Fisica Tecnica

Concetti base

Conversioni

1 atm	101 325 Pa
1 ata	98 066.5 Pa
1 bar	100 000 Pa
1 psi	6895 Pa
1 kcal	4186 J
x °C	$x + 273.15 \mathrm{K}$
x °F	$\frac{5}{9}(x + 459.67) \mathrm{K}$

Costanti

Costante dei gas ideali	$R = 8314 \mathrm{J/kmol}\mathrm{K}$
Entalpia solidif. H_2O	$h_{lst,\mathrm{H_2O}} = -333\mathrm{kJ/kg}$
Entalpia evaporazione H_2O	$h_{lvt, \rm H_2O} = 2501.6 \rm kJ/kg$
Entalpia sublimazione H_2O	$h_{svt, \rm H_2O} = 2834.6 \rm kJ/kg$
Pressione punto triplo H ₂ O	$P_0 = 611.2 \text{Pa}$
Temperatura punto triplo H_2O	$T_0 = 0.01 ^{\circ}\text{C} = 273.16 \text{K}$
Pressione stato critico H_2O	$P_{cr} = 22.09 \mathrm{MPa}$
Temperatura stato critico H_2O	$T_{cr} = 647.3 \mathrm{K}$
Calore specifico ghiaccio	$c_s = 2093 \mathrm{J/kg}\mathrm{K}$
Volume specifico ghiaccio	$v_s = 0.00109 \mathrm{m}^3/\mathrm{kg}$
Calore specifico acqua	$c_s = 4186 \mathrm{J/kg} \mathrm{K}$
Volume specifico acqua	$v_s = 0.001 \mathrm{m}^3/\mathrm{kg}$
Calore specifico medio vapore	$c_p = 2009 \mathrm{J/kg}\mathrm{K}$

Masse atomiche (kg/kmol):

$$H = 1,008$$
 $He = 4,003$ $C = 12,011$ $N = 14,007$

$$O = 15,999$$
 $Ne = 20,18$ $Ar = 39,95$ $Kr = 83,798$

Masse molecolari:

$$H_2O = 18,015$$
 aria $(79/21) = 28,85$ $CH_4 = 16,043$

Sistema termodinamico

	Calore	Lavoro	Massa
Adiabatico	no		
Diatermano	sì		
Rigido		no	
Deformabile		sì	
Chiuso (impermeabile)			no
Aperto (permeabile)			sì
Isolato	no	no	no

Grandezze

- Intensive: non dipendono dall'estensione del sistema (temperatura, pressione, densità);
- Estensive: dipendono dall'estensione del sistema (massa, volume);
- Estensive specifiche: estensiva/estensiva $(v = \frac{V}{M})$.

Legge di Duhem

In un sistema semplice monocomponente il numero di parametri intensivi o estensivi specifici necessari per descriverlo all'equilibrio è 2.

Regola di Gibbs

$$V = C + 2 - F$$

numero di variabili intensive indipendenti

numero di componenti

numero di fasi

Ne deriva l'esistena di una legge di stato:

$$f(P, v, T) = 0$$

Trasformazioni termodinamiche

Trasformazione	Caratteristiche
Quasi-statica o	Costituita da una successione
internamente reversibile	di stati di equilibrio; può non essere reversibile
Reversibile	Se percorsa in senso inverso, ri- porta sistema e ambiente nello stato iniziale
Irreversibile	Non è rappresentabile su un diagramma di stato
Chiusa o ciclica	Gli estremi della trasformazione coincidono
Elementare	Se una delle grandezze di stato si mantiene costante durante la trasformazione

Gas ideali

Un gas può essere considerato ideale per pressioni minori di 10bar.

$$PV = nRT = MR^*T$$

$$Pv = R^*T$$

Ppressione [Pa]

Vvolume [m³]

nnumero di moli [mol]

Rcostante universale dei gas ideali 8314 J/kmol K $= \frac{R}{M_m} = \frac{nR}{M}, \text{ costante del gas [J/Kg K]}$

Ttemperatura [K]

 M_m massa molecolare

Gas reali

Modello per gas in condizioni di temperatura e pressioni elevate. Equazione di van der Waals:

$$\left(P + \frac{a}{v_m^2}\right)(v_m - b) = RT$$

Liquidi e solidi

pressione costante:

$$dv = \left(\frac{\partial v}{\partial T}\right)_P dT + \left(\frac{\partial v}{\partial P}\right)_T dP$$
$$dv = \beta v dT - K_T v dP$$

Variazione relativa del volume in funzione della temperatura, a

$$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_{\rm P} \;\;$$
 coeff. di dilatazione termica isobaro

Variazione di volume di un corpo al variare della pressione, a temperatura costante:

$$K_T = -\frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_T$$
 coeff. di comprimibilità isotermo

 β e K_T possono essere considerati costanti per ampi intervalli di temperatura e di pressione. La precedente relazione differenziale è quindi integrabile e lo stato calcolabile.

Un modello semplificato consiste nel considerare liquidi e solidi incomprimibili (v = costante).

Principi della termodinamica Principi di conservazione

- Conserazione della massa;
- Conserazione della energia (I principio);
- Conserazione della entropia (II principio):

Primo principio della termodinamica per sistemi chiusi

Per un sistema semplice all'equilibrio è definita una proprietà intrinseca (funzione di stato) detta energia interna U la cui variazione è il risultato di interazioni del sistema con l'ambiente esterno.

L'energia che è immagazinata in un sistema e che non va a cambiare né l'energia cinetica del centro di massa, né quella potenziale (e neanche l'energia elastica o chimica o elettrica) è chiamata energia interna.

$$\Delta U = Q^{\leftarrow} - L^{\rightarrow}$$

energia interna del sistema

calore entrante nel sistema

lavoro uscente dal sistema

L'energia interna è una grandezza estensiva (additiva):

$$U_z = U_1 + U_2 + \dots$$

Per una trasformazione ciclica:

$$\Delta U_{\rm ciclo} = 0$$

Per un sistema isolato:

$$\Delta U_{\rm isolato} = 0$$

Primo principio in forma differenziale:

$$\mathrm{d}u = \delta q^{\leftarrow} - \delta l^{\rightarrow}$$

Secondo principio della termodinamica per sistemi chiusi

Per un sistema all'equilibrio esiste una funzione di stato detta entropia S la cui variazione per una trasformazione reversibile è data da:

$$\Delta S = \int \frac{\delta Q_{rev}^{\leftarrow}}{T}$$

L'entropia è una grandezza estensiva (additiva):

$$S_z = S_1 + S_2 + \dots$$
 $\Delta S_z = \Delta S_1 + \Delta S_2 + \dots$

La variazione di entropia totale di un sistema isolato è sempre maggiore di zero e tende a zero con il tendere dei processi alla reversibilità:

$$\Delta S_{\text{isolato}} \geq 0$$

In un sistema chiuso il bilancio entropico è dato da:

$$\Delta S=S_Q^\leftarrow+S_{irr}$$
 S_Q^\leftarrow dovuta dallo s
cmabio di calore Q
$$S_{irr}\geq 0 \qquad \text{segno } S_Q^\leftarrow=\text{segno } Q^\leftarrow$$

Trasformazioni Lavoro termodinamico

$$\delta L^{\rightarrow} = PA \, \mathrm{d}s = P \, \mathrm{d}V$$
 (sistema cilindro-pistone)
$$\delta l^{\rightarrow} = P \, \mathrm{d}v \text{ (grandezze specifiche)}$$

$$l^{\rightarrow} = \int_{i}^{f} P \, \mathrm{d}v \text{ (calcolabile conoscendo } P = P(v))$$

Il lavoro (specifico) è pari all'area sottesa (integrale) dal grafico della trasformazione nel piano P-v.

