

Estructuras algebraicas para la computación I.T. Informática de Gestión

27 de junio de 2011

Apellidos y Nombre:	DNI:
Apomado y Hombier	

- 1. a) Hallar un natural n para que $(D_n, |)$ sea isomorfo a $(\mathcal{P}(\{1, 2, 3, 4, 5\}), \subseteq)$.
 - b) Dada el álgebra de Boole ($\mathcal{P}(\{1,2,3,4,5\}),+,\cdot,-$). ¿Es $\{1,2,3,4\}.\{1,2,4,5\}$ la forma normal conjuntiva de $\{1,2\}$? Razonar la respuesta.
- 2. Sea el código de grupo $C\colon \mathbb{Z}_2^2 \to \mathbb{Z}_2^6$. Se pide:
 - a) Determinar las palabras del código sabiendo que $011001\ \mathrm{y}\ 100110$ pertenecen al código.
 - b) Determinar el número máximo de errores que detecta y corrige este código.
 - c) Hallar la matriz generadora de código y la matriz de verificación de paridad correspondiente.
 - d) Detectar y corregir los posibles errores cometidos y decodificar la palabra recibida 011101.
- 3. Sean $(R, +, \cdot)$ y $(R', *, \diamond)$ dos anillos. En $R \times R'$ se consideran las siguientes operaciones:

$$(r,r')\oplus (s,s')=(r+s,r*s)$$

$$(r,r')\otimes(s,s')=(r\cdot s,r\diamond s)$$

Demostrar que $(R \times R', \oplus, \otimes)$ es un anillo.

4. Dado el espacio vectorial \mathbb{R}^3 y los subespacios definidos de la siguiente forma

$$U = <\{(2,0,-1),(1,2,0),(0,4,1)\}>$$
 y

$$W = \{(x,y,z) \in \mathbb{R}^3 \mid \ x = 0, \ y + z = 0 \}$$

Se pide:

- a) Dar unas bases para U, W y $U \cap W$.
- b) Dar las ecuaciones cartesianas de $oldsymbol{U} + oldsymbol{W}$.
- 5. Dada la aplicación lineal $f\colon \mathbb{R}^4 o \mathbb{R}^2$ definida de la siguiente forma

$$f(x, y, z, t) = (x + y - 2z, y + 3t)$$

se pide:

- a) Obtener la matriz asociada a la aplicación lineal respecto de la base canónica.
- b) Obtener el núcleo y la imagen de la aplicación, así como sus ecuaciones cartesianas y paramétricas y una base de los mismos. ¿Es f inyectiva y/o sobreyectiva?
- c) ¿Pertenece (1,2) al subespacio imagen?, ¿y (0,0,0,0) al núcleo?
- 6. Diagonalice ortogonalmente dando una matriz diagonal y una matriz de paso ortogonal la siguiente matriz

$$\left(\begin{array}{ccc}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)$$