Baze podataka

Model podataka tipova entiteta i poveznika

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

it

Model tipova entiteta i poveznika

- Entity-Relationship data model (ER model)
 - Rodonačelnik P. P. Chen (1976)
 - Chen, Peter Pin-Shan: *The entity-relationship model toward a unified view of data*, ACM Transactions on Database Systems, Vol. 1, No. 1, 1976.
 - Kasnija proširenja
 - semantička Extended ER model (EER model)
 - OO proširenja složeni tipovi podataka (domeni)
- Osnovni pojmovi ER modela (već uvedeni kroz osnovne pojmove BP)
 - obeležje i domen
 - tip entiteta i pojava tipa entiteta
 - tip poveznika i pojava tipa poveznika

Entitet i klasa entiteta

Entitet (realni entitet)

- jedinica posmatranja
- činilac (resurs) poslovanja u realnom sistemu

Klasa realnih entiteta

- skup "sličnih" entiteta
- skup entiteta koji poseduje zajedničko svojstvo
- formalno: $E = \{e_i \mid P(e_i)\}$

Entitet i klasa entiteta

Primer

- neka realni sistem predstavlja jedan fakultet
- neka je $P(e_i) := e_i$ je STUDENT
- skupu (klasi entiteta) Student pripadaju samo studenti, a ne i ostali ljudi (činioci) fakulteta

Klasa poveznika

- skup veza između klasa realnih entiteta ili prethodno identifikovanih klasa poveznika
- skup poveznika koji poseduje isto svojstvo
- formalno:

$$S = \{(e_1, ..., e_m) \mid P(e_1, ..., e_m)\}$$

- $-e_{i} (i \in \{1,..., m\})$
 - jedan realni entitet ili prethodno uspostavljeni poveznik

Primer

- Klase entiteta
 - Radnik = {Ana, Aco, Eva},
 - Radno_mesto = {Programer, Projektant, Operater}
- Uočena osobina
 - P(e_i, e_i) ::= "Radnik e_i radi na radnom mestu e_i"
 - P(e_i, e_i) definiše klasu poveznika Radi
- Jedan poveznik klase Radi: (Ana, Programer)

Primer

- Klase entiteta
 - Radnik = {Ana, Aco, Eva},
 - Projekat = {Lido, Osig, RazvojIS}
- Uočene osobine
 - $P_1(e_i, e_i) ::=$ "Radnik e_i radi na projektu e_i "
 - $P_2(e_i, e_i) ::=$ "Radnik e_i rukovodi projektom e_i "
 - P₁(e_i, e_i) definiše klasu poveznika Radi
 - $P_2(e_i, e_j)$ definiše klasu poveznika *Rukovodi*

Primer

- Klase entiteta
 - Radnik = {Ana, Aco, Eva},
 - Projekat = {Lido, Osig, RazvojIS}
- Radi = {(Ana, Lido), (Aco, Lido), (Aco, Osig)}
- Rukovodi = {(Ana, RazvojIS), (Eva, Lido)}

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

it

Strukturalna komponenta

- Primitivni koncepti strukturalne komponente ER modela podataka
 - vrednost
 - (predefinisani) domen
 - obeležje

Vrednost

Vrednost

bilo koja konstanta, iz bilo kog skupa

Domen

- specifikacija skupa mogućih vrednosti obeležja
 - sa definisanim dozvoljenim relacijama i operacijama nad datim skupom
- vrste
 - predefinisani (primitivni)
 - korisnički definisani (izvedeni)

Predefinisani (primitivni) domen

- predstavlja predefinisani, atomični tip podataka
 - ugrađen u definiciju modela podataka
 - praktično, zavisi od softverskog okruženja koje podržava izabrani (ER) model podataka
- primeri
 - teoretski: N, Z, Q, R, neograničeni znakovni, boolean
 - praktični: integer, float, double, decimal, boolean, string

Korisnički definisani (izvedeni) domen

- definiše se
 - korišćenjem već postojećeg domena
 - predefinisanog, ili
 - korisnički definisanog
 - putem pravila za definisanje domena, ugrađenih u definiciju (ER) modela podataka
- može predstavljati skup
 - · atomičnih podataka, ili
 - složenih podataka
- primeri
 - *DOCENA* ::= $\{d \in \mathbb{N} \mid d \ge 5 \land d \le 10\}$
 - *DNAZIV* ::= String(30)
 - DMONEY ::= Decimal(12, 2)

Korisnički definisani (izvedeni) domen

- pravila za definisanje, ugrađena u definiciju (ER) modela podataka
 - pravilo nasleđivanja
 - pravilo tipa sloga
 - pravilo tipa skupa (kolekcije)
 - pravilo tipa izbora
- pravila definišu ugrađene relacije i operacije
- primeri
 - DPOZOCENA ::= {d ∈ DOCENA | d ≥ 6}
 - DTSLOG ::= Tuple{ $(A_1: D_1),..., (A_n: D_n)$ }
 - DTSKUP ::= Set{D_e}
 - DIZBOR ::= Choice{ $(A_1: D_1),..., (A_n: D_n)$ }

Obeležje

Obeležje (atribut)

- osobina klase realnih entiteta
- iskazana putem predikata $P(e_i)$
- oznake:
 - A, B, X, W
 - BRI, Datum_Prispeća, JMBG, Prz, Ime

