DNS

Sujet

Con	ducteur réel	1
	Conductivité d'un métal	
	A. Conductivité statique	
	B. Conductivité dynamique.	
II	LÉquations de Maxwell dans un métal.	
	II. Effet de peau dans le métal.	
	V.Réflexion et transmission sur le conducteur.	
	Pour terminer.	

Conducteur réel

I. Conductivité d'un métal

A. Conductivité statique

Dans le modèle de Drüde, un électron libre de masse m et de charge électrique -e, est soumis, d'une part à une force électrique si le métal est plongé dans un champ électrique et, d'autre part à une force de frottement dont l'expression phénoménologique est: $\vec{f} = -\frac{m}{\tau} \vec{v}$, où \vec{v} désigne la vitesse du porteur de charge dans le référentiel lié au métal supposé galiléen et τ modélise l'interaction de l'électron avec son environnement. (la pesanteur est négligée)

- 1. Comment soumettre les porteurs de charge d'un métal à un champ électrique?
- 2. Un électron du métal étant sous l'influence d'un champ électrique statique et uniforme, noté \vec{E}_0 , écrire, à partir de la relation fondamentale de la dynamique appliquée à ce porteur de charge, une équation différentielle à laquelle obéit le vecteur vitesse.
- 3. Grâce à cette équation, faire apparaître d'une part un temps caractéristique dont la signification sera précisée et d'autre part une expression de la vitesse limite \vec{v}_{lim} de ce porteur en régime permanent.
- 4. En désignant par n le nombre d'électrons par unité de volume du conducteur, calculer le vecteur densité volumique de courant électrique \vec{j}_0 associé au régime permanent et expliciter l'unité de cette grandeur physique.
- 5. Montrer que la loi d'Ohm microscopique $\vec{j}_0 = \gamma \vec{E}_0$ est vérifiée, en précisant l'expression de la conductivité électrique γ en fonction des données du problème.
- 6. Calculer numériquement la conductivité électrique γ sachant que $n(Cu)=85.10^{27} m^{-3}$ et que $\tau=24.10^{-15} s$ pour le cuivre. Il est rappelé que: $e=1,6.10^{-19} C$, $m=9,1.10^{-31} kg$. Pour la

suite, on prendra $\gamma = 59.10^6 S m^{-1}$.

B. Conductivité dynamique

Le champ électrique est supposé uniforme mais il dépend du temps de manière harmonique à la pulsation ω . Ce champ s'écrit alors $\underline{\vec{E}} = \vec{E}_0 \exp(i\omega t)$, avec $i^2 = -1$.

- 7. En reprenant la démarche précédente, évaluer en formalisme complexe, pour un régime harmonique établi, l'expression de la conductivité dynamique complexe notée ici $\underline{\Gamma}$.
- 8. Représenter le graphe de $|\underline{\Gamma}|$ en fonction de ω en faisant intervenir une pulsation de coupure ω_C à préciser de manière littérale. Calculer la fréquence de coupure f_C correspondante pour le cuivre.

Dans toute la suite du problème, la fréquence vérifiera: $f \ll f_C$.

II. Équations de Maxwell dans un métal

Le métal étudié dans la suite est donc ohmique : il vérifie la loi d'Ohm $\vec{j} = \gamma \vec{E}$.

- 9. Démontrer l'équation dite de conservation de la charge: $div \vec{j} = -\frac{\partial \rho}{\partial t}$ en partant de l'équation de Maxwell-Gauss et d'une deuxième équation de Maxwell.
- 10.En partant de l'équation de conservation de la charge et d'une équation de Maxwell, trouver l'équation différentielle du premier ordre satisfaite par la densité volumique de charge $\rho(M,t)$ dans un métal ohmique. On suppose alors qu'autour d'un point M du métal, pour une raison quelconque, la charge volumique à l'instant t=0 est non nulle et égale à ρ_0 . Donner l'évolution de $\rho(M,t)$. En déduire un temps typique de disparition de la charge noté τ' . Faire l'application numérique pour le cuivre. Que peut-on en conclure quant à la valeur de ρ ? On prendra $\varepsilon_0 = \frac{1}{36\pi \, 10^9}$.
- 11.On fera $\rho = 0$. Comment résoudre le paradoxe (apparent) suivant: dans un milieu localement vide de charge, il peut y avoir du courant c'est-à-dire des charges (!) qui se déplacent?
- 12. Exprimer le rapport entre les amplitudes des densités volumiques de courant de déplacement $\vec{j}_D = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ et de conduction $\vec{j} = \gamma \vec{E}$ pour un champ électrique de pulsation ω . A quelle condition sur la pulsation peut-on négliger le premier devant le second ? A.N. Calculer la fréquence limite. On supposera désormais que l'on peut négliger le courant de déplacement.
- 13. Écrire les équations de Maxwell dans le conducteur étudié. En déduire l'équation de propagation du champ électrique.
- 14. Commenter le résultat en le comparant à une équation de propagation bien connue. Que laisse présager la présence d'une dérivée d'ordre impair?

