Stokes-Strukturen meromorpher Zusammenhänge

Maximilian Huber

3. Dezember 2014

Outline

Meromorphe Zusammenhänge

Definition Modelle und formale Zerlegung Levelt-Turittin-Theorem

Asymptotische Entwicklungen

Definition Borel-Ritt Lemma

Stokes-Strukturen

Garben Version Matrix Version

Abschnitt 1

Meromorphe Zusammenhänge

Meromorphe Zusammenhänge

Sei M eine **Riemann-Fläche** und Z ein **effektiver Divisor** auf M.

Meromorphe Zusammenhänge

Sei M eine **Riemann-Fläche** und Z ein **effektiver Divisor** auf M. Sei \mathscr{M} ein **holomorphes Bündel** : \Leftrightarrow lokal freier \mathcal{O}_M -Modul.

Meromorphe Zusammenhänge

Sei M eine **Riemann-Fläche** und Z ein **effektiver Divisor** auf M. Sei \mathcal{M} ein **holomorphes Bündel** : \Leftrightarrow lokal freier \mathcal{O}_M -Modul.

Definition

Ein meromorpher Zusammenhang auf \mathcal{M} mit Polen auf Z ist ein \mathbb{C} -linearer Garbenmorphismus

$$\nabla: \mathscr{M} \to \Omega^1_M(*Z) \otimes \mathscr{M}$$

welcher für alle $U \overset{\text{off.}}{\subset} M$ die **Leibniz Regel**

$$abla (fs) = f
abla s + (df) \otimes s$$
 erf $f \in \mathcal{O}_M(U)$

Schreibe (\mathcal{M}, ∇) oder nur \mathcal{M} für den meromorphen Zusammenhang.

Zusammenhangs Matrix

Zu einer Basis **e** einer lokalen Trivialisierung von \mathscr{M} gibt es eine **Zusammenhangs Matrix** A = A'dt für ein $A' \in M(n \times n, \mathbb{C}\{t\}[t^{-1}])$ so dass $\nabla \mathbf{e} = A\mathbf{e}$. Damit ist lokal

$$\nabla s = ds - As$$

Zusammenhangs Matrix

Zu einer Basis e einer lokalen Trivialisierung von \mathscr{M} gibt es eine **Zusammenhangs Matrix** A=A'dt für ein $A'\in M(n\times n,\mathbb{C}\{t\}[t^{-1}])$ so dass $\nabla \mathbf{e}=A\mathbf{e}$. Damit ist lokal

$$\nabla s = ds - As$$

Ein Wechsel $F \in G\{t\} := \mathrm{GL}_n(\mathbb{C}\{t\})$ der Trivialisierung entspricht der Gauge Transformation auf Zusammenhangs Matrizen

$$F[A] = (dF)F^{-1} + FAF^{-1}.$$

Zusammenhangs Matrix

Zu einer Basis **e** einer lokalen Trivialisierung von \mathcal{M} gibt es eine **Zusammenhangs Matrix** A = A'dt für ein $A' \in M(n \times n, \mathbb{C}\{t\}[t^{-1}])$ so dass $\nabla \mathbf{e} = A\mathbf{e}$. Damit ist lokal

$$\nabla s = ds - As$$

Ein Wechsel $F \in G\{t\} := GL_n(\mathbb{C}\{t\})$ der Trivialisierung entspricht der **Gauge Transformation** auf Zusammenhangs Matrizen

$$F[A] = (dF)F^{-1} + FAF^{-1}$$
.

- Definition

 A äquivalent zu $B :\Leftrightarrow \exists F \in G\{t\} \text{ mit } F[A] = B.$ A formal äquivalent zu $B :\Leftrightarrow \exists \widehat{F} \in G[\![t]\!] \text{ mit } \widehat{F}[A] = B.$

