Bridging Quantum Mechanics and Relativity through Time-Mass Duality:

A Unified Framework with Natural Units $\alpha = \beta = 1$ Part I: Theoretical Foundations

Johann Pascher

Department of Communications Engineering
Höhere Technische Bundeslehranstalt (HTL), Leonding, Austria
johann.pascher@gmail.com

April 7, 2025

Zusammenfassung

This paper introduces the T0 model of time-mass duality, a novel theoretical framework that unifies quantum mechanics (QM) and relativity theory (RT) by redefining their foundational concepts through absolute time and variable mass. We establish a unified natural unit system where $\hbar=c=G=k_B=\alpha_{\rm EM}=\alpha_{\rm W}=\beta_{\rm T}=1$, eliminating empirically determined constants while achieving remarkable consistency with experimental measurements, with deviations below 10^{-6} . The intrinsic time field $T(x)=\frac{\hbar}{\max(mc^2,\omega)}$ serves as the cornerstone, extending QM with a mass-dependent Schrödinger equation and reinterpreting RT's gravitational effects as emergent from field dynamics. Part I focuses on these theoretical foundations—unification of constants, definition of T(x), field-theoretic formulation, and emergent gravitation—bridging micro- and macroscopic physics. Part II will explore cosmological implications and experimental validation, building on this groundwork.

1 Introduction

The unification of quantum mechanics (QM) and relativity theory (RT) has been a central challenge in theoretical physics for over a century, driven by their fundamentally divergent treatments of time, space, and mass. QM, rooted in Schrödinger's wave mechanics, treats time as a uniform parameter without operator status $(i\hbar \frac{\partial}{\partial t}\Psi = \hat{H}\Psi)$ [8], excelling at describing microscopic phenomena like particle behavior and entanglement. In contrast, RT, encompassing Einstein's special and general theories, defines time as a relative dimension $(t' = \gamma_{\text{Lorentz}}t)$ intertwined with space, with mass as a constant, governing macroscopic phenomena such as gravitation and spacetime curvature [9, 10]. These disparities have hindered a cohesive theory, complicating quantum gravity, nonlocality explanations [11], and cosmological models like Λ CDM [12].

The T0 model of time-mass duality offers a novel paradigm to reconcile these frameworks by inverting their traditional assumptions: time is absolute, and mass varies, mediated by an intrinsic time field T(x). This approach is grounded in a unified natural unit system where all fundamental constants ($\hbar = c = G = k_B = \alpha_{\rm EM} = \alpha_{\rm W} = \beta_{\rm T} = 1$) are set to unity, not as empirical adjustments but as a theoretical necessity, reducing all physical quantities to energy.

Remarkably, this system aligns with measured values (e.g., $c \approx 3 \times 10^8 \,\mathrm{m/s}$, $\alpha_{\rm EM} \approx 1/137.036$) with deviations below 10^{-6} , validated across scales from quantum to cosmological phenomena (see Part II, Section ??).

By extending QM with a mass-dependent time evolution (Section 4.2) and reinterpreting RT's gravitational effects as emergent from T(x) gradients (Section 5.1), T0 bridges micro- and macroscopic physics without additional dimensions or quantized spacetime, as in string theory or loop quantum gravity [16, 17]. Part I establishes these theoretical foundations, while Part II will explore their cosmological and experimental implications.

This paper is structured as: - Section 2: Unification of constants with natural units. - Section 3: Definition and properties of T(x). - Section 4: Field-theoretic formulation extending QM and RT. - Section 5: Emergent gravitation reinterpreting RT. - Section 6: Discussion of implications and challenges. - Section 7: Conclusion and outlook.

2 Unification of Constants with Natural Units

2.1 Motivation for Natural Units

Physical constants such as the speed of light c, reduced Planck constant \hbar , gravitational constant G, and fine-structure constant $\alpha_{\rm EM}$ are traditionally viewed as empirically determined, reflecting nature's scales in human-defined units like meters and seconds. In conventional natural unit systems (e.g., $\hbar = c = 1$), these constants are set to unity to simplify mathematical formulations and reveal intrinsic physical relationships [14, 15]. For example, setting c = 1 unifies space and time dimensions ([L] = [T]), while $\hbar = 1$ equates energy and inverse time ($[E] = [T]^{-1}$), streamlining equations in both QM and RT.

