PLSC 502 – Fall 2023 Linear Regression II

November 27, 2023

Inference

For the linear model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Note that we can rewrite the formula for $\hat{\beta}_1$:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i} - \sum_{i=1}^{N} (X_{i} - \bar{X})\bar{Y}}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i} - \bar{Y}\sum_{i=1}^{N} (X_{i} - \bar{X})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i} - \bar{Y}(0)}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum (X_{i} - \bar{X})Y_{i}}{\sum (X_{i} - \bar{X})^{2}}$$

Variation in $\hat{\beta}_0$ and $\hat{\beta}_1$

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables...
 - Q: Where does their variation come from?
 - A: From the *stochastic* variation in Y...
 - ...that is, from *u*.

Next question: What does the random variation in Y "look like"?

Getting To $Var(\hat{\beta}_1)$

An assumption:

$$u_i \sim \text{i.i.d. } N(0, \sigma^2)$$

Implies:

$$Var(Y|X,\beta) = \sigma^2$$

so:

$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{Var}\left[\frac{\sum_{i=1}^{N}(X_{i}-\bar{X})Y_{i}}{\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}}\right]$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\operatorname{Var}(Y)$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum(X_{i}-\bar{X})^{2}}.$$

$\mathsf{Var}(\hat{eta}_0)$ and $\mathsf{Cov}(\hat{eta}_0,\hat{eta}_1)$

Similarly:

$$Var(\hat{\beta}_0) = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2$$

and:

$$\mathsf{Cov}(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2$$

Important Things

Note that:

- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto \sigma^2$ $\hookrightarrow Var(\hat{\beta}_s)$ increases as Y gets "noisier"...
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -\sum (X_i \bar{X})$ $\hookrightarrow Var(\hat{\beta}_s)$ decreases with greater variation in X...
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -N$ $\hookrightarrow Var(\hat{\beta}_s)$ decreases as N gets larger...
- $\operatorname{sign}[\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1)] = -\operatorname{sign}(\bar{X})$
 - \hookrightarrow The sign of the covariance between $\hat{\beta}_0$ and $\hat{\beta}_1$ is the opposite of the sign of the mean of X

The Gauss-Markov Theorem

"Given the assumptions of the classical linear regression model, the least squares estimators are the minimum variance estimators among the class of unbiased linear estimators. (They are BLUE)."

Gauss-Markov, continued

Imagine:

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

Rewrite:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{N} (X_i - \bar{X})^2}.$$

k are "weights":

$$\hat{\beta}_1 = \sum k_i Y_i$$

with
$$k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$$
.

Gauss-Markov (continued)

Alternative (non-LS) estimator:

$$\tilde{\beta}_1 = \sum w_i Y_i$$

Unbiasedness requires:

$$E(\tilde{\beta}_1) = \sum_i w_i E(Y_i)$$

$$= \sum_i w_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum_i w_i + \beta_1 \sum_i w_i X_i$$

Gauss-Markov (continued)

Variance:

$$\begin{aligned} \mathsf{Var}(\tilde{\beta}_1) &= \mathsf{Var}\left(\sum w_i Y_i\right) \\ &= \sigma^2 \sum w_i^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} + \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 + \sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Gauss-Markov (continued)

Because $\sigma^2 \left[\frac{1}{\sum (X - \overline{X})^2} \right]$ is a constant, min[Var($\tilde{\beta}_1$)] minimizes

$$\sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2.$$

Minimized at:

$$w_i = \frac{X_i - X}{\sum (X_i - \bar{X})^2}.$$

implying:

$$Var(\tilde{\beta}_1) = \frac{\sigma^2}{\sum (X_i - \bar{X})^2}$$
$$= Var(\hat{\beta}_1)$$

Gauss-Markov Requirements

For the Gauss-Markov theorem to hold, it must be the case that:

- 1. E(u) = 0
- 2. Cov(X,u) = 0
- 3a. $Var(u) = \sigma^2 \forall i$
- 3b. $Cov(u_i, u_i) = 0$
- 4. $Rank(\mathbf{X}) = k$
- 5. $u \sim \text{i.i.d. } N(0, \sigma^2)$

(...don't sweat these too much for now...)

