Perancangan Basis Data Perputakaan Sekolah dengan Menerapkan Model Data Relasional

Gat STMIK Pontianak E-mail: gutsy0818@yahoo.com

Abstrak

Perancangan basis data merupakan proses membuat desain yang akan mendukung operasional dan tujuan perusahaan. Pemanfaatan basis data pada bidang perpustakaan memungkinkan untuk dapat menyimpan data atau melakukan perubahan dan menampilkan kembali data tersebut dengan cepat dan mudah. Salah satu aspek yang sulit dalam perancangan database adalah bahwa perancang, programmer, dan pemakai akhir cenderung melihat data dengan cara yang berbeda. Oleh karena itu maka diperlukan sebuah metodologi yang menggunakan prosedur, teknik, peralatan, dan dokumentasi untuk mendukung dan memfasilitasi proses perancangan. Metode penelitian yang digunakan adalah metode Research and Development (R&D). Metode perancangan basis data menggunakan metode DBLC (Data Base Life Cycle) dengan variabel penelitian adalah perancangan basis data perputakaan sekolah dengan model data relasional. Aspek penelitian meliputi Conceptual Database Design, Logical Database Design dan Physical Database Design. Hasil akhir dari penelitian ini adalah menghasil 7(tujuh) tipe entitas konsepsual, menghasilkan diagram hubungan entitas dari ketujuh entitas tersebut pada logikal dan menghasilkan rancangan pisikal yang terdiri dari tabel kategori, penerbit, penulis, buku, anggota, transaksi dan detil transaksi.

Kata Kunci — Basis Data, Data Relasional, DBLC dan Perpustakaan

Abstract

Database Design is a process of creating a design that will supports company's operational and objectives. Usage of database in library field allows the user to be able to store data or update the data and show that data easier and quicker. One of the aspect that is difficult in database design is that the designer, programmer and user tend to see the data with different point of view. Because of that, is needed a methodology that use procedur, technique, tools and documentation to support and facilliate the design process. Method that being used is Research and Development method (R&D). The Database design is used DBLC method (Data Base Life Cycle) with the research variable is library database design with rational data model. Aspects of the research include Conceptual Database Design, Database Design Logical and Physical Database Design. Final result of this research is to create seven type of conceptual entities, create a diagram that connects the seven conceptual entities with each other at logical and create a physical design that consists of category table, publishers, writers, books, member, transaction and detail transactions.

Keywords — Database, Relational Data, DBLC, and Library

ISSN: 2460-4259 ■ 305

1. PENDAHULUAN

Penerapan teknologi informasi sangat memberikan kontribusi yang cukup baik dalam kelancaran aktivitas bisnis. Penggunaan teknologi informasi yang tepat dapat membantu dalam mengambil keputusan dimana penyimpanan data telah didukung oleh salah satu komponen penting dari teknologi informasi yaitu database (basis data). Basis data didefinisikan sebagai kumpulan data yang terintegrasi dan diatur sedemikian rupa sehingga data tersebut dapat dimanipulasi, diambil, dan dicari secara cepat. Selain berisi data, database juga berisi metadata[1]. Pengumpulan dan analisis kebutuhan (*Requirement Collection and Analysis*) merupakan proses mengumpulkan dan menganalisa informasi tentang organisasi yang akan didukung oleh aplikasi basis data dan menggunakan informasi tersebut untuk mengidentifikasikan kebutuhan user terhadap sistem baru. Perancangan basis data (*database design*) merupakan proses membuat desain yang akan mendukung operasional dan tujuan perusahaan[2]. Pemanfaatan database memungkinkan untuk dapat menyimpan data atau melakukan perubahan dan menampilkan kembali data tersebut dengan cepat dan mudah.

Sistem database merupakan komponen dasar sistem informasi dari perusahaan besar, sistem pengembangan siklus database secara melekat terkait dengan siklus hidup sistem informasi. Pentingnya untuk mengakui bahwa tahapan pengembangan siklus database tidak harus berurutan tetapi melibatkan beberapa jumlah pengulangan tahapan sebelumnya melalui *feedback loop*. Salah satu aspek yang sulit dalam perancangan database adalah kenyataan bahwa perancang, *programmer* dan pemakai akhir cenderung melihat data dengan cara yang berbeda. Metodologi perancangan adalah sebuah pendekatan terstruktur yang menggunakan prosedur, teknik, peralatan, dan dokumentasi untuk mendukung dan memfasilitasi proses perancangan. Metodologi perancangan terdiri dari beberapa fase dimana setiap fase mengandung beberapa langkah yang akan menuntun desainer dalam menggunakan teknik yang sesuai pada setiap tahap dalam proyek sehigga membantu desainer untuk merencanakan, mengelola, mengatur, dan mengevaluasi pengembangan proyek database[3].

