



## Model Optimization and Tuning Phase Report

| Date          | 21 July 2024                                                  |
|---------------|---------------------------------------------------------------|
| Team ID       | 740005                                                        |
| Project Title | Estimating Presence or Absence of smoking through bio signals |
| Maximum Marks | 10 Marks                                                      |

## **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

**Hyperparameter Tuning Documentation (6 Marks):** 





```
# Evaluate the performance of the tuned model
KNN
                                    knn_classifier = KNeighborsClassifier()
                                                                                                                           accuracy = accuracy score(y test, y pred)
                                                                                                                           print(f'Optimal Hyperparameters: (best_params)')
                                    # Define the hyperparameters and their possible values for tuning
                                                                                                                           print(f'Accuracy on Test Set: {accuracy}')
                                    param_grid = {
                                                                                                                           Optimal Hyperparameters: {'n_neighbors': 9, 'p': 1, 'weights': 'distance'}
                                         'n_neighbors': [3, 5, 7, 9],
                                                                                                                           Accuracy on Test Set: 0.7218934911242604
                                         'weights': ['uniform', 'distance'],
                                         'p': [1, 2]
                                                                                                                           A Scaleste the performance of the timed model.
Gradient
                                    # Define the Gradient Boosting classifier
                                                                                                                           an many continuous some (yetest, yeprod)
                                    gb_classifier = GradientBoostingClassifier()
                                                                                                                           print(#Optimal hyperparenesses: [best person) 1
                                                                                                                           print(fileconecy on Fest Sets (accuracy); )
Boosting
                                    # Define the hyperparameters and their possible values for tuning
                                                                                                                           Optimal typerparentees: ("locating pare": 0.1, "wordsoft": 0, "why smalls plant": 2, "rangemples split": 0, "rejectivators": 199, "culsample": 9.0) Machine on Twill Self: 0.170201-0008-0007
                                    param_grid = {
                                         'n_estimators': [50, 100, 200],
                                         'learning_rate': [0.01, 0.1, 0.2],
                                         'max_depth': [3, 4, 5],
                                          'min_samples_split': [2, 5, 10],
                                         'min_samples_leaf': [1, 2, 4],
                                         'subsample': [0.8, 1.0]
```

## **Performance Metrics Comparison Report (2 Marks):**

| Model         | Optimized Metric                                           |           |        |          |         |  |
|---------------|------------------------------------------------------------|-----------|--------|----------|---------|--|
| Decision Tree | <pre>print(classification_report(y_test,y_pred))</pre>     |           |        |          |         |  |
|               |                                                            | precision | recall | f1-score | support |  |
|               | Loan will be Approved                                      | 0.67      | 0.68   | 0.68     | 75      |  |
| Lo            | oan will not be Approved                                   |           |        |          | 94      |  |
|               | accuracy                                                   |           |        | 0.71     | 169     |  |
|               | macro avg                                                  | 0.71      | 0.71   |          | 169     |  |
|               | weighted avg                                               | 0.71      | 0.71   | 0.71     | 169     |  |
|               | onfusion_matrix(y_test,y_<br>rray([[51, 24],<br>[25, 69]]) | pred)     |        |          |         |  |





| Random Forest     | <pre>print(classification_report(y_test,y_pred))</pre> |              |              |              |            |  |  |
|-------------------|--------------------------------------------------------|--------------|--------------|--------------|------------|--|--|
|                   |                                                        | precision    | recall       | f1-score     | support    |  |  |
|                   | Loan will be Approved<br>Loan will not be Approved     |              |              |              | 75<br>94   |  |  |
|                   | accuracy                                               |              |              | 0.78         | 169        |  |  |
|                   |                                                        | 0.78<br>0.78 |              |              | 169<br>169 |  |  |
|                   |                                                        |              |              |              |            |  |  |
|                   | confusion_matrix(y_test,y_pred)                        |              |              |              |            |  |  |
|                   | array([[62, 13],<br>[25, 69]])                         |              |              |              |            |  |  |
|                   |                                                        |              |              |              |            |  |  |
| KNN               | <pre>print(classification_repor</pre>                  | t(y_test,y_  | pred))       |              |            |  |  |
|                   |                                                        | precision    | recall       | f1-score     | support    |  |  |
|                   | Loan will be Approved<br>Loan will not be Approved     | 0.73<br>0.72 |              | 0.65<br>0.77 | 75<br>94   |  |  |
|                   | accuracy                                               |              |              | 0.72         | 169        |  |  |
|                   | macro avg<br>weighted avg                              |              | 0.71<br>0.72 | 0.71<br>0.72 | 169<br>169 |  |  |
|                   |                                                        |              |              |              |            |  |  |
|                   | confusion_matrix(y_test,y_pred)                        |              |              |              |            |  |  |
|                   | array([[44, 31],<br>[16, 78]])                         |              |              |              |            |  |  |
|                   |                                                        |              |              |              |            |  |  |
| Gradient Boosting | <pre>print(classification_repor</pre>                  | rt(y_test,y_ | pred))       |              |            |  |  |
|                   |                                                        | precision    | recall       | f1-score     | support    |  |  |
|                   | Loan will be Approved<br>Loan will not be Approved     | 0.73<br>0.86 |              |              | 75<br>94   |  |  |
|                   | accuracy                                               |              |              | 0.79         | 169        |  |  |
|                   | macro avg<br>weighted avg                              | 0.80<br>0.80 | 0.80<br>0.79 |              | 169<br>169 |  |  |
|                   | <pre>confusion_matrix(y_test,y_pred)</pre>             |              |              |              |            |  |  |
|                   | array([[64, 11],<br>[24, 70]])                         |              |              |              |            |  |  |
|                   |                                                        |              |              |              |            |  |  |
|                   | on Justification (2 Ma                                 |              |              |              |            |  |  |

Final Model Selection Justification (2 Marks):





| Final Model       | Reasoning                                                                                                                                                                                                                                                                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gradient Boosting | The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model. |