Problem 1.

(a)

$$4^{n} = (1+1)^{2n}$$

$$= \sum_{i=0}^{2n} {2n \choose i}$$

$$= 1 + \sum_{i=0}^{2n} {2n \choose i} \le 2n {2n \choose n}$$

Since

$$\binom{2n}{i} = \frac{2n!}{i!(2n-i)!}$$

$$= \frac{2n!}{(i! \times (n+1)(n+2)\cdots(2n-i))n!} \le \frac{2n!}{n!n!} = \binom{2n}{n}$$

Therefore

$$\binom{2n}{n} \ge \frac{2^{2n}}{2n}$$

Since $\binom{2n}{n} \ge 2^{2n}/2n$, we have

$$\frac{2^{2n}}{2n} \le \prod_{p \le 2n} p^{\ell_p} \le (2n)^{\pi(2n)}$$
$$\Leftrightarrow 2n \log 2 \le (\pi(2n) + 1) \log 2n$$
$$\Leftrightarrow \pi(2n) \ge \frac{2n}{\log 2n} \log 2 - 1$$

(b)

Note that

$$n^{\pi(2n) - \pi(n)} \le n^{\pi(n)} \le 2^{2n}$$

$$\Leftrightarrow \pi(2n) \le \frac{2n \log 2}{\log n} + \pi(n)$$

Actually, $\pi(n) \le 2n \log 2 / \log n$, so $\pi(2n) \le 4n \log 2 / \log 2n$.

(c)

We have $\pi(2n) \in [2n \log 2/\log 2n - 1, 4n \log 2/\log n]$, so $\pi(6n) \in [6n \log 2/\log 6n - 1, 12n \log 2/\log 3n]$

$$\pi(6n)_{\min} - \pi(n)_{\max} = \frac{6n \log 2}{\log 6n} - 1 - \frac{2n \log 2}{\log n}$$

 $\geq 1(\text{when } n \geq 6)$

When n < 6, it's apparent that there is a prime between [n, 6n]. So there is at least a prime between [n, 6n].

(d)

(1)

We have $C_{2n}^n=(2n)!/n!n!$, if p>2n/3, 2n! has factor p,2p. if $p\leq n$, n!n! has factor p^2 , so $\ell_p=0$.

(2)

Problem 2.

Oberserve that

$$\sum_{1 \le m \le n} \sum_{d \mid m} \varphi(d) = \sum_{d \ge 1} \varphi(d) \lfloor n/d \rfloor \tag{1}$$

For the left of above equation

$$\left(\sum_{1 \le k \le m+n} - \sum_{1 \le k \le m} - \sum_{1 \le k \le n}\right) \sum_{d|k} \varphi(d) = \frac{(m+n)^2 + (m+n)}{2} - \frac{m^2 + m}{2} - \frac{n^2 + n}{2}$$

$$= mn$$

For the right

$$\sum_{d\geq 1} \varphi(d) \left(\left\lfloor \frac{n+m}{d} \right\rfloor - \left\lfloor \frac{n}{d} \right\rfloor - \left\lfloor \frac{m}{d} \right\rfloor \right) = \sum_{k \in S(m,n)} \varphi(k)$$

Note that

$$\left\lfloor \frac{n+m}{d} \right\rfloor - \left\lfloor \frac{n}{d} \right\rfloor - \left\lfloor \frac{m}{d} \right\rfloor = \begin{cases} 1, & \text{If } \left\{ \frac{m}{d} \right\} + \left\{ \frac{n}{d} \right\} \ge 1\\ 0, & \text{If } \left\{ \frac{m}{d} \right\} + \left\{ \frac{n}{d} \right\} < 1 \end{cases}$$

And $\{m/d\} + \{n/d\} \ge 1$ means $m \pmod{d} + n \pmod{d} \ge d$, $\{m/d\} + \{n/d\} < 1$ means $m \pmod{d} + n \pmod{d} < d$,

Then we need to prove (1).

$$\begin{split} \sum_{1 \leq m \leq n} \sum_{d \mid m} \varphi(m) &= \sum_{1 \leq m \leq n} \sum_{k \geq 1} \sum_{d \geq 1} \varphi(d) [m = kd] \\ &= \sum_{d \geq 1} \varphi(d) \sum_{d \leq m \leq n} \sum_{1 \leq k \leq m} [m = kd] \\ &= \sum_{d \geq 1} \varphi(d) \left\lfloor \frac{n}{d} \right\rfloor \end{split}$$

Problem 3.

