Privacy Preserving Record Linkage on Flink Big Data Praktikum

T. Hornoff M. Franke

Abteilung Datenbanken Institut für Informatik Fakultät für Mathematik und Informatik Universität Leipzig

04.08.2016

Inhalt

Einleitung

Realisierung

Diskussion

Privacy Preserving Record Linkage (PPRL)

- Objekt-Matching mit verschlüsselten Daten
- Verbindung von Datensätzen aus mehreren Datenquellen
- Herausforderungen
 - Schutz personenbezogener Daten
 - Wachsende Datenmengen (Skalierbarkeit)
 - Qualität der Daten
- Zahlreiche Anwendungsgebiete
 - Gesundheitsfürsorge
 - Betrugserkennung
 - ► Finanzinstitutionen & Banken
 - Unternehmensanwendungen

Apache Flink

Abbildung: https://flink.apache.org/img/flink-stack-frontpage.png

Inhalt

Einleitung

Realisierung

Diskussion

Gesamt-Prozess

Preprocessing - Lesen der Daten

Lesen der Daten	Lesen der .csv- Dateien	Übertragung in DataSet mit Person- Objekten				
Erstellung der Bloom Filter	Erstellung der n-Gramme (Tokens)	Aufnahme der Tokens in Bloom Filter				
	Berechnung der LSH-Keys	Finden von Kandidaten-Paaren				
	Entfernung von doppelten Kandidaten-Paaren					
	Berechnung der Ähnlichkeit für alle Kandidaten-Paare	Ausgabe aller Paare mit hinreichendem Ähnlichkeitswert				

Preprocessing - Lesen der Daten

- Nutzung verschiedener Datensätze
 - North Carolina Voter Registration Database
 - Erreichbar unter http://dl.ncsbe.gov/
 - Verschieden große Datensätze
 - Personenbezogene Daten (z.B. Name, Adresse, Alter, Geschlecht, ...)

county cd	first name	last_name	middle name	name suffix Ibl	res_addr1	res_addr2	res state	res city	res zig	res_zip4	race
DURHA	DEMARCO	HARRIS	DONTEZ		1309 HUDSON AVE	APT B15	NC	DURHAM	2770	5 337	2 B
MECKL	VIOLENA	WORK	ALIVNETTA		1424 PRESSLEY RD	APT 7	NC	CHARLOTTE	2821	7 93	4 B
PASQU	WILLIAM	BONDS	JAMES		1403 RIVER RD	LOT 153	NC	ELIZABETH CITY	2790	9 672	1B
PITT	QUENTIN	ANDREWS	MONTREL		1120 DOROTHY LN		NC	GREENVILLE	2783	4 930	8 B

- Nutzung von generierten Daten
 - Beginn der Übersetzung eines DataCorruptors¹ in Java mit Flink

¹Peter Christen, Dinusha Vatsalan, Flexible and extensible generation and corruption of personal data, ACM, 2013, CIKM '13 Proceedings of the 22nd ACM international conference on Information & Knowledge Management, http://dl.acm.org/citation.cfm?id=2507815

Preprocessing - Lesen der Daten: Ergebnis

Ausgabe der Person-Objekte in der Form (Person)

Person [id=1:-1642117313, firstName=DEMARCO, middleName=, lastName=HARRIS, addressPartOne=1309 HUDSON AVE, addressPartTwo=, state=, city=, zip=, genderCode=, age=, birthday=, ethnicCode=]

Person [id=1:1097147679, firstName=PEGGY, middleName=, lastName=TINGLE, addressPartOne=1008 CORBETT AVE NE, addressPartTwo=, state=, city=, zip=, genderCode=, age=, birthday=, ethnicCode=]

Person [id=1:65241860, firstName=THERESA, middleName=, lastName=PITTMAN, addressPartOne=417 E FRANKLIN ST, addressPartTwo=, state=, city=, zip=, genderCode=, age=, birthday=, ethnicCode=|

Person [id=1:715220210, firstName=MARGARET, middleName=, lastName=PEARSON, addressPartOne=401 ROBERSON ST, addressPartTwo=, state=, city=, zip=, genderCode=, age=, birthday=, ethnicCode=]

Person [id=2:-1512168112, firstName=GRADY, middleName=, lastName=WILLIAMS, addressPartOne=821 AVALON RD, addressPartTwo=, state=, city=, zip=, genderCode=, age=, birthday=, ethnicCode=)

Encoding - Bloom Filter

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Encoding - Erstellung der Bloom Filter

Erstellung der Aufnahme der Tokens Erstellung der Bloom Filter n-Gramme (Tokens) in Bloom Filter LSH-Keys Kandidaten-Paaren Entfernung von doppelten Kandidaten-Paaren

Encoding - Erstellung der Bloom Filter

- Bloom Filter Implementierung
 - ► Einstellbare Länge und Anzahl der Hashfunktionen
- Auswahl der Felder (Person-Attribute)
- Auswahl der Tokenlänge (Größe der n-Gramme)
- lackbox 2 Arten der Parallelisierung für Abbildung Token \mapsto Bloom Filter
 - Parallelisierung auf Token-Ebene
 - Parallelisierung auf Record-Ebene

Encoding - Erstellung der Bloom Filter: Parallelisierung

Encoding - Erstellung der Bloom Filter: Parallelisierung

Encoding - Erstellung der Bloom Filter: Ergebnis

Ausgabe der Bloom Filter in der Form (ID_{Person}, BloomFilter)

```
(1:-1764211470, (1, 2, 17, 19, 21, 23, 27, 29, 35, 37, 38, 40, 42, 44, 45, 46, 47, 53, 61, 62, 63, 65, 68, 74, 77, 78, 87, 102, 103, 105, 106, 107, 108, 112
119, 123, 124, 127, 131, 134, 138, 140, 141, 142, 143, 146, 151, 152, 157, 159, 160, 161, 164, 165, 166, 167, 168, 172, 175, 178, 181, 182, 185, 189, 191, 193,
194, 196, 198, 200, 203, 206, 207, 208, 214, 215, 216, 219, 220, 223, 232, 233, 235, 237, 245, 247, 248, 250, 253, 254, 256, 257, 259, 260, 262, 263, 266, 275,
279, 281, 283, 285, 296, 301, 308, 309, 311, 313, 315, 320, 321, 323, 329, 331, 333, 334, 339, 340, 342, 343, 344, 346, 351, 354, 355, 356, 357, 359, 363, 367,
369, 373, 375, 378, 380, 383, 384, 387, 391, 393, 394, 395, 397, 398, 400, 402, 406, 412, 413, 414, 415, 417, 418, 419, 427, 428, 431, 434, 435, 436, 441, 449,
457, 459, 461, 463, 464, 465, 469, 470, 475, 477, 480, 487, 488, 489, 490, 493, 497, 499, 504, 506, 508, 509, 510, 511, 512, 514, 517, 522, 528, 529, 535, 536,
537, 540, 545, 549, 550, 553, 554, 555, 556, 557, 562, 567, 568, 569, 571, 572, 582, 583, 587, 591, 597, 599, 601, 603, 604, 605, 608, 613, 614, 618, 619, 621,
623, 624, 631, 633, 635, 639, 644, 645, 646, 652, 657, 659, 660, 661, 662, 663, 665, 666, 667, 670, 671, 672, 673, 675, 685, 689, 691, 695, 699, 702, 707, 708,
969, 970, 977, 980, 983, 984, 985, 989, 990})
(1:1383042088, {2, 3, 4, 10, 12, 14, 15, 18, 20, 21, 24, 28, 29, 31, 34, 35, 36, 38, 41, 42, 44, 45, 48, 51, 54, 57, 61, 63, 64, 65, 67, 69, 71, 72, 75, 78, 85,
87, 88, 89, 90, 95, 96, 98, 100, 103, 104, 105, 107, 110, 112, 115, 116, 121, 125, 128, 136, 142, 144, 146, 147, 148, 149, 153, 159, 169, 170, 171, 173, 178,
185, 187, 189, 191, 193, 197, 200, 204, 205, 207, 208, 215, 216, 217, 220, 223, 225, 233, 234, 236, 238, 243, 244, 246, 247, 250, 253, 254, 255, 262, 263, 266,
268, 271, 278, 280, 281, 285, 292, 295, 298, 300, 302, 303, 304, 306, 307, 309, 311, 315, 316, 318, 319, 320, 321, 323, 325, 329, 332, 337, 340, 341, 343, 344
346, 348, 352, 353, 354, 356, 357, 359, 361, 363, 365, 367, 374, 375, 376, 377, 378, 380, 382, 384, 385, 386, 389, 390, 393, 397, 400, 401, 404, 408, 409, 410,
