PROBABILIDADE

Prof. Lorí Viali, Dr. viali@mat.pucrs.br
PUCRS

Porto Alegre, março de 2002

Fatorial

$$n! = n.(n - 1).(n - 2).....3.2.1$$

Obs.: (i)
$$0! = 1$$

(ii)
$$n! = n.(n-1)!$$

Princípio fundamental da contagem (princípio multiplicativo)

Suponha que se possa fazer "n" escolhas independentes com:

- $\mathbf{m_1}$ maneiras de fazer a escolha $\mathbf{1}$,
- m₂ maneiras de fazer a escolha 2,
- **m**_n maneiras de fazer a escolha **n**.

Então existem $\mathbf{m_1}.\mathbf{m_2}.....\mathbf{m_n}$ maneiras diferentes de fazer a sequência inteira de escolhas.

Princípio fundamental da contagem (princípio multiplicativo)

Exemplo:

Quantos números distintos de dois algarismos existem?

$$m_1.m_2 = 9.9 = 81$$

Permutações

Uma permutação é uma das possíveis maneiras de arranjar, ou ordenar, um conjunto de objetos.

O número de permutações de "r" objetos distintos é dado por:

$$P_r = r.(r - 1).(r - 2).....3.2.1 = r!$$

Permutações

Exemplo:

Dado o conjunto { a, b, c, d }. O número de permutações possíveis é:

$$P_4 = 4! = 4.3.2.1 = 24$$

Arranjos

O número de arranjos de "n" objetos distintos, tomados "r" a cada vez, onde $r \le n$, é dado por:

$$A(n, r) = n(n - 1)(n - 2) ... (n - r + 1)$$

O número de arranjos pode ser expresso em função do fatorial da seguinte forma:

$$A(n, r) = n! / (n - r)!$$

Arranjos

Exemplo:

De um baralho de 52 cartas, 5 são retiradas sucessivamente e sem reposição. Quantas seqüências são possíveis?

$$A(52, 5) = 52! / (52 - 5)! = 52.51.50.49.48 =$$

= 311 875 200

Arranjos

Observação:

A PERMUTAÇÃO é um caso particular do ARRANJO, quando n = r.

$$A(n, r) = n! / (n - r)! = A(n, n) =$$

$$= n! / (n - n)! = n! / 0! = n!$$

Arranjos com itens duplicados

Se "n" objetos contém n₁ que são idênticos, outros, n2 que são idênticos entre si, mas diferentes dos primeiros n₁ e assim sucessivamente, até n_k, então o número de arranjos dos "n" objetos é dado por:

$$AD = n! / (n_1!n_2! ... n_k!)$$

Arranjos com itens duplicados

Exemplo:

Quantos anagramas são possíveis com a palavra ARARA?

$$AD(5/3,2) = 5! / 3! 2! = 5.4.3.2/3.2.2 = 10$$

Arranjo completo

Se "r" elementos forem tomados de "n", onde são permitidas as repetições, isto é, o mesmo elemento pode ocorrer mais de uma vez, então o número de arranjos é dado por:

$$AC = n^r$$

Arranjo completo

Exemplo:

De um baralho de 52 cartas, 5 são retiradas sucessivamente e <u>com</u> reposição. Quantas seqüências são possíveis?

$$AC(52, 5) = 52^5 = 418 195 493$$

Combinações

O número de combinações, ou subconjuntos, de "n" objetos tomados em grupos de "r", onde $r \le n$ é dado por:

$$C(n, r) = n! / r!(n - r)!$$

Combinações

Exemplo:

Quantos são os cartões diferentes do jogo TOTO-BOLA?

$$C(n, r) = C(25, 15) = 25! / 15!(25 - 15)! =$$

= 3 268 760

RELAÇÃO ENTRE OS TRÊS PRINCIPAIS RESULTADOS:

$$\mathbf{A}(\mathbf{n}, \mathbf{r}) = \mathbf{P_r} \cdot \mathbf{C}(\mathbf{n}, \mathbf{r})$$

Pois

Pr.
$$C(n, r) = r! \cdot [n! / r!(n - r)!] =$$

= $n! / (n - r)! = A(n, r)$

Obrigado!