1, 2, 3, A, B)

Devoir Surveillé 1

EDS Term.

Conditions d'évaluation

Calculatrice: autorisée. Durée: 1h40

Compétences évaluées :

- Logique mathématique
- O Suites et raisonnement par récurrence
- Limites de suites
- Vecteurs de l'espace
- O Dénombrement (partie 1)

Remarques importantes:

- Le sujet comporte 5 exercices (sur 3 pages).
 Vous pouvez les traiter dans l'ordre que vous souhaitez.
 Assurez-vous d'avoir le sujet complet avant de commencer.
- Le sujet est sur 20 points. Le barème est donné à titre indicatif.
- Rendez le sujet avec votre copie.
- Toutes réponses, même incomplètes, seront prises en compte dans la notation.
- Vous pouvez utiliser le dos du sujet comme brouillon

Exercice 1 Vecteurs dans l'espace

(3 points)

Soit ABCDEFGH un cube. Les points K et L sont tels que $\overrightarrow{AK} = \frac{3}{2}\overrightarrow{AC}$ et $\overrightarrow{AL} = 3\overrightarrow{AE}$.

- 1. (a) Exprimer \overrightarrow{AG} en fonction de \overrightarrow{AC} et \overrightarrow{AE} .
 - $\stackrel{\smile}{\text{(b)}}$ En déduire que $\overrightarrow{KG} = -\frac{1}{2}\overrightarrow{AC} + \overrightarrow{AE}$.
- 2. (a) Les vecteurs \overrightarrow{KL} , \overrightarrow{AC} et \overrightarrow{AE} sont-ils coplanaires?
 - (b) En déduire que K, G et L sont alignés.

Exercice 2 Limites de suites

(5 points)

- 1. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{n} \times (n^2 2)$.
 - a Peut-on déterminer la limite de la suite (u_n) en utilisant les propriétés des opérations sur les limites?
 - (b) En développant, déterminer la limite de la suite (u_n) .
- 2. Déterminer la limite des suites ci-dessous :

(b)
$$w_n = \frac{n^3 + 2n}{n^2 - 3}$$

$$(c) z_n = \sqrt{n} - \sqrt{n-5}$$

- 1. L'implication suivante est-elle vraie? Justifier.
 - « Si (u_n) diverge vers $+\infty$, alors pour tout réel A, il existe un entier naturel n_0 tel que pour tout entier n supérieur à n_0 , les termes de la suite appartiennent à l'intervalle $[A;+\infty[$. »
- 2. Écrire cette proposition en langage mathématique.
- 3. Énoncer (en français ou en maths) la réciproque de cette implication. Est-elle vraie? Aucune justification n'est attendue.

Exercice 4) Plaques d'immatriculation

(2 points)

Chaque véhicule circulant en France est identifié par une plaque d'immatriculation. Depuis 2009, elle est constituée de trois parties : deux lettres, trois chiffres et deux lettres, séparées par des tirets.

Quelques lettres ne sont pas utilisées, le I, le O et le U, pour éviter les confusions avec les chiffres 1 et 0 et la lettre V.

⇒ En détaillant votre démarche, déterminez combien de plaques d'immatriculations différentes peut-on attribuer?

Infos!

Dans la réalité (à ne pas prendre en compte pour cet exercice), il y a plus de contraintes :

- La combinaison SS est interdite sur le bloc de gauche et de droite
- La combinaison 000 est interdite
- La combinaison WW est interdite sur le bloc de gauche

Une piste pour le grand oral...

Exercice 5 Pac Arbres dans une forêt

(8 points)

Le nombre d'arbres d'une forêt est modélisé par la suite (u_n) , où u_n désigne le nombre d'arbres, en milliers, au cours de l'année (2020 + n).

En 2020, la foret possède 50 000 arbres. Afin d'entretenir cette forêt vieillissante, un organisme régional d'entretien des forêts décide d'abattre chaque année 5% des arbres existants et d'en replanter 3 000 nouveaux.

- 1. Justifier que $u_0 = 50$
- 2. Déterminer l'expression de u_{n+1} en fonction de u_n pour tout entier naturel n.
- 3. Déterminer, par récurrence, le sens de variation de la suite (u_n) . Interpréter dans le contexte de l'exercice.
- 4. Démontrer, par récurrence, que pour tout entier naturel $n, u_n = 60 10 \times 0,95^n$.
- 5. Selon ce modèle, quel sera le nombre d'arbres de la forêt en 2026? On arrondira le résultat à l'unité.
- 6. Sachant que $\lim_{n\to+\infty}0.95^n=0$, déterminer la limite de u_n quand n tend vers $+\infty$. Interpréter le résultat.