OSLOMET

Ingeniørfag - Data

DAPE2000 - Matematikk 2000

Samling av løsninger til tidligere eksamener

Løst av:

Uy Quoc NGUYEN (s341864)

Innhold

Eksamen 201	9	(]	K	Ol	nt)																			3
Statistikk																									3
Oppgave 1)																 									. 3
a)																 									. 3
b)																 									. 3
c)																 									. 3
d)																 									. 3
Oppgave 2)																 									. 3
a)																 									. 3
b)																 									4
c)																 									4
d)																 									4
Oppgave 3)																 									4
a)																 									4
b)																 									4
Oppgave 4)																 									. 5
Oppgave 5)																 									. 5
Matematikk																									6
Oppgave 6)																									6
a)							•	 •																	6
b)							•	 •																	6
c)							•	 •																	. 7
d)							•	 •																	. 7
Oppgave 7)					•			 •	•	•	 •					 	•	 ٠							7
a)					•	•	•	 •	٠		 •		•	 ٠				 ٠			•			•	. 7
b)					•	•	•	 •	٠		 •		•	 ٠				 ٠			•			•	. 8
c)					•	•	•	 •	٠		 •		•	 ٠				 ٠			•			•	. 8
Oppgave 8)					•			 •	•		 •		•	 ٠					•		•			•	. 8
a)					•	•	•	 •	٠		 •		•	 ٠				 ٠			•			•	. 8
b)		•	•		•		•	 •		•		٠	•	 ٠	٠			 ٠				٠			. 8
Eksamen 201	8																								10
Statistikk																									10
Oppgave 1)																 									10
a)																 									10
b)																 									. 10
c)																 									10
d)																 									10
e)																 									11
f)																 									. 11
\mathbf{g}																 									. 11
h)																 									. 11
;) [′]																									19

j)				•				•				•	•		•	•			•					12
Matematikk																								12
Oppgave 2)																								12
a)																								12
b)																								13
c)																								13
Oppgave 3)																								14
a)																								14
b)																								14
c)																								14
Oppgave 4).																								15
a)																								15
b)																								15
c)																								16

Eksamen 2019 (Kont)

Statistikk

Oppgave 1)

a)

For at f(x) skal være en sannsynlighetsstetthet må den oppfylle følgende kritere:

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$$

med den oppgitte f(x) fra oppgaven har vi at:

$$\int_0^2 \frac{1}{2}x + c \, dx = \frac{1}{4}x^2 + cx \Big|_0^2 = 1 + 2c = 1$$

løser vi for c får vi at c = 0.

b)

$$P(X < 1) = \int_0^1 \frac{1}{2} x \, dx = \frac{1}{4} x^2 \Big|_0^1 = \frac{1}{4}$$

c)

Per derfinisjon har vi at $P(X < 3/2 | X < 1) = P(X < 3/2 \cap X < 1) / P(X < 1)$. Siden 3/2 > 1 så må $P(X < 3/2 \cap X < 1) = P(X < 1)$. Altså har vi at P(X < 3/2 | X < 1) = 1.

d)

Per definisjon på forventningsverdi E(X):

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{2} \frac{1}{2} x^{2} \, dx = \left. \frac{1}{6} x^{3} \right|_{0}^{2} = \frac{4}{3}$$

Oppgave 2)

a)

Sannsynligheten $P(XY \ge 1)$ blir oppfylt for X=1 og Y=1 eller Y=2. Dette gir derfor P(XYgeq1)=P(1,1)+P(1,2)=0.35.

b)

Bruker definisjon av forventningsverdi:

$$\mu_X = 0 \cdot 0.4 + 1 \cdot 0.6 = 0.6$$

 $\mu_Y = 0 \cdot 0.3 + 1 \cdot 0.4 + 2 \cdot 0.3 = 1$

c)

Korrelasjonen er definert ved:

$$\rho(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

og kovariansen mellom X og Y er gitt ved:

$$Cov(X, Y) = E(XY) - \mu_X \mu_Y$$

og igjen har vi at

$$E(XY) = \sum_{i} \sum_{j} ijP(x_i, y_i) = 1 \cdot 1 \cdot P(1, 1) + 1 \cdot 2 \cdot P(1, 2) = 0.6$$

Med verdiene som vi fant tidligere har vi at $\rho(X,Y) = 0$.

d)

Variablene X og Y er ikke uavhengige fordi P(0,0)=0.5 mens P(X=0)P(Y=0)=0.12 (i.e. $P(X,Y)\neq P(X)P(Y)$).

