Introduzione

Fare riferimento al cap 1-2 di <u>APPUNTI-SN.pdf</u>

Probabilità di un evento

La probabilità di un evento viene indicata da un numero reale e spesso si usa p e per convenzione è sempre un numero tra 0 e 1. Si parla di Probabilità classica (Uniforme) quando i casi possibili sono un numero finito e la probabilità di un evento è valutata come il numero dei casi favorevoli sul numero dei casi possibili.

La probabilità cambia con l'informazione che abbiamo a disposizione.

Eventi come insiemi

Ogni evento viene descritto da un sottoinsieme di un insieme Ω , ovvero da un elemento dell'insieme delle parti di esso, che denotiamo come $\mathcal{P}(\Omega)$.

L'insieme $\Omega = \{\omega 1, \dots, \omega N\}$ rappresenta i **casi possibili** nell'esperimento che ci interessa e viene definito come <mark>spazio campione</mark>. Un **evento** viene descritto da un sottoinsieme di omega, ossia da un elemento dell'insieme delle parti esso $P(\Omega)$.

Dati due eventi E1, E2 rappresentati da due sottoinsiemi A1, A2 di Ω :

- L'evento (E1 ''oppure'' E2) si verifica se e solo se si verifica un evento elementare ω i che appartiene ad almeno uno dei due insiemi A1 o A2, ossia se appartiene all'insieme $A1 \cup A2$
- L'evento (E1 e E2) si verifica se e solo se si verifica un evento elementare ω i che appartiene sia ad A1 che ad A2, ossia ad $A1 \cap A2$.
- L'evento (''negazione" di E1) si verifica se e solo se si verifica un evento elementare ωi che non appartiene ad A1, ossia che appartiene ad A1, il complementare di A1.

 $A \subseteq B$ significa che ogni evento elementare che rende verificato A rende verificato anche B e dunque interpretiamo la relazione $A \subseteq B$ come "A implica B".

 Ω è un evento vero qualunque evento elementare si verifichi, in quanto esso contiene tutti gli eventi elementari e dunque interpretiamo Ω come **l'evento certo**. \emptyset , l'insieme vuoto, non contenendo alcuno degli eventi elementari possibili, è un evento che non è mai verificato; dunque interpretiamo \emptyset come **l'evento impossibile**.

 $A \cup B = \Omega$ significa che l'evento costituito dal verificarsi di almeno uno dei due eventi A o B coincide con l'evento certo Ω ; dunque interpretiamo tale condizione come A e B sono *esaustivi* (è certo che se ne verifichi almeno uno dei due).

 $A \cap B = \emptyset$ significa che l'evento costituito dal verificarsi di entrambi gli eventi A e B coincide con l'evento impossibile \emptyset ; dunque interpretiamo la condizione $A \cap B = \emptyset$ come A e B sono incompatibili (è certo che se ne verifichi al più uno dei due, ovvero che se ne verifichi al massimo uno dei due).

Consideriamo una collezione di sottoinsiemi dello spazio Ω $\mathcal{H} = \{H1, \dots, H_m\}$, con $H_{\ell} \in \mathcal{P}(\Omega)$, $\ell = 1, \dots, m$. Tale collezione costituisce una **partizione** di Ω se e solo se $H_{\ell 1} \cap H_{\ell 2} = \emptyset$ \$ per $\ell 1 \neq \ell 2$ ossia:

$$igcup_{\ell=1}^m H_\ell = \Omega$$

 H_1, \ldots, H_m sono degli eventi e sono a due a due incompatibili (non se ne possono verificare due contemporaneamente), ma sono esaustivi (sicuramente se ne verifica uno). Questo significa che è certo che si verifichi uno ed uno soltanto tra H_1, \ldots, H_m .

Gli insiemi/eventi H_l sono detti **elementi della partizione**.

