

作业1安排

- 成绩: 占总成绩10%
- 时间
 - □发布: 2016/3/22(Wed)
- □上交: 2016/4/13(Wed), 北京时间 6:59pm (共3周)
- □在课程系统中提交
- □晚交
 - 最晚: 2016/4/20(Wed), 北京时间 6:59pm, 将扣除20%成绩
 - 之后不再接收,成绩为0

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

课程相关

- 成绩分配
 - □闭卷考试: 50%
- □作业1+作业2+作业3:30%
- □大作业: 20% □课堂表现: +5%

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

分组

- •共分为6个组,每个组的作业题目有一定区别
- 分组方式如下
- □组号=(学号最右面6位数字)%6
- □%是求余数
- 举例
 - □学号=201518013229032
 - □学号最右面6位数字=229032
 - □组号=229032%6=0
 - □所以是第0组

大数据系统与大规模数据分析

作业提交的格式

- 文件命名
- □ 组号 学号 hw1.java
- □ 例如: 0 201518013229032 hw1.java
- 程序中Java class名
 - □ Hw1GrpX, 其中X为组号
 - □ 例如: Hw1Grp0
- 上述名称注意大小写,自动检查程序会根据学号自动寻找对应的文件,重新命名为Hw1GrpX.java、编译、执行
- □如果名称不正确,将无法找到或不能执行,就没有成绩

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

上机安排(2)

- 时间
 - □周五上午,8:30-11:50am
 - □周五下午, 1:00-4:20pm
- 助教
- □牛颂杰, 王浩博, 单鼎一
- 上机期间助教的职责
 - □**管理上机秩序**: 上机前找助教签到, 分配机器; 使用完毕, 找助教签出; 助教负责监督机房秩序(不得喧哗、打闹等)。
 - □解答机器使用的问题: 包括如何开机、如何登录、如何 使用编辑器、如何编译和运行程序
 - □不包括: 其它关于作业内容的问题

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

上机安排(1)

- 地点
 - □计算机学院, 4层
- □网络安全教学实验室(447室):50台
- 口云计算教学实验室(432室):20台
- 机器: 联想PC机M6400t, Windows 7/32bit
 - □环境: 每台机器安装了一个虚拟机,运行Ubuntu Linux 14.04.2, Hadoop 2.6.0, HBase 0.98等
 - □本作业只需要在单机上构成伪分布环境
- •注:可以在自己的计算机上完成作业

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

作业内容

- 目的
 - □学习HDFS和HBase的基本编程使用
 - □巩固课堂讲授的内容
- 总体功能


```
从HDFS中读文件

・文件格式

□文本文件
□毎一行是一个关系型记录
□各个列用|分开

・例如

□1|AMERICA|hs use ironic, even requests. s|
□这个是TPCH基准测试数据集中region table的一行
□有3个列

- 第0列: 1

- 第1列: AMERICA
- 第2列: hs use ironic, even requests. S
```

中间处理

第0组	Hash join
第1组	Sort-merge join
第2组	Hash based group-by
第3组	Sort based group-by
第4组	Hash based distinct
第5组	Sort based distinct

注:

- 假设所有数据都可以放入内存
- 可以采用Java已有的库实现hash table和sorting

大数据系统与大规模数据分析

HBase数据模型

<row key, column family: column key, version, value>

- □ Key包括row key与column两个部分
- □所有row key是按顺序存储的
- □其中column又有column family前缀
 - Column family是需要事先声明的,种类有限(例如~10或~100)
 - 而column key可以有很多
- □具体存储时,每个column family将分开存储 (类似列式数据库)

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

写入HBase

- •本次作业的输出写入HBase, 表名是Result, 注意大小写
- 给定了表名
 - □首先检查这个表是否存在,如果存在,那么删除
 - □创建Result表
 - □把结果写入

