

# COMP [56]630— Machine Learning

Lecture 15 – Naïve Bayes

### Logistics

- Midterm on March 1, 2024
  - During class hours (available until Sunday for Distance section)
  - 50 minutes
  - 40 1.25-point questions
  - Topics:
    - Machine Learning basics
    - Linear Regression
    - Basis Functions
    - Logistic Regression
    - MLP
    - Deep Learning basics
    - CNN
    - LSTM/RNN



# Different types of classifiers

#### Discriminative

- Model a classification rule directly
  - Eg. Perceptron, logistic regression
- Model the probability of class memberships given input data
  - Eg. Neural Networks with cross entropy (log loss)

#### Generative

- Make a probabilistic model of data within each class
  - Eg. Naïve Bayes, model-based classifiers

#### Probabilistic

• Output is a probability measure on the likelihood of an example belonging to a specific class given a set of features/observations.



- Prior, conditional and joint probability
  - Prior probability: P(X)

Example: the chances of rolling a "4" with a die

Number of ways it can happen: 1 (there is only 1 face with a "4" on it)

**Total number of outcomes: 6** (there are 6 faces altogether)

So the probability = 
$$\frac{1}{6}$$



- Prior, conditional and joint probability
  - Conditional probability:  $P(X_1 | X_2)$ ,  $P(X_2 | X_1)$
  - Conditional probability could describe an event like:
    - Event A is that it is raining outside, and it has a 0.3 (30%)
       chance of raining today.
    - Event B is that you will need to go outside, and that has a probability of 0.5 (50%).
  - A conditional probability would look at these two events in relationship with one another, such as the probability that it is both raining and you will need to go outside.



- Prior, conditional and joint probability
  - Joint probability:  $X = (X_1, X_2), P(X) = P(X_1, X_2)$
  - Joint probability factors the likelihood of both events occurring.
    - Joint probability can also be described as the probability of the intersection of two (or more) events. The intersection can be represented by a Venn diagram:





- Prior, conditional and joint probability
  - Prior probability: P(X)
  - Conditional probability:  $P(X_1 | X_2)$ ,  $P(X_2 | X_1)$
  - Joint probability:  $\mathbf{X} = (X_1, X_2), P(\mathbf{X}) = P(X_1, X_2)$
  - Relationship:  $P(X_1, X_2) = P(X_2 | X_1)P(X_1) = P(X_1 | X_2)P(X_2)$
  - Independence:  $P(X_2 | X_1) = P(X_2)$ ,  $P(X_1 | X_2) = P(X_1)$ ,  $P(X_1, X_2) = P(X_1)P(X_2)$
- Bayesian Rule

$$P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

#### Probabilistic Classification



- Establishing a probabilistic model for classification
  - Discriminative model

$$P(C \mid \mathbf{X}) \quad C = c_1, \dots, c_L, \mathbf{X} = (X_1, \dots, X_n)$$

Generative model

$$P(\mathbf{X} \mid C) \quad C = c_1, \dots, c_L, \mathbf{X} = (X_1, \dots, X_n)$$

- MAP classification rule
  - MAP: Maximum A Posterior
  - Assign x to  $c^*$  if  $P(C = c^* \mid \mathbf{X} = \mathbf{x}) > P(C = c \mid \mathbf{X} = \mathbf{x})$   $c \neq c^*$ ,  $c = c_1, \dots, c_L$
- Generative classification with the MAP rule
  - Apply Bayesian rule to convert:  $P(C \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C)P(C)}{P(\mathbf{X})} \propto P(\mathbf{X} \mid C)P(C)$

#### Naïve Bayes



Bayes classification

$$P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C)P(C) = P(X_1, \dots, X_n \mid C)P(C)$$

