Examenul de bacalaureat național 2016

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Model

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 - \frac{1}{2} = \frac{1}{2}$, $1 - \frac{1}{3} = \frac{2}{3}$, $1 - \frac{1}{4} = \frac{3}{4}$	3p
	$\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{4}$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	$x_1 = 1 \text{ si } x_2 = 2$	2p
3.	$2x-1=5^2$	3 p
	x = 13, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea A sunt 4 divizori ai lui 1000, deci sunt 4 cazuri favorabile	2p
	nr. cazuri favorabile 4	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{9}$	2p
5.	AO = 3, $BO = 4$, $AB = 5$	3p
	$P_{\Delta AOB} = 3 + 4 + 5 = 12$	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{4}{5}\right)^2 = \frac{9}{25}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -1 & 1 \\ 0 & 0 \end{vmatrix} =$	2p
	$=-1\cdot 0-1\cdot 0=0$	3 p
b)	$A + I_2 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$	2p
	$A \cdot \left(A + I_2\right) = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	3p
c)	$A \cdot A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1+m & -1 \\ 0 & m \end{pmatrix}, \det B = m(m+1)$	3p
	$\det B = 0 \Leftrightarrow m = -1 \text{ sau } m = 0$	2p
2.a)	$f(-1) = (-1)^3 + (-1)^2 + 4 \cdot (-1) + 4 =$	3 p
	=-1+1-4+4=0	2p
b)	Câtul este $X-2$	3p
	Restul este $8X + 8$	2p

Probă scrisă la matematică M tehnologic

Barem de evaluare și de notare toate calificările profesionale

c)	$x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_1x_3 + x_2x_3 = 4$, $x_1x_2x_3 = -4$	3p
	$(x_2x_3 + x_1x_3 + x_1x_2) + (x_3 + x_1 + x_2) - 4 + (-1) - 3$	2n
	$x_1x_2x_3$ -4 4	2p

SUBIECTUL al III-lea (30 de puncte)

		(e a de panete)	
1.a)	$f'(x) = 3x^2 - 12 =$	3p	
	$=3(x^2-4)=3(x-2)(x+2), x \in \mathbb{R}$	2 p	
b)	f(2) = -16, f'(2) = 0	2p	
	Ecuația tangentei este $y - f(2) = f'(2)(x-2) \Rightarrow y = -16$	3 p	
c)	$f'(-2) = 0$, $f'(2) = 0$ și $f'(x) \le 0$, pentru orice $x \in [-2,2]$	3 p	
	$f(2) \le f(x) \le f(-2) \Rightarrow -16 \le f(x) \le 16$, pentru orice $x \in [-2, 2]$	2 p	
2.a)	$\int_{0}^{1} \left(f(x) - 3x^{2} - 1 \right) dx = \int_{0}^{1} 5x^{4} dx = x^{5} \Big _{0}^{1} =$	3р	
	=1-0=1	2p	
b)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} (5x^{4} + 3x^{2} + 1) dx = (x^{5} + x^{3} + x) \Big _{1}^{2} =$	3р	
	$= (2^5 + 2^3 + 2) - (1^5 + 1^3 + 1) = 39$	2 p	
c)	$F: \mathbb{R} \to \mathbb{R}$ este o primitivă a funcției $f \Rightarrow F'(x) = f(x), x \in \mathbb{R}$	2p	
	$F'(x) = 5x^4 + 3x^2 + 1 > 0$ pentru orice număr real x , deci F este crescătoare pe \mathbb{R}	3 p	