Compiler Construction

Chapter 3: Parser

Dittaya Wanvarie

Department of Mathematics and Computer Science Chulalongkorn University

Second semester, 2024

1/89

ittaya Wanvarie (CSCU) 13016226 Second semester, 2024

Overview of compilation

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- 6 Error recovery

Introduction

Parser

- Determine whether the input is valid (correct) according to the syntax (grammar)
- Report error and return diagnostic information to the user

Parser implementation

- Recursive descent parser a hand-coded top-down parser
- LL(1) grammar with a lookahead parser a table-driven top-down parser
- LR(1) grammar with a lookahead parser and a shift-reduce parser a table-driven bottom-up parser

Why not regular expression?

Consider the following example: Recognizing an algebraic expression e.g. $a+b\times c$ and $e\div f\times g$

$$[a...z]([a...z]|[0...9])^*((+|-|\times|\div)[a...z]([a...z]|[0...9])^*)^*$$

- The RE matches both expressions
- However, there is no precedence enforcement

Consider the following example: matching parenthesis

RE cannot check incorrectly matched parentheses, brackets

Context-Free Grammar

- Regular grammar cannot represent some constructs such as parentheses and blocks
- We have an efficient algorithm to parse a string in a context-free language
 - Cubic time to the size of the input program
 - Linear time to the size of the input in a subclass of context-free languages

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

$$G = (V, \Sigma, R, S)$$

- ullet CFG, G, is a set of production rules that defines a set of strings in the language.
- A terminal symbol is a token name (syntactic category).
 - $ightharpoonup \Sigma$ is the set of terminal symbols in G.
- A **sentence** is a string of terminal symbols that can be derived from the rules of a grammar.
- A nonterminal symbol is a variable in a production.
 - ightharpoonup V is the set of variables in G.
- A production is a mapping function from a nonterminal symbol (in V) into a sequence of symbols (in $(V \cup \Sigma)^*$).
 - ightharpoonup R is the set of production rules in G.
- S is the start variable.

Backus-Naur form

From the following CFG,

$$G = (V, \Sigma, R, S)$$

$$V = \{B\}$$

$$\Sigma = \{(,)\}$$

$$R = \{B \rightarrow (B), B \rightarrow ()B\}$$

$$S = B$$

We can write the grammar in its BNF as follow

• Variables are wrapped in angle brackets.

Terminology (Cont.)

- A derivation is a sequence of rewriting steps that begins with the grammar's start symbol and ends with a sentence in a language.
 - ▶ If we can find a valid derivation to the sentence, that sentence is in the language.
- A sentence is a string in a language, i.e. a sequence of nonterminal symbols in a language
- A sentential form is a string of symbols that occurs at one step in a valid derivation.
 - Any sentential form is in $(V \cup \Sigma)^*$
- A parse tree or a syntax tree is a graph that represents a derivation.
- A rightmost derivation is a derivation that rewrites nonterminal symbols from right to left.
- A leftmost derivation is a derivation the rewrites nonterminal symbols from left to right.

Notations

- Variables are in *italic* and usually begin with capital letters, e.g. *Expr*.
- Terminal symbols are written in **bold lowercase**, e.g. **id**. They are token types from the scanner.
- When we write only production rules, the variable on the left hand side of the first rule is the start variable.

Example grammar

1 SheepNoise → baa SheepNoise 2 | baa

• Nonterminal symbol: SheepNoise

Terminal symbols: baa

Sentences: baa, baa baa

Start symbol: SheepNoise

Derivation example: SheepNoise \rightarrow^+ baa and SheepNoise \rightarrow^+ baa baa

Rule	Sentential Form		Rule	Sentential Form	
2	SheepNoise baa		1	SheepNoise baa SheepNoise	
			2	baa baa	
Rewrite with Rule 2			Rewrite with Rule 1 Then 2		

Complex example

- Sentence: a + b × c
- ullet Tokenized sentence: $\langle {\sf name}, a \rangle + \langle {\sf name}, b \rangle \times \langle {\sf name}, c \rangle$

Precedence handling?

Complex example: derivations

Rule Sentential Form

Expr

- Expr Op Expr
- 3 Expr Op name
- 6 Expr x name
- 1 (*Expr*) × name
- 2 (Expr Op Expr) × name
- 3 (Expr Op name) × name
- 4 <u>(Expr + name) × name</u>
- 3 (name + name) × name
- (a) Rightmost Derivation of (a+b) x c

Rule Sentential Form

Expr

- 2 Expr Op Expr
- 1 (Expr) Op Expr
- 2 <u>(Expr Op Expr)</u> Op Expr 3 (name Op Expr) Op Expr
- 1 (name to Expr) On Ever
- 4 <u>(</u> name + Expr <u>)</u> Op Expr
- 3 (name + name) Op Expr
- 6 <u>(</u> name + name <u>)</u> x *Expr*
- 3 (name + name) x name
- (c) Leftmost Derivation of $(a+b) \times c$
- **FIGURE 3.1** Derivations of $(a + b) \times c$.

(b) Corresponding Rightmost Parse Tree

(d) Corresponding Leftmost Parse Tree

Ambiguous grammars

- A grammar is ambiguous if some strings in the language of that grammar have more than one rightmost (or leftmost) derivation trees.
- Either the leftmost or the rightmost derivation tree should be **identical** for any string in an **unambiguous** grammar.

Example of ambiguous grammar


```
1 Stmt → if Expr then Stmt
2 | if Expr then Stmt else Stmt
3 | Other
```

Sentence: if Expr₁ then if Expr₂ then Other₁ else Other₂

Question:

- If we enclose an if statement in a block, e.g. { and }, will it solve the ambiguity problem?
- If we put an end-of-statement symbol, e.g. a semicolon, will it solve the ambiguity problem?

If statement

Rewrite the grammar: there are 2 choices in the then part

• If there is an **else**, the next *Stmt* should match with the innermost **else** Sentence: **if** *Expr*₁ **then if** *Expr*₂ **then** *Other*₁ **else** *Other*₂

Rule	Sentential Form					
	Stmt					
1	if Expr then Stmt					
2	if Expr then if Expr then WithElse else Stmt					
3	if Expr then if Expr then WithElse else Other					
5	if Expr then if Expr then Other else Other					

Encoding meaning into structure

Sentence: $\mathbf{a} + \mathbf{b} \times \mathbf{c}$

Expr ↓ ⟨name,a⟩	į į	Expr Op Expr	Expr Op Expr ×
	Op ↓	Op Expr	Expr Op Op Expr ×

To evaluate this expression, we traverse the tree on **postorder**, i.e. operands-then-operator)

 However, this tree contradicts the classic rules of algebraic precedence

Handling precedence of operators

No precedence

$$\begin{array}{cccc} Expr & \rightarrow & (Expr) \\ & | & Expr \ Op \ Expr \\ & | & \mathrm{id} \\ Op & \rightarrow & + \\ & | & - \\ & | & \star \\ & | & / \end{array}$$

$$\begin{array}{lll} Expr \rightarrow & Expr \ Op \ \underline{Expr} \\ \rightarrow & Expr \ Op \ Expr \ Op \ \underline{Expr} \\ \rightarrow & Expr \ Op \ Expr \ \underline{Op} \ \mathrm{id} \\ \rightarrow & Expr \ \underline{Op} \ \mathrm{id} \ ^{\star} \mathrm{id} \\ \rightarrow & Expr \ \underline{Op} \ \mathrm{id} \ ^{\star} \mathrm{id} \\ \rightarrow & \underline{Expr} + \mathrm{id} \ ^{\star} \mathrm{id} \\ \rightarrow & \mathrm{id} + \mathrm{id} \ ^{\star} \mathrm{id} \end{array}$$

Handling precedence of operators

With precedence

Expr Opl Term

Expr Op1 Term Op2 Factor

Handling precedence of operators

- Each level of precedence has its own variable
- Productions for variables with low precedence should start with the same or higher level variables.
 - The start variable has the lowest precedence.
 - ► Terminal symbols have the highest precedence.

Expression grammar

■ FIGURE 3.2 The Classic Expression Grammar.

5			Term + Factor
6			Factor
7	Factor	\rightarrow	<u>(</u> Expr <u>)</u>
8		- 1	num
9			name

Rule Sentential Form

```
0 Expr

1 Expr + Term

4 Expr + Term × Factor

9 Expr + Term × name

6 Expr + Factor × name

9 Expr + name × name

3 Term + name × name

6 Factor + name × name
```

name + name × name

Rightmost Derivation of $a + b \times c$

Corresponding Parse Tree

Handling Associativity of Operators

Sentence: id ** id ** id

$$\begin{array}{ccc} Expr & \to & Expr ** \mathrm{id} \\ & | & \mathrm{id} \end{array}$$

$$\begin{array}{c|c} & Expr \\ & & | \\ Expr & ** & \text{id} \\ & | \\ & | \\ & \text{id} \end{array}$$

$$\begin{array}{ccc} Expr & \rightarrow & \operatorname{id} ** Expr \\ & | & \operatorname{id} \end{array}$$

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

Parsing algorithms

A standard context-free grammar can be parsed in $O(n^3)$ of its input size.

- Earley's parsing algorithm
- CYK algorithm

We need a subset of languages that could be parsed in $\mathcal{O}(n)$ of the input size.

- LL(1)
- LR(1)

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- 6 Error recovery

Top-down parsing

Since we read the input from left to right, let's use the leftmost derivation.

```
root \leftarrow node for the start symbol, S
focus ← root
push null onto the stack
word ← NextWord()
while (true) do
    if (focus is a nonterminal) then
         pick next rule to expand focus, say A \rightarrow \beta_1 \beta_2 \beta_3 \dots \beta_n
         build nodes for \beta_1 \beta_2 \beta_3 \dots \beta_n as children of focus
         push \beta_n, \beta_{n-1}, \beta_{n-2}, ... \beta_2 onto the stack
         focus \leftarrow \beta_1
    else if (word matches focus) then
         word ← NextWord()
         focus \leftarrow pop from the stack
    else if (word = eof and focus = null)
         then accept the input and return root
    else backtrack
```

■ FIGURE 3.3 A Leftmost, Top-Down Parsing Algorithm.

Top-Down Parsing


```
0 Goal \rightarrow Expr | 5 | Term \rightarrow Factor 1 Expr \rightarrow Expr \rightarrow Term | 6 | Factor 2 | Expr \rightarrow Term | 7 Factor \rightarrow ( Expr ) 1 Num | 1 Term \rightarrow Term \rightarrow Factor | 9 | Num | Num
```

```
Rule
         Sentential Form
                                      Input
      Expr
                               ↑ name + name × name
      Expr + Term
                               ↑ name + name × name
      Term + Term
                                name + name × name
      Factor + Term
                                name + name × name
      name + Term
                               ↑ name + name × name
      name + Term
                              name ↑ + name × name
      name + Term
                              name + ↑ name × name
      name + Term × Factor
                              name + ↑ name × name
      name + Factor × Factor
                              name + ↑ name × name
      name + name × Factor
                              name + ↑ name × name
      name + name × Factor
                              name + name 1 x name
      name + name × Factor
                              name + name × ↑ name
                              name + name × ↑ name
      name + name × name
      name + name × name
                              name + name × name ↑
```

■ FIGURE 3.4 Leftmost, Top-Down Parse of $a + b \times c$ with Oracular Choice.

Multiple choices and inconsistent selection

- Step 2: *Expr*, Rule 1 or 2 or 3
- Step 3: Expr, Rule 1 or 2 or 3
- ...

■ FIGURE 3.2 The Classic Expression Grammar.

Left recursion

Bad selection may lead to infinite recursion

Rule	Sentential Form	Input				
	Expr	↑ name + name × name				
1	Expr + Term	↑ name + name × name				
1	Expr + Term + Term	↑ name + name × name				
1		↑ name + name × name				

In a leftmost derivation, left recursion leads to an infinite loop.

Eliminating (direct) left recursion

Transform a left recursive grammar into a right recursive grammar.

