加权图

定义7.3.5 设图 $G = \langle V, E, \Psi \rangle$ 。若 $W : E \to R^+$ (R^+ 是 正实数集), 则称〈G,W〉为加权图。

- i) 若 e∈ E, 称 W(e) 为边 e 的加权长度。
- ii) 路径中所有边的加权长度之和称为该路径的加权长度。
- iii)从结点v至结点 v'的路径中,加权长度最小的称为从 v 至 v'的 最短路径。
- iv) 若从v可达v',则称从v至 v'的最短路径的加权长度为从v至v'的加权距离。
- v) 若从 v 不可达 v',则称从 v 至 v'的加权距离为 ∞。

迪克斯特拉(Dijkstra)

- · 艾兹格·W·迪克斯特拉(Edsger Wybe Dijkstra,1930年5月11日~2002年8月6日)
- · 荷兰人。 计算机科学家,毕业就职于荷兰Leiden大学,早年钻研物理及数学,

• 1972年获得图灵奖

而后转为计算学。

迪克斯特拉(Dijkstra)

- •1 提出 "goto有害论";
- 2 提出信号量和pv原语;
- 3 解决了"哲学家聚餐"问题;
- 4 Dijkstra最短路径算法和银行家算法的创造者;
- 5 第一个Algol 60编译器的设计者和实现者;
- · 6 THE操作系统的设计者和开发者;
- 与D. E. Knuth并称为我们这个时代最伟大的计算机 科学家的人。
- 与癌症抗争多年,于2002年8月6日在荷兰Nuenen 自己的家中去世,享年72岁

迪克斯特拉(Dijkstra)算法

- ◆1959年,最短路径算法
- ◆ 应用产物
 - ✓ 单源路径计算(Single-source shortest paths problem)
 - ✓ (连通)有权(有向)图 ✓边的权值非负数
- ◆ 贪心算法(Greedy Algorithm)

迪克斯特拉(Dijkstra)算法

算法(求从结点 s 至 t 的加权距离)

1) $\lambda(s) \leftarrow 0$, $\exists \forall v \in V - \{s\}$, $\lambda(v) \leftarrow \infty$;

距离数组λ(v)

- 2) $S \leftarrow V$;
- 3) 任取 u ∈ { u' | 若 v'∈S,则 $\lambda(u') \leq \lambda(v')$ };
- 4) 如果 u = t,则 算法结束。
- 5) 对于以 u 为起点的每条边 e,如果 e 的终点 v \in S 并且 $\lambda(v) > \lambda(u) + W(e)$,则 $\lambda(v) \leftarrow \lambda(u) + W(e)$;
- 6) S ← S {u}, 且转向 3)。
- 当算法结束时, $\lambda(t)$ 即为从 s 至 t 的加权距离。

例子(加权距离)

当前点 \ d[v] \ 结 点	1	2	3	4
	0	∞	∞	∞
1	/	1	0.5	∞
3	/	0.9	/	1.5
2	/	/	/	1.4
4				

从 1 到 4 的加权距离为 1.4。

迪克斯特拉(Dijkstra)算法

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, source vertex s
Output: None
for u \in V do
 |d[u] \leftarrow \infty, color[u] \leftarrow \text{WHITE}; // \text{Initialize}
                                                            ◆ d[u]: 结点u到源
end
d[s] \leftarrow 0;
                                                               点s的最短距离
pred[s] \leftarrow \text{NULL};
Q \leftarrow queue with all vertices;
                                                             ◆ Q: 优先队列
while Non-Empty(Q) do
    // Process all vertices
                                                                       v.key=d[v]
    u \leftarrow \text{Extract-Min}(Q); // \text{ Find new vertex}
    for v \in Adj[u] do
       if d[u] + w(u, v) < d[v] then
           // If estimate improves
                                                                                            d[v]
           d[v] \leftarrow d[u] + w(u,v); // \text{ relax}
           Decrease-Key(Q, v, d[v]);
           pred[v] \leftarrow u;
        end
                                                                                d[u]
    end
    color[u] \leftarrow BLACK;
end
```

迪克斯特拉(Dijkstra)算法

