DERWENT-ACC-NO:

1997-206172

DERWENT-WEEK:

199719

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

<u>DMA</u> controlling method for data <u>transfer</u> between main memory and peripherals - has <u>interruption</u> controller which gives <u>priority</u> to new channel when <u>priority</u> of new channel is <u>higher</u> than current channel which is in

operation

PATENT-ASSIGNEE: OKI ELECTRIC IND CO LTD[OKID]

PRIORITY-DATA: 1995JP-0052908 (March 13, 1995)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES

MAIN-IPC

JP 08249269 A September 27, 1996 N/A 008

G06F 013/30

APPLICATION-DATA:

 PUB-NO
 APPL-DESCRIPTOR
 APPL-NO
 APPL-DATE

 JP 08249269A
 N/A
 1995JP-0052908
 March 13,

1995

INT-CL (IPC): G06F013/30

ABSTRACTED-PUB-NO: JP 08249269A

BASIC-ABSTRACT:

The method involves transferring data between memory and multiple input-output units based on a demand from the central processor. A channel retainer holds the number of channels by which the starting demand is carried out from the central processor. A priority channel number retainer (61) holds the priority of each channel, based on which input-output operation is carried out.

An execution channel number retainer (62) holds the number of channel indicated by the channel retainer and executes the data transfer operation. The channel retainer then holds the number of a new channel, while data transfer operation is performed through the previous channel. The execution of the transfer by the channel is interrupted temporarily, when the priority of new channel is higher. An interruption controller (70) gives priority to the interrupted channel and performs the transfer through that higher priority channel.

ADVANTAGE - Enables to perform transfer of channel with high priority preferably in burst transfer.

CHOSEN-DRAWING: Dwg.1/5

TITLE-TERMS: DMA CONTROL METHOD DATA TRANSFER MAIN MEMORY PERIPHERAL INTERRUPT

CONTROL PRIORITY NEW CHANNEL PRIORITY NEW CHANNEL HIGH CURRENT

CHANNEL OPERATE

DERWENT-CLASS: T01

EPI-CODES: T01-H03B; T01-H07A2;

05/19/2003, EAST Version: 1.03.0002

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-249269

(43)公開日 平成8年(1996)9月27日

(51) Int.Cl.⁶

G06F 13/30

識別記号

庁内整理番号 9172-5E FΙ

G06F 13/30

技術表示箇所

審査請求 未請求 請求項の数5 OL (全 8 頁)

(21)出願番号

特願平7-52908

(22)出顧日

平成7年(1995) 3月13日

(71)出顧人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72)発明者 岡部 和也

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 弁理士 柿本 恭成

(54) 【発明の名称】 DMA転送制御方法及びDMA転送制御装置

(57)【要約】

【目的】 バースト転送中でも優先度の高いチャネルの 転送を優先的に実行する。

【構成】 チャネルの起動を指示するコマンドがチャネルコマンドレジスタ51に書き込まれる。起動チャネル番号ch_gogoが出力され、チャネル変更信号ch_noonがアサートする。ch_gogoが示すチャネル番号がch_noに保持され、ch_noのチャネルの転送が開始される。新たにチャネルの転送要求が発生すると、ch_noonがアサートされ、そのチャネル番号canditとその優先度candit_pが保持される。転送すべきチャネルの番号を入れ換えることを示す信号 h_prioがアサートされる。ch_nokにch_noの内容がセーブされる。ch_noにcanditの内容が保持される。チャネル置換イネーブル信号ps_chがアサートする。チャネル1の転送が終了すると割り込みしたチャネルが消され、ps_chがネゲートされる。チャネル2の転送が再開される。

本発明の実施例の DMA 転送制御装置

05/19/2003, EAST Version: 1.03.0002

1

【特許請求の範囲】

【請求項1】 中央処理装置からの起動要求に基づいて、複数の入出力装置とメモリとの間のデータ転送を複数のチャネルを設けて制御するDMA転送制御方法において、

前記中央処理装置から起動要求されたチャネルの番号を 保持する起動要求チャネル保持処理と、

前記複数のそれぞれのチャネルの優先度を保持する優先 度チャネル番号保持処理と、

前記優先度に基づいて、前記起動要求されたチャネルの 10 中から次に入出力動作をするチャネルを決定して、そのチャネルの番号を実行中のチャネルとして保持する実行チャネル番号保持処理と、