Fee
$$ightarrow$$
 Fee $lpha$

Fee
$$\rightarrow$$
 β Fee
Fee' \rightarrow α Fee'
 \mid ϵ

Transformed expression grammar

	Original Grammar					Transformed Grammar			
Ε	xpr	\rightarrow	Expr + Term		Expr	\rightarrow	Term	n Expr'	
		1	Expr - Term		Expr'	\rightarrow	+ 76	erm Expr'	
		i	Term					erm Expr'	
						i	ϵ	•	
Term → Ter		\rightarrow	Term × Factor		Term →		Factor Term'		
		Term ÷ Factor		Term′ →		× Factor Term'			
		i	Factor		1		÷ Factor Term'		
1		'	, deto,			i	ϵ	icion renni	
						'			
0	Goal	\rightarrow	Expr		6	Term'	\rightarrow	× Factor Term'	
1	Expr	\rightarrow	Term Expr'		7			÷ Factor Term'	
2	Expr'	\rightarrow	+ Term Expr'		8		-	ϵ	
3			- Term Expr'		9	Factor	\rightarrow	<u>(</u> Expr <u>)</u>	
4		- 1	ϵ		10		- 1	num	
5	Term	\rightarrow	Factor Term'		11		- 1	name	

■ FIGURE 3.5 Right-Recursive Variant of the Classic Expression Grammar.

Left recursion elimination algorithm

For any direct left recursion

• We rewrite the rule with its right recursion transformation For any indirect left recursion

```
impose an order on the nonterminals, A_0, A_1, \ldots, A_i for i \leftarrow 0 to n do for s \leftarrow 0 to i-1 do replace each production A_i \rightarrow A_s \gamma with A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma, where A_i \rightarrow \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k are the current productions for A_i eliminate any direct left recursion on A_i using the transformation
```

■ FIGURE 3.6 Algorithm for Removal of Indirect Left Recursion.

Left recursion elimination example

0
$$Goal_0 \rightarrow A_1$$

1 $A_1 \rightarrow B_2$ a
2 | a
3 $B_2 \rightarrow A_1$ b

Original Grammar

0
$$Goal_0 \rightarrow A_1$$

1 $A_1 \rightarrow B_2$ a
2 | a
3 $B_2 \rightarrow a b C_3$
4 $C_3 \rightarrow a b C_3$
5 | ϵ

Transformed Grammar

Left recursion elimination example

Consider the following grammar

$$S \rightarrow A \mathbf{a} | \mathbf{b}$$

 $A \rightarrow A \mathbf{c} | S \mathbf{d} | \epsilon$

- A has one direct recursive rule and one indirect left recursive rule
- S has one indirect recursive rule

General rules for eliminating left recursion

- Construct a subset of grammar with no left recursion.
- Add a new production rule to the set and eliminating left recursion caused by the newly added rule.

Parsing steps

When the top of stack is

- A nonterminal symbol, pick a rule
- A terminal symbol, match with the input
- An epsilon, pop the symbol from the stack without matching any input

When it leads to a dead end

- We may try picking a different rule — backtracking
- If there is no other possible rule, report an error

We can avoid backtracking if we choose the correct rule from the first try

Left Factoring

When using a predictive parser, two production rules should not have common prefix.

$$\begin{array}{ccc} Stmt & \rightarrow & \text{if } Expr \, \text{then } Stmt \, \text{else } Stmt \\ & | & \text{if } Expr \, \text{then } Stmt \end{array}$$

We cannot choose the correct production rule until we see the **else** token. The common prefix is **if** Expr **then** Stmt.

By left factoring, a new grammar is

$$\begin{array}{ccc} \mathit{Stmt} & \to & \mathsf{if} \; \mathit{Expr} \, \mathsf{then} \; \mathit{Stmt} \; \mathit{S'} \\ & \mathit{S'} & \to & \mathsf{else} \; \mathit{Stmt} \; | \; \epsilon \end{array}$$

Backtrack-free grammar

For each input character, the parser must always predict the correct rule.

- This parser is a predictive parser.
- The grammar is called a predictive grammar.
- E.g. LL(1) parsers

Causes of backtracking

- The grammar is left-recursive but we are using a left-to-right top-down parsing.
- Common prefix

To make a predictive parser, we must determine the possible set of rules given the current variable and the input symbol.

```
for each \alpha \in (T \cup eof \cup \epsilon) do
     FIRST(\alpha) \leftarrow \alpha
for each A \in NT do
     FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
     for each p \in P, of the form A \rightarrow \beta_1 \beta_2 \dots \beta_k do
           rhs \leftarrow FIRST(\beta_1) - \{\epsilon\}
           trailing ← true
           for i \leftarrow 1 to k-1 do
                if \epsilon \in FIRST(B_i)
                      then rhs \leftarrow rhs \cup (FIRST(\beta_{i+1}) - {\epsilon})
                      else
                            trailing ← false
                           break
           if trailing and \epsilon \in FIRST(\beta_k) then
                rhs \leftarrow rhs \cup \{\epsilon\}
           FIRST(A) \leftarrow FIRST(A) \cup rhs
```

■ FIGURE 3.7 Computing FIRST Sets for Symbols in a Grammar.

FIRST set

• $FIRST(\alpha)$ is the set of **terminal** symbols that can appear **at the start** of the word derived from α .

	Expr	Expr'	Term	Term'	Factor
FIRST	(, name, num	+, -, ϵ	(, name, num	x,\div,ϵ	(, name, num
	Produ	FI	RST Set		
6	$\textit{Term}' \rightarrow$	× Fact	or Term'		{×}
7	1	÷ Fact	or Term'		{ ÷ }
8	1	ϵ			$\{\epsilon\}$

For a variable A, we can choose the rule $A \to \alpha$ only when

- The current top of stack is A
- The current input is in $FIRST(\alpha)$

When should we use the ϵ -production?

With ϵ -production

Given the current input \mathbf{a} and the current variable A, we will choose the ϵ -production when

- a is not in FIRST(A)
- a can be found immediate right after A, or a is in FOLLOW(A)

```
for each A \in NT do
     FOLLOW(A) \leftarrow \emptyset
FOLLOW(S) \leftarrow \{eof\}
while (FOLLOW sets are still changing) do
     for each p \in P of the form A \rightarrow \beta_1 \beta_2 \beta_3 \dots \beta_k do
           TRAILER \leftarrow FOLLOW(A)
           for i \leftarrow k down to 1 do
                if \beta_i \in NT then
                      FOLLOW(\beta_i) \leftarrow FOLLOW(\beta_i) \cup TRAILER
                      if \epsilon \in FIRST(B_i) then
                           TRAILER \leftarrow TRAILER \cup (FIRST(\beta_i) - \epsilon)
                      else TRAILER \leftarrow FIRST(\beta_i)
                else TRAILER \leftarrow \{\beta_i\} // \beta_i \in T
```

■ FIGURE 3.8 Computing FOLLOW Sets for Nonterminal Symbols.

