Exploratory Factor Analysis & Visualization

Mengqian Lu

Factor Analysis

- A class of procedures to identify underlying dimensions explaining the correlation structure of variables
- Why FA? Data Reduction and Data Summarization
- What special about FA? understand the patterns of relationships among DVs, simultaneously discover how IDVs affect them
- Good for problems with too many correlated variables that need to be reduced to a manageable level
 - E.g. Psychologists use FA to understand the profile of a person by analyzing his/her lifestyle statements.
 - ▶ E.g. In market research, FA helps to identify customers' groups.

Exploratory Factor Analysis

- Exploratory Factor Analysis is used to determine the number of latent variables that are needed to explain the correlations among a set of observed variables.
- ▶ EFA is to discover the factor structure of a measure and to examine its internal reliability.
- Recommended when researchers have no hypotheses about the nature of the underlying factor structure of their measure.
- Three main decision points of EFA: (1) number of factors; (2) extraction method; (3) rotation method.

Some terms to clarify first

- ▶ A latent variable: not directly observable, but affect the response variable (manifest variable)
- Latent variable model: (1) represent the effect of unobservable covariates/factors; (2) account for the unobserved heterogeneity between subjects; (3) account for measurement errors the latent variables represent the "true" outcomes and the manifest variables represent their "disturbed" versions; (4) summarize different measurements of the same unobservable characteristics (e.g. qualify-of-life)
- ▶ Factor analysis models (EFA,CFA) are latent variable models

Latent variable models

Assume that large number of observed random variables X₁, ..., X_p can be explained by a smaller set of unobservable (latent) underlying variables; e.g. PCA, EFA, Canonical Correlation Analysis (CCA), Structural Equation Modeling (SEM) and Independent Component Analysis (ICA)

In Exploratory Factor Analysis:

- Factors: (continuous) latent variables
- (Factor) indicators: observed variables (continuous, censored, binary, ordered/ordinal categorical, counts or mixture of these)

Example: Ability and Intelligence Tests

- Six intelligence tests (general, picture, blocks, maze, reading, vocabulary) were given to 112 individuals.
- ▶ The covariance matrix is given:

```
> ability.cov
$cov
       general picture blocks maze reading
                                             vocab
general 24.641
                       33.520
                              6.023 20.755 29.701
                5.991
               6.700 18.137 1.782 4.936 7.204
picture
         5.991
        33.520 18.137 149.831 19.424 31.430 50.753
blocks
         6.023
               1.782 19.424 12.711 4.757
                                             9.075
maze
        20.755
               4.936 31.430 4.757 52.604 66.762
reading
vocab
        29.701
                7.204
                       50.753 9.075 66.762 135.292
$center
[1] 0 0 0 0 0 0
$n.obs
[1] 112
```


Many ways to visualize cov/cor max

library(lattice)
levelplot(ability.cov\$cov)

Many ways to visualize cov/cor max (cont'd)

```
# Correlation matrix
library(corrplot)
M = cor(mtcars)
par(mfrow = c(2,2))
corrplot(M, method = "circle")
corrplot(M, method = "ellipse")
corrplot.mixed(M,lower="ellipse",upper='number',order="FPC")
# p.mat is the calculated p.value matrix
corrplot(M, p.mat = res1[[1]], sig.level = 0.01)
```


https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html

Example: Ability and Intelligence Tests

- Six intelligence tests (general, picture, blocks, maze, reading, vocabulary) were given to 112 individuals.
- ▶ The covariance matrix is given:

\$n.obs

[1] 112

```
> ability.cov
$cov
       general picture blocks maze reading
                                             vocab
general 24.641
                      33.520
                              6.023 20.755 29.701
                5.991
        5.991 6.700 18.137 1.782 4.936 7.204
picture
        33.520 18.137 149.831 19.424 31.430 50.753
blocks
        6.023 1.782 19.424 12.711 4.757
                                            9.075
maze
        20.755 4.936 31.430 4.757 52.604 66.762
readina
vocab
        29.701
                7.204 50.753 9.075 66.762 135.292
$center
[1] 0 0 0 0 0 0
```

Question: Can you find one or two "summary" variable(s)/factor(s) describing some general concept of intelligence out of this correlation?

