Applied Entomology Agricultural Concerns

A Short History of Humans

- Genus Homo perhaps 1.5-2 mybp
 - Homo sapiens perhaps 200,000 ybp
 - H. s. sapiens (Cro-Magnon Man) perhaps 30-40,000 ybp
- A Hunter/Gatherer history

A Short History of Agriculture

- "The most important event in the cultural evolution of the human species"
- 12,000-18,000 ybp first implements and storage containers found
 - Middle East
 - Egypt
 - Wheat, lentils, chickpeas, dates

What allowed the development of an agricultural society?

- Development of cereals
 - Wheat, rye, barley
 - Corn (maize)
 - Rice
 - Sorghum
- Domestication of herbivorous animals

How did agriculture affect the development of human society?

- As hunter/gathers
 - Mobile
 - Low fertility
 - Active involvement
- An agricultural society
 - Sedentary
 - Increased fertility
 - Few individuals involved in food procurement

Advancements in Agriculture

- 12,000 ybp to 1700s little change
 - Most of human population involved in "production agriculture"
- Recent changes
 - Improved mechanization
 - Improved crop plants
 - The "Green Revolution" N. Borlaug, WSU
 - GMOs
 - Increased energy input

Where do the insects come in?

Insects are direct competitors with humans for "our" food and fiber!

Where do the Conflicts Exist?

- Plants and plant products
 - 30-40% of insects are herbivores
 - Vector plant diseases
- Stored products
- Structures
- Humans and domesticated animals
 - Arthropod vectored diseases
 - Arbodiseases
 - nuisances

Are Insects Inherently Pests?

- What is a Pest?
- Are all insects pests?
 - Subeconomic pests
 - Occasional pests
 - Key, perennial, or severe pests

The Concept of an Economic Injury Level (EIL)

- The lowest number of insects that will cause an economic loss
- •The point at which the loss due to damage is greater than the cost of control.
- Usually measured in number of insects/unit of measure

Economic threshold

 Also called *Action Threshold* – Insect density that would justify intervention

May be a *fixed* economic threshold: e.g. if EIL is 6 insects per plant, intervene at 4 insects per plant;

IPM Options:

- Biological control
 - Physical control
 - Cultural control
- Chemical control

Monitoring insect numbers is the cornerstone of IPM

Approaches to monitoring:

Various methods:

- Direct counts
 - Traps
- Damage estimates
- Prediction: degree-days

Benefits of monitoring:

- Track numbers of pests and natural enemies;
- Able to target insecticide applications at the correct time;
- Enhances conservation of natural enemies;
- Indicate efficacy of treatments.

Biological control:

- Natural enemies of pests cause mortality;
- Can maintain pest population at below-threshold levels

Predators

Parasitoids

Pathogens

l People

Types of BC:

- Import natural enemies establish in field -Classical BC;
- Augmentative releases: inundative or inoculative releases each season;
- "Conservation" BC: depend upon local natural enemies.
- All these approaches require conservation of natural enemies to be effective.

Conserving natural enemies

Reduce insecticide use;
Use softer chemicals;
Manipulate habitats,
e.g. intercropping.

and People

Applied Entomology

Concerns: Biological Control

- Non-target effects?
- "Necessary evils: murder, drugs and biological control" (Lockwood 1999)
- Host specificity testing
- Risk assessment protocols?

Insecticides

- Insecticides as resources:
- Huge financial investment for development;
- Potential for Use or Abuse of this resource;
- Can play an important role in providing options for pest management.

Problems with insecticides:

- Kill or disrupt natural enemies
- Secondary pests
- Residues on produce
- Build-up of resistance insecticide "treadmill"
- Environmental concerns

Build-up of resistance:

Dealing with resistance

Wrong approach:

- Raised concentrations of active ingredients!
- Increased frequency of application!
 <u>Correct approach</u>:
- Reduce reliance on chemicals.
- Alternation of chemical groups.
- Targeted insecticide applications.

Example of rotation program:

Benefits of insecticides:

- Can be effective if used correctly
- Can provide an immediate solution
- New formulations are safer
- Target-specific modes of action are being developed
- Effective chemicals should be conserved as a component of sustainable pest management programs.

Pest Levels Subeconomic Pests

- Amount of damage done by "pest" is not sufficiently costly to manage
 - Costs more to manage a pest than the damage that it does is worth
- Rarely if ever managed

Pest Levels Subeconomic Pests

Time
Insects and People
Applied Entomology

Subeconomic Pests

Insects and Pe

Applied Entomology

© Nick Grishin

Pest Levels Occasional Pests

- Do not usually do enough damage to justify management
- Favorable conditions may place the population above the EIL (may be cyclical over multi-year periods)

Pest Levels Occasional Pests

No. of insects

Time (years)

Occasional Pests

Insects and People Applied Entomology

Desert Locust

Pest Levels Key, Perennial, Severe Pests

- Cause regular and serious damage
- High numbers or low numbers in high value crops
- Aesthetic damage
- Sometimes managed on a prophylactic basis
- Other management often revolves around this pest(s)
- Perhaps 200 species in United States, 2,000 in world

Pest Levels Key, Perennial, Severe Pests

Time

Key Pests

Codling Moth

Insects and People
Applied Entomology

Where Would You Place

- Head Lice
- Mosquitoes that vector malaria
- A beetle that sometimes is found in your box of corn flakes
- Gnats that fly around lights at night

Why do Certain Insects Become Pests?

