Chapitre 7

Applications - Relations

Sommaire

I	Applications
	1) Définitions
	2) Composition
	3) Famille d'éléments d'un ensemble
II	Injection, surjection, bijection
	1) Injection
	2) Surjection
	3) Bijection
Ш	Images directes, images réciproques
	1) Définitions
	2) Propriétés
IV	Relations binaires
	1) Définitions
	2) Relation d'équivalence
	3) Relation d'ordre
V	Solution des exercices
	III III

I APPLICATIONS

La notion d'application (ou fonction) entre deux ensembles E et F (non vides) est une notion clé en mathématiques. C'est l'idée d'associer, ou de faire correspondre, à chaque élément de E un élément de F.

1) Définitions

Une relation R est la donnée de :

- Un ensemble de départ : E (non vide).
- Un ensemble d'arrivée : F (non vide).
- D'un graphe G qui est une partie de $E \times F$ (G ⊂ $E \times F$).

Soient $x \in E$ et $y \in F$, on dira que x est relation avec y pour \mathcal{R} lorsque $(x, y) \in G$, on écrira $x\mathcal{R}y$. Si c'est le cas, on dira que y est une image de x par \mathcal{R} et que x est un antécédent de y par \mathcal{R} .

Lorsque tout élément de E a une et une seule image par \mathcal{R} , on dit que \mathcal{R} est une **application** (ou fonction). Si c'est le cas, et si $x\mathcal{R}y$, alors on écrira plutôt $y = \mathcal{R}(x)$, on dira que y est **l'image** de x par \mathcal{R} . L'ensemble des applications de E vers F est noté $\mathcal{F}(E,F)$ ou encore F^E .

Pour désigner une application on utilise en général une lettre minuscule. Si f est une application de E vers F on écrit : f: E \rightarrow F , et le graphe de f est l'ensemble $G_f = \{(x; f(x) \mid x \in E\}.$ $x \mapsto f(x)$

Exemples:

– L'exponentielle est une application de \mathbb{R} vers \mathbb{R} .

- Le logarithme est une application de $]0;+\infty[$ vers \mathbb{R} .
- Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{1}{x}$ n'est pas une application car 0 n'a pas d'image, on dit que son ensemble de définition est $D_f = \mathbb{R}^*$. Par contre, la **restriction** de f à son ensemble de définition est une application, on la note $f|_{D_f}: D_f \to \mathbb{R}$. Lorsqu'une application g est une restriction d'une application f, on dit que f est un **prolongement** de g.

Définition 7.2 (identité d'un ensemble)

Soit E un ensemble, l'identité de E est l'application de E dans E qui à chaque élément de E associe lui-même. On la note id_E : $E \rightarrow$

$$x \mapsto id_{E}(x) = x$$

Diagramme sagittal

Lorsque les ensembles E et F ont très peu d'éléments, on peut représenter une application $f: E \to F$ sous forme d'un diagramme sagittal:

Dans cet exemple, le graphe de f est $G_f = \{(e_1, f_3); (e_2, f_1); (e_3, f_3); (e_4, f_2)\}.$

Attention! (égalité de fonctions)

Deux fonctions f et g sont égales si et seulement si elles ont :

- le même ensemble de départ E,
- le même ensemble d'arrivée F,
- le même graphe, c'est à dire : $\forall x \in E$, f(x) = g(x).

Par exemple, la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$ et la fonction $g: \mathbb{R} \to \mathbb{R}^+$ définie par $g(x) = x^2$ ne sont pas égales!

Définition 7.3 (ensemble image)

Soit $f: E \to F$ une application, on appelle ensemble image de f l'ensemble de toutes les images par f, on le note f(E) (parfois Im(f)). C'est donc une partie de F, plus précisément c'est l'ensemble des éléments de F qui ont au moins un antécédent par f dans E :

$$f(E) = \{ y \in F \mid \exists x \in E, y = f(x) \}$$

Exemples:

- Dans l'exemple du diagramme sagittal, l'ensemble image est $Im(f) = \{f_1; f_2; f_3\}$.
- L'ensemble image de la fonction cosinus est [-1;1]. Plus généralement, pour déterminer l'ensemble image d'une fonction $f: I \to \mathbb{R}$ où I est un intervalle de \mathbb{R} , on étudie les variations de f et sa continuité (en vue d'appliquer le théorème des valeurs intermédiaires).
- L'ensemble image de la fonction g: \mathbb{C} → \mathbb{C} définie par $\forall z \in \mathbb{C}$, $g(z) = z^2$ est $g(\mathbb{C}) = \mathbb{C}$.

