Homework 1

 $\operatorname{arcsec} x\\ \sin x$

Problem 1. Let $V = \mathbb{C}^4$. Suppose that $\sigma: V \to V$ is the function defined by

$$\sigma(z_1, z_2, z_3, z_4) = (z_3, z_4, z_1, z_2).$$

Show that σ is a \mathbb{C} -linear transformation. Choose a basis for V and determine the matrix of σ relative to it. Determine the characteristic and minimal polynomials of σ and conclude that there is a basis for V consisting of eigenvectors of σ .

Proof. Let $z \in \mathbb{C}$ and let $(u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \in V$. Then

$$\sigma(z(u_1, u_2, u_3, u_4)) = \sigma(zu_1, zu_2, zu_3, zu_4) = (zu_3, zu_4, zu_1, zu_2) = z(u_3, u_4, u_1, u_2) = z\sigma(u_1, u_2, u_3, u_4)$$

and

$$\begin{split} \sigma((u_1,u_2,u_3,u_4)+(v_1,v_2,v_3,v_4)) &= \sigma(u_1+v_1,u_2+v_2,u_3+v_3,u_4+v_4) \\ &= (u_3+v_3,u_4+v_4,u_1+v_1,u_2+v_2) \\ &= (u_3,u_4,u_1,u_2)+(v_3,v_4,v_1,v_2) \\ &= \sigma(u_1,u_2,u_3,u_4)+\sigma(v_1,v_2,v_3,v_4). \end{split}$$

This shows that σ is \mathbb{C} -linear.

We pick the standard basis for V, $\{e_1, e_2, e_3, e_4\}$ where e_i has a 1 in the i^{th} place and 0s elsewhere. Then $\sigma(e_1) = (0, 0, 1, 0)$, $\sigma(e_2) = (0, 0, 0, 1)$, $\sigma(e_3) = (1, 0, 0, 0)$ and $\sigma(e_4) = (0, 1, 0, 0)$. We know $\sigma = (a_{ij})$ where $\sigma(e_j) = \sum_{i=1}^4 a_{ij}e_i$. Using this definition with the previous calculations gives

$$\sigma = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right).$$

The characteristic polynomial of σ is given by

$$\det(\lambda I - \sigma) = \det\begin{pmatrix} \lambda & 0 & -1 & 0\\ 0 & \lambda & 0 & -1\\ -1 & 0 & \lambda & 0\\ 0 & -1 & 0 & \lambda \end{pmatrix} = \lambda^4 - 2\lambda^2 + 1 = (\lambda - 1)^2(\lambda + 1)^2.$$

From this, we can easily find the minimal polynomial for σ as the irreducible polynomial of least degree which divides the characteristic polynomial, namely $(\lambda - 1)(\lambda + 1)$.

We now know that the eigenvalues for σ are ± 1 . To find the eigenvectors we solve the equations $\sigma(v) = \pm v$. Taking the positive value first, $(v_3, v_4, v_1, v_2) = (v_1, v_2, v_3, v_4)$ so $v_3 = v_1$ and $v_4 = v_2$. This gives the two vectors (1, 0, 1, 0) and (0, 1, 0, 1) which span the eigenspace corresponding to 1. A similar calculation shows that (1, 0, -1, 0) and (0, 1, 0, -1) span the second eigenspace. Since the sum of the dimensions of the eigenspaces is equal to dim(V), we know there exists a basis of V consisting of these eigenvectors.

Problem 2. For the matrix

$$A = \left(\begin{array}{rrr} 18 & 5 & 15 \\ -6 & 5 & -9 \\ -2 & -1 & 5 \end{array}\right)$$

show that the characteristic polynomial is $\operatorname{char}_A(x) = (x-12)(x-8)$. Find a basis for \mathbb{C}^3 consisting of A. Find the minimal polynomial for A.

Proof. The characteristic polynomial of A is given by

$$\det(\lambda I - A) = \det\begin{pmatrix} \lambda - 18 & -5 & -15 \\ 6 & \lambda - 5 & 9 \\ 2 & 1 & \lambda - 5 \end{pmatrix} = \lambda^3 - 28\lambda^2 + 256\lambda - 768 = (\lambda - 12)(\lambda - 8)^2.$$

This immediately gives that the minimal polynomial for A is $(\lambda - 12)(\lambda - 8)$.

We now have the two distinct eigenvalues 12 and 8. For the former, we compute

$$\begin{pmatrix} 18 & 5 & 15 \\ -6 & 5 & -9 \\ -2 & -1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 18x + 5y + 15z \\ -6x + 5y - 9z \\ -2x - y + 5z \end{pmatrix}.$$

So we're left with the equations 18x + 5y + 15z = 12x, -6x + 5y - 9z = 12y and -2x - y + 5z = 12z. Solving, we get y = -3x/5 and z = -x/5. This gives the eigenvector (5, -3, -1). For the eigenvalue 8, we have similar equations which reduce to 2x + y + 3z = 0. This gives the two eigenvectors (-3, 0, 2) and (-1, 2, 0). Thus our basis is $\{(5, -3, -1), (-3, 0, 2), (-1, 2, 0)\}$.

Problem 3. Let V be an S_n -representation. Write out a proof that the obvious action of S_n on $V \otimes V$ is indeed a G-representation.

Proof. Let $\rho: S_n \to GL(V)$ be the representation in question. Then we also have a function $\sigma: S_n \to GL(V \otimes V)$ defined as $\sigma(g)(v \otimes w) = \rho(g)(v) \otimes \rho(g)(w)$. If σ is to be a representation we need to show it's a homomorphism. Let $g, h \in S_n$. Then

$$\sigma(gh)(v\otimes w) = \rho(gh)(v)\otimes \rho(gh)(w) = \rho(g)\rho(h)(v)\otimes \rho(g)\rho(h)(w) = \sigma(g)(\rho(h)(v)\otimes \rho(h)(w)) = \sigma(g)\sigma(h)(v\otimes w).$$

Thus $\sigma: S_n \to V \otimes V$ is a homomorphism and thus a representation of S_n .

Problem 4. (a) Let V and W be finite-dimensional vector spaces. Prove that there is an isomorphism of vector spaces $W \otimes V^* \to \operatorname{Hom}(V, W)$.

(b) Now suppose that V and W are G-representations of some group G. Prove that the isomorphism above is an isomorphism of G-representations.

Proof. (a) We have a homomorphism $W \times V^* \to \operatorname{Hom}(V,W)$ given by $(w,T) \mapsto (v \mapsto T(v)w)$. This map is bilinear because the linearity of T. By the universal property, this gives a unique homomorphism $\varphi: W \otimes V^* \to \operatorname{Hom}(V,W)$ given by $\varphi: w \otimes T \mapsto (v \mapsto T(v)w)$. Suppose $\varphi(w \otimes T) = 0$, i.e., $\varphi(w \otimes T)$ is the map which takes v to 0 for all vectors $v \in V$. This will certainly happen if w = 0, so suppose otherwise. Then T(v)w = 0 for nonzero w and all v, thus, T is the 0 map. Therefore our original element is either $0 \otimes T = 0$ or $w \otimes 0 = 0$, showing that φ is injective. Since $\dim(W \otimes V^*) = \dim(\operatorname{Hom}(V,W))$ we see that φ must be an isomorphism.

