4 – Oscilóscópio e circuito RC

Objectivos – Exploração das funcionalidades básicas do osciloscópio. Utilização do gerador de funções. Influência da impedância de entrada do osciloscópio nas medições. Estudo da resposta do circuito RC nos domínios do tempo e da frequência.

4.1 - Gerador de funções e osciloscópio

Ligue o cabo do gerador de funções (ou gerador de sinal AC) ao Canal 1 do osciloscópio usando uma ponta de prova. Coloque o comutador da ponta de prova na posição X1. A pinça crocodilo da ponta de prova deve estar ligada à pinça crocodilo de cor preta do cabo do gerador.

- a) Ajuste o gerador de funções para ter na saída uma tensão sinusoidal de frequência *2KHz* e *3V* de amplitude. Visualize este sinal no oscilóscópio premindo o botão AUTOSET. Confirme os valores de amplitude e frequência usando primeiro a medição automática do osciloscópio e depois a medição manual, contando divisões na grelha do ecrã.
- **b)** No gerador de funções altere a amplitude e a frequência do sinal. No oscilóscópio ajuste a base de tempo e a atenuação vertical, de forma a ter visivel no ecrã dois ou três períodos do sinal. Visualize também outras formas de onda.
- c) Mude o comutador da ponta de prova para a posição X10 e veja o que sucede ao valor medido da amplitude. Altere agora a atenuação do oscilóscópio para X10.

4.2 – Efeito da impedância do oscilócópio

Monte na placa branca o circuito da fig. 4.1 com $R_1 = 10k\Omega$ e $R_2 = 4.7k\Omega$. A fonte de tensão é o gerador de funções. Ligue o cabo deste de acordo com as indicações na figura. Note que a pinça de cor preta do gerador define, no circuito, o nó de referência. Ligue as pontas de prova dos canais 1 e 2 do osciloscópio de acordo com a fig. 4.1. Coloque os comutadores de ambas as pontas de prova na posição X1.

a) Ajuste o gerador de sinal para uma tensão sinusoidal de frequência 200Hz e 10Vp-p (valor pico a pico; 5V de amplitude). Visualize no osciloscópio, simultaneamente, os sinais dos canais 1 e 2 e meça as respectivas amplitudes. A tensão medida no Canal 2 (V_o) está de acordo com o valor esperado?

- **b)** Repita a alinea anterior usando $R_1 = R_2 = 1M\Omega$. Desta vez a tensão medida no canal 2 (V_o) está de acordo com o valor teórico esperado? Como explica a discrepância?
- c) Repita o procedimento anterior mas agora com os comutadores de ambas as pontas de prova na posição X10 (não se esqueça de configurar no osciloscópio os canais 1 e 2 também em X10)⁵.

4.3 – Circuito RC: resposta no tempo

Voltando ao valor de $R_1 = 10k\Omega$, substitua R_2 por um condensador C = 47nF, obtendo assim um circuito RC passa-baixo (fig. 4.2). Ajuste agora o gerador de funções para uma saída quadrada a variar entre -5 e +5V(10Vp-p). Comece com uma frequência de 200Hz.

- a) Compare qualitativamente os sinais em V_S e V_o . Veja o que sucede ao sinal em V_o quando aumenta a frequência do gerador acima dos $200H_Z$. Explique. Este circuito é também conhecido por *integrador* porque, para certas gamas de frequência, V_o é aproximamente proporcional ao integral de V_S . Verifique isso.
- **b)** Meça o tempo que a tensão V_o demora a ir desde o início da transição até ao instante em que completa 63% da excursão total. Como relaciona o valor obtido com os valores de R_I e C?

c) Troque agora as posições relativas da resistência e do condensador no circuito. A tensão de saída, V_o , passa a ser tomada aos terminais da resistência. Verifique qualitativamente o comportamento do circuito para frequências entre 50Hz e 1kHz. Tente explicar a forma de onda que observa em V_o .

Este circuito é conhecido por *diferenciador* porque, para certas gamas de frequência, V_o é aproximamente proporcional à derivada de V_S . Será que isso acontece para frequências baixas ou para frequências elevadas?

4.4 – Circuito RC: resposta em frequência

O circuito da fig. 4.2, com entrada V_S e saída V_o , é um filtro passa-baixo de primeira ordem com frequência de corte dada por $f_c = 1/(2\pi R_1 C)$.

Neste ponto pretende-se que faça o estudo da resposta em frequência deste circuito, por isso configure agora o gerador de funções para uma saída **sinusoidal** a variar entre -5 e +5V(10Vp-p).

- a) Verifique, de forma qualitativa, o efeito do circuito como passa-baixo. Para isso ligue o canal 1 do osciloscópio a V_S e o canal 2 a V_o , e observe a variação da amplitude de V_o à medida que varia a frequência do sinal do gerador desde 50Hz até 10kHz.
- b) Meça agora a razão entre as amplitudes de V_o e V_S bem como o desfasamento entre estes dois sinais, para vários valores de frequência, e registe-os na Tab 4.1.

⁵ Uma resistência de entrada mais elevada não é o único benefício que se colhe por usar a ponta de prova configurada na posição X10. A maior vantagem é que o circuito de entrada do oscilóscópio fica praticamente insensível à frequência do sinal. É por esse motivo que a ponta de prova se diz *compensada*. Daqui em diante use sempre a ponta de prova em X10.

Note que a razão V_o/V_S deve ser indicada em unidades de dB (decibeis), usando a expressão

$$\frac{V_O}{V_S}(dB) = 20\log\frac{V_O}{V_S}$$

- O desfasamento é medido no osciloscópio em unidades de tempo, devendo ser convertido depois para graus.
- c) Tal como fez antes, troque agora as posições relativas da resistência e do condensador no circuito. A tensão de saída, V_o , passa a ser tomada aos terminais da resistência. Verifique, de forma qualitativa, o efeito desta mudança na resposta em frequência do circuito, variando a frequência do gerador de 50Hz até cerca de 10kHz.
- d) Determine experimentalmente o valor de f_c , a frequência para a qual o ganho cai 3dB em relação ao valor medido a frequências mais elevadas (frequências em que a amplitude de V_o é muito próxima da amplitude de V_S).

frequência (Hz)	$V_o/V_s(dB)$	$oldsymbol{ heta}$ (°)
$f_c/4 =$		
$f_c/2 =$		
$f_c =$		
$2f_c =$		
$4f_c =$		
$8 f_c =$		

Tab. 4.1