Algorithms Final Cheat Sheet

RandomizedAlgorithms

Max Flows and Min Cuts

Blind Guess

```
1: function GUESSMINCUT(G)
2: for i \leftarrow n, 2 do
3: pick a random edge e in G
4: G \leftarrow G/e
5: end for
6: return the only cut in G
7: end function
P(n) = \frac{2}{n(n-1)}
```

Repeated Guessing

```
1: function KargerMinCut(G)
        mink \leftarrow \infty
 3:
        for i \leftarrow 1. N do
 4:
            X \leftarrow \text{GuessMinCut}(G)
            if |X| < mink then
 5:
                mink \leftarrow |X|
 6:
                minX \leftarrow X
 7:
            end if
 8:
        end for
 9:
        return minX
11: end function
```

Set $N=c\binom{n}{2}\ln n$ for some constant c. $P(n)\geq 1-\frac{1}{n^c}.$ KargerMinCut computes the min cut of any n-node graph with high probability in $O(n^4\log n)$ time.

Not-So-Blindly Guessing

```
1: function Contract(G, m)

2: for i \leftarrow n, m do

3: pick a random edge e in G

4: G \leftarrow G/e

5: end for

6: end function

7: function BetterGuess(G)

8: if G has more than 8 vertices then

9: G_1 \leftarrow \text{Contract}(G, n/\sqrt{2} + 1)
```


 $P(n) \ge 1/\log n$. The running time is $O(n^2 \log n)$.

Flows

A flow is a function f that satisfies the conservation constraint at every vertex v: the total flow into v is equal to the total flow out of v.

A flow f is *feasible* if $f(e) \le c(e)$ for each edge e. A flow *saturates* edge e if f(e) = f(c), and *avoids* edge e if f(e) = 0.

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Cuts

A cut is a partition of the vertices into disjoint subsets S and T - meaning $S \cup T = V$ and $S \cap T = \emptyset$ - where $s \in S$ and $t \in T.$

If we have a capacity function c, the capacity of a cut is the sum of the capacities of the edges that start in S and end in T. The definition is asymmetric; edges that start in T and end in S are unimportant. The min-cut problem is to compute a cut whose capacity is as large as possible.

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Theorem 1 (Maxflow Mincut Theorem) In any flow network, the value of the maximum flow is equal to the capacity of the minimum cut.

Residual Capacity

$$c_f(u \to v) = \begin{cases} c(u \to v) - f(u \to v) & \text{if } u \to v \in E \\ f(v \to u) & \text{if } v \to u \in E \\ 0 & \text{otherwise} \end{cases}$$

A flow f in a weighted graph G and the corresponding residual graph G_f .

Augmenting Paths

Suppose there is a path $s=v_0\to v_1\to\cdots\to v_r$ in the residual graph G_f . This is an augmenting path. Let $F=\min_i c_f(v_i\to v_{i+1})$ denote the maximum amount of flow that we can push through the augmenting path in G_f . We can augment the flow into a new flow function f':

$$f'(u \to v) = \begin{cases} f(u \to v) + F & \text{if } u \to v \in s \\ f(u \to v) - F & \text{if } v \to u \in s \\ f(u \to v) & \text{otherwise} \end{cases}$$

Ford-Fulkerson

Starting with the zero flow, repeatedly augment the flow along any path from s to t in the residual graph, until there is no such path.

Further Work

The fastest known maximum flow algorithm, announced by James Orlin in 2012, runs in ${\cal O}(VE)$ time.

Flow/Cut Applications

Edge-Disjoint Paths

A set of paths in G is edge-disjoint if each edge in G appears in at most one of the paths; several edge-disjoint paths may pass through the same vertex, however. Assign each edge capacity 1. The number of edge-disjoint paths is exactly equal to the value of the flow. Using Orlin's algorithm is overkill; the the maximum flow has value at most V-1, so Ford-Fulkerson's original augmenting path algorithm also runs in $O(|f^*|E) = O(VE)$ time.

