Math tools

Note: Statistical Inference Oct 2024

Lecturer: Typed by: Zhuohua Shen

Contents

1	Preliminary
2	Statistical inference fundamentals
	2.1 Statistical Models
	2.2 Principles of Data Reduction
	2.2.1 Sufficiency Principle
	2.2.2 Likelihood principle
3	Multivariate Inference Fundamentals
	3.1 Random vectors and distributions
	3.1.1 Multivariate normal distribution
	3.1.2 The noncentral χ^2 and F distributions
	3.2 Asymptotic properties
	3.2.1 Asymptotic distributions of sample means and covariance matrices

4 CONTENTS

Chapter 1

Preliminary

Chapter 2

Statistical inference fundamentals

References: most of the contents are from the undergraduate course STA3020 (by Prof. Jianfeng Mao in 2022-2023 T1, and Prof. Jiasheng Shi in 2023-2024 T2) and postgraduate course STAT5010 (by Kin Wai Keith Chan in 2024-2025 T1), with main textbook Casella and Berger [1]

2.1 Statistical Models

See Chapter 3 of [1]. Suppose $X_i \sim_{\text{iid}} \mathbb{P}_*$, where \mathbb{P}_* refers to the unknown data generating process (DGPg), we find $\widehat{\mathbb{P}} \approx \mathbb{P}_*$. A statistical model is a set of distributions $\mathscr{F} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$, where Θ is the parameter space. A parametric model is the model with $\dim(\Theta) < \infty$, while a nonparametric model satisfies $\dim(\Theta) = \infty$.

Definition 2.1.1 (Exponential family). A k-dimensional exponential family (EF) $\mathscr{F} = \{f_{\theta} : \theta \in \Theta\}$ is a model consisting of pdfs of the form

$$f_{\theta}(x) = c(\theta)h(x) \exp\left\{ \sum_{j=1}^{k} \eta_{j}(\theta)T_{j}(x) \right\}$$
(2.1)

where $c(\theta), h(x) \geq 0$, $\Theta = \{\theta : c(\theta) \geq 0, \eta_j(\theta) \text{ being well defined for } 1 \leq j \leq k\}$. Let $\eta_j = \eta_j(\theta)$, the canonical form is

$$f_{\eta}(x) = b(\eta)h(x) \exp\left\{\sum_{j=1}^{k} \eta_j T_j(x)\right\}, \qquad (2.2)$$

- k-dim natural exponential family (NEF): $\mathscr{F}' = \{f_{\eta} : \eta \in \Xi\};$
- natural parameter $\eta = (\eta_1, \dots, \eta_k)^{\top}$;
- natural parameter space: $\Xi = \{ \eta \in \mathbb{R}^k : 0 < b(\eta) < \infty \};$
- the NEF \mathscr{F}' is of full rank if Ξ contains an open set in \mathbb{R}^k ;
- the EF is a curved exponential family if $p = \dim(\Theta) < k$.

Properties of EF:

- Let $X \sim f_{\eta}$, where $\eta \in \Xi$ such that (i) f_{η} is of the form (2.2) with $B(\eta) = -\log b(\eta)$, and (ii) Ξ contains an open set in \mathbb{R}^k . Then, for $j, j' = 1, \ldots, k$, $\mathbb{E}\{T_j(X)\} = \partial B(\eta)/\partial \eta_j$ and $\mathbb{C}\text{ov}\{T_j(X), T_{j'}(X)\} = \partial^2 B(\eta)/(\partial \eta_j \partial \eta_{j'})$.
- Stein's identity:

Definition 2.1.2 (Location-scale family). Let f be a density.

- A location-scale family is given by $\mathscr{F} = \{f_{\mu,\sigma} : \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{++}\}$, where $f_{\mu,\sigma}(x) = f((x-\mu)/\sigma)/\sigma$.
- location parameter: μ ; scale parameter: σ ; standard density: f;
- A location family is $\mathscr{F} = \{f_{\mu,1} : \mu \in \mathbb{R}\}.$
- A scale family is $\mathscr{F} = \{f_{0,\sigma} : \sigma \in \mathbb{R}^{++}\}\$

Representation: $X = \mu + \sigma Z$, $Z \sim f_{0,1}(\cdot)$.

- $\bullet\,$ See some examples in Example 3.9, Keith's note 3, and Table 1 in Shi's note L1.
- Transform between location parameter and scale parameter by taking log.

Definition 2.1.3 (Identifiable family). If $\forall \theta_1, \theta_2 \in \Theta$ that

$$\theta_1 \neq \theta_2 \quad \Rightarrow \quad f_{\theta_1}(\cdot) \neq f_{\theta_2}(\cdot),$$

then \mathscr{F} is said to be an identifiable family, or equivalently $\theta \in \Theta$ is identifiable.

- 8 A typical feature of non-identifiable EF is that $GHAPT(G) \stackrel{?}{>} k$ FTATISTICAL INFERENCE FUNDAMENTALS
 - p < k, curved (must).
 - p = k, of full rank.
 - p > k, non-identifiable.

2.2 Principles of Data Reduction

Statistics: $T = T(X_{1:n})$, a function of $X_{1:n}$ and free of any unknown parameter.

2.2.1 Sufficiency Principle

Sufficiency principle: If $T = T(X_{1:n})$ is a "sufficient statistics" for θ , then any inference on θ will depend on $X_{1:n}$ only through T.

```
Definition 2.2.1 (Sufficient, minimal sufficient, ancillary, and complete statistics). Suppose X_{1:n} \sim_{iid} \mathbb{P}_{\theta}, where \theta \in \Theta. Let T = T(X_{1:n}) be a statistic. Then T is sufficient (SS) for \theta \Leftrightarrow (def) [X_{1:n} \mid T = t] is free of \theta for each t. \Leftrightarrow (technical lemma) T(x_{1:n}) = T(x'_{1:n}) implies that f_{\theta}(x_{1:n})/f_{\theta}(x'_{1:n}) is free of \theta. \Leftrightarrow (Neyman-Fisher factorization theorem) \forall \theta \in \Theta, x_{1:n} \in \mathcal{X}^n, f_{\theta}(x_{1:n}) = A(t,\theta)B(x_{1:n}). \Leftrightarrow Define \Lambda(\theta',\theta'' \mid x_{1:n}) := f_{\theta'}(x_{1:n})/f_{\theta''}(x_{1:n}). \forall \theta',\theta'' \in \Theta, \exists function C_{\theta',\theta''} such that \Lambda(\theta',\theta'' \mid x_{1:n}) = C_{\theta',\theta''}(t), for all x_{1:n} \in \mathcal{X}^n where t = T(x_{1:n}). T is minimal sufficient (MSS) for \theta \Leftrightarrow (def) (1) T is a SS for \theta; (2) T = g(S) for any other SS S. \Leftrightarrow (1) T is a SS for \theta; (2) S(x_{1:n}) = S(x'_{1:n}) implies T(x_{1:n}) = T(x'_{1:n}) for any SS S. \Leftrightarrow (Lehmann-Scheffé theorem) \forall x_{1:n}, x'_{1:n} \in \mathcal{X}^n, f_{\theta}(x_{1:n})/f_{\theta}(x'_{1:n}) is free of \theta \Leftrightarrow T(x_{1:n}) = T(x'_{1:n}). A = A(X_{1:n}) is ancillary (ANS) if the distribution of A does not depend on \theta. T is complete (CS) if \forall \theta \in \Theta, \mathbb{E}_{\theta}g(T) = 0 implies \forall \theta \in \Theta, \mathbb{P}_{\theta}\{g(T) = 0\} = 1.
```

