СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 12, cmp. 144–144 (2015) DOI 10.17377/semi.2015.12.xxx УДК 519.165 MSC 05A17

О КРАТЧАЙШИХ ПОСЛЕДОВАТЕЛЬНОСТЯХ ЭЛЕМЕНТАРНЫХ ПРЕОБРАЗОВАНИЙ В РЕШЕТКЕ РАЗБИЕНИЙ НАТУРАЛЬНЫХ ЧИСЕЛ

В.А. БАРАНСКИЙ AND Т.А. СЕНЬЧОНОК

ABSTRACT. A partition $\lambda = (\lambda_1, \lambda_2, \dots)$ is a sequence of non-negative integers (the parts) in non-increasing order $\lambda_1 \geq \lambda_2 \geq \dots$ with a finite number of non-zero elements. A weight of λ is the sum of parts, denoted by sum(λ). We define two types of elementary transformations of the partition lattice NPL. The first one is a box transference, the second one is a box destroying. Note that a partition $\lambda = (\lambda_1, \lambda_2, \dots)$ dominates a partition $\mu = (\mu_1, \mu_2, \dots)$, denoted by $\lambda \geq \mu$, iff μ is obtained from λ by a finite sequence of elementary transformations.

Let λ and μ be two partitions such that $\lambda \geq \mu$. The *height* of λ over μ is the number of transformations in a shortest sequence of elementary transformations which transforms λ to μ , denoted by height(λ , μ). The aim is to prove that

$$\operatorname{height}(\lambda, \mu) = \sum_{j=1, \lambda_j > \mu_j}^{\infty} (\lambda_j - \mu_j) = \frac{1}{2}C + \frac{1}{2}\sum_{j=1}^{\infty} |\lambda_j - \mu_j|.$$

where $C = \text{sum}(\lambda) - \text{sum}(\mu)$. Also we found an algorithm that builds some useful shortest sequences of elementary transformations from λ to μ .

Keywords: integer partition, lattice, Ferrer's diagram.

Под графами мы будем понимать обыкновенные графы, т.е. графы без петель и кратных рёбер. Для графов будем придерживаться терминологии и обозначений из [1].

Разбиением [2] называется последовательность $\lambda = (\lambda_1, \lambda_2, \dots)$ целых неотрицательных чисел такая, что λ содержит лишь конечное число ненулевых

Поступила 10 августа 2018 г., опубликована 30 сентября 2018 г.

Baransky V.A., Senchonok T.A., On the shortest sequences of elementary transformations in the partition lattice.

^{© 2017} Баранский В.А., Сеньчонок Т.А..

компонент, $\lambda_1 \geq \lambda_2 \geq \dots$ и $\sum_{i=1}^\infty \lambda_i = m$, где m — натуральное число. Говорят, что λ является разбиением числа m, а m называют весом разбиения λ , также пишут $m = \mathrm{sum}(\lambda)$. Натуральное число $l = l(\lambda)$ такое, что $\lambda_l > 0$ и $\lambda_{l+1} = \lambda_{l+2} = \dots = 0$, называют длиной разбиения λ . Для удобства разбиение λ будем иногда записывать в виде конечной последовательности следующих типов:

$$\lambda = (\lambda_1, \dots, \lambda_t) = (\lambda_1, \dots, \lambda_{t+1}) = (\lambda_1, \dots, \lambda_{t+2}) = \dots,$$

где $t = l(\lambda)$, т. е. будем опускать нули, начиная с некоторой компоненты, но при этом будем помнить, что рассматривается бесконечная последовательность.

Через NPL будем обозначать множество всех разбиений всех натуральных чисел, а через NPL(m) — множество всех разбиений заданного натурального числа m. На множествах NPL и NPL(m), где $m \in \mathbb{N}$, будем рассматривать известное отношение доминирования $\leq [3]$, полагая $\lambda \leq \mu$, если

$$\lambda_1 \leq \mu_1,
\lambda_1 + \lambda_2 \leq \mu_1 + \mu_2,
\dots
\lambda_1 + \lambda_2 + \dots + \lambda_i \leq \mu_1 + \mu_2 + \dots + \mu_i,
\dots$$

где
$$\lambda = (\lambda_1, \lambda_2, \dots)$$
 и $\mu = (\mu_1, \mu_2, \dots)$.

