Tema 1

Soluții

Exercițiul 1

Considerăm evenimentele următoare:

- $A = \{\text{testul considerat este pozitiv}\}$
- $B = \{\text{automobilistul a depășit nivelul de alcool autorizat}\}$
- 1. Din ipoteză știm că $\mathbb{P}(B)=0.005$, $\mathbb{P}(A|B)=\mathbb{P}(A^c|B^c)=0.99$. Vrem să găsim probabilitatea $\mathbb{P}(B|A)$. Avem

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)}$$

$$= \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + [1 - \mathbb{P}(A^c|B^c)](1 - \mathbb{P}(B))} = \frac{0.99 \times 0.005}{0.99 \times 0.005 + 0.01 \times 0.995} \approx 0.332.$$

2. Căutăm p așa incat $\mathbb{P}(B|A)=0.95$. Am văzut că $\mathbb{P}(B|A)=\frac{p\mathbb{P}(B)}{p\mathbb{P}(B)+(1-p)(1-\mathbb{P}(B))}$ de unde

$$p = \frac{(1 - \mathbb{P}(B))\mathbb{P}(B|A)}{(1 - \mathbb{P}(B))\mathbb{P}(B|A) + (1 - \mathbb{P}(B|A))\mathbb{P}(B)} = \frac{0.995 \times 0.95}{0.995 \times 0.95 + 0.05 \times 0.005} \approx 0.99973.$$

3. Ştim că $\mathbb{P}(B)=0.3$, prin urmare $\mathbb{P}(A)=\mathbb{P}(A|B)\mathbb{P}(B)+\mathbb{P}(A|B^c)\mathbb{P}(B^c)=0.99\times0.3+0.01\times0.7\approx0.304$ și

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)} \approx 0.9769,$$

de unde tragem concluzia că testul este mult mai fiabil in această situație.

Exercițiul 2

- 1. Considerăm evenimentele următoare:
 - $A_i = \{ \text{suma celor două zaruri la cea de- a } i\text{-a aruncare este 5} \}$
 - $B_i = \{ \text{suma celor două zaruri la cea de- a } i\text{-a aruncare este } 7 \}$

Evenimentul E_n se scrie

$$E_n = (A_1^c \cap B_1^c) \cap (A_2^c \cap B_2^c) \cap \dots \cap (A_{n-1}^c \cap B_{n-1}^c) \cap A_n.$$

Aplicand independența avem că

$$\mathbb{P}(E_n) = \mathbb{P}((A_1^c \cap B_1^c) \cap (A_2^c \cap B_2^c) \cap \dots \cap (A_{n-1}^c \cap B_{n-1}^c) \cap A_n)$$

$$\stackrel{indep.}{=} \mathbb{P}(A_1^c \cap B_1^c) \times \mathbb{P}(A_2^c \cap B_2^c) \times \dots \times \mathbb{P}(A_{n-1}^c \cap B_{n-1}^c) \times \mathbb{P}(A_n)$$

$$= \mathbb{P}(A_1^c \cap B_1^c)^{n-1} \mathbb{P}(A_n).$$

Observăm că spațiul stărilor la cea de-a n-a lansare este $\Omega = \{(i,j)|1 \le i,j \le 6\}$ și probabilitatea ca suma celor două zaruri să fie 5 este $\mathbb{P}(A_n) = \frac{4}{36}$, deoarece cazurile favorabile sunt $\{(1,4),(2,3),(4,1),(3,2)\}$. Obținem de asemenea că probabilitatea ca suma să nu fie nici 5 și nici 7 la prima lansare este $\mathbb{P}(A_1^c \cap B_1^c) = \frac{26}{36}$, deoarece situațiile in care suma este 7 sunt $\{(1,6),(2,3),(3,4),(4,3),(5,2),(6,1)\}$.

