

Grundlagen der Informatik

Prof. Dr. J. Schmidt

Fakultät für Informatik

GDI – WS 2020/21 Codesicherung und Kanalcodierung Hamming, CRC, Reed-Solomon

Leitfragen 4.2/3/4

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- Wie können nicht-binäre Codes gesichert werden?
- Was ist der Hamming-Code und wie wird dieser gebildet?
- Was sind CRC-Codes?

• Wie funktionieren QR-Codes?

Sicherung nicht-binärer Codes (1)

- Code-Sicherung ist nicht nur auf binäre Codes beschränkt
- Manche Fehler in der Übertragung von z.B. natürlicher Sprache lassen sich aufgrund der Redundanz erkennen und korrigieren
 - d.h. die Korrektur ist aus dem Zusammenhang des Textes ersichtlich
- Manche Fehler führen zu gültigen Worten
 - d.h. sind nicht als Fehler erkennbar
 - (Zweideutigkeit)

Sicherung nicht-binärer Codes (2)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Beispiele

- Textverarbeitungsprogramme
 - Fehlerkorrektur nach gültigen Rechtschreibregeln
- Natürliche Sprache
 - Erkennbare und ggf. korrigierbare Fehler in der natürlichen Sprache

Empfangener Text	Korrigierter Text	
Vorlesunk	Vorlesung	→ eindeutig korrigierbar
Vorlosung	Verlosung / Vorlesung ?	zweideutig
Der Memsch denkt	Der Mensch denkt	→ eindeutig korrigierbar
Der Mensch lenkt	Der Mensch denkt / lenkt ?	nicht erkennbar

Sicherung nicht-binärer Codes (3)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Gegen Fehleingabe gesicherte Ziffern-Codes

- Bei Eingabe von Dezimalziffern (z.B. Bestellnummern) ist mit Fehlern zu rechnen
- Die meisten Methoden zur Aufdeckung von Fehleingaben arbeiten mit Prüfziffern

Sicherung nicht-binärer Codes (4)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- Einfachste Methode: Bildung der Quersumme
 - Zur Reduktion auf eine Dezimalstelle

 Quersumme Modulo 10
 - Divisionsrest stellt Prüfziffer dar, die am Ende der Zeichenreihe angefügt wird
- Fehlererkennung
 - Eingabe einer falschen Ziffer wird durch Vergleich der
 - resultierende Prüfzimmer
 - mit der erwarteten Prüfziffe

erkannt

- Vertauschungsfehler
 - Vertauschen zweier Ziffern wird nicht erkannt
 - Lösungsansatz
 - Gewichtung der Ziffern bei der Quersummenbildung

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Beispiel gesicherter Ziffern-Code

10-stellige ISBN-Buchnummer

- Berechnung von p
 - $10a_1 + 9a_2 + 8a_3 + 7a_4 + 6a_5 + 5a_6 + 4a_7 + 3a_8 + 2a_9$
 - Bestimmung von p so, dass die Summe durch die Addition mit p zu einer ohne Rest durch 11 teilbaren Zahl ergänzt wird

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Beispiel gesicherter Ziffern-Code

- Daraus folgt: 0 ≤ p ≤ 10
- Zweistellige Prüfziffer 10 wird durch Einzelzeichen X ersetzt
- Für eine korrekte ISBN-Nummer gilt: $(10a_1 + 9a_2 + 8a_3 + 7a_4 + 6a_5 + 5a_6 + 4a_7 + 3a_8 + 2a_9 + p) \mod 11 = 0$
- Sowohl falsch eingegebenen Ziffern als auch vertauschte Ziffern können erkannt werden

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Aufgabe: Überprüfen Sie folgende ISBN 3-528-25717-2

Ist sie korrekt oder ist bei der Eingabe ein Fehler aufgetreten?

