

PCT

TION MONDIALE DE LA PROPRIETE INTELLEC Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6: C07C 41/09, C11B 9/00, C07C 43/23, (11) Numéro de publication internationale:

WO 99/02475

43/178, 43/205

(43) Date de publication internationale: 21 janvier 1999 (21.01.99)

(21) Numéro de la demande internationale:

PCT/FR98/01472

A1

(22) Date de dépôt international:

8 juillet 1998 (08.07.98)

(30) Données relatives à la priorité:

97/08733

9 juillet 1997 (09.07.97)

FR

(71) Déposant (pour tous les Etats désignés sauf US): RHO-DIA CHIMIE [FR/FR]; 25, quai Paul Doumer, F-92408 Courbevoie Cedex (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): JACQUOT, Roland [FR/FR]; 97, chemin de la Courtille, F-69110 Sainte Foy lès Lyon (FR). SPAGNOL, Michel [FR/FR]; 90, boulevard Ambroise Paré, F-69008 Lyon (FR).
- (74) Mandataire: DUTRUC-ROSSET, Marie-Claude; Rhodia Services, 25, quai Paul Doumer, F-92408 Courbevoie Cedex (FR).

(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, ÇÁ, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: METHOD FOR ETHERIFYING A BENZYL ALCOHOL, RESULTING PRODUCTS AND APPLICATIONS
- (54) Titre: PROCEDE D'ETHERIFICATION D'UN ALCOOL DE TYPE BENZYLIQUE, PRODUITS OBTENUS ET SES APPLICA-TIONS
- (57) Abstract

The invention concerns a method for etherifying a benzyl alcohol, the resulting products and their applications in particular in perfume manufacture. The etherification method consists in reacting a benzyl alcohol with another alcohol in the presence of a catalyst, characterised in that the etherification reaction is carried out in the presence of an effective amount of a zeolite.

(57) Abrégé

La présente invention a pour objet un procédé d'éthérification d'un alcool de type benzylique, les produits obtenus et leurs applications notamment dans le domaine de la parfumerie. Le procédé d'éthérification selon l'invention qui consiste à faire réagir un alcool de type benzylique avec un autre alcool, en présence d'un catalyseur, est caractérisé par le fait que l'on conduit la réaction d'éthérification en présence d'une quantité efficace d'une zéolithe.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus ·	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JР	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne .		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

WO 99/02475

10

15

20

25

PCT/FR98/01472

1

PROCEDE D'ETHERIFICATION D'UN ALCOOL DE TYPE BENZYLIQUE. PRODUITS OBTENUS ET SES APPLICATIONS.

La présente invention a pour objet un procédé d'éthérification d'un alcool de type benzylique, les produits obtenus et leurs applications notamment dans le domaine de la parfumerie.

Il est connu de préparer selon DE-A-4434823 des éthers d'alcools hydroxybenzyliques par réaction de l'alcool hydroxybenzylique et d'un alcanol, en présence d'une résine sulfonique (Amberlyst[®] A21). La résine est difficilement régénérable et le rendement réactionnel obtenu n'est pas très satisfaisant puisque seulement de 72 %.

Le procédé décrit n'est pas compatible avec une exploitation industrielle.

La présente invention a précisement pour but de proposer un procédé permettant d'obvier ces inconvénients.

Il a maintenant été trouvé et c'est ce qui constitue l'objet de la présente invention, un procédé d'éthérification d'un alcool de type benzylique qui consiste à faire réagir ledit alcool avec un autre alcool, en présence d'un catalyseur, ledit procédé étant caractérisé par le fait que l'on conduit la réaction d'éthérification en présence d'une quantité efficace d'une zéolithe.

Dans l'exposé qui suit de la présente invention, on entend "par alcool de type benzylique", un carbocycle ou un hétérocycle aromatique dont un atome d'hydrogène directement lié au noyau aromatique est remplacé par un groupe

et par "aromatique", la notion classique d'aromaticité telle que définie dans la littérature, notamment par Jerry MARCH, Advanced Organic Chemistry, 4^{ème} édition, John Wiley and Sons, 1992, pp. 40 et suivantes.

Par commodité de langage, l'autre alcool mis en oeuvre sera dénommée de manière générique par "alcanol" bien qu'il désigne également des alcools comportant des cycles notamment aromatiques.

Plus précisément, la présente invention a pour objet un procédé d'éthérification d'un alcool benzylique de formule générale (I) :

35

dans laquelle:

5

10

20

25

30

35

- A symbolise le reste d'un cycle formant tout ou partie d'un système carbocyclique ou hétérocyclique, aromatique, monocyclique ou polycyclique, système comprenant au moins un groupe I C OH
- R représente un ou plusieurs substituants, identiques ou différents,
- R₁ et R₂, identiques ou différents, représentent un atome d'hydrogène, un groupe fonctionnel ou un groupe hydrocarboné ayant de 1 à 24 atomes de carbone, qui peut être un groupe aliphatique acyclique saturé ou insaturé, linéaire ou ramifié ; un groupe cycloaliphatique saturé, insaturé ou aromatique, monocyclique ou polycyclique ; un groupe aliphatique saturé ou insaturé, linéaire ou ramifié, porteur d'un substituant cyclique,
- 15 R₁ et R₂ peuvent former un cycle comprenant éventuellement un autre hétéroatome,
 - n est un nombre inférieur ou égal à 5.

L'alcool de type benzylique qui intervient dans le procédé de l'invention répond à la formule (I) dans laquelle R₁ et R₂ représentent un groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié.

Plus préférentiellement, R₁ et R₂ représentent un groupe alkyle linéaire ou ramifié ayant de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone : la chaîne hydrocarbonée pouvant être éventuellement interrompue par (un hétéroatome (par exemple, l'oxygène), par un groupe fonctionnel (par exemple -CO-) et/ou porteuse d'un substituant (par exemple, un halogène).

Le groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié peut être éventuellement porteur d'un substituant cyclique. Par cycle, on entend de préférence, un cycle carbocyclique ou hétérocyclique, saturé, insaturé ou aromatique, de préférence cycloaliphatique ou aromatique notamment cycloaliphatique comprenant 6 atomes de carbone dans le cycle ou benzénique.

Le groupe aliphatique acyclique peut être relié au cycle par un lien valentiel, un hétéroatome ou un groupe fonctionnel et des exemples sont donnés cidessus.

Le cycle peut être éventuellement substitué et à titre d'exemples de substituants cycliques, on peut envisager, entre autres, les substituants tels que R dont la signification est précisée ci-après.

BNSDOCID: <WO 990247541 I

10

15

20

25

30

35

R₁ et R₂ peuvent représenter également un groupe carbocyclique saturé ou comprenant 1 ou 2 insaturations dans le cycle, ayant généralement de 3 à 8 atomes de carbone, de préférence, 6 atomes de carbone dans le cycle ; ledit cycle pouvant être substitué par des substituants tels que R.

R₁ et R₂ peuvent représenter également un groupe carbocyclique aromatique, de préférence monocyclique ayant généralement au moins 4 atomes de carbone, de préférence, 6 atomes de carbone dans le cycle ; ledit cycle pouvant être substitué par des substituants tels que R.

L'un des groupes R₁ et R₂ peut représnter un groupe CF₃.

Dans la formule (I), les groupes R_1 et R_2 , peuvent former entre eux, un cycle ayant de préférence, de 5 à 7 atomes, saturé ou insaturé, comprenant éventuellement un autre hétéroatome, par exemple un atome d'oxygène.

L'invention s'applique notamment aux alcools de type benzylique répondant à la formule (I) dans laquelle A est le reste d'un composé cyclique, ayant de préférence, au moins 4 atomes dans le cycle, de préférence, 5 ou 6, éventuellement substitué, et représentant au moins l'un des cycles suivants :

- un carbocycle aromatique, monocyclique ou polycyclique,
- un hétérocycle aromatique, monocyclique ou polycyclique comportant au moins un des hétéroatomes O, N et S,

On précisera, sans pour autant limiter la portée de l'invention, que le reste A éventuellement substitué représente, le reste :

- d'un composé monocyclique, carbocyclique, aromatique, tel que par exemple, le benzène ou le toluène,
- d'un composé polycyclique, condensé, aromatique, tel que par exemple, le naphtalène,
- d'un composé monocyclique, hétérocyclique, aromatique, tel que par exemple, la pyridine, le furane, le thiophène.

Dans le procédé de l'invention, on met en oeuvre préférentiellement un composé aromatique de formule (I) dans laquelle A représente un noyau benzénique ou naphtalénique.

Le reste A de l'alcool de type benzylique de formule (I) peut être porteur d'un ou plusieurs substituants.

Le nombre de substituants présents sur le cycle dépend de la condensation en carbone du cycle et de la présence ou non d'insaturations sur le cycle.

Le nombre maximum de substituants susceptibles d'être portés par un cycle, est aisément déterminé par l'Homme, du Métier.

Dans le présent texte, on entend par "plusieurs", généralement, moins de 5 substituants sur un noyau aromatique.

