
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2008; month=2; day=5; hr=14; min=17; sec=45; ms=80;]

Reviewer Comments:

<210> 7

<211> 54

<212> DNA

<213> Oligonucleotide Primer CF59

<400> 7

cgatagatct ttggataaga gagggccacc acctggcccc cctcgagttt cccc

54

The above <213> response is invalid, also similar responses were found in sequence id#'s 10 and 11. FYI, these responses can be inserted into section <220> to <223>.

Validated By CRFValidator v 1.0.3

Application No: 10584438 Version No: 1.0

Input Set:

Output Set:

Started: 2008-01-29 15:17:14.169

Finished: 2008-01-29 15:17:15.923

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 754 ms

Total Warnings: 20

Total Errors: 1

No. of SeqIDs Defined: 20

Actual SeqID Count: 20

Error code		Error Description
E	287	Invalid WIPO ST.2 date format; Use (YYYY-MM-DD) in <141>
W	213	Artificial or Unknown found in <213> in SEQ ID (1)
W	213	Artificial or Unknown found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	402	Undefined organism found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	402	Undefined organism found in <213> in SEQ ID (10)
W	402	Undefined organism found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)
W	213	Artificial or Unknown found in <213> in SEQ ID (19)

Input Set:

Output Set:

Started: 2008-01-29 15:17:14.169

Finished: 2008-01-29 15:17:15.923

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 754 ms

Total Warnings: 20

Total Errors: 1

No. of SeqIDs Defined: 20

Actual SeqID Count: 20

Error code Error Description

W 213 Artificial or Unknown found in $\langle 213 \rangle$ in SEQ ID (20)

```
<210>
       1
<211>
      48
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide Linker VC053
<400>
gatetttgga taagagagae geteacaagt eegaagtege teaceggt
                                                                    48
<210>
<211>
       50
<212> DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide Linker VC054
<400>
ccttgaaccg gtgagcgact tcggacttgt gagcgtctct cttatccaaa
                                                                    50
<210>
        3
<211>
      48
<212>
       DNA
<213> Artificial Sequence
<220>
       Oligonucleotide Linker VC055
<223>
<400>
gatctttgga taagagagac gctcacaagt ccgaagtcgc tcatcgat
                                                                    48
<210>
<211>
       50
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
       Oligonucleotide Linker VC056
<400>
ccttgaatcg atgagcgact tcggacttgt gagcgtctct cttatccaaa
                                                                    50
<210>
        5
<211>
       86
<212>
      DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide Linker VC057
<400>
        5
tcaaggacct aggtgaggaa aacttcaagg ctttggtctt gatcgctttc gctcaatact
                                                                    60
tgcaacaatg tccattcgaa gatcac
                                                                    86
```

```
80
<211>
<212> DNA
<213>
      Artificial Sequence
<220>
<223>
       Oligonucleotide Linker VC058
<400>
gtgatcttcg aatggacatt gttgcaagta ttgagcgaaa gcgatcaaga ccaaagcctt
gaagttttcc tcacctaggt
                                                                80
<210> 7
<211>
      54
<212> DNA
<213>
      Oligonucleotide Primer CF59
<400>
cgatagatet ttggataaga gagggeeace acctggeece ectegagttt eece
                                                         54
<210>
<211>
       5
<212>
      PRT
<213>
      Artificial Sequence
<220>
<223>
      Polypeptide linker SEQ ID 8
<400> 8
Gly Gly Gly Ser
<210> 9
<211> 4
<212> PRT
<213>
      Artificial Sequence
<220>
<223>
       Polypeptide linker SEQ ID 9
<400>
       9
Gly Gly Gly Ser
<210>
       10
<211>
       17
<212>
<213>
       Stanniocalcin signal peptide sequence
<400> 10
Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser
             5
                                10
Ala
<210> 11
```

<211>

```
<212>
       PRT
<213>
       Consensus signal sequence
<400> 11
Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Ala Leu
                5
                                    10
                                                        1.5
Trp Ala Pro Ala Arg Gly
            20
<210>
       12
<211>
       66
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide Primer CF60
<400>
ggccatcgat gagcgacttc ggacttgtga gcgtccagcc gagtcttcag cagcagcagt
                                                                     60
ccctc
                                                                     66
<210>
       13
<211>
       50
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
       Oligonucleotide Primer CF61
<400>
       13
ccggccttag gcttacctgg gccaccacct ggcccccctc gagtttcccc
                                                                    5.0
<210>
       14
<211>
        45
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Oligonucleotide Primer CF62
<400>
                                                                    45
ggccaagctt attacagccg agtcttcagc agcagcagtc ccctc
<210>
       15
<211>
       2358
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
      N-terminal IL11-albumin fusion
<400>
       15
atgaagtggg ttttcatcgt ctccattttg ttcttgttct cctctgctta ctctagatct
                                                                    60
ttggataaga gagggccacc acctggcccc cctcgagttt ccccagaccc tcgggccgag
                                                                    120
ctggacagca ccgtgctcct gacccgctct ctcctggcgg acacgcggca gctggctgca
                                                                    180
cagctgaggg acaaattccc agctgacggg gaccacaacc tggattccct gcccaccctg
                                                                    240
```

```
gccatgagtg cgggggcact gggagctcta cagctcccag gtgtgctgac aaggctgcga
                                                                   300
geggaeetae tgteetaeet geggeaegtg eagtggetge geegggeagg tggetettee
                                                                   360
ctgaagaccc tggagcccga gctgggcacc ctgcaggccc gactggaccg gctgctgcgc
                                                                   420
eggetgeage teetgatgte eegeetggee etgeeceage caceeeegga eeegeeggeg
                                                                   480
cccccgctgg cgccccctc ctcagcctgg gggggcatca gggccgccca cgccatcctg
                                                                   540
ggggggctgc acctgacact tgactgggcc gtgaggggac tgctgctgct gaagactcgg
                                                                   600
ctggacgctc acaagtccga agtcgctcat cgattcaagg acctaggtga ggaaaacttc
                                                                   660
aaggetttgg tettgatege tttegeteaa taettgeaac aatgteeatt egaagateae
                                                                   720
gtcaagttgg tcaacgaagt taccgaattc gctaagactt gtgttgctga cgaatctgct
                                                                   780
gaaaactgtg acaagtcctt gcacaccttg ttcggtgata agttgtgtac tgttgctacc
                                                                   840
                                                                   900
ttgagagaaa cctacggtga aatggctgac tgttgtgcta agcaagaacc agaaagaaac
gaatgtttct tgcaacacaa ggacgacaac ccaaacttgc caagattggt tagaccagaa
                                                                   960
gttgacgtca tgtgtactgc tttccacgac aacgaagaaa ccttcttgaa gaagtacttg
                                                                   1020
tacgaaattg ctagaagaca cccatacttc tacgctccag aattgttgtt cttcgctaag
                                                                   1080
agatacaagg ctgctttcac cgaatgttgt caagctgctg ataaggctgc ttgtttgttg
                                                                   1140
ccaaagttgg atgaattgag agacgaaggt aaggettett eegetaagea aagattgaag
                                                                  1200
tgtgcttcct tgcaaaagtt cggtgaaaga gctttcaagg cttgggctgt cgctagattg
                                                                   1260
1320
aaggttcaca ctgaatgttg tcacggtgac ttgttggaat gtgctgatga cagagctgac
                                                                  1380
ttqqctaaqt acatctqtqa aaaccaaqac tctatctctt ccaaqttqaa qqaatqttqt
                                                                   1440
gaaaagccat tgttggaaaa gtctcactgt attgctgaag ttgaaaacga tgaaatgcca
                                                                  1500
gctgacttgc catctttggc tgctgacttc gttgaatcta aggacgtttg taagaactac
                                                                   1560
gctgaagcta aggacgtctt cttgggtatg ttcttgtacg aatacgctag aagacaccca
                                                                   1620
gactactccg ttgtcttgtt gttgagattg gctaagacct acgaaactac cttggaaaag
                                                                   1680
tgttgtgctg ctgctgaccc acacgaatgt tacgctaagg ttttcgatga attcaagcca
                                                                   1740
ttggtcgaag aaccacaaaa cttgatcaag caaaactgtg aattgttcga acaattgggt
                                                                   1800
gaatacaagt tccaaaacgc tttgttggtt agatacacta agaaggtccc acaagtctcc
                                                                   1860
accccaactt tggttgaagt ctctagaaac ttgggtaagg tcggttctaa gtgttgtaag
                                                                   1920
cacccagaag ctaagagaat gccatgtgct gaagattact tgtccgtcgt tttgaaccaa
                                                                   1980
ttgtgtgttt tgcacgaaaa gaccccagtc tctgatagag tcaccaagtg ttgtactgaa
                                                                   2040
tctttggtta acagaagacc atgtttctct gctttggaag tcgacgaaac ttacgttcca
                                                                   2100
aaggaattca acgctgaaac tttcaccttc cacgctgata tctgtacctt gtccgaaaag
                                                                   2160
gaaagacaaa ttaagaagca aactgctttg gttgaattgg tcaagcacaa gccaaaggct
                                                                   2220
actaaggaac aattgaaggc tgtcatggat gatttcgctg ctttcgttga aaagtgttgt
                                                                   2280
aaggctgatg ataaggaaac ttgtttcgct gaagaaggta agaagttggt cgctgcttcc
                                                                   2340
caagctgctt tgggtttg
                                                                   2358
<210>
       16
<211>
       786
<212>
       PRT
<213>
       Artificial Sequence
<220>
       N-terminal IL11-albumin fusion
<223>
<400>
Met Lys Trp Val Phe Ile Val Ser Ile Leu Phe Leu Phe Ser Ser Ala
               5
                                   10
Tyr Ser Arg Ser Leu Asp Lys Arg Gly Pro Pro Pro Gly Pro Pro Arg
            20
                               25
Val Ser Pro Asp Pro Arg Ala Glu Leu Asp Ser Thr Val Leu Leu Thr
```

Arg Ser Leu Leu Ala Asp Thr Arg Gln Leu Ala Ala Gln Leu Arg Asp 50 55

45

40

	Lys 65	Phe	Pro	Ala	Asp	Gly 70	Asp	His	Asn	Leu	Asp 75	Ser	Leu	Pro	Thr	Leu 80
	Ala	Met	Ser	Ala	Gly 85	Ala	Leu	Gly	Ala	Leu 90	Gln	Leu	Pro	Gly	Val 95	Leu
•	Thr	Arg	Leu	Arg 100	Ala	Asp	Leu	Leu	Ser 105	Tyr	Leu	Arg	His	Val 110	Gln	Trp
	Leu	Arg	Arg 115	Ala	Gly	Gly	Ser	Ser 120	Leu	Lys	Thr	Leu	Glu 125	Pro	Glu	Leu
	Gly	Thr 130	Leu	Gln	Ala	Arg	Leu 135	Asp	Arg	Leu	Leu	Arg 140	Arg	Leu	Gln	Leu
	Leu 145	Met	Ser	Arg	Leu	Ala 150	Leu	Pro	Gln	Pro	Pro 155	Pro	Asp	Pro	Pro	Ala 160
	Pro	Pro	Leu	Ala	Pro 165	Pro	Ser	Ser	Ala	Trp 170	Gly	Gly	Ile	Arg	Ala 175	Ala
	His	Ala	Ile	Leu 180	Gly	Gly	Leu	His	Leu 185	Thr	Leu	Asp	Trp	Ala 190	Val	Arg
1	Gly	Leu	Leu 195	Leu	Leu	Lys	Thr	Arg 200	Leu	Asp	Ala	His	Lys 205	Ser	Glu	Val
	Ala	His 210	Arg	Phe	Lys	Asp	Leu 215	Gly	Glu	Glu	Asn	Phe 220	Lys	Ala	Leu	Val
	Leu 225	Ile	Ala	Phe	Ala	Gln 230	Tyr	Leu	Gln	Gln	Cys 235	Pro	Phe	Glu	Asp	His 240
,	Val	Lys	Leu	Val	Asn 245	Glu	Val	Thr	Glu	Phe 250		Lys	Thr	Суз	Val 255	Ala
	Asp	Glu	Ser	Ala 260	Glu	Asn	Суз	Asp	Lys 265	Ser	Leu	His	Thr	Leu 270	Phe	Gly
	Asp	Lys	Leu 275	Суз	Thr	Val	Ala	Thr 280	Leu	Arg	Glu	Thr	Tyr 285	Gly	Glu	Met
	Ala	Asp 290	Суз	Суз	Ala	Lys	Gln 295	Glu	Pro	Glu	Arg	Asn 300	Glu	Суз	Phe	Leu
	Gln 305	His	Lys	Asp	Asp	Asn 310	Pro	Asn	Leu	Pro	Arg 315	Leu	Val	Arg	Pro	Glu 320
,	Val	Asp	Val	Met	Cys 325	Thr	Ala	Phe	His	Asp 330	Asn	Glu	Glu	Thr	Phe 335	Leu
•	Lys	Lys	Tyr	Leu 340	Tyr	Glu	Ile	Ala	Arg 345	Arg	His	Pro	Tyr	Phe 350	Tyr	Ala
	Pro	Glu	Leu 355	Leu	Phe	Phe	Ala	Lys	Arg	Tyr	Lys	Ala	Ala	Phe	Thr	Glu

Суз	Cys 370	Gln	Ala	Ala	Asp	Lys 375	Ala	Ala	Суз	Leu	Leu 380	Pro	Lys	Leu	Asp
Glu 385	Leu	Arg	Asp	Glu	Gly 390	Lys	Ala	Ser	Ser	Ala 395	Lys	Gln	Arg	Leu	Lys 400
Cys	Ala	Ser	Leu	Gln 405	Lys	Phe	Gly	Glu	Arg 410	Ala	Phe	Lys	Ala	Trp 415	Ala
Val	Ala	Arg	Leu 420	Ser	Gln	Arg	Phe	Pro 425	Lys	Ala	Glu	Phe	Ala 430	Glu	Val
Ser	Lys	Leu 435	Val	Thr	Asp	Leu	Thr 440	Lys	Val	His	Thr	Glu 445	Cys	Cys	His
Gly	Asp 450	Leu	Leu	Glu	Cys	Ala 455	Asp	Asp	Arg	Ala	Asp 460	Leu	Ala	Lys	Tyr
Ile 465	Суз	Glu	Asn	Gln	Asp 470	Ser	Ile	Ser	Ser	Lys 475	Leu	Lys	Glu	Суз	Cys 480
Glu	Lys	Pro	Leu	Leu 485	Glu	Lys	Ser	His	Cys 490	Ile	Ala	Glu	Val	Glu 495	Asn
Asp	Glu	Met	Pro 500	Ala	Asp	Leu	Pro	Ser 505	Leu	Ala	Ala	Asp	Phe 510	Val	Glu
Ser	Lys	Asp 515	Val	Cys	Lys	Asn	Tyr 520	Ala	Glu	Ala	Lys	Asp 525	Val	Phe	Leu
Gly	Met 530	Phe	Leu	Tyr	Glu	Tyr 535	Ala	Arg	Arg	His	Pro 540	Asp	Tyr	Ser	Val
Val 545	Leu	Leu	Leu	Arg	Leu 550	Ala	Lys	Thr	Tyr	Glu 555	Thr	Thr	Leu	Glu	Lys 560
Суз	Cys	Ala	Ala	Ala 565	Asp	Pro	His	Glu	Cys 570	Tyr	Ala	Lys	Val	Phe 575	Asp
Glu	Phe	Lys	Pro 580	Leu	Val	Glu	Glu	Pro 585	Gln	Asn	Leu	Ile	Lys 590	Gln	Asn
Суз	Glu	Leu 595	Phe	Glu	Gln	Leu	Gly 600	Glu	Tyr	Lys	Phe	Gln 605	Asn	Ala	Leu
Leu	Val 610	Arg	Tyr	Thr	Lys	Lys 615	Val	Pro	Gln	Val	Ser 620	Thr	Pro	Thr	Leu
Val 625	Glu	Val	Ser	Arg	Asn 630	Leu	Gly	Lys	Val	Gly 635	Ser	Lys	Cys	Суз	Lys 640
His	Pro	Glu	Ala	Lys 645	Arg	Met	Pro	Cys	Ala 650	Glu	Asp	Tyr	Leu	Ser 655	Val
Val	Leu	Asn	Gln	Leu	Суз	Val	Leu	His	Glu	Lys	Thr	Pro	Val	Ser	Asp

