COMPUTER & NETWORK SECURITY

Lecture 7: Key Management

CRYPTOBULLETIN: IN THE LAST WEEK

OpenSSL Patch to Plug Severe Security Holes

http://krebsonsecurity.com/2015/03/openssl-patch-to-plug-severe-security-holes/also: http://www.itnews.com.au/News/401891,openssl-patches-denial-of-service-vulnerabilities.aspx

- Drupal SQL injection vulnerability attacks persist, despite patch release http://www.scmagazine.com/trustwave-details-drupal-sql-injection-attack/article/404719/
- New BIOS Implant, Vulnerability Discovery Tool to Debut at CanSecWest https://threatpost.com/new-bios-implant-vulnerability-discovery-tool-to-debut-at-cansecwest/111710
- Meet "badBIOS", the mysterious Mac & PC malware that jumps airgaps (historical)

http://arstechnica.com/security/2013/10/meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/

- Shopping for Spy Gear: Catalog Advertises NSA Toolbox (historical)

 http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
- RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis (historical)
 http://www.cs.tau.ac.il/~tromer/acoustic/

KEY MANAGEMENT

Suppose we have a symmetric key network:

$$\binom{n}{2} = n(n-1) / 2 \text{ keys}$$

Key distribution and management becomes a major issue!

 k_{ab} , k_{ac} , k_{ad} , k_{bc} , k_{bd} , k_{cd}

DEFINITIONS

Key establishment is any process whereby a shared key becomes available to two or more parties for subsequent cryptographic use

Key management is the set of processes and mechanisms which support key establishment and the maintenance of on-going keying relationships between parties, including replacing older keys with newer ones:

- -- key agreement
- -- key transport

KEY DISTRIBUTION CENTRE: NAIVE

Protocol:

- (1) Alice → KDC : "want to talk with Bob"
- (2) KDC \rightarrow Alice: KDC picks random key k_{ab} , sends $E_{ka}[k_{ab}]$, $E_{kb}[k_{ab}$, "ticket a-b"]
- (3) Alice \rightarrow Bob : Alice decrypts $E_{ka}[k_{ab}]$, sends ticket to Bob
- (4) Bob: Bob decrypts ticket

Alice and Bob now share secret key kab

KEY DISTRIBUTION CENTRE: NAIVE

Problems:

- The Key Distribution Centre is a single point of failure (likely to be attacked)
- No authentication
- Poor scalability
- Slow

MERKLE'S PUZZLES

- Ralph Merkle (Stanford, 1974)
- Merkle's puzzles are a way of doing key exchange between Alice and Bob without the need for a KDC
- (1) Alice creates lots of puzzles $P_i = E_{pi}$ ["This is puzzle $\#X_i$ ", k_i] where i = 1 ... 220, $|p_i| = 20$ bits (weak), $|k_i| = 128$ bits (strong)
- X_i, p_i and k_i are chosen randomly and different for each i
- (2) Alice sends all puzzles P_i to Bob
- (3) Bob picks a random puzzle j \in {1 ... 220} and solves P_j by brute force
- (i.e. search on key p_i) -- this recovers X_i and k_i from the puzzle
- (4) Bob sends X_i to Alice in the clear
- (5) Alice looks up the index j of X_i (from a table) to get k_i
- => Alice and Bob now both share a secret key k

MERKLE'S PUZZLES

Alice makes 2²⁰ puzzles

p₂

p₄

 p_n

Alice sends the puzzles to Bob

Bob selects a random puzzle p_i retrieving (i, k_i)

Bob sends Alice a message saying he's retrieved the ith puzzle

Alice looks up k_i from her selection of puzzles

Alice and Bob now use the shared key k_i for all future interaction

ATTACK ON MERKLE'S PUZZLES

Eve must break on average half the puzzles to find X_i (hence k_i)

- Time required to do so for 2^{20} puzzles = 2^{19} x 2^{19} = 2^{38}

If Alice and Bob can try 10,000 keys/second:

- It will take a minute for each of them to perform their steps (2^{19} for Bob)
- Plus another minute to communicate the puzzles on a 1.544MB (T1) link

With comparable resources, it will take Eve about a year to break the system

Note: Merkle's Puzzles uses a lot of bandwidth (impractical!)

DIFFIE-HELLMAN KEY EXCHANGE

Diffie-Hellman (Stanford, 1976)

Worldwide standard used in smart cards, SSL, etc.

Consider the finite field $Z_p = <0$, ... p-1> where p is prime (p is 300 digits or longer) Let $g \in Z_p$ (the generator)

- (1) Alice : Alice chooses a random large integer a $\in Z_p$
- (2) Bob : Bob choses a random large integer b $\in Z_p$
- (3) Alice \rightarrow Bob : Alice sends Bob g^a (mod p)
- (4) Bob \rightarrow Alice: Bob sends Alice g^b (mod p)
- (5) Alice and Bob: compute gab
- : Alice computes $(g^b)^a = g^{ab} \pmod{p}$
- : Bob computes $(g^a)^b = g^{ab} \pmod{p}$
- => Alice and Bob now share secret gab

DIFFIE-HELLMAN KEY EXCHANGE

STRENGTH OF DIFFIE-HELLMAN

- The strength of Diffie-Hellman is based upon two issues:
- given p, g, g^a, it is difficult to calculate a (the discrete logarithm problem)
- given p, g, g^a, g^b it is difficult for Eve to calculate g^{ab} (the Diffie-Hellman problem)
- we know that DL \Rightarrow DH but it is not known if DH \Rightarrow DL.
- Essentially, the strength of the system is based on the difficulty of factoring numbers the same size as p
- The generator, g, can be small
- Do not use the secret gab directly as a session key
- it is better to either hash it or use it as a seed for a PRNG not all bits of the secret have a flat distribution

REFERENCES

Handbook of Applied Cryptography

- read §1, §2-2.4.4, §2.5 - 2.5.3

Stallings (3rd Ed)

-6.3 - 6.4