Final

November 23, 2024

1 CFM 101 Final Project

Team Number: 10

Team Member Names: Max Sun, Sean Lee, Rain Luo

Team Strategy Chosen: Market Meet

1.1 AI Disclosure

The weighted maximum bipartite matching algorithm was written by AI, however how and why we decided to use it was come up with by our group. Furthermore, no additional code was inspired by or written by AI.

1.2 Approach:

The overall strategy is to replicate the "market", or a 50/50 weighted average between the S&P 500 and TSX 60 sector composition. As such, our simulated portfolio aims to be similarly diversified by weighting stocks according to the sector's actual market representation. For each sector, the algorithm assigns every stock a correlation coefficient, with stocks that move most similarly to the industry based on historical data from roughly the past year having a higher correlation. Once these coefficients are identified, a pairing algorithm is run that pairs sectors with the highest possible correlated stocks given constraints, with the number of stocks selected for each sector based on the sector's weight in the "market". More formally, for each industry, N stocks are chosen, where N is calculated as a percentage of the sector's weight in the respective index divided by two, multiplied by a constant, and floored (see driving code). Additionally, beacuse we aim to keep stocks below a certain percentage of our total portfolio to minimalize non-systematic risk, the algorithm will assign each stock as most M times to (not necessarily distinct) sectors, where M is calculated based on constants that are optimized for (again, see driving code).

1.3 Set up

- 1. We found out that there are tickers on Yahoo Finance that trackes the S&P 500 and TSX 60 by sectors, they can be seen below.
- 2. However, the TSX Tickers do not have historical data past 5d on Yahoo, and thus we will manually get the sector composition with every TSX60 stock.
- 3. After obtaining a list of all S&P 500 and TSX 60 stocks, we were able to classify each stock based on sector. The resulting distribution is also given below.

4. All constants used in our code can be found from constraints specified by the assignment. No further constants are used, aside from numbers optimized based on exisiting constants as seen in the driving code.

