Halloween Project

A17576411

```
candy_file <- "candy-data.csv"

candy = read.csv("candy-data.csv", row.names=1)
head(candy)</pre>
```

	choco	o⊥ate	fruity	caramel	peanut	galmondy	nougat	crispedr	icewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
-	hard	bar p	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	hard 0	bar p	pluribus C	s sugarpe	ercent 0.732			npercent 66.97173	
100 Grand 3 Musketeers		bar p	pluribus ((s sugarpe))		0	.860	-	
	0	bar 1 1 1 0	pluribus (((s sugarpe)))	0.732	0	.860 6 .511 6	66.97173	
3 Musketeers	0	1	pluribus (((()	0.732 0.604	0 0	.860 6 .511 6 .116 3	66.97173 67.60294	
3 Musketeers One dime	0 0 0	1 1 0	() ())	0.732 0.604 0.011	0 0 0 0	.860 6 .511 6 .116 3	66.97173 67.60294 32.26109	

Q1: How many different candy types are in this dataset?

A: 85 types of candy

```
dim(candy)
```

[1] 85 12

Q2: How many fruity candy types are in the dataset?

A: 38 fruity candy type

```
sum(candy$fruity)
[1] 38
  candy["Twix", ]$winpercent
[1] 81.64291
     Q3: What is your favorite candy in the dataset and what's its winpercent value?
A: 46.78%
  candy["Gobstopper", ]$winpercent
[1] 46.78335
     Q4: What is the winpercent value for "Kit Kat"?
A: 76.77%
  candy["Kit Kat", ]$winpercent
[1] 76.7686
     Q5: What is the winpercent value for "Tootsie Roll Snack Bars"?
A:49.65\%
  candy["Tootsie Roll Snack Bars",]$winpercent
[1] 49.6535
  #install.packages("skimr")
  #install.packages("skimr")
  library("skimr")
  skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	tmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

A: Winpercent

Q7: What do you think a zero and one represent for the candy\$\text{chocolate column}?

skim(candy\$chocolate)

Table 3: Data summary

Name	candy\$chocolate
Number of rows	85
Number of columns	1

Column type frequency:	
numeric	1
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate mean	sd	p0	p25	p50	p75	p100	hist
data	0	1 0.44	0.5	0	0	0	1	1	

A zero means the candy does not have chocolate

A one means the candy has chocolate

Q8. Plot a histogram of winpercent values

library(ggplot2)
hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

A: Judging from the graph, no.

Q10. Is the center of the distribution above or below 50%?

A: above 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

A: It is

```
mean(candy$winpercent[as.logical(candy$chocolate)]) > mean(candy$winpercent[as.logical(candy$chocolate)])
```

[1] TRUE

Q12. Is this difference statistically significant?

A: P value is 2.871e-08 «< 0.05, so the difference is statistically significant

```
t.test(candy$winpercent[as.logical(candy$chocolate)], candy$winpercent[as.logical(candy$fr
```

Welch Two Sample t-test

```
data: candy$winpercent[as.logical(candy$chocolate)] and candy$winpercent[as.logical(candy$f:
    t = 6.2582, df = 68.882, p-value = 2.871e-08
    alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

Q13. What are the five least liked candy types in this set?

```
head(candy[order(candy$winpercent),], n=5)
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
Nik L Nip	0	1	0	0	0
Boston Baked Beans	0	0	0	1	0
Chiclets	0	1	0	0	0
Super Bubble	0	1	0	0	0
Jawbusters	0	1	0	0	0

	crispedricewafer	hard	bar	pluribus	sugarpercent	pricepercent
Nik L Nip	0115p041100#4101			1	0.197	0.976
Boston Baked Beans	C	0	0			
Chiclets	C	0	0	1	0.046	0.325
Super Bubble	C	0	0	0	0.162	0.116
Jawbusters	C) 1	0	1	0.093	0.511
	winpercent					
Nik L Nip	22.44534					
Boston Baked Beans						
Chiclets	24.52499					
Super Bubble	27.30386					
Jawbusters	28.12744					
Q14. What are	the top 5 all time fa	vorite	cand	y types out	of this set?	
library(dplyr)						
Attaching package:	'dplyr'					
The following obje	cts are masked fr	om 'p	ackaį	ge:stats'	:	
filter, lag						
The following obje	cts are masked fr	om 'p	ackaį	ge:base':		
intersect, set	diff, setequal, u	ınion				
<pre>candy %>% arrange(desc(candy\$winpercent)) %>% head(5)</pre>						
	chocolate	e frui	ty ca	aramel pe	anutyalmondy 1	nougat
Reese's Peanut But			0	0	1	0
Reese's Miniatures	-	_	0	0	1	0
Twix	1	_	0	1	0	0
Kit Kat	1	_	0	0	0	0
Snickers	1	_	0	1	1	1
	crispedri	cewaf	er ha	-	luribus sugar _l	
Reese's Peanut But	ter cup		0	0 0	0	0.720

Reese's Miniatures		0	0	0	0	0.034
Twix		1	0	1	0	0.546
Kit Kat		1	0	1	0	0.313
Snickers		0	0	1	0	0.546
	pricepercent	winpe	ercent	;		
Reese's Peanut Butter cup	0.651	84.	18029)		
Reese's Miniatures	0.279	81.	86626	3		
Twix	0.906	81.	64291	-		
Kit Kat	0.511	76.	76860)		
Snickers	0.651	76.	67378	3		

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(x= candy$winpercent, y= rownames(candy)) +
  geom_bar(stat="identity")
```


Q16: This is quite ugly, use the reorder() function to get the bars sorted by win-percent?

```
ggplot(candy) +
  aes(x= candy$winpercent, reorder(rownames(candy), winpercent)) +
  geom_bar(stat="identity")
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

Sixlets from the graph

Q18. What is the best ranked fruity candy?

Starburst

```
#install.packages("ggrepel")
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

A: Reese's Miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

A: Nik L Nip is the least popular

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().


```
#install.packages("corrplot")
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

A: fruity and chocolate

Q23. Similarly, what two variables are most positively correlated?

A: It appears to be chocolate and bar

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                        PC5
                                                                        PC7
                                                                PC6
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                           PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```


par(mar=c(8,4,2,2))
barplot(pca\$rotation[,1], las=2, ylab="PC1 Contribution")

Q24: What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

A: fruity, hard, and pluribus are picked up strongly by PC1 in the positive direction. This makes sense, as popular candies like Starburst, Nerds, and Skittles, fulfill many of these qualities if not all three.