MTH499/599 Lecture Notes 04

Donghui Yan

Department of Math, Umass Dartmouth

January 25, 2017

Outline

- Introduction
- A toy example
- Regression

Examples of models you may hear of

Newton's law on distance and gravity

$$s = \frac{1}{2}gt^2$$

Heat equation as model of heat transfer

$$\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$$

- ▶ Turing machine as a model of computer
- ► Fractional Brownian motion as a model for stock

$$\frac{dS_t}{S_t} = adt + \sigma dZ_t$$

Your own examples?

What is a model?

- Roughly, a device which one could use to interpret or understand a phenomenon
 - It may not be the same as 'truth'
 - "All models are wrong; some are useful" (George Box, 1919-2013)
- In statistics, we model the relationship between X and Y as

$$Y = f(X) + \epsilon$$
, and estimate f via a sample $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$.

▶ Unsupervised learning when *Y* is not present.

Techniques for modeling

- Statistical modeling
 - Linear or generalized linear model
 - f can be expressed as a simple function of parameters θ
 - e.g., simple linear model, logistic regression
 - ightharpoonup Nonparametric model with f as basis expansion
 - e.g., spline, kernel smoothing, trees etc
 - Semi-parametric model
 - Parametric part incorporates knowledge and residue as a nonparametric model
- Machine learning methods
 - Supervised, unsupervised, semi-supervised learning, depending on available of labels (i.e., Y)
 - Overlap between statistical and machine learning methods
- Mathematical modeling (omitted)
 - e.g., differential equations.

What makes a good model?

- Really depends on the goal
 - Predictive accuracy if the goal is prediction
 - The machine learning predictive culture
 - ► Interpretation if the goal is to understand a phenomenon
 - Good estimation + simple model
 - Traditional statistics ('generative culture')
 - Sometimes a combination of both
 - ► The general guideline is a balance of model complexity and predictive ability
 - More parameters, complicated form of $f \leftrightarrow$ complicated model
 - This is why linear model is used so often.

Predictive accuracy

- Needs two sets of data
 - ▶ One for modeling fitting (called *training set*)
 - May further split: part for model fitting and part for tuning
 - One for model evaluation test set
 - Cross-validation or bootstrap if data is scarce
- To compare two different models
 - ► Train on the same training set and evaluate on the same test set
 - ▶ Repeat on different datasets and *t-test* for rigorous comparison.

Linear model

- A linear model is specified by $Y = \beta_0 + \beta_1 X + \epsilon$
 - β_0 and β_1 are constants, ϵ is random error
 - ▶ Relationship linear in $\beta = (\beta_0, \beta_1)$ (not in X)
 - Most used model in practice
- Terminology
 - $ightharpoonup Y \leftrightarrow$ dependent variable, or response variable
 - $ightharpoonup X \leftrightarrow$ independent variable, predicator variable, or regressor
 - $\beta \leftrightarrow parameters$ or regression coefficients
- Why linear model?
 - ► Simple to express, easy for model fitting and interpretation
 - Many complicated phenomena can be well approximated by a linear model.

A toy example

 A salesperson collected some data about a used Saturn car from newspaper on advertised price and age

Age (years)	6	5	4	3	2	2	1	1
Price (thousands)	6	9	8	10	11	12	11	13

• He wants to find out the relationship between price and age.

- In statistical data analysis, it often helps to plot the data (visualization)
 - exploratory data analysis(A field pioneered by John W. Tukey)
 - ▶ What can one observe from the plot?

John W. Tukey (1915-2000)

• It seems that a straight line could describe $price \sim age$

$$Price = \beta_0 + \beta_1 * Age$$

► Indeed there are multiple such lines.

- Our goal is to find the 'best' line
 - ▶ Only makes sense when a metric of 'best' is defined
 - Possibilities
 - Least square of mis-fit $\sum_{i=1}^{n} (Y_i Y_i')^2$
 - Least absolute mis-fit $\sum_{i=1}^{n} |Y_i Y_i'|$
 - Least distance $\sum_{i=1}^{n} ||x_i x_i''||$

- The least square fit $Y = \beta_0 + \beta_1 X$ was chosen
 - ► Simple and can lead to an analytical solution
 - Let \hat{Y}_i denote fitted value. Then $\hat{Y}_i = \beta_0 + \beta_1 X_i$ and

$$\mathcal{L}(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

► Thus LS fit amounts to solve

$$\arg\min_{\beta_0,\beta_1} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)^2$$

for a given data sample $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_N)$.

