

Data Mining

Mohammed Fethi KHALFI

Fethi.Khalfi@yahoo.fr

Algorithme des centres mobiles (k means)

k - means

K-moyennes

Principe de fonctionnement

Un cluster : un regroupement de donnée.

Regrouper tout ce qui se ressemble,

Apprentissage non supervisé

Données

K-Means : Définition

L'algorithme des centres mobiles vise à classer une population X en K classes. Cela se fait de manière automatique. Il est le mieux adapté aux très grands tableaux de données.

- Méthode des K-moyennes (MacQueen'67)
 - choisir K éléments initiaux "centres" des K groupes
 - placer les objets dans le groupe de centre le plus proche
 - recalculer le centre de gravité de chaque groupe
 - itérer l'algorithme jusqu'à ce que les objets ne changent plus de groupe
- Encore appelée méthode des centres mobiles

Description du problème :

Les distance les plus usuelles

Comment définir la distance ?

Il existe plusieurs fonctions de calcul de distance on choisit la fonction de distance en fonction des types de données qu'on manipule.

Pour les données quantitatives (exemple : poids, salaires, taille, etc....) et du même type, la distance euclidienne est un bon candidat.

Les distance les plus usuelles

There are many possible distance measures

– Euclidean Distance:

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

– Manhattan Distance or City Block Distance :

$$\sum_{i=1}^{k} |x_i - y_i|$$

Algorithme K-means

Algorithme

• Étapes:

- fixer le nombre de clusters: k
- choisir aléatoirement k tuples comme graines (centres)
- assigner chaque tuple à la graine la plus proche
- recalculer les k graines
- tant que des tuples ont été changés
 - réassigner les tuples
 - recalculer les k graines
- C'est l'Algorithme le plus utilisé

Illustration

Illustration

Illustration

- Soit l'ensemble D des entiers suivants :
- D= { 2, 5, 8, 10, 11, 18, 20 }

- On veut répartir les données de D en trois (3) clusters, en utilisant l'algorithme Kmeans. La distance d entre deux nombres a et b est calculée ainsi :
- d(a, b) = |a b| (la valeur absolue de a moins b)
- Appliquez Kmeans en choisissant comme centres initiaux des 3 clusters respectivement: 8, 10 et 11.

$$D = \{ 2, 5, 8, 10, 11, 18, 20 \}$$

Les centres initiaux des 3 clusters respectivement sont :

$$C1=\{8\}$$
 • $d(a, b) = |a - b|$ $C2=\{10\}$ $C3=\{11\}$

 $\mu 1 = 8$, $\mu 2 = 10$, $\mu 3 = 11$

Ptx	2	5	8	10	11	18	20
d(µ 1)	6	3	0	2	3	10	12
d(µ 2)	8	5	2	0	1	8	10
d(µ 3)	9	6	3	1	0	7	9
Classe	C1	C1	C1	C2	C3	C3	С3

$$C1 = \{2; 5; 8\},\$$

$$C2=\{10\}$$

Mise à jour des clusters :

R- estimation des centres de gravité :

$$\mu 1 = (2+5+8)/3$$

$$\mu 2 = 10/1$$

$$\mu 3 = (11+18+20)/3$$

$$\mu 1 = 5$$

$$\mu 2 = 10$$

$$\mu 3 = 16.33$$

µ1 = 5,

µ2 = 10,

µ3 = 16,3

Ptx	2	5	8	10	11	18	20
d(µ 1)	3	0	3	5	6	13	15
d(µ 2)	8	5	2	0	1	8	10
d(µ 3)	14,33	11,33	8,33	6,33	5,33	2,33	4,33
Classe	C1	C1	C2	C2	C2	С3	C3

 $C1 = \{2; 5\},\$

 $C2=\{8, 10, 11\}$

C3={18; 20}

R- estimation des centres de gravité :

$$\mu 1 = (2+5)/2$$

$$\mu 2 = (8+10+11)/3$$

$$\mu 3 = (18+20)/2$$

$$\mu 1 = 3.5$$

$$\mu 2 = 9.66$$

$$\mu 3 = 19$$

 $\mu 1 = 3.5$, $\mu 2 = 9.66$,

µ3 = 19

Ptx	2	5	8	10	11	18	20
d(µ 1)	1,5	1,5	4,5	6,5	7,5	14,5	16,5
d(µ 2)	7,66	4,66	1,66	0,33	1,33	8,34	10,34
d(µ 3)	17	14	11	9	8	1	1
Classe	C1	C1	C2	C2	C2	С3	C3

 $C1 = \{2; 5\},\$

 $C2=\{8, 10, 11\}$

 $C3=\{18; 20\}$

Stabilité : Les centres de gravité n'ont pas changé. L'algorithme s'arrête

 Utilisez l'algorithme k-means et la distance euclidienne pour regrouper les 8 exemples suivants en 3 clusters :

A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9).

 On considère comme centre de classes à l'initialisation les points A1, B1 et C1.

