Правила проведения экзамена

- 1. По ТВ семинарист выставляет каждому студенту 0, 1, 2 или 3 балла (2 балла за КР, 1 балл за работу в семестре). На экзамене студент получает задачи по ТВ к количестве 2-(балл за семестр по ТВ). Если студент получил 3 балла за ТВ, то у него появляется бонусный балл, который прибавляется к итоговой оценке.
- 2. По ТМ студент должен отчитаться по задачам из обязательного списка (см.ниже) в устной форме (формат коллоквиума: вытягивается по одной задаче из каждого списка 6 шт., устно рассказывается преподавателю). Коллоквиум считается сданным, если решено >=4 задач.
- 3. Сдать коллоквиум можно досрочно на зачетной неделе или в январе (доступные даты 16, 17, 18, 19, 20 для ПМИ и ПМФ, 23, 24, 25 для ПМФ). Для досрочной сдачи только одна попытка. В этом случае при сдаче 5 задач будут зачтены 6, при сдаче 4 будут зачтены 5. Если досрочная попытка провалена или не использована, коллоквиум сдается в начале экзамена в качестве входного контроля (решение <4 задач (заранее объявленых задач) означает "неуд"на экзамене).
 - Важно: задачи коллоквиума это либо контр-примеры к теоремам, либо упражнения на определения. Поэтому вариант с январем мне казался наиболее удобным, параллельно с разбором теории разобраться в упражнениях и контр-примерах, и просто вечером придти отчитаться, что разобрались.
- 4. В случае удачной сдачи коллоквиума(>=4 задач) на экзамене выдается билет, состоящий из двух вопросов по программе курса (см. ниже), ответ на который оценивается по 10-балльной шкале.
- 5. Оценка выставляется по формуле: (ответ на экзамене)-(число нерешнных задач по Теории вероятностей (ТВ) и теории меры (ТМ))+бонус за семестр.

Программа курса

- 1. Вероятностное пространство как математическая модель случайного эксперимента. Статистическая устойчивость.
- 2. Дискретное вероятностное пространство. Классическая вероятность. Построение простейших вероятностных пространств. Элементы комбинаторики. Вероятность суммы событий.
- 3. Геометрические вероятности. Задача "о встрече".
- 4. Условная вероятность. Формулы полной вероятности, умножения и Байеса.
- 5. Независимость событий, виды и взаимосвязь.
- 6. Случайные величины. Независимость случайных величин. Распределение. Примеры. Математическое ожидание, дисперсия, ковариация, корреляция. Свойства.
- 7. Схема испытаний Бернулли. Математическая модель, предельные теоремы: Пуассона и Муавра-Лапласа (б/д).

- 8. Системы множеств (полукольца, кольца, алгебры, сигма-алгебры). Примеры. Минимальное кольцо, содержащее полукольцо. Понятие наименьшего кольца, алгебры, сигма-алгебры, содержащей систему множеств.
- 9. Меры на полукольцах. Классическая мера Лебега на полукольце промежутков и ее сигмааддитивность.
- 10. Продолжение меры с полукольца на минимальное кольцо. Наследование сигма-аддитивности при продолжении меры. Внешние меры Лебега и Жордана. Мера Лебега. Свойства. Сигма-алгебра измеримых множеств. Сигма-аддитивность меры Лебега на сигма-алгебре измеримых множеств.
- 11. Полнота и непрерывность мер. Теоремы о связи непрерывности и сигма-аддитивности.
- 12. Мера Бореля. Меры Лебега-Стилтьеса на прямой и их сигма-аддитивность.
- 13. Сигма-конечные меры.
- 14. Неизмеримые множества.
- 15. Измеримые функции. Их свойства. Измеримые функции и предельный переход.
- 16. Множество Кантора и кривая Кантора. Теорема о существовании композиции измеримой от непрерывной, не являющейся измеримой функцией.
- 17. Сходимость по мере и почти всюду. Их свойства (критерий Коши сходимости по мере, арифметические, связь сходимостей, Теорема Рисса).
- 18. Теорема Егорова.
- 19. Интеграл Лебега для конечно-простых функций и его свойства. Определение интеграла Лебега в общем случае. Основные свойства интеграла Лебега.
- 20. Теоремы о предельном переходе под знаком интеграла Лебега (теорема Б.Леви, лемма Фату, теорема Лебега).
- 21. Абсолютная непрерывность интеграла Лебега. Критерий интегрируемости по Лебегу на множестве конечной меры. Неравенство Чебышева.

Список литературы.

- 1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., Наука, 1981, 1989.
- 2. Натансон И.П. Теория функций вещественной переменной. М., Наука, 1979.
- 3. Дьяченко М.И., Ульянов П.Л. Мера и интеграл. М., Факториал, 1998, 2002.
- 4. Ширяев А.Н. Вероятность. М., Наука, 1989, 2-е изд.
- 5. Феллер В. Введение в теорию вероятностей и ее приложения. Т. 1, 2. М., Мир, 1967.

Задачи коллоквиума Системы множеств

Верхним пределом последовательности множеств A_1, A_2, \ldots называется множество всех элементов, которые принадлежат бесконечному набору множеств A_n , а нижним пределом – множество всех элементов, которые принадлежат всем множествам A_n , начиная с некторого номера (своего для кадого элемента). Верних предел обоначают $\overline{\lim}_n A_n$, нижний предел обозначают $\underline{\lim}_n A_n$. Если $\overline{\lim}_n A_n = \underline{\lim}_n A_n$, то это множество называют пределом последовательности A_1, A_2, \ldots и обозначают $\underline{\lim}_n A_n$

Последовательность множеств A_1, A_2, \ldots называется возрастающей, если $A_n \subset A_{n+1}$ для всех n, и убывающей если $A_{n+1} \subset A_n$ для всех n.

1. Доказать, что

$$\overline{\lim}_n A_n = \bigcap_n \left(\bigcup_{k \geqslant n} A_k \right) \qquad \underline{\lim}_n A_n = \bigcup_n \left(\bigcap_{k \geqslant n} A_k \right)$$

2. Доказать, что если последовательсть множеств $\{A_n\}$ монотонна, то

$$\overline{\lim}_n A_n = \underline{\lim}_n A_n.$$

При этом $\lim_n A_n = \bigcup_n A_n$, если A_n возрастают, и $\lim_n A_n = \bigcap_n A_n$, если A_n убывают.

3. Привести пример последовательности $A_1,\ A_2,\dots$, что $\overline{\lim}_n A_n \neq \underline{\lim}_n A_n$ Доказать, что

$$\overline{\overline{\lim}_n A_n} = \underline{\lim}_n \overline{A}_n.$$

4. Пусть $f:A\to B$ — отображение множеств, $\mathfrak A$ — система подможеств множества $A,\,\mathfrak B$ —система подмножеств множества B. Положим

$$f(\mathfrak{A}) = \{ f(X) \subset B : X \in \mathfrak{A} \}$$
$$f^{-1}(\mathfrak{B}) = \{ f^{-1}(Y) \subset A : Y \in \mathfrak{B} \}.$$

- (a) Показать, что $f(\mathfrak{A})$, вообще говоря, не обязано быть кольцом, если \mathfrak{A} кольцо.
- (b) Доказать, что если $\mathfrak B$ кольцо (σ -алгебра), то $f^{-1}(\mathfrak B)$ кольцо (σ -алгебра).
- 5. Являются ли следующие системы полукольцом, кольцом, алгеброй:
 - (a) Полуинтервалы: $S = \{ [\alpha; \beta) | \alpha, \beta \in R \};$
 - (b) Все конечные подмножества натуральных чисел;
 - (с) Все измеримые по Жордану подмножества отрезка [0, 1];
 - (d) Все открытые множества на прямой.
- 6. Доказать, что набор множеств, замкнутый относительно операций
 - $a) \cap u \cup ; b) \cap u \setminus moжer не быть кольцом.$
- 7. Пусть \mathfrak{B}_1 и \mathfrak{B}_2 две σ -алгебры подмножеств пространства Ω . Являются ли σ -алгебрами классы множеств: 1) $\mathfrak{B}_1 \cap \mathfrak{B}_2$; 2) $\mathfrak{B}_1 \cup \mathfrak{B}_2$; 3) $\mathfrak{B}_1 \setminus \mathfrak{B}_2$; 4) $\mathfrak{B}_1 \triangle \mathfrak{B}_2$.
- 8. Доказать, что всякая конечная σ -алгебра подмножеств пространства Ω порождается некоторым конечным разбиением Ω . Доказать, что мощность всякой конечной сигма-алгебры является степенью двойки.

- 9. Есть поток сигма-алгебр $F_1 \subset F_2 \subset \dots$ Является ли σ -алгеброй объединение всех этих систем?
- 10. Существует, ли такая счетная система подмножеств R, что $\sigma(R)$ борелевская сигма-алгебра.

Mepa

- 1. Построить пример полукольца S и такой функции $\varphi:S\to [0;+\infty)$, что для любых $A,B\in S$ с $A\cap B=\emptyset$ и $C=A\sqcup B\in S$ выполнено равенство $\varphi(C)=\varphi(A)+\varphi(B)$, но φ не мера на S.
- 2. Пусть m мера на полукольце S. Докажите, что
 - (a) если множества A и B принадлежат S и $B \subseteq A$, то $m(B) \leqslant m(A)$.
 - (b) $m(\emptyset) = 0$.
 - (c) если множества A, B и $A \cup B$ принадлежат S, то $m(A \cup B) = m(A) + m(B) m(A \cap B)$. Вывести аналог формулы включения-исключения.
 - (d) если множества $A,\ B$ и $A \triangle B$ принадлежат S и $m(A \triangle B)=0$. Доказать, что m(A)=m(B).
- 3. (а) Пусть S полукольцо с мерой m, а $S_1 = \{A \in S: m(A) = 0\}$. Доказать, что S_1 полукольцо.
 - (b) Пусть R кольцо с мерой m, а $R_1=\{A\in S:\ m(A)=0\}$. Доказать, что R_1 кольцо.
 - (c) Пусть A алгебра с мерой m, а $A_1 = \{A \in S : m(A) = 0\}$. Верно ли, что A_1 алгебра.
- 4. Пусть $m-\sigma$ -аддитивная мера на полукольце S , множества A,A_1,\ldots,A_i,\ldots принадлежат S, причем $A_1\supseteq A_2\supseteq\ldots$ и

$$A = \bigcap_{i=1}^{\infty} A_i.$$

Доказать, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Это свойство меры называется непрерывностью.

5. Пусть m — мера на кольце R и для любых таких множеств $A, A_1, \ldots, A_i, \ldots$ из R, что $A_1 \supseteq A_2 \supseteq \ldots$ и

$$A = \bigcap_{i=1}^{\infty} A_i$$

выполнено развенство

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Доказать, что $m-\sigma$ -аддитивная мера.

Показать, что это утверждение может не быть справедливым для меры на полукольце.

6. Построить пример меры на полукольце, которая не является σ -аддитивной.

7. Пусть $m-\sigma$ -аддитивная мера на полукольце S , множества A,A_1,\ldots,A_i,\ldots принадлежат S, причем $A_1\subseteq A_2\subseteq\ldots$ и

$$A = \bigcup_{i=1}^{\infty} A_i.$$

Доказать, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

8. Пусть m — мера на кольце R и для любых таких множеств A,A_1,\ldots,A_i,\ldots из R, что $A_1\subseteq A_2\subseteq\ldots$ и

$$A = \bigcup_{i=1}^{\infty} A_i$$

выполнено развенство

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Доказать, что $m-\sigma$ -аддитивная мера.

Показать, что это утверждение может не быть справедливым для меры на полукольце.

9. Показать, что в случае σ -конечной меры понятия непрерывности и σ -аддитивности не равносильны.

Внешняя мера. Мера Лебега.

Обозначения. Пусть S — полукольцо с единицей X, а m — конечная σ -аддитивная мера на S. Пусть ν — продолжение меры m на минимальное кольцо R(S). Для произвольного $A \subseteq X$ определим верхнюю меру Жордана, порожденную мерой m, формулой

$$\mu_J^* = \inf_{A \subseteq \bigcup_{i=1}^n A_i} \sum_{i=1}^n m(A_i),$$

и верхную меру Лебега, порожденную мерой т, формулой

$$\mu^* = \inf_{A \subseteq \bigcup_{i=1}^{\infty} A_i} \sum_{i=1}^{\infty} m(A_i).$$

Скажем, что множество $A \subseteq X$ измеримо по Лебегу (по Жордану), если для любого $\varepsilon > 0$ найдется токе множество A_{ε} , что $\mu^*(A \triangle A_{\varepsilon}) < \varepsilon$ (соответсвенно $\mu_J^*(A \triangle A_{\varepsilon}) < \varepsilon$). Обозначим \mathfrak{M} - множество измеримых по Лебегу множеств на X. \mathfrak{M}_J - множество измеримых по Жордану множеств на X.

Для множества $A \in \mathfrak{M}$ его *мерой Лебега* называется $\mu(A) = \mu^*(A)$. Для меры Жордана аналогично.

В случае, когда S — полукольцо промежутков из замкнутого параллелепипеда $[a,b] \subset \mathbb{R}^n$, а мера m — классическая (объем), мы будем и соотвествующие меры и верхние меры называть κ лассическими.

1. Доказать, что если вопреки определению верхней меры, мера m не σ -аддитивна, то найдется множество $A \in S$, для которого $\mu^*(A) < m(A)$.

- 2. Пусть $A\subseteq X$ и $B\subseteq X$. Доказать, что $\mu^*\left(A\cup B\right)\leqslant \mu^*\left(A\right)+\mu^*\left(B\right)$.
- 3. Пусть $A\subseteq X$ и $B\subseteq X$. Докажите, что

$$\mu^*(A \cup B) + \mu^*(A \cap B) \le \mu^*(A) + \mu^*(B).$$

4. Докажите, что если множество $E\subseteq\mathbb{R}$ измеримо, то для любого $A\subseteq\mathbb{R}$ выполнено

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$$

- 5. Доказать, что в случае классической меры Жордана система \mathfrak{M}_J не является σ -алгеброй. Привести пример меры m, когда она является σ -алгеброй.
- 6. Пусть множество $E \subseteq \mathbb{R}$ имеет положительную меру Лебега. Докажите, что множество $E-E=\{x-y: x,y\in E\}$ содержит интервал с центром в 0.
- 7. Построить такие неизмеримые относительно классической меры Лебега на [0;1] множества A_1 и A_2 , что $A_1 \cup A_2$ измеримо.
- 8. Пусть $A \in \mathfrak{M}, \ \mu(A) = 0$ и $B \subset A$. Доказать, что $B \in \mathfrak{M}$ и $\mu(B) = 0$. (Т.е. докажите полноту меры Лебега).
- 9. Пусть μ классическая мера Лебега на [0,1]. Построить такую последовательность $\{A_i\}$ множеств из \mathfrak{M} , что

$$\mu(\liminf_{n\to\infty} A_n) < \underline{\lim}_{i\to\infty} \mu(A_i).$$

Измеримые функции

Обозначения.

$$\mathbb{I}_A(x) = \begin{cases} 1, & \text{если } x \in A; \\ 0, & \text{если } x \notin A; \end{cases}$$

- 1. Доказать (не опирасясь на критерий измеримости), что если функции f(x) и g(x) измеримы, то и множество $\{x: f(x) < g(x)\}$ измеримо. Получить отсюда, что f(x) + g(x) измеримая функция.
- 2. Пусть (X, M, μ) измеримое пространство, $A \subseteq X$ и $f(x) = \mathbb{I}_A(x)$. Доказать, что f(x) измерима на X тогда и только тогда, когда $A \in M$.
- 3. Пусть μ классическая мера Лебега на [0;1]. Построить такую неизмеримую функцию $f:[0;1] \to \mathbb{R}$, что для любого $c \in \mathbb{R}$ множество $f^{-1}(\{c\})$ измеримо.
- 4. Пусть (X, M, μ) измеримое пространство, $\{a_n\}_{n=1}^{\infty}$ некоторое всюду плотное множество в \mathbb{R} , а функция $f: X \to \mathbb{R}$ такова, что для каждого n множество

$$f^{-1}((a_n, +\infty)) \in M.$$

Доказать, что f(x) измерима на X.

5. Построить функцию f(x) на [0;1], измеримую на [0;1] относительно классической меры Лебега, но разрывную в каждой точке.

- 6. Пусть (X, M, μ) полное измеримое пространство (т.е. мера μ полна), а f(x) измеримая функция на A. Пусть g(x) функция, эквивалентная f(x). Доказать. что g(x) измеримая фукнция.
- 7. Пусть $[a;b] \subset \mathbb{R}$ и функция f(x) монотонна на [a;b]. Доказать, что f(x) измерима относительно классической меры Лебега на [a;b].
- 8. Построить такую функцию $f(x) \in C[0;1]$, что для некоторого измеримого $A \subset [0;1]$ меры нуль множество f(A) измеримо и $\mu(f(A)) > 0$, где μ классическая мера Лебега.
- 9. Построить такую строго возратсающую функцию $f(x) \in C([0;1])$, что для некоторого измеримого множества $A \subset [0;1]$ меры нуль множество f(A) измеримо и $\mu(f(A)) > 0$, где μ классическая мера Лебега.
- 10. Построить функцию $f(x) \in C([0;1])$ и измеримое множество $A \subset \mathbb{R}$, для которых множество $f^{-1}(A)$ неизмеримо относительно классической меры Лебега.
- 11. Построить такую $g(x) \in C([0;1])$, что для некоторого измеримого $A \subset [0;1]$ с $\mu(A) = 0$ множество g(A) неизмеримо относительно классической меры Лебега.
- 12. Построить множество $A \subset [0;1]$, которое измеримо относительно классической меры Лебега, но не является борелевским.

Сходимость

- 1. Определим функцию f(x) на отрезке [0;1] следующим образом. Если $x=\overline{0,n_1n_2n_3\dots}$ десятичная запись числа x, то $f(x)=\max_i n_i$. Доказать, что f(x) измерима и почти всюду постоянна.
- 2. Показать, что вообще говоря из сходимости п.в. не следует сходимость по мере в случае, когда мера σ -конечна.
- 3. Пусть последовательность неотрицательных функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится по мере к f(x) на A. Доказать, что $f(x) \ge 0$ п.в. на A.
- 4. Пусть $\mathbb{Q}_{[0;1]} = \{r_n\}_{n=1}^{\infty}$. Доказать, что последовательность

$$f_n(x) = \begin{cases} 0, & \text{если } x = r_n \\ \frac{1}{\sqrt{n(x-r_n)}}, & \text{если } x \in [0;1] \setminus \{r_n\} \end{cases}$$

где $n \in \mathbb{N}$, сходится по классической мере Лебега на [0;1].

- 5. Пусть $\mathbb{Q}_{[0;1]} = \left\{ r_n = \frac{p_n}{q_n} \right\}_{n=1}^{\infty}$, где p_n и q_n взаимно простые натуральные числа, $n \in \mathbb{N}$. Доказать, что последовательность $\{f_n(x)\}_{n=1}^{\infty}$, где $f_n(x) = e^{-(p_n q_n x)^2}$, сходится по классической мере Лебега на [0,1], но не сходится ни в одной точке.
- 6. Показать, что утрвеждение теоремы Егорова не выполняется для классической меры Лебега на \mathbb{R} .

Интеграл Лебега

- 1. Поймите, что функция $f(x) = \mathbb{I}(x \in \mathbb{Q})$ интегрируема на \mathbb{R} , найдите величину интеграла.
- 2. Пусть $f(x) = \frac{1}{x}$ и μ классическая мера Лебега на (0;1). Доказать, что

$$\int_0^1 f(x)d\mu = \infty,$$

используя только определение интеграла Лебега.

- 3. Верно ли, что функция $f(x) = \frac{\sin x}{x}$ интегрируема по Лебегу на прямой?
- 4. Пусть f(x) интегрируема по Лебегу на множестве A (т.е. $\int_A |f(x)| d\mu < \infty$, будем писать $f \in L_1(A)$). Доказать, что $\mu\left(\{x \in A: \ f(x) = \pm \infty\}\right) = 0$.
- 5. Построить такую последовательность $\{f_n(x)\}_{n=1}^{\infty}$ неотрицательных функций из $L_1([0;1])$, таких что $f_n(x)\to 0$ при $n\to\infty$ для кадого $x\in[0;1]$, но

$$\int_0^1 f_n(x)d\mu \to 0, \to \infty.$$

1. Системы множеств.

