

FACULTAD/ESCUELA DE INGENIERÍA, DISEÑO Y CIENCIAS APLICADAS DEPARTAMENTO DE CIENCIAS FÍSICAS Y EXACTAS

Información de la asignatura

Nombre de la asignatura	Matemáticas aplicadas II		
Código de la asignatura	11355 - CFT		
Periodo Académico	202410		
Nrc	11319		
Grupo	003		
Programas/Semestres	IND 03, QUI 03, SIS 03, TEL 03		
Intensidad horaria	2		
Intensidad Semanal	4		
Créditos	3		
Docente(s)	Marlon Gómez Victoria		

Introducción o presentación general del curso

En este curso los estudiantes aplicarán procesos de cálculo diferencial e integral para resolver problemas, en contextos de ciencia e ingeniería, que involucran funciones en una variable. El curso está orientado a promover en el estudiante la habilidad de analizar e interpretar estructuras simbólicas, gráficas y numéricas, mediante procesos asociados a la modelación matemática. Los estudiantes estarán en capacidad de formular y resolver problemas matemáticos utilizando las técnicas y procesos del cálculo diferencial e integral, apoyados en el uso herramientas de cómputo para analizar información e interpretar las soluciones. Estas técnicas y procesos permitirán extender los conocimientos básicos de algebra y funciones de valor real.

Formación en competencias

- SO-1. Habilidad para identificar, formular y resolver problemas complejos de ingeniería, mediante la aplicación de los principios de las ciencias, las matemáticas, y la ingeniería.
- SO-3. Habilidad para comunicarse efectivamente con múltiples audiencias de forma oral y escrita, tanto en español como en inglés.

Objetivo general de aprendizaje

El curso de matemáticas aplicadas II pretende desarrollar en los estudiantes las capacidades de representar, modelar y resolver problemas de las ingenierías y las ciencias en los que se aplican los principales conceptos y técnicas del álgebra matricial y del cálculo con campos escalares y vectoriales.

Objetivos terminales - Resultados de aprendizajes

Resultado de aprendizaje del curso o asignatura	Competencia en formación	Resultado de aprendizaje de la competencia de egreso al que se contribuye
Utilizar algunas aplicaciones del cálculo con campos escalares y vectoriales y del álgebra matricial	SO1	SO1 PI3 (T).SIS Solución del problema (matemáticas): Resolver problemas complejos proponiendo estrategias compatibles con su formulación y aplicando matemáticas. SO1-PI1(T).TEL Identificar, formular y resolver problemas complejos de ingeniería mediante la aplicación de los principios de las ciencias, las matemáticas y la ingeniería.
Reconocer y utilizar diferentes tipos de registros semióticos en la representación y modelación de p	SO1	SO1 PI3 (T).SIS Solución del problema (matemáticas): Resolver problemas complejos proponiendo estrategias compatibles con su formulación y aplicando matemáticas. SO1-PI1(T).TEL Identificar, formular y resolver problemas complejos de ingeniería mediante la aplicación de los principios de las ciencias, las matemáticas y la ingeniería
Comunicar, justificar y validar los métodos utilizados y las soluciones encontradas en el trabajo co	SO3	SO3-PI2(A) Habilidad para comunicarse efectivamente con una variedad de audiencias.
Utilizar herramientas de cómputo tales como software de geometría dinámica (SGD), cálculo algebraico	SO1.	SO1 PI3 (T).SIS Solución del problema (matemáticas): Resolver problemas complejos proponiendo estrategias compatibles con su formulación y aplicando matemáticas. SO1-PI1(T).TEL Identificar, formular y resolver problemas complejos de ingeniería mediante la aplicación de los principios de las ciencias, las matemáticas y la ingeniería.

Unidades de aprendizaje

Unidad de aprendizaje #1

Técnicas de integración, Ecuaciones Diferenciales Separables.

- 1. Teorema fundamental del cálculo
- 2. Simular situaciones matemáticas concretas que involucren el concepto de integración y su interpretación, utilizando métodos numéricos.
- 3. Áplicar métodos de integración básicos en la solución de Ecuaciones Diferenciales Ordinarias Separables (versión continua de los modelos estudiados).

Unidad de aprendizaje #2

Vectores, matrices y funciones de varias variables

- 1. Aplicar los conceptos de vector, matriz y funciones de varias variables como herramientas matemáticas que permite resolver problemas propios de las ciencias y la ingeniería.
- 2. Utilizar la interpretación geométrica del algebra matricial y su relación con los modelos de funciones en varias variables en contextos de ciencias e ingeniería
- 3. Representar funciones lineales en dimensiones superiores utilizando algebra matricial.

Unidad de aprendizaje #3

Operadores diferenciales en varias variables

- 1. Interpretar la derivada como una aproximación lineal y utilizar la interpretación geométrica del plano tangente para encontrar ceros de funciones de varias variables
- 2. Simular situaciones matemáticas concretas que involucren el concepto de optimización en varias variables y su interpretación en contextos de ciencias e ingeniería.

Metodologías de aprendizajes

El curso de Matemáticas Aplicadas II se desarrollará bajo el enfoque de competencias. Una competencia es un tipo de aprendizaje que integra y combina conocimientos, habilidades, actitudes y valores, de tal forma que orienta y facilita nuestro actuar consciente en contextos específicos, para alcanzar un propósito o resolver un problema. Bajo el enfoque de competencias pierde interés la reproducción memorística de contenidos, para atender a dos cuestiones fundamentales: ¿Cómo se ponen en juego los conocimientos adquiridos? ¿Qué problemas se pueden resolver con esos conocimientos? Sepromoverá entonces la actividad matemática del estudiante, que se caracteriza por llevar a cabo procesos de exploración, formulación de preguntas y conjeturas, y validación de resultados.

Evaluación de aprendizajes

Código evaluación	Mecanismo o actividad evaluativa	Porcentaje de la nota final	Relación con objetivos terminales - resultado de aprendizaje del curso	Relación con el resultado de aprendizaje de la competencia de egreso
Colab	Cuadernos Colab	35	OT1, OT2, OT3	SO1-PI3(T)
JSP	JSP	40	OT3	SO1-PI3(T)
Proyecto	Proyecto	25	OT1, OT2, OT3, OT4	SO1-PI3(T), SO3-PI2(T), SO3-PI3(T)

Recursos de apoyo

El instrumento principal para la mediación pedagógica será el de Los Cuadernos de Colab (https://colab.research.google.com). Por esta vía se trabajarán los conceptos matemáticos del curso, orientando su estudio y aplicación a los contextos reales del desarrollo científico y tecnológico. La estrategia didáctica se condensa en la tabla de PROGRAMACIÓN, al final de este documento.

BIBLIOGRAFÍA.

- 1. Texto Guía: Dan Sloughter. (2020). Calculus From Approximation to Theory. MAA Press: An Imprint of the American Mathematical Society.
- 2. Cuadernos Colab elaborados por profesores del Departamento de Computación y Sistemas Inteligentes de la Universidad Icesi. 2023.
- 3. Peter D. Lax; Maria Shea Terrel. (2017). Multivariable Calculus With Applications. Springer, 1^a edición.
- 4. Boyd, S., & Vandenberghe, L. (2018). Introduction to applied linear algebra: vectors, matrices, and least squares. Cambridge university press.
- 5. David Poole. (2011). Álgebra Lineal. Una introducción moderna. Tercera Edición. Cengage Learning Editores..
- 6. Bernard Kolman y David R Hill. (2013). Álgebra Lineal: Fundamentos y aplicaciones. Primera Edición. Pearson (Prentice Hall).