FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Al₂O₃ support triggering highly efficient photoreduction of CO₂ with H₂O on noble-metal-free CdS/Ni₉S₈/Al₂O₃

Sha Li^{a,1}, Qianqian Wang^{b,1}, Xiaoliang Yan^{c,*}, Hua-Qiang Zhuang^d, Chen Yuan^c, Junpeng Feng^c, Meijun Wang^c, Ruifeng Li^c, Wenyang Li^e, Yun-Xiang Pan^{b,*}

- ^a College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
- b Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
- ^c College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
- ^d College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China
- e School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, PR China

ARTICLE INFO

Keywords: Effect of catalyst support Carbon dioxide Nickel sulfide Photoreduction Al₂O₃

ABSTRACT

Noble-metal-free photocatalysts are promising for economic and efficient conversion of solar energy into chemical energies. Herein, a highly efficient CO evolution, with an evolution rate of $12.1\,\mu\text{mol}\,h^{-1}$, is achieved from the visible-light-driven photoreduction of CO_2 with H_2O on a noble-metal-free CdS/Ni₉S₈/Al₂O₃ photocatalyst. The CO evolution on CdS/Ni₉S₈/Al₂O₃ is comparable to that on the noble-metal-based CdS/Pt/Al₂O₃ photocatalyst $(10.6\,\mu\text{mol}\,h^{-1})$, but 11 times higher than that on the Al₂O₃-free CdS/Ni₉S₈ $(1.1\,\mu\text{mol}\,h^{-1})$ photocatalyst. The Al₂O₃ support facilitates the separation of the photogenerated electron-hole pairs, CO₂ adsorption and production of protons for reducing CO₂, thus enhancing the CO evolution. These results will open a new door for rationally fabricating efficient noble-metal-free photocatalysts, and favor the transition to solar energy economy.

1. Introduction

Solar-energy-driven photoreduction of CO_2 is promising for solving both the energy and environmental crises [1,2]. Yet, to date, the photoreduction efficiency is still far below the requirement of commercialization. The photoreduction efficiency is limited by the poor ability of the photocatalysts in separating the photogenerated electron-hole pairs, adsorbing CO_2 and producing protons for reducing CO_2 [3,4]. As such, the photocatalysts with enhanced electron-hole separation, CO_2 adsorption and proton production are highly desired.

 Al_2O_3 has been extensively used as the catalyst support in conventional catalysis, where heating was used to provide the energy for driving the catalytic reactions, in both lab research and industrial applications [5–10]. Murata et al. observed that the efficiency of the Pd/ Al_2O_3 catalyst in methane combustion is closely related to the Pd- Al_2O_3 interaction [5]. Zhu et al. reported that a stronger Ni- Al_2O_3 interaction efficiently enhance the coke-resistance, activity, selectivity and stability of the Ni/ Al_2O_3 catalyst in the CO_2 reforming of methane [6]. During the selective acetylene hydrogenation, highly dispersed bimetallic Pd-In

catalyst supported on Al_2O_3 exhibited several magnitudes higher activity than the unsupported catalyst [7]. The oxygen vacancies and hydroxyl groups on Al_2O_3 were found to be benefit for improving the adsorption, activation and conversion of CO_2 on the Al_2O_3 -supported catalysts [8]. Through both experimental and theoretical calculations, Foppa et al. implied that the Ni- Al_2O_3 interface provides the energetically favorable reaction pathway for CO_2 conversion on the Ni/ Al_2O_3 catalyst [9]. In contrast to the wide applications in conventional catalysis, the application of Al_2O_3 in photocatalysis has not been well explored yet.

Cocatalysts are crucial for the photoreduction of CO_2 [11–15]. They provide the catalytically active sites for reducing CO_2 . Noble metals, e.g. Pt, are the most widely used cocatalysts for the photoreduction of CO_2 . They indeed result in significantly enhanced photoreduction efficiency. However, due to the limited abundance and high price, the noble metals are unsuitable for massive-scale applications. Low-cost noblemetal-free transition metal sulfides, such as nickel sulfides, are of particular interest for substituting the noble metals for the photoreduction of CO_2 [16–21]. In the sulfides, the electronic structure of the transition

^{*} Corresponding authors.

E-mail addresses: yanxiaoliang@tyut.edu.cn (X. Yan), yxpan81@sjtu.edu.cn (Y.-X. Pan).

¹ These authors contributed equally to this work.

metal is modified by the inclusion of the sulfur interstitial atoms via charge transfer or/and structural change, making the sulfides similar to noble metals. Besides, the sulfides are highly active towards the dissociation of the O–H and C=O bonds, which are the key steps in the photoreduction of CO_2 . The performance of the sulfides in the photoreduction of CO_2 has been examined. For example, a CH_3OH evolution rate of about $1.0\,\mu\text{mol}\,h^{-1}$ was obtained from the photoreduction of CO_2 on Bi_2S_3/CdS [19], and Takayama et al. found that $CuGaS_2$ was active towards the photoreduction of CO_2 into CO, with a CO evolution rate of CO_3 multiplicate $CO_$

Herein, we demonstrate that a highly efficient CO evolution, with an evolution rate of $12.1\,\mu\text{mol}\,h^{-1}$, can be achieved from the photoreduction of CO $_2$ with H_2O on a noble-metal-free CdS/Ni $_9S_8/Al_2O_3$ photocatalyst, under the irradiation of visible light ($\lambda > 420\,\text{nm}$) which is the main part of sunlight. The CO evolution rate on CdS/Ni $_9S_8/Al_2O_3$ is comparable to that on the noble-metal-based CdS/Pt/Al $_2O_3$ photocatalyst (10.6 $\mu\text{mol}\,h^{-1}$), but 11 times higher than that on the Al $_2O_3$ -free CdS/Ni $_9S_8$ (1.1 $\mu\text{mol}\,h^{-1}$) photocatalyst. The Al $_2O_3$ support triggers improved separation of the photogenerated electron-hole pairs, CO $_2$ adsorption and production of protons for reducing CO $_2$. This is responsible for the enhanced CO evolution on CdS/Ni $_9S_8/Al_2O_3$.

2. Experimental

2.1. Sample preparation

All the reagents used herein were of analytical grade purity and were used as received without further treatment.

