

<FPSelect: Low-Cost Browser Fingerprints for Mitigating Dictionary Attacks against Web Authentication Mechanisms>

ACSAC 2020, December 11, 2020

Context

- Passwords suffer from flaws
 - Dictionary attacks: common passwords [6] or reuse [16]
 - Phishing attacks: 12.4 million stolen credentials [12]
- Other authentication factors reduces usability [3]
 - User must remember, possess, or do something

Browser fingerprinting [2, 11]

- Collection of browser attributes
- Depending on the web environment

Adding an attribute

- Helps distinguish browsers
- Reduces usability
- Hundreds of attributes are available [2, 11, 13]
 - Collecting them all is unpractical (e.g., taking too long to collect)

Previous works

- Use the well-known attributes [2, 11, 15]
- Iteratively pick attributes [7, 8, 9, 17]
- Evaluate every possible set [4]

Attribute Selection Framework

- The attacker knows a fingerprint distribution
 - Submits the **B-most common** fingerprints
 - Example
 - $-\beta=2$
 - f_1 and f_2 are submitted
 - The sensitivity is of 4/7

F	PMF		
f_1	0.40		
f_2	0.20		
f_3	0.10		
f_4	0.10		
f_5	0.10		
f_6	0.05		
<i>f</i> ₇	0.05		

\overline{U}	F	Spoofed	
u_1	f_2	•	
u_2	f_1	•	
u_3	f_4	0	
u_4	f_2	•	
u_5	f_3	0	
u_6	f_5	0	
<i>u</i> ₇	f_1	•	

Verifier has a set A of candidate attributes

- Verifier seeks the attribute set
 - Satisfies a security level a
 - At the lowest cost

- lack Attribute set $C \subseteq A$
 - c(C): its usability cost (strictly increasing)
 - s(C): its sensitivity (decreasing)

$$\arg\min_{C\subseteq A} \{c(C) : s(C) \le \alpha\}$$

Greedy exploration algorithm

- Expands by adding one attribute
- Holds k-nodes to expand
- Partial solutions ordered by the usability gain/sensitivity ratio

Pruning methods

- Cost higher than the current minimum c_{min} (1)
- Superset of a node satisfying the threshold or (1)

• Execution with k=2 and a=0.15

- S starts with k-empty sets
- $-c_{min} = 20$ at stage 2 > $\{2, 3\}$ is not expanded
- $\{1, 2, 3\}$ is not added to E as it is a superset of $\{1, 2\}$

Stage	E	T	S
1	{{1}, {2}, {3}}	{}	{{1}, {3}}
2	$\{\{1,2\},\{1,3\},\{2,3\}\}$	$\{\{1,2\}\}$	{{1,3}}
3	{}	$\{\{1,2\}\}$	{}

Usability cost in points

- Memory size (10 kilobytes = 10K points)
- Collection time (1 second = 10K points)
- Number of changing attributes (1 changing attribute = 10K points)

```
\mathrm{cost}(C,D) = \gamma \cdot [\mathrm{mem}(C,D), \mathrm{time}(C,D), \mathrm{ins}(C,D)]^\intercal \quad \textit{$\mathcal{C}$ : attribute set} \\ \quad \textit{$\mathcal{D}$ : fingerprint dataset} \\ \quad \gamma : \mathrm{cost\ weights}
```

Sensitivity

- Measured by the verifier
- Attacker knows the fingerprint distribution of the protected users
- Matching function between a submitted and a stored fingerprint

Results

Sample of 30 thousand fingerprints [20, 21]

Verifier and attacker instantiation

- Sensitivity thresholds: 0.001, 0.005, 0.015, 0.025 [1, 3, 14]
- Number of submissions: 1, 4, 16 [5, 18]
- Explored paths: 1 and 3
- Matching function $\sum_{a \in A} f[a] \approx^a g[a] > \theta$

f, g: submitted and stored fingerprint \approx^a : 1 if a is sufficiently similar between f and g, else 0

 θ : matching threshold A: the attributes used

- Compare FPSelect results with the baselines
 - Entropy [8, 9]
 - Conditional entropy [7]

A solution for **9** among the **12** cases, due to unreachable sensitivity threshold.

The fingerprints are, on average, up to

- 97 times smaller
- **3,361 times faster** to collect
- with **7.2 times fewer changing** attributes

ASF-1: three orders
of magnitude more
attribute sets than the
baselines

 ASF3: three times more attribute sets than ASF-1

Conclusion

FPSelect: attribute selection framework

- Possibility space as a lattice
- Greedy exploration algorithm
- Fingerprints of lower cost than the baselines
- Higher computation cost

Future works

- Attackers with targeted knowledge
- Other experimental settings (browser population, measures)

Thank You

Any question?

tompoariniaina.andriamilanto@irisa.fr

References

- 1. Eiji Hayashi, Rachna Dhamija, Nicolas Christin, and Adrian Perrig. « Use your Illusion: Secure Authentication Usable Anywhere ». In *Symposium on Usable Privacy and Security (SOUPS)*, 35–45, 2008. https://doi.org/10.1145/1408664.1408670.
- 2. Peter Eckersley. « How Unique Is Your Web Browser? » In International Conference on Privacy Enhancing Technologies (PETS), 1–18, 2010. https://doi.org/10.1007/978-3-642-14527-8 1.
- J. Bonneau, C. Herley, P. C. v Oorschot, and F. Stajano. « The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes ». In IEEE Symposium on Security and Privacy (S&P), 553-67, 2012. https://doi.org/10.1109/SP.2012.44.
- 4. Erik Flood and Joel Karlsson. « Browser Fingerprinting ». Master Thesis, *University of Gothenburg*, 2012. https://hdl.handle.net/20.500.12380/163728.
- Joseph Bonneau. « The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords ». In *IEEE Symposium on Security and Privacy (S&P)*, 538-52, 2012. https://doi.org/10.1109/SP.2012.49.

- 6. Joseph Bonneau. « The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million Passwords. » In IEEE Symposium on Security and Privacy (S&P), 538-52, 2012. https://doi.org/10.1109/SP.2012.49.
- 7. David Fifield and Serge Egelman. « Fingerprinting Web Users Through Font Metrics ». In Financial Cryptography and Data Security (FC), edited by Rainer Böhme and Tatsuaki Okamoto, 107-24, 2015. https://doi.org/10.1007/978-3-662-47854-7.
- 8. Amin Faiz Khademi, Mohammad Zulkernine, and Komminist Weldemariam. « An Empirical Evaluation of Web-Based Fingerprinting ». *IEEE Software* 32 n° 4, 2015. https://doi.org/10.1109/MS.2015.77.
- C. Blakemore, J. Redol, and M. Correia. « Fingerprinting for Web Applications: From Devices to Related Groups ». In *IEEE Trustcom/BigDataSE/ISPA*, 144-51, 2016. https://doi.org/10.1109/TrustCom.2016.0057.

- 10. Tom Goethem, Wout Scheepers, Davy Preuveneers, and Wouter Joosen. "Accelerometer-Based Device Fingerprinting for Multi-Factor Mobile Authentication." In *International Symposium on Engineering Secure Software and Systems (ESSoS)*, 106–121, 2016. https://doi.org/10.1007/978-3-319-30806-7_7.
- 11. Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. « Beauty and the Beast: Diverting Modern Web Browsers to Build Unique Browser Fingerprints. » In *IEEE Symposium on Security and Privacy (S&P)*, 878–94, 2016. https://doi.org/10.1109/SP.2016.57.
- 12. Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik Markov, et al. « Data Breaches, Phishing, or Malware? Understanding the Risks of Stolen Credentials. » In ACM SIGSAC Conference on Computer and Communications Security (CCS), 1421–1434, 2017. https://doi.org/10.1145/3133956.3134067.
- 13. Furkan Alaca and P. C. van Oorschot. « Device Fingerprinting for Augmenting Web Authentication: Classification and Analysis of Methods ». In *Annual Conference on Computer Security Applications (ACSAC)*, 289–301, 2016. https://doi.org/10.1145/2991079.2991091.

- 14. Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and Xinyi Huang. « Targeted Online Password Guessing: An Underestimated Threat ». In ACM SIGSAC Conference on Computer and Communications Security (CCS), 1242–1254, 2016. https://doi.org/10.1145/2976749.2978339.
- 15. Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. « Hiding in the Crowd: An Analysis of the Effectiveness of Browser Fingerprinting at Large Scale. » In *The Web Conference* (TheWebConf), 2018. https://doi.org/10.1145/3178876.3186097.
- 16. Chun Wang, Steve T.K. Jan, Hang Hu, Douglas Bossart, and Gang Wang. « The Next Domino to Fall: Empirical Analysis of User Passwords across Online Services. » In ACM Conference on Data and Application Security and Privacy (CODASPY), 196–203, 2018. https://doi.org/10.1145/3176258.3176332.
- 17. Kazuhisa Tanabe, Ryohei Hosoya, and Takamichi Saito. « Combining Features in Browser Fingerprinting ». In *Advances on Broadband and Wireless Computing, Communication and Applications (BWCCA)*, edited by Leonard Barolli, Fang-Yie Leu, Tomoya Enokido, and Hsing-Chung Chen, 671-81, 2018. https://doi.org/10.1007/978-3-030-02613-4 60.

- 18. Maximilian Golla, Theodor Schnitzler, and Markus Dürmuth. « "Will Any Password Do?" Exploring Rate-Limiting on the Web ». In *USENIX Symposium on Usable Privacy and Security (SOUPS)*, 2018. https://wayworkshop.org/2018/papers/way2018-golla.pdf.
- 19. Gaston Pugliese, Christian Riess, Freya Gassmann, and Zinaida Benenson. « Long-Term Observation on Browser Fingerprinting: Users' Trackability and Perspective. » *Proceedings on Privacy Enhancing Technologies* 2020 no. 2, 2020. https://doi.org/10.2478/popets-2020-0041.
- 20. Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. « "Guess Who?" Large-Scale Data-Centric Study of the Adequacy of Browser Fingerprints for Web Authentication ». In Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), edited by Leonard Barolli, Aneta Poniszewska-Maranda, and Hyunhee Park, 161-72, 2021. https://doi.org/10.1007/978-3-030-50399-4 16.
- 21. Nampoina Andriamilanto, Tristan Allard, Gaëtan Le Guelvouit, and Alexandre Garel. « A Largescale Empirical Analysis of Browser Fingerprints Properties for Web Authentication ». arXiv:2006.09511 [cs], 2020. https://arxiv.org/abs/2006.09511.