18.337 Parallel Prefix

The Parallel Prefix Method

- This is our first example of a parallel algorithm
- Watch closely what is being optimized for
 - Parallel steps
- Beautiful idea with surprising uses
- Not sure if the parallel prefix method is used much in the real world
 - Might maybe be inside MPI scan
 - Might be used in some SIMD and SIMD like cases
- The real key: What is it about the real world that differs from the naïve mental model of parallelism?

Students early mental models

- Look up or figure out how to do things in parallel
- Then we get speedups!
 - NOT!

Parallel Prefix Algorithms

- A theoretical (may or may not be practical) secret to turning serial into parallel
- 2. Suppose you bump into a parallel algorithm that surprises you there is no way to parallelize this algorithm you say
- 3. Probably a variation on parallel prefix!

Example of a prefix

Sum Prefix

Input
$$x = (x1, x2, ..., xn)$$

Output $y = (y1, y2, ..., yn)$
 $y_i = \sum_{i=1:l} x_i$

<u>Example</u>

$$x = (1, 2, 3, 4, 5, 6, 7, 8)$$

 $y = (1, 3, 6, 10, 15, 21, 28, 36)$

Prefix Functions-- outputs depend upon an initial string

What do you think?

- Can we really parallelize this?
- It looks like this sort of code:

```
y=0;
for i=2:n, y(i)=y(i-1)+x(i); end
```

- The ith iteration of the loop is not at all decoupled from the (i-1)st iteration.
- Impossible to parallelize right?

A clue?

$$x = (1, 2, 3, 4, 5, 6, 7, 8)$$

 $y = (1, 3, 6, 10, 15, 21, 28, 36)$

Is there any value in adding, say, 4+5+6+7?

Note if we separately have 1+2+3, what can we do?

Suppose we added 1+2, 3+4, etc. pairwise, what could we do?

<u>Prefix</u> Functions — outputs depend upon an *initial* string <u>Suffix</u> Functions — outputs depend upon a *final* string

Other Notations

- 1.+\ "plus scan" APL ("A Programming Language" source of the very name "scan", an array based language that was ahead of its time)
- 2.MPI_scan
- 3.MATLAB command: y=cumsum(x)
- 4.MATLAB matmul: y=tril(ones(n))*x

Parallel Prefix Recursive View

prefix([1 2 3 4 5 6 7 8])=[1 3 6 10 15 21 28 36]

Pairwise sums

Recursive prefix

Update "odds"

Any associative operator

```
function prefix!(x, *)
  n=length(x)
  if n<=1
     return()
  end
  for i=2:2:n # even: pairwise sums
     x[i] *= x[i-1]
  end
  prefix!(view(x,2:2:n),*) # recursive prefix (in place!)
  for i = 3:2:n \# odd: x[i-1] is a cumsum,x[i] is raw data
     x[i] *= x[i-1]
  end
```


end

What does this reveal? What does this hide?

Operation Count

- Notice
- # adds = 2n
- # required = n

Parallelism at the cost of more work!

Any Associative Operation works

Associative:

$$(a+b)+c = a + (b+c)$$

Sum (+)

Product (*)

Max

Min

Input: Reals

All (=and)

Any (= or)

Input: Bits (Boolean)

MatMul

Inputs: Matrices

Fibonacci via Matrix Multiply Prefix

$$F_{n+1} = F_n + F_{n-1}$$

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}$$

Can compute all F_n by matmul_prefix on

then select the upper left entry

Arithmetic Modulo 2 (binary arithmetic)

0+0=0	0*0=0
0+1=1	0*1=0
1+0=1	1*0=0
1+1=0	1*1=1
Add =	Mult =
exclusive or	and

Carry-Look Ahead Addition (Babbage 1800's)

		Exa	mple)		
1	0	1	1	1		Carry
	1	0	1	1	1	First Int
	1	0	1	0	1	Second Int
1	0	1	1	0	0	Sum

Goal: Add Two n-bit Integers

Carry-Look Ahead Addition (Babbage 1800's)

