

## Math 1A Worksheet #20

Name

1. A street light is mounted 20 feet above a ground at the top of a pole. A 5 foot-tall teenager runs towards the pole at a rate of 7 feet per second. At what rate is the length of her shadow shrinking while she is 28 feet from the pole? (your answer should be negative)



St = 7/3 Ft/s

2. A red car is positioned 50 kilometers due east of a blue car. Suddenly, both cars start moving: the red car moves at a constant rate of 20 km/h east, while the blue car moves at a constant rate of 30 km/h north. At what rate is the distance between the two cars increasing 3 hours after the two cars start moving?

what rate is the distance between the two cars increasing 3 nours after the two cars start moving:

$$\frac{1}{x+50} = \sqrt{(x+50)^2 + y^2}$$

$$\frac{dD}{dx} = \sqrt{(x+50)^$$

3. A fluid is being pumped into an inverted conical tank at a constant rate of 10,000 cm<sup>3</sup>/min. Suppose that the tank has height 8 m and the diameter of the top is 6 m. What is the rate at which the water level is rising when the height of the water is 4 m?





4. Estimate the following quantities using linear approximation via a tangent line. A hint is provided for the first part.

- (a)  $e^{-0.1}$  (use the tangent line to  $y = e^x$  at (x, y) = (0, 1))
- (b)  $\sin(3.24)$  (recall that  $\pi \approx 3.14$ ).
- (c)  $\sqrt{9.001}$
- (d) 1.999<sup>3</sup>

(d) 1.999°

A.)  $y' = e^{x}$ , y'(0) = 1, x tangent y = x + 1;  $e^{-0.1} \approx 0.9$ B)  $y' = \sin(x)$ ;  $y'(\pi) = (\cos(\pi) = -1)$  tangent  $y = -x + \pi$  Sin(3.24)  $\approx 0.1$ C.)  $y = \pi$ ;  $y'(x) = \frac{1}{2\pi}$ ;  $y'(9) = \frac{1}{6}$ ; tangent  $y = \frac{1}{6}(x - 9) + 3$ ;  $\sqrt{9.001} \approx 3 + \frac{1}{6090}$ d.)  $y' = x^{3}$ ;  $y'(x) = 3x^{2}$ ;  $y'(2) = \frac{1}{12}$ ; tangent  $y = \frac{1}{2}(x - 2) + 4$ ;  $1.909^{3} \approx 8 - 0.012$   $y' = \frac{1}{2}(x - 2) + 8$ 

5. Let u, v be functions of x. Recall that the differential dx is defined as an independent variable, and the differential du is defined by the equation du = u'(x)dx. So du depends on x and dx. Prove the following identities.

(a) 
$$d(u+v) = du + dv$$

(b) 
$$d(uv) = v du + u dv$$

(a) 
$$d(u+v) = du+dv$$
  
(b)  $d(uv) = v \ du+u \ dv$  Product Rule  
(c)  $d\left(\frac{u}{v}\right) = \frac{v \ du-u \ dv}{v^2}$ . Quotient Rule.