(a)

$$\begin{split} z^m - 1 &= \prod_{0 \leq k \leq m} (z - \omega^k) \times 1 \\ &= \prod_{0 \leq k \leq m} (z - \omega^k) \prod_{d \mid m} [d = \gcd(k, m)] \\ &= \prod_{d \mid m} \prod_{0 \leq k \leq m} (z - \omega^k) \left[d = \gcd(k, m) \right] \\ &= \prod_{d \mid m} \prod_{0 \leq k \leq m} (z - \omega^k) \left[\left(\frac{k}{d}, \frac{m}{d} \right) = 1 \right] \\ &= \prod_{d \mid m} \prod_{0 \leq p \leq m/d} (z - \omega^{pd}) \left[\left(p, \frac{m}{d} \right) = 1 \right] \\ &= \prod_{d \mid m} \prod_{0 \leq p \leq d} (z - \omega^{pm/d}) \left[(p, d) = 1 \right] \left(\text{note: Smilar to } \sum_{d \mid m} f(d) = \sum_{d \mid m} f\left(\frac{m}{d} \right) \right) \\ &= \prod_{d \mid m} \prod_{0 \leq p \leq d} \left(z - (\omega^{(m/d)})^k \right) \left[(p, d) = 1 \right] \left(\omega^{(m/d)} \text{ is d-th root of unity} \right) \\ &= \prod_{d \mid m} \Psi_d(z) \end{split}$$

(b)

For (2), we have

$$\log(z^m - 1) = \sum_{d|m} \log \Psi_d(z)$$

By Möbius inversion

$$\log \Psi_m(z) = \sum_{d|m} \mu\left(\frac{m}{d}\right) \log(z^d - 1)$$

$$\Leftrightarrow \Psi_m(z) = \prod_{d|m} (z^d - 1)^{\mu(m/d)}$$

Problem 4.

By brute force, we find that

m	f(m)
3	2^{2}
7	2^{3}
3×7	2^5
31	2^5
3×31	2^{7}
127	2^{7}
7×31	2^{8}
3×127	2^{9}
$3 \times 7 \times 31$	2^{10}
•••	•••

If m has a form of $2^k - 1$ and m is a prime, in other words m is a Mersenne prime, f(m) is apparently a power of 2.

Again, above listing tells us m may be a product of distinct Mersenne primes.

$$f(m_1 m_2) = \sum_{d|m_1 m_2} d$$

$$= \sum_{d_1 d_2 | m_1 m_2} d_1 d_2$$

$$= \sum_{d_1 | m_1} d_1 \sum_{d_2 | m_2} d_2$$

$$= f(m_1) f(m_2)$$

So f(m) is multiplicative.

If m is a product of distinct Mersenne primes, so m can be written as $m_1m_2\cdots m_k$, $m_{1,2}...$ are distinct Mersenne primes. Since $f(m) = f(m_1)f(m_2)\cdots f(m_k)$ and $f(m_{1,2}...)$ is a power of 2, f(m) is a power of 2.

For necessarity, $f(m) = f(\prod_i p_i^{r_i}) = \prod_i f(p_i^{r_i})$, so f(m) is a power of 2 if and only if each of $f(p_i^{r_i})$ is a power of 2. For $p_i^{r_i}$

$$f(p_i^{r_i}) = 1 + p_i + p_i^2 + \dots + p_i^{r_i}$$

If $f(p_i^{r_i})$ is power of 2, p_i and r_i are both odd, so let $r_i = 2m + 1$ we can factor $f(p_i^{r_i})$ as

$$f(p_i^{r_i}) = (1 + p_i)(1 + p_i^2 + p_i^4 + \dots + p_i^{2m})$$

So if $f(p_i^{r_i})$ is a power of 2, the above two factoried parts should be power of 2 both, and so $1 + p_i = 2^k$, it means m is product of some Mersenne primes. Then we need to explain "distinct".

$$1 + p_i^2 + p_i^4 + \dots + p_i^{2m} = \frac{(2^k - 1)^m - 1}{2^k - 2}$$

This result is not always power of 2, it's power of 2 only and if only m = 0. So each of r_i equals 1.

So for sufficiency, if f(m) is a power of 2, m is a product of distinct Mersenne primes.

So the necessary and sufficient condition of that f(m) is a power of 2 is that m is a product of distinct Mersenne primes.