

Foundations of Robotics

Lec 4: Rigid-Body Motions (Transformation)

主讲人 滕瀚哲 美国加州大学河滨分校 ARCS实验室博士

\$ Outline

- 1. Homogeneous Transformation Matrices
- 2. Twists
- 3. Exponential Coordinate Representation of Rigid-Body Motions
- 4. Wrenches
- 5. Homework

\$ Outline

- 1. Homogeneous Transformation Matrices
- 2. Twists
- 3. Exponential Coordinate Representation of Rigid-Body Motions
- 4. Wrenches
- 5. Homework

Homogeneous Transformation Matrices

In the previous lecture, we discussed how to describe rotations in rigid-body motions. In this lecture, we discuss general rigid-body motions that include translations.

Example: how to describe the configuration of $\{b\}$ relative to $\{s\}$?

Define $p \in \mathbb{R}^3$ and $R \in SO(3)$ as

$$p = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} \quad R = [\hat{\mathbf{x}}_b \ \hat{\mathbf{y}}_b \ \hat{\mathbf{z}}_b] = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example values:

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Homogeneous Transformation Matrices

Definition: The Special Euclidean Group SE(3), a.k.a. the group of rigid-body motions or homogeneous transformation matrices, is the set of all 4×4 real matrices T of the form

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where $R \in SO(3)$ and $p \in \mathbb{R}^3$ is a column vector.

Recall that the rotation matrix $R \in SO(3)$ has to satisfy

- (1) $R^{T}R = I$
- (2) $\det R = 1$

$$\mathbf{r} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \\
= \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Homogeneous Transformation Matrices

Definition: The Special Euclidean Group SE(2) is the set of all 3×3 real matrices T of the form

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix}$$

A matrix $T \in SE(2)$ is always of the form

$$T = \begin{bmatrix} r_{11} & r_{12} & p_1 \\ r_{21} & r_{22} & p_2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & p_1 \\ \sin \theta & \cos \theta & p_2 \\ 0 & 0 & 1 \end{bmatrix}$$

where $\theta \in [0, 2\pi)$.

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Properties of Transformation Matrices

Group Axioms

- Closure: $T_1T_2 \in SE(n)$
- Associativity: $(T_1T_2)T_3 = T_1(T_2T_3)$
- Identity element: exists I such that TI = IT = T
- Inverse element: exists T^{-1} such that $TT^{-1} = T^{-1}T = I$

Propositions

•
$$T^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^{\mathsf{T}} & -R^{\mathsf{T}}p \\ 0 & 1 \end{bmatrix}$$

- $T_1T_2 \neq T_2T_1$ (generally not commutative)
- ||Tx Ty|| = ||x y|| (length preserving)
- $\langle Tx Tz, Ty Tz \rangle = \langle x z, y z \rangle$ (angle preserving)

* Recall in linear algebra that how to compute the inverse of a 2×2 matrix:

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

口诀: 主对调, 次变号, 除行列

- * || · || denotes Euclidean norm.
- * The notation of Tx implies the use of homogeneous coordinates, where a '1' is implicitly appended to x, making it a four-dimensional vector.
- * This operation can be written explicitly as $T\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Rx + p \\ 1 \end{bmatrix}$. Therefore, when we write Tx, we mean Rx + p.
- * $\langle \cdot, \cdot \rangle$ denotes Euclidean inner product.

As was the case for rotation matrices, there are three major uses for a transformation matrix T. In summary, it can be thought of as a representation, or as an operator.

As a representation, it can

(1) represent the configuration (position and orientation).

As an operator, it can

- (2) change the reference frame (of a vector or a frame),
- (3) displace a vector or a frame (in its current frame).