Properties

- (Transformation) If T = r(T'), then (i) T is $SS \Rightarrow T'$ is SS; (ii) T' is $CS \Rightarrow T$ is CS; (iii) r is one-to-one, then if one is SS/MSS/CS, then the another is.
- (Basu's Lemma) $X_i \sim_{iid} \mathbb{P}_{\theta}$, A is ANS and T s CSS, then $A \perp \!\!\! \perp T$.
- (Bahadur's theorem) $X_i \sim_{iid} \mathbb{P}_{\theta}$, if an MSS exists, then any CSS is also an MSS.
 - Then if a CSS exists, then any MSS is also a CSS \Rightarrow CSS=MSS.
 - All or nothing: start with MSS T, check whether T is CS. (i) Yes, it is both CSS and MSS, then the set of MSS=CSS; (ii) No, there is no CSS at all.
- (Exp-family) If $X_i \sim_{\text{iid}} f_{\eta}$ in (2.2), then $T = (\sum_{i=1}^n T_1(X_i), \dots, \sum_{i=1}^n T_k(X_i))$ is a SS, called natural sufficient statistic. If Ξ contains an open set in \mathbb{R}^k (i.e., \mathscr{F}' is of full rank), then T is MSS and CSS.

Proof techniques

- Prove T is not sufficient for θ : show if $\exists x_{1_n}, x'_{1:n} \in \mathcal{X}^n$ and $\theta', \theta'' \in \Theta$, such that $T(x_{1:n}) = T(x'_{1:n})$ and $\Lambda(\theta', \theta'' \mid x_{1:n}) \neq \Lambda(\theta', \theta'' \mid x'_{1:n})$.
- Prove A is an ANS: consider location-scale representation.
- Prove T is a CS: use definition or take $d\mathbb{E}_{\theta}g(T)/d\theta = 0$.
- Disprove T is CS:
 - Construct an ANS S(T) based on T, then $\mathbb{E}S(T)$ is free of θ , then $g(T) = S(T) \mathbb{E}S(T)$ is free of θ but $g(T) \neq 0$ w.p.1.
 - (Cancel the 1st moment) Find two unbiased estiamtors for θ as a function of T. E.g., $X_1, X_2 \sim_{\text{iid}} N(\theta, \theta^2)$, $T = (X_1, X_2), g(T) = X_1 X_2 \sim N(0, 2\theta^2)$.

Remark 2.2.2. • ANS A is useless on its own, but useful together with other information.

• $\mathbb{P}(A(X) \mid \theta)$ is free of θ , but for non-SS T, $\mathbb{P}(A(X) \mid T(X))$ is not necessarily free of θ .

2.2.2 Likelihood principle

Chapter 3

Multivariate Inference Fundamentals

Reference:

- Robb J. Muirhead Aspects of multivariate statistical theory [2].
- CUHK STAT4002 Applied Multivariate Analysis (2023 Spring), by Zhixiang Lin.

3.1 Random vectors and distributions

```
Definition 3.1.1. Let \boldsymbol{x} = (x_1, \dots, x_p)^{\top} \in \mathbb{R}^p be a random vector,

• Mean \mathbb{E}\boldsymbol{x} = \boldsymbol{\mu} = (\mathbb{E}x_1, \dots, \mathbb{E}x_p)^{\top} = (\mu_j).
```

- Covariance matrix $\mathbb{V}\operatorname{ar}(\boldsymbol{x}) = \mathbb{C}\operatorname{ov}(\boldsymbol{x}) = \Sigma = \mathbb{E}[(\boldsymbol{x} \mathbb{E}\boldsymbol{x})(\boldsymbol{x} \mathbb{E}\boldsymbol{x})^{\top}] = \mathbb{E}\boldsymbol{x}\boldsymbol{x}^{\top} \mathbb{E}\boldsymbol{x}\mathbb{E}\boldsymbol{x}^{\top} = (\sigma_{ij}), \ \Sigma \succeq \boldsymbol{0}.$
- Correlation matrix $R = D^{-1/2} \Sigma D^{-1/2}$, where $D = \text{diag}(\sigma_{11}, \dots, \sigma_{pp})$. We have $R_{ij} = \rho_{ij} = \sigma_{ij}/(\sqrt{\sigma_{ii}}\sqrt{\sigma_{jj}})$
- If $\boldsymbol{y} \in \mathbb{R}^q$ random vector, then $\mathbb{C}\text{ov}(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}[(\boldsymbol{x} \mathbb{E}\boldsymbol{x})(\boldsymbol{y} \mathbb{E}\boldsymbol{y})^\top] = \mathbb{E}\boldsymbol{x}\boldsymbol{y}^\top \mathbb{E}\boldsymbol{x}\mathbb{E}\boldsymbol{y}^\top \in \mathbb{R}^{p \times q}$.
- If $Z = (z_{ij}) \in \mathbb{R}^{p \times q}$ is a random matrix,
 - $\mathbb{E} \mathbf{Z} = (\mathbb{E} z_{ij}).$

Proposition 3.1.2. Let $x \in \mathbb{R}^p$ be a random vector, $a, b \in \mathbb{R}^p$ be vectors, $A \in \mathbb{R}^{r_1 \times p}$, $B \in \mathbb{R}^{r_2 \times p}$ be matrices,

- $\mathbb{E} a^{\top} x = a^{\top} \mathbb{E} x$, $\mathbb{V} \operatorname{ar}(a^{\top} x) = a^{\top} \Sigma a$, and $\mathbb{C}\operatorname{ov}(a^{\top} x, b^{\top} x) = a^{\top} \Sigma b$.
- $\mathbb{E} A \boldsymbol{x} = A \mathbb{E} \boldsymbol{x}$, $\mathbb{V} \operatorname{ar}(A \boldsymbol{x}) = A \Sigma A^{\top}$, and $\mathbb{C} \operatorname{ov}(A \boldsymbol{x}, B \boldsymbol{x}) = A \Sigma B^{\top}$.

• If $\mathbf{y} = A\mathbf{x} + \mathbf{b}$, where $A \in \mathbb{R}^{q \times p}$, $\mathbf{b} \in \mathbb{R}^q$, then $\boldsymbol{\mu_y} = A\boldsymbol{\mu_x} + \mathbf{b}$ and $\boldsymbol{\Sigma_y} = A\boldsymbol{\Sigma_x}A^{\top}$. Let $\mathbf{Z} \in \mathbb{R}^{p \times q}$ be a random matrix, $B \in \mathbb{R}^{m \times p}$, $C \in \mathbb{R}^{q \times n}$, and $D \in \mathbb{R}^{m \times n}$ constants, then

- $\mathbb{E}(B\mathbf{Z}C+D)=B\mathbb{E}(\mathbf{Z})C+D.$
- The $\Sigma \in \mathbb{R}^{p \times p}$ is a covariance matrix (i.e., $\Sigma = \mathbb{C}\text{ov}(\boldsymbol{x})$ for some random vector $\boldsymbol{x} \in \mathbb{R}^p$) iff $\Sigma \succeq \mathbf{0}$.
 - (\Leftarrow): suppose $r(\Sigma) = r \le p$, write full rank decomposition $\Sigma = CC^{\top}$, $C \in \mathbb{R}^{p \times r}$. Let $y \sim [0_r, I_r]$, then $\mathbb{C}ov(Cy) = \Sigma$.
- If Σ is not PD, then $\exists \boldsymbol{a} \neq \boldsymbol{0}_p$ s.t. $\mathbb{V}\operatorname{ar}(\boldsymbol{a}^{\top}\boldsymbol{x}) = 0$ so w.p.1., $\boldsymbol{a}^{\top}\boldsymbol{x} = k$, i.e., \boldsymbol{x} lies in a hyperplane.

Theorem 3.1.3. If $x \in \mathbb{R}^p$ random, then its distribution is uniquely determined by the distributions of $a^{\top}x$, $\forall \boldsymbol{a} \in \mathbb{R}^p$.

The proof uses the fact that a distribution in \mathbb{R}^p is uniquely determined by its ch.f., see Theorem 1.2.2. [2].

Definition 3.1.4. Dataset contains p variables and n observations are represented by $X = (x_1, \dots, x_n)^{\top}$, where the *i*th row $\mathbf{x}_i^{\top} = (x_{i1}, \dots, x_{ip})$ is the *i*th observation vector, $i = 1, \dots, n$.

- (Sample mean vector) $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i = (\bar{x}_1, \dots, \bar{x}_p)^{\top}$, where $\bar{x}_j = n^{-1} \sum_{i=1}^{n} x_{ij}$.
- (Sum of squares and cross product (SSCP) matrix) $A = \sum_{i=1}^{n} (x_i \bar{x})(x_i \bar{x})^{\top}$.
- (Sample covariance matrix) $S = (n-1)^{-1}A$.
- (Sample correlation matrix) $\mathbf{R} = D^{-1/2} \mathbf{S} D^{-1/2}$, where $D^{-1/2} = \operatorname{diag}(1/\sqrt{s_{11}}, \dots, 1/\sqrt{s_{pp}})$.
- $\bar{\boldsymbol{x}} = n^{-1} \boldsymbol{X}^{\top} \boldsymbol{1}_n$, and

$$egin{aligned} oldsymbol{A} &= \sum_{i=1}^n (oldsymbol{x}_i - oldsymbol{\mu}) (oldsymbol{x}_i - oldsymbol{\mu})^ op - n(ar{oldsymbol{x}} - oldsymbol{\mu}) (ar{oldsymbol{x}} - oldsymbol{\mu})^ op \ &= (oldsymbol{X} - oldsymbol{1}_n ar{oldsymbol{x}}^ op)^ op (oldsymbol{X} - oldsymbol{1}_n ar{oldsymbol{x}}^ op)^ op (oldsymbol{0}. \end{aligned}$$

• $\mathbb{E}\bar{x} = \mu$, $\mathbb{V}\operatorname{ar}(\bar{x}) = n^{-1}\Sigma$, $\mathbb{E}A = (n-1)\Sigma$, and $\mathbb{E}S = \Sigma$.

Definition 3.1.5 (Original definition of multivariate normal). The random vector $x \in \mathbb{R}^p$ is said to have an p-variate normal distribution $(\boldsymbol{x} \sim N_p)$ if $\forall \boldsymbol{a} \in \mathbb{R}^p$, the distribution of $\boldsymbol{a}^{\top} \boldsymbol{x}$ is univariate normal.

Theorem 3.1.6 (Fundamental properties). Let $x \sim N_p$, we have

- 1. Both $\mu = \mathbb{E}x$ and $\Sigma = \mathbb{C}ov(x)$ exist and the distribution of x is determined by μ and Σ . Write $x \sim N_p(\mu, \Sigma)$.
- 2. (Representation) Let $\Sigma \succeq \mathbf{0}_{p \times p}$, $r(\Sigma) = r \leq p$, and $u_{1:r} \sim_{iid} N(0,1)$, i.e., $\mathbf{u} \sim N_r(\mathbf{0}_r, I_r)$, then if C is the full rank decomposition of Σ and $\boldsymbol{\mu} \in \mathbb{R}^p$, then $\boldsymbol{x} = C\boldsymbol{u} + \boldsymbol{\mu} \sim \mathrm{N}_p(\boldsymbol{\mu}, \Sigma)$.
 - Let $\Sigma = HDH^{\top}$ be the spectral decomposition, then $\boldsymbol{x} = HD^{1/2}\boldsymbol{z} + \boldsymbol{\mu}$, where $\boldsymbol{z} \sim \mathrm{N}_p(\boldsymbol{0}_p, I_p)$.
- 3. If $\mathbf{x} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then its ch.f. $\phi_{\mathbf{x}}(\mathbf{t}) = \exp(i\boldsymbol{\mu}^{\top}\mathbf{t} \mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}/2)$.
- 4. (Density) $x \sim N_p(\mu, \Sigma)$ with $\Sigma \succ 0$, then x has pdf