Задача 1. Доказать, что

$$\overline{\lim}_{n} A_{n} = \bigcap_{n} \Big(\bigcup_{k \ge n} A_{k} \Big) \qquad \underline{\lim}_{n} A_{n} = \bigcup_{n} \Big(\bigcap_{k \ge n} A_{k} \Big).$$

Решение.

Верхний предел последовательности множеств A_n состоит из тех и только тех элементов x, каждый из которых принадлежит бесконечному числу множеств последовательности A_n .

Нижний предел последовательности множеств A_n состоит из тех и только тех элементов x, каждый из которых принадлежит всем множествам последовательности A_n , за исключением, быть может, конечного числа.

Верхний предел.

Пусть
$$x\in\bigcap_n\left(\bigcup_{k\geq n}A_k\right)$$
, тогда $\forall n\ x\in\bigcup_{k\geq n}A_k$, откуда следует, что $\exists\{n_k\}:\forall k\ x\in a_{n_k}$, значит $x\in\bigcap_nA$

 $\overline{\lim} A_n$.

 $n\to\infty$ Нижний предел.

Пусть
$$x\in\bigcup_n\left(\bigcap_{k\geq n}A_k\right)$$
, тогда $\exists N:x\in\bigcap_{k\geq N}A_k$, значит $x\in\varliminf_{n\to\infty}A_n$. Получили, что $\bigcup_n\left(\bigcap_{k\geq n}A_k\right)\subseteq\varliminf_{n\to\infty}A_n$ и $\bigcap_n\left(\bigcup_{k\geq n}A_k\right)\subseteq\varlimsup_{n\to\infty}A_n$.

Задача 2. Доказать, что если последовательность множеств $\{A_n\}$ монотонна, то

$$\overline{\lim}_{n} A_{n} = \underline{\lim}_{n} A_{n}.$$

При этом $\lim_n A_n = \bigcup_n A_n$, если A_n возрастают и $\lim_n A_n = \bigcap_n A_n$, если A_n убывают.

Решение. Рассмотрим два варианта:

1. $\{A_n\}$ монотонно возрастает, т.е. $\forall n \hookrightarrow A_n \subset A_{n+1}$.

$$\varliminf_{n\to\infty}A_n=\bigcup_n\left(\bigcap_{k\geq n}A_k\right)=\bigcup_n(A_n)=\bigcup_nA_n,$$
 так как из монотонности следует, что $\forall \ n\bigcap_{k\geq n}A_k=A_n.$
$$\varlimsup_{n\to\infty}A_n=\bigcap_n\left(\bigcup_{k\geq n}A_k\right)=\bigcap_n\left(\bigcup_kA_k\right)=\bigcup_nA_n,$$
 так как из монотонности следует, что $\forall n\bigcup_{k\geq n}A_k=\bigcup_pA_p.$

2. $\{A_n\}$ монотонно убывает, т.е. $\forall n \hookrightarrow A_{n+1} \subset A_n$.

$$\varliminf_{n\to\infty}A_n=\bigcup_n\left(\bigcap_{k\geq n}A_k\right)=\bigcup_n\left(\bigcap_kA_k\right)=\bigcap_nA_n,$$
 так как из монотонности следует, что $\forall n\bigcap_{k\geq n}A_k=\bigcap_pA_p.$

$$\varlimsup_{n o \infty} A_n = \bigcap_n \left(\bigcup_{k \geq n} A_k \right) = \bigcap_n \left(A_n \right) = \bigcap_n A_n$$
, так как из монотонности следует, что $\forall n \ \bigcup_{k \geq n} A_k = A_n$.

Из вышеописанных равенств следует то, что нам надо в задаче.

Задача 3. Привести пример последовательности $A_1, A_2, ...,$ что $\overline{\lim}_n A_n \neq \underline{\lim}_n A_n$. Доказать, что

$$\overline{\overline{\lim_{n}}}\overline{A_{n}} = \underline{\lim_{n}}\overline{A_{n}}.$$

Решение. Пример: $A_{2k} = \{1\}, A_{2k+1} = \emptyset$.

$$\overline{\overline{\lim}_{n\to\infty}}A_n=\overline{\bigcap_n\left(\bigcup_{k\geq n}A_k\right)}=\bigcup_n\left(\bigcap_{k\geq n}\overline{A}_k\right)=\underline{\lim}_{n\to\infty}\overline{A}_n$$

Задача 4. Пусть $f:A\to B$ — отображение множеств, $\mathfrak A$ — система подмножетсв множества $A,\mathfrak B$ — система подмножеств множества B. Положим

$$f(\mathfrak{A}) = \{ f(X) \subset B : X \in \mathfrak{A} \}$$

$$f^{-1}(\mathfrak{B}) = \{ f^{-1}(Y) \subset A : Y \in \mathfrak{B} \}.$$

- (a) Показать, что $f(\mathfrak{A})$, вообще говоря, не обязано быть кольцом, если \mathfrak{A} кольцо.
- (b) Доказать, что если \mathfrak{B} кольцо (σ -алгебра), то $f^{-1}(\mathfrak{B})$ кольцо (σ -алгебра).

Решение.

- (a) $A=\{1,2,3,4\}, B=\{a,b,c\}$ и $\mathfrak{A}=\{\varnothing,\{1,2\},\{3,4\},A\}$, очевидно \mathfrak{A} кольцо. Пусть f(1)=a, f(2)=f(3)=b, f(4)=c. Тогда $f(\mathfrak{A})=\{\varnothing,\{a,b\},\{b,c\},B\}$ не кольцо, потому что $\{a,b\}\cap\{b,c\}=\{b\}\notin f(\mathfrak{A})$.
- (b) (не уверен) Пусть \mathfrak{B} кольцо (σ -алгебра).
 - 1) $\varnothing \in f^{-1}(\mathfrak{B})$, так как $\varnothing = f^{-1}(\varnothing)$, а $\varnothing \in \mathfrak{B}$.
 - 2) $A, B \in f^{-1}(\mathfrak{B}) \Rightarrow \exists \Phi, \Psi : A = f^{-1}(\Phi), B = f^{-1}(\Psi).$
 - $A \cap B \in f^{-1}(\mathfrak{B})$, так как $f^{-1}(\Phi \cap \Psi) = f^{-1}(\Phi) \cap f^{-1}(\Psi) = A \cap B$, а $\Phi \cap \Psi \in \mathfrak{B}$.
 - $A\Delta B \in f^{-1}(\mathfrak{B})$, так как $f^{-1}(\Phi\Delta\Psi) = f^{-1}(\Phi)\Delta f^{-1}(\Psi) = A\Delta B$, а $\Phi\Delta\Psi \in \mathfrak{B}$.
 - 3) Пусть E единица в \mathfrak{B} . Тогда $\forall X \in \mathfrak{B} \ X \subseteq E$. Тогда из того, что $\forall A, B \in \mathfrak{B} : A \subseteq B$ выполнено $f^{-1}(A) \subseteq f^{-1}(B)$, следует, что $f^{-1}(E)$ единица в $f^{-1}(\mathfrak{B})$.
 - 4) Пусть $A_1 \dots A_n \dots \in f^{-1}(\mathfrak{B})$, тогда $\exists \ B_1 \dots B_n \dots \in \mathfrak{B} : \ \forall n \ A_n = f^{-1}(B_n)$. Тогда $\bigcup_n A_n \in f^{-1}(\mathfrak{B})$, так как $f^{-1}(\bigcup_n B_n) = \bigcup_n f^{-1}(B_n) = \bigcup_n A_n$, а $\bigcup_n B_n \in \mathfrak{B}$

Из первых двух равенств следует, что $f^{-1}(\mathfrak{B})$ – кольцо, если \mathfrak{B} – кольцо или σ -алгебра, а из последних двух следует, что $f^{-1}(\mathfrak{B})$ – σ -алгебра, только если \mathfrak{B} – σ -алгебра.

Задача 5. Являются ли следующие системы полукольцом, кольцом, алгеброй:

- (a) Полуинтервалы: $S = \{ [\alpha; \beta) | \alpha, \beta \in R \};$
- (b) Все конечные подмножетсва натуральных чисел;
- (с) Все измеримые по Жордану подмножества отрезка [0, 1];
- (d) Все открытые множества на прямой.

Решение. Любая σ -алгебра является алгеброй, любая алгебра является кольцом, любое кольцо является полукольцом.

(а) Докажем что не является кольцом.

Возьмем полуинтервалы A = [0,3) и B = [1,2). $A \triangle B = [0,1) \cap [2,3) \notin S$. Хотя симметрическая разность должна принадлежать кольцу.

Докажем, что является полукольцом.

- $\varnothing \in S$. Возьмем $\alpha = \beta$, $[\alpha, \beta) = \varnothing$, то есть $\varnothing \in S$.
- если $A, B \in S$, то $A \cap B \in S$. Пересечение двух полуинтервалов полуинтервал. Значит пересечение принадлежит полуинтервалу.
- если $A, A_1 \in S$ и $A_1 \subset A$, то существуют конечное число множеств $A_2, A_3, \ldots, A_n \in S$ таких, что $A = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_n$. Очевидно хватит двух $B_1, B_2 \in S$ (возможно пустых), чтобы дополнить A_1 до A.
- (b) Докажем что не является алгеброй.

Назовем множество всех конечных подмножеств натуральных чисел — S. Возьмем $A \subset S$. \overline{A} не будет конечным, значит не будет лежать в S. Значит S не образует алгебру.

Очевидно, что является кольцом.

- S непусто;
- если $A, B \in S$, то $A \cap B \in S$;
- если $A, B \in S$ то $A \triangle B \in S$.
- (с) Является алгеброй.
 - $\varnothing \in S$;

Пустое множество измеримо по Жордану.

- если $A \in S$, то $\overline{A} \in S$; По свойству внешней и внутренней мер.
- если $A, B \in S$, то $A \cup B \in S$; Из определения меры.
- (d) Не является даже полукольцом.

Назовем множество всех открытых множеств на прямой — S. Возьмем $A \in S$ и $B \in S$ такое, что $B \subsetneq A$ и левые концы A и B совпадают. Тогда $A \cap B$ – это полуинтервал, а полуинтервал не является открытым множеством. Значит S не полукольцо.

Задача 6. Доказать, что набор множеств, замкнутый относительно операций

- a) \cap и \cup ,
- b) \cap и \ может не быть кольцом.

Решение.

а) $S = \{\varnothing, \{1\}, \{1,2\}\}$ замкнут относительно \cup и \cap , но кольцом не является, потому что $\{1,2\}\triangle\{1\} = \{2\} \notin S$.

b) $S = \{\varnothing, \{1\}, \{2\}\}$ замкнут относительно \cap и \setminus , но кольцом не является, потому что $\{1\} \triangle \{2\} = \{1, 2\} \notin S$.

Задача 7. Пусть \mathfrak{B}_1 и \mathfrak{B}_2 — две σ -алгебры подмножеств пространства Ω . Являются ли σ -алгебрами классы множеств:

- 1) $\mathfrak{B}_1 \cap \mathfrak{B}_2$;
- 2) $\mathfrak{B}_1 \cup \mathfrak{B}_2$;
- 3) $\mathfrak{B}_1 \setminus \mathfrak{B}_2$;
- 4) $\mathfrak{B}_1 \triangle \mathfrak{B}_2$.

Решение.

- 1) $\mathfrak{B} = \mathfrak{B}_1 \cap \mathfrak{B}_2 \sigma$ -аглебра:
 - a) $\emptyset \in \mathfrak{B}_1$, $\emptyset \in \mathfrak{B}_2 \Rightarrow \emptyset \in \mathfrak{B}$.
 - b) $X,\ Y\in\mathfrak{B}\Rightarrow X,\ Y\in\mathfrak{B}_1;\ X,\ Y\in\mathfrak{B}_2\Rightarrow X\cap Y\in\mathfrak{B};\ X\Delta Y\in\mathfrak{B},$ так как $X\cap Y\in\mathfrak{B}_1,\ X\Delta Y\in\mathfrak{B}_1$ и $X\cap Y\in\mathfrak{B}_2,\ X\Delta Y\in\mathfrak{B}_2.$
 - c) $A_1,\ldots,A_n,\ldots\in\mathfrak{B}\Rightarrow A_1,\ldots,A_n,\ldots\in\mathfrak{B}_1;A_1,\ldots,A_n,\ldots\in\mathfrak{B}_2\Rightarrow\bigcap_nA_n\in\mathfrak{B},$ так как $\bigcap_nA_n\in\mathfrak{B}_1$ и $\bigcap_nA_n\in\mathfrak{B}_2.$
 - d) $\Omega \in \mathfrak{B} \Rightarrow \Omega \in \mathfrak{B}_1; \ \Omega \in \mathfrak{B}_2 \Rightarrow \Omega$ единица в \mathfrak{B} .
- 2) $\mathfrak{B}_1 = \{\mathbb{R}, \varnothing, (-\infty; 1), [1; +\infty)\}$ $\mathfrak{B}_2 = \{\mathbb{R}, \varnothing, (-\infty; 2), [2; +\infty)\}$ $\mathfrak{B}_1 \cup \mathfrak{B}_2 = \{\mathbb{R}, \varnothing, (-\infty; 1), [1; +\infty), (-\infty; 2), [2; +\infty)\}$

Пересечение двух элементов из объединения $(-\infty;2)\cap[1;+\infty)=[1,2)\notin\mathfrak{B}_1\cup\mathfrak{B}_2$, значит объединение не является даже кольцом, поэтому $\mathfrak{B}_1\cup\mathfrak{B}_2$ — не σ -алгебра.

- 3) $\mathfrak{B}_1 = \{\mathbb{R}, \varnothing, (-\infty; 1), [1; +\infty)\}$ $\mathfrak{B}_2 = \{\mathbb{R}, \varnothing, (-\infty; 2), [2; +\infty)\}$ $\mathfrak{B} = \mathfrak{B}_1 \setminus \mathfrak{B}_2 = \{(-\infty; 1); [1; +\infty)\}$ не σ -алгебра, так как $\varnothing \notin \mathfrak{B}$.
- 4) $\mathfrak{B}_1 = \{\mathbb{R},\varnothing,(-\infty;1),[1;+\infty)\}$ $\mathfrak{B}_2 = \{\mathbb{R},\varnothing,(-\infty;2),[2;+\infty)\}$ $\mathfrak{B} = \mathfrak{B}_1 \triangle \mathfrak{B}_2 = \{(-\infty;1),[1;+\infty),(-\infty;2),[2;+\infty)\}$ не σ -алгебра, так как $\varnothing \notin \mathfrak{B}$.

Задача 8. Доказать, что всякая конечная σ -алгебра подмножеств пространства Ω пораждается некоторым конечным разбиением Ω . Доказать, что мощность всякой конечной σ -агебры является степенью двойки.

Решение. Пусть A – наша σ -аглебра с единицей Ω . Рассмотрим разбиение единицы: $\Omega = \bigsqcup_{k=1}^n \Omega_k$, обладающее следующими свойством:

1. Любое множество из разбиения обязано быть только подмножеством каких-то элементов A, то есть нет такого множества $X \in A$ и индекса k, что $X \cap \Omega_k \neq \Omega_k$, при условии, что $X \neq \emptyset$

Такое разбиение существует, так как:

1. В силу того, что A – полукольцо, то существует конечное разбиение Ω .

2. Если текущее разбиение не удовлетворяет условиям, то мы можем каждый элемент разбить еще так, чтобы новое разбиение стало удовлетворять условию (разбивать будем пересекая текущее разбиение и эелементы A).

Заметим, что любой элемент из A – конечное объединение каких-то элементов рашего разбиения. Пусть $Q = \{\Omega_1, \Omega_2, \dots, \Omega_n\}$, тогда $A \subseteq \mathcal{P}(Q)$.

С другой стороны $\mathcal{P}(Q)\subseteq A$, так как любой элемент $\mathcal{P}(Q)$ – конечное объедиенение каких-то элементов Q, а значит элемент должен лежать и в A.

Тогда мы имеем, что $A = \mathcal{P}(Q)$. Откуда следует, что A пораждается конечным разбиением Ω и $|A| = 2^{|Q|}$.

Задача 9. Есть поток сигма-алгебр $F_1 \subset F_2 \subset \dots$ Является ли σ -алгеброй объединение всех этих

Решение. Пусть F_n – σ -алгебра, порожденная $\{\emptyset, \{1\}, \{2\}, \dots, \{n\}, \{n+1, n+2, \dots\}\}$.

Пусть X – множество всех нечентых чисел из \mathbb{N} .

Пусть
$$F = \bigcup_{n=1}^{\infty} F_n$$
.

Пусть $F=\bigcup_{n=1}^\infty F_n$. Тогда F – не σ -алгебра, так как $\forall x\in X$ выполено,что $x\in F$, но $X\notin F$, а значит не выполняется замкнутость относительно счетного объединения ($X \sim \mathbb{N}$).

Задача 10. Существует ли такая счетная система подмножеств R, что $\sigma(R)$ – борелевская σ -алгебра? **Решение.** Для начала рассмторим $\mathfrak{B}(\mathbb{R})$. Заметим, что $\forall X \in \mathfrak{B}(\mathbb{R})$ выполено:

$$X = \bigsqcup_{n} \langle a_n, b_n \rangle,$$

где $a_n, b_n \in \mathbb{R}$ и $a_n \leq b_n$.

Пусть $R=\{(-\infty,a):\ a\in\mathbb{Q}\}\sqcup\{(-\infty,a]:\ a\in\mathbb{Q}\}\sqcup\{(a,+\infty):\ a\in\mathbb{Q}\}\sqcup\{[a,+\infty):\ a\in\mathbb{Q}\}$ Докажем, что $\sigma(R) = \mathfrak{B}(\mathbb{R})$. Доказательство:

- 1. $\sigma(R)$ содержит все промежутки вида $\langle a,b \rangle$, где $a,b \in \mathbb{Q}$.
- 2. из 1. следует, что $\sigma(R)$ содержит все множества вида $\bigsqcup_n \langle a_n, b_n \rangle$, где $a_n, b_n \in \mathbb{Q}$ и $a_n \leq b_n$.
- 3. $\sigma(R)$ содержит все промежутки вида $\langle a,b \rangle$, где $a,b \in \mathbb{R}$, так как рассмторим последовательности a_n,b_n из $\mathbb Q$ такие, что a_n возрастает, b_n убывает и $\lim_{n \to \infty} a_n = a$ и $\lim_{n \to \infty} b_n = b$. Тогда $\langle a,b \rangle = \bigcap_n \langle a_n,b_n \rangle$, откуда следует, что $\langle a,b\rangle$ лежит в $\sigma(R)$
- 4. из того, что $\langle a,b \rangle$ лежит в $\sigma(R)$ следует, что $\sigma(R)$ содержит все множества вида $\bigsqcup \langle a_n,b_n \rangle$, где $a_n,b_n\in\mathbb{Q}$ и $a_n\leq b_n$. Здесь все границы интервалов действительны.

Тогда мы имеем, что $\mathfrak{B}(\mathbb{R}) \subseteq \sigma(R)$.

Из построения R следует, что $\sigma(R) \subseteq \mathfrak{B}(\mathbb{R})$.

Тогда имеем, что $\mathfrak{B}(\mathbb{R}) = \sigma(R)$. А по построению $R \sim \mathbb{Q} \sim \mathbb{N}$.

2. Mepa.

Задача 1. Построить пример полукольца S и такой функции $\varphi: S \to [0; +\infty)$, что $\forall A, B \in S: A \cap B =$ \emptyset и $C = A \sqcup B \in S$ выполнено равенство $\varphi(C) = \varphi(A) + \varphi(B)$, но φ — не мера на S.

