22.01

Electric Fields

"Action At a Distance"

- Particles that don't physically "touch" can stil have electrostatic forces exchanged
 - How does that work if the particles aren't "touching"?
 - * Answer: electric fields

About This Chapter

- Three goals of this chapter
 - 1. Define **electric field**
 - 2. Learn about analytic methods of describing electric fields
 - 3. Learn about how electric fields can affect charged particles

What is an "Electric Field"?

- $\mathbf{Field} =$ an object where each element in some specified \mathbf{domain} is uniquely mapped to another \mathbf{value}
 - Very similar to the concept behind a function
 - **Domain** = the space over which the field is described
 - The value can be scalar or vector
 - * Scalar = a mathematical object that specifies magnitude
 - · Fields where the associated values are scalars are called a scalar field
 - * $\mathbf{Vector} = \mathbf{a}$ mathematical object that specifies magnitude and direction
 - \cdot Fields where the associated values are vectors are called a vector field
 - · More abstractly, a **vector** is just a mathematical object that contains many **scalar** values
 - * Scalars and vectors each have systems of operators that define how arithmetic works within their world and between
 - Examples
 - * Temperature field in an oven
 - * Pressure field in a pool

- Electric Field = a vector field that maps individual points in space to electrostatic force per unit charge
 - Mathematically, it looks like this

$$\vec{E} = \frac{\vec{F}}{q_0}$$

- where q_0 is an extremely small, positive charge, and \vec{F} is the electrostatic force exerted on the particle of charge q_0
- Notice that, since q_0 is a positive charge, \vec{E} and \vec{F} must point in the same direction
- The SI unit for electric field is $\frac{\vec{N}}{C}$, which is a **vector** object

Procedure For Figuring Out \vec{E}

- 1. Take a particle of a very small, positive charge q_0
- 2. Place that particle at a point \vec{P} near some charged object O
- 3. Determine the electrostatic force between O and the particle of charge q_0 through empirical means
 - Perhaps measure acceleration and use newtonian mechanics to find \vec{F}
- 4. Calculate \vec{E} at \vec{P} by the following equation

$$\vec{E}_{\vec{P}} = \frac{\vec{F}_{\vec{P}}}{q_0}$$

Why Does q_0 Need to be Small?

- The purpose of q_0 is to detect the strength of \vec{E} at any given point
 - If q_0 were large, it would have a non-negligible affect on the electric field is trying to measure!