import numpy as np import pandas as pd

import matplotlib.pyplot as plt

dataframe=pd.read_csv('marketing_data.csv',index_col=0)

	_	
- 4		
w	_	9
- 4	u	~

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	eenhome Dt_Customer		MntWi
ID									
1826	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	0	
1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	0	
10476	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	0	
1386	1967	Graduation	Together	\$32,474.00	1	1	5/11/14	0	
5371	1989	Graduation	Single	\$21,474.00	1	0	4/8/14	0	
10142	1976	PhD	Divorced	\$66,476.00	0	1	3/7/13	99	
5263	1977	2n Cycle	Married	\$31,056.00	1	0	1/22/13	99	
22	1976	Graduation	Divorced	\$46,310.00	1	0	12/3/12	99	
528	1978	Graduation	Married	\$65,819.00	0	0	11/29/12	99	
4070	1969	PhD	Married	\$94,871.00	0	2	9/1/12	99	

2240 rows × 27 columns

dataframe.head(5)

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWi
ID									
1826	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	0	
1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	0	
10476	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	0	
1386	1967	Graduation	Together	\$32,474.00	1	1	5/11/14	0	
5371	1989	Graduation	Single	\$21,474.00	1	0	4/8/14	0	

5 rows × 27 columns

dataframe.tail(5)

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWi
ID									
10142	1976	PhD	Divorced	\$66,476.00	0	1	3/7/13	99	
5263	1977	2n Cycle	Married	\$31,056.00	1	0	1/22/13	99	
22	1976	Graduation	Divorced	\$46,310.00	1	0	12/3/12	99	
528	1978	Graduation	Married	\$65,819.00	0	0	11/29/12	99	
4070	1969	PhD	Married	\$94,871.00	0	2	9/1/12	99	

5 rows × 27 columns

dataframe.shape

(2240, 27)

dataframe.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 2240 entries, 1826 to 4070
Data columns (total 27 columns):
Column Non-Null Count Dtype

0	Year_Birth	2240	non-null	int64
1	Education	2240	non-null	object
2	Marital_Status	2240	non-null	object
3	Income	2216	non-null	object
4	Kidhome	2240	non-null	int64
5	Teenhome	2240	non-null	int64
6	Dt_Customer	2240	non-null	object
7	Recency	2240	non-null	int64
8	MntWines	2240	non-null	int64
9	MntFruits	2240	non-null	int64
10	MntMeatProducts	2240	non-null	int64
11	MntFishProducts	2240	non-null	int64
12	MntSweetProducts	2240	non-null	int64
13	MntGoldProds	2240	non-null	int64
14	NumDealsPurchases	2240	non-null	int64
15	NumWebPurchases	2240	non-null	int64
16	NumCatalogPurchases	2240	non-null	int64
17	NumStorePurchases	2240	non-null	int64
18	NumWebVisitsMonth	2240	non-null	int64
19	AcceptedCmp3	2240	non-null	int64
20	AcceptedCmp4	2240	non-null	int64
21	AcceptedCmp5	2240	non-null	int64
22	AcceptedCmp1	2240	non-null	int64
23	AcceptedCmp2	2240	non-null	int64
24	Response	2240	non-null	int64
25	Complain	2240	non-null	int64
26	Country	2240	non-null	object
dtyp	es: int64(22), object	(5)		
memo	ry usage: 490.0+ KB			

dataframe.describe()

	Year_Birth	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntI
count	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	
mean	1968.805804	0.444196	0.506250	49.109375	303.935714	26.302232	166.950000	
std	11.984069	0.538398	0.544538	28.962453	336.597393	39.773434	225.715373	
min	1893.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1959.000000	0.000000	0.000000	24.000000	23.750000	1.000000	16.000000	
50%	1970.000000	0.000000	0.000000	49.000000	173.500000	8.000000	67.000000	
75%	1977.000000	1.000000	1.000000	74.000000	504.250000	33.000000	232.000000	
max	1996.000000	2.000000	2.000000	99.000000	1493.000000	199.000000	1725.000000	

