

درس یادگیری ماشین میانترم اول – پاییز ۱۴۰۰ دانشکده برق و کامپیوتر

لطفا به نكات زير توجه كنيد.

- ۱) مدت زمان امتحان ۲ ساعت و ۳۰ دقیقه است.
 - ۲) هیچ گونه مشارکتی در امتحان مجاز نیست.
- ۳) برای دریافت نمره کامل باید به تمام سوالات به غیر از سوال ۴ پاسخ کامل دهید. در صورت پاسخ به سوال ۴، نمره کسب شده از این سوال به عنوان نمره امتیازی به شما تعلق خواهد گرفت.

ديف سوال

کدام نمودار نشان دهنده overfitting در مسائل واقعی است. (ممکن است چند جواب وجود داشه باشد.)

(1.)

- ۲ فرض کنید یک طبقهبند logistic regression را آموزش می دهید که تابع فرض آموزش دیده (learned hypothesis function)
- در آن بصورت $\theta_0 = 6$, $\theta_1 = 0$, $\theta_2 = -1$ است که داریم $h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ در آن بصورت $h_{\theta}(x) = \frac{1}{2}$ است. کدام یک از شکلهای زیر نشان دهنده مرز تصمیم برای $h_{\theta}(x)$ است.

- ۳ به سوالات زیر پاسخ کوتاه دهید.
- (۱۵) الف) یک مسئله طبقهبندی دو کلاسه را در نظر بگیرید. برای محاسبه ریسک به کدام یک از موارد زیر نیاز است.
 - ۱) نمونههای مشاهده شده
 - ۲) احتمالات پیشین کلاسها
 - ۳) تابع هزینه (loss function)
 - ۴) محاسبه گرادیان کاهشی
 - ب) جملات زیر درباره logistic regression درست است یا خیر.
 - ۱) تابع هزینه در آن convex است.
 - ۲) فرض می کنیم مشاهدات هر کلاس از توزیع گوسی پیروی می کنند.

پ) تفاوت دو روش Stochastic Gradient Descent و Batch Gradient Descent را شرح دهید.	
روابط موجود در مدل های GMM را در چهارچوب ساختار بیز بیان کنید و تعابیر معادل احتمال پیشین و پسین را بیان کنید.	۴
	(۲۰)
یک مسئله طبقهبندی دو کلاسه را در نظر بگیرید. چگالی شرطی مشاهده X برای هر کلاس به صورت زیر است.	۵
$p(x w_1) = k_1 e^{-\frac{x^2}{20}}$	(٣٠)
$p(x w_1) = k_1 e^{-x}$ $p(x w_2) = k_2 e^{-\frac{(x-6)^2}{12}}$	
الف) مقادیر k_1 و k_2 را بدست آورید.	
$\lambda_{12} = \sqrt{3}$ ب) فرض کنید احتمالات پیشین دو کلاس برابر هستند. هزنیه انتخاب درست صفر است. اما هزینه انتخاب نادرست بصورت $\lambda_{12} = \sqrt{3}$	
و $\lambda_{21}=\sqrt{5}$ (هزینه λ_{ij} به معنی انتخاب کلاس λ_{ij} برای نمونه است در صورتی که واقعا متعلق به کلاس λ_{ij} است. عبارتی برای	
ریسک مشروط (conditional risk) بدست آورید.	
پ) مرزهای تصمیم را با توجه به ریسک تعریف شده در بخش (ب) بدست آورید.	
دو توزیع احتمال دخواه f_1 و f_2 را در نظر بگیرید. در این سوال میخواهیم فرمولی برای مخلوط این دو توزیع (mixture) بدست آوریم.	۶
به بیان دقیق تر فرض کنید	(٣٠)
$f_{\lambda}(x) = \lambda f_1(x) + (1 - \lambda)f_2(x)$	
که در آن f_1 و f_2 توابع چگالی احتمال دلخواه هستند و λ پاراتری نامعلوم (mixture parameter) است.	
الف) با فرض داشتن یک مشاهده x و معلوم بودن پارامتر λ احتمال اینکه مشاهده x از توزیع f_1 آمده باشد را حساب کنید.	
$i.i.d$ و به ازای هر مشاهده یک مقدار c_i داریم. مشاهدات به بصورت $\{x_1,\dots,x_n\}$ و به ازای هر مشاهده یک مقدار و مجموعه ای از مشاهدات بصورت	
از توزیع مخلوط بدست آمده اند. اگر مقدار c_i برابر ۱ باشد یعنی مشاهده x_i از توزیع f آمده است و اگر مقدار c_i برابر ۰ باشد یعنی	
مشاهده x_i از توزیع f_2 آمده است. با فرض مشخص بودن λ عبارتی برای مقدار log-likelihood مشاهدات یعنی	
ا logP(x1,c1,,xn,cn λ) بدست آورید.	
پ) حال فرض کنید که دیگر مشاهدات c _i را نداریم. به عبارت دیگر نمیدانیم هر مشاهده X _i از کدام توزیع آمده است. با استفاده روابطی	
که در قسمت های قبل بدست آوره اید، E-Step و M-Step در الگوریتم EM را برای تخمین پارامتر λ بدست آورید.	
فرض کنید از شما به عنوان یک متخصص یادگیری ماشین در حل مسئله طبقهبندی سه مدل سیب کمک میخواهند. ابزار در اختیار شما	γ
یک دوربین و سخت افزاری جهت اجرای الگوریتم نهایی است. در گام توسعه محدودیتی از جهت هزینه ندارید اما در فاز اجرا محدودیت	(10)
بسیار زیاد است و باید هزینه هر دستگاه (مجموع دوربین و سخت افزار اجرای الگوریتم) کمینه شود. شما چه روشی را برای حل این مسئله	
پیش خواهید گرفت. لطفا صرفا به مسئله محدودیت هزینه اشاره شود و از بیان موارد کلی پرهیز کنید.	
اکر دانشی مرد راند سخن / تو بشو که دانش نگر دد کهن	<u> </u>