2/9/2025

MACHINE LEARNING

CUSTOMER CHURN PREDICTION

DEBRE BERHAN UNIVERSITY

College of Computing

Department of Software Engineering

SUBMISSION DATE: 02/09/2025
SUBMITTED TO: Derbew Felasman

AUTHOR: ABDIHAKIM MOHAMED HAMUD

ID NO: 3687/13

Customer Churn Prediction Project Documentation

Table of Contents

1.	Introd	uction	3
	0	Problem Definition	3
	0	Project Overview	3
	0	Data Source and Description	3
2.	Explo	ratory Data Analysis (EDA)	4
	0	Data Exploration	4
	0	Key Findings	4
	0	Visualizations	4
3.	Data F	Preprocessing	5
	0	Data Cleaning.	5
	0	Feature Engineering.	5
	0	Encoding Categorical Variables	5
	0	Scaling and Normalization.	5
4.	Model	Selection and Training.	5
	0	Model Selection.	6
	0	Training Process.	6
	0	Hyperparameter Tuning	6
	0	Model Optimization Techniques.	6
5.	Model	Evaluation	6
	0	Evaluation Metrics.	6
	0	Performance Analysis.	6
	0	Confusion Matrix and ROC Curve.	6
	0	Bias-Variance Tradeoff.	7
6.	Interp	retation of Results	7
	0	Key Insights	7
	0	Business Implications	7
	6	Customer Segmentation Analysis	7

7.	Deplo	yment7		
	0	Deployment Strategy7		
	0	Instructions for Running the Application7		
	0	API Integration		
	0	Frontend-Backend Interaction8		
8.	Limita	ations8		
	0	Current Limitations8		
	0	Challenges Faced9		
	0	Potential Risks and Mitigations9		
9.	Future	e Improvements9		
	0	Potential Enhancements9		
	0	Scalability and Extensibility9		
	0	Advanced Feature Engineering9		
	0	Integration with Business Intelligence Tools9		
10	. Concl	usion		
•	Summ	nary of the Project10		
•	Final Thoughts			
•	Lessons Learned			

1. Introduction

Problem Definition

Customer churn is a critical issue for businesses, especially in subscription-based industries like telecommunications. Predicting whether a customer will churn (leave) or stay allows companies to take proactive measures to retain customers. This project aims to build a machine learning model to predict customer churn based on historical data.

Project Overview

The project involves:

- > Collecting and preprocessing customer data.
- > Performing exploratory data analysis (EDA) to understand the data.
- > Building and training a machine learning model.
- > Evaluating the model's performance.
- > Deploying the model as a web application using FastAPI.
- > Integrating a user-friendly frontend for ease of access.

Data Source and Description

The dataset used in this project is the **Telco Customer Churn Dataset**, available on <u>Kaggle</u>. It contains customer information including:

- **Demographic Information**: Gender, Senior Citizen, Partner, Dependents.
- Service Information: Phone Service, Internet Service, Online Security, Online Backup.
- Account Information: Contract Type, Paperless Billing, Payment Method.
- **Billing Details**: Monthly Charges, Total Charges, and Tenure.
- Target Variable: Churn (Yes/No).

2. Exploratory Data Analysis (EDA)

Data Exploration

- The dataset contains **7,043 rows** and **21 columns**.
- Key features include:
 - o Categorical: gender, SeniorCitizen, Partner, Dependents, Contract, etc.
 - o Numerical: tenure, MonthlyCharges, TotalCharges.
- Target variable: **Churn** (binary classification problem).

Key Findings

- Churn Rate: Approximately 26.5% of customers churned.
- Correlation: MonthlyCharges and TotalCharges are positively correlated.
- Insights:
 - o Customers with **higher monthly charges** are more likely to churn.
 - o Customers with **longer tenure** are less likely to churn.
 - o Certain contract types influence churn likelihood.

Visualizations

Gender and Churn Distributions

- Churn Distribution: Bar plot showing churned vs. retained customers.
- Correlation Heatmap: Visualizing relationships between numerical features.
- **Tenure vs. Churn**: Box plot showing tenure distribution for churned and retained customers.
- Payment Method vs. Churn: Impact of payment method on churn probability.

3. Data Preprocessing

Data Cleaning

- Handled missing values in the TotalCharges column by replacing them with the median value.
- Removed duplicate rows.
- Converted relevant categorical variables to numerical representations.

Feature Engineering

- Created a new feature: TenureGroup (e.g., 0-12 months, 12-24 months, etc.).
- Derived additional features based on customer behavior patterns.

Encoding Categorical Variables

- Binary categorical variables (e.g., gender, Partner) were label encoded.
- Multi-category variables (e.g., PaymentMethod, Contract) were one-hot encoded.
- Applied **target encoding** to certain categorical variables.

Scaling and Normalization

- Scaled numerical features (tenure, MonthlyCharges, TotalCharges) using StandardScaler.
- Normalized data for improved model performance.

