第八讲 网络优化模型

北京航空航天大学计算机学院

本讲目标

- 了解网络模型的应用范围;
- 掌握最小生成树算法;
- 掌握最短路径算法。

本讲内容

- 一、网络模型的基本知识
- 二、最小生成树算法
- 三、最短路径算法

图的定义 点集 $V \rightarrow$ 边集 $E \rightarrow$ 图 G = (V, E)

例 $V = \{ P, Z, \overline{D}, \overline{D}, \overline{D}, A, B, C, D \}$

$$E = \left\{ \begin{array}{l} (\mathbb{P}, A), (\mathbb{P}, B), (\mathbb{Z}, A), (\mathbb{Z}, C), (\overline{\mathbb{P}}, B) \\ (\overline{\mathbb{p}}, C), (\overline{\mathbb{p}}, B), (\overline{\mathbb{p}}, C), (\overline{\mathbb{p}}, D) \end{array} \right\}$$

无向图

$$(\mathbb{H}, A) = (A, \mathbb{H})$$

有向图

$$(\mathbb{H}, A) \neq (A, \mathbb{H})$$

始点

终点

相邻 如果 $v_1, v_2 \in V$, $(v_1, v_2) \in E$, 称 v_1, v_2 相邻,

称 v_1, v_2 为 (v_1, v_2) 的端点

如果 $e_1, e_2 \in E$, 并且有公共端点 $v \in V$,

称 e_1, e_2 相邻,称 e_1, e_2 为 v 的关联边

自回路 两端点相同的边,或称为环

多重边 两点之间多于一条一样的边

简单图 不含自回路和多重边的图

环

多重边

对 G = (V, E), m(G) = |E|, n(G) = |V| 表示边数和点数

顶点的次 以点 v 为端点的边数称为 v 的次,记为 deg(v),或简记为 d(v)

次为**0**的点称为<u>孤立点</u>,次为**1**的点称为<u>悬挂点</u>,连接悬挂点的边称为<u>悬挂边</u>,次为奇数的点称为 <u>奇点</u>,次为偶数的点称为<u>偶点</u>

在有向图中,以 v 为始点的边数称为 v 的<u>出次</u>,用 $d^+(v)$ 表示,以 v 为终点的边数称为 v 的<u>入次</u>,用 $d^-(v)$ 表示

定理1 任何图中,顶点次数总和等于边数的2倍

定理2 任何图中,奇点的个数为偶数个

顶点次数总和等于16

边数等于8

奇点的个数为2个

定理1显然,下面证明定理2:根据定理1

奇点次数总和 + 偶点次数总和 = 偶数 若有奇数个奇点,其次数总和为奇数,上式不成立

子图

对于图 G = (V, E),如果 E' 是 E 的子集,V'是 V 的子集,并且 E' 中的边仅与 V' 中的顶点相关 联,则称 G' = (V', E') 是 G 的子图,特别是,若 V' = V ,则称 G' 为 G 的生成子图。

网络(赋权图)

点或边带有数值(权)的图称为网络

例 某物资供应站 v_s 与用户之间的公路网络

上图是无向网络,如果通过管道输送输油或气体,每个边有方向,构成有向网络

图的矩阵表示

本讲内容

- 一、网络模型的基本知识
- 二、最小生成树算法
- 三、最短路径算法

▶最小生成树算法是用来连接一个网络的所有节点,使树上边的总长度达到最小。

令N= {1, 2, ···, n} 是网络中节点的集合, 定义:

 C_k 表示在第k步时已经连接起来的节点的集合

 $\overline{C_k}$ 表示在第k步以后需要连接的节点的集合

第1步 从 $\overline{C_0}$ 中的任意一个节点 i开始,令 $C_1 = \{i\}$ 那么 $\overline{C_1} = N - \{i\}$ 。假定k=2.