	Composition in	Composition in		
Sector	S&P500 (%)	TSX60 (%)	S&P Ticker	TSX Ticker
Basic Materials	1.71	8.49	^SP500-15	^GSPTTMT
Industrials	7.19	13.11	^SP500-20	^GSPTTIN
Consumer Cyclical	10.75	5.31	$^{}$ SP500-25	^GSPTTCD
Consumer Defensive	5.76	5.09	^SP500-30	^GSPTTCS
Healthcare	10.14	0	$^{}$ SP500-35	^GSPTTHC
Financial Services	13.03	33.87	^SP500-40	^SPTTFS
Technology	30.45	9.63	^SP500-45	^SPTTTK
Communication	13.40	3.04	^SP500-50	^GSPTTTS
Services				
Utilities	2.35	3.18	$^{}$ SP500-55	^GSPTTUT
Real Estate	2.07	0.62	^SP500-60	^GSPTTRE
Energy	3.15	17.66	^SP500-1010	^SPTTEN

```
[1]: import pandas as pd
     import yfinance as yf
     import matplotlib.pyplot as plt
     import threading
     import sys
     import time
     from datetime import date
     ATTRIBUTES = ['sector', 'exchange', 'currency', 'marketCap', 'previousClose']
     START_DATE = '2023-10-01'
     END_DATE = '2024-11-22'
     END_DATE_VOL = '2024-10-01'
     MIN_STOCKS = 12
     MAX_STOCKS = 24
     MIN_PCT = 1/(2*MAX_STOCKS)
     MAX_PCT = 0.15
     PORTFOLIO_VALUE = 1e6
     LAST_CALL = 0.0
     WAIT_TIME = 0.5 # prevent overloading yfinance
     PERIOD_START = date(2024, 11, 22)
     PERIOD_END = date(2024, 12, 2)
     FLAT FEE = 3.95
     PER_SHARE_FEE = 0.001
     # Each industry is mapped to (% share of S&P500, % share of TSX60, S&P industry \Box
      ⇔ticker, TSX60 capped industry ticker)
```

```
# To obtain values for % share, run market by sector(SP500 STOCKS) and
      →market_by_sector(TSX60_STOCKS), respectively (see next cell)
     # Since % share changes quarterly, we don't need to run this every time
     SECTORS = {
         'Basic Materials': (0.0171, 0.0849, '^SP500-15', '^GSPTTMT'),
         'Industrials': (0.0719, 0.1311, '^SP500-20', '^GSPTTIN'),
         'Consumer Cyclical': (0.1075, 0.0531, '^SP500-25', '^GSPTTCD'),
         'Consumer Defensive': (0.0576, 0.0509, '^SP500-30', '^GSPTTCS'),
         'Healthcare': (0.1014, 0.0000, '^SP500-35', '^GSPTTHC'),
         'Financial Services': (0.1303, 0.3387, '^SP500-40', '^SPTTFS'),
         'Technology': (0.3045, 0.0963, '^SP500-45', '^SPTTTK'),
         'Communication Services': (0.1340, 0.0304, '^SP500-50', '^GSPTTTS'),
         'Utilities': (0.0235, 0.0318, '^SP500-55', '^GSPTTUT'),
         'Real Estate': (0.0207, 0.0062, '^SP500-60', '^GSPTTRE'),
         'Energy': (0.0315, 0.1766, '^SP500-1010', '^SPTTEN')
     }
     TSX60_STOCKS = ['ABX.TO', 'AEM.TO', 'AQN.TO', 'ATD.TO', 'BAM.TO', 'BCE.TO', 'BIP-UN.
      GOTO', 'BMO.TO', 'BN.TO', 'BNS.TO', 'CAE.TO', 'CAR-UN.TO', 'CCL-B.TO', 'CCO.TO', 'CM.
      →TO','CNQ.TO','CNR.TO','CP.TO','CSU.TO','CTC-A.TO','CVE.TO','DOL.TO','EMA.
      GTO', 'ENB.TO', 'FM.TO', 'FNV.TO', 'FSV.TO', 'FTS.TO', 'GIB-A.TO', 'GIL.TO', 'H.
      →TO','IFC.TO','IMO.TO','K.TO','L.TO','MFC.TO','MG.TO','MRU.TO','NA.TO','NTR.
      GTO','OTEX.TO','POW.TO','PPL.TO','QSR.TO','RCI-B.TO','RY.TO','SAP.TO','SHOP.
      STO', 'SLF.TO', 'SU.TO', 'T.TO', 'TD.TO', 'TECK-B.TO', 'TOU.TO', 'TRI.TO', 'TRP.
      →TO','WCN.TO','WN.TO','WPM.TO','WSP.TO']
     SP500 STOCKS =
      →['A','AAPL','ABBV','ABNB','ABT','ACGL','ACN','ADBE','ADI','ADM','ADP','ADSK','ÅEE','AEP','A
[2]: # adds market cap of ticker to data table
     def ticker_by_sector(ticker, data):
         global LAST CALL
         if(time.time() - LAST_CALL < WAIT_TIME):</pre>
             time.sleep(WAIT_TIME-(time.time()-LAST_CALL))
         LAST_CALL = time.time()
         yf_data = yf.Ticker(ticker).info
         data[yf_data['sector']] += yf_data['marketCap']
     # prints percentage of index in each sector
     def market_by_sector(index):
         data = {sector: 0 for sector in SECTORS}
         threads = [threading.Thread(target=ticker_by_sector, args=(ticker,data))_
      ⇔for ticker in index
         for thread in threads:
             thread.start()
         for thread in threads:
             thread.join()
```

```
sum = 0
for sector in data:
    sum += data[sector]
for sector in data:
    print(sector, 'accounts for', round(data[sector]/sum*100, 2), 'percent
of', index)

# uncomment these to get the % share of each sector in the S&P500 and TSX60 as
oin cell above
# market_by_sector(SP500_STOCKS)
# market_by_sector(TSX60_STOCKS)
```

