Definizioni e Teoremi di Algebra (senza esempi)

Canale A-L

Anno accademico 2021/2022

Contents

1	Cap	itolo 1	3
	1.1	Corrispondenza	8
	1.2		8
	1.3		8
	1.4	Relazione di equivalenza	8
	1.5	Relazione banale (di uguaglianza)	8
	1.6	Relazione caotica	8
	1.7	Classe di equivalenza	8
	1.8	Insieme quoziente	9
	1.9	Partizione insiemistica	9
	1.10	Funzione/Applicazione	9
			9
	1.12	Suriettiva	Э
	1.13	Biunivoca (biiettiva)	Э
		Funzione caratteristica	Э
	1.15	Operazione binaria	Э
	1.16	Assiomi di Peano	Э
	1.17	Principio del buon ordinamento di \mathbb{N}	1
		Teor: Divisione con resto su \mathbb{N}	1
2	Calo	colo combinatorio	1
	2.1	Notazione funzionale	1
	2.2	Fattoriale crescente	1
	2.3	Fattoriale decrescente	1
	2.4	Pigenhole principle (principio dei cassetti)	1
	2.5	Permutazione	1
	2.6	Coefficiente binomiale	1
	2.7	Formula	2
	2.8	Relazione ricorsiva	2
	2.9	Simmetria	2
	2.10	Relazione d'ordine	2
	2.11	Proposizione - Naturali e divisibilità	2

	2.12	POSET (Partial order set)	12
3	I nu	meri	13
	3.1	Costruzione di \mathbb{Z} (interi)	13
	3.2	Definizione di \mathbb{Z}	13
	3.3	Classi su \mathbb{Z}	13
	3.4	Sottoinsiemi di $\mathbb Z$	13
	3.5	Somma su \mathbb{Z}	13
	3.6	Prodotto su \mathbb{Z} :	13
	3.7	Proprietà operazioni su \mathbb{Z}	13
	3.8	Divisibilità	14
	3.9	Multiplo	14
	3.10	Associati	14
	3.11	Unità	14
	3.12	Irriducibile	14
	3.13	Primo	14
		3.13.1 Proposizione: in \mathbb{Z} , a è primo $\Rightarrow a$ irriducibile	14
		3.13.2 Proposizione: in \mathbb{Z} a irriducibile \Rightarrow a primo	15
	3.14	Massimo comune divisore	15
		3.14.1 Teor: Esistenza del MCD tra due numeri	15
		3.14.2 Prop: se $c a \in c b$ allora c divide ogni combinazione lineare	
		di a e b	16
	3.15	Proposizione	16
		$3.1\overline{5.1}$ Lemma $MCD(m,m+1)=1$	16
	3.16	Algoritmo di Euclide	16
		3.16.1 Lemma1: L'algoritmo termina	16
		3.16.2 Lemma2: Se $a = bq + r \ MCD(a, b) = MCD(b, r) \dots$	17
		3.16.3 Corollario: $MCD(a, b) = MCD(r_n, 0) = r_n 1$	17
		3.16.4 Lemma3	17
	3.17	Coprimi	17
		3.17.1 Osservazione1	17
		3.17.2 Osservazione 2	17
		3.17.3 Proposizione 1	17
		3.17.4 Proposizione 2	17
	3.18	Equazione diofantea	18
	0.20	3.18.1 Teor: Soluzione equazione diofantea	18
	3.19	Teorema fondamentale dell'aritmetica	18
	2.20	3.19.1 Osservazione 1	18
		3.19.2 Osservazione 2	18
		3.19.3 Dimostrazione esistenza	18
	3.20	Dimostrazione unicità	19
		Teor Fuelide - Esistenza infiniti primi	19

4	Con	gruenze 20	0
	4.1	Congruenza modulo n	0
	4.2	Proposizione	0
	4.3	Quoziente	0
	4.4	Proposizione - Resto	0
	4.5	Osservazione	1
	4.6	Proposizione somma	1
	4.7	Dimostrazione prodotto	1
	4.8	Proposizione - Învertibilità	1
	4.9	Classi resto invertibili	2
	4.10	Teorema Uguaglianza sbagliata	2
		4.10.1 Grande teorema di Fermat	3
		4.10.2 Piccolo teorema di Fermat	3
	4.11	Teorema Eulero-Fermat	4
		Corollario	4
5	Poli	nomi a coefficienti reali in 1 indeterminata	5
	5.1	Descrizione	5
	5.2	Somma di polinomi	5
	5.3	Rappresentazione come successioni	5
		5.3.1 Somma di polinomi	5
	5.4	Teorema: $(\mathbb{R}[x], +)$ è un gruppo (commutativo)	5
	5.5	Prodotto di polinomi	6
	5.6	Teorema $(\mathbb{R}, +, \cdot)$ è un anello	6
	5.7	Grado del prodotto	6
	5.8	Fatti importanti	6
6		tture algebriche 2	
	6.1	Gruppo	
	6.2	Gruppo commutativo (abeliano)	
	6.3	Anello	
		6.3.1 Anello commutativo	7
		6.3.2 Anello unitario	7
		6.3.3 Divisore dello zero	7
		6.3.4 Dominio di integrità	8
		6.3.5 Legge di annullamento del prodotto $\dots \dots 2$	8
	6.4	Campo	
	6.5	Semigruppo	8
		6.5.1 Monoide	8
	6.6	Elenco gruppi	8
	6.7	Gruppo simmetrico	9
		6.7.1 Permutazione	9
		$6.7.2 S_n \dots \dots \dots 2$	9
		6.7.3 Proposizione	9
		6.7.4 Proposizione	9
		6.7.5 3 ^a notazione: Permutazione come prodotto di cicli disgiunti 2	9

		6.7.6 Orbita
		6.7.7 Proposizione
		6.7.8 Permutazione ciclica
		6.7.9 Teorema prodotto di scambi
		6.7.10 Teorema parità
		6.7.11 Pari, dispari
		6.7.12 Gruppo alterno
		6.7.13 Segno
	6.8	Classi coniugate in S_n
		6.8.1 Definizione
		6.8.2 Proposizione
	6.9	Definizione multinsieme
	6.10	Gruppi finiti
		6.10.1 Proprietà 1
		6.10.2 Proprietà 2
	6.11	Sottogruppi
		6.11.1 Definizione
		6.11.2 Criteri di verifica
		6.11.3 Notazione
		6.11.4 Proposizione
	6.12	Proposizione: intersezione di sottogruppi
		Proposizione 1
		Proposizione 2
	-	
7	Sott	ogruppo generato 34
	7.1	Definizione
	7.2	Notazione
	7.3	Proposizione
	7.4	$\langle X \rangle$ è il più piccolo sottogruppo che contiene $X \ldots 34$
	7.5	Defizione: ordine (periodo)
	7.6	Definizione: gruppo ciclico
	7.7	Proposizione
	7.8	Proposizione
	7.9	Proposizione: sottogruppi di un gruppo ciclico
	7.10	Osservazione
	7.11	Proposizione
		Proposizione - Generatori gruppo cicliclo
		Teorema di Lagrange
	,3	7.13.1 Corollario 1
		7.13.2 Corollario 2
	7 14	Definizione: indice di un sottogruppo

8	Classi laterali di un sottogruppo	38
	8.1 Definizione: congruenza destra modulo	38
	8.2 Proposizione	38
	8.3 Insieme quoziente	38
	8.4 Proposizione	39
	8.5 Definizione: congruenza sinistra modulo	39
0	Omomorfismi	40
9		40 40
		40
	9.3 Epimorfismo	40
	9.4 Monomorfismo	40
	9.5 Isomorfismo 2	40
	9.6 Proposizione	40
	9.7 Kernel/Nucleo	40
	9.8 Proposizione	41
	9.9 Omomorfismo di anelli	41
	9.10 Proposizione	42
	9.11 Proposizione	42
10	Spazi Vettoriali	43
	10.1 Definizione spazio vettoriale	43
	10.2 Scalare	43
	10.3 Sottospazio vettoriale	44
	10.4 Proposizione	44
	10.5 Definizione: traccia	44
	10.6 Definizione: combinazione lineare	45
	10.7 Proprietà di calcolo negli spazi vettoriali	45
	10.8 Definizione	45
	10.9 Osservazione: combinazione lineare banale	45
	10.10 Definzione: linearmente dipendente	45
	10.11Osservazione	45
		46
	10.12Osservazione: linearmente indipendente	
	10.13Osservazione	46
	10.14Osservazione	46
	10.15Osservazione	46
	10.16Sottospazio generato da: span	46
	10.17Proposizione	46
	10.18Sistema di generatori	47
	10.19Basi di spazi vettoriali	47
	10.20Spazio finitamente generato	47
	10.21Proposizione	47
	10.22 N-upla delle coordinate di v in base B	48
	10.23Corollario	48
	10.24Teorema: esistenza di una base	48
	10.25Proposizione	48

	10.26 Dimensione di V	48
	10.27Osservazione (notazione)	48
	10.28Teorema del completamento di una base	48
	10.29Teorema	48
	10.30Corollario	49
	10.31Osservazioni	49
	10.32Somma di sottospazi	49
	10.33Proposizione	50
	10.34Teorema di Grossman	50
	10.35Somma diretta di sottospazi	50
	10.36Proposizione	50
11	Ciatami di agrapiani linggui	51
11	Sistemi di equazioni lineari	51
	11.1 Scrittura	-
	11.2 Risolvere sistema di equazioni	51
	11.3 Sistemi equivalenti	51
	11.3.1 Operazioni elementari di riga	51
	11.4 Equivalenza per riga	51
	11.5 Proposizione	51
	11.6 Proposizione	52
	11.7 Matrice identica	52
	11.8 Corollario	52
	11.9 Teorema	52
	11.10Rango	52
	11.11Pivot	52
	11.12Rango pieno	52
	11.13Proposizione: proprietà del rango	53
	11.14Teorema: Rouchè-Capelli	53
12	Studio dei sistemi omogenei	54
	12.1 Proposizione	54
	12.2 Teorema: Struttura sulle soluzioni di un sistema	54
	12.3 Nota importante	54
	12.0 11000 importante	01
13	Applicazioni lineari	55
	13.1 Definizione: applicazione lineare (trasformazione lineare o homo-	
	morfism of vector space)	55
	13.2 Proposizione	55
	13.3 Definizione	55
	13.4 Definizione	56
	13.5 Proposizione (risolvere per esercizio)	56
	13.6 Osservazione (!)	56
	13.7 Proposizione	56
	13.8 Corollario	57
	13.9 Corollario	57
	13.10Definizione: rango trasformazione lineare	57

13.11Teorema della dimensione	 57
13.12Osservazione	 58
13.13Proposizione	 58
13.14Conseguenze della proposizione	 59
13.15Osservazione: iniettività, suriettività	 59
13.16Osservazione: isomorfismo	 59
13.17Esempio isomorfismo	 60
13.18Teorema	 60
13.19Osservazione	 61
13.20 Proposizione: ricapitolazione sulle matrici invertibili	61
13.21Determinante di una matrice quadrata	 61
13.21.1 Sistemi $AX = 0$	62
$13.21.2 n = 1 \dots -$	62
$13.21.3 n = 2 \dots \dots$	62
$13.21.4 n = 3 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	62
13.21.5 Definizione determinante	62
13.21.6 Proprietà del determinante	63
13.21.7 Teorema di Binet	63
13.21.8 Corollario di Binet	64
13.21.9 Teorema di Laplace	64
13.21.1 Metodo alternativo calcolo determinante	64
13.22Cambiamento di base	65
13.23Def: Matrice associata a una trasformazione lineare T	68
13.24Proposizione	68
13.25Definizione: matrice simile	69
13.26Proposizione	69
13.27Proposizione	69
$13.28 \mathcal{M}_n(\mathbb{R})_{/\sim}$ quoziente modulo la similitudine)	69
13.29Definizione	69
13.30Osservazione	70
13.31Proposizione	70
13.32Diagonalizzazione di una matrice	70
13.33Polinomio caratteristico	71
13.34Proposizione	71
13.35Proprietà del polinomio caratteristico	72
13.36Corollario	72
13.37Definizioni	72
13.38Teorema	73
13.36 Teorema	 13
14 Usi di Gauss-Jordan in vari ambiti	74
14.1 Risolvere $AX = b \dots \dots \dots \dots \dots \dots$	74
14.2 Rango e base ImL_A	74
14.3 Trovare $Ker(L_A) = KerA \dots \dots \dots \dots \dots$	74
14.4 Estrazione insieme di vettori indipendenti	74
14.5 Completamento a un base di $\mathbb R$	 74
14.6 Trovare base di $U + W \in U \cap W$	 75

1 Capitolo 1

Relazione e corrispondenza sono interscambiabili.

1.1 Corrispondenza

Una corrispondenza ρ di X in Y è una terna (ρ, X, Y) dove $\rho \subseteq X \times Y$.

1.2 Relazione in se

Una Relazione di X in sè, è una corrispondenza ρ di X in X. Se $(x,y) \in \rho$ si scrive anche $x\rho y$ (notazione infissa), cioè x è in relazione ρ con y.

1.3 Relazione/Corrispondenza inversa

Una corrispondenza ρ di X in Y è la relazione di Y in X denotata con ρ^{-1} data dalla seguente:

$$y\rho^{-1}x \Leftrightarrow x\rho y$$

1.4 Relazione di equivalenza

una relazione su A (cioè un sotto
insieme ρ di AxA) si dice di equivalenza se verifica le tre seguenti proprietà:

Riflessiva: $\forall a \in A, a\rho a$.

Simmetrica: $\forall a, b \text{ in } A, a\rho b \Rightarrow b\rho a$

Transitiva: $\forall a, b, c \in A \text{ se } (a\rho b \wedge b\rho c) \Rightarrow a\rho c$

1.5 Relazione banale (di uguaglianza)

Su A $x, y \in A \ x \rho y \Leftrightarrow x = y$

1.6 Relazione caotica

Su A $x \rho y \ \forall x, y \in A$

1.7 Classe di equivalenza

Data la relazione ρ in A, si definisce classe di equivalenza modulo ρ di un elemento $a \in A$ l'insieme di tutti gli elementi che sono equivalenti ad a; si denota con $[a]_{\rho}$.

$$[x]_{\rho} := \{ y \in A : y \rho x \}$$

1.8 Insieme quoziente

Data la relazione di equivalenza ρ su A, si definisce insieme quoziente l'insieme delle classi di equivalenza di ρ dato $x \in A$ si denota con $A/_{\rho}$.

$$A/_{\rho} = \{ [x]_{\rho} : x \in A \}$$

Nota: Relazione di equivalenza e partizioni insiemistiche sono sostanzialmente la stessa cosa.

1.9 Partizione insiemistica

Una partizione insiemeistica di A è una famiglia di sottoinsiemi di A non vuoti, tali che ad ogni elemento di A corrisponde un solo sottoinsieme.

$$H = \{A_i : i \in I\}$$

con

$$A_i \subseteq A \ \forall i \in I$$

con

$$i \neq j, i, j \in I \Leftrightarrow A_i \cap A_j = \emptyset$$

che equivale a dire:

$$\bigcup_{i \in I} A_i = A$$

cioè la famiglia H ricopre A.

1.10 Funzione/Applicazione

 $f: S \to T$ è un'applicazione di S in T se (f, S, T) è una corrispondenza di S in T, ovvero $f \subseteq S \times T$ che soddisfa la seguente proprietà: $\forall x \in S \exists ! y$ in T denotato con y = f(x), f è una legge univoca (ben definita).

L'elemento f(x) si chiama **immagine dell'elemento**.

L'immagine di f è un sottoinsieme del codominio T definito da:

$$Im(f) := \{ y \in T : \exists \ x \in S, y = f(x) \}$$

Controimmagine di y è il sottoinsieme di S del dominio definito da:

$$f^{-1}(y) := \{x \in S : f(x) = y\} \subseteq S$$

1.11 Iniettiva

f è iniettiva $\Leftrightarrow \forall x, x' \in S : [f(x) = f(x') \Rightarrow x = x'].$ Definizione alternativa: f è iniettiva $\Leftrightarrow \forall x, x' \in S : [f(x) \neq f(x') \Rightarrow x \neq x'].$ f è iniettiva $\Leftrightarrow \forall y \in T \mid f^{-1} \mid \leq 1$, ovvero per ogni elemento y in T esiste al più un'immagine.

1.12 Suriettiva

f è suriettiva se $\Rightarrow \forall y \in T \; \exists \; x \in S : f(x) = y$ Definizione alternativa: f è suriettiva $\Leftrightarrow f(S) = Im(S) = T$. f è suriettiva $\Leftrightarrow \forall y \in T \; |f^{-1}(y)| \geq 1$, ovvero per ogni elemento y in T esiste almeno un'immagine.

1.13 Biunivoca (biiettiva)

se f è sia iniettiva che suriettiva.

f è biiettiva $\Leftrightarrow \forall y \in T |f^{-1}(y)| = 1$, ovvero per ogni elemento y in T esiste una sola immagine.

1.14 Funzione caratteristica

E' la funzione che vale 1 se $x \in S$, 0 se $x \notin S$.

1.15 Operazione binaria

Un'operazione binaria su S, è un'applicazione $m: S \times S \to S$; notazione funzionale $(s,s') \mapsto m(s,s')$; notazione infissa sms' o s*s.