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(1) Represent a configuration (position and orientation)

- Subscript convention: T_{sb} represents the configuration of frame $\{b\}$ relative to frame $\{s\}$.
- The inverse of a transformation matrix $T^{-1} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R^{\mathsf{T}} & -R^{\mathsf{T}}p \\ 0 & 1 \end{bmatrix}$

$$R_{sb} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad p_{sb} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$T_{sb} = \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{bs} = \begin{bmatrix} R_{sb}^{\mathsf{T}} & -R_{sb}^{\mathsf{T}} p_{sb} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(2) Change the reference frame (of a vector or a frame)

$$T_{sb} = \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{bc} = \begin{bmatrix} 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Subscript cancellation: for matrix multiplication

$$T_{ab}T_{bc}T_{cd}T_{de} = T_{ab}T_{bc}T_{cd}T_{de} = T_{ae}$$
Known T_{sb} , $T_{bc} \Longrightarrow T_{sc} = T_{sb}T_{bc}$
Known T_{sb} , $T_{cb} \Longrightarrow T_{sc} = T_{sb}T_{bc} = T_{sb}T_{cb}^{-1}$

$$T_{sc} = T_{sb}T_{bc} = \begin{bmatrix} 0 & -1 & 0 & -2 \\ 0 & 0 & -1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(2) Change the reference frame (of a vector or a frame)

$$p_b = \begin{bmatrix} -1\\0\\0 \end{bmatrix}$$

$$T_{sb} = \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• <u>Subscript cancellation</u>: for a vector multiplied by a matrix

$$T_{ab}p_b = T_{ab}p_b = p_a$$

Known
$$T_{sb}$$
, $p_b \Longrightarrow p_s = T_{sb}p_b$

Known
$$T_{bs}$$
, $p_b \Longrightarrow p_s = T_{sb}p_b = T_{bs}^{-1}p_b$

$$\begin{bmatrix} p_s \\ 1 \end{bmatrix} = T_{sb} \begin{bmatrix} p_b \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow p_s = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

(3) Displace a vector or a frame (in its current frame)

$$Rot(\widehat{\omega}, \theta) = \begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}$$

$$\text{Rot}(\widehat{\omega}, \theta) = \begin{bmatrix} n & 0 \\ 0 & 1 \end{bmatrix}$$

$$p_s = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$p_s = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$Trans(p) = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \text{Trans}(p) \text{Rot}(\widehat{z}, 90^\circ)$$

$$Eubscript cancellation does not apply.$$

$$T = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Subscript cancellation does not apply.
- Rot($\widehat{\omega}$, θ): a rotation of angle θ about unit axis $\widehat{\omega}$.
- Trans(p): a translation by vector p.

Known
$$T, p_S \Longrightarrow p_S' = Tp_S = \operatorname{Trans}(p)\operatorname{Rot}(\widehat{\omega}, \theta)p_S$$

$$p_{s} = \begin{bmatrix} -1\\0\\0 \end{bmatrix} \qquad p = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

$$T = \operatorname{Trans}(p)\operatorname{Rot}(\hat{z}, 90^{\circ})^{*}$$

$$= \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p_s' = Tp_s = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

*
$$T = \text{Trans}(p) \text{Rot}(\widehat{\omega}, \theta)$$
 follows our definition $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$, whereas $T = \text{Rot}(\widehat{\omega}, \theta) \text{Trans}(p)$ leads to $T = \begin{bmatrix} R & Rp \\ 0 & 1 \end{bmatrix}$.

(3) Displace a vector or a frame (in its current frame)

$$T_{sb} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{sb'} = TT_{sb}$$

$$= Trans(p)Rot(\hat{z}, 90^\circ)T_{sb}$$

$$\begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Pre-multiplication! (interpreted in fixed frame)

(3) Displace a vector or a frame (in its current frame)

$$T_{sb} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{sb''} = T_{sb}T$$

$$= T_{sb} \operatorname{Trans}(p) \operatorname{Rot}(\hat{z}, 90^{\circ})$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & -4 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

Summary of the uses of transformation matrices

(1) represent a configuration (position and orientation)

(3) displace a vector or a frame (in its current frame)

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

\$ Outline

- 1. Homogeneous Transformation Matrices
- 2. Twists
- 3. Exponential Coordinate Representation of Rigid-Body Motions
- 4. Wrenches
- 5. Homework

Recall what we have discussed about angular velocity in the previous lecture.

	Angular velocity	Relations between {s} and {b}
Vector Representation	$\omega = \widehat{\omega}\dot{\theta}$	$\omega_s = R_{sb}\omega_b$ $\omega_b = R_{sb}^{T}\omega_s$
Matrix Representation	$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$ $\dot{R} = \omega \times R = [\omega]R$	$[\omega_s] = \dot{R}_{sb} R_{sb}^{T}$ $[\omega_b] = R_{sb}^{T} \dot{R}_{sb}$

Twists

We now consider both the linear and angular velocities of a moving frame!

Let's start with the counterpart of $[\omega_b] = R_{sb}^{\mathsf{T}} \dot{R}_{sb}$ for transformation matrices.

$$T_{sb}^{-1}\dot{T}_{sb} = \begin{bmatrix} R_{sb}^{\mathsf{T}} & -R_{sb}^{\mathsf{T}}p_{sb} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R}_{sb} & \dot{p}_{sb} \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} R_{sb}^{\mathsf{T}}\dot{R}_{sb} & R_{sb}^{\mathsf{T}}\dot{p}_{sb} \\ 0 & 0 \end{bmatrix} \xrightarrow{\text{linear velocity of } \{b\} \text{ in } \{s\}}$$

$$= \begin{bmatrix} [\omega_b] & v_b \\ 0 & 0 \end{bmatrix} \xrightarrow{\text{linear velocity of } \{b\} \text{ in } \{b\}}$$

Define the <u>spatial velocity in the body frame</u>, or simply the **body twist**, to be $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} \in \mathbb{R}^6$.

Let
$$[\mathcal{V}_b] = T_{sb}^{-1} \dot{T}_{sb} = \begin{bmatrix} [\omega_b] & v_b \\ 0 & 0 \end{bmatrix} \in se(3)$$
 • We have overloaded the bracket notation! • This is the matrix representation of a twist!

\$ Twists

Now that we have a physical interpretation for $T_{sb}^{-1}\dot{T}_{sb}$, let us evaluate $\dot{T}_{sb}T_{sb}^{-1}$:

$$\dot{T}_{sb}T_{sb}^{-1} = \begin{bmatrix} \dot{R}_{sb} & \dot{p}_{sb} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} R_{sb}^{\mathsf{T}} & -R_{sb}^{\mathsf{T}} p_{sb} \\ 0 & 1 \end{bmatrix} \\
= \begin{bmatrix} \dot{R}_{sb}R_{sb}^{\mathsf{T}} & \dot{p}_{sb} - \dot{R}_{sb}R_{sb}^{\mathsf{T}} p_{sb} \\ 0 & 0 \end{bmatrix} \\
= \begin{bmatrix} [\omega_s] & v_s \\ 0 & 0 \end{bmatrix} \xrightarrow{\text{NOT the linear velocity of } \{b\} \text{ in } \{s\}}$$

the **spatial twist**, to be
$$\mathcal{V}_S = \begin{bmatrix} \omega_S \\ v_S \end{bmatrix} \in \mathbb{R}^6$$
.

Let
$$[\mathcal{V}_s] = \dot{T}_{sb} T_{sb}^{-1} = \begin{bmatrix} [\omega_s] & v_s \\ 0 & 0 \end{bmatrix} \in se(3)$$

* The interpretation of v_s : we can rewrite $v_s = \dot{p}_{sb} - \omega_s \times p_{sb} = \dot{p}_{sb} + \omega_s \times (-p_{sb})$. Imagining the moving body to be infinitely large, v_s is the instantaneous velocity of the point on this body currently at the fixed-frame origin, expressed in the fixed frame.

 v_b is the linear velocity of a point at the origin of $\{b\}$ expressed in $\{b\}$; v_s is the linear velocity of a point at the origin of $\{s\}$ expressed in $\{s\}$.

