

 $\Rightarrow 4x_1 = 360$

 $\Rightarrow x_1 = \frac{360}{4} = 90$

 $\begin{bmatrix} x_1 & 0 & 90 \\ x_2 & 60 & 0 \end{bmatrix}$

Work as a Nurse in the USA (see salaries)

undefined

LEARN MORE

2. To draw constraint $3x_1 \ge 180 \rightarrow (2)$

Treat it as $3x_1 = 180$

$$\Rightarrow x_1 = \frac{180}{3} = 60$$

Here line is parallel to Y-axis

 $\begin{vmatrix} x_1 & 60 & 60 \\ x_2 & 0 & 1 \end{vmatrix}$

Work as a Nurse in the USA (see salaries)

undefined

LEARN MORE

Work as a Nurse in the USA (see salaries)

undefined

LEARN MORE

The value of the objective function at each of these extreme points is as follows:

Extreme Point Coordinates (x_1,x_2)	Lines through Extreme Point	Objective function value $Z = 15x_1 + 10x_2$
A(60, 0)	$2 \to 3x_1 \ge 180$ $4 \to x_2 \ge 0$	15(60) + 10(0) = 900
B(90, 0)	$1 \rightarrow 4x_1 + 6x_2 \le 360$ $4 \rightarrow x_2 \ge 0$	15(90) + 10(0) = 1350
C(60, 20)	$1 \rightarrow 4x_1 + 6x_2 \le 360$ $2 \rightarrow 3x_1 \ge 180$	15(60) + 10(20) = 1100

The maximum value of the objective function Z = 1350 occurs at the extreme point (90, 0).

Hence, the optimal solution to the given LP problem is : $x_1 = 90, x_2 = 0$ and max Z = 1350.

Work as a Nurse in the USA (see salaries)

undefined

Solution provided by AtoZmath.com

Any wrong solution, solution improvement, feedback then Submit Here