Poses perancangan basis data terdiri dari tiga bagian yaitu perancangan basis data konseptual, logikal dan fisikal. Perancangan basis data konseptual adalah proses membangun model data yang digunakan dalam suatu perusahaan, serta terbebas dari semua pertimbangan fisik. Perancangan basis data logikal adalah proses merancang model data yang digunakan dalam suatu perusahaan berdasarkan pada model data yang spesifik, tetapi terbebas dari DBMS tertentu dan pertimbangan fisik lainnya. Perancangan basis data fisikal adalah proses menghasilkan deskripsi implementasi basis data pada penyimpanan sekunder, menggambarkan hubungan dasar, organisasi file, dan indeks yang digunakan untuk mencapai akses yang efisien terhadap data, dan setiap kendala integritas terkait dan langkah-langkah keamanan[4]. *Relational Database* adalah mempresentasikan semua data dalam database sebagai tabel dua dimensi sederhana yang di sebut relasi. Tabel-tabel itu serupa dengan file biasa, namun informasi dalam lebih dari satu file bisa dengan mudah di ekstrak dan di kombinasikan. Kadang kala tabel-tabel ini bisa di anggap sebagai file[4,5].

Penelitian sebelumnya yang pernah dilakukan merupakan suatu manifestasi dari kemajuan teknologi dengan menghasilkan sumber daya yang telah membawa manfaat besar bagi masyarakat. Pada sistem komputerisasi yang dimaksud dengan sumber daya adalah data perangkat lunak *Database Management System* (DBMS), perangkat keras komputer, media penyimpanan, orang yang menggunakan dan mengatur data (*database administrator*, pemakai akhir, dan pemakai dan lain-lain), perangkat lunak aplikasi yang mengakses dan mengubah data dan yang terakhir adalah *programmer* aplikasi yang mengembangkan aplikasi[6]. Perpustakaan sekolah adalah serupakan salah satu perpustakaan yang melayani kebutuhan guru dan siswa dalam memperoleh informasi mata pelajaran maupun informasi lainnya yang terkait dengan kegiatan pembelajaran disekolah. Dalam proses operasionalnya, seperti pengadaan buku, pendataan buku, peminjaman buku maupun pengembalian buku dilakukan secara konvensional tidaklah tepat ketika pimpinan sudah menyadari bahwa penerapan teknologi informasi mampu memberikan efisiensi dan efektivitas dari aktivitas pengelolaan perpustakaan. Mengabaikan teknologi

informasi dalam pengelolaan perpustakaan juga akan berdampak kurang baiknya pelayanan kepada setiap anggota maupun petugas perpustakaan akan mengalami kesulitan dalam menghasilkan berbagai laporan kepada pimpinan.

Perancangan basis data perpustakaan akan memberikan gambaran sebuah basis data yang disusun dan dirancang sesuai dengan konsep DBLC (*Data Base Life Cycle*). Dimana dalam proses pembuatan database perpustakaan akan dilakukan sesuai dengan tahap atau fase dari DBLC. Fokus pembahasan dalam penelitian adalah mengarah kepada perancangan basis data relasional yang meliputi *Conceptual Database Design, Logical Database Design dan Physical Database Design*. Hasil dari rancangan basis data model relasional khususnya basis data perpustakaan dimaksudkan untuk menjaga integritas data dari setiap tabel yang berrelasi. Keberhasilan dalam membangun sebuah aplikasi tidak terlepas dari sebuah model basis data yang baik. Inilah yang menjadi dasar utama diperlukan sebuah rancangan basis data dengan merapkan mode relasional.

2. METODE PENELITIAN

Metode penelitian yang digunakan adalah metode penelitian dan pengembangan atau yang lebih dikenal dengan *Research and Development* (R&D). Metode perancangan basis data menggunakan metode DBLC (*Data Base Life Cycle*) dengan variabel penelitian adalah perancangan basis data perputakaan sekolah dengan model data relasional. Aspek penelitian meliputi perancangan basis data konseptual, perancangan basis data logikal dan perancangan basis data fisikal.

