

Université Internationale de Casablanca CPI2 : Analyse 4. Contrôle N° 1, Vendredi 20 avril 2018, 14h-16h.

Exercice 1. Soit g définie par

$$g(x,y) = \frac{x^2y}{x^2 + y^2}$$

- 1. Déterminer le domaine de définition de g
- 2. Calculer $\lim_{(x,y)\to(0,0)} g(x,y)$

On pose

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & si \ (x,y) \neq (0,0) \\ 0 & si \ (x,y) = (0,0) \end{cases}$$
 (1)

- 1. Montrer que f est continue sur \mathbb{R}^2
- 2. Montrer que f possède en (0,0) des dérivées dans toutes les directions
- 3. Montrer que f n'est pas dérivable en (0,0).

Exercice 2. Déterminer les extremums locaux des fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ suivantes et donner leur nature :

1.
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$

2.
$$f(x,y) = (x-y)^2 + (x+y)^3$$

3.
$$f(x,y) = x^4 + y^4 - 4xy$$

Exercice 3. (Peano) Soit f la fonction définie par :

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & si \ (x,y) \neq (0,0) \\ 0 & si \ (x,y) = (0,0) \end{cases}$$
 (2)

- 1. Calculer $\lim_{(x,y)\mapsto(0,0)} f(x,y)$ et en déduire que f est continue en (0,0)
- 2. Calculer $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ pour $(x,y) \neq (0,0)$
- 3. Calculer $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$
- 4. Montrer que $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues en (0,0)
- 5. Montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$

Exercice 4. Trouver l'équation du plan tangent pour chaque surface ci dessous, au point (x0, y0, z0) donné

1.
$$z = \sqrt{19 - x^2 - y^2}$$
, $(x_0, y_0, z_0) = (1, 3, 3)$

2.
$$z = \sin(\pi xy)e^{2x^2y-1}$$
, $(x_0, y_0, z_0) = (1, \frac{1}{2}, 1)$