Lewis Ho Functional Analysis Practice Pset 1

Problem 1 For any point v in the range of P (i.e. S), the only point u satisfying $v - u \perp S$ is v itself as $v - u \in S$. Thus $P^2 = P$.

Let e_i be an orthogonal basis of S and f_i an orthogonal basis of S^{\perp} . Then any $v = \sum_i a_i e_i + \sum_i b_i f_i$, and $Pv = \sum_i a_i e_i$. Then if $u = \sum_i c_i e_i + \sum_i d_i f_i$, $(Pv, u) = \sum_i a_i c_i = (v, Pu)$, i.e. $P = P^*$.

Problem 2 Consider (x - Px, Py):

$$(x - Px, Py) = (x - Px, P^2y) = (P(x - Px), Py) = 0$$

It remains to be shown that the range of P is a closed subspace. This follows from the continuity of the function which follows from its boundedness.

Problem 3 Given that A_n is a finite rank operator, for the "if" statement it suffices to show that $||A_n - A|| \to 0$, and we do this by showing $||(A_n - A)v|| \to 0$ for all v. $||(A_n - A)v|| \le \alpha^{(n)}||v||$, where $\alpha^{(n)}$ is the supremum of α_i with $i \ge n$. Clearly as $|\alpha_n|| \to 0$, this quantity goes to zero too.

For the converse, suppose there always exists, for every n, some α_i greater than some epsilon. Then $\{Ae_i\}$ is not precompact.

Problem 4

$$||Tf|| = \left(\int \left| \int K(x,y)f(y)dy \right|^2 dx \right)^{1/2} \le \left(\int |Af(x)|^2 dx \right)^{1/2} \le A||f||.$$

Problem 5 If M and N are the norms of T_1 and T_2 , then $(T_1 + T_2)v = T_1v + T_2v \le (M+N)||v||$, which means the norm of the sum must be less than or equal to M+N.

Problem 6 Let A(v) = Av for $v \in \mathcal{H}_0$, and $A \lim v_n = \lim Av_n$ for $v_n \in \mathcal{H}_0$. To show that such a limit exists, consider $||Av_n - Av_m|| = ||A(v_n - v_m)||$. Because A is bounded, this is less than some $M||v_n - v_m|| = M\varepsilon_n$, i.e. Av_n is Cauchy. Boundedness follows from the continuity of the norm: $||Av|| = ||\lim Av_n|| = \lim ||Av_n||$, and $||Av_n|| \leq M||v_n|| \, \forall v_n$.