Explore resilience evi

AJ Perez-Luque (@ajpelu) 2017 Aug

Prepare data

```
# Read data
raw_evires <- read.csv(file=paste(di, "/data/resilience/resiliences.csv", sep=""), header = TRUE, sep =
# add data of pop
anomalias <- read.csv(file=paste(di, "/data/anomalies/anomalias_evimean.csv", sep=""), header = TRUE, s
attr_iv_malla_modis_id <- anomalias %% dplyr::select(iv_malla_modi_id,long,lat,pop) %>% unique()
raw_evires <- raw_evires %>% inner_join(attr_iv_malla_modis_id, by='iv_malla_modi_id')
# filter by pop and add new variable
evires <- raw_evires %>%
 mutate(
    clu_pop = as.factor(case_when(
     pop == 1 ~ "Camarate",
     pop %in% c(2,3,4,5) ~ 'Northern slope',
     pop %in% c(6,7,8) \sim 'Southern slope',
     pop == 9 ~ 'out')),
    clu_pop2 = as.factor(case_when(
      pop %in% c(1,2,3,4,5) ~ 'Northern slope',
     pop %in% c(6,7,8) ~ 'Southern slope',
     pop == 9 ~ 'out'))) %>%
  filter(clu_pop != 'out')
# Change name of clu_pop2 and disturb_year para los analisis anovas
evires <- evires %>% rename(site = clu_pop2) %>%
  mutate(disturb_year = as.factor(disturb_year))
```

ANOVAS

Recovery

Table 1: ANOVA table: rc

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.951	1.951	420.3	0
site	1	0.6528	0.6528	140.6	0
disturb_year:site	1	1.969	1.969	424.1	0
Residuals	1820	8.45	0.00464		

	Statistic
R^2	0.35
$\mathrm{adj}R^2$	0.35
σ_e	0.07
F	328.31
p	0.00
df_m	4.00
$\log \mathrm{Lik}$	2313.52
AIC	-4617.05
BIC	-4589.50
dev	8.45
$d\!f_e$	1820.00

```
# Post hoc Define model
mymodel <- aov_rc$mymodel</pre>
postH_rc <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                   SE
                                        df lower.CL upper.CL
                   lsmean
                 1.120312 0.002257496 1820 1.115885 1.124740
                 1.057062 0.002257496 1820 1.052634 1.061489
## 2012
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                  estimate
                                         df t.ratio p.value
## 2005 - 2012 0.06325071 0.003192582 1820 19.812 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                   lsmean
                                   SE
                                        df lower.CL upper.CL .group
                 1.057062 0.002257496 1820 1.051998 1.062126
## 2012
## 2005
                 1.120312 0.002257496 1820 1.115248 1.125377
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
## site
                     lsmean
                                     SE
                                          df lower.CL upper.CL
## Northern slope 1.107615 0.002220056 1820 1.103261 1.111969
## Southern slope 1.069759 0.002294326 1820 1.065259 1.074259
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
```

```
## contrast
                                                             df t.ratio
                                      estimate
## Northern slope - Southern slope 0.03785579 0.003192582 1820 11.857
   p.value
     <.0001
##
## Results are averaged over the levels of: disturb_year
##
## site
                     lsmean
                                     SE
                                          df lower.CL upper.CL .group
   Southern slope 1.069759 0.002294326 1820 1.064612 1.074906 a
## Northern slope 1.107615 0.002220056 1820 1.102635 1.112595
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                                       df lower.CL upper.CL
                                  lsmean
                                                  SE
                 Northern slope 1.172113 0.003139633 1820 1.165955 1.178271
## 2012
                 Northern slope 1.043117 0.003139633 1820 1.036959 1.049275
## 2005
                 Southern slope 1.068512 0.003244666 1820 1.062148 1.074876
## 2012
                 Southern slope 1.071007 0.003244666 1820 1.064643 1.077370
##
## Confidence level used: 0.95
## $contrasts
## contrast
                                                  estimate
## 2005, Northern slope - 2012, Northern slope 0.128996090 0.004440112 1820
## 2005, Northern slope - 2005, Southern slope 0.103601172 0.004514992 1820
   2005, Northern slope - 2012, Southern slope 0.101106495 0.004514992 1820
##
   2012, Northern slope - 2005, Southern slope -0.025394918 0.004514992 1820
## 2012, Northern slope - 2012, Southern slope -0.027889595 0.004514992 1820
   2005, Southern slope - 2012, Southern slope -0.002494677 0.004588651 1820
## t.ratio p.value
##
    29.052 <.0001
##
    22.946 <.0001
##
     22.394 < .0001
##
     -5.625 <.0001
##
    -6.177 <.0001
##
     -0.544 1.0000
## P value adjustment: bonferroni method for 6 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resistance

Table 3: ANOVA table: rt

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	3.266	3.266	1079	0
site	1	0.6366	0.6366	210.2	0
$disturb_year:site$	1	0.9736	0.9736	321.5	0
Residuals	1820	5.511	0.00303		

	Statistic
R^2	0.47
$\mathrm{adj}R^2$	0.47
σ_e	0.06
F	536.85
p	0.00
df_m logLik	4.00 2703.33
AIC	-5396.66
BIC	-5369.12
dev	5.51
df_e	1820.00

