Alzheimer's Classification with MRI Images

An Approach to Early Diagnosis

NON-TECHNICAL OVERVIEW

Introduction to
Alzheimer's Disease /
Problem Statement

Introduction to Alzheimer's Disease:

- Alzheimer's Disease is a progressive neurological disorder leading to memory loss, cognitive decline, and behavioural changes.
- Affects millions worldwide, with cases increasing
- due to aging populations.
 Significant emotional and financial burden on patients, families, and healthcare systems.

Problem Statement:

- Traditional diagnostic methods are time-consuming and often detect the disease at later stages.
- Late diagnosis leads to fewer treatment options and worse outcomes for patients.

A Growing Health Crisis

PROPOSED VISION

Data Science Approach/Model Development Strategy

Proposed Vision

Data Science Approach:

- Leverage CNNs: Use Convolutional Neural Networks (CNNs) to analyse MR images.
- Transfer Learning: Implement transfer learning with pre-trained models to improve accuracy and efficiency.
- Data Augmentation: Apply data augmentation techniques to increase the diversity and size of the training dataset.

Model Development Strategy:

- Data Pre-processing: Normalize and resize images for consistent input.
- Feature Extraction: Use CNN layers to extract relevant features from MRI images
 - Model Training: Fine-tune pre-trained models on the dataset to improve classification performance.

POTENTIAL IMPACT

Benefits of Early
Diagnosis/ Scalability

Anticipated Benefits

01.

Early Diagnosis

02.

Scalability

03.

Improved Patient

Potential Impact

Early Diagnosis:

- Timely Intervention: Enables earlier intervention, potentially slowing the progression of Alzheimer's disease.
- Improved Treatment Options:
 Provides patients with more
 treatment options and the
 opportunity to participate in clinical
 trials earlier.

Scalability:

- Automated Process: The use of machine learning models allows for widespread implementation across various healthcare settings.
- Cost Efficiency: Reduces the costs associated with manual diagnosis and allows for more efficient use of medical resources.

Improved Patient Outcomes:

- Quality of Life: Enhances the quality of life for patients by allowing for more effective disease management.
- Emotional Relief: Offers peace of mind to patients and their families by providing a clear diagnosis and a structured treatment plan.

DATASET INTRODUCTION

Overview of MRII mages

Graphs and Images

Mild Cognitive Impairment

Duration: 7 years

Disease begins in Medial Temporal Lobe

Symptom: Short-term memory loss

Mild Alzheimer's

Duration: 2 years

Disease spreads to Lateral Temporal and Parietal Lobes

Symptoms include: Reading problems Poor object recognition Poor direction sense

Moderate Alzheimer's

Duration: 2 years

Disease spreads to Frontal Lobe

Symptoms include: Poor judgment Impulsivity Short attention

Severe Alzheimer's

Duration: 3 years

Disease spreads to Occipital Lobe

Symptoms include: Visual problems

Graphs and Images

Mild Demented MRIs

Mild Demented MRI image in 3 different colour channels

Sprint 2 actions:

Pre-processing/ Feature Engineering/Baseline Modelling

Baseline Modelling of Image Classification

Data Pre-processing:

- Converted all images to grayscale by removing the three-color channels, ensuring uniformity in the dataset.
- Converted all images to NumPy arrays for efficient manipulation and computation.
- Reshaped the NumPy array to 2 dimensions so it is compatible with the model
- Created a corresponding array with image labels to serve as the target variable.

Model Selection:

- Chose logistic regression as the initial model for image classification to establish a baseline performance.

Initial Model Training:

- Trained the logistic regression model on the pre-processed image data.

Data Scaling:

- Applied data Standard Scaling to normalize the feature values, ensuring all features contribute equally to the model training process.

Hyperparameter Optimization:

- Utilized a for loop to iterate through different values of the regularization parameter C in logistic regression.
- Employed cross-validation scoring to evaluate model performance for each value of C.

Model Evaluation:

- Selected the optimal C value based on cross-validation scores.
- Assessed the performance of the logistic regression model with the optimized C parameter to establish that logistic regression may not be the best choice for modeling image classification due to its limitations in capturing complex patterns in the data.

