Алгоритмы и Структуры Данных

Коченюк Анатолий

22 сентября 2021 г.

Глава 1

Алгоритмы на графах и строках и фане.

1.1 Графы и обход в ширину

кружочки и стрелочки

Рис. 1.1: fex

n вершин, m рёбер, T(n,m)

Связность — из любой вершины можно дойти до любой другой $m\geqslant n-1\quad m\leqslant \frac{n(n-1)}{2} \text{ если связный и нет приколов с кратными рёбрами}$

и петлами

```
Определение 1. Матрица смежности – матрица m(a,b) = \begin{cases} 1, \text{а и b связаны ребром} \\ 0, \text{иначе} \end{cases}
```

Пример. 1. 2, 3

- 2. 4
- 3. 5
- 4. 2, 3
- 5. 4

более компактный и полезный способ хранить что с чем связано

Определение 2. Компонента связаности – класс эквивалентности по отношению эквивалентности быть связанным.

Определение 3 (Поиск в глубину). Дали нам граф. Берём вершину и помечаем все вершины, которые из неё достижимы. Всё, что мы пометили это кмпонента связности. Дальше берём непомеченную и аналогично выделяем вторую компоненту и так пока вершины не закончатся

```
dfs(v):
    mark[v] = True
    for vu \in out(v):
        if !mark[u]:
        dfs(u)
```

Лемма 1. Мы пометили все достижимые и только их

 $\ensuremath{\mathcal{A}\!\mathit{okaзательство}}.$ Ходим только по рёбрам, значит все помеченные вершины достижимы из s

Есть вершина s и достижимая v. Предположим, что мы не дошли. Значит на пути до v была первая вершина, до которой мы не дошли. Но дошли до соседеней с ней, значит запустился оттуда и ведел непомеченную. Он её пометит в цикле, противоречие.

1.2 Что можно делать поиском в глубину в ориентированном графе

Определение 4. Топологическая сортировка – сортировка вершин, чтобы все рёбра шли слева направо

Задача 1. Построить топологическую сортировку у ациклического графа.

Задача 2. В ациклическом графе есть вершина, в которую ничего не входит. Вставим самой левой в сортировке и уберём из графа.

Возьмём любую вершину, в которую ничего не входит. Добавляем в сортировку, убираем из графа.

```
z = []
for v = 0 .. n-1:
    if deg[v] = 0
        z.insert(v)

while !z.empty():
    x = z.remove()
    for y in out(x):
        deg[y] --
    if deg[y] == 0:
        z.insert(y)
```

Время алгоритма O(m)

Утверждение 1. Все рёбра идут слева направо.

```
Задача 3. Как понять есть ли циклы
```

Доказательство. Запустить topsort. Если получилась фигня, значит есть цикл. \blacksquare

Рис. 1.2: dfstree

Рис. 1.3: хог

Выберем для всех рёбер, до которых мы не дошли в dfs по циклу из него и рёбер из dfs. Из получившихся циклов можно собрать (ксорами множеств) любой цикл)

1.3 Связность в ориентированных графах

Замечание. Сильная связность является отношением эквивалентности. Можно выбирать классы эквивалентности – компоненты связности. После

этого можно построить конденсацию – граф на компонентах связности, где обозначается односторонняя связь между компонентами.

Рис. 1.4: dvureb

Рис. 1.5: neprimer

Алгоритм:

- 1. запускаем dfs, записываем вершины в порядке выхода.
- 2. Если идти по входящим рёбрам из первой вершины в списке, то мы пометим все вершины в компоненте связности 1. Затем перейдя к следующей не помеченной вершине, мы пометим вторую компоненту и

T.Д.

dfs(v):

p.push_back(v)

-> 1 6 2 3 7 4 5 -- dvureb

-> 1 6 7 2 3 4 5 -- neprimer

for i = 0 .. n-1

dfs1(i)

reverse(p)

for i = 0 .. n-1:
 if !mark[p[i]]:
 dfs2(p[i])

Доказательство. Возьмём компоненту связаности. Возьмём первую вершину оттуда, в которую зашёл dfs. Он оттуда не уйдёт, пока всё в ней не пометит.

