

LOAN DOCUMENT

PHOTOGRAPH THIS SHEET

BIBLIOGRAPHIC ACCESSION NUMBER

LEVEL

INVENTORY

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT

ACCESSION NUMBER		<input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>
NTIS	GRAM	
DTIC	TRAC	
UNANNOUNCED		
JUSTIFICATION		
BY		
DISTRIBUTION/		
AVAILABILITY CODES		
DISTRIBUTION	AVAILABILITY AND/OR SPECIAL	
A-1		

DISTRIBUTION STAMP

DATE ACCESSIONED

DATE RETURNED

REGISTERED OR CERTIFIED NUMBER

DATE RECEIVED IN PTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

APPENDIX 18

TECHNIQUES GENERATOR SOFTWARE DESIGN SPECIFICATION
FINAL SOFTWARE REPORT

DATA ITEM NO. A005

Reproduced From
Best Available Copy

**INTEGRATED ELECTRONIC WARFARE SYSTEM
ADVANCED DEVELOPMENT MODEL (ADM)**

7800987-18

PREPARED FOR
NAVAL AIR DEVELOPMENT CENTER
WARRINGTON, PENNSYLVANIA
CONTRACT N62269-75-C-0070

RAYTHEON

ELECTROMAGNETIC
SYSTEMS DIVISION

APPENDIX 18

TECHNIQUES GENERATOR SOFTWARE DESIGN SPECIFICATION
FINAL SOFTWARE REPORT
DATA ITEM A005

INTEGRATED ELECTRONIC WARFARE SYSTEM (IEWS)
ADVANCED DEVELOPMENT MODEL (ADM)

Contract No. N62269-75-C-0070

Prepared for:

Naval Air Development Center
Warminster, Pennsylvania

Prepared by:

RAYTHEON COMPANY
Electromagnetic Systems Division
6380 Hollister Avenue
Goleta, California 93017

1 OCTOBER 1977

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.
53959-HM-0412

49956

SHEET
1 OF

REV

TYPE OF SPEC

UNIT SOFTWARE DEVELOPMENT SPECIFICATION

TITLE OF SPEC

COMPUTER PROGRAM DESIGN SPECIFICATION FOR IEWS TECHNIQUES
GENERATOR

FUNCTION	APPROVED	DATE	FUNCTION	APPROVED	DATE
WRITER	H. McQuillen	8/5/76			

REVISIONS

CHK	DESCRIPTION	REV	CHK	DESCRIPTION	REV
	9/13/76 Update Some Addresses In Flow HRM Charts & Add List III	A			

B

Changes are made in two modules, SC Technique-Channel Assignment, and SC Technique-Channel Parameter Change or Dismiss. The updated flow charts are:

Figure 7: Pg. 1-Added temporary storage (clear) for CFN.

Pg. 2-Added insertion of CHAN in word 9, and insertion of CFN in word 12.

Pg. 3-Added insertion of FN into CFN.

Pg. 4-Added restore of FM generator status when RR/RGPO Gen. unavailable.

Figure 8: Pg. 1-No change.

Pg. 2-No change.

Pg. 3-Added dismiss for RR/RGPO Gen., and for FM Gen.

Pg. 4-Added insertion of CHAN in word 9, and of FM Gen no.

in word 12.

Table A gives address and data for eight Technique programs to be stored in the Techniques Program memory. These are selected samples used during TGU integration and test.

REVISION														
SHEET NO.														
REV STATUS OF SHEETS	REVISION													
	SHEET NO.													

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

49956

SPEC NO.
53959-HM-0412SHEET
2 OF 17

REV

IEWS SOFTWARE SPECIFICATION - COMPUTER
PROGRAM DESIGN SPEC FOR TECHNIQUES GENERATOR

- 1.0 Scope
- 2.0 Applicable Documents
- 3.0 Requirements
 - 3.1 Function/Allocation Description
 - 3.2 Functional Descriptions
 - 3.2.1 Initialize Module
 - 3.2.2 Loop Module
 - 3.2.3 SC Write Fault Module
 - 3.2.4 SC Assignment-Frequency, ACN Module
 - 3.2.5 SC Technique-Channel Assignment Module
 - 3.2.6 SC Technique-Channel Parameter Change or Dismiss Module
 - 3.2.7 SC Program Control Module
 - 3.2.8 Channel-VCO Frequency Set-On Module
 - 3.2.9 Auxiliary Bus Frequency Module
 - 3.2.10 RAN-RAP Cover Module
 - 3.2.11 RAN-RAP Cover and Early Module
 - 3.2.12 RAN-RAP Cover and Late Module
 - 3.2.13 RAN-RAP Cover, Early and Late Module
 - 3.2.14 RGPO Module
 - 3.2.15 Frequency Update Subroutine
 - 3.2.16 Convert and Load Tuning Subroutine
 - 3.2.17 RAN-RAP A Version Subroutine
 - 3.3 Storage and Processing Allocation
 - 3.4 Computer Program Functional Flow
 - 3.5 Programming Guidelines

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173CODE IDENT NO.
49956SPEC NO.
53959-HM-04123 SHEET
OF 47

REV

1.0 SCOPE

The computer program specified herein shall be entitled IEWS Techniques Generator Controller Program. The Techniques Generator Unit is part of the Integrated Electronics Warfare System, IEWS, being developed for test and evaluation to determine operational usefulness for advanced combat aircraft.

2.0 APPLICABLE DOCUMENTS

The following documents, form a part of this specification to the extent specified herein. In the event of conflict, the requirements of this specification shall govern.

AETD-XAV-1000

Experimental and Developmental Specification IEWS (Integrated Electronic Warfare System)

WS-8506

Requirements for Digital Computer Program Documentation

RAYTHEON SPECIFICATIONS

53959-HM-0410

Unit Hardware Development Specification - IEWS Hardware Spec. - Techniques Generator

53959-HM-0411

Unit Hardware Development Specification - IEWS Hardware Spec. - Transmitter Control - MAAS

53959-CD-1401

Interface Control Document Spec. - Daisy Chain Bus ICD

53959-JK-1003

Interface Control Document Spec. - Auxiliary Bus ICD

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

49956

SPEC NO.

