5.6 Cambio de bases

En \mathbb{R}^2 se expresaron vectores en términos de la base canónica $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. En \mathbb{R}^n se definió

la base canónica $\{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\}$. En \mathbb{P}_n se definió la base estándar como $\{1, x, x^2, \dots, x^n\}$. Estas bases se usan ampliamente por la sencillez que ofrecen el trabajar con ellas. Pero en ocasiones ocurre que es más conveniente alguna otra base. Existe un número infinito de bases para elegir, ya que en un espacio vectorial de dimensión n, cualesquiera n vectores, linealmente independientes, forman una base. En esta sección se verá cómo cambiar de una base a otra mediante el cálculo de cierta matriz.

Iniciaremos con un ejemplo sencillo. Sean $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Entonces, $B_1 = \{\mathbf{u}_1, \mathbf{u}_2\}$ es la base canónica en \mathbb{R}^2 . Sean $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ y $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$. Como \mathbf{v}_1 y \mathbf{v}_2 son linealmente independientes (porque \mathbf{v}_1 no es un múltiplo de \mathbf{v}_2), $B_2 = \{\mathbf{v}_1, \mathbf{v}_2\}$ es una segunda base en \mathbb{R}^2 . Sea $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ un vector en \mathbb{R}^2 . Esta notación significa que

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2$$

Es decir, x está expresado en términos de los vectores de la base B_1 . Para hacer hincapié en este hecho, se escribe

$$(\mathbf{x})_{B_1} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Como B_2 es otra base en \mathbb{R}^2 , existen escalares c_1 y c_2 tales que

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \tag{5.6.1}$$

Una vez que se encuentran estos escalares se puede escribir

$$(\mathbf{x})_{B_2} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

para indicar que \mathbf{x} está ahora expresado en términos de los vectores en B_2 . Para encontrar los números c_1 y c_2 se escribe la base anterior (\mathbf{u}_1 y \mathbf{u}_2) en términos de la nueva base (\mathbf{v}_1 y \mathbf{v}_2). Es sencillo verificar que

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{2}{5} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \frac{3}{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \frac{2}{5} \mathbf{v}_1 = \frac{3}{5} \mathbf{v}_2$$
 (5.6.2)

У

$$\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \frac{1}{5} \mathbf{v}_1 = \frac{1}{5} \mathbf{v}_2$$
 (5.6.3)

es decir,

$$(\mathbf{u}_1)_{B_2} = \begin{pmatrix} \frac{2}{5} \\ -\frac{3}{5} \end{pmatrix} \mathbf{y} (\mathbf{u}_2)_{B_2} = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$$

Entonces,

de (5.6.2) y (5.6.3)

$$\mathbf{x} = x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 = x_1 \left(\frac{2}{5} \mathbf{v}_1 - \frac{3}{5} \mathbf{v}_2 \right) + x_2 \left(\frac{1}{5} \mathbf{v}_1 + \frac{1}{5} \mathbf{v}_2 \right)$$