

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования ПЕРМСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра ИТАС

ДОКЛАД

на тему

«РАЗРАБОТКА МОДЕЛИ ПРОЦЕССА ЭЛЕКТРОЭРОЗИОННОЙ ОБРАБОТКИ НА ОСНОВЕ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА ДЛЯ ЗАДАЧ СИМУЛЯЦИИ»

Докладчик: студент группы РИС-24-1м Мехоношин Владислав Антонович Научный руководитель: д.э.н., проф. каф. ИТАС Долгова Елена Владимировна Консультант по предметной области: к.т.н., доц. каф. ИТАС Курушин Даниил Сергеевич Соавтор: студент группы РИС-24-1м Шепелев Вадим Михайлович

Пермь - 2025

ОБЪЕКТ, ПРЕДМЕТ И ЦЕЛЬ

Объект исследования – объектом исследования является процесс электроэрозионной обработки, включая оборудование, используемое для этой цели, и методы, которые можно использовать для его моделирования в виртуальной среде.

Предмет исследования – предметом исследования является разработка алгоритмов и моделей, необходимых для создания реалистичного симулятора электроэрозионного станка.

Цель работы – реализация упрощенной модели, позволяющей симулировать процесс удаления материала с заготовки с учетом требований о работе симулятора в реальном времени.

Для достижения поставленной цели необходимо решить следующие задачи:

- Проанализировать существующие подходы к моделированию процесса электроэрозионной обработки;
- Разработать математическую модель процесса электроэрозионного прошивания микроотверстий;
- Создать программное обеспечение для реализации разработанной модели;
- Провести экспериментальные исследования для проверки адекватности модели.

ЭЛЕКТРОЭРОЗИОННАЯ ОБРАБОТКА

Обобщенная модель электроэрозионной обработки

МЕТОД МОДЕЛИРОВАНИЯ ПРОЦЕССА ЭРОЗИИ

Объем материала (ΔV), удаляемого за один импульс, рассчитывается по формуле, связывающей энергию, пошедшую на удаление, с теплофизическими свойствами материала и энергией, необходимой для его нагрева, плавления и испарения:

$$\Delta V = \frac{E_{rem}}{\rho \cdot (\alpha \cdot r_v + L_m + \alpha \cdot C \cdot (T_b - T_0) + (1 - \alpha) \cdot C \cdot (T_m - T_0))}$$

где:

- $E_{rem} = C_a \cdot U \cdot I \cdot t_i$ энергия, затраченная на удаление материала;
- U напряжение импульса;
- I ток импульса;
- t_i длительность импульса;
- С_а коэффициент использования энергии;
- ρ плотность материала заготовки;
- r_v теплота испарения материала;
- L_m теплота плавления материала;
- С удельная теплоемкость материала;
- Т_т температура плавления материала;
- Т_b температура кипения материала;
- Т₀ начальная температура материала;
- α коэффициент, представляющий долю материала, удаляемого за счет испарения (остальная часть (1-α) удаляется за счет плавления и последующего выброса).

СХЕМА РАБОТЫ МОДЕЛИ

РЕАЛИЗАЦИЯ ПРОТОТИПА

Язык программирования: Python.

Краткое описание структуры скрипта:

- Модуль задания параметров.
- Функция расчета ∆V за импульс.
- Функция расчета глубины кратеров.
- Функция генерации OpenSCAD кода.

Для визуализации использовалась программа OpenSCAD.

ПАРАМЕТРЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

Цель эксперимента: демонстрация работы модели, влияние числа разрядов.

Материал: Сталь С45.

Основные параметры ЭЭО:

U=160 B,

I=8 A.

t pulse =100 мкс,

D elected = 0.5 мм.

Коэффициенты модели:

C a =0.01,

• α factor =0.1.

Количество разрядов для 3-х кратеров: 10 000, 50 000, 100 000.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

ΔV за 1 разряд: 0,00009761216805833594 мм3

№ кратера	Кол-во разрядов	Объем удаленного материала	Глубина кратера
1	1000	0,0976 мм3	0.0497 мм
2	50000	4,8806 мм3	0.2486 мм
3	100000	9,7612 мм3	0.4971 мм

ЗАКЛЮЧЕНИЕ

Основные достигнутые результаты:

- Проанализирован процесс ЭЭО
- Проведен анализ методов моделирования процесса и выбрана модель ЭЭО.
- Разработан программный прототип.
- Продемонстрирована симуляция формирования кратеров и их визуализация.

Направления дальнейшей работы:

- Проведение физических экспериментов для валидации и калибровки модели.
- Расширение модели (учет износа электрода, свойств диэлектрика, сложной геометрии кратера).
- Развитие симулятора (GUI, интерактивность).
- Исследование стохастических аспектов.

СПАСИБО ЗА ВНИМАНИЕ!

Мехоношин Владислав Антонович

тел.: 8-952-318-65-68

e-mail: vladmexon@gmail.com

pstu.ru