Tangent bundle estimation of immerged manifolds

Raphaël TINARRAGE

Introduction (1/3): Immerged manifolds

Introduction (1/3): Immerged manifolds

ullet $\mathcal{M} \subset \mathbb{R}^n$ Abstract manifold \mathcal{M}_0 ______ Klein bottle Klein bottle $\cup \mathbb{S}_2$ _____

Introduction (2/3): Vector bundles

Vector bundle over \mathcal{M}_0 :

it is a topological space E, with $p:E\to \mathcal{M}_0$ continuous surjective such that

- for all $x_0 \in \mathcal{M}_0$, $p^{-1}(\{x_0\})$ is given a structure of vector space, and $\forall x_0 \in \mathcal{M}_0$, $\exists U \subset \mathcal{M}_0$ neighborhood of x_0 , $\exists k \geq 0$, $\exists \phi : U \times \mathbb{R}^k \to p^{-1}(U)$ homeomorphism such that $\forall y_0 \in \mathcal{M}_0$,
 - $v \mapsto \phi(y_0, v)$ is an isomorphism (of vector spaces)
 - $\bullet \ \forall v \in \mathbb{R}^k, p \circ \phi(y_0, v) = y_0$

Introduction (2/3): Vector bundles

Vector bundle over \mathcal{M}_0 :

it is a topological space E, with $p:E\to \mathcal{M}_0$ continuous surjective such that

- for all $x_0 \in \mathcal{M}_0$, $p^{-1}(\{x_0\})$ is given a structure of vector space, and $\forall x_0 \in \mathcal{M}_0$, $\exists U \subset \mathcal{M}_0$ neighborhood of x_0 , $\exists k \geq 0$, $\exists \phi : U \times \mathbb{R}^k \to p^{-1}(U)$ homeomorphism such that $\forall y_0 \in \mathcal{M}_0$,
 - $v \mapsto \phi(y_0, v)$ is an isomorphism (of vector spaces)
 - $\bullet \ \forall v \in \mathbb{R}^k, p \circ \phi(y_0, v) = y_0$

Some vector bundles can be described by a map $\mathcal{M}_0 o G_{d,n}$

Introduction (3/3): Tangent bundle

Tangent bundle:

(Definition for an abstract manifold): it is a vector bundle with total space the set $\bigcup_{x_0 \in \mathcal{M}_0} T_{x_0} \mathcal{M}_0$, endowed with a vector bundle structure...

(Definition for embedded manifold $\mathcal{M}_0 \to \mathcal{M}$: the tangent bundle is given by

$$T\mathcal{M} = \{(x, v), x \in \mathcal{M}, v \in T_x \mathcal{M}\}$$

and $p:(x,v)\in T\mathcal{M}\mapsto x\in\mathcal{M}.$

 $T\mathcal{M}$ is a submanifold of dimension 2d of $\mathbb{R}^n \times \mathbb{R}^n$

Introduction (3/3): Tangent bundle

Tangent bundle:

(Definition for an abstract manifold): it is a vector bundle with total space the set $\bigcup_{x_0 \in \mathcal{M}_0} T_{x_0} \mathcal{M}_0$, endowed with a vector bundle structure...

(Definition for embedded manifold $\mathcal{M}_0 \to \mathcal{M}$: the tangent bundle is given by

$$T\mathcal{M} = \{(x, v), x \in \mathcal{M}, v \in T_x \mathcal{M}\}$$

and $p:(x,v)\in T\mathcal{M}\mapsto x\in\mathcal{M}$.

Another point of view:

Define $\check{\mathcal{M}}\subset\mathbb{R}^n imes G_{d,n}$ as

$$\check{\mathcal{M}} = \{(x, T_x \mathcal{M}), x_0 \in \mathcal{M}_0\}.$$

It is a submanifold of dimension d of $\mathbb{R}^n \times G_{d,n}$. $\check{\mathcal{M}}$ can also be seen as a submanifold of $\mathbb{R}^n \times \mathbb{R}^{n^2}$. Motivations (1/2): recover the diffeomorphism class of \mathcal{M}_0

Assumption: $\forall x_0, y_0 \in \mathcal{M}_0$, $T_x \mathcal{M} = T_y \mathcal{M} \implies x_0 = y_0$

 \mathcal{M}_0 and $\check{\mathcal{M}}$ are diffeomorphic

Motivations (2/2): characteristic classes

The tangent bundle of \mathcal{M}_0 contains more precise information about the diffeomorphism class of \mathcal{M}_0 than just the cohomology ring $H^*(\mathcal{M}_0)$.

