Capitulo II. Números Reales

Objetivo

El alumno aplicará las propiedades de los números reales y sus subconjuntos, para demostrar algunas proposiciones por medio del método de inducción matemática y para resolver inecuaciones.

Contenido:

- **2.1** El conjunto de los números naturales: Concepto intuitivo de número natural. Definición del conjunto de los números naturales mediante los postulados de Peano. Definición y propiedades: adición, multiplicación y orden en los números naturales. Demostración por Inducción Matemática.
- **2.2** El conjunto de los números enteros: Definición a partir de los números naturales. Definición y propiedades: igualdad, adición, multiplicación y orden en los enteros. Representación de los números enteros en la recta numérica.
- **2.3** El conjunto de los números racionales: Definición a partir de los números enteros. Definición y propiedades: igualdad, adición, multiplicación y orden en los racionales. Expresión decimal de un número racional. Algoritmo de la división en los enteros. Densidad de los números racionales y representación de éstos en la recta numérica.
- **2.4** El conjunto de los números reales: Existencia de números irracionales (algebraicos y trascendentes). Definición del conjunto de los números reales; representación de los números reales en la recta numérica. Propiedades: adición, multiplicación y orden en los reales. Completitud de los reales. Definición y propiedades del valor absoluto. Resolución de desigualdades e inecuaciones.

Introducción

Estudio de los números reales

Método constructivo $(N \rightarrow Z \rightarrow Q \rightarrow R)$

Enfoque axiomático

II.1. NÚMEROS NATURALES (N)

Postulados de Peano

El conjunto de los números naturales (N) es tal que:

- **1)** 1 ∈ **N**
- 2) Para cada n ∃ un único n* ∈ N, llamado el siguiente de n
- 3) Para cada $n \in N$ se tiene que $n^* \neq 1$
- 4) Si m, $n \in N$ y $m^* = n^*$ entonces m = n
- 5) Todo subconjunto S de **N**, que tenga las propiedades:
 - a) 1 ∈ S
 - b) $k \in S$, implica que $k^* \in S$

Es el mismo subconjunto N. (Principio de inducción)

Operaciones para los números naturales

Adición en N

Definición: Para dos números n y m \in **N**, se tiene que:

- 1) $n + 1 = n^*$
- 2) $n + m^* = (n + m)^*$

Multiplicación en N

Definición: Para dos números n y m \in **N**, se tiene que:

- 1) $n \cdot 1 = n$
- 2) $n \cdot m^* = (n m) + n$

Propiedades de la adición y multiplicación en N

1) $m + n \in N$

- $m \cdot n \in \mathbf{N}$
- 2) m + (n + p) = (m + n) + p
- m(np) = (mn)p

3) m + n = n + m

- $m \cdot n = n \cdot m$
- 4) $Sim + p = n + p \rightarrow m = n$
- Sim $p = n p \rightarrow m = n$

5)

m(n+p) = mn + mp

- ...Cerradura
- ... Asociatividad
- ... Conmutatividad
- ... Cancelación
- ... Distributiva

Inducción matemática

Sirve para demostrar la validez de cualquier enunciado relativo a N, basándose en el quinto postulado de Peano.

Ejercicios tipo 1, sumatoria.

1)
$$\{x \mid x = 2n - 1, n \in \mathbb{N}\} \rightarrow 1 + 3 + 5 + 7 + ... + 2n - 1 = n^2; \forall n \in \mathbb{N}\}$$

2)
$$1^3 + 2^3 + 3^3 + ... + n^3 = \frac{1}{4} n^2 (n+1)^2$$
; $\forall n \in \mathbf{N}$

3) 2+ 6 + 12 + ... + n (n+1) =
$$\frac{1}{3}$$
n (n+1) (n+2); \forall n \in **N**

4)
$$\frac{2}{1(2)} + \frac{2}{2(3)} + \frac{2}{3(4)} + \dots + \frac{2}{n(n+1)} = \frac{2n}{n+1}$$
; $\forall n \in \mathbf{N}$

5)
$$2^2 + 4^2 + 6^2 + ... + (2n)^2 = \frac{2n(n+1)(2n+1)}{3}$$
; $\forall n \in \mathbf{N}$

6)
$$3 + 3^2 + 3^3 + ... + 3^n = \frac{3}{2}(3^n - 1)$$
; $\forall n \in \mathbf{N}$

Ejercicios tipo 2, multiplicación.

