Advanced Simulation - Lecture 13

Patrick Rebeschini

February 26th, 2018

Outline

■ Sequential Importance Sampling.

■ Resampling step.

■ Sequential Monte Carlo / Particle Filters.

Hidden Markov Models

Figure: Graph representation of a general HMM.

 (X_t) : initial distribution μ_{θ} , transition f_{θ} . (Y_t) given (X_t) : measurement g_{θ} . Prior on the parameter $\theta \in \Theta$.

Inference in HMMs, Cappé, Moulines, Ryden, 2005.

General inference in HMM

■ **Proposition**: The posterior $p(x_{1:t}|y_{1:t},\theta)$ satisfies

$$p(x_{1:t}|y_{1:t},\theta) = p(x_{1:t-1}|y_{1:t-1},\theta) \frac{f_{\theta}(x_{t}|x_{t-1}) g_{\theta}(y_{t}|x_{t})}{p(y_{t}|y_{1:t-1},\theta)}$$

where

$$p(y_t|y_{1:t-1},\theta) = \int p(x_{1:t-1}|y_{1:t-1},\theta) f_{\theta}(x_t|x_{t-1}) g_{\theta}(y_t|x_t) dx_{1:t}.$$

■ **Proposition**: The marginal posterior $p(x_t|y_{1:t})$ satisfies the following recursion

$$p(x_t|y_{1:t-1}) = \int f(x_t|x_{t-1}) p(x_{t-1}|y_{1:t-1}) dx_{t-1}$$
$$p(x_t|y_{1:t}) = \frac{g(y_t|x_t) p(x_t|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

where

$$p(y_t|y_{1:t-1}) = \int g(y_t|x_t) p(x_t|y_{1:t-1}) dx_t.$$

General inference in HMM

■ In general, the filtering problem is thus intractable:

$$\int \varphi(x_t) p(x_t \mid y_{1:t}, \theta) dx_t = \int \varphi(x_t) p(x_{1:t}, y_{1:t} \mid \theta) dx_{1:t}$$

$$= \int \varphi(x_t) \mu_{\theta}(x_1) \prod_{s=1}^{t} f_{\theta}(x_s \mid x_{s-1}) \prod_{s=1}^{t} g_{\theta}(y_s \mid x_s) dx_{1:t}.$$

- It is a $t \times \dim(\mathbb{X})$ dimensional integral.
- The likelihood is also intractable:

$$p(y_{1:t} \mid \theta) = \int p(x_{1:t}, y_{1:t} \mid \theta) dx_{1:t}$$
$$= \int \mu_{\theta}(x_1) \prod_{s=1}^{t} f_{\theta}(x_s \mid x_{s-1}) \prod_{s=1}^{t} g_{\theta}(y_s \mid x_s) dx_{1:t}.$$

■ Thus we cannot compute it pointwise, e.g. to perform Metropolis—Hastings algorithm on the parameters.

Sequential Importance Sampling

- We now consider the parameter θ to be fixed. We want to infer $X_{1:t}$ given $y_{1:t}$.
- Two ingredients: importance sampling, and "sampling via composition", or "via condition".
- IS: if we have a weighted sample (w_1^i, X^i) approximating π_1 , then (w_2^i, X^i) approximates π_2 if we define

$$w_2^i = w_1^i \times \frac{\pi_2(X^i)}{\pi_1(X^i)}.$$

In standard IS, π_1 and π_2 are defined on the same space.

Sequential Importance Sampling

- Sampling via composition: if (w^i, X^i) approximates $p_X(x)$, and if $Y^i \sim q_{Y|X}(y \mid X^i)$, then $(w^i, (X^i, Y^i))$ approximates $p_X(x)q_{Y|X}(y \mid x)$.
- The space has been extended.
- Marginally, (w^i, Y^i) approximates

$$q_Y(y) = \int p_X(x)q_{Y\mid X}(y\mid x)dx.$$

■ Sequential Importance Sampling combines both ingredients to iteratively approximate $p(x_{1:t} | y_{1:t})$.

Sequential Importance Sampling: algorithm

- \blacksquare At time t=1
 - Sample $X_1^i \sim q_1(\cdot)$.
 - Compute the weights

$$w_1^i = \frac{\mu(X_1^i)g(y_1 \mid X_1^i)}{q_1(X_1^i)}.$$

- \blacksquare At time t > 2
 - Sample $X_t^i \sim q_{t|t-1}(\cdot | X_{t-1}^i)$.
 - Compute the weights

$$\begin{split} \boldsymbol{w}_{t}^{i} &= \boldsymbol{w}_{t-1}^{i} \times \boldsymbol{\omega}_{t}^{i} \\ &= \boldsymbol{w}_{t-1}^{i} \times \frac{f\left(\boldsymbol{X}_{t}^{i} \middle| \boldsymbol{X}_{t-1}^{i}\right) g\left(\boldsymbol{y}_{t} \middle| \boldsymbol{X}_{t}^{i}\right)}{q_{t|t-1}(\boldsymbol{X}_{t}^{i} \middle| \boldsymbol{X}_{t-1}^{i})}. \end{split}$$

Figure: Estimation of filtering means $\mathbb{E}(x_t \mid y_{1:t})$.

Figure: Estimation of filtering variances $\mathbb{V}(x_t \mid y_{1:t})$.

Figure: Estimation of marginal log likelihoods $\log p(y_{1:t})$.

Figure: Effective sample size over time.

Figure: Spread of 100 paths drawn from the prior proposal, and KF means in blue. Darker lines indicate higher weights.

Resampling

- Idea: at time t, select particles with high weights, and remove particles with low weights.
- Spend the fixed computational budget "N" on the most promising paths.
- Obtain an equally weighted sample (N^{-1}, \bar{X}^i) from a weighted sample (w^i, X^i) .
- Resampling on empirical probability measures: input

$$\pi^N(x) = \left(\sum w^j\right)^{-1} \sum w^i \delta_{X^i}(x)$$

and output

$$\bar{\pi}^N(x) = N^{-1} \sum \delta_{\bar{X}^i}(x).$$

■ How to draw from an empirical probability distribution?

$$\pi^{N}(x) = \frac{1}{\sum_{j=1}^{N} w^{j}} \sum_{i=1}^{N} w^{i} \delta_{X^{i}}(x)$$

■ Remember how to draw from a mixture model?

$$\sum_{i=1}^{K} \omega^{i} p^{i}(x)$$

■ Draw k with probabilities $\omega^1, \ldots, \omega^N$, then draw from p^k .

■ Draw an "ancestry vector" $A^{1:N} = (A^1, ..., A^N) \in \{1, ..., N\}^N$ independently from a categorical distribution

$$A^{1:N} \stackrel{\text{i.i.d}}{\sim} Cat\left(w^1, \dots, w^N\right),$$

in other words

$$\forall i \in \{1, \dots, N\} \quad \forall k \in \{1, \dots, N\} \quad \mathbb{P}\left[A^i = k\right] = \frac{w^k}{\sum_{i=1}^N w^i}.$$

- Define \bar{X}^i to be X^{A^i} for all $i \in \{1, ..., N\}$. X^{A^i} is said to be the "parent" or "ancestor" of \bar{X}^i .
- $\blacksquare \text{ Return } \bar{X} = \left(\bar{X}^1, \dots, \bar{X}^N\right).$

■ Draw an "offspring vector" $O^{1:N} = (O^1, \dots, O^N) \in \{0, \dots, N\}^N$ from a multinomial distribution

$$O_t^{1:N} \sim \mathcal{M}ultinomial\left(N; w^1, \dots, w^N\right)$$

so that

$$\forall i \in \{1, \dots, N\}$$
 $\mathbb{E}\left[O^i\right] = N \frac{w^i}{\sum_{j=1}^N w^j}$ and $\sum_{i=1}^N O^i = N$.

- Each particle X^i is replicated O^i times (possibly zero times) to create the sample \bar{X} :
 - $\bar{X} \leftarrow \{\}$
 - For i = 1, ..., N, for $k = 0, ..., O_t^i$, $\bar{X} \leftarrow \{\bar{X}, X^i\}$
- $\blacksquare \text{ Return } \bar{X} = \left(\bar{X}^1, \dots, \bar{X}^N\right).$

- Other strategies are possible to perform resampling.
- Some properties are desirable:

$$\mathbb{E}\left[O^i\right] = N \frac{w^i}{\sum_{j=1}^N w^j},$$
 or
$$\mathbb{P}\left[A^i = k\right] = \frac{w^k}{\sum_{j=1}^N w^j}.$$

■ This is sometimes called "unbiasedness", because then

$$\frac{1}{N} \sum_{k=1}^{N} \varphi\left(\bar{X}^{k}\right) = \frac{1}{N} \sum_{k=1}^{N} O^{k} \varphi\left(X^{k}\right)$$

has expectation

$$\sum_{k=1}^{N} \frac{w^k}{\sum_{i=1}^{N} w^j} \varphi\left(X^k\right).$$

Sequential MC / Sequential Importance Resampling

- \blacksquare At time t=1
 - Sample $X_1^i \sim q_1(\cdot)$.
 - Compute the weights

$$w_1^i = \frac{\mu(X_1^i)g(y_1 \mid X_1^i)}{q_1(X_1^i)}.$$

- \blacksquare At time $t \geq 2$
 - $\blacksquare \text{ Resample } (w^i_{t-1}, X^i_{1:t-1}) \to \Big(N^{-1}, \overline{X}^i_{1:t-1}\Big).$
 - $\blacksquare \text{ Sample } X_t^i \sim q_{t|t-1}(\cdot|\bar{X}_{t-1}^i), X_{1:t}^i := \left(\bar{X}_{1:t-1}^i, X_t^i\right)$
 - Compute the weights

$$w_{t}^{i} = \omega_{t}^{i} = \frac{f(X_{t}^{i} | X_{t-1}^{i}) g(y_{t} | X_{t}^{i})}{q_{t|t-1}(X_{t}^{i} | X_{t-1}^{i})}.$$

Sequential Importance Sampling

Sequential Importance Resampling

Figure: Estimation of filtering means $\mathbb{E}(x_t \mid y_{1:t})$.

Figure: Estimation of filtering variances $\mathbb{V}(x_t \mid y_{1:t})$.

Figure: Estimation of marginal log likelihoods $\log p(y_{1:t})$.

Figure: Effective sample size over time.

Figure: Support of the approximation of $p(x_t \mid y_{1:t})$, over time.

Figure: Trajectories $\bar{X}_{1:T}^i$, for $i \in \{1, \dots, N\}$ and N = 100.