FOLLOW set

 FOLLOW(A) is the set of terminal symbols that can appear immediate right after the derivation of A.

	Expr	Expr'	Term	Term'	Factor
FOLLOW	eof, <u>)</u>	eof, <u>)</u>	eof, +, -, <u>)</u>	eof, +, -, <u>)</u>	eof, +, -, ×, ÷, <u>)</u>

START set

Set of possible starting terminal symbols of the variable

- FIRST set if there is no ϵ -production for the variable
- ullet FIRST set except ϵ and FOLLOW set, otherwise

	Pro	duction	START Set
Goal	\rightarrow	Expr	{ <u>(</u> , name, num }
Expr	\rightarrow	Term Expr'	$\{ (, name, num) \}$
Expr'	→ 	+ Term Expr' - Term Expr' €	{ + } { - } { eof, <u>)</u> }
Term	\rightarrow	Factor Term'	$\{ (, name, num) \}$
Term'	→ 	× Factor Term' ÷ Factor Term' €	{ x } { ÷ } { eof, +, -, <u>)</u> }
Factor	→ 	(Expr) num name	{ <u>(</u> } { num } { name }

■ FIGURE 3.9 START Sets for the Right-Recursive Expression Grammar.

Left factoring


```
Factor
                    name
                                                    11
                                                          Factor
                                                                          name Arguments
12
                    name [ ArgList ]
                                                          Arguments \rightarrow [ArgList]
                                                     12
13
                    name ( ArgList )
               → Expr MoreArgs
                                                     13
                                                                          ( ArgList )
15
    ArgList
16
    MoreArgs →
                    , Expr MoreArgs
                                                     14
```

Common prefix is one cause of backtracking

- \bullet If two rules share some symbols in their START , these rules have common prefix
- \bullet In other words, all rules should have disjoint START set should be disjoint

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- 5 Error recovery

Recursive-descent parser

- One function for one variable
- Choose production rule
 - Simple: try applying rule in order and backtrack if failed
 - ightharpoonup Backtrack-free: conditioned on the START set

Example: TermPrime() function

		START Set	
6 7	Term'	× Factor Term' ÷ Factor Term'	{ x } { ÷ }
8		ϵ	$\{ eof, +, -, \underline{)} \}$

Expression grammar


```
Main() /* Goal → Expr */
                                                     TermPrime()
    word ← NextWord():
                                                         /* Term' → × Factor Term' | ÷ Factor Term' */
    if (Expr())
                                                         if (word = x \text{ or word } = +) then
        then if (word = eof)
                                                             word ← NextWord();
            then report success;
                                                             if (Factor())
            else Fail();
                                                                 then return TermPrime();
                                                                 else Fail();
Fail()
                                                         /* Term' \rightarrow \epsilon */
    report syntax error;
                                                         else if (word = + or word = - or
    attempt error recovery or exit:
                                                                   word = ) or word = eof)
                                                             then return true;
Expr() /* Expr → Term Expr' */
                                                             else Fail();
    if (Term())
        then return ExprPrime():
                                                     Factor()
        else Fail();
                                                         /* Factor → ( Expr ) */
                                                         if (word = ( ) then
ExprPrime()
                                                             word ← NextWord():
   /* Expr' → + Term Expr' | - Term Expr' */
    if (word = + or word = -) then
                                                             if (not Expr())
                                                                 then Fail();
        word ← NextWord():
                                                             if (word \neq ) )
        if (Term())
                                                                 then Fail():
            then return ExprPrime();
            else Fail():
                                                             word ← NextWord():
                                                             return true;
   /* Expr' \rightarrow \epsilon */
    else if (word = ) or word = eof)
                                                         /* Factor → num | name */
        then return true:
                                                         else if (word = num or
        else Fail():
                                                                 word = name) then
                                                                 word ← NextWord();
Term() /* Term → Factor Term' */
                                                                 return true:
    if (Factor())
                                                         else Fail();
        then return TermPrime():
        else Fail():
```

■ FIGURE 3.10 Recursive-Descent Parser for Expressions.

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

LL(1) grammars

A grammar G is LL(1) if and only if whenever

- \bullet $A \rightarrow \alpha$ and
- ${\it A} \rightarrow \beta$ are two distinct productions of ${\it G}$ and the following conditions hold
 - $START(\alpha)$ and $START(\beta)$ are disjoint.

LL(k) grammar can be parsed by a predictive parser with a <u>L</u>eft-to-right, <u>L</u>eftmost derivation, with <u>k</u> symbols if lookahead.

Skeleton of an LL(1) parser


```
word ← NextWord()
push eof onto Stack
push the start symbol, S, onto Stack
while(true) do
    focus \leftarrow top \ of \ Stack
    if (focus = eof \ and \ word = eof)
        then report success and break from the loop
    else if (focus \in T or focus = eof) then
        if focus matches word then
            pop Stack
            word ← NextWord()
        else report an error looking for the symbol in focus
    else // focus is a nonterminal
        if Table focus, word is A \rightarrow \beta_1 \beta_2 \dots \beta_k then
            pop Stack
            for i \leftarrow k to 1 by -1 do
                if (\beta_i \neq \epsilon) then
                    push \beta_i onto Stack
        else report an error expanding focus
```

■ FIGURE 3.11 The Skeleton LL(1) Parser.

Table-driven parser

- Recursive-descent parser is hand written
- We may automate parser generation using a parsing table
 - Replace the conditions for rules in a recursive-descent parsing with a parse table, which is a mapping between start symbol and a rule choice

Example of LL(1) parse table

	eof	+	-	×	÷	()	num	name
Goal						0		0	0
Expr						1		1	1
Expr Expr'	4	2	3				4		
Term						5		5	5
Term'	8	8	8	6	7		8		
Factor						9		10	11

■ FIGURE 3.12 LL(1) Parse Table for the Right-Recursive Expression Grammar.

