Introduction to Logarithms: Answers

Zoe Gemmell

Summary

Answers to questions relating to the study guide on Logarithms.

These are answers to: Questions: Introduction to Logarithms. Please attempt the questions before reading these answers!

Q1

For the following, find the value of x if x is a rational number:

1.1.
$$\log_7(x) = 1$$
 rearranged gives $7^1 = x$ so $x = 7$

1.2.
$$\log_8(x)=3$$
 rearranged gives $8^3=x$ so $x=512$

1.3.
$$\log_{12}(x)=0$$
 rearranged gives $12^0=x$ so $x=1$

1.4.
$$\log_{10}(100) = x$$
 rearranged gives $10^x = 100$ so $x = 2$

1.5. $\log_2(17)=x$ rearranged gives $2^x=17$ but 17 is odd so this would not result in a rational number for x

1.6.
$$\log_4(2)=x$$
 rearranged gives $4^x=2$ so $x=\frac{1}{2}$

1.7.
$$\log_3(27) = x$$
 rearranged gives $3^x = 27$ so $x = 3$

1.8.
$$\log_{10}(1)=x$$
 rearranged gives $10^x=1$ so $x=0$

1.9.
$$\log_x(16)=4$$
 rearranged gives $x^4=16$ so $x=\sqrt[4]{16}=2$

1.10.
$$\log_x(49)=2$$
 rearranged gives $x^2=49$ so $x=\sqrt{49}=7$

1.11. $\log_x(13) = 4$ rearranged gives $x^4 = 13$ so $x = \sqrt[4]{13}$

1.12.
$$\log_{2x}(12) = -1$$
 rearranged gives $(2x)^{-1} = 12$ so $x = \frac{1}{24}$

Q2

Before attempting this question, write out the 5 laws next to their names:

1. The Product Rule: $\log_a(M\cdot N) = \log_a(M) + \log_a(N)$

2. The Quotient Rule: $\log_a \left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$

3. The Power Rule: $\log_a(M^k) = k \cdot \log_a(M)$

4. The Zero Rule: $\log_a(1)=0$

5. The Identity Rule: $\log_a(a) = 1$

For the following, find the value of x:

2.1. $\log_3(\frac{1}{27}) = x$

$$x = \log_3(1) - \log_3(27) \tag{Using Law 2}$$

$$= 0 - \log_3(27)$$
 (Using Law 4)

$$-x = \log_3(27)$$

Let y=-x, so Rearranging gives: $3^y=27$, so y=3=-x implying that x=-3

2.2. $\log_4(16) = x$

$$x = \log_4(4^2)$$

$$= 2 \cdot \log_4(4)$$
 (Using Law 3)
$$= 2 \cdot 1$$
 (Using Law 5)
$$= 2$$

2.3.
$$\log_7\left(\frac{2}{49}\right) = x$$

$$x = \log_7(2) - \log_7(49) \tag{Using Law 2}$$

$$= \log_7(2) - 2$$

$$x + 2 = \log_3(27)$$

Rearranging gives: $3^{x+2}=27$, so x+2=3 implying that x=1

2.4. $\log_x(YZ)=M$ From question 1, $\log_x(YZ)=M$ rearranged gives $x^M=YZ$ so $x=\sqrt[M]{YZ}$

2.5. $\log_6(\frac{36}{x}) = 1$

$$1 = \log_6(36) - \log_6(x) \tag{Using Law 2}$$

$$= 2 - \log_6(x)$$

$$\log_6(x) = 1$$

$$6^1 = x$$

2.6.
$$\log_5(25) = x$$

$$x = \log_5(5 \cdot 5) \tag{Using Law 1}$$

$$= \log_5(5) + \log_5(5)$$

$$= 1 + 1 \tag{Using Law 5}$$

$$= 2$$

Q3

Convert the following logs to the given base and evaluate 3.1. $\log_3(25)$ to base 5

$$\log_3(25) = \frac{\log_5(25)}{\log_5(3)}$$

3.2. $\log_4(64)$ to base 16

$$\log_4(64) = \frac{\log_{16}(64)}{\log_{16}(4)}$$

3.3. $\log_e(100)$ to base 10

$$\log_e(100) = \frac{2}{\log_{10}(e)}$$

3.4. $\ln(27)$ to base 3

$$\ln(27) = \log_3(27)$$

3.5. $\log_4(8)$ to base 2

$$\log_4(8) = \frac{\log_2(8)}{\log_2(4)} = \frac{3}{2}$$

Q4

For the following, find the value of x:

4.1. $3^{x+1} = 7^x$

$$x = -\frac{\log(3)}{\log\left(\frac{7}{3}\right)}$$

4.2. $17^{2x} = 4^{x-1}$

$$x = \frac{\log(2)}{\log\left(\frac{2}{17}\right)}$$

4.3. $5^{x+1} + 5^x = 12$

$$x = \frac{\log(2)}{\log(5)}$$

4.4. $2^{3x-1} = 10^x$

$$x = -\frac{\log(2)}{\log\left(\frac{5}{4}\right)}$$

4.5. $11^x = 122^{(x-1)}$

$$x = \frac{\log(122)}{\log\left(\frac{122}{11}\right)}$$

4.6. $2^{2x} - 8 \cdot 2^x - 16 = 0$

$$x = 2 + \frac{\log(1+\sqrt{2})}{\log(2)}$$