Group Theory

V Sai Prabhav

ISI Year II, Semester I

Introduction to Sets

Set Theory, there is a symbol ϵ' called belongs to. A statement in set theory can look like this $x \in y$.

Axiom 1. There exist a set with no elements.

Axiom 2. Two sets with same elements are equal

Definition 1. $A \subseteq B$ if all elements of A are in B

Axiom 3. if X, Y are sets then $\{x, y\}$

Axiom 4. A is a set then $unionA = \{x \in y | y \in A\}$

Axiom 5 (Power set). Given a set A there exist $P(A) = \{B \mid \forall B \subseteq A\}$

Axiom 6 (Infinite axiom). There exist $I \phi \in I \ \forall \ y \in I(P(y) \in I)$

Axiom 7. A, B are sets then $A \times B = \{(x,y) \mid x \in A, y \in B\}$ is a set.

Definition 2 (Relation). Relation R on a set ea is a subset $R \subseteq A \times A$

$$(x,y) \in R \text{ then } xRy$$

Axiom 8 (Axiom of choice). Let A be a collection of non empty disjoint sets then there exist a set C consisting of exactly one element from each set in A.

Definition 3. A relation R is called reflexive if $xRx \ \forall \ x \in A$.

A relation R is called symmetric if xRy then yRx.

A relation R is called anti-symmetric if xRy, yRy then y = x.

A relation R is called transitive if xRy, yRz then xRz.

Definition 4 (Partial order). A partial order on set A is a reflexive transitive anti-symmetric relation.

Definition 5 (Total order). Total order R on a set A is a partial order such that $\forall x, y \in A$ either xRy or yRx

Definition 6 (Minimal element). A total order on a set A is called a well ordered if given any non empty subset B of A.

Theorem 1 (Well-ordering Principle). Every set can be well ordered. (It is equivialent to Axiom 8)

Lemma 1 (Zorn's Lemma). Let A be a set and \leq be a partial order on A such that every chain in A has an upper bound in A then A has a maximal element.

Definition 7 (Chain). A chain in A is a subset which is a totally ordered with respect to <

Definition 8 (Upper Bound). Let $C \subseteq A$. $x \in A$ is an upper bound of C if $\forall y \in Cy < x$.

Definition 9 (Maximal element). $x \in A$ is called a maximal element if $\forall y \in Ax < y \implies x = y$

Theorem 2. TFAE

- Axiom of choice
- Well- ordering principle
- Zorin's lemma

Definition 10. A relation R is called an equivalence relation if it is reflexive, symmetric and transitive.

Definition 11 (Equivalence class). Let $x \in A$ then $[x] = \{yRx \mid y \in A\} \subseteq called$ the equivalence class of x.

Definition 12. $\bigcup_{x \in A} [x] = A$ and for $x, y \in A$ $[x] \cap [y] = \phi$ or [x] = [y]. That is we get a partition of A.

Axiom 9. I be an indexing set. Then $\times_{i \in I} A_i = \{f : I \to UA_i \mid \text{ such that } f(i) \in A_i\}$

Definition 13 (Principle of Induction). let $S(n), n \in \mathbb{N}$ be statements. Suppose S(1) is true and $S(n) \Longrightarrow S(n+1)$ then S(n) is true for all n.

Definition 14 (Transfinite Induction). Let I be a well ordered set and S(i) be a statement for $\forall i \in I$. Suppose $s(j) \forall j < i \implies s(i)$ then S(i) is true $\forall i \in I$

Definition 15 (Group). A group is a triple (G,.,e) where G is a set, . is a binary operator on G and $e \in G$ satisfying the following axioms.

- for $a, b, c \in G(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- $a \cdot e = e \cdot a = a \ \forall \ a \in G$.
- $\forall a \in G \exists b \in G \text{ such that } a \cdot b = b \cdot a = e$.

Definition 16. G, \cdot, e is called abelian if $\forall a, b \in Ga \cdot b = b \cdot a$

1.1 Binary Operations

1.2 Groups and Examples

1.3 Elementary Properties of Groups

Subgroups and Cosets

- 2.1 Subgroups
- 2.2 Cyclic Groups
- 2.3 Cosets and Lagrange's Theorem

Homomorphisms and Isomorphisms

- 3.1 Homomorphisms
- 3.2 Kernel and Image
- 3.3 Isomorphism Theorems

Group Actions

- 4.1 Group Actions and Permutation Representations
- 4.2 Orbits and Stabilizers
- 4.3 The Class Equation