Arg Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn A 675 680 6	rg Arg Pro Cys 85													
Phe Ser Ala Leu Glu Val Asp Glu Thr Tyr Val Pro L 690 695 700	ys Glu Phe Asn													
Ala Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr L 705 710 715	eu Ser Glu Lys 720													
Glu Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu L 725 730	eu Val Lys His 735													
Lys Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val M 740 745	et Asp Asp Phe 750													
Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp L 755 760 7	ys Glu Thr Cys 65													
Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser G 770 775 780	ln Ala Ala Leu													
Gly Leu 785														
<210> 17														
<211> 762 <212> PRT														
<213> Artificial Sequence														
-	Artificial Sequence													
<220> <223> Mature N-terminal IL11-albumin fusion														
<223> Mature N-terminal IL11-albumin fusion	ro Arg Ala Glu 15													
<223> Mature N-terminal IL11-albumin fusion <400> 17 Gly Pro Pro Gly Pro Pro Arg Val Ser Pro Asp P	15													
<pre><223> Mature N-terminal IL11-albumin fusion <400> 17 Gly Pro Pro Pro Gly Pro Pro Arg Val Ser Pro Asp P 1</pre>	15 la Asp Thr Arg 30 sp Gly Asp His													
<pre><223> Mature N-terminal IL11-albumin fusion <400> 17 Gly Pro Pro Pro Gly Pro Pro Arg Val Ser Pro Asp P 1</pre>	15 la Asp Thr Arg 30 sp Gly Asp His 5													
<pre><223> Mature N-terminal IL11-albumin fusion <400> 17 Gly Pro Pro Pro Gly Pro Pro Arg Val Ser Pro Asp P 1</pre>	15 la Asp Thr Arg 30 sp Gly Asp His 5 ly Ala Leu Gly													
<pre><223> Mature N-terminal IL11-albumin fusion </pre> <pre><400> 17 Gly Pro Pro Pro Gly Pro Pro Arg Val Ser Pro Asp P 1</pre>	15 la Asp Thr Arg 30 sp Gly Asp His 5 ly Ala Leu Gly la Asp Leu Leu 80													
<pre><223> Mature N-terminal ILl1-albumin fusion </pre> <pre><400> 17 Gly Pro Pro Pro Gly Pro Pro Arg Val Ser Pro Asp P 1</pre>	15 la Asp Thr Arg 30 sp Gly Asp His 5 ly Ala Leu Gly la Asp Leu Leu 80 ly Gly Ser Ser 95													