Example:

The Stiefel-Whitney class is a functor

VectorBundles_{$$\mathcal{M}_0$$} $\longrightarrow H^*(\mathcal{M}_0, \mathbb{Z}_2)$

If we consider the tangent bundle,

- the first Stiefel-Whitney class $w_1 \in H^1(\mathcal{M}_0, \mathbb{Z}_2)$ is zero iff \mathcal{M}_0 is orientable.
- the Stiefel-Whitney numbers are all zero iff \mathcal{M}_0 is the boundary of a compact manifold.

Model

Assumptions:

Differential geometric assumptions:

- \mathcal{M}_0 is a C^2 -manifold of dimension d
- $u: \mathcal{M}_0 \to \mathbb{R}^n$ is an immersion, $\mathcal{M} = u(\mathcal{M}_0)$
- $\forall x_0, y_0 \in \mathcal{M}_0$, $T_x \mathcal{M} = T_y \mathcal{M} \implies x_0 = y_0$

Riemannian geometric assumption:

• \mathcal{M}_0 is endowed (by pull-back) with a riemmanian structure, and $\forall x_0 \in \mathcal{M}_0, ||II_{x_0}|| \leq \rho$

Measure assumption:

ullet μ_0 is a Radon measure on \mathcal{M}_0 with density f_0 which is L_0 -Lipschitz and bounded by $0 < f_{\min} \le f_{\max}$

Model

Varifold:

Let $\check{u}: \mathcal{M}_0 \to \mathbb{R}^n \times M_n(\mathbb{R})$ be defined by $\check{u}(x_0) = (u(x_0), \frac{1}{d+2}p_{T_x\mathcal{M}})$. Consider

$$\check{\mathcal{M}} = \check{u}(\mathcal{M}_0),$$
$$\check{\mu}_0 = \check{u}_* \mu_0.$$

Goal:

We observe a measure ν on \mathbb{R}^n such that $W_1(\mu, \nu) \leq \epsilon$. Infer from ν the measure $\check{\mu}_0$.

Overview of the method

- For all $x \in \operatorname{supp}(\nu)$, compute $\overline{\Sigma}_{\nu}(x)$ the normalized local covariance matrix.
- lacksquare Consider the measure $\check{\nu} = \nu \otimes \delta_{\overline{\Sigma}_{\nu}(x)}$.
- Show that $W_1(\check{\nu},\check{\mu}_0)$ small.
- Do persistent homology on $\check{\nu}$.

Reach: Let $A \subset \mathbb{R}^n$, and $x \in \mathbb{R}^n \mapsto d(x,A) = \inf_{a \in A} ||x-a||$ the distance function to A.

The medial axis of S is defined as

$$med(A) = \{x \in \mathbb{R}^n, \exists a, b \in A, ||x - a|| = ||x - b|| = d(x, A)\}$$

and the reach of A as

$$\operatorname{reach}(A) = \inf_{a \in A} d(a, \operatorname{med}(A)).$$

It is a scale at which A has good behaviour: with $r < \operatorname{reach}(A)$ and $x \in A$,

- $A \cap \overline{\mathcal{B}}(x,r)$ is contractible
- ullet the projection onto A is well defined on the neighborhood A^r
- tangent space estimation works [Arias-Castro et al, Spectral Clustering based on local PCA]

Theorem (Aamari):

Let M be a compact submanifold. Then

$$\operatorname{reach}(M) = \frac{\lambda}{2} \wedge \frac{1}{\rho},$$

where

- $\lambda = \inf\{\|x y\|, (x, y) \text{ bottleneck}\}\$ (i.e. $\mathcal{B}(\frac{x + y}{2}, \frac{\|x y\|}{2}) \cap \mathcal{M} = 0$)
- $\rho = \sup_{x \in \mathcal{M}} ||II_x||$

Normal reach:

$$\lambda(x_0) = \inf\{\|x - y\|, y_0 \in \mathcal{M}_0, y_0 \neq x_0, x - y \perp T_y \mathcal{M}\}.$$

Normal reach:

$$\lambda(x_0) = \inf\{\|x - y\|, y_0 \in \mathcal{M}_0, y_0 \neq x_0, x - y \perp T_y \mathcal{M}\}.$$

