552917

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 28. Oktober 2004 (28.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/092260 A1

- (51) Internationale Patentklassifikation⁷: 5/21, 5/29
- C08K 5/17,
- (21) Internationales Aktenzeichen:
- PCT/EP2004/003697
- (22) Internationales Anmeldedatum:

7. April 2004 (07.04.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 17 870.8

17. April 2003 (17.04.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CROMPTON VINYL ADDITIVES GMBH [DE/DE]; Chemiestrasse 22, 68623 Lampertheim (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): WEHNER, Wolfgang [DE/DE]; Wetzbach 34, 64673 Zwingenberg (DE). FRIEDRICH, Hans-Helmut [DE/DE]; Am Rauhenstein 8, 64686 Lautertal-Gadernheim (DE).

- (74) Gemeinsamer Vertreter: CROMPTON VINYL AD-DITIVES GMBH; RIEGER, Rainer, Chemiestrasse 22, 68623 Lampertheim (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,

[Fortsetzung auf der nächsten Seite]

- (54) Title: NOVEL STABILISING SYSTEM FOR HALOGENOUS POLYMERS
- (54) Bezeichnung: NEUES STABILISATORSYSTEM ZUR STABILISIERUNG VON HALOGENHALTIGEN POLYMEREN

$$(R^4)$$
 $\stackrel{\text{M}}{\underset{\text{H}}{\text{m}}} R^3$ (I)

$$\begin{array}{c|c}
 & Y \\
 & X \\
 & N \\$$

$$R^{1} = N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O + H$$

$$N + (CHR_{a}$$

- (57) Abstract: The invention relates to stabilising systems for stabilising chlorinated polymers. The inventive stabilising systems contain a) at least one type of perfluoroalkane sulfonate salt and b) at least one or several indoles of general formula (I) and/or urea of general formula (II) and/or alcanolamines of general formula (III) and/or amonouracils.
- (57) Zusammenfassung: Es werden Stabilisatorsysteme beschrieben, enthaltend mindestens: a) ein Perfluoralkansulfonat-Salz und b) mindestens ein oder mehrere Indole und/oder Harnstoffe und/oder Alkanolamine und/oder Aminouracile, wobei die Indole die allgemeine Formel (I) haben, die Harnstoffe die allgemeine Formel (II) haben und die Alkanolamine die Formel (III) haben, zur Stabilisierung chlorhaltiger Polymeren.

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärungen gemäß Regel 4.17:

- hinsichtlich der Identität des Erfinders (Regel 4.17 Ziffer i) für alle Bestimmungsstaaten
- hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
- eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- hinsichtlich der Berechtigung des Anmelders, die Priorität einer früheren Anmeldung zu beanspruchen (Regel 4.17 Ziffer iii) für alle Bestimmungsstaaten
- Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Neues Stabilisatorsystem zur Stabilisierung von halogenhaltigen Polymeren

Die Erfindung betrifft Stabilisatorsysteme umfassend mindestens ein Perfluoralkansulfonat-Salz und mindestens eine oder mehrere Verbindungen aus den Gruppen der Indole, Harnstoffe, Alkanolamine und Aminouracile die sich zur Stabilisierung halogenhaltiger Polymere eignen.

Ein halogenhaltiges Polymer wie zum Beispiel PVC kann durch eine Reihe von Zusatzstoffen stabilisiert werden. Verbindungen des Bleis, Bariums und Cadmiums sind dafür besonders gut geeignet, sind jedoch heute aus ökologischen Gründen oder wegen ihres Schwermetallgehalts umstritten (vgl. "Plastics Additives Handbook" H. Zweifel, Carl Hanser Verlag, 5. Aufl., 2001, Seiten 427 - 483, und "Kunststoff Handbuch PVC", Band 2/1, W. Becker/D. Braun,

Carl Hanser Verlag, 2. Aufl., 1985, Seiten 531 - 538; sowie Kirk-Othmer: "Encyclopedia of Chemical Technology", 4th Ed., 1994, Vol. 12, Heat Stabilizers, S. 1071 - 1091).

Man sucht daher weiter nach wirksamen Stabilisatoren und Stabilisatorsystemen, welche frei von Blei, Barium und Cadmium sind.

Es wurde nun gefunden, dass sich Systeme aus mindestens einer oder mehreren Verbindungen aus den Gruppen der Indole, Harnstoffe, Alkanolamine und Aminouracile und mindestens einem Perfluoralkansulfonat-Salz besonders gut zur Stabilisierung von chlorhaltigen Polymeren, insbesondere PVC, eignen.

Ein Gegenstand der vorliegenden Erfindung sind daher Stabilisatorsysteme, umfassend mindestens

- a) ein Perfluoralkansulfonat-Salz und
- b) mindestens ein oder mehrere Indole und/oder Harnstoffe und/oder Alkanolamine und/oder Aminouracile

wobei die Indole die allgemeine Formel (I) haben

$$(R^4)$$
 $\stackrel{N}{\underset{H}{\longrightarrow}} R^3$ (I)

worin bedeuten

$$m = 0, 1, 2 \text{ oder } 3;$$

 $R^3 = C_1-C_{18}-Alkyl, C_2-C_{18}-Alkenyl, Phenyl oder$

 C_7 - C_{24} -Alkylphenyl, C_7 - C_{10} -Phenylalkyl oder C_1 - C_4 -Alkoxy; R^4 , R^5 = H, C_1 - C_4 -Alkyl, oder C_1 - C_4 -Alkoxy;

wobei die Harnstoffe die allgemeine Formel (II) haben

$$\begin{array}{c|c}
R^9 & & & \\
N & N & R^8 \\
R^6 & R^7
\end{array}$$
(II)

worin bedeuten

Y = O, S oder NH;

 R^6 , R^7 , R^8 und R^9 unabhängig voneinander stehen für H,

 C_1 - C_{18} -Alkyl, gegebenenfalls substituiert mit Hydroxy- und/oder C_1 - C_4 -Alkoxygruppen,

C₂-C₁₈-Alkenyi,

Phenyl, gegebenenfalls substituiert mit bis zu 3-Hydroxy- und/oder C_1 - C_4 -Alkyl/Alkoxygruppen,

C₇-C₂₀-Alkylphenyl, oder

 $C_7\text{-}C_{10}\text{-}Phenylalkyl}$ und 2-Substituenten aus R^6 bis R^9 , wobei diese auch einen Ring bilden können

und der verwendete Harnstoff auch dimerisiert oder trimerisiert sein kann, wie z. B. Biuret oder 1,3,5-Trishydroxyalkyl-isocyanurat und deren möglichen Reaktionsprodukte,

wobei die Alkanolamine die Formel (III)haben

$$R^{1} = \begin{pmatrix} R^{2} \\ N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O - H \\ n \end{pmatrix}_{x}$$
 (III)

worin bedeuten

x = 1, 2 oder 3;

y = 1, 2, 3, 4, 5 oder 6;

n = 1 - 10;

 R^1, R^2 = unabhängig voneinander

Η,

C₁-C₂₂-Alkyl,

```
-[-(CHR<sup>3</sup><sub>a</sub>)<sub>y</sub>-CHR<sup>3</sup><sub>b</sub>-O-]<sub>n</sub>-H,
-[-(CHR<sup>3</sup><sub>a</sub>)<sub>y</sub>-CHR<sup>3</sup><sub>b</sub>-O-]<sub>n</sub>-CO-R<sup>4</sup>,
C<sub>2</sub>-C<sub>20</sub>-Alkenyl,
C<sub>2</sub>-C<sub>18</sub>-Acyl,
C<sub>4</sub>-C<sub>8</sub>-Cycloalkyl, welches in β-Stellung OH-substituiert sein kann,
Phenyl,
C<sub>7</sub>-C<sub>10</sub>-Alkylphenyl oder C<sub>7</sub>-C<sub>10</sub>-Phenylalkyl,
oder wenn
```

x = 1, können R^1 und R^2 zusätzlich zusammen mit dem N einen geschlossenen 4-10 gliedrigen Ring aus Kohlenstoffatomen und gegebenenfalls bis zu 2 Heteroatomen bilden,

oder wenn x=2, kann R^1 zusätzlich für C_2 - C_{18} -Alkylen stehen, das an beiden β -Kohlenstoff-atomen mit OH substituiert und/oder durch 1 oder mehrere O-Atome und/oder 1 oder mehrere NR^2 -Gruppen unterbrochen sein kann, oder für dihydroxysubstituiertes Tetrahydrodicyclopentadienylen, dihydroxysubstituiertes Ethyl-cyclohexanylen, dihydroxysubstituiertes 4,4'-(Bisphenol-A-dipropylether)ylen, Isophoronylen, Dimethylcyclohexanylen, Dicyclohexylmethanylen oder 3,3'-Dimethyldicyclohexyl-methanylen stehen, und wenn x=3, kann R^1 zusätzlich für trihydroxysubstituiertes (Tri-N-propylisocyanurat)triyl stehen;

```
R^3{}_{a}, R^3{}_{b} = \text{unabhängig voneinander} \qquad C_1\text{-}C_{22}\text{-}Alkyl, \\ \qquad \qquad C_2\text{-}C_6\text{-}Alkenyl, \\ \qquad \qquad \qquad Phenyl, \\ \qquad \qquad \qquad C_6\text{-}C_{10}\text{-}Alkylphenyl, \\ \qquad \qquad \qquad \qquad H \text{ oder} \\ \qquad \qquad \qquad CH_2\text{-}X\text{-}R^5 \text{ ,} \\ \qquad \qquad \qquad \qquad \text{wobei } X = 0 \text{, S, --O-Co-oder -CO-O-;} \\ \qquad \qquad \qquad R^4 = C_1\text{-}C_{18}\text{-}Alkyl/Alkenyl oder Phenyl; und} \\ \qquad \qquad \qquad R^5 = \text{H, C}_1\text{-}C_{22}\text{-}Alkyl, C}_2\text{-}C_{22}\text{-}Alkenyl, Phenyl oder C}_6\text{-}C_{10}\text{-}Alkylphenyl,}
```

und die Aminouracile die Formel (IVa) oder (IVb) besitzen

wobei bei (IVa) R¹ und R² unabhängig voneinander

Η,

unsubstituiertes oder durch C_1 - C_4 -Alkyl-, C_1 - C_4 -Alkoxy- und/oder Hydroxy substituiertes Phenyl, unsubstituiertes oder am Phenylring durch