1.16 Assiomi di Peano

per la costruzione dei naturali \mathbb{N}

- 1. I numeri formano una classe
- 2. Lo "zero" è un numero
- 3. Se a è un numero allora il successore a' è un numero
- 4. Se $a \neq b$ sono due numeri allora $a' \neq b'$
- 5. Lo "zero" non è successore di nessun numero ($\nexists \, a$ numero tale che zero = a')
- 6. Assioma di induzione:

Se S è una classe di numeri tale che:

- $zero \in S$
- Se $a \in S$ allora $a' \in S$

allora ogni naturale è in S.

I naturali sono la più piccola classe che

- Contiene lo zero
- $\bullet\,$ Chiusa rispetto a contenere i successori

1.17 Principio del buon ordinamento di \mathbb{N}

Se $S\subseteq \mathbb{N}, S\neq \emptyset$, allora esiste un minimo in S, cioè esiste $m\in S$ tale che se $h\in \mathbb{N}, h< m$ allora $h\notin S$.

1.18 Teor: Divisione con resto su \mathbb{N}

Siano $a, b \in \mathbb{N}, b \neq 0$; allora esistono $q, r \in \mathbb{N}$ tali che

- a = bq + r
- $0 \le r < b$

 $\forall a,b \in \mathbb{Z}, b \neq 0; \exists$ unici $q,r \in \mathbb{Z}$ con $a=bq+r \land 0 \leq r < b$ TODO: Dimostrazione

2 Calcolo combinatorio

2.1 Notazione funzionale

Insieme delle applicazioni da A verso B

$$B^A = \{f : A \to B\}$$

2.2 Fattoriale crescente

$$n^{(m)} := n * (n+1) * ... * (n+m-1)$$

2.3 Fattoriale decrescente

$$n_{(m)} := n * (n-1) * \dots * (n-m+1)$$

2.4 Pigenhole principle (principio dei cassetti)

Se ho n oggetti e m cassetti, se n > m e devo disporre tutti gli oggetti nei cassetti allora esiste un cassetto che contiene almeno due oggetti.

2.5 Permutazione

Sia A un insieme. Una biiezione $f: A \to A$ si chiama anche permutazione di A.

2.6 Coefficiente binomiale

Prima interpretazione combinatoria: $\binom{n}{i}$ è il coefficiente di x^iy^{n-i} nello sviluppo $(x+y)^n = \sum_{z_i \in \{x,y\}} z_1...z_n$, ovvero il numero di stringhe binarie (su x, y)

- lunghe n
- con i occorrenze di x

- con n-i occorrenze di y
- $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$

Seconda interpretazione combinatoria: numero di sottoinsiemi di cardinalità i su un insieme [n] di cardinalità n.

2.7 Formula

$$\binom{n}{i} = \frac{n(n-1) * \dots * (n-i+1)}{i!} = \frac{n!}{i!(n-i)!}$$

2.8 Relazione ricorsiva

$$\binom{n}{i} = \binom{n-1}{i-1} + \binom{n-1}{i}$$

Dimostrazioni algebrica e combinatoria.

2.9 Simmetria

$$\binom{n}{i} = \binom{n}{n-i}$$

Il coefficiente binomiale è simmetrico rispetto al centro della riga n-esima $\lfloor \frac{n}{2} \rfloor$ del triangolo rappresentante tutti i coefficienti del coefficiente binomiale.

Dimostrazioni algebrica e combinatoria.

2.10 Relazione d'ordine

Una relazione ρ su X è una relazione d'ordine (o un ordine, o un ordinamento) se valgono per ρ le proprietà:

- (R) $\forall x, x \rho x$
- (AS) $\forall x, y (x \rho y \land y \rho x) \Rightarrow x = y$
- (T) $\forall x, y, z \ (x \rho y \land y \rho z) \Rightarrow x \rho z$

2.11 Proposizione - Naturali e divisibilità

 $(\mathbb{N}, |)$ l'insieme dei naturali con la divisibilità è un insieme parzialmente ordinato. (La divisibilità è una relazione d'ordine su N*).

TODO: Dimostrazione R, AS, T

2.12 POSET (Partial order set)

Un insieme munito di una relazione d'ordine si dice parzialmente ordinato.

3 I numeri

3.1 Costruzione di \mathbb{Z} (interi)

Partendo da \mathbb{N} : prendiamo su $\mathbb{N} \times \mathbb{N}$ la relazione ρ definita sulle coppie $(n,m) \in \mathbb{N} \times \mathbb{N}$ tale che $(n,m)\rho(n',m') \Leftrightarrow n+m'=m+n'$

3.2 Definizione di \mathbb{Z}

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N}/\rho$$

3.3 Classi su \mathbb{Z}

 $\overline{(0,0)}$ zero $\overline{(m,0)}, m > 0$ positivi $\overline{(0,n)}, n > 0$ negativi

3.4 Sottoinsiemi di \mathbb{Z}

$$\mathbb{Z} = \mathbb{Z}^{>0} \cup \{0,0\} \cup \mathbb{Z}^{<0}$$

3.5 Somma su \mathbb{Z}

$$\overline{(n,m)} + \overline{(n',m')} = \overline{(n+n',m+m')}$$

3.6 Prodotto su \mathbb{Z} :

$$\overline{(n,m)} \cdot \overline{n',m'} = \overline{(nn'+mm',nm'+mn')}$$

3.7 Proprietà operazioni su \mathbb{Z}

 $\forall a, b, c \in \mathbb{Z} \ (a, b, c \text{ coppie } \overline{(n, m)}) \text{ valgono le seguenti:}$

- 1. Associatività: (a+b)+c=a+(b+c)
- 2. Commutatività: a + b = b + a
- 3. Esiste uno zero per la somma, cioè un elemento 0: a+0=0+a=a
- 4. $\forall a \in \mathbb{Z}$ esiste un elemento detto *opposto*, denotato con -a, cioè un elemento tale che: a + (-a) = (-a) + a = 0.

$$a = \overline{(n,m)}$$
$$-a = \overline{(m,n)}$$

- 5. Associatività prodotto: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 6. Commutatività prodotto: $a \cdot b = b \cdot a$

7. Esiste un elemento neutro per il prodotto, "1", cioè un numero in $\mathbb Z$ tale che:

$$\frac{a\cdot 1=1\cdot a=a}{\overline{(n,m)}\cdot \overline{(1,0)}=\overline{(n,m)}}$$

8. Distributività del prodotto sulla somma:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

3.8 Divisibilità

Dati $a, b \in \mathbb{Z}$ si dice che a divide b, e si indica a|b, se e solo se $\exists c \in \mathbb{Z}$ tale che $b = a \cdot c$ (ovvero $a|b \Leftrightarrow \exists c \in \mathbb{Z} : b = a \cdot c$). La divisibilità è una relazione sugli interi:

3.9 Multiplo

Se a|b diremo che b è un multiplo di a.

3.10 Associati

a,b sono associate se a|b e b|a Oss1: in \mathbb{N}^* sono associati $\Leftrightarrow a=b$. Oss2: in generale, in $\mathbb{Z} \Leftrightarrow a=b$ oppure a=-b.

3.11 Unità

In \mathbb{Z} sono +1 e -1.

3.12 Irriducibile

Un elemento $a \in \mathbb{Z}, \ a \neq 0$ è irriducibile se $a = b \cdot c \Rightarrow b$ oppure c sono unità.

3.13 Primo

Un elemento $a \in \mathbb{Z}$ si dice primo se:

$$a|b\cdot c\Rightarrow a|b\ oppure\ a|c$$

3.13.1 Proposizione: in \mathbb{Z} , a è primo $\Rightarrow a$ irriducibile

Sia $a = b \cdot c$: usando l'ipotesi che a è primo allora a|b oppure a|c. Se $a|b \Rightarrow \exists h : b = a \cdot h \Rightarrow a = a \cdot h \cdot c \Rightarrow h \cdot c = 1 \Rightarrow c = \pm 1$ Allora $a = b \cdot (+1)$ oppure $a = b \cdot (-1)$, a è irriducibile.

3.13.2 Proposizione: in \mathbb{Z} a irriducibile \Rightarrow a primo

Ipotesi: a irriducibile

Tesi: a primo Supponiamo che $a|bc \Leftrightarrow \exists h \in \mathbb{Z} : bc = ah$,

voglio mostrare che a|b oppure a|c ovvero che se $a \nmid b$ allora a|c.

Ora a irriducibile, i suoi divisori sono a, -a, 1, -1. $a \nmid b$ allora anche $-a \nmid b \Rightarrow$ i divisori comuni tra a e b sono $1, -1 \rightarrow MCD(a, b) = 1$.

$$\exists (id. \text{ B\'ezout}) \exists h, k \in \mathbb{Z}$$

$$1 = ah + bk$$

moltiplicando per c

$$c = cah + cbk = a(ck + k)$$
 $[cb = a]$

quindi a|c.

3.14 Massimo comune divisore

Dati a,b non entrambi nulli, un elemento $d\in\mathbb{Z}$ si chiama massimo comune divisore tra a e b un numero tale che:

- $d|a \wedge d|b$
- Se $c|a \wedge c|b$, allora c|d: d è il massimo tra i divisori comuni.

Chiamiamo massimo comune divisore l'unico positivo che soddisfa le due proprietà.

3.14.1 Teor: Esistenza del MCD tra due numeri

 $\forall a,b \in \mathbb{Z}$ non entrambi nulli, esiste un numero $d \in \mathbb{N}^*$ tale che d = MCD(a,b) Il massimo comune divisore si esprime come una combinazione lineare tra a e b, ovvero esistono $s,t \in \mathbb{Z}$ tali che $d = s \cdot a + t \cdot b$ (identità di Bézout).

Dimostrazione:

Sia $S = \{xa + yb : x, y \in \mathbb{Z}, xa + yb > 0\}$

- 1. $S \subseteq \mathbb{N}$
- 2. $S \neq \emptyset$

a e b sono non entrambi nulli, quindi almeno uno dei due è $\neq 0$. Sia esso a.

Se
$$a > 0$$
 allora $1 \cdot a + 0 \cdot b = a > 0$

Se
$$a < 0$$
 allora $(-1) \cdot a + 0 \cdot b = a > 0$

Per il principio del buon ordinamento, S ammette un elemento minimo: sia esso d. Quindi ogni altra combinazione lineare che sia < d non appartiene ad S.

Dimostrazione che d|a e d|b:

Dividiamo a per d (divisione col resto): $\exists \; q,r \; \text{con} \; a = dq + r, \; 0 \leq r < d$ Se r=0 allora d|a

Se $r \neq 0$ allora 0 < r < d $r = a - dq; \text{ dato che } d \in S \Rightarrow d = x_0a + y_0b \text{ allora } r = a - q(x_0a + y_0b) = a - qx_0a + qy_0b = a(1 - qx_0) - (qy_0)b$ Quindi $r \in S$ perchè è una combinazione lineare > 0 ma r < d, però d è il minimo di $S \Rightarrow Assurdo$.

Dimostrazione se d'|a e d'|b allora d'|d: Poichè d'|a e d'|b si ha che

$$\exists h : a = d' \cdot h, \exists k : b = d' \cdot k$$

Ora

$$d = x_0 a + y_0 b$$
$$= x_0 (d'h) + y_0 (d'k) =$$
$$= d'(x_0 h + y_0 h) \Rightarrow d'|d$$

3.14.2 Prop: se c|a e c|b allora c divide ogni combinazione lineare di a e b

$$a = ch$$

$$b = ck$$

$$\Rightarrow xa + yb = xch + yck$$

$$= c(xh + yk) \Rightarrow \in \mathbb{Z}$$

$$\Rightarrow c|xa + yb|$$

3.15 Proposizione

$$1 = at + bs \Rightarrow MCD(a, b) = 1$$

3.15.1 Lemma MCD(m,m+1)=1

Sia $m \in \mathbb{N}$, $m \ge 1$ allora MCD(m, m + 1) = 1.

Dimostrazione:

$$m+1-m=1 \Rightarrow 1(m+1)+(-1)m=1$$

Potendo scrivere 1 come combinazione lineare di m e m+1, m e m+1 sono primi tra loro.

3.16 Algoritmo di Euclide

3.16.1 Lemma1: L'algoritmo termina

La successione dei resti è un numero $0 \le ... < r_2 < r_1 < b$.

3.16.2 Lemma2: Se $a = bq + r \ MCD(a, b) = MCD(b, r)$

Ogni divisore comune di a e b è anche divisore comune di b ed r: questo dimostra che il MCD(a,b)|MCD(b,r):

Sia $d \in \mathbb{N}$: $d|a \wedge d|b$ e ricavando r da a = bq + r, si ha:

$$a = dh$$
 $b = dk$

$$r = a + b(-q) = dh + dk(-q) = d(h + k(-q))$$

d|rperchè r è combinazione lineare di a e b. In particolare il

si ha che il MCD(a,b)|r e MCD(a,b)|b. $\Rightarrow MCD(a,b)|MCD(r,b)$

3.16.3 Corollario: $MCD(a, b) = MCD(r_n, 0) = r_n 1$

Per il lemma 2 $MCD(a, b) = MCD(b, r_1) = MCD(r_1, r_2) = \dots = MCD(r_{n-1}, r_n) = MCD(r_n, 0)$

3.16.4 Lemma3

Se $x \in \mathbb{N}^*$ allora MCD(x,0) = x

3.17 Coprimi

a,b non entrambi nulli, $a \in b$ si dicono coprimi (o primi fra loro) se MCD(a,b)=1.

3.17.1 Osservazione1

Se $a \in b$ sono primi fra loro, allora

$$\exists x, y \in \mathbb{Z} : 1 = xa + yb$$

3.17.2 Osservazione 2

Se

$$d = MCD(a, b) \Rightarrow \exists x, y : d = ax + by$$

3.17.3 Proposizione 1

Se $\exists x_0, y_0 \text{ con } 1 = ax_0 + by_0$ allora a, b sono primi tra loro.

3.17.4 Proposizione 2

Se $a \in b$ sono coprimi e dividono un terzo numero c, allora ab|c.

3.18 Equazione diofantea

Equazione con una o più incognite sugli interi di cui si cercano le soluzioni intere. Sono del tipo:

$$ax + by = c$$

3.18.1 Teor: Soluzione equazione diofantea

L'equazione diofantea lineare in x e y ax + by = c $a, b, c \in \mathbb{Z}$ possiede soluzioni intere $(x, y) \in \mathbb{Z}^2 \Leftrightarrow d = MCD(a, b)|c$

(Dim \Rightarrow) La condizione MCD(a,b)|c è necessaria.

Ipotesi: esiste una soluzione di $x^2 + y^2 = z^2$

Tesi: $d|\text{termine noto}, d = MCD(a, b): d|a \in d|b \Rightarrow d|$ ogni combinazione lineare di a, b.

Se x_0, y_0 sono una soluzione, allora $ax_0 + by_0 = c \Rightarrow d|c = ax_0 + by_0$

(Dim⇐) La condizione è sufficiente.

Ipotesi MCD(a, b) = ah + bk, per opportuni $h, k \in \mathbb{Z}$

3.19 Teorema fondamentale dell'aritmetica

 $\forall n > 1, n \in \mathbb{N}, \exists p_1, ..., p_j \in \mathbb{N}$ (irriducibili) $\exists h_1, ..., h_j \geq 1$ tali che:

- $n = p_1^{h_1}...p_j^{h_j}$ $p_1,...p_j$ distinti
- la fattorizzazione di $n=p_1^{h_1}...p_j^{h_j} \ p_1,...p_j$ è unica a meno di riordinare i fattori

3.19.1 Osservazione 1

j può essere 1, cioè potrebbe esserci un solo irriducibile nella fattorizzazione di n, anche h possono essere 1. Se n è irriducibile $\Rightarrow n=n$ è la fattorizzazione in irriducibili di n.

3.19.2 Osservazione 2

 $1\,$ non è considerato irriducibile perché si perderebbe l'unicità della scrittura in irriducibili.

3.19.3 Dimostrazione esistenza

Con principio di induzione in forma forte.

Base: n=2, 2 è irriducibile.

Per $\mathbf{oss1}\ 2=2^1$ è la fattorizzazione in primi in irriducibili di 2

Ipotesi induttiva: ogni $2 \le a < n \pmod{2} \le a \le n-1$) è fattorizzabile in ir-

riducibili: $\exists \alpha_1...\alpha_t\alpha_i \geq 1$ e $q_1,...q_t$ irriducibili con $a = q_1^{\alpha_1}...q_t^{\alpha_t}$ Passo induttivo: provare che n sia prodotto di irriducibili **Primo caso**: n irriducibile \rightarrow fatto, per oss.1

Secondo caso: n riducibile: $\exists b, c \in \mathbb{Z}, 1 \neq b, c \neq n$ (divisori propri) con $n = bc \Rightarrow 2 \leq b, c < n$.

Allora per b e c vale l'ipotesi induttiva e quindi

$$b = q_1^{\alpha_1} ... q_t^{\alpha_t} \quad c = x_1^{\beta_1} ... x_s^{\beta_s}$$

$$n = bc = q_1^{\alpha_1}...q_t^{\alpha_t} x_1^{\beta_1}...x_s^{\beta_s}$$

3.20 Dimostrazione unicità

Nota: le fattorizzazioni hanno gli esponenti

Per induzione su m, con m è la lunghezza minima di una fattorizzazione per n. m: minimo numero di irriducibili di una fattorizzazione di n

Base: $m = 1 \Rightarrow n = n$ è primo.

