

Validação Psicométrica de Instrumentos em Saúde 4

Carina Silva ESTeSL-IPL, HT&RC e CEAUL

14, 15 e 16 de julho 2025

ACF

H0: O modelo teórico ajusta-se vs. H1: O modelo teórico não se ajusta

O que se pretende é não rejeitar a H0 (p > 0,05)

Validade de Construto

- Quanta variância comum é explicada pelo fator
- AVE- Average Variance Extracted (variância média extraída)
- AVE > 0,5

Convergente

- fatores diferentes são suficientemente distintos
- Critério de Fornell-Larcker (1981) – O mais usado

Discriminante

Validade de Construto - Convergente

Objetivo:

Avaliar a validade convergente de um construto (fator latente).

Definição:

A AVE representa a proporção média da variância dos itens que é explicada pelo fator.

Valores altos indicam que os itens representam bem o construto.

Fórmula:

$$ext{AVE} = rac{\sum \lambda^2}{\sum \lambda^2 + \sum heta}$$

Onde:

- λ = cargas fatoriais padronizadas
- θ = variâncias dos erros de cada item

Critério de aceitação:

- AVE ≥ 0.50 → indica que, em média, o fator explica pelo menos 50% da variância dos itens (aceitável).
- Utilizado para avaliar validade convergente e, indiretamente, a validade discriminante.

Validade de Construto - Discriminante

1. Critério de Fornell-Larcker (1981) – O mais usado

Regra:

A raiz quadrada da AVE de cada construto deve ser maior do que a correlação desse construto com os outros.

$$\sqrt{AVE_i} > r_{ij}$$

Procedimento:

- Calcule a AVE para cada fator (de preferência AVE ≥ 0.50).
- 2. Calcule as correlações entre os fatores.
- Compare: a raiz quadrada da AVE do fator deve ser superior à correlação com qualquer outro fator.

Validade de Construto

Atenção: erros comuns

- Avaliar a validade discriminante sem antes verificar a convergente (AVE).
- Confundir validade discriminante com validade de conteúdo ou fiabilidade.
- Considerar apenas os índices de ajustamento globais da CFA e ignorar as relações entre os fatores.

Validade de Construto - Exemplo

Table 6	PT-HSOPSC 2.0	: convergent	and divergent	validity

Composite Measures	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
F1	0.659									
F2	0.230	0.418								
F3	0.585	0.454	0.648							
F4	0.622	0.435	0.877	0.620						
F5	0.450	0.304	0.749	0.636	0.741					
F6	0.381	0.212	0.664	0.538	0.512	0.806				
F7	0.499	0.249	0.680	0.669	0.670	0.715	0.571			
F8	0.158	0.104	0.372	0.268	0.247	0.410	0.342	0.559		
F9	0.243	0.416	0.501	0.412	0.358	0.281	0.336	0.207	0.732	_
F10	0.168	0.146	0.209	0.194	0.146	0.114	0.210	0.078	0.108	0.589

The values of Average Variance Extracted (AVE) are presented on the diagonal in bold; values below the diagonal represent Pearson's correlation coefficients

F1 - Teamwork; F2 - Staffing and Work Pace; F3 - Organizational Learning - Continuous Improvement; F4 - Response to Error; F5 - Supervisor, Manager, or Clinical Leader Support for Patient Safety; F6 - Communication About Error; F7 - Communication Openness; F8 - Reporting Patient Safety Events; F9 - Hospital Management Support for Patient Safety; F10 - Handoffs and Information Exchange

Freitas et al. (2025)

Validade de Construto

Avaliação da qualidade de ajustamento do modelo

Estatísticas	Valores de Referência
Índices absolutos	
X ² E P-VALUE	Quanto menor, melhor; p>0.05
X ² /df	>5 – ajustamento mau]2;5] – ajustamento sofrível]1;2] – ajustamento bom ~1 – ajustamento muito bom

Estatísticas	Valores de Referência		
Índices relativos			
CFI	<0.8 – ajustamento mau		
GFI]0.8;0.9] – ajustamento sofrível]0.9;0.95] – ajustamento bom		
TLI	>=0.95 – ajustamento muito bom		
Índices de Parcimónia			
PGFI	<0.6- ajustamento mau		
PCFI]0.6;0.8] – ajustamento bom >=0.8 – ajustamento muito bom		
Índices de discrepância populacional			
RMSEA	>0.1– ajustamento mau]0.05;0.10] – ajustamento bom <=0.05 – ajustamento muito bom		
(IC 90%)			
P-value (H0: rmsea<=0.05)	P-value>=0.05		

Ações de melhoria do modelo

Ações de melhoria do modelo

Melhorar o ajustamento da CFA é um **processo iterativo**, que exige equilíbrio entre **rigor estatístico** e **coerência teórica**. Cada modificação deve ser fundamentada para preservar a validade do modelo.

Ações de melhoria do modelo

Analisar as cargas fatoriais. Elimine ou reveja itens com cargas fatoriais baixas (< 0,20 ou < 0,3) dependendo do critério). Reflita sobre a pertinência teórica desses itens antes de os excluir.

Analisar coeficiente de fiabilidade interna e ver quais contribuem para a melhoria quando removidos.

Consultar as modificações sugeridas (modification índices - MI).

use MI ≥ 10 como critério base, com justificação teórica clara.

Adicionar uma covariância entre erros de medida

- Interpretação:
 - Indica que existe variância partilhada não explicada pelo fator latente, possivelmente por semelhança semântica, redundância, ou método comum.
- Quando aceitar:
 - Quando os itens são semelhantes em conteúdo ou formulação (ex.: "Sinto-me triste" e "Sinto-me deprimido").

$$y = b_0 + b_1 x + \epsilon$$

$$y_1 = au_1 + \lambda_1 \eta + \epsilon_1$$
 .

$$egin{pmatrix} y_1 \ y_2 \ y_3 \end{pmatrix} = egin{pmatrix} au_1 \ au_2 \ au_3 \end{pmatrix} + egin{pmatrix} \lambda_1 \ \lambda_2 \ \lambda_3 \end{pmatrix} (\eta_1) + egin{pmatrix} \epsilon_1 \ \epsilon_2 \ \epsilon_3 \end{pmatrix}$$

$$y_1= au_1+\lambda_1\eta_1+\epsilon_1 \ y_2= au_2+\lambda_2\eta_1+\epsilon_2 \ y_3= au_3+\lambda_3\eta_1+\epsilon_3$$

$$\Sigma(\theta) = \mathbf{\Lambda} \mathbf{\Psi} \mathbf{\Lambda}' + \Theta_{\epsilon}$$

versus

$$\sum$$

$$\Sigma(heta) = egin{pmatrix} \lambda_1 \ \lambda_2 \ \lambda_3 \end{pmatrix} (\psi_{11}) \left(\lambda_1 \quad \lambda_2 \quad \lambda_3
ight) + egin{pmatrix} heta_{11} & heta_{12} & heta_{13} \ heta_{21} & heta_{22} & heta_{23} \ heta_{31} & heta_{32} & heta_{33} \end{pmatrix}$$

