Project Design Phase-II Technology Stack (Architecture & Stack)

Date	03 October 2022
Team ID	PNT2022TMID18149
Project Name	Project – Nutrition Assistant Application
Maximum Marks	4 Marks

Technical Architecture:

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web	HTML, CSS, Javascript, Flask, Python
		UI, Mobile App, Chatbot etc.	
2.	Application Logic-1 – Creating an account	User registers their personal details such as name,	Flask App running using Kubernetes Cluster,
		age, current weight etc. These details are stored in the	IBM DB2
		IBM cloud DB2.	
3.	Application Logic-2 – Logging in	Verify credentials and land the user to their home page.	Flask App running using Kubernetes Cluster,
		Perform OTP authentication if needed.	IBM DB2

4.	Application Logic 3 – Creating a custom	User enters details/ingredients and amount required to	Flask App running using Kubernetes Cluster
	meal	make a certain meal. The total calorie count is shown	IBM DB2
		once the user clicks 'finish meal'.	
5.	Application Logic 4 – Purchasing Premium	User is redirected to payment portal to complete the	Flask App running using Kubernetes Cluster
	Subscription	purchase.	IBM DB2
6.	Application Logic 5 – Image	User can take or upload a picture to automatically	Flask App running using Kubernetes Cluster
	recognition	detect a food item which is already available in the	IBM DB2
		database.	
7.	Application Logic 6 – Viewing	User can track their past records and visualise their calorie	
	Dashboard	consumption and analyse their trends.	IBM DB2
8.	Application Logic 7 – Daily Reminders	Notification is sent to the User on a daily basis to	Flask App running using Kubernetes Cluster
		remind them to add their daily consumption of food and	IBM DB2
		track calories.	
9.	Application Logic 8 – In-App Social	Users can add friends and set goals together.	Flask App running using Kubernetes Cluster
	Network	User can also post their progress and view others	IBM DB2
		progress.	
10.	Application Logic 9 – Blogs and	Articles and blogs by Nutrition experts are added	Flask App running using Kubernetes Cluster
	Articles of Nutrition Experts	periodically to the app for users to view.	IBM DB2
11.	Application Logic 10- Setting a daily calorie	User is alerted if they under or over consume calories.	Flask App running using Kubernetes Cluster,
	limit		IBM DB2
12.	Database	Data Type, Configurations etc.	MySQL
13.	Cloud Database	Database Service on Cloud	IBM DB2.
14.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service
			or Local Filesystem
15	External API-1- SendGrid	The SendGrid service will be used to alert users of	SendGrid

15.	External API-1- SendGrid	The SendGrid service will be used to alert users of	SendGrid
		various notifications etc as defined by the user.	
16.	External API-2- NutritionAPI	The service will be used for image recognition.	NutritionAPI
17.	Machine Learning Model	Pre trained model available through the API to recognise	Object Recognition Model.
		food items.	

18.	Deployment	Application Deployment on Local System / Cloud Local	IBM Cloud Registry, IBM Cloud Object
		Server Configuration: The application will run on the	Storage, IBM DB2, Docker, Kubernetes
		local server/client side to allow user to interact with Web	
		UI. Cloud Server Configuration: The application will be	
		hosted on the cloud for the user to user. This is done	
		through containerization	
		of the application using Docker, stored in the container	
		registry, and will be run by Kubernetes.	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Flask	Backend Framework built on python.
2.	Security Implementations	TLS- Transport Layer Security	All external communications is encrypted and user data is protected.
3.	Scalable Architecture	The containerised app can be scaled easily to a large user	IBM DB2, IBM Cloud Object Storage,
		base.	Kubernetes
4.	Availability	IBM Cloud guarantees availability with very	IBM Cloud Object Storage, Kubernetes,
		minimal downtime. The app loses minimal functionality	Docker Images, IBM DB2, SendGrid
		if the external APIs are not available	
5.	Performance	Performance depends on the availability of	IBM Cloud Object Storage, Kubernetes,
		compute power in the cloud.	Docker Images, IBM DB2, SendGrid