

Tema IV: Tablas de Verdad

1.1 CALCULO PROPOSICIONAL

1.1.1. FORMULAS.

Con estos cinco conectivos lógicos con los que se han trabajados expresiones tales como $p \land q, p \lor q, p \to q, p \leftrightarrow q \ y \neg p$; se construyen proposiciones compuestas más complejas, haciendo combinaciones de las anteriores. Entonces es necesario especificar la manera en que los símbolos (variables proposicionales y conectores lógicos) pueden colocarse juntos.

DEFINICIÓN. Fórmula.

Fórmula es una expresión que contiene una secuencia finita o cadena de variables proposicionales simples o atómicas (p, q, r, etc.) y conectores lógicos (\land , \lor , \rightarrow , \leftrightarrow , \neg , etc.) que satisface las siguientes reglas:

- (1) Cualquier variable proposicional es una fórmula.
- (2) Si p es una fórmula, entonces $\neg p$ es una fórmula.

(3) Si p y q son fórmulas, entonces $p \wedge q$, $p \vee q$, $p \rightarrow q$, $p \leftrightarrow q$ y $\neg p$ son fórmulas.

El valor de verdad de una fórmula dependerá de los valores de verdad de las variables proposicionales simples o atómicas que la componen. El número de combinaciones que tengamos en una tabla de verdad dependerá del número de variables proposicionales distintas que intervengan en la fórmula, siendo igual a 2^n , donde n es el número de variables proposicionales diferentes que intervienen en ella.

Ejemplo ilustrativo: Construir la tabla de verdad para la fórmula

$$[(p \lor q) \land (\neg p)] \rightarrow q$$
:

Solución:

En este caso, en la fórmula intervienen dos variables proposicionales distintas, por lo tanto se tienen $2^2 = 4$ combinaciones posibles.

р	q	p∨q	¬ p	$(p \lor q) \land (\neg p)$	$[(p\vee q)\wedge (\neg p)]\to q.$
V	٧	V	F	F	V

V	F	V	F	F	V
F	V	V	V	V	V
F	F	F	V	F	V

DEFINICIÓN. Fórmula tautológica.

Se dice que una fórmula es *tautológica* o *tautología* si y sólo si su valor de verdad es *verdadero*, independientemente de que los valores de verdad de sus variables proposicionales componentes sean falsos o verdaderos. Es decir, una *tautología* es una proposición compuesta que siempre es verdadera.

En la Lógica, tenemos varias tautologías que son importantes. Entre ellas, tenemos:

- La ley del medio excluido: $p \lor \neg p$
- La ley de no contradicción: $\neg (p \land \neg p)$
- La ley de la inferencia contrapositiva (o Modus Tollendo Tollens):

$$[(p \rightarrow q) \land (\neg q)] \rightarrow \neg p$$

Ejemplo:

р	q	(pvq)	(pvq)→q
V	V	V	V
V	F	F	V
F	V	V	V
F	F	V	V

р	q	r	(p → q)	(q→r)	(p→q)^(q→r)	(p→r)	$[(p \rightarrow q)^{(q \rightarrow r)}] \rightarrow (p \rightarrow r)]$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

р	q	r	S	(p → q)	(r^~s)	q→(r^~s)	(p→q)^[q→(r^~s)]	(rvs)	p→(rvs)	$\{(p\rightarrow q)^{q} \rightarrow (r^{s})\} \rightarrow [p\rightarrow (rvs)]$
٧	٧	V	٧	V	F	V	V	V	V	V
٧	٧	V	F	V	V	V	V	V	V	V
V	٧	F	٧	V	F	F	F	V	V	V
V	>	F	F	V	F	F	F	F	F	V
V	F	V	٧	F	F	V	F	V	V	V
٧	F	V	F	F	V	V	F	V	V	V
V	F	F	٧	F	F	V	F	V	V	V
V	F	F	F	F	F	V	F	F	F	V
F	>	V	٧	V	F	F	F	V	V	V
F	٧	V	F	V	V	V	V	V	V	V
F	>	F	٧	V	F	F	F	V	V	V
F	٧	F	F	V	F	F	F	F	V	V
F	F	V	٧	V	F	V	V	V	V	V
F	F	٧	F	V	V	V	V	V	V	V
F	F	F	٧	V	F	V	V	V	V	V
F	F	F	F	V	F	V	V	F	V	V

