

National University of Computer & Emerging Sciences

Department	partment Department of Computer Science Dept		CS
Course Title	Parallel and Distributed Computing	Course Code	CS326
Pre-requisite(s)	Operating System	Credit Hrs.	3+0

Course	
Objective:	

PLO	Program Learning Outcome (PLO) Statement		
02	Problem Analysis: Identify, formulate, research literature, and analyse complex		
	computing problems, reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and computing sciences.		
03	Design/Develop Solutions: Design solutions for complex computing problems		
	and design systems, components, and processes that meet specified needs with		
	appropriate consideration for public health and safety, cultural, societal, and		
	environmental considerations.		

CLO	Course Learning Outcome (CLO)	Domain	Taxonomy Level	PLO	Tools
01	Learn about parallel and distributed computers	Cognitive	3	2	P, M1,F
02	Write portable programs for parallel or distributed architectures using Message-Passing Interface (MPI) library.	Cognitive	4	3	P, CA, M2, F
03	Analyze complex problems with shared memory programming with openMP.	Cognitive	5	3	P, CA, M2, F
Tool: $A = Assignment$, $Class\ Activities = CA$, $P = Project$, $M = Midterm$, $F = Final$,					

Text Book(s)	Title	Introduction to Parallel Computing, Second Edition	
	Author	Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar	
Ref. Book(s)	Title	Distributed and Cloud Computing (From Parallel Processing to	
		the Internet of Things)	
	Author	Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra.	

National University of Computer & Emerging Sciences

Week	Course Contents/Topics	Chapter	CLO
01	Revision of operating system basic concepts	-	3
02	Introduction to parallel computing	-	1
03	Parallel Programming Platforms	2	1
04	Principles of Parallel Algorithm Design	3.1-3.3	1,2,3
05	Principles of Parallel Algorithm Design	3.3.1, 3.3.2,3.4	1,2,3
06	Mid-I Term Exam	3.3.2,3.1	
07	Programming Shared Address Space	7.10	1,3
08	Programming Shared Address Space	7.10	1,3
09	Programming Using the Message Passing Paradigm	6.1-6.7	1,2
10	Programming Using the Message Passing Paradigm	6.1-6.7	1,2
11	Mid-II Term Exam		
12	Distributed System Models and Enabling Technologies	1 (1.1-1.4)	1,2,3
	(Dongarra.)		1,2,3
13	Distributed System Models and Enabling Technologies	1 (1.1-1.4)	1,2,3
14	Computer Clusters for Scalable Parallel Computing (Dongarra.)	2 (2.1-2.2)	1,2,3
15	Computer Clusters for Scalable Parallel Computing	2 (2.1-2.2)	1,2,3

Assessment Plan:

Assessment	Weight
	age
Class Activities	5%
Assignment	5%
Project	10%
Midterm Exams	30%
Final	50%