Domen obeležja

- Pravilo ER modela podataka
 - Svakom obeležju se pridružuje tačno jedan domen
 - Notacija
 - Dom(A), ili (A : D)
 - oznaka za domen obeležja A
 - obeležju A pridružen je domen D
 - dom(A)
 - oznaka za skup mogućih vrednosti obeležja, definisan sa D
 - primeri
 - Dom(Ocena) = DOCENA
 - Ocena prima vrednost iz $dom(Ocena) = \{5, 6, 7, 8, 9, 10\}$
 - (PPNaziv : DNAZIV)
 - PPNAZIV prima vrednost iz skupa, predstavljenog sa String(30)
 - » skupa svih nizova znakova, nad propisanim kodnim rasporedom, do maksimalne dužine 30

it

Strukturalna komponenta

- Izvedeni koncepti strukturalne komponente ER modela podataka
 - podatak
 - tip entiteta
 - pojava tipa entiteta
 - tip poveznika
 - pojava tipa poveznika

Podatak

Podatak - uređena četvorka

(Entitet, Obeležje, Vreme, Vrednost)

- Entitet
 - identifikator (oznaka) entiteta
- Obeležje
 - oznaka (mnemonik) obeležja
- Vreme
 - vremenska odrednica
- Vrednost
 - jedna vrednost iz skupa dom(A)
- Skraćeno (ako je poznat kontekst)

(Obeležje, Vrednost), ili (Vrednost)

Tip entiteta

Tip entiteta (TE)

- Model klase realnih entiteta u IS
- Nastaje od obeležja klase realnih entiteta, bitnih za realizaciju ciljeva IS
- Predstavlja uređenu strukturu:

N(Q, C)

- N
- $Q = \{A_1, ..., A_n\}$
- C

- naziv TE
- skup obeležja TE
- skup ograničenja TE
- $K = \{K_1, ..., K_m\} \subseteq C$ skup ključeva TE $(K \neq \emptyset)$

Pojava tipa entiteta

Pojava tipa entiteta

- model jednog realnog entiteta u IS
- za tip entiteta N(Q, C), $Q = \{A_1, ..., A_n\}$, pojava p(N) predstavlja skup podataka:

$$p(N) = \{(A_1, a_1), ..., (A_n, a_n)\}$$

- za svaki A_i∈ Q mora biti a_i ∈ dom(A_i)
- skup svih pojava p(N) mora zadovoljavati skup ograničenja C
- ako se u Q uvede linearno uređenje obeležja, tada

$$p(N) = (a_1, ..., a_n)$$

Tip poveznika (TP)

- model veza između pojava povezanih TE ili TP
- uređena struktura:

$$N(N_1, N_2, ..., N_m, Q, C)$$

- N naziv tipa poveznika
- $N_i (i \in \{1,..., m\})$ povezani tip
 - tip entiteta, ili
 - prethodno definisani tip poveznika
- $Q = \{B_1, ..., B_n\}$

skup obeležja TP

• C

- skup ograničenja TP
- $K = \{K_1, ..., K_k\} \subseteq C$ skup ključeva TP $(K \neq \emptyset)$

Tip poveznika

Tip poveznika

- Identifikator tipa poveznika predstavlja
 - niz

$$(N_1, N_2, ..., N_m)$$

ili neki neprazan podniz niza (N₁, N₂,..., N_m)

Ključ tipa poveznika

- izveden na osnovu ključeva povezanih tipova $(N_1, N_2, ..., N_m)$
- Neka je K_i ključ tipa N_i
- Ključ tipa poveznika je vrlo često, ali ne uvek, pravi ili nepravi podskup unije ključeva $K_1 \cup ... \cup K_m$
 - videti integritetnu komponentu ER modela podataka

Tip poveznika

Tip poveznika

- $-N_1, N_2, ..., N_m$ ne moraju biti međusobno različiti tipovi
- Svaki tip N_i u okviru tipa poveznika N ima svoju ulogu
- Nad istim tipovima $N_1, N_2, ..., N_m$ se može definisati više različitih tipova poveznika
- m arnost poveznika
- -m=2 binarni tip poveznika

Pojava tipa poveznika

Pojava tipa poveznika

$$N(N_1, N_2, ..., N_m, \{B_1, ..., B_k\}, C)$$

- reprezentuje jedan poveznik u realnom sistemu
- oznaka:
 - p(N, Vreme), u zadatom trenutku vremena, ili samo
 - p(N), ako se vremenska odrednica ne navodi
- predstavlja skup podataka:

$$p(N) = (p_1, ..., p_m)(N) = \{(B_1, b_1), ..., (B_k, b_k)\}$$

- Za svaki B_i mora biti b_i ∈ dom(B_i)
- skup svih pojava p(N) mora zadovoljavati skup ograničenja C

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

- Pogodna dijagramska tehnika za predstavljanje modela statičke strukture realnog sistema
- ER model podataka uživa popularnost zbog dijagramskog načina prikaza šeme BP
- Postoji više različitih načina za označavanje koncepata ER modela podataka

Tip entiteta:

Naziv_TE

Tip poveznika:

Domen:

· Obeležje:

 Kada se domeni na dijagramu ne prikazuju, vizuelna reprezentacija obeležja je:

Obeležja primarnog ključa TE se podvlače

31 / 140

- Nivoi detaljnosti prikaza ER dijagrama
 - nivo naziva tipova
 - globalni nivo prikaza
 - nivo naziva obeležja (i domena)
 - detaljni nivo prikaza

- Nivo detaljnosti naziva
 - dva tipa poveznika između istih tipova entiteta

ER model podataka 32 / 140

- Nivo detaljnosti naziva
 - tip poveznika reda 3 (n-arni tip poveznika)

