Сети и потоки. Алгоритм Диница

Кононов Николай

Математико-Механический факультет СПбГУ

2019

План

- 📵 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток, слоистая сеть
- Алгоритм Диница
 - Основные идеи
 - Корректность
 - Асимптотика и оценка числа фаз

План

- Отражения потоки по
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток, слоистая сеть
- Алгоритм Диница
 - Основные идеи
 - Корректность
 - Асимптотика и оценка числа фаз

Сеть

• Определение: Пусть есть множество вершин V, в котором выделены две вершины: s (вход или исток) и t (выход или сток). Пусть определена функция $c: V \times V \to \mathbb{R}$, удовлетворяющая соотношениям

$$\forall x,y \in V \quad c(x,y) \geq 0, c(x,s) = 0, c(t,y) = 0$$

Тогда G = (V, s, t, c) - сеть, функция c - пропускная способность.

Сеть

• Определение: Пусть есть множество вершин V, в котором выделены две вершины: s (вход или исток) и t (выход или сток). Пусть определена функция $c:V\times V\to \mathbb{R}$, удовлетворяющая соотношениям

$$\forall x,y \in V \quad c(x,y) \geq 0, c(x,s) = 0, c(t,y) = 0$$

Тогда G = (V, s, t, c) - сеть, функция c - пропускная способность.

• A(G) = (x, y) : c(x, y) > 0 - множество стрелок сети G

Поток в сети

- Определение: Пусть G- сеть, а функция $f: V \times V \to \mathbb{R}$ удовлетворяет трем условиям:
 - 1) $\forall x, y \in V \quad f(x, y) \leq c(x, y)$
 - 2) $\forall x, y \in V$ f(x, y) = -f(y, x)
 - 3) $\forall v \in V \setminus t, q$ выполняется условие:

$$\sum_{v\in V}f(v,x)=0$$

f - поток в сети G

Поток в сети

- Определение: Пусть G- сеть, а функция $f: V \times V \to \mathbb{R}$ удовлетворяет трем условиям:
 - 1) $\forall x, y \in V \quad f(x, y) \leq c(x, y)$
 - 2) $\forall x, y \in V$ f(x, y) = -f(y, x)
 - 3) $\forall v \in V \setminus t, q$ выполняется условие:

$$\sum_{v\in V}f(v,x)=0$$

f - поток в сети G

ullet $|f|=\sum_{v\in V}f(s,v)$ - величина потока

Поток с максимальной величиной - максимальный

Разрез сети

• Определение: пусть G - сеть, а множество ее вершин V разбито на два дизъюнктых множества $S \ni s$ и $T \ni t$. Тогда (S,T) - разрез сети G

Разрез сети

- Определение: пусть G сеть, а множество ее вершин V разбито на два дизъюнктых множества $S\ni s$ и $T\ni t$. Тогда (S,T) разрез сети G
- Величина $c(S,T) = \sum_{x \in S, y \in T} c(x,y)$ называется пропускной способностью разреза. Любой разрез сети G с минимальной пропускной способностью называется минимальным.
- Для любого потока f величина $f(S,T) = \sum_{x \in S, y \in T} f(x,y)$ называется потоком через разрез.

Разрез сети

- Определение: пусть G сеть, а множество ее вершин V разбито на два дизъюнктых множества $S \ni s$ и $T \ni t$. Тогда (S,T) разрез сети G
- Величина $c(S,T) = \sum_{x \in S, y \in T} c(x,y)$ называется пропускной способностью разреза. Любой разрез сети G с минимальной пропускной способностью называется минимальным.
- Для любого потока f величина $f(S,T) = \sum_{x \in S, y \in T} f(x,y)$ называется потоком через разрез.

Лемма

Лемма: Для любого потока f, и разреза (S,T) сети G выполняется |f|=f(S,T)

План

- 📵 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток, слоистая сеть
- Алгоритм Диница
 - Основные идеи
 - Корректность
 - Асимптотика и оценка числа фаз

Остаточная сеть

Определение

Остаточной сетью G_f по отношению к сети G и потоку f в ней называется сеть, в которой каждому ребру $(u,v) \in G$ с пропускной способностью c^{uv} и потоком f^{uv} соответствует два ребра:

- 1) (u, v) с пропускной способностью $c_f^{uv} = c^{uv} f^{uv}$
- 2) (v,u) с пропускной способностью $c_f^{vu}=f^{uv}$

Остаточная сеть

Определение

Остаточной сетью G_f по отношению к сети G и потоку f в ней называется сеть, в которой каждому ребру $(u,v) \in G$ с пропускной способностью c^{uv} и потоком f^{uv} соответствует два ребра:

- 1) (u,v) с пропускной способностью $c_f^{uv}=c^{uv}-f^{uv}$
- 2) (v,u) с пропускной способностью $c_f^{vu}=f^{uv}$

Еще одно определение

Остаточной сетью G_f по отношению к сети $G = \{(V, E), s, t, c\}$ и потоку f в ней называется сеть $G_f = \{(V, E), s, t, c_f\}$, где

$$c_f(x,y) = \begin{cases} 0 & \text{if } y = s \text{ or } x = t \\ c(x,y) - f(x,y) & \text{otherwise} \end{cases}$$

то есть, если $(x,y) \not\in E \rightarrow c_f(x,y) = c(x,y) = 0$

Остаточная сеть

Остаточное ребро можно интуитивно понимать как меру того, насколько еще можно увеличить поток вдоль какого-то ребра: если по ребру (u,v) с пропускной способностью c_{uv} протекает поток f_{uv} , то по нему можно пустить еще $c_{uv}-f_{uv}$ единиц потока, а в обратную сторону до f_{uv} единиц потока.