Proprietà basilari delle operazioni booleane su insiemi

• Doppia negazione:

$$ar{ar{A}}=A$$

• Proprietà distributiva dell'unione rispetto all'intersezione:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$$

Estensione:

$$\left(igcup_{i\in I}A_i
ight)\cap C=igcup_{i\in I}(A_i\cap C)$$

Proprietà distributiva dell'intersezione rispetto all'unione:

$$(A\cap B)\cup C=(A\cup C)\cap (B\cup C).$$

Estensione:

$$\left(igcup_{i\in I} A_i
ight) \cup C = igcup_{i\in I} (A_i \cup C)$$

• Legge di De Morgan:

$$\overline{A\cap B}=ar{A}\cup ar{B} \quad ext{ equivalente ad } \quad A\cap B=\overline{(ar{A}\cup ar{B})}$$

Estensione:

$$\overline{igcap_{i\in I} A_i} = igcup_{i\in I} ar{A}_i \quad ext{oppure} \quad igcap_{i\in I} A_i = \overline{igcup_{i\in I} ar{A}_i}$$

Quindi, segare il verificarsi di A e B equivale a richiedere il verificarsi una tra la negazione di A e la negazione di B.

Spazi di probabilità finiti

Uno spazio finito di probabilità è una terna $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ dove:

- Ω è un insieme finito
- $\mathcal{P}(\Omega)$ è la famiglia delle parti di Ω
- Pè una misura di probabilità, ossia una probabilità su $(\Omega, \mathcal{P}(\Omega))$, Ossia è una funzione che soddisfa i seguenti assiomi:
 - $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ $\mathbb{P}(\Omega) = 1$ (condizione di normalizzazione)
 - Per $E_1 \cap E_2 = \emptyset$ allora $\mathbb{P}(E1 \cup E2) = \mathbb{P}(E1) + \mathbb{P}(E2)$ (proprietà di additività finita). Possiamo dire che se E_1 ed E_2 sono eventi incompatibili (non si possono verificare insieme), allora $\mathbb{P}(E_1 \cup E_2) = \mathbb{P}(E_1) + \mathbb{P}(E_2)$ (si verifica almeno uno tra E_1 ed E_2).

L'evento impossibile ha proprietà nulla

Siano $E_1=E_2$ allora $E_1\cap E_2=\emptyset$ e quindi, per la proprietà di additività finita:

$$egin{aligned} \mathbb{P}(E_1 \cup E_2) &= \mathbb{P}(E_1) + \mathbb{P}(E_2) \ &\updownarrow \ \mathbb{P}(\emptyset \cup \emptyset) &= \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) \ &\updownarrow \ \mathbb{P}(\emptyset) &= 2\mathbb{P}(\emptyset) \ &\updownarrow \ \mathbb{P}(\emptyset) &= 0 \end{aligned}$$

Proprietà di additività finita

La proprietà iii) di additività si generalizza alla seguente: Siano $E_1, \ldots, E_n \in P(\Omega)$ disgiunti a due a due, ovvero tali che:

$$E_i \cap E_j = \emptyset \quad ext{per} \quad i, j \in \{1, 2, \cdots, n\}, \quad ext{con} \quad \not\! i = j;$$

Allora si ha:

$$\mathbb{P}\left(igcup_{i=1}^n E_i
ight) = \sum_{i=1}^n \mathbb{P}(E_i)$$

La probabilità dell'unione dei sottoinsiemi di Ω è uguale alla sommatoria delle probabilità dei sottoinsiemi di omega.

