2 6 FEB 2001 PCT/JP99/04552

1/17

SEQUENCE LISTING

<110> FUSO PHARMACEUTICAL INDUSTRIES, LTD.

<120> Novel Collectin

<130> 99P147W0

<150> JP 10-237611

<151> 1998-08-24

<160> 29

<210> 1

<211> 2024

<212> DNA

<213> Homo Sapiens

<220>

<221> CDS

<222> (670).. (1695)

<400> 1

gtcacgaatc	tgcagcaaga	taccagcgtg	$\tt ctccagggca$	atctgcagaa	ccaaatgtat	60
tctcataatg	tggtcatcat	gaacctcaac	aacctgaacc	tgacccaggt	gcagcagagg	120
aacctcatca	cgaatctgca	gcggtctgtg	gatgacacaa	gccaggctat	ccagcgaatc	180
aagaacgact	ttcaaaatct	gcagcaggtt	tttcttcaag	ccaagaagga	cacggattgg	240
ctgaaggaga	aagtgcagag	cttgcagacg	ctggctgcca	acaactctgc	gttggccaaa	300
gccaacaacg	acaccctgga	ggatatgaac	agccagctca	actcattcac	aggicagaig	360

														•		
gaga	aaca	tca (ccac	tatc	tc to	caag	ccaa	c ga	gcag	aacc	tga	aaga	c c t	gcag	gact	ta 420
caca	aaaga	atg	cagag	gaata	ag a	acag	ccat	c aa	gitc	aacc	aac	t gga	gga	acgo	ttcc	ag 480
ctct	tttg	aga (cgga	tatts	gt ga	aaca	tcat	t ag	caat	atca	gtt	acac	agc	ccac	cacc	tg 540
cgga	acgc	tga (ccago	caato	et a	aatg	aagt	c ag	gacc	actt	gca	caga	tac	cctt	acca	naa 600
caca	acaga	atg	atct	gacc	tc c	ttga	ataa	t ac	cctg	gcca	aca	tccg	ttt	ggat	tctg	gtt 660
tcto	ctcag	gg a	tg ca	aa ca	aa ga	at t	tg a	tg a	gg t	cg a	gg t	ta g	ac a	ict g	gaa g	gta 71
		Me	et Gl	n Gl	n As	p Le	eu Me	t Ar	g Se	r Ar	g Le	u As	p Tł	nr G	lu Va	ıl
			1				5				1	0				
gcc	aac	ίία	tca	gţg	āīt	aīg	gaa	gaa	aīg	aag	сīа	gī a	gac	tco	aag	g 75!
Ala	Asn	Leu	Ser	Val	Ile	Met	Glu	Glu	Met	Lys	Leu	Val	Asp	Ser	Lys	
15					20					25					30	
cat	ggt	cag	ctc	atc	aag	aat	t t t	aca	a t a	c t a	caa	ggt	сса	cce	ggg	80′
His	Gly	Gln	Leu	He	Lys	Asn	Phe	Thr	Ile	Leu	Gln	Gly	Pro	Pro	Gly	
				35					40					45		
ссс	agg	ggt	cca	aga	ggt	gac	aga	gga	tcc	cag	gga	ссс	cct	ggo	cca	a 85
Pro	Arg	Gly	Pro	Arg	Gly	Asp	Arg	Gly	Ser	Gln	Gly	Pro	Pro	Gly	Pro	
	•		50					55					60			
ac t	ggc	aac	aag	gga	cag	aaa	gga	gag	aag	ggg	gag	cct	gga	a cca	cct	90
Thr	Gly	Asn	Lys	Gly	Gln	Lys	Gly	Glu	Lys	Gly	Glu	Pro	Gly	Pro	Pro	
		65					70					75		-		
ggc	cct	gcg	ggt	gag	aga	ggc	cca	att	gga	cca	gc t	ggt	ccc	ccc	gga	a 95
Gly	Pro	Ala	Gly	Glu	Arg	Gly	Pro	He	Gly	Pro	Ala	Gly	Pro	Pro	Gly	
	80					85					90					
gag	cgt	ggc	ggc	aaa	gga	tct	aaa	ggc	tcc	cag	ggc	ccc	aaa	a ggo	tco	99
Glu	Arg	Gly	Gly	Lys	Gly	Ser	Lys	Gly	Ser	Gln	Gly	Pro	Lys	Gly	Ser	
95					100					105					110	
cgt	ggt	tcc	cct	ggg	aag	ccc	ggc	cct	cag	ggc	ссс	agt	ggg	g gao	c cca	a 104
Arg	Gly	Ser	Pro	Gly	Lys	Pro	Gly	Pro	Gln	Gly	Pro	Ser	Gly	Asp	Pro	
				115					120					105		

