

UD-1 Mechanism

SERVICE MANUAL

English Deutsch Français

No. 1155

English

Deutsch

rib and lean Français

Hitachi standard chassis UD-1 has a uni-torque motor, 3-heads and a double capstan system for higher performance tape deck mechanisms..

Use this manual together with the service manual (No. 1139) for the standard chassis UD-2 since the basic mechanism is the same as in the UD-2. Das Standard-Chassis Hitachi UD-1 ist mit einem Uni-torque-Motor ausgerüstet und weist Dreikopfbestückung und ein mit zwei Tonwellen ausgestattetes Bandlaufwerk auf, um noch besseres Leistungsvermögen gewährleisten zu können.

Diese Anleitung ist gemeinsam mit der Wartungsanleitung (Nr. 1139) zu verwenden, da das Chassis UD-1 auf dem Chassis UD-2 basiert. Le châssis standard Hitachi UD-1 est équipé du'un moteur à couple unique, de 3 têtes magnétiques et d'un système à double cabestan pour que les performances des mécanismes interne à la platine magnétophone soient d'autant supérieur.

Utiliser cette brochure avec le manuel de réparation (N° 1139) pour toutes les opérations à faire sur le châssis UD-2 étant donné que les mécanismes de base sont les mêmes.

TAPE DECK MECHANISM

Feb. 1979

SPECIFICATIONS

Track system Motor 4-track 2-channel 2-motor system

- Capstan drive section
 Uni-torque motor (DD motor)
- Reel disc drive section
 DC motor (with mechanical governor)

Tape speed 4.75cm/s
Wow & flutter 0.03% WRMS
Fast-forward time 90 sec (C-60)
Rewind time 90 sec (C-60)
Heads 3-head system

(REC/PLAY combination head, erase head)

DESCRIPTION OF UNI-TORQUE MOTOR

OUTLINE OF DEVELOPMENT

In cassette decks using direct drive motors, the capstan and the motor are directly connected, so principal performance items such as wow & flutter, etc. depend directly on the performance of the motor.

Multi-pole DC servo-motors and AC motors have been conventionally used for cassette decks; they have various advantages and disadvantages.

Hitachi has conducted research into direct drive motors with the advantages of both types of motor and succeeded in developing a flat, brushless DC servo direct drive motor. This motor is called a uni-torque motor because its torque is constant; vibration is minimized and rotation is smooth.

A uni-torque motor, as developed for direct drive record players, has been adapted for use in cassette decks. In addition, single-chip IC, which contains the speed detector circuit, speed control circuit and motor drive circuit has been developed to minimize the number of parts.

Fig. 3 is a block diagram of this IC.

(1) Servo control

A magnetic induction detection circuit is to detect the motor speed. The principle used is that when the magnetic flux changes when there is a conductor in the magnetic field, an electromotive force proportional to the rate of change of the magnetic flux occurs in the conductor.

As is shown in Fig. 1, there are 9 conductors for each pole; 72 conductors under the whole circumference. Assuming these conductors are numbered 1-72, voltage is generated in the 1st, 10th, 19th, 28th, 37th, 46th, 55th and 64th conductors which are positioned where polarity changes, and the direction of the voltage is the opposite for every other conductor, so directions of 8 voltages are same and added together. When the magnet turns, the voltage is induced in the next conductor in sequence.

A signal which is inverted 72 times the number of rotations of the magnet is obtained. Since this signal

^{*} This specification may be changed for improvement without notice.

Fig. 3

consists of voltages from 8 positions on the circumference, it is a highly precise signal with a constant output even if there is any unevenness or instability in the magnet.

The conductors are arranged as a highly precise printed pattern.

(2) Amplification, wave-shaping of the speed detection signal

The speed detection signal has low level and an AM component remains in it, so errors will occur if it is used as it is. Accordingly, it is over-saturated and amplified by an amplifier with high gain and a shaping circuit forms it into a square wave signal. By making it a square wave signal, any AM component is limited and errors become negligible.

(3) Pulse generator, f-V converter

The voltage of the capacitor is inversely proportional to the speed because it is repeatedly charged and discharged at the speed detection frequency.

The pulse generator generates a trigger signal synchronized with the speed detection signal.

This trigger signal operates the capacitor charging/discharging circuit and the voltage of the capacitor is converted to a DC voltage by a low-pass filter.

