

Recurrent Models

- Variable input and output length
- Structured output
- Memory

- \star Hard to train
- Cannot learn long-term dependencies
 - LSTMs work up to ~100 steps

Temporal Convolution

Autoregressive Models

Use previous outputs as inputs to predict a sequence

Autoregressive Models

Autoregressive Models

Sampling

How do we generate output?

$$\hat{y} = \operatorname{argmax}_{y} P(y_1, y_2, y_3, ... | x)$$

$$P(y_1, y_2, y_3, ... | x) = P(y_1 | x) \cdot P(y_2 | x, y_1) \cdot P(y_3 | x, y_1, y_2) \cdot ...$$

Greedy Sampling

$$\hat{y}_i = \operatorname{argmax}_{y_i} P(y_i | x, y_1, \dots, y_{i-1})$$

$$P(y_1^a, y_2^a|x) = 0.36$$

$$P(y_1^a, y_2^b|x) = 0.24$$

$$P(y_1^b, y_2^a|x) = 0.4$$

 $P(y_1^b, y_2^b|x) = 0.0$

$$P(y_1^b, y_2^b|x) = 0.0$$

Sequential Sampling

$$\hat{y}_i \sim P(y_i|x,y_1,\ldots,y_{i-1})$$

$$\hat{y} \sim P(y_1, y_2, ... | x)$$

$$\hat{y} = \operatorname{argmax}_{y} P(y_1, y_2, y_3, ... | x)$$

Unbiased

Sample inefficient

Beam Search

(Assume each $y_i \in Y$)

$$S = \{(x)\}$$

Repeat N times

For
$$(x, y_1, y_2, \dots, y_i) \in S$$

For
$$y_{i+1} \in Y$$

Compute
$$P(y_{i+1}|x,y_1,y_2,...,y_i)$$

Find the top k sequences and store them in $\,S\,$

WaveNet

- Generate sounds as raw waveforms
- Text-to-speech
- Needs to look far back in time
 - ~40k samples/sec to match human hearing
 - 8k for speech

WaveNet Block

- Dilated causal convolution
- Gated activation

WaveNet

- Efficient to train
 - Shifted labels
- State-of-the-art music and English speech
- Slow to generate

Receptive field: 1024 per stack

Parallel WaveNet

- Inverse Autoregressive Flow (IAF)
 - Input: Text + random noise $X, Z_1, Z_2, ...$
 - Output: All audio samples in parallel

$$P(y_i|x,z_1,z_2,\ldots,z_{i-1})$$

- Trained to mimic the original WaveNet
- Can produce 500k samples / sec, 10x faster than necessary for real-time

Modern Approach to NLP

Transformers