Il lavoro reversibile è maggiore del lavoro irreversibile.

Il lavoro dipende dal percorso: non è funzione di stato.

Calori specifici

Capacità termica
$$C_x = \left(\frac{\delta Q^{\leftarrow}}{\mathrm{d}T}\right)_x$$
Calore specifico $c_x = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{\mathrm{d}T}\right)_x$

Il pedice x precisa la trasformazione lungo la quale viene sc
mabiato il calore $\delta Q.$

A pressione cost.
$$c_P = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{\mathrm{d}T} \right)_P = \left(\frac{\delta q^{\leftarrow}}{\mathrm{d}T} \right)_P$$
A volume cost.
$$c_V = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{\mathrm{d}T} \right)_V = \left(\frac{\delta q^{\leftarrow}}{\mathrm{d}T} \right)_V$$

Inoltre si ha che

A pressione cost.
$$c_P = \left(\frac{\partial h}{\partial T}\right)_P = c_P(T, P)$$

A volume cost. $c_V = \left(\frac{\partial u}{\partial T}\right)_V = c_V(T, P)$

Entalpia

L'entalpia è una funzione di stato che esprime la quantità di energia che un sistema può scambiare con l'amabiente.

$$h = u + Pv$$

$$dh = du + v dP + P dv = \delta q^{\leftarrow} + v dP$$

$$\delta q^{\leftarrow} = dh - v dP$$

Calori specifici per i gas ideali

Nei gas ideali, a seguito di evidenze sperimentali, si ha che u=u(T), ovvero l'energia interna dipende solo dalla temperatura. Inoltre anche siccome h=u+PV e $Pv=R^*T$, otteniamo che h=h(T). Quindi c_V e c_P sono dipendenti solo dalla temperatura e si ha che

A pressione cost.
$$c_P = c_P(T) = \left(\frac{\mathrm{d}h}{\mathrm{d}T}\right)$$

A volume cost. $c_V = c_V(T) = \left(\frac{\mathrm{d}u}{\mathrm{d}T}\right)$

Relazione di Mayer

$$c_P = \frac{\mathrm{d}h}{\mathrm{d}T} = \frac{\mathrm{d}u + \mathrm{d}(Pv)}{\mathrm{d}T} = \left(\frac{\mathrm{d}u}{\mathrm{d}T}\right) + \frac{\mathrm{d}R^*T}{\mathrm{d}T} = c_v + R^*$$

Calori specifici per un gas perfetto

Per i gas **perfetti** (gas ideali per variazioni di temperatura non troppo elevate) i calori specifici non dipendono neanche dalla temperatura:

	c_v	c_p
Gas Monoatomico	$\frac{3}{2}R^{*}$	$\frac{5}{2}R^{*}$
Gas Biatomico o Poliatomico lineare	$\frac{5}{2}R^*$	$\frac{7}{2}R^*$
Gas Poliatomico non lineare	$\frac{6}{2}R^{*}$	$\frac{8}{2}R^{*}$

 $\begin{array}{cccc} & \text{Monoatomico} & \text{He, Ar, } \dots \\ & \text{Linare} & \text{O}_2, \, \text{N}_2, \, \text{H}_2, \, \text{CO}_2, \, \dots \\ & \text{Non lineare} & \text{CH}_4, \, \text{H}_2\text{O}, \, \dots \\ \end{array}$

Calori specifici per i liquidi

Liquido incomprimibile ideale $\hat{C}_v = C_P = c(T)$. Liquido incomprimibile perfetto $C_v = C_P = \text{cost.}$

Politropiche

Trasformazione quasi statica per un sistema con un gas ideale dove $c_x = \cos t$.

Si definisce indice della politropica il temrine $n = \frac{c_x - c_P}{c_x - c_V}$

$$Pv^n = \cos t$$
 $Tv^{n-1} = \cot \frac{T^n}{P^{n-1}} = \cot PT^{\frac{n}{1-n}} = \cot$

Trasformazione	c_x	$n = \frac{c_x - c_P}{c_x - c_V}$
Isoterma	$\pm \infty$	1
Isocora	c_v	$\pm \infty$
Isobara	c_P	0
Adiabatica	0	$k = \frac{c_p}{c_v}$

Per $n \neq 1$ (quindi non isoterma) l'integrale del lavoro diventa:

$$l^{\rightarrow} = \int_{1}^{2} P \, dv = \frac{P_{1}v_{1}}{n-1} \left[1 - \left(\frac{v_{1}}{v_{2}} \right)^{n-1} \right]$$
$$= \frac{P_{1}v_{1}}{n-1} \left[1 - \left(\frac{P_{2}}{P_{1}} \right)^{\frac{n-1}{n}} \right]$$

Per n = 1 (quindi isoterma) l'integrale del lavoro diventa:

$$l^{\rightarrow} = \int_{1}^{2} P \, \mathrm{d}v = P_{1} v_{1} \ln \frac{v_{2}}{v_{1}} = P_{1} v_{1} \ln \frac{P_{1}}{P_{2}}$$

Diagramma T-s

L'area sottesa dalla curva in una trasformazione internamente reversibile è uguale al calore scambiato dal sistema nella trasformazione:

$$\mathrm{d}S_{rev} = \frac{\mathrm{d}Q_{rev}}{T} \qquad Q_{rev} = \int_i^f \mathrm{d}Q_{rev} = \int_i^f T(S) \, \mathrm{d}S$$

Nel piano T-s tutte le trasformazioni politropiche sono esponenziali:

$$T = T_0 e^{\frac{s - s_0}{c_x}}$$

Isoterme (Isoentalpiche con gas ideali) Adiabatiche reversibili (isoentropiche) Isocore $(c_n < c_D)$ rette orizzontali rette verticale più ripide delle isobare

Calcolo delle grandezze termodinamiche Per i gas perfetti

Trasf. intern. reversibile	$l = \int P \mathrm{d}v$	$q = \int \mathrm{d}q$
P = cost	$P\Delta v$	$c_p \Delta T$
$v = \cos t$	0	$c_v \Delta T$
T = cost	$R^*T \ln \frac{v_2}{v_1} =$	$R^*T \ln \frac{v_2}{v_1} =$
	$-R^*T \ln \frac{P_2}{P_1}$	$-R^*T \ln \frac{P_2}{P_1}$
dQ = 0	$-c_v\Delta T$	0
$c_x = \cos t$	$(c_x - c_v)\Delta T$	$c_x \Delta T$

$$\Delta u = c_v \Delta T$$
 $\Delta h = c_p \Delta T$

$$\Delta s = c_v \ln \frac{T_2}{T_1} + R^* \ln \frac{v_2}{v_1}$$

$$= c_p \ln \frac{T_2}{T_1} - R^* \ln \frac{P_2}{P_1}$$

$$= c_p \ln \frac{v_2}{v_1} + c_v \ln \frac{P_2}{P_1}$$

Per i liquidi incomprimibili Se perfetti (v = cost):

$$\Delta u = c\Delta T$$
 $\Delta s = c \ln \frac{T_2}{T_1}$

Se ideali $c_p = c(T)$, $\beta = 0$ e $K_T = 0$:

$$dh = c(T) dT + v dP$$
 $ds = c(T) \frac{dT}{T}$

Se perfetti:

$$\Delta h = c\Delta T + v\Delta P$$

Macchina termodinamica

La macchina termodinamica è un sistema termodinamico composto ed isolato che nel caso più semplice è realizzato da

- due serbatoi di calore
- un serbatoio di lavoro
- una macchina ciclica che è in grado di interagire con continuità con i serbatoi di calore e lavoro

Serbatoio di calore sistema termodinamico che scambia solo calore con l'esterno senza alterare il suo stato interno; gli scambi avvengono con trasformazioni quasi-statiche internamente reversibili.

