

EN.600.475 Machine Learning

Logistic Regression

Raman Arora Lecture 10 February 27, 2017

- Stochastic Gradient Descent
- Regularized Logistic Regression

Slides credit: Greg Shakhnarovich

Review

Review: classification theory

- \bullet Loss of choice: 0/1 loss $L_{0/1}(\widehat{y},y)=0$ if $\widehat{y}=y,$ 1 otherwise
- Goal in learning $h:\mathcal{X}\to\{1,\dots,C\}$: minimize risk $R(h)=E_{\mathbf{x},y}\left[L(h(\mathbf{x}),y)\right]$
- Optimal classifier:

$$h(\mathbf{x}) = \operatorname*{argmax}_{c} p(y = c \mid \mathbf{x}).$$

Log-odds criterion:

$$h(\mathbf{x}) = c^* \quad \Leftrightarrow \quad \log \frac{p(y = c^* \mid \mathbf{x})}{p(y = c \mid \mathbf{x})} \ge 0 \quad \forall c$$

Review: optimal prediction in supervised learning

- We now have identified an optimal predictor for both core supervised learning tasks
- Can write them down based on (alas, unknown) $p(\mathbf{x}, y)$
- Regression: optimal regressor

$$\widehat{y} = E[y|\mathbf{x}]$$

• Classification: optimal classifier

$$\widehat{y} = \operatorname*{argmax}_{c} p\left(y = c \mid \mathbf{x}\right)$$

ullet In both cases, even the optimal classifiers suffer from error due to inherent uncertainty in $p(\mathbf{x},y)$

3 ₽

Review

Review: logistic regression

ullet Directly model log-odds as a function of ${\bf x}$

$$\log \frac{p(y=1 \mid \mathbf{x})}{p(y=0 \mid \mathbf{x})} = f(\phi(\mathbf{x}); \mathbf{w}) = 0.$$

• After some algebra:

$$p(y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-f(\phi(\mathbf{x}); \mathbf{w}))}$$

• For linear ϕ , and $f(\phi(\mathbf{x})) = \mathbf{w} \cdot \phi(\mathbf{x})$ we get

$$p(y = 1 | \mathbf{x}) = 1/(1 + \exp(-w_0 - \mathbf{w} \cdot \mathbf{x}))$$

The logistic model

• We can model the (unknown) decision boundary directly:

$$\log \frac{p(y=1 \mid \mathbf{x})}{p(y=0 \mid \mathbf{x})} = w_0 + \mathbf{w} \cdot \mathbf{x} = 0.$$

• Since $p(y = 1 | \mathbf{x}) = 1 - p(y = 0 | \mathbf{x})$, we have (after exponentiating):

$$\frac{p(y=1 \mid \mathbf{x})}{1 - p(y=1 \mid \mathbf{x})} = \exp(w_0 + \mathbf{w} \cdot \mathbf{x}) = 1$$

$$\Rightarrow \frac{1}{p(y=1 \mid \mathbf{x})} = 1 + \exp(-w_0 - \mathbf{w} \cdot \mathbf{x}) = 2$$

$$\Rightarrow p(y=1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-w_0 - \mathbf{w} \cdot \mathbf{x})} = \frac{1}{2}.$$

5

Logistic regression

The logistic function

$$p(y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp(-w_0 - \mathbf{w} \cdot \mathbf{x})}$$

- The logistic function $\sigma(x)=\frac{1}{1+e^{-x}}$: For any x, $0 \le \sigma(x) \le 1$; Monotonic, $\sigma(-\infty)=0$, $\sigma(+\infty)=1$
- $\sigma(0) = 1/2$. To shift the crossing to an arbitrary z: $\sigma(x-z)$.
- To change the "slope": $\sigma(ax)$.

Logistic function in \mathbb{R}^d

- What if $\mathbf{x} \in \mathbb{R}^d = [x_1 \dots x_d]$?
- $\sigma(w_0 + \mathbf{w} \cdot \mathbf{x})$ is a scalar function of a scalar variable $w_0 + \mathbf{w} \cdot \mathbf{x}$.

