回帰分析

予測と発展的なモデル

村田 昇

講義概要

- 第1回: 回帰モデルの考え方と推定
- 第2回: モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

- 目的変数 を 説明変数 で説明する関係式を構成
 - 説明変数: $x_1, ..., x_p$ (p 次元)
 - 目的変数: y (1 次元)
- 回帰係数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

問題設定

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 式の評価: 残差平方和 の最小化による推定

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解とその一意性

• 解の条件: 正規方程式

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}\mathbf{v}$$

• 解の一意性 : **Gram 行列** *X*^T*X* が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2023-09-01	29.2	0.0	24.01	0	SSE	4.3	1012.1	71	2.0
2023-09-02	29.6	0.0	22.07	0	SSE	3.1	1010.3	72	8.0
2023-09-03	29.1	3.5	18.64	0	ENE	2.8	1010.6	74	9.3
2023-09-04	26.1	34.0	7.48	0	N	2.6	1007.5	96	10.0
2023-09-05	29.3	0.0	22.58	0	S	3.5	1005.2	77	3.5
2023-09-06	27.5	0.5	13.17	0	SSW	2.6	1003.6	79	10.0
2023-09-07	27.0	0.5	11.01	0	ENE	2.5	1007.9	72	10.0
2023-09-08	21.9	107.5	2.10	0	NW	3.4	1007.8	98	10.0
2023-09-09	24.8	1.0	8.81	0	S	2.2	1006.8	93	7.5
2023-09-10	27.8	0.0	17.57	0	S	3.1	1009.1	83	6.3
2023-09-11	28.1	0.0	17.19	0	SSE	3.1	1010.1	79	9.0
2023-09-12	27.7	0.0	20.02	0	SSE	2.8	1010.0	76	4.8
2023-09-13	28.0	0.0	22.00	0	SE	2.4	1010.9	74	4.5
2023-09-14	28.2	0.0	14.54	0	SSE	2.8	1009.9	80	7.0
2023-09-15	27.4	10.5	9.21	0	NE	2.0	1010.9	88	8.5
2023-09-16	27.9	0.0	11.78	0	SSE	2.0	1011.5	86	10.0
2023-09-17	28.7	0.0	14.84	0	S	3.2	1011.5	80	4.0
2023-09-18	28.9	0.0	19.59	0	S	4.2	1011.6	74	1.8
2023-09-19	29.0	0.0	19.93	0	S	3.3	1010.1	72	2.3
2023-09-20	27.2	6.0	10.65	0	N	1.9	1009.3	82	8.3
2023-09-21	26.7	2.0	6.65	0	S	4.1	1006.7	87	9.5
2023-09-22	24.8	59.5	6.83	0	ENE	2.5	1008.1	93	10.0
2023-09-23	22.1	4.0	4.48	0	NE	2.6	1012.5	89	10.0
2023-09-24	22.2	0.0	15.81	0	N	3.0	1017.2	67	7.0
2023-09-25	22.4	0.0	15.49	0	N	2.5	1017.1	69	6.5
2023-09-26	24.6	0.0	16.08	0	NNW	2.0	1012.7	71	6.0
2023-09-27	25.3	0.0	11.59	0	SSE	1.9	1008.1	81	9.0
2023-09-28	27.4	0.0	14.03	0	ESE	1.9	1004.7	79	5.8
2023-09-29	26.3	0.0	10.11	0	SSE	3.0	1009.0	75	8.5
2023-09-30	25.6	0.0	7.98	0	S	2.5	1007.5	77	7.0

解析の事例

気温に影響を与える要因の分析

- データの概要
- 気温を説明する 5 種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル 4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

- 関連するデータの散布図
- 観測値とあてはめ値の比較

Figure 1: 散布図

Figure 2: モデルの比較

	モデル 1		モデル 2		7	ミデル 3	7	ミデル 4	モデル 5	
Characteristic	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI
気圧	-0.21	-0.49, 0.06			-0.36	-0.55, -0.18	-0.32	-0.53, -0.12	-0.36	-0.55, -0.17
日射			0.25	0.14, 0.37	0.30	0.20, 0.40	0.35	0.21, 0.49	0.32	0.18, 0.46
湿度							0.05	-0.06, 0.16		
雲量									0.05	-0.26, 0.36
\mathbb{R}^2	0.082		0.414		0.632		0.644		0.633	
Adjusted R ²	0.049		0.393		0.604		0.603		0.591	

