

| 1.   | Total numbers of 3-digit numbers that are divisible by 6 and can be formed                                                                                                                                                                         | tal numbers of 3-digit numbers that are divisible by 6 and can be formed by using the digits 1, 2, 3, 4, 5 with repetition, is                                                                     |  |  |  |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 2.   | et 5 digit numbers be constructed using the digits 0, 2, 3, 4, 7, 9 with repetition allowed, and are arranged in ascending order with serial numbers. Then the                                                                                     |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|      | serial number of the number 42923 is                                                                                                                                                                                                               |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 3.   |                                                                                                                                                                                                                                                    | , using the digits 1, 2, 3, 4, 5 and 6 without repetition of digits. Then the total number                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|      | of such numbers is                                                                                                                                                                                                                                 |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 4.   | The letters of the word 'MANKIND' are written in all possible orders and ar 'MANKIND' is                                                                                                                                                           | ranged in serial order as in an English dictionary. Then the serial number of the word                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| 5.   | A number is called a palindrome if it reads the same backward as well as for palindromes, which are divisible by 55, is                                                                                                                            | A number is called a palindrome if it reads the same backward as well as forward. For example 285582 is a six digit palindrome. The number of six digit palindromes, which are divisible by 55, is |  |  |  |  |  |  |  |  |  |  |
| 6.   | The number of five-digit numbers, greater than $40000$ and divisible by 5, where $\frac{1}{2}$ is the five-digit numbers.                                                                                                                          | nich can be formed using the digits 0, 1, 3, 5, 7 and 9 without repetition, is equal to                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|      | (1) 132 ngo /// mathongo /// mathongo /// mathongo ///                                                                                                                                                                                             | (2) 120 hongo /// mathongo /// mathongo /// mathongo /// r<br>(4) 96                                                                                                                               |  |  |  |  |  |  |  |  |  |  |
| 7.   | The number of arrangements of the letters of the word "INDEPENDENCE"                                                                                                                                                                               | in which all the vowels always occur together is                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|      | (1) 16800 Mathongo Mathongo Mathongo Mathongo                                                                                                                                                                                                      | (2) 33600 ngo // mathongo // mathongo // r                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|      | (3) 18000                                                                                                                                                                                                                                          | (4) 14800                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| 8.   | If the number of words, with or without meaning. which can be made using is $(6!)k$ then $k$ is equal to                                                                                                                                           | all the letters of the word MATHEMATICS in which $C$ and $S$ do not come together,                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|      | (1) 2835                                                                                                                                                                                                                                           | (2) 5670                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|      | (3) 1890 mathongo mathongo mathongo mathongo                                                                                                                                                                                                       | (4) 945 hongo /// mathongo /// mathongo /// mathongo /// r                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 9.   | Number of 4-digit numbers (the repetition of digits is allowed) which are made using the digits 1, 2, 3 and 5, and are divisible by 15, is equal to                                                                                                |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 10.  | Total number of 6- digit numbers in which only and all the five digits 1,3,                                                                                                                                                                        |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|      | (1) $\frac{1}{2}$ (6!) (3) $5^6$                                                                                                                                                                                                                   | (2) 6! thongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ r (4) $\frac{5}{2}$ (6!)                                                                          |  |  |  |  |  |  |  |  |  |  |
| 11.  | The number of 4-letter words, with or without meaning, each consisting of 2 UNIVERSE without repetition is                                                                                                                                         | 2 vowels and 2 consonants, which can be formed from the letters of the word                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 12.  | The total number of 4-digit numbers whose greatest common divisor with 5-                                                                                                                                                                          | 4 is 2 , is                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| 13.  | Let $x$ and $y$ be distinct integers where $1 \le x \le 25$ and $1 \le y \le 25$ . Then, the                                                                                                                                                       | e number of ways of choosing $x$ and $y$ , such that $x + y$ is divisible by $5$ , is                                                                                                              |  |  |  |  |  |  |  |  |  |  |
| 14.  | The students $S_1, S_2, \ldots, S_{10}$ are to be divided into 3 groups $A$ , $B$ and $C$ such that each group has at least one student and the group $C$ has at most 3 students. Then the total number of possibilities of forming such groups is |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 15.  |                                                                                                                                                                                                                                                    | pose one ball is randomly drawn from each of the boxes. Denote by $n_i$ , the label of                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|      | the ball drawn from the $i^{ m th}$ box, $(i=1,\ 2,\ 3)$ . Then, the number of ways in                                                                                                                                                             | which the balls can be chosen such that $n_1 < n_2 < n_3$ is :                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|      | (1) 240 ngo /// mathongo /// mathongo /// mathongo                                                                                                                                                                                                 | (2) 82 thongo /// mathongo /// mathongo /// r                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|      | (3) 120                                                                                                                                                                                                                                            | (4) 164                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 16.  | The total number of positive integral solutions $(x,\ y,\ z)$ such that $xyz=24$                                                                                                                                                                   | is:                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|      | (1) 45 ongo /// mathongo /// mathongo /// mathongo                                                                                                                                                                                                 | /(2) 30 thongo /// mathongo /// mathongo /// mathongo /// r                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|      | (3) 36                                                                                                                                                                                                                                             | (4) 24                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| 17.  | The total number of 3—digit numbers whose sum of digits is 10, is                                                                                                                                                                                  |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 18.  | The number of ways, in which 5 girls and 7 boys can be seated at a round to                                                                                                                                                                        |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|      | (1) 720<br>(2) 7(22) <sup>2</sup>                                                                                                                                                                                                                  | $(2) 126(5!)^2$                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| ///. | (3) 7(360) <sup>2</sup> /// mathongo /// mathongo                                                                                                                                                                                                  | (4) 7(720) <sup>2</sup> mg // mathongo // mathongo // mathongo // r                                                                                                                                |  |  |  |  |  |  |  |  |  |  |
| 19.  | The sum of all the 4-digit distinct numbers that can be formed with the digit                                                                                                                                                                      |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|      | (1) 26664<br>(3) 122234                                                                                                                                                                                                                            | (2) 122664<br>(4) 22264 " mathongo                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| 20   | (3) 122204                                                                                                                                                                                                                                         | (4) 22204                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| ///. |                                                                                                                                                                                                                                                    | e segments $AB$ , $BC$ , $CD$ , $DA$ respectively. Let $\alpha$ be the number of triangles quadrilaterals having these points from different sides as vertices. Then $(\beta - \alpha)$ is         |  |  |  |  |  |  |  |  |  |  |
|      | (1) 795                                                                                                                                                                                                                                            | (2) 1173                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
|      | (3) 1890 go ///. mathongo ///. mathongo ///. mathongo                                                                                                                                                                                              |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 21.  | If all the six digit numbers $x_1x_2x_3x_4x_5x_6$ with $0 < x_1 < x_2 < x_3 < x_4 < x_5$ number is                                                                                                                                                 | $<$ ${ m x}_{ m 6}$ are arranged in the increasing order, then the sum of the digits in the ${ m 72^{th}}$                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 22.  | The number of 7-digit numbers which are multiples of 11 and are formed us                                                                                                                                                                          | ing all the digits 1, 2, 3, 4, 5, 7 and 9 is mathongo mathongo r                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |



| 23. | 3. Let $b_1b_2b_3b_4$ be a 4-element permutation with $b_i \in \{1, 2, 3, \ldots, 100\}$ for $1 \le i \le 4$ and $b_i \ne b_j$ for $i \ne j$ , such that either $b_1$ , $b_2$ , $b_3$ are consecutive integers or $b_2$ , $b_3$ , $b_4$ are consecutive integers. Then the number of such permutations $b_1b_2b_3b_4$ is equal to |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|------|----------------|-------|-------------------|-----|--------------------|--------|---------------|-------|-----------------|---------|-----------------|------------|
|     | Let $n$ be a non-negative integer. Then the number of divisors of the form $4n+1$ of the number $(10)^{10}\cdot(11)^{11}\cdot(13)^{13}$ is equal to                                                                                                                                                                               |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
| 25. | A natural number has prime factorization given by $n=2^x3^y5^z$ , where $y$ and $z$ are such that $y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}$ , $y>z$ . Then the number of odd divisors of $n$ , including 1, is:                                                                                                                     |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     | (1) $a_1 a_2 a_3 a_4 a_5 a_5 a_6 a_6 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7 a_7$                                                                                                                                                                                                                                                     |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
| •   |                                                                                                                                                                                                                                                                                                                                   |        | 0. 11.1.        |      |                | n _   | <i>m</i>          |     | ,                  |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        | f two digit num |      |                |       | mathanaa          |     | no athon a         | ///    | mathonao      | . /// | mathonao.       | ///     | mathonao        |            |
| 27. | The number of ways to distribute 30 identical candies among four children $C_1$ , $C_2$ , $C_3$ and $C_4$ so that $C_2$ receives at least 4 and at most 7 candies, $C_3$ receives at least 2 and at most 6 candies, is equal to                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 | es .    |                 |            |
|     | (1) 205                                                                                                                                                                                                                                                                                                                           |        |                 | •    |                |       |                   | (2  | (a) 615<br>(b) 430 |        |               |       |                 |         |                 |            |
|     | (3) 510                                                                                                                                                                                                                                                                                                                           |        |                 |      |                |       |                   |     | ,                  |        |               |       |                 |         |                 |            |
| 28. |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     | can be placed in   |        |               |       | -               |         |                 | least      |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
| 29. |                                                                                                                                                                                                                                                                                                                                   |        |                 | •    | •              |       |                   |     | which exactly o    |        |               |       |                 |         |                 |            |
|     | marks for eac                                                                                                                                                                                                                                                                                                                     |        |                 |      |                |       |                   |     | n, the number o    |        |               |       | _               |         | gets 5 marks is | s<br>/// r |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
| 30. | In an examina                                                                                                                                                                                                                                                                                                                     | ation, | 5 students have | beer | allotted their | seats | as per their roll | num | bers. The num      | ber of | ways, in whic | h non | e of the studen | ts sits | on the allotted | seat,      |
|     | 18<br>mathongo                                                                                                                                                                                                                                                                                                                    |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |
|     |                                                                                                                                                                                                                                                                                                                                   |        |                 |      |                |       |                   |     |                    |        |               |       |                 |         |                 |            |