Решение. Рассмотрим систему множеств $S=\{\varnothing,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,2,3,4\}\}$. Можно показать, что данная система является полукольцом. Определим на S функцию φ следующим образом:

$$\varphi(\varnothing) = 0$$

$$\varphi(\{1\}) = \varphi(\{2\}) = \varphi(\{3\}) = \varphi(\{4\}) = 1$$

$$\varphi(\{1, 2\}) = 2$$

$$\varphi(\{1, 2, 3, 4\}) = 3$$

Тогда для данной функции выполняется равенство $\varphi(\{1,2\}) = \varphi(\{1\}) + \varphi(\{2\})$, однако φ не является мерой на S, т.к. $\varphi(\{1,2,3,4\}) = 3 \neq 4 = \varphi(\{1,2\}) + \varphi(\{3\}) + \varphi(\{4\})$.

Задача 2. Пусть m — мера на полукольце S. Докажите, что

- (a) если множества A и B принадлежат S и $B \subseteq A$, то $m(B) \leqslant m(A)$.
- (b) $m(\emptyset) = 0$
- (c) Если $A, B, A \cup B \in S$, то $m(A \cup B) = m(A) + m(B) m(A \cap B)$
- (d) Если $A, B, A \triangle B \in S$ и $m(A \triangle B) = 0$, то m(A) = m(B)

Решение.

(a) Из определения полукольца следует, что $\exists B_1, \dots, B_n \in S$:

$$A \setminus B = \bigsqcup_{i=1}^{n} B_i$$

Тогда из аддитивности меры получим, что

$$m(A) = m(B) + \sum_{i=1}^{n} m(B_i)$$
 (1)

В силу неотрицательности меры (1) влечет за собой неравентво $m(B) \leqslant m(A)$.

- (b) T.k $\varnothing \cap \varnothing = \varnothing$, to $\varnothing = \varnothing \sqcup \varnothing \to m(\varnothing) = m(\varnothing \sqcup \varnothing) = m(\varnothing) + m(\varnothing) \to m(\varnothing) = 0$.
- (c) Т.к $A \cup B = (A \setminus B) \sqcup B$ и $A \cup B \in S$, то $\exists B_1, \dots, B_n \in S$:

$$A \setminus B = \bigsqcup_{i=1}^{n} B_i$$

Тогда в силу аддитивности меры

$$m(A \cup B) = m(B) + \sum_{i=1}^{n} m(B_i)$$
 (2)

С другой стороны, $A = (A \cap B) \sqcup (A \setminus B)$ и $A \cup B \in S$ по определению полукольца, поэтому

$$m(A) = m(A \cap B) + \sum_{i=1}^{n} m(B_i)$$
(3)

Вычитая (2) из (3), получим

$$m(A \cup B) - m(A) = m(B) - m(A \cap B) \to m(A \cup B) = m(A) + m(B) - m(A \cap B),$$

ч.т.д.

(d) Пусть $A \setminus B = \bigsqcup_{i=1}^n A_i, \ B \setminus A = \bigsqcup_{j=1}^k B_j; \ A_j, B_j \in S$ (аналогично задачам 1 и 3). Тогда, т.к $A \triangle B = (A \setminus B) \sqcup (B \setminus A)$

$$m(A\triangle B) = \sum_{i=1}^{n} m(A_i) + \sum_{j=1}^{k} m(B_j)$$

Т.к $m(A\triangle B)=0$ и m неотрицательна,

$$\sum_{i=1}^{n} m(A_i) = \sum_{j=1}^{k} m(B_j) = 0.$$
(4)

Воспользовавшись тем, что $A = (A \cap B) \sqcup (A \setminus B)$ и $B = (A \cap B) \sqcup (B \setminus A)$ и равенством (4), получим, что $m(A) = m(A \cap B) = m(B)$.

Задача 3.

- (a) Пусть S полукольцо с мерой m, а $S_1 = \{A \in S : m(A) = 0\}$. Доказать, что S_1 полукольцо.
- (b) Пусть \mathcal{R} кольцо с мерой m, а $\mathcal{R}_1 = \{A \in \mathcal{R} : m(A) = 0\}$. Доказать, что \mathcal{R}_1 кольцо.
- (c) Пусть \mathcal{A} алгебра с мерой m, а $\mathcal{A}_1 = \{A \in \mathcal{A} : m(A) = 0\}$. Верно ли, что \mathcal{A}_1 алгебра?

Решение.

- (а) Проверим выполнение соответствующих определений:
 - 1) $\varnothing \in \mathcal{S}_1$, t.k $m(\varnothing) = 0$.
 - 2) Пусть $A, B \in \mathcal{S}_1$. Тогда $A, B \in \mathcal{S}, m(A) = 0$ и m(A) = 0. Из этого следует, что $m(A \cap B) = 0$, т.е $A \cap B \in \mathcal{S}_1$.
 - 3) Пусть $A, B \in \mathcal{S}_1, A \subset B$. Тогда $\exists B_1, \dots, B_n \in \mathcal{S} : A = B \sqcup B_1 \sqcup \dots \sqcup B_n$. Т.к. $A \in \mathcal{S}_1$, то m(A) = 0. Но тогда, т.к $B, B_1, \dots, B_n \subset A$, меры всех множеств B, B_1, \dots, B_n равны нулю. Следовательно $B, B_1, \dots, B_n \in \mathcal{S}_1$.
- (b) Аналогично предыдущему пункту:
 - 1) $\varnothing \in \mathcal{R}_1$ (т.к $m(\varnothing) = 0$), следовательно, \mathcal{R}_1 непусто.
 - 2) Проверка пересечения множеств аналогична пункту ((а)).
- (c) Пусть \mathcal{A} все подмножества отрезка [0,1], измеримые по Жордану, тогда в \mathcal{A}_1 будут все точки отрезка [0,1], но в \mathcal{A}_i не будет множества, содержащего их все, поэтому в \mathcal{A}_1 не будет единицы.

Задача 4. Пусть $m-\sigma$ -аддитиваня мера на полукольце S, множества A,A_1,\ldots,A_i,\ldots придлежат S, причем $A_1\supseteq A_2\supseteq\ldots$ и

$$A = \bigcap_{i=1}^{\infty} A_i.$$

Доказать, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Это свойство меры называется непрерывностью.

Решение. Рассмотрим $\{A_n\} \in S$ такую, что $A_1 \supseteq A_2 \supseteq A_3 \dots$, и $A = \bigcap_{n=1}^{\infty} A_n$. Обозначим $B_i = A_i \setminus A_{i+1}$, тогда $A_1 \setminus A = \bigsqcup_i B_i = \bigsqcup_i \bigsqcup_i C_{i,j}$, где $C_{i,j} \in S$

$$m(A_1) - m(A) = \sum_{i} \sum_{j} m(C_{i,j}) = \lim_{k \to \infty} \sum_{i=1}^{k-1} \sum_{j=1}^{j_i} m(C_{i,j}) = \lim_{k \to \infty} \sum_{i=1}^{k-1} (m(A_i) - m(A_{i+1})) = m(A_1) - \lim_{i \to \infty} m(A_i)$$

чтд.

Задача 5. Пусть m – мера на кольце R и для любых таких множеств $A, A_1, \ldots, A_i, \ldots$ из R, что $A_1 \supseteq$ $A_2 \supseteq \dots$ и

$$A = \bigcap_{i=1}^{\infty} A_i.$$

выполнено равенство

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Доказать, что $m-\sigma$ -аддитивная мера. Или иначе: доказать σ -аддитивность непрерывной меры. Показать, что это утверждение может не быть справедливым для меры на полукольце.

Решение.

Задача 6. Построить пример меры на полукольце, которая не является σ -аддитивной.

Решение. Пусть $S = \{(a, b] \cap \mathbb{Q} : a, b \in \mathbb{R}, a \leq b\}$. Пусть $\mu((a, b) \cap \mathbb{Q}) = b - a$.

Понятно, что S – полукольцо, а μ – мера на нём.

Докажем, что μ – не σ -аддитивна:

Рассмторим $E=(0,1]\cap\mathbb{Q}$. Так как $E\sim\mathbb{N}$, то занумеруем точки $E:E=\{r_n\}$.

Построим последовательность множеств $\{A_n\}$ по индукции:

1.
$$A_1 = (max(0, r_1 - \frac{1}{2^3}), r_1] \cap \mathbb{Q}$$
.

2. Пусть
$$k_{n+1} = \inf\{j \ge 1: r_j \notin \bigsqcup_{k=1}^n A_k\}$$

3. Положим
$$A_{n+1}=(r_{n_{k+1}}-x_{n+1},r_{n_{k+1}}]\cap\mathbb{Q}$$
, где $x_{n+1}\in(0,2^{-n-3})$ такое, что $A_{n+1}\cap\left(\bigsqcup_{k=1}^{n}A_{k}\right)=\varnothing$.

Тогда
$$E=\bigsqcup_{n=1}^{\infty}A_{n}.$$

Найдем меру E :

1.
$$\mu(E) = 1 - 0 = 1$$

2.
$$\mu(E) = \mu(\prod_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} x_n \le \sum_{n=1}^{\infty} \frac{1}{2^{2+n}} = \frac{1}{4}$$

Таким образом, мы получили, что μ – не σ -аддитивная мера на S.

Задача 7. Пусть $m - \sigma$ -аддитивная мера на полукольце S, множества $A, A_1, \ldots A_i, \ldots$ принадлежат S, причем $A_1 \subseteq A_2 \subseteq \ldots$ и

$$A = \bigcup_{i=1}^{\infty} A_i.$$

Доказать, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Решение. Определим для каждого $i\geqslant 1$ множество $B_i=A_{i+1}\setminus A_i$. Тогда

$$A \setminus A_1 = \bigsqcup_{i=1}^{\infty} B_i.$$

Так как S — полукольцо, то $\forall k \; \exists C_1, \ldots, C_{j_k} \in S$, такое что

$$B_k = \bigsqcup_{j=1}^{j_k} C_j.$$

Отсюда получим, что

$$m(A) - m(A_1) = \sum_{i=1}^{\infty} \sum_{j=1}^{j_i} m(C_j) = \lim_{i \to \infty} \sum_{k=1}^{i-1} \sum_{j=1}^{j_k} m(C_j) = \lim_{i \to \infty} (\sum_{k=1}^{i-1} (m(A_{k+1}) - m(A_k))) = \lim_{i \to \infty} (m(A_i) - m(A_1)) = \lim_{i \to \infty} m(A_i) - m(A_1).$$

Из этого следует, что

$$m(A) = \lim_{i \to \infty} m(A_i).$$

Задача 8. Пусть m — мера на кольце R и для любых таких множеств $A, A_1, \dots A_i, \dots$ из R, что $A_1 \subseteq A_2 \subseteq \dots$ и

$$A = \bigcap_{i=1}^{\infty} A_i$$

выполняется

$$m(A) = \lim_{i \to \infty} m(A_i). \tag{5}$$

Докажите, что m — σ -аддитивная мера. Показать, что это утверждение может не быть справедливым для меры на полукольце.