1.4 Fetch Data

Ticker data is obtained from the functions below. As specified, we filtered out stocks that are not listed in CAD/USD as well as those having less than 100,000 average monthly volume. In addition, we removed all stocks whose earnings are released during the duration of the competition (see Why Remove Stocks with Earnings section).

```
[3]: # adds ticker info to data df
     def get_data(ticker, data, history, to_drop, filter):
         global LAST_CALL
         if(time.time() - LAST_CALL < WAIT_TIME):</pre>
             time.sleep(WAIT_TIME-(time.time()-LAST_CALL))
         LAST CALL = time.time()
         try:
             yf_data = yf.Ticker(ticker).info
         except:
             print('Failed to get', ticker, 'info')
             to_drop.append(ticker)
             return
         if(not filter):
             for att in ATTRIBUTES:
                 if(att not in yf_data):
                     print(ticker, 'missing', att)
                     continue
                 data.loc[ticker, att] = yf_data[att]
             if(time.time() - LAST_CALL < WAIT_TIME):</pre>
                 time.sleep(WAIT_TIME-(time.time()-LAST_CALL))
             LAST CALL = time.time()
             hist = yf.Ticker(ticker).history(start=START_DATE, end=END_DATE)
             history[ticker] = hist['Close'].pct_change().dropna()
         # check if stock is CAD or USD
         if('currency' not in yf_data or yf_data['currency'] not in ['USD', 'CAD']):
             print('Dropped', ticker)
             to_drop.append(ticker)
```

```
return
    for att in ATTRIBUTES:
        if(att not in yf_data):
            print(ticker, 'missing', att)
            continue
        data.loc[ticker, att] = yf_data[att]
    if(time.time() - LAST_CALL < WAIT_TIME):</pre>
        time.sleep(WAIT_TIME-(time.time()-LAST_CALL))
    LAST_CALL = time.time()
    try:
        hist = yf.Ticker(ticker).history(start=START DATE, end=END DATE)
        print('Failed to get', ticker, 'history')
        to_drop.append(ticker)
        return
    history[ticker] = hist['Close'].pct_change().dropna()
    if(len(history[ticker]) < 250):</pre>
        print('Dropped', ticker, 'due to insufficient history')
        to_drop.append(ticker)
        return
    vol = yf.Ticker(ticker=ticker).history(start=START_DATE, end=END_DATE_VOL)
        volume = vol['Volume'].resample('MS').sum()
    except:
        print('Failed to get volume for', ticker)
        to_drop.append(ticker)
        return
    # Take all months with >= 18 trading days for volume calculation
    volume.drop([month for month in volume.index if hist.resample('MS').size().
 →loc[month] < 18], inplace=True)</pre>
    # check if stock has at least 100,000 average monthly volume
    if(volume.mean() < 1e5):</pre>
        print('Dropped', ticker, 'due to insufficient volume')
        to drop.append(ticker)
    # check if stock has earnings this week
    earning_date = yf.Ticker(ticker).calendar
    if('Earnings Date' in earning_date and len(earning_date['Earnings Date']) > \_
 → 0 and PERIOD_START <= earning_date['Earnings Date'][0] <= PERIOD_END):
        print('Dropped', ticker, 'because earnings are this week')
        to_drop.append(ticker)
        return
# returns df containing all ticker info
def get_tickers(filter=True):
    with threading.Lock():
        tickers = pd.read_csv('Tickers.csv', header=None) if filter else_
 →[TSX60 STOCKS]
```

1.5 Matching Algorithm

The weighted_max_bipartite_matching function is a matching algorithm that assigns stocks to sectors while maximizing the sum of correlation coefficients between matched stocks and sectors. To handle multiple stock requirements for each sector, the function first expands the graph, resulting in an extended matrix expanded_C. The function then iteratively improves the matching through augmenting paths, a concept related to the vertex cover problem. While a high-level understanding of the algorithm was realized (this is an excellent youtube explanation), implementation was done with AI, as mentioned in the AI declaration above.

```
[4]: def weighted_max_bipartite_matching(N, M, A, C):
         Finds the weighted maximum bipartite matching for sectors and stocks.
         Args:
         - N: Number of sectors.
         - M: Number of stocks.
         - A: List of length N where A[i] is the number of stocks required by sector_{\square}
      \hookrightarrow i.
         - C: 2D list (N x M) of weights (correlations) between sectors and stocks.
         Returns:
         - match: List of tuples (sector, stock) representing the matching.
         - total_weight: Total weight of the matching.
         # Expand the graph: create dummy nodes for each sector demand
         total_sectors = sum(A)
         expanded_C = [[-sys.maxsize] * M for _ in range(total_sectors)]
         sector_mapping = []
         index = 0
         for i in range(N):
```

```
for _ in range(A[i]):
        expanded_C[index] = C[i]
        sector_mapping.append(i) # Map expanded sector to original sector
        index += 1
# Hungarian algorithm for max-weight matching
match = [-1] * M # Stores which sector is assigned to each stock
sector_label = [0] * total_sectors
stock label = [0] * M
slack = [0] * M
slack_x = [-1] * M
def dfs(x, visited_x, visited_y):
   visited_x[x] = True
   for y in range(M):
        if visited_y[y]:
            continue
        delta = sector_label[x] + stock_label[y] - expanded_C[x][y]
        if delta == 0: # Tight edge
            visited_y[y] = True
            if match[y] == -1 or dfs(match[y], visited_x, visited_y):
                match[y] = x
                return True
        else: # Update slack
            if slack[y] > delta:
                slack[y] = delta
                slack_x[y] = x
   return False
# Initialize labels
for x in range(total_sectors):
    sector_label[x] = max(expanded_C[x])
# Augmenting path search
for x in range(total_sectors):
    slack = [sys.maxsize] * M
   slack_x = [-1] * M
   while True:
        visited_x = [False] * total_sectors
        visited_y = [False] * M
        if dfs(x, visited_x, visited_y):
           break
        # Update labels
        delta = min(slack[y] for y in range(M) if not visited_y[y])
        for i in range(total_sectors):
            if visited_x[i]:
                sector_label[i] -= delta
```

```
for y in range(M):
    if visited_y[y]:
        stock_label[y] += delta
    else:
        slack[y] -= delta

# Extract results
total_weight = 0
final_match = []
for y in range(M):
    if match[y] != -1:
        sector_idx = sector_mapping[match[y]]
        final_match.append((sector_idx, y))
        total_weight += C[sector_idx][y]
```

