

IIT Madras ONLINE DEGREE

Statistics for Data Science -1

Lecture 3.2: Describing Numerical Data- Mean

Usha Mohan

Indian Institute of Technology Madras

► The objective is to develop measures that can be used to summarize a data set.

- ► The objective is to develop measures that can be used to summarize a data set.
- These descriptive measures are quantities whose values are determined by the data.

Most commonly used descriptive measures can be categorized as

Most commonly used descriptive measures can be categorized as

► Measures of central tendency: These are measures that indicate the most typical value or center of a data set.

Most commonly used descriptive measures can be categorized as

- ► Measures of central tendency: These are measures that indicate the most typical value or center of a data set.
- ► Measures of dispersion: These measures indicate the variability or spread of a dataset.

The most commonly used measure of central tendency is the mean.

Definition

The most commonly used measure of central tendency is the mean.

Definition

The mean of a data set is the sum of the observations divided by the number of observations.

► The mean is usually referred to as average.

The most commonly used measure of central tendency is the mean.

Definition

- ► The mean is usually referred to as average.
- Arithmetic average; divide the sum of the values by the number of values (another typical value)

The most commonly used measure of central tendency is the mean.

Definition

- ► The mean is usually referred to as average.
- Arithmetic average; divide the sum of the values by the number of values (another typical value)
- For discrete observations:

The most commonly used measure of central tendency is the mean.

Definition

- ► The mean is usually referred to as average.
- Arithmetic average; divide the sum of the values by the number of values (another typical value)
- For discrete observations:
 - Sample mean: $\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$

The most commonly used measure of central tendency is the mean.

Definition

- ► The mean is usually referred to as average.
- Arithmetic average; divide the sum of the values by the number of values (another typical value)
- For discrete observations:
 - Sample mean: $\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{x_n}$
 - Population mean: $\mu = \frac{x_1 + x_2 + \ldots + x_N}{N}$

1. 2, 12, 5, 7, 6, 7, 3;

1. 2, 12, 5, 7, 6, 7, 3; $\bar{x} =$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} =$$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7}$$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3 $\bar{x} =$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$
 2. 2, 105, 5, 7, 6, 7, 3 $\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = \frac{135}{7}$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3
$$\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = 19.285$$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3
$$\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = 19.285$$

3. 2, 105, 5, 7, 6, 3

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3
$$\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = 19.285$$

3. 2, 105, 5, 7, 6, 3
$$\bar{x} =$$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3
$$\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = 19.285$$

3. 2, 105, 5, 7, 6, 3
$$\bar{x} = \frac{2+105+5+7+6+3}{6} =$$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3
$$\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = 19.285$$

3. 2, 105, 5, 7, 6, 3
$$\bar{x} = \frac{2+105+5+7+6+3}{6} = \frac{128}{6} =$$

1. 2, 12, 5, 7, 6, 7, 3;
$$\bar{x} = \frac{2+12+5+7+6+7+3}{7} = \frac{42}{7} = 6$$

2. 2, 105, 5, 7, 6, 7, 3
$$\bar{x} = \frac{2+105+5+7+6+7+3}{7} = \frac{135}{7} = 19.285$$

3. 2, 105, 5, 7, 6, 3
$$\bar{x} = \frac{2+105+5+7+6+3}{6} = \frac{128}{6} = 21.33$$

► The marks obtained by ten students in an exam is 68, 79, 38, 68, 35, 70, 61, 47, 58, 66

- ► The marks obtained by ten students in an exam is 68, 79, 38, 68, 35, 70, 61, 47, 58, 66
- ► The sample mean is

$$\frac{68+79+38+68+35+70+61+47+58+66}{10} =$$

- ► The marks obtained by ten students in an exam is 68, 79, 38, 68, 35, 70, 61, 47, 58, 66
- ► The sample mean is

$$\frac{68+79+38+68+35+70+61+47+58+66}{10} = \frac{590}{10} =$$

- ► The marks obtained by ten students in an exam is 68, 79, 38, 68, 35, 70, 61, 47, 58, 66
- ► The sample mean is

$$\frac{68 + 79 + 38 + 68 + 35 + 70 + 61 + 47 + 58 + 66}{10} = \frac{590}{10} = 59$$

► The following data is the response from 15 individuals. 2, 1, 3, 4, 5, 2, 3, 3, 4, 4, 1, 2, 3, 4

- The following data is the response from 15 individuals. 2, 1, 3, 4, 5, 2, 3, 3, 3, 4, 4, 1, 2, 3, 4
- $\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \ldots + f_n x_n}{n}$

The following data is the response from 15 individuals. 2, 1, 3, 4, 5, 2, 3, 3, 3, 4, 4, 1, 2, 3, 4

$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \ldots + f_n x_n}{f_1 x_1 + f_2 x_2 + \ldots + f_n x_n}$$

$Value(x_i)$	Tally mark	Frequency (f_i)	$f_i x_i$
1		2	2
2	III	3	6
3	##	5	15
4	IIII	4	16
5		1	5
Total		15	44

Mean=

The following data is the response from 15 individuals. 2, 1, 3, 4, 5, 2, 3, 3, 3, 4, 4, 1, 2, 3, 4

$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \ldots + f_n x_n}{f_1 x_1 + f_2 x_2 + \ldots + f_n x_n}$$

$Value(x_i)$	Tally mark	Frequency (f_i)	$f_i x_i$
1	II	2	2
2	III	3	6
3	#	5	15
4	IIII	4	16
5		1	5
Total		15	44

Mean=
$$\frac{44}{15}$$
 =

Mean for grouped data: discrete single value data

- The following data is the response from 15 individuals. 2, 1, 3, 4, 5, 2, 3, 3, 3, 4, 4, 1, 2, 3, 4
- $\bar{x} = \frac{f_1 x_1 + f_2 x_2 + \ldots + f_n x_n}{1 + f_1 x_1 + \dots + f_n x_n}$

<u> </u>				
$Value(x_i)$	Tally mark	Frequency (f_i)	$f_i x_i$	
1		2	2	
2	III	3	6	
3	##	5	15	
4	IIII	4	16	
5		1	5	
Total		15	44	

Mean=
$$\frac{44}{15}$$
 = 2.93

$$\bar{x} = \frac{f_1 m_1 + f_2 m_2 + \ldots + f_n m_n}{n}$$

$$\bar{x} = \frac{f_1 m_1 + f_2 m_2 + \ldots + f_n m_n}{n}$$

Class interval	Tally mark	Frequency (f_i)	$Mid\ point(m_i)$	$f_i m_i$
30-40	III	3	35	105
40-50	##I	6	45	270
50-60	####	18	55	990
60-70	####11	17	65	1105
70-80		4	75	300
80-90		2	85	170
Total		50		2940

$$\bar{x} = \frac{f_1 m_1 + f_2 m_2 + \ldots + f_n m_n}{n}$$

Class interval	Tally mark	Frequency (f_i)	$Mid\ point(m_i)$	$f_i m_i$
30-40		3	35	105
40-50	#	6	45	270
50-60	####	18	55	990
60-70	####	17	65	1105
70-80		4	75	300
80-90		2	85	170
Total		50		2940

Average = $\frac{2940}{50}$ = 58.8.

$$\bar{x} = \frac{f_1 m_1 + f_2 m_2 + \ldots + f_n m_n}{n}$$

Class interval	Tally mark	Frequency (f_i)	$Mid\ point(m_i)$	$f_i m_i$
30-40	III	3	35	105
40-50	##I	6	45	270
50-60	####	18	55	990
60-70	####11	17	65	1105
70-80		4	75	300
80-90		2	85	170
Total		50		2940

- Average = $\frac{2940}{50}$ = 58.8.
- ▶ 58.8 is an approximate and not exact value of the mean

▶ Let $y_i = x_i + c$ where c is a constant then $\bar{y} = \bar{x} + c$

- ▶ Let $y_i = x_i + c$ where c is a constant then $\bar{y} = \bar{x} + c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.

- Let $y_i = x_i + c$ where c is a constant then $\bar{y} = \bar{x} + c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.
 - Suppose the teacher has decided to add 5 marks to each student.
 - ► Then the data becomes 73, 84, 43, 73, 40, 75, 66, 52, 63, 71.

- Let $y_i = x_i + c$ where c is a constant then $\bar{y} = \bar{x} + c$
- Example: Recall the marks of students68, 79, 38, 68, 35, 70, 61, 47, 58, 66.
 - Suppose the teacher has decided to add 5 marks to each student.
 - Then the data becomes 73, 84, 43, 73, 40, 75, 66, 52, 63, 71.
 - ► The mean of the new data set is $\frac{640}{10} = 64 = 59 + 5$

Let $y_i = x_i c$ where c is a constant then $\bar{y} = \bar{x} c$

- Let $y_i = x_i c$ where c is a constant then $\bar{y} = \bar{x} c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.

- Let $y_i = x_i c$ where c is a constant then $\bar{y} = \bar{x} c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.
 - Suppose the teacher has decided to scale down each mark by 40%, in other words each mark is multiplied by 0.4.

- Let $y_i = x_i c$ where c is a constant then $\bar{y} = \bar{x} c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.
 - Suppose the teacher has decided to scale down each mark by 40%, in other words each mark is multiplied by 0.4.
 - ► Then the data becomes 27.2, 31.6, 15.2, 27.2, 14, 28, 24.4, 18.8, 23.2, 26.4

- Let $y_i = x_i c$ where c is a constant then $\bar{y} = \bar{x} c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.
 - Suppose the teacher has decided to scale down each mark by 40%, in other words each mark is multiplied by 0.4.
 - ► Then the data becomes 27.2, 31.6, 15.2, 27.2, 14, 28, 24.4, 18.8, 23.2, 26.4
 - ▶ The mean of the new data set is $\frac{236}{10} = 23.6 =$

- Let $y_i = x_i c$ where c is a constant then $\bar{y} = \bar{x} c$
- Example: Recall the marks of students 68, 79, 38, 68, 35, 70, 61, 47, 58, 66.
 - Suppose the teacher has decided to scale down each mark by 40%, in other words each mark is multiplied by 0.4.
 - Then the data becomes 27.2, 31.6, 15.2, 27.2, 14, 28, 24.4, 18.8, 23.2, 26.4
 - ▶ The mean of the new data set is $\frac{236}{10} = 23.6 = 59 \times 0.4$

Section summary

- 1. Mean or average is a measure of central tendency.
- 2. Compute sample mean for
 - 2.1 ungrouped data.
 - 2.2 grouped discrete data.
 - 2.3 grouped continuous data.
- 3. Manipulating data
 - 3.1 Adding a constant to each data point.
 - 3.2 Multiplying each data point with a constant.