C₁-C₄-Alkyl-,

C₁-C₄-Alkoxy- und/oder

Hydroxy substituiertes

Phenyl-C₁-C₄-Alkyl,

C₃-C₆-Alkenyl,

 C_5 - C_8 -Cycloalkyl, durch mindestens 1 Sauerstoffatom unterbrochenes C_3 - C_{10} -Alkyl bedeuten

Oder CH₂-CHOH-R³ sind,

 $R^3 = H$ oder

C₁-C₄-Alkyl,

C₂-C₄-Alkenyl,

C₄-C₈-Cycloalkyl,

Phenyl,

C₇-C₁₀-Alkylphenyl oder

C₇-C₁₀-Phenylalkyl,

und bei N- oder N'-monosubstituierten Aminouracilen R^1 oder R^2 zusätzlich C_3 - C_{22} -Alkyl ist und bei (IVb) R^2 = H oder die Reste C_1 - C_{14} -Alkyl, C_2 - C_4 -Alkenyl, oder C_4 - C_8 -Cycloalkyl, Phenyl, C_6 - C_{10} -Alkylphenyl, C_7 - C_{10} -Phenylalkyl, - C_7 -

 $R^4 = H$, C_1 - C_{10} -Alkylrest oder

C₂-C₄-Alkenylrest oder

 C_4 - C_8 -Cycloalkyl gegebenenfalls zusätzlich einen Oxiranring enthaltend; oder gegebenenfalls substituiert mit 1-3 C_1 - C_4 -Alkyl, oder einem Benzoyl- bzw. C_2 - C_{18} -Acylrest, und X=O oder S;

 $R^3=R^2$ oder $R^4;\,C_2\text{-}C_6\text{-alkyl}$ mit mindestens 1 bis 5 OH-Gruppen substituiert und/oder durch mindestens 1 bis maximal 4 O-Atome unterbrochen oder $CH_2\text{-}CH(OH)R^2$

zur Stabilisierung chlorhaltiger Polymerer.

Zusätzlich zu Verbindungen der Formeln (I) bis (III) kann noch mindestens eine Verbindung der Formel (IVa) enthalten sein, wobei $R^1=R^2=C_1\text{-}C_{22}\text{-}alkyl$ oder - oleyl ist und diese Aminouracile weiterhin ganz oder teilweise durch einen entsprechenden strukturisomeren Cyanacetylharnstoff ersetzt sein können. Bevorzugtes $C_1\text{-}C_{22}\text{-}alkyl$ ist methyl, butyl, octyl, lauryl und stearyl. Die entsprechenden Cyanacetylharnstoff sind N-methyl, butyl, octyl, lauryl oder stearyl –N'-methyl, butyl, octyl, lauryl oder stearyl –cyanacetylharnstoff.

Die Perfluoralkansulfonat-Salze der Formel $(R_fSO_3)_nM$ sind dem Fachmann bekannt. Die zugrundeliegenden Säuren und auch Salze sind beschrieben in Kirk Othmer, Encyclopedia of Chemical Technology, 4th Ed., John Wiley & Sons, New York, Vol 11, pp 558 – 564 (1994).

Beispiele sind diejenigen der Formel $(C_mF_{2m+1}SO_3)_nM$, wobei M für Li, Na, K, Mg, Ca, Sr, Ba, Sn, Zn, Al, La oder Ce steht. Der Index n ist entsprechend der Wertigkeit von M 1, 2 oder 3.

Die Perfluoralkansulfonat-Salze können dabei in verschiedenen gängigen Darreichungsformen eingesetzt werden; z. B. als Salz oder Lösung in Wasser oder einem organischen Solvens bzw. aufgezogen auf ein Trägermaterial wie PVC, Ca-Silikat, Zeolithe oder Hydrotalcite. Beispiele sind z.B.

Perfluoralkansulfonatsalze, die mit Alkoholen (Polyolen, Cyclodextrinen) oder Ätheralkoholen bzw. Esteralkoholen oder Kronenethern komplexiert oder gelöst sind.

Trifluormethansulfonsäure ("triflic acid") und deren Salze ("triflates") werden z.B. in Chem. Rev. <u>77</u>, 69-90 (1977) referiert.

Vorzugsweise werden Natriumtriflat bzw. Kaliumtriflat verwendet.

Ein weiterer Gegenstand der Erfindung sind Kombinationen der Stabilisatorsysteme umfassend mindestens ein Perfluoralkansulfonat-Salz und mindestens eine oder mehrere Verbindungen aus den Gruppen der Verbindungen der allgemeinen Formel (I) oder (II) oder (III) oder (IV) mit mindestens einem oder mehreren anderen üblichen Additiven bzw. Stabilisatoren. Bevorzugt sind Polyole und/oder Disaccharidalkohole, Glycidylverbindungen, Hydrotalcite, Zeolithe (Alkali bzw. Erdalkalialumosilikate), Füllstoffe, Metallseifen, Alkali und Erdalkali-Verbindungen wie Oxide und Hydroxide, Gleitmittel, Weichmacher, Phosphite, Hydroxycarboxylate, Pigmente, epoxidierte Fettsäureester und andere Epoxidverbindungen, Antioxidantien, UV-Absorber und Lichtschutzmittel, optische Aufheller, Treibmittel. Besonders bevorzugt sind epoxidierte Sojaöle, Erdalkali- oder Aluminiumseifen und Phosphite.

Besonders bevorzugt sind solche Komponenten, die zur Herstellung von physiologisch unbedenklichen Artikeln geeignet sind.

Mitumfaßt sind auch die möglichen Reaktionsprodukte der eingesetzten Komponenten.

Beispiele für solche zusätzlichen Komponenten sind weiter unten aufgeführt und erläutert (vgl. "Handbook of PVC-Formulating" von E. J. Wickson, John Wiley & Sons, New York, 1993 und Synoptic Document No. 7, Scientific Committee for Food (SCF) ~ EU).

Polyole und Disaccharidalkohole

Als Verbindungen dieses Typs kommen beispielsweise in Betracht: Glycerin, Pentaerythrit, Dipentaerythrit, Tripentaerythrit, Trimethylolethan, Bistrimethylolpropan, Polyvinylalkohol, Bistrimethylolethan, Trimethylolpropan, Zucker, Zuckeralkohole.

Bevorzugt sind davon Pentaerythrit, Trimethylolpropan, Sorbit und die Disaccharidalkohole wie Malbit, Laktit und Cellobiit sowie Palatinit. Verwendung finden können auch Polyolsirupe, wie Sorbit-, Mannit- und Maltitsirup.

Die Polyole können in einer Menge von beispielsweise 0,01 bis 20, zweckmäßig von 0,1 bis 20 und insbesondere von 0,1 bis 10 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewandt werden.

Glycidylverbindungen

Sie enthalten die Glycidylgruppe $-CH - (CH_2)_n + CH_2 + CH_3 +$

Kohlenstoff, Sauerstoff-, Stickstoff- oder Schwefelatome gebunden ist, und worin entweder R_1 und R_3 beide Wasserstoff sind, R_2 Wasserstoff oder Methyl und n=0 ist, oder worin R_1 und R_3 zusammen -CH₂-CH₂- oder -CH₂-CH₂- bedeuten, R_2 dann Wasserstoff und n=0 oder 1 ist.

Vorzugsweise finden Glycidylverbindungen mit zwei funktionellen Gruppen Verwendung. Es können aber auch prinzipiell Glycidylverbindungen mit einer, drei oder mehr funktionellen Gruppen eingesetzt werden.

Vorwiegend werden Diglycidylverbindungen mit aromatischen Gruppen eingesetzt.

Die endständigen Epoxidverbindungen können in einer Menge von vorzugsweise mindestens 0,1 Teilen, beispielsweise 0,1 bis 50, zweckmäßig 1 bis 30 und insbesondere 1 bis 25 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, eingesetzt werden.

Hydrotalcite

Die chemische Zusammensetzung dieser Verbindungen ist dem Fachmann bekannt, z. B. aus den Patentschriften DE 3 843 581, US 4,000,100, EP 0 062 813 und WO 93/20135.

Verbindungen aus der Reihe der Hydrotalcite können durch die folgende allgemeine Formel

$${\sf M^{2+}}_{1\text{--}x}\,{\sf M^{3+}}_x\!({\sf OH})_2\;({\sf A^{b-}})_{x/b}\cdot{\sf d}\;{\sf H_2O}$$

beschrieben werden, wobei

 $M^{2+}=$ eines oder mehrere der Metalle aus der Gruppe Mg, Ca, Sr, Zn oder Sn ist,

 M^{3+} = Al, oder B ist,

Aⁿ ein Anion mit der Valenz n darstellt,b eine Zahl von 1 - 2 ist,

0 < x 0,5 ist,

m eine Zahl von 0 - 20 ist.

Bevorzugt sind Verbindungen mit

 $A^{n} = OH^{-}, CIO_{4}^{-}, HCO_{3}^{-}, CH_{3}COO^{-}, C_{6}H_{5}COO^{-}, CO_{3}^{2-},$ $(CHOHCOO)_{2}^{2-}, (CH_{2}COO)_{2}^{2-}, CH_{3}CHOHCOO^{-}, HPO_{3}^{-}oder HPO_{4}^{2-};$

Beispiele für Hydrotalcite sind

 $Al_2O_3 \cdot 6MgO \cdot CO_2 \cdot 12H_2O$ (i), $Mg_{4,5}Al_2(OH)_{13} \cdot CO_3 \cdot 3,5H_2O$ (ii),

4MgO·Al₂O₃·CO₂·9H₂O (iii) , 4MgO·Al₂O₃·CO₂ ·6H₂O,

 $ZnO\cdot 3MgO\cdot Al_2O_3\cdot CO_2\cdot 8-9H_2O$ und $ZnO\cdot 3MgO\cdot Al_2O_3\cdot CO_2\cdot 5-6H_2O$.

Ganz besonders bevorzugt sind die Typen (i), (ii) und (iii).