53959-HM-0412

4

SHEET
OF 47

REV

Eqpt. Division I

RP-16 Microprocessor

Eqpt. Division II

Computer Program Package Specification

Raytheon RP-16 Relocatable Macro

Assembler Functional Specification

3.0

REQUIREMENTS

3.1

FUNCTION/ALLOCATION DESCRIPTION

The IEWS Techniques Generator Controller Program shall be the software portion of Techniques Generator. It shall run in the T.G. Controller/Processor hardware which is implemented with an RP-16 Microprocessor. Together with the hardware, the program shall provide the overall T.G. functions described in paragraph 3.1.1, and the Controller/Processor functions described in paragraph 3.1.2.1, both of applicable document 53959-HM-0410, T.G. hardware specifications.

The TG Controller Program shall be structured in the modules and relationships as shown in Figure 1. Basically, once initialized, the program shall be interrupt-driven. The two hierarchy modules are Initialize (INLZ), and Loop (LOOP). At power up or as required, the System Controller, SC, or a Local Control Panel, LCP, shall be able to put the program to start of INLZ. Either of the two shall be able to command run.

INLZ shall initialize all variables, assignments and generators and transfer to LOOP. LOOP shall basically enable interrupts and run in an idle loop awaiting interrupts. All service routines shall return to LOOP to await further interrupts.

There shall be twelve types of interrupt service modules as shown in Figure 1 and Figure 2, VIZ.,

SC Write Fault (SCWF)

SC Assignment - Frequency, ACN (SCAFA)

Fig. 1. Tech. Card. West. Soccer League
Page 1 of 3

PAGE 1 OF 2

卷之三

卷之三

see Fig. 1 for
modus operandi
to determine if
pertaining

to B's
version

to RAN RAP sub routine

Figs. 2 Requests involving types

H. M. Johnson
7/22/90

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

49956SPEC NO.
53959-HM-0412SHEET
7 OF 47

REV

SC Technique-Channel Assignment (SCTA)
SC Technique-Channel Parameter Change, Dismiss (SCTCC)
SC Program Control (Currently Growth) (SCPC)
Channel-VCO Frequency Set-On (CVFSO)
Auxiliary Bus-Frequency (ABFR)
RAN-RAP Cover (RRC)
RAN-RAP Cover and Early (RRCE)
RAN-RAP Cover and Late (RRCL)
RAN-RAP Cover, Early, Late (RRCEL)
Range Gate Pull-Off (RGPO)

Note in Figure 1 that the last five module types shall service four RAN-RAP RGPO Technique Generators. Interrupt level selects the general service. Within the interrupt level the three least significant bits, LSB's, of the hardware interrupt vector shall identify a particular service module. Within any of these levels, the device requesting service determines the vector, only one vector per service request.

Interrupt services have horizontal modularity, i. e., service routines are independent of one another.

Finally, there are three subroutines:

Frequency Update (FUP)
Convert and Load Tuning (CLT)
RAN RAP -A Version (RRA)

Relationships of subroutines to service module users are shown in Figures 1 and 2.

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.
53959-HM-0412

49956

SHEET
8 OF 47 REV

At the end of any service-routine execution, the program shall return to LOOP. For this development the software shall enable interrupts only during LOOP. Nesting of interrupt services is a software growth capability. The hardware is capable of supporting such nesting.

3.2 FUNCTIONAL DESCRIPTIONS

Each IEWS T.G. Controller Program module shall implement the corresponding flow diagram given herein. Each flow diagram shows the fixed hardware addresses involved. Externally interchanged word formats shall be as specified in the referenced, associated document, 53959-HM-0410, "Unit Hardware Development Specification - IEWS Hardware Spec. - Techniques Generator". Programmable variables within programs shall have the values given on the diagrams. Some of these modules might change as a result of development tests. Internal word formats can vary from those herein if more practical. Program Tables are given in paragraph 3.3

3.2.1 Initialize (INLZ) Module

INLZ shall be as given in Figure 3. Controls and address to set and run INLZ are given in notes thereon. INLZ clears all assignments, if any, and flags. It initializes all internal tables.

3.2.2 Loop (LOOP) Module

LOOP shall be as given in Figure 4. Background testing can be added to this at any time as growth software.

3.2.3 SC Write Fault (SCWF) Module

SCWF shall be the interrupt routine of Figure 5. Hardware interrupt vectors and addresses are given. This routine endeavors notify the SC if a write is attempted to T.G. instruction memory during times of memory-protect. The T.G. RP-16 4K word memory is two-port, one for the Daisy Chain (DC) bus, and the other for the T.G. RP-16. The memory is

FIG. 3 INITIALIZE

PAGE 1 OF 3

Notes: 1. INITIALIZE address 0000₁₆ is set for any:

- a. SC Daisy Chain Master Clear - DEMCC
 - b. LCP Master Clear - MCLC
 - c. SC TG External Control "Initialize"
 - d. LCP Control "STOP" and "by inverting Addr. 0000₁₆.
2. Subsequent Jump to INITIALIZE RUN either:
- a. SC TG External Control "NEWSTART"
 - b. LCP Control "START" (at Addr. 0000₁₆)

11/28/76
11/28/76

FIG. 3 (CONT'D) INITIALIZE

ADDED 11/27/76

PAGE 2 OF 3

SFS IS START OF
FM GEN PRE-OPER.
SINH3 TABLE II.A

SFA IS START OF
FM GEN ALLOCATION
(OPER.) TABLE II.A

EN 13 FM GEN No.

11/29/76
Howard McQuillen

FIG. 3 (CONT'D) INITIALIZE

PAGE 3 OF 3

Fig. 4 LOOP

NOTES: 1. LOOP is ENTERED WITH

JUMP from;

- a. INITIALIZE (INLB),
- b. Return from any
other INTERRUPT
ROUTINE MODULE

2. Cumulative Test is

Count of Loop entries

Subsequent to INLB.

This is a check during

DEVPMT. TESTS

JL. W. Mueller
1/23/76

FIG.5 SC WRITE FAULT

* NOTE:

1. 175377₈ Addr. sets SC INTR(8) on the Daisy Chain B:15. The Bus has no INTR ACK. Hence -

2. The INTR RQS (B) remains set until:

- a) SC addresses 005775₈, or
- b) SC issues DC MCD, or
- c) If programmed, TG RP-JA "RESET XTRNL", i.e. OPRST.

11/26/1980
S/P TM

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.
53959-HM-0412

49956

SHEET
13 OF 47 REV

partitioned with T.G. instructions, data, and working space in all but 8 locations. It is the bulk of this memory except the 8 locations for SC messages that is at times protected to DC writes. An SC Daisy Chain Master Clear, DCMCL always opens all memory to DC write. Any time a message is transferred through any of the 8 message locations the bulk of memory is protected from DC writes. If while protected a DC write is attempted, DC ACKnowledge is hardware returned to prevent hanging the bus, even though data is not written. The T.G. RP-16 receives the interrupt and in turn attempts to notify the SC as shown in Figure 5. The 4K memory is open to DC read all the time. The two port is used to facilitate loading T.G. RP-16 program directly from the DC bus.

3.2.4 SC Assignment-Frequency, ACN (SCAFA)

SCAFA shall be the interrupt routine of Figure 6. Note that the Frequency Update Subroutine (FUP) is used in this service. Return to LOOP is from FUP.

3.2.5 SC Technique-Channel Assignment (SCTA) Module

SCTA shall be the interrupt routines of Figure 7. This module retrieves all generator parameters from T.G. Techniques Program memory and loads the proper generators. Where the limited number of RAN-RAP/RGPO generators are needed, the routine performs a resource management allocation by finding an unused generator for the current program. It remembers to which channel the generator is assigned.

3.2.6 SC Technique-Channel Parameter Change or Dismiss (SCTCC) Module

SCTCC shall be the interrupt routines of Figure 8. This module changes any parameters of a currently assigned Technique Program per the SC message. The Technique Program stored in Technique Program memory remains as originally loaded. If the change is in use of the Auxiliary Bus for Frequency and/or ACN, the routine fills in the balance of the word as stored in Techniques

FIG.6 SC ASSIGNMENT - FREQ, ACN

7/26/76
H.R. Mead

FIG. 7 SC TECHNIQUE-CHANNEL ASSIGNMENT

REDOINE REVISED
11/30/76 12/10/76

PAGE 1 OF 4

TO ADD TWO FM
GEN'S.CFN IS CONNECTION
MEMORY FM GEN NO.
TEMP. STOREAGE LOCATION

SCTCA

INTR 090102₃DISABL RPFLD
STORE STATE
CLR CFN005772₈
TW IS TECH. WORD
BIT 15 → 005777₈LOAD & STORE:
TW → TW
STORE:
ZERO → STATCLEAR SC MSG
Flag-bit 15

CH IS CHANNEL

TN IS TECH. RD. *2

MASK R-BYTE:
TW → CH
MASK L-BYTE:
TW → TN

TECH NO. # 8 -

P3 IS (TECH) PROG START-006000₈ -ROTATE;
TN left 2 places
LOAD:
PS → BGL IS GEN. LOAD ADDR-175000₈ -LOAD:
GL → X
ADD:
X+CN → XPW IS
PARAMETER WORDLOAD & STORE:
BTIN → PW

D/2

MASK bit 15-12
of PW → CD

CD IS (GEN) CODE

CD = 8
?

YES

FM GEN NEEDED

CD = 10
?

YES

R/RSPROGEN
NEEDED

A/2

No

C/4

Edward McQuillan
11/30/76

FIG. 7 SC TECH-CHAN ASSIST
(CONT'D)

PAGE 2 of 4

RE DONE 12/10/76

Howard McQuillin
12/10/76

FIG. 7 SC TECHNIQUE-CHANNEL ASSNT
(CONT'D)

REDONE 11/30/76

REDONE 12/10/76

FIG. 7 SC TEAM-CHAN ASSEMBT
(CONT'D)

PAGE 4 OF 4

REDONE 11/3/76
REVISED 12/10/76

RN IS RR/RGPO GEN NO.

SRA IS START OF
RR/RGPO SEN.
ALLOCATION (OPERATION)
TABLE II

Howard McDowell
11/3/76
12/10/76

FIG. 8 SC TECHNIQUE - CHANNEL PARAMETER CHANGE
OR DISMISSAL

PAGE 1 OF 4

Fig. 3

SETUP/SHDN PGM. CH 2 REFERENCE

SC TEC (CONT'D) PAGE 2 OF 4

This routine changes AUX Bus ASSMT-ACN or PREP FOR THIS CHANNEL PER SC Command

} Fetch Techn. Memory END word.

Combine Techn. Memory XPD, RPFR, & CW bits of END word with new Aux Bus Assignment of PA

H R McDowell
1/23/76

FIG. 8 SC TECH-CHAN PARAM. CHG OR DISMISS
SETCC (CONT'D)

REDONE 12/10/76

CRS IS CHAN-RESERVE
STATUS ADDR BASE
TABLE II

RN IS RR/RSPO GEN No.
ASSIGNED TO THIS
CHAN

SRA IS RR/RSPO GEN
ALLOCATION TABLE II

DR IS DISMISS RR/RSPO GEN
AND EQUALS X'8000'

FN IS FA GEN NO. ASSIGNED
TO THIS CHANNEL

SFA IS FM GEN ALLOCATION
TABLE II A

DF IS DISMISS FM GEN
AND EQUALS X'8000'

PAGE 3 OF 4

THIS ROUTINE DISMISSES
A CHAN ASSMT INCLUDING
RESOURCES REJREQD AND/OR
FM GEN IF ASSIGNED

- FN ACT JUSTIFIED

Howard McQuiller
12/10/76

FIG. 8 SC TECH-CHAN PARAM. CHG OR DISMNS
SCTLC (CONT'D)

REDSNE 12/10/76

PAGE 44 of 47

CD IS (GEN) CODE

CRS IS CHAN-RESOURCE

STATUS ADDR. BASE
TABLE IIFN IS FM GEN. NO. ASSIGNED
TO THE CHAN.RN IS RR/RGP GEN. NO.
ASSIGNED TO THE CHAN.

X'0B8AB'

LOAD BITS 2,3,5
OF CRS+CH → RN
ROTATE RN LEFT
4 PLACES → RNOR:
XYR04XRR/RGP GEN.
PARAM. CHANGE

C11

MASK BITS 15-12
OF
AD → CD

YES

?

CD=9 YES

?

CD=8 YES

?

YES CD=10

?

YES CD=11

?

NO CD=12

?

YES

?

NO

?

YES

?

NO

?

YES

?

NO

?

YES

?

NO

?

