Sprawozdanie z Listy 2 Obliczenia Naukowe

Tomasz Hałas 7 listopada 2021

Spis treści

1	Zad	anie 1.	3
	1.1	Opis problemu	3
	1.2	Rozwiązanie	3
	1.3	Wyniki	3
	1.4	Wniosek	4
2	Zad	anie 2.	4
	2.1	Opis problemu	4
	2.2	Rozwiązanie	4
	2.3	Wyniki	4
	2.4	·	5
3	Zad	anie 3.	6
	3.1	Opis problemu	6
	3.2		6
	3.3	C	6
	3.4	· ·	8
4	Zad	anie 4.	8
	4.1	Opis problemu	8
	4.2	Rozwiązanie	8
	4.3	Wyniki	
	4.4	Wniosek	_
5	Zad	anie 5.	1
_	5.1	Opis problemu	- 1
	5.2	Rozwiązanie	
	5.3	Wyniki	
	5.4	Wniosek	
6	Zad	anie 6.	2
•	6.1	Opis problemu	_
	6.2	Rozwiązanie	
	6.2	Wyniki	
	6.4	Wriggel	

1 Zadanie 1.

1.1 Opis problemu

Problem opiera się na policzeniu iloczynu skalarnego dwóch znanych wektorów na kilka sposobów:

- w przód.
- w tył.
- od największego do najmniejszego.
- od najmniejszego do największego.

zmieniając dane wejściowe.

1.2 Rozwiązanie

Rozwiązania znajdują się w pliku zad1L2.jl. Zaimplementowałem wyżej wymienione sposoby liczenia iloczynu skalarnego za pomocą czterech funkcji odpowiadającym podpunktom w zadaniu, uwzględniając zmienionne dane.

Artmetyka	Wynik a)	Wynik b)
Float32	-0.4999443	-0.4543457
Float64	-0.004296342739891585	-0.004296342998713953
Artmetyka	Wynik c)	Wynik d)
Float32	-0.5	-0.5
1100002	0.0	0.0

Tabela 1: Wynik iloczynu skalaranego dla nowych danych.

Artmetyka	Wynik a)	Wynik b)
Float32	0.0	0.0
Float64	0.004296342842410399	0.004296342842280865
A	TTT 41 \	TTT 41 1\
Artmetyka	Wynik c)	Wynik d)
Float32	0.0	(0.0) (Wynik d)

Tabela 2: Różnica iloczynu skalaranego obliczonego w zad1L2 z zad5L1.

Na podstawie otrzymanych danych możemy zauważyć, że zadanie jest źle uwarunkowane, gdyż niewielkie "zaburzenie" w danych początkowych powoduje znaczną różnice wyników końcowych (utrate dokładności obliczeń).

2 Zadanie 2.

2.1 Opis problemu

Problem opiera się na narysowaniu funkcji $f(x) = e^x ln(1 + e^{-x})$ w co najmniej dwóch programach do wizualizacji i policzeniu jej granicy.

2.2 Rozwiązanie

Do wykonania tego użyłem Juli (plik zad2L2.jl), Wolframa Alpha oraz MatLaba.

2.3 Wyniki

Obliczona granica wynosi:

$$\lim_{x\to\infty} f(x) = e^x \ln(1 + e^{-x}) = 1$$

Na dole przedstawiam wizualizacje z programów:

Rysunek 1: Wykres z Julia.

Rysunek 2: Wykres Wolfram Aplha.

Rysunek 3: Wykres MatLab.

Dla wartości większych od 32 nasz wykres zaczyna odchylać się od oczekiwanej wartości. Widzimy bardzo duża rozbieżność pomiędzy wizualizacją funkcji, która dąży do 0, a jej rzeczywistą granicą równą 1.

