LAB BASICS

RYAN COLLISON, MLS (ASCP) MLS

TOPICS

- Specimen Processing
- <u>Laboratory Supplies</u>
- <u>Pipettes</u>
- Reagents

SPECIMEN IDENTIFICATION

- Throughout process specimen labeling is vi
 - 2 unique IDs
 - First and last name, bird date, MRN, Conta
- Making aliquots
 - Secondary container is clean
 - Pipettes clean
 - Good technique
 - Transfer one specimen at a time
 - Visual signals (physically moving tube etc)

SPECIMEN CONTAINERS

- Phlebotomy tubes
 - Whole blood
 - Anticoagulated, kept homogenous or re-mixed
 - Plasma
 - Anticoagulated and spun in centrifuge
 - Citrate, heparin, EDTA, K-oxalate
 - Serum
 - Whole blood clots, spun in centrifuge
- Functional additives
 - NaF, preservatives

SPECIMEN PROCESSING

- Centrifugation
 - Separate particles from solution
 - Concentrate cellular components
 - Enhance Ag-Ab reactions
 - Precipitate protein components
 - Separate liquid phases based on density

CENTRIFUGATION

- Rotor
 - Holds specimen
- Motor
 - Speed regulated by voltage input
 - Tachometer measures, adjusts speed
- Drive shaft
 - Connects motor and rotor
- Timer, Brake
 - Reaches end, slows down rotor

CENTRIFUGATION

- Centrifugal Forces
 - Speed of centrifuge (RPM) does not tell us force
 - Relative Centrifugal Force (RCF) RCF = 1.12 r $\times \left(\frac{RPM}{1000}\right)^2$
 - Radius in mm
 - Smaller radius at same sp
 - Resulting unit is x g (multiples of g-force)
 - Resulting force is high, centrifuge MUST be well-balanced

LABORATORY SUPPLIES

- Glassware
 - Borosilicate
 - Aluminosilicate
- Beaker
- Flask
 - Erlenmeyer
 - Volumetric
- Graduated Cylinder

- Pipettes
- Burets
- Plastic
 - The new glass!

LABORATORY SUPPLIES HOW TO USE: BEAKERS

- Holding bulk volume of solutions
 - If using small volumes consider using a medicine cup
- Waste containers
- All glassware can be labeled with sharpie
 - Alcohol prep pads clean off sharpie
- Not used for measurement

LABORATORY SUPPLIES HOW TO USE: FLASKS

- Erlenmeyer
 - Use similar to beakers
 - If sealed by parafilm may mix by swirling
 - Not used for measurement

- Volumetric
 - Holds a single exact volume
 - One calibration mark and tolerance listed
 - Application? i.e. make a 10 g/L NaCl
 - In IL flask put 10 g NaCl
 - Add almost I L of water, say 950 mL
 - Add rest of water dropwise with transfer pipette to meniscus
 - Insert stopper, invert and swirl to mix

LABORATORY SUPPLIES HOW TO USE: GRADUATED CYLINDERS

- Use class A for measurements
 - These are very inexact
 - Convenient for pouring
 - Filling 50 mL volumetric flask? Pour 45 mL using graduated cylinder
- Short answer?
 - Don't use for important things

PIPETTES

- Class A
 - NIST standards
 - Calibrated
 - CAP requires using calibrated pipettes
- TC versus TD
 - TD:What you think of when you think pipette
 - TC: Requires washing into solution

PIPETTES

Volumetric

- Transfer- transfers single known volume
 - Volumetric pipettes
 - Ostwald-Folin ||
- Measuring- labeled in increments
 - Serological ||
 - Mohr
- Micropipette
 - Adjustable or fixed volumes ≤I mL

Ostwald-

Folin

VOLUMETRIC PIPETTE

- Elongated bulb
- Tapered Tip
- Single Calibration mark
 - Dispenses ONLY the volume stated
- Self draining
- Most precise & accurate pipette
 - Suitable for calibrators

SEROLOGICAL PIPETTE

- Uniform width
- Wider tip
- Measuring pipette
 - Calibrated through the tip
 - Can dispense any volume for which a graduation exists
- Usually has etched ring (or 2) at top of pipette
 - blowout

MOHR PIPETTE

- Similar appearance to serological
- NOTE GRADATIONS
 - Stopping before tip
- Never blowout, never drain to tip
- Why Mohr?

OSTWALD-FOLIN PIPETTE

- Appearance of volumetric pipette
 - Bulb closer to tip
- Frosted rings
 - Blowout
- Why?

PIPETTING PROCEDURE

- Inspect pipette
 - I. Chips, cracks, dirt
- 2. Using bulb draw liquid up past calibration mark
- 3. Wipe pipette with kimwipe
- 4. Holding vertically: allow liquid to drain down to calibration mark (QS'ing)
 - I. Place finger to hold meniscus on calibration mark
 - 2. Move to receiving vessel
- 5. Allow to drain unrestricted to bottom IF draining to another calibration mark, stop here
- 6. Touch tip to side OR blowout depending on pipette

PIPETTING RULES

- Do Not Mouth Pipette
 - Why do we still have to say this? I don't know
- Always check the pipette for chips/cracks/dirt
- Lay pipettes on clean surface
- Make sure there are no bubbles or beads of liquid when using
- Place in pipette soak tip down
- NEVER out of a primary container
 - Use a labeled pourover

AUTOMATIC PIPETTE

- 2 flavors- adjustable and fixed volume
 - Adjustable should be used at top of adjustable range if possible
- Holding pipette vertically depress plunger to first stop
- Place tip in liquid
- Slowly release plunger to top
- Raise pipette, inspect tip for bubbles, wipe outside of tip (DO NOT BLOT ORIFICE)
- In receiving container touch tip to side, depress plunger steadily
 - If second stop, hesitate then depress to second stop.
- Remove pipette, eject tip, release plunger

REAGENTS

- Ultrapure- chromatography, atomic absorption, molecular diagnostics
- Analytical reagent- Amer. Chem. Soc. Definition actual impurities are listed with %
- USP/NF- For pharmaceutical use, it won't kill anyone but we don't know purity
- Chemically pure, pure grade- starting point for manufacture, do not use
- Purity of organics
 - Chromatographic grade- Depends on refinement level
 - Reagent grade- certified to have < % of contaminants
 - Spectroscopic- specroscopically pure
 - CP- almost reagent grade

HANDLING REAGENTS

- Store properly
 - $-RT = 21^{\circ}C$
- Never sample directly from bottle
 - Pour into cup, beaker, or boat
 - Dispose of according to SDS
 - Expiration dates MUST be honored

WATER PURITY

- Water Water Everywhere, but a not a drop for quantitative clinical chemistry (amiright?)
 - Ultrapure- used for HPLC, pharmaceuticals
 - Type I- Chemistry procedures, cell culture, electrophoresis, reagent/control prep, final rinse of glassware
 - Type II- qualitative chemistry, most heme micro and immunology procedures
 - Type III- used to make Type I, II water, used in first rinses of glassware
- Purity mainly assessed using conductivity