Difficulty: learning the joint probability  $P(X_1, \dots, X_n \mid C)$ 

- Naïve Bayes classification
  - Making the assumption that all input attributes are independent

$$P(X_{1}, X_{2}, \dots, X_{n} | C) = P(X_{1} | X_{2}, \dots, X_{n}; C) P(X_{2}, \dots, X_{n} | C)$$

$$= P(X_{1} | C) P(X_{2}, \dots, X_{n} | C)$$

$$= P(X_{1} | C) P(X_{2} | C) \dots P(X_{n} | C)$$

MAP classification rule

$$[P(x_1 | c^*) \cdots P(x_n | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_n | c)]P(c), c \neq c^*, c = c_1, \cdots, c_L$$

#### Naïve Bayes



- Naïve Bayes Algorithm (for discrete input attributes)
  - Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};
For every attribute value a_{jk} of each attribute x_j (j = 1, \dots, n; k = 1, \dots, N_j)
\hat{P}(X_j = a_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = a_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};
```

Output: conditional probability tables; for  $x_{j}$ ,  $N_{j} \times L$  elements

- Test Phase: Given an unknown instance  $\mathbf{X}' = (a'_1, \dots, a'_n)$ ,

Look up tables to assign the label  $c^*$  to X' if

$$[\hat{P}(a'_1 | c^*) \cdots \hat{P}(a'_n | c^*)] \hat{P}(c^*) > [\hat{P}(a'_1 | c) \cdots \hat{P}(a'_n | c)] \hat{P}(c), c \neq c^*, c = c_1, \dots, c_L$$



#### • Example: Play Tennis

*PlayTennis*: training examples

| Б   |          |             |          |        |            |  |  |  |  |  |  |
|-----|----------|-------------|----------|--------|------------|--|--|--|--|--|--|
| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |  |  |  |  |  |  |
| D1  | Sunny    | Hot         | High     | Weak   | No         |  |  |  |  |  |  |
| D2  | Sunny    | Hot         | High     | Strong | No         |  |  |  |  |  |  |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |  |  |  |  |  |  |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |  |  |  |  |  |  |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |  |  |  |  |  |  |
| D6  | Rain     | Cool        | Normal   | Strong | No         |  |  |  |  |  |  |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |  |  |  |  |  |  |
| D8  | Sunny    | Mild        | High     | Weak   | No         |  |  |  |  |  |  |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |  |  |  |  |  |  |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |  |  |  |  |  |  |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |  |  |  |  |  |  |
| D12 | Overcast | Mild        | High     | Strong | Yes        |  |  |  |  |  |  |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |  |  |  |  |  |  |
| D14 | Rain     | Mild        | High     | Strong | No         |  |  |  |  |  |  |





#### Learning Phase

| Outlook  | Play=Yes | Play=No |
|----------|----------|---------|
| Sunny    | 2/9      | 3/5     |
| Overcast | 4/9      | 0/5     |
| Rain     | 3/9      | 2/5     |

| Temperature | Play=Yes | Play=No |
|-------------|----------|---------|
| Hot         | 2/9      | 2/5     |
| Mild        | 4/9      | 2/5     |
| Cool        | 3/9      | 1/5     |

| Humidity | Play=Yes | Play=No |
|----------|----------|---------|
| High     | 3/9      | 4/5     |
| Normal   | 6/9      | 1/5     |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

$$P(\text{Play=Yes}) = 9/14$$
  $P(\text{Play=No}) = 5/14$ 