Vertex Capacities and Vertex-Disjoint Paths

If we require the total flow into (and out of) any vertex v other than s and t is at most some value c(v), we transform the input into a new graph. We replace each vertex v with two vertices v_{in} and v_{out} , connected by an edge $v_{in} \rightarrow v_{out}$ with capacity c(v), and then replace every directed edge $u \rightarrow v$ with the edge $u_{out} \rightarrow v_{in}$ (keeping the same capacity).

Computing the maximum number of vertex-disjoint paths from s to t in any directed graph simply involves giving every vertex capacity 1, and computing a maximum flow. SATandCNFSAT

NP-Hardness

Definition 2 P is the set of decision problems that can be solved in polynomial time. Intuitively, P is the set of problems that can be solved quickly.

Definition 3 NP is the set of decision problems with the following property: if the answer is Yes, then there is a proof of this fact that can be checked in polynomial time. Intuitively, NP is the set of decision problems where we can verify a Yes answer quickly if we have the solution in front of us.

Definition 4 co-NP is essentially the opposite of NP. If the answer to a problem in co-NP is No, then there is a proof of this fact that can be checked in polynomial time.

Every decision problem in P is also in NP and also in co-NP.

Definition 5 A problem Π is NP-hard if a polynomial-time algorithm for Π would imply a polynomial-time algorithm for every problem in NP.

Definition 6 A problem Π is NP-complete if it is both NP-hard and an element of NP.

Theorem 7 (Cook-Levin Theorem) *Circuit satisfiability is NP-complete.*

To prove that problem A is NP-hard, reduce a known NP-hard problem to A.

Definition 8 A many-one reduction from one language $L' \subseteq \Sigma^*$ is a function $f: \Sigma^* \to \Sigma^*$ such that $x \in L'$ iff $f(x) \in L$. A language L is NP-hard iff, for any language $L' \in NP$, there is a many-one reduction from L' to L that can be computed in polynomial time.

NP-Hard Problems

- SAT
- 3SAT
- Maximum Independent Set: find the size of the largest subset of the vertices of a graph with no edges between them
- Clique: Compute the number of nodes in its largest complete subgraph
- Vertex Cover: Smallest set of vertices that touch every edge in the graph
- Graph Coloring: Find the smallest possible number of colors in a legal coloring such that every edge has two different colors at its endpoints
- Hamiltonian Cycle: find a cycle that visits each vertex in a graph exactly once
- Subset Sum: Given a set X of positive integers and an integer t, determine whether X has a subset whose elements sum to t
- Planar Circuit SAT: Given a boolean circuit that can be embedded in the plane so that no two wires

- cross, is there an input that makes the circuit output True
- Not All Equal 3SAT: Given a 3CNF formula, is there an assignment of values to the variables so that every clause contains at least one True literal and at least one False literal?
- Exact 3-Dimensional Matching: Given a set S and a collection of three-element subsets of S, called *triples*, is there a sub-collection of disjoint triples that exactly cover S?
- Partition: Given a set S of n integers, are there subsets A and B such that $A \cup B = S$, $A \cap B = \emptyset$, and $\sum_{a \in A} a = \sum_{b \in B} b$?
 3Partition: Given a set S of 3n integers, can it be
- 3Partition: Given a set S of 3n integers, can it be partitioned into n disjoint three-element subsets, such that every subset has exactly the same sum?
- Set Cover: Given a collection of sets $\mathbb{S} = \{S_1, S_2, \dots, S_m\}, \text{ find the smallest sub-collection of } S_i\text{'s that contains all the elements of } \bigcup_i S_i$
- Hitting Set: Given a collection of sets $S = \{S_1, S_2, \dots, S_m\}$, find the minimum number of elements of $\bigcup_i S_i$ that hit every set in S
- Hamiltonian Path: Given a graph G, is there a path in G that visits every vertex exactly once?
- Longest Path: Given a non-negatively weighted graph G and two vertices u and v, what is the longest simple path from u to v in the graph? A path is simple if it visits each vertex at most once.
- Steiner Tree: Given a weighted, undirected graph G with some of the vertices marked, what is the minimum-weight subtree of G that contains every marked vertex?