Compito di Fine Modulo W4D4

Corso: Cybersecurity Analyst - Epicode

Studente: Daniele Taormina

Data: 16/10/2025

Introduzione

In questo compito di fine modulo viene realizzata una simulazione pratica che unisce tutte le competenze apprese finora nel corso. L'obiettivo è ricreare, in un ambiente di laboratorio virtuale (rete privata), una configurazione Client-Server tra 2 macchine:

Kali Linux (Server) : 192.168.32.100 **Windows** (Client) :192.168.32.101

In questa simulazione vengono configurati i servizi fondamentali di rete:

DNS: risoluzione dei nomi di dominio, quindi tradurre un indirizzo **IP** (192.168.32.100) in nome (epicode.internal)

HTTP/HTTPS: protocolli per la visualizzazione e la comunicazione nel web.

Infine con **Wireshark (packet sniffer**), verranno osservati e analizzati il flusso dei dati e le relative differenze tra i protocolli **HTTP** (non cifrata) e **HTTPS** (cifrata).

Obiettivi del compito

- Simulare una rete **client–server** in un ambiente di laboratorio virtuale isolato.
- Far comunicare un computer (Windows) con un server (Kali Linux) tramite browser.
- Richiedere una risorsa web interna chiamata epicode.internal.
- Osservare e analizzare la comunicazione con Wireshark (un packet sniffer).
- Identificare gli indirizzi MAC di chi invia e riceve i pacchetti.
- Visualizzare il contenuto della richiesta quando la connessione è HTTPS.
- Ripetere la prova con una connessione HTTP non sicura.
- Confrontare le differenze tra il traffico **HTTPS** e quello **HTTP**.
- Spiegare perché la cifratura dei dati è importante per la sicurezza delle comunicazioni.

Esecuzione

Per prima cosa vado a configurare gli indirizzi **IP** delle macchine in modo tale da creare una rete privata.Per far questo è necessario configurare la rete con un nuovo indirizzo **IP**. (192.168.32.100) necessario anche impostare il **DNS** sempre con lo stesso **IP**.

Per un ulteriore conferma faccio un double-check sull'interfaccia di rete, e controllo se I indirizzo **IP** è effettivamente cambiato. A volte è necessario riavviare la scheda di rete o più semplicemente la macchina. Per questo utilizzo il comando **ifconfig.**

Stessa cosa vale per la macchina Windows.

Network & internet > Ethernet	
Metered connection Some apps might work differently to reduce data usage when you're connected to this network	Off
Set a data limit to help control data usage on this netw	ork
IP assignment:	
Manual	
IPv4 address:	
192.168.32.101	Edit
IPv4 mask:	
255.255.255.0	
IPv4 gateway:	
192.168.32.1	
DNS server assignment:	
Manual	Edit
IPv4 DNS servers:	
192.168.32.100 (Unencrypted)	
Link speed (Receive/Transmit):	Сору
1000/1000 (Mbps)	
Link-local IPv6 address:	
fe80::b242:ca5f:d695:1148%5	
IPv4 address:	
192.168.32.101	
IPv4 DNS servers:	
192.168.32.100 (Unencrypted)	
Manufacturer:	
Intel Corporation Description:	
Intel(R) 82574L Gigabit Network Connection	
interior 0237 AL diguste Network Confection	

Quindi, sempre accedendo alle impostazioni della scheda di rete modifico l'indirizzo **IP**, in questo caso (192.168.32.101). Anche qui è necessario configurare il **DNS IP** (192.168.32.100), Controllo anche qui dal terminale se la configurazione è avvenuta con successo.