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Internationale Bankkontonummer (IBAN)

- bis zu 34 Zeichen, normalerweise kürzer
- in Deutschland: 22 Stellen:

 $\mathsf{DE}\ \mathsf{p}_1\ \mathsf{p}_2\ \mathsf{b}_1\mathsf{b}_2\mathsf{b}_3\mathsf{b}_4\mathsf{b}_5\mathsf{b}_6\mathsf{b}_7\mathsf{b}_8\ \mathsf{k}_1\mathsf{k}_2\mathsf{k}_3\mathsf{k}_4\mathsf{k}_5\mathsf{k}_6\mathsf{k}_7\mathsf{k}_8\mathsf{k}_9\mathsf{k}_{10}$

k₁k₂k₃k₄k₅k₆k₇k₈k₉k₁₀: ehemalige Kontonummer

b₁b₂b₃b₄b₅b₆b₇b₈: ehemalige Bankleitzahl

p₁ p₂ : Prüfziffern

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

IBAN – Berechnung der Prüfziffer

- Initialisiere $p_1 p_2 = 00$
- stelle Länderkürzel und p₁ p₂ ganz nach rechts:

```
b_1b_2b_3b_4b_5b_6b_7b_8 k_1k_2k_3k_4k_5k_6k_7k_8k_9k_{10} DE 00
```

ersetze Länderkennung durch
 Position des Buchstabens im Alphabet + 9 (A=10, B=11, ...):

```
b<sub>1</sub>b<sub>2</sub>b<sub>3</sub>b<sub>4</sub>b<sub>5</sub>b<sub>6</sub>b<sub>7</sub>b<sub>8</sub> k<sub>1</sub>k<sub>2</sub>k<sub>3</sub>k<sub>4</sub>k<sub>5</sub>k<sub>6</sub>k<sub>7</sub>k<sub>8</sub>k<sub>9</sub>k<sub>10</sub> 13 14 00
```

- Berechne Rest bei Division durch 97
- Lege p₁ p₂ so fest, dass sich f
 ür den Rest 1 ergibt
- Beachte
 - ganzzahlige Arithmetik mit bis zu 36-stelligen Zahlen nötig
 - lässt sich mit Standarddatentypen in gängigen Programmiersprachen von bis zu 64 Bit nicht durchführen

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

IBAN – Beispiel: Generierung

BLZ: 711 500 00, Kontonummer: 215 632

- Kombination, Länderkürzel/Prüfziffern rechts:
 - 711500000000215632**DE00**
- Ersetze Kürzel DE durch Positionen im Alphabet + 9:
 - 711500000000215632**1314**00
- Rest bei Division durch 97 liefert:
 711500000000215632131400 mod 97 = 49
- Prüfziffern lauten also: 98 49 = 49
- IBAN: DE 49 7115 0000 0000 2156 32

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

IBAN – Beispiel: **Validierung** IBAN: DE 49 7115 0000 0000 2156 32

Länderkürzel/Prüfziffern rechts:

711500000000215632**DE49**

Ersetze Kürzel DE durch
 Positionen im Alphabet + 9:

711500000000215632**1314**49

Rest bei Division durch 97 liefert:

 $711500000000215632131449 \mod 97 = 1$

→ IBAN korrekt

Prüfsummen – allgemein

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Berechnung aus $z_n \dots z_i \dots z_0$ (enthält Prüfziffern) mit Gewichten g_i $\sum_{i=1}^n g_i z_i \mod m = 0$

• Erkennung einzelner falscher Ziffern ist garantiert, wenn alle Gewichte g_i teilerfremd zu m sind (d.h. $ggT(g_i, m) = 1$)

- Erkennung der **Vertauschung** zweier Ziffern z_i und z_k ist garantiert, wenn $g_i g_k$ teilerfremd zu m ist.
- \rightarrow Primzahlen als Modul m sinnvoll

Hamming-Code (1)

- Von R. Hamming entwickelt (1950)
 - 1-korrigierender Code
 - mit einer Hamming-Distanz von 3

- Idee
 - Einführung von Prüf-Bits
 - Deren binäre Codierung gibt an
 - > 0 → die Position des fehlerhaften Bits
 - = 0 → fehlerfreie Übertragung
 - Beispiel
 - 3 zusätzliche Prüf-Bits erlauben 2³ = 8 Zustände
 - → 7 Fehlerpositionen codierbar

Hamming-Code (2)

