Université Paris Diderot Paris 7 Licence L1 (S2)

2017-2018

Département de Sciences Exactes Algèbre et analyse élémentaires II MI2

Examen Partiel

10 Mars 2018

Durée: 3 heures.

Tous les documents sont interdits, ainsi que les calculatrices et les téléphones portables. Les exercices sont indépendants entre eux. Une attention particulière sera portée à la rédaction.

Question de cours.

Soit f une application linéaire d'un espace vectoriel réel $E = \mathbb{R}^m$ dans un autre espace vectoriel réel $F=\mathbb{R}^n$. Définir le noyau de l'application linéaire f . Donner un exemple d'application linéaire non nulle dont le noyau n'est pas réduit à $\{0\}$.

Exercice 1. On considère l'espace vectoriel \mathbb{R}^4 .

- Soit *H* l'ensemble des vecteurs u = (x, y, z, t) de \mathbb{R}^4 qui vérifient x y + z z = 0t = 0. Quelle est la dimension de H? En donner une base.
- Soient $u_1 = (1,0,1,0)$ et $u_2 = (0,1,0,1)$ deux vecteurs de \mathbb{R}^4 . On note $P = \langle u_1, u_2 \rangle$ le sous-espace vectoriel engendré par u_1 et u_2 . Quelle est la dimension de P? En donner une base. Déterminer un système d'équations définissant P.
- Déterminer $H \cap P$ et H + P. Le sous-espace H et le sous-espace P sont-ils supplémentaires dans \mathbb{R}^4 ?
- Trouver un supplémentaire de P dans \mathbb{R}^4 et un supplémentaire de H dans \mathbb{R}^4 .

Exercice 2. On note $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ et $e_3 = (0,0,1)$ les vecteurs de la base canonique de \mathbb{R}^3 . On considère le système formé par les trois vecteurs $f_1 = e_1 - e_2$, $f_2 = e_1 - e_2 + e_3$ et $f_3 = e_1 + e_2$.

- 1. Le système $\{f_1, f_2, f_3\}$ forme-t-il une nouvelle base de \mathbb{R}^3 ?
- 2. La matrice *P*

$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

est-elle inversible?

- 3. Déterminer P^{-1} (on pourra exprimer les vecteurs e_i (i=1,2,3) en fonction du système de vecteurs $\{f_1, f_2, f_3\}$).
- 4. Déterminer les coordonnées du vecteur $e_1 + e_2 + e_3$ dans la base $\{f_1, f_2, f_3\}$

5. Déterminer les coordonnées du vecteur $f_1 - f_2 + f_3$ dans la base $\{e_1, e_2, e_3\}$

Exercice 3. Considérons l'application linéaire $\Phi: \mathbb{R}^3 \to \mathbb{R}^4$ ayant la matrice suivante relativement aux bases canoniques de ces deux espaces :

$$A = \left(\begin{array}{rrr} -1 & 1 & 1\\ 0 & 3 & 2\\ 2 & 1 & 0\\ -3 & 0 & 1 \end{array}\right)$$

- 1. Donner des bases du noyau et de l'image de Φ .
- 2. Φ est-elle injective? surjective?

On considère désormais l'endomorphisme Λ de \mathbb{R}^2 dans \mathbb{R}^4 donné par la matrice

$$B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \\ 2 & 0 \\ -3 & 1 \end{pmatrix} .$$

- 1. Déterminer l'image et le noyau de Λ .
- 2. Λ est-elle injective? surjective?

Barême indicatif : Question de cours (4 points). Exercice 1 (7=1+(1+2)+(1+1)+1 points). Exercice 2 (6=2+1+2+0,5+0,5) points). Exercice 3 (6=2+1+2+1) points).