| 1 | (a) (i | i)  | Define acceleration.                |
|---|--------|-----|-------------------------------------|
|   |        |     | [1]                                 |
|   | (i     | ii) | State Newton's first law of motion. |
|   |        |     |                                     |

**(b)** The variation with time t of vertical speed v of a parachutist falling from an aircraft is shown in Fig. 1.1.



Fig. 1.1

| (i)     | Calculate the distance travelled by the parachutist in the first 3.0 s of the motion.                                  |
|---------|------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         | distance = m [2]                                                                                                       |
| (ii)    | Explain the variation of the resultant force acting on the parachutist from $t = 0$ (point A) to $t = 15$ s (point C). |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
| <b></b> | [3]                                                                                                                    |
| (iii)   | Describe the changes to the frictional force on the parachutist                                                        |
|         | <b>1.</b> at $t = 15$ s (point C),                                                                                     |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         | [1]                                                                                                                    |
|         | <b>2.</b> between $t = 15$ s (point C) and $t = 22$ s (point E).                                                       |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         | [1]                                                                                                                    |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |
|         |                                                                                                                        |

| (iv) | The mass of the parachutist is    | 95 kg.                                              |
|------|-----------------------------------|-----------------------------------------------------|
|      | Calculate, for the parachutist be | etween $t = 15s$ (point C) and $t = 17s$ (point D), |
|      | 1. the average acceleration,      |                                                     |
|      | 2. the average frictional force.  | acceleration = ms <sup>-2</sup> [2]                 |
|      |                                   | frictional force =N [3]                             |
|      |                                   |                                                     |
|      |                                   |                                                     |
|      |                                   |                                                     |

| <br> |
|------|
|      |

- .....[1]
- **(b)** A circuit is set up to measure the resistance R of a metal wire. The potential difference (p.d.) V across the wire and the current I in the wire are to be measured.
  - (i) Draw a circuit diagram of the apparatus that could be used to make these measurements.

[3]

(ii) Readings for p.d. V and the corresponding current I are obtained. These are shown in Fig. 2.1.



Fig. 2.1

|     |       | Explain how Fig. 2.1 indicates that the readings are subject to                                                                  |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|
|     |       | 1. a systematic uncertainty,                                                                                                     |
|     |       |                                                                                                                                  |
|     |       | [1]                                                                                                                              |
|     |       | 2. random uncertainties.                                                                                                         |
|     |       |                                                                                                                                  |
| (   | (iii) | data from Fig. 2.1 to determine <i>R</i> . Explain your working.                                                                 |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       | $R = \dots \Omega$ [3]                                                                                                           |
| (c) | In a  | nother experiment, a value of R is determined from the following data:                                                           |
|     | Cur   | rent $I = 0.64 \pm 0.01$ A and p.d. $V = 6.8 \pm 0.1$ V.                                                                         |
|     |       | culate the value of $\it R$ , together with its uncertainty. Give your answer to an appropriate observed of significant figures. |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       |                                                                                                                                  |
|     |       | $R = \dots \pm \dots \Omega$ [3]                                                                                                 |
|     |       |                                                                                                                                  |

3 (a) Define pressure.

|     | [1]                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------|
| (b) | Explain, in terms of the air molecules, why the pressure at the top of a mountain is less than at sea level. |
|     |                                                                                                              |
|     |                                                                                                              |
|     |                                                                                                              |

(c) Fig. 3.1 shows a liquid in a cylindrical container.



Fig. 3.1

The cross-sectional area of the container is  $0.450\,\text{m}^2$ . The height of the column of liquid is  $0.250\,\text{m}$  and the density of the liquid is  $13\,600\,\text{kg}\,\text{m}^{-3}$ .

