$$H := \{x + iy \in \mathbb{C} | y > 0\} \subset \mathbb{C} = \mathbb{R}^2.$$
$$g_{(x,y)}^H = \frac{1}{y^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Příklad (5.1)

Označme $G_0 \subseteq G$ podgrupu všech Möbiových transformací, které zachovávají Riemannovu plochu H. Ukažte, že každý prvek G_0 je izometrie H na H.

 $D\mathring{u}kaz$

Podle návodu je G_0 generována prvky $\varphi_a(z) = z + a, a \in \mathbb{R}; \varphi_b(z) = bz; b > 0; \varphi(z) = -\frac{1}{z}$. Posunutí (φ_a) a "natažení" (φ_b) jsou jednoduše^a izometrie, jelikož posunutí ve směru osy x nijak nedeformuje tečné prostory a metrika není závislá na x. Natažení "natáhne b-krát tečné prostory", tedy $(g_{\varphi_b(z)}^H)(T_z\varphi(X), T_z\varphi(Y)) = \frac{1}{b^2}(g_z^H)(bX, bY) = 1 \cdot (g_z^H)(X, Y)$.

Třetí zobrazení je trochu obtížnější. Nejdříve se podíváme, jak vypadá φ :

$$\varphi(x+yi) = \frac{-1}{x+yi} = \frac{-x+yi}{x^2+y^2} = \frac{-x}{x^2+y^2} + \frac{y}{x^2+y^2}i.$$

Tedy

$$g_{\varphi(x,y)^H} = \left(\frac{1}{x^2 + y^2}\right)^{-2} g_{(x,y)} = (x^2 + y^2)^2 g_{(x,y)}.$$

Navíc z přednášky víme, že matice tečného zobrazení daného φ vzhledem k bázi určené mapou $(H, \mathrm{id}: H \to \mathbb{R}^3)$ na H je Jacobiho matice, tj.

$$\begin{pmatrix} \frac{2x^2}{(x^2+y^2)^2} - \frac{1}{x^2+y^2} & \frac{2xy}{(x^2+y^2)^2} \\ \frac{-2yx}{(x^2+y^2)^2} & \frac{2x^2}{(x^2+y^2)^2} - \frac{1}{x^2+y^2} \end{pmatrix} = \frac{1}{(x^2+y^2)^2} \begin{pmatrix} x^2 - y^2 & +2xy \\ -2xy & x^2 - y^2 \end{pmatrix}.$$

Jelikož diagonální matice komutuje, tak

$$g_{\varphi(x,y)}^{H}(T_{(x,y)}\varphi(X), T_{(x,y)}\varphi(Y)) = (Jac(\varphi)Y)^{T}((x^{2} + y^{2})^{2}g_{(x,y)}^{H})(Jac(\varphi)X) =$$

$$= Y^{T}g_{(x,y)}^{H}(x^{2} + y^{2})^{2}Jac(\varphi)^{T}Jac(\varphi)X.$$

Aby

$$g^H_{\varphi(x,y)}(T_{(x,y)}\varphi(X),T_{(x,y)}\varphi(Y)) = Y^T g^H_{(x,y)}X = g^H_{(x,y)}(X,Y)$$

potřebujeme tudíž dokázat $(x^2 + y^2)^2 \operatorname{Jac}(\varphi)^T \operatorname{Jac}(\varphi) = I_2$.

$$(x^2 + y^2)^2 \operatorname{Jac}(\varphi)^T \operatorname{Jac}(\varphi) = (x^2 + y^2)^{-2} \begin{pmatrix} x^2 - y^2 & -2xy \\ +2xy & x^2 - y^2 \end{pmatrix} \begin{pmatrix} x^2 - y^2 & +2xy \\ -2xy & x^2 - y^2 \end{pmatrix} = (x^2 + y^2)^{-2} \begin{pmatrix} x^4 - 2x^2y^2 + y^4 + 4y^2x^2 & 0 \\ 0 & x^4 - 2x^2y^2 + y^4 + 4x^2y^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

^aDále pokračuje intuitivní zdůvodnění, ale dalo by se to dokázat stejně jako dále třetí "typ" zobrazení.