```
# Post hoc Define model
mymodel <- aov_rt$mymodel</pre>
postH_rt <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                    SE
                                        df lower.CL upper.CL
                 0.8607403 0.001823114 1820 0.8571647 0.8643159
## 2005
   2012
                 0.9438559 0.001823114 1820 0.9402803 0.9474315
##
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                          df t.ratio p.value
                  estimate
                                     SE
## 2005 - 2012 -0.08311557 0.002578272 1820 -32.237 <.0001
## Results are averaged over the levels of: site
##
                                    SE
                                         df lower.CL upper.CL .group
## disturb_year
                    lsmean
                 0.8607403 0.001823114 1820 0.8566506 0.8648300 a
## 2005
                 0.9438559 0.001823114 1820 0.9397662 0.9479456
## 2012
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
##
                      lsmean
                                      SE
                                           df lower.CL upper.CL
##
  Northern slope 0.8836057 0.001792878 1820 0.8800894 0.8871220
   Southern slope 0.9209905 0.001852856 1820 0.9173566 0.9246245
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                       estimate
                                                               df t.ratio
                                                         SE
## Northern slope - Southern slope -0.03738486 0.002578272 1820
   p.value
##
    <.0001
##
## Results are averaged over the levels of: disturb_year
##
##
   site
                      lsmean
                                      SE
                                           df lower.CL upper.CL .group
##
  Northern slope 0.8836057 0.001792878 1820 0.8795838 0.8876276 a
   Southern slope 0.9209905 0.001852856 1820 0.9168341 0.9251470
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                   lsmean
                                                   SE
                                                        df lower.CL
## 2005
                 Northern slope 0.8189321 0.002535512 1820 0.8139593
## 2012
                 Northern slope 0.9482792 0.002535512 1820 0.9433064
## 2005
                 Southern slope 0.9025485 0.002620335 1820 0.8974093
## 2012
                 Southern slope 0.9394325 0.002620335 1820 0.9342934
    upper.CL
##
## 0.8239049
## 0.9532521
   0.9076877
##
##
   0.9445717
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                                 estimate
   2005, Northern slope - 2012, Northern slope -0.12934712 0.003585755 1820
##
##
   2005, Northern slope - 2005, Southern slope -0.08361641 0.003646227 1820
   2005, Northern slope - 2012, Southern slope -0.12050043 0.003646227 1820
##
   2012, Northern slope - 2005, Southern slope 0.04573071 0.003646227 1820
   2012, Northern slope - 2012, Southern slope 0.00884669 0.003646227 1820
## 2005, Southern slope - 2012, Southern slope -0.03688402 0.003705713 1820
## t.ratio p.value
## -36.072 <.0001
## -22.932 <.0001
```

```
## -33.048 <.0001

## 12.542 <.0001

## 2.426 0.0921

## -9.953 <.0001

##

## P value adjustment: bonferroni method for 6 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resilience

Table 5: ANOVA table: rs $\,$

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.6334	0.6334	258.4	0
site	1	0.0533	0.0533	21.74	0
disturb_year:site	1	0.01931	0.01931	7.875	0.00507
Residuals	1820	4.462	0.00245		

