Okay, here's the content formatted for a Google Slides presentation. You can copy and paste the text within each section into a new slide in Google Slides.

Slide 1: Title Slide

- Title: Evaluating Univariate Forecasts: A Comprehensive Metric Guide
- Subtitle: Bias, Data Anomaly Detection, Residual Anomaly Detection, Direction Accuracy (MDA), Continuous Ranked Probability Score (CRPS), Sliding Jensen-Shannon Divergence (JSD)

Slide 2: Introduction - Beyond Basic Accuracy

- Title: The Need for a Comprehensive Evaluation
- Bullet Points:
 - Why Use Multiple Metrics?
 - Standard metrics (MAPE, RMSE) measure average error magnitude but miss crucial aspects of forecast quality.¹
 - A comprehensive evaluation requires a "scorecard" approach, using diverse metrics to understand different facets of performance.⁴
 - This helps build trust, identify specific issues (bias, instability, poor uncertainty estimates), and guide targeted improvements.⁶
 - Focus Areas: Systematic errors, data quality, model fit, trend prediction, probabilistic accuracy, and data stability over time.⁷

Slide 3: Forecast Bias (1/2)

- Title: Forecast Bias
- Definition:
 - A consistent, systematic tendency to overestimate or underestimate actual outcomes.⁷
 - Indicates forecast errors are not random but follow a persistent directional pattern.¹³
 - Distinct from random errors that fluctuate around the actual value.¹⁵

Purpose:

- Identify Systematic Errors: Pinpoints persistent, directional flaws in the model or process.⁷
- Inform Adjustments: Guides corrections (increase forecast if consistently low, decrease if consistently high).⁷
- Improve Planning: Reduces risks of stockouts or excess inventory; enhances resource and budget accuracy.¹⁴
- Assess Usability: A fundamental check high bias makes forecasts unreliable.⁷

Slide 4: Forecast Bias (2/2)

- Title: Forecast Bias (Continued)
- Mathematical Computation:
 - Mean Error (ME): Average of (Forecast Actual). Simple, direct measure.¹⁴
 - Formula: Bias=n1∑i=1n(Fi-Ai) ⁷
 - Percentage Bias: Bias relative to actual values. Useful for comparing across different scales.¹⁵
 - Tracking Signal (TS): Monitors bias accumulation over time. Ratio of cumulative error to Mean Absolute Deviation (MAD).⁷
 - Formula: TSt=MADt∑i=1t(Fi-Ai)
- Uniqueness & Advantage:
 - Unique Focus: Direction and consistency of errors, not just magnitude.
 - Main Advantage: Directly flags systematic problems needing intervention (model, data, human judgment).¹² Leads to more dependable planning inputs.¹⁴
- Team Actions:
 - Data Science: Investigate model structure/parameters; implement corrections.¹³
 - Data Engineering: Verify data pipelines and accuracy.
 - Business Stakeholders: Identify human bias sources; apply informed adjustments; understand business impact.¹²

Slide 5: Data Anomaly Detection (1/2)

- Title: Data Anomaly Detection
- Definition:
 - Identifying data points or patterns in the input time series that deviate significantly from normal behavior before forecasting.⁸
- Types:
 - Point Anomalies: Single unusual values.²¹
 - Contextual Anomalies: Unusual for the specific time/context.²⁰
 - o Collective Anomalies: Unusual sequence patterns.20
- Purpose:
 - Data Quality Assurance: Ensures clean, representative input data for models; prevents "garbage-in, garbage-out".²³
 - Identify Critical Events: Flags real-world events like fraud, system errors, security incidents, equipment failures.⁸
 - Uncover Opportunities/Shifts: Reveals unexpected market movements or impacts of external events.⁸

Slide 6: Data Anomaly Detection (2/2)

- Title: Data Anomaly Detection (Continued)
- Detection Methods Overview:
 - Statistical: Z-score, modified Z-score, percentile ranges.²¹
 - Decomposition: Identify outliers in the residual component of input data (e.g., using STL).¹⁹
 - Machine Learning (Unsupervised): Clustering, PCA, Autoencoders, Isolation Forest, One-Class SVM.⁸
 - Machine Learning (Supervised/Semi-supervised): Use labeled data (if available) or train on normal data only.²⁸
 - o Distance/Density-based: k-NN, LOF, DBSCAN.²⁵
- Uniqueness & Advantage:
 - Unique Focus: Scrutinizes the raw input data itself, independent of the forecasting model.²¹
 - Main Advantage: Critical data quality filter; protects forecast integrity; surfaces real-world event signals.²¹
- Team Actions:
 - Data Engineering: Implement validation/cleaning; investigate root causes; monitor ingestion.²¹
 - Data Science: Define handling strategy (remove, impute, flag); evaluate impact on models; select/tune algorithms.²¹
 - Business Stakeholders: Provide context for interpretation; decide if error or genuine event.²⁰

Slide 7: Residual Anomaly Detection (1/2)

- Title: Residual Anomaly Detection
- Definition:
 - Identifying instances where the forecast error (Residual = Actual -Forecast) is unexpectedly large or erratic.⁹
 - Focuses on the part of the data the model failed to explain, unlike data anomaly detection which looks at inputs.³¹
 - Indicates a significant mismatch between prediction and reality, even with normal input data.³²

Purpose:

- Assess Model Fit: Highlights where the model performs poorly.³²
- Identify Unforeseen Events: Signals unexpected shocks or structural breaks not captured by the model.³³
- Flag Deviations from Baseline: Pinpoints observations diverging significantly from the model's learned expectation.³¹

 Improve Model Robustness (Online Learning): Helps decide whether to exclude surprising observations from model updates.³³

Slide 8: Residual Anomaly Detection (2/2)

- Title: Residual Anomaly Detection (Continued)
- Detection Methods:
 - Decomposition-based: Apply outlier tests (e.g., Tukey's fence) to the residual component from time series decomposition (e.g., STL).³¹
 - Model-Specific Residual Analysis: Analyze residuals from models (ARIMA, ETS). Flag points outside statistical bounds (e.g., ±3 std dev, MAD-based) assuming residuals should be white noise.²⁴
 - Forecast Distribution Comparison: For probabilistic forecasts, flag actuals falling in the extreme tails (low probability regions) of the predicted distribution.³³
- Uniqueness & Advantage:
 - Unique Focus: Examines the unexplained variance after applying the model.³¹
 - Main Advantage: Provides direct feedback on model limitations and assumptions; guides model refinement or alerts to significant deviations.³²
- Team Actions:
 - Data Science: Investigate causes of large residuals; refine model or detect structural breaks; decide handling strategy for updates.³²
 - Business Stakeholders: Provide context explaining large errors.³²
 - Data Engineering: Ensure accurate alignment of forecast and actuals data for residual calculation.³¹

Slide 9: Direction Accuracy (MDA) (1/2)

- Title: Direction Accuracy (MDA)
- Definition:
 - Mean Directional Accuracy (MDA) measures how accurately a forecast predicts the direction of change (increase or decrease) compared to the previous period.⁵
 - Focuses solely on the correctness of the predicted trend direction, ignoring the magnitude of change.⁵
- Purpose:
 - Assess Trend Capture: Determines if the model successfully captures up/down movements.⁵

- Evaluate Directional Usefulness: Crucial when the direction of change is key for decisions (e.g., economics, finance, inventory planning).⁵
- Benchmark Directional Prediction: Assesses if the forecast offers directional information beyond random chance (MDA > 0.5).³⁵

Slide 10: Direction Accuracy (MDA) (2/2)