8 rows × 22 columns

```
numerical\_feature\_column=list(dataframe.\_get\_numeric\_data().columns)\\ numerical\_feature\_column
```

```
['Year_Birth',
'Kidhome',
'Teenhome',
'Recency',
'MntWines',
'MntFruits',
'MntFruits',
'MntSweetProducts',
'MntGoldProds',
'NumDealsPurchases',
'NumWebPurchases',
'NumCatalogPurchases',
'NumStorePurchases',
'NumStorePurchases',
'NumStorePurchases',
'AcceptedCmp3',
'AcceptedCmp4',
'AcceptedCmp5',
'AcceptedCmp1',
'AcceptedCmp2',
'Response',
'Complain']
```

dataframe.isna().sum()

Year_Birth	0
Education	0
Marital_Status	0
Income	24
Kidhome	0
Teenhome	0

```
Dt_Customer
                            0
    Recency
                            0
    MntWines
    MntFruits
    MntMeatProducts
    MntFishProducts
                           0
    MntSweetProducts
                            a
    MntGoldProds
                            0
    NumDealsPurchases
                            0
    NumWebPurchases
                            0
    NumCatalogPurchases
    NumStorePurchases
    NumWebVisitsMonth
                            0
    AcceptedCmp3
    AcceptedCmp4
                           0
    AcceptedCmp5
                            0
    AcceptedCmp1
                           0
    AcceptedCmp2
                            0
                            0
    Response
    Complain
                            0
    Country
                            0
    dtype: int64
categorical_feature_columns=list(set(dataframe.columns)-set(dataframe._get_numeric_data().columns))
categorical_feature_columns
    [' Income ', 'Education', 'Dt_Customer', 'Marital_Status', 'Country']
import seaborn as sns
num_cols = ['Year_Birth','Kidhome', 'Teenhome', 'Recency', 'NumDealsPurchases','NumWebVisitsMonth','Response']
for i in range(0,len(num_cols),2):
       plt.figure(figsize=(10,4))
       plt.subplot(121)
       sns.distplot(dataframe[num_cols[i]], kde=False)
       plt.subplot(122)
       sns.distplot(dataframe[num_cols[i+1]], kde=False)
       plt.tight_layout()
       plt.show()
```

```
/usr/local/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a
                  warnings.warn(msg, FutureWarning)
                                                                                                                                            1200
                                                                                                                                            1000
                150
                                                                                                                                              800
                                                                                                                                              600
                100
                                                                                                                                              400
                  50
                                                                                                                                              200
                                1900
                                                                                                                               2000
                                                                                                                                                                    0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
                                                                       Year_Birth
                1200
                                                                                                                                             200
                1000
                                                                                                                                            175
                                                                                                                                            150
                  800
                                                                                                                                            125
                  600
                                                                                                                                            100
                  400
                                                                                                                                              50
                  200
                                                                                                                                              25
                            0.00
                                                                             1.00 1.25
                                                                                                                  1.75
                                                                                                                                                                                                 40
                                                                                                                                                                                                                                                           100
                                                                         Teenhome
                1000 -
                                                                                                                                            400 -
num_cols =['Year_Birth','Kidhome', 'Teenhome', 'Recency', 'NumDealsPurchases','NumWebVisitsMonth','Response']
for i in range(0,len(num_cols),2):
                     plt.figure(figsize=(10,4))
                     plt.subplot(121)
                     sns.distplot(dataframe[num_cols[i]], hist=True, kde=True)
                     plt.subplot(122)
                     \verb|sns.distplot(dataframe[num_cols[i+1]], | hist=True, | kde=True)|\\
                     plt.tight_layout()
                     plt.show()
num_cols =['Year_Birth','Kidhome', 'Teenhome', 'Recency', 'NumDealsPurchases','NumWebVisitsMonth','Response']
facet = None
for i in range(0,len(num_cols),2):
                     plt.figure(figsize=(10,4))
                     plt.subplot(121)
                     sns.boxplot(facet, num_cols[i],data = dataframe)
                     plt.subplot(122)
                     sns.boxplot(facet, num_cols[i+1],data = dataframe)
                     plt.tight_layout()
                     plt.show()
sns.countplot('Country', data=dataframe)
             /usr/local/lib/python 3.7/s ite-packages/seaborn/\_decorators.py: 43: \ Future Warning: \ Pass \ the \ following \ var \ Pass \
                  FutureWarning
              <AxesSubplot:xlabel='Country', ylabel='count'>
                    1000
                       800
                      600
                       400
                       200
                                                                  ÚS
                                                                               AUS
                                                                                              GÉR
                                                                                                            IND
```

