Problem 1. The helicoid is the surface given by the chart

$$\phi(u, v) = (v \cos u, v \sin u, u), \quad u, v \in \mathbb{R}.$$

Use a mathematica ParametricPlot3D (or similar) to plot this surface. Compute (by hand) the first and second fundamental forms I, II and mean curvature H of this surface.

Solution.
$$\phi_{u} = (-v \sin u, v \cos u, 1), \qquad \phi_{v} = (\cos u, \sin u, 0),$$

$$\phi_{uu} = (-v \cos u, -v \sin u, 0), \quad \phi_{uv} = (-\sin u, \cos u, 0), \quad \phi_{vv} = (0, 0, 0),$$

$$\phi_{u} \times \phi_{v} = (-\sin u, \cos u, -v \cos^{2} u - v \sin^{2} u) = (-\sin u, \cos u, v)$$

$$N = \frac{\phi_{u} \times \phi_{v}}{|\phi_{u} \times \phi_{v}|} = \frac{(-\sin u, \cos u, v)}{\sqrt{1 + v^{2}}}$$

$$E = \phi_{u} \cdot \phi_{u} = v^{2} \sin^{2} u + v^{2} \cos^{2} u + 1^{2} = 1 + v^{2},$$

$$F = \phi_{u} \cdot \phi_{v} = -v \sin u \cos u + v \cos u \sin u = 0,$$

$$G = \phi_{v} \cdot \phi_{v} = \cos^{2} u + \sin^{2} u = 1,$$

$$e = N \cdot \phi_{uu} = (1 + v^{2})^{-1/2} (v \cos u \sin u - v \sin u \cos u) = 0,$$

$$f = N \cdot \phi_{uv} = (1 + v^{2})^{-1/2} (\sin^{2} u + \cos^{2} u) = (1 + v^{2})^{-1/2},$$

$$g = N \cdot \phi_{vv} = (1 + v^{2})^{-1/2} (0) = 0,$$

$$I = \begin{bmatrix} 1 + v^{2} & 0 \\ 0 & 1 \end{bmatrix}, \quad II = \begin{bmatrix} 0 & (1 + v^{2})^{-1/2} \\ (1 + v^{2})^{-1/2} & 0 \end{bmatrix},$$

$$H = \left(-\frac{1}{2}\right) \frac{eG + gE - 2fF}{EG - F^{2}} = \left(-\frac{1}{2}\right) \frac{0 + 0 - 2 \cdot 0}{EG - F^{2}} = 0.$$

¹Hint: Your answer for the mean curvature, if correct, will be exceedingly simple.

Problem 2. Consider the curve²

$$\alpha(t) = (t - \tanh t, \operatorname{sech} t, 0), \quad t > 0.$$

Let S be the surface obtained by revolving α about the x-axis. Use a mathematica ParametricPlot3D (or similar) to plot this surface. Compute (by hand) the first and second fundamental forms I, II and Gauss curvature K of this surface.³

Solution. We begin by noting that we can obtain the parametrization of the surface by multiplying the parametrization of the curve by the rotation matrix $R_x(\theta)$:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

Taking the product $\alpha(t)R_x(\theta)$, we obtain a coordinate map for the surface:

$$\phi(t,\theta) = (t - \tanh t, \operatorname{sech} t \cos \theta, \operatorname{sech} t \sin \theta)$$

for t > 0 and $0 < \theta < 2\pi$. The result from plotting (with 0 < t < 5 for computational efficiency) is:

We now compute the first fundamental form $I = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$, where $E = \phi_t \cdot \phi_t$, $F = \phi_t \cdot \phi_\theta$, and $G = \phi_\theta \cdot \phi_\theta$. We have:

$$\phi_t = (1 - \operatorname{sech}^2(t), -\operatorname{sech}(t) \tanh(t) \cos(\theta), -\operatorname{sech}(t) \tanh(t) \sin(\theta)),$$

$$\phi_\theta = (0, -\operatorname{sech}(t) \sin(\theta), \operatorname{sech}(t) \cos(\theta)).$$

Applying the identity $\tanh^2(t) + \operatorname{sech}^2(t) = 1$, we obtain:

$$\phi_t = (\tanh^2(t), -\operatorname{sech}(t) \tanh(t) \cos(\theta), -\operatorname{sech}(t) \tanh(t) \sin(\theta)),$$

$$\phi_\theta = (0, -\operatorname{sech}(t) \sin(\theta), \operatorname{sech}(t) \cos(\theta)).$$

²Recall the hyperbolic trig functions are defined by $\cosh(t) = \frac{e^t + e^{-t}}{2}$, $\sinh(t) = \frac{e^t - e^{-t}}{2}$, etc. I suggest you look up formulas for the derivatives and identities satisfied by these functions.

