2D to 3D pose reconstruction In the wild

SHOBHIT MALARYA - S20160010087 SIDDHARTH KUMAR - S20160010090

Dr. Snehasis Mukherjee

Outline of the presentation

- Introduction
- Literature review
- Work done
- Discussion of results
- Summary of conclusions
- Future scope

Work done till last review

Studying papers

- End-to-end Recovery of Human Shape and Pose by Angjoo Kanazawa CVPR 2018
- Convolutional pose machine by Shih-En Wei CVPR 2016
- PersonLab by Google Inc.
 CVPR 2018

Work done till last review

Framing Pipeline

Introduction

Construction of 3D human model from 2D images.

Literature review

End-to-end Recovery of Human Shape and Pose

Literature review

- Given an image, the network has to infer the 3D mesh parameters and the camera such that the 3D keypoints match the annotated 2D key points after projection.
- During training they assume that all images are annotated with ground truth 2D joints. They also consider the case in which some have 3D annotations as well. Additionally we assume that there is a pool of 3D meshes of human bodies of varying shape and pose. Since these meshes do not necessarily have a corresponding image, we refer to this data as unpaired

Literature review

- The inferred parameters are also sent to a discriminator network whose task is to determine if the 3D parameters are real meshes from the unpaired data.
- 3D Body Representation the set of parameters that represent the 3D reconstruction of a human body is expressed as a 85 dimensional vector $\Theta = \{\theta, \beta, R, t, s\}$. Given Θ , the projection of $X(\theta, \beta)$ is

$$\hat{x} = s\Pi(RX(\theta,\beta)) + t$$

where Π is an orthographic projection.

PersonLab:

Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model

Single-Pose Detection Algorithm

PoseNet model

Output Stride and Heatmap Resolution

Heatmap and Offset Vector Simplification

WORK DONE

JOINT PREDICTION RESULT

Issues and Discussion of results

input

3D mesh diff vp diff vp

input

3D mesh

IMAGE WITH WHITE BACKGROUND

Summary & Conclusions

- PoseNet gives all the 17 points although some are not present.
- Overlapping of few joint points especially knees and ankles.
- PoseNet is showing higher score even for true negatives.
- Cropping gives a better result than results on original image.
- Fine tuning of parameters may lead to better results.

Future scope

- Increasing accuracy of 2D joint points.
- If possible then working on video instead of image.
- Observing the 3D mesh output

REFERENCES

- End-to-end Recovery of Human Shape and Pose https://github.com/akanazawa/hmr
- End-to-end Recovery of Human Shape and Pose https://arxiv.org/abs/1712.06584
- PoseNet
 <u>https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5</u>
- PoseNet https://github.com/tensorflow/tfjs-models/tree/master/posenet
- PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model https://arxiv.org/abs/1803.08225

THANK YOU

