Comp Econ HW9

Ildebrando Magnani

April 2016

Excercise 1:

First, we can show that

$$\|\mathbf{A}\| = \sup\{\frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \ : \ \mathbf{x} \in R^k, \ \mathbf{x} \neq \mathbf{x}\} = \sup\{\|\mathbf{A}\mathbf{x}\| \ : \ \mathbf{x} \in R^k, \ \|\mathbf{x}\| = 1\}$$

Observing that $\|\mathbf{x}\|$ is a real number and that (by definition) $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ is a vector of length 1, we obtain

$$\frac{\|\mathbf{A}\mathbf{x} \cdot \frac{\|\mathbf{x}\|}{\|\mathbf{x}\|}\|}{\|\mathbf{x}\|} = \|\mathbf{x}\| \cdot \frac{\|\mathbf{A}\frac{\mathbf{x}}{\|\mathbf{x}\|}\|}{\|\mathbf{x}\|} = \left\|\mathbf{A}\frac{\mathbf{x}}{\|\mathbf{x}\|}\right\|$$

Hence, the restriction over vectors of length 1 doesn't change the value of $\|\mathbf{A}\|$. Now, we want to consider the problem

$$\|\mathbf{A}\| = \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|$$

subject to $\|\mathbf{x}\| = 1$. This can be easily solved using the Lagrangian Method for constrained optimization. In other words, we can write

$$\max_{\|\mathbf{x}\|=1} \left[\ \|\mathbf{A}\mathbf{x}\| - \lambda \|\mathbf{x}\| \ \right] = \max_{\|\mathbf{x}\|=1} \left[\ \left(\mathbf{x}^T\mathbf{A}^T\mathbf{A}\mathbf{x}\right) - \lambda\mathbf{x}\mathbf{x}^T \ \right]$$

which can be differentiated using matrix calculus. Observing that $\mathbf{A}^T \mathbf{A}$ is a symmetric matrix, we have F.O.C

$$2\mathbf{A}^T\mathbf{A}\mathbf{x} - 2\lambda\mathbf{x} = 0$$

and therefore

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

Here, we notice that λ must be an eigenvalue of the symmetric matrix $\mathbf{A}^T \mathbf{A}$. Further, we proceed by left multipling the last equation by \mathbf{x}^T , obtaining

$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = \lambda \ \mathbf{x}^T \mathbf{x}$$

which implies

$$\|\mathbf{A}\mathbf{x}\|^2 = |\lambda| \ \|\mathbf{x}\|^2 = |\lambda|$$

Now, taking the max over the set of all eigenvectors \mathbf{x} and corresponding eigenvalues λ of $\mathbf{A}^T \mathbf{A}$, we finally have

$$\|\mathbf{A}\|_{Spectral} = \sqrt{\max_i \|\mathbf{A}\mathbf{x_i}\|^2} = \sqrt{\max_i |\lambda_i|} = \sqrt{\rho(\mathbf{A}^T, \mathbf{A})}$$

Excercise 2:

From Gelfand's Formula, we know that $\lim_{k\to\infty} \|\mathbf{A}^k\|^{1/k} = \rho(\mathbf{A})$. Since this limit exists, we also have

$$\lim_{k \to \infty} \left[\|\mathbf{A}^k\|^{1/k} \right]^k = \lim_{k \to \infty} \|\mathbf{A}^k\| = \lim_{k \to \infty} \rho(\mathbf{A})^k$$

If we assume that $\rho(\mathbf{A}) < 1$ then $\lim_{k \to \infty} \rho(\mathbf{A})^k = \lim_{k \to \infty} \|\mathbf{A}^k\| = 0$.

Now we want to show that $\sum_{k=0}^{\infty} \|\mathbf{A}^k\| < \infty$. Thus, consider the power series $\sum_{k=0}^{\infty} \|\mathbf{A}^k\| x^k$, and let $L = \limsup_{k \to \infty} \|\mathbf{A}^k\|^{1/k} = \rho(\mathbf{A}) < 1$, by assumption. From the theorem for convergence of power series, we know that $\sum_{k=0}^{\infty} \|\mathbf{A}^k\| x^k$ converges for $|x| < \frac{1}{L} = \frac{1}{\rho(\mathbf{A})}$. Since $\frac{1}{\rho(\mathbf{A})} > 1$; thus, if we set x = 1, we have that $\sum_{k=0}^{\infty} \|\mathbf{A}^k\| x^k = \sum_{k=0}^{\infty} \|\mathbf{A}^k\|$ converges absolutely. We could have also shown convergence using Gelfand's Formula more explicitly. In fact, from that one we know that $\forall \varepsilon > 0$, \exists N such that if

k > N, we have $\|\mathbf{A}^k\|^{1/k} - \rho(\mathbf{A}) < \varepsilon$. This implies that $\|\mathbf{A}^k\|^{1/k} < \varepsilon + \rho(\mathbf{A})$, and hence $\|\mathbf{A}^k\| < (\varepsilon + \rho(\mathbf{A}))^k$. Therefore, if we let $r = \varepsilon + \rho(\mathbf{A})$ and pick an ε sufficiently small, we can obtain that for r < 1, and $\forall k > N$

$$\|\mathbf{A}^k\| < r^k$$

Since $\sum_{k=0}^{\infty} \|\mathbf{A}^k\|$ is increasing and bounded for k > N, it must converge.

Excercise 3:

Suppose $A \in \mathcal{M}(n \times n)$ and A is diagonalizable. Then we can write $A = PDP^{-1}$, where P is the usual eigenvector matrix and D is the diagonal matrix with the corresponding eigenvalues as entries. If $\rho(A) < 1$, then all the eigenvalues of the matrix A are less than 1 in absolute value. Therefore

$$\lim_{k \to \infty} D^k = 0$$

This implies that $\|\lim_{k\to\infty} A^k\| = \|\lim_{k\to\infty} PD^k P^{-1}\| = \|\mathbf{0}\| = 0 = \lim_{k\to\infty} \|A^k\|$.

Excercise 4:

Consider the sequence $\{M_n\}$ of $(n \times n)$ matrices such that M_n is nonnegative definite for all $n \in N$ and such that $M_n \to M$. Now consider the mapping $T: (\mathcal{M}(n \times n), \|.\|) \to \mathbf{R}$, defined as $T(Q) = x^T Q x$ - which is continuous on its domain.

Now assume that M is not nonnegative definite, i.e., there exist a vector x such that $T(M) = x^T M x < 0$. By definition of continuity of T, we must have that as $M_n \to M$, $\lim_{n \to \infty} T(M_n) = T(M)$, which implies that $\forall \varepsilon > 0$, $\exists \ \delta > 0$ such that when $||M_n - M|| < \delta$, then $|T(M_n) - T(M)| = |x^T M_n x - x^T M x| < \varepsilon$. Moreover, since $T(M_n) \ge 0$ for all n, and since T(M) < 0, we have that $T(M_n) - T(M) > 0$, and hence $T(M_n) - T(M) < \varepsilon$

for all $\varepsilon > 0$. It follows that $T(M_n) < T(M)$, and that $T(M_n)$ is negative, which is the desired contradiction.

Therefore, M must also be nonnegative definite, and the set of nonnegative definite matrices is a closed subset of $(\mathcal{M}(n \times n), \|.\|)$.

Excercise 5:

- 1. Let X^* be the unique solution to the Lyapunov equation $X = AXA^T + M$, and assume that M is symmetric. Then, if we transpose this solution we obtain $X^{*T} = AX^*A^T + M^T = AX^*A^T + M^T = \left[AX^*A^T\right]^T + M^T$ $= AX^{*T}A^T + M.$ Since the solution is proved to be unique, we must have that $X^* = X^{*T}$.
- 2. Let X^* be the unique solution to the Lyapunov equation $X = AXA^T + M$, and assume that M is nonnegative definite. Then, X^* satisfies the equation

$$X^* = AXA^T + M$$

Therefore, if $z \in \mathbb{R}^n$, we also have

$$z^T X^* z = z^T A X^* A^T z + z^T M z$$

From the last expression, we see that X^* must be nonnegative definite, because AX^*A^T is nonnegative definite for all $X \in \mathcal{M}(n \times n)$, and M is nonnegative definite by assumption.

3. Same setting as part 2), but now assume that M is positive definite. Again, we have

$$z^T X^* z = z^T A X^* A^T z + z^T M z$$

In this expression, we know that AX^*A^T is nonnegative definite for all $X \in \mathcal{M}(n \times n)$, and M is positive definite by assumption. Therefore we see that $z^TX^*z > 0$ and, thus X^* must be positive definite.