ESTRUCTURAS ALGEBRAICAS

Hoja 6. Divisibilidad y factorización en dominios.

Por anillo siempre entenderemos dominio de integridad.

1. Sea $\varphi \colon R \to S$ un homomorfismo de anillos biyectivo. Prueba que si $a \in R$ es irreducible, entonces $\varphi(a) \in S$ es irreducible. ¿Qué ocurre si solo asumes que φ es sobreyectivo?

Sugerencia: considera el epimorfismo evaluación $ev_1: \mathbb{Q}[x] \to \mathbb{Q}$ para responder a la segunda pregunta.

- 2. Demuestra que en el anillo $\mathbb{Z}[\sqrt{-5}]$ los elementos 2, 3, $1 \pm \sqrt{-5}$ son irreducibles pero no son primos.
- **3.** Prueba que $\mathbb{Z}[\sqrt{-3}]$ no es un dominio de factorización única mostrando dos factorizaciones distintas de 4. ¿Es $\mathbb{Z}[\sqrt{-3}]$ un dominio de ideales principales?
- **4.** Sea $\varphi \colon A \to B$ un homomorfismo de anillos. Prueba que si A es un cuerpo entonces φ es necesariamente inyectivo.
- 5. Demuestra que:
 - a) No existe ningún homomorfismo de anillos (cuerpos) $\varphi \colon \mathbb{Q} \to \mathbb{F}_p$ para ningún primo $p \in \mathbb{Z}$.
 - b) No existe ningún homomorfismo de anillos (cuerpos) $\varphi \colon \mathbb{R} \to \mathbb{Q}$.
- 6. Prueba que el grupo de automorfismos del cuerpo Q es trivial.
- 7. Prueba que el grupo de automorfismos del cuerpo \mathbb{R} es trivial. (Sugerencia: usa el ejercicio anterior junto con el hecho de que, por ser un cuadrado, todo elemento estrictamente positivo ha de tener imagen estrictamente positiva, lo cual, a su vez, implica que cualquier automorfismo debe preservar el orden).
- 8. Prueba que el grupo de los automorfismos del cuerpo $\mathbb{Q}[i]$ es isomorfo a C_2 .
- 9. Deduce del ejercicio anterior que el grupo de los automorfismos contínuos del cuerpo \mathbb{C} es isomorfo a C_2 .
- 10. ¿Cuántos elementos tiene el anillo $\mathbb{F}_3[x]/(x^2+x+1)$? ¿Se trata de un cuerpo?
- 11. Factoriza los siguientes polinomios en su correspondiente anillo:
 - a) $X^5 + 2X + 2 \in \mathbb{Q}[X]$;
 - **b)** $X^4 1$ en $\mathbb{R}[X]$, $\mathbb{C}[X]$, $\mathbb{F}_2[X]$ y $\mathbb{F}_3[X]$;
 - c) $X^4 + X^3 X^2 \in \mathbb{F}_2[X]$.
- **12.** Halla un generador de $I = (x^3 + 1, x^2 + 1)$ en $\mathbb{F}_2[x]$.
- 13. Sea K un cuerpo. Demuestra que si $f \in K[x]$ es un polinomio no nulo de grado n entonces f tiene, a lo sumo, n raíces.

Sugerencia: usa inducción sobre el grado y el algoritmo de división en K[x].

14. Demuestra que si K es un cuerpo infinito y $f, g \in K[x]$ son tales que f(a) = g(a) para todo $a \in K$, entonces f = g. ¿Qué ocurre si K es finito?

Sugerencia: para la segunda parte, considera $f(x) = x^p - x$ en $\mathbb{F}_p[x]$.

- 15. Sea p un número primo.
 - a) Demuestra que todos los elementos del grupo multiplicativo \mathbb{F}_p^* son raíces del polinomio $X^{p-1}-1$.
- b) Deduce que el polinomio $X^{p-1} 1 \in \mathbb{F}_p[X]$ factoriza como producto de p-1 polinomios mónicos de grado uno.
- **16.** Sea K un cuerpo finito de característica p.
 - a) Demuestra que $(x+y)^p = x^p + y^p$ para todo $x, y \in K$.
- b) Concluye que la aplicación $\phi \colon K \to K$ definida como $\phi(x) = x^p$ es un automorfismo de K. El automorfismo ϕ se denomina automorfismo de Frobenius de K.

- 17. Encuentra un generador del ideal de $\mathbb{Q}[X]$ generado por los polinomios $X^4 + 3X^3 + 2X + 4$ y $X^2 X 1$ y exprésalo en términos de estos polinomios.
- 18. Construye cuerpos con 8, 25 y 125 elementos como cocientes de anillos de polinomios adecuados.

EJERCICIOS ADICIONALES

- 19. Demuestra que todo cuerpo finito K tiene p^n elementos para algún $n \in \mathbb{N}$. Sugerencia: Si char(K) = p entonces K contiene al cuerpo \mathbb{F}_p y es, por tanto, un espacio vectorial sobre él.
- **20.** Sea G un grupo abeliano $G = G(q_1) \times \cdots \times G(q_d)$ su descomposición como producto directo de sus q_j -subgrupos de Sylow.
 - a) Prueba que G es cíclico si, y solo si, cada $G(q_i)$ lo es.
- b) Sea K un cuerpo finito y consideremos el grupo $G = K^*$. Demuestra que cada q-subgrupo de Sylow Q de G es cíclico. (Sugerencia: Basta probar que Q solo puede tener un subgrupo de orden q, lo cual es consecuencia de que el polinomio $x^q 1$ no puede tener más de q raíces).
 - c) Concluye que el grupo multiplicativo de un cuerpo finito es cíclico.
- **21.** Sea $p \in \mathbb{Z}$ un número primo. Se considera el conjunto

$$\mathbb{Z}_{(p)} := \left\{ x \in \mathbb{Q} : x = \frac{r}{s} \text{ donde } r, s \in \mathbb{Z} \text{ y } p \text{ no divide a } s \right\}.$$

- a) Demuestra que $\mathbb{Z}_{(p)}$ es un subanillo de \mathbb{Q} y halla el conjunto de las unidades $U(\mathbb{Z}_{(p)})$. El anillo $\mathbb{Z}_{(p)}$ es el localizado de \mathbb{Z} en (p).
 - **b)** Identifica el cuerpo de fracciones de $\mathbb{Z}_{(p)}$.
- c) Prueba que $\mathbb{Z}_{(p)}$ es un anillo de ideales principal (y, por tanto, dominio de factorización única), demostrando que todos sus ideales son de la forma $(p^k) := p^k \mathbb{Z}_{(p)}$. Muestra la factorización en elementos irreducibles de 75/8 en $\mathbb{Z}_{(p)}$ para p = 3, 5 y 7. (¿Por qué no se pregunta para p = 2?)
 - **d)** Deduce que $(p) := p\mathbb{Z}_{(p)}$ es el único ideal maximal de $\mathbb{Z}_{(p)}$.
 - e) Calcula el núcleo del (único) homomorfismo $\mathbb{Z} \to \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}$.
- f) Demuestra que el homomorfismo $\mathbb{Z} \to \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}$ anterior es suprayectivo. (Sugerencia: Dado $r/s \in \mathbb{Z}_{(p)}$ escribe una identidad de Bezout para los números enteros sr y pr).
- g) Utiliza el teorema de isomorfía relativo al homomorfismo anterior para identificar qué cuerpo es el anillo cociente de $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}$.
- **22.** Fijado un primo $p \in \mathbb{Z}$, considera $G = GL_2(\mathbb{F}_p)$ el conjunto de matrices (2×2) invertibles con entradas en el cuerpo \mathbb{F}_p .
 - a) Demuestra que G es un grupo con el producto habitual de matrices.
 - **b)** Justifica que $|G| = (p^2 1)(p^2 p) = p(p 1)^2(p + 1)$.
- c) Demuestra que el conjunto P de matrices unitriangulares superiores es un p-subgrupo de Sylow de G isomorfo al grupo aditivo de \mathbb{F}_p .
- d) Demuestra que $N_G(P)$ es el subgrupo de G formado por las matrices triangulares superiores. Deduce que el número de subgrupos de G conjugados a P es p+1.
- e) Demuestra que $\mathbf{N}_G(P)/\mathbf{C}_G(P)$ es cíclico. Sugerencia: Usa que el grupo multiplicativo de un cuerpo finito es cíclico, por el Ejercicio 20.c).