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}.$$
 (3.1)

Note that we guarantee the existence of $N_p(\mu, \Sigma)$ by means of the representation in point 2.

Theorem 3.1.7 (Properties of multivariate normal). If $x \sim N_p(\mu, \Sigma)$, then we have

- 1. (Linearity) Let $B \in \mathbb{R}^{q \times p}$, $\mathbf{b} \in \mathbb{R}^q$ nonrandom, and $B \Sigma B^\top \succ \mathbf{0}$, then $B \mathbf{x} + \mathbf{b} \sim \mathrm{N}_q (B \boldsymbol{\mu} + \mathbf{b}, B \Sigma B^\top)$.
- 2. (Linear combinations) If $\mathbf{x}_k \sim \mathrm{N}_p(\boldsymbol{\mu}_k, \Sigma_k) \perp \text{ for } k = 1, \ldots, N$, then for any fixed constants $\alpha_1, \ldots, \alpha_N$, $\sum_{k=1}^N \alpha_k \mathbf{x}_k \sim \mathrm{N}_p(\sum_{k=1}^N \alpha_k \boldsymbol{\mu}_k, \sum_{k=1}^N \alpha_k^2 \Sigma_k)$.

 The sample mean $\bar{\mathbf{x}} \sim \mathrm{N}_p(\boldsymbol{\mu}, \Sigma/N)$.
- 3. (Subset) The marginal distribution of any subset of k < p components of x is k-variate normal.
- 4. (Marginal distribution) Partition

$$oldsymbol{x} = \left[egin{array}{c} oldsymbol{x}_1 \ oldsymbol{x}_2 \end{array}
ight], \quad oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{array}
ight], \quad oldsymbol{\Sigma} = \left[egin{array}{c} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{array}
ight], \quad oldsymbol{x}_1 \in \mathbb{R}^q, oldsymbol{x}_2 \in \mathbb{R}^{p-q}, \Sigma_{12} \in \mathbb{R}^{q imes (p-q)}.$$

Then $\mathbf{x}_1 \sim N_q(\boldsymbol{\mu}_1, \Sigma_{11}), \ \mathbf{x}_1 \perp \!\!\! \perp \mathbf{x}_2 \ \text{iff } \Sigma_{12} = \mathbf{0}.$

- 5. (Conditional distribution) Let Σ_{22}^- be a generalized inverse of Σ_{22} (i.e., $\Sigma_{22}\Sigma_{22}^-\Sigma_{22}=\Sigma_{22}$), then (a) $x_1 - \Sigma_{12}\Sigma_{22}^-x_2 \sim N_q(\mu_1 - \Sigma_{12}\Sigma_{22}^-\mu_2, \Sigma_{11} - \Sigma_{12}\Sigma_{22}^-\Sigma_{21})$, and $\perp x_2$. (b) $[x_1 \mid x_2] \sim N_q(\mu_1 + \Sigma_{12}\Sigma_{22}^-(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^-\Sigma_{21}).$
- 6. (Cramér) If $p \times 1$ random vectors $\mathbf{x} \perp \mathbf{y}$ and $\mathbf{x} + \mathbf{y} \sim N_p$, then both $\mathbf{x}, \mathbf{y} \sim N_p$.
- 7. (MLE) of (μ, Σ) is $(\bar{\boldsymbol{x}}, A/n)$.
- 8. (Quadratic form) If $\mathbf{x}_{1:n} \sim_{iid} N_p(\boldsymbol{\mu}, \Sigma)$, then $n(\bar{\mathbf{x}} \boldsymbol{\mu})^\top \Sigma^{-1}(\bar{\mathbf{x}} \boldsymbol{\mu}) \sim \chi_p^2$. The squared generalized distance (Mahalanobis distance) $d_i^2 = (\boldsymbol{x}_i - \bar{\boldsymbol{x}})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{x}_i - \bar{\boldsymbol{x}}) \xrightarrow{d} \chi_p^2$.

