Chapter 9 Engineering Economic Analysis

Chemical Engineering Department
West Virginia University

Definitions

- P Principal or Present Value (of an investment)
- F_n Future Value (of an investment)
- n- Years (or other time unit) between P and F
- *i* Interest Rate (based on time interval of *n*) per anum

Basic premise: Money when invested earns money

\$1 today is worth more than \$1 in the future

Interest

- Simple Interest Annual Basis
 - Interest paid in any year = Pi_s
 - Pi_s Fraction of investment paid as interest per year
 - After n years total interest paid = $Pi_s n$
 - Total investment is worth = $P + Pi_s n$
 - Total investment after 1 year $(n = 1) = P(1+i_s)$
 - What is the drawback of simple interest?

We can earn interest on earned interest

Interest

Compound Interest

At time 0 we have P

At the end of Year 1, we have $F_1 = P(1 + i)$

At the end of Year 2, we have $F_2 = P(1 + i)^2$

At the end of Year n, we have $F_n = P(1 + i)^n$ or $P = F_n / (1 + i)^n$

Example

How much would I need to invest at 8
 % p.a. to yield \$5000 in 10 years?

$$i = 0.08$$

$$n = 10$$

$$F_{10} = 5000$$

$$P = \frac{5000}{(1+0.08)^{10}} = $2315.97$$

What if Interest Rate Changes with Time?

$$F_n = P \prod_{j=1}^n (1+i_j) = P(1+i_1)(1+i_2)....(1+i_n)$$
 Eq. (7.7)

Different Time Basis for Interest Calculations

- Relates to statement "Your loan is 6 % p.a., compounded monthly"
- Define actual interest rate per compounding period as r
 - $-i_{nom}$ = Nominal annual interest rate
 - -m = Number of compounding periods per year (12)

Different Time Basis for Interest Calculations cont.

 $-i_{eff}$ = effective annual interest rate

$$r = \frac{i_{nom}}{m}$$

Look at condition after 1 year

$$F_{1} = P\left(1 + i_{eff}\right) = P\left(1 + \frac{i_{nom}}{m}\right)^{m}$$

$$i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^{m} - 1$$

Example

 I invest \$1000 at 10 % p.a. compounded monthly. How much do I have in 1 year, 10 years?

$$F_1 = P\left(1 + \frac{i_{nom}}{m}\right)^m = 1000\left(1 + \frac{0.10}{12}\right)^{12} = \$1104.71$$

$$i_{eff} = \left(1 + \frac{0.10}{12}\right)^{12} - 1 = 0.1047$$

$$F_{10} = P(1 + i_{eff})^{10} = $2707.04$$

Example cont.

- As m decreases i_{eff} increases
- Is there a limit as m goes to infinity
 - Yes continuously compounded interest
 - Derivation pp. 265-266
 - $-i_{eff}$ (continuous) = $e^{i_{nom}} 1$

Cash Flow Diagram (CFD)

- Represent timings and approximate magnitude of investment on a cfd
 - x-axis is time and y-axis is magnitude
 - both positive and negative investments are possible.
- In order to determine direction (sign) of cash flows, we must define what system is being considered.

Consider a Discrete Cash Flow Diagram

Discrete refers to individual CFDs that are plotted

Example

 I borrow \$20 K for a car and repay as a \$400 monthly payment for 5 years.

Cumulative CFD

Annuities

Uniform series of equally spaced, equal value cash flows Note: The first payment is at the beginning of year 1 not at t=0

Annuities

• What is future value F_n ?

$$F_n = A(1+i)^{n-1} + A(1+i)^{n-2} + \dots A$$

Geometric progression

$$F_n = S_n = A \left[\frac{\left(1+i\right)^n - 1}{i} \right]$$

Discount Factors

Just a shorthand symbol for a formula in i and n

$$P = \frac{F}{\left(1+i\right)^n} \Longrightarrow \left(\frac{P}{F}, i, n\right) = \frac{1}{\left(1+i\right)^n}$$

$$\Rightarrow P = F\left(\frac{P}{F}, i, n\right) = F\left(\frac{1}{\left(1+i\right)^n}\right)$$

See Table 9.1

$$\Rightarrow A \to P \Rightarrow \left(\frac{P}{A}, i, n\right) = \frac{\left(1+i\right)^n - 1}{i\left(1+i\right)^n}$$

Discount Factors

$$\left(\frac{F}{A}, i, n\right) = \frac{\left(1+i\right)^n - 1}{i}$$

$$\left(\frac{P}{F}, i, n\right) = \frac{1}{\left(1+i\right)^n}$$

therefore

$$\left(\frac{P}{A},i,n\right) = \frac{(1+i)^n - 1}{i(1+i)^n}$$

Table 9.1 has six versions of these

Three are reciprocals of the other three

Calculations with Cash Flow Diagrams

- Invest 5K, 1K, 2K at end of Years 0, 1, 3, and take 3K at end of Year 4
- Note that annuity payments are all at the end of the year

Example 1

How much in account at end of Year 7 if i = 8% p.a.?

$$F_7 = 5,000(1+0.08)^7 + 1000(1+0.08)^6 + 2000(1+0.08)^4$$
$$-3000(1+0.08)^3$$
$$F_7 = $9097.84$$

 What would investment be at Year 0 to get this amount at Year 7?

$$P = \frac{9097.84}{\left(1.08\right)^7} = 5308.50$$

Example 2

 What should my annual monthly car payment be if interest rate is 8% p.a. compounded monthly?

Example 2 (cont'd)

• Compare at n = 60

$$F_{60} = A \left[\frac{\left(1 + \frac{0.08}{12}\right)^{60} - 1}{\frac{0.08}{12}} \right] = 73.47A$$

$$F_{60} = -20,000 \left[\left(1 + \frac{0.08}{12} \right)^{60} \right] = -29,796.90$$

$$73.47A - 29,796.90 = 0$$

$$A = $405.53$$

Interest paid = \$4,331.20

Example 2 (cont'd)

Another method

$$\left(\frac{A}{P},0.08,60\right) = \frac{\frac{i}{m}\left(1 + \frac{i}{m}\right)^{mn}}{\left(1 + \frac{i}{m}\right)^{mn} - 1} = \frac{\frac{0.08}{12}\left(1 + \frac{0.08}{12}\right)^{60}}{\left(1 + \frac{0.08}{12}\right)^{60} - 1} = 0.020276$$

$$A = P\left(\frac{A}{P}, 0.08, 60\right) = 20,000(0.020276) = $405.52$$

interest paid =
$$60(405.52) - 20,000 = $4331.20$$

Example 3

 You buy a house where you finance \$200 K at 6% p.a. interest, compounded monthly.
 What is your monthly payment, and how much interest do you pay over the lifetime of the loan for a 15-year and a 30-year mortgage in current dollars?

Example 3 (cont'd)

$$\frac{A}{P} = \frac{i(1+i)^n}{(1+i)^n - 1} = \frac{\frac{i}{m} \left(1 + \frac{i}{m}\right)^{mn}}{\left(1 + \frac{i}{m}\right)^{mn} - 1}$$

15 - year mortgage m = 12, n = 15

30 - year mort gage
$$m = 12, n = 30$$

Example 3 (cont'd)

- For 15-year mortgage
 - \$1687.71/month
 - total of \$303,788 paid
 - \$103,788 interest
- For 30-year mortgage
 - \$1199.10/month
 - total of \$431,676 paid
 - \$231,676 interest

Example 4

 You invest \$5000/year (the maximum, for now) in a Roth IRA, starting at age 25 for 40 years. Assuming a return of 8% p.a., how much will you have at age 65 in future dollars?

Example 4 (cont'd)

$$\frac{F}{A} = \frac{(1+i)^n - 1}{i}$$

$$\frac{F}{A} = \frac{(1+0.08)^{40} - 1}{0.08}$$

$$\frac{F}{A} = 259.06$$

$$A = 5000$$

$$F = \$1,295,283$$

Example 5

 Repeat the previous calculation, assuming that you do not start investing until age 35 or age 45.

$$\frac{F}{A} = \frac{(1+i)^n - 1}{i}$$

$$\frac{F}{A} = \frac{(1+0.08)^n - 1}{0.08}$$

$$A = 5000$$
if $n = 30$ $\frac{F}{A} = 113.28$ $F = \$566,400$
if $n = 20$ $\frac{F}{A} = 45.76$ $F = \$228,800$

Depreciation

- Total Capital Investment = Fixed Capital + Working Capital
 - Fixed Capital All costs associated with new construction, but <u>Land</u> cannot be depreciated
 - Working Capital Float of material to start operations cannot depreciate

$$TCI = FCI_L + Land + WC$$

Definitions

- Salvage Value, S
 - Value of FCI, at end of project
 - Often = 0
- Life of Equipment
 - -n set by IRS
 - Not related to actual equipment life
- Total Capital for Depreciation
 - FCI, S

4 Basic Methods for Depreciation

- Straight Line
- Sum of Years Digits (SOYD)
- Double Declining Balance (DDB)
- Modified Accelerated Cost Recovery System (MACRS)

Straight Line

$$d_k^{SL} = \left(\frac{FCI_L - S}{n}\right)$$

n = # of years over which depreciation is taken

Sum of Years Digits (SOYD)

$$d_k^{SOYD} = \frac{\left[(n+1-k)(FCI_L - S) \right]}{\frac{1}{2}n(n+1)}$$
SOYD

Double Declining Balance (DDB)

$$d_k^{DDB} = \frac{2}{n} \left[FCI_L - \sum_{j=0}^{k-1} d_j \right]$$

MACRS

Current IRS-approved method

Year	Depreciation Percentage	
1	20.00	
2	32.00	See Chapter 9
3	19.20	Based on combination of DDB and SL
4	11.52	
5	11.52	
6	5.76	

Example 9.21

$$FCI_{L} = \$150 \times 10^{6}$$

$$S = \$10 \times 10^{6}$$

$$n = 7$$

$$1^{st} Year - d_{SL} = ?$$

$$d_{SL} = \frac{150 - 10}{7} = 20$$

Same for Years 1-7

Example 9.21 (cont'd)

Sum of Year's Digits

$$d_{SOYD,1} = \frac{(7+1-1)}{\frac{1}{2}(7)(8)} [150-10] = \frac{7}{28} [150-10] = 35$$

$$d_{SOYD,2} = \frac{(7+1-2)}{\frac{1}{2}(7)(8)} [150-10] = \frac{6}{28} [150-10] = 30$$

Example 9.21 (cont'd)

Double Declining Balance

$$d_{DDB,1} = \frac{2}{7}(150) = 42.9$$

$$d_{DDB,2} = \frac{2}{7} (150 - 42.9) = 30.6$$

Example 9.21 (cont'd)

MACRS

$$d_{MACRS,yr1} = 0.20(150) = 30$$

 $d_{MACRS,yr2} = 0.32(150) = 48$
 $d_{MACRS,yr3} = 0.192(150) = 28.8$
 $d_{MACRS,yr4} = 0.1152(150) = 17.28$
 $d_{MACRS,yr5} = 0.1152(150) = 17.28$
 $d_{MACRS,yr5} = 0.0576(150) = 8.64$

Taxation, Cash Flow, and Profit

- Tables 9.3 9.4
- Expenses = $COM_d + d_k$
- Income Tax = $(R COM_d d_k)t$
- After Tax (net)Profit = $(R COM_d d_k)(1 t)$
- After Tax Cash Flow = $(R COM_d d_k)(1 t) + d_k$ (+ other cash flows)
- Other cash flows might include working capital return, salvage value, etc.

\$ Net Worth Now vs. \$ Next Year

$$CEPCI(j+n) = (1+f)^n CEPCI(j)$$

• f = Average inflation rate between years j and n

Example

$$CEPCI(1993) = 359$$

 $CEPCI(2003) = 402$

$$\left(1+f\right)^{10} = \frac{402}{359}$$

$$f = \left(\frac{402}{359}\right)^{0.1} - 1 = 0.0114 \text{ or } 1.14\%$$

 What is inflation rate since 2003? The current CEPCI is 600 (2011).

$$(1+f)^8 = \frac{600}{402} = 1.4925$$
$$f = 1.4925^{0.125} - 1 = 0.0513$$
$$5.13\%$$

- Effect of inflation on interest rate
 f affects the purchasing power of the \$
- Look at the purchasing power of future worth, then

$$F' = \frac{F}{(1+f)^n}$$

• If this future worth was obtained by investing at a rate *i*, then the inflation adjusted interest rate, *i* ' is given by

$$F' = \frac{F}{(1+f)^n} = P\frac{(1+i)^n}{(1+f)^n} = P\left(\frac{1+i}{1+f}\right)^n = P(1+i')^n$$

$$i' = \frac{1+i}{1+f} - 1 \approx i - f$$