Dynamic Linear Models

FISH 550 – Applied Time Series Analysis

Mark Scheuerell 25 April 2023

Topics for today

Univariate response

- Stochastic level & growth
- · Dynamic Regression
- Dynamic Regression with fixed season
- Forecasting with a DLM
- Model diagnostics

Multivariate response

Code for today

You can find the R code for these lecture notes and other related exercises here.

Simple linear regression

Let's begin with a linear regression model

$$y_i = \alpha + \beta x_i + e_i \text{ with } e_i \sim N(0, \sigma^2)$$

The index i has no explicit meaning in that shuffling (y_i, x_i) pairs has no effect on parameter estimation

Simple linear regression

We can write the model in matrix form

Simple linear regression

We can write the model in matrix form

with

$$\mathbf{X}_{i}^{\mathsf{T}} = \begin{bmatrix} 1 & x_{i} \end{bmatrix}$$
 and $\boldsymbol{\theta} = \begin{bmatrix} \alpha & \beta \end{bmatrix}^{\mathsf{T}}$

Dynamic linear model (DLM)

In a *dynamic* linear model, the regression parameters change over time, so we write

$$y_i = \mathbf{X}_i^{\mathsf{T}} \boldsymbol{\theta} + e_i$$
 (static)

as

$$y_t = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_t + e_t \qquad \text{(dynamic)}$$

Dynamic linear model (DLM)

There are 2 important points here:

$$y_{t} = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_t + e_t$$

1. Subscript t explicitly acknowledges implicit info in the time ordering of the data in y

Dynamic linear model (DLM)

There are 2 important points here:

$$y_t = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_{\boxed{t}} + e_t$$

- 1. Subscript t explicitly acknowledges implicit info in the time ordering of the data in y
- 2. The relationship between \mathbf{y} and \mathbf{X} is unique for every t

Close examination of the DLM reveals an apparent problem for parameter estimation

$$y_t = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_t + e_t$$

Close examination of the DLM reveals an apparent problem for parameter estimation

$$y_t = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_t + e_t$$

We only have 1 data point per time step (ie, y_t is a scalar)

Thus, we can only estimate 1 parameter (with no uncertainty)!

To address this issue, we'll constrain the regression parameters to be dependent from t to t+1

$$\theta_t = \mathbf{G}_t \theta_{t-1} + \mathbf{w}_t \text{ with } \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

In practice, we often make \mathbf{G}_t time invariant

$$\boldsymbol{\theta}_t = \mathbf{G}\boldsymbol{\theta}_{t-1} + \mathbf{w}_t$$

In practice, we often make \mathbf{G}_t time invariant

$$\boldsymbol{\theta}_t = \mathbf{G}\boldsymbol{\theta}_{t-1} + \mathbf{w}_t$$

or assume \mathbf{G}_t is an $m \times m$ identity matrix \mathbf{I}_m

$$\boldsymbol{\theta}_t = \mathbf{I}_m \boldsymbol{\theta}_{t-1} + \mathbf{w}_t$$
$$= \boldsymbol{\theta}_{t-1} + \mathbf{w}_t$$

In the latter case, the parameters follow a random walk over time

DLM in state-space form

Observation model relates the covariates ${f X}$ to the data

$$y_t = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_t + e_t$$

State model determines how parameters "evolve" over time

$$\boldsymbol{\theta}_t = \mathbf{G}\boldsymbol{\theta}_{t-1} + \mathbf{w}_t$$

DLM in MARSS notation

Full state-space form

where

$$\mathbf{Z}_t = \mathbf{X}_t^{\mathsf{T}}, \mathbf{x}_t = \boldsymbol{\theta}_t, v_t = e_t, \mathbf{B} = \mathbf{G}$$

Contrast in covariate effects

Note: DLMs include covariate effect in the observation eqn much differently than other forms of MARSS models

DLM: \mathbf{Z}_t is covariates, \mathbf{x}_t is parameters

$$y_t = \boxed{\mathbf{Z}_t \mathbf{x}_t} + v_t$$

Others: \mathbf{d}_t is covariates, \mathbf{D} is parameters

$$y_t = \mathbf{Z}_t \mathbf{x}_t + \boxed{\mathbf{D}\mathbf{d}_t} + v_t$$

Other forms of DLMs

The regression model is but one type

Others include:

