10
$$\int_{-\infty}^{\infty} \frac{dx}{2-\sqrt{x}}$$
 observe singularity @ $x=4$

lets ty intervals $0 \le x \le 3.999$ & $4.001 \le x \le 5$

$$\int_{-\infty}^{\infty} 4x \approx \frac{h}{3} \left[F(x_0) + 4f(x_1) + 2f(x_2) + ... + f(x_n) \right]$$
 $\int_{-\infty}^{\infty} 4x = \frac{h}{3} \left[F(x_0) + 4f(x_1) + 2f(x_2) + ... + f(x_n) \right]$

Lets ty intervals
$$0 \le x \le 3.999 & 4.0016 \times 4.5$$

$$\int f(x) dx \approx \frac{h}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + ... + f(x_n) \right]$$

$$\int f(x) dx \approx \frac{h}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + ... + f(x_n) \right]$$

$$\int f(x_0) dx \approx \frac{h}{3} \left[f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n) \right]$$

Lets ty intervals $\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n) + 2f(x_1) + ... + f(x_n)$$

Lets ty intervals $\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n) + 2f(x_1) + ... + f(x_n)$$

Lets ty intervals $\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_1) + 2f(x_2) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_0) + 2f(x_1) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_0) + 2f(x_0) + ... + f(x_n)$$

$$\int f(x_0) + 2f(x_0) + 2f(x_0) + ... + f(x_n)$$

$$\int f(x_0) + ... + f(x_0)$$

$$\int f(x_0) + ... + f(x_0)$$

$$\int f(x_0) + ... +$$

$$f(x_1) = \frac{1}{2-\sqrt{0.9975}} = 5.499875$$

 $f(x_2) = 1.7006$

$$S(\times_3) = 3.729$$

$$\frac{0.24975}{3} \left(-4000.25 + 4 \left(0.6665 \right) + 2 \left(0.7773 \right) + 4 \left(0.8715 \right) + 0.995 \right) \\ 209.9864 + 1 - 448 = 676$$