Example: Ability and Intelligence Tests

▶ One-factor Model for each individual *i*:

$$x_{1i} = \lambda_1 f_i + u_{1i}$$

$$x_{2i} = \lambda_2 f_i + u_{2i}$$

$$\dots$$

$$x_{6i} = \lambda_6 f_i + u_{6i}$$

- *f*: common factor ('ability')
- *u*: random disturbance s.t. each test
- λ : factor loadings, give weights/importance of f on x_j
- ▶ Underlying assumption: $u_1, u_2, ..., u_6$ are uncorrelated \rightarrow x_1, x_2, x_3 are conditionally uncorrelated given f

$$x_{1i} - \lambda_1 f_i = u_{1i}; x_{2i} - \lambda_2 f_i = u_{2i}, ...; x_{6i} - \lambda_6 f_i = u_{6i}$$

$$co rr(u_{1i}, u_{2i}) = 0 = co rr(x_{1i} - \lambda_1 f, x_{2i} - \lambda_2 f)$$

Factor Models

One-factor model for all subjects:

$$X_i = \lambda F_i + U_i, \quad 1 \le i \le n$$

 $X_{ji} = \lambda_j F_i + U_{ji}, \quad 1 \le j \le p, 1 \le i \le n$

where X_{ji} is the j^{th} random variable in a p-dimensional random vector \mathbf{X}_i , the i^{th} subject.

- \triangleright F_i is the univariate factor variable defined for each subject i
- $\lambda = (\lambda_1, ..., \lambda_p)^T$ is the factor loadings explain the relation between the factor F and the observed X.
- $ightharpoonup U_{ij}$ is the error term.

Matrix form:
$$X_{pxn} = \lambda_{pxl} F_{1xn} + U_{pxn}$$

Example: Ability and Intelligence Tests

General model for one individual:

$$\begin{aligned} & \boldsymbol{x}_1 = \boldsymbol{\mu}_1 + \boldsymbol{\lambda}_{11} f_1 + \ldots + \boldsymbol{\lambda}_{1q} f_q + \boldsymbol{\mu}_1 \\ & \cdots \\ & \boldsymbol{x}_p = \boldsymbol{\mu}_p + \boldsymbol{\lambda}_{p1} f_p + \ldots + \boldsymbol{\lambda}_{pq} f_q + \boldsymbol{\mu}_p \end{aligned}$$

$$cov(x_i) = \Sigma = \Lambda \Lambda^T + \Psi$$

To be determined from x:

- 1. q:no. of common factors
- 2. Factor loadings Λ
 - 3. Ψ , the $cov(\mathbf{u})$
 - 4. Factor scores f

Matrix notation for one individual:

$$x = \mu + \Lambda f + u$$

Matrix notation for n individuals:

$$x_i = \mu + \Lambda f_i + u_i \quad (i = 1, ..., n)$$

Factor Models (Cont'd)

▶ Generalized *q*-factor model:

Or
$$X_{ji} = \mu_j + \sum_{l=1}^{q} \lambda_{jl} F_{li} + U_{ji}, 1 \le j \le p, 1 \le i \le n$$

$$\mathbf{X_i} = \mu + \Lambda_{(\mathbf{p} \times \mathbf{q})} \mathbf{F_{i(\mathbf{q} \times \mathbf{1})}} + \mathbf{U_i}, 1 \le i \le n$$

where X_{ji} is the j^{th} random variable in a p-dimensional random vector X_i , the i^{th} subject.

- $\mu \in \mathbb{R}^p$ constant
- $\Lambda_{(p \times q)}$ is factor loading matrix, explaining the relation between the factors in F_i and the observed X_i
- Errors U_i with $E(U_i) = 0$; $Cov(U_i) = diag(\psi_1, ..., \psi_p) = \Psi$
- Cov(F_i , U_i)= 0, or Cov(u_j , f_s) = 0 for all j,s Assumptions

Convention: factors are scaled, otherwise Λ and μ are not well determined.

• $\mathbf{F}_{i(q\times 1)}$ is a *q*-variate random vector with $\mathbf{E}(\mathbf{F}_i) = 0$; $\mathbf{Cov}(\mathbf{F}_i) = \mathbf{I}_q$

FA: Covariance matrix

$$x = \mu + \Lambda f + u \iff \text{cov}(x) = \Sigma = \Lambda \Lambda^T + \Psi$$

 Factor model is essentially a particular structure imposed on covariance matrix

Still remember the decomposition of covariance matrix in

PCA?

$$Cov(x) = \frac{1}{n} \sum_{i} x_{i} x_{i}^{T} = C_{x}$$
$$C_{x} = U\Lambda U^{T}$$

$$cov(x) = \Sigma = \Lambda \Lambda^T + \Psi$$

- Rotations: PCs
- Scores: describe relation between individuals and PCs

FA: Covariance matrix

$$x = \mu + \Lambda f + u \iff \text{cov}(x) = \Sigma = \Lambda \Lambda^T + \Psi$$