- stochastic "level" (intercept)
- stochastic "growth" (trend, bias)
- seasonal effects (fixed, harmonic)

The most simple DLM

Stochastic level

$$y_t = \alpha_t + e_t$$
$$\alpha_t = \alpha_{t-1} + w_t$$

The most simple DLM

Stochastic level = random walk with obs error

$$y_t = \alpha_t + e_t$$

$$\alpha_t = \alpha_{t-1} + w_t$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_t = x_t + v_t$$

$$x_t = x_{t-1} + w_t$$

Example of stochastic level model

Example of stochastic level model

Stochastic "level" α_t with deterministic "growth" η

$$y_t = \alpha_t + e_t$$

$$\alpha_t = \alpha_{t-1} + \eta + w_t$$

Stochastic "level" α_t with deterministic "growth" η

$$y_{t} = \alpha_{t} + e_{t}$$

$$\alpha_{t} = \alpha_{t-1} + \eta + w_{t}$$

$$\downarrow \downarrow$$

$$y_{t} = x_{t} + v_{t}$$

$$x_{t} = x_{t-1} + u + w_{t}$$

This is just a random walk with bias *u*

Stochastic "level" α_t with stochastic "growth" η_t

$$y_t = \alpha_t + e_t$$

$$\alpha_t = \alpha_{t-1} + \eta_{t-1} + w_{\alpha,t}$$

$$\eta_t = \eta_{t-1} + w_{\eta,t}$$

Now the "growth" term η_t evolves as well

Evolution of α_t and η_t

$$\alpha_t = \alpha_{t-1} + \eta_{t-1} + w_{\alpha,t}$$

$$\eta_t = \eta_{t-1} + w_{\eta,t}$$

How do we make this work in practice?

Evolution of α_t and η_t

$$\alpha_{t} = \alpha_{t-1} + \eta_{t-1} + w_{\alpha,t}$$

$$\eta_{t} = \eta_{t-1} + w_{\eta,t}$$

$$\downarrow \downarrow$$

$$\alpha_{t} = 1\alpha_{t-1} + 1\eta_{t-1} + w_{\alpha,t}$$

$$\eta_{t} = 0\alpha_{t-1} + 1\eta_{t-1} + w_{\eta,t}$$

Rewrite the equations with explicit coefficients on α_{t-1} and η_{t-1}

Evolution of α_t and η_t

$$\alpha_{t} = \alpha_{t-1} + \eta_{t-1} + w_{\alpha,t}$$

$$\eta_{t} = \eta_{t-1} + w_{\eta,t}$$

$$\psi$$

$$\alpha_{t} = \underline{1}\alpha_{t-1} + \underline{1}\eta_{t-1} + w_{\alpha,t}$$

$$\eta_{t} = \underline{0}\alpha_{t-1} + \underline{1}\eta_{t-1} + w_{\eta,t}$$

$$\psi$$

$$\begin{bmatrix} \alpha_{t} \\ \eta_{t} \end{bmatrix} = \underbrace{\begin{bmatrix} \underline{1} & \underline{1} \\ \underline{0} & \underline{1} \end{bmatrix}}_{\mathbf{G}} \underbrace{\begin{bmatrix} \alpha_{t-1} \\ \eta_{t-1} \end{bmatrix}}_{\mathbf{W}_{t}} + \underbrace{\begin{bmatrix} w_{\alpha,t} \\ w_{\eta,t} \end{bmatrix}}_{\mathbf{W}_{t}}$$

Evolution of α_t and η_t in MARSS form

Observation model for stochastic level & growth

$$y_t = \alpha_t + v_t$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$y_t = \underline{1}\alpha_t + \underline{0}\eta_t + v_t$$