<AxesSubplot:xlabel='count', ylabel='Marital_Status'>

sns.lmplot('Year_Birth', 'Response', data=dataframe, fit_reg=True)

/usr/local/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning

<seaborn.axisgrid.FacetGrid at 0x7f17fc4020d0>

sns.jointplot('NumDealsPurchases', 'Response', data=dataframe, kind='reg')

 $/usr/local/lib/python 3.7/site-packages/seaborn/_decorators.py: 43: Future Warning: Pass the following var Future Warning$

<seaborn.axisgrid.JointGrid at 0x7f17fc48f510>

/usr/local/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f17fc38c050>

 $\textit{\#\#Its necessary to remove correlated variables to improve our model. We must find correlations can visualize the correlation matrix using \textit{\textit{embore to remove correlation matrix}} \\$

plt.figure(figsize=(12,8))
sns.heatmap(dataframe.corr(), cmap='viridis')


```
#saleprice correlation matrix
k = 10 #number of variables for heatmap
cols = dataframe.corr().nlargest(k, 'Response')['Response'].index
cm = dataframe[cols].corr()
plt.figure(figsize=(10,6))
sns.heatmap(cm, annot=True, cmap = 'viridis')
```

<AxesSubplot:>

		0.22	0.00	0.05	0.05	0.24	0.00	0.10		0.15	-1.0
Response -	1	0.33	0.29	0.25	0.25	0.24	0.22	0.18	0.17	0.15	
AcceptedCmp5 -	0.33	1	0.4	0.08	0.47	0.37	0.32	0.31	0.22	0.14	- 0.8
AcceptedCmp1 -	0.29	0.4	1	0.095	0.35	0.31	0.31	0.25	0.18	0.16	
AcceptedCmp3 -	0.25	0.08	0.095	1	0.062	0.018	0.1	-0.08	0.072	0.042	- 0.6
MntWines -	0.25	0.47	0.35	0.062	1	0.56		0.37	0.21	0.54	
MntMeatProducts -	0.24	0.37	0.31	0.018	0.56	1	0.72	0.1	0.043	0.29	- 0.4
NumCatalogPurchases -	0.22	0.32	0.31	0.1		0.72	1	0.14	0.1	0.38	
AcceptedCmp4 -	0.18	0.31	0.25	-0.08	0.37	0.1	0.14	1	0.29	0.16	- 0.2

Visualizing relations between all major variables
cols=['Year_Birth','Kidhome', 'Teenhome', 'Recency', 'NumDealsPurchases','NumWebVisitsMonth','Response']
sns.pairplot(dataframe[cols])

plt.figure(figsize=(15,8))
plt.xticks(rotation=45)
sns.boxplot('Marital_Status','Response',data=dataframe)

/usr/local/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning

<AxesSubplot:xlabel='Marital_Status', ylabel='Response'>

plt.figure(figsize=(12,6))
sns.swarmplot('AcceptedCmp5', 'Response', data=dataframe)

/usr/local/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following var FutureWarning

/usr/local/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 95.1% of the points categories.warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 37.4% of the points categorings.warn(msg, UserWarning)

<AxesSubplot:xlabel='AcceptedCmp5', ylabel='Response'>