Oppgave 3)

a)

Dersom $\lambda=10~(\mathrm{ms}^{-1})$ så kan vi forvente å motta $1.5\lambda=15$ på 1.5 ms. Siden X er poisson fordelt så kan vi finne P(X=20) ved:

$$P(X = 20) = \frac{15^20}{20!}e^{-15} \approx 0.04181$$

b)

La T være ventetiden før neste datapakke ankommer svitsjen. Det vi nå ønsker å finne er P(T>t) hvor t=0.3. Ved komplement regelen har vi at $P(T>t)=1-P(T\le t)$. Fra forelesning fant vi ut at T i en poissonprosess er eksponentialtfordelt, så vi har at $P(T\le t)=1-e^{-\lambda t}$. Dette gir oss $P(T>t)=e^{-\lambda t}\approx 0.0498$.

Oppgave 4)

Siden vi skal finne en 99% konfidensinterval trenger vi først å finne $z_{\alpha/2}$. Her må $\alpha=1-0.99=0.01 \implies \alpha/2=0.005$. Slår vi opp i tabellen får vi at $z_{0.005}=2.576$. Konfidensintervallen for μ blir derfor

$$\left[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Med $\bar{X}=17.5,\,\sigma=3.45$ og n=5 så har vi at det er 99% sikkert at $\mu\in[13.526,21.474]$

Oppgave 5)

Oppgaven tyder på at den stokatistiske variabelen X er binomisk fordelt med sannsynligheten $p = 2.84 \cdot 10^{-9}$. Men, siden vi trenger bare å finne første gangen vedkommende inntreffer et vellykket knekket passord så blir det naturlig å at $X \sim \text{Geom}(p)$. En geometrisk sannsynlighetsfordeling har en sannsynlighetstetthet oppgitt ved $P(X = x) = p(1 - p)^{x-1}$. Forventningsverdien E(X) til en geometrisk distribusjon er oppgitt som E(X) = 1/p. Dette kan vi bevise ved å bruke definisjonen for forventningsverdi:

$$E(X) = \sum_{x=1}^{\infty} xP(X=x) = \sum_{x=1}^{\infty} xp(1-p)^{x-1}$$

Siden p er en konstant kan vi faktorisere den ut av summasjonen:

$$\sum_{r=1}^{\infty} xp(1-p)^{x-1} = p\sum_{r=1}^{\infty} x(1-p)^{x-1}$$

Siden 1-p < 1 så kan vi betrakte følgende geoemtrisk delsum:

$$\sum_{x=1}^{\infty} (1-p)^x = \frac{1}{1-(1-p)} - 1$$

Vi utfører en variabel bytte og la $\omega = 1 - p$ da har vi at

$$\sum_{x=1}^{\infty} \omega^x = \frac{1}{1-\omega} - 1$$

Vi deriverer begge sider med hensyn på ω og får:

$$\sum_{x=1}^{\infty} x\omega^{x-1} = \frac{1}{(1-\omega)^2}$$

Siden vi har $\omega = 1 - p$ så har vi derfor at

$$\sum_{x=1}^{\infty} x(1-p)^{x-1} = \frac{1}{p^2}$$

Forventningsverdien E(X) er derfor

$$E(X) = p \sum_{x=1}^{\infty} x(1-p)^{x-1} = \frac{1}{p}$$

Bruker vi verdien $p = 2.84 \cdot 10^{-9}$ får vi at E(X) = 352112676.1

Matematikk

Oppgave 6)

a)

