eNSP 下载链接: https://pan.baidu.com/s/1KGfkMHCabJ9Bwl78eHKSsw?pwd=1xi5

提取码: 1xi5

说明:若需重新安装 eNSP,请先卸载原有 eNSP 软件,将安装目录下的 eNSP 文件夹完全删除,同时将 User->AppData(隐藏文件夹)->Local->eNSP 文件夹完全删除,并删除 VirtualBox,然后再行重新安装。

(可能因为版本不对应导致出现问题,尽量选择网盘中的对应版本的软件)

# 1 实验预备知识

## 1.1 eNSP 数通模拟器

## 1.1.1 软件概述

eNSP (Enterprise Network Simulation Platform) 是一款免费的、可图形化操作的网络仿真平台,主要对企业网路由器、交换机、无线控制器、无线接入点、防火墙及终端等设备进行软件仿真,可呈现真实设备实景,支持大型网络模拟,让用户有机会在没有真实设备的情况下能够模拟演练,学习网络技术。



eNSP 的安装过程非常简单(在本文后续章节中将介绍软件的安装过程及其注意事项),安装完成后打开软件即可看到主界面。软件的操作也比较简单,可直接通过托拉拽的方式,将所需的设备实例拖放到拓扑画布中。完成拓扑的搭建和设备连线后,点击工具栏中的绿色播放按钮即可将设备开启,等待设备完成启动后,双击设备即可进入 CLI 命令行界面进行配置了。

## 1.1.2 软件安装

#### eNSP的操作系统依赖如下:

| 操作系统版本              | 备注                                 |
|---------------------|------------------------------------|
| Windows Server 2003 | 可支持安装、使用                           |
| Windows XP          | 可支持安装、使用                           |
| Windows 7(推荐)       | 可支持安装、使用                           |
| Windows 8           | 可支持安装、使用                           |
| Windows 10          | 可支持安装、使用;用户若更新了操作系统补丁,可能影响 eNSP 使用 |
| Mac OS              | 不支持安装、使用                           |
| Linux               | 不支持安装、使用                           |
| VMware,云等其他虚拟操作系统   | 不支持安装、使用                           |

在获取到 eNSP 的安装包后,即可开始启动安装。安装步骤如下。

#### 1. 安装WinPcap

安装过程比较简单,此处略。

#### 2. 安装VirtualBox

安装过程比较简单,此处略,需注意安装目录不能有中文。

#### 3. (可选) 安装WireShark软件

如果要在 eNSP 中使用 WireShark 进行报文头获取及分析,则必须安装 WireShark。WireShark 的安装过程比较简单,此处略。

#### 4. 安装eNSP

打开软件安装程序,按下图所示进行安装。



#### 5. 运行eNSP

安装完成后,即可开始 eNSP 之旅。点击 eNSP 软件图标打开软件,即可看到软件界面。



## 1.2 网络设备操作基础

Versatile Routing Platform 通用路由平台,简称 VRP,是华为数据通信产品的通用操作系统平台,它以 IP 业务为核心,采用组件化的体系结构,在实现丰富功能及特性的同时,提供基于应用的可裁剪能力和可扩展能力。

VRP 其实就是运行在华为数通产品上的操作系统,就像 Windows 系统对于 PC, iOS 系统对于苹果终端。 我们调试 VRP 系统的数通设备最常用的方法之一就是通过命令行界面(Command Line Interface, CLI):



在正式开始实验之前,我们有必要熟悉 VRP 命令行界面的相关概念、基本操作方法,以及一些常用的命令。

## 1.2.1 视图的概念



网络设备提供了丰富的功能,相应地也提供了多样的配置和查询命令。为便于用户使用这些命令,华为设备按功能分类将命令分别注册在不同的命令行视图(View)下。配置某一功能时,需首先进入对应的命令行视图,然后执行相应的命令进行配置。视图的定义使得命令行的配置更模块化也更严谨、更层次化。刚登录设备时在命令行界面您可能会看到"<Huawei>"这样的提示符,"<>"尖括号提示当前所处的视图是"用户视图",而"Huawei"是该设备的名称,当然设备名称是可以修改的。"[]"表示除用户视图以外的其他视图,在不同的视图下会看到不同的提示符。

#### 常用的命令行视图及进入方式

● 用户视图

在用户视图下,用户可以完成查看运行状态和统计信息等功能。

进入视图:用户从终端成功登录至设备即进入用户视图,在屏幕上显示:

<Huawei>

#### ● 系统视图

在系统视图下,用户可以配置系统参数以及通过该视图进入其他的功能配置视图。

进入视图:在用户视图下,输入命令 system-view 后回车,进入系统视图。

<Huawei> system-view
Enter system view, return user view with return command.
[Huawei]

#### ● 接口视图

配置接口参数的视图称为接口视图。在该视图下可以配置接口相关的物理属性、链路层特性及 IP 地址等重要参数。

进入视图:使用 interface 命令并指定接口类型及接口编号可以进入相应的接口视图。以 10GE 接口为例:

```
[Huawei] interface 10ge X/Y/Z
[Huawei-10GEX/Y/Z]
```

X/Y/Z 为需要配置的接口的编号,分别对应"槽位号/子卡号/接口序号"。

#### ● 路由协议视图

路由协议的大部分参数是在相应的路由协议视图下进行配置的。例如 IS-IS 协议视图、OSPF 协议视图、RIP 协议视图。

进入视图:在系统视图下,使用路由协议进程运行命令可以进入到相应的路由协议视图。

```
[HUAWEI] isis 1
[HUAWEI-isis-1]
```

用户可以在任意视图中,执行!或#加字符串,此时的用户输入将全部(包括!和#在内)作为系统的注释 行内容,不会产生对应的配置信息。

#### 退出当前命令行视图

执行 quit 命令,即可从当前视图退出至上一层视图。

例如,执行 quit 命令从接口视图退回到系统视图,再执行 quit 命令退回到用户视图。

```
[Huawei-GigabitEthernet0/0/0] quit
[Huawei] quit
<Huawei>
```

如果需要从接口视图直接退回到用户视图,则可以在键盘上键入快捷键<Ctrl+Z>或者执行 return 命令。

#### # 使用快捷键<Ctrl+Z>直接退回到用户视图。

```
[Huawei-GigabitEthernet0/0/0] //键入<Ctrl+Z> <Huawei>
```

#### # 执行 return 命令直接退回到用户视图。

```
[Huawei-GigabitEthernet0/0/0] return <Huawei>
```

## 1.2.2 命令的结构



在命令行界面中,通过输入特定的命令及参数来完成对设备的调试,例如上面的例子中"sysname Router1" 这条命令,"sysname" 是关键字,而"Router1" 是参数,这条命令的意思就是将该设备的名称修改为 Router1,命令输入后按回车,会发现系统的提示符发生了改变,变成了"[Router1]"。

### 1.2.3 编辑命令行

#### ● 不完整关键字输入

设备支持不完整关键字输入,即在当前视图下,当输入的字符能够匹配唯一的关键字时,可以不必输入完整的关键字。该功能提供了一种快捷的输入方式,有助于提高操作效率。

如果当前输入匹配到的命令不唯一,即可以匹配到多个命令,则需要继续输入,直至当前命令唯一匹配才能下发成功。例如 display current-configuration 命令,可以输入 d cu、di cu 或 dis cu 等都可以执行此命令,但不能输入 d c 或 dis c 等,因为以 d c、dis c 开头的命令不唯一。

#### ● Tab键的使用

输入不完整的关键字后按下 Tab 键,系统自动补全关键字:

如果与之匹配的关键字唯一,则系统用此完整的关键字替代原输入并换行显示,光标距词尾空一格。例如:

#### #输入不完整的关键字:

[HUAWEI] info-//按下Tab键。

#则系统用此完整的关键字替代原输入并换行显示,光标距词尾空一格:

[HUAWEI] info-center

如果与之匹配的关键字不唯一,反复按<Tab>键可循环显示所有以输入字符串开头的关键字,此时 光标距词尾不空格。例如:

#### #输入不完整的关键字:

[HUAWEI] info-center log//按下Tab键

#系统首先显示第一个匹配 "log" 前缀的关键字:

```
[HUAWEI] info-center logbuffer//按下Tab键 #继续按Tab键循环翻词:
[HUAWEI] info-center logfile//按下Tab键
[HUAWEI] info-center loghost #找到所需要的关键字后,停止按Tab键。
```

## 1.2.4 使用命令行的帮助功能

在设备的配置过程中,由于命令较多,出现记忆模糊的情况非常正常,命令行界面为我们贴心地提供了命令提示功能,当一条命令中某个关键字只记得开头的几个字母时,可在键入开头字母后紧接着键入"?",例如"**ip rou?**",系统即会自动弹出提示信息,提示当前"rou"开头的关键字有哪些:

还有一些情况,可能是当前关键字输入完毕后,忘记了下一个关键字或者参数该输入什么,那么就可以在 当前关键字输入后键入空格,然后再输入"?",系统会自动弹出可选关键字或参数的提示信息:

### 1.2.5 语法检查

用户键入的命令,如果通过语法检查,则正确执行,否则系统将会向用户报告错误信息。以下是几个典型 示例:

```
[Huawei] sysname

^
Error:Incomplete command found at '^' position.
#箭头所指地方命令不完整
```

```
[Huawei] router if 1.1.1.1

^
Error: Unrecognized command found at '^' position.
#箭头所指地方命令不能识别
```

```
[Huawei] a

^
Error:Ambiguous command found at '^' position.
#箭头所指的命令不明确,有多个a开头的关键字
```

#### 命令行常见错误信息表:

| 英文错误信息                                              | 错误原因     |
|-----------------------------------------------------|----------|
| Error: Unrecognized command found at '^' position.  | 没有查找到命令  |
| Error. Officeognized Command Tourid at 11 position. | 没有查找到关键字 |
| Farest March a newspector found at IAI position     | 参数类型错    |
| Error: Wrong parameter found at '^' position.       | 参数值越界    |
| Error: Incomplete command found at '^' position.    | 输入命令不完整  |
| Error: Too many parameters found at '^' position.   | 输入参数太多   |
| Error: Ambiguous command found at '^' position.     | 输入命令不明确  |

## 1.2.6 基础配置命令

#### ● 修改设备名称

```
<Huawei> system-view
[Huawei] sysname Switch01
[Switch01]
```

#### ● 配置设备的接口

```
<Router> system-view
[Router] interface GigabitEthernet 0/0/0 #进入干兆以太网口GE0/0/0
[Router-GigabitEthernet0/0/0] ip address 10.1.12.1 255.255.255.0
#为接口配置IPv4地址
```

### 查看设备当前配置信息

```
<HUAWEI> display current-configuration
#
sysname HUAWEI
#
interface 10GE1/0/2
#
```

当用户完成一组配置之后,需要验证是否配置正确,则可以执行 display current-configuration 命令来查看当前生效的参数。如果功能如果没有生效,则不予显示功能所对应的参数。对于某些正在生效的配置参数,如果与缺省工作参数相同,则不显示。

#### ● 管理设备配置

<Huawei> save

在设备上的每一个配置性操作,都会记录在设备的当前配置文件 "current-configuration" 之中,这个配置文件是保存在动态内存中的,设备掉电或重启之后 current-configuration 将会丢失。因此为了保证设备重启后不丢失当前已经完成的配置,则要在配置变更后将 current-configuration 保存到 saved-configuration,也就是保存到启动配置文件,这样设备重启后,将会读取已保存的启动配置文件,加载到当前配置中运行。

使用 save 命令来将 current-configuration 保存到启动配置文件, save 关键字如果不指定可选参数 configuration-file,则配置文件将保存在设备的磁盘空间中并缺省命名为 "vrpcfg.zip"。"vrpcfg.zip"是系统缺省命令的配置文件,初始状态是空配置。

