Carbonara

Lou Jorgensen Cavin Jacobson Andrew Richard

SLURM JOB SCHEDULER

Does the frequency of completed jobs at any given time lead to a crash in the Slurm Job Scheduler?

Are there other factors that contribute to the crashes?

WHAT IS SLURM?

Slurm is an open-source cluster management and job scheduling system for linux clusters

- Slurm keeps track of available resources on the cluster
- **Collects users' resource requests for jobs**
- Assigns priorities to jobs
- Runs jobs on assigned compute nodes

Our Data Encompasses Completed Jobs in a Year

373

Days: 10-01-2020 00:10:15 to 10-07-2021 20:41:11

137

Days without any Slurm Failures:

At least 15 seconds for failure to occur

3,296

Slurm crashes

- Highest amount of 145 on 12-04-2020

19,825.5

Average jobs **completed** in a day

- Highest amount of 109,952 on 08-31-2021

3 h 48 m:

Average time to complete a job

5317.5

Average memory used in Megabytes per node

- Highest memory usage in a day at 25,480.79 on 07-17-2021

The data frame also included CPUS, Nodes, and Partitions: Nodes are grouped into the partitions and along with CPUS, determine how much memory is allocated to a job

What caused those 3,296 slurm crashes?

Null hypothesis: **no relationship** between the frequency of completed jobs and a failure of the Slurm system

Alternative Null hypothesis: **no relationship** between used memory, nodes or CPUs and a failure of the Slurm system

Frequency of Slurm Failures and Completed Jobs

Monthly total of slurm crashes and completed jobs.

The red line indicates the rolling average of completed jobs over a period of 30 days.

A high frequency of job completions does not appear to relate to slurm crashes.

There is a **2% chance** that a failure happens due to a completed job, and that goes towards a **1% chance** as the number of jobs increases

Within a 5 minute period of time, there will most likely be anywhere between 50 and 90 jobs being completed simultaneously

Time Differences Between Requested and Used Time

A positive time difference indicates using less time than originally requested, this scenario occurred more frequently than those which exceeded the requested time.

Pearson Correlations (daily averages)

Completed jobs and used memory have the highest (r) correlation at -0.15

Still a weak correlation

The correlation between completed jobs and Slurm failures is even weaker at -0.008

Used memory and Slurm failures correlate the **weakest** at -0.006

Exploratory Data Analysis

Created groups
 containing the 20
 minutes before each
 slurm fail (3926 groups)

Looking for some consistency to indicate failure

Exploratory Data Analysis

No major spikes, but the back half used more memory than the front half

Inconclusive, let's look at CPUs

Exploratory Data Analysis

- More even distribution across all groups
- May be a candidate

time	slurm_crashes	completed_jobs	used_mem	cpus	fails
2020-10-01 00:10:00	0	3	363.320000	1.000000	0
2020-10-01 00:15:00	0	3	489.283333	1.000000	0
2020-10-01 00:20:00	0	9	6.234444	4.000000	0
2020-10-01 00:25:00	0	18	77.647222	3.500000	0
2020-10-01 00:30:00	0	11	6.228000	4.454545	0
2021-10-07 20:10:00	0	1	0.090000	1.000000	0
2021-10-07 20:15:00	0	1	0.090000	1.000000	0
2021-10-07 20:25:00	0	1	393.070000	1.000000	0
2021-10-07 20:30:00	0	1	0.090000	1.000000	0
2021-10-07 20:40:00	0	1	0.090000	1.000000	0

 Data grouped into 5 min increments

Logistic regression fit to this dataset

3 most likely candidates for logistic regression variables:

- Cpus used
- Used memory
- # of Completed jobs

```
logit(p) = -3.8232
+ 0.0451(cpus)
- 2.123e^-05(used mem)
```

- 0.0002(completed jobs)

Data provided by Vanderbilt University

Shape as expected

As more cpus are used, the probability for slurm unresponsive increases

- Consistent with negative coefficients
- Logistic regression likely not the best tool to evaluate this data, too much interplay between variables

Logistic Curve: Memory usage

Logistic Curve: Jobs

Conclusions

Based on our observations we found *no significant relationship* between frequency of jobs at completion and slurm failures

cPU and memory
usage had the
closest relationship
but that did not
show to have a
significant bearing
on Slurm failure

Thus, we accept both our Null hypothesis, as well as our alternative Null hypothesis

Possibilities for Future Research:

Obtaining Node failure data:

Taking an in-depth look at when nodes failed could give better insight into slurm crashes.

More robust observations into the partitions of jobs

Looking into partitions and determining where slurm crashes happen per partition.

Encompassing entirety of ce5 and ce6 data:

The slurm crashes for user 9204, which was a test user, may not give us the entire picture of when slurm crashes happen.

***** External factors:

Investigating more variables may help in determining the cause of slurm failures

-E.g. **power outages** or **temperature** of the server rooms

NEED MORE HELP? Feel free to ask questions!

Submit a ticket from the helpdesk:

www.accre.vanderbilt.edu/help

Open a ticket to request an appointment with an ACCRE specialist.

DO NOT submit tickets in "Rush cluster"!Rush tickets are for cluster-wide issues only.