Math 1LS3 Week 5: Limits and Continuity

Owen Baker

McMaster University

Oct. 9-12, 2012

This week, we will finish 3.3 and cover 3.4. Next week is 3.5–4.5. Reminder: please carefully read Table 3.3.4 on p.191 for the precise meaning of "limit does not exist".

- Overview
- 2 Limits at Infinity
- 3 Algebra Tricks
- 4 Horizontal Asymptotes
- **5** Long Term Comparisons
- 6 Continuity

Overview

Last week we defined $\lim_{x\to a} f(x)$, and evaluated some limits. Recall:

- For most limits involving decent functions f: use "direct substitution"
- If direct substitution yields e.g. $\frac{17}{\pm\infty}$, the limit is 0
- If direct substitution yields e.g. $\frac{17}{0}$:
 - You probably have a **vertical asymptote** of f
 - Evaluate $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ separately
 - See if you get 17/(small positive) $\to +\infty$ or 17/(small negative) $\to -\infty$
- If direct substitution yields ∞/∞ , 0/0, $\infty-\infty$ (or other "indeterminate forms"):
 - You might have a **hole** or **asympote** of f
 - Try dividing numerator and denominator by "largest" of all terms
 - Try finding and cancelling common factors

This week, we'll focus on these "decent" (continuous) functions.

Limits at Infinity

Here is a graph of arctan(x) (a reflection of tan(x) restricted):

Limits "at infinity" describe long-term behavior.

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \qquad \lim_{x \to -\infty} f(x) = -\frac{\pi}{2}$$

Finite limits at $\pm \infty$ correspond to *horizontal* asymptotes.

Polynomials at Infinity

Theorem

Let P(x) be a nonconstant polynomial with positive leading coefficient.

$$\lim_{x\to+\infty}P(x)=+\infty.$$

Theorem

Let P(x) be a nonconstant polynomial with positive leading coefficient.

If P has even degree, $\lim_{x\to -\infty} P(x) = \infty$.

If P has odd degree, $\lim_{x \to -\infty} P(x) = -\infty$.

Polynomials at infinity

Example

- $\bullet \lim_{t\to\infty} t^5 t^4 + 3 = +\infty,$
- $\bullet \lim_{t\to -\infty} t^5 t^4 + 3 = -\infty,$
- $\bullet \lim_{t\to\infty} t^6 t^3 + 3 = +\infty,$
- $\lim_{t \to -\infty} -2t^5 + t^4 = -* \infty = +\infty$.

Functions that Approach Infinity at Infinity

Here are many functions f(x) with

$$\lim_{x\to\infty}f(x)=\infty.$$

$$2^x \gg x^2 \gg x \gg \sqrt{x} \gg \ln(x)$$

Any exponential eventually beats any polynomial:

This tells us long term behavior of their ratios:

$$\lim_{x \to \infty} \frac{e^x}{15x^4 + 29x^3} = \lim \frac{realbig}{big} = \infty \quad \lim_{x \to \infty} \frac{500x^{999}}{1.000001^x} = \lim \frac{big}{realbig} = 0$$

Functions that Approach Zero at Infinity

Here are many functions g(x) with $\lim_{x\to\infty} g(x) = 0$.

$$e^{-x} \ll 2^{-x} \ll x^{-3} \ll \frac{1}{x} \ll \frac{1}{\sqrt{x}}$$

This tells us long term behavior of their ratios:

$$\lim_{x \to \infty} \frac{e^{-x}}{x^{-2}} = \lim \frac{crazysmall}{small} = 0$$

$$\lim_{x \to \infty} \frac{e^{-x}}{x^{-2}} = \lim \frac{\text{crazysmall}}{\text{small}} = 0 \qquad \qquad \lim_{t \to \infty} \frac{\frac{1}{t}}{\frac{1}{t^2}} = \lim \frac{\text{small}}{\text{crazysmall}} = +\infty$$

Algebra Tricks 2: Dividing by Large Powers of x

Problem

Compute

$$\lim_{t \to -\infty} \frac{t^2 + t - 2}{t^2 - t}$$

Solution

If we plug in, we get $\frac{\infty}{\infty}$. Not defined.

Trick: divide numerator and denominator by leading power of t:

$$\lim_{t \to -\infty} \frac{t^2 + t - 2}{t^2 - t} = \lim_{t \to -\infty} \frac{\frac{t^2 + t - 2}{t^2}}{\frac{t^2 - t}{t^2}} = \lim_{t \to -\infty} \frac{1 - \frac{1}{t} - \frac{2}{t^2}}{1 - \frac{1}{t}} = \frac{1 - 0 - 0}{1 - 0} = 1$$

Limits Problems (i)

To find horizontal asymptotes, compute $\lim_{x \to \pm \infty} f(x)$.

Problem

Find the horizontal asymptotes of:

(i)
$$\frac{\sin(x)}{x}$$
, (ii) e^{-2x^3+3x-6} , (iii) $\coth(x) := \frac{e^x + e^{-x}}{e^x - e^{-x}}$

Solution

$$\lim_{x \to \infty} \frac{\sin(x)}{x} = \lim \frac{bounded}{big} = 0.$$

$$\lim_{x \to -\infty} \frac{\sin(x)}{x} = \lim \frac{bounded}{-biq} = 0.$$

Horizontal asymptote: y = 0 (as $x \to \pm \infty$).

Limits Problems (ii)

To find horizontal asymptotes, compute $\lim_{x \to \pm \infty} f(x)$.

Problem

Find the horizontal asymptotes of:

(i)
$$\frac{\sin(x)}{x}$$
, (ii) e^{-2x^3+3x-6} , (iii) $\coth(x) := \frac{e^x + e^{-x}}{e^x - e^{-x}}$

Solution

$$\lim_{x \to -\infty} e^{-2x^3 + 3x - 6} = e^{\left(\lim_{x \to -\infty} -2x^3 + 3x - 6\right)} = e^{+\infty} = +\infty$$

$$\lim_{x \to \infty} e^{-2x^3 + 3x - 6} = e^{\left(\lim_{x \to -\infty} -2x^3 + 3x - 6\right)} = e^{-\infty} = 0.$$
Horizontal asymptote: $y = 0$ (as $x \to +\infty$ only).

Limits Problems (iii)

To find horizontal asymptotes, compute $\lim_{x \to \pm \infty} f(x)$.

Problem

Find the horizontal asymptotes of:

(i)
$$\frac{\sin(x)}{x}$$
, (ii) e^{-2x^3+3x-6} , (iii) $\coth(x) := \frac{e^x + e^{-x}}{e^x - e^{-x}}$

Solution

$$\lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} \div \frac{e^x}{e^x} = \lim_{x \to \infty} \frac{1 + e^{-2x}}{1 - e^{-2x}} = \frac{1 + 0}{1 - 0} = 1$$

$$\lim_{x \to -\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to -\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} \div \frac{e^{-x}}{e^{-x}} = \lim_{x \to \infty} \frac{e^{2x} + 1}{e^{2x} - 1} = \frac{0 + 1}{0 - 1} = -1$$

Horizontal asymptotes: y = 1 (as $x \to \infty$), y = -1 (as $x \to -\infty$).

Using Limits to Graph

Problem

Graph
$$coth(x) := \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
. [Recall: $\lim_{x \to \infty} coth(x) = 1$, $\lim_{x \to -\infty} coth(x) = -1$]

Solution

The horizontal asymptotes are $y = \pm 1$.

To find the vertical asymptotes, see where denominator is zero and check one-sided limits.

$$\lim_{x \to 0^+} \frac{e^x + e^{-x}}{e^x - e^{-x}} = +\infty, \lim_{x \to 0^-} \frac{e^x + e^{-x}}{e^x - e^{-x}} = -\infty$$

Long Term Comparisons

Suppose $f, g \to \infty$ as $x \to \infty$. Which grows faster in the long term?

Key idea:
$$\frac{\text{smaller}}{\text{bigger}} = \text{small and } \frac{\text{bigger}}{\text{smaller}} = \text{big.}$$

So to compare two amounts: divide either by the other. See what you get.

- If $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$ then $f\gg g$ and $g\ll f$.
 - f grows much faster than g.
 - g grows much slower than f.
- If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$ then $f \ll g$ and $g \gg f$.
 - f grows much slower than g.
 - g grows much faster than f.
- If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 17$ (say), then f&g grow at roughly the same rate.

Long Term Comparisons

Problem

- Which approaches infinity more quickly: $100x^2$ or $x^2 \ln(x)$?
- Which approaches zero more quickly: 2^{-x} or 3^{-x} ?
- Which approaches zero more quickly: e^{-x} or $e^{-(x+1)}$?

To compare f,g, compute $\lim_{x\to\infty} \frac{f(x)}{g(x)}$.

Solution

- $\lim_{x\to\infty} \frac{100x^2}{x^2\ln(x)} = \lim_{x\to\infty} \frac{100}{\ln(x)} = 0$. So $x^2\ln(x)$ approaches infinity more quickly.
- $\lim_{x\to\infty}\frac{2^{-x}}{3^{-x}}=\lim_{x\to\infty}1.5^x=\infty.$ So 3^{-x} approaches zero more quickly.
- $\lim_{x\to\infty} \frac{e^{-x}}{e^{-(x+1)}} = \lim_{x\to\infty} e = e$. So they approach 0 at the same rate.

Long Term Comparisons: A warning

<u>Caution:</u> These few slides are about **long term growth**, i.e. $(x \to \infty)$.

- When $f \gg g$ or $f \ll g$ is written, there is always an (implicit or explicit) *context*.
- e.g. $e^x \gg e^{-x}$ as $x \to \infty$, but $e^{-x} \gg e^x$ as $x \to -\infty$.