Grupele: 301, 311, 321 Pagina 1

Curs: Statistică Instructori: A. Amărioarei, G. Popovici

In concluzie, probabilitatea evenimentului

 $A = \{\text{suma 5 (a fețelor celor două zaruri) să apară inaintea sumei 7}\}$

este

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(E_n) = \sum_{n=1}^{\infty} \left(\frac{26}{36}\right)^{n-1} \frac{4}{36}$$
$$= \frac{1}{9} \sum_{n=0}^{\infty} \left(\frac{13}{18}\right)^n = \frac{1}{9} \frac{1}{1 - \frac{13}{18}} = \frac{2}{5}.$$

2. Fie F_n evenimentul ce corespunde la: in primele n-1 aruncări nu a apărut nici suma 2 și nici suma 7 iar in a n-a aruncare a apărut suma 2 și C_i evenimentul ce corespunde la suma celor două zaruri la cea de-a i-a aruncare este 2. Avem

$$F_n = (C_1^c \cap B_1^c) \cap (C_2^c \cap B_2^c) \cap \cdots \cap (C_{n-1}^c \cap B_{n-1}^c) \cap C_n$$

și probabilitatea lui $\mathbb{P}(F_n)$ este

$$\mathbb{P}(F_n) = \mathbb{P}((C_1^c \cap B_1^c) \cap (C_2^c \cap B_2^c) \cap \dots \cap (C_{n-1}^c \cap B_{n-1}^c) \cap C_n)$$

$$\stackrel{indep.}{=} \mathbb{P}(C_1^c \cap B_1^c) \times \mathbb{P}(C_2^c \cap B_2^c) \times \dots \times \mathbb{P}(C_{n-1}^c \cap B_{n-1}^c) \times \mathbb{P}(C_n)$$

$$= \mathbb{P}(C_1^c \cap B_1^c)^{n-1} \mathbb{P}(C_n).$$

Avem $\mathbb{P}(C_n) = \frac{1}{36}$ (deoarece doar (1,1) ne dă suma 2) și $\mathbb{P}(C_1^c \cap B_1^c) = \frac{36-7}{36} = \frac{29}{36}$. Prin urmare probabilitatea evenimentului căutat, pe care il notă cu B, este

$$\mathbb{P}(B) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} F_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(F_n) = \sum_{n=1}^{\infty} \left(\frac{29}{36}\right)^{n-1} \frac{1}{36}$$
$$= \frac{1}{36} \sum_{n=0}^{\infty} \left(\frac{29}{36}\right)^n = \frac{1}{36} \frac{1}{1 - \frac{29}{36}} = \frac{1}{7}.$$

Exercițiul 3

Dacă numărul de mașini vandute intr-un an de reprezentanță este mai mare decat $N, X \ge N$, atunci caștigul administratorului este G = aN. Dacă X < N, atunci administratorul vinde X mașini și ii răman N - X, deci caștigul devine G = aX - b(N - X). Prin urmare avem

$$G = \left\{ \begin{array}{ll} aN & \operatorname{dacă} \ X \geq N \\ aX - b(N-X) & \operatorname{dacă} \ X < N \end{array} \right.$$

deci

$$\mathbb{E}[G] = aN\mathbb{P}(X \ge N) + \sum_{x=0}^{N-1} [ax - b(N-x)]\mathbb{P}(X = x).$$

Din ipoteză știm că toți intregii $x \in \{0, 1, \dots, n\}$ sunt de aceeași probabilitate, mai exact știm că X este o variabilă aleatoare uniformă, deci $\mathbb{P}(X=x) = \frac{1}{n+1}$ (administratorul vinde acelasi număr de mașini cu aceeași probabilitate - in realitate nu este cazul !). Obținem că:

$$\mathbb{E}[G] = aN \sum_{x=N}^{n} \frac{1}{n+1} + \sum_{x=0}^{N} \frac{(a+b)x - bN}{n+1}$$

$$= \frac{aN(n-N+1)}{n+1} + (a+b)\frac{N(N-1)}{2(n+1)} - \frac{bN^2}{n+1}$$

$$= \frac{N[(2n+1)a - b - (a+b)N]}{2(n+1)}.$$

Grupele: 301, 311, 321

Pentru a găsi valoarea optimă a numărului de mașini pe care administratorul ar trebui să le comande este suficient să găsim maximul numărătorului lui $\mathbb{E}[G]$. Fie g(N) = N[(2n+1)a - b - (a+b)N] atunci g'(N) = (2n+1)a - b - 2(a+b)N de unde rezolvand ecuația g'(N) = 0 deducem că $N = \frac{(2n+1)a-b}{2(a+b)}$. Mai mult derivata a doua ne dă g''(N) = -2(a+b) < 0 ceea ce ne arată că valoarea găsită corespunde maximului.