- Einfachster Hamming-Code
 - (7,4)-Code
 - Block-Code der Länge 7, wobei
 - 4 Bits Nutzinformationen
 - 3 Bits zur Fehlerkorrektur

- Allgemein
 - Hamming-Codes der Länge 2^r 1, wobei r ≥ 3 sein muss
 - r Paritätsbits (daraus ergeben sich dann Prüfbits)
 - 2^r − 1 − r Informations-Bits

Hamming-Code (3)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Grundsätzlicher Aufbau

Paritätsbit-Positionen sind Zweierpotenzen

$$(1 = 2^0, 2 = 2^1, 4 = 2^2, ...)$$

gerade Parität, Einsen

Beispiel (7,4)-Code

7 D	6 D	5 D	4 P	3 D	2 P	1 P	Paritätsbit an Position
D	-	D	-	D	1	Р	20
D	D	ı	-	D	Р	-	2 ¹
D	D	D	Р	-	·	ı	22

D ... Datenbit

P... Paritäts-Bit

Hamming-Code (4)

Dezimal	D	D	D	Р	D	Р	Р
0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1
2	0	0	1	1	0	0	1
3	0	0	1	1	1	1	0
4	0	1	0	1	0	1	0
5	0	1	0	1	1	0	1
6	0	1	1	0	0	1	1
7	0	1	1	0	1	0	0
8	1	0	0	1	0	1	1
9	1	0	0	1	1	0	0
10	1	0	1	0	0	1	0
11	1	0	1	0	1	0	1
12	1	1	0	0	0	0	1
13	1	1	0	0	1	1	0
14	1	1	1	1	0	0	0
15	1	1	1	1	1	1	1

- Hamming-Codes sind optimal
 - Jedes mögliche Wort ist entweder tatsächlich ein Codewort
 - oder hat eine Stellendistanz von 1 zu einem tatsächlichem Codewort

Hamming-Code (5)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Beispiel: Information 1101 ist zu übertragen

→ Bitfolge 1100110 wird übertragen

7	6	5	4	3	2	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	-	-	1	1	-
1	1	0	0	ı	-	-

Bei Änderung eines der Bits 1 bis 7

- → eines oder mehrere der drei Paritäts-Bits sind betroffen
 - Ändert man 7. Bit → Auswirkungen auf alle drei Paritäts-Bits
 - Fehler beim 6. Bit → Auswirkung nur auf Paritäts-Bits 2 und 4
 - Kippen eines Paritäts-Bits → Auswirkung nur auf gekipptes Bit

Hamming-Code – Beispiel

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

 Bitfolge 1100110 ist zu übertragen, wobei das 6. Bit kippt (Empfänger: 1000110)

7	6	5	4	3	2	1	Paritätsbit	Prüfbit
1	0	0	0	1	1	0		wird gewertet als
1	-	0	-	1	-	0	richtig	0
1	0	-	_	1	1	_	falsch	1
1	0	0	0	_	_	_	falsch	1

- Bitkombination aus letzter Spalte "von unten nach oben"
 - → Dualzahl 110 (Dezimal 6)
 - → im 6. Bit ist Fehler aufgetreten
- Die Prüfbits dual codiert geben die Position des fehlerhaften Bits an

Hamming-Code – (15, 11)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Aufbau des (15, 11) Hamming-Codes mit 4 Prüf-Bits

							2 ³				2 ²		21	20
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
D	D	D	D	D	D	D	P	D	D	D	P	D	P	P
D	-	D	-	D	-	D	-	D	-	D	-	D	-	Р
D	D	ı	-	D	D	-	-	D	D	-	ı	D	Р	-
D	D	D	D	-	-	-	-	D	D	D	Р	-	_	-
D	D	D	D	D	D	D	Р	_	_	_	-	-	_	-

D ... Datenbit

P... Paritäts-Bit

Aufgabe – Hamming-Code

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

 Sie empfangen folgendes (7,4)-Hamming-Codewort:

1000111

- War die Übertragung fehlerfrei?
- Falls nein:
 - korrigieren Sie das Codewort!
 - welche Zahl wurde übertragen?

