

数据库系统原理

數程: 數据库系统研论 (跨5版)

OMU IS-445/645 INTRO TO DATABASE SYSTEMS

华中科技大学 计算机学院 左琼

第二章关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

案例: 教学数据库有三个关系

问题:如何表示对该数据库的各种操作?

- □ 查询选修了"数据库"课程的学生姓名。**S**
- □ 查询学习了1号课程但没学5号课程的学生 学号和姓名。
- □ 查询选修了全部课程的学生学号。

C

<u>Cno</u>	Cname	先行课号 Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2

<u>Sno</u>	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

,	<u>Sno</u>	<u>Cno</u>	Grade
ł	95001	1	92
	95001	2	85
	95001	3	88
	95002	2	90
	95002	3	80

2.4 关系代数

□ 关系代数——将关系作为运算单位(操作数),用关系代数表达式表示的运算方法。

运算对象:关系

运算结果: 关系

关系操作:按运算符的不同主要分为两类:

- 传统的集合运算: 把关系看成元组的集合,从行的角度进行运算,包括并、差、交和笛卡尔积等。
- 专门的关系运算:不仅从行的角度,也从列的角度进行运算,是为数据库的应用而引进的特殊运算,包括选择、投影、连接和除法等。

2.4.1 传统的集合运算

- □传统的集合运算是二目运算。
- □ 并不是任意的两个关系都能进行这种集合运算,除笛卡尔积外,要求参加运算的关系必须具备相容性。

定义:设给定两个关系R、

S, 若满足:

- (1) 具有相同的度n,
- (2) R中第i个属性和S中第i 个属性来自同一个域,则 说关系R、S是相容的。

表 关系代数运算符

运算	符	含义	运算	符	含义
集	\supset	并	话	^	大于
合	-	差	较运	>	大于等于
运	N	交	连 算	<	小于
算	×	笛卡	符	<u><</u>	小于等于
符		尔积		=	等于
				<	不等于
				>	

1. 并 (Union)

A	В	C
o.1	h1	₀ 1

- □ 设两个关系R 和S:
 - 具有相同的目n(即两个关系都有 n个属性)
 - ■相应的属性取自同一个域
- □ R和S的并 (记为: RUS)
 - 仍为n 目关系,由属于R 或属于S 的元组组成
 - \blacksquare R

RUS =	{ t	$t \in$	R	V	t	\in
	R	SUS)

A	В	C
a1	b 1	c1
a1	b2	c2
a2	b2	c1

A	В	C
a1	b2	c2
a1	b 3	c2
a2	b2	c1

RUS

A	В	C
a1	b 1	c1
a1	b2	c2
a2	b2	c1
a1	b 3	c2

实例:

- 选修了1号或者2号课程的学生选课记录。

2. 差 (difference)

- □ R和 S
 - 具有相同的目n
 - ■相应的属性取自同一个域
- $\square R S$
 - 仍为*n* 目关系,由属于*R* 而不属于*S* 的所有元组组成

$$R - S = \{t \mid t \in R \land t \notin S\}$$

思考题 如何用差运算求补集?

A	В	C
a1	b 1	c1
a1	b2	c2
a2	b2	c1

A	В	C
a1	b2	c2
a1	b 3	c2
a2	b2	c1

R-S	A	В	C
	a1	b 1	c1

实例:

R

——选修了1号课程<mark>但没</mark>选2号课程 的学生选课记录。

3. 交 (Intersection)

■相应的属性取自同一个域

□ R∩S

■ 仍为*n*目关系,由既属于*R* 又属于*S* 的元组组成

$$R \cap S = \{t \mid t \in R \land t \in S\}$$

■ 而交运算为非基本运算,不属于最小操作完备集中的操作,可用差运算来表示:

 $R \cap S = R - (R-S)$ 或 $R \cap S = S - (S-R)$

R	A	В	C
	a1	b 1	c1
	a1	b2	c2
	a2	b2	c1
S	A	В	C
	a1	b2	c2
	a1	b 3	c2
	a2	b2	c1
$\mathbf{R} \cap \mathbf{S}$	A	В	C
	a1	b2	c2
	a2	b2	c1

实例:

——<mark>既选修了1号课程又选修了2号</mark> 课程的学生选课记录。

课堂练习:

□ 设R和S同为相容的k元关系,R有m个元组,S有n个元组,则关于R∩S,以下论述错误的是()