Serbatoio di lavoro sistema termodinamico che scambia solo lavoro con l'esterno senza alterare il suo stato interno; gli scambi avvengono con trasformazioni quasi-statiche internamente reversibili.

Risoluzione problemi macchine termiche

Bisogna impostare e risolvere il sistema contente le equazioni di bilancio

$$\begin{cases} \Delta U_Z = 0\\ \Delta S_Z = S_{irr} \end{cases}$$

Per macchina motrice con masse infinite:

$$\begin{cases} -Q_C + Q_F + L = 0\\ -\frac{Q_C}{T_C} + \frac{Q_F}{T_F} = S_{irr} \end{cases}$$

Per macchina operatrice con masse infinite:

$$\begin{cases} Q_C - Q_F - L = 0\\ \frac{Q_C}{T_C} - \frac{Q_F}{T_F} = S_{irr} \end{cases}$$

Rendimenti macchine termiche

Macchina motrice

 \rightarrow serbatoi a massa infinita

 \vdash reversibile $(S_{irr} = 0)$

$$\begin{split} \eta &= \frac{L}{Q_C} \quad \eta_{II} = \frac{\eta}{\eta_{rev}} = \frac{L}{L_{rev}} \\ \eta &= 1 - \frac{T_F}{T_C} - \frac{T_F}{Q_C} S_{irr} \\ \eta_{rev} &= 1 - \frac{T_F}{T_C} \end{split}$$

Macchina operatrice

(serbatoi a temp. cost.)

$$\begin{array}{lll} & \varepsilon_f = \frac{Q_F}{L} & \eta_{II} = \frac{\varepsilon}{\varepsilon_{rev}} = \frac{L_{rev}}{L} \\ & \to \text{reversibile} & \varepsilon_{f,rev} = \frac{T_F}{T_C - T_F} \\ & \to \text{pompa di calore} & \varepsilon_{pdc} = \frac{Q_C}{L} \\ & \to \text{reversibile} & \varepsilon_{pdc,rev} = \frac{T_C}{T_C - T_F} \end{array}$$

Sistemi aperti Bilancio di massa

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \sum_{i} \dot{m}_{i}^{\leftarrow}$$

Equazione di continuità

$$\dot{m} = \rho w \Omega$$

Bilancio di energia

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{i} \dot{E}_{i}^{\leftarrow}$$

dove ${\cal E}$ rappresenta l'energia associata al trasporto di massa e al lavoro e calore scambiato

Lavoro di pulsione

$$L_P^{\leftarrow} = -\int_{V+V_m}^V P \, \mathrm{d}V = PV_m = m_i P v_i$$

Energia associata al trasporto di massa

$$E_m = \sum_{i} m_i^{\leftarrow} \left(u + gz + \frac{w^2}{2} \right)$$

Bilancio energetico

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{i} \dot{m}_{i}^{\leftarrow} \left(h + gz + \frac{w^{2}}{2} \right) + \dot{Q}^{\leftarrow} - \dot{L}_{e}^{\rightarrow}$$

Bilancio di entropia

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \sum_{i} \dot{m}_{i}^{\leftarrow} s_{i} + \dot{S}_{Q^{\leftarrow}} + \dot{S}_{irr}$$

Regime stazionario

$$\dot{m}_{ingresso}^{\leftarrow} = -\dot{m}_{uscita}^{\leftarrow}$$

$$\dot{m}^{\leftarrow} \left[(h_i - h_u) + g(z_i - z_u) + \frac{(w_i^2 - w_u^2)}{2} \right] + \dot{Q}^{\leftarrow} - \dot{L}_e^{\rightarrow} = 0$$

$$\dot{m}^{\leftarrow} (s_i - s_u) + \dot{S}_{C^{\leftarrow}} + \dot{S}_{irr} = 0$$

Macchina aperta

Turbina, compressore e pompa

$$\dot{m}^{\leftarrow}(h_i - h_u) - \dot{L}_e^{\rightarrow} = 0$$

$$\dot{m}^{\leftarrow}(s_i - s_u) + \dot{S}_{irr} = 0$$

Scambiatore di calore

$$\dot{m}^{\leftarrow}(h_i - h_u) + \dot{Q}^{\leftarrow} = 0$$
$$\dot{m}^{\leftarrow}(s_i - s_u) + \dot{S}_{Q^{\leftarrow}} + \dot{S}_{irr} = 0$$

Diffusore $(w\downarrow)$ e ugello $(w\uparrow)$

$$(h_i - h_u) + \frac{(w_i^2 - w_u^2)}{2} = 0$$
$$\dot{m}^{\leftarrow}(s_i - s_u) + \dot{S}_{irr} = 0$$

Valvola di laminazione

$$(h_i - h_u) = 0$$
$$\dot{m}^{\leftarrow}(s_i - s_u) + \dot{S}_{irr} = 0$$

Rendimento isoentropico

$$\eta_{is,turbina} = \frac{\dot{L}_{reale}^{\rightarrow}}{\dot{L}_{ideale}^{\rightarrow}} = \frac{h_1 - h_{2,reale}}{h_1 - h_{2,ideale}}$$

Compressore

$$\eta_{is,compressore} = \frac{\dot{L}_{ideale}^{\rightarrow}}{\dot{L}_{reale}^{\rightarrow}} = \frac{h_1 - h_{2,ideale}}{h_1 - h_{2,reale}}$$

Lavoro specifico per unità di massa fluente

Dopo vari passaggi si ottiene che

$$-\delta l_e^{\rightarrow} = v \, \mathrm{d}P + T \, \mathrm{d}s_{irr}$$

Integrando fra la sezione di ingresso e quella di uscita:

$$l_e^{\rightarrow} = -\int_i^u v \, \mathrm{d}P - \int_i^u T \, \mathrm{d}s_{irr}$$

dove il secondo termine è l'energia dissipata per irreversibilità interna.

Sistemi bifase

Le grandezze estensive specifiche sono la media pesata sulle masse:

$$m=m_{\alpha}+m_{\beta} \qquad E=E_{\alpha}+E_{\beta}$$

$$e=\frac{m_{\alpha}}{m}e_{\alpha}+\frac{m_{\beta}}{m}e_{\beta}$$
 frazione massica:
$$x_{\alpha}=\frac{m_{\alpha}}{m} \quad x_{\beta}=\frac{m_{\beta}}{m}$$

Dalla regola di Gibbs il numero di variabili intensive indipendenti per bifase monocomponente è 1, pressione e temperatura non sono indipendenti.

La transizione di fase è a P costante: $dh = \delta q$.

