TEST REPORT

Reference No. : WTS15S1036113-1E

FCC ID : 2AGF5T4H

Applicant: Somit Solutions Ltd

Address Unit 4-10, The Quadrant, Barton Lane Abingdon Oxfordshire

OX14 3YS, United Kingdom

Manufacturer The same as above

Address The same as above

Product Name: Diagnostic Tool

Model No. : T4H

Brand...... LAND ROVER

Standards...... FCC CFR47 Part 15 C Section 15.247:2014

Date of Receipt sample..... : Oct. 27, 2015

Date of Test.....: Oct. 27, 2015 ~ Nov. 14, 2015

Date of Issue : Dec. 03, 2015

Test Result: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen,

Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Project Engineer

Approved by:

Philo Zhong / ManagerRE

Reference No.: WTS15S1036113-1E Page 2 of 68

2 Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

	00//50 04.05	Page
1	COVER PAGE	
2	TEST SUMMARY CONTENTS	
3	GENERAL INFORMATION	
4	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T.	
	4.3 CHANNEL LIST	
	4.4 TEST MODE	
5	4.5 TEST FACILITY EQUIPMENT USED DURING TEST	
5		
	5.1 EQUIPMENTS LIST	
	5.3 TEST EQUIPMENT CALIBRATION	
6	CONDUCTED EMISSION	8
	6.1 E.U.T. OPERATION	8
	6.2 EUT SETUP	
	6.3 MEASUREMENT DESCRIPTION	
_	6.4 CONDUCTED EMISSION TEST RESULT	
7	RADIATED EMISSIONS	
	7.1 EUT OPERATION	
	7.3 SPECTRUM ANALYZER SETUP	
	7.4 TEST PROCEDURE	14
	7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	7.6 SUMMARY OF TEST RESULTS	
8	BAND EDGE MEASUREMENT	
	8.1 TEST PRODUCE	
9	6 DB BANDWIDTH MEASUREMENT	
9		
	9.1 TEST PROCEDURE:	
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 Test Procedure:	39
	10.2 Test Result:	39
11	POWER SPECTRAL DENSITY	46
	11.1 Test Procedure:	
	11.2 TEST RESULT:	
12	ANTENNA REQUIREMENT	
13	RF EXPOSURE	
14	PHOTOGRAPHS - MODEL T4H TEST SETUP	
	14.1 CONDUCTED EMISSION AT TEST SITE 1#	
	14.2 RADIATED EMISSION	
15	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	
	15.1 MODEL T4H—EXTERNAL PHOTOS	57

Reference No.: WTS15S1036113-1E Page 4 of 68

4 General Information

4.1 General Description of E.U.T.

Product Name: :Diagnostic Tool

Model No.: :T4H

Model Difference: : N/A

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz,

802.11n HT40: 2422MHz~2452MHz

The Lowest Oscillator: 32.768 kHz

Antenna Gain: :2.5dBi

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.,

HT40:150Mbps max.)

4.2 Details of E.U.T.

Technical Data: Battery DC 3.8V, 3000mAh, 11.4Wh or

DC 5V, 1000mA powered by adapter

(Adapter Input: 100-240V, 50/60Hz, 0.2A model: DPTB050100UB)

4.3 Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Book Output Bourer	802.11g	54 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Dower Spectral Density	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/11	TX
Eraguanay Banga	802.11g	54 Mbps	1/11	TX
Frequency Range	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/9	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
Transmiller Spunous Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

	cted Emissions Test						
Item	Equipment	Manufacturer Model No. Serial No		Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.15,2015	Sep.14,2016	
2.	LISN	R&S	ENV216	101215	Sep.15,2015	Sep.14,2016	
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2015	Sep.14,2016	
Condu	cted Emissions Test	Site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2015	Sep.14,2016	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2015	Sep.14,2016	
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2015	Sep.14,2016	
4.	Cable	LARGE	RF300	-	Sep.15,2015	Sep.14,2016	
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016	
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2015	Sep.14,2016	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2015	Apr.18,2016	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2015	Sep.14,2016	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2015	Apr.18,2016	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2015	Apr.18,2016	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2015	Mar.16,2016	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2015	Apr.09,2016	
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	Sep.15,2015	Sep.14,2016	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2015	Sep.14,2016	
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2015	Sep.14,2016	
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2015	Sep.14,2016	