Des exemples de substituants sont donnés ci-dessous mais cette liste ne présente pas de caractère limitatif. On peut citer notamment :

- les groupes alkyle linéaires ou ramifiés ayant de préférence de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone,
- les groupes alcényle linéaires ou ramifiés ayant de préférence de 2 à 6 atomes de carbone et encore plus préférentiellement de 2 à 4 atomes de carbone,
 - les groupes halogénoalkyle linéaires ou ramifiés ayant de préférence de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone.
- les groupes cycloalkyle ayant de 3 à 6 atomes de carbone, de préférence, le groupe cyclohexyle,
 - le groupe phényle,
 - le groupe hydroxyle,
 - le groupe NO₂,

20

25

30

35

- 15 les groupes alkoxy R₃-O- ou thioéther R₃-S- dans lesquels R₃ représente un groupe alkyle linéaire ou ramifié ayant de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone ou le groupe phényle,
 - les groupes -N-(R₄)₂ dans lesquels les groupes R₄ identiques ou différents représentent un atome d'hydrogène, un groupe alkyle linéaire ou ramifié ayant de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone ou un groupe phényle,
 - les groupes -NH-CO-R₄ dans lesquels le groupe R₄ a la signification donnée précédemment,
 - les groupes carboxy ou dérivé R_4 -O-CO- dans lesquels le groupe R_4 a la signification donnée précédemment,
 - les groupes acyloxy ou aroyloxy R₃₋CO-O- dans lesquels le groupe R₃ a la signification donnée précédemment,
 - un atome d'halogène, de préférence, un atome de fluor,
 - un groupe CF₃.

Lorsque n est supérieur ou égal à 2, deux groupes R et les 2 atomes successifs du cycle aromatique peuvent être liés entre eux par un groupe alkylène, alcénylène ou alcénylidène ayant de 2 à 4 atomes de carbone pour former un hétérocycle saturé, insaturé ou aromatique ayant de 5 à 7 atomes de carbone. Un ou plusieurs atomes de carbone peuvent être remplacés par un autre hétéroatome, de préférence l'oxygène. Ainsi, les groupes R peuvent représenter un groupe méthylènedioxy ou éthylènedioxy.

Les substituants préférés sont choisis parmi les groupes électro-donneurs.

On entend par "groupe électro-donneur", un groupe tel que défini par H.C. BROWN dans l'ouvrage de Jerry MARCH - Advanced Organic Chemistry, chapitre 9, pages 243 et 244 (1985).

Le procédé de l'invention s'applique tout particulièrement aux alcools de type benzylique de formule (la) :

$$(R) \cap \bigcap_{R_1} R_2$$

$$(R) \cap \bigcap_{R_1} R_2$$

$$(R) \cap \bigcap_{R_1} R_2$$

dans laquelle:

15

20

30

- n est un nombre inférieur ou égal à 4, de préférence égal à 0, 1 ou 2,
- le groupe R est un groupe électro-donneur, de préférence, un groupe alkyle,
 alkoxy ou méthylènedioxy ou éthylènedioxy,
 - les groupes R₁ et R₂, identiques ou différents, représentent :
 - . un atome d'hydrogène,
 - . un groupe alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone, tel que méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle,
 - un groupe cycloalkyle ayant de 3 à 8 atomes de carbone, de préférence, un groupe cyclopentyle ou cyclohexyle,
 - . un groupe phényle,
 - un groupe phénylalkyle ayant de 7 à 12 atomes de carbone, de préférence, un groupe benzyle,
 - . un groupe CF₃.

Les composés préférés répondent à la formule (la) dans laquelle :

- n est un nombre égal à 0, 1 ou 2,
- les groupes R, identiques ou différents, représentent un groupe alkyle, alkoxy ou méthylènedioxy ou éthylène dioxy, hydroxyle,
 - les groupes R₁ et R₂, identiques ou différents, représentent :
 - . un atome d'hydrogène,
 - . un groupe alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone, tel que méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle.

Les alcools de type benzylique mis en oeuvre préférentiellement dans le procédé de l'invention sont :

- l'alcool vanillique,
- l'alcool p-hydroxybenzylique,
- 35 le 1-(4-hydroxy-3-méthoxyphényl)éthanol,
 - l'alcool 2-hydroxybenzylique,

RNSDOCID: <WO 9902475A1 1 3

20

25

- l'alcool p-méthoxybenzylique,
- l'alcool 3,4-diméthoxybenzylique,
- l'alcool 6-n-propyl-3,4-diméthoxybenzylique,
- l'alcool (3,4-diméthoxyphényl)diméthylcarbinol,
- le 1-[1-hydroxy-2-méthylpropyl]-3,4-diméthoxybenzène,
 - le 1-[1-hydroxy-2-méthylpropyl]-3,4-diéthoxybenzène,
 - le 1-[1-hydroxyéthyl]-3,4-diéthoxybenzène,
 - le 1-[1-hydroxyéthyl]-3,4-diméthoxy-6-propylbenzène,
 - le 5-[1-hydroxyéthyl]-1,3-benzodioxol,
- 10 le naphtalène-2-méthylol.

Pour ce qui est de l'alcanol, il répond plus particulièrement à la formule générale (II) :

dans ladite formule (II):

 - R₅ représente un groupe hydrocarboné ayant de 1 à 24 atomes de carbone, qui peut être un groupe aliphatique acyclique saturé ou insaturé, linéaire ou ramifié; un groupe cycloaliphatique saturé, insaturé ou aromatique, un groupe aliphatique saturé ou insaturé, linéaire ou ramifié, porteur d'un substituant cyclique.

L'alcanol qui intervient dans le procédé de l'invention répond à la formule (II) dans laquelle R₅ représente un groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié.

Plus précisément, R₅ représente un groupe alkyle, alcényle, alcadiényle, alcynyle, linéaire ou ramifié ayant de préférence de 1 à 24 atomes de carbone.

La chaîne hydrocarbonée peut être éventuellement :

- interrompue par l'un des groupes suivants :

- dans ces formules R₆ représente l'hydrogène ou un groupe alkyle linéaire ou ramifié ayant de 1 à 4 atomes de carbone, de préférence, un groupe méthyle ou éthyle,
 - et/ou porteuse de l'un des substituants suivants :
 - -OH, -OCOO-, -COOR₆, -CHO, -NO₂, -X, -CF₃
- 35 dans ces formules, R₆ ayant la signification donnée précédemment.

Le reste aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié peut être éventuellement porteur d'un substituant cyclique. Par cycle, on entend un cycle carbocyclique ou hétérocyclique, saturé, insaturé ou aromatique.

10

15

20

25

30

35

Le reste aliphatique acyclique peut être relié au cycle par un lien valentiel ou par l'un des groupes suivants :

dans ces formules, R₆ ayant la signification donnée précédemment.

Comme exemples de substituants cycliques, on peut envisager des substituants cycloaliphatiques, aromatiques ou hétérocycliques, notamment cycloaliphatiques comprenant 6 atomes de carbone dans le cycle ou benzéniques, ces substituants cycliques étant eux-mêmes éventuellement porteurs de 1, 2, 3, 4 ou 5 groupes R', identiques ou différents, R' ayant la signification donnée précédemment pour le groupe R porté par le cycle de la formule (I).

Dans la formule générale (II) des alcanols, R₅ peut représenter également un groupe carbocyclique saturé ou comprenant 1 ou 2 insaturations dans le cycle, ayant généralement de 3 à 7 atomes de carbone, de préférence, 6 atomes de carbone dans le cycle ; ledit cycle pouvant être substitué par 1 à 5 groupes R' de préférence 1 à 3, R' ayant les significations énoncées précédemment pour R.

Comme exemples préférés de groupes R₅, on peut citer les groupes cyclohexyle ou cyclohexène-yle, éventuellement substitués par des groupes alkyle linéaires ou ramifiés, ayant de 1 à 4 atomes de carbone.

Le procédé est mis en oeuvre aisément avec la plupart des alcanols. Comme exemples d'alcanols, on peut citer :

- les alcanols aliphatiques inférieurs ayant de 1 à 5 atomes de carbone, tels que par exemple, le méthanol, l'éthanol, le trifluoroéthanol, le propanol, l'alcool isopropylique, le butanol, l'alcool isobutylique, l'alcool sec-butylique, l'alcool tert-butylique, le pentanol, l'alcool isopentylique, l'alcool sec-pentylique et l'alcool tert-pentylique, l'éther monoéthylique d'éthylèneglycol, le lactate de méthyle, le lactate d'isobutyle, le D-lactate de méthyle, le D-lactate d'isobutyle, le 3-chlorobut-2-én-1-ol, le 2-butyn-1-ol,
- les alcools aliphatiques supérieurs ayant au moins 6 et jusqu'à environ 20 atomes de carbone, tels que par exemple, l'hexanol, l'heptanol, l'alcool isoheptylique, l'octanol, l'alcool isooctylique, l'éthyl-2 hexanol, l'alcool secoctylique, l'alcool tert-octylique, le nonanol, l'alcool isononylique, le décanol, le dodécanol, le tétradécanol, l'octadécanol, l'hexadécanol, l'alcool oléylique, l'alcool eicosylique, l'éther monoéthylique de diéthylèneglycol.
- les alcools cycloaliphatiques ayant de 3 à environ 20 atomes de carbone, tel que, par exemple, le cyclopropanol, le cyclobutanol, le cyclopentanol, le cyclohexanol, le cyclohexanol, le cyclodecanol, le cyclodecanol, le

10

15

20

25

30

tripropylcyclohexanol, le méthylcyclohexanol et le méthylcycloheptanol, le cyclopentèn-ol, le cyclohexèn-ol,

- un alcool aliphatique porteur d'un groupement aromatique ayant de 7 à environ 20 atomes de carbone tel que par exemple l'alcool benzylique, l'alcool phénéthylique, l'alcool phénylpropylique, l'alcool phénylpropylique, l'alcool phényloctadécylique et l'alcool naphtyldécylique.

