

NARAYANA IIT ACADEMY

 Sec: OSR.IIT_*CO-SC
 OGTA-3(P1)
 Date: 10-03-25

 Time: 3HRS
 2023_P1
 Max. Marks: 180

KEY SHEET MATHEMATICS

1	ABC	2	AC	3	BCD	4	A	5	A
6	A	7	В	8	1	9	6	10	495
11	31	12	8	13	23	14	В	15	D
16	A	17	D			7	ra.		

PHYSICS

18	ACD	19	AC	20	BCD	21	D	22	A
23	C	24	A	25	2	26	5	27	3
28	2	29	60	30	2	31	A	32	В
33	C	34	В					y'n	1

CHEMISTRY

35	CD	36	ABC	37	ABD	38	BR	39	C
40	D	41	В	42	4	43	12	44	85
45	20	46	1140	47	39	48	D	49	В
50	D	51	DACA		NAL SC)CI	ETY		

SOLUTIONS MATHS

1.
$$f(x) = \sin x + px + q$$

$$f'(x) = \cos x + p$$

If p > 1 then f(x) is increasing. So only one real root, which is positive if q < 0 and negative if q > 0.

If p < -1f(x) is decreasing so only one real root, which is negative if q < 0

2.
$$\mathbf{u} \cdot \mathbf{w} = \cos \alpha \cos \gamma + \sin \alpha \sin \gamma = \cos (\alpha - \gamma)$$

$$\vec{v} \cdot \vec{w} = \cos(\beta - \gamma), \vec{u} \cdot \vec{v} = \cos(\alpha - \beta)$$

Let
$$A = \alpha - \gamma$$
, $B = \beta - \gamma$, $\alpha - \beta = A - B$

Now,
$$\vec{\mathbf{u}} \cdot \vec{\mathbf{w}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{w}}$$

$$\Rightarrow \cos A = \cos B \Rightarrow B = 2 m\pi + A \text{ where } m \in I.$$

But
$$-2\pi < A, B < 2\pi$$

$$B = A, B = -A, B = 2\pi - A \text{ or } B = -2\pi + A$$

when
$$B = A$$
 or $B = -2\pi + A$

we get
$$\cos A = -\sqrt{3}\cos 0$$
 or $-\sqrt{3}\cos(-2\pi)$

$$\Rightarrow \cos A = -\sqrt{3}$$
. Not possible

when B = -A or B =
$$2\pi$$
 - A, we get $\cos A = -\sqrt{3}\cos(2 A)$

$$\Rightarrow 2\sqrt{3}\cos^2 A + \cos A - \sqrt{3} = 0$$

$$\Rightarrow \cos A = \frac{-1 \pm \sqrt{1 + 4(2\sqrt{3})(\sqrt{3})}}{2(2\sqrt{3})}$$

$$=\frac{-1\pm 5}{4\sqrt{3}}=\frac{1}{\sqrt{3}},\frac{\sqrt{3}}{2}$$

Now,
$$\vec{u} \cdot \vec{v} = \cos(2 \text{ A})$$

$$= 2\cos^{2} A - 1 = \begin{cases} -\frac{1}{3} \text{ when } \cos A = \frac{1}{\sqrt{3}} \\ \frac{1}{2} \text{ when } \cos A = -\frac{\sqrt{3}}{2} \end{cases}$$

3.
$$3PQP^{-1} + 3P = 2P^{-1}QP + 2P$$

$$\Rightarrow 3PQP + 3PPP^{-1} = 2P^{-1}QP + 2P^{-1}PP$$

$$\Rightarrow \left| 3P(Q+P)P^{-1} \right| = \left| 2P^{-1}(Q+P)P \right|$$

$$\Rightarrow 3^{n} |\mathbf{P} + \mathbf{Q}| = 2^{n} |\mathbf{P} + \mathbf{Q}|$$

$$\Rightarrow |P+Q|=0$$

(c)
$$3PQP^{-1}-3P^{-1}QP = -P^{-1}QP - P$$

$$= -\mathbf{P}^{-1}\mathbf{Q}\mathbf{P} - \mathbf{P}^{-1}\mathbf{P}\mathbf{P}$$

$$\Rightarrow 3^{n} |PQP^{-1} - P^{-1}QP| = (-1)^{n} |Q + P| = 0$$

$$0 \qquad \frac{2x - 3y - 1 = 0}{P} \qquad \frac{Q}{2x - 3y + 1 = 0} \qquad R$$

Let
$$Q = \left(t, \frac{2t-1}{3}\right)$$

$$PQ = QNcosec\theta$$

$$\Rightarrow$$
 t = $\frac{47}{13}$, -1

PQ = QNcosec θ $\Rightarrow t = \frac{47}{13}, -1$ For t = -1, Q lies on OP produced which is not possible $(47 \ \underline{27})$

$$\Rightarrow Q \equiv \left(\frac{47}{13}, \frac{27}{13}\right)$$

Let
$$R = \left(\frac{3\alpha - 1}{2}, \alpha\right)$$

Slope of QR = slope of OP $\Rightarrow \alpha = \frac{53}{13}$

5.
$$S_1 < 0 \Rightarrow m^2 - 3 m + 2 < 0 \Rightarrow m \in (1,2)$$

$$(2 \text{ m} - 1 - 2) \left(2 \left(\frac{3}{2}\right) - 0 - 2\right) < 0 \Longrightarrow m < \frac{3}{2}$$

hence,
$$m \in \left(1, \frac{3}{2}\right)$$

6.
$$h'(x) = (2x^2 - \ln x)g(x)$$

$$g'(x) = \frac{1}{\ln x^3} 3x^2 - \frac{1}{\ln x^2} 2x$$

$$g'(x) = \frac{x(x-1)}{\ln x} > 0 \forall x > 1; g(x) > g(1) \Rightarrow g(x) > 0 \forall x > 1$$

For h(x) is increasing

$$h'(x) > 0 \Rightarrow 2x^2 - Inx > 0$$
 as $(g(x) > 0)$

Let
$$H(x) = 2x^2 - \ln x$$

$$H'(x) = 4x - \frac{1}{x} = \frac{4x^2 - 1}{x} > 0$$
 where $x > 1$

$$H(x) > H(1) \Rightarrow H(x) > 2$$

$$\therefore h'(x) > 0 \forall x \in (1, \infty)$$

$$\therefore h(x)$$
 is increasing on $(1, \infty)$

7. The given equation is
$$x^3 + y^3 = a^3$$
. Differentiating both sides w.r.t. x we have $\frac{dy}{dx} = \frac{-x^2}{y^2}$

$$\left(\frac{dy}{dx}\right)_{(x',y')} = -\left(\frac{x'}{y'}\right)^2 \dots \dots (i)$$

Equation of the tangent at (x', y') is $y - y' = -\left(\frac{x'}{y'}\right)^2 (x - x')$

$$(x')^2 x + (y')^2 y = (x')^3 + (y')^3$$

This passes through (x_1, y_1) . Therefore

$$(x')^2 x_1 + (y')^2 y_1 = (x')^3 + (y')^3 = a^3 = x_1^3 + y_1^3$$

As
$$(x_1, y_1)$$
 lies on the curve. Hence $x_1(x'^2 - x_1^2) = -y_1(y'^2 - y_1^2) - \frac{x_1(x' + x_1)}{y_1(y' + y_1)} = \frac{y' - y_1}{x' - x_1}$

= Slope of the line joining (x', y') and (x_1, y_1)

Which is the slope of the tangent at (x', y'). So from equation (i)

$$\frac{-x_1(x'+x_1)}{y_1(y'+y_1)} = -\left(\frac{x'}{y'}\right)^2$$

$$x_1x'(y')^2 + x_1^2(y')^2 = y_1y'x'^2 + y_1^2x'^2$$

$$x'y'(x_1y'-x'y_1) = -(x_1y'-xy_1)(x_1y'+xy_1)...(ii)$$

Suppose
$$x_1y' - x'y_1 = 0$$
 so that $\frac{x'}{x_1} = \frac{y'}{y_1} = \lambda$

Hence, $\mathbf{x'} = \lambda \mathbf{x}_1, \mathbf{y'} = \lambda \mathbf{y}_1$ so that

$$a_3 = x^{3} + y^{3} = \lambda^3 (x_1^3 + y_1^3) = \lambda^3 a^3$$

Which implies $\lambda = 1$ and hence $\mathbf{x}' = \mathbf{x}_1$ and $\mathbf{y}_1 = \mathbf{y}'$ a contradiction. Therefore $\mathbf{x}_1 \mathbf{y}' - \mathbf{x}' \mathbf{y}_1 \neq 0$

.Hence from equation (ii)

$$x'y' = -\left(x_1y' + x'y_1\right)$$

Dividing both sides with x'y' we have $\frac{x_1}{x'} + \frac{y_1}{y'} = -1$

8. Put
$$x^2 = X \Rightarrow xdx = \frac{dX}{2}$$

$$y^2 = Y \Rightarrow ydy = \frac{dY}{2}$$

$$(2X+3Y-7)\frac{dX}{2} - (3X+2Y-8)\frac{dY}{2} = 0$$

$$\frac{\mathrm{dY}}{\mathrm{dX}} = \frac{2X + 3Y - 7}{3X + 2Y - 8}$$

Reduce it to variable separable by substituting

$$X = X' + h$$
, $Y = Y' + k$

We get the solution $(x^2 + y^2 - 3) = (x^2 - y^2 - 1)^5 C$

9.
$$|z| - \left|\frac{5}{z}\right| \leqslant |z - \frac{5}{z}| \Rightarrow ||z| - \frac{5}{|z|}| \leqslant 4$$

Let
$$|z| = t$$

$$-4 \le t - \frac{5}{t} \leqslant 4 \Rightarrow -4t \leqslant t^2 - 5 \leqslant 4t$$

Now,
$$t^2 + 4t - 5 \ge 0$$
 $t^2 - 4t - 5 \le 0$

$$(t+5)(t-1) \ge 0(t-5)(t+1) \le 0$$

$$\Rightarrow$$
 t \in [1, ∞) t \in [0,5] (as t is positive)

$$\therefore t \in [1,5]$$

10.
$$\left(\frac{x^4 + x^2 + 1}{x^2 - x + 1} - \frac{x^2 + 1}{x} \right)^{12} = \left(x^2 - \frac{1}{x} \right)^{12}$$

$$\Rightarrow$$
 9th term is free from ' x'

11. The key is to count backwards. First choose the pair which you pick on Wednesday in 5 ways. Then there are four pairs of socks for you to pick a pair of on Tuesday and don't want to pick a pair. Since there are 4 pairs, the number of ways to do this is $\binom{8}{2} - 4$. Then, there are two pairs and two nonmatching socks for you to pick from on Monday a total of 6 socks. Since you don't want to pick a pair, the number of ways to do this $\binom{6}{2} - 2$. Thus the answer is

$$\frac{(5)\left(\binom{8}{2} - 4\right)\left(\binom{6}{2} - 2\right)}{\binom{10}{2}\binom{8}{2}\binom{6}{2}} = \frac{26}{315}$$

$$\frac{m+n}{11} = \frac{315+26}{11} = \frac{341}{11} = 31$$

- 12. : Elements of determinant can be 1 or -1
 - \therefore First two places of first row can be filled in $2 \times 2 = 4$ ways and last place can be filled in only one way to product be 1
 - ∴ First row can be made in 4 ways

Similarly, second row can be made in 4 ways and third row can be made in 1 ways only

$$\therefore$$
 m = 16

$$|P| = \begin{vmatrix} 3 & -2 & 3 \\ 2 & -2 & 3 \\ 0 & -1 & 1 \end{vmatrix} = 1$$

$$\therefore \operatorname{adj}(\operatorname{adj} \mathbf{P}) = |\mathbf{P}|^{n-2} \cdot \mathbf{P} = \mathbf{P} \Rightarrow \operatorname{tr}(\operatorname{adj}(\operatorname{adj} \mathbf{P})) = \operatorname{tr}(\mathbf{P}) = 2 = n$$

$$\because \frac{m}{n} = \frac{16}{2} = 8$$

13. Let the position vectors of A,B and C be \vec{O}, \vec{b} and \vec{c} -respectively.

We have, $\overrightarrow{AC_1} = \frac{\vec{b}}{2}$, $\overrightarrow{AB_1} = \frac{\vec{c}}{2}$, $\overrightarrow{AA_1} = \frac{\vec{b} + \vec{c}}{2}$, $\overrightarrow{AA_1} = \frac{3\vec{c} + \vec{b}}{4}$ Equation of lines BB₁, AA₂ and C₁ A₁ are respectively

$$\vec{r} = \vec{b} + \lambda_1 \left(\frac{\vec{c}}{2} - \vec{b} \right) \vec{r} = \lambda_2 \frac{3\vec{c} + \vec{b}}{4} \text{ and } \vec{r} = \frac{\vec{b}}{2} + \lambda_3 \left(\frac{\vec{c}}{2} \right)$$

For point
$$D$$
, we have $\vec{b} + \lambda_1 \left(\frac{\vec{c}}{2} - \vec{b} \right) = \lambda_2 \left(\frac{3\vec{c} + \vec{b}}{4} \right)$

$$\Rightarrow \vec{b} \left(1 - \lambda_1 - \frac{\lambda_2}{4} \right) + \frac{\vec{c}}{4} \left(2\lambda_1 - 3\lambda_2 \right) = \vec{0}$$

$$\Rightarrow \lambda_1 = \frac{6}{7}, \lambda_2 = \frac{4}{7}$$

$$\Rightarrow \overrightarrow{AD} = \frac{3\overrightarrow{c} + \overrightarrow{b}}{7}$$

For point E we have $\vec{b} + \lambda_1 \left(\frac{\vec{c}}{2} - \vec{b} \right) = \frac{\vec{b}}{2} + \frac{\lambda_3}{2} \vec{c}$

$$\Rightarrow \lambda_1 = \lambda_3 = \frac{1}{2} \Rightarrow = \frac{2\vec{b} + \vec{c}}{4}$$

Now,
$$\overrightarrow{EA_1} = \frac{3\vec{c} + \vec{b} - 2\vec{b} - \vec{b}}{4} = \frac{2\vec{c} - \vec{b}}{4}$$
,

$$\overrightarrow{DA}_1 = \frac{\vec{b} + \vec{c}}{2} - \frac{3\vec{c} + \vec{b}}{7} = \frac{5\vec{b} + \vec{c}}{14}$$

Area of the quadrilateral $EA_1 A_2 D = \frac{1}{2} | \overrightarrow{EA_2} \times \overrightarrow{DA_1}|$

$$= \frac{1}{112} \left| \left(2\vec{c} - \vec{b} \right) \times \left(5\vec{b} + \vec{c} \right) \right| = \frac{1}{112} \left| \frac{10\vec{c} \times \vec{b}}{10\vec{c} \times \vec{b}} - \vec{b} \times \vec{c} \right|$$

$$= \frac{11}{112} \left| \vec{c} \times \vec{b} \right| = \frac{11}{56} \times \frac{1}{2} \left| \vec{c} \times \vec{b} \right| = \frac{11}{56} \text{ (area of } \triangle ABC \text{)}$$

Thus required ratio of is $\frac{11}{56}$

14. (P)
$$\frac{dy}{dx} = \frac{-y\sin x}{1 + \cos x}$$

(P)
$$\frac{dy}{dx} = \frac{-y\sin x}{1 + \cos x}$$

$$\Rightarrow \int \frac{dy}{y} = \int \frac{-\sin x}{1 + \cos x} dx$$

$$\Rightarrow \ln y = \ln (1 + \cos x) + \ln C$$

$$\Rightarrow$$
 y = $(1 + \cos x)C$

$$\therefore y\left(\frac{\pi}{2}\right) = -1$$

$$\therefore y = -(1 + \cos x) \Rightarrow y(0) = -2$$

(Q) At
$$x = \frac{-\pi}{2}$$
, -1,0,1, $\frac{\pi}{2}$, $f(x)$ is non-derivable

(R) Since
$$e^{\ln(x+1)} = x+1$$
, thus $e^{\ln(x+1)} = |y|$

$$\Rightarrow x+1 \geqslant |y|$$

$$\Rightarrow x+1 < 0$$
, $x \ge 1$ or $(x+1) \ge 0$

and
$$-(x+1) \le y \le (x+1)$$
.

Thus the region represented by inequalities -(x+1)

< y < (x+1) and $|x| \le 1, -1 \le x \le 1$ is as shown below

 $(1,0) \times X$ $(1,-2) \times A$ $(1,-2) \times A$ (1,-Thus required area is the area of $\triangle ABC = \frac{1}{2}(4)(2) = 4$ square units

(S)
$$\left(\sec^{-1}x + \csc^{-1}x\right)^3 - 3\sec^{-1}x\csc^{-1}x\left(\sec^{-1}x + \csc^{-1}x\right)\left(\frac{\pi}{2}\right)^3$$

$$\Rightarrow \frac{\pi^3}{8} - \frac{3\sec^{-1} \times \csc^{-1} x}{\left(\frac{\pi}{2}\right)} = \frac{7\pi^3}{8}$$

$$\Rightarrow$$
 sec⁻¹x = π or sec⁻¹x = $\frac{-\pi}{2}$

$$\Rightarrow x = -1$$

$$=ax^{2}+bx^{3}+cx^{4}+dx^{5}$$

$$a+b+c+d=f(1)$$

Put
$$x = 1$$

$$\Rightarrow \sin^2 A = 1$$

$$A = \left(2n+1\right)\frac{\pi}{2}$$

$$\Rightarrow \sin A \cdot \sin 2 A \cdot \sin 3 A \cdot \sin 4 A = 0$$

(Q)
$$2\sin x \cos x = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sin 2x = \frac{1}{\sqrt{2}} \Rightarrow 2x = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$\Rightarrow$$
 x = $\frac{\pi}{8}$, $\frac{3\pi}{8}$

$$\Rightarrow d = \frac{3\pi}{8} - \frac{\pi}{8} = \frac{\pi}{4}$$

(R)
$$4\cos x (2-3\sin^2 x) + (\cos 2x + 1) = 0$$

$$\Rightarrow 4\cos x \left(-1 + 3\cos^2 x\right) + 2\cos^2 x = 0 \Rightarrow 2\cos x \left[-2 + 6\cos^2 x + \cos x\right] = 0$$

$$\Rightarrow 2\cos(2\cos(-1))(3\cos(-2)) = 0 \Rightarrow \cos(-1)(3\cos(-1)) = 0$$

In
$$x \in \left[0, \frac{\pi}{2}\right] \Rightarrow x = \frac{\pi}{2}, \frac{\pi}{3}$$

Least deference between the roots = $\frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$

(S)
$$f(x) = \sqrt{\sin^4 x + 4\cos^2 x} - \sqrt{\cos^4 x + 4\sin^2 x}$$

$$= \sqrt{\sin^4 x + 4 - 4\sin^2 x} - \sqrt{\cos^4 x + 4 - 4\cos^2 x} = 2 - \sin^2 x - (2 - \cos^2 x)$$

$$=\cos^2 x - \sin^2 x = \cos 2x$$

$$g(\sin 2t) = \sin t + \cos t$$

$$(g(\sin 2t))^{2} = 1 + \sin 2t \Rightarrow (g(\sin 2t))^{2} = 1 + \sin 2t$$

$$\Rightarrow g(\sin 2t) = \sqrt{1 + \sin 2t}$$

$$\therefore g(x) = \sqrt{1 + x}, -1 \le x \le 1$$
Now, $g\{f(x)\} = g(\cos 2x)$

$$= \sqrt{1 + \cos 2x} = \sqrt{2} |\cos x|$$

$$\therefore \text{ Range of } g\{f(x)\} \text{ is } [0, \sqrt{2}]$$

$$\Rightarrow a^{2} + b^{2} = 2$$

$$\Rightarrow$$
 g(sin2t) = $\sqrt{1 + \sin 2t}$

$$\therefore g(x) = \sqrt{1+x}, -1 \leqslant x \leqslant 1$$

$$\therefore g(x) = \sqrt{1+x}, -1 \le x \le 1$$
Now, $g\{f(x)\} = g(\cos 2x)$

$$= \sqrt{1+\cos 2x} = \sqrt{2|\cos x|}$$

$$=\sqrt{1+\cos 2x}=\sqrt{2}\left|\cos x\right|$$

$$\therefore$$
 Range of $g\{f(x)\}$ is $[0,\sqrt{2}]$

$$\Rightarrow$$
 $a^2 + b^2 = 2$

16. (P)
$$\lim_{h \to 0^+} 2 \int_0^1 \frac{h dx}{h^2 + x^2} = \lim_{h \to 0^+} \left[2 \frac{h}{h} \tan^{-1} \frac{x}{h} \right]_{0+}^1 = \pi$$

(Q) Put
$$x-2=x$$
, $y+1=y$

The required region is defined by $1 \le |x| + |y| \le 2$

Required area =
$$(2\sqrt{2})^2 - (\sqrt{2})^2 = 6$$

(R)
$$\int_0^{110\pi} \left[\sin x + \cos x \right] dx = 55 \int_0^{2\pi} \left[\frac{\sin x + \cos x}{\sin x} \right] dx = 55 \int_{-\frac{\pi}{4}}^{\frac{9\pi}{4}} \left[\sqrt{2} \sin \theta \right] d\theta = -55\pi$$

(S)
$$\frac{\left(\frac{x-2y+3}{\sqrt{5}}\right)^2}{4} + \frac{\left(\frac{2x+y+1}{\sqrt{5}}\right)^2}{\frac{1}{4}} = 1$$

$$a^2 = 4, b^2 = \frac{1}{4} \Rightarrow e = \frac{\sqrt{15}}{4} \land \mathsf{R} \land \mathsf{A} \land$$

$$k^2 = 4a^2e^2 = 4 \times 4 \times \frac{15}{16} = 15$$

17. (P)
$$9-a^2 > 5$$

$$\Rightarrow$$
 -2 < a < 2 \Rightarrow number of integral values = 3

(Q)
$$b+c=a^3-a \& bc=a^2$$

$$x^2 - (a^3 - a)a + a^2 = 0$$
 has two roots $b \& c$

as b&c are real so

$$D \ge 0$$

$$\left(a^3 - a\right)^2 - 4a^2 \ge 0$$

$$a^{2} \left[\left(a^{2} - 1 \right)^{2} - 4 \right] \ge 0 \implies a^{2} \left[a^{4} - 2a^{2} - 3 \right] \ge 0$$

$$a^{2}(a^{2}+1)(a^{2}-3) \ge 0$$

$$a^2-3\geq 0$$

 $a^2 \ge 3 \implies$ Least value of a^2 is 3.

