Empirical Risk Minimization and Maximum Likelihood Estimation

CPT_S 434/534 Neural network design and application

Empirical risk minimization

Proposition 4.1 For any sample S, the following inequality holds for the hypothesis returned by ERM:

$$\mathbb{P}\left[R(h_S^{\text{ERM}}) - \inf_{h \in \mathcal{H}} R(h) > \epsilon\right] \le \mathbb{P}\left[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| > \frac{\epsilon}{2}\right]. \tag{4.3}$$

Corollary 3.19 (VC-dimension generalization bounds) Let \mathcal{H} be a family of functions taking values in $\{-1,+1\}$ with VC-dimension d. Then, for any $\delta>0$, with probability at least $1-\delta$, the following holds for all $h\in\mathcal{H}$:

$$R(h) \le \widehat{R}_S(h) + \sqrt{\frac{2d\log\frac{em}{d}}{m}} + \sqrt{\frac{\log\frac{1}{\delta}}{2m}} \cdot = O(\sqrt{1/m})$$
 (3.29)

Empirical risk minimization

Definition 2.2 (Empirical error) Given a hypothesis $h \in \mathcal{H}$, a target concept $c \in \mathcal{C}$, and a sample $S = (x_1, \ldots, x_m)$, the empirical error or empirical risk of h is defined by

$$\min_{h} \widehat{R}_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} 1_{h(x_{i}) \neq c(x_{i})}.$$
(2.2)

Too hard: need a surrogate

Maximum likelihood principle

Bernoulli distribution:

If X is a random variable with this distribution, then:

$$\Pr(X=1)=p=1-\Pr(X=0)=1-q.$$

The probability mass function f of this distribution, over possible outcomes k, is

$$f(k;p) = \left\{egin{array}{ll} p & ext{if } k=1, ext{ iny [2]} \ q=1-p & ext{if } k=0. \end{array}
ight.$$

This can also be expressed as

$$f(k;p) = p^k (1-p)^{1-k} \quad ext{for } k \in \{0,1\}$$

 $(x_i, y_i) \rightarrow p(x_i)$ is the **underlying** probability of x_i belonging to class 1 $(y_i = 1)$

Observe n samples (simultaneously)

$$\prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i)^{1-y_i})$$
 Likelihood function

Maximum likelihood estimation (MLE)

Likelihood function

$$L(w) = P_w(X_1 = x_1, \dots, X_n = x_n) = f(w; x_1) \times \dots \times f(w; x_n) = \prod_{i=1}^n f(w; x_i)$$
approximate
$$\prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i)^{1-y_i})$$

Maximum likelihood estimation (MLE)

Maximizing likelihood function

Difficult to optimize
$$\max_{w} L(w) = \prod_{i=1}^{n} f(w; x_i)$$

Maximum likelihood estimation (MLE)

Maximizing likelihood function

Difficult to optimize
$$\max_{w} L(w) = \prod_{i=1}^{n} f(w; x_i)$$

Maximizing log-likelihood function

Q: how to approximate the probability?

$$\max_{w} \log L(w) = \log \prod_{i=1}^{n} f(w; x_i) = \sum_{i=1}^{n} \log (f(w; x_i))$$

Easy to optimize

Logistic function

Logistic regression

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)}) = -\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log\left(\frac{1}{1 + e^{-(2y_i - 1)f(w; x_i)}}\right)$$
Probability=1
$$f_{sigmoid}(z) = \frac{1}{1 + e^{-z}}$$
Probability=0

Softmax function: generalization of logistic function to multiclass

$$f_{sigmoid}(z) = \frac{1}{1 + e^{-z}}$$

$$z \in \mathbb{R}$$
: prediction to class 1

Prediction: probability-like output
$$f_{sigmoid}(z) = \frac{1}{1+e^{-z}} \qquad z \in \mathbb{R} \text{: prediction to class 1}$$

$$f_{softmax}(z_k) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}} \qquad z \in \mathbb{R}^K \text{: prediction to K classes}$$
 Normalization: summation of all elements=1

Logistic model (binary classification)

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)}) = \min_{w} -\frac{1}{n} \sum_{i=1}^{n} \log(f_{sigmoid}((2y_i - 1)f(w; x_i)))$$

Logistic model (binary classification)

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)}) = \min_{w} -\frac{1}{n} \sum_{i=1}^{n} \log(f_{sigmoid}((2y_i - 1)f(w; x_i)))$$

Softmax classifier (multiclass classification)

$$\min_{w} -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{i,k} \log(f_{softmax}(f(w; x_{i,k})))$$

One-hot

8 bits

Cross-entropy loss

Logistic model (binary classification)

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)}) = \min_{w} -\frac{1}{n} \sum_{i=1}^{n} \log(f_{sigmoid}((2y_i - 1)f(w; x_i)))$$

