复旦大学数学科学学院 2013~2014 学年第一学期期末考试试卷 A 卷

洱	程名称:_	高等数学 A(上)				_ 课程代码: <u>MATH</u>			<u> [120001</u>	
H	「课院系:_	数学科学学院				考试形式:闭卷				
妇	性 名: 学 号: 专 业:									
	题 号	1	2	3	4	5	6	7	总 分	
	得 分									

- 1. (本题满分48分,每小题6分)计算下列各题:
- (1) 设 $y = \cos(\ln x)$, 求 y'';

(2) 求极限 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$;

(3) 求函数 $f(x) = \frac{\ln^2 x}{x}$ 的单调区间和极值;

(4) 求曲线 $y = \ln(x + \sqrt{x^2 + 1})$ 的拐点;

(5) 求不定积分 $\int e^x \cos(2e^x) dx$;

(6) 计算反常积分 $\int_0^{+\infty} e^{-x} \sin x dx$;

(7) 问矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$
是否可逆?若可逆,求其逆矩阵;

(8) 问当
$$a$$
, b 取何值时,齐次线性方程组
$$\begin{cases} ax+y+z=0,\\ x+by+z=0,\\ x+2by+z=0 \end{cases}$$
 只有零解?

2. (本题满分 8 分)设 $f(x) = \begin{cases} x^2, & x \in [0,1), \\ 2x, & x \in [1,2]. \end{cases}$ 求 $F(x) = \int_0^x f(t)dt$ 在 [0,2] 上的表达式,并讨论 F(x) 在 x = 1 点的可导性。

- 3. (本题满分 8 分) 已知抛物线 $L: y = -x^2 + 4x 3$ 。
 - (1) 求L分别在点(0,-3)和(3,0)处的切线的方程;
 - (2) 求(1) 中的两条切线与L所围图形的面积。

4. (本题满分8分)讨论方程 $x \ln x = a$ 有几个实根。

5. (本题满分 8 分) 设 f(x) 在 $(-\infty, +\infty)$ 上连续,且满足方程

$$\int_0^x (x-t)f(t)dt = e^x(x^2 - 2x) .$$

(1) 求 f(x) 的表达式; (2) 求 f(x) 的极值。

6. (本题满分 10 分) 已知
$$\xi = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的特征向量。

- (1) 求常数a, b及 ξ 所对应的特征值;
- (2) 问 A 是否能对角化?请说明理由。

7. (本题满分 10 分) (1) 求
$$\int_0^\pi \frac{1}{1+\cos^2 x} dx$$
 和 $\int_0^\pi \frac{\sin^2 x}{1+\cos^2 x} dx$;

(2) 证明
$$\lim_{x \to +\infty} \frac{\int_0^x \frac{\sin^2 t}{1 + \cos^2 t} dt}{\int_0^x \frac{1}{1 + \cos^2 t} dt} = 2 - \sqrt{2}$$
.