- the direction of **w** determines orientation;
- w_0 determines the location;
- ullet $\|\mathbf{w}\|$ determines the slope.

7 4 🗗 →

Logistic regression

Logistic regression: decision boundary

$$p(y = 1 \mid \mathbf{x}) = \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}) = 1/2 \iff w_0 + \mathbf{w} \cdot \mathbf{x} = 0$$

• With linear logistic model we get a linear decision boundary.

Likelihood under the logistic model

- Regression: observe values, measure residuals under the model.
- Logistic regression: observe labels, measure their probability under the model.

$$p(y_i | \mathbf{x}_i; \mathbf{w}) = \begin{cases} \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i) & \text{if } y_i = 1, \\ 1 - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$
$$= \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)^{y_i} (1 - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i))^{1-y_i}.$$

• The log-likelihood of w:

$$\log p(Y|X; \mathbf{w}) = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w})$$

$$= \sum_{i=1}^{N} y_i \log \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i) + (1 - y_i) \log (1 - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i))$$

Logistic regression

The maximum likelihood solution

$$\log p(Y|X; \mathbf{w}) = \sum_{i=1}^{N} y_i \log \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i) + (1 - y_i) \log (1 - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i))$$

• Setting the derivatives to zero, we get

$$\frac{\partial}{\partial w_0} \log p(Y|X; \mathbf{w}) = \sum_{i=1}^{N} (y_i - \sigma (w_0 + \mathbf{w} \cdot \mathbf{x}_i)) = 0;$$

$$\frac{\partial}{\partial w_j} \log p(Y|X; \mathbf{w}) = \sum_{i=1}^N (y_i - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)) x_{ij} = 0.$$

- We can treat $y_i p(y_i | \mathbf{x}_i) = y_i \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)$ as the *prediction* error of the model on \mathbf{x}_i, y_i .
- As with linear regression: prediction errors are uncorrelated with any linear function of the data.

Gradient ascent

• We can cycle through the examples, accumulating the gradient, and then applying the accumulated value to form an update

$$\mathbf{w}_{new} := \mathbf{w} + \eta \frac{\partial}{\partial \mathbf{w}} \log p(X; \mathbf{w})$$
$$= \mathbf{w} + \eta \sum_{i=1}^{N} (y_i - \sigma(w_0 + \mathbf{w} \cdot \mathbf{x}_i)) \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix}$$

- Remember: need to choose η rather carefully:
 - Too small ⇒ slow convergence;
 - Too large: \Rightarrow overshoot and osillation.

11 **₫** □

Logistic regression

Newton-Raphson

ullet The Newton-Raphson algorithm: approximate the local shape of $\log p$ as a quadratic function.

$$\mathbf{w}_{new} := \mathbf{w} + \mathbf{H}^{-1} \frac{\partial}{\partial \mathbf{w}} \log p(X; \mathbf{w}),$$

where **H** is the *Hessian* matrix of second derivatives:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 \log p}{\partial w_0^2} & \frac{\partial^2 \log p}{\partial w_0 w_1} & \cdots & \frac{\partial^2 \log p}{\partial w_0 w_d} \\ \frac{\partial^2 \log p}{\partial w_0 w_1} & \frac{\partial^2 \log p}{\partial w_1^2} & \cdots & \frac{\partial^2 \log p}{\partial w_1 w_d} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \log p}{\partial w_d w_0} & \frac{\partial^2 \log p}{\partial w_d w_1} & \cdots & \frac{\partial^2 \log p}{\partial w_d^2} \end{bmatrix}$$

Surrogate loss

- ullet Recall that we really want to minimize 0/1 loss
- Instead, we are minimizing the log-loss:

$$\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmin}} - \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w})$$

• This is a *surrogate* loss; we work with it since it is not computationally feasible to optimize the 0/1 loss directly.