Reference No.: WTS15S1036113-1E Page 7 of 68

Item	Equipment	Manufacturer	Manufacturer Model No. Serial No.		Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A MY45114943		Sep.15,2015	Sep.14,2016
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2015	Sep.14,2016
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2015	Sep.14,2016

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS15S1036113-1E Page 8 of 68

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

56 dB_μV between 0.5MHz & 5MHz 60 dB_μV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS15S1036113-1E Page 11 of 68

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.4:2003

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Stren	ngth	Field Strength Limit at 3m Measurement Dist			
(MHz)	(MHz) UV/m Distance		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	88 ~ 216 150 3		150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 52.1 % RH

Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS15S1036113-1E Page 14 of 68

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

7.6 Summary of Test Results

Test Frequency: 32.768 kHz~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Lo	w Channe	el 2412	ИНz			
223.20	40.10	QP	133	2.0	Н	-11.62	28.48	46.00	-17.52
223.20	33.81	QP	132	1.5	V	-11.62	22.19	46.00	-23.81
4824.00	52.05	PK	351	1.3	V	-1.06	50.99	74.00	-23.01
4824.00	47.92	Ave	351	1.3	V	-1.06	46.86	54.00	-7.14
7236.00	41.97	PK	297	1.1	Н	1.33	43.30	74.00	-30.70
7236.00	38.90	Ave	297	1.1	Н	1.33	40.23	54.00	-13.77
2331.35	45.17	PK	191	1.1	V	-13.19	31.98	74.00	-42.02
2331.35	39.87	Ave	191	1.1	V	-13.19	26.68	54.00	-27.32
2385.52	44.09	PK	191	1.6	Н	-13.14	30.95	74.00	-43.05
2385.52	37.52	Ave	191	1.6	Н	-13.14	24.38	54.00	-29.62
2497.73	42.57	PK	217	1.4	V	-13.08	29.49	74.00	-44.51
2497.73	37.43	Ave	217	1.4	V	-13.08	24.35	54.00	-29.65

	Receiver	Datastas	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Mid	dle Chan	nel 243	7MHz			
223.20	40.79	QP	194	1.8	Н	-11.62	29.17	46.00	-16.83
223.20	33.11	QP	354	1.9	V	-11.62	21.49	46.00	-24.51
4874.00	53.11	PK	175	1.8	V	-0.62	52.49	74.00	-21.51
4874.00	46.93	Ave	175	1.8	V	-0.62	46.31	54.00	-7.69
7311.00	42.57	PK	63	1.4	Н	2.21	44.78	74.00	-29.22
7311.00	38.85	Ave	63	1.4	Н	2.21	41.06	54.00	-12.94
2340.51	46.41	PK	268	1.4	V	-13.19	33.22	74.00	-40.78
2340.51	38.29	Ave	268	1.4	V	-13.19	25.10	54.00	-28.90
2382.37	44.79	PK	182	1.3	Н	-13.14	31.65	74.00	-42.35
2382.37	38.72	Ave	182	1.3	Н	-13.14	25.58	54.00	-28.42
2498.41	44.29	PK	118	1.8	V	-13.08	31.21	74.00	-42.79
2498.41	37.29	Ave	118	1.8	V	-13.08	24.21	54.00	-29.79

