< Feedback & Stability >

· Objective

Understand the condition for marginal stability.

Understand the effect of a time delay to the closed-loop system stability.

· Nyquist's original idea.

L.T. = A1A2A3A4

- Let a = cos (wot)

If L.T. (jwo) = 1, then y = cos (wot).

- Now, if we connect the two arrows together. $z = y = \cos(\omega \sigma t)$ " | Keep oscillating"
- If L.T. (jwo) = 1. the loop can maintain a persist and sinusoid of frequency wo.

L.T. (juo) = 1 for marginal stability

· Sensitivity function

The system would be on the verge of instability if $t=0 \rightarrow e \neq 0$.

If
$$L(j\omega_0) = -1$$
. $S(j\omega_0) = \frac{1}{1+L(j\omega_0)} \rightarrow \infty$.
This is the case when $\phi_m = 0$. deg

A We need to assess the stability via Nygnist test.

delay.

Delay by
$$T$$
 $f(t)$ $Delay$ $f(t-T) = h(t)$

H(G) =
$$\int_{-\infty}^{\infty} f(t-T) e^{-st} dt$$

= $\int_{-\infty}^{\infty} f(t-T) e^{-sT} dt$ " Sampling"

= $e^{-sT} \int_{-\infty}^{\infty} f(t-T) dt$. "Unit area"

= $e^{-sT} \int_{-\infty}^{\infty} f(t-T) dt$. "Unit area"

 $f(t-T) = \int_{-\infty}^{\infty} f(t-T) dt$ "Unit area"

 $f(t-T) = \int_{-\infty}^{\infty} f(t-T) dt$ "Unit area"

 $f(t-T) = \int_{-\infty}^{\infty} f(t-T) dt dt$ "Unit area"

· Bode plot.

"All-pass" System

" Linear -phase" System.

" Non-minimum phase (Lag)

System.

· looks like exponential because horizontal axis is logarithmic.

$$\begin{cases} |L| = \frac{160}{C0}. \\ |L| = -\frac{7L}{2} - \frac{W}{100}. \end{cases}$$

Two " suspicious frequencies" for marginal stability.

o phase margin

Meaning: In tells us how much delay the loop com tolerate before loosing stability

· Gain worgin.

$$g_{m} = \frac{1}{|L(j\omega_{p})|}$$

$$= \frac{1}{100/507L} = \frac{7L}{2} \quad g_{m} = 1.57$$

Meaning: 9m tells us how much gain increas the loop.

Com tolerate before looning starbility.

· Now, we can think of two mays to destabilize the system.

Increase time delay T such that 4 L(jwc) = -1000Since 9m = 0.57 and, additional time delay of $\Delta T = \frac{0.57}{100} \frac{4}{4} = \frac{100}{100} = \frac{1000}{100} = \frac{1000}{10$

Directorse to such that | L(j'wp)| = 1

Since 9m = 1.57, increasing the gain to top = 1.57

will make it marsinally stable.

- Check the step resp. r=step - See the overshoot.
- @ For Kp=1. T= 10 ms
 - Turn off the ref. V=0.
 - Gradually Increase T world seeing a sinusoid
 - Measure the frequency : n we
- 3 For 1<p=1. T= 10 Ms
 - tun off the ref. + =0
 - Grandily increase Kp untill seeing a simusoid
 - Measure the fragmency:
- € For kp=1, T=10 ms.
 - Set the ref. to step
 - Vary the idelay I and observe the overshoof