STA 104 Applied Nonparametric Statistics

Chapter 5: Two-Way Layout Problems: Nonparametric Two-Way Analysis of Variance

Xiner Zhou

Department of Statistics, University of California, Davis

Table of contents

- 1. Friedman test for General Alternatives in a Randomized Complete Block Design
- 2. Two-Sided All-Treatments Multiple Comparisons for General Alternative in a Randomized Complete Block Design
- 3. Mack-Skillings test for General Alternatives in a Randomized Block Design with Equal Number of Replications Per treatment-Block Combination
- 4. Two-Sided All-Treatments Multiple Comparisons for General Alternative in a Randomized Block Design with Equal Number of Replications Per treatment-Block Combination

Mack-Skillings test for General Alternatives in a Randomized Block Design with Equal Number of Replications Per treatment-Block Combination It is often the case in two-way layout settings that we have more than one observation for some of the treatment-block combinations.

These multiple observations in a given cell are referred to as replications for that treatment-block combination.

Here we focus on the setting where we have a common, equal number c>1 of replications for every treatment-block combination.

Setting

The data consist of $N=\sum_{i=1}^n\sum_{j=1}^kc=nkc$ observations, with c>1 observations from the combination of the i th block with the j th treatment (i.e., the (i,j) th cell), for $i=1,\ldots,n$ and $j=1,\ldots,k$

	Treatments								
Blocks	1	2		k					
1	X ₁₁₁	X ₁₂₁		X_{1k1}					
	:	:		:					
	X_{11c}	X_{12c}		X_{1kc}					
2	X_{211}	X_{221}		X_{2k1}					
	:	:		:					
	X_{21c}	X_{22c}		X_{2kc}					
	:	:	:	:					
n	X_{n11}	X_{n21}		X_{nk1}					
	:	:		:					
	X_{n1c}	X_{n2c}		X_{nkc}					

Hypothesis

if Ha: II - The nor all you ! I Truse :

Motivation

Mack-Skillings idea (Friedman-type):

 \Rightarrow first order the kCobservations from least to greatest separately within each of the n blocks

 \Rightarrow Let r_{ijq} denote the within block rank of X_{ijq} (the q th replication from the j th treatment in the i th block) among the kc total observations in the i th block and set

$$S_j = \sum_{i=1}^n \left[\sum_{q=1}^c r_{ijq}/c
ight], \quad ext{ for } j=1,\ldots,k$$

Thus, S_j is the sum (across blocks) of the cellwise averages of the within-blocks ranks assigned to the c observations from treatment j, for $j = 1, \ldots, k$.

 \Rightarrow The Mack-Skillings statistic for equal replications 2

Common role of Sj

$$MS = \left[\frac{12}{k(N+n)}\right] \sum_{j=1}^{k} \left[S_j - \frac{N+n}{2}\right]^2$$
$$= \left[\frac{12}{k(N+n)}\right] \left\{\sum_{j=1}^{k} S_j^2\right\} - 3(N+n)$$

where $\frac{N+n}{2}$ is expected sum (across blocks) of the cellwise averages for each of the k treatments when H_0 is true; that is, (N+n)/2 is the expected value of S_j , for each $j=1,\ldots,k$, when the null hypothesis H_0 is true.

²Special Case of c=1: When we have a single observation for every treatment-block combination (i.e., c=1), we are dealing with data from a complete randomized block design. In this setting, the Mack-Skillings statistic is equivalent to the Friedman statistic. Thus, the Mack-Skillings test represent natural extensions of the Friedman test, to the case of an equal number c>1 of replications per cell.

 \Rightarrow Since MS is a constant times a sum of squared differences between the observed treatment sums of cellwise average ranks, S_j , and their common null expected value

- small values of MS represent agreement with H_0
- When the τ 's are not all equal, we would expect a portion of the associated treatment average ranks to differ from their common null expectation, with some tending to be smaller and some larger. The net result would be a large value of MS. This naturally suggests rejecting H_0 in favor of H_1 for large values of MS.

Derivation of null distribution using permutation

When H_0 is true, all possible $[(ck)!]^n$ permutations of the within-blocks ranks are equally likely. Thus, to obtain the exact null distribution of MS, we compute its value for each of these $[(ck)!]^n$ block rank configurations and then tabulate the collected outcomes. ³

³he number $[(ck)!]^n$ of configurations for which we need to compute the value of MS can get large rather quickly, as either k or c is moderately increased.

Large sample approximation of null distribution

Define the centered treatment sums of cellwise average ranks

$$S_j^* = S_j - E_0(S_j) = S_j - (N + n)/2$$
, for $j = 1, ..., k$

- \Rightarrow each S_i is an average
- \Rightarrow properly standardized version of the vector $\left(S_1^*,\ldots,S_{k-1}^*\right)$ has an asymptotic (nc tending to infinity) (k-1)-variate normal distribution when the null hypothesis H_0 is true.