Решение. Пусть $B, B_1, \dots B_i, \dots$ принадлежат R и

$$B = \bigsqcup_{i=1}^{\infty} B_i.$$

Определим множества

$$C_l = \bigsqcup_{i=1}^l B_i = B \setminus \left(\bigsqcup_{i=l+1}^{\infty} B_i\right), l = 1, 2, \dots$$

Тогда $C_1 \subseteq C_2 \subseteq \dots$ и

$$\bigcup_{l=1}^{\infty} C_l = B.$$

Тогда множества C_1, C_2, \dots удовлетворяют условию (5), следовательно

$$m(B) = \lim_{l \to \infty} m(C_l).$$

Если нашлось такое n, что $m(B_n) = +\infty$, то очевидным образом

$$m(B) = +\infty = \sum_{i=1}^{\infty} m(B_i).$$

Иначе

$$m(B) = \lim_{l \to \infty} m(C_l) = \lim_{l \to \infty} m\left(\bigsqcup_{i=1}^{l} B_i\right) = \lim_{l \to \infty} \sum_{i=1}^{l} m(B_i) = \sum_{i=1}^{\infty} m(B_i),$$

что и требовалось доказать.

Рассмотрим полукольцо $S=\{\langle a,b\rangle\cap\mathbb{Q}:0\leqslant a\leqslant b\leqslant 1\}\cup\{\varnothing\}$ и меру $m(\langle a,b\rangle)=b-a$ (аналогично задаче 5). Покажем, что m непрерывна, но не σ -аддитивна.

Пусть $\mathbb{Q} \cap [0,1] = \{r_n\}_{n=1}^{\infty}$. Заметим, что для любого $n \ m(\langle r_n, r_n \rangle) = 0$. Поэтому

$$1 = m(\mathbb{Q} \cap [0, 1]) = m\left(\bigsqcup_{i=1}^{\infty} m(\langle r_n, r_n \rangle)\right) \neq \sum_{i=1}^{\infty} m(\langle r_n, r_n \rangle) = 0,$$

т.е m не σ -аддитивна.

Пусть теперь $A, A_1, \dots \in S : A_1 \subseteq A_2 \subseteq \dots$ и

$$A = \bigcup_{i=1}^{\infty} A_i.$$

Если $A = \langle a, b \rangle, A_i = \langle a_i, b_i \rangle$, то $a_i \to a, b_i \to b$. Следовательно,

$$\lim_{i \to \infty} m(A_i) = \lim_{i \to \infty} (b_i - a_i) = b - a = m(A),$$

т.е мера m непрерывна.

Задача 9. Показать, что в случае σ -конечной меры понятия непрерывности и σ -аддитивности не равносильны.

Решение. Пусть m — классическая мера Лебега на \mathbb{R} . Пусть $A_i = [i, +\infty)$. Тогда

$$\bigcap_{i=1}^{\infty} = \varnothing.$$

Однако

$$\lim_{i \to \infty} m(A_i) = +\infty \neq 0 = m(\varnothing).$$

3. Внешняя мера. Мера Лебега.

Задача 1. Доказать, что если вопреки определению верхней меры, мера m не σ -аддитивна, то найдется такое множество $A \in S$, для которого $\mu^*(A) < m(A)$.

Решение. По условию, $\exists A \in S$ и $\{A_n\}_{n=1}^{\infty} \in S$ такие, что

$$A = \bigsqcup_{n=1}^{\infty} A_n \text{ if } m(A) \neq \sum_{n=1}^{\infty} m(A_n). \tag{6}$$

По свойству m, получаем:

$$\mu^*(A) \le \sum_{n=1}^{\infty} m(A_n) < m(A).$$
 (7)

Задача 2. Пусть $A \in X$ и $B \in X$. Показать, что $\mu^*(A \cup B) \leq \mu^*(A) + \mu^*(B)$.

Решение. Пусть дано $\varepsilon > 0$. Тогда для A и B можно найти такие $\{A_n\}_{n=1}^{\infty}, \{B_n\}_{n=1}^{\infty} \in S$, что:

$$A \subseteq \bigcup_{n=1}^{\infty} A_n, \mu^*(A) \ge \sum_{n=1}^{\infty} m(A_n) - \frac{\varepsilon}{2};$$
$$B \subseteq \bigcup_{n=1}^{\infty} B_n, \mu^*(B) \ge \sum_{n=1}^{\infty} m(B_n) - \frac{\varepsilon}{2}.$$

Тогда

$$A \cup B \subseteq \bigcup_{n=1}^{\infty} (A_n \cup B_n). \tag{8}$$

откуда следует:

$$\mu^* (A \cup B) \le \sum_{n=1}^{\infty} m(A_n) + \sum_{n=1}^{\infty} m(B_n) \le \mu^*(A) + \mu^*(B) + \varepsilon.$$
 (9)

В силу произвольности ε получаем требуемое неравенстов:

$$\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B). \tag{10}$$

Задача 3. Пусть $A \subseteq X$ и $B \subseteq X$. Докажите, что

$$\mu^*(A \cup B) + \mu^*(A \cap B) \le \mu^*(A) + \mu^*(B).$$

Решение.

Задача 4. Докажите, что если $E \subseteq \mathbb{R}$ измеримо, то для любого $A \subseteq \mathbb{R}$ выполено

$$\mu^*(A) = \mu^*(A \setminus E) + \mu^*(A \cap E)$$

Решение.

- 1. Пусть $A \cap E \subseteq \bigcup B_i, A \setminus E \subseteq \bigcup C_j$, тогда $A \subseteq (\bigcup B_i) \cup (\bigcup C_j)$. Тогда: $\mu^*(A) \le \sum m(B_i) + \sum m(C_j) \to \mu^*(A) \le \mu^*(A \cup E) + \mu^*(A \setminus E)$ (По предельному переходу).
- 2. Пусть $E\subseteq\bigcup E_i^\delta$, причем $\mu^*(E\Delta\bigcup E_i^\delta)<\delta; A\subseteq\bigcup A_j.$

Тогда: $A \setminus \bigcup E_i^\delta \subseteq (\bigcup A_j) \setminus (\bigcup E_i^\delta)$

и
$$\mu^*(A\setminus\bigcup E_i^\delta)\leq m((\bigcup A_j)\setminus(\bigcup E_i^\delta))=m(\bigcup A_j)-m((\bigcup A_j)\cap(E_i^\delta)).$$

$$\mu^*(A \cap (\bigcup E_i^{\delta})) \le m((\bigcup A_j) \cap (\bigcup E_i^{\delta})).$$

Тогда: $\mu^*(A\cap\bigcup E_i^\delta)+\mu^*(A\setminus\bigcup E_i^\delta)\leq m(\bigcup A_i)\to \mu^*(A\cap\bigcup E_i^\delta)+\mu^*(A\setminus\bigcup E_i^\delta)\leq \mu^*(A)$ тогда используя предельный переход по δ имеем: $\mu^*(A\cap E)+\mu^*(A\setminus E)\leq \mu^*(A)$

Таким обоазом, $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E)$.

Задача 5. Доказать, что в случае классической меры Жордана система множеств \mathfrak{M}_J не является σ -алгеброй. Привести пример меры m, когда она является σ -алгеброй.

Решение. Пусть $\mathbb{Q}_{[0,1]} = \{r_n\}_{n=1}^{\infty}$ — множество рациональных чисел отрезка [0,1]. Тогда $\forall n: \{r_n\} \in \mathfrak{M}_J, \mu_J(\{r_n\}) = 0$, но $\mathbb{Q}_{[0,1]} = \bigsqcup_{n=1}^{\infty} \{r_n\} \not\in \mathfrak{M}_J$ (не измеримо по Жордану).

Если вместо классической меры взять в качестве m взять тождественный ноль на σ -алгебре $2^{\mathbb{R}}$, то μ_J^* на всех подмножествах \mathbb{R} будет равняться 0, откуда будет следовать, что $\mathfrak{M}_J=2^{\mathbb{R}}$. (???)

Задача 6. Пусть множество $E \subseteq \mathbb{R}$ имеет положительную меру Лебега. Докажите, что множество $E-E=\{x-y: x,y\in E\}$ содержит интервал с центром в 0.

Решение. Пусть дано $\varepsilon>0$. Рассмотрим такие множества K - компакт, O - октрытое множество, что:

$$K \subseteq E \subseteq O, \mu(K) + \varepsilon > \mu(E) > \mu(O) - \varepsilon.$$
 (11)

Пусть также $2\mu(K) > \mu(O)$.

Возьмем такую δ , что $\forall k \in K \Rightarrow U_{\delta}(k) \subseteq O$. Тогда $U_{\delta/2}(k) \subseteq U_{\delta}(k) \subseteq O$. Рассмотрим следующее множество $\{U_{\delta/2}(k): k \in K\}$ – открытое покрытие компакта. Тогда в нем можно выбрать конечное покрытие $\{U_{\delta/2}(k_1), \ldots, U_{\delta/2}(k_n)\}$.

Тогда ('+' - сумма Минковского):

$$K + (-\delta/2; \delta/2) \subset \bigcup_{i=1}^{n} U_{\delta/2}(k_i) + (-\delta/2; \delta/2) \subset \bigcup_{i=1}^{n} U_{\delta}(k_i) \subset O.$$

$$(12)$$

Покажем, что $\forall v \in (-\delta/2; \delta/2) \Rightarrow (K+v) \cap K \neq \emptyset$. Пусть это не так:

$$\forall v \in (-\delta/2; \delta/2) \Rightarrow (K+v) \cup K \subset K + (-\delta/2; \delta/2) \subset O$$

$$\mu(K+v) + \mu(K) < \mu(O)$$

$$\exists v \in (-\delta/2; \delta/2) : (K+v) \cap K = \emptyset \Rightarrow A = (K+v) \sqcup K$$

$$\mu(A) = \mu(K+v) + \mu(K) = 2\mu(K) < \mu(O).$$

Что противоречит выбору K и O.

