SEQUENCE LISTING

```
<110> Japan Science And Technology Corporation
<120> Nicotianamine synthase, genes coding nicotianamine synthase
<130> PA906235
<160> 22
<210> 1
<211> 328
<212> PRT
<213> Hordeum vulgare L.
<400> 1
Met Asp Ala Gln Asn Lys Glu Val Ala Ala Leu Ile Glu Lys Ile
                                                                        15
Ala Gly Ile Gln Ala Ala Ile Ala Glu Leu Pro Ser Leu Ser Pro
                                                                        30
Ser Pro Glu Val Asp Arg Leu Phe Thr Asp Leu Val Thr Ala Cys
                                                                        45
Val Pro Pro Ser Pro Val Asp Val Thr Lys Leu Ser Pro Glu His
                                                                       60
Gln Arg Met Arg Glu Ala Leu Ile Arg Leu Cys Ser Ala Ala Glu
                                                                       75
Gly Lys Leu Glu Ala His Tyr Ala Asp Leu Leu Ala Thr Phe Asp
                                                                       90
Asn Pro Leu Asp His Leu Gly Leu Phe Pro Tyr Tyr Ser Asn Tyr
                                                                      105
Val Asn Leu Ser Arg Leu Glu Tyr Glu Leu Leu Ala Arg His Val
                                                                      120
Pro Gly Ile Ala Pro Ala Arg Val Ala Phe Val Gly Ser Gly Pro
                                                                      135
Leu Pro Phe Ser Ser Leu Val Leu Ala Ala His His Leu Pro Glu
                                                                      150
Thr Gln Phe Asp Asn Tyr Asp Leu Cys Gly Ala Ala Asn Glu Arg
                                                                       165
Ala Arg Lys Leu Phe Gly Ala Thr Ala Asp Gly Val Gly Ala Arg
                                                                       180
Met Ser Phe His Thr Ala Asp Val Ala Asp Leu Thr Gln Glu Leu
                                                                      195
Gly Ala Tyr Asp Val Val Phe Leu Ala Ala Leu Val Gly Met Ala
                                                                      210
Ala Glu Glu Lys Ala Lys Val Ile Ala His Leu Gly Ala His Met
                                                                      225
Val Glu Gly Ala Ser Leu Val Val Arg Ser Ala Arg Pro Arg Gly
                                                                      240
Phe Leu Tyr Pro Ile Val Asp Pro Glu Asp Ile Arg Arg Gly Gly
                                                                      255
Phe Glu Val Leu Ala Val His His Pro Glu Gly Glu Val Ile Asn
                                                                      270
Ser Val Ile Val Ala Arg Lys Ala Val Glu Ala Gln Leu Ser Gly
                                                                      285
Pro Gln Asn Gly Asp Ala His Ala Arg Gly Ala Val Pro Leu Val
                                                                      300
Ser Pro Pro Cys Asn Phe Ser Thr Lys Met Glu Ala Ser Ala Leu
                                                                      315
Glu Lys Ser Glu Glu Leu Thr Ala Lys Glu Leu Ala Phe
                                                                      328
<210> 2
<211> 1295
<212> DNA
<213> Hordeum vulgare L.
<400> 2
                   20
                              30
                                          40
                                                     50
GCGTTCAGAG GCTTCCAGAG TTCTTCCGGT CACCAAGAAG CATTTGATCA TAACATGGAT
        70
                   80
                              90
                                         100
                                                    110
                                                               120
GCCCAGAACA AGGAGGTCGC TGCTCTGATC GAGAAGATCG CCGGTATCCA GGCCGCCATC
                  140
                             150
                                                    170
                                         160
GCCGAGCTGC CGTCGCTGAG CCCGTCCCCC GAGGTCGACA GGCTCTTCAC CGACCTCGTC
                  200
                             210
                                        220
                                                    230
```

ACGGCCTGCG TCCCGCCGAG CCCCGTCGAC GTGACGAAGC TCAGCCCGGA GCACCAGAGG

250	260		280		300
ATGCGGGAGG	CTCTCATCCG	CTTGTGCTCC	GCCGCCGAGG	GGAAGCTCGA	GGCGCACTAC
310	320	330	340	350	360
GCCGACCTGC	TCGCCACCTT	CGACAACCCG	CTCGACCACC	TCGGCCTCTT	CCCGTACTAC
370	380	390	400	410	420
AGCAACTACG	TCAACCTCAG	CAGGCTGGAG	TACGAGCTCC	TGGCGCGCCA	CGTGCCGGGC
430	440	450	460	470	480
			TCCGGCCCGC		
ATCCCCCC	000001000	0110010000	100000000		
490	500	510	520	530	540
			TTCGACAACT		
CICGCCGCGC	ACCACCIGCC	CGAGACCCAG	IICGACAACI	ACGACCIGIO	COOCOCOCC
550	F.C.0	570	580	590	600
550	560	570			
AACGAGCGCG	CCAGGAAGCT	GTTCGGCGCG	ACGGCGGACG	GCGTCGGCGC	GCGIAIGICG
610	620	630			660
TTCCACACGG	CGGACGTCGC	CGACCTCACC	CAGGAGCTCG	GCGCCTACGA	CGTGGTCTTC
670	680	690	700	710	720
CTCGCCGCGC	TCGTCGGCAT	GGCAGCCGAG	GAGAAGGCCA	AGGTGATTGC	CCACCTGGGC
730	740	750	760	770	780
GCGCACATGG	TGGAGGGGGC	GTCCCTGGTC	GTGCGGAGCG	CACGGCCCCG	CGGCTTTCTT
790	800	810	820	. 830	840
TACCCCATTG	TCGACCCGGA	GGACATCAGG	CGGGGTGGGT	TCGAGGTGCT	GGCCGTGCAC
		•			
850	860	870	880	890	900
CACCCGGAAG					CCAACCCCAC
CACCCOOAAG		('Δ Δ ("I'("f(*)I'('			
	GIGAGGIGAI	CAACTCTGTC	AICGICOCCC	GIAAGGCCGI	CGAAGCGCAG
910					
910	920	930	940	950	960
	920	930		950	960
CTCAGTGGGC	920 CGCAGAACGG	930 AGACGCGCAC	940 GCACGGGGCG	950 CGGTGCCGTT	960 GGTCAGCCCG
CTCAGTGGGC	920 CGCAGAACGG 980	930 AGACGCGCAC 990	940 GCACGGGGCG 1000	950 CGGTGCCGTT 1010	960 GGTCAGCCCG 1020
CTCAGTGGGC	920 CGCAGAACGG 980	930 AGACGCGCAC 990	940 GCACGGGGCG	950 CGGTGCCGTT 1010	960 GGTCAGCCCG 1020
CTCAGTGGGC 970 CCATGCAACT	920 CGCAGAACGG 980 TCTCCACCAA	930 AGACGCGCAC 990 GATGGAGGCG	940 GCACGGGGCG 1000 AGCGCGCTTG	950 CGGTGCCGTT 1010 AGAAGAGCGA	960 GGTCAGCCCG 1020 GGAGCTGACC
CTCAGTGGGC 970 CCATGCAACT 1030	920 CGCAGAACGG 980 TCTCCACCAA	930 AGACGCGCAC 990 GATGGAGGCG 1050	940 GCACGGGGCG 1000 AGCGCGCTTG	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070	960 GGTCAGCCCG 1020 GGAGCTGACC
CTCAGTGGGC 970 CCATGCAACT 1030	920 CGCAGAACGG 980 TCTCCACCAA	930 AGACGCGCAC 990 GATGGAGGCG 1050	940 GCACGGGGCG 1000 AGCGCGCTTG	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070	960 GGTCAGCCCG 1020 GGAGCTGACC
970 CCATGCAACT 1030 GCCAAAGAGC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT
970 CCATGCAACT 1030 GCCAAAGAGC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT
970 CCATGCAACT 1030 GCCAAAGAGC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT
970 CCATGCAACT 1030 GCCAAAGAGC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT	940 GCACGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT	940 GCACGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT 1170 GCGTTACATG	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180 TAGTACTTGT	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA 1190 ATTTATACCT	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC 1200 GGAATAACGG
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC 1150 CTTGTGCTGT	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT 1160 TAATTTACAC	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT 1170 GCGTTACATG	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180 TAGTACTTGT	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA 1190 ATTTATACCT 1250	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC 1200 GGAATAACGG
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC 1150 CTTGTGCTGT	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT 1160 TAATTTACAC	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT 1170 GCGTTACATG	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180 TAGTACTTGT	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA 1190 ATTTATACCT 1250	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC 1200 GGAATAACGG
970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC 1150 CTTGTGCTGT 1210 TATGTAACAT	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT 1160 TAATTTACAC 1220 AAATATTAGT	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT 1170 GCGTTACATG 1230 GGGATTTGAA	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180 TAGTACTTGT 1240 GTGTAATGCT	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA 1190 ATTTATACCT 1250	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC 1200 GGAATAACGG
CTCAGTGGGC 970 CCATGCAACT 1030 GCCAAAGAGC 1090 GGTAACTTTC 1150 CTTGTGCTGT 1210 TATGTAACAT	920 CGCAGAACGG 980 TCTCCACCAA 1040 TGGCCTTTTG 1100 CTACTCGTGT 1160 TAATTTACAC 1220 AAATATTAGT	930 AGACGCGCAC 990 GATGGAGGCG 1050 ATTGAAGAGT 1110 GTGTTTTGAT 1170 GCGTTACATG 1230 GGGATTTGAA	940 GCACGGGGCG 1000 AGCGCGCTTG 1060 GCGCGTGGTC 1120 GTTTGTGCCT 1180 TAGTACTTGT 1240 GTGTAATGCT	950 CGGTGCCGTT 1010 AGAAGAGCGA 1070 ATTCTGTCGC 1130 GTAAGAGTTA 1190 ATTTATACCT 1250	960 GGTCAGCCCG 1020 GGAGCTGACC 1080 CTGCGATCGT 1140 TGCTTCCGGC 1200 GGAATAACGG

