The figure below shows the state diagram of a finite automaton M₁. Give the formal description of this automaton. (5 Marks)

Provide a conclusion on the language accepted by this machine

Input Alphabet			
States	a	b	
S	q1	r1	
q1	q1	q2	
q2	q1	q2	
r1	r2	r1	
r2	r2	r1	
0 - [6 ~1 ~2 ~1 ~2]			

 $Q = {S, q1, q2, r1, r2}$

∑= {a, b}

 δ = Transition Symbol

 $q_0 = \{S\}$

 $F = \{q1, r1\}$

Possible path	Pattern
S <i>b</i> >r ₁	b
S <i>b</i> >r ₁ <i>b</i> >r ₁	bb
S <i>b</i> >r ₁ <i>a</i> >r ₂ <i>b</i> >r ₁	bab
Sb>r ₁ a>r ₂ a>r ₁	baab
Sb>r ₁ b>r ₁ a>r ₂ b>r ₁	bbab
Sb>r ₁ b>r ₁ a>r ₂ a>r ₂ b>r ₁	bbaab
S <i>a</i> >q ₁	а
S <i>a</i> >q ₁ <i>b</i> >q ₂ <i>a</i> >q ₁	aba
S <i>a</i> >q ₁ <i>a</i> >q ₁	аа
S <i>a</i> >q ₁ <i>a</i> >q ₁	aaba
Sa>q ₁ a>q ₁ b>q ₂ b>q ₂	aabba

Conclusion

The machine accepts a language that either starts with an "a" and ends with an "a" or a language that starts with a "b" and ends with a "b".

 $L(M1) = \sum W \in W$, W starts and ends with the same symbol.

Question Seven (from Logic & Truth Tables Lesson):

The formal description of a DFA is ($\{q_1, q_2, q_3, q_4, q_5\}$, (u, d), δq_3 , $\{q_3\}$), where δ is given by the following transition table. Give the state diagram of this machine. (8 Marks).

	u	d
q ₁	q_1	q_2
q ₂	q_1	q_3
q ₃	q_2	q_4
q ₄	q_3	q_5
q ₅	q_4	q ₅

State diagram of this machine

Possible path	Pattern
q3u> q0u> q1u> q2d> q3	uuudd
q ₃ <i>u</i> > q ₀ <i>u</i> > q ₁ <i>d</i> > q ₂	uudd
q3d> q4d> q5d> q5u> q4u> q3	ddduu
q3d> q4d> q5u> q4u> q3	dduu

Conclusion

The machine accepts a language that starts with double 'u' and ends with double 'd' or starts with double 'd' and ends with double 'u'.