BLUE, BUE, and Linearity

BLUE vs. BUE:

- OLS has been BLUE since about 1821 (see, e.g., Plackett 1949).
- Hansen (2022): OLS is "BUE" most efficient among all unbiased estimators, linear or otherwise...
- Challenged by others; resolved by Portnoy (2022): Any unbiased estimator must be linear (so "BLUE" = "BUE").
- A pretty good nontechnical discussion of all this by Paul Allison is here.

If $u_i \sim N(0, \sigma^2)$, then:

$$\hat{eta}_0 \sim N[eta_0, \mathsf{Var}(\hat{eta}_0)]$$

and

$$\hat{\beta}_1 \sim N[\beta_1, Var(\hat{\beta}_1)]$$

Means:

$$z_{\hat{\beta}_1} = \frac{(\hat{\beta}_1 - \beta_1)}{\sqrt{\mathsf{Var}(\hat{\beta}_1)}}$$
$$= \frac{(\hat{\beta}_1 - \beta_1)}{\mathsf{s.e.}(\hat{\beta}_1)}$$
$$= \sim N(0, 1)$$

A Small Problem...

$$\sigma^2 = ???$$

Solution: use

$$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{N - k}$$

Gives:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = \frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2},$$

and

$$\widehat{\operatorname{Var}(\hat{\beta}_0)} = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \hat{\sigma}^2$$

Inference (continued)

The estimated standard error:

$$\widehat{\mathsf{s.e.}(\hat{\beta}_1)} = \sqrt{\widehat{\mathsf{Var}(\hat{\beta}_1)}}$$

$$= \sqrt{\frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2}}$$

$$= \frac{\hat{\sigma}}{\sqrt{\sum (X_i - \bar{X})^2}}$$

implies:

$$t_{\hat{\beta}_{1}} \equiv \frac{(\hat{\beta}_{1} - \beta_{1})}{\widehat{\mathsf{s.e.}}(\hat{\beta}_{1})} = \frac{(\hat{\beta}_{1} - \beta_{1})}{\sqrt{\sum (X_{i} - \bar{X})^{2}}}$$
$$= \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{\sum (X_{i} - \bar{X})^{2}}}{\hat{\sigma}}$$
$$\sim t_{N-k}$$

Note: We can derive a similar formula for s.e. $(\hat{\beta}_0)$...

Practical Inference

In practice:

- ...we test the hypothesis $\hat{\beta}_1 = k$ by
 - \cdot ...calculating $\hat{t} = \frac{\hat{eta}_1 k}{\hat{s}.e.(\hat{eta}_1)}$, then
 - · ...calculating the P-value associated with \hat{t} .
- ...we calculate $(1 \alpha) \times 100$ -percent confidence intervals around $\hat{\beta}_1$ by
 - · ...calculating the *t*-value \hat{t} associated with the $(1-\alpha) \times 100$ -percent confidence level,
 - · multiplying \hat{t} times s.e. $(\hat{\beta}_1)$ to get the width of the confidence interval, and
 - · creating the confidence interval around $\hat{\beta}_1$ according to:

$$[\hat{\beta}_1 - 1/2[\hat{t} \times \widehat{\mathsf{s.e.}}(\hat{\beta}_1)] < \hat{\beta}_1 < \hat{\beta}_1 + 1/2[\hat{t} \times \widehat{\mathsf{s.e.}}(\hat{\beta}_1)]$$

Predictions and Variance

Point prediction:

$$\hat{Y}_k = \hat{\beta}_0 + \hat{\beta}_1 X_k$$

 Y_k is unbiased:

$$\begin{split} \mathsf{E}(\hat{Y}_k) &= \mathsf{E}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \mathsf{E}(\hat{\beta}_0) + X_k \mathsf{E}(\hat{\beta}_1) \\ &= \beta_0 + \beta_1 X_k \\ &= \mathsf{E}(Y_k) \end{split}$$

Variability:

$$\begin{aligned} \operatorname{Var}(\hat{Y}_k) &= \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2 + \left[\frac{\sigma^2}{\sum (X_i - \bar{X})^2} \right] X_k^2 + 2 \left[\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2 \right] X_k \\ &= \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Variability of Predictions

$$\operatorname{Var}(\hat{Y}_k) = \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]$$

means that $Var(\hat{Y}_k)$:

- Decreases in N
- Decreases in Var(X)
- Increases in $|X \bar{X}|$

Predictions and Inference

Standard error of the prediction:

$$\widehat{\text{s.e.}(\hat{Y}_k)} = \sqrt{\sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]}$$

 \rightarrow (e.g.) confidence intervals:

95% c.i.
$$(\hat{Y}_k) = \hat{Y}_k \pm \widehat{[1.96 \times \text{s.e.}(\hat{Y}_k)]}$$

Example Redux: SCOTUS Voting, OT1946-2021

Data from the Supreme Court Database and the justices' Segal-Cover scores...

- Y is CivLibs = liberal voting percentage in civil rights & liberties cases
- X is IdeologyScore $\in [0,1] \to SCOTUS$ justice liberalism

```
> describe(SCOTUS, skew=FALSE, trim=0)
                   vars n
                              mean
                                     sd
                                            min
                                                   max range
iustice
                            97.37 11.32
                                          78.00 116.00 38.00 1.84
                      1 38
justiceName*
                      2 38
                            19.50 11.11
                                          1.00
                                                38.00 37.00 1.80
CivLibs
                      3 38
                            56.49 19.94
                                          22.36
                                                95.33 72.97 3.23
Nom Order*
                      4 38
                            19.50 11.11
                                          1.00
                                                38.00 37.00 1.80
                      5 38
                            19.50 11.11
                                                38.00 37.00 1.80
Nominee*
                                          1.00
Chief.Justice*
                      6 4 1.00 0.00
                                          1.00
                                                1.00 0.00 0.00
                    7 38 17.05 8.23
SenateVote*
                                           1.00
                                                25.00 24.00 1.33
IdeologyScore
                     8 38 0.54 0.33
                                           0.00
                                                1.00 1.00 0.05
QualificationsScore*
                    9 38 16.45 7.91
                                                25.00 24.00 1.28
                                           1.00
Nominator (Party)*
                     10 38
                            7 03 3 72
                                           1.00
                                                 13.00 12.00 0.60
Year
                     11 38 1969.74 24.70 1937.00 2018.00 81.00 4.01
```

Example Redux: SCOTUS Voting

```
> with(SCOTUS, describe(CivLibs))
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1  1 39 55.3 20.7 55.4 55.1 23.6 20 95.3 75.3 0.13 -1.03 3.31
> with(SCOTUS, describe(IdeologyScore))
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1  1 39 0.53 0.33  0.5 0.53 0.4  0  1  1 -0.06 -1.47 0.05
```

Scatterplot of SCOTUS Voting and Liberalism Scores

Example, Continued

```
> SCLib<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summary(SCLib) # regression
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median 30
                            Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.24 4.33 7.21 0.000000015 ***
IdeologyScore 45.47 6.96 6.53 0.000000121 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

Example, Continued

Standard Errors

```
> vcov(SCLib)
                 (Intercept) IdeologyScore
(Intercept)
                         18.8
                                        -25.6
IdeologyScore
                       -25.6
                                         48.5
Estimated standard errors of \hat{\beta}_0 and \hat{\beta}_1:
> sqrt(vcov(SCLib))
                 (Intercept) IdeologyScore
(Intercept)
                        4.33
                                           NaN
IdeologyScore
                          NaN
                                         6.96
Warning message:
```

In sqrt(vcov(SCLib)) : NaNs produced

Confidence Intervals

95 percent c.i.s:

99 percent c.i.s:

Predictions

```
> SEs<-predict(SCLib,interval="confidence")
> SEs
    fit lwr upr
1 71.0 64.3 77.8
2 64.2 58.8 69.6
3 61.5 56.5 66.5
4 64.4 59.0 69.9
5 76.7 68.6 84.8
<rows omitted>
36 64.4 59.0 69.9
37 36.2 28.7 43.7
38 34.4 26.5 42.4
39 41.7 35.4 48.0
```

A Plot, With Cls

Scatterplot of SCOTUS Voting and Ideology Scores, along with Least-Squares Line and 95% Prediction Confidence Intervals

Model Fit

Model Fit

Model fit is:

- The closeness of the mapping between model-based values of Y and actual values of Y...
- Can be *in-sample* or *out-of-sample* (\rightarrow "overfitting")
- Is (in part) a function of model specification (choice of predictors, functional form, interactions, etc.)
- Related (but not identical) to prediction / predictive ability

Recall that for

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

We have:

"TSS" =
$$\sum (Y_i - \bar{Y})^2$$

"MSS" = $\sum (\hat{Y}_i - \bar{Y})^2$

"RSS" = $\sum (Y_i - \hat{Y}_i)^2 \equiv \sum \hat{u}_i^2$

Then:

$$R^{2} = \frac{\sum (\hat{Y}_{i} - \bar{Y})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

$$= \frac{MSS}{TSS}$$

$$= 1 - \frac{RSS}{TSS}$$

$$= 1 - \frac{\sum \hat{u}_{i}^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

R-squared:

- is "the proportion of variance explained"
- $\bullet \in [0,1]$
 - $\cdot R^2 = 1.0 \equiv a$ "perfect (linear) fit"
 - $\cdot R^2 = 0 \equiv \text{no (linear)} X Y \text{ association}$

For a single X,

$$R^{2} = \hat{\beta}_{1}^{2} \frac{\sum (X_{i} - \bar{X})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$
$$= (r_{XY})^{2}$$

A (Simulated) Example

```
seed <- 7222009
set.seed(seed)
> X < -rnorm(250)
> Y1<-5+2*X+rnorm(250,mean=0,sd=sqrt(0.2))
> Y2<-5+2*X+rnorm(250,mean=0,sd=sqrt(20))
> fit<-lm(Y1~X)
> summary(fit)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.97712 0.02846 174.86 <2e-16 ***
Х
         2.02529 0.02785 72.73 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.4491 on 248 degrees of freedom
Multiple R-squared: 0.9552, Adjusted R-squared: 0.955
```

F-statistic: 5290 on 1 and 248 DF, p-value: < 2.2e-16

34 / 65

Regression of $Y_i = 5 + 2X_i + u_i$ ($R^2 = 0.95$)

Same Slope/Intercept, Different R^2

Residual standard error: 4.351 on 248 degrees of freedom Multiple R-squared: 0.2024, Adjusted R-squared: 0.1992 F-statistic: 62.95 on 1 and 248 DF, p-value: 7.288e-14

Regression of $Y_i = 5 + 2X_i + u_i$ ($R^2 = 0.20$)

R^2 is Also an *Estimate...*

Luskin: Population analogue " P^2 ":

$$P^2 = 1 - \frac{\sigma^2}{\sigma_Y^2}$$

Then $\hat{P}^2 = R^2$ has variance:

$$\widehat{\mathsf{Var}(R^2)} = \frac{4R^2(1-R^2)^2(N-k)^2}{(N^2-1)(N+3)}$$

and standard error:

$$\widehat{\text{s.e.}(R^2)} = \sqrt{\frac{4R^2(1-R^2)^2(N-k)^2}{(N^2-1)(N+3)}}.$$

"Adjusted" R² is:

$$R_{adj.}^2 = 1 - \frac{(1 - R^2)(N - c)}{(N - k)}$$

where c=1 if there is a constant in the model and c=0 otherwise.

$R_{adj.}^2$ characteristics:

- $R_{adi.}^2 \to R^2$ as $N \to \infty$
- $R_{adj.}^2$ can be > 1, or < 0...
- $R_{adi.}^2$ increases with model "fit," but
- The extent of that increase is discounted by a factor proportional to the number of covariates.

Other R^2 / Goodness-Of-Fit Alternatives

Standard Error of the Estimate:

$$SEE = \sqrt{\frac{RSS}{N - k}}$$

• *F*-statistic (bivariate regression, for $\beta_1 = 0$):

$$F = \frac{\sum (Y_i - \bar{Y})^2 - \sum (Y_i - \hat{Y}_i)^2}{(N-1) - (N-2)} \div \frac{\sum (Y_i - \hat{Y}_i)^2}{(N-2)}$$

$$= \frac{\text{"explained" variance}}{\text{"unexplained" variance}}$$

which is $\sim F(1, N-2)$.

- ROC / AUC (later...)
- Graphical methods

Caution: Different Ways to get $R^2 \approx 0$

Remember This Regression?

```
> fit<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summarv(fit)
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median
                       30
                            Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.24 4.33 7.21 0.000000015 ***
IdeologyScore 45.47 6.96 6.53 0.000000121 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

ANOVA Redux

```
> anova(fit)
Analysis of Variance Table
Response: CivLibs
             Df Sum Sq Mean Sq F value Pr(>F)
IdeologyScore 1 8693 8693 42.6 0.00000012 ***
Residuals 37 7543 204
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
> # R-squared:
>
> anova(fit)$'Sum Sq'[1] / (anova(fit)$'Sum Sq'[1] + anova(fit)$'Sum Sq'[2])
[1] 0.535
> # F-statistic:
> anova(fit)$'Mean Sq'[1] / anova(fit)$'Mean Sq'[2]
[1] 42.6
```

Stupid Regression Tricks

SCOTUS Regression Redux

```
> fit<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summarv(fit)
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median
                       30
                            Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.24 4.33 7.21 0.000000015 ***
IdeologyScore 45.47 6.96 6.53 0.000000121 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

SCOTUS Regression Plot

Add Three to IdeologyScore

```
> SCOTUS$IdeoPlus3 <- SCOTUS$IdeologyScore + 3
>
> fit2<-lm(CivLibs~IdeoPlus3,data=SCOTUS)
> summarv(fit2)
Call:
lm(formula = CivLibs ~ IdeoPlus3, data = SCOTUS)
Residuals:
  Min 10 Median 30 Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -105.16 24.68 -4.26 0.00013 ***
IdeoPlus3 45.47 6.96 6.53 0.00000012 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

SCOTUS Plot With Rescaled X

Multiply CivLibs Times -10

```
> SCOTUS$CivLibNeg10 <- -10 * SCOTUS$CivLibs
>
> fit3<-lm(CivLibNeg10~IdeologyScore,data=SCOTUS)</pre>
> summarv(fit3)
Call:
lm(formula = CivLibNeg10 ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median 30 Max
-299.9 -76.4 -27.9 100.1 267.0
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -312.4 43.3 -7.21 0.000000015 ***
IdeologyScore -454.7 69.6 -6.53 0.000000121 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 143 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

SCOTUSplot With Rescaled Y

Linear Transformations

- Adding (subtracting) a positive constant to X shifts the X-axis to the left (right).
- Adding (subtracting) a positive constant to Y shifts the Y-axis downwards (upwards).
- Multiplying X (Y) times a positive constant greater than 1.0 stretches the X (Y) axis.
- Multiplying X (Y) times a positive constant less than 1.0 shrinks the X (Y) axis.
- Multiplying X (Y) times a negative constant inverts the X (Y) axis, and stretches / shrinks it as above.

Linear transformations do not alter the model in a statistically / substantively important way.

Application: Reversing The Scales

```
> SCOTUS$CivLibCons <- 100 - SCOTUS$CivLibs
> SCOTUS$IdeolCons <- 1 - SCOTUS$IdeologyScore
> fit4<-lm(CivLibCons~IdeolCons.data=SCOTUS)</pre>
> summary(fit4)
Call:
lm(formula = CivLibCons ~ IdeolCons, data = SCOTUS)
Residuals:
  Min 10 Median
                       30
                             Max
-29.99 -7.64 -2.79 10.01 26.70
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.30 4.00 5.82 0.00000108 ***
IdeolCons 45.47 6.96 6.53 0.00000012 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

Plot of Civil Liberties Conservatism vs. Ideological Conservatism

Application: "Centering" Variables

```
> SCOTUS$CivLibCentered <- SCOTUS$CivLibs - mean(SCOTUS$CivLibs)
> SCOTUS$IdeolCentered <- SCOTUS$IdeologyScore - mean(SCOTUS$IdeologyScore)</pre>
>
> fit5<-lm(CivLibCentered~IdeolCentered.data=SCOTUS)
> summary(fit5)
Call:
lm(formula = CivLibCentered ~ IdeolCentered, data = SCOTUS)
Residuals:
  Min 10 Median
                       30
                             Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.60e-15 2.29e+00 0.00
IdeolCentered 4.55e+01 6.96e+00 6.53 0.00000012 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

"Regression Through The Origin"

Application: "Standardizing" a Variable

```
> SCOTUS$IdeolStd <- scale(SCOTUS$IdeologyScore)</pre>
>
> fit6<-lm(CivLibs~IdeolStd,data=SCOTUS)</pre>
> summarv(fit6)
Call:
lm(formula = CivLibs ~ IdeolStd, data = SCOTUS)
Residuals:
  Min
          10 Median 30 Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.28 2.29 24.18 < 2e-16 ***
IdeolStd 15.12 2.32 6.53 0.00000012 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

OLS with Standardized X

Rescaling for Interpretability

```
> fit7<-lm(CivLibs~Year,data=SCOTUS)</pre>
> summarv(fit7)
Call:
lm(formula = CivLibs ~ Year, data = SCOTUS)
Residuals:
  Min 10 Median 30
                             Max
-30.36 -15.32 -3.05 16.15 37.92
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 752.804 234.451 3.21 0.0027 **
Year
           -0.354 0.119 -2.98 0.0051 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 18.8 on 37 degrees of freedom
Multiple R-squared: 0.193, Adjusted R-squared: 0.171
F-statistic: 8.85 on 1 and 37 DF, p-value: 0.00513
```

Rescaling for Interpretability (continued)

```
> SCOTUS$Year1900<-SCOTUS$Year-1900
> fit8<-lm(CivLibs~Year1900,data=SCOTUS)</pre>
> summary(fit8)
Call:
lm(formula = CivLibs ~ Year1900, data = SCOTUS)
Residuals:
  Min 10 Median
                       30
                            Max
-30.36 - 15.32 - 3.05 16.15 37.92
Coefficients:
           Estimate Std. Error t value
                                          Pr(>|t|)
(Intercept) 80.413 8.969 8.97 0.000000000082 ***
Year1900 -0.354
                       0.119 -2.98 0.0051 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 18.8 on 37 degrees of freedom
Multiple R-squared: 0.193, Adjusted R-squared: 0.171
F-statistic: 8.85 on 1 and 37 DF, p-value: 0.00513
```

Binary $X \equiv t$ -test

```
> SCOTUS$Chief<-ifelse(is.na(SCOTUS$ChiefJustice),0,1)
> fit9<-lm(CivLibs~Chief.data=SCOTUS)
> summarv(fit9)
Call:
lm(formula = CivLibs ~ Chief, data = SCOTUS)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.71 3.53 15.76 <2e-16 ***
            -4.18 11.03 -0.38 0.71
Chief
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 20.9 on 37 degrees of freedom
Multiple R-squared: 0.00387.Adjusted R-squared: -0.0231
F-statistic: 0.144 on 1 and 37 DF, p-value: 0.707
> t.test(CivLibs~Chief,data=SCOTUS,var.equal=TRUE)
Two Sample t-test
data: CivLibs by Chief
t = 0.4, df = 37, p-value = 0.7
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
-18.2 26.5
sample estimates:
mean in group 0 mean in group 1
          55.7
                       51.5
```

Reporting

The results:

```
> summary(fit)
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median 30 Max
-26.70 -10.01 2.79 7.64 29.99
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.24 4.33 7.21 0.000000015 ***
IdeologyScore 45.47 6.96 6.53 0.000000121 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 14.3 on 37 degrees of freedom
Multiple R-squared: 0.535, Adjusted R-squared: 0.523
F-statistic: 42.6 on 1 and 37 DF, p-value: 0.000000121
```

Reporting

The table:

Table: OLS Regression Model of SCOTUS Voting

Variables	Model I
(Constant)	31.24
	(4.33)
Ideological Liberalism	45.47*
-	(6.96)
Adjusted R ²	0.52

Note: N=39. Cell entries are coefficient estimates; numbers in parentheses are estimated standard errors. Asterisks indicate p < .05 (one-tailed). See text for details.

Another Table (using default-y stargazer)

Table: OLS Regression Model of SCOTUS Voting

	Model I
(Constant)	31.20***
. ,	(4.33)
Ideological Liberalism	45.50***
	(6.96)
Observations	39
R^2	0.54
Adjusted R ²	0.52
Residual Std. Error	14.30 (df = 37)
F Statistic	$42.60^{***} (df = 1; 37)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Default-y Ladderplot -fitplot-

Some Guidelines ("Rules"?)

Tables:

- Use column headings descriptively.
- Use multiple rows / columns rather than multiple tables.
- Learn about significant digits, and don't report more than 4-5 of them.
- Use a figure to replace a table when you can.
- Be aware of norms about *s.

Figures:

- Report the scale of axes, and label them.
- Use as much "space" as you need, but no more.
- Use color sparingly.