Theorem - proving strategies:

a search-oriented taxonomy

MARIA PAOLA BONACINA

DEPT. OF COMPUTER SCIENCE

THE UNIVERSITY OF IOWA

# Theorem proving

H: assumptions

9: conjecture

H may be:

- · a mathematical theory

  (e.g., algebra

  geometry

  amalysis)
- · a specification of a system (e.g., message-passing system)

## Refutational theorem proving

HU {19}

either prove q by generating a proof Hullphila

or disprove q by generating a model of Hulip

In general: semi-decidable

## However, TP works:

- Moufang identities in rings
   S. Amantharaman, J. Hsiang
   SBR2 1990
- Axiomatization of Lukasiewicz
  many-valued logic
   S. Amantharaman, M.P. Bornsing
   SBR 3 1989-90
- · Single axioms for groups W. Mc Cune OTTER 1993
- · Robbins algebras are Boolean W. McCune Eap 1996

#### And not only in math:

- Deductive composition of sw from subroutine libraries

  (M.E. Stickel et al.

  SNARK 1994)
- · Verification of cryptographic protocols
  (J. Schumann SETHEO 1997)
- · Modelling + verification of message passing systems
  (W. McCune IVY 1999)

## Many systems:

- · Fully automated T.P.

  (OTTER, REVEAL, EQP, SETHEO,
  PROTEIN ...)
- · Interactive T.P.

  (ISABELLE, HOL, COQ, PVS...)
- · LIBRARIES of problems and proofs
  (MIZAR, TPTP...)

#### <u>Many ingredients:</u>

tableaux

zesolution

model elimination

Protog technology theorem proving

matings

term rewriting

best-first Search

Reunistic Junctions

indexing Techniques

parallet search

## 2 main types of ingredients:

imference rutes

search plans

inference system I

search plan 2

T.P. strategy

C = < I ; 2 >

#### A search-oriented taxonomy

inference equally important

6.9.1

- \* Parattetization
- \* Machine-independent evaluation
- x Engineering of T.P.

M.P. BONACINA

"A TAXONOMY OF THEOREM PROVING STRATEGIES" IN

"ARTIFICIAL INTELLIGENCE TODAY"
LNAI 1600, PP. 43-84, 1999

expansion ories ted tiast order, ordering based contraction target theorem proving strategies basea gemeral purpose, Jully automated supported semantic instance based T:3687 (clausal) subgoal reduction 3 8 4 Cirear tableau 0 2 6 2

#### Ordering-based strategies

Huliph >> S: set of clauses

7: well-founded ordering on terms, atoms, literals, clauses, sets of clauses

Ex .: (50

stable: s>t => so> to

monotonic: 5>t => c[s] > c[t]

subterm property: c[s] > s

total on ground

[Nachum Dershowitz 1982]

Example: LRPO

ack(0,y) = succly)

ack(succ(x),0) = ack(x, succ(0))

ack(succ(x), succ(y)) = ack(x, ack(succ(x), y))

ack(o,y) > succ(y)

ack(suc(x), o) > ack(x, succ(o))

ack(suce(x), suce(y)) > ack(x, ack(suce(x), y))

assuming ack > succ > 0

[LRPO: Kamin-Lévy 1980]

#### Ordering-based strategies

work on sets of clauses

Expansion inference rules:

e.g.: ordered resolution

also: hyperresolution,
paramodulation, superposition...

#### Ordering-based strategies

Contraction inference rules:

e.g. simplification

L[s]vC is zedumdant

also: subsumption, taut. deletion, purity defetion, clausal simplification

#### Theorem proving as search problem

Inference system I Suliq} \frac{?}{\frac{1}{2}} \box



Vertex: state

arc: inference

path: derivation

Search plan Z: determines unique derivation

Refutationally complete I

Fair E

theorem-proving
strategy  $\ell = \langle I, \Sigma \rangle$ complete

#### General scheme of search plan

$$\mathcal{E} = \langle \zeta, \xi, \omega \rangle$$
 (at Peast)

- · rule-selecting function

  S: States\* -> I
- premise-selecting function  $\xi: States^* \longrightarrow \mathcal{P}(\mathcal{L}_{\Theta})$
- termination-detecting function ω: States -> Bool

## Search plan for ord-based strat.

Eager contraction: contraction-based strategies Example: given-clause VAMPIRE ... ) SPASS, GANDALF, 505 USABLE (TO BE SELECTED) (SELECTED) clause Expansion e-rule Forward contraction c-rule Backward contraction c - rute

#### Search space

Closure Sx

Search graph G(St)= < V, E, P, h>

V: vertices: clauses

(equiv. classes of variants)

E: hyperarcs: instruences e.g.