Exercițiul 4

Avem că legea lui X este uniformă pe mulțimea $\{1, 2, 3, 4, 5, 6\}$ iar din definiția lui Y = X(7 - X) observăm că $Y \in \{6, 10, 12\}$ cu $\mathbb{P}(Y = 6) = \mathbb{P}(Y = 10) = \mathbb{P}(Y = 12) = \frac{1}{3}$. Obținem că

$$\mathbb{E}[Y] = \frac{1}{3}(6+10+12) = \frac{28}{3}$$

$$\mathbb{E}[Y^2] = \frac{1}{3}(36+100+144) = \frac{280}{3}$$

$$\mathbb{V}[Y] = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 = \frac{56}{9}.$$

Variabila aleatoare M_n ia valori in aceeaşi mulțime ca și Y, $M_n \in \{6, 10, 12\}$. Pentru a găsi legea lui M_n trebuie să calculăm $\mathbb{P}(M_n = x)$ cu $x \in \{6, 10, 12\}$.

Pentru evenimentul $\{M_n = 6\}$ este necesar ca toate variabilele $Y_i = 6$ deci

$$\mathbb{P}(M_n = 6) = \mathbb{P}\left(\bigcap_{i=1}^n \{Y_i = 6\}\right) = \left(\frac{1}{3}\right)^n.$$

Dacă $\{M_n = 12\}$ atunci cel puțin unul din evenimentele $\{Y_i = 12\}$ se realizează, prin urmare

$$\mathbb{P}(M_n = 12) = \mathbb{P}\left(\bigcup_{i=1}^n \{Y_i = 12\}\right) = 1 - \mathbb{P}\left(\bigcap_{i=1}^n \{Y_i \le 10\}\right) = 1 - \left(\frac{2}{3}\right)^n.$$

Pentru a calcula $\mathbb{P}(M_n = 10)$ (fără a face diferența $1 - \mathbb{P}(M_n = 6) - \mathbb{P}(M_n = 12)$) observăm că realizarea evenimentului $\{M_n = 10\}$ implică realizarea tuturor evenimentelor $\{Y_i \leq 10\}$ dar excludem evenimentul in care toți $\{Y_i = 6\}$. Astfel

$$\mathbb{P}(M_n = 10) = \mathbb{P}\left(\bigcap_{i=1}^n \{Y_i \le 10\} \bigcap \left(\bigcap_{i=1}^n \{Y_i = 6\}\right)^c\right)$$
$$= \mathbb{P}\left(\bigcap_{i=1}^n \{Y_i \le 10\}\right) - \mathbb{P}\left(\left(\bigcap_{i=1}^n \{Y_i = 6\}\right)^c\right)$$
$$= \left(\frac{2}{3}\right)^n - \left(\frac{1}{3}\right)^n.$$

Exercițiul 5

Putem presupune că $\mathbb{E}[|Y|] < \infty$ deoarece in caz contrar am avea $\infty = \mathbb{E}[|Y - a|] \le \mathbb{E}[|Y - b|] = \infty$. Să considerăm cazul in care $m \le a \le b$. Avem