<211> 335 <212> PRT <213> Hordeum vulgare L. <400> 3 Met Ala Ala Gln Asn Asn Gln Glu Val Asp Ala Leu Val Glu Lys Ile Thr Gly Leu His Ala Ala Ile Ala Lys Leu Pro Ser Leu Ser Pro Ser Pro Asp Val Asp Ala Leu Phe Thr Glu Leu Val Thr Ala Cys Val Pro Pro Ser Pro Val Asp Val Thr Lys Leu Gly Pro Glu Ala Gln Glu Met Arg Glu Gly Leu Ile Arg Leu Cys Ser Glu Ala Glu Gly Lys Leu Glu Ala His Tyr Ser Asp Met Leu Ala Ala Phe Asp Lys Pro Leu Asp His Leu Gly Met Phe Pro Tyr Tyr Asn Asn Tyr Ile Asn Leu Ser Lys Leu Glu Tyr Glu Leu Leu Ala Arg Tyr Val Pro Gly Gly Tyr Arg Pro Ala Arg Val Ala Phe Ile Gly Ser Gly Pro Leu Pro Phe Ser Ser Phe Val Leu Ala Ala Arg His Leu Pro Asp Thr Met Phe Asp Asn Tyr Asp Leu Cys Gly Ala Ala Asn Asp Arg Ala Ser Lys Leu Phe Arg Ala Asp Arg Asp Val Gly Ala Arg Met Ser Phe His Thr Ala Asp Val Ala Asp Leu Ala Gly Glu Leu Ala Lys Tyr Asp Val Val Phe Leu Ala Ala Leu Val Gly Met Ala Ala Glu Asp Lys Ala Lys Val Ile Ala His Leu Gly Ala His Met Ala Asp Gly Ala Ala Leu Val Val Arg Ser Ala His Gly Ala Arg Gly Phe Leu Tyr Pro Ile Val Asp Pro Gln Asp Ile Gly Arg Gly Gly Phe Glu Val Leu Ala Val Cys His Pro Asp Asp Val Val Asn Ser Val Ile Ile Ala Gln Lys Ser Lys Asp Val His Ala Asp Gly Leu Gly Ser Gly Arg Gly Ala Gly Gly Gln Tyr Ala Arg Gly Thr Val Pro Val Val Ser Pro Pro Cys Arg Phe Gly Glu Met Val Ala Asp Val Thr Gln Asn His Lys Arg Asp Glu Phe Ala Asn Ala Glu Val Ala Phe <210> 4 <211> 1342 <212> DNA <213> Hordeum vulgare L. <400> 4 30 40 20 CTCCTGTGCC TGTCCTGAGG TACCAAGAAC ACCAGTGAAA TGGCTGCCCA GAACAACCAG 90 100 110 80 GAGGTGGATG CCCTGGTGGA GAAGATCACC GGGCTCCATG CCGCAATCGC CAAGCTGCCG 160 170 180 150 140 TCGCTCAGCC CATCCCCGGA CGTCGACGCG CTCTTCACGG AGCTGGTCAC GGCGTGCGTT 240 190 200 210 220 230 CCACCGAGTC CAGTGGACGT GACCAAGCTC GGGCCGGAGG CGCAGGAGAT GCGGGAGGGC 290 300 270 280 CTCATCCGCC TATGCTCCGA GGCCGAGGGG AAGCTGGAGG CGCACTACTC CGACATGCTC 340 350 320 330 GCCGCCTTCG ACAAGCCGCT GGATCACCTC GGCATGTTCC CCTACTACAA CAACTACATC

400

410

390

AACCTCAGCA AGCTCGAGTA CGAGCTCCTG GCCCGCTACG TGCCTGGCGG CTATCGCCCG

370

380

30

60 75

90

105 120

135

150

165 180

195 210

225

240 255

270

285 300

315

330 335

420

430	440	450	460	470	480
GCGCGCGTCG	CGTTCATCGG	CTCCGGCCCG	CTGCCGTTCA	GCTCCTTTGT	CCTGGCCGCG
490	500	510	520	530	540
CGCCACCTGC	CCGACACCAT	GTTCGACAAC	TATGACCTGT	GCGGTGCGGC	CAACGATCGC
550	560	570	580	590	600
GCCAGCAAGC	TCTTCCGCGC	GGATCGCGAC	GTGGGTGCCC	GCATGTCGTT	CCACACGGCC
610	- 620	630	640		660
GACGTCGCGG	ACCTCGCCGG	CGAGCTCGCC	AAGTACGACG		GGCCGCACTC
670	680	690		710	720
GTCGGCATGG	CCGCCGAGGA	CAAGGCGAAG		ACCTCGGCGC	ACACATGGCA
730	740	750		770	780
GACGGGGCGG	CCCTCGTCGT	GCGCAGCGCA		GCGGGTTCCT	GTACCCGATC
790 GTCGACCCCC	800 AGGACATCGG	810 CCGAGGCGGG			840 CCATCCCGAC
850	860	870	880	890	900
GACGACGTGG	TGAACTCCGT	CATCATCGCA	CAGAAGTCCA	AGGACGTGCA	TGCCGATGGA
910 CTTGGCAGCG	920 GGCGTGGTGC	930 CGGTGGACAG			960 TGTTGTCAGC
970 CCCCCGTGCA	980 GGTTCGGCGA	990 GATGGTGGCG	1000 GACGTGACCC		
1030 TTTGCCAACG	1040 CCGAAGTGGC	1050 CTTTTGATCG	1060 TTCGCTGCGA		
1090 TCCATACCTC		1110 TGCATCAAGC			1140 AGTCACGTGT
1150 TGCTTCTATC					1200 GACCTTTGTA
1210	1220	1230	1240	1250	1260
TGTGTACAAG	TGAATTTTAA	TTCACAAGTA	CATATAATGG	TCACCATTGA	AAAGATGTTT
1270	1280	1290	1300		1320
AGTGTGTGTT	TTCCAATATA	TGTTTGTGTA	AGGTTCATCA		TATGTTTGGA
1330	1340	1350			

1330 1340 1 ACCCAAAAA AAAAAAAAA AA

<210> 5

<211> 335

<212> PRT

<213> Hordeum vulgare L.