Ejemplo ilustrativo: Mostrar, mediante una tabla de verdad, la veracidad de ley de la inferencia contrapositiva (o Modus Tollendo Tollens):

$$[(p \to q) \land (\neg q)] \to \neg p$$

Solución:

р	q	$p \rightarrow q$	$\neg q$	$(p \rightarrow q) \wedge (\neg q)$	¬ <i>p</i>	$[(p \to q) \land (\neg q)] \to \neg p$
V	V	V	F	F	F	V
V	F	F	V	F	F	V
F	V	V	F	F	V	V
F	F	V	V	V	V	V

DEFINICIÓN. Fórmula contradictoria.

Se dice que una fórmula es *contradictoria* o una *contradicción* si y sólo si su valor de verdad es *falso*, independientemente de que los valores de verdad de sus variables proposicionales componentes sean falsos o verdaderos. Es decir, una *contradicción* es una proposición compuesta que siempre es falsa.

Ejemplo:

р	q	(pvq)	(pvq)→q	~[(pvq)→q]
V	V	V	V	F
V	F	F	V	F
F	V	V	V	F
F	F	V	V	F

				(q→r				$\sim [(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$
р	q	r	(p → q))	(p→q)^(q→r)	(p→r)	$[(p \rightarrow q)^{(q \rightarrow r)}] \rightarrow (p \rightarrow r)]$]
V	٧	٧	V	٧	V	V	V	F
V	٧	F	V	F	F	F	V	F
V	F	٧	F	V	F	V	V	F
V	F	F	F	V	F	F	V	F
F	٧	٧	V	V	V	V	V	F
F	٧	F	V	F	F	V	V	F
F	F	٧	V	V	V	V	V	F
F	F	F	V	V	V	V	V	F

р	q	r	S	(p → q)	(r^~s)	q →(r^~s)	$(p\rightarrow q)^{q}(r^{\sim s})$	(rvs)	p→(rvs)	$(p\rightarrow q)^{q}(r^{s})]\rightarrow [p\rightarrow (rvs)]$	$\sim \{(p\rightarrow q)^[q\rightarrow (r^{\sim}s)]\}\rightarrow [p\rightarrow (rvs)]\}$
٧	٧	٧	٧	V	F	V	V	V	V	V	F
٧	٧	٧	F	V	V	V	V	V	٧	V	F
٧	٧	F	٧	V	F	F	F	V	V	V	F
٧	٧	F	F	V	F	F	F	F	F	V	F
٧	F	٧	٧	F	F	V	F	V	V	V	F
٧	F	٧	F	F	V	٧	F	V	V	V	F
٧	F	F	٧	F	F	V	F	V	V	V	F
٧	F	F	F	F	F	V	F	F	F	V	F
F	٧	٧	٧	V	F	F	F	V	٧	V	F
F	٧	٧	F	V	V	V	V	V	V	V	F
F	٧	F	٧	V	F	F	F	V	٧	V	F
F	٧	F	F	V	F	F	F	F	V	V	F

F	F	٧	V	V	F	V	V	V	V	V	F
F	F	٧	F	V	٧	V	V	V	V	V	F
F	F	F	٧	V	F	V	V	V	V	V	F
F	F	F	F	V	F	V	V	F	V	V	F

Ejemplo ilustrativo 1: Mostrar, mediante una tabla de verdad, la ley de contradicción: $p \land \neg p$.

Solución:

p	¬ p	<i>p</i> ∧ ¬ <i>p</i>			
V	F	F			
F	V	F			

Ejemplo ilustrativo 2: Probar que la expresión $(p \rightarrow q) \leftrightarrow \neg (\neg p \lor q)$ es una contradicción:

Solución:

Α					В	
p	q	$p \rightarrow q$	¬ p	$\neg p \lor q$	¬ (¬ p ∨ q)	$A \leftrightarrow B$
V	٧	V	F	V	F	F
V	F	F	F	F	V	F

F	V	V	V	V	F	F
F	F	V	V	V	F	F

DEFINICIÓN. Fórmula sintética o contingencia.