For fabricating Ni₉S₈/Al₂O₃, MIL-110 (Al) was firstly synthesized hydrothermally in the presence of trimethyl 1,3,5-benzenetricarboxylate (Me₃btc) [21]. MIL-110 (Al) is one of the metal-organic frameworks (MOFs) which are promising templates for forming catalysts via calcinations [22–24]. The porous structures of the catalysts prepared by using MOFs as the templates are similar to those of the MOF templates. This is benefit for achieving a high dispersion of the metal nanoparticles, even at a high metal content. The preparation of MIL-110 (Al) proceeded through the following steps. In the first step, 1.426 g of Al (NO₃)₃·9H₂O (Tianjin Kermel Chemical Reagent Co., Ltd, AR, > 99.0%) was dissolved into 22 ml of deionized (DI) water. In the second step, 0.478 g of Me₃btc was added into the solution obtained in the first step under vigorous stirring. In the third step, 2.2 ml of NaOH (4 M) was introduced to form a white emulsion, followed by adding HNO₃ (4 M) to adjust the pH value to about 3.9. After stirring for another 30 min, the mixture obtained in the third step was transferred to a Teflon-lined stainless steel at 200 °C for 3 h. The sample obtained from the hydrothermal process was washed with DI water and further purified by dimethyl formamide (DMF, Tianjin Kermel Chemical Reagent Co., Ltd, AR, > 99.5%). The product was thoroughly washed with ethanol for several times to remove DMF and filtered, and dried at 80 °C for 12 h, leading to the formation of the yellowish powdered MIL-110 (Al). Fig. S1 in the Supplementary Data shows the XRD and SEM results of MIL-110 (Al). The MIL-110 (Al) exhibits a rod-like morphology and a XRD pattern characteristic of MOF.

Incipient wetness impregnation was used to load nickel precursor into MIL-110 (Al). Typically, 3.78 g of Ni(NO $_3$) $_2$ ·6H $_2$ O (Sinopharm chemical Reagent Co. Ltd., AR, > 98.0%) was dissolved in a DMF solution. 5 g of MIL-110 (Al) was then impregnated with the Ni-contained DMF solution for 12 h. As-obtained sample was dried at 120 °C for 12 h.

The Ni-impregnated MIL-110 (Al) was next sulfured in a fixed-bed tubular reactor. In the first step of the sulfuration, the temperature of the reactor was increased to $350\,^{\circ}\text{C}$ in N_2 with a flowing rate of 20 ml min⁻¹. And then, the N_2 was stopped, and H_2 containing dimethyl sulfide (CH₃SCH₃) as the sulfur source was introduced into the reactor (15 ml min⁻¹). A syringe pump was used to inject the CH₃SCH₃ liquid into the H_2 stream (0.5 ml min⁻¹). The sulfuration proceeded for 6 h.

After sulfuration of 6 h, the temperature of the reactor was decreased to room temperature in N_2 (20 ml min⁻¹), producing $N_{i9}S_8/Al_2O_3$. For comparison, we also prepared $N_{i9}S_8/Al_2O_3$ by using the thiophene, carbon disulfide and dimethyl disulfide as the sulfur sources through the process same as that by using the dimethyl sulfide.

For comparison, NiO/Al $_2$ O $_3$ was prepared by calcining the Ni-impregnated MIL-110 (Al) in air at 400 °C for 3 h, and Ni/Al $_2$ O $_3$ was fabricated by the same procedure as the sulfuration but only with hydrogen for reduction and without the addition of sulfide species.

Loading of CdS nanoparticles on Ni $_9$ S $_8$ /Al $_2$ O $_3$, denoted as CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$, was proceeded in 200 ml of aqueous solution containing 10 vol% triethanoamine (TEOA) as the sacrificial reagent. Ni $_9$ S $_8$ /Al $_2$ O $_3$ (160 mg) and CdS nanoparticles (40 mg) were added into the solution under ultrasonication for 2 h. The mixture was then divided into two parts. One part (100 mL) was centrifuged to collect the solid sample which was washed with ethanol and DI water for several times and subsequently dried in a vacuum freeze drier for further characterization. The other part (100 mL) was used for the visible-light-driven photoreduction of CO $_2$ with H $_2$ O.

For preparing CdS/Pt, the CdS nanoparticles (20 mg) were dispersed in 1 ml of water solution of $\rm H_2PtCl_6^{}{}^{}6\rm H_2O$, with a Pt content of 2.0 mg mL $^{-1}$, under ultrasonication for 30 min, depositing Pt ions onto the CdS nanoparticles. And then, the sample was irradiated for 1 h by using a 300 W Xe-lamp, reducing Pt ions into Pt 0 . Finally, the solid sample was harvested by centrifugation, washed with ethanol and DI water for several times, and dried under vacuum at 25 °C for 12 h, fabricating CdS/Pt.

2.2. Characterizations

The X-ray diffraction (XRD) patterns were recorded on an X' Pert Pro diffractometer equipped with Cu Kα radiation (scanning rate: 4° min⁻¹). An ASAP 2020 analyzer (Micromeritics, Norcross, GA, USA) was used to explore the Brunauer-Emmett-Teller (BET) surface areas. UV-vis spectra were obtained on a UV-3101 Shimadzu spectrophotometer. The X-ray photoelectron spectroscopy (XPS) was carried out on an ESCALAB250Xi X-ray photoelectron spectrometer with a monochromatic X-ray source manufactured by Thermo. The binding energy was calibrated using the C 1s peak (284.6 eV). Transmission electron microscopy (TEM) observations, including high-resolution TEM (HRTEM) and elemental mapping, were performed on a Philips TECNAI G²F30 system (beam energy: 200 kV). The Fourier transform infrared spectroscopy (FTIR) measurements were conducted on a Bruker Tensor-27 spectrometer (resolution: 4 cm⁻¹). A Fluoromax-3 spectrometer (Horiba Scientific) was used to collect the photoluminescence (PL) spectra. The inductively coupled plasma mass spectrometry (ICP-MS) measurements were conducted on a Thermo X series 2 ICP-MS spectrometer. A Bruker EMXplus-10/12 spectrometer was applied for obtaining the electron spin resonance (ESR) spectra, with a microwave frequency of 9.64 GHz and a modulation amplitude of 2 G. 5,5-dimethyl-1-pyrroline N-oxide (DMPO, ≥98.0%; Sigma Chemical Co.) was used as the spin-trap reagent for the hydroxyl ra-

Transient photocurrents were measured on a CHI660 A electrochemical workstation in a $\rm Na_2SO_4$ solution (0.1 M) containing TEOA (10 vol %), by using a 300 W Xe-lamp equipped with a cut-off filter ($\lambda > 420$ nm), with a constant potential of 0.35 V vs. standard electrode (SCE). The solution and light source used for measuring the photocurrent are similar to those for the photocatalytic reactions. The workstation includes three electrodes. The working electrode, with a surface area of 1.44 cm² exposed to the electrolyte, was prepared by placing the sample on indium tin oxide (ITO) glasses. Pt and a saturated calomel electrode were used as the counter electrode and reference electrode, respectively. For preparing the working electrode, with a surface area of 1.44 cm² exposed to the electrolyte, 1 mg sample was firstly dispersed in 1 ml ethanol containing naphthol (0.05 wt%) under

ultrasonication. Then, the suspension was dropped onto ITO glasses, and dried at room temperature. The CO_2 adsorption capacities of the samples were examined on an ASAP 2020 analyzer (Micromeritics, Norcross, GA, USA), with pressures ranging from 0 to 1.01 bar, at 25 °C. Before the adsorption experiments, the samples were degassed at 200 °C for 12 h.