```
Input: A graph G, a matrix w representing the weights between vertices
         in G, source vertex s
Output: None
for u \in V do
 |d[u] \leftarrow \infty, color[u] \leftarrow \text{WHITE}; // \text{Initialize}
end
d[s] \leftarrow 0;
pred[s] \leftarrow \text{NULL};
Q \leftarrow queue with all vertices;
while Non-Empty(Q) do
    // Process all vertices
    u \leftarrow \text{Extract-Min}(Q); // \text{ Find new vertex}
    for v \in Adj[u] do
        if d[u] + w(u, v) < d[v] then
            // If estimate improves
            d[v] \leftarrow d[u] + w(u,v); // \text{ relax}
            Decrease-Key(Q, v, d[v]);
           pred[v] \leftarrow u;
                                  怎么构造最短
        end
                                        路径?
    end
    color[u] \leftarrow BLACK;
end
```

- ◆ d[u]: 结点u到源 点s的最短距离
- ◆ Q: 优先队列

v.key=d[v]

最短路径算法扩展

- ◆ 放松最短路条件
 - ✓任意值,即可能存在负数,可能有圈
 - ✓任意两点之间的最短路?
- ◆ 其他算法
 - ✓任意权值、单源: Bellman-Ford
 - ✓任意权值、任意两点: Folyd-Warshall

无向图的连通

定义7.3.6 如果无向图 G 的任意两个结点都互相可达,则称G是连通的;否则称G是非连通的。

◆ 无向图 $G = \langle V, E, \Psi \rangle$ 是连通的 当且仅当 对于 $\forall v \in V$,皆有 R(v) = V。

有向图的连通 一 基础图

定义 7.3.7 设有向图 $G = \langle V, E, \Psi \rangle$, 如下定义 Ψ' : $E \rightarrow \{\{v_1, v_2\} \mid v_1 \in V \land v_2 \in V\}$:

对任意 $e \in E$ 和 v_1 , $v_2 \in V$,

若Ψ(e) = $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$, 则Ψ'(e)= $\{\mathbf{v}_1, \mathbf{v}_2\}$ 。

称无向图 $G' = \langle V, E, \Psi' \rangle$ 为有向图 G 的基础图。

有向边改为无向边

有向图 —————————— 有向图的基础图

有向图的连通

定义7.3.8 设 G 是有向图。

- i) 如果 G 中任意两个结点都互相可达,则称 G 是强连通的;
- ii) 如果对于 G 的任意两结点,必有一个结点可达另一结点,则称 G 是单向连通的;
- iii) 如果 G 的基础图是连通的,则称 G 是弱连通的。

强连通图 → 单向连通图 → 弱连通图

极大子图、分支

定义7.3.9 设 G'是图 G 的具有某性质 P 的子图,并且对于 G 的具有该性质的任意子图 G'',只要 $G'\subseteq G''$ 就有 G'=G'',则称 G'相对于该性质 是 G 的极大子图。

定义7.3.10 无向图G的极大连通子图称为 G 的分支。

定义7.3.11 设 G 是有向图。

- i) G 的极大强连通子图称为 G 的强分支。
- ii) G的极大单向连通子图称为 G的单向分支。
- iii) G 的极大弱连通子图称为 G 的弱分支。

定理7.3.4

- 1) 连通无向图恰有一个分支。
- 2) 非连通无向图的分支多于一个。

连通无向图:1个分支

非连通无向图: 3个分支

- ◆ 分支与等价关系:给定无向图 G = 〈V, E,Ψ〉。
