

Why still use symbolic artificial intelligence techniques today?

Symbolic AI - In Theory

Symbolic AI - In Practice

Symbolic AI - In Practice

Verifiers to the rescue

Certificates are often available and allow verifiers with a formal correctness proof.

Verifying Datalog Reasoning with Lean

Johannes Tantow¹ Lukas Gerlach² Stephan Mennicke² Markus Krötzsch²

¹TU Chemnitz

 $^2 \mbox{Knowledge-Based Systems Group, TU Dresden}$

- edge(1,2). edge(2,3).
- edge(2,4).

edge(1,2). edge(2,3).

edge(2,4).

$$edge(1,2).$$
 $edge(2,3).$

edge(2,4).

$$T(?x,?y) \leftarrow edge(?x,?y).$$

 $T(?x,?z) \leftarrow edge(?x,?y),$
 $T(?y,?z).$

$$edge(1,2).$$
 $edge(2,3).$

eage(2, 3).

edge(2,4).

Semantic: Least model

 $\bigcap_{M \text{ is model}} M$

In Lean :

 $\{a \mid \forall m, isModel \ m \rightarrow a \in m\}$

Computation of datalog results

Current model:

edge(1,2).

edge(2,3).

edge(2,4).

$$T(?x,?y) \leftarrow edge(?x,?y).$$

 $T(?x,?z) \leftarrow edge(?x,?y),$
 $T(?y,?z).$

$$T(2,3) \leftarrow edge(2,3)$$
.

Computation of datalog results

Current model:

$$edge(1,2).$$
 $edge(2,3).$
 $edge(2,4).$
 $T(2,3).$

$$T(1,3) \leftarrow$$
 edge $(1,2), T(2,3).$

$$T(2,3)$$
 \uparrow
 $edge(2,3)$
 $T(?x,?y) \leftarrow edge(?x,?y).$
 $T(?x,?z) \leftarrow edge(?x,?y),$
 $T(?y,?z).$

Computation of datalog results

Current model:

edge(1,2).
$$T(1,3)$$
edge(2,3).
$$edge(2,4).$$

$$T(2,3)$$

$$T(2,3)$$

$$T(2,3)$$

$$T(2,3)$$

$$T(2,3)$$

$$T(2,3)$$

$$T(2,3)$$

Proof trees are short certificates

Validating a correct fact

Validating a correct fact

$$T(1,3) \leftarrow edge(1,2), T(2,3).$$

$$T(?x,?z) \leftarrow edge(?x,?y), T(?y,?z).$$

Implemented and verified with partial functions like Benzaken et. al. 2017

$\mathsf{Theorem}$

match r r' = true $\leftrightarrow \exists$ substitution s, r.apply $s = r' \leftrightarrow \exists$ grounding g, r.apply g = r'

Validating a correct fact


```
class Database (	au: Signature) where contains: GroundAtom 	au 	o Bool instance univDatabase (	au: Signature): Database 	au where contains:= fun _ => true
```

Proof graphs

$$T(?x,?y) \leftarrow edge(?x,?y).$$

$$U(?x,?y) \leftarrow T(?x,?y)$$

$$T(?x,?z) \leftarrow edge(?x,?y), T(?y,?z), U(?y,?z).$$

Proof graphs

$$T(?x,?y) \leftarrow edge(?x,?y).$$

$$U(?x,?y) \leftarrow T(?x,?y)$$

$$T(?x,?z) \leftarrow edge(?x,?y), T(?y,?z), U(?y,?z).$$

Proof graphs

$$T(?x,?y) \leftarrow edge(?x,?y).$$

$$U(?x,?y) \leftarrow T(?x,?y)$$

$$T(?x,?z) \leftarrow edge(?x,?y), T(?y,?z), U(?y,?z).$$

Next steps

- 1 Define a practicable graph model
- 2 Implement and verify depth-first search

Implementing a graph - Mathlib

Problems

- Which rule is represented?
- Uses an adjacency matrix

Implementing a directed graph

```
structure Graph (A) where
  vertices : List A
  predecessors : A \rightarrow List A
  complete : \forall a, (predecessors a).all
  fun x => x \in vertices
```

Good

Easy to use in proof and implement

Bad

Slow in practice

Implementing a directed graph

```
abbrev PreGraph (A) := Std.HashMap A (List A)

def vertices (pg : PreGraph) := pg.keys

def predecessors (pg : PreGraph) (a : A) := pg.getD a []

def complete : ∀ a, (predecessors a).all

fun x ⇒ x ∈ vertices
```

Good

Fast in practice

Bad

Required proving the correctness of multiple Hashmap operations

Depth-first search

dfs: for each vertex v, if !visited then dfs_step(v)

$\mathsf{Theorem}$

 $dfs \ G \ f = true \leftrightarrow \\ \forall p, \neg G. isCycle \ p \land \forall v, f \ v \ G$

Theorem?

 $\textit{dfs_step G f v visited} = \textit{true} \leftrightarrow \dots$

Correctness for depth first search

Correctness for depth first search

Ordered proof graphs

Ordered Proof

- edge(2,3);[]
- T(2,3);[1]
- **3** *edge*(1, 2); []
- **4** *U*(2, 3); [2]
- **5** T(1,3); [3, 2, 4]

Evaluation

Scenario	Nemo time
1a	59s
1b	0.1s
3	7.8s

1a : transitive closure of chain of length 1000

1b : all facts from smaller transitive closure

3 : 1000 facts from real-world medical ontology

Further results & Open problems

What to find more in the paper:

- 1 Proofs and more details on the implementation
- 2 How to validate completeness?

Further results & Open problems

What to find more in the paper:

- 1 Proofs and more details on the implementation
- 2 How to validate completeness?

Open questions:

- Direct integration in a datalog engine
- Expanding to more features like negation