Гтопион	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	Compate	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
			11b: Hi	gh Chanr	nel 2462	MHz				
223.20	41.68	QP	202	1.5	Н	-11.62	30.06	46.00	-15.94	
223.20	31.73	QP	269	2.0	V	-11.62	20.11	46.00	-25.89	
4924.00	54.10	PK	130	1.9	V	-0.24	53.86	74.00	-20.14	
4924.00	46.22	Ave	130	1.9	V	-0.24	45.98	54.00	-8.02	
7386.00	42.25	PK	16	1.5	Н	2.84	45.09	74.00	-28.91	
7386.00	38.50	Ave	16	1.5	Н	2.84	41.34	54.00	-12.66	
2330.27	45.88	PK	339	1.2	V	-13.19	32.69	74.00	-41.31	
2330.27	38.95	Ave	339	1.2	V	-13.19	25.76	54.00	-28.24	
2365.35	42.71	PK	126	1.9	Н	-13.14	29.57	74.00	-44.43	
2365.35	36.29	Ave	126	1.9	Н	-13.14	23.15	54.00	-30.85	
2498.39	43.21	PK	77	1.2	V	-13.08	30.13	74.00	-43.87	
2498.39	38.64	Ave	77	1.2	V	-13.08	25.56	54.00	-28.44	

F	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: Low Channel 2412MHz									
223.20	42.66	QP	307	2.0	Н	-11.62	31.04	46.00	-14.96
223.20	31.32	QP	281	1.4	V	-11.62	19.70	46.00	-26.30
4824.00	54.11	PK	257	1.0	V	-1.06	53.05	74.00	-20.95
4824.00	45.35	Ave	257	1.0	V	-1.06	44.29	54.00	-9.71
7236.00	41.95	PK	226	1.6	Н	1.33	43.28	74.00	-30.72
7236.00	39.50	Ave	226	1.6	Н	1.33	40.83	54.00	-13.17
2312.06	46.06	PK	227	1.1	V	-13.19	32.87	74.00	-41.13
2312.06	37.00	Ave	227	1.1	V	-13.19	23.81	54.00	-30.19
2363.71	44.73	PK	277	1.6	Н	-13.14	31.59	74.00	-42.41
2363.71	36.08	Ave	277	1.6	Н	-13.14	22.94	54.00	-31.06
2484.20	44.73	PK	181	1.1	V	-13.08	31.65	74.00	-42.35
2484.20	37.81	Ave	181	1.1	V	-13.08	24.73	54.00	-29.27

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: Middle Channel 2437MHz									
223.20	43.30	QP	68	1.6	Н	-11.62	31.68	46.00	-14.32
223.20	30.46	QP	49	1.9	V	-11.62	18.84	46.00	-27.16
4874.00	55.20	PK	325	1.8	V	-0.62	54.58	74.00	-19.42
4874.00	46.53	Ave	325	1.8	V	-0.62	45.91	54.00	-8.09
7311.00	42.28	PK	76	1.1	Н	2.21	44.49	74.00	-29.51
7311.00	39.74	Ave	76	1.1	Н	2.21	41.95	54.00	-12.05
2323.16	45.38	PK	61	1.7	V	-13.19	32.19	74.00	-41.81
2323.16	38.62	Ave	61	1.7	V	-13.19	25.43	54.00	-28.57
2351.69	44.51	PK	198	1.2	Н	-13.14	31.37	74.00	-42.63
2351.69	36.82	Ave	198	1.2	Н	-13.14	23.68	54.00	-30.32
2498.73	44.41	PK	23	1.4	V	-13.08	31.33	74.00	-42.67
2498.73	37.58	Ave	23	1.4	V	-13.08	24.50	54.00	-29.50

	Receiver	D	Turn	RX An	tenna	Corrected		FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
11g: High Channel 2462MHz									
223.20	42.40	QP	243	1.5	Н	-11.62	30.78	46.00	-15.22
223.20	29.62	QP	144	1.2	V	-11.62	18.00	46.00	-28.00
4924.00	56.20	PK	159	1.5	V	-0.24	55.96	74.00	-18.04
4924.00	45.89	Ave	159	1.5	V	-0.24	45.65	54.00	-8.35
7386.00	43.61	PK	148	1.4	Н	2.84	46.45	74.00	-27.55
7386.00	40.69	Ave	148	1.4	Н	2.84	43.53	54.00	-10.47
2312.53	45.54	PK	233	1.3	V	-13.19	32.35	74.00	-41.65
2312.53	39.66	Ave	233	1.3	V	-13.19	26.47	54.00	-27.53
2360.84	43.59	PK	266	1.1	Н	-13.14	30.45	74.00	-43.55
2360.84	37.01	Ave	266	1.1	Н	-13.14	23.87	54.00	-30.13
2494.10	42.80	PK	202	1.6	V	-13.08	29.72	74.00	-44.28
2494.10	37.80	Ave	202	1.6	V	-13.08	24.72	54.00	-29.28