Разбиение удобно изображать в виде его диаграммы Ферре, которую можно представлять себе как конечный набор квадратных блоков одинакового размера, составляющих "ступенчатую" фигуру. Например, на рис. 1 представлена диаграмма Ферре разбиения $\lambda = (6,5,4,4,3,2,1,1)$ длины 8 и веса 26.

Рис. 1

Определим элементарные преобразования разбиения $\lambda = (\lambda_1, \lambda_2, \dots)$ (см. [3]–[5]).

Пусть для натуральных чисел $i, j \in \{1, \dots, t\}$ таких, что $i < j \le t = l(\lambda) + 1$, выполняются условия:

- 1) $\lambda_i 1 \geq \lambda_{i+1}$,
- $2) \ \lambda_{j-1} \ge \lambda_j + 1,$
- 3) $\lambda_i \geq 2 + \lambda_i$.

Будем говорить, что разбиение $\mu = (\lambda_1, \dots, \lambda_i - 1, \dots, \lambda_j + 1, \dots, \lambda_t)$ получено из разбиения $\lambda = (\lambda_1, \dots, \lambda_i, \dots, \lambda_j, \dots, \lambda_t)$ элементарным преобразованием первого типа (или перекидыванием блока, см. рис. 2). Отметим, что μ отличается от λ точно на двух компонентах с номерами i и j. Для диаграммы Ферре разбиения λ такое преобразование означает перемещение верхнего блока из

i-го столбца вправо на верх j-го столбца. Условия 1) и 2) гарантируют, что после такого перемещения снова получится разбиение. Очевидно, элементарные преобразования первого типа сохраняют вес разбиения.

Пусть для некоторого числа i такого, что $1 \le i \le l(\lambda)$ выполняется условие $\lambda_i - 1 \ge \lambda_{i+1}$. Преобразование, заменяющее разбиение λ на разбиение $\mu = (\lambda_1, \ldots, \lambda_{i-1}, \lambda_i - 1, \lambda_{i+1}, \ldots)$, будем называть элементарным преобразованием второго типа (или удалением блока, см. рис. 2). Очевидно, удаление блока уменьшает вес разбиения на 1.

Если разбиение μ получено из разбиения λ с помощью элементарного преобразования первого или второго типа, то кратко будем писать $\lambda \to \mu$.

Рис. 2

На множествах NPL и NPL(m), где $m \in \mathbb{N}$, определим отношение \geq , полагая $\lambda \geq \mu$, если разбиение μ можно получить из разбиения λ с помощью последовательного применения конечного числа (возможно нулевого) элементарных преобразований указанных типов. Ясно, что в случае множеств NPL(m) можно использовать только элементарные преобразования первого типа, которые не меняют веса разбиений. В [4] и [5] показано, что отношения \leq и \leq совпадают на каждом из рассматриваемых множеств.

Отметим, что множества NPL(m), где $m \in \mathbb{N}$, и NPL (см. [6] и [3]–[5]) являются решётками относительно \leq . В [5] показано, что решётка NPL является дизъюнктным объединением решёток NPL(m), где m пробегает \mathbb{N} , отвечающим некоторой естественной транзитивной системе вложений. В [4] и [5] указаны алгоритмы вычисления пересечения \wedge и объединения \vee в указанных решётках.

Пусть λ и μ — два произвольных разбиения и $\lambda \geq \mu$, т.е. λ и μ сравнимы. Высотой height(λ,μ) разбиения λ над разбиением μ будем называть число преобразований в кратчайшей последовательности элементарных преобразований (любых типов), преобразующей λ в μ .

Основная цель данной работы состоит в построении алгоритма (см. Алгоритм 1), который для двух произвольных разбиений λ и μ таких, что $\lambda \geq \mu$, находит некоторые кратчайшие последовательности элементарных преобразований от λ до μ , удобные для применения. Кроме того, мы доказываем следующую теорему.

Теорема 1. Пусть $\lambda \ge \mu$ в NPL и $C = \text{sum}(\lambda) - \text{sum}(\mu)$. Тогда

$$\operatorname{height}(\lambda, \mu) = \sum_{j=1, \lambda_j > \mu_j}^{\infty} (\lambda_j - \mu_j) = \frac{1}{2}C + \frac{1}{2}\sum_{j=1}^{\infty} |\lambda_j - \mu_j|.$$

Пусть $\lambda = (\lambda_1, \dots, \lambda_t)$ и $\mu = (\mu_1, \dots, \mu_t)$ — два произвольных разбиения, где t — максимальная из длин λ и μ .

Заметим, что если $\lambda \ge \mu$, то $\operatorname{sum}(\lambda) \ge \operatorname{sum}(\mu)$ и число $C = \operatorname{sum}(\lambda) - \operatorname{sum}(\mu)$ является целым и неотрицательным.

Условие $\lambda \geq \mu$ по определению задаётся системой неравенств

$$\lambda_1 + \dots + \lambda_k \ge \mu_1 + \dots + \mu_k \quad (k = 1, \dots, t).$$

Эту систему неравенств перепишем в следующей эквивалентной форме:

$$\sum_{j=1,\lambda_{j}>\mu_{j}}^{k} (\lambda_{j} - \mu_{j}) \ge \sum_{j=1,\lambda_{j}<\mu_{j}}^{k} (\mu_{j} - \lambda_{j}) \quad (k = 1, \dots, t).$$
 (1)

(Здесь и в дальнейшем в случае, когда условию суммирования не удовлетворяет ни один индекс, будем считать, что соответствующая сумма равна 0.)

Условие $\lambda > \mu$ можно задать также следующей системой:

$$\begin{cases} \lambda_1 + \dots + \lambda_t = \mu_1 + \dots + \mu_t + C, \\ \lambda_1 + \dots + \lambda_{k-1} \ge \mu_1 + \dots + \mu_{k-1} \ (k = 2, \dots, t), \end{cases}$$

где C — некоторое неотрицательное целое число. Поскольку для любого $k=2,\ldots,t$ выполняется

$$\lambda_1 + \dots + \lambda_{k-1} + \lambda_k + \dots + \lambda_t = \mu_1 + \dots + \mu_{k-1} + \mu_k + \dots + \mu_t + C$$

последняя из рассмотренных систем эквивалентна системе:

$$\begin{cases} \lambda_1 + \dots + \lambda_t = \mu_1 + \dots + \mu_t + C, \\ \lambda_k + \dots + \lambda_t \le \mu_k + \dots + \mu_t + C \ (k = 2, \dots, t). \end{cases}$$

Полученную систему перепишем в следующей эквивалентной форме:

$$\begin{cases}
\sum_{j=1,\lambda_{j}>\mu_{j}}^{t} (\lambda_{j} - \mu_{j}) = \sum_{j=1,\lambda_{j}<\mu_{j}}^{t} (\mu_{j} - \lambda_{j}) + C, \\
\sum_{j=k,\lambda_{j}>\mu_{j}}^{t} (\lambda_{j} - \mu_{j}) \leq \sum_{j=k,\lambda_{j}<\mu_{j}}^{t} (\mu_{j} - \lambda_{j}) + C \quad (k = 2, \dots, t).
\end{cases} (2)$$

Для $j=1,2,\ldots,t$ будем говорить, что j-компонента разбиения λ имеет j-горку (или просто горку) относительно разбиения μ , если $\lambda_j > \mu_j$. В случае, когда выполняется условие $\lambda_j > \mu_j$, будем считать, что верхние $\lambda_j - \mu_j$ блоков j-столбца диаграммы Ферре разбиения λ образуют j-горку высоты $\lambda_j - \mu_j$.