La dimostrazione si ottiene facilmente per induzione su n: caso n=3

$$E1 \cap E2 = \emptyset, \, E1 \cap E3 = \emptyset ext{ e } E2 \cap E3 = \emptyset$$
 $(E1 \cup E2) \cap E3 = (E1 \cap E3) \cup (E3 \cap E3) = \emptyset$ $\mathbb{P}(E1 \cup E2 \cup E3) = \mathbb{P}(E1 \cup E2) \cup E3 = \mathbb{P}(E1 \cup E2) + \mathbb{P}(E3) = \mathbb{P}(E1) + \mathbb{P}(E2) + \mathbb{P}(E3)$

Prime proprietà della probabilità

Proprietà di Base

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \bar{B})$$

e

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(ar{A} \cap B)$$

Proprietà del Complementare

$$\mathbb{P}(ar{E}) = 1 - \mathbb{P}(E)$$

Verifica:basta prendere $A=\Omega$ e
 B=Enella proprietà di base, per cui

$$1=\mathbb{P}(\Omega)=\mathbb{P}(\Omega\cap E)+\mathbb{P}(\Omega\cap ar{E})=\mathbb{P}(E)+\mathbb{P}(ar{E})$$

Facendo un esempio pratico, basta pensare ad 1 come il 100%. Se $\mathbb{P}(E) = 30\%$ allora per ricavare il suo complementare basta fare 100% - 30% ossia: $1 - \mathbb{P}(E)$ ottenendo il 70%.

Proprietà di Monotonia

Se $A \subseteq B$ allora risulta $\mathbb{P}(A) \leq \mathbb{P}(B)$ Verifica: si osserva che se $A \subseteq B$, allora $A \cap B = A$ e quindi, dalla precedente proprietà

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(ar{A} \cap B) \geq \mathbb{P}(A)$$

Dove:

• $\mathbb{P}(A \cap B) = \mathbb{P}(A)$

• $\mathbb{P}(ar{A}\cap B)\geq 0$

Probabilità di B\A

Ricordando che $B \setminus A = B \cap \bar{A}$ sempre dalla proprietà di base si ha

$$\mathbb{P}(B\setminus A)=\mathbb{P}(B\cap ar{A})=\mathbb{P}(B)-\mathbb{P}(A\cap B)$$

Se inoltre $A \subset B$ allora $A \cap B = A$, e quindi:

$$\mathbb{P}(B\setminus A) = \mathbb{P}(B) - \mathbb{P}(A\cap B) = \mathbb{P}(B) - \mathbb{P}(A)$$

Formula di inclusione ed esclusione per due eventi

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

 $\pmb{Verifica}$ da una parte: $A \cup B = (A \cap B) \cup (A \cap B) \cup (B \cap A)$ e quindi $\mathbb{P}(A \cup B) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \bar{B}) + \mathbb{P}(B \cap \bar{A})$ Dall'altra parte, per la proprietà di base:

$$\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) =$$
 $\mathbb{P}(A \cap B) + \mathbb{P}(A \cap \bar{B}) + \mathbb{P}(A \cap B) + \mathbb{P}(\bar{A} \cap B) - \mathbb{P}(A \cap B)$

Proprietà delle partizioni (dell'evento certo)

Sia $\mathcal{H} = \{H1, \dots, Hn\}$ una partizione, ossia:

$$igcup_{i=1}^n H_i = \Omega \qquad H_i \cap H_j = \emptyset \quad ext{per} \quad i
eq j$$

Allora si ha:

$$\sum_{i=1}^n \mathbb{P}(H_i=1)$$

Verifica:

$$1=\mathbb{P}\left(igcup_{i=1}^n H_i
ight)=\sum_{i=1}^n \mathbb{P}(H_i)$$

Dove la prima uguaglianza vale per la proprietà di normalizzazione, e l'ultima per l'additività

finita in quanto gli eventi H_i sono incompatibili a due a due. Un altro modo per definire la proprietà delle partizioni si ha avendo $\mathcal{H} = \{H1, \dots, Hn\}$ una partizione, ossia:

$$igcup_{i=1}^n H_i = \Omega \quad H_i \cap H_j = \emptyset \quad ext{per} \quad i
eq j$$

allora per ogni evento E si ha

$$\mathbb{P}(E) = \sum_{i=1}^n \mathbb{P}(H_i \cap E)$$

Verifica:

$$E=E\cap\Omega=E\capigcup_{i=1}^n H_i=igcup_{i=1}^n (E\cap H_i)$$

per la proprietà distributiva dell'unione rispetto all'intersezione:

$$\mathbb{P}(E) = \mathbb{P}\left(igcup_{i=1}^n (E\cap H_i)
ight) = \sum_{i=1}^n \mathbb{P}(E\cap H_i)$$

per additività finita: gli eventi $E \cap H_i$ sono incompatibili a due a due, in quanto sottoinsiemi di eventi incompatibili a due a due.

