6.1

1. The equivalent transfer function of three parallel

$$G_1(s) = \frac{1}{s+1}$$
 , $G_2(s) = \frac{1}{s+4}$ and $G_3(s) = \frac{s+3}{s+5}$ is

(A)
$$\frac{(s^3 + 10s^2 + 34s + 37)}{(s+1)(s+4)(s+5)}$$
 (B) $\frac{(s+3)}{(s+1)(s+4)(s+5)}$

(B)
$$\frac{(s+3)}{(s+1)(s+4)(s+5)}$$

(C)
$$\frac{-(s^3 + 10s^2 + 34s + 37)}{(s+1)(s+4)(s+5)}$$
 (D) $\frac{-(s+3)}{(s+1)(s+4)(s+5)}$

(D)
$$\frac{-(s+3)}{(s+1)(s+4)(s+5)}$$

2. The block having transfer function

$$G_1(s) = \frac{1}{s+2}$$
 , $G_2(s) = \frac{1}{s+5}$, $G_3(s) = \frac{s+1}{s+3}$

are cascaded. The equivalent transfer function is

(A)
$$\frac{(s^3 + 10s^2 + 37s^2 + 31)}{(s+2)(s+3)(s+5)}$$
 (B)
$$\frac{s+1}{(s+2)(s+3)(s+5)}$$

(B)
$$\frac{s+1}{(s+2)(s+3)(s+5)}$$

(C)
$$\frac{-(s^3 + 10s^2 + 37s^2 + 31)}{(s+2)(s+3)(s+5)}$$
 (D)
$$\frac{-(s+1)}{(s+2)(s+3)(s+5)}$$

(D)
$$\frac{-(s+1)}{(s+2)(s+3)(s+5)}$$

3. For a negative feedback system shown in fig. P.6.1.3

$$G(s) = \frac{s+1}{s(s+2)}$$
 and $H(s) = \frac{s+3}{s+4}$

Fig. P.6.1.3

The equivalent transfer function is

(A)
$$\frac{s(s+2)(s+3)}{s^3 + 7s^2 + 12s + 3}$$

(B)
$$\frac{s(s+2)(s+3)}{s^3+5s^2+4s-3}$$

(C)
$$\frac{(s+1)(s+4)}{s^3+7s^2+12s+3}$$

(D)
$$\frac{(s+1)(s+4)}{s^3+5s^2+4s-3}$$

4. A feedback control system is shown in fig. P.6.1.4. The transfer function for this system is

(A)
$$\frac{G_1G_2}{1 + H_1G_1G_2G_3}$$

(B)
$$\frac{G_2G_3}{G_1(1+H_1G_2G_3)}$$

(C)
$$\frac{G_2G_3}{1 + H_1G_1G_2G_3}$$

(D)
$$\frac{G_2G_3}{G_1(1+H_1G_2G_3)}$$

5. Consider the system shown in fig. P.6.1.5.

The input output relationship of this system is

6. A feedback control system shown in fig. P.6.1.6 is subjected to noise N(s).

The noise transfer function $\frac{C_N(s)}{N(s)}$ is

(A)
$$\frac{G_1G_2}{1 + G_1G_2H}$$

(B)
$$\frac{G_2}{1 + G_1 H}$$

(C)
$$\frac{G_2}{1+G_2H}$$

(D) None of the above

7. A system is shown in fig. P6.1.7. The transfer function for this system is

Fig. P.6.1.7

$${\rm (A)}\; \frac{G_{1}G_{2}}{1+G_{1}G_{1}H_{2}+G_{2}H_{1}}$$

(B)
$$\frac{G_1G_2}{1+G_1G_2+H_1H_2}$$

$$\text{(C)} \; \frac{G_1 G_2}{1 - G_1 H_1 - G_2 H_2 + G_1 G_2 H_1 H_2}$$

$$\text{(D)} \; \frac{G_{1}G_{2}}{1+G_{1}H_{1}+G_{2}H_{2}+G_{1}G_{2}H_{1}H_{2}}$$

8. The closed loop gain of the system shown in fig. P6.1.8 is

Fig.P6.1.8

(A) -2

(B) 6

(C) -6

(D) 2

9. The block diagrams shown in fig. P.6.1.9 are equivalent if G is equal to

(A) s + 1

(B) 2

(C) s + 2

(D) 1

10. Consider the systems shown in fig. P.6.1.10. If the forward path gain is reduced by 10% in each system, then the variation in C_1 and C_2 will be respectively