- Factor model is essentially a particular structure imposed on covariance matrix
- Instead of spectral decomposition in PCA, we look for a way to split up the variances:

$$\operatorname{var}(x_{j}) = \sigma_{j}^{2} = \operatorname{var}(\sum_{l=1}^{q} \lambda_{jl}^{2} F_{l}) + \operatorname{var}(u_{j}) = \sum_{l=1}^{q} \lambda_{jl}^{2} + \psi_{j}$$

$$\sum_{l=1}^{q} \lambda_{jl}^2$$
 Describe the "Communality", variance due to common factors ψ_j Describe the "uniqueness", variance specific to X_j

• "Heywood case" in FA, when $\psi_{j} \leq 0$

(Fabrigar et al.)

Factor Analysis in R: factanal()

data "ability.cov" in R

general	a non-verbal measure of general intelligence using Cattell's culture- fair test
picture	a picture-completion test
blocks	block design
maze	mazes
reading	reading comprehension
vocab	vocabulary

Ref: Bartholomew, D. J. (1987) and Bartholomew, D. J. and Knott, M. (1990)

In R: factanal() perform maximum-likelihood factor analysis on a covariance matrix or data matrix

Example: Ability and Intelligence Tests

In R: factanal() perform maximum-likelihood factor analysis on a covariance matrix or data matrix

Maximum Likelihood Estimation (MLE):

Assume X_i follows Multivariate Normal Distribution (MVN) The log-likelihood with parameters μ, Λ, Ψ :

$$ll = \log(L) = -\frac{n}{2}\log(|\Sigma|) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^T \Sigma^{-1}(x_i - \mu)$$

$$= -\frac{n}{2}\log(|\Lambda\Lambda^{T} + \Psi|) - \frac{1}{2}\sum_{i=1}^{n}(x_{i} - \mu)^{T}\Sigma^{-1}(x_{i} - \mu)$$

 μ is estimated with sample mean, thus choose Λ , Ψ to maximize the log-likelihood

Some notes for reference

Likelihood function: a product of likelihood functions across all observations

$$L(\mathbf{x}|\mu) = f(X_1|\mu) \times f(X_2|\mu) \times \ldots \times f(X_N|\mu)$$

$$L(\mathbf{x}|\mu) = \prod_{i=1}^{N} f(X_i|\mu) = \left(\frac{1}{2\pi(1)}\right)^{N/2} \exp\left(-\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{2(1)^2}\right)$$

- The value of μ that maximizes $f(X \mid \mu)$ is the MLE of population mean, e.g. here μ is the sample mean
- For unknown mean μ and variance Σ , the likelihood function is:

$$L(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{N} \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\left(\mathbf{x}_{i} - \boldsymbol{\mu}\right)' \boldsymbol{\Sigma}^{-1} \left(\mathbf{x}_{i} - \boldsymbol{\mu}\right) / 2\right)$$

More commonly, it is written as

$$L(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{np/2}} \frac{1}{|\boldsymbol{\Sigma}|^{n/2}} \exp\left(-\sum_{i=1}^{N} (\mathbf{x}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})/2\right)$$

Number of factors

- MLE approach for estimation provides test:
- $\underline{H_q}$: q-factor model is sufficient; vs. $\underline{H_u}$: Σ is unconstrained
- Practical strategy:
 - Start with a small value of q (e.g. q=1) and check hypothesis test; increase q by 1 at a time until some H_q is not rejected

R codes for Intelligence Tests Example

```
ability.FA = factanal(factors = 1, covmat=ability.cov)
update(ability.FA, factors=2)
update(ability.FA, factors=2, rotation="promax")
```



```
> ability.FA
Call:
factanal(factors = 1, covmat = ability.cov)
Uniquenesses:
general picture blocks maze reading vocab
  0.535 0.853 0.748 0.910 0.232 0.280
Loadings:
        Factor1
general 0.682
picture 0.384
blocks 0.502
maze 0.300
reading 0.877
vocab 0.849
```

Factor1 SS loadings 2.443 Proportion Var 0.407

Test of the hypothesis that 1 factor is sufficient. The chi square statistic is 75.18 on 9 degrees of freedom. The p-value is 1.46e-12


```
> update(ability.FA, factors=2)
Call:
 factanal(factors = 2, covmat = ability.cov)
Uniquenesses:
 general picture blocks maze reading
0.455
       0.589
              0.218
                      0.769
                             0.052
                                     0.334
Loadings:
       Factor1 Factor2
general 0.499
              0.543
picture 0.156 0.622
blocks 0.206 0.860
       0.109 0.468
maze
reading 0.956 0.182
vocab 0.785
              0.225
```

Factor1 Factor2
SS loadings 1.858 1.724
Proportion Var 0.310 0.287
Cumulative Var 0.310 0.597

Hypothesis can not be rejected; for simplicity, we thus use two factors

Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 6.11 on 4 degrees of freedom.

