

日 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 3月11日

出 願 番 号 Application Number:

平成11年特許願第064217号

Applicant (s):

ソニー株式会社

2000年 1月21日

特許庁長官 Commissioner, Patent Office

出証番号 出証特平11-3095191

特平11-064217

【書類名】

特許願

【整理番号】

9900118201

【提出日】

平成11年 3月11日

【あて先】

特許庁長官 殿

【国際特許分類】

G11B 27/00

【発明の名称】

ディスク装置

【請求項の数】

5

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

西村 章

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

福島 正剛

【特許出願人】

【識別番号】

000002185

【氏名又は名称】 ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100102185

【弁理士】

【氏名又は名称】

多田 繁範

【電話番号】

03-5950-1478

【手数料の表示】

【予納台帳番号】

047267

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

特平11-064217

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9600452

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 ディスク装置

【特許請求の範囲】

【請求項1】

入力データをディスク状記録媒体に記録する記録系と、

少なくとも前記ディスク状記録媒体の前記入力データを記録する領域のアクセスに必要なアドレス情報を記録する不揮発性メモリと、

前記不揮発性メモリに前記アドレス情報を記録するメモリ制御手段と、

前記不揮発性メモリの内容に従って前記ディスク状記録媒体に記録されたデータを再生する再生系と

を備えることを特徴とするディスク装置。

【請求項2】

前記記録系は、

前記記録媒体に設定した所定のブロック単位で、連続する前記入力データを区切って前記ディスク状記憶媒体に記録し、

前記メモリ制御手段は、

前記記録系における処理に同期して、記録を完了した前記ブロックに対応して 前記アドレス情報を前記不揮発性メモリに順次記録する

ことを特徴とする請求項1に記載のディスク装置。

【請求項3】

前記記録系は、

前記記録媒体に設定した所定のブロック単位で、連続する前記入力データを区 切って前記ディスク状記憶媒体に記録し、

前記アドレス情報は、

前記入力データによる1のファイルについて、連続する前記ブロックを特定するデータにより形成され、

前記不揮発性メモリは、

1のファイルが終了するブロックについては、ファイルの終了を示す識別情報 を記録し、 前記メモリ制御手段は、

起動時、前記アドレス情報に応じて、前記識別情報を設定する ことを特徴とする請求項1に記載のディスク装置。

【請求項4】

前記記録系は、

前記ディスク状記録媒体の所定領域に、前記不揮発性メモリが保持するデータ と同一のデータを保持する

ことを特徴とする請求項1に記載のディスク装置。

【請求項5】

前記ディスク装置は、

所定の映像機器に着脱自在に保持され、

前記入力データが前記映像機器より出力されるビデオデータである ことを特徴とする請求項1に記載のディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、ディスク装置に関し、例えば映像信号を記録するリムーバブルのハードディスク装置に適用することができる。本発明は、少なくともディスク状記録媒体の入力データを記録する領域のアクセスに必要なアドレス情報を不揮発性メモリに記録することにより、短い待ち時間によりデータエリアをアクセスすることができ、また異常終了時においても、それまで記録したデータを有効に利用することができるようにする。

[0002]

【従来の技術】

従来、ビデオ信号を記録する装置としては、記録媒体として磁気テープを用いたビデオテープレコーダが広く利用されるようになされている。このようなビデオテープレコーダにおいては、時系列により入力されるビデオ信号及びオーディオ信号をビデオ信号のフィールド又はフレーム単位で区切って、磁気テープに斜め記録するようになされている。

[0003]

また近年、光ディスクを用いてビデオ信号及びオーディオ信号を記録する装置 も提案されており、このような光ディスクを用いた装置においては、2時間程度 のビデオ信号及びオーディオ信号を記録できるようになされている。

[0004]

これに対してパーソナルコンピュータにおいては、ハードディスク装置を用いてアプリケーションプログラム等を記録するようになされており、ハードディスク装置にあっては、近年、急激に高密度化、小型化されるようになされている。

[0005]

