

$$PSP \#3 2b$$

$$2b) P_{x} = \frac{1}{N} \sum_{n=1}^{\infty} |\chi(n)|^{2} = \sum_{k=1}^{\infty} |\zeta_{k}|^{2}$$

$$\frac{1}{9} \left[i^{2} + i^{2} + 2^{2} + 3^{2} + 2^{2} + i^{2} + i^{2} \right] = 2,33 \text{ W}$$

$$1,22^{2} + .503C^{2} + .3719^{2} + (1/9)^{2} + 2(.1245)^{2} + (1/9)^{2} + .503C^{2} = 2.33\text{W}$$

$$1.22^{2} + .503C^{2} + .3719^{2} + (1/9)^{2} + 2(.1245)^{2} + (1/9)^{2} + .503C^{2} = 2.33\text{W}$$

$$1.22^{2} + .503C^{2} + .3719^{2} + (1/9)^{2} + 2(.1245)^{2} + (1/9)^{2} + .503C^{2} = 2.33\text{W}$$

$$1.22^{2} + .503C^{2} + .3719^{2} + (1/9)^{2} + 2(.1245)^{2} + (1/9)^{2} + .503C^{2} = 2.33\text{W}$$

$$1.22^{2} + .503C^{2} + .3719^{2} + (1/9)^{2} + 2(.1245)^{2} + (1/9)^{2} + .503C^{2} = 2.33\text{W}$$

DSP HW #3

3) Find the Fourier Transforms

Time reversal property
$$X(-n) = X(-\omega)$$

$$X(\omega) = \frac{1}{1 - .5e^{i\omega}}$$

a)
$$\chi(\eta) = \{-2, -1, 0, 1, 2\}$$

 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega) = \{ -2, -1, 0, 1, 2 \}$
 $\chi(\omega$

b) Since
$$\chi(n)$$
 is real + even $\chi_{\Gamma}(\omega) = 0$

$$\chi_{\Gamma}(\omega) = arcten(\frac{\chi_{\Gamma}(\omega)}{\chi_{\Gamma}(\omega)}) = 0$$

C)
$$\chi(n) = 2 \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{\chi}(\omega) e^{i\omega n} d\omega$$

$$\chi(0) = M_{M} = -3$$

$$\int_{-\pi}^{\pi} \chi(\omega) d\omega = 2\pi(-3) = -6\pi$$

$$\frac{|z_{-1}|}{|z_{-1}|} = \frac{|z_{-1}|}{|z_{-1}|} = \frac{|z$$

```
%!-----
%! DSP HW3 #2
%! - Calculated ck for x = \{...,1,0,1,2,3,2,1,0,1,...\}
%! Enviorment
x = [1,0,1,2,3,2,1,0,1];
c = zeros(1,9);
n = [0,1,2,3,4,5,6,7,8];
% Calculate the Ck
for k=0:8
   e = [exp(-1j*2*pi*k*n/9)];
   c(k+1) = (x(1)*e(1) + x(2)*e(2) + x(3)*e(3) + x(4)*e(4) + x(5)*e(5) + ...
          x(6)*e(6) + x(7)*e(7) + x(8)*e(8) + x(9)*e(9)) ./ 9;
end
disp(abs(c))
disp(angle(c))
 Columns 1 through 7
   1.2222
          0.5036
                   0.3719 0.1111 0.1245 0.1245 0.1111
 Columns 8 through 9
   0.3719 0.5036
 Columns 1 through 7
       0 -2.7925
                   0.6981 1.0472 1.3963 -1.3963 -1.0472
 Columns 8 through 9
  -0.6981 2.7925
```

Published with MATLAB® R2023a