VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Machine Learning (23CS6PCMAL)

Submitted by

Anup Vaidya(1BM22CS047)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by Anup Vaidya(1BM22CS047), who is Bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of a Machine Learning (23CS6PCMAL) work prescribed for the said degree.

Lab I	Facul	lty]	[nc]	harge
-------	--------------	-------	------	-------

Name: **Ms. Saritha A N** Assistant Professor

Department of CSE, BMSCE

Dr. Kavitha Sooda Professor & HOD

Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	21-2-2025	Write a python program to import and export data using Pandas library functions	4
2	3-3-2025	Demonstrate various data pre-processing techniques for a given dataset	6
3	10-3-2025	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	10
4	17-3-2025	Build Logistic Regression Model for a given dataset	13
5	24-3-2025	Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample	15
6	7-4-2025	Build KNN Classification model for a given dataset	20
7	21-4-2025	Build Support vector machine model for a given dataset	24
8	5-5-2025	Implement Random forest ensemble method on a given dataset	28
9	5-5-2025	Implement Boosting ensemble method on a given dataset	30
10	12-5-2025	Build k-Means algorithm to cluster a set of data stored in a .CSV file	33
11	12-5-2025	Implement Dimensionality reduction using Principal Component Analysis (PCA) method	34

<u>Link:https://github.com/AVaidy04/6thSem-ML-Lab</u> Program 1

Write a python program to import and export data using Panda's library functions

Screenshot

Note: 1 I
Page
import pandas an pot sales
the solid trained trained
importo pandas das
df1 = pd. read csr ('housig - csr')
Categosirat columns in Charges and:
alfest tolumns " 2000" and ") we it
Incluse [longitude, latitude housing - median-age
total - rooms 1 total bedreen 5 dtupe
(phicef!)
df1. durite () topic = apple (1) xxx 2
df1 duaibe () topido squito () ast
logagitude latitude housing-median total toom total-bedroom
count 20640 20640 20640 2043
Manufas ((2 radmon)
(a togetal - m).
population households median income median hour
30640 20640 20640 20640
"native- ounted "income 1], other "object")
cn+ = len (olf 1. Ocean - proximity. Unique ())
print (cnt)
e form
3
print (dti · columns [dti · null () · any ())) Index (['total - bedrooms'], altype = 'object')
Index (l'total - bedroom), oltype = 'object 1)
dfo = nd > 1 eliterate
off2 = pd. read-usu (Idiabetu · Usu)
print (df2. columns [df2. isnu (1. any (1])
Indu (C), doype = 'object')
The object

Code:

```
import pandas as pd

try:
    df = pd.read_csv('input.csv')
    print("Data imported successfully!\n")
    print(df)

except FileNotFoundError:
    print("The file 'input.csv' was not found.")

df["Processed"] = True

df.to_csv('output.csv', index=False)

print("\nData exported successfully to 'output.csv'.")
```

Demonstrate various data pre-processing techniques for a given dataset

Screenshots:

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder, StandardScaler, MinMaxScaler

```
data = {
```

'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', None],

'Age': [25, 30, np.nan, 35, 29, 40],

```
'Department': ['HR', 'IT', 'Finance', 'IT', 'HR', 'Finance'],
  'Salary': [50000, 60000, 58000, 62000, np.nan, 52000]
}
df = pd.DataFrame(data)
print("Original DataFrame:\n", df)
df['Age'].fillna(df['Age'].mean(), inplace=True)
df['Salary'].fillna(df['Salary'].median(), inplace=True)
df['Name'].fillna('Unknown', inplace=True)
le = LabelEncoder()
df['Department_Encoded'] = le.fit_transform(df['Department'])
df.drop_duplicates(inplace=True)
df.rename(columns={'Salary': 'Monthly_Salary'}, inplace=True)
df['Age'] = df['Age'].astype(int)
scaler = MinMaxScaler()
df['Salary_Normalized'] = scaler.fit_transform(df[['Monthly_Salary']])
standard_scaler = StandardScaler()
```