(4) Reference voltage, comparison amplification

The DC voltage generated by the f-V converter and the reference voltage are compared and a difference voltage is output. Since the reference voltage is the speed reference, its stability is very important, so a stabilization circuit is provided.

(5) Amplitude slicer (limiter)

This slices the voltage amplitude of the Hall element current amplified from the output of the comparison amplifier. When the speed increases above the rated speed, the output from the comparison amplifier becomes larger and the width of the slice of the Hall element voltage amplitude becomes proportionally larger.

When the speed decreases below the rated speed, this operation is reversed.

(6) Drive amplification

The Hall element signal sliced by the amplitude slicer is amplified by class B amplification.

In addition, an output transistor outside the IC pro-

vides control of the voltage applied to the drive coil.

(7) Generation of the driving sine wave by the Hall elements

Since the uni-torque motor is driven by alternating current, a Hall element is used for switching.

The output voltage VH of the Hall elements is proportional to the current IH applied to the Hall elements and the strength B of the magnetic field.

Alternating current is generated under the magnet, so the Hall element is placed here to obtain the AC output. The output is amplified, speed control is provided by the IC and the signal is applied to the drive coil. Operation errors caused by heat are prevented by the thermal shut-down circuit.

ADJUSTING WOW & FLUTTER

Since the wow & flutter of this unit is as low as 0.03% WRMS, it may rise to more than this value if parts are installed incorrectly. Especially, since the drive coil of the DD motor is incorporated in the yoke plate, wow & flutter is affected by the gap and positioning of the magnet and drive coil. To remove the yoke plate, mark lines (a) and (b) on the yoke plate and chassis before loosening the yoke plate fixing screws.

When re-assembling, adjust so that the yoke plate matches the previously marked lines (a) and (b). Be careful not to damage the bearing; prevent dust from entering the unit. Pay attention to the following:

- When the oil guard washer touches the bearing, wow & flutter increases; set it with gap of approx. 1mm.
- 2) Check the thrust gap of the flywheel.
- 3) Clean the pressure roller, capstan and head, etc. so that no oil or dust adheres to them.
- 4) Since the semi-variable resistor on the PC Board installed to the yoke plate is for speed control, do not touch it.

LUBRICATION

Lubricate as follows.

Oil or dust should not touch transmission parts including the capstan, pressure roller, flywheel, motor pulley, belt, etc. and the head during lubrication.

- 1. Sliding parts between sliders and the chassis Apply white greases.
- 2. Shafts of rotary parts and bearings PAN motor oil

INSPECTION OF MECHANISM

	Check item		Reference value	Remarks
	Pressure-roller pressure	Take-up side	350-450 g	Note 1
1.		Supply side	170-250 g	
	Reel torque	Take-up	35-60 g-cm	Measure in playback mode
2.		FF	65—120 g-cm	Measure in FF mode
		Rewind	65–120 g-cm	Measure in REW mode
	Back-tension	Take-up side	Less than 4 g-cm	Values when installing the counter
3.		Supply side	7—10 g-cm	
4.	Reel & take-up roller pressure		100—140 g	Note 2
5.	. Brake torque		More than 15 g-cm	

Note 1. Set this unit in the playback mode and press the pressure roller in the direction of the arrow using a fan type tension gauge, and measure the pressure when the pressure roller is released from the capstan.

Note 2. Set this unit in the playback mode and press the take-up roller in the direction of the arrow using a fan type tension gauge, and measure the pressure when the take-up roller is released from the reel.

Technische Daten

Spursystem Motor

Viertelspur-Stereo

- 2-Motoren-Bandlaufwerk
- Direktantreibender Uni-torque-Motor für Tonwellen
- Gleichstrom-Motor mit mechanischem Drehzahlregler für Wickeltellerantrieb

Bandgeschwindigkeit

4.75 cm/sek.

Gleichlaufschwankungen

0.03% (Mittelwert, bewertet)

Schnellvorlaufzeit

90 sek. (Cassette C-60)

Rücklaufzeit 90 sek. (Cassette C-60)

Kopfbestückung 3 Tonköpfe (Aufprech- und Wiedergabekopf in einem Ge-

häuse, Löschkopf)

Änderungen im Sinne ständiger Verbesserungen vorbehalten.

