Práctica 6

Objetivo: Practicar con la entrada/salida e instrucciones condicionales

Descripción: Hacer una clase para calcular la evolución temporal de un circuito formado por un condensador, una resistencia, un interruptor y una fuente de tensión continua

- Inicialmente el interruptor está conectado a tierra y $V_A(t<0) = V_C(t<0) = 0$
- El interruptor se conecta en t=0 a la fuente de corriente continua de tensión V_e
- El interruptor se vuelve a conectar a tierra en $t=t_0$
- Deseamos calcular el valor de la tensión del condensador, $V_C(t)$, en función del tiempo

Clase Circuito

Se pide hacer una clase llamada Circuito compuesta por:

- atributos: la capacidad del condensador en faradios, C, la resistencia en ohmios, R, y el voltaje de la fuente en voltios, V_e
- métodos:
 - un *constructor* al que se le pasan como parámetros los valores iniciales de los atributos, para copiarlos
 - un método llamado tensionCondensador con dos parámetros del tipo double que representan el tiempo, t, y el instante de conmutación del interruptor, t_0 , ambos en segundos; el método retorna el valor de la tensión del condensador, V_C

Circuito

-double c, r, ve

- +Circuito (double c, double r, double ve)
- +tensionCondensador (double t, double t0)

Ecuaciones

La tensión V_C se calcula con estas expresiones

$$V_c = V_e(1 - e^{-t/(RC)})$$
 $para \ (t \le t_0)$
 $V_c = V_0(e^{-(t-t_0)/(RC)})$ $para \ (t > t_0)$

Siendo V_0 la tensión del condensador en $t=t_0$

Clase OperaCircuito

Se pide también escribir una clase llamada OperaCircuito que contiene un método principal (main) que hace lo siguiente:

- Lee de teclado (mediante un objeto de la clase Lectura) los datos necesarios para crear el circuito (C, R, V_e) y el instante de conmutación (t_0)
 - Usar como valores iniciales los indicados en la plantilla del informe para el "circuito 1"
- Crea un objeto de la clase Circuito usando los datos leídos del teclado
- Calcula y almacena en cuatro variables el valor de la tensión del condensador al cabo de 0ms, 1ms, 2ms, y 10ms usando el método tensionCondensador()
- Muestra en una ventana de la clase Escritura los cuatro resultados obtenidos

Parte avanzada

Añadir a la clase OperaCircuito instrucciones para:

- crear una gráfica de la tensión del condensador en los instantes (0.0, 0.1, 0.2, ..., 20.0) ms, usando el método tensionCondensador()
 - usar un bucle for para insertar los datos en la gráfica

Entregar

- 1. Proyecto Bluej comprimido
- 2. Informe:
 - Parte básica
 - el código fuente de la clases desarrolladas
 - los resultados de las pruebas indicados en la plantilla del informe
 - Parte avanzada
 - El código java de las instrucciones nuevas y una captura de pantalla de la gráfica