Содержание

1	Язі	ыки и их свойства, операции над языками	1
	1.1	Введение	1
	1.2	Операции над языками	2
		1.2.1 Операции над словами	3
		1.2.2 Операции над языками как множествами	3
		1.2.3 Операции над языками как множествами, содержащи-	
		ми последовательности	3
2	Koı	нечные автоматы	3
	2.1	Сведение НКА к ДКА	6
	2.2	Минимизация ДКА	7
3	Per	улярные выражения и языки	8
	3.1	Регулярные выражения	8
	3.2	Регулярные языки	9
		3.2.1 Свойства замкнутости регулярных языков	9
		3.2.2 Проверка на нерегулярность	11
	3.3	Регулярные выражения на практике	11
4	Лексический анализ		11
	4.1	Комментарии к практике	12
5	KC	-грамматики и языки	12
	5.1	Грамматики как системы переписывания	12
	5.2	КС-грамматики	13
6	Пр	иложение	13
	6.1	Необходимые определения из близких областей	13
		6.1.1 Графы	13
		6.1.2 Матрицы	14
		Аннотация	

Это вводный абзац в начале документа.

1 Языки и их свойства, операции над языками

Введение

Назовём множество абстрактных объектов – символов – алфавитом Σ . Пусть алфавит конечный. Пустой и бесконечный алфавиты нам неинтересны.

Введём слово над алфавитом $\Sigma: w(A) = a_i, a_i \in \Sigma, \forall i = 0... |w(A)|$ – последовательность (строка) символов из алфавита $0 \le |w(\Sigma)| < +\infty$.

Чтобы оперировать словами длины 0, вводят специальный символ длины $0 - \varepsilon : |\varepsilon^n| = 0, n = 0.. + \infty$; Его называют пустым.

Обозначим множество таких последовательностей из символов алфавита Σ , включая слово длины 0, как Σ^* . Тогда некоторый язык $L(\Sigma)$ над алфавитом Σ можно задать как подмножество слов над алфавитом: $L(\Sigma) \subset (\Sigma^*)$. Таким образом, математически мы определили объекты, с которыми будем работать, это последовательности конечной длины и множества.

Теория формальных языков – математический способ конструктивного описания множеств последовательностей (слов) элементов некоторых множеств (алфавитов). Почему конструктивного? Потому что, в принципе, все слова языка можно просто перечислить, если:

- 1. любое слово конечной длины.
- 2. множество слов конечно.
- 3. нет ограничений на временную сложность алгоритмов, используемых в работе с таким языком.

Нарушения 1) и 2), соответственно, говорят о том, что мы будем перечислять слова бесконечно, 3) это практическая хотелка – нам нужны алгоритмы, которые работают, по крайней мере, за полином небольшой степени и по времени, и по памяти, так как мы хотим работать с относительно мощными языками, и нам важна масштабируемость.

В нашем курсе 1) будет всегда выполняться: считаем, что любое слово языка – конечной длины. Но пусть 2) не выполняется, а 3) нас просят строго соблюсти. Тогда задача конструктивного, то есть 'сжатого' и точного описания множества слов обретает куда более глубокую практическую значимость.

Кроме перечисления, можно предложить еще 2 способа задания языка:

- Формальный распознаватель все слова языка можно распознать некоторой вычислительной машиной.
- Генератор все слова языка можно вывести посредством формальной процедуры переписывания строк по системе правил. Система математических объектов, позволяющих это сделать, называется формальной грамматикой.

С этими двумя способами теория формальных языков и работает. Мы начнём с первого, в последствии переключимся на второй, а затем синхронно двинемся дальше с обеими способами, усложняя и рассматриваемые методы, подходы и задачи.

1.2 Операции над языками

Начнём с базовых операций над элементами языков – словами.

1.2.1 Операции над словами

Опр. 1.1 Конкатенация – склеивание¹ строк. Если $u = a_1 \dots a_m$ и $v = b_1 \dots b_n$ — две строки, то их конкатенация — это строка $u \cdot v = uv = a_1 \dots a_m b_1 \dots b_n$. Знак \cdot , как правило, опускают.

Конкатенация строки сама с собой обозначается как возведение в степень: w^n-n раз повторяемая w. $w^1=w, w^0=\varepsilon,$ то есть конкатенация играет роль умножения с единицей $\varepsilon,$ и превращает язык в свободную группу.

Опр. 1.2 Взятие префикса

Опр. 1.3 Взятие суффикса

Конечно, существует множество других интересных, широкоиспользуемых либо экзотических операций, вроде инверсии слова, но оставим их за рамками.

1.2.2 Операции над языками как множествами

Объединение, пересечение, вычитание, дополнение – как с обычными множествами ... Нам они понадобятся, в особенности, при проверке свойств принадлежности языка некоторому классу.

1.2.3 Операции над языками как множествами, содержащими последовательности

Опр. 1.4 Конкатенация языков $L_1(\Sigma_1), L_2(\Sigma_2) \subset (\Sigma_1 \cup \Sigma_2)^*$ – это операция склеивания всех возможных слов языков: $L_1 \cdot L_2 = \{uv | u \in L_1, v \in L_2\}.$

Можно взять не 2, а другое число языков k. Если язык конкатенируют сам с собой, то это обозначают L^k . Для k<2 операцию определяют так: если k=0, то это будет язык $\{\varepsilon\}$, что соответствует определению $x^0=1$ для чисел. Если k=1, то это будет сам L. Как видим, конкатенация играет роль умножения 2 .

Опр. 1.5 Итерация языка $L: L^* = \bigcup_{k=0}^{\infty} L^k$.

Заметим, что множество слов Σ^* – итерация языка Σ .

2 Конечные автоматы

Конечный автомат – математическая модель вычислителя ${\bf c}$ конечной памятью.

¹устоявшегося русского термина пока нет, увы

 $^{^2}$ это и правда умножение в некотором полукольце с единицей ε (вопрос: а какая операция — сложение в этом полукольце?)

Опр. 2.1 Недетерминированный конечный автомат (HKA) – это кортеж $\langle Q, \Sigma, \Delta, q_0, F \rangle$:

- ullet $Q,|Q|<\infty$ множество состояний
- \bullet Σ алфавит
- $\Delta \subset Q \times \Sigma^* \times Q$ множество переходов³
- ullet $q_0 \in Q$ стартовое состояние
- ullet $F\subset Q$ множество финальных состояний

Существует эквивалентное определение автомата, где вместо Δ задают функцию перехода $\delta: Q \times \Sigma^* \to 2^Q$; будем пользоваться «более графовым» определением через Δ , хотя функция перехода нам ещё понадобится.

Способ распознавания строки автоматом уже лежит в его определении: представим граф автомата. Вершины – это состояния, рёбра – переходы. Если мы находимся в стартовом состоянии, и нам подают на вход строку, то нам достаточно брать по символу/слову из Σ^* , смотреть, по каким рёбрам графа мы можем перейти (если ε – перейти можем спонтанно), совершать переход(ы), брать следующий символ/слово из Σ^* , смотреть, куда мы по нему можем перейти из текущего состояния, и так далее. Слово распозналось, если мы дошли до какого либо финишного состояния и обработали всё слово. То есть распознавание строки автоматом – суть проверка достижимости по рёбрам его графа из q_0 в одно из состояний в F.

Основным недостатком КА служит то, что мы в каждый момент времени знаем только текущее состояние и в какие мы можем из него перейти. У нас нет данных о том, что происходило ранее, и это накладывает ограничения на выразительность⁴. К примеру, нельзя составить КА, распознающий язык a^nb^n , $\forall n \in [0, +\infty)$, хотя для любого фиксированного множества n — можно (Puc. 1).

Рис. 1: KA, распознающий язык $a^n b^n, n \in [1, 3]$

 $^{^3\}Delta$ задаёт множество двухместных отношений на Q , помеченных элементами Σ^* .

⁴тем не менее, конечные автоматы широко применяются в технике вокруг нас. Примеры: светофор, лифт, кодовый замок, система контроля воздуха в помещении, компьютерная мышь, аудиоплеер, веб-форма и т.д.

О достижимости проще говорить в терминах пар $\langle q_x,v\rangle\in Q\times\Sigma^*$, где q_x – текущее состояние, а v – недоразобранная подстрока входной строки. Такая пара называется конфигурацией автомата⁵. Введём отношение достижимости на конфигурациях.