- A. 等于R-(R-S)
- B. 等于S-(S-R)
- 6. 最多有m个元组
- D. 最少有0个元组

4. 笛卡尔积 (Cartesian Product)

- □ 应用需求: 应用程序中需查询来自两张表的信息,系统如何解决? 将两张表合并为一张表。
- □ 严格地讲是广义笛卡尔积 (Extended Cartesian Product)
- □ R: m 目关系, k1 个元组; S: n 目关系, k2个元组
- $\square R \times S : R \times S = \{ \overrightarrow{trts} | tr \in R \land ts \in S \}$
 - 列: (m+n) 列元组的集合
 - □元组的前 m 列是关系R的一个元组,后 n 列是关系S的一个元组
 - 行: k1×k2个元组
- □ 作用:将两个关系无条件的连接成一个新关系,可用于两关系的连接操作。

4.笛卡尔积

R	Α	В	С
	a1	b1	c1
	a1	b2	c2

b2

c1

5	Α	В	С
	a1	b2	c2
	a1	b3	c2
	a2	b2	c1

 $\mathbf{R} \times \mathbf{S}$

a2

R.A	R.B	R.C	S.A	S.B	S.C
a1	b1	c1	a1	b2	c2
a1	b1	c1	a1	b3	c2
a1	b1	c1	a2	b2	c1
a1	b2	c2	a1	b2	c2
a1	b2	c2	a1	b3	c2
a1	b2	c2	a2	b2	c1
a2	b2	c1	a1	b2	c2
a2	b2	c1	a1	b3	c2
a2	b2	c1	a2	b2	c1

先引入几个记号:

- (1) R, t∈R, t[Ai]
 设关系模式为R(A1, A2, ..., An), 它的一个关系设为R,
 t∈R表示t是R的一个元组, t[Ai]则表示元组t中相应于属性Ai的一个分量。
- (2) A, t[A], A

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_1, A_2, ..., A_n$ 中的一部分,则A 称为属性列或属性组。

A 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。 $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t 在属性列A上诸分量的集合。

(3) 元组的连接 tr ts

R 为m目关系, S 为n目关系, tr ∈R, ts∈S, tr ts 称为元组的连接。

tr ts 是一个m + n 列的元组,前m个分量为R 中的一个m元组,后n 个分量为S 中的一个n元组。

(4) 象集Z_x

给定一个关系R(X, Z), X和Z为属性组。

当t[X]=x时, x在R中的象集(Images Set)为:

$$Z_x = \{ t[Z] | t \in R, t[X] = x \}$$

它表示R中属性组X上值为x的诸元组在Z上分量的集合。

R

x1	Z 1
x1	Z2
x1	Z 3
x2	Z 2
x2	Z 3
х3	Z 1
х3	Z3

x1在R中的象集:

 $Z_{x1} = \{Z1, Z2, Z3\},\$

x2在R中的象集:

 $Z_{x2} = \{Z2, Z3\},$

x3在R中的象集:

 $Z_{x3} = \{Z1, Z3\}$

从R中选出在 X上取值为x的 元组,去掉X 上的分量,只 留Z上的分量

象集举例

象集例1

X

学号	姓名	性别	系别
0101	张	男	CS
0102	李	女	CS
0203	赵	男	MA
0103	吴	女	CS

关系模式: 学生(学号,姓名,性别,系别)

元组t: (0102,李,女,CS)

属性列X: {性别,系别}

t[性别,系别]: (女,CS)

属性组Z: {学号,姓名}

t[X] = (女,CS)

Zx = ?

CS系全部女生的学号,姓名

例2

课程 姓名 张蕊 物理 数学 王红 数学 张蕊

x=张蕊

 $\mathbf{Z}_{\mathbf{x}}$

课程

数学

物理

张蕊同学所选修 的全部课程

表 关系代数运算符

运算符	含.	义	运算符	含	义
专门的关系运算符	σ π Χ ÷	选择 投影 连接 除	逻辑运算 符	\ \ \	非与或

1. 选择 (Selection)

□选择操作是根据某些条件对关系做水平分割,即选取符合条件的元

组构成结果关系,又称为限制 (Restriction)。

- □ 关系R关于公式F的选择记作:
 - $\sigma_F(R) = \{t \mid t \in R \land F(t) = '真'\}$
 - 其中: σ为选择运算符, F为条件表达式,

 $\sigma_F(R)$ 表示从R中挑选满足公式 F 的元组所构成的关系。

F: 是一个逻辑表达式, 基本形式为: X₁0 Y₁

F的组成:

- ❖ 运算对象:属性,常数(如数字)
- ❖ 运算符: 算术运算符 (>,≥,=,<,≤,≠),</p>

逻辑运算符(^, \, \, \, \)

1. 选择

[例1]

3	A	В	C
	1	2	3
	4	5	6
	2	2	3

$$\sigma_{A>1\wedge B=2}(R)$$

A	В	C
2	2	3

上式也可写作: σ_{[1]>1^[2]=2}(R)

[例2] 在S(Sno,Sname,Ssex,Sage,Sdept)上查询年龄小于20岁的学生。

$$\sigma_{\text{Sage} < 20}(S)$$
 或 $\sigma_{[4] < 20}(S)$

Sno	Sname	Ssex	Sage	Sdept
201415122	刘晨	女	19	IS
201415123	王敏	女	18	MA
201415125	张立	男	19	IS

1. 选择

□ 例3: 用关系表达式表达下列查询:

找前页关系S中计算机系(代号:'CS')全部的男生。

 $\sigma_{\text{Sdept='CS'}} \wedge S_{\text{Sex='}}(S)$

Sno	Sname	Ssex	Sage	Sdept
201515121	张晨	男	19	CS
201515123	李敏	男	18	CS
201515127	何立	男	19	CS

2. 投影 (Projection)

□ 关系R上的投影是从R中选择出若干属性列组成新的关系。

$$\pi_{A(R)} = \{ t [A] \mid t \in R \}$$

A为R中的属性列,可用列的属性名或列在关系中的序号表示。

- □ 特征:
 - 1) 在单个关系上进行
 - 2) 从列的角度进行运算
 - 3) 投影的列可按自己的要求的顺序排列
- □ 作用: 在关系中选择某些需要的列, 并按要求组成一个新关系。
- □投影操作主要是从列的角度进行运算。
- □ 投影的结果中要去掉相同的行 (避免重复行)。Why?
 - 投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组。

2. 投影

□ 例1: 求关系 R 在 A、C 两列上的投影。

解:关系代数表达式为: $\pi_{A,C}(R)$ 或 $\pi_{[1],[3]}(R)$

K

A	В	C
1	2	3
4	5	6
2	2	3

 $\pi_{A,C}(R)$

A	C
1	3
4	6
2	3

 $\pi_{B,C}(R)$

В	C
2	3
5	6

- □ 例2:
- □ 给出所有学生的姓名和年龄

 $\Pi_{\text{Sname, Sage}}(S)$

□ 找001号学生所选修的课程号

 $\Pi_{C\#}(\sigma_{S\#='001'}(SC))$

S(S#,Sname,Sage)

Course(C#,Cname)

SC(C#,S#,Score)

投影与选择

- **复合运用投影、选择、笛卡尔积运算**,可从任意n张表中截取满足条件的子表
- □ 例3:

列出CS系和MA系学生的 学号和姓名。

□ 方案1:

 $\Pi_{SNO,SNA}(\sigma_{DEPT = 'CS' \lor DEPT = 'MA'}(S))$

□ 方案2:

 $\Pi_{SNO,SNA}(\sigma_{DEPT='CS'}(S)) \cup \Pi_{SNO,SNA}(\sigma_{DEPT='MA'}(S))$

S

SNO	SNA	SEX	DEPT
0101	张	男	CS
0102	李	女	CS
0203	赵	男	MA
0103	吴	女	CS

3. 连接 (Join)

- □ 连接也称为θ连接;
- □ 连接运算是从两个关系的笛卡尔积中选取满足连接条件的元组,记作:

$$\mathbf{R} \bowtie_{\mathbf{A} \theta \mathbf{B}} \mathbf{S} = \left\{ \mathbf{t}_{\mathbf{r}} \mathsf{t}_{\mathbf{s}} \mid \mathbf{t}_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \right\}$$

□其中:

- A和B分别为R和S上度数相等且可比的属性组。
- θ是比较运算符 (> ≥ = < ≤ ≠)。
- 连接运算从R和S的广义笛卡尔积R×S中选取(R关系)在A属性组上的值与(S关系)在B属性组上值满足比较关系θ的元组

3. 连接

两个关系参加运算,

不一定有公共属性

2类常用连接运算:

□ 等值连接 (equijoin) : θ为 "=" 的连接运算。

$$R_{A=B} > S = \{ \hat{t_r} \hat{t_s} \mid tr \in R \land ts \in S \land tr[A] = ts[B] \}$$

