Results

March 23, 2013

Tables of Friedman, Aligned Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms (Friedman)

$\operatorname{Ranking}$	1.5000000000000004	4.25	4.8	3.15000000000000004	4.125	3.17500000000000007
Algorithm	L-Co-R	ETS	Croston	Theta	RW	ARIMA

Friedman statistic (distributed according to chi-square with 5 degrees of freedom: 39.264285714285734. P-value computed by Friedman Test: 2.1012737416725713E-7.

Table 2: Average Rankings of the algorithms (Aligned Friedman)

)	Ranking	29.35	69.4	84.7	60.350000000000001	68.825	50.374999999999999
)	Algorithm	L-Co-R	ELS	$\operatorname{Croston}$	Theta	RW	ARIMA

Aligned Friedman statistic (distributed according to chi-square with 5 degrees of freedom: 16.923381262328157. P-value computed by Aligned Friedman Test: 0.004647422237445631.

Table 3: Average Rankings of the algorithms (Quade)

,)	gorithm Ranking	-Co-R 1.5095238095238093	ETS 4.238095238095238	roston 5.023809523809524	Theta 3.2952380952380946	RW 3.9571428571428564	BIMA 9 9761904761904763
)	Algorithm	L-Co-R	ETS	Croston	Theta	RW	ARIMA

Quade statistic (distributed according to F-distribution with 5 and 95 degrees of freedom: 12.082053820948609. P-value computed by Quade Test: 4.5738614445137335E-9.

	Finner
0.05 (FRIEDMAN)	Rom
Li Table for $\alpha = 0.0$	Holland
Holland / Rom / Finner /	Holm/Hochberg/Hommel
/ Hochberg /	d
Table 5: Holm /	$z = (R_0 - R_i)/SE$
	algorithm

	-1	11.0/\ r		`	11-11-11	-	Ē	
$\boldsymbol{\imath}$	algoritum	$z = (\kappa_0 - \kappa_i)/SE$	d	попт/ поспрегв/ потпет	пошапа	Rom	Finner	1
5	Croston	5.578018081208208	2.4327437355602848E-8	0.01	0.010206218313011495	0.010515350115740741	0.010206218313011495	0.052353317951792704
4	$_{ m ELS}$	4.6483484010068405	3.346034047178284E-6	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.052353317951792704
3	$_{\rm RW}$	4.437059837324711	9.11959490915456E-6	0.016666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.052353317951792704
2	ARIMA	2.831266753340531	0.004636403572904565	0.025	0.025320565519103666	0.025	0.040204113647960726	0.052353317951792704
1	$_{ m Theta}$	2.7890090406041046	0.005286958915938802	0.02	0.0500000000000000044	0.05	0.0500000000000000044	0.05

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value $\leq 0.01.$ Hochberg's procedure rejects those hypotheses that have a p-value $\leq 0.05.$ Hommel's procedure rejects all hypotheses. Rom's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Li's procedure rejects those hypotheses that have a p-value ≤ 0.05 .

	Finner
.05 (ALIGNED FRIEDMAN)	Rom
$ext{for } \alpha = 0.$	Holland
and / Rom / Finner / Li Table for α	Holm/Hochberg/Hommel
erg / Holl	d
Table 6: Holm / Hochb	$z = (R_0 - R_i)/SE$
	i algorithm

)			ţ	į	
r	algorithm	$z = (R_0 - R_i)/SE$	d	Holm/Hochberg/Hommel	Holland	Kom	Finner	Li
5	Croston	5.031818181818182	4.858499308565756E-7	0.01	0.010206218313011495	0.010515350115740741	0.010206218313011495 0.010515350115740741 0.010206218313011495	0.04968642808555686
4	ELS	3.640909090909091	2.7167705973685837E-4	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.04968642808555686
က	$_{\rm RW}$	3.588636363636364	3.324121112500655E-4	0.016666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.04968642808555686
2	Theta	2.8181818181819	0.004829645255939948	0.025	0.025320565519103666	0.025	0.040204113647960726	0.04968642808555686
П	ARIMA	1.9113636363636355	0.05595786637441985	0.05	0.0500000000000000044	0.05	0.0500000000000000044	0.05

Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Holland's procedure rejects those hypotheses that have a p-value ≤ 0.05000000000000044 . Finner's procedure rejects those hypotheses that have a p-value ≤ 0.05000000000000044 . Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.01 . Holm's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.025 . Rom's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Li's procedure rejects those hypotheses that have a p-value ≤ 0.04968642808555686 .

0.05 (QUADE)	٢
$\alpha =$	
/ Li Table for	
Finner	
Rom /	
Holland / Rom /	**/
Hochberg /	
Table 7: Holm / Hochberg	
	ţ
	,

			0			(
i	algorithm	$z = (R_0 - R_i)/SE$	d	Holm/Hochberg/Hommel	Holland	Rom	Finner	Li
ಬ	Croston	3.293035322108322	9.91120223131925E-4	0.01	0.010206218313011495	0.010206218313011495 0.010515350115740741	0.010206218313011495 0.0437189718590837	0.04371897185908375
4	ETS	2.5567875874906076	0.010564370499639505	0.0125	0.012741455098566168	0.013109375000000001	0.0203082697337702	0.04371897185908375
က	$_{\rm RW}$	2.2935232460212425	0.021817898605735526	0.01666666666666666	0.016952427508441503	0.016666666666666666	0.03030721741231923	0.04371897185908375
2	Theta	1.6732903059493502	0.09427015990831819	0.025	0.025320565519103666	0.025	0.040204113647960726	0.04371897185908375
П	ARIMA	1.3743291046197337	0.16933953467740884	0.05	0.0500000000000000044	0.05	0.0500000000000000044	0.05

Table 8: Adjusted p-values (FRIEDMAN)

