ALGEBRA III (DOBLE GRADO INFORMÁTICA-MATEMÁTICAS)

VILLANUEVA NUÑEZ: EJERCICIOS 2ª EVALUACIÓN (TEMAS 3,4).

Ejercicio 1. Sea $f = x^4 - 8x^2 + 9 \in \mathbb{Q}[x]$ (que es irreducible).

- (1) Probar que $\mathbb{Q}(f) = \mathbb{Q}(\sqrt{4+\sqrt{7}})$ (Indicación: Calcular las raíces de f y analizar los resultados de multiplicarlas entre sí).
- (2) Describir los elementos del grupo de Galois $G(f/\mathbb{Q})$, calcular sus órdenes, y probar que este grupo es isomorfo al grupo de Klein $K = \langle u, v \mid u^2 = 1 = v^2, uv = vu \rangle$.
- (3) Probar las igualdades

$$\begin{cases} \left(\sqrt{4+\sqrt{7}}\right)^2 - 4 = \sqrt{7}, \\ \sqrt{4+\sqrt{7}} + \sqrt{4-\sqrt{7}} = \sqrt{14}, \\ \sqrt{4+\sqrt{7}} - \sqrt{4-\sqrt{7}} = \sqrt{2}, \end{cases}$$

y usarlas para describir los siguientes subgrupos del grupo $G(\mathbb{Q}(f)/\mathbb{Q})$:

$$G(\mathbb{Q}(f)/\mathbb{Q}(\sqrt{7})), \quad G(\mathbb{Q}(f)/\mathbb{Q}(\sqrt{14})), \quad G(\mathbb{Q}(f)/\mathbb{Q}(\sqrt{2})).$$

(4) Describir el retículo de subgrupos de $G(f/\mathbb{Q})$ y, usando la conexión de Galois, el correspondiente retículo de subcuerpos de $\mathbb{Q}(f)$.

Ejercicio 2. $Sea\ z=z_{12}$.

- (1) Describir los complejos z^k , $1 \leq k \leq 12$, en la forma a+bi y representarlos geométricamente como puntos en el plano Euclídeo. Determinar Φ_{12} y una base de la extensión $\mathbb{Q}(z)/\mathbb{Q}$.
- (2) Describir el grupo $G(\mathbb{Q}(z)/\mathbb{Q})$ y el orden de sus elementos ¿Es isomorfo a algún grupo conocido? Describir su retículo de subgrupos.
- (3) Describir el retículo de subcuerpos de $\mathbb{Q}(z)$.

(1)
$$Z^{K} = e^{\frac{2\pi i \cdot K}{12}} \cdot e^{\frac{K\pi i}{6}} = \cos(\frac{K}{6}\pi) + i\sin(\frac{K}{6}\pi)$$
 $\forall 1 \le K \le 12$

$$Z^{2} = \frac{\sqrt{3}}{2} + i\frac{1}{2}$$

$$Z^{3} = i$$

$$Z^{3} = i$$

$$Z^{1} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$Z^{2} = i$$

$$Z^{10} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$Z^{5} = -\sqrt{\frac{3}{2}} + i\frac{1}{2}$$

$$Z^{6} = -1$$

$$Z^{12} = 1$$

$$2^{12} = 1$$

$$2^{12} = 1$$

 $I((2,0) = \phi_2 \Rightarrow [Q(t):0] \cdot 4 \Rightarrow B_{Q(t)_0} \neq 1,2,2^2,2^3)$

(2) $G = G(Q(t)/Q) \approx Z_{12}^{\times} = \frac{1}{2} \Lambda_{1} S_{1} T_{1} \Lambda_{1} Y \Rightarrow G(Q(t)/Q) = \frac{1}{2} G_{1}^{\times} Q(z) \rightarrow Q(z)$

Q-inmersiones tal que $\sigma_i(z) = z^i$, i = 1,5,7,11

ord(on) = 1

(3)

- (5) Observamos que $z^6=z^{-1}=\bar{z}$, el conjugado de z. Por tanto $\sigma_6:z\mapsto z^6$ es justamente la restricción del automorfismo de conjugación compleja $a+bi\mapsto a-bi$.
- (6) Es claro entonces que el número $z+\bar{z}$ queda fijo por σ_6 . Entonces $\cos^{2\pi}_{7}=\frac{1}{2}(z+\bar{z})\in\mathbb{Q}(z)^{\sigma_6}$. Como la extensión $\mathbb{Q}(z)^{\sigma_6}/\mathbb{Q}$ es de grado 3, y $\mathbb{Q}(\cos^{2\pi}_{7})/\mathbb{Q}$ es también de grado tres (ver Ejercicio 7), concluimos que

$$\mathbb{Q}(z)^{\sigma_6} = \mathbb{Q}(\cos(2\pi/7)).$$

 $\mathbb{Q}(\cos(2\pi/7))$ $\mathbb{Q}(i\sqrt{7})$ $\mathbb{Q}(i\sqrt{7})$ $\mathbb{Q}(z_7)$

Ejercicio 7. Sea n > 2 u $z = z_n$ la raíz n-ésima primitiva de la unidad

- Observando que (z + z̄) = 2 cos ^{2π}/_n, probar que z y z̄ son las raíces del polinomio x² 2 cos ^{2π}/_x x + 1 ∈ ℝ[x].
- (2) Argumentar que $\mathbb{Q}(\cos \frac{2\pi}{n}) \leq \mathbb{Q}(z)$, pero $\mathbb{Q}(\cos \frac{2\pi}{n}) \neq \mathbb{Q}(z)$.
- $(3) \ \operatorname{Probar} \ \operatorname{que} \ \operatorname{Irr}(z,\mathbb{Q}(\cos \tfrac{2\pi}{n})) = x^2 2\cos \tfrac{2\pi}{n} \, x + 1 \ y \ \operatorname{que} \ [\mathbb{Q}(z):\mathbb{Q}(\cos \tfrac{2\pi}{n})] = 2.$
- (4) Probar que $[\mathbb{Q}(\cos\frac{2\pi}{n}):\mathbb{Q}] = \varphi(n)/2$ y que el polinomio $Irr(\cos\frac{2\pi}{n},\mathbb{Q})$ es de grado $\varphi(n)/2$.

ÎNDICACIÓN DE SOLUCIÓN: (1) Puesto que $z^{-1}=\overline{z}$, tenemos las igualdades $z\overline{z}=1$ y $z+\overline{z}=2\cos(\frac{2\pi}{n})$, de donde el z y \overline{z} son las raíces raíz del polinomio $x^2-2\cos(\frac{2\pi}{n})x+1$.

- (2) $\cos(\frac{2\pi}{n})=\frac{1}{2}(z+\bar{z})=\frac{1}{2}(z+z^{n-1})\in\mathbb{Q}(z).$ Los cuerpos son distintos pues $\mathbb{Q}(\cos\frac{2\pi}{n})\leq\mathbb{R}$ y $z\notin\mathbb{R}$ al ser $n\geq3$.
- (4) Se deduce de los apartados anteriores, teniendo en cuenta la torre