含义:从关系R与S的广义笛卡尔积中选取A、B属性值相等的那些元组。

- □ 自然连接 (natural join) : 是一种特殊的等值连接:
 - 两个关系中进行比较的分量必须是相同的属性组;
 - 在结果中把重复的属性列去掉。

$$R \bowtie S = \{\widehat{t_r t_s} \mid tr \in R \land ts \in S \land tr[B] = ts[B]\}$$

- □R 和S 具有相同的属性组B
- □当R与S无相同属性时, R × S = R×S

3. 连接

□一般的连接操作是从行的角度进行运算。

- □自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。
- □ 自然连接的本质是将两张有关联的表,按照元组之间在属性B (外码) 上的 等值关系,合并为一张表。

连接示例

运算步骤:

- 1) 求笛卡尔积 R×S
- 2) 选择其中满足AθB的元组

 $\mathbf{R} \times \mathbf{S}$

A	В	C
1	2	3
4	5	6
7	8	9

S

C	D
a	7
b	8

A	В	R.C	S.C	D
1	2	3	a	7
1	2	3	b	8
4	5	6	a	7
4	5	6	b	8
7	8	9	a	7
7	8	9	b	8

 $\mathbb{R}\bowtie \mathbb{S}$

或

 $\mathbf{R} \bowtie \mathbf{S}$

C>D

A	В	R.C	S.C	D
7	8	9	a	7
7	8	9	b	8

自然连接示例

1) 计算R×S

R	A	В	C
	a	b	c
	b	a	f
	c	b	d

S	В	E	F
	b	c	f
	g	h	i

A	R. B	C	S.B	E	F
a	b	c	b	c	f
a	b	c	g	h	i
b	a	f	b	c	f
b	a	f	g	h	i
c	b	d	b	c	f
c	b	d	g	h	i

A	R. B	C	S.B	E	F
a	b	c	b	c	f
c	b	d	b	c	f

3)	去掉重复属性
----	--------

A	В	C	E	F
a	b	c	c	f
c	b	d	c	f

3. 连接 (续)

□ 问题: 自然连接会丢失信息, 需引入新的连接运算

例如: student ⋈ sc 会将一个未选课的学生丢失

□外连接

如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。

□左外连接

如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或 LEFT JOIN)

□右外连接

如果只把右边关系S中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOIN 或RIGHT JOIN)。

R

Α	В	С
a1	b1	5
a1	b2	6
a2	h3	8

¬般连接 $\mathbb{R}_{C < E}$ S的结果如下:

a1	b1	5
a1	b2	6
a2	b 3	8
a2	b4	12

В	E	
b1	3	
b2	7	
b3	10	
b3	2	
b5	2	

S

R	D	×	S
(7	I	

R

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S

В	Е
b1	3
b2	7
b3	10
b3	2
b5	2

等值连接 $R \bowtie S$ 的结果

如下:

1	R.B	С	S.B	Е
Л	K.D		5.5	L
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

R

Α	В	С
a1	<mark>b1</mark>	5
a1	<mark>b2</mark>	6
a2	b3	8
a2	b4	12

b5

自然连接 ペ ⋈ 5 的结果如下:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

R

Α	В	С
a1	b1	5

关系R和关系S的外连接、 左外连接、右外连接:

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

S	В	Е
	b1	3
	b2	7
	b 3	10
	b 3	2
	b5	2
	<u> </u>	

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

0	1000
C	E
5	3
6	7
8	10
8	2
12	NULL
	5 6 8 8

A	B	C	Ε
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

(a) 外连接

(b) 左外连接

(c) 右外连接

外连接运算

- □ 外连接 外连接运算是扩展运算,可以用其它运算代数表达式表示。
- □ 例如: 左外连接可以写成:

 $(r \bowtie s) \cup (r-\pi_R(r \bowtie s)) \times \{(null,....null)\}$

分析:问题的关键是如何求r与s的自然连接后丢失的r中元组?

