Review:

- 1) If there are large no. of pulses/cycle, frequency of predominant harmonic can be \uparrow .
- 2) Sinusoidal PWM Technique:
 - → Modulating Wave: Rectified AC of 2F & variable amplitude.
 - \rightarrow Δ wave of constant frequency & magnitude.
 - $\Rightarrow F_{\Delta} >> F$
 - \Rightarrow 'N' pulses / $\frac{1}{2}$ cycle

Frequency of predominant harmonic = $(N+1)F_s$

 \Rightarrow F_{Δ} is determined by the Power Rating and type of device.

How to vary the o/p voltage?

o/p voltage
$$V_0 \propto m = \frac{A_m}{A_c}$$

- \Rightarrow A_c is held constant.
- \Rightarrow As $A_m \uparrow, V_o \uparrow$ till m=1

- ⇒ Conduction has started at +ve zero crossing.
- \Rightarrow D.F = 1
- \Rightarrow Using a filter (frequency is high), $I_{s1} \approx I_{s}$
 - \therefore P.F. $\rightarrow 1$

How to get a sine wave of variable magnitude & synchronized with the mains?

- ⇒ Step down transformer & a potential divider.
- ⇒ Digital synthesizer.

Simple scheme:

→ Other sophisticated schemes using DSP are available.

Switched Mode Rectification:

To decrease THD of source I using low frequency passive elements:

- ⇒ Large size, weight.
- \Rightarrow size of passive elements \downarrow IF converter devices are switched at high frequency.
- ⇒ size of L & C depend on switching frequency and NOT on source frequency.
- \Rightarrow PWM recitifer \rightarrow P.F. and THD improves. $IV_oI < V_m$
- \Rightarrow Application requires constant DC power supply (Low ripple in V_0)
 - Harmonics in source I should be low.
 - Reactive VA should be minimum.

- \Rightarrow Desired that source P.F. = 1
- ⇒ Source I and V are in phase.
- ⇒ Rectifier system presents a resistive load to AC system.

- ⇒ R_E is the 'emulated resistance' of the converter.
- ⇒ Power is not dissipated as heat.
- \Rightarrow Transferred to the o/p port.
- ⇒ Model representation.

Single phase Switched Mode Rectifier:

Assume'V₀' is constant and ripple free.

Keep 'S' open & the bridge is energized.

At steady state,

 $\overline{\text{Avg}(V_{01})} = \text{Avg}(V_{0})$

Switch 'S' is closed ON/OFF at a frequency >> F_s

 \Rightarrow Under this condition, ' v_{01} ' is assumed to remain constant at a value = instantaneous value.

e.g.: at
$$\omega t = \frac{\pi}{2}$$
, $v_{01} = V_{m}$
at $\omega t = \frac{\pi}{3}$, $v_{01} = \frac{\sqrt{3}}{2} V_{m}$

 \Rightarrow When 'S' is closed, $V_L = V_{01} \rightarrow$ constant and +ve. i, \uparrow linearly.

il integrity.

Cathode pot. of $D_B = V_0$ w.r.t -ve DC Bus.

 \therefore $V_{DB} = -V_0$ (Blocking State)

Capacitor supplies power to the load.

Open 'S':

Stored energy in 'L' is transferred to the output.

- \Rightarrow i₁ increases when 'S' is closed.
- \Rightarrow i_L should decrease when 'S' is opened.
- \Rightarrow i (t) = i (t+T)
- \Rightarrow V₁ should be negative.

Let 'D' be the duty cycle.

$$D = \frac{T_{ON}}{T_{ON} + T_{OFF}} = \frac{T_{ON}}{T_{S}}$$

Switch is ON for DT_s and OFF for $(1-D)T_s$ Assume that i_L is continuous.

Switch is OFF for $(1-D)T_s$.

$$V_{L} = (V_{01} - V_{0})$$

- \Rightarrow At steady state, V_L should be -ve during (1-D) T_S .
 - $\therefore V_0 > V_{01}$
- \Rightarrow Peak value of $V_{01} = V_{m}$
 - $\therefore V_0 > V_m$

⇒ BOOST CONVERTER:

$$V_{01} DT_s = (V_0 - V_{01})(1-D)T_s$$

$$\therefore V_0 = \frac{V_{01}}{(1-D)}$$

- ⇒ Energy is stored in the inductor when 'S' is ON.
- ⇒ Stored energy is transferred to the load when 'S' is opened.

How to choose D:

Case 1:

Switching frequency is held constant.

Also, keep D constant.

Choose D in such a way that i_L is

JUST CONTINUOUS at
$$\omega t = \frac{\pi}{2}$$
.

 \Rightarrow i_L will be discontinuous at $\omega t \neq \frac{\pi}{2}$.

 $\Rightarrow \frac{di_L}{dt}$ is minimum at $\omega t = \frac{\pi}{2}$ (V₀ - V₀₁)

$$i_{peak} = \frac{V_{01}}{L} DT$$
 $i_{peak} \propto V_{01}$

$$\therefore$$
 max (i_{peak}) is at $\omega t = \frac{\pi}{2}$.

- $\Rightarrow -\frac{di_L}{dt}$ is max. when IV₀ V₀₁I is max.
- \Rightarrow V_0 is held constant.
- $\Rightarrow -\frac{di_L}{dt}$ is max. when $V_{01} = 0$ at $\omega t = 0$, π

 $+\frac{di_{L}}{dt}$ is min. near the zero crossing (for low values of ωt)

- $-\frac{di_L}{dt}$ is max. near the zero crossing
- $\Rightarrow + \frac{di_L}{dt}$ is max. near $\omega t = \frac{\pi}{2}$
- $\Rightarrow -\frac{di_L}{dt}$ is min. near $\omega t = \frac{\pi}{2}$

 \Rightarrow If i_L is JUST CONTINUOUS near the zero crossing as ωt \uparrow towards 90°, 'i' will be continuous and may saturate the inductor.

- \Rightarrow Peak value of 'i_s' is ∞ instantaneous value of V_i
- \Rightarrow displacement factor = 1
- ⇒ Using a small filter, high frequency components can be filtered out.
- \Rightarrow P.F. \Box 1.

Case 2:

Take a Full wave rectified sine wave of required magnitude and in phase with v_{01} .

- \Rightarrow Call this as i_{ref}^* .
- \Rightarrow Choose an upper band $\rightarrow i_{U}^{*}$ & a lower band $\rightarrow i_{L}^{*}$.

 \Rightarrow Measure inductor current and control it in such a way that it lies within i_{i}^{*} & i_{i}^{*} .

- \Rightarrow Closing 'S' increases i_L & opening 'S' decrease i_L.
- ⇒ When $i_L = i_L^*$, close 'S' ⇒ $i_L \uparrow$ and $i_L = i_L^*$, open 'S' ⇒ $i_L \downarrow$.
- ⇒ i, current □ rectified sinusoid
- \Rightarrow i, \Box sine wave.
- ⇒ Smaller the band, Higher the switching frequency.
- ⇒ Switching Frequency is function of Load.