III. Effet de peau dans le métal

On étudie l'onde électromagnétique à l'intérieur du conducteur. On cherche une solution de la

- forme $\underline{\vec{E}} = \underline{E}'_0 \exp i(\omega t kz) \vec{u}_x$ avec $\underline{E}'_0 = E'_0 \exp(i\varphi)$.
- 15.Cette onde est choisie transversale électrique. Pourquoi cette condition devait-elle être obligatoirement remplie?
- 16. Trouver la relation de dispersion sous la forme $k^2 = -i\frac{2}{\delta^2}$ et donner l'expression et la dimension de δ ($\delta > 0$).
- 17. Pour résoudre et déterminer les deux possibilités pour k, on pourra écrire le second membre imaginaire de l'équation précédente en notation exponentielle. En déduire les deux solutions pour k qu'on écrira sous forme exponentielle puis sous forme algébrique.
- 18.Écrire la solution générale pour $\underline{\vec{E}}$ en faisant la somme des deux solutions indépendantes obtenues (on utilisera k sous forme algébrique). Écrire ensuite \vec{E} réel.
- 19. À quoi correspond la partie réelle de k? Qu'en est-il de sa partie imaginaire?
- On suppose désormais que le conducteur occupe le demi-espace z>0.
- 20.On envoie une onde sur le conducteur, et le champ transmis est de l'une des deux formes obtenues à la question précédente. Préciser laquelle et justifier.
- 21. Interpréter physiquement δ , et évaluer sa valeur ainsi que celle de la longueur d'onde pour $f = 500 \, kHz$, $1 \, Ghz$ et $10 \, THz$. Expliquer la dénomination usuelle d'« épaisseur de peau » donnée à δ . Que se passe-t-il dans la limite $\gamma \to \infty$?
- 22. Vérifier que l'onde est transversale magnétique et déduire des résultats précédents l'expression réelle de \vec{B} sous la forme $\vec{B} = B_0 \cos(\omega t kz \varphi)\vec{u}_v$. On utilisera la notation δ .
- 23. Exprimer la vitesse de phase $v_{\varphi}(\omega)$ pour une onde monochromatique de pulsation ω . Exprimer la vitesse de groupe $v_g(\omega)$ pour un paquet d'onde centré sur la pulsation ω en fonction de la vitesse de phase pour la pulsation centrale. Vérifier que la vitesse de groupe est inférieure à la vitesse de la lumière dans le vide? Y a t-il ou non dispersion?

IV. Réflexion et transmission sur le conducteur

Une OEM plane progressive monochromatique et polarisée rectilignement selon la direction appelée Ox dont le champ électrique s'écrit $\underline{\vec{E}}_i = \underline{E}_0 \exp i (\omega t - k_0 z) \vec{u}_x$ arrive en incidence normale sur la surface d'un métal située au plan (P) d'équation z=0. En arrivant sur (P), l'onde incidente donne naissance à une onde réfléchie et une onde transmise.

Le champ électrique de l'onde réfléchie s'écrit, à l'aide du coefficient de réflexion en amplitude complexe $\underline{r}: \underline{\vec{E}}_r = \underline{r}\,\underline{E}_0 \exp i\,(\omega\,t + k_0\,z)\,\vec{u}_x$ Le champ électrique de l'onde transmise s'écrit à l'aide du coefficient de transmission: $\underline{\vec{E}}_t = \underline{t}\,\underline{E}_0 \exp i\,(\omega\,t - k\,z)\,\vec{u}_x$.

- 24. Grâce aux relations de continuité, exprimer les coefficients de réflexion et de transmission complexes, en fonction de ω , δ et c, pour un conducteur réel.
- 25. Exprimer le coefficient de réflexion en puissance $R=|\underline{r}^2|$.

26.La puissance surfacique moyenne transportée par l'onde incidente vaut $P_i = \frac{\varepsilon_0 c}{2} E_0^2$. En admettant la conservation de l'énergie lors du processus de réflexion - transmission, calculer la puissance cédée par le champ électromagnétique à la matière dans le métal, ramenée à l'unité de surface de (P). Simplifier cette expression sachant que $\gamma \gg \varepsilon_0 \omega$. Que devient ensuite cette puissance? Conclure quant à la pénétration de l'énergie dans le métal.

V. Pour terminer

27. Donner en quelques mots le principe de fonctionnement d'un four micro-ondes. Expliquer pourquoi il ne faut pas introduire de plat métallique dans un tel four. Expliquer pourquoi la porte d'un four micro-ondes contient une mince couche métallique (blindage par une grille).

Réponses

1) utilisée un générateur exterieur.
On jeut ausoi créér un chang électromatius interne au conducteur (variation de B' ou déplacement du conducteur dans B')

 $\frac{\overrightarrow{x}}{4t} + \frac{\overrightarrow{y}}{6} = -\frac{\overrightarrow{x}}{6}$

3) tempo caractéristique: 3

(équation différentielle du 1er ordre, donc <u>au bout de 4 ou 5 6</u> To attent sa valeur limite à 1% près)

Vein = - 63 E.

(c'est la solution portionhère de l'équa diff, obtenue en faisant $\overrightarrow{v} = cste$ wit $\overrightarrow{dv} = \overrightarrow{cs}$)

 $\frac{1}{30} = n (-e) \overline{v_{em}}$ $\frac{1}{30} = \frac{ne^2 \overline{v}}{m} \overline{E}_0^2$

to en Am-2

 $8 = \frac{me^2\delta}{m}$

6) A.N. $= \frac{85 \cdot 10^{27} (1.6 \cdot 10^{-19})^{2} \cdot 24 \cdot 10^{-15}}{9.1 \cdot 10^{-31}}$ $85 \cdot 10^{27} (1.6 \cdot 10^{-19})^{2} \cdot 24 \cdot 10^{-15}$ $85 \cdot 10^{27} (1.6 \cdot 10^{-19})^{2} \cdot 24 \cdot 10^{-15}$

 $\frac{1}{2} - e \overrightarrow{E} - m \overrightarrow{V} = m \frac{d\overrightarrow{V}}{dt}$ En régime annuaridal forcé (on travaille en exp sut) $- e \overrightarrow{E} - m \overrightarrow{V} = m su \overrightarrow{V}$

$$\frac{T}{T} = -\frac{e^{-7}}{m} \left(\frac{1}{1+4w^{-7}} \right) \stackrel{E}{=}$$

$$\frac{T}{T} = \frac{me^{27}}{m} \frac{1}{1+4w^{-7}} \stackrel{E}{=}$$

$$\frac{T}{T} = \frac{8}{1+4w^{-7}}$$

B) on pase
$$\omega_{c} = \frac{1}{2}$$

$$\underline{\Gamma} = \frac{8}{1+3\frac{\omega}{\omega_{c}}}$$

$$\Delta \omega_{c} \qquad |\underline{\Gamma}| \simeq 8/(\omega_{c}) \text{ on } \frac{8}{2\omega}$$

$$\omega \gg \omega_{c} \qquad |\underline{\Gamma}| \simeq 8/(\omega_{c}) \text{ on } \frac{8}{2\omega}$$

$$\omega = \omega_{c} \qquad |\underline{\Gamma}| = 1/\sqrt{2}$$

Application numérique :

$$f_{c} = \frac{1}{2\pi r}$$

$$= \frac{1}{2\pi 24 \cdot 10^{-15}}$$

$$= 6.6 \cdot 10^{12} \text{ Hz}$$

$$= 6.6 \cdot \text{THz}$$

(Téra Hz)

