ACAMICA

¡Bienvenidas/os a Data Science!

Agenda

¿Cómo anduvieron?

Repaso: Aprendizaje No Supervisado

Explicación: SVD

Break

Hands-On

Cierre

¿Cómo anduvieron?

Repaso: Aprendizaje no supervisado

Solo datos

Llamamos Aprendizaje No Supervisado a los métodos para trabajar con datos (instancias) que no tienen asociados una etiqueta (una clase o un valor).

Los objetivos principales en Aprendizaje No Supervisado son:

- Clustering
- Reducción de dimensionalidad

- Clustering
- Reducción de dimensionalidad

Buscamos reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de "información" posible.

¿Para qué sirve?

Reducir la cantidad de features en un dataset puede servir para:

- Reducir el input en un modelo de regresión o clasificación
- Compresión de archivos
- Visualización
- Detectar features relevantes en datasets
- Muchísimas mas cosas

¿Para qué sirve?

Reducir la cantidad de features en un dataset puede servir para:

- Reducir el input en un modelo de regresión o clasificación
- Compresión de archivos
- Visualización
- Detectar features relevantes en datasets
- Muchísimas mas cosas

¿Cómo se hace?

Algunos de los métodos de reducción de dimensionalidad son:

- PCA: Principal Component Analysis (usa SVD)
- MDS: Multidimensional scaling
- t-SNE: t-distributed Stochastic Neighbor Embedding
- Auto-Encoders (Se hace con Redes Neuronales)
- LDA: Linear Discriminant Analysis (si hay etiquetas de clases)

¿Para qué sirve?

Reducir la cantidad de features en un dataset puede servir para:

- Reducir el input en un modelo de regresión o clasificación
- Compresión de archivos
- Visualización
- Detectar features relevantes en datasets
- Muchísimas mas cosas

¿Cómo se hace?

Algunos de los métodos de reducción de dimensionalidad son:

- PCA: Principal Component Analysis (usa SVD)
- MDS: Multidimensional scaling
- t-SNE: t-distributed Stochastic Neighbor Embedding
- Auto-Encoders (Se hace con Redes Neuronales)
- LDA: Linear Discriminant Analysis (si hay etiquetas de clases)

Aprendizaje No Supervisado

SVD (Singular Value Decomposition)

SVD · Definición

Es un método de álgebra lineal que nos permite representar cualquier matriz en términos de la multiplicación de otras 3 matrices.

SVD · ¿Para qué sirve?

Para MUCHAS COSAS. Es parte del corazón de muchos algoritmos numéricos (solución sis. lineal, pseudoinversa, etc.). En este contexto vamos a usarlo para "reducir" adecuadamente la matriz M (pasar de tener muchos features a tener menos, pero que sean buenos).

SVD · Álgebra

Se puede demostrar que a toda matriz M la podemos escribir como :

¿Y qué tiene que ver esto con todo lo que venimos hablando?

Aprendizaje No Supervisado

SVD truncado

Objetivo: queremos una nueva matriz B que reemplace a M, que tenga menos columnas (menos features).

Objetivo: queremos una nueva matriz B que reemplace a M, que tenga menos columnas (menos features).

Idea de cómo lograrlo: si tomamos solo los r valores principales (elementos en la diagonal de Sigma) de valor más grande, podemos construir una matriz B que sea una "buena" reducción de M.

Matriz completa: es la M original, tiene toda la información.

Matriz completa: es la M original, tiene toda la información.

Matriz truncada: perdimos información. Pero si tomamos un valor de r adecuado, M moño es muy parecida a M. Construimos una matriz B mas chica que M, esta es la matriz con la que vamos a trabajar.

Matriz con la que vamos a trabajar en vez de M, tiene la misma información que M moño.

Aprendizaje No Supervisado

Ejemplo conceptual SVD

Tenemos un dataset de 7 usuarios y 5 peliculas. Cada usuario puso un valor entre 0 a 5 a cada película.

Tenemos un dataset de 7 usuarios y 5 peliculas. Cada usuario puso un valor entre 0 a 5 a cada película.

$$\mathbf{M}_{7 \times 5} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix}$$

Tenemos un dataset de 7 usuarios y 5 peliculas. Cada usuario puso un valor entre 0 a 5 a cada película.