Initial Centroids:

A1: (2, 10)

B1: (5, 8)

C1: (1, 2)

Do	to Doir	·+c			Distar	nce to			Cluston	New
Da	ita Poir	its	2	10	5	8	1	2	Cluster	Cluster
A1	2	10								
A2	2	5								
А3	8	4								
B1	5	8								
B2	7	5								
В3	6	4								
C1	1	2								
C2	4	9								

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Initial Centroids:

A1: (2, 10) B1: (5, 8)

C1. (1, 2)

C1: (1, 2)

New Centroids:

A1: (2, 10) ~

B1: (6, 6) —

C1: (1.5, 3.5) ~

Da	to Doir	.+.			Distar	ice to			Cluston	New
Da	ıta Poir	ILS	2	10	5	8	1	2	Cluster	Cluster
A1	2	10	0.00		3.61		8.06		1	
A2	2	5	5.	00	4.2	24	3.	16	3	
А3	8	4	8.	49	5.00		7.28		2	
B1	5	8	3.	61	0.0	0.00		21	2	
B2	7	5	7.	07	3.0	3.61		71	2	
В3	6	4	7.21		4.:	4.12		5.39		
C1	1	2	8.06		7.3	7.21		0.00		
C2	4	9	2.24		1.4	41	7.62		2	

Current Centroids:

A1: (2, 10)

B1: (6, 6)

C1: (1.5, 3.5)

New Centroids:

A1: (3, 9.5)

B1: (6.5, 5.25)

C1: (1.5, 3.5)

	Data Points				Distar	nce to	20.		Cluston	New		
: Da	ita Poli	11.5	2	10	6	6	1.5	1.5	Cluster	Cluster		
A1	2	10	0.00		5.66		0.00 5.66		6.52		1	1
A2	2	5	5.00		4.	4.12		58	3	3		
А3	8	4	8.49		2.83		6.52		2	2		
B1	5	8	3.	61	2.:	2.24		70	2	2		
B2	7	5	7.	07	1.	1.41		70	2	2		
В3	6	4	7.21		2.	2.00		4.53		2		
C1	1	2	8.06		6.	6.40		1.58		3		
C2	4	9	2.	2.24		3.61		6.04		1		

Initial Centroids:

A1: (2, 10)

B1: (5, 8)

C1: (1, 2)

New Centroids:

A1: (2, 10) ~

B1: (6, 6) —

C1: (1.5, 3.5) ~

Do	ıta Poir	n+c			Distar	nce to			Cluston	New
Da	ita Poir	ILS	2	10	5	8	1	2	Cluster	Cluster
A1	2	10	0.	0.00		3.61		8.06		
A2	2	5	5.	00	4.2	24	3.16		3	
А3	8	4	8.	49	5.00		7.28		2	
B1	5	8	3.	61	0.0	0.00		21	2	
B2	7	5	7.	07	3.0	3.61		6.71		
В3	6	4	7.21		4.:	4.12		5.39		
C1	1	2	8.06		7.2	21	0.0	0.00		
C2	4	9	2.	24	1.4	41	7.62		2	

Current Centroids:

A1: (2, 10)

B1: (6, 6)

C1: (1.5, 3.5)

New Centroids:

A1: (3, 9.5)

B1: (6.5, 5.25)

C1: (1.5, 3.5)

	ıta Poir	atc			Distar	nce to			Cluston	New
: Da	ita Poli	11.5	2	10	6	6	1.5	1.5	Cluster	Cluster
A1	2	10	0.00		5.66		6.52		1	1
A2	2	5	5.00		4.	12	1.58		3	3
А3	8	4	8.49		2.5	2.83		52	2	2
B1	5	8	3.	61	2.	2.24		70	2	2
B2	7	5	7.	07	1.4	1.41		70	2	2
В3	6	4	7.21		2.0	2.00		4.53		2
C1	1	2	8.06		6.4	40	1.	58	3	3
C2	4	9	2.	24	3.0	51	6.04		2	1

Current Centroids:

A1: (3, 9.5)

B1: (6.5, 5.25)

C1: (1.5, 3.5)

New Centroids:

A1: (3.67, 9)

B1: (7, 4.33)

C1: (1.5, 3.5)

]	Da	ıta Poir	at c		547	Dista	nce to	,		Cluston	New
s:	Da	ita Poli	its	3	9.5	6.5	5.25	1.5	3.5	Cluster	Cluster
	A1	2	10	1.	1.12		6.54		6.52		1
	A2	2	5	4.	61	4.	51	1.58		3	3
	А3	8	4	7.	7.43		1.95		6.52		2
	B1	5	8	2.	50	3.	3.13		70	2	1
	B2	7	5	6.	02	0.	56	5.	70	2	2
	В3	6	4	6.26		1.35		4.53		2	2
	C1	1	2	7.76		6.	6.39		1.58		3
	C2	4	9	1.	1.12		51	6.04		1	1

Current Centroids:

A1: (3.67, 9)

B1: (7, 4.33)

C1: (1.5, 3.5)

	Da	ata Poir	at c			Distar	nce to			Cluster	New
5:	Da	ila Poli	11.5	3.67	9	7	4.33	1.5 3.5		Cluster	Cluster
	A1	2	10	1.9	94	7.56		6.52		1	1
	A2	2	5	4.:	33	5.	04	1.58		3	3
	А3	8	4	6.	6.62		1.05		52	2	2
	B1	5	8	1.0	67	4.	4.18		70	1	1
	B2	7	5	5.	21	0.	0.67		70	2	2
	В3	6	4	5.52		1.05		4.53		2	2
	C1	1	2	7.49		6.	44	1.	58	3	3
	C2	4	9	0.:	33	5.	55	6.04		1	1

Conclusion

K-moyennes: Avantages

Relativement extensible dans le traitement d'ensembles de taille importante Relativement efficace.

K-moyennes: Inconvénients

Besoin de spécifier k, le nombre de clusters, a priori Incapable de traiter les données bruitées (noisy).