411, 413, 414, 429, 423, 424, 425, 426, 428, 445, 446, 443, 446, 447, 456, 452, 457, 458, 459, 469, 465, 466, 467, 468, 471, 476, 479, 486, 489, 491, 496, 498, 508, 504, 505, 508, 511, 512, 514, 519, 520, 522, 525, 527, 528, 534, 536, 537, 538, 504, 545, 547, 549, 552, 554, 555, 558, 561, 564, 565, 567, 569,
571, 575, 578, 580, 585, 588, 591, 595, 596, 597, 598, 600, 601, 610, 613, 617, 619, 623, 624, 626, 627, 630, 632, 633, 635, 637, 641, 649, 650, 656, 659, 661,
662, 667, 668, 673, 675, 679, 681, 686, 687, 688, 691, 692, 695, 698, 699, 709, 701, 702, 706, 707, 711, 713, 716, 721, 723, 728, 739, 735, 739, 747, 748, 750, 752, 754, 757, 757, 759, 760, 761, 765, 767, 770, 771, 773, 774, 775, 781, 782, 748, 785, 787, 888, 789, 796, 694, 808, 809, 814, 815, 816, 817, 818,
821 623 824 825 826 839 832, 834 837 846 845 846 848 859 851 852 853 855 858 859 861 862 865 867 868 871 873 878 879 882 883.
960, 963, 964, 966, 968, 972, 974, 975, 978, 981, 987, 989, 992, 9991)
(1:628522583, {1, 4, 5, 8, 9, 10, 14, 22, 25, 27, 32, 37, 43, 44, 45, 47, 48, 53, 54, 57, 58, 59, 61, 68, 72, 74, 75, 78, 79, 81, 83, 86, 94, 96, 99, 102, 108,
189, 112, 113, 114, 117, 118, 121, 126, 127, 128, 129, 130, 132, 133, 141, 142, 145, 148, 157, 161, 163, 165, 166, 168, 171, 172, 174, 176, 177, 178, 179, 180
183, 187, 188, 190, 196, 198, 199, 262, 264, 268, 269, 216, 220, 221, 224, 226, 228, 230, 233, 234, 236, 237, 239, 241, 245, 246, 247, 248, 253, 254, 259, 262,
264, 267, 269, 273, 275, 277, 278, 281, 283, 288, 292, 293, 294, 295, 298, 300, 301, 304, 315, 318, 323, 324, 325, 333, 334, 335, 336, 339, 341, 342, 343, 344,
358, 361, 364, 368, 369, 370, 372, 374, 376, 377, 379, 381, 384, 386, 387, 399, 394, 398, 399, 400, 403, 408, 409, 418, 419, 420, 422, 428, 434, 435, 437, 438,
439, 441, 446, 448, 450, 451, 454, 458, 459, 460, 462, 466, 468, 469, 471, 473, 480, 482, 485, 486, 487, 489, 498, 502, 504, 505, 512, 513, 514, 519, 520, 522,
523, 524, 528, 531, 532, 534, 540, 546, 548, 549, 550, 552, 555, 556, 558, 559, 563, 564, 565, 566, 567, 568, 574, 576, 580, 581, 582, 585, 586, 593, 594
596, 597, 682, 686, 610, 613, 614, 616, 618, 619, 623, 627, 628, 630, 633, 641, 642, 646, 647, 651, 653, 658, 659, 660, 661, 664, 668, 672, 674, 678, 685, 686,
687, 692, 693, 697, 700, 702, 703, 710, 711, 713, 718, 722, 727, 728, 731, 733, 735, 736, 737, 739, 740, 741, 745, 747, 752, 753, 754, 755, 756, 757, 758, 759
760, 762, 763, 764, 771, 776, 778, 780, 782, 784, 785, 786, 788, 789, 790, 803, 804, 814, 816, 819, 820, 822, 825, 826, 828, 830, 834, 836, 838, 840, 843, 845,
847, 849, 859, 851, 853, 854, 855, 856, 857, 858, 862, 866, 868, 879, 872, 873, 874, 876, 882, 885, 888, 889, 893, 897, 992, 993, 994, 996, 999, 919, 914, 917, 918, 921, 922, 924, 927, 928, 934, 938, 942, 944, 945, 948, 949, 911, 951, 953, 979, 958, 959, 910, 902, 903, 906, 968, 796, 971, 974, 977, 978, 979, 983, 986, 987,
988, 992, 994, 996, 9991)
```

Indexing - Locality Sensitive Hashing (LSH)

Indexing - Blocking mit LSH

Blocking mit Berechnung der Finden von LSH-Keys Kandidaten-Paaren LSH Entfernung von doppelten Kandidaten-Paaren

Indexing - Blocking mit LSH: Ergebnis

 Ergebnis des Blockings in der Form (ID_{LshKey}, Value_{LshKey}, BloomFilter)

```
(0, {0, 1, 2, 7, 9}, BloomFilterWithLshKeys [id=1:-1764211470])
(1, {0, 8}, BloomFilterWithLshKeys [id=1:-1764211470])
(2, {0, 1, 7, 8}, BloomFilterWithLshKeys [id=1:-1764211470])
(3, {0, 2, 4, 8, 9}, BloomFilterWithLshKevs [id=1:-1764211470])
(4,{1, 2, 3, 7, 9},BloomFilterWithLshKeys [id=1:-1764211470])
(0, {0, 1, 2, 4, 7}, BloomFilterWithLshKevs [id=1:1383042088])
(1, {2, 3, 5, 6}, BloomFilterWithLshKeys [id=1:1383042088])
(2, {}, BloomFilterWithLshKeys [id=1:1383042088])
(3.{4. 5}.BloomFilterWithLshKevs [id=1:13830420881)
(4, {2, 3, 6, 8, 9}, BloomFilterWithLshKeys [id=1:1383042088])
(0,{1, 4, 6, 7, 8, 9},BloomFilterWithLshKeys [id=1:628522583])
(1, {0, 1, 2}, BloomFilterWithLshKevs [id=1:6285225831)
(2, {5, 6, 8}, BloomFilterWithLshKeys [id=1:628522583])
(3, {2, 6, 7, 9}, BloomFilterWithLshKeys [id=1:628522583])
(4, {3, 6, 8, 9}, BloomFilterWithLshKeys [id=1:628522583])
(0.{3. 7. 8. 9}.BloomFilterWithLshKevs [id=1:652418601)
(1, {5, 8}, BloomFilterWithLshKeys [id=1:65241860])
(2,{1, 7, 8},BloomFilterWithLshKeys [id=1:65241860])
(3, {0, 2, 4, 5}, BloomFilterWithLshKevs [id=1:65241860])
(4,{2, 6, 7, 9},BloomFilterWithLshKevs [id=1:65241860])
(0, {1, 2, 4, 5, 6, 7, 9}, BloomFilterWithLshKeys [id=2:-21146392641)
(1, {0, 2, 4, 6, 7, 8}, BloomFilterWithLshKeys [id=2:-2114639264])
(2, {0, 1, 7, 8}, BloomFilterWithLshKeys [id=2:-21146392641)
(3, {0, 2, 4, 5, 6, 7, 8, 9}, BloomFilterWithLshKeys [id=2:-2114639264])
(4, {2, 3, 4, 8}, BloomFilterWithLshKeys [id=2:-2114639264])
```

Indexing - Duplikatentfernung

	Lesen der .csv- Dateien Übertragung in DataSet mit Person- Objekten
	Erstellung der n-Gramme (Tokens) Aufnahme der Tokens in Bloom Filter
	Berechnung der LSH-Keys Finden von Kandidaten-Paaren
Duplikat- entfernung	Entfernung von doppelten Kandidaten-Paaren
Ähnlichkeits- berechnung	Berechnung der Ähnlichkeit für alle Kandidaten-Paare Ausgabe aller Paare mit hinreichendem Ähnlichkeitswert

Comparison - Ähnlichkeitsberechnung

LSH-Keys Kandidaten-Paaren Entfernung von doppelten Kandidaten-Paaren Berechnung der Ausgabe aller Paare Ähnlichkeits-Ähnlichkeit für alle mit hinreichendem berechnung Kandidaten-Paare Ähnlichkeitswert

Comparison - Ähnlichkeitsberechnung: Ergebnis

► Ergebnis ist Matching Pair in der Form (*ID*₁, *ID*₂)

```
(2:-1474380544,1:-1642117313)
(1:715220210,2:-2114639264)
(1:115211210,2:2117779264)
```

Inhalt

Einleitung

Realisierung

Diskussion

Diskussion

- Vielzahl von Parametern
 - Auswahl der Attribute
 - Länge der Bloom Filter
 - Anzahl der Hashfunktionen
 - ▶ Länge der n-Gramme
 - Länge der LSH-Keys (#Hashfunktionen pro Hash Family)
 - Anzahl der LSH-Keys (#Hash Families)
 - Schwellwert für Ähnlichkeitsfunktion
- ► Geeignete Auswahl der Parameter ist von großer Bedeutung
 - ► Entscheidend für die Qualität und Sicherheit des PPRL
 - Beeinflusst Art und Weise der Parallelisierung
- Mehrere Möglichkeiten der Parallelisierung
- Data Corrupter

Inhalt

Einleitung

Realisierung

Diskussion