Information Technology Mathematics

Trees

Lecturer: Markus Hofmann

Lecture Outline

Continuing with graphs & trees, basic concepts and how they can model structures in computing

- Trees
- Applications of trees
- Spanning trees
 - Minimal spanning trees
- Minimum distance paths
- Rooted trees
- Binary trees
- Tree traversal: in-order, pre-order, post-order

Trees

- Definition
 - A tree is a connected graph with no cycle

Remember a cycle is path is a graph that:

- · includes at least one edge,
- · there are no repeated edges,
- the first and last vertex coincide but there are no other repeated vertices
- i.e. A circuit with some additional properties
- Any tree with n vertices has n 1 edges.

Examples of trees – (on board)

Spanning trees

- Weighted graph a weighted graph is a simple graph in which each edge has a positive number attached to it.
 This number attached to the edge in a weighted graph is called the weight of the graph
- e.g. using graphs in the design of a LAN
 - Suppose have a site (college campus) which has several buildings with computer labs
 - Want to build a communication network a LAN, between buildings
 - Can use a graph to represent this where the vertices are the buildings and the edges the link between the buildings
 - The cost of linking each pair of buildings or say the capacity of the link etc. can be represented by a weight (number) on the edge
 - Example weighted graph (on board)

Spanning trees

- In building the LAN we want to create links in such a way that it is possible for a computer in any lab to communicate with a computer in any other lab (doesn't mean that every pair of buildings must be directly linked it is acceptable for two buildings to be linked indirectly via a third for instance)
- Example matrix representing cost of linking each pair of buildings (on board)

- Installing a link between two buildings costly so would like to build the network as cheaply as possible
- We do not need to install all the links just the three cheapest

- So could install CD, BC and AC
 - We these links in place any two labs can communicate with one another.
- Small problem so could solve by inspection
- What if we wanted to solve this for a large number of sites? (not practical to try solve it in a trial and error way
 - Need an algorithm to find the cheapest network linking the sites
- A first step towards finding a solution look for some properties that the solution must have
 - The solution itself must be a graph
 - Consist of all the vertices of the original graph but only some of the edges of the original graph
 - Must be a connected graph for any two sites to communicate
 - Cannot contain any cycles
- Solution is a Tree Spanning Tree
 - where the vertices of the tree are the vertices of the original graph and
 - the edges of the tree must be selected from the set of edges in the original graph

Minimal Spanning Tree

- A connected graph can have many spanning trees
 - For previous example could also have AB, AC and AD or the edges AB, BC and CD
- Remember we want to install just the three cheapest links i.e. the smallest possible total weight
- A spanning tree with this property is called a Minimal Spanning Tree (MST)
- Can state this problem more formally: as design an algorithm that inputs a connected <u>weighted</u> graph and outputs a <u>minimal spanning tree</u>

Minimal Spanning Trees

- How to find the MST
 - Start at one of the vertices
 - Pick an edge with the least weight of all the edges incident to that vertex
 - This edge forms the start of our MST
 - Next look for an edge with least weight of all the edges (that does not form a cycle) that join up with the edge we already have
 - Continue this way adding on edge at a time to obtain a MST
 - Note when working through this process, if the addition of an edge would make a cycle then we don't want that edge (tree structure should not have a cycle)

Minimal Spanning Trees

- More formally can write this as <u>Prim's algorithm</u>
- 1. Input a connected weighted graph G, with vertex set $V(G) = \{v_1, ..., v_n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$
- 2. $T = \{v_1\}$; unused_edges = E(G)
- **3. For** i = 1 to n-1 **do**
 - 3.1 *e* = the first edge with minimal weight in *unused_edges* that is incident to exactly one vertex in *T*
 - 3.2 v = the vertex not in T to which e is incident
 - $3.3 T = T \cup \{e, v\}$
 - 3.4 unused_edges = unused_edges {e}
- 4. Output *T*

Note: For-Do loop executed n-1 times (where n is the number of vertices in the weighted graph) as any tree with n vertices has n-1 edges and a spanning tree for a graph has the same number of vertices as the original graph

 Example – use Prim's algorithm to find a minimal spanning tree for the weighted graph shown below

Solution:

- Starting at vertex A, find that the edge with least weight incident to A is the edge AD with weight 20, so this is the first edge in the minimal spanning tree T
- Look next at the edges incident to both A and D and not yet in T.
- Of these DE has the least weight so we add it to T
- Continue in a similar fashion, we add EB and EC to T.
- At this stage the edge with the least weight incident to vertex T is BC with the weight 10 but this edge is to two vertices of T and therefore we cannot not add it to T
- The edge with the least weight that is incident to exactly one vertex of *T* is *BF*, so this is the edge to be added.

MST

 The resulting minimal spanning tree is shown below which has a total weight of 58

The tree *T* has a total of 5 edges Since the original graph has 6 vertices and 5 = 6-1 there are no more edges to be added

MST - Trace table for the previous algorithm

Step	e	v	Т	unused_edges	Output
2	-	-	{A}	{AB, AD, AF, BC, BE, BF, CD, CE, DE, EF}	-
3.1 - 3.4	A D	D	{A, AD, D}	{AB, AF, BC, BE, BF, CD, CE, DE, EF}	-
3.1 - 3.4	D E	E	{A, AD, D, DE, E}	{AB, AF, BC, BE, BF, CD, CE, EF}	-
3.1 - 3.4	B E	В	{A, AD, D, DE, E, BE, B}	{AB, AF, BC, BF, CD, CE, EF}	-
3.1 - 3.4	C E	C	{A, AD, D, DE, E, BE, B, CE, C}	{AB, AF, BC, BF, CD, EF}	-
3.1 - 3.4	B F	F	{A, AD, D, DE, E, BE, B, CE, C, BF, F}	{AB, AF, BC, CD, EF}	-
4	B F	F	{A, AD, D, DE, E, BE, B, CE, C, BF, F}	{AB, AF, BC, CD, EF}	{A, AD, D, DE, E, BE, B, CE, C, BF, F}

Weighted graph representation

- How can a weighted graph be represented in a form suitable for machine computation?
 - Use a matrix i.e. a weight matrix, similar to the adjacency matrix
 - Where put the weight of the edge from vertex v_i to v_j rather than the number of edges in row i and col j
 - What goes in if there is no edge form vertex v_i to v_j ?
 - For the type of weighted graph we have just seen the weights represent a penalty of some kind: i.e. cost or distance which we want to minimise in a typical application
 - e.g. travelling salesman problem a sales representative wants to visit a number of towns and return home, travelling the shortest possible total distance in the process
 - Alternatively the weights could represent we want to maximise –
 e.g. capacity of a communication channel

Weighted graph representation

• Let G be a weighted graph with vertices $v_1, v_2, ..., v_n$, in which the weights represent a penalty of some kind. The weight matrix of G is the $n \times n$ matrix for which the entry w_{ij} in the ith row and jth col is given by the rule:

$$w_{ij} = \begin{cases} 0 \text{ if } i = j \\ \text{the weight of the edge from } i \text{ to } j \text{ if } v_i \text{ and } v_j \text{ are adjacent} \\ \infty \text{ if } i \neq j \text{ and } v_i \text{ are not adjacent} \end{cases}$$

Weighted graph representation

 Write down the weight matrix for this graph:

\boldsymbol{A}	0	22	∞	20	∞	25]
В	22	22 0 10 ∞ 5 12	10	∞	5	12
C	∞	10	0	18	8	∞
D	20	∞	18	0	13	∞
E	∞	5	8	13	0	15
F	25	12	∞	∞	15	0
	\overline{A}	B	C	D	E	F^{-}

Minimal distance paths

- Weighted graph could represent the communications network in looked at earlier but this time let the weight of each edge represent the time taken by a signal to travel along the link in the network
- Finding the quickest (or shortest) path through a graph (representing some situation) of vertices is a considerable problem in computing
 - In this example we want to find the quickest path for a signal to take through the network from one vertex to the other.

Minimal distance paths

- Let G be a connected graph, and let u and v be vertices in G. If P is a path from u to v, then the length of P is the sum of the weights of the edges in P. The distance from u to v is the smallest of the lengths of all the paths from u to v.
- Can use d(u, v) to denote the distance from u to v
- And weight(e) to denote the weight of an edge e
- Dijkstra's algorithm provides an efficient solution to the minimum distance problem

Dijkstra's algorithm

- 1. Input a connected weighted graph G with vertex set $V(G) = \{v_1, ..., v_n\}$ and edge set $E(G) = \{e_1, ..., e_m\}$
- 2. $T = \{v_1\}; d(u, v) = 0$
- **3.** For j = 1 to n-1 do
 - 3.1 w = the first vertex for which $d(v_1, w)$ + weight(e) is minimised. Where w ranges over all the vertices in T, and e ranges over all the edges in G T that are incident to w
 - 3.2 e = the first edge incident to w for which $d(v_1, w) + weight(e)$ is minimised
 - 3.3 v = the vertex in G-T to which e is incident
 - $3.4 T = TU\{e, v\}$
 - $3.5 d(v_1, v) = d(v_1, w) + weight(e)$
 - 4. Output T

Dijkstra's algorithm

 Example use Dijkstra's algorithm to find the minimum distance from A to C in the weighted graph below and the path that achieves this distance.

Dijkstra's algorithm

Solution:

Step	w	e	v	Т	$d(v_1, v)$	Output
2	-	-	-	{A}	-	-
3.1 - 3.5	A	AD	D	{A, AD, D}	20	-
3.1 - 3.5	A	AB	В	{A, AD, D, AB, B}	22	-
3.1 – 3.5	A	AF	F	{A, AD, D, AB, B, AF, F}	25	-
3.1 - 3.5	В	BE	E	{A, AD, D, AB, B, AF, F, BE, E}	27	-
3.1 - 3.5	В	ВС	С	{A, AD, D, AB, B, AF, F, BE, E, BC, C}	32	-
4	В	ВС	C	{A, AD, D, AB, B, AF, F, BE, E, BC, C}	32	A, AD, D, AB, B, AF, F, BE, E, BC, C}

The distance from A to C is 32 and the path is ABC

Rooted Trees

- Rooted tree one of the vertices is specified as the root
 - Tree is drawn with the root at the top
- Vertices adjacent to the root, 'first generation', are shown below the root
 - i.e. in a horizontal line below the root
- Vertices below these (i.e. can be reached from the root by a path of length 2), the 'second generation', are shown below the first generation and so on...
- Example (on board)

Rooted Trees

 Family tree is an example of a rooted tree (similar terminology associated with family tree is used with rooted trees)

Terminology:

- Parent vertex vertex immediately above a given vertex
- Child vertex vertex immediately below a given vertex
- Leaf a vertex with no children
- Every vertex in a rooted tree has exactly one parent
- A vertex in a rooted tree is an ancestor or a descendant of another

Rooted Trees

- Rooted trees are widely used in computing to represent a decision process i.e. <u>decision trees</u>
- Example of a decision tree: suppose want to sort three distinct numbers denoted by a, b and c into increasing order.
 - Take two numbers at a time and compare them
 - More comparisons may be needed...
- Can depict this procedure using a rooted tree (on board)
- The decision process begins at the root and moves down the tree until a leaf is reached
 - where the leaves represent the final arrangements of the three numbers into increasing order and the other vertices represent points at which a decision is made

Binary tree

- Binary rooted tree every vertex that is not a leaf has exactly two children
- The two children of each parent are the *left child* and the right child
- Left child the root of the left subtree
- Right child the root of the right subtree
- Binary trees can be use to represent algebraic expressions

Binary tree

- Given the expression (a (b/c)) x (d + e)
 - To evaluate using a computer with values substituted in for the variables (on board)
- The principle expression in this example, is the multiplication (it is executed last after (a – (b/c)) and (d + e) have been evaluated, remember precedence from last year!)
- The principle operations of these sub-expressions are subtraction and multiplication
- (a (b/c)) also contains the sub-expression (b/c) with division as its principle operation
- This can all be depicted using binary rooted tree (called an expression tree)
 - Where the root is labelled with the principle expression
 - Left sub-expression is represented by the left subtree (which has a right subtree of its own)
 - Right sub-expression is represented by the right subtree

In-order traversal

- A computer can process this expression by visiting the vertices of the expression tree in a particular order - traversal of the tree
- In-order traversal (infix)
 - Visit all of the vertices of the left sub-expression
 - Then visit the root
 - And lastly visit the vertices of the right sub-expression
- Algorithm in-order_traverse(T)
 - 1. If T is not a leaf then
 - 1.1 *in_order_traverse* (left subtree of *T*)
 - 2. Output the root of *T*
 - 3. If T is not a leaf then
 - 3.1 *in-order_tranerse* (right subtree of *T*)

In-order traversal

- Example apply in-order traversal to the expression tree for (a – (b/c)) x (d + e)
- (on board)

Pre-order Traversal

- Pre-order traversal visit the root before visiting each subtree
- Algorithm pre-order_traverse(T)
 - 1. Output the root of *T*
 - 2. If T is not leaf then
 - 2.1 *pre-order_traverse* (left subtree of *T*)
 - 2.2 *pre-order_traverse* (right subtree of *T*)

Example – carry out the pre-order traversal of the expression tree for $(a - (b/c)) \times (d + e)$ (on board)

Post-order Traversal

- Post-order traversal visit the root after visiting each subtree
- Algorithm post-order_traverse(T)
 - 1. If T is not a lea then
 - 1.1 *post-order_traverse* (left subtree of *T*)
 - 1.2 *post-order_traverse* (right subtree of *T*)
 - 2. Output the root of *T*

Example – carry out the post-order traversal of the expression tree for $(a - (b/c)) \times (d + e)$ (on board)

Summary

- Trees are particularly useful in commuting
 - Used to construct networks with the least expensive set of lines linking distributed computers
 - Employed to construct efficient algorithms for locating items in a list
 - Used to construct efficient codes for storing and transmitting data
 - Used to model procedures that are carried out using a sequence of decision
- Tree graph with no cycle
- Covered some basic concepts if trees minimal spanning trees, finding the shortest path, rooted trees and applications of trees such as binary search trees, traversal of trees for computation ...