Nombres y Apellidos:

- 1. Sea $n \in \mathbb{N}$. Se define $\xi = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.
 - 1.1) Pruebe que z = 1, $z = \xi$, $z = \xi^2$, $z = \xi^3$,... $z = \xi^{n-1}$ son todas las soluciones distintas de la ecuación $z^n = 1$.
 - 1.2) Prueba que si $z = \mu$ es una solución de $z^n = w$, entonces todas las otras soluciones son de la forma $\mu \cdot \xi^j$, donde j = 1, 2, ..., n-1.
 - 1.3) Pruebe que para $k \in \mathbb{N}$,

$$1 + \xi^k + \xi^{2k} + ... + \xi^{(n-1)k} = 0$$
, si *n* no divide a *k*, y

$$1 + \xi^k + \xi^{2k} + \dots + \xi^{(n-1)k} = n$$
, si *n* divide a *k*.

2. Sea:

$$\begin{cases}
-cy + bz = k \\
cx - az = m \\
-bx + ay = n
\end{cases}$$

- $\begin{cases}
 -cy + bz = k & \text{Un sistema de ecuaciones lineales, donde los parámetros } a, b, c, k, m, n \in \mathbb{R} \\
 cx az = m & 2.1 \text{ Utilizando el Teorema de Kronecker- Capelli, clasifique el sistema} \\
 -bx + ay = n & \text{de ecuaciones lineales según los valores de los parámetros.}
 \end{cases}$
- 2.2) Si (x_0, y_0, z_0) es una solución del sistema de ecuaciones lineales, demuestre que toda solución de dicho sistema se puede escribir $(x_0 + at, y_0 + bt, z_0 + ct)$, para todo $a, b, c \in \mathbb{R}$.
- 2.3) Halle la solución del sistema de ecuaciones lineales en función de los parámetros para $c \neq 0$.
- 3. Sean F subespacio vectorial de $\mathbb{R}_4[x]$ tal que $F = L[\lambda x^2 + x + 1, -x^3 + 1]$ y $G = \{p(x) \in \mathbb{R}_4[x] : p(0) = 0 = p''(1)\}$.
 - Demuestre que G es un subespacio vectorial de $\mathbb{R}_{A}[x]$. 3.1)
 - Para qué valores de λ la dim $(F \cap G) = 1$. 3.2)
 - Para el λ hallado en el inciso anterior, halle F+G. 3.3)
 - Halle un subespacio suplementario de F + G en $\mathbb{R}_4[x]$. 3.4)
- 4. Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ un endomorfismo tal que $f^2 2f + 3Id = 0$. Sean $v_1, v_2 \in \mathbb{R}^4$ vectores tales que $v_3 = f(v_2)$ y $v_4 = f(v_1)$ entonces $B = \{v_1, v_2, v_3, v_4\}$ una base de \mathbb{R}^4 .
 - Calcula la matriz del endomorfismo f en la base B. 4.1)
 - Halle el núcleo de $\,f\,$, la imagen de $\,f\,$, la nulidad de $\,f\,$ y el rango de $\,f\,$. 4.2)
 - Diga si f es inyectiva, sobreyectiva y/o biyectiva. 4.3)
 - Sea $B' = \{v_1 + v_2, v_1 v_2, v_1 + v_2 + v_3, v_2 v_4\}$. ¿Es B' base de \mathbb{R}^4 ? Si la respuesta es positiva, halle la matriz del endomorfismo f en la base B' utilizando la relación de semejanza.
 - 5. Sea V un \mathbb{R} espacio vectorial de dimensión n. $B = \{u_1, u_2, \dots, u_n\}$ base de V y f un endomorfismo de V definido por $f(u_1) = u_n$; $f(u_n) = u_1$; $f(u_i) = u_i$ si 1 < i < n.
 - 5.1) Demuestre que los valores propios de $f \sin \lambda_1 = 1$ y $\lambda_2 = -1$.
 - 5.2) Pruebe que f es diagonalizable y calcule su forma diagonal, así como una base que diagonalice a f.

Éxitos.

Justifique todas sus respuestas.