Algebra y Geometria Analitica I **Teoria**

Facundo Beltramo contacto: fexbef[arroba]gmail.com

Fecha: xx de xx del 20xx

Índice general

1.	Nur	neros Complejos
	1.1.	Definicion
		1.1.1. Suma y producto de un numero complejo
	1.2.	Propiedades
		1.2.1. asociatividad
		1.2.2. conmutatividad
		1.2.3. distributiva
		1.2.4. Elemento neutro
		1.2.5. Opuesto
		1.2.6. Resiproco
	1.3.	Identificando los reales en los complejos
	1.4.	Unidad imaginaria
	1.5.	Forma Binomica
	1.6.	Conjugado de un numero complejo
		1.6.1. Propiedades
	1.7.	Raiz cuadrada de un numero natural negativo
	1.8.	Potencias de los complejos
		1.8.1. Propiedades
		1.8.2. Potencias de i
	1.9.	Forma Polar y Trigonometrica
		Modulo de un complejo
		Forma Polar
		Forma Trigonometrica
	1.10	. Forma Trigonometrica
		1.10.1. Propiedades de modulo y argumento
		Corolario: Propiedades
		1.10.2. Igualdad en Forma Polar
	1.11.	. Raices n-esimas de una complejo
		Tograma da Mayia

Capítulo 1

Numeros Complejos

1.1. Definition

Un numero complejo es un par ordenado (a,b) de numeros reales.

- a . se denomina parte real de z (Re(z)).
- b . se denomina parte imaginaria de z (Im(z)).

Dados
$$z_1 = (a, b)$$
 y $z_2 = (a', b')$ decimos que $z_1 = z_2 \Leftrightarrow \begin{cases} a = a' \\ b = b' \end{cases}$

1.1.1. Suma y producto de un numero complejo

Sean z = (a, b) y w = (c, d), numeros complejos, entonces definimos:

- la Suma: z + w = (a + c, b + d)
- el Producto: $z \times w = (ac bd, ad + bc)$

1.2. Propiedades

Sean
$$z = (z_1, z_2), w = (w_1, w_2), u = (u_1, u_2).$$

1.2.1. asociatividad

$$(z+w) + u = z(w+u)$$
$$(z \times w) \times u = z \times (w \times u)$$

Demostracion:

$$(w+z) + u \Leftrightarrow (z_1 + w_1, z_2 + w_2) + (u_1, u_2) \Leftrightarrow ((z_1 + w_1) + u_1, (z_2 + w_2) + u_2) \Leftrightarrow$$

$$\Leftrightarrow (z_1 + (w_1 + u_1), z_2 + (w_2 + u_2)) \Leftrightarrow (z_1, z_2) + (w_1 + u_1, w_2 + u_2) \Leftrightarrow z + (w + u)$$

$$(zw)u \Leftrightarrow ((z_1w_1 - z_2w_2, z_1w_2 + z_2w_1)) \times (u_1, u_2) \Leftrightarrow$$

$$\Leftrightarrow ((z_1w_1 - z_2w_2)u_1 - (z_1w_2 + z_2w_1)u_2, (z_1w_1 - z_2w_2)u_2 + (z_1w_2 + z_2w_1)u_1) \Leftrightarrow$$

$$\Leftrightarrow (z_1w_1u_1 - z_2w_2u_1 - z_1w_2u_2 - z_2w_1u_2, z_1w_1u_2 - z_2w_2u_2 + u_1z_1w_2 + z_2w_1u_1) \Leftrightarrow$$

$$\Leftrightarrow (z_1(w_1u_1 - w_2u_2) - z_2(w_1u_2 + w_2u_1), z_1(w_1u_2 + w_2u_1) + z_2(w_1u_1 - u_2w_2) \Leftrightarrow$$

$$\Leftrightarrow (z_1, z_2) \times (w_1u_1 - u_2w_2, w_1u_2 + w_2u_1) \Leftrightarrow z(wu)$$

1.2.2. conmutatividad

$$z + w = w + z$$
$$z \times w = w \times z$$

Demostracion:

$$z + w \Leftrightarrow (z_1 + w_1, z_2 + w_2) \Leftrightarrow (w_1 + z_1, w_2 + z_2) \Leftrightarrow w + z$$

$$wz \Leftrightarrow (w_1z_1 - w_2z_2, w_2z_1 + w_1z_2) \Leftrightarrow (z_1w_1 - z_2w_2, z_2w_1 + z_2w_2) \Leftrightarrow zw$$

1.2.3. distributiva

$$z \times (u+w) = zu + zw$$
$$(u+w) \times z = uz + wz$$

Demostracion:

sale aplicando la definicion de la suma y el producto de complejos y usando distributiva de numeros reales.

1.2.4. Elemento neutro

Existe
$$0 = (0,0) \in \mathbb{C}/z + 0 = z \forall z \in \mathbb{C}$$

Existe $1 = (0,1) \in \mathbb{C}/1 \times z = z \forall z \in \mathbb{C}$

1.2.5. Opuesto

$$\forall z \in \mathbb{C}, \exists -z \in \mathbb{C}/z + (-z) = (0,0)$$
 Def.: $z - w = w + (-w)$

1.2.6. Resiproco

$$\forall z \neq 0, z \in \mathbb{C}, \exists z^{-1} \in \mathbb{C}/z \times z^{-1} = (1,0) = 1$$
 Def.: si $w \neq 0$, $\frac{z}{w} = z \times \frac{1}{w} = x \times w^{-1}$

1.3. Identificando los reales en los complejos

Sea
$$C_0 = (a, 0) \in \mathbb{C}/a \in \mathbb{R} \in \mathbb{C}$$

•
$$z = (a, 0), w = (b, 0)$$

 $z + w = (a + b, 0) \in C_0$ $-z = (-a, 0) \in C_0$
 $zw = (ab, 0) \in C_0$ $z^{-1} = (\frac{1}{a}, 0) \in C_0$

Vemos que la suma, el producto y la divicion en C_0 se comportan igual que en los Reales. Identificamos \mathbb{R} en C_0

$$a \in \mathbb{R} \longleftrightarrow (a,0) \in C_0$$

Notacion: Dado $a \in \mathbb{R}$, notamos $a \in \mathbb{C}$ al complejo (a, 0)

1.4. Unidad imaginaria

Definimos:
$$i := (0,1)$$

 $i^2 = (0,1) \times (0,1) = (0 \times 0 - 1 \times 1, 0 \times 1 + 0 \times 1) = (-1,0) = -1$

Forma Binomica 1.5.

Sea z = (a, b) = (a, 0) + (0, b) = a + bi, a + bi se denomina forma binomica.

1.6. Conjugado de un numero complejo

Sea z=(a,b) dicece el conjugado de z a $\overline{z}=(a,-b)$ o de otra forma $\overline{z}=a-bi$.

1.6.1. Propiedades

Sean z = (a, b) y w = (d, c) dos numeros complejos.

• $\overline{z+w} = \overline{z} + \overline{w}$

Demostracion:

$$z + w = (a + d, b + c) \Leftarrow \overline{z + w} = (a + d, -(b + c)) = (a + b, -b - c) = (a, -b) + (c, -d) = \overleftarrow{z} + \overline{w}$$

•
$$\overline{z \times w} = \overline{z} \times \overline{w}$$

Demostracion:

- $z \times \overline{z} = \operatorname{Im}(z)^2 + \operatorname{Re}(z)^2$
- $z = \overline{z} \Leftrightarrow z \in \mathbb{R}$

1.7. Raiz cuadrada de un numero natural negativo

Sea $a \in \mathbb{R}$, $x^2 + a^2 = 0$ tiene como solucion $x_1 = ai$ y $x_2 = -ai$

$$(ai)^2 + a^2 = -a^2 + a^2 = 0$$

Definicion: si $w \in \mathbb{C}$ decimos que $z \in \mathbb{C}$ es una raiz cuadrada de w si $z^2 = w$

Nota:
$$i^2 = -1 \Leftrightarrow i = \sqrt{-1}$$

• Si
$$w = a \in \mathbb{R}$$
 $a = -|a|$

Quiero $z/z^2 = -|a|$

$$\therefore z = \pm \sqrt{-|a|} = \mp \sqrt{|a|} \times \sqrt{-1} = \mp \sqrt{-|a|} \times i \qquad z^2 = \pm \left(\sqrt{|a|}\right)^2 \times i^2 = -|a| = a$$

$$\sqrt{-4} = \sqrt{|-4|}i = \pm 2i$$

$$\sqrt{-9} = \sqrt{|-9|}i = \pm 3i$$

$$\sqrt{-2} = \sqrt{|-2|}i = \sqrt{2}i$$
Si $ax^2 + bx + c = 0$ $a, b, c \in \mathbb{R}$

Si
$$ax^2 + bx + c = 0$$
 $a, b, c \in \mathbb{R}$

Las soluciones son $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \Delta = b^2 - 4ac$

- Si $\Delta = 0$ hay una raiz real doble.
- Si $\Delta > 0$ hay dos raices reales distintas.
- Si $\Delta < 0$ hay dos raices complejas conjugadas.

