Tensor in Machine Learning

speech data

image from www.computerweeki

image data

text data

www.alamy.com

Data is represented by tensors

Algorithms operate on tensors

Numpy Array is Tensor

Tensor in Machine Learning

- Tensors are generalizations of scalars (that have no indexes), vectors (that have exactly one index), and matrices (that have exactly two indexes) to an arbitrary number of indices.
- a rank-n tensor has n indexes
- a rank-0 tensor is a scalar
- a rank-1 tensor is a vector using one index to locate an element
- a rank-2 tensor is a matrix using two indexes to locate an element
- a rank-3 tensor can represent a 3D volume or a sequence of rank-2 tensors. It uses three indexes to locate an element.

In Numpy, Tensor is represented by Array

- Rank-0 tensor: 0D array
- Rank-1 tensor: 1D array is a sequence of objects (e.g. numbers: int64, float64)
- Rank-2 tensor: 2D array is a sequence of 1D array
- Rank-3 tensor: 3D array is a sequence of 2D array
- Rank-N tensor: ND array is a sequence of N-1 D array

3D array

1D (dimensional) Numpy Array

import numpy as np

use the function **np.array** to create an array from a list

A = np.array([1, 2, 3], dtype='int32')

A is a 1D array with three elements the data type (dtype) of each element is int32 (integer with 32 bits)

use the property shape to get the 'shape' of the array

A.shape

A.shape is (3,) which is a tuple with only one element

Create Special Numpy Arrays

import numpy as np

A0 = np.zeros(10, dtype='float32')

A1 = np.ones(10, dtype='float32')

A2 = np.empty(10, dtype='float32')

A3 = np.random.rand(10)

A3.dtype is 'float64'

Create Special Numpy Arrays

import numpy as np

A0 = np.arange(0, 10, 2, dtype='int32')

A0 is array([0, 2, 4, 6, 8], dtype=int32)

A1 = np.linspace(0, 1, 5)

A 1 is array([0., 0.25, 0.5, 0.75, 1.])

A1.dtype is 'float64'

Numpy Array Attributes

Attribute	Description
shape	A tuple that contains the number of elements (i.e., the length) for each dimension (axis) of the array
size	The total number of elements in the array
ndim	Number of dimensions (axes)
dtype	The data type of the elements in the array
nbytes	Number of bytes used to store the data

Code

```
A = np.array([[1, 2, 3], [4, 5, 6]], dtype='float64')
print('A is', A)
print('shape is', A.shape)
print('size is', A.size)
print('ndim is', A.ndim)
print('nbytes is', A.nbytes)
print('dtype is', A.dtype)
```

Output

```
A is [[1. 2. 3.]
        [4. 5. 6.]]
shape is (2, 3)
size is 6
ndim is 2
nbytes is 48
dtype is float64
```

1D 'array': [1., 2., 3.] 1D 'array': [4., 5., 6.] A is a sequence of the two 1D arrays. Thus, A is a 2D array Demo: 1D_Numpy_array_basics.ipynb Numpy_array.ipynb

Vectorized Operations on Numpy Array

```
import numpy as np
A = np.array([1, 2, 3], dtype='int32')
B = np.array([4, 5, 6], dtype='int32')
```

Get a new array C such that C[n]=A[n]+B[n] for n=1,2,3 Use a for loop

```
C = np.zeros(A.shape, dtype='int32')

for n in range(0, C.shape[0]):

C[n] = A[n] + B[n]
```

Use the Vectorized Operation +

$$C = A + B$$

The operation + is performed between two vectors A and B

Vectorized Operations on Numpy Array

```
import numpy as np
A = np.array([1, 2, 3], dtype='int32')
B = np.array([4, 5, 6], dtype='int32')
```

Get a new array C such that C[n]=A[n] / B[n] for n=1,2,3 Use a for loop

```
C = np.zeros(A.shape, dtype='int32')

for n in range(0, C.shape[0]):

C[n] = A[n] / B[n]
```

Use the Vectorized Operation /

$$C = A / B$$

The operation / is performed between two vectors A and B

Vectorized Operations on Numpy Array

```
import numpy as np
A = np.array([1, 2, 3], dtype='int32')
B = np.array([4, 5, 6], dtype='int32')
```

Vectorized Operations

$$C1 = A + B$$

 $C2 = A - B$
 $C3 = A * B$
 $C4 = A / B$
 $C5 = (A**2 + B**2)/(A+B)$
 $C6 = \text{np.sqrt}(A)$
 $C7 = A + 1$
 $C8 = A * 100$

Vectorized Operations are Much Faster Than Loops

import numpy as np import timeit A=np.random.rand(1000000)

Measure duration of a for loop

```
t1=timeit.default_timer()
for k in range(0, A.shape[0]):
    A[k] *= 3
t2=timeit.default_timer()
duration=t2-t1
print('duration:', duration, '(seconds)')
```

Measure duration of a vectorized operation

```
t1=timeit.default_timer()
A *= 3
t2=timeit.default_timer()
duration=t2-t1
print('duration:', duration, '(seconds)')
```

much faster...

