Overfitting

Introduction to Data Mining

CS412, 2021 Spring

Gaoang Wang

Classification Errors

Training errors

Errors committed on the training set

Test errors

Errors committed on the test set

Generalization errors

 Expected error of a model over random selection of records from same distribution

Example Data Set

Two class problem:

- +: 5400 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 400 noisy instances added
- o: 5400 instances
 - Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better?

Model Overfitting

•As the model becomes more and more complex, test errors can start increasing even though training error may be decreasing

Underfitting: when model is too simple, both training and test errors are largeOverfitting: when model is too complex, training error is small but test error is large

Model Overfitting

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Model Overfitting

Using twice the number of data instances

 Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Reasons for Model Overfitting

Limited Training Size

High Model Complexity

Multiple Comparison Procedure

Effect of Multiple Comparison Procedure

Consider the task of predicting whether stock market will rise/fall in the next 10 trading days

Random guessing:

$$P(correct) = 0.5$$

Make 10 random guesses in a row:

$$P(\#correct \ge 8) = \frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547$$

Day 1	Up
Day 2	Down
Day 3	Down
Day 4	Up
Day 5	Down
Day 6	Down
Day 7	Up
Day 8	Up
Day 9	Up
Day 10	Down

Effect of Multiple Comparison Procedure

Approach:

- Get 50 analysts
- Each analyst makes 10 random guesses
- Choose the analyst that makes the most number of correct predictions

Probability that at least one analyst makes at least 8 correct predictions

$$P(\#correct \ge 8) = 1 - (1 - 0.0547)^{50} = 0.9399$$

Effect of Multiple Comparison - Example

Use additional 100 noisy variables generated from a uniform distribution along with X and Y as attributes.

Use 30% of the data for training and 70% of the data for testing

Notes on Overfitting

Overfitting results in decision trees that are <u>more</u> <u>complex</u> than necessary

Training error does not provide a good estimate of how well the tree will perform on previously unseen records

Need ways for estimating generalization errors

Model Selection

Performed during model building

Purpose is to ensure that model is not overly complex (to avoid overfitting)

Need to estimate generalization error

- Using Validation Set
- Incorporating Model Complexity

Model Selection:

Using Validation Set

Divide training data into two parts:

- Training set:
 - use for model building
- Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set

Drawback:

Less data available for training

Model Selection:

Incorporating Model Complexity

Rationale: Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- A complex model has a greater chance of being fitted accidentally
- Therefore, one should include model complexity when evaluating a model

```
Gen. Error(Model) = Train. Error(Model, Train. Data) + \alpha x Complexity(Model)
```

Estimating the Complexity of Decision Trees

Pessimistic Error Estimate of decision tree *T* with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- Ω : trade-off hyper-parameter (similar to α)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

Estimating the Complexity of Decision Trees: Example

Decision Tree, T_I

Decision Tree, T_R

$$e_{qen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$$

$$e_{gen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

Model Selection for Decision Trees

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

Model Selection for Decision Trees

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Example of Post-Pruning

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

Ω = 0.5		A?	= (9 + 4 × PRUNE!
	A1	A4	
	A2	A3	

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Model Evaluation

ALWAYS assess performance on data that you haven't looked at in training or model selection (independent test set)

What does it mean to be "independent"?

- Two sentences in the same document are not independent
- Two segments in the same image are not independent

Training Data **Test Data**

How to evaluate?

Model Evaluation

Purpose:

 To estimate performance of classifier on previously unseen data (test set)

Holdout

Reserve k% for training and (100-k)% for testing

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

Cross-validation Example

3-fold cross-validation

Variations on Cross-validation

Repeated cross-validation

- Perform cross-validation a number of times
- Gives an estimate of the variance of the generalization error

Stratified cross-validation

- Guarantee the same percentage of class labels in training and test
- Important when classes are imbalanced and the sample is small

Use cross-validation approach for model selection and evaluation

Other Wrong "Model" Problems

Training data is not representative Could be due to

- Sampling bias
- Noisy observations
- Samples are not independent