1. Introduction

1.1. Ableitung

Funktion	Ableitung
x^a	$a \cdot x^{a-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos(2)^x}$

1.2. Mehrdimensionale Analysis

Linearisierung:

$$f(x) \underset{x \approx x_0}{\underbrace{\approx}} f'(x_0)(x-x_0) + f(x_0)$$

Häufig mit Funktionen mehrerer Variablen zu tun, die weitere Funktionen beinhalten.

$$f(x,y) = x^{2} \cdot \sin(y)$$
$$x(t) = \sin(t)$$
$$y(t) = t^{3}$$

Partielle Ableitung:

Nach x und y getrennt ableiten.

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} (x^2 \cdot \sin(y)) = 2x \cdot \sin(y)$$

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} \big(x^2 \cdot \sin(y) \big) = x^2 \cdot \cos(y)$$

Totale Ableitung:

x(t) und y(t) in f(x,y) einsetzen und dann ableiten.

$$\frac{df}{dt}(x(t),y(t)) = \frac{d}{dt} \Big(\sin(t)^2 \cdot \sin(t^3) \Big)$$

$$= 2\sin(t)\cdot\cos(t)\cdot\sin(t^3) + \sin(t)^2\cdot\cos(t^3)\cdot 3t^2$$

Altenativ mit mehrdimensionale Kettenregel möglich. Bei dieser werden die partiellen Ableitungen mit der Ableitung der Funktion multipliziert und addiert.

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

1.3. Energie (?)

 \boldsymbol{v} und \boldsymbol{h} sind abhängig von t
. \boldsymbol{E} ist immer konstant.

$$\underbrace{\frac{1}{2}Mv^2}_{\text{rgieerhaltungssatz}} + \underbrace{Mgh}_{\text{Lageenergie}} = E$$

1.4. Fehlerfortpflanzung

Systematische Fehler:

$$\triangle\,v_1 = |\frac{\partial v_1}{\partial h}|\cdot\triangle\,h + |\frac{\partial v_1}{\partial g}|\,\triangle\,g$$

Statistische Fehler: (vlt nicht so wichtig)

$$\triangle \, v_1 = \sqrt{\left(\frac{\partial v_1}{\partial h} \cdot \triangle \, h\right)^2 + \left(\frac{\partial v_1}{\partial g} \cdot \triangle \, g\right)^2}$$

Übung 1:

$$D = 0.711 \pm 0.005m$$

$$T = 0.400 \pm 0.001s$$

$$v = \frac{U}{T} = \frac{\pi D}{T}$$

$$\triangle v = \left|\frac{\partial v}{\partial D} \cdot \triangle D\right| + \left|\frac{\partial v}{\partial T} \cdot \triangle T\right|$$

$$\left|\frac{\pi}{T}\right| \cdot 0.005m + \left|-\frac{\pi D}{T^2}\right| \cdot 0.001s$$

$$\frac{\pi}{0.5}s \cdot 0.005m + \frac{\pi \cdot 0.711m}{\left(0.4s\right)^2} \cdot 0.001s$$