Free Oscillations in Mechanical Circuits without Damping

Consider a mass m attached to the end of a spring with spring constant k. Suppose that the mass is released from the initial position $x(0) = x_0$ with a downward velocity $x'(0) = w_0$. Its vertical motion is modeled by the differential equation: $m \frac{d^2 x}{dt^2} + kx = 0$. Note that the resulting motion is a simple harmonic motion(SHM).

Example 1. A mass weighing 4 pounds, attached to a spring whose spring constant is 16 lb/ft, is in the mean position. If the mass is released with a downward velocity 8 ft/s, what is the subsequent vertical displacement? What is the period of simple harmonic motion?

Solution. Note that m=w/g=4/32=1/8 slug and k=16 lb/ft. The vertical displacement of the spring is described by the differential equation $\frac{1}{8}\frac{d^2x}{dt^2}+16x=0$ or $\frac{d^2x}{dt^2}+128x=0$. Its general solution is given by $x=x(t)=A\cos 8\sqrt{2}t+B\sin 8\sqrt{2}t$. Using the initial condition x(0)=0, we see that A=0. Thus $x(t)=B\sin 8\sqrt{2}t$. Differentiating with respect to t and then applying the initial velocity condition x'(0)=8, we find that $8\sqrt{2}B\cos 0=8$ or $B=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$. Therefore, the subsequent vertical displacement is $x(t)=\frac{\sqrt{2}}{2}\sin(8\sqrt{2}t)$. The period of the motion is $T=\frac{2\pi}{\omega}=\frac{2\pi}{8\sqrt{2}}=\sqrt{\frac{2\pi}{8}}$ seconds.

Self-check Exercises

Exercise 1. A 20-kilogram mass is attached to a spring. Describe the undamped simple harmonic motion of the spring. If the frequency of the motion is $2/\pi$ cps, what is the spring constant k?

Ans. The frequency is $\frac{\omega}{2\pi}$ and hence k = 320 Newtons per meter.

Exercise 2. A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest from a point 3 inches above the equilibrium position. Find the equation of motion.

Ans. The mass is m = w/g = 24/32 = 3/4 slug and k = 72 lb/ft. The initial conditions are x(0) = -1/4, x'(0) = 0. The displacement is $x(t) = -\frac{1}{4}\cos 4\sqrt{6}t$.

Exercise 3. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion.

Ans. The mass is m = 50 kilograms and $k = \frac{400}{2} = 200$ newtons per meter. The initial conditions are x(0) = 0, x'(0) = -10.

Free Oscillations in Mechanical Circuits with Damping

Consider a mass m attached to the end of a spring with spring constant k. Suppose that the medium offers a damping force (by immersing the mass in a liquid), which is numerically equal to the instantaneous velocity. If it is released from the initial position $x(0) = x_0$ with a downward velocity $x'(0) = w_0$. Its motion is modeled by the differential equation: $m \frac{d^2x}{dt^2} + \beta \frac{dx}{dt} + kx = 0$, where β is the damping constant.

Example 1. A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 8 ft/s. Determine the equation of motion.

Solution. Note that m=w/g=4/32=1/8 slug and The damping constant is $\beta=1$ and the spring constant k=2 lb/dt. The equation of motion is $m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}+\beta\frac{\mathrm{d}x}{\mathrm{d}t}+kx=0$ or $\frac{\mathrm{d}^2x}{\mathrm{d}t^2}+8\frac{\mathrm{d}x}{\mathrm{d}t}+16x=0$. Its general solution is $x(t)=(c_1+c_2t)e^{-4t}$. Applying the initial conditions x(0)=-1 x'(0)=8, we get $c_1=-1$ and $c_2=4$. Thus $x(t)=(4t-1)e^{-4t}$.

Self-check Exercises

Exercise 1. A mass m is attached to both a spring (with given spring constant k) and a dashpot (with given damping constant c). The mass is set in motion with initial position x_0 and initial velocity w_0 . Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped:

(a)
$$m = \frac{1}{2}$$
, $c = 3$, $k = 4$, $x_0 = 2$, $w_0 = 0$

(b)
$$m = 3, c = 30, k = 63, x_0 = 2, w_0 = 2$$

(c)
$$m = 1, c = 8, k = 16, x_0 = 5, w_0 = -10$$

Free Oscillations in LC- Circuits (Electrical Circuits without Damping - without an external emf)

The differential equation which describes the charge q(t) on the capacitor at any time t seconds in an LC-series circuit is $L\frac{d^2q}{dt^2} + \frac{1}{c}q = 0$. The initial conditions are $q(0) = q_0$, $q'(0) = i_0$. Note that L is the inductance in henry and C is the capacitance in farad.

Self-check Exercises

Exercise 1. Find the charge on the capacitor in an LC-series circuit when L = 1/2 henry, C = 0.01 farad, q(0) = 1 coulomb, and i(0) = 0 ampere. What is the charge on the capacitor after a long time? **Exercise 2.** Find the charge on the capacitor in an LC-series circuit when L = .02 henry, C = 0.05 farad, q(0) = 1.5 coulomb, and i(0) = 0 ampere.

