

The opinion in support of the decision being entered today was not written for publication and is not binding precedent of the Board.

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Ex parte CARL JOHAN FRIDDLE,
ERIN HILBUN,
BRENDA GERHARDT and
C. ALEXANDER TURNER JR.

Appeal No. 2005-0731
Application No. 09/974,712

ON BRIEF

Before WILLIAM F. SMITH, ADAMS, and GRIMES, Administrative Patent Judges.
GRIMES, Administrative Patent Judge.

DECISION ON APPEAL

This is a decision on appeal under 35 U.S.C. § 134 from the examiner's final rejection of claims 1-3 and 5, all of the claims remaining. Claim 3 is representative and reads as follows:

3. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes the amino acid sequence shown in SEQ ID NO:2.

The examiner relies on the following references:

Bork, "Go hunting in sequence databases but watch out for the traps," TIG, Vol. 12, No. 10, pp. 425-427 (1996)

Smith et al., "The challenges of genome sequence annotation or 'the devil is in the detail'," Nature Biotechnology, Vol. 15, pp. 1222-1223 (1997)

Doerks et al., "Protein annotation: detective work for function prediction," TIG, Vol. 14, No. 6, pp. 248-249 (1998)

Brenner, "Errors in genome annotation," TIG, Vol. 15, No. 4, pp. 132-133 (1999)

Bork, "Powers and Pitfalls in Sequence Analysis: The 70% Hurdle," Genome Research, Vol. 10, pp. 398-400 (2000)

Skolnick et al., "From genes to protein structure and function: novel applications of computational approaches in the genomic era," Trends in Biotech., Vol. 18, No. 1, pp. 34-39 (2000)

Claims 1-3 and 5 stand rejected under 35 U.S.C. §§ 101 and 112, first paragraph, as lacking patentable utility.

We affirm.

Technical Background

The specification discloses polynucleotides encoding human proteins (referred to generically as a "novel human proteins" or NHPs) that "share structural similarity with mammalian ion channel proteins, and particularly potassium channels and more particularly voltage-gated potassium channel proteins." Page 2. One of the disclosed polynucleotides encodes a polypeptide of 456 amino acids (with the amino acid sequence shown in SEQ ID NO:2). Page 2, lines 5-7. The specification does not further characterize polypeptide of SEQ ID NO:2 or its encoding polynucleotide, but notes that "[i]on channel proteins are integral membrane proteins that mediate or facilitate the passage of materials across the lipid bilayer." Page 1.

The specification does not disclose what role the protein of SEQ ID NO:2 plays in any physiological process, but contemplates "processes for identifying compounds that

modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity . . . Such compounds can be used as therapeutic agents for the treatment of a wide variety of symptoms associated with biological disorders or imbalances." Page 3.

The specification discloses that two polymorphic positions were identified in SEQ ID NO:2. Page 16, lines 24-32. In the Sequence Listing, these positions are shown to be occupied by only a single nucleotide in SEQ ID NO:1 and only a single amino acid in SEQ ID NO:2; that is, the Sequence Listing does not reflect the purportedly polymorphic nature of the two positions.

The specification states that "suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for identifying polymorphisms . . . , determining the genomic structure of a given locus/allele, and designing diagnostic tests." Page 11.

The specification also states that "[t]he NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs . . . effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of a NHP in the body." Page 15. Or "the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding to NHPs, . . . NHP antibodies . . . , antagonists or agonists . . . can be used to directly treat diseases or disorders." Pages 15-16.

The NHP protein is disclosed to be useful "in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic

treatment of mental, biological, or medical disorders and disease. Given the similarity information and expression data, the described NHP can be targeted . . . in order to treat disease, or to therapeutically augment the efficacy of, for example, chemotherapeutic agents." Page 19.

Procedural Background

On March 30, 2005, Appellants were notified of certain similarities between the present case and previously decided Appeal 2004-1732 (commonly assigned application no. 09/714,882). Appellants were ordered (pursuant to 37 CFR § 41.50(d)) to explain why the appeal in this case should not be affirmed on the same basis as previous appeal. Appellants have responded to the Rule 41.50(d) order, pointing out an aspect in which the facts of the present application differ from those at issue in Appeal 2004-0343. "[I]n order to preserve such issues for appeal to the Federal Circuit, . . . Appellants respectfully request[ed] the Board to address all of the assertions of utility set forth by Appellants in the Appeal Brief." Response filed May 2, 2005, pages 3-4. We therefore proceed to the merits of the appeal.

Discussion

The examiner rejected all of the claims as lacking a disclosed utility sufficient to satisfy 35 U.S.C. § 101.¹ The examiner bears the initial burden of showing that a claimed invention lacks patentable utility. See In re Brana, 51 F.3d 1560, 1566, 34 USPQ2d 1436, 1441 (Fed. Cir. 1995) ("Only after the PTO provides evidence showing that one of ordinary skill in the art would reasonably doubt the asserted utility does the

¹ The examiner also rejected all of the claims under 35 U.S.C. § 112, first paragraph, for lack of enablement, but that rejection is merely as a corollary of the finding of lack of utility. See the Examiner's

burden shift to the applicant to provide rebuttal evidence sufficient to convince such a person of the invention's asserted utility.").

The seminal decision interpreting the utility requirement of § 101 is Brenner v. Manson, 383 U.S. 519, 148 USPQ 689 (1966). At issue in Brenner was a claim to "a chemical process which yields an already known product whose utility—other than as a possible object of scientific inquiry—ha[d] not yet been evidenced." Id. at 529, 148 USPQ at 693. The Patent Office had rejected the claimed process for lack of utility, on the basis that the product produced by the claimed process had not been shown to be useful. See id. at 521-22, 148 USPQ at 690. On appeal, the Court of Customs and Patent Appeals reversed, on the basis that "where a claimed process produces a known product it is not necessary to show utility for the product." Id. at 522, 148 USPQ at 691.

The Brenner Court noted that although § 101 requires that an invention be "useful," that "simple, everyday word can be pregnant with ambiguity when applied to the facts of life." Id. at 529, 148 USPQ at 693. Thus,

[it] is not remarkable that differences arise as to how the test of usefulness is to be applied to chemical processes. Even if we knew precisely what Congress meant in 1790 when it devised the "new and useful" phraseology and in subsequent re-enactments of the test, we should have difficulty in applying it in the context of contemporary chemistry, where research is as comprehensive as man's grasp and where little or nothing is wholly beyond the pale of "utility"—if that word is given its broadest reach.

Id. at 530, 148 USPQ at 694.²

Answer, page 3. Therefore, our conclusion with respect to the § 101 issue also applies to the § 112 issue.

² The invention at issue in Brenner was a process, but the Court expressly noted that its holding "would apply equally to the patenting of the product produced by the process." Id. at 535, 148 USPQ at 695-96.

The Court, finding “no specific assistance in the legislative materials underlying § 101,” based its analysis on “the general intent of Congress, the purposes of the patent system, and the implications of a decision one way or the other.” Id. at 532, 148 USPQ at 695. The Court concluded that “[t]he basic quid pro quo contemplated by the Constitution and the Congress for granting a patent monopoly is the benefit derived by the public from an invention with substantial utility. Unless and until a process is refined and developed to this point—where specific benefit exists in currently available form—there is insufficient justification for permitting an applicant to engross what may prove to be a broad field.” Id. at 534-35, 148 USPQ at 695.

The Court considered and rejected the applicant’s argument that attenuating the requirement of utility “would encourage inventors of new processes to publicize the event for the benefit of the entire scientific community, thus widening the search for uses and increasing the fund of scientific knowledge.” The Court noted that, while there is value to encouraging disclosure, “a more compelling consideration is that a process patent in the chemical field, which has not been developed and pointed to the degree of specific utility, creates a monopoly of knowledge which should be granted only if clearly commanded by the statute. Until the process claim has been reduced to production of a product shown to be useful, the metes and bounds of that monopoly are not capable of precise delineation. It may engross a vast, unknown, and perhaps unknowable area. Such a patent may confer power to block off whole areas of scientific development.” Id. at 534, 148 USPQ at 695.

The Court took pains to note that it did not “mean to disparage the importance of contributions to the fund of scientific information short of the invention of something

'useful,'" and that it was not "blind to the prospect that what now seems without 'use' may tomorrow command the grateful attention of the public." Id. at 535-36, 148 USPQ at 696. Those considerations did not sway the Court, however, because "a patent is not a hunting license. It is not a reward for the search, but compensation for its successful conclusion." Id.

Subsequent decisions of the CCPA and the Court of Appeals for the Federal Circuit have added further layers of judicial gloss to the meaning of § 101's utility requirement. The first opinion of the CCPA applying Brenner was In re Kirk, 376 F.2d 936, 153 USPQ 48 (CCPA 1967). The invention claimed in Kirk was a set of steroid derivatives said to have valuable biological properties and to be of value "in the furtherance of steroid research and in the application of steroid materials to veterinary or medical practice." Id. at 938, 153 USPQ at 50. The claims had been rejected for lack of utility. In response, the applicants submitted an affidavit which purportedly "show[ed] that one skilled in the art would be able to determine the biological uses of the claimed compounds by routine tests." Id. at 939, 153 USPQ at 51.