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

Key-Value与Relational Schema 忽略version部分

• 简单<key, value>可以对应为一个两列的Table

Key	Value		
•••	•••		
•••	•••		

• <row key, column family: column key, value> 每个column family可以对应为一个3列的Table

Row Key	Column family 1's colum key	Value
•••	•••	•••
•••	•••	•••

Row Key	Column family 2's column key	Value	
•••	•••	•••	
•••	•••	•••	

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

hbase shell

```
create 'mytable', 'mycf'
       创建表, column family
  put 'mytable', 'abc', 'mycf:a', '123'
  0 row(s) in 0.0580 seconds
  put 'mytable', 'def', 'mycf:b', '456'
  0 row(s) in 0.0060 seconds
  scan 'mytable'
  ROW
            column=mycf:a, timestamp=1427731972925, value=123
   abc
            column=mycf:b, timestamp=1427731990058, value=456
  2 row(s) in 0.0300 seconds
大数据系统与大规模数据分析
                                            ©2015-2016 陈世敏(chensm@ict.ac.cn)
```

举例: HBase create table & Put

```
public class HBaseTest {
   public static void main(String[] args) throws MasterNotRunningException,
ZooKeeperConnectionException, IOException {
        // create table descriptor
        String tableName= "mytable";
        HTableDescriptor htd = new HTableDescriptor(TableName.valueOf(tableName));

        // create column descriptor
        HColumnDescriptor cf = new HColumnDescriptor("mycf");
        htd.addFamily(cf);

        // configure HBase
        Configuration configuration = HBaseConfiguration.create();
        HBaseAdmin hAdmin = new HBaseAdmin(configuration);

        hAdmin.createTable(htd);
        hAdmin.close();
```

中间处理

大数据系统与大规模数据分析

第0组	Hash join	
第1组	Sort-merge join	
第2组	Hash based group-by	
第3组	Sort based group-by	
第4组	Hash based distinct	
第5组	Sort based distinct	

注:

- 假设所有数据都可以放入内存
- 可以采用Java已有的库实现hash table和sorting

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

©2015-2016 除世敏(chensm@ict.ac.cn)

举例: HBase create table & Put

```
// put "mytable","abc","mycf:a","789"

HTable table = new HTable(configuration,tableName);
Put put = new Put("abc".getBytes());
put.add("mycf".getBytes(),"a".getBytes(),"789".getBytes());
table.put(put);
table.close();
System.out.println("put successfully");
}
```

第0组/第1组: Join

```
命令行:
```

大数据系统与大规模数据分析

```
□ java Hw1GrpX R=<file 1> S=<file 2> join:R2=S3 res:R4,S5 □ 蓝色是可变的参数
```

- 输入hdfs文件: <file 1>, <file 2>
 - □ 例如: /hw1/lineitem.tbl等
- Join key: 每个文件有一列为join key
 - □ 例如: R的第2列和S的第3列 (从第0列数起)
- 输出: 可以有1到多列
 - □ 在HBase中,建立Result表,row key是join key,column family是res,column是R4 和S5,value是相应的值
 - 例如: 一个结果join key= abc, R4= def, S5= ghi 那么在HBase的Result表中, 需要有(row key=abc, res:R4=def) (row key=abc, res:S5=ghi)
- 如何实现join? 见讲义

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

相同join key的输出

- 例如:
 - □结果包含:
 - join key= abc, R4= def, S5= ghi
 - ioin kev= abc. R4= 123. S5= 456
 - join key= abc, R4= 789, S5= ghi
 - □那么输出到Hbase:
 - (row key=abc, res:R4=def) (row key=abc, res:S5=ghi)
 - (row key=abc, res:R4.1=123) (row key=abc, res:S5.1=456)
 - (row key=abc, res:R4.2=789) (row key=abc, res:S5.2=ghi)
- •注意: groupby和distinct时每个row key仅有一个结果. 所以不需要上述

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

Group by实现

- Hash based
 - 口建立一个hash table
 - ☐ Key= group by key
 - □Value=需要统计的信息
 - Count: 目前的计数
 - Avg: 目前的sum和count
 - Max: 目前的最大值
 - □把输入都使用hash table完成统计,最后扫描输出hash table中的所有项
- Sort based
 - □根据group by key 排序
 - □然后同一个group的都会在一起
 - □统计输出

