Memory

Desktop PC

Server

Macbook Pro w/ Retina

iPhone 6/6S

Typical PC Architecture: **northbridge** or **host bridge**

(Typical PC Architecture) **northbridge** or **host bridge**

Graphics and Memory Contro (GMCH)

I/O Controller Hub (ICH)

What is A Computer?

Courtesy, Intel

Memory in a Modern System

Overview

- Review of Memory Technologies
- Overview of Memory Hierarchy

- Learning Objectives
 - Why is that some memories slow?
 - What is memory hierarchy?
 - Why do we need memory hierarchy?

Review: Datapath Operations

- Load operation: Load data from data memory to RF
- ALU operation: Transforms data by passing one or two RF register values through ALU, performing operation (ADD, SUB, AND, OR, etc.), and writing back into RF.
- Store operation: Stores RF register value back into data memory
- Each operation can be done in one clock cycle

What are the Common Memory Technologies?

Memory

RAM

Memory

Address	Data
000000	00111110
000001	01101011
000010	01011101
000011	01100011
000100	00111110
000101	00000000
000110	11111111
000111	01010101
001000	10101010
001001	00100001
001010	11011010

64x8 R	RAM
A3	D7
A2	D6
A1	D5
A0	D4
	D3
	D2
	D1
Write	D0

8x4 RAM

Address Data 000 001 010 011 100 101 110 111

A2 A1 A0

8x4 RAM

Wri	te		In3	In2	In1	In0
		000				
		001				
		010				
	3:8	011				
Decode	Decode	r 100				
	Enable	101				
	Znasie	110				
		111				
	S2 S1	S0				

A2 A1 A0

Static RAM Organization

Chip Select Line (active lo)

Write Enable Line (active lo)

10 Address Lines

4 Bidirectional Data Lines

RAM Organization

Long thin layouts are not the best organization for a RAM