The court held that "nebulous expressions [like] 'biological activity' or 'biological properties'" did not adequately convey how to use the claimed compounds. Id. at 941, 153 USPQ at 52. Nor did the applicants' affidavit help their case: "the sum and substance of the affidavit appear[ed] to be that one of ordinary skill in the art would know 'how to use' the compounds to find out in the first instance whether the compounds are—or are not—in fact useful or possess useful properties, and to ascertain what those properties are." Id. at 942, 153 USPQ at 53.

The Kirk court held that an earlier CCPA decision, holding that a chemical compound meets the requirements of § 101 if it is useful to chemists doing research on steroids, had effectively been overruled by Brenner. “There can be no doubt that the insubstantial, superficial nature of vague, general disclosures or arguments of ‘useful in research’ or ‘useful as building blocks of value to the researcher’ was recognized, and clearly rejected, by the Supreme Court” in Brenner. See Kirk, 376 F.2d at 945, 153 USPQ at 55.

More recently, in In re Ziegler, 992 F.2d 1197, 26 USPQ2d 1600 (Fed. Cir. 1993), the Federal Circuit considered the degree of specificity required to show utility for a claim to polypropylene. The U.S. application on appeal in Ziegler claimed priority to a German application filed in 1954. “In the German application, Ziegler disclosed only that solid granules of polypropylene could be pressed into a flexible film with a characteristic infrared spectrum and that the polypropylene was ‘plastic-like.’” Id. at 1203, 26 USPQ2d at 1605. “Ziegler did not assert any practical use for the polypropylene or its film, and Ziegler did not disclose any characteristics of the polypropylene or its film that demonstrated its utility.” Id. The court held that the German application did not satisfy the requirements of § 101 and therefore could not be relied on to overcome a rejection based on an intervening reference. See id., 26 USPQ2d at 1606. “[At] best, Ziegler was on the way to discovering a practical utility for polypropylene at the time of the filing of the German application; but in that application Ziegler had not yet gotten there.” Id., 26 USPQ2d at 1605.

On the other hand, the CCPA reversed a rejection for lack of utility in In re Jolles, 628 F.2d 1322, 206 USPQ 885 (CCPA 1980). The applicant in Jolles claimed

pharmaceutical compositions that were disclosed to be useful in treating acute myeloblastic leukemia. See id. at 1323, 206 USPQ at 886. The active ingredients in the compositions were closely related to daunorubicin and doxorubicin, both of which were “well recognized in the art as valuable for use in cancer chemotherapy.” Id., 206 USPQ at 887. The applicant also submitted declaratory evidence showing that eight of the claimed compositions were effective in treating tumors in a mouse model, and one was effective in treating humans. See id. at 1323-24, 206 USPQ at 887-88. The court noted that the data derived from the mouse model were “relevant to the treatment of humans and [were] not to be disregarded,” id. at 1327, 206 USPQ at 890, and held that the evidence was sufficient to support the asserted therapeutic utility. See id. at 1327-28, 206 USPQ at 891.

The Federal Circuit held in Cross v. Iizuka, 753 F.2d 1040, 224 USPQ 739 (Fed. Cir. 1985), that in vivo testing (as in Jolles) was not necessarily required to show utility in the pharmaceutical context. The Cross court stated that “[it] is axiomatic that an invention cannot be considered ‘useful,’ in the sense that a patent can be granted on it, unless substantial or practical utility for the invention has been discovered and disclosed where such utility would not be obvious.” Id. at 1044, 224 USPQ at 742 (citing Brenner v. Manson). The court “perceive[d] no insurmountable difficulty, under appropriate circumstances, in finding that the first link in the screening chain, in vitro testing, may establish a practical utility for the compound in question.” Id. at 1051, 224 USPQ at 748. Successful in vitro testing could provide an immediate benefit to the public, by “marshal[ling] resources and direct[ing] the expenditure of effort to further in vivo testing of the most potent compounds . . . , analogous to the benefit provided by the showing of

an in vivo utility." Id. On the facts of that case – successful in vitro testing supplemented by similar in vitro and in vivo activities of structurally similar compounds – the court held that in vitro activity was sufficient to meet the requirements of § 101. Id.