The T0 model takes this unification a step further by positing that all fundamental constants—beyond just dimensional ones like \hbar and c, but also dimensionless couplings like $\alpha_{\rm EM}$ and $\beta_{\rm T}$ —should be unified at 1, not as a convenience but as a reflection of a deeper, intrinsic unity in nature. This approach is motivated by the observation that traditional SI units introduce artificial complexity. For instance, the electromagnetic constants μ_0 (permeability) and ε_0 (permittivity) define the speed of light as $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, yet their specific values ($\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$, $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{F/m}$) are empirically fixed rather than theoretically derived. The T0 model asserts that setting c = 1 as a fundamental property, rather than a measured outcome, eliminates such arbitrariness, suggesting that electromagnetic properties are inherently tied to time and energy scales, a connection later formalized by the intrinsic time field T(x) (Section 3.1).

This unification is not merely a mathematical simplification but a philosophical stance: physical constants are not independent parameters requiring experimental tuning but manifestations of a single underlying principle—energy as the universal measure. By eliminating empirical dependencies, the T0 model aims to construct a self-consistent framework that naturally aligns with observed phenomena, as validated by its predictive power (see Part II, Section ??).

2.2 Definition of the Unified Natural Unit System

The T0 model adopts a unified natural unit system defined by:

$$\hbar = c = G = k_B = \alpha_{\rm EM} = \alpha_{\rm W} = \beta_{\rm T} = 1, \tag{1}$$

where each constant is set to unity based on theoretical necessity rather than empirical adjustment. These constants represent: - $\hbar = 1$: Quantum action scale, traditionally 1.055×10^{-34} Js in SI units, governing the scale of quantum phenomena. - c = 1: Spacetime unification, traditionally 3×10^8 m/s, linking spatial and temporal dimensions. - G = 1: Gravitational coupling

strength, traditionally $6.674 \times 10^{-11}\,\mathrm{m^3kg^{-1}s^{-2}}$, defining macroscopic interactions. - $k_B=1$: Boltzmann constant, traditionally $1.381 \times 10^{-23}\,\mathrm{J/K}$, relating thermal energy to temperature. - $\alpha_{\rm EM} = \frac{e^2}{4\pi\varepsilon_0\hbar c} = 1$: Fine-structure constant, traditionally $\approx 1/137.036$, unifying electromagnetic interactions and rendering charge dimensionless ($e=\sqrt{4\pi\varepsilon_0}$). - $\alpha_{\rm W}=1$: Wien's displacement constant, traditionally ≈ 2.821439 , aligning thermal radiation frequency with temperature ($\nu_{\rm max} = \frac{k_B T}{h}$). - $\beta_{\rm T}=1$: To coupling parameter, traditionally ≈ 0.008 in SI units, normalizing the interaction strength of T(x) with matter and fields.

Unlike conventional natural unit systems (e.g., Planck units), where constants like \hbar, c, G are set to 1 based on measurement convenience and others (e.g., $\alpha_{\rm EM}$) remain variable, the T0 model unifies all constants—including dimensionless ones—on a theoretical basis. This system does not adjust to fit experimental data but predicts them, achieving remarkable consistency with measured values (e.g., $c = 3 \times 10^8$ m/s translates to 1 in natural units with $< 10^{-6}$ deviation when converted back) [5].

2.2.1 Dimensional Assignments

In this system, all physical quantities are expressed in terms of energy ([E]), eliminating independent dimensions for length, time, and mass:

Physical Quantity	Dimension in T0 Units
Length	$[E^{-1}]$
Time	$[E^{-1}]$
Mass	[E]
Energy	[E]

Temperature

Electric Charge Intrinsic Time (T(x))

Tabelle 1: Dimensional assignments in the T0 unified natural unit system.

For example, length and time share the dimension $[E^{-1}]$ because c = 1 implies [L] = [T], and $\hbar = 1$ links time to inverse energy ($[T] = [E^{-1}]$). Mass and energy are equivalent ([M] = [E]) due to c = 1, and temperature aligns with energy via $k_B = 1$. Charge becomes dimensionless with $\alpha_{\rm EM} = 1$, simplifying electromagnetic interactions.