(b) Suppose that $\rho: G \to GL(V)$ and $\sigma: G \to GL(W)$ are the representations in question. Then $\rho^*: g \mapsto^t \rho(g^{-1})$ is a representation of V^* . From Problem 3 we now know $\tau: G \to GL(W \otimes V^*)$ given by $\tau(q)(w \otimes T) = \sigma(q)(w) \otimes \rho^*(q)(T)$ is a representation. We wish to show given $q \in G$ and $w \otimes T \in W \otimes V^*$,

we have $\varphi(\tau(g)(w \otimes T)) = g(\varphi(w \otimes T))$. Note

$$\begin{split} \varphi(\tau(g)(w\otimes T)) &= \varphi(\sigma(g)w\otimes \rho^*(g)(T)) \\ &= v\mapsto \rho^*(g)(T)(v)\sigma(g)(w) \\ &= v\mapsto {}^t\rho(g^{-1})(T)(v)(\sigma(g)(w)) \\ &= v\mapsto \sigma(g)(T(\rho(g^{-1})(v))w) \\ &= g(v\mapsto T(v)w) \\ &= g(\varphi(w\otimes T)). \end{split}$$

Problem 5. Verify that with this definition of ρ^* , the above relation is satisfied.

Proof. Note that given a map between vector spaces such as $\rho(g)$ we can form its transpose $\rho * (g)(\varphi)$ as $\varphi \circ \rho$ for each φ in the dual space. In matrix notation, this is literally the transpose of the matrix representation of ρ . We then have

$$\begin{split} \langle \rho^*(g)(v^*), \rho(g)(v) \rangle &= (\rho^*(g)(v^*))(\rho(g)(v)) \\ &= ({}^t\rho(g^{-1})(v^*))(\rho(g)(v)) \\ &= v^*(\rho(g^{-1}))(\rho(g)(v)) \\ &= v^*(v) \\ &= \langle v^*, v \rangle. \end{split}$$

Problem 6. Verify that in general the vector space of G-linear maps between two representations V and W of G is just the subspace of $\operatorname{Hom}(V,W)^G$ of elements of $\operatorname{Hom}(V,W)$ fixed under the action of G. This subspace is often denoted $\operatorname{Hom}_G(V,W)$.

Proof. Let φ be a G-linear map from V to W. Then for $v \in V$ and $g \in G$ we have

$$\varphi(v) = gg^{-1}\varphi(v) = g\varphi(g^{-1}v) = (g\varphi)(v).$$

Thus φ is fixed under the action of G. Now suppose $\varphi \in \text{Hom}(V,W)^G$. Then for $g \in G$ and $v \in V$ we have

$$\varphi(v) = (g^{-1}\varphi)(v) = g^{-1}\varphi(gv).$$

Acting with q on both sides shows φ is G-linear.

Problem 7. Use this approach to find the decomposition of the representations Sym^2V and Sym^3V .

Proof. Let $\alpha = (\omega, 1, \omega^2)$ and $\beta = (1, \omega, \omega^2)$ where $\omega = e^{2\pi i/3}$. Note that α and β form a basis for V. Then a basis for $\operatorname{Sym}^2 V$ is $\{\alpha^2, \beta^2, \alpha\beta\}$. Let $\tau = (1\ 2\ 3)$ and $\sigma = (1\ 2)$ so that $S_3 = \langle \tau, \sigma \rangle$. Note that $\tau\alpha = \omega\alpha$ and $\tau\beta = \omega^2\beta$. Thus $\tau\alpha^2 = \omega^2\alpha^2$, $\tau\beta^2 = \omega\beta^2$ and $\tau\alpha\beta = \alpha\beta$ and these basis elements are eigenvectors for τ with eigenvalues ω^2 , ω and 1 respectively. Note also that $\sigma\alpha^2 = \beta^2$, $\sigma\beta^2 = \alpha^2$ and $\sigma\alpha\beta = \alpha\beta$. Thus $\alpha\beta$ spans a subrepresentation isomorphic to the trivial representation, and α^2 and β^2 form a 2-dimensional invariant subspace which then must be isomorphic to V. Therefore $\operatorname{Sym}^2 V \cong U \oplus V$ where U is the trivial representation.

Now consider Sym³V. This has basis $\{\alpha^3, \beta^3, \alpha^2\beta, \alpha\beta^2\}$. Note that $\tau\alpha^3 = \alpha^3, \tau\beta^3 = \beta^3, \tau\alpha^2\beta = \omega\alpha^2\beta$ and $\tau\alpha\beta^2 = \omega^2\alpha\beta^2$. These vectors are thus eigenvectors of τ with eigenvalues 1, 1, ω and ω^2 respectively. Note also that $\sigma\alpha^3 = \beta^3, \sigma\beta^3 = \alpha^3, \sigma\alpha^2\beta = \alpha\beta^2$ and $\sigma\alpha\beta^2 = \alpha^2\beta$. Thus the two sets of vectors $\{\alpha^3, \beta^3\}$ and $\{\alpha^2\beta, \alpha\beta^2\}$ each span a two dimensional subspace which is S_3 -invariant. This subspace must be isomorphic to V, so we have $\operatorname{Sym}^3 V \cong V \oplus V$.

Problem 8. Consider the representation of S_n on \mathbb{R}^n given by permuting coordinates. Prove that the subspace $W := \{(x_1, \ldots, x_n) \mid x_1 + \cdots + x_n = 0\}$ is S_n -invariant, thus giving an (n-1)-dimensional representation of S_n on W. Prove that this representation is irreducible.

Proof. Let $\mathbf{x} = (x_1, \dots, x_n)$ be an element of W and $\sigma \in S_n$. Then $\sigma(\mathbf{x}) = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$. But note that $x_1 + \dots + x_n = 0 = x_{\sigma(1)} + \dots + x_{\sigma(n)}$, since we've just permuted the terms in the sum. Therefore $\sigma(\mathbf{x}) \in W$ and W is S_n -invariant.

Suppose now that W has some nontrivial subrepresentation U. Note that each nonzero vector in U must have a positive and a negative coordinate, since the sum of all the coordinates is 0. Let $\mathbf{x} = (x_1, \dots x_n)$ be such a vector. Since U is G-invariant we can permute the coordinates of \mathbf{x} and be assured the resulting vector is still in U. Choose an element of G which permutes the x_i so that the first and second coordinates of \mathbf{x} are positive and negative respectively.

Call this new vector **a** and let **b** be the resulting vector after transposing the first two coordinates of **a**. Since **a** and **b** are both in U, so is their difference $\mathbf{c} = \mathbf{a} - \mathbf{b}$. Note that $\mathbf{c} = (c_1, -c_1, 0, \dots, 0) = c_1(1, -1, 0, \dots, 0)$. Let $\mathbf{e_1} = (1, -1, 0, \dots, 0)$. Then we can permute the coordinates of $\mathbf{e_1}$ to get the (n-1) vectors $\mathbf{e_i} = (1, 0, \dots, 0, -1, 0, \dots, 0)$ which have a -1 in the $(i+1)^{\text{st}}$ coordinate. But it's clear that these $\mathbf{e_i}$ are linearly independent so they form a basis for the (n-1)-dimensional space W. Hence any nontrivial subspace of W is equal to W and W is thus irreducible.

Problem 9. Every irreducible complex representation of a finite abelian group is one-dimensional. Give an example to show that this is false for real representations.

Proof. Consider the map $\mathbb{Z}/4\mathbb{Z} \to GL(2,\mathbb{R})$ which takes a generator g to the matrix

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right).$$

It's easily verified that this matrix has order 4 and so this is indeed a representation. Suppose a one dimensional subspace is fixed by the action of g. Then for some vector (x,y) we would have $(x,y)=g(x,y)=\lambda(y,-x)$ for some nonzero λ . Then $x=\lambda y$, $y=-\lambda x$ and $x=-\lambda^2 x$. Since $\lambda\neq 0$, we must have x=y=0. Hence, no one dimensional subspace of $\mathbb R$ is fixed under G and this representation is irreducible.

Alternatively, we could note that this matrix rotates the plane and so clearly only the zero vector is fixed under this action. \Box

Problem 10. (a) Prove that S_n has no irreducible (say real) representations of dimension m where $2 \le m \le n-2$.

(b) Classify all 1-dimensional and (n-1)-dimensional representations of S_n .