	Statistic
R^2	0.14
$adjR^2$	0.14
σ_e	0.05
F	96.00
p	0.00
$d\!f_m$	4.00
$\log \mathrm{Lik}$	2895.92
AIC	-5781.83
BIC	-5754.29
dev	4.46
$d\!f_e$	1820.00

```
# Post hoc Define model
mymodel <- aov_rs$mymodel</pre>
postH_rs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                    lsmean
                                    SE
                                         df lower.CL upper.CL
## 2005
                 0.9587200 0.001640436 1820 0.9555027 0.9619373
## 2012
                 0.9962045 0.001640436 1820 0.9929872 0.9994219
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                   estimate
                                     SE
                                          df t.ratio p.value
   2005 - 2012 -0.03748452 0.002319926 1820 -16.158 <.0001
## Results are averaged over the levels of: site
## disturb_year
                                         df lower.CL upper.CL .group
                    lsmean
                                    SE
                 0.9587200 0.001640436 1820 0.9550401 0.9623999
## 2005
## 2012
                 0.9962045 0.001640436 1820 0.9925246 0.9998844
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
## $1smeans
## site
                                           df lower.CL upper.CL
                      lsmean
                                      SE
   Northern slope 0.9720535 0.001613229 1820 0.9688896 0.9752175
## Southern slope 0.9828710 0.001667198 1820 0.9796012 0.9861408
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                       estimate
                                                         SF.
                                                              df t.ratio
## Northern slope - Southern slope -0.01081743 0.002319926 1820 -4.663
##
  p.value
     <.0001
##
##
## Results are averaged over the levels of: disturb_year
##
## site
                      lsmean
                                      SE
                                           df lower.CL upper.CL .group
## Northern slope 0.9720535 0.001613229 1820 0.9684347 0.9756724
## Southern slope 0.9828710 0.001667198 1820 0.9791310 0.9866109
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                   lsmean
                                                   SE
                                                        df lower.CL
## 2005
                 Northern slope 0.9565664 0.002281451 1820 0.9520919
## 2012
                 Northern slope 0.9875407 0.002281451 1820 0.9830661
## 2005
                 Southern slope 0.9608736 0.002357774 1820 0.9562493
##
   2012
                 Southern slope 1.0048684 0.002357774 1820 1.0002442
##
    upper.CL
## 0.9610410
## 0.9920152
## 0.9654978
##
  1.0094926
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                                  estimate
   2005, Northern slope - 2012, Northern slope -0.030974221 0.003226458 1820
## 2005, Northern slope - 2005, Southern slope -0.004307134 0.003280871 1820
## 2005, Northern slope - 2012, Southern slope -0.048301950 0.003280871 1820
   2012, Northern slope - 2005, Southern slope 0.026667087 0.003280871 1820
##
   2012, Northern slope - 2012, Southern slope -0.017327728 0.003280871 1820
##
   2005, Southern slope - 2012, Southern slope -0.043994816 0.003334396 1820
##
  t.ratio p.value
##
    -9.600 <.0001
    -1.313 1.0000
##
##
  -14.722 <.0001
     8.128 < .0001
##
    -5.281 <.0001
##
## -13.194 <.0001
##
## P value adjustment: bonferroni method for 6 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Relative Resilience

Table 7: ANOVA table: rrs

term	$\mathrm{d}\mathrm{f}$	sumsq	meansq	statistic	p.value
disturb_year	1	1.023	1.023	321.9	0
site	1	0.3215	0.3215	101.2	0
disturb_year:site	1	1.267	1.267	398.7	0
Residuals	1820	5.783	0.00318		

	Statistic
R^2	0.31
$\mathrm{adj}R^2$	0.31
σ_e	0.06
F	273.95
p	0.00
$d\!f_m$	4.00
$\log \mathrm{Lik}$	2659.30
AIC	-5308.61
BIC	-5281.06
dev	5.78
$d\!f_e$	1820.00

```
# Post hoc Define model
mymodel <- aov_rrs$mymodel</pre>
postH_rrs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                     SE
                                          df
                                               lower.CL upper.CL
                 0.09797968 0.001867656 1820 0.09431670 0.1016427
## 2005
   2012
                 0.05234863 0.001867656 1820 0.04868565 0.0560116
##
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                         df t.ratio p.value
                  estimate
                                    SE
## 2005 - 2012 0.04563105 0.002641264 1820 17.276 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                     lsmean
                                     SE
                                          df
                                               lower.CL
                                                          upper.CL .group
                 0.05234863 0.001867656 1820 0.04815899 0.05653826 a
## 2012
## 2005
                 0.09797968 0.001867656 1820 0.09379004 0.10216931
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
##
                       lsmean
                                       SE
                                             df
                                                  lower.CL
                                                             upper.CL
##
  Northern slope 0.08844787 0.001836681 1820 0.08484564 0.09205009
   Southern slope 0.06188044 0.001898125 1820 0.05815770 0.06560317
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                                       estimate
                                                         SE
                                                              df t.ratio
  Northern slope - Southern slope 0.02656743 0.002641264 1820 10.059
##
   p.value
##
    <.0001
##
## Results are averaged over the levels of: disturb_year
##
##
   site
                       lsmean
                                       SE
                                             df
                                                  lower.CL
                                                             upper.CL .group
##
   Southern slope 0.06188044 0.001898125 1820 0.05762245 0.06613842
   Northern slope 0.08844787 0.001836681 1820 0.08432772 0.09256802
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                    lsmean
                                                     SE
                                                          df lower.CL
## 2005
                 Northern slope 0.13763432 0.002597459 1820 0.1325400
## 2012
                 Northern slope 0.03926142 0.002597459 1820 0.0341671
   2005
                 Southern slope 0.05832504 0.002684355 1820 0.0530603
##
##
   2012
                 Southern slope 0.06543584 0.002684355 1820 0.0601711
##
      upper.CL
##
  0.14272863
   0.04435573
##
   0.06358978
##
   0.07070057
##
##
## Confidence level used: 0.95
##
## $contrasts
##
  contrast
                                                   estimate
   2005, Northern slope - 2012, Northern slope 0.098372900 0.003673362 1820
##
##
   2005, Northern slope - 2005, Southern slope 0.079309278 0.003735312 1820
   2005, Northern slope - 2012, Southern slope 0.072198481 0.003735312 1820
##
   2012, Northern slope - 2005, Southern slope -0.019063621 0.003735312 1820
##
   2012, Northern slope - 2012, Southern slope -0.026174419 0.003735312 1820
   2005, Southern slope - 2012, Southern slope -0.007110797 0.003796251 1820
##
## t.ratio p.value
##
    26.780 <.0001
    21.232 <.0001
##
```

