Babes-Bolyai University, Faculty of Mathematics and Computer Science Analysis for Computer Science

Year: 2015/2016

Exercise Set #6

- 1. Find the derivatives of the following functions:
- a) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{\sin^2 x}$, b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin\left(e^{(x+1)^2}\right)$,
- c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin^2 x + \cos^2 x$, d) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin^n(x)\cos(nx)$ $(n \in \mathbb{N}^*)$, e) $f: (1, +\infty) \to \mathbb{R}$, $f(x) = \ln(\ln x)$, f) $f: (0, +\infty) \to \mathbb{R}$, $f(x) = x^x$.
- 2. Show that $f:[0,\infty)\to\mathbb{R}, f(x)=\sqrt{x}$ is not differentiable at 0.
- 3. How many times is the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2, & \text{if } x \ge 0 \\ -x^2, & \text{if } x < 0 \end{cases}$ differentiable?
- 4. Find the n^{th} derivative $(n \in \mathbb{N})$ of the following functions:
- a) $f: (-1, +\infty) \to \mathbb{R}$, $f(x) = \ln(x+1)$, b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$, c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$, d) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{2x}x^3$, e) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x \sin x$.
- 5. Prove that every differentiable odd function has an even derivative and every differentiable even function has an odd derivative.
- 6. Let $a, b \in \mathbb{R}$, a < b and $f: [a, b] \to \mathbb{R}$. Suppose that f is continuous on [a, b] and differentiable on (a,b) with bounded derivative. Prove that f is Lipschitz.
- 7. Let $a, b \in \mathbb{R}$, a < b and $f: [a, b] \to \mathbb{R}$. Suppose that f is continuous on [a, b] and differentiable on (a,b). Prove that $\exists c \in (a,b)$ such that (c-a)(c-b)f'(c) = a+b-2c. Hint: Consider the function $g:[a,b]\to\mathbb{R}, g(x)=e^{f(x)}(x-a)(x-b)$.
- 8. Use the Mean Value Theorem to compute $\lim_{n\to\infty} n\left(1-\cos\frac{1}{n}\right)$.
- 9. Use L'Hôpital's rules to compute $\lim_{x\to 0} \frac{e-(1+x)^{\frac{1}{x}}}{x}$. Then evaluate $\lim_{n\to\infty} n\left(e-\left(1+\frac{1}{n}\right)^n\right)$ (see Ex. 3.(m), Exercise Set #4)
- 10. Compute the following limits:
- a) $\lim_{x \to 0} \frac{e^x + e^{-x} 2}{1 \cos x}$, b) $\lim_{x \to 0} \frac{x^2 \sin^2 x}{x^4}$, c) $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$, d) $\lim_{x \to \infty} \frac{x + \ln x}{x \ln x}$, e) $\lim_{x \to 0} x \ln \sin x$,
- f) $\lim_{\substack{x \to 0 \\ x > 0}} (\sin x)^x.$
- 11. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 3x^2 + 5x + 1$. Find the third Taylor polynomial $T_3(x)$ of f at 1.
- 12. Let $f:[0,\infty)\to\mathbb{R}$, $f(x)=\sqrt[3]{x}$. Find the second Taylor polynomial $T_2(x)$ of f at 1 and the remainder term $R_2(x)$ (using Taylor's formula). If $x \in [0.9, 1.1]$, find an upper bound for $|R_2(x)|$.
- 13. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$. Find the second Taylor polynomial $T_2(x)$ of f at 0 and the remainder term $R_2(x)$ (using Taylor's formula). Then show that $\forall x \in \mathbb{R}, 1 - \frac{x^2}{2} \le \cos x$.
- 14. For the following functions $f: D \to \mathbb{R}$, find the n^{th} Taylor polynomial $T_n(x)$ of f at 0 and the remainder term $R_n(x)$ (using Taylor's formula). Then show that f can be expanded as a Taylor series around 0 on D and find the corresponding Taylor series expansion:
- a) $D = [0, 1], f(x) = \ln(x+1),$ b) $D = \mathbb{R}, f(x) = \sin x,$ c) $D = \mathbb{R}, f(x) = \cos x.$