Lista powtórkowa przed 2. kolokwium, Analiza Matematyczna I

1. Zbadaj zbieżność i bezwzględną zbieżność następujących szeregów:

(a)
$$\sum_{n=1}^{\infty} \frac{\pi^n n!}{(n+1)^n},$$

$$\sum_{n=1}^{\infty} \frac{n \sin(4n)}{n^2},$$
(b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{3n^2 - 2},$$
(c)
$$\sum_{n=2}^{\infty} \frac{\sin(3n)}{\sqrt{n}} \left(\frac{\sqrt[3]{n} - 1}{\sqrt[3]{n}}\right),$$
(d)
$$\sum_{n=2}^{\infty} \frac{(\ln n)^{2021}}{n\sqrt{n}},$$
(e)
$$\sum_{n=1}^{\infty} \frac{n + 2}{n \ln n \ln(\ln n) \ln(\ln(\ln^2 n))},$$
(f)
$$\sum_{n=1}^{\infty} \frac{n \sin(4n)}{n^2},$$
(g)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \left(1 + \frac{(-1)^n}{\sqrt{n}}\right),$$
(h)
$$\sum_{n=1}^{\infty} \frac{n! \cdot n^n}{2^{n^2}},$$
(i)
$$\sum_{n=2}^{\infty} \frac{n! \cdot n^n}{(1 + n \ln n)^{2022}},$$
(j)
$$\sum_{n=2}^{\infty} (-1)^n \frac{\sqrt{n}}{n + 2021},$$
(e)
$$\sum_{n=1}^{\infty} \frac{1}{n \ln n \ln(\ln n) \ln(\ln(\ln^2 n))},$$
(k)
$$\sum_{n=2}^{\infty} \frac{\cos(5n)}{\ln n} \left(\frac{e^{2n} + 2e^n + 3}{e^{2n}}\right).$$

2. Dla jakich $x \in \mathbb{R}$ szereg

$$\sum_{n=1}^{\infty} \frac{\cos(3nx)\arctan n}{\sqrt{n}}$$

jest zbieżny?

3. Dla których wartości parametrów a, b funkcja f określona wzorem

$$f(x) = \begin{cases} x & \text{dla} & x < 1\\ x^2 + ax + b & \text{dla} & 1 \le x < 2\\ x + 3 & \text{dla} & 2 \le x \end{cases}$$

jest ciągła?

4. Funkcja f jest zadana przez

$$f(x) = \begin{cases} \frac{x^3}{\lg(ax) - \sin(ax)} & \text{dla } x < 0\\ 2022 & \text{dla } x = 0\\ \frac{\log_b(x^2 + 1)}{x^2} & \text{dla } x > 0 \end{cases}$$

Dla jakich wartości a, b > 0 funkcja ta jest ciągła w 0?

 $^{^{1}}$ Wskazówka: Co wiadomo o sumach częściowych $\sum_{n=1}^{N}\sin(3n)?$

5. Funkcja f jest zadana przez

$$f(x) = \begin{cases} \frac{a^x - 1}{x} & \text{dla } x < 0\\ 3 & \text{dla } x = 0\\ \frac{1 - \cos(bx)}{x^2} & \text{dla } x > 0 \end{cases}$$

Dla jakich wartości a, b > 0 funkcja ta jest ciągła na \mathbb{R} ?

6. Niech fbędzie funkcją określoną na pewnym otoczeniu punktu0i $g\in\mathbb{R}.$ Czy warunki

(W) Dla każdego ciągu
$$x_n \to 2, x_n \neq 2$$
, zachodzi $\lim_{n \to \infty} f(x_n^2 - x_n - 2) = g$.

$$\lim_{x \to 0} f(x) = g$$

są równoważne?

- 7. Załóżmy, że dla każdego $x \neq 0$ funkcja f(x) ma własność $f(x/\sqrt{n}) \to 0$ gdy $n \to \infty$. Czy funkcja f ma granicę zero w punkcie zero?
- 8. Oblicz granicę

$$\lim_{x \to \pi} \frac{\sin x}{\pi - x}.$$

9. Wyznacz granice:

(a)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{\operatorname{tg}^{2}(4x)},$$
 (b)
$$\lim_{x \to \pi} \frac{1 + \cos(x)}{\operatorname{tg}^{2}(4x)},$$
 (f)
$$\lim_{x \to \pi} \frac{1 + \cos(x)}{\operatorname{tg}^{2}(4x)},$$
 (g)
$$\lim_{x \to 2} \frac{x^{7} - 128}{x - 2},$$
 (g)
$$\lim_{x \to 0^{+}} (1 - \sin x)^{1/x},$$
 (d)
$$\lim_{x \to 3} \frac{\sqrt[3]{x^{2} + 18} - 3}{\sqrt{x + 1} - 2},$$
 (h)
$$\lim_{x \to \infty} \frac{2021\sqrt{x}}{\ln^{2022}x}.$$

10. Niech [x] i $\{x\}$ oznaczają odpowiednie: część całkowitą i ułamkową liczby $x \in \mathbb{R}$. Funkcja $f: \mathbb{R} \to \mathbb{R}$ zadana jest przez

$$f(x) = [3x] + \{x + 1/3\}.$$

W których punktach f(x) jest ciągła, a w których nieciągła?

- 11. Znajdź funkcję odwrotną do $\sinh(x) = (e^x e^{-x})/2$
- 12. Skonstruuj funkcję nieciągłą we wszystkich punktach postaci n+1/n dla $n \in \mathbb{N}$.
- **13.** Do podanych f, x_0 i ε dobrać takie δ , aby

$$\forall x \in (x_0 - \delta, x_0 + \delta) \qquad |f(x) - f(x_0)| < \varepsilon$$

(a)
$$f(x) = 1/x$$
, $x_0 = 4$, $\varepsilon = 1/100$

(b)
$$f(x) = \sqrt{x}, x_0 = 30, \varepsilon = 1/10$$

14. Czy warunek

$$\forall \delta \in (0,1) \quad \exists \kappa > 0 \quad \forall x,y \in D \quad \left(|x-y| < \kappa^2 \implies f(x) - f(y) < -(\ln \delta)^{-1}\right)$$
 jest równoważny jednostajnej ciagłości funkcji f na zbiorze D ?

- **15.** Czy funkcja e^x jest jednostajnie ciągła na przedziałach $(-\infty, 0], [-1, 1], [0, \infty)$?
- **16.** Czy funkcje:

(a)
$$g(x) = \sin(\sqrt{x})$$

$$(b)$$

$$h(x) = \sin(x^2)$$

są jednostajnie ciągłe na $[0, \infty)$?

- 17. Udowodnij, że funkcja $f(x) = x^{-1/2}$ nie jest jednostajnie ciągła na (0,1].
- 18. Funkcja $f:[0,\infty)\to\mathbb{R}$ jest ciągła i ma asymptotę ukośną y=x+3 w $+\infty$, tzn.

$$\lim_{x \to +\infty} (f(x) - (x+3)) = 0.$$

Udowodnić, że f jest jednostajnie ciągła na $[0, \infty)$.

19. Dowieść, że równanie

$$x^{1000000} + 2 = (1,000001)^x$$

ma co najmniej jedno rozwiązanie rzeczywiste. Wskazać konkretny (być może niepotrzebnie duży) przedział, w którym znajduje się rozwiązanie.

20. Udowodnić, że wielomian

$$W(x) = x^6 - 2022x^4 - 2021x^3 + 1$$

ma przynajmniej cztery pierwiastki rzeczywiste.

21. Dowieść, że równanie

$$x^2 = 25\pi^2 \cdot \cos\left(x^3\right)$$

ma więcej niż 1000 rozwiązań rzeczywistych.

22. Funkcja ciągła $f: \mathbb{R} \to \mathbb{R}$ dla $n \in \mathbb{N}$ spełnia:

$$f(2^n) = \frac{4^n + 3 \cdot 2^n + 1}{2^n + 2}$$

oraz

$$f(3^n) = \frac{27^n + 1}{9^n + 1}.$$

Udowodnij, że istnieje nieskończenie wiele $x \in \mathbb{R}$, takich że f(x) = x.