Windowing, Frequency, and Sound

Segmentation

Frequency Domain

1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 50 100 150 200 250 300 350

Frequency Domain

1kHz + 15kHz

Unfiltered Data

Low Pass Filter

High Pass Filter

Audio

What exactly is an FFT?

FFT calculates the spectrum of a *periodic* time signal

What exactly is an FFT? FFT calculates the spectrum of a periodic time signal a frequency time

1. Time signal

2. Sampling

'Size' or 'blocklength' = number of samples e.g. 512, 1024, 2048, 4096, 8192, ...

$$f_{\rm m} = \sum_{k=0}^{2n-1} x_k e^{-\frac{2\pi i}{2n}mk} \longrightarrow \text{Sum of Sine / Cosine waves}$$

$$f_{m} = \sum_{k=0}^{2n-1} x_{k} e^{-\frac{2\pi i}{2n}mk} \quad \rightarrow \text{Sum of Sine / Cosine waves}$$

Time [s]

Freq. [Hz]

$$f_{\rm m} = \sum_{k=0}^{2{\rm n}-1} x_k e^{-\frac{2\pi i}{2n}mk} \longrightarrow \text{Sum of Sine / Cosine waves}$$

$$f_{\rm m} = \sum_{k=0}^{2n-1} x_k e^{-\frac{2\pi i}{2n}mk} \rightarrow Sum \ of \ Sine \ / \ Cosine \ waves$$

$$f_{\rm m} = \sum_{k=0}^{2n-1} x_k e^{-\frac{2\pi i}{2n}mk}$$
 \rightarrow Sum of Sine / Cosine waves

Implications – D, Δf

The sampling rate and the blocklength give the

- ⇒ **Duration** per block
- ⇒ Frequency resolution of the FFT

Example

- Sampling rate: 48 kHz
- Blocklength: 512 samples

$$\Rightarrow D = \frac{512}{48000} = 10.67 [ms/_{block}]$$

$$\Rightarrow \Delta f = \frac{1}{10.67} = 93.75 [Hz]$$

Features Used

- 8192-point FFT
 - 4096 valid points
- 0 to 48 kHz
- 400 peaks from this data as features