Una partizione particolare

In particolare, si può considerare la partizione

$$\mathcal{H} = \{H_i = \{\omega_i\}, \quad i=1,2,3,\ldots,N\}$$

e quindi, posto $p(\omega_i) := \mathbb{P}(\omega_i), \quad i = 1, \dots, N$ risulta

$$p(\omega_i) \geq 0 \quad \sum_{i=1}^N p(\omega_i) = 1$$

Una probabilità $E \to P(E)$ è una funzione su $P(\Omega)$, l'insieme delle parti di Ω . Se $\Omega = \omega 1, \ldots, \omega N$, allora la cardinalità di Ω e di $P(\Omega)$ valgono:

$$|\Omega| = N \quad |\mathcal{P}(\Omega)| = 2^N$$

Calcolo di $\mathbb{P}(E)$

$$\mathbb{P}(E) = \sum_{i:\omega \in E} p(\omega_i) = \sum_{\omega \in E} p(\omega)$$

in quanto, se
$$E = \{\omega_1, \omega_2, \dots, \omega_{i_k}\} = \{\omega_{i_1}\} \cup \{\omega_{i_2}\} \cup \dots \cup \{\omega_{i_k}\}$$
 e quindi
$$\mathbb{P}(E) = \mathbb{P}(\{\omega_{i_1}\}) + \mathbb{P}(\{\omega_{i_2}\}) + \dots + \mathbb{P}(\{\omega_{i_k}\}) = p(\omega_{i_1}) + p(\omega_{i_2}) + \dots + p(\omega_{i_k})$$

In parole semplici, la probabilità di un evento è la somma della probabilità di tutti i suoi eventi elementari.

Quindi, possiamo ricavarci la probabilità dell'evento partendo dalla probabilità dell'evento elementare. Abbiamo appena visto che, data \mathbb{P} , si ricava la funzione $p:\Omega\to [0,1]$, definita come $p(\omega)=P(\omega)$, dalla quale a sua volta si può di nuovo ricavare $E\to P(E)$.

Può essere conveniente fare il percorso inverso, ossia, partire da una funzione $\omega \in \Omega \to p(\omega)$ con le proprietà

$$p(\omega_i) \geq 0, i = 1, 2, \ldots, N \quad \sum_{i=1}^N p(\omega_i) = 1$$

e definire una funzione \mathbb{P} su $\mathcal{P}(\Omega)$).

$$E o \mathbb{P}(E) = \sum_{i:\omega \in E} p(\omega_i) = \sum_{\omega \in E} p(\omega)$$

E facile convincersi che grazie alle proprietà

$$p(\omega_i) \geq 0, i = 1, 2, \ldots, N \quad \sum_{i=1}^N p(\omega_i) = 1$$

la funzione

$$E o \mathbb{P}(E):=\sum_{\omega\in E}p(\omega)$$

è una *Probabilità* che soddisfa i tre assiomi. Le prime due proprietà sono banali, mentre la terza(additività) deriva da:

se $E = \{\omega_{j_1}, \omega_{j_2}, \dots, \omega_{j_k}\} \subset \Omega$ ed $F = \{\omega_{j_1}, \omega_{j_2}, \dots, \omega_{j_k}\}$ e $E \cap F = \emptyset$ allora possiamo dire che: $P(E \cup F) = \{p(\omega_{j_1}) + p(\omega_{j_2}) + \dots + p(\omega_{j_m})\} + \{p(\omega_{k_1}) + p(\omega_{k_2}) + \dots + p(\omega_{k_r})\}$ Che è pari a:

$$\mathbb{P}(E \cup F) = \sum_{h=1}^m = p(\omega_{j_h}) + \sum_{\ell=1}^r = p(\omega_{k_\ell}) = \mathbb{P}(E) + \mathbb{P}(F)$$

