

YRKESHÖGSKOLAN ARCADA

Introduction to Analytics

Magnus.Westerlund @arcada.fi

Researcher & Programme Director 01.04.2017

Analytics related full-time Researchers at our Department

- Ph.D Anton Akusok (data processing wizard)
- Ph.D Leonardo Espinosa (method master)
- D.Sc. Magnus Westerlund (autonomous agents (fintech))
- D.Sc Shuhua Liu (NLP)
- Ph.D Jonny Karlsson (IOT)
- D.Sc Kaj-Mikael Björk (Optimization)
- MSc Andrej Shcherbakov (lecturer)
- Stig Blomqvist (Administration and Payments)

BDA Specialisation study programme schedule			[as of 27.8.2018]
06.09.2018	13:00 - 18:00	Introduction to Analytics	B518
07.09.2018	13:00 - 18:00	Introduction to Analytics	F249 (Lilla auditoriet)
20.09.2018	13:00 - 18:00	Introduction to Analytics	F249 (Lilla auditoriet)
21.09.2018	13:00 - 18:00	Introduction to Analytics	F249 (Lilla auditoriet)
04.10.2018	13:00 - 18:00	Introduction to Analytics	F249 (Lilla auditoriet)
05.10.2018	13:00 - 18:00	Introduction to Analytics	F249 (Lilla auditoriet)
10 10 2010	12.00 10.00	Machina Lagraina for Dradictive Drablams	F240 /Lilla auditariat)
18.10.2018	13:00 - 18:00	Machine Learning for Predictive Problems	F249 (Lilla auditoriet)
19.10.2018	13:00 - 18:00	Machine Learning for Predictive Problems	F249 (Lilla auditoriet) B518
01.11.2018	13:00 - 18:00	Machine Learning for Predictive Problems Machine Learning for Predictive Problems	F143 (Stora auditoriet)
02.11.2018 15.11.2018	13:00 - 18:00 13:00 - 18:00	Machine Learning for Predictive Problems	F249 (Lilla auditoriet)
16.11.2018	13:00 - 18:00		F249 (Lilla auditoriet)
16.11.2018	13:00 - 18:00	Machine Learning for Predictive Problems	F249 (Lilia auditoriet)
29.11.2018	13:00 - 18:00	Visual Analytics	B518
30.11.2018	13:00 - 18:00	Visual Analytics	F249 (Lilla auditoriet)
13.12.2018	13:00 - 18:00	Visual Analytics	F143 (Stora auditoriet)
14.12.2018	13:00 - 18:00	Visual Analytics	F249 (Lilla auditoriet)
17.01.2019	13:00 - 18:00	Visual Analytics	D173
18.01.2019	13:00 - 18:00	Visual Analytics	F143 (Stora auditoriet)
31.01.2019	13:00 - 18:00	Machine Learning for Descriptive Problems	F249 (Lilla auditoriet)
01.02.2019	13:00 - 18:00	Machine Learning for Descriptive Problems	F249 (Lilla auditoriet)
14.02.2019	13:00 - 18:00	Machine Learning for Descriptive Problems	F249 (Lilla auditoriet)
15.02.2019	13:00 - 18:00	Machine Learning for Descriptive Problems	F249 (Lilla auditoriet)
28.02.2019	13:00 - 18:00	Machine Learning for Descriptive Problems	F249 (Lilla auditoriet)
01.03.2019	13:00 - 18:00	Machine Learning for Descriptive Problems	F249 (Lilla auditoriet)
0210012023		Widelinie Zearming for Descriptive Froblems	
14.03.2019	13:00 - 18:00	Big Data Analytics	F249 (Lilla auditoriet)
15.03.2019	13:00 - 18:00	Big Data Analytics	F249 (Lilla auditoriet)
28.03.2019	13:00 - 18:00	Big Data Analytics	F249 (Lilla auditoriet)
29.03.2019	13:00 - 18:00	Big Data Analytics	F143 (Stora auditoriet)
11.04.2019	13:00 - 18:00	Big Data Analytics	F249 (Lilla auditoriet)
12.04.2019	13:00 - 18:00	Big Data Analytics	F249 (Lilla auditoriet)
25.04.2019	13:00 - 18:00	Analytical Service Development	F143 (Stora auditoriet)
26.04.2019	13:00 - 18:00	Analytical Service Development	F249 (Lilla auditoriet)
09.05.2019	13:00 - 18:00	Analytical Service Development	F249 (Lilla auditoriet)
10.05.2019	13:00 - 18:00	Analytical Service Development	F249 (Lilla auditoriet)
		,	
23.05.2019	13:00 - 18:00	Analytical Service Development	F249 (Lilla auditoriet)
24.05.2019	13:00 - 18:00	Analytical Service Development	F249 (Lilla auditoriet)

