

TI-PMLK WEBENCH 实验报告 Buck (TPS54160)

作	者:	许晓明	学与	<u>.</u> _	9161040G0734
学	院:		电	.光学	院
专业(フ	· 方向):		电子信息	:工程	(卓工)
班	级:		916	51042	103
题	目:		TI-PMLK	WEBE	NCH 实验
	•		Buck	(TPS:	54160)

2019 年 4 月

目 次

1	实	验目标	1
2	测	试 1	1
	2.1	计算公式	1
	2.2	实验步骤	1
	2.3	实验结果	4
3	测	试 2	6
	3.1	计算公式	6
	3.2	实验步骤	6
	3.3	实验结果	6
表	2.3.1	原始数据情况(开关频率 250kHz)	4
表	2.3.2	效率理论值计算过程(开关频率 250kHz)	5
表	2.3.3	开关频率为 250kHz 时 TPS54160 的实验效率、理论效率及误差	5
表	3.3.1	原始数据情况(开关频率 500kHz)	6
表	3.3.2	效率理论值计算过程(开关频率 500kHz)	6
表	3.3.3	开关频率为 500kHz 时 TPS54160 的实验效率、理论效率及误差	7
图	2.2.1	实验设置电路	2
		CUSTOMIZE 页面	
图	2.2.3	输入设定值	3
图	2.2.4	Duty Cycle,Iin Avg,L Ipp 参数	4

1 实验目标

本实验的目标是分析降压型(Buck)稳压器的效率与输入与负载、以及开关频率之间的关系。我们将使用 WEBENCH 电源设计工具来得到分析和仿真结果,以便与我们的 TI-PMLK 实验板的实验结果进行比较。

2 测试1

分析当开关频率为 250kHz 时输入电压和负载电流对效率的影响。将实验得到的效率与理论计算的结果进行比较。

2.1 计算公式

理论效率值通过下式计算:

$$\eta_{theo}\% = Pout/(Pout + Ploss) \times 100$$

其中,

$$P_{OUT} = V_{OUT} \times I_{OUT}$$

 $P_{loss} = P_{MOS,c} + P_{MOS,sw} + P_{MOS,g} + P_{diode} + P_{L,w} + P_{L,c} + P_{Cin} + P_{Cout} + P_{IC}$ 查阅 TI-PMLK 实验指导书理论背景部分中给出的损耗计算公式,可得到:

$$\begin{cases} P_{MOS,c} = R_{ds}DI_{out}^2\alpha_{pp} \\ P_{MOS,sw} = V_{in}I_{out}f_st_{sw} \\ P_{MOS,g} = Q_gV_{dr}f_s \\ P_{diode} = V_fD'I_{out} \\ P_{L,w} = ESR_LI_{out}^2\alpha_{pp} \\ P_{L,c} = K_1f_s^x(K_2\Delta i_{pp})^y \\ P_{Cin} = ESR_{Cin}I_{out}^2D'D \\ P_{Cout} = \frac{1}{12}ESR_{Cout}\Delta i_{pp}^2 \\ P_{IC} = V_{in}I_{\mu} \end{cases}$$

其中,

$$\begin{cases} D' = 1 - D \\ \Delta i_{pp} = \frac{V_{out}D'}{f_sL} \\ \alpha_{pp} = 1 + \left(\frac{\Delta i_{Lpp}}{I_{out}}\right)^2 \times \frac{1}{12} \end{cases}$$

2.2 实验步骤

1. 打开 TPS54160 的设计方案。我们将在 WEBENCH 中看到已经预先为本实验设置好的电路,如图 2.2.1。我们注意到此设计方案中电路板面积(Footprint)和元器件成本(BOM cost)显示为 NA,原因是为了与 PMLK 实验板上的电路保持一致,本设

计的原理图中使用了自定义的元器件。

图 2.2.1 实验设置电路

2. 在 WEBENCH 电源设计工具的 CUSTOMIZE 页面中,我们可以找到"OPERATING VALUES"标签。

图 2.2.2CUSTOMIZE 页面

3. 在 "System Information"标签下,我们可以找到效率值(Efficiency)。若想查看在 Vin 为 6V, Iout 为 0.1A 时的效率,可以按照图 2.2.3 所示,移动滑动条或者直接在

文本框中输入想要设定的值,然后点击"RECALCULATE"。

图 2.2.3 输入设定值

- 4. 向下拉动滚动条,可以从 Operating Values 表格中找到效率值(Efficiency),如图 2.2.3 所示。将找到的效率值记录在表 2.3.3 中。将这个值与通过公式计算得到的效率进行比较。
- 5. 重复上面步骤,改变运行条件,将每组输入电压和负载电流条件下的效率值填入表 2.3.3 中。
- 6. 记录 Operating Values 表格中的 Duty Cycle、Iin Avg、以及 L Ipp,如图 2.2.4 所示。

将这些数据带入 TI-PMLK 实验指导书的理论背景部分所给出的公式中。

Duty Cycle	43.89%	Duty cycle
Efficiency	88.1%	Steady state efficiency
Frequency	247.63 kHz	Switching frequency
ІСТ	31.36 °C	IC junction temperature
ICThetaJA	62.5 °C/W	IC junction-to-ambient thermal resistance
L lpp	263.98 mA	Peak-to-peak inductor ripple current
L Pd	880 µW	Inductor power dissipation
IC Pd	21.74 mW	IC power dissipation
Diode Pd	21.95 mW	Diode power dissipation
D1 Tj	30.55 °C	D1 junction temperature
Pout	330 mW	Total output power
lin Avg	62.43 mA	Average input current
	0 A	Peak switch current in IC

图 2.2.4Duty Cycle,lin Avg,L lpp 参数

2.3 实验结果

由于公式中的一些变量无法通过计算得到,于是从网页仿真中获取了相关变量,相关情况见表 2.3.1。其中,Diode Pd 即为公式中的 P_{diode} 。通过 EXCEL 计算公式中的相应值,得到效率理论值及计算中间过程见表 2.3.2。

于是,最终的实验结果见表 2.3.3,同样借助 EXCEL 计算得,相对误差的均值为 1.486%,标准差为 0.012694996。

	- E.O.± MV				-		
开关频率 250kHz	Iout	0.1A	0.2A	0.5A	1A	1.2A	1.5A
	Efficiency(%)	88.1	91.7	90.3	87.1	85.8	83.7
	Duty Cycle(%)	43.89	58.34	59.24	60.68	61.3	62.35
Vin= 6V	Iin Avg(mA)	62.42	120.01	304.69	631.45	769.54	986.1
	L Ipp(mA)	263.98	353.39	358.86	367.57	371.35	377.66
	Diode Pd(mW)	21.95	34.94	94.11	197.78	239.85	302.54
	Efficiency(%)	78.2	81.6	83.9	82.8	82.2	81.3
	Duty Cycle(%)	8.08	11.46	15.41	15.6	15.66	15.75
Vin = 24V	Iin Avg(mA)	17.58	33.69	81.92	165.99	200.61	253.64
	L Ipp(mA)	374.9	531.88	715.87	724.3	727.23	731.49
	Diode Pd(mW)	35.96	74.26	195.3	424.55	522.77	676.91

表 2.3.1 原始数据情况(开关频率 250kHz)

表 2.3.2 效率理论值计算过程(开关频率 250kHz)

250kHz	Iout	0.1A	0.2A	0.5A	1A	1.2A	1.5A
20 01412	Pmos,c(mW)	1.249	5.293	27.802	110.454	160.158	253.851
	Pmos.sw(mW)	0.225	0.450	1.125	2.250	2.700	3.375
	Pmos.g(mW)	4.500	4.500	4.500	4.500	4.500	4.500
	Pl,w(mW)	1.265	4.033	20.859	80.901	116.119	180.951
	Pl,c(mW)	12.098	21.745	22.426	23.534	24.023	24.850
Vin= 6V	Pcin(mW)	0.012	0.049	0.302	1.193	1.708	2.641
VIII— U V	Pcout(mW)	0.145	0.260	0.268	0.281	0.287	0.297
	PIC(mW)	0.696	0.696	0.696	0.696	0.696	0.696
	Ploss(mW)	42.140	71.965	172.088	421.589	550.041	773.702
	Pout(mW)	330	660	1650	3300	3960	4950
	理论效率	88.676%	90.168%	90.555%	88.672%	87.804%	86.482%
	Pmos,c(mW)	0.316	1.311	8.119	29.308	41.833	65.052
	Pmos.sw(mW)	3.600	7.200	18.000	36.000	43.200	54.000
	Pmos.g(mW)	4.500	4.500	4.500	4.500	4.500	4.500
	Pl,w(mW)	1.737	5.086	23.416	83.497	118.726	183.567
	Pl,c(mW)	24.487	49.459	89.862	92.002	92.752	93.847
Vin = 24V	Pcin(mW)	0.004	0.020	0.163	0.658	0.951	1.493
VIII = 24V	Pcout(mW)	0.293	0.589	1.068	1.093	1.102	1.115
	PIC(mW)	2.784	2.784	2.784	2.784	2.784	2.784
	Ploss(mW)	73.680	145.210	343.213	674.392	828.617	1083.267
	Pout(mW)	330	660	1650	3300	3960	4950
	理论效率	81.748%	81.966%	82.781%	83.032%	82.696%	82.045%

表 2.3.3 开关频率为 250kHz 时 TPS54160 的实验效率、理论效率及误差

开关频率 250kHz 时的结果		0.1A	0.2A	0.5A	1A	1.2A	1.5A
Vin= 6V	实验效率	88.100%	91.700%	90.300%	87.100%	85.800%	83.700%
	理论效率	88.676%	90.168%	90.555%	88.672%	87.804%	86.482%
	相对误差	0.650%	1.699%	0.282%	1.773%	2.282%	3.217%
	实验效率	78.200%	81.600%	83.900%	82.800%	82.200%	81.300%
Vin = 24V	理论效率	81.748%	81.966%	82.781%	83.032%	82.696%	82.045%
	相对误差	4.340%	0.447%	1.352%	0.279%	0.600%	0.908%

3 测试 2

将开关频率从 250kHz 更改为 500kHz, 并分析在 500kHz 时输入电压和负载电流对效率的影响。将实验得到的效率值与理论计算进行比较。

3.1 计算公式

根据下式计算 Buck 转换器的理论效率值:

$$\eta_{theo}\% = Pout/(Pout + Ploss) \times 100$$

其中,

$$P_{OUT} = V_{OUT} \times I_{OUT}$$

 $P_{loss} = P_{MOS,c} + P_{MOS,sw} + P_{MOS,g} + P_{diode} + P_{L,w} + P_{L,c} + P_{cin} + P_{cout} + P_{IC}$ 以上计算公式根据 TI-PMLK 实验指导书理论背景部分中给出的损耗计算公式得到。具体公式见 2.1。

3.2 实验步骤

- 1. 打开TPS54160的设计方案,其中Vout = 3.3V, $F_{sw} = 500KHz$ 。
- 2. 我们将在WEBENCH中看到已经预先为本实验设置好的电路。
- 3. 按照与测试1相同的步骤记录不同 V_{in} 和 I_{out} 条件下的效率值,将其填入表2。
- 4. 将Operating Values表格中的Duty Cycle、Iin Avg、以及L Ipp也记录下来。将这些数据带入TI-PMLK实验指导书的理论背景部分所给出的公式中。

