

Proof-of-concept for automatic export of Excel versions of R health economic models

Howard Thom^{1,2}, Michael O'Donnell¹, Queena Wang², Edna Keeney²

1 University of Bristol, UK2 Clifton Insight, Bristol, UK

bristol.ac.uk

Funder acknowledgement

- This work was partly funded by Clifton Insight and the Reliable and Efficient Estimation of the Economic Value of medical Research (REEEVR) project at University of Bristol, itself funded by UK Medical Research Council grant MR/W029855/1.
- All code for today's presentation is available at:

https://github.com/Bogdasayen/R-to-Excel-POC

Why R-to-Excel conversion?

- UK NICE, Irish NCPE, Dutch Zin and other forward-thinking agencies accept R models, but others do not.
- Companies may want to leverage efficiency, flexibility, and transparency advantages of R but will still need an Excel version.
- Double programming models can lead to errors and make it difficult to push updates across international models.
- Instead use R models that can export Excel versions of themselves.

Requirements of R-to-Excel conversion

- Generalisable to any Markov model
- Generate human-readable Excel file suitable for experimentation and for HTA submissions
- Avoid "double programming" the model in both Excel and R

Reverse REEEVR?

- At University of Bristol, we are developing the REEEVR tool to automatically convert Excel models into R.
- This gains benefits of speed (100x improvement) at loss of readability.
- Approach theoretically works on any Excel model (though needs an R equivalent of each Excel function to be implemented)
- Why not do this in reverse to convert R into Excel?

Abstract Syntax Tree - General


```
    while b ≠ 0:
    if a > b:
    a := a - b
    else:
    b := b - a
    return a
```

- Walks the program
- Breaks code into components
- Builds a tree where each leaf is an elementary component of the program
- The tree is language agnostic
- Could be applied to R code

Unreadable and slow!

- A simple 4-state Markov model with 4 interventions results in 2614 lines of unreadable R code.
- Applying in reverse would create either very many unreadable cell calculations, or a small number of very long unreadable cell calculations.
- Result would also likely be very slow as loops and vector operations (e.g., for PSA) would be duplicated Excel cells, rather than VBA macros.

Using R to write Excel formulae

- We instead use the powerful openxlsx R package
- This allows us to write data, formulae and formatting from R to Excel
 - Example usage below

Object Oriented Programming

- Process kept manageable through R6 classes for OOP
- Each model is a markov_model object with member functions and data stored in a markov_inputs object
- Users would call markov_model\$new(...) to create a new Markov model, and the new() constructor takes a markov_inputs object as argument.
- The Markov model object maps relationships between input parameters, transition matrices, costs and QALYs
- This mapping of data relationships is helpful for R-to-Excel conversion

Two key R6 objects and two key functions

We'll start with input_parameters\$df_spec()

Data structure and description

- Data structure and complete description of relationships is key.
- The input parameters object includes a dataframe df_spec that fully specifies the distributions used in either R or Excel.
- The contents of this dataframe are written by specify_excel()
- Column excel_formulae is generated automatically based on inputs

8									excel_f	excel_v
		v_description	v_distrib		hp_			v_treat	ormula	alue_lo
	v_names	S	utions	hp_1	2	from	to	ment	е	cation
9		Probability of								
		quitting if on								
		smoking								
	Probabili	website,							=BETA	
	ty quit	follows a							INV(RA	input_p
	smoking	beta							ND(),	aramet
	website	distribution	beta	15	85	1	2	1	H9, I9)	ers!M9

Example Excel random formula generation

- Cell formulae themselves generated using paste0 statements and cell locations
- Extracted from input_parameters\$specify_excel()

```
# First parameter
Code
               i_parameter <- 1
               # Starting position in Excel sheet
               startRow = 5
               startCol = 8
               # In which column letters would the hyper parameters be stored?
               hp 1 col <- LETTERS[startCol + 1]
               hp 2 col <- LETTERS[startCol + 2]
               paste0("NORMINV(RAND(), ",
                    paste0(hp_1_col, startRow + i_parameter),
                    paste0(hp_2_col, startRow + i_parameter),
               "NORMINV(RAND(), 16, J6)"
Output
```


Insight

Two key R6 objects and two key functions

Next is markov_model\$export_to_excel()

bristol.ac.uk

Markov trace generation

- Generates state occupancy probabilities (e.g., "=F9 * (1 input_parameters!M9) + G9 * input_parameters!M11") in Markov trace using the df_spec data frame
- Associates each parameter with its source ('from') and destination ('to') states
- Code ignores parameters without 'from' or 'to' as these are costs or utilities
- First two rows of generated Markov trace are provided below.

