MEME15203 Statistical Inference

Assignment 3

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2022 Due by: 17/3/2022

- Q1. Consider a random sample of size n from a two-parameter exponential distribution, $X_i \sim EXP(1, \eta)$.
 - (a) Show that $T(X) = X_{1:n}$ is complete and sufficient for η . (5 marks)
 - (b) Find the UMVUE of η . (5 marks)
 - (c) Find the UMVUE of η^2 . (5 marks)
 - (d) Use Basu's Theorem to show that $X_{1:n}$ and $S^2 = \frac{\sum (X_i \bar{X})^2}{n-1}$ are independent. (5 marks)
- Q2. Suppose that $X_1, ..., X_n$ is a random sample from a Negative Binomial distribution, $X_i \sim NB(r = 6, \theta)$,
 - (a) Show that the p.d.f. of X belongs to the regular exponential family. (5 marks)
 - (b) Based on the answer in (a), find a complete and sufficient statistic for θ . (5 marks)
 - (c) Find the UMVUE of $\left[\frac{4\theta}{1-4(1-\theta)}\right]^{6n}$. (5 marks)
- Q3. Consider a random sample of size n from a gamma distribution $X_i \sim GAM(\alpha, \theta)$ and let $\bar{X} = (1/n) \sum X_i$ and $\tilde{X} = (\prod X_i)^{1/n}$ be the sample mean and geometric mean respectively.
 - (a) Show that \bar{X} and \tilde{X} are jointly complete and sufficient for θ and α .
 - (b) Find the UMVUE of $\mu = \alpha \theta$. (5 marks)
 - (c) Find the UMVUE of μ^n . (5 marks)
 - (d) Show that the distribution of $T = \frac{\bar{X}}{\bar{X}}$ does not depend on θ . (5 marks)
 - (e) Show that \bar{X} and T are stochastically independent random variables. (5 marks)
- Q4. Suppose that $X_1, ..., X_n$ is a random sample from a Poisson distribution, $X_i \sim \text{POI}(\theta)$. Find the UMVUE of $P(X = 0 \text{ or } 2) = (1 + \frac{1}{2}\theta^2)e^{-\theta}$ using Rao-Blackwell theorem. (15 marks)
- Q5. Let $X_1, ..., X_n$ be a random sample from a Bernoulli distribution, $X_i \sim Bin(1, p)$; $0 . Find the UMVUE of <math>p^2$. (10 marks)

MEME15203 Statistical Inference

- Q6. Show that $X \sim N(0, \theta)$ is not a complete family. (5 marks)
- Q7. Let $X_1, X_2, ..., X_n$ be random sample of size n from a Gamma distribution with probability density function

 1 π/θ

$$\frac{1}{\theta^2} x e^{-x/\theta}, x > 0$$

zero otherwise. Find the UMVUE of $\gamma = P(X > t)$ using Rao-Blackwell theorem. (15 marks)