Categories

December 5, 2023

Definitions

1. A category consists of objects and arrows.

For each arrow f, there exists a domain dom(f) and codomain cod(f).

If A = dom(f) and B = cod(f), we may write $f : A \to B$.

If $f: A \to B$ and $g: B \to C$, then there is a composite arrow $g \circ f: A \to C$.

For each object A, there is an identity arrow $1_A: A \to A$.

Objects and arrows must satisfy the following two equations, assuming each is well-defined:

- (a) $h \circ (g \circ f) = (h \circ g) \circ f$ (Associativity)
- (b) $f \circ 1_A = f = 1_B \circ f$ (Unit)
- 2. Given categories C and D, a functor $F:C\to D$ is a mapping of objects to objects and arrows to arrows such that:
 - (a) $F(f:A \to B) = F(f): F(A) \to F(B)$
 - (b) $F(1_A) = 1_{F(A)}$
 - (c) $F(g \circ f) = F(g) \circ F(f)$

Exercises

1. (a) **Rel** has sets as objects and subsets of $A \times B$ as arrows $A \to B$. Such subsets are also called relations.

The identity arrow 1_A is the relation $\{\langle a, a \rangle \in A \times A : a \in A\}$.

The composite arrow of $R: A \to B$ and $S: B \to C$ is $\{\langle a, c \rangle \in A \times C : \exists b (\langle a, b \rangle \in R \& \langle b, c \rangle \in S)\}$.

First we note the category is closed under composition since the composite arrow is a relation from A to C.

Second we verify that Unit holds.

$$\begin{split} 1_{B} \circ R &= \{ \langle a, b_{2} \rangle \in A \times B : \exists b_{1}(\langle a, b_{1} \rangle \in R \& \langle b_{1}, b_{2} \rangle \in 1_{B}) \} \\ &= \{ \langle a, b_{2} \rangle \in A \times B : \exists b_{1}(\langle a, b_{1} \rangle \in R \& b_{1} = b_{2}) \} \\ &= \{ \langle a, b \rangle \in A \times B : \exists b(\langle a, b \rangle \in R) \} \\ &= R \\ S \circ 1_{B} &= \{ \langle b_{2}, c \rangle \in B \times C : \exists b_{1}(\langle b_{2}, b_{1} \rangle \in 1_{B} \& \langle b_{1}, c \rangle \in S) \} \\ &= \{ \langle b_{2}, c \rangle \in B \times C : \exists b_{1}(b_{2} = b_{1} \& \langle b_{1}, c \rangle \in S) \} \\ &= \{ \langle b, c \rangle \in B \times C : \exists b(\langle b, c \rangle \in S) \} \\ &= S \end{split}$$

Finally we verify that Associativity holds. Let $T: C \to D$.

$$\begin{split} \langle a,d\rangle \in T \circ (S \circ R) &\iff \exists c(\langle a.c\rangle \in S \circ R \ \& \ \langle c,d\rangle \in T) \\ &\iff \exists c(\exists b(\langle a.b\rangle \in R \ \& \ \langle b,c\rangle \in S) \ \& \ \langle c,d\rangle \in T) \\ &\iff \exists b(\langle a.b\rangle \in R \ \& \ \exists c(\langle b,c\rangle \in S \ \& \ \langle c,d\rangle \in T)) \\ &\iff \exists b(\langle a.b\rangle \in R \ \& \ \langle b,d\rangle \in T \circ S) \\ &\iff \langle a,d\rangle \in (T \circ S) \circ R \end{split}$$

(b) $G: \mathbf{Sets} \to \mathbf{Rel}$ is a mapping defined by taking objects to themselves and arrows in \mathbf{Sets} as functions to its graph in \mathbf{Rel} , that is for a function $f: A \times B$ in \mathbf{Sets} $G(f) = \{\langle a, f(a) \rangle \in A \times B : a \in A\}$

It immediate that G takes objects in **Sets** to objects in **Rel**.

Let $f: A \to B$ be an arrow of **Sets**. G(f) is by definition a subset of the product of $A \times B$, and hence is an arrow $A \to B$ in **Rel**.

First, we show G preserves domains and codomains.

$$G(f:A\to B) = \{\langle a, f(a) \rangle \in A \times B : a \in A\}$$

$$\subset A \times B$$

Second, we show G preserves identities.

$$G(1_A) = \{ \langle a, 1_A(a) \rangle \in A \times A : a \in A \}$$
$$= \{ \langle a, a \rangle \in A \times A : a \in A \}$$

Third, we show G preserves compostions. Let $f: A \to B, g: B \to C$.

$$G(g \circ f) = \{ \langle a, g \circ f(a) \rangle \in A \times C : a \in A \}$$

$$= \{ \langle a, c \rangle \in A \times C : \exists b (f(a) = b \& g(b) = c) \}$$

$$= \{ \langle a, c \rangle \in A \times C : \exists b (\langle a, b \rangle \in G(f) \& \langle b, c \rangle \in G(g)) \}$$

$$= G(f) \circ G(g)$$