9 on part de l'equation de Maxwell-Ampère :
$$\frac{B}{A} = 10^{-4} + \frac{1}{C^2} = \frac{E}{8E}$$

• puis en utilisant Maxwell - gauss (dw
$$\vec{E}$$
 = $\frac{1}{6}$)
$$0 = \mu_0 \text{ div } \vec{r} + \epsilon_0 \mu_0 \frac{1}{84} (\frac{\rho}{\epsilon_0})$$
finalement: $\frac{1}{2} \frac{1}{84} \frac$

Conservation de la dange : 10)

· En rassemblant les deux , on obtient :

$$\frac{3\xi}{36} + \frac{\xi}{8} = 0$$

En M donné .

le tempo caracteristique de decroissance exponentielle est

A.N.
$$= \frac{1/36\pi 10^9}{59 10^6}$$

Au bout de 4 ou 5 70, p surait, ou cas d'exces initial, revenu à zero.

on 6' est "très petit".

(cf on a dégà suppoé f « fe

T >> 1,5 10-13

On pourra suppour dans le nétal obmique $\rho = 0$

11) La neutralité orignée qu'il existe autant de charges posities que de charges négatives dans un petit volume mésoscopique.

Ces charges peuvent être mobiles, il y a donc courant électrique.

Peur exemple, en supposant des ions positifs fixes et des électrons mobiles

12) M. A.
$$nst B$$
 = μ_0 ($\frac{1}{6}$ + $\epsilon_0 \frac{\delta E}{\delta t}$)

 $\frac{1}{\delta_{conduction}}$
 $\frac{1}{\delta_{conduction}}$
 $\frac{1}{\delta_{conduction}}$
 $\frac{1}{\delta_{conduction}}$
 $\frac{1}{\delta_{conduction}}$

Par exemple, avec $\vec{E} = \vec{E}$ cos ωt $\vec{F} = \delta \vec{E}$ cos ωt d'amplitude $\delta \vec{E}$ cos \vec{E} $\vec{F} = \xi \, \omega \, \vec{E}$ om ωt d'amplitude $\xi \omega E$.

$$\frac{\delta_{MAX}D}{\delta_{MAX}C} = \frac{\epsilon_o \omega}{8}$$

on neighigera le convent de deplacement pour un bon conducteur" c'est à dire si

$$\frac{\varepsilon_0 \omega}{8} \ll 1$$

$$\omega \ll \frac{8}{\varepsilon_0} = \frac{1}{C'} \qquad (\omega C' \ll 1)$$

$$f \ll \frac{1}{2\pi} \frac{8}{5}$$

$$F \ll 1,1 \text{ 10}^{18} \text{ Hz}$$

13) les équations de Maxwell dans le métal sont alors:

MG. div
$$\overrightarrow{E} = 0$$

M. flux div $\overrightarrow{B} = 0$

M. F. \overrightarrow{D}

MA. \overrightarrow{D}
 $\overrightarrow{B} = 0$

MA. \overrightarrow{D}
 $\overrightarrow{B} = 0$
 \overrightarrow{B}
 $\overrightarrow{$

Equation de propagation:

$$nxt \stackrel{?}{=} - \frac{3}{3} \stackrel{?}{=} \frac{1}{3} \frac{1}{3$$

14) Contraviement à l'équation de d'Alembert:

cette équation contrent une dérivée premiere par raport au temps.

Elle n'est pas t-reversible. <u>Elle traduit un plenomène</u> irréversible (cf dégradation de l'energie due à la dissipation par effet poule avec création d'entropie)

13) On écrit Maxwell-gauss avec désimais, en travaillant en complexes:

$$\frac{\partial}{\partial t} = i\omega$$

$$= -ik = -ik u_{s}^{2}$$

Done

L'onde boit être transverale électrique

E doit être perpondiculaire à wif

¹⁶⁾ On cherche l'équation de dispersion en pertant de l'équation de propagation.

