Robustní strojové učení a adversariální vzorky

Pavel Jakš

Matematická informatika, FJFI ČVUT v Praze

1. září 2022

Obsah

- Prostředí
 - Neuronové sítě
- 2 Adversariální vzorky
 - Metody generování adversariálních vzorků
- 3 Robustní učení
 - Úspěšnost metod generování adversariálních vzorků
- 4 Otázky

Neuronová síť

- Odpovídá jí zobrazení $F_{\theta}: \mathbb{R}^{n_1 \times ... \times n_k} \to \mathbb{R}^{m_1 \times ... \times m_l}$
 - lacktriangledown jsou parametry neuronové sítě
 - Jedná se o zobrazení složené z tzv. vrstev [1]
- Hledání vhodných parametrů θ pro neuronovou síť
 - Převedení na optimalizaci vhodné ztrátové funkce

Častá volba sestává z dílčích ztrát

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} L\left(F_{\theta}(x^{(i)}), y^{(i)}\right)$$

- Tento přístup vyžaduje existenci trénovací datové sady
 - Uspořádaná dvojice $\mathbb{T} = \left(\left\{x^{(i)} \middle| i \in \{1,...,N\}\right\}, \left\{y^{(i)} \middle| i \in \{1,...,N\}\right\}\right)$
- Cílem je $F_{\theta}(x^{(i)}) = y^{(i)} \quad \forall i \in \{1, ..., N\}$

Adversariální vzorek

Szegedy a spol. objevili zvláštní chování klasifikačních sítí [2]

Existence adversariálních vzorků

$$\exists x, y : \exists \Delta x, \|\Delta x\| \le \kappa :$$

$$C(F_{\theta}(x)) = C(y) \land C(F_{\theta}(x + \Delta x)) \ne C(y)$$

Označme $\tilde{x} = x + \Delta x$

Metody generování adversariálních vzorků

- FGSM
 - $\tilde{\mathbf{x}} = \mathbf{x} + \kappa \cdot \operatorname{sign} \left(\nabla_{\mathbf{x}} L(F_{\theta}(\mathbf{x}), \mathbf{y}) \right)$
- I-FGSM
 - $\tilde{x}_0 = x$
 - $\tilde{x}_{n+1} = \mathsf{Clip}_{x}^{\kappa} \{ \tilde{x}_{n} + \gamma \cdot \mathsf{sign}(\nabla_{x} L(F_{\theta}(x), y)) \}$
- PGD
- Cílená optimalizační metoda
 - $\tilde{x} = \operatorname{argmin}_{\hat{x}} (\|\hat{x} x\| + \lambda \cdot L(F_{\theta}(\hat{x}), \tilde{y}))$
- CW
 - $\tilde{x} = \operatorname{argmin}_{\hat{x}} (\|\hat{x} x\| \lambda \cdot L(F_{\theta}(\hat{x}), y))$

Příklady vzorků vygenerovaných metodami generování adversariálních vzorků

Obrázek: Vzorky generované různými metodami hledání adversariálních vzorků

Robustní učení

■ Snaha o *robustnost* klasifikátorů proti adversariálním útokům

Obecná formulace problému

$$\theta = \operatorname{argmin}_{\theta} \tfrac{1}{N} \textstyle \sum_{i=1}^{N} \max_{\hat{\mathbf{x}} \in B(\mathbf{x}^{(i)}, \kappa)} L\left(F_{\theta}(\hat{\mathbf{x}}), \mathbf{y}^{(i)}\right)$$

Úspěšnost metod generování adversariálních vzorků

Metoda	Úspěšnost	Robustní úspěšnost
FGSM	40.4 %	5.7 %
I-FGSM	78.4 %	7.0 %
PGD	78.8 %	6.9 %
Cílená optimalizační metoda	100 %	100 %
CW	99.7 %	100 %

Tabulka: Úspěšnost metod generování adversariálních vzorků

Příklady vzorků vygenerovaných metodami generování adversariálních vzorků proti robustně naučené síti

Obrázek: Vzorky generované metodami hledání adversariálních vzorků proti robustně naučené síti

Závěr

- Metody strojového učení skrývají úskalí
- Lze snadno zneužít adversariálních vzorků
- Proti takovým útokům se však lze bránit

Literatura

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, *Intriguing properties of neural networks*. arXiv, 2014.

Hledání λ pomocí bisekce

- Připomenutí: $\tilde{x} = \operatorname{argmin}_{\hat{x}} (\|\hat{x} x\| \lambda \cdot L(F_{\theta}(\hat{x}), y))$
- Cíl: Nalézt λ , pro které je řešení problému nesprávně klasifikováno a zároveň $\|\tilde{x} x\|$ je co nejmenší
- Definuji pomocnou funkci $g:(0,+\infty) \to \{-1,1\}$
 - lacksquare $g(\lambda)=1$, pokud $ilde{x}$ pro ono λ je nesprávně klasifikováno
 - $ullet g(\lambda) = -1$, pokud ilde x pro ono λ je správně klasifikováno

Hledání λ pomocí bisekce

- 1 Nalézt ν , pro které $g(\nu) = 1$
- 2 Nalézt μ , pro které $g(\mu) = -1$
- 3 Ozn. $\lambda = \mu + \frac{\nu \mu}{2}$
 - Pro $g(\lambda) = 1$ provést $\nu \leftarrow \lambda$
 - Pro $g(\lambda) = -1$ provést $\mu \leftarrow \lambda$
- 4 Opakovat až $\nu \mu < \varepsilon$
- Vrátit ν

Bisekce a konvergence

- Věta o konvergenci bisekce požaduje spojitost funkce, jejíž kořeny se hledají
- To ovšem g není

Cílené FGSM

■ Předpis cílené FGSM: $\tilde{x} = x - \kappa \cdot \text{sign} (\nabla_x L(F_\theta(x), \tilde{y}))$

Počet iterací tréningu neuronové sítě

- Volba probíhala s přihlédnutím k následujícím faktorům:
 - Dostatečný počet vzorků, které síť během trénování potká
 - \bullet 5000 · 30 = 150000 > 60000
 - Úspěšnost sítě na testovací datové sadě
 - CPU čas (trénoval jsem na CPU)

Porovnávání úspěšnosti útoku

- Čistě porovnání procentuální úspěšnosti útoku nezohledňuje blízkost adversariálního vzorku k benignímu
- Čili jako srovnání metod by byla lepší dvojice čísel, a to procentuální úspěšnost útoku a statistika norem perturbací (např. průměr)

Volba použité normy

Blíže bude vzorek s euklidovskou normou perturbace menší než 0.5 oproti vzorku s maximovou normou perturbace menší než 0.5