```
## 19.329 <.0001
## -5.104 <.0001
## -7.007 <.0001
## -1.873 0.3673
##
## P value adjustment: bonferroni method for 6 tests
ps</pre>
```

site effect plot

 pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

mean + sd

grid.arrange(plot_mdSE, plot_msSE, plot_mdsSE, ncol=3)

 $\mathrm{mean} + \mathrm{ci}$

```
grid.arrange(plot_mdCI, plot_msCI, plot_mdsCI, ncol=3)
```


pdf ## 2 ## pdf ## 2

term	df	sumsq	meansq	statistic	p.value	var
disturb_year	1	1.951	1.951	420.3	3.368e-84	$_{\rm rc}$
site	1	0.6528	0.6528	140.6	2.706e-31	$_{\rm rc}$
$disturb_year:site$	1	1.969	1.969	424.1	7.127e-85	$_{\rm rc}$
Residuals	1820	8.45	0.004643	NA	NA	rc
$disturb_year$	1	3.266	3.266	1079	3.446e-186	rt
site	1	0.6366	0.6366	210.2	3.608e-45	rt
$disturb_year:site$	1	0.9736	0.9736	321.5	2.446e-66	rt

21

term	$\mathrm{d}\mathrm{f}$	sumsq	meansq	statistic	p.value	var
Residuals	1820	5.511	0.003028	NA	NA	$_{ m rt}$
$disturb_year$	1	0.6334	0.6334	258.4	1.817e-54	$_{\rm rs}$
site	1	0.0533	0.0533	21.74	3.346e-06	$_{\rm rs}$
$disturb_year:site$	1	0.01931	0.01931	7.875	0.005066	$_{\rm rs}$
Residuals	1820	4.462	0.002452	NA	NA	rs
$disturb_year$	1	1.023	1.023	321.9	2.05e-66	rrs
site	1	0.3215	0.3215	101.2	3.356e-23	rrs
$disturb_year:site$	1	1.267	1.267	398.7	2.249e-80	rrs
Residuals	1820	5.783	0.003178	NA	NA	rrs

	rc	rt	rs	rrs
R^2	0.3511444	0.4694715	0.1366188	0.3110905
$\operatorname{adj} R^2$	0.3511444 0.3500749	0.4694715 0.4685970	0.1300188 0.1351956	0.3110903 0.3099549
σ_e	0.06813799	0.4003970 0.05502703	0.04951326	0.05637145
$\overset{\sigma_e}{F}$	328.31282	536.84720	95.99708	273.95212
p	2.291209e-170	7.130860e-250	1.111125e-57	1.015581e-146
$d\!f_m$	4	4	4	4
$\log \mathrm{Lik}$	2313.524	2703.332	2895.917	2659.304
AIC	-4617.048	-5396.664	-5781.835	-5308.608
BIC	-4589.504	-5369.120	-5754.291	-5281.064
dev	8.449871	5.510913	4.461844	5.783487
$d\!f_e$	1820	1820	1820	1820
variable	rc	rt	rs	rrs

Asumptions

 $\bullet\,$ Explorar si se cumplen los supuestos de normalidad y homocedasticidad. Tenemos que comprobar que cada uno de los grupos son normales (2005 vs 2012; N vs S; e interactions)

Normalidad

```
### Resilience
nrsA <- shapirosNormal(evires, resp_var = quo(rs), 'disturb_year')
nrsA$var <- 'rs'
nrsB <- shapirosNormal(evires, resp_var = quo(rs), 'site')
nrsB$var <- 'rs'
nrsAB <- shapirosNormal(evires, resp_var = quo(rs), c('disturb_year','site'))
nrsAB$var <- 'rs'</pre>
```

