1. Questions flash

■ Exercice 1 – Résolution d'équation factorisée

/ 1

Soit f une fonction définie sur \mathbb{R} par f(x) = 5(x+1)(x-6). Résoudre l'équation f(x) = 0.

Un produit est nul si et seulement si l'un de ses facteurs est nul.

1.
$$5 = 0$$
 impossible

$$2. x + 1 = 0 \Leftrightarrow x = -1$$

3.
$$x - 6 = 0 \Leftrightarrow x = 6$$

$$S = \{-1; 6\}$$

■ Exercice 2 - Tableau de signes avec forme canonique

/ 3

Soit f une fonction définie sur \mathbb{R} par $f(x) = -2(x-5)^2 + 13$. Dresser le tableau de signes de f.

Racines:
$$f(x) = 0 \Rightarrow (x-5)^2 = \frac{13}{2}$$

D'où
$$x = 5 \pm \sqrt{\frac{13}{2}}$$

■ Exercice 3 – Forme factorisée à partir des racines

/ 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = 4x^2 - 20x - 56$. On admet que les racines de f sont 7 et -2. Déterminer la forme factorisée de f.

$$f(x) = 4(x-7)(x+2)$$

■ Exercice 4 − Résolution d'inéquation avec forme factorisée

/ 3

Soit f une fonction définie sur \mathbb{R} par f(x) = 5(x-2)(x-9). Résoudre l'inéquation $f(x) \ge 0$.

Tableau de signe avec racines $x_1 = 2$ et $x_2 = 9$:

D'où $S =$	$-\infty:2$	$9:+\infty$
Doub		

x	$-\infty$		2		9		+∞
5		+		+		+	
x-2		_	0	+		+	
<i>x</i> – 9		_		_	0	+	
f(x)		+	0	_	0	+	

2. Fonction polynome de degre 2

■ Exercice 5 - Reconnaissance de fonctions du second degré

/ 3

Pour chaque fonction ci-dessous, déterminer si c'est une fonction polynôme de degré 2.

$$1. f(x) = x^2 + 2x - \sqrt{2}$$

2.
$$g(x) = x^2 + \frac{1}{x} - 1$$

3.
$$h(x) = 3x^2 - 3x - 2x^2 + 2x - x^2 - x + 5$$

Oui,
$$a = 1$$
, $b = 2$, $c = -\sqrt{2}$

Non, présence de
$$\frac{1}{x}$$

Non, degré 0 après réduction

■ Exercice 6 – Identification des coefficients

Parmi les fonctions ci-dessous, indiquer les fonctions polynômes de degré 2, en précisant ses coefficients.

1.
$$f(x) = (x+3)^2$$

2.
$$g(x) = (x+3)(x-3)$$

3.
$$h(x) = (x+1)^2 - (x-1)^2$$

$$f(x) = x^2 + 6x + 9$$
 donc oui,

a = 1, b = 6, c = 9

$$g(x) = x^2 - 9$$
 donc oui, $a = 1$, $b = 0$, $c = -9$

$$f(x) = x^2 + 6x + 9$$
 donc oui, $g(x) = x^2 - 9$ donc oui, $a = b(x) = 4x$ donc non, degré

■ Exercice 7 – Développement et identification

/ 3

Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 2(x+2)^2 - 3(x+1)$.

Développer f(x).

$$f(x) = 2(x^{2} + 4x + 4) - 3x - 3$$
$$= 2x^{2} + 8x + 8 - 3x - 3$$
$$= 2x^{2} + 5x + 5$$

En déduire que f est une fonction polynôme de degré 2 et déterminer ses coefficients.

$$f(x) = 2x^2 + 5x + 5$$
 donc $a = 2$, $b = 5$, $c = 5$

Comme $a = 2 \neq 0$, f est bien de degré 2.

3. Differentes formes d'un polynome de degre 2

■ Exercice 8 – Forme canonique guidée

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 4x + 5$.

Compléter l'égalité ci-contre avec des réels :

 $x^2 + 4x + \frac{4}{} = (x + \frac{2}{})^2$

En déduire la forme canonique de f.

 $f(x) = (x+2)^2 + 1$

■ Exercice 9 - Forme canonique par développement inverse

/3

Soit f la fonction définie sur \mathbb{R} par $f(x) = -3x^2 + 24x - 41$.

