# ELECTRÓNICA DE POTENCIA - PARCIAL 1

## FACULTAD DE ING. ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

Nombre: Prof. Abdiel Bolaños Cédula: 7-702-779

Fecha: 27 - 4 - 2015

## I- RESPONDA LAS SIGUIENTES PREGUNTAS (6 puntos cada una)

- 1. A qué tipo de diodo pertenece la curva de la figura 1 y cuál sería la potencia disipada por éste para una corriente de 20A y una Ti=175°C.
- 2. Cuál es el valor mínimo del voltaje que debe aplicarse a la compuerta del transistor de la figura 2 para asegurar que fluya una corriente de 200A si la temperatura de juntura es 150°C.
- 3. Para el circuito de la figura 3, cual sería el espesor de la base si se quiere obtener el mayor valor de voltaje de colector-emisor apagado (Vcrs)
- 4. Para un transistor con un snubber de bloqueo que trabaja a 60V con una corriente de carga de 15A, cuánto se supone (según las fórmulas) que es el valor máximo posible de la corriente de descarga del capacitor.
- 5. De los tres tipos transistores de potencia vistos en clases, cuál recomienda para la etapa de potencia de un control de velocidad de motores de inducción que trabajan con un voltaje de 480Vrms? Vec

#### IL RESUELVA LOS SIGUIENTES PROBLEMAS

- Se quiere utilizar un IGBT IRG4P254S para conmutar una carga inductiva de 23A y 400V. La frecuencia de operación puede ser 2.5kHz o 8kHz y el ciclo de trabajo puede variar entre 0.2 y 0.95. La temperatura ambiente varía entre 20 y 32°C. Por cuestión de costos el disipador debe ser lo menor posible.
  - a. Calcule la resistencia térmica máxima del disipador de calor. 20 ptos
  - b. Calcule los snubber de bloqueo y disparo considerando que Cs=Cs1 y que ΔVce=0.5Vd y ΔVce<sub>MAX</sub>=.25Vd. 30 ptos
  - c. Escoja un nuevo disipador considerando la reducción en las pérdidas de potencia en el transistor. 20 ptos

#### BUENA SUERTE

#### FORMULAS:

$$P_{ON} = DI_O^2 R_{DS(ON)} = DI_O V_{CE} \qquad P_S = V_d I_O f_S (t_f + t_f) \qquad P_{TOT} = P_S + P_{ON}$$

$$P_{s} = V_{d}I_{O}f_{s}(t_{r} + t_{f})$$

$$P_{TOT} = P_S + P_{ON}$$

$$T_{J \max} = T_A + P_{TOT} \left( R_{\phi IC} + R_{\phi CS} + R_{\phi SA} \right)$$

Snubber

$$C_{SI} = \frac{I_O t_f}{2V_A}$$

$$\frac{V_d}{R_s} = 0.2I_O$$

$$\frac{V_d}{R_s} = 0.2I_O \qquad P_{RS} = \frac{C_s V_d^2}{2} f_S$$

Disaparo 
$$\Delta V_{CE} = \frac{L_{S}I_{O}}{I_{m}}$$

$$\Delta V_{CE,max} = R_{LS} I_C$$

$$\Delta V_{CE,max} = R_{LS} I_O \qquad P_{RLS} = \frac{L_S I_O^2}{2} f_S$$

$$P_{Q} = \frac{I_{O}^{2} t_{I}^{2} f_{s}}{24C_{s}} \qquad P_{Q} = \frac{V_{CE} I_{O} t_{r}}{2} f_{s}$$

$$Q_{CS} f_{S}$$

$$P_Q = \frac{V_{CE}I_O I_e}{2} f_S$$



## **DATA DE FABRICANTE IRG4PF50W**

#### **Features**

- Optimized for use in Welding and Switch-Mode Power Supply applications
- Industry benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability



### **Thermal Resistance**

|      | Parameter                                 | Тур.     | Max. | Units  |
|------|-------------------------------------------|----------|------|--------|
| ReJC | Junction-to-Case                          |          | 0.64 |        |
| Recs | Case-to-Sink, Flat, Greased Surface       | 0.24     |      | -cw    |
| Reja | Junction-to-Ambient, typical socket mount |          | 40   |        |
| Wt   | Weight                                    | 6 (0.21) |      | g (oz) |

**Absolute Maximum Ratings** 

|                                        | Parameter                              | Max.                              | Units |
|----------------------------------------|----------------------------------------|-----------------------------------|-------|
| VCES                                   | Collector-to-Emitter Breakdown Voltage | 900                               | ٧     |
| Ic @ Tc = 25℃                          | Continuous Collector Current           | 51                                |       |
| Ic @ Tc = 100 ℃                        | Continuous Collector Current           | 28                                | A     |
| Icm                                    | Pulsed Collector Current ①             | 204                               |       |
| ILM                                    | Clamped Inductive Load Current 2       | 204                               |       |
| VGE                                    | Gate-to-Emitter Voltage                | ± 20                              | ٧     |
| EARV                                   | Reverse Voltage Avalanche Energy       | 186                               | mJ    |
| P <sub>D</sub> @ T <sub>C</sub> = 25℃  | Maximum Power Dissipation              | 200                               | w     |
| P <sub>D</sub> @ T <sub>C</sub> = 100℃ |                                        | 78                                |       |
| TJ                                     | Operating Junction and                 | -55 to + 150                      |       |
| T <sub>STG</sub>                       | Storage Temperature Range              |                                   | _l °C |
|                                        | Soldering Temperature, for 10 seconds  | 300 (0.063 in. (1.6mm from case ) |       |

| t <sub>d(on)</sub>  | Turn-On Delay Time   | <b>—</b> | 28   |          |      | T <sub>J</sub> = 150℃,                       |
|---------------------|----------------------|----------|------|----------|------|----------------------------------------------|
| t <sub>r</sub>      | Rise Time            | _        | 26   | _        | ns   | I <sub>C</sub> = 28A, V <sub>CC</sub> = 720V |
| t <sub>d(off)</sub> | Turn-Off Delay Time  |          | 280  | _        | ,,,, | $V_{GE} = 15V$ , $R_G = 5.0\Omega$           |
| tı                  | Fall Time            | _        | 90   | _        |      | Energy losses include "tail"                 |
| Ets                 | Total Switching Loss |          | 3.45 | <b> </b> | mJ   | See Fig. 13, 14                              |







| DATOS            | Incognita |
|------------------|-----------|
| Jo= 23 A         | a. Rosa   |
| V = 400 v        | 1         |
| fo= 2.5 Me-Skile | b. Sa Su  |
| D= 0.2-095       | C. Rosa'  |
| Ta = 20 - 32°C   |           |

Snubber de Bloqueo

$$R_5 = \frac{V_d}{0.2 J_o}$$

$$R_6 = \frac{(23)(9005)}{2(400)}$$
  $R_6 = \frac{400}{0.262}$ 



1 Ke = 0-5 Vd , DVa mx = 0.25 Vd Snubber de Disporo ;

$$R\phi SA = \frac{150 - 32}{49.72} - 0.64 - 0.24$$

$$P_{q_{B}} = \frac{I_{o}^{2} t_{f}^{2} f_{s}}{24C_{s}}$$

$$P_{q_{B}} = \frac{(23)^{2} (90ns)^{2} (8kHz)}{(24)(2.59\times10^{9})}$$