Introduction and Motivation QFI based on expectation values Case study Conclusion and outlook

Optimal bound on the quantum Fisher Information

Based on few initial expectation values of the prove state.

lagoba Apellaniz ¹, Matthias Kleinmann ¹, Otfried Ghüne ², & Géza Tóth ^{1,3,4}

iagoba.apellaniz@gmail.com

¹Department of Theoretical Physics, University of the Basque Country, Spain
 ²Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Germany
 ³IKERBASQUE, Basque Foundation for Science, Spain
 ⁴Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary

Recent Advances in Quantum Metrology; Warsaw - 2016

Outline

- Introduction and Motivation
- 2 QFI based on expectation values: Are they optimal?
 - Optimisation problem
- Case study
 - Spin squeezed states
 - Unpolarised Dicke states
- Conclusion and outlook

Many inequalities have been proposed to lower bound the quantum Fisher Information.

Bounds for qFI

$$F_{Q}[\varrho, J_{z}] \geq \frac{\langle J_{x} \rangle^{2}}{(\Delta J_{y})^{2}}, \qquad F_{Q}[\varrho, J_{y}] \geq \beta^{-2} \frac{\langle J_{x}^{2} + J_{z}^{2} \rangle}{(\Delta J_{z})^{2} + \frac{1}{4}},$$

$$F_{Q}[\varrho, J_{z}] \geq \frac{4(\langle J_{x}^{2} + J_{y}^{2} \rangle)^{2}}{2\sqrt{(\Delta J_{x}^{2})^{2} (\Delta J_{y}^{2})^{2} + \langle J_{x}^{2} \rangle - 2\langle J_{y}^{2} \rangle(1 + \langle J_{x}^{2} \rangle) + 6\langle J_{y}J_{x}^{2}J_{y} \rangle}}$$

[I.A., B. Lücke, J. Peise, C. Klempt & G. Toth, NJP 17, 083027 (2015)]

[L. Pezzé & A. Smerzi, PRL 102, 100401 (2009)]

[Z. Zhang & L.-M. Duan, NJP 16, 103037 (2014)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② For large systems, we only have a couple of expectation values to characterise the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- 2 For large systems, we only have a couple of expectation values to characterise the state.

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- ② For large systems, we only have a couple of expectation values to characterise the state.
- The archetypical criteria that demonstrates metrologicaly useful entanglement on the state.

$$F_Q[\varrho, J_z] \ge \frac{\langle J_x \rangle}{(\Delta J_z)^2}$$

[L. Pezzé & A. Smerzi, PRL 102, 100401 (2009)]

- Many inequalities have been proposed to lower bound the quantum Fisher Information.
- For large systems, we only have a couple of expectation values to characterise the state.
- The archetypical criteria that demonstrates metrologicaly useful entanglement on the state.
- It is essential either to verify them or find new ones for different set of expectation values.

- Introduction and Motivation
- QFI based on expectation values: Are they optimal?
 - Optimisation problem
- Case study
 - Spin squeezed states
 - Unpolarised Dicke states
- Conclusion and outlook

The non-trivial exercise of computing the qFI

• Different forms of the qFI

$$F_{Q}[\varrho, J_{z}] = 2 \sum_{\lambda, \gamma} \frac{(\rho_{\lambda} - \rho_{\gamma})^{2}}{\rho_{\lambda} + \rho_{\gamma}} |\langle \lambda | J_{z} | \gamma \rangle|^{2}$$
$$F_{Q}[\varrho, J_{z}] = \min_{\{\rho_{k}, |\Psi_{k}\rangle\}} 4 \sum_{k} p_{k} (\Delta J_{z})^{2}_{|\Psi_{k}\rangle}$$

```
[ M.G.A. Paris, Int. J. Quant. Inf. 7, 125 (2009) ]
[ G. Tóth & D. Petz, PRA 87, 032324 (2013) ]
[ S. Yu, arXiv:1302.5311 ]
```

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$F_Q[\varrho, J_z] = 2\sum_{\lambda, \gamma} \frac{(p_\lambda - p_\gamma)^2}{p_\lambda + p_\gamma} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$F_{Q}[\varrho, J_{z}] = \min_{\{\rho_{k}, |\Psi_{k}\rangle\}} 4 \sum_{k} \rho_{k} (\Delta J_{z})^{2}_{|\Psi_{k}\rangle}$$

```
[ M.G.A. Paris, Int. J. Quant. Inf. 7, 125 (2009) ]
[ G. Tóth & D. Petz, PRA 87, 032324 (2013) ]
[ S. Yu, arXiv:1302.5311 ]
```