Zeolithe (Alkali bzw. Erdalkalialumosilikate)

Sie können durch die folgende allgemeine Formel $M_{x/n}[(AlO_2)_x(SiO_2)_y] \cdot wH_2O$ beschrieben werden, worin n die Ladung des Kations M;

M ein Element der ersten oder zweiten Hauptgruppe, wie Li, Na, K, Mg, Ca, Sr oder Ba;

y: x eine Zahl von 0,8 bis 15, bevorzugt von 0,8 bis 1,2; und

w eine Zahl von 0 bis 300, bevorzugt von 0,5 bis 30, ist. Beispiele für Zeolithe sind Natriumalumosilikate der Formeln $Na_{12}Al_{12}Si_{12}O_{48} \cdot 27 \; H_2O \; [Zeolith \; A], \; Na_6Al_6Si_6O_{24} \cdot 2 \; NaX \cdot 7,5 \; H_2O, \; X=OH, \; Halogen, ClO_4 \; [Sodalith]; \; Na_6Al_6Si_{30}O_{72} \cdot 24 \; H_2O; \; Na_8Al_8Si_{40}O_{96} \cdot 24 \; H_2O; \; Na_{16}Al_{16}Si_{24}O_{80} \cdot 16 \; H_2O; \; Na_{16}Al_{16}Si_{32}O_{96} \cdot 16 \; H_2O; \; Na_{56}Al_{56}Si_{136}O_{384} \cdot 250 \; H_2O \; [Zeolith \; Y], \; Na_{86}Al_{86}Si_{106}O_{384} \cdot 264 \; H_2O \; [Zeolith \; X]; \; oder die durch teilweisen bzw. vollständigen Austausch der Na-Atome durch Li-, K-, Mg-, Ca-, Sr- oder Zn-Atome darstellbaren Zeolithe wie <math display="block"> (Na_7, N_{10}Al_{10}Si_{22}O_{64} \cdot 20 \; H_2O \; ; \; Ca_{4,5}Na_3[(AlO_2)_{12}(SiO_2)_{12}] \cdot 30 \; H_2O; \; K_9Na_3[(AlO_2)_{12}(SiO_2)_{12}] \cdot 27 \; H_2O.$

Ganz besonders bevorzugt sind Na-Zeolith A und Na-Zeolith P.

Die Hydrotalcite und/oder Zeolithe können in Mengen von beispielsweise 0,1 bis 20, zweckmäßig 0,1 bis 10 und insbesondere 0,1 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile halogenhaltiges Polymere, angewandt werden.

<u>Füllstoffe</u>

Füllstoffe wie beispielsweise Calciumcarbonat, Dolomit, Wollastonit, Magnesiumoxid, Magnesiumhydroxid, Silikate, China-Clay, Talk, Glasfasern, Glaskugeln, Holzmehl, Glimmer, Metalloxide, oder Metallhydroxide, Ruß, Graphit, Gesteinsmehl, Schwerspat, Glasfasern, Talk, Kaolin und Kreide verwandt. Bevorzugt ist Kreide (HANDBOOK OF PVC FORMULATING E. J. Wickson, John Wiley & Sons, Inc., 1993, SS. 393 - 449) und Verstärkungsmittel (TASCHENBUCH der Kunststoffadditive, R. Gächter & H. Müller, Carl Hanser, 1990, S. 549 - 615).

Die Füllstoffe können in einer Menge von vorzugsweise mindestens 1 Teil, beispielsweise 5 bis 200, zweckmäßig 10 bis 150 und insbesondere 15 bis 100 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, eingesetzt werden.

<u>Metallseifen</u>

Metallseifen sind in der Hauptsache Metallcarboxylate bevorzugt längerkettiger Carbonsäuren. Geläufige Beispiele sind Stearate, Oleate, Palmitate, Ricinolate, Hydroxystearate, Dihydroxystearate und Laurate, auch Oleate und Salze kürzerkettiger aliphatischer oder aromatischer Carbonsäuren wie Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Hexansäure, Sorbinsäure, Oxalsäure, Malonsäure, Maleinsäure, Anthranilsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Fumarsäure, Zitronensäure, Benzoesäure, Salicylsäure, Phthalsäuren, Hemimellithsäure, Trimellithsäure, Pyromellithsäure. Als Metalle seien genannt: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Al, La, Ce und Seltenerdmetalle. Oft verwendet man sogenannte synergistische Mischungen wie Barium/Zink-, Magnesium/Zink-, Calcium/Zink- oder Calcium/Magnesium/Zink-Stabilisatoren. Die Metallseifen können einzeln oder in Mischungen eingesetzt werden. Eine Übersicht über gebräuchliche Metallseifen findet sich in Ullmanns Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A16 (1985), S. 361 ff.). Die Metallseifen bzw. deren Mischungen können in einer Menge von beispielsweise 0,001 bis 10 Gew.-Teilen, zweckmäßig 0,01 bis 8 Gew.-Teilen, besonders bevorzugt 0,05 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewandt werden.

Alkali und Erdalkali-Verbindungen

Darunter versteht man vornehmlich die Carboxylate der oben beschriebenen Säuren, aber auch entsprechende Oxide bzw. Hydroxide oder Carbonate. Es kommen auch deren Gemische mit organischen Säuren in Frage. Beispiele sind LiOH, NaOH, KOH, CaO, Ca(OH₂), MgO, Mg(OH)₂, Sr(OH)₂, Al(OH)₃, CaCO₃ und MgCO₃ (auch basische Carbonate, wie beispielsweise Magnesia Alba und Huntit), sowie fettsaure Na- und K-Salze. Bei Erdalkali- und Zn-Carboxylaten können auch deren Addukte mit MO oder M(OH)₂ (M = Ca, Mg, Sr oder Zn), sogenannte "overbased" Verbindungen, zum Einsatz kommen. Bevorzugt werden zusätzlich

zu den erfindungsgemäßen Stabilisatoren Alkali-, Erdalkali- und/oder Aluminiumcarboxylate eingesetzt.

<u>Gleitmittel</u>

Als Gleitmittel kommen beispielsweise in Betracht: Fettsäuren, Fettalkohole, Montanwachs, Fettsäureester, PE-Wachse, Amidwachse, Chlorparaffine, Glycerinester oder Erdalkaliseifen, ferner Fettketone sowie Gleitmittel auf oder Kombinationen davon, wie in EP 0 259 783 aufgeführt. Bevorzugt sind Stearinsäure, Stearinsäureester und Calciumstearat.

Weichmacher

Als organische Weichmacher kommen beispielsweise solche aus den folgenden Gruppen in Betracht:

- A) Phthalsäureester: Beispiele für solche Weichmacher sind Dimethyl-, Diethyl-, Dibutyl-, Di-2-ethylhexyl-, Di-n-octyl-, Di-iso-octyl-, Di-iso-nonyl-, Di-iso-decyl-, Di-iso-tridecyl-, Dicyclohexyl-, Di-methylcyclohexyl-, Dimethylglycol-, Dibutylglycol-, Benzylbutyl- und Diphenyl-phthalat sowie Mischungen von Phthalaten wie C7-C9- und C9-C11-Alkylphthalate aus überwiegend linearen Alkoholen,
- C6-C10-n-Alkylphthalate und C8-C10-n-Alkylphthalate. Bevorzugt sind davon Dibutyl-, Dihexyl-, Di-2-ethylhexyl-, Di-n-octyl-, Di-iso-octyl-, Di-iso-nonyl-, Di-iso-decyl-, Di-iso-tridecyl- und Benzylbutyl-phthalat sowie die genannten Mischungen von Alkylphthalaten. Besonders bevorzugt sind Di-2-ethylhexyl-, Di-iso-nonyl- und Di-iso-decylphthalat, die auch unter den gebräuchlichen Abkürzungen DOP (Dioctylphthalat, Di-2-ethylhexyl-phthalat), DINP (Diisononylphthalat), DIDP (Diisodecylphthalat) bekannt sind.
- B) Ester aliphatischer Dicarbonsäuren, insbesondere Ester von Adipin-, Azelain- und Sebazinsäure: Beispiele für solche Weichmacher sind Di-2-ethylhexyladipat,

- Di-isooctyladipat (Gemisch), Di-iso-nonyladipat (Gemisch), Di-iso-decyladipat (Gemisch), Benzylbutyladipat, Benzyloctyladipat, Di-2-ethylhexylazelat, Di-2-ethylhexylsebacat und Di-iso-decylsebacat (Gemisch). Bevorzugt sind Di-2-ethylhexyladipat und Di-iso-octyladipat.
- C) Trimellithsäureester, beispielsweise Tri-2-ethylhexyltrimellithat, Tri-isodecyltrimellithat (Gemisch), Tri-iso-tridecyltrimellithat, Tri-iso-octyltrimellithat (Gemisch) sowie Tri-C6-C8-alkyl, Tri-C6-C10-alkyl-, Tri-C7-C9-alkyl- und Tri-C9-C11-alkyl-trimellithate. Die letztgenannten Trimellithate entstehen durch Veresterung der Trimellithsäure mit den entsprechenden Alkanolgemischen. Bevorzugte Trimellithate sind Tri-2-ethylhexyltrimellithat und die genannten Trimellithate aus Alkanolgemischen. Gebräuchliche Abkürzungen sind TOTM (Trioctyltrimellitat, Tri-2-ethylhexyl—trimellitat), TIDTM (Triisodecyltrimellitat) und TITDTM (Triisotridecyltrimellitat).
- D) Epoxyweichmacher: In der Hauptsache sind das epoxidierte ungesättigte Fettsäuren wie z. B. epoxidiertes Sojabohnenöl.
- E) Polymerweichmacher: Eine Definition dieser Weichmacher und Beispiele für solche sind in "Kunststoffadditive", R. Gächter/H. Müller, Carl Hanser Verlag, 3. Aufl., 1989, Kapitel 5.9.6, Seiten 412 415, sowie in "PVC Technology", W. V. Titow,
- 4th. Ed., Elsevier Publ., 1984, Seiten 165 170 angegeben. Die gebräuchlichsten Ausgangsmaterialien für die Herstellung der Polyesterweichmacher sind: Dicarbonsäuren wie Adipin-, Phthal-, Azelain- und Sebacinsäure; Diole wie 1,2-Propandiol, 1,3-Butandiol, 1,4-Butandiol, 1,6-Hexandiol, Neopentylglycol und Diethylenglykol.
- F) Phosphorsäureester: Eine Definition dieser Ester ist im vorstehend genannten "Taschenbuch der Kunststoffadditive" Kapitel 5.9.5, SS. 408 412, zu finden. Beispiele für solche Phosphorsäureester sind Tributylphosphat, Tri-2-ethylbutylphosphat, Tri-2-ethylbutylphosphat, Tri-2-ethylphosphat, Triphenylphosphat, Triphenylphosphat, Triphenylphosphat,

Trikresylphosphat und Trixylenylphosphat. Bevorzugt sind Tri-2-ethylhexylphosphat sowie [®]Reofos 50 und 95 (Ciba Spezialitätenchemie).

