Value Of Local Showrooms To Online Competitors Causal Forest Application with R

Author: Jayarajan Samuel, Zhiqiang (Eric) Zheng, Ying Xie **Group Members**: Beyza Celik, Luoying Chen, Yihong Liu, Duc Vu

October 23, 2020

Data Preparation for the Application

- Our analysis is based on data individual transactions.
- For each transaction $i = 1, \ldots, n$,
 - $W_i = \mathtt{CCStorePresent}_i \times \mathtt{AfterStoreClosing}_i$
 - ullet $Y_i = \log \left(exttt{prod_totprice}, exttt{PagesPerDollar}, exttt{MinsPerDollar}
 ight)^{-1}$
 - 10 categorical: hoh_most_education, census_region, household_size, hoh_oldest_age, children, racial_background, connection_speed, country_of_origin, prod_category_type and BBStorePresent
 - 4 real-valued covariates: pages_viewed², duration³, prod_qty, household_income
 - We expanded out categorical random variables via one-hot encoding, thus resulting in covariates $X_i \in \mathbb{R}^p$ with p=38 or p=37.

¹right-skewed

²not PagesPerDollar is dependent variable

³not MinsPerDollar is dependent variable

The potential outcomes framework I

For a set of i.i.d. subjects i=1,...,n, we observe a tuple (X_i,Y_i,W_i) , comprised of

- A feature vector $X_i \in \mathbb{R}^p$,
- ullet A response $Y_i \in \mathbb{R}$, and
- A treatment assignment $W_i \in \{0,1\}$

Following the **potential outcomes** framework (Imbens and Rubin, 2015) , we posit the existence of quantities $Y_i(0)$ and $Y_i(1)$

• These correspond to the response we would have measured given that the i-th subject received treatment $(W_i = 1)$ or no treatment $(W_i = 0)$.

The potential outcomes framework II

Goal is to estimate the conditional average treatment effect

$$\tau(x) = \mathbb{E}\left[Y(1) - Y(0) \mid X = x\right]$$

However in experiments we only get to see $Y_i = Y_i(\boldsymbol{W}_i)$

The potential outcomes framework III

If we make no further assumptions, estimating $\tau(x)$ is not possible.

 Literature often assumes unconfoundedness (Rosenbaum and Rubin, 1983)

$$\{Y_i(0), Y_i(1)\} \perp \!\!\!\perp W_i \mid X_i.$$

 When this assumption holds, methods based on matching or propensity score estimation are usually consistent.

Causal Forests for Observational Studies

All analyses are carried out using the R package **grf**, version 1.2.0 (Tibshirani et al., 2018).

- $e(x) = \mathbb{P}[W_i \mid X_i = x]$ for the propensity score
- $m(x) = \mathbb{E}[Y_i \mid X_i = x]$ for the expected outcome marginalizing over treatment
- An application of causal forests using grf (Athey and Wager, 2019):
 - fitting two separate regression forests to estimate $m(\cdot)$ and $e(\cdot)$ (Y.forest and W.forest)
 - ② It then makes out-of-bag predictions using these two first-stage forests, and uses them to grow a causal forest
 - Training a pilot random forest on all the features, and then train a second forest on only those features that saw a reasonable number of splits in the first step.

on amazon.com Sales

The package **grf** has a built-in function for average treatment effect estimation called average_treatment_effect. Using this function we obtain:

Table 1: 90% CI for the ATT

5%	$\hat{ au_t}$	95%
-0.42	-0.22	-0.03

on bestbuy.com Sales

Figure 2: Histogram of out-of-bag CATE estimates from a causal forest

Table 2: 90% CI for the ATT

5%	$\hat{ au_t}$	95%
-0.39	0.08	0.55

on amazon.com Pages Per Dollar of Sales

Figure 3: Histogram of out-of-bag CATE estimates from a causal forest

Table 3: 95% CI for the ATT

2.5%	$\hat{ au_t}$	97.5%
0.02	0.27	0.52

on bestbuy.com Pages Per Dollar of Sales

Table 4: 90% CI for the ATT

5%	$\hat{\tau_t}$	95%
-0.47	0.09	0.65

Figure 4: Histogram of out-of-bag CATE estimates from a causal forest

on amazon.com Minutes Per Dollar of Sales

Table 5: 90% CI for the ATT

5%	$\hat{ au_t}$	95%
-110.76	-24.32	62.13

Figure 5: Histogram of out-of-bag CATE estimates from a causal forest

on bestbuy.com Minutes Per Dollar of Sales

Table 6: 90% CI for the ATT

5%	$\hat{ au_t}$	95%
-0.63	-0.29	0.05

Figure 6: Histogram of out-of-bag CATE estimates from a causal forest

Reference

- Susan Athey and Stefan Wager. Estimating treatment effects with causal forests: An application. *arXiv* preprint *arXiv*:1902.07409, 2019.
- Guido W Imbens and Donald B Rubin. *Causal inference in statistics, social, and biomedical sciences.* Cambridge University Press, 2015.
- Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1):41–55, 1983.
- Julie Tibshirani, Susan Athey, Stefan Wager, Rina Friedberg, Luke Miner, Marvin Wright, Maintainer Julie Tibshirani, LinkingTo Rcpp, RcppEigen Imports DiceKriging, and GNU SystemRequirements. Package 'grf', 2018.