ER model podataka 33 / 140

- Nivo detaljnosti naziva
 - rekurzivni, binarni tip poveznika

ER model podataka 34 / 140

- Nivo detaljnosti obeležja (i domena)
 - skup obeležja jednog tipa entiteta

ER model podataka 35 / 140

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

Integritetna komponenta

- Tipovi ograničenja u ER modelu podataka
 - ograničenje domena
 - ograničenje pojave tipa
 - kardinalitet tipa poveznika
 - ograničenje ključa (integritet tipa)
 - · za tip entiteta i
 - tip poveznika

Specifikacija domena

- struktura

- D
 - naziv domena
- *id*(*D*)
 - ograničenje domena
- Predef
 - predefinisana vrednost domena

Ograničenje domena id(D)

- definiše se primenom izabranog pravila za specificiranje korisnički definisanog domena
 - pravila nasleđivanja
 - pravila tipa sloga
 - pravila tipa skupa (kolekcije)
 - pravila tipa izbora
- izabrani slučaj u ovoj temi
 - definisanje ograničenja domena primenom pravila nasleđivanja

Pravilo nasleđivanja i id(D)

– ograničenje "nasleđenog" domena je struktura

$$id(D) = (Tip, Dužina, Uslov)$$

- Tip
 - tip podatka
 - » oznaka primitivnog domena, ili
 - » oznaka prethodnog, korisnički definisanog domena
- Dužina
 - dužina tipa podatka
- Uslov
 - logički uslov koji svaka vrednost domena mora da zadovolji

Tip

- jedina obavezna komponenta specifikacije
- nasleđuju se sva ograničenja, relacije i operacije, definisane nad izabranim tipom

Dužina

 navodi se samo za tipove podataka (primitivne domene) koji to zahtevaju

Uslov

 u (ER) modelu podataka mora biti definisana sintaksa za zadavanje logičkih uslova

Predef

mora da zadovolji ograničenja tipa, dužine i uslova

- Interpretacija integriteta domena
 - moguća za bilo koju vrednost konstantu

- Primeri
 - DPREZIME((String, 30, Δ), Δ)
 - DDATUM((Date, Δ , $d \geq$ '01.01.1900'), Δ)
 - DOCENA((Number, 2, $d \ge 5 \land d \le 10$), ∆)
 - DPOZOCENA((DOCENA, Δ , $d \ge 6$), 6)

Nula vrednost

Nula (nedostajuća) vrednost

- specijalna vrednost obeležja
- označava se simbolom ω
 - u praksi, to je oznaka NULL
- formalna interpretacija nula vrednosti
 - "vrednost obeležja nedostaje nije zadata"
- moguća značenja nula vrednosti
 - nepoznata postojeća vrednost obeležja
 - nepostojeća vrednost obeležja
 - neinformativna vrednost obeležja
- nekada se javlja potreba da obeležje, umesto vrednosti iz domena, poprimi vrednost ω

Ograničenje vrednosti obeležja

Specifikacija obeležja

- obeležje A∈Q, datog tipa N
- struktura

(id(N, A), Predef)

- *id*(*N*, *A*)
 - ograničenje vrednosti obeležja
- Predef
 - predefinisana vrednost obeležja

it

Ograničenje vrednosti obeležja

- Ograničenje vrednosti obeležja id(N, A)
 - definiše se za svako obeležje tipa
 - struktura

$$id(N, A) = (Domen, Null)$$

- Domen
 - oznaka (naziv) pridruženog domena obeležja
- Null ∈ {T, \bot }
 - T dozvola dodele nula vrednosti obeležju unutar N

l

Ograničenje vrednosti obeležja

- Domen i Null
 - obavezne komponente specifikacije
- Predef
 - ako se navede, onda je on važeći
 - u protivnom, važeći je *Predef* odgovarajućeg
 Domena, ili
 - prvog sledećeg nasleđenog domena, za koji je Predef definisan
- Interpretacija ograničenja
 - moguća za bilo koju vrednost obeležja

Ograničenje pojave tipa

Ograničenje pojave tipa

- definiše ograničenja na moguće vrednosti podataka unutar iste pojave TE ili TP
- predstavlja skup ograničenja vrednosti obeležja, kojem je pridodat logički uslov
- formalno, za tip N:

$$id(N) = (\{id(N, A) \mid A \in Q\}, Uslov)$$

- Q´- prošireni skup obeležja tipa
 - za TE je Q´= Q
 - za TP je $Q' = Q \cup K_p$, gde je K_p skup obeležja primarnog ključa TP

Ograničenje pojave tipa

Ograničenje pojave tipa

$$id(N) = (\{id(N, A) \mid A \in Q\}, Uslov)$$

- Uslov
 - logički uslov koji svaka pojava tipa mora da zadovolji
 - može, u ulozi operanda, da sadrži bilo koje obeležje proširenog skupa obeležja datog tipa
 - u (ER) modelu podataka mora biti definisana sintaksa za zadavanje logičkih uslova
- Interpretacija ograničenja pojave tipa
 - moguća za bilo koju pojavu tipa nad skupom obeležja, nad kojim je definisano

Primer

Radnik({MBR, PRZ, IME, ZAN, BPJZ}, {MBR})

Radnik	Domen	Null	Predef		
MBR	DMBR		Δ		
PRZ	DPRZ		Δ		
IME	DIME		Δ		
ZAN	DZAN		Δ		
BPJZ	DBPJZ	Т	Δ		
Uslov: $ZAN = 'prg' \Leftrightarrow BPJZ <> \omega$					

ER model podataka

Primer

Radnik({MBR, PRZ, IME, ZAN, BPJZ}, {MBR})

