مل تمرين كى سرى محدرى - كما رواحك ل محسدسى

$$f_{xy}(x,y) = \frac{1}{(x^{2})(\frac{1}{y})(\frac{1}{y})(\frac{1}{y})} \times \frac{1}{(x^{2}+x)^{2}} \times \frac{1}{(x$$

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}}$$

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1$$

 $f_{x}(x) = \sum_{y=1}^{n} f_{xy}(x_{1}y)$ $f_{y}(y) = \sum_{y=1}^{n} f_{xy}(x_{1}y)$

ب) نسرا بالسناره از ترابع کیاله احمال کناری ، میانس و داریانی × , ۲ رام سر تراریم:

$$E(x) = \sum_{x=0}^{1} x f_{x}(x) = x \frac{1}{r} + 1x \frac{1}{r} = \frac{1}{r}$$

$$E(x) = \sum_{x=0}^{1} x f_{x}(x) = x \frac{1}{r} + 1x \frac{1}{r} = \frac{1}{r}$$

$$E(x) = \sum_{y=1}^{x} y f_{y}(y) = x \frac{1}{2} + 1 x \frac{1}{2} + 1 x \frac{1}{2} = \frac{0}{2}$$

$$Var(x) = E(x) \cdot E(x) = \frac{1}{2}$$

$$Var(y) = E(y) - E(y) = \frac{1}{2}$$

$$Var(y) = E(y) - E(y) = \frac{1}{2}$$

$$Var(y) = \frac{1}{2}$$

$$Var(y) = \frac{1}{2}$$

$$Var(y) = \frac{1}{2}$$

$$Var(y) = \frac{1}{2}$$

$$=(Y) = \sum_{y=1}^{n} y f_{y}(y) = x \frac{1}{n} + 1 \times \frac{1}{n} + 1 \times \frac{1}{n} = 1$$

$$var(x)=E(x)-E(x)=\frac{1}{\varepsilon}$$

 $var(y)=E(y)-E(y)=\frac{r}{\varepsilon}$

$$E(xy) = \sum_{x=0}^{r} \sum_{y=0}^{r} y_{xy}^{r}(x_{1}x_{1}) = |x| \times \frac{1}{r} + r \times |x| = \frac{r}{r}$$

$$Cov(x_{1}y) = E(xy) - E(x)E(y) = \frac{r}{r} - \frac{1}{r} \times |x| = \frac{1}{r}$$

$$Cov(x_{1}y) = E(xy) - E(x)E(y) = \frac{r}{r} - \frac{1}{r} \times |x| = \frac{1}{r}$$

$$Cov(x_{1}y) = \frac{1}{\sqrt{r}} = \frac{1}{\sqrt{r}}$$

$$Cov(x_{1}y) = \frac{1}{\sqrt{r}} = \frac{1}{\sqrt{r}}$$

$$\frac{1}{\sqrt{r}} = \frac{r}$$

113 ~oi:
$$x > e$$
, $-r \leq y < -\frac{1}{2} + \frac{1}{2} = \int_{0}^{y} \frac{1}{2} dx dy + \int_{0}^{e} \int_{0}^{y} \frac{1}{2} dx dy$

$$F_{xy}(x_1y) = \frac{r(y+r)}{a\epsilon} + \frac{c(y+r)}{rv} = \frac{y+r}{r}$$

$$F_{xy}(x,y) = \int_{\alpha=-c}^{\infty} \int_{\beta=-c}^{\alpha} \frac{1}{\delta \epsilon} d\alpha d\beta + \int_{\alpha=-c}^{\infty} \int_{\beta=-c}^{\beta} \frac{1}{\epsilon v} d\alpha d\beta$$

$$F_{xy}(x,y) = \frac{(x+e)x\Gamma}{\delta \epsilon} + \frac{(x+e)\delta}{\epsilon v} = \frac{(x+e)(y+1)}{\epsilon v}$$

$$F_{xy}(x,y) = \int_{\alpha=-d}^{\infty} \int_{\beta=-c}^{\infty} \frac{1}{\alpha} d\alpha d\beta + \int_{\alpha=-d}^{\infty} \int_{\beta=-c}^{\infty} \frac{1}{rv} d\alpha d\beta$$

$$\bar{T}_{xy}(x_1y) = \frac{(x+e)x\Gamma}{x\epsilon} + \frac{(x+e)x\Gamma}{cv} = \frac{x+e}{9}$$