- (A) 10% and 1%
- (B) 2% and 10%
- (C) 10% and 0%
- (D) 5% and 1%

11. The transfer function $\frac{C}{R}$ of the system shown in the fig. P.6.1.11 is

Fig. P.6.1.11

- (A) $\frac{G_1H_2}{H_1(1+G_1G_2H_2)}$
- (B) $\frac{G_1G_2H_2}{H_1(1+G_1G_2H_2)}$
- ${\rm (C)}~\frac{G_2G_1}{1+H_1H_2G_1G_2}$
- (D) $\frac{G_1G_2}{H_1(1+G_1G_2H_2)}$

12. In the signal flow graph shown in fig. P6.1.12 the sum of loop gain of non-touching loops is

Fig. P.6.1.12

- (A) $t_{32}t_{23} + t_{44}$
- (B) $t_{23}t_{32} + t_{34}t_{43}$
- (C) $t_{24}t_{43}t_{32} + t_{44}$
- (D) $t_{23}t_{32} + t_{34}t_{43} + t_{44}$

13. For the SFG shown in fig. P.6.1.14 the graph determinant Δ is

Fig. P.6.1.13

- (A) 1 bc fg bcfg + cigj
- (B) 1 bc fg cigj + bcfg

- (C) 1 + bc + fg + cig j bcfg
- (D) 1 + bc + fg + bcfg cigj
- **14.** The sum of the gains of the feedback paths in the signal flow graph shown in fig. P.6.1.13 is

- (A) af + be + cd
- (B) af + be + cd + abef + bcde
- (C) af + be + cd + abef + abcdef
- (D) af + be + cd + cbef + bcde + abcdef
- **15.** A closed-loop system is shown in fig. P.6.1.15. The noise transfer function $C_n(s)/N(s)$ is approximately

Fig. P.6.1.15

- (A) $\frac{1}{G_1(s)H_1(s)}$ For $|G_1(s)H_1(s)H_2(s)| << 1$
- (B) $\frac{1}{-H_1(s)}$ For $|G_1(s)H_1(s)H_2(s)| >> 1$
- (C) $\frac{1}{H_1(s)H_2(s)}$ For $\left|G_1(s)H_1(s)H_2(s)\right|>>1$
- (D) $\frac{1}{G_1(s)H_1(s)H_2(s)} \text{ For } \left|G_1(s)H_1(s)H_2(s)\right| << 1$
- **16.** The overall transfer function $\frac{C}{R}$ of the system shown in fig. P.6.1.16 will be

(A) G

- (B) $\frac{G}{1+H_2}$
- (C) $\frac{G}{(1+H_1)(1+H_2)}$
- (D) $\frac{G}{1 + H_1 + H_2}$
- 17. Consider the signal flow graphs shown in fig. P6.1.17. The transfer 2 is of the graph

(b) 1 1

- (A) a

- (B) *b*
- (C) b and c
- (D) a, b and c
- 18. Consider the List I and List II

List I

List II

(Signal Flow Graph)

(Transfer Function)

- $P. \quad \overset{x_i}{\circ} \quad \overset{a}{\longrightarrow} \quad \overset{b}{\circ} \quad \overset{x_o}{\circ}$
- 1. a + b
- $Q. \begin{array}{c} x_i & a & x_o \\ b & b \end{array}$
- 2. *ab*
- S. $x_i 1 1 a x_o$
- 3. $\frac{a}{(1-ab)}$
- $R. \quad \overset{x_i}{\circ} \quad \overset{1}{\circ} \quad \overset{a}{\circ} \quad \overset{1}{\circ} \quad \overset{x_c}{\circ} \quad \overset{x_i}{\circ} \quad \overset{x_i$
- $4. \ \frac{a}{1-b}$

The correct match is

	Р	Q	R	S
(A)	2	1	3	4
(B)	2	1	4	3
(C)	1	2	4	3
(D)	1	2	3	4

19. For the signal flow graph shown in fig. P6.1.19 an equivalent graph is

20. Consider the block diagram shown in figure P.6.1.20

For this system the signal flow graph is

(B)
$$R(s)$$
 1 1 1 2 H_2 H_3 H_2 H_4 1 $C(s)$ H_2 H_3 H_4 H_5 H_5 H_7

21. The block diagram of a system is shown in fig. P.6.1.21. The closed loop transfer function of this system is

 ${\rm (A)}~\frac{G_{1}G_{2}G_{3}}{1+G_{1}G_{2}G_{3}H_{1}}$

$${\rm (B)} \; \frac{G_{\!\scriptscriptstyle 1} G_{\!\scriptscriptstyle 2} G_{\!\scriptscriptstyle 3}}{1 + G_{\!\scriptscriptstyle 1} G_{\!\scriptscriptstyle 2} G_{\!\scriptscriptstyle 3} H_{\!\scriptscriptstyle 1} H_{\!\scriptscriptstyle 2}}$$

