

Module 2

- ENVIRONMENTAL POLLUTION (10 hours)
- Water, air, soil, noise, thermal and radioactive, marine pollution: sources, effects and engineering control strategies. Drinking water quality and standards, Ambient air and noise quality standards

Source of water

Credit: U.S. Geological Survey, Water Science School. https://www.usgs.gov/special-topic/water-science-school Data source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources. (Numbers are rounded).

Sources of water and pollutants

Ground water

- Hardness
- Alkalinity
- Iron
- Manganese
- Fluoride
- Arsenic
- Bacterial Contamination
- Industrial Pollutant,
 Pesticides etc

Surface water

- Chemicals- Phenols, pesticides, PAH, Nitrate, phosphate (from fertilizers), heavy metals
- Physical- turbidity, colour, odour, taste
- Biological- Bacteria, viruses, protozoa EDA- Endocrine disrupting agents

Sources of water and pollutants

Sea Water

- Chloride
- Dissolved solids

Waste Water

- 99% water
- 80% of water supply comes out as water
- Microbes
- Nutrients

Attributes of Drinking Water

- Aesthetic Free from color, odor, taste, pleasing (Physical Perception – Subjective)
- Safety Bacteriological (free from pathogens.
- Chemicals Free from toxicants (Anthropogenic & natural)

Drinking water supply: India

India – Urban trends in drinking water by wealth quintiles

Accessibility to all sections of the people

Treatment Process

Method of treatment ?????????????????????

Based on nature of pollutant and its concentration

Treatment Processes

- Physical
- ☐ Chemical (physico chemical)
- □ Biological

Unit Operation

Separating using Physical forces
Settling
screening
Gas transfer

Unit Process

Chemical or biological reaction along with physical forces

E.g. Coagulation, Flocculation, sedimentation, adsorption, ion exchange, biological processes etc

Dr Smaranika Panda, Asst. Prof, Civil Engineering, SVNIT

Selection of Treatment Process

- 1. Source water characteristics
- 2. Beneficial use- drinking, domestic use, industrial, agricultural use, recreational etc

Objective of Public Water Supply System

- 1. Quantity-
- Population and other requirements
- Ensured by selecting the suitable source
 - 2. Quality --
 - Should be potable and palatable
 - Ensured by selecting the suitable treatment system
 - 3. Collection and treatment
 - Collect and treat of WW generated

Components of a Water Supply system

- Water Source
- Collection
- Treatment system
- Distribution systèm
- Point of use

- Rate of demand- represented in lpcd litres per capita per day
- Design period
- (Future) population

Types of demand:

- ✓ Domestic
- ✓ Industrial
- ✓ Public use
- ✓ Losses and thefts

Low Income Group-	lpcd
Domestic	135
Industrial and commercial	70
Public	10
Losses and thefts	55
Total	270 lpcd

High Income Group-	lpcd
Domestic	200
Industrial and commercial	70
Public	10
Losses and thefts	55
Total	335 lpcd

Fire Demand:

3 jets of water @ 1100 lit/min 1 to 1.5 kg/cm²

Fire Demand:

Kuichling formula Freeman's formula Under writers formula Buston formula

Rate of demand depends

- City size
- Habits
- Climatic condition
- Quality of water
- Metering system

Let q :avg daily water demand q/24- avg hourly water demand

Coincidental draft – Max daily demand+ Fire demand

Total draft- Higher of the following

- a) Coincidental draft
- b) Max hourly demand

Max daily demand= 1.8 q
Max hourly demand = 1.5x (avg hourly demand of a max day)

- $= 1.5 \times (1.8q/24)$
- = 2.7 (q/24) lit/hr
- = 2. 7 q lit/day

Dr. Smaranika Panda, DoCE, SV NIT

- Design period- 30 to 40 years
- Population forecast
- ✓ Arithmetic increase method

$$P_n = P_0 + n\overline{x}$$

✓ Geometric increase method

$$P_n = P_0 \left(1 + \frac{r}{100} \right)^n$$

✓ Incremental increase method

$$P_n = P_0 + n\overline{x} + \frac{n(n+1)}{2}\overline{y}$$

- ✓ Deceasing rate method
- ✓ Simple graphical method----- Logistic curve
- ✓ Comparative graphical method

