```
Pb(2). Let (A,*) be a semigroup such that
   a,b \in A. If a \neq b the a \times b \neq b \times a
Show that

(i) a*a = a, \forall a \in A

(ii) a*b*a = a, \forall a, b \in A
             iii) a * b * c = a * c, \forall a, b, c \in A
           If a $ b then a x b $ b xa, which is
         equivalent to, if a \times b = b \times a the a = b
       (a \times a) \times a = a \times (a \times a) \quad (associative)
                                                        To prove.

assa = a
           \Rightarrow axa = a, \forall a \in A by \mathbb{O}
    ii) (axbxa) xa
                             = a \times (b \times a \times a)
                                                         (associatie)
                                                          · . · axa=a
                               (axa)x (bxa)
                                                            a = a * a
                                = ax (axbxa)
                                                       (associative)
               a * b * a = a
   By(1)
       (iii) (a + b + c) + (a + c) = (a + b) + (c + a + c)
by ansociative)
                                 = (ax c xa)xb x c (tom ii)
                                  = (axc) x (axbxc) (association)
    By (D), a \times b \times c = a \times c
```

PbO: In a group (G,*), if $(a*b)^2 = a^2*b^2$, Ha, beg, Show that Gisabelian. Ans'. $(a*b)^2 = a^2 * b^2$ $(a \times b) \times (a \times b) = (a \times a) \times (b \times b)$ a * (b *a) *b = a *(a *b) *b Using left & right cancellation law, bxa = axa, commutative. => G is abelian. PKG: Let G be group in which every element ?s inverse of itself. Then show that G ?s abelian. Ans; Let $a,b \in G$, we have $a \times a = e$, $b \times b = e$ and axb e G (by closure). dxd=e (a*b)*(a*b) = e = e*e = (a*a)*(b*b)Using left & right cancellation law, bxa = axb, commutative. Hence Gis abelian. Note: The converse of the above Statement is not true.

Eg! (Z,+) is abelian in which all the elements are not self inverse.

Problem: In a group (G,*), il a=e, +a=G, S.T G is abelian.

PbG: If a group (G,x) has even number of elements then show that at least one element must be its own inverse. P! Let G consists of even number gelements. $G = \{a_1, a_2, a_3, \dots, a_{2n-1}, a_{2n}\}$ We know that $\bar{e}' = e$ Suppose that a, and az, a and ay, ... a and a be inverses of each other. Then $a_{2n-1} = a_{2n-1}$ Hence presed Subgroup: Let (G, x) be a group and H be a non-empty subset of G. Hes said to be a subgroup of G, if H itself forms a group under x'. H Ps said to be Eg@(Z, +) is a Subgroup of (Q, +) 2,+ 2(91203, ·) is a subgroup of (R1203, ·) Eg3: Let G= {1,-1, i,-i} From table, dentity -i aff the element in G -> clusure satisfies -> assonative satisfies -> 1 is identity ellclearly G is a group.

Let $H_1 = \{1,-1\}$ is a Subset of G & it forms

a group w. s. to multiplication.

- ... H_1 is a Subgroup.

Let $H_2 = \{i, -i\}$ is not a subgroup $\{j, i\}$ because $\{i, i\} = -1 \notin H_2$

Note: ¿ez & G are always subgroups of G & are called trivial subgroups.