Staggered Rollout Designs Enable Causal Inference Under Interference Without Network Knowledge

Changhao Shi

Renmin University of China, Statistics

November 8, 2023

Cortez, M., Eichhorn, M. and Yu, C., 2022. Staggered rollout designs enable causal inference under interference without network knowledge. *Advances in Neural Information Processing Systems*, *35*, pp.7437-7449.

Classic causal inference

- ▶ Binary treatment $Z_i \in \{0, 1\}$
- ▶ Potential outcomes $Y_i(1)$ and $Y_i(0)$
- ► Causal effects: comparisons of potential outcomes
- ► Common choice: average causal effect (ACE)

ACE
$$\stackrel{\text{def}}{=} E\{Y(1) - Y(0)\}\$$

 $= E\{Y(1)\} - E\{Y(0)\}\$
 $\stackrel{(1)}{=} E\{Y(1) \mid Z = 1\} - E\{Y(0) \mid Z = 0\}\$
 $\stackrel{(2)}{=} E\{Y^{\text{obs}} \mid Z = 1\} - E\{Y^{\text{obs}} \mid Z = 0\}\$

- \blacktriangleright (1) holds when $\{Y(1), Y(0)\} \perp \!\!\! \perp Z$
- (2) holds when $Y^{\text{obs}} = Y(1)Z + Y(0)(1 Z)$
- For many policy makers, ACE is the quantity of interest

Causal inference under interference

- Violation of SUTVA
- Common in advertising, epidemiology and educational studies
- ▶ Potential outcomes $Y_i(z)$, where $z \in \{0,1\}^n$
- Causal effects of interest
 - ▶ total treatment effect (TTE)

TTE =
$$\frac{1}{n} \sum_{i=1}^{n} \{ Y(1) - Y(0) \}$$

average direct effect (ADE)

$$\text{ADE} = \frac{1}{n} \sum_{i=1}^{n} E \left\{ Y_{i}(z_{i} = 1, Z_{-i}) - Y_{i}(z_{i} = 0, Z_{-i}) \right\}$$

average indirect effect (AIE)

$$\text{AIE} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq i} E\{Y_{j}(z_{i} = 1, Z_{-i}) - Y_{j}(z_{i} = 0, Z_{-i})\}$$

Standard methods for ACE cannot be applied naively

General framework for interference

- A social network
 - through which individuals interfere each other
 - observable and correctly measured
- An exposure mapping
 - determines the extent and intensity of the interference
 - technically reduces the number of potential outcomes
 - canonical examples (minor notation abuse)
 - $\qquad \qquad (\text{no interference}) \ Y_i(z) = Y_i(z_i)$
 - (neighborhood interference) $Y_i(z) = Y_i(z_{N_i})$
 - ightharpoonup (arbitrary interference) $Y_i(z) = Y_i(z)$
 - ("individualized" interference) $Y_i(z) = Y_i(?)$
- Estimators: ht, hajek, difference-in-means, etc
- Experimental designs $Z \sim P(z)$: complete randomization, Bernoulli randomization, cluster randomization, etc

What's the difficulty? theoretically

- Explosion of the number of potential outcomes
 - unidentifiability
 - inconsistency
 - hard to interpret
 - problems in design and estimation

	Treatment					
Units	1	2		j		m
1	$Y_1(\mathbf{z_1})$	$Y_1(\mathbf{z_2})$		$Y_1(\mathbf{z}_j)$		$Y_1(\mathbf{z}_m)$
:	:	÷	٠	÷	٠	÷
i	$Y_i(\mathbf{z_1})$	$Y_i(\mathbf{z_2})$		$Y_i(\mathbf{z}_j)$		$Y_i(\mathbf{z}_m)$
÷	:	÷	٠	÷	٠.	÷
n	$Y_n(\mathbf{z_1})$	$Y_n(\mathbf{z_2})$		$Y_n(\mathbf{z}_j)$		$Y_n(\mathbf{z}_m)$

What's the difficulty? empirically

More difficult situation: unobservable networks

- Structure of social network may be unavailable, costly to collect or even "ill-defined" (say, time-varying network)
- ➤ Corte et al. (2022) says one can still get unbiased estimator for TTE and bound its variance under this situation: polynomial interpolation is all you need (and some additional assumptions, of course)
- ► More specifically, if you
 - get a sample including n individuals
 - care about the TTE of some policy
 - have no idea about the underlying social network

then you can

- ▶ implement staggered rollout design
- calculate graph agnostic estimators
- draw your conclusions