4. Model Selection and Training

Model Selection

- Evaluated multiple models:
 - o Logistic Regression
 - Random Forest
 - Gradient Boosting (XGBoost)
 - Support Vector Machine (SVM)
 - Deep Learning with Neural Networks

• Selected XGBoost due to its high accuracy and ability to handle imbalanced data.

Training Process

- Split the data into 80% training and 20% testing.
- Trained the **XGBoost** model using the training set.
- Used **GridSearchCV** for hyperparameter tuning.

Hyperparameter Tuning

• Tuned parameters:

```
o max_depth: 3, 5, 7
```

o learning rate: 0.01, 0.1, 0.2

o n estimators: 100, 200, 300

Model Optimization Techniques

- Addressed class imbalance using **SMOTE**.
- Reduced overfitting with **dropout regularization** in deep learning.
- Optimized feature selection for better performance.

5. Model Evaluation

Evaluation Metrics

Accuracy: 82.5%Precision: 0.78

• Recall: **0.65**

• F1-Score: **0.71**

• ROC-AUC Score: 0.85

Performance Analysis

- The model performs well in predicting churn, with a high ROC-AUC score.
- Precision and recall are balanced, indicating good performance on both classes.
- Conducted bias-variance analysis to ensure model generalization.

Confusion Matrix and ROC Curve

- **Confusion Matrix**: Shows true positives, true negatives, false positives, and false negatives.
- **ROC Curve**: Demonstrates the trade-off between true positive rate and false positive rate.

Bias-Variance Tradeoff

- Addressed high variance with feature selection and cross-validation.
- Ensured model generalization by preventing overfitting.

6. Interpretation of Results

Key Insights

- Customers with longer tenure are less likely to churn.
- Monthly charges significantly impact churn probability.
- Contract type plays a crucial role in retention.

Business Implications

- Businesses can offer discounts to high-risk customers.
- Subscription-based models can optimize pricing strategies.
- Customer engagement programs can reduce churn rates.

Customer Segmentation Analysis

- Segmented customers based on tenure, contract type, and charges.
- Identified high-risk groups requiring targeted retention strategies.
- Created actionable insights for marketing and customer support teams.

7. Deployment

Deployment Strategy

- The model is deployed using **FastAPI** for backend processing.
- The frontend is built using **HTML**, **CSS**, and **JavaScript**.
- The model prediction is exposed as a REST API endpoint.

Instructions for Running the Application

- 1. Clone the repository from GitHub.
- 2. Install dependencies using pip install -r requirements.txt.
- 3. Start the FastAPI server using uvicorn main:app --reload.
- 4. Open the frontend and input customer data.
- 5. View prediction results dynamically.

API Integration

- FastAPI exposes endpoints for prediction.
- The frontend interacts with the backend using AJAX requests.
- JSON responses are used to display predictions.

Frontend-Backend Interaction

- Users enter details on the web interface.
- The frontend sends data to FastAPI for processing.
- The backend returns predictions which trigger animations.

Streamlit Integration

- Implemented an alternative user-friendly interface using **Streamlit**.
- Steps to run the Streamlit app:
 - 1. Install Streamlit: pip install streamlit
 - 2. Run streamlit run app.py
 - 3. Enter customer details and view predictions interactively.
- Streamlit offers a simple UI without needing HTML/CSS.

8. Limitations

Current Limitations

- The model's accuracy is influenced by data quality.
- Some categorical variables may not capture full customer behavior.
- Predictions rely on historical data and may not adapt to rapid changes.

Challenges Faced

- Handling imbalanced data during training.
- Ensuring smooth frontend-backend interaction.
- Optimizing model performance for real-time predictions.

Potential Risks and Mitigations

- Overfitting: Used cross-validation and feature selection.
- **Bias in Data**: Ensured diverse feature representation.
- Scalability Issues: Deployed using lightweight APIs for efficiency.

9. Future Improvements

Potential Enhancements

- Implementing a more sophisticated ensemble model.
- Enhancing feature selection with automated tools.

Scalability and Extensibility

- Deploying the model on cloud platforms.
- Adding real-time monitoring and retraining pipelines.

Advanced Feature Engineering

- Extracting additional insights from customer interactions.
- Using unsupervised learning for better segmentation.

Integration with Business Intelligence Tools

- Connecting with dashboards for decision-making.
- Incorporating A/B testing for retention strategies.

10. Conclusion

Summary of the Project

- Successfully built and deployed a churn prediction model.
- Integrated an interactive frontend and API backend.
- Explored key business insights from customer data.

Final Thoughts

- Predicting churn can help businesses take proactive actions.
- A combination of machine learning and intuitive UI enhances usability.

Lessons Learned

- Data preprocessing is crucial for accurate predictions.
- Deployment requires balancing performance and usability.
- Streamlit provides a quick alternative for non-technical users.