Beschreibung des Uni-torque-Motors

Zusammenfassung der Entwicklungsgrundsätze

In Cassetten-Tonbandgeräten mit Direktantrieb sind die Tonwelle und der Antriebsmotor direkt verbunden, so daß wichtige Leistungsdaten wie Gleichlaufschwankungen usw. direkt durch den Antriebsmotor beeinfluß werden.

Für konventionelle Cassetten-Tonbandgeräte werden hauptsächlich mehrpolige Gleichstrom-Servomotoren oder Wechselstrom-Motoren verwendet, die sich durch bestimmte Voraber auch Nachteile auszeichnen.

Hitachi befaßte sich mit der Entwicklung eines direktantreibenden Motors, der die Vorteile dieser beiden Motortypen vereint; mit der Entwicklung eines kollektorlosen Gleichstrom-Servomotors (40 Patente angemeldet) war unserer Entwicklungsabteilung Erfolg beschieden. ser Motor wird von uns mit "Uni-torque-Motor" bezeichnet, da er sich durch ein konstantes Drehmoment, ruhigen Lauf und minimale Vibrationen auszeichnet.

Dieser Uni-torque-Motor wurde ursprünglich für Plattenspieler mit Direktantrieb entwickelt; ein noch verfeinerter Motor dieses Prinzips kommt nun jedoch auch in Cassetten-Tonbandgeräten zur Anwendung. Um die Anzahl der Bauteile auf ein absolutes Minimum begrenzen zu können, hat Hitachi auch einen integrierten Ein-Chip-Schaltkreis entwickelt, der den Drehzahl-Detektor, die Drehzahl-Regelung und die Motor-Treiberstufe enthält.

In Abb. 3 ist das Blockschaltbild dieses integrierten Schaltkreises dargestellt.

(1) Servo-Regelung

magnetischer Induktions-Detektorschaltkreis spürt die Motor-Drehzahl auf. Dabei wird ein Leiter in einem Magnetfeld bewegt, so daß eine elektromotorische Kraft in dem Leiter erzeugt wird, die proportional zur Änderung der Magnetflußdichte ist.

Wie der Abb. 1 entnommen werden kann, wird jeder Pol aus 9 Leitern gebildet, so daß sich insgesamt 72 Leiter am Umfang in gleichmäßigen Abständen be-Werden diese Leiter mit den Zahlen 1 bis 72 beziffert, dann wird jeweils im 1., 10., 19., 28., 37., 46., 55. und 64. Leiter, an welchen die Polarität

Abb. 3

wechselt, eine Spannung induziert; die Spannung ist in jedem anderen Leiter anders gerichtet. Die Richtung der Spannung in den acht genannten Leiter ist gleich und wird addiert. Sobald der Magnet weiterdreht, wird eine Spannung in den jeweils darauffolgenden Leitern induziert.

Dadurch wird ein Signal erhalten, das 72-mal pro Umdrehung des Magnets umgepolt wird. Dieses Signal besteht aus den addierten Spannungen von acht am Umfang gleichmäßig verteilten Leitern, so daß es einen konstanten Pegel aufweist, auch wenn der Magnet nicht stabil sein sollte. Die Leiter sind auf einer präzisen, gedruckten Leiterplatte untergebracht.

(2) Verstärkung und Wellenform-Bildung des Drehzahl-Detektorsignals

Das Drehzahl-Detektorsignal weist niedrigen Pegel

auf und enthält AM-Komponenten, so daß es zu Fehlern kommen könnte, wenn dieses Signal unverändert verwendet wird. Aus diesem Grund wird dieses Signal in einem übersättigten Zustand in einem Verstärker hohen Gewinns verstärkt und in einem Wellenformer in ein Rechteckwellensignal umgeformt. Durch die Umformung in ein Rechteckwellensignal werden alle AM-Komponenten begrenzt, so daß auftretende Fehler auf einen vernachlässigbaren Pegel reduziert werden.

(3) Impulsgenerator; Frequenz/Spannungs-Wandler.

Die Spannung des Kondensators ist umgekehrt proportional zur Drehzahl, da der Kondensator gemäß der Drehzahl-Detektorfrequenz wiederholt aufgeladen bzw. entladen wird.

Der Impulsgenerator erzeugt ein Trigger-Signal, das mit

dem Signal des Drehzahl-Detektors synchronisiert ist. Dieses Trigger-Signal dient zur Steuerung des Kondensator-Lade- und -Entlade-Schaltkreises; die Spannung des Kondensators wird mit Hilfe eines Tiefpaßfilters in eine Gleichspannung umgewandelt.

