Black box variational inference methods

2014, 2015, 2015+

Dustin Tran
Department of Statistics
Harvard University

Joint work with:

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, David M. Blei, Edoardo M. Airoldi

A few works

- 1. Black box variational inference (BBVI) [RGB14]
- 2. Automatic differentiation variational inference (ADVI) [Kuc+15]
- 3. Variational inference with copulas [TBA15]
- 4. Variational Gaussian process (VARIATIONAL GP)

Extensions/relations to:

- 1. variational autoencoder
- 2. probabilistic programming
- 3. reinforcement learning

Setup

- Given: Dataset \mathbf{x} ; Likelihood $p(\mathbf{x} \mid \mathbf{z})$; Prior $p(\mathbf{z})$
- Goal: Compute posterior $p(\mathbf{z} \mid \mathbf{x})$

Setup

- Given: Dataset **x**; Likelihood $p(\mathbf{x} \mid \mathbf{z})$; Prior $p(\mathbf{z})$
- Goal: Compute posterior $p(\mathbf{z} \mid \mathbf{x})$
- Variational inference: approximate the posterior with variational distribution $q(\mathbf{z}; \lambda)$ and solve

$$\min_{\lambda \in \Lambda} \mathrm{KL}(q \parallel p) = \min_{\lambda \in \Lambda} \int q(\mathbf{z} \, ; \, \lambda) \frac{q(\mathbf{z} \, ; \, \lambda)}{p(\mathbf{z} \mid \mathbf{x})} \, \mathrm{d}\mathbf{z}$$

Equivalent to maximizing the Evidence Lower Bound (ELBO)

$$\lambda^* = \underset{\lambda \in \Lambda}{\operatorname{arg\,max}} \mathcal{L}(\lambda) \quad \text{s.t.} \quad \operatorname{supp}(q(\mathbf{z}\,;\,\lambda)) \subseteq \operatorname{supp}(p(\mathbf{z}\,|\,\mathbf{x}))$$

$$\mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z})} ig[\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \, \lambda) ig]$$

Use the REINFORCE gradient

$$\nabla_{\lambda} \mathcal{L}(\lambda) = \mathbb{E}_{q(\mathbf{z})} \big[\nabla \log q(\mathbf{z}; \, \lambda) (\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \, \lambda)) \big]$$

Algorithm 1 Black Box Variational Inference **Input:** data x, joint distribution p, mean field vari-

ational family q. Initialize λ randomly, t = 1. repeat // Draw S samples from q for s = 1 to S do

repeat

// Draw
$$S$$
 samples from q

for $s = 1$ to S do

 $z[s] \sim q$

end for

 $a = tth$ value of a Robbins Monro sequence

 $\rho = t$ th value of a Robbins Monro sequence

 $\lambda = \lambda + \rho \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q(z[s] \mid \lambda) (\log p(x, z[s]) - 1)$

until change of λ is less than 0.01.

 $\log q(z[s]|\lambda)$ t = t + 1

Figure 1: A fraction of the three layer topic hierarchy on 166K *The New York Times* articles. The top words are shown for each topic. The arrows represent hierarchical groupings.

New challenges

- 1. Expressivity: Specification of q
- 2. Scalability: Variance of stochastic approximation
- 3. Generality: Infinite-dimensional, continuous-discrete variable models¹
- 4. Robustness: Initialization; numerical stability
- 5. Diagnostics: Convergence; nonconvex optima

¹probabilistic programs most generally

- Theory (asymptotics): consistency, efficiency, and asymptotic normality of variational MAP estimate
- Bayesian analysis: hypothesis testing; model criticism; causal inference

Automatic differentiation variational inference (2015)

- Implicit Gaussian approximation
- Parameter transformations
- Automatic differentiation
- Massive software engineering task, now available in Stan²

²http://mc-stan.org

New challenges

1. Expressivity: Specification of q

5. Diagnostics: Convergence; nonconvex optima

2. Scalability: Variance of stochastic approximation	[ADVI]
3. Generality: Infinite-dimensional, continuous-discrete variable models	
4. Robustness: Initialization; numerical stability	[ADVI]

[ADVI]

[ADVI]

Figure 1: Specifying a simple nonconjugate probability model in Stan.

Figure 6: Comparison of posterior mean estimates of volatility.

Figure 7: Comparison of empirical posterior covariance matrices.