(R) number of terms in $(a+b+c-d)^n$ is $^{n+3}C_3$

and the sum of coefficients $= 2^n$

So $2^{n} C_3$, which is true for n > 6

So
$$2^{a + b + c}C_3$$
 which is true for $a > b$
(S) $\lim_{x \to \infty} \left(8x^3 + ax^2\right)^{\frac{1}{3}} - bx = \lim_{x \to \infty} \left(2x\right) \left(1 + \frac{a}{8x}\right)^{\frac{1}{3}} - bx$
 $= \lim_{x \to \infty} 2x \left(1 + \frac{a}{24x}\right) - bx = \lim_{x \to \infty} (2-b)x + \frac{a}{12}$
for limit to exists $2 - b = 0$
 $\Rightarrow b = 2 \& \frac{a}{12} = 1 \Rightarrow a = 12$
 $a - 3b = 6$

$$= \lim_{x \to \infty} 2x \left(1 + \frac{a}{24x} \right) - bx = \lim_{x \to \infty} (2 - b)x + \frac{a}{12}$$

$$\Rightarrow b = 2 \& \frac{a}{12} = 1 \Rightarrow a = 12$$

$$a - 3b = 6$$

PHYSICS

18.
$$\Rightarrow dI = kr^2 (2\pi r dr)$$

$$\Rightarrow I = \frac{2\pi}{n} k \int_{0}^{a} r^{3} dr$$

$$\Rightarrow I = \frac{1}{2}\pi ka^4$$

Further, field for r > a is $B = \frac{\mu_0 I}{2\pi r} = \frac{\mu_0 ka^4}{4r}$

and field for
$$r < a$$
 is $B = \frac{\mu_0 \left(\frac{\pi k A^4}{2}\right)}{2\pi r} = \frac{1}{4} \mu_0 k r^3$

- 19. When number of electrons increases, then number of photons emitted also increases, thereby increasing the intensity. Energy, wavelength and frequency of photon are related to potential difference.
- Work done by \vec{F}_1 is $W_1 = \int_{P_1}^{P_2} F_1 \cos \theta ds$ 20.

Here,
$$ds = (6)d(-2\theta) = -12 d\theta$$
 and $F_1 = 20 N$

:
$$W_1 = -240 \int_{x/4}^{0} \cos \theta d\theta = 240 \sin \frac{\pi}{4} = 120\sqrt{2} J$$

 \vec{F}_1 is conservative because it is always directed towards a fixed point P₂.

$$W_2 = F_2(OP_2) = (30)(6) = 180 \text{ J} \text{ and}$$

$$W_3 = \vec{F}_1 \int_0^{6(\pi/2)} F_3 ds = \int_0^{3\pi} 15 ds$$

$$= [15x]_0^{3\pi} = 45\pi$$

Acceleration $a = \frac{dv}{dt} \implies a = 2bt$ 21.

For block to just slide on the plate, we have

$$\mu$$
mg = m(2bt) \Rightarrow t = $\frac{\mu g}{2 b}$

Refer to figure, to reach point P, wave 1 has to travel a path $(SS_2 + S_2P)$ while wave 2 has to travel 22. a path $(SS_1 + S_1P)$. Therefore, when the waves arrive at P, the path difference is

$$\delta = (SS_2 + S_2P) - (SS_1 + S_2P)$$

Now, in triangle SS, S_1 , we have

S
$$\begin{array}{c|c}
\hline
1 & d & 1 \\
\hline
2 & 2 & P
\end{array}$$

$$\delta = (SS_2 + S_2P) - (SS_1 + S_2P)$$
Now, in triangle SS_2 S_1 , we have
$$SS_2 = \left(x^2 + d^2\right)^{1/2} = \left(1 + \frac{d^2}{x^2}\right)^{1/2} = \left(1 + \frac{d^2}{2x^2}\right) (\because d << x)$$

Similarly,
$$S_2 P = (D^2 + d^2)^{1/2} = D \left(1 + \frac{d^2}{2D^2} \right)$$

Also $(SS_1 + S_1P) = x + D$, Using these in Eq.

(1), we have

$$\Delta = x \left(1 + \frac{d^2}{2x^2} \right) + D \left(1 + \frac{d^2}{2D^2} \right) - \left(x + D \right)$$

$$= x + \frac{d^2}{2x} + D + \frac{d^2}{2D} - x - D \text{ or } \Delta = \frac{d^2}{2} \left(\frac{1}{x} + \frac{1}{D} \right)$$

In order to have a dark fringe at $P, \Delta = \frac{\lambda}{2}$.

Hence
$$\frac{\lambda}{2} = \frac{d^2}{2} \left(\frac{1}{x} + \frac{1}{D} \right)$$

or
$$d = \left[\frac{\lambda x D}{x + D} \right]^{1/2}$$

Putting $x = \frac{D}{2}$ in Eq. (2), we find that the correct option is (A).

24. Maximum speed is attained when the entire energy stored in inductor is converted into kinetic energy of rod.

$$\Rightarrow \frac{1}{2} L \left(\frac{E}{R}\right)^2 = \frac{1}{2} mv^2$$

$$\Rightarrow v = \left(\frac{E}{R}\right) \sqrt{\frac{L}{m}}$$

Narayana IIT Academy

10-03-25_OSR.IIT_*CO-SC_JEE-ADV_OGTA-3(P1)_KEY&SOL

25. Let R_1 = resistance of ammeter and R_2 = combined resistance of ammeter and voltmeter

In the first case, current in the circuit is given by $I = \frac{6}{R_2}$

and voltage across voltmeter is given by

$$V = 6 - \text{(voltage across ammeter)} \Rightarrow V = 6 - IR_1 \Rightarrow V = 6 - \frac{6R_1}{R_2}$$

In the second case reading of ammeter becomes two times, i.e., the total resistance becomes half whereas the resistance of ammeter remains unchanged.

Hence,
$$I' = \frac{6}{R_2/2} = \frac{12}{R_2}$$

and
$$V' = 6 - (I')R_1 \Rightarrow V' = 6 - \frac{12R_1}{R_2}$$

Further, it is given that
$$V' = \frac{V}{2} \Rightarrow 6 - \frac{12R_1}{R_2} = 3 - \frac{3R_1}{R_2} \Rightarrow \frac{R_1}{R_2} = \frac{1}{3}$$

Substituting this value in equation (4), we have $V' = 6 - (12)(\frac{1}{3}) \implies V' = 2 \text{ V}$

26. For an adiabatic process $TV^{\gamma-1} = constant$

$$\Rightarrow TV^{\gamma-1} = \left(\frac{T}{2}\right) (5.66 \text{ V})^{\gamma-1} \Rightarrow (5.66 \text{ V})^{\gamma-1} = 2$$

$$\Rightarrow (\gamma - 1)\log_e(5.66) = \log_e(2)$$

$$\Rightarrow \gamma - 1 = 0.4 \Rightarrow \gamma = 1.4$$

Since,
$$\gamma = 1 + \frac{2}{f} = 1.4$$

27.

IARAYANA GROUP

Net restoring force is

$$F = -8x$$

$$\Rightarrow$$
 Ma = $-8kx$

$$\Rightarrow f = \frac{1}{2\pi} \sqrt{\left| \frac{a}{x} \right|}$$

$$\Rightarrow$$
 f = $\frac{1}{2\pi} \sqrt{\frac{8k}{M}} = \frac{1}{\pi} \sqrt{\frac{2k}{M}}$

$$\Rightarrow$$
 x = 2

Let the velocity of truck at T when it blows the whistle be v_s. Then

$$600 = \left(\frac{v}{v - v_s \cos \theta}\right) 500$$

During this time, speed of truck gets doubled, so $2v_s = v_s + at \Rightarrow v_s = at$

Now,
$$vt = AM = \frac{\ell}{\sin \theta}$$
.

Also, AB =
$$\ell \cot \theta = v_s t + \frac{1}{2} a t^2$$

$$\Rightarrow \frac{\ell \cos \theta}{\sin \theta} = at^2 + \frac{1}{2}at^2 = \frac{3}{2}at^2 \Rightarrow \frac{a\ell}{v} = \left(\frac{2}{3}\sin \theta \cos \theta\right)v$$

Now,
$$\operatorname{vt} = \operatorname{AM} = \frac{v}{\sin \theta}$$
.
Also, $\operatorname{AB} = \ell \cot \theta = v_s t + \frac{1}{2} \operatorname{at}^2$

$$\Rightarrow \frac{\ell \cos \theta}{\sin \theta} = \operatorname{at}^2 + \frac{1}{2} \operatorname{at}^2 = \frac{3}{2} \operatorname{at}^2 \Rightarrow \frac{a\ell}{v} = \left(\frac{2}{3} \sin \theta \cos \theta\right) v$$
From equation (1), we get
$$\frac{6}{5} = \frac{u}{v - at \cos \theta} = \frac{v}{v - \frac{a\ell}{v} \left(\frac{\cos \theta}{\sin \theta}\right)} \left\{ \because t = \frac{\ell}{v \sin \theta} \right\}$$

$$\Rightarrow \frac{6}{5} = \frac{v}{v - \left(\frac{2}{3}\sin\theta\cos\theta\right)\left(\frac{\cos\theta}{\sin\theta}\right)v} \Rightarrow \cos\theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$$

