CÓDIGO

```
1 library ieee;
 2 use ieee.std_logic_1164.all;
 4 entity P2a is port (
      j, k, s, r, d, t, clk, clr : in std logic;
      sel : in std_logic_vector (1 downto 0);
      display : out std_logic_vector (5 downto 0);
 8
      qjk, qsr, qd, qt : inout std_logic
 9);
10 end P2a;
11
12 architecture AP2a of P2a is
13 signal y : std_logic;
14 begin
15
      --Flip flop JK
16
      process(clk, clr)
      begin
18
         if (clr = '1') then
19
             qjk <= '0';
20
          elsif (rising_edge(clk)) then
21
            qjk <= (j and not(qjk)) or (not(k) and qjk);
22
          end if:
      end process;
23
24
25
        --Flip flop SR
26
        process(clk, clr)
27
       begin
            if (clr = '1') then
28
29
                 qsr <= '0';
30
            elsif (rising edge(clk)) then
31
                 qsr <= s or (not(r) and qsr);
32
            end if:
33
       end process;
34
35
       --Flip flop D
        process(clk, clr)
36
37
       begin
            if (clr = '1') then
38
                 qd <= '0';
39
40
            elsif (rising edge(clk)) then
41
                 qd <= d;
42
            end if:
43
        end process;
44
45
        --Flip flop T
46
        process(clk, clr)
47
       begin
48
            if (clr = '1') then
                 qt <= '0';
49
50
            elsif (rising_edge(clk)) then
51
                 qt <= t xor qt;
52
            end if;
53
        end process;
     55
            --Multiplexor
     56
            with sel select
               y <=qjk when "00",
     57
                    qt when "01",
     58
     59
                   qd when "10",
     60
                   qsr when others;
     61
     62
            --Decodificador
     63
            with y select
                display <= "111111" when '0',
                          "011000" when others;
     65
     66 end architecture;
```

SIMULACIONES EN GALAXY

FLIP FLOP JK

El selector vale 00, primero cuando vale 00, la salida es Q (debe dar 3F y mantenerlo)

Cuando vale 11, debe oscilar en cada alza de reloj

FLIP FLOP T

El selector vale 01, con 0, debe valer 0 y mantenerlo

Con 1, debe oscilar

FLIP FLOP D

El selector vale 10, con 0, debe dar 0 y mantenerlo

Name	Value	Stimulator	1 20 1 40 1 60 1 80 1 100 1 120 1 140 1 160 1 180 1 200 1 220 1 240 1 260 1 280 1
P- clk	0	Clock	
P- clr	0	<= 0	
□- j	0	<= 0	
₽k	1	<= 1	
D- S	0	<= 0	
D- r	0	<= 0	
e d	0	<= 0	
마 반	0	<= 0	
± □ sel	2	<= 10	(2
🛨 🗢 display	3F		(ZZ)(38)(3F
⇔ qd	0		
🗢 qjk	0		
⇔ qsr	0		
⇔ qt	0		

Con 1, debe dar 1 y mantenerlo

FLIP FLOP SR

El selector vale 11, con 00 da Q y la mantiene

Con 01 da 0 y lo mantiene

Con 10 da 1 y lo mantiene

Con 11 es inválido

SIMULACIÓN EN PROTEUS

C22V10

clk	= 1	24 *	not used
t	= 2	23 =	qt
s	= 3	22 =	qjk
r	= 4	21 =	display(4)
sel(1)	= 5	20 =	display(2)
sel(0)	= 6	19 =	display(0)
k	= 7	18 =	display(1)
ز	= 8	17 =	display(3)
d	= 9	16 =	qd
clr	= 10	15 =	qsr
not used	* 11	14 =	display(5)
not used	* 12	13 *	not used

FLIP FLOP JK (SELECTOR 00)

Caso 00 (Q)

Caso 01 (0)

Caso 10 (1)

Caso 11 (Oscila)

FLIP FLOP T (SELECTOR 01)

Caso 0 (Q)

Caso 1 (Oscila)

FLIP FLOP D (SELECTOR 10)

Caso 0 (0)

Caso 1 (1)

FLIP FLOP SR (SELECTOR 11)

Caso 00 (Q)

Caso 01 (0)

Caso 10 (1)

Caso 11 (inválido)

CUESTIONARIO

¿CUÁNTOS DISPOSITIVOS PLD 22V10 SON NECESARIOS PARA EL DESARROLLO DE ESTA PRÁCTICA?

1

¿CUÁNTOS PINES DE E/S DE LA 22V10 SE USAN EN EL DISEÑO?

20

¿POR QUÉ APARECEN LAS SEÑALES QJK, QT, QD Y QSR ENTRE PARÉNTESIS EN LOS PINES DE SALIDA?

Porque son entradas y salidas

¿CUÁLES SON LAS SEÑALES QUE FUNCIONAN DE MANERA ASÍNCRONA Y CUÁLES DE MANERA SÍNCRONA?

Los asíncronas sel y clr, el resto son síncronas

¿QUÉ PUEDES CONCLUIR DE ESTA PRÁCTICA?

Las computadoras deben ser mucho más complejas de lo que pensaba en la parte de almacenamiento