

WANdisco Fusion

Technical overview

WHAT IS WANDISCO FUSION?

- Active-active replication of Hadoop data across multiple appliances, clusters, distributions, clouds.
- WAN-capable for geo-replication
 - Selective, opt-in, cross-distribution
- Enabler for extending Big Data solutions on premise and cloud
 - Can replicate between on-premises and cloud environments or cloud to cloud
 - Enables bursting from on-premises hardware into Cloud Services
 - Enables adoption of Cloud services
- Supports all major Hadoop distributions and versions, operating as an application without change to the underlying cluster

WHAT DOES FUSION DO?

- Replicates data automatically with guaranteed consistency across Hadoop clusters running on any supported distribution, cloud object storage and local and NFS mounted file systems
- Patented distributed coordination engine enables:
 - Guaranteed data consistency across any number of sites at any distance
 - Minimized RTO/RPO
- Totally non-invasive
 - No modification to source code
 - Easy to turn on/off

Fusion Components

Three Fusion components are deployed to each cluster, aka "zone":

- Fusion Server
- IHC Server
- Fusion Client
- Fusion UI

Typical Data Center Configuration

Fusion Server

- Fusion Server is the core piece of WANdisco Fusion
- Proxies file write operations from clients
- Coordinates changes across clusters using DConE
- One Fusion server required per zone; generally 2 (or more) deployed for high availability and scalability, 3 preferred for quorum
- Should not be co-located on a Datanode. Data replicated to a destination, will fill Datanode storage first due to block placement policy.
- Typically the same system runs the Fusion UI, a web server for browserbased administration

IHC Server

- Inter Hadoop Communication (IHC) servers handle traffic between zones
- When data is being replicated, an IHC server reads it from the local zone and streams it to a Fusion server in the remote zone. That Fusion server writes to its local zone. This allows all reads and writes to be performed as "local" operation. No special cross-zone security is required.
- One IHC server required per zone; generally 2 (or more) deployed for high availability and scalability, 3 preferred for quorum.
- Automatically deployed on the same node as the Fusion Server.
- IHC is split out from the Fusion server to isolate the components that depend on HDFS distro; also increases scalability

Fusion Client

- Set of .jar files installed on each Hadoop client, such as mappers, reducers, and gateway nodes
 - Not a service or agent
 - Deployed with Stacks (Amabri) or Parcels (Cloudera Manager) or manual RPM installation on each node (management and data)
- Configurations tell apps to use Fusion classes for HDFS operations
- These classes redirect all write requests through the Fusion server in most cases. Replicated writes are coordinated.
 - Configurations determine whether, and how, clients contact the Fusion server

Fusion UI

- A separate server that provides administrators with a browser-based management console for each WANdisco Fusion server.
- Can be installed on the same machine as WANdisco Fusion's server or on a different machine within your data center.

Architecture Components

- Each cluster is a "zone"
- Zones can have multiple Fusion servers and IHC servers
- A leader is elected for each replicated folder between zones (Priority Zone)
- A writer is elected for each replicated path per zone.
- Clients failover between Fusion servers for writes
- Fusion servers select between multiple IHCs for reading

Breakout Architecture

Architecture Principles

Strict consistency of metadata with fast data ingest

- Synchronous replication of metadata between data centers
 - Using Coordination Engine
 - Provides strict consistency of the namespace
- Asynchronous replication of data over the WAN
 - Data streamed in the background
 - Data can be transferred in file, block, or sub-block increments
 - Allows fast LAN-speed data creation and transfer without network spikes
 - Maximum amount of WAN bandwidth used for replication can also be configured
 - Small and large file transfers happen in parallel

Bypassing Replication

- Bypass is an operation that informs the client to skip the connection to the Fusion server if it is not available
- Eliminates reliance on Fusion server
- No single point of failure
- Disable HDFS client
 - Sets cluster to passive mode, removes writes from DConE process
 - Makes replication more manual
 - DR and migration use cases