- Insect population numbers and ecosystem modifications
 - Agricultural monocultures
 - r and K selection

r and K Selection

- Imagine a continuum
 - r-----K
 - r-selected organisms
 - High reproductive capacity, little care of young
 - Often short-lived
 - Rebound quickly after change
 - Many insects
 - Most pests

r and K Selection

- Imagine a continuum
 - r-----K
 - K-selected organisms
 - Low reproductive capacity, great care of young
 - Often long-lived
 - Have difficulty dealing with change
 - Humans, elephants, mammals, few insects

Why do Certain Insects Become Pests?

- Transportation
 - Moved in association with humans and products
 - Anthropogenic
 - Most key pests are "exotic"
 - Released from natural controls

Why do Certain Insects Become Pests?

- Human attitudes
 - Human standards
 - No lice on our children
 - No fleas on our pests
 - No fecal material on our corn
 - Blemish free fruit

Economic/Applied Entomology Managing Pest Populations

The reason I have a job!

How do we Manage Insects?

Appeal to a higher power

The Romans had a festival called Robigalia intended to appease Robigus the god of wheat rust (*Robigus* sp.)

https://en.wikipedia.org/wiki/Robigalia

How do we Manage Insects?

Chemicals

- Early pesticides (insecticides)
 - 1,000BC "pest averting sulfur"
 - 200 BC Bitumen mineral pitch, asphalt
 - 40-90 AD Arsenic
 - 1690 Botanicals including nicotine
 - 1860s inorganic materials

How do we Manage Insects?

- Chemicals
 - Mid-modern pesticides
 - Late 1800s to WWI and WWII
 - Synthetic materials including organics
 - Many natural products were not available
 - Studies of "nerve" poisons

DDT <u>dichlorodiphenyl</u>Trichloroethane

- Formulated in 1873 by Othmar Zeidler
- 1939, Paul Muller was looking for a mothproofing agent, discovered insecticidal properties
- Broad spectrum, residual, low mammalian toxicity
- Saved many lives during WWII and post war
- The "Silver Bullet"

The Demise of DDT

- 1941-1976, 4.5 million tons produced
- "Bioaccumulation" in fat cells
- "Biomagnification" in food chain
- 1962, Rachel Carson wrote Silent Spring
- DDT banned in the late 1960s
- 1970, establishment of US Environmental Protection Agency (EPA)

- Pesticide designed to kill
 - Active vs. inert ingredient
 - Broad-spectrum vs. narrow-spectrum
 - Residual vs. nonresidual
 - $-LD_{50}$ and LC_{50}
 - Lethal dose to kill 50% of a test population

- Mode of action
 - The way in which a pesticide "works"
 - Metabolic poison
 - Physical Poison
 - Nerve Poison

- Types of chemical pesticides
 - Inorganic
 - Do not contain carbon, not "organic"
 - Most with high mammalian toxicity
 - Mercury, tin, boron, arsenic, sulfur, zinc
 - Rarely used today
 - Old orchards in WA

- Types of chemical pesticides
 - Organic
 - Contain carbon as the "backbone" element
 - "Natural" organics refined, naturally occurring
 - Oils, highly refined, can by phytotoxic, often applied at dormant state of plant
 - Botanicals
 - » Derived from plants
 - » Can be natural or synthetic
 - » Various mammalian toxicities
 - » Nicotine
 - » pyrethrum

- Types of chemical pesticides
 - Organic
 - Contain carbon as the "backbone" element
 - "Synthetic" organics "man-made" materials
 - Most of the materials used today
 - Mammalian toxicity varies greatly
 - Can be very specific to certain pests (narrow-spectrum)
 - Thousands of products available

Advantages of Traditional Pesticides

- Can treat a problem while it is in progress
- Killing action is rapid
- Chemical pesticides are generally economical
- Chemical pesticides are generally easy to use

Disadvantages of Traditional Pesticides

- Development of resistance in the pest
- Pest resurgence and pest replacement
- Effects on non-target organisms
- Risks to the applicator

Are there other ways to manage pests?

Insects and People

Applied Entomology

Chemical Modifiers of Development and Behavior

- Based on knowledge of pest physiology
- Disrupt "normal" development
- Practical beginnings in 1960s
- Insect Growth Regulators (IGRs)
 - Juvenile hormone mimics (JH)
 - Molting hormone mimics

Chemicals that Modify Behavioral Patterns

- Pheromones
 - Sex pheromones
 - Can be synthesized
 - Sampling and monitoring
 - Mating disruption or confusion
- Allomones (benefit sender)
- Kairomones (benefit receiver)

Pheromones

Mating Disruption

Sterile Insect Technique (SIT)

- Developed in the 1930s
- Sterile individuals released into the environment in high numbers to mate with fertile individuals
- Geographically isolated pests
- Very costly
- Screwworm fly

Screwworm Fly

Screwworm Fly - Damage

Myiasis causing fly

Screwworm Fly - Distribution

Screwworm Fly - SIT Facilities

Insects and People Applied Entomology

Screwworm Fly - Human Myiasis

Insects and People Applied Entomology

Microbial Control

- The use of "microbes (e.g, bacteria, viruses, fungi) to manage insects
- Little mammalian toxicity
- Bacillus thuringiensis (Bt)
 - Several varieties
 - Little mammalian toxicity
 - Often used in large-scale programs

Microbial Control

Insects and People
Applied Entomology

Genetically Modified Organisms (GMOs)

- Incorporate genetic material from one organisms into another (e.g., endotoxin from Bt)
- Transgenic plants
- Public acceptance has been a problem

Cultural and Physical Management Techniques

- Manipulation of the pest's environment
 - Sanitation
 - Tillage
 - Crop rotation
- Physical removal or containment
 - Screens
 - Fly swatter
 - Hopper dozer

Biological Control - Predators

Applied Entomology

Biological Control - Parasitoids