Goal: Add Two n-bit Integers

	-	Exai	mple	9				No	tation	
1	0	1	1	1		Carry	$\mathbf{c_2}$	\mathbf{c}_1	$\mathbf{c_0}$	
	1	0	1	1	1	First Int	\mathbf{a}_3	$\mathbf{a_2}$	\mathbf{a}_1	\mathbf{a}_0
	1	0	1	0	1	Second Int	$\mathbf{b_3}$	$\mathbf{b_2}$	$\mathbf{b_1}$	$\mathbf{b_0}$

Carry-Look Ahead Addition (Babbage 1800's) Goal: Add Two n-bit Integers

		Exai	mple	•				No	tation	
1	0	1	1	1		Carry	$\mathbf{c_2}$	$\mathbf{c_1}$	$\mathbf{c_0}$	
	1	0	1	1	1	First Int	$\mathbf{a_3}$	$\mathbf{a_2}$	\mathbf{a}_1	$\mathbf{a_0}$
	1	0	1	0	1	Second Int	\mathbf{a}_3	$\mathbf{b_2}$	$\mathbf{b_1}$	$\mathbf{b_0}$
		(1 1'.	, •		$c_{-1} = 0$				

(addition mod 2)

for
$$i = 0 : n-1$$

$$s_i = a_i + b_i + c_{i-1}$$

$$c_i = a_i b_i + c_{i-1} (a_i + b_i)$$

end

$$s_n = c_{n-1}$$

Goal: Add Two n-bit Integers

$$c_{-1} = 0$$

$$for i = 0 : n-1$$

$$s_i = a_i + b_i + c_{i-1}$$

$$c_i = a_i b_i + c_{i-1}(a_i + b_i)$$

$$end$$

$$\begin{bmatrix} c_i \\ 1 \end{bmatrix} = \begin{bmatrix} a_i + b_i & a_i b_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_{i-1} \\ 1 \end{bmatrix}$$

 $S_n = C_{n-1}$

Goal: Add Two n-bit Integers

$$c_{-1} = 0$$
 (addition mod 2)
for $i = 0$: n-1
 $s_i = a_i + b_i + c_{i-1}$
 $c_i = a_i b_i + c_{i-1} (a_i + b_i)$
end

1<u>%.</u>337 C_{n-1}

$$\begin{bmatrix} c_i \\ 1 \end{bmatrix} = \begin{bmatrix} a_i + b_i & a_i b_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_{i-1} \\ 1 \end{bmatrix}$$

Matmul prefix with binary arithmetic is equivalent to carry-look ahead!

Compute c_i by prefix, then $s_i = a_i + b_i + c_{i-1}$ in parallel

Tridiagonal Factor

Determinants $(D_0=1, D_1=a_1)$ $(D_k \text{ is the det of the kxk upper left}):$ D_{n-1}

Compute D_n by matmul_prefix

$$\begin{bmatrix} D_n \\ D_{n-1} \end{bmatrix} = \begin{bmatrix} a_n & -b_{n-1}c_{n-1} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} D_{n-1} \\ D_{n-2} \end{bmatrix}$$

$$\frac{\mathbf{T}}{\text{ing}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ & & & \\ & & & \end{bmatrix}$$

The "Myth" of log n

The log₂ n parallel steps is not the main reason for the usefulness of parallel prefix.

```
Say n = 1000p (1000 summands per processor)
```

Time = $(2000 \text{ adds}) + (\log_2 P \text{ message passings})$

fast & embarassingly parallel

(2000 local adds are serial for each

 $log_2 n = number of steps to add n numbers (NO!!)$

Any Prefix Operation May Be Segmented!

Segmented Operations

Inputs = Ordered Pairs

(operand, boolean)

Change of segment indicated by switching T/F

e.g. (x, T) or (x, F)

+ 2	(y, T)	(y, F)
(x, T)	(x+y, T)	(y, F)
(x, F)	(y, T)	(x+y, F)

 e. g.
 1
 2
 3
 4
 5
 6
 7
 8

 T
 T
 F
 F
 F
 T
 F
 T

 Result
 1
 3
 3
 7
 12
 6
 7
 8

Copy Prefix:
$$x + y = x$$

(is associative)

Segmented

1	2	3	4	5	6	7	8
					T		
1	1	3	3	3	6	7	8

High Performance Fortran

12

14

38

T T

T F

F

F F T T

F

More HPF **Segmented**

```
A = 6 7 8 9 10
     11 12 13 14 15
                       T T | F | T T | F F
S= F T T F F
Sum_Prefix (A, SEGMENTS = S)
              13 3
           6 20
           11 32
```


Example of Exclusive

 $A = 1 \quad 2 \quad 3 \quad 4 \quad 5$

Sum_Prefix(A) 1 3 6 10 15

Sum_Prefix(A, EXCLUSIVE = TRUE)
0 1 3 6 10

(Exclusive: Don't count myself)

Parallel Prefix

prefix([1 2 3 4 5 6 7 8])=[1 3 6 10 15 21 28 36]

Pairwise sums

Recursive prefix

Update "evens"

1 3 6 10 15 21 28 36

Any

- operator
- AKA: +\ (APL), cumsum(Matlab), MPI_SCAN, 1 0 0 1 1 0

18.337

exclusive([1 2 3 4 5 6 7 8])=[0 1 3 6 10 15 21 28]

Directions	Inclusive Exc=0		
Left	Prefix	Exc Prefix	

exclusive([1 2 3 4 5 6 7 8])=[0 1 3 6 10 15 21 28]

Directions		Exclusive Exc=1	
Left	Prefix	Exc Prefix	
Right	Suffix	Exc Suffix	

reduce([1 2 3 4 5 6 7 8])=[36 36 36 36 36 36 36 36]

Directions	Inclusive	Exclusive	
	Exc=0	Exc=1	
Left	Prefix	Exc Prefix	
Right	Suffix	Exc Suffix	
Left/Right	Reduce	Exc Reduce	

exclusive([1 2 3 4 5 6 7 8])=[0 1 3 6 10 15 21 28]

Directions	Inclusive	Exclusive	Neighbor Exc
	Exc=0	Exc=1	Exc=2
Left	Prefix	Exc Prefix	Left Multipole
Right	Suffix	Exc Suffix	Right " " "
Left/Right		Exc Reduce	

Multipole in 2d or 3d etc

Notice that left/right generalizes more readily to higher dimensions Ask yourself what Exc=2 looks like in 3d

Directions	Inclusive	Exclusive	Neighbor Exc
	Exc=0	Exc=1	Exc=2
Left	Prefix	Exc Prefix	Left Multipole
Right	Suffix	Exc Suffix	Right " " "
Left/Right	Reduce	Exc Reduce	Multipole

Not Parallel Prefix but PRAM

 Only concerned with minimizing parallel time (not communication)

Arbitrary number of processors

One element per processor

Csanky's (1977) Matrix Inversion

Lemma 1: $(\ \ \)^{-1}$ in $O(\log^2 n)$ (triangular matrix inv)

Proof Idea:
$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{1} = \begin{bmatrix} A^{-1} & 0 \\ -B^{-1}CA^{-1} & B^{-1} \end{bmatrix}$$

Lemma 2: Cayley - Hamilton

$$p(x) = \det(xI - A) = x^{n} + c_{1}x^{n-1} + \dots + c_{n}$$

$$(c_{n} = \det A)$$

$$0 = p(A) = A^{n} + c_{1}A^{n-1} + \dots + c_{n}I$$

$$A^{-1} = (A^{n-1} + c_{1}A^{n-2} + \dots + c_{n-1})(-1/c_{n})$$

Lemma 3: Leverier's Lemma

$$\begin{bmatrix} 1 & & & & \\ s_1 & 2 & & & \\ s_2 & s_1 & . & & \\ \vdots & \vdots & . & . & \\ s_{n-1} & . & . & s_1 & n \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix} = - \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_n \end{bmatrix}$$

$$s_k = \text{tr } (A^k)$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix} = - \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_n \end{bmatrix}$$

$$s_k = tr(A^k)$$

- Csanky 1) Parallel Prefix powers of A
 - 2) s_k by directly adding diagonals
 - 3) c_i from lemmas 1 and 3
 - 4) A⁻¹ obtained from lemma 2

Matrix multiply can be done in log n steps on n³ processors with the pram model

Can be useful to think this way, but must also remember how real machines are built!

- •Parallel steps are not the whole story
- •Nobody puts one element per processor