Sistemi Elettronici, Tecnologie e Misure Appello Straordinario del 18/5/2022

Nome:			
Cognome:			
Matricola:			

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. In un circuito contenente un diodo semi-ideale D con $V_{\gamma}=0.7{\rm V}$ si è fatta l'ipotesi che il diodo sia OFF. L'ipotesi è verificata se e solo se:
 - (a) $v_{\rm D} < 0.7 \, {\rm V}$
 - (b) $v_{\rm D} > 0.7 \, {\rm V}$
 - (c) $i_{\rm D} > 0$
 - (d) $v_{\rm D} < -0.7 \,\rm V$
- 2. La transconduttanza di piccolo segnale $g_{\rm m}$ di un transistore nMOS in regione di saturazione può essere espressa in funzione delle grandezze nel punto di lavoro Q come:

(a)
$$g_{\rm m} = \frac{2I_{\rm D}}{V_{\rm GS} - V_{\rm TH}}$$
 (b) $g_{\rm m} = \sqrt{\frac{\beta}{I_{\rm D}}}$ (c) $g_{\rm m} = \lambda I_{\rm D}$ (d) $g_{\rm m} = \frac{I_{\rm D}}{(V_{\rm GS} - V_{\rm TH})^2}$

- 3. Un amplificatore operazionale con guadagno in banda di $100\,\mathrm{dB}$, prodotto banda-guadagno pari a $10\mathrm{MHz}$, resistenze d'ingresso e uscita trascurabili (cioè $R_{\mathrm{in,d}} \to \infty, R_{\mathrm{in,cm}} \to \infty, R_{\mathrm{out}} = 0$), è utilizzato in configurazione voltage follower. La banda del voltage follower è pari a:
 - (a) 100 Hz
 - (b) 10 MHz
 - (c) 100 MHz
 - (d) 500 kHz
- 4. In un comparatore di soglia invertente con isteresi realizzato a partire da un amplificatore operazionale:
 - (a) è presente retroazione negativa
 - (b) è presente retroazione positiva
 - (c) è presente sia retroazione positiva sia retroazione negativa
 - (d) non è presente alcuna rete di retroazione (circuito ad anello aperto)
- 5. Per ricavare il circuito equivalente per il piccolo segnale di un amplificatore:
 - (a) i generatori di tensione costanti nel tempo possono essere sostituiti con circuiti aperti
 - (b) i condensatori possono essere sempre sostituiti da circuiti aperti
 - (c) è necessario assumere che i segnali applicati siano in banda
 - (d) è necessario conoscere il punto di funzionamento a riposo dei dispositivi non lineari
- 6. Un amplificatore di transconduttanza è ottenuto collegando in cascata un amplificatore di tensione descritto dai parametri $A_{\rm v,1}$, $R_{\rm in,1}$ (finita e non nulla) e $R_{\rm out,1}=0$ ed un amplificatore di transconduttanza descritto dai parametri $G_{\rm m,2}$, $R_{\rm in,2}$, $R_{\rm out,2}$ (tutti finiti e non nulli). La transconduttanza complessiva G_m della cascata dei due stadi è data da
 - (a) $A_{v,1}G_{m,2}$
 - (b) $A_{\rm v,1}G_{\rm m,2} \frac{R_{\rm in,1}}{R_{\rm in,2} + R_{\rm out,2}}$
 - (c) $A_{v,1}G_{m,2}\frac{R_{\text{out},2}}{R_{\text{in},2}+R_{\text{out},2}}$
 - (d) $G_{\rm m,2}$

Esercizio n. 1

Con riferimento al circuito in figura:

- 1. verificare il funzionamento del transistore MP in regione di saturazione e determinarne i parametri di piccolo segnale nel punto di lavoro;
- 2. assumendo che il condensatore C_1 si comporti in banda come un corto circuito e che il condensatore C_2 si comporti in banda come un circuito aperto, determinare in condizioni di piccolo segnale l'amplificazione di tensione $A_{\rm v0} = v_{\rm out}/v_{\rm in}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ indicate in figura, nella banda del segnale;
- 3. determinare l'amplificazione di tensione di piccolo segnale nel dominio della frequenza $A_{\rm v}(s) = V_{\rm out}(s)/V_{\rm in}(s)$;
- 4. tracciare i diagrammi di Bode del modulo e della fase di $A_{\rm v}(s)$ determinata al punto precedente.

Esercizio 2.

Nel circuito in figura si ha: $R_1=R_2=R_3=R_4=R=1$ k Ω e $R_5=5R$. Determinare:

- 1. l'espressione delle tensioni $v_{\mathrm{OUT},1}$ e v_{OUT} in funzione degli ingressi v_1,v_2 e i;
- 2. l'espressione delle correnti $i_{\mathrm{OUT},1}$ e i_{OUT} in funzione degli ingressi v_1,v_2 e i;
- 3. la minima dinamica di uscita della tensione e della corrente di OP1 e OP2 considerando $i=0, v_1 \in [-1,1]$ V e $v_2 \in [-1,1]$ V.