CS 1678/2078 HW Backprop

Abstract

In this assignment you will be computing the gradients of the weights of multi-layered neural network by hand. This serves as a precursor to part B of HW2 where you will be implementing backprop to train a multi-layered neural network. To submit this assignment, upload a .pdf to Gradescope containing your responses to the questions below. You are required to use LATEX for your write up.

1 Partial Derivatives With a Single Sample (34 points)

Consider a neural network with two hidden layers and a linear output layer. The input to the network is a vector of length four, the first hidden layer has three hidden units, the second layer has two, and the last layer as a single unit. Each hidden layer uses the ReLU activation function.

For a single input x and target value $y \in \mathbb{R}$, the loss function for the network is

$$l(\theta) = \frac{1}{2} (f(x, \theta) - y)^{2},$$

with each layer computing,

$$h^{i} = f^{i}(h^{i-1}, W^{i}) = \sigma\left(h^{i-1}W^{i}\right),$$

where $h^i \in \mathbb{R}^{1 \times n_i}$ and $W^i \in \mathbb{R}^{n_i \times n_{i-1}}$. Note that we dropped the dataset D in notation for the loss function $l_D(\theta)$. This just makes notation simpler for the assignment. Let the partial derivative of the loss with respect to $f(x, \theta)$ be δ , e.g.

$$\delta = \frac{\partial l(\theta)}{\partial f(x, \theta)} = f(x, \theta) - y$$

1. What is the partial derivative of $l(\theta)$ with respect to the weight $W_{1,1}^3$?

$$\begin{split} \frac{\partial l(\theta)}{\partial W_{1,1}^3} &= \frac{\partial h^3}{\partial W_{1,1}^3} \frac{\partial l(\theta)}{\partial h^3} \\ &= \frac{\partial \left(h^2 W^{3\top}\right)}{\partial W_{1,1}^3} \delta \\ &= \delta \frac{\partial \left(h_{1,1}^2 W_{1,1}^3 + h_{1,2}^2 W_{1,2}^3\right)}{\partial W_{1,1}^3} \\ &= \delta h_{1,1}^2 \end{split}$$

2. What is the partial derivative of $l(\theta)$ with respect to the weight $W_{1,2}^3$?

$$\frac{\partial l(\theta)}{\partial W_{1,2}^3} = \frac{\partial f^3(h^2, W^3)}{\partial W_{1,2}^3} \frac{\partial l(\theta)}{\partial f(x, \theta)}$$
$$= \delta h_{1,2}^2$$

3. What are the partial derivatives of $l(\theta)$ with respect to W^3 .

$$\begin{split} \frac{\partial l(\theta)}{\partial W^3} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial W_{1,1}^3} & \frac{\partial l(\theta)}{\partial W_{1,2}^3} \end{bmatrix} \\ &= \delta \begin{bmatrix} h_{1,1}^2 & h_{1,2}^2 \end{bmatrix} = \delta h^2 \end{split}$$

4. What are the partial derivatives of $l(\theta)$ with respect to $h_{1,1}^2$.

$$\begin{split} \frac{\partial l(\theta)}{\partial h_{1,1}^2} &= \frac{\partial f^3(h^2, W^3)}{\partial h_{1,1}^2} \frac{\partial l(\theta)}{\partial f(x, \theta)} \\ &= \frac{\partial \left(h^2 W^{3^\top}\right)}{\partial h_{1,1}^2} \delta \\ &= \delta \frac{\partial \left(h_{1,1}^2 W_{1,1}^3 + h_{1,2}^2 W_{1,2}^3\right)}{\partial h_{1,1}^2} \\ &= \delta W_{1,1}^3 \end{split}$$

5. What are the partial derivatives of $l(\theta)$ with respect to h^2 .

$$\begin{split} \frac{\partial l(\theta)}{\partial h^2} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial h_{1,1}^2} & \frac{\partial l(\theta)}{\partial h_{1,2}^2} \end{bmatrix} \\ &= \delta \begin{bmatrix} W_{1,1}^3 & W_{1,2}^3 \end{bmatrix} = \delta W^3 \end{split}$$

6. What is the derivative for the ReLU activation function $\sigma(x) = \max(x, 0)$? You can use the notation that x > y evaluates to 1 if true and 0 if false.

$$\frac{d\sigma(x)}{dx} = x \ge 0$$

ReLU is not differentiable at x=0, but in practice we use the subderivative (which is the answer above) https://en.wikipedia.org/wiki/Subderivative. You could use x>0 or $x\geq 0$ because both are valid subderivatives as x=0.

