

Mécanique des solides

3. Déformées modales

Reine Fares

reine.fares@cea.fr

Cours de Modélisation par Abaqus

- Comportement cyclique des matériaux
 - Élément cubique unitaire pour tester les lois de comportement
- Poutre 1D appuyée et encastrée
 - Données : géométrie, charges, matériau, conditions aux limites
 - Résultats : flèche, contrainte max, réactions
- Déformées modales d'une structure
 - Premiers modes de vibration et masses associées
- Portique 3D sous charge dynamique
 - Données : géométrie, matériau, charges statiques et dynamiques
 - Résultats : déformées modales, déplacement dans le temps, contraintes
- Poutre 3D en béton armé
 - Géométrie 3D, éléments finis solides

Oscillateur élémentaire : 1 ddl

Condition d'équilibre

Forces en jeu:

Force d'inertie : Masse [kg], Accélération

$$F(t) = m\ddot{u}(t)$$

Force élastique : Raideur [N/m], Déplacement

$$F(t) = k u(t)$$

$$F(t) = c \dot{u}(t)$$

Oscillateur élémentaire 1/4

Oscillation libre

$$m\ddot{u}(t) + ku(t) = 0$$

Oscillateur élémentaire 2/4

Oscillation amortie

$$m\ddot{u}(t) + c\dot{u}(t) + ku(t) = 0$$

Oscillateur élémentaire 3/4

Oscillation forcée

$$m\ddot{u}(t) + ku(t) = F(t)$$

Oscillateur élémentaire 4/4

Oscillation amortie et forcée

$$m\ddot{u}(t) + c\dot{u}(t) + ku(t) = F(t)$$

Hypothèse de plancher rigide et poteaux souples

Période propre de vibration

Pulsation propre

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Fréquence propre

$$f_0 = \frac{\omega_0}{2\pi}$$

Période propre

$$T_0 = \frac{2\pi}{\omega_0}$$

$$k_1 < k_2$$

$$T_1 > T_2$$

$$f_1 < f_2$$

$$\omega[rad/s]$$
 $k[N/m]$ $m[kg]$ $f[Hz]$ $T[s]$

Analogie avec l'oscillateur élémentaire

- + T₀ f₀ + structure souple
- T_0 + f_0 + structure rigide

Oscillateur élémentaire 1/3

Hypothèses:

- Poteaux : indéformables axialement, masse négligeable
- Plancher rigide

Équation d'équilibre dynamique d'un oscillateur élémentaire

$$m\ddot{u}(t) + c\dot{u}(t) + ku(t) = -m\ddot{u}_g(t)$$

Oscillateur élémentaire 2/3

Équation d'équilibre dynamique d'un oscillateur élémentaire

$$\ddot{u}(t) + \frac{c}{m}\dot{u}(t) + \frac{k}{m}u(t) = -\ddot{u}_g(t)$$

Rapport d'amortissement

$$\zeta_0 = \frac{c}{2\omega_0 m}$$
 Pulsation propre $\omega_0^2 = \frac{k}{m}$

$$\omega_0^2 = \frac{\kappa}{m}$$

Oscillateur élémentaire 3/3

$$\ddot{u}(t) + 2\zeta_0 \omega_0 \dot{u}(t) + \omega_0^2 u(t) = -\ddot{u}_g(t)$$

$$\dot{u}(0) = 0$$
, $u(0) = 0$ Condition statique initiale

- Amplification des effets :
 - Sol rigide + Bâtiment rigide
 - Sol mou + Bâtiment souple

- Peu de dommages :
 - Sol rigide + Bâtiment souple
 - Sol mou + Bâtiment rigide
- Lien entre le contenu en énergie du séisme aux différentes fréquences et la période fondamentale de vibration de la structure
- La réponse sismique dépend du signal et de la structure

Réponse dynamique d'un oscillateur 1/2

Données :

- Masse : m = 18000 kg
- Géométrie 1D :
 section 30 x 30 cm ou 30 x 60 cm
 - H = 3 m
- Matériau : béton, $\rho = 2500 \text{ kg/m}^3$ E = 31220 N/mm², v = 0.2
- Loi de comportement : élastique linéaire
- · Conditions aux limites :
 - 1. Base encastrée $u_x = u_y = u_z = 0$
 - 2. Accélération imposée $\ddot{u}_x(t), \ddot{u}_y(t), \ddot{u}_z(t)$

Réponse dynamique d'une structure 3/3

Modélisation :

- Masse m, raideur $k = 12EI/H^3$
- Fréquence propre $f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$, période $T_0 = \frac{1}{f_0}$

Résultats :

- Step 1 : Fréquences propres
- Step 1 : Formes modales
- Step 2 : Histoire temporelle à la base en termes d'accélération [m/s²] (input)
- Step 2 : Histoire temporelle au sommet en termes de déplacement [m] (déformation)
- Step 2 : Histoire temporelle au sommet en termes de vitesse [m/s] et accélération
- Déplacement max au sommet

Model - Parts

1. Géométrie : type d'analyse (1D), type d'élément (poutre)

Model - Parts

2. Géométrie : tracer la poutre

Model

3. Propriétés : Matériau, Profilé R30x30, Section, Attribution de la section

Model

4. Propriétés : Orientation des poutres, Assemblage

5. Pas de calcul 1 : fréquences propres

5. Pas de calcul 1 : fréquences propres

5. Pas de calcul 1 : fréquences propres

6. Pas de calcul 2 : mouvement dans le temps

6. Pas de calcul 2 : mouvement dans le temps

6. Pas de calcul 2 : mouvement dans le temps

Model - BCs

7. Conditions aux limites : encastrement à la base (step 1)

Model - BCs

7. Conditions aux limites : encastrement à la base (step 1)

Model - Amplitudes

8. Histoire de charge : amplitude dans le temps

Model - BCs

9. Conditions aux limites : accélération imposée (step 2)

Model - BCs

9. Conditions aux limites : accélération imposée

Model

10. Mouvement dans le temps : Sets, Field Output Request, History Output Request

Model - Parts

11. Masse concentrée aux noeuds : éléments de la matrice des masses

Model - Parts

11. Masse concentrée aux noeuds : éléments de la matrice des masses

Model

12. Maillage (Parts-Mesh) et Calcul (Analysis-Job, Data check, Submit)

1. Fréquences propres

2. Modes propres

2. Modes propres

2. Modes propres

Results - XY Data

3. Courbes : déplacement du sommet dans le temps, vitesse/accélération à la base

Results - XY Data

4. Courbes : accélération à la base (input)

Results - XY Data

5. Courbes : déplacement en tête

6. Courbes : déplacement à la base et en tête

Fichiers dans le dossier de calcul

Vérifier les données :

- File *.cae
- File *.inp

Résultats:

- File *.dat (Getting Started 7.1.2)
- File *.odb

Messages d'erreurs :

- File *.log
- File *.msg