$$\Delta \vec{E} - \mu_0 Y \quad \delta \vec{E} = \vec{0}$$

$$(-i\pi)^2 \vec{E} - \mu_0 Y (i\omega) \vec{E} = \vec{0}$$

$$-k^2 - \mu_0 Y i\omega = 0$$

$$k^2 = -i \quad \mu_0 Y \omega$$

$$k^2 = -i \quad \delta \omega$$

& est on rad m-1

la dimension de le est: L-1

Done dimension de 8

8 est une longueur

$$k = -\lambda \frac{2}{5^2}$$

$$= \exp(-\lambda \frac{\pi}{2}) \frac{2}{5^2}$$

$$k = \pm \frac{\sqrt{2}}{5} \exp(-\lambda \frac{\pi}{4})$$

$$= \pm \frac{\sqrt{2}}{5} \left(\frac{\sqrt{2}}{3} - \lambda \frac{\sqrt{2}}{2}\right)$$

Solul	tion 1	万四年(一に五)	1/6 (1-i)		
Solut	10n 2 _ 1	<u>δ</u> exp(-i <u>π</u>)	- 1 (1-i)		

$$\frac{E}{E} = \frac{E_{o1} \exp i(\omega t - k_1 z)}{E_{o2} \exp i(\omega t - k_2 z)} + \frac{E_{o2} \exp i(\omega t - k_2 z)}{E_{o2} \exp i(\omega t - k_2 z)}$$

E = [E', exp - } exp i(wt - } + E'o2 exp & exp i(wt + })] une

En réel :

onde progressant vors les $\frac{7}{5}$ 0 et dont l'amplitude liminue au fivr et à mouvre le la propagation (cf exp $-\frac{7}{5}$) à cause de la dissipation

onde progressant vers les $\frac{7}{4}$ <0 don't l'amplitude diminue au fur et à moure de la propagation (cf exp $+\frac{3}{4}$) à cause de la disripation.

19)

terme de propagation (intervient dans la phase, donc dans la vitesse de phase)

traduit l'attenuation ou l'absorption (intervient dans l'exponentielle réelle)

20) Il ne reste que l'onde se propageant vers les 3 crossants (cf pas de réflexion)

$$K = \frac{\sqrt{2}}{5} \exp(-i\frac{\pi}{4})$$
$$= \frac{1}{6}(1-i)$$

$$\vec{E} = \vec{E}'_0 \exp(-\vec{\xi}) \exp i(\omega t - \vec{\xi}) \vec{\omega}$$

21) Le champ décroit exponentiellement selon 3.

Au bout de 4 ou 5 8, il est quasinul.

f L	λ	٤
500 kHz	600 m	0,09 mm
16 Hz (10 ⁹ Hz)	0,3 m	2 µm
10 THz (10 10 ¹² Hz)	30 µт	21 nm

M.F.
$$nst \vec{E} = -\frac{\delta \vec{B}}{\delta \vec{E}}$$

$$-\frac{\delta \vec{K}}{\delta \vec{E}} = -\frac{\delta \vec{B}}{\delta \vec{A}} = -\frac{\delta \vec{B}}{\delta \vec{A}} = \frac{\delta \vec{A}}{\delta \vec{A}} = \frac{\delta$$

L'onde est transversale magnétique.

En utilisant l'expression exponentielle de &

$$\sqrt{V_p} = \frac{\omega}{k'}$$

$$= \omega k$$

$$v_{\phi} = \frac{d\omega}{d\kappa'}$$

Par exemple :

$$K' = \sqrt{\frac{M_0 \delta \omega}{2}}$$

$$\ln K' = \frac{1}{2} \ln \omega + \text{constants}$$

$$\frac{dk'}{k'} = \frac{1}{2} \frac{d\omega}{\omega}$$

$$\sqrt{g} = 2 \frac{\omega}{\kappa'}$$

$$\sqrt{g}_{(\omega)} = 2 \sqrt{\psi}_{(\omega)}$$

on aura:
$$\sqrt{\frac{8}{4}} < c$$

si: $\sqrt{\frac{8}{40}} < c$
 $\frac{8}{40} \times c$
 $\omega < \frac{1}{8} \times c$
 $\omega < \frac{1}{8} \times c$
 $\omega < \frac{1}{8} \times c$
 $\omega < 1$

sr, on a pose' plus haut:

 $\omega = c' < 1$

on a trouve' top = vip(w) done il y a dispersion.

