International Rectifier

30BQ060PbF

SCHOTTKY RECTIFIER

3 Amp

$$I_{F(AV)} = 3.0 Amp$$

 $V_R = 60 V$

Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	60	>
I _{FSM} @t _p =5μs sine	1200	А
V _F @3.0 Apk, T _J = 125°C	0.52	V
T _J range	- 55 to 150	°C

Description/ Features

The 30BQ060PbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Bulletin PD-20408 07/04

International TOR Rectifier

Voltage Ratings

	Part number	30BQ060PbF
V_R	Max. DC Reverse Voltage (V)	60
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	30BQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L = 123 °C, rectangular wave form	
		4.0		50% duty cycle @ T _L = 113 °C, rectangular wave for	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	1200	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current @ $T_C = 25$ °C	130		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	5.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.0\text{A}, L = 10\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	30BQ	Units	Conditions	
V _{FM}	Max. Forward Voltage Drop (1)	0.58	V	@ 3A	T _J = 25 °C
		0.76	V	@ 6A	
		0.52	V	@ 3A	T _J = 125 °C
		0.66	V	@ 6A	
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	V _R = rated V _R
		20	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	180	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	3.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	30BQ	Units	Conditions
T _J	Max. Junction Temperature Range (*)	- 55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	46	°C/W	DC operation
wt	Approximate Weight	0.24(0.008)	g (oz.)	
	Case Style	SMC		Similar to DO-214AB
	Device Marking	IR3H		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

(Microsec)
Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D) \text{ (see Fig. 6)}$; $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = 80\% \text{ rated } V_R$

Outline Table

Marking & Identification

Bulletin PD-20408 07/04

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04