Stati di aggregazione

Liq. sottoraffreddato	Non in procinto di evaporare
Liq. saturo	In procinto di evaporare
Vapore umido	Stato di transizione
Vapore saturo	In procinto di condensazione
Vapore surriscaldato	Non in procinto di condensazione

Entalpia di transizione

$$h_{
m solido} < h_{
m liquido} < h_{
m vapore}$$

Per l'acqua allo stato triplo:

Solidificazione
$$h_{lst,H_2O} = -333 \,\mathrm{kJ/Kg}$$

Evaporazione $h_{lvt,H_2O} = 2501.6 \,\mathrm{kJ/Kg}$

Titolo di vapore, liquido e solido

$$x = x_v = \frac{m_v}{m} \quad x_l = \frac{m_l}{m} \quad x_s = \frac{m_s}{m}$$
$$x_v + x_l + x_s = 1$$

Per interpolare nelle tabelle:

$$\frac{X - X_1}{X_2 - X_1} = \frac{T - T_1}{T_2 - T_1}$$

$$Y = Y_1 + \frac{Y_2 - Y_1}{X_2 - X_1} (X - X_1)$$

Approssimazioni per entropia e entalpie di solidi e liquidi

Formule valide per l'acqua, partendo da uno stato di riferimento, per esempio il punto triplo.

Allo stato solido:

$$h = h_0 + h_{lst} + c_s(T - T_0) + v(P - P_0)$$

$$s = s_0 + s_{lst} + c_s \ln \frac{T}{T_0} = s_0 + \frac{h_{lst}}{T_0} + c_s \ln \frac{T}{T_0}$$

Allo stato liquido:

$$h = h_0 + c_l(T - T_0) + v(P - P_0)$$

$$s = s_0 + c_l \ln \frac{T}{T_0}$$

Con le tabelle è possibile trovare h per l'acqua sottoraffreddata:

$$h = h_{ls}(P_{sat}(T)) + v(P - P_{sat}(T))$$

dove $v = v_{ls}(P_{sat}(T))$. Di solito il termine $v\Delta P$ è trascurabile.

Cicli simmetrici

Un ciclo formato da 4 politropiche, uguali a due a due.

$$v_1v_3 = v_2v_4$$

 $P_1P_3 = P_2P_4$
 $T_1T_3 = T_2T_4$

$$P_1 v_1^n = P_2 v_2^n$$

$$P_2 v_2^m = P_3 v_3^m$$

$$P_3 v_3^n = P_4 v_4^n$$

$$P_4 v_4^m = P_1 v_1^m$$

Ciclo Carnot

Il ciclo di Carnot è un ciclo simmetrico composto da due isoentropiche (adiabatiche reversibili) e due isoterme.

Il rendimento ciclo di Carnot vale:

$$\eta = \frac{L}{Q_C} = 1 - \frac{Q_F}{Q_C} = 1 - \frac{T_1}{T_3}$$

Irreversibilità

Se irreversibilità esterna $(T_1 > T_F e T_2 < T_C)$:

$$\eta_{rev} = 1 - \frac{T_F}{T_C} > \eta_{ciclo} = 1 - \frac{T_1}{T_3}$$

Bilancio entropico su tutta macchina termica:

$$-\frac{Q_C}{T_C} + \frac{Q_F}{T_F} = S_{irr}$$

Bilancio entropico su macchina ciclica (ciclo di Carnot):

$$\frac{Q_C}{T_3} = \frac{Q_F}{T_1} = \Delta S$$

Da cui si ricava:

$$Q_C \left(\frac{T_1}{T_F T_3} - \frac{1}{T_C} \right) = S_{irr}$$

Se irreversibilità interna $(s_1 < s_2 e s_3 < s_4)$: Bilancio entropico su tutta macchina termica:

$$-\frac{Q_C}{T_C} + \frac{Q_F}{T_F} = S_{irr}$$

Bilancio entropico su macchina ciclica:

$$\frac{Q_C}{T_C} = S_3 - S_2 \quad \text{e} \quad \frac{Q_F}{T_F} = S_4 - S_1$$

Da cui deriva: $S_2 - S_3 + S_4 - S_1 = S_{irr} > 0$

Ciclo Joule-Brayton

Ciclo simmetrico costituito da due isoentropiche e due isoentropiche e due isoentropiche e Applicazioni: impianti a turbina a gas con ciclo chiuso o aperto.

Nell'ipotesi di gas perfetto e ciclo ideale simmetrico:

$$\dot{Q}_c = \dot{m}(h_3 - h_2)$$
 $\dot{Q}_f = \dot{m}(h_4 - h_1)$ $\dot{Q}_c = \dot{m}c_p(T_3 - T_2)$ $\dot{Q}_f = \dot{m}c_p(T_4 - T_1)$

Il rendimento termodinamico del ciclo vale:

$$\eta_{JB} = \frac{\dot{L}}{\dot{Q}_c} = 1 - \frac{\dot{Q}_f}{\dot{Q}_c} = 1 - \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{T_1}{T_2}$$

Definendo il rapporto di compressione: $r_p = \frac{P_2}{P_1}$

$$\eta_{JB} = 1 - \frac{1}{r_p^{\frac{k-1}{k}}}$$

 $\min \eta \text{ per } r_p = 1 \quad \max \eta \text{ per } T_2 \to T_3 \Rightarrow r_p^{\max} = \left(\frac{T_3}{T_1}\right)^{\frac{k}{k-1}}$

Lavoro specifico per ciclo Joule-Brayton

$$l = l_T - l_c = c_p(T_3 - T_4) - c_p(T_2 - T_1)$$

Il lavoro massimo si ha in corrispondenza di:

$$r_p^{\text{opt}} = \left(\frac{T_3}{T_1}\right)^{\frac{k}{2(k-1)}} = \sqrt{r_p^{\text{max}}}$$
 e $T_4 = T_2 = \sqrt{T_1 T_3}$

Ciclo Joule-Brayton con rigenerazione

Il rendimento nel caso $T_{2'} = T_4$ è:

$$\eta_{\text{rig}} = \frac{\dot{L}}{\dot{Q}_c} = \frac{\dot{L}_T - \dot{L}_c}{\dot{Q}_c} = \frac{(T_3 - T_4) - (T_2 - T_1)}{T_3 - T_4} = 1 - \frac{T_2 - T_1}{T_3 - T_4} = 1 - \frac{T_2}{T_3} = 1 - \frac{T_2T_1}{T_3T_1} = 1 - \frac{T_1}{T_3}r_p^{\frac{k-1}{k}}$$

Ciclo Otto

Ciclo simmetrico cosituito da due isoentropiche e due isocore. Applicazioni: prevalentemente in campo automobilistico. r_v tra 6 e 10 per evitare autocombustione della miscela in 1-2.

Il rendimento del ciclo Otto nel caso di qas perfetto:

$$\eta_{\rm Otto} = 1 - \frac{q_f}{q_c} = 1 - \frac{T_4 - T_1}{T_3 - T_2} = 1 - \frac{T_1}{T_2}$$

Dal bilancio entropico tra 1 e 2 vale: $\left(\frac{T_2}{T_1}\right)^{c_v} = \left(\frac{V_1}{V_2}\right)^{R^v}$ Chiamando rapporto di compressione volumentrico $r_v = \frac{V_1}{V_2}$

$$\eta_{\text{Otto}} = 1 - r_v^{1-k}$$

Lavoro specifico per il ciclo Otto

$$l = c_v(T_3 - T_4) - c_v(T_2 - T_1) = c_v T_3 \left(1 - \frac{1}{r_v^{k-1}} \right) - c_v T_1(r_v^{k-1} - 1)$$

$$r_v^{\text{opt}} = \left(\frac{T_3}{T_1}\right)^{\frac{1}{2(k-1)}}$$

Ciclo Diesel

Ciclo **NON** simmetrico costituito da due isoentropiche, una isobara e una isocora. Applicazioni: motore endotermico.

Nell'ipotesi di *gas perfetto* e ciclo ideale:

$$\eta_{diesel} = \frac{L}{Q_C} = 1 - \frac{c_v(T_4 - T_1)}{c_p(T_3 - T_2)} = 1 - \frac{c_vT_1(\frac{T_4}{T_1} - 1)}{c_pT_2(\frac{T_3}{T_2} - 1)}$$

Rapporto compressione volumetrico:

Rapporto di combustione:

$$\eta_{diesel} = 1 - \frac{1}{r^{k-1}} \frac{1}{k} \frac{z^k - 1}{z - 1}$$

Confronto ciclo Otto - ciclo Diesel

- Motore Otto è più leggero a parità di potenza
- Motore Otto ha frequenza di rotazione maggiore
- Motore Otto ha minore rumorosità
- Motore Diesel ha miglior rendimento a causa del maggior rapporto di compressione (circa il doppio rispetto a motore Otto)
- Motore Diesel ha miglior rendimento al diminuire del carico (più facilmente regolabile in potenza)
- Motore Diesel utilizza un combustibile meno pregiato del motore Otto

Ciclo Joule-Brayton inverso

Ciclo frigorifero inverso costituito da due isoentropiche e due isobare.

Se il ciclo è simmetrico:

$$\varepsilon = \frac{\dot{Q}_f}{\dot{Q}_c - \dot{Q}_f} = \frac{T_2}{T_3 - T_2} = \frac{T_1}{T_4 - T_1} = \frac{1}{r_p^{\frac{k-1}{k}} - 1}$$

Alta efficienza per $r_p \to 1$.

Altri cicli

- Ciclo Stirling: due isoterme e due isocore;
- Ciclo Ericsson: due isoterme e due isobare;

Ciclo Carnot a vapore

Vantaggi:

- L'isobara nel bifase è anche isoterma (meno irreversibilità):
- La transizione di fase aumenta l'energia specifica scambiata lungo le isoterme;

Svantaggi:

 \bullet Compressione 1-2 di un bifase difficile da realizzare e soggetta a molte irreversibilità;

• L'espansione 3-4 conviene se $x_4 < 0.9$

Fluidi di lavoro in cicli a vapore

- Elevata massa volumica e entalpia di transizione di fase ⇒ ridurre la portata di fluido:
- Elevata temperatura critica \Rightarrow al punto critico $h_{lvt} = 0$;
- Temperatura del punto triplo inferiore a quella minima $del ciclo \Rightarrow evitare fase solida:$
- Fluido non corrosivo ⇒ ridurre i costi e manutenzione;
- Fluido non tossico ⇒ ridurre i rischi ambientali;
- Chimicamente stabile ⇒ aumentare sicurezza impianto;
- Facilmente reperibile e di basso costo;
- Elevata pendenza della curva limite superiore in $T-s \Rightarrow$ vapore in uscita con elevato titolo;
- Pressione di condensazione > 1 atm \Rightarrow evitare infiltrazioni di gas incondensabili;

Esempi di fluidi adatti:

- Ciclo motore: acqua
- Ciclo frigorifero:
 - Ammoniaca NH₃ ⇒ tossico;
 - Clorofluorocarburi (CFC o freon) ⇒ dannosi per
 - Clorofluoroidrocarburi (HCFC) o fluoroidrocarburi $(HFC) \Rightarrow meno dannosi per l'ozono (R134a);$

Ciclo Rankine a vapore saturo

Trasformazione 1-2: compressione isoentropica (pompa)

Trasformazione 2-4: riscaldamento isobaro (bruciatore)

Trasformazione 4-5: espansione isoentropica (turbina)

Trasformazione 5-1: raffreddamento isobaro (condensatore)

Rendimento ciclo Rankine a vapore saturo:

$$\eta = 1 - \frac{\dot{Q}_F}{\dot{Q}_C} = 1 - \frac{\dot{m}(h_5 - h_1)}{\dot{m}(h_4 - h_2)} = 1 - \frac{h_5 - h_1}{h_4 - h_2}$$

Per il calcolo del salto entalpico in pompa essendo dh = T ds + v dP ma ds = 0 e fluido incomprimibile:

$$h_2 - h_1 = v(P_2 - P_1)$$

Il ciclo Rankine a vapore saturo non viene utilizzato perchè all'uscita dalla turbina il titolo non è sufficientemente alto (si vorrebbe avere titolo superiore a 0.9).

Ciclo Rankine con surriscaldamento

Trasformazione 1-2: compressione isoentropica (pompa)
Trasformazione 2-5: riscaldamento isobaro (bruciatore)
Trasformazione 5-6: espansione isoentropica (turbina)
Trasformazione 6-1: raffreddamento isobaro (condensatore)

Rendimento ciclo Rankine:

$$\eta = 1 - \frac{\dot{Q}_F}{\dot{Q}_C} = 1 - \frac{\dot{m}(h_6 - h_1)}{\dot{m}(h_5 - h_2)} = 1 - \frac{h_6 - h_1}{h_5 - h_2}$$

Soluzioni per aumento rendimento ciclo Rankine

- Abbassamento della pressione di condensazione ⇒
 maggior lavoro prodotto (ma anche più calore richiesto
 all'uscita della pompa, titolo minore in uscita dalla
 turbina e rischio di infiltrazioni se pressione di
 condensazione minore pressione atmosferica)
- Aumento della temperatura finale di surriscaldamento \Rightarrow aumento di lavoro prodotto (ma anche aumento calore richiesto) e titolo in uscita dalla turbina più alto.
- Aumento della pressione di vaporizzazione (a parità di temperatura massima) ⇒ stesso lavoro e meno calore in uscita durante condensazione (ma anche titolo minore in uscita da turbina)
- Surriscaldamenti ripetuti con espansioni in più stadi ⇒ permettono di aumentare lavoro e titolo in uscita da turbina
- Rigenerazione ⇒ si estrae vapore dalla turbina e si mette a contatto con il liquido a bassa temperatura
- Cogenerazione ⇒ si utilizza vapore in uscita da turbina per teleriscaldamento o per altri scopi

Ciclo Carnot inverso a vapore

- L'espansione 1-2 non è problematica;
- La compressione 3 4 può condurre ad una elevata erosione del compressore;

Ciclo frigorifero a vapore

L'espansione 1-2 isoentropica è sostituita da un'espansione adiabatica isoentalpica (valvola di laminazione).

Ripasso analisi

$$\vec{\nabla} = \hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}$$

$$\vec{\nabla}T = \text{grad } T = \hat{\mathbf{i}} \frac{\partial T}{\partial x} + \hat{\mathbf{j}} \frac{\partial T}{\partial y} + \hat{\mathbf{k}} \frac{\partial T}{\partial z}$$

$$\vec{\nabla} \cdot \vec{v} = \text{div } \vec{v}$$

$$\vec{\nabla} \times \vec{v} = \text{rot } \vec{v}$$

$$\nabla^2 T = \vec{\nabla} \cdot \vec{\nabla} T = \text{ laplaciano di } T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$$

Conduzione

Trasferimento di energia per effetto dell'interazione delle particelle di una sostanza dotata di maggiore energia con quelle adiacenti dotate di minore energia. Può avvenire nei solidi, liquidi e gas.