Е	F	G	Н	1	J
8	cycle	SoC_Smoking	SoC_Not smoking	SoC with website_Smoking	SoC with website_Not smoking
9	1	1	0	1	0
10	2	=F9 * (1 - input_parameters!M9) + G9 * input_parameters!M1 1	=G9 * (1 - input_parameters!M11) + F9 * input_parameters!M9	=H9 * (1 - input_parameters!M1 0) + I9 * input_parameters!M11	=I9 * (1 - input_parameters!M11) + H9 * input_parameters!M1 0


```
# Generate the Markov trace using transition probabilities from markov_inputs
  df markov trace <- data.frame(cycle = c(1:self$n cycles))
  cell_formula_temp <- rep("", n_cycles)</pre>
  for(i_treatment in 1:self$n_treatments) {
  for(i_state in 1:self$n_states) {
   cell_formula_temp[1] <- self$v_init_cohort[i_state]
   # Which parameters give probabilities from this state and are relevant
   # to this treatment (or to all treatments)
   from_indices <- which(self$markov_inputs$df_spec$from == i_state &
               (self$markov_inputs$df_spec$v_treatment == i_treatment |
                is.na(self$markov_inputs$df_spec$v_treatment)))
   # Create the sum of probabilities of exiting current state
   sum_probabilities_from <- ifelse(length(from_indices) == 1,</pre>
                   self$markov_inputs$df_spec$excel_value_location[from_indices],
pasteO(self$markov_inputs$df_spec$excel_value_location[from_indices], sep = "+"))
```



```
for(i_cycle in 2:self$n_cycles) {
    # Numeric for row with previous cohort probabilities
    previous_row <- startRow + i_cycle - 1
    # Cell with probability of being in state at previous cycle
    cell formula temp[i cycle] <- paste0(LETTERS[startCol +
                          (i_treatment - 1) * n_states +
                          i_state], previous_row,
                     " * (1 - ", sum_probabilities_from,")")
    # Now append the probabilities of entering the state
    from_prob_formulae <- c()
    for(j_state in c(1:self$n_states)[-i_state]) {
     # Find the parameter storing transition probabilities from j to i
     from i to i index <- self$markov inputs$df spec$from == i state &
      self$markov_inputs$df_spec$to == i_state &
      (self$markov_inputs$df_spec$v_treatment == i_treatment |
       is.na(self$markov_inputs$df_spec$v_treatment))
```



```
# Check that there is a transition from j to i
     if(sum(from_i_to_i_index, na.rm = TRUE) == 1) {
      # Add probability of being in j multiplied by probability of going to i
      from_prob_formulae <- c(from_prob_formulae,
                  paste0(LETTERS[startCol +
                          (i treatment - 1) * n states +
                          i_state], previous_row,
                     " * "
self$markov_inputs$df_spec$excel_value_location[which(from_j_to_i_inde
x)]))
     } # End if there are transitions from j to i
    } # End loop over j_state
```



```
# Create the sum of probabilities of entering current state
    # Account for possibility that none of cohort makes this transition
    sum_probabilities_to <- ifelse(length(from_prob_formulae) == 0, "",</pre>
                   ifelse(length(from_prob_formulae) == 1,
                      from prob formulae,
                      paste0(from_prob_formulae, sep = "+")))
    cell_formula_temp[i_cycle] <- paste0(cell_formula_temp[i_cycle], " + ",
sum probabilities to)
   } # End loop over i_cycle
   # Append these formulae to the Markov trace
   class(cell_formula_temp) <- c(class(cell_formula_temp), "formula")
   df markov trace <- cbind(df markov trace, cell formula temp)
```


Costs, QALYs, PSA

- Similar approach is taken to costs and QALYs
- Output model is probabilistic but only for 1 sample
- A pre-built VBA macro is used to run the model multiple times for probabilistic sensitivity analysis
- So long as total cost and QALY cells are written in a specific format (e.g., starting from row 8 and column 5) the VBA macro will work
- This could also be used to automatically generate plots

Now let's test it!