ggc	ссс	ccg	ggc	cca	cca	ggc	aaa	gag	gga	ctc	ссс	ggc	сct	cag	ggc	1095
Gly	Pro	Pro	Gly	Pro	Pro	Gly	Lys	Glu	Gly	Leu	Pro	Gly	Pro	Gln	Gly	
			130					135					140			
c c t	c c t	ggc	ttc	cag	gga	ctt	cag	ggc	acc	gtt	ggg	gag	cct	ggg	ggtg	1143
Pro	Pro	Gly	Phe	Gln	Gly	Leu	Gln	Gly	Thr	Val	Gly	Glu	Pro	Gly	Val	
		145					150					155				
cc t	gga	c c t	cgg	gga	ctg	cca	ggc	ttg	cct	ggg	gta	cca	ggo	ate	д сса	1191
Pro	Gly	Pro	Arg	Gly	Leu	Pro	Gly	Leu	Pro	Gly	Val	Pro	Gly	Met	Pro	
	160					165					170					
ggc	ссс	aag	ggc	ссс	ссс	ggc	cct	c c t	ggc	cca	t c a	gga	gce	ggtg	ggtg	1239
Gly	Pro	Lys	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Pro	Ser	Gly	Ala	Val	Val	
175		•			180					185					190	
ссс	ctg	gcc	ctg	cag	aat	gag	cca	acc	ccg	gca	ccg	gag	gac	aat	ggc	1287
Pro	Leu	Ala	Leu	Gln	Asn	Glu	Pro	Thr	Pro	Ala	Pro	Glu	Asp	Asn	Gly	
				195					200					205		
tgc	ccg	c c t	cac	tgg	aag	aac	ttc	aca	gac	aaa	tgc	tac	tat	ttt	t tca	1335
Cys	Pro	Pro	His	Trp	Lys	Asn	Phe	Thr	Asp	Lys	Cys	Tyr	Tyr	Phe	Ser	
			210					215					220			
gtt	gag	aaa	gaa	att	ttt	gag	gat	gca	aag	ctt	t t c	tgt	gaa	a gao	c aag	1383
Val	Glu	Lys	Glu	He	Phe	Glu	Asp	Ala	Lys	Leu	Phe	Cys	Glu	Asp	Lys	
		225					230					235				
tct	tca	cat	ctt	gtt	ttc	a t a	aac	ac t	aga	gag	gaa	cag	, caa	ı tgg	g ata	1431
Ser	Ser	His	Leu	Val	Phe	Ile	Asn	Thr	Arg	Glu	Glu	Gln	Gln	Trp	Ile	
	240					245					250					
aaa	aaa	cag	atg	gta	ggg	aga	gag	agc	cac	t gg	ato	ggo	cto	c aca	a gac	1479
Lys	Lys	Gln	Met	Val	Gly	Arg	Glu	Ser	His	Trp	Ile	Gly	Leu	Thr	Asp	
255					260					265					270	
t c a	gag	cgt	gaa	aat	gaa	t gg	aag	tgg	ctg	gat	ggg	g aca	tc	t cca	a gac	1527
Ser	Glu	Arg	Glu	Asn	Glu	Trp	Lys	Trp	Leu	Asp	Gly	Thr	Ser	Pro	Asp	