Esempio Pratico

Sia $\Omega = a, b, c, d$ (possiamo pensare $\omega 1 = a, \omega 2 = b, \omega 3 = c, \omega 4 = d$) e siano p(a) = 1/8, p(b) = 1/4, p(c) = 1/2p(d) = 1/8. Chiaramente $p(a), p(b), p(c), p(d) \ge 0$ e p(a) + p(b) + p(c) + p(d) = 1.

Allora la probabilità definita sull'insieme delle parti di $\Omega=a,b,c,d$ tramite la formula

$$\mathbb{P}(E) = \sum_{\omega \in E} = p(\omega)$$

è data dalla funzione che è specificata nella seguente tabella.

Come definire una funzione $p: \Omega \to [0, 1]$

Sempre nel caso in cui Ω è finito, la funzione può essere definita a meno di un **fattore di proporzionalità**, ovvero dati N numeri non negativi (e non tutti nulli) g(i), i = 1, 2, ..., N, si pone $p(\omega_i)$ proporzionale a g(i):

$$p(\omega_i) \propto g(i) \Leftrightarrow \exists K \quad ext{tale che} \quad orall i = 1, 2, \ldots, N \quad ext{si ha} \quad p(\omega_i) = Kg(i)$$

In tale caso

$$\sum_i = 1^N p(w_i) = 1 \iff \sum_{j=1}^N Kg(i) = 1 \iff K = rac{1}{\sum_{i=1}^N g(i)}$$

Esempio

Sia $\Omega=a,b,c,d$, ovvero $\omega 1=a,\omega 2=b,\omega 3=c,\omega 4=d$, e sia g(1)=1,g(2)=2,g(3)=4,eg(4)=1, allora:

$$K = rac{1}{\sum_{i=1}^{N} g(i)} = K = rac{1}{1+2+4+1} = rac{1}{8}$$

e quindi p(a) = 1/8, p(b) = 1/4, p(c) = 1/2, p(d) = 1/8, come nel precedente esempio.

Spazi di probabilità numerabili

Uno spazio numerabile di probabilità è una terna $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ dove:

- Ω è un insieme numerabile
- $\mathcal{P}(\Omega)$ è la famiglia delle parti di Ω
- \mathbb{P} è una probabilità su $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, ossia:
 - è una funzione che soddisfa i seguenti assiomi
 - $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ $\mathbb{P}(\Omega) = 1$ (condizione di normalizzazione)
 - Se $E_n, n \ge 1$, sono eventi incompatibili a due a due, ossia $Ei \cap Ej = \emptyset$ per ogni $i \ne j$ allora:

$$\mathbb{P} = \left(igcup_{n \geq 1} E_n
ight) = \sum_{n \geq 1} \mathbb{P}(E_n)$$

Verifica: : la verifica è simile a quella del caso finito. Sia $c := \mathbb{P}(\emptyset)$ e siano $E_n = \emptyset$, per ogni $n \geq 1$. Gli eventi E_n sono disgiunti a due a due e quindi

$$\mathbb{P} = \underbrace{\left(igcup_{n \geq 1} E_n
ight)}_{=\emptyset} = \sum_{n \geq 1} \mathbb{P}(\underbrace{E_n}_{=\emptyset})$$
 \updownarrow $\mathbb{P}(\emptyset) = \sum_{n \geq 1} \mathbb{P}(\emptyset)$

è una serie a termini costanti (in questo caso tutti uguali a $\mathbb{P}(\emptyset)$) è convergente se e solo se la costante è uguale a zero.

