Chapter 18. Power and Sample Size Calculation

18.1. Statistical Power

- Power of a test
 - Probability of rejecting the null hypothesis (H₀)
 - Power = 1 P(Type | II | error): Correctly reject H_0 and identify a truly significant result.
 - Determine the *usefulness* of a test.
 - Usually, 80% is considered a 'decent' power.
- Various factors affect the power of the test:
 - The larger the significance level (α), the higher power of the test.
 - The larger the sample size, the higher the power of the test.
 - The larger the size of the discrepancy between hypothesized and true values, the higher the power.

18.2. Power and Sample Size Analysis

- Optimize the design of a study. (Save money and time.)
- Improve chances of conclusive results with maximum efficiency.
- Achieve a desired balance between Type I and Type II errors.
- Minimize risks for subjects.
- Primary objectives
 - Determine the sample size to achieve a certain power.
 - Determine the power of a test for a given sample size.
 - Characterize the power of a study to detect a minimum meaningful effect.
- Planning for a future (prospective) study

Sample size	Description	
Too small	Insufficient power	
	Difference between groups is clinically important, but it may not reject H ₀ .	
Too large	Excess power	
	Difference between groups is not clinically important, but it may reject H ₀ .	

• Parameters needed for power and sample size calculation¹⁵

Parameter	Description	
Type I error (α)	Usually set at 5%.	
	Power increases as α increases.	
Standard deviation (σ)	Variance of the data	
If small, the power will be greater.		
Effect size (Δ)	Minimum (clinically) significant difference	
	(e.g. means, proportions)	
	Big effect sizes are easier to detect and thus have greater power.	
Sample size (n)	Usually driven by cost, time, etc.	

Example: If we are interested in conducting a level α test and wish to have 100(1- β) % power,

		<u> </u>	(1 / 1 /
Test	One-sample t-test	One-sample t-test	Two-sample t-test ¹⁶
	(One-sided)	(Two-sided)	(Two-sided)
Sample	$\int (z_{\alpha} + z_{\beta}) \sigma \rangle^2$	$(z_{\alpha/2}+z_{\beta})\sigma)^2$	$(z_{\alpha/2} + z_{\beta})\sigma^{2}$
size	$n \geq \left(\frac{1}{\Delta}\right)$	$n \ge \left(\frac{1 + \Delta \gamma^2 - \gamma^2}{\Delta}\right)$	$n \ge 2 \times \left(\frac{\langle \alpha/2 - \beta \rangle}{\Delta}\right)$

delta = distance from H0 and H1

¹⁵ Effect size and standard deviation are usually obtained through pilot studies or previously published data.

¹⁶ Sample size in each group (Assume equal-sized groups)

18.3. PROC POWER

General Syntax

Statement	Description	
ONESAMPLEFREQ	Tests, confidence interval precision, and equivalence tests of a single binomial proportion	
ONICCANADI ENACANIC	TEST = Z / EXACT	
ONESAMPLEMEANS	One-sample t-test, confidence interval precision, or equivalence test TEST = T	
PAIREDFREQ	McNemar's test for paired proportions	
	DIST = NORMAL	
PAIREDMEANS	Paired t-test, confidence interval precision, or equivalence test	
	TEST = DIFF / EQUIV_DIFF	
TWOSAMPLEFREQ	Chi-square, likelihood ratio, and Fisher's exact tests for two	
	independent proportions	
	TEST = PCHI / LRCHI / FISHER	
TWOSAMPLEMEANS	Two-sample t-test, confidence interval precision, or equivalence test	
	TEST = DIFF / EQUIV / DIFF_SATT	

TWOSAMPLEWILCOXON	Wilcoxon-Mann-Whitney (rank-sum) test for 2 independent groups
TWOSAMPLESURVIVAL	Log-rank, Gehan, and Tarone-Ware tests for comparing two survival
	curves
	TEST = LOGRANK / GEHAN / TARONEWARE
ONEWAYANOVA	One-way ANOVA including single-degree-of-freedom contrasts
	TEST = OVERALL / CONTRAST
MULTREG	Tests of one or more coefficients in multiple linear regression
ONECORR	Fisher's z-test and t-test of (partial) correlation
	DIST = FISHERZ / T
PLOT	Display plots for previous sample size analysis

- PROC GLMPOWER: Prospective power and sample size analysis for linear models.
- For analyses not supported directly in SAS, write your own program.
- PASS: Specialized software for power and sample size analysis

Example

```
* One-sample t-test;
                                    * Two-sample t-test;
                                                              * One-way ANOVA:
SAS Code
           * Sample size
                                    * Power calculation
                                                              Balanced groups;
          calculation with power
                                    with sample size = 200;
                                                              * Power (overall test);
          = 80%;
                                    proc power;
                                                              proc power;
          proc power;
                                    twosamplemeans
                                                              onewayanova test =
          onesamplemeans
                                    test = diff
                                                              overall
                                    meandiff = 5
          test = t
                                                              groupmeans = 59|66|42
                                    stddev = 12
          mean = 5
                                                              std = 12
          stddev = 20
                                    ntotal = 200
                                                              nperg = 4
          ntotal = .
                                    power = .
                                                              power = .
          power = 0.8
                                    run;
                                                              run;
           run;
```

Output

	Fixed Scenario Elements			5
D	istribution		Norm	al
M	ethod		Exa	ct
M	ean			5
S	Standard Deviation		20	
N	Nominal Power		0.8	
N	Number of Sides			2
N	Null Mean			0
Α	Alpha		0.0)5
	Computed N Total			
	Actual Power N		Total	
	0.802		128	

Fixed Scenario Elements		
Distr	ibution	Normal
Meth	od	Exact
Mea	n Difference	5
Stan	dard Deviation	12
Total Sample Size		200
Number of Sides 2		
Null Difference		0
Alpha		0.05
Group 1 Weight 1		
Group 2 Weight 1		1
Group 2 Weight Computed Power		

Power 0.834

SAS Code

* Chi-squared test; * Power calculation with a series of different npergroup;

proc power;

groupproportions = $(0.6\ 0.8)$ nullproportiondiff = 0 npergroup = **25 50 75** 100 200

power = .; run;

* Multiple linear regression;

proc power;

run;

multreg model = fixed twosamplefreq test=pchi nfullpredictors = 7 ntestpredictors = 3 rsquarefull = 0.9 rsquarediff = 0.1 ntotal = .power = 0.9;

* Survival analysis; * Compare two groups based on median survivals: proc power; twosamplesurvival

accrualtime = 12 followuptime = 24 groupmedsurvtimes = 15 20 22 24 npergroup = .

power = 0.8run;

Output

Fixed Scenario Elements		
Distribution	Asymptotic normal	
Method	Normal approximation	
Null Proportion Difference	0	
Group 1 Proportion	0.6	
Group 2 Proportion	0.8	
Number of Sides	2	
Alpha	0.05	

Computed Power			
Index	N per Group Power		
1	25	0.335	
2	50	0.590	
3	75	0.767	
4	100	0.876	
5	200	0.993	

Fixed Scenario Elements	
Method	Exact
Model	Fixed X
Number of Predictors in Full Model	7
Number of Test Predictors	3
R-square of Full Model	0.9
Difference in R-square	0.1
Nominal Power	0.9
Alpha	0.05

Computed N Total	
Actual Power	N Total
0.903	20

Fixed Scenario Elements		
Method	Lakatos normal approximation	
Form of Survival Curve 1	Exponential	
Form of Survival Curve 2	Exponential	
Accrual Time	12	
Follow-up Time	24	
Group 1 Median Survival Time	15	
Nominal Power	0.8	
Number of Sides	2	
Number of Time Sub-Intervals	12	
Group 1 Loss Exponential Hazard		
Group 2 Loss Exponential Hazard		
Alpha	0.05	
Computed N Per Group		

Computed N Per Group			
Index	Med Surv Time 2	Actual Power	N Per Group
1	20	0.801	273
2	22	0.800	158
3	24	0.802	108