Softmax classifier (multiclass classification)

$$\min_{w} -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{i,k} \log(f_{softmax}(f(w; x_{i,k})))$$

$$\sum_{k=1}^{K} y_{i,k} \log \left(\frac{e^{f(w;x_{i,k})}}{\sum_{j=1}^{K} e^{f(w;x_{i,j})}} \right) = \sum_{k=1}^{K} y_{i,k} f(w;x_{i,k}) - \sum_{k=1}^{K} y_{i,k} \log \left(\sum_{j=1}^{K} e^{f(w;x_{i,j})} \right)$$

$$= \sum_{k=1}^{K} y_{i,k} f(w;x_{i,k}) - \log \left(\sum_{j=1}^{K} e^{f(w;x_{i,j})} \right)$$
 (Usually used in deep learning)

One-hot

00000001

00000010

00000100

00001000

8 bits

00010000

00100000

01000000

10000000

Cross-entropy loss

Why is ERM general?

- Including many objective functions used in machine learning
- MLE: a special case of ERM
 - E.g., logistic regression

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)})$$

Why is ERM general?

- Including many objective functions used in machine learning
- MLE: a special case of ERM
 - E.g., logistic regression

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)})$$

$$= -\max_{w} -\frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)})$$

Why is ERM general?

- Including many objective functions used in machine learning
- MLE: a special case of ERM
 - E.g., logistic regression

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)})$$

$$= -\max_{w} -\frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-(2y_i - 1)f(w; x_i)})$$

$$= -\max_{w} \frac{1}{n} \sum_{i=1}^{n} \log\left(\frac{1}{1 + e^{-(2y_i - 1)f(w; x_i)}}\right)$$

An optimization problem (on training set)

Analytical solution?

An optimization problem (on training set)

Analytical solution?

$$min_w \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2$$

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow 0 \quad \Longrightarrow \quad XX' w^* - XY = 0$$

$$X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{d \times n}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ ... \end{bmatrix} \in \mathbb{R}^n$$

An optimization problem (on training set)

Analytical solution?

$$\min_{w} \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2$$

$$X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{d \times n}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

An optimization problem (on training set)

Analytical solution?

$$X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{d \times n}$$

$$min_w \frac{1}{2n} \sum_{i=1}^{n} (x_i'w - y_i)^2$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow 0 \quad \Longrightarrow \quad XX' w^* - XY = 0$$

$$XX'w^* - XY = 0$$

$$w^* = (XX')^{-1}XY$$

Q: is this closed form solution a good way in practice? Why?

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

Inverse of a scalar?

$$x x^{-1} = 1 \rightarrow x^{-1} = 1/x$$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Inverse of a scalar?

• Inverse of a matrix?

$$XX^{-1} = 1 \to X^{-1} = 1/X$$

$$XX^{-1} = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication	One $n imes m$ matrix & one $m imes p$ matrix	One $n imes p$ matrix Schoolbook matrix multiplication		O(nmp)
	One $n imes n$ matrix		Gauss-Jordan elimination	$O(n^3)$
Matrix inversion*		One make matrix	Strassen algorithm	$O(n^{2.807})$
Matrix inversion		One $n imes n$ matrix	Coppersmith-Winograd algorithm	$O(n^{2.376})$
			Optimized CW-like algorithms	$O(n^{2.373})$

2

One $n \times m$ matrix &

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

	Matrix multiplication	one $m imes p$ matrix	One $n imes p$ matrix	Schoolbook matrix multiplication	O(nmp)
No	t avanu maatniv baa invansi	h.m.			2(3)
NO	t every matrix has inversion	on		Gauss–Jordan elimination	$O(n^3)$
Matrix inve	Matrix inversion*	One $n imes n$ matrix	One $n imes n$ matrix	Strassen algorithm	$O(n^{2.807})$
	VIALITA ITTVETSIOTT			Coppersmith-Winograd algorithm	$O(n^{2.376})$
				Optimized CW-like algorithms	$O(n^{2.373})$

Computational complexity for the analytical solution?

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to 0 \quad \Longrightarrow \quad XX' w^* - XY = 0 \quad \Longrightarrow \quad w^* = (XX')^{-1} XY$$

Matrix multiplication:

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication:

$$XX'$$
: $d \times n \times d$ XY : $d \times n$ $(XX')^{-1}XY$: $d \times d \times n \rightarrow O(d^2n)$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication:

$$XX'$$
: $d \times n \times d$ XY : $d \times n$ $(XX')^{-1}XY$: $d \times d \times n \rightarrow O(d^2n)$

Inverse of a matrix:

$$(XX')^{-1}$$
: $O(d^{2.373})$

Computational complexity for the analytical solution?

