Las Cosas de Internet

Algo de sistemas embebidos, sensores y comunicaciones

Fernando Lichtschein SAP Inside Track BA

¿De qué vamos a hablar hoy?

Arquitectura de IoT

¿De qué vamos a hablar hoy?

Arquitectura de IoT

Dispositivos, sensores y comunicaciones

Dispositivos, sensores y comunicaciones

Sistemas Embebidos

+

Internet

Internet de las Cosas

¿Qué es un Sistema Embebido?

Una computadora que forma parte de un aparato, por ejemplo:

- Un horno a microondas.
- La ECU (Engine Control Unit) de un auto.
- Un expendedor de bebidas.

Características usuales

- Operan en tiempo real.
- Ejecutan el mismo programa desde que se las enciende.
- Cuando están funcionando, no deben fallar.
- No deben dejar de funcionar.
- Diseño sensible al precio.

Basados en microcontroladores

Un solo circuito integrado o chip conteniendo:

- CPU
- Memoria (varios tipos)
- Periféricos
- Circuitos auxiliares

Microcontroladores

- Se les suele llamar SoC, System on a Chip
- Los pines de salida pueden tener más de una función
- Parte de la memoria es RAM y parte es Flash
- Suelen utilizar arquitectura Harvard.

Periféricos

- Entradas y salidas lógicas (GPIO)
- Timers
- USARTs
- Conversores A/D y D/A
- Interfaces serie como l²C y SPI
- USB
- CAN (Controller Area Network)
- •

(de Discovering the STM32 Microcontroller - Geoffrey Brown)

CPU Core

Programación

- El lenguaje más utilizado es C
- Al tener pocos recursos, los programas deben compilarse en otro sistema, generalmente una PC
- Existen dispositivos para transferir los programas a la memoria de los microcontroladores
- Los mismos dispositivos permiten la depuración (debugging) en línea

Estructura de programa

Superlazo

Atención de Interrupciones

RTOS

Atención de Interrupciones

Real Time Operating Systems

- Un scheduler o planificador basado en prioridades, con apropiación
- Mecanismos para pasaje de mensajes
 - Colas
 - Semáforos
 - Event flags
- Manejo de interrupciones

Manejo de dispositvos

Escribiendo directamente a los registros de los dispositivos.

Cada uno de ellos tiene asociado una serie de registros de configuración, por ejemplo:

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	5[1:0]	MODE	15[1:0]	CNF1	4[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE	12[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	11[1:0]	MODE	11[1:0]	CNF1	0[1:0]	MODE	10[1:0]	CNF	9[1:0]	MODE	E9[1:0]	CNF	8[1:0]	MODE	8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

 V_{DD} Analog Input To on-chip peripheral on/off Alternate Function Input Input data register on/off Read V_{DD} TTL Schmitt Bit set/reset registers Protection trigger on/off diode Input driver I/O pin Output data register Write Output driver V_{DD} Protection diode P-MOS v_{ss} Output control N-MOS Read/write V_{SS} Push-pull, From on-chip open-drain or Alternate Function Output peripheral disabled ai14781

Figure 13. Basic structure of a standard I/O port bit

Registros de configuración

Bits 31:30, 27:26, **CNFy[1:0]:** Port x configuration bits (y= 8 .. 15) 23:22, 19:18, 15:14, These bits are written by software to configure the corresponding I/O port. 11:10, 7:6, 3:2 Refer to Table 16: Port bit configuration table. In input mode (MODE[1:0]=00): 00: Analog mode 01: Floating input (reset state) 10: Input with pull-up / pull-down 11: Reserved In output mode (MODE[1:0] \geq 00): 00: General purpose output push-pull 01: General purpose output Open-drain Alternate function output Push-pull 11: Alternate function output Open-drain Bits 29:28, 25:24, **MODEy[1:0]:** Port x mode bits (y= 8 .. 15) 21:20, 17:16, 13:12, These bits are written by software to configure the corresponding I/O port. 9:8, 5:4, 1:0 Refer to Table 16: Port bit configuration table. 00: Input mode (reset state) 01: Output mode, max speed 10 MHz. 10: Output mode, max speed 2 MHz.

Output mode, max speed 50 MHz.

Configurando "the hard way"

```
/* Enable the GPIOA (bit 2) and GPIOC (bit
4) */
/* See 6.3.7 in stm32f100x reference manual
*/
    RCC->APB2ENR |= 0x10 | 0x04;
/* Set GPIOC Pin 8 and Pin 9 to outputs */
/* 7.2.2 in stm32f100x reference manual */
    GPIOC ->CRH = 0x11;
/* Set GPIOA Pin 0 to input floating */
/* 7.2.1 in stm32f100x reference manual */
    GPIOA ->CRL = 0x04;
```

