Lecture 5: Convolutional Neural Networks

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

preview: RELU RELU RELU RELU RELU RELU CONV CONV CONV CONV CONV CONV FC car truck airplane ship horse

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 **=> 3x3 output!**

N

	F		
F			

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

```
(recall:)
(N + 2P - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: **32x32x3**10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

Convolution layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size **F**
- The stride **S**
- The zero padding **P**

This will produce an output of W₂ x H₂ x K where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2^- = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Convolution layer: summary

Common settings:

Let's assume input is W₁ x H₁ x C

Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of W₂ x H₂ x K where:

- $-W_2 = (W_1 F + 2P)/S + 1$
- $H_2^- = (H_1 F + 2P)/S + 1$

Number of parameters: F2CK and K biases

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
 - F = 5, S = 1, P = 2
 - F = 5, S = 2, P = ? (whatever fits)
 - F = 1, S = 1, P = 0

(btw, 1x1 convolution layers make perfect sense)

(btw, 1x1 convolution layers make perfect sense)

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Convolution layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 2 hyperparameters:

- The spatial extent **F**
- The stride S

This will produce an output of $W_2 \times H_2 \times C$ where:

- $W_2 = (W_1 F)/S + 1$
- $-H_{2} = (H_{1} F)/S + 1$

Number of parameters: 0

Fully Connected Layer (FC layer)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Contains neurons that connect to the entire input volume, as in ordinary Neural **Networks**

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 - where N is usually up to \sim 5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet have challenged this paradigm