	275	280	285
tac aaa aat tg	g aaa gct gga cag ccg	gat aac tgg ggt ca	t ggc cat 1575
Tyr Lys Asn Trp	Lys Ala Gly Gin Pro	Asp Asn Trp Gly His	Gly His
290	295	300	1
ggg cca gga gaa	a gac tgt gct ggg ttg	g att tat gct ggg ca	g tgg aac 1623
Gly Pro Gly Glu	ı Asp Cys Ala Gly Leu	lle Tyr Ala Gly Gln	Trp Asn
305	310	315	
gat ttc caa tg	t gaa gac gtc aat aac	ttc att tgc gaa aa	a gac agg 1671
Asp Phe Gln Cys	s Glu Asp Val Asn Asn	Phe Ile Cys Glu Lys	Asp Arg
320	325	330	
gag aca gta cta	g tca tct gca tta taa	eggactg tgatgggatc	acatgagcaa 1725
Glu Thr Val Leu	ı Ser Ser Ala Leu		•
335	340		
attttcagct ctc	aaaggca aaggacactc ct	ttctaatt gcatcacctt	ctcatcagat 1785
tgaaaaaaaa aaa	agcactg aaaaccaatt ac	tgaaaaaa aattgacagc	tagtgttttt 1845
taccatccgt cat	tacccaa agacttggga ac	ctaaaatgt tccccagggt	gatatgctga 1905
ttttcattgt gca	catggac tgaatcacat ag	gatteteet eegteagtaa	ccgtgcgatt 1965
atacaaatta tgt	cticcaa agtaiggaac ac	ctccaatca gaaaaaggtt	atcatcccg 2024

<210> 2

<211> 547

<212> PRT

<213> Homo Sapiens

<220>

<223> Deduced Amino Acid Sequence of Novel Collectin from Nucleotide Sequence.

<400> 2

Met	Tyr	Ser	His	Asn	Val	Val	Ile	Met	Asn	Leu	Asn	Asn	Leu	Asn	Leu
1				5					10					15	
Thr	Gln	Val	Gln	Gln	Arg	Asn	Leu	Ile	Thr	Asn	Leu	Gln	Arg	Ser	Val
			20					25					30		
Asp	Asp	Thr	Ser	Gln	Ala	He	Gln	Arg	Ile	Lys	Asn	Asp	Phe	Gln	Asn
		35					40					45			
Leu	Gln	Gln	Val	Phe	Leu	Gln	Ala	Lys	Lys	Asp	Thr	Asp	Trp	Leu	Lys
	50					55					60				
Glu	Lys	Val	Gln	Ser	Leu	Gln	Thr	Leu	Ala	Ala	Asn	Asn	Ser	Ala	Leu
65					70					75					80
Ala	Lys	Ala	Asn	Asn	Asp	Thr	Leu	Glu	Asp	Me t	Asn	Ser	Gln	Leu	Asn
				85					90					95	
Ser	Phe	Thr	Gly	Gln	Met	Glu	Asn	Ile	Thr	Thr	Ile	Ser	Gln	Ala	Asn
			100					105					110		
Glu	Gln	Asn	Leu	Lys	Asp	Leu	Gln	Asp	Leu	His	Lys	Asp	Ala	Glu	Asn
		115					120					125			
Arg	Thr	Ala	lle	Lys	Phe	Asn	Gln	Leu	Glu	Glu	Arg	Phe	Gln	Leu	Phe
	130					135		,			140				
Glu	Thr	Asp	Ile	Val	Asn	Ile	Ile	Ser	Asn	Ile	Ser	Tyr	Thr	Ala	His
145					150					155					160
His	Leu	Arg	Thr	Leu	Thr	Ser	Asn	Leu	Asn	Glu	Val	Arg	Thr	Thr	Суѕ
				165					170					175	
Thr	Asp	Thr	Leu	Thr	Lys	His	Thr	Asp	Asp	Leu	Thr	Ser	Leu	Asn	Asr
			180					185					190		
Thr	Leu	Ala	Asn	Ile	Arg	Leu	Asp	Ser	Val	Ser	Leu	Arg	Met	Gln	Glr
		195					200					205			
Asp	Leu	Met	Arg	Ser	Arg	Leu	Asp	Thr	Glu	Val	Ala	Asn	Leu	Ser	Val
	210					215					220				
He	Met	Glu	Glu	Met	Lvs	Len	Val	Asp	Ser	Lvs	His	Glv	Gln	Len	116

