

Semántica: Interpretación y Satisfacción

En el ámbito de la lógica de predicados, la semántica se basa en los conceptos de interpretación y satisfacción. Estos conceptos nos permiten comprender cómo se relacionan los símbolos del lenguaje con los objetos y relaciones del mundo real. Para definir la semántica, debemos considerar la interpretación de los símbolos y la valoración de los términos.

by Pablo Argañaras

Made with Gamma

_

Definición de Interpretación

Una interpretación I es una función que asigna a cada símbolo del lenguaje un elemento del dominio. Esta función debe cumplir ciertas condiciones para garantizar que los símbolos representan correctamente los objetos, funciones y relaciones del dominio.

Símbolos de Constante

Los símbolos de constante representan objetos del universo del discurso. Por ejemplo, el símbolo c_1 podría representar el número cero en el dominio de los números naturales.

Símbolos de Función

Los símbolos de función representan funciones del dominio. Por ejemplo, el símbolo f¹ 1 podría representar la función sucesor en los números naturales.

Símbolos de Predicado

Los símbolos de predicado representan relaciones del dominio. Por ejemplo, el símbolo P² ₁ podría representar la relación de igualdad en los números naturales.

Made with Gamma

Ejemplo de Interpretación

Consideremos el ejemplo de la aritmética. Podemos definir una interpretación I para los símbolos c_1 , f_1^2 , f_2^2 y P_1^2 , asignándoles sus correspondientes interpretaciones en el dominio de los números naturales.

1 $I(c_1)$

El cero de los naturales.

 $2 \qquad I(f_1^1)$

La función sucesor en los naturales.

 $I(f^2_1)$

La función suma en los naturales.

4 I(f²₂)

La función multiplicación en los naturales.

5 I(P²₁)

La relación de igualdad en los naturales.

Made with Gamma

3

Propiedades Formuladas

Bajo esta interpretación, podemos formular propiedades como la conmutatividad de la suma o la propiedad del neutro de la suma.

Neutro de la Suma

 $(\forall x) \; \mathsf{P^2_1} \; (f^2_1 \; (x, c_1), x).$ El cero es el neutro de la suma, es decir: $(\forall \; x)(x+0=x).$

Conmutatividad de la Suma

 $(\forall \ x)(\forall \ y) \ P^2_1 \ (f^2_1 \ (x,y), \ f^2_1 \ (y,x)). \ La \ suma \ es \ conmutativa, \ es \ decir:$ $(\forall \ x)(\forall \ y)(x+y=y+x).$

Made with Gamma

4

Interpretaciones Alternativas

Si bien la interpretación estándar es la más común, podemos definir otras interpretaciones para los símbolos. Por ejemplo, podríamos interpretar el símbolo ${\rm f^2}_1$ como la función potencia en los naturales.

Bajo esta nueva interpretación, las propiedades formuladas anteriormente no se cumplirían en el dominio de los números naturales.

Made with Gamma

5

Definición de Valoración

Una valoración v es una función que asigna objetos a todos los términos del lenguaje. Esta función se define en base a la interpretación I y se especifica indicando cómo se asignan objetos a los símbolos de variables.

La valoración de un término se calcula recursivamente, utilizando la interpretación de los símbolos de función y la valoración de los términos que lo componen.

6

Ejemplo de Valoración

Consideremos el término f_1^1 (f_1^2 (x, c_1)) en la interpretación estándar de la aritmética. Si fijamos v(x) = 7, la valoración del término se obtiene de la siguiente manera:

Paso 1

1 $v(f_1^1(f_1^2(x, c_1))) = I(f_1^1)(v(f_1^2(x, c_1)))$

Paso 2

2 $suc(v(f_1^2(x, c_1))) = suc(I(f_1^2)(v(x), v(c_1)))$

Paso 3

3 $suc(+(v(x), v(c_1))) = suc(+(7, 0))$

Paso 4

4 suc(7) = 8

 $X_2 => 4(e)_1 - 10|\overline{5.2}) = \text{Vair vall the term.}$ $E_{JZ} > h|x)_3 - 9.\overline{|52} = =$ $X_2 => 4|x)_3 - 1.\overline{|37|} = =$ $X_2 => 4|x,6 - 19,5 = =$ $X_2 => 4|x)_3 - 25,3 = =$ $E_2 => 4|x)_3 - 25,3 = =$ $E_2 => 4|x)_3 - 69,15 = =$ $X_{JZ} > 4|14) - 292,12 = =$ $X_{JZ} > 4|14) - 292,12 = =$ $X_{JZ} > 1.x - 5(7,7,4) = =$

7

Definición de Satisfacción

La satisfacción de una fórmula A depende de la interpretación I y la valoración v. Para denotar que una fórmula A se satisface con una interpretación I y una valoración v, escribimos $|=_{I,v}$ A.

