2-Tor	Z	Y	A
Querimpedanz	$\mathbf{Z}_{\mathcal{Q}} = egin{bmatrix} \underline{Z}_a & \underline{Z}_a \ \underline{Z}_a & \underline{Z}_a \end{bmatrix}$	existiert nicht	$\mathbf{A}_{\mathcal{Q}} = \begin{bmatrix} 1 & 0 \\ 1/\underline{Z}_a & 1 \end{bmatrix}$
Längsimpedanz Z_b	existiert nicht	$\mathbf{Y}_{L} = \begin{bmatrix} 1/\underline{Z}_{b} & -1/\underline{Z}_{b} \\ -1/\underline{Z}_{b} & 1/\underline{Z}_{b} \end{bmatrix}$	$\mathbf{A}_{L} = \begin{bmatrix} 1 & \underline{Z}_{b} \\ 0 & 1 \end{bmatrix}$
T-Glied \underline{Z}_1 \underline{Z}_3 \underline{Z}_2	$\mathbf{Z}_{T} = \begin{bmatrix} \underline{Z}_{1} + \underline{Z}_{2} & \underline{Z}_{2} \\ \underline{Z}_{2} & \underline{Z}_{2} + \underline{Z}_{3} \end{bmatrix}$	$\mathbf{Y}_{T} = \frac{1}{\underline{Z}_{1}\underline{Z}_{2} + \underline{Z}_{2}\underline{Z}_{3} + \underline{Z}_{1}\underline{Z}_{3}} \cdot \begin{bmatrix} \underline{Z}_{2} + \underline{Z}_{3} & -\underline{Z}_{2} \\ -\underline{Z}_{2} & \underline{Z}_{1} + \underline{Z}_{2} \end{bmatrix}$	$\mathbf{A}_{T} = \begin{bmatrix} 1 + \frac{\underline{Z}_{1}}{\underline{Z}_{2}} & \underline{Z}_{1} + \underline{Z}_{3} + \frac{\underline{Z}_{1}\underline{Z}_{3}}{\underline{Z}_{2}} \\ \frac{1}{\underline{Z}_{2}} & 1 + \frac{\underline{Z}_{3}}{\underline{Z}_{2}} \end{bmatrix}$
π -Glied Z_2 Z_1 Z_3	$\mathbf{Z}_{\pi} = \frac{1}{\underline{Z}_{1} + \underline{Z}_{2} + \underline{Z}_{3}} \cdot \begin{bmatrix} \underline{Z}_{1}(\underline{Z}_{2} + \underline{Z}_{3}) & \underline{Z}_{1}\underline{Z}_{3} \\ \underline{Z}_{1}\underline{Z}_{3} & \underline{Z}_{3}(\underline{Z}_{1} + \underline{Z}_{2}) \end{bmatrix}$	$\mathbf{Y}_{\pi} = \begin{bmatrix} \frac{1}{Z_1} + \frac{1}{Z_2} & -\frac{1}{Z_2} \\ -\frac{1}{Z_2} & \frac{1}{Z_2} + \frac{1}{Z_3} \end{bmatrix}$	$\mathbf{A}_{\pi} = \begin{bmatrix} 1 + \frac{\underline{Z}_2}{\underline{Z}_3} & \underline{Z}_2 \\ \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_3} + \frac{\underline{Z}_2}{\underline{Z}_1 \underline{Z}_3} & 1 + \frac{\underline{Z}_2}{\underline{Z}_1} \end{bmatrix}$

2-Tor	Z	\mathbf{Y}	A
idealer Übertrager	existiert nicht	existiert nicht	$\mathbf{A}_{N} = \begin{bmatrix} n & 0 \\ 0 & 1/n \end{bmatrix}$
Gegeninduktivität U_1 U_2 U_2	$\mathbf{Z}_{M} = \begin{bmatrix} sL_{1} & sM \\ sM & sL_{2} \end{bmatrix}$	$\mathbf{Y}_{M} = \frac{1}{\sigma} \cdot \begin{bmatrix} \frac{1}{sL_{1}} & \frac{-k^{2}}{sM} \\ \frac{-k^{2}}{sM} & \frac{1}{sL_{2}} \end{bmatrix}$	$\mathbf{A}_{M} = \begin{bmatrix} L_{1}/M & sM(1/k^{2}-1) \\ 1/(sM) & L_{2}/M \end{bmatrix}$ $k = \frac{M}{\sqrt{L_{1}L_{2}}}, \sigma = 1 - k^{2}$