Yulu - Case Study

Problem Statement

- · The company wants to know:
 - Which variables are significant in predicting the demand for shared electric cycles in the Indian
 - How well those variables describe the electric cycle demands
- Additional Views
 - From inferential statistics, Check the interdependence of features.
 - Predict variables based on climatic conditions of Indian Market

Installing Packages

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import scipy.stats as stats
```

Loading Dataset

In [2]:

```
yulu = pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/4
yulu.head()
```

Out[2]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	cası
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	
4										•

In [3]:

yulu.dtypes

Out[3]:

datetime object season int64 holiday int64 workingday int64 weather int64 temp float64 atemp float64 humidity int64 windspeed float64 casual int64 int64 registered int64 count dtype: object

All the features of dataset are continuous except datetime

In [4]:

yulu.shape

Out[4]:

(10886, 12)

• There are 10886 datapoints and 12 features

Checking Null Values

```
In [5]:
```

```
yulu.isnull().sum()
Out[5]:
datetime
             0
season
holiday
workingday
weather
temp
             0
             0
atemp
humidity
windspeed
casual
registered 0
count
dtype: int64
```

None of the columns contain any null values in the dataset

Checking Duplicate Values

```
In [6]:
```

```
np.any(yulu.duplicated())
```

Out[6]:

False

There is no duplicates values found in our dataset

```
In [7]:
```

```
cat_col = ["season", "holiday", "workingday", "weather"]
for i in cat_col:
    yulu[i] = yulu[i].astype("category")
yulu["datetime"] = pd.to_datetime(yulu["datetime"])
```

In [8]:

yulu.dtypes

Out[8]:

datetime datetime64[ns] season category holiday category workingday category weather category float64 temp float64 atemp humidity int64 float64 windspeed casual int64 registered int64 int64 count

dtype: object

Statistical Summary

In [9]:

yulu.describe().T

Out[9]:

	count	mean	std	min	25%	50%	75%	max
temp	10886.0	20.230860	7.791590	0.82	13.9400	20.500	26.2400	41.0000
atemp	10886.0	23.655084	8.474601	0.76	16.6650	24.240	31.0600	45.4550
humidity	10886.0	61.886460	19.245033	0.00	47.0000	62.000	77.0000	100.0000
windspeed	10886.0	12.799395	8.164537	0.00	7.0015	12.998	16.9979	56.9969
casual	10886.0	36.021955	49.960477	0.00	4.0000	17.000	49.0000	367.0000
registered	10886.0	155.552177	151.039033	0.00	36.0000	118.000	222.0000	886.0000
count	10886.0	191.574132	181.144454	1.00	42.0000	145.000	284.0000	977.0000

- Casual, Registered and Count features might contain outliers.
- As it can be oberseved from the summary there is significant difference between the mean and median of the above mentioned feature.

In [10]:

```
yulu.describe(include = ["category"]).T
```

Out[10]:

	count	unique	top	freq
season	10886	4	4	2734
holiday	10886	2	0	10575
workingday	10886	2	1	7412
weather	10886	4	1	7192

- Winter season is the top season as most of the customers take ride in that season particularily.
- Most of customer prefer to take ride in Clear, Few clouds and partly cloudy weather.

Lets check the period of data available

```
In [11]:
```

```
yulu["datetime"].min()
Out[11]:
Timestamp('2011-01-01 00:00:00')
In [12]:
yulu["datetime"].max()
```

Out[12]:

Timestamp('2012-12-19 23:00:00')

• Data is available from 1st Jan 2011 till 19th Dec 2012

Univariate Analysis

In [13]:

```
num_cat = ["temp", "atemp", "humidity", "windspeed", "casual", "registered", "count"]
for i in range(len(num_cat)):
   fig = plt.figure(figsize = (15, 8))
   ax1 = plt.subplot2grid((1, 2), (0, 0))
   ax1.set_title(f"Distribution of {num_cat[i]}")
   ax1.set_xlabel(ax1.get_xlabel(), fontsize = 15)
   ax1.axvline(yulu[num_cat[i]].mean(),color="green", label = "mean")
   ax1.axvline(yulu[num_cat[i]].median(),color="red", label = "median")
   ax1.legend(loc = "best")
   sns.histplot(data=yulu, x=num_cat[i], ax=ax1, bins=25, kde=True, color="gray")
   ax2 = plt.subplot2grid((1, 2), (0, 1))
   ax2.set_title(f"Box plot for {num_cat[i]}")
   ax2.set_xlabel(ax1.get_xlabel(), fontsize = 15)
   sns.boxplot(data = yulu, x=num_cat[i], ax=ax2)
plt.show()
```


- casual, registered and count somewhat looks like Log Normal Distrinution
- temp, atemp and humidity looks like they follows the Normal Distribution
- windspeed follows the binomial distribution
- temp, atemp, windspeed & humidity don't contain any outliers as there is negligible difference in mean and median.
- Rest of the continous features contain outliers.

In [14]:

```
# countplot of each categorical column
fig, axis = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))
cat_col = ["season", "weather", "workingday", "holiday"]
index = 0
for row in range(2):
    for col in range(2):
        axis[row, col].set_title(f"Distribution of {cat_col[index]}")
        sns.countplot(data=yulu, x=cat_col[index], ax=axis[row, col], palette="crest")
        index += 1
plt.show()
```


Insights

- · Users book ride in all season equi-probabaly
- There is high demand of electric cycle in Clear, Few clouds, partly cloudy weather.
- There are around 3600 days which falls either on weekend or holiday.
- There is 3% days on which it was holiday.

Bivariate Analysis

In [15]:

```
# plotting categorical variables againt count using barplots
fig, axis = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))
index = 0
for row in range(2):
    for col in range(2):
        sns.barplot(data=yulu, x=cat_col[index], y='count', palette= "crest", ax=axis[ro
        index += 1
plt.show()
```


Insights

- In summer and fall seasons more bikes are rented as compared to other seasons.
- Whenever its a holiday more cycles are rented.
- · It is also clear from the workingday also that whenever day is holiday or weekend, slightly more cycle were rented.
- Whenever there is rain, thunderstorm, snow or fog, there were less cycle were rented.

In [16]:

```
# plotting numerical variables againt count using scatterplot
fig, axis = plt.subplots(nrows=2, ncols=2, figsize=(16, 12))
index = 0
for row in range(2):
    for col in range(2):
        sns.scatterplot(data=yulu, x=num_cat[index], y='count', ax=axis[row, col])
        index += 1
plt.show()
```


Insights

- Whenever the humidity is less than 20, number of bikes rented is very very low.
- Whenever the temperature is less than 10, number of bikes rented is less.
- Whenever the windspeed is greater than 35, number of bikes rented is less.

Correlation Analysis

In [17]:

```
fig = plt.figure(figsize=(15,8))
sns.heatmap(yulu.corr(), cmap="Blues", annot = True, square=True)
plt.show()
```


Insights

 registered vs count, casual - count, temp - atemp, casual - registered. These features are highly correlated.

2. Hypothesis Testing

2.1 Sample T-Test to check if Working Day has an effect on the number of electric cycles rented

Step1: Setting up Null and Alternate Hypothesis

- Null Hypothesis (Ho): Working day has no effect on electric cycles being rented
- Alternate Hypothesis (Ha): Working day has effect on electric cyles being rented

Step2: Selecting appropriate test

Here we have two independent samples, we will use ttest_ind as it will be our two-tailed test.

Step3: Choosing Significance level

• Significance level (alpha) : 0.05

Step 4: Collect and Prepare Data

```
In [20]:
```

```
working_zero = yulu.loc[yulu["workingday"] == 0]["count"].values
working_one = yulu.loc[yulu["workingday"] == 1]["count"].values
```

· Lets check the variance of two dataset

```
In [21]:
```

```
np.var(working_zero)
```

Out[21]:

30171.346098942427

```
In [22]:
```

```
np.var(working_one)
```

Out[22]:

34040.69710674686

• The ratio of larger group to smaller group is less than 4:1. So we consider it as equi-variance

Lets verify this using histogram

In [31]:

```
sns.histplot(data = yulu, x = "count", hue = "workingday", element="poly")
```

Out[31]:

<AxesSubplot:xlabel='count', ylabel='Count'>

In [26]:

```
test_statistics, pvalue = stats.ttest_ind(a=working_one, b=working_zero, equal_var=True,
```

In [28]:

```
print(f"Test Statistics: {test_statistics} \npvalue: {pvalue}")
```

Test Statistics: 1.2096277376026694

pvalue: 0.22644804226361348

Step5: Taking Decision

In [29]:

```
if pvalue < 0.05:</pre>
    print("Reject Null Hypothesis (Ho)")
else:
    print("Fail to reject null hypothesis")
```

Fail to reject null hypothesis

Step6: Inference

- Since pvalue is greater than 0.05 so we can not reject the Null hypothesis.
- We don't have the sufficient evidence to say that working day has effect on the number of cycles being rented.

2.2 ANNOVA to check if No. of cycles rented is similar or different in different

- 1. weather
- 2. season

Step1: Setting up Null and Alternate Hypothesis

- Null Hypothesis (Ho): Number of cycles rented is similar in different weather and season.
- Alternate Hypothesis (Ha): Number of cycles rented is not similar in different weather and season.

Step2: Selecting Test

Here we will using ANNOVA to test the hypothesis defined above

Step3: Choosing Significance level

• Significance Level (alpha): 0.05

Step4: Conduct and prepare test

In [37]:

```
# defining the data groups for the ANOVA
w1 = yulu[yulu['weather']==1]['count'].values
w2 = yulu[yulu['weather']==2]['count'].values
w3 = yulu[yulu['weather']==3]['count'].values
w4 = yulu[yulu['weather']==4]['count'].values
s5 = yulu[yulu['season']==1]['count'].values
s6 = yulu[yulu['season']==2]['count'].values
s7 = yulu[yulu['season']==3]['count'].values
s8 = yulu[yulu['season']==4]['count'].values
# conduct the one-way anova
t_stat, pvalue = stats.f_oneway(w1, w2, w3, w4, s5, s6, s7, s8)
```

```
In [39]:
```

```
print(f"Test Statistics: {t_stat}\npvalue: {pvalue}")
```

Test Statistics: 127.96661249562491 pvalue: 2.8074771742434642e-185

Step5: Taking Decision

In [40]:

```
if pvalue < 0.05:</pre>
    print("Reject null hypothesis (Ho)")
else:
    print("Fail to reject null hypothesis (Ha)")
```

Reject null hypothesis (Ho)

Step6: Inference

- Since p-value is less than 0.05, we reject the null hypothesis.
- This implies that Number of cycles rented is not similar in different weather and season conditions

2.3 Chi-square test to check if Weather is dependent on the season

Step1: Setting up Null and Alternate Hypothesis

- Null Hypothesis (Ho): Weather is independent of the season.
- Alternate Hypothesis (Ha): Weather is not independent of the season.

Step2: Selecting Test

We will use chi-square test to test hypyothesis defined above.

Step3: Choosing Significance level

• Significance Level (alpha): 0.05

Meaning that

Step4: Conduct and prepare test

```
In [44]:
# Lets create contigency table
season_weather = pd.crosstab(yulu["season"], yulu["weather"])
season_weather
Out[44]:
          1 2
weather
                   3 4
 season
     1 1759 715 211 1
     2 1801 708 224 0
     3 1930 604 199 0
     4 1702 807 225 0
In [50]:
# Lets calculate expected value
chi_stat, p_value, dof, expected = stats.chi2_contingency(season_weather)
print("1. Chi_Stat : ", chi_stat)
print("2. p_value : ", p_value)
print("3. Degree of Freedom : ", dof)
print("4. Expected : ", expected)
1. Chi_Stat : 49.158655596893624
2. p_value : 1.549925073686492e-07
3. Degree of Freedom: 9
4. Expected : [[1.77454639e+03 6.99258130e+02 2.11948742e+02 2.46738931e-
01]
 [1.80559765e+03 7.11493845e+02 2.15657450e+02 2.51056403e-01]
 [1.80559765e+03 7.11493845e+02 2.15657450e+02 2.51056403e-01]
 [1.80625831e+03 7.11754180e+02 2.15736359e+02 2.51148264e-01]]
Step5: Taking Decision
In [56]:
critical_val = stats.chi2.ppf(q=1-.05, df=dof)
print(f"critical value: {critical_val}")
if p val <= .05:
   print("\nSince p-value is less than the alpha 0.05, We reject the Null Hypothesis. M
   Weather is dependent on the season.")
else:
   print("Since p-value is greater than the alpha 0.05, We do not reject the Null Hypot
critical value: 16.918977604620448
Since p-value is less than the alpha 0.05, We reject the Null Hypothesis.
```

Weather is dependent on the season.

Step6: Inference

· Weather is dependent on the season

Inferences Related to All Hypothesis Testing Conducted

- We don't have the sufficient evidence to say that working day has effect on the number of cycles being
- · Number of cycles rented is not similar in different weather and season conditions
- Weather is dependent on the season.

Insights Based on EDA

- In summer and fall seasons more bikes are rented as compared to other seasons.
- Whenever its a holiday more bikes are rented.
- It is also clear from the workingday also that whenever day is holiday or weekend, slightly more bikes were rented.
- Whenever there is rain, thunderstorm, snow or fog, there were less bikes were rented.
- Whenever the humidity is less than 20, number of bikes rented is very very low.
- Whenever the temperature is less than 10, number of bikes rented is less.
- Whenever the windspeed is greater than 35, number of bikes rented is less.

Recommendations

- In summer and fall seasons the company should have more bikes in stock to be rented. Because the demand in these seasons is higher as compared to other seasons.
- With a significance level of 0.05, workingday has no effect on the number of bikes being rented.
- · In very low humid days, company should have less bikes in the stock to be rented.
- Whenever temprature is less than 10 or in very cold days, company should have less bikes.
- Whenever the windspeed is greater than 35 or in thunderstorms, company should have less bikes in stock to be rented.

In []:		