Abbreviation: CI = Confidence Interval

寄与率

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

モデルの評価

• 決定係数 $(R^2 \cdot Adjusted R^2)$ によるモデルの比較

F統計量による検定

- 説明変数のうち1つでも役に立つか否かを検定する
 - 帰無仮説 H_0 : $\beta_1 = \cdots = \beta_p = 0$
 - 対立仮説 H_1 : $\exists j \beta_i \neq 0$ (少なくとも 1 つは役に立つ)
- F 統計量: 決定係数 (または残差) を用いて計算

$$F = \frac{n - p - 1}{p} \frac{R^2}{1 - R^2}$$

• p 値: 自由度 p, n-p-1 の F 分布で計算

モデルの評価

• F 統計量によるモデルの比較

t 統計量による検定

- ・ 回帰係数 β_i が回帰式に寄与するか否かを検定する
 - 帰無仮説 H_0 : $β_i = 0$
 - 対立仮説 H_1 : $\beta_i \neq 0$ (β_i は役に立つ)
- t 統計量: 各係数ごと, ζ^2 は $(X^\mathsf{T} X)^{-1}$ の対角成分

	モデル 1		モデル 2		モ	デル3	モ	デル4	 モデル 5	
Characteristic	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI
気圧	-0.21	-0.49, 0.06			-0.36	-0.55, -0.18	-0.32	-0.53, -0.12	-0.36	-0.55, -0.17
日射			0.25	0.14, 0.37	0.30	0.20, 0.40	0.35	0.21, 0.49	0.32	0.18, 0.46
湿度							0.05	-0.06, 0.16		
雲量									0.05	-0.26, 0.36
R ²	0.082		0.414		0.632		0.644		0.633	
Statistic	2.51		19.8		23.1		15.7		14.9	
p-value	0.12		< 0.001		< 0.001		< 0.001		< 0.001	

Abbreviation: CI = Confidence Interval

		モデル 1			モデル 2				モデル3				
Characteristic	Beta	SE	Statistic	p-value	Beta	SE	Statistic	p-value	Beta	SE	Statistic	p-value	Beta
(Intercept)	243	137	1.78	0.086	23	0.855	27.1	< 0.001	386	91.0	4.25	< 0.001	346
気圧	-0.21	0.135	-1.58	0.12					-0.36	0.090	-3.99	< 0.001	-0.32
日射					0.25	0.057	4.45	< 0.001	0.30	0.048	6.35	< 0.001	0.35
湿度													0.05
雲量													

Abbreviations: CI = Confidence Interval, SE = Standard Error

$$t = \frac{\hat{\beta}_j}{\hat{\sigma}\zeta_j}$$

• p 値: 自由度 n-p-1 の t 分布を用いて計算

モデルの評価

• t 統計量によるモデルの比較

診断プロットによる評価

- モデル 2
- モデル 3
- モデル4

回帰モデルによる予測

予測

• 新しいデータ (説明変数) x に対する **予測値**

$$\hat{\mathbf{y}} = (1, \mathbf{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \qquad \hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

• 予測値は元データの目的変数の重み付け線形和

$$\hat{y} = w(x)^{\mathsf{T}} y, \qquad w(x)^{\mathsf{T}} = (1, x^{\mathsf{T}}) (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}$$

- 重みは元データと新規データの説明変数で決定

Figure 3: モデル 2 の診断

Figure 4: モデル 3 の診断

Figure 5: モデル 4 の診断

予測値の性質

• 推定量は以下の性質をもつ多変量正規分布

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^\mathsf{T} X)^{-1}$$

• この性質を利用して以下の3つの値の違いを評価

$$\hat{y} = (1, \mathbf{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$
 (回帰式による予測値)
 $\tilde{y} = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta}$ (最適な予測値)
 $y = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta} + \epsilon$ (観測値)