7. What are the partial derivatives with respect to $W_{1,j}^2$ for $h_{1,1}^2 = f_1^2(h^1, W^2)$? You may use $z^i = h^{i-1}W^i^{\top}$ and $z_{1,1}^i = h^{i-1}W_{1,\cdot}^i^{\top}$ to simplify your answer.

$$\begin{split} \frac{\partial h_{1,1}^2}{\partial W_{1,j}^2} &= \frac{\partial \sigma(z_{1,1}^2)}{\partial W_{1,j}^2} \\ &= \frac{\partial z_{1,1}^2}{\partial W_{1,j}^2} \frac{\partial \sigma(z_{1,1}^2)}{\partial z_{1,1}^2} \\ &= \frac{\partial z_{1,1}^2}{\partial W_{1,j}^2} (z_{1,1}^2 \geq 0) \\ &= \frac{\partial (h_{1,1}^1 W_{1,1}^2 + h_{1,2}^1 W_{1,2}^2 + h_{1,3}^1 W_{1,3}^2)}{\partial W_{1,j}^2} (z_{1,1}^2 \geq 0) \\ &= \frac{\partial h_{1,j}^1 W_{1,j}^2}{\partial W_{1,j}^2} (z_{1,1}^2 \geq 0) \\ &= h_{1,j}^1 (z_{1,1}^2 \geq 0) \\ &= (z_{1,1}^2 \geq 0) h_{1,j}^1 \text{ flipping sides for simpler connections in part 2} \end{split}$$

8. What are the partial derivatives with respect to $W_{2,j}^2$ for $h_{1,1}^2 = f_1^2(h^1, W^2)$?

$$\begin{split} \frac{\partial h_{1,1}^2}{\partial W_{2,j}^2} &= \frac{\partial (h_{1,1}^1 W_{1,1}^2 + h_{1,2}^1 W_{1,2}^2 + h_{1,3}^1 W_{1,3}^2)}{\partial W_{1,j}^2} (z_{1,1}^2 \geq 0) \\ &= 0 (z_{1,1}^2 \geq 0) = 0 \end{split}$$

9. What are the partial derivatives with respect to W^2 for $h_{1,1}^2 = f_1^2(h^1, W^2)$?

$$\frac{\partial h_{1,1}^2}{\partial W^2} = \begin{bmatrix} \frac{\partial h_{1,1}^2}{\partial W_{1,1}^2} & \frac{\partial h_{1,1}^2}{\partial W_{1,2}^2} & \frac{\partial h_{1,1}^2}{\partial W_{1,3}^2} \\ \frac{\partial h_{1,1}^2}{\partial W_{2,1}^2} & \frac{\partial h_{1,1}^2}{\partial W_{2,2}^2} & \frac{\partial h_{1,1}^2}{\partial W_{2,3}^2} \end{bmatrix} = (z_{1,1}^2 \ge 0) \begin{bmatrix} h_{1,1}^1 & h_{1,2}^1 & h_{1,3}^1 \\ 0 & 0 & 0 \end{bmatrix} = (z_{1,1}^2 \ge 0) \begin{bmatrix} h_{1,\cdot}^1 \\ 0 \end{bmatrix}$$

10. What are the partial derivatives of $l(\theta)$ with respect to $W_{i,j}^2$? Note that using scalar notation we express h^3 as

$$h_{1,1}^3 = \sum_{q=1}^{n_2} h_{1,q}^2 W_{1,q}^3 = \sum_{q=1}^{n_2} \sigma \left(\sum_{r=1}^{n_1} h_{1,r}^1 W_{q,r}^2 \right) W_{1,q}^3.$$

