Réseaux : de Fermat à la cryptographie post-quantique

Séminaire de mathématiques de Ginette mardi 24 janvier 2023

Henry Bambury (MPSI2 16-17/MP*1 17-18)
henry.bambury@ens.fr

C'est quoi un réseau?

Les deux carrés de Fermat

Application en cryptographie moderne

C'est quoi un réseau?

Les deux carrés de Fermat

Application en cryptographie moderne

Soit $B = (b_1, \ldots, b_n)$ une famille libre de \mathbb{R}^n .

Définition (Réseau):

$$\mathcal{L}(B) := \left\{ \sum_{i=1}^{n} x_i b_i | (x_1, \dots, x_n) \in \mathbb{Z}^n \right\}$$

$$\mathcal{L}(B) := \left\{ \sum_{i=1}^{n} x_i b_i | (x_1, \dots, x_n) \in \mathbb{Z}^n \right\}$$

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathcal{L}(B) := \left\{ \sum_{i=1}^{n} x_i b_i | (x_1, \dots, x_n) \in \mathbb{Z}^n \right\}$$

$$B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\mathcal{L}(B) := \left\{ \sum_{i=1}^{n} x_i b_i | (x_1, \dots, x_n) \in \mathbb{Z}^n \right\}$$

$$B = \begin{pmatrix} 5 & 4 \\ 1 & 1 \end{pmatrix}$$

Proposition (Bases d'un réseau):

$$\mathcal{L}(B) = \mathcal{L}(C) \Leftrightarrow \exists U \in \operatorname{GL}_n(\mathbb{Z}) : B = CU$$

Définition (Volume):

$$Vol(\mathcal{L}(B)) = |det(B)|$$

C'est quoi un réseau?

Les deux carrés de Fermat

Application en cryptographie moderne

Le théorème des deux carrés de Fermat

Théorème:

Soit p un nombre premier impair.

$$p \equiv 1 \mod 4 \Leftrightarrow \exists (a,b) \in \mathbb{Z}^2 : p = a^2 + b^2$$

Le théorème des deux carrés de Fermat : preuve

Lemme (Minkowski):

Soit \mathcal{L} un réseau de rang 2 et $X \subset \mathbb{R}^2$ convexe et symétrique en 0. Alors

$$\mathcal{A}(X) > 4\mathrm{Vol}(\mathcal{L}) \Rightarrow X \cap \mathcal{L} \neq \{0\}$$

Le théorème des deux carrés de Fermat : preuve

Trouver $q \in \mathbb{Z}$ tel que $q^2 \equiv -1 \pmod{p}$.

Considérer
$$\mathcal{L}(b_1, b_2)$$
 où $b_1 = \begin{pmatrix} 1 \\ q \end{pmatrix}$ et $b_2 = \begin{pmatrix} 0 \\ p \end{pmatrix}$.

Conclure grâce au résultat de Minkowski.

Le théorème des quatre carrés de Lagrange

Théorème:

Tout entier positif peut se décomposer en une somme de quatre carrés d'entiers. C'est quoi un réseau?

Les deux carrés de Fermat

Application en cryptographie moderne

Une rapide histoire de la cryptologie

Une rapide histoire de la cryptologie

Cryptographie à base de réseaux Euclidiens

$$\mathcal{L} = \left\{ \sum_{i=1}^{n} a_i b_i | (a_1, \dots, a_n) \in \mathbb{Z}^n \right\}$$

Cryptographie à base de réseaux Euclidiens

$$\mathcal{L} = \left\{ \sum_{i=1}^{n} a_i b_i | (a_1, \dots, a_n) \in \mathbb{Z}^n \right\}$$

Nouveaux problèmes « durs » pour remplacer la factorisation :

- Trouver un vecteur court
- Trouver un point du réseau proche d'un point donné
- Trouver une base de vecteurs courts

Et en pratique ?

Contraintes d'efficacité

n pprox 1000 (C'est gros)

Il faut choisir des réseaux spéciaux issus de la théorie algébrique des nombres.

De nouvelles faiblesses à exploiter ?

Choisir les bons paramètres

Des questions?

NEWS 06 January 2023

Are quantum computers about to break online privacy?

8,6 Md\$ dépensés en projets d quantique en 202

Avec 433 qubits au compteur quantique record,

Peter Shor wins Breakthrough Prize in Fundamental Physics

MIT professor to share \$3 million prize with three others; Daniel Spielman PhD '95 wins Breakthrough Prize in

September 22, 2022

Who's winning the quantum computing race? China and the U.S. are neck and neck