

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 06.11.2019

Syntaxdiagramme

- syntaktische Variable = Nichtterminalsymbol = Name eines Syntaxdiagramms
- ► Jedes Kästchen ist mit dem Namen eines Syntaxdiagramms beschriftet.
- ▶ Jedes Oval ist mit einem Terminalsymbol beschriftet.

Rücksprungalgorithmus

- ► jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- ► beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt
- Nachweis von Zugehörigkeit eines Wortes zu einer Sprache

AUFGABE 1

- ► Teil (a) z.B. ε , a, c, caa, aaaa, . . .
- ► Teil (b) z.B. aaac, abacac, abbaccac, . . .
- ► Teil (c) z.B. ε , ab, abab, ac, aabcab, . . .

AUFGABE 2 — TEIL (A)

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$
S

$$A \qquad B$$

$$C \qquad B \qquad d$$

$$d$$

$$d$$

AUFGABE 2 — TEIL (B)

Protokollierungszeitpunkte:

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine Operation auf dem Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
a	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	<i>3</i> 2131
aaaaccb	<i>2</i> 131
aaaaccbd	1⁄31
aaaaccbdb	<i>3</i> 1
aaaaccbdb	X
aaaaccbdbb	_

AUSSAGENLOGIK

Alphabet der Aussagenlogik

Ein Alphabet der Aussagenlogik besteht aus

- ▶ einer (abzählbar) unendlichen Menge $\mathcal{R} = \{p_1, p_2, p_3, ...\}$ von aussagenlogischen Variablen
- ▶ der Menge $\mathcal{J} = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ von Junktoren
- ► der Menge {(,)} der Sonderzeichen.

Wir beschränken uns im Folgenden auf die Junktoren $\mathcal{J}=\{\neg,\lor\}$ und die Variablen p und q.

Aussagenlogische Formeln

Die Menge von Formeln ist die *kleinste* Menge $\mathcal{L}(\mathcal{R})$ von Zeichenreihen über \mathcal{R} , den Junktoren und den Sonderzeichen, die die folgenden Eigenschaften erfüllt:

- ▶ Wenn $F \in \mathcal{R}$, dann ist $F \in \mathcal{L}(\mathcal{R})$
- ▶ Wenn $F \in \mathcal{L}(\mathcal{R})$, dann ist $\neg F \in \mathcal{L}(\mathcal{R})$
- ▶ Wenn $\circ \in \mathcal{J}$ ein zweistelliger Junktor ist und $F, G \in \mathcal{L}(\mathcal{R})$ sind, dann ist $(F \circ G) \in \mathcal{L}(\mathcal{R})$.

Da im Folgenden stets $\mathcal{J}=\{\neg,\lor\}$ gilt, und \lor der einzige zweistellige Junktor ist, vereinfacht sich die dritte Bedingung zu:

▶ Wenn $F, G \in \mathcal{L}(\mathcal{R})$ sind, dann ist $(F \vee G) \in \mathcal{L}(\mathcal{R})$.

AUFGABE 3

Extended Backus-Naur-Form

EBNF-DEFINITION

- ► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.
- ► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

Definition: EBNF-Term

Seien V eine endliche Menge (syntaktische Variablen) und Σ eine endliche Menge (Terminalsymbole) mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die kleinste Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$

AUFGABE 4

Sei
$$V = \{A, B\}$$
 und $\Sigma = \{a, b, c, d\}$.

- **a.** $\hat{A} \hat{S} \in T(\Sigma, V)$
- **b.** $\{\hat{B}\} \in T(\Sigma, V)$
- **c.** $\{ (\hat{B}) | C) \} \notin T(\Sigma, V)$, da $C \notin V$
- **d.** $\hat{[}(a|B \cup \{c\})\hat{]} \notin T(\Sigma, V)$, da \cup nicht in EBNF vorhanden
- **e.** $\{\hat{a} \mid \hat{b} \mid \hat{a} \mid \hat{b} \mid \hat{a} \mid \hat{b} \mid \hat$
- **f.** $c(\hat{A}B\hat{B})$
- **g.** $\hat{[}(a|b)^*ABA] \notin T(\Sigma, V)$, da * nicht in EBNF vorhanden