$\operatorname{MATH}1241$ Problem Set Solutions - Algebra

Yue Yu

 $2022~{\rm Term}~2$

Contents

6	Vector Spaces	2
	6.5 Problem 5	2
	6.7 Problem 7	2
	6.27 Problem 27	4
	6.36 Problem 36	;
	6.37 Problem 37	:

Chapter 6

Vector Spaces

6.5 Problem 5

Denote the *ij*th entry of M by $[M]_{ij}$ where $1 \leq i \leq m$ and $1 \leq j \leq n$. For any matrices $A, B \in M_{mn}(\mathbb{C})$ and scalars $\lambda \in \mathbb{C}$.

For axiom 1, because \mathbb{C} is closed under addition, we have

$$[A]_{ij} + [B]_{ij} \in \mathbb{C}$$
, for all i, j .

Hence, $A + B \in M_{mn}(\mathbb{C})$, which shows that axiom 1 is satisfied.

For axiom 3, because \mathbb{C} is commutative, we have

$$[A]_{ij} + [B]_{ij} = [B]_{ij} + [A]_{ij}$$
, for all i, j .

Hence, A + B = B + A, which shows that axiom 3 is satisfied.

For axiom 6, because \mathbb{C} is closed under scalar multiplication, we have

$$\lambda[A]_{ij} \in \mathbb{C}$$
, for all i, j .

Hence, $\lambda A \in M_{mn}(\mathbb{C})$, which shows that axiom 6 is satisfied.

For axiom 10, because of the distributive law in \mathbb{C} , we have

$$\lambda([A]_{ij} + [B]_{ij}) = \lambda[A]_{ij} + \lambda[B]_{ij}$$
, for all i, j .

Hence, $\lambda(A+B) = \lambda A + \lambda B$, which shows that axiom 10 is satisfied.

6.7 Problem 7

This system is not a vector space.

6.27 Problem 27

a)

Let W' be the intersection of $\{W_k : 1 \leq k \leq m+1\}$. We prove this by induction.

For m = 1, we have $W = W_1$, which is a subspace of V.

Suppose that for m > 1, W is a subspace of V. Then, for m + 1, since $W \leq V$ and $W_{m+1} \leq V$, we have $\mathbf{0} \in W$ and $\mathbf{0} \in W_{m+1}$, and hence, $\mathbf{0} \in W'$. For any vectors $\mathbf{u}, \mathbf{v} \in W'$ and scalars $\lambda, \mu \in \mathbb{F}$,

since $W' = W \cap W_{m+1}$, **u** and **v** must be in both W and W_{m+1} . Also, since W and W_{m+1} are subspaces of V, they are closed under addition and multiplication by scalars from \mathbb{F} . Thus, $\lambda \mathbf{u} + \mu \mathbf{v}$ must be in both W and W_{m+1} , and hence in W'. By the alternative Subspace Theorem, W' is a subspace of V.

Therefore, by induction, W is a subspace of V.

b)

Suppose that W is not the set of finite linear combinations of vectors from S. Then, $\exists \mathbf{x} \in W$ such that $\mathbf{x} \notin \operatorname{span}(S)$. However, for any $V_i \leqslant V$ and $V_i \supseteq S$, we have $\operatorname{span}(S) \leqslant V_i$, implying that $\mathbf{x} \notin V_i$, and hence $\mathbf{x} \notin W$, which is a contradiction. Therefore, W is the set of finite linear combinations of vectors from S.

6.36 Problem 36

This problem is equivalent to proving that $\operatorname{span}(S)$ is a subspace of V over field \mathbb{F} .

Let
$$S = {\mathbf{v}_1, ..., \mathbf{v}_n} \subseteq V$$
.

The zero vector of V is in span(S) because $\mathbf{0} = 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_n$.

For any vectors $\mathbf{u} = \lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n$, $\mathbf{v} = \mu_1 \mathbf{v}_1 + \cdots + \mu_n \mathbf{v}_n \in \text{span}(S)$ where $\lambda_1, ..., \lambda_n$, $\mu_1, ..., \mu_n \in \mathbb{F}$ and any scalar $\lambda \in \mathbb{F}$, we have

$$\mathbf{u} + \mathbf{v} = (\lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n) + (\mu_1 \mathbf{v}_1 + \dots + \mu_n \mathbf{v}_n)$$
$$= (\lambda_1 + \mu_1) \mathbf{v}_1 + \dots + (\lambda_n + \mu_n) \mathbf{v}_n,$$

where $(\lambda_1 + \mu_1), ..., (\lambda_n + \mu_n) \in \mathbb{F}$. Thus, $(\mathbf{u} + \mathbf{v}) \in \text{span}(S)$, which implies that span(S) is closed under addition.

Also, since

$$\lambda \mathbf{v} = \lambda(\mu_1 \mathbf{v}_1 + \dots + \mu_n \mathbf{v}_n)$$

= $(\lambda \mu_1) \mathbf{v}_1 + \dots + (\lambda \mu_n) \mathbf{v}_1$,

where $(\lambda \mu_1), ..., (\lambda \mu_n) \in \mathbb{F}$, we have $(\lambda \mathbf{v}) \in \text{span}(S)$, which implies that span(S) is also closed under multiplication by a scalar.

Therefore, by the Subspace Theorem, $\operatorname{span}(S)$ is a subspace of V, and hence, the original statement is proved.

6.37 Problem 37

We prove this by induction.

For
$$n = 1$$
, $\sum_{k=1}^{1} \lambda_k \mathbf{v}_k = \lambda_1 \mathbf{v}_1$.

Suppose that for n > 1, $\sum_{k=1}^{n} \lambda_k \mathbf{v}_k = \lambda_1 \mathbf{v}_1 + \dots + \lambda_n \mathbf{v}_n$ holds regardless of the order. By the closures

under addition and multiplication by a scalar, $\sum_{k=1}^{n} \lambda_k \mathbf{v}_k$ is in the vector space. Hence, for n+1, by

the commutative law of addition, we have $\sum_{k=1}^{n+1} \lambda_k \mathbf{v}_k = \sum_{k=1}^n \lambda_k \mathbf{v}_k + \lambda_{n+1} \mathbf{v}_{n+1} = \lambda_{n+1} \mathbf{v}_{n+1} + \sum_{k=1}^n \lambda_k \mathbf{v}_k$ regardless of the order.

Therefore, by induction, we proved that we do not need to use brackets when writing down linear combinations.