

C O M M O D O R E

PET USERS' CLUB NEWSLETTER
ISSUES 1 and 2

ooOoo

INDEX

PAGE TOPIC

1. Would you like to be a PET VET?
2. The Master Library and The Common Library
3. Master Library Listing
4. Common Library Listing
5. 6502 Journal and Computabits
6. LP Enterprises Booklist
7. Corrections to the Commodore "PET Computer User Handbook"
8. IEEE Information
9. Attaching a Video Monitor to PET
10. Delays
11. Plotting
12. Inputting
13. Data File Errors
- 14.. Tape Head Care
15. Useful Machine Addresses
17. PET Memory Map
20. Machine Code Environment
22. "Life" For Your PET.
33. Your Letters
36. R. Bailey & Associates - retail price list - serial interfaces
37. Petsoft - Software price list

COMMODORE PET USERS CLUB
NEWSLETTER

Commodore would like to apologise for the delay in producing the No. 1 Newsletter. We decided to combine numbers 1 and 2 in one bumper issue!

If you would like a copy of issue number Ø (APRIL) you may elect to back date your membership to a particular issue such as this. If so please write and advise us. Your membership will be adjusted accordingly and any relevant issues will be forwarded to you.

Included at the back of this issue are details of products marketed by non-Commodore companies which may be of interest to you. The inclusion in our newsletter is neither a recommendation or otherwise but are included as items of interest to PET users.

WOULD YOU LIKE TO BE A PET VET?

Commodore Systems are looking for a bright young engineer to assist with servicing PETs and also after some instruction field some technical enquiries. The ideal person would be aged between 18 and 21 and have some practical experience with and good theoretical knowledge of 6800 type microprocessors.

If you are interested please get in touch with:

- Commodore Systems,
360 Euston Road,
London. NW1.
Tel. 388 5702.

As Commodore Systems is growing rapidly vacancies may occur for other technical, software and sales personnel. If you would be interested in working with PET at a future date please send us a curriculum vitae and we will hold it on our files - confidentiality respected.

THE MASTER LIBRARY and

THE COMMON LIBRARY

There has been a little confusion regarding what you get when you submit a tape to Commodore. What happens is as follows: If your program is judged to be of high enough quality and general interest, you will receive the sum of £25.-, your program will be entered into the official Commodore MASTER LIBRARY and becomes the sole property of Commodore. If the program is accepted but not suitable for the MASTER LIBRARY, you will receive a form enabling you to request up to four programs from, and your program will be entered into the Users Club COMMON LIBRARY. If you wish to purchase programs from the COMMON LIBRARY directly a charge of £1.25 is made per program with a minimum order value of £5.- (postage and packing inc.) Commodore will not return any cassettes submitted so please make sure you have a copy. Programs submitted to Commodore must be fully documented on tape. This means that anybody wishing to use this program must be able to do so from loading and running the program only, not from any instruction sheet.

COMMODORE

Commodore Systems Division

360 Euston Road, London NW1 3BL
Telephone 01-388 5702Official Price List (April 1978)

<u>Hardware</u>	<u>Retail Exc. VAT</u>	<u>Retail Inc. VAT</u>
PET 2001-8 Personal Computer	£643.52	£695.00
PET 2nd Cassette Deck (June release)	55.00	59.40
PET 2020 Printer (Aug. release)	425.00	459.00

Accessories (cash terms only)

PET Users Handbook	-	5.00
PET Introductory Booklet	-	1.00
6500/KIM Programming Manual	-	5.00
6500/KIM Hardware Manual	-	5.00
KIMI User Manual	-	5.00
PET Users Club Membership	-	10.00
Special C12 high quality blank cassettes (minimum quantity 10)	-	.50

MASTER LIBRARY (cash only)

Othello	Cunning game of skill. Two levels of play, you against the computer.	£ 8.00
Pontoon	Board game. True 52 card pack plus amazing graphics.	6.00
Wrap-Trap	Dynamic graphics game in which the player has to trap the computer. Good arcade quality graphics.	8.00
Noughts and Crosses	You against the computer.	3.00
Lunar Lander	First class game of skill - in real time and with the odd surprise !	8.00
Rotate	Difficult if you are not an expert ! Similar to little plastic trays with moveable letters and letter missing.	5.00
Biorhythms	Carefully written programme. Good graphics, with a real plot routine.	8.00
Disassembler	6500 series full disassembler asks for decimal starting location and lists from this point, gives full mnemonics and handles ASCII tables.	15.00
Machine Code Handler	This programme allows you to type in a list of HEX codes from a given location. These routines can then be called using the SYS verb.	3.00

PLEASE NOTE There is a minimum order value of £5.00

Planned Introductions during 1978

A floppy disc, memory expansion and modem are planned for introduction later in 1978. Additional programmes will be introduced at regular intervals including commercial, scientific and statistical programmes.

Directors: I. Gould (Chairman), J. Tramier (Managing), C. T G Fish, C. Spencer, R. Gleadow

Reg. Office: Industrial Estate, Eaglescliffe, Stockton-on-Tees, Cleveland, TS16 0PN Reg. in England Reg. No 956774

SECOND CASSETTE DECKS

.... are now available if you wish to order them
at a cost of £55.- plus VAT. (Cash with order please.)

COMMON LIBRARY

Here is the COMMON LIBRARY listing so far:-

ØØ1	ESP TEST -	submitted by Mr. Chambers Co. Mayo Ireland
ØØ2	SLOT MACHINE	" " "
ØØ3	MASTERMIND -	Mr. McDonald - Brighton
ØØ4	MOO -	Prof. A.Colin - Univ. of Strathclyde
ØØ5	LIFE -	Mr. Wheatcroft - Watford
ØØ6	STARWARS -	Dr. Lucas - Univ. of Manchester
ØØ7	1 ARM BANDIT -	A.M. Robertson - Holland
ØØ8	DEEPSACER -	Mr. DA Allen, Colchester Essex.
ØØ9	SOLVING SIMULTANEOUS EQUATIONS -	Prof. Colin - Univ. of Strathclyde
Ø1Ø	LEAST SQUARES -	Mr. Clintworth - Imperial Coll. London.
Ø11	MEMORY DISPLAY IN HEX -	Mr. Tribe, Gwent

Minimum order four programs £5.00

each additional program is £1.25 p+p inc.

PLEASE ORDER BY PROGRAM NUMBER

6502 JOURNAL & COMPUTABITS

It seems that the 6502 series microprocessors are becoming so popular that they now warrant a journal of their own. 6502 series devices are used in the PET, the APPLE, OHIO SCIENTIFIC and numerous other top selling machines. This journal is called "MICRO" and has a single copy price of £1.70 and an annual subscription of £9.00 for six issues. I have had a good look at an issue myself and find it excellent. It is obtainable from The Computer Book Shop, Temple House, 43-48 New Street, Birmingham. B2.

Another excellent publication, this time home grown, is Computabits. This is a generally small systems orientated publication often carrying information about the PET and is very professionally produced. This publication is obtainable from Computabits Ltd., 41 Vincent Street, Yeovil, Somerset. Copies are 85p each. Annual subscription is £5.00 for approximately six copies.

LP ENTERPRISES are offering 5% discount to all PET USERS CLUB MEMBERS. (see list on following page).

STOP PRESS Computabits inform us that they are in a position to supply an interface board to allow the PET to drive ordinary video monitors etc. Price on application.

ENTERPRISES

From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationalist and professional alike, we bring you a little light reading!