<SW1> reset saved-configuration

以上命令用于清除已保存的启动配置文件,下次设备重启将恢复出厂配置。

<SW1> copy flash:/vrpcfg.zip flash:/cfgbackup.zip

以上命令备份配置文件,文件拷贝到 flash (Flash 是设备的存储器,类似硬盘的概念)的根目录下, 名称为 cfgbackup.zip。

### 1.2.7 使用 undo 命令

在命令前加 **undo** 关键字,即为 undo 命令行。undo 命令行一般用来恢复缺省情况、禁用某个功能或者删除某项配置。几乎每条配置命令都有对应的 undo 命令行。

例如 undo sysname 命令是用来恢复设备的主机名到缺省情况。举例如下:

<Huawei> system-view
[Huawei] sysname Server
[Server] undo sysname
[Huawei]

## 1.3 使用 eNSP 完成第一个实验

#### 实验拓扑



网络拓扑如上图所示: 一台 PC 与一台路由器通过网线直连。现在我们要在 eNSP 中搭建这个实验环境,并且完成 PC 和路由器的配置,使得 PC 能够访问到路由(能够 ping 通路由器)。为 PC 配置的地址是 192.168.1.1/24, 网关地址是 192.168.1.254; 为路由器的 GE0/0/0 接口配置的地址是 192.168.1.254/24。

#### 环境搭建

使用 eNSP 搭建上述环境是非常简单的。新建一个实验后,从左侧的设备列表中选择"路由器":



此处有多种型号的路由器可以选择,在本实验中,我们挑选的是 AR2220,因此用鼠标左键点住 AR2220

的图标不放, 然后拖动到画布中再松开即可:



接下来继续添加 PC,点击设备列表里的"终端"类型,选择 PC,然后拖放到画布上:



接下来完成设备的连线,在左侧设备列表中选择"设备连线"图标,在线缆列表中选择铜缆"Copper", 点选成功后,鼠标指针会发生变化,随后在路由器和 PC 上分别点击并选择相应的互联接口,即可实现 设备相应端口之间的连线:



如此一来拓扑就搭建完成了,现在点击工具栏上的启动按钮:



上面的按钮点击后会将所有设备启动。如果实验拓扑比较大,建议不要使用上面的启动按钮集体启动设备,可以对设备进行逐台启动,也就是分别对设备点击右键,然后选择启动。待所有设备都启动完毕后即可开始实验。

#### 配置实现

首先完成路由器的配置,双击路由器的图标即可打开命令行界面:



在该命令行界面中完成对路由器的基本配置,如下:

<Huawei> system-view

Enter system view, return user view with Ctrl+Z.

# [Huawei] interface GigabitEthernet 0/0/0 [Huawei-GigabitEthernet0/0/0] ip address 192.168.1.254 24

现在开始配置 PC, 双击 PC1, 在出现的配置界面中如下填写:



填写完成之后,点击"应用"即可 ("应用"按钮变灰代表应用成功)。接下来就可以进行连通性的测试了,双击 PC 的图标,选择"命令行"选项卡,然后就能看到 CMD 界面,在 CMD 界面中可以进行基本的 ping、tracert 等操作,例如测试 PC 到路由器的联通性,可以 ping 192.168.1.254:



从 ping 的回显能看到,PC1 现在能够 ping 通路由器了,到此实验就成功了。

eNSP 能够保存实验拓扑及配置以便下次继续进行操作,非常方便。如果需要保存实验环境以及拓扑中各设备的配置,则在完成实验操作后,先为实验拓扑中每台设备 (PC、Client 无需做这个操作)使用 save 命令保存配置 (注意,务必要先在设备的 CLI 界面中使用 save 命令保存配置): (在用户视图下使用 save 命令)

```
<huawei> save
```

然后再点击 eNSP 工具栏的 "保存" 按钮将拓扑及配置文件保存在指定目录即可。