The p-value is 0.191

```
> update(ability.FA, factors=2)
  Call:
    factanal(factors = 2, covmat = ability.cov)
  Uniquenesses:
    general picture blocks maze reading
  0.455
         0.589
                 0.218
                         0.769
                                 0.052
                                         0.334
  Loadings:
          Factor1 Factor2
  general 0.499
                 0.543
  picture 0.156 | 0.622
                          Spatial reasoning
  blocks 0.206
                 0.860
         0.109
                 0.468
  maze
  reading 0.956
                 0.182
  vocab
         0.785
                 0.225
Verbal intelligence
                  Factor1 Factor2
                  1.858
  SS loadings
                          1.724
  Proportion Var 0.310 0.287
  Cumulative Var 0.310 0.597
  Test of the hypothesis that 2 factors are sufficient.
```

The chi square statistic is 6.11 on 4 degrees of freedom.
The p-value is 0.191

```
> update(ability.FA, factors=2) Default rotation = 'varimax'
  Call:
    factanal(factors = 2, covmat = ability.cov)
  Uniquenesses:
    general picture blocks maze reading
                                             vocab
  0.455
         0.589
                  0.218 0.769
                                  0.052
                                          0.334
  Loadings:
                                                          Not clear
          Factor1 Factor2
  general 0.499
                  0.543
  picture 0.156
                  0.622
                           Spatial reasoning
                                                         Interpretation of
  blocks 0.206
                  0.860
                                                         factors is generally
          0.109
                  0.468
  maze
                                                         debatable
  reading 0.956
                  0.182
          0.785
                  0.225
  vocab
Verbal intelligence
                   Factor1 Factor2
  SS loadings
                   1.858
                           1.724
  Proportion Var 0.310 0.287
  Cumulative Var 0.310 0.597
  Test of the hypothesis that 2 factors are sufficient.
  The chi square statistic is 6.11 on 4 degrees of freedom.
  The p-value is 0.191
```

```
> update(ability.FA, factors=2, rotation="promax")
  Call:
    factanal(factors = 2, covmat = ability.cov, rotation = "promax")
  Uniquenesses:
    general picture
                     blocks maze
                                    reading vocab
                     0.218
     0.455
             0.589
                             0.769
                                     0.052
                                             0.334
  Loadings:
          Factor1 Factor2
  general
           0.364
                   0.470
                              Spatial reasoning
  picture
                   0.671
  blocks
                   0.932
                   0.508
  maze
  reading 1.023
           0.811
  vocab
Verbal intelligence
                     actor1 Factor2
  SS loadings
                   1.853
                           1.807
  Proportion Var
                   0.309
                           0.301
```

Factor Correlations:

Cumulative Var

Factor1 Factor2

0.309

0.557 Factor1 1.000 Factor2 1.000 0.557

Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 6.11 on 4 degrees of freedom. The p-value is 0.191

0.610

BETTER? But wait, orthogonality is not ensured, factors are correlated, what accounts for the relationship between the factors?

Scale invariance of factor analysis

- Suppose $y_j = c_j x_j$ or in matrix: y = Cx, C is a diagonal matrix, e.g. units conversion, we already have $\Sigma_x = \Lambda_x \Lambda_x^T + \Psi_x$
- Thus, $Cov(y) = C\Sigma_x C^T = C(\Lambda_x \Lambda_x^T + \Psi_x) C^T$ K-factor model holds for \mathbf{x} $= (C\Lambda_x)(C\Lambda_x)^T + C\Psi_x C^T = \Lambda_y \Lambda_y^T + \Psi_y$

i.e. loadings and uniquenesses are the same if expressed in new units

In many applications, the search for loadings Λ and for specific variance Ψ is done by the decomposition of the correlation matrix of X rather than the covariance matrix Σ . This corresponds to a factor analysis of a linear combination of X, i.e., $Y = D^{-1}(X - \mu)$, $D = diag(\sigma_{11}, \sigma_{22}, ..., \sigma_{pp})$. As you find the Λ_y and Ψ_y , then we have $\Lambda_x = D\Lambda_y$ and $\Psi_x = D\Psi_yD$