<400> 5

Met Ala Ala Gln Asn Asn Lys Asp Val Ala Ala Leu Val Glu Lys Ile Thr Gly Leu His Ala Ala Ile Ala Lys Leu Pro Ser Leu

Ser	Pro	Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Glu	Leu	Val	Thr	45
Ala	Cys	Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Gly	Pro	60
Glu	Āla	Gln	Glu	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	75
Ala	Glu	Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	90
Phe	Asp	Asn	Pro	Leu	Asp	His	Leu	Gly	Ile	Phe	${\tt Pro}$	Tyr	Tyr	Ser	105
Asn	Tyr	Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	120
Tyr	Val	Arg	Arg	His	Arg	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	135
Gly	Pro	Leu	Pro	Phe	Ser	Ser	Phe	Val	Leu	Ala	Ala	Arg	His	Leu	150
Pro	Asp	Thr	Met	Phe	Asp	Asn	Tyr	Asp	Leu	Cys	Gly	Ala	Ala	Asn	165
Asp	Arg	Ala	Ser	Lys	Leu	Phe	Arg	Ala	Asp	Thr	Asp	Val	Gly	Ala	180
Arg	Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Ala	Ser	Glu	195
Leu	Ala	Lys	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	210
		Glu													225
Met	Ala	Asp	Gly	Ala	Ala	Leu	Val	Val	Arg	Ser	Ala	His	Gly	Ala	240
														Arg	255
Gly	Gly	Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	270
Val	Asn	Ser	Val	Ile	Ile	Ala	Gln	Lys	Ser	Lys	Glu	Val	His	Ala	285
Asp	Gly	Leu	Gly	Ser	Ala	Arg	Gly	Ala	Gly	Arg	Gln	Tyr	Ala	Arg	300
		Val													315
Val	Ala	Asp	Val	Thr	Gln	Asn	His	Lys	Arg	Asp	Glu	Phe	Ala	Asn	330
Ala	Glu	Val	Ala	Phe											335

<211> 1314 <212> DNA <213> Hordeum vulgare L. <400> 6 CTACTTCACT CACACTAGTG CCCAGAAAGA AGGCTGCAAT GGCTGCCCAG AACAACAACA AGGATGTCGC TGCCCTGGTG GAGAAGATCA CCGGGCTCCA CGCCGCCATC GCCAAGCTGC CGTCGCTCAG CCCATCCCCG GACGTCGACG CGCTCTTCAC CGAGCTGGTC ACGGCGTGCG TTCCCCCGAG CCCCGTGGAC GTGACCAAGC TCGGCCCCGA GGCGCAGGAG ATGCGGGAGG GCCTCATCCG CCTCTGCTCC GAGGCCGAGG GGAAGCTGGA GGCGCACTAC TCCGACATGC TCGCCGCCTT CGACAACCCG CTGGATCACC TCGGCATCTT CCCCTACTAC AGCAACTACA TCAACCTCAG CAAGCTGGAG TACGAGCTCC TGGCACGCTA CGTCCGGCGG CATCGCCCGG CCCGCGTCGC GTTCATCGGC TCCGGCCCGC TGCCGTTCAG CTCCTTTGTC CTGGCCGCGC GCCACCTGCC CGACACCATG TTTGACAACT ACGACCTTTG CGGCGCGGCC AACGATCGCG CCAGCAAGCT CTTCCGCGCG GACACGGACG TGGGTGCCCG CATGTCGTTC CACACGGCCG

<210> 6

610	620	630	640	650	660
ACGTCGCGGA	CCTCGCCAGC	GAGCTCGCCA	AGTACGACGT	CGTCTTCCTG	GCCGCGCTCG
670	680	690	700	710	720
TCGGCATGGC	CGCCGAGGAC	AAGGCCAAGG	TGATCGCGCA	CCTCGGCGCA	CACATGGCAG
730	740	750	760	770	780
ACGGGGCGGC	CCTCGTCGTG	CGCAGCGCAC	ACGGAGCGCG	CGGGTTCCTG	TACCCGATTG
790	800	810	820	830	840
TCGACCCCCA	GGACATCGGC	CGCGGCGGGT	TCGAGGTGCT	GGCCGTGTGC	CACCCGACG
850	860	870	880	890	900
ACGACGTGGT	GAACTCCGTC	ATCATCGCAC	AGAAGTCCAA	GGAGGTGCAT	GCCGATGGAC
910	920	930	940	950	960
TTGGCAGCGC	GCGTGGTGCC	GGTCGACAGT	ACGCGCGCGG	CACGGTGCCG	GTTGTCAGCC
970	980		1000		1020
CCCCGTGCAG	GTTCGGTGAG	ATGGTGGCGG	ATGTGACCCA	GAACCACAAG	AGAGACGAGT
1030	1040		1060		1080
TTGCCAACGC	CGAAGTGGCC	TTTTGATCGA	TCGTCGCCAA	GGGACAATAA	ATGAACGTGG
1090	1100		1120	1130	1140
ATGTGGTAGG	GTAATTTGCC	TACCTCGCTG	CTTGATCGCT	TGCAATATGT	GCACATTTTC
1150	1160	1170	1180	1190 GTATCCAATA	1200
CIACIACCGC	IGCITATGCA	TTTCAAGCCA	IGIGAIGIIG	GIAICCAAIA	AAGIAIGIGI
1210	1220	1230	1240	1250 GTGTTGACAA	1260
AGGIIIACA	CGCAAAIGIC				
1270	1280		1300	1310 AAAAAAAAA	
CAGIICACAA	TIAATAAATA	GIAIAAIGGA	IICAAAAAAA	AAAAAAAAA	AAAA

<211> 329

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Gly	Gln	Ser	Glu	Glu	Val	Asp	Ala	Leu	Val	Gln	Lys	Ile	15
Thr	Gly	Leu	His	Ala	Ala	Ile	Ala	Lys	Leu	Pro	Ser	Leu	Ser	Pro	30
Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	45
Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Ala	Pro	Glu	Ala	60
Gln	Ala	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	Ala	Glu	75
Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	Phe	Asp	90
Asn	Pro	Leu	Asp	His	Leu	Gly	Val	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	105
Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	Tyr	Val	120
Pro	Gly	Arg	His	Arg	Pro	Ala	Arg	Val	Ala	Phe	Ile	Gly	Ser	Gly	135
Pro	Leu	Pro	Phe	Ser	Ser	Tyr	Val	Leu	Ala	Ala	Arg	His	Leu	Pro	150
Asp	Thr	Val	Phe	Asp	Asn	Tyr	Asp	Leu	Cys	Gly	Ala	Ala	Asn	Asp	165
Arg	Ala	Thr	Arg	Leu	Phe	Arg	Ala	Asp	Lys	Asp	Val	Gly	Ala	Arg	180
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Asp	Glu	Leu	195

Ala	Thr	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Asp	Lys	Ala	Lys	Val	Ile	Ala	His	Leu	Gly	Ala	His	Met	225
Ala	Asp	Gly	Ala	Ala	Leu	Val	Ala	Arg	His	Gly	Ala	Arg	Gly	Phe	240
Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	Gly	Gly	Phe	255
Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	Val	Asn	Ser	270
Val	Ile	Ile	Ala	Gln	Lys	Ser	Asn	Asp	Val	His	Glu	Tyr	Gly	Leu	285
Gly	Ser	Gly	Arg	Gly	Gly	Arg	Tyr	Ala	Arg	Gly	Thr	Val	Val	Pro	300
Val	Val	Ser	Pro	Pro	Cys	Arg	Phe	Gly	Glu	Met	Val	Ala	Asp	Val	315
Thr	Gln	Lys	Arg	Glu	Glu	Phe	Ala	Asn	Ala	Glu	Val	Ala	Phe		329

<211> 1249

<212> DNA

<213> Hordeum vulgare L.