(i) Calculate the weight of the column of liquid.

| (ii)  | Calculate the pressure on the base of the container caused by the weight of the liquid.                       |
|-------|---------------------------------------------------------------------------------------------------------------|
|       |                                                                                                               |
|       | pressure = Pa [1]                                                                                             |
| (iii) | Explain why the pressure exerted on the base of the container is different from the value calculated in (ii). |
|       |                                                                                                               |
|       | [1]                                                                                                           |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |
|       |                                                                                                               |

| 4 | (a) | Des | scribe the diff  | raction of monoch                       | nromatic light as it passes through a diffraction grating. |
|---|-----|-----|------------------|-----------------------------------------|------------------------------------------------------------|
|   |     |     |                  |                                         |                                                            |
|   |     |     |                  |                                         | [2]                                                        |
|   | (b) | Whi | ite light is inc | ident on a diffract                     | ion grating, as shown in Fig. 4.1.                         |
|   |     |     |                  |                                         |                                                            |
|   |     |     |                  |                                         | spectrum (first order)—                                    |
|   |     | _   | white light      |                                         | white (zero order)—                                        |
|   |     |     |                  | diffraction<br>grating                  | spectrum (first order)—                                    |
|   |     |     |                  |                                         | screen                                                     |
|   |     |     |                  | Fig. 4                                  | I.1 (not to scale)                                         |
|   |     |     |                  | pattern formed or<br>a in other orders. | n the screen has white light, called zero order, and       |
|   |     | (i) | Describe ho      | ow the principle of                     | superposition is used to explain                           |
|   |     |     | 1. white ligh    | ht at the zero orde                     | er,                                                        |
|   |     |     |                  |                                         |                                                            |
|   |     |     |                  |                                         |                                                            |
|   |     |     |                  |                                         | [2]                                                        |
|   |     |     | 2. the differ    | rence in position o                     | of red and blue light in the first-order spectrum.         |
|   |     |     |                  |                                         |                                                            |
|   |     |     |                  |                                         |                                                            |
|   |     |     |                  |                                         | [2]                                                        |
|   |     |     |                  |                                         |                                                            |

| (ii)  | Light of wavelength 625 nm produces a second-order maximum at an angle of 61.0° to the incident direction.  Determine the number of lines per metre of the diffraction grating. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | number of lines = $m^{-1}$ [2]                                                                                                                                                  |
| (iii) | Calculate the wavelength of another part of the visible spectrum that gives a maximum for a different order at the same angle as in (ii).                                       |
|       |                                                                                                                                                                                 |
|       |                                                                                                                                                                                 |
|       | wavelength =nm [2]                                                                                                                                                              |
|       |                                                                                                                                                                                 |
|       |                                                                                                                                                                                 |
|       |                                                                                                                                                                                 |
|       |                                                                                                                                                                                 |
|       |                                                                                                                                                                                 |

| 5 | (a) | Explain what is meant by <i>plastic deformation</i> .                                                                                                                                                                      |  |  |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   |     | [1]                                                                                                                                                                                                                        |  |  |
|   | (b) | A copper wire of uniform cross-sectional area $1.54\times10^{-6}  \text{m}^2$ and length $1.75\text{m}$ has a breaking stress of $2.20\times10^8\text{Pa}$ . The Young modulus of copper is $1.20\times10^{11}\text{Pa}$ . |  |  |
|   |     | (i) Calculate the breaking force of the wire.                                                                                                                                                                              |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     | breaking force = N [2]                                                                                                                                                                                                     |  |  |
|   |     | (ii) A stress of $9.0 \times 10^7$ Pa is applied to the wire. Calculate the extension.                                                                                                                                     |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     | extension = m [2]                                                                                                                                                                                                          |  |  |
|   | (c) | Explain why it is not appropriate to use the Young modulus to determine the extension when the breaking force is applied.                                                                                                  |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     | [1]                                                                                                                                                                                                                        |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |
|   |     |                                                                                                                                                                                                                            |  |  |

| 6 | (a) | Des  | scribe the structure of an atom of the nuclide $^{235}_{92}$ U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (b) |      | deflection of $\alpha$ -particles by a thin metal foil is investigated with the arrangement wn in Fig. 6.1. All the apparatus is enclosed in a vacuum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      | The same of the sa |
|   |     |      | Fig. 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |     | The  | detector of $\alpha$ -particles, D, is moved around the path labelled WXY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |     | (i)  | Explain why the apparatus is enclosed in a vacuum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |     | (ii) | State and explain the readings detected by D when it is moved along WXY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |     |      | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| (c) | A beam of $\alpha\text{-particles}$ produces a current of 1.5 pA. Calculate the number of $\alpha\text{-particles}$ per second passing a point in the beam. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     | number = s <sup>-1</sup> [3]                                                                                                                                |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |
|     |                                                                                                                                                             |