

Reconocimiento de palabras con TinyML

Juan Pablo Gómez Danilo Tovar

Una Facultad abierta y transformadora

Objetivo

Implementar un modelo de inteligencia artificial (IA) para identificación de palabras clave (keyword spotting) y desplegarlo en un Raspberry Pi 4

Objetivos específicos

- Reconocimiento de dos comandos específicos: "encender" y "apagar"
- Captura de audio en tiempo real desde micrófono USB
- Inferencia local del modelo de ML sin conectividad externa
- Control de LED mediante GPIO de Raspberry Pi

Esquema teórico

Fuente: https://www.hackster.io/mjrobot/tinyml-made-easy-keyword-spotting-kws-5fa6e7

Nuestra implementación

¿Por qué Edge Impulse?

Etapas del proyecto

- Conectar Raspberry al micrófono, y conectar a Edge Impluse. (Configuraciones iniciales)
- 2. Crear modelo en Edge Impulse
 - 1. Toma de datos
 - 2. Ajuste de parámetros
 - 3. ¡Entrenar!
- 3. Descargar modelo: artefacto model.eim
- 4. Con el SDK de Edge Impulse de Python, implementar lógica según la etiqueta detectada para encender LED, y posteriormente ejecutar.

Primeros pasos (1)

Se debe disponer de una Micro SD con algún sistema operativo. Nosotros escogimos Rasberry Pi Os (basado en Debian GNU/Linux). En nuestro caso, tuvimos que conectarnos via SSH porque no disponíamos de monitor con HDMI ③.

```
(base) PS C:\Users\JuanPabloGomez> ssh juanpablogomez@192.<u>168.1.12</u>
The authenticity of host '192.168.1.12 (192.168.1.12)' can't be established.
ED25519 key fingerprint is SHA256:rCsY/noXejOr9i/VPpz2Uu9bYI+D5Re61oyrY1d1lDc.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.1.12' (ED25519) to the list of known hosts.
juanpablogomez@192.168.1.12's password:
Linux raspberrypi 6.12.25+rpt-rpi-v8 #1 SMP PREEMPT Debian 1:6.12.25-1+rpt1 (2025-04-30) aarch64
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Mon May 12 19:41:59 2025
uanpablogomez@raspberrypi:~ $ xrandr
Can't open display
 uanpablogomez@raspberrypi:~ $ sudo cat /boot/config.txt
DO NOT EDIT THIS FILE
The file you are looking for has moved to /boot/firmware/config.txt
 uanpablogomez@raspberrypi:~ $ kmsprint | grep Connector
 onnector 0 (33) HDMI-A-1 (disconnected)
 onnector 1 (42) HDMI-A-2 (connected)
 uanpablogomez@raspberrypi:~ $ raindrop
Can't open display
Can't open display
cp: cannot stat '/var/tmp/dispsetup.sh': No such file or directory
 uanpablogomez@raspberrypi:~ $ man raindrop
```

```
juanpablogomez@raspberrypi:~ $ cat /etc/os-release
PRETTY_NAME="Debian GNU/Linux 12 (bookworm)"
NAME="Debian GNU/Linux"
VERSION_ID="12"
VERSION="12 (bookworm)"
VERSION_CODENAME=bookworm
ID=debian
HOME_URL="https://www.debian.org/"
SUPPORT_URL="https://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"
```


Primeros pasos (1)

Se debe instalar software de Edge Impulse. Se sigue la guía que ellos mismo proveen:

https://docs.edgeimpulse.com/docs/edge-ai-hardware/cpu/raspberry-pi-4

Luego se ejecuta

\$ edge-impulse-linux

Para configurar la Raspberry y comunicarla con la plataforma

Plataforma Edge Impulse

¡Mostrar plataforma!

Despliegue (1)

- Una vez se tiene el modelo en la plataforma, se debe descargar este.
- Pero primero, se instala el Python SDK de Edge Implse:

https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux/linux-python-sdk

Luego, descargar el modelo:

\$ edge-impulse-linux-runner --download model.eim

Despliegue (2)

- Se debe crear el script para ejecutar el modelo descargado.
 Edge impulse provee una plantilla básica para esta labor.
- La ejecución del script se hace mediante este comando:

\$ python ./model_script.py model.eim <ID_INTERFAZ_MICROFONO>

 La tarea ahora consiste en adaptar este código para el control del LED.

Configuración del LED

(Esquema obtenido de Raspberry Pi Cookbook, Simon Monk, O'Reilly 4ed)

Tabla de estados para el LED

Estado del LED	Comando reconocido	Acción
encendido	'encender'	no hacer nada
apagado	'encender'	encender el LED
apagado	'apagar'	no hacer nada
encendido	'apagar'	apagar el LED
encendido	'desconocido' o 'ruido'	no hacer nada
apagado	'desconocido' o 'ruido'	no hacer nada

Modificación script

El control del LED se puede resumir en este simple condicional

```
if scores.get('encender', 0) > 0.8:
    if not led_status:
        Threshold
        led_on()
        led_status = True
        print("LED turned ON")
    elif scores.get('Apagar', 0) > 0.8:
        if led_status:
        led.off()
        led_status = False
        print("LED turned OFF")
```


Creación de servicio del SO

Recordar el comando para ejecutar el script

\$ python ./model_script.py model.eim <ID_INTERFAZ_MICROFONO>

- <ID_INTERFAZ_MICROFONO> puede cambiar al conectar el micrófono en otro Puerto o simplemente tener otro valor.
- El Sistema solo funciona si se ejecuta manualmente el commando de arriba. ¿qué hacer?

Se crea un script de bash <3

```
1 #!/bin/bash
 4 source /home/juanpablogomezlopez/proyecto_so/venv/bin/activate
 7 DEVICE ID=$(python3 - <<EOF</pre>
 8 import pyaudio
 9 p = pyaudio.PyAudio()
10 for i in range(p.get_device_count()):
       info = p.get_device_info_by_index(i)
      if info.get("maxInputChannels", 0) > 0:
           name = info.get("name", "").lower()
           if any(k in name for k in ["usb", "webcam", "mic"]):
               print(i)
               break
17 else:
      print(0)
19 p.terminate()
20 EOF
21 )
23 echo "♪ Using device ID: $DEVICE_ID"
26 python /home/juanpablogomezlopez/proyecto_so/model_script.py
  model.eim "$DEVICE ID
```


Se busca dos cosas, automatizar el proceso de selección de la interfaz del micrófono. Se crea el archivo **start_model.sh**

\$ sudo nano /etc/systemd/system/keywordspotting.service

```
1 [Unit]
2 Description=Keyword Spotting on Boot
3 After=network.target
5 [Service]
6 Type=simple
 7 ExecStart=/home/juanpablogomezlopez/proyecto_so/start_model.sh
8 WorkingDirectory=/home/juanpablogomezlopez/proyecto_so
9 User=juanpablogomezlopez
10 Restart=always
11 StandardOutput=inherit
12 StandardError=inherit
14 [Install]
15 WantedBy=multi-user.target
```

Se crea el servicio

Ejecutar y disfrutar