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

第2组/第3组: Group-by

- 命今行。
- □ java Hw1GrpX R=<file> groupby:R2 res:count,avg(R3),max(R4) □ 蓝色是可变的参数
- 输入文件: <file>
 - □ 例如: /hw1/lineitem.tbl
- Group by key: 只有一列
 - □例如: R的第2列 (从第0列数起)
- 输出: 可以有1~多列, 数值列
 - □ 三种形式为(a) count, (b) avg(列), (c) max(列)
 - □ 在HBase中,建立Result表,row key是group by key, column family是res, column 是count、avg(R3)、max(R4), value是相应的值
 - 例如: 一个结果groupby key= abc, count=3, avg(R3)= 10,max(R4)=20
 那么在HBase的Result表中, 需要有(row key=abc, res:count=3) (row key=abc, res:avg(R3)=10) (row key=abc, res:max(R4)=20)

22

• 注: count和max结果是准确值, avg保留小数点后2位数

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

第4组/第5组: Distinct

- 命令行:
 - □ java Hw1GrpX R=<file> select:R1,gt,5.1 distinct:R2,R3,R5 □ 蓝色是可变的参数
- 输入文件: <file>
 - □ 例如: /hw1/lineitem.tbl等
- 选择: 只有一列, 数值列
- □ 6种形式(a)列,gt,值,(b)列,ge,值,(c)列,eq,值,(d)列,ne,值, (e)列,le,值,(f)列,lt,值
- □ 涵义: >gt; >= ge; == eq; != ne; le <=; lt <
- □例如: R的第1列大于5.1 (从第0列数起)
- 输出: 可以有1~多列
 - □ 每种组合只输出一次
 - □ 在HBase中,建立Result表, row key是序号, column family是res, column是R2,R3 和R5, value是相应的值

大数据系统与大规模数据分析

举例

					<u>.</u>
R0	R1	R2	R3	R4	R5
100	3	good	nice	ok	12
101	6	abc	def	better	10
102	9	abc	def	best	10
103	12	abc	def	nicest	8

- 第0个结果(abc, def, 10), 那么在HBase的Result表中,需要有(row key=0, res:R2=abc) (row key=0, res:R3=def)(row key=0, res:R5=10)
- 第1个结果(abc, def, 8), 那么在HBase的Result表中,需要有(row key=1, res:R2=abc) (row key=1, res:R3=def)(row key=1, res:R5=8)

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

以TPCH数据为基础的例子

- Join
 - □ java Hw1GrpX R=/hw1/lineitem.tbl S=/hw1/orders.tbl join:R0=S0 res:S1,R1,R5
 - □ java Hw1GrpX R=/hw1/lineitem.tbl S=/hw1/part.tbl join:R1=S0 res:S1,S3,R5
- Groupby
- java Hw1GrpX R=/hw1/lineitem.tbl groupby:R2
 res:count,sum(R5)
- □ java Hw1GrpX R=/hw1/orders.tbl groupby:R1 res:count,avg(R3)
- Distinct
 - □ java Hw1GrpX R=/hw1/part.tbl select:R7,gt,1800 distinct:R3,R4,R5
 - □ java Hw1GrpX R=/hw1/lineitem.tbl select:R4,lt,5 distinct:R13,R14,R8,R9

大数据系统与大规模数据分析

©2015-2016 陈世敏(chensm@ict.ac.cn)

Distinct实现

- Selection: 每个记录依次进行比较
- Hash based
 - □建立一个hash table
 - □ Key= distinct所有key (例如: R2,R3,R5)
 - □ Value= 空
 - □把输入都放入hash table一次且仅一次,最后扫描输出 hash table中的所有项
- Sort based
 - □根据distinct key 排序
 - □然后相同的都会在一起
 - □输出

大数据系统与大规模数据分析

©2015-2016 除世敏(chensm@ict.ac.cn)

注意事项

- •命名
 - □程序名、类名、表名、Column Family名、列名等 □注意大小写,必须按照规定
- •程序注释
- □注意程序格式,要求有Javadoc要求的注释,没有就-1 □只能用英文
- 严禁抄袭
 - □会有自动检查程序(也会比较去年的作业) □一旦发现,抄袭各方均为0分

大数据系统与大规模数据分析