Il est également possible de mettre en oeuvre des polyols notamment les polyoxyéthylèneglycols tels que, par exemple, l'éthylène glycol, le diéthylène glycol, le triéthylène glycol, le propylène glycol, le glycérol.

Parmi les alcools précités, on met en oeuvre de préférence dans le procédé de l'invention, les alcools aliphatiques ou cycloaliphatiques, de préférence, les alcools aliphatiques primaires ou secondaires ayant 1 à 4 atomes de carbone et le cyclohexanol.

Une variante préférée du procédé de l'invention consiste à mettre en oeuvre un alcool terpénique et plus particulièrement un alcool terpénique de formule (IIa):

T-OH (IIa)

dans ladite formule (IIa):

- T représente le reste d'un alcool terpénique ayant un nombre d'atomes de carbone multiple de 5.

Dans l'exposé qui suit de la présente invention, on entend par "terpène", les oligomères dérivés de l'isoprène.

Plus précisément, l'alcool mis en oeuvre répond à la formule générale (IIa) dans laquelle le reste T représente un groupe hydrocarboné ayant de 5 à 40 atomes de carbone et plus particulièrement un groupe aliphatique, saturé ou insaturé, linéaire ou ramifié ; un groupe cycloaliphatique, saturé, insaturé ou aromatique, monocyclique ou polycyclique, comprenant des cycles ayant de 3 à 8 atomes de carbone.

On précisera, sans pour autant limiter la portée de l'invention, que le reste T représente, le reste :

- d'un alcool terpénique aliphatique, saturé ou insaturé, linéaire ou ramifié,
- d'un alcool terpénique cycloaliphatique, monocyclique, saturé ou insaturé, ou aromatique,
- d'un alcool terpénique cycloaliphatique, polycyclique comprenant au moins deux carbocycles, saturés et/ou insaturés.

S'agissant du reste T d'un alcool terpénique aliphatique, saturé ou insaturé, linéaire ou ramifié, le nombre d'atomes de carbone varie entre 5 et 40 atomes de carbone. Comme exemples plus spécifiques de reste T, on peut mentionner les

10

15

20

25

30

groupes comprenant 8 atomes de carbone, saturé ou présentant une double liaison, et portant deux groupes méthyle, de préférence en position 3 et 7.

Lorsqu'il s'agit d'un composé monocyclique, le nombre d'atomes de carbone dans le cycle peut varier largement de 3 à 8 atomes de carbone mais il est de préférence de 5 ou 6 atomes de carbone et est le plus souvent porté par une chaîne aliphatique.

Le carbocycle peut être saturé ou comprenant 1 ou 2 insaturations dans le cycle, de préférence de 1 à 2 doubles liaisons qui sont le plus souvent en position α de l'atome d'oxygène.

Dans le cas d'un alcool terpénique aromatique, le cycle aromatique est généralement un noyau benzénique.

Le composé peut être également polycyclique, de préférence bicyclique ce qui signifie qu'au moins deux cycles ont deux atomes de carbone en commun. Dans le cas des composés polycycliques, le nombre d'atomes de carbone dans chaque cycle varie entre 3 et 6 : le nombre total d'atomes de carbone étant égal de préférence à 7.

On donne ci-après des exemples de structure bicyclique, couramment rencontrée :

Dans le cas d'un cycle, la présence de substituants n'est pas exclue dans la mesure où ils sont compatibles avec l'application envisagée. Les substituants portés le plus souvent par le carbocycle sont un ou plusieurs groupes alkyle, de préférence trois groupes méthyle, un groupe méthylène (correspondant à une liaison exocyclique), un groupe alcényle, de préférence un groupe isopropène-yle.

Comme exemples d'alcools terpéniques susceptibles d'être mis en oeuvre, on peut citer :

- les alcools terpéniques aliphatiques saturés ou insaturés tels que :
 - . le 3,7-diméthyloctanol,
 - . le tétrahydro-allociménol,
 - . I'hydroxycitronellol,
 - . le 1-hydroxy 3,7-diméthyl 7-octène,
 - . le nérol.
- 35 . le géraniol,
 - . le linalool,

- . le citronellol,
- . le 3,7-diméthyloct-6-én-1-ol
- . le 1-hydroxy 2-éthyl 5-isopropyl 8-méthyl 2,7-nonadiène,
- . le 1-hydroxy 3,7,11-triméthyl 6,10-dodécadiène,
- 5 les alcools terpéniques cycloaliphatiques aromatiques tels que :
 - . le thymol,
 - les alcools terpéniques cycloaliphatiques monocycliques ou polycycliques, saturés ou insaturés tels que :
 - . l'alcool chrysanthémique,
- 10 . le 1-hydroxyéthyl 2,2,3-triméthylcyclopentane,
 - . l'hydrate de terpinol,
 - . le 1,8-terpine,
 - . le dihydro-terpinéol,
 - . le β-terpinéol,
- 15 . l'alcool périllylique,
 - . le 1-méthyl 3-hydroxy 4-isopropylcyclohexène,
 - . $l'\alpha$ -terpinéol,
 - . le terpinène-4-ol,
 - . le 1,3,5-triméthyl 4-hydroxyméthylcyclohexène,
- 20 . le carvéol,
 - . le cis-2-pinanol,
 - . le cis-3-pinanol,
 - . l'isobornéol,
 - . le verbénol,
- 25 . le trans-pinocarvéol,
 - . l'alcool campholénique,
 - . le (diméthyl-2,3-tricyclo-[2.2.1.0(2,6)]-heptyl-3)-5-méthyl-2-pentène-2-ol-1 ou santalol.

Parmi tous les alcools précités, les alcools préférés sont les suivants :

- 30 . l'alcool chrysantémique,
 - . le 3,7-diméthyloctanol,
 - . le géraniol,
 - . le linalool,
 - . le citronellol,
- 35 . I'hydoxycitronellol,
 - . le nérol,
 - . le thymol,
 - . le menthol,

10

15

20

25

30

35

. l'isobornéol,

. le verbénol.

Conformément au procédé de l'invention, on effectue la réaction d'hydroxyalkylation en présence d'un catalyseur constitué par une zéolithe.

Par "zéolithe", on entend un tectosilicate cristallisé d'origine naturelle ou synthétique dont les cristaux résultent de l'assemblage tridimensionnel d'unités tétraédriques de SiO₄ et TO₄: T représentant un élément trivalent tel que aluminium, gallium, bore, fer, de préférence, l'aluminium.

Les zéolithes de type aluminosilicate sont les plus communes.

Les zéolithes présentent au sein du réseau cristallin, un système de cavités reliées entre elles par des canaux d'un diamètre bien défini que l'on appelle les pores.

Les zéolithes peuvent présenter un réseau de canaux monodimensionnel, bidimensionnel ou tridimensionnel.

Dans le procédé de l'invention, on peut faire appel à une zéolithe naturelle ou synthètique.

Comme exemples de zéolithes naturelles susceptibles d'être utilisées, on peut citer, par exemple : la chabazite, la clinoptilolite, l'érionite, la phillipsite, l'offrétite.

Conviennent tout à fait bien à la mise en oeuvre de l'invention, les zéolithes synthétiques.

Comme exemples de zéolithes synthétiques à réseau monodimensionnel, on peut citer entre autres, la zéolithe ZSM-4, la zéolithe L, la zéolithe ZSM-12, la zéolithe ZSM-22, la zéolithe ZSM-23, la zéolithe ZSM-48.

A titre d'exemples de zéolithes à réseau bidimensionnel mises en oeuvre préférentiellement, on peut mentionner la mordénite, la ferrierite.

En ce qui concerne les zéolithes à réseau tridimensionnel, on peut nommer plus particulièrement, la zéolithe β, la zéolithe Y, la zéolithe X, la zéolithe ZSM-5, la zéolithe ZSM-11, l'offrétite.

On fait appel préférentiellement aux zéolithes synthétiques et plus particulièrement aux zéolithes qui sont sous les formes suivantes :

- la mazzite de rapport molaire Si/Al de 3,4,
- la zéolithe L de rapport molaire Si/Al de 1,5 à 3,5,
- la mordénite de rapport molaire Si/Al de 5 à 150, de préférence, de 10 à 100 et encore plus préférentiellement de 10 à 25,
- la ferrierite de rapport molaire Si/Al de 3 à 10,
- l'offrétite de rapport molaire Si/Al de 4 à 8,5.

10

20

25

30

- les zéolithes β de rapport molaire Si/Al supérieur à 8, de préférence entre 10 à 100, et encore plus préférentiellement de 12 à 50,
- les zéolithes Y en particulier les zéolithes obtenues après traitement de désalumination (par exemple hydrotraitement, lavage à l'aide d'acide chlorhydrique ou traitement par SiCl₄) et l'on peut citer plus particulièrement les zéolithes US-Y de rapport molaire Si/Al supérieur à 3, de préférence compris entre 6 et 60 ;
- la zéolithe X de type faujasite de rapport molaire Si/Al de 0,7 à 1,5,
- les zéolithes ZSM-5 ou silicalite d'aluminium de rapport molaire Si/Al de 10 à 500.
 - la zéolithe ZSM-11 de rapport molaire Si/Al de 5 à 30.
 - la zéolithe ou solide mésoporeux de type MCM, plus particulièrement (MCM-22 et MCM-41 de rapport molaire Si/Al compris entre 10 et 100, de préférence, compris entre 15 et 40.
- Parmi toutes ces zéolithes, on fait appel préférentiellement dans le procédé de l'invention aux zéolithes β.