(4) Bezugsspannung; Vergleichsverstärkung

Die vom Frequenz/Spannungs-Wandler erzeugte Gleichspannung und die Bezugsspannung werden verglichen, so daß ggf. eine Spannungsdifferenz anfällt. Die Bezugsspannung dient als Drehzahl-Bezugssignal, so daß ein stabiler Pegel erforderlich ist, der durch einen Stabilisationsschaltkreis erhalten wird.

(5) Amplitudenbegrenzer

Der Amplitudenbegrenzer sorgt für eine Begrenzung der Spannungsamplitude, die vom Hall-Element geliefert wird und das im Vergleichsverstärker verstärkte Signal des Hall-Elementes darstellt. Sobald die Drehzahl die Nenndrehzahl Überschreitet, erhöht sich der Ausgang des Vergleichverstärkers, so daß auch die Bandbreite der begrenzten Spannungsamplitude des Hall-Elementes proportional erhöht wird. Fällt die Drehzahl dagegen unter die Nenndrehzahl ab, dann wird der eben genannte Vorgang sinngemäß umgekehrt.

(6) Treiberverstärker

Das durch den Amplitudenbegrenzer begrenzte Signal des Hall-Elementes wird in einem Verstärker der Betriebsklasse B verstärkt. Zusätzlich steuert ein außerhalb des integrierten Schaltkreises (IC) angebrachter Ausgangstransistor die an die Treiberspule angelegte Spannung.

(7) Erzeugung einer Treiber-Sinuswelle im Hall-Element

Da der Uni-torque-Motor durch Wechselstrom angetrieben wird, wird ein Hall-Element zum Umschalten verwendet. Die Ausgangsspannung VH des Hall-Elementes ist proportional zu der dem Hall-Element eingespeisten Stromstärke IH und der Magnetfeldstärke (B).

Der Wechselstrom entsteht durch den Magnet, so daß das Hall-Element in diesem Schaltkreis angeordnet ist, um ein Wechselstrom-Ausgangssignal zu erhalten. Dieses Ausgangssignal wird verstärkt, die Motor-Drehzahlregelung wird mittels IC durchgeführt und das Ausgangssignal wird an die Treiberspule angelegt. Eine thermische Schutzschaltung unterbindet aufgrund von Temperaturänderungen auftretende Fehler.

Abgreich für minimale Gleichlaufschwankungen

Die Gleichlaufschwankungen dieses Laufwerkes betragen nur 0,03% (Mittelwert, bewertet), können aber verschlechtert werden, wenn die Teile nicht richtig eingebaut werden. Die Treiberspule des direktantreibenden Motors ist in die Jochplatte eingebaut, so daß die Gleichlaufschwankungen durch den Abstand zwischen und die Position des Magnetes und der Treiberspule beeinflußt wird. Wenn die Jochplatte ausgebaut wird, die Markierungen (a) und (b) an der Jochplatte und am Chassis anbringen, bevor die Befestigungsschrauben der Jochplatte gelöst werden. Beim Zusammenbau ist die Jochplatte danach so einzubauen, daß die angebrachten Markierungen (a) und (b) genau übereinstimmen. Unbedingt darauf achten, daß das Lager nicht beschädigt wird und kein Staub in das Gerät eindringt. Besonders die folgenden Punkte beachten:

- Die Ölschutzscheibe in einem Abstand von etwa 1 mm vom Lager einbauen, da die Gleichlaufschwankungen erhöht werden, wenn die Scheibe das Lager berührt.
- 2) Das Axialspiel des Schwungrades überprüfen.
- Andruckrolle, Tonwelle, Tonköpfe usw. reinigen, damit weder Öl noch Staub an diesen Teilen anhaftet.
- 4) Der auf der Leiterplatte (montiert auf der Jochplatte) angebrachte Regelwiderstand dient für die Drehzahlregelung und darf daher nicht berührt werden.

