Estadística Multivariante Derivación matricial

Trabajo B

Antonio R. Moya Martín-Castaño Elena Romero Contreras Nuria Rodríguez Barroso

Universidad de Granada anmomar85@correo.ugr.es elenaromeroc@correo.ugr.es rbnuria6@gmail.com

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Introducción	2
	Diferencial primera y jacobianos 2.1. Diferencial de una función vectorial	
	Matrices jacobianas y derivadas matriciales	4
4.	Diferencial segunda y hessianos	5

1. Introducción

En este apartado se va a tratar la derivación respecto a vectores y matrices, que es muy necesaria en estadística multivariante sobre todo desde el punto de vista de la optimización. Así, permite calcular datos tales como estimador máximo verosímil, matrices de información de Fisher, o cotas tipo Crámer-Rao. Más importancia tiene todavía este tema si tenemos en cuenta que, si ya la derivación vectorial puede dar lugar a cálculos costosos, en el caso de la matricial se pueden generar un enorme número de derivadas que pueden resultar difícil de ordenar con sentido en una matriz.

2. Diferencial primera y jacobianos

2.1. Diferencial de una función vectorial

Definición 2.2.1: Consideramos una función vectorial $f: S \to \mathbb{R}^m$ con $S \subset \mathbb{R}^n$. Sea **c** un punto interior de S y consideremos una bola cerrada con centro en **c** y radio **r**, B(c,r). Sea u un punto de \mathbb{R}^n tal que $||u|| \le r$ es decir, $c + r \in B(c,r)$.

Diremos que f es **diferenciable** en **c** si existe una matriz real de orden $m \times n$ que depende de c y no de u y que cumple que $f(c+u) - f(c) = A(c)u + r_c(u)$ con $\lim_{u\to 0} \frac{r_c(u)}{||u||} = 0$. Además, se define la **primera diferencial** de f en el punto c con incremento u como: df(c; u) = A(c)u.

Definición 2.2.2: Sea $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$ y sea $f_i: S \to \mathbb{R}$ su i-ésima componente. Sea c un punto interior de S y e_j el j-ésimo vector de la base canónica de \mathbb{R}^n . Se define la **derivada parcial** de f respecto a la j-ésima coordenada como:

$$D_j f_i(c) = \lim_{t \to 0} \frac{f_i(c + te_j) - f_i(c)}{t}, t \in \mathbb{R}$$

Teorema 2.1. (Primer teorema de identificación para funciones vectoriales)

Sea $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$ differenciable en un punto c interior de S y $u \in \mathbb{R}^n$. Entonces df(c; u) = (Df(c))u donde Df(c) es una matriz mxn cuyos elementos $D_j f_i(c)$ son las derivadas parciales de \mathbf{f} evaluadas en c y que recibe el nombre de matriz jacobiana. Reciprocamente, si A(c) es una matriz que verifica que $df(c; u) = A(c)u \forall u \in \mathbb{R}^n$, entonces A(c) = Df(c).

El siguiente teorema nos proporciona la regla de la cadena para funciones vectoriales.

Teorema 2.2. Sea $f: S \subset \mathbb{R}^n \to \mathbb{R}^m$ diferenciable en un punto c interior de S. Sea T un subconjunto de \mathbb{R}^m tal que $f(x) \in T \forall x \in S$ y supongamos que $g: T \to \mathbb{R}^p$ es diferenciable en un punto b (b = f(c)) de T. Entonces la función compuesta $h: S \to \mathbb{R}^p$ definida por h(x) = g(f(x)), es diferenciable en c y Dh(c) = Dg(b)Df(c).

Teorema 2.3. (Regla de invarianza de Cauchy)

En el ambiente del teorema anterior, si f es diferenciable en c y g lo es en b=f(c), entonces la diferenciable $h = g \circ f$ es dh(c; u) = dg(b; df(c; u)).

2.2. Diferencial de una función matricial

Basta con extrapolar lo dicho en el caso vectorial usando la operación Vec.