$${\rm (C)} \; \frac{G_1 G_2 G_3}{1 + G_1 G_2 H_1 + G_2 G_3 H_2}$$

$$\text{(D)} \ \frac{G_1G_2G_3}{1+G_1G_2H_1+G_1G_3H_2+G_2G_3H_1}$$

22. For the system shown in fig. P6.1.22 transfer function C(s)/R(s) is

$${\rm (A)} \ \frac{G_3}{1-H_1G_2-H_2G_3-G_1G_2H_2}$$

$${\rm (B)} \; \frac{G_3 + G_1 G_2}{1 + H_1 G_2 + H_2 G_3 + G_1 G_2 H_2}$$

$${\rm (C)} \; \frac{G_3}{1 + H_1 G_2 + H_2 G_3 + G_1 G_2 H_2}$$

$${\rm (D)}~\frac{G_3}{1-H_1G_2-H_2G_3-G_1G_2H_2}$$

23. In the signal flow graph shown in fig. P6.1.23 the transfer function is

(A) 3.75

(B) -3

(C) 3

(D) -3.75

24. In the signal flow graph shown in fig. P6.1.24 the gain \mathbb{C}/\mathbb{R} is

(A) $\frac{44}{23}$

(B) $\frac{29}{19}$

(C) $\frac{44}{19}$

(D) $\frac{29}{11}$

25. The gain C(s)/R(s) of the signal flow graph shown in fig. P.6.1.25 is

Fig. P.6.1.25

$${\rm (A)} \; \frac{G_1G_2 + G_2G_3}{1 + G_1G_2H_1 + G_2G_3H_1 + G_4}$$

$${\rm (B)} \; \frac{G_1G_2 + G_2G_3}{1 + G_1G_3H_1 + G_2G_3H_1 - G_4}$$

$${\rm (C)} \; \frac{G_1G_3 + G_2G_3}{1 + G_1G_3H_1 + G_2G_3H_1 - G_4}$$

$${\rm (D)} \; \frac{G_1G_3 + G_2G_3}{1 + G_1G_3H_1 + G_2G_3H_1 + G_4}$$

26. The transfer function of the system shown in fig. P.6.1.26 is

$$\text{(A)} \ \frac{G_1G_2}{1-G_1G_2H_1-G_1G_2H_2} \qquad \text{(B)} \ \frac{G_1G_2}{1-G_2H_2-G_1G_2H_1}$$

$$\text{(C)} \ \frac{G_1G_2}{1-G_2H_2+G_1G_2H_1H_2} \quad \text{(D)} \ \frac{G_1G_2}{1-G_1G_2H_1H_2}$$

27. For the block diagram shown in fig. P.6.1.27 transfer function C(s)/R(s) is

$${\rm (A)} \; \frac{G_{1}G_{2}}{1+G_{1}G_{2}+G_{1}G_{7}G_{3}+G_{1}G_{2}G_{8}G_{6}+G_{1}G_{2}G_{3}G_{7}G_{5}}$$

$$\text{(B)} \; \frac{G_1G_2}{1+G_1G_4+G_1G_2G_8+G_1G_2G_5G_7+G_1G_2G_3G_6G_7}$$

$$\text{(C)} \; \frac{G_1 + G_2}{1 + G_1 G_4 + G_1 G_2 G_8 + G_1 G_2 G_5 G_7 + G_1 G_2 G_3 G_6 G_7}$$

$$\text{(D)} \; \frac{G_1 + G_2}{1 + G_1 G_2 + G_3 G_6 G_7 + G_1 G_3 G_4 G_5 + G_1 G_2 G_3 G_6 G_7 G_8}$$

28. For the block diagram shown in fig. P.6.1.28 the numerator of transfer function is

Fig. P.6.1.28

(A)
$$G_6[G_4 + G_3 + G_5(G_3 + G_2)]$$

(B)
$$G_6[G_2 + G_3 + G_5(G_3 + G_4)]$$

(C)
$$G_6[G_1 + G_2 + G_3(G_4 + G_5)]$$

- (D) None of the above
- 29. For the block diagram shown in fig. P.6.1.29 the transfer function C(s)/R(s) is

