Logistic Regression Project

خب، خب، در این پروژه قصد داریم با کار روی دیتاست یک شرکت تبلیغاتی، این که کاربر روی تبلیغی که به او نمایش داده شده کلیک می کند یا خیر را پیش بینی کنیم.

Import Libraries

کتابخانه های مورد نیاز را ایمپورت کنید.

```
In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Get the Data

دیتاست مورد نظر را فرخوانی کنید و نگاه خلاصه ای به آن بیندازید و همچنین اطلاعات کلی و آماری آن را نمایش دهید.

```
In [96]: data = pd.read_csv('advertising.csv')
```

Out[8]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Timestamp
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016-03-27 00:53:11
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016-04-04 01:39:02
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016-03-13 20:35:42
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016-01-10 02:31:19
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016-06-03 03:36:18
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016-02-11 21:49:00
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016-04-22 02:07:01
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016-02-01 17:24:57
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016-03-24 02:35:54
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016-06-03 21:43:21

1000 rows × 10 columns

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Daily Time Spent on Site	1000 non-null	float64
1	Age	1000 non-null	int64
2	Area Income	1000 non-null	float64
3	Daily Internet Usage	1000 non-null	float64
4	Ad Topic Line	1000 non-null	object
5	City	1000 non-null	object
6	Male	1000 non-null	int64
7	Country	1000 non-null	object
8	Timestamp	1000 non-null	object
9	Clicked on Ad	1000 non-null	int64

dtypes: float64(3), int64(3), object(4)

memory usage: 78.2+ KB

In [6]: data.describe()

Out[6]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	65.000200	36.009000	55000.000080	180.000100	0.481000	0.50000
std	15.853615	8.785562	13414.634022	43.902339	0.499889	0.50025
min	32.600000	19.000000	13996.500000	104.780000	0.000000	0.00000
25%	51.360000	29.000000	47031.802500	138.830000	0.000000	0.00000
50%	68.215000	35.000000	57012.300000	183.130000	0.000000	0.50000
75%	78.547500	42.000000	65470.635000	218.792500	1.000000	1.00000
max	91.430000	61.000000	79484.800000	269.960000	1.000000	1.00000

Exploratory Data Analysis (EDA)

حالا كمى در ديتاست گشت و گذار كنيم تا ببينيم به چه اطلاعاتى دست پيدا مى كنيم.

برای شروع، نمودار توزیع آماری را بر حسب سن رسم می کنیم.

In [7]: data.corr()

Out[7]:

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Male	Clicked on Ad
Daily Time Spent on Site	1.000000	-0.331513	0.310954	0.518658	-0.018951	-0.748117
Age	-0.331513	1.000000	-0.182605	-0.367209	-0.021044	0.492531
Area Income	0.310954	-0.182605	1.000000	0.337496	0.001322	-0.476255
Daily Internet Usage	0.518658	-0.367209	0.337496	1.000000	0.028012	-0.786539
Male	-0.018951	-0.021044	0.001322	0.028012	1.000000	-0.038027
Clicked on Ad	-0.748117	0.492531	-0.476255	-0.786539	-0.038027	1.000000

Out[30]: Text(0.5, 0, 'Age')

جوینت پلات در آمد بر حسب سن را رسم می کنیم.

In [26]: sns.jointplot(x='Age' ,y='Area Income', data=data, hue='Clicked on Ad')

Out[26]: <seaborn.axisgrid.JointGrid at 0x17ba03f5f10>

KDE پلات میزان وقت گذاشته شده روی سایت تبلیغ بر حسب سن را رسم می کنیم.

```
In [25]: sns.jointplot(x='Age', y='Daily Time Spent on Site', data=data, kind='kde', co
```

Out[25]: <seaborn.axisgrid.JointGrid at 0x17ba0280e50>

جوينت پلات ميزان استفاده از اينترنت بر حسب ميزان وقت گذاشته شده روى سايت تبليغ را رسم مي كنيم.

In [24]: sns.jointplot(x='Daily Time Spent on Site', y='Daily Internet Usage', data=dat

Out[24]: <seaborn.axisgrid.JointGrid at 0x17ba01b4970>

در نهایت یک Pain Plot کلی برای دیتاست، با مشخص کردن تفاوت کسانی که روی تبلیغ کلیک کرده اند و نکرده اند را رسم کنید. In [23]: sns.pairplot(data, hue='Clicked on Ad')

Out[23]: <seaborn.axisgrid.PairGrid at 0x17b9e46be20>

Logistic Regression

پس از ایمپورت متد مربوطه، داده ها را به دو بخش فیچر و لیبل تقسیم کنید و سپس آن ها را به دو بخش ترین و تست تقسیم نمایید.

