	p795 P8716
Computer Systems Modelling	
[Relates to birth-death processes their application to modelling	and quenes.)
(a) A mival rate λ , State Service rate μ S servers	# customers present
Scenvers. Birth rates $\lambda_i = \lambda$ (izo)	1,1,2,}
Death rates pi= p min(i,s,) (c <u>z 1)</u>
2μ3μ (s-1)μ Sμ Sμ Sμ	
(b) Detailed balance equations f equilibrium distribution Trai (1	20,1)
Ti di = Titl Pitl	
ie \ \xi = \ \p(i+1) \tau_i+	050'25
Lps Tite	iZS
Computer Science Tripos Part II 2005 Paper 7 Question 5	1
RJG — Computer Systems Modelling	

$$T_1 = \frac{\lambda}{\mu} T_0 = \frac{\lambda}{\mu} T_0$$

$$\pi_2 = \frac{\lambda}{\mu \cdot 2} \pi_1 = \frac{\lambda^2 \pi_0}{\mu^2}$$

$$\pi_3 = \frac{\lambda}{\mu \cdot 3} \pi_2 = (\frac{\lambda}{\mu})^3 \underline{\pi}_0$$

$$\pi_s = \left(\frac{\lambda}{\mu}\right)^s \frac{\pi_o}{sI}$$

$$\pi_{S+1} = \frac{\lambda}{\mu_S} \pi_S = \left(\frac{\lambda}{\mu}\right)^{S+1} \pi_S$$

$$\pi_{SH2} = \frac{\lambda}{\gamma_{\cdot S}} \pi_{SH1} = \left(\frac{\lambda}{\gamma_{\cdot S}}\right)^{SH2} \frac{\pi_{\circ}}{S!}$$

$$\pi_i = \left(\frac{\lambda}{P}\right)^{\frac{1}{L}} \frac{\pi_0}{s^{\frac{1}{L-3}}s!}$$

$$\pi_{i} = \begin{cases} \left(\frac{\lambda}{T}\right)^{i} & \pi_{0} \\ \frac{\lambda}{i!} & \text{if } \\ \frac{\lambda}{SP} & \text{if } \\ \frac{\lambda}{SP} & \text{if } \end{cases}$$

