ASSIGNMENT 5

Guan Yue Wang

Use the following meta-network for problems 1-6. The red circles are agents and the blue triangles are resources.

- 1. Write the adjacency matrices for each of the following networks:
 - a. X = Agent x Resource
 - b. Y = Resource x Agent
 - c. Z = Resource x Resource
- 2. Use matrix algebra to calculate the following values by hand:
 - a. XXT
 - b. XY
 - c. YTXT
 - d. YTY
- 3. How many agent x agent links emerge in each of the four calculations in number 2
- 4. Determine what relational algebra is necessary to connect agent "_0" with agent "_4". HINT: You must use the **Z** matrix. Carry out the operation and show your work.
- 5. What relational algebra is required to connect agent "_0" to agents "_1" and "_3"? Which other agents become connected as well, as a result of the required relational algebra?
- 6. What relational algebra is required to connect agents "_2" and "_3"?

Extract a structured data set from a social media of your choice. For example, you might have user_ID associated with forum_ID. Use relational algebra to extract a social network (or forum network) from your structured data. Create a visualization of your extracted network. What observations do you have in regards to the network structure of your data?

X=

	R_0	R_1
_0	1	0
_1	1	0
_2	0	0
_3	0	0
_4	0	1

1b

Y=

	_0	_1	_2	_3	_4
R_0	0	0	1	1	0
R_1	0	0	0	0	1

1c

Z=

	R_0	R_1
R_0	0	1
R_1	0	0

2a

Χ

1	0
1	0
0	0
0	0
0	1

 \mathbf{X}^{T}

1	1	0	0	0
0	0	0	0	1

 $\mathbf{X}\mathbf{X}^\mathsf{T}$

1	1	0	0	0
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	1

2b

Χ

1	0
1	0
0	0
0	0
0	1

Y=

0	0	1	1	0
0	0	0	0	1

XY

0	0	1	1	0
0	0	1	1	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	1

 \mathbf{Y}^{T}

0	0
0	0
1	0
1	0
0	1

 X^T

1	1	0	0	0
0	0	0	0	1

 $\mathbf{Y}^\mathsf{T} \, \mathbf{X}^\mathsf{T}$

0	0	0	0	0
0	0	0	0	0
1	1	0	0	0
1	1	0	0	0
0	0	0	0	1

2d

 \mathbf{Y}^{T}

0	0
0	0
1	0
1	0
0	1

Y=

0	0	1	1	0
0	0	0	0	1

 $\mathbf{Y}^{\mathsf{T}} \mathbf{Y}$

0	0	0	0	0
0	0	0	0	0
0	0	1	1	0
0	0	1	1	0
0	0	0	0	1

3.

Five links

4.

To connect agent_0 to agent _4, we need XZY as below

Χ

1	0
1	0
0	0
0	0
0	1

Ζ

0	1
0	0

Υ

0	0	1	1	0
0	0	0	0	1

XZY

0	0	0	0	1
0	0	0	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

5.

To connect agent_0 to agent _1, we need XX^T, no other agent becomes connected.

To connect agent_0 to agent _3, we need XY, agent 2 also becomes connected as well

6.

To connect agent_2 to agent_3, we need $Y^T Y$

Visualization of Facebook network

Observation: Lattice Network with mostly high school and university friends all connected to each other.