Pregunta 1 (2 puntos)

Sea \mathcal{H} un espacio vectorial real en el cual hay definido dos productos internos $\langle \cdot, \cdot \rangle$ y (\cdot, \cdot) . Demuestre que los dos productos coinciden si y sólo si $\langle x, x \rangle = (x, x)$ para todo $x \in \mathcal{H}$.

Pregunta 2 (3puntos)

Sea \mathcal{H} el espacio de las funciones polinómicas reales de grado menor o igual que 2. Se define la aplicación:

$$\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{R}$$

$$(P, Q) \longmapsto \langle P, Q \rangle = \sum_{n=0}^{4} P(n)Q(n)$$

- a) Demuestre que $\langle \cdot, \cdot \rangle$ es un producto interno en \mathcal{H} .
- b) Considerando el producto interno del apartado a), aplique el método de ortonormalización de Gram-Schmidt a $\{P_0, P_1, P_2\} = \{1, t, t^2\}$.

Pregunta 3 (2,5 puntos)

Sean \mathcal{H} un espacio de Hilbert y P y P' dos proyecciones ortogonales en \mathcal{H} . Sean $F = \operatorname{Im}(P)$ y $F' = \operatorname{Im}(P')$. Demuestre que los siguientes apartados son equivalentes.

- 1. F y F' son ortogonales.
- 2. $P(F') = \{0\}.$
- 3. PP'(x) = 0 para todo $x \in \mathcal{H}$.

Pregunta 4 (2,5 puntos)

Sabiendo que $\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\operatorname{sen}\left((2n-1)t\right)}{(2n-1)^3}$ es el desarrollo en serie de Fourier de la función impar,

$$g(t) = \begin{cases} t(\pi + t) & \text{si } -\pi \le t < 0, \\ t(\pi - t) & \text{si } 0 \le t < \pi. \end{cases}$$

deduzca

a) la suma de la serie $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)^3}$; b) la suma de la serie $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$.