Для $j=1,2,\ldots,t$ будем говорить, что j-компонента разбиения λ имеет j-ямку (или просто ямку) относительно разбиения μ , если $\lambda_j < \mu_j$. В случае, когда выполняется условие $\lambda_j < \mu_j$, будем считать, что над j-столбцом диаграммы Ферре разбиения λ имеется j-ямка глубины $\mu_j - \lambda_j$.

Отметим, что условие $\lambda_j = \mu_j$ равносильно тому, что в j-столбце разбиения λ нет j-горки и нет j-ямки.

Условия (1) можно переформулировать в следующем виде: для любого $k = 1, \ldots, t$ сумма высот всех j-горок, таких, что $1 \leq j \leq k$, больше или равна суммы глубин всех j-ямок таких, что $1 \leq j \leq k$.

Условия (2) и (3) можно переформулировать соответственно в следующем виде:

- \bullet сумма высот всех горок равна сумме числа C и суммы глубин всех ямок,
- для любого $k=2,\ldots,t$ сумма высот всех j-горок таких, что $j\geq k$, не превосходит суммы числа C и суммы глубин всех j-ямок таких, что j>k,

где C — некоторое целое неотрицательное число.

Предположим теперь, что $\lambda \geq \mu$.

Пусть λ имеет i-ямку для некоторого $i \in \{1,\dots,t\}$ относительно разбиения μ . Тогда в силу условий (1) существует ближайшая к ней слева (по диаграмме Ферре) i'-горка такая, что $1 \leq i' < i$. Тогда между i'-горкой и i-ямкой нет горок (т. е. s-горок таких, что i' < s < i).

Заметим, что $\lambda_{i'} > \mu_{i'} \geq \mu_{i'+1} \geq \lambda_{i'+1}$, т.е. $\lambda_{i'} > \lambda_{i'+1}$ (будем говорить, что в i'-столбце диаграммы Ферре разбиения λ имеется ycmyn). Кроме того, $\lambda_{i'} > \mu_{i'} \geq \mu_i > \lambda_i$, поэтому $\lambda_{i'} \geq 2 + \lambda_i$.

Будем говорить, что i-ямка donycmuma, если $\lambda_{i-1} > \lambda_i$. Очевидно, что ближайшая справа к i'-горке ямка допустима. Действительно, пусть такая ямка расположена в k-столбце. Тогда $\lambda_{k-1} \ge \mu_k > \lambda_k$, т. е. $\lambda_{k-1} > \lambda_k$.

Таким образом, если имеется хотя бы одна ямка, то имеется и допустимая ямка

Пусть рассматриваемая i-ямка допустима. Тогда к разбиению λ можно применить (i',i)-перекидывание блока, т. е. перекидывание верхнего блока i'-столбца на верх i-столбца. Полученное таким перекидыванием разбиение обозначим через λ' . Указанное преобразование будем называть перекидыванием верхнего блока в допустимую ямку из ближайшей к ней слева горки.

Отметим, что для полученного разбиения λ' сохраняются условия (1), т. е. $\lambda' \geq \mu$. Действительно, если k < i', то соответствующее k условие из (1) для λ совпадает с соответствующим k условием для λ' ; в случае $k \geq i$ из левой и правой части соответствующего k условия (1) вычитается по 1. Предположим теперь, что i' < k < i. Тогда

$$\sum_{j=1,\lambda_{j}>\mu_{j}}^{k}(\lambda_{j}-\mu_{j}) = \sum_{j=1,\lambda_{j}>\mu_{j}}^{i}(\lambda_{j}-\mu_{j}) \ge \sum_{j=1,\lambda_{j}<\mu_{j}}^{i}(\mu_{j}-\lambda_{j}) > \sum_{j=1,\lambda_{j}<\mu_{j}}^{k}(\mu_{j}-\lambda_{j}),$$

т. е. соответствующее числу k условие из (1) является для разбиения λ строгим неравенством. при переходе к разбиению λ' левая часть неравенства уменьшается на 1, а правая — не изменяется, поэтому при переходе к λ' неравенство сохранится, но может стать нестрогим.