225					230					235					240
Lys	Asn	Phe	Thr	Ile	Leu	Gln	Gly	Pro	Pro	Gly	Pro	Arg	Gly	Pro	Arg
				245					250					255	
Gly	Asp	Arg	Gly	Ser	Gln	Gly	Pro	Pro	Gly	Pro	Thr	Gly	Asn	Lys	Gly
÷			260					265					270		
Gln	Lys	Gly	Glu	Lys	Gly	Glu	Pro	Gly	Pro	Pro	Gly	Pro	Ala	Gly	Glu
		275					280					285			
Arg	Gly	Pro	He	Gly	Pro	Ala	Gly	Pro	Pro	Gly	Glu	Arg	Gly	Gly	Lys
	290					295					300				
Gly	Ser	Lys	Gly	Ser	Gln	Gly	Pro	Lys	Gly	Ser	Arg	Gly	Ser	Pro	Gly
305					310					315					320
Lys	Pro	Gly	Pro	Gln	Gly	Pro	Ser	Gly	Asp	Pro	Gly	Pro	Pro	Gly	Pro
				325					330					335	
Pro	Gly	Lys	Glu	Gly	Leu	Pro	Gly	Pro	Gln	Gly	Pro	Pro	Gly	Phe	Gln
			340					345					350		
Gly	Leu	Gln	Gly	Thr	Val	Gly	Glu	Pro	Gly	Val	Pro	Gly	Pro	Arg	Gly
		355					360					365			
Leu	Pro	Gly	Leu	Pro	Gly	Val	Pro	Gly	Met	Pro	Gly	Pro	Lys	Gly	Pro
	370					375					380				
Pro	Gly	Pro	Pro	Gly	Pro	Ser	Gly	Ala	Val	Val	Pro	Leu	Ala	Leu	Gln
385					390					395					400
Asn	Glu	Pro	Thr	Pro	Ala	Pro	Glu	Asp	Asn	Gly	Cys	Pro	Pro	His	Trp
				405					410					415	
Lys	Asn	Phe	Thŗ	Asp	Lys	Cys	Tyr	Tyr	Phe	Ser	Val	Glu	Lys	Glu	Пe
			420					425					430		
Phe	Glu	Asp	Ala	Lys	Leu	Phe	Cys	Glu	Asp	Lys	Ser	Ser	His	Leu	Val
		435					440					445			
Phe	Ile	Asn	Thr	Arg	Glu	Glu	Gln	Gln	Trp	Ile	Lys	Lys	Gln	Me t	Val
	450					455					460				

Gly Arg Glu Ser His Trp Ile Gly Leu Thr Asp Ser Glu Arg Glu Asn 465 470 475 480

Glu Trp Lys Trp Leu Asp Gly Thr Ser Pro Asp Tyr Lys Asn Trp Lys
485
490
495

Ala Gly Gln Pro Asp Asn Trp Gly His Gly His Gly Pro Gly Glu Asp 500 505 510

Cys Ala Gly Leu Ile Tyr Ala Gly Gln Trp Asn Asp Phe Gln Cys Glu 515 520 525

Asp Val Asn Asn Phe Ile Cys Glu Lys Asp Arg Glu Thr Val Leu Ser 530 535 540

Ser Ala Leu

545

<210> 3

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Modified Consensus Sequence of collectins Hybridizable with Novel
Collectin.

<400> 3

Glu Lys Cys Val Glu Met Tyr Thr Asp Gly Lys Trp Asn Asp Arg Asn

25

1 5 10 15

Cys Leu Gln Ser Arg Leu Ala Ile Cys Glu Phe

20

<210> 4

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Reverse Primer for Screening a Novel Collectin.

<400> 4

caatctgatg agaaggtgat g

21

<210> 5

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Forward Primer for Screening a Novel Collectin.

<400> 5

acgagggct ggatgggaca t

21

<210> 6

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Consensus sequence of three collectins which were reported heretofore.

<400> 6

Glu Asp Cys Val Leu Leu Leu Lys Asn Gly Gln Trp Asn Asp Val Pro

1

5

10

15

Cys Ser Thr Ser His Leu Ala Val Cys Glu Phe

20

25

<210> 7

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223 M13 Universal Primer Sequence for Sequencing.