Notation and framework for unobservable networks

- ▶ An unknown directed graph with edge set $E \subset [n] \times [n]$
- ▶ An edge $(j, i) \in E$ means i is affected by j's treatment
- ▶ In-neighborhood of i: $\mathcal{N}_i = \{j \in [n] : (j, i) \in E\}$
- ▶ Potential outcomes function: $Y_i : \{0,1\}^n \to \mathbb{R}$
- Under assumption of consistency, one may see

$$Y_i(\mathbf{z}) = \sum_{\mathcal{S} \subseteq [n]} a_{i,\mathcal{S}} \prod_{j \in \mathcal{S}} z_j \prod_{j' \in [n] \setminus \mathcal{S}} (1 - z_{j'}) = \sum_{\mathcal{S} \subseteq [n]} c_{i,\mathcal{S}} \prod_{j \in \mathcal{S}} z_j \quad (1)$$

- ▶ Equation (1) means $Y_i(z)$ is a polynomial in z of degree at most n
- ► Estimand of interest: $TTE := \frac{1}{n} \sum_{i=1}^{n} (Y_i(\mathbf{1}) Y_i(\mathbf{0}))$

Assumptions

- Neighborhood Interference) $Y_i(\mathbf{z})$ only depends on the treatment of individuals in \mathcal{N}_i (including i). Equivalently, $Y_i(\mathbf{z}) = Y_i(\mathbf{z}')$ for any \mathbf{z} and \mathbf{z}' such that $\mathbf{z}_j = \mathbf{z}_j'$ for all $j \in \mathcal{N}_i$.
- ► (Bounded Potential Outcomes)

$$Y_{\mathsf{max}} := \mathsf{max}_{i \in [n]} \sum_{\mathcal{S} \subseteq \mathcal{N}_i, |\mathcal{S}| \leq \beta} |c_{i,\mathcal{S}}|.$$

▶ (Low Polynomial Degree) The potential outcomes model has polynomial degree at most β , i.e. there exist coefficients $\{c_{i,\mathcal{S}}\}_{i\in[n],\mathcal{S}\subseteq[n]}$ such that for all i and \mathbf{z} ,

$$Y_i(\mathbf{z}) = \sum_{\mathcal{S} \subseteq \mathcal{N}_i, |\mathcal{S}| \leq \beta} c_{i,\mathcal{S}} \cdot \mathrm{I} ig(\mathcal{S} \ \mathsf{treated} ig) = \sum_{\mathcal{S} \subseteq \mathcal{N}_i, |\mathcal{S}| \leq \beta} c_{i,\mathcal{S}} \prod_{j \in \mathcal{S}} z_j.$$

▶ ("Time-Invariant" Potential Outcomes)

$$Y_{i,t}^{\mathbf{obs}} = Y_i(\mathbf{z}^t) + \varepsilon_{i,t}, \quad \varepsilon_{i,t} \stackrel{iid}{\sim} N(0, \sigma^2).$$

Staggered Rollout Design

- Treatment is incrementally given to random subsets of individuals
 - treatment is assigned to individuals in T stages
 - ightharpoonup individuals' outcomes are measured T+1 times
 - a baseline measurement before treatment
 - a measurement after each treatment round
- ▶ Treatment assignment in round t: \mathbf{z}^t
 - ightharpoonup each entry z_i^t is monotone increasing with t
- ► Staggered rollout bernoulli design (BRD(**p**))
 - lacktriangle cumulative treatment probabilities $0 < p_1 < \cdots < p_T \le b \ll 1$
 - $u_i \stackrel{iid}{\sim} U(0,1), \text{ for each } i \in [n]$
 - $ightharpoonup z_i^t = 1(u_i \leq p_t)$, for each $t \in [T]$
- ightharpoonup Staggered rollout completely randomized design $(CRD(\mathbf{k}))$
 - cumulative treatment numbers $0 = k_0 < k_1 < \cdots < k_T \le c \ll n$
 - ightharpoonup $\mathbf{z}^t \sim \mathsf{CRD}(k_t k_{t-1})$ out of the remaining untreated individuals

Graph Agnostic Estimators

▶ (Lagrange Interpolation) Given a dataset $\{(x_t, y_t)\}_{t=0}^T$ with distinct x-coordinates, the unique polynomial F of degree at most T with $F(x_t) = y_t$ for each t is given by

$$F(x) = \sum_{t=0}^{T} \ell_{t,x}(x) \cdot \frac{y_t}{y_t}, \qquad \ell_{t,x}(x) = \prod_{\substack{s=0\\s \neq t}}^{T} \frac{x - x_s}{x_t - x_s}.$$

Polynomial interpolation (PI) estimator

$$\widehat{\mathsf{TTE}}_{\mathsf{PI}}(\mathbf{x}) := \begin{cases} \sum_{t=0}^{T} \left(\ell_{t,\mathbf{x}}(1) - \ell_{t,\mathbf{x}}(0)\right) \left(\frac{1}{n} \sum_{i=1}^{n} Y_{i,t}^{\mathsf{obs}}\right) & x_0 < x_1 < \ldots < x_T, \\ 0 & x_t = x_{t-1} \text{ for some } t. \end{cases}$$