一般的第k步 在还没有连接的节点集合 $\overline{C_{k-1}}$ 中选择一个节点 j^* ,使得 j^* 到 C_{k-1} 中某个节点之间的弧长最小。然后将 j^* 放入 C_{k-1} ,从 $\overline{C_{k-1}}$ 中删除 j^* ,即

 $C_k = C_{k-1} + \{j^*\}, \overline{C_k} = \overline{C_{k-1}} - \{j^*\}$

当未连接节点的集合是空集,停止,否则重复计算。

▶ 例1: 某市广播电视局计划给5个新居民区提供有线电视服务,确定一种最经济的电缆铺设方案,使得5个小区可连接起来。

$$C_1 = \{1\}, \overline{C_1} = \{2, 3, 4, 5, 6\}$$

$$C_2 = \{1, 2\}, \overline{C_2} = \{3, 4, 5, 6\}$$

$$C_3 = \{1, 2, 5\}, \overline{C_3} = \{3, 4, 6\}$$

$$C_4 = \{1, 2, 5, 4\}, \overline{C_4} = \{3, 6\}$$

$$C_5 = \{1, 2, 5, 4, 6\}, \overline{C_5} = \{3\}$$

$$C_6 = \{1, 2, 5, 4, 6, 3\}, \overline{C_6} = \emptyset$$

本讲内容

- 一、网络模型的基本知识
- 二、最小生成树算法
- 三、最短路径算法

▶ Dijkstra算法,可求网络中从源点到其他任何一个节点的最短路径。

▶ Floyd算法,可求网络中任意两个节点之间的最短路径。

▶Dijkstra算法

用ui表示从源点1到节点i的最短距离,定义dij为弧(i,j)的长度,算法可给出节点j的标号为

$$[u_j, i] = [u_i + d_{ij}, i], d_{ij} \ge 0$$

第0步 对源点进行永久的标号[0,-],令i=1。

第1步(a)计算节点i有边相连的每一个节点j(j没被永久标号)的暂时标号[ui+dij,i]。如果节点j已通过其他点有暂时标号,取最小值为其暂时标号。

(b) 从所有暂时标号节点中选择具有最短距离的标号[ur,s]。如果所有节点都是永久的标号,停止;否则令i=r,执行第i步。

▶ 例2: 求城市1到城市8的最短距离。

节点	标号	标号的状态
1	[0,]	永久
2	[4,1]	暂时
3	[6,1]	暂时

永久

节点	标号	标号的状态	
1	[0,]	永久	
2	[4,1]	永久	
3	[6,1]	[6,1] 暂时	
4	[9,2]	[9,2] 暂时	
5	[8,2]	暂时	

节点	标号	标号的状态
1	[0,]	永久
2	[4,1]	永久
3	[6,1]	永久
4	[9,2]	暂时
5	[8,2]	暂时

永久

节点	标号	标号的状态		
1	[0,]	永久		
2	[4,1]	永久		
3	[6,1]	永久		
4	[9,2]	暂时		
5	[8,2]	永久		
6	[13,5]	暂时		
7	[14,5]	暂时		

永久

节点	标号	标号的状态		
1	[0,]	永久		
2	[4,1]	永久		
3	[6,1]	永久		
4	[9,2]	永久		
5	[8,2]	永久		
6	[13,5] 暂时			
7	[14,5]	暂时		

节点	标号	标号的状态
1	[0,]	永久
2	[4,1]	永久
3	[6,1]	永久
4	[9,2]	永久
5	[8,2]	永久
6	[13,5]	永久
7	[14,5]	暂时
8	[17,6]	暂时

永久

节点	标号	标号的状态
1	[0,]	永久
2	[4,1]	永久
3	[6,1]	永久
4	[9,2]	永久
5	[8,2]	永久
6	[13,5]	永久
7	[14,5]	永久
8	[15,7]	暂时

节点	标号	标号的状态
1	[0,]	永久
2	[4,1]	永久
3	[6,1]	永久
4	[9,2]	永久
5	[8,2]	永久
6	[13,5]	永久
7	[14,5]	永久
8	[15,7]	永久

▶Floyd算法

算法首先将n个节点的网络表示成一个n行n列的矩阵,矩阵中的元素(i,j)表示从节点i到节点j的距离dij,如果i,j之间没有边相连,那么相应的元素就是无穷。

给定3个节点i,j,k,以及他们之间的距离,如满足

$$d_{ik} + d_{kj} < d_{ij}$$

那么从i经过k到j更短。

▶Floyd算法

第0步 定义初始的距离矩阵 D_0 和节点序列矩阵 S_0 ,对角线用--表示,令k=1.