1.6 Portfolio Creation and Helper Functions

Here is the core of our algorithm. As aforementioned, we decided to select stocks by their correlation (see Why Correlation section) to different sectors.

We start constructing the portfolio by calculating the correlation for each stock relative to the sectors. These calculations identifies the stocks that will most accurately represent their respective sectors in the portfolio. Our goal is to maintain a balance between minimizing risk through diversification and assigning each sector the best correlated stock(s). Since a single stock may be correlated to multiple, possibly highly weighted sectors, we run the bipartite matching algorithm to cap each stock while finding the maximal sum of all correlation values in the resulting portfolio in O(VE), where V is the sum of sectors and stocks, and E is the product of sectors and stocks.

We also optimize the calculation of our "unit", the weight of a single stock in the resulting bipartite matching algorithm through binary search, which allows us to cap the number of stocks in the final portfolio at 24 while maintaining the diversification constraints.

It should be noted that some sectors do not account for a large enough percentage of the overall "market" to warrant a stock to be assigned. As a compromise, these sectors are assigned a stock that already exists in the resulting portfolio, taking the one best correlated.

```
[5]: # divide by 2 since each index is 50% of the "market"

def adjust_sector_cap():
    for sector in SECTORS:
        SECTORS[sector] = (SECTORS[sector][0]/2, SECTORS[sector][1]/2,
        SECTORS[sector][2], SECTORS[sector][3])

# binary search for optimal max percentage of a single stock such that we can
        have 24 stocks in our portfolio

def unit_percentage(max_stocks):
    low = MIN_PCT
    high = 1.0
```

```
while(low < high):</pre>
        mid = (low+high)/2
        sum = 0
        for sector in SECTORS:
            sum += min(max(1, SECTORS[sector][0]//mid), SECTORS[sector][0]//
 →MIN_PCT) + min(max(1, SECTORS[sector][1]//mid), SECTORS[sector][1]//MIN_PCT)
        if(sum > max stocks):
            low = mid+0.0001
        else:
            high = mid-0.0001
    return low
# returns sector and index given a ticker from sectors dictionary
# 0 for S&P500, 1 for TSX60
def ticker_to_sector(ticker):
    for sector in SECTORS:
        if(ticker == SECTORS[sector][2]):
            return sector, 0
        if(ticker == SECTORS[sector][3]):
            return sector, 1
    return None
def beta(df, stock, sector):
    return df[stock].cov(df[sector])/df[sector].var()
def corr(df, stock, sector):
    return df[stock].corr(df[sector])
# returns function of stocks to sectors as given by f
# 0 for S&P500, 1 for TSX60
def calc(data, history, f, index):
    sector_metric = {stock:{}} for stock in data.index}
    for sector in SECTORS:
        for stock in data.index:
            if(SECTORS[sector][index] == 0):
                continue
            df = pd.DataFrame({stock: history[stock], sector:__
 ⇔history[SECTORS[sector][2+index]]}).dropna()
            # calculate metric given a function f
            sector_metric[stock][sector] = f(df, stock, sector)
    return sector_metric
# returns df containing history for each sector in TSX60
\# since historical data for individual TSX60 sectors is unavailable, we take \sqcup
the weighted average of all stocks in each sector
def tsx_sectors():
   data, history = get_tickers(False)
```

```
sector_history = pd.DataFrame({SECTORS[sector][3]: 0 for sector in_
 ⇒SECTORS}, index=history[data.index[0]].index)
   total_market_cap = {SECTORS[sector][3]: 0 for sector in SECTORS}
   for stock in history:
        total_market_cap[SECTORS[data['sector'].loc[stock]][3]] +=__

data['marketCap'].loc[stock]

   for stock in history:
        sector = SECTORS[data['sector'].loc[stock]][3]
        sector_history[sector] += history[stock]*data['marketCap'].loc[stock]/
 →total_market_cap[sector]
   return sector_history
# returns of containing history for each sector in S&P500
def sp_sectors():
   history = {SECTORS[sector][2]: yf.Ticker(SECTORS[sector][2]).
 ⇔history(start=START_DATE, end=END_DATE)['Close'].pct_change().dropna() for⊔
 ⇔sector in SECTORS}
   return pd.DataFrame(history, index=list(history.values())[0].index)
# creates the portfolio
def create_portfolio(data, sector_corr, unit_pct, pct_cap):
   portfolio = {stock: 0 for stock in data.index}
    # maps sector to index to be used in bipartite matching
   SECTOR_IDX = \{\}
   # maps index to sector to convert back after matching
   IDX_SECTOR = {}
    # maps stock to index to be used in bipartite matching
   STOCK_IDX = {}
    # maps index to stock to convert back after matching
   IDX STOCK = {}
   idx = 0
   for sector in SECTORS:
        SECTOR IDX[SECTORS[sector][2]] = idx # S&P500
        IDX_SECTOR[idx] = SECTORS[sector][2] # S&P500
        SECTOR IDX[SECTORS[sector][3]] = idx+1 # TSX60
        IDX_SECTOR[idx+1] = SECTORS[sector][3] # TSX60
       idx += 2
    idx = 0
   for stock in data.index:
        for i in range(int(pct_cap/unit_pct)):
            STOCK_IDX[stock] = idx
            IDX_STOCK[idx] = stock
            idx += 1
   CORR = [[] for _ in SECTOR_IDX]
   NUM_STOCKS = [0 for _ in SECTOR_IDX]
   for sector in SECTORS:
        for i in range(2):
```

```
if(SECTORS[sector][i] < MIN PCT): # also checks if sector has no⊔
→percentage
               continue
          for j in range(len(IDX STOCK)):
               CORR[SECTOR_IDX[SECTORS[sector][2+i]]].
append(int((10-abs(sector corr[i][IDX STOCK[i]][sector]-1))*1000)+10000) #__
→weight of edge between sector and stock
           NUM_STOCKS[SECTOR_IDX[SECTORS[sector][2+i]]] = int(min(max(1, ...))
SECTORS[sector][i]//unit_pct), SECTORS[sector][i]//MIN_PCT)) # number of
⇔stocks required by sector
  result = weighted_max_bipartite_matching(len(SECTOR_IDX), len(IDX_STOCK),_
→NUM STOCKS, CORR)
  # adds stocks from matching to portfolio
  for pair in result:
       sector, idx = ticker_to_sector(IDX_SECTOR[pair[0]])
      portfolio[IDX_STOCK[pair[1]]] += unit_pct if SECTORS[sector][idx] >=__
→unit_pct else SECTORS[sector][idx]
   # adds stocks best correlated with remaining sectors to portfolio and fills,
→all sector quotas with highest correlated stocks
  for sector in SECTORS:
      for i in range(2):
           remaining = SECTORS[sector][i] - SECTORS[sector][i]//

unit_pct*unit_pct

           if(remaining == 0 or (SECTORS[sector][i] >= MIN_PCT and_
→SECTORS[sector][i] < unit_pct)):
               continue
           best_corr = sector_corr[i][IDX_STOCK[0]][sector]
           best_stock = IDX_STOCK[0]
          for j in range(len(IDX STOCK)):
               if(portfolio[IDX_STOCK[j]] != 0 and__
⇒sector_corr[i][IDX_STOCK[j]][sector] > best_corr and_⊔
portfolio[IDX_STOCK[j]]+remaining <= MAX_PCT):</pre>
                   best_corr = sector_corr[i][IDX_STOCK[j]][sector]
                   best_stock = IDX_STOCK[j]
          portfolio[best_stock] += remaining
  sum = 0
  count = 0
  for stock in portfolio:
      portfolio[stock] = round(portfolio[stock], 4)
      sum += portfolio[stock]
      count += 1 if portfolio[stock] != 0 else 0
  for stock in portfolio:
      if(portfolio[stock] != 0):
           portfolio[stock] += round(1-sum, 4)
          portfolio[stock] = round(portfolio[stock], 4)
           sum = 1.0
```

```
break
    return portfolio, sum, count
# calculates portfolio error relative to weighted index
def portfolio_error(historical_data, weighted_index):
    return (historical_data-weighted_index).abs().sum()
# returns sector percent change since start date
def aggregate pct change(history):
    result = pd.Series(index=history.index)
    prev = 1
    for day in history.index:
        if(pd.isna(history[day])):
            continue
        result[day] = prev*(1+history[day])
        prev = result[day]
    return result
# calculate how many shares one can buy, including fees
def calc_shares(value, price):
    return max(value/(price+PER_SHARE_FEE), (value-FLAT_FEE)/price)
```