```
### Recovery
nrcA <- shapirosNormal(evires, resp_var = quo(rc), 'disturb_year')</pre>
nrcA$var <- 'rc'</pre>
nrcB <- shapirosNormal(evires, resp_var = quo(rc), 'site')</pre>
nrcB$var <- 'rc'</pre>
nrcAB <- shapirosNormal(evires, resp_var = quo(rc), c('disturb_year','site'))</pre>
nrcAB$var <- 'rc'</pre>
### Resistance
nrtA <- shapirosNormal(evires, resp_var = quo(rt), 'disturb_year')</pre>
nrtA$var <- 'rt'</pre>
nrtB <- shapirosNormal(evires, resp_var = quo(rt), 'site')</pre>
nrtB$var <- 'rt'</pre>
nrtAB <- shapirosNormal(evires, resp_var = quo(rt), c('disturb_year','site'))</pre>
nrtAB$var <- 'rt'</pre>
### Relative Resilience
nrrsA <- shapirosNormal(evires, resp_var = quo(rrs), 'disturb_year')</pre>
nrrsA$var <- 'rrs'</pre>
nrrsB <- shapirosNormal(evires, resp var = quo(rrs), 'site')</pre>
nrrsB$var <- 'rrs'</pre>
nrrsAB <- shapirosNormal(evires, resp_var = quo(rrs), c('disturb_year','site'))</pre>
nrrsAB$var <- 'rrs'</pre>
normtestA <- rbind(nrcA, nrtA, nrsA, nrrsA)</pre>
normtestA %>% pander()
```

disturb_year	statistic	p_value	var
2005	0.9937	0.00069	$_{ m rc}$
2012	0.9952	0.00573	$_{\rm rc}$
2005	0.9962	0.0248	rt
2012	0.9976	0.2164	rt
2005	0.9989	0.8793	$_{\rm rs}$
2012	0.9938	8e-04	$_{\rm rs}$
2005	0.9977	0.2435	rrs
2012	0.9916	5e-05	rrs

site	statistic	p_value	var
Northern slope	0.9768	0	$_{\rm rc}$
Southern slope	0.9889	0	$_{\rm rc}$
Northern slope	0.9909	1e-05	rt
Southern slope	0.9981	0.4341	rt
Northern slope	0.9901	1e-05	rs
Southern slope	0.9968	0.0752	rs
Northern slope	0.9942	0.00113	rrs

site	statistic	p_value var		
Southern slope	0.9905	2e-05	rrs	

$disturb_year$	site	statistic	p_value	var
2005	Northern slope	0.9873	0.00041	$_{\rm rc}$
2005	Southern slope	0.9922	0.02101	rc
2012	Northern slope	0.9907	0.0045	rc
2012	Southern slope	0.9905	0.00597	$_{\rm rc}$
2005	Northern slope	0.9932	0.03304	rt
2005	Southern slope	0.994	0.07917	rt
2012	Northern slope	0.9959	0.2602	rt
2012	Southern slope	0.9964	0.4178	rt
2005	Northern slope	0.9949	0.1252	rs
2005	Southern slope	0.9959	0.3181	rs
2012	Northern slope	0.9832	3e-05	rs
2012	Southern slope	0.9916	0.01349	rs
2005	Northern slope	0.994	0.05822	rrs
2005	Southern slope	0.9962	0.3659	rrs
2012	Northern slope	0.9961	0.3059	rrs
2012	Southern slope	0.9843	0.00011	rrs

• No se cumplen los requisitos de normalidad

Heterocedasticidad

```
homogetest <- function(resp_var, factores, df){
  require(car)

out_factores <- c()

for (f in factores){
  hv <- c()
  myformula <- as.formula(paste0(resp_var, "~", f))
  #tests
  fk <- fligner.test(myformula, data = df)
  lv <- leveneTest(myformula, data = df)</pre>
```

```
hv$fk_stat <- round(fk$statistic,3)</pre>
    hv$fk_pvalue <- round(fk$p.value,7)</pre>
    hv$lev_stat <- round(lv$`F value`[1],3)</pre>
    hv$lev_pvalue <- round(lv$`Pr(>F)`[1],7)
    hv$factor <- f
    hv <- as.data.frame(hv)
    row.names(hv) <- NULL</pre>
    out_factores <- rbind(out_factores, hv)}</pre>
  return(out_factores)
}
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')</pre>
responses <- c('rs', 'rc', 'rt', 'rrs')</pre>
homo \leftarrow c()
for (i in responses){
  ht <- homogetest(resp_var = i, factores = factores, df = evires)</pre>
  ht <- ht %>% mutate(response = i)
  homo <- rbind(homo, ht)</pre>
}
homo %>% pander()
```

${\rm fk_stat}$	${\rm fk_pvalue}$	lev_stat	lev_pvalue	factor	response
2.525	0.1121	2.648	0.1039	9 disturb_year	
3.839	0.05008	3.789	0.05174	site	rs
17.51	0.0005562	5.914	0.0005166	interaction(disturb_year,	rs
				site)	
211.9	0	246.3	0	disturb_year	$_{\rm rc}$
141.3	0	150.6	0	site	$_{\rm rc}$
190.7	0	70.07	0 interaction(disturb_year,		$_{\rm rc}$
				site)	
63.89	0	66.3	0	disturb_year	rt
125.1	0	131.9	0	$\overline{\mathrm{site}}$	
12.28	0.006492	4.056	0.006951	interaction(disturb_year,	$_{ m rt}$
				site)	
130.1	0	146.9	0	disturb_year	rrs
99.8	0	105.6	0	site	rrs
140.8	0	50.69	0	interaction(disturb_year,	rrs
				site)	

• Tampoco se cumplen los requisitos de homogeneidad de varianzas entre grupos

Transformación datos

Log

• Probamos a transformar los datos con log y reanalizar los supuestos de homocedasticidad

