A Common Pattern in Science and Engineering

Hypothesis: Hooke's Law for Springs

"The power of any springy body is in the same proportion with the extension."

Process Observations

Distance(m)	Mass(kg)
0.0865	0.1
0.1015	0.15
0.1106	0.2
0.1279	0.25
0.4416	0.9
0.4304	0.95
0.437	1.0

Hypothesis: linear relationship between F and x

observation; = prediction; ± error

Accumulation of many small random errors

Accumulation of many small random errors

The Normal distribution

Gaussian model for observed errors

So when observation errors are due to the accumulation of many small random perturbations:

Have: observations, Want: most likely line

Log Likelihood

$$\begin{array}{l} \operatorname{Maximize} \prod_{i=0}^{len(obs)-1} L_{err}(obs_i - pred_i) \end{array}$$

Least Squares 6.00x -- Understanding Experimental Data

pylab.polyfit(xvals, yvals, degree)

```
# find a, b that minimize
# sum((yvals-(a*xvals + b))**2)
a,b = pylab.polyfit(xvals,yvals,1)

# find a, b, c that minimize
# sum((yvals-(a*xvals**2 + b*xvals + c))**2)
a,b,c = pylab.polyfit(xvals,yvals,2)
```

Measuring "goodness" of fit

R2: Coefficient of Determination

Fraction of variability not explained by model

Fraction of variability explained by model

Using a model: How thick a shield?

Use the model to make predictions when experiments are impractical or inadvisable.

Want to know the speed of the arrow as it reaches the target.

Arrow speed when reaching target

$$y = (-.000069)x^2 + (.0755)x + .528$$