Physiklabor für Anfänger*innen Ferienpraktikum im Sommersemester 2018

Versuch 70: Linsen und Linsensysteme

(durchgeführt am 28.09.2018 bei Daniel Bartel) Andréz Gockel, Patrick Münnich 9. Oktober 2018

Inhaltsverzeichnis

1	Ziel des Versuchs	3
2	Teil 1 2.1 Theorie 2.2 Aufbau 2.3 Durchführung 2.4 Auswertung	3 3 3 3
3	Teil 2 3.1 Theorie 3.2 Aufbau 3.3 Durchführung 3.4 Auswertung	3 3 4 4 4
4	Teil 3 4.1 Theorie 4.2 Aufbau 4.3 Durchführung 4.4 Auswertung	5 5 5 5
5	Teil 4 5.1 Theorie 5.2 Aufbau 5.3 Durchführung 5.4 Auswertung	6 6 6 6
6	Diskussion	6
7	Anhang: Tabellen und Diagramme	7
$\mathbf{T}_{\mathbf{i}}$	abellenverzeichnis	
	1 XXXX	4 8 8

Abbildungsverzeichnis

69	$1 + 1/\beta$ gegen g' dargestellt	6
420	$1 + \beta$ gegen b' dargestellt	7
3	Maßstabsgetreue Skizze	8

1 Ziel des Versuchs

Das Ziel dieses Versuchs ist es, Einzellinsen und Linsenkombinationen zu untersuchen. Genauer schaut man, wann mit welchen Linsen scharfe Abbildungen von Gegenständen vorhanden sind.

2 Teil 1

2.1 Theorie

Für das Verständnis dieses Teils benötigt man die Abbildungsgleichung für dünne Linsen,

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b},\tag{1}$$

und die entsprechende Gleichung für Linsensysteme mit zwei Linsen,

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}. (2)$$

Dieses lässt sich für kleine Abstände d zwischen den Linsen zu

$$\frac{1}{f} \approx \frac{1}{f_1} + \frac{1}{f_2}$$

vereinfachen.

2.2 Aufbau

2.3 Durchführung

XXXX

2.4 Auswertung

In diesem Teil wollen wir einfach 1/b gegen 1/g auftragen. Die geschätzten Fehler werden als Fehlerbalken eingezeichnet. Zum Vergleich werden noch Geraden addiert, welche für die Linse mit $f = 80 \,\mathrm{mm}$ mit

$$\frac{g}{f}$$

berechnet wurde und für die Linsensysteme mit jeweils $f_1=80\,\mathrm{mm}$ und $f_2=150\,\mathrm{mm}$ bzw. $f_1=80\,\mathrm{mm}$ und $f_2=200\,\mathrm{mm}$ mit

$$\frac{1}{f_1} + \frac{1}{f_2} - \frac{1}{g}$$

bestimmt. Die resultierende Graphik kann im Anhang als Abbildung?? gefunden werden.

3 Teil 2

3.1 Theorie

Für diesen Teil führen wir neue Variablen ein:

- Abstand s = g + b zwischen Gegenstand und Bild
- Differenz e = |g b| zwischen den Linsenpositionen.

Diese Variablen setzen wir in (1) ein und erhalten:

$$\frac{1}{f} = \frac{2}{s+e} + \frac{2}{s-e}$$

$$= \frac{2s - 2k + 2s + 2k}{s^2 - e^2}$$

$$= \frac{4s}{s^2 - e^2}$$

$$f = \frac{s^2 - e^2}{4s}$$
(3)

3.2 Aufbau

3.3 Durchführung

XXXX

3.4 Auswertung

In diesem Teil wollen wir einfach mit unseren Messwerten und der Formel (3) zuerst unsere Werte für (s, e):

Tabelle 1: XXXX

	XXXX/XX	XXXX/XX	XXXX/XX
	2	0.26	0.23
Unsicherheiten:	4	0.33	0.25
s: ± 0.4 cm	5		0.3
e: ± 0.5 cm	6	1.25	0.83
	8	3.9	0.83
	9	4.75	4.6
	10	4.7	

Wir können hier die Rechnungen per Hand mit Gaußscher Fehlerfortpflanzung durchführen. Hierzu müssen wir unsere Gleichung einfach nach jeweils e und s partiell ableiten:

$$\frac{\partial f}{\partial s} = \frac{s^2 + e^2}{4s}$$
$$\frac{\partial f}{\partial e} = \frac{-e}{2s}$$

Dies können wir in

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial s} \Delta s\right)^2 + \left(\frac{\partial f}{\partial e} \Delta e\right)^2}$$

einsetzen und berechnen. In diesem Fall sind unsere Ergebnissen jedoch mit dem *uncertainties* Paket in Python berechnet worden. Siehe Anhang: *Rechnungen in Python* (In [12]) Dieses Paket hat die Fähigkeit, Korrelationen zwischen Variablen zu berücksichtigen [1].

Da uns hier die Mittelwerte interessieren, nutzen wir noch

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{4}$$

für die Berechnung des Mittelwerts und

$$s_{\bar{x}} = \frac{s_x}{\sqrt{n}} \tag{5}$$

für der Berechnung der Unsicherheit dessen.

Wir erhalten daraus für die Linse mit $f=80\,\mathrm{mm}$ $\bar{f}=82\pm1.7\,\mathrm{mm}$, für das System mit $f_1=80\,\mathrm{mm}$ und $f_2=150\,\mathrm{mm}$ $\bar{f}=58\pm1.9\,\mathrm{mm}$ und für das Linsensystem mit $f_1=80\,\mathrm{mm}$ und $f_2=200\,\mathrm{mm}$ $\bar{f}=123\pm1.4\,\mathrm{mm}$.

4 Teil 3

4.1 Theorie

Für das Abbe-Verfahren führen wir den Abbildungsmaßstab ein:

$$\beta = \frac{B}{G} = \frac{b}{g} \tag{6}$$

Dies machen wir, da wir b und g nicht direkt bestimmen können, jedoch die Bildgröße B und Gegenstandsgröße G problemlos bestimmen können.

Die Hauptebenen befinden sich dann um $h_{1/2}$ vor bzw. hinter diesem Punkt. Mit unserer messbaren scheinbaren Gegenstandsgröße g' und scheinbare Bildweite b' haben wir also

$$g' = (1 + 1/\beta) f_1 + h_1 \tag{7}$$

$$b' = (1+\beta) f_2 + h_2 \tag{8}$$

4.2 Aufbau

4.3 Durchführung

XXXX

4.4 Auswertung

In diesem Teil wollen wir zuerst mit den Formeln (6), (7) und (8) g', b', β und $\Delta\beta$ bestimmen. Wir erhalten aus unseren Messreihen:

Um dies visuell darzustellen, tragen wir $1 + 1/\beta$ gegen g' und $1 + \beta$ gegen b' auf.

Aus der linearen Regression können wir f_1 , f_2 , h_1 und h_2 bestimmen.

Zur Bestimmung der linearen Regression wenden folgende Formeln an:

$$a = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$(9)$$

$$\Delta a = s \sqrt{\frac{n}{n \sum x_i^2 - (\sum x_i)^2}},\tag{10}$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$\tag{11}$$

$$\Delta b = s \sqrt{\frac{\sum x_i^2}{n \sum x_i^2 - (\sum x_i)^2}} \tag{12}$$

Abbildung 69: $1 + 1/\beta$ gegen g' dargestellt

$$s = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} [y_i - (a+bx_i)]^2},$$
(13)

Wir erhalten als Werte:

Zur Klarifizierung fertigen wir noch eine (außer der Linsen) maßstabsgetreue Skizze an:

5 Teil 4

5.1 Theorie

XXXX

5.2 Aufbau

5.3 Durchführung

XXXX

5.4 Auswertung

XXXX

6 Diskussion

XXXX

Abbildung 420: $1 + \beta$ gegen b' dargestellt

7 Anhang: Tabellen und Diagramme

Literatur

- [1] "Correlations between variables are automatically handled, which sets this module apart from many existing error propagation codes." https://pythonhosted.org/uncertainties/
- [2] Physikalisches Institut der Albert-Ludwigs-Universität Freiburg (Hrsg.) (08/2018): Versuchsanleitungen zum Physiklabor für Anfänger*innen, Teil 1, Ferienpraktikum im Sommersemester 2018.

Tabelle 2: XXXX

	XXXX/XX	XXXX/XX	XXXX/XX	
	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	80	-200	0.5762491658548258
	h_1	80	-200	11.03475419102985
Unsicherheiten:	f_2	80	-200	1.9531933609241
XXXX: $\pm XXXX$	h_2	80	-200	11.639603091057374
	f_1	-200	80	-3.913845161813182
	h_1	-200	80	11.49900273595246
	f_2	-200	80	3.2411227934990583
	h_2	-200	80	11.930724229182056

Abbildung 3: Maßstabsgetreue Skizze

Tabelle 3: XXXX

	XXXX/XX	XXXX/XX	XXXX/XX
	2	0.26	0.23
	4	0.33	0.25
Unsicherheiten:	5		0.3
$XXXX: \pm XXXX$	6	1.25	0.83
	8	3.9	0.83
	9	4.75	4.6
	10	4.7	