#### Test Phase

Given a new instance,

**x**'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

#### Look up tables

P(Outlook=Sunny|Play=Yes) = 2/9
P(Temperature=Cool|Play=Yes) = 3/9
P(Huminity=High|Play=Yes) = 3/9
P(Wind=Strong|Play=Yes) = 3/9
P(Play=Yes) = 9/14

P(Outlook=Sunny | Play=No) = 3/5 P(Temperature=Cool | Play=No) = 1/5 P(Huminity=High | Play=No) = 4/5 P(Wind=Strong | Play=No) = 3/5 P(Play=No) = 5/14

#### MAP rule

 $P(Yes \mid \mathbf{X}'): [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053$   $P(No \mid \mathbf{X}'): [P(Sunny \mid No) P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = 0.0206$ 

Given the fact  $P(Yes \mid \mathbf{x}') < P(No \mid \mathbf{x}')$ , we label  $\mathbf{x}'$  to be "No".



- Text classification with Naïve Bayes.
- Let us say we have the following data:

| Document | Text                       | Class |
|----------|----------------------------|-------|
| 1        | I loved the movie          | +     |
| 2        | I hated the movie          | -     |
| 3        | a great movie. good movie  | +     |
| 4        | poor acting                | -     |
| 5        | great acting. a good movie | +     |



- Step 1: Create variables from vocabulary.
  - In this data, we have 10 unique words:



- Step 2: Create feature set.
  - Create frequency-based features for each variable/word

|      | а | acting | good | great | hated | i | loved | movie | poor | the |
|------|---|--------|------|-------|-------|---|-------|-------|------|-----|
| Doc0 | 0 | 0      | 0    | 0     | 0     | 1 | 1     | 1     | 0    | 1   |
| Doc1 | 0 | 0      | 0    | 0     | 1     | 1 | 0     | 1     | 0    | 1   |
| Doc2 | 1 | 0      | 1    | 1     | 0     | 0 | 0     | 2     | 0    | 0   |
| Doc3 | 0 | 1      | 0    | 0     | 0     | 0 | 0     | 0     | 1    | 0   |
| Doc4 | 1 | 1      | 1    | 1     | 0     | 0 | 0     | 1     | 0    | 0   |



• Step 3: Transform feature set based on class composition

| :              |      | а | acting | good | great | hated | i | loved | movie | poor            | the | class |
|----------------|------|---|--------|------|-------|-------|---|-------|-------|-----------------|-----|-------|
|                | Doc0 | 0 | 0      | 0    | 0     | 0     | 1 | 1     | 1     | 1 0 1 + 2 0 0 + |     |       |
| Positive Class | Doc2 | 1 | 0      | 1    | 1     | 0     | 0 | 0     | 2     | 0               | 0   | +     |
|                | Doc4 | 1 | 1      | 1    | 1     | 0     | 0 | 0     | 1     | 0               | 0   | +     |

|                |      | а | acting | good | great | hated | i | loved | movie | poor | the | class |
|----------------|------|---|--------|------|-------|-------|---|-------|-------|------|-----|-------|
| Negative Class | Doc1 | 0 | 0      | 0    | 0     | 1     | 1 | 0     | 1     | 0    | 1   | -     |
|                | Doc3 | 0 | 1      | 0    | 0     | 0     | 0 | 0     | 0     | 1    | 0   | -     |



• Step 4: Computing probabilities.

$$P(+) = \frac{3}{5} = 0.6$$

• Step 5: Compute conditional probabilities:

$$P(w_k \mid +) = \frac{n_k + 1}{n + |\text{vocabulary}|}$$



#### Conditional Probabilities for + class:

$$P(I \mid +) = \frac{1+1}{14+10} = 0.0833$$

$$P(loved \mid +) = \frac{1+1}{14+10} = 0.0833$$

$$P(the \mid +) = \frac{1+1}{14+10} = 0.0833$$