Table 2-2. Arithmetic operators implemented in NumPy

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., $1 + 1 = 2$)
-	np.subtract	Subtraction (e.g., $3 - 2 = 1$)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., $3 / 2 = 1.5$)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., $2 ** 3 = 8$)
%	np.mod	Modulus/remainder (e.g., $9 \% 4 = 1$)

- the table is from Python Data Science Handbook

Numerical Data Types in Numpy

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html

dtype	Description
int8, int16, int32, int64	Integer
uint8, uint16, uint32, uint64	Unsigned (non-negative) integer
bool	Boolean (True or False)
float16, float32, float64	Floating-point numbers
complex64, complex128	Complex-valued floating-point numbers

```
import numpy as np
A1 = np.array([1, 2, 3], dtype='int64')
A2 = np.array([1, 2, 3], dtype='uint64')
A3 = np.array([True, False, True], dtype='bool')
A4 = np.array([1.0, 2.0, 3.0], dtype='float64')
A5 = np.array([1+1j, 2+2j, 3+3j], dtype='complex64')
```

use a byte to represent a nonnegative integer (uint8)

computer memory stores data in binary format, i.e., a sequence of 0s and 1s

1 byte can represent an unsigned integer in the range of 0 to 255

use a byte to represent an integer (int8)

computer memory stores data in binary format, i.e., a sequence of 0s and 1s

Number (int8)				1 byte = 8 bits					
0		0 (+)	0	0	0	0	0	0	0
1	\rightarrow	0 (+)	0	0	0	0	0	0	1
127	\rightarrow	0 (+)	0	1	1	1	1	1	1
-128	\rightarrow	1 (-)	0	0	0	0	0	0	0
-1	\longrightarrow	1 (-)	1	1	1	1	1	1	1

1 byte can represent an integer in the range of -128 to 127

integer overflow - too large

dtype	bytes	range
int8	1	-128 to 127
int16	2	-32768 to 32767
int32	4	-2147483648 to 2147483647
int64	8	-9223372036854775808 to 9223372036854775807

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.types.html

```
a = np.array([1, 2, 100], dtype='int8')
b = a*a
print(b)
```

Here is the output:

There is no warning message from numpy!

Solutions: 1) rescale your data; 2) use int32/int64 for numerical computation whenever possible

integer underflow (wrap): too small

dtype	bytes	range
uint8	1	0 to 255
uint16	2	0 to 65535
uint32	4	0 to 4294967295
uint64	8	0 to 18446744073709551615

https://docs.scipy.org/doc/numpy-1.14.0/user/basics.types.html

```
a = np.array([1, 2, 3], dtype = 'uint64')
b = a - 3
print(b)
```

Here is the output:

```
[18446744073709551614
18446744073709551615
0]
```

There is no warning message from numpy!

Solution: Avoid using uint8/16/32/64 for numerical computation whenever possible

Range of Float (floating-point number)

float numbers can only represent a finite number of real numbers in a limited range

dtype	bytes	min	max
float16	2	-6.55040e+04	6.55040e+04
float32	4	-3.4028235e+38	3.4028235e+38
float64	8	-1.7976931348623157e+308	1.7976931348623157e+308

A float number (e.g. float32) is a binary number (0s and 1s) to represent a real number (e.g. 1.2) The format of a float number is defined by IEEE Standard for Floating-Point Arithmetic (IEEE 754)

np.spacing(x) Return the distance between a float x and the nearest float number

https://docs.scipy.org/doc/numpy/reference/generated/numpy.spacing.html

np.spacing(x)

Return the distance between a float x and the nearest adjacent float number (x + spacing(x) based on the document)

