Math 343 - Lab 4

Preston Duffield

Western Washington University May 2, 2023

Question 1

 \mathbf{a}

To compute $\hat{\tau}_2$, note that:

$$\hat{\tau}_2 = \bar{y}_2. - \bar{y}..$$

= $68.5 - 71.75$
= -3.25

To compute \hat{y}_{23} , note that:

$$\hat{y}_{23} = \bar{y}_{2} + \bar{y}_{3} - \bar{y}_{3}$$

$$= 68.5 + 72.4 - 71.75$$

$$= 69.15$$

b)

 H_0 : $\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$.

 H_a : Not all $\tau_i = 0$.

An F test on the equality in mean effect (tensile strength of cloth after treatment) of the four chemical agents gives an F-value = 2.38, and a p-value of 0.121, from which we can conclude the following. There is not enough statistical evidence to support the hypothesis that not all $\tau_i = 0$.

c)

 H_0 : The data are drawn from a normal distribution.

 H_a : The data are not drawn from a normal distribution.

The residual plot does not appear to be linear. It seems to have an "S" shaped curve. The p-value = $0.049 > \alpha = 0.01$, therefore, the evidence from the data is consistent with the hypothesis that the data are drawn from a normal distribution.

d)

The graphical results of the Tukey pairwise comparison for every pair of the chemical treatments is:

Chemical

(1)

(2)

(3)

(4)

Tukeys test threshold is:

$$q_{\alpha,a,(a-1)(b-1)} \frac{s}{\sqrt{b}} = q_{.05,4,12} \frac{\sqrt{1.817}}{\sqrt{5}}$$
$$= 4.20(0.602)$$
$$= 2.531$$

 $\mathbf{e})$

Note that there is no line, this indicates that no means are significantly different. This is consistent with the above F-test which concluded that each treatment effect was equal to 0.

Question 2

- **a**)
- b)
- **c**)
- d)