Free Oscillations in LRC- Circuits (Electrical Circuits with Damping - without an external emf)

The differential equation which describes the charge q(t) on the capacitor at any time t seconds in an LRC-series circuit is $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{c}q = 0$. The initial conditions are $q(0) = q_0$, $q'(0) = i_0$. Note that L is the inductance in henry, R is the resistance in ohm and C is the capacitance in farad.

Self-check Exercises

Exercise 1. Find the charge on the capacitor in an LRC-series circuit at t = 0.01 seconds, when L = 1/4 henry, R = 20 ohm, C = 1/300 farad, E(t) = 0 volt, q(0) = 4 coulomb, and i(0) = 0 ampere. Determine the charge on the capacitor at any time t > 0. Is the charge on the capacitor ever equal to zero? **Exercise 2.** Find the charge on the capacitor in an LRC-series circuit at t = 0.01 second when L = 0.05 henry, R = 2 ohm, C = 0.01 farad, E(t) = 0 volt, Q(0) = 0 coulomb, and Q(0) = 0 ampere. Determine the charge on the capacitor at time Q(0) = 0 ampere.

Forced Oscillations in Mechanical Circuits without Damping

Mathematical model:
$$m \frac{d^2x}{dt^2} + kx = F(t)$$

Initial conditions: $x(0) = x_0, x'(0) = w_0$.

Exercise 1. Suppose that m = 1, k = 9, $F(t) = 80 \cos 5t$. Find the vertical displacement x(t), if x(0) = 0, x'(0) = 0.

Exercise 2. Suppose that m = 0.1, k = 9, $F(t) = \sin 5t \sin 50t$. Find the vertical displacement x(t), if x(0) = 0, x'(0) = 0.

Exercise 3. Solve the following initial value problems related to mass-spring system:

(a)
$$\frac{d^2x}{dt^2} + 9x = 10\cos 2t, x(0) = 0, x'(0) = 0$$

(b)
$$\frac{d^2x}{dt^2} + 100x = 225\cos 5t + 300\sin 5t, x(0) = 375, x'(0) = 0.$$

Forced Oscillations in Mechanical Circuits with Damping

Mathematical model:
$$m \frac{d^2x}{dt^2} + \beta \frac{dx}{dt} + kx = 0 = F(t)$$

Initial conditions: $x(0) = x_0$, $x'(0) = w_0$.

Exercise 1. Solve the following initial value problems related to damped mass-spring system:

(a)
$$\frac{d^2x}{dt^2} + \frac{dx}{dt} + 5x = 10\cos 3t, x(0) = 0, x'(0) = 0$$

(b)
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 26x = 600\cos 10t, x(0) = 10, x'(0) = 0.$$

Forced Oscillations in LC- Circuits (Electrical Circuits without Damping - under an external emf)

Mathematical model: $L \frac{d^2q}{dt^2} + \frac{1}{c}q = E(t)$

Initial conditions: $q(0) = q_0, q'(0) = i_0$.

Exercise 1. Solve the following initial value problems related to LC-circuits:

(a)
$$10\frac{d^2q}{dt^2} + 0.02q = 50\sin 2t, q(0) = 0, q'(0) = 0$$

(b)
$$5 \frac{d^2 q}{dt^2} + 0.005 q = 400 \sin 100 t + 300 \cos 100 t, q(0) = 2, q'(0) = 0.$$

Forced Oscillations in LRC- Circuits (Electrical Circuits with Damping - under an external emf)

Mathematical model:
$$L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{1}{c}q = E(t)$$
 ... (1)

Initial conditions:
$$q(0) = q_0, q'(0) = i_0$$
. (2)

Exercise 1. Find the charge q on the capacitor and the current I in the given LRC-series circuit with L = 5/3 henry, R = 10 ohm, C = 1/30 farad, E(t) = 300 volt, q(0) = 0 coulomb, and I(0) = 0 ampere. Find the maximum charge on the capacitor.

Exercise 2. Find the charge q on the capacitor and the current I in the given LRC-series circuit with L = 5/3 henry, R = 10 ohm, C = 1/30 farad, E(t) = 300 volt, q(0) = 0 coulomb, and I(0) = 0 ampere. Find the maximum charge on the capacitor. Find the steady-state charge and the steady-state current in an LRC-series circuit when L = 1 henry, R = 2 ohm, C = 0.25 farad, and E(t) = 50 cos t volt.

Exercise 3. Solve the following initial value problem (1)-(2) with each of the following sets of values:

(a)
$$L = 2, R = 16, C = .02, E(t) = 100; q(0) = 5, i(0) = 0$$

(b)
$$L = 2, R = 60, C = .0025, E(t) = 100e^{-10t}; q(0) = 0, i(0) = 0.$$

Note: In problems related tofoced oscillations, you may use either the method of undetermined coefficients or the method of variation of parameters.