```
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('logrs', 'logrc', 'logrt', 'logrrs')
homo_log <- c()

evires <- evires %>%
    mutate(
    logrs = log(rs),
    logrc = log(rc),
    logrt = log(rc),
    logrrs = log(rrs)
)

for (i in responses){
    ht <- homogetest(resp_var = i, factores = factores, df = evires)
    ht <- ht %>% mutate(response = i)
    homo_log <- rbind(homo_log, ht)
}

homo_log %>% pander()
```

fk_stat	${\rm fk_pvalue}$	lev_stat	lev_pvalue	lev_pvalue factor	
0.286	0.5927	0.249	0.6176	0.6176 disturb_year	
4.653	0.031	4.631	0.03153	site	$\log rs$
18.81	0.0002987	6.272	0.0003116	interaction(disturb_year,	$\log rs$
				site)	
181.4	0	208.7	0	disturb_year	logrc
127.8	0	136.2	0	site	logrc
165.2	0	60.48	0 interaction(disturb year,		logrc
				site)	
181.4	0	208.7	0	disturb_year	logrt
127.8	0	136.2	0	0 site	
165.2	0	60.48	0	interaction(disturb_year,	$\log rt$
				site)	
2.26	0.1328	2.944	0.0864	disturb_year	logrrs
19.95	8e-06	16.68	4.64 e - 05	site	logrrs
116.2	0	32.45	0	interaction(disturb_year,	logrrs
				site)	

• Tampoco se cumplen

Log + 1

```
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('log1rs', 'log1rc', 'log1rt', 'log1rrs')
homo_log1 <- c()

evires <- evires %>%
    mutate(
    log1rs = log(rs + 1),
    log1rc = log(rc + 1),
    log1rt = log(rc + 1),
    log1rrs = log(rrs +1)
)

for (i in responses){
    ht <- homogetest(resp_var = i, factores = factores, df = evires)
    ht <- ht %>% mutate(response = i)
    homo_log1 <- rbind(homo_log1, ht)
}

homo_log1 %>% pander()
```

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
1.128	0.2883	1.152	0.2833	0.2833 disturb_year	
4.259	0.03905	4.202	0.04052	site	$\log 1 rs$
17.94	0.0004531	6.002	0.0004567	interaction(disturb_year,	$\log 1 \mathrm{rs}$
				site)	
196.2	0	227.4	0	disturb_year	$\log 1 rc$
134.3	0	143.7	0	site	$\log 1 rc$
176.4	0	64.66	0 interaction(disturb_year,		$\log 1 rc$
				site)	_
196.2	0	227.4	0	0 disturb_year	
134.3	0	143.7	0		
176.4	0	64.66	0	interaction(disturb_year,	$\log 1 \mathrm{rt}$
				site)	
107.1	0	119.2	0	disturb_year	log1rrs
86.45	0	91.37	0 site		log1rrs
136.2	0	49.05	0	interaction(disturb_year,	$\log 1 \text{rrs}$
				site)	3

• Tampoco se cumplen

Buscar mejor transformación de Box-Cox

• Buscamos el mejor lambda para cada variable para estudiar posibles transformaciones

Lambda Resilience

```
m <- lm(rs ~ disturb_year*site, evires)
b <- boxcox(m)</pre>
```


b\$x[which.max(b\$y)]

[1] -0.1414141

Lambda Resistance

```
m <- lm(rt ~ disturb_year*site, evires)
b <- boxcox(m)</pre>
```



```
b$x[which.max(b$y)]
```

```
## [1] 0.8282828
```

Lambda Recovery

```
m <- lm(rc ~ disturb_year*site, evires)
b <- boxcox(m)</pre>
```


b\$x[which.max(b\$y)]

[1] -1.151515

Lambda Relative Resilience

```
m <- lm(rrs ~ disturb_year*site, evires)
b <- boxcox(m)
b$x[which.max(b$y)]</pre>
```

Obtengo diferentes lambdas, lo cual complica las transformaciones. Por lo que opto por ROBUST ANOVA

ROBUST ANOVA

- Ver Wilcox (2005, 2012)
- Vamos a realizar un Robust factorial ANOVA. En concreto:
- Two-way robust factorial ANOVA on M-estimator
- pkg WRS2

Recovery

```
robustANOVA <- function(df, resp_var, factores,</pre>
         alpha, nboot, treshold) {
  # alpha: alpha ci for huber m-estimation
 # nboot: numer of iterations
  # treshoold for letter (posthoc)
  # See http://rcompanion.org/rcompanion/d_08a.html
  # Create interaction
  df$interaction <- interaction(df$disturb_year, df$site)</pre>
  # Formulas
  formulaFull <- as.formula(paste0(resp_var, " ~ ",</pre>
                                  paste(factores, collapse = '+')))
  formula_A <- as.formula(paste0(resp_var, " ~ ", factores[1]))</pre>
  formula B <- as.formula(pasteO(resp var, " ~ ", factores[2]))</pre>
  formula_AB <- as.formula(paste0(resp_var, " ~ interaction"))</pre>
  # Produce Huber M-estimators and confidence intervals by group
  mest <- groupwiseHuber(formulaFull, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  # Two-way robust analysis
  x <- pbad2way(formulaFull, data = df, est = "mom", nboot = nboot)
  out_ra <- data.frame(</pre>
   term = c(x$varnames[2],
             x$varnames[3],
             paste0(x$varnames[2], ':', x$varnames[3])),
    p_value = c(x$A.p.value, x$B.p.value, x$AB.p.value))
  # post-hoc
  ## factor A
  pha <- pairwiseRobustTest(formula_A, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## factor B
  phb <- pairwiseRobustTest(formula_B, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## interaction effect (AB)
  phab <- pairwiseRobustTest(formula_AB, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## letters
  letters_ph <- rbind(</pre>
    cldList(comparison = pha$Comparison,
        p.value
                  = pha$p.adjust,
        threshold = treshold),
    cldList(comparison = phb$Comparison,
        p.value
                   = phb$p.adjust,
        threshold = treshold),
    cldList(comparison = phab$Comparison,
```