\$ Twists

Let's have a brief summary about angular velocity and twist.

	Vector Representation	Matrix Representation	Relations between {s} and {b}
Angular Velocity	$\omega = \widehat{\omega}\dot{\theta} \in \mathbb{R}^3$	$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}_{3\times 3} \in so(3)$	$\omega_{s} = R_{sb}\omega_{b}$ $\omega_{b} = R_{sb}^{T}\omega_{s}$ $[\omega_{s}] = \dot{R}_{sb}R_{sb}^{T}$ $[\omega_{b}] = R_{sb}^{T}\dot{R}_{sb}$
Twist	$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$	$[\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}_{4 \times 4} \in se(3)$	$[\mathcal{V}_s] = \dot{T}_{sb} T_{sb}^{-1}$ $[\mathcal{V}_b] = T_{sb}^{-1} \dot{T}_{sb}$ $?$ $\mathcal{V}_s \leftrightarrow \mathcal{V}_b$

Twists

In matrix representation, the relations between \mathcal{V}_s and \mathcal{V}_h are as follows.

$$[\mathcal{V}_b] = T_{sb}^{-1} \dot{T}_{sb} = T_{sb}^{-1} [\mathcal{V}_s] T_{sb}$$

$$[\mathcal{V}_s] = \dot{T}_{sb} T_{sb}^{-1} = T_{sb} [\mathcal{V}_b] T_{sb}^{-1}$$

Writing out the products explicitly, we have

$$[\mathcal{V}_s] = \begin{bmatrix} R_{sb}[\omega_b] R_{sb}^\mathsf{T} & -R_{sb}[\omega_b] R_{sb}^\mathsf{T} p_{sb} + R_{sb} v_b \\ 0 & 0 \end{bmatrix}$$

Applying
$$R[\omega]R^{\top} = [R\omega]$$
 and $-[\omega]p = [p]\omega$, and recalling $[\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}_{4\times 4}$, we have

$$\begin{bmatrix} \begin{bmatrix} \omega_s \end{bmatrix} & v_s \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} R_{sb}\omega_b \end{bmatrix} & [p_{sb}]R_{sb}\omega_b + R_{sb}v_b \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \omega_s \\ v_s \end{bmatrix} = \begin{bmatrix} R_{sb} & 0 \\ [p_{sb}]R_{sb} & R_{sb} \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$$

It is worth assigning a name to this matrix that relates \mathcal{V}_s and $\mathcal{V}_h!$

Twists

Given
$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \in SE(3)$$
, its **adjoint representation** [Ad_T] is

$$[\mathrm{Ad}_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}.$$

With this, if we are provided T_{sb} and V_b , then $V_s = \begin{bmatrix} Ad_{T_{sb}} \end{bmatrix} V_b = \begin{bmatrix} R_{sb} & 0 \\ [p_{sb}]R_{sb} & R_{sb} \end{bmatrix} V_b$.

Properities

- $\left[\operatorname{Ad}_{T_1}\right]\left[\operatorname{Ad}_{T_2}\right] = \left[\operatorname{Ad}_{T_1T_2}\right]$
- $[\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T^{-1}}] = \begin{bmatrix} R^{\mathsf{T}} & 0 \\ -R^{\mathsf{T}}[p] & R^{\mathsf{T}} \end{bmatrix}$

The second property follows from the first on choosing $T_1 = T^{-1}$ and $T_2 = T$.

It also indicates that, if we are provided T_{sb} and V_s , then $V_b = [Ad_{T_{sb}}]^{-1} V_s = [Ad_{T_{bc}}] V_s$.

\$ Twists

Let's have a brief summary about angular velocity and twist.

