The two-sample bootstrap

Stat 250

Click here for PDF version

College score card

66 The College Scorecard is designed to increase transparency, putting the power in the hands of the public — from those choosing colleges to those improving college quality — to see how well different schools are serving their students.

Select variables:

- type public/private
- cost total cost of attendance
- grad_rate proportion of students graduating within six years
- region region of the U.S.

How does cost of attendance differ by inst. type?

type	min	Q1	median	Q3	max	mean	sd	n	missing
private	12,510	32,796	43,113	54,427	73,892	43,616	14,872	118	9
public	9,075	19,182	22,415	24,580	36,319	21,610	4,984	55	5

The two-sample bootstrap

- 1. Draw a resample of size *m* with replacement from the first sample and a separate resample of size *n* from the second sample.
- 2. Compute a statistic that compares the two groups, such as the difference between the two sample means.
- 3. Repeat the above steps many times, say 10,000.
- 4. Construct the bootstrap distribution of the statistic. Inspect its spread, bias, and shape.

R implementation

```
library(tidyverse) # for some data manipulation tools
N <- 10<sup>4</sup> # Number of bootstrap resamples
# Create a vector for each group
public <- college |>
  filter(type == "public") |>
  pull(cost) |> na.omit()
private <- college |>
  filter(type == "private") |>
  pull(cost) |>
  na.omit()
```

R implementation

```
# A place to store the statistics
diff_mean <- numeric(N)

# Resample and calculate the statistic
for (i in 1:N) {
  boot_public <- sample(public, replace = TRUE)
  boot_private <- sample(private, replace = TRUE)
  diff_mean[i] <- mean(boot_public) - mean(boot_private)
}</pre>
```

Bootstrap distribution

Statistic	Value
Mean	-22,012.61
SD	1,510.15
Bias	-7.20

90% Percentile confidence interval

Calculation:

Interpretation:

The bootstrap is flexible

Ratio of means

```
N <- 10^4

ratio_means <- numeric(N)

for (i in 1:N) {
  boot_public <- sample(public, replace = TRUE)
  boot_private <- sample(private, replace = TRUE)
  ratio_means[i] <- mean(boot_private) / mean(boot_public)
}</pre>
```


Difference of medians

```
N <- 10^4
diff_medians <- numeric(N)
for (i in 1:N) {
  boot_public <- sample(public, replace = TRUE)
  boot_private <- sample(private, replace = TRUE)
  diff_medians[i] <- median(boot_private) - median(boot_)
}</pre>
```


Medians

```
N <- 10^4
medians <- numeric(N)
for (i in 1:N) {
  medians[i] <- median(sample(private, replace = TRUE))
}</pre>
```


Cautions

- Bootstrap often provides a poor approximation to the sampling distribution of medians and other quantiles
- When think took to be subtantial impact on accuracy of confidence intervals, so reflect on setting and may need to consider other approaches to construct Cls
- Bootstrapping does not overcome the issue of small sample sizes

Matched pairs

Is it safe to look at social media while driving?

- Previous research on smart phone use while driving has primarily focused on phone calls and texting.
- Study looked at the effects of different smart phone tasks on car-following performance in a driving simulator.
- Drivers performed driving only baseline simulation
- Drivers performed other phone tasks: texting, reading Facebook posts, exchanging photos on Snapchat, viewing updates on Instagram
- Brake reaction times (in seconds) recorded

Matched pairs

Subject	Baseline	SnapChat	Diff
1	0.863	0.865	0.00164
2	0.847	0.783	-0.06333
3	0.836	0.808	-0.02776
4	0.655	1.010	0.35421
5	0.900	0.837	-0.06324
6	0.957	1.175	0.21849
7	0.780	0.817	0.03695
8	0.954	0.861	-0.09368
9	0.970	0.717	-0.25335
10	1.103	1.141	0.03873
11	0.925	0.583	-0.34167
12	0.833	0.883	0.04999
13	0.833	0.995	0.16119
14	0.773	0.837	0.06407
15	0.914	1.008	0.09476
16	0.858	1.137	0.27844
17	0.822	1.733	0.91115
18	0.963	0.883	-0.07945

- Two measurements on each case
- Goal is to estimate the true mean difference in reaction time
- Calculate differences, then it's a one-sample bootstrap

Bootstrap percentile interval

We are 89% confident that the mean difference in reaction times is between -0.025 and 0.182 seconds.

R implementation

```
brake <- brake |> select(Subject, Baseline, SnapChat)
  mutate(Diff = SnapChat - Baseline)
N < - 1e4
n <- length(brake$Diff)</pre>
mean diffs <- numeric(N)</pre>
set.seed(1112)
for(i in 1:N) {
  mean diffs[i] <- mean(sample(brake$Diff, n, replace =</pre>
}
quants <- quantile(mean diffs, probs = c(0.045, 0.955))
```