Таким образом, если λ' получено из λ с помощью перекидывания верхнего блока в допустимую ямку из ближайшей к ней слева горки, то $\lambda' \geq \mu$.

Рассмотрим теперь последнюю горку разбиения λ относительно разбиения μ , т. е. i-горку с наибольшим значением индекса i. Тогда $\lambda_i > \mu_i \ge \mu_{i+1} \ge \lambda_{i+1}$, т. е. в i-столбце имеется уступ. Поэтому при C>0 к λ можно применить элементарное преобразование второго типа, состоящее в удалении верхнего блока

из *i*-столбца диаграммы Ферре разбиения λ . Будем называть такое преобразование удалением верхнего блока из последнего горки. Ясно, что для полученного разбиения λ' выполняется $\operatorname{sum}(\lambda') - \operatorname{sum}(\mu) = C - 1$ и для λ' сохраняются условия вида (2) и (3), т.е. $\lambda' \geq \mu$.

Таким образом, если разбиение λ' получено из разбиения λ с помощью удаления верхнего блока из последней горки, то $\lambda' \geq \mu$.

Следующий алгоритм строит некоторые кратчайшие последовательности длины height(λ,μ) элементарных преобразований от λ до μ в случае, когда $\lambda \geq \mu$.

Алгоритм 1. Пусть $\lambda \ge \mu$ и $C = \text{sum}(\lambda) - \text{sum}(\mu)$.

- 1) Полагаем $\lambda' = \lambda$ и C' = C.
- 2) К текущим значениям разбиения λ' и числа C' применяем любое из следующих возможных элементарных преобразований:
 - если λ' имеет ямку, то заменяем λ' на разбиение, полученное из λ' с помощью перекидывания верхнего блока в некоторую допустимую ямку из ближайшей к ней слева горки;
 - если C'>0, то заменяем C' на C'-1, а разбиение λ' на разбиение, полученное из λ' с помощью удаления верхнего блока из последней горки.
- 3) Выполняем 2) до тех пор, пока это возможно. Процесс обязательно завершится. Выполненные преобразования составят кратчайшую последовательность элементарных преобразований от λ до μ .

Доказательство корректности алгоритма. В силу сделанных ранее замечаний справедливы следующие утверждения:

- если у текущего разбиения λ' имеется ямка, то имеется и допустимая ямка:
- при каждом выполнении (2) сумма высот всех горок уменьшается точно на 1:
- для каждого очередного значения разбиения λ' выполняется $\lambda' \geq \mu$.

В силу этих утверждений и условия (2) на шаге выполнения 2) с номером

$$\sum_{j=1,\lambda_j>\mu_j}^{\infty} (\lambda_j - \mu_j) \tag{4}$$

у полученного разбиения λ' не будет горок, не будет ямок и будет выполняться равенство C'=0, поэтому будет выполняться равенство $\lambda'=\mu$. Отметим, что число (4) равно сумме высот всех горок разбиения λ и оно же в силу условия (2) равно сумме числа C и суммы глубин всех ямок разбиения λ .

С другой стороны, если некоторая последовательность элементарных преобразований преобразует λ в μ , то каждый блок, содержащийся в какой-либо из горок, обязательно должен быть перемещён (перекинут или удалён). Поэтому число элементарных преобразований в такой последовательности не меньше суммы высот всех горок.

Докажем теперь Теорему 1. Поскольку

$$\sum_{j=1,\lambda_j>\mu_j}^{\infty} (\lambda_j - \mu_j) = C + \sum_{j=1,\lambda_j<\mu_j}^{\infty} (\mu_j - \lambda_j),$$

мы получаем

$$\operatorname{height}(\lambda, \mu) = \sum_{j=1, \lambda_j > \mu_j}^{\infty} (\lambda_j - \mu_j) =$$

$$= \frac{1}{2} \left(\sum_{j=1, \lambda_j > \mu_j}^{\infty} (\lambda_j - \mu_j) + C + \sum_{j=1, \lambda_j < \mu_j}^{\infty} (\mu_j - \lambda_j) \right) =$$

$$= \frac{1}{2} C + \frac{1}{2} \sum_{i=1}^{\infty} |\lambda_j - \mu_j|.$$

Пример. Пусть $\lambda = (14, 9, 7, 6, 1, 1)$ и $\mu = (10, 10, 6, 3, 3, 1, 1, 1)$.