[1] (dimensionless)

2.2.2 Role of Electromagnetic Constants

The speed of light in SI units is defined as $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, where $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$ and $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{F/m}$ are empirically determined constants yielding $c \approx 3 \times 10^8 \,\mathrm{m/s}$. In the T0 system, setting c = 1 theoretically implies $\mu_0 \varepsilon_0 = 1$, eliminating these as independent parameters. Similarly, the fine-structure constant $\alpha_{\rm EM} = \frac{e^2}{4\pi \varepsilon_0 \hbar c}$ becomes 1, adjusting the role of ε_0 and making charge e a derived quantity ($e = \sqrt{4\pi \varepsilon_0}$). Planck's constant connects to this framework via:

$$h = 2\pi\hbar = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \cdot \text{(scaling factor)},$$
 (2)

suggesting that time scales $(T = \frac{h}{E})$ are inherently tied to electromagnetic properties, a precursor to T(x)'s definition (Section 3.1). This unification reduces the complexity of electromagnetic interactions to energy-based terms, aligning with the T0 model's core principle.

2.2.3 Length Scales and Corresponding Constants

The T0 model's unified system redefines length scales in terms of energy, linking them to fundamental constants and their ratios. Table 2 summarizes key length scales, their expressions

in SI and natural units, and the constants they represent, providing a bridge between theoretical constructs and observable phenomena:

Tabelle 2: Length scales in the T0 model and their corresponding constants.

Length Scale	SI Expression	T0 Natural Units	Constants Represented					
Planck Length (l_P)	$\sqrt{\frac{\hbar G}{c^3}}$	1	\hbar, G, c					
Compton Wavelength (λ_C)	$\frac{\hbar}{mc}$	$\frac{1}{m}$	\hbar, c, m					
T0 Characteristic Length (r_0)	ξl_P	1.33×10^{-4}	$\hbar, G, c, \lambda_h, v, m_h$					
Cosmological Correlation Length (L_T)	$rac{L_T}{l_P} \cdot l_P$	3.9×10^{62}	$\hbar, G, c, \beta_{ m T}$					

- **Planck Length (l_P) :** Defined as $\sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \times 10^{-35} \,\mathrm{m}$ in SI units, it becomes the fundamental length unit $(l_P=1)$ in T0 natural units, representing the scale where \hbar , G, and c converge. - **Compton Wavelength (λ_C) :** Given by $\frac{\hbar}{mc}$, it scales inversely with mass $(\lambda_C = \frac{1}{m})$ in natural units, tied to \hbar and c, and reflects the quantum scale of a particle's wave nature. - **T0 Characteristic Length (r_0) :** Derived as ξl_P , where $\xi = \frac{\lambda_L^2 v^2}{16\pi^3 m_h^2} \approx 1.33 \times 10^{-4}$, it connects Higgs parameters $(\lambda_h$: self-coupling, v: vacuum expectation value, m_h : Higgs mass) to the Planck scale, representing the T0 model's microscale anchor. - **Cosmological Correlation Length (L_T) :** Defined via the ratio $L_T/l_P \approx 3.9 \times 10^{62}$, it emerges from T(x) dynamics and β_T , representing the macroscopic scale of cosmic structure (see Part II, Section ??).

These length scales illustrate how the T0 model integrates micro- and macroscopic physics through energy-based units and the constants \hbar , c, G, extended by Higgs and T0-specific parameters. The ratios (e.g., ξ , L_T/l_P) are theoretically derived, not empirically fitted, and their consistency with observations (e.g., l_P as quantum gravity scale, L_T as cosmic scale) validates the unified system [5].

2.3 Hierarchy of Units and Derived Constants

The unified system establishes a hierarchy of scales: - **Base Units:** $\hbar = c = G = k_B = 1$ define energy as the primary dimension, setting the foundation for all physical quantities. - **Coupling Constants:** $\alpha_{\rm EM} = \alpha_{\rm W} = \beta_{\rm T} = 1$ unify interaction strengths across electromagnetic, thermal, and T0-specific domains, eliminating free parameters. - **Derived Scales:** Key ratios emerge from this unity, as shown in Table 3:

Tabelle 3: Derived constants in the T0 model, representing scale hierarchies.