このようなハードディスク装置においては、ハードディスクの記録領域をシステムエントリーエリアとデータエリアとに分割し、外部機器より入力される各種データをデータエリアに記録すると共に、このデータエリアのアクセスに必要なデータをシステムエントリーエリアに記録する。

[0006]

このためハードディスク装置においては、データエリアへのデータの記録を完了すると、システムエントリーエリアの内容を更新し、これによりシステムエントリーエリアを検索して記録したデータをアクセスできるようにし、またこのシステムエントリーエリアの検索により空き領域を検出して所望のデータを記録できるようになされている。

[0007]

【発明が解決しようとする課題】

ところでビデオ信号の記録についても、ハードディスク装置を適用することにより、小型で、長時間記録可能な記録装置を作成することができると考えられる。この場合に、ハードディスク装置に記録するビデオ信号及びオーディオ信号については、ファイルとして処理して、パーソナルコンピュータにて利用されるファイル管理システムをそのまま適用することが考えられる。

[0008]

ところが単にパーソナルコンピュータ等に適用されるファイル管理システムに よりビデオ信号等を記録する場合にあっては、データエリアをアクセスするまで の待ち時間が長い問題があり、また記録の際の異常終了に対応することが困難な 問題がある。

[0009]

すなわちハードディスク装置においては、システムエントリーエリアの記録に 従ってデータエリアをアクセスすることにより、記録再生時、事前にシステムエ ントリーエリアをアクセスする必要がある。ハードディスク装置においては、こ のシステムエントリーエリアをアクセスする際に、磁気ヘッドのシーク、ハード ディスクの回転待ちに時間を要し、これによりデータエリアのアクセスを開始す るまでに待ち時間が長くなる欠点がある。

[0010]

このような欠点について、パーソナルコンピュータに適用する場合にあっては、パーソナルコンピュータとの間のインターフェースにより、パーソナルコンピュータ側を待機させてデータを送受することにより、このような待ち時間による影響を回避することができる。しかしながらビデオ信号にあっては、高転送レートによるデータをリアルタイムで記録再生することが必要なことにより、このように待ち時間が長い場合にあっては、例えばビデオカメラー体型の記録装置に適用して連続するデータを記録できない場合が発生する。

[0011]

またハードディスク装置において、記録消去を繰り返すと、連続するデータを 離散的な領域に分割して記録することになり、これにより再生時においても、ビ デオ信号を連続して再生できなくなることが考えられる。

[0012]

これに対して例えばビデオカメラー体型の記録装置に適用した場合等にあっては、落下等の事故により記録途中で電源が遮断する場合も考えられ、従来のハードディスク装置においては、この様な異常終了時には、システムエントリーエリアを更新することが困難なことにより、それまでせっかく記録したビデオ信号を利用できなくなる。

[0013]

本発明は以上の点を考慮してなされたもので、短い待ち時間によりデータエリ

アをアクセスすることができ、また異常終了時においても、それまで記録したデータを有効に利用することができるディスク装置を提案しようとするものである

[0014]

【課題を解決するための手段】

かかる課題を解決するため請求項1に係る発明においては、少なくともディスク状記録媒体の入力データを記録する領域のアクセスに必要なアドレス情報を記録する不揮発性メモリと、この不揮発性メモリにアドレス情報を記録するメモリ制御手段とを備えるようにする。

[0015]

請求項1に係る構成によれば、少なくともディスク状記録媒体の入力データを記録する領域のアクセスに必要なアドレス情報を記録する不揮発性メモリと、この不揮発性メモリにアドレス情報を記録するメモリ制御手段とを備えることにより、ディスク状記録媒体をいちいちアクセスすることなく、不揮発性メモリに記録されたアドレス情報によりディスク状記録媒体をアクセスすることができ、その分短い待ち時間によりディスク状記録媒体をアクセスすることができる。また電源が遮断した場合等にあっても、不揮発性メモリに記録されたアドレス情報にあっては、失われることなく保持されることにより、この不揮発性メモリに記録されたアドレス情報に従って異常終了時点までに記録したデータを利用することが可能となる。

[0016]