Les zéolithes mises en oeuvre dans le procédé de l'invention, sont des produits connus décrits dans la littérature [cf. Atlas of zeolites structure types by W. M. Meier and D. H. Olson published by the Structure Commission of the International Zeolite Association (1992)].

On peut faire appel aux zéolithes disponibles dans le commerce ou bien les synthétiser selon les procédés décrits dans la littérature.

On peut se référer à l'Atlas précité, et plus particulièrement, pour la préparation :

- de la zéolithe L à la publication de Barrer R. M. et al, Z. Kristallogr., 128, pp. 352 (1969)
 - de la zéolithe ZSM-12, au brevet US 3 832 449 et à l'article LaPierre et al, Zeolites 5, pp. 346 (1985),
- de la zéolithe ZSM-22, à la publication Kokotailo G.T. et al, Zeolites 5, pp. 349 (1985),
 - de la zéolithe ZSM-23, au brevet US 4 076 842 et à l'article Rohrman A. C. et al, Zeolites <u>5</u>, pp. 352 (1985),
 - de la zéolithe ZSM-48, aux travaux de Schlenker J. L. et al, Zeolites <u>5</u>, pp. 355 (1985),
- de la zéolithe β, au brevet US 3 308 069 et à l'article Caullet P. et al, Zeolites 12, pp. 240 (1992),
 - de la mordénite, aux travaux de Itabashi et al, Zeolites 6, pp. 30 (1986),

10

15

20

25

30

35

- des zéolithes X et Y respectivement aux brevets US 2 882 244 et US 3 130 007,
- de la zéolithe ZSM-5, au brevet US 3 702 886 et à l'article Shiralkar V. P. et al, Zeolites 9, pp. 363 (1989),
- de la zéolithe ZSM-11, aux travaux de Harrison I. D. et al, Zeolites 7, pp. 21 (1987).
- de la zéolithe ou solide mésoporeux MCM à l'article de Beck et al, J. Am. Chem. Soc. 114(27), pp. 10834-43 (1992).

Afin de mettre en oeuvre une zéolithe présentant le rapport atomique Si/Al souhaité, il peut être nécessaire d'effectuer un traitement de désalumination.

Ainsi, on peut mettre en oeuvre les méthodes connues de l'homme du métier parmi lesquelles on peut citer, à titre d'exemples, et de manière non exhaustive, les calcinations en présence de vapeur, les calcinations en présence de vapeur d'eau suivies d'attaques par des acides minéraux (HNO3, HCI...), les traitements directes de désalumination par des réactifs tels que le tétrachlorure de silicium (SiCl₄), l'hexafluorosilicate d'ammonium $((NH_4)_2SiF_6)$ l'éthylènediaminetétracétique (EDTA) ainsi que sa forme mono- ou disodique. On peut également faire un traitement de désalumination par attaque acide directe par des solutions d'acides minéraux tels que par exemple, l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique ou d'acides organiques comme notamment l'acide acétique, l'acide oxalique.

Par ailleurs, toute combinaison des méthodes de désalumination précitées est aussi possible.

La zéolithe constitue la phase catalytique. Elle peut être utilisée seule ou en mélange avec une matrice minérale. Dans la description, on désignera par "catalyseur", le catalyseur réalisé entièrement en zéolithe ou en mélange avec une matrice préparée selon des techniques connues de l'Homme du métier.

A cet effet, la matrice peut être choisie parmi les oxydes de métaux, tels que les oxydes d'aluminium, de silicium et/ou de zirconium, ou encore parmi les argiles et plus particulièrement, le kaolin, le talc ou la montmorillonite.

Dans le catalyseur, la teneur en phase active représente de 5 à 100 % du poids du catalyseur.

Les catalyseurs peuvent se présenter sous différentes formes dans le procédé de l'invention : poudre, produits mis en forme tels que granulés (par exemple, extrudés ou billes), pastilles, qui sont obtenus par extrusion, moulage, compactage ou tout autre type de procédé connu. En pratique, sur le plan industriel, ce sont les formes de granulés ou de billes qui présentent le plus

10

15

20

25

30

35

BNISDOCID: >WO

d'avantages tant sur le plan de l'efficacité que sur le plan de commodité de mise en oeuvre.

La zéolithe mise en oeuvre est de préférence, sous forme acide. On effectue si nécessaire un traitement qui la rend acide.

A cet effet, on fait appel aux traitements classiques.

Ainsi, on peut échanger les cations alcalins en soumettant la zéolithe à un traitement réalisé avec de l'ammoniaque conduisant ainsi à un échange du cation alcalin par un ion ammonium puis à calciner la zéolithe échangée afin de décomposer thermiquement le cation ammonium et le remplacer par un ion H+.

La quantité d'ammoniaque à mettre en oeuvre est au moins égale à la quantité nécessaire pour échanger tous les cations alcalins en ions NH₄⁺.

On met donc au moins en jeu de 10⁻⁵ à 5.10⁻³ mole d'ammoniaque par gramme de zéolithe.

La réaction d'échange du cation échangeable par NH₄⁺ est effectuée à une température qui se situe entre la température ambiante et la température de reflux du milieu réactionnel. L'opération dure quelques heures et peut être répétée.

La zéolithe peut être également acidifiée en soumettant celle-ci à un traitement acide classique. Ce traitement peut être effectué par addition d'un acide tel que notamment l'acide chlorhydrique, l'acide sulfurique, l'acide nitrique, l'acide perchlorique, l'acide phosphorique et l'acide trifluorométhanesulfonique.

Selon un mode préférentiel de mise en oeuvre, la zéolithe est acidifiée par passage d'un volume d'acide présentant une normalité comprise entre 0,1 et 2 N par gramme de zéolithe comprise entre 10 ml/g et 100 ml/g. Ce passage peut être réalisé en une seule étape ou de préférence en plusieurs étapes successives.

La réaction de l'alcool benzylique de formule (I) avec l'alcanol de formule (II) peut être conduite en présence ou en l'absence d'un solvant organique, l'un des réactifs pouvant être utilisé comme solvant réactionnel.

Comme exemples de solvants convenant à la présente invention, on peut citer, sans caractère limitatif, les éther-oxydes aliphatiques, cycloaliphatiques ou aromatiques et, plus particulièrement, l'oxyde de diéthyle, l'oxyde de dipropyle, l'oxyde de disopropyle, l'oxyde de dibutyle, le méthyltertiobutyléther, l'oxyde de dipentyle, l'oxyde de benzyle; le dioxane, le tétrahydrofuranne (THF).

Lorsque l'on réalise le procédé en discontinu, le catalyseur peut représenter en poids par rapport au réactif en défaut, de 2 à 50 %, de préférence, de 5 à

10

15

20

25

30

35

20 %. Cependant si l'on réalise le procédé en continu, par exemple en faisant réagir un mélange de l'alcool benzylique et d'alcanol sur un lit fixe de catalyseur, ces rapports catalyseur/alcool benzylique n'ont pas de sens et à un instant donné, on peut avoir un excès pondéral de catalyseur par rapport à l'alcool benzylique de départ.

La quantité d'alcanol de formule (II) exprimée en moles d'alcanol par mole d'alcool benzylique de formule (I) peut, elle aussi, varier dans de larges limites. Le rapport molaire alcanol de formule (II)/alcool benzylique de formule (I) peut varier entre 1 et 30. La borne supérieure ne présente aucun caractère critique mais toutefois pour des raisons économiques, il n'y a aucun intérêt à la dépasser.

La température de la réaction d'éthérification peut varier largement. Elle est choisie, avantageusement entre 50°C et 200°C et encore plus préférentiellement entre 50°C et 100°C.

Généralement, la réaction est conduite à pression atmosphérique mais des pressions plus élevées peuvent également convenir allant de 1 à 50 bar, de préférence, de 1 à 25 bar. On travaille sous pression autogène lorsque la température de réaction est supérieure à la température d'ébullition des réactifs et/ou des produits.

On préfère conduire la réaction sous atmosphère contrôlée de gaz inertes tels que l'azote ou les gaz rares, par exemple l'argon.

La durée de la réaction peut être très variable. Elle se situe, le plus souvent, entre 15 minutes et 10 heures, de préférence entre 30 minutes et 5 heures.

D'un point de vue pratique, le procédé peut être mis en oeuvre en discontinu ou en continu.

Selon la première variante, on peut charger le catalyseur, l'alcanol de formule (II), éventuellement un solvant organique puis l'on introduit l'alcool benzylique. Un mode préféré de l'invention, consiste à introduire progressivement l'alcool benzylique, en continu ou par fractions puis l'on porte le mélange réactionnel à la température souhaitée.

L'autre variante de l'invention consiste à conduire la réaction en continu, dans un réacteur tubulaire comportant le catalyseur solide disposé en lit fixe.

L'alcool benzylique et l'alcanol sont introduits de préférence, séparément.

Ils peuvent également être introduits dans un solvant tel que mentionné précédemment.

Le temps de séjour du flux de matière sur le lit catalytique varie, par exemple, entre 15 min et 10 heures, et de préférence, entre 30 min et 5 heures.

