Задачи 1

Прямоугольник задан вершинами с координатами A(0;0), B(u;0), C(u;v), D(0;v),где точка (u;v) лежит в первой четверти на графике функции $y=-x^3+8$. Найти наибольшую возможную площадь прямоугольника.

Решение

площадь
$$S(u)=u*(-u^3+8)=-u^4+8*u$$
 $=>S'(u)=-4*u^3+8=4*(2-u^3)$ $=>u_0=2^{\frac{1}{3}}$ при $u<2^{\frac{1}{3}},$ $S'(u)>0,$ $S(u)$ возрастает при $u>2^{\frac{1}{3}},$ $S'(u)<0,$ $S(u)$ убывает

Ответ: Наибольшая возможная площадь прямоугольника = $S(2^{\frac{1}{3}}) = 6 * 2^{\frac{1}{3}}$