2.3. Photoreduction of CO2 with H2O

The photoreduction was performed in a closed gas circulation-evacuation reactor, with H₂O as the reductant, under the irradiation of visible light ($\lambda > 420 \, \text{nm}$). Before reaction, the following three steps were carried out. Firstly, 100 mg photocatalyst was dispersed in a H₂O solution (100 mL) containing TEOA (10 vol%) which serve as sacrificial reagents for capturing the photogenerated holes, in the reactor. And then, the reactor was evacuated and refilled with pure CO₂ gas for three times to remove the air inside. Finally, the reactor was filled with CO2 until the pressure of the reactor reaching to the atmospheric pressure (101.325 kPa). In the photocatalytic reduction, the reactor was irradiated with a Xe-lamp (300 W) equipped with a cut-off filter $(\lambda > 420 \text{ nm})$ under stirring, and the temperature of the reactor was kept at 25 °C by using cooling water. The products were detected by a gas chromatography (Agilent 7890 A) with both with Flame Ionization (FID) and Thermal Conductivity (TCD) detectors. The FID detector and an Agilent HPPLOT Q capillary column were used for analyzing methanol, while the TCD detector and a Porapak Q packed column were used for analyzing H2, O2, CO2, CO and CH4. Ar was used as the carrier gas. The GC was switched between the two columns by using a fourport valve. To determine the source of the carbon in the products, an isotopic experiment was carried out under the identical reaction conditions using ¹³CO₂ (99.99% in purity), and the products were analyzed by a gas chromatography-mass spectrometry (GC-MS).

3. Results

3.1. Ni₉S₈/Al₂O₃

Fig. 1a shows the XRD pattern of Ni $_9$ S $_8$ /Al $_2$ O $_3$. On the XRD pattern, all of the peaks are attributed to the orthorhombic Ni $_9$ S $_8$ (PDF#22-1193). There is no XRD peak assigned to Al $_2$ O $_3$ for Ni $_9$ S $_8$ /Al $_2$ O $_3$, indicating that the Al $_2$ O $_3$ support is amorphous. Fig. 1b and c illustrate the N $_2$ absorption-desorption curves and pore size distribution for Ni $_9$ S $_8$ /Al $_2$ O $_3$. From the N $_2$ absorption-desorption experiment, the BET surface area of Ni $_9$ S $_8$ /Al $_2$ O $_3$ is calculated to be 143 m 2 g $^{-1}$.

The XPS spectra of the Ni and S on Ni₉S₈/Al₂O₃ are shown in Fig. S2 in the Supplementary Data. Six peaks at 853.1, 856.2, 861.4, 870.3, 873.8 and 880.2 eV, respectively, are present on the XPS spectrum of Ni (Fig. S2a). The peaks at 853.1, 856.2 and 870.3 eV are attributed to the $2p_{3/2}$, $2p_{3/2}$ and $2p_{1/2}$ of Ni in Ni₉S₈, respectively [25–27]. The peaks at 861.4, 873.8 and 880.2 eV are caused by the Ni in Ni-O bonds [25,26]. The XPS peak of S can be fitted into peaks at 161.3, 162.0, 162.7, 163.6, 166.3 and 168.2 eV, respectively (Fig. S2b). The peaks at 161.3 and 166.3 eV are assigned to the $2p_{1/2}$ of S in Ni₉S₈, and the peaks at 162.0, 162.7 and 163.6 eV are due to the $2p_{3/2}$ of S in Ni₉S₈ [25–27]. The peak at 168.2 eV is caused by the S in the S-O bonds [28-30]. The XPS results indicate that, besides the Ni-S bonds in Ni₉S₈, there are also Ni-O and S-O bonds on Ni₉S₈/Al₂O₃. The Ni-O and S-O bonds could be formed through the bonding interactions of the Ni and S atoms in Ni₉S₈ with the O atoms on the Al₂O₃ support, and could be the main drive to anchor Ni₉S₈ on the Al₂O₃ support.

Fig. 2a and b illustrate the TEM images of Ni_9S_8/Al_2O_3 . The Ni_9S_8 nanoparticles are dispersed on the Al_2O_3 support. The lattice fringes with distances of 0.183 and 0.237 nm are due to the (115) and (330) planes of the orthorhombic Ni_9S_8 , respectively, indicating the presence of the orthorhombic Ni_9S_8 on Ni_9S_8/Al_2O_3 . This is in good agreement with the XRD and XPS results.

Fig. 1. (a) XRD patterns for Ni_9S_8/Al_2O_3 , $CdS/Ni_9S_8/Al_2O_3$ before reaction and $CdS/Ni_9S_8/Al_2O_3$ after reaction. (b) N_2 adsorption-desorption curves and (c) pore size distributions for Ni_9S_8/Al_2O_3 and $CdS/Ni_9S_8/Al_2O_3$.

3.2. CdS/Ni₉S₈/Al₂O₃

CdS nanoparticles with an average size of about 5 nm (Fig. S3 in the Supplementary Data) were next loaded on Ni_9S_8/Al_2O_3 to form the CdS/ Ni_9S_8/Al_2O_3 photocatalyst. The CdS nanoparticles in the cubic phase of CdS (Fig. S3) were fabricated *via* the hot-injection method which has been reported in detail elsewhere [31–33]. On the XRD pattern of CdS/ Ni_9S_8/Al_2O_3 (Fig. 1a), besides the peaks of the orthorhombic Ni_9S_8 , a peak at 26.5° assigned to the (111) plane of the cubic CdS also appears (PDF#80-0019). Fig. 2c–e show the HRTEM image and elemental mapping patterns for CdS/ Ni_9S_8/Al_2O_3 . The lattice fringe

Fig. 2. (a) TEM and (b) HRTEM images of Ni $_9$ S $_8$ /Al $_2$ O $_3$. (c) HRTEM image and (d, e) elemental mapping patterns of CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$.

with a distance of 0.328 nm is attributed to the (202) plane of the orthorhombic Ni $_9$ S $_8$, while the lattice fringe with a distance of 0.346 nm is caused by the (111) plane of the cubic CdS. Elemental mapping patterns evidence the presence of Ni, Cd, S, Al and O on CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$. The UV–vis spectrum of CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$ has an absorption edge of about 500 nm, which is similar to that of the pure CdS nanoparticles (Fig. S4 in the Supplementary Data) [31–33]. The ICP-MS measurements indicate that the contents of CdS, Ni $_9$ S $_8$ and Al $_2$ O $_3$ in CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$ are 20 wt%, 23 wt% and 57 wt%, respectively. The BET surface area of CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$ was measured to be 130 m 2 g $^{-1}$, which is slightly

Fig. 3. (a) CO evolution rate in the visible-light-driven photoreduction of CO₂ with H₂O on Al₂O₃, CdS/Ni₂Al₂O₃, CdS/Al₂O₃, CdS/Ni₉S₈, CdS/Ni₉S₈/Al₂O₃, CdS, Ni₉S₈/Al₂O₃ and CdS/Ni₉O₃ (b) Stability of CdS/Ni₉S₈/Al₂O₃ and CdS/Ni₉S₈ in the visible-light-driven photoreduction of CO₂ with H₂O. Reaction conditions: 100 ml water solution containing 10 vol% TEOA, 100 mg photocatalyst, 300 W Xe-lamp (λ > 420 nm).