Se per assurdo $n = q_1...q_s, \ s \ge 2$ allora $n|q_1$ o $n|q_2...q_s$.

Prendiamo $n|q_1$, anche q_1 è primo $\Rightarrow n = q_1$; semplificando da entrambe le parti $\Rightarrow 1 = q_2....q_s$ che porterebbe ad un assurdo perché 1 = 1.

Quindi $n=q_1$ ed è l'unica fattorizzazione.

Ipotesi induttiva: se il minimo numero di primi in una fattorizzazione di $n \in m-1$, allora la fattorizzazione è unica a meno dell'ordine.

Passo induttivo: Prendo n con una fattorizzazione lunga m irriducibili ed un altra fattorizzazione di n:

$$n = p_1 p_2 ... p_m = q_1 q_2 q_k$$

Prendo un p_i che essendo primo dividerà uno dei q_i e quindi usando la cancellatività a destra e sinistra, la fattorizzazione $p_1...p_{i-1}p_{i+1}...p_m$ sarà lunga m-1 irriducibili, allora per l'ipotesi induttiva la fattorizzazione lunga m-1 è unica \Rightarrow anche la fattorizzazione di n è unica.

3.21 Teor. Euclide - Esistenza infiniti primi

L'insieme $P = \{ p \in \mathbb{N} : p \text{ è primo} \}$ è infinito.

Dimostrazione: Supponiamo che P sia finito, cioè $P = \{p_1, ..., p_n\}$.

Sia $m = p_1, ...p_n$ il prodotto di tutti i primi.

Considero m+1: per il teorema fondamentale dell'aritmetica $m+1=p_1^{k_1}...p_n^{k_n}$, $k_1,...,k_n\geq 0$ almeno uno degli esponenti >0.

Per il lemma su MCD di un numero ed il suo successivo m e m+1 sono coprimi. Sia j tale che $k_j > 0$, cioè $p_j^{k_k}|m+1$; vale anche $p_j|m$ allora $p_j|MCD(m,m+1) = 1$ che è un assurdo.

4 Congruenze

4.1 Congruenza modulo n

La congruenza modulo
n (n fissato) è una relazione di equivalenza definita su
 $\mathbb{Z}.$

$$x \equiv y \pmod{n} \Leftrightarrow x - y$$
 multiplo di $n \Leftrightarrow n|x - y|$

4.2 Proposizione

La congruenza $(mod \ n)$ è una relazione di equivalenza.

Dimostrazione:

(R)
$$\forall x \in \mathbb{Z} : x \equiv x \pmod{n} \Leftrightarrow n | (x - x)$$

Vera perché $0 = 0 \cdot n$.

(S)
$$\forall x, y \in \mathbb{Z} : x \equiv y \pmod{n} \Rightarrow y \equiv x \pmod{n}$$

So che $n|x-y \Leftrightarrow x-y=nh$ per qualche $h \in \mathbb{Z}$.

Moltiplicando per -1: y - x = -nh = n(-h) quindi $n|y - x \Rightarrow y \equiv x \pmod{n}$

(T)
$$x \equiv y \pmod{n} \land y \equiv z \pmod{n} \Rightarrow x \equiv z \pmod{n}$$

$$(x-y) = nh_1 \land (y-z) = nh_2$$

 $(x-z) = (x-y) - (y-z) = nh_1 - nh_2 = n(h_1 - h_2)$ quindi $n|x-z \Rightarrow x \equiv z \pmod{n}$

4.3 Quoziente

Il quoziente della congruenza $(mod\ n)$ si denota come $\mathbb{Z}_{/\equiv (mod\ n)} = \{[x]_n : x \in \mathbb{Z}\}.$

Il quoziente \mathbb{Z}_n si chiama anche **interi modulo n**.

4.4 Proposizione - Resto

Dati $x,y\in\mathbb{Z}$ si ha: $x\equiv y \pmod n \Leftrightarrow$ il resto delle divisioni di x e di y per n è lo stesso.

Dimostrazione \Rightarrow (se $x \equiv_n y$ hanno lo stesso resto x - y = nh (per qualche h)

$$x = nh + y$$

Dividendo y per $n: \exists !q, r \in \mathbb{Z} : y = nq + r, \ 0 \le r < n.$

Scambiando in x: x = nh + nq + r = n(h+q) + r, x ed y hanno quindi lo stesso resto.

4.5 Osservazione

Sia $x = nq + r, \ 0 \le r < n$ la divisione con resto di x per n. Allora

$$[x]_n = [r]_n \Leftrightarrow x \equiv r \pmod{n} \Leftrightarrow x - r = nq$$

Quindi

$$n|x-r$$

4.6 Proposizione somma

La somma classi resto in \mathbb{Z}_n , definita da: $\overline{x} + \overline{y} := \overline{x+y}$, è ben posta, ovvero non dipende dalla scelta dei rappresentanti.

Dimostrazione Siano $x' \in \overline{x}$, cioè $\overline{x'} = \overline{x}$ e $y' \in \overline{y}$ cioè $\overline{y'} = \overline{y}$, allora

$$x' \equiv x \pmod{n} \Leftrightarrow x' = x + kn$$

$$y' \equiv y \pmod{n} \Leftrightarrow y' = y + hn$$

Da verificare: $\overline{x'+y'} = \overline{x+y} \Leftrightarrow x'+y' = x+y+tn$ Quindi:

$$x' + y' = x + kn + y + hn$$
$$= x + y + kn + hn$$
$$= x + y + (k+h)n [(k+h) = t]$$

4.7 Dimostrazione prodotto

$$x' \cdot y' = (x + kn)(y + hn)$$
$$= xy + xhn + kny + khn^{2}$$
$$xy + n(xh + ky + khn), \quad [(xh + ky + khn) = t]$$

4.8 Proposizione - Invertibilità

 $a \in \mathbb{Z}, \overline{a}$ invertibile in $\mathbb{Z}_n \Leftrightarrow MCD(a, n) = 1$

 $\mathbf{Dim} \Rightarrow$

Ipotesi: $\overline{a} \in \mathbb{Z}$ invertibile

Tesi: (a,n)=1

Esiste $b \in \mathbb{Z} : \overline{a} \cdot \overline{b} = 1$

$$\Leftrightarrow ab \equiv 1 \pmod{n}$$
$$\Leftrightarrow n|1 - ab$$
$$\Leftrightarrow 1 - ab = nk$$
$$\Leftrightarrow 1 = ab + nk$$

$$\Rightarrow MCD(a, n) = 1$$

 $Dim \Leftarrow$

Ipotesi: MCD(a, n) = 1

Tesi: \overline{a} è invertibile

Se MCD(a, n) = 1 allora esistono $h, k \in \mathbb{Z}$:

$$1 = ah + nk \in \mathbb{Z}$$

$$\overline{1} = \overline{ah} + n\overline{k}$$

$$\overline{1} = \overline{a}\overline{h} + \overline{n}\overline{k} \in \mathbb{Z}$$

$$\overline{n}\overline{k} = \overline{0}\overline{k}$$

$$\overline{1} = \overline{a}\overline{h} \Rightarrow \overline{h} = (\overline{a})^{-1}$$

4.9 Classi resto invertibili

$$\bigcup (\mathbb{Z}_n) := \{ a \in \mathbb{Z}_n : \overline{a} \ invertibile \} \subseteq \mathbb{Z}_n \\
\cup (\mathbb{Z}_n) = \{ \overline{a} : MCD(a, n) = 1 \}$$

4.10 Teorema Uguaglianza sbagliata

Se p è primo allora $\forall x, y \in \mathbb{Z}$ vale:

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$
$$(\overline{x} + \overline{y})^p = \overline{x}^p + \overline{y}^p \pmod{p}$$

Dimostrazione: $(x+y)^p = \sum_{i=0}^p \binom{p}{i} x^i y^{p-i}$

$$\binom{p}{0} = 1 = \binom{p}{p}$$

$$\binom{p}{0}x^0y^p = 1y^p$$

$$\binom{p}{p}x^p y^0 = 1x^p$$

Considerando i con 0 < i < p il coefficiente binomiale è:

$$\binom{p}{i} = \frac{p(p-1)...(p-i+1)}{i(i-1)...2 \cdot 1} \in \mathbb{N}$$

$$p(\frac{(p-1)...(p-i+1)}{i!}) \Rightarrow p|\binom{p}{i} \forall i=2,...,p-1$$

$$\Rightarrow \binom{p}{i} \equiv 0 \pmod{p}$$

Quindi

$$(x+y)^{p} = y^{p} + \binom{p}{1}x^{1}y^{p-1} + \binom{p}{2}x^{2}y^{p-2} + \dots + \binom{p}{p-1}x^{p-1}y^{p-(p-1)} + x^{p}$$

$$\Rightarrow \overline{y}^{p} + \overline{\binom{p}{1}}x^{1}y^{p-1} + \dots + \overline{\binom{p}{p-1}}x^{p-1}y^{p-(p-1)} + \overline{x}^{p} =$$

$$= \overline{x}^{p} + \overline{y}^{p}$$

4.10.1 Grande teorema di Fermat

 $x^n + y^n = z^n, n \ge 3$ non ha soluzioni intere.

4.10.2 Piccolo teorema di Fermat

 $\forall a \in \mathbb{Z}, \forall p (mod)$ primo si ha che: $a^p \equiv a (mod \ p)$ in \mathbb{Z}_1 , p primo vale $\overline{a}^p = \overline{a}$.

Dimostrazione per $a \in \mathbb{N}$

Per induzione su a

Base:

$$a = 0$$

$$0^{p} \equiv^{?} 0 \pmod{p}$$

$$0^{p} = 0 \in \mathbb{Z} \Rightarrow 0^{p} \equiv \pmod{p}$$

Ipotesi induttiva: supponiamo vera per a l'affermazione $a^p \equiv a \pmod{p}$

Passo induttivo: verifichiamo per (a + 1).

$$(a+1)^p \equiv a^p + 1^p \equiv a+1$$

 $a^p \to a$ e $1^p \to 1$ per ipotesi induttiva.

Se a < 0 è ancora vero?

Se a < 0 allora -a > 0, cioè $(-a)^p \equiv -a \pmod{p}$. Ora:

$$0 = a - a$$

$$0^{p} = (a - a)^{p}$$

$$0^{p} \equiv (a - a)^{p} \equiv a^{p} + (-a)^{p}$$

$$\equiv a^{p} - a \equiv 0 \cdot (mod \ p) \Leftrightarrow a^{p} \equiv a \pmod{p}$$

4.11 Teorema Eulero-Fermat

Se (a,p)=1 cioè se $\overline{a}\neq \overline{0}$ in \mathbb{Z}_p allora

$$a^{p-1} \equiv 1 \pmod{p}$$

Dimostrazione: se (a, p) = 1 allora esiste l'inverso moltiplicativo di \overline{a} in \mathbb{Z}_p . So che

$$a^p \equiv a \pmod{p}$$

$$(\overline{a}^p) \equiv \overline{a}(mod\ p)$$

 $\Rightarrow moltiplicando\ per\ l'inverso \Rightarrow \overline{a}^{p-1} = \overline{1}\ in\ \mathbb{Z}_p$

$$\Leftrightarrow a^{p-1} \equiv 1 \pmod{p}$$

4.12 Corollario

Se (a,p)=1e se p primo allora \overline{a}^{p-2} è l'inverso moltiplicativo di \overline{a} in \mathbb{Z}_p

Dimostrazione: l'inverso di \overline{a} è \overline{x} con $\overline{a} \cdot \overline{x} = \overline{1}$, ma

$$\overline{a} \cdot \overline{a}^{p-2} = \overline{a}^{p-1} = \overline{1}$$

per il teorema di Eulero-Fermat.

5 Polinomi a coefficienti reali in 1 indeterminata

5.1 Descrizione

$$\mathbb{R}[x] := \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k : a_i \in \mathbb{R}, i = 0, \dots, k, k \in \mathbb{N} \}$$

5.2 Somma di polinomi

Dati

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_k x^k$$

 $con k \leq h$

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_k + b_k)x^k + b_{k+1}x^{k+1} + \dots + b_hx^h$$

5.3 Rappresentazione come successioni

Con esempio:

$$p(x) = 1 + 3x - 4x^3 \leftrightarrow (1, 3, 0, -4, 0, 0, ...)$$

5.3.1 Somma di polinomi

$$p(x) = (a_0, a_1, a_2, \dots)$$

$$q(x) = (b_0, b_1, b_2, \dots)$$

$$p(x) + q(x) = (a_0 + b_0, a_1 + b_1, \dots, a_n + b_n, \dots)$$

 a_i, b_i sono i coefficienti di x^i nel polinomio che rappresentano.

5.4 Teorema: $(\mathbb{R}[x], +)$ è un gruppo (commutativo)

Dimostrazione:

- $\mathbb{R}[x]$ è non vuoto
- La somma è associativa

$$(\underline{a} + \underline{b}) + \underline{c} = (\dots(a_n + b_n) + c_n \dots) = (\dots a_n + (b_n + c_n) \dots) = \underline{a} + (\underline{b} + \underline{c})$$

• $0 \in \mathbb{R}$ è l'elemento neturo di $\mathbb{R}[x]$

$$0 = 0 + 0x + 0x^2 + \dots \rightarrow (0, 0, 0, \dots)$$

• Ogni polinomio ha il suo opposto: se

$$p(x) = a_0 + a_1 x + \dots + a_k x^k$$

allora l'opposto di p(x) è

$$-p(x) = -a_0 - a_1 x - \dots - a_k x^k$$

5.5 Prodotto di polinomi

$$p(x) = a_0 + a_1 x + \dots + a_k x^k \leftrightarrow (a_0, a_1, \dots)$$
$$q(x) = b_0 + b_1 x + \dots + b_k x^k \leftrightarrow (b_0, b_1, \dots)$$
$$p(x) \cdot q(x) = c_0 + c_1 x + \dots + c_r x^r \leftrightarrow (c_0, c_1, \dots)$$

$$c_0 + c_1 x + \dots + c_r x^r = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + (a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0) x^3 + \dots$$

La successione dei coefficienti di $p(x) \cdot q(x)$ è data da:

$$c_n = \sum_{i=0}^n a_i b_{n-i} = \sum_{i+j=n} a_i b_j$$

5.6 Teorema $(\mathbb{R}, +, \cdot)$ è un anello

 $(\mathbb{R},+,\cdot)$ è un anello commutativo, unitario con unità del prodotto uguale a 1 ed è un dominio di integrità. non dimostrato

5.7 Grado del prodotto

Se il grado di p(x)=kèd il grado di q(x)=hil grado del prodotto p(x)q(x)=k+h

5.8 Fatti importanti

• in $\mathbb{R}[x]$ si può fare la "divisione col resto":

$$\forall a(x), b(x) \in \mathbb{R}, \ b(x) \neq 0$$

 $\exists ! \ q(x), r(x) \in \mathbb{R} :$

- 1. $a(x) = b(x) \cdot q(x) + r(x)$
- 2. il grado di r(x) < grado b(x)
- Conseguenza della divisione col resto:

$$MCD(m(x), n(x))$$

$$m(x) = n(x) \cdot q_1(x) + r_1(x)$$

$$n(x) = r_1(x) \cdot q_2(x) + r_2(x)$$

Termina quando il resto è un polinomio di grado 0.

6 Strutture algebriche

6.1 Gruppo

Un insieme S non vuoto, munito di una operazione

$$m: S \times S \to S$$

$$(a,b) \mapsto m(a,b) = a * b \ (notatione \ infissa)$$

che verifica i punti 1, 3, 4 (vedere proposizioni operazioni su \mathbb{Z}) si chiama gruppo(S,*).

L'operazione su S è dunque:

- 1. associativa
- 2. con elemento neutro $e: \forall x, x * e = e * x = x$
- 3. per ogni elemento x esiste un inverso rispetto al prodotto * cioè un elemento y tale che x*y=y*x=e, che si denota x^{-1}

6.2 Gruppo commutativo (abeliano)

Se il gruppo (S, *) soddisfa anche la proprietà 2 (quindi associatività, elemento neutro, opposto, +commutatività).

6.3 Anello

Un anello è una terna $(A, +, \cdot)$ con:

- 1. A insieme non vuoto
- $2. + \cdot$ due operazioni binarie, associative
- 3. (A, +) è un gruppo abeliano
- 4. Distributività: $\forall a, b, c \in A, \ a \cdot (b+c) = a \cdot b + a \cdot c$

6.3.1 Anello commutativo

Se un anello $(A, +, \cdot)$ il prodotto è commutativo, cioè se $\forall a, b \in A, \ a \cdot b = b \cdot a$.

6.3.2 Anello unitario

Se esiste un elemento di A, che si denota con 1_A , tale che $a \cdot 1_A = 1_A \cdot a = a$.

6.3.3 Divisore dello zero

Un elemento $a \in A$, $a \neq 0_A$ di un anello di dice divisore dello zero se esiste $b \in A, b \neq 0$ con $a \cdot b = 0_A$.

6.3.4 Dominio di integrità

Se $(A, +, \cdot)$ è privo di divisori dello zero.

6.3.5 Legge di annullamento del prodotto

Se in un dominio di integrità $a \cdot b = 0_A$ allora $a = 0_A$ oppure $b = 0_A$.

6.4 Campo

Un campo è una terna $(K, +, \cdot)$ con K insieme non vuoto e 2 operazioni.

