Outhre Rabin encyption scheme Elganul encyption scheme

```
Rabin Encaption Schene
Public Leys: N=pq, a product of two distinct odd parmer.
            P=0=3 mud 4
 private teys = p, 9
 Eventual: C= W = may N
 decorption: m is a square not of c much N.
 Alice knows P, q knows how to find square nots of a mad N.
    Cp = < mud P
    Cq = c not q
    square note of Cp is ± Cp in . M1, -m,
    sque noots of cq, (5 & cq = m2, -m2
     use (HR to compute M sit m = 1m, mad P
                                m = + M2 mod 9,
Eve doesn't know p, q. Eve needs to solve square nost melalo N.
This is a hard problem.
Rabin US RSA
Advantage: Encyption is faster in Rabin.
         (Decryton Speed is the same)
Disadvantage: There are four square roots of < mud N.
             four potentical plaintexts.
              Extra information about the plantext is required.
Similar with RSQ: Rabin is also deterministic.
```

Thooren: Nis called a Blum integer
$i + p \equiv q \equiv 3 \mod 4$
Given X E QRN. There exactly one
square not of x which is a OR.
Application: If mEQRN, then c= no med N
has exactly one square root which
is a QR, hence, we know which
one is original plaintext.
Textbook Rabin: $m \in \mathbb{Z}_N^*$
Blum Vecsion: MEDRN 10RN = \$1ZN
Padded version: MII 1 1 1 1

Probabilistic Encyption

The same plaintext can be enrupted into different

Ciphertexts.

Elganal

A trusted party chooses and publishes a large prime p		
and an element g modulo p of large (prime) order.		
Alice	Bob	
Key creation		
Choose private key $1 \le a \le p - 1$.		
Compute $A = g^a \pmod{p}$.		
Publish the public key A .		
Encryption		

Public parameter creation

Choose plaintext m.

Choose random element k.

Use Alice's public key Ato compute $c_1 = g^k \pmod{p}$ and $c_2 = mA^k \pmod{p}$.

Send ciphertext (c_1, c_2) to Alice.

This is

2-1 msg.

Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.
This quantity is equal to m.

Decryption $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.

Table 2.3: Elgamal key creation, encryption, and decryption

Given A, P, g, find $g^q \equiv A \mod P$.

This is Discrete Lagarithm problem (DLP) which is hard problem.

If we can solve DLP, then we can break Elganal.

Given A, B, P and g where A=g^q mad p and B=g^b mad p.

to find g^{qb} mod p.

This is Diffle-Hellman problem (DHP).

If we can solve DHP, then we can break Elganal.

Itomewife ?