8

Time (h)

10

12

smaller than that of Ni_9S_8/Al_2O_3 (Fig. 1b). The pore size distribution of CdS/ Ni_9S_8/Al_2O_3 is similar to that of Ni_9S_8/Al_2O_3 (Fig. 1c).

3.3. Photoreduction of CO_2 with H_2O

The performance of CdS/Ni₉S₈/Al₂O₃ and control samples in the visible-light-driven photoreduction of CO₂ with H₂O were next explored by using the aqueous solution containing TEOA (10 vol%) as a hole scavenger. The results are plotted in Fig. 3 and Fig. S5 in the Supplementary Data. During the experiments, CO is the main the product. In addition to CO, there is some methanol detected during the photocatalytic reactions, but the evolution rate of the methanol is lower than 0.1 μ mol h $^{-1}$. As reflected in Figs. 3a and S5, Al₂O₃, CdS, Ni/Al₂O₃, NiO/Al₂O₃ and Ni₉S₈/Al₂O₃ are not active towards the photoreduction. CO evolution is observed on CdS/Al₂O₃ and CdS/Ni₉S₈, but the evolution rates are only 0.2 and 1.1 μ mol h $^{-1}$, respectively. By exploring the influence of the amount of the Ni(NO₃)₂·6H₂O and CdS for preparing the photocatalysts (Table S1 in the Supplementary Data), the CO evolution rates on CdS/NiO/Al₂O₃ and CdS/Ni/Al₂O₃ were found to be zero.

After examining the influences of the amount of the CdS nanoparticles and the sulfur source for preparing CdS/Ni₉S₈/Al₂O₃ on the photocatalytic activity (Figs. S6 and S7 in the Supplementary Data), an optimum CO evolution rate of $12.1\,\mu\text{mol}\,h^{-1}$ was obtained on CdS/Ni₉S₈/Al₂O₃, which is 11 times higher than that on CdS/Ni₉S₈. In addition to CO, H₂ and O₂ are also detected in the photoreduction of CO₂ with H₂O on CdS/Ni₉S₈/Al₂O₃, with evolution rates of 84.1 and 37.3 μ mol h⁻¹, respectively. We also compared the activity of CdS/Ni₉S₈/Al₂O₃ with the noble-metal-based CdS/Pt/Al₂O₃ photocatalyst. By varying the amount of CdS and Pt on CdS/Pt/Al₂O₃ (Fig. S8 in the

Supplementary Data), an optimum CO evolution rate of $10.6\,\mu\mathrm{mol}\,h^{-1}$ is observed on CdS/Pt/Al₂O₃. As such, the photocatalytic activity of CdS/Ni₉S₈/Al₂O₃ is comparable to that of CdS/Pt/Al₂O₃, and the noblemetal-free Ni₉S₈ is a good alternative to Pt to be used as cocatalysts in the photoreduction of CO₂. CdS/Ni₉S₈/Al₂O₃ exhibits a better photocatalytic stability than CdS/Ni₉S₈. As shown in Fig. 3b, the CO evolution rate on CdS/Ni₉S₈/Al₂O₃ is almost unchanged during the light irradiation of 16 h, whereas the CO evolution rate on CdS/Ni₉S₈ becomes zero after light irradiation of 10 h. These results demonstrate that the Al₂O₃ support triggers an enhanced photoreduction of CO₂ with H₂O to produce CO.

For exploring the carbon source of the CO produced on CdS/Ni₉S₈/Al₂O₃, three control experiments (Ex.) were done, including: (i) Ex. with CdS/Ni₉S₈/Al₂O₃, CO₂ and H₂O, but without light; (ii) Ex. with CO₂, H₂O and light, but without CdS/Ni₉S₈/Al₂O₃; (iii) Ex. with CdS/Ni₉S₈/Al₂O₃, light and H₂O, but without CO₂. No CO is generated in all of the Ex., implying that CO is from the visible-light-driven photoreduction of CO₂ with H₂O on CdS/Ni₉S₈/Al₂O₃. Besides, an isotopic experiment with 13 CO₂ as the reactant was also done for determining the source of the carbon in CO. The m/z at 29 on the GC–MS spectrum is caused by 13 CO (Fig. S9 in the Supplementary Data), further revealing that CO is from the visible-light-driven photoreduction of CO₂ with H₂O on CdS/Ni₉S₈/Al₂O₃.

4. Discussions

4.1. Roles of CdS, Ni₉S₈ and Al₂O₃ in the photoreduction

During the photoreduction of CO_2 , the CdS nanoparticles are responsible for the absorption of the visible light, as indicated by the UV–vis spectra (Fig. S4). The Ni_9S_8 nanoparticles play as the cocatalysts providing the active sites for the photocatalytic reactions, as reflected by the low CO evolution on CdS/Al $_2O_3$ (Fig. 3a) as well as the comparable CO evolution on CdS/Ni $_9S_8$ /Al $_2O_3$ to that on CdS/Pt/Al $_2O_3$. The much higher CO evolution on CdS/Ni $_9S_8$ /Al $_2O_3$ than that on CdS/Ni $_9S_8$ suggests that the Al $_2O_3$ support plays an important role in the visible-light-driven photoreduction of CO_2 with H_2O . For investigating the role of the Al $_2O_3$ support, we studied the ability of the photocatalysts in separating the photogenerated electron-hole pairs, adsorbing CO_2 and producing protons from H_2O splitting, which are the key factors affecting the photoreduction efficiency of CO_2 .

Fig. 4a plots the PL spectra of CdS, CdS/Ni₉S₈ and CdS/Ni₉S₈/Al₂O₃. An evident peak at 490 nm, which is assigned to the recombination of the photogenerated electron-hole pairs, appears on the PL spectrum of CdS. This is in good agreement with the PL results reported previously for CdS [31-34]. On CdS/Ni₉S₈ and CdS/Ni₉S₈/Al₂O₃, the PL peak at 490 nm is quenched significantly, implying an efficient electron-hole separation. The photocurrents of CdS, CdS/Ni₉S₈ and CdS/Ni₉S₈/Al₂O₃ are illustrated in Fig. 4b. The photocurrent on $CdS/Ni_9S_8/Al_2O_3$ is $0.42\,\mathrm{mA~cm^{-2}}$, which is much higher than those on CdS/Ni₉S₈ $(0.33 \, \text{mA cm}^{-2})$ and CdS $(0.02 \, \text{mA cm}^{-2})$. Thus, on CdS/Ni₉S₈/Al₂O₃, the electron-hole recombination is efficiently suppressed, and more photogenerated electrons are transferred into the measuring circuit during the photocurrent experiments. The PL and photocurrent results indicate that the Al₂O₃ support triggers more efficient electron-hole separation during the photocatalytic reaction. As reported previously, in photocatalysis, highly conductive supports, such as reduced graphene oxide and carbon nanotubes, can efficiently promote the separation of the photogenerated electron-hole pairs [18,35-37]. Our present results suggest that the Al₂O₃ support, which has a poor conductivity, is also excellent in separating the photogenerated electronhole pairs. This could be originated from the defects and the hydroxyl groups on the Al₂O₃ support.