- $(K, +, \cdot)$ anello commutativo unitario
- Detto 0_k l'elemento neutro della somma e denotato con $K^* = K \setminus \{0_k\}$, deve valere che $\forall x \in K^* : x \cdot x^{-1} = 1_k$ (è un gruppo)

Quindi campo \Leftrightarrow anello commutativo unitario con in più $K\setminus\{0_k\}=(K^*,\cdot)$ gruppo.

6.5 Semigruppo

Sia X un insieme non vuoto, data *:

$$X * X \rightarrow X$$

$$(a,b) \mapsto a * b$$

una operazione binaria associativa: $\forall a, b, c \in X : a * (b * c) = (a * b) * c$ Un insieme X, munito di una operazione associativa si chiama **semigruppo**.

6.5.1 Monoide

Se (X,*) è un semigruppo ed inoltre esiste un elemento 1_X tale che $a*1_X=1_X*a=a$ $(1_X$ elemento neutro dell'operazione *), allora (X,*) si chiama monoide.

6.6 Elenco gruppi

- (A^*,\cdot) è un monoide non commutativo.
- $(\mathbb{N}, +)$ (commutativo) monoide (0 el. neutro) ma non è un gruppo.
- $(\mathbb{Z}, +)$ gruppo commutativo (0 el. neutro).
- $(\mathbb{Q},+)$ gruppo commutativo (0 el. neutro); $\frac{p}{a} \to opposto \frac{p}{a}$.
- (\mathbb{N}^*,\cdot) monoide, non è un gruppo.
- (\mathbb{Z}^*,\cdot) monoide, non è un gruppo.
- (\mathbb{Q},\cdot) non è un gruppo, 0 non ha inverso.
- (\mathbb{Q}^*,\cdot) gruppo.
- $(\mathbb{R},+)$ gruppo.
- (\mathbb{R}^*,\cdot) monoide, gruppo.

 $(\mathbb{Z}_n, +)$ gruppo finito commutativo; el. neutro $\overline{0}$. (\mathbb{Z}_n, \cdot) monoide, semigruppo (non è un gruppo $\overline{0}$ non è invertibile). $(\cup(\mathbb{Z}_n), \cdot)$ gruppo, el. neutro $\overline{1} = {\overline{a} : (a, n) = 1}$ (el. invertibili).

6.7 Gruppo simmetrico

6.7.1 Permutazione

 $f:[n]\to[n]$ si chiama permutazione di n elementi se f è biiettiva.

6.7.2 S_n

$$S_n := \{ \sigma : [n] \to [n] : \sigma \ e' \ biiettiva \}$$

= $\{ \sigma : \sigma \ e' \ una \ biiettiva \}$

6.7.3 Proposizione

$$|S_n| = n!$$

6.7.4 Proposizione

 (S_n, \cdot) l'insieme delle permutazioni di n elementi con il prodotto di composizione funzionale è un gruppo di cardinalità n! non commutativo.

Dimostrazione

- S_n non vuoto, $n \ge 1$
- Esiste un elemento neutro rispetto al prodotto ·, la permutazione identica: $\sigma \circ id = id \circ \sigma = \sigma$.
- Prodotto associativo $\forall \sigma, \tau, \rho \in S_n \ (\sigma \circ \tau) \circ \rho(i) = \sigma \circ (\tau \circ \rho)(i) = \sigma(\tau(\rho(i)))$
- $\forall \sigma \in S_n$ esiste un elemento σ^{-1} tale che $\sigma \circ \sigma^{-1} = id$.

6.7.5 3^a notazione: Permutazione come prodotto di cicli disgiunti

 S_n : Definire una relazione di equivalenza su [n] associata a $\sigma \in S_n$.

$$x, y \in [n]$$

$$x \equiv_{\sigma} y \Leftrightarrow \exists i : y = \sigma^{i}(x)$$

Si osservi che $\sigma \in S_n$, allora la potenza *i-esima* di σ , con $i \in \mathbb{N}$ è la permutazione $\sigma^i = \sigma \circ ... \circ \sigma$ per i volte.

6.7.6 Orbita

L'orbita di $x \in [n]$ è la classe di equivalenza di x nella relazione \equiv_{σ} .

$$O_{\sigma}(x) = \{ y \in [n] \; \exists i \; con \; y = \sigma^{i}(x) \}$$

6.7.7 Proposizione

Se τ_1 e τ_2 hanno cicli disgiunti $\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1$

6.7.8 Permutazione ciclica

Chiamo ciclica una permutazione di S_n in cui nella rappresentazione in cicli disgiunti ha al più un solo ciclo di lunghezza> 1

6.7.9 Teorema prodotto di scambi

Ogni permutazione si può scrivere come prodotto di scambi

Dimostrazione 1: Se la permutazione ha un solo ciclo $\sigma = (a_1, a_2, ..., a_k) =$ un k-ciclo $= (a_1, a_k)(a_1, a_{k-1})...(a_1, a_3)(a_1, a_2) = (a_1, a_2, a_3, ..., a_k)$ **Dimostrazione 2**: Se ho un σ qualunque, allora

 $\sigma = C_1 \cdot C_2 \cdot \dots \cdot C_k$

dove C_i è un ciclo (nella decomposizione in cicli disgiunti)

$$C_1 = (a_1, ..., a_r) = (a_1, a_r)(a_1, a_{r-1})...(a_1, a_2)$$

$$C_2 = (b_1, ..., b_j) = (b_1, b_j)(b_1, b_{j-1})...(b_1, b_2)$$
...
$$\sigma = (a_1, a_r)(a_1, a_{r-1})...(a_1, a_2) (b_1, b_j)(b_1, b_{j-1})...(b_1, b_2)$$

6.7.10 Teorema parità

Il numero di scambi usati in diverse fattorizzazioni di una permutazione ha sempre la stessa parità.

6.7.11 Pari, dispari

Una permutazione è pari se il numero di scambi (in una sua fattorizzazione in scambi) è pari, dispari altrimenti.

6.7.12 Gruppo alterno

Le premutazioni pari si chiamano gruppo alterno.

6.7.13 Segno

Data σ in $S_n,$ il segno di σ è $\varepsilon(\sigma)=(-1)^{parita'\;di\;(\sigma)}$

6.8 Classi coniugate in S_n

6.8.1 Definizione

Dato G gruppo rispetto ad un'operazione ·, un elemento x' si dice coniugato con $x \Leftrightarrow$

$$\exists y \in G \ con \ : x' = yxy^{-1}$$

In $S_n \sigma, \sigma'$ sono coniugate \Leftrightarrow

$$\exists \tau \in S_n : \sigma' = \tau \sigma \tau^{-1}$$

(si dice che σ' è coniugato a σ tramite τ)

TODO: controllare correttezza definizione

6.8.2 Proposizione

Due permutazioni $\sigma, \sigma' \in S_n$ sono coniugate \Leftrightarrow hanno la stessa struttura ciclica.

6.9 Definizione multinsieme

Una partizione λ di un intero n è un multinsieme di naturali ≥ 1 la cui somma da n.

6.10 Gruppi finiti

6.10.1 Proprietà 1

Dato (G,\cdot) gruppo e $x,y\in G$ allora $(x\cdot y)^{-1}=y^{-1}\cdot x^{-1}$ (l'inverso del prodotto è il prodotto degli inversi in ordine inverso).

Dimostrazione: $(xy)^{-1} = {}^{?} e_G$ (el. neutro del gruppo).

Ora

$$(x \cdot y)^{-1} \cdot (y^{-1} \cdot x^{-1}) =$$

$$x \cdot (y \cdot y^{-1}) \cdot x^{-1} =$$

$$x \cdot e_G \cdot x^{-1} =$$

$$x \cdot x^{-1} =$$

$$e_G$$

6.10.2 Proprietà 2

In un gruppo vale sempre la cancellazione:

$$ax = bx \Leftrightarrow a = b$$

Dimostrazione: $\exists x^{-1}$: Se ax = bx e moltiplico per x^{-1}

$$axx^{-1} = bxx^{-1}$$

$$a \cdot e = b \cdot e$$

$$a = b$$

Conseguenza: Su una riga (qualunque) della tavola moltiplicativa del gruppo ci sono una e una sola volta tutti gli elementi del gruppo.

6.11 Sottogruppi

6.11.1 Definizione

Un sottogruppo S di (G, \cdot) è:

- Un sottoinsieme non vuoto di $S \subseteq G$
- $\bullet \ S,$ con la stessa operazione di G è un gruppo

6.11.2 Criteri di verifica

Per verificare che S sia un sottogruppo di G;

- \bullet Associatività: "gratis" : $S\subseteq G$ e il prodotto in Gè associativo.
- 1. $\forall a, b \in S : a \cdot b \in S \text{ ovvero } S \times S \to S$
- $e_G \in S$
- 3. $\forall a \in S \subseteq G, a^{-1} \in S$

6.11.3 Notazione

$$(S, \cdot) \leq (G, \cdot)$$

altrimenti

$$S \leq G$$

6.11.4 Proposizione

S non vuoto e $S\subseteq (G,\cdot)$ è un sottogruppo di G se e solo se

$$\forall \ a, b \in S : a \cdot b^{-1} \in S \ (*)$$

Dimostrazione

 $\textit{Ipotesi: } \forall a,b:a\cdot b^{-1} \in S$

Tesi: valgono 1, 2, 3 dei criteri di verifica.

Dimostrazione 2:

 $S \neq \emptyset : \exists a_0 \in S \text{ applico } (*) \text{ ad } a_0, a_0$:

$$a_0 \cdot a_0^{-1} = e_G \in S$$

è quindi l'elemento neutro.

Dimostrazione 3:

 $\forall a \in S : a^{-1} \in S$? Per 2. $e_G \in S, a \in S$, applico (*)

$$e_G \cdot a^{-1} = a^{-1} \in S$$

Dimostrazione 1:

Dati $a, b \in S$, $a \cdot b \in S$? Per la $3 b^{-1} \in S$.

Dati a, b^{-1} per (*)

$$a \cdot (b^{-1})^{-1} = a \cdot b \in S$$

6.12 Proposizione: intersezione di sottogruppi

Sia (G,\cdot) un gruppo e $H \leq G, K \leq G$ due sottogruppi. Allora:

$$H \cap K \leq G$$

L'intersezione di sottogruppi di G è un sottogruppo di G

Dimostrazione:

- 1. $1_G \in H \cap K$? Poiche H e K sono sottogruppi $1_G \in H, K$ e quindi $1_G \in H \cap K$
- 2. Siano $x, y \in H \cap K$: verifico che $x \cdot y \in H \cap K$. $x \in H \ e \ x \in K$; $y \in H \ e \ y \in K$ allora:

$$xy \in H; \ xy \in K \Rightarrow xy \in H \cap K$$

3. Se $x \in H \cap K \Rightarrow x^{-1} \in H \cap K$? La dimostrazione è simila a quella del punto precendente

6.13 Proposizione 1

$$H_1, H_2, ... H_t \leq G \Rightarrow H_1 \cap H_2 \cap ... \cap H_t \leq G$$

6.14 Proposizione 2

Siano $S, T \leq G$:

$$S \cup T \le G \Leftrightarrow S \cup T = T \lor S \cup T = S$$

7 Sottogruppo generato

7.1 Definizione

Siano Gun gruppo e $X\subseteq G,$ si definisce sotto gruppo generato di Xil più piccolo sottogruppo di Gche contenga X

7.2 Notazione

$$\langle X \rangle := \bigcap_{X \subseteq H \le G} H$$

7.3 Proposizione

Se $X = \{x_1 x_2 ...\} \subseteq G \neq 0$ allora:

$$\langle X \rangle = \{t_1, t_2, ..., t_r : t_i \in X \text{ oppure } t_i^{-1} \in X\}$$

L'insieme che contiene i prodotti finiti di elementi di X oppure i cui inversi sono in X.

Dimostrazione:

- 1. $\langle X \rangle$ contiene $X, r = 1, t_i \in X$
- 2. $\langle X \rangle \leq G$
 - contiene 1_G : sia $\overline{x} \in X$ qualunque $\Rightarrow \overline{x} \in \langle X \rangle, \overline{x}^{-1} \in \langle X \rangle$ e $\overline{x} \cdot \overline{x}^{-1} = 1_G \in \langle X \rangle$
 - $\langle X \rangle$ è chiuso rispetto al prodotto di G
 - Se $t_1, t_2, ..., t_r \in \langle X \rangle$, e t_1

TODO:CONTROLLARE APPUNTI

7.4 $\langle X \rangle$ è il più piccolo sottogruppo che contiene X

Da dimostrare in proprio, lo ha dato come esercizio

7.5 Defizione: ordine (periodo)

Se un elemento di G ha periodo finito, allora si chiama ordine (o periodo) di g il più piccolo positivo tale che $g^m=1_G$

7.6 Definizione: gruppo ciclico

Un gruppo G si dice ciclico se esiste $g_0 \in G$ tale che $G = \langle g_0 \rangle$ (gruppo che viene generato da un solo elemento).

7.7 Proposizione

Il sottogruppo generato da un elemento (in un gruppo ciclico) è commutativo. Dimostrazione:

$$\langle g \rangle = \{g^h : h \in \mathbb{Z}\}$$

$$x = g^h, \ y = g^k \quad h, k \in \mathbb{Z}$$

$$x \cdot y = g^h q^k = g^{h+k} = g^k q^h = y \cdot x$$

7.8 Proposizione

Sia G gruppo:

- 1. Se $g \in G$ ha periodo infinito $(\nexists h > 0 : g^h = e)$ allora $\forall h, k \in \mathbb{Z}, h \neq k, g^h \neq g^k$: il gruppo ciclico generato da $G, \langle g \rangle \cong \mathbb{Z}$ (è isomorfo a \mathbb{Z}).
- 2. g ha periodo finito. Se n=periodo di $g = o(g) = ord_G(g)$ ovvero $n = min\{k > 0 : g^k = e\}$ allora $\langle g \rangle = \{e, g, g^2, ..., g^{n-1}\}$ dove queste potenze sono tutte distinte.

Dimostrazione pt.1: Dimostro che se:

$$g^h = g^k \Rightarrow h = k$$

infatti moltiplico per g^{-k} ed ho:

$$g^{h-k} = g^{k-k} \Rightarrow g^{h-k} = g^0 = e$$

ma g è aperiodico

$$\Rightarrow h - k = 0 \Rightarrow h = k$$

Dimostrazione pt.2: so che $\langle g \rangle = \{g^h : h \in \mathbb{Z}\}$ devo dimostrare che ogni elemento g^h sta già in $\{e, g, g^2, ...g^{n-1}\}$.

Divido h per n:

$$h = nq + r, \quad 0 \le r < n$$

$$\Rightarrow g^h = g^{nq+r} = g^{nq}g^r = (g^n)^q g^r = e^q g^r = eg^r = g^r$$

ed r è un numero $0 \le r < n$ e quindi è una potenza dell'insieme.

7.9 Proposizione: sottogruppi di un gruppo ciclico

0. Sottogruppi di $(\mathbb{Z}, +)$: sono tutti e soli della forma

$$H = m\mathbb{Z} = \{mh : h \in \mathbb{Z} = \langle m \rangle \}, \ m \in \mathbb{N}$$

 $Non\ dimostrato.$

1. I sottogruppi di $\langle g \rangle$ con $g \in (G, \cdot), g$ aperiodico, sono tutti e soli della forma:

$$H = \langle q^m \rangle$$

per qualche $m \in \mathbb{Z}$

Non dimostrato.

2. I sottogruppi di un gruppo ciclico generato da un elemento di ordine n $(g^n = e, n$ più piccolo positivo con $g^n = e$) sono anch'essi ciclici e generati da $\langle g^h \rangle$, h|n.

7.10 Osservazione

I sottogruppi di un gruppo ciclico finito verificano la seguente condizione:

$$H \le \langle g \rangle \Rightarrow |H| |o(g) = |\langle g \rangle|$$

L'ordine di un sottogruppo $H \leq \langle g \rangle$ divide l'ordine dell'elemento g, che è anche l'ordine del gruppo.

7.11 Proposizione

In S_n , sia $\sigma(C_1)(C_2)...(C_k)$ la fattorizzazione di σ come prodotto dei suoi cicli disgiunti. Allora se m_i =lunghezza di C_i

$$ordine(\sigma) = mcm(m_1, m_2, ..., m_k)$$

7.12 Proposizione - Generatori gruppo cicliclo

 $G = C_n = \langle g \rangle$ gruppo ciclico generato da un elemento di ordine $n = \{id, g, g^2, ..., g^n\}$. Tutti e soli i generatori di C_n sono le potenze di g con esponente coprimo con n.

Generatori: g^t , (t, n) = 1

7.13 Teorema di Lagrange

Se G è un gruppo finito, allora l'ordine di un sottogruppo divide l'ordine del gruppo:

$$H \le G \Rightarrow |H| ||G| = o(H)|o(G)$$

Oss: non vale sempre il viceversa.

Se
$$d|o(G) \Rightarrow \exists H \leq G, \ o(H) = d$$

Dimostrazione: Siano n = o(G) e m = o(H), i il numero di classi laterali destre modulo H.

 Ci_d = indice del sottogruppo H nel gruppo G.