2.4 Wniosek

Powodem tak wielkich odchyleń dla wartości większych od 32, jest fakt że liczba e^{-x} dla takich liczb dąży do epsilona maszynowego, a wyrażenie $ln(1+e^{-x})$ jest bliske 0. Co w

ostatecznym rozrachunku powoduje, że mnożymy liczbe bliską 0 z bardzo duża liczbą e^x , co dla x>32 powoduje coraz to większe zniekształcenie wykresu f(x). Widzimy, że nawet zaawansowane programy do wizualizacji nie poradziały sobie z narysować poprawnie tej funkcji.

3 Zadanie 3.

3.1 Opis problemu

Musimy rozwiązać układ równań liniowych

$$Ax = b$$

Macierz A jest macierzą Hilberta lub macierzą losową. W celu wyliczenia stosujemy eliminację Gaussa lub inwersję.

3.2 Rozwiązanie

Rozwiązania znajdują się w pliku zad3L2.jl. Za pomocą podanych metod (hilb(n) oraz matcond(c,n)) wyliczam określoną macierz macierz A. Pierwsza metoda zawraca macierz Hilberta, natomiast za pomocą drugiej otrzymuje macierz losową stopnia n z danym wskaźnikiem uwarunkowania. Nastpęnie wyliczam wektor x. Wykonuje algorytmy:

- a. Eliminacji Gaussa
- b. Inwersjii

dla określonych danych.

\mathbf{n}	Rząd	Wsk Uwarunkowania	Błąd wzg Inwersja	Błąd wzg Gauss
1	1	1.0	0.0	0.0
2	2	19.28147006790397	1.4043333874306803e-15	5.661048867003676e-16
3	3	524.0567775860644	0.0	8.022593772267726e-15
4	4	15513.738738928929	7.542470546988852e-13	4.637277712035294e-13
5	5	476607.25024224253	7.45602798259539e-12	1.7697056701418277e-13
6	6	1.495105864125091e7	3.533151828962887e-10	3.496491467713994e-10
7	7	4.7536735637688667e8	6.190844397992631e-9	1.3175049864850338e-8
8	8	1.5257575516147259e10	3.775275483015941e-7	2.487433466002445e-7
9	9	4.9315408927806335e11	1.1659486044133412e-5	9.643625435772316e-6

10	10	1.6024859712306152e13	0.0003357158826776558	0.00022035288727930986
11	10	5.2210348947688544e14	0.01113776822564549	0.006022512934347414
12	11	1.7255427417341868e16	0.16218620232347905	0.19509235225028912
13	11	7.126491965424366e17	5.511855154155295	7.894191771622431
14	11	6.101307732044041e17	3.3522039875276723	0.8270688593203056
15	12	4.223311222761075e17	4.354299435453685	3.10349386243609
16	12	3.535827507735838e17	54.189834405860445	9.083139658689422
17	12	3.1182808742153696e17	5.786281231941037	4.24328971542452
18	12	1.5639169583348145e18	5.7599951815224495	4.7860299021083
19	13	1.3274441976880407e18	12.309212980457932	6.114994252530053
20	13	2.2777635596453635e18	17.030822563878868	19.122235961045973
21	13	1.5088647979164173e18	4.797191888763164	5.528693844520417
22	13	2.148587035517758e18	19.452979830106727	14.91838193889066
23	13	8.53990580100839e18	6.265996982174681	7.050470984846638
24	13	1.1703742699502748e19	17.20261485961593	13.918474300172141
25	13	1.5100611248172846e18	31.685081256911236	28.59107844940893
26	14	6.7061676715063665e19	20.609586025517647	10.291326254384165
27	14	4.3599859152937656e18	365.5935558097509	59.829564755903704
28	14	$1.3045387550900326\mathrm{e}{19}$	118.77505272951088	129.44544841399153
29	14	1.0145758471780368e20	14.393580547213602	17.694035946947576
30	14	2.0443844273023086e18	32.235350888091794	17.012568794347324