Spacing is not a constant

```
x=np.float32(1)
np.spacing(x)
```

1.1920929e-07

```
x=np.float32(100)
np.spacing(x)
```

7.6293945e-06

```
x=np.float32(1e+5)
np.spacing(x)
```

0.0078125

```
x=np.float32(1e+10)
np.spacing(x)
```

1024.0

```
x=np.float32(1e+30)
np.spacing(x)
```

7.5557864e+22

Spacing increases as x becomes larger

```
dList=[]
           xList=[1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10]
           for x in xList:
               dList.append(np.spacing(x))
           plt.plot(xList, dList)
           [<matplotlib.lines.Line2D at 0x217e8883dd8>]
            0.00000200
            0.00000175
            0.00000150
            0.00000125
spacing
            0.00000100
            0.00000075
            0.00000050
            0.00000025
            0.00000000
                              0.2
                                       0.4
                                               0.6
                      0.0
                                                        0.8
                                                                1.0
                                                                le10
```

Demo: Numpy_array.ipynb

An Example of 2D Numpy Array

a unit cube in 3D space

the cube is defined by 8 points the order of points:

Point ID	X	y	Z
0	0	0	0
1	1	0	0
2	0	1	0
3	1	1	0
4	0	0	1
5	1	0	1
6	0	1	1
7	1	1	1

import numpy as np

- An object is created in computer memory.
- The type of the object is numpy ndarray
- The object is named cube.

Dimensions/Axes of a 2D Numpy Array

create an array A

A = np.array([[0, 0, 0],	0	0	0
[1, 0, 0],	1	0	0
[0, 1, 0],	0	1	0
[1, 1, 0],	1	1	0
[0, 0, 1],	0	0	1
[1, 0, 1],	1	0	1
[0, 1, 1],	0	1	1
[1, 1, 1]])	1	1	1

Dimensions/Axes of a 2D Numpy Array

A.shape is (8, 3)

A[i, j] is the same as A[i][j]

Dimensions/Axes of a 2D Numpy Array

A[i, j]
i is along axis_0
j is along axis_1

A.shape is (8, 3)

average of the eight rows (A[0,:] + A[1,:] + ... + A[7,:])/8

 $mean_ax0 = A.mean(axis=0)$

mean_ax0 is array([0.5, 0.5, 0.5])

average of the three columns (A[:, 0] + A[:, 1] + A[:, 1])/3

 $mean_ax1 = A.mean(axis=1)$

array([0., 0.3, 0.3, 0.6, 0.3, 0.6, 0.6, 1.])

Dimensions/Axes of a N-D Numpy Array, a rank-N tensor

Dimensions/Axes of a 3D Numpy Array

A.shape is (4, 3, 2)

```
A[0,:,:] is array([[1, 2], [1, 2], [1, 2]], dtype=int64)
```

$$A[1,0,:]$$
 is array([3, 4], dtype=int64)

$$A[1,0,1]$$
 is 4

Reshape an array

```
import numpy as np A = \text{np.array}([ [0, 1, 2, 3], [4, 5, 6, 7] ])
```

A.shape is (2,4)

$$B1 = A.reshape(1,8)$$

B1 is array([[0, 1, 2, 3, 4, 5, 6, 7]])

B2 is array([0, 1, 2, 3, 4, 5, 6, 7])

B2 = A.reshape(8)

A, B1 and B2 share the same data in computer memory in most cases

Repeat elements of an array

import numpy as np A = np.array([[0, 1, 2, 3]])

B2 is array([[0, 0, 1, 1, 2, 2, 3, 3]])

Swap axes/dimensions

```
array([[0, 4],
[1, 5],
[2, 6],
[3, 7]])
```

```
array([[0, 1, 2, 3], [4, 5, 6, 7]])
```

```
A = np.array([[[0, 1], [2, 3]],
                 [[4, 5], [6, 7]],
 3
                  [[8, 9], [10, 11]]])
    Α
array([[[ 0, 1],
        [ 2, 3]],
       [[ 4, 5],
       [6, 7]],
       [[ 8, 9],
       [10, 11]]])
    A.shape
(3, 2, 2)
```

```
B=A.transpose(0,2,1)
    В
array([[[ 0, 2],
       [ 1, 3]],
      [[ 4, 6],
       [5, 7]],
      [[ 8, 10],
       [ 9, 11]])
```

```
1 A = np.array([[[0, 1], [2, 3]],
2 [[4, 5], [6, 7]],
3 [[8, 9], [10, 11]]])
4 A
```

Demo: Numpy_array.ipynb

Slicing a Numpy Array

	col_0,	col_1,	col_2,	, col_3	axis 1	
row_0	1	2	3	4	<i>w</i> /115_1	
row_1	5	6	7	8		
row_2	9	10	11	12		
row_3	13	14	15	16		
axis_0						

Output

A[1:3,1:4]

1:3: row_1, row_2 (row_3 is not included)

1:4: col_1, col_2, col_3 (no col_4)

Slicing a Numpy Array

Output

A[-3:-1, -3:-1] using negative index

After Slicing, The Two Arrays Share Data

import numpy as np

A = np.array([0, 1, 2, 3, 4, 5], dtype='int64')

$$B = A[0:1]$$

B has only one element equal to A[0]

Modify the element of B

$$B[0] = 100$$

What is A now?

