EX.NO: 1	INSTALL THE DATA ANALYSIS AND VISUALIZATION TOOLS	
DATE:	TOOLS	

To Install the data Analysis and Visualization tools in Python.

PROCEDURE:

```
Step1: Install pandas is to use pip:
     pip install pandas
Step2: Creating A DataFrame in Pandas
       assigning two series to s1 and s2
       s1 = pd.Series([1,2])
       s2 = pd.Series(["Ashish", "Sid"])
       # framing series objects into data
       df = pd.DataFrame([s1,s2])
       # show the data frame
       Df
     # data framing in another wa
       # taking index and column values
       dframe = pd.DataFrame([[1,2],["Ashish", "Sid"]],
       index=["r1", "r2"],
       columns=["c1", "c2"])
       dframe
       # framing in another way
       # dict-like container
       dframe = pd.DataFrame({
       "c1": [1, "Ashish"],
       "c2": [2, "Sid"]})
       dframe
Step 3: Importing Data with Pandas
       # Import the pandas library, renamed as pd
       import pandas as pd
       # Read IND_data.csv into a DataFrame, assigned to df
       df = pd.read csv("IND data.csv")
       # Prints the first 5 rows of a DataFrame as default
       df.head()
        # Prints no. of rows and columns of a DataFrame
       df.shape
```

```
Step 4: Indexing DataFrames with Pandas
       # prints first 5 rows and every column which replicates df.head()
       df.iloc[0:5,:]
       # prints entire rows and columns
       df.iloc[:,:]
       # prints from 5th rows and first 5 columns
       df.iloc[5:,:5]
Step 5: Indexing Using Labels in Pandas
       # prints first five rows including 5th index and every columns of
       df.loc[0:5,:]
       # prints from 5th rows onwards and entire columns
       df = df.loc[5:,:]
       # Prints the first 5 rows of Time period
       # value
       df.loc[:5,"Time period"]
Step 5: DataFrame Math with Pandas
       # computes various summary statistics, excluding NaN values
       df.describe()
       # for computing correlations
       df.corr()
       # computes numerical data ranks
       df.rank()
       Step 6: Pandas Plotting
       # import the required module
       import matplotlib.pyplot as plt
       # plot a histogram
       df['Observation Value'].hist(bins=10)
       # shows presence of a lot of outliers/extreme values
       df.boxplot(column='Observation Value', by = 'Time period')
       # plotting points as a scatter plot
       x = df["Observation Value"]
       y = df["Time period"]
       plt.scatter(x, y, label= "stars", color= "m", marker= "*", s=30)
       # x-axis label
       plt.xlabel('Observation Value')
       # frequency label
       plt.ylabel('Time period')
       # function to show the plot
       plt.show()
```

OUTPUT:

RESULT:

Thus the procedure to install data analysis and visualization tool was completed successfully.

EX.NO: 2	PERFORM EXPLORATORY DATA ANALYSIS
DATE:	

To perform exploratory data analysis on with email data set.

PROCEDURE:

STEP1: Importing libraries and loading the file

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns#Load Dataset
iris = pd.read csv("iris.csv")
```

STEP 2: Understanding Data

```
print(iris.shape) #prints no. of row and columns >(150,5)print(iris.columns) #prints name of columns >Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species'],dtype='object')iris["species"].value_counts() >setosa 50 virginica 50 versicolor 50 Name: species, dtype: int64
```

STEP 3: 1D Scatter plot

```
iris_setso = iris.loc[iris["species"] == "setosa"];
iris_virginica = iris.loc[iris["species"] == "virginica"];
iris_versicolor =iris.loc[iris["species"]"versicolor"];
plt.plot(iris_setso["petal_length"],np.zeros_like(iris_setso["petal_length"]),'o')
plt.plot(iris_versicolor["petal_length"],np.zeros_like(iris_versicolor["petal_length"]),'o')
plt.plot(iris_virginica["petal_length"],np.zeros_like(iris_virginica["petal_length"]), 'o')
plt.grid()
plt.show()
```


Conclusion

- Green points are Virginica, orange points are Versicolor and blue points are Setosa
- Virginica and Versicolor are overlapping
- 1D Scatter are very hard to read and understand

2D scatter plot

iris.plot(kind="scatter",x="sepal_length",y="sepal_width")
plt.show()

RESULT:

Thus the program for exploratory data analysis on datasets is verified and the output is verified.

EX.NO: 3	WORKING WITH NUMPY ARRAYS,PANDAS DATA FRAMES USING MATPLOTLIB
DATE:	FRAMES USING MATTLOTLIB

To perform numpy arrays and Pandas data frames and basics plots using Matplotlib.

PROCEDURE:

Step 1:To create an ndarray

Step 2: Pass a list, tuple or any array-like object into the array() method,

Step3: Converted into an ndarray

PROGRAM

OUTPUT:

List in python: [1, 2, 3, 4]

Numpy Array in python: [1 2 3 4]

PROGRAM

OUTPUT:

	Name	Age
0	Tom	20
1	nick	21
2	krish	19
3	jack	18

RESULT:

Thus the program for Numpy arrays and Pandas data frames was executed and the output is verified successfully.

EX.NO: 4

DATE:

EXPLORE VARIOUS R CLEANING DATA

AIM:

To perform various variable and row filters in R for cleaning data and apply various data sets and visualize.

PROCEDURE:

Step 1: Familiarize yourself with the data set

Step 2: Check for structural errors

Step 3: Check for data irregularities

Step 4: Decide how to deal with missing values

Step 5: Document data versions and changes made

PROGRAM:

Creating of Example data

data <- data.frame(x1 = c(1:4, 99999, 1, NA, 1, 1, NA),

Create example data frame

x1 = c(1:5, 1, "NA", 1, 1, "NA"),

x1 = c(letters[c(1:3)], "x x", "x", " y y y", "x", "a", "a", NA),

x4 = "", x5 = NA)data

Print example data frame

Table 1

	x1	x1.1	x1.2	x4	х5
1	1	1	а		NA
2	2	2	b		NA
3	3	3	С		NA
4	4	4	x x		NA
5	99999	5	X		NA
6	1	1	у уу		NA
7	NA	NA	X		NA
8	1	1	а		NA
9	1	1	а		NA
10	NA	NA	NA		NA

Remove Rows with Missing Values

data <- na.omit(data) # Delete rows with missing values
data # Print updated data frame

OUTPUT:

Table 6				
	col1	col2	col3	
1	1	1	а	
2	2	2	b	
3	3	3	С	
4	4	4	хх	
5	99999	5	X	
6	1	1	у уу	
8	1	1	а	
9	1	1	a	

RESULT:

Thus the program for various variable and row filters using R cleaning data was executed

and the output is verified successfully.

EX.NO: 5	TIME SERIES ANALYSIS TECHNIQUES
DATE:	

AIM:

To perform time series analysis and perform various visualization techniques.

PROCEDURE:

STEP 1: Time Series Line Plot

from pandas import read_csv from matplotlib import pyplot series = read_csv('daily-minimum-temperatures.csv', header=0, index_col=0, parse_dates=True, squeeze=True) series.plot() pyplot.show()

STEP 2: Time Series Histogram and Density Plots

from pandas import read_csv from matplotlib import pyplot series = read_csv('daily-minimum-temperatures.csv', header=0, index_col=0, parse_dates=True, squeeze=True) series.hist() pyplot.show()

STEP 3: Time Series Autocorrelation Plots

create an autocorrelation plot
from pandas import read_csv
from matplotlib import pyplot
from pandas.plotting import autocorrelation_plot
series = read_csv('daily-minimum-temperatures.csv', header=0, index_col=0,
parse_dates=True, squeeze=True)
autocorrelation_plot(series)
pyplot.show()

STEP 4:Time Series Lag Scatter Plots

create a scatter plot
from pandas import read_csv
from matplotlib import pyplot
from pandas.plotting import lag_plot
series = read_csv('daily-minimum-temperatures.csv', header=0, index_col=0,
parse_dates=True, squeeze=True)
lag_plot(series)
pyplot.show()

RESULT:

Thus the program for Time series analysis with various visualization techniques was executed and the output is verified successfully.

EX.NO: 6	PERFORM DATA ANALYSIS ON A MAP
DATE:	

To perform data analysis and representation on a Map using various Mapdata sets.

PROCEDURE:

STEP 1: Installing Python Shapefile Library (PyShp) pip install pyshp

STEP 2: Importing and initializing main Python libraries import numpy as np import pandas as pd import shapefile as shp import matplotlib.pyplot as plt import seaborn as sns

Initializing vizualization set sns.set(style="whitegrid", palette="pastel", color_codes=True) sns.mpl.rc("figure", figsize=(10,6))

STEP 3: Opening a Vector Map shp_path = "./Comunas_RM_Mapas_Vectoriales/Comuna.shp" sf = shp.Reader(shp_path) len(sf.shapes())

RESULT:

Thus the program for data analysis and representation on a map was executed and the output is verified successfully.

EX.NO: 7	PERFORM CARTOGRAPHIC VISUALIZATION
DATE:	

To perform cartographic visualization for multiple datasets.

PROCEDURE:

Step 1: Installing GeoPandas and Shapely

conda install -c conda-forge geopandas pip install geopandas

Step 2 : Importing the libraries import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as sns import geopandas as gpd import shapefile as shpfrom shapely.geometry import Pointsns.set_style('whitegrid')

Step 3 : Download the mapping data

Step 4 : Load the data fp = r'Maps_with_python\india-polygon.shp' map_df = gpd.read_file(fp) map_df_copy = gpd.read_file(fp) map_df.head()

	id	st_nm	geometry
0	None	Andaman and Nicobar Islands	MULTIPOLYGON (((93.84831 7.24028, 93.92705 7.0
1	None	Arunachal Pradesh	POLYGON ((95.23643 26.68105, 95.19594 27.03612
2	None	Assam	POLYGON ((95.19594 27.03612, 95.08795 26.94578
3	None	Bihar	POLYGON ((88.11357 26.54028, 88.28006 26.37640
4	None	Chandigarh	POLYGON ((76.84208 30.76124, 76.83758 30.72552

Step 5 : Plotting the Shapefiles

<matplotlib.axes. subplots.AxesSubplot at 0x254015d94e0>

Step 6: Adding better data insights into the map

```
df = pd.read_csv('globallandslides.csv')
pd.set_option('display.max_columns', None)df = df[df.country_name=="India"]
df["Year"] = pd.to_datetime(df["event_date"]).dt.year
df = df[df.landslide category="landslide"]ls df["admin division name"].replace("Nāgāland",
"Nagaland",inplace = True)
ls df["admin division name"].replace("Meghālaya", "Meghalaya", inplace = True)
ls_df["admin_division_name"].replace("Tamil Nādu", "Tamil Nadu",inplace = True)
ls df["admin division name"].replace("Karnātaka", "Karnataka",inplace = True)
ls df["admin division name"].replace("Gujarāt", "Gujarat",inplace = True)
ls df["admin division name"].replace("Arunāchal Pradesh", "Arunachal Pradesh",inplace =
True)state_df = ls_df["admin_division_name"].value_counts()
state_df = state_df.to_frame()
state_df.reset_index(level=0, inplace=True)
state_df.columns = ['State', 'Count']state_df.at[15,"Count"] = 69
state_df.at[0,"State"] = "Jammu and Kashmir"
                                                state df.at[20,"State"] = "Delhi"
state_df.drop(7)
```

Step 7 : Merge the data

#Merging the data

merged = map_df.set_index('st_nm').join(state_df.set_index('State'))

merged['Count'] = merged['Count'].replace(np.nan, 0)

merged.head()

Step 8 : Plotting the data on the Shapefile

#Create figure and axes for Matplotlib and set the title

fig, ax = plt.subplots(1, figsize=(10, 10))

ax.axis('off')ax.set_title('Number of landslides in India state-wise', fontdict={'fontsize': '20',

'fontweight': '10'})# Plot the figure

merged.plot(column='Count',cmap='YlOrRd', linewidth=0.8, ax=ax, edgecolor='0',legend=True,markersize=[39.739192, -104.990337], legend_kwds={'label': "Number of landslides"})

RESULT:

Thus the program for cartographic visualization for multiple datasets was executed and the output is verified successfully.

EX.NO: 8	PERFORM EDA ON WINE QUALITY DATA SET
DATE:	

To perform EDA on Wine quality data set.

PROCEDURE:

STEP1: Import some essential libraries in Python.

```
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

STEP 2: The columns of the data, we can do df.columns, it will give all the features name present in the data.

• STEP 3: The describe () function in Python summarizes statistics. This function returns the count, mean, standard deviation, minimum and maximum values, and the quantiles of the data.

STEP 4: The feature that has a maximum unique value is *density*.

The feature that has a minimum unique value is quality.

seaborn.catplot — show the relationship between a numerical and one or more categorical variables using one of several visual representations.

STEP 5: Find correlations using pandas ".corr()" function and can visualize the correlation matrix using a heatmap in seaborn.

```
In [34]: plt.figure(figsize=(10,10))
    sns.heatmap(df.corr(),color = "k", annot=True)
Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x1f8b3776c88>
```


RESULT:

Thus the program for EDA on Wine Quality Data Set is executed and the output is verified successfully.

EX.NO: 9	VISUALIZATION TECHNIQUES
DATE:	

To perform various EDA and Visualization techniques for analysis report.

PROCEDURE:

STEP1: Importing libraries and loading Data

import numpy as np

import pandas pd

import matplotlib.pyplot as plt

import seaborn as sns

from seaborn import load_dataset

#titanic dataset

data = pd.read_csv("titanic_train.csv")

#tips dataset

tips = load_dataset("tips")

STEP 2: Pie Chart

data['Sex'].value_counts().plot(kind="pie", autopct="%.2f")

plt.show()

STEP 3: Histogram

plt.hist(data['Age'], bins=5)

plt.show()

STEP 4: Distplot

sns.distplot(data['Age'])

plt.show()

STEP 5: Boxplot

IQR = Q3 - Q1

 $Lower_boundary = Q1 - 1.5 * IQR$

Upper_bounday = Q3 + 1.5 * IQR

STEP 6: Bar Plot

sns.barplot(data['Pclass'], data['Age'])
plt.show()

Distplot

sns.distplot(data[data['Survived'] == 0]['Age'], hist=False, color="blue")
sns.distplot(data[data['Survived'] == 1]['Age'], hist=False, color="orange")
plt.show()

RESULT:

Thus the program for data set of various EDA is executed and the output is verified successfully.