Méthodes d'inférence de réseaux de gènes

Béatrice DUVAL - Olivier Goudet

LERIA

janvier 2023

Réseaux de gènes

Objectif: comprendre les interactions entre les gènes grâce aux méthodes de mesures de l'expression de gènes (puces à ADN, RNA-seq); les interactions seront représentées par des réseaux

Dans cette séance

- Présenter certaines méthodes utilisées dans la littérature pour l'inférence de réseaux biologiques.
- Présenter les génerateurs de données qui permettent d'évaluer les méthodes.

Section 1

Contexte

Inférence de réseaux de gènes

- Données transcriptomiques
 - Données statiques: mesures de l'expression des gènes dans un état stable (steady-state)
 - Ex: une plante soumise à un stress hydrique
 - Données temporelles : mesures de l'expression des gènes sur un intervalle de temps pour suivre l'évolution d'un processus biologique
 Ex: une graine obervée pendant sa période de germination

Dans ce cours, nous ne considérons que des données statiques. Les données soumises à la méthode d'inférence sont donc sous la forme d'une matrice d'expression de gènes

Exemple: Inférence d'un graphe de régulation génétique à partir de données d'observation continues

Matrice d'expression du génome de la plante *Arabidopsis thaliana*

Exemple de graphe de régulation génétique inféré

Une typologie des méthodes

- Méthodes basées sur une mesure de co-expression
 - Mesure de corrélation linéaire
 - Mesure d'information mutuelle
- Méthodes basées sur la régression

Section 2

Méthode utilisant la corrélation

WGCNA - Weighted Gene Co-expression Network Analysis

Langfelder and Horvath (2008)

- Méthode qui s'appuie sur la corrélation linéaire pour définir les liens candidats
- Exploite des propriétés topologiques pour affiner le réseau
- S'intéresse aux modules du réseau plus qu'aux liens entre paires de gènes.
 - Un module est un cluster de gènes fortement interconnectés: lien avec les fonctions biologiques des gènes (voir plus loin *analyse fonctionnelle*)

WGCNA - Construction d'un réseau

- Calcul de la matrice de corrélation non signée Cor: valeur absolue de la corrélation de Pearson
- Seuillage de la matrice de corrélation pour obtenir la matrice d'adjacence A du réseau
 - hard threshold pour un seuil τ fixé, $a_{i,j} = 1 \iff \mathit{Cor}_{i,j} > \tau$
 - lacksquare soft threshold pour un paramètre eta à déterminer, $a_{gs} = |cor(g,s)|^{eta}$
- Choix par l'utilisateur d'un seuil approprié pour un réglage approprié précision/rappel.

WGCNA - Recherche de modules

La recherche de modules s'appuie sur la mesure TOM Topological Overlap Matrix

$$\omega_{gs} = \frac{I_{gs} + a_{gs}}{\min(k_g, k_s) + 1 - a_{gs}}$$

où a_{gs} est la mesure d'adjacence entre deux gènes g et s $l_{gs} = \sum_{v} a_{gv} a_{vs}$ est la connectivité des voisins communs entre g et s et $k_g = \sum_{v} a_{gv}$ est la connectivité du gène g.

La TOM a pour but de quantifier la co-expressivité entre 2 gènes en prenant en compte leur corrélation, mais aussi la corrélation entre leurs voisins

WGCNA - Recherche de modules

Méthode de classification ascendante hiérarchique basée sur la TOM pour détecter les modules

Figure 1: Le réseau est représenté grâce à une heat map de la TOM, avec sur les axes, le dendrogramme dessinant les modules du bloc. L'échelle de coloration va de jaune pour une valeur faible à rouge pour une valeur forte.