 $df['Age_Standardized'] = standard_scaler.fit_transform(df[['Age']])$

print("\nPreprocessed DataFrame:\n", df)

Implement Linear and Multi-Linear Regression algorithm using appropriate dataset

Screenshots
Date_ / (
Date Pope
dinear Regunion
import pondos as pd
hem & Klean lines made
dinear Regunion import pandos as pod import nump as up from 5 Klean linear - model import linear Regunior
dt = pd. read es y (' 1000 companies · (4 v')
de - encoded = pd. got - dummin (de, columnis ['State],
x = ds-encoded drop (Profit 'axis="columni") y = ds-encoded [Profit]
"def predict-profit (Ynd-spend, admin-spend, masketing-spend, State): input - data = fcol:0 for col for x columns y
Tapu: date [] = Tada spind
if state - col in input - dato!
input - data [Blak wil]:
in put - dt = pd. Data Frome ([input -data])
return Predicted Profit & predicted prof
print (predict-profit (9164 0:48, 11931-24,
Output:
The second of th

Linear Regression

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split

```
from sklearn.metrics import mean_squared_error, r2_score
```

```
# Load dataset
boston = load_boston()
df = pd.DataFrame(boston.data, columns=boston.feature_names)
df['PRICE'] = boston.target

# Use only one feature for simple linear regression (e.g., RM = average number of rooms)
X = df[['RM']]
y = df['PRICE']

# Split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

# Train model
lr = LinearRegression()
lr.fit(X_train, y_train)
```

```
# Predict
y_pred = lr.predict(X_test)
# Output
print("Linear Regression Results")
print("Coefficients:", lr.coef_)
print("Intercept:", lr.intercept_)
print("MSE:", mean_squared_error(y_test, y_pred))
print("R2 Score:", r2_score(y_test, y_pred))
# Plot
plt.scatter(X_test, y_test, color='blue')
plt.plot(X_test, y_pred, color='red')
plt.xlabel('Average Number of Rooms (RM)')
plt.ylabel('House Price')
plt.title('Simple Linear Regression')
plt.show()
# Multiple Linear Regression
# Use all features
X = df.drop('PRICE', axis=1)
y = df['PRICE']
# Split dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
# Train model
mlr = LinearRegression()
mlr.fit(X_train, y_train)
# Predict
y_pred = mlr.predict(X_test)
# Output
print("\nMultiple Linear Regression Results")
print("Coefficients:", mlr.coef_)
print("Intercept:", mlr.intercept_)
print("MSE:", mean_squared_error(y_test, y_pred))
print("R2 Score:", r2_score(y_test, y_pred))
```

Screenshot's

	Lab-5	Dute 11	
	Logisticis Regression import numpy as np class Logistics Regression dif intt (Millianning-pate = 0.01, Nelly learning natt = learning-pate Ally num-ite=num-ite	My wights == My harring pate to my bias = My harring pate to be with the mount of t	× × al
)+	My weights = None	ruturn np. an ay Cy-p-cy)	Jr → 00
any+12	del sigmoire (Mb, 2): Settern (Mithy off 6-2)	ij_ name_=== " main_":	→ Te -> N Pn
	n_samples, n_features= x_chape nuf-wights = np. zeros (n_feature) llf-bial=)	x=np-array([1,2], [2,3], [3,+],[5,6]) y=np-array([0,0,1,1])	1 F
	linear model = np dot (x), my light	model = Logistic Regunione)	
	y-producted = My sig most (linear- module)	y-pred = moll perint(x)	2. 51
	dw= (1/n-samples) * np.dot (x.T,	print ("Predictions:", y-prod) autput: [0111]	4 6
	db=(1/n-samples)+npsum(y-predicted-y))	Louis an a Course of the do	S. pr
-	1		t

Code

import pandas as pd

from sklearn.datasets import load_iris

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, accuracy_score, classification_report

iris = load_iris()

df = pd.DataFrame(iris.data, columns=iris.feature_names)

df['species'] = iris.target

```
df_binary = df[df['species'] != 2] # Remove class 2 (Virginica)
X = df_binary.iloc[:, :-1] # Features
y = df_binary['species']
                          # Target (0 or 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
# Step 5: Predict and evaluate
y_pred = model.predict(X_test)
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nAccuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
```

Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample

Screenshots

— + 110% [] Fit * Give	Feedback to Microsoft
	DatePage
	de for Daisson Trees
imf imf	sklan reting accuracy - Sure
	t = pd. read.uv() = elf deep ("spuru", axis = 1) 1 = df [speciu"]
X- tr	ain - X trut 14 tran 4 trut
d	f claufin = Decision Tree (Clarified) f-classifing (to (x-hair, y-train)
y-	prid = dt. danifict puedict (x-hat) censacy = accuracy, come (y-hat, y-prid) conf matrix = conf matrix (y-hat, y-prid)
P	sint (" acuracy core", accuracy)
Ine	
	out mat i lo o
	0 0 1)
	0 13

Code

import pandas as pd

```
fromsklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
data= {
  'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast',
         'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'],
  'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Cool',
            'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'],
  'Humidity': ['High', 'High', 'High', 'Normal', 'Normal', 'Normal',
          'High', 'Normal', 'Normal', 'High', 'Normal', 'High'],
   'Wind': ['Weak', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong',
       'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Strong'],
  'PlayTennis': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes',
           'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
}
df=pd.DataFrame(data)
le = LabelEncoder()
for column in df.columns:
  df[column] = le.fit_transform(df[column])
#Step 3: Separate features and label
X = df.drop('PlayTennis', axis=1)
y = df['PlayTennis']
clf = DecisionTreeClassifier(criterion='entropy') # ID3 uses 'entropy'
```

```
clf = clf.fit(X, y)
print("\nDecision Tree Rules:")
tree_text =tree.export_text(clf, feature_names=X.columns.tolist())
print(tree_text)
#Example: Outlook=Rain, Temperature=Mild, Humidity=High, Wind=Weak
# Encode input sample with same label encoding order used earlier
sample = pd.DataFrame({
  'Outlook': [le.transform(['Rain'])[0]],
  Temperature': [le.transform(['Mild'])[0]],
  'Humidity': [le.transform(['High'])[0]],
  'Wind': [le.transform(['Weak'])[0]]
})
# Predict
prediction = clf.predict(sample)
result = 'Yes' if prediction[0] == 1 else 'No'
print(f"\nPrediction for new sample (Rain, Mild, High, Weak): {result}")
```

Program 6 Build KNN Classification model for a given dataset

		A Laboret	Jabs .		Date
	KNN	}-	ALCO DE LA	3 3 3	rm I
lu	Person	Age	0.		1 1 1 1
	A	18	Salaryk	Loigh	distance
	В	23	55	N.	52.8
	c	24	70	N	41.57
	D	241		N	31.95
	ϵ	43	60	4	40.44
-	F	38	70	4	31.04
	X	35	100	y	60.0
-	,		100	N 1 10	VON -
	(X = 30	5,100)	7 7	- 1	47467
				3	
-	K=3	43			
	Di	st Rai	ak T	100	and hair to
	31		nk Target		
		1.95 2	N	-	3035
		2.44 3	Y		23/10/20
					- We at
		X (35	(02) -		
		1.(00)	100) target	will bu	Y
					Distitu
60.	de!				
ir	nput m	ndal ap	d	1200	
1	, 1	-0,000	0.0		Parket Market Ma
1	CVA -CI	court 110	all - scheckion	rimpa	train teel Jp
-	om sk	clean -n	retire impor	+ nices	ory Scora, confu
mal	й×		1 3.6		1 , and
0	2F = 5	0 ~ 1 .	1.		
	P	d. Yead .cs	1115	1	M reals
X,	y = a	P-dock	1. df ["speci	ia"	
	ash XI	11- 41 6- 2	Tukit = 1	ala Terra	calif (xx h
X- to					
X-H	411. 41	AT 9 WOIN	your = to	JIN- (G)	The Carry