Fig. P.6.1.29

(A)
$$\frac{50(s-2)}{s^3 + s^2 + 150s - 100}$$
 (B) $\frac{50(s-2)}{s^3 + s^2 + 150s}$

(B)
$$\frac{50(s-2)}{s^3+s^2+150s}$$

(C)
$$\frac{50s}{s^3 + s^2 + 150s - 100}$$

(D)
$$\frac{50}{s^2 + s + 150}$$

30. For the SFG shown in fig. P.6.1.30 the transfer function $\frac{C}{R}$ is

$${\rm (A)} \; \frac{G_{\!\scriptscriptstyle 1} + G_{\!\scriptscriptstyle 2} + G_{\!\scriptscriptstyle 3}}{1 + G_{\!\scriptscriptstyle 1} H_{\!\scriptscriptstyle 1} + G_{\!\scriptscriptstyle 2} H_{\!\scriptscriptstyle 2} + G_{\!\scriptscriptstyle 3} H_{\!\scriptscriptstyle 3}}$$

$$\text{(B)} \ \frac{G_1 + G_2 + G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

$$\text{(C)} \; \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3}$$

$$\text{(D)} \; \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 \; H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$$

31. Consider the SFG shown in fig. P6.1.31. The Δ for this graph is

Fig. P.6.1.31

(A)
$$1 + G_1H_1 + G_2G_3H_3 + G_1G_3H_9$$

(B)
$$1 + G_1H_1 - G_2G_3H_3 - G_1G_3H_3 + G_2G_4H_2H_3$$

(C)
$$1 + G_1H_1 + G_2G_3H_3 + G_1G_3H_3 - G_2G_4H_2H_3$$

(D)
$$1 + G_1H_1 + G_2G_3H_3 + G_1G_3H_3 + G_2G_4H_2H_3$$

32. The transfer function of the system shown in fig. P.6.1.32 is

Fig. P.6.1.32

$${\rm (A)}~\frac{G_{2}G_{3}+G_{1}G_{3}}{1-G_{3}H_{1}+G_{2}G_{3}}$$

(B)
$$\frac{G_2G_3 + G_1G_3}{1 + G_3H_1 - G_2G_3}$$

(C)
$$\frac{G_2G_3 + G_1G_3}{1 + G_2H_1 + G_2G_3}$$

(D)
$$\frac{G_2G_3 + G_1G_3}{1 - G_3H_1 - G_2G_3}$$

33. The closed loop transfer function of the system shown in fig. P6.1.33 is

$$\text{(A)} \; \frac{G_1G_2G_3 + G_2G_3G_4 + G_1G_4}{1 + G_1G_3G_4H_1H_2H_3 + G_2H_4H_1H_2 + G_4H_1}$$

$$\text{(B)} \ \frac{G_2G_4 + G_1G_2G_3}{1 + G_1G_3H_1H_2H_3 + G_4H_1 + G_3G_4H_1H_2}$$

$$\text{(C)} \; \frac{G_1G_3G_4 + G_2G_4}{1 + G_3G_4H_1H_2 + G_4H_1 + G_1G_3H_2H_2}$$

$$\text{(D)} \ \frac{G_1G_3G_4+G_2G_3G_4+G_2G_4}{1+G_1G_3G_4H_1H_2H_3+G_3G_4H_1H_2+G_4H_1}$$

Statement for Q.34-37:

A block diagram of feedback control system is shown in fig. P6.1.34-37

Fig. P.6.1.34-37

34. The transfer function $\frac{C_1}{R_1}\Big|_{R_0=0}$ is

(A)
$$\frac{G}{1-2G^2}$$

(B)
$$\frac{G(1-G)}{1-2G^2}$$

(C)
$$\frac{G(1-2G)}{1-G^2}$$

(D)
$$\frac{G}{1-G^2}$$

35. The transfer function $\frac{C_1}{R_2}\Big|_{R_1=0}$ is

(A)
$$\frac{G}{1-2G^2}$$

(B)
$$\frac{G}{1-G^2}$$

(C)
$$\frac{G^2}{1-2G^2}$$

(D)
$$\frac{G^2}{1 - G^2}$$

36. The transfer function $\left. \frac{C_2}{R_1} \right|_{R_2=0}$ is

(A)
$$\frac{G(1+G)}{1-2G^2}$$

(B)
$$\frac{G^2}{1-2G^2}$$

(C)
$$\frac{G^2}{1-G^2}$$

(D)
$$\frac{G}{1 - G^2}$$

37. The transfer function $\left. \frac{C_2}{R_2} \right|_{R_1=0}$ is

(A)
$$\frac{G(1+G)}{1-2G^2}$$

(B)
$$\frac{G}{1-2G^2}$$

(C)
$$\frac{G}{1+G}$$

(D)
$$\frac{G}{1-G^2}$$

Statement for Q.38-39:

A signal flow graph is shown in fig. P.6.1.38-39.

