A Crash Course on Quantal Response Equilibrium

Po-Hsuan Lin

Fall 2022 EC 106

October 12, 2022

Asymmetric Matching Pennies Game

- This is the game we played in the first class.
- ► Suppose *A* > 0.

	L	R
L	<i>A</i> , 0	0, 1
R	0, 1	1,0

- ▶ A (mixed) strategy σ_i is a probably distribution over the action set $S_1 = S_2 = \{L, R\}$.
- ▶ A strategy profile is a (mixed) Nash equilibrium if for all i,

$$\mathbb{E}u_i(\sigma_i, \sigma_{-i}) \ge \mathbb{E}u_i(\sigma_i', \sigma_{-i})$$
 for any $\sigma_i' \in \Delta(S_i)$.

Mixed Nash Equilibrium

- ▶ Let $\sigma_1(L) \equiv p$ and $\sigma_2(L) \equiv q$. This describes the action set.
- ▶ Given q, player 1 would choose L if and only if

$$\mathbb{E}u_1(L,q) = Aq \ge 1 - q = \mathbb{E}u_1(R,q) \iff q \ge \frac{1}{1+A}.$$

▶ Given p, player 2 would choose L if and only if

$$\mathbb{E}u_2(p,L)=1-p\geq p=\mathbb{E}u_2(p,R)\iff p\leq \frac{1}{2}.$$

Best Response Correspondence

- ▶ Blue (Red) is player 1 (player 2)'s BR correspondence.
- ► The intersection $(q^*, p^*) = (\frac{1}{1+A}, \frac{1}{2})$ is the unique mixed NE.

Quantal Response Equilibrium

- Players don't do best response. They do better response.
- We consider Logit QRE: players' choice probabilities are determined by the logit function with the parameter λ.
- Given q, since $\mathbb{E}u_1(L,q) = Aq$ and $\mathbb{E}u_1(R,q) = 1 q$, player 1 would choose L with probability

$$p = \frac{e^{\lambda \mathbb{E}u_1(L,q)}}{e^{\lambda \mathbb{E}u_1(L,q)} + e^{\lambda \mathbb{E}u_1(R,q)}} = \frac{1}{1 + e^{\lambda \left[\mathbb{E}u_1(R,q) - \mathbb{E}u_1(L,q)\right]}}$$
$$= \frac{1}{1 + e^{\lambda \left[1 - (1+A)q\right]}}.$$

- Extreme cases:
 - ▶ When $\lambda \to 0$, $p \to \frac{1}{2}$ (uniformly randomize)
 - ▶ When $\lambda \to \infty$, p converges to the BR correspondence

Player 1's Quantal Response Function

- ▶ Player 1's quantal response functions given different λ .
- When λ gets larger, QR gets closer to BR.

Quantal Response Equilibrium

Similarly, given any p, player 2 also makes quantal response. As $\mathbb{E}u_2(p,L) = 1 - p$ and $\mathbb{E}u_2(p,R) = p$,

$$q = \frac{e^{\lambda \mathbb{E}u_2(p,L)}}{e^{\lambda \mathbb{E}u_1(p,L)} + e^{\lambda \mathbb{E}u_1(p,R)}} = \frac{1}{1 + e^{\lambda \left[\mathbb{E}u_2(p,R) - \mathbb{E}u_1(p,L)\right]}}$$
$$= \frac{1}{1 + e^{\lambda \left[2p-1\right]}}.$$

 QRE maintains mutual consistency. Mathematically, QRE is the solution of the following system of nonlinear equations.

$$p = \frac{1}{1 + e^{\lambda[1 - (1 + A)q]}}$$
$$q = \frac{1}{1 + e^{\lambda[2p - 1]}}.$$

You need to solve for numerical solutions...

Quantal Response Equilibrium

▶ The intersection of player 1 and player 2's quantal response functions is the QRE (given a specific λ).

QRE Arc