- ✓ 关系 $R_V = \{ \langle u, v \rangle | u, v \in V$ 且从u到v可达 $\}$ 是V上的等价关系。
- ✓ 分支: V关于R的等价类的导出子图。
 - 商集 $V/R = \{V_1, V_2, ..., V_k\}$,
 - $G[V_1]$, $G[V_2]$, ..., $G[V_k]$ 为G的分支。

例:证明有向图的每个结点和每条边恰处于一个弱分支中。

定理 7.3.5

- 1) 强连通 (单向连通,弱连通) 有向图恰有一个强分支 (单向分支,弱分支)。
- 2) 非强连通 (非单向连通,非弱连通) 有向图有一个以上强分支 (单向分支,弱分支)。

• 4个强分支:

 $G[\{v_1,v_2,v_3\}], G[\{v_4\}],$

 $G[\{v_5\}], G[\{v_6\}]$

• 2个单向分支:

 $G[\{v_1, v_2, v_3, v_4, v_5\}],$

 $G[\{v_5, v_6\}]$

• 1个弱分支

问题:给定有向图 $G = \langle V, E, \Psi \rangle$,能否定义V上的等价关系使得等价类的导出子图构成强分支(单向分支,弱分支)?

例:有向图的每个结点(每条边)是否处于一个强分支

中?是否恰处于一个单向分支中?

强分支:

结点是, 边不一定

单向分支:

结点与边都不一定

例: 设G=<V, E, $\Psi>$ 。证明G为连通图当且仅当对V的每个划分 $\{V_1, V_2\}$,必存在一条边,它的两个端点分别属于 V_1 和 V_2 。

证明: (充分性) 反证法。假设G不连通,则G至少有两个分支G1和G2。

令V1是G1的结点集, V2是G-G1的结点集, 显然 {V1, V2}是V的一个划分。

此时,V1, V2之间不可能有 $v \in V1$, $u \in V2$, 使 $\{v, u\}$ 是G中的一条边。矛盾

例: 设G=<V, E, $\Psi>$ 。证明G为连通图当且仅当对V的每个划分 $\{V_1, V_2\}$,必存在一条边,它的两个端点分别属于 V_1 和 V_2 。

证明: (必要性) 设 v1 \in V1, v2 \in V2, 由连通性知,从v1 \cong v2存在一条长度为n的简单路径P。 下面对n用第一数学归纳法。

- 1) 当n=1时,显然成立。
- 2) 设n=k时结论成立,当n=k+1时,考虑路径P上与v1 邻接的点v'。

若v' ∈ V2,则边{v1, v'}满足要求。

若v'∈V1,则从P中删去v1,得到从v'到v2的长度为k的简单路径,由归纳假设知结论成立。

半路径

定义7.3.12

- 1) 设 G'是有向图 $G = \langle V, E, \Psi \rangle$ 的基础图,G'中的路径称为 G 中的半路径。
- 2) 设 $v_0e_1v_1...v_{m-1}e_mv_m$ 是G中的半路径。对每个i (1≤i ≤m),
- 若 $\Psi(e_i)=\langle v_{i-1}, v_i \rangle$,则称 e_i 是该半路径中的正向边;
- 如果 $\Psi(e_i)=\langle v_i, v_{i-1}\rangle$,则称 e_i 是该路径中的反向边。
- ◆ 有向图 G 中的路径一定是 G 中的半路; 但 G 中的半路 径未必是 G 中的路径。
- ◆ 有向图中的半路径是路径当且仅当该半路径中的边都是 正向边 "

回路、半回路、有向回路

定义7.3.13.

- 1) 连通2度正则图称为回路;
- 2) 基础图是回路的有向图称为半回路;
- 3) 每个结点的出度和入度均为 1 的弱连通有向图 称为有向回路;
- 4) 回路 (半回路,有向回路)边的数目称为回路 (半回路,有向回路)的长度。

部分概念关系图

定理 7.3.6 设v是图G的任意结点,G是回路(或有向回路),当且仅当 (i)G的阶与边数相等,并且

(ii)在G中存在这样一条v到v的闭路径,使得除了v在该闭路径中出现两次外,其余结点和每条边都在该闭路中恰出现一次。

证明: 充分性显然。

下面证明必要性。设 $G = \langle V, E, \Psi \rangle$

i) 证明 G 的阶与边数相等。

若 G 是回路(或有向回路),则G(或G的基础图)是连 通2度正则图,有 $\sum_{v \in V} d_G(v) = 2|E| = 2|V|$ 。

因此G的阶与边数相等。

定理 7.3.6 设v是图G的任意结点,G是回路(或有向回路),当且仅当 (i)G的阶与边数相等,并且

(ii)在G中存在这样一条v到v的闭路径,使得除了v在该闭路径中出现两次外,其余结点和每条边都在该闭路中恰出现一次。

