Homework 1 CS6501-006: Safety and Security in CPS

William Young

March 2, 2017

1. Synchronous Models

Possible reactions:

$$0 \xrightarrow{0/(0,0)} 0$$

$$0 \xrightarrow{1/(0,0)} 1$$

$$0 \xrightarrow{1/(0,1)} 1$$

$$1 \xrightarrow{0/(1,0)} 0$$

$$1 \xrightarrow{1/(1,1)} 1$$

From z := choose(x, u), we conclude that z awaits x. However, y is independent of x (u := 0, y := u) and therefore does not await x.

2. Safety Requirements

The property $\phi: x \geq 0$ is an inductive invariant of the transition system T if

- (a) Every initial state of T satisfies ϕ
- (b) If a state satisfies ϕ and (s,t) is a transition of T, then t must satisfy ϕ .

We first consider initial state (x = 0). This satisfies ϕ ; that is, $x \ge 0$, satisfying (a).

We then consider an arbitrary state $s \mid s(x) = a$.

Assume that s satisfies ϕ ; that is, assume $a \geq 0$.

Consider the state t(x) = a - 1 obtained by executing a transition from s. We must show that t satisfies ϕ .

Consider the case a=0, t(x)=a-1. In order for t to satisfy ϕ , it must be the case that $a \geq 0$, but we have a=-1. Since t fails to satisfy the property ϕ , ϕ is not an inductive invariant.

Next, consider the property ψ that strengthens ϕ :

$$\phi_1 : \text{mode} = \{\text{off}\} \to x \ge 0$$

& $\phi_2 : \text{mode} = \{\text{on}\} \to x > 0$

We observe that ψ implies ϕ ; that is, both properties maintain $x \geq 0$. Now we shall prove ψ is an inductive invariant using proof by induction.

Base case:

Consider initial state (mode={off}, x = 0). This satisfies ψ ; that is, (mode={off} $\rightarrow x \ge 0$).

Inductive case:

Consider an arbitrary state s with x = a and mode = b.

Assume that s satisfies ψ ; that is, assume

$$\phi_1 : b = \{ \text{off} \} \to a \ge 0$$

& $\phi_2 : b = \{ \text{on} \} \to a > 0$

Consider the state t obtained by executing a transition from s.

If $t(\text{mode}) = \text{off then } t(x) = a + 1 \text{ and } t(\text{mode}) \in \{\text{on, off}\}.$

From our assumption $a \ge 0$, it follows that a + 1 > 0 and $b \in \{\text{on,off}\}$, satisfying ϕ_1 and ϕ_2 .

If t(mode) = on then t(x) = a - 1.

From our assumption a > 0, it follows that $a - 1 \ge 0$ and $b \in \{\text{on,off}\}$, satisfying ϕ_1 and ϕ_2 .

In either case, the condition

$$\phi_1 : t(\text{mode}) = \{\text{off}\} \to t(x) \ge 0$$
 & $\phi_2 : t(\text{mode}) = \{\text{on}\} \to t(x) > 0$

holds, therefore property ψ is an inductive invariant.

3. Asynchronous Models

The asynchronous model AsyncAdd consists of the following elements (model illustrated on next page):

- (a) Input set: nat $\{x_1, x_2\}$
- (b) Output set: nat $\{y\}$
- (c) State variable set: queue(nat) $\{x1, x2\}$
- (d) Initial state: x1 = null, x2 = null

Figure 1: Asynchronous Adder Process.

- (e) Input tasks:
 - A1: $\neg \text{Full}(x1) \rightarrow \text{Enqueue}(x_1, x1)$
 - A2: $\neg \text{Full}(x2) \rightarrow \text{Enqueue}(x_2, x2)$
- (f) Output tasks:
 - B: $\neg \text{Empty}(x1) \& \neg \text{Empty}(x2) \rightarrow y := \text{Dequeue}(x1) + \text{Dequeue}(x2)$

4. Liveness Requirements

(a) The first is stronger than the second.