- G) Chlorierte Kohlenwasserstoffe (Paraffine)
- H) Kohlenwasserstoffe
- Monoester, z. B. Butyloleat, Phenoxyethyloleat, Tetrahydrofurfuryloleat und Alkylsulfonsäureester.
- J) Glykolester, z. B. Diglykolbenzoate.
- K) Citronensäureester, z. B. Tributylcitrat und Acetyltributylcitrat, wie in WO02/05206 beschrieben
- L) Perhydrophthal-, -isophthal- und -terephthalester sowie Perhydroglycolund diglycolbenzoatester. Bevorzugt ist Perhydro-diisononylphthalat
 (®Hexamoll DINCH Fa. BASF) wie in DE 19.756.913, DE 19.927.977, DE
 19.927.978 und DE 19.927.979 beschrieben.

Eine Definition dieser Weichmacher und Beispiele für solche sind in "Kunststoffadditive", R. Gächter/H. Müller, Carl Hanser Verlag, 3. Aufl., 1989, Kapitel 5.9.6, Seiten 412 - 415, sowie in "PVC Technology ", W. V. Titow, 4th. Ed., Elsevier Publ., 1984, Seiten 165 - 170 angegeben.

Definitionen und Beispiele für Weichmacher der Gruppen G) bis J) sind den folgenden Handbüchern zu entnehmen:

"Kunststoffadditive", R. Gächter/H. Müller, Carl Hanser Verlag, 3. Aufl., 1989, Kapitel 5.9.14.2, SS.422 - 425, (Gruppe G), und Kapitel 5.9.14.1, S. 422, (Gruppe H).

"PVC Technology", W. V. Titow, 4^{th.} Ed., Elsevier Publishers, 1984, Kapitel 6.10.2,

Seiten 171 - 173, (Gruppe G), Kapitel 6.10.5 Seite 174, (Gruppe H), Kapitel 6.10.3,

Seite 173, (Gruppe I) und Kapitel 6.10.4, Seiten 173 - 174 (Gruppe J). Es können auch Mischungen unterschiedlicher Weichmacher verwandt werden.

Die Weichmacher können in einer Menge von beispielsweise 5 bis 20 Gew.-Teilen, zweckmäßig 10 bis 20 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewandt werden. Hart- bzw. Halbhart-PVC enthält bevorzugt bis zu 10 %, besonders bevorzugt bis zu 5 % oder keinen Weichmacher.

<u>Pigmente</u>

Geeignete Stoffe sind dem Fachmann bekannt. Beispiele für anorganische Pigmente sind TiO_2 , Pigmente auf Zirkonoxidbasis, $BaSO_4$, Zinkoxid (Zinkweiss) und Lithopone (Zinksulfid/Bariumsulfat), Ruß, Russ-Titandioxid-Mischungen, Eisenoxidpigmente, Sb_2O_3 , (Ti,Ba,Sb) O_2 , Cr_2O_3 , Spinelle wie Cobaltblau und Cobaltgrün, Cd(S,Se), Ultramarinblau. Organische Pigmente sind z. B. Azopigmente, Phthalocyaninpigmente, Chinacridonpigmente, Perylenpigmente, Diketo-pyrrolopyrrolpigmente und Anthrachinonpigmente. Bevorzugt ist TiO_2 auch in mikronisierter Form. Es können auch Mischungen unterschiedlicher Pigmente verwendet werden. Eine Definition und weitere Beschreibungen finden sich im "Handbook of PVC Formulating", E. J.Wickson, John Wiley & Sons, New York, 1993.

Phosphite (Phosphorigsäuretriester)

Organische Phosphite sind bekannte Co-Stabilisatoren für chlorhaltige Polymere. Beispiele sind Trioctyl-, Tridecyl-, Tridodecyl-, Tritridecyl-, Tripentadecyl-, Trioleyl, Tristearyl-, Triphenyl-, Trikresyl-, Tris-nonylphenol, Tris-2,4-t-butyl-phenyl- oder Tricyclohexylphosphit.

Weitere geeignete Phosphite sind verschieden gemischte Aryl-dialkyl- bzw. Alkyl-diarylphosphite wie Phenyldioctyl-, Phenyldidecyl-, Phenyldidodecyl-, Phenylditetradecyl-, Phenyldipentadecyl-, Octyldiphenyl-, Decycldiphenyl-, Undecyldiphenyl-, Dodecyldiphenyl-, Tridecyldiphenyl-, Tetradecyldiphenyl-, Pentadecyldiphenyl-, Oleyldiphenyl-, Stearyldiphenyl- und Dodecyl-bis-2,4-di-t-butylphenylphosphit.

Weiterhin können auch Phosphite verschiedener Di- bzw. Polyole vorteilhaft verwandt werden: z. B. Tetraphenyldipropylenglykoldiphosphit, Polydipropylenglykolphenylphosphit, Tetramethylolcyclohexanol-decyldiphosphit, Tetramethylolcyclohexanol-butoxyethoxy-ethyldiphosphit, Tetramethylolcyclohexanol-butoxyethoxy-ethyldiphosphit, Tetramethylolcyclohexanol-nonylphenyldiphosphit, Bis-nonylphenyl-di-trimethylolpropandiphosphit, Bis-2-butoxyethyl-di-trimethylolpropandiphosphit, Trishydroxyethylisocyanurat-hexadecyltriphosphit, Distoanylpoptagen thyitdiphosphit, Distoanylpoptage

Didecylpentaerythritdiphosphit, Distearylpentaerythritdiphosphit, Bis-2,4-di-t-butylphenylpentaerythritdiphosphit, sowie Gemische dieser Phosphite und Aryl/alkylphosphit-Gemische der statistischen Zusammensetzung ($H_{19}C_9-C_6H_4$) $O_{1,5}P(OC_{12,13}H_{25,27})_{1,5}$ oder [$C_8H_{17}-C_6H_4-O-]_2P[i-C_8H_{17}O]$,($H_{19}C_9-C_6H_4$) $O_{1,5}P(OC_{9,11}H_{19,23})_{1,5}$.

Technische Beispiele sind Naugard P, Mark CH 300, Mark CH 301, Mark CH 302, Mark CH 304 und Mark CH 55 (Produkte der Crompton Corporation).

Die organischen Phosphite oder deren Mischungen insgesamt können in einer Menge von beispielsweise 0,01 bis 10 Gew.-Teilen, zweckmäßig 0,05 bis 5 und insbesondere 0,1 bis 3 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewandt werden.

Hydroxycarboxylatmetallsalze

Weiterhin können zugegen sein Hydroxycarboxylatmetallsalze, wobei das Metall ein Alkali- oder Erdalkalimetall oder Aluminium sein kann. Bevorzugt sind Natrium, Kalium, Magnesium oder Calcium. Die Hydroxycarbonsäure kann sein Glycol-, Milch-, Äpfel-, Wein- oder Citronensäure oder Salicyl- bzw. 4-Hydroxybenzoesäure oder auch Glycerin-, Glukon- und Zuckersäure (s. PS GB 1.694.873).

<u>Epoxidierte Fettsäureester und andere Epoxidverbindungen</u> Die erfindungsgemäße Stabilisatorkombination kann zusätzlich vorzugsweise

mindestens einen epoxidierten Fettsäureester enthalten. Es kommen dafür vor allem Ester von Fettsäuren aus natürlichen Quellen (Fettsäureglyceride), wie Sojaöl oder Rapsöl, in Frage. Es können aber auch synthetische Produkte zum Einsatz kommen, wie epoxidiertes Butyloleat. Ebenso verwendet werden können epoxidiertes Polybutadien und Polyisopren, gegebenenfalls auch in partiell hydroxylierter Form, oder Glycidylacrylat und Glycidylmethacrylat als Homo- bzw. Copolymer. Diese Epoxyverbindungen können auch auf Schichtverbindung aufgebracht sein; siehe hierzu auch DE-A-4 031 818.

Die Epoxidverbindungen können in einer Menge von vorzugsweise mindestens 0,1 Gew.-Teilen, beispielsweise 0,1 bis 50 Gew.-Teilen, zweckmäßig 1 bis 30 und insbesondere 1 bis 25 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, eingesetzt werden.

Antioxidantien

Alkylierte Monophenole, z. B. 2,6-Di-tert-butyl-4-methylphenol, Alkylthiomethylphenole, z. B. 2,4-Di-octylthiomethyl-6-tert-butylphenol, Alkylierte Hydrochinone, z. B. 2,6-Di-tert-butyl-4-methoxyphenol, Hydroxylierte Thiodiphenylether, z. B. 2,2'-Thio-bis-(6-tert-butyl-4-methylphenol), Alkyliden-Bisphenole, z. B. 2,2'-Methylen-bis-(6-tert-butyl-4-methylphenol), Benzylverbindungen, z. B. 3,5,3',5'-Tetra-tert-butyl-4,4'-dihydroxydibenzylether, Hydroxybenzylierte Malonate, z. B. Dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2hydroxybenzyl)-malonat, Hydroxybenzyl-Aromaten, z. B. 1,3,5-Tris-(3,5-di-tertbutyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, Triazinverbindungen, z. B. 2,4-Bisoctylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, Phosphonate und Phosphonite, z. B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonat, Acylaminophenole, z. B. 4-Hydroxy-laurinsäureanilid, Ester der beta-(3,5-Di-tertbutyl-4-hydroxyphenyl)-propionsäure, der beta-(5-tert-Butyl-4-hydroxy-3methylphenyl)-propionsäure, der beta-(3,5-Dicyclohexyl-4-hydroxyphenyl)propionsäure, Ester der 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure mit einoder mehrwertigen Alkoholen, Amide der beta-(3,5-Di-tert-butyl-4hydroxyphenyl)-propionsäure, wie z. B. N,N'-Bis-(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin, Vitamin E (Tocopherol) und Abkömmlinge. Es können auch Mischungen der Antioxidantien verwendet werden.