For pure states it's extremely simple

$$F_Q[\varrho,J_z]=4(\Delta J_z)^2$$

The non-trivial exercise of computing the qFI

Different forms of the qFI

$$F_Q[\varrho, J_z] = 2 \sum_{\lambda, \gamma} \frac{(\rho_\lambda - \rho_\gamma)^2}{\rho_\lambda + \rho_\gamma} |\langle \lambda | J_z | \gamma \rangle|^2$$

$$F_{Q}[\varrho, J_{z}] = \min_{\{\rho_{k}, |\Psi_{k}\rangle\}} 4 \sum_{k} \rho_{k} (\Delta J_{z})^{2}_{|\Psi_{k}\rangle}$$

```
[ M.G.A. Paris, Int. J. Quant. Inf. 7, 125 (2009) ]
[ G. Tóth & D. Petz, PRA 87, 032324 (2013) ]
[ S. Yu, arXiv:1302.5311 ]
```

For pure states it's extremely simple

$$F_Q[\varrho, J_z] = 4 (\Delta J_z)^2$$

• In the general case, usually *lower bounded* by its "classical" counterparts.

Optimisation: Legendre Transform

 For a convex function of the state, we construct a thight lower bound as follows,

$$g(\varrho) \geq \mathcal{B}\big(\{w_k := \langle W_k \rangle\}\big) = \sup_{\{r_k\}} \big(r \cdot w - \sup_{\varrho} [r \cdot \langle W \rangle_{\varrho} - g(\varrho)]\big).$$

The scalar product reads as follows
$$r \cdot w \equiv \sum_k r_k w_k$$
 and $r \cdot \langle W \rangle_{\varrho} \equiv \sum_k r_k \langle W_k \rangle_{\varrho}$.

Optimisation: Legendre Transform

 For a convex function of the state, we construct a thight lower bound as follows,

$$g(\varrho) \geq \mathcal{B}(\lbrace w_k := \langle W_k \rangle \rbrace) = \sup_{\lbrace r_k \rbrace} (r \cdot w - \sup_{\varrho} [r \cdot \langle W \rangle_{\varrho} - g(\varrho)]).$$

• When $g(\varrho)$ is defined as *infimum over the convex roof*, the $2^{\rm nd}$ optimisation simplified to pure states only,

$$\mathcal{B}(\lbrace w_k \rbrace) = \sup_{\lbrace r_k \rbrace} \big(r \cdot w - \sup_{|\psi\rangle} [r \cdot \langle W \rangle - g(|\psi\rangle)] \big).$$

- O. Gühne, M. Reimpell & R.F. Werner, PRL 98, 110502 (2007)
- [J. Eisert, F.G.S.L. Brandão & K.M.R. Audenaert, NJP **9**, 46 (2007)]

Optimisation for the qFI

The *simplicity* of qFI for pure states allows to rewrite the problem:

$$\mathcal{F}(\{w_k\}) = \sup_{\{r_k\}} \left(r \cdot w - \sup_{\mu} [\lambda_{\max}(r \cdot W - 4(J_z - \mu)^2)]\right).$$

• Therefore, we have parametrised the optimisation, which leads to a *more efficient finding* of the solution.

[I.A., M. Kleinmann, O. Güne & G. Tóth, arXiv:1511.05203]

- Introduction and Motivation
- QFI based on expectation values: Are they optimal?
 - Optimisation problem
- Case study
 - Spin squeezed states
 - Unpolarised Dicke states
- 4 Conclusion and outlook

- We'll present 2 main cases, spin-squeezed states and unpolarized Dicke states.
- Though, we apply our method to projectors with great success, we will focus on collective J_n operators.

- We'll present 2 main cases, spin-squeezed states and unpolarized Dicke states.
- Though, we apply our method to projectors with great success, we will focus on collective J_n operators.

• One of the cases using projector operators, *i.e.*, using the *fidelity*, leads to *analytic soulution*!

• We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- ② In the direction of $\langle J_x \rangle$ the worst case is when $\langle J_x \rangle$ takes the *value zero*.

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- ② In the direction of $\langle J_x \rangle$ the worst case is when $\langle J_x \rangle$ takes the value zero.
- Hence, the optimisation can be accomplished *only using 2* operators $\{J_z, J_x^2\}$ while the resulting bound is mapped directly to $\langle J_z \rangle, (\Delta J_x)^2$.

- We use the following 3 operators $\{J_z, J_x, J_x^2\}$ to characterize the input state with their respective expectation values.
- ② In the direction of $\langle J_x \rangle$ the worst case is when $\langle J_x \rangle$ takes the value zero.
- **1** Hence, the optimisation can be accomplished *only using 2* operators $\{J_z, J_x^2\}$ while the resulting bound is mapped directly to $\langle J_z \rangle$, $(\Delta J_x)^2$.
- **3** Since $F_Q \ge \langle J_z \rangle^2 / (\Delta J_x)^2$ is a valid lower bound, we compare it with our numerical result.

• We numerically optimise the lower bound of qFI for a 4 particle system for all possible values of $\langle J_z \rangle$ and $(\Delta J_x)^2$.

