IN, LASEC: Bachelor Project #1

Due on Spring 2016

Pr. Serge Vaudenay

Max Premi

Abstract

This Hill cipher is a polygraphic substitution cipher based on linear algebra, invented by Lester S. in 1929. Each letter is represented by a number modulo 26, from A=0 to Z=25. The algorithm breaks the plaintext into blocks of size d and then applies a matrix $d \times d$ to these blocks to yield ciphertext blocks. As it's a linear encryption, it can be simply broken with Know PlainText Attacks. The author takes the previous paper about a new Ciphertext-only Attacks on Hill, and try to improve it's complexity to get a better result that $O(d13^d)$.

The goal of this project is to actually study the algorithm to get the key matrix modulo 2 and then to improve the algorithm to get the key matrix modulo 26.

The project report is organized as follows: Section1 presents the Hill cipher and the work done in the previous report. In section2, the author studies the complexity and try to improve the algorithm to get the key matrix modulo 26. Section 3 presents the possible enhancement of the FFT of algorithm 1. Section 4 present the possible improvement of the algorithm to recover the matrix key modulo 26. Experimental results and algorithm are presented at the end.

Page 2 of ??

Contents

Abstract	2
Introduction	4
Preliminaries	4
Key recovery modulo 26	4
Study of Faster Fourier Transform for Algorithm 1	5
Deterministic Sparse Fourier Approximation via Fooling Arithmetic Progressions	5
Nearly optimal Sparse Fourier Transform	5
Combinatorial sub linear-Time Fourier Algorithm	6
Simple and practical algorithm for sparse Fourier transform	6
Experiment	6
Probability of the independent English letters	6
Probability if you consider blocks of size d	7
Study of Algorithm to get K_{26}	7
f Algorithm	8
References	9

Introduction

The motivation of this project is, first and foremost, to improve the Linear attack on the Hill cipher, by changing the recovering of the key modulo 26 and then see the possible algorithm to improve the FFT in recovery of matrix key modulo 2.

Indeed, it is known that a brute force attack can be done on the Hill cipher, as it is a Linear cipher, but to have a better complexity and less restrictive resources, improvement have been made.

It is now possible to get a matrix key with minimum length required on ciphertext of $n = 8.96d^2 - O(\log d)$. This method has been then improved [2] using the divide-and-conquer technique, and eliminating repeated calculation while doing matrix multiplication, and have led to a ciphertext required length of $n = 8,96d^2$. Eventually, using the Chinese Reminder Theorem [2], the legnth has been brought to $n = 12.5d^2$, and the complexity to $O(d13^d)$.

By this same Chinese Reminder theorem, it is believed that we can find the key matrix modulo 2 first and then recover from it, the matrix modulo 26 with a lower complexity [1].

It is shown that this matrix modulo 2 can be found in $O(d2^d)$.

Let's briefly describe how this attack works.

You get the plaintext modulo 2, then with the aid of vectors, and bias(X)= $\varphi_X(\frac{2\pi}{p})$ in $\mathbb{Z}/26\mathbb{Z}$, we found correspondence between λ and μ (the last is the same vector but for the cipher text). We actually get $\mu = (K^T)^{-1} \times \lambda$

Then with this formula and the approximation of all the vector μ , we get the vectors column of the key matrix in $\mathbb{Z}/2\mathbb{Z}$.

You just need to reorder them with the correlation, you find the last one and first one easily, and you do it recursively to find all the vectors in the correct order.

All this process is described by algorithm 1 in the Annexe, and is done in a time $O(d2^d)$

This project will present possible improvement of this algorithm to get a lower complexity than the one mentioned before, with the help of Sparse Fourier Transform. Then, a possible enhancement to get the key matrix in modulo 26 will be discussed, as the one presented in the previous paper runs in $O(8^n d)$.

Key recovery modulo 26

So now that we have the key matrix in $\mathbb{Z}/2\mathbb{Z}$, we can have the plain text in $\mathbb{Z}/2\mathbb{Z}$ using the linearity of the cipher.

