Mind in Motion

Machine Learning for Depression Classification using Motor Actigraphy Data

Baseline Presentation

Gary Kong, Julia Kauffman, Leo Le, Vishnu Paty, Melia Soque

Our study aims to use machine learning to classify patients into depression status using actigraphy data

Depression

- Leading cause of disability
- Associated with disrupted biological rhythms and changes in motor activity
- Subjective diagnosis (DSM-5 criteria)

Motor actigraphy data

- Non-invasive
- Available through wearables
- Potentially objective method of diagnosing depression

Research question

Can machine learning algorithms be used to accurately classify patients into depression status (normal, mild and moderate) using motor actigraphy data?

The Depresjon dataset contains actigraph data for controls and patients with mild/moderate depression

Summary Statistics of Depresjon Dataset

Variable	Values	Count	%	
MADRS when measurement started (MADRS1)	Normal (<7)	32	58%	
	Mild (7-20)	7	29%	
	Moderate (20-35)	16	13%	
MADRS when measurement stopped (MADRS2)	Normal (<7)	32	58%	
	Mild (7-20)	11	22%	
	Moderate (20-35)	12	20%	
Gender	Female	30	55%	
	Male	25	45%	
Affective Type	Normal	32	58%	
	Unipolar	15	27%	
	Bipolar	8	15%	
Days of Observation	Mean	13 days		
Age	Mean	40 years		
Education	Mean	11 years		

Label

We extracted features that capture differences in activity patterns across depression classes

Correlation of Features with Depression Classes

0.0

-0.2

-0.4

			*	
Statistical metrics capturing distribution	Activity Intraday Variability -	0.33	-0.25	-0.15
of activity	Activity Mean-	0.52	-0.35	-0.28
	Activity Skewness (Hourly) -	-0.47	0.30	0.27
	Activity Entropy (Hourly) -	0.39	-0.20	-0.27
Proportion of activity occurring in	% Activity in 00:00-06:00 -	-0.03	0.26	-0.21
different periods of each day	% Activity in 06:00-12:00 -	0.13	0.09	-0.24
	% Activity in 12:00-18:00 -	-0.09	-0.14	0.25
	% Activity in 18:00-00:00 -	0.01	-0.31	0.28
Statistical metrics capturing count and	Activity Bout Count -	0.46	-0.25	-0.31
distribution of bouts of activity	Activity Bout Duration Mean -	0.39	-0.32	-0.15
	Activity Bout Duration Standard Deviation -	0.17	-0.07	-0.13
	Activity Bout Duration Coefficient of Variation -	0.01	0.12	-0.12
	Activity Bout Duration Skewness-	0.08	0.02	-0.11
	Activity Bout Duration Entropy -	0.22	-0.25	-0.03
Statistical metrics capturing distribution	Inactivity Bout Duration Mean -	-0.42	0.19	0.31
of bouts of inactivity	Inactivity Bout Duration Coefficient of Variation -	0.42	-0.14	-0.37
	Inactivity Bout Duration Skewness -	0.21	0.05	-0.30
D 1 1	Inactivity Bout Duration Entropy -	-0.20	0.09	0.15
Ronzolovi		Normal	Mild	Moderate

To account for small Ns and address class imbalance, we will use GANs to augment our data

Explored Techniques:

- SMOTE (Synthetic Minority Oversampling Technique)
- Cross-Subject Data Fusion
- Generative Adversarial Networks (GANs)

Adversarial training involves a "game of chess" - the generator creates data and discriminator 'critiques' it

We will use nested cross-validation to validate our model

- All outer loops provides a robust estimate of a model's performance
- Inner loop prevents information leakage from the test set
- K-folds 3, 5, 10
- K iterations provides a more reliable estimate of a model's generalization ability

In other studies RF and Logistic Regression are frequently used; accuracy benchmarks are c.70-90%

Evaluation metric	Average top accuracy studies	Average bottom accuracy studies
Accuracy	89%	70%
Sensitivity	87%	61%
Specificity	93%	73%
RMSE	4.55	3.76

Our baseline model will use logistic regression; we also plan to use random forest and boosted models

Features: Motor Actigraphy Data with 19 features

Implementation: Logistics Regression (3 classes classification)

->Complex model: Random Forest and Boosted Tree Models (Adaboost and XGBoost)

Learning rate: 0.01

Epochs: 30

Batch Size: 64

Validation Split: 0.1

We will use accuracy, F1 score, and ROC-AUC alongside statistical tests to evaluate performance

Classifier Metrics			Statistical Tests	
Accuracy	F1 Score	ROC Curve + Area Under the Curve (AUC)	Omnibus Tests	Post-hoc Tests with Bonferonni correction
Measures the fraction of correct predictions (classifications) made by the model Sensitive to class imbalances	 Harmonic mean of: Precision (proportion of positive indications actually correct) Recall (proportion of actual positives identified correctly) FPs and FNs considered equally important 	Shows tradeoff between True Positive Rate (TPR) and False Positive Rate (FPR) (i.e., trade-off between sensitivity and specificity) AUC measures the entire two-dimensional area underneath the ROC curve	• ANOVA • Cochran's Q test	 Alpaydin's combined 5x2cv F-test 5x2cv paired t-test k-foldcv paired t-test McNemar's test

Used to benchmark the performance of each algorithm. Samples of these metrics will be collected to reduce variance.

Used to compare the performance between algorithms.