 $i=|G_{/\sim d}|=$ numero di classi laterali. Esistono $a_1,a_2,...,a_i$ rappresentanti distinti delle classi laterali.

$$G = Ha_1 \dot{\cup} Ha_2 \dot{\cup} ... \dot{\cup} Ha_i \Rightarrow |G| = o(G) =$$

$$= \sum_{j=1}^{i} |Ha_j| = \sum_{j=1}^{i} |H| = i \cdot |H| = i \cdot m$$

cioè ho $n=i\cdot m.$ ord(G) =numero classi laterali destre·ord(H). Da questa relazione deduco che:

- 1. ord(H)|ord(G)
- 2. i|o(G)

Oss: ripeto tutto per le classi laterali sinistre $i_s \cdot m = n$.

7.13.1 Corollario 1

Se |G|=p primo, allora gli unici sottogruppi di G sono $H=\{e\}$ oppure H=G (non ci sono sottogruppi intermedi).

7.13.2 Corollario 2

Se |G| = primo, allora G è ciclico (in particolare è abeliano).

Dimostrazione: Se |G| = p primo> 1.

Sia $x_0 \in G, x_0 \neq e$. Sia $H = \langle x_0 \rangle \neq \{e\} \ (H = \{e, x_0, x_0^2 ...\}), \text{ per il } corollario 1:$

$$H = G \Rightarrow G = \langle x_0 \rangle$$

7.14 Definizione: indice di un sottogruppo

L'indice di un sottogruppo H in un gruppo G è:

$$i=i_s=i_d$$

e si denota:

$$i=[G:H]$$

8 Classi laterali di un sottogruppo

8.1 Definizione: congruenza destra modulo

Sia (G, \cdot) un gruppo, sia $H \leq G$ sottogruppo.

Definiamo congruenza destra modulo H la relazione così definita:

$$\forall a, b \in G : a \sim_d b \Leftrightarrow a \cdot b^{-1} \in H$$

8.2 Proposizione

 $\sim_d (mod\ H)$ è una relazione di equivalenza.

Dimostrazione:

• (R) $a \sim_d a$?

$$a \cdot a^{-1} = e \in H$$

• (S) $a \sim_d b \Rightarrow b \sim_d a$?

$$ab^{-1} \in H$$

H sottogruppo:

$$(ab^{-1})^{-1} \in H$$

 $\Rightarrow (b^{-1})^{-1} \cdot a^{-1} = b \cdot a^{-1} \Rightarrow b \sim_d a$

• (T) $a \sim_d b \in b \sim_d c \Rightarrow a \sim_d c$?

$$ab^{-1} \in H \ e \ bc^{-1} \in H$$

$$(ab^{-1})(bc^{-1}) \in H$$

H è chiuso rispetto al prodotto

$$(ab^{-1})(bc^{-1}) = ac^{-1} \Rightarrow a \sim_d c$$

8.3 Insieme quoziente

Dato $a \in G$: $[a]_{\sim_d} = H \cdot a$ dove $Ha = \{ha: h \in H\}, H = \{e, h_1, h_2...\}, Ha = \{e \cdot a, h_1 \cdot a, ...\}.$

Dimostrazione: devo provare $1.Ha \subseteq [a]_{\sim_d} \in 2.[a]_{\sim_d} \subseteq Ha$.

1.

$$b \in Ha$$
$$\Leftrightarrow \exists h : b = ha$$

moltiplicando per a^{-1}

$$\Leftrightarrow h = ba^{-1}$$

$$\Leftrightarrow ba^{-1} \in G$$

$$\Leftrightarrow b \sim_d a \Leftrightarrow b \in [a]_{\sim_d}$$

è la stessa di sopra ma partendo dalla fine verso l'inizio.

8.4 Proposizione

Tutte le classi laterali destre hanno la stessa cardinalità.

Dimostrazione: dimostro che |Ha|=|H| $\forall a\in A$ ($|Ha|=[a]_{\sim_d}$, per transitività |Ha|=|Hb|. Sia

$$\varphi: H \to Ha$$

$$h \to ha$$

- Suriettiva: ogni elemento di Ha è del tipo ha per qualche $h \in H$.
- Iniettiva: $\varphi(a)=\varphi(h')\Rightarrow ha=h'a\Rightarrow$ per la cancellatività nel gruppo $\Rightarrow h=h'$

8.5 Definizione: congruenza sinistra modulo

$$\forall a, b \in G, \ a \sim_s b \Leftrightarrow b^{-1}a \in H$$

La classe laterale sinistra : $[a]_{\sim_s} = aH = \{ah: h \in H\}$

9 Omomorfismi

9.1 Isomorfismo

Dati (G, *) e (H, \cdot) due gruppi, un isomorfismo di G in H è

- $\varphi:G\to H$ una bii
ezione.
- φ rispetta le operazioni di gruppo, cioè:

$$\forall \ a,b \in G : \varphi(a*b) = \varphi(a) \cdot \varphi(b), \ \ \varphi(a) \ e \ \varphi(b) \in H$$

Si dice che G è isomorfo ad H e si scrive $G \cong H$.

9.2 Omomorfismo

Se $\varphi:G\to H$ conserva le operazioni di G e $H,\ \varphi$ si chiama omomorfismo, ovvero un omomorfismo è un'applicazione tale che:

$$\forall \ a,b \in G : \varphi(a*b) = \varphi(a) \cdot \varphi(b)$$

9.3 Epimorfismo

Se φ è suriettiva, φ si chiama epimorfismo.

9.4 Monomorfismo

Se φ è iniettiva, si chiama monomorfismo.

9.5 Isomorfismo 2

Se φ è biunivoca, allora φ si chiama isomorfismo.

9.6 Proposizione

L'isomorfismo tra gruppi è una relazione di equivalenza.

9.7 Kernel/Nucleo

Se l'applicazione φ è un omomorfismo, allora viene definito nucleo di $\varphi \subseteq G$

$$Ker(\varphi): \{x \in G: \varphi(x) = e'\}$$

dove:

e=l'elemento neutro di G

e'=l'elemento neutro di G'

9.8 Proposizione

Dato $\varphi: G \to G'$ omomorfismo, allora:

- 1. $\varphi(e) = e'$
- 2. $\varphi(g^{-1}) = (y(g))^{-1}$
- 3. $Ker(\varphi) \leq G$
- 4. $Im\varphi \leq G'$

Dimostrazione 1: Per dimostrare che $\varphi(e)$ è l'elemento neutro di e' devo mostrare che $\forall y \in G'$: $\varphi(e) \cdot y = y$; moltiplicando per y^{-1} (la cancellazione in G') di ottiene:

$$\varphi(e)\varphi\varphi^{-1} = \varphi\varphi^{-1}$$

 $\Rightarrow \varphi(e) = e'$

Dimostrazione 2: lasciata per esercizio

Dimostrazione 3: $Ker\varphi \leq G$?

- contiene e: è il punto 1: infatti $\varphi(e) = e'$
- è chiuso rispetto al prodotto: siano $a,b \in Ker \varphi$ e verifichiamo che $a*b \in Ker \varphi$:

$$a \in Ker\varphi \Rightarrow \varphi(a) = e'$$

$$b \in Ker\varphi \Rightarrow \varphi(b) = e'$$

$$a * b : \varphi(a * b) = \varphi(a)\varphi(b) = e' \cdot e' = e'$$

$$\Rightarrow a * b \in Ker\varphi$$

• è chiuso rispetto agli inversi: sia $a \in Ker\varphi$ (cioè $\varphi(a) = e'$) devo provare che $a^{-1} \in Ker\varphi$:

$$\varphi(a^{-1}) = (\varphi(a))^{-1} = (e')^{-1} = e'$$

quindi $a^{-1} \in Ker\varphi$

Dimostrazione 4 TODO: Ricontrollare appunti

9.9 Omomorfismo di anelli

Se $(A, +, \cdot)$ è $(A', +, \cdot)$ sono anelli $0_A, 0_{A'}$ i corrispettivi elementi neutri, un omomorfismo di anelli è un'applicazione:

$$\varphi:A\to A'$$

tale che:

•
$$\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) \quad \forall x_1, x_2 \in A$$

•
$$\varphi(x_1 \cdot x_2) = \varphi(x_1) \cdot \varphi(x_2)$$

$$Ker\varphi = \{x \in A : \varphi(x) = 0'_A\} \subseteq A \ sottoanello$$

TODO: *qui c'è un insieme che non ho capito

9.10 Proposizione

 $\varphi:(G,*)\to (G',\cdot)$ omomorfismo di gruppi, allora:

$$\varphi \ iniettiva \Leftrightarrow Ker\varphi = \{e\}$$

$$\varphi \ iniettiva \leftrightarrow |\varphi^{-1}(y)| \le 1 \ \forall \ y$$

$$\varphi \ iniettiva + omomorfismo \Leftrightarrow \varphi^{-1}(e^{-1}) = e$$

Dimostrazione: $Ker = Ker \varphi \leq G'$

Consideriamo la congurenza modulo il segno (?) k

$$a \sim_d b \Leftrightarrow ab^{-1} \in K(=Ker\varphi) \Leftrightarrow \varphi(a*b^{-1}) = e'$$

 φ è un morfismo:

$$\Leftrightarrow \varphi(a)\varphi(b^{-1}) = e$$
$$\Leftrightarrow \varphi(a)(\varphi(b))^{-1} = e'$$

moltiplicando per $\varphi(b)$

$$\Leftrightarrow \varphi(a) = \varphi(b)$$

 $\Leftrightarrow \varphi \; iniettiva$

9.11 Proposizione

 $G,G'\ \varphi:G\to G'$ omomorfismo, allora:

- 1. Se G finito, allora l'ordine $Im\varphi$ divide l'ordine di G (ed anhe di G', se G' è finito).
- 2. Se G è ciclico, allora $Im\varphi$ è un sottogruppo ciclico di G'
- 3. Se $g \in G$ ha periodo finito, allora il perodo di $\varphi(g)$ divide l'ordine di g

10 Spazi Vettoriali

10.1 Definizione spazio vettoriale

Uno spazio vettoriale V su un campo K è

 $\bullet\,$ Un insieme nn vuoto V, in cui sono definite due operazioni, di cui una interna ed una esterna.

Interna: somma +:

$$V\times V\to V$$

$$(v, w) \mapsto v + w$$

Esterna: prodotto \cdot per uno scalare:

$$K \times V \to V$$

$$(c,v)\mapsto c\cdot v$$

- $\bullet \ (V,+)$ è un gruppo commutativo
- $K \times V \to V$ e $(c, v) \mapsto c \cdot v$ tale che:
 - distributività per vettori:

$$\forall c \in K, \forall v, w \in V$$

$$c(v+w) = cv + cw$$

$$(v+w)c = vc + wc$$

– associatività per gli scalari:

$$\forall c, d \in K, \forall v \in V$$

$$c(dv) = (cd)v$$

• distributività per gli scalari:

$$\forall c, d \in K, v \in V$$

$$(c+d)v = cv + dv$$

 $\bullet \ 1 \cdot v = v$

10.2 Scalare

E' un elemento del campo.

10.3 Sottospazio vettoriale

Un sottospazio vettoriale di uno spazio vettoriale V su R è un sottoinsieme $W\subseteq V$ non vuoto tale che: W rispetto le stesse operazioni di V sia esso stesso uno spazio vettoriale.

- Equivalentemente si deve avere:
 - 1. (W, +) è un sotto gruppo di (V, +)
 - 2. chiuso rispetto alla moltiplicazione per uno scalare
- Equivalentemente:
 - 1. $\forall u, v \in W : u v \in W \ [a \cdot b^{-1} \in G]$
 - 2. $\forall \alpha \in \mathbb{R}, v \in W : \alpha \cdot v \in W$
- Equivalentemente:
 - 1. $\forall u, v \in W : u v \in W$
 - 2. $\forall \alpha \in \mathbb{R}, \forall v \in W : \alpha v \in W$ (Se $\alpha = -1, v \in W$ allora $-v \in W$ $u \in W$ allora u - (-v) = u + v)
- Equivalentemente $W \subseteq V$ è un sottos pazio vettoriale \Leftrightarrow

$$1^* \ \forall \ u, v \in W : u + v \in W$$
$$2^* \ \forall \ \alpha \in \mathbb{R}, \forall v \in W : \alpha v \in W$$

10.4 Proposizione

 $W \subseteq V, W \neq \emptyset$ è un sottospazio vettoriale \Leftrightarrow :

$$\forall \alpha \beta \in \mathbb{R}, \forall u, v \in W : \alpha u + \beta v \in W$$

 $\alpha u + \beta v$ si chiama **combinazione lineare** di $u \in v$.

Dimostrazione: la combinazione lineare è equivalente a 1* e 2*. Supponiamo che $\alpha u + \beta v \in W \ \forall \ \alpha \beta \in \mathbb{R}, \forall \ u,v \in W$

 $2* \rightarrow \text{in particolare è vero se prendo } \alpha = \alpha, \beta = 0: \alpha u + \beta v = \alpha u \in W.$

 $1* \rightarrow \text{ in particolare, se prendo } \alpha = 1, \beta = -1: \text{ so che } 1 \cdot u + (-1) \cdot v = u - v \in W.$

10.5 Definizione: traccia

Data una matrice quadrata $A = [a_{i,j}]$ si chiama traccia della matrice il valore (scalare in \mathbb{R}) definito da:

$$tr(A) = a_{11}, a_{22}, a_{33} + ... + a_{nn}$$

(è la somma degli elementi della diagonale).

10.6 Definizione: combinazione lineare

Dati $v_1,...v_t \in V$ vettori di uno spazio vettoriale V su \mathbb{R} dati t scalari $c_1,c_2,...,c_t \in \mathbb{R}$, il vettore $v=c_1v_1+c_2v_2+...+c_tv_t$ si chiama combinazione lineare di vettori $v_1,...,v_t$ tramite gli scalari $c_1,...,c_t$.

10.7 Proprietà di calcolo negli spazi vettoriali

Vspazio vettoriale su $K,\,0$ è lo zero del campo, $0_V=\underline{0}$ è l'elemento neutro del gruppo (V,t)

- 0v = 0 vettore nullo $\forall v \in V$
- $(-c)v = -(cv) \ \forall \ v \in V, \forall c \in \mathbb{R}$
- $c\underline{0} = \underline{0}$
- Se $cv = \underline{0}$ allora c = 0 oppure $v = \underline{0}$

10.8 Definizione

w è combinazione lineare di $v_1, v_2, ..., v_t$ se esistono degli scalari $c_1, c_2, ..., c_t \in \mathbb{R}$ tali che:

$$w = c_1 v_1 + ... + c_t v_t$$

10.9 Osservazione: combinazione lineare banale

Lo "zero" vettoriale è sempre combinazione lineare di un insieme $\{v_1, ..., v_t\}$ di vettori qualunque:

$$\underline{0} = 0v_1 + 0v_2 + \dots + 0v_t$$

10.10 Definzione: linearmente dipendente

Un insieme di vettori $\{v_1, ..., v_n\}$ è linearmente dipendente (sul campo di V) \Leftrightarrow esistono coefficienti $c_1, ..., c_n \in K$ non tutti nulli, tali che:

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = \underline{0}$$

10.11 Osservazione

Se almeno uno dei coefficienti $\{c_1, ..., c_n\}$ è non nullo (sia $C_j \neq 0$), allora si può scrivere (partendo dalla precedente linearmente dipendente):

$$c_j v_j = -c_1 v_1 - c_2 v_2 - \dots - c_{j-1} v_{j-1} - c_{j+1} v_{j+1} - \dots - c_n v_n$$

e $C_j \neq 0 \Rightarrow \exists c_j^{-1}$ allora:

$$v_j = -\frac{c_1 v_1}{c_j} - \frac{c_2 v_2}{c_j} - \dots - \frac{c_n v_n}{c_j}$$

10.12 Osservazione: linearmente indipendente

 $\{v_1,...v_n\}$ è un insieme linearmente **indipendente** $\Leftrightarrow \underline{0} = c_1v_1 + ... + c_nv_n \Leftrightarrow c_1 = c_2 = ... = c_n = 0.$

Ovvero: $\{v_1,...,v_n\}$ sono vettori linearmente indipendenti \Leftrightarrow l'unica combinazione lineare di $v_1,...,v_n$ è la combinazione lineare banale.

10.13 Osservazione

Il vettore nullo $\underline{0}$ di V è sempre linearmente dipendente da qualunque insieme finito di vettori.

Infatti sia $\{u_1, ... u_z\} \subseteq V$ allora:

$$\underline{0} = 1 \cdot \underline{0} = 0u_1 + 0u_2 + \dots + 0u_t$$

(un modo equivalente: $0u_1 + 0u_2 + ... + 0u_t - 1 \cdot \underline{0} = \underline{0}$)

10.14 Osservazione

Se $S\subseteq V$ con $\underline{0}\in S,$ $S=\{\underline{0},v_1,...,v_k\}$ allora S è un insieme di vettori dipendenti: infatti c'è la dipendenza

$$1 \cdot 0 = 0v_1 + 0v_2 + \dots + 0v_k$$

10.15 Osservazione

La proprietà di essere indipendente di $S\subseteq V,\ S=\{v_1,...,v_t\}$ si eredita ai sottoinsiemi, cioè:

$$\forall T \subseteq S, S \ indipendente \Rightarrow T \ indipendente$$

 $\{v_1\}$ è un insieme indipendente $\Leftrightarrow v_1 \neq 0; \{\underline{0}\}$ è indipendente.

