Answer of Assignment 3

第5章:线性判别函数

2020E8017782032 蒲尧

第一部分: 计算与证明

- 1. 现有四个来自于两个类别的二维空间中的样本,其中第一类的两个样本为 $(1,4)^T$ 和 $(2,3)^T$,第二类的两个样本为 $(4,1)^T$ 和 $(3,2)^T$ 。这里,上标 T 表示向量转置。若采用规范化增广样本表示形式,并假设初始的权向量 $\mathbf{a}=(0,1,0)^T$,其中向量 \mathbf{a} 的第三维对应于样本的齐次坐标。同时,假定梯度更新步长 η_k 固定为 1。试利用批处理感知器算法求解线性判别函数 $g(\mathbf{y})=\mathbf{a}^T\mathbf{y}$ 的权向量 \mathbf{a} 。(注:"规范化增广样本表示"是指对齐次坐标表示的样本进行规范化处理)。
- 2. 对于多类分类情形,考虑 one-vs-all 技巧,即构建 c 个线性判别函数:

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}, i = 1, 2, ..., c,$$

此时的决策规则为:对 $j \neq i$,如果 $g_i(x) > g_j(x)$, x 则被分为 ω_i 类。现有三个二维空间内的模式分类器,其判别函数为:

$$g_1(\mathbf{x}) = -x_1 + x_2$$

 $g_2(\mathbf{x}) = x_1 + x_2 - 1$
 $g_3(\mathbf{x}) = -x_2$

试画出决策面,指出为何此时不存在分类不确定性区域。

第二部分: 计算机编程

本章所使用的数据:

	ω_1		ω_2		ω_3		ω_4	
sample	x_1	x_2	x_1	x_2	x_1	x_2	x_1	x_2
1	0.1	1.1	7.1	4.2	-3.0	-2.9	-2.0	-8.4
2	6.8	7.1	-1.4	-4.3	0.5	8.7	-8.9	0.2
3	-3.5	-4.1	4.5	0.0	2.9	2.1	-4.2	-7.7
4	2.0	2.7	6.3	1.6	-0.1	5.2	-8.5	-3.2
5	4.1	2.8	4.2	1.9	-4.0	2.2	-6.7	-4.0
6	3.1	5.0	1.4	-3.2	-1.3	3.7	-0.5	-9.2
7	-0.8	-1.3	2.4	-4.0	-3.4	6.2	-5.3	-6.7
8	0.9	1.2	2.5	-6.1	-4.1	3.4	-8.7	-6.4
9	5.0	6.4	8.4	3.7	-5.1	1.6	-7.1	-9.7
10	3.9	4.0	4.1	-2.2	1.9	5.1	-8.0	-6.3

- 1. Write a program to implement the "batch perceptron" algorithm.
 - (a). Starting with a = 0, apply your program to the training data from ω_1 and ω_2 . Note that the number of iterations required for convergence (即记录下收敛的步数)。
 - (b). Apply your program to the training data from ω_3 and ω_2 . Again, note that the number of iterations required for convergence.
- 2. Implement the Ho-Kashyap algorithm and apply it to the training data from ω_1 and ω_3 . Repeat to apply it to the training data from ω_2 and ω_4 . Point out the training errors, and give some analyses.
- 3. 请写一个程序,实现MSE 多类扩展方法。每一类用前 8 个样本来构造分类器,用后两个样本作测试。请给出你的正确率。

第一部分回答

1. 由题可知:

$$a = \begin{pmatrix} 0, 1, 0 \end{pmatrix}^{T}$$

$$\omega_{1} : x_{1} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, x_{2} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}; \omega_{2} : x_{1} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, x_{2} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$y_{1} = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}, y_{2} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, y_{3} = -\begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}, y_{4} = -\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

所以:

$$g(y_1) = a^T y_1 = 4 > 0$$
 (正确分类), $g(y_2) = a^T y_2 = 3 > 0$ (正确分类); $g(y_3) = a^T y_3 = -1 < 0$ (错误分类), $g(y_4) = a^T y_4 = -2 < 0$ (错误分类) 第一次修正:

$$a = a + \eta_k \sum_{y \in Y(k)} y = a + y_3 + y_4 = -(7, 2, 2)^T$$

此时:

$$g(y_1) = a^T y_1 = -17 < 0$$
(错误分类), $g(y_2) = a^T y_2 = -22 > 0$ (错误分类); $g(y_3) = a^T y_3 = 32 > 0$ (正确分类), $g(y_4) = a^T y_4 = 27 > 0$ (正确分类) 第二次修正:

$$a = a + \eta_k \sum_{y \in Y(k)} y = a + y_1 + y_2 = (-4, 5, 0)^T$$

此时:

$$g(y_1) = a^T y_1 = 16 > 0$$
(正确分类), $g(y_2) = a^T y_2 = 7 > 0$ (正确分类); $g(y_3) = a^T y_3 = 11 > 0$ (正确分类), $g(y_4) = a^T y_4 = 2 > 0$ (正确分类). 不再修正, $a = (-4, 5, 0)^T$

2. 属于第 1 类的区域应该满足: $g_1(x) > g_2(x), g_1(x) > g_3(x)$ 故 ω_1 的决策面为:

$$g_1(x) - g_2(x) = -2x_1 + 1 = 0$$

$$g_1(x) - g_3(x) = -x_1 + 2x_2 = 0$$

属于第 2 类的区域应该满足: $g_2(x) > g_1(x), g_2(x) > g_3(x)$

故 ω2 的决策面为:

$$g_2(x) - g_1(x) = 2x_1 - 1 = 0$$

$$g_2(x) - g_3(x) = x_1 + 2x_2 - 1 = 0$$

属于第 3 类的区域应该满足: $g_3(x) > g_1(x), g_3(x) > g_2(x)$

故 ω_3 的决策面为:

$$g_3(x) - g_1(x) = x_1 - 2x_2 = 0$$

$$g_3(x) - g_2(x) = -x_1 - 2x_2 + 1 = 0$$

绘图如下:

图 1: 3 分类决策面

由于三条分界面交于一点 (0.5,0.5), 不存在不确定性区域。

第二部分回答

1. 代码输出如下:

Batch_perceptron algorithm:

$$a = \begin{bmatrix} 3.4 & -3.04 & 3.41 \end{bmatrix}$$

Iterations required for convergence is 24

Batch_perceptron algorithm:

$$a = [1.9 -4.14 4.86]$$

```
Iterations required for convergence is 17
Ho-Kashyap algorithm:
No solution found!
Ho-Kashyap algorithm:
a = [[0.13381828] \quad [0.03717747] \quad [0.01669066]]
b = [[0.46787909] \ [0.01]
                         [0.30111691]
[0.3947414 ] [0.32167591] [0.13245664]
[0.15628159] [0.12494896] [0.50786447]
[0.24952647] \quad [0.08073817] \quad [0.19372309]
[0.15084515] [0.23560033] [0.18203341]
[0.03832449] [0.17504972] [0.29644592]
[0.29204113] [0.26875263]]
Iterations required for convergence is 29132
MSE准则多分类:
target = [1. 1. 2. 2. 3. 3. 4. 4.]
output = [1. 1. 2. 2. 3. 3. 4. 4.]
accuracy = 1.0
```

2. 输出图像如下:

3. 代码见如下文件 Python 文件