- **1. Développer** l'expression $-3(x-4)^2 + 7$.
- **2.** En déduire la forme canonique de f.

$$-3(x-4)^2+7$$

$$=-3(x^2-8x+16)+7$$

$$=-3x^2+24x-48+7$$

$$=-3x^2+24x-41$$

$$f(x) = -3(x-4)^2 + 7$$

■ Exercice 10 - Forme canonique - Entraînement

/ 4

Déterminer la forme canonique des fonctions suivantes (utiliser un brouillon).

$$1. f(x) = x^2 - 6x + 5$$

$$2. f(x) = x^2 + 5x + 4$$

$$f(x) = (x-3)^2 - 4$$

$$f(x) = (x - \frac{5}{2})^2 - \frac{9}{4}$$

■ Exercice 11 – Forme canonique par factorisation

/ 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 4x + 8$. Déterminer la forme canonique de f.

$$f(x) = 2(x+1)^2 + 6$$

■ Exercice 12 - Forme canonique - Niveau avancé

/6

Déterminer la forme canonique des fonctions suivantes (utiliser un brouillon).

1.
$$f(x) = 3x^2 + 9x + 5$$

2.
$$f(x) = -2x^2 + 2x + 2$$

$$f(x) = 3(x + \frac{3}{2})^2 - \frac{7}{4}$$

$$f(x) = -2(x - \frac{1}{2})^2 + \frac{5}{2}$$

■ Exercice 13 - Trois formes d'une fonction du second degré

/ 13

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 + 4x - 16$.

Montrer que pour tout réel x, f(x) = 2(x+4)(x-2)

Montrer que pour tout réel x, $f(x) = 2(x+1)^2 - 18$

$$2(x+4)(x-2)$$

$$= 2(x^2 - 2x + 4x - 8)$$

$$=2x^2+4x-16$$

$$= f(x)$$

 $2(x+1)^2-18$

$$=2(x^2+2x+1)-18$$

$$=2x^2+4x+2-18$$

$$=2x^2+4x-16=f(x)$$

3. Choisir la forme la plus adaptée pour répondre aux questions suivantes.

a. Dresser le tableau de variations de f

Forme canonique : $f(x) = 2(x+1)^2 - 18$

b. Résoudre f(x) = 0

Forme factorisée :

$$f(x) = 2(x+1+3)(x+1-3)$$

$$=2(x+4)(x-2)$$

$$S = \{-4; 2\}$$

c. Résoudre f(x) = -16

Forme développée :
$$2x^2 + 4x - 16 = -16$$

$$2x^2 + 4x = 0 \Rightarrow x(2x + 4) = 0$$

$$S = \{-2; 0\}$$

d. Résoudre f(x) > 0

Forme factorisée avec
$$f(x) = 2(x+4)(x-4)$$

$$S =]-\infty; -4[\cup]2; +\infty[$$

■ Exercice 14 - Formes et résolutions d'équations

/ 10

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+2)^2 - 9$.

1. Développer et réduire f(x)

$$f(x) = x^2 + 4x + 4 - 9$$

$$= x^2 + 4x - 5$$

2. Factoriser f(x).

$$f(x) = (x+2)^2 - 9$$

$$=(x+2)^2-3^2$$

$$=(x+2-3)(x+2+3)$$

$$=(x-1)(x+5)$$

3. Résoudre en utilisant la forme la plus adaptée.

$$f(x) = 9$$

$$(x+2)^2-9=9$$

$$\Rightarrow (x+2)^2 = 18$$

$$\Rightarrow x + 2 = \pm \sqrt{18} = \pm 3\sqrt{2}$$

$$\Rightarrow x = -2 \pm 3\sqrt{2}$$

$$S = \{-2 - 3\sqrt{2}; -2 + 3\sqrt{2}\}$$

$$\mathbf{b.} \quad f(x) = 0$$

$$(x-1)(x+5) = 0$$

$$S = \{1; -5\}$$

c.
$$f(x) = -5$$

$$x^2 + 4x - 5 = -5$$

$$\Rightarrow x^2 + 4x = 0$$

$$x(x+4) = 0 \Rightarrow S = \{0; -4\}$$

Une personne s'est pesée toutes les semaines pendant un an en 2018. Sa courbe de poids peut être modélisée par une fonction polynôme de degré 2 dont l'expression est $f(x) = 0.008x^2 - 0.4x + 75$ où x correspond au temps en semaines à partir du premier janvier 2018 ($x \in [0;52]$).

