# Practical 7: Searching Algorithms

Gearoid Mulligan: 19343146

## Results

| N          | bruteForceSearch | KMPSearch |
|------------|------------------|-----------|
| 20         | 0.001            | 0.0       |
| 1,000      | 0.002            | 0.0       |
| 10,000     | 0.007            | 0.001     |
| 100,000    | 0.059            | 0.007     |
| 1,000,000  | 0.205            | 0.014     |
| 10,000,000 | 1.693            | 0.046     |

## Graph



From the above graph and table, it is evidently clear that KMP search is much more efficient as the value of N increases. From this I can conclude that for small values of N (<10,000), either algorithm can work however for values over around 10,000 KMPSearch is far quicker.

### Question 1

I would say that the complexity of the Brute Force substring search algorithm is O(nm) where n is the length of text and m is he length of the pattern.

#### Question 2

I would say that the complexity of the KMP is O(n) where n is the length of text.