Capítulo 1

Teorema de Recorrência de Poincaré

1.1 Versão Mensurável

Teorema 1.1. Seja $f: M \to M$ uma transformação mensurável e μ uma medida finvariante finita. Seja $E \subset M$ qualquer conjunto mensurável com $\mu(E) > 0$. Então, μ -quase
todo ponto $x \in E$ tem algum iterado $f^n(x)$, $n \ge 1$, que também está em E.

Demonstração. Chamemos E_0 o conjunto dos pontos $x \in E$ que nunca retornam a E. Vamos provar que E_0 tem medida nula. Primeiro vamos provar que as suas pré-imagens $f^{-n}(E_0)$ são duas a duas disjuntas. De fato, suponhamos que exista $m > n \ge 1$ tais que $f^{-m}(E_0) \cap f^{-n}(E_0) \ne \emptyset$ e seja x um ponto dessa intersecção e $y = f^n(x)$. Então $y \in E_0$ e $f^{m-n}(y) = f^{m-n} \circ f^n(x) = f^m(x) \in E_0 \subset E$, isso significa que y retorna pelo menos uma vez a E, absurdo pois $y \in E_0$. Essa contradição prova que as pré-imagens de E_0 por f são duas a duas disjuntas. Então, pela σ -aditividade de μ , temos

$$\mu\left(\bigcup_{n=0}^{\infty} f^{-n}(E_0)\right) = \sum_{n=0}^{\infty} \mu(f^{-n}(E_0)) = \sum_{n=0}^{\infty} \mu(E_0)$$

Na ultima igualdade usamos a hipótese de que μ é f-invariante, ou seja, $\mu(f^{-n}(E_0)) = \mu(E_0)$ para todo $n \geq 1$. Como μ é finita, temos que $\mu(\bigcup_{n=0}^{\infty} f^{-n}(E_0)) < +\infty$, por outro lado, a direita temos uma soma infinita de termos constantes. A única forma dessa soma ser finita, é se todos as suas parcelas forem nulas. Portanto concluímos que $\mu(E_0) = 0$, e está provado o teorema.

1.2 Versão Topológica

Teorema 1.2. Suponhamos que M admite uma base enumerável de abertos. Seja $f: M \to M$ uma transformação mensurável e μ uma medida f-invariante finita. Então, μ -quase todo ponto $x \in M$ é recorrente para f.

Demonstração. Seja $B=\{U_k; k\in\mathbb{N}\}$ uma base enumerável de abertos de M, isto é, se $U\in M$ um aberto então $U=\cup_{i\in I}U_{k_i}$, com $I\subset\mathbb{N}$.

Para cada k representamos por U_k^0 o conjunto dos pontos $x \in U_k$ que nunca regressam a U_k . Pelo Teorema ??, U_k^0 tem medida nula pra todo k, e portanto a união enumerável

$$\tilde{U} = \bigcup_{k \in \mathbb{N}} U_K^0$$

tem medida nula. Portanto para demonstrar o teorema, basta mostrar que todo ponto x que não está em \tilde{U} é recorrente.

De fato, seja $x \in (M - \tilde{U})$ e U uma vizinhança aberta qualquer de x, como B é uma base de abertos de M então existe um $U_k \in B$ tal que $x \in U_k \subset U$. Como $x \notin \tilde{U}$, então $x \notin U_k^0$, ou seja, existe um $n \geq 1$, tal que $f^n(x) \in U_k \subset U$. Como U é uma vizinhança arbitrária, isso mostra que x é um ponto recorrente.