Prüfung des Laufwerkes

	Prüfpunk	te	Bezugswerte	Bemerkungen	
		Aufwickelteller	350-450 g	Himmoia 1	
1.	Andrukrollen-Druck	Abwickelteller	170-250 g	Hinweis 1	
		Aufwickelteller	65-60 g.cm	Bei Wiedergabe messen	
2.	Wickelteller-Drehmoment	Schnellvorlauf	65-120 g.cm	Bei Schnellvorlauf messen	
		Rücklauf	60-120 g.cm	Bei Rücklauf messen	
	Rückhaltemoment -	Aufwickelteller	weniger als 4 g.cm	Bei eingebauten Zählwerk	
3.		Abwickelteller	7–10 g.cm		
4.	Druck am Wickelteller und an der Aufwickeltellerrolle		100—140 g	Hinweis 2	
5.	Bremsmoment		mehr als 15 g.cm		

Hinweis 1: Dieses Gerät auf Wiedergabe schalten und die Andruckrolle mit Hilfe einer Federwaage (oder eines Spannungsmessers) in Pfeilrichtung ziehen; danach die erforderliche Kraft messen, um die Andruckrolle von der Tonwelle abzuheben.

Schmierung

Die Schmierung ist wie nachfolgend gezeigt vorzunehmen. Öl und Staub dürfen jedoch nicht an den Laufwerksteilen (Tonwelle, Andruckrolle, Schwungrad, Motor-Riemenscheibe, Antriebsriemen usw.) oder am Tonkopf anhaften.

- 1. Gleitflächen zwischen Gleitstück und Chassis: Fett auftragen.
- 2. Wellen von drehenden Teilen: Motoröl PAN

Français

Fiche technique

Système de pistes: Moteur : 4 pistes, 2 canaux Système à 2 moteurs

- Section d'entraînement de cabestan Moteur à couple unique (moteur DD)
- Section d'entraînement de plateau de bobine Moteur C.C. (muni d'un régulateur mécanique)

Vitesse de défilement: 4,75 cm/sec.

Pleurage et scintille-

0,03%WRMS e rapide: 90 sec. (C-60)

Durée d'avance rapide: Durée de rebobinage:

90 sec. (C-60)

Têtes magnétiques: Système à

Système à 3 têtes (une tête combinée enregistrement-lecture,

une tête d'effacement).

Description du moteur à couple unique

Description générale de l'amélioration

Dans les platines à cassettes employant des moteurs à entraînement direct, le cabestan et le moteur sont directement reliés de sorte que les performances principales telles que le pleurage et le scintillement, etc, dépendent directement des performances du moteur. Les servomoteurs C.C. à pôles multiples et les moteurs C.A. équipent habituellement les platines à cassettes et présentent des avantages comme des inconvénients.

Hitachi a établi un plan de recherche sur les moteurs à entraînement direct possédant les avantages des deux modèles de moteur et a réussi à construire un servomoteur C.C. sans balais, plat et entraînement direct. Ce moteur porte le nom de moteur à couple unique parce son couple est constant et les vibrations sont réduites au maximum et parce sa rotation est très régulière. Un moteur à couple unique a été mis au point pour l'entraînement direct d'une platine tourne-disques et a été adopté pour les magnétocassettes. Par ailleurs, un seul Cl ultra-mince renfermant un circuit de détection de vitesse, un circuit de contrôle de vitesse et un circuit de commande du moteur a également été mis au point pour limiter au maximum les composants internes.

La figure 3 représente le diagramme synoptique de ce circuit intégré.

(1) Servocommande

Un circuit de détection à induction magnétique détecte la vitesse du moteur. Le principe utilisé se caractérise par le fait qu'un changement du flux magnétique se produit quand il existe un conducteur dans le champ magnétique, une force électromotrice proportionnelle au taux de variation du flux magnétique se produit dans le conducteur.

^{*} Ces renseignements techniques peuvent changer sans préavis pour des raisons d'amélioration.

Français

Figure 3

Comme indiqué sur la figure 1, il existe 9 conducteurs pour chaque pôle, 72 conducteurs à la périphérie. En supposant que les conducteurs sont numérotés de 1 à 72, la tension générée par le premier, le 10ième, le 19ième, le 28ième, le 37ième, le 46ième, le 55ième et le 64ième conducteur qui sont placés aux endroits où la polarité change et que le sens de la tension est opposée pour tous les autres conducteurs, le sens des 8 tensions est le même et s'ajoute. Quand l'aimant tourne, une tension est induite dans le conducteur suivant et dans l'ordre.