3. HASIL DAN PEMBAHASAN

Perancangan merupakan suatu hal yang sangat penting dalam pembuatan basis data. Permasalahan yang dihadapi pada waktu perancangan adalah bagaimana basis data yang akan dibangun ini dapat memenuhi kebutuhan saat ini dan masa yang akan datang. Untuk itu diperlukan perancangan basis data baik secara fisik maupun secara konseptualnya. Perancangan konseptual akan menunjukkan entity dan relasinya berdasarkan proses yang diinginkan oleh organsisasinya. Untuk menentukan entity dan relasinya perlu dilakukan analisis data tentang informasi yang ada dalam spesifikasi di masa yang akan datang. Metodologi perancangan basis data adalah kumpulan teknik terorganisasi untuk pembuatan rancangan basis data. Teknik terorganisasi ini merupakan kumpulan tahap-tahapan yang memiliki aturan-aturan terurut. Teknik yang digunakan pada perancangan basis data dibagi dalam tiga tahap, yaitu perancangan basis data konseptual (conseptual database design), perancangan basis data logikal (logical database design) dan perancangan basis data fisikal (physical database design).

3.1. Conseptual Database Design

Conceptual database design adalah proses membangun model data yang digunakan di dalam suatu perusahaan, bersifat independent dari semua pertimbangan fisikal. Tahap desain konseptual database yang dimulai dengan membuat model data konseptual dari perusahaan dengan rincian implementasi seperti target DBMS, program aplikasi, bahasa pemrograman, hardware platform, performance dan segala pertimbangan fisikal lain nya (tabel 1 Identifikasi Tipe Entitas).

Tabel 1. Identifikasi Tipe Entitas

No	Nama Entity	Keterangan Entity	Kegiatan
1	Kategori Buku	Merupakan Entitas yang berisi informasi mengenai data kategori dari suatu buku.	Pengelompokan data buku berdasarkan kategori dan satu kategori buku bisa terdiri dari beberapa buku.
2	Penerbit Buku	Merupakan Entitas yang berisi informasi mengenai data penerbit buku.	Pengelompokan data buku berdasarkan penerbit dan satu penerbit buku bisa terdiri dari beberapa buku.
3	Penulis Buku	Merupakan Entitas yang berisi informasi mengenai data penulis buku.	Pengelompokan data buku berdasarkan penulis dan satu penulis buku bisa terdiri dari beberapa buku.
4	Buku	Merupakan Entitas yang berisi informasi mengenai data buku.	Setiap buku dapat dipinjamkan kepada satu atau beberapa anggota
5	Anggota	Merupakan Entitas yang berisi informasi mengenai data anggota.	Anggota dapat melakukan beberapa kali peminjaman buku
6	Master Transaksi	Merupakan Entitas yang berisi informasi mengenai data transaksi peminjaman dan pengembalian.	Dapat menyimpan hanya satu jenis data transaksi.
7	Detil Transaksi	Merupakan Entitas yang berisi informasi mengenai data transaksi peminjaman dan pengembalian secara detil.	Satu transaksi bisa terdiri dari satu buku atau beberapa buku.

Identifikasi tipe rasional bertujuan menentukan hubungan-hubungan penting yang ada antara jenis-jenis entitas yang telah diidentifikasikan sebelumnya (gambar 1. E-R Diagram Konseptual).

Gambar 1. E-R Diagram Konseptual

Domain adalah seluruh kemungkinan nilai yang dapat diberikan kesuatu atribut. Memberi nama domain yang sesuai dengan nilai yang akan dimiliki domain tersebut. Domain menentukan tipe data dari nilai yang akan membentuk domain dan menentukan format dari domain (tabel 2 Tabel Attribute Domain).