Comando: ipconfig /all

```
Connection-specific DNS Suffix :

Description . . . . . . : Intel(R) 82574L Gigabit Network Connection
Physical Address . . . : 00-0C-29-CF-24-10
DHCP Enabled . . . . . : No
Autoconfiguration Enabled . : Yes
Link-local IPv6 Address . : fe80::b242:ca5f:d695:1148%5(Preferred)
IPv4 Address . . : 192.168.32.101(Preferred)
Subnet Mask . . . . : 255.255.255.0
Default Gateway . . : 192.168.32.1
DHCPv6 IAID . . : 100666409
DHCPv6 Client DUID . : 00-01-00-01-30-65-3D-68-00-0C-29-CF-24-10
DNS Servers . . : 192.168.32.100
NetBIOS over Tcpip . : Enabled

C:\Users\Dani>
```

Adesso che la configurazione delle macchine è terminata occorre configurare

inetsim, che verrà utilizzato per simulare un server **HTTP/HTTPS/DNS**.

Con questo comando modifico il file di configurazione con privilegi **root**.

All'interno del file inetsim.conf trovo una lista di servizi, che per essere attivati devono essere "decommentati" togliendo il # iniziale. Per questo compito i servizi che occorrono sono i primi 3.

DNS,HTTP e **HTTPS.** Gli altri servizi restano commentati con **#**, quindi inattivi.

```
#
start_service dns
start_service http
start_service https
#start_service smtp
#start_service smtps
#start_service pop3
#start_service ftp
#start_service ftp
#start_service ftps
```

Proseguendo all'interno del file

trovo il **service_bind_address** che configuro con l'**IP** a cui i servizi faranno riferimento.

```
Service DNS
                                                Service DNS, questa è una parte
  molto cruciale perchè sarà
# dns_bind_port
                                                questa la configurazione che
                                                permetterà la traduzione da IP a
# Syntax: dns_bind_port <port number>
                                                Dominio.
Default: 53
                                                epicode.internal = 192.168.32.100
dns_bind_port 53
                                                Esempio:
# dns_default_ip
                                                www.google.com = 8.8.8.8 o 8.8.4.4
# Default IP address to return with DNS replies
# Syntax: dns_default_ip <IP address>
                                                Quindi attivando queste
Default: 127.0.0.1
                                                impostazioni concludiamo così la
                                                configurazione del DNS
dns_default_ip 192.168.32.100
____
# dns_default_hostname
                                                dns bind port 53
                                                dns default ip 192.168.32.100
# Default hostname to return with DNS replies
                                                dns default hostname epicode
dns_default_hostname epicode
                                                dns default domainname internal
                                                Salviamo il file aggiornato:
      ____
# dns_default_domainname
                                                CTRL + o
# Default domain name to return with DNS replies
                                                Invio
# Syntax: dns_default_domainname <domain name>
                                                CTRL + x
Default: inetsim.org
dns_default_domainname internal
```

Digitando: sudo inetsim si verifica un errore, non di configurazione ma di incompatibilità.

```
* dns_53_tcp_udp - started (PID 43778)

Can't locate object method "main_loop" via package "Net::DNS::Nameserver" at /us r/share/perl5/INetSim/DNS.pm line 69.
```

Un'incompatibilità tra **inetsim** e la versione attuale del modulo **Perl Net::DNS**. Il metodo **main_loop**, usato per eseguire il server **DNS**, non esiste più nella nuova versione della libreria. Di conseguenza, il servizio **DNS** non riesce ad avviarsi correttamente. Per risolvere questo problema ho trovato 2 soluzioni (2a soluzione Pag.12) anche se in realtà avremmo potuto utilizzare un tool simile a inetsim, ho fatto un downgrade di **Perl Net::DNS** (v1.50) alla versione (1.37):

- curl -O https://cpan.metacpan.org/authors/id/N/NL/NLNETLABS/Net-DNS-1.37.tar.gz
- tar xzf Net-DNS-1.37.tar.gz
- cd Net-DNS-1.37
- perl Makefile.PL
- make
- make test
- sudo make install

