We thank Amol Aggarwal, Andrew Hardt and Travis Scrimshaw for helpful conversations about the groupoid.

2. Groupoids

A groupoid is a set G with a partially defined composition. This consists of a map $\mu: S \longrightarrow G$, where S is a subset of $G \times G$. If $a,b \in G$ we say that the product $a \star b$ is defined if $(a,b) \in S$, and then we write $a \star b = \mu(a,b)$. The groupoid is also required to have an "inverse map" $x \mapsto x'$ from $G \to G$. The inverse map is more commonly denoted as $x \mapsto x^{-1}$, but we will be concerned with a groupoid whose elements are matrices, and we will reserve the notation x^{-1} for the matrix inverse. The following axioms are required.

Axiom 1 (Associative Law). If $a \star b$ and $b \star c$ are defined then $(a \star b) \star c$ and $a \star (b \star c)$ are defined, and they are equal.

We say that $a \star b \star c$ is defined if $a \star b$ and $b \star c$ are defined, and then we denote $(a \star b) \star c = a \star (b \star c)$ as $a \star b \star c$.

Axiom 2 (Inverse). The compositions $a \star a'$ and $a' \star a$ are always defined. Thus if $a \star b$ is defined, then $a \star b \star b'$ is defined, and this is required to equal a. Similarly $a' \star a \star b$ is defined, and this is required to equal b.

Example 2.1. A category C is *small* if its class of objects is a set. A small category is a *groupoid category* if every morphism is an isomorphism. Assuming this, the disjoint union

$$G = \bigsqcup_{A,B \in \mathcal{C}} \operatorname{Hom}(A,B)$$

is a groupoid, with the \star operation being composition: thus if $a \in \text{Hom}(A, B)$ and $b \in \text{Hom}(C, D)$, then $a \star b$ is defined if and only if B = C. The groupoid axioms are clear.

Lemma 2.2. In a groupoid, we have (a')' = a. Moreover if $a \star b$ is defined then so is $b' \star a'$ and $(a \star b)' = b' \star a'$.

Proof. Since $(a')' \star a'$ and $a' \star a$ are both defined, by the Associative Law the product $(a')' \star a' \star a$ is defined, and using the Inverse Axiom, this equals both (a')' and a. For the second assertion, assume $a \star b$ is defined. It follows from the axioms that

$$(a \star b)' = (a \star b)' \star a \star b \star b' \star a' = b' \star a'.$$

Given a groupoid G, let us say an element A is *idempotent* if $A \star A$ is defined and $A \star A = A$.

Lemma 2.3. An element $A \in G$ is an idempotent if and only if $A = g \star g'$ for some $g \in G$. If A is idempotent then A = A'.

Proof. It is easy to check that $g \star g'$ is idempotent. Conversely if A is idempotent, then $A = A \star A'$ since $A = A \star A = A \star A \star A' = A \star A'$, and so A can be written $g \star g'$ with g = A. Now if $A = g \star g'$ then A = A' as a consequence of Lemma 2.2.

Lemma 2.4. If $g \in G$ then there are unique idempotents A and B such that $g = g \star A$ and $g = B \star g$.

Proof. We can take $A = g' \star g$, and this is an idempotent such that $g \star A = g$. Conversely if A' is any other element such that $g \star A' = g$, then $g^{-1} \star g = g^{-1} \star g \star A' = A'$, so A' = A. The statements about B are proved similarly.