Technische Beispiele sind z. B. Naugard 10, Naugard 76, Naugard BHT und Naugard 45 (Produkte der Crompton Corporation).

Die Antioxidantien können in einer Menge von beispielsweise 0,01 bis 10 Gew.-Teilen, zweckmäßig 0,1 bis 10 Gew.-Teilen und insbesondere 0,1 bis 5 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewandt werden.

UV-Absorber und Lichtschutzmittel

Beispiele dafür sind: 2-(2'-Hydroxyphenyl)-benztriazole, wie z. B. 2-(2'-Hydroxy-5'-methylphenyl)-benztriazol, 2-Hydroxybenzophenone, Ester von gegebenenfalls substituierten Benzoesäuren, wie z. B. 4-tert-Butyl—phenylsalicylat, Phenylsalicylat, Acrylate, Nickelverbindungen, Oxalsäurediamide, wie z. B. 4,4'-Di-octyloxy-oxanilid, 2,2'-Di-octyloxy-5,5'-di-tert—butyl—oxanilid, 2-(2-Hydroxyphenyl)-1,3,5-triazine, wie z. B. 2,4,6-Tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazin, Sterisch gehinderte Amine, wie z. B. Bis(2,2,6,6-tetramethyl-piperidin-4-yl)-succinat. Es können auch Mischungen der UV-Absorber und/oder Lichtschutzmittel verwendet werden.

Treibmittel

Treibmittel sind z. B. organische Azo- und Hydrazoverbindungen, Tetrazole, Oxazine, Isatosäureanhydrid, sowie Soda und Natriumbicarbonat.

Bevorzugt sind Azodicarbonamid und Natriumbicarbonat sowie deren Mischungen.

Definitionen und Beispiele für Schlagzähmodifikatoren und Verarbeitungshilfen, Geliermittel, Antistatika, Biozide, Metalldesaktivatoren, optische Aufheller, Flammschutzmittel, Antifogging-agents sowie Kompatibilisatoren sind beschrieben in "Kunststoffadditive", R. Gächter/H. Müller, Carl Hanser Verlag, 3. und 4. Aufl., 1989 und 2001, und im "Handbook of Polyvinyl Chloride Formulating" E. J. Wilson, J. Wiley & Sons, 1993, sowie in "Plastics Additives" G. Pritchard, Chapman & Hall, London, 1st Ed., 1998.

Schlagzähmodifikatoren sind ferner ausführlich beschrieben in "Impact Modifiers

Schlagzahmodifikatoren sind ferner ausführlich beschrieben in "Impact Modifiers for PVC", J. T. Lutz/D. L. Dunkelberger, John Wiley & Sons, 1992.

Es können ein und auch mehrere Zusatzstoffe und/oder deren Mischungen verwendet werden.

Ein weiterer Gegenstand der Erfindung sind Zusammensetzungen, die ein chlorhaltiges Polymer und ein erfindungsgemäßes Stabilisatorsystem enthalten.

Ein weiterer Gegenstand der Erfindung sind Zusammensetzungen, die ein chlorhaltiges Polymer und ein erfindungsgemäßes Stabilisatorsystem, zusätzlich mit einer oder mehreren weiteren Komponenten aus einer der Gruppen wie Glycidyl-Verbindungen, Phosphite, Hydroxycarboxylate, Hydrotalcite, Zeolithe, Alkali/Erdalkali-Verbindungen, epoxidierte Fettsäureester, enthalten.

Bei diesen Zusammensetzungen sind die Verbindungen der allgemeinen Formeln (I), (II), (III) und (IV) zur Erzielung der Stabilisierung im chlorhaltigen Polymer zweckmäßig zu 0,01 bis 10, vorzugsweise zu 0,05 bis 5, insbesondere zu 0,1 bis 2 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, zu verwenden.

Die Perfluoralkansulfonat-Verbindungen können in einer Menge von beispielsweise 0,001 bis 5, zweckmäßig 0,01 bis 3, besonders bevorzugt 0,01 bis 2 Gew.-Teilen, bezogen auf 100 Gew.-Teile PVC, angewandt werden. Die Co-Additive wie Glycidyl-Verbindungen, Phosphite, Hydroxycarboxylate, Hydrotalcite, Zeolithe, Alkali/Erdalkali-Verbindungen, epoxidierte Fettsäureester werden mit 0.01-15 Gew.-Teilen, vorzugsweise 0.1-10, insbesondere 2-3 Gew.-Teilen eingesetzt.

Beispiele für die zu stabilisierenden chlorhaltige Polymere sind: Polymere des Vinylchlorides, Vinylidenchlorids, Vinylharze, enthaltend Vinylchlorideinheiten in deren Struktur, wie Copolymere des Vinylchlorids und Vinylester von aliphatischen Säuren, insbesondere Vinylacetat, Copolymere des Vinylchlorids mit Estern der Acryl- und Methycrylsäure und mit Acrylnitril, Copolymere des Vinylchlorids mit Dienverbindungen und ungesättigten Dicarbonsäuren oder deren Anhydride, wie Copolymere des Vinylchlorids mit Diethylmaleat, Diethylfumarat oder Maleinsäureanhydrid, nachchlorierte Polymere und Copolymere des Vinylchlorids, Copolymere des Vinylchlorids und Vinylidenchlorids mit ungesättigten Aldehyden, Ketonen und anderen, wie Acrolein, Crotonaldehyd, Vinylmethylketon, Vinylmethylether, Vinylisobutylether und ähnliche; Polymere des Vinylidenchlorids und Copolymere desselben mit Vinylchlorid und anderen polymerisierbaren Verbindungen; Polymere des Vinylchloracetates und Dichlordivinylethers; chlorierte Polymere des Vinylacetates, chlorierte polymerische Ester der Acrylsäure und der alphasubstituierten Acrylsäure; Polymere von chlorierten Styrolen, zum Beispiel Dichlorstyrol; Chlorkautschuke; chlorierte Polymere des Ethylens; Polymere und nachchlorierte Polymere von Chlorbutadiens und deren Copolymere mit Vinylchlorid, chlorierte Natur- und Synthesekautschuke, sowie Mischungen der genannten Polymere unter sich oder mit anderen polymerisierbaren Verbindungen. Im Rahmen dieser Erfindung sind unter PVC auch Copolymerisate mit polymerisierbaren Verbindungen wie Acrylnitril, Vinylacetat oder ABS zu verstehen, wobei es sich um Suspensions-, Masse- oder Emulsionspolymerisate handeln kann. Bevorzugt ist ein PVC-Homopolymer, auch in Kombination mit Polyacrylaten.

Ferner kommen auch Pfropfpolymerisate von PVC mit EVA, ABS und MBS in Betracht. Bevorzugte Substrate sind auch Mischungen der vorstehend genannten Homo-und Copolymerisate, insbesondere Vinylchlorid-Homopolymerisate, mit anderen thermoplastischen oder/und elastomeren Polymeren, insbesondere Blends mit ABS, MBS, NBR, SAN, EVA, CPE, MBAS, PMA, PMMA, EPDM und Polylactonen, insbesondere aus der Gruppe ABS, NBR, NAR, SAN und EVA. Die verwandten Abkürzungen für die Copolymerisate sind dem Fachmann geläufig und bedeuten folgendes: ABS: Acrylnitril-Butadien-Styrol; SAN: Styrol-Acrylnitril; NBR: Acrylnitril-Butadien; NAR: Acrylnitril-Acrylat; EVA: Ethylen-Vinylacetat. Es kommen insbesondere auch Styrol-Acrylnitril-Copolymerisate auf Acrylat-Basis (ASA) in Betracht. Bevorzugt als Komponente sind in diesem Zusammenhang Polymerzusammensetzungen, die als Komponenten (i) und (ii) eine Mischung aus 25-75 Gew.-% PVC und 75-25 Gew.-% der genannten Copolymerisate enthalten. Von besonderer Bedeutung sind als Komponente Zusammensetzungen, aus (i) 100 Gewichtsteilen PVC, und (ii) 0 -300 Gewichtsteilen ABS und/oder mit SAN modifiziertes ABS und 0-80 Gewichtsteilen der Copolymeren NBR, NAR und/oder EVA, insbesondere jedoch EVA.

Weiterhin kommen zur Stabilisierung im Rahmen dieser Erfindung auch insbesondere Recyclate chlorhaltiger Polymere in Frage, wobei es sich hierbei um die oben näher beschriebenen Polymere handelt, welche durch Verarbeitung, Gebrauch oder Lagerung eine Schädigung erfahren haben. Besonders bevorzugt ist PVC-Recyclat.

Die erfindungsgemäß mitverwendbaren Verbindungen sowie die chlorhaltigen Polymeren sind dem Fachmann allgemein bekannt und werden detailliert beschrieben in "Kunstoffadditive", R. Gächter/H. Müller, Carl Hanser Verlag, 3. Aufl. und 4. Aufl., 1989 und 2001; in der DE 197 41 778 und der EP 967.245, auf welche hiermit ausdrücklich Bezug genommen wird.

Die erfindungsgemäße Stabilisierung ist besonders bei Hart-PVC-Formulierungen für transparente und nicht transparente Anwendungen von Vorteil, wie sie für Rohre, Profile und Platten üblich sind. Für transparente Anwendungen werden vorzugsweise Verbindungen der Formeln (I), (II) und (III) oder (IVb) eingesetzt, welche Schmelzpunkte unterhalb ca. 190 °C aufweisen. Ebenso kann die Stabilisierung für halbharte und weiche Formulierungen sowie in Plastisolen verwendet werden. Die Stabilisierung kann ohne Schwermetallverbindungen (Sn-, Pb-, Cd-, Zn-Stabilisatoren) durchgeführt werden, und ist besonders gut geeignet für die Herstellung von physiologisch einwandfreien Gebrauchsgegenständen aus PVC, die auch der medizinischen Anwendung dienen können.