Formale Zerlegung

Definition

Ein Keim (\mathcal{M}, ∇) ist ein **Model** oder eine **formale Zerlegung** falls

$$\lambda: (\mathcal{M}, \nabla) \overset{\cong}{\longrightarrow} \bigoplus_{\varphi} \underbrace{\mathcal{E}^{\varphi} \otimes \mathcal{R}_{\varphi}}_{\text{elementare merom. Zus.}} \bullet \text{irregul\"{a}r singul\"{a}r}$$
regul\"{a}r singul\"{a}r
$$\varphi \in t^{-1}\mathbb{C}[t^{-1}] \text{ paarweise verschieden}$$

wobei
$$(\mathcal{E}^{\varphi}, \nabla) = (\mathbb{C}\{t\}, d - d\varphi).$$

Formale Zerlegung

Lemma $\text{Ist } (\mathcal{M}, \nabla) \text{ ein Modell, so lässt sich die Zusammenhangs Matrix schreiben als}$

Formale Zerlegung

Lemma $\text{Ist } (\mathcal{M}, \nabla) \text{ ein Modell, so lässt sich die Zusammenhangs Matrix schreiben als}$

Definition Der Zusammenhang heißt **generisch** falls der Grad der Singularität von $\varphi_i - \varphi_j = k$ für alle i, j.

Wir beschränken uns auf generische Zusammenhänge.

Levelt-Turittin-Theorem

Satz (Levelt-Turittin)

Zu einem unverzweigtem^a Keim (\mathcal{M}, ∇) eines meromorphen Zusammenhang gibt es immer einen **formalen** Isomorphismus

$$\widehat{\lambda}:\widehat{\mathcal{M}}\stackrel{\cong}{\longrightarrow}\widehat{\mathcal{M}}^{good}:=\widehat{\mathcal{O}}_{M}\otimes\mathcal{M}^{good}$$

 $zu\ einem\ Modell\ \mathcal{M}^{good}.$

formale Vervollständigung von \mathcal{O}_M .

^aLässt sich durch einen Pullback immer erreichen

Abschnitt 2

Asymptotische Entwicklungen

Definition

Sei $\theta_0, \theta_1 \in S^1$.

- $ightharpoonup \operatorname{Sect}_r(\theta_0,\theta_1) := \operatorname{Sect}_r(\theta_0,\theta_1)$ für r klein genug
- $\triangleright \operatorname{Sect}(U) \stackrel{U=(\theta_0,\theta_1)}{:=} \operatorname{Sect}(\theta_0,\theta_1)$

Asymptotische Entwicklung: Definition

Definition $f \in \mathcal{O}_M(\operatorname{Sect}(U))$ hat $\sum_{n \geq n_0} c_n t^n \in \mathbb{C}(t)$ als asymptotische Entwicklung auf $\operatorname{Sect}(U)$, falls $\exists r \text{ so dass}$ $\forall r$

 $\forall \mathbf{N} > 0 \text{ und}$

 \forall abgeschlossenen Intervall V in U

eine Konstante $C(\mathbf{N}, V)$ existiert, so dass

$$\left| f(t) - \sum_{n_0 \le n \le N-1} c_n t^n \right| \le C(N, V) |t|^N \quad \text{für alle } t \in \text{Sect}_r(V).$$

Asymptotische Entwicklung: Definition

Definition $f \in \mathcal{O}_M(\operatorname{Sect}(U))$ hat $\sum_{n \geq n_0} c_n t^n \in \mathbb{C}(t)$ als asymptotische Entwicklung auf $\operatorname{Sect}(U)$, falls

 $\exists r \text{ so dass } \forall \mathbf{N} \geq 0 \text{ und } \forall V \text{ abg. Intervall in } U \text{ eine}$ Konstante $C(\mathbf{N}, V)$ existiert, so dass

$$\left| f(t) - \sum_{n_0 \le n \le \mathbf{N} - 1} c_n t^n \right| \le C(\mathbf{N}, V) |t|^{\mathbf{N}} \quad \text{für alle } t \in \mathrm{Sect}_r(V).$$

Erhalte die Garbe \mathscr{A} auf S^1 :

$$\mathop{U}_{\text{off. Intervall}} \mapsto \mathscr{A} \big(\, U \big) {\subset} \, \mathcal{O}(\mathrm{Sect}(\, U))$$

wobei $\mathcal{A}(U)$ die Funktionen mit asymptotischer Entwicklung auf Sect(U).

Borel-Ritt

Lemma (Borel-Ritt)

Für jedes echte offene Intervall U von S^1 ist die Abbildung

$$\mathscr{A}(U) \twoheadrightarrow \mathbb{C}((t))$$

welche f die die asymptotische Entwicklung \widehat{f} zuordnet, eine surjektion.