1.7 Driver Code

We start by obtaining all the data we need to construct our portfolio. Then, we loop through all percentage caps for any given stock from MIN_PCT to MAX_PCT (see constants at top of notebook). In addition, for each percentage cap, we also loop through all caps on the number of stocks we can have, effectively creating a new portfolio each time. Since our portfolio creation is optimized to cubic time, we can run the entire algorithm in under a minute given at most ~50 stocks. By taking the best portfolio based on historical data over the past year, we then obtain our final portfolio.

```
[6]: adjust_sector_cap() # divides sector caps by 2
     data, history = get_tickers() # gets all ticker data
     tsx_by_sector = tsx_sectors() # gets TSX60 sector data
     for sector in tsx_by_sector:
         history[sector] = tsx_by_sector[sector] # adds TSX60 sector data to history
     sp_by_sector = sp_sectors() # gets S&P500 sector data
     for sector in sp_by_sector:
         history[sector] = sp_by_sector[sector] # adds S&P500 sector data to history
     sector_corr = [calc(data, history, corr, 0), calc(data, history, corr, 1)] #__
      →calculates correlation between sectors and stocks [S&P500, TSX60]
     print('Data loaded')
     portfolio = {}
     best error = 1e9
     best unit pct = 0
     best_pct_cap = 0
     pct_cap = unit_percentage(MAX_STOCKS)
```

```
weighted index = pd.Series(0, index=history[list(history.keys())[0]].index)
for sector in SECTORS:
    for i in range(2):
        weighted index += SECTORS[sector][i]*history[SECTORS[sector][2+i]] #__
 →adds sector price history to weighted index
while(pct cap < MAX PCT): # finds optimal pct cap (max percentage of a single,
 ⇔stock before miscellaneous adds) for portfolio
    test_stocks = MAX_STOCKS # max number of stocks in portfolio, gets_
 increased as long as the algorithm returns less than MAX STOCKS stocks
    unit pct = unit percentage(test stocks)
    stocks = 0
    flag = False
    while(stocks < MIN_STOCKS and not flag): # if we can't find a portfoliou
 with at least MIN_STOCKS stocks, we increase test_stocks
        if(test_stocks > 2*MAX_STOCKS):
            flag = True # no possible portfolio with given pct_cap
        cur_portfolio, tot, stocks = create_portfolio(data, sector_corr,_

unit_pct, pct_cap)

        test stocks += 1
        unit_pct = unit_percentage(test_stocks)
    repeated_stock_count = 0 # stops looping if we can't find a portfolio with_
 →a larger number of stocks for 10 iterations
    while(not flag and stocks <= MAX_STOCKS and repeated_stock_count < 10):</pre>
        stocks to buy = [stock for stock in cur portfolio if___
 ⇔cur_portfolio[stock] != 0]
        historical_data = pd.Series(0, index=history[stocks_to_buy[0]].index)
        for stock in stocks_to_buy:
            historical_data += cur_portfolio[stock] *history[stock]
        cur_error = portfolio_error(historical_data, weighted_index)
        if(cur_error < best_error): # updates best portfolio found so far</pre>
            best_error = cur_error
            best unit pct = unit pct
            best_pct_cap = pct_cap
            portfolio = dict(cur_portfolio)
        test stocks += 1
        unit pct = unit percentage(test stocks)
        cur_portfolio, tot, cur_stocks = create_portfolio(data, sector_corr,_

unit_pct, pct_cap)

        if(cur_stocks == stocks):
            repeated_stock_count += 1
            repeated_stock_count = 0
        stocks = cur_stocks
    pct_cap += 0.01
portfolio
```

```
Dropped RTN
    Dropped MON
    Dropped CELG
    Dropped AGN
    Data loaded
[6]: {'AAPL': 0.0421,
      'ABBV': 0,
      'ABT': 0,
      'ACN': 0,
      'AIG': 0.0459,
      'AMZN': 0.0572,
      'AXP': 0.0424,
      'BA': 0,
      'BAC': 0.044,
      'BB.TO': 0,
      'BIIB': 0.0507,
      'BK': 0.0424,
      'BLK': 0.0644,
      'BMY': 0,
      'C': 0.0424,
      'CAT': 0.073,
      'CL': 0.0212,
      'KO': 0.0406,
      'LLY': 0.0424,
      'LMT': 0,
      'MO': 0,
      'MRK': 0,
      'PEP': 0,
      'PFE': 0,
      'PG': 0,
      'PM': 0,
      'PYPL': 0.0212,
      'QCOM': 0.0463,
      'RY.TO': 0.1061,
      'SHOP.TO': 0.0481,
      'T.TO': 0,
      'TD.TO': 0.0424,
      'TXN': 0.0424,
      'UNH': 0,
      'UNP': 0.0424,
      'UPS': 0,
      'USB': 0.0424}
```

