8.1 General Linear Transformation

Dr. Biswambhar Rakshit

Definition

If *T: V*→*W* is a function from a vector space *V* into a vector space *W*, then *T* is called a *linear transformation* from *V* to *W* if for all vectors **u** and **v** in *V* and all scalors c

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- $T(c\mathbf{u}) = cT(\mathbf{u})$

In the special case where V=W, the linear transformation $T:V\to V$ is called a *linear operator* on V.

Example 1 Zero Transformation

The mapping $T:V \rightarrow W$ such that $T(\mathbf{v})=0$ for every \mathbf{v} in V is a linear transformation called the **zero transformation**. To see that T is linear, observe that

$$T(\mathbf{u}+\mathbf{v}) = 0$$
. $T(\mathbf{u}) = 0$, $T(\mathbf{v}) = 0$. And $T(k\mathbf{u}) = 0$

Therefore,

$$T(\mathbf{u}+\mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 and $T(k\mathbf{u}) = kT(\mathbf{u})$

Example 2 Identity Operator

The mapping $I: V \rightarrow V$ defined by $I(\mathbf{v}) = \mathbf{v}$ is called the identify operator on V.

Example 3 Dilation and Contraction operators

Let V be any vector space and k any fixed scalar. The function $T:V \rightarrow V$ defined by

$$T(\mathbf{v}) = k \mathbf{v}$$

is linear operator on V.

Dilation: k > 1

■ Contraction: 0 < k < 1

Dilation and Contraction operators

Example 4 Orthogonal Projections

Suppose that *W* is a finite-dimensional subspace of an inner product space *V*; then the *orthogonal projection* of *V* onto *W* is the transformation defined by

$$T(\mathbf{v}) = \operatorname{proj}_{\mathbf{w}} \mathbf{v}$$

Example 5

A Linear Transformation from a space V to R^n

Let $S = \{ w_1, w_2, ..., w_n \}$ be a basis for an n-dimensional vector space V, and let

$$(\mathbf{v})_{s} = (k_{1}, k_{2}, ..., k_{n})$$

Be the coordinate vector relative to S of a vector **v** in *V* thus

$$\mathbf{v} = k_1 \mathbf{w} + k_2 \mathbf{w_2} + ... + k_n \mathbf{w_n}$$

Define $T: V \rightarrow \mathbb{R}^n$ to be the function that maps \mathbf{v} into its coordinate vector relative to S; that is,

$$T(\mathbf{v}) = (\mathbf{v})_{s} = (k_{1}, k_{2}, ..., k_{n})$$

The function \mathcal{T} is linear transformation. To see that this is so, suppose that u and \mathbf{v} are vectors in \mathcal{V} and that

$$\mathbf{u} = c_1 \mathbf{w_1} + c_2 \mathbf{w_2} + \dots + c_n \mathbf{w_n} \quad \text{and} \quad \mathbf{v} = d_1 \mathbf{w_1} + d_2 \mathbf{w_2} + \dots + d_n \mathbf{w_n}$$

Thus,

$$(\mathbf{u})_{s} = (c_{1}, c_{2}, ..., c_{n})$$
 and $(\mathbf{v})_{s} = (d_{1}, d_{2}, ..., d_{n})$

But

$$\mathbf{u} + \mathbf{v} = (c_1 + d_1) \mathbf{w_1} + (c_2 + d_2) \mathbf{w_2} + ... + (c_n + d_n) \mathbf{w_n}$$

 $k \mathbf{u} = (kc_1) \mathbf{w_1} + (kc_2) \mathbf{w_2} + ... + (kc_n) \mathbf{w_n}$

So that

$$(\mathbf{u}+\mathbf{v})_s = (c_1+d_{1_1}, c_2+d_2..., c_n+d_n)$$

 $(k\mathbf{u})_s = (kc_1, kc_2, ..., kc_n)$

Therefore,

$$(\mathbf{u}+\mathbf{v})_{s} = (\mathbf{u})_{s} + (\mathbf{v})_{s}$$
 and $(k\mathbf{u})_{s} = k(\mathbf{u})_{s}$

Expressing these equations of T, we obtain

$$T(\mathbf{u}+\mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 and $T(k\mathbf{u}) = kT(\mathbf{u})$

Which shows that T is a linear transformation.

preceding example could just as well have been performed using coordinate matrices rather than coordinate vectors; that is,

$$[\mathbf{u}+\mathbf{v}] = [\mathbf{u}]_s + [\mathbf{v}]_s$$
 and $[k\mathbf{u}]_s = k[\mathbf{u}]_s$

