Issued: Nov. 15 Problem Set # 8 Due: Nov. 20

Problem 1. $\vec{A} \times (\vec{B} \times \vec{C})$ identity

- a. Do problem 1.11 of Kleppner and Kolenkov using geometry and the properties of the cross product.
- b. By expressing the components of \vec{A} , \vec{B} , and \vec{C} in Cartesian coordinates prove the trimple cross-product identity $\vec{A}\times(\vec{B}\times\vec{C})=(\vec{A}\cdot\vec{C})\vec{B}-(\vec{A}\cdot\vec{B})\vec{C}$

With appropriate use of cyclic permutations you can reduce the number of terms that you have to explicitly calculate.

- c. Show how the result from part a is consistent with the identity in part b.
- d. Consider a special case of the identity, namely $\vec{A} \times (\vec{B} \times \vec{A})$. Justify the result of the identity using geometrical reasoning.
- e. Using your work from part d, try to develop a geometric argument for the form general form of the identity in part b.

Problem 2. Kleppner and Kolenkow, problem 8.2

Problem 3. Kleppner and Kolenkow, problem 8.5

Problem 4. Kleppner and Kolenkow, problem 8.6

Problem 5. Kleppner and Kolenkow, problem 8.10

Problem 6. Kleppner and Kolenkow, problem 8.12