

УЧЕБНЫЙ ЦЕНТР ОБШЕЙ ФИЗИКИ ФТФ

Группа <u>М3102</u>		К работе допущен		
Студент Лопатен	ко Георгий Валентинович	Работа выполнена		
Преподаватель	Тимофеева Э.О.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №3.02

Характеристики источника тока

1. Цель работы:

Исследовать характеристики источника тока.

2. Задачи, решаемые при выполнении работы:

- 1. Получить данные измерений (построить экспериментальную выборку);
- 2. Исследовать зависимость полной, полезной мощностей и мощности потерь и падения напряжения во внешней цепи и КПД источника от силы тока в цепи;
- 3. Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешности.

3. Объект исследования:

Цепь, собранная на стенде СЗ-ЭМ01. Контур с исследуемым источником тока и регулируемым внешним сопротивлением.

4. Метод экспериментального исследования:

Условные прямые измерения значений силы тока и напряжения на участке цепи.

5. Рабочие формулы и исходные данные:

- 2) Момент инерции крестовины с утяжелителями по МНК: $I = \frac{\sum\limits_{i=1}^{N} (\varepsilon_i \overline{\varepsilon})(M_i \overline{M})}{\sum\limits_{i=1}^{N} (\varepsilon_i \overline{\varepsilon})^2}$
- 3) Абсолютная погрешность с учетом погрешности приборов: $\Delta x = \sqrt{\left(\overline{\Delta x}\right)^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$ 4) Погрешность косвенного значения: $\Delta z = \sqrt{\left(\frac{\partial z}{\partial x1}\Delta x1\right)^2 + \left(\frac{\partial z}{\partial x2}\Delta x2\right)^2}$; z = f(x1, x2) $\Delta_{_{UY}}$ – погрешность прибора, $\overline{\Delta x}$ – случайная погрешность (доверительный интервал)
- 5) Относительная погрешность: $\varepsilon_{x} = \frac{\Delta x}{r} \cdot 100\%$

6. Измерительные приборы:

№	Наименование	Измерение	Используемый диапазон	$\Delta_{\scriptscriptstyle H}$
1	Амперметр	сила тока	$[0, 2 \cdot 10^{-2}] A$	$5\cdot 10^{-5}$ A

2	Вольтметр	падение напряжения участка	[0, 20] B	$5 \cdot 10^{-3} \mathrm{B}$
---	-----------	----------------------------	-----------	------------------------------

7. Схема установки:

Груз подвешен на нерастяжимой невесомой нити, которая перекинута через неподвижный блок и намотана на ступицу крестовины. В ступице закреплены четыре спицы, на каждой из которых размещен груз-утяжелитель (грузы идентичны и находятся на одинаковом расстоянии от оси вращения крестовины). Момент инерции системы крестовина-утяжелители искусственно изменяется при выставлении расстояния от грузов до ступицы.

8. Результаты прямых измерений и их обработки:

Таблица 1. Время падения для различных значений расстояний, масс раскручивающего груза

	Положение утяжелителей отн. оси вращения (риски), м						
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)	
груза			Время и	тадения С			
	4,87	5,80	6,51	7,81	9,69	10,88	
$m_{_1}$ 0.267 кг	4,71	5,84	6,95	7,93	9,88	10,52	
(1 шайба)	4,90	5,90	6,83	7,88	9,93	10,90	
шайба)	4,83 <u>+</u> 0,25	5,85 <u>+</u> 0,13	6,76 <u>+</u> 0,57	7,87 <u>+</u> 0,15	9,83 <u>+</u> 0,31	10,77 <u>+</u> 0,53	
	3,54	4,25	4,85	6,10	7,16	7,54	
$m_{_{2}}$ 0.487 кг	3,58	4,22	4,82	6,37	7,08	7,77	
(2 шайбы)	3,64	4,26	4,82	6,13	6,90	7,86	
шайоы)	3,59 <u>+</u> 0,13	4,24 <u>+</u> 0,05	4,83 <u>+</u> 0,04	6,20 <u>+</u> 0,37	7,05 <u>+</u> 0,33	7,72 <u>±</u> 0,41	
	2,95	3,40	4,05	4,90	5,44	6,30	
т ₃ 0.707 кг	3,00	3,33	4,64	4,82	5,18	6,30	
(3 шайбы)	2,97	3,58	4,20	5,07	5,65	6,44	
шайоы)	2,97 <u>+</u> 0,06	3,44 <u>+</u> 0,32	4,29 <u>+</u> 0,76	4,93 <u>+</u> 0,32	5,42 <u>+</u> 0,58	6,35 <u>±</u> 0,21	
	2,53	2,90	3,89	4,31	4,76	5,33	
$m_{_{4}}$ 0.927 кг	2,61	2,88	3,99	4,21	4,85	5,48	
(4	2,66	3,00	4,12	4,30	4,65	5,52	
шайбы)	2,60 <u>+</u> 0,16	2,93 <u>+</u> 0,16	4,00 <u>+</u> 0,29	4,27 <u>±</u> 0,14	4,75 <u>+</u> 0,25	5,44 <u>±</u> 0,25	