```
In [97]: data.head()
 Out[97]:
                 Daily
                 Time
                                         Daily
                                 Area
                                                                                                      Clicke
                Spent Age
                                       Internet
                                                Ad Topic Line
                                                                     City Male Country Timestamp
                              Income
                                                                                                       on A
                   on
                                        Usage
                  Site
                                                       Cloned
                                                                                          2016-03-27
             0
                 68.95
                         35 61833.90
                                        256.09
                                                 5thgeneration Wrightburgh
                                                                                  Tunisia
                                                                                             00:53:11
                                                 orchestration
                                                    Monitored
                                                                                          2016-04-04
                 80.23
                                                                West Jodi
                         31
                             68441.85
                                        193.77
                                                      national
                                                                              1
                                                                                   Nauru
                                                                                             01:39:02
                                                standardization
                                                      Organic
                                                                                     San
                                                                                          2016-03-13
                 69.47
                         26
                            59785.94
                                        236.50
                                                   bottom-line
                                                                 Davidton
                                                                              0
                                                                                  Marino
                                                                                             20:35:42
                                                  service-desk
                                                Triple-buffered
                                                                                          2016-01-10
                                                                    West
                74.15
                         29 54806.18
                                        245.89
                                                                              1
                                                                                    Italy
             3
                                                    reciprocal
                                                                  Terrifurt
                                                                                            02:31:19
                                                    time-frame
                                                       Robust
                                                                                          2016-06-03
                                                                    South
                         35 73889.99
                                                                              0
                                                                                  Iceland
                 68.37
                                        225.58
                                                     logistical
                                                                                             03:36:18
                                                                   Manuel
                                                     utilization
 In [98]: | x = data.drop(['Clicked on Ad','Ad Topic Line','City','Country','Timestamp'],
            y = data['Clicked on Ad']
            from sklearn.model_selection import train_test_split
In [100]:
            x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, rand
                        حالا کلاس رگر سیون لاجستیک را بارگز اری نمایید و یک مدل از آن نوع بسازید و با داده های ترین آموزش دهید.
            from sklearn.linear model import LogisticRegression
In [101]:
            logmodel = LogisticRegression()
            logmodel.fit(x_train, y_train)
In [102]:
```

Predictions and Evaluations

Out[102]: LogisticRegression()

حالاً به کمک مدلی که آموزش داده اید، بر ای داده های تست بیش بینی کنید که کدام یک روی تبلیغ ها کلیک می کنند.