From Adam Osborne Associates

INTRODUCTION TO MICROCOMPUTERS

	Price UK	Price Overseas If Different
Volume 0: The Beginners Book	£5.95	
Volume 1: Basic Concepts	£5.95	
Volume 2: Some Real Products (Revised Late 1977)	£11.95	
6800 Programming for Logic Design	£5.95	
8080 Programming for Logic Design	£5.95	
Z80 Programming for Logic Design (Available March 78 approx)	£5.95	
8080A/8085 Assembly Language Programming	£6.95	
Some Common BASIC Programs	£5.95	
BUSINESS PROGRAMS IN BASIC		
Payroll With Cost Accounting	£9.95	
Accounts Payable & Accounts Receivable (Available from March 78)	£9.95	
General Ledger (Available Mar 78)	£9.95	

From Scelbi Computer Consulting Inc.

	Price UK	Price Overseas If Different
6800 Software Gourmet Guide & Cookbook	£7.95	
8080 Software Gourmet Guide & Cookbook	£7.95	
8080 Programmers Pocket Guide	£2.25	
8080 Hex Code Card	£2.25	
8080 Octal Code Card	£2.25	
8080 Guide and One 8080 Code Card	£4.20	
8080 Guide and Both Code Cards	£6.00	
SCELBAL High Level Language for '8008/8080' Systems	£39.25	
SCELBAL String Handling Supplement	£8.00	
SCELBAL Extended Maths Supplement	£4.00	
Understanding Microcomputers & Small Computer Systems	£7.95	
SCELBI 'BYTE' Primer	£9.95	
8080 Standard Assembler (In Book Format)	£15.95	

From Peoples Computer Company

	Price UK	Price Overseas If Different
Reference Book of Personal & Home Computing	£4.95	
What to Do After You Hit Return	£7.00	

Dr. Dobbs Journal Volume 1

	Price UK	Price Overseas If Different
* From Kilobaud/73 Magazine Inc.		
Hobby Computers Are Here	£3.95	
New Hobby Computers	£3.95	

From Dymax Inc.

	Price UK	Price Overseas If Different
Instant BASIC by Jerald R. Brown	£4.95	
Your Home Computer by James White	£4.95	
My Computer Likes Me . . . When I Speak		
BASIC By Bob Albrecht	£1.65	
Games With A Pocket Calculator by		
Thiagarajan & Stilovitch	£1.75	
Games, Tricks and Puzzles For a Hand		
Calculator by W Judd	£2.49	

* From BYTE Publications Inc.

	Price UK	Price Overseas If Different
Paperbytes:		
Tiny Assembler for 6800 Systems	£5.75	
Bar Code Loader for 6800, 8080, Z80 & 6502 Micros	£1.75	
Best of BYTE Volume 1	£8.95	

* From Creative Computing Press

	Price UK	Price Overseas If Different
Best of Creative Computing Volume 1	£ 6.95	
Best of Creative Computing Volume 2	£ 6.95	
101 BASIC Games (Revised & Reprinted Feb. 78)	£ 5.50	
The Colossal Computer Cartoon Book	£ 3.95	
Computer-Rage (A new Board Game)	£ 6.95	
Artist and Computer	£ 3.95	
Three Binary Dice	£ 1.00	

* From Everyone Else

	Price UK	Price Overseas If Different
TV Typewriter Cookbook by Don Lancaster	£ 7.95	
Magazine storage boxes (Holds 12 minimum)	£ 1.75	
Sybex: Microprocessors	£ 7.95	
Sybex: Microprocessor Interfacing Techniques	£ 7.95	
Dilithium: Home Computers Volume 1: Hardware	£ 6.50	
Dilithium: Home Computers Volume 2: Software	£ 5.95	
Bugbooks: Volume 1 to 7	P.O.A.	

MAGAZINES: Back Issues

	Price UK	Price Overseas If Different
Personal Computing	£ 1.75	
Interface Age	£ 2.00	
Dr. Dobbs Journal	£ 1.60	
Computer Music Journal	£ 2.50	
Peoples Computers	£ 1.50	
BYTE	£ 2.25	
Creative Computing	£ 1.75	
Calculators & Computers	£ 1.75	
ROM	£ 1.75	
Kilobaud	£ 2.25	
73	£ 2.00	

MAGAZINES: Subscriptions

	Price UK	Price Overseas If Different
Personal Computing (Twelve Issues Yearly)	£16.00	£17.00
Interface Age (Twelve Issues Yearly)	£20.00	£20.50
Dr. Dobbs Journal (Ten Issues Yearly)	£13.00	£13.50
Computer Music Journal (Four Issues Yearly)	£ 8.50	£ 9.00
Peoples Computers (Six Issues Yearly)	£ 8.00	£ 8.50
Kilobaud (Twelve Issues Yearly)	£20.00	£21.00
BYTE (Twelve Issues Yearly)	£15.00	£15.00
Creative Computing (Six Issues Yearly)	£ 8.50	£ 9.00
Calculators & Computers (Seven Issues Yearly)	£10.00	£10.50
ROM (Twelve Issues Yearly)	£16.00	£17.00
73 (Twelve Issues Yearly)	£20.00	£21.00

THIS LIST CANCELS ALL PREVIOUS PRICE LISTS: EFFECTIVE FEBRUARY 1978

LPE/278/VC

HOW TO ORDER

Please note our prices include postage and packing, but not insurance, if wanted add 12p for every £10 of books ordered. Make cheques, PO's etc payable to:-

L. P. Enterprises

CREDIT CARDS accepted:
BARCLAYCARD/VISA/-
DINERS CLUB

Send to address above
Indicate Payment Method:

..... My cheque, P.O., I.M.O. is enclosed in Sterling on U.K. Bank
..... Charge to Barclaycard/Visa/Diners

All Orders must be Prepaid

Number Expiry Date

Name

Address

POSTCODE

Signature

CORRECTIONS TO THE COMMODORE "PET COMPUTER USERS HANDBOOK"

Corrections should be made to the following pages of the
above:-

PAGE LINE

16 3Ø NEXT IN - change to - 3Ø NEXT N

24 110 FOR I = 1 to 15 : READ A\$(1) : NEXT 1:

REM READ STRINGS A \$ (I)

- change to -

24 13Ø IF A \$ (1) = A\$ (I+1) THEN 18Ø

- change to -

IF A \$ (I) etc.

52 Delete lines 25Ø and 26Ø

400 Place the ST outside the quotes.

69 1) Some BASICS use "["and"]" to denote matrix
subscripts. PET BASIC uses "("and")".

92-
100 omit

121 The address of R. Bailey Associates who supply
memory and interfaces for the PET should be
31 Bassett Road, London W10 and not NW10.

IEEE INFORMATION

We have had many enquiries concerning the exact operation of the IEEE bus particularly concerning timing. Commodore is now making available a document generated by Hewlett Packard which describes the IEEE-488 interface bus. This is a comprehensive and readable description of the BUS. The price of this document is £2.50 including postage and packing.

(Cash with order please)

It is important to remember that Commodore has not implemented all of Hewlett Packard's suggestions. Please refer to the IEEE section of the Owners Handbook.

ATTACHING A VIDEO MONITOR TO PET

Above is a simple circuit which takes the horizontal drive, vertical drive and video waveforms from the PET User Port and converts them to composite video suitable for driving an RF modulator or a straightforward monitor. The circuit requires a 5 volt power supply and this may be obtained from a 2nd cassette socket which has a few milliamps available at 5 volts. There are no particular points to watch out for when constructing this circuit. Lay-out is not critical. In the unlikely event of the horizontal hold of your display device misbehaving, adjust the value of the 1.5K resistor. This will alter the horizontal sync. pulse width.