Опр. 2.2 Достижимость (\vdash) – наименьшее рефлексивное транзитивное отношение над $Q \times \Sigma^*$, такое что:

- 1. $\forall w \in \Sigma^* : (\langle q_1, w \rangle \to q_2) \in \Delta \Rightarrow \langle q_1, w \rangle \Rightarrow \langle q_2, \varepsilon \rangle$
- 2. $\forall u, v \in \Sigma^* : \langle q_1, u \rangle \vdash \langle q_2, \varepsilon \rangle, \langle q_2, v \rangle \vdash \langle q_3, \varepsilon \rangle \Rightarrow \langle q_1, uv \rangle \vdash \langle q_3, \varepsilon \rangle$
- 3. $\forall u \in \Sigma^* : \langle q_1, u \rangle \vdash \langle q_2, \varepsilon \rangle \Rightarrow \forall v \in \Sigma^* \langle q_1, uv \rangle \vdash \langle q_2, v \rangle$

Теперь несложно задать язык, распознаваемый КА.

Опр. 2.3 Пусть дан $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$. Язык, распознаваемый автоматом $M - L(M) = \{ w \in \Sigma^* | \exists q \in F : \langle q_0, w \rangle \vdash \langle q, \varepsilon \rangle \}$.

Опр. 2.4 Язык L называется автоматным, если существует KA M : L = L(M). Множество таких языков L образует класс автоматных языков.

На практике гораздо приятнее работать с детерминированным конечным автоматом (ДКА).

Опр. 2.5 (Неформально) НКА $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ называется детерминированным КА, если

- Все переходы однобуквенные: $\forall (\langle q_1, w \rangle \to q_2) \in \Delta : |w| = 1$
- $\forall a \in \Sigma, q \in Q | \delta(q, a) | \leq 1$, где $\delta(q, a)$ множество состояний, достижимых из q по символу a. Задание: расписать $\delta(q, w)$ аккуратнее через конфигурации.

Иными словами, для любых фиксированных букв, для любого состояния, переход приводит только в одно результирующее состояние.

Можно ввести ДКА-автоматный язык L_{NFA} по аналогии с тем, как вводили $L(M)=L_{DFA}$. Очевидно, что $L_{DFA}\subseteq L_{NFA}$, так как ДКА – это частный случай НКА.

Если мы покажем, что произвольный НКА сводится к ДКА, то $L_{DFA} = L_{NFA}.$

 $^{^5}$ по мере усложнения моделей вычислителей, мы будем добавлять новые параметры в конфигурацию — например, появится параметр, описывающий стек, и т.д.

2.1 Сведение НКА к ДКА

Л. 2.1 («Построение подмножеств», Рабин и Скотт [1959]). Пусть $B = (\Sigma, Q, q_0, \Delta, F)$ — произвольный. Тогда \exists DFA $A = (\Sigma, 2^Q, Q_0, \Delta', F')$, состояния которого — помножества Q, который распознаёт тот же язык, что и B. Его переход в каждом состоянии-подмножестве $s \subseteq Q$ по каждому символу $a \in \Sigma$ ведет во множество состояний, достижимых по а из некоторого состояния s.

Произведём серию упрощений НКА.

Утв. 2.1 В опредлении НКА можно считать все переходы – однобуквенными. Для этого нужно перестроить множества Δ и Q.

Утв. 2.2 В опредлении НКА можно считать |F| = 1.

Утв. 2.3 (Эпсилон-замыкание) От переходов по ε можно избавиться, применив некоторые преобразования (см. Рис. 2).

Рис. 2: Основные преобразования при построении ерs-замыкания: последовательность переходов $\varepsilon \dots \varepsilon a$ заменить на переход a (a), состояние, из которого существует переход $\varepsilon \dots \varepsilon$ в финальное состояние – обозначить как финальное (б)

Эти утверждения доказываются технически, не будем этим заниматься сейчас (рекомендуется попробовать доказать дома или посмотреть в классических книгах и курсах).

ТОРО: доказательство $\Pi 2.1$, алгоритм на базе метода «построение подмножеств»

Утв. 2.4 (о корректности Л2.1). Для любой строки $w \in \Sigma^*$, состояниеподмножество, достигаемое DFA по прочтении строки w, содержит элемент q тогда u только тогда, когда хотя бы одно из вычислений NFA на w заканчивается в состоянии q.

Доказывается индукцией по длине строки w.