Domen	Tip	Dužina	Uslov	Predef
DMBR	Number	4	<i>d</i> ≥ 1	Δ
DPRZ	String	30	Δ	Δ
DIME	String	15	Δ	Δ
DZAN	String	3	Δ	Δ
DBPJZ	Number	2	<i>d</i> ≥ 0	0

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

Kardinalitet TP prema povezanom tipu

– par

(a, b)

- $a \in \{0, 1\}$
 - minimalni kardinalitet
- $b \in \{1, N\}, N \ge 2$
 - maksimalni kardinalitet
- ograničava u koliko pojava tipa poveznika može učestvovati jedna, bilo koja pojava povezanog tipa
 - minimalno (a) i
 - maksimalno (b)
- definiše se za svaki povezani tip

Primer

- Kardinaliteti prikazanog TP formalizuju ograničenja
 - (1, 1)
 - jedan radnik mora biti raspoređen na tačno jedno radno mesto
 - (0, N)
 - na jedno radno mesto može biti raspoređeno više radnika, ali ne mora ni jedan

- Tri opšte grupe maksimalnih kardinaliteta
 - -M:N
 - -N:1
 - -1:1
 - uticaj na formiranje ključeva tipa poveznika

- Primeri pravila definisanja i pisanja kardinaliteta na dijagramima
 - binarni tipovi poveznika

• Grupa M : N (više prema više):

ER model podataka 55 / 140

• Grupa M : N (više prema više):

ER model podataka 56 / 140

• Grupa M : N (više prema više):

ER model podataka 57 / 140

Grupa N : 1 (više prema jedan):

ER model podataka

Grupa N : 1 (više prema jedan):

ER model podataka 59 / 140

Grupa N : 1 (više prema jedan):

ER model podataka 60 / 140

Grupa N : 1 (više prema jedan):

ER model podataka

Grupa 1 : 1 (jedan prema jedan):

ER model podataka 62 / 140

Grupa 1 : 1 (jedan prema jedan):

ER model podataka

Grupa 1 : 1 (jedan prema jedan):

ER model podataka 64 / 140

Rekurzivni tip poveznika:

Rekurzivni tip poveznika:

ER model podataka

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

Integritet tipa

- Integritet tipa entiteta
 - ograničenje ključa
- Integritet tipa poveznika
 - niz naziva povezanih tipova, ili njegov neprazan podniz
 - ograničenje ključa

ER model podataka

Tri opšte grupe maksimalnih kardinaliteta

-M:N

-N:1

-1:1

uticaj na formiranje ključeva tipa poveznika

Grupa M : N (više prema više):

- Integritet TP (identifikator TP) Radi:
 - (Radnik, Projekat)
 - $-K_p = Mbr + Spr$

Grupa N : 1 (više prema jedan):

- Integritet TP (identifikator TP) Raspoređen:
 - (Radnik)
 - $-K_p = Mbr$

Grupa 1 : 1 (jedan prema jedan):

- Integritet TP (identifikator TP) Je:
 - (Radnik) i (Osiguranik)
 - $-K_1 = MBR i K_2 = BrPol$

Grupa M : N (više prema više) i rekurzivni TP:

- Integritet TP (identifikator TP) Sastoji se:
 - (Deo, Deo), tj.
 - (Deo(Ima komponente), Deo(Je komponenta za))
 - $-K_p = DeID+DeIDkom$
 - DelDkom preimenovano obeležje DelD
 - Semantika: DelD sa ulogom komponente ugradnje

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

it

N-arni tip poveznika (n > 2)

- Tip poveznika može da povezuje više od dva druga tipa
- N-arni tip poveznika
 - Određivanje kardinaliteta tipa poveznika reda n > 2:
 - za svaki od n povezanih tipova,
 - za bilo koju odabranu pojavu tipa,
 - » utvrđuje se koliko se minimalno i koliko se maksimalno puta javlja kao komponenta u pojavama tipa poveznika

N-arni tip poveznika (n > 2)

Primer:

- Tipovi entiteta: Student, Nastavnik, Predmet
- Ograničenja:
 - jedan nastavnik može predavati više predmeta za više studenata
 - jedan student može slušati više predmeta kod više nastavnika
 - jedan predmet može predavati više nastavnika za više studenata
 - postoje nastavnici, koji ne predaju ni jedan predmet bilo kom studentu
 - postoje studenti koji ne slušaju ni jedan predmet kod bilo kog nastavnika
 - ne postoje predmeti koje ne predaje ni jedan nastavnik ni jednom studentu

N-arni tip poveznika (n > 2)

• ER-dijagram:

N-arni tip poveznika (n > 2)

ER model podataka 78 / 140

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

Gerund

- glagolska imenica
- u ER modelu
 - tip entiteta dobijen transformacijom tipa poveznika, tj.
 - tip poveznika, koji predstavlja povezani tip u nekom drugom tipu poveznika
- dvojaka uloga gerunda, kao tipa
 - istovremeno i tip entiteta i tip poveznika
 - tip poveznika za neke druge, povezane tipove
 - tip entiteta u nekim drugim tipovima poveznika

- Dat je TP $N(N_1, N_2, ..., N_m, \{B_1, ..., B_k\}, C)$
 - neka je neki N_i , takođe, tip poveznika
 - N_i predstavlja gerund
 - N_i se ponaša kao TE u odnosu na N
- Geometrijska predstava gerunda u ER dijagramima

- Upotreba gerunda
 - kada ne mogu proizvoljne kombinacije pojava nekih tipova biti sadržane u pojavi posmatranog tipa poveznika i
 - postoji pravilo koje kombinacije pojava tih tipova mogu biti sadržane u pojavi posmatranog tipa poveznika
 - tip poveznika gerund uvodi se s ciljem modeliranja tog pravila

Upotreba gerunda

- Primer
 - entiteti klasa A, B i C su u međusobnim vezama tipa (a, b, c)
 - uvodi se tip poveznika ABC, između A, B i C
 - ne mogu svi (a, b) parovi entiteta iz A i B učestvovati u vezama (a, b, c), nad tipom ABC
 - postoji pravilo koji (a, b) parovi iz A i B mogu učestvovati u vezama (a, b, c), nad tipom ABC
 - uvodi se tip poveznika gerund AB
 - tip poveznika ABC povezuje AB i C
 - pojave tipa poveznika ABC zavise od egzistencije pojava tipa poveznika AB

84 / 140

- Upotreba gerunda
 - Primer

- Semantika

- entiteti klase A su u vezi sa entitetima klase B
 - dobijaju se (a, b) parovi
- neki (a, b) parovi su povezani sa nekim od (a, c) parova
 - dobijaju se (a, b, c) trojke, povezivanjem određenih (a, b) i (a, c) parova sa istim a komponentama

- Naizgled alternativni ER dijagram
 - isti ključevi svih TP, ali
 - različita semantika
 - pojave TP ABC ne zavise od egzistencije pojava TP AB i AC

Primer

- Klase entiteta
 - Radnik, Mašina i Deo
- Odnosi:
 - radnik r je osposobljen za rad na mašini m
 - na mašini m se može proizvesti deo d
 - radnik r, na nekim od onih mašina m, za koje je osposobljen, izrađuje neke od onih delova d, koji se na mašini m mogu proizvesti
 - radnik r održava mašinu m
 - radnici na održavanju mogu, a ne moraju da rade na proizvodnji delova

vapomena • radnik *r* koji

 radnik r, koji je osposobljen za mašinu m i radnik koji održava mašinu m, mogu biti različiti, jer su TP Održava i gerund Osposobljen međusobno nezavisni

Agregacija

- obezbeđuje objedinjavanje složenijih ER struktura
- cela ER struktura se posmatra kao jedan tip entiteta
 - predstavlja povezani tip za neki TP
 - može predstavljati korisnički pogled na BP ("virtuelni" TE)
- najjednostavniji primer agregacije
 - gerund

- Geometrijska predstava agregacije u ER dijagramima

Agregacija

Primer

- alternativni dijagram u ovom primeru:

ER model podataka 91 / 140

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

Slabi tip entiteta

Slabi tip entiteta

- tip entiteta čije su pojave zavisne od pojava nekog drugog TE
- Vrste zavisnosti slabih TE
 - egzistencijalna
 - identifikaciona

Egzistencijalna zavisnost

Egzistencijalna zavisnost

- između pojava dva tipa entiteta
- postoji kada je minimalni kardinalitet tipa poveznika
 (a) jednak 1

Regularni tip entiteta

- tip entiteta koji nije u egzistencijalnoj zavisnosti

Primer:

- Regularni TE: Radno_mesto
- Slabi TE: Radnik
 - egzistencijalno zavisan od TE Radno_mesto
 - Ako se ukine radno mesto, radnik gubi posao
 - Radnik egzistencijalno zavisni TE

Identifikaciona zavisnost slabog tipa entiteta

- poseban slučaj egzistencijalne zavisnosti
- postoji ako su i minimalni i maksimalni kardinalitet TP prema slabom TE jednaki 1
 - (a, b) = (1, 1)
- u semantičkom smislu, poseban koncept u ER modelu podataka
- uvodi klasifikaciju tipova poveznika
 - neidentifikacioni TP
 - identifikacioni TP

Identifikacioni tip poveznika

- reprezentuje identifikacionu zavisnost slabog TE
- ukazuje da se svaka pojava zavisnog TE može identifikovati samo uz pomoć identifikatora nadređenog TE
- identifikator (ključ) zavisnog TE se formira korišćenjem identifikatora (ključa) nadređenog TE

Identifikacioni tip poveznika

geometrijska predstava u ER dijagramima

opcionalno, id-zavisni TE se može predstaviti oblikom

- navođenje kardinaliteta (1, 1) nije obavezno
 - podrazumeva se i često se izostavlja

Primer:

- Upisuje identifikacioni TP
- Student identifikaciono zavisni TE
- StudijskiProgram nadređeni (regularni) TE

- Identifikaciono zavisni TE može posedovati neprazan skup sopstvenih identifikacionih obeležja
 - primer za TE Student. BrIndeksa, GodinaUpisa
- Bilo koja pojava id-zavisnog TE se može identifikovati isključivo navođenjem:
 - vrednosti njegovih identifikacionih obeležja i
 - vrednosti identifikatora (ključa) nadređenog TE

Identifikator id-zavisnog TE N_i

- N naziv nadređenog TE
- -X skup identifikatorskih obeležja TE N_i
- Ključ id-zavisnog TE N_i

$$K_i = K \cup X$$

– K- ključ nadređenog TE

Primer

- Identifikator id-zavisnog TE Student(StudijskiProgram, {BrIndeksa, GodinaUpisa})
- Ključ id-zavisnog TE Student
 K_i = IdStudProg+BrIndeksa+GodinaUpisa

Napomene

- regularni TE može učestvovati kao id-zavisan povezani tip u nekom drugom TP
- id-zavisni TE može učestvovati i kao id-zavisan i kao regularan u više različitih TP

Nacrtati ER konceptualnu šemu baze podataka za evidenciju klupskih takmičenja u košarci, na osnovu tekstualnog opisa realnih entiteta i njihovih odnosa i identifikovanog skupa obeležja. Tekstualni opis:

- Svako takmičenje ima svoj identifikator, naziv takmičenja, broj timova koji učestvuju kao i godinu osnivanja. Takođe, takmičenje ima klub sa najviše titula, kao i trenutno aktuelnog prvaka.
- Takmičenje pripada tačno jednoj ligi (Prva muška liga, Druga ženska liga, Evropska liga....). Liga može da organizuje više takmičenja.
- Takmičenje pripada tačno jednoj kategoriji (seniori, juniori, omladinci ...). Kategorija može da ima više takmičenja.
- Svaki klub ima svoj identifikator, naziv, godinu osnivanja, mesto i državu odakle je.

- Takmičenje može da se održava više puta. Svako održavanje takmičenja ima datum početka i datum završetka takmičenja.
- Takmičenje može imati jednog ili više organizatora, dok organizator može organizovati više takmičenja. Organizator ima svoje ime i identifikator.
- Na takmičenju učestvuje više klubova. Klubovi mogu učestvovati na više takmičenja.
- Takmičenje se organizuje u više kola. Svako kolo ima svoj redni broj i pripada tačno jednom takmičenju.
- U svakom kolu može biti organizovano više utakmica pri čemu utakmica pripada tačno jednom kolu. Svaka utakmica ima datum održavanja, broj posetilaca, dve ekipe koji učestvuju, rezultat za obe ekipe kao i halu u kojoj se održava.
- Samo ekipe koje učestvuju na takmičenju mogu igrati utakmice u kolima tog takmičenja.

- Hala ima svoj naziv, mesto i državu u kojoj se nalazi.
- Takmičenja dodeljuju različite vrste nagrada, jednu ili više.
 Jedna vrsta nagrade može da se dodeljuje na više takmičenja.
- Nagrada može biti namenjena celoj ekipi (nagrada za prvu, drugu, treću ekipu...) ili pojedincu (nagrada za najboljeg strelca, najboljeg odbrambenog igrača...).
- Samo klubovi koji učestvuju na nekom takmičenju mogu osvojiti ekipnu nagradu koja se dodeljuje na tom takmičenju.
- Svaki klub ima igrače koji igraju za njega, jedan ili više. Igrači
 u datom tenutku mogu igrati samo za jedan klub pri čemu se
 vodi evidencija o datumu potpisivanja ugovora za taj klub.

- U toku svoje karijeri igrači mogu igrati za više klubova. Igrač može da igra i više puta za isti klub tokom karijere. Svako angažovanje za neki klub ima datum početka i datum završetka ugovora.
- Klub prijavljuje više igrača koji će učestvovati na takmičenju.
 Samo igrači koji igraju u odgovarajućem klubu mogu učestvovati na takmičenju i igrati za taj klub.
- Samo igrač koji učestvuje na nekom takmičenju može dobiti nagradu za pojedinca koja se na tom takmičenju dodeljuje.
- Za svakog igrača koji učestvuje na utakmici obezbediti vođenje statistike i postignutim poenima (za jedan, dva i tri poena) i dobijenim ličnim greškama (tehnička, nesportska, za jedan, dva ili tri poena...) na toj utakmici.

IS-A hijerarhija

Tip poveznika IS-A hijerarhija

- poseban koncept tip poveznika u EER modelu
- zahteva uvođenje superklase i potklase

Superklasa (nadtip) i potklasa (podtip)

- predstavljaju posebne vrste tipova
- pojmovi vezani za postupak specijalizacije, odnosno generalizacije, svojstvene semantičkim modelima podataka

IS-A hijerarhija

Specijalizacija

- primenjuje se kada neki skup entiteta ili poveznika superklasa poseduje prepoznatljive podskupove (potklase) sa:
 - samo sebi svojstvenim obeležjima, ili
 - samo sebi svojstvenim vezama sa drugim klasama entiteta ili poveznika

Date su klase:

$$- E_1 = \{e_i \mid P_1(e_i)\}$$

$$- E_2 = \{e_i \mid P_2(e_i)\}$$

Uočava se implikacija:

$$P_2(e_i) \Rightarrow P_1(e_i)$$

Tada važi:

$$E_2 \subseteq E_1$$

- $-E_1$ se naziva superklasom (nadtipom)
- E₂ se naziva potklasom (podtipom)

- Pojmovi superklase i potklase se uvode
 - da bi model statičke strukture realnog sistema bio semantički bogatiji
 - da bi se izbegle nula vrednosti u ekstenziji
 - da bi se izbeglo definisanje tipa poveznika, koji nema mnogo smisla

- Specijalizacija se vrši na osnovu vrednosti nekog skupa klasifikacionih obeležja
- U tipu entiteta superklase ostaju
 - sva zajednička obeležja i
 - primarni ključ
- U tipove entiteta potklase distribuiraju se samo svojstvena, specifična obeležja

Tip poveznika IS-A hijerarhija

 geometrijska predstava u ER dijagramima

 opcionalno, TE potklasa se može predstaviti oblikom

- navođenje kardinaliteta (a, b) je obavezno tip IS-A
- Kardinaliteti (1, 1) prema potklasama se mogu izostaviti

Tip IS-A hijerarhije

- definiše se kardinalitetima tipa poveznika IS-A hijerarhija na strani superklase
- Minimalni kardinalitet (a)
 - 1 Totalna IS-A hijerarhija
 - 0 Parcijalna IS-A hijerarhija
- Maksimalni kardinalitet (b)
 - 1 Nepresečna IS-A hijerarhija
 - N Presečna IS-A hijerarhija