DELAYS

Quite a few people have asked how to put delays into programs. Here are two common methods:

10 FOR A = 1 to 1000 : NEXT this will cause a delay of approximately 1 second

10 FOR A = 1 to 2000 : NEXT this will cause a delay of approximately 2 seconds etc.

10 T=TI

20 IF TI - T < 60 THEN 20

Lines 10 and 20 cause a delay of approximately one second and work as follows:

Line 10 sets the variable T equal to the real time jiffy clock TI (a jiffy is 1/60 of a second)

Line 20 tests to see whether 60/60 of a second have elapsed, if not the program returns to the beginning of line 20 and checks again.

Here is a small program you might like to try which uses delays involving the real time clock in an interesting manner.

READY.

```
5 PRINT"KEY IN A NUMBER>;  
10 T=0:A$=""  
20 GETK$:IFK$=""THEN20  
30 T=TI:GOTO60  
40 GETK$  
50 IFTI-T>60THEN70  
60 IFK$<>""THENPRINTK$,:A$=A$+K$:T=TI:GOT040  
65 GOT040  
70 IFA=0THENPRINT"+";:A=VAL(A$):GOT010  
80 PRINT"=A+VAL(A$)  
READY.
```

PLOTTING

It is possible, with very little effort, to address locations on the screen using simple XY co-ordinates. Below we have a program that uses a simple formula that enables one to do this.

READY.

```
5 DATA12,15,22,5,12,25,33
10 PRINT ""
20 PI=3.14159265
30 FORA=0TO4*PI STEP(4*PI)/39
40 Y=INT(SIN(A)*12+12):X=X+1
50 GOSUB80
60 NEXT
70 FORA=33560TO33574:READZ:POKEA,Z:NEXT
75 GOT075
80 POKE((24-Y)*40+32768)+X,46:RETURN
READY.
```

The line that does the actual XY co-ordinate conversion is line 80. For the sake of clarity line 80 has been made a subroutine but the formula is so compact that in some cases, including this one, it is not necessary. Line 5 and 70 should be included when you test this program out but may be omitted subsequently. X has a range of 0-39 and Y has a range of 0-24.

INPUTTING

It is worth pointing out that commas and colons act as delimiters in input strings, eg.

10 INPUT A \$:? A \$ If this program is run and you type HOWEVER, I THINK the machine will accept HOWEVER and print the error message EXTRA IGNORED. The same will happen if you use the : in similar circumstances. If you wish to include either of these characters in an input statement enclose your typed INPUT in quotes. Many people must have been annoyed by the way BASIC will abort if the return key is pressed when the machine is waiting on an INPUT statement and no data has been typed in.

It is possible to arrange an input statement so that it will never do this. The method is as follows:

(note; → means CURSOR RIGHT and ← means CURSOR LEFT)

10 INPUT "→ → * ← ← ← ";A

When this input statement is encountered the user must type a number in reply, anything other than a number, including no entry at all, will cause the machine to return to the input statement with the appropriate message. Symbols other than * can be used where required.

DATA FILE ERRORS

There is a bug in the file handling routine which causes data to be written on the tape prematurely, not allowing for cassette motor start up time.

This is temporarily curable by keeping the motor running whilst the tape buffer is being filled, or by starting the motor when the buffer is almost filled.

The method of turning on the motor is to change a bit in the appropriate PIA register. The location of the PIA register is 59411 and the correct byte to place in that register is 53. Therefore the syntax for turning on the cassette motor is ~~POKE~~ 59411,53. This should be done either every time PRINT # is used or just before the buffer is full. Using the latter method involves PEEKING location 625 which is the buffer pointer. When this pointer approaches 191 which is the size of the buffer, turn on the motor. The relevant locations of bytes for the second cassette port are 59456 and 223 for STOP and 207 for START.

DATA FILE ERRORS (cont.)

A problem with opening files to write on either built-in cassette #1, or external cassette #2, has been discovered. When a file is opened, garbage will be written out instead of a proper data tape file header. Without this header, it is impossible to open the tape file for reading.

You may not have encountered this problem previously, because it is disguised by having loaded a program on the cassette prior to writing a data file. In this mode, the start address of the buffer with the header information is initialized properly but cassette data file operation still could be random.

Fortunately, there is a software patch you can implement in your BASIC program to force the open for write on tape to work every time.

Before opening to write on #1 cassette:

```
POKE 243,122  
POKE 244,2
```

and on #2 cassette:

```
POKE 243,58  
POKE 244,3
```

Locations 243 and 244 contain the lo and hi order bytes respectively of the address of the currently active cassette buffer. The start address of buffer #2 is \$33A which is 3,58 (\$3=3,\$3A=58) in double byte decimal. Similarly cassette #1 is \$27A (\$2=2,\$7A=122).

TAPE HEAD CARE

It has been noted that the READ/WRITE head in the PET cassette deck has the annoying habit of magnetising itself after a remarkably short period of operation. It is in fact possible to partially erase your tapes by up to 15% after only 15 or 20 passes over the head. The most convenient way to deal with this problem is to demagnetise the tape head very frequently, ie every couple of days with a demagnetising cassette. AMPEX market quite a good one for about £3.-

USEFUL ADDRESSES

On the following page you will find an extensive map of the PET memory. This list is "home" generated and not from CBM U.S. so may contain slight inaccuracies, but all the major buffers and ram areas are correct. Also here are some common PIA addresses and how to use them.

User Port - data register 59424

User Port Data Direction 59426

The major portion of the user port consists of 8 connections at the rear of the PET. Whether these connections are used for INPUT or OUTPUT is up to the programmer. These 8 wires may be used as either input or output. Before using this 8 bit port you must first configure these wires as inputs or outputs. This is done by writing a byte to the data direction register at address 59459. In the example above bits 0, 1, 3 and 7 are configured as outputs. Bits 2,4,5 and 6 are configured as inputs. The bit that you see in the data direction register is generated by poke 59459, 139. In order to test a particular bit being used as an input in the data register

USEFUL ADDRESSES (CONT.)

(59471) one must peek 59471 and apply a "mask" in order to mask out unwanted bits. For instance to examine bit 2 we would use the expression PRINT PEEK (59471) AND 4. If the result of this expression is Ø then bit 2 of the data register (59471) has been held at Ø volts by the outside world.