Grupele: 301, 311, 321 Pagina 3

Curs: Statistică Instructori: A. Amărioarei, G. Popovici

$$\begin{split} \mathbb{E}[|Y-b|] - \mathbb{E}[|Y-a|] &= \mathbb{E}[(b-Y)\mathbf{1}_{\{Y \leq b\}}] + \mathbb{E}[(Y-b)\mathbf{1}_{\{Y > b\}}] - \mathbb{E}[(a-Y)\mathbf{1}_{\{Y \leq a\}}] - \mathbb{E}[(Y-a)\mathbf{1}_{\{Y > a\}}] \\ &= (b-a)\mathbb{E}[\mathbf{1}_{\{Y \leq a\}}] + \mathbb{E}[(a+b-2Y)\mathbf{1}_{\{a < Y \leq b\}}] + (a-b)\mathbb{E}[\mathbf{1}_{\{Y \geq b\}}] \\ &= 2\mathbb{E}[(b-Y)\mathbf{1}_{\{a < Y \leq b\}}] + (b-a)\left[\mathbb{E}[\mathbf{1}_{\{Y \leq a\}}] - \mathbb{E}[\mathbf{1}_{\{Y > a\}}]\right] \\ &\geq (b-a)\left[2\mathbb{P}(Y \leq a) - 1\right] \geq 0 \end{split}$$

deoarece $\mathbb{P}(Y \leq a) \geq \mathbb{P}(Y \leq m) \geq \frac{1}{2}$. Dacă $m \geq a \geq b$ atunci $-m \leq -a \leq -b$ şi -m este mediana lui -Y de unde avem concluzia.

Exercițiul 6* 1

Fie partiţia $\Pi = \{A_1^{\varepsilon_1} \cap A_2^{\varepsilon_2} \cap \cdots \cap A_n^{\varepsilon_n} \mid \varepsilon_1, \dots, \varepsilon_n = 0, 1\}$, unde $A^{\varepsilon} = A$ dacă $\varepsilon = 1$ şi $A^{\varepsilon} = A^c$ dacă $\varepsilon = 0$. Atunci $\mathcal{F} = \mathcal{A}(\{A_1, \dots, A_n\})$ (algebra generată de $\{A_1, \dots, A_n\}$) coincide cu algebra generată de Π , prin urmare orice element din \mathcal{F} poate fi scris ca o reuniune finită (şi disjunctă) de elemente din Π (De ce?). Astfel, pentru $B_1, \dots, B_m \in \mathcal{F}$ există $\alpha_1, \dots, \alpha_{m'} \in \Pi$ aşa incat să avem

$$\sum_{i=1}^{m} c_i \mathbb{P}(B_i) = \sum_{i=1}^{m'} c_i' \mathbb{P}(\alpha_i').$$

Este evident că implicația $a) \implies b$) este adevărată. Reciproc, să presupunem că inegalitatea dorită este adevărată pentru orice măsură de probabilitate cu $\mathbb{P}(A_i) = 0$ sau 1 pentru toți $i \in \{1, 2, ..., n\}$. Avem deci că

$$\sum_{i=1}^{m'} c_i' \mathbb{P}(\alpha_i') \ge 0 \tag{1}$$

pentru toate măsurile de probabilitate cu $\mathbb{P}(A_i) = 0$ sau 1, $\forall i \in \{1, 2, ..., n\}$, prin urmare $\mathbb{P}(\alpha_i) = 0$ sau 1 pentru toate elementele α_i din Π (toți atomii). Alegand P așa incat $\mathbb{P}(\alpha_i) = 1$, pentru un i fixat, și $\mathbb{P}(\beta) = 0$ pentru $\beta \in \Pi$, $\beta \neq \alpha^2$ avem $c_i' \geq 0$ (i = 1, 2, ..., m'). Asta garantează că relația (1) rămane valabilă pentru orice măsură de probabilitate.

Exercițiul 7*

Conform rezultatului demonstrat in exercițiul anterior, este suficient să verificăm relațiile din enunț pentru măsurile de probabilitate \mathbb{P} care verifică $\mathbb{P}(A_1) = \cdots = \mathbb{P}(A_l) = 1$ și $\mathbb{P}(A_{l+1}) = \cdots = \mathbb{P}(A_n) = 0$, cu $0 \le l \le n$.

