Development of anisotropic structure in the Earth's lower mantle by solid-state convection

Allen K. McNamara, Peter E. van Keken & Shun-ichiro Karato *Nature*, 416, 310-314, 2002

Is there evidence for the localization of dislocation creep in the lowermost mantle?

- As we discussed last class, LPO of (Mg,Fe)O may be a viable candidate mechanism for D" anisotropy.
- But: LPO requires a "kick" from the diffusion creep regime (most of the lower mantle) to the dislocation creep regime.
- This paper: implement a numerical model for deformation due to a downgoing slab. Is there evidence for this transition from the model?

A quick review: diffusion creep vs. dislocation creep

- DIFFUSION CREEP
 - High T
 - Small grain size
 - Low stress
 - Low strain rate
 - Newtonian viscosity
 - DOES NOT result in LPO or (macroscopic) seismic anisotropy
 - DOES erase previous LPO.

- DISLOCATION CREEP
 - Low T
 - Large grain size
 - High stress
 - High strain rate
 - Non-Newtonian viscosity
 - DOES result in LPO and (macroscopic) seismic anisotropy (IF STRAINS HIGH ENOUGH, >100-200%)

Model Details (I)

(Details mostly from McNamara et al. [2001])

Utilizes a *composite* rheology incorporating both diffusion & dislocation creep, with:

$$\dot{\varepsilon} = \dot{\varepsilon}_{\text{diff}} + \dot{\varepsilon}_{\text{disl}}$$
 (1)

$$\dot{\varepsilon}_{\text{diff}} = A'_{\text{diff}} \left(\frac{b}{d}\right)^m \exp\left(-\frac{g_{\text{diff}} T_{\text{m}}}{T_{\text{dim}}}\right) \frac{\sigma}{\mu}$$
 (2)

$$\tilde{\varepsilon}_{\text{disl}} = A'_{\text{disl}} \exp \left(-\frac{g_{\text{disl}} T_{\text{m}}}{T_{\text{dim}}} \right) \left(\frac{\sigma}{\mu} \right)^{u}$$
 (3)

where A'_{diff} and A'_{disl} are prefactors, μ and b are reference values for the rigidity and Burgers vector, g_{diff} and g_{disl} are activation coefficients, T_{m} is the dimensional melting temperature, d is the grain size, σ is the stress, and m and n are constants. Because $\sigma = \eta \dot{\varepsilon}$, these may be rearranged

The transition stress, σ_t , is defined as the stress at which the material flows equally by diffusion and dislocation creep:

(3)
$$\sigma_t = \left[\left(\frac{A'_{\text{did}}}{A'_{\text{diff}}} \right) \left(\frac{d}{b} \right)^m \mu^{(1-\kappa)} \exp \right]$$

$$\left(\frac{T_{\rm m}}{T}\left(g_{\rm diff} - g_{\rm disl}\right)\right) \frac{1}{1-n} \tag{7}$$

Model Details (II)

The physics:
conservation of
mass,
momentum, and
energy in the
extended
Boussinesq
approximation.

Solve w/ finite element code in 2D cylindrical geometry.

2.1. Model setup

The numerical calculations are performed by solving the non-dimensional conservation equations of mass, momentum, and energy in the extended Boussinesq approximation [27]. The equation for mass conservation in incompressible flow is:

$$\nabla \cdot u = 0 \qquad (12)$$

where u is the velocity vector. The momentum equation is:

$$\nabla P + \nabla \cdot (\eta \underline{\hat{\epsilon}}) = \alpha RaT \hat{r}$$
 (13)

where $\hat{\mathbf{r}}$ is the radial unit vector directed toward the center, P is the dynamic pressure, η is the effective viscosity, $\hat{\mathbf{e}}$ is the deviatoric strain rate tensor, α is the non-dimensional thermal expansivity, Ra is the Rayleigh number, and T is the temperature. The energy equation includes viscous dissipation and adiabatic (de)compression:

$$\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla)T + \alpha \frac{T_{\text{dim}}}{\Delta T} Diw = \nabla(k \cdot \nabla T) + \frac{Di}{Ra} \sigma_0 \frac{\partial u_I}{\partial x_f}$$
(14)

where t is time, T_{dim} is the dimensional temperature, k is the non-dimensional thermal conductivity, ΔT is the temperature contrast across the model, Di is the dissipation number, w is the radial component of velocity, σ_0 are components of the stress tensor, and u_i and x_i indicate the ith component of the velocity and location vectors, respectively. The strain rate components are:

$$\dot{\varepsilon}_{ij} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}$$
(15)

The second invariant of the strain rate tensor is the effective strain rate and is represented as:

$$\dot{\varepsilon} = (\frac{1}{2}\Sigma \dot{\varepsilon}_{ij}\dot{\varepsilon}_{ij})^{\frac{1}{2}} \qquad (16)$$

The Rayleigh number is given as:

$$Ra = \frac{\rho_0 g \alpha_0 \Delta T h^3}{\kappa_0 \eta_0}$$
(17)

where ρ_0 , α_0 , κ_0 , and η_0 are reference values of density, thermal expansivity, thermal diffusivity, and viscosity. h is the reference length scale corresponding to the depth of the mantle.

