Introduction to Coding Theory Assignment 5

Divij Singh

07/01/19

1 Q1

 $00 \rightarrow 0000$

 $01 \rightarrow 0121$

 $02 \rightarrow 0212$

 $10 \rightarrow 1022$

 $11 \rightarrow 1110$

 $12 \rightarrow 1201$

 $20 \rightarrow 2011$

 $21 \rightarrow 2102$

 $22 \rightarrow 2220$

Message	00	01	02	10	11	12	20	21	22	Syndrome
codeword	0000	0121	0212	1022	1110	1201	2011	2102	2220	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
codeword + 0001	0001	0122	0210	1020	1111	1202	2012	2100	2221	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
codeword + 0002	0002	0120	0211	1021	1112	1200	2010	2101	2222	$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$
codeword + 0010	0010	0101	0222	1002	1120	1211	2021	2112	2200	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
codeword + 0011	0011	0102	0220	1000	1121	1212	2022	2110	2201	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
codeword + 0012	0012	0100	0221	1001	1122	1210	2020	2111	2202	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
codeword + 0020	0020	0111	0202	1012	1100	1221	2001	2122	2210	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$
codeword + 0021	0021	0112	0200	1010	1101	1222	2002	2120	2211	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$
codeword + 0022	0022	0110	0201	1011	1102	1220	2000	2121	2212	$\begin{pmatrix} 2 \\ 2 \end{pmatrix}$

2 Q2

 $\begin{array}{c} 000 \rightarrow 000000 \\ 001 \rightarrow 001110 \\ 010 \rightarrow 010101 \\ 011 \rightarrow 011011 \\ 100 \rightarrow 100011 \\ 101 \rightarrow 101101 \\ 110 \rightarrow 110110 \\ 111 \rightarrow 111000 \\ \end{array}$

Message	000	001	010	011	100	101	110	111	Syndi
codeword	000000	001110	010101	011011	100011	101101	110110	111000	
codeword + 000001	000001	001111	010100	011010	100010	101101	110111	111001	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
codeword + 000010	000010	001100	010111	011001	100001	101110	110100	111010	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
codeword + 000011	000011	001101	010110	011000	100000	101111	110101	111011	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$
codeword + 000100	000100	001010	010001	011111	100111	101000	110010	111100	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
codeword + 000101	000101	001011	010000	011110	100110	101001	110011	111101	$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
codeword + 000110	000111	001001	010010	011100	100100	101011	110001	111111	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
codeword + 000111	000101	001011	010000	011110	100110	101001	110011	111101	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

3 Q3

Let us take a code C, such that $C = c_1, c_2, c_3, ... c_n$

We can define its cosets as C_1 and C_2 , such that $C_1=x_1,x_2,...x_n$ and $C_2=y_1,y_2,...y_n$ and that $x_i=y_j$ for some $1\leq i,j\leq n$

We can express x_i as $x_i = x_1 + z_i$ and $y_j = y_1 + z_j$, giving us $z_i + x_1 = z_j + y_1$

 $z_i - z_j = y_1 = x_1$, which means $y_1 - x_1$ belong to C.

Let us have $y_1 - x_1 = z_k$ for some k.

This gives us $x_k = y_1 - x_1 + x_1 = y_k$

As the cosets are linear, C_1 and C_2 must be equal if there is a point of intersection between them.

If they are not equal, there is no point of intersection, this they are disjoint.

4 Q4

Let us take a binary linear code as C, where $C = c_1, c_2...c_n$ For $a \notin C$, let the code be X, where $X = C \cup (a + C)$

Let us take two variables, x and y, such that $x,y\in X$ Now, there are three cases where $x,y\in X$

1. $x, y \in C$: Then we know that $x + y \in C$ as C is a linear code.

2. $x \in C, y \in (a + C)$: Then we know that $y = a + z_i$ for some i (from the previous question)

So thus far we have $x+y=x+a+z_i$ which can be written as $x+y=z_k+a$ $(z_k=x+z_i,andc_k\in C \text{ as } C \text{ is linear})$ $c_k+a\in a+C$

3. $x, y \in (a+C)$: We can take $x = z_i + a$ and $y = z_j + a$ This gives us $x + y = z_i + z_j + 2a$, which means that $z_i + z_j \in C$, as the code is binary.

Thus, $C \cup (a + C)$ is a binary linear code if C is.

Now, what if C is not a binary code, but, say, a ternary code?

Let us return to the formula $x + y = z_i + z_j + 2a$ In this case, the a does not cancel out, leaving us with $z_i + z_j + 2a \notin C$