台北市松山高中九十七學年度	高三第一	-類組	第一次定	期考試試題
	三年	班	號 姓名:	

--作答注意事項---

題型題數:單選題5題,多選題6題,填充題第A至I題共9題

作答方式: • 用 2B 鉛筆在「答案卡」上作答,修正時應以橡皮擦拭,切勿使用修正液

• 答錯不倒扣

作答說明:在答案卡適當位置選出數值或符號。請仔細閱讀下面的例子。

(一)填答選擇題時,只用1,2,3,4,5等五個格子,而不需要用到-,±,

以及6,7,8,9,0等格子。

例:若第1題的選項為(1)3(2)5(3)7(4)9(5)11,而正確的答案為7,亦即 選項(3)時,考生要在答案卡第1列的 3 劃記 (注意不是7),如:

			解	答	-	欄				
1	1	2	3			8	0	_	±	

例:若多選題第 10 題的正確選項為(1)與(3)時,考生要在答案卡的第 10 列的 「與」 劃記,如: 10 ■ □ ■ □ □ □ □ □ □ □ □ □ □ □

(二)填充題的題號是 A, B, C,, 而答案的格式每題可能不同, 考生必須依各題 的格式填答,且每一個列號只能在一個格子劃記。

例:若第B題的答案格式是

(8) ,而依題意計算出來的答案是 $\frac{3}{8}$,則考生

必須分別在答案卡上的第 18 列的 \square 與第 19 列的 \square 劃記,如:

例:若第 C 題的答案格式是 $\frac{2021}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答

案卡的第 20 列的 □ 與第 21 列的 □ 劃記,如:

第一部分: 選擇題

壹、單一選擇題

說明:第1至5題,每題選出最適當的一個選項,標示在答案卡之「解答欄」, 每題答對得5分,未答者不給分。

- 1. 已知 |a|=5 ,|b|=2, $a \cdot b=-6$ 且 θ 為 a 與 b 的夾角,則 $\cos\theta$ 之值為何?
 - (1) 1 (2) -1 (3) $-\frac{3}{5}$ (4) $-\frac{4}{5}$ (5) 0
- 2. 一球面方程式,以A(3,1,2)為球心且與x軸相切,則切點為(x,0,0),則x=?
 - (1) 3 (2) 1 (3) -3 (4) 2 (5) -2
- 3. 下列何者為直線 $\frac{2x}{3} = \frac{2y-1}{1} = \frac{2-z}{3}$ 的方向向量?
- (1)(3,1,3) (2)(3,1,-3) (3)(3,2,3) (4)(3,1,-6) (5)(-3,1,3)
- 4. 設圓 $x^2+y^2-2x+4y+a=0$ 的半徑為 3,且圓心在直線 y=bx+3 上,求數對 (a,b)值
 - (1) (3, 4) (2) (5, -3) (3) (-3, -4) (4) (3, 3) (5) (-4, -5)
- 5. 設x, y, z均為正數, 且x+y+z=1, 求 $\frac{1}{x} + \frac{4}{y} + \frac{4}{z}$ 之最小值?
 - (1) 23 (2) 25 (3) 36 (4) 48 (5) 56

貳、多重選擇題

說明:第6至11題,每題至少有一個選項是正確的,選出正確選項,標示在答案卡之「解答欄」。每題答對得5分,未答者不給分。只錯一個可獲2.5分, 錯兩個或兩個以上不給分。

- 6. 設D, E, F 分別為 ΔABC 三邊 \overline{BC} , \overline{CA} , \overline{AB} 之中點,且 BA=a, BC=b,
 - (1) $DE = \frac{1}{2}a$ (2) $CD = -\frac{1}{2}b$ (3) $BE = \frac{1}{2}(a+b)$ (4) $DA = a \frac{1}{2}b$ (5) $AE = \frac{1}{2}(b-a)$
- 7. 直線 L: $\begin{cases} x = -1 + 5t \\ y = 2 3t \end{cases}$, $t \in \mathbb{R}$, 試問下列何點在直線 L上
 - $(1) \quad (1 \cdot 2) \quad (2) \quad (4 \cdot -1) \quad (3) \quad (-6 \cdot -5) \quad (4) \quad (0 \cdot 0) \quad (5) \quad (-11 \cdot 8)$

- 8. 下列敘述何者正確?
 - (1)設 a_1 , a_2 為兩實數,則 $\frac{a_1+a_2}{2} \ge \sqrt{a_1a_2}$
 - (2)設a, b為兩正數,則 $\frac{a}{b} + \frac{b}{a} \ge 2$,且等號在a = b時成立
 - (3)設 a_1 , a_2 , b_1 , b_2 為實數,則 $(a_1b_1+a_2b_2)^2 \le (a_1^2+a_2^2)(b_1^2+b_2^2)$,當等號成立時,必存在一實數k,使得 $b_1 = ka_1$, $b_2 = ka_2$
 - (4)設 u , v 為任意兩向量,則 | u · v |≤| u || v |
 - (5)若 x > 0 ,則 $x + \frac{1}{x} \ge 2$
- 9. 下列敘述何者正確?
 - (1)點 $P(x_0, y_0)$ 到直線 L: ax+by+c=0的距離為 $d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$
 - (2)二平行線 L_1 : $ax+by+c_1=0$ 與 L_2 : $ax+by+c_2=0$ 的距離為 $|c_1-c_2|$
 - (3)設u,v兩向量垂直,則 $u \cdot v = 0$
 - (4)直線 L: ax+by+c=0 中,向量 n=(a, b) 是直線 L 的一個法向量
 - (5)雨向量 u 平行 v ,則存在 $t \in R$ 使得 u = t v 。
- 10. 設 O , A , B 三點不共線 , OP = xOA + yOB , 則下列對 P 點軌跡敘述何者正確?
 - (1)若 $x = \frac{1}{2}$, $y \in R$, 則 P 點軌跡表一直線
 - (2)若 $\frac{1}{2} \le x \le 1, y \in R$,則 P 點軌跡表一線段
 - (3)若 $\frac{1}{2} \le x \le 1$, $1 \le y \le 2$,則P點軌跡表平行四邊形
 - (4)若 $x \in R$, $y \in R$,則 P 點軌跡表 O , A , B 三 點 所在的平面
 - (5)若 x+y=1, $x \in R$, $y \in R$, 則 P 點軌跡表直線
- 11. 自點P(1, 2)作圓 $C: x^2+y^2-4x+2y-4=0$ 的二切線,得切點A, B, 若圓心為<math>O
 - (1)圓心 Ø為 (2,1)
 - (2)圓C的半徑為 6
 - (3)切線段長 $\overline{PA}=1$
 - (4)四邊形APBO的面積 3
 - $(5)\Delta APB$ 的外接圓方程式 $x^2+y^2-3x-y=0$

第二部分:填充題

- 說明:1. 第 A 至 I 題,將答案劃記在答案卡之「解答欄」所標示的列號 (12-40)。
 - 2. 每題完全答對給 5 分,答錯不倒扣,未完全答對不給分。
- A. 設 $\triangle ABC$ 中, $\overline{AB}=3$, $\overline{BC}=4$, $\overline{CA}=6$, 試求 $AB \cdot BC = \frac{12 \cdot 13}{14}$ 。
- C. 設A(0,0,0),B(2,1,0),C(1,2,3),求過 ΔABC 之重心且垂直平面ABC之直線方程式為 $\frac{x-a}{1} = \frac{y-1}{b} = \frac{z-1}{c}$,求數對 $(a,b,c) = \underline{(16,17)(18,17)(18)}$ 。
- D. 若 A(5,-6), 點 P 在圓 $(x+1)^2 + (y-2)^2 = 25$ 上移動,試求 \overline{PA} 的最大值= 20 ② 。
- E. 過雨球面 $S_1: x^2 + y^2 + z^2 2x 3y 4z 18 = 0$, $S_2: x^2 + y^2 + z^2 = 9$ 之交圓,且過原點的球面方程式為 $x^2 + y^2 + z^2 + dx + ey + fz + g = 0$,求數對 $(d \cdot e \cdot f \cdot g) = (22 \cdot 23 \cdot 24 \cdot 25)$ 。
- F. 求雨歪斜線 L_1 : $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+3}{-2}$, L_2 : $\frac{x-2}{-3} = \frac{y+2}{4} = \frac{z}{1}$ 的距離 $= \underline{\qquad } 0$
- $G. \Delta ABC$ 中,設 D , E , F 分別在 \overline{BC} , \overline{CA} , \overline{AB} 上,且 \overline{BD} : \overline{DC} = 2:1, \overline{CE} : \overline{EA} = 1:3, \overline{AF} : \overline{FB} = 2:3, \overline{AF} : \overline{FB} = 2:3, \overline{AB} : \overline{AB}
- H. 求一平面過點 (2,3,1),且在第一卦限與三坐標平面所圍成四面體體積最小,此平面方程式為 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$,求數對(a,b,c) = (35,36,37)。
- I. 設空間中一直線 L 通過 (1, 2, 5) 及 (0, 0, 1) 兩點,試求 軸上與直線 L 的最近點的坐標 $= (\frac{38 \sqrt{39}}{40}, 0, 0) \circ$

答案:

一、選擇題

- 1. (3) 2. (1) 3. (4) 4. (5) 5. (2) 6. (1)(2)(3)(4)(5) 7. (2)(5) 8. (2)(3)(4)(5) 9. (1)(3)(4)(5)
- 10. (1)(3)(4)(5) 11. (3)(4)(5)
- 二、填充題
- A. $\frac{11}{2}$ B. 3 C. (1, -2, 1) D. 15 E. (2, 3, 4, 0) F. 3

G. $(\frac{11}{45}, \frac{17}{36})$ H. (6, 9, 3) I. $(\frac{-1}{5}, 0, 0)$