Markov Chains

Website Traffic Prediction

TANAY BIRADAR

October 2, 2021

Website Traffic and PageRank

- Search engines use popularity to rank pages
- Popularity can be quantified by links to a page
 - ► Works in theory, can be abused in practice
- Google used a Markov Model (PageRank) to rank popularity

Website Traffic and PageRank

"PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites." ¹

¹https://en.wikipedia.org/wiki/PageRank

CENTRAL QUESTION

Which page is a user most likely to land on after starting on a given page?

Model

- Represent the internet as a directed graph
 - ► We're looking at a small slice of the web
- Edges are links, vertices are web pages
 - Assume equal probability of traversing every link such that 2 $\Sigma w_{out} = 1$, where w is the edge weight
 - The probabilities coming out of every website must sum to 1

²https://en.wikipedia.org/wiki/PageRank

DATA

The most complex part is by far the data collection

- Start at an arbitrary website, perform BFS to create an adjacency list that represents the internet
 - ► Keep track of visited nodes to avoid duplicate processing
- Stop after storing __ thousand links
 - ► I don't have the computing power of Google

Data (cont'd)

Adjacency list A stores links between pages If $A_{ij} = 1$, there is a link from page i to page j

$$A = \begin{bmatrix} a_{00} & \dots & a_{0n} \\ \vdots & \ddots & \vdots \\ a_{n0} & \dots & a_{nn} \end{bmatrix}$$

Normalize the adjacency list to satisfy $\forall i \ \Sigma w_{out} = \Sigma w_i = 1$ We now have a transition matrix!

BENCHMARKING

Start at a given page