OR:
PAVCH → PALOAD BITS 15,14
OF
CRS+CH & FN
ROT JUSTIFYSHR:
FN-1 → FN
ROTATE FN LEFT
11 PLACESOR:
PAVFN → PAFM GEN
PARAM.CHANGE

NOTE: CHANGE FOR:

ANGLE TECHN'S,

RGN TECHN'S,

ARE

SERVICED WITHOUT

DATA OR ADDR

MODIFICATION(S)

D,13

Forwarded by Scotter
12/10/76STORE:
PA → X+CH

DESTORE STATE

RETURN

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.
53959-HM-0412

49956

SHEET
22 OF 47 REV

Program memory. This module alternatively dismisses a particular Channel-Technique assignment. See notes of Figure 8 for codes. The routine for channel-technique dismissal also performs the resource management update of RAN-RAP/RGPO generator allocations.

3.2.7 SC Program Control (SCPC) Module

This module is a growth module to allow great flexibility to enable the TG RP-16 to execute instructions sent by the SC. The hardware is designed to accomodate this, but currently the SC External Control via hardware address is sufficient. See Figure 10 of 53959-HM-0410.

3.2.8 Channel-VCO Frequency Set-on (CVFSO) Module

CVFSO shall be the interrupt routines of Figure 9. This routine is requested every 0.1 second by each channel-technique assigned. It currently is a linear integration of error correction. Growth software could provide other correction to include even a transfer table for VCO tuning command to frequency output. The routine calls subroutine Convert and Load Tuning (CLT) to select VCO subband and tuning, within subband.

3.2.9 Auxiliary Bus Frequency (ABFR) Module

ABFR is the interrupt routine of Figure 10. This routine services frequency assignment updates for response-assigned channels, whose assignment includes Auxiliary bus update enable. The module uses the Frequency Update (FUP) subroutine which exits directly to LOOP.

3.2.10 RAN-RAP Cover (RRC) Module

RRC is the interrupt module of Figure 11. As noted thereon, this function is performed for each of the four RAN-RAP/RGPO generators. List I of paragraph 3.3 gives the priority level and least significant octal addresses for each generator service module. This module uses RAN-RAP A version (RRA) subroutine and generates a single element RAN-RAP. Internal

FIG. 9 CHANNEL-VCO FREQUENCY SET-ON

Fig. 10 AUX Bus FREQUENCY

P. McCallister
7/24/74

FIG. 11. RAN RAP COVER

NOTES: 1. There is one of these programs for each of 4 RR/RSPG Gens.

2. SEE LIST II for LVL, EVEN, ODD ASSNTS.

WA is Word A

WB is Word B

$17534(\text{Even})_8$

$17534(\text{Odd})_8$

RRA is RAN RAP -
A VERSION

CC is CEELECOGHT SET
by RRA subroutine

{ PL is pulse storage
start addr. *

{ CC is relative storage
cell location of
a pulse-delay

EG is EARLY COMMIT GATE
DELAY

LG is LATE COMMIT GATE
DELAY

* See TABLE II

INTR 0000(LVL)0₈

USE JSUB CALL

RG is RRGen
Commit & Gate
Mem. Addr.

PL, mem. add.
1/29/76

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.
53959-HM-0412

49956

SHEET
26 OF 47 REV

pulse delay storage shall be as in Table III.

3.2.11 RAN-RAP Cover and Early (RRCE) Module

RRCE is the interrupt module of Figure 12. The description of paragraph 3.2.10 is generally the same except these routines generate a two-element RAN-RAP.

3.2.12 RAN-RAP Cover and Late (RRCL) Module

RRCL is the interrupt module of Figure 13. This is another two-element RAN-RAP similar to paragraph 3.2.11.

3.2.13 RAN-RAP Cover, Early and Late (RRCEL) Module

RRCEL is the interrupt module of Figure 14. This is a three-element RAN-RAP built up from the single element of paragraph 3.2.10.

Note that growth software can have many variations in delay pulse configurations for this RRCEL as well as for RRC, RRCE, and RRCL.

3.2.14 Range Gate Pull Off (RGPO)Module

RGPO is the interrupt module of Figure 15. As noted thereon this function shall be performed for each of four RR/RGPO generators. List I gives the priority levels and addresses.

3.2.15 Frequency Update (FUP) Subroutine

FUP is the subroutine of Figure 16. As noted thereon frequency assignment modules SCAFA and ABFR shall use the subroutine. Internal tables used are those of Table I. Essentially this subroutine shall update the tuning of each of four VCO's by the same amount the channels assigned frequency is changed. Growth software can have a more complex tuning update if tests with MAAS equipment indicate a need. FUP uses the subroutine Convert and Load Tuning (CLT).

FIG. 12 RAN RAP COVER AND EARLY

NOTES: 1. There is one of these programs for each of 4 RR/RAPG gens

2. See TABLE II for LVL, EVEN, ODD ASSMNTS

WA is word A

WB is word B
 $17534(\text{EVEN})_8$
 $17534(\text{ODD})_8$

RRA is RAN RAP A VERSION

CC is CELL Count
Set by RPA

{ PL is pulse storage
start addr. *

CC is also relative
Storage cell location
of pulse delay

EG is Early Commit
Gate delay

LG is Late Commit
Gate delay

EO is Early (Element)

Offset, currently
4 usec.

* See TABLE II

HL modification
1/30/76

FIG. 13 RAN RAP COVER AND LATE

NOTES: 1. There is one of these programs for each of 4 RR/RAP Gen's.
2. See LIST I for LVL, EVEN, ODD ASSNTS.

WA is word A

WB is word B

RRA is RAN RAP
A VERSION

CC is Cell Count Set by RRA

{ PL is pulse storage start addr. *

CC is also relative Storage cell location of pulse delay

E G is Early Commit Gate delay

L G is Late Commit Gate delay

LO is Late (Element) Offset, currently 4 + 6 usec

* SEE TABLE II

RRCL

INTR. 0000 (202)₂₈

DISABLE RP720
STORE STATE

LOAD:
RWA → WA
LOAD:
RWB → WB

RRA

USE JSUB CALL

X'0B3F'

CC<0
2

YES

X'0B40'

NO

LOAD:
PL+CC → A
STORE:
A → RS

X'0B3D'

STORE:
EG → RG
LOAD:
LG → A

17634(ODD)₂₈LO
@

ADD:
A + LO → A
STORE:
A → RS

X'0B3E'

DECRMT:
CC - 1 → CC17534(EVEN)₂₈

RS is RREGEN pulse delay mem. addr.

ADD:
A + LO → A
STORE:
A → RS

RESTORE STATE

RETURN

RG is RRGen
Commit Gate Mem. Addr.

JR Muller
1/30/76

FIG. 14 RAN RAP-COVER, EARLY AND LATE

Page 1 of 2

NOTE 5; 1. There is one of these
programs for each of
4 RQ/RGPZ GENS.

a. See LIST Z for
L1L, EVEN, ODD A55 MTS

WA is word A

WB is word B

RRA is RAN-RAP

A VERSION

17534(EVEN)
17534(ODD)

RRCEL

INTR. 0000 (LV2) 3₂

DISABLE RP120
STORE STATE

LOAD:
RWA → WA
B LOAD:
RWB → WB

RRA

A

Al McFarlin
7/30/70

FIG.14 RAN RAP-COVER, EARLY, AND LATE
(CONT'D) PAGE 2 of 2

CC is Cell
Count set by RRA

(PL is pulse storage start
addr *)

CC is relative storage cell
location of pulse delay

EG is Early Commit
Gate delay

LG is Late Commit
Gate delay

EO is Early (Element)
Offset, currently
4 usec.

LO is Late (Element)
Offset, currently
4-6 usec.

X'0B34(EUCO)8
RS is RR GEN pulse
delay mem addrs.

* See TABLE III

RG is
RRGen
CommitGate
Mem addrs.

Mr. McQuillen
7/30/76

FIG 15 RANGE GATE PULL OFF

Page 1 of 2

NOTES: 1. There is one of these programs for each of 4 RR/REPGEN's.

2. See LIST I for LVL, EVEN, ODD ASENTS

WB is WORD B

17534(ODD)

WA is word A

PW is Pulse width 17534(EVEN)

PW3 is start of pulse

width conversion table.

X'OBES'

PR is pretrigger,

currently 25.6 usec.

LB=62.5 nanosec. X'OBEE'

CV is cover plus delay

PD is Pull-off Delay

SS is SCRATCH-PAD delay
STROBE

17534(ODD)

RG is GEN

COMMIT GATE

MEM. ADDR.

STORES 'LATE'
(END OF) COMMIT
GATE

J.R. McDaniel
7/26/76

FIG. 15 RANGE GATE PULL-OFF
(CONT'D)

TH is Threshold Delay
for Cover Start and
AMI check, currently $\approx 2\text{ msec}$.
 $LSB = 62.5 \text{ nsec}$.

TD is TUNING
DELAY, CURRENTLY
 $\approx 10.1 \text{ msec}$.
 $LSB = 62.5 \text{ nsec}$.

bit 11 of WB is
AMI bit

$1 \rightarrow \text{AMI}$
 $0 \rightarrow \text{AMI}$

PAGE 2 OF 2

HR modified
7/26/94

FIG.16 FREQUENCY UPDATE
SUBROUTINE Page 1 of 2

ENTERED
FROM
UNCOND. JUMP

NOTE: This subroutine is entered from SCAFA or ABFR. So the same register states are anticipated.

This subroutine returns directly to LOOP.

GROWTH: 3 → V

X'0BDC T6 can handle four VCO's
MAAS has only two: 0 & 1

USE JS48 CALL

ARMed
1/27/76

* See TABLE I for Freq. & Tuning Tables - Structures.

FIG. 16 FREE UPDATE SWR. (cont'd)
FUR

Page 2 of 2

DR. M. B. BROWN
3/23/76

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.
53959-HM-0412

49956

SHEET
35 OF 47

REV

3.2.16Convert and Load Tuning (CLT) Subroutine

CLT is the subroutine of Figure 17. This subroutine shall convert the calculated absolute tuning frequency to tuning frequency by subband designation and relative subband tuning command. This routine assumes an upper subband VCO in the MAAS transmitter. It includes hysteresis for overlap of subbands, and assumes subband tuning is proportional above a lower value for each subband. The overlap and the lower values of each subband are programmable.

3.2.17RAN-RAP A Version (RRA) Subroutine

RRA is the subroutine of Figure 18. This subroutine sets up the basic element pulse delay patterns for all RAN-RAP programs. It also sets up the basic commit gate start and end.

3.3**STORAGE AND PROCESSING ALLOCATION**

The Technique Generator RP-16 Controller memory allocations are given in Figure 15 of reference 53959-HM-0410. Of the 4K-word memory, the upper 1K is currently allocated to T.G. Techniques Program memory. Within the remaining 3K, the software instructions and data objects of this CPDS are to fit. All other addresses are given in the cited reference and listed herein where needed.

Tables I through III are the important internal data-object tables for the T.G. Controller Program. Use of these tables is given in the appropriate functional description of paragraph 3.1. List I gives the RR/RGPO Generators priority and address assignments. List II summarizes important program data objects. List III allocates total RP-16 addresse space, including programs and data.

3.4**COMPUTER PROGRAM FUNCTIONAL FLOW**

Program flow is described in paragraph 3.1 and Figure 1, and 2. Interrupt levels and assignments are given therein.

**FIG. 17 CONVERT AND LOAD TUNING
(TO TUNING MEMORY) SUBROUTINE**

Page 1 of 2

SUBROUTINE IS
ENTERED FROM
CALLER'S
CVFSO OR FUP
- Needs Correct
Register States

TM is start of
TUNING MEMORY

1752000₈

SB is SUBBD INDICATOR
0 = LOWER
1 = UPPER

LL is LIMIT OF LOWER SUBBD,
currently $\approx 12\text{ GHz}$
LSB = 1.25 MHz

AT is Absolute Tuning X'OBDE'
from Caller.

LT is lower (SUBBD)
Threshold
currently $\approx 86\text{ Hz}$
LSB = 1.25 MHz

See Callers For

X & CV

X is ST X'0848'

NOTE: This subroutine

CAN BE EXPANDED TO
INCLUDE VCO TUNING
CURVES IF LATER VCO
TESTS SO INDICATE

STORES RELATIVE TUNING &
SUBBD FLAG.
EXIT

A.R.M.C. 7/27/76

**FIG17 CONVERT AND LOAD TUNING
S48 ROUTINE (CONT'D)**

UT IS UPPER SUBBD THREE

Should be $\approx 11.8\text{ GHz}$
 $L3B = 1.25\text{ MHz}$

X is from Collet,
 $X = 3T$

Page 2 of 2

UPPER SUBBD
TEST

Go to lower
SUBBD

TR is a temporary register
for upper subbd relative
tuning.

STORE ABSOLUTE TUNING
AND SUBBD FLAG.

Moves Flag from
bit 15 to bit 12, and includes rel.
tuning for storage
in Tuning
Memory.

HP m 2nd floor
1/29/76

FIG. 18 RAN RAP A VERSION
SUBROUTINE

Page 1 of 3

RRA

MASK X'OE00'

PW is pulse width X'0B85'

PWS is start of pulse width
Conversion table
TABLE III

X'0BE1'
PR is pretrigger,
currently = 25.6 μsec
 $LSD \approx 62.5 \text{ nanosec}$
CV is cover pulse
start

CC is CELL COUNT

PD is Primary Delay

PP is Primary Pull direction

FG is Fixed Gate delay

FG#8

PL is pulse storage start X'0B40'

MASK:
RPW of WA \rightarrow PW
LOAD:
PWS \rightarrow B

LOAD:
B + PW \rightarrow A

SUB:
PR - PW \rightarrow A
LOAD $\div 2$
A \rightarrow CV

STORE:
EA \rightarrow PL

MASK R-byte of
WA \rightarrow PD
MASK bit 3 of
WA \rightarrow PP

MASK from WA
RFG \rightarrow FG
SHIFT FG left
3 bits \rightarrow FG#8

MASK X'F000'

LOAD:
1 \rightarrow CC

X'0B3F'

STORES
DROP
PLS
+ PRIM.

ADD:
CV + FG \rightarrow A
STORE:
A \rightarrow PL + CC

?
YES FGLPD
NO

?
No
PULL
OUT

?
Yes FGLPD
No
PULL
IN

SUB:
CV - FG \rightarrow A
STORE:
A \rightarrow PL + CC

INCRT:
CC + 1 \rightarrow CC

STORES
DROP
PLS
- PRIM.

EP is Early Primary
PULSE
Delay

ADD:
CV + PD \rightarrow A
STORE:
A \rightarrow PL + CC

STORE
DELAY PLS
- PRIM POS

SUB:
CV - PD \rightarrow A
STORE:
A \rightarrow PL + CC

STORE DELAY PLS
- PRIM NEG

LP is Late Primary
PULSE
Delay

ADD:
 $2 \times PL + A \rightarrow A$

STORE:
A \rightarrow LP
STORE:
CV \rightarrow EP

STORE:
A \rightarrow EP

ADD:
 $2 \times PW + CV \rightarrow A$
STORE:
A \rightarrow LP

A/2

W.R. McQuillen
1/29/76

FIG. 18
RAN-RAP A VERSION
SUBR. (CONT'D)

Page 2 of 3

FIG. 1B

RAN-RAP (A VERSION
548R (CONT'D)

Page 3 of 3

LG is Late Commit
Gate Delay
@ X'OB3E'

STORE
LATE (END OF)
COMMIT GATE

H. M. Deller
1/29/76

TABLE I FREQUENCY AND TUNING LOCAL DATA STRUCTURES

ADDRESS CH	DATA LSB = 1.25MHz.
SF + OH	FREQ (OH) 140 bits
ST + OH	• • •
SF + FH	FREQ (FH)

ASSIGNED FREQUENCY TABLE

ADDRESS CV	DATA IS AT = Absolute Tuning LSB = 1.25MHz. AND ✓
ST + OH 0 ₈	TUN (OH 0 ₈)
ST + OH 1 ₈	TUN (OH 1 ₈) 1 bit = 15
ST + OH 2 ₈	TUN (OH 2 ₈) 0 → SUBBD 1-LOWER
ST + OH 3 ₈	TUN (OH 3 ₈) 1 → SUBBD 2-UPPER
• • •	• • •
ST + FH 0 ₈	TUN (FH 0 ₈)
ST + FH 1 ₈	TUN (FH 1 ₈)
ST + FH 2 ₈	TUN (FH 2 ₈)
ST + FH 3 ₈	TUN (FH 3 ₈)

TUNING TABLE

ALSO SEE LIST III

NOTE: These are used in Freq. UPDATE (FUP) SUBMODULE, and CHANNEL-SCO FREQ. SELECT (CSFSC) MODULE.

A.R. McDonald
7/30/76

**TABLE II CHANNEL-RESOURCE, AND RESOURCES
LOCAL DATA STRUCTURES**

		FN - OCTAL		
CRS IS CHAN- RESOURCE STATUS ADDR. BASE	ADDRESS	DATA-bits	1 - GEN #1	2 - GEN #2
	CH	15,14 13-3	2-0	
CRS + OH	FN	ZERO	RN	RN - OCTAL
USED BY	" " "	" " "	"	0 - NONE
INITIALIZATION (INLZ) MODULE,	CRS + FH	FN ZERO	NOT	1 - GEN 1
SC TECH ASSMT (SCTA) MODULE AND SC TECH-CH PARM. CHS OR DISMISS MODULE (SCTEE).				2 - GEN 2
				3 - GEN 3
				4 - GEN 4
CHANNEL-RESOURCE TABLE				

		ADDRESS	DATA - 1 HEX	
RR/RGPO GEN STATUS ADDR.	RR/RGPO GEN #	RN	RN	
START	SRS + 18		0005H	
USED BY	" " "		- - -	
INITIALIZATION (INLZ) MODULE	SRS + 43		0005H	
				HEX
				SA
				MEANING
				0 AVAILABLE
				1 NOT AVAILABLE

**RR/RGPO GENERATOR PRE-OPERATION
STATUS TABLE**

		ADDRESS	DATA HEY	
SRA IS RR/RGPO GEN. ALLOCATION ADDR	RR/RGPO GEN #	RN	HEY	
USED BY	SRA + 18		000AH	
INITIALIZATION (INLZ) MOD, SC TECH ASSMT, (SCTA) MODULE, AND SC TECH-CH DISMISS (SCTEE) MODULE	SRA + 43		000AD	
				AA
				MEANINGS
				0 NOT ALLOCATED
				1 ALLOCATED

