Machine Learning

German credit score & NYC Taxi Fare Prediction

Regression - NYC Taxi fare

Executive Summary

10.44

CV MAPE

9.77

Test MAPE

Random Forest

Best Model?

Used Variables

Initial Variables

- × dropoff_latitude
- X dropoff_longitude
- x fare_amount
- x features from feat01 to feat10
- × key
- × passenger_count
- x pickup_datetime
- x pickup_latitude
- x pickup_longitude

Final Variables

- ✓ dropoff_latitude
- ✓ dropoff_longitude
- ✓ fare_amount
- ✓ features from feat01 to feat10
- ✓ passenger_count
- ✓ pickup_latitude
- ✓ pickup_longitude
- ✓ zero_indicator
- ✓ straight_dist
- ✓ count
- ✓ hour4
- ✓ hour5
- ