Exercise 1.4

Nolan Hauck

Given an algebra \mathcal{A} , show that \mathcal{A} is a σ -algebra if and only if \mathcal{A} is closed under countable increasing unions (i.e. if $\{E_j\}_1^{\infty} \subset \mathcal{A}$ and $E_1 \subset E_2 \subset E_3 \subset \ldots$, then $\bigcup_1^{\infty} E_j \in \mathcal{A}$).

Solution. (\Longrightarrow) This direction is immediate, since σ -algebras are closed under any countable unions.

(\Leftarrow) Conversely, suppose that \mathcal{A} is an algebra which is closed under increasing unions, as described in the problem. Since \mathcal{A} is an algebra, all that remains to be shown is that \mathcal{A} is closed under any countable unions. Let $\{E_j\}_1^{\infty}$ be a collection of sets in \mathcal{A} . Define a new collection $\{F_k\}_1^{\infty}$ via the definition

$$F_k = \bigcup_{j=1}^k E_j$$

for each k. Since \mathcal{A} is an algebra, each $F_k \in \mathcal{A}$ as a finite union. Also $F_1 \subset F_2 \subset F_3 \subset \ldots$, so this is an increasing collection of sets in \mathcal{A} . Thus $\bigcup_{k=1}^{\infty} F_k \in \mathcal{A}$. But

$$\bigcup_{k=1}^{\infty} F_k = \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{k} E_j = \bigcup_{j=1}^{\infty} E_j,$$

so $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$.