The Federal Circuit confirmed in In re Brana, 51 F.3d 1560, 34 USPQ2d 1436 (Fed. Cir. 1995), that human testing is not necessary to establish utility for a method of treatment. The invention claimed in Brana was a group of compounds disclosed to have antitumor activity. See id. at 1562, 34 USPQ2d at 1437-38. The claimed compounds were disclosed to have higher antitumor activity than related compounds known to have antitumor activity, and the applicants provided declaratory evidence of in vivo activity against tumors in a mouse model. See id., 34 USPQ2d at 1438. The court held that these data were sufficient to satisfy § 101; usefulness in patent law does not require that the invention be ready to be administered to humans. See id. at 1567, 34 USPQ2d at 1442.

Several lessons can be drawn from Brenner and its progeny. First, § 101's requirement that an invention be "useful" is not to be given its broadest reach, such that little or nothing of a chemical nature would be found to lack utility. See Brenner, 383 U.S. at 530, 148 USPQ at 694. Thus, not every "use" that can be asserted will be sufficient to satisfy § 101. For example, the steroid compound in Brenner was useful as an object of scientific inquiry, and the polypropylene in Ziegler was useful for pressing into a flexible film, yet both lacked sufficient utility to satisfy § 101. See Brenner, 383 U.S. at 529, 148 USPQ at 696; Ziegler, 992 F.2d at 1203, 26 USPQ2d at 1605.

Rather than setting a de minimis standard, § 101 requires a utility that is "substantial", i.e., one that provides a specific benefit in currently available form.

Brenner, 383 U.S. at 534-35, 148 USPQ at 695. This standard has been found to be met by pharmaceutical compositions shown to be useful in mouse models and in humans for treating acute myeloblastic leukemia (Jolles, 628 F.2d at 1327-28, 206 USPQ at 891); by evidence showing successful in vitro testing supplemented by similar in vitro and in vivo activities of structurally similar compounds (Cross, 753 F.2d at 1051, 224 USPQ at 748); and by evidence showing in vivo antitumor activity in mice, combined with a disclosure that the claimed compounds had higher antitumor activity than a related compound known to have antitumor activity (Brana, 51 F.3d at 1567, 34 USPQ2d at 1442).

By contrast, Brenner's standard has been interpreted to mean that "vague, general disclosures or arguments of 'useful in research' or 'useful as building blocks of value to the researcher'" would not satisfy § 101. See Kirk, 376 F.2d at 945, 153 USPQ at 55 (interpreting Brenner). Likewise, a disclosure of a "plastic-like" polypropylene capable of being pressed into a flexible film was held to show that the applicant was "at best . . . on the way to discovering a practical utility for polypropylene at the time of the filing," but not yet there. Ziegler, 992 F.2d at 1203, 26 USPQ2d at 1605.

In this case, the examiner found the specification's disclosure to be inadequate, in part because "[n]o comparisons between the sequence of the protein of the present invention and any voltage-gated potassium channel protein have been disclosed in the specification, nor does the specification disclose that the protein encoded for by the

polynucleotide of the present invention has biological activities similar to these channels." Examiner's Answer, page 4.³

The examiner noted Appellants' assertion of utilities based on the polymorphic positions in SEQ ID NO:1 but found them unpersuasive because, among other things, "there is no correlation disclosed between the presence of any of these polymorphisms and the effect of the presence of any of these polymorphisms on the risk of any disease or disorder." Page 9. Finally, the examiner considered the uses asserted by Appellants that do not depend on a specific biological activity, but concluded that these uses are not specific enough to satisfy § 101. Id.

Appellants argue that

a sequence that is 99.781% percent identical at the amino acid level over the entire length of the described sequence (SEQ ID NO:2) is present in the leading scientific repository for biological sequence data (GenBank), and has been annotated by third party scientists wholly unaffiliated with Appellants as "Homo sapiens voltage-gated potassium channel KCNA7". . . . Thus clearly the evidence of record supports Appellant's [sic] assertion that the sequences of the present invention encode a novel human ion channel, in particular a voltage-gated potassium channel (a variant of KCNA7).

Appeal Brief, page 7.

This argument is not persuasive. "Enablement, or utility, is determined as of the application filing date." Brana, 51 F.3d at 1567 n.19, 34 USPQ2d at 1441 n.19. The effective filing date of the instant application is October 11, 2000 (the filing date of provisional application 60/239,623, to which the instant application claims benefit). The

³ The examiner also criticized the specification's reliance on sequence similarity as a basis for inferring the function of the claimed NHP. See the Examiner's Answer, pages 4-5. Appellants argue that sequence comparisons are well-accepted, although perhaps not universally accepted, in the art as a reasonable basis on which to predict function. See the Appeal Brief, pages 10-15. We need not decide

earliest date shown on the GenBank entry cited by Appellants, however, is October 23, 2000. (The GenBank entry also bears the cryptic notation "PRI 19-JUN-2001" and shows that it was printed out on October 16, 2003.)