To get the key matrix in $\mathbb{Z}/26\mathbb{Z}$, we can use the Chinese Reminder Theorem, but we would get a complexity of $O(13^d)$. In the previous paper, it was believed that it's possible to get the key matrix in $\mathbb{Z}/26\mathbb{Z}$ without considering $\mathbb{Z}/13\mathbb{Z}$.

First of all, we create a hash table using long text, and search mapping between segments of reference text and plain text modulo 2.

#(seg in reference) = len(reference text) - n + 1, with n the segment size.

Indeed, if you take the following text: this is a test, with n = 5, you get the following segment:

thisi, hisis, isisa, sisat, isate, sates, atest which is 7 segments 11-5+1=7

We get the same thing for #(seqinplain) = len(plaintext) - n + 1, with n the segment size.

We use Rényi entropy, with the following formula:

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log_2(\sum_{i=1}^n \Pr(X=i)^{\alpha})$$

When alpha has the value 2, we just get the following:

$$-\log_2(\sum_{i=1}^n \Pr(X=i)^2)$$

that gives us the probability that a segment equals another one as $\sum_{i=1}^{n} \Pr(X=i)^2 = \sum \Pr(a=b)^2$. Rényi entropy represent more generally the quantity of information in the probability of colision of a random variable.

Then we define the good matching: segments are equals before and after modulo 2, and bad matching segment which are not equal but equal modulo 2.

For good matching, we have $E(\#goodmatching) = (\#segmentsinreference) \times (\#segmentinplaintext) \times 2^{-H_2(X)}$, as the number of good matching is actually the collision between segment in plaintext and segment in reference text multiplied by the entropy of rényi of this segment (which represents the rate of collision for a given block X).

Then you do the same for E(#allmatching), the difference is that you do it this way: $E(\#goodmatching) = (\#segmentsinreference) \times (\#segmentinplaintext) \times 2^{-H_2(X \mod 2)}$. And indeed you understand that if 2 words modulo 2 are equals, these words are not always equals modulo 26.

For the E(#allmatching) the calculation is really simple, you must take $(\#segmentsinreference) \times (\#segmentinplaintext) \times 2^{-H_2(X \mod 2)}$ as we do all the possibles matching.

 $H_2(X \mod 2) = -\log_2(\sum_{i=0}^1 Pr(X=i)^2)$, where $Pr(X \mod 2=i)$ declined in $Pr(X \mod 2=0)$ and $Pr(X \mod 2=1)$

From diverse calculation we always get 0.5^n so E(# all matching) is always equals to $(\# segments in reference) \times (\# segment in plaintext) \times 0.5^n$.

Then to have an idea of the complexity, you do the ratio $\frac{E(\#goodmatchings)}{E(\#allmatchings)}$, you generally found $\frac{1}{8^n}$. In the following parts, the calculation of E(#allmatchings) are done again thanks to a Java program. But to have a better complexity, we need to increase the ratio of good matching as E(#allmatchings) can't be changed so we can only try on E(#goodmatchings), with different assumptions and calculations.

Study of Faster Fourier Transform for Algorithm 1

With a fast Fourier Transform (FFT) the complexity is $O(N \log N)$ for N the input size.

But generally, most of the coefficient of a FFT are small or equal to zero, meaning the output of the FFT is sparse. If a signal has a small number k of non-zero Fourier coefficients the output of the Fourier transform can be represented succinctly using only k coefficients. Hence, we can find Fourier Transform algorithm whose run time is sub-linear in the signal size n.

what we want is to enhance the possible FFT on a table called n_y which contains the number of times k where each cipher y appears. So it is a table containing numbers $\in \mathbb{R}$.

Simple and practical algorithm for sparse Fourier transform

This algorithm considers a complex vector x of length n.

It computes the k-sparse Fourier transform in $O(\sqrt{kn}\log^{3/2}n)$, if x is sparse then you find it in exactly $O(k\log^2 n)$, but in general estimate x is approximately $O(\sqrt{nk})$

So this algorithm is better if the ratio $\frac{n}{k} \in [2 \times 10^3, 10^6]$, but it's clearly not the best one as recently found are supposed to find it in a lower complexity $(k \log(n))$.

If you suppose all our entries in n_y are non null and the,

Deterministic Sparse Fourier Approximation via Fooling Arithmetic Progressions

If we only want to have the few significant Fourier Coefficient, we can use this.

Here if we gave a threshold $\tau \in (0,1]$ and an oracle access to a function f, it outputs the τ -significant Fourier Coefficient. This is called SFT and runs in $\log(N), \frac{1}{\tau}$.

An oracle access to a function take as input x and return the f(x) of the function f.

This algorithm is robust to random noise and local (meaning it runs in polynomial time)

It's based on partition of set by binary search, you have at the beginning 4 intervals, you test for the two first if the norm of f Fourier Transform squared is equals to the set_i oracle output squared

Meaning more explicitly: $f(J_i)^2 = \sum_{\alpha \in J_i} |f(\alpha)|^2$ If this pass, it will output yes, and we'll be able to continue the algorithm by replacing the J and insert the J_i

The heart of the code is actually to decide which intervals potentially contain a significant Fourier coefficient. Yes if weight on J, exceeds significant threshold τ , NO if J larger.

The threshold τ can be chosen, with the fact that a α is a τ -significant Fourier coefficient iff $|\hat{f}|^2 \ge \tau ||f||_2^2$ where $\hat{f} = \langle f, X_{\alpha} \rangle$ and $X_{\alpha} = e^{2\pi i \alpha x/N}$.

Nearly optimal Sparse Fourier Transform

We want here to compute the k-sparse approximation to the discrete Fourier transform of an n-dimensional signal.

There is to time in function of the number of input has at most k non-zero Fourier Coefficient.

In this case, we got $O(k.\log(n))$ time, else we have $O(k.\log(n).\log(\frac{n}{k}))$

The basis is still the same, if a signal has a small number k of non-zero Fourier, the output of this DFT can be represented succinctly using only k coefficient.

What is required, is that the input size n is a power of 2.

This algorithm seems to restrictive and also perform the same in the worst case.

Combinatorial sub linear-Time Fourier Algorithm

You have a vector A of length $n \gg k$ you identify the k largest frequencies of the transform of A, getting polynomial time $(k, \log(n))$ for the algorithm.

Experiment

Probability of the independent English letters

From the frequency letter given by Wikipédia, in english we got the following result :

Sum of probability squared = 0.06549717159999999, which corresponds to $(\sum_{i=0}^{25} \Pr(i=y)^2)^n$, $y \in \{alphabet\}$ Sum of probability that gives 0 modulo 2 squared = 0.32298762240000006 which corresponds to which $(\sum_{i=0}^{25} \Pr(i=0)^2)^n$, $i \in \{alphabet \mod 2\}$

Sum of probability that gives 1 modulo 2 squared = 0.18634762239999997 which corresponds to which $(\sum_{i=0}^{26} \Pr(i=1)^2)^n, i \in \{alphabet \bmod 2\}$

Ration of good matching and all matching= 0.1285934407027314^n

So $\frac{1}{7,77644^n}$

Another site, with some novel and book from Edgar Allan Poe, and articles from encyclopedia:

proba sum = 0.9999000000000001

sum of probability squared = 0.06609151 which corresponds to $(\sum_{i=0}^{25} \Pr(i=y)^2)^n$, $y \in \{alphabet\}$ sum of probability that gives 0 modulo 2 squared = 0.32001649 which corresponds to which $(\sum_{i=0}^{25} \Pr(i=0)^2)^n$, $i \in \{alphabet \mod 2\}$

sum of probability that gives 1 modulo 2 squared = 0.18852964 which corresponds to which $(\sum_{i=0}^{25} \Pr(i=1)^2)^n$, $i \in \{alphabet \mod 2\}$

Ration of good matching and all matching=0.12996168115565054ⁿ So $\frac{1}{7.69457^n}$

Probability if you consider blocks of size d

So calculation are done on a text of approximately 860000 characters to see the evolution of the ratio good matching/bad matching.

