PH3102 - Quantum Mechanics

Assignment 2 Solutions

Debayan Sarkar 22MS002

August 19, 2024

Question 1. Consider \hat{O} to be an operator defined by

$$\hat{O} = |\phi\rangle \langle \psi|,$$

where $|\phi\rangle$ and $|\psi\rangle$ are two vectors of the state space.

- (a) Give the condition for \hat{O} to be Hermitian.
- (b) Calculate \hat{O}^2 . State the condition for \hat{O} to be a projection operator.
- (c) Show that \hat{O} can always be written in the form of $\hat{O} = \lambda P_1 P_2$, where λ is a constant and P_1 and P_2 are projection operators corresponding to the vectors $|\phi\rangle$ and $|\psi\rangle$ respectively.

Solution.

(a) For \hat{O} to be Hermitian, we must have

$$\begin{split} \hat{O} &= \hat{O}^{\dagger} \\ \Rightarrow |\phi\rangle \left\langle \psi | = (|\phi\rangle \left\langle \psi |)^{\dagger} \right. \\ \Rightarrow |\phi\rangle \left\langle \psi | = |\psi\rangle \left\langle \phi | \right. \\ \Rightarrow |\phi\rangle \left\langle \psi | \psi\rangle = |\psi\rangle \left\langle \phi | \psi\rangle \right. \\ \Rightarrow |\phi\rangle \left\langle \psi | \psi\rangle = \frac{\langle \phi | \psi\rangle}{\langle \psi | \psi\rangle} |\psi\rangle \\ \Rightarrow |\phi\rangle = c |\psi\rangle \end{split}$$
 (Acting on $|\psi\rangle$)

Where $c = \frac{\langle \phi | \psi \rangle}{\langle \psi | \psi \rangle}$. Now we have,

$$\begin{split} \hat{O} &= \hat{O}^{\dagger} \\ \Rightarrow |\phi\rangle \, \langle \psi| = (|\phi\rangle \, \langle \psi|)^{\dagger} \\ \Rightarrow |\phi\rangle \, \langle \psi| = |\psi\rangle \, \langle \phi| \\ \Rightarrow c^* \, |\psi\rangle \, \langle \psi| = c \, |\psi\rangle \, \langle \psi| \\ \Rightarrow c^* = c \\ \Rightarrow c \in \mathbb{R} \end{split} \tag{$|\phi\rangle = c \, |\psi\rangle$}$$

Hence, for \hat{O} to be Hermitian we must meet the following conditions

$$|\phi\rangle = c |\psi\rangle, \ c \in \mathbb{R}$$

(b) We first calculate \hat{O}^2 .

$$\begin{split} \hat{O}^2 &= |\phi\rangle\!\langle\psi| \cdot |\phi\rangle\!\langle\psi| = |\phi\rangle \,\langle\psi|\phi\rangle \,\langle\psi| = \langle\psi|\phi\rangle \,\hat{O} \\ \Rightarrow & \left[\hat{O}^2 &= \langle\psi|\phi\rangle \,\hat{O}\right] \end{split}$$

Hence, for \hat{O} to be a projection operator, we must have $\hat{O}^2 = \hat{O}$. Thus we must have

$$\langle \phi | \psi \rangle = 1$$

(c) We are given that $P_1=|\phi\rangle\!\langle\phi|$ and $P_2=|\psi\rangle\!\langle\psi|$ Then, we have

$$P_{1}P_{2} = |\phi\rangle\langle\phi| \cdot |\psi\rangle\langle\psi|$$

$$\Rightarrow P_{1}P_{2} = |\phi\rangle\langle\phi|\psi\rangle\langle\psi|$$

$$\Rightarrow P_{1}P_{2} = \langle\phi|\psi\rangle|\phi\rangle\langle\psi|$$

$$\Rightarrow \frac{P_{1}P_{2}}{\langle\phi|\psi\rangle} = \hat{O}$$
(Assuming that $\langle\phi|\psi\rangle \neq 0$)
$$\Rightarrow \hat{O} = \lambda P_{1}P_{2}$$

Where $\lambda = \frac{1}{\langle \phi | \psi \rangle}$. Observe that, if $\langle \phi | \psi \rangle = 0$, $P_1 P_2 = 0$. Hence, we will not be able to find a lambda such that $\hat{O} = \lambda P_1 P_2$.

Question 2. Consider a real-valued wavefunction $\psi(x)$.

- (a) For this $\psi(x)$, show that the expectation value of momentum given by $\langle \hat{p} \rangle$ is zero.
- (b) Now show that if $\psi(x)$ has a mean momentum given by $\langle \hat{p} \rangle$, $e^{ip_0x/\hbar}\psi(x)$ has mean momentum $\langle \hat{p} \rangle + p_0$.

Use the Dirac "bra-ket" notation to carry out the computations.

Solution.

(a) We first calculate $\langle \hat{p} \rangle$ as

$$\begin{split} \langle \hat{p} \rangle &= \langle \psi | \hat{p} | \psi \rangle \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \langle \psi | x' \rangle \, \langle x' | \hat{p} | x \rangle \, \langle x | \psi \rangle \, dx' dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(x') \left(-i\hbar \delta(x - x') \frac{\mathrm{d}}{\mathrm{d}x} \right) \psi(x) dx' dx \qquad (\psi^*(x') = \psi(x')) \\ &= \int_{-\infty}^{\infty} \psi(x) \left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \right) \psi(x) dx \\ &= -i\hbar \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} dx \qquad (\mathrm{i}) \\ &= -i\hbar \left[\left. \psi^2(x) \right|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} dx \right] \\ &= i\hbar \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} dx \qquad (\mathrm{Since} \ \psi(x) \ \mathrm{must} \ \mathrm{vanish} \ \mathrm{at} \ \pm \infty) \\ &= -\langle \hat{p} \rangle \qquad (\mathrm{using} \ \mathrm{(i)}) \end{split}$$

Hence, we have

$$\langle \hat{p} \rangle = -\langle \hat{p} \rangle \Rightarrow \boxed{\langle \hat{p} \rangle = 0}$$

(b) Let $\phi(x) = e^{ip_0x/\hbar} \psi(x)$. Then we have,

$$\begin{split} \langle \phi | \hat{p} | \phi \rangle &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \langle \phi | x' \rangle \, \langle x' | \hat{p} | x \rangle \, \langle x | \phi \rangle \, dx' dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi^*(x') \bigg(-i\hbar \delta(x - x') \frac{\mathrm{d}}{\mathrm{d}x} \bigg) \phi(x) dx' dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ip_0 x'/\hbar} \, \psi(x') \bigg(-i\hbar \delta(x - x') \frac{\mathrm{d}}{\mathrm{d}x} \bigg) e^{ip_0 x/\hbar} \, \psi(x) dx' dx \\ &= \int_{-\infty}^{\infty} e^{-ip_0/\hbar} \, \psi(x) \bigg(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \bigg) e^{ip_0/\hbar} \, \psi(x) dx \\ &= -i\hbar \int_{-\infty}^{\infty} e^{-ip_0 x/\hbar} \, \psi(x) \frac{\mathrm{d}}{\mathrm{d}x} e^{ip_0 x/\hbar} \, \psi(x) dx \\ &= -i\hbar \bigg[\int_{-\infty}^{\infty} e^{-ip_0 x/\hbar} \, \psi(x) e^{ip_0 x/\hbar} \, \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} dx + \int_{-\infty}^{\infty} e^{-ip_0 x/\hbar} \, \psi(x) \frac{ip_0}{\hbar} e^{ip_0 x/\hbar} \, \psi(x) dx \bigg] \\ &= -i\hbar \bigg[\int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} dx + \frac{ip_0}{\hbar} \int_{-\infty}^{\infty} \psi^2(x) dx \bigg] \\ &= -i\hbar \int_{-\infty}^{\infty} \psi(x) \frac{\mathrm{d}\psi(x)}{\mathrm{d}x} dx + p_0 \qquad \qquad \text{(Assuming } \psi(x) \text{ is normalized)} \\ &= \langle \hat{p} \rangle + p_0 \qquad \qquad \text{(using (i))} \end{split}$$

Hence we have,

$$\langle \phi | \hat{p} | \phi \rangle = \langle \hat{p} \rangle + p_0$$

.

Question 3. For the simple harmonic oscillator with the time-independent wavefunctions $\psi_n(x)$ satisfying

$$\hat{H}\psi_n(x) = \hbar\omega \left(n + \frac{1}{2}\right)\psi_n(x),$$

consider the superposition at time t=0

$$\psi(x,0) = \sum_{n=0}^{\infty} c_n \psi_n(x).$$

(a) How should the coefficients be chosen so that $\psi(x,0)$ is an eigenstate of lowering operator \hat{a} with eigenvalue α (a given complex number), i.e.,

$$\hat{a}\psi(x,0) = \alpha\psi(x,0).$$

(b) Using the expression for \hat{a} , find the explicit form of the wavefunction at $\psi(x,0)$. Ensure that $\psi(x,0)$ is correctly normalized.

Note that eigenstates of \hat{a} are referred to as "coherent states".

Solution.

(a) why am i doing this

$$\psi(x, t = 0) = \exp\left(i\phi - \frac{|\alpha|^2}{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \psi_n(x)$$