Horrible	lame	lame
10	entertaining	solid	cool	excellent	horrendous	horrendous	Horrible	Horrible

Results on Elec and RCV1

Method		Test error rate	
	Elec	RCV1	
Baseline	6.24%	7.40%	
Adversarial	5.61%	7.12%	
Virtual Adversarial	5.54%	7.05%	
Adversarial + Virtual Adversarial	5.40%	6.97%	
Virtual Adversarial (on bidirectional LSTM)	5.55%	6.71%	
Adversarial + Virtual Adversarial (on bidirectional LSTM)	5.45%	6.68%	
Transductive SVM (Johnson & Zhang, 2015b)	16.41%	10.77%	
NBLM (Naive Bayes logisitic regression model) (Johnson & Zhang, 2015a)	8.11%	13.97%	
One-hot CNN* (Johnson & Zhang, 2015b)	6.27%	7.71%	
One-hot CNN [†] (Johnson & Zhang, 2016b)	5.87%	7.15%	
One-hot bi-LSTM [†] (Johnson & Zhang, 2016b)	5.55%	8.52%	

 * indicates using pretrained embeddings of CNN, and † indicates using pretrained embeddings of CNN and bidirectional LSTM

Thanks to **LTEX** and mtheme

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

OpenSource

Get the source code of this slide from

github.com/lwshanbd/bigdata_slide