Reasoning:

Suppose a trace ρ satisfies Eventually $(\phi_1 \& \phi_2)$.

There exists a position j such that $(\rho, j) \models \phi_1 \& \phi_2$.

It follows that both $(\rho, j) \models \phi_1$ and $(\rho, j) \models \phi_2$.

Since $(\rho, j) \models \phi_1$ it also satisfies Eventually (ϕ_1) . Similarly, it also satisfies Eventually (ϕ_2) .

It follows that the trace satisfies Eventually(ϕ_1) & Eventually(ϕ_2)

However, the two are not equivalent. Consider the trace $\rho = \{0, 1, 2, 3, 4\}$ over a boolean variable x. It satisfies Eventually(x = 2) and Eventually(x = 4), but does not satisfy Eventually(x = 2 & x = 4).

(b) The two are equivalent.

Reasoning:

Suppose a trace ρ satisfies Eventually $(\phi_1 \mid \phi_2)$.

There exists a position j such that $(\rho, j) = \phi_1 | \phi_2$.

In other words, either $(\rho, j) = \phi_1$ or $(\rho, j) = \phi_2$.

Suppose $(\rho, j) \models \phi_1$. Then ρ satisfies Eventually $(\phi_1 \mid \phi_2)$.

Hence ρ also satisfies Eventually(ϕ_1) | Eventually(ϕ_2).

Now consider the converse.

Suppose a trace ρ satisfies Eventually (ϕ_1) | Eventually (ϕ_2) .

Specifically, suppose it satisfies Eventually(ϕ_1).

There exists a position j such that $(\rho, j) \models \phi_1$.

It follows that $(\rho, j) \models \phi_1 \mid \phi_2$.

Thus, ρ satisfies Eventually $(\phi_1 \mid \phi_2)$.

(c) The first is stronger than the second.

Reasoning:

Suppose a trace ρ satisfies Always Eventually $(\phi_1 \& \phi_2)$.

For every position j, $(\rho, j) \models \text{Eventually}(\phi_1 \& \phi_2)$.

For every j, there exists a position $i \geq j$ such that $(\rho, i) \models (\phi_1 \& \phi_2)$.

In other words, for every j, there exists a position $i \geq j$ such that both $(\rho, i) \models \phi_1$ and $(\rho, i) \models \phi_2$.

Since for every j, there exists a position $i \ge j$ such that $(\rho, i) \models \phi_1$, it satisfies Always Eventually (ϕ_1) . Similarly, it satisfies Always Eventually (ϕ_2) .

It follows that the trace satisfies Always Eventually(ϕ_1) & Always Eventually(ϕ_2).

However, the two are not equivalent. Consider the trace $\rho = \{0, 1, 0, 1, 0, 1...\}$ over a boolean variable x. It satisfies Always Eventually(x = 0) & Always Eventually(x = 1), but does not satisfy Always Eventually(x = 0) & (x = 1).

(d) The two are equivalent.

Reasoning:

Suppose a trace ρ satisfies Always Eventually $(\phi_1 \mid \phi_2)$.

For every position j, $(\rho, j) \models \text{Eventually}(\phi_1 \mid \phi_2)$.

For every j, there exists a position $i \geq j$ such that $(\rho, i) \models (\phi_1 \mid \phi_2)$.

In other words, for every j, there exists a position $i \geq j$ such that either $(\rho, i) \models \phi_1$ or $(\rho, i) \models \phi_2$.

Suppose $(\rho, i) \models \phi_1$. Then ρ satisfies Always Eventually $(\phi_1 \mid \phi_2)$.

Hence ρ also satisfies Always Eventually(ϕ_1) | Always Eventually(ϕ_2).

Now consider the converse.

Suppose a trace ρ satisfies Always Eventually(ϕ_1) | Always Eventually(ϕ_2).