Tabel 2. Tabel Attribute Domain

Entity Name	Attribute	Domain		
Kategori	kodekategori	String dengan panjang maksimal 2 karakter {K1,K2,K3,}		
	Namakategori	String dengan panjang maksimal 60 karakter		
Penerbit	kodepenerbit	String dengan panjang maksimal 3 karakter {P01,P02,P03,}		
	Namapenerbit	String dengan panjang maksimal 50 karakter		
	Alamatpenerbit	String dengan panjang maksimal 60 karakter		
	telppenerbit	String dengan panjang maksimal 15 karakter		
Penulis	kodepenulis	String dengan panjang maksimal 3 karakter {P11,P22,P33,}		
	namapenulis	String dengan panjang maksimal 40 karakter		
	alamatpenulis	String dengan panjang maksimal 40 karakter		
	Telppenulis	String dengan panjang maksimal 40 karakter		
Buku	kodebuku	String dengan panjang maksimal 5 karakter {B0001, B0002, B0003,}		
	kodepenerbit	String dengan panjang maksimal 3 karakter {P01,P02,P03,}		
	kodepenulis	String dengan panjang maksimal 3 karakter {P11,P22,P33,}		
	judulbuku	String dengan panjang maksimal 70 karakter		
	isbn	String dengan panjang maksimal 25 karakter		
	tglterbit	Date dengan panjang maksimal 10 karakter (dd-mm-yyyy)		
	jlhhalaman	Int dengan panjang maksimal 2 karakter		
	kodekategori	String dengan panjang maksimal 2 karakter {K1,K2,K3,}		
Aggota	Kodeanggota	String dengan panjang maksimal 5 karakter {A0001,A0002,A0003,}		
	Namaanggota	String dengan panjang maksimal 50 karakter		
	Jeniskelamin	String dengan panjang maksimal 15 karakter		
	Alamatanggota	String dengan panjang maksimal 60 karakter		
	Telpanggota	String dengan panjang maksimal 15 karakter		
	Tempatlahir	String dengan panjang maksimal 20 karakter		
	Tanggallahir	Date dengan panjang maksimal 10 karakter {dd-mm-yyyy)		
Master Transaksi	kodetraksaksi	String dengan panjang maksimal 5 karakter {T0001, T0002, T003,}		
	tgltransaksi	Tanggal dengan panjang maksimal 10 karakter {yyyy-mm-dd}		
	kodeanggota	String dengan panjang maksimal 4 karakter {S001,S002,S003,}		
	Kodeanggota	String dengan panjang maksimal 5 karakter {A0001,A0002,A0003,}		

Tabel 2.	lan	uiton l
	1411	111111111
I acci z.	(1411)	" cuil,

Entity Name	Attribute	Domain	
Detil Transaksi	kodetraksaksi	String dengan panjang maksimal 5 karakter	
		{T0001, T0002, T003,}	
	kodebuku	String dengan panjang maksimal 5 karakter	
		{B0001, B0002, B0003,}	
	tglpinjam	Tanggal dengan panjang maksimal 10 karakter	
		{yyyy-mm-dd}	
	tglkembali	Tanggal dengan panjang maksimal 10 karakter	
		{yyyy-mm-dd}	
	jumlahbuku	Integer dengan panjang maksimal 2 karakter	
	status	String dengan panjang maksimal 10 karakter	

3.2. Logical Database Design

Perancangan basis data logikal adalah suatu proses membangun sebuah model dari informasi yang digunakan di perusahaan berdasarkan sebuah model data spesifik. Tujuan dari langkah ini adalah untuk membangun data model logikal lokal dari data model konseptual dengan menggambarkan pandangan khusus dari perusahaan dan kemudian untuk memvalidasikan model ini untuk memastikan bahwa model tersebut benar dan untuk memastikan bahwa model tersebut mendukung transaksi yang diperlukan. Dalam sistem basis data relasional yang akan digunakan, ada hal-hal dalam perancangan basis data konseptual yang tidak bisa diimplementasikan oleh sebab itu, dalam rancangan database relasional perlu diadakan modifikasi, yaitu menghilangkan bagian yang tidak kompatibel dari model data konseptual. Langkah-langkanya antara lain menghilangkan relasi biner *many-to-many*, relasi rekursif *many-to-many*, relasi kompleks dan atribut *multivalued*. Untuk menghilangkan tipe hubungan yang mengandung *many-to-many* (*.*). Hubungan tersebut dipecah dengan mengidentifikasi sebuah entitas baru dan mengganti hubungannya dengan *one-to-many* (1.*) sehingga menghilangkan hubungan *many-to-many*.

Gambar 2. Hubungan Buku Dengan Transaksi

Validasi relasi-relasi menggunakan normalisasi untuk meminimalkan kemungkinan terjadinya data rangkap, menghindari data yang tidak konsisten terutama bila dilakukan penambahan atau penghapusan data sebagai akibat karena adanya data yang rangkap, dan untuk menjamin bahwa identitas tabel secara tunggal sebagai determinan semua atribut. Berikut ini adalah normalisasi basis data perpustakaan:

1. Bentuk unnormal

{Kodebuku, judulbuku, isbn, tglterbit, jlhhalaman, namakategori, namapenerbit, alamatpenerbit, telppenerbit, namapenulis, alamatpenulis, telppenulis, namaanggota, jeniskelamin, alamatanggota, telpanggota, tempatlahir, tanggallahir, tgltransaksi, tglpinjam, tglkembali, jumlahbuku, status}

2. Bentuk Normal Pertama,

Langkah berikutnya adalah dengan cara memisahkan atribut-atribut yang nilainya sama akan ditulis hanya satu kali.

Tabel buku {*Kodebuku, judulbuku, isbn, tglterbit, jlhhalaman, namakategori, namapenerbit, alamatpenerbit, telppenerbit, namapenulis, alamatpenulis, telppenulis, namaanggota, jeniskelamin, alamatanggota, telpanggota, tempatlahir, tanggallahir}

Tabel transaksi {tgltransaksi, tglpinjam, tglkembali, jumlahbuku, status}

3. Bentuk Normal Kedua

Langkah selanjutnya adalah dengan cara menentukan ketergantungan fungsional.

Tabel buku {*Kodebuku, judulbuku, isbn, tglterbit, jlhhalaman,

**kodekategori, **kodepenerbit, **kodepenulis}

Tabel kategori {*kodekategori, namakategori}

Tabel penerbit {*kodepenerbit, namapenerbit, alamatpenerbit, telppenerbit}
Tabel penulis {*kodepenulis, namapenulis, alamatpenulis, telppenulis}

Tabel anggota {*kodeanggota, namaanggota, jeniskelamin, alamatanggota,

telpanggota, tempatlahir, tanggallahir}

Tabel mastertransaksi {*kodetransaksi, tgltransaksi, **kodeanggota}

Tabel detiltransaksi (**kodetransaksi, **kodebuku, tglpinjam, tglkembali, jumlahbuku,

status}

3.3. Physical Database Design

Perancangan database secara fisik merupakan tahapan untuk mengimplementasikan hasil perancangan database secara logis menjadi tersimpan secara fisik pada media penyimpanan eksternal sesuai dengan *Database Management System* (DBMS) yang digunakan. Dapat disimpulkan bahwa proses perancangan fisik merupakan transformasi dari perancangan logis terhadap jenis DBMS yang digunakan sehingga dapat disimpan secara fisik pada media penyimpanan. *My Structured Query Language* (MySQL) merupakan pilihan DBMS yang tepat untuk mendukung aplikasi basis data yang dapat dilakukan kapanpun sebelum menuju desain logical asalkan terdapat cukup informasi mengenai kebutuhan sistem.

Tabel 3. Tabel Kategori

No.	Nama Field	Type	Size	Keterangan
1	kodekategori*	VARCHAR	2	Kode Kategori
2	Namakategori	VARCHAR	60	Nama Kategori

Tabel 4. Tabel Penerbit

No.	Nama Field	Type	Size	Keterangan
1	kodepenerbit*	VARCHAR	2	Kode Penerbit
2	Namapenerbit	VARCHAR	50	Nama Penerbit
3	Alamatpenerbit	VARCHAR	60	Alamat Penerbit
4	Telppenerbit	VARCHAR	15	Telp Penerbit

ISSN: 2460-4259 ■ 311

Tabel 5 Tabel Penulis

No.	Nama Field	Type	Size	Keterangan
1	kodepenulis*	VARCHAR	3	Kode Penulis
2	Namapenulis	VARCHAR	50	Nama Penulis
3	Alamatpenulis	VARCHAR	60	Alamat Penulis
4	Telppenulis	VARCHAR	15	Telp Penulis

Tabel 6 Tabel Buku

No.	Nama Field	Type	Size	Keterangan
1	kodebuku*	VARCHAR	5	Kode Buku
2	Judulbuku	VARCHAR	70	Judul Buku
3	Isbn	VARCHAR	25	ISBN
4	Kodepenulis	VARCHAR	3	Kode Penulis
5	Kodepenerbit	VARCHAR	3	Kode Penerbit
6	Kodekategori	VARCHAR	2	Kode Kategori
7	Tglterbit	Date		Tanggal Terbit
8	Jlhhalaman	Integer		Jumlah Halaman

Tabel 7 Tabel Anggota

No.	Nama Field	Type	Size	Keterangan
1	kodeanggota*	VARCHAR	5	Kode Barang
2	Namaanggota	VARCHAR	2	KodeJ enis
3	Jeniskelamin	VARCHAR	5	Kode Merk
4	Alamatanggota	VARCHAR	70	Nama Barang
5	Telpanggota	VARCHAR	2	Kode Satuan
6	Tempatlahir	DOUBLE		Harga Jual
7	Tanggallahir	DOUBLE		Harga Beli
8	Banyak	INT		Banyak
9	KodeSupplier	VARCHAR	4	Kode Supplier

Tabel 8 Tabel Master Transaksi

No.	Nama Field	Type	Size	Keterangan
1	kodetraksaksi*	VARCHAR	5	Kode Transaksi
2	Tgltransaksi	DATE		Tanggal Transaksi
3	Kodeanggota	VARCHAR	5	Kode Anggota

Tabel 9 Tabel Detil Transaksi

No.	Nama Field	Type	Size	Keterangan
1	kodetransaksi*	VARCHAR	5	Kode Transaksi
2	Kodebuku	VARCHAR	5	Kode Buku
3	Tglpinjam	Date	10	Tanggal Pinjam
4	Tglkembali	Date	10	Tanggal Kembali
5	Jumlahbuku	Int	2	Jumlah Buku
6	Status	VARCHAR	10	Status

Data Definition Language (DDL) atau Data Definiton Language adalah sebuah bahasa yang digunakan untuk mendefinisikan pendefinisian data. Terdiri dari perintah-perintah untuk membentuk, mengubah atau menghapus tabel beserta kolom-kolom dan type data penyusunnya, serta perintah-perintah untuk menetapkan hubungan dan batasan-batasan data. DDL adalah

kumpulan perintah SQL yang digunakan untuk membuat (create), mengubah (alter) dan

```
menghapus (drop) struktur dan definisi tipe data dari objek-objek database.
    SOL CREATE TABLE Kategori
    CREATE TABLE `perpustakaan_db`.`tb_kategori` (
`kodekategori` varchar(2) CHARACTER SET latin1 COLLATE latin1_swedish_ci NOT
    `namakategori` varchar(60) CHARACTER SET latin1 COLLATE latin1_swedish_ci
    NULL DEFAULT NULL,
    PRIMARY KEY (`kodekategori`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1 swedish ci;
b. SQL CREATE TABLE Penerbit
    CREATE TABLE `perpustakaan_db`.`tb_penerbit` (
`kodepenerbit` varchar(3) CHARACTER SET latin1 COLLATE latin1_swedish_ci NOT
    `namapenerbit` varchar(50) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `alamatpenerbit` varchar(60) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `telppenerbit` varchar(15) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    PRIMARY KEY (`kodepenerbit`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1 swedish ci;
c. SQL CREATE TABLE Penulis
    CREATE TABLE `perpustakaan db`.`tb penulis` (
    `kodepenulis` varchar(3) CHARACTER SET latin1 COLLATE latin1 swedish ci NOT
    NULL.
    `namapenulis` varchar(50) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `alamatpenulis` varchar(60) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `telppenulis` varchar(15) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    PRIMARY KEY (`kodepenulis`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1 swedish ci;
d. SOL CREATE TABLE Buku
    CREATE TABLE `perpustakaan db`.`tb buku` (
    `kodebuku` varchar(5) CHARACTER SET latin1 COLLATE latin1 swedish ci NOT
    `judulbuku` varchar(70) CHARACTER SET latin1 COLLATE latin1 swedish ci NULL
    DEFAULT NULL,
    `isbn` varchar(25) CHARACTER SET latin1 COLLATE latin1 swedish ci NULL
    DEFAULT NULL, `kodepenulis` varchar(3) CHARACTER SET latin1 COLLATE latin1_swedish_ci NULL
    DEFAULT NULL,
    `kodepenerbit` varchar(3) CHARACTER SET latin1 COLLATE latin1_swedish_ci
    NULL DEFAULT NULL,
    `kodekategori` varchar(2) CHARACTER SET latin1 COLLATE latin1_swedish_ci
    NULL DEFAULT NULL,
    `tglterbit` date NULL DEFAULT NULL,
`jlhhalaman` int(3) NULL DEFAULT NULL,
    PRIMARY KEY (`kodebuku`) ,
                  `tb buku_ibfk_1`
                                                       (`kodepenulis`)
    CONSTRAINT
                                      FOREIGN
                                              KEY
                                                                         REFERENCES
```

`perpustakaan_db`.`tb_penulis` (`kodepenulis`),
CONSTRAINT `tb_buku_ibfk_2` FOREIGN KEY (`k
`perpustakaan_db`.`tb_penerbit` (`kodepenerbit`),

`perpustakaan_db`.`tb_kategori` (`kodekategori`),

CONSTRAINT `tb buku ibfk 3` FOREIGN KEY (`kodekategori`) REFERENCES

(`kodepenerbit`)

```
INDEX `kodepenulis` (`kodepenulis`),
INDEX `kodepenerbit` (`kodepenerbit`),
    INDEX kodepenerbit ( kodepenerbit , INDEX `kodekategori` ( kodekategori`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1 swedish ci;
    SQL CREATE TABLE Anggota
    CREATE TABLE `perpustakaan_db`.`tb_anggota` (
`kodeanggota` varchar(5) CHARACTER SET latin1 COLLATE latin1_swedish_ci NOT
    `namaanggota` varchar(50) CHARACTER SET latin1 COLLATE latin1_swedish_ci
    NULL DEFAULT NULL,
    `jeniskelamin` varchar(15) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `alamatanggota` varchar(60) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `telpanggota` varchar(15) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `tempatlahir` varchar(20) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `tanggallahir` date NULL DEFAULT NULL,
    PRIMARY KEY (`kodeanggota`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1 swedish ci ;
  SQL CREATE TABLE Detil Transaski
    CREATE TABLE `perpustakaan db`.`tb detiltransaksi` (
    `kodetransaksi` varchar(5) CHARACTER SET latin1 COLLATE latin1 swedish ci
    NULL DEFAULT NULL,
    `kodebuku` varchar(5) CHARACTER SET latin1 COLLATE latin1 swedish ci NULL
    DEFAULT NULL,
    `tglpinjam` date NULL DEFAULT NULL, `tglkembali` date NULL DEFAULT NULL,
    `jumlahbuku` int(2) NULL DEFAULT NULL,
    `status` varchar(10) CHARACTER SET latin1 COLLATE latin1_swedish_ci NULL
    DEFAULT NULL,
                  `tb_detiltransaksi_ibfk_1` FOREIGN
    CONSTRAINT
                                                           KEY
    REFERENCES `perpustakaan_db`.`tb_mastertransaksi` (`kodetraksaksi`),
    CONSTRAINT `tb detiltransaksi_ibfk_2` FOREIGN KEY (`kodebuku`) REFERENCES
     perpustakaan_db`.`tb_buku` (`kodebuku`),
    INDEX `kodetransaksi` (`kodetransaksi`),
INDEX `kodebuku` (`kodebuku`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1 swedish ci;
g. SQL CREATE TABLE Master Transaksi
    CREATE TABLE `perpustakaan_db`.`tb_mastertransaksi` (
    `kodetraksaksi` varchar(5) CHARACTER SET latin1 COLLATE latin1 swedish ci
    `tgltransaksi` date NULL DEFAULT NULL,
    `kodeanggota` varchar(5) CHARACTER SET latin1 COLLATE latin1_swedish_ci NULL
    DEFAULT NULL,
    PRIMARY KEY (`kodetraksaksi`) ,
                 `tb_mastertransaksi_ibfk_1`
                                                  FOREIGN
                                                             KEY
                                                                     (`kodeanggota`)
    REFERENCES `perpustakaan_db`.`tb_anggota` (`kodeanggota`),
    INDEX `kodeanggota` (`kodeanggota`)
    ) ENGINE=InnoDB
    DEFAULT CHARACTER SET=latin1 COLLATE=latin1_swedish_ci;
```

Hasil dari perancangan basis data ini, dihasilkan 7 tabel basis data dan dimasukkan ke dalam basis data yang bernama perpustakaan dan pengimplementasian dari rancangan basis data yang terdiri atas 7 tabel yang ada dilakukan dengan menggunakan aplikasi Navicat Premium