Fig. P.6.1.38-39

38. The transfer function $\frac{Y_2}{V}$ is

(A)
$$\frac{1}{\Delta}$$

(B)
$$\frac{1 + G_2 H_2}{\Delta}$$

(C)
$$\frac{G_1G_2G_3}{\Delta}$$

(D) None of the above

39. The transfer function $\frac{Y_5}{V}$ is

$${\rm (A)}~\frac{G_1G_2G_3+G_4G_3}{\Delta}$$

(B)
$$G_1G_2G_3 + G_4G_3$$

$${\rm (C)}\; \frac{G_1G_2G_3+G_4G_3}{G_1G_2G_3} \qquad \qquad {\rm (D)}\; \frac{G_1G_2G_3+G_4G_3}{1+G_2H_2}$$

(D)
$$\frac{G_1G_2G_3 + G_4G_3}{1 + G_2H_2}$$

Statement for Q.40-41:

A block diagram is shown in fig. P6.1.40-41.

Fig. P.6.1.40-41

40. The transfer function for this system is

(A)
$$\frac{2s(2s+1)}{2s^2+3s+5}$$

(B)
$$\frac{2s(2s+1)}{2s^2+13s+5}$$

(C)
$$\frac{2s(2s+1)}{4s^2+13s+5}$$

(D)
$$\frac{2s(2s+1)}{4s^2+3s+5}$$

41. The pole of this system are

(A)
$$-0.75 \pm j1.39$$

(B)
$$-0.41$$
, -6.09

$$(C) -0.5, -1.67$$

(D)
$$-0.25 \pm j0.88$$

Solutions

$$\begin{split} &\mathbf{1.} \ (\mathbf{A}) \ \ G_e(s) = G_1(s) + G_2(s) + G_3(s) \\ &= \frac{1}{(s+1)} + \frac{1}{(s+4)} + \frac{s+3}{(s+5)} \\ &= \frac{s^2 + 9s + 20 + s^2 + 6s + 5 + s^3 + 5s^2 + 4s + 3s^2 + 15s + 12}{(s+1)(s+4)(s+5)} \\ &= \frac{s^3 + 10s^2 + 34s + 37}{(s+1)(s+4)(s+5)} \end{split}$$

2. (B)
$$G_e(s) = G_1(s)G_2(s)G_3(s) = \frac{(s+1)}{(s+2)(s+5)(s+3)}$$

3. (C)
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + H(s)G(s)}$$
$$= \frac{\frac{s+1}{s(s+2)}}{1 + \frac{(s+3)}{(s+4)}\frac{(s+1)}{s(s+2)}} = \frac{(s+1)(s+4)}{s^3 + 7s^2 + 12s + 3}$$

4. (B) Multiply G_2 and G_3 and apply feedback formula and then again multiply with $\frac{1}{G}$.

$$T(s) = \frac{G_2 G_3}{G_1 (1 + G_2 G_3 H_1)}$$

5. (D)
$$T(s) = G_2(1 + G_1) + 1 = 1 + G_1 + G_1G_2$$

6. (A) Open-loop gain = G_2

Feed back gain = HG_1

$$T_N(s) = \frac{G_2}{1 + G_1 G_2 H}$$

7. (D) Apply the feedback formula to both loop and then multiply

$$\begin{split} T(s) = & \left(\frac{G_1}{1 + G_1 H_1} \right) \left(\frac{G_2}{1 + G_2 H_2} \right) \\ = & \frac{G_1 G_2}{1 + G_1 H_1 + G_2 H_2 + G_1 G_2 H_1 H_2} \end{split}$$

8. (C) For positive feedback $\frac{C}{R} = \frac{6}{1 - \frac{6 \times 1}{1 - \frac{6 \times$

9. (D) For system (b) closed loop transfer function

$$\frac{G}{s+1}+1=\frac{G+s+1}{s+1}$$

$$\frac{G+s+1}{s+1} = \frac{s+2}{s+1}$$

Hence G = 1

10. (A) In open loop system change will be 10% in C_1 also but in closed loop system change will be less

$$C_2 = \frac{10}{10+1} = \frac{10}{11} \; ,$$

$$C_2' = \frac{9}{9+1} = \frac{9}{10}$$
, C_2 is reduced by 1%.

