PROBLEMAS DEL TEOREMA DE STOKES

ENUNCIADO DEL TEOREMA DE STOKES

Sea S una superficie orientada y suave a trozos, acotada por una curva C suave a trozos, cerrada y simple, cuya orientación es positiva. Sea \mathbf{F} un campo vectorial cuyas componentes tienen derivadas parciales continuas sobre una región abierta en \mathbf{R}^3 que contiene a S. Entonces:

$$\int_{C} \mathbf{F} \cdot \mathbf{dr} = \iint_{S} \operatorname{rot} \mathbf{F} \cdot \mathbf{dS} = \iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{dS}$$

PROBLEMAS PROPUESTOS

- 1) Verificación del Teorema de Stokes. Verificar el teorema de Stokes para el campo vectorial $\mathbf{F}(x;y;z) = 3y\mathbf{i} + 4z\mathbf{j} 6x\mathbf{k}$ y la parte de la superficie paraboloidal $z = 9 x^2 y^2$ ubicada sobre el plano xy y orientada hacia arriba.
- 2) Transformación de una integral de superficie en otra más sencilla usando el Teorema de Stokes. Utilice el teorema de Stokes para evaluar la integral del rotacional del campo vectorial $\mathbf{F}(x; y; z) = xyz\mathbf{i} + xy\mathbf{j} + x^2yz\mathbf{k}$ sobre el dominio S consistente en la unión de la parte superior y de las cuatro caras laterales (pero no el fondo) del cubo con vértices $(\pm 1; \pm 1; \pm 1)$, orientado hacia afuera.
- 3) Aplicación al concepto de circulación de un campo. Calcular la circulación del campo de velocidades de un fluido $\mathbf{F}(x;y;z) = (\tan^{-1}(x^2); 3x; e^{3z} \tan z)$ a lo largo de la intersección de la esfera $x^2 + y^2 + z^2 = 4$ con el cilindro $x^2 + y^2 = 1$, con z > 0.