Zweckmäßig kann die Einarbeitung der Stabilisator-Systeme nach folgenden Methoden erfolgen: als Emulsion oder Dispersion; als Trockenmischung während des Vermischens von Zusatzkomponenten oder Polymermischungen; durch direktes Zugeben in die Verarbeitungsapparatur (z. B. Kalander, Mischer, Kneter, Extruder und dergleichen) oder als Lösung oder Schmelze bzw. als Flakes oder Pellets in staubfreier Form als One-Pack.

Das erfindungsgemäß stabilisierte PVC, das die Erfindung ebenfalls betrifft, kann auf an sich bekannte Weise hergestellt werden, wozu man unter Verwendung an sich bekannter Vorrichtungen wie der oben genannten Verarbeitungsapparaturen das erfindungsgemäße Stabilisatorsystem und gegebenenfalls weitere Zusätze mit dem PVC vermischt. Hierbei können die Stabilisatoren einzeln oder in Mischung zugegeben werden oder auch in Form sogenannter Masterbatches.

Das nach vorliegender Erfindung stabilisierte PVC kann auf bekannte Weisen in die gewünschte Form gebracht werden. Solche Verfahren sind beispielsweise Mahlen, Kalandrieren, Extrudieren, Spritzgießen oder Spinnen, ferner Extrusions-Blasen. Das stabilisierte PVC kann auch zu Schaumstoffen verarbeitet werden.

Ein erfindungsgemäß stabilisiertes PVC eignet sich z. B. besonders für Hohlkörper (Flaschen), Verpackungsfolien (Tiefziehfolien), Blasfolien, Rohre, Schaumstoffe, Schwerprofile (Fensterrahmen), Lichtwandprofile, Bauprofile, Sidings, Fittings, Bürofolien und Apparatur-Gehäuse (Computer, Haushalteräte). Bevorzugt sind PVC-Hartschaumstoff-Formkörper und PVC-Rohre wie für Trinkoder Abwasser, Druckrohre, Gasrohre, Kabelkanal- und Kabelschutzrohre, Rohre für Industrieleitungen, Sickerrohre, Abflussrohre, Dachrinnenrohre und Drainagerohre.

Das erfindungsgemäß stabilisierte PVC eignet sich auch besonders für Halbhartund Weich-Rezepturen, insbesondere in Form von Weichrezepturen für
Drahtummantelungen, Kabelisolierungen, Fußböden, Tapeten, KFZ-Teile, WeichFolien, Spritzgussteile oder Schläuche, welche besonders bevorzugt sind. In
Form von Halbhart-Rezepturen eignet sich das erfindungsgemäße PVC besonders
für Dekorationsfolien, Schaumstoffe, Agrarfolien, Schläuche, Dichtungsprofile
und Bürofolien. Beispiele für die Anwendung des erfindungsgemäßen PVC als
Plastisol sind Kunstleder, Fußböden, Textilbeschichtungen, Tapeten, CoilCoatings- und Unterbodenschutz für Kraftfahrzeuge.

Näheres hierzu siehe "Kunststoffhandbuch PVC", Band 2/2, W. Becker/H. Braun, 2. Aufl., 1985, Carl Hanser Verlag, Seiten 1236 - 1277.

Die folgenden Beispiele erläutern die Erfindung, ohne sie jedoch zu beschränken. Teile- und Prozentangaben beziehen sich, wie auch in der übrigen Beschreibung, auf das Gewicht.

<u>Beispiele</u>

Tabelle 1: Organische Stabilisatoren

Stabilisator	T
	Formel
1	N H
2	(\sqrt{D}-NH-)2C=S
3	N-(CH ₂ -CH ₂ -OH) ₃
4 a	H ₂ C=HC-H ₂ C N NH ₂
4 b	H ₂ C=HC-CH ₂ -O-H ₂ C-HC-H ₂ C N N NH ₂ CH ₃
5	O O O O O O O O O O

Beispiel 1: Statischer Hitzetest

Eine Trockenmischung bestehend aus

100,0 Teile	Evipol (Markenzeichen der Fa. EVC) SH 5730 – PVC K-Wert 57
5,0 Teile	Paraloid (Markenzeichen der Fa. Röhm & Haas) BTA 7805 =
	MBS (Methylmethacrylat-Butadien-Styrol) Modifier
0,5 Teile	Paraloid (Markenzeichen der Fa. Röhm & Haas) K 120 N = Acrylat
	Verarbeitungshilfe
0,5 Teile	Paraloid (Markenzeichen der Fa. Röhm & Haas) K 175 = Acrylat
	Verarbeitungshilfe
1,0 Teile	Loxiol G 16 = Fettsäurepartialester des Glycerins (ex Henkel)
0,3 Teile	Wachs E = Esterwachs (Montan-Wachs) (ex BASF)
3,0 Teile	ESO = epoxidiertes Sojabohnenöl
0,1 Teile	Magnesiumlaurat
x Teile	Sulfonat = 30%ige Lösung von Na-Trifluormethansulfonat in
	Butyldiglycol

und 0,6 Teilen der in Tabelle 1 angegebenen Stabilisatoren wurden auf einem Mischwalzwerk 5 Minuten bei 180 °C gewalzt. Vom gebildeten Walzfell wurden Testfolienstreifen von 0,3 mm Dicke entnommen. Die Folienproben wurden in einem Ofen (= Mathis-Thermo-Takter) bei 190 °C thermisch belastet. Im zeitlichen Abstand von 3 Minuten wurde der Yellowness Index (YI) nach ASTMD 1925-70 bestimmt. Die Ergebnisse sind der Tabelle 2 zu entnehmen. Geringe YI-Werte bedeuten eine gute Stabilisierung.

Tabelle 2

Chab]			 			τ	, 		<u> </u>	
Stab.	<u> </u>	1	1	2	2	4a	4a	4b	4b	5	5
x Teile	0,1	<u> </u>	0,1		0,2	_	0,05	_	0,17	_	0,2
Min						YI-Wert	Ē				
0	58,39	18,21	15,76	33,84	21,35	9,00	8,66	7,16	7,35	37,88	23,95
3	65,46	20,30	18,20	50,59	29,74	12,09	9,77	7,81	8,14	39,63	26,39
6	72,50	30,64	24,07	87,68	42,68	15,44	12,29	9,14	10,26	72,04	39,93
9	85,48	52,23	40,12	146,0 2	61,76	19,41	15,57	12,68	13,98	114,20	66,33
12	103,5 2	78,93	55,32		83,03	23,61	20,01	18,74	17,38		92,39
15	- -	107,9 3	70,99		106,7 3	30,26	25,49	27,91	24,80		103,67
18			88,06			38,58	32,90	42,36	32,64		
21			107,54			57,00	42,20	62,90	40,86		-
24			100,70			89,17	56,56	89,15	52,39		
27						182,84	75,42	129,83	64,95		
30							124,91		81,14		
33									97,82		
36			Ī						118,7		
									8		

Kommentar:

Aus der Tabelle 2 ist klar ersichtlich, dass Zusatz von Na-Triflat zu den einzelnen Stabilisator-Typen eine signifikante Verbesserung der Anfangsfarbe, Farbhaltung und Langzeitstabilität ergibt.

Beispiel 2: Statischer Hitzetest

Eine Trockenmischung bestehend aus

100,0 Teile	Evipol (Markenzeichen der Fa. EVC) SH 7020 – PVC K-Wert 70
47,0 Teile	Dioctylphthalat
3,0 Teile	ESO = epoxidiertes Sojabohnenöl
0,3 Teile	Loxiol® G 71 S = Pentaerythrit-Adipat-Complexester – Gleitmittel
0,1 Teile	Calciumstearat
x Teile	Sulfonat = 30%ige Lösung von Na-Trifluormethansulfonat

und 0,27 Teile der in Tabelle 1 angegebenen Stabilisatoren wurden auf einem Mischwalzwerk 5 Minuten bei 180 °C gewalzt. Vom gebildeten Walzfell wurden Testfolienstreifen von 0,5 mm Dicke entnommen. Die Folienproben wurden in einem Ofen (= Mathis-Thermo-Takter) bei 190 °C thermisch belastet. Im zeitlichen Abstand von 3 Minuten wurde der Yellowness Index (YI) nach ASTMD 1925-70 bestimmt. Die Ergebnisse sind der Tabelle 2 zu entnehmen. Gegebenenfalls wurde dem Gemisch 0,6 Teile CH 300 = gemischtes Aryl/Alkyl-Phosphit ex Crompton zugesetzt (vgl. Tabelle 3). Geringe YI-Werte bedeuten eine gute Stabilisierung.

Tabelle 3

Stab.	3	3	3	3*
X Teile Sulfonat	-	0,2	0,3	0,3
Min		YI-V	Wert	
0	17,00	6,97	6,50	5,79
3	20,28	7,42	7,66	5,53
6	30,21	9,97	9,95	5,96
9	49,09	16,45	15,76	6,49
12	66,58	18,12	19,12	7,33
15	88,15	16,15	16,53	9,20
18	109,5	17,96	20,85	11,77
21		28,08	30,04	19,06
24		42,97	46,09	40,68
27		65,75	68,70	61,56
30		85,49	85,09	77,85
33		95,11	96,11	86,55
36		104,69	105,88	94,57
39				100,83

^{* +} 0.6 Teile CH 300 = gemischtes Aryl/Alkylphosphit ex Crompton

Kommentar:

Aus der Tabelle 3 ist ersichtlich, dass Zusatz von Na-Triflat eine Verbesserung der Hitzestabilisator-Wirkung ergibt, der durch Phosphit-Zusatz weiter verbessert werden kann.