11. (A) Apply the feedback formula and then multiply by $\frac{1}{H_1}$,

$$\frac{C}{R} \; = \frac{(H_2G_1) \bigg(\frac{1}{H_1} \bigg)}{1 + H_2G_1G_2} = \frac{H_2G_1}{H_1(1 + G_1G_2H_2)}$$

12. (A) There cannot be common subscript because subscript refers to node number. If subscript is common, that means that node is in both loop.

13. (D)
$$L_1 = -bc$$
, $L_2 = -fg$, $L_3 = jgic$, $L_1L_3 = bcfg$
 $\Delta = 1 - (-bc - fg + cigj) + bcfg = 1 + bc + fg - cig j + bcfg$

14. (A) In this graph there are three feedback loop. abef is not a feedback path because between path x_2 is a summing node.

15. (B) By putting
$$R(s) = 0$$

$$\begin{split} P_1 &= -H_2 G_1 \ , \ L_1 = - \ G_1 H_2 H_1, \ \Delta_1 = 1 \\ T_n(s) &= \frac{-H_2 G_1}{1 + G_1 H_2 H_1} \end{split}$$

$$\text{if } \left| G_1 H_2 H_1 \right| >> 1, \ T_n(s) = \frac{-H_2 G_1}{G_1 H_2 H_1} = \frac{-1}{H_1}$$

16. (C)
$$P_1=G$$
 , $L_1=-H_1$, $L_2=-H_2$, $L_1L_2=H_1H_2$

$$\Delta_1 = 1$$

$$T(s) = \frac{G}{1 + H_1 + H_2 + H_1 H_2} = \frac{G}{(1 + H_1)(1 + H_2)}$$

17. (B)
$$G_a = 1$$
, $G_b = 1 + 1 = 2$, $G_c = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$

There are no loop in any graph. So option (B) is correct.

P.
$$P_1 = ab$$
, $\Delta = 1$, $L = 0$, $T = ab$

Q.
$$P_1 = a$$
, $P_2 = b$, $\Delta = 1$, $L = \Delta_b = 0$, $T = a + b$

R.
$$P_1 = a$$
, $L_1 = b$, $\Delta = 1 - b$, $\Delta_1 = 1$, $T = \frac{a}{a - b}$

S.
$$P_1 = a$$
, $L_1 = ab$, $\Delta = 1 - ab$, $\Delta_1 = 1$, $T = \frac{a}{1 - ab}$

19. (A) Between e_1 and e_2 , there are two parallel path. Combining them gives t_a+t_b . Between e_2 and e_4 there is a path given by total gain t_ct_d . So remove node e_3 and place gain t_ct_d of the branch e_2e_4 . Hence option (A) is correct.

20. (A) Option (A) is correct. Best method is to check the signal flow graph. In block diagram there is feedback from 4 to 1 of gain $-H_1H_2$. The signal flow graph of option (A) has feedback from 4 to 1 of gain $-H_1H_2$.

21. (C) Consider the block diagram as SFG. There are two feedback loop $-G_1G_2H_1$ and $-G_2G_3H_2$ and one forward path $G_1G_2G_3$. So (D) is correct option.

22. (B) Consider the block diagram as a SFG. Two forward path G_1G_2 and G_3 and three loops $-G_1G_2H_2\,,\;-G_2H_1\,,\;-G_3H_2\ .$

There are no nontouching loop. So (B) is correct.

23. (C)
$$P_1 = 5 \times 3 \times 2 = 30$$
, $\Delta = 1 - (3 \times -3) = 10$
 $\Delta_1 = 1$, $\frac{C}{R} = \frac{30}{10} = 3$

24. (A)
$$P_1 = 2 \times 3 \times 4 = 24$$
 , $P_2 = 1 \times 5 \times 1 = 5$

$$L_1 = -2$$
 , $L_2 = -3$, $L_3 = -4$, $L_4 = -5$,

$$L_1L_3 = 8$$
, $\Delta = 1 - (-2 - 3 - 4 - 5) + 8 = 23$,

$$\Delta_1 = 1, \ \Delta_2 = 1 - (-3) = 4,$$

$$\frac{C}{R} = \frac{24 + 5 \times 4}{24} = \frac{44}{23}$$

25. (B)
$$P_1 = G_1 G_2$$
, $P_2 = G_3 G_2$

$$L_{1}=-G_{3}G_{2}H_{1}\;,\quad L_{2}=-G_{1}G_{2}H_{1}\;,\quad L_{3}=G_{4}$$

$$\Delta_1 = \Delta_2 = 1$$

There are no nontouching loop.

