

Сошников Дмитрий Валерьевич

к.ф.-м.н., доцент http://soshnikov.com

Лекция 3: Логика

Логическое программирование

https://soshnikov.com/courses/logpro/

Что такое логика?

Логике – больше 2000 лет!

Наука логики

- Аристотель: «Наука логики»
 - Силлогизмы
 - Все люди смертны
 - Сократ человек
 - => Сократ смертен

- Все математики изучали мат.лог.
- Вася математик
- => Вася изучал мат.логику
- Один из 64-х видов силлогизмов, 19 модусов

 $egin{aligned} & \mathrm{Bce}\ X \end{aligned}$ обладают свойством Y A является X

 $\therefore A$ обладает свойством Y

История логики

- Аристотель
- Джордж Буль, де Морган
- Фреже (понятие квантора, предиката)
- Пеано (формализация арифметики)
- Н.Бурбаки

Основополагающий принцип

Формальная аксиоматическая система

Определение *Формальная аксиоматическая система* определяется заданием следующих компонентов:

- 1. **Алфавит** $A = \{A_0, \dots, A_n\}$ некоторое конечное непустое множество различимых знаков
- 2. Множество **правильно построенных формул** $\Phi \subseteq A^*$ в алфавите A. Это множество как правило задается некоторым набором правил или **грамматикой**.
- 3. Множество **аксиом** $\Gamma_0 \subseteq \Phi$
- 4. Множество **правил вывода**, позволяющих получать из нескольких правильно построенных формул заключения

Определение Выводом формулы f из множества формул Γ называется последовательность $f_0, \ldots, f_n = f$, где f_i получается применением какого-либо правила вывода к некоторым формулам из $\Gamma \cup \{f_0, \ldots, f_{i-1}\}$. В этом случае говорят, что формула f выводима из множества Γ (обозначается $\Gamma \vdash f$). Формула f называется выводимой в формальной аксиоматической системе (обозначается $\vdash f$), если $\Gamma_0 \vdash f$.

Пример формальной системы

- Алфавит: {0,...,9,*,+,(,),}
- ППФ:
 - <цифра> ::= 0 | 1 | ... | 9
 - <число> ::= <цифра> | <цифра> <число>
 - <oneparop> ::= + | *
 - <выражение> :== <число> | (<выражение>) |
 <выражение> <оператор> <выражение>

Пример формальной системы

- Правила вывода:
 - <число>*1<число>
 - <число>*0 0
 - ...
- Пример вывода:
 - (12+0)*1 **-** 12+0 **-** 12

- выводимость

Интерпретация

- Формальная система имеет смысл, когда ее формулам придается некоторая семантика
- Семантика задается с помощью интерпретации
- Вывод в формальной системе обычно сохраняет интерпретацию
- Пример:
 - I: ∏∏Ф -> N
- Обозначение: I(F)

Корректность и полнота

- F G формула G выводима из F
- F \models G формула G следует из F, если \forall I I(F)=И => I(G)=И

- F G => I(F) = I(G) [F G] (корректность)
- F = G => F G − неверно (неполнота)

Логика и исчисление высказываний

Определение 3.3 *Правильно построенная формула логики выска-* **зываний** (ППФ) определяется следующими правилами:

- 1. Высказывание p, q, \ldots является $\Pi \Pi \Phi$.
- 2. Если $p, q \Pi \Pi \Phi$, то $\Pi \Pi \Phi$ также являются $(p \land q), (p \lor q), (\neg p), (p \supset q), ...$
- 3. Никакая другая строка не является $\Pi\Pi\Phi$.

Определение 3.4 Пусть F — некоторая ППФ. Интерпретацией \mathcal{I} формулы F называется функция \mathcal{I} : Vars $f \to \{T, F\}$, приписывающая каждой пропозициональной переменной истиностное значение: истина (T) или ложсь (F).