For point 3, each component of a random vector is (marginally) normal does not imply that the vector has a multivariate normal distribution. Counterexample: let $U_1, U_2, U_3 \sim_{iid} N(0, 1), Z \perp \!\!\! \perp U_{1:3}$. Define

$$X_1 = \frac{U_1 + ZU_3}{\sqrt{1 + Z^2}}, \quad X_2 = \frac{U_2 + ZU_3}{\sqrt{1 + Z^2}}.$$

Then $[X_1|Z] \sim N(0,1)$, free of Z, so $X_1 \sim N(0,1)$, and $X_2 \sim N(0,1)$. But (X_1,X_2) not normal. The converse is true if the components of x are all independent and normal, or if x consists of independent subvectors, each of which is normally distributed.

For the proof of point 5, we use the lemma: if $\Sigma \succeq \mathbf{0}$, then $\ker(\Sigma_{22}) \subset \ker(\Sigma_{12})$, and $\operatorname{range}(\Sigma_{21}) \subset \operatorname{range}(\Sigma_{22})$. So $\exists B \in \mathbb{R}^{q \times (p-q)} \text{ satisfying } \Sigma_{12} = B\Sigma_{22}.$

The noncentral χ^2 and F distributions 3.1.2

3.2 Asymptotic properties

3.2.1Asymptotic distributions of sample means and covariance matrices

Refer to section 1.2.2, [2].

Theorem 3.2.1 (CLT for sample means). Let $x_{1:n} \sim_{\text{iid}} [\mu, \Sigma]$, then

$$\sqrt{n}(\bar{\boldsymbol{x}}_n - \boldsymbol{\mu}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\mu}) \xrightarrow{\mathrm{d}} \mathrm{N}_p(\boldsymbol{0}_p, \Sigma).$$

Theorem 3.2.2 (CLT for sample covariance matrices). Let $\mathbf{x}_{1:n} \sim_{\text{iid}} [\boldsymbol{\mu}, \Sigma]$ with finite fourth moments, SSCP matrix $\mathbf{A} = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^{\top}$, and $\mathbf{S} = (n-1)^{-1} \mathbf{A}$. Let $V = \mathbb{C}\text{ov}[\text{vec}((\mathbf{x}_1 - \boldsymbol{\mu})(\mathbf{x}_1 - \boldsymbol{\mu})^{\top})]$, then

$$\frac{1}{\sqrt{n}}(\operatorname{vec}(\boldsymbol{A}) - n \cdot \operatorname{vec}(\Sigma)) \xrightarrow{\operatorname{d}} \operatorname{N}_{p^2}(\boldsymbol{0}, V),$$

$$\sqrt{n-1}(\operatorname{vec}(\boldsymbol{S}) - \operatorname{vec}(\Sigma)) \xrightarrow{\mathrm{d}} \operatorname{N}_{p^2}(\boldsymbol{0}, V).$$

Note that $V \in \mathbb{R}^{p^2 \times p^2}$ is singular as the LHS vectors above have repeated elements.

Bibliography

- [1] G. Casella and R. L. Berger. Statistical inference, volume 2. Duxbury Pacific Grove, CA, 2002. 2, 2.1
- [2] R. J. Muirhead. Aspects of multivariate statistical theory. John Wiley & Sons, 1982. 3, 3.1, 3.2.1