МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 3.2.6 "Изучение гальванометра"

> Выполнил: Студент гр. Б01-305 Миннахметов Артур

1 Введение

1.1 Теоретические сведения

Цель работы: изучение работы высокочувствительного зеркального галь ванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

Баллистическим гальванометром называют электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чув ствительностью к току и сравнительно большим периодом колебаний подвижной системы (рамки).

Главной частью баллистического гальванометра является подвешенная на вертикальной нити рамка, помещённая в поле постоянного магнита. Вырез цилиндрической формы в по люсах магнита и ферромагнитный цилиндр на оси системы делают поле в зазоре радиальным (рис. 1). Скреплённое с рамкой зеркаль це служит для измерения угла поворота рамки. К рамке прикреплён полый цилиндр, который сильно увеличивает момент инерции и, следовательно, период колебаний подвижной

Рис. 1: Рамки с током в магнитном поле

системы, не очень её утяжеляя. Магнит и по движная система заключены в защитный кожух. В баллистических гальванометрах применяют сильные постоянные магниты и рамки с большим количеством витков, подвешенные на тонких нитях с малой упругостью.

Уравение колебаний рамки в магнитном поле:

$$\ddot{\varphi}+2\gamma\dot{\varphi}+\omega_0^2\varphi=KI, \eqno(1)$$
 где $2\gamma=\frac{(BSN)^2}{JR_\Sigma},\,\omega_0^2=\frac{D}{J},\,K=\frac{BSN}{J}.$

1.2 Определение динамической постоянной гальванометра

Схема для исследования гальванометра в стационарном режиме представлена на рис. 2. Постоянное напряжение U снимается с блока питания и измеряется вольтметром V. Ключ K_3 позволяет менять на правление тока через гальванометр Γ , делитель напряжения — менять величину тока в широких пределах. Ключ K_2 служит для включения гальванометра, кнопка K_1 — для его успокоения. Магазин сопротивле ний R позволяет менять режим работы гальванометра от колебательного до апериодического.

Если в схеме на рис. 2 будет протекать постоянный ток, то в (1) динамическую постоянную для гальванометра, используя угол поворота, можно определить формулой

$$C_1 = \frac{I}{C} = \frac{2aI}{x},\tag{2}$$

где a – расстояние между гальванометром и линейкой, x – отклонение зайчика.

Рис. 2: Схема установки для работы гальванометра в стационарном режиме

1.3 Определение критического сопротивления гальванометра

При затухающих колебаниях вводится логарифмический де4кремент затухания:

$$\Theta = \gamma T_1 = \ln \frac{x_n}{x_{n+1}}. (3)$$

В таком случае можно опрделить критическое сопротивление по формуле:

$$R_{\rm kp} = \frac{R + R_0}{\sqrt{\left(\frac{2\pi}{\Theta}\right)^2 + 1}} - R_0 \tag{4}$$

1.4 Определение баллистической постоянной и критического сопротивления гальванометра, работающего в баллистическим режиме

Для изучения работы гальванометра в режиме измерения заряда (в баллистическом режиме), используется схема, представленная на рис. 3. Система ключей устроена так, что нормально ключ K_2 замкнут, а ключи K_3 и K_4 разомкнуты. При нажатии на кнопку K_0 сначала раз мыкается ключ K_2 , затем замыкается K_3 и через некоторое время — K_4 . При нормальном положении кнопки K_0 конденсатор C заряжается до напряжения U_C и получает заряд q:

$$U_C = \frac{R_1}{R_2} U_0, \ q = CU_C = C \frac{R_1}{R_2} U_0$$

Первый отброс зайчика φ_{max} после нажатия на кнопку K_0 зависит от сопротивления внешней цепи, подключённой к гальванометру. Для опре деления $R_{\rm kp}$ используется то обстоятельство, что в критическом режиме максимальное отклонение зайчика в e раз меньше, чем у гальванометра без затухания.

Величину максимального отклонения рамки гальванометра без затухания $\varphi_{max}^{\text{св}}$ можно, однако, рассчитать, если при разомкнутой цепи измерить реальное максимальное отклонение рамки φ_0 и логарифмический декремент затухания Θ_0 :

$$\varphi_0 = \varphi(T_1/4) = \varphi_{max}^{\text{cB}} e^{-\Theta/4},$$

так что максимальное отклонение рамки гальванометра без затухания

$$varphi_{max}^{c_{\rm B}} = \varphi_0 e^{-\Theta/4} \approx \varphi_0 \left(1 + \frac{\Theta_0}{4} \right)$$
 (5)

Рис. 3: Схема установки для определения баллистической постоянной

Баллистическая постоянная гальванометра $C_{\rm kp}$ $[\frac{{\rm K}_{\rm J}}{{\rm MM/M}}]$ определяется при критическом сопротивлении $(R=R_{\rm kp})$:

$$C_q^{\text{kp}} = \frac{q}{\varphi_{max}^{\text{kp}}} = 2a \frac{R_1}{R_2} \frac{CU_0}{x_{max}^{\text{kp}}}.$$
 (6)