Consideramos una función matricial $F: S \to \mathbb{M}_{m \times p}$ donde $S \subseteq \mathbb{M}_{n \times q}$. Sea C un punto itnerior de S, $\mathbb{B}(C;r) \subseteq S$ una bola abierta y U un punto de $\mathbb{M}_{n \times q}$ con ||U|| < r, por lo que C + U pertenece a $\mathbb{B}(C;r)$, donde hemos considerado la norma matricial $||U|| = (\operatorname{tr}[U^tU])^{\frac{1}{2}}$.

Definición 2.1. En las condiciones anteriores, se dice que F es diferenciable en C si existe una matriz A de dimensiones $mp \times nq$, que dependa de C y no de U y tal que

$$\operatorname{Vec}(F(C+U)) - \operatorname{Vec}(F(C)) = A(C)\operatorname{Vec}(U) + \operatorname{Vec}(R_C(U)) \text{ donde } \lim_{U \to 0} \frac{R_C(U)}{||U||} = 0$$

Se define la **matriz diferencial** de F en C con incremento U como la matriz dF(C; U) de dimensiones $m \times p$ que verifique Vec(dF(C; U)) = A(C)Vec(U) y a la matriz A(C) se le llama la **primera derivada** de F en C.

Todas las propiedades de cálculo para las funciones matriciales se deducen de las correspondientes propiedades de las funciones vectoriales.

Tenemos los siguientes resultados análogos a los del caso vectorial:

Teorema 2.4. (Primer teorema de identificación para funciones matriciales) Sea $F: S \subseteq \mathbb{M}_{n \times q} \to \mathbb{M}_{m \times p}$ diferencialbe en un punto interior C de S. Entonces se verifica $Vec(dF(C; U)) = A(C) Vec(U) \Leftrightarrow DF(C) = A(C)$.

Teorema 2.5. (Regla de la cadena para funcones matriciales) Sea $F: S \subseteq \mathbb{M}_{n \times q} \to \mathbb{M}_{m \times p}$ diferencialbe en un punto interior C de S. Sea T un subconjunto de $> \times +$ tal que $F(X) \in T, \forall X \in S$ y supongamos que $G: T \to \mathbb{M}_{r \times s}$ es diferenciable en un punto B (B = F(C)) de T. Entonces la función compuesta $H: S \to \mathbb{M}_{r \times s}$ definida por H(X) = G(F(X)) es diferenciable en C y DH(C) = DG(B)DF(C).

Teorema 2.6. (Regla de invarianza de Cauchy para funciones matriciales) En las condiciones del teorema anterior, $dH(C;U) = dG(B;dF(C;U)), \forall U \in \mathbb{K} \times \mathbb{N}$.

COPIAMOS LAS PROPIEDADES????

EJERCICIO 2.1: Sea $h: \mathbb{R}^k \to \mathbb{R}$ definida por $h(\beta) = (y - X\beta)^t (y - X\beta)$ donde $y \in \mathbb{R}^n$ y $X \in \mathbb{M}_{n \times k}$. Haciendo uso de la regla de invarianza de Cauchy demostrar que

$$dh(c; u) = dg(y - Xc; df(c; u)) = dg(y - Xc; -Xu) = -2(y - Xc)^{t}Xu$$

y con ello $Dh(c) = -2(y - Xc)^t X$.

EJERCICIO 2.2: Sea F(X) = AG(X)B, donde $A_{m \times r}$ y $B_{s \times p}$ son matrices constantes y $G(X)_{r \times s}$ es una función diferenciable. Calcular DF(C) a partir de la definición de diferencial matricial.

Solución:

EJERCICIO 2.3: Si $X_{n\times n}$ es una matriz simétrica y $F: \mathbb{M}_{n\times q} \to \mathbb{M}_{m\times p}$ es diferenciable, demostrar que $d\text{Vec}(F(X)) = D_n DF(X) d\text{Vech}(X)$, mientras que $d\text{Vec}(F(X)) = N_n DF(X) d\text{Vec}(X)$ donde $N_n = \frac{1}{2}[I_{n^2} + K_{nn}].$

Solución:

3. Matrices jacobianas y derivadas matriciales

No existe una única definición para la derivada de una función de argumento matricial y esto supone un problema a la hora de usar el cálculo diferencial matricial.

