Outline

Alpha Go: policy-based + value-based + model-based

Asynchronous Advantage Actor-Critic (A3C)

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, Koray Kavukcuoglu, "Asynchronous Methods for Deep Reinforcement Learning", ICML, 2016

Policy-based Approach Learning an Actor

Machine Learning ≈ Looking for a Function

Three Steps for Deep Learning

Deep Learning is so simple

Neural network as Actor

 Input of neural network: the observation of machine represented as a vector or a matrix

 Output neural network : each action corresponds to a neuron in output layer

What is the benefit of using network instead of lookup table?

generalization

Three Steps for Deep Learning

Deep Learning is so simple

Goodness of Actor

Total Loss:

$$L = \sum_{n=1}^{\infty} l_n$$

Review: Supervised learning

Training Examp e

Find <u>the network</u>

parameters θ^* that minimize total loss L

Goodness of Actor

- Given an actor $\pi_{\theta}(s)$ with network parameter θ
- Use the actor $\pi_{\theta}(s)$ to play the video game
 - Start with observation s_1
 - Machine decides to take a_1
 - Machine obtains reward r_1
 - Machine sees observation s₂
 - Machine decides to take a₂
 - Machine obtains reward r_2
 - Machine sees observation s₃
 -
 - Machine decides to take a_T
 - Machine obtains reward r_T

END

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_t$

Even with the same actor, R_{θ} is different each time

Randomness in the actor and the game

We define \overline{R}_{θ} as the expected value of R_{θ}

Goodness of Actor

- An episode is considered as a trajectory au
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$
 - $\bullet R(\tau) = \sum_{t=1}^{T} r_t$
 - If you use an actor to play the game, each au has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

Sum over all possible trajectory

Use π_{θ} to play the game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$

Sampling τ from $P(\tau|\theta)$ N times

Three Steps for Deep Learning

Deep Learning is so simple

Problem statement

$$\theta^* = arg \max_{\theta} \bar{R}_{\theta} \qquad \bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta)$$

- Gradient ascent
 - Start with θ^0

•
$$\theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$$

•
$$\theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$$

•

$$\theta = \{w_1, w_2, \cdots, b_1, \cdots\}$$

$$\nabla \bar{R}_{\theta} = \begin{bmatrix} \partial \bar{R}_{\theta} / \partial w_1 \\ \partial \bar{R}_{\theta} / \partial w_2 \\ \vdots \\ \partial \bar{R}_{\theta} / \partial b_1 \\ \vdots \end{bmatrix}$$

$$ar{R}_{ heta} = \sum_{ au} R(au) P(au | heta) \quad \nabla \bar{R}_{ heta} = ?$$

$$\nabla \bar{R}_{\theta} = \sum_{\tau}^{\tau} R(\tau) \nabla P(\tau | \theta) = \sum_{\tau} R(\tau) P(\tau | \theta) \frac{\nabla P(\tau | \theta)}{P(\tau | \theta)}$$

 $R(\tau)$ do not have to be differentiable. It can even be a black box.

$$= \sum_{\tau} R(\tau) P(\tau|\theta) \nabla log P(\tau|\theta) \qquad \frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \underline{\nabla log P(\tau^n | \theta)} \quad \text{Use } \pi_\theta \text{ to play the game N times,} \\ \text{Obtain } \{\tau^1, \tau^2, \cdots, \tau^N\}$$

 $\nabla log P(\tau | \theta) = ?$

$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) =$$

$$p(s_1)p(a_1|s_1, \theta)p(r_1, s_2|s_1, a_1)p(a_2|s_2, \theta)p(r_2, s_3|s_2, a_2) \cdots$$

$$= p(s_1)\prod_{t=1}^{T} p(a_t|s_t, \theta)p(r_t, s_{t+1}|s_t, a_t)$$

$$p(a_t = \text{"fire"}|s_t, \theta) = 0.7$$

$$= 0.7$$

$$p(a_t = \text{"fire"}|s_t, \theta) = 0.7$$

$$= 0.7$$

$$\text{Actor right only your actor } \pi_{\theta}$$

$$\nabla log P(\tau|\theta) = ?$$

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

$$P(\tau|\theta) = p(s_1) \prod_{t=1}^{r} p(a_t|s_t, \theta) p(r_t, s_{t+1}|s_t, a_t)$$

 $logP(\tau|\theta)$

$$= logp(s_1) + \sum_{t=1}^{T} logp(a_t|s_t, \theta) + logp(r_t, s_{t+1}|s_t, a_t)$$

$$\nabla log P(\tau|\theta) = \sum_{t=1}^{r} \nabla log p(a_t|s_t, \theta)$$

Ignore the terms not related to heta

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\overline{\nabla \overline{R}_{\theta}} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n} | \theta) =$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p(a_t^n | s_t^n, \theta)$$

$$\begin{aligned} & \nabla log P(\tau|\theta) \\ &= \sum_{t=1}^{T} \nabla log p(a_t|s_t,\theta) \end{aligned}$$

$$\overline{\nabla \bar{R}_{\theta}} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \nabla log P(\tau^{n} | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n}) \sum_{t=1}^{T_{n}} \nabla log p(a_{t}^{n} | s_{t}^{n}, \theta)$$

What if we replace $R(\tau^n)$ with r_t^n

If in τ^n machine takes a_t^n when seeing s_t^n in

 $R(\tau^n)$ is positive

 $R(\tau^n)$ is negative

Tuning θ to increase $p(a_t^n|s_t^n)$

Tuning θ to decrease $p(a_t^n|s_t^n)$

It is very important to consider the cumulative reward $R(\tau^n)$ of the whole trajectory τ^n instead of immediate reward r_t^n

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla log P(\tau^n | \theta) = \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \sum_{t=1}^{T_n} \nabla log P(a_t^n | s_t^n, \theta)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{I_n} R(\tau^n) \boxed{\nabla logp(a_t^n | s_t^n, \theta)} \qquad \frac{\nabla p(a_t^n | s_t^n, \theta)}{p(a_t^n | s_t^n, \theta)}$$

Why divided by $p(a_t^n|s_t^n,\theta)$?

e.g. in the sampling data ... s has been seen in au^{13} , au^{15} , au^{17} , au^{33}

In
$$\tau^{13}$$
, take action a $R(\tau^{13})=2$ In τ^{15} , take action b $R(\tau^{15})=1$

$$R(\tau^{13}) = 2$$

In
$$au^{15}$$
, take action $ag{k}$

 $\nabla log P(\tau|\theta)$

 $= \sum \nabla logp(a_t|s_t,\theta)$

$$R(\tau^{15}) = 1$$

In
$$\tau^{17}$$
, take action b

$$R(\tau^{17}) = 1$$

In
$$\tau^{17}$$
, take action b $R(\tau^{17}) = 1$ In τ^{33} , take action b $R(\tau^{33}) = 1$

$$R(\tau^{33}) = 1$$

Add a Baseline

It is possible that $R(\tau^n)$ is always positive.

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla log p(a_t^n | s_t^n, \theta)$$