10	20	30	40	50	60
CCACTACCGA	CTACCGTAGT	ACCGTGCCTC	AGAGCTCATC	ACTGGTCAGG	TACCAAGAAG
70	80	90	100	110	120
ACATAAAAAT	GGACGGCCAG	AGCGAGGAGG	TCGACGCCCT	TGTCCAGAAG	ATCACCGGCC
130	140	150	160	170	180
TCCACGCCGC	CATCGCCAAG	CTGCCCTCGC	TCAGCCCGTC	CCCGGACGTC	GACGCGCTCT
190	200	210	220		240
TCACCGACCT	GGTCACCGCG	TGCGTGCCCC	CGAGCCCCGT		AAGCTCGCCC
250	260	270	280	290	300
CGGAGGCGCA	GGCGATGCGG	GAGGGCCTCA	TCCGCCTCTG	CTCCGAGGCC	GAGGGCAAGC
310	320	330	340	350	360
TGGAGGCGCA	CTACTCCGAC	ATGCTCGCCG	CCTTCGACAA	CCCGCTCGAC	CACCTCGGCG
370	380	390	400		420
TCTTCCCCTA	CTACAGCAAC	TACATCAACC	TCAGCAAGCT		CTCCTCGCGC
430	440	450	460	470	480
GCTACGTGCC	CGGCAGGCAT	CGCCCGGCCC	GCGTCGCCTT	CATCGGCTCC	GGCCCGCTGC
490	500	510	520	530	540
CGTTCAGCTC	CTACGTCCTC	GCCGCGCGCC	ACCTGCCCGA	CACCGTGTTC	GACAACTACG
550	560	570	580	590	600
ACCTGTGCGG	CGCGGCCAAC	GACCGCGCGA	CCAGGCTGTT	CCGCGCGGAC	AAGGACGTCG
610	620	630	640	650	660
GCGCCCGCAT	GTCGTTCCAC	ACCGCCGACG	TCGCGGACCT	CACCGACGAG	CTCGCTACGT
670	680	690	700	710	720
ACGACGTCGT	CTTCCTGGCC	GCGCTCGTGG	GCATGGCCGC	CGAGGACAAG	GCCAAGGTGA
730	740	750	760		780
TCGCGCACCT	TGGCGCGCAC	ATGGCGGACG	GGGCGGCCCT		CACGGCGCGC
790	800	810	820	830	840
GTGGGTTCCT	CTACCCGATC	GTCGATCCCC	AGGACATCGG	TCGAGGCGGG	TTCGAGGTGC

850 860	870	880	890	900	
850 860 TCGCCGTGTG TCACCCCGAC					
redecard reacceding	0001.00100	20.2.02002			
910 920		940	950	960	
ACGACGTGCA CGAGTATGGA	CTTGGCAGCG	GGCGTGGTGG	ACGGTACGCG	CGAGGCACGG	
			1010	1000	
970 980 TGGTGCCGGT GGTCAGCCCA	990	1000	1010	1020	
TGGTGCCGGT GGTCAGCCCA	CCCIGCAGGI	ICGGCGAGAI	GGIGGCAGAC	GIGACCCAGA	
1030 1040	1050	1060	1070	1080	
AGAGAGAGA GTTTGCCAAC			GCTGCTGAAT	CGCTTGTGAT	
				•	
1090 1100			1130	1140	
CGTACGTGGT AATTTTTCTA	CTACTCCTCC	TCCTACCACC	ACCTATCACC	TATGTATGCA	
	1170	1100	1100	1200	
1150 1160 TTTCAAGTCG TGTGTTGTTT			1190 CATCTTTACA		
TITCAAGICG IGIGIIGITI	GIAICCAAIA	AIGIAAIGA	OATOTTIACA	COCOCIUUUI	
1210 1220	1230	1240	1250		
ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ			АААААААА		
<210> 9					
<211> 282					
<212> PRT <213> Hordeum vulgare	. т.				
<400> 9					
11007					
Met Glu Ala Glu Asn G	ly Glu Val	Ala Ala Leu	Val Glu Lys	s Ile	15
Thr Gly Leu His Ala A	la Ile Ser	Lys Leu Pro	Ala Leu Se	r Pro	30
Ser Pro Gln Val Asp A	la Leu Phe	Thr Glu Leu	Val Ala Ala	a Cys	45
Val Pro Ser Ser Pro V	al Asp Val	Thr Lys Leu	Gly Pro Gli	ı Ala	60
Gln Glu Met Arg Gln A					75
Gly Leu Leu Glu Ala F	lis Tyr Ser	Asp Met Leu	Thr Ala Le	ı Asp	90
Ser Pro Leu Asp His I	eu Gly Arg	Phe Pro Tyr	Phe Asp Asi	n Tyr	105
Val Asn Leu Ser Lys I	eu Glu His	Asp Leu Leu	Ala Gly Hi	s Val	120
Ala Ala Pro Ala Arg V	al Ala Phe	Ile Gly Ser	Gly Pro Let	u Pro	135
Phe Ser Ser Leu Phe I	eu Ala Thr	Tyr His Leu	Pro Asp Th	r Arg	150
Phe Asp Asn Tyr Asp A	rg Cys Ser	Val Ala Asn	Gly Arg Ala	a Met	165
Lys Leu Val Gly Ala A					180
Phe His Thr Ala Glu V					195
Tyr Asp Val Val Phe I					210
Glu Lys Ala Asp Ala 1					225
Gly Ala Val Leu Val A					240
Leu Tyr Pro Val Val (255
Gln Val Leu Ala Val F				e Asn	270
Ser Phe Ile Val Ala A	Arg Lys Val	Lys Met Ser	Ala		282

<211> 1044

<212> DNA

<213> Hordeum vulgare L.

<400> 10

10 20 30 40 50 60 GTGACATGGA GGCCGAAAAC GGCGAGGTGG CTGCTCTGGT CGAGAAGATC ACCGGTCTCC

70 ACGCCGCCAT	80 CTCCAAGCTC	90 CCGGCACTAA			120 GCGCTCTTCA
130 CCGAGCTGGT	140 TGCGGCGTGC	150 GTCCCATCAA	160 GCCCGGTGGA	170 CGTGACCAAG	180 CTCGGCCCGG
190 AGGCGCAGGA	200 GATGCGGCAG	210 GACCTCATCC	220 GTCTCTGCTC	230 GGCCGCCGAG	240 GGGCTGCTCG
250 AGGCGCACTA	260 CTCCGACATG	270 CTCACCGCGT	280 TGGACAGCCC	290 GCTCGACCAC	
310 TCCCTTACTT	320 CGACAACTAC	330 GTCAACCTCA		350 GCACGATCTT	360 CTGGCAGGTC
370 ACGTGGCGGC	380 CCCGGCCCGC	390 GTGGCGTTCA	400 TCGGGTCGGG		420 TTCAGCTCGC
430 TCTTCCTTGC	440 GACGTACCAC	450 CTGCCGGACA	460 CCCGGTTCGA	470 CAACTACGAC	480 CGGTGCAGCG
490 TGGCGAATGG	500 CCGGGCGATG	510 AAGCTGGTCG	520 GCGCGGCGGA	530 CGAGGGCGTG	540 CGATCACGCA
550 TGGCGTTCCA	560 CACGGCCGAA	570 GTCACGGACC			600 TACGACGTGG
610 TCTTCCTGGC	620 CGCGCTCGTG	630 GGAATGACGT		650 GGCCGACGCC	660 ATAGCGCACT
670 TGGGGAAGCA	680 CATGGCAGAT	690 GGGGCGGTGC	700 TCGTGCGCGA		
730 CGTTCCTGTA	740 TCCTGTCGTG	750 GAGCTGGACG			
790 CCGTGCACCA	800 CCCTGCAGGC	810 GATGAGGTGT			840 CGGAAGGTGA
850 AAATGAGTGC	860 TTAAATTAAG	870 AAAAGGGTGA			900 GGTGTCTCAC
910 ATTGATAATA			940 TTGATGGGGG		960 TGTTTCAATG
970 AGGTCTGGTT					1020 ATGTTTCGAT
1030 TAAAAAAAA	1040 AAAAAAAAA	1050 AAAA			

<210> 11

<211> 328

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Ala	Gln	Asn	Lys	Glu	Val	Asp	Ala	Leu	Val	Gln	Lys	Ile	1	.5
Thr	Gly	Leu	His	Ala	Ala	Ile	Ala	Lys	Leu	Pro	Ser	Leu	Ser	Pro	3	30
Ser	Pro	Asp	Val	Asp	Ala	Leu	Phe	Thr	Asp	Leu	Val	Thr	Ala	Cys	4	15
Val	Pro	Pro	Ser	Pro	Val	Asp	Val	Thr	Lys	Leu	Gly	Ser	Glu	Ala	6	50
Gln	Glu	Met	Arg	Glu	Gly	Leu	Ile	Arg	Leu	Cys	Ser	Glu	Ala	Glu	7	75
Gly	Lys	Leu	Glu	Ala	His	Tyr	Ser	Asp	Met	Leu	Ala	Ala	Phe	Asp	9	90
Asn	Pro	Leu	Asp	His	Leu	бlу	Met	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	10)5
					Leu										12	20
Pro	Gly	Gly	Ile	Ala	Arg	Pro	Ala	Val	Ala	Phe	Ile	Gly	Ser	Gly	13	35
					Ser										15	50
					Asn										16	55
Ara	Ala	Ser	Lvs	Leu	Phe	Arg	Ala	Asp	Lys	Asp	Val	Gly	Ala	Arg	18	30
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Arg	Glu	Leu	19	95
Ala	Ala	Tvr	asa	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	21	10
Ala	Glu	Asp	Lvs	Ala	Lys	Val	Ile	Pro	His	Leu	Gly	Ala	His	Met	22	25
														Gly	24	4 0
					Val											55
Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	Val	Asn	27	70
Ser	Val	Ile	Ile	Ala	His	Lys	Ser	Lys	Asp	Val	His	Ala	Asn	Glu	28	35
					Gly										30	00
					Arg										31	15
					Phe										32	28
	-,-	5														

<211> 1352

<212> DNA

<213> Hordeum vulgare L.

			30 TCAGGTAGCC		
120 CATCGCCAAG			90 GGTCCAGAAG	80 TTGATGCCCT	70 AACAAGGAGG
180 GGTCACCGCG	170 TCACCGACCT	160 GACGCGCTCT	150 ACCCGACGTC	140 TCAGCCCATC	130 CTGCCGTCCC
240 GGAGATGCGG	230 CGGAGGCGCA	220 AAGCTCGGGT	210 GGACGTGACC	200 CGAGCCCCGT	190 TGCGTCCCCC
			270 CTCCGAGGCC		
			330 CCCGCTCGAC		310 ATGCTGGCCG
420 GGGCGGCATC	410 GCTACGTGCC	400 CTCCTGGCGC	390 GGAGTACGAG	380 TCAGCAAGCT	370 TACATCAACC
			450 CATCGGCTCC		430 GCCCGGCCCG
			510 CGCCATGTTC		490 GCCGCTCGCC

550 GACCGTGCGA	560 GCAAGCTGTT	570 CCGCGCGGAC	580 AAGGACGTGG		
610	620	630	640	650	660
ACCGCCGACG	TAGCGGACCT	CACCCGCGAG	CTCGCCGCGT	ACGACGTCGT	CTTCCTGGCC
670	680	690	700	710	720
GCGCTCGTGG	GCATGGCTGC	CGAGGACAAG	GCCAAGGTGA	TTCCGCACCT	CGGCGCGCAC
730	740	750	760	770	780
ATGGCGGACG	GGGCGGCCCT	CGTCGTGCGC	AGTGCGCAGG	CACGTGGGTT	CCTCTACCCG
790	800	810	820	830	840
ATCGTCGATC	CCCAGGACAT	CGGTCGAGGC	GGGTTTGAGG	TGCTGGCCGT	GTGTCACCCC
850	860	870	880	890	900
GACGATGACG	TGGTGAACTC	CGTCATCATC	GCACACAAGT	CCAAGGACGT	GCATGCCAAT
910	920	930	940	950	960
GAACGTCCCA	ACGGGCGTGG	TGGACAGTAC	CGGGGCGCGG	TACCGGTGGT	CAGCCCGCCG
970	980	990	1000	1010	1020
TGCAGGTTCG	GTGAGATGGT	GGCGGACGTG	ACCCACAAGA	GAGAGGAGTT	CACCAACGCG
1030 GAAGTGGCCT	1040 TCTGATCGTT	1050 GCGAGGGAAT			
1090 TCCATACGTG	1100 GCTGCCTGCT	1110 TCATCGCTTG	1120 CAATCGTACT		
1150	1160	1170	1180	1190	1200
AAGTCATGTG	TTGTCAATGT	AAGTGTGATG	TTTACACTAG	TCTATGAAAG	GCAGGGCAGA
1210 CGAGGGTAGT	1220 GTGCCAAGTA	1230 ACAGTGTGTC	1240 ATTATAGGTG		
1270 ATTTTTGTTC	1280 ACAAATAGTA	1290 TGATGTAATC	1300 GGTGTCATAT		
1330 AAGTTGGTTG	1340 CTAAAAAAA	1350 AAAAAAAAAA	1360 AA		

<211> 329

<212> PRT

<213> Hordeum vulgare L.

Met	Asp	Ala	Gln	Ser	Lvs	Glu	Val	Asp	Ala	Leu	Val	Gln	Lvs	Ile	15
Thr	-				-			_					-		30
	-							Thr							45
		_		_				Thr	_					_	60
						_			-						75
			_		_			Arg		_					. –
-	-					-		_						a Asp	90
Asn	Pro	Leu	Asp	His	Leu	GLy	Val	Phe	Pro	Tyr	Tyr	Ser	Asn	Tyr	105

Ile	Asn	Leu	Ser	Lys	Leu	Glu	Tyr	Glu	Leu	Leu	Ala	Arg	Tyr	Val	120
								Val							135
Pro	Leu	Pro	Phe	Ser	Ser	Tyr	Val	Leu	Ala	Ala	Arg	His	Leu	Pro	150
Asp	Thr	Val	Phe	Asp	Asn	Tyr	Val	Pro	Val	Arg	Ala	Ala	Asn	Asp	165
Arg	Ala	Thr	Arg	Leu	Phe	Arg	Ala	Asp	Lys	Asp	Val	Gly	Ala	Arg	180
Met	Ser	Phe	His	Thr	Ala	Asp	Val	Ala	Asp	Leu	Thr	Asp	Glu	Leu	195
Ala	Thr	Tyr	Asp	Val	Val	Phe	Leu	Ala	Ala	Leu	Val	Gly	Met	Ala	210
Ala	Glu	Asp	Lys	Gly	Gln	Gly	Asp	Pro	His	Leu	Gly	Ala	His	Met	225
Ala	Asp	Gly	Ala	Ala	Leu	Val	Arg	Ser	Ala	His	Gly	Ala	Arg	Gly	240
Phe	Leu	Tyr	Pro	Ile	Val	Asp	Pro	Gln	Asp	Ile	Gly	Arg	Gly	Gly	255
Phe	Glu	Val	Leu	Ala	Val	Cys	His	Pro	Asp	Asp	Asp	Val	Val	Asn	270
Ser	Val	Ile	Ile	Ala	Gln	Lys	Ser	Lys	Asp	Met	Phe	Ala	Asn	Gly	285
Pro	Arg	Asn	Gly	Cys	Gly	Gly	Arg	Tyr	Ala	Arg	Gly	Thr	Val	Pro	300
Val	Val	Ser	Pro	Pro	Cys	Arg	Phe	Gly	Glu	Met	Val	Ala	Asp	Val	315
Thr	Gln	Lys	Arg	Glu	Glu	Phe	Ala	Lys	Ala	Glu	Val	Ala	Phe		329