New challenges

1. Expressivity: Specification of q [copulas]

[copulas]

- 3. *Generality*: Infinite-dimensional, continuous-discrete variable models
- 4. Robustness: Initialization; numerical stability

2. *Scalability*: Variance of stochastic approximation

5. *Diagnostics*: Convergence; nonconvex optima

Variational inference with copulas (2015)

Goal: Compute posterior $p(\mathbf{z} \mid \mathbf{x})$

$$q(z \mid \lambda) = \prod_{i=1}^{d} q(z_i \mid \lambda_i)$$
mean-field

Variational inference with copulas (2015)

Goal: Compute posterior $p(\mathbf{z} \mid \mathbf{x})$

$$q(z \mid \lambda, \eta) = \underbrace{\left[\prod_{i=1}^d q(z_i \mid \lambda_i)\right]}_{\text{mean-field}} \underbrace{c(Q(z_1 \mid \lambda_1), \dots, Q(z_d \mid \lambda_d); \eta)}_{\text{copula}}$$

Iteration 1: Fit $\lambda \mid \eta = \mathsf{Unif}$

Iteration 2: Fit $\eta \mid \lambda$

Iteration 3: Fit $\lambda \mid \eta$

Iteration 4: Fit $\eta \mid \lambda$

$$q(z \mid \lambda, \eta) = \underbrace{\left[\prod_{i=1}^d q(z_i \mid \lambda_i)\right]}_{\text{mean-field}} \underbrace{c(Q(z_1 \mid \lambda_1), \dots, Q(z_d \mid \lambda_d); \eta)}_{\text{copula}}$$

How to specify the copula?

$$q(z \mid \lambda, \eta) = \underbrace{\left[\prod_{i=1}^{d} q(z_i \mid \lambda_i)\right]}_{\text{mean-field}} \underbrace{c(Q(z_1 \mid \lambda_1), \dots, Q(z_d \mid \lambda_d); \eta)}_{\text{copula}}$$

How to specify the copula?

1. Factorize *c* into a product of two-dimensional conditional copulas (*vine*)

$$c(u_1, u_2, u_3, u_4, u_5) = c(u_1, u_5)c(u_1, u_3)c(u_2, u_3)c(u_3, u_4) \cdot c(u_1, u_2|u_3)c(u_3, u_5|u_1)c(u_1, u_4|u_3) \cdot c(u_2, u_4|u_1, u_3)c(u_2, u_5|u_1, u_3) \cdot c(u_4, u_5|u_1, u_2, u_3)$$

$$q(z \mid \lambda, \eta) = \underbrace{\left[\prod_{i=1}^{d} q(z_i \mid \lambda_i)\right]}_{\text{mean-field}} \underbrace{c(Q(z_1 \mid \lambda_1), \dots, Q(z_d \mid \lambda_d); \eta)}_{\text{copula}}$$

How to specify the copula?

1. Factorize c into a product of two-dimensional conditional copulas (vine)

$$c(u_1, u_2, u_3, u_4, u_5) = c(u_1, u_5)c(u_1, u_3)c(u_2, u_3)c(u_3, u_4) \cdot c(u_1, u_2|u_3)c(u_3, u_5|u_1)c(u_1, u_4|u_3) \cdot c(u_2, u_4|u_1, u_3)c(u_2, u_5|u_1, u_3) \cdot c(u_4, u_5|u_1, u_2, u_3)$$

2. Perform model selection to choose a parameteric form, each of which are equipped with parameters η_i

Variational parameters: (λ, η)

Algorithm 1 Copula variational inference (CVI)

Input: data x, joint distribution p, variational family q

Initialize λ randomly, η so that c is uniform

repeat

// Fix η , maximize over λ Initialize t=1

t = t + 1

Initialize t=1repeat

t = t + 1

 $z \sim q(z \mid \lambda, \eta)$

repeat

 $z \sim q(z \mid \lambda, \eta)$

// Fix λ , maximize over η

until change of η is less than a small ϵ_2

 $\lambda = \lambda + \rho_t(\nabla_{\lambda} \log q(z \mid \lambda, \eta) \cdot (\log p(x, z) - \log q(z \mid \lambda, \eta)))$

 $\eta = \eta + \rho_t(\nabla_{\eta} \log q(z \mid \lambda, \eta) \cdot (\log p(x, z) - \log q(z \mid \lambda, \eta)))$

until change of λ and η is less than a small ϵ_1 and ϵ_2 respectively

until change of λ is less than a small ϵ_1

Variational inference methods	Predictive Likelihood
Mean-field	-383.2
LRVB	-330.5
CVI (2 iterations)	-303.2
CVI (5 iterations)	-80.2
CVI (converged)	-50.5

and already significantly outperforms both mean-field and LRVB upon fitting the copula once (two

CVI (2 iterations) -303.2
CVI (5 iterations) -80.2
CVI (converged) -50.5

Table 1: A comparison of mean-field, LRVB, and CVI on the latent space model, where each CVI iteration either refits the mean-field or the copula. CVI converges in roughly 10 iterations

iterations).

Alp Kucukelbir et al. "Automatic Variational Inference in Stan". In: Neural Information Processing Systems (forthcoming). 2015.

Rajesh Ranganath, Sean Gerrish, and David M Blei. "Black Box Variational Inference". In: *Artificial Intelligence and Statistics*. 2014.

Dustin Tran, David M. Blei, and Edoardo M. Airoldi. "Variational inference with copula augmentation". In: *Neural Information Processing Systems* (forthcoming). 2015.

More details at dustintran.com