9. Результаты косвенных измерений:

Таблица 2. Ускорение раскручивающего груза при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м						
Масса груза	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)	

	Ускорение a , $\frac{M}{c^2}$						
$m_{_1}$	0,0600	0,0409	0,0306	0,0226	0,0145	0,0121	
	±0,0062	±0,0018	±0,0052	<u>+</u> 0,0009	±0,0009	±0,0012	
$m_{_2}$	0,1086	0,0779	0,0600	0,0364	0,0282	0,0235	
	±0,0079	±0,0018	±0,0009	±0,0043	±0,0026	±0,0025	
$m_{_3}$	0,1587	0,1183	0,0761	0,0578	0,0477	0,0347	
	±0,0064	±0,0220	±0,0269	±0,0075	±0,0102	±0,0023	
$m_{_4}$	0,2071	0,1631	0,0875	0,0768	0,0620	0,0473	
	±0,0255	±0,0178	±0,0129	±0,0050	±0,0065	±0,0043	

Таблица 3. Угловое ускорение крестовины при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м							
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Угловое ускорение ϵ , рад \cdot c^{-1}							
$m_{_{1}}$	2,6092	1,7786	1,3320	0,9828	0,6299	0,5248		
	±0,2716	±0,0814	±0,2251	<u>+</u> 0,0389	±0,0403	±0,0519		
$m_{_2}$	4,7229	3,3859	2,6092	1,5835	1,2247	1,0213		
	±0,3459	±0,0879	±0,0517	<u>+</u> 0,1898	±0,1154	±0,1090		
$m_{_{3}}$	6,9006	5,1438	3,3074	2,5044	2,0721	1,5096		
	±0,2888	±0,9586	±1,1724	±0,3263	±0,4440	±0,1012		
$m_{_{4}}$	9,0444	7,0903	3,8043	3,3384	2,6978	2,0568		
	±1,1126	±0,7782	±0,5532	±0,2219	±0,2855	±0,1904		

Таблица 4. Момент силы натяжения нити при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м							
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Момент силы натяжения M , $H \cdot M$							
$m_{1}^{}$	0,0599 ± 0,0007	0,0599	0,0601	0,0601	0,0601	0,0602		
$m_{2}^{}$	0,1087	0,1090	0,1092	0,1095	0,1096	0,1096		
$m_3^{}$	0,1569	0,1576	0,1583	0,1586	0,1587	0,1589		
$m_{_4}$	0,2047	0,2057	0,2073	0,2075	0,2078	0,2082		

Таблица 5. Момент инерции крестовины при разных условиях

Положение утяжелителей отн. оси вращения (риски), м							
0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
Момент инерции крестовины I , кг \cdot м 2							

0,0225	0,0274	0,0577	0,0611	0,0695	0,0969			
Момент силы трения $M_{_{ m TP}}=M-Iarepsilon$, $H\cdot {}_{ m M}$								
0,0016	0,0139	-0,0257	0,0055	0,0189	0,0104			
Расстояние от оси до утяжелителя в квадрате R^2 , ${\rm M}^2$								
0,0059	0,0104	0,0161	0,0231	0,0313	0,0408			

Расчет по МНК значений $m_{_{ m VT}}$ и $I_{_0}$:

$$m_{
m yT} = rac{\sum\limits_{i=1}^{N} (R_i - \overline{R}\)(I_i - \overline{I})}{4\sum\limits_{i=1}^{N} (R_i - \overline{R}\)^2} = 0$$
, 4946 кг; тогда сумма моментов инерции стержней крестовины, момента