```
In [103]: pred = logmodel.predict(x_test)
```

```
In [104]: logmodel.score(x_test, y_test)
Out[104]: 0.9266666666666666
In [105]: from sklearn.metrics import classification_report, confusion_matrix
          print(classification_report(pred, y_test))
          print('********, '\n')
          print(confusion matrix(pred, y test))
                         precision
                                      recall f1-score
                                                          support
                              0.95
                                        0.91
                                                  0.93
                                                              163
                              0.90
                                        0.94
                                                  0.92
                                                              137
                                                  0.93
                                                              300
              accuracy
             macro avg
                              0.93
                                        0.93
                                                  0.93
                                                              300
          weighted avg
                              0.93
                                        0.93
                                                  0.93
                                                              300
          ******
          [[149 14]
           [ 8 129]]
                                                   حالا میخوام روز های خفته رو هم دخالت بدم توو یادگیری مدلم
In [106]: | data['Timestamp'] = pd.to_datetime(data['Timestamp'])
In [107]: data.rename({'Timestamp' : 'DOF'}, axis=1, inplace=True)
```

\cap	+	[108]	١.
υu	L	[TOO]	٠

(DOF	Country	Male	City	Ad Topic Line	Daily Internet Usage	Area Income	Age	Daily Time Spent on Site	
	2016- 03-27 00:53:11	Tunisia	0	Wrightburgh	Cloned 5thgeneration orchestration	256.09	61833.90	35	68.95	0
	2016- 04-04 01:39:02	Nauru	1	West Jodi	Monitored national standardization	193.77	68441.85	31	80.23	1
	2016- 03-13 20:35:42	San Marino	0	Davidton	Organic bottom-line service-desk	236.50	59785.94	26	69.47	2
	2016- 01-10 02:31:19	Italy	1	West Terrifurt	Triple-buffered reciprocal time-frame	245.89	54806.18	29	74.15	3
	2016- 06-03 03:36:18	lceland	0	South Manuel	Robust logistical utilization	225.58	73889.99	35	68.37	4
		•••								
	2016- 02-11 21:49:00	Lebanon	1	Duffystad	Fundamental modular algorithm	208.58	71384.57	30	72.97	995
	2016- 04-22 02:07:01	Bosnia and Herzegovina	1	New Darlene	Grass-roots cohesive monitoring	134.42	67782.17	45	51.30	996
	2016- 02-01 17:24:57	Mongolia	1	South Jessica	Expanded intangible solution	120.37	42415.72	51	51.63	997
	2016- 03-24 02:35:54	Guatemala	0	West Steven	Proactive bandwidth- monitored policy	187.95	41920.79	19	55.55	998
	2016- 06-03 21:43:21	Brazil	0	Ronniemouth	Virtual 5thgeneration emulation	178.35	29875.80	26	45.01	999

С

1000 rows × 10 columns

In [109]: | categorical_day = pd.get_dummies(data['DOF'].apply(lambda x:x.dayofweek)) data = pd.concat([data, categorical_day], axis=1)

O I	raao:	١.
υuτ	1110	ı :

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	DOF	
0	68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	2016- 03-27 00:53:11	
1	80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	2016- 04-04 01:39:02	
2	69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	2016- 03-13 20:35:42	
3	74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	2016- 01-10 02:31:19	
4	68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	Iceland	2016- 06-03 03:36:18	
995	72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	2016- 02-11 21:49:00	
996	51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	2016- 04-22 02:07:01	
997	51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	2016- 02-01 17:24:57	
998	55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	2016- 03-24 02:35:54	
999	45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	2016- 06-03 21:43:21	

С

1000 rows × 17 columns

In [111]: data.drop(['DOF'], axis=1, inplace=True)

_			-	-	~	-	
m	11	- 1	-11	-11	•	- 1	•
\mathbf{v}	u	- 1	_	-	_		

	Daily Time Spent on Site	Age	Area Income	Daily Internet Usage	Ad Topic Line	City	Male	Country	Clicked on Ad	0
	0 68.95	35	61833.90	256.09	Cloned 5thgeneration orchestration	Wrightburgh	0	Tunisia	0	0
	1 80.23	31	68441.85	193.77	Monitored national standardization	West Jodi	1	Nauru	0	1
	2 69.47	26	59785.94	236.50	Organic bottom-line service-desk	Davidton	0	San Marino	0	0
	3 74.15	29	54806.18	245.89	Triple-buffered reciprocal time-frame	West Terrifurt	1	Italy	0	0
	4 68.37	35	73889.99	225.58	Robust logistical utilization	South Manuel	0	lceland	0	0
								•••		
99	5 72.97	30	71384.57	208.58	Fundamental modular algorithm	Duffystad	1	Lebanon	1	0
99	6 51.30	45	67782.17	134.42	Grass-roots cohesive monitoring	New Darlene	1	Bosnia and Herzegovina	1	0
99	7 51.63	51	42415.72	120.37	Expanded intangible solution	South Jessica	1	Mongolia	1	1
99	9 8 55.55	19	41920.79	187.95	Proactive bandwidth- monitored policy	West Steven	0	Guatemala	0	0
99	9 45.01	26	29875.80	178.35	Virtual 5thgeneration emulation	Ronniemouth	0	Brazil	1	0

1000 rows × 16 columns

In [113]: x = data.drop(['Daily Internet Usage','City','Ad Topic Line','Country','Clicket y = data['Clicked on Ad']

In [114]: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, rando

```
In [115]: from sklearn.linear_model import LogisticRegression
          logmodel2 = LogisticRegression()
In [116]: logmodel2.fit(x train, y train)
          C:\Users\ASUS\anaconda3\lib\site-packages\sklearn\utils\validation.py:1688:
          FutureWarning: Feature names only support names that are all strings. Got fe
          ature names with dtypes: ['int', 'str']. An error will be raised in 1.2.
            warnings.warn(
Out[116]: LogisticRegression()
In [117]: pred2 = logmodel2.predict(x test)
          C:\Users\ASUS\anaconda3\lib\site-packages\sklearn\utils\validation.py:1688:
          FutureWarning: Feature names only support names that are all strings. Got fe
          ature names with dtypes: ['int', 'str']. An error will be raised in 1.2.
            warnings.warn(
In [118]: logmodel2.score(x_test, y_test)
          C:\Users\ASUS\anaconda3\lib\site-packages\sklearn\utils\validation.py:1688:
          FutureWarning: Feature names only support names that are all strings. Got fe
          ature names with dtypes: ['int', 'str']. An error will be raised in 1.2.
            warnings.warn(
Out[118]: 0.9266666666666666
In [119]: from sklearn.metrics import classification report, confusion matrix
In [120]: print(confusion_matrix(pred2, y_test))
          [[147 12]
           [ 10 131]]
In [121]: | print(classification_report(pred2, y_test))
                        precision
                                      recall f1-score
                                                         support
                     0
                             0.94
                                       0.92
                                                 0.93
                                                             159
                     1
                             0.92
                                       0.93
                                                 0.92
                                                             141
                                                 0.93
                                                             300
              accuracy
                             0.93
                                       0.93
                                                 0.93
                                                             300
             macro avg
          weighted avg
                             0.93
                                       0.93
                                                 0.93
                                                             300
```

The End:)