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_{i}' w x_{i} - y_{i} x_{i} \to 0 \quad \Longrightarrow \quad XX' w^{*} - XY = 0 \quad \Longrightarrow \quad w^{*} = (XX')^{-1} XY$$

Matrix multiplication:

$$XX'$$
: $d \times n \times d$ XY : $d \times n$ $(XX')^{-1}XY$: $d \times d \times n \rightarrow O(d^2n)$

Inverse of a matrix:

$$(XX')^{-1}$$
: $O(d^{2.373})$

Total complexity

$$O(d^2n + d^{2.373})$$

Gradient descent (GD)

$$\nabla_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i' w x_i - y_i x_i \rightarrow O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \rightarrow O(d)$$
 An iterative algorithm

Gradient descent (GD)

Gradient descent (GD)

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \to O(d) \longrightarrow \text{An iterative algorithm}$$

- Suppose run GD for T iterations
- Total complexity

O(dnT)

Gradient descent (GD)

$$\nabla_w f(w) = \frac{1}{n} \sum_{i=1}^n x_i' w x_i - y_i x_i \to O(dn)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \to O(d) \longrightarrow \text{An iterative algorithm}$$

- Suppose run GD for T iterations
- Total complexity

O(dnT) VS. $O(d^2n + d^{2.373})$ for the closed form solution

- When to terminate GD (determining T)?
 - Convergence rate for GD?

Theorem 2.1.14 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$ then the gradient method generates a sequence $\{x_k\}$ such that

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If
$$h = \frac{2}{\mu + L}$$
 then

$$||x_k - x^*|| \le \left(\frac{Q_f - 1}{Q_f + 1}\right)^k ||x_0 - x^*||,$$

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{Q_f - 1}{Q_f + 1}\right)^{2k} \|x_0 - x^*\|^2$$

where $Q_f = L/\mu$.

- When to terminate GD (determining T)?
 - Convergence rate for GD?

Theorem 2.1.14 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$ then the gradient method generates a sequence $\{x_k\}$ such that

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If
$$h = \frac{2}{\mu + L}$$
 then

$$||x_k - x^*|| \le \left(\frac{Q_f - 1}{Q_f + 1}\right)^k ||x_0 - x^*||,$$

$$f(x_k) - f^* \leq \frac{\frac{L}{2} \left(\frac{Q_f - 1}{Q_f + 1}\right)^{2k} \parallel x_0 - x^* \parallel^2,}{\left| = \epsilon(\mathbf{k}) = O(a^k) \right|}$$

Approximated solution (not exact)

$$= \epsilon(\mathbf{k}) = O(a^k)$$

where $Q_f = L/\mu$.

- When to terminate GD (determining T)?
 - Convergence rate for GD?

Theorem 2.1.14 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$ then the gradient method generates a sequence $\{x_k\}$ such that

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If
$$h = \frac{2}{\mu + L}$$
 then

$$\|x_k - x^*\| \le \left(\frac{Q_f - 1}{Q_f + 1}\right)^k \|x_0 - x^*\|,$$
 Approximated solut $f(x_k) - f^* \le \frac{L}{2} \left(\frac{Q_f - 1}{Q_f + 1}\right)^{2k} \|x_0 - x^*\|^2,$ $= \epsilon(\mathbf{k}) = O(a^k)$

Approximated solution (not exact)

$$= \epsilon(\mathbf{k}) = O(a^k) \qquad 0 < a < 1$$

$$k = O(\log_{1/a}(1/\epsilon))$$
35

where $Q_f = L/\mu$.

Now we can answer the question:

Can Gradient Descent (GD) do better?

 $\begin{array}{c} \mathsf{GD} \\ \mathit{O}(\mathit{dnT}) \end{array}$

VS

Analytical solution $O(d^2n + d^{2.373})$

Now we can answer the question:

Can Gradient Descent (GD) do better?

• Is log term $log_{1/a}(1/\epsilon)$ large?

• Is log term $log_{1/a}(1/\epsilon)$ large?

• Is *d* large?