Dresser le tableau de variations de la fonction f.

Forme canonique : $f(x) = 0.008(x-25)^2 + 70$

2. En utilisant cette modélisation, répondre aux questions suivantes.

- Quel était son poids maximal sur l'année? Quand a-t-il été atteint?
- Quel était son poids minimal sur l'année? Ouand a-t-il été atteint?

Poids maximal:

75,632 kg atteint à

la semaine 52

Poids minimal:

70 kg atteint à la

semaine 25

4. Variations et courbe representative

■ Exercice 16 – Lecture graphique de paraboles

Pour chaque fonction représentée ci-dessous, déterminer les coordonnées du sommet, l'axe de symétrie et le signe de a.

Sommet: (1;2)

Axe: x = 1

Signe de a: a < 0

Sommet: (2; -3)

Axe: x = 2

Signe de a: a > 0

Sommet : (1;-1)

Axe: x = 1

Signe de a: a < 0

Sommet: (0;2)

Axe: x = 0

Signe de a: a < 0

■ Exercice 17 – Minimum et maximum de fonctions

/ 4

Dire pour chaque fonction si elle admet un minimum ou un maximum et en quelle valeur il est atteint.

$$1. \ f(x) = 3x^2 + 4$$

vaut f(0) = 4

x=0,

$$2. g(x) = -2(x-4)^2 + 8$$

Maximum en

$$x = 4$$
, vaut $g(4) = 8$ $x = 2$, vaut $h(2) = 7$

3.
$$h(x) = -2x^2 + 8x - 1$$

Maximum en

$$x = 2$$
, vaut $h(2) = 7$

$$4. k(x) = 7(x+1)^2 - 25$$

Minimum en

$$x = -1$$
,

vaut
$$k(-1) = -25$$

Soit f une fonction définie sur \mathbb{R} par $f(x) = x^2 + x - 2$.

- 1. Calculer f(1)
- **2.** Déterminer la forme canonique de f.

$$f(1) = 1^2 + 1 - 2 = 0$$

$$f(x) = x^{2} + x - 2, \text{ on a } \alpha = -\frac{1}{2 \times 1} = -\frac{1}{2}$$

$$\beta = f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^{2} + \left(-\frac{1}{2}\right) - 2$$

$$= \frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}$$

$$Donc f(x) = \left(x + \frac{1}{2}\right)^{2} - \frac{9}{4}$$

3. Dresser le tableau de variations de f.

■ Exercice 19 – Détermination d'une parabole par son sommet

/3

Soit f une fonction polynôme de degré 2. La courbe représentative de f a pour sommet le point A(1;3) et passe par le point B(0;5).

Déterminer la forme canonique de f.

La forme canonique est $f(x) = a(x - \alpha)^2 + \beta$ avec sommet $(\alpha; \beta)$.

Ici $\alpha = 1$ et $\beta = 3$, donc $f(x) = a(x-1)^2 + 3$.

La courbe passe par B(0;5) donc f(0) = 5

 $a(0-1)^2 + 3 = 5$, donc $a \times 1 + 3 = 5$

Ainsi, a = 2 et $f(x) = 2(x-1)^2 + 3$

■ Exercice 20 — Forme canonique par lecture graphique

/ 3

Soit f la fonction dont la représentation graphique est donnée ci-contre. Déterminer la forme canonique de f.

- Sommet : A(1;2) donc $\alpha = 1$ et $\beta = 2$

- Point B(0;4) appartient à la courbe

Forme canonique : $f(x) = a(x-1)^2 + 2$

Puisque f(0) = 4, $a(0-1)^2 + 2 = 4$

D'où $a+2=4 \implies a=2$ et $f(x)=2(x-1)^2+2$

Solution Polynômes du second degré 1 ère

Solution de l'Exercice 1

On a f(x) = 5(x+1)(x-6) = 0.

Un produit est nul si et seulement si l'un de ses facteurs est nul.

$$1.5 = 0$$
 impossible

$$2. x + 1 = 0 \Leftrightarrow x = -1$$

3.
$$x-6=0 \Leftrightarrow x=6$$

Donc $S = \{-1; 6\}$.

Solution de l'Exercice 2

 $f(x) = -2(x-5)^2 + 13$ est sous forme canonique avec a = -2 < 0.

Pour trouver les racines, résolvons f(x) = 0:

$$-2(x-5)^2 + 13 = 0 \Rightarrow (x-5)^2 = \frac{13}{2}$$

$$x - 5 = \pm \sqrt{\frac{13}{2}} \Rightarrow x = 5 \pm \sqrt{\frac{13}{2}}$$

Comme a = -2 < 0, la parabole est tournée vers le bas.

f(x) > 0 entre les racines et f(x) < 0 à l'extérieur.

Solution de l'Exercice 3

Les racines de f sont $x_1 = 7$ et $x_2 = -2$.

La forme factorisée s'écrit $f(x) = a(x - x_1)(x - x_2)$ avec a le coefficient dominant.

Dans la forme développée $f(x) = 4x^2 - 20x - 56$, on lit a = 4.

Donc f(x) = 4(x-7)(x-(-2)) = 4(x-7)(x+2).

Vérification: $4(x-7)(x+2) = 4(x^2+2x-7x-14) = 4(x^2-5x-14) = 4x^2-20x-56$ \checkmark

Solution de l'Exercice 4

$$f(x) = 5(x-2)(x-9) \ge 0$$

Racines de $f : x_1 = 2$ et $x_2 = 9$.

Coefficient dominant a = 5 > 0, donc la parabole est tournée vers le haut.

 $f(x) \ge 0$ à l'extérieur des racines et $f(x) \le 0$ entre les racines.

Donc $S =]-\infty;2] \cup [9;+\infty[$.

Solution de l'Exercice 5

1.
$$f(x) = x^2 + 2x - \sqrt{2}$$
 est de la forme $ax^2 + bx + c$ avec $a = 1 \neq 0$, $b = 2$, $c = -\sqrt{2}$.

Donc f est une fonction polynôme de degré 2.

2.
$$g(x) = x^2 + \frac{1}{x} - 1 = x^2 + x^{-1} - 1$$
 3. $h(x) = 3x^2 - 3x - 2x^2 + 2x - 1$

La présence du terme x^{-1} (exposant négatif) fait que g n'est pas une fonction polynôme.

3.
$$h(x) = 3x^2 - 3x - 2x^2 + 2x - x^2 - x + 5$$

Réduisons : $h(x) = (3-2-1)x^2 +$ $(-3+2-1)x+5=0x^2-2x+5=$ -2x + 5

h est une fonction affine (degré 1), pas une fonction polynôme de degré 2.

Solution de l'Exercice 6

1. $f(x) = (x+3)^2 = x^2 + 6x + 9$ C'est une fonction polynôme de degré 2 avec a = 1, b = 6, c = 9. 2. $g(x) = (x+3)(x-3) = x^2 - 9$ C'est une fonction polynôme de degré 2 avec a = 1, b = 0, c = -9.

3. $h(x) = (x+1)^2 - (x-1)^2$ Développons : $(x+1)^2 = x^2 + 2x + 1$ et $(x-1)^2 = x^2 - 2x + 1$ Donc $h(x) = (x^2 + 2x + 1) - (x^2 - 2x + 1) = x^2 + 2x + 1 - x^2 + 2x - 1 = 4x$ h est une fonction affine (degré 1), pas une fonction polynôme de degré 2.

Solution de l'Exercice 7

1. Développement :

$$\overline{f(x)} = 2(x+2)^2 - 3(x+1)$$

$$=2(x^2+4x+4)-3x-3$$

$$=2x^2+8x+8-3x-3$$

$$=2x^2+5x+5$$

2. $f(x) = 2x^2 + 5x + 5$ est de la forme $ax^2 + bx + c$ avec :

$$a = 2 \neq 0$$
, $b = 5$, $c = 5$

Donc f est bien une fonction polynôme de degré 2.

Solution de l'Exercice 8

1. Pour compléter $(x + ...)^2$, on cherche a tel que $(x + a)^2 = x^2 + 2ax + a^2$.

On veut 2ax = 4x, donc 2a = 4, donc a = 2.

Alors $(x+2)^2 = x^2 + 4x + 4$.

Donc $x^2 + 4x + 4 = (x+2)^2$.

2. On a $f(x) = x^2 + 4x + 5 = x^2 + 4x + 4 + 1 = (x+2)^2 + 1$. La forme canonique est $f(x) = (x+2)^2 + 1$.

Solution de l'Exercice 9

1. Développement de $-3(x-4)^2+7$:

$$-3(x-4)^2 + 7 = -3(x^2 - 8x + 16) + 7$$

$$= -3x^2 + 24x - 48 + 7$$

$$=-3x^2+24x-41$$

2. On constate que $-3(x-4)^2+7=-3x^2+24x-41=f(x)$.

Donc la forme canonique de f est : $f(x) = -3(x - 4)^2 + 7$.

Solution de l'Exercice 10

D'après le cours : L'écriture $a(x-\alpha)^2 + \beta$ est la **forme canonique** de la fonction $f: x \mapsto ax^2 + bx + c$.

$$1. \alpha = -\frac{b}{2a}$$

$$2. \beta = -\frac{b^2 - 4ac}{4a}$$

1. $f(x) = x^2 - 6x + 5$

$$a. \alpha = -\frac{-6}{2 \times 1} = 3$$

b.
$$\beta = -\frac{6^2 - 4 \times 1 \times 5}{4 \times 1}$$

= $-\frac{36 - 20}{4} = -4$

Ainsi
$$f(x) = (x-3)^2 - 4$$

 $2. f(x) = x^2 + 5x + 4$

a.
$$\alpha = -\frac{5}{2}$$

b.
$$\beta = -\frac{5^2 - 4 \times 1 \times 4}{4 \times 1}$$

= $-\frac{25 - 16}{4} = -\frac{9}{4}$

$$f(x) = (x - \frac{5}{2})^2 - \frac{9}{4}$$

Solution de l'Exercice 11

D'après le cours : L'écriture $a(x-\alpha)^2 + \beta$ est la **forme canonique** de la fonction $f: x \mapsto ax^2 + bx + c$. Pour $f(x) = 2x^2 + 4x + 8$, on a a = 2, b = 4, c = 8.

a.
$$\alpha = -\frac{b}{2a} = -\frac{4}{2 \times 2} = -1$$

b.
$$\beta = -\frac{b^2 - 4ac}{4a} = -\frac{4^2 - 4 \times 2 \times 8}{4 \times 2}$$

= $-\frac{16 - 64}{8} = -\frac{-48}{8} = 6$

En remplaçant a, α et β dans l'expression de la forme canonique, on obtient :

$$f(x) = 2(x+1)^2 + 6$$

Solution de l'Exercice 12

D'après le cours : L'écriture $a(x-\alpha)^2 + \beta$ est la **forme canonique** de la fonction $f: x \mapsto ax^2 + bx + c$.

$$1. \alpha = -\frac{b}{2a}$$

2.
$$\beta = -\frac{b^2 - 4ac}{4a}$$

$$1. f(x) = 3x^2 + 9x + 5$$

Pour cette fonction, on a a = 3, b = 9, c = 5.

a.
$$\alpha = -\frac{b}{2a} = -\frac{9}{2 \times 3} = -\frac{9}{6} = -\frac{3}{2}$$

b.
$$\beta = -\frac{b^2 - 4ac}{4a} = -\frac{9^2 - 4 \times 3 \times 5}{4 \times 3}$$

= $-\frac{81 - 60}{12} = -\frac{21}{12} = -\frac{7}{4}$

Ainsi
$$f(x) = 3(x - (-\frac{3}{2}))^2 + (-\frac{7}{4}) = 3(x + \frac{3}{2})^2 - \frac{7}{4}$$

$$f(x) = -2x^2 + 2x + 2$$

Pour cette fonction, on a a = -2, b = 2, c = 2.

a.
$$\alpha = -\frac{b}{2a} = -\frac{2}{2 \times (-2)} = -\frac{2}{-4} = \frac{1}{2}$$

b.
$$\beta = -\frac{b^2 - 4ac}{4a} = -\frac{2^2 - 4 \times (-2) \times 2}{4 \times (-2)}$$
$$= -\frac{4 - (-16)}{-8} = -\frac{4 + 16}{-8} = -\frac{20}{-8} = \frac{5}{2}$$

Ainsi
$$f(x) = -2(x - \frac{1}{2})^2 + \frac{5}{2}$$

Solution de l'Exercice 13

Montrer que pour tout réel
$$x$$
,
$$f(x) = 2(x+4)(x-2)$$

Montrer que pour tout réel
$$x$$
,
$$f(x) = 2(x+1)^2 - 18$$

$$2(x+4)(x-2)$$

$$=2(x^2-2x+4x-8)$$

$$=2x^2+4x-16$$

$$= f(x)$$

$$2(r+1)^2-18$$

$$2(x+1)^2-18$$

$$=2(x^2+2x+1)-18$$

$$=2x^2+4x+2-18$$

$$=2x^2+4x-16=f(x)$$

3. Choisir la forme la plus adaptée pour répondre aux questions suivantes.

a. Dresser le tableau de variations de f

Forme canonique : $f(x) = 2(x+1)^2 - 18$

x	$-\infty$	-1	+∞
f	+∞	-18	+∞

b. Résoudre f(x) = 0

Forme factorisée :

$$f(x) = 2(x+1+3)(x+1-3)$$

$$=2(x+4)(x-2)$$

$$S = \{-4; 2\}$$

Résoudre f(x) = -16

Forme développée : $2x^2 + 4x - 16 = -16$

$$2x^2 + 4x = 0 \Rightarrow x(2x + 4) = 0$$

$$S = \{-2; 0\}$$

d. Résoudre f(x) > 0

Forme factorisée avec f(x) = 2(x+4)(x-2)

$$S =]-\infty; -4[\cup]2; +\infty[$$

Solution de l'Exercice 14

1. Développer et réduire f(x)

$$f(x) = x^2 + 4x + 4 - 9$$

$$= x^2 + 4x - 5$$

2. Factoriser f(x).

$$f(x) = (x+2)^2 - 9$$

$$=(x+2)^2-3^2$$

$$=(x+2-3)(x+2+3)$$

$$=(x-1)(x+5)$$

3. Résoudre en utilisant la forme la plus adaptée.

a.
$$f(x) = 9$$

$$(x+2)^2 - 9 = 9$$

$$\Rightarrow (x+2)^2 = 18$$

$$\Rightarrow x + 2 = \pm \sqrt{18} = \pm 3\sqrt{2}$$

$$\Rightarrow x = -2 \pm 3\sqrt{2}$$

$$S = \{-2 - 3\sqrt{2}; -2 + 3\sqrt{2}\}$$

$$\mathbf{b.} \qquad f(x) = 0$$

$$(x-1)(x+5) = 0$$

$$S = \{1; -5\}$$

c.
$$f(x) = -5$$

$$x^2 + 4x - 5 = -5$$

$$\Rightarrow x^2 + 4x = 0$$

$$x(x+4) = 0 \Rightarrow S = \{0; -4\}$$

Solution de l'Exercice 15

1. Pour dresser le tableau de variations, déterminons la forme canonique :

$$f(x) = 0,008x^{2} - 0,4x + 75$$

$$\alpha = -\frac{b}{2a} = -\frac{-0,4}{2 \times 0,008} = \frac{0,4}{0,016} = 25$$

$$\beta = f(25) = 0.008 \times 25^2 - 0.4 \times 25 + 75 = 5 - 10 + 75 = 70$$

Donc $f(x) = 0.008(x - 25)^2 + 70$.

Comme a = 0.008 > 0, la parabole est tournée vers le haut.

Sur [0;52]: minimum en x = 25 avec f(25) = 70.

Aux bornes : f(0) = 75 et $f(52) = 0.008 \times 27^2 + 70 =$

5,832 + 70 = 75,632

2. D'après le tableau de variations :

1. Le poids maximal est 75,632 kg, atteint à la fin de l'année (semaine 52)

2. Le poids minimal est 70 kg, atteint à la semaine 25 (fin juin).

Solution de l'Exercice 16

Pour chaque parabole, je lis graphiquement :

 \mathscr{C}_f

• Sommet au point le plus haut : (1;2)

• Axe de symétrie vertical : x = 1

 Parabole vers le bas : a < 0 \mathscr{C}_g :

• Sommet au point le plus bas : (2; -3)

