18. Ni、Co均是重要的战略性金属。从处理后的矿石硝酸浸取液(含 Ni $^{2+}$ 、Co $^{2+}$ 、Al $^{3+}$ 、Mg $^{2+}$)中,利用 氨浸工艺可提取 Ni、Co,并获得高附加值化工产品。工艺流程如下:

已知:氨性溶液由 $NH_3 \cdot H_2O$ 、 $\left(NH_4\right)_2SO_3$ 和 $\left(NH_4\right)_2CO_3$ 配制。常温下, Ni^{2+} 、 Co^{2+} 、 Co^{3+} 与 NH_3 形成可溶于水的配离子: $lgK_b\left(NH_3 \cdot H_2O\right)$ =-4.7; $Co(OH)_2$ 易被空气氧化为 $Co(OH)_3$;部分氢氧化物的 K_{sp} 如下表。

氢氧化物	Co(OH) ₂	Co(OH) ₃	Ni(OH) ₂	Al(OH) ₃	Mg(OH) ₂
K _{sp}	5.9×10 ⁻¹⁵	1.6×10 ⁻⁴⁴	5.5×10 ⁻¹⁶	1.3×10 ⁻³³	5.6×10 ⁻¹²

回答下列问题:

(1)	活性 MoO ī	工与水反应	化学方程式为	
$\langle 1 \rangle$	一百 注 IVISO P	1 — / / X / X / Y •	11 + 11 + 11 + 11 + 11 + 11 + 11 + 11	0

- (3) "氨浸"时,由 $Co(OH)_3$ 转化为 $\left[Co(NH_3)_6\right]^{2+}$ 的离子方程式为_____。
- (4) $(NH_4)_2$ CO_3 会使滤泥中的一种胶状物质转化为疏松分布的棒状颗粒物。滤渣的 X 射线衍射图谱中,出现了 NH_4 $Al(OH)_2$ CO_3 的明锐衍射峰。
- ① NH₄Al(OH)₂CO₃ 属于_____(填"晶体"或"非晶体")。
- ②(NH₄), CO₃提高了Ni、Co的浸取速率,其原因是_____。
- (5) ①"析晶"过程中通入的酸性气体 A 为。

(6) ①"结晶纯化"过程中,没有引入新物质。晶体 A 含 6 个结晶水,则所得 HNO_3 溶液中 $n(HNO_3)$ 与 $n(H_2O)$ 的比值,理论上最高为_____。
②"热解"对于从矿石提取 Ni、Co 工艺的意义,在于可重复利用 HNO_3 和______(填化学式)。