# Projet Chaos Billard Carré avec Barre Centrale

Jun Nuo Chi, Nathan Dwek

Ecole Polytechnique de Bruxelles

8 janvier 2014



- Système déterministe mais non prédictible à long terme
  - ► Possède des équations d'évolution déterministes

- Système déterministe mais non prédictible à long terme
  - ▶ Possède des équations d'évolution déterministes
  - Sensible aux conditions initiales
  - Non linéaire (superposition non applicable)

- Système déterministe mais non prédictible à long terme
  - Possède des équations d'évolution déterministes
  - Sensible aux conditions initiales
  - Non linéaire (superposition non applicable)
- ► Applications dans de nombreux domaines : météorologie, finance, mécanique . . .

- Système déterministe mais non prédictible à long terme
  - Possède des équations d'évolution déterministes
  - Sensible aux conditions initiales
  - Non linéaire (superposition non applicable)
- Applications dans de nombreux domaines : météorologie, finance, mécanique . . .
- Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système :

- Système déterministe mais non prédictible à long terme
  - Possède des équations d'évolution déterministes
  - Sensible aux conditions initiales
  - Non linéaire (superposition non applicable)
- Applications dans de nombreux domaines : météorologie, finance, mécanique . . .
- Etude du mouvement d'une balle dans un billard carré muni d'une barre centrale respirante en fonction des paramètres du système :
  - Orientation du billard : vertical ou horizontal
  - ▶ Paramètres de respiration de la barre :  $I = I_0(1 + sin(\omega t))$
  - Conditions initiales de la balle : position et vitesse initiales



Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacements continus :

#### Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacements continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

#### Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacements continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

 Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant

#### Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacements continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

- Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant
  - ▶ Rebond sur une paroi extérieure du billard :
    - $x = \pm \frac{L}{2}$  ou  $y = \pm \frac{L}{2}$
    - Simple inversion de la vitesse selon une des coordonnées

#### Modélisation du Mouvement et des Rebonds - Résolution Numérique

Mouvement composé d'une suite de déplacements continus :

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = -g \end{cases}$$

- Déplacement interrompu par un rebond qui définit les conditions initiales pour le déplacement suivant
  - Rebond sur une paroi extérieure du billard :
    - $x = \pm \frac{L}{2}$  ou  $y = \pm \frac{L}{2}$
    - Simple inversion de la vitesse selon une des coordonnées
  - Rebond sur la barre centrale :
    - ▶  $|x| \le l_0(1 + \sin(\omega t))$  et y = 0
    - ► Transfert de quantité de mouvement avec m<sub>barre</sub>>>m<sub>balle</sub> :

$$\begin{cases} \dot{x}^+ = \dot{x}^- + (\operatorname{sgn}(x))(1+C)\cos(\omega t)\omega \\ \dot{y}^+ = -C\dot{y}^- \end{cases}$$



- ▶ Pas de transfert de quantité de mouvement en  $x \rightleftharpoons y$  ou système  $\rightleftharpoons y$ 
  - Si g = 0: Conservation de  $|\dot{y}|$
  - ▶ Si  $g \neq 0$ : Conservation de  $y_{max} = y + \frac{\dot{y}^2}{2g}$ 
    - ▶ Zone  $y > y_{max}$  inaccessible

- - Si g = 0: Conservation de  $|\dot{y}|$
  - ▶ Si  $g \neq 0$ : Conservation de  $y_{max} = y + \frac{\dot{y}^2}{2g}$ 
    - ▶ Zone  $y > y_{max}$  inaccessible
    - ▶ Cas dégénéré  $y_{max} \le 0$ : pas d'interaction avec la barre
    - lacktriangle Cas dégénéré  $y_{max}\gg rac{L}{2}$  : influence de la gravité négligeable

- - Si g = 0: Conservation de  $|\dot{y}|$
  - Si  $g \neq 0$ : Conservation de  $y_{max} = y + \frac{\dot{y}^2}{2g}$ 
    - ▶ Zone  $y > y_{max}$  inaccessible
    - ightharpoonup Cas dégénéré  $y_{max} \leq 0$  : pas d'interaction avec la barre
    - ightharpoonup Cas dégénéré  $y_{max}\gg rac{L}{2}$  : influence de la gravité négligeable
- Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos

- - Si g = 0: Conservation de  $|\dot{y}|$
  - Si  $g \neq 0$ : Conservation de  $y_{max} = y + \frac{\dot{y}^2}{2g}$ 
    - ▶ Zone  $y > y_{max}$  inaccessible
    - lacktriangle Cas dégénéré  $y_{max} \leq 0$  : pas d'interaction avec la barre
    - **C**as dégénéré  $y_{max} \gg \frac{L}{2}$  : influence de la gravité négligeable
- Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos
  - ▶ Chaos en  $x \Rightarrow$  chaos en y
  - ▶ Barre au repos ⇒ mouvement en x régulier



- - Si g = 0: Conservation de  $|\dot{y}|$
  - ▶ Si  $g \neq 0$ : Conservation de  $y_{max} = y + \frac{\dot{y}^2}{2g}$ 
    - ▶ Zone  $y > y_{max}$  inaccessible
    - ightharpoonup Cas dégénéré  $y_{max} \leq 0$  : pas d'interaction avec la barre
    - ightharpoonup Cas dégénéré  $y_{max}\gg rac{L}{2}$  : influence de la gravité négligeable
- Mouvements en x et en y quasi indépendants
- Identification des sources probables de chaos
  - ▶ Chaos en  $x \Rightarrow$  chaos en y
  - ▶ Barre au repos ⇒ mouvement en x régulier
  - ▶ Chaos en  $x \stackrel{?}{\Leftrightarrow}$  chaos en  $y \to A$  vérifier!



#### Observations

- ► Billard horizontal :
  - Mouvement régulier en x et en y comme attendu
  - Deux états échantillonables en y qui s'enchaînent de manière régulière

#### Observations

- Billard horizontal :
  - Mouvement régulier en x et en y comme attendu
  - ► Deux états échantillonables en y qui s'enchaînent de manière régulière
- ► Billard vertical :
  - Mouvement toujours régulier en x

## Observations

- ▶ Billard horizontal :
  - Mouvement régulier en x et en y comme attendu
  - ▶ Deux états échantillonables en y qui s'enchaînent de manière régulière
- ► Billard vertical :
  - Mouvement toujours régulier en x
  - Mouvement en y :





# Barre Centrale au Repos Interprêtation dans le Cas Billard Vertical

- Mouvement formé d'une suite de trois "cycles" dont deux de longueur indépendante en y
  - ► Infinité d'états échantillonables

#### Interprêtation dans le Cas Billard Vertical

- Mouvement formé d'une suite de trois "cycles" dont deux de longueur indépendante en y
  - ► Infinité d'états échantillonables
  - Période potentielle = combili naturelle des longueurs de ces trois cycles
    - Vérifié par les simulations
    - Période peut être très longue ⇒ indicateur de la transition vers le chaos
    - Mais une telle période ne semble pas toujours exister
    - Explication : "période irrationnelle"

#### Interprêtation dans le Cas Billard Vertical

- Mouvement formé d'une suite de trois "cycles" dont deux de longueur indépendante en y
  - ► Infinité d'états échantillonables
  - Période potentielle = combili naturelle des longueurs de ces trois cycles
    - Vérifié par les simulations
    - Période peut être très longue ⇒ indicateur de la transition vers le chaos
    - Mais une telle période ne semble pas toujours exister
    - Explication : "période irrationnelle"
- ► I = L : mouvement périodique dans un demi billard ⇒ période différente
- ▶ Cas dégénéré  $y_{max} \gg \frac{+L}{2}$  et  $y_{max} < 0$  également vérifiés par les simulations



#### Billard Horizontal

- ▶ Mouvement en x transitionne très rapidement vers le chaos
  - Paramètre représentatif :  $\frac{l_0\omega^2}{\dot{x}_0}$