1.8. Potencias de los complejos

Sea
$$z \in \mathbb{C}$$
 y $n \in \mathbb{N}$ definimos:

$$z^{n} = \begin{cases} z^{1} = z \\ z^{n} = z^{n-1} \times z & Siz \neq 0 \\ z^{0} = 1 \forall z \in \mathbb{C} \end{cases}$$

$$\mathbf{Y} \ k \in \mathbb{Z}$$

$$z^{k} = \begin{cases} z & Sik = 1\\ z^{k} & Sik \ge 0\\ (z^{(-1)})^{k} & Sik < 0 \end{cases}$$

1.8.1. Propiedades

Sean z, w numeros complejos y n, m enteros:

$$(zw)^n = z^n \times w^n$$

$$w \neq 0, \left(\frac{z}{w}\right)^n = \frac{z^n}{w^n}$$

$$(z^n)^m = z^{nm}$$

$$z^n \times z^m = z^{n+m}$$

1.8.2. Potencias de i

$$\begin{array}{lll} i^1 = i \\ i^2 = -1 \\ i^3 = i \times i^2 = -i \\ i^4 = i^2 \times i^2 = (-1) \times (-1) = 1 \\ i^5 = i^4 \times i = 1 \times i = i \\ i^6 = i^4 \times i^2 = (-1) \times 1 = -1 \\ \end{array} \qquad \begin{array}{ll} \text{Ejemplos:} \\ i^{(-5)} = (i^{(-1)})^5 = (-i)^5 = (-1)^5 \times i^5 = (-1) \times i = -i \\ i^8 = i^4 \times i^4 = i \times i = -1 \\ i^{(-1)} = \frac{1}{i} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{i^2} = \frac{i}{-1} = -i \\ \end{array} \qquad \begin{array}{ll} i^{(-5)} = (i^{(-1)})^5 = (-i)^5 \times i^5 = (-1) \times i = -i \\ i^{(-1)} = i^4 \times i^4 \times i^2 \times i^{(-1)} = 1 \times 1 \times (-1) \times (-1) = 1 \end{array}$$

En conclucion sea $k=4c+r\in\mathbb{Z}$, donde r es el resto ed dividir k por 4 y c es el cosiente:

$$i^{k} = i^{4c+r} = i^{4c} \times i^{r} = (i^{4})^{c} \times i^{r} = 1^{c} \times i^{r} = 1 \times i^{r} = i^{r}$$
$$\therefore i^{k} = i^{r}, r = k \mod 4$$

1.9. Forma Polar y Trigonometrica

Modulo de un complejo Definimos al modulo de un complejo z=a+bi, al numero: $|z|=\sqrt{a^2+b^2}$

Forma Polar

Sea z=(a,b)=a+bi, notaremos al mismo numero complejos como: $z=r_{\theta}$ Llamamos a $r=\sqrt{a^2+b^2}$ modulo de z y a θ argumento de z.

Si
$$\theta = Arg(z)$$
:
$$tg(\theta) = \frac{a}{b}$$
 Por tanto: Si $a=0 \quad (z=bi)$

• Si $b=0,\,z=0$ No tiene argumento. El complejo se ubica en el origen de cordenadas.

• Si b>0, $Arg(z)=\frac{\pi}{2}$ El complejo se ubica en la parte positiva del eje de las ordenadas.

• Si $b<0, Arg(z)=\frac{3}{2}\pi$ El complejo se ubica en la parte negativa del eje de las ordenadas.

Forma Trigonometrica

1.10. Forma Trigonometrica

Sea $z = a + bi \in \mathbb{C}$, $\theta = Arg(z)$ y r = |z|.

Sabiendo:

•
$$sen(\theta) = \frac{b}{r} \Rightarrow b = r \times sen(\theta)$$

• $cos(\theta) = \frac{a}{r} \Rightarrow a = r \times cos(\theta)$

•
$$cos(\theta) = \frac{a}{r} \Rightarrow a = r \times cos(\theta)$$

Definimos la forma Trigonometrica como la siguiente:

$$z = r \times (sen(\theta) + i \times cos(\theta))$$

Ejemplo: —-

Propiedades de modulo y argumento

Sean $z, w \in \mathbb{C}$:

•
$$|zw| = |z| \times |w|$$

•
$$Arg(z) + Arg(w)$$
 es un $Arg(zw)$

Demostracion:

Sea
$$|z| = P$$
, $Arg(z) = \theta$ $|w| = J$, $Arg(w) = \alpha$:

$$zw = [P \times (sen(\theta) + i \times cons(\theta))] \times [J(sen(\alpha) + i \times cos(\alpha))] =$$

$$= P \times J[cos(\theta) \times cos(\alpha) + i \times cos(\theta) \times sen(\alpha) + i \times sen(\theta) \times cos(\alpha) - sen(\theta) \times sen(\alpha)] =$$

$$= P \times L[\underbrace{(cos(\theta) \times cos(\alpha) - sen(\theta) \times sen(\alpha))}_{cos(\theta + \alpha)} + i \times \underbrace{(sen(\theta) \times cos(\alpha) + cos(\theta) \times sen(\alpha))}_{sen(\theta + \alpha)} =$$

$$= P \times L[cos(\theta + \alpha) + i \times sen(\theta + \alpha)]$$

$$|zw| = P \times L = |z| \times |w|$$

Un argumento de zw es Arg(z) + Arg(w)

Corolario: Propiedades

$$zw = (PL)_{\theta+\alpha}$$

$$\frac{z}{w} = \left(\frac{P}{L}\right)_{\theta+\alpha} \forall w \neq 0$$

$$z^n = (P^n)_{n\theta}$$

Demostracio:
$$\frac{z}{w} = zw^{(-1)}$$

Sabemos: $w \times w^{(-1)}$

Luego
$$|w \times w^{(-1)}| = 1 \Rightarrow |w^{(-1)}| = \frac{1}{|w|}$$

Notaremos como arg(z) a algun argumento, no al principal, de z.

Notaremos como
$$arg(z)$$
 a algun argumento, no al principal, de z.
$$\frac{Arg(1) = 0}{arg(w \times w^{(-1)}) = arg(w) + arg(w^{(-1)})} \right\} \Rightarrow arg(w) + arg(w^{(-1)}) = 0 \Rightarrow arg(w^{(-1)}) = -arg(w)$$

$$\therefore \frac{z}{w} = zw^{(-1)} = (PL)_{\ell} \theta - \alpha)$$

Ejemplo: —

1.10.2. Igualdad en Forma Polar

Sean
$$z = L_{\theta}, w = P_{\alpha}$$

$$z = w \Leftrightarrow \left\{ \begin{array}{ll} L = & P \\ \theta = & \alpha + k \times 2\pi & \forall k \in \mathbb{Z} \end{array} \right.$$

1.11. Raices n-esimas de una complejo

Definicion: dado $w \in \mathbb{C}$, y $n \in \mathbb{N}$ decimos que $z \in \mathbb{C}$ es raiz n-esima de w si $z^n = w$ Ejemplo: Calcular la raiz cuarta de $w=16\,\pi$

Ejemplo: Calcular la raiz cuarta de
$$w=16\frac{\pi}{4}$$

$$Sea z = P_{\theta} \text{ una raiz cuarta de } w. \text{ Entonces } z^4 = w \text{ y como } z^4 = (P^4)_{4\theta}$$

$$\therefore \begin{cases} P^4 = 16 \\ 4\theta = \frac{\pi}{4} + 2k\pi & \forall k \in \mathbb{Z} \end{cases}$$

$$\bullet P^4 = 16 \Rightarrow P = 2$$

$$\bullet P^4 = 16 \Rightarrow P = 2$$

$$\bullet \theta = \frac{\frac{\pi}{4} + 2k\pi}{4} = \frac{\pi}{16} + \frac{2k\pi}{4} \quad \forall k \in \mathbb{Z}$$
Procedemos dando valores a k .
$$(k=0) \theta_0 = \frac{\pi}{16} \quad (k=1) \theta_1 = \frac{9}{16}\pi$$

$$(k=2) \theta_2 = \frac{17}{16}\pi \quad (k=3) \theta_3 = \frac{25}{16}\pi$$
Notamos que si pasamos el n-esimo valor para k en este caso el 4, repetiremos resultados por lo nto el procedimiento termina ahi. Esas son las 4 raices cuartas de nuestro z .

tanto el procedimiento termina ahi. Esas son las 4 raices cuartas de nuestro z.

Teorema de Movie Lo mostrado anteriormente se resumen con este teorema de la siguiente manera. Dado $w=P_{\theta}\in\mathbb{C}$ y $n\in\mathbb{N}$ entonces w tiene n raices n-esimas. $z=L_{\alpha}\in\mathbb{C}$ donde:

$$\left\{ \begin{array}{ll} L = & \sqrt[n]{P} \\ \alpha = & \frac{\theta + 2k\pi}{n} & \forall k \in {0,1,...,n-1} \end{array} \right.$$