WGCNA Complexité et disponibilité

- Complexité

 Pour un jeu de données constitué de *n* gènes et *p* échantillons
 - l'estimation de la corrélation est en $\mathcal{O}(n^2p)$
 - le calcul de la TOM est en $\mathcal{O}(n^3)$
- Code: Disponible sous forme de package R https://horvath.genetics.ucla.edu/html/ CoexpressionNetwork/Rpackages/WGCNA/

◄□▶◀圖▶◀불▶◀불▶ 불

Méthode WGCNA utilisée dans de nombreux travaux en biologie et médecine

- Saris et al. (2009): analyse de réseau du sang périphérique de patients atteints de sclérose latérale amyotrophique. https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-10-405
- Farhadian et al. (2021): étude de processus de lactation. https://www.nature.com/articles/s41598-021-81888-z.pdf

Extension possible

- Remplacer le calcul de corrélation par un score d'information mutuelle pour étendre la méthode à d'autres données qui rentrent mal dans le cas "linéaire Gaussien" (cf. Cours 2).
- Une autre idée pour le calcul de la mesure TOM ?

Section 3

Méthode utilisant l'information mutuelle

ARACNE / Algorithm for Reconstruction of Accurate Cellular Network

ARCANE Margolin et al. (2006)

- Matrice de liens basée sur l'Information Mutuelle (IM)
- Elimination de liens indirects

Une méthode en 3 étapes:

- 1 Calcul de la matrice d'information mutuelle
- 2 Seuillage de la matrice pour retenir les valeurs significatives et donc les liens significatifs
- 3 Suppression des liens indirects grâce à la Data Processing Inequality (DPI)

Information mutuelle et Data Processing Inequality (DPI)

Si 2 gènes g_1 et g_3 interagissent seulement à travers l'action d'un troisième gène g_2 , alors l'information mutuelle respecte l'inégalité suivante :

$$I(g_1,g_3) \leqslant \min[I(g_1,g_2);I(g_2,g_3)]$$

Dans un triplet connecté, la plus faible des 3 informations mutuelles provient d'un lien indirect, qui sera éliminé.

Suppression des liens indirects dans ARACNE

- **1** Déterminer tous les triplets connectés (avec une *MI* supérieure au seuil de significativité)
- 2 Dans chaque triplet, retirer le lien correspondant à la plus faible MI

ARACNE / exemple de post-traitement du réseau par la DPI

Figure 2: Réseau initial

Figure 3: Identification et simplification des triplets.

$$g_1 - 0.4 - g_2$$
 g_3 g_3

$$g_2$$
 — 0.2 — g_3 — 0.3 — g_4

ARACNE exemple de post-traitement du réseau par la DPI

Figure 4: Réseau initial

Figure 5: Réseau final

ARACNE Complexité et disponibilité

- Complexité Pour un jeu de données constitué de n gènes et p échantillons
 - l'estimation de l'information mutuelle est en $\mathcal{O}(n^2p^2)$
 - l'utilisation de la DPI est en $\mathcal{O}(n^3)$
 - ARACNE a donc une complexité en $\mathcal{O}(n^3 + n^2p^2)$.
- Code: Disponible dans le package minet (Mutual Information NETworks) du projet Bioconductor (R).

Section 4

Méthodes utilisant la régression

- GENIE3
- TIGRESS

Principe Décomposer l'inférence d'un réseau entre n gènes, en n problèmes différents de régression. On cherche à expliquer le vecteur d'expression d'un gène cible à partir des vecteurs d'expression des autres gènes

GENIE3 GEne Network Inference with Ensemble of trees

Huynh-Thu et al. (2010)

GENIE3

- Décompose l'inférence d'un réseau entre n gènes, en n problèmes différents de régression $\{f_i|j=1,\ldots,i=n\}$.
- Pour chaque problème f_j , l'expression d'un gène g_j est prédite en fonction des autres gènes par une forêt aléatoire.
- Chaque f_j donne un classement de l'importance des gènes g_i dans la prédiction de l'expression de g_i .
- Les différents classements sont agrégés.
 w_{ij} est le poids de g_i pour la prédiction de g_j.
- On obtient donc des liens orientés et pondérés avec cette méthode.

Rappel: arbre de régression (1/2)

- Échantillon de *n* points observés.
- Pour le point *i* de l'échantillon, l'expression du gène à prédire est une valeur continue noté *y_i*.
- Pour ce même point, l'expression des autres gènes (variables explicatives), sont notées x_i^j , avec j = 1, ..., d.
- Objectif : découper l'espace des variables explicatives en régions R_1 , ..., R_J (les feuilles de l'arbre) qui minimisent:

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_j)^2,$$
 (1)

avec, $\hat{y_j} = \frac{1}{n_j} \sum_{i \in R_j} y_i$, où n_j est le nombre d'observations dans la feuille R_i .