F	Receiver	ver Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n20: Lo	w Chann	el 2412I	MHz			
223.20	43.18	QP	216	1.8	Н	-11.62	31.56	46.00	-14.44
223.20	29.13	QP	182	1.2	V	-11.62	17.51	46.00	-28.49
4824.00	56.77	PK	22	1.6	V	-1.06	55.71	74.00	-18.29
4824.00	45.23	Ave	22	1.6	V	-1.06	44.17	54.00	-9.83
7236.00	44.27	PK	343	1.0	Н	1.33	45.60	74.00	-28.40
7236.00	41.29	Ave	343	1.0	Н	1.33	42.62	54.00	-11.38
2349.05	46.09	PK	89	1.9	V	-13.19	32.90	74.00	-41.10
2349.05	39.59	Ave	89	1.9	V	-13.19	26.40	54.00	-27.60
2385.79	43.11	PK	55	1.5	Н	-13.14	29.97	74.00	-44.03
2385.79	36.68	Ave	55	1.5	Н	-13.14	23.54	54.00	-30.46
2489.61	42.36	PK	270	1.8	V	-13.08	29.28	74.00	-44.72
2489.61	37.75	Ave	270	1.8	V	-13.08	24.67	54.00	-29.33

	Receiver	D	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n20: Mid	dle Chan	nel 243	7MHz			
223.20	44.56	QP	329	1.2	Н	-11.62	32.94	46.00	-13.06
223.20	27.78	QP	1	1.1	V	-11.62	16.16	46.00	-29.84
4874.00	55.76	PK	137	1.7	V	-0.62	55.14	74.00	-18.86
4874.00	43.89	Ave	137	1.7	V	-0.62	43.27	54.00	-10.73
7311.00	45.01	PK	46	1.3	Н	2.21	47.22	74.00	-26.78
7311.00	39.89	Ave	46	1.3	Н	2.21	42.10	54.00	-11.90
2340.79	45.91	PK	130	1.5	V	-13.19	32.72	74.00	-41.28
2340.79	37.19	Ave	130	1.5	V	-13.19	24.00	54.00	-30.00
2378.18	44.44	PK	332	1.2	Н	-13.14	31.30	74.00	-42.70
2378.18	36.97	Ave	332	1.2	Н	-13.14	23.83	54.00	-30.17
2485.22	44.34	PK	85	1.3	V	-13.08	31.26	74.00	-42.74
2485.22	38.28	Ave	85	1.3	V	-13.08	25.20	54.00	-28.80

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
n20: High Channel 2462MHz									
223.20	45.74	QP	139	1.4	Н	-11.62	34.12	46.00	-11.88
223.20	26.55	QP	55	1.4	V	-11.62	14.93	46.00	-31.07
4924.00	56.44	PK	279	1.6	V	-0.24	56.20	74.00	-17.80
4924.00	42.45	Ave	279	1.6	V	-0.24	42.21	54.00	-11.79
7386.00	45.83	PK	138	1.3	Н	2.84	48.67	74.00	-25.33
7386.00	38.95	Ave	138	1.3	Н	2.84	41.79	54.00	-12.21
2313.12	45.80	PK	46	1.0	V	-13.19	32.61	74.00	-41.39
2313.12	38.66	Ave	46	1.0	V	-13.19	25.47	54.00	-28.53
2366.12	43.53	PK	205	1.2	Н	-13.14	30.39	74.00	-43.61
2366.12	36.56	Ave	205	1.2	Н	-13.14	23.42	54.00	-30.58
2486.49	42.59	PK	201	1.8	V	-13.08	29.51	74.00	-44.49
2486.49	37.52	Ave	201	1.8	V	-13.08	24.44	54.00	-29.56