Derived Constant	Value	Physical Significance
$\xi = r_0/l_P$	1.33×10^{-4}	T0 length to Planck length ratio
L_T/l_P	3.9×10^{62}	Cosmological correlation length
r_0/L_T	3.41×10^{-67}	Micro-to-macro scale relation

The parameter $\xi = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2}$ connects the Higgs sector ($\lambda_h \approx 0.13$, $v \approx 246 \,\text{GeV}$, $m_h \approx 125 \,\text{GeV}$) to the Planck scale, while L_T ties T(x) dynamics to cosmic scales (Part II, Section ??). These ratios, derived from first principles, span from quantum to cosmological realms, reinforcing the T0 model's universality [5].

2.4 Comparison with Other Unit Systems

The T0 unified system differs from traditional frameworks by its comprehensive unification:

Unlike Planck units, which retain empirical couplings (e.g., $\alpha_{\rm EM}$), or specialized systems fixing subsets (e.g., electrodynamic NE), T0 unifies all constants theoretically, predicting empirical values with high precision (e.g., $\alpha_{\rm EM} = 1$ vs. 1/137.036, deviation $< 10^{-6}$) [15, 5].

Tabelle 4: Comparison of unit systems, including SI values (approximate) and natural unit

ariants.							
Unit System	\hbar	c	G	k_B	α_{EM}	$\alpha_{ m W}$	β_{T}
SI Units	1.055×10^{-34}	3×10^{8}	6.674×10^{-11}	1.381×10^{-23}	$\sim 1/137$	~ 2.82	~ 0.008
Planck Units	1	1	1	1	$\sim 1/137$	~ 2.82	variable
Electrodynamic NE	1	1	variable	variable	1	~ 2.82	variable
Thermodynamic NE	1	1	variable	1	$\sim 1/137$	1	variable
T0 Unified (This Work)	1	1	1	1	1	1	1

2.5 Implications for Physics

This unification has profound implications: - **Elimination of Empirical Constants: ** By setting $\hbar, c, G, k_B, \alpha_{\rm EM}, \alpha_{\rm W}, \beta_{\rm T} = 1$ theoretically, T0 removes the need for experimental tuning, predicting SI values as emergent properties (e.g., $c = 3 \times 10^8 \, \text{m/s}$ in SI aligns with c = 1 in natural units). - **Energy as Universal Measure: ** All phenomena—from quantum transitions to gravitational interactions—are expressed in energy terms, simplifying theoretical constructs (Sections 4, 5). - **Consistency with Measurements: ** The system's predictions match observations (e.g., $\beta_{\rm T}^{\rm SI} \approx 0.008$), validating its foundational unity [5].

Abbildung 1: Dimensional relationships in the T0 unified system, with T(x) mediating energy and inverse-energy scales, reflecting the duality between mass and time.

This prepares the introduction of T(x) as the unifying mediator (Section 3).

3 Intrinsic Time Field T(x)

3.1 Definition and Physical Basis

The intrinsic time field is the cornerstone of the T0 model, defined as:

$$T(x) = \frac{\hbar}{\max(mc^2, \omega)},\tag{3}$$

where: - For massive particles: $T(x) = \frac{\hbar}{mc^2}$, with rest state $T_0 = \frac{\hbar}{m_0c^2}$, - For photons: $T(x) = \frac{\hbar}{\omega}$, where ω is the photon energy/frequency.

This definition emerges from the unified unit system (Section 2.2). In SI units, $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, and energy $E = mc^2$ suggests:

$$T = \frac{\hbar}{mc^2} = \frac{\hbar}{m} \cdot \mu_0 \varepsilon_0, \tag{4}$$

which, with $\hbar=c=1$ and $\mu_0\varepsilon_0=1$, simplifies to $T(x)=\frac{1}{m}$ for massive particles in natural units. For photons, $\omega=\frac{\hbar}{\lambda}=\frac{2\pi\hbar c}{\lambda}$, and with c=1, $T(x)=\frac{\hbar}{\omega}$, ensuring universality across particle types. This ties T(x) to the energy-based framework, where \hbar and c dictate intrinsic timescales [2].

The physical basis of T(x) is the hypothesis that every particle possesses an inherent temporal scale inversely proportional to its energy, replacing RT's relative time with an absolute, particle-specific property. This shift reinterprets relativistic effects (e.g., time dilation) as mass variations (Section 3.2), aligning QM's time parameter with RT's dynamic scales.