Пример

- Если Петя опоздает на работу, то его уволят или сделают выговор. Петя опоздает, если не придет автобус, или не прозвонит будильник.
- Обозначим:
 - Опоздание: І
 - Не пришел автобус: b
 - Будильник не звонил: а
 - Уволили: f
 - Сделали выговор: t

$$I \supset (f \lor t)$$

$$(a \lor b) \supset I$$

Интерпретация

- Будильник не прозвонил, Петя опоздал, его уволили:
 - { a=V, l=V, f=V, $t=\Pi$, $b=\Pi$ }

$$I \supset (f \lor t) = N$$

 $(a \lor b) \supset I = N$

- Будильник прозвонил, Петя опоздал, но его не уволили и не сделали выговор:
 - { a=И, l=И, f=Л, t=Л, b=Л }

$$I \supset (f \lor t) = \Pi$$

 $(a \lor b) \supset I = M$

Общезначимые формулы

- Определение. Формула В следует из формулы А (обозначают А \models В), если в любой интерпретации, для которой истинно А, оказывается истинным и В. Можно распространить следствие на произвольное конечное множество высказываний следующим образом: $A_1,...,A_n \models$ В означает $A_1 \land ... \land A_n \models$ В.
- Теорема. $A \models B \iff A \supset B$

Исчисление высказываний

- Надо добавить аксиомы + правила вывода
- Правило вывода:
 - $A, A \supset B \vdash B$ (modus ponens)
- Аксиомы:
 - $\blacksquare p \supset (q \supset p)$
 - $(p \supset (q \supset r)) \supset ((p \supset q) \supset (p \supset r))$

Смысл упражнения

- **Теорема** о дедукции: $G,A \models B <=> G \models A \supset B$, где $G \vdash n$ произвольное множество формул логики высказываний (в т.ч. множество аксиом)
- \blacksquare Следствие $A \models B <=>A \models B$

Полнота и непротиворечивость

- Определение. Исчисление называется формально (или внутренне) непротиворечивым (consistent), если не существует такой формулы A, что A и A.

Доказательство общезначимости

- Нас интересует возможность доказать общезначимость/выводимость формул
- Синтаксический метод: пытаемся получить А (построить вывод)
- Семантический метод: пытаемся получить = А (перебрать все интерпретации)
- Исчисление разрешимо, если существует алгоритм определения того, является ли заданная формула общезначимой или нет

Построение вывода в исчислении

Разрешимость исчисления высказываний

- Исчисление высказываний разрешимо
- Доказательство: достаточно построить алгоритм семантической проверки общезначимости.
 - Простой перебор 2ⁿ вариантов интерпретации

Логика и исчисление предикатов

- Расширим логику высказываний следующими понятиями
 - Предикат Р(...) высказывание, зависящее от аргумента
 - Аргументами могут быть термы: константы (a,b,...) или
 функциональные термы вида f(t₁,...,t_n), где t_i термы, f функтор
 - Кванторы ∀ и ∃
 - $(\forall x)P(x)$
 - Переменные х,у,...

Синтаксис

Определение Термом в логике предикатов является:

- 1. **Предметная константа** a_i , выбираемая из некоторого множества предметных констант M. Предметные константы служат для уникального обозначения объектов моделируемой предметной области.
- 2. Переменная x_i
- 3. Функциональный терм $f(t_1, ..., t_n)$, где t_i термы. В этом случае говорят, что функциональный символ f имеет арность n. Когда важно подчеркнуть арность функционального символа, используют обозначение $f^{(n)}$. Следует отметить, что одинаковые функцинальные термы с различной арностью считаются различными.

Определение Правильно-построенной формулой логики $npe \partial u \kappa amos$ (well-formed formula) является:

- Атомарная формула вида $P(t_1, \ldots, t_n)$, где P предикатный символ арности n, t_i термы.
- Формулы вида $\neg A$, $A \land B$, $A \lor B$, $A \supset B$ и m.д., где A и B правильно простроенные формулы
- Формулы вида $(\forall x)F$ и $(\exists x)F$, где F правильно построенная формула, в которой переменная x является **свободной**. B полученных формулах переменная x становится **связанной**.