Composition

Lorsque l'ensemble d'arrivée d'une application coïncide avec l'ensemble de départ d'une autre application, alors il est possible « d'enchaîner » les deux, c'est la composition :

Soient E, F, G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications. La composée $g \circ f$ est l'application de E vers G définie par : $\forall x \in E$, $(g \circ f)(x) = g(f(x))$:

$$g \circ f \colon \to G$$

 $x \mapsto (g \circ f)(x) = g(f(x))$

On prendra garde à l'ordre dans l'écriture de g o f .

Remarque 7.1:

- Lorsqu'on a deux applications $f: E \to F$ et $g: H \to G$ avec seulement $F \subset H$ (au lieu de F = H), alors on peut encore définir la composée et on la note encore $g \circ f$ même si théoriquement on devrait plutôt écrire $(g|_{\mathbf{F}}) \circ f$.
- Lorsque f est une application d'un ensemble E vers **lui-même**, alors on peut composer f avec elle-même, et autant de fois que l'on veut. Si n est un entier strictement positif, on notera $f^n = f \circ \cdots \circ f$. Par convention, on pose $f^0 = id_E$.
- **Exemple**: Si f est l'application de \mathbb{R} vers \mathbb{R} définie par $\forall x \in \mathbb{R}$, f(x) = x + 1, alors $\forall n \in \mathbb{N}$, f^n est l'application de \mathbb{R} vers \mathbb{R} définie par $\forall x \in \mathbb{R}$, $f^n(x) = x + n$.
- **\bigstar Exercice 7.1** Écrire la fonction $f:]1; +\infty[\to \mathbb{R}$ définie par $f(x) = \frac{1}{\sqrt{x-1}}$, comme composée de trois fonctions.

🎮 Théorème 7.1 (propriétés)

Soient $f: E \to F$, $g: F \to G$ et $h: G \to H$ trois applications.

- $id_F \circ f = f \text{ et } f \circ id_E = f.$
- $-(h \circ g) \circ f = h \circ (g \circ f)$, c'est **l'associativité** de la composition.

Preuve : Celle-ci est simple et laissée en exercice.

Famille d'éléments d'un ensemble

Soit I un ensemble non vide, et soit E un ensemble. On appelle famille d'éléments de E indexée par I, toute application $u: I \to E$, on note généralement cette famille $(u_i)_{i \in I}$, et pour $i \in I$, on note $u(i) = u_i$ (appelé terme d'indice i). L'ensemble de départ I est appelé ensemble des indices de la famille. Une famille d'éléments de E indexée par N est appelée **suite** d'éléments de F. L'ensemble des familles d'éléments de E indexées par I se note $\mathcal{F}(I, E)$ ou E^1 .

Familles de parties d'un ensemble E

Conformément à la définition ci-dessus, une famille de parties de E indexée par un ensemble I non vide, est une application A: $I \to \mathcal{P}(E)$, que l'on peut noter $(A_i)_{i \in I}$ $(A_i$ étant une partie de E pour tout $i \in I$). On peut alors généraliser les notions d'intersection et de réunion de la manière suivante :

- La réunion de la famille $(A_i)_{i \in I}$ est $\bigcup_{i \in I} A_i = \{x \in E \mid \exists i \in I, x \in A_i\}$. L'intersection de la famille $(A_i)_{i \in I}$ est $\bigcap_{i \in I} A_i = \{x \in E \mid \forall i \in I, x \in A_i\}$.

★Exercice 7.2

1/ Pour $n \in \mathbb{N}$, on pose $A_n =]n; n+1]$. Déterminer $\bigcup_{n \in \mathbb{N}} A_n$ et $\bigcap_{n \in \mathbb{N}} A_n$.

2/ Même question avec $n \in \mathbb{N}^*$ et $A_n = \left[\frac{1}{n+1}; 1 - \frac{1}{n+1}\right]$.

Les propriétés vues dans le chapitre I se généralisent :

阿 Théorème 7.2

Soit $(A_i)_{i \in I}$ une famille de parties de E et soit B une partie de E, alors :

$$- B \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (B \cap A_i) \text{ et } B \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} (B \cup A_i) \text{ (distributivit\'e)}.$$

$$- \ C_E \left(\bigcup_{i \in I} A_i \right) = \bigcap_{i \in I} C_E(A_i) \ \text{et} \ C_E \left(\bigcap_{i \in I} A_i \right) = \bigcup_{i \in I} C_E(A_i) \ \text{(lois de De Morgan)}.$$

Preuve : Celle-ci est simple et laissée en exercice.

INJECTION, SURJECTION, BIJECTION

Dans cette partie nous allons dégager des propriétés éventuelles des applications. Ces notions joueront un rôle important par la suite.

Injection 1)

Définition 7.6

Soit $f: E \to F$ une application, on dit que f est une injection (ou f est injective) lorsque **tout élément** de l'ensemble d'arrivée a au plus un antécédent dans l'ensemble de départ. Ce qui revient à dire : pour tout élément y de F, l'équation y = f(x) a plus une solution x dans E.

Non Injective

Exemples:

- Si E est un ensemble non vide, id_E est injective. Soit A une partie non vide de E, l'application f: A

est injective, c'est **l'injection canonique** de A dans E.

- $-f: \mathbb{R} \setminus \{1\}$ → \mathbb{R} définie par $f(x) = \frac{x+1}{x-1}$ est une injection.
- g:]0; +∞[→ \mathbb{R} définie par $g(x) = \ln(x)$ est une injection.
- $h: \mathbb{R} \to \mathbb{R}$ définie par $h(x) = x^2$ n'est pas une injection.
- Une fonction f: I → \mathbb{R} strictement monotone sur l'intervalle I est injective.

Théorème 7.3 (définition équivalente)

 $f: E \to F$ est injective si et seulement si : $\forall x, y \in E, f(x) = f(y) \implies x = y$. Ce qui équivaut encore par contra-position à : $\forall x, y \in E, x \neq y \implies f(x) \neq f(y)$.

Preuve : Si f est injective : soit $x, y \in E$ tels que f(x) = f(y), x et y sont donc deux antécédents d'un même élément de F, f étant injective ces deux éléments ne peuvent pas être distincts (sinon on a une contradiction) donc x = y.

Supposons que f vérifie : $\forall x, y \in E$, $f(x) = f(y) \implies x = y$. Soit $z \in F$ ayant deux antécédents distincts x et y dans E, alors z = f(x) = f(y), on en déduit que x = y ce qui est absurde, donc z ne peut pas avoir deux antécédents distincts, par conséquent f est injective.

Théorème 7.4 (propriétés)

Soient $f: E \to F$ et $g: F \to G$ deux applications :

- Si f et g sont injectives alors $g \circ f$ est injective.
- Si $g \circ f$ est injective alors f est injective mais pas forcément g.

Preuve : Celle-ci est simple et laissée en exercice.

\bigstar Exercice 7.3 Soit $f: E \to F$ une application, montrer que f est injective si et seulement si il existe $h: F \to E$ telle que $h \circ f = id_E$.

2) Surjection

definition 7.7

Soit $f: E \to F$ une application, on dit que f est une surjection (ou f est surjective) lorsque **tout** élément de l'ensemble d'arrivée a au moins un antécédent dans l'ensemble de départ. Ce qui revient à dire : pour tout élément y de F, l'équation y = f(x) a moins une solution x dans E, ou encore $\forall y \in F, \exists x \in E, y = f(x).$

Non surjective

Dire que $f: E \to F$ est surjective, équivaut à Im(f) = F.

Exemples:

- Si E est un ensemble non vide, id_E est surjective.
- f: \mathbb{C} → \mathbb{C} définie par $f(z) = z^2$ et une surjection.
- $-f: \mathbb{R} \to \mathbb{U}$ définie par $f(x) = e^{ix}$ est une surjection.
- $h: \mathbb{R} \setminus \{1\}$ → \mathbb{R} définie par $h(x) = \frac{2x+1}{x-1}$ n'est pas surjective.
- Si $f: E \to F$ est une application, alors f induit une surjection entre E et Im(f) qui est l'application $g: E \to Im(f)$ définie par g(x) = f(x).

🙀 Théorème 7.5 (propriétés)

Soient $f: E \rightarrow F$ et $g: F \rightarrow G$ deux applications :

- Si f et g sont surjectives alors $g \circ f$ est surjective.
- Si $g \circ f$ est surjective alors g est surjective mais pas forcément f.

Preuve : Celle-ci est simple et laissée en exercice.

- **\bigstar Exercice 7.4** Soit $f: E \to F$ une application, montrer que f est surjective si et seulement si il existe $h: F \to E$ telle que $f \circ h = \mathrm{id}_{\mathrm{F}}$.
- **\bigstar Exercice 7.5** Soit E un ensemble non vide, et f une application de E vers $\mathscr{P}(E)$. En considérant la partie $A = \{x \in E \mid x \notin f(x)\}$, montrer que f ne peut pas être surjective.

3) Bijection

Définition 7.8

Soient E, F deux ensembles et $f: E \to F$ une application, on dit que f est une **bijection** (ou application bijective) lorsque **tout élément de** F **a un unique antécédent par** f, ce qui peut s'écrire de la manière suivante : $\forall y \in F, \exists ! \ x \in E, f(x) = y$.

Bijective

Non bijective

Dire que tout élément de F a un unique antécédent revient à dire que tout élément de F a au moins un antécédent et au plus un antécédent. Par conséquent dire que f est bijective revient à dire que f est surjective et injective.

🧖 À retenir

f est bijective \iff f est surjective et injective.

Exemples:

- Si E est un ensemble non vide, alors id_E est une bijection.
- f: [0;+∞[→ [0;+∞[définie par $f(x) = x^2$ est une bijection.
- $-g: \mathbb{R} \rightarrow]0;+\infty[$ définie par $g(x) = e^x$ est une bijection.
- $h: \mathbb{R}$ → \mathbb{R} définie par $h(x) = e^x$ n'est pas une bijection.

√ À retenir

Si $f: E \to F$ est injective, alors f induit une bijection de E vers Im(f) qui est $\tilde{f}: E \to Im(f)$ définie par $\tilde{f}(x) = f(x)$. Cela s'applique en particulier aux fonctions $f: I \to \mathbb{R}$ strictement monotones sur l'intervalle I.

Définition 7.9 (bijection réciproque)

Si $f: E \to F$ est une bijection, alors on peut considérer l'application qui va de F vers E et qui à tout élément x de F associe son unique antécédent par f, cette application est appelée bijection réciproque de f, on la note f^{-1} . Autrement dit, $f^{-1}: F \to E$

 $x \mapsto y \text{ défini par } f(y) = x$

La notation f^{-1} n'a de sens que lorsque f est bijective.

Exemples:

- Si E est un ensemble non vide, alors id_E est une bijection et la bijection réciproque est $id_E^{-1} = id_E$.
- $f: [0; +\infty[$ → $[0; +\infty[$ définie par $f(x) = x^2$ est une bijection et la bijection réciproque est la fonction racine carrée
- $g: \mathbb{R} \to]0;+\infty[$ définie par $g(x) = e^x$ est une bijection et la bijection réciproque est la fonction logarithme népérien.

Lorsque $f: E \to F$ est bijective: $\forall x \in F, \forall y \in E, f^{-1}(x) = y \iff f(y) = x$.

🔛 Théorème 7.6

Soit $f: E \rightarrow F$ *une bijection.*

- On a $f^{-1} \circ f = \mathrm{id}_E$ et $f \circ f^{-1} = \mathrm{id}_F$. De plus f^{-1} est une bijection et $(f^{-1})^{-1} = f$.
- Si g: : F \rightarrow G est une autre bijection, alors la composée g \circ f est une bijection de E vers G, et sa bijection réciproque est : $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Preuve: – La composée $f^{-1} \circ f$ existe et va de E dans E. Si $x \in E$, alors $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$ car x est l'unique antécédent de f(x) par f, on a donc $f^{-1} \circ f = \mathrm{id}_E$. De même, $f \circ f^{-1}$ existe et va de F dans F. Si $x \in F$, alors $(f \circ f^{-1})(x) = f(x)$ $f(f^{-1}(x)) = x \operatorname{car} f^{-1}(x)$ est l'unique antécédent de x par f, on a donc $f \circ f^{-1} = \operatorname{id}_F$. Le point suivant est évident. – Si g: F → G est une autre bijection, soit $y \in G$, alors pour tout $x \in E$ on a:

$$(g \circ f)(x) = y \iff g(f(x)) = y$$

$$\iff f(x) = g^{-1}(y)$$

$$\iff x = f^{-1}(g^{-1}(y)) = (f^{-1} \circ g^{-1})(y)$$

le résultat en découle.

Exercice 7.6 Soient $f: E \to F$ et $g: F \to E$ deux applications telles que $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$. Montrer que f et g sont bijectives et réciproques l'une de l'autre.

Remarque 7.2 – Le résultat de cet exercice est à connaître.

Définition 7.10 (involution)

Soit E un ensemble non vide. Une involution de E est une application f de E vers **lui-même** telle que $f \circ f = id_E$. Une telle application est bijective et elle est sa propre réciproque : $f^{-1} = f$.

Exemples:

- Dans le plan, les symétries ponctuelles, les symétries axiales, sont des involutions du plan.
- La fonction $f: \mathbb{R}^* \to \mathbb{R}^*$ définie par $f(x) = \frac{1}{x}$ est une involution de \mathbb{R}^* .
- La conjugaison dans ℂ est une involution de ℂ.

III IMAGES DIRECTES, IMAGES RÉCIPROQUES

1) **Définitions**

Définition 7.11

Soit $f: E \to F$ une application, A une partie de E et B une partie de F.

- On appelle image directe de A par f, l'ensemble des images des éléments de A par f, ou encore, l'ensemble des éléments F qui ont un antécédent dans A par f. Notation : $f(A) = \{y \in F \mid \exists x \in A, f(x) = y\}$, c'est une partie de F.
- On appelle image réciproque de B par f, l'ensemble des antécédents des éléments de B par f. Notation : $f^{-1}(B) = \{x \in E \mid f(x) \in B\}$, c'est une partie de E.

La notation $f^{-1}(B)$ ne suppose pas que f est bijective. Mais lorsque f est effectivement bijective, on peut vérifier que l'image réciproque de B par f correspond à l'image directe de B par f^{-1} .

Remarque 7.3:

- On a f(E) = Im(f) et $f^{-1}(F) = E$.
- Dans le cas d'une fonction $f: I \to \mathbb{R}$ continue sur l'intervalle I, l'étude de la fonction permet de déterminer l'image directe d'une partie de I et l'image réciproque d'une partie de \mathbb{R} .
- **Exemple**: Soit *f* la fonction sinus, on a $f([0;\pi[)=[0;1], f^{-1}([0;1])=\bigcup [2k\pi;(2k+1)\pi].$

Propriétés **Propriétés**

🔁 Théorème 7.7

Soit $f: E \to F$ une application. Pour toutes parties A et B de E, on a :

- $-SiA \subset B$ alors $f(A) \subset f(B)$.
- $-f(A \cup B) = f(A) \cup f(B).$
- $-f(A \cap B) \subset f(A) \cap f(B)$.
- $-A \subset f^{-1}(f(A)).$

Preuve:

- Le premier point est évident.
- Si $x \in A \cup B$ alors $x \in A$ ou $x \in B$ donc $f(x) \in f(A)$ ou $f(x) \in f(B)$, c'est à dire $f(x) \in f(A) \cup f(B)$. On a donc $f(A \cup B) \subset f(A) \cup f(B)$. Réciproquement, on a $f(A) \subset f(A \cup B)$ et $f(B) \subset f(A \cup B)$ (d'après le premier point) et donc $f(A) \cup f(B) \subset f(A \cup B)$, d'où l'égalité.
 - Si $x \in A \cap B$ alors $f(x) \in f(A)$ et $f(x) \in f(B)$ d'où $f(x) \in f(A) \cap f(B)$, donc $f(A \cap B) \subset f(A) \cap f(B)$.
 - Si x ∈ A alors f(x) ∈ f(A), d'où l'inclusion.