【発明の実施の形態】

以下、適宜図面を参照しながら本発明の実施の形態を詳述する。

[0017]

(1) 実施の形態

図2は、本発明の実施の形態に係るハードディスク装置を示すブロック図である。このハードディスク装置1は、撮像装置、セットトップボックス等に装着されて、これらの機器より出力されるビデオ信号及びオーディオ信号を記録する。 またこれらの機器に装着された状態で、又はこれらの装置より取り外されて他の AV機器に装着された状態で、記録したビデオ信号及びオーディオ信号を再生して出力する。

[0018]

このためこのハードディスク装置1は、これら撮像装置、セットトップボックス等のAV機器2に着脱自在に保持され、ビデオデータ、オーディオデータを所定フォーマットによりデータ圧縮してなるデータ(以下AVデータと呼ぶ)をこれらのAV機器2との間で入出力し、またこれらのAVデータの入出力に伴う制御コマンド、ステータスデータ、アドレス等をこれら機器との間で入出力する。さらにこのAVデータをハードディスク3に記録し、またこのハードディスク3に記録したAVデータを再生して出力する。

[0019]

ここでハードディスク3は、図3に示すようにフォーマットされる。すなわち ハードディスク3は、情報記録面を内周側領域と外周側領域とに分割し、内周側 領域がシステムエントリーエリアに割り当てられる。また外周側領域がデータエ リアに割り当てられる。

[0020]

このうちデータエリアは、クラスタに細分化され、所定フレーム数のデータ量を単位にして、各クラスタにビデオデータ及びオーディオデータが記録されるようになされている。なおこの実施の形態において、ハードディスク3は、MPEG (Moving Picture Experts Group)のフォーマットによりデータ圧縮されたAVデータを記録する場合、1クラスタに1GOP分のAVデータが割り当てられるようになされている。

[0021]

データエリアは、各クラスタにアドレスであるブロック番号が割り当てられ、 このブロック番号を基準にしてクラスタ単位でアクセスできるようになされてい る。なおこの実施の形態では、ブロック番号を4桁のヘキサ形式により示す。

[0022]

これに対してシステムエントリーエリアは、さらにブートエリア、FAT (Fa il Allocation table) エリア、ディレクトリーエリアに分割され、ブートエリ

アには、ハードディスク3の立ち上げに必要なデータが記録されるようになされている。これに対してFATエリア及びディレクトリーエリアには、データエリアに記録したAVデータのアクセスに必要なアドレス情報等が記録される。

[0023]

すなわちディレクトリーエリアには、データエリアに記録された各ファイルのファイル名と、各ファイルの記録開始位置である先頭ブロックのブロック番等が記録される。これに対してFATエリアには、各ファイルの先頭ブロックに連続する各ブロックのブロック番号等が記録される。これによりハードディスク3は、所望するファイル名の先頭ブロック番号をディレクトリーエリアから検出した後、この先頭ブロック番号に続くブロック番号を順次FATエリアから検出することにより、1つのファイルを構成する連続するクラスタのアドレスを検出できるようになされている。

[0024]

かくするにつきこの図3においては、データエリアのブロック番号1234h~1240hまでのクラスタにファイル1が記録されている場合に、ファイル1の第1ブロックのブロック番号1234hを示すコードがディレクトリーエリアに記録され、さらにこのブロック番号1234hから続くブロック番号がFATエリアの対応する領域に順次記録されるようになされている。なおこの図3においてEOF (End Of File) は、1つのファイルの最終ブロックを示す識別情報である。

[0025]

より詳細には、ディレクトリーエリアは、データエリアに記録した各ファイル 毎に、図4に示す構成のファイル管理用データが記録される。すなわちファイル 管理用データは、先頭8バイトにファイル名が割り当てられ、続く3バイトに各 ファイルの拡張子が割り当てられるようになされている。さらに続く1バイトに ファイルの属性を示すデータが割り当てられ、続く10バイトがリザーブ用のデ ータに割り当てられる。また続く2バイトが記録開始時刻のデータに、続く2バイトが記録日時のデータに割り当てられ、続く2バイトに先頭ブロック番号であ るクラスタ番号が割り当てられるようになされている。なお最後の4バイトには 、ファイル長のデータが割り当てられる。

