

SIDE-CHANNEL ATTACKS 4

- Real World Examples and Practicality

TTM4205 - Lecture 10

From theory to practice

REAL-WORLD EXAMPLES

What we have seen

- Timing / Power Analysis
 - Constant-time implementations
 - Masking
- Will now look at famous, real-world examples and countermeasures
 - Some attacks on TLS
 - Spectre and Meltdown

Side-Channel Attacks on TLS

- CBC-padding oracles:
 - · Lucky Thirteen.
 - · POODLE.

Heartbleed.

CBC Padding Oracle

CBC mode decryption:

PKCS#7

 xx
 xx
 xx
 xx
 xx
 xx
 xx
 xx
 xx
 01

 xx
 xx
 xx
 xx
 xx
 xx
 xx
 02
 02

 xx
 xx
 xx
 xx
 xx
 03
 03
 03

 xx
 xx
 xx
 xx
 04
 04
 04
 04

Cipher Block Chaining (CBC) mode decryption

Oracle: returns whether padding was correct

Question: How to h4ck??

... etc

Lucky Thirteen (2013)

- CBC padding oracle attack published in 2002.
 - TLS mitigation: Don't return whether or not padding was correct.
- Timing became the new oracle.
 - Hard to mitigate Lucky thirteen exploits this.
- TLS 1.3 mitigation Don't allow CBC

Serge Vaudenay - Security Flaws Induced by CBC Padding

POODLE (2014)

- POODLE
 - Padding Oracle on Downgraded Legacy Encryption
- Was already mentioned in earlier lecture
 - Downgrades, then uses CBC padding oracle

SEE ALSO

- Bleichenbachers million message attack, exploiting padding oracles in RSA (1998)
 - (2018) ROBOT Return Of Bleichenbacher's Oracle Threat

https://robotattack.org/

Heartbleed (2012)

- Vulnerability affecting OpenSSL.
- Vulnerability in the implementation of the "Heartbeat" protocol.
- Software bug that enabled buffer over-read
 - Reading from memory you should not be allowed.
- Patch: Make sure the attacker does not request more data than what makes sense.

Spectre and Meltdown (2018)

- Powerful, generic attack, affecting virtually all processors.
- Mitigation: Swap out CPU unit.
- "Band aids" slowed down the processing speeds by 5-30% (!)
 - Somewhat mitigates the effect, but the only "proper solution" was get a new processor.

https://www.cloudflare.com/learning/security/threats/meltdown-spectre/

Speculative Execution

- Like Heartbleed, can access and read data you are not meant too.
 - Unlike Heartbleed, not caused by a software bug.
- Relies on speculative execution.
- Earlier in the course: Compiler-optimisations may introduce side-channels
 - Speculative execution is the extreme version of this processors will do operations before it is known whether it is needed.

Post-Quantum Crypto

- New Crypto => New side-channel attacks.
- Lots of work required
 - Finding theoretical attacks.
 - New implementations in e.g. TLS -> New attacks
- Worth thinking about as a project
 - Smaller project in this course?
 - Bigger master project?

How practical are...

FAULT INJECTIONS?

Overview

We'll look at common fault injection methods, and some countermeasures

- Good resources (which most in this section is taken from):
 - Fault injection attacks on cryptographic devices
 - How Practical Are Fault Injection Attacks, Really?

Clock Glitching

- Part of lab exercises.
 - Skips instructions, based on irregular clocking.
- Non-invasive
- Need control over chip's clock.
- \$\$: <2000 NOK

Voltage Glitching

- Glitches by sudden burst or drop in voltage.
- Non-invasive
- Inaccurate
- Need control over chip's power supply
- \$\$: Dirt cheap <500 NOK

FIGURE 1. An example of a voltage glitch on a smart card.

Electro-Magnetic Pulse

- Cause EM disturbance near device.
 - Focus more on bit flips/ resets and similar
- Can be done from a "distance".
- Less reliable/accurate than lasers
- \$\$: 30.000 300.000 NOK

Shoot Lasers at it

- Shoot laser at the chip.
 - pew pew
- Can target specific set of bits to flip.
 - Accuracy limit is he wavelength of the light being shot
- · Semi-invasive.
- \$\$: ~500.000 NOK

Shoot Lasers ions at it

- Shoot ionised particles instead of photons.
- Probably the most accurate, powerful technique.
- Accuracy only limited by size of ion (i.e. an atom).
- \$\$: >10.000.000 NOK

The Rowhammer attack

- DRAMs are so small that rapid changes in memory cells might affect neighbouring cells.
 - 2015: Actual exploit by Project Zero.
- Can be done remotely
- Different "attack vector" than other techniques
- \$\$: Free

Any ideas?

- Any ideas?
- Shielding:
 - Make the chip physically inaccessible.

- Any ideas?
- Shielding:
 - Make the chip physically inaccessible.
 - Overkill for most devices, but typical countermeasure for equipment used in e.g. military

- Any ideas?
- Sensors:
 - Have sensors that notice tampering.
 - Glitching, Lasers, EMP etc...

- Any ideas?
- Error detection.
 - Implement error detection in cryptographic operations.
 - E.g. compute things twice.
 - Based on assumption that injecting exactly the same fault twice is hard
 - Not necessarily true for lasers / ion beams.
 - Can also use error detecting codes.