	Vector Representation	Matrix Representation	Relations between {s} and {b}
Angular Velocity	$\omega = \widehat{\omega}\dot{\theta} \in \mathbb{R}^3$	$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}_{3\times 3} \in so(3)$	$\omega_{s} = R_{sb}\omega_{b}$ $\omega_{b} = R_{sb}^{T}\omega_{s}$ $[\omega_{s}] = \dot{R}_{sb}R_{sb}^{T}$ $[\omega_{b}] = R_{sb}^{T}\dot{R}_{sb}$
Twist	$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$	$[\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}_{4 \times 4} \in se(3)$	$\mathcal{V}_{s} = [\mathrm{Ad}_{T_{sb}}] \mathcal{V}_{b}$ $\mathcal{V}_{b} = [\mathrm{Ad}_{T_{bs}}] \mathcal{V}_{s}$ $[\mathcal{V}_{s}] = \dot{T}_{sb} T_{sb}^{-1}$ $[\mathcal{V}_{b}] = T_{sb}^{-1} \dot{T}_{sb}$

Recall that an angular velocity ω can be viewed as $\omega = \widehat{\omega}\dot{\theta}$, which rotates about a unit axis. A twist \mathcal{V} can also be interpreted as a **screw axis** \mathcal{S} and a velocity $\dot{\theta}$ about the screw axis.

One representation of a screw axis S is the collection $\{q, \hat{s}, h\}$, where

• $q \in \mathbb{R}^3$ is any point on the axis,

(in the plane orthogonal to \hat{s})

- \hat{s} is a unit vector in the direction of the axis, and
- h is the screw pitch (pitch = linear speed / angular speed).

 $-\hat{s}\dot{\theta} \times q$ \hat{q} \hat{q} \hat{q} \hat{q} \hat{q}

We can express twist V in terms of screw $\{q, \hat{s}, h\}$ and velocity $\dot{\theta}$ as

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \omega \\ -\omega \times q + \dot{q} \end{bmatrix} = \begin{bmatrix} \hat{s}\dot{\theta} \\ -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta} \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix} \dot{\theta} = \mathcal{S}\dot{\theta}$$
linear motion at the origin translation along induced by rotation about the axis the screw axis

In this representation, q is not unique (any point on the axis), and h can be infinite if $\omega = 0$.

The other representation of a screw axis \mathcal{S} is a normalized version of twist $\mathcal{V} = (\omega, v)$.

Define the unit (normalized) screw axis $S = (S_{\omega}, S_{\nu}) \in \mathbb{R}^6$, where*

(1) if
$$\omega \neq 0$$
, then $S_{\omega} = \frac{\omega}{\|\omega\|}$, $S_{v} = \frac{v}{\|\omega\|}$, $\dot{\theta} = \|\omega\|$

(2) if
$$\omega = 0$$
, then $S_{\omega} = 0$, $S_{v} = \frac{v}{\|v\|}$, $\dot{\theta} = \|v\|$

In summary, there are three types of motion.

Motion	ω	h	\mathcal{S}_{ω}	\mathcal{S}_v	$\dot{ heta}$	Example
pure linear	$\omega = 0$	$h = \infty$	$S_{\omega} = 0$	$\ \mathcal{S}_v\ = 1$	$\dot{\theta} = v $	prismatic joint
pure rotation	$\omega \neq 0$	h = 0	$\ \mathcal{S}_{\omega}\ = 1$	$S_v = \frac{v}{\ \omega\ }$	$\dot{\theta} = \ \omega\ $	revolute joint
general rigid-body	$\omega \neq 0$	others	$\ \mathcal{S}_{\omega}\ = 1$	$S_v = \frac{v}{\ \omega\ }$	$\dot{\theta} = \ \omega\ $	/

^{*} To make it clear during the derivation, we use a different notation (S_{ω}, S_{v}) to define the unit screw axis S. In the textbook (Definition 3.24) and all other places when the meaning is clear from the context, we can define $S = (\omega, v)$ using the same notation as a general twist $V = (\omega, v)$.