Fig. 5a plots the CO_2 adsorption capacity of CdS, Ni_9S_8 , Al_2O_3 , CdS/ Ni_9S_8 , Ni_9S_8 / Al_2O_3 and CdS/ Ni_9S_8 / Al_2O_3 . The CO_2 adsorption capacity of CdS/ Ni_9S_8 / Al_2O_3 is 1.53 mmol g^{-1} , which is higher than those of

Fig. 4. (a) PL spectra and (b) photocurrent-time profiles for CdS, CdS/Ni $_9$ S $_8$ and CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$.

CdS $(0.12\,\mathrm{mmol~g^{-1}})$, Ni_9S_8 $(0.49\,\mathrm{mmol~g^{-1}})$ and Al_2O_3 $(1.15\,\mathrm{mmol~g^{-1}})$. The CO_2 adsorption capacity of CdS/Ni $_9S_8$ /Al $_2O_3$ is about 2.5 and 1.1 times higher than those on CdS/Ni $_9S_8$ $(0.62\,\mathrm{mmol~g^{-1}})$ and Ni_9S_8 /Al $_2O_3$ $(1.40\,\mathrm{mmol~g^{-1}})$, respectively. The interface and synergetic effect among different components may enhance the CO_2 adsorption on CdS/Ni $_9S_8$ /Al $_2O_3$. We have explored the O 1 s XPS spectrum of Ni_9S_8 /Al $_2O_3$, as shown in Fig. S10 in the Supplementary Data. The XPS peaks at 530.9, 531.8, and 532.7 eV are attributed to the O^2 - ion in the Al $_2O_3$ structure (O_a) , oxygen vacancies (O_b) and near-surface oxygen (O_c) , respectively [38]. The ratio of O_b / $(O_a+O_b+O_c)$. The oxygen vacancies could also make some contributions to the enhanced CO_2 adsorption on CdS/Ni $_9S_8$ /Al $_2O_3$ [39]. As such, the Al $_2O_3$ support triggers an improved CO_2 adsorption on the photocatalyst.

Fig. 5b illustrates the dependence of the adsorption heat on the amount of CO₂ adsorbed, estimated by the Clausius-Clapeyron equation [40-42]. For all of the samples, the adsorption heat decreases with increasing CO2 coverage, and the highest adsorption heat is obtained at the onset of CO2 adsorption. For CdS, the highest adsorption heat is only 11.2 kJ mol⁻¹. With increasing the CO₂ adsorption coverage, the adsorption heat on CdS is close to zero. The low adsorption heat indicates that the CO2 adsorption on CdS may be physical adsorption without any structural change occurring on the linear CO2 molecule (O-C-O angle: 180°) [8]. The physical adsorption could be responsible for the low CO2 adsorption capacity of CdS (Fig. 5a). The adsorption heats of Ni₉S₈ and CdS/Ni₉S₈ are similar, with the highest value of about 55.0 kJ $\mathrm{mol}^{-1}.$ The highest adsorption heat of CO_2 on $\mathrm{Al_2O_3}$ is $65.0\,\mathrm{kJ\,mol^{-1}}$, which is in good agreement with the adsorption heat obtained from the density functional theory (DFT) calculations in our previous papers [39,43,44]. The highest adsorption heat of CO2 on

Fig. 5. (a) CO $_2$ adsorption capacity and (b) adsorption heat of CO $_2$ on CdS, Ni $_9$ S $_8$, Al $_2$ O $_3$, Ni $_9$ S $_8$ /Al $_2$ O $_3$, CdS/Ni $_9$ S $_8$ and CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$. (c) FTIR spectra of CO $_2$ adsorption on Ni $_9$ S $_8$, Al $_2$ O $_3$ and CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$.

CdS/Ni₉S₈/Al₂O₃ is 81.2 kJ mol $^{-1}$. The adsorption heat of CO₂ on CdS/Ni₉S₈/Al₂O₃ is enhanced as compared with those on CdS, Ni₉S₈ and Al₂O₃. This reveals the promotion effect of the interface and synergetic effect among different components on the CO₂ adsorption on CdS/Ni₉S₈/Al₂O₃. The adsorption heat of CO₂ on CdS/Ni₉S₈/Al₂O₃ is also enhanced as compared with those on CdS/Ni₉S₈ and Ni₉S₈/Al₂O₃. This suggests that the Al₂O₃ support triggers an improved CO₂ adsorption on the photocatalyst. These results are in good agreement with the CO₂ adsorption capacity measurements (Fig. 5a). As plotted in Fig. 5b, when the CO₂ adsorption coverage is higher than 0.8 mmol g $^{-1}$, the adsorption heat of CO₂ on CdS/Ni₉S₈/Al₂O₃ is close to that on Al₂O₃. As such, CO₂ could be adsorbed on the Al₂O₃ support with CO₂ adsorption

coverage higher than 0.8 mmol g^{-1} .

We next explored the products formed upon CO2 adsorption on CdS/Ni₉S₈/Al₂O₃ through comparing the FTIR spectrum of CO₂ adsorption on CdS/Ni $_9$ S $_8$ /Al $_2$ O $_3$ with those on Al $_2$ O $_3$ and Ni $_9$ S $_8$. As shown in Fig. 5c, on the FTIR spectra of CO₂ adsorption on Al₂O₃, Ni₉S₈ and CdS/Ni₉S₈/Al₂O₃, bands at 980, 1108, 1230, 1420, 1535 and 1640 cm⁻¹ appear. The bands at 980 and 1108 cm⁻¹ are assigned to the negatively charged CO_2^- species, with a bent structure in which the O-C-O angle is about 140° [39,43,44]. The bands at 1230 and 1420 cm⁻¹ are caused by the bidentate and monodentate carbonate species (CO_3^{2-}) , respectively [8,39,43,44]. The bands at 1535 and 1640 cm⁻¹ are due to the bicarbonate species (HCO₃⁻⁾ formed from the protonation reaction between the carbonate species and the hydroxyl groups on the photocatalyst [8,39,43,44]. On the FTIR spectrum of Ni₉S₈, the bands due to the CO₂ species dominate, whereas on the FTIR spectra of Al₂O₃ and CdS/Ni₉S₈/Al₂O₃, the main bands are those assigned to the carbonate and bicarbonate species. As such, the presence of the Al₂O₃ support triggers the formation of the carbonate and bicarbonate species from CO2 adsorption. Previous DFT calculations demonstrated that, on the Al₂O₃-supported catalysts, the carbonate species are formed upon CO2 adsorption, and then converted into bicarbonate species through protonation process in which the protons of the hydroxyl groups on the Al₂O₃ support are transferred to one of the oxygen atoms of the carbonate species [8,39,43,44]. The carbonate and bicarbonate species have been shown to be the key intermediates for CO₂ conversion [45-47]. Therefore, the formation of the carbonate and bicarbonate species resulted from the presence of the Al2O3 support could be one of the reasons for the enhanced CO evolution on CdS/ Ni_9S_8/Al_2O_3 as compared with CdS/ Ni_9S_8 without the Al_2O_3 support.