Q) If the water consumptions – 300 lpcd (litre/day/person)
Population = 4,00,000
Calculate max hourly draft of a max day, & max daily draft in MLD (million litre/day)

Total average daily demand =
$$300 \times 4 \times 10^5$$

= 120×10^6
= 120 MLD

Max daily draft = $1.8 \times q = 1.8 \times 120 = 216 \text{ MLD}$ Max hourly demand = $2.7 \text{ q} = 2.7 \times 120 = 324 \text{ MLD}$ • The population of a town in 3 consecutive decades 1 lakh, 1.4 lakh, 1.68 lakh. Calculate the population of this town on 4th consecutive decade according to geometric increase method

•
$$r1=(1.4-1)/1=0.4$$

•
$$r = (r1r2)^{0.5} = (0.4*0.2)^{0.5} = 0.3$$

$$P_n = P_0 \left(1 + \frac{r}{100}\right)^n$$

•
$$P4 = 1.68 (1+0.3)^1 = 2.18 lakh$$

Population of a city at previous consecutive decades was 4,00,000, 5,58,000, 7,76,000 and 10,98,500. The anticipated population using incremental increase method

Population	X	Υ
P1 = 4,00,000	x1= P2-P1 = 1,58,000	
P2 = 5,58,000	x2= P3-P2 = 2,18,000	Y1= x2-x1 = 60,000
P3= 7,76,000	X3= 10,98,500-7,76,000= 322500	y2-= x3-x2= 1,04,500
P4 =10,98,500	Xavg =(X1+X2+X3)/2= 2,32,834	Yavg = (y1+y2)/2 = 82250

$$P_n = P_0 + n\overline{x} + \frac{n(n+1)}{2}\overline{y}$$

P4= 10,98,500+ 1x 232,834+ 82250= 14,13,584

Question

- P = 28000 with average water consumption 4200 m³/d. Existing plant design capacity 6000 m³/d. Expected population = 44000 during next 20 years. The number of years from now the plant will reach the design capacity. Consider the growth as arithmetic?
 - a) 5.5 years b)8.6 years c) 15 years d) 16.5 years

```
Po = 28,000

Avg per capacity demand = 4200/28000 = 0.15 \text{ m}3/d/\text{person}

Population equivalent to design capacity of the unit = 6000/0.15 = 40,000 \text{ persons}

Xavg = (44000-28000)/2 = 8000

Pn = Po+ nxavg

= (40000-28000)/8000 = n

=1.5 decade

=15 years
```


Water Quality Parameters

Turbidity

Cloudiness of water; Measure of extent to which light is either absorbed or scattered by suspended material in water

Cause-

 It is caused by suspended material such as clay, silt, organic material, plankton, and other particulate materials in water

Effects

- Turbid particles provide surface of absorption for toxic material and become harmful.
- Turbid particles hinder disinfection bacteria smaller in size

Measurement

- Turbidity is a qualitative measurement
- Measured using turbidity meter
- Principle: light scattering

Unit

- JTU (Jackson turbidity unit)- SiO2 standard
- NTU (Nephelometric turbidity units (NTU)/FTU (Formazine turbidity Unit)

Colour

It is caused by suspended and dissolved matter in water.

Heavy growth due to algae also impart colour to water.

Causes

True colour- Caused due to dissolved solids

Apparent colour- Caused due to suspended and colloidal solids

Measurement

Spectro-photometric method
Hazen colour unit
Platinum cobalt scale-colour matching technique.

