

# Hypothesis Testing

### Statistical Hypothesis

- A hypothesis is a statement or assertion about the state of nature. e.g. The campaign was effective.
- Every hypothesis implies its contradiction or alternative. e.g. The campaign was not effective.
- Either of the hypothesis statement can be true or false.



# Testing the Hypothesis

- For testing any hypothesis we make use of the sample data.
- Based on the sample data, we reject either of the hypothesis statements.
- The decision to reject or failing to reject any of the hypothesis can be either correct or wrong.





# Flow for Hypothesis Testing





# Actual and Findings

- Found fact would be based on sample whereas actual fact would be based on population.
- We won't be able to directly find the actual fact due to the large size of population.
- Hence we analyze the sample and try to find the fact.
- It may happen that:
  - Found fact from the sample is same as actual fact
  - Found fact from the sample is exactly opposite of the actual fact.



# Actual and Findings

- When found fact from sample is not same as the actual fact from the population then we would be wrong.
- We are interested in knowing the probability of us getting wrong.



### Statistical Hypothesis

- Null Hypothesis: A **null hypothesis**, denoted by  $H_0$ , is an assertive statement about one or more population parameters. This is the statement we hold to be true until we have sufficient statistical evidence to reject it.
- The alternative hypothesis, denoted by  $H_1$ , is the assertive statement of all situations *not* covered by the null hypothesis.



# Example

- H0: The mean sales are 1400.
- H1: The mean sales are not 1400.
- OR
- H0: The mean sales are less than or equal to 1400.
- H1: The mean sales are greater than 1400.



# Example

- Consider the example:
  - H0: The mean sales are less than or equal to 1400.
  - H1: The mean sales are greater than 1400.
- Suppose we draw a random sample for testing the above hypotheses.
- We can be wrong in the either of the cases:
  - The mean sales for population are less than or equal to 1400 and our sample suggests it as greater than 1400.(Rejecting true H0)
  - The mean sales for population are greater than 1400 and our sample suggests it as less than or equal to 1400. (Failing to reject the false H0)



#### Errors

- Type I: Rejecting true HO
- Type II: Failing to reject the false HO
- P(Type I Error) =  $\alpha$
- P(Type II Error) =  $\beta$
- If we try to reduce  $\alpha$ , then  $\beta$  increases and if we try to reduce  $\beta$ , then  $\alpha$  increases.
- More serious is the error  $\alpha$ . Hence a level for  $\alpha$  is maintained. This level is called level of significance. It is denoted by  $\alpha$ . Usually its is maintained as 0.1 or 0.05 or 0.01.
- More often maintained as 0.05.



# Types of Errors

| Decision          | H0 True                             | H0 False                          |
|-------------------|-------------------------------------|-----------------------------------|
| Reject H0         | Type I Error (α)<br>Producer's Risk | Correct                           |
| Fail to reject H0 | Correct                             | Type II Error (β) Consumer's Risk |



#### P - Value

- The *p-value* is the probability of getting a value of the test statistic as extreme as, or more extreme than, the actual value obtained, when the null hypothesis is true.
- The p-value is the smallest level of significance,  $\alpha$ , at which the null hypothesis may be rejected using the obtained value of the test statistic.
- Policy to be followed: When the p-value is less than  $\alpha$ , reject  $H_0$ , otherwise we do not reject  $H_0$ .



### Power of a Test

• The **power** of a statistical hypothesis test is the probability of rejecting the null hypothesis when the null hypothesis is false.

Power = 
$$(1 - \beta)$$

• Power is the probability that your test will reject the null hypothesis when the null hypothesis is false, or the probability that you will detect a difference when a difference actually exists.



### Tail of Test

- H0: The mean sales are 1400. i.e.  $\mu = 1400$
- H1: The mean sales are not 1400. i.e.  $\mu \neq 1400$ 
  - This is **two tailed** test as in H1, mean sales can be greater then or less than 1400.
- H0: The mean sales are less than or equal to 1400. i.e.  $\mu \le 1400$
- H1: The mean sales are greater than 1400. i.e.  $\mu > 1400$ 
  - This is right tailed or upper tailed test as in H1, mean sales are greater than 1400.
- H0: The mean sales are greater than or equal to 1400. i.e.  $\mu \ge 1400$
- H1: The mean sales are less than 1400. i.e.  $\mu$  < 1400
  - This is left tailed or lower tailed test as in H1, mean sales are less than 1400.



# Testing of Hypothesis Approaches

- Critical Value Approach
- P-value Approach



# Critical Value Approach





# P-value Approach





Select the appropriate Test



Calculate the test statistic



If p-value  $< \alpha$ , then reject  $H_0$ 



Based on test statistic, calculate the p-value



# Types of Hypothesis Tests

- Parametric: Tests which assume a particular distribution(Normal) of the population
  - t-test
  - F-test
  - Chi-square test for variance
- Non-Parametric: Tests which assume no particular distribution of the population
  - Median Test
  - Wilcoxon's Rank Sum Test
  - Mann-Whitney Test
  - Kruskal Wallis Test





# Thank You