 $_$ denn $\mathscr{A}(S^1) = \mathbb{C}\{t\}$

Borel-Ritt

Lemma (Borel-Ritt)

Für jedes echte offene Intervall U von S^1 ist die Abbildung

$$0 \to \mathscr{A}^{<0}(U) \to \mathscr{A}(U) \twoheadrightarrow \mathbb{C}((t)) \to 0$$

 $0\to\mathscr{A}^{<0}(U)\to\mathscr{A}(U)\twoheadrightarrow\mathbb{C}(\!(t)\!)\!\!\to 0$ welche f die die asymptotische Entwicklung \widehat{f} zuordnet, eine surjektion.

$$t \mapsto e^{-\frac{1}{t}} \in \mathscr{A}^{<0} \left(\operatorname{Sect} \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right)$$

Borel-Ritt

Lemma (Borel-Ritt)

Für jedes echte offene Intervall U von S^1 ist die Abbildung

$$0 \to \mathscr{A}^{<0}(U) \to \mathscr{A}(U) \twoheadrightarrow \mathbb{C}((t)) \to 0$$

welche f die die asymptotische Entwicklung \widehat{f} zuordnet, eine surjektion.

Satz

Für jedes genügend kleinem Intervall $V \subset S^1$ gibt es einen Lift

$$\widetilde{\lambda} : \underbrace{\mathscr{A}(V) \otimes \mathcal{M}}_{=:\widetilde{\mathcal{M}}(V)} \stackrel{\cong}{\longrightarrow} \mathscr{A}(V) \otimes \mathcal{M}^{good}$$

 $von \widehat{\lambda}$.

Abschnitt 3

Stokes-Strukturen

Modulräume

Fixiere ein **Modell** $(\mathcal{M}^{good}, \nabla^{good})$ auf M=D mit Pol bei $\{0\}=Z$ und somit auch eine Zusammenhangs Matrix $A^0=dQ+\Lambda\frac{dt}{t}.$

Wir sind interessiert an:

Modulräume

Fixiere ein **Modell** $(\mathcal{M}^{good}, \nabla^{good})$ auf M=D mit Pol bei $\{0\}=Z$ und somit auch eine Zusammenhangs Matrix $A^0=dQ+\Lambda\frac{dt}{t}.$

Wir sind interessiert an:

$$\left\{ (\mathcal{M}, \nabla) \mid \widehat{f} : (\widehat{\mathcal{M}}, \widehat{\nabla}) \stackrel{\cong}{\longrightarrow} (\widehat{\mathcal{M}}^{good}, \widehat{\nabla}^{good}) \right\} \Big/ \sim.$$

Wir betrachten dazu aber die größere die punktierte Menge

$$\mathscr{H}(\mathscr{M}^{good}) := \left\{ (\mathscr{M}, \nabla, \widehat{f}) \mid \widehat{f} : (\widehat{\mathscr{M}}, \widehat{\nabla}) \stackrel{\cong}{\longrightarrow} (\widehat{\mathscr{M}}^{good}, \widehat{\nabla}^{good}) \right\} \Big/ \sim$$
 merke den formalen Isomorphismus.

Modulräume

Fixiere ein **Modell** $(\mathcal{M}^{good}, \nabla^{good})$ auf M=D mit Pol bei $\{0\}=Z$ und somit auch eine Zusammenhangs Matrix $A^0=dQ+\Lambda\frac{dt}{t}.$

Wir sind interessiert an:

$$\left\{ (\mathcal{M}, \nabla) \mid \widehat{f} : (\widehat{\mathcal{M}}, \widehat{\nabla}) \stackrel{\cong}{\longrightarrow} (\widehat{\mathcal{M}^{good}}, \widehat{\nabla}^{good}) \right\} \Big/ \sim.$$

Wir betrachten dazu aber die größere die punktierte Menge

$$\mathscr{H}(\mathscr{M}^{good}) := \left\{ (\mathscr{M}, \nabla, \widehat{f}) \mid \widehat{f} : (\widehat{\mathscr{M}}, \widehat{\nabla}) \stackrel{\cong}{\longrightarrow} (\widehat{\mathscr{M}}^{good}, \widehat{\nabla}^{good}) \right\} \Big/ \sim$$

