Item Based KNN Collaborative Filtering

J. Milmore

University of Massachusetts Amherst Department of Mathematics and Statistics

April 6, 2020

Item Based CF

Memory Based Collaborative Filtering: Predict a rating for user u and movie m by using previous ratings

ltem Based: sim(m, m')

Problem Formulation

Rating Matrix

- Rows represent ratings given to each movie
- Columns represent ratings given by each user
- $ightharpoonup R_{m,u}$ represents rating given to movie m by user u

$$R = \begin{array}{c} u_1 & u_2 & u_* \\ m_* & 2 & 5 & ? \\ m_2 & 3 & ? & 3 \\ m_4 & ? & 4 & 2 \\ m_5 & 2 & 5 & ? \end{array}$$

Goal

Predict R_{m_*,u_*} , the missing rating for user u_* and movie m_* using the existing ratings

Method

▶ Filter rating matrix to just contain rows of movies rated by u_* , along with the movie of interest, m_*

Method (Cont.)

▶ Replace missing ratings by the average rating of the user

Method (Cont.)

Adjust each rating by the average rating of the user

We will further refer to this adjusted rating matrix simply as R

Find the k movies most **similar** to m_* and **predict** (m_*, u_*) to be the weighted average of the ratings given by u_* to these k movies

Scoring Similar Movies

Adjusted Cosine Similarity Metric

$$sim(m_1, m_2) = \frac{\sum_{u \in A} (R_{m_1, u} - \bar{R}_u) (R_{m_2, u} - \bar{R}_u)}{\sum_{u \in A} (R_{m_1, u} - \bar{R}_u)^2 \sum_{u \in A} (R_{m_2, u} - \bar{R}_u)^2}$$

Where $A=U(m_1)\cap U(m_2)=\{u:\ u\ \text{has rated both}\ m_1\ \text{and}\ m_2\ \}$

Calculating Similarity

lacktriangle Want to calculate the similarity between m_* and all

$$m_i \in M(u_*)$$

▶ Break into subproblems. For each $m_i \in M(u_*)$

- 1. Calculate $\sum_{u \in A} (R_{m_*,u} \bar{R_u})(R_{m_i,u} \bar{R_u})$
- 2. Calculate $\sum_{u \in A} (R_{m_*,u} \bar{R_u})^2$
- 3. Calculate $\sum_{u \in A} (R_{m_i,u} \bar{R_u})^2$

Step 1

- ightharpoonup Calculate $\sum_{u\in A}(R_{m_*,u}-ar{R_u})(R_{m_i,u}-ar{R_u})$
 - lacktriangle Multiply adjusted rating matrix by row vector of ratings for m_*

Resulting Vector

$$\begin{array}{l} m_*, m_* \\ m_1, m_* \\ m_2, m_* \\ m_3, m_* \end{array} \begin{pmatrix} (2 - \bar{u_1})^2 + (5 - \bar{u_2})^2 \\ (3 - \bar{u_1})(2 - \bar{u_1}) \\ (4 - \bar{u_2})(5 - \bar{u_2}) \\ (3 - \bar{u_1})(2 - \bar{u_1}) \end{pmatrix}$$

- ► Each entry is the sum of products of adjusted ratings between m_* and $m_i \in M(u_*)$
- ▶ The only movie ratings considered are from users that have rated both m_* and m_i
- ► Each entry equal to $\sum_{u \in A} (R_{m_*,u} \bar{R_u})(R_{m_i,u} \bar{R_u})$

Step 2

Calculate $\sum_{u \in A} (R_{m_*,u} - \bar{R_u})^2$

- ► Transpose the adjusted rating matrix: R^T
- ► Transform the vector of ratings m_* into a matrix of same shape as R^T such that each column represents m_* : M_*
- ► Multiply M_* by R^T elementwise, then divide by R^T elementwise

$$M_{*} \quad \begin{array}{ccccc} & m_{*} & m_{*} & m_{*} & m_{*} \\ u_{1} & 2 - \bar{u_{1}} & 2 - \bar{u_{1}} & 2 - \bar{u_{1}} & 2 - \bar{u_{1}} \\ 5 - \bar{u_{2}} & 5 - \bar{u_{2}} & 5 - \bar{u_{2}} & 5 - \bar{u_{2}} \\ u_{*} & 0 & 0 & 0 \end{array} \right) *$$

$$R^{T} = \begin{pmatrix} u_{1} & m_{1} & m_{2} & m_{3} \\ u_{1} & 2 - \bar{u_{1}} & 3 - \bar{u_{1}} & 0 & 3 - \bar{u_{1}} \\ 5 - \bar{u_{2}} & 0 & 4 - \bar{u_{2}} & 0 \\ u_{3} & 0 & 3 - \bar{u_{*}} & 2 - \bar{u_{*}} & 4 - \bar{u_{*}} \end{pmatrix}$$

In the resulting matrix, entry (u_i, m_i) is the adjusted rating of user u_i on movie m_* such that u_i has rated both m_i and m_* , 0 otherwise.

