18CSE390T Computer Vision

S1-SLO2-Two-frame structure from motion

Structure From Motion

Structure from Motion

MOVING CAMERAS ARE LIKE STEREO

Two-Frame Structure from Motion

- In 3D reconstruction we have always assumed that either 3D points position or the 3D camera poses are known in advance.
- Simultaneous recovery of 3D structure and pose from image correspondences

Figure: Epipolar geometry: The vectors $t=c_1-c_0$, $p-c_0$ and $p-c_1$ are co-planar and the basic epipolar constraint expressed in terms of the pixel measurement x_0 and x_1

• The observed location of point *p* in the first image, into the second image by the transformation

is mapped

$$p_0=d_0\hat{x}_0$$

$$d_1\hat{x}_1=p_1=Rp_0+t=R(d_0\hat{x}_0)+t,$$
 $:$ $:$ $x_j=K_j^{-1}x_j$

Structure from Motion

5

- Taking the cross product of both the sides with *t* in order to annihilate it on the right hand side yields
- Taking the dot product of both the sides with $d_1[t] \times \hat{x}_1 = d_0[t] \times R\hat{x}_0$. \hat{x}_1 yields $d_0\hat{x}_1^T([t] \times R)\hat{x}_0 = d_1\hat{x}_1^T[t] \times \hat{x}_1 = 0$,

- The right hand side is triple product with two identical entries
- We therefore arrive at the basic epipolar constraint

: essential matrix
$$\hat{\boldsymbol{x}}_1^T \boldsymbol{E} \, \hat{\boldsymbol{x}}_0 = 0$$
,

$$E = [t]_{\times} R$$