Usando "drivers"

```
void ADC config(void) {
     GPIO InitTypeDef GPIO InitStructure;
      /* Configurar PC1 y PC2 como entrada analogica */
     GPIO InitStructure.GPIO Pin = GPIO Pin 1 | GPIO Pin 2;
     GPIO InitStructure.GPIO Mode = GPIO Mode AN;
     GPIO InitStructure.GPIO PuPd = GPIO PuPd NOPULL ;
     GPIO Init(GPIOC, &GPIO InitStructure);
```

Interfaz serie asincrónica (USART)

Interfaces serie sincrónicas SPI – Serial Peripheral Interface

Interfaces serie sincrónicas SPI – Serial Peripheral Interface

Interfaces serie sincrónicas I²C – Inter-IC

Interfaces serie sincrónicas I²C – Inter-IC

SDA line stable while SCL line is high

Figure 6. Example of Single Byte Data Transfer

de Texas Instruments – *Understanding the I²C Bus*

Sensores

4 mm x 4 mm x 1 mm

Presión Atmosférica Temperatura Humedad

Giróscopo de 3 ejes Acelerómetro de 3 ejes Magnetómetro de 3 ejes

MQTT – el modelo "publish-subscribe"

Comunicaciones Inalámbricas

Redes inalámbricas

Ventajas

- Sin costos de cableado
- Facilidad de implementación
- Flexibilidad para los cambios
- Movilidad de las terminales

Desventajas

- Posibilidad de interferencia
- Problemas de alimentación
- Posibilidad de intrusión

Tipos de redes inalámbricas

WPAN – Wireless Personal Area Network

Espectro Electromagnético

Bandas ISM (Industrial, Scientific and Medical)

Rango de Frecuencias	Frecuencia Central	Disponibilidad
6.765 - 6.795 MHz	6.780 MHz	Sujeto a aceptación local
13.553 -13.567 MHz	13.560 MHz	
26.957 - 27.283 MHz	27.120 MHz	
40.66 - 40.70 MHz	40.68 MHz	
433.05 - 434.79 MHz	433.92 MHz	Región 1 solamente
902 - 928 MHz	915 MHz	Región 2 solamente
2.400 - 2.500 GHz	2.450 GHz	
5.725 - 5.875 GHz	5.800 GHz	
24 - 24.25 GHz	24.125 GHz	
61 - 61.5 GHz	61.25 GHz	Sujeto a aceptación local
122 - 123 GHz	122.5 GHz	Sujeto a aceptación local
244 - 246 GHz	245 GHz	Sujeto a aceptación local

Región 1: Europa, África, Medio Oriente al oeste del Golfo Pérsico incluyendo Irak, la ex Unión Soviética y Mongolia.

Región 2: las Américas, Groenlandia y algunas de las islas del Pacífico oriental

Espectro Disperso por Salto de Frecuencia (FH – Frequency Hopping)

Espectro Disperso por Secuencia Directa (DSSS)

Espectro Disperso por Secuencia Directa (DSSS)

WLANs

- IEEE 802.11: el standard original de 1 y 2 Mbps, en la banda industrial, científica y médica (ISM) de 2,4 GHz, e infrarroja (IR) (1999).
- IEEE 802.11b: mejoras a IEEE 802.11 para soportar 5.5 y 11 Mbps (1999).
- IEEE 802.11a: el standard IEEE 802.11a opera en la banda de 5 GHz y permite velocidades de transmisión de entre 6 a 54 Mbps.
- IEEE 802.11g: permite alcanzar velocidades de transmisión mayores (54 Mbps, idéntica a IEEE 802.11a) en la banda de 2.4 GHz. Como método de modulación se utiliza multiplexación por división de frecuencia ortogonal (OFDM). Es compatible con 802.11b (2003).
- IEEE 802.11n: incremento de la velocidad de transmisión; velocidades mayores (108–600 Mbps) en las bandas de 2,4 y 5 GHz.

Tecnologías LPWAN

- Utilizan las bandas sub-GHz como la de 902 928 MHz, dependiendo del país, con tecnología Spread Spectrum.
- La velocidad de transmisión es muy baja, del orden de los cientos de bit/s.
- Se transmiten mensajes cortos y a intervalos largos.
- El acceso se hace mediante uno o más estaciones receptoras o gateways.
- Los mensajes están cifrados
- El alcance es del orden de las decenas de kilómetros

Ejemplos

Controles Industriales

El famoso regulador de Watt

FIG. 4.--Governor and Throttle-Valve.

Controlador neumático

Sala de control

Controlador electrónico analógico

Controlador electrónico digital

Sala de control moderna

Lógica de relés

El primer PLC

Un PLC moderno

Un HMI

Sensores industriales

- Ambientes más agresivos
- Mayores distancias
- Mayores requerimientos de disponibilidad
- Normas y protocolos específicos
 - 4 20 mA / HART
 - Foundation Fieldbus, Profibus
 - DeviceNet, AS-I, Modbus

Sensores industriales

(Yokogawa)

Un ambiente agresivo

Integración con HMI/SCADA

https://inductiveautomation.com/