Cyclic Redundancy Check (CRC)

- Ziele:
 - Fehlererkennung durch Hinzunahme von möglichst wenig Redundanz
 - Erkennung von
 - Einzel- und Doppelfehlern
 - Burstfehlern (mehrere fehlerhafte Bit am Stück)
 - einfache Implementierung (vor allem auch in Hardware)
- Verwendung z.B.
 - Ethernet, USB, Bluetooth, SCSI, Serial ATA, ISDN, DECT (schnurlose Telefone), CAN, FlexRay (Automotive)
 - ...

CRC – Idee (1)

- hänge an eine n Bit lange Nachricht k Bit CRC-Code an
- fasse Nachricht als Koeffizienten eines dyadischen Polynoms auf
 - dyadisch = rechne modulo 2
 - Koeffizienten können also nur Werte 0 und 1 annehmen

- Beispiel
 - Nachricht: 10011010
 - Polynom N(x) $1 \cdot x^7 + 0 \cdot x^6 + 0 \cdot x^5 + 1 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 0 = x^7 + x^4 + x^3 + x$

CRC – Idee (2)

- wähle ein Polynom C(x) vom Grad k(k = Länge CRC-Code)
- übertrage ein Polynom S(x), das ohne Rest durch C(x) teilbar ist

- Beispiel k = 3
 - $C(x) = x^3 + x^2 + 1$
 - übertrage: S(x) = N(x) + k Bit

CRC – Sender

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Schritte

- $T(x) = N(x) \cdot x^k (\rightarrow \text{ hänge k Nullen an Nachricht an})$
- berechne Rest R(x) bei Division T(x) / C(x) \rightarrow T(x) mod C(x)
- sende S(x) = T(x) R(x)
 - bei mod $2 \rightarrow T(x) R(x) = T(x) + R(x)$
 - also: hänge R(x) an N(x) an

Beispiel

$$N(x) = 10011010$$

$$= x^7 + x^4 + x^3 + x$$

•
$$C(x) = 1101$$

$$= x^3 + x^2 + 1 \longrightarrow k = 3$$

$$T(x) = 10011010000$$

$$= x^{10} + x^7 + x^6 + x^4$$

•
$$R(x) = 101$$

$$= x^2 + 1$$

$$S(x) = 10011010101$$

$$= x^{10} + x^7 + x^6 + x^4 + x^2 + 1$$

CRC - Polynomdivision

- alle Rechnungen mod 2
- daher gilt 1 + 1 = 1 1 = 0
- Subtraktion kann durch stellenweises XOR erfolgen
- beginne immer beim linkesten Koeffizienten der Nachricht N(x) (bzw. der Erweiterung T(x))

CRC – Polynomdivision – Beispiel (Sender)

CRC – Empfänger

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Schritte

- Empfange Polynom S'(x)
- berechne Rest R'(x) bei Division
 S'(x) / C(x) → S'(x) mod C(x)
 - Rest = 0
 - fehlerfreie Übertragung
 - oder nicht detektierbarer Fehler
 - Rest ≠ 0
 - mindestens 1 Bit in Nachricht ist falsch
 - Nachricht muss nochmal gesendet werden

CRC – Beispiel (Empfänger, fehlerfrei)

$$C(x) = x^3 + x^2 + 1$$
 = 1101 Generator
 $S'(x) = x^{10} + x^7 + x^6 + x^4 + x^2 + 1$ = 10011010101 empfangene Nachricht

CRC – Beispiel (Empfänger, mit Fehler)

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

$$C(x) = x^3 + x^2 + 1$$
 = 1101 Generator
 $S'(x) = x^{10} + x^7 + x^5 + x^4 + x^2 + 1$ = 10010110101 empfangene Nachricht

CRC-Prüfung nicht ok

CRC – detektierbare Fehler

- empfangen wird Polynom S'(x) = S(x) + F(x)
 - F(x) ist ein Polynom, das die fehlerhaften Bit repräsentiert
 - $F(x) = 0 \rightarrow \text{keine Fehler}$
- es können alle Fehler erkannt werden, bei denen F(x) kein Vielfaches von C(x) ist → Anforderungen an Generator C(x)
- Welche Fehler können erkannt werden?
 - alle Einzelfehler, wenn x^k und der konstante Term 1 vorhanden sind
 - alle Doppelfehler, wenn C(x) mindestens drei Terme hat, und die Größe der Daten kleiner als die Zykluslänge von C(x) ist
 - alle r-Bit Fehler f
 ür ungerade r, wenn C(x) eine gerade Anzahl an Termen hat; insbesondere, wenn es den Faktor (x + 1) enth
 ält
 - alle Burstfehler der Länge kleiner k, wenn C(x) den konstanten Term enthält
 - die meisten Burstfehler der Länge ≥ k

CRC – verbreitete Generatorpolynome

Name	Verwendung	Polynom
CRC-1	Paritätsbit	x + 1
CRC-4-CCITT	Telekommunikation = (15,11)-Hamming	$x^4 + x + 1$
CRC-5-USB	USB	$x^5 + x^2 + 1$
CRC-5-Bluetooth	Bluetooth	$x^5 + x^4 + x^2 + 1 =$ ($x^4 + x + 1$)(x + 1)
CRC-8-ITU-T	ISDN	$x^{8} + x^{2} + x + 1 =$ $(x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + 1)(x + 1)$
CRC-15-CAN	CAN-BUS	$x^{15} + x^{14} + x^{10} + x^8 + x^7 + x^4 + x^3 + 1 =$ $(x^7 + x^3 + x^2 + x + 1) (x^7 + x^3 + 1)(x + 1)$
CRC-32	Ethernet, Serial ATA,	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Aufgabe

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Zur Absicherung während der Übertragung sollen Daten mit einem CRC-Code versehen werden.

Die (binäre) zu sendende Nachricht lautet:

1100 0110

Als **Generatorpolynom** wird verwendet:

$$x^6 + x + 1$$

Wie lautet die zu sendende Nachricht inklusive des angehängten CRC-Codes?

2D-Barcodes

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- viele verschiedene Varianten
- typisch:
 - unterschiedlich breite Punkte/Striche
 - dazwischen Lücken → hoher Kontrast zum Auslesen (z.B. mit Laserscanner oder Kamera)

Aztec-Code

DataMatrix-Code

MaxiCode

QR-Code

(Bilder aus Wikipedia)

Aztec-Code

- entwickelt 1995, normiert in ISO/IEC 24778
- Verwendung: Online-Tickets
 - Deutsche/Schweizer/Österreichische Bahn
 - viele Fluggesellschaften
- kodiert 12 3000 Zeichen
- Reed-Solomon-Code zur Fehlerkorrektur
 - noch dekodierbar bei Zerstörung von bis zu 25%
- Zentrum: Markierung mit Orientierungspunkten

DataMatrix-Code

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- entwickelt 1980er, normiert in ISO/IEC 16022
- Verwendung:
 - Beschriftung von Produkten mit Laser (dauerhaft)
 - Deutsche/Schweizer Post (Freimachung ohne Briefmarke)
- kodiert bis ca. 3000 Zeichen A00000CEE1

STAMPIT

0.55 EUR 01.01.08

- früher CRC-Code
- jetzt Reed-Solomon-Code

Maxicode

- 1989, normiert in ISO/IEC 16023
- Verwendung: UPS für Paketdaten
- kodiert 93 Zeichen
 - bis zu 8 Codes können kombiniert werden (→ 744 Zeichen)
- Reed-Solomon-Code zur Fehlerkorrektur
- Markierung in der Mitte
- hexagonale Punkte

QR-Code

- QR = Quick Response
- 1994, entwickelt für Automotive-Bereich
- normiert in ISO/IEC 18004
- Verwendung:
 - ursprünglich industrielle Anwendungen
 - mittlerweile verbreitet bei Smartphones

- kodiert ca.1800 7000 Zeichen
 - abhängig vom Modus (nur Ziffern, lateinische Buchstaben, ganze Bytes,...)
 - und der gewünschten Robustheit gegen Fehler
 - bei mehr Daten: aufteilbar auf bis zu 16 Einzelcodes
- Reed-Solomon-Code zur Fehlerkorrektur
 - je nach Aufwand 7% 30% der Daten rekonstruierbar
 - je robuster desto weniger Nutzdaten sind speicherbar