Un signal inversé 72 fois le nombre de rotation de l'aimant est ainsi obtenu. Etant donné que ce signal se compose des tensions produites par les 8 positions à la périphérie du moteur, il est très précis et la sortie obtenue est particulièrement constante même s'il existe une irrégularité ou une instabilité au niveau de l'aimant.

Les conducteurs sont disposés dans un ordre précis sur un motif imprimé.

(2) Amplification et formation d'onde du signal de détection de la vitesse:

Le signal de détection de vitesse est à bas niveau et un composant AM en fait partie de sorte que si une erreur se produit, il est utilisé tel quel. Par conséquent, il subit une subit une saturation en excès pour être ensuite amplifié par l'amplificateur à gain élevé tandis qu'un circuit de formation le transforme en signal à onde carrée. En le transformant en signal à onde carrée, tout composant AM est évité et le taux d'erreur est alors négligeable.

(3) Générateur d'impulsions, Convertisseur fréquencetension

La tension du condensateur est inversement propor-

Français

tionnelle à la vitesse parce qu'elle est chargée et déchargée en cycle répété en rapport à la fréquence de détection de la vitesse.

Le générateur d'impulsions produit un signal de déclenchement synchronisé au signal de détection de la vitesse

Ce signal de déclenchement commande le circuit de charge et de décharge du condensateur et la tension du condensateur est convertie en tension continue par un filtre passe-bas.

(4) Tension de référence, amplification de comparaison

La tension continue produite par le convertisseur fréquence-tension et la tension de référence sont comparées pour qu'une tension différentielle soit obtenue. Etant donné que la tension de référence correspond à la vitesse de référence, sa stabilité est très importante et c'est pourquoi un circuit de stabilisation est également prévu.

(5) Ecrêteur

Cet écrêteur a pour rôle de couper l'amplitude de tension du courant de l'élément à effet de Hall amplifié par la sortie de l'amplificateur de comparaison. Quand la vitesse augmente et dépasse la vitesse nominale, la sortie de l'amplificateur de comparaison augmente et la largeur de la coupure de l'amplitude de tension de élément à effet de Hall augmente dans la même proportion. Quand la vitesse diminue et tombe

en-dessous de la vitesse nominale, l'opération inverse se produit.

(6) Amplification de commande

Le signal coupé de l'élément à effet de Hall par l'écrêteur est amplifié par une amplification de classe B.

Par ailleurs, un transistor de sortie indépendant du Cl fournit une commande de la tension appliquée à la bobine de commande.

(7) Génération d'une onde sinusoïdale de commande par les éléments à effet de Hall.

Etant donné que le moteur à couple unique est commandé par un courant alternatif, un élément à effet de Hall est employé pour que la commutation soit faite. La tension de sortie VH des éléments à effet de Hall est proportionnelle à l'intensité. LH appliquée aux éléments à effet de Hall et à la puissance (B) du champ magnétique.

Le courant alternatif est produit sous l'aimant de sorte que l'élément à effet de Hall est placé de telle sorte qu'une sortie à courant alternatif soit obtenue. La sortie est amplifiée, le contrôle de la vitesse est assuré par le CI et le signal est appliqué à la bobine de commande. Les erreurs de fonctionnement par suite d'une formation de chaleur sont ainsi évitées grâce à l'emploi d'un circuit de coupure thermique.

Réglage du pleurage et du scintillement

Etant donné que le pleurage et le scintillement de cet appareil est si bas qu'il ne dépasse pas 0,03% WRMS, il risque d'augmenter si certains composants sont mal installés. Ceci s'applique particulièrement au fait que la bobine de commande du moteur DD est incorporée dans le plateau de carcasse, le pleurage et le scintillement est directement affecté par l'entrefer et la position de l'aimant et de la bobine de commande. Pour retirer le plateau de carcasse, porter des repères (a) et (b) sur le plateau et le châssis avant de desserrer les vis de fixation du plateau.

Au moment du remontage, ajuster la position du plateau de carcasse avec les repères portés avant le démontage (a) (b). Faire attention au palier de l'appareil et empêcher des saletés ou de la poussière de rentrer à l'intérieur.

Faire très attention sux points suivants:

- Quand la rondelle de retenue d'huile touche le palier, le pleurage et le scintillement augmente, régler l'écartement à environ 1mm.
- 2) Vérifier l'écartement de butée du volant.
- 3) Nettoyer le galet-presseur, le cabestan, les têtes et autres, pour éviter que l'huile et la poussière collent dessus.