Now multiply the row vector of ratings for movie m_∗ by the resulting matrix

$$\begin{pmatrix} m_* \sim m_* & m_* \sim m_1 & m_* \sim m_2 & m_* \sim m_3 \\ u_1 & (2 - \bar{u_1} & 5 - \bar{u_2} & 0) * & u_2 & (5 - \bar{u_2} & 0 & 5 - \bar{u_2} & 0 \\ u_* & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} (2-\bar{u_1})^2 + (5-\bar{u_2})^2 & (2-\bar{u_1})^2 & (5-\bar{u_2})^2 & (2-\bar{u_1})^2 \end{pmatrix}$$

Resulting Vector

- ► Each entry represents the sum of squares of the adjusted ratings of m_* given by users that have rated both m_* and m_i
- ▶ Each entry equal to $\sum_{u \in A} (R_{m_*,u} \bar{R_u})^2$

Step 3

Calculate $\sum_{u \in A} (R_{m_i,u} - \bar{R_u})^2$

- ▶ Transform the vector of ratings m_* into a matrix of same shape as R^T such that each column represents m_* : M_*
- \triangleright Transpose the adjusted rating matrix: R^T
- Multiply R^T by M_{*} elementwise, then divide by M_{*} elementwise

$$R_T = \begin{array}{ccccc} & m_* & m_1 & m_2 & m_3 \\ u_1 & 2 & 0 & 3 - \bar{u_1} \\ u_2 & 5 - \bar{u_2} & 0 & 4 - \bar{u_2} & 0 \\ u_* & 0 & 3 - \bar{u_*} & 2 - \bar{u_*} & 4 - \bar{u_*} \end{array} \right) *$$

$$M_{*} \quad \begin{array}{ccccc} m_{*} & m_{*} & m_{*} & m_{*} \\ u_{1} & 2 - \bar{u_{1}} & 2 - \bar{u_{1}} & 2 - \bar{u_{1}} & 2 - \bar{u_{1}} \\ 5 - \bar{u_{2}} & 5 - \bar{u_{2}} & 5 - \bar{u_{2}} & 5 - \bar{u_{2}} \\ u_{*} & 0 & 0 & 0 \end{array} \right) *$$

In the resulting matrix, entry (u_i, m_i) is the adjusted rating of user u_i on movie m_i such that u_i has rated both m_i and m_* , 0 otherwise.

Now multiply the rating matrix by the above matrix

Resulting Matrix

- ▶ Entries along the diagnal represent the sum of squares of the adjusted ratings of m_i given by users that have rated both m_* and m_i
- lacktriangle Entries along the diagnal represent $\sum_{u\in A}(R_{m_i,u}-ar{R}_u)^2$

Prediction

- Able to calculate $sim(m_*, m_i)$ for all $m_i \in M(u_*)$ in a few simple matrix operations
- ▶ For all $m_i \in M(u_*)$
 - ▶ Step 1 provides us $\sum_{u \in A} (R_{m_*,u} \bar{R_u})(R_{m_i,u} \bar{R_u})$
 - ► Step 2 proviedes us $\sum_{u \in A} (R_{m_*,u} \bar{R_u})^2$
 - Step 3 providees us $\sum_{u \in A} (R_{m_i,u} \bar{R}_u)^2$ along the diagnals of a matrix
 - ► Combine to get $sim(m_*, m_i) = \frac{\sum_{u \in A} (R_{m_*, u} \bar{R}_u)(R_{m_i, u} \bar{R}_u)}{\sum_{u \in A} (R_{m_*, u} \bar{R}_u)^2 \sum_{u \in A} (R_{m_i, u} \bar{R}_u)^2}$
- Now can choose the k movies most similar to m_* (that are rated by u_*) to predict R_{m_*,u_*}

Prediction

Predict rating of user u for movie m by taking weighted average of the ratings given by the k movies most similar to m that have rating from u.

$$P_{m,u} = \frac{\sum_{m' \in N_u^K(m)} R_{m',u} sim(m,m')}{\sum_{m' \in N_u^K(m)} |sim(m,m')|}$$

 $N_u^K(m) = \{m' : m' \text{ belongs to the } k \text{ most similar movies of } m$ and u has rated $m'\}$