Cleaning von Zeitreihen

Von der Anomalienerkennung zur Anomalienreparatur

Jose Rodriguez Parra Flores Klaus-Johan Ziegert

16. September 2019

- Einführung
- Grundlagen
- Iterative Minimum Repairing
- Evaluierung
- Schluss

Einführung

- Einführung
 - Motivation
 - Zielsetzung
- ② Grundlagen
- Iterative Minimum Repairing
- 4 Evaluierung
- Schluss

·000

Messgeräte liefern unzuverlässige Daten

- GPS Tracker sind nahe von Gebäuden unzuverlässig
- Sensoren sind empfindlich gegenüber äußere Einflüsse
 - Z.B. starker Fall der Temperaturen bei einem Windzug

Abbildung: GPS-Tracking auf dem Campus der Tsinghua Universität [1]

vsis

Motivation

Umgang von unzuverlässigen Daten mit Anomalienerkennung

- Unzuverlässige Datenpunkte entfernen
 - Ausreißer werden entfernt 🙂
 - Entfernen aufeinanderfolgende Fehler machen Ergebnis unbrauchbar oder werden als solche ggf. nicht entfernt
- Unzuverlässige Datenpunkte reparieren
 - Einzelne Ausreißer werden leicht korrigiert 😐
 - Aufeinanderfolgende Fehler werden zu stark verändert (In der Praxis liegen die Messungen nahe bei den korrekten Werten) :

Einführung

Hinzunahme von korrekt markierten Werten

- Markierung durch den Benutzer
 - Z.B. markiert der Benutzer in beliebigen Zeitabständen seinen aktuellen Standort
- 2 Präzise Messgeräte liefern in längeren Zeitabstände korrekte Werte

<u>i</u>

Zielsetzung

Ziel der Arbeit

- Berücksichtigung der markierten Werte in der Anomalienerkennung
 - Aufeinanderfolgende Fehler sollen besser abgeschätzt werden
- Anomalienreparatur mit den Minimum-Change-Prinzip vereinbaren
 - Keine drastische Veränderungen der Messwerte
- Neue Anomalienreparatur hinsichtlich Berechnungslaufzeit, Ergebnisgenauigkeit usw. optimieren
- Neue Anomalienreparatur mit unterschiedlichen Einstellungen mit den anderen Verfahren empirisch vergleichen

- Grundlagen
 - Problemstellung
 - Anomalien
 - Anomalienreparaturen
 - Reparatur durch Anomalienerkennung

Problemstellung

Zeitreihenreparatur

- Gegeben:
 - Unzuverlässige Messung $x = x[1], \dots, x[n]$
 - Unvollständige, aber dafür ausschließlich korrekte Messung x^{truth}
 - (Nur bei der Evaluierung: vollständige, korrekte Messung $x^{\text{truth}*}$)
- Gesucht:
 - Reparatur y mit minimalen RMS-Fehler $\Delta(x^{\text{truth}*}, y)$
 - $\Delta(x^{\text{truth}^*}, y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i^{\text{truth}^*} y_i)^2}$

UH

UH

Anomalien: Beispiel Zahlen & Bewertung

Zeitreihen vom Beispiel

- $x = \{6, 10, 9.6, 8.3, 7.7, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$
- $x^{\text{truth}} = \{6, 5.6, 5.4, \underline{}, \underline{}, 5.4, \underline{}, \underline{}, 5.4, \underline{}, \underline{}, 8.5\}$
- $y = \{6, 5.6, 5.4, 5.2, 5.4, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$
- $x^{\text{truth*}} = \{6, 5.6, 5.4, 5.2, 5.3, 5.4, 5.6, 5.9, 6.3, 6.8, 7.5, 8.5\}$

Bewertung des Beispiels

$$\Delta(x^{\text{truth*}}, y) =$$

$$\sqrt{\frac{1}{12}\left((6-6)^2+\cdots+(5.3-5.4)^2+\cdots+(8.5-8.5)^2\right)}\approx 0.03$$

Jose, Klaus

Anomalien

- Wikipedia: Abweichung von der Regel
- Werte x_i mit Abweichung τ (Bsp. $\tau = 2\sigma$):

$$|x_i - x_i^{\text{truth}*}| > \tau$$

Jose, Klaus

Reparatur durch Anomalienerkennung

Autoregressive Modell AR(p)

• Lineare Regression der letze p Werte:

$$x_t' = \sum_{i=1}^p \phi_i x_{t-i} + \epsilon_t$$

Reparatur:

$$y_t = \begin{cases} x_t' & \text{falls kein Label und } |x_t' - x_t| > \tau \\ x_t & \text{sonst} \end{cases}$$

Jose, Klaus UH

Reparatur durch Anomalienerkennung

Autoregressives exogenes Modell ARX(p)

Exogenes Variabel y

$$y'_{t} = x_{t} + \sum_{i=1}^{p} \phi_{i}(y_{t-i} - x_{t-i}) + \epsilon_{t}$$

y'_t Mögliche Reparatur:

$$y_t = \begin{cases} y_t' & \text{falls kein Label und } |y_t' - x_t| > \tau \\ y_t & \text{sonst} \end{cases}$$

Fakten

Iterative Minimum Repairing

- Iterative Minimum Repairing
 - IMR
 - Optimierung 1: Matrix-Pruning IMR

Jose, Klaus 16. September 2019 17

Intuitiver Ansatz von IMR

- ARX nutzt markierte Werte effizient, aber verändert die Werte zu drastisch.
- IMR Ansatz:
 - Wende ARX an
 - Wähle Reparaturwert aus mit minimalen Abstand zur Messung
 - Wiederhole Prozedur
- Motivation: Reparierte Werte verbessern zukünftige Reparaturen