解决方法: 利用减法运算求补集

说明:表达式 r-π_R(r ⋈ s) 为所需丢失元组

□ 思考题:写出右外连接和全连接的代数式

关系运算综合举例

常用的代数思维解决方法:

1) 整体法

- 首先分析所需信息来自哪些表
- 其次用适当的连接运算合并表
- 再用选择运算σρ行分解表,通过P去除无用元组
- 最后用投影运算π₄列分解表,通过A选择所需结果

2) 分步法

- 首先将问题分解为多个简单步骤(可用单表解决)
- 其次对最里层的问题用一个代数表达式表示结果
- 再将结果作为已知值,代入上一层步骤中
- 注:分步法也可以是从外层向里层的迭代过程

案例: 教学数据库有三个关系:

S

C

Cno	Cname	^{先行课号} Cpno	Ccredi t
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2

<u>Sno</u>	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

<u>Sno</u>	<u>Cno</u>	Grade
95001	1	92
95001	2	85
95001	3	88
95002	2	90
95002	3	80

关系运算综合举例

例: 查询选修了一门其直接先行课为5号课程的学生姓名。

□解法1:整体法

问题分析:

1) 该查询是查找选过…课程的学生,所以先将学生表、选修表、课程表合并 Course ⋈ SC⋈ Student

2) 再确定选择运算谓词P为cpno=5

$$\sigma_{Cpno='5'}$$
 (Course \bowtie SC \bowtie Student))

3) 最后投影所需的学生姓名即可

$$\pi_{Sname}(\sigma_{Cpno='5'} (Course \bowtie SC \bowtie Student))$$

关系运算综合举例

- □解法2:分步法
 - 1) 找出先修课为5的课程:

$$\sigma_{Cpno='5'}$$
 (Course)

2) 找出选过上表达式结果的选课元组中学号:

```
\pi_{Sno} (SC \bowtie \sigma_{Cpno='5'} (Course))
```

3) 从学生表中找出学号为上一步结果的学生:

```
\pi_{\text{Sname}} (\pi_{\text{Sno}} (\text{SC} \bowtie \sigma_{\text{Cpno}= '5'} (\text{Course})) \bowtie \text{Student})
```

□ 提问: 上述例子中我们通过自然连接实现了选择运算的功能能否用

嵌套方法实现选择? 例如: 第二步改为:

$$\sigma_{cno=\pi_{cno} (\sigma_{Cpno='5'} (Course))}$$
 (SC) ?

关系运算综合举例

Student (<u>Sno</u>, Sname, Ssex, Sage, Sdept) Course (<u>Cno</u>, Cname, Cpno, Ccredit) SC (<u>Sno</u>, <u>Cno</u>, Grade)

[上例] 查询至少选修了一门其直接先行课为5号课程的学生姓名。

解答:

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course \bowtie SC \bowtie Student))$$

或

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course) \bowtie SC \bowtie \pi_{Sno, Sname}(Student))$$

或

$$\pi_{Sname}(\pi_{Sno}(\sigma_{Cpno='5'}(Course) \bowtie SC) \bowtie \pi_{Sno, Sname}(Student))$$

回顾案例: 教学数据库有三个关系:

 C

<u>Cno</u>	Cname	先行课 号Cpno	Ccredit
1	 数据库	5 5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2

<u>Sno</u>	Sname	Ssex	Sage	Sdept
95001	李勇	男	20	CS
95002	刘晨	女	19	IS
95003	王敏	女	18	MA
95004	张立	男	19	IS

SC

<u>Sno</u>	Cno	Grade
95001	1	92
95001	2	85
95001	3	88
95002	2	90
95002	3	80

求解: 如何表示对该数据库的各种操作?

□ 查询选修了"数据库"课程的学生姓名。

π_{Sname}(σ_{Cname='数据库'}(Course ⋈ SC ⋈ Student))

□ 查询学习了1号课程但没学5号课程的学生学号和姓名。

 $\underline{\pi}_{Sno, Sname}(\sigma_{Cno='1'}(SC \bowtie Student) - \sigma_{Cno='5'}(SC \bowtie Student))$

□ 查询选修了全部课程的学生学号。

4. 除 (Division)

- □引入动机:在查询中,经常需要查询包含短语"所有的"这样的查询。
- □ 例: 找出选过学分为3分的所有课程的学生?

