Math 252 Exam 1 Review (Problems)

- 1. Using $\mathbf{u} = (8, 3, -5), \mathbf{v} = (4, -4, -2),$
 - a. Find 3u 4v.
 - b. Find $\|\mathbf{u}\|$, $\|\mathbf{v}\|$.
- 2. A baseball is thrown from the stands 128 feet above the field at an angle of 30 degrees up from the horizontal with an initial speed of 64 feet per second.
 - a. Give the position vector for any time t.
 - b. When will the ball strike the ground?
 - c. How far away will the ball strike the ground?
 - d. What is the speed of the ball when it strikes the ground?
- 3. Identify the surface $x^2 6y + 5z^2 = 0$.
- 4. Using P(-2,0,3), Q(1,2,4), R(-3,1,0),
 - a. Find a vector orthogonal to the plane determined by P, Q and R.
 - b. Find an equation of the plane passing through P, Q and R.
 - c. Find the set of parametric equations for the line through Q and parallel to $\mathbf{a}=\langle 4,-3,-2\rangle.$
 - d. Find the distance from the point (-4, -1, 5) to the plane passing through P, Q and R.
- 5. Indentify via cross-sections the surface defined by $x = 3y^2 + 5z^2$.
- 6. Using $\mathbf{r}(t) = \langle t \cos t, t \sin t, t^2 \rangle$ at t = 0,
 - a. Find \mathbf{v} and \mathbf{a} .
 - b. Find T and N.
 - c. Find K.
 - d. By first finding $a_{\mathbf{T}}$ and $._{\mathbf{N}}$, express $a = a_{\mathbf{T}}\mathbf{T} + a_{\mathbf{N}}\mathbf{N}$.

- 7. Using P(-4,1,2), Q(1,-3,4), R(-1,0,2),
 - a. Find an equation of the plane passing through the points.
 - b. Find parametric equations for the line through P and parallel to $a = \langle 2, -1, 4 \rangle$.
 - c. Find the distance from the point (5, -3, 2) to the plane.
 - d. Find the area of the parallelogram determined by P, Q, and R.
- 8. Indentify via cross-sections the surface defined by $y = x^2$.
- A projectile is fired at a speed of 448 feet per second at and angle of 30 degrees from a tower
 feet above the ground.
 - a. Give the position vector for any time t.
 - b. How far away will the object strike?
- 10. Using $\mathbf{u} = \langle -4, 6, 5 \rangle$ and $\mathbf{v} = \langle 2, -3, 1 \rangle$,
 - a. Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
 - b. Find $\mathbf{u} \cdot \mathbf{v}$.
 - c. Find the angle θ between **u** and **v**.
 - d. Find proj. u.
 - e. Find $\mathbf{u} \times \mathbf{v}$.
- 11. Using $\mathbf{r}(t) = \langle 4\cos(2t), 4\sin(2t), 6t \rangle$,
 - a. Find $\mathbf{T}(t)$
 - b. Find N(t)
 - c. Find the curvature
- 12. Indentify via cross-sections the surface defined by $3^2 y^2 + 3z^2 + 9 = 0$.
- 13. Identify the surface $2x^2 3y^2 + 6z^2 = 6$.
- 14. Identify the surface $x = y^2$.
- 15. Find the center and radius of the sphere given by $x^2 + y^2 + z^2 8x + 6x = 0$
- 16. Find the tangential and normal components of acceleration for the curve $\mathbf{r}(t) = \langle 3t^2, 4t^2, 10t \rangle$ at t=2 and express a in terms of T and N.

- 17. Identify the surface $4x^2 + 4y^2 + z^2 = 4$.
- 18. Indentify via cross-sections the surface defined by $2y^2=3z^2=12$.
- 19. Using $\mathbf{u} = \langle 8, -4, 1 \rangle$ and $\mathbf{v} = \langle -4, 4, 2 \rangle$,
 - a. Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
 - b. Find $\mathbf{u} \cdot \mathbf{v}$.
 - c. Find the angle θ between **u** and **v**.
 - d. Find $\operatorname{proj}_{\mathbf{v}}\mathbf{u}$.
 - e. Find $\mathbf{u} \times \mathbf{v}$.
- 20. Using $r(t) = \langle \cos t, \sin t, t^2 \rangle$, $t = \frac{\pi}{2}$:
 - a. Find the velocity vector.
 - b. Find the acceleration vector.