Tabela 3: Błedy względne dla macierzy Hilberta

n	Rząd	Wsk Uwarunkowania	Błąd wzg Inwersja	Błąd wzg Gauss
5	5	1.00000000000000007	7.021666937153402e-17	1.719950113979703e-16
5	5	10.0000000000000007	2.808666774861361e-16	3.1401849173675503e-16
5	5	1000.00000000000067	1.801492093815358e-14	2.6057244226792505e-14
5	5	9.99999999780248e6	8.231806349783991e-11	2.982476263032775e-11
5	5	1.0000754130994948e12	1.7397696305834012e-5	1.2742664544753693e-5
5	4	9.202880812262646e15	0.1342523059043121	0.19415647851285806
10	10	1.00000000000000013	3.274687455368547e-16	3.2177320244274193e-16
10	10	10.0000000000000016	5.254534392573277e-16	2.1355566272775288e-16
10	10	999.99999999999	2.3019076220321125e-14	2.4793544732318398e-14
10	10	1.0000000005408261e7	1.0872627819491399e-10	1.207423219988384e-10
10	10	9.999277729844752e11	1.3477505146343368e-5	1.600372213562927e-5
10	9	$2.0808171338329812\mathrm{e}16$	0.27341517766027545	0.25591507689612236
20	20	1.00000000000000013	5.822058658345461e-16	4.755851266270182e-16

20	20	10.000000000000014	4.570830125558456e-16	4.2927028441178026e-16
20	20	1000.0000000000076	1.9577737160465176e-14	2.7819583882570482e-14
20	20	9.9999999663152e6	1.345686467497988e-10	1.148082865046246e-10
20	20	1.0000296363395857e12	5.701146104478469e-6	2.848989100390986e-6
20	19	8.11660555498424e15	0.5809611884792529	0.5711935687851183

Tabela 4: Błedy względne dla macierzy losowej

Widać, że eliminacja Gausa ma o wiele mniejszy błąd niż mnożenie przez odwrtoność macierzy. Szczególnie widoczne jest to w przypadku macierzy Hilberta. Można też zauważyć, że duże uwarunkowanie macierzy przekłada się na wzrost błędu względnego niezależne od użytej metody. Poza tym macierz Hilberta jest bardzo źle uwarunkowana niezależne od algorymu którego użyliśmy.

4 Zadanie 4.

4.1 Opis problemu

W zadaniu mamy do czynnienia z złośliwym wielomianem Wilkinsona. Za pomocą pakietu *Polynomials* mamy wyliczyć zera tego wielomianu i porównać je ze znami już zerami, a nastepnie powtórzyć wyliczanie zmieniając współczynik.

4.2 Rozwiązanie

Rozwiązanie znajduje się w pliku zad4L2.jl. Za pomocą funkcji Polynomial() tworze gotowy wielomian w postaci naturalnej. Nastepnie za pomoca funkcji roots() wyliczam zera tego wielomianu. W pętli kolejno podstawiam wyliczone miejsca zerowe do wielomianów. Następnie powtarzam wszytsko dla zmiennionych współczyników wielomianu naturalnego.

Pierwiastek	i	$ P(z_k))$	$ p(z_k) $	$ z_k - k $
0.999999999996989	1	36352.0	38400.0	3.0109248427834245e-13
2.0000000000283182	2	181760.0	198144.0	2.8318236644508943e-11
2.99999999995920965	3	209408.0	301568.0	4.0790348876384996e-10
3.9999999837375317	4	3.106816e6	2.844672e6	1.626246826091915e-8
5.000000665769791	5	2.4114688e7	2.3346688e7	6.657697912970661e-7
5.999989245824773	6	1.20152064e8	1.1882496e8	1.0754175226779239e-5
7.000102002793008	7	4.80398336e8	4.78290944e8	0.00010200279300764947
7.999355829607762	8	1.682691072e9	1.67849728e9	0.0006441703922384079
9.002915294362053	9	4.465326592e9	4.457859584e9	0.002915294362052734
9.990413042481725	10	1.2707126784e10	1.2696907264e10	0.009586957518274986
11.025022932909318	11	3.5759895552e10	3.5743469056e10	0.025022932909317674
11.953283253846857	12	7.216771584e10	7.2146650624e10	0.04671674615314281
13.07431403244734	13	2.15723629056e11	2.15696330752e11	0.07431403244734014
13.914755591802127	14	3.65383250944e11	3.653447936e11	0.08524440819787316
15.075493799699476	15	6.13987753472e11	6.13938415616e11	0.07549379969947623
15.946286716607972	16	1.555027751936e12	$1.554961097216\mathrm{e}{12}$	0.05371328339202819
17.025427146237412	17	3.777623778304e12	3.777532946944e12	0.025427146237412046
17.99092135271648	18	7.199554861056e12	7.1994474752e12	0.009078647283519814
19.00190981829944	19	1.0278376162816e13	1.0278235656704e13	0.0019098182994383706
19.999809291236637	20	2.7462952745472e13	2.7462788907008e13	0.00019070876336257925