Veamos las definiciones clásicas para funciones reales de argumento vectorial y vectoriales, tanto de argumento real como vectorial.

Definición 3.1. Sea $f: \mathbb{R}^n \to \mathbb{R}$. Se define la derivada de f respecto de $x \in \mathbb{R}^n$ como el vector $1 \times n$ dado por $\frac{\partial f(x)}{\partial x^t} = \left(\frac{\partial f(x)}{\partial x_1}, ..., \frac{\partial f(x)}{\partial x_n}\right)$. **Definición 3.2.** Sea $f: \mathbb{R} \to \mathbb{R}^m$. Se define la derivada de f respecto de $x \in \mathbb{R}$ como el vector $m \times 1$

dado por $\frac{\partial f(x)}{\partial x} = \left(\frac{\partial f_1(x)}{\partial x}, ..., \frac{\partial f_m(x)}{\partial x}\right)^t$. **Definición 3.3.** Sea $f: \mathbb{R}^n \to \mathbb{R}^m$. Se define la derivada de f respecto de $x \in \mathbb{R}^n$ como la matriz

 $m \times n$

$$\frac{\partial f(x)}{\partial x^t} = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x^t} \\ \vdots \\ \frac{\partial f_m(x)}{\partial x^t} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \dots & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \dots & \dots & \frac{\partial f_m(x)}{\partial x_n} \end{pmatrix}$$

Definición 3.4. Sea $F: \mathbb{M}_{n \times q} \to \mathbb{R}$. Se define la derivada de F respecto de $X \in \mathbb{M}_{n \times q}$ como la matriz $n \times q$

$$\frac{\partial F(X)}{\partial X} = \begin{pmatrix} \frac{\partial F(X)}{\partial x_{11}} & \dots & \dots & \frac{\partial F(X)}{\partial x_{1q}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F(X)}{\partial x_{n1}} & \dots & \dots & \frac{\partial F(X)}{\partial x_{nq}} \end{pmatrix}$$

Definición 3.5. Sea $F: \mathbb{R} \to \mathbb{M}_{m \times p}$. Se define la derivada de F respecto de $x \in \mathbb{R}$ como la matriz $m \times p$

$$\frac{\partial F(x)}{\partial x} = \begin{pmatrix} \frac{\partial F_{11}(x)}{\partial x} & \dots & \frac{\partial F_{1p}(x)}{\partial x} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_{m1}(x)}{\partial x} & \dots & \frac{\partial F_{mp}(x)}{\partial x} \end{pmatrix}$$

Quedan unas cuantas defs xD

EJERCICIO 3.1: A partir de las relacioens existentes entre la derivada matricial y la matriz jacobiana, verificar las siguientes expresiones:

- a) Sea $X_{n \times n}$ y F(X) = tr[X]. Entonces $DF(X) = \text{Vec}^t(I_n)$.
- b) Sea ahora $X_{n\times q}$ y F(X)=X. Entonces $DF(X)=I_q\otimes I_n=I_{nq}$.

EJERCICIO 3.2: Sea $X_{n\times q}$. Demostra las siguientes igualdades:

a)
$$\frac{\partial X^t}{\partial X} = K_{qn}$$
.

b)
$$\frac{\partial X}{\partial X^t} = K_{nq}$$
.

c)
$$\frac{\partial X^t}{\partial X^t} = \text{Vec}(I_q)\text{Vec}^t(I_n).$$

EJERCICIO 3.3: Demostrar que si $X_{n\times n}$ es no singular entonces $\frac{\partial X^{-1}}{\partial X} = -\mathrm{Vec}((X^{-1})^t)\mathrm{Vec}^t(X^{-1}).$ Solución:

4. Diferencial segunda y hessianos