Intro to Analytics - Course Schedule

Week 1

- -6.9: Intro to Analytics, Machine Learning, and Al
- -7.9: Feature engineering, Pandas

Week 2

- -20.9: Time series processing, linear modeling and setting targets/labels
- -21.9: Time series data visualization and regression

Week 3

- -4.10: Understanding model output, and going from output to decision
- -5.10: Open discussion, creating decisions, finalizing project

Week 1 - Objectives

- You can get hold of lecture slides from ItsLearning and Slack
- We have prepared a Jupyter guide to Analytics in Python
 - After downloading you can run it and modify the examples
- The first (individual) assignment, based on the guide, is due 20.9
 - Please note, that you need to have access to a Python environment to do the assignment.
- We prepared an extra notebook for those that want a challenge
 - We will set up a competition for who gets the best "repeatable" score.
 - Prize award ceremony will be held first week of 2nd course.

Todays Agenda

- Let's define Big Data Analytics
- Use cases: How will intelligent algorithms change every sector it comes in contact with
 - Intelligent Algorithms, Fad or Truth?
 - Big Data Analytics
 - Machine Learning
- What is quality from a management perspective?
- IT-tools and services at Arcada
 - Tomorrow (7.9) 11-13, walk in studio in F368 BDA Lab (you will need a key)
 - Andrej Scherbakov (advisor), he will monitor the channel next week
 - Use Slack for all (non-personal) communication

Definitions

Big Data Analytics (BDA)

The field and some important terms

Defining Analytics

• INFORMS:

- The scientific process of transforming data into insights for the purpose of making better decisions.
- Analytics is always an action-driven approach and a decision is to be made when we look at doing analytics.
- Data scientists love to analyze data just for the sake of analyzing it.
 However, it is important to ensure our analysis is driving business action.
- We want analytics to empower an organization's vision.

Defining Artificial Intelligence (AI)

- "Artificial intelligence is that activity devoted to making machines intelligent, and intelligence is that quality that enables an entity to function appropriately and with foresight in its environment."
 - Nils J. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and Achievements
- To date human intelligence has no match in the biological and artificial worlds for sheer versatility, with the abilities "to reason, achieve goals, understand and generate language, perceive and respond to sensory inputs, prove mathematical theorems, play challenging games, synthesize and summarize information, create art and music, and even write histories." Nilsson
- Al research trends:

https://ai100.stanford.edu/2016-report/section-i-what-artificial-intelligence/ai-research-trends

Defining Machine Learning (ML)

- Machine Learning gives "computers the ability to learn without being explicitly programmed." – Samuel
- Examples:
 - The **self-driving** Tesla/Google car? The essence of machine learning.
 - Online recommendation offers such as those from Amazon and Netflix? Machine learning applications for everyday life.
 - Knowing what customers are saying about you on Twitter?
 Machine learning combined with linguistic rule creation.
 - Fraud detection? One of the more obvious, important uses in our world today.

40 ZETTABYTES

[43 TRILLION GIGABYTES] of data will be created by

times from 2005

It's estimated that 2.5 QUINTILLION BYTES [2.3 TRILLION GIGABYTES]

of data are created each day

Volume **SCALE OF DATA**

Most companies in the U.S. have at least

100 TERABYTES

00,000 GIGABYTES 1 of data stored

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

Velocity

ANALYSIS OF

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

- almost 2.5 connections per person on earth

Modern cars have close to 100 SENSORS

that monitor items such as fuel level and tire pressure

STREAMING DATA

The FOUR V's of Big Data

history and medical records, data is recorded. stored, and analyzed to enable the technology and services that the world relies on every day.

As a leader in the sector, IBM data scientists break big data into four dimensions: Volume, **Velocity, Variety and Veracity**

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

PIECES OF CONTENT

are shared on Facebook

30 BILLION

every month

Variety

DIFFERENT

FORMS OF DATA

4 BILLION+ **HOURS OF VIDEO**

are watched on

YouTube each month

By 2014, it's anticipated

HEALTH MONITORS

WEARABLE, WIRELESS

there will be

420 MILLION

400 MILLION TWEETS

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS **LEADERS**

don't trust the information they use to make decisions

\$3.1 TRILLION A YEAR

Poor data quality costs the US

economy around

27% OF RESPONDENTS

in one survey were unsure of how much of their data was inaccurate

Veracity

UNCERTAINTY OF DATA

Autonomous Systems

- Often a "node" that exists and acts in a distributed network, examples can be found from:
 - Vehicles
 - Robotics
 - Blockchain
 - Intelligent agents
 - -IoT
- The node should independently be able to react to data from its surrounding environment, in a sort of feedback loop.
 - Observe -> detect possible actions -> react

What is Big Data Analytics?

• **IBM**:

Big data analytics is the use of advanced analytic techniques against very large, diverse data sets that include different types such as structured/unstructured and streaming/batch, and different sizes from terabytes to zettabytes.

SAS:

Big data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights.

Mgmt intuition vs. Data insights

Accenture's view, intuition + insight

- The hype around data and analytics may lead many executives to assume that the answers to difficult questions—how much to raise prices, where to site a new retail store, whether one product will cannibalize another—can be found through aggressive number crunching. But does that mean that expert judgment and managerial intuition are obsolete? Hardly.
- In fact, the full potential of quantitative analytics can be unlocked only when combined with business intuition.

Its all about quality data!

Intelligent Services: A few examples

"The machine learning algorithm wants to know if we'd like a dozen wireless mice to feed the Python book we just bought."

The Big Data Revolution in Consumer Behavior

IIM O **IBM Analytics** In this environment, driving differentiation with consumers through trust and relevance is important engage social media collect feedback analytics analytics enables you to know and treat consumers as individuals

*ARCADA

© 2015 IBM Corporation

Value creation in B2C

© 2015 IBM Corporation

A consumer-centric view in value creation for B2C

Convergence of technologies, enabled by IoT

Gartner Hype Curve

time

Plateau will be reached:

O less than 2 years

arcada.fi

#arcadauas

2 to 5 years

5 to 10 years

▲ more than 10 years

obsolete
before plateau

The Big Data Revolution in Healthcare

Example Areas in Health Care

Diagnostic

- Remote vital monitoring
- Sleep/pulmonary monitoring
- Neuromonitoring
- Clinical decision support

Therapeutic

- Pain management
- Drug delivery
- Optical assist
- Surgical assist
- Pulmonary assist
- Care delivery

Wellness

- Fitness management
- Preventative care
- Aging in Place

Operational

- Security, access control
- Pharmacy management
- Inventory management
- Training delivery

ALGORITHM USED BY IBM'S WATSON COMPUTER SYSTEM

arcada.fi #arcadaua

ARCADA

Transforming Healthcare with Analytics

Building intelligent platforms and services for eHealth and identifying their challenges

Building intelligent platforms and services for a sector and identifying their challenges

Challenges with growing data sets

What is Big Data Analytics?

 Its about high-volume, high-velocity and highly varied information assets that demand cost-effective, innovative forms of information processing to support enhanced insight and decision making.

(Gartner)

My personal view:

- Making sense of potentially large amounts of data
- Employing complex real-time data (streams) to create analytical services
- Models learn from existing data to make predictions/decisions with new data; ultimately models learn continuously from new data
- Being able to process on incomplete data
- Maintaining these big data analytics services and platforms

Data growth vs. Processing capacity

Processor development 40 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Working smarter - what is Data Science?

- Drew Convey's
- Venn Diagram

Data science in business - Analytics taxonomy

What do consultancies sell?

· Has well-defined delivery timeframe

Machine Learning

What is Machine Learning?

Defining the aim of modeling:

- Clustering: Group records together that have similar field values. Often used for recommendation systems. (e.g. group customers with similar buying habits)
- Regression: Learn to predict a numeric outcome field, based on all of the other fields present in each record. (e.g. predict a student's graduating GPA)
- Classification: Learn to predict a non-numeric outcome field. (e.g. predict the field of a student's first job after graduation)

What is ML model?