Remarque 7.4:

- Dans le cas de l'intersection (3º propriété), on n'a pas l'égalité en général. Par exemple, si f est la fonction cosinus de \mathbb{R} dans \mathbb{R} , si $A = [-\frac{\pi}{2}; -\frac{\pi}{3}]$ et $B = [0; \pi]$, alors $f(A) \cap f(B) = [0; \frac{1}{2}]$ alors que $f(A \cap B) = \emptyset$.
- De même pour la dernière propriété, par exemple, en reprenant la fonction cosinus avec $A = [0; \pi]$, on a $f(A) = [-1; 1] et f^{-1}(f(A)) = \mathbb{R}.$

★Exercice 7.7

1/ Montrer que les propriétés 2 et 3 du théorème précédent se généralisent à une famille quelconque de parties de E.

- **2**/ Soient $f: E \to F$ et $g: F \to G$ deux applications, soit A une partie de E, montrer que $(g \circ f)(A) = g(f(A))$. Soit B une *partie de* G, *montrer que* $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$.
- 3/ Montrer que $f: E \to F$ est injective si et seulement si pour tout partie A de E on a $f^{-1}(f(A)) = A$.

Maria Propies 1.8 Maria Propie

Soit $f: E \to F$ une application. Pour toutes parties A et B de F, on a :

- $-Si A \subset B \ alors \ f^{-1}(A) \subset f^{-1}(B)$.
- $-f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$
- $-f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$

Preuve:

- Si $x \in f^{-1}(A)$ alors $f(x) \in A$ donc $f(x) \in B$, d'où $x \in f^{-1}(B)$.
- $-x \in f^{-1}(A \cup B) \iff f(x) \in A \text{ ou } f(x) \in B \iff x \in f^{-1}(A) \cup f^{-1}(B).$
- $-x \in f^{-1}(A \cap B) \iff f(x) \in A \text{ et } f(x) \in B \iff x \in f^{-1}(A) \cap f^{-1}(B).$

IV RELATIONS BINAIRES

Nous revenons dans cette partie à la notion générale de relation définie en début de chapitre. Mais on s'intéresse plus particulièrement aux relations d'un ensemble E dans lui-même.

Définitions 1)

Définition 7.12

Soit $\mathcal R$ une relation d'un ensemble E **vers lui - même**, on dit que $\mathcal R$ est :

- **réflexive** lorsque tout élément est en relation avec lui même : \forall x ∈ E, x \Re x.
- **symétrique** lorsque : $\forall x, y \in E$, si $x\Re y$ alors $y\Re x$ (le graphe de \Re est symétrique).
- antisymétrique lorsque : $\forall x, y \in E$, si $x \mathcal{R} y$ et $y \mathcal{R} x$ alors x = y. On remarquera qu'il ne s'agit pas de la négation de symétrique.
- transitive lorsque : $\forall x, y, z \in E$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

Exemples:

- Dans \mathbb{R} , la relation \mathscr{R} définie par : $\forall x, y \in \mathbb{R}$, $x\mathscr{R}y \iff x \leqslant y$, est une relation réflexive, antisymétrique et transitive.
- Dans \mathbb{Z} , la relation \mathcal{S} définie par : $\forall x, y \in \mathbb{Z}$, $x \mathcal{S} y \iff x y \in 2\mathbb{Z}$, est une relation réflexive, symétrique et transitive.
- Soit E un ensemble, la relation \mathcal{F} définie dans $\mathcal{P}(E)$ par : \forall A, B ∈ $\mathcal{P}(E)$, A \mathcal{F} B \iff A ⊂ B. Cette relation \mathcal{T} est réflexive antisymétrique et transitive.

2) Relation d'équivalence

Définition 7.13

Soit E un ensemble et R une relation de E dans E, on dit que R est une relation d'équivalence lorsqu'elle est réflexive, symétrique et transitive. Si c'est le cas, alors pour tout élément a de E, on appelle **classe** de a l'ensemble des $x \in E$ en relation avec a, notation : $Cl(a) = \{x \in E \mid x \Re a\}$.