ا ۲ و د م ۱ م ۱ م ۱ م ا ا م م ا

$$F_{xy}(x,y) = \int \int \frac{1}{0s} dxd\beta + \int \int \frac{1}{rv} dxd\beta$$

$$+ \int \int \frac{1}{rv} dxd\beta + \int \int \frac{r}{rv} dxd\beta$$

$$+ \int \int \frac{1}{rv} dxd\beta + \int \int \frac{r}{rv} dxd\beta$$

$$F_{xy}(x_1y) = \frac{cxr}{a\epsilon} + \frac{rx}{rv} + \frac{cy}{rv} + \frac{rxy}{rv}$$

$$F_{xy}(x_1y) = \frac{(rx+c)(y+r)}{rv}$$

$$F_{xy}(x,y) = \int_{\alpha=-d}^{\infty} \int_{\beta=-r}^{\infty} d\alpha d\beta + \int_{\alpha=-d}^{\infty} \int_{\alpha=-d}^{\infty} d\alpha d\beta + \int_{\alpha=-d}^{\infty} \int_{\alpha=-d}^{\infty$$

		روات ،	יוצילתנה	ساع درست آمده در شفر
P	2 2	r 9	1	(Fxy (My)
e - t	(x+2)(y+1)	(YX+2)(3+1)	y+1 2 → 2e	
0	(X+e)(y+c)	(1242)(y+c) 3E	9+5	
0	ð	-5	0	

 $S_1 = S_c = S_b = S_b$ $S_1 = S_c = S_b = S_b$ $S_1 = S_1 = S_2 = S_b$ $S_1 = S_2 = S_b$ $S_2 = S_3 = S_b$ $S_1 = S_2 = S_b$ $S_2 = S_3 = S_b$ $S_1 = S_2 = S_b$ $S_2 = S_3 = S_b$ $S_1 = S_2 = S_b$ $S_2 = S_3 = S_b$ $S_3 = S_4 = S_5$ $S_4 = S_5 = S_5$ $S_5 = S_5$

$$\Pr\left(13 \times \frac{1}{4} \text{y's'}\right) = \frac{r}{rv} s_1 + \frac{1}{rv} s_r + \frac{1}{6\epsilon} s_e + \frac{1}{rv} s_{\epsilon} = \frac{1}{4} \times \frac{en}{\epsilon} = \frac{n}{\lambda}$$

$$\Pr\left\{-1\langle x \rangle \leq r, -1 \langle y \rangle \leq r\right\} = F_{xy}\left\{r,r\right\} + F_{x}\left\{-1,-1\right\} - F_{xy}\left\{-1,r\right\} - F_{xy}\left\{r,-1\right\} \geq r$$

$$= \frac{2 + (xr)}{9} + \frac{rx}{62} - \frac{rx}{r} - \frac{xr}{62} = \frac{r\delta}{\delta \epsilon}$$

٣ ـ الن - بخاط ناهم تعرف دارهان على تابع حِفاله الحك ل عَرَات دروسياه فعقا تفي الما عام على زورو (وريد) وهم الله عليم ، $\int \int f_{xy}(x_1y) dxdy = \int \int c(r+1/r) r dr d\theta = c\left[\theta\right] \int \left[\frac{1}{r}r + \frac{1}{r}r\right] = \pi c = 1$ $- \int c = \frac{1}{\pi}$ $- \int r = \frac{1}{r}$ $f_{y}(y) = \int_{-\pi}^{\sqrt{1-y^{5}}} (x^{5}+y^{5}+1) dx = \frac{r}{\pi} \int_{-\pi}^{\pi} (x^{5}+y^{5}+1) dx$ $-\sqrt{1-y^{5}}$ $-1 \leq y \leq 1$ -VI-95 حدود تعروت مع بالى لا يات $f_{y}(y) = \frac{r}{n} \left(\frac{x^{2}}{e} + y^{2}x + x \right)^{\sqrt{1-y^{2}}} = \frac{r\sqrt{1-y^{2}}}{n} \left(\frac{1}{e} (1-y^{2}) + y^{2} + 1 \right) = \frac{2\sqrt{1-y^{2}}}{e} (5-y^{2})^{-1/2} (5-y^{2})^{-1/2}$ مع نواسرال فردات ودرمزه $E(y) = \int_{-1}^{1} y \, dy \, dy = \int_{-1}^{1} y \, \frac{\varepsilon \sqrt{1-y'}}{\varepsilon n} (r-y') \, dy = 0$ $F(xy) = \int \int xy \int_{xy} (x_1y) dx dy = \int \int r \sin \theta \cos \theta + (r+\frac{1}{2}) r dr d\theta$ $\chi + \psi \neq 1$ $\theta = -r = 0$ متمارك أسرال منز وكعدبود. $E(xy) = \int_{0}^{r} 8in\theta \cos\theta d\theta \int_{0}^{1} \frac{r^{2} + r^{2}}{\pi} dr = \left[\frac{1}{r} 8in\theta\right]^{r} \left[\frac{1}{2} r^{2} + \frac{1}{r} r^{2}\right]^{1} = 0$ E(x)=E(y)=0 $\longrightarrow cov(x,y)=E(xy)-E(x)E(y)=0$ ٤ - الف - بال عامم وزن احمال از رابطرز و مرم :

