

PLANO DE ENSINO

Data de Emissão: 21/07/2016

Instituto de Informática

Departamento de Informática Teórica

Dados de identificação

Disciplina: FUNDAMENTOS DE ALGORITMOS

Período Letivo: 2016/2 Período de Início de Validade: 2016/2

Professor Responsável pelo Plano de Ensino: LEILA RIBEIRO

Sigla: INF05008 Créditos: 4

Carga Horária: 60h CH Autônoma: 10h CH Coletiva: 50h CH Individual: 0h

Súmula

Dados atômicos e compostos, funções, composições de funções, análise de dados, padrões de projeto, recursão estrutural, recursão geradora, introdução à análise de algoritmos.

Currículos		
Currículos	Etapa Aconselhada	Natureza
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO	1	Obrigatória
BIOTECNOLOGIA MOLECULAR	2	Obrigatória
BIOINFORMÁTICA	2	Obrigatória
BACHARELADO EM MATEMÁTICA - ÊNFASE MATEMÁTICA APLIC COMPUTACIONAL	6	Alternativa

Objetivos

Ao final da disciplina, espera-se que o aluno: utilize técnicas baseadas em indução e recursão para solução e análise de problemas; domine estruturas de controle e estruturas de dados básicas necessárias para a solução de problemas algorítmicos; compreenda a importância das análises de correção e custo computacional de uma solução algorítmica; e tenha uma visão abrangente da área de Algoritmos.

Conteúdo Programático

Semana: 1 a 2

Título: Introdução

Conteúdo: Introdução à disciplina, revisão sobre conjuntos e funções, introdução a algoritmos para computar funções

Semana: 3 a 5

Título: Tipos de dados básicos

Conteúdo: Tipos booleanos (expressões condicionais), tipos simbólicos, tipos estruturados, tipos mistos.

Semana: 7 a 9

Título: Indução e recursão

Conteúdo: Indução natural e estrutural, listas, recursão.

Semana: 10 a 15

Título: Tópicos avançados

Conteúdo: Estruturas de dados complexas (árvores, listas de listas, com auto-referência), recursão generativa, custo de computação, projeto de

algoritmos complexos.

Metodologia

O professor da disciplina conduzirá atividades em sala de aula e proporá atividades extra-classe que estimulem o aluno a: analisar o enunciado de um problema algorítmico; expres- sar a sua essência de forma abstrata; organizar estruturas de controle/selecionar estruturas de dados em uma linguagem simples de forma a resolver o problema proposto; e revisar e analisar a correção e o custo de soluções. A disciplina contará com o auxílio de ferramenta computacional simples para teste de soluções. Por esse motivo, algumas aulas serão realizadas em laboratório.

Carga Horária

Teórica: 42 Prática: 18

PLANO DE ENSINO

Data de Emissão: 21/07/2016

Experiências de Aprendizagem

Além das aulas expositivas, os alunos terão oportunidade de utilizar um software ou uma linguagem de programação em laboratório para a verificação dos conteúdos apresentados em aula. Além disto haverá uma série de listas de exercícios que objetivam auxiliar no processo de aprendizagem do aluno.

Critérios de avaliação

Serão realizadas duas provas, P1 e P2. A média final (M) será calculada da seguinte forma:

M = P1 ∗ 0.4 + P2 ∗ 0.5 + 0.1 * E

onde E corresponde à avaliação de listas de exercícios a serem realizadas pelos alunos como atividades autônomas. Cada lista é avaliada individualmente e o valor E representa a média de aproveitamento do aluno na realização destas tarefas.

A conversão da média para conceitos será realizada como descrito a seguir:

Faltas > 25% : FF (reprovado)

0 <= M < 6.0 : sem conceito (recuperação) ou D - ver Ativ. de recuperação previstas

6.0<= M < 7.5 : C (aprovado) 7.5 <= M < 9.0 : B (aprovado) 9.0 <= M : A (aprovado)

Obs: Somente serão calculadas as médias gerais daqueles alunos que tiverem obtido, ao longo do semestre, um índice de freqüência às aulas igual ou superior a 75% das aulas previstas. Aos que não satisfizerem este requisito, será atribuído o conceito FF (Falta de Freqüência)

Atividades de Recuperação Previstas

Para poder realizar a prova de recuperação, o aluno deve ter um índice de frequência de no mínimo 75% das aulas.. Os que não se enquadrarem nesta situação terão conceito FF.

A recuperação versará sobre toda a matéria da disciplina. Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de, no mínimo, 60% da prova. A estes será atribuído o conceitos C. Aos demais, será atribuído o conceito D.

Não há recuperação das provas P1 e P2 e nem dos exercícios por não comparecimento/entrega, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto, etc.), sendo necessária a devida comprovação.

Bibliografia

Básica Essencial

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi. How to Design Programs. The MIT Press., 2001. Disponível em: www.htdporg

Básica

Sem bibliografias acrescentadas

Complementar

Cormen et alli. Introduction to Algorithms. The MIT Press, 2001. ISBN 0262032937.

David Harel. Algorithmics - The Spirit of Computing. Addison-Wesley, 1998. ISBN 0201504014.

David Harel. Computers LTD. What they really can't do. Oxford University Press, 2002. ISBN 0198505558.

Outras Referências

Não existem outras referências para este plano de ensino.

Observações

- As 60 horas previstas para atividades teóricas e práticas indicadas neste Plano de Ensino incluem 30 encontros de 100 minutos de duração (2 períodos de 50 minutos por encontro, 2 encontros por semana, durante 15 semanas), num total de 3.000 minutos.
- Estão previstas Atividades Autônomas do Aluno, realizadas sem contato direto com o professor, com uma carga horária de 10 (dez) horas, totalizando 600 minutos, a serem desenvolvidas ao longo do semestre. As atividades previstas incluem a realização de trabalhos práticos extra-classe a serem entregues/apresentados e avaliados.
- O Professor poderá se valer de aulas presenciais ou à distância (utilização de recursos da EAD).
- A Disciplina poderá contar com o apoio de Professores Assistentes (Alunos de Pós-Graduação) em Atividades Didáticas.