TÉCNICAS DE CONTROLE DE CONCORRÊNCIA - parte 1 -

Profa. Dra. Maria Madalena Dias

TÉCNICAS DE CONTROLE DE CONCORRÊNCIA - parte 1 -

- Introdução
- Protocolos de Controle de Concorrência
 - Protocolos Pessimistas
- Protocolos Otimistas
- Protocolos de Controle de Concorrência Baseados em Bloqueios
 - Bloqueio Binária
 - Bloqueio Exclusivo e Compartilhado

2

Introdução

- Técnicas utilizadas para garantir a isolação de transações concorrentes
- Garantem a serialização dos escalonamentos através da utilização de protocolos
- Protocolos de controle de concorrência:
 - oferecem várias regras que, se seguidas pelas transações, garantem a serialização de todos os escalonamentos nos quais as transações participam

Protocolos de Controle de Concorrência

Pessimistas

- baseados na premissa que conflitos entre transações ocorrem com frequência
- · (alta probabilidade)

Otimistas

baseados na premissa que conflitos entre transações são raros (baixa probabilidade)

4

Protocolos de Controle de Concorrência

Pessimistas

 testam as transações antes da execução de suas operações

 two phase locking timestamp ordering Otimistas

testam as transações após a execução de suas operações

*

técnicas de validação

Protocolos Pessimistas

- Two Phase Locking (2PL)
 - solução padrão para o problema de controle de concorrência em SGBDs convencionais
 - protocolo baseado em bloqueios
- Timestamp Ordering
 - protocolo baseado no timestamp das transações
 - timestamp
 - identificador único associado a cada transação
 - valores de timestamp são associados às transações respeitando-se a ordem na qual estas são submetidas ao sistema

Protocolos Otimistas

- Técnicas de Validação
 - também chamadas de técnicas de certificação ou otimistas
 - u transação em uma técnica de validação
 - deve possuir duas ou três fases
 - fase de leitura
 - □ fase de validação
 - fase de escrita (opcional)
 - fase de leitura
 - a transação pode ler valores dos itens de dados do BD; no entanto, atualizações são aplicadas somente a cópias locais dos itens de dados mantidos no workspace da transação

Técnicas de Validação

- Fase de validação
 - realiza uma checagem para garantir que a serialização não será violada se as atualizações da transação forem aplicadas ao BD
- Fase de escrita
 - se a fase de validação obtiver sucesso,
 - então as atualizações são aplicadas ao BD
 - senão as atualizações são descartadas e as transações
 - reinicializadas
 - problema
 - caso haja muito conflito entre as transações, então muitas atualizações serão descartadas e muitas transações serão reinicializadas

8

Protocolos de Controle de Concorrência Baseados em Bloqueios

- Bloqueio (lock)
 - variável associada a um dado do BD
 - indica o status do item de dado com relação às possíveis operações que podem ser nele aplicadas
 - geralmente existe uma trava associada a cada item de dado do
 - especifica a sincronização de acesso aos itens de dado do BD por transações concorrentes

9

Bloqueio Binário

- Pode assumir dois status ou valores
 - □ locked: 1:bloqueado
 - unlocked: 0 : desbloquado
- Associação ao item de dado
 - < item_dado, bloqueio > + fila de espera
- se bloqueio (item_dado) = 1
- então item_dado não pode ser acessado
- se bloqueio (item_dado) = 0
- então item_dado pode ser acessado

10

Bloqueio Binário

- Operações adicionais
 - lock_item (item_dado)
 - unclock_item (item_dado)
- Operações lock_item e unlock_item
 - são unidades <u>indivisíveis</u>
 - utilizam conceitos semelhantes ao de região crítica em Sistemas Operacionais
- SGBD
 - oferece um subsistema de gerenciamento de bloqueios para manter e controlar o acesso aos bloqueios