The non-dimensional viscosity is determined by dividing by the reference viscosity, η_0 , which is defined as the diffusion creep viscosity of the olivine layer at $T_{\text{dim}} = 1500 \text{ K}$ and z = 140 km. The dissipation number is given as:

Model Details (III)

Fixed parameters:

Parameter	Description	Value	Units
ΔT	Temperature drop across mantle	3000	K
(B)	reference thermal expansivity	3×10 ⁻⁹	K^{-1}
ρ	reference density	4500	kg m ⁻¹
$C_{\rm p}$	specific heat	1250	J kg ⁻¹ K ⁻¹
h	mantle thickness	2.8×10 ⁶	m
ka	reference thermal conductivity	5.6	W m-1 K-
r	gravitational constant	9.8	m s-2
Kij	reference thermal diffusivity	$k_0 \rho_0^{-1} C_p^{-1}$	
Di	dissipation number	0.5	
dian	grain size	2.0	mm
din	grain size	1.0	mm
m _{an}	grain size index	2.5	
min	grain size index	2.5	
M _{LEE}	power-law index	3.0	
Max	power-law index	3.0	
A'arr-un	olivine diffusion prefactor ^a	2.25×1014	8-1
A'did-um	olivine dislocation prefactor ^a	1.28×10^{22}	s ⁻¹
A'arr-in	lower-mantle diffusion prefactor ^a	1.06×10^{14}	s^{-1}
ш	reference rigidity	300	GPa
ь	Burgers vector	5.0×10 ⁻⁷	mm
Fatt-un	olivine diffusion activation coefficient	17	
Kdid-um	olivine dislocation activation coefficient	31	
Farr-to	lower-mantle diffusion activation coefficient	10	
σ _d	ductile yield stress	400	MPa
o'b	brittle yield stress gradient	5.33	MPa km ⁻¹
Rustace	non-dimensional surface radius	1.67813	
Rhottom	non-dimensional bottom radius	0.67813	
Rinterface	non-dimensional upper-lower-mantle interface radius	1.42	
n _{max}	non-dimensional viscosity maximum	1.0	
Pleate	non-dimensional viscosity minimum	10-4	

Upper- and lower-mantle values are denoted by um and lm, respectively. The above radii are non-dimensionalized by dividing by the length scale, h.

Play around with: lower mantle dislocation creep activation coefficient, viscosity magnitude, transition stress, strength of slab...

"Acceptable" class of models has lower mantle dominated by diffusion creep.

^{*}For the higher Rayleigh number case, $A'_{4d\Gamma-un} = 9.01 \times 10^{14} \text{ s}^{-1}$, $A'_{66l-un} = 5.11 \times 10^{22} \text{ s}^{-1}$, and $A'_{dR} = 4.22 \times 10^{14} \text{ s}^{-1}$.

Calculating strain/LPO

- Use strain as a proxy for development of LPO, and track strains only in regions dominated by dislocation creep.
- Calculate Lagrangian finite strain (as a post-processing step) by time-integrating the DGT (deformation gradient tensor) for individual strain tracers.
- When a tracer leaves the dislocation creep regime, diffusion creep destroys LPO.

So, the main features of the model results are...

- Deformation in slab is dominated by dislocation creep in a mantle otherwise dominated by diffusion creep...
- Directly above CMB: high-magnitude, laterally-directed strain. Consistent feature of nearly all models.
- Details of strain field are time-dependent and can be quite complicated.

Integration with mineral physics data...

- The authors consider (Mg,Fe)O to be a more likely candidate than (Mg,Fe)-pvskite. [(Mg,Fe)O is weaker phase & has higher intrinsic anisotropy.]
- Steady-state (strains > 400-500%) LPO develops in (Mg,Fe)O; horizontal shear will result in $V_{SH} > V_{SV}$.

Conclusions

- Slabs are characterized by high stress, resulting in deformation dominated by dislocation creep.
- Complicated strain fields result, but one consistent feature is a large degree of laterally directed strain directly above the CMB.
- Combined with mineral physics experiments on (Mg,Fe)O, predict $V_{SH} > V_{SV}$ anisotropy (consistent with seismological results for paleoslab regions).
- LPO is a likely candidate mechanism for D" anisotropy in slab regions.
- Although other processes may contribute to the formation of anisotropy, they are not required, and solidstate processes within a homogenous material may suffice.