Low-Rank Constraint for Fast Inference in Structured Models

Justin Chiu* and Yuntian Deng* and Alexander Rush

October 14, 2021

Structured Models

- Explicitly model output associations
 - Directly or through <u>latent variables</u>
- Focus on combinatorially large latent discrete structures
 - Complementary to distributed representations

Scaling Structured Models

- ▶ Prior work demonstrated: Size ★ Performance ★
 - ► Hidden Markov Models (HMM)
 - Probabilistic Context-Free Grammars (PCFG)
- Prior work scaled via
 - Sparsity for HMMs¹
 - Low-rank tensor decompositions for PCFGs²
- This work: low-rank matrix constraints
 - More general
 - Less speedup

¹Chiu and Rush, Scaling Hidden Markov Language Models.

²Yang, Zhao, and Tu, 'PCFGs Can Do Better: Inducing Probabilistic Context-Free Grammars with Many Symbols'.

Inference as Matrix-Vector Products

- ► Inference: sequence of matrix-vector products
- Speed up via fast mat-vecs
- ► Applies to a large family of structured models

Fast Matrix-Vector Products

- ▶ Mat-vecs take $O(L^2)$ computation
- Various fast methods
 - Sparsity (nnz entries)
 - ► Fast Fourier Transform (*L* log *L*)
 - Low-Rank factorization (LR)
- Connected to work in efficient attention and low-dimensional kernel approximations³

³Choromanski et al., *Rethinking Attention with Performers*; Peng et al., *Random Feature Attention*; Blanc and Rendle, *Adaptive Sampled Softmax with Kernel Based Sampling*.

Roadmap

- ► Speeding up HMM inference
- Speeding up PCFG inference
- ► Generalization to hypergraph inference
- Experiments

Two Examples

some text here some text here some text here some text here Blah some text here

Hidden Markov Models (HMMs)

For times t, model states $z_t \in [Z]$, and tokens $x_t \in [X]$,

with joint distribution

$$p(x,z) = \prod_{t} p(x_t \mid z_t) p(z_t \mid z_{t-1})$$

Inference

Given observed $x = (x_1, \dots, x_T)$ We wish to maximize

$$p(x) = \sum_{z_1} \cdots \sum_{z_T} p(x, z) = \alpha_1^{\top} \Lambda_2 \Lambda_3 \cdots \Lambda_T \mathbf{1},$$

where we have the

start,
$$[\alpha_1]_{z_1} = p(x_1 \mid z_1)p(z_1),$$
 and transition operators,
$$[\Lambda_t]_{z_{t-1},z_t} = p(x_t \mid z_t)p(z_t \mid z_{t-1})$$

Inference: Backward Algorithm

Performing multiplications from right to left

$$p(x) = \alpha_1^{\top}(\Lambda_2(\Lambda_3 \mathbf{1}))$$

Recursively

$$\beta_t = \Lambda_t \beta_{t+1}$$

▶ Requires $O(TZ^2)$ operations in total

Low-Rank Factorization

Factor matrices $\Lambda \in \mathbb{R}^{Z \times Z}$ into product of $U, V \in \mathbb{R}^{Z \times R}$

resulting in two matrix-vector products of cost O(ZR) each

Asdf

Experiments

Experiments

- ► Language modeling on PTB
- ▶ Feature map $\phi(U) = \exp(UW)$, with learned $W \in \mathbb{R}^{R \times R}$

Baseline: Softmax HMM

HMM Performance

HMM Accuracy

HMM Speed

Further Scaling on PTB with Dropout (Validation)

Speed Comparison⁴

 $^{^42^{14}\ (16\}text{k})$ state SE-HMM takes 506 s/epoch on the same data

Discussion

- Reduced computation complexity of inference by 4x with a low rank assumption
- Scaling factor not as large as SE-HMM
- Validation PPL worse than SE-HMM

Conclusion

Extended techniques from neural networks to HMMs

Sped up inference by constraining structure in both the emission and transition matrices

 Demonstrated improvements in perplexity with larger state spaces

Future Work

- Explore the performance of more complex interpretable models
 - Hierarchical / Factorial HMMs
 - Probabilistic context-free grammars
 - ► Switching linear dynamical systems⁵
- Explore other structure for fast matrix-vector products and tensor generalizations
 - ► FFT-inspired algorithms⁶
- Learn sparsity constraints in SE-HMM

 $^{^5}$ Foerster et al., 'Intelligible Language Modeling with Input Switched Affine Networks'.

⁶Dao et al., 'Kaleidoscope: An Efficient, Learnable Representation For All Structured Linear Maps'.

EOS

Citations

- Blanc, Guy and Steffen Rendle. Adaptive Sampled Softmax with Kernel Based Sampling. 2018. arXiv: 1712.00527 [cs.LG].
 - Chiu, Justin T. and Alexander M. Rush. Scaling Hidden Markov Language Models. 2020. arXiv: 2011.04640 [cs.CL].
- Choromanski, Krzysztof et al. Rethinking Attention with Performers. 2021. arXiv: 2009.14794 [cs.LG].
- Dao, Tri et al. 'Kaleidoscope: An Efficient, Learnable
 Representation For All Structured Linear Maps'. In: *International*
 - Conference on Learning Representations. 2020. URL: https://openreview.net/forum?id=BkgrBgSYDS.

Foerster, Jakob N. et al. 'Intelligible Language Modeling with Input Switched Affine Networks'. In: CoRR abs/1611.09434

- (2016). arXiv: 1611.09434. URL: http://arxiv.org/abs/1611.09434.
 Peng, Hao et al. Random Feature Attention. 2021. arXiv:
- 2103.02143 [cs.CL].

 Yang, Songlin, Yanpeng Zhao, and Kewei Tu. 'PCFGs Can Do

Better: Inducing Probabilistic Context-Free Grammars with

Generalized Softmax

Softmax

$$p(z_t \mid z_{t-1}) = \frac{\exp(\mathbf{u}_{z_{t-1}}^{\top} \mathbf{v}_{z_t})}{\sum_{z} \exp(\mathbf{u}_{z_{t-1}}^{\top} \mathbf{v}_{z})}$$

Generalized Softmax

$$p(z_t \mid z_{t-1}) = \frac{K(\mathbf{u}, \mathbf{v})}{\sum_z K(\mathbf{u}, \mathbf{v}_z)} = \frac{\phi(\mathbf{u})^\top \phi(\mathbf{v})}{\sum_z \phi(\mathbf{u})^\top \phi(\mathbf{v}_z)},$$

for positive kernel $K: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}_+$ and feature map $\phi: \mathbb{R}^D \to \mathbb{R}^R$

Generalized Softmax: Inference

▶ The key $O(Z^2)$ step in the forward algorithm:

$$p(z_t \mid x_{< t}) = \sum_{z_{t-1}} p(z_t \mid z_{t-1}) p(z_{t-1} \mid x_{< t})$$

In matrix form,

$$oldsymbol{\gamma}_t = \underbrace{oldsymbol{lpha}_{t-1}}_{\mathbb{R}^Z} \underbrace{igwedge_{\mathbb{R}^{Z imes Z}}}_{\mathbb{R}^{Z imes Z}},$$

where we have the probability of the

current state,
$$[\gamma_t]_{z_t} = p(z_t \mid x_{< t}),$$
 last state,
$$[\alpha_{t-1}]_{z_{t-1}} = p(z_{t-1} \mid x_{< t}),$$
 transition probability,
$$[\Lambda]_{z_{t-1},z_t} = p(z_t \mid z_{t-1})$$

Generalized Softmax: Inference

Use generalized softmax in transition distribution

$$[\Lambda]_{z_{t-1},z_t} = p(z_t \mid z_{t-1}) \propto \phi(\mathbf{u}_{z_{t-1}})^{\top} \phi(\mathbf{v}_{z_t})$$

 Allows us to apply associative property of matrix multiplication

$$\begin{split} \gamma_t &= \alpha_{t-1} \Lambda \\ &= \alpha_{t-1} (\operatorname{diag}(d) \phi(U) \phi(V)^\top) \\ &= \underbrace{(\alpha_{t-1} \circ d)}_{\mathbb{R}^Z} \underbrace{\phi(U)}_{\mathbb{R}^Z \times f} \underbrace{\phi(V)}_{\mathbb{R}^f \times Z}, \end{split}$$

with stacked embeddings $\phi(U), \phi(V) = [\phi(\mathbf{v}_1), \dots, \phi(\mathbf{v}_Z)]$ and normalizing constants d

▶ Takes O(Zf) time from left to right!