Определение

Простой st-путь в G_f называется дополняющим путем

Блокирующий поток. Теорема Форда-Фалкерсона

Определение

Блокирующим потоком f в сети G = (V, s, t, c) называется такой поток, что $\forall st$ -путь содержит насыщенное этим потоком ребро. То есть в данной сети любой путь из истока в сток нельзя беспрепятственно увеличить.

Блокирующий поток. Теорема Форда-Фалкерсона

Определение

Блокирующим потоком f в сети G = (V, s, t, c) называется такой поток, что $\forall st$ -путь содержит насыщенное этим потоком ребро. То есть в данной сети любой путь из истока в сток нельзя беспрепятственно увеличить.

Theorem

Ford-Fulkerson: В сети G с пропускной способностью с задан поток f, тогда следующие три утверждения равносильны:

- 1) Поток f максимален
- 2) $\exists (S,T)$ такой, что |f|=c(S,T)
- 3) В остаточной сети G_f нет дополняющего пути
 - Замечание: блокирующий поток не всегда максимален

Слоистая сеть

Слоистая сеть (layered network, вспомогательная сеть) строится след образом:

- Для каждой вершины v данной сети G определим длину кратчайшего sv-пути из истока и обозначим ее d[v] (можно сделать обходом в ширину)
- В слоистую сеть включаем только стрелки (u, v) такие, что d[u] = d[v] + 1
- То есть исключим из G стрелки лежащие внутри одного уровня или идущие назад
- Получившаяся сеть ациклична и любой st путь в слоистой сети является кратчайшим путем в исходной сети из свойств BFS
- $G=\{\{1,2\},\{3\},\{4\},\{2,5\},\{3,5\},\{1,6\}\}; \quad s=0,t=6$ тогда слоистая сеть $G_s=\{\{1,2\},\{3\},\{4\},\{5\},\{5\},\{6\}\}$

План

- Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток, слоистая сеть
- Алгоритм Диница
 - Основные идеи
 - Корректность
 - Асимптотика и оценка числа фаз

Постановка задачи

Пусть дана сеть G = (V, s, t, c). Как найти поток f из s в t максимальной величины?

Алгоритм является улучшенной версией Алгоритма
 Эдмонса-Карпа

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма
 Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad orall e \in E$

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма
 Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad orall e \in E$
- Алгоритм состоит из нескольких фаз.

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма
 Эдмонса-Карпа
- Изначально пусть $f(e) = 0 \quad \forall e \in E$
- Алгоритм состоит из нескольких фаз.
- На каждой фазе строится остаточная сеть G_f , затем по отношению к G_f строится слоистая сеть $G_L(\mathsf{BFS})$. Если $\mathtt{d}[\mathtt{v}] = \infty$ останавливаемся и выводим f

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма
 Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad orall e \in E$
- Алгоритм состоит из нескольких фаз.
- На каждой фазе строится остаточная сеть G_f , затем по отношению к G_f строится слоистая сеть $G_L(\mathsf{BFS})$. Если $\mathtt{d}[\mathtt{v}] = \infty$ останавливаемся и выводим f
- В построенной слоистой сети находим блокирующий поток f (любой)

Постановка задачи

- Алгоритм является улучшенной версией Алгоритма Эдмонса-Карпа
- ullet Изначально пусть $f(e)=0 \quad \forall e \in E$
- Алгоритм состоит из нескольких фаз.
- На каждой фазе строится остаточная сеть G_f , затем по отношению к G_f строится слоистая сеть $G_L(\mathsf{BFS})$. Если $\mathtt{d}[\mathtt{v}] = \infty$ останавливаемся и выводим f
- В построенной слоистой сети находим блокирующий поток f (любой)
- ullet Дополняем поток f потоком f и переходим к следующей фазе

План

- Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток, слоистая сеть
- 2 Алгоритм Диница
 - Основные идеи
 - Корректность
 - Асимптотика и оценка числа фаз

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $d[t] = \infty$, то есть сток t не достижим из истока s в слоистой сети.

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $d[t] = \infty$, то есть сток t не достижим из истока s в слоистой сети.

Но слоистая сеть содержит в себе все кратчайшие пути в сети G_f из истока s.

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $d[t] = \infty$, то есть сток t не достижим из истока s в слоистой сети.

Но слоистая сеть содержит в себе все кратчайшие пути в сети G_f из истока s.

Таким образом в остаточной сети нет $s \leadsto t$ пути

Theorem

Если алгоритм завершается, полученный поток является потоком максимальной длины.

Доказательство.

Предположим, что в какой-то момент в слоистой сети G_L построенной для остаточной сети G_f не удалось найти блокирующий поток.

Это означает, что $d[t] = \infty$, то есть сток t не достижим из истока s в слоистой сети.

Но слоистая сеть содержит в себе все кратчайшие пути в сети G_f из истока s.

Таким образом в остаточной сети нет $s \leadsto t$ пути

Применяя теорему Форда-Фалкерсона получаем, что текущий поток в самом деле максимален.

План

- 1 Сети и потоки
 - Простейшие понятия
 - Остаточная сеть, блокирующий поток, слоистая сеть
- Алгоритм Диница
 - Основные идеи
 - Корректность
 - Асимптотика и оценка числа фаз

Оценка числа фаз

Theorem

Расстояние между истоком и стоком строго увеличивается после каждой фазы алгоритма: $d_n[t] > d_{n-1}[t]$

Доказательство.

От противного. Пусть длина кратчайшего $s \leadsto t$ пути останется неизменной после очередной фазы алгоритма.

Summary

- he first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.