Supercontinents and Superplumes

in the Precambrian

November 14, 2019

Indian Institute of Science Education and Research, Kolkata

Supercontinents

A supercontinent is the assembly of most or all of Earth's cratons to form a single large landmass.

Superplumes

A mantle plume is an upwelling of abnormally hot rock within the Earth's mantle.

A superplume event is a short lived mantle plume event during which several plumes rose to the base of lithosphere.

Superplumes

A mantle plume is an upwelling of abnormally hot rock within the Earth's mantle.

A superplume event is a short lived mantle plume event during which several plumes rose to the base of lithosphere.

Short lived = less than 100 million years

Plate spreading

Superplumes increase plate tectonic activity, hence the *plate spreading* rate increases tremendously.

Sealevels

supercontinent \implies lots of old seafloor \implies low sea level

Supercontinent cycle vs sealevel

Evidence for superplume events

- · Increase in surface temperature.
- Deposition of black shale sediments with *elevated* $\delta^{13}C$ in sea water.
- · Increased production of juvenile crust.
- · Rise in sea level.

Juvenile crust

Carbon reservoirs

Pool	Quantity (gigatons)
Atmosphere	720
Biosphere	2,000
Oceans	3,840
Fossil fuels	4,130
Lithosphere	75,000,000

Supercontinent cycle vs carbon cycle

Supercontinent breakup

- Tectonic plates get subducted with lots of carbon deposits.
- Volcanism at mid-oceanic ridges releases CO₂.
- Continental rift systems also release CO₂.

Supercontinent cycle vs carbon cycle

Supercontinent breakup

- Tectonic plates get subducted with lots of carbon deposits.
- Volcanism at mid-oceanic ridges releases CO2.
- Continental rift systems also release CO₂.

Supercontinent formation

- Collision of plates destroys rocks containing carbonates.
- Surface area of the supercontinent increases, hence weathering of rocks lowers CO₂ levels.

Supercontinent cycle vs carbon cycle

Black shale

Black shale is a fine grained, sedimentary rock.

It is formed in *anoxic* and *reducing* environments.

Black shale deposits in the Precambrian

$\delta^{13}C$ in black shale

Thank you!

IMAGINE EARTH'S HISTORY AS A FOOTBALL FIELD, FROM THE PLANET'S FORMATION AT ONE END TO TODAY AT THE OTHER.

COMPLEX LIFE WOULD BE LARGELY LIMITED TO THE FINAL TEN YARDS.

DINOSAURS APPEAR AT THE FIVE-YARD LINE, THE AGE OF MAMMALS HAPPENS IN THE LAST 1/2 YARDS, AND HUMANS ARISE IN THE FINAL FEW MILLIMETERS.

ALL OF WRITTEN HISTORY WOULD FIT IN A STRIP NARROWER THAN A SINGLE HAIR.

"TWO WEEKS" WOULD BE TOO SMALL TO SEE EVEN WITH A POWERFUL MICROSCOPE.

GEOLOGISTS ALWAYS TRY THIS WHEN THEY'RE LATE TURNING SOMETHING IN.

References

Kent C. Condie, David J. Des Marais, Dallas Abbott Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? (Precambrian Research, 2000)