Title: Dry Eye Analysis Report

Author: Musa Amjad

Date: r Sys.Date()

Output: html_document

- library(tidyverse)
- library(ggplot2)
- library(knitr)
- · library(readr)
- knitr::opts_chunk\$set(echo = TRUE)

Background Information

This report analyzes the Dry Eye Dataset to understand key patterns and insights related to dry eye conditions.

Research Questions

- 1. What are the main characteristics of patients suffering from dry eye?
- 2. Are there any significant correlations between different symptoms and dry eye severity?
- 3. How do demographic factors (age, gender) influence dry eye symptoms?

Dataset Overview

```
{r load-data}

df <- read_csv("Dry_Eye_Dataset.csv")</pre>
```

Display basic structure and summary

str(df) summary(df)

Exploratory Data Analysis

- Checking for Missing Values {r missing-values}
- colSums(is.na(df))

Variable Distributions

{r histograms}

 ggplot(df, aes(x = Age)) + geom_histogram(binwidth = 5, fill = "blue", alpha = 0.7) + theme_minimal() + ggtitle("Age

Distribution")

{r gender-distribution}

ggplot(df, aes(x = Gender, fill = Gender)) + geom_bar() + theme_minimal() + ggtitle("Gender Distribution")

Data Visualizations

Symptom Severity vs. Age

{r severity-vs-age}

 ggplot(df, aes(x = Age, y = Severity, color = Gender)) + geom_point() + theme_minimal() + ggtitle("Dry Eye Severity by Age and Gender")

Correlation Matrix

{r correlation-matrix} library(GGally)

• ggpairs(df[, sapply(df, is.numeric)], title = "Correlation between Numeric Variables")

Conclusion

- Key findings: The dataset provides insights into the distribution of dry eye symptoms across different demographics.
- Recommendations: Further research could explore machine learning models for predicting dry eye severity.

This concludes the exploratory analysis of the Dry Eye Dataset.

```
In [ ]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   sns.set(style="whitegrid")
```

```
In [ ]: # importing dataset
file_path = "/Dry_Eye_Dataset.csv"
df = pd.read_csv(file_path)

df.head()
```

Out[2]:

	Gender	Age	Sleep duration		Stress level	Blood pressure	Heart rate	Daily steps	Physical activity	Height	 Smc
0	F	24	9.5	2	1	137/89	67	3000	31	161	
1	М	39	9.6	2	3	108/64	60	12000	74	164	
2	F	45	5.4	1	5	134/81	95	12000	93	179	
3	F	45	5.4	4	5	110/90	78	19000	32	160	
4	F	42	5.7	3	2	99/67	72	4000	173	179	

5 rows × 26 columns

```
In [ ]: df.info()
        df.isnull().sum()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 20000 entries, 0 to 19999 Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype			
0	Gender	20000 non-null	object			
1	Age	20000 non-null	int64			
2	Sleep duration	20000 non-null	float64			
3	Sleep quality	20000 non-null	int64			
4	Stress level	20000 non-null	int64			
5	Blood pressure	20000 non-null	object			
6	Heart rate	20000 non-null	int64			
7	Daily steps	20000 non-null	int64			
8	Physical activity	20000 non-null	int64			
9	Height	20000 non-null	int64			
10	Weight	20000 non-null	int64			
11	Sleep disorder	20000 non-null	object			
12	Wake up during night	20000 non-null	object			
13	Feel sleepy during day	20000 non-null	object			
14	Caffeine consumption	20000 non-null	object			
15	Alcohol consumption	20000 non-null	object			
16	Smoking	20000 non-null	object			
17	Medical issue	20000 non-null	object			
18	Ongoing medication	20000 non-null	object			
19	Smart device before bed	20000 non-null	object			
20	Average screen time	20000 non-null	float64			
21	Blue-light filter	20000 non-null	object			
22	Discomfort Eye-strain	20000 non-null	object			
23	Redness in eye	20000 non-null	object			
24	Itchiness/Irritation in eye	20000 non-null	object			
25	Dry Eye Disease	20000 non-null	object			
dtypes: float64(2), int64(8), object(16)						
nomony usago. 4 A MP						

memory usage: 4.0+ MB

Out[3]:	0
Gender	0
Age	0
Sleep duration	0
Sleep quality	0
Stress level	0
Blood pressure	0
Heart rate	0
Daily steps	0
Physical activity	0
Height	0
Weight	0
Sleep disorder	0
Wake up during night	0
Feel sleepy during day	0
Caffeine consumption	0
Alcohol consumption	0
Smoking	0
Medical issue	0
Ongoing medication	0
Smart device before bed	0
Average screen time	0
Blue-light filter	0
Discomfort Eye-strain	0
Redness in eye	0
Itchiness/Irritation in eye	0
Dry Eye Disease	0

dtype: int64

Out[7]:

	Age	duration	Sleep quality	Stress level	Heart rate	Daily steps
count	20000.000000	20000.000000	20000.000000	20000.000000	20000.000000	20000.000000
mean	31.422800	6.998245	2.997250	2.993750	79.912200	10536.900000
std	8.103717	1.731723	1.412283	1.407235	11.808279	5752.729186
min	18.000000	4.000000	1.000000	1.000000	60.000000	1000.000000
25%	24.000000	5.500000	2.000000	2.000000	70.000000	6000.000000
50%	31.000000	7.000000	3.000000	3.000000	80.000000	11000.000000
75%	39.000000	8.500000	4.000000	4.000000	90.000000	16000.000000
max	45.000000	10.000000	5.000000	5.000000	100.000000	20000.000000

In []: df_cleaned.hist(figsize=(18, 6), bins=10, edgecolor="Orange")
 plt.show()


```
In [ ]: numeric_df = df_cleaned.select_dtypes(include=['number'])
    plt.figure(figsize=(10, 6))
    sns.heatmap(numeric_df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
    plt.title("Correlation Heatmap")
    plt.show()
```



```
In [ ]: plt.figure(figsize=(12, 6))
    df_cleaned.boxplot(rot=90)
    plt.title("Boxplot of Numerical Features")
    plt.show()
```



```
In [ ]:
    File "<ipython-input-1-51deb2d1e312>", line 2
        import matplotlib as np import numpy.Pyplot as PLT
```

SyntaxError: invalid syntax

```
In [ ]:
```