**RR/RGPO GENERATOR ALLOCATION
(OPERATION) TABLE**

ALSO SEE LIST III

NR Techullen
1/30/76
REVISED 1/29/76

TABLE II A RESOURCES LOCAL DATA
STRUCTURE CONTINUED

	ADDRESS	DATA HEX	KEY
	FN FM GEN #		
SFS 15			
FM GEN	SFS + 1	0005H	
STATUS	SFS + 2	0005H	
ADDR			
STAR5			

USED BY INLE, MIB.
FM GENERATOR PRE-OPERATION STATUS TABLE

	ADDRESS	DATA HEX	KEY
	FN FM GEN #		
SFA 15			
FM GEN ALLOCATION	SFA + 1	000AH	
ADDR.	SFA + 2	000AH	

USED BY INLE, SCTA,
SATE, MODS.
FM GENERATOR ALLOCATION
(OPERATION) TABLE

Howard McQuillan
11/29/70

TABLE III RAN-RAP PULSE DELAY STORAGE,
AND PULSE WIDTH CONVERSION TABLE

ADDRESS CC	DATA
CELL COUNT	bits 7-0 USED LSB=62.5 MANSEC: PULSE DELAY (1)
PL is pulse storage start PL + 0 CC is cell count	NOTE: ALLOW FOR 24% LOCATIONS
Used by All RAN-RAP Modules AND Subroutine.	PULSE DELAY (4)

RAN-RAP PULSE DELAY TABLE

ADDRESS PW	DATA - PW
PWS width code	bits 5-0 LSB=62.5 nanosec
Pws is Pulse Width Conversion	1.5usec = 308
PWS + 18	1.0usec = 208
+ 38	0.5usec = 108
+ 58	0.25usec = 48
+ 68	

PULSE WIDTH CONVERSION TABLE

ALSO SEE LIST III

HR. REC'D.
1/30/74

**LIST I: RR/RGPO GENERATORS,
PRIORITY LEVEL, AND ADDRESS
LSB ASSIGNMENTS**

GEN#	(PRIORITY) LVL ₈	WRITE ADDRESS 3 LS83	
		EVEN ₈	ODD ₈
1	5	0	1
2	4	2	3
3	3	4	5
4	2	6	7

* PULSE STROBE DELAY MEMORY

COMMIT GATE DELAY MEMORY

Pl. Mr. Julian
1/30/76

List 22 Important Data-Objects and Users

REF.	DATA ITEM	DESCRIPTION	USINGS MODULE(S) OR SUBROUTINE(S)
CT	Count - No. Log entries after full 2		TNLB, L000
CRS	Channel Resource Table Start		TNLB, SCTA, SRC
SRS	Start of Registers Statistics Table - Programmable		TNLB
SRA	Start of Programs Allocation Table - During Run		TNLB, SCTA, SRC
PS	(Technique) Program Start - 0060000 Program!	Pre-Ran SCTA, SRC	
SF	Start of Frequency (Assignment) Table		CNSG, FUP
ST	Start of Timing (Absolute) Table		
P1	Run Storage Start		RRC, RRA, RRE, RRC, RRE
EG	Early (Commit) Gate - start		RRC, RRA, RRE, RRC, RRE
LG	Late (Commit) Gate - end		RRC, RRA, RRE, RRC, RRE
TD	Timing Delay	Programmable	RRA
PR	Pre-trigger Delay	Programmable	RRA

ACME
1/30/96

LIST II (Contd) Important Data-Objects and Uses

REF.	DATA ITEM	MODULE(S) OR SUBROUTINES
EO	Early Element Offset	Pre-run programmable RCE, RCEZ
LO	Late Element Offset	Programmable RCE, RCEZ
PWS	Pulse Width Conversion Table	Programmable RCE
C4	Channel Variables 0 thru 15	Tables, SCAFA, SCRC, C4SS, ABER
AN	ANGLE Cell No. Variable 0 thru 31	ENB, SCRA, SCRC
TNS	Technique No. VAR 0000 through 17708	SCRA, SCRC
CC	Cell Count Run-RP delay pulse do. Variable	RCS, RRA, RRS, RCE, RCEZ
TH	Threshold Delay for Cover insertion. Programmable	Pre-run RCSA
L4	Lower Subband Threshold Table Entry. Programmable	Pre-run CLT
L7	Lower Subband Threshold Table Entry. Programmable	Pre-run CLT
LT	Upper Subband Threshold Table Entry. Programmable	CLT

MP 1130/76

RAYTHEONRAYTHEON COMPANY
LEXINGTON, MASS. 02173

CODE IDENT NO.

SPEC NO.

53959-HM-0412

49956

SHEET
47 OF 47

REV

3.5**PROGRAMMING GUIDELINES**

Object program shall be machine code suitable for loading from the System Controller (SC) via the Daisy Chain (DC) bus. During development object program shall be available on paper tape for loading via a TTY terminal directly into the T.G. The latter includes an Asynchronous Line Control Module (ALCM) for TTY interface and a Hardware Loader program to accept inputs. Word formats and addresses are given in Figures 15, 16 and 17 of reference 53959-HM-0410.

Source programming can be in assembly language. The source program can be converted to object program using either the RP-16 Assembler, reference Equipment Division II, or the ESD Nova Cross-Assembler for the RP-16. RP-16 instructions and functions are described in reference Equipment Division I.

**LIST III TGU RP-16 ADDRESS
SPACE PAGE 1 OF 4**

LOCATION HEX	DATA	DATA TYPE
0000	VECTOR ADDR. "INLZ" = X'0050'	(START OF 4K MEM) DEFINED 1 ₁₀
0001	INTERRUPT VECTOR ADDR'S	DEFINED
0002	CURRENT & GROWTH	DURING CODING & ASSY. 11 ₁₀
006F	SEE TGU HARDWARE SPEC	
INLZ = 0070	T.G. PROG INSTR's & START INLZ & PROG. DATA NOT ELSEWHERE	INSTR & DATA
0071		912 ₁₀
0072		
0073		
0074		
0075		
0076		
0077		
0078		
0079		
007A		
007B		
007C		
007D		
007E		
007F		
03FF	ESTIMATED LIMIT OF 1 PROG INSTR/DATA	
0400	GROWTH	1853 ₁₀
STACKI-1 = 0B3C	TOP OF STACK USED	VAR.

TOTAL = 2877

HR Rep'd and Sign
9/10/76

LIST III TGU RP-16 ADDRESS

REVISED
11/29/76

SPACE (CONT'D) PAGE 204

LOCATION HEX	DATA	DATA TYPE
EG = OB3D	EARLY GATE - RAN-RAP	VAR. 1,0
LG = OB3E	LATE GATE - RAN-RAP	VAR. 1,0
CC = OB3F	CELL COUNT - # RR PL's	VAR. 1,0
PL = OB40	PULSE STORAGE FOR RAN-RAP	VAR. 24,0
...		
OB57		
SF = OB58	FREQ (ABSOLUTE) FOR CHANNEL ASSIGNMENTS - TABLE I	VAR. 16,0
...		
OB67		
ST = OB68	TUNING (ABSOLUTE) FOR CHAN- VCO ASSIGNMENTS - TABLE II	VAR. 64,0
...		
OB87		
CRS = OB88	CHANNEL-RESOURCE TABLE - TABLE III	VAR. 16,0
OB89		
SFA = OB8A	BASE } FMGEN. CURRENT GEN#1 } OPERATION ALLOCATION GEN#2 } TABLE II A	VAR. 3,0
OB8B		
SFS = OB8C	BASE } FM GEN. PRE-OPR. GEN#1 } STATUS TABLE II A	PRE-PROG'D 30
OB8D		
OB8E	NOT USED - RESERVE	30,0
OB8F		
OB90		
V = OBDC	HIGHEST No.'s VCO. FOR MAAS entry 1.*	PRE- PROG'D 1,0

* Note: TGU can handle 3, i.e. four VCOs TOTAL 130,000
VCO's are numbered 0, 1, ...

JL McDaniel
11/29/76
Rev 11/27/76

LIST III TGU RP-16 ADDRESS
 SPACE (CONT'D) PAGE 3 OF 4

LOCATION HEX	DATA	DATA TYPE
LT = OBDD	LOWER SPEED THRES. TIME	PRE-PRGMD (USE VALUES IN P2000 CHARTS)
LL = OBDE	LOWER SPEED HI LIMIT TIME	
UT = OBDF	UPPER SPEED THRES TIME	
TH = OBEO	THR.DELAY FOR COVER, AMI RSPO	
PR = OBE1	RRJRSPO PRE-TRIG DELAY	8,10
TD = OBE2	RRJRSPO TUNING DELAY	
LO = OBE3	RR LATE OFFSET	
EO = OBE4	RR EARLY OFFSET	
PWS = OBE5	PULSE WIDTH CONVERSION TABLE - RRJRSPO	PRE-PRGMD (USE TABLE III Now) 8,10
OBEC		
SRA = OBED	NOT USED - GROWTH	1,0
OBEE	GEN#1 } RRJRSPO GEN. CURRENT " " } OPERATION ALLOCATION	VAR.
OBFI	GEN#4 } TABLE II	4,5
SRS = OBF2	NOT USED - GROWTH	1,0
OBF3	GEN#1 } RRJRSPO GEN. PRE-OPER.	PRE-PRGMD
" "	" " } STATUS	(PROG. ALL 4,0
OBFG	GEN#4 } TABLE II	AVALBL Now)
OBF7	SC-TG MESSAGE REG'S SEE TGU HARDWARE SPEC	VAR.
" "		9,10
OBFF		

TOTAL 35

Mr. McQuillan
9/8/75

LIST III. TGU RP-16 ADDRESS
3 PAGE (CONT'D) PAGE 4084

LOCATION HEX	DATA	DATA TYPE
0C00	TECHNIQUE PROGRAM MEMORY	PRB-PRSMIO (TO BE SUPPLIED) 1024 ₁₆
4095 ₁₀	OFFF	SEE TGU HARDWARE SPEC. FOR FORMAT (END OF 4K MEM.)
1000	GROWTH PERIPH.	53, 904 ₁₆
F9FF	TG INTERNAL PERIPHERALS SEE FLOW CHARTS AND TGU HARDWARE SPEC.	VAR. 256
FA00		
FAFF		
FB00	GROWTH	256
FBFF		
FC00	ALCM STATUS/ENTRL REG	VAR. 1,0
FC01	ALCM DATA REG	VAR. 1,0
FC02	GROWTH	765 ₁₀
FEFE		
FEFF	PIN DISABLE REG	VAR. 1,0
FF00	FIRMWARE PROGRAM - PIN HARDWARE LOADER	FIXED INSTR. 256 ₁₀
FFFF		

TOTAL = 62,464₁₀

H. Mandell
9/8/74

TABLE A. T601 SOFTWARE TECHNIQUES
PROGRAM MEMORY DATA

PROGRAM	ADDRESS	DATA
No. 9	OC48	0021
XILM, RGN	9	1D82
	A	2140
	B	3000
	C	C004
	D	DB9G
	E	F830
No. 13	OC68	0020
XICS-1, RGN	9	1CA4
	A	22A2
	B	3030
	C	C004
	D	D933
	E	F830
No. 31	OCF8	0020
XICS-2, RGN	9	1524
	A	2142
	B	30C1
	C	C003
	D	DF54
	E	F830

TABLE A. TSD SOFTWARE TECHNIQUES
PROGRAM MEMORY DATA

PROGRAM	ADDRESS	DATA
No. 41	OD48	0020
XASWM-C, RGPJ	9	1692
	A	2142
	B	30C1
	C	A61C
	D	B347
	E	C005
	F	F830
No. 53	ODA8	0020
XASWM-C, RGN, FM	9	1A82
	A	2595
	B	3126
	C	84D4
	D	93C0
	E	C002
	F	D949
	ODBO	F830
No. 65	OE08	000C
XSSWM, RR-3	9	1208
	A	2000
	B	3086
	C	A31B
	D	B99C
	E	C004
	F	F830

TABLE A. TSD SOFTWARE-TECHNIQUE
PROGRAM MEMORY DATA

PROGRAM	ADDRESS	DATA
No. 73	OE48	0020
XASWHT, RR-3	9	1708
	A	2040
	B	3035
	C	A31B
	D	B99C
	E	C004
	F	F830
No. 91	OED8	0020
RCW, ASWH-C	9	1480
	A	2281
	B	3147
	C	F520