Buscamos una matriz B más con menos columnas que M. Proponemos usar un valor de r = 2 es decir que B será de 7 x 2. Veamos como quedaría:

Esta vez usaremos solo los 2 valores singulares más grandes de SIgma.

$$U_{\rm r} = \begin{bmatrix} 0.13 & 0.02 \\ 0.41 & 0.07 \\ 0.55 & 0.09 \\ 0.68 & 0.11 \\ 0.15 & -0.59 \\ 0.07 & -0.73 \\ 0.07 & -0.29 \end{bmatrix} \Sigma_{\rm r} = \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5 \end{bmatrix} \quad \mathbf{V}_{\rm r}^{\star} = \begin{bmatrix} 0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & -0.12 & -0.69 & -0.69 \end{bmatrix}$$

Pesos: X Z

Pesos: X Z

- Ahora cada Usuario estará identificado por dos features X y Z. Notemos que los primeros 4 usuarios tienen un valor alto de X y bajo de Z. En los otros 3, se da al revés.
- Los features encontrados corresponden a los géneros.

Pasamos de identificar a cada usuario con un puntaje al género de las películas en lugar de a las películas en sí, pasamos de 5 a 2 features.

Cuanta información perdemos por usar B en lugar de M?

Pasamos de identificar a cada usuario con un puntaje al género de las películas en lugar de a las películas en sí, pasamos de 5 a 2 features.

Cuanta información perdemos por usar B en lugar de M?

$$\widetilde{\mathbf{M}} = \mathbf{U} \quad \mathbf{\Sigma}_{\mathbf{r}} \quad \mathbf{V}_{\mathbf{r}}^*$$

$$m \times n \quad m \times \mathbf{r} \quad \mathbf{r} \times \mathbf{n}$$

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \qquad \mathbf{\widetilde{M}} = \begin{bmatrix} 0.92 & 0.95 & 0.92 & 0.01 & 0.01 \\ 2.91 & 3.01 & 2.91 & -0.01 & -0.01 \\ 3.90 & 4.04 & 3.90 & 0.01 & 0.01 \\ 4.82 & 5.00 & 4.82 & 0.03 & 0.03 \\ 0.70 & 0.53 & 0.70 & 4.11 & 4.11 \\ -0.69 & 1.34 & -0.69 & 4.78 & 4.78 \\ 0.32 & 0.23 & 0.32 & 2.01 & 2.01 \end{bmatrix}$$

Estamos muy cerca!!

Hiperparámetro r

¿Cómo podríamos elegir el valor de r?

¿Cómo podríamos elegir el valor de r?

Una posibilidad es mirar la distancia entre M y M moño.

$$\left| \left| \mathbf{M} - \widetilde{\mathbf{M}} \right| \right|_F = \sqrt{\sum_{ij} (\mathbf{M}_{ij} - \widetilde{\mathbf{M}}_{ij})^2}$$

El método de SVD nos GARANTIZA que elegimos los mejores r vectores (combinaciones de features) para minimizar esta norma!

¿Cómo podríamos elegir el valor de r?

Una posibilidad es mirar la distancia entre M y M moño.

$$|\mathbf{M} - \widetilde{\mathbf{M}}||_F = \sqrt{\sum_{ij} (\mathbf{M}_{ij} - \widetilde{\mathbf{M}}_{ij})^2}$$

El método de SVD nos GARANTIZA que elegimos los mejores r vectores (combinaciones de features) para minimizar esta norma!

Full-Rank Dog

Rank 100 Dog

Rank 50 Dog

Rank 10 Dog

Rank 3 Dog

¿Cómo podríamos elegir el valor de r?

Una posibilidad es mirar la distancia entre M y M moño.

Otra posibilidad es **tener algún criterio sobre el peso relativo** de los valores singulares seleccionados respecto a la suma de todos. (Es más costoso, hay que calcular todos los valores singulares)

¿Y no hay algo un poco más visual?

Aprendizaje No Supervisado

Representación gráfica SVD

SVD · Representación gráfica

Feature 1

- El espacio original tiene 2 coordenadas,
 2 features. Esto sirve para definir la posición de todas las instancias del dataset (cada punto azul).
- SVD nos da dos nuevos vectores, el 1er y 2do vector singular. Si usamos ambos como coordenadas, podemos definir perfecto la posición de cada punto.
- Veamos qué pasa si ahora sólo usamos el primer vector singular para definir los puntos.

SVD · Representación gráfica

Hands-on training

Hands-on training

DS_Encuentro_38_SVD.ipynb

Para la próxima: Data Science en mi vida

Data Science en mi vida

En 10/15 minutos, tendrán que contar a sus compañeros y equipo docente lo siguiente:

- a) En qué problemas estoy aplicando lo aprendido en DS y cómo lo estoy encarando.
- b) Contar algún tema que me interese o que proyecto aplicar relacionado con lo que vimos.

Para la próxima

- Terminar de ver los videos de Reducción de Dimensionalidad.
- 2. Completar los notebooks de hoy y atrasados.
- 3. Si están leyendo sobre PCA, pueden jugar con esta página: http://setosa.io/ev/principal-component-analysis/.
- 4. Preparar el relato "Data Science en mi vida".

ACAMICA