

Introducción a switched capacitor

Leandro Fuentes

Ifuentes@fi.uba.ar

Calendario

Capítulo 1: Introducción

- Clase 1: Transistores Bipolar y MOS. Pequeña señal. Circuitos monoetapas
- Clase 2: Cadence Introducción y Circuitos monoetapas
- · Clase 3: Par diferencial. Amplificador diferencial. Implementación básica

Capítulo 2: Respuesta en Frecuencia y Estabilización

- Clase 4: Amplificador operacional: Respuesta en frecuencia, estabilidad.
 Capacidades asociadas al transistor MOS
- Clase 5: Cadence Amplificador operacional. Operación en DC, offset sistemático, ganancia
- · Clase 6: Estabilización, Miller, cero asociado, compensaciones avanzadas
- · Clase 7: Cadence Amplificador operacional. Respuesta en frecuencia, estabilidad

Calendario

Capítulo 3: Amplificadores Avanzados

- Clase 8: Amplificadores avanzados. Current mirror opamp, cascode, folded amplifier, folded cascode.
- Clase 9: Amplificadores avanzados. Push-pull output, Diff-diff, CMFB
- Clase 10: Cadence Amplificadores avanzados

Capítulo 4: Ruido y Offset

- Clase 11: Offset
- Clase 12: Ruido
- Clase 13: Cadence Diseño con offset y ruido

Capítulo 5: Circuitos Auxiliares

- Clase 14: Circuitos auxiliares. Referencias, bandgap, osciladores
- Clases 15 y 16: Extra Introducción al diseño físico de semiconductores (layout)

Contenido Clase 9 (SC)

- Introducción a switched cap
- Resistencia switcheada
- MOS switch
- Capacitores MOS
- Switched cap integrator
- Otros temas (no cubiertos)
- Referencias

Introducción a switched cap

• Amplificadores avanzados (clase 8) con feedback resistivo

Introducción a switched cap

Amplificadores avanzados (clase 8) con feedback resistivo

Introducción a switched cap

• Ejercicio:

• Para el circuito de la figura, obtenga la ganancia a lazo cerrado, sin incluir e incluyendo el efecto de la resistencia de salida del OTA

Figure 13.1 (a) Continuous-time feedback amplifier; (b) equivalent circuit of (a).

$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1} \cdot \frac{A_v - \frac{R_{out}}{R_2}}{1 + \frac{R_{out}}{R_1} + A_v + \frac{R_2}{R_1}}$$
(13.2) Aver $= \frac{R_2}{R_1} \cdot \frac{A_v - \frac{R_{out}}{R_2}}{1 + \frac{R_{out}}{R_1} + A_v + \frac{R_2}{R_1}}$

Introducción a switched cap

- Idea!
 - · Reemplazar a las resistencias de feedback por capacitores, que no cargan resistivamente al OTA
- Problema
 - ¿Cómo controlamos la polarización del nodo "X"?
- Idea 2!
 - Una R_F de alto valor ofrece un camino para la polarización \swarrow
- Problema
 - Sólo cumple la función esperada en frecuencias arriba del polo $\mathcal{C}_2 R_F$

 V_{out} V_{out} V_{out} V_{out}

Introducción a switched cap

- Idea 3!
 - Periódicamente cerrar S_2 . El OTA, conectado como buffer, ajusta el nodo "X" tal que $V_X pprox V_B$
- Problema
 - La salida V_X está disponible sólo cuando S_2 está abierto
 - Esto último va a volverse una característica de este tipo de circuitos

Figure 13.4 Use of feedback switch to define dc input level.

Resistencia switcheada

Repaso de capacitores

•
$$Q[Coulomb] = C \cdot V$$

$$i(t) = \frac{dQ}{dt} = \frac{d(c \cdot v(t))}{dt} = C \frac{dv(t)}{dt}$$

$$v(t) = V_0 + \frac{1}{c} \int_0^t i(\tau) d\tau = \frac{Q_0}{c} + \frac{1}{c} q(t)$$

$$v(t) = V_0 + \frac{1}{c} \int_0^t i(\tau) d\tau = \frac{Q_0}{c} + \frac{1}{c} q(t)$$

- Pregunta:
 - Para el capacitor de la figura,
 - ¿Qué carga tiene el capacitor?
 - ¿Qué carga tiene cada placa del capacitor?

Resistencia switcheada

· Analicemos esta técnica de reemplazar una resistencia por un circuito SC

• Ejercicio:

· Calcule la corriente promedio entrante por V_1 . Suponga primero $V_2=0V$ y luego V_2 un valor arbitrario.

Calcule la resistencia equivalente vista entre los terminales

Gi=Vic1

MOS switch

- La tecnología MOS permite implementar switches con simplicidad
 - Esto habilita la implementación de circuitos SC
- Repaso de MOS en strong inversion

Figure 2.15 Saturation of drain current.