<210> 14 <211> 1371 <212> DNA <213> Hordeum vulgare L. <400> 14

10	20	30	40	50
GGAGCGGNAC	GCGTGGCGGA	GGTGGGCACT	ACCGTAGTAC	CGTGCCTCAG
60	70	80	90	100
AGCTCATCAC	TGGTCAGGTA	CCAAGAAGAC	ATAAAAATGG	ACGCCCAGAG
110	120	130	140	150
CAAGGAGGTC	GACGCCCTTG	TCCAGAAGAT	CACCGGCCTC	CACGCCGCCA
160	170	180	190	200
TCGCCAAGCT	GCCCTCGCTC	AGCCCGTCCC	CGGACGTCGA	CGCGCTCTTC
210	220	230	240	250
ACCGACCTGG	TCACCGCGTG	CGTGCCCCG	AGCCCCGTGG	ACGTGACCAA
260	270	280	290	300
GCTCGCCCCG	GAGGCGCAGG	CGATGCGGGA	GGGCCTCATC	CGCCTCTGCT
310	320	330	340	350
CCGAGGCCGA	GGGCAAGCTG	GAGGCGCACT	ACTCCGACAT	GCTCGCCGCC
360	370	380	390	400
TTCGACAACC	CGCTCGACCA	CCTCGGCGTC	TTCCCCTACT	ACAGCAACTA
410	420	430	440	450
CATCAACCTC	AGCAAGCTCG	AGTACGAGCT	CCTCGCGCGC	TACGTGCCCG
460	470	480	490	500
GCGGCATCGC	CCCGGCCCGC	GTCGCCTTCA	TCGGCTCCGG	CCCGCTCCCG
510	520	530	540	550
TTCAGCTCCT	ACGTCCTCGC	CGCGCGCCAC	CTGCCCGACA	CCGTGTTCGA
560	570	580	590	600
CAACTACGTA	CCTGTGCGCG	CGGCCAACGA	CCGCGCGACC	AGGCTGTTCC
610	620	630	640	650
GCGCGGACAA	GGACGTCGGC	GCCCGCATGT	CGTTCCACAC	CGCCGACGTC
660	670	680	690	700
GCGGACCTCA	CCGACGAGCT	CGCTACGTAC	GACGTCGTCT	TCCTGGCCGC
710	720	730	740	750
GCTCGTGGGC	ATGGCCGCCG	AGGACAAGGG	CCAAGGTGAT	CCGCACCTTG
760	770	780	790	800
GCGCGCACAT	GGCGGACGGG	GCGGCCCTCG	TCCGCAGCGC	GCACGGGGCG
810	820	830	840	850

CGTGGGTTCC	TCTACCCGAT	CGTCGATCCC	CAAGACATTG	GTCGAGGCGG
860	870	880	890	900
GTTCGAGGTG	CTCGCCGTGT	GTCACCCCGA	CGACGACGTG	GTGAACTCCG
910	920	930	940	950
TCATCATCGC	GCAGAAGTCT	AAGGACATGT	TTGCCAATGG	ACCTCGCAAC
960	970	980	990	1000
GGGTGTGGTG	GACGGTACGC	GCGAGGCACG	GTGCCGGTGG	TCAGCCCGCC
1010	1020	1030	1040	1050
CTGCAGGTTC	GGCGAGATGG	TGGCAGACGT	GACCCAGAAG	AGAGAGGAGT
1060	1070	1080	1090	1100
TTGCCAAGGC	GGAAGTGGCC	TTCTGATTGC	TGCGAGGTCA	CCATCCGTAT
1110	1120	1130	1140	1150
GCCGCTGCTA	CCTTTCAATA	TCTTGCAATC	GTAGGTGGCG	ATTTTCCTAC
1160	1170	1180	1190	1200
TCTTGTTACG	ACCTTTCAAA	TCATATGTTG	TTTGTACCCA	ATAATGTAAG
1210	1220	1230	1240	1250
TGTGTTGCTT	ACACGCGCAT	GTCTTGTACA	CTCGGTCTCT	AGAAGGCAGG
1260	1270	1280	1290	1300
GCAGATCAAG	AGACTGTGCA	AAGGAAAAGA	AATGTGTGTT	GTTGTAGGTG
1310	1320	1330	1340	1350
TATGAGTTGG	GAGTAAGATG	ATTCTAGTTC	ACAAAAAAAA	AAAAAAAAA
1360	1370	1380		
ААААААААА	ААААААААА	A		

<210> 15 <211> 332 <212> PRT <213> Oryza sativa L. <400> 15

15 Met Glu Ala Gln Asn Gln Glu Val Ala Ala Leu Val Glu Lys lle Ala Gly Leu His Ala Ala lle Ser Lys Leu Pro Ser Leu Ser Pro 30 Ser Ala Glu Val Asp Ala Leu Phe Thr Asp Leu Val Thr Ala Cys 45 60 Val Pro Ala Ser Pro Val Asp Val Ala Lys Leu Gly Pro Glu Ala Gln Ala Met Arg Glu Glu Leu lle Arg Leu Cys Ser Ala Ala Glu 75 Gly His Leu Glu Ala His Tyr Ala Asp Met Leu Ala Ala Phe Asp 90 Asn Pro Leu Asp His Leu Ala Arg Phe Pro Tyr Tyr Gly Asn Tyr 105 120 Val Asn Leu Ser Lys Leu Glu Tyr Asp Leu Leu Val Arg Tyr Val Pro Gly lle Ala Pro Thr Arg Val Ala Phe Val Gly Ser Gly Pro 135 Leu Pro Phe Ser Ser Leu Val Leu Ala Ala His His Leu Pro Asp 150 165 Ala Val Phe Asp Asn Tyr Asp Arg Cys Gly Ala Ala Asn Glu Arg 180 Ala Arg Arg Leu Phe Arg Gly Ala Asp Glu Gly Leu Gly Ala Arg Met Ala Phe His Thr Ala Asp Val Ala Thr Leu Thr Gly Glu Leu 195 Gly Ala Tyr Asp Val Val Phe Leu Ala Ala Leu Val Gly Met Ala 210 Ala Glu Glu Lys Ala Gly Val lle Ala His Leu Gly Ala His Met 225 Ala Asp Gly Ala Ala Leu Val Val Arg Thr Ala His Gly Ala Arg 240 255 Gly Phe Leu Tyr Pro lle Val Asp Pro Glu Asp Val Arg Arg Gly Gly Phe Asp Val Leu Ala Val Cys His Pro Glu Asp Glu Val lle 270 285 Asn Ser Val lle Val Ala Arg Lys Val Gly Ala Ala Ala Ala Ala Ala Ala Ala Arg Arg Asp Glu Leu Ala Asp Ser Arg Gly Val Val 300 Leu Pro Val Val Gly Pro Pro Ser Thr Cys Cys Lys Val Glu Ala 315 Ser Ala Val Glu Lys Ala Glu Glu Phe Ala Ala Asn Lys Glu Leu 330 Ser Val* 345 <211> 1372 <212> DNA

<213> Oryza sativa L.

10	20	30	40	50
CTCCATTTGG	TTGTCATTTT	CAACTATAAT	CCACCACAAC	TCGTGCAACA
60	70	80	90	100
TCAGCTCACT	CGTGTTCCCA	ACCGCGACAA	AGCTTCACAG	ATGGAGGCTC
110	120	130	140	150
AGAACCAAGA	GGTCGCTGCC	CTGGTCGAGA	AGATCGCCGG	CCTCCACGCC
160	170	180	190	200
GCCATCTCCA	AGCTGCCGTC	GCTGAGCCCA	TCCGCCGAGG	TGGACGCGCT
210	220	230	240	250
CTTCACCGAC	CTCGTCACGG	CGTGCGTCCC	GGCGAGCCCC	GTCGACGTGG
260	270	280	290	300
CCAAGCTCGG	CCCGGAGGCG	CAGGCGATGC	GGGAGGAGCT	CATCCGCCTC
310	320	330	340	350
TGCTCCGCCG	CCGAGGGCCA	CCTCGAGGCG	CACTACGCCG	ACATGCTCGC
360	370	380	390	400
CGCCTTCGAC	AACCCGCTCG	ACCACCTCGC	CCGCTTCCCG	TACTACGGCA
410	420	430	440	450
ACTACGTCAA	CCTGAGCAAG	CTGGAGTACG	ACCTCCTCGT	CCGCTACGTC
460	470	480	490	500
CCCGGCATTG	CCCCCACCCG	CGTCGCCTTC	GTCGGGTCGG	GCCCGCTGCC
510	520	530	540	550
GTTCAGCTCC	CTCGTGCTCG	CTGCGCACCA	CCTGCCGGAC	GCGGTGTTCG 600
560	570	580	590 AGCGGGCGAG	GAGGCTGTTC
ACAACTACGA	CCGGTGCGGC	GCGGCCAACG 630	AGCGGGCGAG	650
610	620 ACGAGGGCCT	CGGCGCGCGC	ATGGCGTTCC	ACACCGCCGA
CGCGGCGCCG 660	ACGAGGGCC1	680	690	700
CGTGGCGACC	CTGACGGGGG	AGCTCGGCGC	GTACGACGTC	GTGTTCCTGG
710	720	730	740	750
CGGCGCTCGT	GGGCATGGCG	GCCGAGGAGA		GATCGCGCAC
760	770	780	790	800
CTGGGCGCGC	ACATGGCGGA	CGGCGCGGCG	CTCGTCGTGC	GGACGGCGCA
810	820	830	840	850
CGGGGCGCGC	GGGTTCCTGT	ACCCGATCGT	CGATCCCGAG	GACGTCAGGC
860	870	880	890	900
GTGGCGGGTT	CGACGTTCTG	GCGGTGTGCC	ACCCGGAGGA	CGAGGTGATC
910	920	930	940	950
AACTCCGTCA	TCGTCGCCCG	CAAGGTCGGT	GCCGCCGCCG	CCGCCGCCGC
960	970	980	990	1000
GGCGCGCAGA	GACGAGCTCG	CGGACTCGCG	CGGCGTGGTT	CTGCCGGTGG
1010	1020	1030	1040	1050
TCGGGCCGCC	GTCCACGTGC	TGCAAGGTGG	AGGCGAGCGC	GGTTGAGAAG
1060	1070	1080		
GCAGAAGAGT	TTGCCGCCAA	CAAGGAGCTG	TCCGTCTAAC	AGCCGGACGA
1110	1120	1130	1140	1150
TCGAAAGGCG	CACTATATTA	TGGCAATAAA	TCATTTGATT	
1160	1170		1190	
TGCATTTGCG	AAGCTAAGGT	ATACTATGCA	AGCCATATGT	
1210	1220	1230	1240	1250

ACGTGTTGTT TGGGACGTAC AGTTGTGTTG TTGTACGTCG TGAAGTACTG 1290 1260 1270 1280 AAGTGTTCAC AGTAGATCAC AAGTTCACAG CAATCAATGA GGACCCTGTA 1330 1320 1310 AGCCAGTGTA AACGAGGAAC ATGCCATCTG TGTATGACAG TGAGAAATTA 1370 1380 1360 TATAAGAAAA ACATTTTGTG AC <210> 17 <211> 320 <212> PRT <213> Arabidopsis thaliana <400> 17 Met Ala Cys Gln Asn Asn Leu Val Val Lys Gln Ile Ile Asp Leu Tyr Asp Gln Ile Ser Lys Leu Lys Ser Leu Lys Pro Ser Lys Asn Val Asp Thr Leu Phe Gly Gln Leu Val Ser Thr Cys Leu Pro Thr 45 Asp Thr Asn Ile Asp Val Thr Asn Met Cys Glu Glu Val Lys Asp 60 Met Arg Ala Asn Leu Ile Lys Leu Cys Gly Glu Ala Glu Gly Tyr 75 Leu Glu Gln His Phe Ser Thr Ile Leu Gly Ser Leu Gln Glu Asp 90 Gln Asn Pro Leu Asp His Leu His Ile Phe Pro Tyr Tyr Ser Asn 105 Tyr Leu Lys Leu Gly Lys Leu Glu Phe Asp Leu Leu Ser Gln His 120 Ser Ser His Val Pro Thr Lys Ile Ala Phe Val Gly Ser Gly Pro 135 Met Pro Leu Thr Ser Ile Val Leu Ala Lys Phe His Leu Pro Asn 150 Thr Thr Phe His Asn Phe Asp Ile Asp Ser His Ala Asn Thr Leu 165 Ala Ser Asn Leu Val Ser Arg Asp Pro Asp Leu Ser Lys Arg Met 180 Ile Phe His Thr Thr Asp Val Leu Asn Ala Thr Glu Ala Leu Asp 195 Gln Tyr Asp Val Val Phe Leu Ala Ala Leu Val Gly Met Asp Lys 210 Glu Ser Lys Val Lys Ala Ile Glu His Leu Glu Lys His Met Ala 225 Pro Gly Ala Val Leu Met Leu Arg Arg Ala His Ala Leu Arg Ala 240 Phe Leu Tyr Pro Ile Val Asp Ser Ser Asp Leu Lys Gly Phe Gln 255 Leu Leu Thr Ile Tyr His Pro Thr Asp Asp Val Val Asn Ser Val 270 Val Ile Ala Arg Lys Leu Gly Gly Pro Thr Thr Pro Gly Val Asn 285 300 Gly Thr Arg Gly Cys Met Phe Met Pro Cys Asn Cys Ser Lys Ile His Ala Ile Met Asn Asn Arg Gly Lys Lys Asn Met Ile Glu Glu 315 320 Phe Ser Thr Ile Glu <210> 18 <211> 963 <212> DNA <213> Arabidopsis thaliana <400> 18 ATGGCTTGCC AAAACAATCT CGTTGTGAAG CAAATCATCG ACTTGTACGA CCAAATCTCA 60 AAGCTCAAGA GCTTAAAACC TTCCAAAAAT GTCGACACTT TGTTCGGACA ACTCGTGTCC ACGTGCTTAC CCACGGATAC AAACATCGAT GTCACAAATA TGTGTGAAGA AGTCAAAGAC 180 240 ATGAGAGCTA ATCTCATCAA GCTTTGTGGT GAAGCCGAAG GTTATTTGGA GCAACACTTC TCCACAATTT TGGGATCTTT ACAAGAAGAC CAAAACCCAC TTGACCATTT ACACATCTTT 300 CCTTACTACT CCAACTACCT CAAGCTAGGC AAGCTCGAGT TCGATCTCCT GAGCCAACAC 360 TCAAGCCATG TCCCCACCAA GATTGCCTTC GTGGGTTCGG GTCCGATGCC TCTCACATCC 420 ATCGTATTGG CCAAGTTTCA CCTCCCCAAC ACGACGTTCC ACAACTTTGA CATCGACTCA 480 CACGCAAACA CACTCGCTTC AAACCTCGTC TCTCGCGACC CGGACCTCTC AAAACGCATG ATCTTCCACA CAACGGACGT ACTAAACGCA ACCGAAGCCC TTGACCAATA TGACGTCGTT 600 TTCTTAGCGG CGCTTGTAGG GATGGACAAA GAGTCAAAGG TCAAAGCCAT CGAGCACTTG 660

GAGAAACACA TGGCTCCTGG AGCTGTTCTT ATGCTAAGGA GGGCTCATGC TCTCAGAGCT TTCTTATATC CAATCGTTGA CTCGTCTGAT CTCAAAGGCT TTCAACTCTT GACCATCTAT