前記チャネルの転送を実行中に、前記起動要求チャネル 保持処理により新たなチャネルの番号が保持された時、 その新たなチャネルの前記優先度が実行中のチャネルの 前記優先度よりも高い場合、その実行中のチャネルの転 送を一時中断し、前記新たなチャネルの転送を優先して 実行する割り込み処理とを、

実行することを特徴とするDMA転送制御方法。

【請求項2】 中央処理装置からの指示に基づいて、複数の入出力装置とメモリとの間のデータ転送を複数のチャネルを設けて制御するDMA転送制御装置において、前記中央処理装置から起動要求されたチャネルの番号を削除するチャネル実行状態保持部と、

前記複数のそれぞれのチャネルの優先度を保持する優先度チャネル番号保持部と、

前記優先度に基づいて、前記起動要求されたチャネルの中から次に入出力動作をするチャネルを決定して、その 30 チャネルの番号を実行中のチャネルとして保持する実行チャネル番号保持部と、

実行中のチャネル以外の前記チャネル実行状態保持部により保持されたチャネルの優先度が実行中のチャネルの優先度よりも高い時、実行中のチャネルの転送を一時中断し、その最も優先度の高いチャネルの転送を優先して行うように制御する割り込み制御部とを、

備えたことを特徴とするDMA転送制御装置。

【請求項3】 前記割り込み制御部は、

実行中のチャネル以外の前記チャネル実行状態保持部に 40 より保持されたチャネルの中で最も優先度の高いチャネ ルの番号を保持する次候補チャネル優先度保持部と、

前記次候補チャネル優先度保持部か示す優先度が、実行中のチャネルの優先度より高いことを示すと共に、前記 実行チャネル番号保持部に対して、実行中チャネルの番 号を変更するタイミングを指定するチャネル番号交換保 持部とを、

備えたことを特徴とする請求項2記載のDMA転送制御 装置。

【請求項4】 前記割り込み制御部は、

前記実行チャネルが割り込みにより変更され、新たなチャネルの転送の実行中又は終了を示す信号を出力するチャネル番号置換状態保持部と、

前記実行チャネルが割り込みにより変更された時、中断 されたチャネルの番号を保持する被置換チャネル番号保 持部とを備え、

前記実行チャネル番号保持部は、

前記チャネル番号置換状態保持部により新たなチャネル の転送の終了信号及び前記被置換チャネル番号保持部に 保持されたチャネル番号に基づいて、中断した元のチャ ネルの転送を再開する構成にした、

ことを特徴とする請求項3記載のDMA転送制御装置。 【請求項5】 前記割り込み制御部は、

前記チャネル番号置換状態保持部が新たなチャネルの転送を実行中であることを示した後、転送を実行し、その 転送が終了した際に、中断したチャネルの転送要求が消 えたために、中断したチャネルの転送を行う必要がなく なったことを示す信号を出力する逆置換不可状態保持部 を.

20 備えたことを特徴とする請求項4記載のDMA転送制御 装置。

【発明の詳細な説明】

[0001]

[0002]

【産業上の利用分野】本発明は、複数のチャネルを持つ DMA (Direct Memory Access) 転送制御装置におい て、各チャネルの優先度を変更することによって、各チャネルのDMA転送を均等に行うためのDMA転送制御 方法及びDMA転送制御装置に関するものである。

【従来の技術】DMA転送制御装置は、主記憶と入出力 装置との間のデータ転送の制御を中央処理装置(以下、 CPUと呼ぶ)での処理とは独立に行うものであり、そ れによりCPUでの処理を高速に行うためのものであ る。従来のDMA転送制御装置において、優先度を決定 することにより、複数のチャネルに対して転送要求があ

することにより、複数のチャネルに対して転送要求が った場合、どのチャネルの転送を行うかを決定してい る。これは、

(1) 転送要求(転送要求はCPUが起動用レジスタに 書く、又はIOが転送要求信号をアサートするなどによ) り発生する)が発生しているチャネルを選択する。

(2)(1)を満たすチャネルの中で一番高い優先度の チャネルを選択する。という処理を行う。この優先度の 選択変更を行うタイミングは、新たな転送要求が発生し た時、又はあるチャネルの転送が終了した時である。

【0003】図2は、従来のDMA転送制御装置の構成図である。以下、優先度決定アルゴリズムにラウンドロビンを用いた図2のDMA転送制御装置の動作を説明する。CPUよりチャネルを指示する起動コマンドが、チャネルコマンドレジスタ2にセットされる(例えば、チ

50 ャネル番号=2のチャネルに対して起動要求があったと

する)。チャネル実行状態保持部3では、チャネルコマ ンドレジスタ2より起動要求されたチャネルの番号(= 2)を取り込み、そのチャネルの番号をDMA転送優先 度決定制御装置10中の実行チャネル番号保持部12に 出力する。優先度チャネル番号保持部11では、優先度 変更信号に基づいて、ラウドロビンを用いて、チャネル の優先度prio[i] を設定する。

【0004】図3(a)~(c)は、図2中の優先度チ ャネル番号保持部11が保持するチャネルの優先度を示 す図である。転送前は、図3 (a)に示すようなチャネ 10 ルの優先度prio[i] となっていたとする。ここで、prio [i] は優先度がiのチャネル番号とする。実行チャネル 番号保持部12では、チャネル実行状態保持部3より出 力されるチャネルのうち、優先度チャネル番号保持部1 1に保持された最大の優先度を持つチャネルを選択(こ こでは、チャネル番号=2のみがチャネル実行状態保持 部12に保持され、さらに他のチャネルの要求は発生し ていないものとする)して、そのチャネル番号ch_noを 保持するともに、バスOアクセス制御部21及びデータ マネージメント制御部22に出力する。また、実行チャ 20 ネル優先度保持部13では、実行チャネルの優先度チャ ネル番号保持部11に保持された優先度ch nop を保持 する。

【0005】図3(b)は、この状態での実行チャネル 番号保持部12と実行チャネル優先度保持部13の内容 を示しており、ch_no=2、ch_nop=1 となる。バスIO アクセス制御部21では、バスI〇部23にバスにアク セスするための制御信号を出力する。データマネージメ ント制御部22では、転送データ制御部24を制御し て、転送を開始する。転送データ保持部24では、転送 30 データを保持してパリティチェックなど行う。転送単位 のデータ転送が終了する度に、その回数を転送終了判定 部25では、カウントしており、チャネルコマンドレジ スタ2にセットされた転送バイト長さ分のデータ転送が 終了すれば、チャネル実行状態保持部3に保持されてい た実行チャネル番号を消す。チャネル番号2のチャネル の転送が終了して、優先度チャネル番号保持部11に対 して、優先度変更信号が出力されると、優先度チャネル 番号保持部11では、ラウンドロビンを用いて、優先度 prio[i] の変更を行う。図3 (c)は、転送後のラウン 40 ドロビンにより変更された優先度を示している。

[0006]

【発明が解決しようとする課題】しかしながら、従来の DMA転送制御方法及びDMA転送制御装置において は、次のような課題があった。上述したように、あるチ ャネルの転送を実行中は、チャネル番号の選択を変更せ ず、転送終了後に改めて、優先度とチャネル番号の対応 の決定を行っている。そのため、先に転送するチャネル が、例えば、バースト転送を行うなどして、バスアクセ ス時間が非常に長くなる場合も、転送終了まで同一チャ 50 持するチャネル実行状態保持部52、バスIOアクセス

4

ネルに対するバスアクセスを続けるので、データ転送中 にデータ転送要求があっても、そのチャネルのデータ転 送を実行することができない。そのために、緊急性の高 いチャネルの要求に対する転送が遅れてしまうという問 題があった。

[0007]

【課題を解決するための手段】第1の発明は、前記課題 を解決するために、中央処理装置からの指示に基づい て、複数の入出力装置とメモリとの間のデータ転送を複 数のチャネルを設けて制御するDMA転送制御方法にお いて、以下の処理を実行する。すなわち、前記中央処理 装置から起動要求されたチャネルの番号を保持する起動 要求チャネル保持処理と、前記複数のそれぞれのチャネ ルの優先度を保持する優先度チャネル番号保持処理と、 前記優先度に基づいて、前記起動要求されたチャネルの 中から次に入出力動作をするチャネルを決定して、その チャネルの番号を実行中のチャネルとして保持する実行 チャネル番号保持処理とを実行する。さらに、前記チャ ネルの転送を実行中に、前記起動要求チャネル保持処理 により新たなチャネルの番号が保持された時、その新た なチャネルの前記優先度が実行中のチャネルの前記優先 度よりも高い場合、その実行中のチャネルの転送を一時 中断し、前記新たなチャネルの転送を優先して実行する 割り込み処理を実行する。

[0008]

【作用】第1の発明によれば、以上のようにDMA転送 制御方法を構成したので、中央処理装置から起動要求さ れたチャネルの番号を保持して、起動要求のあったチャ ネルの中から優先度に基づいて、次に実行するチャネル を決定する。チャネルの転送中に起動要求かあれば、転 送要求のあった優先度と実行中の優先度を比較して、転 送要求のあったチャネルの優先度の方が高ければ、実行 中のチャネルの転送を中断して、転送要求のあったチャ ネルの転送を実行する。従って、前記課題を解決できる のである。

[0009]

【実施例】図1は、本発明の実施例のDMA転送制御装 置の構成図である。本実施例のDMA転送制御装置が従 来のDMA転送制御装置と異なる点は、DMA転送優先 度決定制御装置内に実行中のチャネルの優先度よりも高 い優先度を持つチャネルの起動要求があった場合に、実 行中のチャネルを一時中断して、その高い優先度のチャ ネルの転送を行う割り込み制御部を設けたことである。 このDMA転送制御装置50は、図示しないCPU、図 示しない複数の入出力装置、図示しないメモリに制御 線、データバス、及びアドレスバスを介して双方向に接 続されている。このDMA転送制御装置50は、CPU からの起動コマンドを保持するチャネルコマンドレジス タ51、CPUから起動要求されたチャネルの番号を保 制御部53、データマネージメント部54、転送終了判定部55、バスIO56、転送データ保持部57、及びチャネルの優先度を決定して、この優先度基づいて、チャネルの転送制御及び割り込み制御をするDMA転送優先度決定装置60により構成されている。

【0010】チャネルコマンドレジスタ51には、CP Uから起動コマンドが入力される。チャネル実行状態保 持部52には、チャネルコマンドレジスタ51より起動 要求のあったチャネル番号が入力される。バスIOアク セス制御部53及びデータマネジメント制御部54に は、チャネルコマンドレジスタ51よりチャネルコマン ドが入力され、DMA転送制御装置60より実行チャネ ル番号ch_noが入力される。転送終了判定部55には、 チャネルコマンドレジスタ51よりチャネルコマンドが 入力される。バスIO56には、バスアクセス制御部5 3より制御信号が入力される。転送データ保持部57に は、データマネージメント制御部54より制御信号が入 力される。DMA転送制御装置60は、優先度チャネル 番号保持部61、実行チャネル番号保持部62、実行チ ャネル優先度保持部63、及び割り込み制御部70とに 20 より構成されている。