```
p.value
                   = phab$p.adjust,
        threshold = treshold))
  ph <- rbind(pha, phb, phab)
  phRWS2 <- mcp2a(formulaFull, data=df, est = "mom", nboot = nboot)</pre>
  out <- list()</pre>
  out$mest <- mest # Huber M-estimators and Confidence Intervals
  out$ra <- out_ra # Output for Two-way robust analysis (M-estimators)</pre>
  out$letters_ph <- letters_ph # Letters comparison posthoc</pre>
  out$ph <- ph # posthoc comparison usinng pairwiseRobustTest
 print(out_ra)
 print(phRWS2)
 return(out)
}
factores = c('disturb_year', 'site', 'disturb_year:site')
rars <- robustANOVA(df=evires, resp_var='rs', factores=factores,
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
##
                  term
                          p_value
## 1
          disturb_year 0.00000000
                  site 0.00000000
## 3 disturb_year:site 0.04133333
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                         psihat ci.lower ci.upper p-value
## disturb_year1
                       -0.07125 -0.07928 -0.06284
                                                      0.000
## site1
                       -0.02635 -0.03517 -0.01822
                                                      0.000
## disturb_year1:site1 0.01036 0.00259 0.01971
                                                      0.015
rarc <- robustANOVA(df=evires, resp_var='rc', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
```

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
##
                  term p_value
          disturb_year
## 1
## 2
                              0
## 3 disturb_year:site
                              0
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
##
                        psihat ci.lower ci.upper p-value
## disturb year1
                       0.12129 0.11064 0.13384
## site1
                       0.07067 0.05845 0.08131
                                                         0
## disturb_year1:site1 0.13400 0.12236 0.14523
                                                         0
rart <- robustANOVA(df=evires, resp_var='rt', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
##
                  term p_value
## 1
          disturb_year
## 2
                              0
## 3 disturb_year:site
                              0
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                         psihat ci.lower ci.upper p-value
## disturb_year1
                       -0.16567 -0.17501 -0.15623
## site1
                       -0.07410 -0.08298 -0.06423
                                                          0
## disturb_year1:site1 -0.09022 -0.09976 -0.08079
rarrs <- robustANOVA(df=evires, resp_var='rrs', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
```

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
##
##
                  term p_value
## 1
         disturb_year
## 2
                             0
                  site
                             0
## 3 disturb_year:site
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                        psihat ci.lower ci.upper p-value
## disturb_year1
                       0.09017 0.08010 0.09900
                       0.04760 0.03810 0.05718
## site1
## disturb_year1:site1 0.10647 0.09695 0.11605
                                                       0
```

Estimadores de huber

```
rars$mest$var <- 'rs'
rarc$mest$var <- 'rc'
rart$mest$var <- 'rt'
rarrs$mest$var <- 'rrs'

mhuber <- rbind(rarc$mest, rart$mest, rarrs$mest)
mhuber %>% pander()
```

disturb_year	site	n	M.Huber	lower.ci	upper.ci	var
2005	Northern slope	471	1.169	1.161	1.177	$_{ m rc}$
2005	Southern slope	441	1.066	1.058	1.074	rc
2012	Northern slope	471	1.042	1.036	1.047	rc
2012	Southern slope	441	1.071	1.067	1.075	rc
2005	Northern slope	471	0.819	0.8137	0.8243	rt
2005	Southern slope	441	0.9016	0.8958	0.9074	rt
2012	Northern slope	471	0.9472	0.9423	0.9521	rt
2012	Southern slope	441	0.9387	0.9336	0.9438	rt
2005	Northern slope	471	0.9553	0.9507	0.9599	rs
2005	Southern slope	441	0.9618	0.9573	0.9663	$_{\rm rs}$
2012	Northern slope	471	0.9855	0.9805	0.9905	$_{\rm rs}$
2012	Southern slope	441	1.004	0.9996	1.008	$_{\rm rs}$
2005	Northern slope	471	0.1362	0.1304	0.142	rrs
2005	Southern slope	441	0.05819	0.05141	0.06498	rrs
2012	Northern slope	471	0.03883	0.03396	0.0437	rrs

disturb_year	site	n	M.Huber	lower.ci	upper.ci	var
2012	Southern slope	441	0.06618	0.06291	0.06946	rrs

Pairwise comparison

```
rars$ph$var <- 'rs'
rarc$ph$var <- 'rc'
rart$ph$var <- 'rt'
rarrs$ph$var <- 'rrs'

pairwise <- rbind(rarc$ph, rart$ph, rarrs$ph)
pairwise %>% pander()
```

Comparison	Statistic	p.value	p.adjust	var
2005 - 2012 = 0	0.05994	0	0	rc
Northern slope - Southern slope $= 0$	0.03308	0	0	rc
2005.Northern slope - 2012.Northern slope = 0	0.1276	0	0	rc
2005.Northern slope = 0 2005.Southern slope = 0	0.1023	0	0	rc
2005.Northern slope - $2012.$ Southern slope = 0	0.09598	0	0	rc
2012.8 outhern slope $= 02012.$ Northern slope $= 0$	-0.02531	0	0	rc
2012.Northern slope - $2012.$ Southern slope = 0	-0.03167	0	0	rc
2005.Southern slope - 2012.Southern slope = 0	-0.006357	0.21	1	rc
2005 - 2012 = 0	-0.0853	0	0	$_{ m rt}$
Northern slope - Southern slope $= 0$	-0.03784	0	0	rt
2005.Northern slope - $2012.$ Northern slope = 0	-0.1279	0	0	rt
2005.Northern slope - $2005.$ Southern slope = 0	-0.08216	0	0	rt
2005.Northern slope - 2012.Southern slope = 0	-0.1199	0	0	rt
2012.Northern slope - $2005.$ Southern slope = 0	0.04579	0	0	rt
2012.Northern slope - 2012.Southern slope = 0	0.008059	0.02533	0.152	rt
2005.Southern slope - $2012.$ Southern slope = 0	-0.03773	0	0	rt
2005 - 2012 = 0	-0.03583	0	0	rs
Northern slope - Southern slope = 0	-0.01344	0	0	rs
2005.Northern slope - 2012.Northern slope = 0	-0.03045	0	0	rs
2005.Northern slope - $2005.S$ outhern slope = 0	-0.007997	0.02867	0.172	rs

Comparison	Statistic	p.value	p.adjust	var
2005.Northern slope -	-0.0488	0	0	rs
2012.Southern slope = 0				
2012.Northern slope -	0.02245	0	0	$_{\rm rs}$
2005.Southern slope = 0				
2012.Northern slope -	-0.01835	0	0	$_{\rm rs}$
2012.Southern slope = 0				
2005.Southern slope -	-0.0408	0	0	$_{\rm rs}$
2012.Southern slope = 0				
2005 - 2012 = 0	0.04601	0	0	rrs
Northern slope - Southern slope	0.02191	0	0	rrs
=0				
2005.Northern slope -	0.09832	0	0	rrs
2012.Northern slope = 0				
2005.Northern slope -	0.07703	0	0	rrs
2005.Southern slope = 0				
2005.Northern slope -	0.06889	0	0	rrs
2012.Southern slope = 0				
2012.Northern slope -	-0.02129	0	0	rrs
2005.Southern slope = 0				
2012.Northern slope -	-0.02943	0	0	rrs
2012.Southern slope = 0				
2005.Southern slope -	-0.008148	0.046	0.276	rrs
2012.Southern slope = 0				

Interaction plot

Response \sim (x=Drought)

```
mhuber<- mhuber %>%
  mutate(var_sorted = case_when(var == "rc" ~ "1_rc",
                                var == "rt" ~ "0_rt",
                                var == "rs" ~ "2_rs",
                                 var == "rrs" ~ "3_rrs"))
pd <- position_dodge(.2)</pre>
robust_plot_evi_drought <- ggplot(mhuber, aes(x=disturb_year, y=M.Huber, color = site, group=site, fill-</pre>
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=site,color=site, linetype=site), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                  '1_rc' = 'Recovery',
                                  '2_rs' = 'Resilience',
                                  '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue')) +
  scale_fill_manual(values=c('black','blue')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed")) +
  theme(panel.grid.minor = element_blank(),
```



```
site - Northern slope - Southern slope
```

```
pdf(paste0(di, '/images/resilience/robust_plot_evi_drought.pdf'), width=9, height = 9)
robust_plot_evi_drought
dev.off()
```

pdf ## 2

Response \sim (x=site)


```
pdf(paste0(di, '/images/resilience/robust_plot_evi_site.pdf'), width=9, height = 9)
robust_plot_evi_site
dev.off()
```

disturb_year ◆ 2005 ◆ 2012

```
## pdf
## 2
# Export data
write.csv(mhuber, file=paste0(di, '/out/anovas_resilience/robust_mhuber.csv'), row.names = F)
write.csv(pairwise, file=paste0(di, '/out/anovas_resilience/robust_pairwise.csv'), row.names = F)
```