Scale invariance of factor analysis (Cont'd)

- Using *cov* or *cor* gives basically the same result
- Common practice: use correlation matrix or scale input data (this is done in factanal())

Rotational invariance of factor analysis

- The factor loadings are not unique!
 - Suppose that $G^TG = I$ (G: orthogonal matrix), transform f to $f^* = G^Tf$, Λ to $\Lambda^* = \Lambda G$, for χ^*
 - This yields the same model:

$$X^* = \Lambda^* f^* + u = (\Lambda G)(G^T f) + u = \Lambda f + u = X$$

$$\Sigma^* = \Lambda^* \Lambda^{*T} + \Psi = (\Lambda G)(\Lambda G)^T + \Psi = \Lambda \Lambda^T + \Psi = \Sigma$$

- The rotated model is equivalent for explaining the covariance matrix
- Usage: use rotation that makes interpretation of loadings easy or look for rotation that make more practice sense
- Most popular rotation: Varimax each factor has few large and many small loadings

How to find unique solution?

- Options 1: Have $\mathbf{M} = \Lambda \Psi^{-1} \Lambda$ be diagonal, with diagonal elements in descending order of magnitude \rightarrow ordered orthogonal factors with descending contributions (same logic as PCA)
- Potential problems:
 - 1. Variables may have substantial loadings on 1+ factor
 - 2. From the 2nd factor, they often turn to be bipolar, i.e., a mixture of positive and negative loadings -> hard to interpret
- * Possible solution: rotate the loadings, but there has been debate over this, in my opinion, there is nothing wrong to introduce domain knowledge

How to find unique solution? (Cont'd)

•Options 2: Factor rotation such that (1) each variable is highly loaded on at most one factor; and/or (2) all factor loadings are either large positive or near zero, with as few intermediate values as possible, thus we split original variables into disjoint sets, each set is associated with a single factor.

→ Simple Structure [Thurstone, 1931]

- 1. Each row or the factor loading matrix should contain at least one zero.
- 2. Each column of the loading matrix should contain at least k zeros.
- 3. Every pair of columns of the loading matrix should contain several variables whose loadings vanish in one column but not in the other.
- 4. If the number of factors is four or more, every pair of columns should contain a large number of variables with zero loadings in both columns.
- 5. Conversely, for every pair of columns of the loading matrix only a small number of variables should have non-zero loadings in both columns.

(IAMA by Everitt and Hothorn, page 145)

```
> update(ability.FA, factors=2, rotation="promax")
```

Call:

factanal(factors = 2, covmat = ability.cov, rotation = "promax")

Uniquenesses:

```
general picture blocks maze reading vocab 0.455 0.589 0.218 0.769 0.052 0.334
```

Loadings:

Factor1 Factor2
general 0.364 0.470
picture blocks maze reading vocab 1.023

Factor1 Fact
SS loadings 1.853 1.80
Proportion Var 0.309 0.30
Cumulative Var 0.309 0.61

Factor Correlations:

Factor1 Factor2 Factor1 1.000 0.557 Factor2 0.557 1.000

Test of the hypothesis that 2 The chi square statistic is 6 The p-value is 0.191

Simple Structure

- 1. Each row or the factor loading matrix should contain at least one zero.
- 2. Each column of the loading matrix should contain at least k zeros.
- 3. Every pair of columns of the loading matrix should contain several variables whose loadings vanish in one column but not in the other.
- 4. If the number of factors is four or more, every pair of columns should contain a large number of variables with zero loadings in both columns.
- 5. Conversely, for every pair of columns of the loading matrix only a small number of variables should have non-zero loadings in both columns.

Factor rotation

- varimax, promax and more ...
- ▶ Still remember? → we may have to abandon this restriction now

Convention: factors are scaled, otherwise Λ and μ are not well determined.