2 Ход работы

2.1 Измерения

- 1. Настроен осветитель гальванометра: на шкале проявилась четкая вертикальная риска. Делитель установлен на небольшое выходное напряжение $(\frac{R_1}{R_2}=\frac{1}{2000})$, а магазин напряжений на R=50 кОм. Напряжение на источнике питания $U_0=(1,26\pm0,02)$ В.
- 2. Цепь собрана согласно рис. 2. Ключи K_2 и K_3 разомкнуты. Установка включена в сеть, ключ K_3 замкнули, через некоторое время замкнули K_2 .
- 3. Измерена зависимость отклонения зайчика x от сопротивления магазина R. Результаты представлены в таблице 1. Погрешность измерений для x будем считать одно деление шкалы, то есть $\Delta x = 0, 1$ см.

x, cm	<i>R</i> , кОм	I, нА	ΔI , нА
23	13	468	7
16,6	18	341	5
13,1	23	268	4
10,7	28	221	4
9,2	33	188	3
8,1	38	164	3
7,3	43	145	2
6,2	48	130	2
5,6	53	118	21

Таблица 1: Зависимость х(R)

4. Вернули значение к 13 кОм. Наблюдались свободные колебания. Рассмотрели 3 последовательных

колебания и посчитали период колебаний T_0 .

$$T_0 = \frac{16,1 \pm 0,3}{3}$$
 c = $(5,4 \pm 0,1)$ c

- 5. Подобраны наибольшее значение, при котором зайчик не переходит через положение равновесия при свободных коолебаниях. Этим значением оказалось $R_{\rm kp}=7200~{
 m Om}.$
- 6. Посчитаны значения логарифмического декремента затухания Θ в зависимости от сопротивления магазина R. Данные представлены в таблице 2. Формула для $\Delta\Theta$: $\Delta\Theta = \frac{\Theta \Delta x}{x_2^2} \sqrt{x_1^2 + x_2^2}$

$R/R_{\rm kp}$	x_1 , cm	x_2 , cm	Θ	$\Delta\Theta$
3	9,5	1,1	2,16	1,7
3,5	9,3	1,5	1,82	0,76
4	9,1	1,7	1,67	0,53
4,5	8,9	2	1,49	0,34
5	8,6	2,3	1,31	0,22
6	12,9	4,1	1,14	0,09
7	11,8	4	1,08	0,08
8	16,8	6,5	0,95	0,04
10	14,3	6,4	0,8	0,03

Таблица 2: Зависимость $\Theta(R)$

- 7. Собрана вторая схема. C=2 мк $\Phi,\,R_1/R_2=1/30,\,a=133$ см.
- 8. Получена зависимость $l_{\max}(R)$. Резульаты представлены в таблице 3.

l_{max} , см	R, кОм
24	∞
20,6	50
19,8	40
18,9	30
15,6	15
13,0	10
10,9	7,5
9,1	5
6,5	2,5

Таблица 3: Зависимость $l_{max}(R)$

2.2 Обратботка

9. Определен ток через гальванометр по формуле (7). Данные добалены в таблицу 1.

$$I = \frac{R_1}{R_2} \frac{U_0}{R + R_0}. (7)$$

Далее значения нанесены на график на рис. 4. Посчитан C_1 :

$$C_1 = (5, 40 \pm 0, 04) \; \frac{\text{HA}}{\text{MM/M}}.$$

10. По ниже формуле (4) посчитано критическое сопротивление. На рис. 5 изображен график зависимости $(R+R_0)\left(\sqrt{(\frac{2\pi}{\Theta})^2+1}\right)$. Результат:

$$R_{\rm kp} = (10 \pm 1) \, \, {\rm kOm}.$$

Заметим, что $R_{\rm kp}$, которое определено подбором оказалось меньше.

11. По формуле (6) расчитан $C_q^{\text{кр}}$. Так как для $R_{\text{кр}}$ измерение было проведено, то можно использовать $x_{\max}^{\text{кр}}=13$ см.

$$C_a^{\text{кр}} = (1,71 \pm 0,03) \cdot 10^{-9} \text{ K}$$
л

3 Выводы

Изучена работы высокочувствительного зеркального галь ванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда. Получены основные константы гальванометра:

$$C_1 = (5, 40 \pm 0, 04) \; rac{\mathrm{HA}}{\mathrm{MM/M}},$$
 $R_{\mathrm{KP}} = (10 \pm 1) \; \mathrm{кОм},$ $C_q^{\mathrm{KP}} = (1, 71 \pm 0, 03) \cdot 10^{-9} \; \mathrm{Kg}$

Значения $R_{\rm kp}$, полученные подбором и аналитически, отличаются. Другие измерения довольно близки к теоретическим значениям, поэтому могут считаться успешными.

Рис. 5: График $(R+R_0)\left(\sqrt{(rac{2\pi}{\Theta})^2+1}\right)$