PET MEMORY MAP

0000-0002	JUMP, USER ADDRESS
0005	CURSOR COLUMN
000A-005A	BASIC INPUT BUFFER
005C	BASIC INPUT BUFFER POINTER
005E	CURRENT RESULT TYPE (FF) STRING (00) NUMERIC
005F	" " (80) INTEGER (00) FLOATING POINT
007A-007B	START OF BASIC STATEMENTS
007C-007D	START OF VARIABLE TABLE
007E-007F	END OF VARIABLE TABLE
0080-0081	START OF AVAILABLE SPACE
0082-0083	BOTTOM OF STRINGS (MOVING DOWN)
0084-0085	TOP OF STRINGS (MOVING DOWN)
0086-0087	TOP OF MEMORY ALLOCATED FOR BASIC WORKING AREA
0088-0089	CURRENT PROGRAM LINE NUMBER
008A-0088	" " " SAVED BY END
008C-008D	" " POINTER SAVED BY END
0092-0093	DATA STATEMENT POINTER
0094-0095	CURRENT VARIABLE SYMBOLS
0096-0097	CURRENT VARIABLE STARTING POINT
00AE-00AF	POINTER ASSOCIATED WITH BASIC BUFF TRANSFER
0080	EXPONENT + S8P)
0081	MANTISSA MSB)
0082	" "
0083	") -- (FLOATING POINT ACCUMULATOR)
0084	LSB)
0085	SIGN OF MANTISSA (0 IF ZERO) (+ IF POS.) (- IF NEG.)
0088-00C0	DIADIC HOLDING AREA
0092-	START OF ROUTINE FOR FETCHING NEXT BASIC CHARACTER
00C9-00CA	PROGRAM POINTER
-00D9	END OF CHARACTER FETCH
00E0-	SCREEN POSITION ON LINE
00E1-00E2	POSITION OF LINE START
00E3-00E4	CURRENT TAPE BUFFER POINTER
00E5-00E6	END OF CURRENT PROGRAM
00EA	QUOTE MODE (00 IF NOT IN QUOTE)
00EE	NUMBER OF CHARACTERS IN FILE NAME

00EF	GPIB FILE#
00F0	GPIB COMMAND
00F1	GPIB DEVICE#
00F3-00F4	START OF TAPE BUFFER CURRENT SCREEN LINE#
00F5	RUNNING CHECKSUM OF BUFFER
00F6	POINTER TO PROGRAM DURING VERIFY, LOAD
00F7-00F8	FILENAME STARTING POINTER
00F9-00FA	SERIAL WORD
00FD	NUMBER OF BLOCKS REMAINING TO WRITE
00FE	SERIAL WORD BUFFER
00FF-1FF	BASIC STACK ETC.
0200-0202	CLOCK H.M.S.
0203	MATRIX COORDINATE OF LAST KEY DOWN (255 IF NONE)
0204	SHIFT KEY STATUS (1 IF DOWN)
0205-0206	JIFFY CLOCK
0207	CASSETTE 1 ON SWITCH
0208	CASSETTE 2 ON SWITCH
0209	KEYSWITCH PIA
020B	LOAD O, VERIFY 1
020C	STATUS
020D	NUMBER OF CHR IN KBD BUFFER
020E-0216	KYBD INPUT BUFFER
0219-021A	HARDWARE INTERRUPT VECTOR
021B-021C	BREAD INTERRUPT VECTOR
0223	KEY IMAGE
0225	CURSOR TIMING
0228	TAPE WRITE
0242-024B	LOGICAL NUMBERS OF OPEN FILES
024C-0255	DEVICE NUMBERS OF OPEN FILES
0256-025F	R/W MODES OF OPEN FILES (COMMAND TABLE)
0262	GPIB TABLE LENGTH
0265	PARITY
0268	POINTER IN FILENAME TRANSFER
026C	SERIAL BIT COUNT
0270	TAPE WRITE COUNTDOWN
0273	LEADER COUNTER

0275	0 IF FIRST HALF BYTE MARKER NOT WRITTEN
0276	0 IF SECOND " " "
0279	CHECKSUM WORKING WORD
027A-0339	BUFFER FOR CASSETTE #1
033A-03F9	" " #2
0400	START OF BASIC STATEMENTS
-1FFF	END OF AVAILABLE RAM (8K VERSION)
-7FFF	END OF AVAILABLE RAM EXPANSION
8000-8FFF	VIDEO RAM
9000-BFFF	AVAILABLE ROM EXPANSION AREA
C000-E0B0	MICROSOFT "8K" BASIC
E085-E27D	SYSTEM SET UP
E294-E66A	VIDEO DRIVER
E66B-E684	INTERRUPT HANDLER
E685-E75B	CLOCK UPDATE, KYBD SCAN (60HZ INT.)
E75C-E7D4	KYBD ENCODING TABLE
E800-EFFF	PIA'S
F086-F226	GPIB HANDLER
F346-F82C	FILE CONTROL
F82D-Fd15	TAPE CONTROL
FD38-FFB2	DIAGNOSTICS
FFC0-FFED	JUMP VECTORS
FFFA-FFFF	6502 INTERRUPT VECTORS (NMI NOT USED IN ORIG. VERSIONS)

MACHINE CODE ENVIRONMENT

If you wish to write machine code programs in your PET and do not wish to have BASIC trampling all over them here is a suggestion:

When the PET is first powered up a test pattern is written into and read back from the RAM in ascending address order. When this routine discovers a location which does not read back properly it presumes that it has run out of RAM and displays XXXX bytes free. At this point it makes a note of where it thinks the 'top of memory' is.. A quick glance at the memory map will show that BASIC program text is stored from location 1025 upwards and strings are stored from the top of the memory downwards which means that in any normal circumstances there is nowhere in the PET main memory where you can hide your machine code routines.

If however, the first thing you do after powering up the PET is to alter the top of memory pointer to say 6000 everything from 6001 upwards, as far as PET is concerned, does not exist. e.g. strings will be stored from 6000 downwards etc. and machine code programs can be safely put in location 6001 upwards. This pointer is held in locations 134 and 135 constituting a 16 bit pointer with 134 being its lower 8 bits. This is a binary pointer which means that we must convert your 6000 or whatever to binary before POKING locations 134 and 135 with the information. In the standard 8K PET 134 will be Ø and 135

MACHINE CODE ENVIRONMENT (cont.)

will be 32 ($32 \times 256 = 8192$) Remember that 1025 bytes are used for house keeping by the PET ($8192 - 1025 = 7167$) However to give the PET a ceiling of 6000 we convert 6000 into binary which gives us POKE 134, 112 and POKE 135, 23.

LIFE FOR YOUR PET

Here is a good example of what can be done in machine code in the PET. It is the game of "LIFE" by John H. Conway of Cambridge. If one attempts to write a Commodore PET screen size (1000 cell) version of LIFE in BASIC it can take up to two or three minutes per generation. This program performs two generations per second. In order to use it type in a listing in the form of data statements and load in the machine code with a small BASIC routine being careful to fill in the gaps between 1928 (HEX) and 1930 and also 1954 and 1970 with no-ops. Below is a listing of the documentation provided by the author.

LIFE FOR YOUR PET

Since this is the first time I have attempted to set down a machine language program for the public eye, I will attempt to be as complete as practical without overdoing it.

The programs I will document here are concerned with the game of "LIFE", and are written in 6502 machine language specifically for the PET 2001 (8K version). The principles apply to any 6502 system with graphic display capability, and can be debugged (as I did) on non-graphic systems such as the KIM-1.

The first I heard of LIFE was in Martin Gardner's "Recreational Mathematics" section in Scientific American, Oct-Nov 1970; Feb. 1971. As I understand it, the game was invented by John H. Conway, an English mathematician. In brief, LIFE is a "cellular automation" scheme, where the arena is a rectangular grid (ideally of infinite size). Each square in the grid is either occupied or unoccupied with "seeds", the fate of which are governed by relatively simple rules, i.e. the "facts of LIFE". The rules are: 1. A seed survives to the next generation if and only if it has two or three neighbors (right, left, up, down, and the four diagonally adjacent cells) otherwise it dies of loneliness or overcrowding, as the case may be. 2. A seed is born in a vacant cell on the next generation if it has exactly 3 neighbors.

With these simple rules, a surprisingly rich game results. The original Scientific American article, and several subsequent articles reveal many curious and surprising initial patterns and results. I understand that there even has been formed a LIFE group, complete with newsletter, although I have not personally seen it.