• Axe de symétrie vertical : x = 2

Parabole vers le haut : a > 0 \mathscr{C}_h :

• Sommet au point le plus haut : (1;-1)

• Axe de symétrie vertical : x = 1

• Parabole vers le bas : a < 0

 \mathscr{C}_i :

• Sommet au point le plus haut : (0;2)

 Axe de symétrie vertical : x = 0

Parabole vers le bas : a < 0

Solution de l'Exercice 17

1. $f(x) = 3x^2 + 4 = 3(x - 0)^2 + 4$

Forme canonique : a = 3 > 0, donc minimum. Minimum atteint en x = 0 avec f(0) = 4.

 $3. h(x) = -2x^2 + 8x - 1$

Forme canonique : $\alpha = -\frac{8}{2 \times (-2)} = 2$

 $\beta = h(2) = -2 \times 4 + 8 \times 2 - 1 = 7$

Donc $h(x) = -2(x-2)^2 + 7$ avec a = -2 < 0.

Maximum atteint en x = 2 avec h(2) = 7.

2. $g(x) = -2(x-4)^2 + 8$

Forme canonique : a = -2 < 0, donc maximum. Maximum atteint en x = 4 avec g(4) = 8.

4. $k(x) = 7(x+1)^2 - 25$

Forme canonique : a = 7 > 0, donc minimum.

Minimum atteint en x = -1 avec k(-1) = -25.

Solution de l'Exercice 18

1. $f(1) = 1^2 + 1 - 2 = 1 + 1 - 2 = 0$

2. Pour déterminer la forme canonique de $f(x) = x^2 + x - 2$: Coefficient dominant a = 1 > 0, coefficient de x : b = 1.

coefficient de x : b = 1. $\alpha = -\frac{b}{2a} = -\frac{1}{2 \times 1} = -\frac{1}{2}$ $\beta = f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 2$ $\beta = \frac{1}{4} - \frac{1}{2} - 2 = \frac{1}{4} - \frac{2}{4} - \frac{8}{4} = -\frac{9}{4}$ Donc la forme canonique est :

 $f(x) = \left(x + \frac{1}{2}\right)^2 - \frac{9}{4}$

3. Puisque a = 1 > 0, la parabole est tournée vers le haut.

La fonction admet un minimum en $x = -\frac{1}{2}$ avec $f\left(-\frac{1}{2}\right) = -\frac{9}{4}$.

La fonction est décroissante sur $]-\infty;-\frac{1}{2}]$ et croissante sur $[-\frac{1}{2};+\infty[$.

Solution de l'Exercice 19

Puisque f est une fonction polynôme de degré 2, sa forme canonique est :

$$f(x) = a(x - \alpha)^2 + \beta$$

où $(\alpha; \beta)$ sont les coordonnées du sommet.

D'après l'énoncé, le sommet est A(1;3), donc : - $\alpha = 1$ - $\beta = 3$

La forme canonique devient : $f(x) = a(x-1)^2 + 3$

Il reste à déterminer le coefficient a.

La courbe passe par le point B(0;5), donc f(0) = 5:

$$f(0) = a(0-1)^2 + 3 = a \times 1 + 3 = a + 3$$

Puisque f(0) = 5:

$$a+3=5 \Leftrightarrow a=2$$

La forme canonique de f est donc :

$$f(x) = 2(x-1)^2 + 3$$

Solution de l'Exercice 20

En observant la représentation graphique, je peux identifier :

1) Le sommet de la parabole :

Le point le plus bas de la courbe est A(1;2), donc :

- $\alpha = 1$ (abscisse du sommet)

 $-\beta = 2$ (ordonnée du sommet)

2) La forme canonique partielle :

$$f(x) = a(x-\alpha)^2 + \beta = a(x-1)^2 + 2$$

3) Détermination du coefficient a :

La courbe passe par le point B(0;4), donc f(0) = 4:

$$f(0) = a(0-1)^2 + 2 = a \times 1 + 2 = a + 2$$

Puisque f(0) = 4:

$$a+2=4 \Leftrightarrow a=2$$

4) Forme canonique finale :

$$f(x) = 2(x-1)^2 + 2$$

Vérification : $f(0) = 2(0-1)^2 + 2 = 2 \times 1 + 2 = 4$