Appellants also rely on two scientific papers to support their assertion that "human ion channel proteins are well known to those of skill in the art, this is particularly true for voltage-gated potassium channels and the sequences of the present invention encode a voltage-gated potassium channel, KCNA7." Appeal Brief, page 7. The papers, however, were published in 2001 and 2002, respectively. Appellants have presented no evidence to show that either papers or the GenBank entry were available to those skilled in the art as of October 11, 2000.

Appellants have also presented no evidence that the later-published papers show the state of the art as of the application's effective filing date. See In re Hogan, 559 F.2d 595, 605, 194 USPQ 527, 537 (CCPA 1977) ("[U]se of later publications as evidence of the state of art existing on the filing date of an application" is acceptable.).

See also In re Glass, 492 F.2d 1228, 1232, 181 USPQ 31, 34 (CCPA 1974):

[A]pplication sufficiency under § 112, first paragraph, must be judged as of its filing date. It is an applicant's obligation to supply enabling disclosure without reliance on what others may publish after he has filed an application on what is supposed to be a completed invention. If he cannot supply enabling information, he is not yet in a position to file.

Hogan and Glass concerned enablement, but the same standard applies to utility under § 101. See Brana, 51 F.3d at 1567 n.19, 34 USPQ2d at 1441 n.19 ("Enablement, or utility, is determined as of the application filing date.").

the issue because, even assuming Appellants are correct, the specification does not adequately disclose the utility of the claimed nucleic acids.

Thus, the record contains no evidence that those skilled in the art, as of the effective filing date of the instant application, would have recognized the claimed sequence as “a voltage-gated potassium channel (a variant of KCNA7).” Appellants’ arguments that rely on that recognition are based on a later state of the art and are therefore unpersuasive.

Appellants also argue that the claimed polynucleotides are useful because of the disclosed polymorphisms in SEQ ID NO:1: “Naturally occurring genetic polymorphisms such as those described in the present specification are both the basis of, and critical to, *inter alia*, forensic genetic analysis and genetic analysis intended to resolve issues of identify and paternity. . . . Such polymorphisms are the basis for forensic analysis, paternity identification and population biology studies, which are undoubtedly ‘real world’ utilities and thus the presently claimed sequences must in themselves be useful.” Appeal Brief, pages 15-16.

This argument is not persuasive because, among other things, it lacks support in the specification or in the evidence of record. The specification discloses the presence of two polymorphisms in SEQ ID NO:1 (page 16) but discloses no utilities based on detection of the polymorphisms. In particular, the specification does not disclose that the polymorphisms are useful markers for forensic analysis.

Appellants point to three passages in the specification as support for the asserted utility. See the Appeal Brief, page 15: “[A] still further example of utility of the present sequences is their use in diagnostic assays such as those associated with identification of paternity and forensic analysis, among others (for example, the

specification at or about page 3, line 10; page 11, line 26 and page 19, line 9)." The sentences including those lines read as follows:

- "The sequences of the present invention are also useful as additional DNA markers for restriction fragment length polymorphism (RFLP) analysis, and in forensic biology." Page 3, lines 8-10;
- "In addition, the sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another 'identification marker' (i.e., another DNA sequence that is unique to a particular individual)." Page 11, lines 23-28; and
- "These uses include but are not limited to the generation of antibodies, as reagents in diagnostic assays, the identification of other cellular gene products related to NHP, as reagents in assays for screening for compounds that can be used as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and diseases." Page 19, lines 7-13.

We do not find those passages to support the asserted utility. In each of the cited passages, the specification is discussing uses for the claimed DNA itself or the protein encoded by the claimed DNA. Appellants have pointed to nothing in the specification that discloses that the polymorphisms in the DNA are useful in, e.g., forensic analysis.

In addition, even assuming that those skilled in the art would have understood the cited passages to refer to the use of the polymorphisms in forensic analysis, Appellants have not shown that the skilled worker would have found the specific polymorphisms present in SEQ ID NO:1 – without analysis of their degree of variability in the human population and without associating them with any other genetic marker – to be useful as argued. Thus, the polymorphism-based utility asserted in the Appeal Brief lacks evidentiary support and cannot be relied on to overcome the rejection.

