A PROOFS

Proposition A.1 (Proposition 3.3 restated). Let X_1, \ldots, X_n denote some keys over (R, Σ) . Then $\{X_1, \ldots, X_n\}$ satisfies the composite independence property if and only if all of the following hold:

- (1) For all $i = 1, ..., n, X_i$ is a minimal key for (R, Σ) .
- (2) If X denotes some minimal key for (R, Σ) , then there is some $j \in \{1, ..., n\}$ such that $X = X_j$.

(3) (R, Σ) is in Boyce-Codd Normal Form.

PROOF. We show first that the three conditions are sufficient for the composite independence property for $\{X_1, \ldots, X_n\}$ to hold.

Let r denote a relation over R that satisfies Σ , and for all $i=1,\ldots,n$, let $\mu_i\in dom(X_i)$ such that $\mu_i\notin r(X_i)$. Let $v\in dom(R-X_1\cdots X_n)$. We claim that $r'=r\cup\{t'\}$ satisfies Σ for $t'=\mu_1\cdots\mu_nv$. For consider $X\to A\in \Sigma^+$ such that $A\notin X$ and assume that r' violates $X\to A$. In particular, t(X)=t'(X) for some $t\in r$. The BCNF condition (3) implies that $X\to R\in \Sigma^+$. Hence, X is a key for (R,Σ) . If X is even a minimal key, then by (1) and (2) there is some $j\in\{1,\ldots,n\}$ such that $X=X_j$. If X is not a minimal key, then X is a superset of some minimal key, and by (1) and (2), there must be some $j\in\{1,\ldots,n\}$ such that $X_j\subseteq X$. Consequently, $\mu_j=t'(X_j)=t(X_j)\in r(X_j)$, which is a contradiction. That means our assumption that r' violates $X\to A$ must have been wrong, which means that r' satisfies Σ . This proves the composite independence property for $\{X_1,\ldots,X_n\}$.

We show now that the composite independence property for $\{X_1, \ldots, X_n\}$ is sufficient for (1), (2), and (3) to hold.

Firstly, since the composite independence property for $\{X_1, \ldots, X_n\}$ implies the weak independence property for $\{X_1, \ldots, X_n\}$, Proposition 2.1 implies (1).

We are now going to show that (2) holds as well. Assume there is some other minimal key X, different from every X_1, \ldots, X_n . For $i=1,\ldots,n$ we then know that $X-X_i\neq\emptyset$ and $X_i-X\neq\emptyset$ holds. Let $r:=\{t\}$ with any tuple t over R. It follows that r satisfies Σ . We now define a tuple t' over R such that for all $i=1,\ldots,n$, $t'(X_i-X)\neq t(X_i-X)$ and $t'(X-X_i)=t(X-X_i)$, and $t'(R-X_1\cdots X_n)=t(R-X_1\cdots X_n)$. In particular, for all $i=1,\ldots,n$ we

have $t'(X_i) \notin r(X_i)$. Due to the composite independence property for $\{X_1, \ldots, X_n\}$ it follows that $r' := r \cup \{t'\}$ satisfies Σ . However, it follows that t'(X) = t(X), which means that r does not satisfy $X \to R \in \Sigma^+$, a contradiction to the assumption that X is another minimal key. Consequently, (2) must hold.

It remains to show (3). For consider $X \to A \in \Sigma^+$ such that $A \notin X$. We distinguish between two cases.

Case 1: There is some $j \in \{1, ..., n\}$ such that $X_j \subseteq X$. Since X_j is a key for (R, Σ) we have $X \to R \in \Sigma^+$.

Case 2: For all $i=1,\ldots,n$ there is some $A_i\in X_i-X$. We will show that this case cannot occur. Indeed, let $r:=\{t\}$ be some relation over R. Then r satisfies Σ . Define a tuple t' over R such that, for all $i=1,\ldots,n$, $t'(X\cap X_i):=t(X\cap X_i)$, $t'(X-X_i):=t(X-X_i)$, for all $B\in X_i-X$, $t'(B)\neq t(B)$, and for all $B\in R-X_1\cdots X_n$, $t'(B)\neq t(B)$. It follows for all $i=1,\ldots,n$, $t'(X_i)\notin r(X_i)$. By the independence property for (X_1,\ldots,X_n) we conclude that $r':=r\cup\{t'\}$ satisfies Σ . However, by construction of t', we have t'(X)=t(X) and, since $A\notin X$, $t'(A)\neq t(A)$, meaning that t' does not satisfy $X\to A$. This is a contradiction, and Case 2 cannot occur.

Theorem A.2 (Theorem 4.3 restated). Let Σ denote a set of FDs over relation schema R. For every positive integer n the following holds: (R, Σ) is in Composite Object Normal Form of order n if and only if (R, Σ) is in Boyce-Codd Normal Form and there are exactly n minimal keys.

PROOF. (If). Let $X \in LHS$. Since (R, Σ) is in BCNF, X must satisfy the uniqueness property. Since there are exactly n minimal keys, and X is a minimal key, X is part of the n minimal keys X_1, \ldots, X_n . Due to Proposition 3.3, $\{X_1, \ldots, X_n\}$ satisfies the independence property and is, therefore, a composite object of order n. Consequently, (R, Σ) is in Composite Object Normal Form of order n.

(Only if). Let $X \to A \in \Sigma_{\mathfrak{A}}^+$ such that $A \notin X$. Since (R, Σ) is in composite object normal form of order n, it follows that there is some minimal key X_i for (R, Σ) such that $X_i \subseteq X$ such that X_i participates in a composite object of order n, say $\{X_1, \ldots, X_n\}$. Proposition 3.3 then yields the assertion that (R, Σ) is in Boyce-Codd Normal Form and X_1, \ldots, X_n form the minimal keys.