1)
$$(1+\frac{1}{1})(1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})...(1+\frac{1}{n})=n+1; \ \forall n \in \mathbf{N}$$

2)
$$(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})(1-\frac{1}{25})...(1-\frac{1}{n^2})=\frac{n+1}{2n}; \ \forall \ n \geq 2$$

Ejercicios tipo 3, divisibles.

1) 2^{4n} -1 es divisible entre 15; $\forall n \in \mathbf{N}$

2) 6^n -1 es divisible entre 5; \forall $n \in \mathbf{N}$

3) 2^{2n} +5 es divisible entre 3; \forall n \in N

4) $7*16^{n-1}$ +3 es divisible entre 5; \forall n \in N

5) $10^{n+1} + 3*10^{n} + 5$ es divisible entre 9; $\forall n \in \mathbf{N}$

6) n(n+1)(n+2)(n+3)(n+4) es divisible entre 12; \forall $n \in \mathbf{N}$

Ejercicios tipo 4, enunciados.

1) $n + n^2$ es un número par; $\forall n \in \mathbf{N}$

2) Cualquier polígono de n lados tiene D diagonales, donde $D = \frac{1}{2} n(n-3)$

3)
$$\frac{2}{3}(2n^3 + 3n^2 + n) \in \mathbf{N}; \ \forall \ n \in \mathbf{N}$$

Ejercicios tipo 5, trigonométricos.

1)
$$\cos [(2n-1) \pi] = -1; \forall n \in \mathbb{N}$$

2)
$$(\cos x) (\cos 2x) (\cos 4x)...(\cos 2^{n-1} X) = \frac{sen2^n x}{2^n senx}; \forall n \in \mathbb{N}$$

Orden en los naturales

Ley de la tricotomía

Si m y n \in **N**, entonces se verifica una y sólo una de las siguientes proposiciones:

- 1) n < m
- 2) n = m
- 3) n > m

Teorema: Para toda m, n y p \in **N**:

- 1) $m < n \rightarrow m + p < n + p$
- 2) $m < n \rightarrow m p < n p$
- 3) $m < n y n < p \rightarrow m < p$

II.1. NÚMEROS ENTEROS (Z)

Dados dos números naturales n y m, si:

$$n + x = m \rightarrow x = m - n$$

Se pueden presentar tres casos:

- 1) $m > n \rightarrow x \in \mathbf{N}$
- 2) $m = n \rightarrow x = 0$; $x \in \mathbf{Z}$
- 3) $m < n \rightarrow x < 0$; $x \in \mathbf{Z}$

Definición:

$$Z=\{x \mid x=m-n; con m, n x \in \mathbb{N}\}$$
 $\therefore N \subset Z$

Propiedades de la adición y multiplicación en Z

- 1) $m + n \in Z$ $m \cdot n \in Z$
- 2) m + (n + p) = (m + n) + p m (n p) = (m n) p
- 3) m + n = n + m $m \cdot n = n \cdot m$
- 4) $Sim + p = n + p \rightarrow m = n$ $Sim p = np \rightarrow m = n$
- 5) m + 0 = m m * 1 = m
- 6) m + (-m) = 0
- m (n + p) = m n + m p

- ...Cerradura
- ... Asociatividad
- ... Conmutatividad
- ... Cancelación
- ... Elementos idénticos
- ... Elementos inversos
- ... Distributiva

Orden en los enteros

Teorema: Para toda m, n y p \in N:

- 1) $m < n \rightarrow m + p < n + p$
- 2) $m < n \rightarrow$ Si p > 0: m p < n pSi p < 0: m p > n p

3) $m < n y n < p \rightarrow m < p$

II.1. NÚMEROS RACIONALES (Q)

Dados dos números enteros a y b, si:

$$b x = a \rightarrow x = \frac{a}{b}$$

Se pueden presentar tres casos:

- 1) b es factor de a \rightarrow x \in N
- 2) b NO es factor de a, con b \neq 0 \rightarrow x \in Q

3)
$$b = 0$$
 y $a \ne 0$: $\frac{a}{b} \to \infty$
 $b = 0$ y $a = 0$: $\frac{a}{b}$ es indeterminado

Definición:

Q ={x | x =
$$\frac{a}{b}$$
; con a, b \in **Z** y b \neq 0} \therefore Z \subset Q

Propiedades de la adición y multiplicación en Q

1)
$$m + n \in \mathbb{Z}$$
 $m \cdot n \in \mathbb{Z}$
 ... Cerradura

 2) $m + (n + p) = (m + n) + p$
 $m (n p) = (m n) p$
 ... Asociatividad

 3) $m + n = n + m$
 $m \cdot n = n \cdot m$
 ... Conmutatividad

 4) $Si m + p = n + p \rightarrow m = n$
 $Si m p = n p \rightarrow m = n$
 ... Cancelación

 5) $m + 0 = m$
 $m \cdot 1 = m$
 ... Elementos idénticos

 6) $m + (-m) = 0$
 $m \cdot (1/m) = 1$
 ... Elementos inversos

 7)
 $m \cdot (n + p) = m \cdot n + m \cdot p$
 ... Distributiva

Operaciones sobre números racionales

Suma y resta: $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$

Multiplicación: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

División: $\frac{a}{h} \div \frac{c}{d} = \frac{ad}{hc}$

Teorema: Todo número racional tiene una expresión decimal periódica.

Algoritmo de la división para los números enteros

Dados dos números enteros a y b con b > 0, existen dos enteros q y r, con $0 \le r < b$, tal que:

$$a = bq + r$$

Densidad de los números racionales

Entre dos números racionales diferentes siempre hay otro número racional.

Teorema. $\forall X, Y \in Q \text{ con } X < Y, \exists Z \in Q \text{ tal que:}$

Ejemplo: Determinar los valores de a y $b \in \mathbf{Z}$, tales que:

1)
$$\frac{a}{b} = 1.08333...$$

2)
$$\frac{a}{b} = 0.8333...$$

3)
$$\frac{a}{b} = 0.7333...$$

4)
$$\frac{a}{b} = 1.772727 \dots$$

5)
$$\frac{a}{b} = 0.9999...$$

6)
$$\frac{a}{b} = 0.5555...$$

7)
$$\frac{a}{b} = 0.3636...$$

8)
$$\frac{a}{b} = 1.4066...$$

9)
$$\frac{a}{b} = 1.259259 \dots$$

10)
$$\frac{a}{b} = 0.1666...$$

11)
$$\frac{a}{b} = 0.875$$

12)
$$\frac{a}{b} = 0.2222...$$

13)
$$\frac{a}{b} = 0.625$$

14)
$$\frac{a}{b} = 2.3333...$$

15)
$$\frac{a}{b} = 0.4285714285 71...$$

Números Reales (R)

Al hacer uso del teorema sobre la **Densidad de los números racionales**, parecería que los números racionales cubren por completo la recta numérica, pero esto no es así.

A partir de proyecciones geométricas como la que se muestra a continuación sabemos que existen otros números llamados irracionales (**Q**'), que ocupan espacios en la recta numérica.

Números Irracionales (Q')

Se clasifican en: **Algebraicos** (raíces: $\sqrt{2}$, $\sqrt{3}$, etc.) y **trascendentes** (π y e).

Los números irracionales son expresiones decimales no periódicas.