Example: find the screw axis S provided that

•
$$q = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\hat{s} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, and $h = 1$

$$\mathcal{V} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix} \dot{\theta} = \mathcal{S}\dot{\theta}$$

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Example: find velocity $\dot{\theta}$ and the screw axis S in terms of $\{q, \hat{s}, h\}$, provided that

•
$$\mathcal{V} = (0, 0, 1, 2, 1, 0)^{\mathsf{T}}$$

• If
$$\omega \neq 0$$
, then $\dot{\theta} = \|\omega\|$, $\hat{s} = S_{\omega} = \frac{\omega}{\|\omega\|}$, $S_{v} = \frac{v}{\|\omega\|}$, $h = \frac{S_{\omega}^{\mathsf{T}} S_{v}}{\dot{\theta}}$

• If
$$\omega = 0$$
, then $\dot{\theta} = ||v||$, $\hat{s} = \mathcal{S}_v = \frac{v}{||v||}$, $h = \infty$

\$ Outline

- 1. Homogeneous Transformation Matrices
- 2. Twists
- 3. Exponential Coordinate Representation of Rigid-Body Motions
- 4. Wrenches
- 5. Homework

By analogy to the rotation case, we can define a matrix exponential and a matrix logarithm for general rigid-body motions.

Chasles-Mozzi theorem: every rigid-body displacement can be expressed as a displacement along a fixed screw axis S in space.

Exponential Coordinate Representation	Lie Group	Lie Algebra
$\exp: [\widehat{\omega}]\theta \in so(3) \to R \in SO(3)$ $\log: R \in SO(3) \to [\widehat{\omega}]\theta \in so(3)$	R	$ \widehat{\boldsymbol{\omega}} = \begin{bmatrix} 0 & -\widehat{\omega}_3 & \widehat{\omega}_2 \\ \widehat{\omega}_3 & 0 & -\widehat{\omega}_1 \\ -\widehat{\omega}_2 & \widehat{\omega}_1 & 0 \end{bmatrix} \boldsymbol{\theta} $
$\exp: [S]\theta \in se(3) \to T \in SE(3)$ $\log: T \in SE(3) \to [S]\theta \in se(3)$	$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$	$[\mathcal{S}]\theta = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \theta$

We can derive a closed-form expression for the matrix exponential $e^{[S]\theta}$.

$$e^{[S]\theta} = I + [S]\theta + [S]^{2}\frac{\theta^{2}}{2!} + [S]^{3}\frac{\theta^{3}}{3!} + \cdots$$

$$= I + \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}\theta + \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}^{2}\frac{\theta^{2}}{2!} + \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix}^{3}\frac{\theta^{3}}{3!} + \cdots$$

$$= \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}, G(\theta) = I\theta + [\omega]\frac{\theta^{2}}{2!} + [\omega]^{2}\frac{\theta^{3}}{3!} + \cdots$$

We can apply the identity $[\omega]^3 = -[\omega]$ to simplify $G(\theta)$.

$$G(\theta) = I\theta + [\omega] \frac{\theta^2}{2!} + [\omega]^2 \frac{\theta^3}{3!} + \cdots$$

$$= I\theta + \left(\frac{\theta^2}{2!} - \frac{\theta^4}{4!} + \frac{\theta^6}{6!} - \cdots\right) [\omega] + \left(\frac{\theta^3}{3!} - \frac{\theta^5}{5!} + \frac{\theta^7}{7!} - \cdots\right) [\omega]^2$$

$$= I\theta + (1 - \cos\theta) [\omega] + (\theta - \sin\theta) [\omega]^2$$

Matrix Exponential of Rigid-Body Motions

Let $S = (\omega, v)$ be a (unit) screw axis.

If $\|\omega\| = 1$, then for any distance $\theta \in \mathbb{R}$ traveled along the axis,

$$e^{[S]\theta} = \begin{bmatrix} e^{[\omega]\theta} & (I\theta + (1-\cos\theta)[\omega] + (\theta-\sin\theta)[\omega]^2)v \\ 0 & 1 \end{bmatrix} \in SE(3)$$

If $\omega = 0$ and ||v|| = 1, then

$$e^{[\mathcal{S}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$$

Recall that the matrix exponential of rotations (a.k.a. Rodrigues' formula) is

$$e^{[\widehat{\omega}]\theta} = I + \sin\theta \, [\widehat{\omega}] + (1 - \cos\theta)[\widehat{\omega}]^2 \in SO(3)$$

Matrix Logarithm of Rigid-Body Motions

Given $T = (R, p) \in SE(3)$, find a $\theta \in [0, \pi]$ and a (unit) screw axis $S = (\omega, v) \in \mathbb{R}^6$ (where at least one of $\|\omega\|$ and $\|v\|$ is unity) such that $e^{[S]\theta} = T$.

- The vector $S\theta \in \mathbb{R}^6$ comprises the exponential coordinates for T.
- The matrix $[S]\theta \in se(3)$ is the matrix logarithm of T.
- (a) If R = I then set $\omega = 0$, $v = \frac{p}{\|p\|}$, and $\theta = \|p\|$.
- (b) Otherwise, use the matrix logarithm on SO(3) to determine ω (written as $\widehat{\omega}$ in the SO(3) algorithm) and θ for R. Then v is calculated as

$$v = G^{-1}(\theta)p,$$

where

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\omega]^2.$$

\$ Outline

- 1. Homogeneous Transformation Matrices
- 2. Twists
- 3. Exponential Coordinate Representation of Rigid-Body Motions
- 4. Wrenches
- 5. Homework

\$ Wrenches

Recall in physics that a force f can create a torque or moment m at a point r:

$$m = r \times f$$

As with twists, we can merge the moment and force into a single six-dimensional <u>spatial force</u>, or <u>wrench</u>, expressed in the body frame, \mathcal{F}_h :

$$\mathcal{F}_b = \begin{bmatrix} m_b \\ f_b \end{bmatrix} \in \mathbb{R}^6$$

Recall that the dot product of a force and a velocity is a power, and power is a coordinate-independent quantity. From this, we know that

$$\mathcal{V}_b^{\mathsf{T}} \mathcal{F}_b = \mathcal{V}_s^{\mathsf{T}} \mathcal{F}_s$$

Wrenches

From the previous lecture we know that $\mathcal{V}_s = [\mathrm{Ad}_{T_{sh}}]\mathcal{V}_b$.

With this, we can derive

$$\begin{aligned} \mathcal{V}_b^{\mathsf{T}} \mathcal{F}_b &= \mathcal{V}_s^{\mathsf{T}} \mathcal{F}_s \\ &= \left(\left[\mathrm{Ad}_{T_{sb}} \right] \mathcal{V}_b \right)^{\mathsf{T}} \mathcal{F}_s \\ &= \mathcal{V}_b^{\mathsf{T}} \left[\mathrm{Ad}_{T_{sb}} \right]^{\mathsf{T}} \mathcal{F}_s \end{aligned}$$

Since this must hold for all \mathcal{V}_b , this simplifies to

$$\mathcal{F}_b = \left[\operatorname{Ad}_{T_{Sb}} \right]^{\mathsf{T}} \mathcal{F}_{S}$$

Going the other way,

$$\mathcal{F}_{\mathcal{S}} = \left[\operatorname{Ad}_{T_{bs}} \right]^{\mathsf{T}} \mathcal{F}_{b}$$

\$ Outline

- 1. Homogeneous Transformation Matrices
- 2. Twists
- 3. Exponential Coordinate Representation of Rigid-Body Motions
- 4. Wrenches
- 5. Homework

Homework

(1) Which of the following matrices are transformation matrices? Explain why (not).

$$T_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad T_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad T_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad T_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Textbook Exercises: 3.15(c), 3.16*, 3.17, 3.26, 3.27
- (3) A supplementary video from 3Blue1Brown (recommended to watch): the geometric interpretation of matrix exponential
 - https://www.bilibili.com/video/BV11y4y1b7c5/
 - https://www.youtube.com/watch?v=O85OWBJ2ayo

^{*} Hint about 3.16 (i), (j): You may use a calculator or any programming language/software to facilitate computation.

Thanks for Listening