A is array([100, 1, 2, 3, 4, 5], dtype=int64)

Get a Sub-array by using an IndexList

import numpy as np

A = np.array([0, 1, 2, 3, 4, 5], dtype='int64')

IndexList=[0]

B = A[IndexList]

B is array([0], dtype=int64)

Modify the element of B

B[0] = 100

What is A now? A is array([0, 1, 2, 3, 4, 5], dtype='int64')

After Slicing, The Two Arrays Share Data

$$B = A[0:1,0:1]$$

B has only one element equal to A[0,0]

Modify the element of B

$$B[0] = 100$$

What is A now?

```
A is array([[100, 1, 2], [3, 4, 5]], dtype=int64)
```

Get a Sub-array by using Index Lists

```
RowIndexList = [0, 1]

ColIndexList = [1, 2]

B = A[RowIndexList, ColIndexList]
```

B is array([1, 5], dtype=int64)

Modify the elements of B

```
B[0] = 100; B[1] = 200;
```

```
What is A now? A is array([ [0, 1, 2], [3, 4, 5]], dtype='int64')
```

Exercise

import numpy as np

A = np.array([0, 1, 2, 3, 4, 5], dtype='int64')

B = A[1:5]B[0]=100

What is A now?

IndexList=[1,2,3,4]B = A[IndexList] B[0]=100

What is A now?

Array Concatenation

concatenate more than two arrays into one array

y1 = np.concatenate([x1, x2, x3], axis=1)

```
array([[ 1, 2, 5, 6, 9, 10], [ 3, 4, 7, 8, 11, 12]])
```

Exercise

concatenate the two arrays

Table 2-3. Aggregation functions available in NumPy

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute median of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

- the table is from Python Data Science Handbook

```
import numpy as np
                    axis 1
   A = np.array([[0, 1, 2],
                  [3, 4, 5]], dtype='int64')
              axis 0
    np.any(A>10, axis=1)
array([False, False])
   np.any(A>0, axis=0)
array([ True, True, True])
```

```
import numpy as np
    A = np.array([[1, 2],
                  [3, 4]], dtype='int64')
    np.percentile(A, 0) # min
1.0
    np.percentile(A, 50) # median
2.5
    np.percentile(A, 90) # close to max
3.7
    np.percentile(A, 100) # maximum
4.0
```

```
axis 1
A = np.array([[1, 2], [3, 4]], axis 0
```

```
np.percentile(A, 100) # maximum
 1
4.0
    np.percentile(A, 0, axis=1) # min of each row
array([1., 3.])
    np.percentile(A, 0, axis=0) # min of each col
array([1., 2.])
```

```
1 np.percentile(A, 50, axis=0) # median of each col
array([2., 3.])
```

```
1 np.percentile(A, 100, axis=0) # max of each col
array([3., 4.])
```

Aggregation Functions

```
import numpy as np
A = \text{np.array}([0, 1, 2], \text{axis 1} \\ [3, 4, 5]], \text{dtype='int64'})
```

$$s1 = A.sum()$$
 $s1=15$, sum of all elements in A

$$s2 = A.sum(axis=0)$$
 $s2 is array([3, 5, 7], dtype=int64)$

$$s3 = A.sum(axis=1)$$
 $s3 is array([3, 12], dtype=int64)$

```
import numpy as np
A = \text{np.array}([0, 1, 2], \\ [3, 4, 5]], \text{dtype='int64'})
axis 0
```

import numpy as np
$$A = \text{np.array}([0, 1, 2], \\ [3, 4, 5]], \text{ dtype='int64'})$$
axis 0

$$s1 = A.sum()$$

$$s1 = np.sum(A)$$

$$s2 = A.sum(axis=0)$$

$$s2 = A.sum(axis=0)$$
 $s2 = np.sum(A, axis=0)$

$$s3 = A.sum(axis=1)$$

$$s3 = A.sum(axis=1)$$
 $s3 = np.sum(A, axis=1)$

import numpy as np
$$A = \text{np.array}([0, 1, 2], \\ [3, 4, 5]], \text{ dtype='int64'})$$
axis 0

$$s1 = A.mean()$$

$$s1 = A.mean()$$
 $s1 = np.mean(A)$

$$s2 = A.mean(axis=0)$$

$$s2 = A.mean(axis=0)$$
 $s2 = np.mean(A, axis=0)$

$$s3 = A.mean(axis=1)$$

s3 = A.mean(axis=1) | s3 = np.mean(A, axis=1)