Postulato di Fourier

$$\vec{q} = -k\vec{\nabla}T$$

Equazione di Fourier

$$\frac{\rho c_v}{k}\frac{\partial T}{\partial t} = \nabla^2 T + \frac{\sigma}{k}$$

 \vec{q} vettore flusso di calore areico

k conduttività termica

 σ potenza generata nell'unità di volume

 $\rho = \frac{1}{v}$ massa volumica

Casi particolari equazione di Fourier

$$\nabla^2 T = \frac{\rho c_v}{k} \frac{\partial T}{\partial t}$$
 Assenza generazione potenza
$$\nabla^2 T + \frac{\sigma}{r} = 0$$
 Regime strazionario (eq. Poisson)

$$\nabla^2 T = 0$$
 Assenza generazione e regime stazionario

Coordinate cartesiane

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\sigma(x,y,z,t)}{k} = \frac{\rho c_v}{k} \frac{\partial T}{\partial t}$$

Parete piana infinita in y-z in regime stazionario

$$T = -\frac{\sigma}{2k}x^2 + Ax + B \qquad \dot{q} = \sigma x - Ak$$

Lastra piana senza generazione di potenza Avendo $T = T_1$ in x = 0 e $T = T_2$ in x = s (con s lo spessore della lastra piana) si ha che:

$$T = \frac{T_2 - T_1}{s}x + T_1 \qquad \dot{q} = -k\left(\frac{T_2 - T_1}{s}\right)$$

Ponendo
$$R_c = \frac{s}{A \cdot k}$$
 si ha che $\dot{Q}_{cond} = -\frac{\Delta T}{R_c}$

Coordinate cilindriche

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\sigma(r, \varphi, z, t)}{k} = \frac{\rho c_v}{k} \frac{\partial T}{\partial t}$$

Cilindro pieno o cavo di altezza infinita Supponendo T = T(r) si ha che, in regime stazionario:

$$T = -\frac{\sigma}{4k}r^2 + A\ln\left(\frac{r}{B}\right) = -\frac{\sigma}{4k}r^2 + A\ln(r) + C$$

$$\dot{q} = -k\frac{\partial T}{\partial r} = \frac{\sigma}{2}r - \frac{k}{r}A$$

Barra cilindrica piena con generazione di potenza Ponendo come condizione $\frac{\partial T}{\partial r}=0$ per r=0 e $T=T_2$ per r=R si ha che:

$$T = \frac{\sigma}{4k} (R^2 - r^2) + T_2$$
 $\dot{q}_{\text{areico}} = \frac{\sigma}{2} r$

$$\dot{q}_{\mathrm{per\ unita}\ \mathrm{di\ lunghezza}} = \pi r^2 \sigma$$

Cilindro cavo senza generazione di potenza Ponendo $T = T_i$ per $r = R_i$ e $T = T_e$ per $r = R_e$ si ottiene

$$T = T_i + \frac{T_e - T_i}{\ln\left(\frac{R_e}{R_i}\right)} \ln\left(\frac{r}{R_i}\right) \qquad \dot{q}_{\rm areico} = k \frac{T_i - T_e}{\ln\left(\frac{R_e}{R_i}\right)} \frac{1}{r}$$

$$\dot{q}_{\mathrm{per\ unita}\ \mathrm{di\ lunghezza}} = \frac{2\pi k}{\ln\left(\frac{R_e}{R_i}\right)} (T_i - T_e)$$

Ponendo
$$R_{cil} = \frac{\ln\left(\frac{R_e}{R_i}\right)}{2\pi L k}$$
 si ha che $\dot{Q} = \frac{T_i - T_e}{R_{cil}}$

Coordinate sferiche

$$\begin{split} &\frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\cot(\theta)}{r^2} \frac{\partial T}{\partial \theta} + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 T}{\partial \varphi^2} + \frac{\sigma}{k} = \\ &= \frac{\rho c_v}{k} \frac{\partial T}{\partial t} \end{split}$$

Sfera piena o cava

Supponendo T = T(r) e regime stazionario si ha che

$$T = -\frac{\sigma}{6k}r^2 + \frac{A}{r} + B$$

Analogamente al caso cilindrico si ha che:

$$R_{sfera} = \frac{R_2 - R_1}{4\pi R_1 R_2 k} \qquad \dot{Q} = \frac{T_i - T_e}{R_{sfera}}$$

Convezione

Trasferimento di energia tra una superficie solida e un fluido adiacente in movimento.

Convezione forzata Avviene quando il fluido è forzato a scorrere su una superficie da mezzi esterni

Convezione naturale Avviene quando il moto del fluido è causato da forze ascensionali che sono indotte dalle differenze di densità dovute alla variazione di temperatura del fluido in un campo gravitazionale

Equazione generale

$$\dot{q} = h \cdot \left(T_s - T_f \right)$$

h coefficiente convettivo

 T_s temperatura superficie

 T_f temperatura fluido

Ponendo
$$R_{conv} = \frac{1}{h \cdot A}$$
 si ha che $\dot{Q}_{conv} = -\frac{\Delta T}{R_{conv}}$

Raggio critico di isolamento

Considerando gusci cilindrici aventi come utimo strato uno strato di isolante soggetto a fenomeni convettivi.

$$R_{tot} = R_{isol} + R_{conv} = \frac{\ln\left(\frac{R_e}{R_i}\right)}{2\pi L k} + \frac{1}{2\pi R_e L h}$$

 R_e raggio esterno isolante

 R_i raggio interno isolante

Si ha che inizialmente R_{tot} decresce all'aumentare dello spessore di isolante. Si ha R_{tot} minimo quando $R_e = R_{critico} = \frac{k}{h}$.

Coefficiente convettivo

Fluido	$h \left[\frac{W}{m^2K}\right]$
gas stagnante	5-50
acqua stagnante	100
gas in moto	50-1000
olio minerale	50-3000
acqua in moto	200 – 10000
acqua ebollizione/condensazione	1000 – 100000
metalli liquidi	10000 – 100000

 $\overline{\rm Il}$ coefficiente convettivo non è una proprietà della materia e dipende da:

 ρ densità

 μ viscosità

 c_n cal. spec. pressione cost.

k conduttività

w velocità

D diametro equivalente

Numero di Nusselt

$$Nu = \frac{hD}{k} \left(= \frac{h\Delta T}{\frac{k}{D}\Delta T} \right)$$

Può essere interpretato come rapporto tra potenza termica scambiata per convezione e potenza termica scambiata per conduzione nello strato limite.

Numero di Reynolds

$$Re = \frac{\rho wD}{\mu} \left(= \frac{F_{inerzia}}{F_{viscose}} \right)$$

Può essere interpretato come rapporto tra la risultante delle forze di inerzia e la risultante delle forze viscose.

Valori tipici di Reynolds

Moto in un condotto:

 \rightarrow laminare se Re < 2000, turbolento se Re > 2500 *Moto lungo lastra piana:*

 \hookrightarrow laminare se Re $<5\cdot 10^5,$ turbolento se Re $>5\cdot 10^5$ Moto attorno ad un cilindro:

 \rightarrow laminare se Re $< 2 \cdot 10^5$, turbolento se Re $> 2 \cdot 10^5$

Numero di Prandtl

$$\Pr = \frac{c_p \mu}{b}$$

Si ottiene dividendo $\nu = \frac{\mu}{\rho}$ (viscosità cinematica, ν) per $a = \frac{k}{\rho c_n}$ (diffusività termica, a).

