Evaluate Division (View)

You are given an array of variable pairs equations and an array of real numbers values, where equations $[i] = [A_i, B_i]$ and values [i] represent the equation $A_i / B_i = values [i]$. Each A_i or B_i is a string that represents a single variable.

You are also given some queries, where queries $[j] = [C_j, D_j]$ represents the j^{th} query where you must find the answer for $C_j / D_j = ?$.

Return the answers to all queries. If a single answer cannot be determined, return -1.0.

Note: The input is always valid. You may assume that evaluating the queries will not result in division by zero and that there is no contradiction.

Example 1:

```
Input: equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries =
[["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]

Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000]

Explanation:
Given: a / b = 2.0, b / c = 3.0
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
return: [6.0, 0.5, -1.0, 1.0, -1.0]
```

Example 2:

```
Input: equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0],
queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
Output: [3.75000,0.40000,5.00000,0.20000]
```

Example 3:

```
Input: equations = [["a","b"]], values = [0.5], queries =
[["a","b"],["b","a"],["a","c"],["x","y"]]
Output: [0.50000,2.00000,-1.00000]
```

Constraints:

- 1 <= equations.length <= 20
- equations[i].length == 2
- 1 <= A_i .length, B_i .length <= 5
- values.length == equations.length
- 0.0 < values[i] <= 20.0
- 1 <= queries.length <= 20
- queries[i].length == 2
- 1 <= C_j .length, D_j .length <= 5
- A_i , B_i , C_j , D_j consist of lower case English letters and digits.