UV LARM

Logiciel et Architecture pour la Robotique Mobile

An introduction

Guillaume Lozenguez

@imt-nord-europe.fr

- 1. What is a Robot?
- 2. About the UV LARM
- 3. Today: First contact with Linux and ROS

1. What is a Robot?

- Definition
- Modular and Multidisciplinary
- 2. About the UV LARM
- 3. Today: First contact with Linux and ROS

What is a Robot?

On Wikipedia:

en

"A robot is a machine—especially one programmable by a computer— capable of carrying out a complex series of actions automatically."

fr

"Un robot est un dispositif mécatronique (alliant mécanique, électronique et informatique) conçue pour accomplir automatiquement des tâches imitant ou reproduisant, dans un domaine précis, des actions humaines."

What is a Robot?

From my point of view

"A **robot** is a **mechatronics** machine capable of autonomously acting in a real environment."

- perceives with sensors
- models its environment and adapts its behavior with a *computer*
- acts with actuators

Involves generally Artificial-Intelligence:

• capable to mimic natural (human, animal, insect,...) intelligence

Some examples

Macro: a large variety of robots

Some examples

Micro: a large variety of components.

Focus on:

- Resistance
- Weight
- Distortion
- Vibration absorption
- Machining, Assembly

for different robots:

- Fast
- Precise
- Strong
- resistant (dust, water,...)
- safe
- less expensive

From a automation point of view

Focus on:

- Physics science
- Signal processing
- Control system

by manipulating

- Times series, torques
- Vector, Matrices

From a software point of view

Focus on:

- Algorythms
- Knowledge representation
- Artificial intelligence
- Software architecture

Robots are complex and singular systems

which require modular computer programs.

- 1. What is a Robot?
- 2. About the UV-LARM
- 3. Today: First contact with Linux and ROS

UV-LARM

Software and Architecture for Mobile Robots

Mostly about: autonomous navigation.

- Communicate with robot components
- Control robot movements (nonholonomic robot)
- Perception of the local environment (laser, vision)
- SLAM (Simultaneous Localization and Mapping)
- Path finding and navigation.

UV-LARM

Software and Architecture for Mobile Robots

With a central need: modular software

- An expected complex global behavior
- Split in piece of programs (modules)
- Communicating together
- With dedicated tasks (sensor driver, reprensentation, planning, controling...)
- And a bunch of tools making all working together...

Using ROS API:

ROS: The Robot Operating System (ROS) is a set of *software libraries* and *tools* that help you build robot applications.

- The number one Robotic Middle Ware used in academic
- Open and oriented toward its *many contributors*
- Supported by a large number of professional companies

It permits thinking robotic programs in a modular way as independent programs: *nodes* working together by communicating through *topics*.

It comes with useful functionality like *frame* management and *transform*

ROS API:

Tools:

To start nodes, to connect them, to visualize the architecture and the data in the pipes (topics).

An API and Libs:

To develop its own nodes, to use topic-based communication, to help in manipulating spatio-temporal data.

A community:

To share our contribution and use the one from pairs wiki.ros.org

ROS 1 versus ROS 2

Historical.

- ROS 1 1.0 22 janvier 2010
- ROS 2 Ardent Apalone 8 December 2017
- ROS 1 Noetic Ninjemys 23 mai 2020 (dernière version de ROS 1)

New ROS version.

- The same philosophy (modular communicative processes Nodes)
- ROS 2: decentralized architecture based on DDS (Data Distribution Service norm)
- No retro-compatibility (as between Python2 and Python3)
 - But a huge community contribution in ROS 1

Why Ubuntu Linux:

Because

- We love *GNU* (and open source in general)
- ROS supports natively Ubuntu Linux
- And mainly: Linux is efficient, secure and well documented

The courses:

Mainly based on tutorials: imt-mobisyst.github.io/lct-mobile-robot

Notions

- Modular Software Architecture
- Perception and Control (obstacle avoidance)
- Rich perception: Vision
- Navigation (mapping, localization, planning)

UV-LARM - Schedule

1st week: Introduction, simulation and movement.

2d week: Vision and Mapping.

3d week: Challenge as your project.

4th week: Evaluation through the code you provide.

- Always from 9:00 to 12:00 and from 14:00 to 17:30.
- In *Develter* and *3005*.
- With or without a teacher.

Evaluation:

Chalenges

- From: navigate in a cluttered environment.
- *To*: autonomous explore an unknown area with objects to retrieve.

2 **Environments**

- Robot: Turtlebot
- Simulation: Gazebo

- 1. What is a Robot?
- 2. About the UV LARN
- 3. Today: First contact with Linux and ROS
 - Starting with ROS tutorial: imt-mobisyst.github.io/lct-mobile-robot