Пример: арифметика

0, S(.)

$$-2+2=4=> add(s(s(0)),s(s(0)),s(s(s(s(0)))))$$

Семантика логики предикатов

- **В** Задается **область интерпретации** *D*.
- После этого необходимо:
 - Придать значения из области интерпретации всем предметным константам a_i , что описывается некоторой функцией I_a : $\{a_i\} \to D$
 - Придать некоторый смысл всем функциональным символам $f_i^{(n)}$ при помощи функции $I_f: \{f_i^{(n)}\} \to (D^n \to D)$
 - Придать некоторые значения всем предикатным символа $P_i^{(n)}$ в формуле, функцией I_p : $\{P_i^{(n)}\} \to (D^n \to \{T,F\})$
- **-** Таким образом, **интерпретация** определяется как совокупность $I = <I_{a}, I_{f}, I_{p}>$

Пример

- Все люди смертны H(x)⊃M(x)
- Сократ человек Н(сократ)
- --- Сократ -- смертен М(сократ)
- D множество всех существ и преметов / множество людей
- $H(x) = { x человек } H(x) = { x лысый}$
- $M(x) = \{ x cмертен \} M(x) = \{ x умный \}$

Чистое vs. прикладное исчисление

- Прикладное исчисление предикатов расширяется некоторым набором аксиом
- Например, формальная арифметика Пеано:
 - 0, s(x), +(x,y,z) константа и функциональные символы
 - -+(0,x,x)
 - -+(x,y,z) -+(s(x),y,s(z))
- Пример:
 - -+(0,s(s(0)),s(s(0))) -+(s(0),s(s(0)),s(s(s(0)))) -+(s(s(0)),s(s(0)),s(s(s(0))))

Полнота и непротиворечивость

- Теорема Исчисление предикатов непротиворечиво

Идея доказательства

- Если теория содержит арифметику, то мы можем «пронумеровать» все формулы!
- P(x) = { формула с номером x невыводима }
- Рассмотрим формулу F = P(#F)
- Если F выводима => F истинна=> F-невыводима
- Получается, что F невыводима, но при этом истинна

А как быть с вычислимостью?

- Возможно ли перебрать все интерпретации?
- Арифметика: 0, s(.), +(.,.)

Эрбрановская интерпретация

$$- H_0 = \{ 0 \}$$

$$- H_1 = \{ s(0), +(0,0) \}$$

$$H_2 = \{ s(s(0)), +(s(0),0), +(0, s(0)), +(s(0),s(0)) \}$$

•

$$H_{\infty} = U H_{i}$$

Эрбрановская интерпретация

- Для любого множества формул есть множество интерпретаций
- Для многих вопросов естествено рассматривать т.н.
 Эрбрановскую интерпретацию
 - D эрбрановский универсум Н=∪Н;
 - $H_0 = \{a,b,...\}, H_i = H_{i-1} \cup \{f^{(j)}(t_1,...,t_n) \mid t_i \in H_i\}$
 - Функции и константы интерпретируются самими собою
 - Интерес представляет только интерпретация предикатов

Теорема Чёрча

- Множество возможных Эрбрановских интерпретаций счетно
- Теорема Чёрча. Исчисление предикатов является неразрешимой теорией, т.е. не существует алгоритма установления общезначимости произвольной формулы логики предикатов.

Что же делать?

- Возвращаться к синтаксическому способу доказательства
- Рассматривать менее выразительное подмножество логики предикатов

Вопросы?

- http://t.me/log_pro
- https://soshnikov.com/courses/logpro/
- Литература: Верещанин, Шень. Языки и исчисления.
 https://www.mccme.ru/free-books/shen/shen-logic-part2-2.pdf