Good exercise: list all the basic functions you know $(1/x,\sin(x),\arctan(x),\ln(x))$ and compare them as $x\to\infty$, as $x\to-\infty$, as $x\to0^+$, as $x\to0^-$.

Idea of Continuity

Definition

A *continuous* function is one with a "connected" graph. Fine print: the technical term is arc-connected. Assumes the domain is an interval.

We'll see a more formal definition soon.

Problem

Draw a continuous and a discontinuous function.

Continuous at a Point

Before formally defining continuous, a more basic notion:

Definition

The function f is <u>continuous at the number b</u> if:

- 2 f(b) exists (i.e., b is in the domain of f); and
- $\lim_{x \to b} f(x) = f(b)$

Problem

Find examples of functions that satisfy:

- 1 but not 2
- 2 but not 1
- 1 and 2 but not 3

The signum function

The signum function tells you if a number has a plus or minus sign.

Problem

Where is the signum function continuous?

$$sgn(x) := \begin{cases} 1 & if x > 0 \\ 0 & if x = 0 \\ -1 & if x < 0 \end{cases}$$

Solution

Everywhere except at x = 0.

Note: $|x| = \operatorname{sgn}(x) \cdot x$. In particular, |x| = -x if x < 0. If this is counterintuitive: HW– convince yourself it's true.

Continuous on an Open Interval

Definition

f is continuous on (a, b) if f is continuous at each point of (a, b).

Note: $\overline{a \text{ can be } -\infty \text{ and/or } b \text{ can be } +\infty.}$

Problem

- Is f(x) = 1/x continuous on $(-\infty, \infty)$?
- Is $g(x) = \tan(x)$ continuous on $(-\pi/2, \pi, 2)$?

Solution

- No. f is not continous at 0 because f(0) is not defined.
- Yes, by the direct substitution rule. (Since domain contains $(-\pi/2, \pi/2)$.)

Continuous on a Closed Interval

When checking continuity on [c, d], only require *endpoint continuity* at endpoints:

Definition

The function f is continuous at the left endpoint c if:

- 2 f(c) exists (i.e., c is in the domain of f); and
- $\lim_{x\to c^+} f(x) = f(c)$

Definition

The function f is continuous at the right endpoint d if:

- 2 f(d) exists (i.e., d is in the domain of f); and
- $\lim_{x\to d^-} f(x) = f(d)$

Lots of Functions are Continuous

Many "basic" functions are continuous at every point of their domains:

• e^x , $\ln(x)$, $\sin(x)$, $\cos(x)$, |x|, x, constants

Adding, subtracting, multiplying continuous functions yields continuous functions.

Dividing continuous functions yields a function continuous on its domain.

If f is continuous at a and g is continuous at f(a) then $g \circ f$ is continuous at a.

Moral: most functions you write down by a single rule are continuous on their domains.

Building up Continuous Functions

Problem

Where is tan(x) continuous? cot(x)? tan(x) cot(x)? $tan(x^2)$?

Answer: on their domains. (Why?)

Solution

- tan(x) is continuous everywhere **except**
 - $\dots, -\frac{5\pi}{2}, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$
- cot(x) is continuous everywhere **except** ..., -2π , $-\pi$, 0, π , 2π ,
- tan(x) cot(x) is continuous everywhere **except**
- $\dots, -\frac{5\pi}{2}, -2\pi, -\frac{3\pi}{2}, -\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \frac{5\pi}{2}, \dots$
- $tan(x^2)$ is continuous everywhere **except**
 - $-\sqrt{5\pi/2}, -\sqrt{3\pi/2}, -\sqrt{\pi/2}, \sqrt{\pi/2}, \sqrt{3\pi/2}, \sqrt{5\pi/2}, \dots$

Piecewise-Defined Functions

Problem

Is there a number c such that f is continuous everywhere? What is it? Same question for g.

$$f(x) = \begin{cases} x^2 + 2 & x < 0 \\ x - c & x \ge 0 \end{cases}$$

$$g(x) = \begin{cases} x^2 + 2 & x < 0 \\ c & x = 0 \\ x + 3 & x > 0 \end{cases}$$

Solution

For f, YES. Take c = -2.

For
$$g$$
, $\lim_{x\to 0^-} g(x) = 2 \neq 3 = \lim_{x\to 0^+} g(x)$, so NO.

Input and Output Precision

Consider the updating function $b_{t+1} = 2b_t$, t in days.

Problem

We need to know tomorrow's population to within 100,000 bacteria. We measure the current value and find 2 million bacteria. What do we predict for tomorrow? How accurate must our measurement be?

- 100,000 is called the output tolerance.
- 50,000 is called the input tolerance.
- Fancy definition of continuous function: for every input value and every desired output tolerance, there is a corresponding input tolerance that guarantees the desired output tolerance.
- What happens at a jump discontinuity?

Tangential remark: scientists sometimes use **the derivative** to approximate the (output tolerance : input tolerance) ratio.