Example 6 A Linear Transformation from p_n to p_{n+1}

Let $\mathbf{p} = p(x) = C_0 X + C_1 X^2 + ... + C_n X^n$ be a polynomial in P_n , and define the function $T: P_n \to P_{n+1}$ by

$$T(p) = T(p(x)) = xp(x) = C_0 X + C_1 X^2 + ... + C_n X^{n+1}$$

The function T is a linear transformation, since for any scalar k and any polynomials $\mathbf{p_1}$ and $\mathbf{p_2}$ in P_n we have

$$T(\mathbf{p_1} + \mathbf{p_2}) = T(p_1(x) + p_2(x)) = x(p_1(x) + p_2(x))$$

= $x p_1(x) + x p_2(x) = T(\mathbf{p_1}) + T(\mathbf{p_2})$

and

$$T(k \mathbf{p}) = T(k p(x)) = x(k p(x)) = k(x p(x)) = k T(\mathbf{p})$$

Example 7 A linear Operator on P_n

Let $\mathbf{p} = p(x) = c_0 X + c_1 X^2 + ... + c_n X^n$ be a polynomial in P_n , and let a and b be any scalars. We leave it as an exercise to show that the function T defined by

$$T(\mathbf{p}) = T(p(x)) = p (ax+b) = c_0 + c_1(ax+b) + ... + c_n(ax+b)^n$$

is a linear operator. For example, if ax+b=3x-5, then $T: P_2 \rightarrow P_2$ would be the linear operator given by the formula

$$T(c_0 + c_1x + c_2x^2) = c_0 + c_1(3x-5) + c_2(3x-5)^2$$

Example 8 A Transformation That Is Not Linear

Let $T:M_{nn} \to R$ be the transformation that maps an $n \times n$ matrix into its determinant; that is,

$$T(A) = \det(A)$$

If n>1, then this transformation does not satisfy either of the properties required of a linear transformation. For example, we saw Example 1 of Section 2.3 that

$$\det (A_1 + A_2) \neq \det (A_1) + \det (A_2)$$

in general. Moreover, $det(cA) = C^n det(A)$, so $det(cA) \neq c det(A)$

in general. Thus, T is not linear transformation.

Properties of Linear Transformation

If $T:V \rightarrow W$ is a linear transformation, then for any vectors \mathbf{v}_1 and \mathbf{v}_2 in V and any scalars c_1 and c_2 , we have

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = T(c_1\mathbf{v}_1) + T(c_2\mathbf{v}_2) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2)$$

and more generally, if \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n are vectors in V and c_1 , c_2 , ..., c_n are scalars, then

$$T(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_n) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + ... + c_n T(\mathbf{v}_n)$$
(1)

Formula (1) is sometimes described by saying that *linear transformations* preserve *linear* combinations.

Theorem 8.1.1

If T:V→W is a linear transformation, then:

- (a) T(0) = 0
- (b) $T(-\mathbf{v}) = -T(\mathbf{v})$ for all \mathbf{v} in V
- (c) $T(\mathbf{v}-\mathbf{w}) = T(\mathbf{v}) T(\mathbf{w})$ for all \mathbf{v} and \mathbf{w} in

Proof.

(a) Let \mathbf{v} be any vector in \mathcal{V} . Since $0\mathbf{v}=0$, we have $T(\mathbf{0}) = T(0\mathbf{v}) = 0$

(b)
$$T(-\mathbf{v}) = T((-1)\mathbf{v}) = (-1)T(\mathbf{v}) = -T(\mathbf{v})$$

(c) $\mathbf{v} - \mathbf{w} = \mathbf{v} + (-1)\mathbf{w}$; thus, $T(\mathbf{v} - \mathbf{w}) = T(\mathbf{v} + (-1)\mathbf{w}) = T(\mathbf{v}) + (-1)T(\mathbf{w})$ $= T(\mathbf{v}) - T(\mathbf{w})$

Finding Linear Transformations from Images of Basis

If $T:V \rightarrow W$ is a linear transformation, and if $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is any basis for V, then the image $T(\mathbf{v})$ of any vector \mathbf{v} in V can be calculated from images $T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_n)$

of the basis vectors. This can be done by first expressing **v** as a linear combination of the basis vectors, say

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_n$$

and then using Formula(1) to write

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$$

In words, a linear transformation is completely determined by its images of any basis vectors.

Computing with Images of Basis Vectors

Consider the basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for R^3 , where $\mathbf{v}_1 = (1,1,1)$, $\mathbf{v}_2 = (1,1,0)$, and $\mathbf{v}_3 = (1,0,0)$. Let $T: R^3 \rightarrow R^2$ be the linear transformation such that

$$T(\mathbf{v}_1)=(1,0), T(\mathbf{v}_2)=(2,-1), T(\mathbf{v}_3)=(4,3)$$

Find a formula for $T(x_1, x_2, x_3)$; then use this formula to compute T(2,-3,5).

Solution.

We first express
$$\mathbf{x} = (x_1, x_2, x_3)$$
 as a linear combination of $\mathbf{v}_1 = (1,1,1)$, $\mathbf{v}_2 = (1,1,0)$, and $\mathbf{v}_3 = (1,0,0)$. If we write $(x_1, x_2, x_3) = c_1(1,1,1) + c_2(1,1,0) + c_3(1,0,0)$

then on equating corresponding components we obtain

$$c_1 + c_2 + c_3 = x_1$$

 $c_1 + c_2 = x_2$
 $c_1 = x_3$

which yields $c_1 = x_3$, $c_2 = x_2 - x_3$, $c_3 = x_1 - x_2$, so that

$$(x_1, x_2, x_3) = x_3(1,1,1) + (x_2 - x_3)(1,1,0) + (x_1 - x_2)(1,0,0)$$

= $x_3 \mathbf{v}_1 + (x_2 - x_3) \mathbf{v}_2 + (x_1 - x_2) \mathbf{v}_3$

Thus,

$$T(x_1, x_2, x_3) = x_3 T(\mathbf{v}_1) + (x_2 - x_3) T(\mathbf{v}_2) + (x_1 - x_2) T(\mathbf{v}_3)$$

= $x_3(1,0) + (x_2 - x_3)(2,-1) + (x_1 - x_2)(4,3)$
= $(4x_1 - 2x_2 - x_3, 3x_1 - 4x_2 + x_3)$

From this formula we obtain

$$T(2, -3, 5) = (9,23)$$

Composition of T_2 with T_1

If $T_1:U \rightarrow V$ and $T_2:V \rightarrow W$ are linear transformations, the composition of T_2 with T_1 , denoted by $T_2 \circ T_1$ (read " T_2 circle T_1 "), is the function defined by the formula

$$(T_2 \circ T_1)(\mathbf{u}) = T_2(T_1(\mathbf{u}))$$
 (2)

where **u** is a vector in U

The composition of T_2 with T_1

Theorem 8.1.2

If $T_1:U\rightarrow V$ and $T_2:V\rightarrow W$ are linear transformations, then $(T_2\circ T_1):U\rightarrow W$ is also a linear transformation.

Proof. If **u** and **v** are vectors in U and c is a scalar, then it follows from (2) and the linearity of T_1 and T_2 that

$$(T_2 \circ T_1)(\mathbf{u}+\mathbf{v}) = T_2(T_1(\mathbf{u}+\mathbf{v})) = T_2(T_1(\mathbf{u})+T_1(\mathbf{v}))$$

$$= T_2(T_1(\mathbf{u})) + T_2(T_1(\mathbf{v}))$$

$$= (T_2 \circ T_1)(\mathbf{u}) + (T_2 \circ T_1)(\mathbf{v})$$

and

$$(T_2 \circ T_1)(c\mathbf{u}) = T_2(T_1(c\mathbf{u})) = T_2(cT_1(\mathbf{u}))$$

= $cT_2(T_1(\mathbf{u})) = c(T_2 \circ T_1)(\mathbf{u})$

Thus, $T_2 \circ T_1$ satisfies the two requirements of a linear transformation.

Composition of Linear Transformations

Let $T_1: P_1 \rightarrow P_2$ and $T_2: P_2 \rightarrow P_2$ be the linear transformations given by the formulas

$$T_1(p(x)) = xp(x)$$
 and $T_2(p(x)) = p(2x+4)$

Then the composition is $(T_2 \circ T_1)$: $P_1 \rightarrow P_2$ is given by the formula $(T_2 \circ T_1)(p(x)) = (T_2)(T_1(p(x))) = T_2(xp(x)) = (2x+4)p(2x+4)$

In particular, if
$$p(x) = c_0 + c_1 x$$
, then
$$(T_2 \circ T_1)(p(x)) = (T_2 \circ T_1)(c_0 + c_1 x)$$

$$= (2x+4)(c_0 + c_1(2x+4))$$

$$= c_0(2x+4) + c_1(2x+4)^2$$

Composition with the Identify Operator

If $T:V \rightarrow V$ is any linear operator, and if $I:V \rightarrow V$ is the identity operator, then for all vectors \mathbf{v} in V we have

$$(\mathcal{T} \circ I)(\mathbf{v}) = \mathcal{T}(I(\mathbf{v})) = \mathcal{T}(\mathbf{v})$$

$$(I \circ T)(\mathbf{v}) = I(T(\mathbf{v})) = T(\mathbf{v})$$

It follows that $T \circ I$ and $I \circ T$ are the same as T; that is,

$$T \circ I = T$$
 and $I \circ T = T$ (3)

We conclude this section by noting that compositions can be defined for more than two linear transformations. For example, if

$$T_1: U \rightarrow V \text{ and } T_2: V \rightarrow W \text{ ,and } T_3: W \rightarrow Y$$

are linear transformations, then the composition $T_3 \circ T_2 \circ T_1$ is defined by

$$(T_3 \circ T_2 \circ T_1)(\mathbf{u}) = T_3(T_2(T_1(\mathbf{u})))$$
 (4)

The composition of three linear transformations