Since the test statistic MS is a quadratic form of $\left(S_1^*,\ldots,S_{k-1}^*\right)$, therefore, quite natural that MS has an asymptotic (nc tending to infinity) chi-square distribution with k-1 degrees of freedom.

$$MS \sim \chi_{k-1}^2$$

Procedure

Permutation no prefer

Reject H_0 if $MS \ge ms_{\alpha}$, otherwise do not reject where ms_{α} is the upper α percentile point of the permutation distribution.

Large-sample approximation

Reject H_0 if $MS \ge \chi^2_{k-1,\alpha}$, otherwise do not reject

where $\chi^2_{k-1,\,\alpha}$ is the upper α percentile point of a chi-square distribution with k-1

degrees of freedom.

Example: Determination of Niacin in Bran Flakes

In a study to investigate the precision and homogeneity of a procedure for assessing the amount of niacin in bran flakes, Campbell and Pelletier (1962) prepared homogenized samples of bran flakes enriched with 0.4, or $8 \mathrm{mg}$ niacin per $100 \mathrm{~g}$ of cereal. Portions of the homogenized samples were sent to different laboratories, which were asked to carry out the specified procedure for each of three separate samples. The resulting data (in milligrams per $100 \mathrm{~g}$ bran flakes) for a subset (4 out of 12) of the laboratories included in the study are

presented.	igrams per 100 g t	oran flakes) to	r a subset (4 ot	it of 12) of the	T c	To The Total Control of the Control	$\frac{7}{2}$			
— Tı		Amount of niacin enrichment (milligrams per 100 g bran flakes)								
	Laboratory	0	4	8	-					
	1	7.58(3)	11.63(7)	15.00(2)	-					
unrelich		7.87(8)	11.87(11)	15.92(9)						
	T4 2	7.71(6)	11.40(3)	15.58(<mark>4</mark>)						
		7.95(9)	12.20(12)	16.60(<mark>12</mark>)				٠,		
		8.27(12)	11.6(8 <mark>)</mark>	16.40(11)		((1/	liable			
		8.05(10)	11.80(1 <mark>0</mark>)	15.90(<mark>7</mark>)		166-700				
	3	7.60(4)	11.04(2)	15.87(<mark>6</mark>)						
	4	7.30(1)	11.45(<mark>5</mark>)	15.91(<mark>8</mark>)						
		7.82(7)	11.49(<mark>4</mark>)	16.28(1 <mark>0</mark>)						
		8.03(11)	11.50(6)	15.10(<mark>3</mark>)						
		7.35(2)	10.10(1)	14.80(1)						
		7.66(5)	11.70(9)	15.70(5)						

Of primary interest here is the precision of the laboratory procedure for determining niacin content in bran flakes. The actual amount of niacin enrichment in the prepared bran flakes serves only as a "nuisance" blocking factor in our evaluation of the consistency of the results across the four laboratories.

Hence, we have data from a two-way layout with k=4 treatments (laboratories), n=3 blocks (amounts of niacin enrichment), and c=3 replications (individual bran flake samples) per laboratory/enrichment combination.

$$S_{1} = \frac{3+8+6+7+11+3+2+9+4}{3} = 17.67,$$

$$S_{2} = \frac{9+12+10+12+8+10+12+11+7}{3} = 30.33$$

$$S_{3} = \frac{4+1+7+2+5+4+6+8+10}{3} = 15.67,$$

$$S_{4} = \frac{11+2+5+6+1+8+5+3+1+5}{3} = 14.17$$

$$\Rightarrow MS = \left[\frac{12}{4(36+3)}\right] \{1678.476\} - 3(36+3)$$

$$= 12.11$$

Large-sample p-value:

We can reject H_0 at the $\alpha=.05$ level, providing rather strong evidence that the studied process for assessing niacin content in bran flakes does not produce consistent results across a variety of laboratories and is therefore not reliable as an evaluative procedure.

```
library(NSM3)
pMackSkil(x=c(7.58, 11.63, 15.00,
              7.87, 11.87, 15.92,
              7.71, 11.40, 15.58,
              7.95, 12.20, 16.60,
              8.27, 11.6, 16.40,
              8.05, 11.80, 15.90,
              7.60, 11.04, 15.87,
              7.30, 11.45, 15.91,
              7.82, 11.49, 16.28,
              8.03, 11.50, 15.10,
              7.35, 10.10, 14.80,
              7.66, 11.70, 15.70),
          b=rep(c(0,4,8),12).
          trt=c(rep(1,9),rep(2,9),rep(3,9),rep(4,9)),
          method="Asymptotic")
```