Stat 260 Lecture Notes

Set 21 - The Central Limit Theorem

7 independence

Rule (from Set 20): Suppose $X_1, X_2, ..., X_n$ is a random sample of size n from a distribution that is normal with mean μ and standard deviation σ . Then \overline{X} is normal with mean μ and standard deviation σ/\sqrt{n} .

Furthermore
$$Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$
 is standard normal. $Z = \frac{r.v - expected value}{st. dev. of r.v}$

Central Limit Theorem (CLT): Suppose $X_1, X_2, ..., X_n$ is a random sample of size n from any distribution with mean μ and standard deviation σ . For a large n ($n \geq 30$), then \overline{X} is approximately normal with mean μ and standard deviation σ/\sqrt{n} .

Furthermore
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$
 is standard normal.

Rule: Suppose X_1, X_2, \ldots, X_n is a random sample of size n from any distribution with mean μ and unknown standard deviation. (i.e. We don't know σ , so we use s instead.) For a large n ($n \geq 30$), then \overline{X} is approximately normal with mean μ and standard deviation s/\sqrt{n} .

Furthermore $Z = \frac{\overline{X} - \mu}{s/\sqrt{n}}$ is standard normal.

$$Z = \frac{\overline{X} - h}{\sigma / \ln} = \frac{\overline{X} - h}{S / \ln}$$

when we don't know o

152cm and 155cm?
$$\sqrt{x}$$
 \sqrt{x} \sqrt{x}