Optimizacijske metode: 1. kolokvij

9. april 2025

Čas pisanja je 90 minut. Veliko uspeha!

Ime in priimek

1. naloga (25 točk)

Poišči rešitve naslednjega linearnega problema:

$$\max 18x_1 + 2x_2 - 45x_3$$

$$4x_1 - 10x_2 + x_3 \le 12$$

$$-3x_1 - 3x_2 + 6x_3 \le -2$$

$$9x_1 + x_2 - 9x_3 \le 18$$

$$x_1, x_2, x_3 \ge 0$$

ISTO

$$X_{y} = 12 + X_{0} - 9X_{1} + 10X_{2} - X_{3}$$
 $X_{5} = -2 + X_{0} + 3X_{1} + 3X_{2} - 6X_{3} \leftarrow DOVOLD, CE JE X_{0} SAMO TU$
 $X_{6} = 18 + X_{0} - 9X_{1} - X_{2} + 9X_{3}$
 $Z = -X_{1} \leftarrow VSTOPI$

$$X_{0} = 2 - 3X_{1} - 3X_{2} + 6X_{3} + X_{5} \qquad X_{1} = \frac{2}{3} \in 17550P1$$

$$X_{4} = 14 - 7X_{1} + 7X_{2} + 5X_{3} + X_{5} \qquad X_{1} \leq 2$$

$$X_{6} = 20 - 12X_{1} - 4X_{2} + 15X_{3} + X_{5} \qquad X_{1} \leq \frac{5}{3}$$

$$Z = -2 + 3X_{1} + 3X_{2} - 6X_{3} - X_{5}$$

$$X_{1} = \frac{2}{3} - X_{2} + 2X_{3} + \frac{1}{3}X_{5} - \frac{1}{3}X_{6}$$

$$X_{1} = \frac{28}{3} + 111X_{2} - 9X_{3} - \frac{1}{3}X_{5} + \frac{1}{3}X_{6}$$

$$X_{2} = 12 + 8X_{2} - 9X_{3} - 3X_{5} + 11X_{6}$$

$$X_{y} = 12 - 4X_{1} + 10X_{2} - X_{3}$$

$$X_{5} = -2 + 3X_{1} + 3X_{2} - 6X_{3}$$

$$X_{6} = 18 - 9X_{1} - X_{2} + 9X_{3}$$

$$X_{1} = \frac{2}{3} - X_{2} + 2X_{3} + \frac{X_{5}}{3}$$

$$X_{4} = \frac{28}{3} + 14X_{2} - 9X_{3} - \frac{4}{3}X_{5}$$

$$X_{6} = 12 + 8X_{2} - 9X_{3} - 3X_{5}$$

 $X_{5} = 4 + \frac{2}{3}X_{2} - 3X_{3} - \frac{X_{6}}{3}$ $X_{4} = 2 - \frac{1}{6}X_{2} + X_{3} - \frac{1}{6}X_{6}$ $X_{4} = 4 + \frac{94}{9}X_{2} - 5X_{3} + \frac{4}{9}X_{6}$ $Z = 36 - 27X_{3} - 2X_{6}$

$$\frac{Z^{+}=36-27\lambda_{3}-2\lambda_{6}}{Z^{+}=36} \left(\chi_{3}^{+}=\chi_{6}^{+}=0\right) = \chi_{4}^{+}=2-\frac{1}{6}\chi_{2}^{+} \left[\chi_{2}^{+}=0\right] = \chi_{4}$$

2. naloga (25 točk)

Najdi optimalen razvoz in zapiši njegovo ceno ali pa dokaži, da je problem nedopusten.

SKLADISCE

Cena najcenejšega razvoza:

HITER NATIN:

PROBLEM JE NEDOPUSTEN:

POT 12 PN 5 V ZGORNJEM

DESNEM KOTU DO 95 NE OBSTAJA,

S PREOSTALIH VOZLISC PA LAHKO

RAZVOZIMO LE 14 ENOT.

HITRA DVOFAZNA SIMPLEX :

DODAMO ENO UMETNO POVEZAVO, DA DOBIMO DOR PRIREJENEGA PROBEHA;

NOBENA NE VSTOPI, TO JE OPT. RESITEV Z RAZVOZOM 1 = M DOPUSTEN.

NAIMA DVOFAZNA SIMPLEX - DODAMO VSE UMETNE POVEZAVE IN SPELJEMO RAZVOZ CEZ KOREN!

3. naloga (25 točk)

Podjetje VegaRega, ki izdeluje veganski nadomestek žabjih krakov, želi prodreti tudi na trg nadomestkov za gosenice in polže. Vsak liter nadomestka za žabje krake jim prinese 5 evrov dobička, ker pa proizvodnje nadomestkov za gosenice in polže še niso zoptimizirali, jim ta nadomestka prinašata izgubo: gosenice en evro na liter, polži pa dva. Podjetje ima na zalogi 1200ℓ skrivne snovi A in 1000ℓ skrivne snovi B. Porabo snovi podaja spodnja tabela.

		VX1	1/2	K x3
		žabji kraki "	gosenice	polži
-	snov A	3	2	1
	snov B	1	2	3

Za liter nadomestka za polže torej potrebujejo 3ℓ skrivne snovi B. Da bi lahko prišlo podjetje na vse tri trge, so strategi v podjetju dodatno zahtevali, da mora biti (prostorninski) delež vsake vrste nadomestka vsaj 20% celotne proizvodnje.

a) (10 točk) Koliko nadomestka posamezne vrste naj izdelajo, če želijo v podjetju čim večji dobiček? Zapiši kot linearni program in ga pretvori v standardno obliko (programa ni treba rešiti).

MAX
$$5X_1 - X_2 - 2X_3$$

$$3X_1 + 2X_2 + X_3 \le 1200$$

$$X_1 + 2X_2 + 3X_3 \le 1000$$

$$X_2 + X_3 - 4X_4 \le 0$$

$$X_1 + X_2 - 4X_3 \le 0$$

$$X_1 + X_2 - 4X_3 \le 0$$

$$X_1 + X_3 - 4X_2 \le 0$$

$$X_1 + X_3 - 4X_3 \le 0$$

$$X_1 + X_2 - 4X_3 \le 0$$

$$X_2 + X_3 - 4X_3 \le 0$$

$$X_3 + X_3 - 4X_3 = 0$$

$$X_1 + X_2 - 4X_3 = 0$$

$$X_2 + X_3 - 4X_3 = 0$$

$$X_3 + X_3 - 4X_3 = 0$$

$$X_1 + X_2 - 4X_3 = 0$$

$$X_2 + X_3 - 4X_3 = 0$$

$$X_3 + X_3 -$$

zalogo skrivne snovi A, da bo imel ob nespremenjenih preostalih pogojih problem še vedno vsaj eno rešitev (programa ni treba rešiti).

MIN
$$\tilde{X}$$

$$3X_{1}+2X_{2}+X_{3} \leq \tilde{X}$$

$$X_{1}+2X_{2}+3X_{3} \leq 1000$$

$$X_{2}+X_{3}-9X_{4} \leq 0$$

$$X_{4}+X_{2}-9X_{3} \leq 0$$

$$X_{4}+X_{3}-9X_{2} \leq 0$$

$$X_{4}+X_{3}-9X_{2} \leq 0$$

$$X_{4}+X_{3}-9X_{2} \leq 0$$

DUALNO DOPOLN)EVANJE: STRIKTVA NEENAKOST V 2,13, POGOJU => Y2=Y2=0 XIDA FO & ENAKOSTI V DUALV: 3/2 + /4+/5 =5 2/1 +X-1/1=-1 1/4 -4/4+ X5 =-2 => 1/5 = -2+1/4 -/-9/4 - 6/4 = 3 $13/4 - 2/5 = 41 \Rightarrow -30/4 = -30 \Rightarrow 1/4 = 1$ => /5=1 => /A=1=> Y DARUSTNA => NAJ UGIB JE
RES OPTIMALEN

4. naloga (25 točk)

Dan je naslednji linearni problem

$$\max 10x_1 + 6x_2 + 12x_3 - 4x_4 - x_5$$

$$5x_1 + x_2 + x_3 + x_4 \le 3$$

$$x_1 + x_2 + 4x_3 + x_4 + x_5 \ge 2$$

$$x_1, x_2, x_3, x_4 \ge 0, x_5 \in \mathbb{R}$$

b) (10 točk) Poišči še vrednosti $x_1, ... x_5$, pri katerih je optimalna vrednost dosežena.

DUALNO DOPOLNJEVANJE:

STRIKTINA NEENAKOST V 1,2,1,4, POGOV = $X_1 = X_2 = X_4 = 0$ $Y_{11}Y_2 \neq 0 \Rightarrow X_3 = 3$ $-4X_3 - X_5 + X_5 = -2 \Rightarrow X_5 - X_5 = -10 \Rightarrow X_5 = -10$ $\Rightarrow X_4 = (0,0,3,0,-10)$

c) (5 bonus točk) Za koliko se spremeni optimalna vrednost, če prvi pogoj nadomestimo z:

$$5x_1 + x_2 + x_3 + x_4 \le 3 + \epsilon$$

za nek dovolj majhen $\epsilon > 0$?

EKONONSKI POMEN DVALNIH SPREMENLJIVK; DZ = E.Y = MODE 16. E.