Example LL(1) parsing

Rule	Stack	Input
_	eof Goal	↑ name + name × name
0	eof Expr	↑ name + name × name
1	eof Expr' Term	↑ name + name × name
5	eof Expr' Term' Factor	↑ name + name × name
11	eof Expr' Term' name	↑ name + name × name
\rightarrow	eof Expr' Term'	name ↑ + name × name
8	eof Expr'	name ↑ + name × name
2	eof Expr' Term +	name ↑ + name × name
\rightarrow	eof Expr' Term	$name + \uparrow name \times name$
5	eof Expr' Term' Factor	$name + \uparrow name \times name$
11	eof Expr' Term' name	name + ↑ name × name
\rightarrow	eof Expr' Term'	name + name \uparrow \times name
6	eof Expr' Term' Factor ×	name + name \uparrow \times name
\rightarrow	eof Expr' Term' Factor	name + name × ↑ name
11	eof Expr' Term' name	name + name × ↑ name
\rightarrow	eof Expr' Term'	name + name \times name \uparrow
8	eof Expr'	name + name \times name \uparrow
4	eof	name + name × name ↑

(a) Actions of the LL(1) Parser on a + b x c

	Rule	Stack	Input
	_	eof Goal	↑ name + ÷ name
	0	eof Expr	↑ name + ÷ name
	1	eof Expr' Term	↑ name + + name
	5	eof Expr' Term' Factor	↑ name + ÷ name
	11	eof Expr' Term' name	↑ name + + name
	\rightarrow	eof Expr' Term'	name ↑ + ÷ name
	8	eof Expr'	name ↑ + ÷ name
	2	eof Expr' Term +	name ↑ + + name
syntax error	\rightarrow	eof Expr' Term	name + ↑ + name
at this point			

(b) Actions of the LL(1) Parser on x + *y

■ FIGURE 3.13 Example LL(1) Parses.

Parse table construction

for each nonterminal A do $Table[A,eof] \leftarrow error$ for each terminal w do $Table[A,w] \leftarrow error$ for each production p of the form $A \rightarrow \beta$ do $for each terminal \ w \in START(A \rightarrow \beta) \ do$ $Table[A,w] \leftarrow p$ if $eof \in START(A \rightarrow \beta)$ $then Table[A,eof] \leftarrow p$

■ FIGURE 3.14 LL(1) Table-Construction Algorithm.

Exercise

From the following grammar

Construct a top-down parsing table

- Find FIRST, FOLLOW, and START set of each variable
- Fill the parsing table

Is this grammar LL(1)?

Exercise

From the following grammar

```
Stmt \rightarrow if Expr then Stmt Stmt'
```

ightarrow other

 $\mathit{Stmt'} \rightarrow \mathsf{else} \, \mathit{Stmt}$

 \rightarrow ϵ

Expr \rightarrow other

Construct a top-down parsing table. Is this grammar LL(1)?

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

Bottom-up parsing

Tree building from leafs to the root, i.e.there are derivation steps

$$S \to \gamma_1 \to \gamma_2 \to \cdots \to \gamma_{n-1} \to \gamma_n =$$
sentence

From (sentential form) γ_i and the grammar

- ullet If there is a production A o eta at location k in γ_i
- ullet Replace the occurrence eta that ends at position k in γ_i with A
- ullet The result sentential form is γ_{i-1}
- ullet Each γ_i should have exactly one handle
 - Otherwise, the grammar is not predictive

Shift-reduce parser


```
push INVALID on to the stack
word ← NextWord()
repeat until (top of stack = S and word = eof) do
if the top of stack is a handle A → β then
// reduce β to A
pop |β| symbols off the stack
push A onto the stack
else if (word ≠ eof) then
// shift word onto the stack
push word onto the stack
word ← NextWord()
else // parser needs to shift, but is out of input
throw a syntax error
report success
```

■ FIGURE 3.15 A Simple Shift-Reduce Parser.

- Shift: push terminals into a working stack
- Reduce: pop a sequence of terminal and non-terminal symbols that match the right side of a production rule

Shift-reduce parser

- Shift: push terminals onto a working stack
- Reduce: pop a sequence of terminal and non-terminal symbols on the top of stack that match the right side of a production rule

$$\begin{array}{ccc} S & \rightarrow \mathbf{a} \ AB \ \mathbf{e} \\ \text{e.g.} & A & \rightarrow A\mathbf{bc} \ | \ \mathbf{b} \\ B & \rightarrow \mathbf{d} \end{array}$$

abbcde

a Abc de

lacktriangle a $A\underline{\mathbf{d}}\mathbf{e}$

<u>aABe</u>

5 £

 $S\Rightarrow \mathbf{a}A\underline{\mathbf{B}}\mathbf{e}$

 \Rightarrow a A de

 \Rightarrow a \underline{A} bcde

 \Rightarrow abbcde

We obtain a right-most derivation in reverse

Loosely speaking, a handle is

- a substring that matches the right side of a production
- that reduces to the head of the production rule

Strictly speaking, a handle is is

- \bullet the pair $\langle A \to \beta, k \rangle$ for transition from γ_i to γ_{i+1}
- ullet We will rewrite eta with A

i.e.

- If $S \Rightarrow^* \alpha A w \Rightarrow \alpha \beta w$, then
- $\bullet \ \langle A \rightarrow \beta, w \rangle$ in the position following α is a handle of $\alpha \beta w$

Handle usage

We need to find a handle in each step of the parsing

Right-sentential form

- abbcde
- $a\underline{Abc}$ de
- aAde
- <u>a</u> <u>a</u> <u>A</u> <u>B</u> <u>e</u>

S

We need an efficient algorithm to find a handle.

Handle

- \bullet $A \rightarrow \mathbf{b}$ at position 2
- \bullet $B \rightarrow d$ at position 3
- \bullet $S \rightarrow \mathbf{a}A\mathbf{be}$ at position 4

Shift-reduce parsing algorithm

We need at least 2 components

- Stack
- Input buffer

Parsing operations

- Shift (or push) input symbols onto the stack
- ullet until a handle eta is on the top of stack and the lookahead symbol is k
- ullet Then, reduce eta to the head of the production rule
 - For a handle $\langle A \rightarrow \beta, k \rangle$
 - \blacktriangleright Pop β and push A onto the stack
- Parsing is complete when the stack contains the start symbol and the input is empty

Why stack?