10.16 Sottospazio generato da: span

Dati $v_1, v_2, ..., v_t$ vettore di V (spazio vettoriale su un campo) lo span dei vettori $v_1, ..., v_t$ è il più piccolo sottospazio vettoriale di V che contiene $v_1, ..., v_t$

$$Span(v_1,...,v_t) = \bigcap_{W \le V \ \{v_1...v_t\} \in W} W$$

Altra notazione Span: $\langle v_1, ... v_t \rangle$

10.17 Proposizione

$$Span(v_1,...v_t) = \{\sum_{i=1}^{t} \alpha_i v_i : \alpha_i,...,\alpha_t \in K\}$$

Dimostrazione data per esercizio

10.18 Sistema di generatori

Dato V su K (es. $K = \mathbb{R}$), i vettori $\{v_1, ... v_t\}$ sono un sistema di generatori (o insieme di generatori) per V se

$$V = Span(v_1, ..., v_t)$$

Se $W\subseteq V$ è un sottospazio, allora $\{u_1,...,u_k\}$ sono generatori (sistema di generatori) per W se

$$W = Span(u_1, ..., u_k)$$

10.19 Basi di spazi vettoriali

Dato V su K, un insieme $B = \{v_1, ..., v_n\} \subseteq V$ si chiama base di V se:

- $V = Span(v_1, ..., v_n)$ cioè B sono generatori per V.
- $\{v_1, ..., v_n\}$ sono indipendenti.

10.20 Spazio finitamente generato

Uno spazio vettoriale V(su K), si dice finitamente generato se ammette un insieme finito di generatori.

10.21 Proposizione

$$B=\{v_1,...,v_n\}$$
é una base di $V\Leftrightarrow \forall v\in V\exists !\; (c_1,...,c_n), c_i\in\mathbb{R}$ con $v=c_1v_1+c_2v_2+...+c_nv_n$

$Dimostrazione \Rightarrow$

- 1. Ipotesi: $B = \{v_1, ..., v_n\}$ é una base di V
- 2. Tesi: $v = c_1v_1 + c_2v_2 + ... + c_nv_n$

Sia $v \in V$. Siccome B è una base, allora è un insieme di generatori di V

$$\Rightarrow v \in Span(v_1, ..., v_n) \Rightarrow \exists c_1, ..., c_n \text{ con } v = c_1v_1 + ... + c_nv_n$$

Perchè sono unici? Siano $(d_1, ..., d_n)$ con

$$v = d_1v_1 + \dots + d_nv_n$$

$$v = c_1v_1 + \dots + c_nv_n$$

$$\Rightarrow v - v = 0 = d_1v_1 + \dots + d_nv_n - (c_1v_1 + \dots + c_nv_n) =$$

$$= (d_1 - c_1)v_1 + \dots + (d_n - c_n)v_n$$

ma $v_1, ..., v_n$ sono indipendenti \Rightarrow i coefficienti $(d_k v_k)$ sono tutti nulli.

 $Dimostrazione \Leftarrow fare\ per\ esercizio$

10.22 N-upla delle coordinate di v in base B

Data $B = \{v_1, ..., v_n\}$ una base ordinata di V, se $v = c_1v_1 + ... + c_nv_n$ allora il vettore colonna $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$ si chiama vettore delle coordinate di v in base B.

10.23 Corollario

Fissata una base $B=\{v_1,...,v_n\}$ di V l'applicazione $\varphi:V\to K^n$ (K è il campo di V) che manda v in $\varphi(v)=\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix}$ (cioè il vettore nelle sue coordinate in base B) è una biiezione.

10.24 Teorema: esistenza di una base

Se V è uno spazio vettoriale finitamente generato (cioè se $V = Span(v_1,...,v_h)$) allora esiste una base $\{w_1,...,w_n\}$ di V.

Non dimostrato.

10.25 Proposizione

Date due basi $B = \{v_1, ..., v_n\}$ e $B = \{w_1, ..., w_m\}$ di V allora n = m.

10.26 Dimensione di V

Se V è finitamente generato, allora si chiama dimensione di V la cardinalità di una qualunque base di V.

10.27 Osservazione (notazione)

Se la dimensione di V è n, allora $\varphi: V \to K^n$ si scrive $\dim_K V = n$ se |B| = n.

10.28 Teorema del completamento di una base

Sia $B = \{v_1, ..., v_n\}$ una base di V, e sia $\{w_1, ..., w_p\}$ con $\{p \leq n\}$ un insieme di vettori indipendenti. Allora posso completare $\{w_1, ..., w_p\}$ con (n-p) vettori di B a formare una base (ovvero posso sostituire p vettori di B un altro insieme di p vettori indipendenti).

Dimostrazione fatta parzialmente da vedere sul libro se si vuole la lode.

10.29 Teorema

Le seguenti condizioni sono equivalenti tra loro per un insieme $B = \{v_1, ..., v_n\} \subseteq V$ di n vettori:

- 1. B è una base.
- 2. B è un insieme di generatori minimale (cioè ogni sottoinsieme S proprio di V genera un sottospazio $Span(S) \not \leq V$)
- 3. B è un insieme di vettori linearmente indipendenti massimale (cioè ogni $T \ngeq B$ insieme di vettori che contiene B non è più indipendente).

10.30 Corollario

Se V è finitamente generato e $B = \{v_1, ..., v_n\}$ $B' = \{v'_1, ..., v_m\}$ sono basi di V allora |B| = |B'| (n = m).

Dimostrazione: per assurdo m < n, allora con il teorema del completamento costruisco $B'' = B' \cup \{n - m \ vettori\}$. B' è una base, ma per il pt.3 del teorema precedente, B' è un insieme massimale \Rightarrow contraddizione.

10.31 Osservazioni

- Se $dim_K V = n$ allora ogni sottoinsieme di n vettori indipendenti è anche un insieme di generatori.
- Se $dim_K V = n$ allora ogni insieme di n che generano V è anche un insieme indipendente (cioè una base).
- Se $W \leq V$, sottospazio di V con $dim_K V = n$ allora:
 - $-dim_K W \leq dim_K V$
 - $-dim_K W = dim_R V \Leftrightarrow W = V$
 - $-W \neq \{0_V\} \Leftrightarrow dim_K W > 0$

10.32 Somma di sottospazi

Dati $U, W \leq V$ (V spazio vettoriale su R):

1. L'intersezione $U \cap W$ è anche un sottospazio di V

$$U \cap W\{v \in V : v \in U \land v \in W\}$$

Dimostrazione per esercizio

2. (L'unione di due sottospazi non è, in generale, un sottospazio (a meno che non siano uno contenuto nell'altro)). Il più piccolo sottospazio di V che contiene sia V che W si chiama la **somma** di U e W e si denota:

$$U + W = Span(U \cup W)$$

10.33 Proposizione

$$U + W = \{u + w : u \in U, w \in W\}$$

Per esercizio verificare che u+w è un sottospazio che contiene $U\cup W$ e Span(U+W)

10.34 Teorema di Grossman

$$dim_K(U+V) = dim_K U + dim_K W - dim_K (U \cap W)$$

10.35 Somma diretta di sottospazi

Quando $U \cap V = \{0_V\}$, cioè ha dimensione 0, allora si parla di somma diretta di sottospazi e si scrive:

$$U \oplus W$$

10.36 Proposizione

Se $U \cap V = \{0_V\}$ allora ogni vettore di $U \oplus W$ si scrive come somma di un elemento di U più un elemento di W in modo unico.

Dimostrazione: supponiamo che $v_0 \in U + W$ si scriva in due modi diversi:

$$v_0 = u + w = u' + w' \quad (con \ u, u' \in U; \ w, w' \in W)$$

 $\Rightarrow v_0 - v_0 = 0 = u + w - (u' - w') =$
 $(u + u') + (w - w') = 0$
 $\Rightarrow \in U \cap W = \{0_V\}$
 $\Rightarrow u - u' = 0 \Rightarrow u = u'$
 $\Rightarrow w - w' = 0 \Rightarrow w = w'$

11 Sistemi di equazioni lineari

11.1 Scrittura

Ogni sistema di equazioni lineari si può scrivere nella forma:

$$AX = K$$

X è la colonna delle incognite, K la colonna dei termini noti del sistema

11.2 Risolvere sistema di equazioni

Una soluzione del sistema è una n-upla di reali i cui valori $s_1, ..., s_n$ sostituiti alle incognite le rendano tutte vere. cioè:

$$S = \begin{bmatrix} s_1 \\ \dots \\ s_n \end{bmatrix}$$

con

$$A \cdot S = K$$

11.3 Sistemi equivalenti

Due sistemi AX = K e BX = K sono equivalentei se hanno esattamente le stesse soluzioni.

11.3.1 Operazioni elementari di riga

- $L = L_{ij}$ scambio riga i e riga j
- $L = L_i(c)$ moltiplico la riga i per la costante c
- $L = L_{ij}(c)$ sostituisco alla riga i la riga ottenuta sommando ad i c volte la riga j, $c \neq 0$

11.4 Equivalenza per riga

Due matrici A e B dello stesso ordine $n \times m$ sono equivalenti per riga se B si ottiene da A per applicazione successiva di un numero finito di *operazioni* elementari di riga, cioè se:

$$B = L_k ... L_2 L_1(A)$$

e si scrive:

$$A \sim B$$

11.5 Proposizione

L'equivalenza per riga è una relazione di equivalenza. Dimostrazione sulle note della prof.

11.6 Proposizione

Siano A, B matrici $m \times n$, se una successione di operazioni elementari di riga trasforma A in B, allora le stesse operazioni trasformano la matrice identica in una matrice P tale che $B = P \cdot A$.

In altre parole

$$[A|I] \sim [B|P]$$

11.7 Matrice identica

$$I = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ & & & \dots & & \\ & & & \dots & & \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

11.8 Corollario

Se $A \in M_n(\mathbb{R})$ ed è invertibile, allora l'inversa si trova applicando la riduzione per righe alla matrice A aumentata della matrice I, cioè:

$$[A|I] \sim [I|A^{-1}]$$

11.9 Teorema

Per ogni matrice $A m \times n$ esiste una matrice $R m \times n$:

- ridotta a scala
- $A \sim R$ (riga equivalente ad A)

11.10 Rango

Si chiama rango di una matrice Ail numero di pivot di una ridotta scala Rriga-equivalente ad A

11.11 Pivot

Primo elemento non nullo in una riga della matrice.

11.12 Rango pieno

Una matrice A è di rango pieno se rg(A) = m (m=massimo possibile cioè il numero di righe).

11.13 Proposizione: proprietà del rango

Il rango di A ha le seguenti proprietà:

- 1. Se $A \sim B$ allora rg(A) = rg(B) $(A \sim R \Rightarrow B \sim R)$
- 2. Se A è di ordine $m \times n$, allora $rg(A) \leq min\{m, n\}$
- 3. $rg(A \cdot B) \leq min\{rg(A), rg(B)\}$
- 4. $rg(A^t) = rg(A)$, dove A^t è la matrice trasoposta di A definita: $(A^t)_{ij} = a_{ij}$ (scambia le righe con le colonne).

11.14 Teorema: Rouchè-Capelli

Dato un sistema AX = K, allora:

- 1. Se rg([A|K]) > rg(A), allora il sistema è incompatibile: non ci sono soluzioni.
- 2. Se rg([A|K]) = rg(A), allora ho due casi:
 - (a) Se n = r = rg(A): rango massimo, c'è una sola soluzione.
 - (b) Se r = rg(A) < n: ho infinite soluzioni che saranno paramentriche, con tanti parametri quante le colonne non pivot (tanti parametri quanto n rg(A)).

12 Studio dei sistemi omogenei

12.1 Proposizione

Sia AX = 0 un sistema lineare omogeneo (con $A \in M_{m \times n}(\mathbb{R})$. Allora

$$W = \{X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R} : AX = 0\}$$

L'insieme delle soluzioni del S.L.O. è un sottospazio di \mathbb{R}^n

Dimostrazione Se X, X' sono in W allora $\alpha X + \beta X' \in W$? $A(\alpha X + \beta X') = \alpha AX + \beta AX' = \alpha \underline{0} + \beta \underline{0} = \underline{0}$

12.2 Teorema: Struttura sulle soluzioni di un sistema

Sia AX=b un sistema lineare (b colonna dei termini noti). Sia $v_0\in\mathbb{R}^n$ una soluzione del sistema AX=b. $v=\begin{bmatrix}v_1\\\dots\\v_n\end{bmatrix}$ (una soluzione "particolare") Allora ogni altra soluzione di AX=b si scrive nella forma

$$v = v_0 + w$$
 (soluzione generale)

al variare di $w \in W = \{X : AX = \underline{0}\}$ cioè al variare di w nelle soluzioni del sistema lineare omogeneo associato $AX = \underline{0}$.

$$(Av_0 = b, Aw = \underline{0} \Leftrightarrow A(v_0 + w) = b \Rightarrow Av_0 + Aw = b + \underline{0} = b)$$

12.3 Nota importante

A(X+Y)=AX+AY: la moltiplicazione per una matrice è quindi lineare.

13 Applicazioni lineari

13.1 Definizione: applicazione lineare (trasformazione lineare o homomorfism of vector space)

Un'applicazione lineare è un'applicazione $T:V\to W$ di spazi vettoriali su K tale che $\forall v,v_1,v_2\in V,\,\forall\lambda\in K$ si ha:

- 1. $T(v_1 + v_2) = T(v_1) + T(v_2)$ (*T* è additiva)
- 2. $T(\lambda \cdot v) = \lambda \cdot T(v)$ (T è omogenea)

(additiva+omogenea = è lineare).

In altre parole T conserva le operazioni di spazio vettoriale.

13.2 Proposizione

Punti $1+2 \Leftrightarrow 3: \forall \lambda \mu \in K, \forall v_1, v_2 \in V$

$$T(\lambda v_1 + \mu v_2) = \lambda T(v_1) + \mu T(v_2)$$

 ${\cal T}$ manda combinazioni lineari in combinazioni lineari (con gli stessi scalari) dei trasformati.

13.3 Definizione

Fissata $A \in \mathcal{M}_{mn}(\mathbb{R}): A = \begin{bmatrix} a_{11} & \dots & a_{1_n} \\ & \dots & \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$, sia $L_A: \mathbb{R}^n \to \mathbb{R}^m$ definita da:

$$X \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \mapsto L_A(x) := AX = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \dots \\ a_{m_1}x_1 + a_{m_2}x_2 + \dots + a_{mn}x_n \end{bmatrix} \in \mathbb{R}^n$$

La trasformazione L_A è la moltiplicazione (a destra) per A:

$$L_A: X \mapsto AX$$

ad ogni matrice A corrisponde una trasformazione lineare L_A .

Per esercizio: dimostrare che $L_A : \mathbb{R}^n \to \mathbb{R}^m$ è lineare.

- $L_A(X+Y) = L_A(X) + L_A(Y)$? (dimostrazione su appunti)
- $L_A(\lambda X) = \lambda L_A(X)$?

13.4 Definizione

Data una trasformazione lineare $T:V\to W,$ restano determinati due sottoinsiemi:

 \bullet Il nucleo di T: KerT

$$KerT = \{v \in V : T(v) = 0_W\} \subseteq V$$

 $\bullet\,$ L'immagine di $T\colon ImT$

$$ImT = \{T(v) : v \in V\} \subseteq W$$

13.5 Proposizione (risolvere per esercizio)

- 1. $KerT \leq V$
- $2. ImT \leq W$
- 3. T suriettiva $\Leftrightarrow ImT = W$
- 4. T iniettiva $\Leftrightarrow KerT = \{0\}$

13.6 Osservazione (!)

Calcolare il nucleo di un'applicazione lineare corrisponde a risolvere un sistema omogeneo.

13.7 Proposizione

Un'applicazione lineare $T: V \to W$ è definita univocamente (ovvero è determinata) quando si conoscono le immagini di T sui vettori $\{v_1, ..., v_n\}$ di una base di V, se dimV = n: ovvero basta conoscere $T(v_1), ..., T(v_n) \in W$ per conoscere tutta la trasformazione lineare T.

Dimostrazione Se conosco T su $v_1, ..., v_n$ allora v si scrive come $v = \alpha_1 v_1 + ... + \alpha_n v_n$ (perchè $\mathcal{B} = \{v_1, ..., v_n\}$ genera v). T è lineare:

$$T(v) = T(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha_1 T(v_1) + \dots + \alpha_n T(v_n)$$

Questo determina univocamente T:

Devo dimostrare che se esiste un'altra applicazione lineare $S \neq T$ ma che coincide con T sulla base, allora ho una contraddizione. Sia S un'altra applicazione $S: V \to W$ con $T(v_i) = S(v_i) \ \forall i = 1, ..., n$ allora

$$S(v) = \alpha_1 S(v_1) + \dots + \alpha_n S(v_n) = \alpha_1 T(v_1) + \dots + \alpha_n T(v_n) = T(v)$$

T è determinata completamente dai suoi valori su una base B di V.

13.8 Corollario

Due applicazioni lineari coincidono \Leftrightarrow coincidono sui vettori di una base.

13.9 Corollario

Se $\mathcal{B} = (v_1, ..., v_n)$ base ordinata di V e se $T: V \to W$ lineare, allora $ImT = Span(\{T(v_1), ..., T(v_n)\})$: cioè i vettori immagine della base di V generano l'immagine della trasformazione.