Così facendo il servizio DNS viene eseguito con successo insieme ad HTTP e HTTPS.

```
-(kali⊛kali)-[~]
INetSim 1.3.2 (2020-05-19) by Matthias Eckert & Thomas Hungenberg
Using log directory: /var/log/inetsim/
Using data directory: /var/lib/inetsim/
Using data directory: /var/lib/inetsim/
Using report directory: /var/log/inetsim/report/
Using configuration file: /etc/inetsim/inetsim.conf
Parsing configuration file.
Configuration file parsed successfully.

≡ INetSim main process started (PID 2156) ≡

                  2156
Session ID:
Listening on:
                  192.168.32.100
Real Date/Time: 2025-10-18 21:17:46
Fake Date/Time: 2025-10-18 21:17:46 (Delta: 0 seconds)
 Forking services ...
  * dns_53_tcp_udp - started (PID 2158)
  * http_80_tcp - started (PID 2159)
  * https_443_tcp - started (PID 2160)
Simulation running.
```

È obbiligatorio mantenere questo terminale attivo altrimenti i servizi cesseranno di funzionare.

Eseguo subito una prova di **ping** dimostrando così che oltre che alla connessione del **client** al **server**, anche il **dominio** epicode.internal viene riconosciuto e interpretato da 192.168.32.100.

Entrambe le pagine vengono visualizzate con successo.

Analisi del traffico e dei pacchetti con WireShark

In questa ultima parte del compito spiego le differenze dei dati che ho intercettato:

Analisi pacchetto HTTP (Wireshark)

Protocollo: HTTP su TCPInterfaccia di cattura: eth0

MAC sorgente: 00:0c:29:cf:24:10 (Kali)

MAC destinazione: 00:0c:29:92:65:94 (Windows)

• **IP sorgente:** 192.168.32.101 (Kali)

• IP destinazione: 192.168.32.100 (Windows)

Porta sorgente: 64158Porta destinazione: 80

Metodo HTTP: GET / HTTP/1.1Host richiesto: epicode.internal

• User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

Chrome/140.0.0.0 Safari/537.36

Analisi pacchetto HTTPS (Wireshark)

Protocollo: TLSv1.3 su TCP (HTTPS)

• Interfaccia di cattura: eth0

MAC sorgente: 00:0c:29:92:65:94 (Kali)

MAC destinazione: 00:0c:29:cf:24:10 (Windows)

IP sorgente: 192.168.32.100 (Kali)

• **IP destinazione:** 192.168.32.101 (Windows)

• Porta sorgente: 443

Porta destinazione: 64156Versione TLS: TLS 1.3

• Lunghezza pacchetto: 2563 byte

- Il contenuto dei dati appare come "Application Data" cifrato, non leggibile.
- Nessun metodo HTTP (GET/POST) è visibile perché la comunicazione è protetta dal canale TLS.
- HTTPS garantisce confidenzialità, integrità e autenticazione del server tramite certificato digitale.
- Le informazioni in chiaro (host, browser, header HTTP) non sono più visibili come nel traffico HTTP.

Conclusione

Nel traffico **HTTP** i dati viaggiano in chiaro e quindi tramite **Wireshark** è possibile leggere tutto il contenuto della comunicazione, l'host richiesto, l'user agent e gli altri header inviati dal browser. Questo dimostra che il protocollo **HTTP** non offre alcuna protezione sulla riservatezza dei dati, perchè chiunque riesce a intercettare il traffico e può visualizzare le informazioni trasmesse tra client e server.

Nel traffico **HTTPS** invece la comunicazione avviene attraverso un canale cifrato, che garantisce **confidenzialità**, **integrità** e **autenticazione** (**CIA**) del server tramite certificato digitale. In Wireshark non è più possibile visualizzare i contenuti delle richieste perché i dati sono racchiusi nei pacchetti "Application Data", completamente cifrati. Rimangono visibili solo gli indirizzi **MAC**, gli **IP** e le porte **TCP** necessarie alla trasmissione dei pacchetti, ma tutto quello che riguarda la parte applicativa non è più leggibile.