В итоге получаем:

$$\forall v \in (-\delta/2; \delta/2) \Rightarrow \exists k_1, k_2 \in K \subseteq E : v + k1 = k2. \implies (-\delta/2; \delta/2) \subset E - E. \tag{13}$$

Задача 7. Построить такие неизмеримые относительно классической меры Лебега на [0;1] множества A_1, A_2 , что $A_1 \cup A_2$ измеримо.

Решение. Возьмем в качестве A_1 – множество Витали на [0;1], A_2 - его дополнение. Множество Витали не измеримо. Пусть его дополнение измеримо. Но тогда множество Витали было бы измеримым. Следовательно, A_2 неизмеримо. $A_1 \cup A_2 = E = [0;1]$, то есть их объединение измеримо.

Определение 1. Множество Витали - неизмеримое по Лебегу множество. Его построение:

Рассмотрим такое отношение эквивалентности $\sim: x \sim y$, если $x-y \in \mathbb{Q}$. Это отношение разбивает [0;1] на классы эквивалентности. Выберем по представителю в каждом классе. Полученное множество A будет неизмеримым.

Утверждение 1. Множество Витали неизмеримо.

Доказательство. Занумеруем все рациональные числа на [-1;1]. Получим следующую последовательность $\{r_n\}_{n=1}^{\infty}$. Пусть $A_n = A + r_n$. Докажем, что полученные множества не пересекаются. Пусть это не так. Тогда

$$\exists x = a_n + r_n = a_m + r_m, n \neq m. \tag{14}$$

Но тогда $a_m - a_n \in \mathbb{Q}$, а значит a_n и a_m лежат в одном множестве. Противоречие.

Пусть в A_n находится измеримое множество C_n с мерой d>0. Тогда

$$\forall m \exists C_m \subseteq A_m : \mu(C_m) = d. \tag{15}$$

Но

$$\bigsqcup_{n=1}^{\infty} C_n \subseteq \bigsqcup_{n=1}^{\infty} A_n \subseteq [-1; 2], \tag{16}$$

откуда

$$\sum_{n=1}^{\infty} \mu(C_n) = \sum_{n=1}^{\infty} d \le 3.$$
 (17)

Противоречие.

С другой стороны,

$$[0;1] \subseteq \bigsqcup_{n=1}^{\infty} A_n. \tag{18}$$

Если мера A_n равна нулю, то и сумма тоже будет равна нулю. Но $\mu([0;1])=1$. Противоречие. Следовательно, множество Витали неизмеримо.

Задача 8. Пусть $A \in \mathfrak{M}, \mu(A) = 0$ и $B \subset A$. Докажите, что $B \in \mathfrak{M}$ и $\mu(B) = 0$.

Решение. Так как $B\subset A$, то $\mu^*(B)\leqslant \mu^*(A)=\mu(A)=0$. Докажем, что если $\mu^*(B)=0$, то $B\in\mathfrak{M}$, т.е $\forall \varepsilon>0 \exists A_\varepsilon: \mu^*(A\triangle A_\varepsilon)<\varepsilon$. Взяв в определении $A_\varepsilon=\varnothing$ для всех $\varepsilon>0$, получим, что $B\in\mathfrak{M}$ и $\mu(B)=\mu^*(B)=0$

Задача 9. Пусть μ — классическая мера Лебега на [0,1]. Построить такую последовательность $\{A_i\}$ множеств из \mathfrak{M} , что

$$\mu(\liminf_{i\to\infty} A_i) < \underline{\lim}_{i\to\infty} \mu(A_i)$$

Решение. Пусть $A_{2n-1}=\left(0,\frac{1}{2}\right), A_{2n}=\left(\frac{1}{2},1\right), n\in\mathbb{N}.$ Тогда $\mu(A_n)=\frac{1}{2}$ при каждом n. Но т.к $A_{2n-1}\cap A_{2n}=\varnothing,$

$$\mu(\liminf_{i\to\infty}A_i)=\mu(\varnothing)=0.$$

4. Измеримые функции.

Задача 1. Доказать (не опираясь на критерий измеримости), что если функции f(x) и g(x) измеримы, то и множество $\{x: f(x) < g(x)\}$ измеримо. Получить отсюда, что f(x) + g(x) - измеримая функция.

Решение. $\{x: f(x) < g(x)\} = \bigcup_{n=1}^{\infty} (\{x: f(x) < r_n\} \cap \{x: r_n < g(x)\})$, где r_n - последовательность рационых чисел. Так как справа все множества измеримы, то и исходное тоже измеримо.

 $(f+g)(x):\{x\in X\mid f(x)+g(x)>C\}=\{x\in X\mid f(x)>C-g(x)\},$ где f(x) и g(x) – измеримы, значит f+g измеримая.

Задача 2. Пусть (X,M,μ) — измеримое пространство, $A\subseteq X$ и $f(x)=\mathbb{I}_A(x)$. Доказать, что f(x) измерима на X тогда и только тогда, когда $A\in M$.

Решение.

$$\forall c < 0 \Rightarrow f^{-1}((c, +\infty)) = X \in M.$$

$$\forall c > 1 \Rightarrow f^{-1}((c; +\infty)) = \emptyset \in M$$

 $\forall c \in [0,1] \Rightarrow f^{-1}((c;+\infty)) = A$. Следовательно, функция измерима тогда и только тогда, когда $A \in M$.

Задача 3. Пусть μ – классическая мера Лебега на [0;1]. Построить такую неизмеримую функцию $f:[0;1] \to \mathbb{R}$, что для любого $c \in \mathbb{R}$ множество $f^{-1}(\{c\})$ измеримо.

Решение. Пусть E - неизмеримое множество. Тогда:

$$f(x) = \begin{cases} x, \text{ если } x \in E \\ -x, \text{ если } x \notin E \end{cases}$$
 (19)

f(x) - неизмеримо. Действительно, $f^{-1}((0,+\infty))$ не измеримо. Но $\forall c \in \mathbb{R} \Rightarrow f^{-1}(\{c\})$ — точка $\Rightarrow f^{-1}(\{c\})$ — измеримо.

Задача 4. Пусть (X, M, μ) — измеримое пространство, $\{a_n\}_{n=1}^{\infty}$ — всюду плотное множество в \mathbb{R} , а функция $f: X \to \mathbb{R}$ такова, что

$$\forall n f^{-1}((a_n, +\infty)) \in M.$$

Доказать, что f(x) измерима на X.

Решение. Возьмем произвольное $c \in \mathbb{R}$. Т.к $\{a_n\}$ всюду плотно в \mathbb{R} , то найдется подпоследовательность $\{a_{n_k}\}_{k=1}^{\infty}$, такая что $a_{n_k} \downarrow c$ при $k \to \infty$. Тогда

$$f^{-1}((c,+\infty)) = \bigcup_{k=1}^{\infty} f^{-1}((a_{n_k},+\infty)) \in M.$$

Задача 5. Построить функцию f(x) на [0,1], измеримую на [0,1] относительно классической меры Лебега на [0,1], но разрывную в каждой точке.

Решение. Функция Дирихле на [0, 1]

$$f(x) = egin{cases} 1, \mathbf{e}$$
сли $x \in [0,1] \cap \mathbb{Q} \\ 0, \mathbf{e}$ сли $x \in [0,1] \setminus \mathbb{Q} \end{cases}$

измерима, т. к $f^{-1}(\{1\})=[0,1]\cap\mathbb{Q}, f^{-1}(\{0\})=[0,1]\setminus\mathbb{Q}$ — измеримые множества. При этом f разрывна в каждой точке.

Задача 6. Пусть (X, M, μ) — полное измеримое пространство (т.е мера μ полна), а f(x) — измеримая функция на A. Пусть g(x) — функция, эквивалентная f(x). Доказать, что g(x) — измеримая на A функция.

Решение. Пусть $A_0 = \{x \in A : f(x) \neq g(x)\}$. Т.к мера μ полна, то любое множество $B \subseteq A_0$ измеримо. Для каждого $c \in \mathbb{R}$ определим множества $B_1 = \{x : f(x) \leqslant c, g(x) > c$ и $B_2 = \{x : g(x) \leqslant c, f(x) > c\}$. Множества $B_1, B_2 \subseteq A_0$ и для каждого $c \in \mathbb{R}$ выполнено равенство

$$g^{-1}((c, +\infty]) = (f^{-1}((c, +\infty]) \cup B_1) \setminus B_2.$$

Отсюда q(x) измерима на A.

Задача 7. Пусть $[a,b] \subset \mathbb{R}$ и функция f монотонна на [a,b]. Доказать, что f измерима относительно классической меры Лебега на [a,b].

Решение. Пусть для определенности f(x) — невозрастающая на [a,b] функция. Тогда для всех $c \in \mathbb{R}$ множество $f^{-1}((c,+\infty])$ является либо полуинтервалом $[a,d), d \in (a,b]$, либо отрезком $[a,d], d \in [a,b]$, либо пустым. Следовательно, оно измеримо, а значит f(x) измерима.

Задача 8. Построить такую функцию $f(x) \in C([0,1])$, что для некоторого множества $A \subset [0,1]$ меры нуль множество f(A) измеримо и $\mu(f(A)) > 0$, где μ — классическая мера Лебега.

Решение. Рассмотрим функцию $f(x) = \frac{1}{2}(x + \varphi(x))$, где $\varphi(x)$ — канторова лестница. Функция f(x) непрерывна и монотонна, f([0,1]) = [0,1]. Пусть также P_0 — канторово множество, $\mu(P_0) = 0$. Тогда

$$G = [0, 1] \setminus P_0 = \bigsqcup_{n=1}^{\infty} (a_n, b_n).$$

Для каждого интервала $\mu(f((a_n,b_n)))=\frac{1}{2}(b_n-a_n)$, и т.к $\mu(G)=1$, мера множества f(G) равна $\frac{1}{2}$. Тогда $\mu(f(P_0))=\mu(f([0,1]))-\mu(f(G))=1-\frac{1}{2}=\frac{1}{2}$.

