MAP5747 Programação Não Linear: Exercícios

Ariel Serranoni

2º semestre de 2019

Lista 1

Exercício 1. Seja $f: \mathbb{R}^n \to \mathbb{R}$ e sejam $B \subseteq A \subseteq \mathbb{R}^n$. Se $\inf_{x \in \mathbb{R}^n} f(x) = \alpha \in \mathbb{R}$, então

- (i) $\inf_{x \in A} f(x) \le \inf_{x \in B} f(x)$;
- (ii) todo minimizador de f em A é um minimizador de f em B.

Solução.

(i)
$$\inf_{x \in A} f(x) = \min\{\inf_{x \in B} f(x), \inf_{x \in A \setminus B} f(x)\} \le \inf_{x \in B} f(x).$$

(ii)

Exercício 2 - Lista 1

Solução. Considere a função $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) := \exp(x)$. Considere $\Omega = \mathbb{N}$. Então cada ponto $\bar{x} \in \Omega$ minimiza f localmente e, como f é injetora temos que $f(x) \neq f(y)$ sempre que $x \neq y$.

Exercício 3 - Lista 1

Solução. Primeiramente, note que o conjunto $f(\Omega)$ é compacto pois f é contínua e Ω é compacto.

Vamos mostrar que $\alpha := \inf_{x \in \Omega} f(x) \in f(\Omega \setminus)$ e $\beta := \sup_{x \in \Omega} f(x) \in f(\Omega)$. Como $f(\Omega)$ é fechado temos que $f(\Omega) = \overline{f(\Omega)}$. Portanto é suficiente mostrar que $\alpha, \beta \in \overline{f(\Omega)}$. Seja $\varepsilon \in \mathbb{R}_{++}$ e note que se $\alpha + \varepsilon \mathbb{B} \cap f(\Omega) = \emptyset$ então $\inf_{x \in \Omega} f(x) = \inf_{x \in \Omega} f(x) \ge \alpha + \varepsilon$. Isso implica que inf $f(\Omega) > \alpha$. Contradição. (escreve analogamente pra β)

Exercício 4 - Lista 1

Solução. Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ dada por $f(x) := \frac{1}{x}$. Se consideramos $\Omega = [-1,0)$, temos que f é contínua em Ω e que Ω é limitado, mas não fechado. Portanto não vale o Teorema de Bolzano-Weierstrass e f não possui minimizador, de fato f é ilimitada em Ω . Similarmente, se $\Omega = [-1,0]$ temos que Ω é compacto mas f não é contínua em Ω e tb n vale o teorema.

Exercício 5 - Lista 1

Solução. Como f é contínua, temos que o conjunto de nível dado no enunciado é fechado. Além disso, temos por hipótese que o conjunto é limitado. Assim, o resultado segue aplicando o exercicio 3

Exercício 6. Exercício 6 - Lista 1

Solução. Seja $x \in \mathbb{R}^n$ e considere o conjunto de nível

$$N := \{ y \in \mathbb{R}^n : f(y) \le f(x) \}.$$

Como f é contínua temos que N é fechado. Agora suponha que N não é limitado, então existe uma sequencia $\{y_n\}_{n\in\mathbb{N}}$ tal que $\|y_n\|\to\infty$ mas $f(y_n)\leq f(x)$ para todo $n\in\mathbb{N}$, o que contradiz a hipótese de que f é coerciva. Assim concluímos que N é compacto e o resultado segue do exercicio 3.

Exercício 7 - Lista 1

Solução.

- 1. Considere $f(x) = \exp(x)$ e $\Omega = \{0\}$.
- 2. Considere $f(x) = -x^2 \in \Omega = \{0\}.$
- 3. Considere $f(x) = x^3 \in \Omega = \mathbb{R}$.
- 4. Considere $f(x) = x^3 \in \Omega = \mathbb{R}$.

1 Lista 2