DroMOOC

Control Basic Level

Hierarchical control

Sylvain BERTRAND
ONERA

Quadrotor dynamics

$$\begin{cases} \dot{p} = v \\ m\dot{v} = F + mge_3 \quad (+K_{ext}) \\ \dot{R} = R\Omega_{\times} \\ J\dot{\Omega} = -\Omega \times J\Omega + \Gamma \quad (+K_{ext}) \end{cases}$$

Quadrotor dynamics (cont'd)

$$\frac{\dot{\rho} = v}{m\dot{v} = -\mathcal{T}(Be_3 + mge_3)} \left(\frac{\Box}{\Box} \begin{bmatrix} \mathcal{T} \\ \Gamma_1 \\ \Gamma_2 \\ -\Box \end{bmatrix} \right) = \begin{bmatrix} \hat{b} & b & b & b \\ 0 & -l.b & 0 & l.b \\ l.b & 0 & -l.b & 0 \\ d & -d & d & -d \end{bmatrix} \cdot \begin{bmatrix} \omega_1^2 \\ \omega_2^2 \\ \omega_3^2 \\ \omega_4^2 \end{bmatrix} - \right) \mathcal{L}$$

Translational and orientation dynamics are coupled

- 4 controllable outputs + 2 "internal" variables

Hierarchical control: main idea

• Control the translational and orientation dynamics in a hierarchical way

Attitude control

Compute the torque
$$\Gamma$$
 such that $\widehat{R} \to \widehat{R}^d$ and $\widehat{\Omega} \to \widehat{\Omega}^d$

Rotors' speed control (assumed to be done)

Hierarchical control: block diagram

- Two control loops:
 - ▶ inner loop for attitude control
 - outer loop for position control
- Constraint on the speeds of convergence of the two control loops

Position control: main idea

$$\begin{cases} \dot{p} = v \\ \dot{v} = -\frac{T}{m}Re_3 + ge_3 = U \end{cases}$$

$$\begin{cases} \dot{p} = \mathcal{N} \\ \dot{\mathcal{N}} = \mathcal{M} \end{cases}$$

- Choose $u = -\frac{T}{m}Re_3 + ge_3$ as control vector
- Design a control law $u = f(p, p^d, v, v^d)$ (e.g. for position stabilization)
- Deduce the desired force $F^d = (-\mathcal{T}Re_3)^d = m(u ge_3)$ its magnitude $T^d = \|F^d\|$ its direction $(Re_3)^d = -F^d/T^d$
- Assume that ψ^d is given
 - \blacktriangleright one can deduce a desired orientation R^d (i.e. $\phi^d,\theta^d,\psi^d)$

Attitude control: main idea

$$\begin{cases} \dot{R} = R\Omega_{\times} \\ J\dot{\Omega} = -\Omega \times J\Omega + \Gamma \end{cases}$$

• Design a control law $\Gamma = g(R, R^d, \Omega, \Omega^d)$ (e.g. for attitude stabilization) J = 0

For a quadrotor, (e_1^b, e_3^b) and (e_2^b, e_3^b) are symmetry planes $J = diag(J_1, J_2, J_3)$ and $J_1 = J_2$

$$\Omega \times J\Omega = \begin{bmatrix} (J_3 - J_2)\omega_y \omega_z \\ (J_1 - J_3)\omega_x \omega_z \\ (J_2 - J_1)\omega_x \omega_y \end{bmatrix} \Rightarrow \underbrace{J_3 \dot{\omega_z} = \Gamma_3}$$

⇒ Control of the yaw can be decoupled

Back to hierarchical control

$$\dot{\vec{p}} = V$$

$$m\dot{v} = -TRe_3 + mge_3 \pm (TRe_3)^d = -TR^d e_3 + mge_3 - T(R - R^d)e_3$$

$$\dot{\vec{R}} = R\Omega_{\times}$$

$$J\dot{\Omega} = -\Omega \times J\Omega + \Gamma$$

- Closed loop orientation dynamics must converge (much) faster than the closed loop translational dynamics ("inner loop faster than outer loop")
- Simplifications for the design of the control laws:
 - ▶ Design of position control law assuming $R = R^d$
 - Design of attitude control law assuming $R^d \sim \text{cste}$ $\Rightarrow \dot{R}^d = 0, \Omega^d = 0$

"Time-scale" separation between translational and orientation dynamics

Hierarchical control: conclusions

What we have learned so far

- A quadrotor is an underactuated system ⇒ only 4 controllable outputs
- Translational and orientation dynamics are coupled
- Hierarchical approach: position control, attitude control
- Control laws can be designed separately
- But: specific tuning of the control laws to ensure closed loop stability of the whole system

Upcoming Lectures

- Design of position and attitude control laws
 - Linear methods

Advanced methods