

Floating-Point, Fixed-Point, and Integer Number Representation Formats

Sparsh Mittal

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Solved Examples

Floating-Point Example

- Represent -0.75
 - \bullet -0.75 = (-1)¹ × 1.1₂ × 2⁻¹
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 10111111101000...00
- Double: 101111111111101000...00

Floating-Point Example

- What number is represented by the single-precision float 11000000101000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Exponent = $10000001_2 = 129$
- $x = (-1)^1 \times (1 + .01_2) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^2$ = -5.0

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110 \Rightarrow actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow significand \approx 2.0$
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Why do we use bias?

Let us compute the range of single-precision number, without using bias.

Single-Precision Range [if no bias is used]

- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 0 = 1
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^1 \approx \pm 2$
- Largest value
 - exponent: 111111110 \Rightarrow actual exponent = 254-0 = 254
 - Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
 - $\pm 2.0 \times 2^{+254} \approx \pm 2.9 \times 10^{+76}$
- 1. On not using bias, we can only represent large numbers, and not small numbers

Why do we use bias?

To represent small numbers, we can start using negative values. But that would be confusing

Use of a bias means, which store excess exponent, which is always positive.

Denormal Numbers

- * Smallest +ve normal number: 2⁻¹²⁶
- * Smallest denormal number:

*
$$0.00..01$$
 * $2^{-126} = (2^{-23})*2^{-126}$
= 2^{-149}

* Largest denormal number :

*
$$0.11...11$$
 * $2^{-126} = (1 - 2^{-23})*2^{-126}$
*= $2^{-126} - 2^{-149}$

• For positive denormal numbers, the range is $[2^{-149}, 2^{-126} - 2^{-149}]$

Solved example on Fixed Point Number

- * In an application, all data values are positive. The highest value we need to store is 36000. We want to use 20-bit storage and fixed-point number system. How many bits should we allocate for integer and fraction part, so we can have as high precision as possible, with no overflow.
- * Solution: Since all data values are positive, no sign bit is needed. Now, 2^n-1>=36000
- * $n \ge \log_2(36001) \rightarrow n \ge 15.14$
- * Integer part: 16 bits, Fraction Part: 4 bits

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Comparison Between Floating-Point (FP), Fixed-Point(FxP), and Integer

Quick Summary

$$(-1)^{s} \times (1.M) \times 2^{E}$$

Guide to Floating Point Formats

fp32: Single-precision IEEE Floating Point Format

Range: ~1e-38 to ~3e38

fp16: Half-precision IEEE Floating Point Format

Range: ~5.96e⁻⁸ to 65504

	Exponent: 5 bits					Mantissa (Significand): 10 bits									
s	E	E	E	E	E	М	М	М	М	М	М	М	M	М	М

bfloat16: Brain Floating Point Format

Range: ~1e⁻³⁸ to ~3e³⁸

Why is BFloat16 Better than Float16 for Model Training

The Ai Edge. io

We allocate the bits differently to built different Float numbers

Converting from Float32 to Float16 can overflow

Converting from Float32 to BFloat16 is trivial

Float 32

101010001011000011000110000110

Does not overflow

BFloat 16

Finding Percentage Accuracy of FP32

- The smallest number: 1.17549435E-38
- The next smallest number: 1.17549449 E-38

• Find the difference between them: 1.4E-07 * E-38. Call it Delta

• Find Delta *100/(SmallestNumber*2). This gives you percentage error, which is 5.95494E-06%, or 0.0000059549% or ~0.000006%.

Why don't we use float/double for currency

Currency requires us being able to represent accurately and precisely up to 2 decimal places. i.e. up to 0.01 (any currency).

Using float or double, we get the following closest representations:

Float:9.99999977648258209228515625E-3

Double:1.000000000000000002081668171172E-2

Which is not accurate to the original decimal value 0.1. Therefore, Float and Double are not fit for the use case of currencies.