Quiz: Quiz 2 10/1/19, 10:52 AM

Quiz 2

Started: Oct 1 at 10:49am

Quiz Instructions

Question 1	2 pts
Let A = (a1, a2, a3,, a9) be 9 positive integers. Assume that the longest increasing subsequence of A is a9). Then we have that one of the longest increasing subsequence of its first 7 numbers, i.e., A' = (a1, a2, is (a2, a5, a7).	
○ True	
• False	
Question 2	2 pts
Let G be a directed graph with n vertices. Let P be the length of the shortest path from vertex s to vertex v edges. Let Q be the length of the shortest path from vertex s to vertex v with at most (n+1) edges. If we had does not contain negative cycle that can be reached from s. True False	
Question 3	2 pts
Suppose that G does not contain negative cycle. Let (u,v) be an edge of G and $I(u,v)$ be its length. When the algorithm terminates (i.e., after $ V $ - 1 iterations), we must have that $dist(u) + I(u,v) >= dist(v)$.	
• True	
○ False	

Quiz: Quiz 2 10/1/19, 10:52 AM

Question 4	3 pts

Let A and B be two strings of length m and n, respectively. Let d be the edit distance between A and B; let d1 be the edit distance between A $[1 \dots m/2]$ and B, and let d2 be the edit distance between A $[m/2+1 \dots m]$ and B. Then we have

- o none of the other three is correct.
- d <= min{d1, d2}</pre>
- d <= max{d1, d2}</pre>

Question 5 3 pts

For the given instance (vector A and complex number w; shown on screen), FFT(A, w) returns:

- (1 w, 0, w w^2)
- (0, 1 w^2, 1 w)
- (1 w^2, 0, 1 w w^2)
- (0, 1 w, 1 w^2)

Quiz saved at 10:52am

Submit Quiz

Question 1. An counter-example is A = (10, 1, 20, 30, 2, 40, 3, 4, 5).

If you think this statement is true, then you did not understand why we define those subproblems in the dynamic programming algorithm (introduced in lecture).

Define P[k] as the subproblem of finding the longest increasing subsequence of $A[1 \cdots k]$ such that the last element is A[k] leads to an efficient dynamic problem algorithm (as we did in the lecture).

Define P[k] as the subproblem of finding the longest increasing subsequence of $A[1 \cdots k]$ does not lead to such an efficient algorithm, and the above example explains why.

Question 2. If for a single vertex v we have P = Q then it is not sufficient to guarantee that G does not contain negative cycle (that can be reached from s). It suffices if for *every* vertex we have P = Q.

Question 3. If G does not contain negative cycle, when Bellman-Ford algorithm terminates, we have dist(v) = distance(s, v) for every $v \in V$. Therefore, we must have $dist(u) + l(u, v) \ge dist(v)$ for every $(u, v) \in E$; otherwise, for v we will have a shorter path: from s to u followed by edge (u, v).

Alternatively, we have proved that, in the algorithm to identify negative cycles within Bellman-Ford algorithm, after (|V|-1) iterations, G contain negative cycles if and only if we have dist(u) + l(u,v) < dist(v) for some edge $(u,v) \in E$. Since we are told that G does contain negative cycle, then after (|V|-1) iterations, we must have $dist(u) + l(u,v) \ge dist(v)$ for every edge $(u,v) \in E$.

Question 4. This problem tests you (quickly) constructing counter-examples:

- 1. $d \ge \min\{d_1, d_2\}$. False. Let A = TT, B = TT.
- 2. $d < \min\{d_1, d_2\}$. False. Let A = TT, B = T.
- 3. $d \le \max\{d_1, d_2\}$. False. Let A = TT, B = T.

Question 5. FFT(A, w) returns $M(w) \cdot A$.