Introduction to Semantic Segmentation

Zamaliev Eduard eduard.zamaliev@intel.com

Agenda

- Problem formulation
- Datasets
- Evaluation metrics
- Architectures
- Loss functions
- Comparison

Computer vision problems

- Aerospace photos processing
- Medical scan segmentation
- Autonomous driving

Computer vision problems

Problem formulation

Input image:

$$I = \{I_{ij}\}_{\substack{0 \le i < w, \\ 0 \le j < h}} I_{ij} \in \mathbb{R}^c$$

Set of classes:

$$C = \{0,1,...,N-1\}$$

Mask:

$$M = \{M_{ij}\}_{0 \le i < w}, M_{ij} \in C$$

$$0 \le j < h$$

Segmentation function:

$$\varphi(R^c) \to C$$

Datasets

Dataset	Train subset	Test subset	Classes	
Common objects				
PASCAL VOC 2012 [http://host.robots.ox.ac.uk/pascal/VOC/voc2012]	9 963	1447	20	
ADE20K [http://groups.csail.mit.edu/vision/datasets/ADE20K]	20 210	2000	150	
MS COCO'15 [http://mscoco.org]	80 000	40 000	80	

Datasets

Dataset	Train subset	Test subset	Classes			
City, streets, cars						
CamVid [http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid]	468	233	11			
Cityscapes [https://www.cityscapes-dataset.com]	2 975	500	19			
KITTI [http://www.cvlibs.net/datasets/kitti]	200	200	4			
Interiors						
Sun-RGBD [http://rgbd.cs.princeton.edu]	10 355	2860	37			
NYUDv2 [http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html]	795	645	40			

Datasets: Pascal VOC2012

- Airplane
- Bicycle
- Bird
- Boat
- Bottle
- Bus
- Car
- Cat
- Chair

- Cow
- dining table
- Dog
- Horse
- Motorbike
- Person
- potted plant

- Sheep
- Sofa
- Train
- tv/monitor

Datasets: MS COCO

Lin T.Y., et al. Microsoft COCO: Common objects in context // Lecture Notes in Computer Science. - Vol. 8693. - 2014. - P. 740-755. [https://arxiv.org/pdf/1405.0312].

Datasets: Citiscapes

- 50 cities
- 5 000 fine annotations
- 20 000 coarse annotations
- 30 classes, 8 groups
- Diversity: daytime, season, weather conditions

The Cityscapes Dataset Homepage [https://www.cityscapes-dataset.com/examples].

Evaluation metrics

- Pixel accurary
- Mean pixel accuracy over classes
- Jaccard index
- Dice index

Pixel accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

	Prediction		
Ground Truth		True	False
	True	TP	FN
	False	FP	TN

IoU and Jaccard index

$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FN + FP}$$

■
$$IoU(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FN + FP}$$

■ $J(A, B) = 2\frac{|A \cap B|}{|A| + |B|} = \frac{2TP}{2TP + FN + FP}$

■ $IoU = \frac{J}{2-J}$

•
$$IoU = \frac{J}{2-J}$$

Architectures: CNN

Architectures: CNN

intel

Architectures: CNN

intel

Architecture: FCN

Internet of Things Group intel. 18

Architecture: FCN

Architectures: SegNet

Architectures: Upsampling

Architectures: Deconvolution

stride=0, padding=0

Architectures: UNet

Architectures: Feature Pyramid Network

Architectures: DeepLab v1

(a) Going deeper without atrous convolution.

Architectures: Atrous convolutions

Internet of Things Group intel.

Architectures: DeepLab v2

Architectures: DeepLab v3+

Loss functions: Cross entropy

$$L_{CE}(p, y) = -\sum_{c=1}^{M} y_c \log(p_c)$$

$$L_{CE}(p, y) = -\sum_{c=1}^{M} y_c (1 - p_c)^{\gamma} \log(p_c)$$

Loss functions: IoU

$$IoU(A,B) = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

$$IoU(p, y) = \frac{\sum_{i=1}^{N} p_i y_i}{\sum_{i=1}^{N} p_i + \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} p_i y_i}$$

$$L_{IoU} = -\log\left(\frac{\sum_{i=1}^{N} p_i y_i}{\sum_{i=1}^{N} p_i + \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} p_i y_i}\right)$$

Comparison

Model	Year	Mean IoU, %	FPS	Latency, ms
DeepLab	2014	63.1	0.25	4000
SegNet	2015	57.0	16.7	60
CRF-RNN	2015	62.5	1.4	700
Dilation10	2015	67.1	0.25	4000
ENet	2016	58.3	76.9	13
FCN	2016	65.3	2	500
FRRN	2016	71.8	2.1	469
ICNet	2017	70.6	30.3	33
PSPNet	2017	81.2	0.78	1288
ENet + Lovász-Softmax	2018	63.1	76.9	13
LEDNet	2019	70.6	71	14
ESNet	2019	70.7	63	16
FasterSeg	2019	71.5	163.9	6.1

Internet of Things Group intel®

Comparison

Useful links

- UNet: https://arxiv.org/abs/1505.04597
- DeepLab: https://arxiv.org/abs/1606.00915
- DeepLabV3: https://arxiv.org/abs/1706.05587
- DeepLabV3+: https://arxiv.org/abs/1802.02611
- SegNet: https://arxiv.org/abs/1511.00561
- FCN: https://arxiv.org/abs/1411.4038
- Grad-CAM: https://arxiv.org/abs/1610.02391
- https://github.com/mrgloom/awesome-semantic-segmentation
- Kaggle: https://www.kaggle.com/
- ODS (@bes): https://ods.ai/ https://opendatascience.slack.com
- Deep Learning Book: https://www.deeplearningbook.org/

#