

The AI Crystal Ball: Unleashing the Magic of House Prediction

The AI Crystal Ball

Unleashing the Magic of House Prediction

Introduction

Welcome to the world of *AI House Prediction*! Discover how artificial intelligence can **forecast** house prices and trends with incredible accuracy. Get ready for a journey into the future of real estate!

Understanding House Prediction

Learn the *fundamentals* of house prediction and how AI algorithms analyze **data patterns** to make accurate forecasts. Explore the key factors influencing house prices and how AI can uncover hidden insights.

The Magic of AI

Discover the **magic** behind Alpowered house prediction. Witness how machine learning and deep neural networks can unlock the hidden potential of data, enabling us to predict future house trends with unprecedented accuracy.

Data Collection & Preprocessing

Explore the **data journey** in house prediction. Understand the importance of collecting comprehensive and relevant data, and how preprocessing techniques such as feature scaling and outlier removal enhance the accuracy of predictions.

Feature Engineering

Unleash the power of **feature engineering** in house prediction. Learn how AI algorithms transform raw data into meaningful features, extracting valuable insights that influence house prices. Discover the art of feature selection and creation.

AI Algorithms for House Prediction

Dive into the world of AI algorithms for house prediction. Explore the strengths and weaknesses of regression algorithms, decision trees, and ensemble methods. Understand how these algorithms make accurate predictions based on historical data.

Evaluating Model Performance

Learn how to evaluate the performance of AI models in house prediction. Explore metrics such as **mean squared error** and **R-squared** to measure accuracy. Discover techniques like cross-validation to ensure reliable predictions.

Real-Life Applications

Witness the real-life applications of Al in house prediction. From assisting homebuyers in making informed decisions to helping real estate agents optimize pricing strategies, Al is revolutionizing the way we navigate the housing market.

Challenges & Ethical Considerations

Explore the challenges and ethical considerations in AI house prediction. Discuss issues like data privacy, algorithmic biases, and potential societal impacts. Understand the importance of responsible AI implementation in the real estate industry.

Future Trends

Get a glimpse into the future of Al house prediction. Discover emerging trends like **predictive analytics**, **automated valuation models**, and **smart home integration**. Explore how Al will continue to shape the real estate landscape.

Benefits of AI in House Prediction

Uncover the benefits of AI-powered house prediction. From improved accuracy and faster decision-making to enhanced market transparency, AI empowers individuals and businesses alike, revolutionizing the way we predict and navigate the housing market.

Key Takeaways

Recap the key takeaways from this exciting journey into AI house prediction. Understand the potential of AI in forecasting house prices, the importance of data quality, and the ethical considerations in responsible AI implementation.

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics importr2_score,mean_absolute_error,mean_square d_error

- from sklearn.linear_model
- import LinearRegression
- from sklearn.linear_model import Lasso
- from sklearn.ensemble
- import RandomForestRegressor
- from sklearn.svm import SVR import xgboost as

Data set

dataset =pd.read_csv('USA_Housing.csv') dataset.head(10)

↑ ↓ ⊕ 目 ☆ 払 Ⅰ		T.					
Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Apt. 674\nLaurabury, NE 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabeth Stravenue\nDanieltown, WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO AP 44820	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFPO AE 09386	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
06039 Jennifer Islands Apt. 443\nTracyport, KS	1.068138e+06	26748.428425	4.04	6.104512	4.988408	80175.754159	5
4759 Daniel Shoals Suite 442\nNguyenburgh, CO	1.502056e+06	60828.249085	3.41	8.147760	6.025336	64698.463428	6
972 Joyce Viaduct\nLake William, TN 17778-6483	1.573937e+06	36516.358972	2.42	6.620478	6.989780	78394.339278	7
USS Gilbert\nFPO AA 20957	7.988695e+05	29387.396003	2.30	6.393121	5.362126	59927.660813	8

USA_housing.shape

(5000, 7)

USA_housing.info()

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object
dtyp	es: float64(6), object(1)		
memo	ry usage: 273.6+ KB		
[5]:			

USA_housing.describe()

]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

sns.pairplot(USA_housing, height = 1.5)

USA_housing.hvplot.hist(by='Price', subplots=False, width=1000)

USA_housing.hvplot.hist("Price")


```
import pandas as pd
import numpy as np
import pickle

#visualisation
import plotly.express as px
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import seaborn as sns
import seaborn as sns
import seaborn as sns
#sns.set_style('whitegrid')

# Model
from sklearn.svm import SVR
```

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import LinearRegression, SGDRegressor

from sklearn.linear_model import ElasticNet

#perfomance

from sklearn.metrics import mean_squared_error,r2_score

Load the dataset
df= pd.read_csv("USA_Housing.csv")

df.head()

	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 N	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 John	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2

df.drop('Address',axis=1,inplace=True)

df.isna().sum()

Avg. Area Income
Avg. Area House Age
Avg. Area Number of Rooms
Avg. Area Number of Bedrooms
Area Population
Price
dtype: int64

```
plt.figure(figsize=(20,8),dpi=400)
sns.boxplot(data=df[[ 'Avg. Area Income', 'Area Population']],orient='h')
plt.show()
```

```
sns.histplot(df, x='Price', bins=50, color='y')

<Axes: xlabel='Price', ylabel='Count'>
```

Avg. Area Income

- Dividing Dataset in to features and target variable

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=101)

Y_train.head()

3413    1.305210e+06
    1610    1.400961e+06
    3459    1.048640e+06
    4293    1.231157e+06
    1039    1.391233e+06
    Name: Price, dtype: float64
```

Standardizing the data

```
sc = StandardScaler()
X_train_scal = sc.fit_transform(X_train)
X_test_scal = sc.fit_transform(X_test)
```

Model Building and Evaluation

```
model_lr=LinearRegression()

model_lr.fit(X_train_scal, Y_train)

* LinearRegression
    LinearRegression()
```

Predicting Prices

```
Prediction1 = model_lr.predict(X_test_scal)
model_svr = SVR()
model_svr.fit(X_train_scal, Y_train)

Prediction2 = model_svr.predict(X_test_scal)
```

Evaluation of Predicted Data

```
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
plt.plot(np.arange(len(Y_test)), Prediction1, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')
```


sns.histplot((Y_test-Prediction2), bins=50)

<Axes: xlabel='Price', ylabel='Count'>


```
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
plt.plot(np.arange(len(Y_test)), Prediction2, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')

— Actual Trend
— Predicted Trend

print(r2_score(Y_test, Prediction2))
print(mean_squared_error(Y_test, Prediction2))
print(mean_squared_error(Y_test, Prediction2))

-0.0006222175925689744
128209033251.4034

128209033251.4034

Description:

1.0 -

0.5 -
```


Benefits of AI in House Prediction

Artificial Intelligence offers several advantages in house prediction. It can analyze vast amounts of data and identify patterns that humans might miss. Al algorithms can improve accuracy by considering numerous factors and historical trends. Additionally, Al-powered systems can increase efficiency by automating repetitive tasks, saving time and resources.

Real-world Applications

Al-powered house prediction has diverse applications. It helps real estate agents in estimating property values accurately, enabling informed decisions. Homebuyers can leverage AI to assess fair prices and negotiate better deals. Financial institutions utilize Al for **risk assessment** during mortgage approvals. Overall, Al enhances decision-making for all stakeholders.

Future Possibilities

The future of Al-powered house prediction is promising. Advancements in **machine learning** and **data analysis** techniques will further enhance accuracy. Integration with **Internet of Things** (IoT) devices can provide real-time data for better predictions. As Al continues to evolve, we can expect more sophisticated models and improved outcomes.

Conclusion

In conclusion, AI is transforming the world of house prediction, unlocking the magic of accurate forecasts. Embrace the power of AI, and let it guide you through the

enchanting realm of real estate.