30.
$$E = \frac{x}{2} \frac{dB}{dt} \Rightarrow E = \frac{3Kxt^2}{2}$$

$$\Rightarrow d\tau = (dq) Ex = \left(\frac{3 \text{ KKt}^2}{2}\right) \left(\frac{2\pi x dx}{\pi r^2}\right) qx$$

$$\Rightarrow \tau = \frac{3Kt^2q}{r^2} \int_0^r x^3 dx \Rightarrow \tau = \frac{3Kqt^2}{r} r^2$$

torque due to friction force

$$d\tau = \mu gxdm = \mu gx \left(2\pi xdx\right) \frac{m}{\pi r^2}$$

$$\Rightarrow \tau = 2\mu g \frac{m}{r^2} \int_0^r x^2 dx = \frac{2}{3} \mu mgr \Rightarrow \frac{3Kqt^2r^2}{4} = \frac{2}{3} \mu mgr$$

$$\Rightarrow t = \sqrt{\frac{8\mu mg}{9Kqr}}$$

Substituting values, we get t = 2 s

34. disc gives uniform E so force on dipole is zero.

Electric field inside a sheet varies linely.

CHEMISTRY

35.
$$V = \frac{nRT}{P}$$

$$V_A = 200R, V_C = 400R, V_B = 400R$$

Obtaining equation for AB process $P = \frac{400R}{600R - V}$

$$\mathbf{w}_{AB} = -\int \mathbf{P} d\mathbf{v} = -400R \ln 2$$

$$\Delta S = nC_V ln\frac{T_2}{T_1} + nRln\frac{V_2}{V_1} = nCpln\frac{T_2}{T_1} + nRln\frac{P_1}{P_2} = 0.2 \ L.atm$$

36. Since anomeric carbon is a chiral carbon, so given sugar can exist in two anomeric pyranose forms. Since it is in hemiacetal, so it can reduce to tollen's reagent to silver mirror.

- 40. On increasing volume concentration decreases.
- 41. Q must be an ester. Addition of ethyl magnesium chloride to an alkyl acetate gives II, formate ester gives III and propionic ester gives IV. I can be produced from acetone and not from ester.

43.

$$0 = \begin{cases} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$
 $0 = \begin{cases} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$
 $0 = \begin{cases} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$

Let KI solution is M molar so m.mol = $20 \times M$

Given,
$$KIO_3$$
: $\frac{1}{10}M \Rightarrow 20 \times M = \frac{1}{10} \times 30$

 \Rightarrow Molarity of KI = 0.15M

$$KIO_3 + 2KI + 6HCl \rightarrow 3IC\ell + 3kC\ell + 3H_2O$$

m.mol: 510

$$\Rightarrow$$
 AgI = 0.3×50-10 = 5 m.mol \Rightarrow %AgNO₃ = 85%

45.
$$2[Au(CN)_2]^- + Zn \rightarrow 2Au + [Zn(CN)_4]^{2-}$$

$$E^{\circ} = -0.60 - (-1.26) = 0.66 \text{ V}$$

Since E° value for the reduction of complexed Ag⁺ ion to Ag is higher than that of complexed JAVANA Au⁺ ion into Au . So, Ag⁺ ion will be reduced first.

Mole of Zn added =
$$\frac{78}{65}$$
 = 1.2

Moles of
$$[Ag(CN)_2]^- = 0.003 \times 500 = 1.5$$

Moles of
$$[Au(CN)_2]^- = 0.002 \times 500 = 1.0$$

Moles of Zn used to reduce 1.5 moles of $[Ag(CN)_2] = 0.75$

Moles of $[Au(CN)_2]$ reduced by remaining 0.45 moles of Zn = 0.90

Moles of $[Au(CN)_2]$ left in the solution = 0.10

Concentration of
$$[Au(CN)_2]^-$$
 left in the solution $= \frac{0.10}{500} = 2 \times 10^{-4} M = x$

46.

47.

48.

49.
$$I^{\text{st}} \text{ order: } t_{1/2} = \frac{0.693}{k}, k = \frac{2.303}{t}, \log \frac{a}{a - x}$$
$$3: t_{1/2} = \frac{2}{k} \left(\sqrt{a} - \sqrt{\frac{a}{2}} \right)$$

B₃N₃H₃Cl₃

(N)

BCI,

(M)

50.

$$(P) \longrightarrow OH \xrightarrow{H^+/\Delta}$$

$$(Major) \qquad (Minor)$$

$$(Q) \xrightarrow{H_3C} Ph \xrightarrow{H^+/\Delta}$$

$$H_3C$$
 Ph
 H_3C
 Ph
 $(Minor)$
 Ph
 $(Major)$
 Ph
 $(Major)$
 Ph
 $(Major)$
 Ph
 $(Major)$
 Ph
 $(Major)$
 Ph
 $(Major)$

(S)
$$\xrightarrow{H^+/\Delta}$$
 cannot undergo

dehydration as bridge head C-atom can never be sp²-hybridised.

SR.IIT_*CO-SC Page NO: 16