Provision number	SI-metric stress in MPa	mks-metric stress in kgf/cm ²	U.S. Customary units stress in pounds per square inch (psi)
18.10.4.1	$V_n = A_{cv}(\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y)$	$V_n = A_{cv}(\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y)$	$V_n = A_{cv}(\alpha_c \lambda \sqrt{f_c'} + \rho_t f_y)$
	$\alpha_c = 0.25 \text{ for } \frac{h_w}{\ell_w} \le 1.5$	$\alpha_c = 0.80 \text{ for } \frac{h_w}{\ell_w} \le 1.5$	$\alpha_c = 3.0 \text{ for } \frac{h_w}{\ell_w} \le 1.5$
	$\alpha_c = 0.17 \text{ for } \frac{h_w}{\ell_w} \ge 2.0$	$\alpha_c = 0.53 \text{ for } \frac{h_w}{\ell_w} \ge 2.0$	$\alpha_c = 2.0 \text{ for } \frac{h_w}{\ell_w} \ge 2.0$
18.10.4.4	$0.66\sqrt{f_c'}A_{cv}$	$2.12\sqrt{f_c'}A_{cv}$	$8\sqrt{f_c'}A_{cv}$
	$0.83\sqrt{f_c'}A_{cw}$	$2.65 \sqrt{f_c'} A_{cw}$	$10\sqrt{f_c'}A_{cw}$
18.10.4.5	$0.83\sqrt{f_c'}A_{cw}$	$2.65\sqrt{f_c'}A_{cw}$	$10\sqrt{f_c'}A_{cw}$
18.10.6.2b	$\frac{\delta_c}{h_{\text{wcs}}} = \frac{1}{100} \left(4 - \frac{1}{50} \left(\frac{l_{\text{w}}}{b} \right) \left(\frac{c}{b} \right) - \frac{V_u}{0.66 \sqrt{f_c'} A_{cv}} \right)$	$\frac{\delta_{c}}{h_{\text{wcs}}} = \frac{1}{100} \left(4 - \frac{1}{50} \left(\frac{l_{w}}{b} \right) \left(\frac{c}{b} \right) - \frac{V_{u}}{2.1 \sqrt{f_{c}'} A_{cv}} \right)$	$\frac{\delta_{c}}{h_{wcs}} = \frac{1}{100} \left(4 - \frac{1}{50} \left(\frac{l_{w}}{b} \right) \left(\frac{c}{b} \right) - \frac{V_{u}}{8\sqrt{f_{c}'} A_{cv}} \right)$
18.10.6.5(a)	$0.083\lambda\sqrt{f_c'}A_{cv}$	$0.27\lambda\sqrt{f_c'}A_{cv}$	$\lambda \sqrt{f_c'} A_{cv}$
18.10.6.5(b)	$2.8/f_y$	28/f _y	400/f _y
18.10.7.2	$0.33\lambda\sqrt{f_c'}A_{cw}$	$1.1\lambda \sqrt{f_c'} A_{cw}$	$4\lambda\sqrt{f_c'}A_{cw}$
18.10.7.4	$V_n = 2A_{vd}f_y \sin\alpha \le 0.83 \sqrt{f_c'} A_{cw}$	$V_n = 2A_{vd}f_y \sin\alpha \le 2.65 \sqrt{f_c'} A_{cw}$	$V_n = 2A_{vd}f_y \sin\alpha \le 10\sqrt{f_c'}A_{cw}$
18.12.7.7	$A_{v,min} \ge 0.062 \sqrt{f_c'} \frac{b_w s}{f_{yt}}$	$A_{v,min} \ge 0.2 \sqrt{f_c'} \frac{b_w s}{f_{yt}}$	$A_{v,min} \ge 0.75 \sqrt{f_c'} \frac{b_w s}{f_{yt}}$
	$A_{v,min} \ge 0.35 \frac{b_w s}{f_{yt}}$	$A_{v,min} \ge 3.5 \frac{b_w s}{f_{yt}}$	$A_{v,min} \ge 50 \frac{b_w s}{f_{yt}}$
18.12.9.1	$V_n = A_{cv}(0.17\lambda \sqrt{f_c'} + \rho_t f_y)$	$V_n = A_{cv}(0.53\lambda \sqrt{f_c'} + \rho_t f_y)$	$V_n = A_{cv}(2\lambda \sqrt{f_c'} + \rho_t f_y)$
18.12.9.2	$0.66\sqrt{f_c'}A_{cv}$	$2.12\sqrt{f_c'}A_{cv}$	$8\sqrt{f_c'}A_{cv}$
18.14.5.3	$0.29\sqrt{f_c'}$	$0.93\sqrt{f_c'}$	$3.5\sqrt{f_c'}$
19.2.2.1(a)	$E_c = w_c^{1.5} 0.043 \sqrt{f_c'}$	$E_c = w_c^{1.5} 0.14 \sqrt{f_c'}$	$E_c = w_c^{1.5} 33 \sqrt{f_c'}$
19.2.2.1(b)	$E_c = 4700 \sqrt{f_c'}$	$E_c = 15,100\sqrt{f_c'}$	$E_c = 57,000 \sqrt{f_c'}$
19.2.3.1	$f_r = 0.62\lambda \sqrt{f_c'}$	$f_r = 2\lambda \sqrt{f_c'}$	$f_r = 7.5\lambda \sqrt{f_c'}$
20.3.2.4.1	$f_{se} + 70 + \frac{f_c'}{100\rho_p}$	$f_{se} + 700 + \frac{f_c'}{100\rho_p}$	$f_{se} + 10,000 + \frac{f_c'}{100\rho_p}$
	$f_{se} + 420$	$\int_{se} +4200$	$f_{se} + 60,000$
	$\int_{se} +70 + \frac{f_c'}{300\rho_p}$	$f_{se} + 700 + \frac{f_c'}{300\rho_p}$	$f_{se} + 10,000 + \frac{f_c'}{300\rho_p}$
	$f_{se} + 210$	$f_{se} + 2100$	$f_{se} + 30,000$
21.2.3	$\ell_{tr} = \left(\frac{f_{se}}{21}\right)d_b$	$\ell_{tr} = \left(\frac{f_{se}}{210}\right) d_b$	$\ell_{tr} = \left(\frac{f_{se}}{3000}\right) d_b$