Problem C. Tautology

Time limit 1000 ms **Mem limit** 1048576 kB

OS Linux

WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:

- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.

The meaning of a WFF is defined as follows:

- p, q, r, s, and t are logical variables that may take on the value o (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.

Definitions of K, A, N, C, and E							
w	x	Kwx	Awx	Nw	Cwx	Ewx	
1	1	1	1	0	1	1	
1	0	0	1	0	0	0	
0	1	0	1	1	1	0	
0	0	0	0	1	1	1	

A *tautology* is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value of for p=0, q=1.

You must determine whether or not a WFF is a tautology.

Input

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing o follows the last case.

Output

For each test case, output a line containing "tautology" or "not" as appropriate.

Sample 1

Input	Output
ApNp ApNq 0	tautology not