CS1571 HW 3 Written

Tianjian Meng

11 - 3 - 2017

1. Entailment

 $(A \vee C) \wedge (B \vee (\neg C))$

A	В	С	$A \lor C$	$\neg C$	$B \vee (\neg C)$	$(A \lor C) \land (B \lor (\neg C))$	$A \vee B$		
True	True	True	True	False	True	False	True		
True	True	False	True	True	True	True	True		
True	False	True	True	False	False	False	True		
True	False	False	True	True	True	True	True		
False	True	True	True	False	True	True	True		
False	True	False	False	True	True	False	True		
False	False	True	True	False	False	False	False		
False	False	False	False	True	True	False	False		

2. Resolution - Propositional

Knowledge Base:

$$(P \wedge Q) \vee (Q \wedge R)$$

Rules:

$$R \Rightarrow S$$

$$S \Rightarrow P$$

$$(P \land Q) \Rightarrow G$$

Goal: G

$$\begin{array}{l} \text{(a)} \hspace{0.2cm} \text{(a)} \hspace{0.2cm} (P \wedge Q) \vee (Q \wedge R) \\ \hspace{0.2cm} \equiv ((P \wedge Q) \vee Q) \wedge ((P \wedge Q) \vee R) \\ \hspace{0.2cm} \equiv ((P \vee Q) \wedge (Q \vee Q)) \wedge ((P \vee R) \wedge (Q \vee R)) \\ \hspace{0.2cm} \equiv Q \wedge (P \vee R) \wedge (Q \vee R) \\ \hspace{0.2cm} \equiv Q \wedge (P \vee R) \end{array}$$

(b)
$$R \Rightarrow S$$

$$\equiv \neg R \vee S$$

(c)
$$S \Rightarrow P$$

 $\equiv \neg S \lor P$

$$\begin{aligned} (\mathrm{d}) & (P \wedge Q) \Rightarrow G \\ & \equiv \neg (P \wedge Q) \vee G \\ & \equiv (\neg P \vee \neg Q) \vee G \\ & \equiv \neg P \vee \neg Q \vee G \end{aligned}$$

	Step	Formula	Derivation
(b)	1	Q	Given
	2	$P \vee R$	Given
	3	$\neg R \lor S$	Given
	4	$\neg S \lor P$	Given
	5	$\neg P \lor \neg Q \lor G$	Given
	6	$\neg G$	Negated conclusion
	7	$P \lor S$	2,3
	8	P	4,7
	9	$\neg Q \lor G$	5,8
	10	G	1,9
	11	•	6,10

3. FOL Translation for Forward and Backward Chaining

GameX says it is criminal for a programmer to provide emulators to people. My friends don't have a GameX, but they use software EMULATOR1 that runs GameX games on their PC, which is written by SuperProgrammer, who is a programmer.

1. It is criminal for a programmer to provide emulators to people.

 $\forall x \forall y \forall z (Programmer(x) \land Emulator(y) \land Provide(x, y, z) \land People(z) \Rightarrow Criminal(x))$

2. My Friends use emulator called EMULATOR1. $Use(MyFriends, EMULATOR1) \land Emulator(EMULATOR1)$

3. Emulator used by my friends is provided by SuperProgrammer.

 $\exists x (Emulator(x) \land Use(MyFriends, x) \Rightarrow Provide(SuperProgrammer, x, MyFriends))$

4. My friends are people. People(MyFriends)

5. SuperProgrammer is a programmer.

Programmer(SuperProgrammer)

4. Unification

- (a) P(A,B,B), P(x,y,z) $\{x/A,y/B,z/B\}$
- (b) Q(y,G(A,B)), Q(G(x,x),y)Fail
- (c) Older(Father(y),y), Older(Father(x),John) {x/John,y/John}
- (d) Knows(Father(y),y), Knows(x,x)Fail
- 5. Resolution FOL

```
(a) (a) \forall x(pass(x, History) \land win(x, Lottery) \Rightarrow happy(x))

\equiv \neg (pass(x, History) \land win(x, Lottery)) \lor happy(x)

\equiv (\neg pass(x, History) \lor \neg win(x, Lottery)) \lor happy(x)

\equiv \neg pass(x, History) \lor \neg win(x, Lottery) \lor happy(x)

(b) \forall x \forall y(study(x) \lor lucky(x) \Rightarrow pass(x, y))

\equiv \neg (study(x) \lor lucky(x)) \lor pass(x, y)

\equiv (\neg study(x) \land \neg lucky(x)) \lor pass(x, y)

\equiv (\neg study(x) \lor pass(x, y)) \land (\neg lucky(x) \lor pass(x, y))

(c) \neg study(John) \land lucky(John)

(d) \forall x(lucky(x) \Rightarrow win(x, Lottery))

\equiv \neg lucky(x) \lor win(x, Lottery)

(e) \exists x(wealthy(x))

\equiv wealthy(F(x))
```

Step	Formula	Derivation
1	$\neg pass(x, History) \lor \neg win(x, Lottery) \lor happy(x)$	Given
2	$\neg study(x) \lor pass(x,y)$	Given
3	$\neg lucky(x) \lor pass(x,y)$	Given
4	$\neg study(John)$	Given
5	lucky(John)	Given
6	$\neg lucky(x) \lor win(x, Lottery)$	Given
7	$\neg wealthy(F(x))$	Given
8	$\neg happy(John)$	Negated conclusion
9	win(John, Lottery)	5,6
10	pass(John, y)	3,5
11	$\neg pass(John, History) \lor happy(John)$	1,9
12	happy(John)	10,11
13	•	8,12
	1 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c cccc} 1 & \neg pass(x, History) \vee \neg win(x, Lottery) \vee happy(x) \\ 2 & \neg study(x) \vee pass(x,y) \\ 3 & \neg lucky(x) \vee pass(x,y) \\ 4 & \neg study(John) \\ 5 & lucky(John) \\ 6 & \neg lucky(x) \vee win(x, Lottery) \\ 7 & \neg wealthy(F(x)) \\ 8 & \neg happy(John) \\ 9 & win(John, Lottery) \\ 10 & pass(John,y) \\ 11 & \neg pass(John, History) \vee happy(John) \\ 12 & happy(John) \end{array}$