L'additività numerabile implica l'additività finita

in simboli: se E_1, \ldots, E_n sono eventi incompatibili al due a due, ossia:

$$E_i\cap E_j=\emptyset,\quad ext{per ogni}\quad i
eq j,\quad i,j\in 1,2,\ldots,n$$
 allora $\mathbb{P}\left(igcup_{i=1}^n E_i
ight)=\sum_{i=1}^n \mathbb{P}(E_i)$

Verifica: Poniamo $E_j = \emptyset$ per j > n, in modo che $\bigcup_{j > n} E_j = \emptyset$ e quindi:

$$(igcup_{i=1} E_i) = (igcup_{i=1} E_i) \cup (igcup_{j>n} E_j) = igcup_{i\geq 1} E_i$$

da cui

$$egin{aligned} \mathbb{P}\left(igcup_{i=1}^n E_i
ight) &= \mathbb{P}\left(igcup_{i\geq 1} E_i
ight) \ &= \sum_{i\geq 1} \mathbb{P}(E_i) = \sum_{i\geq 1}^n \mathbb{P}(E_i) + \sum_{i\geq n} \mathbb{P}(E_i) = \sum_{i=1}^n \mathbb{P}(E_i) \end{aligned}$$

Dove nella seconda uguaglianza si usa l'additività numerabile, in quanto si tratta di una successione di eventi disgiunti a due a due:

- per ogni $icj, i, j \in 1, 2, \ldots, n$, si ha $Ei \cap Ej = \emptyset$, per ipotesi,
- per ogni $i \neq j, i, j > n$ si ha $Ei \cap Ej = \emptyset \cap \emptyset = \emptyset$,
- per ogni $i \neq j, i \in 1, 2, ..., n$ e j > n si ha $Ei \cap Ej = Ei \cap \emptyset = \emptyset$, (e lo stesso vale per $j \in 1, 2, ..., n$ e i > n)

Proprietà degli spazi numerabili

Grazie al fatto che l'additività numerabile implica l'additività finita, tutte le proprietà che abbiamo visto in precedenza continuano a valere anche negli spazi di probabilità numerabili.

Estensioni a partizioni numerabili

Sia $\mathcal{H}=\{Hn,\;n\geq 1\}$ una partizione numerabile (dell'evento certo), ossia $\bigcup_{i\geq 1}H_i=\Omega$, $H_i\cap H_j=\emptyset$ per $i\neq j$, allora per ogni evento E si ha

$$\mathbb{P}(E) = \sum_{i=1}^{\infty} \mathbb{P}(H_i \cap E)$$

Verifica:

$$egin{aligned} \mathbb{P}(E) &= \mathbb{P}(E \cap \Omega) \ &= \mathbb{P}\left(E \cap igcup_{i=1}^{\infty} H_i
ight) = \mathbb{P}\left(igcup_{i=1}^{\infty} (E \cap H_i)
ight) \ &= \sum_{i=1}^{\infty} \mathbb{P}(E \cap H_i) \end{aligned}$$

dove si usa la proprietà distributiva dell'unione rispetto all'intersezione e l'additività numerabile in quanto gli eventi $E \cap H_i$ sono incompatibili a due a due, in quanto sottoinsiemi di eventi incompatibili a due a due.

AVVERTENZA: Per poter usare gli spazi numerabili bisogna avere un minimo di familiarità con le serie e la convergenza di serie.

- In pratica basta avere familiarità con la serie esponenziale: $\sum_{k=0}^{\infty} \frac{x^k}{k!}$
- con la serie geometrica, i cui termini sono una progressione: $\sum_{k=0}^{\infty} k!$
- le serie delle sue derivate prime e seconde, ossia: $\sum_{k=0}^{\infty} kx^{k-1} \sum_{k=0}^{\infty} k(k-1)x^{k-2}$