## Lab 1

#### Carmen Canedo

#### 6 October 2020

### Exercise 1

Read in avocadoes.csv and save into data frame.

#### Exercise 2

Change column names to small, large, and extra large.

#### Excercise 3

The data is not tidy, I will need to use pivot\_longer() to tidy it. The size variable is split into small, large, and extra large.

#### Exercise 4

Create a function to read in the avocado data, renames columns, writes the transformed, and returns transformed data

### Exercise 5

Create table with top 5 geographies with highest total yearly sales of large avocados in 2019

| Region        | Conventional | Organic   | Overall   |
|---------------|--------------|-----------|-----------|
| Northeast     | 177207881    | 2012480.9 | 179220362 |
| California    | 89348979     | 2745852.6 | 92094831  |
| West          | 72804707     | 2538921.5 | 75343628  |
| New York      | 59386225     | 963466.0  | 60349691  |
| South Central | 52490049     | 180508.9  | 52670558  |

### Exercise 6

Create a plot showing daily sales volume in California for different avocado types and sizes.





## Exercise 7

Load heart.txt

# Exercise 8

# Event of Death from Ejection Fraction



### Exercise 9

Create a segmented bar chart where the bars represent one of the factor variables and DEATH\_EVENT is the fill.



Takeaway: From this plot we can see that patients with high blood pressure are more likely to die than patients who did not have high blood pressure.