Se dice que una fórmula es *sintética* o *contingencia* si y sólo si la misma no es una tautología ni una contradicción.

Ejemplo:

р	q	(p^q)	(p^q)↔p
V	V	V	V
V	F	F	F
F	V	F	V
F	F	F	V

р	q	r	(p^q)	(p^q)↔r
V	V	V	V	V
V	V	F	V	F
V	F	V	F	F
V	F	F	F	V
F	V	V	F	F
F	V	F	F	V
F	F	V	F	F
F	F	F	F	V

				, ,	(4)	() ()
р	q	r	S	(p↔q)	(r^s)	(p↔q)→(r^s)
V	V	V	V	V	V	V
V	V	V	F	V	F	F
V	V	F	V	V	F	F
V	V	F	F	V	F	F
V	F	V	V	F	V	V
V	F	V	F	F	F	V
V	F	F	V	F	F	V
V	F	F	F	F	F	V
F	V	V	V	F	V	V
F	V	V	F	F	F	V
F	V	F	V	F	F	V
F	V	F	F	F	F	V
F	F	V	V	V	V	V
F	F	V	F	V	F	F
F	F	F	V	V	F	F
F	F	F	F	V	F	F

Ejemplo ilustrativo: Mostrar que la fórmula no es tautología ni contradicción:

$$[p \to (\neg q \lor r)] \leftrightarrow [(p \land q) \lor (\neg r)]$$

Solución:

En este caso, en la fórmula intervienen 3 variables proposicionales distintas, por lo tanto se tienen $2^3 = 8$ combinaciones posibles.

					Α			В	
р	q	r	$\neg q$	$\neg q \lor r$	$p \rightarrow (\neg q \lor r)$	p∧q	$\neg r$	$(p \land q) \lor (\neg r)$	$A \leftrightarrow B$
V	٧	V	F	V	V	V	F	V	V
V	٧	F	F	F	F	V	V	V	F
V	F	V	V	V	V	F	F	F	F
V	F	F	V	V	V	F	V	V	V
F	V	V	F	V	V	F	F	F	F
F	V	F	F	F	V	F	V	V	V
F	F	٧	V	V	V	F	F	F	F

F	F	F	V	V	V	F	V	V	V

La expresión $[p \to (\neg q \lor r)] \leftrightarrow [(p \land q) \lor (\neg r)]$ representa una fórmula sintética o contingencia.

1.1.2. REGLAS DEL CÁLCULO PROPOSICIONAL

DEFINICIÓN. Proposiciones Lógicamente Equivalentes.

Las proposiciones compuestas P y Q son lógicamente equivalentes si y solo si siempre tienen el mismo valor de verdad; es decir, P \Leftrightarrow Q es siempre una tautología. Algunas veces se denota por P \equiv Q. En este artículo se usa el símbolo \Leftrightarrow para denotar que P y Q son lógicamente equivalentes.

Se presenta a continuación una lista de importantes tautologías seleccionadas por su utilidad. Estas tautologías pueden demostrarse con tablas de verdad. En la lista V representa una tautología y F una contradicción.

1. Leyes de identidad:	a. $(p \vee F) \Leftrightarrow p$	b. $(p \wedge V) \Leftrightarrow p$
2. Leyes de dominación:	a. $(p \lor V) \Leftrightarrow V$	b. $(p \wedge F) \Leftrightarrow F$