³Hint: Your answer for the Gauss curvature, if correct, will be exceedingly simple.

Applying the dot product, we obtain:

$$E = \phi_t \cdot \phi_t = \tanh^4(t) + \operatorname{sech}^2(t) \tanh^2(t) = \tanh^2(t) (\tanh^2(t) + \operatorname{sech}^2(t)) = \tanh^2(t),$$

$$F = \phi_t \cdot \phi_\theta = \operatorname{sech}^2(t) \tanh(t) \cos(\theta) \sin(\theta) - \operatorname{sech}^2(t) \tanh(t) \sin(\theta) \cos(\theta) = 0, \text{ and }$$

$$G = \phi_\theta \cdot \phi_\theta = \operatorname{sech}^2(t) \sin^2(\theta) + \operatorname{sech}^2(t) \cos^2(\theta) = \operatorname{sech}^2(t).$$

Thus, we have:

$$I = \begin{pmatrix} \tanh^2(t) & 0\\ 0 & \operatorname{sech}^2(t) \end{pmatrix}.$$

To compute the second fundamental form, $\mathbb{I} = \begin{pmatrix} e & f \\ f & g \end{pmatrix}$, where $e = -\phi_t \cdot \hat{n}_t$, $f = -\phi_t \cdot \hat{n}_\theta$, and $g = -\phi_\theta \cdot \hat{n}_\theta$, we first compute the unit normal \hat{n} . We have:

$$\begin{split} \hat{n} &= \frac{\phi_t \times \phi_\theta}{|\phi_t \times \phi_\theta|} \\ &= \frac{(-\tanh(t) \operatorname{sech}^2(t), -\tanh^2(t) \operatorname{sech}(t) \cos(\theta), -\tanh^2(t) \operatorname{sech}(t) \sin(\theta))}{\sqrt{\det \mathbf{I}}} \\ &= \frac{(-\tanh(t) \operatorname{sech}^2(t), -\tanh^2(t) \operatorname{sech}(t) \cos(\theta), -\tanh^2(t) \operatorname{sech}(t) \sin(\theta))}{\operatorname{sech}(t) \tanh(t)} \\ &= (-\operatorname{sech}(t), -\tanh(t) \cos(\theta), -\tanh(t) \sin(\theta)). \end{split}$$

Toward computing e, f, and g, we also calculate \hat{n}_t and \hat{n}_{θ} :

$$\hat{n}_t = (\operatorname{sech}(t) \tanh(t), -\operatorname{sech}^2(t) \cos(\theta), -\operatorname{sech}^2(t) \sin(\theta))$$

$$\hat{n}_\theta = (0, \tanh(t) \sin(\theta), -\tanh(t) \cos(\theta))$$

Now, we can compute e, f, and g:

$$e = -\phi_t \cdot \hat{n}_t = -\tanh(t)\operatorname{sech}(t)(\operatorname{sech}^2(t)(\cos^2(\theta) + \sin^2(\theta)) + \tanh^2(t)) = -\tanh(t)\operatorname{sech}(t).$$

$$f = -\phi_t \cdot \hat{n}_\theta = 0.$$

$$g = -\phi_\theta \cdot \hat{n}_\theta = \operatorname{sech}(t)\tanh(t)\sin^2(\theta) + \operatorname{sech}(t)\tanh(t)\cos^2(\theta) = \operatorname{sech}(t)\tanh(t).$$

Finally, we can write the second fundamental form:

$$\mathbb{I} = \begin{pmatrix} -\tanh(t)\operatorname{sech}(t) & 0\\ 0 & \operatorname{sech}(t)\tanh(t) \end{pmatrix}.$$

The Gauss curvature is given by:

$$K = \frac{\det \mathbb{I}}{\det \mathbf{I}}$$

$$= \frac{-\operatorname{sech}^{2}(t) \tanh^{2}(t)}{\operatorname{sech}^{2}(t) \tanh^{2}(t)}$$

$$= -1$$

Yet again, we've achieved an exceedingly simple result! Whoop whoop!