Fig. 6 shows the activity of the photocatalysts for producing hydrogen in the visible-light-driven photocatalytic H₂O splitting. There is no hydrogen evolution from Al₂O₃, CdS/Ni/Al₂O₃, Ni₉S₈/Al₂O₃ and CdS/NiO/Al₂O₃, Hydrogen was detected on CdS and CdS/Al₂O₃, but the evolution rates are only 3.6 and $5.4 \,\mu mol \, h^{-1}$, respectively. On CdS/Ni₉S₈, the hydrogen production is enhanced, with an evolution rate of 30.8 µmol h⁻¹. As compared with CdS/Ni₉S₈, the hydrogen evolution rate on CdS/Ni₉S₈/Al₂O₃ increases further, with a value of 84.1 µmol h⁻¹. The quantum efficiency (QE) of CdS/Ni₉S₈/Al₂O₃ in hydrogen production is shown in Fig. 6b. With the wavelength increasing from 420 to 520 nm, the QE of CdS/Ni₉S₈/Al₂O₃ becomes higher firstly, and then decreases, with the highest QE (20.4%) presents at 460 nm. The photocatalytic stability of CdS/Ni₉S₈/Al₂O₃ was examined in four consecutive runs with each run of 4h, and there is nothing to do but evacuate the reactor between two runs. As shown in Fig. 6c, CdS/Ni₉S₈/Al₂O₃ has a good stability in hydrogen production. There is almost no decrease of the total amount of the hydrogen produced after four runs on CdS/Ni₉S₈/Al₂O₃. These results show that the Al₂O₃ support triggers an enhanced hydrogen production (proton production) from the visible-light-driven photocatalytic H₂O splitting.

PL, photocurrent, CO₂ adsorption and hydrogen production experiments suggest that, in the visible-light-driven photoreduction of CO₂ with H₂O, the Al₂O₃ support triggers enhanced separation of the photogenerated electron-hole pairs, CO₂ adsorption and production of hydrogen (or proton) for reducing CO₂. This will definitely increase the amount of the electrons, CO₂ and hydrogen (or proton) participating in the photoreduction of CO₂, thus leading to the enhanced CO evolution from the photoreduction of CO₂ on CdS/Ni₉S₈/Al₂O₃.

4.2. Mechanism of the photoreduction

Reactions possibly occurring during the visible-light-driven photoreduction of CO_2 with H_2O to form CO on $CdS/Ni_9S_8/Al_2O_3$ are listed as Eqs. (1)–(9) (Eqs. (1)–(9)). Light absorption by $CdS/Ni_9S_8/Al_2O_3$ leads to the formation of the electron-hole pairs (Eq. (1)). Capture of the photogenerated holes by the TEOA produces $TEOA^+$ (Eq. (2)). H_2O can be split into an H atom and an OH^- in the presence of the

Fig. 6. (a) Hydrogen evolution rate in the visible-light-driven photocatalytic $\rm H_2O$ splitting on $\rm Al_2O_3$, $\rm CdS/Ni/Al_2O_3$, $\rm CdS/Al_2O_3$, $\rm CdS/Ni_9S_8$, $\rm CdS/Ni_9S_8$ / $\rm Al_2O_3$, $\rm CdS$, $\rm Ni_9S_8/Al_2O_3$ and $\rm CdS/NiO/Al_2O_3$. (b) QE values of $\rm CdS/Ni_9S_8$ / $\rm Al_2O_3$ in hydrogen production from the visible-light-driven photocatalytic $\rm H_2O$ splitting. (c) Stability of $\rm CdS/Ni_9S_8/Al_2O_3$ in the visible-light-driven photocatalytic $\rm H_2O$ splitting. Reaction conditions: 100 ml water solution containing 10 vol% TEOA, 100 mg photocatalyst, 300 W Xe-lamp (λ > 420 nm).

photogenerated electrons (Eq. (3)). Reaction of OH- with TEOA+ results in an OH group and a TEOA molecule (Eq. (4)). Reaction of CO₂ with the proton and photogenerated electron (Eq. (5)), or/and with the H atom (Eq. (6)), produces CO and an OH group. ESR experiments were conducted for studying the formation of the hydroxyl radicals by using DMPO as the radical probe. The evident DMPO-OH signals indicate the presence of the OH radicals (Fig. S11 in the Supplementary Data) [48]. The protons (or H atoms) can combine together to form H₂ (Eqs. (7) and (8)), and the OH groups can be converted into O_2 and H_2O (Eqs. (9)). During the conversion of CO₂ into CO through reactions 5 and 6, carbon and bicarbonate species could be the key intermediates. We analyzed the influence of the photoreduction on the photocatalyst by conducting XRD measurement. As shown in Fig. 1a, the XRD pattern of the photocatalyst after the photoreduction of 16 h is similar to that of the photocatalyst before the photoreduction. This indicates that there is almost no change on the properties of the photocatalyst.

$$CdS/Ni9S8/Al2O3 + h\nu \rightarrow h^{+} + e^{-}$$
(1)

$$h^+ + TEOA \rightarrow TEOA^+$$
 (2)

$$H_2O + e^- \to H + OH^-$$
 (3)

$$OH^- + TEOA^+ \rightarrow TEOA + OH$$
 (4)

$$CO_2 + H^+ + e^- \rightarrow CO + OH$$
 (5)

$$CO_2 + H \rightarrow CO + OH$$
 (6)

$$2H^{+} + 2e^{-} \rightarrow H_{2}$$
 (7)

$$2H \rightarrow H_2$$
 (8)

$$4OH \rightarrow 2H_2O + O_2$$
 (9)

The Ni/Al $_2$ O $_3$ catalyst has been widely used in industry [49–51]. Sulfur poisoning, which can convert nickel into nickel sulfide, is one of the most serious problems negatively affecting the activity, selectivity and stability of the Ni/Al $_2$ O $_3$ catalyst [49–51]. Generally, the sulfur-poisoned Ni/Al $_2$ O $_3$ catalyst is discarded or regenerated through complex processes. Our present work indicates that the sulfur-poisoned Ni/Al $_2$ O $_3$ catalyst could be excellent cocatalysts for the photoreduction of CO $_2$. This opens a new way for the application of the sulfur-poisoned Ni/Al $_2$ O $_3$ catalyst.