Exemples:

- L'égalité dans un ensemble est une relation d'équivalence.
- Soit $n \in \mathbb{Z}$, la relation définie dans \mathbb{Z} , par $\forall x, y \in \mathbb{Z}$, $x \mathcal{R} y \iff x y \in n \mathbb{Z}$, est une relation d'équivalence. Cette relation est appelée la congruence modulo n dans \mathbb{Z} , et on note $\forall x, y \in \mathbb{Z}$, $x \equiv y \pmod{n}$ $\exists k \in \mathbb{Z}, x - y = kn.$
- Soit $a \in \mathbb{R}$, la relation définie dans \mathbb{R} , par $\forall x, y \in \mathbb{R}$, $x \mathcal{R} y \iff x y \in a \mathbb{Z}$, est une relation d'équivalence. Cette relation est appelée la congruence modulo a dans \mathbb{R} , et on note $\forall x, y \in \mathbb{R}$, $x \equiv y \pmod{a}$ \iff $\exists k \in \mathbb{Z}, x - y = ka.$

🔛 Théorème 7.9

 $Si \mathcal{R}$ est une relation d'équivalence dans E, alors :

- $\forall a, b \in E, Cl(a) = Cl(b) \iff a \mathcal{R}b.$
- Les classes d'équivalence forment une partition de E, c'est à dire :
 - Les classes d'équivalence sont des parties de E non vides et deux à deux disjointes.
 - La réunion des classes d'équivalence est égale à E.

Preuve : Celle-ci est simple et laissée en exercice.

Exemple: Considérons la relation de congruence modulo 5 dans \mathbb{Z} , soit $n \in \mathbb{Z}$, on a $Cl(n) = \{n + 5k \mid k \in \mathbb{Z}\}$. On peut vérifier qu'il n'y a que cinq classes pour cette relation, celles de 0, de 1, de 2, de 3 et de 4.

3) Relation d'ordre

PDéfinition 7.14

- Soit $\mathcal R$ une relation dans un ensemble E, on dit que $\mathcal R$ est une relation d'ordre lorsque cette relation est : réflexive, antisymétrique et transitive. Lorsque c'est le cas, on dit que (E,\mathcal{R}) est un ensemble
- Deux éléments x et y de E sont dits **comparables** pour l'ordre \mathcal{R} lorsque l'on a $x\mathcal{R}y$ ou bien $y\mathcal{R}x$. Lorsque tous les éléments de E sont comparables deux à deux, on dit que l'ordre \mathcal{R} est **total** et que (E, \mathcal{R}) est un ensemble totalement ordonné, sinon on dit que l'ordre est partiel et que (E, \mathcal{R}) est partiellement ordonné.

– Une relation d'ordre est en général notée \leq , c'est à dire que $x\mathcal{R}y$ est plutôt noté $x \leq y$.

Exemples:

- L'ordre naturel sur les réels est une relation d'ordre total.
- Soit E un ensemble, ($\mathscr{P}(E)$, ⊂) est un ensemble partiellement ordonné (dès que card(E) \geq 2).
- Soit I un ensemble non vide, on pose $E = \mathcal{F}(I,\mathbb{R})$ l'ensemble des fonctions définies sur I et à valeurs réelles. On définit dans E la relation \mathcal{R} : pour $f,g \in E$, $f\mathcal{R}g \iff \forall x \in I$, $f(x) \leqslant g(x)$. On vérifie que \mathcal{R} est une relation d'ordre **partiel** (dès que card(I) > 1), cette relation est appelée ordre fonctionnel et notée ≤.
- Pour (x, y) et (x', y') ∈ \mathbb{R}^2 , on pose :

$$(x, y) \mathcal{R}(x', y') \iff \begin{cases} x < x' \\ \text{ou} \\ x = x' \text{ et } y \leqslant y' \end{cases}$$

On vérifie que \mathcal{R} est une relation d'ordre total sur \mathbb{R}^2 (appelée ordre lexicographique et notée \leq).

Remarque 7.5 – On prendra garde au fait que lorsque l'ordre est partiel, la négation de $x \le y$ est :

$$\begin{cases} x \text{ et } y \text{ ne sont pas comparables} \\ ou \\ x \text{ et y sont comparables et } x > y \end{cases}$$

Définition 7.15

Soit (E, \leq) un ensemble ordonné et A une partie de E, on dit que :

- A est majoré dans E lorsque : \exists M ∈ E, \forall x ∈ A, x \leqslant M.
- A est minoré dans E lorsque : $\exists m \in E, \forall x \in A, m \leq x$.
- − A est borné dans E lorsque A est à la fois majoré et minoré.
- A admet un maximum lorsque : $\exists a \in A, \forall x \in A, x \leq a$. Si c'est le cas, on note $a = \max(A)$.
- A admet un minimum lorsque : $\exists a \in A, \forall x \in A, a \leq x$. Si c'est le cas, on note $a = \min(A)$.

Attention!

- Une partie d'un ensemble ordonné n'est pas forcément majoré (ou minoré), par exemple $\mathbb N$ est non majoré dans $\mathbb R$.
- Une partie majorée (ou minorée) dans un ensemble ordonné n'a pas forcément de maximum (ou minimum). Par exemple [0;1[dans \mathbb{R} .

★Exercice 7.8 Montrer que si A admet un maximum dans (E, ≤), alors celui-ci est unique (même chose pour minimum).

V SOLUTION DES EXERCICES

Solution 7.1 *On a :*

Solution 7.2

1/ La réunion est]0; $+\infty$ [, et l'intersection est vide.

2/ La réunion est]0;1[et l'intersection est le singleton $\{\frac{1}{2}\}$.

Solution 7.3 *Si h existe alors f est injective d'après le théorème.*

Réciproquement, si f est injective, soit $y \in F$, on pose h(y) = x avec x antécédent de y par f si y a un antécédent (on sait alors qu'il est unique) et si y n'a pas d'antécédent par f on choisit ce qu'on veut pour h(y) dans E. On vérifie alors que pour tout $x \in E$, h(f(x)) = x car x est l'unique antécédent de f(x) par f.

Solution 7.4 *Si h existe alors f est surjective d'après le théorème.*

Réciproquement, si f est surjective, soit $y \in F$, on pose h(y) = x avec x antécédent de y par f que l'on choisit car il en existe. On vérifie alors que pour tout $x \in E$, f(h(x)) = x car h(x) est un antécédent de x par f.

Solution 7.5 Par l'absurde : si f est surjective, alors il existe $x_0 \in E$ tel que $f(x_0) = A$, si $x_0 \in A$, alors $x_0 \in f(x_0)$ et donc $x_0 \notin A$ (par définition de A), ce qui est absurde, donc $x_0 \notin A$, mais alors $x_0 \notin f(x_0)$ et donc $x_0 \in A$, ce qui est de nouveau absurde. Par conséquent f ne peut pas être surjective.

Solution 7.6 On sait que id_F et id_E sont injectives, on en déduit que g et f sont injectives. On sait aussi que id_F et id_E sont surjectives, on en déduit que f et g sont surjectives. Ce sont deux donc deux bijections, d'où $f = g^{-1} \circ id_E = g^{-1}$.

Solution 7.7

1/ C'est le même raisonnement quand dans la preuve.

2/ Soient $f: E \to F$ et $g: F \to G$ deux applications. Soit A une partie de E:

$$z \in g(f(A)) \iff \exists y \in f(A), z = g(y) \iff \exists x \in A, z = g(f(x)) = (g \circ f)(x) \iff z \in (g \circ f)(A)$$

Soit B une partie de G:

$$x \in (g \circ f)^{-1}(B) \iff g(f(x)) \in B \iff f(x) \in g^{-1}(B) \iff x \in f^{-1}(g^{-1}(B))$$

3/ Si f est injective, soit A une partie de E, on sait que $A \subset f^{-1}(f(A))$, si $x \in f^{-1}(f(A))$, alors $f(x) \in f(A)$, donc il existe $y \in A$ tel que f(x) = f(y), mais alors x = y (f étant injective) et donc $x \in A$. Donc $f^{-1}(f(A)) = A$. Réciproque, si pour tout partie A de E on a $f^{-1}(f(A)) = A$. Sot $x \in E$ alors $f^{-1}(f(x)) = \{x\}$, donc si f(y) = f(x) alors $y \in \{x\}$, d'où y = x. L'application f est donc injective.

Solution 7.8 Soient m_1 et m_2 deux maximums de A, alors $m_1 \le m_2$ car m_2 est un maximum, et inversement $m_2 \le m_1$ car m_1 est un maximum, d'où $m_1 = m_2$.