Árboles Binarios

Contenido

- Introducción

 - Conceptos generales
- Árboles binarios
- Recorridos
- Árboles binarios de búsqueda
- Árboles AVL

1

Introducción a Árboles

Estructuras no lineales

Estructuras No Lineales

- Los principales ejemplos son:

 - ➤ Grafos
- Otras estructuras no lineales
 - Arreglos desordenados
 - ➤ Montículos
 - ➤ Tablas hash

Árboles

Relación de elementos de 1 a muchos Existe jerarquía

Conceptos

- Nodo
 - Vértices o elementos de un árbol
- Raiz
 - El nodo inicial. Solo puede ser uno.
- Nodo terminal
 - Nodo que no contiene sub-árbol
 - Llamado hoja
- Camino
 - Enlace entre 2 nodos
- Rama
 - Camino que termina en una hoja

Conceptos

- Nivel de un nodo
 - Longitud del camino desde la raíz hacia un nodo.
 - La raíz tiene nivel 0
- Altura del árbol
 - Número máximo de nodos de una rama
 - ➢ Nivel más alto de los nodos más uno
 - ▶ También llamado profundidad
- Peso del árbol
 - Número de nodos hoja

Conceptos

- Nodo Padre
 - Nodo antecesor o ascendiente del actual
 - La raíz no tiene nodo padre
- Nodo Hijo
 - Nodo sucesor o descendiente del actual
 - Las hojas no tienen hijos
- Nodo(s) Hermano(s)
 - Nodos de un mismo padre
- Nodo(s) Interior(es)
 - Nodos que no son hojas ni raíces

Sub-árboles

- Un árbol es una estructura recursiva por definición
 - Todos los hijos de la raíz son sub-árboles
 - Denominados sub-árboles de raíz
- Cada uno de ellos puede contener un sub-árbol donde ellos son la raíz

Sub-árboles

2

Árboles Binarios

Concepto y recorrido

Árboles binarios

Árboles binarios

Los sub-árboles reciben el nombre de "sub-árbol izquierdo" y "sub-árbol derecho". Puede ser implementado fácilmente en una computadora.

Árboles Similares

Aquellos que tienen la misma estructura.

Árboles Equivalentes

Además de ser similares contienen la misma información.

Árbol Equilibrado

Aquel en que la altura de los dos subárboles de la raíz se diferencian en como máximo una unidad.

Árbol Completo

Aquel en que todos los nodos tienen exactamente 0 o 2 subárboles.

Árbol Lleno

Es aquel árbol completo en el que todos los niveles están llenos.

Árbol Degenerado

Es aquel árbol en que todos sus nodos tienen solamente un subárbol.

Árboles binarios

Especialmente para los árboles llenos se cumple:

- Para una altura **H**
 - La cantidad máxima de nodos Nestá dada por ((21H) 1)
 - La cantidad máxima de nodos **N**en el último nivel está dada por **2′(H-1)**
- Para una cantidad de nodos N
 - La altura del árbol debe ser como mínimo log₂(n+1)

Representaciones

Los árboles binarios pueden ser representados por medio de punteros.

Representaciones

Los árboles binarios pueden ser representados por medio de arrays.

Recorrido de un árbol

Recorrido Pre-Order

Recursivamente se ejecutan en el siguiente orden

- ➤ Visitar la raíz
- Recorrer el subárbol izquierdo
- Recorrer el subárbol derecho

Recorrido In-Order

- - Recursivamente se ejecutan en el siguiente orden
 - Recorrer el subárbol izquierdo
 - ➤ Visitar la raíz
 - Recorrer el subárbol derecho

Recorrido Post-Order

- - Recursivamente se ejecutan en el siguiente orden
 - Recorrer el subárbol izquierdo
 - Recorrer el subárbol derecho
 - ➢ Visitar la raíz

Ejemplo

Recorra el siguiente árbol según los tres métodos descritos

Ejercicio

```
Pre-Order: +, *, c, d, e
In-Order: c, *, d, +, e
Post-Order: c, d, *, e, +
```

Ejercicio

Recorra el siguiente árbol según los tres métodos descritos

Ejercicio

Pre-Order: M,E,B,A,D,L,P,N,V,T,Z In-Order: A,B,D,E,L,M,N,P,T,V,Z Post-Order: A,D,B,L,E,N,T,Z,V,P,M