$$P(movie \mid +) = \frac{4+1}{14+10} = 0.20833$$

$$P(a \mid +) = \frac{2+1}{14+10} = 0.125$$

$$P(a \mid +) = \frac{2+1}{14+10} = 0.125$$

$$P(great \mid +) = \frac{2+1}{14+10} = 0.125$$

$$P(acting \mid +) = \frac{1+1}{14+10} = 0.0833$$

$$P(good \mid +) = \frac{2+1}{14+10} = 0.125$$

$$P(poor \mid +) = \frac{0+1}{14+10} = 0.0417$$

$$P(hated \mid +) = \frac{0+1}{14+10} = 0.0417$$



#### Conditional Probabilities for - class:

$$P(-) = \frac{2}{5} = 0.4$$

$$P(I \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(loved \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(the \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(movie \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(a \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(great \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(acting \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(good \mid -) = \frac{0+1}{6+10} = 0.0625$$

$$P(poor \mid -) = \frac{1+1}{6+10} = 0.125$$

$$P(hated \mid -) = \frac{1+1}{6+10} = 0.125$$

- Step 6: Inference for a given example
  - Input: "I hated the poor acting"
  - Hence x<sub>i</sub>={I, hated, the, poor, acting}
  - Compute  $P(+|x_i)$  and  $P(-|x_i)$ 
    - $P(+|x_i) = P(+)*P(I | +)*P(hated | +)*P(the | +)*P(poor | +)*P(acting | +) = 6.03 \times 10^{-7}$
  - $P(+|x_i) < P(-|x_i)$ 
    - => given example is negative!

#### Relevant Issues



- Violation of Independence Assumption
  - For many real world tasks,  $P(X_1, \dots, X_n \mid C) \neq P(X_1 \mid C) \dots P(X_n \mid C)$
  - Nevertheless, naïve Bayes works surprisingly well anyway!
- Zero conditional probability Problem
  - If no example contains the attribute value $X_j = a_{jk}$ ,  $\hat{P}(X_j = a_{jk} \mid C = c_i) = 0$
  - In this circumstance,  $\hat{P}(x_1 | c_i) \cdots \hat{P}(a_{ik} | c_i) \cdots \hat{P}(x_n | c_i) = 0$  during test
  - For a remedy, conditional probabilities estimated with

$$\hat{P}(X_j = a_{jk} \mid C = c_i) = \frac{n_c + mp}{n + m}$$

 $n_c$ : number of training examples for which  $X_i = a_{ik}$  and  $C = c_i$ 

n: number of training examples for which  $C = c_i$ 

p: prior estimate (usually, p = 1/t for t possible values of  $X_i$ )

m: weight to prior (number of "virtual" examples,  $m \ge 1$ )

#### Relevant Issues



- Continuous-valued Input Attributes
  - Numberless values for an attribute
  - Conditional probability modeled with the normal distribution

$$\hat{P}(X_j \mid C = c_i) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

 $\mu_{ji}$ : mean (avearage) of attribute values  $X_j$  of examples for which  $C = c_i$   $\sigma_{ji}$ : standard deviation of attribute values  $X_j$  of examples for which  $C = c_i$ 

- Learning Phase: for  $\mathbf{X} = (X_1, \dots, X_n)$ ,  $C = c_1, \dots, c_L$ Output:  $n \times L$  normal distributions and  $P(C = c_i)$   $i = 1, \dots, L$
- Test Phase: for  $\mathbf{X}' = (X'_1, \dots, X'_n)$ 
  - Calculate conditional probabilities with all the normal distributions
  - Apply the MAP rule to make a decision



# Example for NB with continuous data

| No. | У   | <b>x1</b> | <b>x2</b> |
|-----|-----|-----------|-----------|
| 1   | KFC | 180       | 75        |
| 2   | KFC | 165       | 61        |
| 3   | McD | 167       | 62        |
| 4   | KFC | 178       | 63        |
| 5   | KFC | 174       | 69        |
| 6   | KFC | 166       | 60        |
| 7   | McD | 167       | 59        |
| 8   | McD | 165       | 60        |
| 9   | KFC | 173       | 68        |
| 10  | KFC | 178       | 71        |
|     | ?   | 177       | 72        |
|     |     |           |           |

Data from 10 engineers: their height (cm) and weight (kg), and their favorite fast food (KFC or McD)



#### **Calculate Prior Probabilities**

$$p(y) = \left\{ egin{array}{ll} 7/10 & ext{if } y = ext{KFC} \ 3/10 & ext{if } y = ext{McD} \end{array} 
ight.$$

$$p(x_1|y = \text{KFC})$$

$$p(x_2|y=\mathrm{KFC})$$

#### **Calculate Conditional Probabilities**

$$p(x_1|y=\mathrm{McD})$$

$$p(x_2|y=\mathrm{McD})$$





Estimate the mean:

$$\mu = rac{1}{6}(180 + 165 + 178 + 174 + 166 + 173 + 178) = 173$$

Estimate the squared standard deviation:

$$\sigma^2 = \frac{1}{5}[(180 - 173)^2 + (165 - 173)^2 + (178 - 173)^2 + (174 - 173)^2 + (166 - 173)^2 + (173 - 173)^2 + (178 - 173)^2] = 35$$

$$p(x_1|y= ext{KFC}) = rac{1}{\sqrt{2\pi(35)}} \exp(-rac{(x_1-173)^2}{2(35)})$$



$$\mu = \frac{1}{6}(75 + 61 + 63 + 69 + 60 + 68 + 71) = 67$$

$$\sigma^{2} = \frac{1}{5}[(75 - 67)^{2} + (61 - 67)^{2} + (63 - 67)^{2} + (69 - 67)^{2} + (60 - 67)^{2} + (68 - 67)^{2} + (71 - 67)^{2}] = 31$$

$$p(x_2|y= ext{KFC}) = rac{1}{\sqrt{2\pi(31)}} \exp(-rac{(x_1-67)^2}{2(31)})$$



$$\mu = rac{1}{3}(167 + 167 + 165) = 166$$

$$\sigma^2 = \frac{1}{2}[(167 - 166)^2 + (167 - 166)^2 + (165 - 166)^2]$$
= 1.33

$$p(x_1|y = \text{McD}) = \frac{1}{\sqrt{2\pi(1.33)}} \exp(-\frac{(x_1 - 166)^2}{2(1.33)})$$



$$\mu = rac{1}{3}(62 + 59 + 60) = 60$$

$$\sigma^2 = \frac{1}{2}[(62 - 60)^2 + (59 - 60)^2 + (60 - 60)^2]$$
  
= 2.33

$$p(x_2|y= ext{McD}) = rac{1}{\sqrt{2\pi(2.33)}} \exp(-rac{(x_1-60)^2}{2(2.33)})$$



#### Inference

• We want to find the probability of a co-worker's favourite food being a KFC, knowing that he is 177cm tall and weighs 72kg.

$$p(y = KFC | x_1 = 177, x_2 = 72)$$

• How?

$$p(y|x) = rac{p(x|y)p(y)}{p(x)}$$



#### Inference

$$p(y = ext{KFC}|x_1 = 177, x_2 = 72) = rac{p(x_1 = 177, x_2 = 72|y = ext{KFC}) \cdot p(y = ext{KFC})}{p(x_1 = 177, x_2 = 72)}$$

$$=rac{p(x_1=177,x_2=72|y= ext{KFC})\cdot p(y= ext{KFC})}{\sum_{i= ext{KFC,McD}} p(x_1=177,x_2=72|y=i)\cdot p(y=i)}$$

$$=rac{p(x_1=177,x_2=72|y= ext{KFC})\cdot p(y= ext{KFC})}{\sum_{i= ext{KFC,McD}} p(x_1=177,x_2=72|y=i)\cdot p(y=i)}$$

$$=rac{p(x_1=177|y= ext{KFC})\cdot p(x_2=72|y= ext{KFC})\cdot p(y= ext{KFC})}{\sum_{i= ext{KFC,McD}} p(x_1=177|y=i)\cdot p(x_2=72|y=i)\cdot p(y=i)}$$



#### Inference

$$p(y = \text{KFC}|x_1 = 177, x_2 = 72) = \frac{(0.0532)(0.0400)(\frac{7}{10})}{(0.0532)(0.0400)(\frac{7}{10}) + (0)(0)(\frac{3}{10})} = 1$$

#### Conclusions



- Naïve Bayes based on the independence assumption
  - Training is very easy and fast; just requiring considering each attribute in each class separately
  - Test is straightforward; just looking up tables or calculating conditional probabilities with normal distributions
- A popular generative model
  - Performance competitive to most of state-of-the-art classifiers even in presence of violating independence assumption
  - Many successful applications, e.g., spam mail filtering
  - Apart from classification, naïve Bayes can do more...