اله مسار تبدی مد و تو سرار تبی لا در حرول قرراع مجمی اس ، با عال رابط نوی مرول تروه شره در معمی مد و الا ۱۲ میل واقع روی مرول توراع مجمی اس ، با عال رابط نوی مرول تروه شره در معمی مد و واهر بود و در معمی مد و واهر بود و در معمی مد و واهر بود و

~ ~ 1	1	~]	۵	~ 1	fx(2)
X	Y/r.	1711.	W/Ir.	Thr.	do,
2	11/15-	9/18.	12/15.	II.	08/15.
9	٤/١٢.	14/18.	e/15.	4	e./15.
P 101)	25	E4 15.			دام مع الماهمال كذى ك رامرت مي درى
$f_{\gamma}(y)$	11.	1	-		رابرت مادريم

$$E(x) = r \times \frac{e \delta}{r} + \epsilon \times \frac{\delta \delta}{r} + r \times \frac{e \delta}{r} = \frac{\epsilon r}{r}$$

$$E(x') = r \times \frac{e \delta}{r} + \epsilon \times \frac{\delta \delta}{r} + r \times \frac{e \delta}{r} = \frac{\epsilon r}{r}$$

$$E(x) = r \times \frac{e^{\delta}}{ir} + \epsilon \times \frac{e^{\delta}}{ir} + \epsilon \times \frac{e^{\delta}}{ir} + \delta \times \frac{e^{\delta}}{ir} = \frac{e^{\delta}}{ir}$$

$$E(y) = r \times \frac{e^{\delta}}{ir} + \epsilon \times \frac{e^{\delta}}{ir} + \delta \times \frac{e^{\delta}}{ir} + \delta \times \frac{e^{\delta}}{ir} = \frac{e^{\delta}}{ir}$$

$$Var(y) = E(y) - E(y) = \frac{e^{\delta}}{e^{\delta}} - \left(\frac{e^{\delta}}{e^{\delta}}\right) = \frac{e^{\delta}}{e^{\delta}} - \left(\frac{e^{$$

 $var(x) = E(x) - E(x) = \frac{d\delta}{dt} - \left(\frac{\delta U}{dt}\right) = \frac{d'H}{dt}$

$$E(xy) = 1xrx \frac{v}{1r} + 1xex \frac{r1}{1r} + 1xyx \frac{e}{1r} + exxx \frac{1}{1r} + exex \frac{9}{1r} + exex \frac{10}{1r} + exex \frac{15}{1r} +$$

$$eov(xy) = E(xy) - E(x)E(y) = \frac{ive}{iy} - \frac{ev}{ix} \times \frac{rre}{s} = -118.6$$

$$P(X|Y) = \frac{cov(X|Y)}{\sqrt{var(X)var(Y)}} = \frac{-1/2 \cdot e}{\sqrt{\frac{e_{11}}{12} \times \frac{14011}{e_{2}}}} = -1.229$$

درمبرل زیر عادات تملف میں راق برتاب دو نام کرووں شوہ است کہ در جر عال ۲۰۰۱ ، ۱۹۰۰ عم مال کروالو:

Cu	TT	TH	1+ T	HH
احاً	1/2	1/2	1/2	1/2
Hn	0	1	1	7
0-2	4	0		۲

$$\frac{1}{r} = \int_{0}^{r} \frac{f_{0}(a)}{r} = \int_{0}^{r} x_{0} + \int_{0}^{r$$

$$E(H_rD_r) = \frac{1}{2} \times r \times r = 1$$
 $\longrightarrow cov(H_r,D_r) = E(H_r,D_r) - E(H_r)E(D_r) = 1 - 1 = 0$

$$\rho(H_r, D_r) = \frac{\text{cov}(H_r, D_r)}{\sqrt{\text{var}(H_r)\text{var}(D_r)}} = 0$$

		0,				,,,,,,
Wes	وري حق ا	وها رخط رمايم	ے خطر دولئیر	رد فعاد سرائع	یک مفاوی رئیر	ئے ہے۔
					(=)(=)	
Ha	0	1	٢	~	3	۵
Pa	٥	٣	1	1.	e	۵
	*			,		

مع درن احمال ورن احمال ور

$$E(H_{\delta}) = \frac{1}{er}(s+\delta) + \frac{\delta}{er}(1+\epsilon) + \frac{1}{er}(s+\epsilon) = \frac{\Lambda^{-}}{er} = \frac{\delta}{r}$$

$$E(H_{\delta}) = \frac{1}{er}(s+\delta) + \frac{\delta}{er}(s+\epsilon) + \frac{1}{er}(s+\epsilon) = \frac{1\delta}{r}$$

$$e_{\delta}$$

$$E(H_{\delta}D_{\delta}) = 1 \times e \times \frac{\sigma}{er} + e \times \epsilon \times \frac{\sigma}{er} + \delta \times \delta \times \frac{1}{er} = \frac{ro}{\Lambda}$$

$$var(H_{\delta}) = \frac{10}{r} - \left(\frac{3}{r}\right)^2 = \frac{3}{\epsilon}$$

$$v(H_{\delta}/Q_{\delta}) = \frac{r\delta}{r} - \frac{10}{2} \times \frac{3}{\epsilon} = \frac{r\delta}{r}$$

$$P_{H_0 D_0} = \frac{r_0}{r_0} - \frac{1}{10} \times \frac{\delta}{r_0} = \frac{r_0}{17}$$

$$P_{H_0 D_0} = \frac{r_0}{r_0} = \frac{r_0}{r_0} = \frac{r_0}{r_0} = \frac{r_0}{r_0} = \frac{r_0}{r_0} = \frac{r_0}{r_0}$$

2s				7		ا کره	که آررد	ربراتي	إرماس ١٨	سن براس	درهرول زيرحالات
20	,		n _T =V	n _T =	9	n _T =8	77= 2	nt=5	nTir	ng=1	$n_{\tau} \approx 0$
diral	(+)^	(î)(i)	(f)(f) (2)(2)	(1)(+)	(3)(2)	(4)(1)	(î)(¿)	$\left(\frac{1}{c}\right)^{\lambda}$
HA	ø		1	4		ď	٤	8	7	V	٨
D	^		7	٤		٢	,	r	٤	9	Λ
1			. بور د	زير فواهر -	مور <i>ا</i> ت	فرق ر	م به حبول	Por for	D, (h,d)	ر رئ	ي بع وزن احمالي تر
0,	1	σ	1	٢	٨	٤	ð	۶ ۷	/ ^	1 for	(4)
0	,	0	•	o	o	V.				V	37
5			o	0 -	109		34 TO4	a	, .	11	15
٤	. 6		8	ra ras	•	,	107	r _A	<i>a</i>	3	5
4	, ,	,	1	0		a	a	184	٨ .	ro	7
^	(<u>ر</u>)^	0	હ	ø	•	0	0	0 189	10 r	9
+ Lh Ch) =	04	107	109 T	04	v.		1 N N 18	x 10x		
E (D,) =	115	×r+-	of as	+ 11	5 × 7	+ rasxn	= 20	7		
							r xn			(D) = 1	$-\left(\frac{ea}{14}\right)^{\frac{1}{2}} = \frac{Are}{ray}$
E(H) = -	-×(, +1)	+= (tv)	+ -	(1+4)-	+ = (2+0) + 2	1. x E =	5
E (H)= -	-(· + ^) -	+ 104	r + v ^r)+ 10	1 (5+4)	1+ 07	(e+o') +	- ν . χ ξ	= 14
var	H2) =	<u>- 14</u>	- (E)= r				(47		F09 _	
£ (1	247	= (rxer	(ex)	109	+ (Ex	(T + & x 4)) \frac{\gamma}{\gamma_0^2} +	(4x1+ 4	xv) 1	+ NEA 1 = 20
									18 X E		(3)
→	P(?	Hu)= 0								
t	-1.2	n r	. IV Krd	lrdt=	۱ – ب	,	-1-en [/r] 10-	= 1 -> K	41-9nx 9	- WI (\$

