

Protocolo de comunicación (def.)

- Conjunto de reglas que gobierna el intercambio ordenado de datos entre dos puntos¹.
 - Elementos²:
 - **Sintaxis**: Formato de datos.
 - **Semántica**: Información de control, coordinación, control de errores.
 - **Temporización**: Coordinación de velocidad, orden secuencial de mensajes.

^{*1}Fuente: http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/734/A6.pdf?sequence=6

^{*2}Fuente: http://www2.ulpgc.es/hege/almacen/download/29/29237/3protocolosyarquitecturas.pdf

Ej. Protocolo TCP

■ Sintaxis

^{*}Fuente: https://bravelearn.com/header-format-for-tcp-transmission-control-protocol/

Ej. Protocolo TCP

- Semántica:
- + Banderas
- +/#Secuencia
- + #Ack
- + Checksum

^{*}Fuente: https://bravelearn.com/header-format-for-tcp-transmission-control-protocol/

Protocolo estándar vs no estándar

*Fuente:Stallings W. (2004). Protocolos y Arquitecturas. En Comunicaciones y redes de computadores. (pp. 33).USA: Pearson Education.

Organizaciones de estandarización

- ► IETF(Internet Engineering Task Force, Comité para la Ingeniería en Internet): Responsable del desarrollo e ingeniería de los protocolos a corto plazo.
- ISO(International Organization for Standarization, Organización Internacional para la Estandarización): Desarrollo de estándares y la terminología relacionados con áreas de tecnología eléctrica y electrónica.
- UIT-T(Unión Internacional de Telecomunicaciones): Estandarización de técnicas y modos de operación en telecomunicaciones para llevar a cabo la compatibilidad extremo a extremo en conexiones internacionales de telecomunicación(funcionamiento, tarificación, equipamiento, etc.)

- Creado por la ISO como marco de referencia para el desarrollo de protocolos estándares.
- Obtuvo el grado de estándar internacional en 1983 (TCP/IP en 1982)

http://www.exa.unicen.edu.ar/catedras/comdat1/material/ElmodeloOSI.pdf

Capa Física

+ Transmisión de cadenas de bits no estructurados sobre el medio físico.

(voltajes empleados, duración de símbolo, # de terminales en el conector, etc.)

Éj. Par trenzado UTP cat 7.: 8 hilos, 4 pares, Frecuencia 4-600MHz, Tensión máxima 60V

http://www.exa.unicen.edu.ar/catedras/comdat1/material/ElmodeloOSI.pdf

- Capa de Enlace de datos
 - + Servicio de transferencia de datos seguro a través del enlace físico; envía bloques de datos (tramas) llevando a cabo la sincronización, control de errores y de flujo.
 - + Direccionamiento físico.

estandarización	
IEEE	 802.2: Control de enlace lógico (LLC) 802.3: Ethernet 802.4: Token bus 802.5: Token Ring 802.11: LAN inalámbrica (WLAN) y malla (certificación Wi-Fi) 802.15: Bluetooth 802.16: WiMax
ITU-T	 G.992: ADSL G.8100 - G.8199: aspectos de MPLS de transporte Q.921: ISDN Q.922: Frame Relay
ISO	Control de enlace de datos de alto nivel (HDLC) ISO 9314: Control de acceso al medio (MAC)

*imagen:http://www.ingenieriasystems.com/2016/11/Estandares-de-la-capa-de-enlace-de-datos-y-control-de-acceso-a-los-medios-CCNA1-V5-CISCO-C4.html

*Fuente:Stallings W. (2004). Introducción. En Comunicaciones y redes de computadores. (pp. 4-20).USA: Pearson Education.

- Capa de Red
 - + Direccionamiento lógico
 - + Enrutamiento

*imagen:https://computernetworkingsimplified.wordpress.com/2013/11/12/overview-circuit-switching-packet-switching/

*Fuente:Stallings W. (2004). Introducción. En Comunicaciones y redes de computadores. (pp. 4-20).USA: Pearson Education.

- Capa de Transporte
 - + Transferencia transparente de datos extremo a extremo.
 - + Procedimientos de recuperación de errores y control de flujo entre puntos finales.
 - + Direccionamiento en punto de servicio

*imagen:http://https://support.huawei.com/enterprise/es/doc/EDOC1100125452/79ffb4c0/configuring-inter-as-vpn-option-b-basic-networking

- Capa de Sesión
 - + Establecimiento, gestión y cierre de sesiones entre aplicaciones (autenticación, autorización de privilegios, restauración de sesión<checkpoints>, sincronización de información (ej. audio, video)).

- Capa de Presentación
 - + Brinda independencia respecto a las diferencias en la representación de datos (sintaxis).
 - + Cifrado de datos
 - + Compresión de datos

int v = 19,088,743; v=0x01234567;			
Big-Endian (Motorola)	Little-Endian (Intel)		
v=0x01234567;	v=0x67452301;		

Ej.

*Fuente:Stallings W. (2004). Introducción. En Comunicaciones y redes de computadores. (pp. 4-20).USA: Pearson Education.

- Capa de Aplicación
 - + Aquí residen las aplicaciones de uso general:
 - -/Transferencia de archivos (FTP, TFTP).
 - Correo electrónico (SMTP, POP3).
 - Acceso terminal a computadoras remotas (telnet, ssh).

*imagen:https://redtransatlantica.com/2013/09/11/taller-de-redes-sociales-y-comunicacion/

http://www.exa.unicen.edu.ar/catedras/comdat1/material/ElmodeloOSI.pdf

Funciones que deben desempeñar todas las redes

- Encapsulamiento
- Control de error
- Direccionamiento
- Entrega en orden
- **►** Control de conexión
- Servicios de transmisión
- Multiplexación
- Segmentación y ensamblado
- Control de flujo

*Fuente:Stallings W. (2004). Protocolos y Arquitectura. En Comunicaciones y redes de computadores. (pp. 27-57).USA: Pearson Education.

Funciones que deben desempeñar todas las redes

Encapsulamiento
 Cada PDU contiene los datos de aplicación,
 además de información de control

Imagen: https://planificacionadministracionredes.readthedocs.io/es/latest/Tema02/Teoria.html

Funciones que deben desempeñar todas las redes

■ Control de error

Necesarias para recuperar de pérdida o deterioro de datos. Algunos de los principales algoritmos son:

- + Comprobación de Redundancia Cíclica (CRC)
- + yuma de comprobación (Checksum)
- 🗲 Código de Hamming
- + Bit de paridad

Control de error

- CRC (Comprobación de Redundancia Cíclica)
- + Creado por Wesley Patterson en 1961
- + Uțilizado para detectar errores en la transmisión de datos digitales (ej. Ethernet)

Imagen: http://www.mailxmail.com/curso-redes-area-local-conmutadas/tipos-conmutacion-lan

Aritmética en GF(2)

```
Mod 2
              5 \mod 2 = 1
   A=\{0,1\} -1 mod 2= 1
a+(-a) \mod n=0
1+1 \mod 2 = 0
     A+B A-B A xor B
```