Ways of Writing an Algorithm

There are various ways of writing an algorithm.

1. English-Like Algorithm

Algorithm can be written in many ways. 1st method is Simple English Language.

Eg:

Algorithm: English – like algorithm of linear search.

- Step 1: Compare `item` with the first element of the array, A.
- **Step 2:** If the two are same, then print the position of the element and exit.
- **Step 3:** Else repeat the above process with the rest of the elements.
- **Step 4:** If the item is not found at any position, then print 'not found' and exit.

Disadvantage:

- 1. Natural Languages can be ambiguous and therefore its lack the characteristics of being definite.
- 2. English language-like algorithms are not considered good for most of the task.

2. Flow Chart

Flowcharts pictorially depict a process.

They are easy to understand and are commonly used in the case of simple problems.

Flow Chart Conventions

S. No.	Name	Element Representation	Meaning
1.	Start/End		An oval is used to indicate the beginning and end of an algorithm.
2.	Arrows	→ ↓	An arrow indicates the direction of flow of the algorithm.
3.	Input/Output		A parallelogram indicates the input or output.
4.	Connectors		Circles with arrows connect the disconnected flowchart.
5.	Process		A rectangle indicates a computation.
6.	Decision		A diamond indicates a point where a decision is made.

3. Pseudocode

The pseudocode has an advantage of being easily converted into any programming. This way of writing algorithm is most acceptable and most widely used.

Pseudocode Conventions

S. No.	Construct	Meaning
1.	//	Single Line Comment
2.	/* Comment Line 1 Comment Line 2 Comment Line n */	Multi-line comments occur between /* */
3.	{ Statements }	Blocks are represented using { and } . Blocks can be used to represent compound statements(collections of simple statements) or the procedure.
4.	;	Statements are delimited by ;
5.	<variable> =</variable>	,
	<expression></expression>	This is an assignment statement. The statement indicates that the result of evaluation of expression will be stored in the variable.
6.	a> b	a and b are expressions, and > is a relational

		operator 'greater than'. The Boolean expression a > b returns true if a is greater than b, else returns false.
7.	a < b	a and b are expressions, and < is a relational operator 'less than'. The Boolean expression a < b returns true if a is less than b, else returns false.
8.	a <= b	a and b are expressions, and < is a relational operator 'less than or equal to' . The Boolean expression a < b returns true if a is less than or equal to b , else returns false.
9.	a>=b	a and b are expressions, and > is a relational operator 'greater than or equal to' . The Boolean expression a >= b returns true if a is greater than or equal to b, else returns false.
10.	a! = b	a and b are expressions, and != is a relational operator 'not equal to'. The Boolean expression

		a!=b returns true if a is not equal to b, else returns false.
11.	a == b	a and b are expressions, and == is a relational operator 'equal to'. The Boolean expression a == b returns true if both a is equal to b, else returns false.
12.	a AND b	a and b are expressions, and AND is logical operator. The Boolean expression a AND b returns true if both the conditions are true, else it returns false.
13.	a OR b	a and b are expressions, and OR is logical operator. The Boolean expression a OR b returns true if any of the condition is true, else it returns false.
14.	NOT a	a is an expression, and NOT is a logical operator. The Boolean expression 'NOT a' returns true if the result of 'a' evaluates to False,

			else returns False.
15.		If <condition>then: <statement></statement></condition>	The statement indicates the conditional operator if.
16.		If <condition> then: <statement1> Else: < statement2></statement1></condition>	The statement is an enhancement of the above if statement. It can also handle the case wherein the condition is not satisfied.
17.	: <condition< td=""><td>1>: <statement1> n>: <statement n=""> tatement n+1></statement></statement1></td><td>The statement is a depiction of switch case used in C or C++.</td></condition<>	1>: <statement1> n>: <statement n=""> tatement n+1></statement></statement1>	The statement is a depiction of switch case used in C or C++.
18.	While <cond { statemen }</cond 		The statement depicts a while loop.
19.	repeat statements until <condition></condition>		The statement depicts a do-while loop.
20.	for variable = value1 to value2 {		The statement depicts a for loop.

	statements }	
21.	Read	Input instruction
22.	Print	Output instruction
23.	Algorithm <name>(<parameter list="">)</parameter></name>	The name of the algorithm is <name> and the arguments are stored in the <parameter list=""></parameter></name>

Eg: <u>Algorithm: Linear Search on basis of Pseudocode</u>.

```
Algorithm Linear_Search(A,n,item)
{
  for i = 1 to n step 1 do
    {
     If(A[i] == item)
     {
        print i;
        exit();
}
```

```
}
print "Not Found"
}
```