Consider the following cases

LR(1) parser

LR(1) language is a subset of context-free languages

```
push (INVALID, INVALID) onto the stack
push (start symbol, s_0) onto the stack
word ← NextWord()
while (true) do
   state ← state from pair at top of stack
    if Action[state,word] = "reduce A \rightarrow \beta" then
       DOD | B | pairs from the stack
       state ← state from pair at top of stack
       push (A, Goto[state, A]) onto the stack
   else if Action[state,word] = "shift s_i" then
       push (word, si) onto the stack
       word ← NextWord()
    else if Action[state,word] = "accept" and word = eof
       then break
   else throw a syntax error
report success /* executed the "accept" case */
```

■ FIGURE 3.16 The Skeleton LR(1) Parser.

Left-to-right scan, Reverse rightmost derivation, 1 symbol lookhead.

Example: LR(1) parse table

1	Goal	\rightarrow	List
2	List	\rightarrow	List Pair
3		- 1	Pair
4	Pair	\rightarrow	<u>(</u> List <u>)</u>
5		- 1	<u>()</u>

	Act	tion Ta	Goto	Table	
State	eof	()	List	Pair
0		s 3		1	2
1	acc	s 3			4
2	r 3	r 3			
3		s 7	s 8	5	6
4	r 2	r 2			
5		s 7	s 10		9
6		r 3	r 3		
7		s 7	s 12	11	6
8	r 5	r 5			
9		r 2	r 2		
10	r 4	r 4			
11		s 7	s 13		9
12		r 5	r 5		
13		r 4	r 4		

- (a) Parentheses Grammar
- (b) Action and Goto Tables for Parentheses Grammar

■ FIGURE 3.17 The Parentheses Grammar

Example: LR(1) parsing steps

Iteration	State	Word	Stack	Handle	Action
0	_	(\$ (Goal 0)	-none-	_
1	0	(\$ (Goal 0)	-none-	shift 3
2	3	<u>)</u>	\$ (Goal 0) (<u>(</u> 3)	-none-	shift 8
3	8	eof	\$ (Goal 0) (<u>(</u> 3) (<u>)</u> 8)	<u>()</u>	reduce 5
4	2	eof	\$ (Goal 0) (Pair 2)	Pair	reduce 3
5	1	eof	\$ (Goal 0) (List 1)	List	accept

■ FIGURE 3.18 States of the LR(1) Parser on ().

Example: LR(1) parsing steps

Iteration	State	Word	Stack	Handle	Action
0	_	<u>(</u>	\$ (Goal 0)	-none-	_
1	0	(\$ (Goal 0)	-none-	shift 3
2	3	<u>(</u>	\$ (Goal 0) (<u>(</u> 3)	-none-	shift 7
3	7	<u>)</u>	\$ (Goal 0) (<u>(</u> 3) (<u>(</u> 7)	-none-	shift 12
4	12	<u>)</u>	\$ (Goal 0) (<u>(</u> 3) (<u>(</u> 7) (<u>)</u> 12)	<u>()</u>	reduce 5
5	6	<u>)</u>	\$ (Goal 0) (<u>(</u> 3) (Pair 6)	Pair	reduce 3
6	5	<u>)</u>	\$ (Goal 0) (<u>(</u> 3) (List 5)	-none-	shift 10
7	10	<u>(</u>	\$ (Goal 0) (<u>(</u> 3) (List 5) (<u>)</u> 10)	<u>(</u> List <u>)</u>	reduce 4
8	2	<u>(</u>	\$ (Goal 0) (Pair 2)	Pair	reduce 3
9	1	<u>(</u>	\$ (Goal 0) (List 1)	-none-	shift 3
10	3	<u>)</u>	\$ (Goal 0) (List 1) (<u>(</u> 3)	-none-	shift 8
11	8	eof	\$ (Goal 0) (List 1) (<u>(</u> 3) (<u>)</u> 8)	<u>()</u>	reduce 5
12	4	eof	\$ (Goal 0) (List 1) (Pair 4)	List Pair	reduce 2
13	1	eof	\$ (Goal 0) (List 1)	List	accept

FIGURE 3.19 States of the LR(1) Parser on $((\underline{)}) (\underline{)}$.

Example: LR(1) parse tree

Example: LR(1) parsing error

Parsing ())

Iteration	State	Word	Stack	Handle	Action
0	_	<u>(</u>	\$ (Goal 0)	-none-	_
1	0	<u>(</u>	\$ (Goal 0)	-none-	shift 3
2	3	<u>)</u>	\$ (Goal 0) (<u>(</u> 3)	-none-	shift 8
3	8	<u>)</u>	\$ (Goal 0) (<u>(</u> 3) (<u>)</u> 8)	-none-	error

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

LR parser

LR(k) parsing technique

- L stands for the left-to-right scanning of the input
- R stands for constructing a right-most derivation in reverse
- $\bullet\ k$ stands for the number of input symbols of lookahead that are used in making parsing decisions

LR parser

Pros

- Can recognize all programming language constructs for which context-free grammars can be written
- General but efficient shift-reduce parsing method
- The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers
- Can detect a syntactic error as soon as it is possible to do so on a left-to-right scan of the input

Cons

- Constructing the parser by hand is difficult
 - ► However, we can use an LR parser generator instead

Example: Parenthesis grammar

$$\begin{array}{cccc} 1 & \textit{Goal} \rightarrow \textit{List} \\ 2 & \textit{List} \rightarrow \textit{List Pair} \\ 3 & | \textit{Pair} \\ 4 & \textit{Pair} \rightarrow \underline{\text{(} \textit{List)}} \\ 5 & | \underline{\text{(} \underline{\text{)}}} \\ \end{array}$$

The Parentheses Grammar

LR(1) items

For a production $A \to \beta \gamma$ and a lookahead symbol a

- A placeholder · is placed on the right-hand side of the production to create an item
- $[A \to \cdot \beta \gamma, \, a]$ indicates that an A would be valid and that recognizing a β next would be one step toward discovering an A.
- $[A \to \beta \cdot \gamma, a]$ indicates that the parser has progressed from the state $[A \to \cdot \beta \gamma, a]$ by recognizing β .
- $[A \to \beta \gamma \cdot, a]$ indicates that the parser has found $\beta \gamma$ in a context where an A followed by an a would be valid.

LR(1) items

$[Goal \rightarrow \bullet \mathit{List}, eof]$	[List \rightarrow • List Pair, eof]	[Pair $\rightarrow \bullet (List)$, eof]	$[Pair \rightarrow \bullet (\underline{)}, eof]$
$[Goal \rightarrow List \bullet, eof]$	[List \rightarrow List \bullet Pair, eof]	$[Pair \rightarrow \underline{(\bullet List)}, eof]$	$[Pair \rightarrow \underline{(} \bullet \underline{)}, eof]$
	[List \rightarrow List Pair \bullet , eof]	$[Pair \rightarrow \underline{(List \bullet \underline{)}, eof}]$	$[Pair \rightarrow \underline{(\ \underline{)}} \bullet, eof]$
[List $\rightarrow \bullet$ Pair, eof]	[List $\rightarrow \bullet$ List Pair, $\underline{(}$]	$[Pair \rightarrow \underline{(List)} \bullet, eof]$	$[Pair \rightarrow \bullet \underline{(} \underline{)}, \underline{(}]$
[List \rightarrow Pair \bullet , eof]	[List \rightarrow List \bullet Pair, $\underline{(}]$	$[Pair \rightarrow \bullet \underline{(List)}, \underline{(}]$	$[Pair \rightarrow \underline{(} \bullet \underline{)}, \underline{(}]$
[List $\rightarrow \bullet$ Pair, $\underline{(}]$	[List \rightarrow List Pair \bullet , $\underline{(}$]	$[Pair \rightarrow \underline{(\bullet List)}, \underline{()}]$	$[Pair \rightarrow \underline{(} \underline{)} \bullet, \underline{(}]$
[List \rightarrow Pair \bullet , $\underline{(}$]	[List $\rightarrow \bullet$ List Pair, $\underline{)}$]	$[Pair \rightarrow \underline{(List \bullet)},\underline{(}]$	$[Pair \rightarrow \bullet (\underline{)},\underline{)}]$
[List $\rightarrow \bullet$ Pair, $\underline{)}$]	$[List \rightarrow List \bullet Pair, \underline{)}]$	$[Pair \rightarrow \underline{(List)} \bullet, \underline{(}]$	$[Pair \rightarrow \underline{(} \bullet \underline{)}, \underline{)}]$
[List \rightarrow Pair \bullet , $\underline{)}$]	[List \rightarrow List Pair \bullet , $\underline{)}$]	$[Pair \rightarrow \bullet \underline{(List)}, \underline{)}]$	$[Pair \rightarrow \underline{(\ \underline{)} \bullet, \underline{)}}]$
		$[Pair \rightarrow \underline{(\bullet List \underline{)}, \underline{)}}]$	
		$[Pair \rightarrow \underline{(List \bullet \underline{)}, \underline{)}]$	
		$[Pair \rightarrow \underline{(List)} \bullet, \underline{)}]$	

■ FIGURE 3.21 LR(1) Items for the Parentheses Grammar.

Canonical collection

To construction a canonical collection, a collection of LR(1) items, we need to operations

- Closure: state transition without input
- Goto: state transition with input

```
closure(s)
     while (s is still changing) do
          for each item [A \to \beta \bullet C \delta, a] \in S do
               lookahead \leftarrow \delta a
               for each production C \rightarrow \gamma \in P do
                    for each b \in FIRST(lookahead) do
                         s \leftarrow s \cup \{[C \rightarrow \bullet \gamma, b]\}
     return s
```

(a) The Closure Function

■ FIGURE 3.22 Support Functions for the LR(1) Table Construction.

```
qoto(s, x)
       t \leftarrow \emptyset
       for each item i \in s do
              if i is [\alpha \to \beta \bullet x \delta], all then
                     t \leftarrow t \cup \{ [\alpha \rightarrow \beta \times \bullet \delta, a] \}
       return closure(t)
```

(b) The Goto Function


```
CC_0 \leftarrow \emptyset
for each production of the form Goal \rightarrow \alpha do
     CC_0 \leftarrow CC_0 \cup \{ [Goal \rightarrow \bullet \alpha, eof] \}
cc_0 \leftarrow closure(cc_0)
CC \leftarrow \{CC_0\}
while (new sets are still being added to CC) do
     for each unmarked set cc_i \in CC do
          mark cci as processed
          for each x following a \bullet in an item in cc_i do
               temp \leftarrow goto(cc_i, x)
               if temp ∉ CC then
                    \mathcal{CC} \leftarrow \mathcal{CC} \cup \{temp\}
               record transition from cc_i to temp on x
```

■ **FIGURE 3.23** The Algorithm to Build the Canonical Collection of Sets of LR(1) Items.

Example: CC Construction

From CC_0 , with (input

$$\begin{array}{cccc} 1 & Goal \rightarrow List \\ 2 & List \rightarrow List Pair \\ 3 & & | Pair \\ 4 & Pair \rightarrow \underline{(List)} \\ 5 & & | \underline{()} \\ \end{array}$$

The Parentheses Grammar

$$CC_0 = \begin{cases} [Goal \rightarrow \bullet List, eof], [List \rightarrow \bullet List Pair, eof], \\ [List \rightarrow \bullet List Pair, \underline{()}, [List \rightarrow \bullet Pair, eof], \\ [List \rightarrow \bullet Pair, \underline{()}, [Pair \rightarrow \bullet \underline{(} List \underline{)}, eof], \\ [Pair \rightarrow \bullet \underline{(} List \underline{)}, \underline{()}, [Pair \rightarrow \bullet \underline{(} \underline{)}, eof], \\ [Pair \rightarrow \bullet \underline{(} \underline{)}, \underline{()}] \end{cases}$$

$$CC_3 = \begin{cases} [Pair \rightarrow \underline{(\bullet List)}, eof] [Pair \rightarrow \underline{(\bullet List)}, \underline{()}] \\ [Pair \rightarrow \underline{(\bullet List)}, eof] [Pair \rightarrow \underline{(\bullet List)}, \underline{()}] \\ [List \rightarrow \bullet Pair, \underline{()}, \underline{[List]}, \bullet Pair, \underline{()}, [Pair \rightarrow \bullet \underline{(} List), \underline{()}, \underline{()}] \\ [Pair \rightarrow \bullet \underline{(} List), \underline{()}, \underline{()}] [Pair \rightarrow \bullet \underline{(} List), \underline{()}, \underline{()}] \end{cases}$$

