Infinite sets

Sets A and B have the same cardinality iff there is a bijection from A to B.

f(u)=du is injective and Enjective Proof
Let les By det et even de:
l= de
So f(u)= ke= l Hence f d sijective 5 mps mat f(u) = f(l)

2 le = 2l -> k=l

Hilbert's infinite hotel

If N 3 odd then

$$g(n) = \frac{n-1}{2}$$
 $f(n) = \frac{n-1}{2}$
 $g(n) = -\frac{n}{2}$
 $g(n) = -\frac{n}{2}$

$$(-1)^{\circ}$$

Real numbers: $\{x \in \mathbb{R} \mid 0 < x < 1\}$ and \mathbb{R}^+

$\overline{|\{x \in \mathbb{R} \mid 0 < x < 1\}|}$ and \mathbb{R}

Countable sets

A set that is either finite or has the same cardinality as $\ensuremath{\mathbb{N}}$ is called countable.

 \blacksquare \mathbb{Z}

Countable Sets: $\mathbb Q$

0,1,2,3. - -

Uncountable sets

- A set that is not countable is called **uncountable**.
 - $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$ is uncountable

Cantor's diagonal argument

Suppose for a proof by contradiction that there exists a bijection $f: \mathbb{N}^+ \to S$. Consider decimal representations of f(n), for $n \in \mathbb{N}^+$:

$$f(1) = 0 \underbrace{\begin{pmatrix} f(1) = 0 & f(1) & f(2) = 0 & f(2) &$$

We show that there exists $d \in S$ such that for no $i \in \mathbb{N}^+$ we have f(i) = d.

Let
$$d = 0.d_1 \ d_2 \ d_3 \dots d_n \dots$$
 where
$$d_i = \begin{cases} 2, & \text{if } a_{ii} = 1 \\ 1, & \text{if } a_{ii} \neq 1 \end{cases}$$

Then for every $i \in \mathbb{N}^+$ d is different at position i from f(i). So, for no $i \in \mathbb{N}^+$ we have f(i) = d, so f is not surjective. A contradiction