4) Etant donné que la demi-résistance variable de la plaquette à circuits imprimés montée sur le plateau de carcasse est destinée à la régulation de vitesse, prendre toutes les précautions nécessaires pour ne pas la toucher.

⊯Français

Inspection du mécanisme

	Elément à contrôler		Valeur de référence	Remarques
1.	Pression de galet-presseur	Enroulement	350–450 gr	Remarque 1
		Débit	170–250 gr	
2.	Couple de bobine	Enrouleuse	35–60 gr-cm	Mesurer au cours du mode de lecture
		FF	65—120 gr-cm	Mesurer au cours du mode FF
		Rebobinage	65—120 gr-cm	Mesurer au cours du mode REW
3.	Tension arrière	Enroulement	moins de 4 gr-cm	Valeur au moment de l'installation du compteur.
		Débit	7–10 gr-cm	
4.	Pression de galet de débit et d'enroulement		100—140 gr	Remarque 2
5.	5. Couple de freinage		mieux que 15 gr-cm	

Remarque 1: Cet appareil doit être réglé en mode de lecture puis presser le galet-presseur dans le sens indiqué par la feèche en utilisant un dynamomètre la pression quand le galet-presseur est séparé du cabestan.

Figure 5

Remarque 2: Régler l'appareil en mode de lecture et presser le galet d'enroulement dans le sens indiqué par la flèche avec un dynamomètre et mesure la pression quand le galet d'enroulement est séparé de la bobine.

Graissage

Le graissage est spécifié ci-après.

Ne pas mettre d'huile ou permettre à des saletés de venir en contact avec les éléments de transmission comprenant le cabestan, le galet-presseur, le volant, la poulie moteur, la courroie, etc. et les têtes au cours du graissage.

- 1. Parties coulissantes entre les coulisseurs et le châssis. Mettre de la graisse blanche
- 2. Axes des pièces rotatives et roulements. Mettre de l'huile moteur PAN

REPLACEMENT PARTS LIST

Ersatztelliste

Liste de pièces de rechange

SYMBOL-NO	P-N0	DESCRIPTION
	FOR CAS	SETTE DECK ASSEMBLY (A)
1	7300692	HEAD PLATE ASSEMBLY
2	5444664	RECORD PLAYBACK HEAD
3	7781751	SPECIAL SCREW
4	6321243	HEAD SPRING
5	5445161	ERASE HEAD
6	7287243	ERASE HEAD SPACER
,	8781344	BIND SCREW-2.6MMDX14MM
8	6752081	HEAD BASE
9	6545321	SPRING
10	6383281	PRESSURE ROLLER ARM ASSEMBLY
11	6383315	PRESSURE ROLLER ARM ASSEMBLY
12	7786215	POLYSLIDER WASHER
13	7786216	POLYSLIDER WASHER
14	6304721	ADJUST SPRING
15	6308571	SPRING
16	6308563	SPRING
17	0948275	BALL
18	7300112	BALL PRESS
19	7189545	LOCKING WASHER
20	6413032	TAKE UP ARM ASSEMBLY
21	6308552	SPRING
22	7781132	BT SCREW
23	6412753	TURNTABLE HOLDER ASSEMBLY
24	7300124	BRAKE PLATE
25	6586003	BRAKE RUBBER
26	6300981	SPRING
27	7300134	FR LEVER
28	7543424	LEVER SHAFT
29	6302062	SPRING
30	7536872	LOCK LEVER PIN
31	7306515	PLAY LEVER
32		SOLENOID LEVER
33		SOLENOID ASSEMBLY
34		SOLENGID ASSEMBLY
35		RELAY HOLDER
36		REED RELAY
37	7575542	
38		RELAY CAP
39		MOTOR ASSEMBLY
40		RUBBER PLATE SCREW FOR MOTOR MOUNTING
41	6304941	
42		FLYWHEEL ASSEMBLY (L)
43		
44		POLY SLIDER WASHER
46		POLYESTER WASHER
L	6557302	FLYWHEEL BELT

