1	\circ		•
Lesson	()h	iect	ives

- 1. The basics of function
- 2. Function notation
- 3. Understand the relationship between function notation and its graph
- 4. Determine whether a relation is a function
- 5. Evaluate a function from a formula or a graph
- 6. Determine the domain and range of a function

o. Determine the domain and range	
A. Functions – The Basics	
Ways to Represent a function	
1 – a	a formula (equation)
2 – a	a table of values
3 – a	
4 a	description in words
The variables of a function	
The set of all valid	for a function is called the,
and the input variable is called th	ne
The set of all valid	for a function is called the,
and the output variable is called	the variable
The reverse is also true: $f(x) = 1$ It does NOT mean Another way: $f(input) = output$	and is read as " y equals f of x ." y y y y y y y y
C. Function Notation and its Graph	n: f(Input) = Output
	locate the input value on the, output value on the
EXAMPLE: If $f(-5) = 3$, identify a point	nt on the graph of f . (Type an ordered pair.) [1.3.23]
 Together, they make the ordered 	e, and the number by itself is the d pair, or the point,
\circ So, if $f(-5) = 3$, that means a poin	t on the graph of f is

- **EXAMPLE:** If (5,27) lies on the graph of f, then f() = . [1.3.25]
 - This is the reverse idea of the previous example.
 - Any point in the graph of a function can be written in function notation.
- **EXAMPLE:** A function g is defined as follows: g(-4) = -6, g(0) = -9, g(4) = -4, g(8) = -6
 - (a) Write q as a set of ordered pairs. **(b)** Give the domain and range of *q*.

[1.3.47]

[solution]

D. **Function** – special kind of relation (set of ordered pairs)

Each element in the domain corresponds to exactly one element in the range.

A function can only have one output for each input.

The _____ in a function.

- **EXAMPLE:** Determine whether the relation *S* is a function. [1.3.107] $S = \{ (a,5), (b,5), (c,9), (d,5), (e,5) \}.$
 - Each x-coordinate is unique; none of the x-coordinates repeat.
 - o ______ the relation _____ a function (Doesn't matter if y-coordinates repeat)

used to tell if a graph is a function

- Scan with a vertical line from left to right along the graph
- Must maintain EXACTLY ______ point of contact throughout the scan.
 - o If it maintains **exactly one** point of contact, then ______, it's a function
 - If it makes two or more points of contact at any moment, then _____, it's not a function.
- **EXAMPLE:** Is the relation a function? [1.3-45]

Although the left side looks like it's going vertical, in reality, it's not.

E. Evaluate a Function from its Graph

• **EXAMPLE:** [*Consortium 3.1.12]

Use the graph of the function f shown to the right to answer parts (a) through (d).

(a) Find f(-14).

The number in parentheses is always the ____-coordinate. So, f(-14) means find the ___-coordinate that goes with x = -14. The graph contains the point $(-14, ____)$, so Find y in (-14, y) $f(-14) = _____$.

(b) Find f(-6).

The graph contains the point $(-6, \underline{\hspace{1cm}})$, so Find y in (-6, y) $f(-6) = \underline{\hspace{1cm}}$.

(c) Find f(12).

The graph contains the point $(12, ___)$, so Find y in (12, y) $f(12) = ___.$

(d) For what number(s) of x is f(x) = -4?

This problem is different – the number in parentheses, x, is not given.

f(x) is another name for _____, so f(x) = -4 really means that **y-coordinate** is _____.

The graph contains the point $(____, -4)$, so Find x in (x, -4) So, $x = ____$

F. Determine **Domain** and **Range** of a Function in a Graph

• **EXAMPLE:** Use the graph of the function f to estimate its domain and range. Evaluate f(0). [1.3.73]

Assume graph goes on forever, unless it has a big fat dot or open dot (endpoint).

Domain: all the **x-coordinates** shown in graph. **Domain is _____, and it moves ______ – to – _____.**

(Answer) The domain is:

Range: all the y-coordinates shown in graph.

Range is _____, and it moves _____ - to - _____.

(Answer) The range is:

Use _____ for range because 11 is **included**.

Evaluate f(0). That's the point

Find y in (0, y)(Answer) f(0) =

G. Fyaluate a Function from its Formula

• **EXAMPLE:** Given that f(x) = |2x - 8| + 7, find f(3). [*Akst Appendix.G-28]

f(3) means find ___ when ___ = 3. Plug x = 3 into the function formula.

Remember to always use ______ to avoid messing up.

$$f(x) = |2x - 8| + 7$$

$$f(3) = |2(\underline{\hspace{1cm}}) - 8| + 7$$

$$f(3) = |__ - 8| + 7$$

$$f(3) = |__| + 7$$

$$f(3) = \underline{\hspace{1cm}} + 7 = \underline{\hspace{1cm}}$$

By the way – together, that makes the point on the graph: (____, ____)

There are two main ways you can do this on calculator:

1. Direct Substitution

To get absolute value bars, press MATH, →, ENTER

(from TI-84 Plus)

12(3)-81+7

(from TI-83 Plus)

abs(2(3)-8)+7

2. "Go to the STO"

You are going to store the number 3 for the variable x. Press: **3**; **STO>**; **X,T,\theta,n**; **ENTER**

Type in your function formula

$$|2x - 8| + 7$$

as is, press **ENTER**. Use variables – don't plug in anything.

(from TI-84 Plus)

3→X [2X-81+7

(from TI-83 Plus)

3→X abs(2X-8)+7

(go on to the next page)

• **EXAMPLE:** Find f(-4) when $f(x) = x^2 - 4x - 5$. [1.3-12]

f(-4) means find ____ when ___ = -4. Plug x = -4 into the function formula. Remember to always use _____ to avoid messing up.

$$f(x) = x^{2} - 4 x - 5$$

$$f(-4) = (___)^{2} - 4(___) - 5$$

$$f(-4) = ____ - 5$$

$$f(-4) = ____ - 5 = ____$$

There are two main ways you can do this on calculator:

1. Direct Substitution	2. "Go to the STO"		
	Press (–); 4 ; STO> ; X,T,θ,n ; ENTER		
(-4)2-4(-4)-5	(-) 4 STO) X,T,0,n ENTER	-4÷X	-4
27	Type in your function formula	X2-4X-5	27
	$x^2 - 4x - 5$ as is, press ENTER.		41
	Use variables – don't plug in anything.		

Sources used:

- 1. Pearson MyLab Math College Algebra with Modeling and Visualization, 6th Edition, Rockswold
- 2. Pearson MyLab Math Consortium: MIA: Intro to Algebraic, Graphical, & Numerical Problem Solving, 6th Edition.
- 3. Pearson MyLab Math Developmental Mathematics through Applications, 1st Edition, Akst.
- Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit