Let A be the event that the first toss is a head and let B be the event that the second toss is a head. We must compare the conditional probabilities $\mathbf{P}(A \cap B \mid A)$ and $\mathbf{P}(A \cap B \mid A \cup B)$. We have

$$\mathbf{P}(A \cap B \mid A) = \frac{\mathbf{P}(((A \cap B) \cap A))}{\mathbf{P}(A)} = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)},$$

and

$$\mathbf{P}(A \cap B \mid A \cup B) = \frac{\mathbf{P}(((A \cap B) \cap (A \cup B)))}{\mathbf{P}(A \cup B)} = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A \cup B)}.$$

Since $\mathbf{P}(A \cup B) \geq \mathbf{P}(A)$, the first conditional probability above is at least as large, so Alice is right, regardless of whether the coin is fair or not. In the case where the coin is fair, that is, if all four outcomes HH, HT, TH, TT are equally likely, we have

$$\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)} = \frac{1/4}{1/2} = \frac{1}{2}, \qquad \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A \cup B)} = \frac{1/4}{3/4} = \frac{1}{3}.$$

A generalization of Alice's reasoning is that if A, B, and C are events such that $B \subset C$ and $A \cap B = A \cap C$ (for example, if $A \subset B \subset C$), then the event A is at least as likely if we know that B has occurred than if we know that C has occurred. Alice's reasoning corresponds to the special case where $C = A \cup B$.