QR-Code – Aufbau

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

(Bild aus Wikipedia)

QR-Codes

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

so etwas

geht nur wegen guter Fehlerkorrekturmechanismen

→ Reed-Solomon Codes

Reed-Solomon Codes (RS)

- Irving S. Reed und Gustave Solomon, 1960
- Eigenschaften:
 - Erkennung und Korrektur von
 - zufälligen Mehrfachfehlern
 - Burstfehlern
 - Auslöschungen (= fehlenden Daten)
 - nicht-binärer Code
 - also z.B. auf ASCII-Zeichen
 - wird zur eigentlichen Übertragung natürlich nach binär gewandelt
- Verwendung z.B.
 - QR-Codes, Audio-CD, DVD, Blu-Ray, Satelliten-Kommunikation, ...

RS – Idee

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- fasse Nachricht als Koeffizienten eines Polynoms über einem endlichen Körper auf
 - bei q Elementen = rechne modulo q (nur wenn q prim)
 - Koeffizienten können also nur Werte 0, 1, ..., q 1 annehmen

 Codierung durch Auswertung des Polynoms an n verschiedenen Stellen

Decodierung durch Interpolation

RS – Codierung

- Vorgehen zur Konstruktion von RS(q, m, n)
 - wähle endlichen Körper F_q mit q = p^l Elementen als Alphabet,
 p prim, I ∈ {1, 2, 3, ...}
 - Nachricht (Block aus m Symbolen) a = (a₀, ..., a_{m-1}) aufgefasst als Polynom über F_q:
 P(x) = a₀ + a₁x + a₂x² + ... + a_{m-1}x^{m-1}
 - wähle n paarweise verschiedene Elemente (n ≥ m)
 u₀, ..., u_{n-1} ∈ F_q
- Codierung
 - Auswertung von P(x) an den n Stellen u_i
 - Hornerschema oder Diskrete Fourier-Transformation (DFT)
 - Codewort $\mathbf{c} = (P(u_0), P(u_1), ..., P(u_{n-1}))$

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- RS(q, m, n) mit q = 5, m = 3, n = 5
- Nachricht a = (1, 2, 1)
 - Polynom: $P(x) = 1 + 2x + x^2$
- Auswertung von P(x) an n = 5 Stellen
 - mehr geht nicht, da Körper nur 5 Elemente hat

$$P(0) = 1 + 0 + 0$$
 = 1
 $P(1) = 1 + 2 + 1$ = 4
 $P(2) = 1 + 4 + 4 = 9$ = 4 mod 5
 $P(3) = 1 + 6 + 9 = 16$ = 1 mod 5
 $P(4) = 1 + 8 + 16 = 25$ = 0 mod 5

• Codewort $\mathbf{c} = (1, 4, 4, 1, 0)$

RS – Decodierung – Ausfälle

- RS(q, m, n) toleriert bis zu n m Ausfälle
 - Ausfall:
 - ein Teil des Codes wurde nicht empfangen
 - Positionen der Ausfälle sind bekannt
 - es wurden also mindestens m Datenpunkte empfangen
- Polynom P(x) hat Grad m 1
 - aus m Datenpunkten lässt sich P(x) rekonstruieren
 - und damit die Nachricht (= Koeffizienten von P(X))
 - → Lagrange Interpolation

RS – Decodierung – Lagrange Interpolation

- gegeben: mindestens m Datenpunkte (u_i, P(u_i))
 - zur Vereinfachung der Notation:
 Annahme, dass die ersten m empfangen wurden
- setze $g_i(x) = \prod_{j=0, j \neq i}^{m-1} (x u_j)$, i = 0, ..., m-1
- es gilt $g_i(u_j) = 0, j \neq i$
- P(x) erhält man aus

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- RS(q, m, n) mit q = 5, m = 3, n = 5 wie vorher
- Auswertung von P(x) erfolgte an den Stellen 0, 1, 2, 3, 4
- gesendetes Codewort c = (1, 4, 4, 1, 0)
 - letzte zwei Werte ausgefallen → empfangen (1, 4, 4, ε, ε)
- Berechne Polynome $g_i(x)$:

$$g_0(x) = (x-1)(x-2) = x^2 - 3x + 2 = x^2 + 2x + 2$$

 $g_1(x) = x(x-2) = x^2 - 2x$
 $g_2(x) = x(x-1) = x^2 - x$
 $= x^2 + 3x$
 $= x^2 + 4x$

mod 5!