Problem 3. Let S be a surface with a unit normal $N: S \to S^2$. Let $\alpha: I \to S$ be a unit speed curve. Assume that $\alpha'(t)$ is a principal direction for each t.⁴ Show that the curvature $\kappa = \kappa_{\alpha}$ of α satisfies $\kappa = |k_n k_N|$, where k_n is the normal curvature and k_N is the curvature of $N \circ \alpha$.⁵

Solution. The key here is to make liberal use of the fact that because α is a line of curvature, $(N \circ \alpha)' = DN_p(\alpha') = \lambda \alpha'$ for some real-valued function $\lambda(t)$. Now we just compute k_n and k_N .

$$0 = ((N \circ \alpha) \cdot \alpha')' = DN_p(\alpha') \cdot \alpha' + N \cdot \alpha'' = \lambda + N \cdot \alpha''.$$

Thus, $k_n = N \cdot \alpha'' = -\lambda$. Now we compute k_N using the formula from homework 2:

$$k_N = \frac{|(N \circ \alpha)' \times (N \circ \alpha)''|}{|(N \circ \alpha)'|^3} = \frac{|\lambda \alpha' \times \lambda \alpha''|}{|\lambda \alpha'|^3} = \frac{\lambda^2 |\alpha''|}{|\lambda^3|} = \frac{\kappa_\alpha}{|\lambda|}.$$

For the second equality, we are using the fact that α' is an eigenvector of DN_p . For the third inequality, we are using the fact that α is unit speed, which gives that $|\alpha'| = 1$ and that α' is perpendicular to α'' , so the magnitude of their cross product is the product of their magnitudes.

Now it is clear that $|k_n k_N| = |\lambda \cdot \frac{\kappa_\alpha}{|\lambda|}| = |\kappa_\alpha| = \kappa_\alpha$.

⁴Remark: In this case, α is a called a *line of curvature*.

⁵Hint: note that $N \circ \alpha$ is not necessarily unit speed. Use a formula for curvature from a previous problem.

Problem 4. Let S be a surface, and fix $q \in \mathbb{R}^3$. Define $f: S \to \mathbb{R}$ by $f(p) = |p - q|^2$. Give a formula for $Df_p(w)$ directly using the way we defined the derivative of a function on a surface in class. When is p a critical point⁶ of f?

Solution. Let $\alpha: I \to S$ be a curve on S, such that $\alpha(0) = p$ and $\alpha'(0) = w$. Then, we can express $Df_p(w)$ as $Df_p(\alpha'(0))$:

$$Df_p(\alpha'(t)) = (f \circ \alpha)'(t)|_{t=0}$$

$$= \frac{d}{dt}((\alpha(t) - q)(\alpha(t) - q))|_{t=0}$$

$$= \alpha'(t)(\alpha(t) - q) + (\alpha(t) - q)\alpha'(t)|_{t=0}$$

$$= 2\alpha'(t)(\alpha(t) - q)|_{t=0}$$

$$= 2w \cdot (p - q)$$

The point p is a critical point of f when for all w at a point p, $Df_p = 2w \cdot (p-q) = 0$. Thus, p is a critical point when w and p-q are orthogonal. Since w can be any vector in the tangent plane, p-q must then be in the orthogonal space of the tangent plane, so p-q must be parallel to the normal line at p.

⁶We say that $p \in S$ is a critical point of $f: S \to \mathbb{R}$ if $Df_p = 0$.

Problem 5. Let $S \subset \mathbb{R}^3$ be a surface. Suppose that there exists a point $q \in \mathbb{R}^3$ such that the normal line through $p \in S$ passes through q for each $p \in S$. Prove that S is contained in a sphere.

Solution. Consider the function $f(p) = |p - q|^2$ where q is the point contained in the normal line through every $p \in S$. We know by problem 4 that because q is contained in the normal line through every p, $Df_p \equiv 0$ for every $p \in S$. This means that f is a constant function and that $|p - q|^2 = r^2$ for all $p \in S$ for some constant r^2 . By defintion, this means that S is a subset of the sphere of radius r around q.

(Technically this only proves that $|p-q|^2$ is constant across any given coordinate chart, meaning that S could contain subsets of several spheres of different radii around q, as remarked in Ed Discussion post #43, but that's still pretty cool, and its equivalent to the intended claim if we assume S is connected.)

⁷Hint: Define an appropriate function on S whose derivative is constant...