Lösung

Bitfolge: 0110 1011 0110

Amplitudenumtastung:

Frequenzumtastung:

Phasenumtastung:

Manchester-Code

Non-return to zero:

Alternate Mark Inversion:

Paritätsbit: 1

Bitfolge: 0110 1011 0110

Hamming-Code hat einen Code-Abstand von

Definition Code-Abstand:

Es seien C ein Code fester Länge und v_1,v_2 zwei Codewörter aus C. Der Hamming-Abstand $\Delta(v_1,v_2)$ ist die Anzahl an Positionen, an denen die Symbole in v_1 und v_2 unterschiedlich sind

• entspricht Anzahl der Eins-Bits von $v_1 XOR v_2 (= v_1 \oplus v_2)$

Für einen Code $\mathcal C$ fester Länge ist der Code-Abstand $\Delta \mathcal C$ die minimale Distanz zwischen zwei Codewörtern

$$\Delta C \coloneqq \min\{\Delta(v_1, v_2) | v_1, v_2 \in C, v_1 \neq v_2\}$$

Gib die Form des Codeworts an, z.B. $z = (p_1p_2x_1 p_3 x_2 x_3 x_4)$

Gib für jedes Paritätsbit an, wie sich diese Berechnen lassen

Gib das komplette Hamming-Codewort an

CRC ist kurz für? (yelie Redudesey Cleak

Berechne die CRC-Prüfsumme mittels des Generatorpolynoms $G(x) = x^5 + x^3 + x^1 + 1$ mit Polynomdivision

Welche Bitfolge wird dann gesendet?

Wie sieht eine Hardware-Implementierung für dieses Generatorpolynom aus?