Als Zusammenhangs Matrizen:

$$\underbrace{\left\{A\mid A=\widehat{F}[A^0] \text{ für ein } \widehat{F}\in G[\![t]\!]\right\}}_{=:\operatorname{Syst}(A^0)} \Big/ G\{t\}$$

und

$$\mathscr{H}(A^0) := \left\{ (A, \widehat{F}) \in \operatorname{Syst}(A^0) \times G[\![t]\!] \mid A = \widehat{F}[A^0] \right\} / G\{t\}$$

Garben Version: Stokes Raum

Definition

Definiere

▶ Aut $^{<0}(\widetilde{\mathcal{M}}^{good})$ die Garbe auf S^1 der Automorphismen welche die Identität als asymptotische Entwicklung haben (Die Schnitte heißen **Stokes Matrizen**)

Garben Version: Stokes Raum

- Definition Definiere $\blacktriangleright \text{ Aut}^{<0}(\widetilde{\mathcal{M}}^{good}) \text{ die Garbe auf } S^1 \text{ der Automorphismen}$ welche die Identität als asymptotische Entwicklung haben (Die Schnitte heißen Stokes Matrizen)
 - ▶ und den Stokes Raum

$$\mathcal{S}t(\mathscr{M}^{good}) := H^1\left(S^1, \operatorname{Aut}^{<0}\left(\widetilde{\mathscr{M}}^{good}\right)\right)$$

Garben Version: Stokes Raum

- Definition
 Definiere
 ► Aut^{<0}(Mgood) die Garbe auf S¹ der Automorphismen welche die Identität als asymptotische Entwicklung haben (Die Schnitte heißen Stokes Matrizen)
 ► und den Stokes Raum

$$\mathcal{S}t(\mathscr{M}^{good}) := H^1\left(S^1, \operatorname{Aut}^{<0}\left(\widetilde{\mathscr{M}}^{good}\right)\right)$$

 $\begin{array}{c} \operatorname{Satz} \\ \mathcal{S}t(\mathscr{M}^{good}) \ \ ist \ ein \ \mathbb{C} ext{-Vektorraum}. \end{array}$

Garben Version

Sei $\left[(\mathscr{M},\nabla,\widehat{f})\right]\in\mathscr{H}(\mathscr{M}^{good})$. Es gibt dann eine (zyklische $^{[1]}$) Überdeckung \mathfrak{W} von S^1 so dass für jedes $W_i\in\mathfrak{W}$ ein Lift

$$f_i: (\widetilde{\mathscr{M}}, \widetilde{\nabla})_{|W_i} \stackrel{\sim}{\longrightarrow} (\widetilde{\mathscr{M}}^{good}, \widetilde{\nabla}^{good})_{|W_i}$$

von \widehat{f} existiert.

^[1] Schnitt zweier Mengen in $\mathfrak W$ ist immer ein Intervall.

Garben Version

Sei $\left[(\mathscr{M},\nabla,\widehat{f})\right]\in\mathscr{H}(\mathscr{M}^{good})$. Es gibt dann eine (zyklische^[1]) Überdeckung \mathfrak{W} von S^1 so dass für jedes $W_i\in\mathfrak{W}$ ein Lift

$$f_i: (\widetilde{\mathscr{M}}, \widetilde{\nabla})_{|W_i} \stackrel{\sim}{\longrightarrow} (\widetilde{\mathscr{M}}^{good}, \widetilde{\nabla}^{good})_{|W_i}$$

von \widehat{f} existiert.

Dann ist $(f_jf_i^{-1})_{i,j}$ ein Kozykel in der Garbe $\operatorname{Aut}^{<0}(\widetilde{\mathscr{M}}^{good})$ relativ zur Überdeckung $\mathfrak W$ und damit haben wir eine Abbildung

$$\mathscr{H}(\mathscr{M}^{good}) \longrightarrow H^1\left(S^1, \operatorname{Aut}^{<0}\left(\widetilde{\mathscr{M}}^{good}\right)\right) = \mathscr{S}t(\mathscr{M}^{good})$$

^[1] Schnitt zweier Mengen in $\mathfrak W$ ist immer ein Intervall.

Garben Version

Sei $\left\lceil (\mathscr{M}, \nabla, \widehat{f}) \right\rceil \in \mathscr{H}(\mathscr{M}^{good})$. Es gibt dann eine (zyklische $^{[1]}$) Überdeckung \mathfrak{W} von S^1 so dass für jedes $W_i \in \mathfrak{W}$ ein Lift

$$f_i: (\widetilde{\mathscr{M}}, \widetilde{\nabla})_{|W_i} \stackrel{\sim}{\longrightarrow} (\widetilde{\mathscr{M}}^{good}, \widetilde{\nabla}^{good})_{|W_i}$$

von \hat{f} existiert.

Dann ist $(f_if_i^{-1})_{i,j}$ ein Kozykel in der Garbe $\operatorname{Aut}^{<0}(\widetilde{\mathscr{M}}^{good})$ relativ zur Überdeckung ${\mathfrak W}$ und damit haben wir eine Abbildung

$$\mathscr{H}(\mathscr{M}^{good}) \longrightarrow H^1\left(S^1, \operatorname{Aut}^{<0}\left(\widetilde{\mathscr{M}}^{good}\right)\right) = \mathcal{S}t(\mathscr{M}^{good})$$

Satz (Malgrange-Sibuya)

Das ist ein Isomorphismus von punktierter Mengen.

^[1] Schnitt zweier Mengen in $\mathfrak W$ ist immer ein Intervall.

Matrix Version: Modulräume

Wir sind interessiert an:

$$\underbrace{\left\{A\mid A=\widehat{F}[A^0] \text{ für ein } \widehat{F}\in G[\![t]\!]\right\}}_{=:\operatorname{Syst}(A^0)}\Big/G\{t\}$$

und betrachten dazu aber die größere die Menge

$$\mathscr{H}(A^0):=\left\{(A,\widehat{F})\in \operatorname{Syst}(A^0)\times G[\![t]\!]\mid A=\widehat{F}[A^0]\right\}\Big/G\{t\}$$
 merke die formale Transformation.

Matrix Version

Satz (Balser, Jurkat, Lutz)

Es gibt einen Isomorphismus

$$\mathscr{H}(A^0) \cong (U_+ \times U_-)^{k-1}$$

$$[(A,\widehat{F})] \mapsto \mathbf{S} = (S_1,\ldots,S_{2k-2})$$

$$\cong \mathbb{C}^{(k-1)n(n-1)}$$

Matrix Version

Satz (Balser, Jurkat, Lutz)

Es gibt einen Isomorphismus

$$\mathscr{H}(A^0) \cong (U_+ \times U_-)^{k-1} \cong \mathbb{C}^{(k-1)n(n-1)}$$

 $[(A, \widehat{F})] \mapsto \mathbf{S} = (S_1, \dots, S_{2k-2})$

Korollar

Damit gibt es einen Isomorphismus

$$Syst(A^0)/G\{t\} \cong (U_+ \times U_-)^{k-1}/T$$
.

Torus Wirkung durch Konjugation

Definition Sei
$$\varphi_{ij}(z)$$
 der führende Term von $\varphi_i - \varphi_j$.
$$d \in \mathbb{A} \subset S^1 :\Leftrightarrow \begin{cases} \text{es gibt } i \neq j \text{ so dass } \varphi_{ij}(z) \in \mathbb{R}_{<0} \\ \text{für } z \to 0 \text{ auf dem 'Strahl durch } d'. \end{cases}$$
 Die Elemente in \mathbb{A} heißen anti-Stokes-Richtungen.

Die Elemente in \mathbb{A} heißen anti-Stokes-Richtungen.

Sei

- $r := \# \mathbb{A},$
- l := r/(2k-2) und
- **b** $\mathbf{d} := (d_1, \dots, d_l)$ Halb-Periode.

Matrix Version: Asymptotische Analysis

$$\Sigma_i(\widehat{F}) \in \mathrm{GL}_n\left(\mathcal{O}_M(\mathrm{Sect}\left(d_i, d_{i+1}\right))\right)$$

$$\Sigma_i(\widehat{F}) \in \mathrm{GL}_n\left(\mathcal{O}_M(\mathrm{Sect}\left(d_i, d_{i+1}\right))\right)$$

so dass
$$\Sigma_i(\widehat{F})[A^0] = A$$

Die analyt. Fortsetzung auf Sect $\left(d_i - \frac{\pi}{2k-2}, d_{i+1} + \frac{\pi}{2k-2}\right)$ von $\Sigma_i(\widehat{F})$ ist dort immer noch asymptotisch zu \widehat{F} .