• Ejercicio:

- M1 es un switch en el circuito de track & hold
- Calcule la resistencia equivalente entre sus terminales

Considere:

$$\mu_N C_{ox} = 100 \ \mu A/V^2, V_{TH} = 0.7 \ V$$

$$V_G^{MAX} = 2.5 \ V, V_{IN} = 1 \ V$$

$$W = 1 \ \mu m, L = 0.1 \ \mu m$$

$$V_{IN} \cong V_{OUT} \longrightarrow 0.5 \ \checkmark 0$$

$$ID = \mu_{N}Cox \frac{W}{L}(V6s - V4h) - VDS = b$$

$$\Delta I = \mu_{N}Cox \frac{W}{L}(V6s - V7h) \Delta V$$

$$EQ = \frac{\Delta V}{\Delta I} = \frac{1}{V_{N}Cox \frac{W}{L}(V_{0} - V_{1} - V_{7}h)}$$

$$V6s = \frac{1}{V_{0}Cox}$$

$$V6s = \frac{1}{V_{0}Cox}$$

- Pari =

1

- Ejercicio:
 - M1 es un switch en el circuito de track & hold
 - Indique cómo varía la resistencia del canal R_{ON} según el valor de V_{IN}

Considere:

$$\mu_N C_{ox} = 100 \ \mu A/V^2 \,, V_{TH} = 0.7 \ V$$
 $V_G^{MAX} = 2.5 \ V, V_{IN} = 1 \ V$
 $W = 1 \ \mu m \,, L = 0.1 \ \mu m$
 $C_L = 1 \ pF$

- Ejercicio:
 - M1 es un switch en el circuito de track & hold
 - ¿Cómo varía el resultado si en lugar de un NMOS se usa un PMOS?

- Ejercicio:
 - M1 es un switch en el circuito de track & hold
 - ¿Y si combina ambos?

Capacitores

- Repaso de capacitores en un proceso CMOS+
- Los principales parámetros son:
 - Densidad de capacidad
 - Capacidades parásitas: top plate / bottom plate
 - Resistencia parásita
 - Linealidad
 - Matching
 - Cmax/Cmin (varactores)
- Opciones disponibles:
 - MOS Caps y Varactores
 - Poly-Poly Caps
 - Metal Caps

$$C = \frac{\varepsilon A}{d} = C_d \cdot W \cdot L$$

$$C_d = \frac{\varepsilon}{d} \; ; \; [C_d] = \frac{fF}{\mu m^2}$$

Fig. 14.1 An integrated circuit capacitor for switched-capacitor circuits: (a) physical construction; (b) circuit model.

Integrator

Buscamos implementar un integrador:

Reemplazamos la resistencia con una R equivalente como vimos antes: parasitic sensitive

$$V_{out}(kT_{CK}) = V_{out}[(k-1)T_{CK}] - V_{in}[(k-1)T_{CK}] \cdot \frac{C_1}{C_2}$$

$$V_{out} = V_{out}[(k-1)T_{CK}] - V_{in}[(k-1)T_{CK}] \cdot \frac{C_1}{C_2}$$
(13.63)

Switched Cap Integrator

• Problema:

- Al abrir S1, la operación suma un extra de carga a C1, que luego se transfiere a C2
- · Las capacidades de los switches (no-lineales) agrega una cantidad de carga extra que depende nolinealmente también del nivel de tensión de entrada
- → signal-dependent charge injection

Figure 13.57 (a) Discrete-time integrator; (b) response of circuit to a constant input voltage.

Integrator

- Problema:
 - · Las capacidades parásitas (incluso las lineales) afectan a la transferencia, introduciendo error

$$H(z) \equiv \frac{V_o(z)}{V_i(z)} = -\left(\frac{C_1}{C_2}\right) \frac{1}{z-1}$$

Fig. 14.5 A discrete-time integrator. This structure is sensitive to parasitic capacitances (not shown).

$$H(z) = -\left(\frac{C_1 + C_{p1}}{C_2}\right) \frac{1}{z - 1}$$

Fig. 14.8 A discrete-time integrator with parasitic capacitances shown.

Integrator

- Mejora: la arquitectura mostrada resuelve algunos de los problemas con las capacidades parásitas
 - Parasitic insenstive integrator
 - Non-inverting
 - Bottom-plate sampling

Fig. 14.9 A noninverting delaying discrete-time integrator that is not sensitive to parasitic capacitances.

Fig. 14.10 The noninverting discrete-time integrator on the two clock phases: (a) ϕ_1 (b) ϕ_2

Amplifier

· También se pueden implementar amplificadores (que era nuestro objetivo inicial!) y filtros

Figure 13.31 (a) Unity-gain sampler; (b) circuit of (a) in sampling mode; (c) circuit of (a) in amplification mode.

Figure 13.35 Differential realization of unity-gain sampler.

Otros temas

- Temas no cubiertos que son relevantes
 - · Opamp impairments effects: DC gain, UGF, phase margin, slew rate, offset
 - Charge injection and clock feedthrough
 - Track and hold operation
 - Improved sampling switches
 - Noise in switched cap
 - Clock generation
 - Correlated double sampling
 - Switch sharing
 - Aliasing and discrete time operation

Referencias

- B. Razavi (2000) "Design of Analog CMOS Integrated Circuits", The McGraw Hill Companies, Inc.
- Carusone, T. C., Johns, D. A., & Martin, K. W. (2011), "Analog Integrated Circuit Design", John Wiley & Sons