Lógica e Sistemas Digitais

Síntese de circuitos sequenciais

João Pedro Patriarca (<u>jpatri@cc.isel.ipl.pt</u>)
Slides inspirados nos slides do prof. Mário Véstias

Modelo geral de um circuito sequencial

Controlo automático de uma bomba de água

• Dois sensores: C (cheio) e V (vazio)

• Bomba de água (B): a ativação permite o enchimento do depósito de água

 O controlo apenas deve ligar a bomba de água quando o depósito estiver vazio

• A bomba de água deve permanecer ligada até o depósito de água ficar cheio

Interface externa do sistema de controlo

Processo na síntese de um circuito sequencial

- Diagrama de estados do circuito (ASM Chart)
- Tabela de estados e de saída
- Codificação dos estados
- Tabela de excitação do circuito
- Expressões de estado seguinte e de saída
- Logigrama ou esquema lógico

ASM Chart (máquina de estados)

ASM Chart com codificação de estados

• Uma vez que o ASM é constituído apenas por dois estados, é necessário utilizar um único flip-flop

Tabela de estados e de saída com respetiva codificação

EP	Entra	adas	ES	Saídas
Q	С	V	Q	В
0	-	0	0	0
0	-	1	1	0
1	0	-	1	1
1	1	-	0	1

Tabela de excitações do circuito

• Considerando a implementação com um flip-flop do tipo D

CLK	Q	D
\uparrow	0	0
\uparrow	1	1

EP	Entr	adas	ES	Saídas
Q	С	V	D	В
0	-	0	0	0
0	-	1	1	0
1	0	-	1	1
1	1	-	0	1

Expressões de estado seguinte e de saída

EP	Entr	Entradas		Saídas
Q	С	V	D	В
0	-	0	0	0
0	-	1	1	0
1	0	-	1	1
1	1	-	0	1

$$B = Q$$

Esquema lógico

$$D = \overline{Q}.V + Q.\overline{C}$$

$$B = Q$$

Exercícios resolvidos

Implemente a máquina de estados com flip-flops tipo D (#1)

Tabela de transição de estados e de saídas (#1)

E	ΕP	Entr	ntradas		ES .	Saídas	
X_1	X_0	Y	Z	$X_1 + 1$	$X_0 + 1$	S ₀	S_1
0	0	0	-	1	1	1	0
0	0	1	-	0	1	1	0
0	1	-	0	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	1	1
1	0	-	-	-	-	-	-
1	1	-	0	1	1	0	1
1	1	-	1	0	0	1	1

Tabela de excitações (#1)

E	ΕP	Entr	adas	E	ES Saídas		das
X_1	X_0	Y	Z	$X_1 + 1$	$X_0 + 1$	S ₀	S ₁
0	0	0	-	1	1	1	0
0	0	1	-	0	1	1	0
0	1	-	0	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	1	1
1	0	-	-	-	-	-	-
1	1	-	0	1	1	0	1
1	1	-	1	0	0	1	1

E	EP		Entradas		ES		Saídas	
X_1	X_0	Y	Z	D_1	D_0	S ₀	S_1	
0	0	0	-	1	1	1	0	
0	0	1	-	0	1	1	0	
0	1	-	0	1	1	0	1	
0	1	0	1	0	1	0	1	
0	1	1	1	0	0	1	1	
1	0	-	-	-	-	-	-	
1	1	-	0	1	1	0	1	
1	1	-	1	0	0	1	1	

Mapas de Karnaugh (#1)

EP		Entradas		ES		Saídas	
X_1	X_0	Y	Z	D_1	D_0	S ₀	S_1
0	0	0	-	1	1	1	0
0	0	1	-	0	1	1	0
0	1	-	0	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	1	1
1	0	-	-	-	-	-	-
1	1	-	0	1	1	0	1
1	1	-	1	0	0	1	1

$$D_0 = \overline{X_0} + \overline{X_1}.\overline{Y} + \overline{Z}$$

$$D_1 = X_0.\overline{Z} + \overline{X_0}.\overline{Y}$$

Mapas de Karnaugh (#1)

	:P	Entradas		ES		Saídas	
X_1	X_0	Y	Z	D_1	D_0	S ₀	S_1
0	0	0	-	1	1	1	0
0	0	1	-	0	1	1	0
0	1	-	0	1	1	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	1	1
1	0	-	-	-	-	-	-
1	1	-	0	1	1	0	1
1	1	-	1	0	0	1	1

$$S_0 = \overline{X_0} + X_1 \cdot Z + Y \cdot Z$$

$$S_1 = X_0$$

Circuito lógico (#1)

Diagrama temporal (#1)

