ФКН ВШЭ, 3 курс, 3 модуль

Материалы к экзамену

Вероятностные модели и статистика случайных процессов, весна 2017

Теоретический минимум

- 1. Сформулируйте определение решающего правила в задаче различения двух гипотез.
- 2. Сформулируйте определения вероятностей ошибок первого и второго родов в задаче различения двух гипотез \mathbb{H}_0 и \mathbb{H}_{∞} .
- 3. Сформулируйте определение решающего правила в задаче различения двух гипотез, минимизирующего сумму ошибок 1 и 2 родов.
- 4. Сформулируйте определение решающего правила в задаче различения двух гипотез, оптимального в условно-экстремальной постановке.
- 5. Сформулируйте определение рандомизированного решающего правила в задаче различения двух гипотез.
- 6. Сформулируйте определение рандомизированного решающего правила в задаче различения двух гипотез, оптимального в условно-экстремальной постановке.
- 7. Сформулируйте фундаментальную лемму Неймана-Пирсона.

Теоретический максимум

- 1. Перечислить классы стационарности случайных процессов, описать связь между ними. Привести примеры процессов, относящихся к каждому классу, но не относящихся к остальным.
- 2. Сформулировать и доказать свойства (распределение, матожидание и дисперсию) пуассоновского потока событий с интенсивностью $\lambda>0$ в момент t.
- 3. Сформулировать и доказать теорему о вероятности перехода дискретной марковской цепи из одного состояния в другое за n шагов.
- 4. Сформулировать и доказать условия возвратности либо невозвратности случайного блуждания.
- 5. Сформулировать и доказать утверждение о том, что (1) если одно из состояний цепи нулевое, то и все остальные нулевые, (2) если одно из состояний возвратное, то и все остальные возвратные, (3) если одно из состояний периодическое с периодом d, то и все остальные периодические с периодом d.
- 6. Описать вычислительную разностную схему, позволяющую сгенерировать реализацию гауссовского случайного процесса с помощью стохастического интегрирования по броуновскому движению (на примере процесса Орнштейна-Уленбека).
- 7. Описать вычислительную схему, позволяющую сгенерировать реализацию однородного пуассоновского случайного процесса.
- 8. Пусть (S_n, X_n) скрытая марковская модель с M состояниями и матрицей перехода за один шаг $P = (p_{ij}), i, j = 1, \ldots, M$, в которой условное распределение $p(X_i | S_i = s_i)$ является нормальным $\mathcal{N}(\mu_{s_i}, \sigma^2)$. Описать алгоритм сегментации временного ряда, в котором параметры $\boldsymbol{\theta} = (P, \boldsymbol{\mu}, \sigma)$ известны, и требуется по выборке (x_1, \ldots, x_n) оценить значения (s_1, \ldots, s_n) скрытых состояний (S_1, \ldots, S_n) марковской цепи. Описать необходимые для решения заданной задачи предположения.

Задачи

1. Пусть $\boldsymbol{\xi} = (\xi_1, \xi_2)^\intercal$ – гауссовский случайный вектор с математическим ожиданием $\mathbf{E}\,\boldsymbol{\xi} = \boldsymbol{\mu} = (\mu_1, \mu_2)^\intercal$ и ковариационной матрицей

$$\mathrm{E}[(oldsymbol{\xi} - oldsymbol{\mu})^\intercal] = egin{bmatrix} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}.$$

Подсчитать явное аналитическое выражение для условной плотности $f_{\xi_2|\xi_1}(x_2|x_1)$ распределения случайного вектора ξ_2 при условии $\xi_1=x_1$.

- 2. Подсчитать корреляции процесса МА(2).
- 3. Подсчитать корреляции процесса MA(q).
- 4. Подсчитать ковариацию процесса ARMA(1,1) и ее предел при $n \to \infty$, где n время.
- 5. Получить формулы для математического ожидания и ковариационной матрицы вектора состояния динамической системы в фильтре Калмана.
- 6. Приведите пример некоррелированных, но зависимых случайных величин.
- 7. Дана матрица перехода

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$

Найти P^n .

- 8. Доказать, что функция $R(t,s) = \min\{t,s\} ts$ может или не может являться ковариационной функцией случайного процесса.
- 9. Доказать, что функция $R(t,s) = \min\{t,s\} t(s+1)$ может или не может являться ковариационной функцией случайного процесса.
- 10. Пусть $N=(N_t)_{t\geqslant 0}$ пуассоновский случайный процесс с параметром λ . Доказать, что случайный процесс $M=(M_t)_{t\geqslant 0}$, задаваемый соотношением $M_t=N_{t+1}-N_t$, является стационарным второго порядка процессом, т.е. что его математическое ожидание Е M_t не зависит от времени, а его ковариационная функция $R_M(t_1,t_2)$ зависит от t_1 и t_2 через их разность $\tau=t_1-t_2$.
- 11. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, причем $P(\xi_t=1)=p, P(\xi_t=-1)=1-p$. Является ли цепью Маркова последовательность $\eta_t=\xi_1\xi_2\ldots\xi_t$? Если да, найти ее вероятности перехода за один шаг.
- 12. Для модели GARCH(1, 1) временного ряда, задающейся уравнениями

$$X_n = \mu + h_n, \quad h_n = \sigma_n \varepsilon_n,$$

$$\sigma_n^2 = \alpha_0 + \alpha_1 h_{n-1}^2 + \beta_1 \sigma_{n-1}^2,$$

3

где $\varepsilon=(\varepsilon_t)_{t=1,\,2,\,\dots}$ – процесс гауссовского белого шума,

- (a) Записать формулу для подсчета σ_{n+1}^2 ;
- (b) Подсчитать распределение величины X_{n+1} .