Números reales

Los números reales quedan definidos como la unión de racionales e irracionales, es decir:

$$R = Q U Q'$$

Orden en R

Orden en los reales

Teorema: Para toda m, n y p \in **R**:

- 1) $m < n \rightarrow m + p < n + p$
- 2) $m < n \rightarrow$ Si p > 0: m p < n pSi p < 0: m p > n p
- 3) $m < n y n < p \rightarrow m < p$

Valor absoluto y sus propiedades

Definición: Sea x un número real. El valor absoluto de x, que representamos con |x|, se define como:

$$|x| = \begin{cases} x, & \text{si } x \ge 0 \\ \\ -x, & \text{si } x < 0 \end{cases}$$

Las propiedades más importantes del valor absoluto se enuncian en el siguiente teorema:

Teorema:

Para todo x, $y \in R$:

- i) $|x| \ge 0$. Además |x| = 0 si x=0
- ii) |xy| = |x| |y|
- iii) $|x+y| \le |x| + |y|$

Teorema:

Sea $\alpha \in R$ con $\alpha \ge 0$; $\forall x \in R$ se tiene que:

$$|x| \le \alpha \iff -\alpha \le x \le \alpha$$

De manera general para cualquier expresión p en términos de x:

$$|p| > \alpha$$

$$\begin{cases} p > \alpha \text{ (Desigualdad 1)} \\ p < -\alpha \text{ (Desigualdad 2)} \end{cases}$$

Unión de desigualdades

$$|p| < \alpha$$

$$\begin{cases} p < \alpha \text{ (Desigual dad 1)} \\ p > -\alpha \text{ (Desigual dad 2)} \end{cases}$$

Intersección de desigualdades

Desigualdades:

1.
$$-3 + 5X > -2X + 11$$
; Solución: $X \in (2, \infty)$ ó $X > 2$

2.
$$\frac{1}{2} + 3X < -4X + \frac{1}{3}$$
; Solución: $X \in (-\infty, -\frac{1}{42})$

3.
$$\frac{2X-1}{X+2} < 5 \operatorname{con} X \neq -2$$
; Solución: $X \in \left(-\infty, -\frac{11}{3}\right) \cup \left(-2, \infty\right)$

4.
$$\frac{2X-3}{X+2} < \frac{1}{3} con X \neq -2$$
; Solución: $X \in \left(-2, \frac{11}{5}\right)$

5.
$$\frac{3}{X} < 5 con X \neq 0$$
; Solución: $X \in (-\infty, 0) \cup (\frac{3}{5}, \infty)$

6.
$$\frac{3X+8}{X-4} < 2 \ con \ X \neq 4$$
; Solución: $X \in (-16,4)$

7.
$$X^2 - X - 2 > 0$$
; Solución: $X \in (-\infty, -1) \cup (2, \infty)$

8.
$$(3X+2)^2 < X(X-6)$$
; Solución: $X \in (-2, -\frac{1}{4})$

9.
$$(3X-1)(2X+4) < (3X-1)(X+5)$$
; Solución: $X \in \left(-\infty, \frac{1}{3}\right) \cup (1, \infty)$

10.
$$3 + |X - 2| > 4$$
; Solución: $X \in (-\infty, 1) \cup (3, \infty)$

11.
$$2|X - 3| - 3 > -\frac{2}{3}|X - 3| - 2$$
; Solución: $X \in \left(-\infty, \frac{21}{8}\right) \cup \left(\frac{27}{8}, \infty\right)$

12.
$$|X^2 - 16| > 0$$
; Solución: $X \in R \operatorname{con} X \neq \overline{+}4$

13.
$$-|3X - 2| > -2$$
; Solución: $X \in \left(0, \frac{4}{3}\right)$

14.
$$|4X-1| < |2-X|$$
; Solución: $X \in \left(-\frac{1}{3}, \frac{3}{5}\right) con X \neq \frac{1}{4}$ en una solución

15.
$$|3-2X| < |2+X|$$
; Solución: $X \in \left(\frac{1}{3}, 5\right)$ con $X \neq \frac{3}{2}$ en una solución