 Complete o diagrama temporal, descrevendo o comportamento da saída S0 e S1 durante o intervalo indicado. Assuma que no instante T0 a máquina se encontra no estado "01" e indique o estado que a máquina atinge após a primeira transição ascendente de MCLK

Comportamento no estado X1=1 e X0=0 (#1)

 Descreva o comportamento do sistema relativamente à transição de estado e à ativação das saídas X0 e X1 caso o mesmo arranque no estado X1=1 e X0=0

Implemente a máquina de estados com flip-flops tipo D (#2)

Tabela de transição de estados e de saídas (#2)

Е	P	Entr	adas	ES		Saí	das
X_1	X_0	Y	Z	$X_1 + 1$	$X_0 + 1$	S ₀	S_1
0	0	0	-	0	1	0	0
0	0	1	0	1	1	1	0
0	0	1	1	0	0	0	0
0	1	0	-	1	1	1	1
0	1	1	-	0	1	1	1
1	0	0	0	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	1	1	0
1	1	-	0	1	0	0	1
1	1	-	1	1	0	0	0

Tabela de excitações (#2)

E	Р	Entr	adas	E	ES	Saí	das
X_1	X_0	Y	Z	$X_1 + 1$	$X_0 + 1$	S ₀	S_1
0	0	0	-	0	1	0	0
0	0	1	0	1	1	1	0
0	0	1	1	0	0	0	0
0	1	0	-	1	1	1	1
0	1	1	-	0	1	1	1
1	0	0	0	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	1	1	0
1	1	-	0	1	0	0	1
1	1	-	1	1	0	0	0

E	Р	Entr	adas	E	S	Saí	das
X_1	X_0	Y	Z	D_1	D_0	S ₀	S_1
0	0	0	-	0	1	0	0
0	0	1	0	1	1	1	0
0	0	1	1	0	0	0	0
0	1	0	-	1	1	1	1
0	1	1	-	0	1	1	1
1	0	0	0	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	1	1	0
1	1	-	0	1	0	0	1
1	1	-	1	1	0	0	0

Mapas de Karnaugh (#2)

EP		Entradas		ES		Saídas	
X_1	X_0	Y	Z	D_1	D_0	S_0	S_1
0	0	0	-	0	1	0	0
0	0	1	0	1	1	1	0
0	0	1	1	0	0	0	0
0	1	0	-	1	1	1	1
0	1	1	-	0	1	1	1
1	0	0	0	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	1	1	0
1	1	-	0	1	0	0	1
1	1	-	1	1	0	0	0

$$D_0 = \overline{\underline{X_1}}.\overline{\underline{Y}} + \underline{X_0}.\overline{\underline{X_1}} + \overline{\underline{X_1}}.\overline{\underline{Z}} + \overline{\underline{X_0}}.\underline{X_1}.\underline{Y}.\underline{Z}$$

$$D_1 = \underbrace{X_0}_{\overline{X_0}} \cdot \underbrace{\overline{Y}}_{\overline{X_1}} \cdot \underbrace{X_0}_{\overline{Z}} \cdot \underbrace{X_1}_{\overline{Z}} +$$

Mapas de Karnaugh (#2)

EP		Entradas		ES		Saídas	
X_1	X_0	Y	Z	D_1	D_0	S_0	S_1
0	0	0	-	0	1	0	0
0	0	1	0	1	1	1	0
0	0	1	1	0	0	0	0
0	1	0	-	1	1	1	1
0	1	1	-	0	1	1	1
1	0	0	0	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	1	1	0
1	1	-	0	1	0	0	1
1	1	-	1	1	0	0	0

$$S_1 = X_0.\overline{X_1} + X_0.\overline{Z}$$

Circuito lógico (#2)

Exercício

Considere a máquina de estados com flip-flops tipo D

- Determine as expressões de D0 e D1
- Determine as expressões de S0 e S1
 - Soluções:

$$D_0 = \overline{Y}.Z.X_0 + Y.\overline{X_0}.\overline{X_1}$$

$$D_1 = \overline{Z}.X_0$$

$$S_0 = \overline{X_0}.\overline{X_1} + Y.Z.\overline{X_1} + \overline{Z}.\overline{X_0}$$

$$S_1 = X_0 + Z.X_1 + \overline{Y}.Z$$

- De acordo com a solução proposta, indique o estado de ativação de SO e S1 e o[s] estado[s] seguinte[s] se o sistema arrancar no estado X1=1 e X0=1
- Complete o diagrama temporal, descrevendo o comportamento da saída SO e S1 durante o intervalo indicado. Assuma que no instante TO a máquina se encontra no estado "01" e indique o estado que a máquina atinge após a primeira transição ascendente de MCLK