Příklad (5.2)

1. Ukažte, že grupa G_0 působí tranzitivně na H. 2. Ukažte, že každou přímku v H lze převést na průnik osy y s prostorem H.

$D\mathring{u}kaz$

- 1. Nechť x+yi je bod H, potom $\varphi_{a=-x}$ zobrazuje tento bod na yi a $\varphi_{b=1/y}$ následně na i. Jelikož G_0 je grupa, tak složení je její součástí a inverze je její součástí, tj. každý bod lze převést na i a i lze převést na každý bod. Tedy každý bod lze nějakým prvkem G_0 zobrazit na libovolný jiný, tj. G_0 působí na H tranzitivně.
- 2. Libovolnou "svislou" přímku zobrazíme posunutím (φ_a) na osu $y \cap H$. Kružnici pak zobrazíme nejprve posunutím (φ_a) tak, aby "procházela" počátkem a následně ji "skoro kruhovou inverzí" (kruhová inverze až na překlopení podle osy y) (φ) zobrazíme na svislou přímku, kterou už umíme převést.

Příklad (5.3)

Ukažte, že plocha $|\Delta|$ hyperbolického trojúhelníka v H se vypočte vzorcem

$$|\triangle| = \pi - (\alpha + \beta + \gamma),$$

kde α, β, γ jsou úhly trojúhelníka \triangle .

 $D\mathring{u}kaz$

Začneme s trojúhelníky $(\cos(\pi-\alpha),\sin(\pi-\alpha))$; $(\cos\beta,\sin\beta)$; ∞ , kde $0 \le \beta < \pi-\alpha \le \pi$. Obsah trojúhelníku je roven

$$\int_{\triangle} 1dS = \int_{\mathbf{p}^{-1}(\triangle)} \sqrt{\det g^H_{(x,y)}} d(x,y) = \int_{\mathbf{p}^{-1}(\triangle)} \sqrt{\det \begin{pmatrix} 1/y^2 & 0 \\ 0 & 1/y^2 \end{pmatrix}} d(x,y) = \int_{\mathbf{p}^{-1}(\triangle)} \frac{1}{y^2} d(x,y),$$

což je podle Fubiniovy věty rovno a

$$\int_{\mathbf{p}^{-1}(\triangle)_{x}} \int_{\mathbf{p}^{-1}(\triangle(x))_{y}} \frac{1}{y^{2}} dy \, dx = \int_{\mathbf{p}^{-1}(\triangle)_{x}} \left[-\frac{1}{y} \right]_{\sqrt{1-x^{2}}}^{\infty} dx = -\int_{\mathbf{p}^{-1}(\triangle)_{x}} -\frac{1}{\sqrt{1-x^{2}}} dx = -\left[\arccos(x)\right]_{\cos(\pi-\alpha)}^{\beta} = \pi - \alpha - \beta(-0).$$

Následně si snadno rozmyslíme, že úhly $\alpha, \beta, \gamma = 0$ opravdu odpovídají úhlům daného trojúhelníku.

Pro každý trojúhelník lze zvolit (podle příkladu 2) izometrii tak, aby se jedna (dokonce libovolná) z jeho stran zobrazila na "svislou" úsečku. BÚNO je tato strana CA a C leží výše. Potom obsah tohoto trojúhelníka (a díky tomu, že jsme použili izometrii, i původního trojúhelníka) jako rozdíl obsahů trojúhelníků $AB\infty$ a $CB\infty$, tedy $\pi - \alpha - (\beta + \beta')$ a $\pi - (\pi - \gamma) - \beta' = \gamma + \beta'$ (protože trojúhelník $CB\infty$ má u vrcholu C opačný úhel než trojúhelník ABC a u vrcholu B má přesně to (β') , co přebývá $AB\infty$ oproti ABC u vrcholu B). Tedy

$$|\triangle| = \pi - (\alpha + \beta + \gamma).$$

^aOznačení pod integrály je třeba brát s rezervou. Je rovno výrazu, který z něho vznikne po integraci jako meze, abych je pořád neopisoval.