Chap8- Logarithme népérien

Terminale Spécialité Mathématiques

1. Remarque

La fonction exponentielle est une fonction continue et strictement croissante de \mathbb{R} sur $]0; +\infty[$. Pour tout réel b de $]0; +\infty[$, il existe donc un unique réel a tel que $e^a = b$

On dit que a est le **logarithme népérien** de b et on note : $a = \ln(b)$.

2. Définition

La fonction, définie sur $]0; +\infty[$, qui à x associe $\ln(x)$ est appelée fonction logarithme népérien.

3. Remarques

D'après la définition :

- (a) b > 0 et $a = \ln(b)$ équivaut à $e^a = b$
- (b) Pour tout réel x > 0, $e^{\ln(x)} = x$
- (c) Pour tout réel x, $\ln(e^x) = x$
- (d) ln(1) = 0 et ln(e) = 1

4. Propriétés algébriques de la fonction ln

Pour tous réels a et b strictement positifs

(a)
$$\ln(a \times b) = \ln(a) + \ln(b)$$

 $D\acute{e}monstration.$ $e^{\ln(a \times b)} = a \times b$ et $e^{\ln(a) + \ln(b)} = e^{\ln(a)} \times e^{\ln(b)} = a \times b$ donc : $e^{\ln(a \times b)} = e^{\ln(a) + \ln(b)}$ et par conséquent : $\ln(a \times b) = \ln(a) + \ln(b)$

CQFD

(b)
$$\ln\left(\frac{1}{a}\right) = -\ln(a)$$

$$D\'{e}monstration. \ \ln(1) = \ln\left(a \times \frac{1}{a}\right) = \ln(a) + \ln\left(\frac{1}{a}\right) = 0 \ \text{donc} : \ln\left(\frac{1}{a}\right) = -\ln(a)$$
 CQFD

(c)
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

Démonstration.
$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right) = \ln(a) + \ln\left(\frac{1}{b}\right) = \ln(a) - \ln(b)$$

CQFD

(d) Pour tout $n \in \mathbb{Z}$, $\ln(a^n) = n \ln(a)$

Démonstration. Pour $n \ge 0$ on fait une démonstration par récurrence.

Si
$$n < 0$$
, on pose $p = -n$. On a : $\ln(a^n) = \ln\left(\frac{1}{a^p}\right) = -\ln(a^p) = -p\ln(a) = n\ln(a)$
CQFD

Démonstration.
$$\ln\left(\left(\sqrt{a}\right)^2\right) = 2\ln\left(\sqrt{a}\right) = \ln(a) \text{ donc } \ln\left(\sqrt{a}\right) = \frac{1}{2}\ln(a)$$
 CQFD

5. Étude de la fonction logarithme népérien

- (a) Propriété (admise) : La fonction ln est continue sur $]0; +\infty[$
- (b) La fonction ln est dérivable sur $]0; +\infty[$ et pour tout x de $]0; +\infty[$, on a :

$$\ln'(x) = \frac{1}{x}$$

Démonstration. On admet que la fonction ln est dérivable sur $]0; +\infty[$. Soit f la fonction définie pour tout x > 0 par $f(x) = e^{ln(x)} - x$

Par définition pour tout x > 0, $e^{ln(x)} = x$ donc f est nulle sur $]0, +\infty[$. Donc sa dérivée est nulle également. Soit u la dérivée de ln(x) alors par composition de fonctions $f'(x) = u(x)e^{ln(x)} - 1 = 0$ donc $u(x) = \frac{1}{e^{ln(x)}} = \frac{1}{x}$.

CQFD

- (c) La fonction ln est **strictement croissante** sur $]0; +\infty[$
- (d) $\lim_{x \to +\infty} \ln x = +\infty$

Démonstration. Soit A > 0. Peut-on déterminer un réel x_0 tel que si $x > x_0$, $\ln(x) > A$? $\ln(x) > A \Leftrightarrow e^{\ln x} > e^A \Leftrightarrow x > e^A$. Il suffit de prendre : $x_0 = e^A$

CQFD

(e)
$$\lim_{x \to 0^+} \ln x = -\infty$$

$$D\'{e}monstration. \quad \lim_{\substack{x \to 0^+ \\ \text{et} \ \lim_{X \to +\infty}}} \frac{1}{x} = +\infty \\ \text{et} \quad \lim_{\substack{x \to 0^+ \\ \text{oto}}} \ln X = +\infty \\ \text{donc} \quad \lim_{\substack{x \to 0^+ \\ \text{oto}}} \ln x = -\infty \\ \end{bmatrix} \text{ alors } \lim_{\substack{x \to 0^+ \\ \text{oto}}} \ln \left(\frac{1}{x}\right) = +\infty \text{ mais } \ln \left(\frac{1}{x}\right) = -\ln x$$

CQFD

(f) Tableau de variation de la fonction ln :

x	0 +	$-\infty$
ln'(x)	+	
ln(x)	+ -∞	-∞

(g) Représentation graphique

(h) Remarque D'après ce qui précède, pour a et b réels strictement positifs :

i.
$$ln(a) = ln(b) \iff a = b$$

ii.
$$\ln(a) < \ln(b) \iff a < b$$

6. Théorème des croissances comparées

$$\lim_{x \to 0^+} x^n \ln x = 0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$$

cas particulier

$$1) \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$2) \lim_{x \to 0^+} x \ln x = 0$$

 $D\acute{e}monstration.
ightharpoonup ROC$

1) Soit f définie par : $f(x) = \sqrt{x} - \ln x, x \in I =]0; +\infty[; f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = \frac{\sqrt{x} - 2}{2x}$. On a le tableau de variation de f suivant :

x	0	4	$+\infty$
f'(x)	_	+	
f(x)			/
	$2 - ln4 \approx 0,61$		

Sur
$$I, f(x) > 0$$
. Sur $[1; +\infty[: \frac{1}{\sqrt{x}} \ge \frac{\ln x}{x} \ge 0.$

D'après le théorème des gendarmes : $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$

2) En posant
$$y = \frac{1}{x}$$
 on a $x \ln x = \frac{\ln(\frac{1}{y})}{y} = -\frac{\ln y}{y}$ avec y tend vers $+\infty$ lorsque x tend vers 0 .

D'après le 1)
$$\lim_{x\to 0^+} x \ln x = \lim_{y\to +\infty} -\frac{\ln y}{y} = 0$$

7. Dérivée de la fonction composée $x \mapsto \ln(u(x))$

Soit u une fonction dérivable et strictement positive sur un intervalle I de \mathbb{R} . La fonction $x \longmapsto \ln(u(x))$ est dérivable sur I et pour tout x de I:

$$\left[\ln(u(x))\right]' = \frac{u'(x)}{u(x)}$$