Music Recommendation

M. Finley,

R. Jaswa

Background

mtroductio

Overview

Summary of

Content Base Neural

Deep Learning Techniques

Graph Based,

Conclusion

.

Music Recommendation Modern Approaches and Problems

T. Shan, M. Finley, R. Jaswal

December 3rd, 2019

Background/Motivation

Music Recommendation

Background

- Music streaming is most common medium for music listening currently
- Large part of music streaming is content recommendations
- Need for personalized recommendations that incentivize usage
- Research has led to "leaderboard-chasing" resulting in stunted knowledge development

Introduction/Significance

Music Recommendation

Introduction

Goal

- Allows listeners to discover new music that matches their tastes
- Enables online music stores to target their wares to the right audience
- However, complicated! So many factors...
 - Music content
 - User profile
 - Social and cultural factors...
- Recommend system needed also in other area, like movies, books, scientific articles...

Outline

Music Recommendation

Introduction

1 Background

Introduction

Methods Overview

Summary of Literature

Content Based Neural Networks

Deep Learning Techniques

6 Graph Based, Heuristic

7 Conclusion

Methods Overview

Music Recommendation

- T. Shan M. Finle
- R. Jaswa

Background

Methods Overview

Summary of

Content Ba

Neural Networks

Deep Learning Techniques

Graph Based,

Conclusion

conclusion

- Recommendation systems take the form of:
 - Neural Network architectures
 - K-nearest Neighbors (KNN), collaborative filtering
 - Graph based method

Outline

Music Recommendation

Summary of Literature

Methods Overview

Summary of Literature

Summary of Literature

Titles

Deep Content-Based Music Recommendation

RecGAN: Recurrent Generative Adversarial

Networks for Recommendation Systems Neural Collaborative Filtering

Learning Content Similarity for Music

Recommendation

Filtering

Music Recommendation

Summary of Literature

Improving Collaborative Metric Learning with V Tran et al 2019 Negative Sampling Efficient Negative Sampling Are We Really Making Much Progress? A M. Ferrari Dacrema et al. N/A 2019 Worrying Analysis of Recent Neural Recommendation Approaches The Neural Hype and Comparisons Against J Lin N/A 2019 Weak Baselines A Comparison of Offline Evaluations, Online J Beel et al N/A 2015 Evaluations, and User Studies in the Context of Research-Paper Recommender Systems Investigating the Persuasion Potential of P Cremonesi et al. N/A 2012 Recommender Systems from a Quality Perspective: An Empirical Study Improved Neighborhood-based Collaborative R Bell et al Neighborhood-Based 2007

Authors

A van den Oord et al.

H. Bharadhwai et al.

B McFee et al

X He et al

Figure: Table 1. Description of literature reviewed.

Type

Content-based

Content-based

Neural Network

Neural Network

Date

2013

2012

2018

2017

Collabrative Filtering

Music Recommendation

1. Shan, M. Finley R. Jaswal

Backgroun

Methods

Overview Summary of

Content B

Neural Networks

Deep Learning Techniques

Graph Based,

Conclusion

References

- Most prevalent method in the recommendation field
- A method of making automatic predictions (filtering)about the interests of a user by collecting preferences or taste information from many users (collaborating).
- Look for users who share the same rating patterns with the active user (the user whom the prediction is for).
 - 2 Use the ratings from those like-minded users found in step 1 to calculate a prediction for the active use

Collabrative Filtering

Music Recommendation

Summary of Literature

- **Memory-based** To find the rating R that a user U would give to an item I, the approach includes:
 - Finding users similar to U who have rated the item I
 - Calculating the rating R based the ratings of users found in the previous step
- Model-based Dimension Reduction

Music Recommendation

Content Based Neural Networks

Deep content-based music recommendation

Aaron van den Oord et al. 2013

Goal

Bridge the semantic gap in music by training a CNN model to predict latent factors from music audio

Music Recommendation

Content Based Neural Networks

Cold start problem of collaborative filtering Only applicable when usage data is available New items that have not been consumed before cannot be recommended.

 Content-based recommendation Predict user preferences from item content and metadata

Music Recommendation

Content Based Neural Networks

Dataset Million Song Dataset (MSD)

- **Ground truth** Weighted Matrix Factorization (Hu et al, 2008)
 - Dataset contains play counts per song and per user

$$p_{ui} = I(r_{ui} > 0)$$

$$c_{ui} = 1 + \alpha log(1 + \epsilon^{-} 1 r_{ui})$$

where r_{ui} is the play count for user u and song i, and p_{ui} is the preference variable, c_{ii} is the confidence variable

WMF

$$min_{x,y} \sum c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda (\sum_u ||x_u||^2 + \sum_i ||y_i||^2)$$

where x_{ii} is the latent factor vector for user u and y_i is the latent factor for song i

Music Recommendation

Content Based Neural Networks

Bag-of-words representation

Traditionly used as feature input to classifier or regressor

- Extract MFCC
- Vector quantize the MFCCs with K-means algorithm
- Aggregate them into a bag-of-words representation: Count how many times each cluster was selected.
- The result vector of counts is a bag-of-words feature representation of the song

Linear regression, multilayer perceptron (1000 hidden units), metric learning to rank (MLR)

- Convolutional Neural Network
 - Log-scale Melspectrogram

Music Recommendation

Content Based Neural Networks

Objective function

- MSE
- weighted prediction error (WPE)

$$min_{\theta} \sum c_{ui} (p_{ui} - x_u^T y_i')^2$$

where θ is the model parameters, y'_i is the predicted latent vector by the model

Music Recommendation

T. Shan, M. Finley, R. Jaswal

Backgroun

Introductio

Methods Overview Summary of Literature

Content Based Neural Networks

Deep Learning Techniques

Graph Based Heuristic

Conclus

References

Experiments

- Versatility of the latent factor representation Tag classification task: (Logistic regression) Latent factor-based feature has higher AUC than pure audio-based classification
- Latent factor prediction: quantitative evaluation

Model	mAP	AUC
MLR	0.01801	0.60608
linear regression	0.02389	0.63518
MLP	0.02536	0.64611
CNN with MSE	0.05016	0.70987
CNN with WPE	0.04323	0.70101

where mAP is mean average precision and AUC is the area under ROC curve

Music Recommendation

T. Shan, M. Finley, R. Jaswal

Backgroun

Methods Overview Summary of Literature

Content Based Neural Networks

Deep Learnin Techniques

Graph Based Heuristic

Conclusi

Reference

Experiments

■ Latent factor prediction: qualitative evaluation t-SNE visualization of the distribution of predicted usage patterns, using latent factors predicted from audio. We can discern hip-hop(red), rock (green), pop (yellow) and electronic music (blue).

Music Recommendation

M. Finley R. Jaswa

Introduction

Methods Overview

Overview Summary of Literature

Content Based Neural Networks

Deep Learning Techniques

Graph Based

Conclusior

Conclusion

Conclusion

- Using CNN model to predict latent factor when there is no usage data
- A solution of cold start problem
- Recommend new and unpopular song

Music Recommendation

T. Shan, M. Finley, R. Jaswal

Backgroun

Methods

Overviev

Summary

Content Based Neural Networks

Deep Learning Techniques

Graph Based

Conclusion

Conclusion

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema et al, 2019

Goal

Reproduce various recent deep learning approaches to top-n recommender systems and analyze their performances with tuned baseline and heuristic based recommender system.

Music Recommendation

Deep Learning **Techniques**

Issues

- Influx of deep learning techniques with regards to recommender systems.
- Published in top-level research conferences.
- Many not reproducible.
- Those reproducible beaten by tuned baselines.

Music Recommendation

1. Snan, M. Finley R. Jaswal

Backgroun

Methods

Summary

Content Base

Deep Learning Techniques

Graph Based,

Conclusion

Conclusion

Factors

- Weak baselines or establishment of weak methods as new baselines.
- Difficulties in comparing or reproducing results across papers.
- Differences in dataset, evaluation protocols, performance measure and data preprocessing steps

Music Recommendation

T. Shan, M. Finley, R. Jaswal

Dackground

Methods Overview Summary of Literature

Content Based Neural Networks

Deep Learning Techniques

Graph Based Heuristic

Conclusi

References

Baselines taken

- Non-personalized TopPopular
- Collaborative based k-nearest neighbour methods -ItemKNN, UserKNN
- Content based k-nearest neighbour methods -ItemKNN-CBF, ItemKNN-CFCBF
- Graph based methods P³A, RP³B

Deep learning methods

- included papers that appeared between 2015 and 2018 in the following four conference series: KDD, SIGIR, TheWebConf (WWW), and RecSys.
- Some of them which were reproducible CMN, MCRec, CVAE, CDL

Music Recommendation

T. Shan, M. Finley, R. Jaswal

Introduction

Methods Overview Summary of

Content Based Neural Networks

Deep Learning Techniques

Graph Based,

Conclusior

Conclusion

Results

- Many of them were not reproducible
- Some were reproduced using all the parameters listed in the papers
- They were compared with tuned baselines using the databases mentioned in the papers.
- The deep learning methods were outperformed by the baselines using evaluation metrics mentioned in the papers.