【0011】優先度チャネル番号保持部61は、複数の チャネルの優先度を決定し、チャネルの優先度prio[]を 保持する。実行チャネル番号保持部62は、優先度に基 づいて、起動要求されたチャネルの中から次に転送する チャネルを決定して、その番号を実行チャネル番号ch_ noとして保持する。実行チャネル優先度保持部63は、 ch_noが保持するチャネルの優先度ch_nop を保持す る。割り込み制御部70は、実行中のチャネル以外のチ ャネル実行状態保持部52により保持されたチャネルの 30 優先度が実行中のチャネルの優先度ch_nop よりも高い 時、実行中のチャネルの転送を一時中断し、その最も優 先度の高いチャネルの転送を優先して行うように制御す る。割り制御部70は、次候補チャネル番号保持部7 1、次候補チャネル優先度保持部72、チャネル番号交 換制御部73、チャネル番号置換状態保持部74、被置 換チャネル番号保持部75、逆置換チャネル不可状態保 持部76により構成されている。

【0012】次候補チャネル番号保持部71は、実行中のチャネル以外のチャネル実行状態保持部52により保 40 持されたチャネルの中で最も優先度の高いチャネルの番号canditを保持する。次候補チャネル優先度保持部72 は、次候補チャネル番号保持部71が保持するチャネル番号で換制御部73は、チャネルが要求を出していることを示す信号big __cand及びbig __candかアサートされておりさらに現実行中の転送が1ワードもしくはソース又はデスティネーションでバス幅の大きな側のワード数分の転送が終了したことを示す信号h __prio を出力する。チャネル番号置換状態保持部74は、チャネルが空 50

6

更された時、新たなチャネルの転送の実行中もしくは終了を示す信号ps_chを出力する。被置換チャネル番号保持部75は、実行チャネルが変更された時、一旦中断されたチャネルの番号ch_nobkを保持する。逆置換チャネル不可状態保持部76、中断したチャネルの転送要求が消えたために、中断したチャネルの転送を行う必要がなくなったことを示す信号fukki _int を出力する。

【0013】優先度チャネル番号保持部61は、バスI Oアクセス制御部53より優先順変更信号prio_onを入 力する。実行チャル番号保持部62は、チャネル実行状 態保持部52よりチャネル転送要求発生信号ch_gogo、 実行チャネル番号変更信号ch_noonを入力し、チャネル 番号置換状態保持部74よりps_ch信号を入力し、被置 換チャネル番号保持部75よりch_nobkを入力する。実 行チャネル優先度保持部63は、優先度チャネル番号保 持部61よりチャネルの優先度prio()を入力する。次候 補チャネル番号保持部71は、チャネル実行状態保持部 52よりチャネル転送要求発生信号ch_gogoを入力す る。次候補チャネル優先度保持部72は、チャネル実行 状態保持部52よりチャネル転送要求発生信号ch_gogo を入力し、優先度保持部61よりprio[]を入力する。チ ャネル番号交換制御部73は、次候補チャネル番号保持 部71より信号canditを入力し、次候補チャネル優先度 保持部72より信号candity を入力し、実行チャネル優 先度保持部63よりch nop を入力する。チャネル番号 置換状態保持部74は、チャネル番号交換制御部73よ りh __prioを入力し、チャネル実行状態保持部52より ch_gogoを入力する。被置換チャネル番号保持部75 は、チャネル番号交換制御部73よりh __prioを入力 し、実行チャネル番号保持部75よりch_noを入力す る。逆置換不可状態保持部76は、チャネル番号置換状 態保持部74よりps_chを入力し、データマネージメン ト制御部54などから中断したチャネルの転送要求が消

【0014】図4は、図1のタイムチャートであり、チャネル1の方がチャネル2よりも優先度が高い状態の時に、チャネル2のデータを転送中にチャネル1の要求が発生したので、チャネル2の転送を一度停止してチャネル1の転送を行い、再度チャネル2の転送を実行する時の状態の変化を示している。以下、この図を参照しつつ、本発明の実施例のDMA転送制御方法及びDMA転送制御装置の動作の説明をする。CPUからは起動コマンドがデータバスに、その起動コマンドを書き込むチャネルコマンドレジスタ51のアドレスがアドレスバスに出力される。チャネルコマンドレジスタ51では、図示しないレジスタ書き込み制御部により書き込みが制御されてアドレスにより指定されるチャネルコマンドレジスタ51に書き込まれる。本実施例では、チャネル2に続いて、チャネル1の転送要求があったものとする。