Primer:

inicijalni tip entiteta – superklasa

Radnik({Mbr, Ime, Prz, Zan, Kategorija, Spec, BrPJz},{Mbr})

- klasifikaciono obeležje
 - Zan zanimanje radnika

ER model podataka 115 / 140

- Bitne karakteristike
 - Nasleđivanje osobina superklase
 - Ključ (identifikator) svake potklase je primarni ključ (identifikator) superklase – nasleđivanje ključeva
 - pojave potklase se identifikuju putem vrednosti primarnog ključa odgovarajuće pojave superklase
 - Potklase mogu imati svoje sopstvene ključeve
 - Identifikaciona zavisnost svake potklase prema superklasi
 - Potklasa može imati ulogu superklase u drugoj IS-A hijerarhiji
 - Nad jednim tipom može se napraviti više različitih IS-A hijerarhija, koristeći različite kriterijume

Tip poveznika kategorizacije

- poseban koncept tip poveznika u EER modelu
- pojam vezan za postupak klasifikacije (tipizacije), svojstvene semantičkim modelima podataka
- zahteva uvođenje pojma kategorije

ER model podataka 117 / 140

Kategorija

- predstavlja posebnu vrstu tipa (TE, ili TP gerunda)
- jedan TE se povezuje s više kategorija (barem dve)
- svaka pojava posmatranog TE pripada najviše jednoj kategoriji
 - "ekskluzivni tip poveznika" prema kategorijama
- ne postoji id-zavisnost posmatranog TE od kategorija, ili obratno
 - posmatrani TE i kategorije su međusobno nezavisni (regularni) tipovi
- može, a ne mora postojati skup klasifikacionih obeležja kategorije

- Tip poveznika kategorizacije
 - geometrijska predstava u ER dijagramima

- navođenje kardinaliteta (a, 1) je obavezno
 - a₂ definiše tip kategorizacije
 - 0 parcijalna kategorizacija
 - 1 totalna kategorizacija

Primer:

- Semantika

- član kluba mora biti ili pravno, ili fizičko lice
- pravno ili fizičko lice može ostvariti više, a ne mora ostvariti ni jedno članstvo u klubu

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

- Pogodan za rane korake projektovanja
- Pojam konceptualne i implementacione šeme
- Dijagramska tehnika pogodna je za komunikaciju sa korisnicima
- Postoje heuristička pravila projektovanja konceptualne šeme BP
 - na osnovu deskriptivnog opisa strukture i ograničenja u realnom sistemu
- Ne postoje standardi dijagramske reprezentacije

- Neka heuristička pravila
 - Imenice ukazuju na potrebu uvođenja tipova entiteta
 - Glagolski oblici ukazuju na potrebu uvođenja tipova poveznika ili gerunda
 - Fraze oblika "bar jedan", "više", "najmanje jedan" i slične, ukazuju na kardinalitete tipova poveznika ili gerunda
 - Postojanje različitih uloga entiteta jednog skupa u vezama sa entitetima drugih skupova, ukazuje na potrebu uvođenja više tipova poveznika između odgovarajućih tipova entiteta

- Neka heuristička pravila
 - Preporučljivo je da se uloge entiteta u vezama eksplicitno navedu
 - Veze između entiteta jednog skupa ukazuju na potrebu uvođenja rekurzivnog tipa poveznika
 - Kod rekurzivnih veza je posebno važno da se uloge entiteta eksplicitno navedu
 - Vremensko prethođenje entiteta jednog skupa u odnosu na entitete nekog drugog skupa, ukazuje na egzistencijalnu zavisnost entiteta drugog skupa od entiteta prvog skupa i potrebu uvođenja minimalnog kardinaliteta a = 1

- Neka heuristička pravila
 - Potreba takvog selektivnog povezivanja entiteta tri ili više skupova, kod kojeg u vezi mogu učestvovati samo entiteti koji su već u nekoj drugoj vezi sa entitetima jednog ili više drugih skupova, ukazuje na neophodnost korišćenja gerunda
 - Postojanje entiteta jednog skupa sa specifičnim osobinama ili vezama sa entitetima drugih skupova, ukazuje na potrebu uvođenja IS-A hijerarhije

- Neka heuristička pravila
 - Svako obeležje može pripadati samo jednom tipu entiteta, ili samo jednom tipu poveznika
 - Nasleđena obeležja ključa tipa poveznika se ne uključuju u sam skup obeležja tipa poveznika
 - Tip entiteta ili tip poveznika sadrži samo ona obeležja realnog skupa entiteta, ili realnog skupa poveznika, koja su bitna za realizaciju ciljeva postavljenih pred informacioni sistem

ER model podataka 127 / 140

ER model podataka 128 / 140

ER model podataka 131 / 140

Sadržaj

- Osnovni pojmovi
- Strukturalna komponenta
- ER dijagrami
- Integritetna komponenta
- Kardinalitet tipa poveznika
- Integritet tipa poveznika
- N-arni tip poveznika
- Gerund i agregacija
- Id-zavisnost, IS-A hijerarhija i kategorizacija
- Završne napomene

ER model podataka 133 / 140

Zadatak – 1

Nacrtati ER konceptualnu šemu baze podataka za evidenciju klupskih takmičenja u košarci, na osnovu tekstualnog opisa realnih entiteta i njihovih odnosa i identifikovanog skupa obeležja. Tekstualni opis:

- Svako takmičenje ima svoj identifikator, naziv takmičenja, broj timova koji učestvuju kao i godinu osnivanja. Takođe, takmičenje ima klub sa najviše titula, kao i trenutno aktuelnog prvaka.
- Takmičenje pripada tačno jednoj ligi (Prva muška liga, Druga ženska liga, Evropska liga....). Liga može da organizuje više takmičenja.
- Takmičenje pripada tačno jednoj kategoriji (seniori, juniori, omladinci ...). Kategorija može da ima više takmičenja.
- Svaki klub ima svoj identifikator, naziv, godinu osnivanja, mesto i državu odakle je.

