

An Introduction to Network Analysis

Anetworkis made up of a set of objects and their connections.

EXAMPLES OF NETWORKS

Friend network

Objects: friends

Connections: friendships

Twitter

Objects: Twitter users

Connections: who follows who

International trade

Objects: countries

Connections: international exchanges of goods

Citation network

Objects: articles

Connections: citations

Infectious disease networks

Objects: people

Connections: infections

Neural networks in the brain

Objects: neurons

Connections: synapses

Network Analysis

Network analysis is a tool for representing the relationships between objects in a network.

A Basic Network

Nodes (or vertices)

• e.g., friends, Twitter users

Edges (or links)

• e.g., friendship, follows

Networks can get much more complex

Network analysis provides a **simplification** of a complex, real-world phenomenon.

Lists for describing networks

Node ListEdge ListAda(Ada, Barb)Barb(Ada, Cruz)Cruz(Ada, Dek)Dek(Barb, Dek)Ema(Cruz, Dek)Ful(Dek, Ema)

(Dek, Ful)

(Dek, Gal)

Gal

Adjacency Matrix

Adjacency Matrix

	Ada	Barb	Cruz	Dek	Ema	Ful	Gal
Ada	0	1	I	1	0	0	0
Barb	1	0	0	1	0	0	0
Cruz	1	0	0	1	0	0	0
Dek	I	1	I	0	1	I	1
Ema	0	0	0	- 1	0	0	0
Ful	0	0	0	- 1	0	0	0
Gal	0	0	0	1	0	0	0

Directed vs Undirected Networks

Undirected Network

Directed Network

Edge List

(Ada, Barb)

(Ada, Cruz)

(Ada, Dek)

(Barb, Dek)

(Cruz, Dek)

(Dek, Ema)

(Dek, Ful)

(Dek, Gal)

(Ada, Barb)

(Ada, Cruz)

(Barb, Dek)

(Cruz, Dek)

(Dek, Ada)

(Dek, Ful)

(Ema, Dek)

(Gal, Dek)

Adjacency Matrix

	Ada	Barb	Cruz	Dek	Ema	Ful	Gal
Ada	0	I	I	- 1	0	0	0
Barb	- 1	0	0	- 1	0	0	0
Cruz	I	0	0	- 1	0	0	0
Dek	- 1	- 1	- 1	0			I
Ema	0	0	0	- 1	0	0	0
Ful	0	0	0	- 1	0	0	0
Gal	0	0	0	I	0	0	0

	Ada	Barb	Cruz	Dek	Ema	Ful	Gal
Ada	0	- 1	I	0	0	0	0
Barb	0	0	0	- 1	0	0	0
Cruz	0	0	0	I	0	0	0
Dek	1	0	0	0	0	I	0
Ema	0	0	0	1	0	0	0
Ful	0	0	0	0	0	0	0
Gal	0	0	0	I	0	0	9 0

Assessing Centrality

One aspect of networks that researchers may be interested in is which actors are most *central* to the network.

Degree Centrality

Determining centrality based on how many connections a node has to other nodes + A node's 'degree' is the number of edges connected to it

Node List	<u>Degree</u>
Ada	3
Barb	2
Cruz	2
Dek	6
Ema	1
Ful	1
Gal	1

Eigenvector Centrality

Determining centrality based on how many connections a node's neighbor has

- + Requires some complex matrix calculations
- + Higher values indicate greater centrality

Node List	Eigenvector Centrality
Ada	0.46
Barb	0.37
Cruz	0.37
Dek	0.62
Ema	0.21
Ful	0.21
Gal	0.21

Betweenness Centrality

Determining centrality based on how many direct connections between other nodes a node is involved in

+ To calculate, look at each pair of nodes and calculate the number of times another node can interrupt the path between them

Node List	Betweenness Centrality
Ada	2
Barb	0
Cruz	0
Dek	18
Ema	0
Ful	0
Gal	0

^{*}Note: The calculation in R is slightly more complicated and provided in the .rmd file.

Closeness Centrality

Determining centrality based on the average distance between a node and all other nodes + Calculate by taking the average of the shortest path length from a particular node to every other node, and then take the inverse

Node List	Closeness Centrality
Ada	1/(1+1+1+2+2+2)/6 = .67
Barb	1/(1+2+1+2+2+2)/6 = .6
Cruz	1 / (1+2+1+2+2+2)/6 = .6
Dek	/ (+ + + +)/6 =
Ema	1/(2+2+2+1+2+2)/6 = .55
Ful	1/(2+2+2+1+2+2)/6 = .55
Gal	1 / (2+2+2+1+2+2)/6 = .55

^{*}Note: In R, these closeness values are multiplied by 1/(n-1) to standardize the maximum possible value.

Describing Communities

Network Density: a measure of how "dense" the network is, calculated by dividing the number of edges in the network by the total number of possible edges

Clustering: a measure of which nodes tend to cluster together, calculated using different algorithms (e.g., Louvain)

Transitivity: also called the "clustering coefficient"; a measure of the probability that each node in a network will be connected to adjacent nodes