(on a d'ailleurs vg + vq)

Il y a ici continuité pour É et B en 3=0 en l'absence de réportition surfacque (pusque la description des courants et des charges est ici volumique)

En
$$z=0$$

$$\begin{array}{cccc}
\overrightarrow{Ei} + \overrightarrow{En} & = \overrightarrow{E}_{E} \\
1 + C & = E
\end{array}$$

$$\begin{array}{cccc}
1 + C & = E
\end{array}$$

$$\begin{array}{cccc}
A + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C & = E
\end{array}$$

$$\begin{array}{cccc}
A & + C
\end{array}$$

$$1 - \underline{C} = \frac{k}{k_s} \underline{E}$$
 (2)

En faisant (1) + (2)

$$\frac{t}{t} = \frac{2}{1 + \frac{k}{k_0}}$$

muio avec (1)

$$r = \frac{1 - \frac{k}{k_0}}{1 + \frac{k}{k_0}}$$

on reporte:

$$\frac{k}{k_0} = \frac{\frac{4}{6}(1-\lambda)}{\frac{\omega}{c}}$$
$$= \frac{c}{\omega \delta}(1-\lambda)$$

finalement

$$\frac{E}{\left(1 + \frac{C}{\omega \delta}\right)^{-\frac{1}{2}} \frac{C}{\omega \delta}}$$

$$= \frac{\left(1 - \frac{C}{\omega \delta}\right) + \frac{1}{2} \frac{C}{\omega \delta}}{\left(1 + \frac{C}{\omega \delta}\right) - \frac{1}{2} \frac{C}{\omega \delta}}$$

25) R = C C*

$$= \frac{(1 - \frac{C}{\omega \delta}) + \frac{C}{\omega \delta}}{(1 + \frac{C}{\omega \delta}) - \frac{C}{\omega \delta}} = \frac{(1 - \frac{C}{\omega \delta}) - \frac{C}{\omega \delta}}{(1 + \frac{C}{\omega \delta}) - \frac{C}{\omega \delta}} = \frac{(1 - \frac{C}{\omega \delta})^2 + (\frac{C}{\omega \delta})^2}{(1 + \frac{C}{\omega \delta})^2 + (\frac{C}{\omega \delta})^2}$$

 $R = \frac{1 - \frac{2c}{\omega s} + 2\left(\frac{c}{\omega s}\right)^2}{1 + \frac{2c}{\omega s} + 2\left(\frac{c}{\omega s}\right)^2}$

26) La ameriation de la puisance donne

La pussance cédée par le damp au métal par unité de surface vant done:

$$= \frac{P_{\text{inclident}}}{4 + \frac{2c}{\omega \delta} + 2(\frac{c}{\omega \delta})^2}$$

avec
$$\frac{c}{\omega s} = \frac{c\sqrt{\mu_0 s\omega}}{\omega \sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \sqrt{\frac{s}{\xi_0 \omega}}$$
 $\gg 1$

donc en faisant des approximations:

= Pincident
$$\frac{4 c/\omega \delta}{2(c/\omega \delta)^2}$$

= Pincident
$$\frac{2 \omega \delta}{C}$$

= Pincident $\frac{2 \sqrt{2} \sqrt{2 \omega}}{\sqrt{8}}$
= $\frac{2 \sqrt{2} \sqrt{2 \omega}}{\sqrt{8}}$ E_0^2

Pronsmis =
$$\varepsilon$$
, $\sqrt{\frac{2\omega}{\mu_0 x}}$ ε .

Proceedent = 2V2 VEW

La puisance qui entre dans le métal est très faible. L'essential de cette puissance incidente est réfléché

Le jeu de puisance qui jénêtre est dissipé en chaleur for effet joule.

La fréquence des ondes est une fréquence de récorance des molécules d'eau. Celles - ci vont absorber les ondes 27) et la temperature va augmenter.

> le plat métallique va réflicher l'essentiel de la puissance (éventuellement vers le dispositif d'émission - danger

de destruction de celui-ci). Le plat va chauffer en surface à couse de l'onde abortée, ce qui va guller la surface des aliments.

La grille metallique suffit à aborber les ondes qui pourraient sortir du four. C'est une grille (avec dismètre des trous « ») permettant de voir à l'intérieur du four.