En fin de réaction, on récupère une phase liquide comprenant l'alcool benzylique éthérifié qui peut être récupéré de manière classique.

15

20

25

30

Le procédé de l'invention conduit à des alcools de type benzylique éthérifiés répondant préférentiellement à la formule (III) dans laquelle :

$$(R) \bigcap_{A} R_{1}$$

$$(III)$$

- A,n, R₁, R₂ et R₅ ont la signification donnée précédemment.

Les composés préférés de l'invention répondent plus particulièrement à la formule (IIIa) dans laquelle :

- n, R, R₁, R₂ et R₅ ont la signification donnée précédemment.

10 Le procédé de l'invention est particulièrement bien adapté pour la préparation des éthers d'alkyle (C₁-C₄), de cycloalkyle de l'alcool vanillique.

Un autre objet de la présente invention a pour objet des compositions parfumantes, produits et substances parfumantes caractérisés par le fait qu'ils comprennent à titre de principe actif ayant une influence sur l'odeur, une quantité efficace d'au moins un alcool de type benzylique éthérifié (III) ou (IIIa).

Ainsi, les différents éthers obtenus présentent des propriétés olfactives intéressantes et peuvent être employés, entre autres, pour la préparation de compositions parfumantes et de produits parfumés.

Le méthyl 4-hydroxy-3-méthoxybenzyl éther et le cyclohexyl 4-hydroxy-3-méthoxybenzyl éther se distinguent par leur odeur respectivement de praline pour le premier et de cuir pour le dernier.

Par "compositions parfumantes", on désigne des mélanges de divers ingrédients tels que solvants, supports solides ou liquides, fixateurs, composés odorants divers, etc..., dans lesquels est incorporé l'alcool de type benzylique éthérifié (III) ou (IIIa), lesquels mélanges sont utilisés pour procurer à divers types de produits finis, la fragrance recherchée.

Les bases pour parfum constituent des exemples préférés de compositions parfumantes dans lesquelles l'alcool de type benzylique éthérifié (III) ou (IIIa) peut être avantageusement utilisé.

Les eaux de toilettes, les lotions après rasage, les parfums, les savons, les gels de bain ou de douche ou les produits déodorants ou antiperspirants, qu'ils soient sous forme de sticks ou de lotions constituent des exemples de

10

15

20

25

30

35

substances ou de produits finis dans lesquels l'alcool de type benzylique éthérifié (III) ou (IIIa) apporte sa note originale.

Ils peuvent intervenir aussi dans les shampooings et dans les produits capillaires de tout type.

Ils peuvent aussi parfumer les talcs ou poudres de toute nature.

Ils peuvent également convenir pour les désodorisants d'air ambiant ou tout produit d'entretien.

Un autre exemple de compositions dans lesquelles lesdits composés peuvent être introduits de façon avantageuse, est représenté par les compositions détergentes usuelles. Ces compositions comprennent généralement un ou plusieurs des ingrédients suivants : agents tensio-actifs anioniques, cationiques ou amphotères, agents de blanchiment, azurants optiques, charges diverses, agents anti-redéposition. La nature de ces divers composants n'est pas critique et l'alcool de type benzylique éthérifié (III) ou (IIIa) peut être ajouté à tout type de composition détergente. Elles peuvent être introduites dans les adoucissants pour textiles, sous forme liquide ou dans les compositions déposées sur support, le plus souvent un non-tissé, destinées à être employées dans les sèche-linges.

La teneur des compositions selon l'invention en alcool de type benzylique éthérifié (III) ou (IIIa) exprimée en pourcentage en poids dans la composition considérée dépend de la nature de ladite composition (base pour parfum ou eau de toilette par exemple) et de la puissance et de la nature de l'effet recherché au niveau produit final. Il va de soi que dans une base pour parfum la teneur en alcool de type benzylique éthérifié (III) ou (IIIa) peut varier largement, par exemple supérieure à 5 % en poids et peut atteindre 90 % en poids tandis que dans un parfum, une eau de toilette ou une lotion après rasage, cette teneur pourra être très inférieure à 50 % en poids.

La teneur en alcool benzylique éthérifié peut être dans les compositions détergentes, notamment ménagères ou dans des savons, de l'ordre de 0,01 à 2%.

Ils peuvent également intervenir dans les shampooings parfumés à raison de 0,005 à 2 % ou pour parfumer tout produit capillaire.

Ainsi la limite inférieure de la teneur en alcool de type benzylique éthérifié (III) ou (IIIa) peut être celle qui provoque une modification perceptible à l'odorat de la fragrance ou de la note du produit fini. Dans certains cas, cette teneur minimale peut être de l'ordre de 0,001 % en poids. On peut évidemment faire appel à des teneurs non comprises dans les limites des teneurs indiquées ciavant sans pour autant sortir du cadre de la présente invention.

20

25

On donne ci-après des exemples de réalisation de l'invention.

Les exemples qui suivent, illustrent l'invention sans toutefois la limiter. Par conversion et sélectivité, on entend :

nombre de moles d'alcool benzylique transformées

Taux de conversion (TT) = ------(%
nombre de moles d'alcool benzylique introduites

nombre de moles d'éther hydroxyalkylé formées

Rendement (RR) = -----(%)

nombre de moles d'alcool benzylique introduites

Exemples 1 à 5

15 1 - Dans un réacteur tricol de 100 ml, on introduit 5 g d'alcool vanillique (alcool 4-hydroxy-3-méthoxybenzylique) et 25 g d'alcool aliphatique ROH.

On met en oeuvre un catalyseur comprenant 40 % de liant (alumine) et 60 % d'une zéolithe β commercialisée par la Société PQ. La zéolithe utilisée est une zéolithe de rapport "Si/Al" de 12,5.

On ajoute 2 g de ladite zéolithe calcinée à 500°C.

On agite et on chauffe à 80°C.

On maintient ces conditions pendant 2 heures.

On filtre le catalyseur.

On dose les produits obtenus par chromatographie en phase gazeuse.

On sépare les produits par distillation.

Le produit obtenu selon la réaction suivante est précisée dans le tableau

(l):

┰╮	ь	leau	711
10	L)	Ibau	(1/

	7.85.5	744 117	
Exemples	R	ΤT	RR
		%	%
1	CH ₃	99	95
2	CH ₃ CH ₂	99	. 97
3	CH ₃ CH ₂ CH ₂	99	97
4	CH(CH ₃) ₂	99	95
5	C(CH ₃) ₃	55	37

2 - L'odeur du produit de l'exemple 2, à savoir le méthyl 4-hydroxy-3-méthoxybenzyl éther est une odeur de praline tandis que ceux des exemples 3 et 4 ont une odeur légérement vanillée.

Exemple 6

5

1 - On reproduit l'exemple 1 à la différence près que l'on met en oeuvre le cyclohexanol.

Les résultats obtenus sont les suivants :

- -TT = 99 %
- -RR = 96%
- 2 L'odeur du cyclohexyl 4-hydroxy-3-méthoxybenzyl éther représenté par la formule suivante est une odeur cuirée.

Exemples 7 à 9

1 - On répète le mode opératoire de l'exemple 1.

Les résultats obtenus sont consignés dans le tableau (II).

_					
Ta	h	leai	1	"	I١

		VAN 7117		
Exemples	Ar	. 11	RR	
		%	%	
7		99	85	
8	ОН	99	97	
9		99	94	(i)
	oсн ₃		·	

2 - Les produits des exemples 8 et 9 ont respectivement une odeur animal naphtaline et anisé fromage.

5 Exemples 10 et 11

On reproduit l'exemple 1 mais en mettant en oeuvre un alcool secondaire.

Les résultats obtenus sont rassemblés dans le tableau (III).

10

Tableau (III)

Exemples	R	TT	RR		
		%	%		
10	CH ₃	99	95		
11	CH ₃ CH ₂	99	96		

Exemples 12 et 13

On reproduit l'exemple 1 mais en mettant en oeuvre un alcool insaturé.

15 Les résultats obtenus sont rassemblés dans le tableau (IV).

	<u>Tableau (IV)</u>		
Exemples	R	TT	RR
		%	%
12	ОН	100	85
13		100	95
	ОН		

Exemples 14 et 15

On reproduit l'exemple 1 mais en mettant en oeuvre un alcool secondaire.

Les résultats obtenus sont rassemblés dans le tableau (V).