证明: ii)对G的阶用第一归纳法。

若G是1阶有向回路,则G只有一个自圈e, vev是一个闭路径。

设G是n阶有向回路时必要性成立。若G为n+1阶有向回路,

由于 $d_{G}^{+}(v)=d_{G}^{-}(v)=1$,一定存在 $v_{1},v_{n}\in V$ 和 $e_{1},e_{n+1}\in E$,

使得Ψ(e₁)=<v, v₁>且Ψ(e₂)=<v_n, v>。

设边e∉E,Ψ'(e)={<v_n,v₁>}, 定义图

G'= $\langle V - \{v\}, (E - \{\langle v_n, v \rangle, \langle v, v_1 \rangle\}) + \{\langle v_n, v_1 \rangle\}, \Psi' \rangle$,

其中,对于任意边e∈ E-{< v_n ,v>, <v, v_1 >}), Ψ'(e)=Ψ(e)。

由归纳假设知,G'存在路径 $v_1e_2v_2....v_{n-1}e_nv_nev_1$ 。

此时, $ve_1v_1e_2v_2...v_{n-1}e_nv_ne_{n+1}v$ 是G中满足条件的路径。

有回路、非循环图

定义7.3.14

- 1) 如果回路 (有向回路,半回路) C 是图 G 的子图,则称 G 有回路 (有向回路,半回路) C。
- 2) 没有回路的无向图和没有半回路的有向图称为非循环图。

回路:连通2度正则图;

半回路:基础图是回路的有向图

- ◆ 树和有向树都是非循环图
- ◆ 问题:如何判断一个图是非循环图?

定理7.3.7 如果有向图 G 有子图 G',使得 对于 G'的任意结点 v,皆有 $d_{G'}^{+}(v) > 0$,则 G 有有向回路。

定理7.3.8 如果有向图 G 有子图 G', 使得 对于 G'中的任意结点 v, $d_{G'}(v) > 0$, 则 G 有有向回路。

证明:设 $G' = \langle V', E', \Psi' \rangle$, $v_0 e_1 v_1 ... v_{n-1} e_n v_n$ 是 G' 中最长的基本路径。

由于 $d_{G'}(v_0) > 0$,必可找到 $e \in E'$ 和 $v \in V'$,使 $vev_0e_1v_1...v_{n-1}e_nv_n$ 是G'中简单路径,且存在 $i \in [0, n]$,使得 $v = v_i$ 。

因此,G的以 $\{v_0, ..., v_i\}$ 为结点集合,以 $\{e, e_1, ..., e_i\}$ 为边集合的子图是有向回路。 e

$$v_0 = v_1$$

$$v_1$$

$$v_1$$

$$v_{n-1}$$

$$v_n$$

W-过程: 判断一个有向图是否有有向回路

定理7.3.7 如果有向图 G 有子图 G',使得 对于 G'的任意结点 v,皆有 $d_{G'}^{+}(v) > 0$,则 G 有有向回路。

定理7.3.8 如果有向图 G 有子图 G',使得 对于 G'中的任意结点 v, $d_{G'}(v) > 0$,则 G 有有向回路。

设 v 是有向图G的结点且 $d_{G}^{+}(v)=0$ 或 $d_{G}^{-}(v)=0$ 。

- ◆ 从G中去掉 v 和与之关联的边得到有向图 G-{v}的过程 称为W-过程。
 - ✓ G 有有向回路当且仅当 $G \{v\}$ 有有向回路;
 - ✓ 若 n 阶有向图 G 没有有向回路,则经过 n-1 次W—过程得到平凡图。

例: 判断一个有向图是否有有向回路的W-过程

判断一个图是否是非循环图

定理7.3.9 图 G不是非循环图当且仅当 G 有子图 G',使 得 对于G'的任意结点v,皆有 $d_{G'}(v) > 1$ 。

◆ 图 G是非循环图当且仅当 对于G的任意子图 G',一定

存在一个结点v,使得 $d_{G'}(v) \leq 1$ 。

给定 n阶图有向图 G。令 $G_0 = G$ 。

对于小于n-1的自然数 i,如下归纳定义 Gi:

• 若 G_i 有结点 v_i 满足 $d_{Gi}(v) \le 1$,则令 $G_{i+1} = G_{i} - \{v_i\}$ 。

得到图序列 G_0 , G_1 , ... , G_m ,其中 $0 \le m \le n-1$ 。

若G_m是平凡图,则 G 是非循环图,否则不然。

连通的充分条件

例:设G为n阶简单无向图,

- 1) 若 G 的任意两个结点的度数之和大于等于 n-1,则 G 是连通的。
- 2) 若对G的任意结点 ν , 皆有 $d_G(\nu) \ge (n-1)/2$, 则G是连通的。