SYMBOL -NO	P-N0	DESCRIPTION
47	6357293	
48	7109653	MAGNET ASSEMBLY
49		POLYESTER WASHER
50	0638564	MOTOR PULLEY HOLDING SCREW
51	6421601	COUNTER PULLEY
52	6354381	SENSING BELT
53	7307942	REC SLIDER
54	6301011	LOCK LEVER SPRING
55	7301083	HEAD PLATE RETURN LEVER
56	6301361	SPRING
57	7301604	EJECT LEVER
58	7544021	LEVER SHAFT
59	6302821	SPRING FOR EJECT LEVER
60	6748564	LOCK ARM
61	7543424	LEVER SHAFT
62	6308983	SPRING
63	6752012	CASSETTE HOLDER ARM
64	6302811	SPRING
65	6091721	CASSETTE TRAY ASSEMBLY
66	6308932	SPRING
67	6748801	DAMPER ARM ASSEMBLY
68	6302602	SPRING FOR DAMPER ARM
69	5601121	MICRO SWITCH
70	7290501	GOVERNOR
71	5633361	PUSH SWITCH
72	7763811	INSULATING FIBER
73	6750021	EJECTER ASSEMBLY
74	6302576	EJECTER SPRING
75	6725643	FLYWHEEL SUPPORT
76	6372961	ROTOR ASSEMBLY
77	7763893	INSULATING SHEET
78	5970871	COIL P.W.B ASSEMBLY

When ordering hardware excluding stated on these lists, be sure to make your orders with type and size. Falls andere als in dieser Liste aufgefuhrte Befestigungselemente bestellt werden, unbedingt Bauart und Größe angeben Lorsque vous effectuez une commande de matériel sauf les pièces qui sont décrites dans la liste ci-dessus, précisez dans votre commande le type et la dimension de la pièce.

- 17 -

HITACHI SALES CORPORATION OF AMERICA

Eastern Regional Office

1200 Wall Street West, Lyndhurst, New Jersey 07071

Tel. 201-935-8980

Mid-Western Regional Office

1400 Morse Ave., Elk Grove Village, III. 6007

Tel. 312-593-1550

Southern Regional Office

510 Plaza Drive College Park, Georgia 30349

Tel. 404-763-0360

Western Regional Office

401 West Artesia Boulevard, Compton, California 90220

Tel. 213-537-8383

HITACHI SALES CORPORATION OF HAWAII, INC

743-G Waiakamilo Rd., Honolulu, Hawaii 96817

Tel. 808-841-0431

HITACHI SALES CORP. OF CANADA Ltd.

3300 Trans Canada Highway Pointe Claire, Quebec, H9R1B1, Canada

Tel. 514-697-9150

HITACHI SALES EUROPA GmbH

2 Hamburg 54, Kleine Bahnstraße 8, West Germany

Tel. 850 60 71-75

HITACHI SALES (U.K.) Ltd.

Hitachi House, Station Road, Hayes, Middlesex UB3 4DR, England

Tel. 01-848-8787 (Service Centre: 01-848-3551)

HITACHI SALES SCANDINAVIA AB

Rissneleden 8, Sundbyberg, Box 7138, S-172-07 Sundbyberg 7,

Sweden

Tel. 08-98 52 80

HITACHI SALES NORWAY A/S

Oerebekk 1620 Gressvik P.O. Box 46 N-1601 Fredrikstad, Norway

Tel. 032-2850

SOUMEN HITACHI OY

Box 151, SF-15100 Lahti 10, Finland

Tel. Lahti 44 241

HITACHI SALES A/S Kuldyssen 13, DK-2630 Tasstrup, Denmark

Tel. 02-999200

HITACHI SALES A.G.

5600 Lenzburg, Switzerland

Tel. 064-513621

HITACHI-FRANCE (Radio-Télévision Electro-Ménager) S.A.

9, Boulevard Ney 75018, Paris, France

Tel. 201-25-00

HITACHI SALES WARENHANDELS GMBH

A-1180/Wien, Kreuzgasse 27

Tel. (0043222) 439367/8

HITACHI SALES AUSTRALIA Pty Ltd.

153 Keys Road, Moorabbin, Victoria 3189 Australia

Tel. 95-8722

HITACHI Ltd. TOKYO JAPAN

5-1, 1-chome, Marunouchi, Chiyoda-ku, Tokyo Head Office:

Tel. Tokyo (212)1111 (80 lines)

"HITACHY" TOKYO Cable Address:

Codes: All Codes Used

Printed in Japan (F)