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Auswertung der $g_i(u_i)$ an den Stellen u_i = 0, 1, 2 $g_0(x) = x^2 + 2x + 2$ $g_0(0) = 2$

$$g_1(x) = x^2 + 3x$$

 $g_1(1) = 1 + 3 = 4$

$$g_2(x) = x^2 + 4x$$

 $g_2(2) = 4 + 8 = 12 = 2$

$$P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$$

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- Bestimmung der multiplikativen Inversen $g_i^{-1}(u_i)$
 - diese existieren immer, da Körper
 - verwende z.B. erweiterten euklidischen Algorithmus

$$g_0(0) = 2 \rightarrow g_0^{-1}(0) = 3$$
 (Test: $2 \cdot 3 = 6 = 1$)
 $g_1(1) = 4 \rightarrow g_1^{-1}(1) = 4$ (Test: $4 \cdot 4 = 16 = 1$)
 $g_2(2) = 2 \rightarrow g_2^{-1}(2) = 3$ (Test: $2 \cdot 3 = 6 = 1$)

• Produkt $P(u_i)g_i^{-1}(u_i)$

$$P(0)g_0^{-1}(0) = 1 \cdot 3 = 3$$

 $P(1)g_1^{-1}(1) = 4 \cdot 4 = 16 = 1$
 $P(2)g_2^{-1}(2) = 4 \cdot 3 = 12 = 2$

 $(1, 4, 4, \epsilon, \epsilon)$

 $P(x) = \sum_{i=0}^{m-1} \frac{P(u_i)}{g_i(u_i)} g_i(x)$

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Ergebnis:

$$P(x) = \sum_{i=0}^{2} \frac{P(u_i)}{g_i(u_i)} g_i(x) = 3g_0(x) + 1g_1(x) + 2g_2(x)$$

$$= 3(x^2 + 2x + 2) + (x^2 + 3x) + 2(x^2 + 4x)$$

$$= 6x^2 + 17x + 6$$

$$= x^2 + 2x + 1$$

→ ursprüngliche Nachricht war (1, 2, 1)

RS – Decodierung – Fehlerkorrektur

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- RS(q, m, n) hat eine Hamming-Distanz
 von n m + 1
- damit lassen sich also (n m) / 2 Fehler korrigieren

Beweis:

- für n ≥ m können zwei Polynome nur an m 1
 Stellen die gleichen Werte haben
 - sonst wären sie identisch und die Nachrichten auch
 - die Werte der Polynome unterscheiden sich also an n – m + 1 Stellen (= minimaler Abstand zwischen zwei Codewörtern)

RS – Decodierung – Fehlerkorrektur

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Man nehme zwei Polynome mit noch unbekannten Koeffizienten:

•
$$f(x) = f_0 + f_1 x + f_2 x^2 + \dots \text{ vom Grad } \left[\frac{n-m}{2} \right]$$

•
$$g(x) = g_0 + g_1 x + g_2 x^2 + \dots \text{ vom Grad } \left[\frac{n-m}{2} \right] + m - 1$$

- Konstruiere daraus ein neues Polynom
 - p(x,y) = yf(x) + g(x)
- Bestimme die Koeffizienten von p(x, y) so, dass gilt
 - $p(u_i, y_i) = 0$, wobei $y_i = P(u_i)$ die empfangene (fehlerhafte) Nachricht ist
- Die ursprünglich gesendete Nachricht ergibt sich aus den Koeffizienten des Polynoms