$$T(s) = \frac{P_1\Delta_1 + P_2\Delta_2}{1 - (L_1 + L_2 + L_3)} = \frac{G_1G_2 + G_2G_3}{1 + G_1G_2H_1 + G_2G_3H_1 - G_4}$$

26. (C)
$$P_1 = G_1G_2$$
, $L_1 = -G_1G_2H_1H_2$, $L_2 = G_2H_2$

$$\frac{C(s)}{R(s)} = \frac{G_1G_2}{1 + G_1G_2H_1H_2 - G_2H_2}$$

$$\frac{R(s)}{H_1} = \frac{G_1}{H_2} = \frac{G_2}{H_2}$$
Fig. S6.1.28

27. (B) There is one forward path G_1G_2 . Four loops $-G_1G_4$, $-G_1G_2G_8$, $-G_1G_2G_5G_7$ and $-G_1G_2G_3G_6G_7$. There is no nontouching loop. So (B) is correct.

28. (A) SFG:

Fig. S6.1.28

 $P_1=G_2G_5G_6$, $P_2=G_3G_5G_6,$ $P_3=G_3G_6$, $P_4=G_4G_6$ If any path is deleted, there would not be any loop. Hence $\Delta_1=\Delta_2=\Delta_3=\Delta_4=1$ $\frac{C}{R}=\frac{G_4G_6+G_3G_6+G_3G_5G_6+G_2G_5G_6}{\Lambda}$

29. (A)

Fig. S6.1.29

$$\begin{split} P_1 &= \frac{1}{s^2} \cdot \frac{50}{(s+1)} \cdot s = \frac{50}{s(s+1)} \\ P_2 &= \frac{1}{s^2} \cdot \frac{50}{s+1} \cdot (-2) = \frac{-100}{s^2(s+1)} \\ L_1 &= \frac{50}{s+1} \cdot \frac{-2}{s} = \frac{-100}{s(s+1)} \\ L_2 &= \frac{1}{s^2} \cdot \frac{50}{s+1} \cdot s \cdot (-1) = \frac{-50}{s(s+1)} \\ L_3 &= \frac{1}{s^2} \cdot \frac{50}{s+1} \cdot (-2) \cdot (-1) = \frac{100}{s^2(s+1)} \\ \Delta &= 1 + \frac{100}{s(s+1)} + \frac{50}{s(s+1)} - \frac{100}{s^2(s+1)} \\ \Delta_1 &= \Delta_2 = 1 \end{split}$$

$$\frac{C}{R} = \frac{P_1 + P_2}{\Delta} = \frac{50(s-2)}{s^3 + s^2 + 150s - 100}$$

$$\begin{aligned} \mathbf{30.} & \text{ (D) } P_1 = G_1 \ G_2 \ G_3 \\ L_1 = -G_1 H_1, \ L_2 = -G_2 H_2, \ L_3 = -G_3 H_3 \\ L_1 L_3 = G_1 G_3 H_1 H_3 \\ \Delta = 1 - (-G_1 H_1 - G_2 H_2 - G_3 H_3) + G_1 G_3 H_1 H_3 \\ \Delta = 1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3 \\ \Delta_1 = 1 \\ \frac{C}{R} = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_2 H_2 + G_1 G_2 H_1 H_2} \end{aligned}$$

$$\begin{split} \mathbf{31.} \ &(\mathbf{C}) \ L_1 = - \, G_1 H_1, \, L_2 = - \, G_2 G_3 H_3 \\ \\ &L_3 = - \, G_1 G_2 H_2 \ , \, L_4 = G_2 G_4 H_2 H_3 \\ \\ &\Delta = 1 - (-G_1 H_1 - G_2 G_3 H_3 - G_1 G_3 H_3 + G_2 G_4 H_2 H_3) \\ \\ &= 1 + \, G_1 H_1 + G_2 G_3 H_3 + G_1 G_3 H_3 - G_2 G_4 H_2 H_3 \end{split}$$

32. (C)
$$P_1 = G_2G_3$$
, $P_2 = G_1G_3$,
$$L_1 = -G_3H_1$$
, $L_2 = -G_2H_3$, $\Delta_1 = \Delta_2 = 1$,