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
n40: Low Channel 2422MHz									
223.20	47.06	QP	78	1.6	Н	-11.62	35.44	46.00	-10.56
223.20	26.06	QP	1	1.8	V	-11.62	14.44	46.00	-31.56
4844.00	53.96	PK	223	1.6	V	-1.06	52.90	74.00	-21.10
4844.00	40.47	Ave	223	1.6	V	-1.06	39.41	54.00	-14.59
7266.00	43.68	PK	53	1.2	Н	1.33	45.01	74.00	-28.99
7266.00	37.82	Ave	53	1.2	Н	1.33	39.15	54.00	-14.85
2312.78	45.81	PK	14	1.1	V	-13.19	32.62	74.00	-41.38
2312.78	39.05	Ave	14	1.1	V	-13.19	25.86	54.00	-28.14
2353.25	42.29	PK	86	1.5	Н	-13.14	29.15	74.00	-44.85
2353.25	38.51	Ave	86	1.5	Н	-13.14	25.37	54.00	-28.63
2499.29	43.34	PK	245	1.8	V	-13.08	30.26	74.00	-43.74
2499.29	38.24	Ave	245	1.8	V	-13.08	25.16	54.00	-28.84

-	Receiver	Datastas	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n40: Mid	dle Chan	nel 2437	7MHz			
223.20	46.93	QP	119	1.3	Н	-11.62	35.31	46.00	-10.69
223.20	26.04	QP	151	1.4	V	-11.62	14.42	46.00	-31.58
4874.00	54.42	PK	93	1.2	V	-0.62	53.80	74.00	-20.20
4874.00	41.33	Ave	93	1.2	V	-0.62	40.71	54.00	-13.29
7311.00	42.78	PK	84	1.3	Н	2.21	44.99	74.00	-29.01
7311.00	38.04	Ave	84	1.3	Н	2.21	40.25	54.00	-13.75
2320.07	45.74	PK	2	1.7	V	-13.19	32.55	74.00	-41.45
2320.07	39.39	Ave	2	1.7	V	-13.19	26.20	54.00	-27.80
2389.26	42.90	PK	302	1.7	Н	-13.14	29.76	74.00	-44.24
2389.26	36.75	Ave	302	1.7	Н	-13.14	23.61	54.00	-30.39
2499.05	42.82	PK	69	1.9	V	-13.08	29.74	74.00	-44.26
2499.05	38.94	Ave	69	1.9	V	-13.08	25.86	54.00	-28.14

	Receiver	I latactor	Turn	RX An	tenna	Corrected		FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n40: Hiç	gh Chann	el 2452	MHz			
223.20	46.08	QP	252	1.7	Н	-11.62	34.46	46.00	-11.54
223.20	26.61	QP	153	1.6	V	-11.62	14.99	46.00	-31.01
4904.00	54.50	PK	23	1.3	V	-0.24	54.26	74.00	-19.74
4904.00	41.30	Ave	23	1.3	V	-0.24	41.06	54.00	-12.94
7356.00	41.90	PK	303	1.8	Н	2.84	44.74	74.00	-29.26
7356.00	38.20	Ave	303	1.8	Н	2.84	41.04	54.00	-12.96
2337.07	45.72	PK	224	1.5	V	-13.19	32.53	74.00	-41.47
2337.07	37.86	Ave	224	1.5	V	-13.19	24.67	54.00	-29.33
2371.48	43.00	PK	359	1.4	Н	-13.14	29.86	74.00	-44.14
2371.48	38.81	Ave	359	1.4	Н	-13.14	25.67	54.00	-28.33
2496.74	43.86	PK	53	1.7	V	-13.08	30.78	74.00	-43.22
2496.74	37.94	Ave	53	1.7	V	-13.08	24.86	54.00	-29.14