- ŷとyは独立な正規分布に従うことに注意

信頼区間

最適な予測値との差

• 差の分布は以下の平均・分散をもつ正規分布に従う

$$\mathbb{E}[\tilde{y} - \hat{y}] = (1, \boldsymbol{x}^{\mathsf{T}})\boldsymbol{\beta} - (1, \boldsymbol{x}^{\mathsf{T}})\mathbb{E}[\hat{\boldsymbol{\beta}}] = 0$$

$$\operatorname{Var}(\tilde{y} - \hat{y}) = \underbrace{\sigma^{2}(1, \boldsymbol{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}}_{\hat{\boldsymbol{\beta}}} = \sigma^{2}\gamma_{c}(\boldsymbol{x})^{2}$$

• 標準化による表現

$$\frac{\tilde{y} - \hat{y}}{\sigma \gamma_c(x)} \sim \mathcal{N}(0, 1)$$

信頼区間

• 未知の分散を不偏分散で推定

$$Z = \frac{\tilde{y} - \hat{y}}{\hat{\sigma}\gamma_c(x)} \sim \mathcal{T}(n-p-1)$$
 (t 分布)

確率 α の信頼区間

$$I_{\alpha}^{c} = (\hat{y} - C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}), \ \hat{y} + C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}))$$

$$P(|Z| < C_{\alpha}|Z \sim \mathcal{T}(n-p-1)) = \alpha$$

- 最適な予測値 ỹ が入ることが期待される区間

予測区間

観測値との差

• 差の分布は以下の平均・分散をもつ正規分布に従う

$$\mathbb{E}[y-\hat{y}] = (1, \boldsymbol{x}^{\mathsf{T}})\boldsymbol{\beta} + \mathbb{E}[\boldsymbol{\epsilon}] - (1, \boldsymbol{x}^{\mathsf{T}})\mathbb{E}[\boldsymbol{\hat{\beta}}] = 0$$

$$\operatorname{Var}(y-\hat{y}) = \underbrace{\sigma^{2}(1, \boldsymbol{x}^{\mathsf{T}})(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}}_{\boldsymbol{\hat{\beta}}} + \underbrace{\sigma^{2}}_{\text{誤差の分散}} = \sigma^{2}\gamma_{p}(\boldsymbol{x})^{2}$$

• 標準化による表現

$$\frac{y - \hat{y}}{\sigma \gamma_p(x)} \sim \mathcal{N}(0, 1)$$

予測区間

• 未知の分散を不偏分散で推定

$$Z = \frac{y - \hat{y}}{\hat{\sigma}\gamma_p(x)} \sim \mathcal{T}(n-p-1)$$
 (t 分布)

確率 α の予測区間

$$I_{\alpha}^{p} = (\hat{y} - C_{\alpha}\hat{\sigma}\gamma_{p}(\mathbf{x}), \ \hat{y} + C_{\alpha}\hat{\sigma}\gamma_{p}(\mathbf{x}))$$

$$P(|Z| < C_{\alpha}|Z \sim \mathcal{T}(n-p-1)) = \alpha$$

- 観測値 y が入ることが期待される区間
- $-\gamma_p > \gamma_c$ なので信頼区間より広くなる

実習

発展的なモデル

非線形性を含むモデル

- 目的変数 y
- 説明変数 x_1, \ldots, x_p
- 説明変数の追加で対応可能
 - 交互作用 (交差項): x_ix_i のような説明変数の積
 - 非線形変換: $\log(x_k)$ のような関数による変換

カテゴリカル変数を含むモデル

- 数値ではないデータ
 - 悪性良性
 - 血液型
- 適切な方法で数値に変換して対応:
 - 2値の場合は1,0(真, 偽)を割り当てる
 - * 悪性:1
 - * 良性:0
 - 3 値以上の場合は **ダミー変数** を利用する (カテゴリ数-1 個)
 - * A型: (1,0,0)
 - * B型: (0,1,0)
 - * O型: (0,0,1)
 - * AB型: (0,0,0)

実習

次回の予定

- ・第1回: 主成分分析の考え方
- ・第2回:分析の評価と視覚化