REC-CIS

GE23131-Programming Using C-2024

Marked out of

number of time. Can you achieve the desired amount ${\it N}$ using these hacks.

Constraints:

1<=T<=100 1<=N<=10^12

Input

The test case contains a single integer N.

Output

For each test case, print a single line containing the string "1" if you can make exactly N ruped

SAMPLE INPUT

1

SAMPLE OUTPUT

1

SAMPLE INPUT

2

SAMPLE OUTPUT

0

Answer: (penalty regime: 0 %)

Reset answer

REC-CIS

Г	Test	Expected	Got
	printf("%d", myFunc(1))	1	1
	printf("%d", myFunc(2))	0	0
	printf("%d", myFunc(10))	1	1
	printf("%d", myFunc(25))	0	0
	printf("%d", myFunc(200))	1	1

Passed all tests!

Question **2**Correct
Marked out of 1.00

Flag question

Find the number of ways that a given integer, X, can be expressed as the sum of the N^{th} pow

For example, if X = 13 and N = 2, we have to find all combinations of unique squares adding

Function Description

Complete the powerSum function in the editor below. It should return an integer that represent

powerSum has the following parameter(s):

X: the integer to sum to

N: the integer power to raise numbers to

Input Format

The first line contains an integer X.

The second line contains an integer N.

Constraints

 $1 \le X \le 1000$

2 ≤ N ≤ 10

Output Format

Output a single integer, the number of possible combinations calculated.

Sample Input 0

REC-CIS

Sample Output 0

1

Explanation 0

If X = 10 and N = 2, we need to find the number of ways that 10 can be represented as the s

$$10 = 1^2 + 3^2$$

This is the only way in which 10 can be expressed as the sum of unique squares.

Sample Input 1

100

2

Sample Output 1

3

Explanation 1

$$100 = (10^2) = (6^2 + 8^2) = (1^2 + 3^2 + 4^2 + 5^2 + 7^2)$$

Sample Input 2

100

3

Sample Output 2

1

Explanation 2

100 can be expressed as the sum of the cubes of 1, 2, 3, 4.

(1 + 8 + 27 + 64 = 100). There is no other way to express 100 as the sum of cubes.

Answer: (penalty regime: 0 %)

Reset answer

```
/*
2 * Complete the 'powerSum' function below.
3 *
4 * The function is expected to return an INTEGER.
5 * The function accepts following parameters:
6 * 1. INTEGER x
7 * 2. INTEGER n
8 */
9
10 int powerSum(int x, int m, int n)
```