11.07 dengan koneksi server localhost. Perancangan basis data yang mengacu kepada model data relasional khususnya basis data perpustakaan dimaksudkan agar dalam setiap tabel yang terdapat didalam database perpustakaan saling memiliki keterkaitan demi menjamin integritas data. Selain itu, model data relasional akan memberikan gambaran yang jelas dan memberikan kemudahan bagi programmer ketika ingin membangun aplikasi pengelolaan data buku perpustakaan sekolah. Keberhasilan dalam membangun sebuah aplikasi tidak terlepas dari sebuah model basis data yang baik. Inilah yang menjadi dasar utama diperlukan sebuah rancangan basis data dengan merapkan mode relasional.

4. KESIMPULAN

Berdasarkan hasil dari perancangan basis data perputakaan sekolah dengan model data relasional, maka dapat diambil kesimpulan bahwa rancangan basis data yang dirancang dengan menggunakan metode perancangan database DBLC (*Data Base Life Cycle*) telah menghasilkan bentuk database relational dengan rincian sebagai berikut ini:

- 1. *Conceptual database design*Tipe entitas yang diperlukan berjumlah 7(tujuh) entitas dengan memberikan attribute domain pada setiap nama entitas dan menghasilkan diagram hubungan entitas.
- Logical Database Design
 Menghasilkan relasi untuk model data logikal lokal yang mempresentasikan entity, relationship, dan attribute yang telah diidentifikasi sebelumnya.
- 3. *Physical Database Design*Perancangan database menggukan database MySQL dengan *Data Definiton Language* adalah bahasa yang digunakan untuk mendefinisikan pendefinisian data. Jumlah tabel dalam basis data perpustakaan ada 7 buah yaitu, kategori, penerbit, penulis, buku, anggota, transaksi, detiltransaksi.
- 4. Menghasilkan database dengan model relasional diperlukan sebagai upaya untuk menjamin dan menjaga integritas data dari setiap tabel yang berhubungan.
- 5. Kebutuhan untuk menghasilkan sebuah aplikasi yang baik tidak terlepas dari bagaimana sebuah model dari basis data yang digunakan dan oleh karenanya maka perpustakaan sekolah perlu dibangun dengan model data relasional.

5. SARAN

Menghasilkan rancangan basis data yang baik tidak terlepas dari pemahaman dari metode yang dipergunakan untuk merancang database terutama bagiamana melakukan setiap fase dari metode DBLC (*Data Base Life Cycle*). Oleh karenanya, maka penelitian selanjutkan dapat melakukan penelitian lebih rinci lagi dalam menghasilkan model dari setiap racangan *Conceptual Database*, *Logical Database* dan *Physical Database*.

6. UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Pontianak yang telah memberikan dukungan financial terhadap penelitian ini. Terima kasih kepada rekan-rekan dosen yang telah memberikan masukan dan dukungan dalam menyelesaikan tulisan ini. Kepada para reviewer saya juga mengucapkan banyak terima kasih atas bimbingan dan arahannya sehingga tulisan ini dapat sesuai seperti apa yang diharapkan.

DAFTAR PUSTAKA

- [1] Raharjo, B., 2011, *Belajar Otodidak membuat Database Mengunakan MySQL*, Infomatika, Bandung.
- [2] Indrajani, 2011, *Perancangan Basis Data Dalam All in 1, (1st Edition)*, PT Elex Media Komputindo, Jakarta.
- [3] Connolly, T. M., Begg, C. E., 2010, *Database Systems: A Practical Approach to Design, Implementation, and Management*, Fifth Edition, Pearson Education, Boston.
- [4] Connolly, T. M., Begg, C. E., 2002, *Database Systems: A Practical Approach to Design, Implementation, and Management*, Third Edition, Pearson Education, Ltd., Inggris.
- [5] Laudon, K. C., Laudon, J. P., 2005, *Management Information Systems: Managing the Digital Firm*, 8th Edition, Prentice Hall, New Jersey.
- [6] Joefrie, Y. Y., Kalatiku, P. P., 2012, Desain basis data sistem informasi akademik di Fakultas Teknik Universitas Tadulako, *Jurnal Ilmiah Foristek*, No. 21, Vol.2, Hal 190-194.