

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

PROJET: FOUILLE DE DONNÉES

Google Analytics Customer Revenue Prediction

Présentée par

EL YOUNSI Abdellah MORSLI Omar

Sous la tutelle de

Romain Billot Sorin Moga Philippe Lenca

SOMMAIRE

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modeling
- 5. Evaluation

la règle 80/20

coûts marketing

Objectif

Test.csv

401589 transactions

Qualité des Données:

- 23 colonnes constantes
- 16 variables avec plus que 40% de valeurs manquantes
- 0.7% de valeurs aberrantes

- 1.08% (18514) contribuent au revenu
- 98.91% (1689823) ne contribuent pas au revenu

Distribution normale de log(revenu +1)

le nombre de visites a augmenté en Octobre et a diminué en Décembre 2016/2017.

Aucune relation de cause à effet entre le nombre de visites et le revenu.

- 1) sélection des variables significatives
- 2) Nettoyage des données

Variable	Valeur à remplacer	Valeur	Туре
totals.transactionRevenu	missing values	0	Float
trafficSource.adContent	missing values	NoAdContent	String
trafficSource.keyword	missing values	NA	String
totals.pageviews	-	-	Integer

Transformation

- One hot conversion : inférieur à 40 valeurs uniques
- Level conversion: supérieur à 40 valeurs uniques
- Logarithme de 'totals.transactionRevenue'
- Normalisation : MinMaxScaler

Les algorithmes testés

Régression linéaire

Arbre de décisions

Random Forests

Gradient Boosting

y_client = In(1+∑_(i≥1)[transaction(client,i))]

Métrique:

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Résultats:

Modèle	RMSE		
Régression linéaire	1.8514		
Arbres de décisions	1.6289		
Random Forests	1.6199		
Gradient Boosting	1.5922		

Amélioration de notre modélisation

- Introduire des modèles de forecasting.
- Changer la méthode d'encodage.
- Créer d'autres variables (Feature engineering)
- Utilisation des réseaux de neurons, meilleurs représentation des variables.

« Stacking » de modèles ?

Corrélation inter-modèles = 1

	IinearRegression	decisionTree	randomForest	gradientBoosting
IinearRegression	1	0.922581	0.92498	0.924177
decisionTree	0.922581	1	0.999227	0.999309
randomForest	0.92498	0.999227	1	0.999519
gradientBoosting	0.924177	0.999309	0.999519	1

Merci de votre attention Avez-vous des questions?