You can use this expression as a starting point for the derivative if you are not comfortable with linear algebra.

$$\begin{split} \frac{\partial l(\theta)}{W_{i,j}^2} &= \frac{\partial l(\theta)}{\partial h_{1,1}^3} \frac{\partial h_{1,1}^3}{\partial W_{i,j}^2} \\ &= \delta \frac{\partial}{\partial W_{i,j}^2} \sum_{q=1}^{n_2} h_{1,q}^2 W_{1,q}^3 \\ &= \delta \sum_{q=1}^{n_2} \frac{\partial h_{1,q}^2 W_{1,q}^3}{\partial W_{i,j}^2} \\ &= \delta \sum_{q=1}^{n_2} \frac{\partial h_{1,q}^2 W_{1,q}^3}{\partial h_{1,q}^2} \frac{\partial h_{1,q}^2}{\partial W_{i,j}^2} \\ &= \delta \sum_{q=1}^{n_2} W_{1,q}^3 \quad \underbrace{\frac{\partial h_{1,q}^2}{\partial W_{i,j}^2}}_{=0 \text{ if } q \neq i, \text{ see } \#10} \\ &= \delta W_{1,i}^3 \frac{\partial h_{1,i}^2}{\partial W_{i,j}^2} \\ &= \delta W_{1,i}^3 \left(z_{1,i}^2 \geq 0 \right) h_{1,i}^1 \end{split}$$

11. What are the partial derivatives with respect to W^2 for $l(\theta)$?

$$\begin{split} \frac{\partial l(\theta)}{\partial W^2} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial W_{1,1}^2} & \frac{\partial l(\theta)}{\partial W_{1,2}^2} & \frac{\partial l(\theta)}{\partial W_{1,3}^2} \\ \frac{\partial l(\theta)}{\partial W_{2,1}^2} & \frac{\partial l(\theta)}{\partial W_{2,2}^2} & \frac{\partial l(\theta)}{\partial W_{2,3}^2} \end{bmatrix} \\ &= \delta \begin{bmatrix} W_{1,1}^3 \left(z_{1,1}^2 \geq 0 \right) h_{1,1}^1 & W_{1,1}^3 \left(z_{1,1}^2 \geq 0 \right) h_{1,2}^1 & W_{1,2}^3 \left(z_{1,2}^2 \geq 0 \right) h_{1,3}^1 \\ W_{1,2}^3 \left(z_{1,2}^2 \geq 0 \right) h_{1,1}^1 & W_{1,2}^3 \left(z_{1,2}^2 \geq 0 \right) h_{1,2}^1 & W_{1,2}^3 \left(z_{1,2}^2 \geq 0 \right) h_{1,3}^1 \end{bmatrix} \\ &= \delta \begin{bmatrix} W_{1,1}^3 \left(z_{1,1}^2 \geq 0 \right) \\ W_{1,2}^3 \left(z_{1,2}^2 \geq 0 \right) \end{bmatrix} \begin{bmatrix} h_{1,1}^1 & h_{1,2}^1 & h_{1,3}^1 \end{bmatrix} \\ &= \delta \left(W^3 \odot \left(z^2 \geq 0 \right) \right)^\top h^1 \end{split}$$

12. What are the partial derivatives of $h_{1,1}^2$ with respect to $h_{1,j}^1$?

$$\begin{split} \frac{\partial h_{1,1}^2}{\partial h_{1,j}^1} &= \frac{\partial \sigma(z_{1,1}^2)}{\partial h_{1,j}^1} = \frac{\partial \sigma(z_{1,1}^2)}{\partial z_{1,1}^2} \frac{\partial z_{1,1}^2}{\partial h_{1,j}^1} \\ &= (z_{1,1}^2 \geq 0) \frac{\partial \left(h_{1,1}^1 W_{1,1}^2 + h_{1,2}^1 W_{1,2}^2 + h_{1,3}^1 W_{1,3}^2\right)}{\partial h_{1,j}^1} \\ &= (z_{1,1}^2 \geq 0) \frac{\partial h_{1,j}^1 W_{1,j}^2}{\partial h_{1,j}^1} \\ &= (z_{1,1}^2 \geq 0) W_{1,j}^2 \end{split}$$

