9.2 Derivace funkce

Definice 9.2.1a

Limitu $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ nazveme derivací funkce f v bodě a.

Definice 9.2.1b

Limitu $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ nazveme derivací funkce f v bodě a.

Značíme
$$f'(a) = \frac{df(a)}{dx}$$
.

Geometrický význam derivace funkce v bodě

Má-li tečna grafu funkce f v bodě a rovnici $t: y = k \cdot x + q$, kde k nazýváme směrnicí tečny, platí k = f'(a). Je to tudíž tangens úhlu, který svírá tečna grafu v bodě a s kladným směrem osy x.

Fyzikální význam derivace funkce v bodě

Platí-li, že fyzikální veličina u závisí na čase t explicitním vztahem u = u(t), je hodnota derivace této funkce v čase t_0 rychlostí změny příslušné veličiny.

Speciálně pokud \vec{r} je polohový vektor hmotného bodu a $\vec{r} = \vec{r}(t)$ představuje jeho závislost na čase udává $\frac{d\vec{r}}{dt}$ vektor okamžité rychlosti a jeho velikost pak její velikost.

Věta 9.2.1

Jestliže má funkce f v bodě a derivaci, potom je funkce f v bodě a spojitá.

Věta 9.2.2

Nechť f,g jsou funkce, c libovolné reálné číslo a nechť existují derivace f'(a), g'(a). Potom existují též derivace v bodě a funkcí:

$$(c \cdot f(a))' = c \cdot f'(a) \qquad (f(a) + g(a))' = f'(a) + g'(a)$$
$$(f(a) \cdot g(a))' = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

a pokud
$$g(a) \neq 0$$
 též $\left(\frac{f(a)}{g(a)}\right)' = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$

A dále:

Nechť má funkce f v bodě $a \in D(f)$ derivaci a funkce g má derivaci v bodě $f_a = f(a)$.

Pak má derivaci i složená funkce $y = g(f(a)) = f \circ g$ a platí

$$y' = (g(f(a)))' = g'(f_a) \cdot f'(a) = g'(f(a)) \cdot f'(a).$$

Věta 9.2.3

Nechť má funkce f v bodě $a \in D(f)$ derivaci zleva i zprava a tyto derivace se sobě rovnají. Potom má funkce f v bodě a derivaci.

Definice 9.2.2

Má-li funkce f derivace ve všech bodech $a \in M \subseteq D(f)$, potom hovoříme o derivaci na množině M .

Derivaci potom můžeme chápat ve dvojím významu. Za prvé jako číslo odávající směrnici tečny v daném bodě tečny grafu příslušné funkce a za druhé jako novou funkci, kterou nám určují výše uvedené hodnoty na množině M. Tuto novou funkci nazýváme derivace funkce a označujeme $f'(x) = \frac{df(x)}{dx}$.

Tabulka 9.2.1 Na základě definice a věty 9.2.2 platí

1 abulka 9.2.1 Na zaklade definice a vety 9.2.2 plati			
	y = f(x)	y' = f'(x)	D(f)
1.	$c,c \in R$	0	R
2.	$x^n, n \in N, n \in Z, n \in R$	$n \cdot x^{n-1}$	$R, R - \{0\}, R^+$
3.	e^x	e^x	R
4.	$\ln x$	1	R^+
		$\frac{1}{x}$	
5.	$\sin x$	$\cos x$	R
6.	$\cos x$	$-\sin x$	R
7.	arcsin x	1	(-1,1)
		$\sqrt{1-x^2}$	
8.	arccos <i>x</i>	-1	(-1,1)
		$\sqrt{1-x^2}$	
9.	arctgx	1	R
		$1+x^2$	
10.	arc cot gx	-1	R
		$1+x^2$	

Definice 9.2.3 Derivace vyšších řádů

Nechť má funkce f' derivaci na množině M derivaci, potom tuto funkci nazveme druhá derivace a zapisujeme f'' nebo $\frac{d^2 f(x)}{dx^2}$. Analogicky definujeme n-tou derivaci $f^{(n)} = \frac{d^n f(x)}{dx^n}$.

Derivace funkce zadané implicitně

Někdy není jednoduché nebo dokonce možné algebraicky vyjádřit neznámou funkci z předpisu F(x,y)=0, potom hovoříme o funkci f:y=f(x) zadané implicitně. Je-li fce F na nějakém okolí bodu $[x_0,y_0]$ ryze monotónní, potom existuje derivace funkce f a při jeho

výpočtu derivujeme obě strany implicitní rovnice funkce, přičemž se symbolem y zacházíme jako se složenou funkcí y = f(x).

Příklad 9.2.1

Určete tečnu kružnice o obecné rovnici $x^2 + y^2 = r^2$ v bodě $x = x_0 < r, y = ? > 0$.

Dosazením x_0 do rovnice kružnice s přihlédnutím k podmínce kladené na y platí:

$$y_0 = \sqrt{r^2 - x_0^2}$$
. Derivací obou stran rovnice dostáváme $2 \cdot x + 2 \cdot y \cdot y' = 0$, odkud $y' = \frac{-x}{y}$.

Proto
$$y'_{[x_0,y_0]} = \frac{-x_0}{\sqrt{r^2 - x_0^2}}$$
. Pro tečnu dosazením do vztahu $y - y_0 = k \cdot (x - x_0)$

dostáváme
$$y - \sqrt{r^2 - x_0^2} = \frac{-x_0}{\sqrt{r^2 - x_0^2}} \cdot (x - x_0).$$

Pár důležitých vět na závěr:

Rolleova věta

Nechť funkce f má tyto vlastnosti:

- 1) je spojitá na intervalu $\langle a, b \rangle$
- 2) má derivaci v každém bodě intervalu (a,b)
- 3) f(a) = f(b) = 0

Potom existuje takový bod $c \in (a,b)$, že f'(c) = 0.

a její zobecnění

Věta Lagrangeova

Nechť funkce f má tyto vlastnosti:

- 1) je spojitá na intervalu $\langle a,b \rangle$
- 2) má derivaci v každém bodě intervalu (a,b)

Potom existuje takový bod $c \in (a,b)$, že $f'(c) = \frac{f(b) - f(a)}{b - a}$.