

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Dirk-André Deckert & Jago Silberbauer

Wintersemester 2024/25

Mathematik 3 für Physiker - Übung 1

Aufgabe 1 (Dominierte Konvergenz)

Zeigen Sie

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} \frac{\sin(n)^k}{n^2} = 0. \tag{1}$$

Aufgabe 2 (Monotone Konvergenz)

Zeigen Sie, dass für alle $q \in]-1,1[$ gilt

$$\lim_{m \to \infty} \sum_{n=1}^{\infty} \sum_{k=n}^{m} q^k = \frac{1}{1-q} \cdot \left(\frac{1}{1-q} - 1\right). \tag{2}$$

Aufgabe 3

Betrachten Sie eine stetige Funktion $f:[1,\infty[\to\mathbb{R}]$. Angenommen $L\coloneqq\lim_{x\to\infty}f(x)$ existiert.

- a) Zeigen Sie, dass $f:[1,\infty[\to\mathbb{R}]$ gleichmäßig stetig ist.
- b) Finden Sie ein Beispiel für eine solche Funktion f, die auf jedem Interval [1,a] mit a>1 Riemannintegrierbar ist, aber nicht uneigentlich Riemann-integrierbar auf $[1,\infty[$, d.h. $\lim_{a\to\infty}\int_1^a f(x)dx$ existiert nicht

Bemerkung: In der Vorlesung wurde gezeigt, dass stetige Funktionen auf kompakten Intervalen durch Stufenfunktionen approximiert werden können, was wiederum zur Riemann-Integrierbarkeit führt. Für diese Approximation ist die gleichmäßige Stetigkeit essentiell, welche aus diesen Annahmen gefolgert werden kann. Teilaufgabe b) sagt uns, dass die (uneigentliche) Riemann-Integrierbarkeit verloren gehen kann auf unbeschränkten Mengen, selbst wenn der Integrand gleichmäßig stetig ist auf ganz \mathbb{R} .

Aufgabe 4 (Diskrete Version von Partieller Integration)

Es seien $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$. Zeigen Sie

a) Für alle $m, n \in \mathbb{N}$ mit $m \le n$ gilt

$$\sum_{j=m}^{n} a_j \cdot (b_{j+1} - b_j) = (a_{n+1}b_{n+1} - a_m b_m) - \sum_{j=m}^{n} b_{j+1} \cdot (a_{j+1} - a_j).$$
(3)

b) Zeigen Sie, dass für alle $x \in \mathbb{R} \setminus \{0\}$ die Reihe

$$\sum_{n=1}^{\infty} \frac{e^{inx}}{n} \tag{4}$$

in $\mathbb C$ konvergent ist.

Hinweis: Nutzen Sie Teilaufgabe a) mit

$$a_n = \sum_{k=1}^n e^{ikx} \quad \text{und} \quad b_n = \frac{1}{n}. \tag{5}$$

Aufgabe 5

Betrachten Sie die Funktion

$$f:[0,1] \to \mathbb{R}, \quad x \mapsto f(x) \coloneqq \begin{cases} 0, & \mathsf{falls} \ x \in \mathbb{Q}, \\ 1, & \mathsf{sonst.} \end{cases}$$
 (6)

Zeigen Sie, dass f nicht Riemann-integrierbar ist.