A program is ran to see the evolution for a block size between 1 and 25, and give the ratio, thanks to the probability that a block appears. It is completely heuristic as it's just counting the number of block that appears and do some manipulation with it. So the basic is to choose a block size, then it'll count every different blocks that appears modulo 26 and modulo 2. Then it'll compute the probability that a good matching happen with the following: $\sum_{X \in block} (\frac{\#X-1}{\#block-1})^2$

You do the exact same thing with X in modulo 2, to get the probability of all matching, and then you compute the ratio $\frac{E(\#goodmatchings)}{E(\#allmatchings)}$

With this, the evolution of the ratio in function of the block size looks like this:

Study of Algorithm to get K_{26}

fuykg

Algorithm

You hash a reference text.

You take the key matrix that you get from algorithm 1, find plain text in $\mathbb{Z}/2\mathbb{Z}$, and create an array. find the list of all matching: find all pairs (seg, str) such that seg is a segment of plaintext modulo 2 and $str \in hash(seg)$ and save it in a list.

```
    repeat
    select d matching form list (you'll get a d × d key matrix)
    for each of these matchings (seg<sub>i</sub>, str<sub>i</sub>) do
    extract block<sub>i</sub> from seg<sub>i</sub> and str'<sub>i</sub> from str<sub>i</sub>,
    then find ciphertext<sub>i</sub> such that K<sup>-1</sup> x ciphertext<sub>i</sub> mod 2 = block<sub>i</sub>
    end for
    solve ciphertext<sub>i</sub> = K * str'<sub>i</sub> for i=1 to d
    compute K<sup>-1</sup>*ciphertext
    until decryption make sense
    number of iteration is <sup>1</sup>/<sub>ratio<sup>nd</sup></sub> = 8<sup>nd</sup>
```

The following algorithm is to recover the key matrix in $\mathbb{Z}/2\mathbb{Z}$

```
1: Part1:
Require: Ciphertext Y_1, Y_2, ..., Y_n
Ensure: K(mod 2)
 2: for all \mu do
       compute S_n(\mu) = \sum_{k=1}^n (-1)^{\mu \cdot y} \times n_y where n_y = \#\{k; Y_k = y\}
 5: set all \mu to the d values of \mu with largest S_n(\mu) = bias(\mu Y)
 6: Part2:
 7: for all (i, i') do
       compute n_{00}(i, i') = \#\{k < n : (\mu_i.Y_k, \mu'_i.Y_{k+1}) = (0, 0)\}
10: set (i_d, i_1) to the first pair with lowest n_{00}
11: Part3:
12: for all t = 2 to d - 1 do
       for all i \notin \{i_1, i_2, ..., i_{t-1}, i_d\} do
13:
          compute n_{00}(i, i') = \#\{k : (\mu_{i_*}^T, Y_k, \mu_i^T Y_k) = (0, 0)\}
14:
       end for
15:
       take i such that n_{00} is minimum and set i_t = i
16:
17: end for
18: set \mu = (\mu_{i1}, \mu_{i1}, ..., \mu_{id}) and K = (\mu^{-}1)^{T}
19: output K
```

Here to be faster we store n_y in a table and we do a FFT on this table to get S_n . With this operation the total complexity drop from $O(d^2 \times 2^d)$ to $O(d \times 2^d)$ But it seems with some other techniques we could do better.

References

- [1] Alina, Matyukhina. Cryptanalysis of the Hill Cipher.
- [2] S. Shazaei, S. Ahmadi. Ciphertext- only attack on $d \times d$ Hill in $O(d13^d)$.
- [3] Akavia, A. Deterministic Sparse Fourier Approximation via Fooling Arithmetic Progressions.
- [4] Akavia, A., Goldwasser, S., Safra, S. Proving Hard-Core Predicates Using List Decoding.
- [5] Hassanieh, H., Indyk, P., Katabi, D., Price, E. Nearly optimal sparse Fourier transform.
- [6] Hassanieh, H., Indyk, P., Katabi, D., Price, E. Simple and practical algorithm for sparse Fourier transform.
- [7] Iwen, M.A. Combinatorial Sublinear-Time Fourier Algorithms.

Page 9 of ??