

Complejidad y optimización

Carlos André: Delgado S.

de Programación Entera

Demostración que programación entera es NP-Completo

Complejidad y optimización Reducción SAT a Programación Entera

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Febrero 2017

Contenido

Complejidad y optimización

El problema Programación Entera

1 El problema de Programación Entera

Complejidad y optimización

Carlos André Delgado S.

El problema de Programación Entera

Demostración que programación entera es NP-Completo

Definición

Se tiene conjunto A de v variables enteras, un conjunto de desigualdades entre estas variables y una función f(v) de variables a maximizar y un entero B.

Problema de decisión

¿Existe una asignación de enteros de v que satisfaga todas las designaldades y $f(v) \ge B$?. Recuerda: Un problema de decisión tiene como respuesta SI o NO

Complejidad y optimización

Carlos Andrés Delgado S.

El problema de Programación Entera

Demostración que programación entera es

Ejemplo

Una instancia del problema de programación entera es:

$$A = \{v_1, v_2\}$$

$$f(v) = 2v_2, B = 3$$

$$v_1 \ge 1, v_2 \ge 0$$

$$v_1 + v_2 \le 3$$

¿Que valores de v_1 y v_2 satisfacen este problema?

Complejidad y optimización

Delgado S.

El problema de Programación Entera

Demostración que programación entera es

Ejemplo

Una instancia del problema de programación entera es:

$$A = \{v_1, v_2\}$$

$$f(v) = 2v_2, B = 3$$

$$v_1 \ge 1, v_2 \ge 0$$

$$v_1 + v_2 \le 3$$

¿Que valores de v_1 y v_2 satisfacen este problema?.

Respuesta: $v_1 = 1 \text{ y } v_2 = 2$

Complejidad y optimización

Delgado S.

El problema de Programación Entera

Demostración que programación entera es

Ejemplo

Otro problema:

$$A = \{v_1, v_2\}$$

$$f(v) = 2v_2, B = 5$$

$$v_1 \ge 1, v_2 \ge 0$$

$$v_1 + v_2 \le 3$$

No hay solución, debido a que la restricción $v_1 + v_2 \le 3$ y $v_1 \ge 1$ impiden que v_2 tome un valor mayor que 2, y debe cumplirse $f(v) \ge B$.

Complejidad y optimización

Carlos André Delgado S.

El problema de Programación Entera

Demostración que programación entera es

Programación entera es NP

El problema e programación entera es NP, ya que si tomamos un conjunto A de v_i variables enteras de tamaño n, se necesitará generar un conjunto de combinaciones d^n de las variables v_i para solucionar el problema, donde d son los valores posibles que puede tomar v_i .

Ejemplo

Supongamos que d=3 y n=4. entonces los valores que pueden tomar v_i son $\{1,2,3\}$, las combinatorias de los valores son $\{(0,0,0,0)(0,0,1),...,(3,3,3,3)\}$ El tamaño de ese conjunto es $\{(1,1,1,1),(1,1,1,2),...,(3,3,3,3)\}$

Contenido

Complejidad y optimización

Carlos André Delgado S.

El problema de Programaciór Entera

Demostración que programación entera es NP-Completo 1 El problema de Programación Entera

2 Demostración que programación entera es NP-Completo

Complejidad y optimización

Carlos André Delgado S.

de Programación

Demostración que programación entera es NP-Completo

Demostración.

Postulado Sabemos que SAT es NP-Completo, entonces reduciremos desde una instancia de SAT a una instancia de programación entera. Denotaremos Programación Entera como IP (Integer Programming)

Importante

$$SAT \leq_p IP$$
.

Complejidad y optimización

Carlos André Delgado S.

El problema de Programación

Demostración que programación entera es NP-Completo

Procedimiento de reducción

Se sabe que SAT, es un conjunto de v_i variables y un conjunto de clausulas c_i en forma normal conjuntiva. Para realizar la reducción se crean las siguientes restricciones:

- $0 \le v_i \le 1$ y $0 \le \neg v_i \le 1$ Ambas variables están restringidas por valores 0 y 1, equivalentes a verdadero o falso.
- $1 \le v_i + \neg v_i \le 1$ Si una de las variables es 1, su negado debe ser 0 y viceversa.
- Por cada clausula $c_i = \{v_i, v_j, ... v_k\}$ se crea una restricción $v_i + v_j + ... + v_k \ge 1$. Esto garantiza que si la clausula es satisfecha en SAT debe al menos existir una variable que sea verdadera.

Complejidad y optimización

Carlos Andrés Delgado S.

de Programación

Demostración que programación entera es NP-Completo

Procedimiento de reducción

Continuando:

La función de maximización es relativamente poco importante, basta con: $f(v) = v_1$ y B = 0.

Como se puede observar esta reducción es en tiempo polinomial

- I Si se tienen *n* variables en SAT, se crean 2*n* variables y 3*n* restricciones en PI
- 2 Si se tienen y clausulas en SAT, se crean y restricciones en PI

Complejidad y optimización

Carlos Andrés Delgado S.

de Programación Entera

Demostración que programación entera es NP-Completo

Instancias positivas en SAT = instancias positivas en PI

Si todos las cláusulas en SAT son verdaderas $c_i = \{v_i, v_j, ... v_k\}$, si cumplirá $v_i + v_j + ... + v_k \geq 1$. Las restricciones $0 \leq v_i \leq 1$, $0 \leq \neg v_i \leq 1$ y $1 \leq v_i + \neg v_i \leq 1$ siempre se cumplen ya que v_i toma valores 0 o 1.

Instancias negativas en SAT = instancias negativas en PI

Si alguna de las clausulas $c_i = \{v_i, v_j, ... v_k\}$ no se cumple, entonces $v_i + v_j + ... + v_k \ge 1$ no se puede cumplir debido a que todas las $v_i = 0$.

Complejidad y optimización

Delgado S.

de Programación Entera

Demostración que programación entera es NP-Completo

Ejemplo

Transformar esta instancia de SAT a PI

$$C = \{v_1, \neg v_2, \neg v_3\}, \{v_2, v_3\}$$

Como se puede observar este SAT se puede satisfacer con $v_1 = V, v_2 = V, v_3 = F$

Complejidad y optimización

Carlos André Delgado S.

de Programación

Entera

Demostración que programación entera es NP-Completo

Ejemplo

$$C = \{v_1, \neg v_2, \neg v_3\}, \{v_2, v_3\}$$

 $v1+\neg v2+\neg v3 >= 1, v2+v3 >= 1$

- Generamos las variables $\{v_1, v_2, v_3, \neg v_1, \neg v_2, \neg v_3\}$
- Se agregan las restricciones $0 \le v_1 \le 1, 0 \le v_2 \le 1, 0 \le v_3 \le 1, 0 \le \neg v_1 \le 1, 0 \le \neg v_2 \le 1, 0 \le \neg v_3 \le 1$
- Agregamos las restricciones $1 \le v_1 + \neg v_1 \le 1, 1 \le v_2 + \neg v_2 \le 1, 1 \le v_3 + \neg v_3 \le 1$
- Finalmente $f(v) = v_1$ y B = 0

Si comprobamos efectivamente se cumple PI, con

$$v_1 = 1, v_2 = 1, v_3 = 0, \neg v_1 = 0, \neg v_2 = 0, \neg v_3 = 1$$

Complejidad y optimización

Carlos Andrés Delgado S.

de Programación

Programación Entera

Demostración que programación entera es NP-Completo

Ejercicio 1

$$V = \{v_1, v_2, v_3\}$$

$$C = \{\{\neg v_1, \neg v_2, \neg v_3\}, \{v_2, v_3\}, \{\neg v_1.v_2\}, \{v_2, \neg v_3\}\}$$

Ejercicio 2

$$V = \{v_1, v_2, v_3, v_4\}$$

$$C = \{\{\neg v_1, \neg v_3\}, \{v_2, v_3\}, \{\neg v_4\}, \{\neg v_1, v_2\}, \{v_2, \neg v_3\}, \{v_4\}\}$$

En ambos casos piense siempre ¿Esta instancia de SAT se puede satisfacer?

v1>=0, v2>=0, v3>=0, $\neg v1>=0$, $\neg v2>=0$, $\neg v3>=0$

$$1>=v1+\neg v1>=1$$
, $1>=v2+\neg v2>=1$, $1>=v3+\neg v3>=1$
 $\neg v1+\neg v2+\neg v3>=1$
 $v2+v3>=1$

v1=F, v2=V, v3=F SAT v1=0, v2=1, v3=0, ¬v1=1, ¬v2=0, ¬v3=1 PI

 $\neg v1+v2 >= 1$ $v2+\neg v3 >= 1$

Preguntas

Complejidad y optimización

Carlos André Delgado S.

El problema de Programación Entera

Demostración que programación entera es NP-Completo