Math 252 Exam 1 Review (Answers)

- 1. (Math-252 Quiz 1)
 - a. (8, 25, -7).
 - b. $\|\mathbf{u}\| = 7\sqrt{2}$, $\|\mathbf{v}\| = 6$.
- 2. (Math-252 Practice Exam 1)
 - a. $\mathbf{r}(t) = \langle 32\sqrt{3}t, -16t^2 + 32t + 128 \rangle$
 - b. in 4 seconds
 - c. $128\sqrt{3}$ feet away
 - d. $64\sqrt{3}$ feet per second
- 3. (Math-252 Practice Exam 1)

Elliptical cone

- 4. (Math-252 Quiz 3)
 - a. $\mathbf{n} = \mathbf{PQ} \times \mathbf{PR} = \langle -7, 8, 5 \rangle$
 - b. -7x + 8y + 5z = 29
 - c. $x = 1 + 4t, y = 2 3t, z = 4 2t; t \in \mathbb{R}$
 - d. $D = \frac{16}{\sqrt{138}}$
- 5. (Math-252 Quiz 4)

Elliptical paraboloid

- 6. (Math-252 Practice Exam 1)
 - a. $\mathbf{v} = \langle -t\sin t + \cos t, t\cos t + \sin t, 2t \rangle$

$$\mathbf{a} = \langle -t\cos t - 2\sin t, -t\sin t + 2\cos t, 2 \rangle$$

- b. $\mathbf{T}(t) = \left\langle \frac{-t\sin 5 + \cos t}{\sqrt{5t^2 + 1}}, \frac{t\cos t + \sin 5}{\sqrt{5t^2 + 1}}, \frac{2t}{\sqrt{5t^2 + 1}} \right\rangle$
 - $\mathbf{T}(0) = \langle 1, 0, 0 \rangle$
 - $\mathbf{N}(0) = \left\langle 0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$
- 7. (Math-252 Practice Exam 1)
 - a. 2x + 6y + 7z 12 = 0
 - b. x = 2t 4, y = -t + 1, z = 4t + 2
 - c. $D = \frac{6}{\sqrt{89}}$
 - d. $A = \sqrt{89}$
- 8. (Math-252 Quiz 4)

Parabolic cylinder

- 9. (Math-252 Quiz 5)
 - a. $\mathbf{r}(t) = \langle 224\sqrt{3}t -16t^2 + 224t + 512 \rangle$
 - b. T = 16

$$x(16) = 224\sqrt{3}(16) \doteq 6207.7$$
 feet

- 10. (Math-252 Practice Exam 1)
 - a. $\|\mathbf{u}\| = \sqrt{77}$
 - $\|\mathbf{v}\| = \sqrt{14}$
 - b. $\mathbf{u} \cdot \mathbf{v} = -21$
 - c. $\theta = \arccos\left(\frac{-21}{7\sqrt{22}}\right)$
- 11. (Math-252 Quiz 6)
 - a. $\mathbf{T}(t) = \langle -\frac{4}{5}\sin(2t), \frac{4}{5}\cos(2t), \frac{3}{5} \rangle$
 - b. $\mathbf{N}(t) = \langle -\cos(2t), \sin(2t), 0 \rangle$
 - c. $k = \frac{4}{25}$
- 12. (Math-252 Quiz 4)

Circular hyperboloid of two sheets

13. (Math-252 Practice Exam 1)

Hyperbaloid (one sheet)

14. (Math-252 Practice Exam 1)

Parabolic cylinder

15. (Math-252 Quiz 1)

$$C(4, -3, 0), \rho = 5$$

16. (Math-252 Quiz 7)

$$\mathbf{a} = 4\sqrt{5}\,\mathbf{T} + 2\sqrt{5}\,\mathbf{N}$$

17. (Math-252 Practice Exam 1)

Circular ellipsoid

18. (Math-252 Quiz 4)

Elliptical cylinder

- 19. (Math-252 Quiz 2)
 - a. $\|\mathbf{u}\| = 9$, $\|\mathbf{v}\| = 6$
 - b. $\mathbf{u} \cdot \mathbf{v} = -46$
 - c. $\theta = \arccos\left(-\frac{23}{27}\right) = 148.4^{\circ}$

d.
$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \langle -\frac{46}{9}, -\frac{46}{9}, -\frac{23}{9} \rangle$$

e.
$$\mathbf{u} \times \mathbf{v} = \langle -12, -20, 16 \rangle$$

20. (Math-252 Quiz 5)

a.
$$\mathbf{v}(t) = \langle -\sin t, \cos t, 2t \rangle$$

 $\mathbf{v}(\frac{\pi}{2}) = \langle -1, 0, \pi \rangle$

b.
$$\mathbf{a}(t) = \langle -\cos t, -\sin t, 2 \rangle$$

 $\mathbf{a}(\frac{\pi}{2}) = \langle 0, -1, 2 \rangle$