<400> 7

cgacgttgta aaacgacggc cagt

24

<210> 8

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> M13 Reverse Primer Sequence for Sequencing.

⟨400⟩ 8

caggaaaca gctatgac

17

<210> 9

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Sequence of a λ gt11 Reverse Primer for Sequencing.

〈400〉 9

ttgacaccag accaactggt aatg

24

<210> 10

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

 $\ensuremath{\text{\sc def}}\xspace 223\ensuremath{\text{\sc Sequence}}\xspace$ Sequence of a $\lambda\,gt11$ Forward Primer for Sequencing.

<400> 10

ggtggcgacg actcctggag cccg

24

<210> 11

<211> 21

<212> DNA-

<213> Artificial Sequence

<220>

<223 Sequence of a Primer for Screening a Novel Collectin.

<212> DNA

<400> 11	
cgtgaaaatg aatggaagtg g	21
<210> 12	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Sequence of a Primer for Screening a Novel Collectin.	
<400> 12	
ttttatccat tgctgttcct c	21
<210> 13	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Sequence of a Primer for Sequencing a Novel Collectin.	
⟨400⟩ 13	
ctggcagtcc ccgaggtcca g	21
⟨210⟩ 14	
<211> 21	

<213> Artificial Sequence

<220>

<223 Sequence of a Primer for Sequencing a Novel Collectin.

<400> 14

gctggtcccc ccggagagcg t

21

<210> 15

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a 1RC2 Primer for Cap Site Sequencing.

<400> 15

caaggtacgc cacagcgtat g

21

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223 Sequence of a Synthetic TGP1 Primer for Cap Site Sequencing.

<400> 16

tcttcagttt ccctaatccc

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Sequence of a 2RC2 Primer for Cap Site Sequencing.
<400> 17
gtacgccaca gcgtatgatg c
<210> 18
<211> 21
<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Synthetic TGP2 Primer for Cap Site Sequencing.

<400> 18

cattettgac aaactteata g

21

21

<210> 19

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223 Sequence of a Primer for Screening a Novel Collectin.

<400> 19

gaagacaagt cttcaactct tg

22

<210> 20

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223 Sequence of a Primer for Screening a Novel Collectin.

<400> 20

ctctgagtct gtgaggccga tc

22

<210> 21

<211> 111

<212> DNA

<213> Artificial Sequence

<220>

<223 Sequence of a Probe for Screening a Novel Collectin.

<400> 21

gaagacaagt cttcacatct tgttttcata aacactagag aggaacagca atggataaaa 60 aaacagatgg tagggagaga gagccactgg atcggcctca cagactcaga g 111

<210> 22

<211> 22

<212> DNA

<213> Artificial Sequence

₹220>

<223 Sequence of a Forward Primer for Screening a Novel Collectin.

<400> 22

gtgccctgg ccctgcagaa tg

22

<210> 23

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Sequence of a Reverse Primer for Screening a Novel Collectin.

<400> 23

gcatatcacc ctggggaaca ttttag

26

<210> 24

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Sequence of a Sense Primer for Screening β -Actin.

<400> 24

caagagatgg ccacggctgc t

21

<210> 25

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Sequence of an Antisense Primer for Screening β -Actin.

<400> 25

tccttctgca tcctgtcggc a

21

<210> 26

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223 Sequence of a Sense Primer for Amplifying the Novel Collectin.

<400> 26

aaggaaaaaa gcggccgcat gcaacaagat ttgatgagg

39

<210> 27

<211> 29

<212> DNA

<213> Artificial Sequence

20

<400> 29

cctacccggt agaattgacc

•	<220>	
•	<223> Sequence of a Reverse Primer for Amplifying the Novel Collectin.	
	<400> 27	
ļ	gctctagatt ataatgcaga tgacagtac	29
,	<210> 28	
	⟨211⟩ 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Sequence of a Sense Primer for Amplifying the Nockout Gene.	
	<400> 28	
	atgcaacaag atttgatgag g	21
	<210> 29	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Sequence of a Sense Primer for Amplifying the Nockout Gene.	