$\theta$ 

 $\boldsymbol{x}$ 

y

# T-1、T-2 三角函數的定義

# 主題一 銳角三角函數的定義

- 1.若直角三角形的一個銳角為 $\theta$ ,則對邊,鄰邊,斜邊兩兩的比值都可由 $\theta$ 決定。因為三角形 共有三個邊長,所以兩兩的比值共有六個:
  - (1)  $\frac{\text{對邊}}{\text{糾邊}}$ ,稱為 $\theta$ 的正弦,以  $\sin\theta$ 表示,即  $\sin\theta = \frac{y}{r}$ 。
  - (2)  $\frac{\mbox{\em $\frac{\pi}{8}$}}{\mbox{\em $\frac{\pi}{8}$}}$ ,稱為 $\mbox{\em $\theta$}$ 的餘弦,以  $\cos \mbox{\em $\theta$}$ 表示,即  $\cos \mbox{\em $\theta$} = \frac{x}{r}$ 。
  - (3)  $\frac{$ 對邊  $}{$  鄰邊  $}$  ,稱為 $\theta$  的正切,以  $\tan\theta$  表示,即  $\tan\theta = \frac{y}{x}$  。







| θ   | $\sin \theta$        | $\cos \theta$        | an	heta              | $\cot \theta$        | $\sec \theta$        | $\csc \theta$        |
|-----|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 30° | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | $\sqrt{3}$           | $\frac{2}{\sqrt{3}}$ | 2                    |
| 45° | $\frac{1}{\sqrt{2}}$ | $\frac{1}{\sqrt{2}}$ | 1                    | 1                    | $\sqrt{2}$           | $\sqrt{2}$           |
| 60° | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           | $\frac{1}{\sqrt{3}}$ | 2                    | $\frac{2}{\sqrt{3}}$ |

【例】設 $\theta$ 為銳角, $\cos\theta = \frac{\sqrt{3}}{2}$ ,試求出  $\sin\theta$ 、 $\tan\theta$ 與  $\sec\theta$ 。

## 2.銳角三角函數的倒數關係:

- $(1) \sin \theta$  與  $\csc \theta$  互為倒數,即: $\sin \theta \cdot \csc \theta = 1$ 。
- $(2)\cos\theta$  與  $\sec\theta$  互為倒數,即: $\cos\theta\cdot\sec\theta=1$ 。
- (3)  $\tan \theta$  與  $\cot \theta$  互為倒數,即: $\tan \theta \cdot \cot \theta = 1$ 。

## 3.平方關係:

(1) 
$$\sin^2 \theta + \cos^2 \theta = 1$$
; (2)  $\tan^2 \theta + 1 = \sec^2 \theta$ ; (3)  $\cot^2 \theta + 1 = \csc^2 \theta$ 

【註】我們以  $\sin^2\theta$  與  $\cos^2\theta$  分別表示 $(\sin\theta)^2$  與 $(\cos\theta)^2$ ,

為了簡便, $(\sin\theta)$ "常以  $\sin$ "  $\theta$  表示,其他三角函數亦同。

4.商數關係:  $\frac{\sin \theta}{\cos \theta} = \tan \theta$ ;  $\frac{\csc \theta}{\sec \theta} = \cot \theta$ 。

# 主題二 有向角、廣義角與同界角

## 1.有向角:

- (1) 在平面上將一射線 *OA* 繞端點 *O* , 沿著一個固定的方向旋轉到射線 *OB* 上 , 就形成一個有向角。我們稱射線 *OA* 為始邊 , *OB* 為終邊 , 而旋轉量就是此有向角的角度 , 並規定逆時針方向旋轉的旋轉量是正的 , 順時針方向旋轉的旋轉量是負的。
- (2) 旋轉量是正的角稱為正向角或簡稱為正角,旋轉量是負的角稱為負向角或簡稱為負角, 正向角與負向角統稱為有向角。



2.廣義角:旋轉時可以是逆時針或順時針方向旋轉半圈,一圈,一圈半,二圈,…等,

因此旋轉量可為±180°, ±360°, ±540°, ±720°, …。



像這樣得出的有向角有正向角與負向角之分,且度數也不限於 0°到 180°之間,我們稱之為廣義角。

#### 3. 同界角:

- (1) 在坐標平面上談有向角時,通常以x軸的正方向為始邊。設我們將兩個廣義角 $\theta$ , $\phi$ 的頂點都放在坐標平面的原點上,且將它們的始邊都放在x軸的正向上,若它們的終邊重疊,則這樣的兩個廣義角就叫做同界角。
- (2) 一般而言,若一個有向角的角度為 $\theta$ ,則所有角度為 $\theta$  + 360°n 的有向角都是它的同界角,其中 n 為整數。換句話說,同界角就是角度差為 360°的整數倍的角。
- 【例】下列角度皆是  $30^\circ$ 的同界角: $-1050^\circ$ 、 $-690^\circ$ 、 $-330^\circ$ 、 $390^\circ$ 、 $750^\circ$ … 所有形如  $30^\circ+360^\circ n$  (其中 n 為整數)的角都是  $30^\circ$ 的同界角,所以  $30^\circ$ 的同界角有無限多個。

# 主題三 度度量與弧度度量

#### 1.弧度的定義:

《說明》一個半徑為 $\mathbf{r}$ 的輪子,當轉動一圈時,滾動的弧長 $s=2\pi\mathbf{r}$ ,即 $\frac{s}{r}=2\pi$ ;

當轉動 5 圈時,滾動的弧長  $s=5(2\pi r)$ ,即  $\frac{s}{r}=5(2\pi)$ ;

當轉動 $\frac{3}{7}$ 圈時,滾動的弧長 $s = \frac{3}{7}(2\pi r)$ ,即 $\frac{s}{r} = \frac{3}{7}(2\pi)$ 。

一般而言,轉動 x 圈時,  $\frac{s}{r} = x(2\pi)$ ,

由此可知, $\frac{s}{r}$ 與轉動的圈數成正比,因此, $\frac{s}{r}$ 可用來表示旋轉量的大小。

《定義》當 $\frac{s}{r}=1$ 時,我們稱旋轉量為 1 弧度,當 $\frac{s}{r}=\theta$ 時,我們稱旋轉量為  $\theta$  弧度。

也就是說,我們可以將與半徑等長的圓弧所對的圓心角稱為 1 弧度,如此,由於整個圓周長為  $2\pi$ ,所以整個圓周長所對 的圓心角就是  $2\pi$  (弧度)。



## 2. 弧度與度(°)的單位換算:

當轉動一圈時, $\frac{s}{r}=2\pi$ ,所以轉一圈就是轉 $2\pi$ 弧度,度與弧度都是旋轉量的單位。 旋轉量以弧度為單位時,也可以用正負符號表示旋轉的方向。

- 【例】旋轉 10 弧度就是逆時針旋轉,而旋轉的弧長是半徑的 10 倍;
- 【例】旋轉-10 弧度就是順時針旋轉,而旋轉的弧長也是半徑的10倍。

因為 
$$360^{\circ} = 2\pi$$
 弧度  $\Rightarrow 180^{\circ} = \pi$  弧度。

結論 設 x 為度度量,  $\theta$  為弧度度量,則 x 與  $\theta$  互換的方法為  $\frac{x}{360^o} = \frac{\theta}{2\pi}$ 。

| 度  | 0° | 30°             | 45°             | 60°             | 90°             | 120°             | 135°             | 150°             | 180°  | 270°             | 360°   |
|----|----|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|-------|------------------|--------|
| 弧度 | 0  | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$ | $\frac{3\pi}{4}$ | $\frac{5\pi}{6}$ | $\pi$ | $\frac{3\pi}{2}$ | $2\pi$ |

3.作一個單位圓,此圓與 x 軸正向交於點(1,0),在圓弧上由此點出發逆時針方向走 1 單位長,

假設到達 A 點,此時旋轉的弧長恰等於半徑,

因此由原點O指向A的射線,即為1弧度的終邊。

一般而言,若 $\theta$ 是一個實數,則由點(1,0)出發,

在圓弧上繞行, $\theta > 0$  就逆時針轉, $\theta < 0$  就順時針轉,

當繞行的弧長為 $\mid \theta \mid$ 時,

假設到達P點,則射線OP即為有向角 $\theta$ (弧度)的終邊。

由此可知,有向角的弧度可以是任意實數。



- 4.有向角為 $\theta$  弧度的有向角:以弧度為單位時,一整圈是 $2\pi$ ,因此,若兩個有向角的弧度差  $2\pi$  的整數倍時,就是同界角。即,有向角 $\phi$ 是 $\theta$  的同界角的充要條件為: $\phi = \theta + 2n\pi$ ,其中n 為整數。
- 5.度(°)與弧度都可以度量有向角的旋轉量,也都可以度量無向角的大小,若某無向角介於0°與180°之間,換成弧度來看,也就是介於0(弧度)與 $\pi$ (弧度)之間。

# 主題四 廣義角三角函數的定義

- 1.定義:當 $\theta$  為任意廣義角時,我們可以將其頂點放在坐標平面的原點,始邊放在x 軸的正向上,其終邊可能落在四個象限或x 軸,y 軸上。我們定義其三角函數值如下:
  - (1) 當廣義角 $\theta$ 的終邊落在四個象限時,在其終邊任取一點P(x,y),此處 $x\neq 0$ 且 $y\neq 0$ , 令r表示 $\overline{OP}$ 的長度,我們規定:

$$\sin \theta = \frac{y}{r}$$
,  $\cos \theta = \frac{x}{r}$ ,  $\tan \theta = \frac{y}{x}$ ,  $\cot \theta = \frac{x}{y}$ ,  $\sec \theta = \frac{r}{x}$ ,  $\csc \theta = \frac{r}{y}$ 

(2) 當廣義角 $\theta$ 的終邊落在x軸上或y軸上時,

設其終邊和以原點為圓心的單位圓相交於點P(x,y),則:



## (i) 當 P 落在 x 軸上時 , y=0 $, x=\pm 1$ ,所以:

| $\sin \theta$ | $\cos \theta$ | $\tan \theta$ | $\cot \theta$ | $\sec \theta$ | $\csc \theta$ |
|---------------|---------------|---------------|---------------|---------------|---------------|
| 0             | x             | 0             | 無意義           | $\frac{1}{x}$ | 無意義           |

(當 P 在 x 軸正向時,x=1,當 P 在 x 軸負向時,x=-1)

## (ii) 當 P 落在 y 軸上時 $, x=0, y=\pm 1,$ 所以:

| $\sin \theta$ | $\cos \theta$ | $\tan \theta$ | $\cot \theta$ | $\sec \theta$ | $\csc \theta$ |
|---------------|---------------|---------------|---------------|---------------|---------------|
| у             | 0             | 無意義           | 0             | 無意義           | $\frac{1}{y}$ |

(當 P 在 y 軸正向時,y=1,當 P 在 y 軸負向時,y=-1)

| θ             | $0^{\circ}$ | 90° | 180° | 270° | 360° |
|---------------|-------------|-----|------|------|------|
| $\sin \theta$ | 0           | 1   | 0    | -1   | 0    |
| $\cos \theta$ | 1           | 0   | -1   | 0    | 1    |
| $\tan \theta$ | 0           | 無意義 | 0    | 無意義  | 0    |
| $\cot \theta$ | 無意義         | 0   | 無意義  | 0    | 無意義  |
| $\sec \theta$ | 1           | 無意義 | -1   | 無意義  | 1    |
| $\csc \theta$ | 無意義         | 1   | 無意義  | -1   | 無意義  |

【例】求設 sin150°、tan150°與 cos150°。

## 2.同界角有相同的三角函數值:

任意有向角 $\phi$ 均可以找到唯一的同界角 $\theta$ ,使得 $0^{\circ} \le \theta < 360^{\circ}$ 

(1)  $\sin(360^{\circ}n + \theta) = \sin\theta$  ; (2)  $\cos(360^{\circ}n + \theta) = \cos\theta$  ;

(3)  $\tan(360^{\circ}n + \theta) = \tan\theta$ ; (4)  $\cot(360^{\circ}n + \theta) = \cot\theta$ ;

(5)  $\sec(360^{\circ}n + \theta) = \sec\theta$ ; (6)  $\csc(360^{\circ}n + \theta) = \csc\theta$ 

# 3.三角函數在四個象限的正負關係:

|                               | <u> </u> |   | 三 | 四 |
|-------------------------------|----------|---|---|---|
| $\sin\theta$ , $\csc\theta$   | +        | + | _ | _ |
| $\cos\theta$ , $\sec\theta$   | +        | _ | _ | + |
| $\tan \theta$ , $\cot \theta$ | +        | _ | + | _ |

4.倒數關係,商數關係,平方關係對於任意廣義角均成立。