Normal reach:

$$\lambda(x_0) = \inf\{\|x - y\|, y_0 \in \mathcal{M}_0, y_0 \neq x_0, x - y \perp T_y \mathcal{M}\}.$$

Normal reach:

$$\lambda(x_0) = \inf\{\|x - y\|, y_0 \in \mathcal{M}_0, y_0 \neq x_0, x - y \perp T_y \mathcal{M}\}.$$

Proposition:

Let $x_0 \in \mathcal{M}_0$ and $r < \frac{1}{4\rho} \wedge \lambda(x_0)$. Then $\overline{\mathcal{B}}(x,r) \cap \mathcal{M}$ is a set of reach at least $\frac{1}{2\rho}$.

Lemma:

Let $x_0, y_0 \in \mathcal{M}_0$. Denote $r = \|x - y\|$ and $\delta = d_{\mathcal{M}_0}(x_0, y_0)$. Suppose that $\|x - y\| < \frac{1}{2\rho} \wedge \lambda(x_0)$.

Then

$$\delta \le c(\rho r)r$$
 where $c(t) = \frac{1}{t}(1 - \sqrt{1 - 2t}).$

Proof:

Show that $u^{-1}(\mathcal{M} \cap \mathcal{B}(x,r))$ is connected.

Show that $u^{-1}(\mathcal{M} \cap \mathcal{B}(x,r)) \cap \partial \mathcal{B}_{\mathcal{M}_0}(x_0,c(\rho r)r+\epsilon) = \emptyset$ for ϵ small enough, following [Niyogi et al., Finding the Homology of Submanifolds with High Confidence from Random Samples].

Proposition:

Let $r \leq \frac{1}{4\rho} \wedge \lambda(x)$ and $x_0 \in \mathcal{M}_0$. We have

$$\mu(\mathcal{B}(x,r)) \ge ar^d$$

$$\left|\frac{\mu(\mathcal{B}(x,r))}{V_d r^d} - f(x)\right| \le cr$$

Moreover, $s \geq 0$ is such that $s \leq r$, we also have

$$\mu(\mathcal{B}(x,r)\setminus\mathcal{B}(x,s)) \le br^{d-1}(r-s)$$

(with
$$a=V_d(\frac{47}{48})^d f_{\min}$$
, $b=\frac{4d}{3}(\frac{17}{16})^d f_{\max}$, and $c=V_d(L+\frac{d}{4}f_{\max}\rho(\frac{17}{16})^{d-1}+2df_{\max}\rho\frac{17}{16}(\frac{3}{2})^{d-1})$.)

Tangent space estimation (1/6)

Definition:

Let r > 0 and $x \in \text{supp}(\mu)$. The local covariance matrix of μ around x at scale r is the following matrix:

$$\Sigma_{\mu}(x) = \int_{\overline{\mathcal{B}}(x,r)} (x - y)^{\otimes 2} \frac{d\mu(y)}{\mu(\overline{\mathcal{B}}(x,r))}$$

and the normalized local covariance matrix is

$$\overline{\Sigma}_{\mu}(x) = \frac{1}{r^2} \Sigma_{\mu}(x).$$

Notation: for any $x \in \mathbb{R}^n$, $x^{\otimes 2} = x^t x \in M_n(\mathbb{R})$.

Tangent space estimation (2/6): Consistency

Proposition:

Let $x_0 \in \mathcal{M}_0$ and $r \leq \lambda(x_0) \wedge \frac{1}{4\rho}$. Denote $T = T_x \mathcal{M}$ and by p_T the linear projection on T. Then

$$\|\frac{\Sigma_{\mu}(x)}{r^2} - \frac{1}{d+2}p_T\|_{\mathcal{F}} \le cr$$

with
$$c = (\frac{8}{7})^2 \rho + \frac{\operatorname{lip}(f)J_{\max} + \frac{d}{4}\rho f_{\max}}{f_{\min}J_{\min}} + \frac{f_{\max}J_{\max}}{f_{\min}J_{\min}}d + \frac{C}{f_{\min}J_{\min}}$$
.

The tangent space at x is well estimated provided that $r \leq \lambda(x_0)$

Tangent space estimation (3/6): Stability

Consider μ, ν close in Wasserstein distance.

The distance $\|\overline{\Sigma}_{\mu}(x) - \overline{\Sigma}_{\nu}(x)\|_{\mathrm{F}}$ is defined only when $x \in \mathrm{supp}(\mu) \cap \mathrm{supp}(\nu)$.

