

- Fudong Lin
- Second-year Ph.D. student, advised by Dr. Xu Yuan
- DL safety & DL for Imbalanced classification & DL for climate change

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (ViT)

ICLR 2021

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, et al.

Google Research, Brain Team

08/17/2022

Background

CNNs have been the de-facto architecture for vision for some time...

... but Transformers are popular in language, and scale very well, can we use them for vision?

Background

Transfer works well for small-data tasks

Background

Transfer learning benefits from scale

Note: pre-training may be expensive, cost is amortized by cheap transfer --- BiT models can be fine-tuned with 500-10k steps

Increasing pre-training data size

ImageNet-21k

ViT

Vision Transformer

ViT

Architectures

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

notation example: ViT-L/16

ViT-CNN Hybrid

ViT-CNN Hybrid

Pre-training Dataset Size

Key

VIT = Vision Transformer (this work)

BiT = Big Transfer (~ResNet)

Google Research

Conclusion: ViT tends to overfit on ImageNet, but is much better on larger datasets.

Pre-training Compute

Conclusion 1: (given sufficient data) ViT gives good performance/FLOP at all scales.

Google Research

Conclusion 2: VIT-CNN hybrids offer a great deal at small scale, but benefits diminish at large scale.

Vision Transformer Surpasses Massive CNNs

	Noisy Student (EfficientNet-L2)	BiT-L (ResNet152x4)
lmageNet	88.5	87.54
ImageNet ReaL	90.55	90.54
CIFAR-10	-	99.37
CIFAR-100	-	93.51
Oxford-IIIT Pets		96.62
Oxford Flowers - 102	1.50	99.63
VTAB (19 tasks)		76.29
TPUv3-core-days	12.3k	9.9k

Vision Transformer Surpasses Massive CNNs

	Noisy Student (EfficientNet-L2)	BiT-L (ResNet152x4)	ViT-Huge/14
lmageNet	88.5	87.54	88.55
ImageNet ReaL	90.55	90.54	90.72
CIFAR-10		99.37	99.50
CIFAR-100	-	93,51	94.55
Oxford-IIIT Pets	-	96.62	97.56
Oxford Flowers - 102	150	99.63	99.68
VTAB (19 tasks)		76.29	77.63
TPUv3-core-days	12.3k	9.9k	2.5k

ViT-Huge beats SOTA while being ~4x cheaper to pre-train

Vision Transformer Surpasses Massive CNNs

	Noisy Student (EfficientNet-L2)	BiT-L (ResNet152x4)	ViT-Huge/14	ViT-Large/16
lmageNet	88.5	87.54	88.55	87.76
ImageNet ReaL	90.55	90.54	90.72	90.54
CIFAR-10	(#C)	99.37	99.50	99.37
CIFAR-100	-	93.51	94.55	93.90
Oxford-IIIT Pets	(2)	96.62	97.56	97.32
Oxford Flowers - 102	1.50	99.63	99.68	99.74
VTAB (19 tasks)		76.29	77.63	76.28
TPUv3-core-days	12.3k	9.9k	2.5k	0.68k

ViT-Large ~matches SOTA* while being >14x cheaper to pre-train

*except for ImageNet

Conclusion

- The first pure transformer architecture in CV.

- Vanilla transformers are surprisingly good at image classification.

- More computation-efficient and easier to scale up

Limitation

- Data-hungry, e.g., 14M ~ 300M images

- Computation and memory complexity, quadratic

- Poor on self-supervised pre-training

Reference

• DeiT

- Training data-efficient image transformers & distillation through attention, ICML 2021

• Swin Transformer

- Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021 (Best Paper)

• MAE

- Masked Autoencoders Are Scalable Vision Learners, CVPR 2022 (Best Paper Nominee)

The End

Thank you!