Again, rewrite equation with explicit coefficients on $lpha_t$ and η_t

Observation model for stochastic level & growth

Obs model for stochastic level & growth in MARSS form

Stochastic intercept and slope

$$y_t = \alpha_t + \beta_t x_t + v_t$$

Stochastic intercept and slope

$$y_t = \alpha_t + \beta_t x_t + v_t$$

$$\Downarrow$$

$$y_t = \underline{1}\alpha_t + \underline{x_t}\beta_t + v_t$$

Rewrite the equation with explicit coefficients for $\alpha_t \& \beta_t$

Stochastic intercept and slope

Stochastic intercept and slope in MARSS form

Univariate DLM for regression

Parameter evolution follows a random walk

$$\alpha_{t} = \alpha_{t-1} + w_{\alpha,t}$$

$$\beta_{t} = \beta_{t-1} + w_{\beta,t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} \alpha_{t} \\ \beta_{t} \end{bmatrix} = \begin{bmatrix} \alpha_{t-1} \\ \beta_{t-1} \end{bmatrix} + \begin{bmatrix} w_{\alpha,t} \\ w_{\beta,t} \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} w_{\alpha,t} \\ w_{\beta,t} \end{bmatrix}}_{\mathbf{w}_{t}}$$

Univariate DLM for regression

Parameter evolution in MARSS form

$$x_{1,t} = x_{1,t-1} + w_{1,t}$$

$$x_{2,t} = x_{2,t-1} + w_{2,t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} x_{1,t} \\ x_{2,t} \end{bmatrix} = \begin{bmatrix} x_{1,t-1} \\ x_{2,t-1} \end{bmatrix} + \begin{bmatrix} w_{1,t} \\ w_{2,t} \end{bmatrix}$$

$$x_{t-1}$$

Dynamic linear regression with fixed seasonal effect

$$y_{t} = \alpha_{t} + \beta_{t}x_{t} + \gamma_{qtr} + e_{t}$$

$$\gamma_{qtr} = \begin{cases} \gamma_{1} & \text{if } qtr = 1\\ \gamma_{2} & \text{if } qtr = 2\\ \gamma_{3} & \text{if } qtr = 3\\ \gamma_{4} & \text{if } qtr = 4 \end{cases}$$

Dynamic linear regression with fixed seasonal effect

$$y_{t} = \alpha_{t} + \beta_{t}x_{t} + \gamma_{qtr} + e_{t}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 \end{bmatrix} \begin{bmatrix} \alpha_{t} \\ \beta_{t} \\ \gamma_{qtr} \end{bmatrix} + e_{t}$$

Rewrite the equation with explicit coefficients on parameters

Evolution of parameters

$$\begin{bmatrix} \alpha_t \\ \beta_t \\ \gamma_{qtr} \end{bmatrix} = \begin{bmatrix} \alpha_{t-1} \\ \beta_{t-1} \\ ? \end{bmatrix} + \begin{bmatrix} w_{\alpha,t} \\ w_{\beta,t} \\ ? \end{bmatrix}$$

How should we model the fixed effect of γ_{qtr} ?

Evolution of parameters

$$\begin{bmatrix} \alpha_t \\ \beta_t \\ \gamma_{qtr} \end{bmatrix} = \begin{bmatrix} \alpha_{t-1} \\ \beta_{t-1} \\ \gamma_{qtr} \end{bmatrix} + \begin{bmatrix} w_{\alpha,t} \\ w_{\beta,t} \\ 0 \end{bmatrix}$$

We don't want γ_{qtr} to evolve as a function of the previous t

Evolution of parameters

$$\begin{bmatrix} \alpha_t \\ \beta_t \\ \gamma_{qtr} \end{bmatrix} = \begin{bmatrix} \alpha_{t-1} \\ \beta_{t-1} \\ \gamma_{qtr} \end{bmatrix} + \begin{bmatrix} w_{\alpha,t} \\ w_{\beta,t} \\ 0 \end{bmatrix}$$

OK, so how do we select the right quarterly effect?

Separate out the quarterly effects

$$y_t = \alpha_t + \beta_t x_t + \gamma_{qtr} + e_t$$

$$\downarrow \downarrow$$

$$y_t = \alpha_t + \beta_t x_t + \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + e_t$$

Rewrite quarterly effects in matrix notation

$$y_t = \alpha_t + \beta_t x_t + \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + e_t$$

$$\Downarrow$$

$$y_t = \begin{bmatrix} 1 & x_t & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha_t \\ \beta_t \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{bmatrix}$$

But how do we select only the current quarter?