Odour, taste and temperature

Causes

Dissolved gases (H2S, CH4), salt, organic compounds etc cause odour

Intensity of taste and odour is measured by, Threshold Odour Number = $\frac{A + B}{A}$ Where, A = sample Volume, B = volume of diluted water; A+B = 200 units

Measurement

Osmoscope olfactometer

Temperature- affects chemical and biological reactions. An increase in 10 deg C doubles the biological activity.

↓ Solubility of gas

```
1. pH
   -log [H+]

In water [H]+ [OH]- = 10 -14 mole/lit

In distilled water (neutral water), [H]+ = [OH]- = 10 -7 mole/lit

In raw water, [H]+ ≠ [OH]-
```

In a water treatment plant,
 PH values of incoming and outgoing waters are 7.2 and 8.4 respectively. Assuming a liner variation of pH with time, the average pH of water

2. Two sample of water A and B have pH value 4.4 and 6.4 respectively. How many time more acidic sample A than sample B.

2. Conductivity (S or mS/cm)

- Measures of ions in liquid
- Indirect measurement of dissolved solids in water.

Conductivity = 2.5×10⁻⁵ (TDS)

Not applicable for wastewater

3. Solids

- Settleable solids
- Dissolved solids and Suspended solids/Colloidal
- Volatile and Fixed solids
- ➤ Settleable solids "Imhoff cone"
 - Wastewater allow to settle for 30 mins.

4. Alkalinity and Acidity

- Alkalinity is the acid neutralizing capacity of water
- Acidity is the base neutralizing capacity of water
- ➤ Alkalinity is due to HCO₃⁻, CO₃²-, OH⁻ etc.
- ➤ Acidity is due to H⁺, H₂CO₃, HCO₃ etc.

$$CO_2 + H_2O \rightleftharpoons H_2CO_3$$

 $H_2CO_3 \rightleftharpoons 2H^+ + HCO_3^-$
 $HCO_3^- + OH^- \rightleftharpoons CO_3^{2-} + H_2O$

Hardness

Causes

- □ Contributed by Ca 2+, Mg2+, Fe2+, Mn2+ Sr2+ etc
- Represented interms of mg/l as CaCO3

Temporary hardness

- ☐ Majorly by Ca⁺² and Mg²⁺ in the form of HCO₃⁻² CO₃⁻²
- Can be removed by simple boiling of water where calcium carbonate (CaCO₃₎
 precipitates as solubility reduces with increase in temperature

Permanent hardness

- □ Contributed by Ca⁺² and Mg²⁺ in the form of Cl⁻, SO₄⁻², NO₃⁻²
- Can't be removed by simple boiling
- ☐ Can be Removed by softening techniques like ion exchange etc.
- □ Hardness ≈ alkalinity is called temporary hardness.
- ☐ Hardness Alkalinity = Permanent Hardness

E.g. Hardness = 600 mg/l of $CaCO_3$

Alkalinity = 400 mg/l of CaCO₃ Dr Smaranika Panda, Asst. Prof, Civil

Temporary hardness?? Permanent hardness???

Nutrients

Nitrate (NO₃⁻), Phosphate (PO₄³-)

NO₃⁻ and PO₄³⁻ cause eutrophication (excess algal growth) of Water bodies and hence should be removed.

Nitrogen content (nitrates, Ammonia)

- Presence of nitrogen indicates organic matter
- Organic Nitrogen+ NH3-N Kjedhal N
- Presence of free ammonia (NH4+) = **Recent pollution**
- Nitrites and Nitrates indicate partly or old pollution.
- Nitrites are highly dangerous, permissible limit=zero
- Too much(45mg/L) nitrate (NO₃²⁻)affect infants, causing blue baby disease as Infants abdomen is slightly alkaline
- NO₃²⁻ converts to NO₂⁻ which has high affinity to haemoglobin and hence O2 deficiency occur

Trace elements for aquatic growth – NITRATE AND PHOSPHATE

Excess Nitrate cause Eutrophication

Phosphorus

Non toxic to human health.

Interferes water treatment, facilitates rapid growth of algae or aquatic plants.

Nitrate

If the water is high in nitrate level it leads the kids 'blue baby syndrome' disease.

The use of contaminated water for agricultural land, will contaminate not only water, also ground water.

Mostly for vegetation we are using toxic pesticides, because of this only the nitraate level in groundwater is increasing constantly

http://uplnad.wikimedia.org/wikipedia/commonu/thumb/e/e1/Cyanotic_neonate.jpg/150px-Cyanotic_neonate.jpg http://t2.gstatic.com/images?q-tbn:ANd9GcT_c2InE84II/Im1w-qEdItm9hcAsxIK9kDL6stbu45koho_EDg

Chemical Parameters

Pesticides (DDT, BHC, Endosufan)

Poly aromatic hydrocarbon

Poly chlorinated biphenyls

PoPs

VOC – Volatile organic compoumds

EDA

Inorganic compunds like (Flouride, arsenic, nitrate

Pharmaceutical active agents)

Heavy metals

Chemical Parameters

Heavy metals

- Any toxic metal or metalloid- Pb, Hg, Cd, Cu, Zn, Cr, As, Fe
- All these elements are needed in trace amount. These are present in enzymes
- Biomagnifications.
- Minamata Bay— Japan
- Methyl mercure (CH₂Hg)

Flouride, Arsenic

Sources- Anthropogenic

 Flouride causes- Skeletal and non skeletal flourosis, Teeth and bone flourosis

Effects when the level of fluoride increases in water

World Health Organization (WHO) guideline for fluorides in drinking water is up to 1.5 mg/L (WHO,1984).

Level of Fluoride (mg/L)	Symptoms	
< 1.5	No Problem	
1.5-3.0	Teeth Fluorosis	
3.1-6.0	Less Skeletal Fluorosis	
> 6.0	More Skeletal Fluorosis	

Chemical Parameters

Disinfection by-products (DBPs)

- Reaction between oxidants (such as Cl and O₃) and naturally present complex organics such as humic and fulvic acids.
- Example: Tri Halo Methanes (THM), Haloacetic acids and many organo-chlorine compounds.
- These compounds are non-biodegradable, xenobiotic and carcinogenic in nature.

Biological Parameters

- Imp quality to be considered
- WHO- 80% of all disease is transmitted through contaminant water
- 10% of extra money can save 80% money in health sector

- Pathogens
 - Viruses, Bacteria, Fungi, Algae, Protozoa, Helminthes

Water quality- Biological

- Water should be disinfected to kill the pathogens
- Bacteriological estimation is the most important water quality
- Estimated by indicator organism in terms of MPN
- E.g. E Coli, Total Coliform

Biological Parameters

• Diseases are classified into 4 categories- in relation to water

Water borne disease

□ Caused by consuming contaminated water

Water based disease

- ➤ Caused by aquatic organisms part of life in contaminated water and another part as parasite in human or animals
- ➤ e.g. Any worms (round worm, hook worm, tape worm

Biological Parameters

• Diseases are classified into 4 categories- in relation to water

Water related vector disease

- ☐ Carrier of the disease, Mosquitoes
- ☐ Malaria, dengu, yellow fever

Water scarce disease

- ➤ Due to insufficient water supply- hygiene condition get effected
- ➤ e.g. skin diseases, eye infection, parasite infection

Dr Smaranika Panda, Asst. Prof, Civil Engineering, SVNIT

Biological parameters

Water Washed Diseases

- ☐ This is a diseases happens for persons who avoid to be personally hygiene.
- If there is sufficient availability of water for bathing and washing will lead to water washed diseases
- Parasitic infection
- Scabies and rash

http://diseasespictures.com/wpcontent/uploads/2012/11/Trachoma-2.jpg

Water quality standards

- Standards: Agencies such as USEPA, CPCB, BIS, EU, WHO are responsible for setting up water quality standards
- Drinking water Highest purity
- Standard depends on End usage of water
- Prescribed values
- Strictly enforced by law--- violation are punishables
- Attributes of standards
- 1. It should fulfil the requirement for which it is set
- 2. Easily measurable
- 3. Technically feasible
- 4. Economically viable
- With development of technologies, new standards are added up