In particulare, se $T = L_A$, trasformazione lineare associata ad $A = \begin{bmatrix} a_{11} & \dots & \\ & \dots & \\ & & \dots & \\ & & \dots & \\ & &$

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$X \to AX = T(x)$$

allora

$$ImT = Im(L_A) = Span(T(e_1), ..., T(e_n))$$
$$= Span(A \cdot e_1, A \cdot e_2, ..., A \cdot e_n)$$

dove

$$A \cdot e_i = A \cdot egin{bmatrix} 0 \ dots \ i \ i \ \end{bmatrix} = A^{(i)}$$

(Quindi questo punto del corollario ci dice che $Im(L_A) = Span(Colonne\ di\ A)$

 $dimIm(L_A)$ = dimensione spazio generato dalle colonne =numero dei pivot di una ridotta scala equivalente ad A)

13.10 Definizione: rango trasformazione lineare

- 1. Il rango di una trasformazione lineare $T: V \to W \ ensuremath{\`{e}} \ rg(T) = dim_K Im(T)$.
- 2. Il rango di L_A è la dimensione dell'immagine di L_A , che è il rango della matrice A, $ImL_A = \{AX : X \in \mathbb{R}^n\}$.

13.11 Teorema della dimensione

Sia $T:V\to W$ trasformazione lineare. Allora:

$$dimV = dim_K KerT + dim_K ImT$$

Sia $\{u_1, ..., u_s\} \subseteq V$ una base di KerT

ullet Generano KerT

- Sono indipendenti
- $T(u_1) = ... = T(u_s) = 0$

Per il teorema del completamento: completo $\{u_1,...,u_s\}$ ad una base di V, quindi sia $\{u_1,...,u_s,w_1,...,w_{n-s}\}$ base di V. Si candidano a base di W i vettori $\{w_1,...,w_{n-s}\}$.

Dobbiamo mostrare che $t = \{T(w_1), ..., T(w_{n-s})\}$ è una base di ImT, cioè che rgT = n - s = dimV - dimKerT

- 1. t genera Im(T): sappieamo (dal corollario) che l'immagine ImT è lo span di $(T(u_1), T(u_2), ..., T(u_s), T(w_1), ..., T(w_{n-s})) = Span(0_w, T(w_1), ..., T(w_{n-s}))$
- 2. Vediamo che $T(w_1),...,T(w_{n-s})$ sono indipendenti. Supponiamo $\alpha_1,...,\alpha_{n-s}\in\mathbb{R}$ tali che:

$$\begin{split} \alpha_1 T(w_1) + \ldots + \alpha_{n-s} T(w_{n-s}) &= 0 \\ \Leftrightarrow T(\alpha_1 w_1 + \ldots + \alpha_{n-s} w_{n-s}) &= 0 \ (T \ e' \ lineare) \\ \Leftrightarrow \alpha_1 w_1 + \ldots + \alpha_{n-s} w_{n-s} &\in KerT \\ \\ \Rightarrow \beta_1, \ldots, \beta_s : \ \alpha_1 w_1 + \ldots + \alpha_{n-s} w_{n-s} &= \beta_1 u_1 + \ldots + \beta_s u_s \\ \alpha_1 w_1 + \ldots + \alpha_{n-s} w_{n-s} - \beta_1 u_1 - \ldots - \beta_s u_s &= 0 \end{split}$$

ed è una combinazione lineare dei vettori di una base di V che dà 0

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_{n-s} = -\beta_1 = \dots = -\beta_s = 0$$

13.12 Osservazione

Se $v_1, ..., v_n$ sono i vettori colonna di \mathbb{R}^n ; sia $A = \begin{bmatrix} v_1 & v_2 & ... & v_n \end{bmatrix}$ la matrice $m \times n$ formata dai vettori.

Allora una combinazione lineare delle colonne $v_1,...,v_n$ con gli scalari $\alpha_1,...,\alpha_n$ ($\alpha_1v_1+...+\alpha_nv_n$) è la stessa cosa di:

$$A_{(m \times n)} \cdot \begin{bmatrix} \alpha_1 \\ \cdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^m$$

13.13 Proposizione

a) $S,T:V\to W,\,S,T$ lineari, V,Wspazi vettoriali allora: $S+T,\;\lambda\cdot S$ sono lineari.

Dove
$$(S+T)(v) := S(v) + T(v) : \forall v \in V \ (S+T:V \to W)$$

e dove $(\lambda S)(v) := \lambda S(v) \ (\lambda S:V \to W)$

b) Siano $S:U\to V,\ T:V\to W$ allora è possibile definire la composta $T\circ S:U\to W,$ e $T\circ S$ è lineare.

Dimostrazione punto b) (la a) per esercizio)

Da dimostrare: $T \circ S$ è lineare $\Leftrightarrow T \circ S(\alpha v_1 + \beta v_2) = \alpha(T \circ S)(v_1) + \beta(T \circ S)(v_2)$

$$(T \circ S)(\alpha v_1 + \beta v_2) = T(S(\alpha v_1 + \beta v_2)) =$$

$$T(\alpha S(v_1) + \beta S(v_2)) = \text{ (S è lineare)}$$

$$\alpha T(S(v_1)) + \beta T(S(v_2)) = \text{ (T è lineare)}$$

$$\alpha (T \circ S)(v_1) + \beta (T \circ S)(v_2)$$

$$\Rightarrow T \circ S \text{ è lineare}$$

13.14 Conseguenze della proposizione

- a) L'insieme $\mathcal{L}(V, W) = \{T : V \to W, T \text{ lineare}\}$ è uno spazio vettoriale
- b) $\mathcal{L}(V,V)$ l'insieme delle trasformazioni lineari da V in se

$$T:V \to V \qquad T \circ S$$

$$S:V \to V \qquad S \circ T$$

$$(\mathcal{L}(V,V),+,\cdot)$$

- è un anello non commutativo
- unitario $id:V\to V,\,T\cdot id=id\cdot T=T$ (elemento neutro è l'unità del prodotto)
- $0_V: V \to V \ (v \mapsto 0_V)$ trasformazione lineare nulla (elemeno neutro della somma)
- c) Se in $\mathcal{L}(V, V)$ ci restringiamo a guardare le trasformazioni invertibili: $(\{T: V \to V: T \text{ lineare e invertibile}\}, \cdot)$ è un gruppo commutativo.

13.15 Osservazione: iniettività, suriettività

Sia $T: V \to W$ lineare e dimV = dimW, allora:

- T invertibile $\Leftrightarrow T$ iniettiva
- T invertibile $\Leftrightarrow T$ suriettiva

13.16 Osservazione: isomorfismo

 $V \in W$ sono isomorfi (**notazione**: $V \cong W$) $\Leftrightarrow \exists T : V \to W$ con T biunivoca.

13.17 Esempio isomorfismo

V dimensione finita n; $B = (v_1, ..., v_n)$ base ordinata.

$$f_B:V\to\mathbb{R}^r$$

$$v \mapsto f_B(v) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 dove $v = x_1 v_1 + \dots + x_n v_n$

 $f_B(v)$ sono le coordinate di v in base B. Si ha che f_B è un isomorfismo di V in \mathbb{R}^n .

L'isomorfismo $V \xrightarrow{f_B} \mathbb{R}^n$ non è canonico, cioè dipende dalla scelta di una base.

Conseguenza importante: tutti gli spazi vettoriali di dimensione n su K sono tutti isomorfi a K^n .

13.18 Teorema

$$\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \cong \mathcal{M}_{m,n}(\mathbb{R})^{\to [m \cdot n]}$$

Dimostrazione: abbiamo visto già come associare ad una matrice $A_{m\times n}$ un'applicazione lineare di \mathbb{R}^n in \mathbb{R}^m .

 $A \mapsto L_A$ la trasformazione lineare da \mathbb{R}^n in \mathbb{R}^m che agisce per moltiplicazione.

$$L_A: \mathbb{R}^n \to \mathbb{R}^m$$

 $X \mapsto AX$

$$L: Matrici\ m \times n \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$$

 $A \mapsto L(A) = L_A$

- L è biunivoca? C'è l'inversa?
- L'è lineare? Fare da soli

Inizio dimostrazione primo punto:

$$L: \mathcal{M}_{m,n}(\mathbb{R}) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$$

 $A \leftarrow T$

Ora

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$e_1 \mapsto T(e_1) \in \mathbb{R}^m$$

$$\vdots$$

$$e_n \mapsto T(e_n) \in \mathbb{R}^m$$

Sia $A := \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix}$ è una matrice $m \times n$. Devo mostrare che $L_A = T(completare \ da \ soli!)$

13.19 Osservazione

Si può dimostrare che $L_A \cdot L_B = L_{A \cdot B}$

13.20 Proposizione: ricapitolazione sulle matrici invertibili

Le seguenti sono equivalenti:

- 1. $A \in \mathcal{M}_{m,n}(\mathbb{R})$ è invertibile (rispetto al prodotto di matrici)
- 2. $L_A: \mathbb{R}^n \to \mathbb{R}^n$ è invertibile
- 3. L_A è iniettiva
- 4. L_A è suriettiva
- 5. $KerA = \{0\}$
- 6. $ImL_A = \mathbb{R}^n \ (= ImA)$
- 7. rgA = n
- 8. Le colonne di A sono indipendenti
- 9. Le righe di A sono indipendenti
- 10. $AX = \underline{0}$ ha l'unica soluzione $X = \underline{0}$
- 11. $\forall \underline{b} \in \mathbb{R}^n$ il sistema $AX = \underline{b}$ ammette unica soluzione (è $X = A^{-1} \cdot \underline{b}$)
- 12. I pivot di una ridotta scala sono tutti non nulli

13.
$$\exists B \in \mathcal{M}_n(\mathbb{R}) : BA = I_n = \begin{bmatrix} 1 & \dots & 0 \\ & \dots & \\ 0 & \dots & 1 \end{bmatrix}$$
 (tutti 1 sulla diagonale, resto 0) [inversa a sinistra]

14.
$$\exists C \in \mathcal{M}_n(\mathbb{R}) : AC = I_n = \begin{bmatrix} 1 & \dots & 0 \\ & \dots & \\ 0 & \dots & 1 \end{bmatrix}$$
 (tutti 1 sulla diagonale, resto 0)

- 15. $[A|I] \sim [I|C] (C^{-1} \text{ sarà l'inversa})$
- 16. $det(A) \neq 0$

13.21 Determinante di una matrice quadrata

$$det: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$$

$$A\mapsto det(A)$$
 (è un numero)

13.21.1 Sistemi AX = 0

A è invertibile $\Leftrightarrow AX = 0$ ha unica soluzione.

13.21.2 n = 1

$$A = [a] \ a \in \mathbb{R}; \ X = x; \ \underline{0} = 0.$$

 $ax = 0$ ha unica soluzione $\Leftrightarrow a \neq 0 \Leftrightarrow a^{-1}ax = a^{-1}0 \ (x = 0)$
 (se $a = 0 : 0 \cdot x = 0$ ha infinite soluzioni). Qui se pongo $det(a) = a$ ottengo:

$$[a] = A$$
 invertibile $\Leftrightarrow det(A) = a \neq 0$

TODO: CONTROLLARE SUL LIBRO

13.21.3 n=2

A invertibile $\Leftrightarrow AX = \underline{0}$ ha unica soluzione $\Leftrightarrow a_{11}a_{22} - a_{12}a_{22} \neq 0$. Dimostrazione su appunti lezione 33.

Definisco:

$$det A = det \begin{bmatrix} a_{11} & a_{22} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{21}a_{22}$$

13.21.4 n = 3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$a_{11} a_{22} a_{33} + \begin{vmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = (1)(2)(3) & \text{segno pari} \\ a_{12} a_{23} a_{31} + \begin{vmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (123) & \varepsilon(\sigma) = 1 \\ a_{13} a_{21} a_{32} + \begin{vmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (132) & \\ -a_{13} a_{22} a_{31} & \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13) & \text{segno dispari} \\ -a_{11} a_{23} a_{32} & \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = (23) & \varepsilon(\sigma) = -1 \\ -a_{12} a_{21} a_{33} & \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (12)$$

13.21.5 Definizione determinante

Data $A \in M_n(\mathbb{R})$, si definisce il determinante di A come:

$$det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1(\sigma 1)} a_{2(\sigma 2)} ... a_{n(\sigma n)}$$

NOTA: Esempio di matrice di permutazionee su slides lezione 34.

13.21.6 Proprietà del determinante

- $det A = det A^t$
- Se A ha una colonna tutta nulla, allora det A=0 $(A^{(1)}\ A^{(2)}...\underline{0}...A^{(n)})$ colonne dipendenti.
- Se A ha una riga nulla allora il det A = 0 $(det A = det A^t)$.
- Se due colonne di A sono uguali, allora det A = 0.
- Se due righe di A sono uguali, allora det A = 0.
- Se due colonne (risp. righe) sono proporzionali, cioè se $A = [A^{(1)}...A^{(i)}...\lambda A^{(i)}...\lambda A^{(n)}]$ allora det A = 0 ($\lambda A^{(i)}$) è la colonna j).
- Il valore del determinante non cambia se sommiamo ad una riga (vale anche l'analogo per le colonne) il multiplo di un'altra:

$$A = \begin{bmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ \vdots A_{(n)} \end{bmatrix} \xrightarrow[L_{ij}(\lambda)]{} B = \begin{bmatrix} A_{(1)} \\ \vdots \\ A_{(i)} + A_{(j)} \\ \vdots \\ A_{(n)} \end{bmatrix}$$

allora det(A) = det(B).

• Se in A si scambiano due colonne (o due righe)

$$A = \begin{bmatrix} A_{(1)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(j)} \\ \vdots \\ A_{(n)} \end{bmatrix} \xrightarrow{L_{ij}} B = \begin{bmatrix} A_{(1)} \\ \vdots \\ A_{(j)} \\ \vdots \\ A_{(i)} \\ \vdots \\ A_{(n)} \end{bmatrix}$$

allora det A = -det B.

13.21.7 Teorema di Binet

Siano A, B matrici quadrate $n \times n$ allora:

$$det(A \cdot B) = det(A) \cdot det(B)$$

(cioè il determinante è una funzione moltiplicativa sulle matrici). !! non è additiva: $det(A + B) \neq det(A) + det(B)$

13.21.8 Corollario di Binet

$$det(A^{-1}) = \frac{1}{det(A)}$$

se A è invertibile.

13.21.9 Teorema di Laplace

Calcolo del determinate col metodo di Laplace.

Data $A \ n \times n, \ n \geq 2$, si ha che (sviluppo lungo la colonna j quindi $A^{(j)}$):

$$\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix}$$

$$detA = a_{1j}\alpha_{1j} + a_{2j}\alpha_{2j} + \dots + a_{nj}\alpha_{nj}$$

dove α_{ij} si chiama cofattore della matrice A, ed è definito come:

$$\alpha_{ij}(-1)^{i+j} \cdot det A_{ij}$$

 $A_{ij}\colon$ sottomatrice di Ache si ottiene cancellando la riga ie la colonna j

1. ovvero: (formula per la colonna j)

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

i: varia l'indice di riga; j è fisso.

2. formula (sviluppo) lungo la riga i

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

j: varia l'indice di colonna; i è fisso.

NOTA: vedere appunti lezione 14 per esempio.

13.21.10 Metodo alternativo calcolo determinante

 $A \sim B$ usando solo $L_{ik}, L_{ij}(C)$

 $A \xrightarrow{L_{ij}} A' \colon \det A = -\det A' \ ((-1) \cdot \text{ numero di scambi di riga})$

 $A \xrightarrow{L_{ij}(C)} A'$: det A = det A'

Non usare $L_i(C)$ perche modifica il determinante.

$$A = \begin{bmatrix} & & \\ & & \\ & & b_{22} & \\ & & b_{33} & \\ & & & b_{44} \end{bmatrix}$$

Il detB =prodotto degli elementi sulla diagonale.

Proprietà: Se una matrice B quadrata è triangolare superiore (cioè $b_{ij}=0$ se i>j)

$$\begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ 0 & 0 & \dots & \\ 0 & \dots & 0 & b_{nn} \end{bmatrix}$$

allora $detB = b_{11}b_{22}...b_{nn}$ (prodotto degli elementi sulla diagonale.

- In particolare se b è una matrice diagonale, ovvero $b_{ij} = 0$ se $i \neq j$, allora $det A = b_{11}b_{22}...b_{nn}$
- In particolare se

$$B = \begin{bmatrix} \lambda & & 0 \\ & \lambda & \\ & \dots & \\ 0 & & \lambda \end{bmatrix} \text{ per } \lambda \in \mathbb{R}$$

Allora $detB = \lambda^n$.

•
$$det I_n = \begin{bmatrix} 1 & & O \\ & \dots & \\ O & & 1 \end{bmatrix} = 1$$
 (Se a matrice ha tutti 1 sulla diagonale).

• Se P è una matrice di permutazione, allora $det P = \varepsilon(\sigma)$ se $P = P_{\sigma}$: P_{σ} è la matrice che ha 1 in posizione a_{ij} se $j = \sigma(i)$ NOTA: Esempio appunti lezione 34.

13.22 Cambiamento di base

- Come mutano le coordinate dei vettori nelle due basi diverse.
- Come mutano le trasformazioni lineari.
- Come cambiano le matrici associate alle trasformazioni quando cambiano le basi.

