

Computer Vision Systems Programming VO Models vs. Algorithms

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Models vs. algorithms

Approaching computer vision problems

Numerical optimization

CV is about infering some world state \mathbf{w} from measurements \mathbf{x} \mathbf{x} is a feature vector extracted from images

 $\mathbf{w} \in \mathbb{R}^m$: **regression** problem (e.g. stereo)

 $\mathbf{w} \in \mathbb{N}^m$: classification problem (e.g. face recognition)

How Not To Do It

Don't think in terms of algorithms

- ▶ First I'll convert my image to grayscale
- ▶ Then I'll threshold it at some value
- ► Then I'll clean up holes via morphology

Such solutions

- Rely on many magic numbers that all interact
- ▶ Do not encode uncertainty about w

Think about how your data came into being Use this information to model the relationship between ${\bf x}$ and ${\bf w}$ Ideally use probabilistic models as inference is ill-posed

"Say **what** you want to do, not **how** you are going to to it" \sim A. Fitzgibbon

On this basis, CV is about

- ▶ Defining a **model** that relates **x** and **w**
- **Learning** its parameters θ from training samples
- lacktriangle Using an inference algorithm that returns $\Pr(\mathbf{w}|\mathbf{x},oldsymbol{ heta})$

Example: Background Subtraction

We want to segment images in foreground and background

- Based on the perceived brightness of objects
- In scenes with a constant background
- On a per-pixel basis

Image from Prince 2012

Example: Background Subtraction

Therefore we have $w \in \{0,1\}$ (classification problem)

Given our problem, we model

$$Pr(x|w = 0) = Norm_{x}(\mu, \sigma^{2})$$

$$Pr(x|w = 1) = Uniform_{x}(0, 255)$$

$$Pr(w) = Bern_{w}(\lambda)$$

Example: Background Subtraction

We assume $\lambda = 0.5$

And learn $\pmb{\theta} = (\mu, \sigma)$ from training samples $\{x_i\}_{i=1}^n$

- Using the maximum likelihood method
- Assuming that the training samples are independent

We thus learn

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \Pr(x_1, \dots, x_n | \boldsymbol{\theta})$$
$$= \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \prod_{i=1}^n \Pr(x_i | \boldsymbol{\theta})$$

Example: Background Subtraction

Continuing from before

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^{n} \operatorname{Norm}(\mu, \sigma^{2})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log \operatorname{Norm}(\mu, \sigma^{2})$$

$$= \arg \max_{\boldsymbol{\theta}} \left(-0.5n \log \sigma^{2} - 0.5n \log(2\pi) - 0.5 \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}} \right)$$

Example: Background Subtraction

If we differentiate and equate to zero, we obtain

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

We have derived algorithms for finding our model parameters

Models vs. Algorithms

Models describe the relationship between ${\bf x}$ and ${\bf w}$ Algorithms are recipes for finding ${\boldsymbol \theta}$

Model	Algorithm
Gaussian Linear models* Structure from motion* Rigid motion between point sets*	Mean & variance Linear least squares Bundle adjustment ICP

^{*} Assuming zero-mean Gaussian noise

Inference

In the example case we have modeled $Pr(\mathbf{x}|\mathbf{w})$

- ► Such models are called generative
- ▶ In this case, we perform inference using Bayes' rule

$$Pr(\mathbf{w}|\mathbf{x}) = \frac{Pr(\mathbf{x}|\mathbf{w}) Pr(\mathbf{w})}{Pr(\mathbf{x})}$$

We can also model $\Pr(\mathbf{w}|\mathbf{x})$ directly

- Such models are called discriminative
- ▶ In this case, we can perform inference directly

Assume
$$x = 100, \mu = 95, \sigma = 2$$

In this case, we obtain

- $\Pr(w=0) = \Pr(w=1) = 0.5$
- $\Pr(x = 100 | w = 0) = \text{Norm}_{100}(95, 2^2) \approx 0.009$
- $ightharpoonup \Pr(x = 100) = \sum_{i \in \{0,1\}} \Pr(x = 100 | w = i) \Pr(w = i) \approx .007$
- $\Pr(w|x=100) \approx (0.69, 0.31)$

Therefore we classify the pixel as background

Complex Models

mage from https://www.youtube.com/watch?v=sQegEro5Bfc

Optimization

Learning θ is an optimization problem

- We seek $\hat{\boldsymbol{\theta}}$ that maximizes some objective function $f(\boldsymbol{\theta})$
- ▶ E.g. before we sought $\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \Pr(x_1, \dots, x_n | \boldsymbol{\theta})$

There are algorithms available for finding heta of many models

But this is not always the case

Therefore, a brief intro on optimization ...

Optimization

We seek
$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) = \arg \min_{\boldsymbol{\theta}} -f(\boldsymbol{\theta})$$

- ightharpoonup Sometimes $\hat{ heta}$ can be found analytically (like before)
- Often we have to resort to iterative methods

Iterative methods

- Start with an estimate $\boldsymbol{\theta}^{[0]}$
- Improve this estimate iteratively using local information
- Until no more improvement can be made

Optimization Iterative Methods

Image adapted from Prince 2012

Optimization Iterative Methods

This means we need a good initial estimate $oldsymbol{ heta}^{[0]}$

- ▶ Otherwise we might get stuck in a local minimum
- Unless f is convex

Optimization Iterative Methods

Iterative methods work by alternatively

- ► Choosing a search direction using local information
- ► Searching the minimum along that direction in some interval
- lacktriangle Updating $oldsymbol{ heta}$ according to the found minimum

Local information from first and second order derivatives

Many different optimization algorithms

- ► Steepest decent, Newton, Levenberg-Marquardt, BFGS ...
- ► Some can be tested at https://awful.codeplex.com/

We seek the minimum of $f(\boldsymbol{\theta}) = (\theta_1 - 2)^2 + (\theta_2 - 1)^2$

Optimization Iterative Methods – Simple Example

Finding the minimum with Python and SciPy $\,$

```
def f(x):
    return np.power(x[0]-2,2) + np.power(x[1]-1,2)
scipy.optimize.minimize(f, [5, 5]) # returns [2, 1]
```

Optimization Iterative Methods – Simple Example

Finding the minimum with Matlab

```
fminunc(@(x)(x(1)-2)^2 + (x(2)-1)^2, [5, 5]) \%  returns [2, 1]
```

Summary

We have seen how (not) to approach CV problems

▶ See Prince 2012 for more information on CV models

Optimization is fundamental in vision problems

We briefly discussed why, and how optimization works

Literature

Books for further information on these topics

- ▶ Prince 2012 (http://computervisionmodels.com/)
- ▶ Bishop et al. 2006
- Boyd and Vandenberghe 2009
- ► Wright and Nocedal 1999

Bibliography

Bishop, Christopher et al. (2006). **Pattern Recognition and Machine Learning**. Springer.

Boyd, Stephen and Lieven Vandenberghe (2009). **Convex Optimization**. Cambridge University Press.

Prince, S.J.D. (2012). **Computer Vision: Models Learning and Inference**. Cambridge University Press.

Wright, SJ and J Nocedal (1999). **Numerical optimization**. Springer.