Prin urmare, fie $0 \le l \le n$ și $\mathbb P$ care verifică relațiile de mai sus. Dacă l=0 atunci cele două formule sunt evident adevărate (0=0). Să presupunem că $l \ge 1$ și că $1 \le i_1 < i_2 < \cdots < i_k \le n, \ k \ge 1$. Dacă $i_k \le l$ atunci $\mathbb P(A_{i_1}) = \mathbb P(A_{i_1}) = \cdots = \mathbb P(A_{i_k}) = 1$ de unde avem că

$$\mathbb{P}(A_{i_1} \cap A_{i_2}) = \mathbb{P}(A_{i_1}) + \mathbb{P}(A_{i_2}) - \mathbb{P}(A_{i_1} \cup A_{i_2}) = 2 - 1 = 1$$

şi prin inducție se poate arăta că $\mathbb{P}(A_{i_1}\cap\cdots\cap A_{i_k})=1$ (altfel se poate folosi inegalitatea lui Bonferroni). Dacă $i_k\geq l+1$ atunci $0\leq \mathbb{P}(A_{i_1}\cap\cdots\cap A_{i_k})\leq \mathbb{P}(A_{i_k})=0$. Prin urmare $\mathbb{P}(A_{i_1}\cap\cdots\cap A_{i_k})=0$ sau 1 după cum $\{i_1,i_2,\cdots,i_k\}$ este sau nu submulțime a lui $\{1,2,\cdots,l\}$. Obținem astfel că suma S_k^n este egală cu numărul de submulțimi $\{i_1,i_2,\cdots,i_k\}\subset\{1,2,\cdots,l\}$, adică $S_k^n=\binom{l}{k}$.

Pentru a arăta identitatea de la punctul a) să observăm că pentru l < r avem $V_n^r = 0$, pentru că $LHS = V_n^r = \mathbb{P}(B)$ unde

Grupele: 301, 311, 321 Pagina 4

 $^{^{1}}$ Exercițiile cu * sunt suplimentare și nu sunt obligatorii

 $^{^2}$ putem găsi o asemenea măsură de probabilitate deoarece odată ce am ales $\mathbb{P}(\alpha_i)=1$ am ales și valorile pentru $\mathbb{P}(A_j)$

$$B = \{\text{exact } r \text{ dintre } A_1, \dots, A_n \text{ se realizează } \}$$

$$= \bigcup_{1 \leq i_1 < i_2 < \dots < i_r \leq n} \left[\bigcap_{i \in \{i_1, \dots, i_r\}} A_i \cap \bigcap_{j \in \{1, 2, \dots, n\} \setminus \{i_1, \dots, i_r\}} A_j^c \right]$$

iar $\mathbb{P}\left(\bigcap_{i\in\{i_1,\dots,i_r\}}A_i\cap\bigcap_{j\in\{1,2,\dots,n\}\setminus\{i_1,\dots,i_r\}}A_j^c\right)=0$ (cum l< r cel puţin una din A_i are probabilitate 0). De asemenea, să observăm că $S_{r+k}^n=\binom{l}{r+k}=0$ deci membrul drept

$$RHS = \sum_{k=0}^{n-r} (-1)^k \binom{r+k}{k} S_{r+k}^n = 0$$

și concluzionăm că LHS = RHS = 0.

Dacă $l \ge r$ atunci membrul drept devine

$$RHS = \sum_{k=0}^{n-r} (-1)^k \binom{r+k}{k} S_{r+k}^n = \sum_{k=0}^{n-r} (-1)^k \binom{r+k}{k} \binom{l}{r+k}$$
$$= \sum_{k=0}^{l-r} (-1)^k \binom{r+k}{k} \binom{l}{r+k} = \binom{l}{r} \sum_{k=0}^{l-r} (-1)^k \binom{l-r}{k}$$

unde pentru r=l avem RHS=1 iar pentru r< l avem RHS=0. In acelaşi timp membrul stang este tot egal cu 1 atunci cand l=r, pentru că $\mathbb{P}(A_1\cap A_l)=1$ și 0 atunci cand l>r. Ultima egalitate rezultă din faptul că in descompunerea evenimentului B apar evenimentele de tipul $\bigcap_{i\in\{i_1,\ldots,i_r\}}A_i\cap\bigcap_{j\in\{1,2,\ldots,n\}\setminus\{i_1,\ldots,i_r\}}A_j^c$ in care cel puțin unul dintre A_i și A_j^c este de probabilitate 0. Conform problemei precedente avem rezultatul dorit.

Punctul b) se face in mod similar.

Grupele: 301, 311, 321