Siden B har to distinkte egenverdier $\lambda_1 \neq \lambda_2$ så vet vi at B kan diagonaliseres og kan skrive som $B = PDP^{-1}$ hvor matrisen D er gitt som:

$$D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

Dette gir igjen da at

$$B^2 - 3B + 2I = PD^2P^{-1} - 3PDP^{-1} + 2I = 0$$

slik at

$$D^{2}P^{-1} - 3DP^{-1} + 2P^{-1}I = P^{-1}0$$

$$D^{2} - 3D + 2P^{-1}IP = 0P$$

$$D^{2} - 3D + 2I = 0$$

Dette gir oss følgende likningssystem:

$$\lambda_1^2 - 3\lambda_2 + 2 = (\lambda_1 - 2)(\lambda_1 - 1) = 0$$

$$\lambda_2^2 - 3\lambda_2 + 2 = (\lambda_2 - 2)(\lambda_2 - 1) = 0$$

Egenverdiene for B er derfor $\lambda_1=2 \implies \lambda_2=1$ eller $\lambda_1=1 \implies \lambda_2=2$.

b)

Her har vi to måter å løse på. Enten så kan vi prøve å finne egenverdiene til A og sammenligne de med de påståtte egenverdiene til A eller så kan vi bruke at $\lambda_1 + \lambda_2 = \operatorname{tr}(A) = 4$ og $\lambda_1 \lambda_2 = \det(A) = -8$.

Dersom man skal finne egenverdiene til A så kan vi starte med å løse $\det(A - \lambda I) = 0$ som gir oss:

$$\det(A - \lambda I) = (2 - \lambda)^2 - 12$$

$$= (2 - \lambda)^2 - (2\sqrt{3})^2$$

$$= (2 - \lambda - 2\sqrt{3})(2 - \lambda + 2\sqrt{3}) = 0$$

Herifra er det enkelt å se at $\lambda = 2 \pm 2\sqrt{3} = 2(1 \pm \sqrt{3})$. Som stemmer overens med det som har blitt oppgitt i oppgaven.

Dersom vi skulle gå for den andre metoden har vi at

$$\lambda_1 + \lambda_2 = 2 - 2\sqrt{3} + 2 + 2\sqrt{3} = 4$$

og

$$\lambda_1 \lambda_2 = (2 - 2\sqrt{3})(2 + 2\sqrt{3}) = 2^2 - 12 = -8$$

Som også stemmer overens med det vi har fått oppgitt.

c)

Nå som vi har egenverdiene for A så kan vi finne egenvektorene ved å løse $A - \lambda I$.

La $\lambda_1 = 2(1 - \sqrt{3})$ da har vi

$$\begin{pmatrix} 2 - 2(1 - \sqrt{3}) & 6 \\ 2 & 2 - 2(1 - \sqrt{3}) \end{pmatrix} \sim \begin{pmatrix} \sqrt{3} & 3 \\ 1 & \sqrt{3} \end{pmatrix} \sim \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 0 \end{pmatrix}$$

Dette gir oss egenvektoren $\vec{v}_1 = (-\sqrt{3}, 1)$.

For $\lambda_2=2(1+\sqrt{3})$ kan vi følge de samme stegene:

$$\begin{pmatrix} 2 - 2(1 + \sqrt{3}) & 6 \\ 2 & 2 - 2(1 + \sqrt{3}) \end{pmatrix} \sim \begin{pmatrix} -\sqrt{3} & 3 \\ 1 & -\sqrt{3} \end{pmatrix} \sim \begin{pmatrix} 1 & -\sqrt{3} \\ 0 & 0 \end{pmatrix}$$

Som gir oss $\vec{v}_2 = (\sqrt{3}, 1)$.

d)