We will study the stability via the measures $\check{\mu}$ and $\check{\nu}$.

We define

$$\dot{\mu} = \mu \otimes \delta_{\overline{\Sigma}_{\mu}(x)}$$

$$\dot{\nu} = \nu \otimes \delta_{\overline{\Sigma}_{\nu}(x)}$$

We wish to bound $W_1(\check{\mu},\check{\nu})$.

Tangent space estimation (3/6): Stability

Consider μ, ν close in Wasserstein distance.

The distance $\|\overline{\Sigma}_{\mu}(x) - \overline{\Sigma}_{\nu}(x)\|_{F}$ is defined only when $x \in \operatorname{supp}(\mu) \cap \operatorname{supp}(\nu)$.

We will study the stability via the measures $\check{\mu}$ and $\check{\nu}$.

We define

$$\check{\mu} = \mu \otimes \delta_{\overline{\Sigma}_{\mu}(x)}$$

$$\check{\nu} = \nu \otimes \delta_{\overline{\Sigma}_{\nu}(x)}$$

Tangent space estimation (4/6): Norm on $\mathbb{R}^n \times M_n(\mathbb{R})$

The Wasserstein norm $W_1(\check{\mu},\check{\nu})$ is defined for the norm $\|\cdot\|_{\gamma}$ over $\mathbb{R}^n \times M_n(\mathbb{R})$, where

$$||(x,A)||_{\gamma}^2 = ||x||^2 + \gamma^2 ||A||_{F}^2.$$

The parameter γ controls how much is the tangent information important, compared to the spatial one.

$$\gamma = 1$$

Tangent space estimation (5/6): Stability

Proposition:

Consider ν any Radon measure on \mathbb{R}^n . μ is as before. Let $w = W_1(\mu, \nu)$. Suppose that $r \leq \frac{1}{4\rho}$ and $w \leq \min(a^{\frac{d+1}{d}}, 1)(\frac{r}{4})^{d+1}$.

If we suppose that $w \leq 1$, then

$$W_1(\check{\mu},\check{\nu}) \le \frac{2\gamma}{r} c' \mu(\lambda^r) w^{\frac{1}{2(d+1)}} + \frac{2\gamma}{r} c w^{\frac{1}{d+1}} + w.$$

Tangent space estimation (5/6): Stability

Proposition:

Consider ν any Radon measure on \mathbb{R}^n . μ is as before.

Let $w=W_1(\mu,\nu)$. Suppose that $r\leq \frac{1}{4\rho}$ and $w\leq \min(a^{\frac{d+1}{d}},1)(\frac{r}{4})^{d+1}$. If we suppose that $w\leq 1$, then

$$W_1(\check{\mu},\check{\nu}) \le \frac{2\gamma}{r} c' \mu(\lambda^r) w^{\frac{1}{2(d+1)}} + \frac{2\gamma}{r} c w^{\frac{1}{d+1}} + w.$$

Proof: Build an obvious transport plan $\check{\pi}$ between $\check{\mu}$ and $\check{\nu}$ from a transport plan π between μ and ν . Write

$$W_1(\check{\mu},\check{\nu}) \le \int \|x - y\| + \gamma \|\overline{\Sigma}_{\mu}(x) - \overline{\Sigma}_{\nu}(y)\|_{\mathrm{F}} \mathrm{d}\pi(x,y)$$

Show that, for every $x \in \operatorname{supp}(\mu)$ and $y \in \operatorname{supp}(\nu)$,

$$\|\overline{\Sigma}_{\mu}(x) - \overline{\Sigma}_{\nu}(y)\|_{F} \leq \frac{2}{r}(\|x - y\| + W_{1}(\overline{\mu_{x}}, \overline{\nu_{y}})),$$

where $\overline{\mu_x}$ is μ restricted to $\mathcal{B}(x,r)$ and normalized.