In addition to the polymorphism-based argument, Appellants also argue that the claimed nucleic acids are useful in “gene chip” methods of tracking gene expression.

See the Appeal Brief, pages 19-20:

Such “DNA chips” clearly have utility, as evidenced by hundreds of issued U.S. Patents. . . . Clearly, compositions that enhance the utility of such DNA gene chips, such as the presently claimed sequences encoding a voltage gated ion channel protein (KCNA7) associated with human heart disease, must in themselves be useful.

Appellants argue that, in addition to their use in “DNA chips”, the claimed sequence “provides exquisite specificity in localizing the specific region of the human chromosome containing the gene encoding [sic, comprising?] the given polynucleotide.”

Page 21. Appellants argue that

[t]he presently claimed polynucleotide sequence provides biologically validated empirical data (e.g., showing which sequences are transcribed, spliced, and polyadenylated) that specifically define that portion of the corresponding genomic locus that actually encodes exon sequence.

Pages 21-22. Appellants argue that “the practical scientific value of expressed, spliced, and polyadenylated mRNA sequences is readily apparent to those skilled in the relevant biological and biochemical arts.” Page 22.

We are not persuaded by Appellants’ argument. We find that the asserted uses of the claimed polynucleotides—as a component of a DNA chip for monitoring gene expression, as a marker for a given chromosomal locus, or for defining the exon and intron regions of a gene—do not satisfy the utility requirement of § 101. Such uses do not provide a specific benefit in currently available form.

For example, with regard to the asserted “DNA chip” utility, we accept for argument’s sake that a person skilled in the art could attach one of the claimed

polynucleotides (or a part of it) to a solid substrate, in combination with other polynucleotides, to form a DNA chip, and that such a DNA chip could be used to monitor changes in expression of the corresponding gene. However, the specification provides no guidance to allow a skilled artisan to use data relating to the expression of the gene comprising SEQ ID NO:1 in any practical way. The specification provides no guidance regarding what the SEQ ID NO:1-specific information derived from a DNA chip would mean.

For example, assume that a fragment of SEQ ID NO:1 was attached to a DNA chip and the researcher observed that expression of the corresponding gene was increased when a cell was treated with a particular agent. The specification provides no basis on which a skilled worker would be able to determine what, if anything, that result means. Perhaps a change in expression of the gene would mean different things, depending on other factors, but again the specification provides no hint what other factors might be important. Would it depend on what agent is used, what cell type is used, the behavior of other genes (if so, which genes and what behavior is significant), or the degree of increase? Because the specification provides no information about the activity of the protein encoded by SEQ ID NO:1, it provides no guidance as to how to interpret the results of a DNA chip-based gene expression assay based on the claimed polynucleotides.

The same problem afflicts Appellants' assertions that the claimed polynucleotides can be used to map a particular chromosomal locus or to define the exon splice-junctions of the genomic gene: the specification provides no meaningful guidance regarding how to use such information in any practical way. What would it mean, for

example, if SEQ ID NO:1 hybridizes to a specific part of human chromosome 19, or if SEQ ID NO:1 can be used to show that the chromosomal gene has an exon splice junction between nucleotides 103 and 104? The specification provides no guidance on how such information would allow those skilled in the art to use the claimed polynucleotides in a specific, substantial way. By contrast, if the specification disclosed, for example, that SEQ ID NO:1 hybridized adjacent to a chromosomal locus associated with a known disease (e.g., a locus susceptible to a cancer-causing translocation), the sequence would have an apparent utility in disease diagnosis. However, without disclosure of a specific use for the resulting data, using the claimed sequences for mapping or determining exon splice-junctions amounts to research on the claimed polynucleotides themselves.

In effect, Appellants' position is that the claimed polynucleotides are useful because those of skill in the art could experiment with them and figure out for themselves what any observed experimental results might mean. We do not agree that such a disclosure provides a "specific benefit in currently available form." Rather, the instant case seems analogous to Brenner. In Brenner, the applicant claimed a method of making a compound but disclosed no utility for the compound. 383 U.S. at 529, 148 USPQ at 693. The Court held that a process lacks utility if it produces a product that lacks utility. Id. at 534, 148 USPQ at 695. Here, Appellants claim a product asserted to be useful in a method of generating gene-expression or gene-mapping data, but the specification does not disclose how to interpret those data. Just as the process claimed in Brenner lacked utility because the specification did not disclose how to use the end-product, the product claims here lack utility, based on their use in, e.g., DNA chips,

because the specification does not disclose how to use the SEQ ID NO:1-specific gene expression data generated by a DNA chip.

Appellants argue that the claimed polynucleotides could potentially be part of a DNA chip; since DNA chips have utility, compounds that “enhance the utility of such DNA chips, such as the presently claimed nucleotide sequence, must in themselves be useful.” Appeal Brief, page 11. We disagree.

Assuming arguendo that a generic DNA chip—one comprising a collection of uncharacterized or semi-characterized gene fragments—would provide a useful tool for, e.g., drug discovery, it does not follow that each one of the polynucleotides represented in the DNA chip individually has patentable utility. Although each polynucleotide in the DNA chip contributes to the data generated by the DNA chip overall, the contribution of a single polynucleotide—its data point—is only a tiny contribution to the overall picture.

The Brenner Court held that § 101 sets more than a de minimis standard for utility. Therefore, the patentable utility of a DNA chip, for example, does not necessarily mean that every one of the components of the DNA chip also has patentable utility. A patentable utility divided by a thousand does not necessarily equal a thousand patentable utilities. Each claimed invention must be shown to meet § 101’s utility requirement in order to be patentable; it must provide a specific benefit in currently available form. Providing a single data point among thousands, even if the thousands of data points collectively are useful, does not meet this standard.

The Supreme Court noted that the patent system contemplates a basic quid pro quo: in exchange for the legal right to exclude others from his invention for a period of time, an inventor discloses his invention to the public. See Brenner, 383 U.S. at 534,

148 USPQ at 695. The Brenner Court held that the grant of patent rights to an applicant is justified only by disclosure of an invention with substantial utility – a specific benefit in currently available form. Until the invention has been refined and developed to this point, the Court held, the applicant has not met his side of the bargain, and has not provided a disclosure that justifies granting him the right to exclude others. See id.

Thus, the basic quid pro quo of the patent system is the grant of a valuable legal right in exchange for a meaningful disclosure of the claimed invention. In this case, the generic utilities disclosed for the claimed products do not entitle Appellants to the legal right they claim to exclude others from using those products.

We note that this application is one of several on appeal that share the same assignee.⁴ In each of these cases, regardless of the specific facts of the case, the Appellants have asserted the same DNA chip, gene-mapping, and exon splice junction arguments. Apparently, Appellants view these potential uses as utilities that can be asserted for any cDNA they isolate, regardless of how little is known about it, which (they hope) will nonetheless serve as a basis for patent protection and secure for Appellants any value that might become apparent in the future, after they or others have further characterized the claimed products. This is precisely the type of result that the Brenner Court sought to avoid by requiring disclosure of a substantial utility to satisfy § 101. See 148 U.S. at 535-36, 148 USPQ at 696: [The Court was not] “blind to the prospect that what now seems without ‘use’ may tomorrow command the grateful

⁴ Such applications include 09/460,594 (Appeal No. 2003-1528), 09/804,969 (2003-1794); 09/802,116 (2003-2017); 09/822,807 (2003-2028); and 09/564,557 (2004-0343).

attention of the public. But a patent is not a hunting license. It is not a reward for the search, but compensation for its successful conclusion." Id.

The polynucleotides of the instant claims may indeed prove to be useful (and valuable), after the in vivo role of the encoded protein is discovered. The work required to confer value on the claimed products, however, remains to be done. The instant specification's disclosure does not justify a grant of patent rights. See Brenner, 383 U.S. at 534, 148 USPQ at 695: "[A] process patent in the chemical field, which has not been developed and pointed to the degree of specific utility, creates a monopoly of knowledge which should be granted only if clearly commanded by the statute. Until the process claim has been reduced to production of a product shown to be useful, the metes and bounds of that monopoly are not capable of precise delineation. It may engross a vast, unknown, and perhaps unknowable area. Such a patent may confer power to block off whole areas of scientific development." We consider the Brenner Court's concern about the "power to block off whole areas of scientific development" to be equally applicable here.

Finally, adopting the per se rule that Appellants seek—that any expressed human gene has utility because it can be used in a DNA chip—would mean that almost any naturally occurring nucleic acid would be patentable. Appellants' reasoning does not depend on the biological function of the protein encoded by the claimed nucleic acids, and so would apparently apply to any expressed human gene, as well as fragments of them (see, e.g., the specification at page 6, line 25, to page 7, line 2).