name	source	type	class	training size	testing size	feature	
<u>a1a</u>	<u>UCI</u>	classification	2	1,605	30,956	123	
<u>a2a</u>	<u>UCI</u>	classification	2	2,265	30,296	123	
<u>a3a</u>	<u>UCI</u>	classification	2	3,185	29,376	123	
<u>a4a</u>	<u>UCI</u>	classification	2	4,781	27,780	123	
<u>a5a</u>	<u>UCI</u>	classification	2	6,414	26,147	123	
<u>a6a</u>	<u>UCI</u>	classification	2	11,220	21,341	123	
<u>a7a</u>	<u>UCI</u>	classification	2	16,100	16,461	123	
<u>a8a</u>	<u>UCI</u>	classification	2	22,696	9,865	123	
<u>a9a</u>	<u>UCI</u>	classification	2	32,561	16,281	123	
<u>australian</u>	Statlog	classification	2	690	_	14	
<u>avazu</u>	Avazu's Click-through Prediction	classification	2	40,428,967	4,577,464	1,000,000	1,000,000
<u>breast-cancer</u>	<u>UCI</u>	classification	2	683	_	10	
<u>cod-rna</u>	[AVU06a]	classification	2	59,535		8	
<u>colon-cancer</u>	[<u>AU99a</u>]	classification	2	62		2,000	
<u>covtype.binary</u>	<u>UCI</u>	classification	2	581,012		54	1 000 000
<u>criteo</u>	Criteo's Display Advertising Challenge	classification	2	45,840,617	6,042,135	1,000,000	1,000,000
criteo tb	Criteo's Terabyte Click Logs	classification	2	4,195,197,692	178,274,637	1,000,000	1,000,000
<u>diabetes</u>	<u>UCI</u>	classification	2	768	_	8	2,000,000
duke breast-cancer	[<u>MW01a</u>]	classification	2	44		7,129	
<u>epsilon</u>	PASCAL Challenge 2008	classification	2	400,000	100,000	2,000	
<u>fourclass</u>	[<u>TKH96a</u>]	classification	2	862		2	
german.numer	Statlog	classification	2	1,000		24	
<u>gisette</u>	NIPS 2003 Feature Selection Challenge [IG05a]	classification	2	6,000	1,000	5,000	
<u>heart</u>	Statlog	classification	2	270		13	
<u>HIGGS</u>	<u>UCI</u>	classification	2	11,000,000		28	
<u>ijenn1</u>	[<u>DP01a</u>]	classification	2	49,990	91,701	22	
<u>ionosphere</u>	<u>UCI</u>	classification	2	351		34	20,216,830
kdd2010 (algebra)	KDD CUP 2010	classification	2	8,407,752	510,302	20,216,830	
kdd2010 (bridge to algebra)	KDD CUP 2010	classification	2	19,264,097	748,401	29,890,095	29,890,095
kdd2010 raw version (bridge to algebra)	KDD CUP 2010	classification	2	19,264,097	748,401	1,163,024	1,164,024
kdd2012	KDD CUP 2012	classification	2	149,639,105		54,686,452	
					_		54,686,452

• Is **d** large? Yes! Analytical solution GD VS O(dnT)dn $\log_{1/a}(1/\epsilon)$ $(10^6)^2 \times 10^9 - (10^6 \times 10^8 = 10^{20} - 10^{14} \approx 10^{20})$ $O(dn \times log_a)$ $< O(d^2n + n^{2.373})$

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

Randomly sample b data
$$\nabla_w f(w) = \frac{1}{b} \sum_{i=1}^b x_i' w x_i - y_i x_i \to O(db)$$

$$w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \to O(d) \longrightarrow \text{An iterative algorithm}$$

Theorem 5 Set the parameters $T_1 = 4$ and $\eta_1 = \frac{1}{\lambda}$ in the EPOCH-GD algorithm. The final point \mathbf{x}_1^k returned by the algorithm has the property that

$$\mathbb{E}[F(\mathbf{x}_1^k)] - F(\mathbf{x}^*) \leq \frac{16G^2}{\lambda T} \cdot \boxed{= \epsilon(\mathsf{T}) \to T = O(\frac{1}{\epsilon})}$$

The total number of gradient updates is at most T.

Stochastic gradient descent (SGD)

Randomly sample b data
$$\nabla_w f(w) = \frac{1}{b} \sum_{i=1}^b x_i' w x_i - y_i x_i \to O(db)$$

 $w_{t+1} = w_t - \alpha_t \nabla_w f(w_t) \rightarrow O(d)$ An iterative algorithm

Theorem 5 Set the parameters $T_1 = 4$ and $\eta_1 = \frac{1}{\lambda}$ in the EPOCH-GD algorithm. The final point \mathbf{x}_1^k returned by the algorithm has the property that

$$\mathbb{E}[F(\mathbf{x}_1^k)] - F(\mathbf{x}^*) \leq \frac{16G^2}{\lambda T} \cdot \boxed{= \epsilon(\mathsf{T}) \to T = O(\frac{1}{\epsilon})}$$

The total number of gradient updates is at most T.

O(dbT)

Analytical solution $O(d^2n + d^{2.373})$

 $dn \gg b/\epsilon$

References

- Jung, Alexander. (2018). Machine Learning: Basic Principles.
- Nesterov, Yurii. *Introductory lectures on convex optimization: A basic course*. Vol. 87. Springer Science & Business Media, 2003.