Titanic - Example Application

- Predict the outcome:
 - Survived
 - Perished
- From passenger features:
 - Gender
 - Name
 - Passenger class
 - Age
 - Family members present
 - Port of embarkation
 - Cabin
 - Ticket

The original labels (data)

Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	3	Owen Harris	male	22	1	0	A/5 21171	7.25		S
1	1	riggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
1	3	ı, Miss. Laina	female	26	0	0	02. 3101282	7.925		S
1	1	ily May Peel)	female	35	1	0	113803	53.1	C123	S
0	3	/illiam Henry	male	35	0	0	373450	8.05		S
0	3	n, Mr. James	male		0	0	330877	8.4583		Q
0	1	1r. Timothy J	male	54	0	0	17463	51.8625	E46	S
0	3	osta Leonard	male	2	3	1	349909	21.075		S
1	3	elmina Berg)	female	27	0	2	347742	11.1333		S
1	2	dele Achem)	female	14	1	0	237736	30.0708		С
1	3	arguerite Rut	female	4	1	1	PP 9549	16.7	G6	S
1	1	iss. Elizabeth	female	58	0	0	113783	26.55	C103	S
0	3	/illiam Henry	male	20	0	0	A/5. 2151	8.05		S
0	3	Inders Johan	male	39	1	5	347082	31.275		S
0	3	nda Adolfina	female	14	0	0	350406	7.8542		S

Creating an input feature vector

- Age: The interpolated age normalized to -1 to 1.
- **Sex-male**: The gender normalized to -1 for female, 1 for male.
- Pclass: The passenger class [1-3] normalized to -1 to 1.
- Sibsp: Value from the original data set normalized to -1 to 1.
- Parch: Value from the original data set normalized to -1 to 1.
- Fare: The interpolated fare normalized to -1 to 1.
- Embarked-c: The value 1 if the passenger embarked from Cherbourg, -1 otherwise.
- Embarked-q: The value 1 if the passenger embarked from Queenstown, -1 otherwise.
- Embarked-s: The value 1 if the passenger embarked from Southampton, -1 otherwise.
- Name-mil: The value 1 if passenger had a military prefix, -1 otherwise.
- Name-nobility: The value 1 if passenger had a noble prefix, -1 otherwise.
- Name-Dr.: The value 1 if passenger had a doctor prefix, -1 otherwise.
- Name-clergy: The value 1 if passenger had a clergy prefix, -1 otherwise.

Understanding data through descriptive statistics: completeness and representativness

	#	Survived	Male Survived	Female Survied	Avg Age
Master	76	58%	58%		
Mr.	915	16%	16%		
Miss.	332			71%	21.8
Mrs	235			79%	36.9
Military	10	40%	40%		36.9
Clergy	12	0%	0%		41.3
Nobility	10	60%	33%	100%	41.2
Doctor	13	46%	36%	100%	43.6

arcada.fi #arcadauas

ARCADA

What happens inside a ML model?

- Data points are projected into a multi-dimensional space
- Separation of data points, ex. by measuring distance
- The boundary is "learned" by the machine, linearly or nonlinearly depending on model used

Tools in use

Activate your Arcada IT account

- Start reading here:
 - https://start.arcada.fi/en/it-support/it-accounts-and-passwords
 - Click the link on the page to go to AAS
- You need to either verify using your Finnish bank online credentials or another Finnish University account (that belongs HAKA)
- If you do not have either, then contact it-support@arcada.fi

IT-systems at Arcada

- The first place to look for information and IT-tools:
 - https://start.arcada.fi/en
 - Look under "tools"
- Email and Office:
 - We have Office 365 licenses for you
 - Please configure your Arcada email to your mobile, I will send you info there at times, also course results.
- LMS ItsLearning
 - Lecture slides and project submissions will come through here.

Π-systems at Arcada (cont.)

- Asta: student admin system
- Arbs: room bookings
- Research papers,
 - https://arcada.finna.fi/?lng=en-gb
 - https://scholar.google.fi/
- Authorization
 - We use two different systems to log in, psw are synced
 - ADFS for MSFT services
 - Luckan for others

Security

- Please note that no one will ever ask for your log-in details
- Also, note that we receive a great deal of phishing emails
- We are part of HAKA and Eduroam, so you can use your Arcada credentials at many Universities the world over.
 - Use: login@arcada.fi and your regular psw
 - Be careful though, the certificate should be valid!

Python Software Environment

- These tools will be needed:
 - Installing Anaconda, select Python 3.6 version:
 https://www.continuum.io/downloads
 - Jupyter Quick Start guide: https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/index.html
 - Jupyter Notebook Basics: http://nbviewer.jupyter.org/github/jupyter/notebook/blob/master/docs/source/examples/Notebook/Notebook%20Basics.ipynb
 - A good Python IDE is Pycharm Community edition: <u>https://www.jetbrains.com/pycharm/download/</u>
 - An intro to the language can be found in these videos: https://www.youtube.com/playlist?list=PLQVvvaa0QuDe8XSftW-RAxdo6OmaeL85M

Questions?

• The end..

