

Index

- Motivation:
 - The quark-gluon plasma;
 - Jets and b-jets;
 - b-jets and b-tagging.
- How to tag b-jets:
 - Low-level taggers (LLTs);
 - High-level taggers DL1.
- Results:
 - Example All LLTs case;
 - Comparison ROC curves.

Motivation: The quark-gluon-plasma

- The quark-gluon plasma is a "state of matter" in which the elementary particles that make up the <u>hadrons</u> of <u>baryonic</u> <u>matter</u> are freed of their strong attraction for one another under extremely high energy densities.
- Existed in the Universe a tiny fraction of time after the Big Bang (10^{-12} to 10^{-6} seconds after).
- Fundamental to understand how the Universe was created!

ata recorded: 2018-Nov-10 00:59:42.114688 GMT

un / Event / LS: 326482 / 15086603 / 58

- Jets: collimated sprays of particles originating from the hadronization of quarks;
- They come in 3 flavours:
 - b-jets;
 - c-jets;
 - light-jets.
- Jets serve as probes!

tracks ---- b hadron impact parameter econdary vertex light jet primary vertex ight jet Diagram illustrating the

structure of a b-jet.

Motivation: b-jets and b-tagging

b-tagging is utilized to study physics processes with b-jets in their final state:

- Standard Model Higgs sectors (H → bb, HH → bbbb, ...);
- Top physics $(t \rightarrow W b)$;
- Beyond Standard Model searches $(X \rightarrow bY)$.

b-hadrons:

- Sufficient lifetime → they travel some measurable distance before decaying → displaced secondary vertex;
- High mass (few GeV) → decay products with a larger p_T (transverse momentum), which means b-jets:
 - Are wider;
 - Have higher multiplicities (numbers of constituent particles) and invariant masses;

How to tag bjets: Low-level taggers (LLTs)

Exploit the jet's properties to infer its flavour.

- 3 types:
 - Algorithms based on impact parameters: IP2D and IP3D;
 - Secondary vertex finding algorithms: SV1;
 - Topological multi-vertex finding algorithms:
 JetFitter.

Diagram illustrating the structure of jets formed in a collision.

How to tag b-jets: High-level taggers — DL1

Results: Example - All LLTs case

Jets with D > 'threshold' are considered b-jets 12 **B-Spline** interpolation Data Discriminant 'threshold' value WP = 77.0%0.0 0.2 0.4 0.6 1.0 ε_b

Number of jets' distribution in the discriminant values.

Discriminant 'threshold' value as a function of ε_h .

Results: Example - All LLTs case (cont.)

Pb + Pb - DL1: ROC Curves (c-jets) 1.0 0.8 rate: positive 1 Without SV1 Without IP2/3D Without JetFitter 0.2 With only SV1 With only IP2/3D With only JetFitter 0.0 0.2 0.0 0.4 0.6 8.0 1.0 False positive rate: ε_c

ROC curves for u-jets: Most* combinations.

ROC curves for u-jets: Most* combinations.

Results: Comparison - ROC curves

*We're missing 'All LLTs' and 'No LLTs'.

Results : Comparison - ROC curves

• Results for light-jets

	AUC	
	For u-jets	For c-jets
IP2(3)D Only	0.8617	0.7718
JetFitter Only	0.8432	0.7401
SV1 Only	0.7514	0.7202
Without IP2(3)D	0.8643	0.7625
Without JetFitter	0.8731	0.7559
Without SV1	0.8876	0.7659
With all LLTs	0.8911	0.7712
With no LLTs	0.5008	0.4961

Table: Area Under the Curve (AUC) values.

Results : Comparison - ROC curves

• Results for **c-jets**

	AUC	
	For u-jets	For c-jets
IP2(3)D Only	0.8617	0.7718
JetFitter Only	0.8432	0.7401
SV1 Only	0.7514	0.7202
Without IP2(3)D	0.8643	0.7625
Without JetFitter	0.8731	0.7559
Without SV1	0.8876	0.7659
With all LLTs	0.8911	0.7712
With no LLTs	0.5008	0.4961

Pb + Pb - DL1: ROC Curves (c-jets) 1.0 8.0 True positive rate: ε_b Without SV1 Without IP2/3D Without JetFitter 0.2 With only SV1 With only IP2/3D With only JetFitter 0.0 0.0 0.2 0.4 0.6 8.0 1.0 False positive rate: ε_c

Table: Area Under the Curve (AUC) values.

Conclusion

 This work allows for a deeper comprehension of the LLTs influence in b-tagging when working with a deep neural network. This is useful for deciding which input parameters we want to choose for DL1.

Back-up slides: More ROC curves

Results: ROC curves (ATLAS convention)

The Standard Model

p_T distributions <u>after</u> down-sampling.

p_T distributions <u>before</u> down-sampling.

QGP Formation

Pb Pb

Hadronization

> time

Detection

QGP Formation