The game can of course be played manually on a piece of graph paper, but it is slow and prone to mistakes, which have usually disastrous effects on the final results. It would seem to be the ideal thing to put to a microprocessor with bare-bones graphics, since the rules are so simple and there are es-

sentially no arithmetic operations involved, except for keeping track of addresses and locating neighbors.

As you know, the PET-2001 has an excellent BASIC interpreter, but as yet very little documentation on machine language operation. My first stab was to write a BASIC program, using the entire PET display as the arena (more about boundaries later), and the filled circle graphic display character as the seed. This worked just fine, except for one thing - it took about 2-1/2 minutes for the interpreter to go through one generation! I suppose I shouldn't have been surprised since the program has to check eight neighboring cells to determine the fate of a particular cell, and do this 1000 times to complete the entire generation (40x25 characters for the PET display).

The program following is a 6502 version of LIFE written for the PET. It needs to be POKE'd into the PET memory, since I have yet to see or discover a machine language monitor for the PET. I did it with a simple BASIC program and many DATA statements (taking up much more of the program memory space than the actual machine language program!). A routine for assembling, and saving on tape machine language programs on the PET is sorely needed.

The program is accessed by the SYS command, and takes advantage of the display monitor (cursor control) for inserting seeds, and clearing the arena. Without a serious attempt at maximizing for speed, the program takes about 1/2 second to go through an entire generation, about 300 times faster than the BASIC equivalent! Enough said about the efficiency of machine language programming versus BASIC interpreters?

BASIC is great for number crunching, where you can quickly compose your program and have plenty of time to await the results.

The program may be broken down into manageable chunks by subroutines. There follows a brief description of the salient features of each section:

MAIN (hex 1900)

In a fit of overcaution (since this was the first time I attempted to write a PET machine language program) you will notice the series of pushes at the beginning and pulls at the end. I decided to save all the internal registers on the stack in page 1, and also included the CLD (clear decimal mode) just in case. Then follows a series of subroutine calls to do the LIFE generation and display transfers. The zero page location, TIMES, is a counter to permit several loops through LIFE before returning. As set up, TIMES is initialized to zero (hex location 1953) so that it will loop 256 times before jumping back. This of course can be changed either initially or while in BASIC via the POKE command. The return via the JMP BASIC (4C 8B C3) may not be strictly orthodox, but it seems to work all right.

INIT (hex 1930) and DATA (hex 193B)

This shorty reads in the constants needed, and stores them in page zero. SCR refers to the PET screen, TEMP is a temporary working area to hold the new generation as it is evolved, and RCS is essentially a copy of the PET screen data, which I found to be necessary to avoid "snow" on the screen during read/write operations directly on the screen locations. Up, down, etc. are the offsets to be added or subtracted from an address to get all the neighbor addresses. The observant reader will note the gap in the addresses between some of the routines.

TMPSCR (hex 1970)

This subroutine quickly transfers the contents of Temp and dumps it to the screen, using a dot (81 dec) symbol for a live cell (a 1 in TEMP) and a space (32 dec) for the absence of a live cell (a 0 in TEMP).

SCRTMP (hex 198A)

This is the inverse of TMPSCR, quickly transferring (and encoding) data from the screen into TEMP.

RSTORE (hex 19A6)

This subroutine fetches the initial addresses (high and low) for the SCR, TEMP, and RCS memory spaces.

NXTADR (hex 19BD)

Since we are dealing with 1000 bytes of data, we need a routine to increment to the next location, check for page crossing (adding 1 to the high address when it occurs), and checking for the end. The end is signaled by returning a 01 in the accumulator, otherwise a 00 is returned via the accumulator.

TMPRCS (hex 19E6)

The RCS address space is a copy of the screen, used as mentioned before to avoid constant "snow" on the screen if the screen were being continually accessed. This subroutine dumps data from TEMP, where the new generation has been computed, to RCS.

GENER (hex 1AO0)

We finally arrive at a subroutine where LIFE is actually generated. After finding out the number of neighbors of the current RCS data byte from NBRS, GENER checks for births (CMPIM \$03 at hex addr. 1AOE) if the cell was previously unoccupied. If a birth does not occur, there is an immediate branch to GENADR (the data byte remains 00). If the cell was occupied (CMPIM 81 dec at hex 1AO8), OCC checks for survival (CMPIM \$03 at hex 1A1A and CMPIM \$02 at hex 1A1E), branching to GENADR when these two conditions are met, otherwise the cell dies (LDAIM \$00 at hex 1A22). The results are stored in TEMP for the 1000 cells.

NBRS (hex 1A2F)

NBRS is the subroutine that really does most of the work and where most of the speed could be gained by more efficient programming. Its job, to find the total number of occupied neighbors of a given RCS data location, is complicated by page crossing and edge boundaries. In the present version, page crossing is taken care of, but edge boundaries (left, right, top, and bottom of the screen) are somewhat "strange". Above the top line and below the bottom line are considered as sort of forbidden regions where there should practically always be no "life" (data in those regions are not defined by the program, but I have found that there has never been a case where 81's have been present (all other data is considered as "unoccupied" characters). The right and left edges are different, however,

and lead to a special type of "geometry". A cell at either edge is not considered as special by NBRS, and so to the right of a right-edge location is the next sequential address. On the screen this is really the left edge location, and one line lower. The inverse is true, of course for left addresses of left-edge locations. Topologically, this is equivalent to a "helix". No special effects of this are seen during a simple LIFE evolution since it just gives the impression of disappearing off one edge while appearing on the other edge. For an object like the "spaceship" (see Scientific American articles), then, the path eventually would cover the whole LIFE arena. The fun comes in when a configuration spreads out so much that it spills over both edges, and interacts with itself. This, of course cannot happen in an infinite universe, so that some of the more complex patterns will not have the same fate in the present version of LIFE. Most of the "blinker", including the "glider gun" come out OK.

This 40x25 version of LIFE can undoubtedly be made more efficient, and other edge algorithms could be found, but I chose to leave it in its original form as a benchmark for my first successfully executed program in writing machine

language on the PET. One confession, however - I used the KIM-1 to debug most of the subroutines. Almost all of them did not run on the first shot! Without a good understanding of PET memory allocation particularly in page zero, I was bound to crash many times over, with no recovery other than pulling the plug. The actual BASIC program consisted of a POKING loop with many DATA statements (always save on tape before running!).

A Brief Introduction to the Game of Life

One of the interesting properties of the game of LIFE is that such simple rules can lead to such complex activity. The simplicity comes from the fact that the rules apply to each individual cell. The complexity comes from the interactions between the individual cells. Each individual cell is affected by its eight adjacent neighbors, and nothing else.

The rules are:

1. A cell survives if it has two or three neighbors.

REPEATERS

STABLE

```
 * * * * *  
 * * * * *  
 * * * * *  
 * * * * *  
 * * * * *
```

2. A cell dies from overcrowding if it has four or more neighbors. It dies from isolation if it has one or zero neighbors.

3. A cell is born when an empty space has exactly three neighbors.

With these few rules, many different types of activity can occur. Some patterns are STABLE, that is they do not change at all. Some are REPEATERS, patterns which undergo one or more changes and return to the original pattern. A REPEATER may repeat as fast as every other generation, or may have a longer period. A GLIDER is a pattern which moves as it repeats.

