Álgebra Universal e Categorias

2° teste (2 de junho) —

1. Considere o monóide $\mathcal{Z}=(\mathbb{Z};\times,1)$ visto como uma categoria \mathbf{Z} , i.e., \mathbf{Z} é a categoria $(\{\mathcal{Z}\}, \mathrm{hom}, \mathrm{id}, \circ)$, onde $\mathrm{hom}_{\mathbf{Z}}(\mathcal{Z},\mathcal{Z})=\mathbb{Z}$, $\mathrm{id}_{\mathcal{Z}}=1$ e a lei de composição \circ é definida por $p\circ q=p\times q$, para quaisquer $p,q\in\mathbb{Z}$.

Na categoria **Set**, considere as funções f, g e i definidas por

$$f,g: \{3\} \to \{4\}$$
 $i: \{1,2\} \to \{3\}$ $1 \mapsto 3$.

Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:

- (a) Para qualquer categoria C, se I é um objeto inicial de C, então I é um objeto inicial em qualquer subcategoria de C.
- (b) Na categoria Z, todo o monomorfismo é um morfismo invertível à esquerda.
- (c) Na categoria **Set**, o par $(\{1,2\},i)$ é um igualizador de f e g.
- 2. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em ${\bf C}$. Mostre que se $g\circ f$ é um isomorfismo, então f é um monomorfismo e g é um epimorfismo.
- 3. Sejam ${\bf C}$ uma categoria e A,T objetos de ${\bf C}$ tais que T é um objeto terminal. Mostre que se na categoria ${\bf C}$ existe um monomorfismo $f:A\to T$, então, para qualquer objeto B de ${\bf C}$, existe no máximo um morfismo de B em A. Conclua que todo o morfismo de ${\bf C}$ com domínio A é um monomorfismo.
- 4. Sejam ${\bf C}$ uma categoria, A,B,C objetos de ${\bf C}$ e $i_A:A\to C$, $i_B:B\to C$ morfismos de ${\bf C}$ tais que $(C;(i_A,i_B))$ é um coproduto de A e B. Mostre que se existe um ${\bf C}$ -morfismo $h:C\to C$ tal que $h\circ i_A=i_A$ e $h\circ i_B=i_B$, então $h=id_C$.
- 5. Sejam ${\bf C}$ uma categoria, $f,g:A\to B$ e $i:I\to A$ morfismos de ${\bf C}$ tais que (I,i) é um igualizador de f e g. Mostre que i é um epimorfismo se e só se (A,id_A) é um igualizador de f e g.
- 6. Sejam A, B, C conjuntos e $f:A\to C$, $g:B\to C$ funções. Sejam $P=\{(a,b)\,|\,a\in A,b\in B,f(a)=g(b)\}$ e p_A,p_B as funções definidas por

$$p_A: P \rightarrow A$$
, $p_B: P \rightarrow B$
 $(a,b) \mapsto a$, $(a,b) \mapsto b$.

Mostre que na categoria **Set** o par $(P,(p_A,p_B))$ é um produto fibrado de (f,g).

- 7. Sejam C uma categoria e U um objeto (fixo) de C. Seja F_U o funtor de C na categoria **Set** tal que:
 - a cada objeto A de C associa o conjunto $hom_{\mathbf{C}}(U,A)$ dos C-morfismos de U em A;
 - a cada C-morfismo $f: A \to B$, associa a função

$$F_U(f): F_U(A) \rightarrow F_U(B)$$

 $p \mapsto f \circ p$.

Identifique os monomorfismos da categoria **Set**. Diga se, para toda a categoria \mathbf{C} e para todo o objeto U de \mathbf{C} , o funtor F_U : i. preserva monomorfismos; ii. é fiel.