Exercice 1 Les sous-ensembles suivants sont-ils des sous-variétés? Si oui, donner le plus grand entier k tel que ce sont des sous-variétés \mathcal{C}^k .

- 1. l'ensemble $\{(x, y, x) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 9 \text{ et } x^2 + y^2 2x = 0\}$
- 2. la réunion des axes de coordonnées dans \mathbb{R}^2
- 3. l'ensemble $\{(x, y) \in \mathbb{R}^2, y = |x|\}$.
- 4. l'ensemble $\{(t,t|t|), t \in \mathbb{R}\} \subset \mathbb{R}^2$.

Exercice 2 Soit n > 0 un entier. Montrer que les ensembles suivants sont des sous-variétés \mathcal{C}^{∞} de $M_n(\mathbb{R})$, et donner leur dimension : $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$.

Exercice 3 Soit n > 0 un entier, et $r \leq n$. On note V_r le sous-espace de $M_n(\mathbb{R})$ formé des matrices de rang exactement r.

- 1. Montrer que l'ensemble des matrices de rang $\geq r$ est un ouvert de $M_n(\mathbb{R})$.
- 2. Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_n(\mathbb{R})$, avec $A \in GL_r(\mathbb{R})$. Montrer que M est de rang r si et seulement si on a $D = CA^{-1}B$.
- 3. En déduire que V_r est une sous-variété \mathcal{C}^{∞} de $\mathrm{M}_n(\mathbb{R})$ dont on donnera la dimension.
- 4. Montrer que si r > 0 l'ensemble des matrices de rang $\leq r$ n'est pas une sous-variété.

Exercice 4 Soit E et F deux evn de dimension finie, et $f: E \to F$ une fonction C^k . Montrer que $\Gamma = \{(x, f(x)), x \in E\}$ est une sous-variété C^k de $E \times F$.

Exercice 5 Montrer que les projecteurs de $M_2(\mathbb{R})$ de rang exactement 1 forment une sous-variété \mathcal{C}^{∞} de $M_2(\mathbb{R})$ dont on donnera la dimension.

Exercice 6 Soit E et F deux evn de dimension finie, U un ouvert de E, f une fonction \mathcal{C}^k de U dans F. On suppose que f est une immersion en tout point, que f est injective et que f est propre (c'est-à-dire que l'image réciproque d'un compact est compact). Montrer que f(U) est une sous-variété \mathcal{C}^k de F.

Le résultat reste-t-il vrai si on ne suppose pas f propre?

Exercice 7 Soit E, F, G trois evn de dimension finie, U un ouvert de E et V un ouvert de F. Soit $f: U \times V \to G$ une application C^k , et soit $(x_0, y_0) \in U \times V$ tel que $f(x_0, y_0) = 0$ et $d_F f_{(x_0, y_0)}$ est injective. Montrer que les conclusions du théorème des fonctions implicites sont vraies pour f.

Indication : on pourra montrer qu'il existe un sous-espace vectoriel \tilde{G} de G, une fonction C^k $\tilde{f}: U' \times V' \to \tilde{G}$, où U' est un voisinage de x_0 et V' un voisinage de y_0 , telle que f(x,y) = 0 si et seulement si $\tilde{f}(x,y) = 0$ pour les $(x,y) \in U' \times V'$, et telle que $d_F \tilde{f}_{(x_0,y_0)}$ est inversible.