инерции ступицы и собственных центральных моментов инерции утяжелителей будет равна:
$$I_0 = \overline{I} - 4m_{_{\mathrm{YT}}}\overline{R}^2 = \ 0,01427\ \mathrm{kr}\cdot\mathrm{m}^2 \qquad \qquad \Delta I_0 = \ 0,00076\ \mathrm{kr}\cdot\mathrm{m}^2$$

10. Расчет погрешностей измерений:

Расчет погрешности для прямых измерений времени к таблице 1:

$$\Delta t_{\rm cp} = \sqrt{\frac{t_{\alpha,n}^{2}}{N \cdot (N-1)}} \sum_{i=1}^{N} (t_{i} - \bar{t})^{2} + (\frac{2}{3} \Delta_{ux})^{2} \quad (t_{\alpha,n} = 4.30265, \ \alpha = 0.95); \ \Delta t_{1} = 0.25396 \ c$$

$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial h}\Delta h\right)^{2} + \left(\frac{\partial a}{\partial t}\Delta t\right)^{2}} = \sqrt{\left(\frac{2}{t^{2}}\Delta h\right)^{2} + \left(\frac{4h}{t^{3}}\Delta t\right)^{2}}; \ a = \frac{2h}{t^{2}}; \ \Delta a_{1} = 0,0062\frac{M}{c^{2}}$$

$$\Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial h} \Delta h\right)^2 + \left(\frac{\partial a}{\partial t} \Delta t\right)^2 + \left(\frac{\partial a}{\partial d} \Delta d\right)^2} = \sqrt{\left(\frac{4}{t^2 d} \Delta h\right)^2 + \left(\frac{8h}{t^3 d} \Delta t\right)^2 + \left(\frac{4h}{t^2 d^2} \Delta d\right)^2}; \ \varepsilon = \frac{4h}{t^2 d}; \ \Delta \varepsilon_1 = \ 0,2716 \frac{\text{pag}}{c^2}$$

Расчет погрешности косвенного значения момента силы натяжения нити к таблице 4:

$$\Delta M = \sqrt{\left(\frac{md}{t^2}\Delta h\right)^2 + \left(\frac{2mdh}{t^3}\Delta t\right)^2 + \left(\frac{m(gt^2-2h)}{2t^2}\Delta d\right)^2 + \left(\frac{d(gt^2-2h)}{2t^2}\Delta m\right)^2} \; ; \; \Delta M_1 = \; 0,00066 \; H \; \cdot \; \text{м}$$

$$\Delta m_{_{\mathrm{VT}}} = \; 0,0045 \; \mathrm{Kr}$$

11. Графики:

График 1. Зависимость $M(\epsilon)$. Аппроксимирующие прямые для каждой риски.

 Γ рафик 2. Зависимость $I(R^2)$. Аппроксимирующая прямая и аналитически полученная зависимость.

12. Окончательные результаты:

Доверительные интервалы первых значений к ускорению груза:

$$a = (0.0600 \pm 0.0062) \frac{M}{c^2}$$
 $\varepsilon_a = 10.3\%$ $\alpha = 0.95$

к угловому ускорению:

$$\epsilon = (2.6092 \pm 0.2716) \frac{pa_{\pi}}{c^2}$$
 $\epsilon_{\epsilon} = 10.4\%$ $\alpha = 0.95$

и к моменту силы натяжения нити:

$$M = (0.0599 \pm 0.0007) H \cdot M \quad \varepsilon_{M} = 1,1\% \quad \alpha = 0.95$$

Значения $m_{_{\mathrm{YT}}}$ и $I_{_{0}}$ с погрешностями:

$$m_{_{\mathrm{YT}}} = (0,4946 \pm 0,0045) \,$$
кг $\epsilon_{_{m_{_{\mathrm{YT}}}}} = 0,9\%$ $\alpha = 0.95$ $I_{_{0}} = (0,0143 \pm 0,0008) \,$ кг \cdot м $^{^{2}}$ $\epsilon_{_{I_{_{0}}}} = 5,6\%$ $\alpha = 0.95$

13. Выводы и анализ результатов работы:

После построения экспериментальной выборки были рассчитаны необходимые параметры и значения для проверки зависимости момента инерции от масс грузов-утяжелителей на спицах вращающейся крестовины. Также экспериментально подтверждена теория динамики вращения - был проверен основной закон, связывающий угловое ускорение с моментами сил трения и натяжения нити. Были получены доверительные интервалы для некоторых характеристик динамики вращения, построены соответствующие графики.

Измерения: