Klausur zur Vorlesung Grundbegriffe der Informatik 19. März 2019

Klausur-	-ID							
			'	'		'		
Nachname:								
Vorname:								
MatrNr.:								
Diese Klausur ist mein 1. Versuch 2. Versuch in GBI								
nur falls 2. Ver	Email-Adr.:							
	Postanso	chrift:						
Aufgabe	1	2	3	4	5	6	7	
max. Punkte	8	5	7	7	5	6	6	
tats. Punkte								
Gesamtpunkt		/ 44		Note:				

/ 8	Aufgabe 1 $(2 + 1 + 2 + 1 + 1 + 1 = 8 \text{ Punkte})$
/ 2	a) Ist $\sqrt{2^n 3^n} \in \Omega(2^n)$? Begründen Sie Ihre Antwort:
/ 1	b) Ist die folgende Aussage richtig? Für jede Turing-Maschine T ist die Sprache L(T) genau dann entscheidbar, wenn T für jede Eingabe hält. ja: nein:
/ 2	c) Es sei $A=\{a,b\}$. Geben Sie eine Sprache $L\subseteq A^*$ an, sodass $L^*=A^*$ aber $(L^2)^*\neq (A^2)^*$ ist. $L=$
/1	d) Es sei M eine Menge und R eine binäre Relation auf M (also R ⊆ M × M), die transitiv ist. Ist R ∘ R dann auch immer transitiv? ja: □ nein: □
/ 1	e) Beschreiben Sie mit einem regulären Ausdruck R die formale Sprache aller Wörter über dem Alphabet A = {a, b}, die die Eigenschaft haben, dass an keiner Stelle ein a vorkommt, wenn sowohl irgendwo weiter links als auch irgendwo weiter rechts ein b steht. R =
/1	f) Gibt es einen Graphen G = (V, E), der zwar azyklisch aber kein Baum ist? Falls ja, geben Sie einen solchen Graphen an; andernfalls begründen Sie, warum das nicht sein kann. Antwort:

Aufgabe 2 (1 + 1 + 3 = 5 Punkte)

Es sei $A = \{a,b\}$ ein Alphabet und eine Abbildung $f: A^* \to A^*$ wie folgt definiert:

$$\forall w \in A^* : f(w, \varepsilon) = \varepsilon$$

$$\forall w \in A^* : f(\varepsilon, w) = \varepsilon$$

$$\forall x_1, x_2 \in A \ \forall w_1, w_2 \in A^* : f(x_1w_1, x_2w_2) = \begin{cases} x_1 f(w_1, w_2) & \text{falls } x_1 = x_2 \\ \varepsilon & \text{falls } x_1 \neq x_2 \end{cases}$$

/ 1

a) Berechnen Sie schrittweise f(abb, abaa).

/ 1

b) Beschreiben Sie anschaulich präzise $f(w_1, w_2)$.

/ 3

c) Beweisen Sie induktiv, dass für jedes $w_1 \in A^*$ gilt: Für jedes $w_2 \in A^*$ ist $f(w_1, w_2)$ ein Präfix von w_1 .

Weiterer Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (4 + 1 + 2 = 7 Punkte)

a) Gegeben sei das Alphabet $A = \{a, b, c, d, e, f, g\}$ und ein Wort $w \in A^*$ in dem die Symbole mit folgenden Häufigkeiten vorkommen:

a	b	С	d	е	f	g
11	6	11	27	9	2	34

/ 4

(i) Zeichnen Sie den Huffman-Baum.

/ 1

(ii) Geben Sie die Huffman-Codierung des Wortes bad an, die sich aus Ihrem Huffman-Baum ergibt.

/ 2

b) Für $k \geq 2$ sei ein Alphabet $A = \{a_0, a_1, \ldots, a_{k-1}\}$ mit k Symbolen gegeben und ein Text, in dem jedes Symbol a_i mit Häufigkeit 2^i vorkommt für $0 \leq i < k$.

Geben Sie die Huffman-Codierungen aller Symbole $\mathfrak{a}_{\mathfrak{i}}$ an.

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (2 + 1 + 2 + 2 = 7 Punkte)

Es sei $A=\{0,1\}$ ein Alphabet. Für jedes $n\in \mathbb{N}_0$ sei $V_n=A^n$ sowie E_n die Menge

 $\big\{\left.\{w_1,w_2\}\;\big|\;\exists i,j\in\mathbb{Z}_n:(i\neq j\wedge\forall k\in\mathbb{Z}_n:(k\not\in\{i,j\}\leftrightarrow w_1(k)=w_2(k)))\;\right\}$

und es sei G_n der ungerichtete Graph (V_n, E_n) .

/ 2

a) Zeichnen Sie G_n für $n \in \{0, 1, 2, 3\}$. Beschriften Sie alle Knoten.

/ 1

b) Geben Sie die Adjazenzmatrix A_2 und die Wegematrix W_2 von G_2 an. Geben Sie bei A_2 für jede Zeile und Spalte an, welchem Knoten sie entspricht.

/ 2

c) (In der Originalklausur war an dieser Stelle die Formulierung einer unlösbaren Aufgabe. Für das Archiv der alten Klausuren zum Lernen wurde diese Teilaufgabe entfernt.)

/ 2

d) Zeigen oder widerlegen Sie: $\forall n \in \mathbb{N}_0 : (E_n)_g = (E_n)_g^*$. Hinweis. R^* bezeichnet die reflexiv-transitive Hülle einer binären Relation R. Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (2 + 1 + 2 = 5 Punkte)

Es sei das Alphabet $X=\{a,b\}$ gegeben. Betrachten Sie die Grammatiken $G_1=(\{S_1,A_1\},X,S_1,P_1)$ und $G_2=(\{S_2,A_2,B_2\},X,S_2,P_2)$ mit

$$\begin{split} P_1 = \{ \; S_1 \to \mathtt{aa} S_1 \mid \mathtt{b} A_1 \mid \epsilon, \\ A_1 \to \mathtt{a} S_1 \mid \mathtt{b} \; \} \end{split}$$

und

$$P_2 = \{ S_2
ightarrow S_2 S_2 \mid A_2 B_2, \ A_2
ightarrow ab, \ B_2
ightarrow ba S_2 \mid \epsilon \ \}$$

/ 2

a) Geben Sie zu G_i jeweils einen regulären Ausdruck R_i an (wobei $i\in\{1,2\}),$ sodass $\langle R_i\rangle=L(G_i)$ ist.

$$R_1 =$$

$$R_2 =$$

Hinweis. Sie dürfen die üblichen Klammereinsparungsregeln ausnutzen. Aber beschränken Sie sich ansonsten auf die Notationsmöglichkeiten aus der Definition regulärer Ausdrücke und benutzen Sie keine Abkürzungen wie a⁺.

/ 1

b) Die Grammatik G_1 ist rechtslinear, die Grammatik G_2 nicht. Geben Sie eine rechtslineare Grammatik $G_3 = (N_3, X, S_3, P_3)$ mit höchstens 3 Nichtterminalsymbolen (also $|N_3| \leq 3$) an, sodass $L(G_3) = L(G_2)$ ist.

/ 2

c) Geben Sie eine Grammatik $G_4 = (N_4, X, S_4, P_4)$ an, die die Sprache $L(G_4) = L(G_1) \cup L(G_2)$ erzeugt. Ihre Grammatik darf höchstens 4 Nichtterminalsymbole haben (also $|N_4| \le 4$).

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (2 + 1 + 3 = 6 Punkte)

Es sei das Alphabet $X = \{a, b\}$ und die formale Sprache

$$L = \{ w \in X^* \mid \exists k \in \mathbb{N}_0 : N_b(w) = 3k + 1 \}$$

gegeben.

 $N_b(w)$ bezeichne dabei die Anzahl der Vorkommen des Zeichens b in w.

/ 2

a) Geben Sie einen endlichen Akzeptor an, der L erkennt.

Es sei jetzt A ein beliebiger endlicher Akzeptor mit Zustandsmenge Z und dessen Eingabealphabet gleich X ist, und für den L(A) = L gilt.

/ 1

b) Zeigen Sie, dass $|Z| \neq 1$ ist.

/ 3

c) Zeigen Sie, dass $|Z| \neq 2$ ist.

Hinweis. Führen Sie einen Widerspruchsbeweis durch. Sie dürfen dabei annehmen, dass Teilaufgabe b) schon bewiesen worden ist.

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (3 + 1 + 2 = 6 Punkte)

Betrachten Sie folgende Turing-Maschine T mit Eingabealphabet {a, b}:

/ 3

a) Simulieren Sie die ersten 14 Schritte von T für das Eingabewort w=abab. Vervollständigen Sie dazu folgende Tabelle:

Schritt	Konfiguration						Schritt	Konfiguration
0		A a	b	a	ъ		7	
1			B b	a	b		8	
2							9	
3							10	
4							11	
5							12	
6							13	
							14	
							•	

b) Geben Sie Funktionen f, g: $\mathbb{N}_+ \to \mathbb{N}_+$ an, sodass für die Zeitkomplexität Time $_T \colon \mathbb{N}_+ \to \mathbb{N}_+$ und Platzkomplexität Space $_T \colon \mathbb{N}_+ \to \mathbb{N}_+$ von T gilt: Time $_T \in \Theta(f)$ und Space $_T \in \Theta(g)$.

Hinweis. Für die Definition von f und g dürfen Sie nur die Grundrechenarten, Logarithmen und Exponentialfunktionen und Kompositionen davon verwenden.

f(n) =	
g(n) =	

/ 2

c) Geben Sie eine hinreichende und notwendige Bedingung dafür an, dass ein Wort $w \in \{a,b\}^+$ in L(T) liegt, d.h. von T akzeptiert wird.

Hinweis. Sie dürfen dabei keinen Bezug auf T nehmen.

Weiterer Platz für Antworten zu Aufgabe 7: