Computing the exact pvalue for structured motif

Zhang Jing (Tsinghua University and university of waterloo)

Co-authors: Xi Chen, Ming Li

deoxyribonucleic acid

Outline

- Background
- Model and Problem Description
- Previous works and Our results
- Algorithms
- Conclusion

Biology Background

Problem: given a DNA sequence and a group of TF candidates, which one regulates the DNA transcription?

transcription factor (TF) transcription factor binding site (TFBS)

Model of Transcription Factor

- One TF binds to a certain pattern of DNA clip (motif).
 We usually use binding cites to describe TF
- Word model

GACCGCTTTGTCAAC GCTGCAGGTGTTCTC GCAGCAGGTGTTCCC CCCACAGCTGGGATC Matrix Model

A 0/8 2/8 3/8 3/8 0/8 7/8
C 6/8 4/8 2/8 1/8 6/8 1/8
G 3/8 2/8 0/8 4/8 1/8 0/8
T 0/8 0/8 3/8 0/8 0/8 0/8

TFBS2

TFBS3

Model of Transcription Factor(cont.)

• A mixed model: structured motif introduced by Marsan and Sagot(2000):

 Consist of alternate conserved regions (boxes) a nd spacers ('N')

Two box structured motif

- In our paper, we consider two box structured motifs
- GAL4 is a typical two box structured motif: "CGGNNNNNNNNNNNCCG"

Models of DNA sequence

DNA sequence

...ATTCTAGCAAGCCTTAATTATCCAACTAAATCAGACCAGG...

- From biological view, it comes from two parts
 - background
 generated by random variables {X₁, X₂,..., X_n}, which is a 1-order Markov Chain with transition matrix and stationary probability
 - binding sites

Method: Hypothesis test

- Our hypothesis is:
 the given motif m comes from background
 (generated by a 1-order Markov Chain R)
- Our observation is:
 m appears on DNA sequence for k times
- If Pr(m appears on R for at least k times) is v ery small, the hypothesis must be wrong

Problem Description (P-value calculation)

Input: a structured motif,
 an integer k > 0,
 a 1-order Markov Chain of length n
 with transition matrix T and
 stationary probability u

 Output: Pr(motif appears on R for at least k times)

Previous works

- Exact algorithm:
 - The non-overlapped (Helden et. al.[1])
- Approximation algorithms:
 - Marsan et. al. [2] Robin S. et al. [3]
- [1]Van Helden, et. al.J. Rios, A.F. and Collado-Vides, J. Discovering and Regulatory elements in no n-coding sequences by analysis of spaced dyads. Nucl. Acids Res. 28 1808-1818
- [2]Marsan, L., and Sagot, M.-F. 2000. Algorithms for extracting structured motifs using a suf. x tr ee with an application to promoter and regulatory site consensus identi. cation. J. Comp. Biol. 7, 345–362.
- [3] Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F. and Schbath, S. (2002). Oc-currence probabilit y of structured motifs in random sequences. J. Comp. Biol. 9 761-773.

Our Contributions

- We give the first non-trivial algorithm to calculate the exact probability value of two-boxes structure motif
- The way to we do decomposition and dynamic programming is totally new and may be helpful to similar probability calculation.

Algorithms: main idea

 Transformation and Decomposition to the target probability

 Do Dynamic Programming to calculate the terms in decomposition

Example

- Structured motif: CNNAA
- Hit times: at least once
- Sequence model: 1-order Markov Chain
- Sequence length: 9

Transformation

Terms in Dynamic Programming

Structured prefix

Terms in Dynamic Programming

- Recall the definition of P(a,b) and structured prefix
 - P(a,b) denotes the sum of all the probabilities for intersections of a events with minimum index b
 - structured prefix: three constraints
- Terms in Dynamic Programming
 - P(a,b) and

a :from 0 to 5b :from 5 to 1z: arbitrary order

I(a,b,z) = the sum of all the probabilities for intersection ns of a events with minimum index b and structured prefix z is the prefix of subregion R[b,n]

Dynamic Programming (conti.)

- Main idea: calculate P(a,b) and I(a,b,z) interactively
- Key idea: decompose P(a,b) and I(a,b,z) according t o the second minimum index(smi) of the events in t he sum

Recurrence Formula

```
    For P(2,1)
    P(2,1) = Pr('CNNAA')*P(1,6)*
    Pr('C')*I(1,2,'CNAAA')*
    Pr('CN')*I(1,3,'CAAAA')
```

smi<4

The decomposition to I(a,b,z) is quite similar

1	2	3	4	5	6	7	9	10	11
С			Α	Α					
	С			Α	Α				
					С			Α	Α
	smi > = 4(start of m2)								

Time complexity

- Key: estimate the size of the structured motif set
- We can prove that

i structured motif = $O(l_2^{t/l_2})$

- Total time complexity: $O(n^3 \times l_2^{t/l_2})$
 - n is the length of the DNA sequence

Experiment Results

- In SCPD, transcription factor GAL4 is reported to bind to 7 genes. We extract upstream sequence, of length 1000 bp, for these 7 genes
- The p-value and consumed time are shown in Table 1

Gene Name l	P-value of motif GAL4	4 Time
GAL1	9.61361E-06	$12813 \mathrm{ms}$
GAL2	2.16228E-09	$12734 \mathrm{ms}$
GAL4	0.006578594	$12609 \mathrm{ms}$
GAL7	0.034349462	$12532 \mathrm{ms}$
GAL10	9.61361E-06	$12641 \mathrm{ms}$
GAL80	0.092351709	$12282\mathrm{ms}$
GCY1	0.045182862	$12640\mathrm{ms}$

Table 1. The p-value of motif GAL4 on corresponding Genes

Conclusion

- In this paper, we present a non-trivial and efficient algorithm to calculate the probability of the occurrence of a structured motif m
- One problem is that that is still an exponential time algorithm in worst case. Finding a polynomial time algorithm or proving that it is NPhard are two main directions in the future work.