Matrix Version: Asymptotische Analysis

$$\Sigma_i(\widehat{F}) \in \mathrm{GL}_n\left(\mathcal{O}_M(\mathrm{Sect}\left(d_i, d_{i+1}\right))\right)$$

so dass $\Sigma_i(\widehat{F})[A^0] = A$.

Die analyt. Fortsetzung auf Sect $\left(d_i - \frac{\pi}{2k-2}, d_{i+1} + \frac{\pi}{2k-2}\right)$ von $\Sigma_i(\widehat{F})$ ist dort immer noch asymptotisch zu \widehat{F} .

Definition Die begrenzenden Richtungen von Sect $\left(d_i - \frac{\pi}{2k-2}, d_{i+1} + \frac{\pi}{2k-2}\right)$ heißen **Stokes-Richtungen**.

Matrix Version: Stokes Faktoren

Definition Die **Stokes Faktoren** zu (A, \widehat{F}) sind

$$K_i := e^{-Q} \cdot e^{-\Lambda} \cdot \underbrace{\Sigma_i(\widehat{F})^{-1} \cdot \Sigma_{i-1}(\widehat{F})}_{\kappa_i} \cdot e^{\Lambda} \cdot e^{Q}$$

Matrix Version: Stokes Faktoren

Definition Die Stokes Faktoren zu
$$(A, \widehat{F})$$
 sind
$$K_i := e^{-Q} \cdot e^{-\Lambda} \cdot \underbrace{\Sigma_i(\widehat{F})^{-1} \cdot \Sigma_{i-1}(\widehat{F})}_{\kappa_i} \cdot e^{\Lambda} \cdot e^Q$$

Lemma K_i ist in der Gruppe der Stokes Faktoren $\mathbb{S}to_{d_i}(A^0) := \{ K \in \mathrm{GL}_n(\mathbb{C}) \mid (K)_{ij} = \delta_{ij} \ au\beta er \ \varphi_{ij} \in \mathbb{R}_{<0} \ entlang \ d_i \}.$

Lemma
$$Sei \ d = (d_1, \dots, d_l) \ eine \ Halb-Periode.$$

$$\prod_{d \in d} \mathbb{S}to_d(A^0) \cong U_+$$

$$(K_1, \dots, K_l) \mapsto P^{-1}K_l \dots K_2K_1P$$
 für eine Permutations Matrix P .

Lemma
$$Sei \ oldsymbol{d} = (d_1, \dots, d_l) \ eine \ Halb-Periode.$$

$$\prod_{d \in oldsymbol{d}} \mathbb{S}to_d(A^0) \cong U_+$$

$$(K_1, \dots, K_l) \mapsto P^{-1}K_l \dots K_2K_1P$$
 für eine Permutations Matrix P .

 (N_1, \dots, N_l) für eine Permutations Matrix P.

$$\prod_{d\in\mathbb{A}} \operatorname{Sto}_d(A^0) \cong (U_+ \times U_-)^{k-1}$$

$$(K_1,\ldots,K_r)\mapsto(S_1,\ldots,S_{2k-2})$$

mit $S_i := P^{-1}K_{il} \dots K_{(i-1)l+1}P \in U_{+/-}$ falls i ungerade/gerade die **Stokes Matrizen**.

Matrix Version

Satz (Balser, Jurkat, Lutz)

Die hier definierte Abbildung

$$\mathscr{H}(A^0) \cong (U_+ \times U_-)^{k-1} \qquad \cong \mathbb{C}^{(k-1)n(n-1)}$$
$$[(A, \widehat{F})] \mapsto \mathbf{S} = (S_1, \dots, S_{2k-2})$$

ist ein Isomorphismus

Korollar

Es ist auch

$$Syst(A^0)/G\{t\} \cong (U_+ \times U_-)^{k-1}/T$$

 $ein\ Isomorphismus$