5. Conclusions

In conclusion, a highly efficient CO evolution, with an evolution rate of $12.1\,\mu\text{mol}\,h^{-1}$, is achieved from the photoreduction of CO $_2$ with H_2O on a noble-metal-free CdS/Ni $_9$ S $_8$ /Al $_2O_3$ photocatalyst, under the irradiation of visible light ($\lambda > 420\,\text{nm}$) which is the main part of sunlight. The CO evolution rate on CdS/Ni $_9$ S $_8$ /Al $_2O_3$ is comparable to that on the noble-metal-based CdS/Pt/Al $_2O_3$ photocatalyst (10.6 $\mu\text{mol}\,h^{-1}$), but 11 times higher than that on the Al $_2O_3$ -free CdS/Ni $_9$ S $_8$ (1.1 $\mu\text{mol}\,h^{-1}$) photocatalyst. The Al $_2O_3$ support triggers improved separation of the photogenerated electron-hole pairs, CO $_2$ adsorption and production of protons for reducing CO $_2$. This is responsible for the enhanced CO evolution on the CdS/Ni $_9$ S $_8$ /Al $_2O_3$. These results are helpful for fabricating low-cost noble-metal-free photocatalysts for more efficient photoreduction of CO $_2$.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21503062, U1662138, 21878203, and 21406153), Shanxi International Cooperation Project (No. 201703D421037), Shanxi Province Science Foundation for Youths (No. 201601D202019), Shanxi Provincial Key Innovative Research Team in Science and Technology (No. 2014131006), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017137), and Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (154010146-s).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.08.060.

References

- Z.B. Liang, C. Qu, W.H. Guo, R.Q. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion, Adv. Mater. 1702891 (2017) 1–39.
- [2] S.B. Wang, X.C. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO₂ capture and photochemical reduction, Angew. Chem. Int. Ed. 55 (2016) 2308–2320.
- [3] A. Dhakshinamoorthy, A.M. Asiri, H. García, Metal-Organic Framework (MOF)

- compounds: photocatalysts for redox reactions and solar fuel production, Angew. Chem. Int. Ed. $55 \ (2016) \ 5414-5445$.
- [4] X.G. Meng, L.Q. Liu, S.X. Ouyang, H. Xu, D.F. Wang, N.Q. Zhao, J.H. Ye, Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis, Adv. Mater. 28 (2017) 6781–6803.
- [5] K. Murata, Y. Mahara, J. Ohyama, Y. Yamamoto, S. Arai, A. Satsuma, The metal-support interaction concerning the particle size effect of Pd/Al₂O₃ on methane combustion, Angew. Chem. Int. Ed. 56 (2017) 15993–15997.
- [6] X.L. Zhu, P.P. Huo, Y.P. Zhang, D.G. Cheng, C.J. Liu, Structure and reactivity of plasma treated Ni/Al₂O₃ catalyst for CO₂ reforming of methane, Appl. Catal. B: Environ. 81 (2008) 132–140.
- [7] Y.Q. Cao, Z.J. Sui, Y. Zhu, X.G. Zhou, D. Chen, Selective hydrogenation of acetylene over Pd-In/Al₂O₃ catalyst: promotional effect of indium and composition-dependent performance, ACS Catal. 7 (2017) 7835–7846.
- [8] Y.-X. Pan, C.J. Liu, Q.F. Ge, Adsorption and protonation of CO₂ on partially hydroxylated γ-Al₂O₃ surfaces: a density functional theory study, Langmuir 24 (2008) 12410–12419.
- [9] L. Foppa, T. Margossian, S.M. Kim, C. Müller, C. Copéret, K. Larmier, A. Comas-Vives, Contrasting the role of Ni/Al₂O₃ interfaces in water–gas shift and dry reforming of methane, J. Am. Chem. Soc. 139 (2017) 17128–17139.
- [10] A. Piovano, E. Morra, M. Chiesa, E. Groppo, Tuning the Ti³⁺ and Al³⁺ synergy in an Al₂O₃/TiCl_x catalyst to modulate the grade of the produced polyethylene, ACS Catal. 7 (2017) 4915–4921.
- [11] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C₃N₄)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability, Chem. Rev. 116 (2016) 7159–7329.
- [12] F.Y. Wen, C. Li, Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts, Acc. Chem. Res. 46 (2013) 2355–2364.
- [13] X.Q. Liu, J. Iocozzia, Y. Wang, X. Cui, Y.H. Chen, S.Q. Zhao, Z. Li, Z.Q. Lin, Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation, Energy Environ. Sci. 10 (2017) 402-434.
- [14] C.M. Li, Y. Xu, W.G. Tu, G. Chen, R. Xu, Metal-free photocatalysts for various applications in energy conversion and environmental purification, Green Chem. 19 (2017) 882–899.
- [15] Y.B. Huang, J. Liang, X.S. Wang, R. Cao, Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions, Chem. Soc. Rev. 46 (2017) 126–157.
- [16] S. Navalón, A. Dhakshinamoorthy, M. Álvaro, H. Garcia, Photocatalytic CO₂ reduction using non-titanium metal oxides and sulfides, ChemSusChem 6 (2013) 562–577
- [17] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
- [18] A. Iwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, Water splitting and CO₂ reduction under visible light irradiation using z-scheme systems consisting of metal sulfides, CoO_x-loaded BiVO₄, and a reduced graphene oxide electron mediator, J. Am. Chem. Soc. 138 (2016) 10260–10264.
- [19] X. Li, J.T. Chen, H.L. Li, J.T. Li, Y.T. Xu, Y.J. Liu, J.R. Zhou, Photoreduction of CO₂ to methanol over Bi₂S₃/CdS photocatalyst under visible light irradiation, J. Nat. Gas Chem. 20 (2011) 413–417
- [20] T. Takayama, K. Sato, T. Fujimura, Y. Kojima, A. Iwase, A. Kudo, Photocatalytic CO₂ reduction using water as an electron donor by a powdered z-scheme system consisting of metal sulfide and an RGO–TiO₂ composite, Faraday Discuss. 198 (2017) 397–407.
- [21] M. Haouas, C. Volkringer, T. Loiseau, G. Férey, F. Taulelle, The extra-framework sub-lattice of the metal-organic framework MIL-110: a solid-state NMR investigation, Chem. Eur. J. 15 (2009) 3139–3146.
- [22] X. Yan, N. Lu, B. Fan, J. Bao, D. Pan, M. Wang, R. Li, Synthesis of mesoporous and tetragonal zirconia with inherited morphology from metal-organic frameworks, CrystEngComm 17 (2015) 6426–6433.
- [23] P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Fabrication of carbon nanorods and grapheme nanoribbons from a metal-organic framework, Nat. Chem. Biol. 8 (2016) 718–724.
- [24] W. Cao, W. Luo, H. Ge, Y. Su, A. Wang, T. Zhang, UiO-66 derived Ru/ZrO₂@C as a highly stable catalyst for hydrogenation of levulinic acid to gamma-valerolactone, Green Chem. 19 (2017) 2201–2211.
- [25] A. Khalil, Q. Liu, Z. Muhammad, M. Habib, R. He, Q. Khan, Q. Fang, H.T. Masood, Z. ur Rehman, T. Xiang, C.Q. Wu, L. Song, Synthesis of Ni₉S₈/MoS₂ heterocatalyst for enhanced hydrogen evolution reaction, Langmuir 33 (2017) 5148–5153.
- [26] S.Z. Li, T. Chen, J. Wen, P.B. Gui, G.J. Fang, In situ grown Ni₉S₈ nanorod/O-MoS₂ nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst, Nanotechnology 28 (2017) 445407.
- [27] W.Y. Wu, S. Chakrabortty, C.K.L. Chang, A. Guchhait, M. Lin, Y. Chan, Promoting 2D growth in colloidal transition metal sulfide semiconductor nanostructures via halide ions, Chem. Mater. 26 (2014) 6120–6126.