	989
	Date
• • •	km = kNoghbas Clanific (a hughor = 5) km (+ (x - ton , y train) y pred = semperalist (x - tut) print (" accuracy - size & accuracy - size (y tut , ypical)
	point (" accuracy - size & accuracy - size (4)
3	point (" conf makis" confusion matis (yeld), y-pled b point (" Classify Repo" dan 1)
FO	T. I Dalaut
	(ax) met - 10 0 0 0
	danfication precision reall frame Suppl
	Attac valicefor , and a second
	Vesquica 1
	Diabetu Dataset
1	acanacy xiae : 0.701
-	conf mat = 8 & D
	don Ripo
* 4.	predicion realt Support
	1 0.58 2.20 0.86 84

import pandas as pd

 $from sklearn. datasets\ import\ load_iris$

 $from sklearn.model_selection\ import\ train_test_split$

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.metrics import accuracy_score, classification_report, confusion_matrix

#Step 1: Load the Iris dataset

iris = load_iris()

X = pd.DataFrame(iris.data, columns=iris.feature_names)

```
y = pd.Series(iris.target)
    # Step 2: Split the data (80% training, 20% testing)
    X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)
    \# Step 3: Build KNN model(k=3)
    knn=KNeighborsClassifier(n_neighbors=3)
    knn.fit(X_train, y_train)
    #Step 4: Predict and evaluate
    y_pred = knn.predict(X_test)
    #Results
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
    print("\nClassification Report:\n", classification_report(y_test, y_pred))
print("Accuracy Score:", accuracy_score(y_test, y_pred))
```

Build Support vector machine model for a given dataset

Screenshots

Date Poge
Jab 7:
Draw an optimal hypuplane using linear sum to
Points.
{ (1,1), (2,1), (1,-1), (2,-1) } - +ve labelted
h (no), (5,1), (5,7), (6,0) y ve labelled
3
2
-5 -4 -3 -2 -1 0 0 0
-3
1
$5_1 - \begin{bmatrix} 27 \\ 1 \end{bmatrix} $ $5_2 - \begin{bmatrix} 2 \\ -1 \end{bmatrix} $ $5_1 - \begin{bmatrix} 47 \\ 0 \end{bmatrix}$
63 = 47
$S_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} S_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} S_3 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$
α, δι δι κ3 + α2 52 β; + α3 13 1; = +1 α, δι κ3 + α2 52 β; + α3 12 5; = -1
X18/2 + 8 L 12/2 + 02 4 4 - 1
a, bi b3 + x252 8; + x310 2
3121, = -1
x1 (6) + x(4) + x3(9) = +1 x1 = 13/4
$\chi_1(4) + \chi_2(6) + \chi_3(6) = +1 \qquad \chi_2 = 13/9$
$\alpha_1(4) + \alpha_2(9) + \alpha_3(13) = -1 \qquad \alpha_3 = -7/3$
W= 1, 6, + x282 1 d st3
- 13/2 (2) + 13/4 (2) + 7/2 (4) = 1-17=-11
STATE OF SECULIAR SECTION OF THE SECULIAR SECULI

```
import pandas as pd

fromsklearn.datasets import load_iris

fromsklearn.model_selection import train_test_split

from sklearn.svm import SVC

fromsklearn.metrics import confusion_matrix, classification_report, accuracy_score

#Step 1: Load the Iris dataset

iris = load_iris()

X = pd.DataFrame(iris.data, columns=iris.feature_names)

y = pd.Series(iris.target)

#Step 2: Split the data into train and test sets (80% train, 20% test)
```

```
X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

#Step 3: Build and train the SVM model(linear kernel)

svm_model = SVC(kernel='linear')

svm_model.fit(X_train, y_train)

# Step 4: Predict and evaluate

y_pred = svm_model.predict(X_test)

# Output results

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

print("\nClassification Report:\n", classification_report(y_test, y_pred))

print("Accuracy Score:", accuracy_score(y_test, y_pred))
```

Implement Random Forest ensemble method on a given dataset

Screenshots

Date Page
Parameter of Random Fores March
n - commander of free :
- max-dipt - in microsing guality of split
min sample split min sample of to split sel
I/- + +
J/p: Training dataset
Randomly solict sandy - the x
Randomly select samples with replacement
sport chows subject of lecture
, opus
import pander as pd from skuller ensemble import Random Forust classify iris = pd. m. e
from skills ensemble import Randon Forms
classip and the mattern forms
x = iris (r. cov (ins cov)
iris = pa. nad - ct v (inis · csv ·) n = iris ([sys len (, 'sup wild 1 ;]) y = iris (species ·) n train y his t y train y hist train to st - split (x, y)
K train what retrains
(x, y)
y-pred-default = 1 stant as till till
a curary disort- acuracy
y-pred-default - of defaut pudict [x hst] accuracy default - accuracy some (y-het,
print (accuracy default : Let)
for h to Whomas
Random lover (n. utimotre
-n, random-stake = 42) at lit (x-main
= n, random - skek = 42) of fit (u-train,
y-prod = it, predict (x-kst)
sure = a church: sere (4 km; y = 1)
scre apportd (scre) , topod)
sure = a couragy. Sure (y hat ; yapra d) sure : opport (scre).

```
import pandas as pd
fromsklearn.datasets import load_iris
fromsklearn.model_selection import train_test_split
fromsklearn.ensemble import RandomForestClassifier
fromsklearn.metrics import classification_report, confusion_matrix, accuracy_score
#Step 1: Load Iris dataset
iris = load_iris()
X = pd.DataFrame(iris.data, columns=iris.feature_names)
y = pd.Series(iris.target)
```

```
#Step 2: Split into train and test sets (80% train, 20% test)

X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.2, random_state=42)

#Step 3: TrainRandomForest model

rf=RandomForestClassifier(n_estimators=100, random_state=42) #100 trees

rf.fit(X_train, y_train)

#Step 4: Predict and evaluate

y_pred = rf.predict(X_test)

print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

print("\nClassification Report:\n", classification_report(y_test, y_pred))

print("Accuracy Score:", accuracy_score(y_test, y_pred))
```

Implement Boosting ensemble method on a given dataset

Screenshots

	D P	page
	Lab 9	
	Boostry:	
1	combine Multiple weak learness to create a strong herry of work	5
	by training models requesting	
	by pressions one.	I
	,	
8 10 61	Paro Algorithm	
12	Start with equal with for all training	
ž,	train a weak model.	
33	cot ever y update sample uti	
2	Add weak model to entemble	
1	Repeat of nestimage	
	Final pudiction	
	7 7 7 7 7 7	

import pandas as pd

fromsklearn.datasets import load_iris

fromsklearn.model_selection import train_test_split

 $from sklearn. ensemble\ import\ Ada Boost Classifier$

fromsklearn.metrics import classification_report, confusion_matrix, accuracy_score

fromsklearn.tree import DecisionTreeClassifier

#Step 1: Load the Iris dataset

iris = load_iris()

```
X=pd.DataFrame(iris.data, columns=iris.feature names)
y = pd.Series(iris.target)
# Step 2: Split into train and test sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 3: Build AdaBoost modelwith DecisionTreeClassifier as base estimator
base_estimator = DecisionTreeClassifier(max_depth=1)
model= AdaBoostClassifier(base_estimator=base_estimator, n_estimators=50, learning_rate=1.0,
random state=42)
model.fit(X_train, y_train)
# Step 5: Predict and evaluate
y_pred = model.predict(X_test)
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
print("Accuracy Score:", accuracy_score(y_test, y_pred))
```

Build k-Means algorithm to cluster a set of data stored in a .CSV file

Screenshots

All Towns	140
	4008
Dorte/ Page	
Lab-10 KMeans	
1) Wik K-means algo	
17 chase no of cluster K	
25 initioning to centraly	en Kaid:
4. Recompute controls of the man	1
10000	
changing.	**************************************
* Use elbow nethers	6
true diff value of K & Cale	Male
SSE VK	
n - cluster i no or all	
n - cluster : no of cluster inition that method n-init = no of times a	Orz of
will run b	70
max ikx max ituation py vun f	ol
Marie Copyringine	,
Sen M. othan	

```
import pandas as pd

fromsklearn.cluster import KMeans

import matplotlib.pyplot as plt

fromsklearn.preprocessing import StandardScaler

#Step 1: Load dataset from CSV

df=pd.read_csv('your_dataset.csv') #Replace with your file path

#Optional: View first few rows

print("Data Preview:\n", df.head())
```

```
# Step 2: Select relevant numeric columns for clustering
#You can specify specific columns like: df[['column1', 'column2']]
X = df.select_dtypes(include='number')
#Step 3: Scale thedata(important for K-Means)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Step 4: Apply K-Means clustering (e.g., 3 clusters)
kmeans = KMeans(n_clusters=3, random_state=42)
df['Cluster'] = kmeans.fit_predict(X_scaled)
#Step 5: Print cluster centers
print("Cluster Centers:\n", kmeans.cluster_centers_)
#Optional Step 6: Visualize(works well for 2D or PCA-reduced data)
if X.shape[1] >= 2:
  plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=df['Cluster'], cmap='viridis')
  plt.title("K-Means Clustering")
  plt.xlabel("Feature 1")
  plt.ylabel("Feature 2")
  plt.show(
```

Program 11
A AVGAMA AA
Implement Dimensionality reduction using Principal Component Analysis (PCA) method
Screenshots

Date Poge
Lab Ip ; PCB
a Calculate Mean
a Calculate coveriance morris
Computation of eigen vectors unit eigen well-
Geometric meany of let principle compount
Ex 1 Ex 2 Par Ex 6
11 4 13 13
71 4 5 5 14
Calculate mean
X1 = 1/4 (47 1+18 ~ mg
XI = 1/2 (11+4,5+14) -5.5
COV (x, x) = 1/2 = (x2/2-x2) =
= 1/3 ((14-8) = (n-8)2 1-(8-8)2 (4-8-5)= (5-8-6) + (3-5) (4 y
5-11 1 - A 1 - WANT
0 = ((v. v.)
8 = ((OV (N. N.L.) OV ('N. N.L.)] (COV (N. N.L.) COV (N. N.L.)
5 - 5 - 4 - 4 3
Eigen Velue = 14-2 -1 1 23-2
-11 23-1
J. A.

import pandas as pd

from sklearn.datasets import load_iris

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA import matplotlib.pyplot as plt

Step 1: Load the Iris dataset

iris = load_iris()

X = iris.data

```
y = iris.target
   feature names = iris.feature names
   # Step 2: Standardize the data
   scaler = StandardScaler()
   X_scaled = scaler.fit_transform(X)
   # Step 3: Apply PCA (reduce to 2 components for visualization)
   pca = PCA(n_components=2)
   X_pca = pca.fit_transform(X_scaled)
   # Step 4: Plot the 2D PCA result
   plt.figure(figsize=(8, 6))
   scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', edgecolor='k', s=60)
   plt.xlabel("Principal Component 1")
   plt.ylabel("Principal Component 2")
   plt.title("PCA - Iris Dataset")
   plt.legend(handles=scatter.legend_elements()[0], labels=iris.target_names)
   plt.grid(True)
   plt.show()
   # Explained variance
print("Explained variance ratio:", pca.explained_variance_ratio_)
```