На компонентах сильной связности есть "топсорт" по первым вершинам в компонентах, которые рассматривает dfs. Это гарантирует нам, что мы будем запускать dfs по обратным рёбрам в компонентах, все входящие компоменты в которую мы уже пометили. Значит dfs2 останется только идти внутри компоненты, что нам и требовалось.

```
Задача 4 (2-SAT). (x \lor y) \land (!y \lor !x) \land (z \lor !x) = 1 x \lor y = !x \to y Если есть стрелки в обе стороны между x и \neg x, то это противоречие. A \implies B \iff \neg B \implies \neg A – кососимметричность импликации
```

Если есть пусть между u и v, то есть обратный между $\neg v$ в $\neg u$.

Алгоритм: в конденсации строим топсорт (он ациклический). В каждой паре компонент, ту, которая правее, делаем True.

Доказательство. Берём левую вершину. Все следствия из неё выполняются. Из неё рёбра только выходят. В ней значение False, значит все седствия выполняются. Рассмотрим симметричную к ней, она возможно где-то в середине. В неё только входят рёбра, у неё всё хорошо. Убираем их их по индукции всё хорошо.

1.4 Двусвязность

Рёберно-двуязный – два пути не пересекающихся по рёбрам

Рис. 1.6: vershinki

Рис. 1.7: лфлщштшигвкфзр

Утверждение 2. dfs обязательно пройдёт по всем мостам.

Если в поддереве вершины есть рёбро выше неё, то ребро с ней уже не мост.

```
dfs(v, p):
    t_in[v] = T++
    up[v] = t_in[v]
    mark[v] = True
    buf.push(v)
    for u in out[v]:
```

ГЛАВА 1. АЛГОРИТМЫ НА ГРАФАХ И СТРОКАХ И ФАНЕ.

Рис. 1.8: sadfs

```
if u = p:
                     continue
8
9
                 if !mark[u]:
                     dfs(u,v)
10
                     up[v] = min(up[v], up[u])
11
                     up[v] = min(up[v], t_in[u])
13
            if up[v] == t_in[v]:
    while True:
14
15
                     x = buf.pop()
16
                     comp.add(x)
17
                     if x == v:
18
                          break
```

```
Утверждение 3. \forall u \in child[v]: up[u] < t_{in}[v] \implies v – не точка сочления верно для всех вершин, кроме корня
```

```
dfs(v, p):
          t_{in}[v] = T++
2
          up[v] = t_in[v]
          mark[v] = True
          ok = False
          c = 0
          for u in out[v]:
              if u = p:
                   continue
9
               if !mark[u]:
                   dfs(u,v)
11
12
                   c++
                   up[v] = min(up[v], up[u])
```


Рис. 1.9: лфкештлгрщсргтфкшыщмфе

```
dfs(v, p):
           t_{in}[v] = T++
2
           up[v] = t_in[v]
           mark[u] = True
4
5
           ok = False
           for u in out[v]:
6
               if u = p:
                   continue
                if !mark[u]:
9
                    buf.push(vu)
10
11
                    dfs(u,v)
                    up[v] = min(up[v], up[u])
12
                    if up[u] >= t_in[v]
13
                        while True:
14
                             e = buf.pop()
15
                             comp.add(e)
16
17
                            if r = (vu):
                                 break
18
                else:
19
                    up[v] = min(up[v], t_in[u])
20
                    if t_in[u] < t_in[v]:</pre>
21
                       buf.push(vu)
```

Задача 5. Хотим найти эйлеров цикл.

Идём пока идём. Если не идётся, добавляем последнее ребро в циклс и смотрим идётся ли из предыдущей вершины... степени чётные, утыкаемся туда, откуда начали...

для ориентированного графа то же самое, та же логика..

```
1 dfs(v):
2 vu -- любое непомеченное ребро из v
3 if vu = None:
4 return
5 пометить vu
6 dfs(u)
7 ans.add(vu)
```

Структура данных: умеет проверять пустая ли и брать любой элемент .. любая структура данных.