We could set some values in \mathbf{x}_t to 0 (qtr = 1)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_{t} \\ \beta_{t} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \end{bmatrix}$$

$$\downarrow y_{t} = \alpha_{t} + \beta_{t}x_{t} + \gamma_{1} + e_{t}$$

We could set some values in \mathbf{x}_t to 0 (qtr = 2)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_{t} \\ \beta_{t} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \end{bmatrix}$$

$$y_{t} = \alpha_{t} + \beta_{t}x_{t} + \gamma_{2} + e_{t}$$

But *how* would we set the correct 0/1 values?

$$\mathbf{X}_t^{\mathsf{T}} = \begin{bmatrix} 1 & x_t & ? & ? & ? \end{bmatrix}$$

We could instead reorder the γ_i within θ_t (qtr = 1)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_{t} \\ \beta_{t} \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \end{bmatrix}$$

$$y_{t} = \alpha_{t} + \beta_{t}x_{t} + \gamma_{1} + e_{t}$$

We could instead reorder the γ_i within θ_t (qtr = 2)

$$y_{t} = \begin{bmatrix} 1 & x_{t} & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha_{t} \\ \beta_{t} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{1} \end{bmatrix}$$

$$\downarrow y_{t} = \alpha_{t} + \beta_{t}x_{t} + \gamma_{2} + e_{t}$$

But *how* would we shift the γ_i within θ_t ?

$$oldsymbol{ heta}_t = egin{bmatrix} lpha_t \ eta_t \$$

Example of non-diagonal G

We can use a non-diagonal submatrix in the lower right of ${f G}$ to get the correct quarter effect

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Evolving parameters

Quarter 1

$$\begin{bmatrix}
\alpha_{t} \\
\beta_{t} \\
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3} \\
\gamma_{4}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\alpha_{t-1} \\
\beta_{t-1} \\
\gamma_{4} \\
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{bmatrix} + \begin{bmatrix}
w_{\alpha,t} \\
w_{\beta,t} \\
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{matrix}
\theta_{t} \\
\theta_{t-1}
\end{matrix}$$

Evolving parameters

Quarter 2

$$\begin{bmatrix}
\alpha_{t} \\
\beta_{t} \\
\gamma_{2} \\
\gamma_{3} \\
\gamma_{4} \\
\gamma_{1}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\alpha_{t-1} \\
\beta_{t-1} \\
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3} \\
\gamma_{4}
\end{bmatrix} + \begin{bmatrix}
w_{\alpha,t} \\
w_{\beta,t} \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{matrix}
\theta_{t} \\
\theta_{t-1}
\end{matrix}$$

Evolving parameters

Quarter 3

$$\begin{bmatrix}
\alpha_{t} \\
\beta_{t} \\
\gamma_{3} \\
\gamma_{4} \\
\gamma_{1} \\
\gamma_{2}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
\alpha_{t-1} \\
\beta_{t-1} \\
\gamma_{2} \\
\gamma_{3} \\
\gamma_{4} \\
\gamma_{1}
\end{bmatrix} + \begin{bmatrix}
w_{\alpha,t} \\
w_{\beta,t} \\
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\begin{matrix}
\theta_{t-1} \\
\theta_{t-1}
\end{matrix}$$

DLMs are often used in a forecasting context where we want a prediction for time t based on the data up through time t-1

Pseudo-code

- 1. get estimate of today's parameters from yesterday's
- 2. make prediction based on today's parameters & covariates
- 3. get observation for today
- 4. update parameters and repeat

$$\theta_0 | y_0 = \pi + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{\Lambda})$$

$$\theta_0 | y_0 = \pi + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \Lambda)$$

$$\downarrow \downarrow$$

$$E(\theta_0) = \pi$$
and
$$Var(\theta_0) = Var(\pi) + Var(\mathbf{w}_1)$$

$$Var(\theta_0) = \mathbf{0} + \Lambda$$

$$Var(\theta_0) = \Lambda$$

$$m{ heta}_0 | y_0 = m{\pi} + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{\Lambda})$$
 $\downarrow \downarrow$
 $E(m{ heta}_0) = m{\pi}$
and
 $Var(m{ heta}_0) = m{\Lambda}$
 $\downarrow \downarrow$
 $m{ heta}_0 | y_0 \sim \text{MVN}(m{\pi}, m{\Lambda})$

$$\theta_1 | y_0 = \mathbf{G} \theta_0 + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\theta_1 | y_0 = \mathbf{G} \theta_0 + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\downarrow \downarrow$$

$$E(\theta_1) = \mathbf{G} E(\theta_0)$$

$$E(\theta_1) = \mathbf{G} \pi$$

$$\theta_1 | y_0 = \mathbf{G}\theta_0 + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\downarrow \downarrow$$

$$E(\theta_1) = \mathbf{G}\pi$$
and
$$\text{Var}(\theta_1) = \mathbf{G}\text{Var}(\theta_0)\mathbf{G}^\top + \text{Var}(\mathbf{w}_1)$$

$$\text{Var}(\theta_1) = \mathbf{G}\Lambda\mathbf{G}^\top + \mathbf{Q}$$

$$\theta_1 | y_0 = \mathbf{G}\theta_0 + \mathbf{w}_1 \text{ with } \mathbf{w}_1 \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

$$\downarrow \downarrow$$

$$E(\theta_1) = \mathbf{G}\pi$$
and
$$Var(\theta_1) = \mathbf{G}\Lambda \mathbf{G}^\top + \mathbf{Q}$$

$$\downarrow \downarrow$$

$$\theta_1 | y_0 \sim \text{MVN}(\mathbf{G}\pi, \mathbf{G}\Lambda \mathbf{G}^\top + \mathbf{Q})$$

Step 3: Make a forecast of y_t at time t = 1

$$y_1 | y_0 = \mathbf{X}_1^{\mathsf{T}} \boldsymbol{\theta}_1 + e_1 \text{ with } e_1 \sim \mathrm{N}(0, R)$$

$$\downarrow \downarrow$$

$$\mathrm{E}(y_1) = \mathbf{X}_1^{\mathsf{T}} \mathrm{E}(\boldsymbol{\theta}_1)$$

$$\mathrm{E}(y_1) = \mathbf{X}_1^{\mathsf{T}} \mathbf{G} \boldsymbol{\pi}$$

Step 3: Make a forecast of y_t at time t = 1

Step 3: Make a forecast of y_t at time t = 1

Putting it all together

$$\theta_0 | y_0 \sim \text{MVN}(\boldsymbol{\pi}, \boldsymbol{\Lambda})$$

$$\theta_t | y_{t-1} \sim \text{MVN}(\mathbf{G}\boldsymbol{\pi}, \mathbf{G}\boldsymbol{\Lambda}\mathbf{G}^{\top} + \mathbf{Q})$$

$$y_t | y_{t-1} \sim \text{N}(\mathbf{X}_t^{\top}[\mathbf{G}\boldsymbol{\pi}], \mathbf{X}_t^{\top}[\mathbf{G}\boldsymbol{\Lambda}\mathbf{G}^{\top} + \mathbf{Q}]\mathbf{X}_t + R)$$

Putting it all together

$$\theta_0 | y_0 \sim \text{MVN}(\boldsymbol{\pi}, \boldsymbol{\Lambda})$$

$$\theta_t | y_{t-1} \sim \text{MVN}(\mathbf{G}\boldsymbol{\pi}, \mathbf{G}\boldsymbol{\Lambda}\mathbf{G}^{\top} + \mathbf{Q})$$

$$y_t | y_{t-1} \sim \text{N}(\mathbf{X}_t^{\top}[\mathbf{G}\boldsymbol{\pi}], \mathbf{X}_t^{\top}[\mathbf{G}\boldsymbol{\Lambda}\mathbf{G}^{\top} + \mathbf{Q}]\mathbf{X}_t + R)$$

Using MARSS() will make this easy to do

Diagnostics for DLMs

Just as with other models, we'd like to know if our fitted DLM meets its underlying assumptions

We can calcuate the forecast error e_t as

$$e_t = y_t - \hat{y}_t$$

and check if

(1)
$$e_t \sim N(0, \sigma)$$

(2)
$$Cov(e_t, e_{t-1}) = 0$$

with a QQ-plot (1) and an ACF (2)

We can expand our DLM to have a multivariate response

The most simple multivariate DLM

Multiple observations of a stochastic level

$$\mathbf{y}_t = \mathbf{Z}\alpha_t + \mathbf{v}_t$$
 $\mathbf{y}_t \text{ is } n \times 1$
 $\alpha_t = \alpha_{t-1} + w_t$ $\alpha_t \text{ is } 1 \times 1$

$$\mathbf{Z} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

The most simple multivariate DLM

Multiple observations of a random walk

$$\mathbf{y}_t = \mathbf{Z}x_t + \mathbf{v}_t$$
 $\mathbf{y}_t \text{ is } n \times 1$
 $x_t = x_{t-1} + w_t$ $x_t \text{ is } 1 \times 1$

$$\mathbf{Z} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

Another simple multivariate DLM

Multiple observations of multiple levels

$$\mathbf{y}_t = \mathbf{Z}\alpha_t + \mathbf{v}_t$$
 $\mathbf{y}_t \text{ is } n \times 1$
 $\alpha_t = \alpha_{t-1} + \mathbf{w}_t$ $\alpha_t \text{ is } n \times 1$

$$\mathbf{Z} = \mathbf{I}_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Another simple multivariate DLM

Multiple observations of multiple random walks

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{v}_t$$
 $\mathbf{y}_t \text{ is } n \times 1$
 $\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{w}_t$ $\mathbf{x}_t \text{ is } n \times 1$

$$\mathbf{Z} = \mathbf{I}_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Regression model

Our univariate model

$$y_t = \mathbf{X}_t^{\mathsf{T}} \boldsymbol{\theta}_t + e_t \text{ with } e_t \sim \mathrm{N}(0, R)$$

becomes

$$\mathbf{y}_t = (\mathbf{X}_t^{\top} \otimes \mathbf{I}_n)\boldsymbol{\theta}_t + \mathbf{e}_t \text{ with } \mathbf{e}_t \sim \text{MVN}(\mathbf{0}, \mathbf{R})$$

where \otimes is the *Kronecker product*

Kronecker products

If **A** is an $m \times n$ matrix and **B** is a $p \times q$ matrix

then $\mathbf{A} \otimes \mathbf{B}$ will be an $mp \times nq$ matrix

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \dots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \dots & a_{mn}\mathbf{B} \end{bmatrix}$$

Kronecker products

For example

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

SO

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 1 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} & 2 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \\ 3 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} & 4 \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 & 8 \\ 6 & 8 & 12 & 16 \\ 6 & 12 & 8 & 16 \\ 18 & 24 & 24 & 32 \end{bmatrix}$$

Regression model with n=2

$$\mathbf{y}_t = (\mathbf{X}_t^\top \otimes \mathbf{I}_n)\boldsymbol{\theta}_t + \mathbf{e}_t$$

$$\Downarrow$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & x_t \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \\ \beta_{1,t} \\ \beta_{2,t} \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & x_t \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \\ \beta_{1,t} \\ \beta_{2,t} \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} y_{1,t} \\ y_{2,t} \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_t & 0 \\ 0 & 1 & 0 & x_t \end{bmatrix} \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \\ \beta_{1,t} \\ \beta_{2,t} \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \end{bmatrix}$$

Covariance of observation errors

$$\mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma & 0 & 0 & 0 \\ 0 & \sigma & 0 & 0 \\ 0 & 0 & \sigma & 0 \\ 0 & 0 & 0 & \sigma \end{bmatrix} \text{ or } \mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & \sigma_4 \end{bmatrix}$$

$$\mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma & \gamma & \gamma & \gamma \\ \gamma & \sigma & \gamma & \gamma \\ \gamma & \gamma & \sigma & \gamma \\ \gamma & \gamma & \gamma & \sigma \end{bmatrix} \text{ or } \mathbf{R} \stackrel{?}{=} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & \gamma_{2,4} \\ 0 & 0 & \sigma_3 & 0 \\ 0 & \gamma_{2,4} & 0 & \sigma_4 \end{bmatrix}$$