- RS(q, m, n) mit q = 5, m = 3, n = 5 wie vorher
 - $(n m) / 2 = (5 3) / 2 = 1 \rightarrow 1$ Fehler korrigierbar
- Auswertung von P(x) erfolgte an den Stellen 0, 1, 2, 3, 4
- gesendetes Codewort c = (1, 4, 4, 1, 0)
 - eine Stelle falsch → empfangen (1, 4, 0, 1, 0)
- Polynome:
 - $f(x) = f_0 + f_1 x$ vom Grad $\left[\frac{n-m}{2}\right] = 1$
 - $g(x) = g_0 + g_1 x + g_2 x^2 + g_3 x^3 \text{ vom Grad } \left[\frac{n-m}{2}\right] + m 1 = 3$
- ergibt
 - $p(x,y) = yf(x) + g(x) = f_0y + f_1xy + g_0 + g_1x + g_2x^2 + g_3x^3$

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

- p(x,y) = yf(x) + g(x) = $f_0y + f_1xy + g_0 + g_1x + g_2x^2 + g_3x^3$
- Paare (u_i, y_i) für $p(u_i, y_i) = 0$ empfangen (1, 4, 0, 1, 0): (0,1), (1,4), (2,0), (3,1), (4,0)
- Gleichungssystem:

$$f_0 + g_0 = 0 \longrightarrow g_0 = -f_0 = 4f_0$$

$$4f_0 + 4f_1 + g_0 + g_1 + g_2 + g_3 = 0$$

$$g_0 + 2g_1 + 4g_2 + 8g_3 = 0$$

$$f_0 + 3f_1 + g_0 + 3g_1 + 9g_2 + 27g_3 = 0$$

$$g_0 + 4g_1 + 16g_2 + 64g_3 = 0$$

Achtung: Rechnung mod 5!

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

ergibt

$$3f_0 + 4f_1 + g_1 + g_2 + g_3 = 0$$

 $4f_0 + 2g_1 + 4g_2 + 3g_3 = 0$
 $3f_1 + 3g_1 + 4g_2 + 2g_3 = 0$
 $4f_0 + 4g_1 + g_2 + 4g_3 = 0$

- Lösen des Gleichungssystems
 - z.B. mit Gauß-Elimination
 - 5 Unbekannte, 4 Gleichungen → eine frei wählbar
 - beachte: endlicher K\u00f6rper, Inverse bzgl. Multiplikation:
 1 ↔ 1, 2 ↔ 3, 3 ↔ 2, 4 ↔ 4
- Ergebnis:

$$f_0 = 1$$
, $f_1 = 2$, $g_0 = 4$, $g_1 = 1$, $g_2 = 0$, $g_3 = 3$

Kapitel 4.2/4.3/4.4: Codesicherung und Kanalcodierung – Hamming, CRC, Reed-Solomon

Polynome:

$$f(x) = f_0 + f_1 x = 1 + 2x$$

$$g(x) = g_0 + g_1 x + g_2 x^2 + g_3 x^3 = 4 + x + 3x^3$$

• Berechne $\frac{g(x)}{f(x)}$

$$(3x^{3} + x + 4) : (2x + 1) = 4x^{2} + 3x + 4$$

$$- \underbrace{(3x^{3} + 4x^{2})}_{(x^{2} + x + 4)}$$

$$- \underbrace{(x^{2} + 3x)}_{(3x + 4)}$$

$$- \underbrace{(3x + 4)}_{-3x + 4}$$

Nachricht = $-\frac{g(x)}{f(x)}$ = $-(4x^2 + 3x + 4) = x^2 + 2x + 1$ \rightarrow gesendet wurde (1, 2, 1)

RS – Anmerkungen

- Decodierung in der Praxis
 - mit schnelleren (und komplizierteren) Verfahren
 - z.B. mit Berlekamp–Massey Algorithmus
- typische RS-Codes
 - CD: zwei hintereinander geschaltete RS-Codes
 - CIRC: Cross-Interleaved Reed-Solomon Coding
 - RS(33, 28, 32) und RS(29, 24, 28)
 - Burstfehler bis 4000 Bit (ca. 2,5mm Kratzer) exakt korrigierbar
 - Fehler hier = Ausfälle
 - DVD: ähnlich wie CD, aber größere Codes
 - RS(209, 192, 208) und RS(183, 172, 182)
 - QR: nicht lesbare Teile des Codes = Ausfälle