Algorithme - arbre de régression

- $R_{-}(j,s)$ l'ensemble des points tel que $x^{j} < s$.
- $R_+(j,s)$ l'ensemble des points tel que $x^j \ge s$.
- A chaque étape, pour construire l'arbre de régression, on choisit la la variable *j* et le seuil *s* minimisant

$$\frac{1}{n_{R_{-}}} \sum_{i \in R_{-}(j,s)} (y_{i} - \hat{y}_{R_{-}})^{2} + \frac{1}{n_{R_{+}}} \sum_{i \in R_{+}(j,s)} (y_{i} - \hat{y}_{R_{+}})^{2}$$
 (2)

- $Var(R_-) = \frac{1}{n_{R_-}} \sum_{i \in R_-(j,s)} (y_i \hat{y}_{R_-})^2$ est la variance intra-groupe associée à l'ensemble de points $R_-(j,s)$.
- $Var(R_+) = \frac{1}{n_{R_+}} \sum_{i \in R_+(j,s)} (y_i \hat{y}_{R_+})^2$ est la variance intra-groupe associée à l'ensemble de points $R_+(j,s)$.

GENIE3. Importance d'un lien

 \blacksquare Dans un arbre de régression, l'importance d'un noeud ${\cal N}$ est mesurée par la réduction de variance due à ce test

$$I(\mathcal{N}) = n_{S} Var(S) - n_{R_{-}} Var(R_{-}) - n_{R_{+}} Var(R_{+})$$
 (3)

où S est l'ensemble d'exemples de ce noeud, R_- et R_+ les 2 ensembles résultant du split selon une variable explicative donnée (cf. équation 2).

- L'importance d'une variable dans un arbre est la somme des valeurs $I(\mathcal{N})$ pour tous les noeuds (\mathcal{N}) où cette variable est utilisée.
- Pour une forêt aléatoire, l'importance d'une variable est la moyenne des valeurs obtenues sur les différents arbres.

GENIE3. Importance d'un lien

- Chaque problème de régression f_j donne donc un ensemble de poids w_{ij} qui mesurent l'importance du gène i dans la prédiction du gène j
- Pour se servir de ces mesures pour ordonner tous les liens on doit normaliser les expressions de gènes afin qu'ils aient tous une variance de 1 dans l'ensemble initial

GENIE3. Paramètres de la méthode

- Pour chaque problème f_j , 1000 arbres sont construits
- K, le nombre d'attributs choisis aléatoirement pour chaque split-test de l'arbre, est fixé à $\sqrt{n-1}$

GENIE3 - Performances

E. Coli Courbes précision-rappel pour différents paramétrages de Genie3 et pour Genie3 vs d'autres méthodes de l'état de l'art

GENIE3 Complexité et disponibilité

■ Complexité :

Pour un jeu de données constitué de n gènes et p échantillons T le nombre d'arbres construits pour chaque forêt K le nombre d'attributs utilisés La complexité de GENIE3 est en $\mathcal{O}(nTKp\log p)$

Implémentations en Mathlab, R et Python disponibles sur: https://github.com/vahuynh/GENIE3 et aussi dans Bioconductor

TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

Haury et al. (2012)

- Comme GENIE3, traite l'inférence d'un réseau à travers plusieurs problèmes de régression.
- Pour chaque problème f_j , l'expression d'un gène g_j est traité comme un problème de régression linéaire avec sélection parcimonieuse: méthode LARS (Least Angle Regression)
- Introduit une méthode de stabilité pour la sélection qui permet d'agréger les scores issus de chaque régression et affecte à un score pour chaque lien du réseau

Méthode LARS

Efron et al. (2004)

■ Comme pour Lasso, modèle linéaire avec bruit additif Gaussien :

$$y := \beta_1 x_1 + \dots + \beta_d x_d + \epsilon \tag{4}$$

- Au lieu d'utiliser une pénalisation ℓ_1 sur les coefficient β_j , l'idée est de partir d'un modèle avec aucune variables sélectionnées, puis introduire ces variables les une après les autres jusqu'à ce que tout le signal soit reconstruit.
- Avantage : pas besoin de spécifier d'hyperparamètre λ qui régule le niveau pénalisation ℓ_1 .

