Arsitektur Komputer Pertemuan - 1

Oleh:

Riyanto Sigit, S.T, M.Kom Nur Rosyid Mubtada'i S.Kom Setiawardhana , S.T Hero Yudo Martono, S.T

Politeknik Elektronika Negeri Surabaya - ITS 2005

2 Apa Tujuan Belajar Arsitektur Komputer

- Mengetahui tentang matakuliah CPU Arsitektur
- 2. Mengetahui hubungan antara CPU Arsitektur dengan matakuliah lain
- 3. Dapat mengikuti dan memahami perkembangan CPU
- 4. Mengetahui materi yang akan dipelajari pada matakuliah CPU Arsitektur

Apa? Dan Apa?

CPU Arsitektur

- Ilmu yang mempelajari tentang struktur dan fungsi dari CPU.
 - Mempelajari tentang bagaimana CPU melakukan pekerjaannya
 - Mempelajari tentang bagaimana CPU berhubugan dengan peralatan yang lain dalam menjalankan tugasnya.
 - Mempelajari tentang komponen-komponen apa saja yang ada di dalam CPU
 - Memeplajari bagaimana cara mengatur kerja masing-masing komponen sehingga dapat berfungsi dengan baik

Aristektur? Vs Organisasi?

- Matakuliah CPU Arsitektur merupakan kelanjutan dari matakuliah Organisasi Komputer yang sudah diperlajari pada semester sebelumnya.
- Matakuliah Organisasi komputer yang dipelajari adalah komputer secara keseluruhan.
- Matakuliah CPU Arsitektur yang dipelajari lebih terfokus pada CPU

Bagian dari CPU itu sendiri Apa?

Gambar CPU

? Belajar

Menc 1toh Kuliah dikelas pu'ya tema: Perpustakaan Internet Praktek Belajar kelompok

- Setiap komputer didalamnya pasti terdapat mikroprosesor.
- Mikroprosesor, dikenal juga dengan sebutan Central Processing Unit (CPU) artinya unit pengolahan pusat.
- CPU adalah pusat dari proses perhitungan dan pengolahan data yang terbuat dari sebuah lempengan yang disebut "chip".
 - Chip sering disebut juga dengan "Integrated Circuit (IC)", bentuknya kecil, terbuat dari lempengan silikon dan bisa terdiri dari 10 juta transistor

- 1971 = intel 4004
 - hanya dapat digunakan untuk operasi penambahan dan pengurangan.
- 1974 = Komputer di rumah adalah intel 8080
 - Komputer 8 bit dalam satu chip yang diperkenalkan pada tahun 1974.
 - 1979 diperkenalkan mikroprosesor baru yaitu 8088

- Mikroprosesor pertama adalah intel 4004 yang dikenalkan tahun 1971
 - Kegunaan mikroprosesor ini masih sangat terbatas (operasi penambahan dan pengurangan).
 - Pertama yang digunakan untuk komputer di rumah adalah intel 8080
 - komputer 8 bit dalam satu chip yang diperkenalkan pada tahun 1974.
 - Tahun 1979 diperkenalkan mikroprosesor baru yaitu 8088

8088 80286 80486 Pentium Pentium I, II, III Pentium IV

Perbandingan besar processor

Nama Prosesor	Tahun Keluar	Jumlah Transistor	Micron	Clock speed	Data width	MIPS
8080	1974	6000	6	2 MHz	8	0,64
8088	1979	29.000	3	5 MHz	16 bits, 8 bit bus	0,33
80286	1982	134.000	1,5	6 MHz	16 bits	1
80386	1985	275.000	1,5	16 MHz	32 bits	5
80486	1989	1.200.000	1	25 MHz	32 bits	20
Pentium	1993	3.100.000	8,0	60 MHz	32 bits, 64 bit	100
Pentium II	1997	7.500.000	0,35	233 MHz	32 bits, 64 bit bus	400
Pentium III	1999	9.500.000	0,25	450 MHz	32 bits, 64 bit bus	

Sumber: www.intel.com

Keterangan Tabel

- Transistor berbentuk seperti tabung yang sangat kecil, terdapat pada Chip
- Micron adalah ukuran dalam Micron (10 pangkat -6), merupakan kabel terkecil dalam Chip
- Clock Speed = kecepatan maksimal sebuah prosesor
- Data width = lebar dari Arithmatic Logic Unit (ALU) / Unit pengelola aritmatika, untuk proses pengurangan, pembagian, perkalian dan sebagainya
- MIPS = Millions of Instructions Per Second / Jutaan perintah per detik

Pebandingan besar Prosessor secara fisik

* Dalam ukuran yang sama kapasitas dan kemampuan bertambah

1.2. Garis Besar Buku

Pengantar Arsitektur Komputer

Bab 1 ini merupakan pengantar keseluruhan isi buku, yang menjelaskan apa itu komputer dan bagaimana arsitektur CPU sistem komputer.

Aritmetika Komputer

Bab 2 menjelaskan dasar - dasar operasi data aritmetika. Meliputi representasi bilangan integer dan bilangan dalam bentuk floating point. Operasi aritmetika bilangan biner dan floating point juga dijelaskan pada bab ini.

Set Instruksi

Bab 3 mengkaji format instruksi. Karakteristik mesin komputer dalam menjalankan instruksi yang diberikan padanya. Mode pengalamatan juga dijelaskan beserta contoh penerapannya pada komputer pentium.

1.2. Garis Besar Buku

Struktur dan Fungsi CPU

Dalam bab 4 ini difokuskan pada pembahasan organisasi prosesor dalam menjalankan fungsinya. Internal CPU secara detail dijelaskan dalam bab ini, meliputi organisasi register sebagai penyimpanan sementara internal CPU, juga dijelaskan strategi pipelining instruksi - instruksi.

Dukungan Sistem Operasi

Sistem operasi adalah program yang menjembatani antara perangkat keras komputer dengan programmer dan program - program aplikasi yang digunakan pengguna dijelaskan dalam bab 5 ini. Kajian meliputi penjelasan sistem operasi dan manajemen memori

Reduced Instruction Set Computers (RISC)

Dalam bab 6 dijelaskan tentang tipe set instruksi terutama RISC. Dijelaskan juga perbedaannya dengan tipe CISC. Tipe instruksi tersebut sangat berpengaruh terhadap arsitektur mikroprosesor sebagai mesin eksekutornya.

Operasi Unit Kontrol

Bab 7 ini menerangkan tentang operasi kontrol prosesor dan unit - unit perangkat keras.

Matakuliah Arsitektur Komputer

- CPU Arsitektur adalah Ilmu yang mempelajari tentang fungsi dan struktur dari CPU
- Matakuliah CPU Arsitektur merupakan kelanjutan dari matakuliah Organisasi komputer

Tugas!

- Buatlah grafik tetang kecepatan prosessor terhadap tahun keluar
- Buatlah grafik tentang Jumlah transistor terhadap tahun keluar
- Buatlah grafik tetang lebar data terhadap tahun keluar
- Buatlah makalah tentang perkembangan prosesor pada saat ini

Referensi Buku:

- Computer Organization and Architecture, William Stalling, Fifth Edition, prentice Hall, 2000
- Computer Organization Architecture, Andrew S.
 Tanenbaum prentice Hall, 1999
- Computer Organization, Hamacher, McGraw Hill, 1990
- Applied Operating System concept, Avi Silberschatz, peter Galvin, Greg Gagne, John Wiley Inc 2000