Esercizio 1. Let $p(x) \subseteq L(B)$ and $p_n(x) \subseteq L(A)$, for $n < \omega$, be consistent types such that

$$p(x) \to \bigvee_{n < \omega} p_n(x)$$

Prove that there is an $n < \omega$ and a formula $\varphi(x) \in L(A)$ consistent with p(x) such that

$$p(x) \wedge \varphi(x) \to p_n(x).$$

Esercizio 2. Prove that a strongly minimal theory has always a prime model.

Esercizio 3. Assume L is countable and let T be strongly minimal. Prove that the following are equivalent

- 1. T is ω -categorical;
- 2. the algebraic closure of a finite set is finite.

Esercizio 1. Let M be a second countable topological space (i.e. the topology has a countable base). We say that $A \subseteq M$ is meager if it is the countable union of nowhere dense sets.

Use Lemma 12.1 to prove the Kuratowski-Ulam Theorem, i.e. that for $A\subseteq M^2$ the following are equivalent

- 1. A is meager in M^2 with the product topology;
- 2. $\{x \in M : A \cap \{x\} \times M \text{ is not meager}\}\$ is meager in M.

$\textbf{Esercizio 2.} \quad \textbf{Prove that the following are equivalent}$

- 1. T is ω -categorical;
- $2. \quad \text{there is countable model that is both saturated and atomic.} \\$

Esercizio 3. Assume L is countable and that T is complete. Suppose that for every finite tuple x there is a model M that realizes only finitely many types in $S_x(T)$. Prove that T is ω -categorical.

Esercizio 1. Let M be a second countable topological space (i.e. the topology has a countable base). We say that $A \subseteq M$ is meager if it is the countable union of nowhere dense sets.

Use Lemma 12.1 to prove the Kuratowski-Ulam Theorem, i.e. that for $A\subseteq M^2$ the following are equivalent

- 1. A is meager in M^2 with the product topology;
- 2. $\{x \in M : A \cap \{x\} \times M \text{ is not meager}\}\$ is meager in M.

Esercizio 2. Let |x| = 1. Prove that if $S_x(A)$ is countable for every finite set A, then T is small.

Esercizio 3. Assume L is countable and let T be strongly minimal. Prove that the following are equivalent

- 1. T is ω -categorical;
- $2. \quad \text{the algebraic closure of a finite set is finite.} \\$

Esercizio 1. Suppose L(A) is countable. Prove that if T is small over A, then there exists a countable saturated model containing A

Si cerchi di trovare una dimostrazione diretta.

Esercizio 2. Assume L is countable and that T is complete. Suppose that for every finite tuple x there is a model M that realizes only finitely many types in $S_x(T)$. Prove that T is ω -categorical.

$\textbf{Esercizio 3.} \quad \text{Prove that the following are equivalent}$

- 1. T is ω -categorical;
- $2. \quad \text{there is countable model that is both saturated and atomic.} \\$

Esercizio 1. Prove that no theory is ω -categorical over an infinite set A.

Esercizio 2. Prove that a strongly minimal theory that has a model of finite dimension is not ω -categorical.

Esercizio 3. Prove that in a strongly minimal theory the following are equivalent for every type $p(x) \in S(A)$ and every infinite set A

- 1. p(x) is isolated;
- 2. p(x) is algebraic.