Fig. S6.1.32

$$T(s) = \frac{G_2G_3 + G_1G_3}{1 + G_2H_1 + G_2G_3}$$

33. (D)
$$P_1=G_1G_3G_4$$
, $P_2=G_2G_3G_4$, $P_3=G_2G_4$
$$L_1=-G_1G_3G_4H_1H_2H_3$$
, $L_2=-G_3G_4H_1H_2$, $L_3=-G_4H_1$ There are no non touching loop
$$\Delta_1=\Delta_2=\Delta_3=1$$

11g. 50.1.50

$$T(s) = \frac{G_1G_3G_4 + G_2G_3G_4 + G_2G_4}{1 + G_1G_3G_4H_1H_2H_3 + G_3G_4H_1H_2 + G_4H_1}$$

34. (B) The SFG of this system is fig. S6.1.34 $L_1 = -G$, $L_2 = G$, $L_3 = G^2$, $L_1L_2 = -G^2$ $\Delta = 1 - (-G + G + G^2) - G^2 = 1 - 2 G^2$ From R_1 to C_1 , at $R_2 = 0$,

Fig. S6.1.34

$$\begin{split} P_1 &= G, \\ \Delta_1 &= 1 - (G) = 1 - G \\ \frac{C_1}{R_1} \bigg|_{R=0} &= \frac{G(1-G)}{1-2G^2} \end{split}$$

35. (C) From
$$R_2$$
 to C_1 at $R_1 = 0$,

$$P_1=G^2$$
 , $\Delta_1=1$,
$$\left.\frac{C_1}{R_2}\right|_{R_1=0}=\frac{G^2}{\Delta}$$

36. (B) From
$$R_1$$
 to C_2 ,

$$P_1=G^2$$
 , $\Delta_1=1$,
$$\left. \frac{C_2}{R_1} \right|_{R_0=0}=\frac{G^2}{\Delta}$$

37. (A) From
$$R_2$$
 to C_1 at $R_1 = 0$,

$$\begin{aligned} P_1 &= G, \ \Delta_1 = 1 - (-G) = 1 + G \\ \frac{C_2}{R_2} \bigg|_{R_1 = 0} &= \frac{G(1+G)}{\Delta} \end{aligned}$$

38. (C) From
$$Y_1$$
 to Y_2 , $P_1 = 1$

$$\begin{split} &\Delta = 1 - (-G_1 H_1 - G_2 H_2 - G_3 G_4 H_3 + G_4 H_1 H_2 - G_1 G_2 G_3 H_3) \\ \Rightarrow & \Delta = 1 + G_1 H_1 + G_2 H_2 + G_3 G_4 H_3 + G_1 G_2 G_3 H_3 - G_4 H_1 H_2 \\ &\Delta_1 = 1 + G_2 \ H_2 \ , \ \frac{Y_2}{Y_1} = \frac{P_1 \ \Delta_1}{\Delta} = \frac{1 + G_2 \ H_2}{\Delta} \end{split}$$

39. (D) From
$$Y_1$$
 to Y_5 , $P_1 = G_1 G_2 G_3$, $P_2 = G_4 G_3$

$$\Delta_1 = \Delta_2 = 1, \ \frac{Y_5}{Y_1} = \frac{G_1 G_2 G_3 + G_4 G_3}{\Delta}$$

$$\frac{Y_5}{Y_2} = \frac{\frac{Y_5}{Y_1}}{\frac{Y_2}{Y_1}} = \frac{G_1 G_2 G_3 + G_4 G_3}{1 + G_2 H_2}$$

40. (C) Consider block diagram as SFG

$$P_1 = \frac{1}{s} \cdot 2s = 2$$
 , $P_2 = 2 \cdot 2s = 4s$

$$L_1 = \frac{1}{s}(-5) = \frac{-5}{s}$$

$$L_2 = \frac{1}{s} \cdot 2s \cdot (-1) = -2$$

$$L_3 = 2 \cdot 2s \cdot (-1) = -4s$$

$$L_4 = 2 \cdot (-5) = -10$$

There are no nontouching loop

$$\Delta = 1 - \left(-\frac{5}{s} - 4s - 2 - 10\right) = 13 + 4s + \frac{5}{s}$$
,

$$\Delta_1 = \Delta_2 = 1,$$

$$T(s) = \frac{2+4s}{13+4s+\frac{5}{s}} = \frac{2s(2s+1)}{4s^2+13s+5}$$

41. (C)
$$T(s) = \frac{2s(2s+1)}{6s^2 + 13s + 5} = \frac{2s(2s+1)}{(s+0.5)(s+1.67)}$$

So poles are -0.5, -1.67.