Siano $\mathcal{B} = (v_1, ..., v_n)$ e $\mathcal{B}' = (v'_1, ..., v'_n)$ due basi ordinate di uno spazio vettoriale V (su \mathbb{R} o su K fissato) di dimensione n su \mathbb{R} (su K...). Siano $f_{\mathcal{B}}$ ed $f_{\mathcal{B}'}$ gli isomorfismi che mandano i vettori di V nelle coordinate (colonne di \mathbb{R}^n) rispettivamente nella base \mathcal{B} e \mathcal{B}' .

$$id_V: V \to V$$

 $v \mapsto v = id_V(v)$

 $(id_V$ è una trasformazione lineare biunivoca) è l'elemento neutro nella composizione delle trasf. lineari da V in se.

Richiamo Se \mathcal{B} è una base, allora l'applicazione

$$f_{\mathcal{B}}: V \to \mathbb{R}$$

$$v \to \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Se
$$v=x_1v_1+\ldots+x_nv_n$$
, $\begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}=f_{\mathcal{B}}(v)$ è:

- Lineare
- Biunivoca

$$v = x_1'v_1' + x_2'v_2' + x_3'v_3' = f_{\mathcal{B}'}^{-1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$f_{\mathcal{B}} \circ id_V \circ f_{\mathcal{B}'}^{-1}$$

Siano:

fano:
$$f_{\mathcal{B}}(v) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ le coordinate di } v \text{ in base } \mathcal{B}$$

$$f_{\mathcal{B}'}(v) = \begin{bmatrix} x'_1 \\ \vdots \\ x'_n \end{bmatrix} \text{ le coordinate di } v \text{ in base } \mathcal{B}'$$
Allora esiste un'unica applicazione Ψ che reconstructions.

Allora esiste un'unica applicazione Ψ che rende il diagramma commutativo:

$$\Psi = f_{\mathcal{B}} \circ id_{V} \circ f_{\mathcal{B}'}^{-1}$$

ed esiste un'unica matrice B tale che:

$$f_{\mathcal{B}} = L_{B} \circ f_{\mathcal{B}'}$$

$$= L_{B} \circ f_{\mathcal{B}'}(v) (\in \mathbb{R})$$

$$L_{B}(f_{\mathcal{B}'}(v)) = B \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

(con L_B la trasformazione lineare associata alla moltiplicazione per B:

$$L_B: \mathbb{R}^n \to \mathbb{R}^n$$

 $Y \mapsto L_B(Y) = BY$
 $Y \mapsto Y$

• Se $X = f_{\mathcal{B}}(v)$ $X' = f_{\mathcal{B}'}(v)$ allora:

$$X = BX'$$

Trasformazione delle coordinate

Se \mathcal{B} è la base vecchia e \mathcal{B}' è la base nuova, allora le coordinate di un vettor v nella base nuova si esprimono come:

$$X' = B^{-1}X$$

(Oss.: $\Psi(X') = X, \Psi = L_B$ per un'opportuna matrice B.)

• B si chiama la matrice del cambiamento di base e si ottiene come: $B_{n \times n}[y_1 \dots y_n]$,

dove $y_i = \prod$ sono le coordinate di v_i nella base B.

Cioè $B = [\vec{f}_{\mathcal{B}}(v'_1), ..., f_{\mathcal{B}}(v'_n)]$, cioè è la matriche che contiene come colonne consecugive le coordinate dei vettori della base nuova espressi nella base vecchia, ovvero:

$$\mathcal{B} = \mathcal{B}' \cdot B$$

13.23 Def: Matrice associata a una trasformazione lineare T

(opp. matrice che rappresenta T rispetto alle basi degli spazi vettoriali) L'unica matriche che rende il diagramma commutativo (cioè tal eche $f_C \circ T \circ f_{\mathcal{B}}^{-1} = L_A$) si chiama matrice associata a T nelle basi $\mathcal{B} \in \mathcal{C}$. In altre parole $f_{\mathcal{C}} \circ T = L_A f_{\mathcal{B}}$, ovvero $f_{\mathcal{C}}(T(v)) = A f_{\mathcal{B}}(v) A$. In altre parole:

$$\underline{x} = f_{\mathcal{B}}(v)$$

$$\underline{y} = f_{\mathcal{C}}T((v))$$

$$\Rightarrow \underline{y} = A\underline{x}$$

13.24 Proposizione

-V ha due basi \mathcal{B} e \mathcal{B}' , sia B la matrice del cambio di base da \mathcal{B} a \mathcal{B}' :

$$\mathcal{B}' = \mathcal{B}\mathcal{B}$$

-W ha due basi \mathcal{C} e \mathcal{C}' , sia \mathcal{C} la matrice del cambio di base da \mathcal{C} a \mathcal{C}' :

$$C' = CC$$

- Se $T:V\to W$ una trasformazione lineare, con
 - * A è la matrice che rappresenta T nelle basi \mathcal{B} e \mathcal{C} .
 - * A' è la matrice che rappresenta T nelle basi \mathcal{B}' e \mathcal{C}' .
- 1. Allora A' = B'AC (cambiamento di matrice che rappresenta T)
- 2. Nel caso in cui W = V, e se prendo la stessa base per V (cioe C = B) e sia B' un'altra base di V, se B è la matrice del cambiamento di base da B a B', la nuova mtrice che rappresenta T nella base B' è data da:

$$A' = B^{-1}AB$$

cioè A' è conjugata tramite la matrice B del cambiamento di base.

13.25 Definizione: matrice simile

Si dice che una matrice quadrata A è simila ad una matrice $A' \Leftrightarrow \exists B$ invertibile tale che:

$$A' = B^{-1}AB$$

13.26 Proposizione

Data $T:V\to V$ (endomorfismo) sia $\mathcal B$ una base di V e sia A la matrice (quadrata) associata a T nella base $\mathcal B$.

1. Se \mathcal{B}' è un'altra base di V, allora la matrice A' associata a T nella base \mathcal{B} è data da:

$$A' = D^{-1}AD$$

Cioè esiste D $n \times n$ invertibile tale che A' è coniugata di A tramite D. Con D invertibile e che rappresenta la matrice del cambiamento di base da \mathcal{B} a \mathcal{B}' .

2. Se A' è una matrice simile ad A, allora esiste una base \mathcal{B}' di V tale che A' è la matrice che rappresenta T in base \mathcal{B}' !

13.27 Proposizione

La relazione tra matrici $n \times n$ definita da:

$$A \sim B \Leftrightarrow \exists C \text{ invertibile con } B = C^{-1}AC$$

è una relazione di equivalenza su $\mathcal{M}_n(\mathbb{R})$ TODO:DIMOSTRAZIONE R-S-T

13.28 $\mathcal{M}_n(\mathbb{R})_{/\sim}$ quoziente modulo la similitudine)

La classe di similitudine di una matrice $A \in \mathcal{M}_n(\mathbb{R})$, denotata con \mathcal{O}_A :

$$\mathcal{O}_A := \{ B \in \mathcal{M}_n(\mathbb{R}) : A \sim B \} = \{ B : \exists C, B = C^{-1}AC \}$$

è l'insieme delle matrici simili ad A.

A ogni endomorfismo di $T:V\to V$ si può associare in modo unico una classe di similitudine (che contiene tutte e sole le matrici che rappresentano T nelle diverse basi).

13.29 Definizione

Sia $T: V \to V$ (endomorfismo) e sia $v \neq \underline{0}_V$:

• v + un autovettore per T se esiste $\lambda \in \mathbb{R}$ scalare tale che:

$$T(v) = \lambda v$$

- Tale λ si chiama **autovalore** relativo all'autovettore v (associato all'autovettore v)
- \bullet L'insieme di tutti gli autovalori (se esistono) di una trasformazione T si chiama ${\bf spettro}$ di T

$$Spec(T) = \{ \lambda \in K : \exists v \neq 0, v \in V \text{ con } T(v) = \lambda v \}$$

• Si chiama autospazio relativo a un autovalore di λ di T il sottospazio $V_{\lambda} \leq V$ definito da:

$$V_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

13.30 Osservazione

Vedremo che lo spettro di T non dipende dalla matriche che rappresenta T in una base, cioè è una nozione intrinseca: se A, B sono due matrici che rappresentanto T in due basi diverse (cioè sono simili), allora Spec(A) = Spec(B) dove $Spec(A) = Spec(L_A)$.

- Spec(T) (o di una matrice) può essere vuoto.
- Sia λ_0 un autovalore di T:

$$V_{\lambda_0} = \{ v \in V : T(v) = \lambda_0 V \}$$

$$= \{ v \in V : T(v) - \lambda_0 i d(v) = 0 \}$$

$$= \{ v \in V : (T - \lambda_0 I)(v) = 0 \}$$

$$= Ker(T - \lambda_0 I) \neq \{ 0_V \}$$

13.31 Proposizione

- 1. λ è un autovalore per $T \Leftrightarrow T \lambda i d_V$ è una trasformazione singolare (una trasformazione lineare è singolare se ha nucleo non vuoto).
- 2. Se v è autovettore relativo a λ , allora non può essere autovettore relativo a un altro scalare $\mu \neq \lambda$, infatti:

$$Av = \lambda V$$
 e anche $Av = \mu v$

$$\Rightarrow \lambda v = \mu v \Leftrightarrow \lambda v - \mu v = 0_V$$

$$(\lambda - \mu)v = 0_V$$

che è una contraddizione perchè $v \neq 0$ perchè autovettore e $\lambda - \mu \neq 0$.

3. Autovettori relativi ad autovalori distinti sono linearmente indipendenti.

13.32 Diagonalizzazione di una matrice

- Un endomorfismo $T:V\to V$ di V è diagonalizabile \Leftrightarrow esiste una base di T fatta di autovettori.
 - \Rightarrow in base \mathcal{B} la matrice che rappresenta T è diagonale.
- Ogni matrice che rappresenta T in qualche base ha gli stessi autovalori di T, cioè:

$$Spec(L_A) = Spec(A) = Spec(T)$$

• L'autospazio relativo all'autovalore lambda,

$$V_{\lambda} = \{v \in V : T(v) = \lambda v\} = Ker(T - \lambda id)$$

- Autovettori relativi ad autovalori distinti sono indipendenti.
- λ autovalore di $T \Leftrightarrow T \lambda i d_V$ è singolare $(Ker(T \lambda i d_V) \neq \{0_V\})$.
- Se A è la matrice della trasformazione $L_A : \mathbb{R}^n \to \mathbb{R}^n$ (nella base canonica) A ha un autovalore $\lambda \Leftrightarrow$ la matrice $(A \lambda I_n)$ è singolare $\Leftrightarrow Ker(A \lambda I_n)$ è non banale $\Leftrightarrow det(A \lambda I_n) = 0$.

13.33 Polinomio caratteristico

Si chiama polinomio caratteristico di $T: V \to V$ il polinomio:

$$p_T(\lambda) = det(T - \lambda i d_V)$$

13.34 Proposizione

Se A e B sono simili, allora hanno lo stesso polinomio caratteristico: cioè se A e B rappresentano (in basi diverse) la stessa trasformazione T: allora

$$det(A - \lambda I_n) = det(B - \lambda I_n)$$

Dimostrazione: $A \sim B \Leftrightarrow \exists C \text{ invertibile con } B = C^{-1}AC.$

Osserviamo che:

$$C^{-1}(A - \lambda I_n)C =$$

$$= (C^{-1}A - C^{-1}\lambda I_n)C$$

$$= C^{-1}AC - C^{-1}\lambda I_nC$$

$$= B - \lambda C^{-1}I_nC$$

$$= B - \lambda I_n$$

Infine:

$$det(B - \lambda I_n) = det(C^{-1}(A - \lambda I_n)C) =$$
$$det(C^{-1})det(A - \lambda I_n)det(C) =$$

$$det(C^{-1})det(C)det(A - \lambda I_n) =$$

$$\frac{1}{det(C)}det(C)det(A - \lambda I_n) =$$

$$det(A - \lambda I_n)$$

Quindi possimao dire che $p_T(\lambda) = p_A(\lambda)$ per ogni matrice A nella classe di similitudine.

13.35 Proprietà del polinomio caratteristico

- $p_T(\lambda) = det(A \lambda I)$ (A che rappresenta T in una base)
- $p_T(\lambda)$, $(p_A(\lambda))$ è un polinomio:
 - di grado n in λ
 - Il coefficiente di λ^n è $(-1)^n$
 - Il coefficiente di λ^{n-1} è $(-1)^n tr(A)$ (traccia(A) =somma degli el. sulla diagonale)
 - il coefficiente di $\lambda^0 = 1$ (del termine noto) è $(-1)^0 det A = det A$
- $v \neq 0$ e $Av = \lambda v \Leftrightarrow$

$$(A - \lambda I)v = 0 \quad (v \neq 0)$$

$$\Leftrightarrow (A - \lambda I)singolare$$

$$\Leftrightarrow det(A - \lambda I) = 0 \quad (p_T(\lambda))$$

 $\Leftrightarrow \lambda$ è radice del polinomio caratteristico

13.36 Corollario

Se $p_T(\lambda)$ ha n soluzioni distinte, allora T è diagonalizzabile.

13.37 Definizioni

• Si chiama molteplicità algebrica di una radice x_0 (soluzione) di un polinomio p(x) un numero k tale che $(x-x_0)^k|p(x)$ ma $(x-x_0)^{k+1}\nmid p(x)$

$$p(x) = (x - x_0)^k q(x)$$

• Si chiama molteplicità geometrica di λ_0 (autovalore di T) e si denota con $m_a(\lambda_0)$ la molteplicità algebriga di λ_0 come radice di $p_T(\lambda)$, cioè:

$$p_T(\lambda) = (\lambda - \lambda_0)^{m_a(\lambda_0)}(\quad)$$

• Si chiama molteplicità geometrica di λ_0 (autovalore di T) e si indica con $m_g(\lambda_0)$, la dimensione dell'autospazio di V_{λ_0} relativo a λ_0 , cioè la nullità di $T - \lambda_0 I$.

In genere $m_q(\lambda_0) \leq m_a(\lambda_0)$

13.38 Teorema

Le seguenti sono equivalenti per $T:V\to V,\ dim_KV=n$:

- 1. T è diagonalizzabile \leftrightarrow
- 2. T ha tutti i suoi autovalori in K (cioè il polinomio caratteristico si spezza in fattori del tipo $(x-a)^*$ lineari di grado 1) e la molteplicità algebrica di ogni autovalore coincide con la molteplicità geometrica:

$$m_a(\lambda_0) = m_g(\lambda_0) \ \forall \lambda_0 \in Spec(T)$$

quindi se con $Spec(T) = \{\lambda_1, ..., \lambda_k\}$ allora $n = m_g(\lambda_1) + ... + m_g(\lambda_k)$.

14 Usi di Gauss-Jordan in vari ambiti

14.1 Risolvere AX = b

Si applica GJ alla matrice aumentata $[A|b] \to [R|b']$ con $A \sim R$ e $[A|b] \sim [R|b']$. AX = b ha le stesse soluzioni di RX = b'. Si risolve a questo punto il sistema ridotto RX = b'

14.2 Rango e base ImL_A

Si applica $A \to R$.

Rivedere Corollario $Im L_A$

Le colonne sono generatori:

$$[A^{(1)}, ..., A^{(n)}] = A \sim R$$

allora le colonne di A corrispondenti ai pivot sono indipendenti: $A^{(j_1)}...A^{(j_r)}$:

$$rg(A) = dim Im L_A = r$$

e $A^{(j_1)}...A^{(j_r)}$ è una base per l'immagine.

14.3 Trovare $Ker(L_A) = KerA$

$$KerT = \{v \in V : T(v) = 0\}$$
$$KerL_A = \{X \in \mathbb{R}^n : L_A(X) = \underline{0}\} = \{X \in \mathbb{R}^n : AX = \underline{0}\} = \mathbb{R}^n : AX = \underline{0}\} = \mathbb{R}^n$$

= spazio delle soluzioni del sistema lineare omogeneo associato ad A

Ker A =Soluzioni di AX=0: applicando GJ ad A: $A\sim R$ e risolvo ora RX=0.

14.4 Estrazione insieme di vettori indipendenti

Per il problema di estrarre un insieme indipendente più grande possibile da un insieme di vettori di \mathbb{R}^n : ci si chiede dato $\{v_1,...v_k\} \subseteq \mathbb{R}^n$, qual è una base per $Span(v_1,...,v_n)$ da estrarre da $\{v_1,...v_k\}$.

Costruisco la matrice $A = \begin{bmatrix} v_1 & \dots & v_k \end{bmatrix}_{nxk}$:

 $A \sim^{GJ} R$: le colonne di A corrispondenti alle colonne di R dove si trovano i pivot sono indipendenti.

14.5 Completamento a un base di $\mathbb R$

Dati $v_1, ..., v_k \in \mathbb{R}^n$ indipendenti, voglio completare $\{v_1, ..., v_k\}$ a una base di \mathbb{R}^n (se k < n).

In questo caso formo un insieme $\{v_1,...,v_k,e_1,...,e_n\}$. Costruisco

$$A = \begin{bmatrix} v_1 & \dots & v_k & e_1 & \dots & e_n \end{bmatrix}$$

Applico GJ: $A \sim R$ e scelgo le colonne di A corrispondenti ai pivot.

14.6 Trovare base di U+W e $U\cap W$

Per trovare una base di U+W e $U\cap W$ date una base di U e una di W.