3.3 实验结果

与测试 1 类似,从网页仿真中获取的相关变量情况见表 3.3.1。通过 EXCEL 计算公式中的相应值,得到效率理论值及计算中间过程见表 3.3.2。

于是,最终的实验结果见表 3.3.3,同样借助 EXCEL 计算得,相对误差的均值为 4.330%,标准差为 0.029063147。

开关频率 500kHz	Iout	0.1A	0.2A	0.5A	1A	1.2A	1.5A
	Efficiency(%)	88	89.6	88.9	85.9	84.5	82.4
	Duty Cycle(%)	57.95	58.34	59.25	60.7	61.34	62.4
Vin= 6V	Iin Avg(mA)	62.52	122.71	309.27	640.42	780.76	1000
	L Ipp(mA)	173.66	174.82	177.54	181.9	183.8	186.98
	Diode Pd(mW)	16.45	34.94	94.09	197.66	239.65	302.11
	Efficiency(%)	69.9	76.7	80	79.6	79.1	78.3
	Duty Cycle(%)	11.48	15.25	15.42	15.6	15.66	15.76
Vin = 24V	Iin Avg(mA)	19.68	35.86	85.94	172.68	208.48	263.43
	L Ipp(mA)	263.68	350.24	354.15	358.36	359.84	361.99
	Diode Pd(mW)	34.63	71.08	195.3	424.53	522.74	676.87

表 3.3.1 原始数据情况(开关频率 500kHz)

表 3.3.2 效率理论值计算过程(开关频率 500kHz)

500kHz Iout	0.1A	0.2A	0.5A	1A	1.2A	1.5A
-------------	------	------	------	----	------	------

					_ , ,,	,	
	Pmos,c(mW)	1.305	4.468	26.943	109.561	159.304	253.047
	Pmos.sw(mW)	0.450	0.900	2.250	4.500	5.400	6.750
	Pmos.g(mW)	9.000	9.000	9.000	9.000	9.000	9.000
	Pl,w(mW)	1.001	3.404	20.210	80.221	115.425	180.233
	Pl,c(mW)	12.062	12.224	12.609	13.239	13.519	13.993
Vin= 6V	Pcin(mW)	0.012	0.049	0.302	1.193	1.707	2.640
VIII— U V	Pcout(mW)	0.063	0.064	0.066	0.069	0.070	0.073
	PIC(mW)	0.696	0.696	0.696	0.696	0.696	0.696
	Ploss(mW)	41.039	65.744	166.166	416.139	544.772	768.542
	Pout(mW)	330	660	1650	3300	3960	4950
	理论效率	88.939%	90.941%	90.851%	88.802%	87.907%	86.561%
	Pmos,c(mW)	0.326	1.379	7.229	28.381	40.895	64.138
	Pmos.sw(mW)	7.200	14.400	36.000	72.000	86.400	108.000
	Pmos.g(mW)	9.000	9.000	9.000	9.000	9.000	9.000
	Pl,w(mW)	1.264	4.018	20.836	80.856	116.063	180.874
	Pl,c(mW)	27.924	49.406	50.521	51.736	52.166	52.794
Vin = 24V	Pcin(mW)	0.005	0.026	0.163	0.658	0.951	1.494
V III — 24 V	Pcout(mW)	0.145	0.256	0.261	0.268	0.270	0.273
	PIC(mW)	2.784	2.784	2.784	2.784	2.784	2.784
	Ploss(mW)	83.278	152.348	322.095	670.212	831.269	1096.226
	Pout(mW)	330	660	1650	3300	3960	4950
	理论效率	79.849%	81.246%	83.667%	83.119%	82.650%	81.869%

表 3.3.3 开关频率为 500kHz 时 TPS54160 的实验效率、理论效率及误差

开关频率 500kHz 时的结果		0.1A	0.2A	0.5A	1A	1.2A	1.5A
Vin= 6V	实验效率	88.000%	89.600%	88.900%	85.900%	84.500%	82.400%
	理论效率	88.939%	90.941%	90.851%	88.802%	87.907%	86.561%
	相对误差	1.056%	1.475%	2.147%	3.268%	3.875%	4.806%
	实验效率	69.900%	76.700%	80.000%	79.600%	79.100%	78.300%
Vin = 24V	理论效率	79.849%	81.246%	83.667%	83.119%	82.650%	81.869%
	相对误差	12.460%	5.595%	4.383%	4.234%	4.296%	4.360%