

Appunti di

METODI NUMERICI PER LE EDP

per il corso di Ingegneria Matematica tenuto dal Prof. P. Zunino a.a. 2022/2023

A cura di Teo Bonfa

Indice

1	\mathbf{Pre}	Preparazione orale EDP Numerica				
	1.1	Contesto	1			
	1.2	Stima dell'errore in L^2	2			
	1.3	Dimostrazione	2			

Capitolo 1

Preparazione orale EDP Numerica

1.1 Contesto

1. Consideriamo la formulazione debole di un generico problema ellittico posto su un dominio $\Omega \subseteq \mathbb{R}^n$, che si può esprimere tramite il PVA

trovare
$$u \in V$$
: $a(u, v) = F(v) \quad \forall v \in V$

essendo V un opportuno spazio di Hilbert, sottospazio di $H^1(\Omega), a(\cdot, \cdot) : V \times V \to \mathbb{R}$ una forma bilineare continua e coerciva, $F(\cdot) : V \to \mathbb{R}$ un funzionale lineare e limitato. Sotto tali ipotesi il Lemma di Lax-Milgram assicura esistenza e unicità della soluzione u.

2. Sia V_h una famiglia di spazi dipendenti da un parametro positivo h, tali che

$$V_h \subset V$$
, $\dim V_h = N_h < \infty \quad \forall h > 0$

Il problema approssimato assume la forma

trovare
$$u_h \in V_h$$
: $a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$

e viene detto problema di Galerkin.

- 3. Dato che
 - ullet lo spazio V_h è sottospazio chiuso di V spazio di Hilbert, quindi è anch'esso di Hilbert
 - la forma bilineare $a(\cdot,\cdot)$ e il funzionale $F(\cdot)$ sono i medesimi del PVA

allora sono soddisfatte le ipotesi richieste dal $Lemma\ di\ Lax-Milgram$, e possiamo dunque dire che anche la soluzione u_h esiste unica.

- 4. Il metodo agli elementi finiti è un caso particolare di metodo di Galerkin in cui il sottospazio V_h è definito come uno spazio di funzioni continue su Ω , polinomiali a tratti su una partizione di Ω e di grado r = 1, 2, 3, 4 (per r maggiori si usano i metodi spettrali).
- 5. Abbiamo tutti gli ingredienti per enunciare il seguente

Teorema 1.1. Siano $u \in V$ la soluzione esatta del PVA e $u_h \in V_h$ la sua soluzione approssimata tramite il metodo FEM-Galerkin \mathbb{P}^r .

(a) Se $u \in H^{r+1}(\Omega)$ allora vale la seguente stima in norma dell'energia dell'errore:

$$||u - u_h||_{H^1} \le \frac{M}{\alpha} Ch^r |u|_{H^{r+1}}$$
 (1.1)

essendo C una costante indipendente da h e da u.

(b) In generale, se $u\in\mathcal{C}^0(\overline{\Omega})\cap H^{p+1}(\Omega)$ per qualche p>0, allora vale la stima a priori:

$$||u - u_h||_{H^1} \le Ch^s |u|_{H^{s+1}} \qquad \text{con } s = \min\{r, p\}$$
 (1.2)

1.2 Stima dell'errore in L^2

Si può decidere di studiare l'errore solamente nella norma H^0 cioè L^2 . Supponiamo $u \in H^{r+1}(\Omega)$, possiamo subito dire che in norma L^2 vale la seguente stima:

$$\|u - u_h\|_{L^2} \le \|u - u_h\|_{H^1} \le \frac{M}{\alpha} Ch^r |u|_{H^{r+1}}$$

ma questa è una stima non ottimale. Infatti, essendo la norma L^2 meno stringente della precedente, ci si deve aspettare una più elevata velocità di convergenza rispetto ad h.

Con la norma L^2 si guadagna un ordine di convergenza:

TEOREMA 1.2. Siano $u \in V$ la soluzione esatta del PVA e $u_h \in V_h$ la sua soluzione approssimata tramite il metodo FEM-Galerkin \mathbb{P}^r . Se $u \in \mathcal{C}^0(\overline{\Omega}) \cap H^{p+1}(\Omega)$ per qualche p > 0, allora vale la stima a priori:

$$||u - u_h||_{L^2} \le Ch^{s+1} |u|_{H^{s+1}} \qquad \text{con } s = \min\{r, p\}$$
 (1.1)

essendo C una costante indipendente da h e da u.

Dimostriamo il teorema per l'equazione $-\Delta u = f$, ma si può estendere ad operatori ellitici più generali.

1.3 Dimostrazione

Vogliamo trovare una maggiorazione di $||u - u_h||_{L^2} = ||e_h||_{L^2}$ rispetto h.

Prerequisito

Iniziamo menzionando il

LEMMA 1.3 — Regolarità ellittica. Si consideri il problema di Dirichlet omogeneo per l'equazione di Poisson:

$$\begin{cases} -\Delta w = g & \text{in } \Omega \\ w = 0 & \text{su } \partial \Omega \end{cases}$$

con $g \in L^2(\Omega)$. Se $\partial \Omega$ è sufficientemente regolare (e.g., $\partial \Omega$ è una curva di classe \mathcal{C}^2 oppure Ω è un poligono convesso), allora $w \in H^2(\Omega)$ e inoltre $\exists C > 0$ tale che

$$||w||_{H^2} \le C ||g||_{L^2} \tag{1.1}$$

NB: la (1.1) definisce la stabilità del problema $-\Delta u = f$ in H^2 .

Passo I: formula di rappresentazione dell'errore

Applichiamo il trucco di Aubin-Nitsche, ovvero consideriamo il seguente problema di Poisson ausiliario detto problema aggiunto:

$$\begin{cases} -\Delta \phi = e_h & \text{in } \Omega \\ \phi = 0 & \text{su } \partial \Omega \end{cases}$$

La sua formulazione debole è

trovare
$$\phi \in H_0^1(\Omega)$$
: $a(\phi, v) = \int_{\Omega} e_h v \, d\Omega \quad \forall v \in H_0^1(\Omega)$

Con la scelta particolare della funzione test $v \equiv e_h$ si ottiene

$$\|e_h\|_{L^2}^2 = a(\phi, e_h)$$

che è una forma alternativa di rappresentazione dell'errore di approssimazione.

Passo II: fb simmetrica e ortogonalità di Galerkin

Sotto l'ipotesi che $a(\cdot,\cdot)$ sia simmetrica abbiamo

$$\|e_h\|_{L^2}^2 = a(\phi, e_h) \stackrel{\text{sym}}{=} a(e_h, \phi) = \underline{a(u - u_h, \phi)}_{1??}$$

Ricordando la

Proprietà 1.4. Il metodo di Galerkin è fortemente consistente, ovvero

$$a(u - u_h, v_h) = 0 \quad \forall v_h \in V_h$$

possiamo dire che per una certa funzione $\phi_h \in V_h$ da determinare vale

$$a(u - u_h, \phi_h) = 0$$

Ma allora

$$\|e_h\|_{L^2}^2 = a(\phi, e_h) = a(\phi - \phi_h, e_h)$$

Passo III: Cauchy-Schwarz e interpolazione

Applichiamo la disuguaglianza di Cauchy-Schwarz:

$$||e_h||_{L^2}^2 = a(\phi - \phi_h, e_h) = (\nabla(\phi - \phi_h), \nabla e_h)_{L^2}$$

$$\leq ||\nabla(\phi - \phi_h)||_{L^2} ||\nabla e_h||_{L^2} = |e_h|_{H^1} |\phi - \phi_h|_{H^1}$$

Ora consideriamo come $\phi_h = \Pi_h^1 \phi$ cioè l'interpolante FEM \mathbb{P}^1 di ϕ .

NB: è possibile applicare l'operatore di interpolazione Π_h^1 a ϕ perché per il lemma di regolarità ellittica $\phi \in H^2(\Omega)$ e quindi in particolare $\phi \in \mathcal{C}^0(\overline{\Omega})$ per via del fatto che $H^k(\Omega)$ è contenuto in $\mathcal{C}^m(\overline{\Omega})$ se k > m + n/2 (n dimensione di Ω).

Sappiamo che vale il

Теоrема 1.5 — Errore d'interpolazione. Sia $u \in H^{r+1}(\Omega)$ e sia $\Pi_h^r u$ la sua interpolante FEM \mathbb{P}^r . Allora:

$$|u - \Pi_h^r u|_{H^k} \le C_{k,r} h^{r+1-k} |u|_{H^{r+1}}$$
 per $k = 0, 1$

Nel nostro caso $u = \phi$, r = 1, k = 1, quindi la stima è

$$\left|\phi-\Pi_h^1\phi\right|_{H^1}\leq Ch^1\left|\phi\right|_{H^2}$$

da cui

$$\|e_h\|_{L^2}^2 \le |e_h|_{H^1} |\phi - \Pi_h^1 \phi|_{H^1} \le |e_h|_{H^1} Ch |\phi|_{H^2}$$

Passo IV: regolarità ellittica

Sempre per il lemma di regolarità ellittica, la quantità $|\phi|_{H^2}$ può essere ancora maggiorata:

$$|\phi|_{H^2} \le C \|e_h\|_{L^2}$$

Perciò deduciamo che

$$\|e_h\|_{L^2}^{\frac{1}{2}} \le |e_h|_{H^1} Ch \|e_h\|_{L^2} \qquad \Longrightarrow \qquad \|e_h\|_{L^2} \le Ch |e_h|_{H^1}$$

dove C ingloba tutte le costanti apparse nei conti.

A questo punto è sufficiente applicare la (1.2) per ottenere la tesi.