- ▶ Mouvement en x transitionne très rapidement vers le chaos
  - Paramètre représentatif :  $\frac{l_0\omega^2}{\dot{x}_0}$
  - ▶ Transition pour  $\frac{l_0\omega^2}{\dot{x}_0} \simeq 10^{-7}$



#### Billard Horizontal

- Mouvement en y :
  - ► Théorie : Mouvement en x chaotique ⇒ Mouvement en y chaotique
  - Observation : mouvement en x périodique  $\Leftrightarrow l_0\omega^2\ll\dot{x}_0$ 
    - $\Rightarrow$  Se ramène au cas  $g=0, \omega=0$
    - ⇒ Mouvement en y périodique

#### Billard Horizontal

- Mouvement en y :
  - ► Théorie : Mouvement en x chaotique ⇒ Mouvement en y chaotique
  - Observation : mouvement en x périodique  $\Leftrightarrow l_0\omega^2 \ll \dot{x}_0$ 
    - $\Rightarrow$  Se ramène au cas  $g=0, \omega=0$
    - ⇒ Mouvement en y périodique
  - Mais toujours 2 états échantillonnables (quel que soit le mouvement en x)
    - $\Rightarrow$  Pas apparent sur un diagramme de bifurcation ou section de poincaré
  - ▶ 2 états peuvent s'enchaîner de manière chaotique
    - ⇒ Vérification expérimentable possible par la coordonnée y en fonction du temps.



# Barre Centrale Respirante Billard Vertical

► Transition similaire du mouvement en x vers le chaos

# Barre Centrale Respirante Billard Vertical

- ► Transition similaire du mouvement en x vers le chaos
- Mouvement en y :
  - ► Théorie : Mouvement en x chaotique ⇒ Mouvement en y chaotique
  - lacktriangle Observation : mouvement en x périodique  $\Leftrightarrow \emph{I}_0\omega^2\ll \dot{\emph{x}}_0$ 
    - $\Rightarrow$  Se ramène au cas  $g=9.81, \omega=0$  (Si  $y_{\it max}>0)$
    - ⇒ Conclusions de ce cas à réutiliser.

- ► Transition similaire du mouvement en x vers le chaos
- Mouvement en y :
  - ► Théorie : Mouvement en x chaotique ⇒ Mouvement en y chaotique
  - ▶ Observation : mouvement en x périodique  $\Leftrightarrow l_0\omega^2 \ll \dot{x}_0$   $\Rightarrow$  Se ramène au cas  $g = 9.81, \omega = 0$  (Si  $y_{max} > 0$ )
    - ⇒ Conclusions de ce cas à réutiliser.
- ► Cas dégénéré  $y_{max}$  < 0 vérifié par expérience (Mouvement périodique en x et en y)

### Conclusion

- Barre toujours responsable du chaos
- Deux sortes de chaos relativement différentes en x et en y
  - Chaos en y assez binaire et dépend fortement du comportement en x
  - Conservation de y<sub>max</sub> quoi qu'il arrive et notion de "déphasage" pour l'étude du mouvement en y

# Conclusion

- Barre toujours responsable du chaos
- Deux sortes de chaos relativement différentes en x et en y
  - Chaos en y assez binaire et dépend fortement du comportement en x
  - Conservation de y<sub>max</sub> quoi qu'il arrive et notion de "déphasage" pour l'étude du mouvement en y
  - Chaos en x présente une transition.
  - Pas de conservation de l'énergie cinétique pour l'étude du mouvement en x
- Utile d'étudier les lois de conservation du système pour prédire et expliquer le comportement du système et les cas dégénérés

# Conclusion

- Barre toujours responsable du chaos
- ▶ Deux sortes de chaos relativement différentes en x et en y
  - Chaos en y assez binaire et dépend fortement du comportement en x
  - Conservation de y<sub>max</sub> quoi qu'il arrive et notion de "déphasage" pour l'étude du mouvement en y
  - Chaos en x présente une transition.
  - Pas de conservation de l'énergie cinétique pour l'étude du mouvement en x
- Utile d'étudier les lois de conservation du système pour prédire et expliquer le comportement du système et les cas dégénérés

MERCI DE VOTRE ATTENTION