what is A.sum(axis=m)?

```
axis 0 axis 1 axis 2
```

(4, 3)

```
A=np.random.rand(4,3,2)
                                   A0+A1
   A.shape
                               array([[0.93529969, 1.24377814, 0.96407248],
(4, 3, 2)
                                       [1.11518658, 1.62142335, 1.48923818],
                                       [0.91457861, 0.63107406, 0.84041144],
                                       [0.30051152, 1.2741225, 0.86650336]])
 1 A0=A[:,:,0]
   A0.shape
                                   B=A.sum(axis=2)
(4, 3)
                                   В
                               array([[0.93529969, 1.24377814, 0.96407248],
 1 A1=A[:,:,1]
                                       [1.11518658, 1.62142335, 1.48923818],
 2 Al.shape
                                       [0.91457861, 0.63107406, 0.84041144],
```

[0.30051152, 1.2741225 , 0.86650336]])

A = np.random.rand(n0, n1, n2, n3)

Then

A.sum(axis=2) is the same as

B = np.zeros((n0, n1, n3))

for m in range(0, n2):

B+=A[:,:,m,:]

A[:, :, m, :] is the same as A[:, :, m]

Demo: Numpy_array.ipynb

2D array

shape: (2, 3)

$$C = A + B$$
 $C[m, n]$ is equal to $A[m, n] + B[m, n]$

2D array

shape: (2, 3)

```
C = A / B  C[m, n] is equal to A[m, n] / B[m, n]
```

```
array([[0., 1., 2.], [1.5, 2., 2.5]]) dtype is float64
```

2D array

shape: (2, 3)

power operation

$$B = A ** 2$$
 $B[m, n]$ is equal to $A[m, n] * A[m, n]$

2D array

shape: (2, 3)

$$B = A * 2$$

B[m, n] is equal to A[m, n] * 2 for each m and n

```
array([[ 0, 2, 4], [ 6, 8, 10]], dtype=int64)
```

2D array

C = A * B C[m, n] is equal to A[m, n] * B[m, n]

Element-wise multiplication

NOT matrix multiplication

Two Ways to do Matrix Multiplication

• (1) convert numpy array to numpy matrix

```
import numpy as np
A = \text{np.array}([ [0, 1], \\ [2, 3]], \text{dtype='int64'})
A = \text{np.matrix}(A)
A = A*A \# \text{matrix multiplication}
```

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html

"It is no longer recommended to use this class, even for linear algebra. Instead use regular arrays. The class may be removed in the future."

• (2) use linear algebra functions https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Linear Algebra Function - matmul

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

matrix multiplication

$$C = np.matmul(A, B.T)$$

Linear Algebra Function - dot

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

matrix multiplication

$$C = np.dot(A, B.T)$$

Linear Algebra Function - linalg.inv

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

inverse of matrix A

Demo: Numpy_array.ipynb

Linear Algebra Functions in Numpy

- Matrix and vector products
- Decompositions (e.g. Singular Value Decomposition)
- Matrix eigenvalues and eigenvectors
- Norm, Rank, Determinant
- Solving equations and inverting matrices

Read the document:

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Array Broadcasting in Numpy

$$A = np.array([0,1,2,3])$$
 $B = 1$ 0 1 2 3 + 1

a vector + a scalar : it is not linear algebra!

C = A + B

Here is **rule** for the operation **broadcasting**

Now, A and B have the number of elements

C is array([0,1,2,3])

Array Broadcasting in Numpy

import numpy as np

$$B = np.array([[0, 1, 2]])$$

$$C = A + B$$

A.shape is (4, 3)

B.shape is (1, 3)

import numpy as np

B = np.array([[0, 1, 2]])

$$C = A + B$$

A.shape is (4, 1)

B.shape is (1, 3)

C is array([[0, 1, 2], [10, 11, 12], [20, 21, 22], [30, 31, 32]])

Example: calculate the distances between points in array A and a single point B in 3D space


```
A = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype='float64')
```

$$B = np.array([2, 2, 2],$$

 $dtype='float64')$

calculate the distances in a for loop

```
dist = np.zeros(8, dtype='float64')
for n in range(0, 8):
    d = A[n,:] - B # displacement
    dist[n] = np.sqrt(np.sum(d**2))
```

for loop is slow !!!
too many lines of code - not readable
use array broadcasting

$$D = A - B$$

dist = np.sqrt(np.sum(D**2, axis=1))

Demo: Numpy_array.ipynb