Specifically, suppose it satisfies Always Eventually (ϕ_1) .

For every j, there exists a position $i \geq j$ such that $(\rho, i) \models \phi_1$.

It follows that $(\rho, i) \models \phi_1 \mid \phi_2$.

Thus, ρ satisfies Always Eventually($\phi_1 \mid \phi_2$).

5. Timed Models

I used a custom python script, dbm.py (next page), to generate the following DBMs. The script required manual setup for each DBM in order to set the bounds and zero-outs/guards/clock invariants. In particular, I had to set the input and guard/invariant DBMs and specify whether a clock variable reset occurred. The code uses the principles of intersection and the canonicalization algorithm to produce canonicalized DBMs as output.

$$\bullet \ R_A' = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}$$

$$\bullet \ R_B = \begin{bmatrix} 0 & -2 & 0 & -2 \\ 3 & 0 & 3 & 0 \\ 0 & -2 & 0 & -2 \\ 3 & 0 & 3 & 0 \end{bmatrix}$$

$$\bullet \ R_B' = \begin{bmatrix} 0 & -2 & 0 & -2 \\ 5 & 0 & 3 & 0 \\ 2 & -2 & 0 & -2 \\ 5 & 0 & 3 & 0 \end{bmatrix}$$

$$\bullet \ R_C = \begin{bmatrix} 0 & -3 & 0 & 0 \\ 5 & 0 & 3 & 5 \\ 2 & -2 & 0 & 2 \\ 0 & -3 & 0 & 0 \end{bmatrix}$$

$$\bullet \ R'_C = \begin{bmatrix} 0 & -3 & 0 & 0 \\ 8 & 0 & 3 & 5 \\ 6 & -2 & 0 & 2 \\ 5 & -3 & 0 & 0 \end{bmatrix}$$

dbm.py

```
#!/usr/local/bin/python3
import sys
import math
inf = math.inf
zero = int(sys.argv[1]) # set to 1 if a variable is being zeroed
arg = int(sys.argv[2]) # provide the variable (1, 2, 3) being zeroed
e1 = [[ 0, -2, 0, -2], [ 5, 0, 3, 0], [ 2, -2, 0, -2], [ 5, 0, 3, 0]]
e2 = [[ 0, -3,inf,inf],[inf, 0,inf,inf],[inf,inf, 0,inf],[inf,inf,inf, 0]]
e3 = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
def intersect(e1, e2, e3):
   for i in range(0,4):
      for j in range(0,4):
         if e1[i][j] <= e2[i][j]:
            e3[i][j] = e1[i][j]
         else:
            e3[i][j] = e2[i][j]
def canonicalize(e3):
   for 1 in range(0,4):
      for i in range(0,4):
         for j in range(0,4):
            e3[i][j] = min(e3[i][j],e3[i][1]+e3[1][j])
intersect(e1, e2, e3)
canonicalize(e3)
if zero == 1:
   e3[0][arg] = 0
   e3[arg][0] = 0
   ps = [1,2,3]
   ps.remove(arg)
   for index in ps:
      e3[arg][index] = e3[0][index]
      e3[index][arg] = e3[index][0]
   canonicalize(e3)
print('\n'.join([''.join(['\{:4}\]'.format(item) for item in row]) for row in e3]))
print( str(-1 * e3[0][1]) + ' \le x1 \le ' + str(e3[1][0]) )
print( str(-1 * e3[0][2]) + ' <= x2 <= ' + str(e3[2][0]) )
print( str(-1 * e3[0][3]) + ' <= x3 <= ' + str(e3[3][0]) )</pre>
print( str(-1 * e3[2][1]) + ' <= x1 - x2 <= ' + str(e3[1][2]) )
print( str(-1 * e3[3][2]) + ' <= x2 - x3 <= ' + str(e3[2][3]) )
print( str(-1 * e3[3][1]) + ' <= x1 - x3 <= ' + str(e3[1][3]) )
```