11

Bloqueio Binário

- Força exclusão mútua
 - apenas uma transação por vez pode possuir o bloqueio de um determinado item de dado
 - duas transações não podem acessar o mesmo item de dado concorrentemente
- Conceito muito restritivo

Regras Seguidas pelas Transações

- uma transação T deve realizar a operação lock_item(x) antes de qualquer operação read_item(x) ou write_item(x) de T
- uma transação T deve realizar a operação unlock_item(x) depois de todas as operações read_item(x) ou write_item(x) de T

13

Bloqueio Exclusivo e Compartilhado

- Bloqueio de modo múltiplo
 - read_lock(x), write_lock(x), unlock(x)
- Bloqueio compartilhado read_lock(x)
 - várias transações podem acessar o mesmo item de dado simultaneamente
 - finalidade: leitura
- Bloqueio exclusivo write_lock(x)
 - a apenas uma transação pode acessar um item de dado em um determinado tempo
 - □ finalidade: escrita

14

Bloqueio Exclusivo e Compartilhado

- Pode assumir três status ou valores
 - read_locked : bloqueado para leitura
 - write locked : bloqueado para escrita
 - unlocked : desbloqueado
- Associação ao item de dado
 - < item_dado, bloqueio, nro_leitores >
 - + fila de espera para transações que não podem acessar o item de dado requisitado

15

Bloqueio Exclusivo e Compartilhado

- se bloqueio (item_dado) = read_locked
 então item_dado pode ser acessado desde que a operação do BD que o requisitou seja de leitura
- se bloqueio (item_dado) = write_locked então item dado não pode ser acessado
- se bloqueio (item_dado) = unlocked então item_dado pode ser acessado

16

Bloqueio Exclusivo e Compartilhado

- Operações adicionais
 - read_lock (item_dado)
 - write_lock (item_dado)
 - unlock (item_dado)
- Operações read_lock, write_lock e unlock
 - são unidades indivisíveis
 - utilizam conceitos semelhantes ao de região crítica em Sistemas Operacionais

Regras Seguidas pelas Transações

- uma transação T deve realizar a operação read_lock(x) ou write_lock(x) antes de qualquer operação read_item(x) de T
- uma transação T deve realizar a operação write_lock(x) antes de qualquer operação write_item(x) de T
- uma transação T deve realizar a operação unlock(x) depois de todas as operações read_item(x) ou write_item(x) de T

Regras Seguidas pelas Transações

- Uma transação T não realizará uma operação read_lock(x) se ela já possui um bloqueio compartilhado ou exclusivo de x
- uma transação T não realizará uma operação write_lock(x)
 se ela já possui um bloqueio compartilhado ou exclusivo de x
- uma transação T não realizará uma operação unlock(x) a menos que ela possua um bloqueio compartilhado ou exclusivo de x

19

Problema

- Bloqueios binários ou de modo múltiplo
 - não garantem a serialização dos escalonamentos nos quais as transações participam

20

Exemplo

Transação 1 read_lock (y) read_item (y) unlock (y) write_lock (x) x := x + y write_item (x) unlock (x) ■ Transação 2
read_lock (x)
read_item (x)
unlock (x)
write_lock (y)
y := x + y
write_item (y)
unlock (y)

21

1	T	
Execução concorrente não serializável	Transação 1 read_lock (y) read_item (y) unlock (y)	read_lock (x) read_item (x) unlock (x) write_lock (y) read_item (y) y := x + y write_item (y) unlock (y)
	write_lock (x) read_item (x) x := x + y write_item (x) unlock (x)	

Conversão de Bloqueios

- As regras apresentadas na página 18 podem ser relaxadas, como a seguir:
- upgrade (ampliação): conversão de bloqueio compartilhado para bloqueio exclusivo
 - □ read_lock(item_dado) → write_lock (item_dado)
- downgrade (redução): conversão do bloqueio exclusivo para bloqueio compartilhado
 - □ write_lock(item_dado) → read_lock(item_dado)