13 **₫** ▶

Logistic regression

Generalized additive models

 As with regression we can extend this framework to arbitrary features (basis functions):

$$p(y = 1 \mid \mathbf{x}) = \sigma(w_0 + \phi_1(\mathbf{x}) + \ldots + \phi_m(\mathbf{x})).$$

• Example: quadratic logistic regression in 2D

$$p(y = 1 | \mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2).$$

Generalized additive models

• As with regression we can extend this framework to arbitrary features (basis functions):

$$p(y = 1 \mid \mathbf{x}) = \sigma(w_0 + \phi_1(\mathbf{x}) + \ldots + \phi_m(\mathbf{x})).$$

• Example: quadratic logistic regression in 2D

$$p(y = 1 | \mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_2^2).$$

• Decision boundary of this classifier:

$$w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 = 0,$$

i.e. it's a quadratic decision boundary.

15 **₫** ▶

Logistic regression

Logistic regression: 2D example

Roadmap

- Last lecture:
 - Linear classifiers, and a couple of surrogate loss functions
 - Learning algorithm (gradient descent)
- Today:
 - Another learning algorithm: stochastic gradient descent
 - Regularized logistic regression (+ another view of regularization)
 - Non-linear predictors: decision trees

17

SGE

Review: gradient descent

$$\frac{\partial}{\partial \mathbf{w}} \log p(y_i | \mathbf{x}_i; \mathbf{w}) = [y_i - \sigma(\mathbf{w} \cdot \phi(\mathbf{x}_i))] \phi(\mathbf{x}_i)$$

- Initialize $\mathbf{w}^{(t)} = \mathbf{0}$
- Updates until convergence:

$$\mathbf{w}^{(t+1)} := \mathbf{w}^{(t)} + \eta \sum_{i=1}^{N} \frac{\partial}{\partial \mathbf{w}} \log p(y_i | \mathbf{x}_i; \mathbf{w})$$

ullet Cost of a single update: computing gradient on all N examples (an epoch)

Stochastic gradient descent: intuition

- ullet Computing gradient on all N examples is expensive and may be wasteful
- Many data points provide similar information
- Idea: present examples one at a time, and pretend that the gradient on the entire set is the same as gradient on one example
- ullet Formally: estimate gradient of the loss L

$$\frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial \mathbf{w}} L(y_i, \mathbf{x}_i; \mathbf{w}) \approx \frac{\partial}{\partial \mathbf{w}} L(y_t, \mathbf{x}_t; \mathbf{w})$$

19

SGD

Stochastic gradient descent

- An incremental algorithm:
 - Present examples (\mathbf{x}_i, y_i) one at a time,
 - Modify w slightly to increase the log-probability of observed y_i :

$$\mathbf{w} := \mathbf{w} + \eta \frac{\partial}{\partial \mathbf{w}} \log p \left(y_i \, | \, \mathbf{x}_i; \mathbf{w} \right)$$

where the learning rate η determines how "slightly".

- ullet Epoch (full pass through data) contains N updates instead of one
- Good practice: shuffle the data

Stochastic gradient descent

• Linear model (assume $w_0 = 0$)

$$\mathbf{w}_{new} := \mathbf{w} + \eta \frac{\partial}{\partial \mathbf{w}} \log p(y_i | \mathbf{x}_i; \mathbf{w})$$
$$= \mathbf{w} + \eta (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}$$

• Contribution of one example:

21

SGE

Visualizing the log-likelihood surface

• We will look at a 2D example, and assume $w_0 = 0$, i.e. our model will be $\hat{p}(y = 1|\mathbf{x}) = \sigma(w_1x_1 + w_2x_2)$.

 $\log p$ as a function of \mathbf{w}

Contour plot: high/low

Mapping from boundaries to \mathbf{w}

- A line $\alpha \mathbf{w}$ in the parameter space \Leftrightarrow identical decision boundaries of the form $\alpha \mathbf{w} \cdot \mathbf{x} = 0$.
- The sign of α determines the direction.
- Think about the effect of w_0

MAP vs ML

Overfitting with logistic regression

- We can get the same decision boundary with an infinite number of settings for w.
- When the data are *separable* by $w_0 + \alpha \mathbf{w} \cdot \mathbf{x} = 0$, what's the best choice for α ?

$$p(y = 1 \mid \mathbf{x}) = \sigma(w_0 + \alpha \mathbf{w} \cdot \mathbf{x}).$$

- With $\alpha \to \infty$, we have $p(y_i|\mathbf{x}; w_0, \alpha \mathbf{w}) \to 1$.
- With $\alpha = \infty$ there is a continuum of w_0 that reach perfect separation.
- When the data are not separable, similar effect is present but more subtle.