Music Recommendation

M. Finley R. Jaswal

Backgroun

Methods Overviev

Summary of

Content Ba

Neural Networks

Deep Learning Techniques

Graph Based Heuristic

References

Results

	CiteULike-a				
	HR@5	NDCG@5	HR@10	NDCG@10	
TopPopular	0.1803	0.1220	0.2783	0.1535	
UserKNN	0.8213	0.7033	0.8935	0.7268	
ItemKNN	0.8116	0.6939	0.8878	0.7187	
$P^3\alpha$	0.8202	0.7061	0.8901	0.7289	
$RP^3\beta$	0.8226	0.7114	0.8941	0.7347	
CMN	0.8069	0.6666	0.8910	0.6942	

	REC@50	REC@100	REC@300
TopPopular	0.0044	0.0081	0.0258
UserKNN	0.0683	0.1016	0.1685
ItemKNN	0.0788	0.1153	0.1823
$P^3\alpha$	0.0788	0.1151	0.1784
$RP^3\beta$	0.0811	0.1184	0.1799
ItemKNN-CFCBF	0.1837	0.2777	0.4486
CVAE	0.0772	0.1548	0.3602

	PREC@10	REC@10	NDCG@10
TopPopular	0.1907	0.1180	0.1361
UserKNN	0.2913	0.1802	0.2055
ItemKNN	0.3327	0.2199	0.2603
$P^3\alpha$	0.2137	0.1585	0.1838
$RP^3\beta$	0.2357	0.1684	0.1923
MCRec	0.3077	0.2061	0.2363

	Cutoff 20		Cutoff 60		Cutoff 100	
	REC	MAP	REC	MAP	REC	MAP
TopPopular	0.1853	0.0576	0.3335	0.0659	0.4244	0.0696
UserKNN CF	0.2881	0.1106	0.4780	0.1238	0.5790	0.1290
ItemKNN CF	0.2819	0.1059	0.4712	0.1190	0.5737	0.1243
$P^3\alpha$	0.2853	0.1051	0.4808	0.1195	0.5760	0.1248
$RP^3\beta$	0.2910	0.1088	0.4882	0.1233	0.5884	0.1288
SpectralCF	0.1843	0.0539	0.3274	0.0618	0.4254	0.0656

Heuristic Method

Music Recommendation

Graph Based, Heuristic

Random Walks in Recommender Systems: **Exact Computation and Simulations**

Colin Cooper et al.

Goal

Recommend movie to user based on ranking of nearest three-step random walk along graph of users and movies

Heuristic Method

Music Recommendation

- 1. Shan, M. Finley R. Jaswal
- Backgroun

Methods Overview Summary of Literature

Content Based Neural

Deep Learning Techniques

Graph Based, Heuristic

Conclusion

)-f----

- $\bullet G = (U \cup I, R)$
- G is graph, U is set of users, I is set of movies
- Edges of G show which movies the users have watched
- lacktriangleright s-step random walk distribution (P^s) ranks movies user hasn't watched based on the probability distribution of the random walk at step s, if u was the starting vertex

Conclusion

Music Recommendation

Conclusion

 Music recommendation system will most likely expand and evolve to include recommendations based on more high level abstract musical concepts

- Future research interests include:
 - Improving deep learning methods to outperform tuned baselines consistently
 - Recommendation systems which recommend songs based on ever-changing metrics such as weather, mood.
- Social ethical issue derived from recommendation system

Questions

Music Recommendation

Conclusion

Questions?

References I

Music Recommendation

References

Homanga Bharadhwaj, Homin Park, and Brian Y. Lim. "RecGAN: Recurrent Generative Adversarial Networks for Recommendation Systems". In: *Proceedings of the 12th* ACM Conference on Recommender Systems. RecSys '18. Vancouver, British Columbia, Canada: ACM, 2018, pp. 372-376. ISBN: 978-1-4503-5901-6. DOI: 10.1145/3240323.3240383. URL: http://doi.acm.org/10.1145/3240323.3240383.

Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. "Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches". In: CoRR abs/1907.06902 (2019). arXiv: 1907.06902. URL: http://arxiv.org/abs/1907.06902.

References II

Music Recommendation

References

Yifan Hu, Yehuda Koren, and Chris Volinsky. "Collaborative filtering for implicit feedback datasets". In: 2008 Eighth IEEE International Conference on Data Mining. leee. 2008, pp. 263-272.

Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. "Deep content-based music recommendation". In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges et al. Curran Associates, Inc., 2013, pp. 2643–2651. URL: http://papers.nips.cc/paper/5004-deep-contentbased-music-recommendation.pdf.

References III

Music Recommendation

M. Finley, R. Jaswal

Backgroun

Introductio

Methods Overview

Summary

Content Bases Neural

Deep Learning Techniques

Graph Based

Conclusion

References

Viet-Anh Tran et al. "Improving Collaborative Metric Learning with Efficient Negative Sampling". In: Proceedings of the 42Nd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR'19. Paris, France: ACM, 2019.

pp. 1201–1204. ISBN: 978-1-4503-6172-9. DOI:

10.1145/3331184.3331337. URL:

http://doi.acm.org/10.1145/3331184.3331337.