

Concepts and Models of Parallel and Data-centric Programming

Shared Memory XIII

Lecture, Summer 2020

Dr. Christian Terboven < terboven@itc.rwth-aachen.de >

Outline

- Organization
- Foundations
- 2. Shared Memory
- 3. GPU Programming
- Bulk-Synchronous Parallelism
- Message Passing
- Distributed Shared Memory
- 7. Parallel Algorithms
- 8. Parallel I/O
- 9. MapReduce
- 10. Apache Spark

- o. Lock-free Synchronization
- p. SIMD / Vectorization
- g. Intrinsics for SIMD
- r. Parallel STL for SIMD and Parallelism

SIMD / Vectorization

(Intel-related slides contributed by Dr. Michael Klemm)

Flynn's taxonomy: SIMD

SIMD instruction sets typically support many more data types

- Operations work on each individual SIMD element
- Two operations (here: multiply & add) may be fused into one SIMD instruction

vfmadd213pd source1, source2, source3

 Mask register limit effect of instructions to a subset of the SIMD elements vaddpd dest{k1}, source1, source2

More operations: broadcast, swizzle, move, ...

Intrinsics

SIMD through C intrinsics

Example: Intel AVX intrinsic functions

AVX SIMD Data Types

m256: a vector of 8 float entries

m256d: a vector of 4 double entries

__m256i: a vector of 4 longs (or 8 int, ...)

Intrinsic functions

Vector length:

_mm512 _mm256 mm128

Functionality:

add

mul

sub

load

Type and precision:

pd: packed double

ps: packed single

sd: scalar double

ss: scalar single

...

SIMDifying saxpy / 1

Scalar code:

```
1  void saxpy(float *y, float *x, float a, int n)
2  {
3    for (int i = 0; i < n; ++i)
4    {
5       y[i] = a * x[i] + y[i];
6    }
7  }</pre>
```


SIMDifying saxpy / 2

Scalar code:

```
void saxpy simd(float *y, float *x, float a, int n)
 2
 3
       int ub = n - (n % 8); /* 8 floats per SIMD register */
4
       mm256 vy, vx, va, tmp;
      va = mm256 set1 ps(a);
       for (int i = 0; i < ub; i += 8)
       {
          vy = _mm256_loadu_ps(&y[i]); vx = _mm256_loadu_ps(&x[i]);
          tmp = m256 \text{ mul ps(va, vx)}; vy = mm256 \text{ add ps(tmp, vy)};
          mm256 storeu ps(&y[i], vy);
10
11
12
       for (int i = ub; i < n; ++i)
13
14
          y[i] = a * x[i] + y[i];
15
16
   }
```


Vectorization Efficiency

- Measure how well the code uses SIMD features
 - Corresponds to the average utilization of SIMD registers for a loop
 - Defined as (N: trip count, vI: vector length): $VE = \frac{N/vl}{[N/vl]}$
- For 8-wide SIMD:

− N = 1:	12.50 %
− N = 2:	25.00 %
- N = 4:	50.00 %
- N = 8:	100.00 %
- N = 9:	56.25 %
– N = 16:	100.00%

 Note: there are ways to provide a SIMD remainder loop for the example from the previous slide (or: variable vector length)

Parallel STL

Data Dependencies

- For two statements S1 and S2:
- S2 depends on S1, iff S1 must execute before S2
 - Control-flow dependence
 - Data dependence
 - Dependencies can be carried over between loop iterations
- Important flavors of data dependencies

FLOW

ANTI

$$b = 40$$

$$s1: a = b + 1$$

$$s2: b = 21$$

Loop-carried Dependencies / 1

- Dependencies may occur across loop iterations
 - Then call loop-carried dependencies

Distance of a dependency: number of loop iterations it spans

- Reason: some iterations have to complete before the next iteration can run
 - Would reversing the loop deliver wrong results? (not sufficient)

Loop-carried Dependencies / 2

Can we parallelize or vectorize this loop?


```
void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
    for (int i = 0; i < n; i++) {
        a[i] = c1 * a[i + 17] + c2 * b[i];
}</pre>
```

- Parallelization: no (except for very specific loop schedules)
- Vectorization: yes
 (iff vector length is shorter than any distance of any dependency)

Execution Policies

- C++ execution policy: call an (STL) algorithm and and specify how it can be executed
 - Defined in header <execution>
 - Parallel and Vectorized: parallel_unsequenced_policy: std::execution::par unseq
 - Parallel: parallel_policy: std::execution::par
 - Serial: sequenced_policy: std::execution::seq
 - C++20 is expected to bring "just vectorized"

- Parallel execution: programmer's responsibility to avoid data races and deadlocks
- Unsequenced execution: use of vectorization-unsafe operations not allowed (ex.: std::mutex::unlock() synchronizes with std::mutex:lock())

Example: Execution Policies

```
// generate some (large) vector
std::vector<int> v = /* ... some code here ... */
// standard (sequential) sort
std::sort(v.begin(), v.end());
// enforce sequential execution
std::sort(std::seq, v.begin(), v.end());
// permit parallel execution
std::sort(std::par, v.begin(), v.end());
// permit vectorization as well
std::sort(std::par_unseq, v.begin(), v.end());
```


Parallelization-enabled Algorithms

- for_each: similar to std::for_each except returns void
- for_each_n: applies a function object to the first n elements of a sequence
- reduce: similar to std::accumulate, except out of order execution
- exclusive_scan: similar to std::partial_sum, excludes the i-th input element from the i-th sum
- inclusive_scan: similar to std::partial_sum, includes the i-th input element in the i-th sum
- transform_reduce: applies a functor, then reduces out of order
- transform_exclusive_scan applies a functor, then calculates exclusive scan
- transform_inclusive_scan applies a functor, then calculates inclusive scan

