Login

Home About Media FIRST VEX Resources Sponsors

Sι

Resources

Kitbot on Steroids Strategy SimPhone Team Management Robot Design Mobility Pneumatics Programming

Drivetrain Selection

Purpose of a Drivetrain

- · Move around field
 - Typically 27' x 54' carpeted surface
- · Push/Pull Objects and Robots
- · Climb up ramps or over/around obstacles
- · Most important sub-system, without mobility it is nearly impossible to score or prevent points
- · Must be durable and reliable to be successful
- Speed, Pushing Force, and Agility important abilities

Types of Wheels

- "Traction" Wheels
 - Standard wheels with varying amounts of traction, strength & weight
 - Kit of Parts (KOP)
 - AndyMark (AM) or VEX Pro
 - Pneumatic
 - Slick
 - Custom

- Omni
 - $\,{}^{\circ}\,$ Rollers are attached to the circumference, perpendicular to the axis of rotation of the wheel
 - Allows for omni directional motion

Mecanum

- $_{\circ}\,$ Rollers are attached to the circumference, on a 45 degree angle to the axis of rotation of the wheel
- · Allows for omni directional motion

Types of Drivetrains

- Tank
- Swerve
- Slide
- Mecanum
- Holonomic

Types of Drivetrains: Tank

- Left and right wheel(s) are driven independently
- Typically in sets of two (1-4 sets is common, sometimes higher)
 - Strengths
 - $_{\circ}\,$ Simple & cheap to design, build, and program
 - Easy to drive
 - Potential for high speed and/or pushing force
- Weaknesses
 - Slightly less agile than other drivetrains

Types of Drivetrains: Swerve/Crab

- Wheels modules rotate on the vertical axis to control direction
- Typically 4 traction wheels
- Strengths
 - Potential for high speed and/or pushing force
 - Agile
- Weaknesses
 - $\,{}^{\circ}\,$ Very complex and expensive to design, build and program
 - Extra motors required to be able to rotate robot frame

Types of Drivetrains: Slide

• Similar layout to tank drive, with an extra wheel(s) perpendicular to the rest

- · Must use all omni wheels
- · Strengths
 - Fairly easy and cheap to design, build, and program
 - Agile
- Weaknesses
 - No potential for high pushing force
 - $\circ~$ Extra wheel(s)/motor(s)/gearbox(es) required to allow robot translate sideways

Types of Drivetrains: Mecanum

- Similar layout to tank drive, but each wheel must be driven independently
- Must use 4 mecanum wheels
- Strengths
 - · Fairly easy to design & build
 - Agile
- Weaknesses
 - No potential for high pushing force
 - Challenging to program and learn to drive well
 - · Requires extra gearboxes
 - · Wheels are expensive

Types of Drivetrains: Holonomic

- 4 omni wheels positioned on 45 deg angle in the corners of the frame
- · Each wheel must be driven independently
- · Strengths
 - Agile
- Weaknesses
 - No potential for high pushing force
 - Very challenging to program and learn to drive well
 - Requires extra gearboxes

Compare Drivetrains

- Choosing the right drivetrain is critical to the success of an FRC robot
- · Several drivetrains to choose from
 - Each one has its own strengths and weaknesses
- Important to quantitatively evaluate all options to ensure optimal solution is chosen
 - Best method to do this is a "Weighted Objectives Table"

Drivetrain Attributes

- Agility
 - Ability to translate in the x and y axis as well as rotate about the z axis simultaneously
- Strength

- Push robots and/or game pieces
- · Resist defense from all sides of the drivetrain
- · Number of Motors
 - Number of motors allowed on an FRC robot is limited
 - Most drivetrains use 4 CIM motors to power wheels
 - · Additional motors to rotate wheel modules or translate sideways may take away from motors for other robot functions
- · Programming
 - · Ideally does not require sensor feedback (eg. wheel module angle)
 - · Ideally does not require advanced algorithm to calculate individual wheel speed/power
- · Ease to Drive
- · Intuitive to control so little practice is required to be competitive
- · Just because some drivetrains have the ability to move sideways doesn't mean the driver will use the ability
 - o Often drivers end up turning the robot because it is more natural or going sideways feels (or actually is) slower
- · Traverse Obstacles
 - The ability of a drivetrain to traverse ramps, bumps or steps
- Design
 - $\circ\,$ This is a very general heading. Sub headings grouped as there is a strong relationship between them
 - Cost
 - Ease to design (select components and choose dimensions)
 - Ease to manufacture
 - Ease to assemble
 - Ease to maintain/repair
 - Weight

Weighted Objectives Tables

- Give each attribute of each drivetrain a relative score between 1 and 5
- · Weights are dependant on
 - $_{\circ}\;$ Strategic analysis of the game (priority list)
 - · Teams resources

	Weight	Tank	Swerve	Slide	Mecan	Holo
Agility	?	3	5	5	5	5
Strength	?	4	5	1	1	1
Motors	?	5	1	3	5	5
Program	?	5	1	4	3	2
Drive	?	5	3	3	2	1
Traverse	?	5	4	4	3	1
Design	?	5	1	4	4	3

- · Agility, Strength & Ability to traverse obstacles
 - Relative to #1 priory, reliability
 - 0 = not important or required
 - 10 = equally as important as reliability
- Number of Motors
 - Depends on complexity of other robot features and ability to design with all motors
 - 0 = no other features/very strong ability to design with all motors
 - 10 = very complex/little ability to design with other motors
- Programming
 - Depends on strength of programming team (# of students/mentors, experience, ect)
- · Ease to Drive
 - Depends on amount of available practice

- 0 = have a full practice field and practice robot with committed drivers that train every day
- 10 = no practice field/robot, no time in build season to practice
- · Design
 - · How many students/mentors do you have?
 - · How much experience do you have?
 - What tools are available to you (hand tools < bandsaw < mill)?</p>
 - · How many hours are your shop facilities available/will you use them?
 - How much money do you have?
 - Drivetrains with a low design score require significant resources to design a reliably
 - 0 = lots of experience, students, mentors, tools, money
 - 0 = The desired drivetrain has been used in a previous season or prototyped in the off season
 - 10 = No experience, few students, mentors, tools, money

Typical Weights for a Rookie or Low Resource Team

- 5 Agility
- 5 Strength
- 5 Number of Motors
- 10 Programming
- 10 Ease to Drive
- · 0 Traverse Obstacles
- 10 Design
- Resources are low, so it is more important to build a simple drivetrain that is easy to program and learn how to drive to ensure
 reliability.
- · The performance of the drivetrain (agility & strength) are not as important as reliability
- The number of motors is not as important because additional features should be very basic and require few (or no) motors

Rookie/low Resource Team Weighted Table

- · Rookie/low resource team weighted table
- · Tank drivetrain much higher score than others
- · Slide drive second best

	Weight	Tank	Swerve	Slide	Mecan	Holo
Agility	5	3 (15)	5 (25)	5 (25)	5 (25)	5 (25)
Strength	5	4 (20)	5 (25)	1 (5)	1 (5)	1 (5)
Motors	5	5 (25)	1 (5)	3 (15)	5 (25)	5 (25)
Program	10	5 (50)	1 (10)	4 (40)	3 (30)	2 (20)
Drive	10	5 (50)	3 (30)	3 (30)	2 (20)	1 (10)
Traverse	0	5 (0)	4 (0)	4 (0)	3 (0)	1 (0)
Design	10	5 (50)	1 (10)	4 (40)	4 (40)	3 (30)
Total	225	93% (210)	47% (105)	69% (155)	64% (145)	51% (115)

Comparison of weighted tables for different resource teams

	Rookie	Average	Strong
Agility	5	8	10
Strength	5	8	10
Motors	5	6	5
Program	10	7	3
Drive	10	7	3
Traverse	0	0	0
Design	10	7	3

	Tank	Swerve	Slide	Mecan	Holo
Rookie	93%	47%	69%	64%	51%
Average	89%	56%	67%	66%	56%
Strong	82%	71%	64%	66%	61%

When to choose a swerve drive

- · Strength & Agility equally as important as reliability
- · Lots of students/mentors
- · Access to advanced tooling
- · Large budget
- · Team has strong ability to use other motors for robot function
- · Team has practice field and practice robot
- · Team has used a swerve in a previous season, or prototyped one in the off season

	Swerve
Agility	10
Strength	10
Motors	2
Program	2
Drive	2
Traverse	0
Design	2

	Tank	Swerve	Slide	Mecan	Holo
Swerve	79%	80%	63%	63%	59%

When to choose a slide drive

- · Agility equally as important as reliability
- Strength is not required (game has no interaction with opponents)
- · Team has practice field and practice robot
- Team has used a slide in a previous season, or prototyped one in the off season
- · Lots of students/mentors
- · Team has strong ability to use other motors for robot function

	Slide
Agility	10
Strength	0
Motors	1
Program	3
Drive	1
Traverse	0
Design	3

	Tank	Swerve	Slide	Mecan	Holo
Slide	78%	67%	89%	87%	79%

When to choose a mecanum drive

- · Agility equally as important as reliability
- Strength is not required (game has no interaction with opponents)
- · Team has practice field and practice robot

- Team has used a mecanum in a previous season, or prototyped one in the off season
- · Strong programing ability
- · Lots of students/mentors

Mecan
10
0
5
2
2
0
3

	Tank	Swerve	Slide	Mecan	Holo
Mecan	82%	60%	83%	88%	82%

Designing a Tank Drivetrain

- At this point we have concluded Tank-Style Drivetrain is *usually* the best option for all teams, regardless of the game or the teams resources
- Why don't all teams use Tank-Style Drivetrains?
 - Some (few) teams have a lot of resources
 - Trying new things to learn new skills/gain new experiences
 - Understanding this choice will make them less competitive
 - Improper strategic analysis of the game and evaluation of team resources
 - Improper analysis of strengths and weakness of various drivetrains
 - Omni directional drivetrains have a significant "cool factor" that distract teams