CATCCAACCG ATGACGTGGT TAACTCGGTT GTGATCGCAC GTAAGCTCGG TGGTCCGACC ACGCCCGGGG TTAATGGTAC TCGTGGATGC ATGTTTATGC CTTGTAACTG CTCCAAGATT CACGCGATCA TGAACAACCG TGGTAAGAAG AATATGATCG AGGAGTTTAG TACCATCGAG TAA	840 900 960 963								
<210> 19 <211> 320 <212> PRT <213> Arabidopsis thaliana <400> 19									
Met Ala Cys Gln Asn Asn Leu Val Val Lys Gln Ile Met Asp Leu	15								
Tyr Asn Gln Ile Ser Asn Leu Glu Ser Leu Lys Pro Ser Lys Asn	30								
Val Asp Thr Leu Phe Arg Gln Leu Val Ser Thr Cys Leu Pro Thr	45								
Asp Thr Asn Ile Asp Val Thr Glu Ile His Asp Glu Lys Val Lys	60								
Asp Met Arg Ser His Leu Ile Lys Leu Cys Gly Glu Ala Glu Gly	75								
Tyr Leu Glu Gln His Phe Ser Ala Ile Leu Gly Ser Phe Glu Asp	90 105								
Asn Pro Leu Asn His Leu His Ile Phe Pro Tyr Tyr Asn Asn Tyr Leu Lys Leu Gly Lys Leu Glu Phe Asp Leu Leu Ser Gln His Thr	120								
Thr His Val Pro Thr Lys Val Ala Phe Ile Gly Ser Gly Pro Met	135								
Pro Leu Thr Ser Ile Val Leu Ala Lys Phe His Leu Pro Asn Thr	150								
Thr Phe His Asn Phe Asp Ile Asp Ser His Ala Asn Thr Leu Ala	165								
Ser Asn Leu Val Ser Arg Asp Ser Asp Leu Ser Lys Arg Met Ile	180								
Phe His Thr Thr Asp Val Leu Asn Ala Lys Glu Gly Leu Asp Gln	195								
Tyr Asp Val Val Phe Leu Ala Ala Leu Val Gly Met Asp Lys Glu	210 225								
Ser Lys Val Lys Ala Ile Glu His Leu Glu Lys His Met Ala Pro	240								
Gly Ala Val Val Met Leu Arg Ser Ala His Gly Leu Arg Ala Phe Leu Tyr Pro Ile Val Asp Ser Cys Asp Leu Lys Gly Phe Glu Val	255								
Leu Thr Ile Tyr His Pro Ser Asp Asp Val Val Asn Ser Val Val	270								
Ile Ala Arg Lys Leu Gly Gly Ser Asn Gly Ala Arg Gly Ser Gln	285								
Ile Gly Arq Cys Val Val Met Pro Cys Asn Cys Ser Lys Val His	300								
Ala Ile Leu Asn Asn Arg Gly Met Glu Lys Asn Leu Ile Glu Glu	315								
Phe Ser Ala Ile Glu	320								
<210> 20 <211> 963 <212> DNA <213> Arabidopsis thaliana <400> 20									
ATGGCTTGCC AAAACAATCT CGTTGTGAAG CAAATCATGG ACTTATACAA CCAAATCTCA	60								
AACCTCGAGA GCTTAAAACC ATCCAAGAAT GTCGACACTT TGTTCAGACA ACTTGTGTCC	120								
ACGTGCTTAC CAACGGACAC GAACATCGAT GTCACAGAGA TACACGATGA AAAAGTCAAA	180 240								
GACATGAGAT CTCATCTCAT CAAGCTTTGT GGTGAAGCCG AAGGTTATTT AGAGCAACAC TTTTCAGCAA TCTTAGGCTC TTTTGAAGAC AACCCTCTAA ACCATTTACA CATCTTCCCC	300								
TTTTCAGCAA TCTTAGGCTC TTTTGAAGAC AACCCTCTAA ACCATTTACA CATCTTCCCC TATTACAACA ACTATCTCAA ACTAGGCAAA CTCGAATTCG ATCTCCTTTC TCAGCACACA	360								
ACCCATGTCC CGACCAAAGT CGCCTTTATT GGTTCCGGTC CGATGCCACT TACTTCCATC	420								
GTCTTGGCCA AGTTCCACCT CCCCAACACA ACGTTCCACA ACTTCGACAT CGACTCACAC	480								
GCCAACACA TCGCTTCAAA CCTCGTTTCT CGTGATTCTG ACCTTTCCAA ACGCATGATT	540								
TTCCACACAA CTGATGTATT AAACGCTAAG GAGGGGTTAG ACCAATACGA TGTTGTTTTC	600								
TTGGCAGCTC TTGTTGGGAT GGATAAAGAG TCAAAGGTCA AAGCTATTGA GCATTTAGAG	660								
AAGCATATGG CCCCTGGAGC TGTGGTGATG CTAAGAAGTG CTCATGGTCT TAGAGCTTTC	720								
TTGTATCCAA TCGTTGACTC TTGTGATCTT AAAGGGTTTG AGGTGTTAAC CATTTATCAT	780								
CCGTCTGACG ACGTGGTTAA TTCGGTGGTC ATCGCACGTA AGCTTGGTGG TTCAAATGGA	840 900								
GCTCGAGGCA GCCAGATCGG ACGGTGTGTG GTTATGCCTT GTAATTGCTC TAAGGTCCAC	960								

GCGATCTTGA ACAATCGTGG TATGGAGAAG AATTTGATCG AGGAGTTTAG TGCCATCGAG 960

963 TAA <210> 21 <211> 320 <212> PRT <213> Arabidopsis thaliana <400> 21 Met Gly Cys Gln Asp Glu Gln Leu Val Gln Thr Ile Cys Asp Leu 15 Tyr Glu Lys Ile Ser Lys Leu Glu Ser Leu Lys Pro Ser Glu Asp 30 Val Asn Ile Leu Phe Lys Gln Leu Val Ser Thr Cys Ile Pro Pro 45 Asn Pro Asn Ile Asp Val Thr Lys Met Cys Asp Arg Val Gln Glu 60 Ile Arg Leu Asn Leu Ile Lys Ile Cys Gly Leu Ala Glu Gly His 75 Leu Glu Asn His Phe Ser Ser Ile Leu Thr Ser Tyr Gln Asp Asn Pro Leu His His Leu Asn Ile Phe Pro Tyr Tyr Asn Asn Tyr Leu 105 Lys Leu Gly Lys Leu Glu Phe Asp Leu Leu Glu Gln Asn Leu Asn 120 Gly Phe Val Pro Lys Ser Val Ala Phe Ile Gly Ser Gly Pro Leu 135 150 Pro Leu Thr Ser Ile Val Leu Ala Ser Phe His Leu Lys Asp Thr 165 Ile Phe His Asn Phe Asp Ile Asp Pro Ser Ala Asn Ser Leu Ala Ser Leu Leu Val Ser Ser Asp Pro Asp Ile Ser Gln Arg Met Phe 180 Phe His Thr Val Asp Ile Met Asp Val Thr Glu Ser Leu Lys Ser 195 210 Phe Asp Val Val Phe Leu Ala Ala Leu Val Gly Met Asn Lys Glu 225 Glu Lys Val Lys Val Ile Glu His Leu Gln Lys His Met Ala Pro Gly Ala Val Leu Met Leu Arq Ser Ala His Gly Pro Arg Ala Phe 240 Leu Tyr Pro Ile Val Glu Pro Cys Asp Leu Gln Gly Phe Glu Val 255 270 Leu Ser Ile Tyr His Pro Thr Asp Asp Val Ile Asn Ser Val Val Ile Ser Lys Lys His Pro Val Val Ser Ile Gly Asn Val Gly Gly 285 300 Pro Asn Ser Cys Leu Leu Lys Pro Cys Asn Cys Ser Lys Thr His Ala Lys Met Asn Lys Asn Met Met Ile Glu Glu Phe Gly Ala Arg 315 320 Glu Glu Gln Leu Ser <210> 22 <211> 963 <212> DNA <213> Arabidopsis thaliana <400> 22 ATGGGTTGCC AAGACGAACA ATTGGTGCAA ACAATATGCG ATCTCTACGA AAAGATCTCA 60 AAGCTTGAGA GTCTAAAACC ATCCGAAGAT GTCAACATTC TCTTCAAGCA GCTCGTTTCC 120 ACATGCATAC CACCAAACCC TAACATCGAT GTCACCAAGA TGTGTGACAG AGTCCAAGAG 180 ATTCGACTTA ATCTCATCAA GATTTGTGGT CTAGCCGAAG GTCACTTAGA AAACCATTTC 240 TCTTCGATCT TGACCTCTTA CCAAGACAAC CCACTTCATC ATTTAAACAT TTTCCCTTAT 300 TACAACAACT ATTTGAAACT CGGAAAGCTC GAGTTCGACC TCCTCGAACA AAACCTAAAT 360 GGCTTTGTCC CAAAGAGTGT GGCTTTCATT GGATCTGGTC CTCTTCCTCT CACTTCCATC 420 GTTCTTGCTT CATTCCATCT CAAAGACACA ATCTTTCACA ACTTTGACAT CGACCCATCA 480 GCGAACTCAC TCGCTTCTCT TCTGGTTTCC TCTGATCCAG ACATCTCTCA ACGCATGTTC TTCCACACCG TTGATATAAT GGACGTGACA GAGAGCTTAA AGAGCTTTGA TGTCGTGTTT 600 CTAGCTGCTC TTGTTGGAAT GAACAAAGAG GAGAAAGTTA AAGTGATCGA GCATCTGCAG 660 AAACACATGG CTCCTGGTGC TGTGCTCATG CTTAGGAGTG CTCATGGTCC GAGAGCGTTT 720 CTTTATCCGA TCGTTGAGCC GTGTGATCTT CAGGGGTTCG AGGTTTTGTC TATTTATCAC 780 CCAACAGATG ATGTTATCAA CTCCGTGGTG ATCTCTAAAA AGCATCCAGT TGTTTCAATT 840

GGGAATGTTG GTGGTCCTAA TTCATGCTTG CTCAAGCCTT GCAACTGTTC CAAGACCCAC

GCGAAAATGA ACAAGAACAT GATGATCGAG GAGTTCGGAG CTAGGGAGGA ACAGTTGTCT

TAA

900

960 963