1 | Lemma

The length of a linearly indpendent list is less than or equal to the length of a spanning list over some vector space V.

2 | Intermediate Result: Span of a linearly independent extension of a linearly independent list has more elements than the span of the original list.

2.1 | Lemma

Given a linearly independent list $v=v_1,\ldots,v_k$ where each vector $v_1,\ldots,v_k\in V$ and another vector v_{k+1} which is linearly independent with v, show that

span
$$(v_1, ..., v_k, v_{k+1})$$

contains elements that are not in

$$span(v_1,\ldots,v_k)$$

TODO: This needs to show that a longer list will have a larger span, not just an extended one.

2.2 | **Proof**

Because v_{k+1} is linearly independent with v, it cannot be written as a linear combination of elements in v. Thus,

$$v_{k+1} \notin \operatorname{span}(v_1, \dots, v_k)$$

However, v_{k+1} must be in the span of the extended list, because we can write v_{k+1} as

$$0v_1 + 0v_2 + \ldots + 0v_k + 1v_{k+1}$$

Thus, the extended list contains atleast one element that the original did not.

3 | **Proof**

Given a spanning list $u=u_1,\ldots,u_j$ and a linearly independent list $v=v_1,\ldots,v_k$, show that the $|u|\geq |v|$. The Linear Dependence Lemma states that while u is linearly dependent, it is possible to remove some vector u_i from u such that the span stays the same. Thus, there exists a linearly independent list b that has the same span as u, aka that also spans V. Because this list can be obtained by removing elements from u, $|b| \leq |u|$.

The linearly independent list v must be shorter than or equal to b in length, because otherwise, span v would have more elements than span b by the intermediate result. Thus, $|v| \le |b| \le |u|$.

ExrOn • 2021-2022 Page 1