Далее из утверждения о правильности выводится, что построенный DFA распознаёт строку $w \in \Sigma^*$ тогда и только тогда, когда распознаёт исходный

NFA. Построение переводит NFA с n состояниями в DFA с 2^n состояниямиподмножествами. На практике, многие из них обычно бывают недостижимы. Поэтому хороший алгоритм должен строить только подмножества, достижимые из уже построенных, начиная с q_0 .

2.2 Минимизация ДКА

Говорят, что состояния u, v различаются словом s, если одно из них по s переводит автомат в финальное состояние, а другое нет.

Если состояния не различаются никакой строкой, они называются неразличимыми. На Рис.2 изображен ДКА, в котором есть такие: действително, окажемся мы в финальном состоянии или нет, зависит только от количества нулей в строке, следовательно, В и С – неразличимы.

Л. 2.2 Отношение неразличимости суть отношение эквивалентности.

Рефлексивность очевидна, симметричность следует из определения (попробуйте заменить и и v местами).

Транзитивность: u и v неразличимы, v и w неразличимы, следовательно, u и w неразличимы, тоже очевидно.

Рис. 3: ДКА, в котором есть неразличимые состояния (найдите их)

По индукции по длине строки доказывается, что модификация автомата как на Рис. 3, если состояния A и B не различимы, не меняет распознаваемый им язык.

Повторяя процедуру модификации для всех классов эквивалентности, оставляя какую-то одну вершину для каждого класса, получим некий автомат с возможно меньшим числом состояний. Можно доказать, что это число состояний – минимально.

Л. 2.3 Пусть у ДКА M все состояния различимы и любое достижимо из стартового. Тогда M – минимальный автомат для L(M)

Рис. 4: Вспомогательный рисунок

Т. 2.1 Для любого ДКА существует и единственный с точностью до изоморфизма ДКА с минимальным числом состояний.

Интуитивно, для выполнения минимизации нужно выделить:

- Недостижимые состояния их нужно выкинуть⁶
- Неразличимые состояния их можно объединить в одно для каждого класса эквивалентности

Существует, как минимум, 3 способа выделить и схлопнуть неразличимые состояния:

- Наивный алгоритм основан на построении классов эквивалентности и объединении эквивалентных состояний [1], и рассматривается на семинаре. Он работает за $O(n^2)$.
- Алгоритм Хопкрофта, позволяющий решить задачу за O(nloq(n)). [2].
- Также существует алгоритм Бржозовского, который строит минимальный ДКА и из НКА [3]

3 Регулярные выражения и языки

3.1 Регулярные выражения

Опр. 3.1 (Клини [1951]). Регулярные выражения над алфавитом Σ определяются так:

- \bullet ε регулярное выражение.
- Всякий символ a, гde $a \in \Sigma$ регулярное выражение.

 $^{^6}$ если этого еще не сделали на этапе построения ДКА, то можно обойти его граф из стартового состояния, например, в глубину, и собрать список достижимых состояний, а остальные удалить, модифицируя при этом остальные элементы автомата

• Если α, β — регулярные выражения, то тогда $(\alpha|\beta), (\alpha\beta)$ и $(\alpha)^*$ — тоже регулярные выражения.

Всякое регулярное выражение α определяет язык над алфавитом Σ , обозначаемый через $L(\alpha)$.

Всякий символ из Σ обозначает одноэлементное множество, состоящее из односимвольной строки: $L(a) = \{a\}$

Оператор выбора задает объединение множеств: $L(\alpha|\beta) = L(\alpha) \cup L(\beta)$ Конкатенация задает конкатенацию языков: $L(\alpha\beta) = L(\alpha)L(\beta)$.

Символ ε определяет пустое множество.

Оператор итерации задает итерацию: $L(\alpha^*) = L(\alpha)^*$

Приоритеты операций: сперва итерация, затем конкатенация, затем выбор.

Синтаксис регулярных выражений на практике часто расширяется, к примеру:

- повторение один и более раз $(\alpha+)$, $(\alpha+)=\alpha\alpha^*$
- необязательная конструкция ([α], что означает « α или ничего»), [α] = α | ε = α | ε *

Л. 3.1 («построение Томпсона»). Для всякого регулярного выражения α , существует NFA C_{α} с одним начальным и одним принимающим состояниями, распознающий язык, задаваемый α .