GLIDERS

```
 * * * * *  
 * * * * *  
 * * * * *  
 * * * * *  
 * * * * *
```

1900	LIFE	ORG	\$1900	
1900	BASIC	*	\$C38B	RETURN TO BASIC ADDRESS
1900	OFFSET	*	\$002A	PAGE ZERO DATA AREA POINTER
1900	DOT	*	\$0051	DOT SYMBOL = 81 DECIMAL
1900	BLANK	*	\$0020	BLANK SYMBOL = 32 DECIMAL
1900	SCRL	*	\$0020	PAGE ZERO LOCATIONS
1900	SCRH	*	\$0021	
1900	CHL	*	\$0022	
1900	CHH	*	\$0023	
1900	SCRLO	*	\$0024	
1900	SCRHO	*	\$0025	
1900	TEMPL	*	\$0026	
1900	TEMPH	*	\$0027	
1900	TEMPLO	*	\$0028	
1900	TEMPHO	*	\$0029	
1900	UP	*	\$002A	
1900	DOWN	*	\$002B	
1900	RIGHT	*	\$002C	
1900	LEFT	*	\$002D	
1900	UR	*	\$002E	
1900	UL	*	\$002F	
1900	LR	*	\$0030	
1900	LL	*	\$0031	
1900	N	*	\$0032	
1900	SCRLL	*	\$0033	
1900	SCR LH	*	\$0034	
1900	RCSLO	*	\$0035	
1900	RCSHO	*	\$0036	
1900	TMP	*	\$0037	
1900	TIMES	*	\$0038	
1900	RCSL	*	\$0039	
1900	RCSH	*	\$003A	
1900 08	MAIN	PHP		SAVE EVERYTHING
1901 48		PHA		ON STACK
1902 8A		TXA		
1903 48		PHA		
1904 98		TYA		
1905 48		PHA		
1906 BA		TSX		
1907 8A		TXA		
1908 48		PHA		
1909 D8		CLD		CLEAR DECIMAL MODE
190A 20 30 19		JSR	INIT	
190D 20 8A 19		JSR	SCRTMP	
1910 20 E6 19	GEN	JSR	TMPRCS	
1913 20 00 1A		JSR	GENER	
1916 20 70 19		JSR	TMPSCR	
1919 E6 38		INCZ	TIMES	REPEAT 255 TIMES
191B D0 F3		BNE	GEN	BEFORE QUITTING
191D 68		PLA		RESTORE EVERYTHING
191E AA		TAX		
191F 9A		TXS		
1920 68		PLA		

1921	A8		TAY	
1922	68		PLA	
1923	AA		TAX	
1924	68		PLA	
1925	28		PLP	
1926	4C 8B C3	JMP	BASIC	RETURN TO BASIC
1930		ORG	\$1930	

MOVE VALUES INTO PAGE ZERO

1930	A2 19	INIT	LDXIM \$19	MOVE 25. VALUES
1932	BD 3A 19	LOAD	LDAX DATA	-01
1935	95 1F		STAZX \$1F	STORE IN PAGE ZERO
1937	CA		DEX	
1938	D0 F8	BNE	LOAD	
193A	60		RTS	

193B	00	DATA	=	\$00	SCRL
193C	80		=	\$80	SCRH
193D	00		=	\$00	CHL
193E	15		=	\$15	CHH
193F	00		=	\$00	SCRLO
1940	80		=	\$80	SCRHO
1941	00		=	\$00	TEMPL
1942	1B		=	\$1B	TEMPh
1943	00		=	\$00	TEMPLO
1944	1B		=	\$1B	TEMPhO
1945	D7		=	\$D7	UP
1946	28		=	\$28	DOWN
1947	01		=	\$01	RIGHT
1948	FE		=	\$FE	LEFT
1949	D8		=	\$D8	UR
194A	D6		=	\$D6	UL
194B	29		=	\$29	LR
194C	27		=	\$27	LL
194D	00		=	\$00	N
194E	E8		=	\$E8	SCRLL
194F	83		=	\$83	SCRLH
1950	00		=	\$00	RCSLO
1951	15		=	\$15	RCSHO
1952	00		=	\$00	TMP
1953	00		=	\$00	TIMES

1970		ORG	\$1970	
------	--	-----	--------	--

1970	20 A6 19	TMPSCR	JSR	RSTORE	GET INIT ADDRESSES
1973	B1 26	TSLOAD	LDAIY	TEMPL	FETCH BYTE FROM TEMP
1975	D0 06		BNE	TSONE	BRANCH IF NOT ZERO
1977	A9 20		LDAIM	BLANK	BLANK SYMBOL
1979	91 20		STAIIY	SCRL	DUMP IT TO SCREEN
197B	D0 04		BNE	TSNEXT	
197D	A9 51	TSONE	LDAIM	DOT	DOT SYMBOL
197F	91 20		STAIIY	SCRL	DUMP IT TO SCREEN
1981	20 BD 19	TSNEXT	JSR	NXTADR	FETCH NEXT ADDRESS
1984	F0 ED		BEQ	TSLOAD	

1986 20 A6 19	JSR	RSTORE	RESTORE INIT ADDRESSES
1989 60	RTS		
198A 20 A6 19	SCRTMP	JSR	RSTORE GET INIT ADDRESSES
198D B1 20	STLOAD	LDAIY	SCRL READ DATA FROM SCREEN
198F C9 51	CMPIM	DOT	TEST FOR DOT
1991 F0 06	BEQ	STONE	BRANCH IF DOT
1993 A9 00	LDAIM	\$00	OTHERWISE ITS A BLANK
1995 91 26	STAIIY	TEMPL	STORE IT
1997 F0 04	BEQ	STNEXT	UNCOND. BRANCH
1999 A9 01	STONE	LDAIM	\$01 A DOT WAS FOUND
199B 91 26	STAIIY	TEMPL	STORE IT
199D 20 BD 19	STNEXT	JSR	NXTADR FETCH NEXT ADDRESS
19A0 F0 EB	BEQ	STLOAD	
19A2 20 A6 19	JSR	RSTORE	RESTORE INIT ADDRESSES
19A5 60	RTS		
19A6 A9 00	RSTORE	LDAIM	\$00 ZERO A, X, Y
19A8 AA		TAX	
19A9 A8		TAY	
19AA 85 20	STAZ	SCRL	INIT VALUES
19AC 85 26	STAZ	TEMPL	
19AE 85 39	STAZ	RCSL	
19B0 A5 25	LDAZ	SCRHO	
19B2 85 21	STAZ	SCRH	
19B4 A5 29	LDAZ	TEMPHO	
19B6 85 27	STAZ	TEMPH	
19B8 A5 36	LDAZ	RCSHO	
19BA 85 3A	STAZ	RCSH	
19BC 60	RTS		
19BD E6 26	NXTADR	INCZ	TEMPL GET NEXT LOW ORDER
19BF E6 20		INCZ	SCRL BYTE ADDRESS
19C1 E6 39		INCZ	RCSL
19C3 E8		INX	
19C4 E4 33		CPXZ	SCRL IS IT THE LAST?
19C6 F0 0C		BEQ	PAGECH IS IT THE LAST PAGE?
19C8 E0 00		CPXIM	\$00 IS IT A PAGE BOUNDARY?
19CA D0 0E		BNE	NALOAD IF NOT, THEN NOT DONE
19CC E6 27		INCZ	TEMPH OTHERWISE ADVANCE TO
19CE E6 21		INCZ	SCRH NEXT PAGE
19D0 E6 3A		INCZ	RCSH
19D2 D0 06		BNE	NALOAD UNCONDITIONAL BRANCH
19D4 A5 34	PAGECH	LDAZ	SCRLH CHECK FOR LAST PAGE
19D6 C5 21		CMPZ	SCRH
19D8 F0 03		BEQ	NADONE IF YES, THEN DONE
19DA A9 00		NALOAD	LDAIM \$00 RETURN WITH A=0
19DC 60			RTS
19DD A9 01		NADONE	LDAIM \$01 RETURN WITH A=1
19DF 60			RTS
19E6	ORG		\$19E6
19E6 20 A6 19	TMRPCS	JSR	RSTORE INIT ADDRESSES
19E9 B1 26	TRLOAD	LDAIY	TEMPL FETCH DATA FROM TEMP
19EB D0 06		BNE	TRONE IF NOT ZERO THEN ITS ALIVE

19ED A9 20		LDAIM BLANK	BLANK SYMBOL
19EF 91 39		STAIY RCSL	STORE IT IN SCREEN COPY
19F1 D0 04		BNE NEWADR	THEN ON TO A NEW ADDRESS
19F3 A9 51	TRONE	LDAIM DOT	THE DOT SYMBOL
19F5 91 39		STAIY RCSL	STORE IT IN SCREEN COPY
19F7 20 BD 19	NEWADR	JSR NXTADR	FETCH NEXT ADDRESS
19FA F0 ED		BEQ TRLOAD	IF A=0, THEN NOT DONE
19FC 20 A6 19		JSR RSTORE	ELSE DONE. RESTORE
19FF 60		RTS	
1A00 20 A6 19	GENER	JSR RSTORE	INIT ADDRESSES
1A03 20 2F 1A	AGAIN	JSR NBRS	FETCH NUMBER OF NEIGHBORS
1A06 B1 39		LDAIY RCSL	FETCH CURRENT DATA
1A08 C9 51		CMPIM DOT	IS IT A DOT?
1A0A F0 0C		BEQ OCC	IF YES, THEN BRANCH
1A0C A5 32		LDAZ N	OTHERWISE ITS BLANK
1A0E C9 03		CMPIM \$03	SO WE CHECK FOR
1A10 D0 14		BNE GENADR	A BIRTH
1A12 A9 01	BIRTH	LDAIM \$01	IT GIVES BIRTH
1A14 91 26		STAIY TEMPL	STORE IT IN TEMP
1A16 D0 0E		BNE GENADR	INCONDITIONAL BRANCH
1A18 A5 32	OCC	LDAZ N	FETCH NUMBER OF NEIGHBORS
1A1A C9 03		CMPIM \$03	IF IT HAS 3 OR 2
1A1C F0 08		BEQ GENADR	NEIGHBORS IT SURVIVES
1A1E C9 02		CMPIM \$02	
1A20 F0 04		BEQ GENADR	
1A22 A9 00	DEATH	LDAIM \$00	IT DIED!
1A24 91 26		STAIY TEMPL	STORE IT IN TEMP
1A26 20 BD 19	GENADR	JSR NXTADR	FETCH NEXT ADDRESS
1A29 F0 D8		BEQ AGAIN	IF 0, THEN NOT DONE
1A2B 20 A6 19		JSR RSTORE	RESTORE INIT ADDRESSES
1A2E 60		RTS	
1A2F 98	NBRS	TYA	SAVE Y AND X ON STACK
1A30 48		PHA	
1A31 8A		TXA	
1A32 48		PHA	
1A33 A0 00		LDYIM \$00	SET Y AND N = 0
1A35 84 32		STYZ N	
1A37 A2 08		LDXIM \$08	CHECK 8 NEIGHBORS
1A39 B5 29	OFFS	LDAZX OFFSET	-01
1A3B 10 15		BPL ADD	ADD IF OFFSET IS POSITIVE
1A3D 49 FF		EORIM \$FF	OTHERWISE GET SET TO
1A3F 85 37		STAZ TMP	SUBTRACT
1A41 38		SEC	SET CARRY BIT FOR SUBTRACT
1A42 A5 39		LDAZ RCSL	
1A44 E5 37		SBCZ TMP	SUBTRACT TO GET THE
1A46 85 22		STAZ CHL	CORRECT NEIGHBOR ADDRESS
1A48 A5 3A		LDAZ RCSH	
1A4A 85 23		STAZ CHH	
1A4C B0 11		BCS EXAM	OK, FIND OUT WHAT'S THERE
1A4E C6 23		DECZ CHH	PAGE CROSS
1A50 D0 0D		BNE EXAM	UNCOND. BRANCH
1A52 18	ADD	CLC	GET SET TO ADD
1A53 65 39		ADCZ RCSL	ADD
1A55 85 22		STAZ CHL	STORE THE LOW PART

1A57 A5 3A	LDAZ	RCSH	FETCH THE HIGH PART
1A59 85 23	STAZ	CHH	
1A5B 90 02	BCC	EXAM	OK, WHAT'S THERE
1A5D E6 23	INCZ	CHH	PAGE CROSSING
1A5F B1 22	EXAM	LDAIY CHL	FETCH THE NEIGHBOR
1A61 C9 51	CMPIM	DOT	DATA BYTE AND SEE IF ITS
1A63 D0 02	BNE	NEXT	OCCUPIED
1A65 E6 32	INCZ	N	ACCUMULATE NUMBER OF NEIGHBORS
1A67 CA	NEXT	DEX	
1A68 D0 CF	BNE	OFFS	NOT DONE
1A6A 68	PLA		RESTORE X, Y FROM STACK
1A6B AA	TAX		
1A6C 68	PLA		
1A6D A8	TAY		
1A6E 60	RTS		

This program was prepared by:

Dr. F. H. Covitz,
 Deer Hill Road,
 Lebanon,
 N.J. 08833,
 USA.

LIFE FOR YOUR PET (cont.)

