

Proof-of-Stake Mining Games

Matheus V. X. Ferreira, S. Matthew Weinberg

{mvxf, smweinberg}@princeton.edu

Princeton University

OBJECTIVES

Problem: How economic incentives in the **Proof-of-Stake (PoS)** consensus algorithm compare to **Proof-of-Work (PoW)**? Under which conditions honest mining is an equilibrium in **PoS**?

<u>Proof-of-Work</u> and the Consensus Problem

Proof-of-Stake Consensus:

Miner 2 Stake

- ➤ Use public randomness to elect leader.
- ➤ No energy waste.
- > Resilient to market volatility (energy cost).

Conflicting Histories: Block 1 Bob: Owns \$5

Block 2 🎨 Bob: Send \$5 to Charlie

Model

- Miner 1 is strategic an owns $\alpha < \frac{1}{2}$ of the stake.
- Miner 1 is free to deviate to any strategy π that is *undetectable*.
- Miner 2 owns $1 \alpha > \frac{1}{2}$ of the stake and follows honest mining.
- The stake is constant through the game.
- At time $t \in \mathbb{N}$, Miner 1 receives slot t with probability α .
- Only the elected owner of slot t can create a block with slot t.
- Miner 1 wish to maximize their fraction of blocks in the longest chain in an unbounded execution:

$$Rev(\pi) = E \left[\liminf_{T \to \infty} \frac{\sum_{t=1}^{T} r_t^1(\pi)}{\sum_{t=1}^{T} (r_t^1(\pi) + r_t^2(\pi))} \right]$$

Nothing-at-Stake and Selfish Mining Attacks

There are strategies in PoS that are more profitable than any strategy in PoW!

Markov Chain Representing a **Selfish Mining** Attack augmented with **Nothing-at-Stake** Attack

Optimal PoS strategies must forget the history often.

Definition – *Ergodic Strategy*

A strategy π is ergodic if π can be represented by a Positive Recurrent Markov Chain (i.e., the expected time to forget $E[\tau]$ is finite):

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t^k(\pi) \stackrel{a.s.}{=} \frac{E\left[\sum_{t=1}^{\tau} r_t^k(\pi)\right]}{E[\tau]}$$

Reduction to Ergodic Strategies

Definition - *Checkpoints*

- The genesis block (block 0) is a **checkpoint**.
- If block s is a checkpoint, then t > s is a checkpoint if t is the first block after s such that the number of blocks owned by Miner 1 in the path from s to t (not including s) is bigger or equal than the number of unpublished slots from s+1 to t.

Checkpoint Reduction Lemma

- For every strategy π , there is a strategy $C(\pi)$ that never overrides a checkpoint and $Rev(C(\pi)) \ge Rev(\pi)$.
- $ightharpoonup C(\pi)$ can only be optimal if it reaches checkpoints often.
- ightharpoonup If $C(\pi)$ is optimal, then $C(\pi)$ is ergodic.
- ➤ Ergodic → Linear Comparison Test:

$$v^{\pi}(\rho) = E\left[\sum_{t=1}^{\tau} (1 - \rho)r_t^1(\pi) - \rho r_t^2(\pi)\right]$$
$$v^{\pi}(Rev(\pi)) = 0$$
$$v^{\tilde{\pi}}(Rev(\pi)) \ge 0 \iff Rev(\tilde{\pi}) \ge Rev(\pi)$$

Theorem (Strong Law of Large Numbers for Ergodic Strategies)

Honest mining is optimal if and only if for all ergodic strategies π :

$$E\left[\sum_{t=1}^{\tau} (1-\alpha)r_t^1(\pi) - \alpha r_t^2(\pi)\right] \le 0$$

Example - Self Override

For $\alpha = \sqrt{2} - 1$, honest mining is not optimal, and there is an event E such that Miner 1 prefers to override their own blocks.