 $\mathbf{F}_{i(k \times 1)}$ is a k-variate random vector with $\mathbf{E}(\mathbf{F}_i) = 0$; $\mathbf{Cov}(\mathbf{F}_i) = \mathbf{I}_k$

Two main types of rotation:

- Orthogonal rotation: restrict the rotated factors to be uncorrelated
 - Post-multiply the original matrix of loadings by an **orthogonal matrix**
 - After rotation, $Cov(F_i)=I_k$ still holds
- Oblique rotation: allow correlated factors
 - Post-multiply the original matrix of loadings by an matrix (no longer constrained to be orthogonal)
 - After rotation, $Cov(F_i)$ has unit elements on its diagonal, but no restrictions on the off-diagonal elements

So which one to use, Orthogonal or Oblique?

- If objective is to "best fit" data, oblique is better; if objective is generalizability, then choose orthogonal to avoid: "what accounts for the relationship between the factors?"
- An orthogonal rotation is simple, an oblique rotation introduce a matrix of factor correlation to consider.
- *Varimax* is orthogonal rotation; *promax* is oblique rotation.
- Factor rotation is still controversial, as it is criticized as –
 possible allowing one to impose on the data a
 preconceived structure.

Factor scores

- Scores are assumed to be random variables
- Scores are predicted values for each subject (e.g. individuals who took the intelligence tests)
- ▶ They represent the original data in a reduced dimension for further analysis or modeling (PCs from PCA also can be used to develop a model for prediction using original data information)
- They are likely to be more reliable than the observed variable values – "noises" eliminated
- The factor score is a "pure" measure of a latent variable, while an observed value may be unclear due to the "noises"

Factor scores – estimation

Scores are assumed to be random variables, assume normality, the conditional distribution of f given x is:

$$N(\boldsymbol{\Lambda}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x},(\boldsymbol{\Lambda}^{\top}\boldsymbol{\varPsi}^{-1}\boldsymbol{\Lambda}+\mathbf{I})^{-1}).$$

- ▶ Two methods to do estimation:
 - "Bartlett"-Assume f as fix (Maximum-likelihood
 estimate) Bartlett's weighted least-squares scores, e.g.
 factanal(~v1+v2+v3+v4+v5+v6, factors = 3, scores =
 "Bartlett")\$scores
 - 2. "Thompson" Assume *f* as random (Bayesian estimate), e.g. factanal(~v1+v2+v3+v4+v5+v6, factors = 3, scores = "regression")\$scores
 - No big difference in practice

Example

```
> v1 = c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)
> v2 = c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)
> v3 = c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,5,4,6)
> v4 = c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)
> v5 = c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)
> v6 = c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)
> m1 = cbind(v1,v2,v3,v4,v5,v6)
> factanal(m1, factors = 3,
          scores = "Bartlett")$scores
                  Factor2 Factor3
        Factor1
 [1,] -0.9039949 -0.9308984 0.9475392
 [2,] -0.8685952 -0.9328721 0.9352330
 [3,] -0.9082818 -0.9320093 0.9616422
 [4,] -1.0021975 -0.2529689 0.8178552
 [5,] -0.9039949 -0.9308984 0.9475392
 [6,] -0.7452711 0.7273960 -0.7884733
 [7,] -0.7098714  0.7254223 -0.8007795
 [8,] -0.7495580 0.7262851 -0.7743704
 [9,] -0.8080740 1.4033517 -0.9304636
[10,] -0.7452711 0.7273960 -0.7884733
[12,] 0.9626279 -0.9327243 -0.8494600
[14,] 0.8290256 -0.2528211 -0.9668378
[15,] 0.9272282 -0.9307506 -0.8371538
[16,] 0.4224366 2.0453079 1.2864761
[17,] 1.4713902 1.2947716 0.5451562
[18,] 1.8822320 0.3086244 1.9547752
```

FA vs. PCA

- PCA targets explaining variances, FA targets explaining correlations
- PCA is exploratory and without assumptions;
 FA is based on statistical model with assumptions
- First few PCs will be same regardless of q;
 First few factors of FA depend on q
- ▶ FA: Orthogonal rotation of factor loadings are equivalent. This does not hold in PCA
- More mathematically:

PCA: $x=\mu+\Gamma_1z_1+\Gamma_2z_2=\mu+\Gamma_1z_1+e$

Assume we only keep the PCs in Γ_1

FA: $x = \mu + \Lambda f + u$

- Cov(u) is diagonal by assumption; Cov(e) is not
- ▶ ! Both PCA and FA only useful if input data is correlated!

More references

- Plot correlation matrix: https://cran.r-

 project.org/web/packages/corrplot/vignettes/corrplot intro.html
- 2. The two visualization examples can be found at:

 https://rstudio-pubs-static.s3.amazonaws.com/74109_5a0572586ce34b668a9
 280fd026602da.html