Math 415 - Lecture 15

The Four Fundamental Subspaces, the Fundamental Theorem of Linear Algebra,

Linear Transformations

Monday September 28th 2015

Textbook: Chapter 2.4, 2.6

Suggested Practice Exercise: Chapter 2.4 Exercise 1, 2, 3, 4, 7, 10, 18, 20, 21, 22, 27, 32, 37 Chapter 2.6 Exercise 5, 6, 7, 36, 37

Khan Academy Video: Linear Transformation, Linear Transformations as Matrix Vector Products, Linear Transformation Examples: Rotations in \mathbb{R}^2

Strang lectures: Lecture 9: Independence, Basis, and Dimension Lecture 10: The Four Fundamental Subspaces Lecture 30: Linear Transformations

1 Review

1.1 Basis for the Null Space

- $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ is a basis of V if the vectors span V and are independent.
- To find a basis for Nul(A), solve $A\mathbf{x} = \mathbf{0}$.

$$\begin{bmatrix} 3 & 6 & 6 & 3 \\ 6 & 12 & 15 & 0 \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} \boxed{1} & 2 & 0 & 5 \\ 0 & 0 & \boxed{1} & -2 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} -2x_2 - 5x_4 \\ x_2 \\ 2x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

So a basis for Nul(A) is $\left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\2\\1 \end{bmatrix} \right\}$

1.2 Basis for the Column space.

• To find a basis for Col(A), take the pivot columns of A.

$$\begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix} \longrightarrow \begin{bmatrix} \boxed{1} & 2 & 0 & 4 \\ 0 & 0 & \boxed{-1} & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

So a basis for
$$Col(A)$$
 is $\left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\-1\\2\\0 \end{bmatrix} \right\}$

Question. Why do we take columns of A and not columns of the Echelon form?

Solution.			

2 Rank and Dimensions

Dimension of Column and Null Space

nition. The rank of a matrix A is the number of pivots it has. orem 1. Rank-Nullity Theorem Let A be an $m \times n$ matrix of rank r . Then $Col(A) = r$ Why?	
ul(A)	= n - r is the number of free variables of A. Why?
ol(A) -	$+ dim \ Nul(A) = n \ Why?$

3 The Four Fundamental Subpaces

Let A be a matrix. We already know two fundamental subspaces:

- \bullet The column space of A and
- \bullet The null space of A

There are two more!

Definition. • The row space of A is the column space of A^T .

 $\bullet\,$ The left null space of A is the null space of $A^T.$

Remark. Why is it called the "left" null space?

 $Example \ 1.$ Find a basis for Col(A) and $Col(A^T)$ if

$$A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.$$

Solution.

3.1 Fundamental Theorem of Linear Algebra (Part 1) Theorem 2. Let A be an $m \times n$ matrix with rank r.

• $dim\ Col(A) = r$ (subspace of \mathbb{R}^m)
• $dim\ Col(A^T) = r$ (subspace of \mathbb{R}^n)
• $dim\ Nul(A) = n - r$ (subspace of \mathbb{R}^n)
• $dim\ Nul(A^T) = m - r$ (subspace of \mathbb{R}^m)

Remark. The column and row space always have the same dimension. In other words, A and A^T have the same rank. (i.e. same number of pivots). Why?

\mathbf{So}		

4 Coordinates

Definition. If $w \in V$ and $\mathcal{B} = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_p})$ is a basis for V, the **coordinate** vector of w with respect to the basis \mathcal{B} is

So w is a vector in some vector space, but it's coordinate vector is always a column vector in \mathbb{R}^p , if $\dim(V) = p$.

Example 2. Let $V = \mathbb{R}^2$, $\mathcal{B} = (\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix})$ and $\mathbf{w} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. coordinate vector of \mathbf{w} ?	What is the
Solution.	
Example 3. Let $V = P_2$, the vector space of polynomials of the form a_0 Let $\mathcal{B} = (\mathbf{b_1} = 1, \mathbf{b_2} = t, \mathbf{b_3} = t^2)$ be the obvious basis of P_2 . Let $\mathbf{w} = \mathbf{w}$ What is the coordinate vector of \mathbf{w} with respect to basis \mathcal{B} ?	

Example 4. Let $V = \mathbb{R}^3$ and let $E = (\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3})$ be the standard basis. If $\mathbf{w} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ what is the coordinate vector with respect to the standard basis?		
5 Linear Transformations		
5 Linear Transformations		
Let V and W be vector spaces.		
Definition. A map $T: V \to W$ is a linear transformation if		

 $\bf Remark.$ It follows immediately that

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$
- $T(c\mathbf{x}) = cT(\mathbf{x})$

$\bullet \ T(0) = 0$	(because $T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$)
Example 5. Let $V = \mathbb{R}, W = \mathbb{R}$.	Then the map $f(x) = 3x$ is linear. Why?
Solution.	
Example 6. Let A be an $m \times n$ mation $T : \mathbb{R}^n \to \mathbb{R}^m$. Why?	atrix. Then the map $T(\mathbf{x}) = A\mathbf{x}$ is a linear transfor-
Solution.	
Example 7. Let P_n be the vector space the map $T: P_n \to P_{n-1}$ given by	pace of all polynomials of degree at most n . Consider
	$T(p(t)) = \frac{d}{dt}p(t).$
	$dt^{P(t)} = dt^{P(t)}$.
This map is linear! Why?	
Solution.	