La satisfacción de una fórmula se define inductivamente, considerando los diferentes tipos de fórmulas y sus componentes.

8

Definición de Verdad, Modelo y Validez

Una fórmula A se satisface cuando existe una interpretación I y una valoración v que cumplen $|=_{I,v}$ A. Si una fórmula A se satisface con una interpretación I cualquiera sea la valoración utilizada, se dice que A es verdadera en I, y que I es un modelo de A.

Las fórmulas verdaderas en toda interpretación se identifican como lógicamente válidas o directamente válidas. Las fórmulas válidas no proporcionan información alguna de un dominio. Las fórmulas que buscamos para representar conocimiento son las verdaderas.

Made with Gamma

9

	Valt	Tiye	Vak	But	Vak	Val	Val
Fomiula fiorsables	=€_/x	=6 <u>Z</u> /x	0	=35)×	=@x	= (4) x	=0
Forniula fiorsables	=4_/a	=61) s	9	= 81/x	-0-	r([9 =	-0
Forniula fiorsables	=6_/a	=67)×	0	=62 %	-0	=80×	-0
Forniula fiorsables	=4_Ja	=49/n	0	=63)×	- 💿 x	= (B)×	=0
Fomiula fiorsables	=6_/a	=47/a	0	=63)×	-0-	=(4)x	-0
Fomiula fiorsables	=€_/я	=67)×	0	=62 ×	9	= (g) n	0
Fomiule fiorsables	=€_Jn	=41/s	0	=62 x	-0.	= (f) ×	-0
Forniule florsables	=4_/3	=66) ×	0	= 65)x	-0	= Øa	-0
Forniule fiorsables	=6_Jx	=67/x	0	=47)×	-⊗a	r(8)=	-0
Formiula fiorsables	=€_/x	=67/x	0	=62×	0-	= (j) a	-0
Fomiula fiorsables	=€_/a	=67/s	0	=67)n	- 💮 x	=(9)x	-0
Fomiula fiorsables	=€_/a	=4]/×	0	=61)×	- Øa	= 0 x	=0
Formiule florsables	=€_/s =€_/s	=30)×	0	=6°)×	-0-	= Øx	-0
Forniula fio sables Forniula fiorsables	=€_/a	=47)x	0	=45×	- Ø x	=(7)a	-0
Formiule flo sables		=63 %	0	=45)x	- Øx	= (0) x	-0
Formule fio sables	=€_J¤	=63 x		=43×	-01	= (vi) x	-0
Fomiule flo sables	=€ /a	=67)×	0	=63) 8	- Øx	=(A)×	-0
Forniula flo sables	=4_/x	=61/x	0	=(6)×	- 🔘 x	= (9)a	-0
Formiula fio sables	=6_Ja	=57/×	0	=61)x	- Øa	= (4)x	-0
Formula fio sables	=€_Ja	=61/x	0	=45)x	- Ø a	= (4) n	-0
Forniula fiorsables	=€ /x	=4 <i>J</i> /x	0	=64×	- 💮 x	= (0) x	-0
Formiule fio cables	=€ /x	=42×	0	=62)2	- Øx	=(0)×	-0
	=€ /n	=67)×	0	=67)×	- Øx		-0

Ejemplos de Satisfacción

Para comprender mejor el concepto de satisfacción, veamos algunos ejemplos:

La fórmula P(x) se satisface si y solo si la tupla (v(x)) pertenece a la relación representada por el símbolo de predicado P.

La fórmula – A se satisface si y solo si A no se satisface.

La fórmula $A \lor B$ se satisface si y solo si A se satisface, B se satisface, o ambas se satisfacen.

Made with Gamma