	<u>Table</u>	eau (V)	
Exemples	R	TT	RR
		%	%
14	R=H	100	85
15	$R = CH_3$	100	90

REVENDICATIONS

- 1 Procédé d'éthérification d'un alcool de type benzylique qui consiste à faire réagir ledit alcool avec un autre alcool, en présence d'un catalyseur, ledit procédé étant caractérisé par le fait que l'on conduit la réaction d'éthérification en présence d'une quantité efficace d'une zéolithe.
 - 2 Procédé selon la revendication 1 caractérisé par le fait que l'alcool benzylique répond à la formule générale (I) :

10

5

$$(R) \xrightarrow{R_2} R_1 \qquad (I)$$

dans laquelle:

- A symbolise le reste d'un cycle formant tout ou partie d'un système
 15 carbocyclique ou hétérocyclique, aromatique, monocyclique ou polycyclique, système comprenant au moins un groupe
 I
 C OH
 - R représente un ou plusieurs substituants, identiques ou différents,
- -R₁ et R₂, identiques ou différents, représentent un atome d'hydrogène, un groupe fonctionnel ou un groupe hydrocarboné ayant de 1 à 24 atomes de carbone, qui peut être un groupe aliphatique acyclique saturé ou insaturé, linéaire ou ramifié ; un groupe cycloaliphatique saturé, insaturé ou aromatique, monocyclique ou polycyclique ; un groupe aliphatique saturé ou insaturé, linéaire ou ramifié, porteur d'un substituant cyclique,
 - R₁ et R₂ peuvent former un cycle comprenant éventuellement un autre hétéroatome,
 - n est un nombre inférieur ou égal à 5.
- 30 3 Procédé selon l'une des revendications 1 et 2 caractérisé par le fait que l'alcool de type benzylique répond à la formule (I) dans laquelle R₁ et R₂, identiques ou différents représentent :
- un groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié, de préférence un groupe alkyle linéaire ou ramifié ayant de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone : la chaîne hydrocarbonée

pouvant être éventuellement interrompue par un hétéroatome, un groupe fonctionnel et/ou porteuse de substituants,

- un groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié porteur d'un substituant cyclique éventuellement substitué : ledit groupe acyclique pouvant être relié au cycle par un lien valentiel, un hétéroatome ou un groupe fonctionnel,
- un groupe carbocyclique saturé ou comprenant 1 ou 2 insaturations dans le cycle, ayant généralement de 3 à 8 atomes de carbone, de préférence, 6 atomes de carbone dans le cycle ; ledit cycle pouvant être substitué,
- un groupe carbocyclique aromatique, de préférence monocyclique ayant généralement au moins 4 atomes de carbone, de préférence, 6 atomes de carbone dans le cycle ; ledit cycle pouvant être substitué.
 et l'un des groupes R₁ ou R₂ peut représenter un groupe CF₃.
- 15 4 Procédé selon l'une des revendications 1 à 3 caractérisé par le fait que l'alcool de type benzylique répond à la formule générale (I) dans laquelle le reste A est le reste d'un composé cyclique, ayant de préférence, au moins 4 atomes dans le cycle, de préférence, 5 ou 6, éventuellement substitué, et représentant au moins l'un des cycles suivants :
- un carbocycle aromatique, monocyclique ou polycyclique, de préférence, un cycle benzénique ou naphtalénique,
 - un hétérocycle aromatique, monocyclique ou polycyclique comportant au moins un des hétéroatomes O, N et S,
- 25 5 Procédé selon la revendication 4 caractérisé par le fait que l'alcool de type benzylique répond à la formule générale (I) dans laquelle le reste A peut être porteur d'un ou plusieurs groupes électro-donneurs tels que :
 - les groupes alkyle linéaires ou ramifiés ayant de préférence de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone,
- les groupes alcényle linéaires ou ramifiés ayant de préférence de 2 à 6 atomes de carbone et encore plus préférentiellement de 2 à 4 atomes de carbone,
 - les groupes halogénoalkyle linéaires ou ramifiés ayant de préférence de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone,
- les groupes cycloalkyle ayant de 3 à 6 atomes de carbone, de préférence, le groupe cyclohexyle,
 - le groupe phényle,
 - le groupe hydroxyle,

20

25

- le groupe NO2,
- les groupes alkoxy R_3 -O- ou thioéther R_3 -S- dans lesquels R_3 représente un groupe alkyle linéaire ou ramifié ayant de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone ou le groupe phényle,
- les groupes -N-(R₄)₂ dans lesquels les groupes R₄ identiques ou différents représentent un atome d'hydrogène, un groupe alkyle linéaire ou ramifié ayant de 1 à 6 atomes de carbone et encore plus préférentiellement de 1 à 4 atomes de carbone ou un groupe phényle,
 - les groupes -NH-CO-R₄ dans lesquels le groupe R₄ a la signification donnée précédemment,
 - les groupes carboxy ou dérivé R_4 -O-CO- dans lesquels le groupe R_4 a la signification donnée précédemment,
 - les groupes acyloxy ou aroyloxy R₃-CO-O- dans lesquels le groupe R₃ a la signification donnée précédemment,
- 15 un atome d'halogène, de préférence, un atome de fluor,
 - un groupe CF3.
 - 6 Procédé selon l'une des revendications 1 à 5 caractérisé par le fait que l'alcool de type benzylique répond à la formule générale (I) dans laquelle lorsque n est supérieur ou égal à 2, deux groupes R et les 2 atomes successifs du cycle aromatique peuvent être liés entre eux par un groupe alkylène, alcénylène ou alcénylidène ayant de 2 à 4 atomes de carbone pour former un hétérocycle saturé, insaturé ou aromatique ayant de 5 à 7 atomes de carbone : un ou plusieurs atomes de carbone pouvant être remplacés par un autre hétéroatome, de préférence l'oxygène.
 - 7 Procédé selon l'une des revendications 1 à 6 caractérisé par le fait que l'alcool de type benzylique répond à la formule (la) :

30 dans laquelle:

- n est un nombre inférieur ou égal à 4, de préférence égal à 0, 1 ou 2,
- le groupe R est un groupe électro-donneur, de préférence, un groupe alkyle, alkoxy ou méthylènedioxy ou éthylènedioxy,
- les groupes R₁ et R₂, identiques ou différents, représentent :
- un atome d'hydrogène,

- . un groupe alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone, de préférence de 1 à 4 atomes de carbone, tel que méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle, tert-butyle,
- . un groupe cycloalkyle ayant de 3 à 8 atomes de carbone, de préférence, un groupe cyclopentyle ou cyclohexyle,
- . un groupe phényle,
- . un groupe phénylalkyle ayant de 7 à 12 atomes de carbone, de préférence, un groupe benzyle,
- . un groupe CF₃.

5

- 8 Procédé selon l'une des revendications 1 à 7 caractérisé par le fait que l'alcool de type benzylique est choisi parmi :
 - l'alcool vanillique,
 - l'alcool p-hydroxybenzylique,
- le 1-(4-hydroxy-3-méthoxyphényl)éthanol,
 - l'alcool 2-hydroxybenzylique,
 - l'alcool p-méthoxybenzylique,
 - l'alcool 3,4-diméthoxybenzylique,
 - l'alcool 6-n-propyl-3,4-diméthoxybenzylique,
- 20 l'alcool (3,4-diméthoxyphényl)diméthylcarbinol,
 - le 1-[1-hydroxy-2-méthylpropyl]-3,4-diméthoxybenzène,
 - le 1-[1-hydroxy-2-méthylpropyl]-3,4-diéthoxybenzène,
 - le 1-[1-hydroxyéthyl]-3,4-diéthoxybenzène,
 - le 1-[1-hydroxyéthyl]-3,4-diméthoxy-6-propylbenzène,
- 25 le 5-[1-hydroxyéthyl]-1,3-benzodioxol,
 - le naphtalène-2-méthylol.
 - 9 Procédé selon l'une des revendications 1 à 8 caractérisé par le fait que l'alcanol mis en oeuvre répond à la formule générale (II) :

30 R₅ - OH (II)

dans ladite formule (II):

- R₅ représente un groupe hydrocarboné ayant de 1 à 24 atomes de carbone, qui peut être un groupe aliphatique acyclique saturé ou insaturé, linéaire ou ramifié ; un groupe cycloaliphatique saturé, insaturé ou aromatique ; un groupe aliphatique saturé ou insaturé, linéaire ou ramifié, porteur d'un substituant cyclique.

10

15

25

30

35

- 10 Procédé selon la revendication 9 caractérisé par le fait que l'alcanol répond
 à la formule (II) dans laquelle R₅ représente :
- un groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié, de préférence, un groupe alkyle, alcényle, alcadiényle, alcynyle, linéaire ou ramifié ayant de préférence de 1 à 24 atomes de carbone : la chaîne hydrocarbonée pouvant être éventuellement interrompue par un groupe fonctionnel et/ou porteuse de substituants
- un groupe aliphatique acyclique, saturé ou insaturé, linéaire ou ramifié porteur d'un substituant cyclique éventuellement substitué : ledit groupe acyclique pouvant être relié au cycle par un lien valentiel, un hétéroatome ou un groupe fonctionnel,
- un groupe carbocyclique saturé ou comprenant 1 ou 2 insaturations dans le cycle, ayant généralement de 3 à 7 atomes de carbone, de préférence, 6 atomes de carbone dans le cycle ; ledit cycle pouvant être substitué.
- 11 Procédé selon l'une des revendications 9 et 10 caractérisé par le fait que l'alcanol est un alcool terpénique de formule (IIa) :

T-OH (IIa)

dans ladite formule (IIa):

- T représente le reste d'un alcool terpénique ayant un nombre d'atomes de carbone multiple de 5.
 - 12 Procédé selon la revendication 11 caractérisé par le fait que l'alcool terpénique mis en oeuvre répond à la formule générale (IIa) dans laquelle le reste T représente un groupe hydrocarboné ayant de 5 à 40 atomes de carbone et plus particulièrement un groupe aliphatique, saturé ou insaturé, linéaire ou ramifié ; un groupe cycloaliphatique, saturé, insaturé ou aromatique, monocyclique ou polycyclique, comprenant des cycles ayant de 3 à 8 atomes de carbone.
 - 13 Procédé selon l'une des revendications 11 et 12 caractérisé par le fait que le reste T représente le reste :
 - d'un alcool terpénique aliphatique, saturé ou insaturé, linéaire ou ramifié,
 - d'un alcool terpénique cycloaliphatique, monocyclique, saturé ou insaturé, ou aromatique,
 - d'un alcool terpénique cycloaliphatique, polycyclique comprenant au moins deux carbocycles, saturés et/ou insaturés.

- 14 Procédé selon la revendication 13 caractérisé par le fait que l'alcool de formule (II) est choisi parmi :
 - . le méthanol,
 - . l'éthanol,
- 5 . le trifluoroéthanol,
 - . le propanol, l'alcool isopropylique,
 - . le butanol, l'alcool isobutylique, l'alcool sec-butylique, l'alcool tertbutylique,
 - . le pentanol, l'alcool isopentylique, l'alcool sec-pentylique et l'alcool tert-
- 10 pentylique,
 - . le 3-chlorobut-2-én-1-ol,
 - . le 2-butyn-1-ol,
 - . le 3,7-diméthyloct-6-én-1-ol,
 - . l'alcool chrysantémique,
- 15 . le 3,7-diméthyloctanol,
 - . le géraniol,
 - . le linalool,
 - . le citronellol,
 - . I'hydoxycitronellol,
- 20 . le nérol,
 - . le thymol,
 - . le menthol,
 - . l'isobornéol,
 - . le verbénol.

- 15 Procédé selon l'une des revendications 1 à 14 caractérisé par le fait que le catalyseur est une zéolithe naturelle ou synthétique.
- 16 Procédé selon la revendication 15 caractérisé par le fait que la zéolithe est
 30 est une zéolithe acide.
 - 17 Procédé selon la revendication 15 caractérisé par le fait que la zéolithe est choisie parmi :
- les zéolithes naturelles telles que la chabazite, la clinoptilolite, l'érionite, la mordénite, la phillipsite, l'offrétite.
 - les zéolithes synthétiques à réseau monodimensionnel telles que la zéolithe
 ZSM-4, la zéolithe L, la zéolithe ZSM-12, la zéolithe ZSM-23, la zéolithe ZSM-48,

- les zéolithes à réseau bidimensionnel telles que la mordénite, la ferrierite,
- les zéolithes à réseau tridimensionnel telles que la zéolithe β , la zéolithe Y, la zéolithe X, la zéolithe ZSM-5, la zéolithe ZSM-11, l'offrétite,
- la zéolithe mésoporeuse de type MCM.

- 18 Procédé selon la revendication 17 caractérisé par le fait que la zéolithe est une zéolithe β.
- 19 Procédé selon l'une des revendications 15 à 18 caractérisé par le fait que la zéolithe est mise en oeuvre seule ou en mélange avec une matrice minérale choisie, de préférence, parmi les oxydes de métaux, tels que les oxydes d'aluminium, de silicium et/ou de zirconium, ou encore parmi les argiles et plus particulièrement, le kaolin, le talc ou la montmorillonite.

- 21 Procédé selon l'une des revendications 1 à 20 caractérisé par le fait que la quantité de catalyseur représente en poids par rapport au réactif en défaut, de 2 à 50 %, de préférence, de 5 à 20 %.
- 22 Procédé selon l'une des revendications 1 à 21 caractérisé par le fait que la température à laquelle est mise en oeuvre la réaction d'éthérification se situe entre 50°C et 200°C, de préférence entre 50°C et 100°C.
 - 23 Procédé selon l'une des revendications 1 à 22 caractérisé par le fait que la réaction est conduite sous pression atmosphérique.
- 30 24 Procédé selon l'une des revendications 1 à 23 caractérisé par le fait que le temps de séjour du flux de matière sur le lit catalytique varie entre 15 min et 10 h, et de préférence, entre 30 min et 5 h.
- 25 Procédé selon l'une des revendications 1 à 24 caractérisé par le fait que 35 l'on obtient en fin de réaction, une phase liquide comprenant l'alcool de type benzylique éthérifié qui peut être récupéré de manière classique.

20

25

30

- 26 Utilisation d'un alcool de type benzylique éthérifié décrit dans l'une des revendications 1 à 13, comme ingrédient parfumant dans le domaine de la parfumerie.
- 5 27 Utilisation comme ingrédient parfumant d'un alcool de type benzylique éthérifié répondant à la formule générale (III) :

$$(R) = \begin{pmatrix} OR_5 & R_2 & \\ R_1 & \\ & & (III) \end{pmatrix}$$

- A, n, R, R₁, R₂ et R₅ ont la signification donnée précédemment dans l'une des revendications 1 à 13.

28 - Utilisation comme ingrédient parfumant d'un alcool de type benzylique éthérifié répondant à la formule générale (IIIa) dans laquelle :

$$(R)$$
 R_1
(IIIa)

- n, R, R₁, R₂ et R₅ ont la signification donnée précédemment dans l'une des revendications 1 à 13.
 - 29 Procédé pour l'obtention de compositions parfumantes, de substances et produits parfumés destinés à la parfumerie caractérisé par le fait que l'on ajoute aux constituants usuels de ces compositions, substances et produits finis, une quantité efficace d'un alcool de type benzylique éthérifié.
 - 30 Procédé pour l'obtention de compositions parfumantes, de substances et produits parfumés destinés à la parfumerie caractérisé par le fait que l'on ajoute aux constituants usuels de ces compositions, substances et produits finis, une quantité efficace d'un alcool de type benzylique éthérifié répondant à la formule (III) ou (IIIa)
 - 31 Compositions parfumantes, substances et produits parfumés caractérisés par le fait qu'ils comprennent, à titre de principe actif ayant une influence sur l'odeur, une quantité efficace d'un alcool de type benzylique éthérifié.
 - 32 Compositions parfumantes, substances et produits parfumés caractérisés par le fait qu'ils comprennent, à titre de principe actif ayant une influence sur

l'odeur, une quantité efficace d'un alcool de type benzylique éthérifié répondant à la formule générale (III) dans laquelle :

$$(R)$$
 R_1
 R_1
 R_1

- A, n, R, R₁, R₂ et R₅ ont la signification donnée précédemment dans l'une des
 revendications 1 à 13.

33 - Compositions parfumantes, substances et produits parfumés caractérisés par le fait qu'ils comprennent, à titre de principe actif ayant une influence sur l'odeur, une quantité efficace d'un alcool de type benzylique éthérifié répondant à la formule générale (IIIa) dans laquelle :

- n, R, R₁, R₂ et R₅ ont la signification donnée précédemment dans l'une des revendications 1 à 13.

34 - Article parfumé selon l'une des revendications 30 à 33 sous forme de parfum, d'eau de toilette, de lotions après rasage, de parfums, de savons, de gels de bain ou de douche, de produits déodorants ou antiperspirants, de shampooings ou tout produit capillaire, de talcs ou poudres de toute nature, de désodorisants d'air ambiant, de tout produit d'entretien ou de compositions détergentes, d'adoucissants pour textiles.

35 - Cyclohexyl 4-hydroxy-3-méthoxybenzyl éther.

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07C41/09 C11B9/00

C07C43/23

C07C43/178

C07C43/205

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X A	EP 0 137 419 A (L. GIVAUDAN) 17 April 1985 see pages 1-3; page 6, line 25 - page 7, line 26	26-34 1-25
X	US 4 147 671 A (H. BOELENS) 3 April 1979 see the whole document	26-34
X	DE 35 02 188 A (GRAU AROMATICS) 24 July 1986 see pages 4, 5 and page 6, lines 85-87	26, 28-31, 33,34
X	CH 681 778 A (FIRMENICH) 28 May 1993	26. 28-31. 33,34
	see the whole document/	

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 20 October 1998	Date of mailing of the international search report 05/11/1998
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Wright, M

INTERN TONAL SEARCH REPORT

/			
-	ation	nal Application	n No
1	PCT/FI	R 98/014	472

ategory	Action) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ategory	Change of document. With indication, where appropriate, of the relevant passages	nerevarii to dalm NO.
(EP 0 258 172 A (DRAGOCO GERBERDING) 2 March 1988	26, 28-31, 33,34
	see the whole document	
(DE 154 658 C (BAYER) 2 August 1903	26, 28-31, 33,34
	see the whole document	33,34
("Perfume and Flavor Chemicals" 1969 . ARCTANDER , MONTCLAIR, N. J. XP002081064	26, 28-31, 33,34
	see numbers 311, 312, 313, 336, 337, 1919	
<	H. BOHNSACK: "Beitrag zur Kenntnis der ätherischen Oele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalkohol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERPFLEGEMITTEL, vol. 15, no. 11, November 1965, pages 407-410, XP002081410 Hannover see the whole document	26-34
\	DE 44 34 823 A (MERCK PATENT) 4 April 1996 cited in the application see the whole document	1-25
4	WO 95 00467 A (HOECHST CELANESE) 5 January 1995 see example 2	1-25
A	M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, June 1991, pages 275-278, XP002056679 AMSTERDAM NL see the whole document	1-25
А	T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 see the whole document	1-25

