C -TRANSFORMADA DE FOURIER		
$F(\omega) = F\{f(t)\} = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$		
$f(t) = F^{-1}{F(\omega)} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$		
	f(t)	F(ω)
1	a f(t) + b g(t)	a $F(\omega)$ + b $G(\omega)$
2	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
3	f(t-a), com a real.	$F(\omega)e^{-j\omega a}$
4	f(t)e jat, com a real.	$F(\omega - a)$
5	F(t)	$2\pi f(-\omega)$
6	f'(t)	jωF(ω)
7	$f^{(n)}(t)$	$(j\omega)^n F(\omega)$
8	f(t)*g(t)	$F(\omega)G(\omega)$
9	$f(t) \cdot g(t)$	$\frac{F(\omega) * G(\omega)}{2\pi}$
10	$p_{a}(t) = \begin{cases} 1, & \text{se} t < a/2 \\ 0 & \text{se} t > a/2 \end{cases}$	$\frac{2}{\omega}\operatorname{sen}\left(\frac{\omega a}{2}\right)$
11	$\delta(t)$	1
12	H(t)	$\pi\delta(\omega) + (j\omega)^{-1}$
13	$\mathrm{e}^{\mathrm{j}\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
14	$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$
15	$sen(\omega_0 t)$	$-\pi j \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
16	$e^{-at} H(t)$, com $a > 0$	$\frac{1}{j\omega + a}$
17	e ^{-at²}	$\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}$
18	$e^{-a t }$, com $a > 0$.	$\frac{2a}{a^2 + \omega^2}$

$$\begin{split} \textbf{SÉRIES DE FOURIER} \\ f(t) &= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right], \quad \begin{cases} a_n &= \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega t) \, dt \\ b_n &= \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega t) \, dt \end{cases} \quad e \quad \omega = \frac{2\pi}{T} \\ f(t) &= \sum_{n=-\infty}^{\infty} c_n e^{jn\omega t} \quad \text{onde} \quad c_n &= \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega t} \, dt, \quad n = 0, \pm 1, \pm 2, \pm 3, \dots \end{cases}$$