Parameter evolution

$$\theta_t = \mathbf{G}\theta_{t-1} + \mathbf{w}_t \text{ with } \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

becomes

$$\theta_t = (\mathbf{G} \otimes \mathbf{I}_n) \, \theta_{t-1} + \mathbf{w}_t \text{ with } \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

Parameter evolution

If we have 2 regression parameters and n=2, then

$$\boldsymbol{\theta}_{t} = \begin{bmatrix} \alpha_{1,t} \\ \alpha_{2,t} \\ \beta_{1,t} \\ \beta_{2,t} \end{bmatrix} \text{ and } \mathbf{G} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}_{2}$$

Parameter evolution

$$\boldsymbol{\theta}_{t} = (\mathbf{G} \otimes \mathbf{I}_{n}) \, \boldsymbol{\theta}_{t-1} + \mathbf{w}_{t}$$

$$\boldsymbol{\psi}$$

$$\boldsymbol{\theta}_{t} = (\mathbf{I}_{2} \otimes \mathbf{I}_{2}) \, \boldsymbol{\theta}_{t-1} + \mathbf{w}_{t}$$

$$\mathbf{I}_m \otimes \mathbf{I}_n = \mathbf{I}_{mn}$$

$$\mathbf{I}_{2} \otimes \mathbf{I}_{2} = \begin{bmatrix} 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parameter evolution

Evolution variance

$$\boldsymbol{\theta}_t = \boldsymbol{\theta}_{t-1} + \mathbf{w}_t \text{ with } \mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$$

What form should we choose for \mathbf{Q} ?

Evolution variance

$$\begin{bmatrix} \boldsymbol{\alpha}_{t} \\ \boldsymbol{\beta}_{t} \end{bmatrix} \sim \text{MVN} \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{\beta} \end{bmatrix} \end{pmatrix}$$
$$\mathbf{Q}_{(\cdot)} = \begin{bmatrix} q_{(\cdot)} & 0 & \dots & 0 \\ 0 & q_{(\cdot)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_{(\cdot)} \end{bmatrix}$$

Diagonal and equal (IID)

Evolution variance

$$\begin{bmatrix} \boldsymbol{\alpha}_t \\ \boldsymbol{\beta}_t \end{bmatrix} \sim \text{MVN} \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{\beta} \end{bmatrix} \end{pmatrix}$$
$$\mathbf{Q}_{(\cdot)} = \begin{bmatrix} q_{(\cdot)1} & 0 & \dots & 0 \\ 0 & q_{(\cdot)2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q_{(\cdot)n} \end{bmatrix}$$

Diagonal and unequal

Evolution variance

$$\begin{bmatrix} \boldsymbol{\alpha}_t \\ \boldsymbol{\beta}_t \end{bmatrix} \sim \text{MVN} \begin{pmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{\beta} \end{bmatrix} \end{pmatrix}$$

$$\mathbf{Q}_{(\cdot)} = \begin{bmatrix} q_{(\cdot)1,1} & q_{(\cdot)1,2} & \cdots & q_{(\cdot)1,n} \\ q_{(\cdot)2,1} & q_{(\cdot)2,2} & \cdots & q_{(\cdot)2,n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{(\cdot)n,1} & q_{(\cdot)n,2} & \cdots & q_{(\cdot)n,n} \end{bmatrix}$$

Unconstrained

Evolution variance

$$\begin{bmatrix} \boldsymbol{\alpha}_t \\ \boldsymbol{\beta}_t \end{bmatrix} \sim \text{MVN} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{Q}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{\beta} \end{bmatrix} \right)$$

In practice, keep \mathbf{Q} as simple as possible

Topics for today

Univariate response

- Stochastic level & growth
- Dynamic Regression
- Dynamic Regression with fixed season
- Forecasting with a DLM
- Model diagnostics

Multivariate response