Least square fit

- Commonly referred to as OLS and credited to C.F. Gauss (1795)
- To solve the LS fit problem

$$\mathcal{L}(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

• Taking partial derivatives of \mathcal{L} w.r.t. β_0 and β_1 and setting to 0

$$\frac{\partial \mathcal{L}}{\partial \beta_0} = -2 \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) = 0$$

$$\frac{\partial \mathcal{L}}{\partial \beta_1} = -2 \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i) X_i = 0$$

Least square fit (continued)

We arrive at a system of linear equations with two unknowns

$$\begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) X_i &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 \sum_{i=1}^{n} X_i) &= 0 \\ \sum_{i=1}^{n} (X_i - \beta_0 \sum_{i=1}^{n} X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

$$\implies \begin{cases} \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i) &= 0 \end{cases}$$

Least square fit (continued)

• Solving a system of linear equations and we get

$$\begin{split} \hat{\beta}_1 &= \frac{\sum X_i Y_i - \sum X_i \sum Y_i / n}{\sum X_i^2 - (\sum X_i)^2 / n} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} \\ &= SS_{xy} / SS_{xx} = r \cdot SD_x \cdot SD_y / (SD_x)^2 = r \cdot SD_y / SD_x \\ \hat{\beta}_0 &= \sum Y_i / n - \hat{\beta}_1 \sum X_i / n = \overline{Y} - \hat{\beta}_1 \overline{X} \end{split}$$

- Interpretation
 - $\hat{\beta}_1$ is normalized correlation of variable X and Y
 - ▶ The center of regression, $(\overline{X}, \overline{Y})$, passes the regression line.

Least square fit of the toy example

• By hand calculation, we get

$$\overline{X} = 3$$
, $\overline{Y} = 10$,
 $S_x = 1.851640$, $S_y = 2.267787$,
 $r = -0.9185587$

• So $\hat{\beta}_0 = 13.375, \ \hat{\beta}_1 = -1.125,$ and

$$Price = 13.375 - 1.125 \cdot Age$$

- ▶ Same as what we would get by R function $lm(Y \sim X)$
- ► Interpretation: the price of used Saturn car decreases by 1.125K dollars each year.

Some quantities from the least square fit

Two basic quantities

$$SS_{xx} = \sum (x - \bar{x})^2,$$

$$SS_{xy} = \sum (x - \bar{x})(y - \bar{y})$$

• Quantities related to sum of squares

Total sum of squares
$$SST = \sum (y - \overline{y})^2$$
 Sum of squared errors
$$SSE = \sum e^2 = \sum (y - \hat{y})^2$$
 Sum of squared regression
$$SSR = SST - SSE.$$

The R^2 statistic

$$R^2 = SSR/SST = 1 - SSE/SST$$

- Is a crude measure of goodness-of-fit
- Also called *amount of variance explained* (in percentage)
 - ▶ Need to be cautious (back to this later)
 - As it does not consider the number of parameters
 - Adjusted R^2 is defined as

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

- n is the number of observations
- p is the number of parameters.

Quantities calculated on the toy example

•
$$SS_{xx} = 24$$
, $SS_{xy} = -3.857$

•
$$SST = 36$$
, $SSE = 5.624$, $SSR = 30.376$

•
$$R^2 = 0.8437$$
, $R_{adj}^2 = 0.8177$

Linear regression

- Linear least square fit also called linear regression
- Regression is a statistical phenomenon
 - ▶ Observed in the classical father-son data by Pearson (1857-1936)
 - ► 1078 measurements of a father's height and his son's height

Karl Pearson, one of the founders of modern statistics.

The father-son data and the regression line

Regression towards to the mean

- Regression towards towards the center of regression
 - Regression towards mediocrity in hereditary stature, Galton (1886)
 - ▶ One SD_x of change in $x \Longrightarrow r \cdot SD_y$ of change in y (why?)
 - When $x > Ave_x$, the increase in y is slower than in x
 - When $x < Ave_x$, the decrease in y is slower than in x.

