Analisis de conjunto de datos

Daniela Cuesta

1. Se ha cargado los datos correctamente y se ha seleccionado las variables numéricas adecuadas. Además, se ha convertido la variable V9 en un factor y se ha asignado a la variable clase

```
datos <- read.table("./ecoli.data",header = F)[,-1]
head(datos)</pre>
```

```
      V2
      V3
      V4
      V5
      V6
      V7
      V8
      V9

      1
      0.49
      0.29
      0.48
      0.5
      0.56
      0.24
      0.35
      cp

      2
      0.07
      0.40
      0.48
      0.5
      0.54
      0.35
      0.44
      cp

      3
      0.56
      0.40
      0.48
      0.5
      0.49
      0.37
      0.46
      cp

      4
      0.59
      0.49
      0.48
      0.5
      0.52
      0.45
      0.36
      cp

      5
      0.23
      0.32
      0.48
      0.5
      0.35
      0.25
      0.35
      cp

      6
      0.67
      0.39
      0.48
      0.5
      0.36
      0.38
      0.46
      cp
```

```
datos.numericos <- datos[, sapply(datos, is.numeric)]
# Convertir la variable "V9" a factor y asignarla a "clase"
clase <- datos$V9 <- as.factor(datos$V9)</pre>
```

2. Se aplica un summary(datos), esto generará un resumen estadístico de todas las variables en el conjunto de datos, específicamente datos

```
summary(datos)
```

```
V2
                        VЗ
                                       ۷4
                                                         ۷5
Min.
       :0.0000
                         :0.16
                                        :0.4800
                                                          :0.5000
                 Min.
                                 Min.
                                                   Min.
1st Qu.:0.3400
                 1st Qu.:0.40
                                 1st Qu.:0.4800
                                                   1st Qu.:0.5000
Median :0.5000
                 Median:0.47
                                 Median :0.4800
                                                  Median :0.5000
```

```
Mean
       :0.5001
                          :0.50
                  Mean
                                  Mean
                                          :0.4955
                                                     Mean
                                                             :0.5015
3rd Qu.:0.6625
                  3rd Qu.:0.57
                                  3rd Qu.:0.4800
                                                     3rd Qu.:0.5000
       :0.8900
                          :1.00
                                          :1.0000
                                                             :1.0000
Max.
                  Max.
                                  Max.
                                                     Max.
      ۷6
                       ۷7
                                                            ۷9
                                          V8
       :0.000
                         :0.0300
                                           :0.0000
Min.
                 Min.
                                   Min.
                                                              :143
                                                      ср
1st Qu.:0.420
                 1st Qu.:0.3300
                                   1st Qu.:0.3500
                                                              : 77
                                                      im
Median :0.495
                 Median : 0.4550
                                   Median :0.4300
                                                              : 52
                                                      рp
       :0.500
                                           :0.4997
Mean
                 Mean
                        :0.5002
                                   Mean
                                                      imU
                                                              : 35
                                                              : 20
3rd Qu.:0.570
                 3rd Qu.:0.7100
                                   3rd Qu.:0.7100
                                                      om
Max.
       :0.880
                         :1.0000
                                           :0.9900
                                                                5
                 Max.
                                   Max.
                                                      omL
                                                      (Other):
```

Inferencia univariante

Se crea una lista resultados_shapiro donde almacenaremos los resultados de la prueba de normalidad para cada variable. Utilizamos un bucle for para iterar sobre cada columna en datos.numericos. En cada iteración, aplicamos shapiro.test() a la variable correspondiente y guardamos el resultado en la lista resultados_shapiro, utilizando el nombre de la variable como etiqueta.

Finalmente, utilizamos otro bucle **for** para mostrar los resultados de la prueba de normalidad para cada variable, imprimiendo el nombre de la variable y el resultado correspondiente.

```
# Obtener las variables numéricas del conjunto de datos
datos.numericos <- datos[, sapply(datos, is.numeric)]

# Aplicar la prueba de normalidad de Shapiro-Wilk a cada variable
resultados_shapiro <- list()

for (i in 1:ncol(datos.numericos )) {
   variable <- datos.numericos [, i]
   resultado <- shapiro.test(variable)
   resultados_shapiro[[colnames(datos.numericos )[i]]] <- resultado
}

# Mostrar los resultados de la prueba de normalidad
for (i in 1:length(resultados_shapiro)) {
   variable <- names(resultados_shapiro[i])
   resultado <- resultados_shapiro[[i]]
   print(paste("Variable:", variable))</pre>
```

```
print(resultado)
    cat("\n")
[1] "Variable: V2"
    Shapiro-Wilk normality test
data: variable
W = 0.97366, p-value = 8.231e-06
[1] "Variable: V3"
    Shapiro-Wilk normality test
data: variable
W = 0.95098, p-value = 3.863e-09
[1] "Variable: V4"
    Shapiro-Wilk normality test
data: variable
W = 0.15841, p-value < 2.2e-16
[1] "Variable: V5"
    Shapiro-Wilk normality test
data: variable
W = 0.02915, p-value < 2.2e-16
[1] "Variable: V6"
    Shapiro-Wilk normality test
data: variable
```

```
W = 0.98139, p-value = 0.0002423

[1] "Variable: V7"
     Shapiro-Wilk normality test

data: variable
W = 0.95543, p-value = 1.431e-08

[1] "Variable: V8"
     Shapiro-Wilk normality test

data: variable
W = 0.93293, p-value = 3.656e-11

También se puede aplicar para cada variables
     shapiro.test(datos$V2)

     Shapiro-Wilk normality test

data: datos$V2
W = 0.97366, p-value = 8.231e-06
```

Ninguno de los valores p obtenidos indica que alguna de las variables siga una distribución normal, ya que los valores obtenidos son extremadamente pequeños

Inferencia bivariante

Se realiza una prueba de correlación de Pearson entre las variables V2 y V3. datos\$V2 y datos\$V3 son las columnas correspondientes a esas variables en el conjunto de datos.

```
cor.test(datos$V2, datos$V3)
```

Pearson's product-moment correlation

```
data: datos$V2 and datos$V3
t = 9.333, df = 334, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3656018 0.5357301
sample estimates:
      cor
0.4548053
  cor.test(datos$V3, datos$V4)
   Pearson's product-moment correlation
data: datos$V3 and datos$V4
t = 0.80133, df = 334, p-value = 0.4235
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.06348734 0.15009526
sample estimates:
       cor
0.04380447
  cor.test(datos$V4, datos$V5)
   Pearson's product-moment correlation
data: datos$V4 and datos$V5
t = 6.0006, df = 334, p-value = 5.118e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2120338 0.4054138
sample estimates:
    cor
```

0.311951

Pearson's product-moment correlation

Según el valor p obtenido se puede observar si hay una correlación significativa entre las variables V2 y V3 y así con todas las variables

Inferencia multivariante: PCA

Se utiliza la función **scale()** para estandarizar las variables numéricas en el conjunto de datos. La estandarización asegura que todas las variables tengan media cero y desviación estándar uno.

Se utiliza la función prcomp() para realizar el análisis de Componentes Principales.

La función summary(). Proporciona información sobre los componentes principales

```
#
# Seleccionar las variables numéricas para el PCA
#datos_numericos <- datos[, sapply(datos, is.numeric)]
# Estandarizar las variables
datos_estandarizados <- scale(datos.numericos)

# Realizar el PCA
pca <- prcomp(datos_estandarizados)

# Resumen del PCA
summary(pca)</pre>
```

Importance of components: