

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,880,386 B1
DATED : April 19, 2005
INVENTOR(S) : Hans-Ulrich Krotil et al.

Page 1 of 14

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page should be deleted and substitute therefor the attached title page.

Replace sheets 1 through 12, showing Figs. 1 through 13D, with attached sheets 1 through 12 showing Figs. 1 through 13D.

Signed and Sealed this

Thirteenth Day of September, 2005

JON W. DUDAS
Director of the United States Patent and Trademark Office

(12) United States Patent
Krotil et al.(10) Patent No.: US 6,880,386 B1
(45) Date of Patent: Apr. 19, 2005

(54) METHOD AND DEVICE FOR SIMULTANEOUSLY DETERMINING THE ADHESION, FRICTION, AND OTHER MATERIAL PROPERTIES OF A SAMPLE SURFACE

(75) Inventors: Hans-Ulrich Krotil, Neu-Ulm (DE); Thomas Stifter, Illereichen (DE); Othmar Marti, Ulm (DE)

(73) Assignee: Witec Wissenschaftliche Instrumente und Technologie GmbH, Ulm (DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/869,789

(22) PCT Filed: Jan. 4, 2000

(86) PCT No.: PCT/DE00/00003

§ 371 (c)(1),
(2), (4) Date: Jul. 23, 2002

(87) PCT Pub. No.: WO00/40946

PCT Pub. Date: Jul. 13, 2000

(30) Foreign Application Priority Data

Jan. 5, 1999 (DE) 199 00 114

(51) Int. Cl.⁷ G01N 13/16; G01N 19/02;
G01N 19/04; G01B 11/30; G01B 21/30

(52) U.S. Cl. 73/105

(58) Field of Search 73/105, 9, 866,
73/801; 250/306-307

(56) References Cited

U.S. PATENT DOCUMENTS

5,444,244 A 8/1995 Kirk et al.
5,477,732 A 12/1995 Yasue et al. 73/105
5,503,010 A 4/1996 Yamanaka

(Continued)

FOREIGN PATENT DOCUMENTS

DE	44 37 081	4/1995	G01N/19/04
DE	9421715 U1	7/1996	H02N/2/04
DE	19502822 A1	8/1996	H01J/31/28
DE	197000747 A1	7/1998	H01J/31/28
DE	197 28 357	1/1999	H01J/31/28
EP	0 611 945	11/1997	G01B/7/34
EP	0 896 201 A1	2/1999	
WO	WO 00/40946	7/2000	

OTHER PUBLICATIONS

Kazushi Yamouaka et al "Lateral Force Modulation Atomic Force Microscope for Selective Imaging of Friction Forces" Japanese J. Appl. Phys. vol. 34, Part 1, No. 5B, pp 2879-2882, May 1995.

(Continued)

Primary Examiner—Thomas P. Noland

(74) Attorney, Agent, or Firm—Baker & Daniels

(57) ABSTRACT

A process for the location-resolved simultaneous detection of the adhesion and friction as well as possibly of other material properties of a sample surface to be examined by means of a raster probe microscope comprising a raster probe. The raster probe and/or the sample with sample surface are moved until at a point of the sample surface to be examined the raster probe interacts in a determined manner with this surface. The raster probe and/or the sample are subjected to a vertical oscillation, and a first measuring signal characterized by the deformation of the raster probe is recorded. A second measuring signal characterizing the deformation of the raster probe is recorded, wherein the raster probe and/or the sample are subjected to a horizontal and/or vertical oscillation. From these two measuring signals the desired material properties are determined. For the detection of the entire surface area to be examined the raster probe and/or the sample are again moved and for the repetition of the measuring process described brought into contact with the sample surface in the above described manner.

10 Claims. 12 Drawing Sheets

U.S. Patent

Apr. 19, 2005

Sheet 1 of 12

6,880,386 B1

U.S. Patent

Apr. 19, 2005

Sheet 2 of 12

6,880,386 B1

Fig. 2

NORMAL
PERPENDICULAR FORCE

Fig. 3A

LATERAL FORCE

Fig. 3B

U.S. Patent

Apr. 19, 2005

Sheet 3 of 12

6,880,386 B1

U.S. Patent

Apr. 19, 2005

Sheet 4 of 12

6,880,386 B1**Fig. 5**

U.S. Patent

Apr. 19, 2005

Sheet 5 of 12

6,880,386 B1

FIG. 6

U.S. Patent

Apr. 19, 2005

Sheet 6 of 12

6,880,386 B1

Fig. 7A**Fig. 7B****Fig. 7C****Fig. 7D****Fig. 7E****Fig. 7F****Fig. 7G****Fig. 7H**

U.S. Patent

Apr. 19, 2005

Sheet 7 of 12

6,880,386 B1

FIG. 8

U.S. Patent

Apr. 19, 2005

Sheet 8 of 12

6,880,386 B1

Fig. 9A

Fig. 9B

U.S. Patent

Apr. 19, 2005

Sheet 9 of 12

6,880,386 B1

Fig. 10

U.S. Patent

Apr. 19, 2005

Sheet 10 of 12

6,880,386 B1

Fig. 11

U.S. Patent

Apr. 19, 2005

Sheet 11 of 12

6,880,386 B1

POLYMER SAMPLE,
IMAGE SIZE $25\mu\text{m}^2$,
93kHz / 1kHz

Fig.12A

Fig.12B

Fig.12C

Fig.12D

BEST AVAILABLE COPY

U.S. Patent

Apr. 19, 2005

Sheet 12 of 12

6,880,386 B1

POLYMER SAMPLE,
IMAGE SIZE 25 μm^2 ,
230kHz / 1kHz

Fig.13A

Fig.13B

Fig.13C

Fig.13D

BEST AVAILABLE COPY