Задача 9. Построить такую строго монотонную функцию $f(x) \in C([0,1])$, что для некоторого множества $A \subset [0,1]$ меры нуль множество f(A) измеримо и $\mu(f(A)) > 0$, где μ — классическая мера Лебега.

Решение. См. предыдущую задачу.

Задача 10. Построить функцию $f(x) \in C([0,1])$ и измеримое множество $A \subset \mathbb{R}$, для которых множество $f^{-1}(A)$ неизмеримо относительно классической меры Лебега.

Решение. Рассмотрим функцию $\psi(x)=\frac{1}{2}(x+\varphi(x))$, где $\varphi(x)$ — канторова лестница. Функция $\psi(x)$ непрерывна и монотонна, следовательно, существует непрерывная функция $f(y)=\psi^{-1}(y):[0,1]\to [0,1]$. Пусть также P_0 — канторово множество. В $\psi(P_0)$ существует неизмеримое подмножество, обозначим его B. Пусть теперь $A=f(B)=\psi^{-1}(B)$. Тогда $A\subset P_0$, следовательно $A\in\mathfrak{M}$ и $\mu(A)=0$ в силу полноты меры Лебега, но $f^{-1}(A)=B\notin\mathfrak{M}$.

Задача 11. Построить такую функцию $g(x) \in C([0,1])$, что для некоторого измеримого множество $A \subset [0,1]$ с $\mu(A) = 0$, для которых множество g(A) неизмеримо относительно классической меры Лебега.

Решение. Пусть A — множество, построенное в предыдущей задаче. Возьмем $g(x) = \psi(x)$. Тогда $g(A) = B \notin \mathfrak{M}$.

Задача 12. Построить множество $A \subset [0,1]$, которое измеримо относительно классической меры Лебега, но не является борелевским.

Решение. Пусть A — множество, построенное в двух предыдущих задачах. Предположим, что A борелевское. Тогда, т.к f измерима, то измеримо множество $f^{-1}(A)$. Однако $f^{-1}(A) = B \notin \mathfrak{M}$. Следовательно, A не является борелевским множеством.

5. Сходимость.

Задача 2. Показать, что вообще говоря из сходимости п.в. не следует сходимость по мере в случае, когда мера σ -конечна.

Решение. Рассмотрим $f_n(x)=\mathbf{I}_{[-n;n]}$ на \mathbb{R} . Тогда при $n\to\infty\hookrightarrow\mu(\{x\mid f_n(x)\nrightarrow 1\})=\{\varnothing\}=0$ (так как $\forall x\;\exists n=\lceil x\rceil\hookrightarrow f_n(x)=1$). Но при этом $\mu(\{x\mid |f_n(x)-1|>\frac{1}{2}\})=\mu((-\infty;n)\cap(n;+\infty))\neq 0$.

Задача 3. Пусть последовательность неотрицательных функций $\{f_n\}_{n=1}^\infty$ сходится по мере к f(x) на A. Доказать, что $f(x)\geqslant 0$ п.в. на A.

Решение. Т.к f_n сходится по мере к f, существует подпоследовательность $\{f_{n_k}\}_{k=1}^{\infty}$, т.ч. $f_{n_k} \to f$ почти всюду. Т.к $\forall x \ f_{n_k}(x) \geqslant 0$, применяя теорему о предельном переходе в неравенствах, получим, что $f(x) \geqslant 0$ п.в. на A.

Задача 4. Пусть $\mathbb{Q}[0,1] = \{r_n\}_{n=1}^{\infty}$,Доказать, что последовательность

$$f_n(x)=egin{cases} 0,\ ext{если}\ x=r_n\ rac{1}{\sqrt{n}(x-r_n},\ ext{если}\ x\in[0,1]\setminus\{r_n\} \end{cases}$$

сходится по классической мере Лебега на [0, 1].

Решение. Пусть дано $\varepsilon > 0$. Тогда

$$E_n = \{x \in [0,1] : f_n(x) > \varepsilon\} = \left(\left(r_n - \frac{1}{\sqrt{n\varepsilon}}, r_n - \frac{1}{\sqrt{n\varepsilon}} \right) \setminus r_n \right) \cap [0,1]$$

для $n \in \mathbb{N}$. Тогда

$$\mu(E_n)\leqslant rac{2}{\sqrt{n}arepsilon} o 0$$
 при $n o \infty$

Следовательно, f_n сходится по классической мере Лебега на [0,1].

Задача 5. Пусть $\mathbb{Q}[0,1]=\{r_n=\frac{p_n}{q_n}\}_{n=1}^\infty$, где p_n,q_n — взаимно простые натуральные числа, $n\in\mathbb{N}$. Доказать, что последовательность $\{f_n(x)\}_{n=1}^\infty$, где $f_n(x)=e^{(-p_n-q_nx)^2}$ сходится по классической мере Лебега на [0,1], но не сходится ни в одной точке.

Решение. Пусть $\delta \in (0, \frac{1}{2})$. Если $x \in [0, 1] \setminus (r_n - \delta, r_n + \delta)$, то $f_n(x) \leqslant e^{-q_n^2 \delta^2} \to 0$ при $n \to \infty$. Поэтому для любого $\varepsilon > 0$ существует такое N, что при n > N справедлива оценка:

$$\mu(\lbrace x \in [0,1] : f_n(x) > \varepsilon \rbrace) \leqslant \mu(r_n - \delta, r_n + \delta) = 2\delta$$

, т.е $\{f_n\}$ сходится по мере к 0 на [0,1].

Покажем, что $f_n(x)$ не сходится ни в одной точке. Из того, что любое действительное число можно со сколь угодно большой точностью приблизить рациональным, следует, что для любого простого q существует $r_m = \frac{p_m}{q} : 0 < |r_m - x_0| \leqslant \frac{1}{q}$. Тогда

$$f_m(x_0) = e^{-q^2(r_m - x_0)^2} \geqslant e^{-1}.$$

Таким образом, существует подпоследовательность, не сходящаяся к нулю, следовательно $f_n(x)$ не сходится к 0 поточечно. С другой стороны $f_n(x)$ не может сходиться к f(x), отличной от нуля, т.к это противоречит сходимости к нулю по мере.

Задача 6. Показать, что утверждение теоремы Егорова не выполняется для классической меры Лебега.

Решение. Теорема Егорова: Пусть $\mu(A) < \infty$, $f_n(x) \to f(x)$ п.в на A. Тогда $\forall \varepsilon > 0$ существует такое измеримое множество $E_\varepsilon \subseteq A$, что $\mu(A \setminus E_\varepsilon) < \varepsilon$ и последовательность $\{f_n(x)\}$ равномерно сходится на E.

Пусть $f_n(x)=\mathbb{I}_{[-n,n]}(x)$. В силу задачи 2 $f(x)\to 1$, однако $\mu(\{x\in\mathbb{R}:|f_n(x)-1|<\frac{1}{2}\})=\infty$ при всех n. Следовательно, условие теоремы Егорова не выполняется.

6. Интеграл Лебега.

Задача 1. Поймите, что функция $f(x) = \mathbb{I}(x \in \mathbb{Q})$ интегрируема на \mathbb{R} , найдите величину интеграла. **Решение.** 0

Задача 2. Пусть $f(x) = \frac{1}{x}$ и μ — классическая мера Лебега на (0;1). Доказать, что

$$\int_{0}^{1} f(x)d\mu = \infty,$$

используя только определение интеграла Лебега.

Решение.

Задача 3. Верно ли, что функция $f(x) = \frac{\sin x}{x}$ интегрируема по Лебегу на прямой? **Решение.**

$$f(x)=\frac{\sin x}{x}$$

$$\int_{\pi(n-1)}^{\pi n}\frac{|\sin x|}{x}dx\geqslant \frac{1}{\pi n}\int_{\pi(n-1)}^{\pi n}|\sin x|dx=\frac{2}{\pi n}.$$

$$\int_{0}^{\pi N}\frac{|\sin x|}{x}dx\geqslant \frac{2}{\pi}\sum_{n=1}^{N}\frac{1}{n}-\text{ряд расходится, значит}$$

$$\int_{0}^{\infty}\frac{|\sin x|}{x}dx=+\infty\text{ т.e. не интегрируема по лебегу}$$

Задача 4. Пусть f(x) интегрируема по Лебегу на множестве A (т.е. $\int_A |f(x)| d\mu < \infty$, будем писать $f \in L_1(A)$). Доказать, что $\mu(\{x \in A : f(x) = \pm \infty\}) = 0$.

Решение. Можно считать, что $f(x)\geqslant 0$ на A. Пусть $A_1=\{x\in A: f(x)=+\infty\}\in M$. Предположим, что $\mu(A_1)>0$. Положим $A_2=A_1$, если $\mu(A_1)<\infty$, иначе выберем множество $A_2\subset A_1, A_2\in M$ с $0<\mu(A_2)<\infty$. Определим простые функции $h_n(x)=n\chi_{A_2}(x)$ для $n\in (N)$. Ясно, что $0\leqslant h_n(x)\leqslant f(x)$ при $n\in \mathbb{N}$ и $x\in E$, т.е. $h_n(x)\in Q_f$. Тогда по определению интеграла Лебега получаем, что

$$\int_{A} f(x)d\mu \geqslant \sup_{n} \int_{A} h_{n}(x)d\mu = \sup_{n} n\mu(A_{2}) = \infty,$$

а это противоречит условию интегрируемости f.

Задача 5. Построить такую последовательность $\{f_n(x)\}_{n=1}^\infty$ неотрицательных функций из $L_1([0;1])$, таких что $f_n(x) \to 0$ при $n \to \infty$ для каждого $x \in [0;1]$, но

$$\int_{0}^{1} f_n(x) d\mu \nrightarrow 0, n \to \infty.$$

Решение. Пусть $f_n(x) = n\chi_{(0,\frac{1}{n})}(x)$ при $x \in [0,1]$ и $n \in \mathbb{N}$. Тогда $f_n(x) \xrightarrow{n \to \infty} 0$ для каждого $x \in [0,1]$, но

$$\int_{[0,1]} f_n(x)d\mu = 1$$

при всех n.