COGNOMS:	GRUP:
NOM:	

EXAMEN PARCIAL D'EC GRUP 30 30 d'abril de 2020

L'examen té 7 preguntes, que s'han de contestar als fitxers **RespostaX.txt** (on X és el número de pregunta). No oblidis posar el teu nom i cognoms a la capçalera de cada fitxer de respostes, i pujar-lo al Racó abans que acabi el temps. L'examen comença a les 10:00h i acaba a les 12:00h. Pots pujar cada un dels fitxers tants cops com et faci falta, sols comptarà la darrera versió.

Pregunta 1. (1,25 punts)

Donada la següent funció en C:

```
int f(int v[100])
{
int i, result=0;
    for (i=0; i<100; i++)
        result += v[i];
    return result;
}</pre>
```

Hem traduït i optimitzat el codi en assemblador MIPS de la següent manera:

```
f:
          addiu
                   $v0, $zero, 0
                                         # result=0
          addiu
                  $t1, $zero, 0
                                         \# i = 0
                  $t2, $zero, 100
          addiu
for:
          sll
                  $t3, $t1, 2
          addu
                  $t3, $a0, $t3
          lw
                  $t4, 0($t3)
                                         # $t4 = v[i]
          addu
                  $v0, $v0, $t4
                                         # result += v[i]
          addiu
                  $t1, $t1, 1
                                         # i++
                  $t5, $t1, $t2
          slt
          bne
                   $t5, $zero, for
          jr
                   $ra
                                         # aquest salt sempre salta!
```

La taula següent mostra els CPI de cada tipus d'instrucció en un computador MIPS, quan executa l'anterior subrutina en assemblador:

Tipus	salts que salten	salts que no salten	load/store	les altres
CPI	3	2	10	1

Completa la següent taula indicant, per a cada tipus d'instrucció, el nombre total d'instruccions executades i el nombre total de cicles de rellotge corresponents. Calcula també el temps d'execució total de la subrutina, expressat en cicles i també en nanosegons, tenint en compte que la freqüència de rellotge és de 2GHz.

Tipus	salts que salten	salts que no salten	load/store	les altres
Instruccions				
Cicles				

Total cicles		Total temps (ns)	

Pregunta 2. (2,00 punts)

Donat el següent contingut inicial de la memòria representada en hexadecimal a partir de l'adreça 0x10010000, tal i com la mostra el simulador MARS:

Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)
0x10010000	0x040F00FE	0x0043FFE0	0x10010004	0x40000000

a) (1 punt) Sabem que aquest contingut correspon a la següent declaració de variables globals en C, totes elles inicialitzades. Indica les expressions dels requadres A, B0, B1, C, D, E que completin les corresponents inicialitzacions. ATENCIÓ: No s'admet el valor en hexadecimal (es considerarà resposta no vàlida). Tingues en compte que el codi ASCII de la 'A' és 0x41.

b) (0,5 punts) Quin és el valor final del registre \$t1, en hexadecimal, després d'executar el següent fragment de codi?

```
li $t2, 0x10010004

lh $t3, -2($t2)

lh $t4, 0($t2)

addu $t1, $t3, $t4

sh $t1, 0($t2)

$t1 = 0x
```

Quants bytes de la memòria es modifiquen?

Quina variable global es modifica?

c) (0,5 punts) Indica el contingut final en hexadecimal del registre \$t1 després d'executar el següent fragment de codi.

```
la $t0, b lb $t1, 2($t0) andi $t1, $t1, 0x05FF \$t1 = \boxed{0x}
```

COGNOMS:	GRUP:
NOM:	

Pregunta 3. (0,75 punts)

El següent codi en MIPS

```
f: lw $v0, 380($a0)
jr $ra
```

És la traducció de la següent funció incompleta, en C:

```
int f(int matriu[][15])
{
         return matriu[X][Y];
}
```

Troba les expressions X i Y dels requadres que fan correcta la traducció:

```
X = Y =
```

Descriu breument els càlculs que has fet per trobar la solució

Pregunta 4. (2,00 punts)

Donades les següents declaracions de funcions en C:

```
int g (char *m, int *n);
char f (int *y)
{
   char V[7];
   int a;
     *(y+1) = g(V, &a);
     return V[a];
}
```

a) (0,50 punts) Segons les regles de l'ABI estudiades, si volem salvar a la pila <u>el mínim nombre</u> de registres durant l'execució de la funció f, ¿quines variables i/o paràmetres de la subrutina f s'han d'emmagatzemar necessàriament en registres "segurs" \$s del processador MIPS? Indica també quin registre triaràs en cada cas.