In sintesi il traffico **HTTP** risulta esposto e facilmente analizzabile, mentre il traffico **HTTPS** nasconde le informazioni sensibili e protegge la comunicazione contro intercettazioni o modifiche non autorizzate.

Sintesi finale

Ho utilizzato **INetSim** per simulare servizi Internet come **HTTP**, **HTTPS** e **DNS** in un ambiente isolato, e **Wireshark** per analizzare il traffico generato.

L'obiettivo era osservare la differenza tra una comunicazione non cifrata (HTTP) e una cifrata (HTTPS).

Dall'analisi è emerso che **HTTP** mostra tutte le informazioni in chiaro, mentre **HTTPS** protegge rendendo i dati illeggibili.

Il test dimostra in modo pratico l'importanza della cifratura e della sicurezza delle comunicazioni in rete.

Seconda Soluzione:

La seconda soluzione consisteva nel modificare in entrambe le macchine, il file hosts aggiungendo manualmente l'indirizzo IP e Dominio, forzando così la configurazione del DNS.

```
Mindows 11 x64 EPICODE
  Command Prompt
C:\Windows\System32\drivers\etc>
C:\Windows\System32\drivers\etc>dir
Volume in drive C has no label.
Volume Serial Number is 1E29-18BE
  Directory of C:\Windows\System32\drivers\etc
10/18/2025 04:07 PM
10/09/2025 10:40 PM
10/18/2025 03:58 PM
10/18/2025 09:17 PM
05/07/2022 07:22 AM
05/07/2022 07:22 AM
05/07/2022 07:22 AM
05/07/2022 07:22 AM
                                                   <DIR>
                                                   <DIR>
                                                                          858 hosts
                                                  858 hosts
857 hosts.txt
3,683 lmhosts.sam
407 networks
1,358 protocol
17,635 services
24,798 bytes
43,117,658,112 bytes free
                                6 File(s)
2 Dir(s)
C:\Windows\System32\drivers\etc>type hosts.txt
# Copyright (c) 1993-2009 Microsoft Corp.
 # This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
#
This file contains the mappings of IP addresses to host names. Each
# entry should be kept on an individual line. The IP address should
# be placed in the first column followed by the corresponding host name.
# The IP address and the host name should be separated by at least one
 # space.
# Additionally, comments (such as these) may be inserted on individual # lines or following the machine name denoted by a '#' symbol.
 # For example:
               102.54.94.97
                                                 rhino.acme.com
                                                                                                     # source server
                 38.25.63.10
                                                   x.acme.com
                                                                                                     # x client host
# localhost name resolution is handled within DNS itself.
# 127.0.0.1 localhost
# ::1 localhost
192.168.32.100 epicode.internal
C:\Windows\System32\drivers\etc>
```

Glossario tecnico

DNS (Domain Name System)

Sistema che converte i nomi di dominio nei relativi indirizzi IP.

GET

Metodo HTTP usato per richiedere risorse a un server.

HTTP (HyperText Transfer Protocol)

Protocollo web che trasferisce dati in chiaro tra client e server.

HTTPS (HyperText Transfer Protocol Secure)

Versione cifrata di HTTP che utilizza TLS per proteggere le comunicazioni.

INetSim (Internet Services Simulation Suite)

Software che simula servizi Internet (HTTP, HTTPS, DNS) in ambiente isolato.

IP (Internet Protocol Address)

Indirizzo logico che identifica un dispositivo all'interno di una rete.

MAC (Media Access Control Address)

Indirizzo fisico univoco della scheda di rete di un dispositivo.

TCP (Transmission Control Protocol)

Protocollo di trasporto che assicura la consegna corretta dei dati.

TLS (Transport Layer Security)

Protocollo che cifra e protegge i dati scambiati su rete.

Wireshark

Strumento che cattura e analizza il traffico di rete in tempo reale.