Example: CC Construction (cont.)

$$\begin{aligned} & \text{CC}_0 = \begin{cases} & [\textit{Goal} \rightarrow \bullet \textit{List}, \textit{eof}] \\ & [\textit{List} \rightarrow \bullet \textit{List}, \textit{eof}] \\ & [\textit{List} \rightarrow \bullet \textit{List} \, \textit{Pair}, \textit{eof}] \, [\textit{List} \rightarrow \bullet \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{List} \rightarrow \bullet \textit{Pair}, \texttt{of}] \\ & [\textit{Pair} \rightarrow \bullet (\textit{List}), \textit{eof}] \, [\textit{Pair} \rightarrow \bullet (\textit{List}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \textit{eof}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & \text{CC}_1 = \begin{cases} & [\textit{Goal} \rightarrow \textit{List} \, \bullet, \textit{eof}] \, [\textit{List} \rightarrow \textit{List} \, \bullet, \textit{Pair}, \textit{eof}] \, [\textit{List} \rightarrow \textit{List} \, \bullet, \textit{Pair}, \texttt{O}] \\ & [\textit{Pair} \rightarrow \bullet (\textit{List}), \textit{eof}] \, [\textit{Pair} \rightarrow \bullet (\textit{List}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \textit{eof}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & [\textit{Pair} \rightarrow \bullet (\textit{List}), \textit{eof}] \, [\textit{Pair} \rightarrow \bullet (\textit{List}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \textit{eof}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & [\textit{List} \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{List} \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{List} \rightarrow \textit{Pair}, \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & [\textit{Pair} \rightarrow \bullet (\textit{List}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\textit{List}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & \text{CC}_3 = \left\{ & [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & \text{CC}_4 = \left\{ & [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & \text{CC}_5 = \left\{ & [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair} \, \bullet, \texttt{O}] \, [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \, [\textit{Pair} \rightarrow \bullet (\texttt{O}), \texttt{O}] \\ & \text{CC}_6 = \left\{ & [\textit{List} \, \rightarrow \textit{Pair} \, \bullet, \texttt{O}] \, [\textit{List} \, \rightarrow \textit{List} \, \textit{Pair}, \texttt{O}] \, [\textit{List} \, \rightarrow \textit{List} \, \textit{O}] \, [\textit{List} \, \rightarrow \textit{List} \, \textit{O}] \, [\textit{List} \, \rightarrow \textit{O}] \, [\textit{Pair} \, \rightarrow \bullet (\texttt{O}), \texttt{O}] \, [\textit{Pair} \, \rightarrow \bullet (\texttt{O}),$$

Filling parse tables

Shift, reduce, accept actions

for each
$$cc_i \in \mathcal{CC}$$
 do

for each item $I \in cc_i$ do

if I is $[A \to \beta \bullet c \gamma, a]$ and $goto(cc_i, c) = cc_j$ then

Action $[i, c] \leftarrow$ "shift j "

else if I is $[A \to \beta \bullet, a]$ then

Action $[i, a] \leftarrow$ "reduce $A \to \beta$ "

else if I is $[Goal \to \beta \bullet, eof]$ then

Action $[i, eof] \leftarrow$ "accept"

for each $n \in NT$ do

if $goto(cc_i, n) = cc_j$ then

 $Goto[i, n] \leftarrow j$

■ FIGURE 3.26 LR(1) Table-Filling Algorithm.

Visualizing transition table

■ FIGURE 3.27 Handle-Finding DFA for the Parentheses Grammar.

Exercise

Construct an LR(1) for the following grammar

$$S \rightarrow S + S \mid SS \mid (S) \mid a$$

Is this grammar LR(1)?

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

Conflicts types

- Shift/reduce conflict
 - ► Can either shift or reduce
- Reduce/reduce conflict
 - Have several possible reducible production rules

We can give preference to a rule over others to solve the conflict.

Shift/reduce conflict

Example

$$stmt o ext{if } expr ext{ then } stmt$$
 | if $expr ext{ then } stmt ext{ else } stmt$ | other

We found a conflict in the following configuration Stack Input \$... if expr then stmt else ...\$

We can give preference to a rule over others to resolve the conflict.

Reduce/reduce conflict

Example

$$\begin{array}{lll} (1) & stmt \rightarrow \operatorname{id}(parameter_list) \\ (2) & stmt \rightarrow expr := expr \\ (3) & parameter_list \rightarrow parameter_list, parameter \\ (4) & parameter_list \rightarrow parameter \\ (5) & parameter \rightarrow \operatorname{id} \\ (6) & expr \rightarrow \operatorname{id}(expr_list) \\ (7) & expr \rightarrow \operatorname{id} \\ (8) & expr_list \rightarrow expr_list, expr \\ (9) & expr_list \rightarrow expr \\ \end{array}$$

We found a conflict in the following configuration Stack Input

\$...id(id ,id)...\$

We can change to token **id** in production (1) to **procid** to differentiate (1) from (6)

Outline

- Introduction
- Writing Grammars
- Parsing algorithms
 - Top-down parsing
 - Recursive-descent parser
 - LL(1) parser
 - Bottom-up parser
 - LR parser construction
- Errors in table construction
- Error recovery

Error report

- Current parsing algorithm halts when encounter the first error
- Finding all syntax errors may be more helpful (and common)
 - We need a synchronize symbol to resume from the error state

Error recovery

Top-down parsing

Read new input tokens until the synchronize token (e.g.;) is found

Bottom-up parsing

- Read new input tokens until the synchronize token (e.g.;) is found
- Clean-up the stack upto to starting point of the error path (e.g. the starting symbol of a statement)