Below we have a way of actually getting our HEX OP-CODES into the PET. Lines 100-200 read the data statements convert them to decimal and POKE them sequentially into the memory. The first data item is expected to be the starting point of the loading in decimal and the last data item is expected to be an asterix. The beauty of this method is that you can use the screen edit facility on the PET for inserting and deleting codes. When you have inserted your own data statements from line 300 upwards, save the entire performance prior to running as machine language routines rarely work first time around and the PET is quite likely to hang up and need turning off and on. The data statements in the example are for the game of LIFE. In the original version listed on the previous pages, 256 generations must occur before the control returns to BASIC. I have modified the program slightly in the beginning in order to allow the stop button to halt the binary routine. If you think you have loaded the following program correctly type RUN and press RETURN. This loads the binary program. When the machine prints READY, clear the screen. Type say eight shifted Qs in a row in the middle of the screen followed by SYS (6400) (which is 1900H in decimal) and press return. GOOD LUCK!

```

100 READL
110 READ A$:C=LEN(A$):IFA$="*"THENEND
120 IFC<10RC>2THEN200
130 A=ASC(A$)-48:B=ASC(RIGHT$(A$,1))-48
140 N=B+7*(B>9)-(C=2)*(16*(A+7*(A>9)))
150 IFN<0ORN>255THEN200
160 POKE L,N:L=L+1:GOT0110
200 PRINT"BYTE "L"="A$""] ??"":END
300 DATA6400
310 DATA 08,48,8A,48,98,48,BA,8A,48,D8,20,30,19,20,8A,19,20,E6,19,20,00,1A
320 DATA20,70,19,A9,FF,CD,12,E8,F0,F0,4C,8B,C3,AA,68,28,4C,8B,C3
330 DATA EA,EA,EA,EA,EA,EA,A2,19,BD,3A,19,95,1F,CA,D0,F8,60,00,80,00,15,00
340 DATA80,00,1B,00,1B,D7,28,01,FE,D8,D6,29,27,00,E8,83,00,15,00,00
350 DATAEA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA,EA
360 DATAEA,EA,EA,EA,EA,20,A6,19,B1,26,D0,06,A9,20,91,20,D0,04,A9,51,91,20,20
370 DATA BD,19,F0,ED,20,A6,19,60,20,A6,19,B1,20,C9,51,F0,06,A9,00,91,26,F0
380 DATA04,A9,01,91,26,20,BD,19,F0,EB,20,A6,19,60,A9,00,AA,A8,85,20,85,26,85
390 DATA39,A5,25,85,21,A5,29,85,27,A5,36,85,3A,60,E6,26,E6,20,E6,39,E8,E4
400 DATA33,F0,0C,E0,00,D0,0E,E6,27,E6,21,E6,3A,D0,06,A5,34,C5,21,F0,03,A9,00
410 DATA 60,A9,01,60,EA,EA,EA,EA,EA,20,A6,19,B1,26,D0,03,A9,20,91,39,00
420 DATA04,A9,51,91,39,20,BD,19,F0,ED,20,A6,19,60,20,A6,19,20,2F,1A,B1,39,C9
430 DATA51,F0,0C,A5,32,C9,03,D0,14,A9,01,91,26,D0,0E,A5,32,C9,03,F0,08,C7,02
440 DATAF0,04,A9,00,91,26,20,BD,19,F0,D8,20,A6,19,60,98,48,8A,48,A0,00,84,32
450 DATAA2,08,85,29,10,15,49,FF,85,37,38,A5,39,E5,37,85,22,A5,3A,85,23,B0,11
460 DATAC6,23,D0,0D,18,65,39,85,22,A5,3A,85,23,90,02,E6,23,B1,22,C9,51,D0,02
470 DATAE6,32,CA,D0,CF,68,AA,68,A8,60,*
READY.

```

YOUR LETTERS

M.P. Glynne (B.Sc) of Tarn Cottage, Tarn Lane, Shadwell, Leeds wrote in to say:

Othello Program for P.E.T. - there is a bug in the above which has the following effect; the computer forfeits moves when, in fact, it has legal moves available.

This arises because statements 1215 and 122Ø assign a negative weighted value of -1 to locations 2D, 2E, 4B, 4G, 5B, 5G, 7D, 7E and -2 to 2B, 2G, 7B, 7G.

If Sub 282Ø identifies only one piece to capture then at statement 12ØØ S1 = 1. After weighting S1 will be assigned Ø or -1. Taking the 'Ø' case, then B1 will be assigned S1 = Ø (statement 134Ø) and then 141Ø will not be true, and 143Ø "I have to forfeit my move", will result.

To rectify this completely for both the -1 and the -2 weighted cases the following amendment will be necessary:-
Statement 1ØØØ 'B1 = -1' to be amended to 'B1 = -2:
Statement 141Ø to be amended to 'If B1 = -1 then 148Ø

Mr. J. Smith of 38 Claremont Crescent, Croxley Green, Rickmansworth, Herts. WD3 3QR

wrote in: The error in the definition of arc cos X should, I feel, be corrected. A possible version is:- (*)

ACS X = ATN(SQR (1-X↑2)/X) + (1-SGN(X))*π/2

this correctly gives (unless X=Ø) arc cos (-Ø.5) as

cont...

YOUR LETTERS (cont.)

$2\pi/3$ (120°) ; your formula gives

arc cos $(-\frac{1}{2})$ as -60° this would be incorrect
in e.g. a "cosine rule" problem.

As you expect PET to be used in educational establishments for solving trig. problems, I think it important to put this right.

* Note that if X is negative

$$1-\text{SGN}(X) = 2$$

& if X is positive

$$1-\text{SGN}(X) = 0$$

this ensures that a correct multiple of π is added to the arctangent. Also, would it not be better to suggest..

$$P = 180/\pi \quad (\underline{\text{before}} \text{ FNS is used})$$

$$\text{DEFFNS}(V) = \text{SIN } (V/P) \quad \text{etc.}$$

for the user defined functions?

HERE ARE SOME COMMENTS FROM MR. M.J. SMYTH who is the
Senior Lecturer, Department of Astronomy, Royal Observatory,
Edinburgh EH9 3HJ.

Using BASIC and the IEEE 488 bus, PET can input 40 numbers per second from a 3½ digit voltmeter (Hewlett Packard 3437A). Also using BASIC, the user port can generate an output trigger (e.g. to a measuring device)

YOUR LETTERS (cont.)

within about 10 ms of an input trigger. We have not yet tried using assembler. But the BASIC speeds make possible very interesting applications in equipment control and real-time data processing.

RETAIL PRICE LIST

PET MEMORY

READY TO PLUG IN AND GO. EACH MEMORY MODULE IS A BOXED UNIT COMPLETE WITH POWER SUPPLY AND APPROPRIATE CONNECTORS. AN ALTERNATIVE MODEL WHICH MOUNTS INSIDE THE PET AND REQUIRES NO EXTRA POWER SUPPLY IS AVAILABLE.

SIZE	RRP	5 UP LESS 12%
16 K	720	633.60
24 K	758	667.04

DELIVERY TO COMMENCE JULY

IEEE/RS232C SERIAL INTERFACE 'A'

THIS IS A UNIDIRECTIONAL INTERFACE SUITABLE FOR ANY PRINTER OR SERIAL DEVICE REQUIRING V24/RS232C OR CURRENT LOOP SIGNALS. THE INTERFACE MAY BE USED WITH UP TO 15 OTHER DEVICES SIMULTANEOUSLY CONNECTED TO THE IEEE BUS. THE UNIT CONTAINS SPECIAL FORMATTING CIRCUITRY FOR CONVERTING PET CODES TO ASCII. THE UNIT IS NORMALLY SUPPLIED WIRED FOR LISTEN ADDRESS 4.

THE INTERFACE IS SUPPLIED COMPLETE WITH POWER SUPPLY AND IS HOUSED IN A SMALL INSTRUMENT CASE. A CABLE AND EDGE CONNECTOR ARE PROVIDED FOR THE PET. CONNECTION TO THE SERIAL DEVICE IS VIA A STANDARD 25 WAY D-TYPE CONNECTOR.

BAUD RATES OF 110, 300, 600, 1200 ARE SELECTABLE BY MEANS OF A D.I.L. SWITCH. STOP BITS ARE ALSO SWITCH SELECTABLE. THE UNIT IS NORMALLY SET TO GIVE EVEN PARITY ALL BAUD RATE TIMING IS CRYSTAL CONTROLLED.

PRICE 106.00 DELIVERY 21/40 DAYS

SERIAL INTERFACE 'B'

THIS IS A SOPHISTICATED BIDIRECTIONAL INTERFACE WITH FULL LISTENER AND TALKER ADDRESS DECODING. THIS UNIT MAY BE USED WHERE REMOTE INPUT IS ALSO REQUIRED. OTHER SPECIFICATIONS AS FOR INTERFACE 'A'

PRICE 186.67 DELIVERY TO COMMENCE JULY

TERMS

ALL PRICES EX VAT AT 8%. ALL ORDERS MUST BE CDO
CHEQUES SHOULD BE MADE PAYABLE TO R. BAILEY ASSOCIATES.
ORDERS FOR INTERFACES SHOULD
INCLUDE 2.50 P&P PER UNIT.
ALL GOODS SUPPLIED UNDER 90 DAY WARRANTY.