Machine Learning: Assignment 1

Part (a):

```
Model parameters for \lambda = 0:-
\theta_0 = -101502.516871
\theta_1 = 1.05363315568
\theta_2 = 94624.4513358
\theta_3 = 57091.2982001
\theta_4 = 154412.027973

Price = \theta_0 + (\theta_1^* \text{ sqft}) + (\theta_2^* \text{ floors}) + (\theta_3^* \text{ bedrooms}) + (\theta_4^* \text{ bathrooms})

Model parameters for \lambda = 1:-
\theta_0' = -101478.246666
\theta_1' = 1.05352778772
\theta_2' = 94619.812371
\theta_3' = 57088.6430526
\theta_4' = 154408.620888

Price = \theta_0' + (\theta_1' * \text{ sqft}) + (\theta_2' * \text{ floors}) + (\theta_3' * \text{ bedrooms}) + (\theta_4' * \text{ bathrooms})
```

Note:-

- 1) First 80% of the data set was used to train the model and the remaining 20% was used to compute RMSE (root mean square error).
- Values of some parameters were taken as follows:-Learning rate = 0.05
 Number of iterations of gradient descent = 50
 Lambda = 1

Part (b):

Model parameters for gradient descent optimization :-

 θ_0 = -101502.516871

 θ_1 = 1.05363315568

 θ_2 = 94624.4513358

 θ_3 = 57091.2982001

 θ_4 = 154412.027973

Price = θ_0 + (θ_1^* sqft) + (θ_2^* floors) + (θ_3^* bedrooms) + (θ_4^* bathrooms)

Model parameters for iterative re-weighted least squares optimization :-

 θ_0 ' = -2572007.44041

 θ_1 ' = 8.77352989607

 θ_2 ' = 715748.291503

$$\theta_3$$
' = 389895.978197 θ_4 ' = 481802.44599

Price =
$$\theta_0$$
' + (θ_1 ' * sqft) + (θ_2 ' * floors) + (θ_3 ' * bedrooms) + (θ_4 ' * bathrooms)

Note :-

- 1) First 80% of the data set was used to train the model and the remaining 20% was used to compute RMSE (root mean square error).
- Values of some parameters were taken as follows:
 Learning rate for gradient descent = 0.05
 Number of iterations = 50 (for both methods)
 Lambda = 0 (for both methods)

Conclusion:-

I would prefer Iterative Re-weighted Least Squares method because in this method cost function J reaches close to minimum in very less number of iterations whereas in Gradient Descent method, cost function takes higher number of iterations to compute an optimal theta vector.

Part (c):

Model parameters for linear combination :-

 θ_0 = -101502.516871

 θ_1 = 1.05363315568

 θ_2 = 94624.4513358

 θ_3 = 57091.2982001

 θ_4 = 154412.027973

```
Price = \theta_0 + (\theta_1* sqft) + (\theta_2* floors) + (\theta_3* bedrooms) + (\theta_4* bathrooms)
```

Model parameters for quadratic combination :-

 θ_0 ' = 240674.876584

 θ_1 ' = 1.0958727625e-06

 θ_2 ' = 24570.3276792

 θ_3 ' = 3570.33127621

 θ_{4} ' = 45150.3517955

Price =
$$\theta_0'$$
 + $(\theta_1' * sqft^2)$ + $(\theta_2' * floors^2)$ + $(\theta_3' * bedrooms^2)$ + $(\theta_4' * bathrooms^2)$

Model parameters for cubic combination :-

 θ_0 " = 368131.485933

 θ_1 " = 8.10115960394e-13

 θ_2 " = 10562.1282525

 θ_3 " = 109.80827526

 θ_{4} " = 11381.0515774

Price =
$$\theta_0$$
" + (θ_1 " * sqft³) + (θ_2 " * floors³) + (θ_3 " * bedrooms³) + (θ_4 " * bathrooms³)

Note:-

- 1) First 80% of the data set was used to train the model and the remaining 20% was used to compute RMSE (root mean square error).
- 2) Values of some parameters were taken as follows :-

Learning rate = 0.05

Number of iterations = 50

Lambda = 0

3) For quadratic or cubic combination of features, new features like sqft*floor² (in cubic) and sqft*floor (in quadratic) were not included to reduce complexity. Only terms with power 2 or 3 on a single feature were included to simplify computation.

Conclusion :-

Based on above curves it is difficult to claim that one of them is better than the other because RMSE vs learning rate curve is almost the same for all of them. So a better decision would be to observe the cost function in all three cases.

I would prefer cubic combination because cost function is minimized most when cubic combinations are used than when quadratic or linear combinations are used.

Part (d):

Model parameters with cost function = Mean Absolute Error :-

 θ_0 = 44998.1596681

 $\theta_1 = 0.423008234451$

 θ_2 = 37645.4140531

 $\theta_3 = 19508.8260764$

 θ_4 = 147766.950772

```
Price = \theta_0 + (\theta_1^* sqft) + (\theta_2^* floors) + (\theta_3^* bedrooms) + (\theta_4^* bathrooms)
```

Model parameters with cost function = Mean Squared Error :-

 θ_0 ' = -39798.9153911

 θ_1 ' = 0.377385243716

 θ_2 ' = 20140.2688916

 θ_3 ' = 17474.6650559

 θ_{A} ' = 232400.500135

Price =
$$\theta_0' + (\theta_1' * \text{sqft}) + (\theta_2' * \text{floors}) + (\theta_3' * \text{bedrooms}^2) + (\theta_4' * \text{bathrooms})$$

Model parameters with cost function = Mean Cube Error :-

 θ_0 " = 5296080.78825

 θ_1 " = -60.7477934194

 θ_2 " = -775481.435759

 θ_3 " = -641280.825687

 θ_{4} " = -649481.677648

Price =
$$\theta_0$$
" + (θ_1 " * sqft) + (θ_2 " * floors) + (θ_3 " * bedrooms) + (θ_4 " * bathrooms)

Note:-

- 1) First 80% of the data set was used to train the model and the remaining 20% was used to compute RMSE (root mean square error).
- 2) Values of some parameters were taken as follows :-

Learning rate = 0.05

Number of iterations for MAE and MSE = 50

Lambda = 0

Number of iterations for MCE = 2 (higher iterations give Nan as output because of non-convergence)

Conclusion:-

I would prefer mean square error cost function because this method requires lesser number of iterations, than other two methods, to obtain optimal theta and reduce cost considerably. Mean cube error was NOT preferred because that method may not converge at all as is evident from its plot.