Nor can the rationale be confined to expressed human genes. We can take judicial notice of the fact that other organisms are of interest for many different reasons,

such that gene expression assays could conceivably be used in their research. For example, some organisms are of interest to researchers because they have been historically well-studied (e.g., yeast and Arabidopsis). Others are of interest because they are used as animal models (e.g., mice and chimpanzees), because they are commercially valuable (e.g., pigs and tomatoes), because they are pests (e.g., ragweed and corn borers), or because they are pathogens (e.g., Candida and various bacteria). Under Appellants' proposed rule, hybridizable fragment of any gene of any of these organisms—and probably most other organisms—would be found to have patentable utility because it could be attached to a chip and used in "research" to see what happens to expression of that gene under various conditions.

Appellants' reasoning would also vitiate the enablement requirement, since "[t]he enablement requirement is met if the description enables any mode of making and using the invention." Johns Hopkins Univ. v. CellPro Inc., 152 F.3d 1342, 1361, 47 USPQ2d 1705, 1714 (Fed. Cir. 1998) (quoting Engel Indus., Inc. v. Lockformer Co., 946 F.2d 1528, 1533, 20 USPQ2d 1300, 1304 (Fed. Cir. 1991)). If we were to agree with Appellants that any expressed gene and any hybridizable fragment thereof is useful in a DNA chip, then we would also have to hold that the specification has taught those skilled in the art one mode of using the invention. Thus, Appellants' rule of per se utility would also require a corresponding rule of per se enablement.

Under Appellants' rule, then, any polynucleotide from an expressed gene would be patentable if it was adequately described in the specification and was not disclosed or suggested in the prior art. This standard, however, is not the one set by Congress,

which requires that a patentable invention also be useful and fully enabled, nor is it the standard that has been consistently applied by the courts.

In addition, the flood of DNA patents that would result from adoption of Appellants' rule could doom the potential contribution of microarrays to biological research. Appellants argue that “[g]iven the widespread utility of such ‘gene chip’ methods using public domain gene sequence information, there can be little doubt that the use of the presently described novel sequences would have great utility in such DNA chip applications.” Appeal Brief, page 19. “[T]here is an entire industry based on the use of gene sequences or fragments thereof in a gene chip format.” Page 20.

The practical effect of Appellants' utility standard, however, would be that making a microarray with 1000 genes represented on it would require investigating each of the DNA sequences (and subsequences) on the gene chip to ensure that it was not the subject of someone else's patent. For each of the DNAs that was the subject of someone else's patent claim, a license would have to be negotiated – potentially thousands of such negotiations for the finished product. These transaction costs would have to be incurred for each new product that an aspiring gene chip manufacturer wished to market. The industry gridlock likely to result has been termed a “tragedy of the anticommons.”

By conferring monopolies in discoveries, patents necessarily increase prices and restrict use—a cost society pays to motivate invention and disclosure. The tragedy of the anticommons refers to the more complex obstacles that arise when a user needs access to multiple patented inputs to create a single useful product. Each upstream patent allows its owner to set up another tollbooth on the road to product development, adding to the cost and slowing the pace of downstream biomedical innovation.

Heller, page 698.⁵

The Supreme Court has warned against allowing too many “tollbooths” on the road to innovation:

Patents . . . are meant to encourage invention by rewarding the inventor with the right, limited to a term of years fixed by the patent, to exclude others from the use of his invention. . . . But in rewarding useful invention, the “rights and welfare of the community must be fairly dealt with and effectually guarded.” Kendall v. Winsor, 21 How. 322, 329 (1859). . . . To begin with, a genuine “invention” or “discovery” must be demonstrated “lest in the constant demand for new appliances the heavy hand of tribute be laid on each slight technological advance in an art.”

Sears, Roebuck & Co. v. Stiffel Co., 376 U.S. 225, 230, 140 USPQ 524, 527 (1964).

Summary

The basic quid pro quo of the patent system requires disclosure of an invention having substantial utility. Appellants’ disclosure in this case does not provide a specific benefit in currently available form, and therefore lacks the substantial utility required by 35 U.S.C. § 101. The rejections for lack of utility are affirmed.

⁵ Heller et al., “Can patents deter innovation? The anticommons in biomedical research,” Science, Vol. 280, pp. 698-701 (1998). Accessible online at www.sciencemag.org/cgi/content/full/280/5364/698.

No time period for taking any subsequent action in connection with this appeal may be extended under 37 CFR § 1.136(a).

AFFIRMED

William F. Smith
Administrative Patent Judge

Donald E. Adams
Administrative Patent Judge

Eric Grimes
Administrative Patent Judge

)
) BOARD OF PATENT
)
) APPEALS AND
)
) INTERFERENCES
)

EG/jlb

Lexicon Genetics Incorporated
8800 Technology Forest Place
The Woodlands, TX 77381-1160