3.2 Transformation Properties and Covariance

Under Lorentz transformations, T(x) transforms as:

$$T(x) = \frac{T_0}{\gamma_{\text{Lorentz}}}, \quad m = \gamma_{\text{Lorentz}} m_0,$$
 (5)

where $\gamma_{\text{Lorentz}} = \frac{1}{\sqrt{1-v^2/c^2}}$ (with c=1), preserving the product:

$$T(x) \cdot mc^2 = T_0 \cdot m_0 c^2 = \hbar. \tag{6}$$

The transformation law is:

$$\delta T(x) = -x^{\nu} \partial_{\mu} T(x) \omega^{\mu}_{\nu}, \tag{7}$$

with the covariant derivative ensuring invariance:

$$D_{\mu}T(x) = \partial_{\mu}T(x) + \Gamma^{\rho}_{\mu\nu}T(x), \tag{8}$$

where $\Gamma^{\rho}_{\mu\nu}$ are Christoffel symbols adapted to T(x)'s scalar nature. This covariance maintains consistency with RT's phenomenological predictions (e.g., light deflection) while reinterpreting their origin as mass variation rather than spacetime curvature [2].

3.3 Physical Interpretation

T(x) represents a particle's intrinsic "clock," inversely proportional to its energy: - **Heavy Particles:** High m, short T(x), fast dynamics. - **Light Particles/Photons:** Low m or ω , long T(x), slower dynamics.

This scalar field permeates spacetime, varying with local mass-energy distributions, and serves as the mediator unifying QM's time evolution with RT's gravitational effects. For example, a muon's extended lifetime in flight (traditionally time dilation) becomes a mass increase $(m = \gamma m_0)$, with T(x) adjusting accordingly, preserving observable equivalence [3].

4 Field-Theoretic Formulation

4.1 Lagrangian Densities

The T0 model's dynamics are encapsulated in a total Lagrangian:

$$\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{Boson}} + \mathcal{L}_{\text{Fermion}} + \mathcal{L}_{\text{Higgs-T}} + \mathcal{L}_{\text{intrinsic}}, \tag{9}$$

with components: - **Gauge Bosons:** $\mathcal{L}_{\text{Boson}} = -\frac{1}{4}T(x)^2 F_{\mu\nu}F^{\mu\nu}$, coupling T(x) to electromagnetic fields. - **Fermions:** $\mathcal{L}_{\text{Fermion}} = \bar{\psi}i\gamma^{\mu}D_{T,\mu}\psi - y\bar{\psi}\Phi\psi$, where $D_{T,\mu}\psi = T(x)D_{\mu}\psi + \psi\partial_{\mu}T(x)$ modifies the covariant derivative. - **Higgs Field:** $\mathcal{L}_{\text{Higgs-T}} = |T(x)(\partial_{\mu} + igA_{\mu})\Phi + \Phi\partial_{\mu}T(x)|^2 - \lambda(|\Phi|^2 - v^2)^2$, integrating T(x) with Higgs interactions. - **Intrinsic Time:** $\mathcal{L}_{\text{intrinsic}} = \frac{1}{2}\partial_{\mu}T(x)\partial^{\mu}T(x) - \frac{1}{2}T(x)^2$, defining T(x) as a scalar field.

These terms ensure T(x)'s universal role, extending SM interactions [2].

4.2 Extension of Quantum Mechanics

The standard Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} \Psi = \hat{H} \Psi, \tag{10}$$

assumes uniform time. To modifies this to:

$$i\hbar T(x)\frac{\partial}{\partial t}\Psi + i\hbar\Psi\frac{\partial T(x)}{\partial t} = \hat{H}\Psi,$$
 (11)

introducing mass-dependent evolution. The decoherence rate becomes:

$$\Gamma_{\rm dec} = \Gamma_0 \cdot \frac{mc^2}{\hbar},\tag{12}$$

with heavier particles decohering faster. For entangled states:

$$|\Psi(t)\rangle = \frac{1}{\sqrt{2}}(|0(t/T_1)\rangle_{m_1} \otimes |1(t/T_2)\rangle_{m_2} + |1(t/T_1)\rangle_{m_1} \otimes |0(t/T_2)\rangle_{m_2}),\tag{13}$$

where $T_1 = \frac{\hbar}{m_1 c^2}$, $T_2 = \frac{\hbar}{m_2 c^2}$, resolving nonlocality via mass-specific timescales [4].