Zadatak – 2

- Takmičenje može da se održava više puta. Svako održavanje takmičenja ima datum početka i datum završetka takmičenja.
- Takmičenje može imati jednog ili više organizatora, dok organizator može organizovati više takmičenja. Organizator ima svoje ime i identifikator.
- Na takmičenju učestvuje više klubova. Klubovi mogu učestvovati na više takmičenja.
- Takmičenje se organizuje u više kola. Svako kolo ima svoj redni broj i pripada tačno jednom takmičenju.
- U svakom kolu može biti organizovano više utakmica pri čemu utakmica pripada tačno jednom kolu. Svaka utakmica ima datum održavanja, broj posetilaca, dve ekipe koji učestvuju, rezultat za obe ekipe kao i halu u kojoj se održava.
- Samo ekipe koje učestvuju na takmičenju mogu igrati utakmice u kolima tog takmičenja.

Zadatak - 3

- Hala ima svoj identifikator, naziv, mesto i državu u kojoj se nalazi.
- Takmičenja dodeljuju različite vrste nagrada, jednu ili više.
 Jedna vrsta nagrade može da se dodeljuje na više takmičenja.
- Nagrada može biti namenjena celoj ekipi (nagrada za prvu, drugu, treću ekipu...) ili pojedincu (nagrada za najboljeg strelca, najboljeg odbrambenog igrača...).
- Samo klubovi koji učestvuju na nekom takmičenju mogu osvojiti ekipnu nagradu koja se dodeljuje na tom takmičenju.
- Svaki klub ima igrače koji igraju za njega, jedan ili više. Igrači u datom tenutku mogu igrati samo za jedan klub pri čemu se vodi evidencija o datumu potpisivanja ugovora za taj klub. Svaki igrač ima svoj identifikator, ime, prezime godinu rođenja, mesto i državu odakle je.

Zadatak – 4

- U toku svoje karijeri igrači mogu igrati za više klubova. Igrač može da igra i više puta za isti klub tokom karijere. Svako angažovanje za neki klub ima datum početka i datum završetka ugovora.
- Klub prijavljuje više igrača koji će učestvovati na takmičenju.
 Samo igrači koji igraju u odgovarajućem klubu mogu učestvovati na takmičenju i igrati za taj klub.
- Samo igrač koji učestvuje na nekom takmičenju može dobiti nagradu za pojedinca koja se na tom takmičenju dodeljuje.
- Za svakog igrača koji učestvuje na utakmici obezbediti vođenje statistike i postignutim poenima (za jedan, dva i tri poena) i dobijenim ličnim greškama (tehnička, nesportska, za jedan, dva ili tri poena...) na toj utakmici.

Primer

- Nacrtati ER konceptualnu šemu baze podataka STUDSLUZBA, na osnovu tekstualnog opisa realnih entiteta i njihovih odnosa i identifikovanog skupa obeležja. Tekstualni opis:
- Student sluša jedan ili više predmeta, a predmet sluša jedan ili više studenata. Zna se ocena koju student ima iz predmeta i datum polaganja ispita, ali može i da nema ocenu, ako predmet još nije položio. Student ima broj indeksa, ime i prezime i godinu studija.
- Nastavnik ne mora da predaje ni jedan predmet, a može da predaje i više predmeta. Predmet ne mora da predaje ni jedan nastavnik a mogu da ga predaju i više nastavnika. Predmet ima šifru, naziv i broj časova. Neki predmeti mogu da imaju uslovne predmete.
- Svaki predmet pripada jednoj katedri. Katedra mora imati makar jedan predmet a može ih imati i više. Svaka katedra ima svoju šifru i naziv.
- Katedra pripada tačno jednom departmanu, dok departman pripada tačno jednom fakultetu. Fakultet može da ima više departmana, dok departman može da ima više katedri. Fakultet i departman imaju svoju šifru i naziv.

Primer

- Nastavnik može da radi samo na jednoj katedri. Svaki nastavnik ima šifru, ime, prezime, zvanje i platu. Zvanja mogu da budu: asistent, asistent sa doktoratom, docent, vanredni profesor i redovni profesor.
- Za svakog nastavnika se vodi evidencija o svim prethodnim zvanjima ako ih ima. Svaki izbor u zvanje ima naziv zvanja, datum izbora, naučnu oblast, ustanovu izbora i izborni period (broj godina).
- Za svakog nastavnika se vodi evidencija o akademskoj karijeri tj. o svim diplomama koje je stekao. Svaka diploma ima vrstu, naziv teze, godinu odbrane, naučnu oblast i ustanovu na kojoj je stečena.
- Studenti su podeljeni u grupe za vežbe i grupe za predavanja. Svaki student pripada tačno jednoj grupi za predavanja. Takođe, svaki student pripada tačno jednoj grupi za vežbe.
- Asistenti mogu da drže vežbe u više grupa na predmetima na kojima su rapoređeni, dok profesori mogu da drže predavanja u više grupa na predmetima koji su im povereni.
- Predmeti imaju realizaciju u svakoj školskoj godini.

Baze podataka

Model podataka tipova entiteta i poveznika