

Teorie informací a hodnocení statistických modelů

Bakalářská Práce

Tomáš Petit 505485@mail.muni.cz

Přírodovědecká fakulta, Masarykova Univerzita

27-06-2023

Motivace

Výběr modelů/pod-modelů v lineární regresi

- Výběr proměnných pro účel predikce v regresním modelu
- Snaha najít "spravedlivé" kritérium

$$y_{i} = \beta_{0} + x_{1}\beta_{1} + \dots + x_{m}\beta_{m} + \varepsilon_{i} \quad i = 1, \dots, n$$

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum_{i}^{n}(y_{i} - \hat{y}_{i})^{2}}{\sum_{i}^{n}(y_{i} - \bar{y})^{2}}$$

$$R_{adj}^{2} = 1 - (1 - R^{2})\frac{n - 1}{n - p}$$

Cíle práce

- Představit v krátkosti základy teorie informace
- Poskytnout důkladné odvození Akaikeho informačního kritéria v plné obecnosti
- Předvést praktické využití pro širokou třídu statistických modelů

Obsah Práce

- Teorie Informace
 - Shannonova Entropie
 - Relativní Entropie
- Akaikeho informační kritérium
 - Metoda maximální věrohodnosti
 - Asymptotické vlastnosti věrohodnosti
 - Střední hodnota logaritmu věrohodnostní funkce
 - Vychýlení logaritmu věrohodnostní funkce
 - AIC
- Modelování pomocí AIC
 - Lineární a polynomiální regrese
 - Histogramy
 - Rovnost dvou diskrétních distribucí
 - Rovnost středních hodnot a rozptylů
 - Mallowsovo C_p
 - Analýza hlavních komponent

Kullback-Leiblerova divergence

Pravděpodobnostní distribuce P_X a Q_X náhodné veličiny X na pravděpodobnostním prostoru $(\Omega, \mathcal{F}, \mu)$

$$I(P_X;Q_X) = E_{P_X} \left[ln \left(rac{\mathrm{d} P_X}{\mathrm{d} Q_X}
ight)
ight] = \int_{\Omega} P_X \, ln \left(rac{\mathrm{d} P_X}{\mathrm{d} Q_X}
ight) \mathrm{d} P_X$$

- Není metrikou
- Množství informace ztracené při nahrazení P_X za Q_X
- lacktriangle Problém praktického výpočtu ightarrow potřeba odhadu

Informační kritéria

Takeuchiho informační kritérium

$$\mathsf{TIC} = -2\sum_{\alpha=1}^{n} \mathsf{In} f(X_{\alpha}|\hat{\boldsymbol{\theta}}) + 2\mathsf{tr} \{J(\boldsymbol{\theta})I(\boldsymbol{\theta})^{-1}\} \tag{1}$$

Akaikeho informační kritérium

$$AIC = -2\sum_{n=1}^{n} \ln f(X_{\alpha}|\hat{\boldsymbol{\theta}}) + 2p$$
 (2)

Aplikace

- Hodnocení statistických modelů
 - Lineární regresní modely (polynomiální, ANOVA etc.)
 - PCA
 - Histogramy
 - Ekvivalence množin kategoriálních dat
 - Časové řady
 - Testování rovnosti středních hodnot

Příklad

Volně dostupná data Swiss

- $lue{}$ Model 1 Fertility \sim Catholic
- $lue{}$ Model 2 Fertility \sim Catholic + Education + Agriculture
- \blacksquare Model 3 Fertility \sim Catholic + Education + Agriculture + Infant.Mortality
- Model 4 Full model

Model	AIC	R^2	R_{adj}^2
1	364.3479	0.215	0.1976
2	331.4126	0.6423	0.6173
3	325.2408	0.6993	0.6707
4	326.0716	0.7067	0.671

Table: Srovnání AIC, R^2 a R^2_{adi}

Tomáš Petit • Teorie informací a hodnocení statistických modelů • 27-06-2023

Tomáš Petit • Teorie informací a hodnocení statistických modelů • 27-06-2023

Otázka 1.1

Jaká je souvislost mezi p v (2.59) a k ve vzorci pro AICc?

$$\mathsf{AIC}_c = \mathsf{AIC} + \frac{2p(p+1)}{n-p-1}$$

Překlep

Otázka 1.2

V odstavci před Příkladem 3.1.2 zmiňujete, že automatizace výběru modelu se nedoporučuje jako hlavní nástroj. Jaký postup byste Vy, resp. použité zdroje, doporučil?

- LASSO
 - lacksquare $\min_{eta_0,oldsymbol{eta}}\{||y-eta_0-oldsymbol{X}oldsymbol{eta}||_2^2\}$ za podmínky $||oldsymbol{eta}||_1\leq t$
- Least Angle Regression
- Znalost dat a problematiky
- "Plnější" model

Otázka 2.1

Ve třetí kapitole uvádíte dva přístupy výběru modelu pomocí AIC (forward-selection a backward-selection). Po použití obou těchto přístupů dostáváte stejný výsledný model. Funguje to tak vždy? Existuje ještě nějaký další přístup?

- Nemusí to vždy platit
- Bidirectional elimination

Otázka 2.2

Data z Příkladu 3.1.2 modelujete pomocí polynomiální regrese čtvrtého řádu. Je tento model pro uvedený datový soubor vhodný? Pokud ne, jaký jiný model byste použil?

Tomáš Petit • Teorie informací a hodnocení statistickýťťťťťťťďdelů • 27-06-2023

Table: Výsledek regrese

	Dependent variable:
	pressure
temperature	-0.799^{***} (-1.170, -0.428)
temperature2	0.016*** (0.012, 0.020)
temperature3	-0.0001^{***} (-0.0001, -0.0001)
temperature4	0.00000*** (0.00000, 0.00000)
Constant	6.453 (-2.650, 15.557)
Observations	19
R^2	1.000
Adjusted R ²	0.999
Note:	*p<0.1; **p<0.05; ***p<0.01

Tomáš Petit • Teorie informací a hodnocení statistickýťťťťťťťďdelů • 27-06-2023

Table: Výsledek regrese

	Dependent variable:
	pressure
temperature	2.086*** (1.139, 3.032)
temperature2	-0.022***(-0.029, -0.016)
temperature3	0.0001*** (0.0001, 0.0001)
Constant	-32.847 (-71.135, 5.441)
Observations	19
R^2	0.989
Adjusted R ²	0.987
Note:	*p<0.1; **p<0.05; ***p<0.01

Tomáš Petit • Teorie informací a hodnocení statistickýťťťťťťťďdelů • 27-06-2023

Table: Výsledek regrese

	Dependent variable:
	pressure
temperature	0.106*** (0.062, 0.150)
temperature2	-0.004^{***} (-0.004, -0.003)
temperature3	0.00004*** (0.00004, 0.0001)
temperature4	-0.00000^{***} (-0.00000 , -0.00000)
temperature5	0.000*** (0.000, 0.000)
Constant	-0.406 (-1.125 , 0.312)
Observations	19
R^2	1.000
Adjusted R ²	1.000
Note:	*p<0.1; **p<0.05; ***p<0.01

Tomáš Petit • Teorie informací a hodnocení statistických modelů • 27-06-2023

Otázka 2.3

Na str. 28 aproximujete data z normálního rozdělení binomickým rozdělením s parametrem p = 1/2. Proč právě p = 1/2 dává nejlepší aproximaci?

Tomáš Petit • Teorie informací a hodrocení statistických modelů • 27-06-2028

Otázka 2.4

Co způsobuje oscilaci na Obrázcích 3.6 a 3.7?

Tomáš Petit • Teorie informací a hodnocení statistických modelů • 27-06-2023

Otázka 2.5

Jak bychom mohli zlepšit odhady rozptylů v Tabulce 3.6, kde je počet pozorování n = 10.

MASARYK UNIVERSITY