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS15S1036113-1E Page 27 of 68

8 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Transmitting

8.1 Test Produce

Test Mode:

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Test result plots shown as follows:

TX 11b: Band edge-right side

Reference No.: WTS15S1036113-1E Page 32 of 68

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

Operation mode	Bandwidth (MHz)					
	Channel 1	Channel 6	Channel 11			
TX 11b	10.060	10.060	10.060			
	Channel 1	Channel 6	Channel 11			
TX 11g	16. 567	16. 567	16.567			
	Channel 1	Channel 6	Channel 11			
TX 11n HT20	17.838	17.838	17.838			
	Channel 3	Channel 6	Channel 9			
TX 11n HT40	36.560	36.560	36.560			

Test result plot as follows:

Reference No.: WTS15S1036113-1E Page 39 of 68

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03

10.1 Test Procedure:

KDB558074 D01 v03r03

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Test mode :TX 11b		
10 Maximum Peak Output Power (dBm)		
2412MHz	2437MHz	2462MHz
12.74	12.71	12.79
Limit: 1W/30dBm		

Test mode :TX 11g		
10 Maximum Peak Output Power (dBm)		
2412MHz	2437MHz	2462MHz
12.67	12.71	12.79
Limit: 1W/30dBm		

Test mode :TX 11n HT20		
10 Maximum Peak Output Power (dBm)		
2412MHz	2437MHz	2462MHz
12.77	12.77	12.71
Limit: 1W/30dBm		

Test mode: TX 11n HT40		
10 Maximum Peak Output Power (dBm)		
2422MHz	2437MHz	2452MHz
12.65	12.77	12.75
Limit: 1W/30dBm		

Mode: TX 11g channel 1

Mode: TX 11n HT20 channel 1

Reference No.: WTS15S1036113-1E Page 46 of 68

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r03

11.1 Test Procedure:

KDB558074 D01 v03r01 04/09/2013 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

Test mode :TX 11b		
Power Spectral (dBm per 3kHz)		
2412MHz	2437MHz	2462MHz
-20.15	-20.85	-20.29
Limit: 8dBm per 3kHz		

Test mode :TX 11g		
Power Spectral (dBm per 3kHz)		
2412MHz	2437MHz	2462MHz
-23.94	-24.21	-24.25
Limit: 8dBm per 3kHz		

Test mode :TX 11n HT20		
Power Spectral (dBm per 3kHz)		
2412MHz	2437MHz	2462MHz
-23.12	-23.62	-23.81
Limit: 8dBm per 3kHz		

Test mode: TX 11n HT40		
Power Spectral (dBm per 3kHz)		
2422MHz	2437MHz	2452MHz
-23.57	-25.24	-23.44
Limit: 8dBm per 3kHz		

Mode: TX 11n HT20 channel 6

Mode: TX 11n HT40 channel 9

12 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB antenna fulfill the requirement of this section.

13 RF Exposure

Remark: refer to SAR test report: WTS15S1036113-2E.

14 Photographs - Model T4H Test Setup

14.1 Conducted Emission at Test Site 1#

14.2 Radiated Emission

Test frequency from 30MHz to 1GHz at Test Site 2#

15 Photographs - Constructional Details

15.1 Model T4H-External Photos

Reference No.: WTS15S1036113-1E Page 59 of 68

Reference No.: WTS15S1036113-1E Page 60 of 68

Reference No.: WTS15S1036113-1E Page 61 of 68

15.2 Model T4H- Internal Photos

Reference No.: WTS15S1036113-1E Page 63 of 68

Reference No.: WTS15S1036113-1E Page 64 of 68

Reference No.: WTS15S1036113-1E Page 65 of 68

Reference No.: WTS15S1036113-1E Page 66 of 68

Reference No.: WTS15S1036113-1E Page 67 of 68

====End of Report=====