Module Langages Formels TD 2 : Résiduels et automates finis

Exercice 1 Résiduels

1.1. Calculer le résiduel de L par rapport à tout mot u sur $\Sigma = \{a, b\}$ dans les exemples suivants :

$$L = a^*b^* \qquad \qquad L' = \{a^nb^n \mid n \ge 0\}$$

1.2. Si x est une lettre de Σ , que valent $x^{-1}(L_1 \cup L_2)$, $x^{-1}(L_1L_2)$ et $x^{-1}L_1^*$ où L_1 et L_2 sont deux langages sur Σ ?

Exercice 2 Codes et quotients

On étend la définition des résiduels à gauche à des langages sur Σ^* : le **quotient à gauche** d'un langage L_1 par un langage L_2 est défini par $L_2^{-1}L_1=\bigcup_{u\in L_2}u^{-1}L_1$. Soit X un sous-ensemble de Σ^+ . On définit la suite (U_i) de langages

$$\begin{cases}
U_1 = X^{-1}X \setminus \{\varepsilon\} \\
U_{n+1} = X^{-1}U_n \cup U_n^{-1}X \text{ pour } n \ge 1
\end{cases}$$

2.1. Montrer que pour tout $n \ge 1$, et pour tout $k \in [1, n]$,

$$\varepsilon \in U_n \iff \exists u \in U_k, \exists i, j \ge 0 \text{ tels que } uX^i \cap X^j \ne \emptyset \text{ avec } i+j+k=n$$

On appelle **code** sur un alphabet Σ tout langage X sur Σ tel que pour toutes familles $(x_i) \in X^{[\![1,p]\!]}$ et $(y_i) \in X^{[\![1,q]\!]}$, $x_1x_2 \dots x_p = y_1y_2 \dots y_q$ entraine p=q et $x_i=y_i$ pour tout i. Dire que X est un code revient donc à dire que tout élément de X^* se factorise de manière unique sur X.

2.2. En déduire que X est un code si et seulement si aucun des U_i ne contient ε .

Exercice 3

Écrire un automate déterministe qui reconnaît les entiers écrits en base 2 qui sont congrus à 1 modulo 3.

Exercice 4 La méthode de Thompson

On décide d'ajouter aux automates non déterministes la possibilité d'utiliser des ε -transitions. ε est une étiquette de transition qui correspond au mot vide.

Par exemple, $b \in \mathcal{L}(A)$, avec A l'automate ci-dessous.

- **4.1**. Proposer un algorithme de déterminisation des automates finis à ε -transitions et l'appliquer sur l'exemple ci-dessus.
- 4.2. Montrer que tout automate fini non déterministe est équivalent à un automate fini non déterministe ayant un unique état initial et un unique état final.
- **4.3.** Soient A et B deux automates finis. Construire des automates reconnaissant

$$\mathcal{L}(A).\mathcal{L}(B)$$
 $\mathcal{L}(A) \cup \mathcal{L}(B)$ $\mathcal{L}(A)^*$

$$\mathcal{L}(A) \cup \mathcal{L}(B)$$

Exercice 5 Déterminisation

5.1. Déterminiser l'automate suivant :

5.2. Nous allons maintenant calculer la complexité au pire de la déterminisation d'un automate en fonction de son nombre d'états. On a vu en cours que le déterminisé d'un automate à Q états a au plus $2^{|Q|}$ états, nous allons détailler un exemple. Considérons l'automate A suivant, qui reconnaît l'ensemble des mots de $\{a,b\}^*$ dont la n^e lettre en partant de la fin est un a (on suppose n > 0):

Soit $B=(Q,\Sigma=\{a,b\},q_0,F,\delta)$ un automate fini déterministe reconnaissant le même langage que *A*.

- **5.2. 1.** Montrer que *B* est complet (i.e. si $u \in \Sigma^*$, alors $\delta(q_0, u)$ existe).
- **5.2.** 2. Prouver que la fonction $\varphi: \Sigma^{n-1} \to Q$ est injective. $u \mapsto q_u = \delta(q_0, u)$

En conclure que la déterminisation de *A* est au pire exponentielle en nombre d'états.