OK TO ENTER: /LA/

12/15/2009

Serial No. 10/771,872 Docket No. RDID 03020 US Response date December 4, 2009 Reply to Office Action of September 4, 2009

Amendments to the Claims

The following Listing of Claims will replace all prior versions and listings of claims in the present application.

Listing of Claims

(Currently Amended) A method for detecting an analyte comprising:
causing a redox reaction by contacting a sample containing the analyte with a detection
reagent which contains:

an enzyme for reducing or oxidizing the analyte;

an optional coenzyme; and

a compound of the general formula (I) as a fluorimetric redox indicator:

wherein

 R^1 and R^2 are each independently selected from R, $(CH_2CH_2O)_mR$, COR, COOR and OCOR,

R³ in each case is independently selected from NO₂, CN, R, OR, OCOR, COOR, SR and halogen,

R is H or C_1 – C_4 alkyl, where alkyl is optionally substituted with <u>one or more functional group independently selected from the group consisting of halogen</u>, OR, SR, NR₂, COOR, CONR₂, SO₃R and salts thereof or/and thereof, <u>and PO(OR)</u>₃ and salts thereof,

m is an integer from 1-20, and

n is 1, 2 or 3; and

performing a fluorimetric determination by irradiating the sample with excitation light of a predetermined wavelength, and

detecting the presence of the analyte as a result of the redox reaction and based on the fluorescence emission light emitted by the sample.

- 2. (Previously Presented) The method of claim 1, wherein R^1 and R^2 are a C_1 – C_2 alkyl group substituted with OH.
- 3. (Previously Presented) The method of claim 1, wherein R^3 is NO_2 .
- 4. (Previously Presented) The method of claim 1, wherein the redox indicator (I) can directly accept electrons.
- 5. (Previously Presented) The method of claim 1, wherein the redox indicator (I) can accept electrons via a mediator.
- 6. (Previously Presented) The method of claim 5, wherein an oxidizable substance is detected as the analyte.
- 7. (Canceled)
- 8. (Previously Presented) The method of claim 6, wherein glucose, lactate, alcohol, galactose, cholesterol, fructose, glycerol, pyruvate, creatinine, alanine, phenylalanine, leucine, triglycerides or HDL cholesterol are detected as analytes.

- 9. (Previously Presented) The method of claim 6, wherein glucose is detected using glucose oxidase, glucose dye oxidoreductase or glucose dehydrogenase/diaphorase.
- 10. (Previously Presented) The method of claim 5, wherein an enzyme catalysing a redox reaction or an enzyme whose reaction can be coupled to an oxidoreductase reaction is detected as the analyte.
- 11. (Previously Presented) The method of claim 10, wherein glutamate-oxalacetate transaminase (GOT), (AST), glutamate-pyruvate transaminase (GPT), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) or creatine kinase (CK) are detected as analytes.

12–13. (Canceled)

14. (Currently Amended) A method for detecting an analyte, the method comprising: contacting a sample containing the analyte with a detection reagent comprising a compound of the general formula (I):

wherein

 R^1 and R^2 are each independently selected from R, $(CH_2CH_2O)_mR$, COR, COOR and OCOR,

Serial No. 10/771,872 Docket No. RDID 03020 US Response date December 4, 2009 Reply to Office Action of September 4, 2009

 R^3 in each case is independently selected from NO_2 , CN, R, OR, OCOR, COOR, SR and halogen,

R is H or C_1 – C_4 alkyl, where alkyl is optionally substituted with <u>one or more functional group independently selected from the group consisting of halogen</u>, OR, SR, NR₂, COOR, CONR₂, SO₃R and salts thereof or/and thereof, and PO(OR)₃ and salts thereof,

m is an integer from 1–20, and n is 1, 2 or 3;

causing a redox reaction through said contacting, whereby during said redox reaction the analyte is oxidized and the compound of the general formula (I) is reduced;

irradiating the sample with an excitation light of a predetermined wavelength;

detecting a fluorescence light emission emitted by the irradiated sample, the fluorescence light emission having a wavelength different from the predetermined wavelength; and

determining the analyte qualitatively, semi-quantitatively, or quantitatively through analysis of the fluorescence light emission.