

National Aeronautics and
Space Administration

Genomic and Phenotypic Associations to Predict Human Sensitivity to Space Radiation

Biological and Physical Sciences

Sylvain Costes
NASA Ames Research Center

ARTEMIS PREPARES FOR MARS

SUSTAINABLE LUNAR ORBIT STAGING CAPABILITY AND SURFACE EXPLORATION

MULTIPLE SCIENCE AND CARGO PAYLOADS | INTERNATIONAL PARTNERSHIP OPPORTUNITIES | TECHNOLOGY AND OPERATIONS DEMONSTRATIONS FOR MARS

Galactic Cosmic Rays:

~87% protons

~12% ${}^4\text{He}$

~1% high mass-charge particles through ${}^{56}\text{Fe}$

Simulated at NASA Space Radiation Laboratory in Brookhaven National Lab

Blood-based multi-scale model for cancer risk from GCR in genetically diverse populations

Baseline DNA damage predicts radiosensitivity

Baseline DNA damage increases with age and CMV infection

Baseline DNA damage predicts radiosensitivity in patients *ex vivo*

Classification based on clinical response.

- Non Reactive (Green)
- Normally Reactive (Blue)
- Overly Reactive (Red)

Classification based on baseline DNA damage.

- Low Baseline (Green)
- Medium Baseline (Blue)
- High Baseline (Red)

Baseline DNA damage predicts radiosensitivity in patients *in vivo*

Baseline DNA damage predicts radiosensitivity in healthy donors *ex vivo*

Experimental setup

Radiation-induced DNA damage

Defining radiosensitivity: slopes to describe the *rate* of radiation-induced DNA damage

Defining radiosensitivity: residual foci at 24h to describe *persistent* radiation-induced DNA damage

$$(\text{IR, 24h} - \text{Sham, 24h}) / (\text{IR, 4h} - \text{Sham, 4h})$$

IR: high dose of irradiation (0.82 Gy for Fe)

Sham: 0 Gy irradiation control

Radiosensitivity score to describe the response pattern

FPG = Foci Per Gray

- FPG high = $(\text{RIF}, 0.82 \text{ Gy} - \text{RIF}, 0.3 \text{ Gy}) / (0.82 - 0.3)$
- FPG low = $(\text{RIF}, 0.3 \text{ Gy} - \text{RIF}, 0 \text{ Gy}) / 0.3$

$X,i = \text{FPG high},i - \text{FPG low},i$

Then, scores based on mean and standard deviation:

- $X < (\text{mean} - 2\text{SD})$: score **1**
- $(\text{mean} - 2\text{SD}) < X < (\text{mean} - 1\text{SD})$: score **2**
- $(\text{mean} - 1\text{SD}) < X < (\text{mean} + 1\text{SD})$: score **3**
- $(\text{mean} + 1\text{SD}) < X < (\text{mean} + 2\text{SD})$: score **4**
- $X > (\text{mean} + 2\text{SD})$: score **5**

Red dotted line = “hypersensitive”
FPG high << FPG low, **score 1**

Fe Z score classified per run

Blue dotted line = “hyposensitive”
FPG high >> FPG low, **score 5**

No sex differences in DNA repair responses

No differences in DNA repair responses based on CMV status

DNA repair is reduced with age

Slopes are reduced and baselines are increased with age
“Unhealthy” response: high baseline, low repair after stressor

Comparison between DNA repair responses to 600 MeV/n ^{56}Fe particles and gamma rays

Steeper in gamma than in Fe: Fe leads to clustering of repair sites

Steeper in Fe than in gamma: remaining damage

Comparison of residual DNA damage caused by 600 MeV/n ^{56}Fe particles and gamma rays

More in Fe than in gamma and not correlated (Fe, not gamma leads to prolonged response)

Genomic associations with radiosensitivity: ongoing!

Characteristics:
Genotype
Baseline responses
Demographics

**Radiosensitivity
outputs**

**Predictors and
Biomarkers**

**Pathways and
Mechanisms**

Countermeasures

Acknowledgments

Radiation Biophysics Lab at NASA Ames Research Center:

Egle Cekanaviciute, Connie Tsai Pasternak, Sonali Verma, Estrella Passerat de la Chapelle

Former lab members: Eloise Pariset, Margaux Petay, Alejandra Lopez Macha, Ivan Paulino Lima, Sherina Malkani, Vanesa Gomez Gonzalez, Jonathan Oribello

Collaborators: Valery Boyko, Cassandra Juran

Mason Lab at Cornell University

Chris Mason, Cem Meydan, Jonathan Foox

Brookhaven National Laboratory

Adam Rusek, Peter Guida

FORMER COLLABORATORS

LBNL: Gary Karpen, Jian-Hua Mao, Antoine Snijders

NASA: Steve Blattnig, Artem Ponomarev, Ianik Plante

CSU: Michael Weil

UCSF: Mary Helen Barcellos-Hoff

INSERM, France: François Paris

Jules Bordet Hospital, Belgium: Sébastien Penninckx

Exogen Biotechnology Inc.: Jonathan Tang, Antony S. Tin