WATER QUALITY STANDARDS (BIS)

S. No.	Parameter	BIS, Indian Standards (IS 10500:1991)		World Health Organization (WHO
		Desirable Limit	Permissible Limit	Guideline) Maximum allowable concentration
1	PH	6.5-8.5	No relaxation	6.5-8.5
2	Total Hardness (as CaCO3)	300 mg/L	600 mg/L	500 mg/L
3	Chlorides (as Cl)	250 mg/L	1000 mg/L	250 mg/L
4	Dissolved Solids	500 mg/L	2000 mg/L	1000 mg/L
5	Calcium (as Ca)	75 mg/L	200 mg/L	-
6	Sulphate (as SO42-)	200 mg/L	400 mg/L	400 mg/L
7	Nitrate (as NO3-)	45 mg/L	100 mg/L	10 mg/L

Water quality monitoring

Periodical monitoring is essential

Sophisticated and expensive instruments: Not accessible to many

Easy to use and affordable monitoring systems are essential

Water Treatment

Source of water

Beneficial use of water

Dr. Smaranika Panda, DoCE, SV NIT

Quality of water

Raw water quality – source of water & point of intake of water
River Ganga
Gangothri – Mountain
Haridwar – Plains – Mass Bathing by Pilgrims
Kanpur – domestic & industrial (more than 100 tanneries)
Allahabad & Varanasi – Pilgrim centre (Mass bathing – Kumba mela, partially burnt dead bodies in to river etc.)
Patna – Domestic & Industrial

Domestic use

- 1. Bacteriological safety
- 2. Color, odour, taste
- 3. Free from toxic compounds

Industrial use

- 1. Process water- Drinking water standard, but varies based on industry Water used in different processes. e.g. TDS is helpful fixing the dye.
- 2. Product water Drinking water standard soft drinks
- **3.** Cooling water- free from hardness (scale formation, heat exchange capacity reduces), non corrosive and non scaling
- **4. Service water** used for cleaning purpose, transportation (carrying raw material and waste, fly ash made into slurry and transported), it does not need much quality

Agricultural use

- 1. TDS most imp parameter
 - saline, sea water cant be used, high conc of Na, Cl ions replaces essential minerals Ca2+ and Mg 2+
 - Plants obtain water through osmosis, If salt conc is high in soil, water from plants move into soil and affect plant growth
- 2. Soluble sodium percentage

SSP =
$$\frac{(Na^+ + K^+)}{(Ca^{2+} + Mg^{2+} + Na^+ + K^+)} \times 100.$$

3. Sodium Adsorption ratio

SAR =
$$\frac{Na^{+}}{\sqrt{(Ca^{2+} + Mg^{2+})/2}}$$
.

SAR < 9

The concentration of the ions in SSP and SAR in meq L⁻¹

Agricultural use (continued)

- 4. Free from Heavy metals- or else biomagnification
- 5. Free from toxic compounds
- 6. Leafy vegetables and vegetables which are eaten raw should be cleaned with pathogen free water

Issue- Sewage farming (turbid water)- clogging of pores---- unsuitable for agriculture

Live stock

- 1. Pathogen free
- 2. Free from toxic compounds
- 3. For fish cultivation- free from turbidity (fish breathe through their gills, get clogged if turbid water is used
- 4. Temperature- optimum temperature
- 5. Free from pathogen

Recreational water

- 1. Navigational water free from odour, pathogens (chance of water spillage there)
- 2. Lawn irrigation- Free from lawn and pathogens
- 3. Swimming pool- free from turbidity, pathogens, odour, colour, toxic compounds (residual chlorine -0.1mg/l)
- 4. Bathing Ghats

Water Treatment

Surface water