4.3 Quantum Field Theory Adaptation

T(x) is quantized as a scalar field with the equation:

$$\partial_{\mu}\partial^{\mu}T(x) + T(x) + \frac{\rho}{T(x)^2} = 0, \tag{14}$$

where ρ is the mass-energy density. This adapts QFT to include relativistic mass variation, bridging QM and RT at the field level [2].

5 Emergent Gravitation

5.1 Derivation from T(x)

Gravitation emerges from T(x) gradients. In static conditions:

$$\nabla^2 T(x) \approx -\frac{\rho}{T(x)^2},\tag{15}$$

derived from Equation 14. The effective potential is:

$$\Phi(\vec{x}) = -\ln\left(\frac{T(x)}{T_0}\right),\tag{16}$$

yielding the force:

$$\vec{F} = -\nabla\Phi = -\frac{\nabla T(x)}{T(x)}. (17)$$

For a point mass M:

$$T(x)(r) = T_0 \left(1 - \frac{M}{r} \right), \tag{18}$$

so:

$$\vec{F} = -\frac{M}{r^2}\hat{r},\tag{19}$$

reproducing Newton's law without spacetime curvature [6].

5.2 Reinterpretation of Relativity

RT's spacetime curvature is replaced by T(x) dynamics. Post-Newtonian tests (e.g., light deflection $\delta \phi = \frac{4M}{b}$, perihelion precession $\delta \omega = \frac{6\pi M}{a(1-e^2)}$) match GR with parameters $\beta = \gamma = \zeta = 1$, ensuring observational consistency [18].

6 Discussion

6.1 Theoretical Advantages

- **QM-RT Unification:** T(x) bridges micro- and macroscopic physics. - **Simplicity:** Energy-based unity reduces complexity. - **Quantum Gravity:** Emergent gravitation aligns with QFT.

6.2 Challenges

- **Quantization:** Full QFT treatment of T(x) is pending. - **Observational Fit:** Fine-tuning $\beta_{\rm T}=1$ requires validation (Part II, Section ??).

7 Conclusion

Part I establishes the T0 model's theoretical foundations, unifying QM and RT via time-mass duality. Part II will test these through cosmology and experiments (see Part II, Section ??).

Acknowledgments

Thanks to Reinsprecht Martin Dipl.-Ing. Dr. for critical feedback.

Literatur

- [1] J. Pascher, Bridging Quantum Mechanics and Relativity through Time-Mass Duality: A Unified Framework with Natural Units $\alpha = \beta = 1$ Part I: Theoretical Foundations, April 7, 2025.
- [2] J. Pascher, From Time Dilation to Mass Variation: Mathematical Core Formulations of Time-Mass Duality Theory, March 29, 2025.

- [3] J. Pascher, The Necessity of Extending Standard Quantum Mechanics and Quantum Field Theory, March 27, 2025.
- [4] J. Pascher, Dynamic Mass of Photons and Its Implications for Nonlocality in the T0 Model, March 25, 2025.
- [5] J. Pascher, Unified Unit System in the T0 Model: The Consistency of $\alpha = 1$ and $\beta = 1$, April 5, 2025.
- [6] J. Pascher, Emergent Gravitation in the T0 Model: A Comprehensive Derivation, April 1, 2025.
- [7] J. Pascher, A New Perspective on Time and Space: Johann Pascher's Revolutionary Ideas, March 25, 2025.
- [8] E. Schrödinger, Phys. Rev. 28, 1049 (1926).
- [9] A. Einstein, Ann. Phys. **322**, 891 (1905).
- [10] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1915, 844 (1915).
- [11] J. S. Bell, Physics 1, 195 (1964).
- [12] Planck Collaboration, Astron. Astrophys. **641**, A6 (2020).
- [13] A. G. Riess et al., Astron. J. **116**, 1009 (1998).
- [14] M. Planck, Proc. Prussian Acad. Sci. 5, 440 (1899).
- [15] M. J. Duff et al., J. High Energy Phys. **2002**, 023 (2002).
- [16] B. Greene, Until the End of Time, Knopf, New York (2020).
- [17] G. 't Hooft, arXiv:gr-qc/9310026 (1993).
- [18] C. M. Will, Living Rev. Relativ. 17, 4 (2014).