▶ i.e. implement PI for $\{(x_t, \overline{y_t^{\text{obs}}})\}_{t=0}^T$, where $\overline{y_t^{\text{obs}}} = \frac{1}{n} \sum_{i=1}^n y_{i,t}^{\text{obs}}$

Theoretical Results

▶ (**Theorem 1**) Consider a potential outcomes model with degree β . Under a BRD(p) with $p_0 = 0$, the estimator $\widehat{\mathsf{TTE}}_{\mathsf{Pl}}(\mathbf{p})$ is unbiased with variance

$$O\left(\beta^2 Y_{\max}^2 \frac{\mathsf{d}^2}{n} \Delta_{\mathbf{p}}^{-2\beta} + \frac{\sigma^2 \beta}{n} \Delta_{\mathbf{p}}^{-2\beta}\right).$$

▶ (**Theorem 2**) Consider a potential outcomes model with degree β . Under a CRD(k) with $k_0 = 0$, the estimator $\widehat{\mathsf{TTE}}_{\mathsf{PI}}(\mathbf{k}/n)$ is unbiased with variance

$$O\left(\beta^2 Y_{\max}^2 \left(\frac{\frac{d^2}{n}}{n} + \frac{\beta^2}{k_1}\right) \cdot \left(\frac{n}{\Delta_{\mathbf{k}}}\right)^{2\beta} + \frac{\sigma^2 \beta}{n} \left(\frac{n}{\Delta_{\mathbf{k}}}\right)^{2\beta}\right).$$

Intuition-Why does it work?

- ▶ In general, when F(x) is a polynomial in x of degree T
 - $F(x) = a_T x^T + \cdots + a_1 x + a_0$ (definition)
 - equivalently, $F(x) = \sum_{t=0}^{T} \ell_{t,x}(x) F(x_t)$ (linear w.r.t $F(x_t)$)
 - $\blacktriangleright \widehat{F}(x) = \sum_{t=0}^{T} \ell_{t,x}(x) \widehat{F}(x_t)$
 - \triangleright $E(\widehat{F}(x)) = F(x)$ if $E(\widehat{F}(x_t)) = F(x_t)$
 - \blacktriangleright $\ell_{t,x}(x)$ is nonrandom
- ▶ Assume $Z \sim \mathcal{D}_{x}$, where \mathcal{D}_{x} is a parameterized class of distributions
 - let $P_{\mathbf{Z} \sim \mathcal{D}_0}(\mathbf{Z} = \mathbf{0}) = 1$ and $P_{\mathbf{Z} \sim \mathcal{D}_1}(\mathbf{Z} = \mathbf{1}) = 1$
 - define $F_{\mathcal{D}}(x) = \mathbb{E}_{\mathbf{Z} \sim \mathcal{D}_x} \left[\frac{1}{n} \sum_{i=1}^n Y_i(\mathbf{Z}) \right]$
 - ▶ then $TTE = F_D(1) F_D(0)$
 - under "suitable" designs, $F_D(x)$ will be a polynomial in x
 - ► (BRD(**p**)) $F_B(p) = \frac{1}{n} \sum_{i=1}^n \sum_{S \subseteq \mathcal{N}_i, |S| \le \beta} c_{i,S} \cdot p^{|S|}$

Simulation Settings

- ▶ Random networks generated from a configuration model (say, SBM, SW, etc) with degrees distributed as a power law with exponent 2.5
- ▶ For degree β , consider potential outcomes model

$$Y_i(\mathbf{z}) = c_{i,\emptyset} + \sum_{j \in \mathcal{N}_i} \tilde{c}_{ij} z_j + \sum_{\ell=2}^{\beta} \left(\frac{\sum_{j \in \mathcal{N}_i} \tilde{c}_{ij} z_j}{\sum_{j \in \mathcal{N}_i} \tilde{c}_{ij}} \right)^{\ell},$$

where

- $ightharpoonup c_{i,\emptyset} \sim U[0,1], \ \tilde{c}_{ii} \sim U[0,1]$
- for $i \neq j$, $\tilde{c}_{ij} = v_j |\mathcal{N}_i| / \sum_{k:(k,j) \in E} |\mathcal{N}_k|$ for $v_j \sim U[0,r]$
- ▶ hyperparameter *r* governs the relative magnitude of the network effects
- ▶ Set $\sigma = 0$, which is in $\varepsilon_{i,t} \stackrel{iid}{\sim} N(0, \sigma^2)$

Simulation results

Discussion

- A novel idea
 - staggered rollout design
 - polynomial interpolation
- Future work
 - **ightharpoonup** model selection when β is unknown
 - dynamic setting
 - time-dependent noise
 - time-varying effects
 - time-varying networks
 - beyond polynomial
 - sublinear functions
 - monotone functions

Thank you!