Beispiel 3: Statischer Hitzetest (TK 101 7790)

Eine Trockenmischung bestehend aus

100,0 Teile	Evipol (Markenzeichen der Fa. EVC) SH 5730 – PVC K-Wert 57
5,0 Teile	Paraloid (Markenzeichen der Fa. Röhm & Haas) BTA III N 2 =
	MBS (Methylmethacrylat-Butadien-Styrol) Modifier
0,5 Teile	Paraloid (Markenzeichen der Fa. Röhm & Haas) K 120 N =
Acrylat	·
	Verarbeitungshilfe
0,5 Teile	Paraloid (Markenzeichen der Fa. Röhm & Haas) K 175 = Acrylat
	Verarbeitungshilfe
1,0 Teile	Loxiol G 16 = Fettsäurepartialester des Glycerins (ex Henkel)
0,3 Teile	Wachs E = Esterwachs (Montan-Wachs) (ex BASF)
3,0 Teile	ESO = epoxidiertes Sojabohnenöl
x Teile	Sulfonat = 30%ige Lösung von Na-Trifluormethansulfonat in
	Butyldiglycol

und 0,3 Teilen der in Tabelle 1 angegebenen Stabilisatoren wurden auf einem Mischwalzwerk 5 Minuten bei 180 °C gewalzt. Vom gebildeten Walzfell wurden Testfolienstreifen von 0,3 mm Dicke entnommen. Die Folienproben wurden in einem Ofen (= Mathis-Thermo-Takter) bei 190 °C thermisch belastet. Im zeitlichen Abstand von 3 Minuten wurde der Yellowness Index (YI) nach ASTMD 1925-70 bestimmt. Die Ergebnisse sind der Tabelle 2 zu entnehmen. Geringe YI-Werte bedeuten eine gute Stabilisierung.

Tabelle 4

Stab.	3	3
X Teile Sulfonat	_	1,0
Min	YI-	Wert
0	45,9	14,12
3	54,1	18,18
6	77,45	21,99
9	111,6	28,13
12		38,20
15		53,15
18		73,60
21		91,47
24		105,39

Kommentar:

Zusatz von Na-Triflat zeigt eine deutliche Verbesserung hinsichtlich der Hitzestabilisator-Wirkung wie in Tabelle 4 beschrieben.

<u>Patentansprüche</u>

- 1. Stabilisatorsystem zur Stabilisierung von halogenhaltigen Polymeren umfassend mindestens
- a) ein Perfluoralkansulfonat-Salz und
- b) mindestens ein oder mehrere Indole und/oder Harnstoffe und/oder Alkanolamine und/oder Aminouracile

wobei die Indole die allgemeine Formel (I) haben

$$(R^4)$$
 $\stackrel{N}{\underset{H}{\longrightarrow}} R^3$ (I)

worin bedeuten

$$\label{eq:mass} \begin{split} m &= 0,\,1,\,2 \text{ oder 3;} \\ R^3 &= C_1\text{-}C_{18}\text{-}\text{Alkyl, } C_2\text{-}C_{18}\text{-}\text{Alkenyl, Phenyl oder} \end{split}$$

 C_7 - C_{24} -Alkylphenyl, C_7 - C_{10} -Phenylalkyl oder C_1 - C_4 -Alkoxy; R^4 , $R^5 = H$, C_1 - C_4 -Alkyl, oder C_1 - C_4 -Alkoxy;

wobei die Harnstoffe die allgemeine Formel (II) haben

$$\begin{array}{c|c}
R^9 & & \\
N & & \\
R^6 & & \\
R^7
\end{array}$$
(II)

worin bedeuten

Y = O, S oder NH;

 R^6 , R^7 , R^8 und R^9 unabhängig voneinander stehen für H, C_1 - C_{18} -Alkyl, gegebenenfalls substituiert mit Hydroxy- und/oder C_1 - C_4 -Alkoxygruppen, C_2 - C_{18} -Aikenyl, Phenyl, gegebenenfalls substituiert mit bis zu 3-Hydroxy- und/oder C_1 - C_4 -Alkyl/Alkoxygruppen, C_7 - C_{20} -Alkylphenyl, oder C_7 - C_{10} -Phenylalkyl und 2-Substituenten aus von R^6 bis R^9 auch einen Ring bilden können und der verwendete Harnstoff kann auch dimerisiert oder trimerisiert sein kann, wie z. B. Biuret oder 1,3,5-Trishydroxyalkyl-isocyanurat und deren möglichen Reaktionsprodukte,

wobei die Alkanolamine die Formel (III)haben

$$R^{1} = \begin{pmatrix} R^{2} \\ N + (CHR_{a}^{3})_{y} - CHR_{b}^{3} - O \\ N + (CHR_{$$

worin bedeuten

x = 1, 2 oder 3; y = 1, 2, 3, 4, 5 oder 6; n = 1 - 10;

 R^1,R^2 = unabhängig voneinander H, C_1 - C_{22} -Alkyl, -[-(CHR^3_a)_y- CHR^3_b -O-]_n-H, -[-(CHR^3_a)_y- CHR^3_b -O-]_n-CO- R^4 , C_2 - C_{20} -Alkenyl, C_2 - C_{18} -Acyl, C_4 - C_8 -Cycloalkyl, welches in β -Stellung OH-substituiert sein kann, Phenyl, C_7 - C_{10} -Alkylphenyl oder C_7 - C_{10} -Phenylalkyl, oder wenn x=1, können R^1 und R^2 zusätzlich zusammen mit dem N einen geschlossenen 4-10 gliedrigen Ring aus Kohlenstoffatomen und gegebenenfalls bis zu 2 Heteroatomen bilden, oder wenn x=2, kann R^1 zusätzlich für C_2 - C_{18} -Alkylen stehen, das an beiden β -Kohlenstoffatomen mit OH substituiert und/oder durch 1 oder mehrere O-Atome und/oder 1 oder mehrere NR^2 -Gruppen unterbrochen sein kann, oder für dihydroxysubstituiertes Tetrahydro-

dicyclopentadienylen, dihydroxysubstituiertes Ethyl-cyclohexanylen, dihydroxysubstituiertes 4,4'-(Bisphenol-A-dipropylether)ylen, Isophoronylen, Dimethylcyclohexanylen, Dicyclohexylmethanylen oder 3,3'- Dimethyldicyclohexyl-methanylen stehen, und wenn x=3, kann R^1 zusätzlich für trihydroxysubstituiertes (Tri-N-propylisocyanurat)triyl stehen;

WO 2004/092260 PCT/EP2004/003697

 R_{a}^{3} , R_{b}^{3} = unabhängig voneinanuer C_{1} - C_{22} -Alkyl, C_{2} - C_{6} -Alkenyl, Phenyl, C_{6} - C_{10} -Alkylphenyl, H oder CH_{2} -X- R_{5} , wobei X = O, S,

-O-CO- oder -CO-O-;

 $R^4 = C_1-C_{18}-Alkyl/Alkenyl oder Phenyl; und$

 R^5 = H, C_1 - C_{22} -Alkyl, C_2 - C_{22} -Alkenyl, Phenyl oder C_6 - C_{10} -Alkylphenyl. und die Aminouracile die Formel (IVa) oder (IVb) besitzen

wobei bei (IVa) R1 und R2 unabhängig voneinander H, unsubstituiertes oder durch C1-C4-Alkyl-, C1-C4-Alkoxy- und/oder Hydroxy substituiertes Phenyl, unsubstituiertes oder am Phenylring durch C1-C4-Alkyl-, C1-C4-Alkoxy- und/oder Hydroxy substituiertes Phenyl-C1-C4-Alkyl, C3-C6-Alkenyl, C5-C8-Cycloalkyl, durch mindestens 1 Sauerstoffatom unterbrochenes C3-C10-Alkyl bedeuten oder CH2-CHOH-R3 ist, R3 = H oder C1-C4-Alkyl, C2-C4-Alkenyl, C4-C8- Cycloalkyl, Phenyl, C7-C10-Alkylphenyl oder C7-C10-Phenylalkyl, und bei N- oder N'-monosubstituierten Aminouracilen R1 oder R2 zusätzlich C3-C22-Alkyl ist und bei (IVb) R2 = H oder die Reste C1-C14-Alkyl, C2-C4-Alkenyl, oder C4-C8-Cycloalkyl, Phenyl, C6-C10-Alkylphenyl, C7-C10-Phenylalkyl, -CH2-X-R4, mit R4 = H, C1-C10-Alkylrest oder

C2-C4-Alkenyirest oder

C4-C8-Cycloalkyl gegebenenfalls zusätzlich einen Oxiranring enthaltend; oder gegebenenfalls substituiert mit 1-3 C1-C4-Alkyl, oder einem Benzoyl- bzw. C2-C18-Acylrest, und X=O oder S;

R3 = R2 oder R4; C2-C6-alkyl mit mindestens 1 bis 5 OH-Gruppen substituiert und/oder durch mindestens 1 bis maximal 4 O-Atome unterbrochen oder CH2-CH(OH)R2

zur Stabilisierung chlorhaltiger Polymerer.

 Stabilisatorsystem nach Anspruch 1, wobei das Perfluoralkansulfonat-Salz eine Verbindung der Formel (C_mF_{2m+1}SO₃)_nM ist, wobei M für Li, Na, K, Mg, Ca, Sr, Ba, Sn, Zn, Al, La oder Ce steht; n ist entsprechend der Wertigkeit von M 1, 2 oder 3. WO 2004/092260 PCT/EP2004/003697

3. Stabilisatorsystem nach einem der Ansprüche 1 bis 2, wobei in Verbindung mit der allgemeinen Formel (I) R^3 = Phenyl ist, in Verbindung mit der allgemeinen Formel (II) unabhängig voneinander R^6 , R^7 , R^8 und R^9 = Phenyl oder H ist, in Verbindung mit der allgemeinen Formel (III) n=1, y=2 oder 3 ist, in Verbindung mit der allgemeinen Formel (IVa) R^1 und R^2 oder R^2 und R^1 H und C_2 - C_4 -alkenyl oder C_3 - C_{10} -alkyl ist und in Verbindung mit der allgemeinen Formel (IVb) R^3 = Methyl oder Benzyl und R^2 = C_2 - C_8 -alkyl oder C_3 - C_6 -alkenyl- bzw. (C_1 - C_8 -alkoxy)-methyl ist.

