## Interro - Electrostatique

vous pouvez écrire directement sur l'énoncé N'oubliez pas de tourner la page

1. Repérer les plans de symétrie  $\Pi$  et d'anti-symétrie  $\Pi^*$  de la distribution discrète suivante :



- 2. Que peut-on dire du champs électrique  $\vec{E}(M)$  :
  - a en un point  $M\in \operatorname{plan}$  de symétrie  $\Pi$

si M 
$$\in \Pi$$
, alors  $\vec{E}(M)$  ...

b en un point  $M \in \operatorname{plan}$  d'anti-symétrie  $\Pi^*$ 

si M 
$$\in \Pi^*$$
, alors  $\vec{E}(M)$  ...

- c en un point M au voisinage de P une charge discrète positive  $q_P>0$ 
  - si M proche de P avec avec  $q_P > 0$ , alors  $\vec{E}(M)$  ...
- d en un point M au voisinage de N une charge discrète négative  $q_N<0$ 
  - si M proche de N avec avec  $q_N < 0,$  alors  $\vec{E}(M)$  ...

 $3.\ \,$  Tracer ci-dessous les lignes de champs de la distribution présentée question 1



4. Donner la relation entre champ électrique  $\vec{E}$  et potentiel V.

... = ...

Que peut-on dire des lignes de champs et des équipotentielles?

Les lignes de champs et les équipotentielles sont  $\dots$ 

Tracer ci-dessous les équi potentielles de la distribution présentée question 1.