解题思路: 1) 找出学分为3分的所有课程;

2) 从选课表中,找出学生,其所选课程包含1)中结果;

解: 1) 令S= π_{cno} ($\sigma_{Ccredit=3}$ (Course))

- 2)对选课表按照Sno分组: snoG(SC),表示每个学生选了哪些课程为一组
- 3) 令S'= 分组以后的由Cno构成的表;若S'包含S,则将这样的学生放入结果集,记作:

$$SC \div \pi_{cno} (\sigma_{Ccredit=3}(Course))$$

□ 语义: R÷S是指从R中去除哪些不包含S的元组,即:从R中查找"选过所有的S"的查询。

4. 除 (Division)

给定关系R(X, Y)和S(Y, Z),其中X, Y, Z为属性组。

- □ R 中的Y与S 中的Y可以有不同的属性名,但必须出自相同的域集。
- \square R与S的除运算得到一个新的关系P(X),
- □ P是R中满足下列条件的元组在X属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{t_r[X] \mid t_r \in R \land \pi_Y(S) \subseteq Y_X\}$$

 Y_x : x 在R 中的象集, $x = t_r[X]$

□ 除操作是同时从行和列角度进行运算

4. 除

为方便起见, 我们假设 S 的属性为 R 中后 s 个属性。

R÷S 的具体计算过程如下:

1) T =
$$\pi_{1,2,...,r-s}(R)$$

2) W =
$$(T \times S) - R$$

3)
$$V = \pi_{1,2,...} r-s(W)$$

4)
$$R \div S = T - V$$

$$\mathbb{R} P R \div S = \pi_{1,2,...r-s}(R) - \pi_{1,2,...r-s}((\pi_{1,2,...r-s}(R) \times S) - R)$$

 \mathbf{R}

A	В	C	D
a	b	c	d
a	b	e	f
a	b	d	e
b	c	e	f
e	d	c	d
e	d	e	f

S

C	D
c	d
e	f

1) $T = \pi_{A,B}(R)$

A	В
a	b
b	c
e	d

A	В	C	D
a	b	c	d
a	b	e	f
b	c	c	d
b	c	e	f
e	d	c	d
e	d	e	f

3) V	$=\pi_{A,B}(W)$)
		-

A	В
b	c

4)
$$\mathbf{R} \div \mathbf{S} = \mathbf{T} - \mathbf{V}$$

A	В
a	b
e	d

$R \div S = \Pi_X(R) - \Pi_X(\Pi_X(R) \times \Pi_Y(S) - R)$

X

例如:求选修了所有课程的学生的姓名 (R÷S公式理解)

课程表

课程

物理

数学

П姓名(选课表)

姓名 张军 王红

=

姓名课程张军物理张工数学张工数学王红物理

所有学生选修 全部课程

姓名课程张军物理王红数学张军数学王红物理

选课表

姓名	课程
张军	物理
王红	数学
张军	数学

∏姓名

姓名 王红

没有选修全部 课程的学生

选修了全部课 程的学生

 姓名
 世名

 张军
 工红

 世名

 王红

除——例题

□ 例:设关系R、S分别为下图的(a)和(b), R÷S的结果为图(c)

A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1

B	C	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	<i>C</i> ₃	d_2

$$\begin{array}{c}
R \div S \\
\hline
A \\
\hline
a_1 \\
\hline
(c)
\end{array}$$

在关系R中,A可以取四个值{a1, a2, a3, a4} a_1 的象集为 { (b_1, c_2) , (b_2, c_3) , (b_2, c_1) } a_2 的象集为 { (b_3, c_7) , (b_2, c_3) } a_3 的象集为 { (b_4, c_6) } a_4 的象集为 { (b_6, c_6) }

除——分析

□ 例题变形: 求选修了所有课程的学生的姓名。

姓名	课程	成绩
张军	物理	88
王红	数学	80
张军	数学	90

	课程	
-	数学	
	物理	

姓名

选修了全部课程的 学生的姓名

对不对?

No

$\Pi_{\text{姓名,课程}}(\mathbf{R}) \div \mathbf{S}$

R

姓名	课程	成绩
张军	物理	88
王红	数学	80
张军	数学	90

Π_y(S)={课程}, Y_x = {课程}, _____ X={姓名,成绩}

$$\Pi_{\mathbf{v}}(\mathbf{S}) \subseteq \mathbf{Y}_{x}$$

{张军, 88}={物理},

{王红,80}={数学},

{张军,90}={数学}

没有哪个X的象集包含了 {物理,数学},所以答 案应该是空集!

除运算示例

例: 查询选修了全部课程的学生号码和姓名。

解: 与上题类似:

 $\pi_{Sno, Cno}$ (SC) ÷ π_{Cno} (Course)

是选过全部课程的学生号;

将其与Student自然合并,为所需结果:

 $\pi_{Sno,Cno}(SC) \div \pi_{Cno}(Course) \bowtie \pi_{Sno,Sname}(Student)$