Доказательство производится индукцией по структуре регулярного выражения, структурные единицы представлены на Рис. 4:

Так как, по определенению, класс регулярок замкнут относительно этих операций, то и композицию этих операций даёт и регулярку, и НКА, её распознающую. Тем не менее, так ли регулярны регулярные выражения в современных ЯП?...

3.2 Регулярные языки

Любое регулярное выражение $reg(\Sigma)$ над алфавитом Σ задает регулярный язык L_{reg} .

Утв. 3.1 Любой регулярный язык задаётся грамматикой (Σ, N, S, P) , где правила из P имеют вид $A \to a, A \to \gamma, A \to \varepsilon$, где γ - либо aB (правая регулярная грамматика), либо Ba (левая регулярная грамматика), $a \in \Sigma$, $A, B, S \in N$.

3.2.1 Свойства замкнутости регулярных языков

Операции, сохраняющие регулярность: ...объединение, пересечение, дополнение, разность, обращение, итерация, конкатенация, гомоморфизм, обратный гомоморфизм.

Рис. 5: Базовые автоматы построения Томпсона

3.2.2 Проверка на нерегулярность

Лемма о накачке (разрастании)

3.3 Регулярные выражения на практике

Регулярные выражения, входящие в современные языки программирования (в частности, PCRE в Perl), имеют больше возможностей, чем то, что мы рассмотрели: в них есть нумерованные обратные ссылки и т.д. Это позволяет задавать ими не только регулярные языки, но и более сложные, в частности, контекстно-свободные [4].

```
Пример (из [4]): /^(a(?1)?b)$/ задаёт язык a^nb^n, n \in [1...\infty)
```

Это регулярное выражение очень простое: (?1) ссылается на первую подмаску — (a(?1)?b). Можно заменить (?1) подмасками, формируя таким образом рекурсивную зависимость:

```
/^(a(?1)?b)$/
/^(a(a(?1)?b)?b)$/
/^(a(a(a(?1)?b)?b)?b)$/
/^(a(a(a(a(?1)?b)?b)?b)?b)$/
```

Очевидно, это выражение способно описать любую строку с одинаковым количеством а и b, а конечный автомат, распознающий язык всех таких строк, построить нельзя.

4 Лексический анализ

Следующее приложение регулярных языков, о котором мы будем говорить – лексический анализ – выделение во входном тексте характерных подстрок, «значащих» что-то для дальнейших действий.

Опр. 4.1 Лексема – последовательность символов, удовлетворяющая некоторому заданному требованию.

Основная проблема выделения лексем – их может быть много и разных. Давайте работать не с лексемами, а с их «классами», на которые они делятся по смыслу нашей задачи. 7

Опр. 4.2 Токен – последовательность символов, «осмысленно» описывающая класс некоторой лексемы.

```
Пример: int \to TYPE (int – лексема, ТҮРЕ – токен). Для задания токенов, как правило, используют регулярные выражения.
```

Опр. 4.3 Лексер, лексический анализатор, сканер – транслятор, преобразующий входную строку в последовательность токенов.

Схема перехода от регулярки к ДКА: $regexp \to NFA \to NFA_{simplified} \to DFA \to DFA_{min}$ была разобрана в разделах 1-3.

⁷Здесь считаем такую классификацию однозначной.

4.1 Комментарии к практике

- Примеры работы с генератором лексических анализаторов flex были приведены на семинаре.
- В контесте 2 есть задачи, подразумевающие генерацию лексера по спецификации. И еще есть задача, которая демонстрирует, что в частных случаях («найти все вхождения слов в некоторый текст», «найти слово наименьшей длины, содержащее все подслова данного», и т.д.) можно, но не нужно писать регулярки, а лучше строить автомат по известной заранее структуре⁸.
- Существует ряд подходов к оптимизации представления регулярок, например, префиксное сжатие: https://habr.com/ru/post/117177/ и пр. Понятно, что в случае компиляции регулярки в минимальный ДКА для дальнейшего использования, этот подход никакого выигрыша в производительности не даст, так как ДКА будет одним и тем же с точностью до изоморфизма. Тем не менее, такой подход может повлиять на производительность промежуточных преобразований автоматов, так как НКА, полученный с оптимизацией, может отличаться от такового без оптимизации.