La $\vec{x}' = (x', y')$. Da kan vi uttrykke systemet som $\vec{x}' = A\vec{x}$ hvor A er matrisen oppgitt over. Den generelle løsningen for et slikt system av differensiallikninger er $\vec{x} = c_1\vec{x}_1 + c_2\vec{x}_2$ der c_1 og c_2 er skalarer og

$$\vec{x}_1 = \vec{v}_1 e^{\lambda_1 t}$$

$$\vec{x}_2 = \vec{v}_2 e^{\lambda_2 t}$$

Her er λ egenverdiene til A og \vec{v} er egenvektorene til A. Dette gir oss løsningen:

$$\vec{x} = c_1 \begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix} e^{2(1-\sqrt{3})t} + c_2 \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} e^{2(1+\sqrt{3})t}$$

Gitt initialbetingelsen $\vec{x}(0) = (1,1)$ så har vi at

$$\begin{pmatrix} -\sqrt{3} & \sqrt{3} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = -\frac{\sqrt{3}}{6} \begin{pmatrix} 1 & -\sqrt{3} \\ -1 & -\sqrt{3} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Som gir oss den partikulære løsningen:

$$\vec{x}_p = \frac{1}{2} \begin{pmatrix} -\sqrt{3} \\ 1 \end{pmatrix} e^{2(1-\sqrt{3})t} + \frac{1}{2} \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} e^{2(1+\sqrt{3})t}$$

Oppgave 7)

a)

For denne rekken kan vi bare bruke en enkel divergenstest:

$$\lim_{n \to \infty} \frac{5n}{8n + 3n^{2/3}} = \frac{5}{8}$$

Dette tilsier at rekken divergerer.

b)

For denne rekken er det lett å tenke seg å bruke integral-testen. Problemet her er at det ikke er så enkel å integrere funksjonen $1/\ln x$. Vi velger derfor å bruke sammenligningstesten. Betrakt nå $a_n = \frac{1}{n \ln n}$. La nå $b_n = \frac{1}{\ln n}$. Her er det tydelig at $a_n \le b_n$ fordi $n \ln n \ge \ln n$ for alle verdier $n \ge 1$. Ved å bruke integraltesten på a_n finner vi ut at den divergerer:

$$\int_{2}^{\infty} \frac{1}{x \ln x} \, \mathrm{d}x = \ln x \big|_{2}^{\infty} \to \infty$$

Siden $a_n \leq b_n$ og $\sum a_n$ divergerer så må også $\sum b_n$ divergere, i.e. rekken oppgitt i oppgaven divergerer.

c)

Betrakt først den geometriske rekken:

$$\sum_{n=1}^{\infty} x^n = \frac{1}{1-x} - 1 \qquad |x| < 1$$

Deriverer vi begge sider får vi da

$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

Oppgave 8)

a)

Ett kritisk punkt \vec{x}_0 oppfyller $\nabla f(\vec{x}_0) = \vec{0}$. Spesifikt for den oppgitte f(x,y) har vi at

$$\frac{\partial f}{\partial x} = \frac{1}{5}x - 10xe^{-(x^2+y^2)} = \frac{1}{5}x\left(1 - 50e^{-(x^2+y^2)}\right)$$
$$\frac{\partial f}{\partial y} = \frac{1}{5}y - 10ye^{-(x^2+y^2)} = \frac{1}{5}y\left(1 - 50e^{-(x^2+y^2)}\right)$$

Vi har derfor at $\nabla f(0,0) = 0$, så (0,0) er et kritisk punkt. Videre har vi også at for alle punkter som (x,y) som oppfyller $x^2 + y^2 = \ln 50$ så vil $1 - 50e^{-\ln 50} = 0$. Dette betyr også at $\nabla f(x,y) = 0$ som betyr at disse også er kritiske punkter.

b)

For å unngå rot, så lar vi $\theta(0,0) = x^2 + y^2$. De kritiske punktene vi skal sjekke for nå er når (x,y) = (0,0) og $\theta(x,y) = \ln 50$. Betrakt først:

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{5} - 10e^{-\theta} \left(1 + 2x^2 \right)$$

For punktet (0,0) har vi at $\partial^2 f/\partial x^2 = -49/5$. Siden $\partial^2 f/\partial x^2 < 0$ så ser vi på et potensielt maksimumspunkt. Vi finner også andre derivasjonen av de andre variablene:

$$\frac{\partial^2 f}{\partial x \partial y} = 20xye^{-\theta}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{1}{5} - 10e^{-\theta}(1 + 2y^2)$$

Dette gir følgende Hessian matrise \mathcal{H} :

$$\mathcal{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} -49/5 & 0 \\ 0 & -49/5 \end{pmatrix}$$

for punktet (0,0) og dermed det $\mathcal{H} > 0$. Vi har derfor et maksimumspunkt for punktet (0,0).

For $\theta = \ln 50$. Har vi

$$\frac{\partial^2 f}{\partial x^2} = \frac{2}{5}x^2$$

Her er det helt klart at $\partial^2 f/\partial x^2 > 0$ for alle $x \neq 0$. Hessian matrisen her \mathcal{H} blir dermed:

$$\mathcal{H} = \frac{2}{5} \begin{pmatrix} x^2 & xy \\ xy & y^2 \end{pmatrix}$$

Herifra er det enkelt å se at diskriminanten det $\mathcal{H} = 0$. Det vil si at for $\theta = \ln 50$ så har vi ingen konklusjon via denne testen.

Vi får heller sammenligne verdiene. Vi har f(0,0)=5 mens for $\theta=\ln 50$ har vi

$$f(x_{\theta}, y_{\theta}) = \frac{1}{10} + \frac{1}{10} \ln 50 = \frac{1}{10} (1 + \ln 50)$$

Herifra har vi at $f(0,0) > f(x_{\theta}, y_{\theta})$. Siden punktet (0,0) var funnet til å være en maksimumspunkt så må (x_{θ}, y_{θ}) være minimumspunktene.

Siden funksjonen er definert for alle punkter $x^2 + y^2 \le 100$. Vi sjekker derfor for randpunktene som oppfyller $x^2 + y^2 = 100$. Når $x^2 + y^2 = 100$ har vi at

$$f(x_{100}, y_{100}) = \frac{5}{e^1 \cdot 00} + 10 \approx 10$$

Vi har derfor at (0,0) er et lokalt maksimumspunkt, (x_{θ}, y_{θ}) er et globalt og lokalt minimumspunkt. Mens, (x_{100}, y_{100}) er et globalt maksimumspunkt.

Eksamen 2018

Statistikk

Oppgave 1)

Når $T \sim \exp(\mu)$ så er sannsynlighetstettheten gitt ved $f(t) = e^{-t/\mu}/\mu$. Det vil si at generelt

$$P(a < T < b) = \frac{1}{\mu} \int_{a}^{b} e^{-t/\mu} dt = e^{-a/\mu} - e^{-b/\mu}$$

Slik at

a)

$$P(T > 90) = P(90 < T < \infty) = e^{-6/5} \approx 0.3012$$

b)

$$P(50 < T < 90) = e^{-2/3} - e^{-6/5} \approx 0.2122$$

c)

$$P(T \ge 150 | T > 90) = \frac{P(T \ge 150 \cap T > 90)}{P(T > 90)} = \frac{P(T \ge 150)}{P(T > 90)} = \frac{e^{-2}}{e^{-6/5}} \approx 0.4493$$

d)

Vi har allerede fått oppgitt forventningen til populasjonen $\mu=75$. Vi har da at

$$\bar{T} = \frac{1}{20} \sum_{n=1}^{20} T_n$$

Og derfor

$$E(\bar{T}) = \frac{1}{20} E\left(\sum_{n=1}^{20} T_n\right)$$

Siden T_n er uavhengige og derfor

$$E(\bar{T}) = \frac{1}{20} \sum_{n=1}^{20} E(T_n)$$

Siden hver av de målingene $T_n \sim \exp(\mu)$ så har vi at $E(T_n) = \mu$ for alle $n \in \mathbb{Z}_{21} \setminus 0$. Dette gir

$$E(\bar{T}) = \frac{1}{20} \cdot 20\mu = \mu$$

e)

