

PRESENTATION CONTENTS

- 01) Motivation & Objective
- 02) Methodology
- 03) Results
- 04) Contributions

- Risk, challenges, Future scope
 - Question & Answer

Motivation

- Limited visibility and awareness.
- Growing urban traffic density.
- Risk increases with vehicles.
- Inconsistent cycling infrastructure.

Traffic Accident Fatalities In Germany

Objectives

Design and implement a real-time hazard detection safety system using deep learning and computer vision.

Create an affordable solution using readily available components.

Develop an integrated alert mechanism for immediate cyclist notification.

Achieve accuracy in tracking vehicles exceeding 90 percent in various conditions.

Proposed Topology Illustrating **Smartness Levels** in Bicycle **Assistance** Systems.

Methodology

Methodology

- 1. System-Workflow
- 2. Mechanical Housing Design
- 3. Speed and Alert Detection Mechanism
- 4. Vehicle Detection Integration

System-Workflow

- Data Collection
- Processing
- Data Fusion
- Communication

Data Acquisition and Model training

- Dataset Selection
 - Model Training

Dataset Selection

Model Training Pipeline for Custom Data

Model
Training
Pipeline for
Custom Data

Model Selection and Configuration

- YOLOV5s
- MobileNetV2
- YOLOFastestV2
 - FOMO
- MobileNetV2-FPN
 - YOLOv5Lite

Model Selection and Configuration

Model	Epochs	Batch Size	Learning Rate			(Optimizer
YOLOv5s	100	16	0.0100	SGD	(Stochastic	Gradient	Descent)
MobileNetV2	100	30	0.0001	SGD	(Stochastic	Gradient	Descent)
YOLOFastestV2	100	128	0.0010	SGD	(Stochastic	Gradient	Descent)
FOMO	100	16	0.0100	SGD	(Stochastic	Gradient	Descent)
MobileNetV2-FPN	100	30	0.0010	SGD	(Stochastic	Gradient	Descent)

Object Detection Model Comparison

	DL Model	Speed (FPS)	Accuracy (%)	Hardware Requirement	Suitability for Cyclist Safety	
ſ	YOLOFastestV2	High	Moderate	Low	Excellent	
	YOLOv5sLite	Moderate	High	Moderate	Very Good	
	MobileNetV2	Moderate	High	Moderate	Good	
	MobileNet FPN	Moderate	High	High	Limited	

Mechanical Housing Design

Integrated System Overview

Integrated System Overview

Speed Detection Mechanism

Results

Single Vehicle Detection Test

0.35 confidence accuracy is good for vehicle detection

Real time Detection Test

GUI Overview

Contributions

Contributions

- Advancing Cyclist Safety
- Integration of Affordable Technologies 170 euro
- Practical System Design
- Impact on Road Safety
- Potential for Scalability

Risk, Challenge and future scope

Risk, Challenge

•Technical Challenges:

Resource-Intensive Models Architecture Complexity

•Data Challenges:

Class Imbalance
Dataset Limitations

Operational Challenges:

Model Update and Retraining User Adaptability

Future-Scope

- Integrate more advanced deep learning models
- Additional Sensors
- Smart Alerts
- Integration with mobile apps for route safety and logging incidents.
- Speed up computation and Battery Optimisation.
- Reducing system size.

Conclusion

Conclusion

- Conducted a comparative analysis of various models for development purposes.
- Integrated YOLOFastestV2 for efficient and accurate vehicle detection with low computational requirements.
- Seamlessly combined ultrasonic sensors and the camera module into a compact, reliable unit.
- Designed a robust mechanical housing to ensure durability and ease of maintenance during cycling.

THANKS!

Do you have any questions?