Valori tipici di Prandtl

gas ideali	0.7
acqua	2-10
metalli liquidi	0.005 – 0.03

Temperature di valutazione dei parametri Corpo immerso

$$T_{film} = \frac{T_p + T_{\infty}}{2}$$
 oppure $T_{\text{asintotica}} = T_{\infty}$

Convenzione forzata in condotto

Temp. di miscelamento adiabatico $T_f = \frac{\int_A \rho w c_p T \, dA}{\int_A \rho w c_p \, dA}$

Flusso all'interno di tubi

In ogni sezione w varia da un valore pari a zero sulla parete fino ad un valore massimo sull'asse del tubo. In ogni sezione T varia da un valore sulla parete fino ad un valore maggiore (o inferiore) sull'asse del tubo, a seconda se il processo sia di riscaldamento o raffreddamento.

Velocità media

La velocità media si ricava dal principio di conservazione della massa.

$$w_m = \frac{\dot{m}}{\rho A_t}$$
 con $A_t = \pi \frac{D^2}{4}$

Temperatura media

La temperatura media si ricava dal principio di conservazione dell'energia.

$$\dot{E} = \dot{m}c_p T_m = \int_{\dot{m}} c_p T \partial \dot{m} = \int_{A_t} c_p T(\rho w \, \mathrm{d}A_t)$$

Condizioni al contorno

Siano T_s la temperatura superficiale del tubo, A_s l'area superficiale del tubo, T_m temperatura media del fluido di una certa sezione del tubo.

$$T_s = \cos t$$
 oppure $\dot{q} = \cos t$

Le due condizioni non possono essere contemporaneamente presenti.

Flusso di calore costante

$$\dot{q}_s = \cos t \rightarrow \dot{Q}_s = \dot{q}_s \cdot A_s = \dot{m}c_p(T_u - T_i)$$

Da cui deriva

$$T_u = T_i + \frac{\dot{q}_s A_s}{\dot{m} c_p}$$

Ma essendo $\dot{q}_s = h(T_s - T_m)$

$$T_s = T_m + \frac{\dot{q}_s}{h}$$

Nota come T_m non è costante ma dipende dalla distanza dall'ingresso del tubo e si può calcolare usando l'equazione precedente che lega T_u a T_i , considerando solo parte del tubo. La differenza $(T_s - T_m)$ resta invece costante.

${\bf Temperatura\ superficiale\ costante}$

$$\ln\left(\frac{T_s - T_u}{T_s - T_i}\right) = -\frac{hA_s}{\dot{m}c_p}$$

Ma anche

$$\dot{Q} = h \cdot A_s \cdot \Delta T_{ml}$$
 con $\Delta T_{ml} = -\frac{T_u - T_i}{\ln\left(\frac{T_s - T_u}{T_s - T_i}\right)}$

Caduta di pressione

$$\Delta P = f \cdot \frac{L}{D} \cdot \frac{\rho w_m^2}{2}$$

Dove f è il fattore d'attrito.

Potenza pompaggio
$$\dot{L}_p = \frac{\dot{m}\Delta P}{\rho} = w_m A_t \Delta P$$

Convezione forzata

$$Nu = A \cdot Re^{\alpha} \cdot Pr^{\beta}$$

I parametri Re e Pr vanno valutati alla giusta temperatura (che può essere di parete, asintotica, di film, di miscelamento adiabatico).

Moto all'interno di un condotto circolare

$$f = \frac{64}{\text{Re}}$$
 se laminare $f = 0.184 \,\text{Re}^{-0.2}$ se turbolento

Convezione naturale Numero di Grashof

$$Gr = \frac{\rho^2 g \beta \Delta T D^3}{\mu^2}$$

Può essere interpretato come il rapporto fra le forze di galleggiamento ed il quadrato della risultante delle forze viscose. Emissività Moto lungo superficie verticale

$${\rm Gr}_L < 10^9 \mod {\rm laminare}$$

$${\rm Gr}_L > 10^9 \mod {\rm turbolento}$$

Numero di Peclet

$$Pe = Re \cdot Pr = \frac{wD}{a}$$

Numero di Rayleigh

$$Ra = Gr \cdot Pr = \frac{g\beta \Delta T D^3}{a\nu}$$

Alcune correlazioni

		Geometria	D	Ra	Nu
N. 0.00	1 1	Piastra			
$Nu_D = 3.66$	laminare con $T_p = \cos t$	Vert. altezza L	L	$10^4 - 10^9$	$0.59\mathrm{Ra}^{1/4}$
$Nu_D = 4.36$	laminare con $\dot{q} = \cos t$			$10^9 - 10^{13}$	$0.1{ m Ra}^{1/3}$
	turbolento con Re $> 10^4$	Oriz. sopra calda	$\frac{A}{p}$	$10^4 - 10^7$	$0.54\mathrm{Ra}^{1/4}$
$Nu_D = 0.023 \text{Re}^{0.8} \text{Pr}^{0.3}$	0.7 < Pr < 160 (raffr.)		P	$10^7 - 10^{11}$	$0.15{ m Ra}^{1/3}$
	turbolento con Re $> 10^4$	Oriz. sotto calda	$\frac{A}{p}$	$10^5 - 10^{11}$	$0.27\mathrm{Ra}^{1/4}$
$Nu_D = 0.023 \text{Re}^{0.8} \text{Pr}^{0.4}$	0.7 < Pr < 160 (risc.)	Cilindro	-		
		-Vert. alto L, diam D	L	Come p	iast. vert.
$Nu_D = 0.027 \text{Re}^{0.8} \text{Pr}^{0.333} \left(\frac{\mu}{\mu_p}\right)^{0.14}$	turbolento con Re $> 10^4$ 0.7 < Pr < 16700				$D \ge \frac{35L}{Gr^{1/4}}$
μ_p	0.7 < FT < 10700	Oriz. diam D	D	$10^5 - 10^{12}$	X

Le proprietà termofisiche sono valutate alla temperatura di miscelamento adiabatico.

Moto attorno ad un cilindro

Relazione di Hilpert

$$\operatorname{Nu}_D = C \operatorname{Re}^m \operatorname{Pr}^{\frac{1}{3}}$$

Re	C	m
0.4 - 4	0.989	0.330
4-40	0.911	0.385
40 - 4000	0.683	0.466
4000 – 40000	0.193	0.618
40000 – 400000	0.027	0.805

Le proprietà termofisiche sono valutate alla temperatura di film.

Flusso su lastra piana interamente riscaldata

Si suppone temperatura costante su tutta la piastra

$$\begin{split} \mathrm{Nu}_L &= 0.664 \, \mathrm{Re}^{0.5} \, \mathrm{Pr}^{\frac{1}{3}} & \text{laminare Re} < 5 \cdot 10^5 \\ \mathrm{Nu}_L &= 0.037 \, \mathrm{Re}^{0.8} \, \mathrm{Pr}^{\frac{1}{3}} & \text{turbolento } 0.6 < \mathrm{Pr} < 60 \\ 5 \cdot 10^5 < \mathrm{Re} < 10^7 \end{split}$$

Dove p è il perimetro della piastra, tutte le temperature si

riferiscono a
$$T_{\text{film}}$$
 e $X = \left\{ 0.60 + \frac{0.387 \operatorname{Ra} \frac{1}{6}}{\left[1 + \left(\frac{0.559}{\operatorname{Pr}}\right) \frac{9}{16}\right]^{\frac{8}{27}}} \right\}^2$.

Irraggiamento

Un corpo nero è un perfetto emettitore di radiazioni poiché emette la massima radiazione ad ogni temperatura e lunghezza d'onda e assorbe tutta la radiazione incidente indipendentemente da direzione e lunghezza d'onda.

Potenza radiante del corpo nero
$$E^n = \sigma_0 T^4 [W/m^2]$$

Dove $\sigma_0 = 5.67 \times 10^{-8} \,\mathrm{W/m^2 K^4}$ è la costante di Stefan-Boltzmann.

Legge della distribuzione di Planck

Il potere emissivo monocromatico di un corpo nero rispetto la frequenza d'onda λ segue la legge della distribuzione di Planck:

$$E_{\lambda}^{n} = \frac{C_1}{\lambda^5 (e^{\frac{C_2}{\lambda^T}} - 1)}$$

Con
$$C_1 = 3.742 \times 10^8 \,\text{W} \mu\text{m}^4/\text{m}^2$$
 e $C_2 = 1.439 \times 10^4 \,\mu\text{mK}$.

Legge dello spostamento o di Wien

La legge che regola i picchi del potere emissivo di un corpo nero è la legge di Wien:

$$(\lambda T)_{\text{max pow}} = 2897.8 \,\mu\text{m} \cdot \text{K}$$

L'emissività è il rapporto tra la radiazione emessa e la radiazione emessa da un corpo nero alla stessa temperatura:

$$\epsilon(T) = \frac{E(T)}{E^n(T)} = \frac{E(T)}{\sigma_0 T^4}$$

Da cui $E(T) = \epsilon(T)\sigma_0 T^4$. Per un corpo nero $\epsilon = 1$.

Radiazione incidente

Quando della radiazione colpisce una superficie questa si divide

$$\begin{array}{ll} {\rm Assorbita} & \alpha = \frac{I_{\rm assorb}}{I_{\rm incid}} \\ {\rm Riflessa} & \rho = \frac{I_{\rm riflessa}}{I_{\rm incid}} \\ {\rm Trasmessa} & \tau = \frac{I_{\rm trasmessis}}{I_{\rm incid}} \end{array}$$

Vale che $\alpha + \rho + \tau = 1$. Un corpo è opaco se $\tau = 0$, trasparente se $\tau = 1$, speculare se $\rho = 1$. Il coefficiente di assorbimento dipende dalla temperatura della sorgente.

La legge di Kirchhoff afferma che coefficiente di assorbimento e emissività tendono ad uguagliarsi quando la temperatura dell'emettitore è circa uguale a quella del ricevente (meno di 100 K).

Fattore di vista

Il fattore di vista tra la superficie i e la superficie j si indica $F_{i\rightarrow i}$ ed è la frazione della radiazione emessa da i che incide direttamente su j.

$$F_{i \to j} = 0$$
 i e j non sono in vista tra loro.
 $F_{i \to j} = 1$ j circonda completamente i.

Regola di reciprocità

 $F_{i \to j} = F_{j \to i}$ solo se le aree delle superfici sono uguali:

$$A_i F_{i \to j} = A_j F_{j \to i}$$

Regola della somma

Tutta la radiazione emessa da i in una cavità deve essere intercettata dalle superfici di j.

$$\sum_{j=1}^{n} F_{i \to j} = 1$$

Convenzioni adottate

potenza termica areica emessa da 1.

potenza termica areica emessa da 1 intercettata da 2.

 $\dot{Q}_{1,2}$ potenza termica netta scambiata tra 1 e 2.

$$J_{1\to 2} = F_{1\to 2}J_1$$

$$\dot{Q}_{1,2} = \dot{Q}_{1\to 2} - \dot{Q}_{2\to 1} = -\dot{Q}_{2,1}$$

$$\dot{Q}_{1\to 2} = A_1J_{1\to 2} = A_1F_{1\to 2}J_1$$

Scambio termico tra superfici Superfici nere

$$J_1 = E_1^n = \sigma_0 T_1^4 \qquad J_2 = E_2^n = \sigma_0 T_2^4$$

$$\dot{Q}_{1,2} = A_1 F_{1 \to 2} E_1^n - A_2 F_{2 \to 1} E_2^n \qquad [A_1 F_{1 \to 2} = A_2 F_{2 \to 1}]$$
$$= A_1 F_{1 \to 2} (E_1^n - E_2^n) = A_1 F_{1 \to 2} \sigma_0 (T_1^4 - T_2^4)$$

Resistenza spaziale alla radiazione: $\frac{1}{A_1 F_{1\rightarrow 2}}$.

Superfici piane parallele, indefinite, nere

$$F_{1\to 2} = 1 \quad \Rightarrow \quad \dot{Q}_{1,2} = A_1 \sigma_0 (T_1^4 - T_2^4)$$

Corpo nero in una cavità con superfici nere Il corpo interno è 1, il corpo attorno è 2.

$$F_{1\to 2} = 1 \quad \Rightarrow \quad \dot{Q}_{1,2} = A_1 \sigma_0 (T_1^4 - T_2^4)$$

Nota che $F_{2\to 1} \neq 1$ perché parte della radiazione incide sulla cavità essendo concava.

Bilancio termico superficie grigia opaca

$$J_i = E_i + \rho_i I_i = \epsilon_i E_i^n + (1 - \epsilon_i) I_i$$

Deve I_i è la radiazione incidente su $i,\,\rho_i I_i$ è la radiazione riflessa

La potenza termica netta uscente è $\dot{Q} = A_i(J_i - I_i)$.

Superfici grigie

$$\dot{Q}_1 = \dot{Q}_{1,2} = A_1(J_1 - I_1) = A_1 \left(J_1 - \frac{J_1 - \epsilon_1 E_1^n}{1 - \epsilon_1} \right)$$
$$\dot{Q}_{1,2} = \frac{E_1^n - J_1}{\frac{1 - \epsilon_1}{\epsilon_1 A_1}}$$

Da cui la resistenza superficiale all'irraggiamento è $\frac{1-\epsilon_1}{\epsilon_1 A_1}$.

$$\dot{Q}_{1,2} = A_1 F_{1\to 2} J_1 - A_2 F_{2\to 1} J_2 = A_1 F_{1\to 2} (J_1 - J_2)$$
$$= \frac{J_1 - J_2}{\frac{1}{A_1 F_{1\to 2}}}$$

Combinando le varie resistenze (ma **non** quelle di tipo conduttivo/convettivo!):

$$\dot{Q}_{1,2} = \frac{E_1^n - E_2^n}{\frac{1 - \epsilon_1}{\epsilon_1 A_1} + \frac{1}{A_1 F_{1 \to 2}} + \frac{1 - \epsilon_2}{\epsilon_2 A_2}}$$

Superfici piane parallele indefinite nera-grigia

$$\dot{Q}_{1,2} = \frac{E_1^n - E_2^n}{0 + \frac{1}{A} + \frac{1 - \epsilon_2}{\epsilon_0 A}} = A\epsilon_2 \sigma_0 (T_1^4 - T_2^4)$$

Superfici piane parallele indefinite grigia-grigia

$$\dot{Q}_{1,2} = \frac{E_1^n - E_2^n}{\frac{1 - \epsilon_1}{\epsilon_1 A} + \frac{1}{A} + \frac{1 - \epsilon_2}{\epsilon_2 A}} = \frac{A\sigma_0(T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}$$

Corpo grigio in una cavità con superfici grigie

$$\dot{Q}_{1,2} = \frac{\sigma_0(T_1^4 - T_2^4)}{\frac{1 - \epsilon_1}{\epsilon_1 A_1} + \frac{1}{A_1} + \frac{1 - \epsilon_2}{\epsilon_2 A_2}}$$

M. Donadoni, E. Morassutto, Politecnico di Milano, A.A. 2018/19