 $G(S_{\mathbf{I}}^*)$ :



## Example:



#### Dynamic search space

Which clauses are generated?

deleted:

Manked seanch graph:

G= < V, E, l, h, s>

$$S(\varphi) = \begin{cases} -1 & \text{if all variants} \\ 0 & \text{otherwise} \end{cases}$$

## Example:



## Evolution of search space

Stage 0:
$$S(q) = \begin{cases} 1 & \text{if } q \in S_0 \\ 0 & \text{otherwise} \end{cases}$$

$$S_{i+1}(x) = \begin{cases} S_i(x) + 1 \\ 1 \\ 1 \\ -1 \\ S_i(x) \end{cases}$$

otherwise

if 
$$x = y \wedge Si(x) > 0$$
  
if  $x = y \wedge Si(x) < 0$   
if  $x = \varphi \wedge Si(x) > 1$   
if  $x = \varphi \wedge Si(x) = 1$ 

## Search space and proof



Active search space  $(s(\phi)>0)$ .

Generated search space  $(s(\phi)>0)$ .

Ancestor-graph of  $\phi$ : proof of  $\phi$ Ancestor-graph of  $\phi$ : proof

(of unsatisfiability)

reconstruction

Proof

## Marked search graph

#### Advantages:

- · Graph does not change Marking changes
- · Allows to represent contraction
- · Extended to parallel search (one marking per process)
- · Used as basis of strategy analysis:
  - contraction

[Information and Computation, 1998]

- distributed search
[Annals of Math and AI, 1999.]

#### Ordering-based Strategies

Work on sets of clauses e.g., So the Son Sitematical Sitematics

Build many proof attempts implicitly

No backtracking

Redundancy: too many clauses
Remedies: contraction

orderings

Semantic refinements

## Subgoat-reduction strategies

Synthetic:

e.g. Limear Resolution

generate clauses (like ord-based)

search for limear ancestor
graph of D

Amalytic:

e.g. ME-tableaux
decompose clauses

Survey interpretations to show
more is a model

#### Linear Resolution

S= Tu { q}}



input clause or ancestor

State: (T; 9; A)

Σ= < }, ξ, ξ, ω,

£ ((T; q; A)...(T; q; A:)) = Leq;

?: States \* x 20 -> Iv { backtrack}

差: ((T; 农; A)... (T; 中; A;), L, f) = y e TuA;

DFID

## Search space

Sx : all subgoals of 9.

Marked search graph:
G= < V, E, P, h, 9>

where marking keeps track of backtracking / faiture:

q(q) = 

| The second of the s

Active search space (q(q) >0)
Generated search space (q(q) +0)

#### Model Elimination Tableaux

S= Tu 4 90}

90 = L, v... VLm



Extension:

Pav. v Pa & T

P16=7116



Reduction:

L6=76



All closed: proof

#### Model Elimination Tableaux

#### Lemmatization:



Also: regular tableaux only, taut. - free

Pre-process T:

UR- resolution
contraction

# Search plan for ME-tableaux State: $(T; \chi)$ $(T_0, X_0) + (T_1, X_1) + \dots + (T_i, X_i) + \dots$ ξ=< \$, \$, \$, ω> É, selects open leaf Le X: 3 selects inference / backtrack E selects other premise in Ti

a returns true if 7: closed

DFID

## Search space

State space:
graph of tableaux

Analytic marked search graph:

AND-OR-graph Cike



with making to keep track of:
backtracking / faiture
open / closed

#### Subgoal-reduction strategies

Work on a goal

e.g.,  $q_0 + q_1 \dots q_i \dots$   $X_0 + X_1 \dots X_i \dots$ 

Build explicitly one proof attempt at a time
e.g., linear deduction tableau

Use backtracking to go to next
Redundancy: too much repetition
Remedies: Permatization
pre-processing

# Summary

|           | Ord-based                  | Subgoal-red |
|-----------|----------------------------|-------------|
| Gen.      | all                        | ale         |
| Search    | generated                  | tried       |
| Space     | clauses                    | tableaux    |
| Active    | all                        | cu naent    |
| search    | Kept                       | tableau     |
| space     | e la uses                  |             |
| Gen.      | ance ston-                 | c Pared     |
| prod      | ancestor-<br>graph<br>of D | tableau     |
| Goal      | No                         | YES         |
| sensitive |                            |             |
| Proof     | YES                        | No          |
| confluent |                            |             |

# Frontier of the field

Integration of:

T.P. + decision procedures

Auto T.P. + interactive T.P. (proof checkers)

T.P. + Symbolic Computation
(Deduction + Computation)

T.P. + modet checking (venification)

Applications: PROBLEM
FORMULATION

New: machine-independent eval.