	1	2	• • •	j	• • •	n
1	1	d12	•••	d1j	• • •	d1n
2	d21	1	• • •	d2j	• • •	d2n
$D_0 = \cdots$	• • •	• • •	• • •	• • •	• • •	• • •
i	di1	di2	• • •	dij	• • •	din
•••	• • •	• • •	• • •	• • •	• • •	• • •
n	dn1	dn2	•••	dnj	• • •	

	1	2	• • •	j	• • •	n
1		2	•••	j	•••	n
2	1	1	• • • •	j	• • • •	n
$S_0 = \cdots$	• • •	•••	• • •	•••	• • •	•••
i	1	2	• • •	j	• • •	n
•••	•••	• • •	• • •	•••	• • •	•••
n	1	2	•••	j	•••	

▶Floyd算法

一般的第k步 令第k行和第k列为枢轴行和枢轴列。 对于矩阵Dk-1中的每一个元素dij做三重操作,如满 足条件:

$$d_{ik} + d_{kj} < d_{ij} \quad (i \neq k, j \neq k, i \neq j)$$

进行下面的转化:

- (a)用dik+dkj代替矩阵Dk-1中的元素dij,从而得到矩阵Dk;
- (b)用k代替矩阵 S_{k-1} 中的元素 S_{ij} ,从而得到矩阵 S_k 。 令k=k+1,如果k=n+1,停止;否则,重复第k步。

▶ 例3: 求任意两个节点之间的最短距离。

▶迭代0

矩阵 D_0 和 S_0 代表初始的网络,除了 $d_{53}=\infty$ 外, D_0 是对称的。

	1	2	3	4	5
1	1	3	10	8	∞
2	3	I	8	5	8
$D_0 = 3$	10	8	I	6	15
4	8	5	6	1	4
5	8	8	8	4	

	1	2	3	4	5
1		2	3	4	5
2	1		3	4	5
$S_0 = 3$	1	2	I	4	5
4	1	2	3		5
5	1	2	3	4	

▶迭代1

	1	2	3	4	5
$ \begin{array}{c} 1 \\ 2 \\ D_{1} = 3 \\ 4 \end{array} $	I	3	10	8	8
	3	l	13	5	8
	10	13	I	6	15
	8	5	6	I	4
5	∞	8	∞	4	

		1	2	3	4	5
	1		2	3	4	5
$S_{1}=\begin{array}{c} 2\\ 3\\ 4 \end{array}$	2	1	I	1	4	5
	3	1	1	I	4	5
	4	1	2	3	1	5
	5	1	2	3	4	

▶迭代2

	1	2	3	4	5
$ \begin{array}{ccc} & 1 \\ & 2 \\ & D_{2} = 3 \\ & 4 \end{array} $	I	3	10	8	∞
	3	I	13	5	∞
	10	13	1	6	15
	8	5	6	1	4
5	∞	∞	8	4	

	1	2	3	4	5
1		2	3	2	5
2	1	I	1	4	5
$S_2 = 3$	1	1	I	5	5
4	2	2	3		5
5	1	2	3	4	

▶迭代3

	1	2	3	4	5
$ \begin{array}{c} 1 \\ 2 \\ D_{3} = 3 \\ 4 \end{array} $	I	3	10	8	25
	3	I	13	5	28
	10	13		6	15
	8	5	6	1	4
5	00	∞	∞	4	

	1	2	3	4	5
1		2	3	2	3
2	1		1	4	3
$S_{3}=3$	1	1	I	4	5
4	2	2	3	1	5
5	1	2	3	4	

	1	2	3	4	5
1	I	3	10	8	12
2	3	I	11	5	9
D ₄ = 3 4	10	11	I	6	10
	8	5	6	I	4
5	12	9	10	4	

	1	2	3	4	5
1		2	3	2	4
2	1		4	4	4
$S_4 = 3$	1	4	I	4	4
4	2	2	3		5
5	4	4	4	4	

$$d_{15}=12.$$

本节作业

▶ 求城市1到城市5的最短路径

#