Gln I	Pro 130	Pro	Pro	Asp	Pro	Pro 135	Ala	Pro	Pro	Leu	Ala 140	Pro	Pro	Ser	Ser
Ala :	Trp	Gly	Gly	Ile	Arg 150	Ala	Ala	His	Ala	Ile 155	Leu	Gly	Gly	Leu	His 160
Leu :	Thr	Leu	Asp	Trp 165	Ala	Val	Arg	Gly	Leu 170	Leu	Leu	Leu	Lys	Thr 175	Arg
Leu A	Asp	Ala	His 180	Lys	Ser	Glu	Val	Ala 185	His	Arg	Phe	Lys	Asp 190	Leu	Gly
Glu (Glu	Asn 195	Phe	Lys	Ala	Leu	Val 200	Leu	Ile	Ala	Phe	Ala 205	Gln	Tyr	Leu
Gln (Gln 210	Суз	Pro	Phe	Glu	Asp 215	His	Val	Lys	Leu	Val 220	Asn	Glu	Val	Thr
Glu E 225	Phe	Ala	Lys	Thr	Cys 230	Val	Ala	Asp	Glu	Ser 235	Ala	Glu	Asn	Суз	Asp 240
Lys S	Ser	Leu	His	Thr 245	Leu	Phe	Gly	Asp	Lys 250	Leu	Суз	Thr	Val	Ala 255	Thr
Leu A	Arg	Glu	Thr 260	Tyr	Gly	Glu	Met	Ala 265	Asp	Суз	Суз	Ala	Lys 270	Gln	Glu
Pro (Glu	Arg 275	Asn	Glu	Суз	Phe	Leu 280	Gln	His	Lys	Asp	Asp 285	Asn	Pro	Asn
Leu E	Pro 290	Arg	Leu	Val	Arg	Pro 295	Glu	Val	Asp	Val	Met 300	Суз	Thr	Ala	Phe
His <i>1</i> 305	Asp	Asn	Glu	Glu	Thr 310	Phe	Leu	Lys	Lys	Tyr 315	Leu	Tyr	Glu	Ile	Ala 320
Arg A	Arg	His	Pro	Tyr 325	Phe	Tyr	Ala	Pro	Glu 330	Leu	Leu	Phe	Phe	Ala 335	Lys
Arg :	Tyr	Lys	Ala 340	Ala	Phe	Thr	Glu	Cys 345	Суз	Gln	Ala	Ala	Asp 350	Lys	Ala
Ala (Cys	Leu 355	Leu	Pro	Lys	Leu	Asp 360	Glu	Leu	Arg	Asp	Glu 365	Gly	Lys	Ala
Ser S	Ser 370	Ala	Lys	Gln	Arg	Leu 375	Lys	Суз	Ala	Ser	Leu 380	Gln	Lys	Phe	Gly
Glu <i>I</i> 385	Arg	Ala	Phe	Lys	Ala 390	Trp	Ala	Val	Ala	Arg 395	Leu	Ser	Gln	Arg	Phe 400
Pro 1	Lys	Ala	Glu	Phe 405	Ala	Glu	Val	Ser	Lys 410	Leu	Val	Thr	Asp	Leu 415	Thr
Lys \	Val	His	Thr 420	Glu	Суз	Суз	His	Gly 425	Asp	Leu	Leu	Glu	Cys 430	Ala	Asp

Asp	Arg	Ala 435	Asp	Leu	Ala	Lys	Tyr 440	Ile	Суз	Glu	Asn	Gln 445	Asp	Ser	Ile
Ser	Ser 450	Lys	Leu	Lys	Glu	Cys 455	Суз	Glu	Lys	Pro	Leu 460	Leu	Glu	Lys	Ser
His 465	Суз	Ile	Ala	Glu	Val 470	Glu	Asn	Asp	Glu	Met 475	Pro	Ala	Asp	Leu	Pro 480
Ser	Leu	Ala	Ala	Asp 485	Phe	Val	Glu	Ser	Lys 490	Asp	Val	Суз	Lys	Asn 495	Tyr
Ala	Glu	Ala	Lys 500	Asp	Val	Phe	Leu	Gly 505	Met	Phe	Leu	Tyr	Glu 510	Tyr	Ala

Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys 515 520 525

Thr Tyr Glu Thr Thr Leu Glu Lys Cys