Tabela 5: Tabela dla wielomianu Wilkinsona.

Pierwiastek
$0.999999999998357 + 0.0 \mathrm{im}$
$2.0000000000550373 + 0.0 \mathrm{im}$
$2.9999999660342+0.0\mathrm{im}$
4.000000089724362 + 0.0im
$4.99999857388791+0.0\mathrm{im}$
6.000020476673031 + 0.0im
$6.99960207042242 + 0.0 \mathrm{im}$
8.007772029099446 + 0.0im
8.915816367932559 + 0.0im
10.095455630535774 - 0.6449328236240688im
$\boxed{10.095455630535774 + 0.6449328236240688im}$
11.793890586174369 - 1.6524771364075785im
11.793890586174369 + 1.6524771364075785im
13.992406684487216 - 2.5188244257108443im
13.992406684487216 + 2.5188244257108443 im
16.73074487979267 - 2.812624896721978im
$16.73074487979267 + 2.812624896721978 \mathrm{im}$
19.5024423688181 - 1.940331978642903im
$19.5024423688181 + 1.940331978642903 \mathrm{im}$
$20.84691021519479+0.0\mathrm{im}$

Tabela 6: Tabela pierwiastków dla wielomianu Wilkinsona (modyfikacja).

i	$ P(z_k))$	$ p(z_k) $	$ z_k - k $
1	20496.0	22544.0	1.6431300764452317e-13
2	339570.0	372338.0	5.503730804434781e-11
3	2.2777455e6	2.4436335e6	3.3965799062229962e-9
4	1.0488020625e7	1.0750164625e7	8.972436216225788e-8
5	4.1239073125e7	4.02662678125e7	1.4261120897529622e-6
6	1.406328934140625e8	2.15631041265625e8	2.0476673030955794e-5
7	4.122812662421875e8	1.7767613706484375e9	0.00039792957757978087
8	1.0307901272578125e9	1.869983012953125e10	0.007772029099445632
9	2.1574055781816406e9	1.3687969854061133e11	0.0841836320674414
10	9.384147605647182e9	1.4914426921125325e12	0.6519586830380407
11	9.384147605647182e9	1.4914426921125325e12	1.1109180272716561
12	3.0012060598372482e10	3.2972366160664863e13	1.665281290598479
13	3.0012060598372482e10	3.2972366160664863e13	2.0458202766784277
14	2.0030917431984006e11	9.546145387156686e14	2.518835871190904
15	2.0030917431984006e11	9.546145387156686e14	2.7128805312847097
16	1.1583329328642004e12	2.7421284549276744e16	2.9060018735375106
17	1.1583329328642004e12	2.7421284549276744e16	2.825483521349608
18	5.867381806750561e12	4.252532516608892e17	2.4540214463129764
19	$5.867381806750561\mathrm{e}{12}$	4.252532516608892e17	2.0043294443099486
20	9.550552334336e12	1.3743481126061834e18	0.8469102151947894

Tabela 7: Tabela dla wielomianu Wilkinsona (modyfikacja).

Zaburzenie współcznikania wielkości 2^{-23} zmieniło całkowicie wyniki, a więc zadanie jest źle uwarunkowane. Widzimy też, że dla otrzymanych pierwiastków, żaden nie daje 0. Niedokładność wyliczonych przeze mnie miejsc zerowych, powstaje przez duże współczyniki wielomianianu, których niedokładne zapisanie wynika z niewystarczającej liczby cyfr znaczących (błędna reprezentacja).

5 Zadanie 5.

5.1 Opis problemu

Równanie rekurencyjne dane jako $p_n + 1 := p_n + rp_n(1 - p_n)$, dla n = 0, 1...., gdzie r jest pewną daną stałą, $r(1 - p_n)$ jest czynnikiem wzrostu populacji, a p_0 jest wielkością populacji stanowiąca procent maksymalnej wielkości populacji dla danego stanu środowiska.

5.2 Rozwiązanie

Rozwiązanie znajduje się w pliku zad5L2.jl. Polega ono na użyciu rekursji w celu rozwiązania tego równania po 40 iteracji dla danych $p_0 = 0.01$ i r = 3. Nastepnię uruchamiam ponownie z tym że po 10 iteracji ucinam wynik, uzyskując tym samym 0.722, potem iteruję do 40. Powtarzam to samo dla Float64.

5.3 Wyniki

Artemtyka	Wynik po 40 Iter	Wynik po 10 Iter	Wynik po 30 kolejnych Iter
Float32	0.25860548	0.722	1.093568
Float64	0.011611238029748606	0.722	0.7305550338104317

Tabela 8: Rekursji dla Float32 i Float 64 z i bez obcięcia.

Widzimy, jak duży wpływ na obliczenia ma obcięcie paru cyfr znaczących i jak istotna jest zwiększona precyzja obliczeń.

5.4 Wniosek

Równanie rekurencyjne poprzez pobieranie danych z porzednich iteracji powiela bardzo często błąd "poprzednika", co w znaczynym stopniu pogarsza precyzje naszych obliczeń.

6 Zadanie 6.

6.1 Opis problemu

Musimy rozwiązać równanie rekurencyjne:

$$x_{n+1} := x_n^2 + c \text{ dla } n = 0, 1....$$

gdzie c jest pewną stała, dla pewnych danych w artmetyce Float64:

1.
$$c = -2 i x_0 = 1$$

2.
$$c = -2 i x_0 = 2$$

4.
$$c = -1$$
 i $x_0 = 1$

5.
$$c = -1$$
 i $x_0 = -1$

6.
$$c = -1$$
 i $x_0 = 0.75$

7.
$$c = -1$$
 i $x_0 = 0.25$

6.2 Rozwiązanie

Rozwiązanie znajduje się w pliku zad6L2.jl. Polega ono na użyciu rekursji w celu rozwiązania tego równania po 40 iteracji dla wybranych c i x_0 . Podczas wykonywania rekursji zapisuję wyniki dla poszczególnych wariantów, które nastepnie umieszczam na wykresie.

Rysunek 4: Wykres 1.

Rysunek 5: Wykres 2.

Rysunek 6: Wykres 3.

Rysunek 7: Wykres 4.

Rysunek 8: Wykres 5.

Rysunek 9: Wykres 6.

Rysunek 10: Wykres 7.

W przypadku gdy x_0 jest całkowite nasze wyniki są trafne i oczekiwane. Natomiast w przypadku, gdy x_0 jest zmiennopocyzyjny (0.25 lub 0.75) w wyniku działania rekursji nasze liczby dążą do liczb całkowitych (0 lub -1), przez nieustanną utrate cyfr znaczących w wyniku działań (wraz kolejną iteracją). Zupełnie innaczej wygląda wykres dla c=1.99999999999 (wykres 3). Z początku przyjmuje wartości bliskie 2 aby potem w wyniku powielania błędu (działanie rekurencji) tracimy precyzję obliczeń, a przy tym cyfry znaczące, co powoduje "rozbieżność" wartości.