5 КС-грамматики и языки

5.1 Грамматики как системы переписывания

Опр. 5.1 Формальная грамматика – кортеж $G = (\Sigma, N, R, S)$:

- \bullet Σ терминальный алфавит алфавит определяемого языка.
- \bullet N нетерминальный алфавит 9 алфавит промежуточных символов.
- Конечное множество правил R вида $\alpha \to \beta, \alpha \in \{\Sigma \cup N\}^*, \beta \in \{\Sigma \cup N\}^* \cup \{\varepsilon\}$ каждое из которых описывает возможную структуру строк β со свойством α .
- \bullet Начальный символ $S \in N$.

Грамматика при этом является системой переписывания строк, и системой порождения слов языка, где каждое слово порождается за конечное число шагов. Шаг порождения $w'\alpha w'' \to w'\beta w''$ состоит в замене α на подцепочку β в соответствии с правилом порождения $\alpha \to \beta$. Иначе говоря, если имеется некоторая цепочка и некоторая ее подцепочка является левой частью какого-то правила грамматики, то мы имеем право заменить эту левую часть правила на правую. Конечная последовательность шагов

⁸Например, суффиксный бор в случае с алгоритмом Ахо-Корасик (1975)

 $^{^9{}m B}$ лингвистике нетерминалы называются синтаксическими категориями

порождений называется порождением. Нуль или более порождений будет обозначать знаком \to^* . Обозначение $\alpha \to^* \beta$ говорит о том, что цепочка β получена из цепочки α конечным числом подстановок на основе правил порождения. В этом обозначении может быть так, что подстановка не была применена ни разу, в этом случае цепочка alpha = beta.

Язык, задаваемый (порождаемый) грамматикой G – это множество слов, составленных из терминальных символов и порожденных из начального символа грамматики $L = \{w | S \to^* w\}$.

Понятие регулярной грамматики уже вводилось в разделе 3. Ниже вводится понятие контекстно-свободной грамматики. Эти 2 класса грамматик являются наиболее исследованными типами грамматик иерархии Хомского (типами 3 и 2 соответственно), о которой мы будем говорить позже.

5.2 КС-грамматики

Опр. 5.2 Контекстно-свободная грамматика – кортеж $G = (\Sigma, N, R, S)$:

- \bullet Σ терминальный алфавит.
- N нетерминальный алфавит.
- Конечное множество правил R вида $N_i \to \alpha, N_i \in N, \alpha \in \{\Sigma \cup N\}^* \cup \{\varepsilon\}$
- \bullet Начальный символ $S \in N$.

То есть, исходя из общего определения 10 формальной грамматики (5.1), КС грамматика – такая грамматика, в которой каждое правило порождения позволяет явно установить свойство подстроки как промежуточный символ, либо вывести подстроку с заданным свойством только из промежуточного символа, вне зависимости от того, что стоит слева или справа в строке в процессе переписывания. Далее будем называть промежуточные символы нетерминальными, и, чтобы не было путаницы, потребуем $\Sigma \cap N = \emptyset$.

Опр. 5.3 Грамматика называется однозначной, если для любого порождённого по ней слова последовательность порождения – единственна.

$$formula$$
 (1)

6 Приложение

6.1 Необходимые определения из близких областей

6.1.1 Графы

В данном курсе мы будем рассматривать только конечные ориентированные помеченные графы, подразумевая под «графами» именно такие графы,

¹⁰и значения

если не указано противное.

Опр. 6.1 Граф G = (V, E, L), где V — конечное множество вершин, E — конечное множество рёбер, L

Опр. 6.2 Отношением достижимости на графе в смысле нашего определения называется двухместное,

Опр. 6.3 Транзитивным замыканием графа называется транзитивное замыкание отношения достижимости по всему графу.

6.1.2 Матрицы

Список литературы

- [1] http://neerc.ifmo.ru/wiki/index.php?
 title=Минимизация_ДКА,_алгоритм_за_0(n%5E2)_с_построением_пар_различимых_состояний
- [2] http://neerc.ifmo.ru/wiki/index.php? title=Минимизация_ДКА,_алгоритм_Хопкрофта_(сложность_0(n_log_n))
- [3] http://neerc.ifmo.ru/wiki/index.php?title=Алгоритм_Бржозовского
- [4] https://habr.com/ru/post/171667, 2013 (перевод, оригинал тоже гуглится).