Figure: Below the dashed line, \mathcal{F} surpasses the shot noise limit. Cross point enhanced with extra parameter. The result shows an extreme similarity with respect to $F_Q \geq \langle J_z \rangle^2/\left(\Delta J_x\right)^2$.

[I.A., M. Kleinmann, O. Güne & G. Tóth, arXiv:1511.05203]

Metrology with unpolarised Dicke states

• For unpolarised Dicke state we use these 3 operators, $\{J_x^2, J_y^2, J_z^2\}$, with the following constraint, $\langle J_x^2 \rangle = \langle J_y^2 \rangle$.

Metrology with unpolarised Dicke states

- For unpolarised Dicke state we use these 3 operators, $\{J_x^2, J_y^2, J_z^2\}$, with the following constraint, $\langle J_x^2 \rangle = \langle J_y^2 \rangle$.
- ② For $\sum_{I}\langle J_{I}^{2}\rangle=\frac{N}{2}(\frac{N}{2}+1)$, *i.e.* maximal, and for 6 particles:

Realistic characterisation of Dicke state

Experiment \rightarrow [B. Lücke et al., PRL 112, 155304 (2014)]

 We now consider an interesting experimental case with BECs where the following initial values are measured.

Experimental details of unpolarized Dicke state with BEC

$$N = 7900 \qquad \langle J_z^2 \rangle = 112 \pm 31$$
$$\langle J_x^2 \rangle = \langle J_y^2 \rangle = 6 \times 10^6 \pm 0.6 \times 10^6$$

 For that large system we developed a successful extrapolation tool.

Extrapolation:

• First, we equivalently increase the expectation values and the unknown bound *to the symmetric subspace*.

$$\langle J_z^2 \rangle_{\mathrm{sym},N} = 145.69 \qquad \langle J_x^2 \rangle_{\mathrm{sym},N} = 7.8 \times 10^6$$

Extrapolation:

• First, we equivalently increase the expectation values and the unknown bound *to the symmetric subspace*.

$$\langle J_z^2\rangle_{\mathrm{sym},N}=145.69 \qquad \langle J_x^2\rangle_{\mathrm{sym},N}=7.8\times 10^6$$

② We freeze $\langle J_z^2 \rangle$ while we reduce the particle number of an auxiliary system. Here, we perform the optimisation.

$$2\langle J_x^2\rangle_{\mathrm{sym},N'}=\frac{N'}{2}(\frac{N'}{2}+1)-\langle J_z^2\rangle_{\mathrm{sym},N'}$$

Extrapolation:

• First, we equivalently increase the expectation values and the unknown bound *to the symmetric subspace*.

$$\langle J_z^2\rangle_{\mathrm{sym},N}=145.69 \qquad \langle J_x^2\rangle_{\mathrm{sym},N}=7.8\times 10^6$$

② We freeze $\langle J_z^2 \rangle$ while we reduce the particle number of an auxiliary system. Here, we perform the optimisation.

$$2\langle J_x^2
angle_{ ext{sym},N'}=rac{N'}{2}(rac{N'}{2}+1)-\langle J_z^2
angle_{ ext{sym},N'}$$

The extrapolation is directly obtained by

$$\frac{\mathcal{F}}{\sum_I \langle J_I^2 \rangle} \gtrsim \frac{\mathcal{F}_{\mathrm{sym},N}}{N^2/4} \approx \frac{\mathcal{F}_{\mathrm{sym},N'}}{N'^2/4}$$

• Obtaining a numerical lower bound this *large system*.

Figure: The extrapolated lower bound *approaches rapidly* to the desired value. The points over the line indicate the systems used for optimisation.

[I.A., M. Kleinmann, O. Güne & G. Tóth, arXiv:1511.05203]

• We have found that for very interesting and realistic cases *the* optimisation is feasible.

- We have found that for very interesting and realistic cases *the* optimisation is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.

- We have found that for very interesting and realistic cases the optimisation is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bounds can be improved with few extra considerations.

- We have found that for very interesting and realistic cases the optimisation is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bounds can be improved with few extra considerations.
- For large systems the optimisation method can be complemented with scaling considerations, such as the extrapolation for Dicke states case.

- We have found that for very interesting and realistic cases *the* optimisation is feasible.
- We used our approach to verify the tight bounding of one of the inequalities.
- We have shown that the lower bounds can be improved with few extra considerations.
- For large systems the optimisation method can be complemented with scaling considerations, such as the extrapolation for Dicke states case.
- This method is constructed to be universal and it could be used in many other situations.

Thank you for your attention!

Preprint \rightarrow arXiv:1511.05203

Groups' home pages

- → https://sites.google.com/site/gedentqopt
- → http://www.physik.uni-siegen.de/tqo/

iagoba

matthias

otfried

géza