1. User makes a request to create/change a file

IHC Service

HCFS (HDFS, Isilon,

MapR, S3)

IHC Service

HCFS (HDFS, Isilon,

MapR, S3)

- 1. User makes a request to create/change a file
- Fusion coordinates File operation to other clusters involved

- User makes a request to create/change a file
- Fusion coordinates File operation to other clusters involved
- File is added to underlying storage

- 1. User makes a request to create/change a file
- Fusion coordinates File operation to other clusters involved
- 3. File is added to underlying storage
- Fusion coordinates at configurable write increments and File Close with other clusters

- User makes a request to create/change a file
- Fusion coordinates File operation to other clusters involved
- File is added to underlying storage
- Fusion coordinates at configurable write increments and File Close with other clusters
- Fusion server at remote cluster pulls data from IHC server on source cluster

- User makes a request to create/change a file
- Fusion coordinates File operation to other clusters involved
- File is added to underlying storage
- Fusion coordinates at configurable write increments and File Close with other clusters
- Fusion server at remote cluster pulls data from IHC server on source cluster
- Fusion server at remote site writes data to its local cluster

HDFS HCFS (eg: S3)

- Similar architecture to HDFS to HDFS
- Fusion server(s) run in EC2
- Works directly with S3 for migration
- EMR cluster is optional
- Customer does not pay for compute
- IHC handles translation between HDFS and S3
- Works with EMR for compute use cases
- Supports EMR's ability to spin up and shut down dynamically
- Distributes Fusion client to every node at EMR spins up
- Similar architecture with other cloud vendors

How DConE Works

WANdisco Active/Active Replication

- Majority Quorum
 - A fixed number of participants
 - The Majority must agree for change
- Failure
 - Failed nodes are unavailable
 - Normal operation continue on nodes with quorum
- Recovery / Self Healing
 - Nodes that rejoin stay in safe mode until they are caught up
- Disaster Recovery
 - A complete loss can be brought back from another replica

Write path

Fusion Replicate Data on Folder Levels

Network Ports Used By Fusion

Installation

- Per Platform
 - Debian
 - RedHat and derivatives (eg; CentOS)
- Per Storage Type or Distribution
 - Cloudera
 - Hortonworks
 - Cloud Storage
 - OpenStack/IBM, Google, Microsoft, Amazon, Alicloud
 - LocalFS (Mounted NFS/NAS/CIFS/etc or Local)

- Hive or Standard
 - Only applies to Hadoop distros
- Example Fusion on RedHat for Cloudera with Hive replication.
- Example Fusion on Ubuntu for Azure WASB without replication.
- Example Fusion on LocalFS without Hive Replication

System Requirements

- · Varies by scale
- High Availability Requires 2 or more servers, numbers can vary by location
- · Can be Virtual or Physical
- Hadoop Should be part of the cluster, client role only
- Isolated machines "Edge Nodes" are not required However, highly recommended.
 - Isolated machines allow Fusion to use its own resources for replication and not contend with existing services in the cluster
 - Engineered systems (eg; Oracle BDA) with no Edge Nodes.
- Software Regs Falls in line with Hadoop requirements (Java 1.7/1.8, Perl)
- Hardware Reqs These are average system specs
 - 8 CPU
 - 32 to 64GB RAM
 - 200 to 1TB Disk The larger the disk the longer Fusion can 'cache' transactions for self healing (currently with equal heap requirements)
 - See docs for specific details and updates https://docs.wandisco.com/bigdata/wdfusion/2.11/#_prerequisites_checklist

Hardware Sizing Guidelines

- Low End Scale (under 100TB/year replication)
 - 4CPU, 32GB RAM
- Large Scale (~100TB/year replication)
 - 8CPU, 64GB-128GB RAM
- Billion Object / Petabytes Scale
 - 16CPU, 128GB-256GB RAM

The **LIVE DATA** Company

ANY QUESTIONS?

The **LIVE DATA** Company

THANK YOU