- 证明: 1) 设u, v是图G中任意两个结点,则 $d_G(u)+d_G(v) \ge n-1$ 。由于G为简单无向图, 因此 u, v只能与n-1个结点相连。
- (a)若u与v相连,即G有边{u, v},则u, v可达;
- (b)若u与v不相连,则u,v只能与剩下的n-2个结点相连。

由于 $d_G(u)+d_G(v)\geq n-1$,由抽屉原理得,至少存在一个结点既与u相连,又与v相连,得u从 v可达。

因此,G是连通无向图。

连通的充分条件

例:设G为n阶简单无向图,

- 1) 若 G 的任意两个结点的度数之和大于等于 n-1,则 G 是连通的。
- 2) 若对G的任意结点 ν , 皆有 $d_G(\nu) \ge (n-1)/2$, 则G是连通的。

证明: 2) 对任意的两个结点u, v, 有 $d_G(u)+d_G(v)\geq (n-1)/2+(n-1)/2=n-1$ 。

由1)得, G是连通有向图

例:设 G为 n 阶简单无向图,且G有k个分支,m条边,则有 $m \le (n-k)(n-k+1)/2$ 。

如何定义连通度

- ◆问题:如何定量地比较无向图的连通性的强与弱?
 - > 点连通度: 为了破坏连通性,至少需要删除多少个顶点?
 - > 边连通度: 为了破坏连通性,至少需要删除多少条边?
- ◆"破坏连通性"是指"变得更加不连通"。

点割集的定义

- ◆设无向图G=<V,E>为连通图,若有点集 $V_1\subset V$,使
 - ✓图G删除了 V_1 的所有结点后,所得的子图是不连通图,
- \sqrt{n} 而删除了 V_1 的任意真子集后,所得到的子图仍是连通图,则称 V_1 是G的一个点割集。
- ◆若某一个结点构成一个点割集,则称该结点为割点。 形式化为:
- 若分支数 $W(G-V_1) > W(G)$ 且 $\forall V \subset V_1, W(G-V') = W(G)$,则称 V_1 为G的点割集. 若 $\{v\}$ 为点割集, 则称v为割点.

实例1

• 例1求下图的割点

连通图,W=1

因此s是割点。

非连通图,W=2

实例2

例2 在下图所示的图中,找出点割集和割点。

点割集: $\{v_1,v_4\},\{v_6\},\{v_5\},$

割点: V₆, V₅

v2、v3与v7不在任何点割集中。

无向图的点连通度

定义 设G是无向图, $k(G)=min\{|V_1||V_1$ 是 G 的点割集 } 是G的点连通度,也称作连通度。

几点说明:

- 1.连通度k(G)表示为了产生一个不连通图所需要删除的点的最少数目。
- 2. 非连通图的连通度等于0,存在割点的连通图的连通度为1,n阶完全图的连通度为n-1。
- 3.连通度k(G)表示图G的连通程度, k(G)大表示连通性强, 即需要删除更多的点才能使图从连通变为非连通。

边割集

- ◆ 设无向图 $G = \langle V, E \rangle$ 为连通图, 若有边集 $E_1 \subset E$, 使
 - ✓ 图 G 删除了 E₁的所有边后,所得的子图是不连通图,
- \checkmark 而删除了 E_1 的任意真子集后,所得到的子图仍是连通图,则称 E_1 是G的一个边割集。
- ◆若某一个结点构成一个点割集,则称该结点为割边(或 桥)。

更一般定义为:

若W(G-E₁)>W(G)且∀E′⊂ E₁, W(G-E′)=W(G), 则称E₁为 G的边割集. 若{e}为点割集, 则称e为割边.

实例3

例3 在下图所示的图中,举出边割集和桥的例子。

边割集: {e₁,e₂}, {e₃,e₄,e₅}, {e₁,e₃,e₅,e₆}, {e₇}, {e₈}等 割边: e₇, e₈

边连通度

定义:设G是无向图, $\lambda(G)=\min\{|E_1||E_1\neq G$ 的边割集}是G的边连通度。

几点说明:

- 1. 边连通度 λ(G) 是为了产生一个不连通图所需要删除的 边的最少数目。
- 2. 非连通图的边连通度等于0,存在桥的连通图的边连通度为1,平凡图的边连通度为0。
- 3. 边连通度 $\lambda(G)$ 表示图G的边连通程度, $\lambda(G)$ 大表示边连通性强,即需要删除更多的边才能使图从连通变为非连通。

割点、割边的充分必要条件

- ◆ 一个连通无向图G中的结点v是割点 ⇔ 存在结点u 和w, 使得连接u和w的每条路都经过v。
- ◆ 一个连通无向图G中的边e是割边 ⇔ 存在结点u和w, 使得连接u和w的每条路都经过e。

点连通度与边连通度的比较

定理:对于任何一个图G,有 $k(G) \le \lambda(G) \le \delta(G)$