- 4. Stabilisatorsystem nach einem der Ansprüche 1 bis 3, wobei in dem Perfluoralkansulfonat-Salz M = Na oder K und n = 1 ist.
- 5. Stabilisatorsystem nach einem der Ansprüche 1 bis 4, wobei die Verbindungen der allgemeinen Formel (I) 2-Phenylindol oder 2-Phenyllaurylindol sind, die Verbindungen der allgemeinen Formel (II) N,N'-Diphenylthioharnstoff, N-Phenylharnstoff, Trishydroxyethyl- bzw. Trishydroxypropylisocyanurat sind, die Verbindungen der allgemeinen Formel (III) Umsetzungsprodukte von NH₃, primären oder sekundären Aminen insbesondere Fettamine mit Ethen-, Propen-, Butenoxid oder (Thio)Glycidylethern im Molverhältnis 1:3, 1:2 oder 1:1 sind, bzw. Umsetzungsprodukte von (Thio)Glycidylethern mit Alkanolaminen wie Ethanol-, Propanol- oder Butanolaminen im Molverhältnis , 1:2 oder 1:1 sind, in den Verbindungen der allgemeinen Formel (IVa) R¹ und R² oder R² und R¹ H und allyl, propyl und butyl und in den Verbindungen der allgemeinen Formel (IVb) R³ = Methyl und R² = Ethyl oder Allyloxymethyl sind.
- 6. Stabilisatorsystem nach Anspruch 4, wobei die Verbindungen der Formel (I) bis (III) noch zusätzlich mindestens eine Verbindung der Formel (IVa) enthalten, wobei $R^1 = R^2 = C_1 C_{22}$ -alkyl oder -oleyl ist und dieses Aminouracil zusätzlich ganz oder teilweise durch einen entsprechenden strukturisomeren Cyanacetylharnstoff ersetzt sein kann.
- 7. Stabilisatorsystem nach einem der Ansprüche 1 bis 6, das zusätzlich gegebenenfalls Metallseifen enthält und/oder gegebenenfalls mindestens einen oder mehrere weitere Stoffe aus den Gruppen der Polyole und Disaccharidalkohole, Glycidylverbindungen, Hydrotalcite, Alkali-/Erdalkalialumosilikate, Alkali-/Erdalkalihydroxide, Erdalkalioxide oder (hydrogen)carbonate oder Alkali(Erdalkali)hydroxycarboxylate oder Metallcarboxylate, Phosphite, Weichmacher, Antioxidantien, Füllstoffe, Pigmente, Lichtschutzmittel, Gleitmittel und epoxidierte Fettsäureester enthält.

WO 2004/092260 PCT/EP2004/003697

8. Stabilisatorsystem nach einem der Ansprüche 1 bis 7, wobei zusätzlich ein Phosphit enthalten ist.

- 9. Zusammensetzung, enthaltend ein chlorhaltiges Polymer und ein Stabilisatorsystem nach einem der Ansprüche 1 bis 8.
- 10. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass bezogen auf 100 Gew.-Teile chlorhaltigem Polymer, 0.01-10 Gew.-Teile der Verbindungen der allgemeinen Formel (I) und/oder (II) und/oder (IVa) und/oder (IVb) und 0,001-5 Gew.-Teile des Perfluoralkansulfonat-Salzes enthalten sind.
- 11. Verfahren zur Stabilisierung von chlorhaltigen Polymeren durch Zusatz eines Stabilisatorsystems nach einem der Ansprüche 1 bis 8 zu dem chlorhaltigen Polymer.
- 12. Gebrauchsgegenstände, enthaltend PVC, welches durch ein Stabilisatorsystem nach einem der Ansprüche 1 bis 8 stabilisiert ist.
- 13. Stabilisatorsystem nach Anspruch 1 wobei Komponente B gleich (III)

ist zur Prestabilisierung von Polyvinylchlorid.

INTERNATIONAL SEARCH REPORT

tional Application No PCT/EP2004/003697

Relevant to claim No.

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C08K5/17 C08K5/21

C. DOCUMENTS CONSIDERED TO BE RELEVANT

C08K5/29

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Category °

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C08K C08L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, PAJ, WPI Data

Citation of document, with indication, where appropriate, of the relevant passages

X	WO 03/004558 A (COGNIS DEUTSCHL DAUTE PETER (DE); MARKS DIETER	1-12	
Y	KLAMANN) 16 January 2003 (2003-abstract; claims 1-8; examples pages 3-4 pages 6,19-21 pages 23,41-43	1–13	
Y	WO 02/072684 A (CROMPTON VINYL GMBH ; FRIEDRICH HANS-HELMUT (DWOL) 19 September 2002 (2002-09-claims 1,3,6-11	1–12	
		-/	
Special cat A' documer consider a considering dark filing fili	nt which may throw doubts on priority claim(s) or sciled to establish the publication date of another or other special reason (as specified) in treferring to an oral disclosure, use, exhibition or neans in published prior to the international filling date but an the priority date claimed in the priority d	To later document published after the interpretary or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the considered novel or cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the connot be considered to involve an involve an involve an involve an involve an involve an involve and involve an involve and in the art. "&" document is combined with one or more meants, such combination being obvious in the art. "&" document member of the same patent for mailing of the international sear and involve and	mational filing date the application but tory underlying the laimed invention be considered to cument is taken alone almed invention entive step when the re other such docu- is to a person skilled
	Fax: (+31-70) 340-3016	Schütte, M	

INTERNATIONAL SEARCH REPORT

Interional Application No
PCT/EP2004/003697

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP2004/003697
Category °	Citation of document, with Indication, where appropriate, of the relevant passages	
	material, material, material appropriate, of the relevant passages	Relevant to claim No.
Y	WO 02/48249 A (CROMPTON VINYL ADDITIVES GMBH; FRIEDRICH HANS-HELMUT (DE); HOPFMANN T) 20 June 2002 (2002-06-20) claims 1,9,11,12,14,21; table 2 page 10, lines 12-26 page 11, lines 4-11	1-13
Р,Х	DE 102 16 886 A (COGNIS DEUTSCHLAND GMBH) 6 November 2003 (2003-11-06) abstract; claims 1-8; examples 1-6 paragraphs '0004! - '0012!, '0015!, '0021!, '0055!, '0058!, '0068!, '0142!	1-11
		•

INTERNATIONAL SEARCH REPORT

Interional Application No PCT/EP2004/003697

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03004558		16-01-2003	DE	10131764 A1	
	,,	10 01 2005	WO	03004558 A1	09-01-2003
			EP	1406963 A1	16-01-2003
					14-04-2004
WO 02072684	Α	19-09-2002	BR	0116900 A	10-02-2004
			CA	2435035 A1	19-09-2002
			CZ	20032191 A3	17-12-2003
			EE	200300395 A	15-12-2003
			WO	02072684 A1	19-09-2002
			EΡ	1368423 A1	10-12-2003
			HU	0303220 A2	29-12-2003
			NO	20033631 A	11-09-2003
WO 0248249	Α	20-06-2002	AU	2193602 A	24-06-2002
			BR	0116147 A	21-10-2003
			CA	2429498 A1	20-06-2002
			CN	1479763 T	03-03-2004
			CZ	20031643 A3	17-09-2003
			DE	20121356 U1	25-07-2002
			EE	200300252 A	15-08-2003
			WO	0248249 A2	20-06-2002
			EP	1343838 A2	17-09-2003
			HU	0302547 A2	28-10-2003
			NO	20032638 A	11-06-2003
			US	2004054043 A1	18-03-2004
DE 10216886	Α	06-11-2003	DE	10216886 A1	06-11-2003

INTERNATIONALER RECHERCHENBERICHT

Interiorales Aktenzeichen PCT/EP2004/003697

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08K5/17 C08K5/21 C08K5/29

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C08K C08L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, PAJ, WPI Data

	Bezeichnung der Veröffentlichung, soweil erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 03/004558 A (COGNIS DEUTSCHLAND GMBH; DAUTE PETER (DE); MARKS DIETER (DE); KLAMANN) 16. Januar 2003 (2003-01-16)	1-12
Y	Zusammenfassung; Ansprüche 1-8; Beispiele 1-8 Seiten 3-4 Seiten 6,19-21 Seiten 23,41-43	1-13
Y	WO 02/072684 A (CROMPTON VINYL ADDITIVES GMBH; FRIEDRICH HANS-HELMUT (DE); WEHNER WOL) 19. September 2002 (2002-09-19) Ansprüche 1,3,6-11	1-12

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
Besondere Kategorien von angegebenen Veröffentlichungen: A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmektedatum veröffentlicht worden ist L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmekdedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht als auf erfinderischer Bedeufung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkelt beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist *&* Veröffentlichung, die Mitglied derseiben Patentfamilie ist
16. Juni 2004	Absendedatum des internationalen Recherchenberichts
	22/06/2004
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bediensteter
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schütte, M

INTERNATIONALER RECHERCHENBERICHT

C.(Forteets	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	T/EP2004/003697
Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden	Teile Betr. Anspruch Nr.
Y	WO 02/48249 A (CROMPTON VINYL ADDITIVES GMBH; FRIEDRICH HANS-HELMUT (DE); HOPFMANN T) 20. Juni 2002 (2002-06-20) Ansprüche 1,9,11,12,14,21; Tabelle 2 Seite 10, Zeilen 12-26 Seite 11, Zeilen 4-11	1-13
°,X	DE 102 16 886 A (COGNIS DEUTSCHLAND GMBH) 6. November 2003 (2003-11-06) Zusammenfassung; Ansprüche 1-8; Beispiele 1-6	1–11
	Absätze '0004! - '0012!, '0015!, '0021!, '0055!, '0058!, '0068!, '0142!	
٠		·
	·	

INTERNATIONALER RECHERCHENBERICHT

Int ionales Aktenzeichen
PCT/EP2004/003697

lm Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
WO 030	04558	Α	16-01-2003	DE	10131764	Δ1	09-01-2003
				WO	03004558		16-01-2003
				ΕP	1406963		14-04-2004
WO 020	72684	Α	19-09-2002	BR		A	10-02-2004
				CA		A1	19-09-2002
				CZ	20032191		17-12-2003
				EE	200300395		15-12-2003
				WO	02072684		19-09-2002
				EP	1368423 /		10-12-2003
				HU	0303220 /		29-12-2003
		_		МО	20033631 A	4	11-09-2003
WO 0248	3249	Α	20-06-2002	AU	2193602 A		24 06 0000
			20 00 E00E	BR	0116147		24-06-2002
				CA		\ 1	21-10-2003
				CN	1479763		20-06-2002 03-03-2004
				CZ	20031643 A		17-09-2003
				DE	20121356 L		25-07-2002
				EE	200300252 A		15-08-2003
				WO	_	. 2	20-06-2002
				EP		12	17-09-2003
				ΗÙ		2	28-10-2003
				NO	20032638 A		11-06-2003
				US	2004054043 A	-	18-03-2004
DE 1021	 6886	 А	06-11-2003	DE	10216886 A	 .1	06-11-2003