[0026]

これに対してFATエリアは(図3)、データエリアのブロック番号(クラスタ番号)に対応してブロックアドレスが割り振られ、各ブロックアドレスに続くクラスタのブロック番号が記録されるようになされている。また図5に示すように、これらブロック番号に割り当てられていないコードのうち、所定のコードがそれぞれ空き領域、欠陥クラスタ、EOFを示す識別情報に割り当てられるようになされている。

[0027]

これによりハードディスク3は、FATエリアをアクセスしてデータエリアの 空き領域を検出できるようになされている。

[0028]

インターフェース制御回路(IF制御)4は(図2)、例えばSCSI(Small Computer System Interface)コントローラ、IDE(Intelligent Drive Electronics)コントローラ等により形成され、これらAV機器2との間で送受するデータ、制御コマンンド、アドレス等の入出力回路を構成する。バッファメモリ5は、ハードディスク制御回路6とインターフェース制御回路4との間で入出力するAVデータを一時保持する。

[0029]

サーボ回路7は、ハードディスク制御回路6の制御によりモータ (M) 8を駆動し、これによりハードディスク3を所定の回転速度により回転駆動する。またサーボ回路7は、同様にしてモータ (M) 9を駆動することにより磁気ヘッドをシークさせ、さらにトラッキング制御する。

[0030]

リードデータチャンネル部10は、ハードディスク制御回路6の制御により、 記録時、ハードディスク制御回路6より入力されるAVデータに誤り訂正符号を 付加すると共に、記録再生系の特性に適した方式により符号化処理してビット系 列のデータを生成し、このデータにより磁気ヘッドを駆動する。また再生時、リ ードデータチャンネル部10は、磁気ヘッドより得られる再生信号を信号処理し

特平11-064217

て再生データを生成し、この再生データを誤り訂正処理することにより、AVデータを再生してハードディスク制御回路6に出力する。

[0031]

システムエントリーメモリ11は、不揮発性メモリであり、ハードディスク3のシステムエントリーエリアと同様に内部の記録領域をブートエリア、FATエリア、ディレクトリーエリアに分割し、これら各領域にハードディスク3のシステムエントリーエリアの各領域に記録したデータと同一のデータを保持する。システムエントリーメモリ11は、ハードディスク制御回路6の制御により、クラスタを単位にしたAVデータのハードディスク3への記録に対応して内容が順次更新され、また保持したデータを所定のタイミングでハードディスク制御回路6に出力する。

[0032]

ハードディスク制御回路 6 は、このハードディスク装置 1 の動作を制御するコントローラであり、インターフェース制御回路 4 より入力される制御コマンドを解析し、その解析結果に応じて所定の処理手順を実行することにより全体の動作を制御する。

[0033]

図1は、このハードディスク制御回路6の処理手順を示すフローチャートであり、ハードディスク制御回路6は、書き込みの制御コンマンドがAV機器2より入力されるとこの処理手順を実行する。すなわちハードディスク制御回路6は、書き込みの制御コマンドが入力されると、ステップSP1からステップSP2に移り、システムエントリーメモリ11のFATエリアを検索し、図5に示した空き領域のコード0000hを検索することにより、ハードディスク3の空き領域を検出する。

[0034]

続いてハードディスク制御回路6は、ステップSP3に移り、書き込みの制御コマンドに付加されたファイル名、拡張子、ステップSP2で検出した空き領域のブロック番号によりファイル管理用データを生成し、このファイル管理用データをシステムエントリーメモリ11に記録する。続いてハードディスク制御回路

6は、ステップSP4に移り、このステップSP2で検出したハードディスク3の空き領域に1クラスタ分のAVデータを記録する。

[0035]