- Title: Direction Accuracy (MDA) (Continued)
- Mathematical Computation:
 - Compares the sign of change in actuals vs. the sign of change in forecasts.³⁶
 - Formula: \$ \text{MDA} = \frac{1}{N-1} \sum_{t=2}^{N}
 \mathbf{1}[\text{sign}(A_t A_{t-1}) == \text{sign}(F_t F_{t-1})] \$
 - Alternative: Compare sign of actual change vs. sign of (Current Forecast -Previous Actual).³⁴
 - Formula: \$ \text{MDA} = \frac{1}{N} \sum_{t}
 \mathbf{1}[\text{sign}(A_t A_{t-1}) == \text{sign}(F_t A_{t-1})] \$
 - Result: 0 to 1 (or 0% to 100%). 0.5 = random guess.³⁵
- Uniqueness & Advantage:
 - Unique Focus: Exclusively measures direction of change, ignoring error magnitude.⁵
 - Main Advantage: Unambiguous measure of trend prediction ability, critical for strategic decisions often missed by magnitude metrics.⁵
- Team Actions:
 - Data Science: Use alongside magnitude metrics; investigate models with poor MDA.³⁶
 - Business Stakeholders: Gauge confidence for directional decisions; compare MDA vs. 0.5 benchmark.³⁴
 - Data Engineering: Ensure correct data alignment for difference calculations.³⁶

Slide 11: Continuous Ranked Probability Score (CRPS) (1/2)

- Title: Continuous Ranked Probability Score (CRPS)
- Definition:
 - Evaluates the accuracy of a probabilistic forecast (which provides a full probability distribution) against a single, realized scalar observation.³⁷
 - Measures the "distance" between the predicted Cumulative Distribution
 Function (CDF) and the actual outcome's step-function CDF.³⁸
- Purpose:

- Evaluate Probabilistic Forecast Quality: Assesses both location (central tendency) and spread (uncertainty) of the predicted distribution.
- Compare Probabilistic Models: Ranks the performance of different models providing distributional forecasts.⁴⁰
- Provide Summary Score: Offers a single score representing how well the entire predicted distribution matched reality.⁴²

Slide 12: Continuous Ranked Probability Score (CRPS) (2/2)

- Title: Continuous Ranked Probability Score (CRPS) (Continued)
- Mathematical Computation:
 - Integral of the squared difference between forecast CDF F(u) and observation's step-function CDF H(u-y) ⁴⁰:
 - Formula: $CRPS(F,y)=\int -\infty \infty [F(u)-H(u-y)]2du$
 - Alternative form (Expected Absolute Error) 43:
 - Formula: CRPS(F,y)=EF[|X-y|]-21EF[|X-X*|]
 - Units: Same as the forecast variable.⁴³ Lower is better (0 = perfect).⁴⁴
 - Generalizes MAE: Reduces to MAE for deterministic (point) forecasts.⁴³
- Uniqueness & Advantage:
 - Unique Focus: Evaluates the entire predictive probability distribution, not just a point or quantile.¹⁰
 - Main Advantage: It's a proper scoring rule, encouraging honest probability reporting.⁴⁴ Bridges point and probabilistic forecast evaluation.¹⁰ Rewards accurate and well-calibrated uncertainty estimates.³⁷
- Team Actions:
 - Data Science: Use as primary metric for probabilistic models; analyze scores; potentially decompose CRPS for deeper insights.⁴²
 - Business Stakeholders: Understand it assesses the predicted range vs. actual outcome; build confidence in uncertainty estimates.¹⁰
 - Data Engineering: Ensure pipelines handle distributional forecast outputs.³⁹

Slide 13: Sliding Jensen-Shannon Divergence (JSD) (1/2)

- Title: Sliding Jensen-Shannon Divergence (JSD)
- Definition:
 - Jensen-Shannon Divergence (JSD): Measures the similarity between two probability distributions.⁴⁶ Symmetric and bounded (0 to 1 or log(2)).⁴⁷ 0 = identical distributions.⁴⁸

Sliding JSD: Applies JSD over time using a sliding window.⁵⁰ Compares
the data distribution in a current window to a previous or reference
window.¹¹

Purpose:

- Detect Distribution Drift / Concept Drift: Identifies changes over time in input data statistics (covariate drift) or input-output relationships (concept drift, often via residuals).⁵¹ Crucial as models assume stable data.⁵³
- Monitor Data Stability: Assesses if recent data characteristics match the training baseline.⁵³
- Identify Anomalous Regimes: Detects periods where overall data behavior (distribution shape) changes significantly.⁵⁵
- Trigger Model Adaptation: Signals potential need for model retraining or replacement due to environmental changes.⁵⁷

Slide 14: Sliding Jensen-Shannon Divergence (JSD) (2/2)

- Title: Sliding Jensen-Shannon Divergence (JSD) (Continued)
- Mathematical Computation:
 - Core JSD: Based on KL Divergence. $\ \text{JSD}(P \mid\mid Q) = \frac{1}{2} \cdot (P \mid\mid M) + \frac{1}{2} \cdot (P \mid$
 - Time Series Application: Requires deriving distributions from time windows (e.g., histograms/binning ⁵⁸, symbolic mapping ⁵⁰, sketches ¹¹).
 - Sliding Window: Calculate JSD between current and reference window distributions at each step.⁵⁰
 - Interpretation: Monitor the JSD time series. Spikes or sustained increases signal distribution divergence, often compared to a threshold.⁵⁵

• Uniqueness & Advantage:

- Unique Focus: Quantifies difference between probability distributions over time; sensitive to changes in shape (variance, skew, modality).⁶¹
- Main Advantage: Directly addresses non-stationarity/drift.⁶² Robust and interpretable compared to raw KL divergence.⁴⁶ Principled way to detect complex changes.⁵⁸

Team Actions:

- Data Science: Monitor inputs (covariate drift) and residuals (concept drift);
 use alerts to trigger investigation/retraining; evaluate distribution
 estimation methods.⁶⁴
- Data Engineering: Build pipelines for JSD calculation; monitor upstream data sources for changes.⁵⁵
- Business Stakeholders: Understand drift alerts signal environmental change; discuss implications and responses.⁶⁵

Slide 15: Recap - Why Each Metric is Unique

- Title: Understanding Metric Uniqueness
- Bullet Points:
 - Bias: Focuses only on the consistent direction of errors (over/under). Are we systematically wrong in one direction? ¹⁶
 - Data Anomaly: Focuses only on the input data quality before forecasting.
 Is the history we're using reliable? ²¹
 - Residual Anomaly: Focuses only on forecast errors after modeling. Where did the model fail significantly? ³¹
 - Direction Accuracy (MDA): Focuses only on the direction of change (up/down). Did we predict the trend correctly, regardless of magnitude?
 - CRPS: Focuses only on the entire probabilistic distribution. How well did our predicted range of possibilities match the single outcome? ¹⁰
 - Sliding JSD: Focuses only on changes in the data's distribution shape over time. Is the underlying process stable or drifting?

Slide 16: Recap - Advantages & Team Actions

- Title: Metric Scorecard: Advantages and Team Responsibilities
- Table:

Metric	Main Advantage	Data Science Actions	Data Engineering Actions	Business Stakeholder Actions
Bias	Flags systematic flaws needing intervention ¹²	Adjust model/parameters ¹³	Verify data pipelines 14	Identify human bias, understand impact ¹²
Data Anomaly	Protects forecast integrity, surfaces events ²¹	Define handling strategy, select algorithms ²¹	Implement cleaning, investigate sources ²¹	Provide context, interpret findings ²⁰

Residual Anomaly	Direct feedback on model limits/failures 32	Refine model, detect breaks, manage updates ³²	Ensure data alignment ³¹	Provide context for errors 32
MDA	Clear measure of trend prediction ability	Evaluate trend capture ³⁶	Ensure data for diffs ³⁶	Assess directional confidence ³⁴
CRPS	Proper scoring rule for probabilistic forecasts	Evaluate/tune probabilistic models ⁴²	Handle distributional outputs ³⁹	Build confidence in uncertainty estimates ¹⁰
Sliding JSD	Detects non-stationarity/distrib ution drift 62	Monitor drift, trigger investigation/retrainin g 53	Build JSD pipelines, monitor sources 11	Understand environmental shifts, discuss response 57