ENPM662: Final Project

PaintBot

Ву

Jai Sharma & Mothish Raj

Table of Contents

- Project Topic
- Motivation
- Proposed Solution
- Process
- DH Table
- Forward Kinematics and Inverse Kinematics
- Simulation

Paintbot

Omnidirectional Painting Robot

Motivation

- Several construction tasks can be automated
- Intelligent solutions can mitigate construction-related injuries and fatalities.
- The traditional hand painting approach to painting new walls
 - Slow
 - Inconsistent
 - Inefficient
 - Hazardous.

Proposed Solution

- Three components:

- Manipulator
- Chassis
- End-effector

- Key Design Features

- Kuka kr16 Manipulator- good reach
- Omnidirectional more mobility in small spaces
- Paint spray nozzle
- Spacious Chassis to accommodate electronics, paint and the manipulator.

Chassis FootPrint = 1m x 1m

DOF: 2

Height:0.5 m

Reach: 1.611 m Payload: 16kg

DOF: 6

Weight: 235kg

Footprint: 0.5m x 0.5m

The Process

Dynamics

DH Table Forward Kinematics Inverse Kinematics

Simulation

Solidworks URDF Gazebo/RViz TeleOp

DH Parameters

Joint #	≪i	d;	ai	9;
1	-11/2	di	a	2,
2	0	0	az	92
3	-11/2	0	-a ₃	93 - 90
4	11/2	d4	0	24
5	-1/2	0	0	9,5
6	0	de	0	26
7	0	de	0	27

$$d_1 = 675 \text{ mm}$$
 $a_1 = 260 \text{ mm}$ $d_4 = 670 \text{ mm}$ $a_2 = 680 \text{ mm}$ $d_6 = 115 \text{ mm}$ $a_3 = -35 \text{ mm}$

Forward/Inverse Kinematics

Goal:

To have the end-effector move in a linear motion along a wall, replicating the task of painting a wall.

Application Used:

- Google Colab
- Python

Solidworks/URDF

Gazebo & Rviz

Thank You