Etapes de l'algorithme LARS

- **1** Commencer avec tous les coefficients β_i égaux à zéro.
- **2** Trouver la variable explicative x_i la plus corrélée avec y.
- 3 Augmenter le coefficient β_j dans la direction du signe de sa corrélation avec y. Calculer les résidus $r = y \hat{y}$ au fur et à mesure. On s'arrête lorsqu'un un autre prédicteur x_k a autant de corrélation avec r que x_j en avait avec y.
- 4 Augmenter les coefficient (β_j, β_k) , jusqu'à ce qu'un autre prédicteur x_m ait autant de corrélation avec le résidu r.
- 5 Continuer jusqu'à ce qu'un critère d'arrêt soit atteint.
- 6 L'ordre de sélection des variables explicatives donne une mesure de leur importance pour reconstruire la variable cible *y*.

TIGRESS - LARS et stability selection

Sélection parcimonieuse

- LARS : introduction pas à pas des variables
- après L étapes dans LARS, L variables sont sélectionnées
- mais sensibles aux fortes corrélations entre variables

Stabilité de la sélection

- Recommencer un grand nombre de fois le processus de sélection sur des données perturbées.
- La fréquence de sélection d'un attribut donne un score de pertinence pour cet attribut.

Stability selection

- Exécuter *R* fois LARS (R=1000 par exemple) sur un jeu d'apprentissage obtenu par
 - ré-échantillonage des expériences
 - Perturbation des variables explicatives : multiplier chaque variable explicative par un nombre aléatoire tiré uniformément dans $[\alpha,1]$
 - Pour chaque run de LARS, on a après *L* pas de sélection une liste triée de *L* facteurs explicatifs
- F(g, t, l): fréquence de sélection du facteur t parmi les l premiers facteurs dans la prédiction de g, pour $g \in \mathcal{G}, t \in \mathcal{T}, l \in [1, L]$

Stability selection

Pour un gène $g \in \mathcal{G}$, courbes de fréquences des différents facteurs de transcription

Stability selection

On doit agréger les F(g,t,l) en un unique score s(g,t) pour chaque lien candidat s(g,t)

Pour un L donné au lieu de considérer la valeur max de F, on considère l'aire sous la courbe de F: prend en compte la position de t parmi les premiers

TIGRESS - Paramètres

- R: nombre de runs de LARS (aussi grand que possible)
- L: nombre d'étapes de sélection dans LARS
- lacktriangle α : randomization des valeurs d'expression
- K: le nombre de liens retenus dans le réseau (Les K meilleures valeurs du score s(g, t))

TIGRESS - Paramètres

TIGRESS - Performances

E. Coli

TIGRESS - Complexité et disponibilité

- Complexité
 Pour un jeu de données constitué de n gènes et p échantillons, avec q facteurs de transcription
 un run de LARS avec L étapes est en $\mathcal{O}(pqL + L^3)$ R runs pour chacun des n gènes donc complexité de TIGRESS en $\mathcal{O}(nR(pqL + L^3))$
- Implémentation en Mathlab, disponible à: http://members.cbio.minesparistech.fr/ ahaury/svn/dream5/html/index.html

Validation des méthodes d'inférence sur des données synthétiques

 Générateurs de données Schaffter et al. (2011)

Illustration du fonctionnement de GeneNetWeaver

■ Compétitions Dream http://dreamchallenges.org

Un exemple de workflow pour traiter un problème biologique

Analyse fonctionnelle - Gene Ontology

La GO est une ontologie de fonctions biologiques connue

Pour certains gènes d'un organisme on connaît les fonctions biologiques dans lesquelles ils sont impliqués: ils sont étiquetés par ces termes de la GO. Pour d'autres on ne connaît pas leur fonction. Le principe guilt-by-association est de supposer qu'ils ont la même fonction que des gènes avec lesquels ils sont associés dans un réseau ou par clustering.

Analyse fonctionnelle

A partir d'un réseau on peut constitier des modules (communautés du réseau).

Pour savoir si un module est pertinent du pont de vue d'une fonction biologique, on peut effectuer un **test d'enrichissement fonctionnel**. Cela consiste à vérifier si, dans un groupe de gènes donné une fonction biologique f est plus représentée que dans un groupe de même effectif tiré aléatoirement dans l'ensemble du génome.

D'après la loi hypergéométrique, si G est la taille du génome et E le nombre de gènes étiquetés par la fonction f d'après la GO, la probabilité d'observer e gènes étiquetés par f dans un échantillon de taille g est:

$$P(X = e) = \frac{\binom{E}{e}\binom{G-E}{g-e}}{\binom{G}{g}}$$

Analyse fonctionnelle

G taille du génome et E nombre de gènes étiquetés par la fonction f d'après la GO e nombre de gènes étiquetés par f dans un module de taille g.

Si la probabilité

$$P(X \ge e) = 1 - \sum_{k=1}^{e-1} \frac{\binom{E}{k} \binom{G-E}{g-k}}{\binom{G}{g}}$$

est faible, on conclura que la fonction biologique f est sur-représentée dans le groupe de gènes considéré, et donc que ce groupe de gènes est bien associé à la fonction biologique

Des outils pour effectuer ces tests fonctionnels:

AMIGO, GOATOOLS, BINGO

Analyse fonctionnelle: Bingo

Analyse fonctionnelle: Amigo

Displaying only	results with	P<0.05;	click here	to display a	II results
-----------------	--------------	---------	------------	--------------	------------

	Arabidopsis thaliana (REF)	upload 1 (▼ Hierarchy NEW! ③)				
GO biological process complete	<u>#</u>	#	expected	Fold Enrichment	+/-	<u>P value</u>
flavonoid biosynthetic process	<u>59</u>	11	1.51	7.29	+	1.19E-03
4metabolic process	8027	274	205.43	1.33	+	3.99E-05
⁴ flavonoid metabolic process	<u>67</u>	12	1.71	7.00	+	5.60E-04
response to light stimulus	<u>566</u>	35	14.49	2.42	+	5.58E-03
response to radiation	<u>585</u>	35	14.97	2.34	+	1.13E-02
Presponse to abiotic stimulus	<u>1491</u>	<u>79</u>	38.16	2.07	+	2.99E-06
response to stimulus	4612	193	118.03	1.64	+	2.15E-09
oxidation-reduction process	1223	67	31.30	2.14	+	1.67E-05
+single-organism metabolic process	2986	133	76.42	1.74	+	4.43E-07
single-organism process	6744	261	172.59	1.51	+	1.85E-10
response to acid chemical	<u>886</u>	<u>47</u>	22.67	2.07	+	7.31E-03
• <u>response to chemical</u>	2084	106	53.33	1.99	+	3.26E-08
response to oxygen-containing compound	<u>1144</u>	58	29.28	1.98	+	2.12E-03
response to hormone	1200	60	30.71	1.95	+	2.13E-03
response to organic substance	<u>1466</u>	<u>72</u>	37.52	1.92	+	3.22E-04
response to endogenous stimulus	1208	60	30.92	1.94	+	2.62E-03
single-organism cellular process	<u>3518</u>	136	90.03	1.51	+	1.38E-03
+cellular process	<u>8484</u>	284	217.12	1.31	+	1.23E-04
Unclassified	<u>8213</u>	193	210.19	.92	-	0.00E00

Bibliographie

- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.
- Farhadian, M., Rafat, S. A., Panahi, B., and Mayack, C. (2021). Weighted gene co-expression network analysis identifies modules and functionally enriched pathways in the lactation process. Scientific Reports, 11(1):1–15.
- Haury, A.-C., Mordelet, F., Vera-Licona, P., and Vert, J.-P. (2012). TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Systems Biology, 6:145.
- Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. *PLoS ONE*, 5(9):e12776.
- Langfelder, P. and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1):559.
- Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R. D., and Califano, A. (2006). ARACNE: An Algorithm for the