

Natural Language Inference By Jack Pay & Dennis Kiselev

Introduction

- Two models were developed to solve Natural Language Inference (NLI), the task of assessing whether a premise semantically supports a hypothesis
- Method B focused on using RNNs whilst C finetuned pretrained Transformer architectures

Methods

- Method B:
- Trained a Bi-LSTM with frozen XLNET embeddings
- Utilised learning rate scheduling to approach a global optimum
 - LR was reduced on metric plateau
- Employed subtractive & multiplicative sentence fusion, & attention to enhance sentence representations
- Method C:
- Finetuned the base ROBERTA Transformer model
- Employed data augmentation to bolster the training data:
- Synonym replacements & insertions
- Word deletions & swaps
- Used early stopping and LR scheduling to reduce overfitting
 - LR warmup and then decreasing was used

Conclusions

- Pretrained word embeddings are key to higher performance
- Transformers achieve a higher performance but also loss, compared with RNNs
- Likely due to low output scores from RNNs
- Basic textual augmentations do not significantly improve performance

References

- S. Zhang, S. Liu and M. Liu, "Natural language inference using LSTM model with sentence fusion," 2017 36th Chinese Control Conference (CCC), Dalian, China, 2017, pp. 11081-11085, doi: 10.23919/ChiCC.2017.8029126
- Tarunesh, Ishan, Somak Aditya, and Monojit Choudhury. "Trusting roberta over bert: Insights from checklisting the natural language inference task." arXiv preprint arXiv:2107.07229 (2021).
- Sadat, Mobashir, and Cornelia Caragea. "Scinli: A corpus for natural language inference on scientific text." arXiv preprint arXiv:2203.06728 (2022).

P	ren	ll CT I	nns	WIT	n T	$\cap \cap$	<mark>-</mark> 0	hest	1055

Loss	Premise	Hypothesis
		He was the first scholar to describe in detail and document the long-term cyclical
11.88	He was the first scholar to describe in detail.	relationship between global population cycles and cycles of political rebellion and
		revolution.
6.59 La	La Barredora ("The Sweeper Truck") is a criminal gang based in the Mexican	La Barredora ("The Sweeper Truck") is a criminal gang based in the Mexican resort city of
	resort city of Acapulco, Guerrero and its surrounding territories.	Acapulco, City and County of Denver and its surrounding territories.
5.58 T		Traditional examples of background music include music played at same social gatherings
		and music played in certain retail venues

Task C: Figures

Predictions with the Highest Loss

Loss	Premise	Hypothesis					
16.12	The traditional word for the API is pharmacon from Greek : : φάÏμακον, adapted from pharmacos which originally denoted a magical substance or drug.	The traditional word for the API is pharmacon or pharmakon (from Greek: φάÏμακον , adapted from pharmacos) which originally denoted a magical substance or drug.					
16.12	She received basic training in music when her mother used to take her ' masterji ' for training.	She received basic training in music when her mother used to take her to a Hindustani music teacher or 'masterji' for training.					
16.12	Mon Dieu!	This person is speaking English.					

Optimal Results

Method	Accuracy	Precision	Macro Precision	Weighted Macro Precision	Recall	Macro Recall	Weighted Macro Recall	F1-Score	Macro F1-Score	Weighted Macro F1-Score	MCC	Loss
В	0.728	0.728	0.728	0.728	0.754	0.727	0.728	0.741	0.727	0.728	0.455	0.535
C	0.874	0.902	0.874	0.875	0.848	0.875	0.874	0.874	0.874	0.874	0.749	1.849