Tangent space estimation (5/6): Stability

Proof: Build an obvious transport plan $\check{\pi}$ between $\check{\mu}$ and $\check{\nu}$ from a transport plan π between μ and ν . Write

$$W_1(\check{\mu},\check{\nu}) \le \int \|x - y\| + \gamma \|\overline{\Sigma}_{\mu}(x) - \overline{\Sigma}_{\nu}(y)\|_{F} d\pi(x,y)$$

Show that, for every $x \in \operatorname{supp}(\mu)$ and $y \in \operatorname{supp}(\nu)$,

$$\|\overline{\Sigma}_{\mu}(x) - \overline{\Sigma}_{\nu}(y)\|_{F} \leq \frac{2}{r}(\|x - y\| + W_{1}(\overline{\mu_{x}}, \overline{\nu_{y}})),$$

where $\overline{\mu_x}$ is μ restricted to $\mathcal{B}(x,r)$ and normalized.

Conclude

$$W_1(\check{\mu},\check{\nu}) \leq \int (1 + \frac{2\gamma}{r}) \|x - y\| + \frac{2\gamma}{r} W_1(\overline{\mu_x}, \overline{\nu_y})) d\pi(x, y)$$
$$= (1 + \frac{2\gamma}{r}) W_1(\mu, \nu) + \frac{2\gamma}{r} \int W_1(\overline{\mu_x}, \overline{\nu_y}) d\pi(x, y).$$

Tangent space estimation (6/6): Approximation

Theorem:

Let ν be any Radon measure on \mathbb{R}^n , and μ as before. Choose $r<\frac{1}{4\rho}$. Let $w=W_1(\mu,\nu)$. Suppose that $w\leq \min(a^{\frac{d+1}{d}},1)(\frac{r}{4})^{d+1}$ and $w\leq 1$. Then

$$W_1(\check{\nu}, \check{\mu}_0) \le 2\gamma (1 + \frac{c''}{r} w^{\frac{1}{2(d+1)}}) \mu(\lambda^r) + \gamma c' r + \frac{2\gamma}{r} c w^{\frac{1}{d+1}} + w$$

Tangent space estimation (6/6): Approximation

Theorem:

Let ν be any Radon measure on \mathbb{R}^n , and μ as before. Choose $r<\frac{1}{4\rho}$. Let $w=W_1(\mu,\nu)$. Suppose that $w\leq \min(a^{\frac{d+1}{d}},1)(\frac{r}{4})^{d+1}$ and $w\leq 1$. Then

$$W_1(\check{\nu}, \check{\mu}_0) \le 2\gamma (1 + \frac{c''}{r} w^{\frac{1}{2(d+1)}}) \mu(\lambda^r) + \gamma c' r + \frac{2\gamma}{r} c w^{\frac{1}{d+1}} + w$$

Proof: Write

$$W_1(\check{\nu}, \check{\mu}_0) \le W_1(\check{\nu}, \check{\mu}) + W_1(\check{\mu}, \check{\mu}_0)$$

Use stability

Use consistency

Tangent space estimation (6/6): Approximation

Theorem:

Let ν be any Radon measure on \mathbb{R}^n , and μ as before. Choose $r<\frac{1}{4\rho}$. Let $w=W_1(\mu,\nu)$. Suppose that $w\leq \min(a^{\frac{d+1}{d}},1)(\frac{r}{4})^{d+1}$ and $w\leq 1$. Then

$$W_1(\check{\nu}, \check{\mu}_0) \le 2\gamma (1 + \frac{c''}{r} w^{\frac{1}{2(d+1)}}) \mu(\lambda^r) + \gamma c' r + \frac{2\gamma}{r} c w^{\frac{1}{d+1}} + w$$

Does this go to 0 as r does?

Quantification of λ

Proposition (not proven):

There exists a constant c such that for all r < ...,

$$\mu_0(\lambda^r) \le cr$$

As a consequence, the bound

$$W_1(\check{\nu}, \check{\mu}_0) \le 2\gamma (1 + \frac{c''}{r} w^{\frac{1}{2(d+1)}}) \mu(\lambda^r) + \gamma c' r + \frac{2\gamma}{r} c w^{\frac{1}{d+1}} + w$$

goes to 0 as r and w do (with $\frac{w}{r^{d+1}} \to 0$).

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

 $\check{\mathcal{M}}$ is the support of $\check{\mu}_0$.

We have seen that $\check{\nu}$ is Wassertein-close to $\check{\mu}_0$ (but $\operatorname{supp}(\check{\nu})$ is not Hausdorff-close to $\operatorname{supp}(\check{\mu}_0)$).

Let us apply measured-based filtrations to $\check{\nu}$ in order to recover $\check{\mathcal{M}}$.

DTM-based filtrations

Persistent homology of $\check{\mathcal{M}}$ (2/2)

Thank you