Variable o paràmetre	Registre \$s

b) (0,25 punts) Fes una llista ordenada de les variables i registres que componen el bloc d'activació de la funció f indicant, per a cada un, a quina distància en bytes es troba del cim de la pila (posició on apunta \$sp), i quants bytes ocupa. Indica també la mida total del bloc d'activació.

Variable o registre	Distància respecte \$sp	Bytes que ocupa

Mida total:	

c) (0,75 punts) Tradueix a assemblador la primera sentència de la funció f:

$$*(y+1) = g(V, \&a);$$

return V[a];

d) (0,50 punts) Tradueix a assemblador la segona sentència de la funció f :

COGNOMS: GRUP: NOM:

Pregunta 5. (1,50 punts)

Donat el següent fragment de programa, en C:

- a) (1 punt) Hem traduït el bucle a MIPS, usant la tècnica d'accés seqüencial, amb dos punters:
 - El primer punter, emmagatzemat en \$11, apunta a l'element M[i][20] en cada iteració.
 - El segon punter, emmagatzemat en \$t2, apunta a M[20][i] en cada iteració.

Hem obtingut el següent codi incomplet. Troba les expressions dels requadres A, B, C, D perquè la solució sigui correcta.

```
Α
         la
                  $t1, M +
                             В
         la
                  $t2, M +
         li
                  $t3, 0
         li
                  $t4, 50
for:
                  $t3, $t4, fifor
         bge
         lw
                  $t5, 0 ($t1)
         subu
                  $t5, $zero, $t5
                  $t5, 0 ($t2)
         SW
                  $t1, $t1,
         addiu
                              D
         addiu
                  $t2, $t2,
         addiu
                  $t3, $t3,
         b
                  for
fifor:
```

```
A =
B =
C =
D =
```

b) (0,50 punts) L'hem optimitzat eliminant la variable d'inducció i convertint-lo a do-while. Les expressions A, B, C, D se suposen les mateixes de l'apartat anterior. Troba les expressions dels requadres EXPR1 i EXPR2 perquè sigui correcte.

```
$t1, M + A
        la
                 $t2, M + B
        la
                       EXPR1
                 $t3,
        la
                                  # adreça final
do:
                 $t5, 0($t1)
        lw
        subu
                 $t5, $zero, $t5
                                                 EXPR1 =
                 $t5, 0($t2)
        sw
        addiu
                 $t1, $t1, C
                                                 EXPR2 =
        addiu
                 $t2, $t2, D
         EXPR2
                 $t2, $t3, do
```

Pregunta 6. (1,25 punts)

Sigui el següent circuit sequencial per a la divisió de números naturals de 4 bits, anàleg al que s'ha estudiat durant el curs, el qual calcula el quocient i el residu amb 4 bits:

Suposem que volem calcular la següent divisió (en base 2): 1111/0010

a) (0,50 punts) Quins seran els valors inicials dels tres registres R, D i Q, en binari?

R =

D =

Q=

b) (0,25 punts) Quantes sumes i quantes restes ha de fer la ALU per obtenir el resultat final?

Número de sumes =

Número de restes =

c) (0,50 punts) Quins seran els valors finals dels tres registres R, D i Q, en binari?

R =

D =

Q =

CO	OGNOMS:	GRUP:	
	NOM:		
Pr	regunta 7. (1,25 punts)		
a)	expressa el resultat en hexa	format IEE-754 de <i>simple precisió</i> el número $x = 1,25 \cdot 2^{-12}$ ecimal.	⁶ , i
b)			
c)	(0,25 punts) Escriu en hexa El número positiu amb n El número (no infinit) m		
d)		sola frase breu: quin avantatge comporta representar l'expon t en el format "en excés" en comptes de "en complement a 2"	
e)	(0,25 punts) Explica en una flotant no tingui la propieta	sola frase breu: a què és degut que la suma de números en co associativa?	ma