Markov smoking

- Teaching model used for Bristol University short courses and MSc teaching
- Two states and two treatments
- SoC + Website increases chance of quitting smoking compared to SoC

df_spec for utilities

v_name s	v_descri ptions	v_type	v_distri butions	hp_1	hp_2	v_treat ment	v_state	excel_v alue_loc ation
	Utility smoking,							
	follows a							
	Normal							input_pa
Utility	distributi							rameters
smoking	on	utility	normal	0.95	0.02		1	!O12
	Utility not							
	smoking,							
	follows a							
Utility	Normal							input_pa
not	distributi							rameters
smoking	on	utility	fixed	1			2	!O13

• Treatment column left blank so these utilities apply to both treatments

df_spec for costs

v_names	v_descriptions	v_type	v_distribu tions	hp_1	hp_2	v_treatm ent	v_state	excel_va lue_locat ion
Cost website	Cost website, fixed value and model assumes no cost of SoC and no state costs	one_off _cost	fixed	50		2		input_par ameters! O14
Cost GP smoking	Cost of 6-monthly, on average, GP visit (£49 from PRSSU) for smoking related illness, follows Normal distribution	cost	normal	49	2		1	input_par ameters! O15
Cost statin smoking	Cost of roughly 20% of smokers taking statins (pravastatin at £3.45 per month), follows Normal distribution	cost	normal	0.69	0.069		1	input_par ameters! O16

• Costs can be one-off or ongoing.

df_spec for transition probabilities

v_names	v_descriptions	v_type	v_distribu tions	hp_1	hp_2	from	to	v_treatm ent	v_state	excel_va lue_locat ion
Probabili ty quit smoking website	Probability of quitting if on smoking website, follows a beta distribution	transition_proba	beta	15	85	1	2	2	1	input_par ameters! O9
Probabili ty quit smoking SoC	Probability of quitting smoking if on SoC, follows a beta distribution	transition_proba	beta	12	88	1	2	1	1	input_par ameters! O10
Probabili ty relapse	Probability relapse, which is same across treatments and follows a beta distribution	transition_proba	beta	8	92	2	1		2	input_par ameters! O11

• Probability of relapse is the same for both treatments

If v_treatment is missing it's the same for all treatments. The states used in from and to columns are 1=Smoking and 2=Not smoking; the treatments are 1=SoC and 2=SoC+Website. Column O is omitted and stores the live value used in the model.

Output – note formula bar

09			→ : >	$\langle \checkmark f_x \lor $ =BE	TAINV(RAND	0(), 19, 19	9)							
	D	Е	F G	Н	1	J	K		L	M	N	0	Р	Q
3														
5														
5														
,														
		v_names	v_description v_type	v_distribution	hp_1	hp_2	from	to		v_treatment	v_state	excel_formul	excel_value_	location
		Probability q	Probability of transition	on_pr beta	15	85		1	2	2	1	0.15439083	input_param	neters!09
0		Probability q	Probability of transition	on_pr beta	12	88		1	2	1	1	0.10596282	input_param	neters!010
1		Probability re	Probability retransition	on_pr beta	8	92		2	1		2	0.09437307	input_param	neters!01
2		Utility smoki	Utility smokir utility	normal	0.95	0.02					1	0.95593452	input_param	neters!012
3		Utility not sn	Utility not smutility	fixed	1						2	. 1	input_param	neters!013
4		Cost website	Cost website, one_off	_cost fixed	50					2		50	input_param	neters!014
.5			Cost of 6-morcost	normal	49	2							input_param	
6		Cost statin sr	Cost of rough cost	normal	0.69	0.069					1	0.68001455	input_param	neters!016
7														
8														
9														
0														
1														
2														
3														
4														
5														
6														
7														
8														
9														

Output – note formula bar

Output – note formula bar

Comparison of results

	R		Automatically generated Excel				
Treatment	SoC	SoC with website	SoC	SoC with website			
	312.453						
	(248.579,	337.756 (276.242,					
Total costs	374.685)	400.320)	307.72	331.60			
	4.476 (4.346,	4.488 (4.373,					
Total QALYs	4.606)	4.609)	4.40	4.41			
	333.344						
Total costs	(263.673,	356.240 (289.118,					
undiscounted	401.680)	424.459)	333.99	354.83			
Total QALYs	4.832 (4.692,	4.846 (4.722,					
undiscounted	4.971)	4.975)	4.83	4.85			
ICER	NaN	2029.36		1823.06			

- Results based on 1000 random samples
- Numerical variation due to differences in random number generation but otherwise a match.

Next steps

- The supplied proof-of-concept code works for any timehomogeneous Markov model
- Allow transition matrices to be time-inhomogeneous
- Implement formatting of the Excel format using the options of the openxlsx package
- Export IF and INDEX statements to allow switching between scenarios
- Validation of the conversion on multiple toy and real-world applications

Thank you!