えたことを示す信号を入力する。

る。チャネル番号置換状態保持部74は、チャネルが変 50 【0015】 [起動要求チャネル保持処理] CPUから

チャネル2の起動を指示するコマンドがチャネルコマン ドレジスタ51に書き込まれる。サイクル0において、 チャネル実行状態保持部52では、チャネル2の起動を 指示するチャネル転送要求発生信号ch_gogoを出力し、 さらに実行チャネル番号変更信号ch_noonを1サイクル だけアサートする。

[優先度チャネル番号保持処理] 優先度チャネル番号保 持部61では、チャネルの転送が終了した時点でバス I O制御部53より出力される優先順変更信号prio_onの 立ち下がりの時点で、例えば、ラウンドロビンを用い て、複数のチャネルの優先度を決定し、その優先度prio [i] (i=0~3)が保持されている。図4中のサイクルOで は、prio(3)=0,prio(2)=2,prio(1)=1,prio(0)=3 である とする。つまり、チャネル1の優先度は1、チャネル2 の優先度は2であり、チャネル2の優先度がチャネル1 の優先度よりも高いものとする。

【0016】 [実行チャネル保持処理] 実行チャネル番 号保持部62では、実行チャネル番号変更信号ch_noon の立ち下がりのタイミングでチャネル転送要求信号ch_ gogoをラッチして、ch_gogoが示すチャネル2をch_no 20 に保持する。さらに、実行チャネル優先度保持部63で は、チャネル転送要求信号ch_gogoが示すチャネル2の 優先度チャネル番号保持部61に保持された優先度1を ch_nop に保持する。実行チャネル優先度保持部63が 保持する実行チャネル番号ch_noは、バスIOアクセス 制御部53、データマネージメント制御部54に出力さ れる。バスIOアクセス制御部53、及びデータマネー ジメント制御部54では、チャネルコマンドレジスタ5 1よりチャネル2のコマンドを順次読み出し、データ転 送を行う。転送終了判定部55では、1単位のデータ転 30 送が終了すると、転送回数をカウントして、チャネルコ マンドレレジスタ51に書き込まれた転送バイト長に等 しくなれば、チャネル実行状態保持部52の転送を終了 したチャネルの番号を消す。

【0017】[割り込み処理]チャネル2の転送中のサ イクル5で、チャネル2(優先度1)よりも優先度が高 いチャネル1(優先度2)の転送要求が発生すると、ch _noonが1サイクルだけもう一度アサートされる。次候 補チャネル番号保持部71では、ch__noonがアサートさ れると、チャネル転送要求発生信号ch__gogo及び優先度 prio[]を参照して、実行中のチャネル以外のチャネルの 中で最も大きな優先度を持つチャネル番号canditを保持 する。次候補チャネル番号保持部72では、チャネル番 号canditの持つ優先度をcandit_pを保持する。つま り、サイクル6で、candit、及びcandit_p が新しくな り、candit=1、canditp=2 となる。しかし、ch_noはま だ変わらない。チャネル番号交換制御部73では、サイ クル6で、実行中のチャネルch_no(=2)の優先度ch_no p(=1) と転送要求のあったチャネル番号candit(=1)の優 先度candit_p(=2) とを比較して、転送要求のあったチ 50 Oでfukki __initがアサートされる。実行チャネル番号

ャネル2の優先度が実行中の優先度よりも大きいので、 big _candをアサートする。さらに転送すべきチャネル の番号を入れ換えることを示す信号 h_prioを 1 サイク ルだけアサートする。ここでは、big _candとh _prio が同じサイクルでアサートされているが、ソース又はデ スティネーションのうち、バス幅の大きい方のバス幅の 整数倍の転送を終える時にアサートされるのであり、h __prioがこのサイクルに限らずさらに後のサイクルでア サートされることもある。被置換チャネル番号保持部7 10 5では、h __prioの立ち下がりのタイミング、すなわ ち、サイクル7で、ch_nobkにch_noの内容を保持す る。実行チャネル番号保持部62では、ch_noにcandit の内容を保持するとともに、チャネル番号1をバス [O アクセス制御部55及びデータマネージメント制御部5 6に出力する。さらに、チャネル番号置換状態保持部7 4では、h __prioがアサートされると、その立ち下がり のタイミングでチャネル番号を入れ換えて実行中である ことを示すチャネル置換イネーブル信号ps_chをアサー トする。

【0018】先のサイクル7でch_noが変更されて1に なったので、バスIOアクセス制御部55及びデータマ ネージメント制御部56により、サイクル8からはチャ ネル1の転送を実行する。この間、ps_chがアサートさ れ続けることで、ch_noが元のチャネル番号ではなく、 一時的に優先度の高いチャネル番号を保持していること を示し、ch_no、ch_nop、ch_prioの変更を禁止する ともに、さらに高い優先度の転送要求を受け付けないよ うにする。転送終了判定部55より、チャネル1の転送 が終了し、サイクル9でチャネル実行状態保持部52の チャネル1が消されると、ps_chがネゲートされる。実 行チャネル番号保持部62では、ps_chがネゲートさ れ、その立ち下がりのタイミングで、すなわちサイクル 10で、ch_nobkの内容をch_noとして、チャネル2の チャネル番号と優先度を保持し直す。サイクル11で は、チャネル2の転送が再開される。図5は、図1のタ イムチャートであり、図4と同様にチャネル1の方がチ ャネル2よりも優先度が高い状態でチャネル2の転送を 実行中に、チャネル1の要求が発生したので、チャネル 2の転送を一度停止してチャネル1の転送を行なうが、 チャネル1の転送実行中にチャネル2の転送要求が消滅 したために、再度チャネル2の転送を実行しないで、チ ャネル1の転送を終了した所で、バスアクセスを停止す る時の状態の変化を示している。

【0019】以下、図5を参照しつつ図1の動作を説明 する。サイクル9で、一旦中断されたチャネル2のデー 夕転送を続行する必要がなくなりネゲートされた信号 が、データマネージメント制御部(この場合は、パリテ ィエラーの為)54などから逆置換不可状態保持部76 に出力されると、チャネル1の転送終了後のサイクル1

保持部62では、fukki __initの立ち下がりのサイクル 11からチャネル2の転送開始を抑止する。よって、チャネル2の転送再開はチャネル2の転送要求が再度アサートするまで待たされる。以上のように、本実施例では、先に転送するチャネルが、例えば、バースト転送を行うなどをして、バスアクセス時間が非常に長くなる場合であっても、優先度の高い緊急応答性、安定性の高いシステムを構築することができるという利点がある。【0020】

【発明の効果】以上詳細に説明したように、第1~第5の発明によれば、転送中のチャネルがあっても優先度の高いチャネルの転送要求があれば、転送中のチャネルの実行を中断して、優先度の高いチャネルを実行するようにした。そのため、優先度の緊急性の高いチャネルをより早く実行することができる。

【図面の簡単な説明】

【図1】本発明の実施例のDMA転送制御装置の構成図である。

【図2】従来のDMA転送制御装置の構成図である。

【図3】図2中の優先度チャネル番号保持部の内容を示 20

す図である。

【図4】図1のタイムチャート(その1)である。 【図5】図1のタイムチャート(その2)である。 【符号の説明】

10

付亏少說例】	
0	DMA転送制御装置

51	チャネルコマンドレジスタ
52	チャネル実行状態保持部
60	DMA転送優先度決定制御装

置 61

5

61優先度チャネル番号保持部62実行チャネル番号保持部63実行チャネル優先度保持部

70 割り込み制御部

71次候補チャネル番号保持部72次候補チャネル優先度保持部

73チャネル番号交換制御部74チャネル置換状態保持部

75被置換チャネル番号保持部76逆置換不可状態保持部

【図2】

従来の DMA 転送制御装置

7 ...

【図1】

本発明の実施例の DMA 転送制御装置

【図3】

図2中の優先度チャネル番号保持部の内容

【図4】

٧ ويو رؤ ١٠

【図5】