続いてハードディスク制御回路6は、ステップSP5に移り、AVデータの記録が全て完了したか否か判断し、ここで否定結果が得られると、ステップSP6に移り、システムエントリーメモリ11のFATエリアよりハードディスク3の続く空き領域を検出する。さらにハードディスク制御回路6は、続いてステップSP7に移り、ステップSP4においてAVデータを記録したクラスタに対応するシステムエントリーメモリ11のFATエリアについて、ステップSP6で検出した空き領域であるクラスタ番号(ブロック番号)を特定するように内容を更新してステップSP4に戻る。

[0036]

これによりハードディスク制御回路6は、ステップSP4-SP5-SP6-SP7-SP4の処理手順を繰り返して、システムエントリーメモリ11より空き領域を順次検出して1クラスタ単位でAVデータを記録すると共に、これと同期してシステムエントリーメモリ11のFATエリアを順次更新するようになされている。

[0037]

このようにしてAVデータの記録を繰り返して、全てのAVデータを記録すると、ハードディスク制御回路6は、ステップSP5において肯定結果が得られることにより、ステップSP8に移る。ここでハードディスク制御回路6は、直前のステップSP4でAVデータを記録したクラスタに対応するシステムエントリーメモリ11のFATエリアについて、EOFを示すコードFFF8h~FFFFhを設定する。

[0038]

続いてハードディスク制御回路6は、ステップSP9に移り、システムエント リーメモリ11に記録したデータによりハードディスク3のシステムエントリー エリアを更新した後、ステップSP10に移ってこの処理手順を終了する。これ によりハードディスク制御回路6は、AVデータの記録時においては、システム エントリーメモリ 1 1 の記録に基づいてハードディスク 3 のデータエリアをアクセスするようになされている。

[0039]

これに対して図6は、再生の制御コマンドが入力された場合におけるハードディスク制御回路6の処理手順を示すフローチャートである。ハードディスク制御回路6は、制御コマンドが入力されると、ステップSP11からステップSP12に移り、制御コマンドに付加されたファイル名によりシステムエントリーメモリ11のディレクトリーエリアを検索し、このディレクトリーエリアに記録された対応するファイル管理用データを検出する。さらにハードディスク制御回路6は、このファイル管理用データより制御コマンドにより指定されたファイルの先頭ブロック番号を検出する。

[0040]

続いてハードディスク制御回路6は、ステップSP13に移り、この先頭ブロック番号により特定されるハードディスク3のクラスタを再生し、続くステップSP14において、システムエントリーメモリ11のFATエリアを検索し、対応するFATアドレスによるコードを検出する。

[0041]

続いてハードディスク制御回路6は、ステップSP15に移り、ステップSP 14で検出したコードがファイルの終了を示すコード(EOF)か否か判断し、 ここで否定結果が得られると、ステップSP13に戻り、このコードにより特定 されるハードディスク3のクラスタを再生する。

[0042]

これによりハードディスク制御回路6は、再生の制御コマンドが入力されると、ディレクトリーエリアより対応ファイルの先頭ブロック番号を検出した後、ステップSP13-SP14-SP15-SP13の処理手順を繰り返し、この先頭ブロック番号より続くブロック番号を順次FATエリアより検出して順次AVデータを再生する。

[0043]

このようにして順次クラスタを再生してファイルの終了を示すコード (EOF

)が検出されると、ハードディスク制御回路 6 は、ステップ S P 1 6 に移り、この処理手順を終了する。これによりハードディスク制御回路 6 は、A V データの再生時においても、システムエントリーメモリ 1 1 の記録に基づいてハードディスク 3 をアクセスするようになされている。

[0044]

これに対して図7は、ハードディスク制御回路6の起動時の処理手順を示すフローチャートである。ハードディスク制御回路6は、電源が投入されると、システムエントリーメモリ11のブートエリアの内容に従って全体を初期化した後、この処理手順を実行する。すなわちハードディスク制御回路6は、ステップSP21からステップSP22に移り、ここでシステムエントリーメモリ11の内容を検証する。

[0045]

ここでハードディスク制御回路6は、ディレクトリーエリアに記録された各ファイル管理用データについて、FATエリアを順次辿って対応するEOFが設定されているか否か判断する。すなわち電源が遮断した等の異常終了が発生した場合には、記録が中断することにより、該当するファイル管理用データについては、対応するEOFを記録することが困難になる。

[0046]

これによりハードディスク制御回路6は、続くステップSP23において、対応するEOFが設定されていないファイル管理用データが1つも存在しない場合、異常終了しなかったと判断し、ステップSP24に移ってこの処理手順を終了する。

[0047]

これに対して対応するEOFが設定されていないファイル管理用データが1つでも存在する場合、ハードディスク制御回路6は、異常終了したと判断し、ステップSP23からステップSP25に移る。ここでハードディスク制御回路6は、該当するファイル管理用データについて、FATエリアのコードを順次辿って記録が完了してなる異常終了直前のクラスタに対応するFATアドレスを検出する。さらにこのFATアドレスの領域にEOFのコードを設定し、これによりシ

ステムエントリーメモリ11の内容を再構築する。

[0048]

続いてハードディスク制御回路6は、ステップSP26に移り、ハードディスク3のシステムエントリーエリアをシステムエントリーメモリ11の内容により更新し、ステップSP24に移ってこの処理手順を終了する。これによりハードディスク装置1では、異常終了時にあっても、それまで記録したAVデータを再生できるようになされている。

[0049]

さらにハードディスク制御回路6は、この図7に示す処理手順に先立って、ハードディスク3のシステムエントリーエリアとシステムエントリーメモリ11の内容とをそれぞれ検証する。この検証において、ハードディスク制御回路6は、ハードディスク3のクラッシュ、システムエントリーメモリ11を構成するメモリチップの異常等により、これらシステムエントリーエリア又はシステムエントリーメモリ11より正しくデータをロードできない場合、異常の発生していない側の内容により他方の内容を書き換える。これによりハードディスク装置1では、携帯時の落下等により異常が発生した場合でも、記録したAVデータを再生できるようになされ、その分信頼性を向上できるようになされている。

[0050]

(1-2) 第1の実施の形態の動作

以上の構成において、ハードディスク装置1は(図2)、例えば撮像装置、セットトップボックス等に装着されて、これらのAV機器2より記録の制御コマンドが入力されると、この制御コマンドに続いて入力されるAVデータがハードディスク制御回路6を介してリードデータチャンネル部10に入力され、ここで記録に適したフォーマットにより変調されて磁気ヘッドが駆動され、これによりハードディスク3に記録される。

[0051]

またこれらのAV機器に接続された状態で、またこれらの機器より取り外されて他のAV機器に装着された状態で、再生の制御コマンドが入力されると、磁気ヘッドより得られる再生信号がリードデータチャンネル部10により処理されて

AVデータが再生され、このAVデータがハードディスク制御回路6、インターフェース制御回路4を介してAV機器2に出力される。

[0052]

このようにして記録再生するにつき、ハードディスク装置1では、システムエントリーメモリ11をアクセスしてハードディスク3の空き領域が検出され、また再生が指示されたAVデータのアドレスが検出される。これによりハードディスク装置1においては、ハードディスク3に記録されたシステムエントリーエリアをいちいちアクセスしなくてもハードディスク3のデータエリアをアクセスすることができ、その分短い待ち時間によりデータエリアをアクセスすることが可能となる。従ってこの実施の形態のように、高転送レートであるAVデータを記録再生するにつき、このAVデータを途切れることなくリアルタイムで記録再生することができる。また待ち時間が短いことにより、このAVデータを一時保持するバッファメモリ5の容量も低減でき、その分全体構成を簡略化することができる。

[0053]

すなわち再生のコマンドに対して、ハードディスク装置1では(図6)、対応するファイル管理用データがシステムエントリーメモリ11のディレクトリーエリアより検索され、これによりこの再生の指示されたファイルについて、先頭ブロック番号(先頭のクラスタ番号)が検出される。さらにこのブロック番号に対応するFATアドレスの記録が検索され、この先頭ブロックに続くブロック番号が検出され、以下同様にしたFATエリアの検索によりファイルの終了ブロックに対応するEOFが検出されるまで連続するクラスタのブロック番号が順次検出される。ハードディスク装置1では、このようにしてブロック番号を検出しながら、対応するブロックより順次AVデータが再生され、これによりハードディスク3に記録されたシステムエントリーエリアをいちいちアクセスしなくてもハードディスク3のデータエリアをアクセスしてAVデータが再生される。

[0054]

これに対して記録時においては、同様にシステムエントリーメモリ11により 空き領域を確認してAVデータを記録することにより、この場合もハードディス ク3に記録されたシステムエントリーエリアをいちいちアクセスしなくてもハードディスク3のデータエリアをアクセスしてAVデータを記録することが可能となる。

[0055]

このときハードディスク装置1では、不揮発性メモリによるシステムエントリーメモリ11により空き領域を検出しながら、クラスタ単位でAVデータを記録すると共に、この記録系の処理と同期して記録を完了したブロックに対応してシステムエントリーメモリ11の内容を順次更新し、これにより電源が遮断した場合等の異常終了時においても、それまで記録したAVデータを利用することが可能となる。

[0056]

すなわちハードディスク装置1では(図1)、記録時、システムエントリーメモリ11のFATエリアより空き領域のブロック番号(FATアドレス)が検出され、この検出結果と再生コマンドにより対応するファイル管理用データがシステムエントリーメモリ11のディレクトリーエリアに記録される。さらにこの空き領域より順次空き領域が検出され、これら空き領域の連続を示すコードがFATエリアに順次セットされ、最終ブロックにあってはEOFのコードがセットされる。ハードディスク装置1では、このようにして空き領域を検出しながら、対応するブロックに順次AVデータが記録され、これによりハードディスク3に記録されたシステムエントリーエリアをいちいちアクセスしなくてもハードディスク3のデータエリアをアクセスしてAVデータが記録される。

[0057]

さらにその後、ハードディスク装置1では、このシステムエントリーメモリ1 1の内容がハードディスク3のシステムエントリーエリアに記録される。

[0058]

このようにしてAVデータを順次記録していく過程で、電源が遮断すると、また機器に異常が発生して記録が中断すると、さらにはAV機器より記録中に誤ってハードディスク装置1が取り外されると、システムエントリーメモリ11においては、ファイルの終了を示すEOFが設定されないことになる。これによりハ

1 5

ードディスク装置1では(図7)、電源起動時、システムエントリーメモリ11の内容を検証し、EOFが設定されないファイル管理用データが検出されると、このファイル管理用データに記録された先頭ブロック番号のFATアドレスより順次FATエリアを辿り、このFATエリアに設定されたコードに従って異常終了直前のブロック番号が検出される。さらにこのブロック番号に代えてEOFのコードが設定され、これにより記録途中のファイルについても、利用することが可能となる。

[0059]

さらにハードディスク装置1では、ハードディスク3のシステムエントリーエリアとシステムエントリーメモリ11とで同一内容のデータを保持することにより、このような電源起動時の検証において、ハードディスク3のシステムエントリーエリア、システムエントリーメモリ11の異常が確認され、何れかに異常が検出される場合には異常の発生していない側の内容により他方の内容が書き換えられる。

[0060]

これによりハードディスク装置 1 は、携帯時の落下等により異常が発生した場合でも、記録した A V データを再生できるようになされ、その分信頼性を向上することができる。

[0061]

(1-3) 第1の実施の形態の効果

以上の構成によれば、不揮発性メモリによるシステムエントリーメモリに、ハードディスク3のデータエリアのアクセスに必要なアドレス情報等を記録し、このシステムエントリーメモリの内容に従ってハードディスク3のデータエリアをアクセスすることにより、短い待ち時間によりデータエリアをアクセスすることができる。

[0062]

またクラスタ単位で連続するAVデータを区切ってハードディスクに記録しながら、この記録系における処理に同期して、記録を完了したクラスタに対応してシステムエントリーメモリの内容を順次更新することにより、異常終了時におい

ても、それまで記録したデータを有効に利用することができる。

[0063]