PCT/FR 98/01472

Information on patent family members

	ent document in search report		Publication date	Patent family member(s)	Publication date
EP	137419	Α .	17-04-1985	JP 2002551 C JP 7017492 B JP 60097932 A US 4657700 A	20-12-1995 01-03-1995 31-05-1985 14-04-1987
US	4147671	Α	03-04-1979	NONE	
DE	3502188	Α	24-07-1986	NONE	
СН	681778	Α	28-05-1993	NONE	
EP	258172	Α	02-03-1988	DE 3626085 A JP 63041415 A US 4788177 A	11-02-1988 22-02-1988 29-11-1988
DE	154658	С		NONE	# #
DE	4434823	Α	04-04-1996	NONE	
WO	9500467	А	05-01-1995	CN 1125934 A EP 0705239 A JP 8511799 T US 5602285 A	03-07-1996 10-04-1996 10-12-1996 11-02-1997

RAPPORT DE RE ERCHE INTERNATIONALE

ande Internationale No
PCT/FR 98/01472

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C07C41/09 C11B9/00

C07C43/23

C07C43/178

C07C43/205

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) $CIB \ 6 \ C07C \ C11B$

Documentation consultée autre que la documentationminimale dans la mesure où ces documents relèvent des domaines sur lesquels a porte la recherche

Base de données électronique consultee au cours de la recherche internationale (nom de la base de données, et si cela est realisable, termes de recherche utilisés)

Catégone ·	Identification des documents cites, avec, le cas echeant. l'indication des passages pertinents	no, des revendications visees
X A	EP 0 137 419 A (L. GIVAUDAN) 17 avril 1985	26-34 1-25
	voir pages 1-3; page 6, ligne 25 - page 7, ligne 26	
X	US 4 147 671 A (H. BOELENS) 3 avril 1979 voir le document en entier	26-34
X	DE 35 02 188 A (GRAU AROMATICS) 24 juillet 1986	26 . 28-31 .
	voir pages 4. 5 et page 6. lignes 85-87	33.34
X	CH 681 778 A (FIRMENICH) 28 mai 1993	26, 28-31,
	voir le document en entier	33,34
	-/	

Χ Voir la suite du cadre C pour la finde la liste des documents	X Les documents de familles de brevets sont indiqués en annexe	
* Catégories speciales de documents cités:		
"A" document définissant l'état général de latechnique, non considéré comme particulièrement pertinent	"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention	
"E" document antérieur, mais publié à la date dedépôt international ou après cette date	"X" document particulièrement pertinent; l'invention revendiquée ne peut	
"L" document pouvant jeter un doute sur une revendcation de prionté ou cité pour déterminer la date depublication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)	étre considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément 'Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive	
"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens	lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente	
"P" document publié avant la date de dépôtintemational, mais	pour une personne du mélier "&" document qui fait partie de la même famillede brevets	
Date à laquelle la recherche internationale a étéeffectivement achevée	Date d'expédition du présent rapport de recherche internationale	
20 octobre 1998	05/11/1998	
Nom et adresse postale de l'administrationchargée de la recherche internationale	Fonctionnaire autorisé	
Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Wright, M	

RAPPORT DE RECHER E INTERNATIONALE

Categorie Identification des documents cités, avec, le cas echeant, l'indication des passages pertinents X EP 0 258 172 A (DRAGOCO GERBERDING) 2 mars 1988 voir le document en entier X DE 154 658 C (BAYER) 2 août 1903 X "Perfume and Flavor Chemicals" 1969 , ARCTANDER , MONTCLAIR, N. J. 28-31, 33,34 voir ne document en entier X "Perfume and Flavor Chemicals" 1969 , ARCTANDER , MONTCLAIR, N. J. 28-31, XF002081064 voir nos. 311, 312, 313, 336, 337, 1919 X H. BOHNSACK: "Beitrag zur Kenntnis der ätherischen Dele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalikhol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERPFLEGEMITTEL, vol. 15, no. 11, novembre 1965, pages 407-410, XP002081410 Hannover voir le document en entier A DE 44 34 823 A (MERCK PATENT) 4 avril 1996 cité dans la demande voir le document en entier A WO 95 00467 A (HOECHST CELANESE) 5 janvier 1995 voir exemple 2 A M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAXS-BAS. vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier A T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, 1978, pages 341-346, XP002056680 voir le document en entier	C.(suite)	OCUMENTS CONSIDERES COMME PERTINENTS	96/014/2
2 mars 1988 voir le document en entier X DE 154 658 C (BAYER) 2 août 1903 26, 28-31, 33,34 voir le document en entier X "Perfume and Flavor Chemicals" 26, 1969 . ARCTANDER , MONTCLAIR, N. J. 28-31, XF002081064 23,33,34 voir nos. 311, 312, 313, 336, 337. 1919 X H. BOHNSACK: "Beitrag zur Kenntnis der ätherischen Oele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalkohol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERFFLEGEMITTEL, vol. 15, no. 11, novembre 1965; pages 407-410, XF002081410 Hannover voir le document en entier A DE 44 34 823 A (MERCK PATENT) 4 avril 1996 1-25 cité dans la demande voir le document en entier A WO 95 00467 A (HOECHST CELANESE) 5 janvier 1995 voir exemple 2 A M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIOUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XF002056679 AMSTERDAM NL voir le document en entier A M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XF002056680 voir le document en entier			no, des revendications visees
X DE 154 658 C (BAYER) 2 août 1903 26, 28-31, 33,34 voir le document en entier X "Perfume and Flavor Chemicals" 26, 1969 ARCTANDER , MONTCLAIR, N. J. 28-31, XP002081064 33,34 voir nos. 311, 312, 313, 336, 337, 1919 X H. BOHNSACK: "Beitrag zur Kenntnis der ätherischen Oele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalkohol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERPFLEGEMITTEL, vol. 15, no. 11, novembre 1965, pages 407-410, XP002081410 Hannover voir le document en entier A DE 44 34 823 A (MERCK PATENT) 4 avril 1996 cité dans la demande voir le document en entier A WO 95 00467 A (HOECHST CELANESE) 5 janvier 1995 voir exemple 2 A M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier A T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM, vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	Х	2 mars 1988	28-31,
voir le document en entier "Perfume and Flavor Chemicals" 1969 , ARCTANDER , MONTCLAIR, N. J. XP002081064 voir nos. 311, 312, 313, 336, 337, 1919 X H. BOHNSACK: "Beitrag zur Kenntnis der ätherischen Oele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalkohol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERPFLEGEMITTEL, vol. 15, no. 11. novembre 1965, pages 407-410, XP002081410 Hannover voir le document en entier A DE 44 34 823 A (MERCK PATENT) 4 avril 1996 cité dans la demande voir le document en entier A MO 95 00467 A (HOECHST CELANESE) 5 janvier 1995 voir exemple 2 A M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier A T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	х		
1969 ARCTANDER MONTCLAIR N. J. XP002081064 XP002081064 You'r nos. 311, 312, 313, 336, 337, 1919		voir le document en entier	33,34
atherischen Oele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalkohol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERPFLEGEMITTEL, vol. 15, no. 11, novembre 1965, pages 407-410, XP002081410 Hannover voir le document en entier A DE 44 34 823 A (MERCK PATENT) 4 avril 1996 cité dans la demande voir le document en entier A WO 95 00467 A (HOECHST CELANESE) 5 janvier 1995 voir exemple 2 A M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier A T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	X	1969 ARCTANDER , MONTCLAIR, N. J. XP002081064	28-31,
cité dans la demande voir le document en entier A WO 95 00467 A (HOECHST CELANESE) 5 janvier 1995 voir exemple 2 A M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier A T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	X	ätherischen Oele, Riech- und Geschmackstoffe XV. Mitteilung: Ueber die Inhaltstoffe der Bourbon-Vanilleschote III. Teil: Vanillylalkohol und andere aromatische Hydroxyalkohole bzw. den Methylaetherer" RIECHSTOFFE, AROMEN, KÖRPERPFLEGEMITTEL, vol. 15, no. 11, novembre 1965, pages 407-410, XP002081410 Hannover	26-34
5 janvier 1995 voir exemple 2 M. J. CLIMENT: "Hydride transfer reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	A	cité dans la demande	1-25
reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL voir le document en entier A T. M. WORTEL: "Zeolite catalyzed liquid phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	A	5 janvier 1995	1-25
phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	А	reactions of benzylic alcohols catalyzed by acid faujasites" RECUEIL DES TRAVAUX CHIMIQUES DES PAYS-BAS, vol. 110, no. 6, juin 1991, pages 275-278, XP002056679 AMSTERDAM NL	1-25
		phase dehydration of alpha-phenylethanols" ACTA PHYS. CHEM., vol. 24, no. 1-2, 1978, pages 341-346, XP002056680 voir le document en entier	1-25

Renseignements relatifs aux membres de familles de brevets

nde Internationale No PCT/FR 98/01472

-	ument brevet cite oport de recherch	e	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP	137419	А	17-04-1985	JP 2002551 C JP 7017492 B JP 60097932 A US 4657700 A	20-12-1995 01-03-1995 31-05-1985 14-04-1987
US	4147671	Α	03-04-1979	AUCUN	
DE	3502188	Α	24-07-1986	AUCUN	
СН	681778	Α	28-05-1993	AUCUN	
EP	258172	Α	02-03-1988	DE 3626085 A JP 63041415 A US 4788177 A	11-02-1988 22-02-1988 29-11-1988
DE	154658	С		AUCUN	
DE	4434823	Α	04-04-1996	AUCUN	
WO	9500467	Α .	05-01-1995	CN 1125934 A EP 0705239 A JP 8511799 T US 5602285 A	03-07-1996 10-04-1996 10-12-1996 11-02-1997