MAP estimation for logistic regression

- Intuition: we may have some belief about the value of **w** before seeing any data.
 - E.g., may prefer smaller values of $\|\mathbf{w}\|$ (ignore w_0) Recall our previous motivation for regularizing \mathbf{w} !
- A possible prior that captures that belief:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mathbf{0}, \sigma^2 \mathbf{I}).$$

• Instead of $\log p(Y|X;\mathbf{w})$ the objective becomes log-posterior

$$\begin{split} \log p(Y|X,\mathbf{w};\sigma) &= \log p(Y|X,\mathbf{w}) + \log p(\mathbf{w};\sigma) \\ &= \sum_{i=1}^{N} \log p\left(y_i \,|\, \mathbf{x}_i,\mathbf{w}\right) \, - \frac{1}{2\sigma^2} \sum_{j=1}^{d} w_j^2 \, + \operatorname{const}(\mathbf{w}). \end{split}$$

ullet Setting σ^2 affects the penalty on $\|\mathbf{w}\|$ (cf. λ)

25

MAP vs ML

Log posterior surface

- This is our objective function, and we can find its peak by gradient ascent as before.
 - Need to modify the calculation of gradient and Hessian.

The effect of regularization: separable data

$$\log p(Y|X, \mathbf{w}; \sigma) = \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w}) - \frac{1}{2\sigma^2} ||\mathbf{w}||^2$$

MAP vs ML

The effect of regularization

$$\log p(Y|X;\mathbf{w},\sigma) \ = \ \sum_{i=1}^N \log p\left(y_i\,|\,\mathbf{x}_i;\mathbf{w}\right) \ - \frac{1}{2\sigma^2}\|\mathbf{w}\|^2$$

$$\sigma^2 = 0.1$$

$$\sigma^2 = 0.01$$

Softmax

• Logistic regression computes a score $f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \phi(\mathbf{x})$, which is converted to posterior

$$p(y = 1 | \mathbf{x}) = \frac{\exp f(\mathbf{x}; \mathbf{w})}{1 + \exp f(\mathbf{x}; \mathbf{w})}$$

(verify that this is equivalent to the form we had before!)

- The *softmax* model: we now have C classes, and C scores $f_c(\mathbf{x}; \mathbf{W}) = \mathbf{w}_c \cdot \phi(\mathbf{x})$
- To get posteriors from scores, exponentiate and normalize:

$$p(y = c \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_c \cdot \boldsymbol{\phi}(\mathbf{x}))}{\sum_{k=1}^{C} \exp(\mathbf{w}_k \cdot \boldsymbol{\phi}(\mathbf{x}))}$$

Note: decision on \mathbf{x} depends on all \mathbf{w}_c for $c = 1, \dots, C$.

- For C=2, this is identical to the logistic regression (homework)
- The boundaries between classes still linear in w and in $\phi(x)$
- Note: for prediction, do not need to exp. and normalize!

29

Review

Softmax parameterization

$$p(y = c \mid \mathbf{x}) = \frac{e^{\mathbf{w}_c \cdot \phi(\mathbf{x}) - \mathbf{a}}}{\sum_{k=1}^{C} e^{\mathbf{w}_k \cdot \phi(\mathbf{x}) - \mathbf{a}}}$$

- The posteriors are invariant to shifting scores
- A common problem: overflow in $exp(\mathbf{w}_c \cdot \boldsymbol{\phi}(\mathbf{x}))$
- Solution: subtract $a = \max_c \mathbf{w}_c \cdot \boldsymbol{\phi}(\mathbf{x})$
- Then, max score is 0, and the rest are negative; underflow is OK (some may turn to zero)
- Examples: scores = [1000, 995, 10, 10, 1]Naïve exponentiation: $\approx [\infty, \infty, 2.2e4, 2.2e4, 2.7]$ After shifting dynamic range: $\approx [1, 0.007, 0, 0, 0]$