

The Planetary Science Ontology A Case Study in an Ontology-Based Information Architecture

J. Steven Hughes

7th International Protégé Conference Tuesday 6th - Friday 9th, July 2004 Washington, DC

steve.hughes@jpl.nasa.gov

Topics

- Overview of the Planetary Data System (PDS)
- Planetary Science Ontology
- Infrastructure Components
 - Intelligent Resource Discovery Service
 - Catalog and Archive Service
- Benefits

Planetary Science Domain

PDS Overview

The PDS acquires, preserves, and distributes the large volume of unique and valuable data returned by Solar System Exploration missions

Key PDS Products and Services

High quality peer-reviewed data archives

Data distribution to planetary community

Archiving expertise to planetary missions

Scientific expertise and support for users

Value-added aggregated data products

Education and outreach data products and services

JPL

New Mexico State Univ.

Wash Univ. St. Louis

JPL/USGS Flagstaff

UCLA

NASA Ames

U. Maryland

Node structure provides focus on key disciplines

JPL

Products

Cassini Vis/IF Map Spec of Titan Catalog #: PIA06406:2004-07-03

Cassini ISS of Rings Image Id=W00000379, 2004-07-01

MGS Pre-Mapping Phase Pilot DVD Set

Mars Rover 2004-06-25

Opportunity PanCam of Endurance Crater Exposures Catalog #: PIA06355:2004-06-30

Cassini ISS Image of Phoebe Catalog #: PIA0607:2004-06-23

The Data Model

Level	Group/Element Structure			
1 2	spacecraft instrument identification group instrument identification			
2	instrument name			
2	spacecraft identification			
2	instrument type			
1	instrument description			
1	filter group			
2	filter name			
2	filter number			
2	filter type			

OBJECT = INSTRUMENT
INSTRUMENT_ID = VISA
SCID = VO1
INSTRUMENT_NAME = VISUAL_IMAGING...
INSTRUMENT_TYPE = VIDICON_CAMERA
...
END_OBJECT

instinfo						
instid	instname	insttype	scid			

An Image Label (partial)

DATA SET ID SPACECRAFT NAME TARGET NAME **IMAGE ID ^IMAGE** SOURCE IMAGE ID INSTRUMENT NAME

NOTE

OBJECT LINES LINE SAMPLES SAMPLE TYPE SAMPLE BITS **SAMPLE BIT MASK** = 2#11111111# **CHECKSUM** END OBJECT

= "VO1/VO2-M-VIS-5-DIM-V1₋0"

= {VIKING ORBITER 1, ...

= MARS

= MG88S045

= 2

= {"383B23", "421B23", ...

= {VISUAL_IMAGING_SUBSYSTEM ...

= "MARS DIGITAL IMAGE ...

= IMAGE

= 160

= 252

= UNSIGNED INTEGER

= 8

= 2636242

Re-hosting the Data Model

Some Statistics

- ~50 Base Classes
- ~1,200 Common Data Elements
 - 1,000s of Parameters

- ~4,500 Product Types
 - 1,000,000s of Products

Intelligent Resource Discovery

- 1. Science data tools and applications use "APIs" to connect to a virtual data repository
- 2. Middleware creates the informatics infrastructure connecting distributed heterogeneous systems and data
- 3. Distributed Repositories for storing and retrieving many types of data

Key Characteristics

- Multi-tiered information architecture
 - Client Tier (Data Browsers)
 - Service Tier (Product and Profile Servers)
 - Storage Tier (Data Repositories)
- Distributed Heterogeneous Data Repositories
 - Locally managed by discipline experts
 - Underlying heterogeneity is encapsulated and hidden from the users
- Separate data and technology architectures
 - Data model evolves with discipline
 - Technology evolves with industry

Resource Descriptions

- Profile
 - Single structure for describing any resource*

- Profile Server
 - Using a profile database
 - Search for profiles using any attribute as constraint
 - Return any subset of attributes of matching profiles

PROFILE DTD


```
<!ELEMENT profiles
 (profile*)>
<!ELEMENT profile
 (profAttributes,
 resAttributes,
 profElement*)>
  <!ELEMENT profAttributes</pre>
   (profld, profVersion?, profType,
    profStatusId, profSecurityType?, profParentId?, profChildId*,
    profRegAuthority?, profRevisionNote*, profDataDictId?)>
  <!ELEMENT resAttributes
   (Identifier, Title?, Format*, Description?, Creator*, Subject*,
    Publisher*, Contributor*, Date*, Type*, Source*,
    Language*, Relation*, Coverage*, Rights*,
    resContext+, resAggregation?, resClass, resLocation*)>
  <!ELEMENT profElement
   (elemId?, elemName, elemDesc?, elemType?, elemUnit?,
    elemEnumFlag, (elemValue* | (elemMinValue, elemMaxValue)),
    elemSynonym*, elemComment?)>
```


Data Product Profile


```
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  ---confAttributes>
   fld>1.3.6.1.4.1.1306.2.104.10018791
   profVersion>null/profVersion>
   fType>profile
   -<resAttributes>
   <Identifier>ODY-M-HEND-EDR-2-V1.0:H0133</ldentifier>
   <Title> ODYSSEY-MARS-HEND-EDR-2-V1.0:H0133</Title>
   <Description>null/Description>
   <resContext>NASA.PDS</resContext>
   <resAggregation>null</resAggregation>
   <resClass>data.product</resClass>
   <resLocation>URI for product ...</resLocation>
   </resAttributes>
  ---cprofElement>
   <elemName>FILE SPECIFICATION NAME</elemName>
   <elemValue>/ody_2001/xxx/H0133.DAT</elemValue>
   ---cprofElement>
   <elemName>INSTRUMENT_ID</elemName>
   <elemValue>HEND</elemValue>
   </profile>
```


Resource Discovery and Distribution Infrastructure

Catalog and Archive Infrastructure

Benefits

Contacts

J. Steven Hughes steve.hughes@jpl.nasa.gov

PDS

http://pds.jpl.nasa.gov/

Daniel Crichton dan.crichton@jpl.nasa.gov

OODT Site http://oodt.jpl.nasa.gov/oodt-site/index.html

Backup

Data Catalog

Sources

CASSINI and MRO - SISes

Other – PDS Data Set Catalog