т. е. $\lambda \wedge \mu = \mu$ и, следовательно, $\lambda \geq \mu$. Мы имеем $\mathrm{sum}(\lambda) = 38, \, \mathrm{sum}(\mu) = 35$ и C = 3.

Рассмотрим покомпонентную разность λ и μ :

Мы имеем здесь три горки, четыре ямки и

$$\sum_{j=1}^{\infty} |\lambda_j - \mu_j| = 4 + 1 + 1 + 3 + 2 + 1 + 1 = 13.$$

Следовательно, height $(\lambda, \mu) = \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 13 = 8$, т. е. равно сумме высот всех горок.

Применим теперь Алгоритм 1 и построим последовательность из 8 элементарных преобразований от λ до μ .

Отметим, что удаление любого из трёх блоков можно совершить на любом из шагов выполнения алгоритма.

1) 4-удаление блока (4-горка является последней горкой).

$$\lambda' = 14 \quad 9 \quad 7 \quad 5 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0^{2}$$

$$\mu = 10 \quad 10 \quad 6 \quad 3 \quad 3 \quad 1 \quad 1 \quad 1 \quad 0$$

$$\lambda' - \mu = +4 \quad -1 \quad +1 \quad +2 \quad -2 \quad 0 \quad -1 \quad -1 \quad 0$$

(4,7)-перекидывание блока (из 4-горки блок перекидывается в допустимую 7-ямку; отметим, что 8-ямка не является допустимой).

3) (1, 2)-перекидывание блока.

4) (4, 5)-перекидывание блока.

5) 3-удаление блока.

6) (1, 8)-перекидывание блока (8-ямка теперь допустима).

7) (1, 5)-перекидывание блока.

8) 1-удаление блока.

Заметим, что с помощью Алгоритма 1 можно получить не каждую кратчайшую последовательность элементарных преобразований от λ до μ . Действительно, сначала совершим 1-удаление блока в λ . Получим разбиение λ' , которое больше μ :

Применяя далее Алгоритм 1 к разбиению λ' , мы получим кратчайшую последовательность элементарных преобразований от λ через λ' до μ . Ясно, что полученная последовательность элементарных преобразований не может быть получена с помощью Алгоритма 1.

References

- [1] M.O. Asanov, V.A. Baransky, V.V. Rasin, Diskretnaya matematika: grafy, matroidy, algoritmy, Lan', SPb, 2010. [In Russian]
- [2] G.E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1976. MR1634067
- [3] V.A. Baransky, T.A. Koroleva, The lattice of partitions of a positive integer, Doklady Math., 77(1) (2008), 72–75. MR2479430
- [4] V.A. Baransky, T.A. Koroleva, T.A. Senchonok, O reshetke razbieniy natural'nogo chisla, Trudy Instituta matematiki i mehaniki UrO PAN, 21(3) (2015), 30–36. [In Russian] MR3468086
- [5] V.A. Baransky, T.A. Koroleva, T.A. Senchonok, On the partition lattice of all integers, Siberian Electronic Mathematical Reports, 13 (2016), 744–753. MR3553165
- [6] T. Brylawski, The lattice of integer partitions, Discrete Math, 6 (1973), 210–219. MR0325405

VITALY ANATOLIEVICH BARANSKY
URAL FEDERAL UNIVERSITY,
PR. LENINA, 51,
620083, EKATERINBURG, RUSSIA
E-mail address: vitaly.baransky@urfu.ru

Tatiana Alexandrovna Senchonok Ural Federal University, pr. Lenina, 51, 620083, Ekaterinburg, Russia E-mail address: tatiana.senchonok@urfu.ru