Prof^a Jerusa Marchi

jerusa.marchi@ufsc.br

Departamento de Ciências da Computação Universidade Federal de Santa Catarina e-mail: jerusa.marchi@ufsc.br

- Um AFD $M = (K, \Sigma, \delta, q_0, F)$ é mínimo se:
 - Não possui estados inalcançáveis
 - Não possui estados mortos
 - Não possui estados equivalentes

- Estados Inalcançáveis
 - Um estado $q \in K$ é inalcançável quando não existe w tal que a partir de q_0 , q seja alcançado na computação de w, ou seja:

$$\not\exists w | \widehat{\delta}(q_0, w) \to q$$

- Estados Mortos
 - Um estado $q \in K$ é morto se ele não é final e a partir dele nenhum estado final pode ser alcançado

$$q \not\in F$$
 e $\not\exists w | \widehat{\delta}(q_0, w) \to p$ e $p \in F$

- Estados Equivalentes
 - Os estados $q_1, q_2, ...q_n$ são equivalentes entre si se eles pertencem a uma mesma classe de equivalência
- Classes de Equivalência (CE)
 - Um conjunto de estados $\{q_1,q_2,...q_n\}$ estão em uma mesma classe de equivalência se para cada $a\in \Sigma,\, \delta(q_1,a)\to q_i,\, \delta(q_2,a)\to q_j,\,...,\, \delta(q_n,a)\to q_k$ onde $\{q_i,q_j,...,q_k\}$ pertencem a uma mesma classe de equivalência

- Estados Equivalentes
 - Para construir classes de equivalência, os seguintes passos são realizados:
 - Divida K em duas CE, uma contendo F e outra contendo K-F
 - Divida as CE existentes formando novas CEs de acordo com a definição de Classes de Equivalência, até que nenhuma nova CE seja formada

- Algoritmo para construção de AFD mínimos:
 - Entrada: um AFD $M = (K, \Sigma, \delta, q_0, F)$
 - Saída: um AFD mínimo $M'=(K',\Sigma,\delta',q_0',F')$ tal que $M\equiv M'$
 - 1. Elimine os estados inalcançáveis
 - 2. Elimine os estados mortos
 - 3. Contrua todas as possíveis classes de equivalência
 - 4. Contrua M' como segue:
 - K': conjunto de todas as CEs obtidas
 - q_0' : CE que contém q_0
 - F': conjunto de CEs que contém pelo menos um estado $q \in F$, ou seja $\{q\} | \exists p \in \{q\} \text{ e } p \in F \text{ onde } \{q\} \text{ é uma CE}$
 - δ' : $\delta'(\{p\}, a) \to \{q\} \leftrightarrow \delta(p, a) \to q$ é uma transição em M e p e q são elementos das CEs $\{p\}$ e $\{q\}$ respectivamente

Exemplo:

δ	0	1
$\rightarrow *A$	G	B
B	$\mid F \mid$	$\mid E \mid$
C	C	$\mid G \mid$
*D	A	H
E	$\mid E \mid$	A
F	$\mid B \mid$	C
*G	G	$\mid F \mid$
H	$\mid H \mid$	D