- بدافه ل زود توب در که ۱۱۱ مطع معورت زیر را برست آدرم : $\int_{X}^{\infty} \int_{1}^{\infty} P_{r}\left(\frac{1}{2}\log \log n\right) = \int_{RT}^{\infty} \int_{RT}^{\infty} (r,t) ds = \kappa s = 1 - \kappa \frac{1}{24 - n}$ र दर्भी मार्ग में कि कार्म कि कार्म में मार्ग कर मार्ग निकार कर म عِنْدِم بِ زَوْرِينَ تَا الْمِرَالَ (اللهِ عَلَى عَلَى اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ اللهُ ا $E(T') = \int t' f_{T}(t) dt = T \int t' \times \frac{\partial}{\partial n} dt = \frac{\partial}{\partial n} \times \frac{T}{2} (1.2n)^{\frac{2}{2}} \frac{4\pi}{T}$ $Var(T) = \frac{9\pi^{\zeta}}{r} \longrightarrow \sigma = \sqrt{var(T)} = \frac{e\pi}{1-\sqrt{c}} = \frac{1.444}{1-\sqrt{c}} rad$ $E(R) = \int_{9}^{1V} \frac{r}{9} dr = \frac{1}{9} \left[\frac{1}{r} r^{*} \right]_{1}^{1V} = 1 \frac{1}{3} \cdot 9^{n}$ E(R') = 5 1 - dr = 1 [= 915...." var(R) = 919 - (18-9) = 9115919 m - = 7450,000 $m_{\chi}=)$ $var(\chi)=\gamma$ $m_{\chi}=\gamma$, $var(\gamma)=\epsilon$ $E[7] = E[Y_{X-Y+1}] = YE[X] - E[Y] + 1 = Ym_{X} - m_{Y} + 1 = Y - S + 1 = 1] - i$ var (2) = var (xx-x) = var (xx-y) = x var(x) + (-1) var(y) - xx1 cov(x,y) = 2xx+ 2-Ex (-11) x 2xE = 14+71 TVE = 11, VV Pxy 0x0y E [U] = m E [*] + E [Y] = m + 1 E [v] = E [x - m y] = E [x] - m E [y] - ~ ~ E[v]=1- (m E[UV]=E((mx+y)(x-my)) = E[mx-m'xy+yx-my'] = mE(x')+(1-m')E[xy] = m [mx+var(x))+(1-m) py var(x) var(y) - m (my+var(y))

E[UV] = m[1+e] -. 15 Vex (1-m') - m (5+E) = Em -. 18 Ve (1-m') - Am = 9/95A5 m - Em - 9,95A5 COV(UIV) = 0 -> E[UV] = E[V] = (V) = (V) = 5,95A5m - Em-4,95A5 = (M+5)(1-10) $\Lambda_{1} A \Gamma \Lambda \Gamma m - m - \Lambda_{1} A \Gamma \Lambda \Gamma = 0 \longrightarrow m = \frac{1 \pm \sqrt{1 + 2 \times (\Lambda_{1} A \Gamma \Lambda \Gamma)^{\Gamma}}}{(\times \Lambda_{1} A \Gamma \Lambda \Gamma)} \Longrightarrow \begin{cases} m_{1} = 1/.6 \times 5 \\ m_{2} = -./9 \times 5 \end{cases}$ x' + y' - 1 = 0 $y = \frac{1}{r}(1-x)$ $y = \frac{1}{s}var(x) = 1$ (A Cox(x, y) = cox(-- + x,x) = cox(+ 1x) - cox(x,x) $cov(\frac{1}{r},x) = E(\frac{1}{r}x) - E(\frac{1}{r})E(x) = 0$ } E(x) } Cov(x,y)= 0 - 1 var(x) = - 1 x = - 1 $P(x_1y) = \frac{eov(x_1y)}{\sqrt{var(x) var(y)}} = \frac{-r}{\sqrt{\epsilon_{x1}}} = -1$ یعی y,x بطورکامل عم والے مسد

د نفرات اکادرطراف عمل کرمرات