3. Leyes de Idempotencia:	a. $(p \lor p) \Leftrightarrow p$ b. $(p \land p) \Leftrightarrow p$
4. Ley de la doble negación:	$\neg (\neg p) \Leftrightarrow p$
5. Ley de contradicción:	$(p \land \neg p) \Leftrightarrow F$
6. Ley de la no contradicción:	$\neg (p \land \neg p)$
7. Ley de complemento	$(p \lor \neg p) \Leftrightarrow V$
8. Ley del tercio excluido:	$p \lor \neg p$
	a. $(p \wedge q) \Leftrightarrow (q \wedge p)$
9. Leyes conmutativas:	b. $(p \lor q) \Leftrightarrow (q \lor p)$
	$\mathbf{c.} \ (p \leftrightarrow q) \Leftrightarrow (q \leftrightarrow p)$
	a. $[p \land (q \land r)] \Leftrightarrow [(p \land q) \land r]$
10. Leyes asociativas:	b. $[p \lor (q \lor r)] \Leftrightarrow [(p \lor q) \lor r]$
	c. $[p \leftrightarrow (q \leftrightarrow r)] \Leftrightarrow [(p \leftrightarrow q) \leftrightarrow r]$
	a. $[p \land (q \lor r)] \Leftrightarrow [(p \land q) \lor (p \land r)]$
11. Leyes distributivas:	b. $[p \lor (q \land r)] \Leftrightarrow [(p \lor q) \land (p \lor r)]$
	$c. [p \to (q \land r)] \Leftrightarrow [(p \to q) \land (p \to r)]$

	d. $[p \rightarrow (q \lor r)] \Leftrightarrow [(p \rightarrow q) \lor (p \rightarrow r)]$
12. Leyes transitivas:	a. $[(p \rightarrow q) \land (q \rightarrow r)] \Rightarrow (p \rightarrow r)$
TEL Ecycs transitivas.	b. $[(p \leftrightarrow q) \land (q \leftrightarrow r)] \Rightarrow (p \leftrightarrow r)$
13. Leyes de Demorgan:	$\mathbf{a.} \ \neg (p \land q) \Leftrightarrow (\neg \ p \lor \ \neg \ q)$
201 Zeyes de Bemorgan.	b. $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$
14. Leyes de implicación:	$a.\; (p \to q) \Leftrightarrow (\neg p \lor q)$
(Equivalencias del condicional)	b. $(p \rightarrow q) \Leftrightarrow [\neg (p \land \neg q)]$
(Equivalentius del condicional)	$ c. \neg (p \rightarrow q) \Leftrightarrow (p \land \neg q) $
15. Ley de la contrarrecíproca:	$(p \rightarrow q) \Leftrightarrow (\neg q \rightarrow \neg p)$
(o de la contraposición)	$(\rho \rightarrow q) \hookrightarrow (\neg q \rightarrow \neg \rho)$
16. Ley de reducción al absurdo:	$[(p \land \neg q) \to (r \land \neg r)] \Leftrightarrow (p \to q)$
17. Ley del razonamiento directo:	$[(p \to q) \land p] \Rightarrow q$
(Modus Ponendo Ponens)	$(p \rightarrow q) \land p_1 \rightarrow q$
18. Ley del razonamiento indirecto:	$[(p \to q) \land \neg q] \Rightarrow \neg p$
(Modus Tollendo Tollens)	$ \left[(\rho \rightarrow q) \land \neg q) \rightarrow \neg \rho \right] $
19. Ley del silogismo disyuntivo:	$[(p \lor q) \land \neg p] \Rightarrow q$

(Modus Tollendo Ponens)	
20. Leyes de simplificación:	a. $(p \wedge q) \Rightarrow p$ b. $(p \wedge q) \Rightarrow q$
21. Ley de adjunción o adición:	$p \Rightarrow (p \lor q)$
22. Ley de inferencia por casos:	$[(p \to q) \land (p \to r)] \iff [p \to (q \land r)]$
23. Equivalencias del condicional:	a. $[(p \to q) \land (p \to r)] \Leftrightarrow [p \to (q \land r)]$ b. $[(p \to q) \lor (p \to r)] \Leftrightarrow [p \to (q \lor r)]$ c. $[(p \to r) \lor (q \to r)] \Leftrightarrow [(p \land q) \to r]$
24. Equivalencias del bicondicional:	a. $(p \leftrightarrow q) \Leftrightarrow [(p \to q) \land (q \to p)]$ b. $(p \leftrightarrow q) \Leftrightarrow (\neg p \leftrightarrow \neg q)$ c. $(p \leftrightarrow q) \Leftrightarrow [(p \land q) \lor (\neg p \land \neg q)]$ d. $\neg (p \leftrightarrow q) \Leftrightarrow (p \leftrightarrow \neg q)$

