EE236: Experiment No. 7 MOSFET I/V Characteristics and Device Parameters

Mayur Ware, 19D070070

April 13, 2022

1 Overview of the experiment

1.1 Aim of the experiment

Aim of this experiment is to measure the threshold voltage (V_{TN}) of NMOS. To measure the output DC characteristics, I_D vs V_{DS} .

To measure the I_D vs V_{GS} characteristics in the saturation region for NMOS and to obtain the small signal transconductance (g_m) .

1.2 Methods

Firstly, we checked and ensured that the components given to me such as ALD1106, Zener diode and multimeters. Then, we performed Experiment 1 which was the forward I-V characteristics of Zener diode and plotted them. Then, we performed Experiment 2 in which we calculated the threshold voltage of NMOS, I_D vs V_{DS} and I_D vs V_{GS} characteristics of NMOS and Small Signal characteristics of NMOS. We built all the circuit on breadboard using all the components with connecting wires.

2 Design

Fig. 1: I-V Characteristics of Zener Diode

The circuit in Fig. 1 is for the I-V characteristics simulation of Zener diode. We gave the voltage supply from the DC power supply unit in steps of 0.5V from -7V to 2V. We noted the corresponding I_D and V_D values.

Fig. 2: NMOS Characteristics

After that, we built the circuit in Fig. 2 on breadboard to calculate the threshold voltage, V_{TN} of and analyze I_D vs V_{DS} characteristics of NMOS. We ensured that V_{DS} was kept to be 200mV for all readings of V_{TN} . V_{GS} was varied using the 5k pot. We again noted the values.

For I_D vs V_{DS} characteristics, V_{GS} was kept a constant 2.5V throughout.

 ${
m V}_{DS}$ was varied in steps of 0.5V from 0 to 5V. The whole operation was repeated for ${
m V}_{GS}=3{
m V}$ and ${
m V}_{GS}=3.5{
m V}$.

Fig. 3 : NMOS I_D vs V_{GS} Characteristics

Then, we built the circuit shown in Fig. 3 for plotting the I_D vs V_{GS} characteristics of NMOS. The circuit ensured that the device is always in saturation. VGS was varied in steps of 0.5V from 0 to 5V by varying V_{DD} values.

Fig. 3: NMOS Small Signal Analysis

A sine wave input was applied having the parameters as 100mV peak-to-peak and 1kHz frequency using Arbitrary Function Generator (AFG). The output waveform was obtained in a Digital Storage Oscilloscope (DSO) to calculate the small signal parameters.

3 Simulation results

3.1 Code Snippets

Not applicable for this experiment.

3.2 Simulation results

Not applicable for this experiment.

4 Experimental results

Fig. 5 : I_D - V_D Characteristics of Zener diode

Fig. 5 shows the I_D - V_D Characteristics graph of zener diode. Also, values used for plotting the graph are given aside. Breakdown voltage for the given zener diode was around **-5.8V**.

Fig. 6: I_D - V_{GS} Characteristics of NMOS

Fig. 6 shows the I_D - V_{GS} Characteristics graph of NMOS. Also, values used for plotting the graph are given aside. Threshold voltage (V_{TN}) voltage for the given NMOS diode was around $\mathbf{0.78V}$. Whereas, the transconductance (g_m) was around $\mathbf{1.02} \times \mathbf{10}^{-4} \Omega^{-1}$.

Fig. 7 : I_D - V_{DS} Characteristics of NMOS

Fig. 7 shows the I_D - V_{DS} Characteristics graph of NMOS. Also, values used for plotting the graph are given aside. V_{GS} values are varied as 2.5V, 3V and 3.5V. I_D increases with increase in V_{GS} . Output impedance values are $50 \mathrm{k}\Omega$, $35 \mathrm{k}\Omega$ and $25 \mathrm{k}\Omega$.

Fig. 8: I_D - V_{GS} Characteristics of NMOS

Fig. 8 shows the I_D - V_{GS} Characteristics graph of NMOS. Also, values used for plotting the graph are given aside.

Now, for the small signal analysis, following are the results we observed using DSO.

Av = 2.42

Vout = 242mV

 $gm = 2.42m \Omega^{-1}$

5 Experiment completion status

I have completed all sections as well as exercises in this lab.

6 Questions for reflection

Q1 Find out effect on threshold voltage of NMOS, if (a) Positive Body voltage is applied and (b) Negative Body voltage is applied.

Answer: For a positive body voltage, the threshold voltage decreases. For negative body voltage, threshold voltage decreases.

Q2 Subthreshold slope is a key metric for any switching device. Why?

Answer: Switching devices operate in the cut-off region, i.e. $V_{GS} < V_T$, when off and in saturation when on. During transition and in the off state, subthreshold current affects performance.

Q3 The linear I_D - V_{GS} curve is not perfectly linear. It's slope increases first

and decreases after attaining a peak value. For such a case, find out accurate method to calculate the Threshold voltage.

Answer: The most accurate method to find threshold voltage is to extrapolate the region of the graph with the highest slope as around this point the parasitic effects of \mathbf{R}_{DS} are low.

 ${\bf Q4}$ Given the ${\bf I}_{D}\text{-}{\bf V}_{GS}$ characteristics in saturation, How will you find Threshold voltage?

Answer: We can solve for

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} (V_{GS} - V_T)^2$$

using any three points for calculation.