Per definisjon av $\mathrm{SD}^2(\bar{T})$ så har vi

$$SD^{2}(\bar{T}) = SD^{2} \left(\frac{1}{20} \sum_{n=1}^{20} T_{n}\right)$$

$$= \frac{1}{400} SD^{2} \left(\sum_{n=1}^{20} T_{n}\right)$$

$$= \frac{1}{400} SD^{2} \sum_{n=1}^{20} SD^{2} (\bar{T})$$

$$= \frac{1}{400} SD^{2} \sum_{n=1}^{20} \sigma^{2}$$

$$= \frac{1}{400} \cdot 20\mu^{2} = \frac{\mu^{2}}{20}$$

Dette gir $SD(\bar{T}) = \sqrt{SD^2(\bar{T})} = 16.77.$

f)

Siden n=20 er betraktlig stor nok kan vi utnytte sentral grenseteoremet og anta at $\bar{T} \sim N\left(E(\bar{T}), \mathrm{SD}(\bar{T})\right)$. Med dette, kan vi derfor finne $P(\bar{T}>90)=1-P(\bar{T}\leq 90)$, hvor

$$P(\bar{T} \le 90) = P\left(\frac{\bar{T} - \mu}{\sigma/\sqrt{n}} \le \frac{90 - \mu}{\sigma/\sqrt{n}}\right) = \Phi\left(Z \le 0.8944\right) = 0.8133$$

Dette gir $P(\bar{T} > 90) = 0.1867$.

g)

Dersom $\bar{T} \sim \exp(\mu)$ så må $E(\bar{T}) = \mathrm{SD}(\bar{T})$. Siden vi fant ut at den ikke var det (i.e. \bar{T} er ikke eksponentialfordelt) så kan vi desverre ikke regne ut en eksakt verdi for $P(\bar{T} > 90)$ ved å bruke eksponentialfordelingen.

h)

Null-hypotesen formuleres først ut ifra mistanken til problemstillingen som har blitt presentert. Siden mistanken her er at $\mu > 60$ så blir dette formuleringen for H_1 . Det naturlige blir da å formulere H_0 som en komplement av H_1 altså $H_0 = \mu \le 60$.

i)

Her utfører vi en T-test fordi σ er ukjent. Gitt $\bar{t}=75.3$ og s=50.7 for n=30 målinger så har vi

$$T = \frac{\bar{t} - \mu_0}{s/\sqrt{n}} = 1.653$$

Vi har også fra tabellen at $T_{\alpha}^{n-1}=1.311$. Siden $T>T_{\alpha}^{n-1}$ så må ingeniørene konkludere med en $\alpha=0.1$ signifikant-nivå at det tilstrekkelig med grunnlag å forkaste H_0 .

j)

For en 90% konfidensintervall av en T-test er vi ute etter å finne $T_{\alpha/2}^{n-1}=1.699$. Vi har derfor at konfidensintervallen til μ er

$$\left[\bar{t} - T_{\alpha/2}^{n-1} \frac{s}{\sqrt{n}}, \bar{t} + T_{\alpha/2}^{n-1} \frac{s}{\sqrt{n}}\right] = [59.57, 91.03]$$

Matematikk

Oppgave 2)

a)

Egenvierdiene λ til en matrise A er gitt ved å løse den karakteristiske likningen $\det(A - \lambda I) = 0$. Siden A er en 2×2 -matrise kan vi benytte oss av at $\lambda_1 + \lambda_2 = \operatorname{tr}(A)$ og at $\lambda_1 \lambda_2 = \det(A)$. Dette gir oss følgende:

$$\lambda_1 + \lambda_2 = 0$$
$$\lambda_1 \lambda_2 = -1$$

Løser vi likningen oppgitt ovenfor får vi at $\lambda_1=\pm 1.$ Dette medfølger at $\lambda_2=\mp 1.$

La $\lambda_1=-1$ og $\lambda_2=1$. Egenvektorene \vec{v}_1 og \vec{v}_2 til A får vi av å løse likningen:

$$(A - \lambda I)\vec{v} = \vec{0}$$

 $\mbox{Med }\lambda_1=-1$ får vi at

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Dette gir oss $\vec{v}_1 = (1, -1)$. Ved samme argumentasjon for $\lambda_2 = 1$:

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

får vi at $\vec{v}_2 = (1, 1)$.

b)

Med egenverdiene og egenvektorene funnet i forrige oppgave kan vi danne matrisen P og matrisen D slik at vi kan uttrykke A som $A = PDP^{-1}$. Hvor

$$P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \implies P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

og

$$D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Dette gir oss

$$A = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

c)

Omskriver vi systemet får vi

$$x' = 0x + 1y$$

$$y' = 1x + 0y$$

Her ser vi helt klart at vi kan uttrykke likningssystemet som

$$\vec{x}' = A\vec{x}$$

der A er matrisen oppgitt i oppgaven.

Vi identifiserer at vi har et tilfelle av en homogent likning. For å løse dette må vi finne egenverdiene λ og egenvektorene \vec{v} til A. Dette har vi gjort tidligere. Systemet vil derfor ha en generell løsning gitt ved

$$\vec{x} = c_1 \vec{x}_1 + c_2 \vec{x}_2$$

hvor c_1 og c_2 er skalarer og

$$\vec{x}_1 = \vec{v}_1 e^{\lambda_1 t}$$

$$\vec{x}_2 = \vec{v}_2 e^{\lambda_2 t}$$

Med egenverdiene for λ_1 og λ_2 og henholdsvis egenvektorene \vec{v}_1 og \vec{v}_2 som vi tidligere fant for matrise A har vi derfor at løsningen for systemet av differensiallikninger er gitt ved

$$\vec{x} = c_1 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t$$

Ved initialbetingelsen $\vec{x}(0) = (1,1)$ har vi derfor at

$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Den partikulære løsningen er derfor

$$\vec{x}_p = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t$$

Oppgave 3)

a)

i) Følgende rekke kan uttrykkes som

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Her kan vi bruke sammenligningstesten: La $b_n = \frac{1}{n^2}$ og la derfor $a_n = \frac{1}{n(n+1)}$. Vi har nå at $b_n \geq 0$ og $a_n \geq 0$. Videre har vi også at $b_n \geq a_n$ for alle $n \geq 1$. Vi kjenner igjen at b_n er en p-rekke og konvergerer siden $p \geq 1$. Per sammenligningstesten så konvergerer også a_n , altså, rekken konvergerer.

ii) Her kan vi bruke forholdstesten: Med den gitte rekken har vi følgende:

$$a_n = \frac{n+1}{n+2} \frac{1}{2^n} \implies a_{n+1} = \frac{n+2}{n+3} \frac{1}{2^{n+1}}$$

Det er enkelt å se at

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+2)^2}{2(n+3)(n+1)} \right| = \frac{1}{2}$$

Vi har derfor per forholdstesten at rekken konvergerer absolutt.

iii) Her har vi en altererende følge. Dette tyder fort på at det er Dirichlets test vi må bruke. La $b_n = (-1)^n$ da har vi at $\left|\sum_{n=1}^N b_n\right| \le 1$ for alle N. La $a_n = 1/n$. Da har vi at $\sum_{n=1}^\infty a_n \ge 0$, $a_i \ge a_{i+1}$ for alle $i \in \mathbb{N}_{>0}$ og $\lim_{n\to\infty} a_n = 0$. Da sier Dirichlets test at rekken $\sum_{n=1}^\infty b_n a_n$ konvergerer. Så, den oppgitte rekken konvergerer.

b)

For en rekke $\sum_{n=0}^{\infty} b_n (x-c)^n$ så er konvergensradien R definert som

$$R \equiv \lim_{n \to \infty} \left| \frac{b_n}{b_{n+1}} \right|$$

For den oppgitte rekken i oppgaven har vi at $b_n = (n+1)^2$ og c = 0. Dette gir

$$R = \lim_{n \to \infty} \left| \frac{n+1}{n+2} \right|^2 = 1$$

Konvergensradien R for den oppgitte rekken er derfor R=1.

c)

Vi skal finne Maclaurin rekken til $f(x) = x^2 e^x + x$. Vi vet tidligere at Maclaurin rekken til e^x er gitt ved:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Det vil si at vi kan uttrykke f(x) som

$$f(x) = x + x^2 \sum_{n=0}^{\infty} \frac{x^n}{n!} = x + \sum_{n=0}^{\infty} \frac{x^{n+2}}{n!}$$

Oppgave 4)

a)

La $f: \mathbb{R}^n \to \mathbb{R}$ og la \vec{u} være en vektor. Da er den retningsderiverte $D_{\vec{u}}f(\vec{r})$ av f på punktet $\vec{r} \in \mathbb{R}^n$ i retningen til \vec{u} gitt ved

$$D_{\vec{u}}f(\vec{r}) = \left\langle \nabla f(\vec{r}), \frac{\vec{u}}{\|\vec{u}\|} \right\rangle$$

Gitt $g(x, y, z) = x^2 + y^2 + z^2$ så har vi:

$$\begin{array}{rcl} \frac{\partial g}{\partial x} & = & 2x \\ \frac{\partial g}{\partial y} & = & 2y \\ \frac{\partial g}{\partial z} & = & 2z \end{array}$$

med $\vec{r}=(1,1,1)$ så har vi $\nabla f(\vec{r})=(2,2,2).$ Videre har vi at

$$\frac{\vec{u}}{\|\vec{u}\|} = \begin{pmatrix} 0\\1/\sqrt{2}\\1/\sqrt{2} \end{pmatrix}$$

Dette gir oss

$$D_{\vec{u}}g(\vec{r}) = 2\sqrt{2}$$

b)

La $\vec{x} = (x, y, z)$ og la $\vec{r} = (1, 1, 1)$. Vi fant tidligere at $\nabla g(\vec{r}) = (2, 2, 2)$. Dette gir oss tangentplanet for nivåkurven g(x, y, z) = 3 gitt ved

$$\langle \nabla g(\vec{r}), \vec{x} - \vec{r} \rangle = 0$$

 $2(x-1) + 2(y-1) + 2(z-1) = 0$
 $x + y + z = 3$

c)

Dersom et vilkårlig punkt \vec{p} er et kritisk punkt for en funksjon f(x,yz) så må det være slikt at $\nabla f(\vec{p}) = \vec{0}$. Dette ser vi tydelig fra tidligere beregnelse av $\nabla g(x,yz) = (2x,2y,2x)$. Det er klart her at (0,0,0) er et kritisk punkt fordi $\nabla g(0,0,0) = (0,0,0)$. Det er også enkelt å se at dette er den eneste kritiske punktet siden det ikke er noen andre punkter som oppfyller kriteriet.

Så, den eneste kritiske punktet vi har er (0,0,0) for å identifisere hva slags kritisk punkt dette er bruker vi den 2. partielle derivative testen: Vi finner først Hessian matrisen \mathcal{H} av g:

$$\mathcal{H}(x,y,z) = \begin{pmatrix} \frac{\partial^2 g}{\partial x^2} & \frac{\partial^2 g}{\partial x \partial y} & \frac{\partial^2 g}{\partial x \partial z} \\ \frac{\partial^2 g}{\partial y \partial x} & \frac{\partial^2 g}{\partial y^2} & \frac{\partial^2 g}{\partial y \partial z} \\ \frac{\partial^2 g}{\partial z \partial y} & \frac{\partial^2 g}{\partial z \partial y} & \frac{\partial^2 g}{\partial z^2} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Diskriminanten er her $D \equiv \det (\mathcal{H}(x,y,z)) = 8$. Vi ser også ifra matrisen at $\partial^2 g/\partial x^2 > 0$. Dette tilsier per andre partialle derivasjons testen at dette er et lokalt minimum.