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur y
- 3: $v^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- $\phi^{(k)} \leftarrow \mathsf{Estimate}(x, y^{(k)})$ 5:
- $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$
- $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$ 7:
- if Converge $(y^{(k)}, y^{(k+1)})$ then 8:
- break 9.
- 10: end if
- 11: end for
- 12: return $y^{(k)}$

IMR: Initialisierung

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur *y*
- 3: $y^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- 5: $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$
- 6: $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$
- 7: $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$
- 8: **if** Converge $(y^{(k)}, y^{(k+1)})$ **then**
- 9: break
- 10: end if
- 11: end for
- 12: **return** $y^{(k)}$

IMR: Initialisierung

Initiale Reparatur

Initiale Reparatur $y^{(0)}$ ist Messung x und übernimmt die markierten Werte aus x^{truth}

IMR: ARX auf aktuelle Reparatur anwenden

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur *y*
- 3: $v^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$ 5:
- $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$ 6:
- $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$ 7:
- if Converge($y^{(k)}, y^{(k+1)}$) then 8:
- break 9.
- end if 10:
- 11: end for
- 12: **return** $v^{(k)}$

IMR: ARX auf aktuelle Reparatur anwenden

Kandidaten

- Parameterschätzung ϕ : aktuelle Reparatur $y^{(k)}$ wird als x^{truth} interpretiert.
- ullet Reparatur sind Kandidaten \hat{y} (angewendetes ARX kennt vorangegangene Aktualisierung nicht)

laus U

ng von Zeitreihen Jose, Klaus

IMR: Minimum-Change

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur y
- 3: $v^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- $\phi^{(k)} \leftarrow \mathsf{Estimate}(x, y^{(k)})$ 5:
- $\hat{y} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$ 6:
- $y^{(k+1)} \leftarrow \text{Evaluate}(x, y^{(k)}, \hat{y})$ 7:
- if Converge($y^{(k)}, y^{(k+1)}$) then 8:
- break 9:
- end if 10:
- 11: end for
- 12: return $v^{(k)}$

IMR: Minimum-Change

Minimum-Change

- ullet Zu geringe Änderungen werden herausgefiltert $|y_i^{(k)} \hat{y}_i| > au$
- Geringste Änderung zu Messung x wird als Kandidaten herangezogen

10 8 xtri xtri x y(

Zeitpunkt

- 1: **Eingabe**: Messung x, markierte Werte x^{truth} , Ordnung p, Schwellenwert τ und max-num-iterations
- 2: **Ausgabe**: Reparatur y
- 3: $v^{(0)} \leftarrow \text{Initialize}(x, x^{\text{truth}})$
- 4: **for** $k \leftarrow 0$ **to** max-num-iterations **do**
- $\phi^{(k)} \leftarrow \text{Estimate}(x, y^{(k)})$ 5:
- $\hat{v} \leftarrow \mathsf{Candidate}(x, y^{(k)}, \phi^{(k)})$ 6:
- $v^{(k+1)} \leftarrow \text{Evaluate}(x, v^{(k)}, \hat{v})$ 7:
- if Converge $(y^{(k)}, y^{(k+1)})$ 8:
- break 9.
- end if 10:
- 11: end for
- 12: return $v^{(k)}$

UH

IMR: Terminierung

Terminierung

- Zwei Möglichkeiten der Terminierung:
 - Maximale Anzahl der Iterationen wird erreicht
 - Konvergenz: Neue Reparatur $y^{(k+1)}$ ist gleich aktuelle Reparatur $y^{(k)}$
- Allgemeine Konvergenzfrage ist noch offen

g von Zeitreihen Jose, Klaus

Laufzeitproblem

- Parameterschätzung beansprucht viel Zeit
- Matrizen V und Z bestehen aus $y_i^{(k)} x_i$:
 - wenige markierte Werte vorhanden
 - markierte Werte häufig identisch zur Messung
 - Reparaturwerte ändern sich nicht signifkant
 - ullet ightarrow dünnbesetzte Matrizen
- Matrix-Pruning: Löschen von Zeilen mit 0en

Matrix Pruning IMR Beispiel

Beispiel

Beispiel

- **Evaluierung**
 - Ordnung
 - Schwellenwert
 - maximale Anzahl von Iterationen
 - Markierungsrate

Jose, Klaus 16. September 2019

Ordnung

Blank

- Faktenöasdkfjöasdöasdkfjöasd
- Fakten
- Fakten

Jose, Klaus UH

Cleaning von Zeitremen

Schwellenwert

Blank

- Fakten
- Fakten
- Fakten

UΗ

Blank

- Fakten
- Fakten
- Fakten

Jose, Klaus

UΗ

Blank

- Fakten
- Fakten
- Fakten

Jose, Klaus

- **Schluss**
 - Zusammenfassung und Ausblick
 - Literatur

Jose, Klaus 35

Zusammenfassung und Ausblick

Zusammenfassung

Was wurde getan?

Zusammenfassung und Ausblick

Zusammenfassung

• Was wurde getan?

Ausblick

• Wie könnten zukünftige Arbeiten aussehen?

Literatur I

Time series data cleaning: From anomaly detection to anomaly repairing.

Proceedings of the VLDB Endowment, 10(10):1046–1057, 2017.