			•	7		
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
1	Croston	2.435	1.2163718677801425E-7	$?7437355602848E-8 \qquad 1.2163718677801425E-7 \qquad 1.216371867801425E-7 \qquad 1.2163718677801425E-7 \qquad 1.216371867801425E-7 \qquad 1.2163718678801425E-7 \qquad 1.216371867801425E-7 \qquad 1.216371867801425E-7 \qquad 1.216371867801425E-7 \qquad 1.216371867801425E-7 \qquad 1.2163718678014780147867801478014780147801478014780147801478014$	1.2163718677801425E-7	1.2163718677801425E-7
2	$_{ m ELS}$	3.346034047178284E-6	1.673017023589142E-5	$1.673017023589142E-5 \qquad 1.3384136188713136E-5 \qquad 1.33841361887188718887188871888718887188871888$	1.3384136188713136E-5	1.3384136188713136E-5
3	$_{\rm RW}$	9.11959490915456E-6	4.5597974545772806E-5	2.7358784727463682E-5	2.7358784727463682E-5 2.7358784727463682E-5 2.7358784727463682E-5	2.7358784727463682E-5
4	4 ARIMA	0.004636403572904565	0.023182017864522824	0.00927280714580913	0.005286958915938802	0.005286958915938802
2	Theta	0.005286958915938802	0.02643479457969401	0.00927280714580913	0.005286958915938802	0.005286958915938802

Table 9: Adjusted p-values (FRIEDMAN)

p_{Li}	7 2.445673853247211E-8	3.363807101713094E-6	5 9.167982045287672E-6	0.004639421773527923	0.005286958915938802	
p_{Finn}	1.2163718110524968E-	8.365064125492871E-6	1.5199278644573155E-5	0.005792141777838489	0.005792141777838489	
p_{Rom}	$1.2163718110524968E-7 \qquad 1.1567583146464321E-7 \qquad 1.2163718110524968E-7$	1.276198921450597E-5	2.7358784727463682E-5	0.005286958915938802	0.005286958915938802	
p_{Holl}	1.2163718110524968E-7	1.3384069013189226E-5	2.735853522706222E-5	0.009251310907718135	0.009251310907718135	
unadjusted p	2.4327437355602848E-8	3.346034047178284E-6	9.11959490915456E-6	0.004636403572904565	0.005286958915938802	
algorithm	Croston	ETS	$_{ m RW}$	ARIMA	Theta	
ij	1	2	က	4	2	

Table 10: Adjusted p-values (ALIGNED FRIEDMAN)

			,			
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
-	Croston	4.858499308565756E-7	2.429249654282878E-6	2.429249654282878E-6	2.429249654282878E-6 $2.429249654282878E-6$ $2.429249654282878E-6$	2.429249654282878E-6
2	ETS	2.7167705973685837E-4	0.0013583852986842919	0.0010867082389474335	9.972363337501966E-4	8.150311792105751E-4
33	3 RW	3.324121112500655E-4	0.0016620605562503274	0.0010867082389474335	9.972363337501966E-4	9.972363337501966E-4
4	Theta	0.004829645255939948	0.024148226279699737	0.009659290511879895	0.009659290511879895	0.009659290511879895
ಬ	ARIMA	0.05595786637441985	0.27978933187209926	0.05595786637441985	0.05595786637441985	0.05595786637441985

Table 11: Adjusted p-values (ALIGNED FRIEDMAN)

algo	rithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
Ü	roston	4.858499308565756E-7	2.429247293767034E-6		2.3101937905486013E-6 2.429247293767034E-6	5.146483017117415E-7
	ETS	2.7167705973685837E-4	0.0010862654686014661	9.972363337501966E-4	6.790542648121844E-4	2.876978570711511E-4
	$_{\mathrm{RW}}$	3.324121112500655E-4	0.0010862654686014661	9.972363337501966E-4	6.790542648121844E-4	3.519918159067992E-4
-	Theta	0.004829645255939948	0.009635965038581773	0.009659290511879895	0.006033407554861592	0.005089881861206662
∢;	RIMA	0.05595786637441985	0.055957866374419796	0.05595786637441985	0.055957866374419796	0.05595786637441985

Table 12: Adjusted p-values (QUADE)

				(î	
	algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
	Croston	9.91120223131925E-4	0.004955601115659625	0.004955601115659625	0.004955601115659625	0.004955601115659625
7	$_{ m ELS}$	0.010564370499639505	0.05282185249819753	0.04225748199855802	0.04225748199855802	0.04225748199855802
က	RW	0.021817898605735526	0.10908949302867763	0.06545369581720659	0.06545369581720659	0.06545369581720659
4	Theta	0.09427015990831819	0.471350799541591	0.18854031981663638	0.16933953467740884	0.16933953467740884
ro	ARIMA	0.16933953467740884	0.8466976733870442	0.18854031981663638	0.16933953467740884	0.16933953467740884

Table 13: Adjusted p-values (QUADE)

			•	, ,	_	
	algorithm	unadjusted p	p_{Holl}	p_{Rom}	p_{Finn}	p_{Li}
	Croston	9.91120223131925E-4	0.004945787653834244	0.0047127304950516456	0.004945787653834244	0.0011917493339251674
7	ETS	0.010564370499639505	0.04159255018368058	0.040293189033190006	0.026202034081583725	0.012558319785356396
33	RW	0.021817898605735526	0.06403601948985371	0.06545369581720659	0.03609806259117154	0.025593492490760615
4	Theta	0.09427015990831819	0.17965345676749656	0.16933953467740884	0.1164149782205467	0.10192133046171284
2	ARIMA	0.16933953467740884	0.17965345676749656	0.16933953467740884	0.1693395346774088	0.16933953467740884