Combining random walks and nonparametric topic model for network community detection

Ruimin Zhu

Northwestern University

ruiminzhu2014@u.northwestern.edu

May 3, 2017

Outline

- Review of network community detection
- 2 Inspirations
 - random walk + deep learning
 - SSN-LDA
- RW-HDP
 - basic idea
 - Random walks
 - HDP topic model
 - Inference
 - Community assignment
- 4 Experiments
 - data sets
 - evaluation metrics
 - comparison models
 - results
 - Pros and Cons
- 5 Future works

Network community detection

- matrix factorization methods
- optimization methods
- generative models
- other methods

Where do the inspirations come from

RW-HDP combines random walks and topic model for community detection.

Conducting random walks is a way of aggregating information. Each random walker is an agent who explores a local part of the network. Combining the information they collected properly, we get a big picture of the network.

Topic models are generative models that generally used for documents analysis.

Deepwalk

- Conduct short random walks on the network
- Treat them as sentences
- Deep learning for word (vetex) embedding
- Use embedding for other tasks

SSN-LDA

In this model, each node is associated with a social interaction profile, which only takes a node's immediate and secondary neighbors into consideration. Those social interaction profiles are treated as documents for community detection using Latent Dirichlet Allocation.

Basic idea

- Conduct random walks on the network. Treat vertexes as words, communities as topics, and random walks as documents
- Use topic model to find the topic structure of each document
- Use Bayes theorem to find the probabilities of a vertex belonging to different topics and classify it to the largest one

Random walks

Let N_d be the length of the d^{th} random walks. The length can either be fixed or is a Poisson random variable.

Randomly sample D vertexes from the network as starting points of random walks.

Conduct *D* random walks and treat them as documents.

HDP topic model: stick breaking construction

- **①** Draw an infinite number of topics, $\beta_k \sim \textit{Dirichlet}(\eta), k = 1, 2, \dots$
- ② Draw corpus breaking proportions, $v_k \sim Beta(1, \gamma), k = 1, 2, ...$
- For each document:
 - Draw document-level topic indexes, $c_{di} \sim Multinomial(\sigma(v)), i = 1, 2, ...$
 - **2** Draw document breaking proportions, $\pi_{di} \sim Beta(1, \alpha), i = 1, 2, ...$
 - For each word:
 - **1** Draw topic assignment $z_{dn} \sim Multinomial(\sigma(\pi_d))$.
 - ② Draw word $w_{dn} \sim Multinomial(\phi_{c_{d,z_{dn}}})$.

Graph representation

There should be a picture.

Conditional distributions

Using Markov blanket we get the following conditional distributions

$$\begin{split} \rho(z_{dn}^i = 1 | \pi_d, \beta_{1:\infty}, w_{dn}, c_d) &\propto \exp\{\log \sigma_i(\pi_d) + \sum_{k=1}^\infty c_{di}^k \log \beta_{k, w_{dn}} \} \\ \rho(c_{di}^k = 1 | \nu, \beta_{1:\infty}, w_d, z_d) &\propto \exp\{\log \sigma_k(\nu) + \sum_{n=1}^N \log \beta_{k, w_{dn}} \} \\ \rho(\pi_{di} | z_d) &\sim \text{ Beta}(1 + \sum_{n=1}^N z_{dn}^i, \alpha + \sum_{n=1}^N \sum_{j>i} z_{dn}^j) \\ \rho(v_k | c) &\sim \text{ Beta}(1 + \sum_{d=1}^D \sum_{i=1}^\infty c_{di}^k, \omega + \sum_{d=1}^D \sum_{i=1}^\infty \sum_{j>k} c_{di}^j) \\ \rho(\beta_k | z, c, w) &\sim \text{ Dirichlet}(\eta + \sum_{i=1}^D \sum_{j=1}^\infty c_{di}^k \sum_{i=1}^N z_{dn}^i w_{dn}). \end{split}$$

Notice that all of them are in Exponential families.

Stochastic variational inference

Based on the conditional distributions, we using the following variational family under the mean field assumption

$$q(\beta, \nu, z, \pi) = \left(\prod_{k=1}^{K} q(\beta_k | \lambda_k) q(\nu_k | a_k) \right) \times \left(\prod_{d=1}^{D} \prod_{i=1}^{T} q(c_{di} | \zeta_{di}) q(\pi_{di} | \gamma_{di}) \prod_{n=1}^{N} q(z_{dn} | \phi_{dn}) \right)$$

The latent variables c_{di}, π_{di}, z_{dn} depends only on a single document, while the global variables v_k, β_k depends on all documents. To efficiently update the proxy, we can use Stochastic Variational Inference method.

Bayes theorem for community assignment

$$p(c|v) \propto p(c)p(v|c) = \sigma_c(v)\beta_{zv}$$

data sets

- yeast: a yeast protein complex interaction network (Yu et al 2008).
- ② GSE: a breast cancer gene co-expression network (Chen *et al* 2010, Chen and Xu 2005).
- **3** ca-GrQc: Arxiv General Relativity and Quantum Cosmology collaboration network. If an author *i* co-authored a paper with author *j*, the graph contains an undirected edge between *i* and *j* (Leskovec *et al* 2007).
- ca-CondMat: Arxiv Condense Matter Physics collaboration network (Leskovec et al 2007).
- US powergrid: the high-voltage power grid in the Western States of the United States of America. The nodes are transformers, substations, and generators, and the ties are high-voltage transmission lines (Watts et al 1998).

data sets

Table: Network Statistics

statistics	yeast	GSE	ca-GrQc	ca-CondMat	US powergric
type	biology	biology	co-authorship	co-authorship	engineer
nodes	1540	9112	5242	16264	4941
edges	8703	244928	14478	47594	6594

evaluation metrics

- Internal density: $D = \frac{2m_S}{n_S(n_S-1)}$. This metric sores the community structure based on its internal connectivity. A larger internal density usually means a better community structure (Radicchi *et al* 2004).
- ② Cut Ratio: $CR = \frac{c_S}{n_S(n-n_S)}$, which quantifies the community structure based on its external connectivity. A smaller cut ratio usually means a better community structure (Fortunato 2010).
- **3** Conductance: $C = \frac{c_S}{2m_S + c_S}$, which measures the fraction of edge that points outside the cluster. It combines both internal and external connectivity to give a score. A smaller conductance usually means a better community structure (Shi and Malik 2000).
- Modularity: $Q = \sum_{i=1}^{m} (e_{ii} a_i^2)$, where m is the number of communities, e_{ij} the fraction of edges with one end in community i and the other in community j, $a_i = \sum_j e_{ij}$. This index falls in [-0.5, 1). A larger modularity means a better community structure (Newman 2006).

comparison models

- SSN-LDA (Zhang et al 2007), a topic based community detection model.
- Walktrap (Pons and Latapy 2006), a random walk based community detection model. This method does not actually implement random walks on the network, but it defines node-to-node distance and community-to-community distance based on properties of random walks, such as the transition probability between any pair of nodes within t steps. Later, it merges communities iteratively to get a hierarchical tree of partition. Finally, it cuts the tree to get the best partition.
- BCD (Morup and Schmidt 2012), a nonparametric Bayesian network generative model. The generative process is: first, a cluster assignment is generated using Chinese Restaurant Process (a commonly used metaphor for Dirichlet Process); then, within-cluster and between-cluster link probabilities are generated; finally, links between nodes are generated according to the within- and between-cluster link probabilities.

results

results

Table: Modularity

model	yeast	GSE	ca-GrQc	ca-CondMat	US powergrid
RW-HDP	0.7605	0.5967	0.7848	0.7588	0.9087
SIP2-LDA	0.6995	0.5881	0.7479	0.6615	0.7775
Walktrap	0.6968	0.6014	0.7430	0.7238	0.8953
BCD	0.6452	0.2017	0.5378	0.5041	0.4802

Table: Perplexity

model	yeast	GSE	ca-GrQc	ca-CondMat	US powergrid
RW-HDP	62.26	1124.51	504.16	1262.18	235.46
SIP2-LDA	279.95	1664.80	2902.81	41920.72	7197.49

19 / 23

Pros and Cons

Pros

- Nonparametric topic model allow community number auto detection
- Soft-clustering
- High accuracy compared to other generative models
- Can be extended to online setting

Cons

 The inference of probabilistic model is always slow, even SVI is used

Future works

- Include teleportation to allow single agent to explore a larger area of the network
- 4 Hyperparameters tuning
- Ground truth benchmarks comparison

References

٠.

Thank You