

CS120: Computer Networks

Lecture 23. End-to-End Data 2

Zhice Yang

End-to-End Data

- Data Presentation
- Data Compression
 - Lossless Compression
 - ➤ Multimedia Compression

• eyes spectrum

Color Model

for printing

for display

4

Imaging and Display

Display

Digital Image

$$\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1m} \\
a & a & \cdots & a
\end{pmatrix}$$

$$\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1m} \\
a_{21} & a_{21} & a_{12} & \cdots & a_{1m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix}_{n \times m}$$

GIF – Image Compression

- Filename Extension: .gif
- Simple Lossy Compression
- 3*8 bit => 256 colors

JPEG – Image Compression

- Filename Extension: .jpg, .jpeg
- Joint Photographic Experts Group
- Intuition
 - Human eyes are sensitive to intensity change, but less sensitive to chromatic changes
 - Human eyes are sensitive to low frequency change, but less sensitive to high frequency changes

JPEG Compression Flow

Information Loss

JPEG Compression: Splitting

JPEG Compression: RGB -> YUV

- YUV Space
 - Y -> luminance
 - Sensitive
 - U, V -> chrominance

$$Y = 0.299R + 0.587G + 0.114B$$
$$U = (B - Y) \times 0.565$$

$$V = (R - Y) \times 0.713$$

JPEG Compression: Subsampling UV

- YUV Space
 - Y -> luminance
 - Sensitive
 - U, V -> chrominance

JPEG Compression: DCT

• Discrete Cosine Transform

JPEG Compression: DCT

• Discrete Cosine Transform

JPEG Compression: DCT

DCT

Sensitive to Low frequency

JPEG Compression: Quantization

Round (DCT(i,j)/Quantum(i,j))

Determine the How Much Information is dropped

JPEG Compression: Quantization

- Quantization is a lossy process
 - Recovered DCT(i,j) = QuantizedValue(i,j)*Quantum(i,j)
 - Rounding in Quantization is lossy

JPEG Compression: Zig-Zag

JPEG Compression: DC Component

- DC Components are large and normally non-zero
- Nearby DC Components are closed
- ➤ Differential Pulse Code Modulation (DPCM)
 - 14, 12, 13, 12, 15 => 14, -2, 1, -1, 3

JPEG Compression: DC Component

- DC Component can be expressed in integer
 - eg. in ones complement
 - 3 => 0011
 - -3 => 0000
 - 4 => 100
 - -4 => 011
- Problem
 - If expressing integer in fix-length bits
 - padding zeros waste space
 - If expressing integer in dynamic length bits
 - how to split the bit stream?

JPEG Compression

- DC Component can be expressed as (size, amplitude)
 - Size: number of bits to express amplitude
 - Amplitude: DPCM value in ones complement
 - Examples:
 - 0 = > (0, -)
 - 1 = > (1,1)
 - -1 => (1,0) bitwise inverse for negative value
 - 2 = > (2, 10)
 - -2 => (2, 01)
 - 3 = > (2,11)
 - -3 => (2,00)

JPEG Compression: Huffman Coding

- DC Component can be expressed as (size, amplitude)
 - Size: number of bits to express amplitude, Huffman coded
 - The coding table is include in the JPEG file
 - Amplitude: DPCM value in ones complement
 - Examples:
 - 0 => (0,-) => 0
 - 1 => (1,1) => 101 1
 - -1 => (1,0) => 1010
 - 2 => (2, 10) => 011 10
 - -2 => (2, 01) => 011 01
 - 3 => (2,11) => 011 11
 - -3 => (2,00) => 011 00

Length	Code	Size
3 bits	000	04
	001	05
	010	03
	011	02
	100	06
	101	01
	110	00 (End of Block)
4 bits	1110	07
5 bits	1111 0	08
6 bits	1111 10	09
7 bits	1111 110	0A
8 bits	1111 1110	ОВ

JPEG Compression: AC Component

- AC Components are small and normally zero
- ➤ Run Length Encoding (RLE)
 - 000002000010000210000 => (5,2)(4,1)(4,2)(0,1)(0,0)

1 14 ...

JPEG Compression: Huffman Coding

- AC Component (length, value) can be expressed as (length, size, amplitude)
 - Amplitude: AC value in ones complement
 - Size: number of bits to express amplitude, Huffman coded
 - Length: number of skipped zeros
- Size and length are expressed in 8 bits together, Huffman coded
 - length/size
- Final result: <length/size | amplitude>
 - (5,2)(4,1)(4,2)
 - $\bullet = > (5/2,2)(4/1,1)(4/2,2)$
 - => 111110 10 010 1 101 10

JPEG Problem

Compression Granularity is in Unit of 8*8

JPEG 2000

Wavelet Transform

MPEG – Video Compression

- Filename Extension: MPEG-4 .mp4
- Moving Pictures Experts Group
- Intuition
 - Adjacent frames are similar and changes are due to foreground motion

MPEG Compression: I Frame and P Frame

- I (intra) Frame
 - Independent frames
 - Coded without reference to other frames (JPEC Compressed)
- P (predictive) Frame
 - Not Independent frames
 - Predicted from a past frame (I or P)

MPEG Compression: Forward Prediction

Difference is encoded similar to JPEG

MPEG Compression: B Frame

- B (Bidirectional) Frame
 - Not Independent frames
 - Reason: enhance forward prediction
 - Coded with reference to both previous and future frames (I or P)

MPEG over a Network

A Video Stream

MPEG over a Network

- Frame Sequence
 - Target Seq: IBBBBPBBBBI
 - Transmitting Seq: IPBBBBIBBBB
 - Large Delay
 - For Interactive Videos
 - Only use I and P frames or pure I frames

MP3 – Audio Compression

- Filename Extension: mp3
- A part of MPEG
 - MP3 is introduced in MPEG-1 to encode audio
- Intuition
 - Human ear are less sensitive to high frequency sound
 - Divide audio signal into subbands
 - Compressing subband by allocating different numbers of bits

Reference

• Textbook 7.2