さらにハードディスク3のシステムエントリーエリアと、システムエントリーメモリとで、同一のデータを保持することにより、携帯時の落下等により異常が発生した場合でも、記録したAVデータを再生でき、その分信頼性を向上することができる。特に、ハードディスク装置においては、種々のAV機器に着脱自在に保持されることにより、その分信頼性の向上により使い勝手を向上することができる。

[0064]

(2)他の実施の形態

なお上述の実施の形態においては、ハードディスク3のシステムエントリーエリアと、システムエントリーメモリとで、全く同一のデータを記録する場合について述べたが、本発明はこれに限らず、要は、データエリアのアクセスに必要なアドレスデータを記録システムエントリーメモリに保持すれば良く、例えはファイル管理用データ等については、システムエントリーメモリにおける属性等の記録を省略してもよい。

[0065]

また上述の実施の形態においては、ハードディスク3のシステムエントリーエリアと、システムエントリーメモリとで、同一のデータを記録してシステムの信頼性を向上する場合について述べたが、本発明はこれに限らず、実用上十分な信頼性を確保することができる場合、ハードディスク3のシステムエントリーエリアを省略してもよい。

[0066]

また上述の実施の形態においては、FATファイルシステムによりハードディスク3のデータエリアを管理する場合について述べたが、本発明はこれに限らず、種々の管理ファイルシステムにより管理する場合に広く適用することができる

[0067]

また上述の実施の形態においては、本発明をリムーバブルのハードディスク装

置に適用する場合について述べたが、本発明はこれに限らず、相変化型光ディスク装置、熱磁気記録による光ディスク装置等、種々のディスク装置に広く適用することができる。

[0068]

【発明の効果】

上述のように本発明によれば、少なくともディスク状記録媒体の入力データを記録する領域のアクセスに必要なアドレス情報を不揮発性メモリに記録することにより、短い待ち時間によりデータエリアをアクセスすることができ、また異常終了時においても、それまで記録したデータを有効に利用することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態に係るハードディスク装置のハードディスク制御回路の記録時の処理手順を示すフローチャートである。

【図2】

ハードディスク装置の全体構成を示すブロック図である。

【図3】

図2のハードディスク装置におけるハードディスクの記録領域の説明に供する 図表である。

【図4】

図3のディレクトリーエリアに記録されるファイル管理用データを示す図表である。

【図5】

図3のFATエリアに記録されるコードを示す図表である。

【図6】

図2のハードディスク制御回路の再生時の処理手順を示すフローチャートである。

【図7】

図2のハードディスク制御回路の異常終了に対応する処理手順を示すフローチャートである。

特平11-064217

【符号の説明】

1 ……ハードディスク装置、2 ……AV機器、3 ……ハードディスク、5 …… バッファメモリ、6 ……ハードディスク制御回路、11 ……システムエントリー メモリ 【書類名】 図面

【図1】

【図2】

【図3】

【図4】

4114	ファイル長
2/14 h	先頭 クラスタ番号
2114 1	記録日付
2114 h	記録時刻
10/7 F	子約
1X7 h	属性
3117 F	拡張子
8114 F	名前

【図5】

FATの値(16進表示)	意味
0 0 0 0 h	対応するクラスタは「空き」の状態
0002h~FF6h	対応するクラスタは「割り当て済み」の状態対応する値は、次へ続くクラスタ番号
7 7 7 8	「欠陥クラスタ」であることを示す
FFF8h~FFFFh	対応するクラスタは「割り当て済み」の状態、ファイルエンドを示す(EOF)

【図6】

【書類名】

要約書

【要約】

【課題】 本発明は、ディスク装置に関し、例えば映像信号を記録するリムーバブルのハードディスク装置に適用して、短い待ち時間によりデータエリアをアクセスすることができ、また異常終了時においても、それまで記録したデータを有効に利用することができるようにする。

【解決手段】 少なくともディスク状記録媒体の入力データを記録する領域のアクセスに必要なアドレス情報を不揮発性メモリに記録する。

【選択図】

図 1

出願人履歴情報

識別番号

[000002185]

1. 変更年月日 1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社