13. What are the partial derivatives of $h_{1,i}^2$ with respect to h^1 ?

$$\frac{\partial h_{1,i}^2}{\partial h^1} = \begin{bmatrix} (z_{1,i}^2 \geq 0) W_{i,1}^2 & (z_{1,i}^2 \geq 0) W_{i,2}^2 & (z_{1,i}^2 \geq 0) W_{i,3}^2 \end{bmatrix}$$

14. What are the partial derivatives of $l(\theta)$ with respect to $h_{1,j}^1$?

$$\begin{split} \frac{\partial l(\theta)}{\partial h_{1,j}^1} &= \frac{\partial l(\theta)}{\partial h_{1,1}^3} \frac{\partial h_{1,j}^3}{\partial h_{1,j}^1} \\ &= \delta \frac{\partial}{\partial h_{1,j}^1} \sum_{q=1}^{n_2} h_{1,q}^2 W_{1,q}^3 \\ &= \delta \sum_{q=1}^{n_2} \frac{\partial h_{1,q}^2 W_{1,q}^3}{\partial h_{1,j}^1} \\ &= \delta \sum_{q=1}^{n_2} \frac{\partial h_{1,q}^2 W_{1,q}^3}{\partial h_{1,q}^2} \frac{\partial h_{1,q}^2}{\partial h_{1,j}^1} \\ &= \delta \sum_{q=1}^{n_2} W_{1,q}^3 \frac{\partial h_{1,q}^2}{\partial h_{1,j}^1} \\ &= \delta \sum_{q=1}^{n_2} W_{1,q}^3 (z_{1,q}^2 \geq 0) W_{q,j}^2 \\ &= \delta \left[W_{1,1}^3 (z_{1,1}^2 \geq 0) \quad W_{1,1}^3 (z_{1,1}^2 \geq 0) \right] \begin{bmatrix} W_{1,j}^2 \\ W_{2,j}^2 \end{bmatrix} \\ &= \delta \left(W^3 \odot (z^2 \geq 0) \right) W_{\cdot,j}^2 \end{split}$$

15. What are the partial derivatives of $l(\theta)$ with respect to h^1 ? Using matrix expression from previous answer:

$$\begin{split} \frac{\partial l(\theta)}{\partial h^1} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial h^1_{1,1}} & \frac{\partial l(\theta)}{\partial h^1_{1,2}} & \frac{\partial l(\theta)}{\partial h^1_{1,3}} \end{bmatrix} \\ &= \begin{bmatrix} \delta \left(W^3 \odot (z^2 \geq 0) \right) W^2_{\cdot,1} & \delta \left(W^3 \odot (z^2 \geq 0) \right) W^2_{\cdot,2} & \delta \left(W^3 \odot (z^2 \geq 0) \right) W^2_{\cdot,3} \end{bmatrix} \\ &= \delta \left(W^3 \odot (z^2 \geq 0) \right) \begin{bmatrix} W^2_{\cdot,1} & W^2_{\cdot,2} & W^2_{\cdot,3} \end{bmatrix} \\ &= \delta \left(W^3 \odot (z^2 \geq 0) \right) W^2 \end{split}$$

Scalar version:

$$\frac{\partial l(\theta)}{\partial h^1} = \delta \left[\sum_{q=1}^{n_2} W_{1,q}^3(z_{1,q}^2 \geq 0) W_{q,1}^2 \quad \sum_{q=1}^{n_2} W_{1,q}^3(z_{1,q}^2 \geq 0) W_{q,2}^2 \quad \sum_{q=1}^{n_2} W_{1,q}^3(z_{1,2}^2 \geq 0) W_{q,3}^2 \right]$$

16. What is the partial derivative of $l(\theta)$ with respect to $W_{i,j}^1$? Notice that $h_{1,i}^1$ is the only term of h^1 that has dependence on $W_{i,j}^1$. We have also already derived the partial derivative $\frac{\partial h_{1,j}^i}{\partial W_{i,k}^i}$ when i=2, so we can reuse that result here.

$$\begin{split} \frac{\partial l(\theta)}{\partial W^1_{i,j}} &= \frac{\partial l(\theta)}{\partial h^1_{1,i}} \frac{\partial h^1_{1,i}}{\partial W^1_{i,j}} \\ &= \delta \sum_{q=1}^{n_2} W^3_{1,q}(z^2_{1,q} \geq 0) W^2_{q,i} \frac{\partial h^1_{1,i}}{\partial W^1_{i,j}} \\ &= \delta \sum_{q=1}^{n_2} W^3_{1,q}(z^2_{1,q} \geq 0) W^2_{q,i} h^0_{1,j} \\ &= \delta \left(W^3 \odot (z^2 \geq 0) \right) W^2_{\cdot,i} h^0_{1,j} \end{split}$$

17. What are the partial derivatives of $l(\theta)$ with respect to W^1 ? For conciseness you may use leave your answer in terms of $\frac{\partial l(\theta)}{\partial h_{1,j}^1}$. For further ease of notation, you can write these partial derivatives as $\partial_{h_{1,j}^1} l(\theta)$.

$$\begin{split} \frac{\partial l(\theta)}{\partial W^1} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial W_{1,1}^1} & \frac{\partial l(\theta)}{\partial W_{2,1}^1} & \frac{\partial l(\theta)}{\partial W_{3,1}^1} & \frac{\partial l(\theta)}{\partial W_{3,2}^1} & \frac{\partial l(\theta)}{\partial W_{3,2}^$$

2 Partial Derivatives for a Batch of Data (16 points)

Instead of computing derivatives for a single data point at a time, it is faster to compute a derivatives for a mini-batch of m data points. First consider a mini-batch size of m = 2, e.g., $x \in \mathbb{R}^{2 \times 4}$, $y \in \mathbb{R}^{2 \times 1}$, $h^1 \in \mathbb{R}^{2 \times 3}$, $h^2 \in \mathbb{R}^{2 \times 2}$, $h^3 \in \mathbb{R}^{2 \times 1}$. Let

$$l_k(\theta) = \frac{1}{2} (h_{k,1}^3 - y_{k,1})^2.$$

The loss function is now

$$l(\theta) = \frac{1}{m} \sum_{k=1}^{m} l_k(\theta) = \frac{1}{2} \frac{1}{m} \sum_{k=1}^{m} \left(h_{k,1}^3 - y_{k,1} \right)^2.$$

1. What is the partial derivative of $l(\theta)$ with respect to $h^3 = f(x,\theta)$? Express your final answer using vector notation.

$$\delta = \frac{\partial l(\theta)}{\partial h^3} = \begin{bmatrix} \frac{\partial l(\theta)}{\partial h_{1,1}^3} \\ \frac{\partial l(\theta)}{\partial h_{2,1}^3} \end{bmatrix}$$
$$= \begin{bmatrix} (h_{1,1}^3 - y_1)/m \\ (h_{1,1}^3 - y_1)/m \end{bmatrix} = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$$

2. What is the partial derivative of $l(\theta)$ with respect to $W_{1,1}^3$?

$$\begin{split} \frac{\partial l(\theta)}{\partial W_{1,1}^3} &= \frac{\partial}{\partial W_{1,1}^3} \frac{1}{2} \frac{1}{m} \sum_{i=1}^m \left(h_{i,1}^3 - y_{i,1} \right)^2 = \frac{1}{2} \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial W_{1,1}^3} \left(h_{i,1}^3 - y_{i,1} \right)^2 \\ &= \frac{1}{2} \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial h_{i,1}^3} \frac{\partial \left(h_{i,1}^3 - y_{i,1} \right)^2}{\partial h_{i,1}^3} \frac{\partial h_{i,1}^3}{\partial W_{1,1}^3} \\ &= \frac{1}{m} \sum_{i=1}^m \left(h_{i,1}^3 - y_{i,1} \right) \frac{\partial h_{i,1}^3}{\partial W_{1,1}^3} \\ &= \sum_{i=1}^m \delta_i \frac{\partial h_{i,1}^3}{\partial W_{1,1}^3} \\ &= \sum_{i=1}^m \delta_i h_{i,1}^2 \\ &= \left[\delta_1 \quad \delta_2 \right] \begin{bmatrix} h_{1,1}^2 \\ h_{2,1}^2 \end{bmatrix} \\ &= \delta^\top h_{i,1}^2 \end{split}$$

We can also get here a little more directly by realizing this answer is just the average of the partial derivatives from each data point. Let $l_i(\theta) = \frac{1}{2}(h_{i,1}^3 - y_{i,1})^2$, thus $l(\theta) = \frac{1}{m} \sum_{i=1}^m l_i(\theta)$.

$$\frac{\partial l(\theta)}{\partial W_{1,1}^3} = \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial W_{1,1}^3} l_i(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{i,1}^3 - y_{i,1}) h_{i,1}^2 = \sum_{i=1}^m \delta_i h_{i,1}^2$$

We can apply this principle to compute all partial derivatives with respect to each weight below.

3. What are the partial derivatives of $l(\theta)$ with respect to W^3 ? Express the final answer using vector notation.

$$\begin{split} \frac{\partial l(\theta)}{\partial W^3} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial W_{1,1}^3} & \frac{\partial l(\theta)}{\partial W_{1,2}^3} \end{bmatrix} \\ &= \begin{bmatrix} \delta^\top h_{\cdot,1}^2 & \delta^\top h_{\cdot,2}^2 \end{bmatrix} = \delta^\top \begin{bmatrix} h_{\cdot,1}^2 & h_{\cdot,2}^2 \end{bmatrix} = \delta^\top h^2 \end{split}$$

4. What are the partial derivatives $l(\theta)$ with respect to $h_{\cdot,1}^2$? Express the final answer using vector notation. To make the answer simple, we first show the partial derivatives for $h_{1,1}^2$.

$$\frac{\partial l(\theta)}{\partial h_{1,1}^2} = \frac{1}{2} \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial h_{1,1}^2} \left(h_{i,1}^3 - y_{i,1} \right)^2
= \frac{1}{2} \frac{1}{m} \frac{\partial}{\partial h_{1,1}^2} \left(h_{1,1}^3 - y_{1,1} \right)^2
= \delta_1 \frac{\partial h_{1,1}^3}{\partial h_{1,1}^2}
= \delta_1 W_{1,1}^3$$

$$\frac{\partial l(\theta)}{\partial h_{\cdot,1}^2} = \begin{bmatrix} \frac{\partial l(\theta)}{\partial h_{1,1}^2} \\ \frac{\partial l(\theta)}{\partial h_{2,1}^2} \end{bmatrix}$$
$$= \begin{bmatrix} \delta_1 W_{1,1}^3 \\ \delta_2 W_{1,1}^3 \end{bmatrix}$$
$$= \delta W_{1,1}^3$$

5. What are the partial derivatives $l(\theta)$ with respect to h^2 ? Express the final answer using vector notation.

$$\frac{\partial l(\theta)}{\partial h^2} = \begin{bmatrix} \frac{\partial l(\theta)}{\partial h_{1,1}^2} & \frac{\partial l(\theta)}{\partial h_{2,1}^2} \\ \frac{\partial l(\theta)}{\partial h_{2,1}^2} & \frac{\partial l(\theta)}{\partial h_{2,2}^2} \end{bmatrix} \\
= \begin{bmatrix} \delta_1 W_{1,1}^3 & \delta_1 W_{1,2}^3 \\ \delta_2 W_{1,1}^3 & \delta_2 W_{1,2}^3 \end{bmatrix} \\
= \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} \begin{bmatrix} W_{1,1}^3 & W_{1,1}^3 \end{bmatrix} \\
= \delta W^3$$

6. What is the partial derivative of $l(\theta)$ with respect to $W_{i,j}^2$?

$$\begin{split} \frac{\partial l(\theta)}{\partial W_{i,j}^2} &= \frac{\partial}{\partial W_{i,j}^2} \frac{1}{2} \frac{1}{m} \sum_{k=1}^m \left(h_{k,1}^3 - y_{k,1} \right)^2 \\ &= \frac{1}{2} \frac{1}{m} \sum_{k=1}^m \frac{\partial}{\partial h_{k,1}^3} \frac{\partial \left(h_{k,1}^3 - y_{k,1} \right)^2}{\partial h_{k,1}^3} \frac{\partial h_{k,1}^3}{\partial W_{i,j}^2} \\ &= \sum_{k=1}^m \delta_k \frac{\partial h_{k,1}^3}{\partial W_{i,j}^2} \quad \text{now plug in answer from part 1} \\ &= \sum_{k=1}^m \delta_k W_{1,i}^3 (z_{k,i}^2 \ge 0) h_{k,j}^1 \\ &= \sum_{k=1}^m \partial_{h_{k,i}^2} l(\theta) (z_{k,i}^2 \ge 0) h_{k,j}^1 \\ &= \left[\partial_{h_{1,i}^2} l(\theta) (z_{1,i}^2 \ge 0) \quad \partial_{h_{2,i}^2} l(\theta) (z_{2,i}^2 \ge 0) \right] \begin{bmatrix} h_{1,j}^1 \\ h_{2,j}^1 \end{bmatrix} \\ &= \left(\partial_{h_{\cdot,i}^2} l(\theta) \odot (z_{\cdot,i}^2 \ge 0) \right)^\top h_{\cdot,j}^1 \end{split}$$

7. What are the partial derivatives of $l(\theta)$ with respect to W^2 ? Express your answer using vector notation.

$$\begin{split} \frac{\partial l(\theta)}{\partial W^2} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial W_{1,1}^2} & \frac{\partial l(\theta)}{\partial W_{2,2}^2} & \frac{\partial l(\theta)}{\partial W_{2,3}^2} \\ \frac{\partial l(\theta)}{\partial W_{2,1}^2} & \frac{\partial l(\theta)}{\partial W_{2,2}^2} & \frac{\partial l(\theta)}{\partial W_{2,3}^2} \end{bmatrix} \\ &= \begin{bmatrix} \left(\partial_{h_{\cdot,1}^2} l(\theta) \odot (z_{\cdot,1}^2 \geq 0)\right)^\top h_{\cdot,1}^1 & \left(\partial_{h_{\cdot,1}^2} l(\theta) \odot (z_{\cdot,1}^2 \geq 0)\right)^\top h_{\cdot,2}^1 & \left(\partial_{h_{\cdot,1}^2} l(\theta) \odot (z_{\cdot,1}^2 \geq 0)\right)^\top h_{\cdot,3}^1 \\ \left(\partial_{h_{\cdot,2}^2} l(\theta) \odot (z_{\cdot,2}^2 \geq 0)\right)^\top h_{\cdot,1}^1 & \left(\partial_{h_{\cdot,2}^2} l(\theta) \odot (z_{\cdot,2}^2 \geq 0)\right)^\top h_{\cdot,2}^1 & \left(\partial_{h_{\cdot,2}^2} l(\theta) \odot (z_{\cdot,2}^2 \geq 0)\right)^\top h_{\cdot,3}^1 \end{bmatrix} \\ &= \begin{bmatrix} \left(\partial_{h_{\cdot,1}^2} l(\theta) \odot (z_{\cdot,1}^2 \geq 0)\right)^\top \\ \left(\partial_{h_{\cdot,2}^2} l(\theta) \odot (z_{\cdot,1}^2 \geq 0)\right)^\top \end{bmatrix} \begin{bmatrix} h_{\cdot,1}^1 & h_{\cdot,2}^1 & h_{\cdot,2}^1 \end{bmatrix} \\ &= \left(\partial_{h^2} l(\theta) \odot (z^2 \geq 0)\right)^\top h^1 \\ &= \left(\delta W^3 \odot (z^2 \geq 0)\right)^\top h^1 \end{split}$$

8. What are the partial derivatives of $l(\theta)$ with respect to h^1 ? Express your answer using vector notation. You can use $\partial_{h^2} l(\theta) = \frac{\partial l(\theta)}{\partial h^2}$ to simplify your answer.

Starting with derivative with respect to $h_{1,1}^1$.

$$\begin{split} \frac{\partial l(\theta)}{\partial h_{1,1}^{1}} &= \sum_{k=1}^{m} \delta_{k} \frac{\partial h_{k,1}^{3}}{\partial h_{1,1}^{1}} \\ &= \delta_{1} \frac{\partial h_{1,1}^{3}}{\partial h_{1,1}^{1}} \\ &= \left(\delta_{1} W^{3} \odot (z_{1,\cdot}^{2} \geq 0) \right) W_{\cdot,1}^{2} \\ &= \left(\partial_{h_{1,\cdot}^{2}} l(\theta) \odot (z_{1,\cdot}^{2} \geq 0) \right) W_{\cdot,1}^{2} \end{split}$$

$$\begin{split} \frac{\partial l(\theta)}{\partial h^{1}} &= \begin{bmatrix} \frac{\partial l(\theta)}{\partial h_{1,1}^{1}} & \frac{\partial l(\theta)}{\partial h_{1,2}^{1}} & \frac{\partial l(\theta)}{\partial h_{1,3}^{1}} \\ \frac{\partial l(\theta)}{\partial h_{2,1}^{1}} & \frac{\partial l(\theta)}{\partial h_{2,2}^{1}} & \frac{\partial l(\theta)}{\partial h_{2,3}^{1}} \end{bmatrix} \\ &= \begin{bmatrix} \left(\partial_{h_{1,\cdot}^{2}} l(\theta) \odot (z_{1,\cdot}^{2} \geq 0)\right) W_{\cdot,1}^{2} & \left(\partial_{h_{1,\cdot}^{2}} l(\theta) \odot (z_{1,\cdot}^{2} \geq 0)\right) W_{\cdot,2}^{2} & \left(\partial_{h_{1,\cdot}^{2}} l(\theta) \odot (z_{1,\cdot}^{2} \geq 0)\right) W_{\cdot,3}^{2} \\ \left(\partial_{h_{2,\cdot}^{2}} l(\theta) \odot (z_{2,\cdot}^{2} \geq 0)\right) W_{\cdot,1}^{2} & \left(\partial_{h_{2,\cdot}^{2}} l(\theta) \odot (z_{2,\cdot}^{2} \geq 0)\right) W_{\cdot,2}^{2} & \left(\partial_{h_{2,\cdot}^{2}} l(\theta) \odot (z_{2,\cdot}^{2} \geq 0)\right) W_{\cdot,3}^{2} \end{bmatrix} \\ &= \begin{bmatrix} \left(\partial_{h_{1,\cdot}^{2}} l(\theta) \odot (z_{1,\cdot}^{2} \geq 0)\right) \\ \left(\partial_{h_{2,\cdot}^{2}} l(\theta) \odot (z_{2,\cdot}^{2} \geq 0)\right) \end{bmatrix} \begin{bmatrix} W_{\cdot,1}^{2} & W_{\cdot,2}^{2} & W_{\cdot,3}^{2} \end{bmatrix} \\ &= \left(\partial_{h_{2}^{2}} l(\theta) \odot (z^{2} > 0)\right) W^{2} \end{split}$$