1.8 Data Display

Here is where we organzie our data, and display the dataframe Portfolio_Final.

```
[7]: stocks_to_buy = [stock for stock in portfolio if portfolio[stock] != 0]
     Portfolio_Final = pd.DataFrame(index=[i+1 for i in range(len(stocks_to_buy))],__
      Golumns=['Ticker', 'Price', 'Currency', 'Shares', 'Value', 'Weight'])
     CAD TO USD = yf.Ticker('CADUSD=X').info['previousClose']
     for stock in stocks to buy:
         idx = stocks_to_buy.index(stock)+1
         Portfolio_Final.loc[idx, 'Ticker'] = stock
         Portfolio_Final.loc[idx, 'Price'] = data['previousClose'].loc[stock]/
      ⇔CAD_TO_USD if data['currency'].loc[stock] == 'USD' else⊔

¬data['previousClose'].loc[stock]

         Portfolio_Final.loc[idx, 'Currency'] = data['currency'].loc[stock]
         Portfolio_Final.loc[idx, 'Shares'] = __
      →calc_shares(portfolio[stock]*PORTFOLIO_VALUE, Portfolio_Final.loc[idx,_

¬'Price'])
         Portfolio_Final.loc[idx, 'Value'] = Portfolio_Final.loc[idx,__
      ⇔'Shares']*Portfolio_Final.loc[idx, 'Price']
         Portfolio_Final.loc[idx, 'Weight'] = portfolio[stock]
     Portfolio Final.loc['Total', 'Ticker'] = '--'
     Portfolio_Final.loc['Total', 'Price'] = '--'
     Portfolio_Final.loc['Total', 'Currency'] = '--'
     Portfolio_Final.loc['Total', 'Shares'] = Portfolio_Final['Shares'].sum()
     Portfolio_Final.loc['Total', 'Value'] = Portfolio_Final['Value'].sum()
     Portfolio_Final.loc['Total', 'Weight'] = Portfolio_Final['Weight'].sum()
     print('All dollar values in CAD')
     display(Portfolio_Final)
```

All dollar values in CAD

	Ticker	Price	Currency	Shares	Value	Weight
1	AAPL	319.269858	USD	131.862959	42099.868137	0.0421
2	AIG	106.153176	USD	432.38996	45899.56761	0.0459
3	AMZN	277.160662	USD	206.377749	57199.793622	0.0572
4	AXP	409.356155	USD	103.577034	42399.896423	0.0424
5	BAC	64.910194	USD	677.849182	43999.322151	0.044
6	BIIB	220.758928	USD	229.661245	50699.770339	0.0507
7	BK	110.204824	USD	384.734657	42399.615265	0.0424
8	BLK	1436.239342	USD	44.839292	64399.955161	0.0644
9	C	96.331423	USD	440.142569	42399.559857	0.0424
10	CAT	544.303974	USD	134.115989	72999.865884	0.073
11	CL	131.678558	USD	160.996895	21199.839003	0.0212
12	KO	89.08037	USD	455.763085	40599.544237	0.0406
13	LLY	1047.728217	USD	40.468472	42399.959532	0.0424
14	PYPL	118.503717	USD	178.895833	21199.821104	0.0212
15	QCOM	217.196272	USD	213.170264	46299.78683	0.0463
16	RY.TO	174.76	CAD	607.11486	106099.392885	0.1061
17	SHOP.TO	148.81	CAD	323.228794	48099.676771	0.0481
18	TD.TO	78.11	CAD	542.817273	42399.457183	0.0424
19	TXN	276.909181	USD	153.118242	42399.846882	0.0424

20	UNP	333.939618	USD	126.968682	42399.873031	0.0424
21	USB	71.797996	USD	590.537506	42399.409462	0.0424
Total				6178 630539	999993 821369	1.0

Note that the portfolio does not sum up to exactly \$1,000,000 CAD since fees are paid.

1.9 Historical Data

While who knows how our portfolio will fare compared with the "market" over the duration of the competition, here's how the portfolio did against the market over the past year or so.

Portfolio error relative to market: 0.8520293502949867

1.10 Why Correlation

You may have noticed we not only have a function to calculate correlation, but also one to calculate beta. So why did we pick correlation as our deciding metric? Well, after running our algorithm on test tickers, the resulting portfolio created while using correlation saw a nearly 30% decrease in total error (as calculated by the sum of all differences between percent changes each day) and a 14% decrease in standard deviation versus the portfolio created while using beta. This decrease in volatility is what we desire in a portfolio that aims to match the market—the exact findings can be found below.

```
[9]: sector_beta = [calc(data, history, beta, 0), calc(data, history, beta, 1)]
     beta_portfolio, beta_tot, beta_stocks = create_portfolio(data, sector_beta,__
      ⇒best_unit_pct, best_pct_cap) # creates portfolio but using beta instead of ___
      \hookrightarrow correlation
     beta_stocks_to_buy = [stock for stock in beta_portfolio if_
      ⇔beta_portfolio[stock] != 0]
     historical_beta_data = pd.Series(0, index=history[beta_stocks_to_buy[0]].index)
     for stock in beta stocks to buy:
         historical_beta_data += beta_portfolio[stock] *history[stock]
     plt.figure(figsize=(20, 5))
     plt.title('Beta Portfolio vs Correlation Portfolio vs Weighted Index Over Last⊔

year¹)

     plt.xlabel('Date')
     plt.ylabel('Change')
     plt.plot(aggregate_pct_change(weighted_index).dropna(), label='Weighted_Index')
     plt.plot(aggregate_pct_change(historical_data).dropna(), label='Correlation_
      ⇔Portfolio')
     plt.plot(aggregate_pct_change(historical_beta_data).dropna(), label='Beta_u
      →Portfolio')
     plt.legend()
     plt.show()
     print('Correlation portfolio error relative to market:', __
      aportfolio_error(historical_data, weighted_index))
     print('Correlation portfolio percent change standard deviation:',,,
      ⇔historical_data.std())
     print('Beta portfolio error relative to market:', 

¬portfolio_error(historical_beta_data, weighted_index))

     print('Beta portfolio percent change standard deviation:', historical_beta_data.
      ⇔std())
```


Correlation portfolio error relative to market: 0.8520293502949867 Correlation portfolio percent change standard deviation: 0.00887909655585332 Beta portfolio error relative to market: 1.2578803122890607 Beta portfolio percent change standard deviation: 0.010588238892251372

1.11 Why Remove Stocks with Earnings

While the goal of our portfolio is to match the market as closely as possible, we also want to win the competition. As such, we removed all tickers from consideration if their earnings would come out during the competition. Earnings reports are one of the biggest influencers in stock price on a day-to-day level, and we believe an earnings report would make the stock too volatile to add to the portfolio. As an example, here is Target's stock price after missing their earnings estimate by 19% just three days before our competition.

```
[10]: tgt_history = yf.Ticker('TGT').history(start='2024-11-18', end='2024-11-22', usinterval='1m')['Close']

tgt_history.index = tgt_history.index.strftime('%Y-%m-%d %H:%M')

plt.figure(figsize=(20, 5))

plt.title('TGT Stock Price Over Last Week')

plt.xlabel('Date')

plt.ylabel('Stock Price')

plt.plot(tgt_history)

plt.xticks(tgt_history.index[::180])

plt.show()
```


1.12 Export to CSV File

Lastly, our stocks can be found in the Stocks_Group_10.csv file created.

1.13 Contribution Declaration

The following team members have made a meaningful contribution to the project: Max Sun, Sean Lee, Rain Luo.