- [28] L.L. Feng, G.T. Yu, Y.Y. Wu, G.D. Li, H. Li, Y.H. Sun, T. Asefa, W. Chen, X.X. Zou, High-index faceted Ni₃S₂ nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting, J. Am. Chem. Soc. 137 (2015) 14023–14026.
- [29] X.W. Ou, Z.T. Luo, One-step synthesis of Ni₃S₂ nanoplatelets on graphene for high performance supercapacitors, RSC Adv. 6 (2016) 10280–10284.
- [30] Y.Y. Wu, G.D. Li, Y.P. Liu, L. Yang, X.R. Lian, T. Asefa, X.X. Zou, Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni₃S₂-based electrocatalyst, Adv. Funct. Mater. 26 (2016) 4839–4847.
- [31] Z. Fang, Y.B. Wang, J.B. Song, Y.M. Sun, J.J. Zhou, R. Xu, H.W. Duan, Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H₂ evolution, Nanoscale 5 (2013) 9830–9838.
- [32] Y.-X. Pan, H.Q. Zhuang, J.D. Hong, Z. Fang, H. Liu, B. Liu, Y.Z. Huang, R. Xu, Cadmium sulfide quantum dots supported on gallium and indium oxide for visiblelight-driven hydrogen evolution from water, ChemSusChem 7 (2014) 2537–2544.
- [33] Y.-X. Pan, T.H. Zhou, J.Y. Han, J.D. Hong, Y.B. Wang, W. Zhang, R. Xu, CdS quantum dots and tungsten carbide supported on anatase—rutile composite TiO₂ for highly efficient visible-light-driven photocatalytic H₂ evolution from water, Catal. Sci. Technol. 6 (2016) 2206–2213.
- [34] Y.-X. Pan, J.B. Peng, S. Xin, Y. You, Y.L. Men, F. Zhang, M.Y. Duan, Y. Cui, Z.Q. Sun, J. Song, Enhanced visible-light-driven photocatalytic H₂ evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo₂C@C nanospheres, ACS Sustain. Chem. Eng. 5 (2017) 5449–5456.
- [35] M.A.M. Vásquez, M. Hamer, N.I. Neuman, A.Y. Tesio, A. Hunt, H. Bogo, E.J. Calvo, F. Doctorovich, Iron and cobalt corroles in solution and on carbon nanotubes as molecular photocatalysts for hydrogen production by water reduction, ChemCatChem 9 (2017) 3259–3268.
- [36] S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications, Chem. Soc. Rev. 42 (2013) 794–830.
- [37] X.N. Guo, C.H. Hao, G.Q. Jin, H.Y. Zhu, X.Y. Guo, Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light, Angew. Chem. Int. Ed. 53 (2014) 1973–1977.
- [38] G. Yang, D. Gao, J. Zhang, Z. Shi, D. Xue, Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al₂O₃ nanoparticles, J. Phys. Chem. C 115 (2011) 16814–16818.
- [39] Y.-X. Pan, C.J. Liu, D.H. Mei, Q.F. Ge, Effects of hydration and oxygen vacancy on CO₂ adsorption and activation on β-Ga₂O₃(100), Langmuir 26 (2010) 5551–5558.
- [40] H.V. Thang, L. Grajciar, P. Nachtigall, O. Bludký, C.O. Areán, E. Frýdová, R. Bulánek, Adsorption of CO₂ in FAU zeolites: effect of zeolite composition, Catal. Today 227 (2014) 50–56.
- [41] W.R. Lee, S.Y. Hwang, D.W. Ryu, K.S. Lim, S.S. Han, D. Moon, J. Choi, C.S. Hong, Diamine-functionalized metal-organic framework: exceptionally high CO₂ capacities from ambient air and flue gas, ultrafast CO₂ uptake rate, and adsorption mechanism, Energy Environ. Sci. 7 (2014) 744–751.
- [42] G.P. Hao, Z.Y. Jin, Q. Sun, X.Q. Zhang, J.T. Zhang, A.H. Lu, Porous carbon nanosheets with precisely tunable thickness and selective CO₂ adsorption properties, Energy Environ. Sci. 6 (2013) 3740–3747.
- [43] Y.-X. Pan, C.J. Liu, Q.F. Ge, Effect of surface hydroxyls on selective CO₂ hydrogenation over Ni₄/γ-Al₂O₃: a density functional theory study, J. Catal. 272 (2010) 227–234
- [44] Y.-X. Pan, C.J. Liu, T.S. Wiltowski, Q.F. Ge, CO₂ adsorption and activation over γ-Al₂O₃-supported transition metal dimers: a density functional study, Catal. Today 147 (2009) 68–76.
- [45] A. Solis-Garcia, J.F. Louvier-Hernandez, A. Almendarez-Camarillo, J.C. Fierro-Gonzalez, Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO₂-supported Ni, Appl. Catal. B: Environ. 218 (2017) 611–620.
- [46] S.A. Burgess, A.M. Appel, J.C. Linehan, E.S. Wiedner, Changing the mechanism for CO₂ hydrogenation using solvent-dependent thermodynamics, Angew. Chem. Int. Ed. 56 (2017) 15002–15005.
- [47] H. Ooka, M.C. Figueiredo, M.T.M. Koper, Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media, Langmuir 33 (2017) 9307–9313.
- [48] Z. Sun, C. Zhang, L. Xing, Q. Zhou, W. Dong, M.R. Hoffmann, UV/Nitrilotriacetic acid process as a novel strategy for efficient photoreductive de gradation of perfluorooctanesulfonate, Environ. Sci. Technol. 52 (2018) 2953–2962.
- [49] V. Pawar, S. Appari, D.S. Monder, V.M. Janardhanan, Study of the combined deactivation due to sulfur poisoning and carbon deposition during biogas dry reforming on supported Ni catalyst, Ind. Eng. Chem. Res. 56 (2017) 8448–8455.
- [50] J.P. Feng, J.J. Liu, M.X. Tang, L.G. Zhou, X.Y. Zhang, X.D. Wen, H. Ge, D.B. Li, X.K. Li, Effect of sulfur–carbon interaction on sulfur poisoning of Ni/Al₂O₃ catalysts for hydrogenation, Int. J. Hydrogen Energy 42 (2017) 6727–6737.
- [51] G. Garbarino, E. Finocchio, A. Lagazzo, I. Valsamakis, P. Riani, V.S. Escribano, G. Busca, Steam reforming of ethanol-phenol mixture on Ni/Al₂O₃: effect of magnesium and boron on catalytic activity in the presence and absence of sulphur, Appl. Catal. B: Environ. 147 (2014) 813–826.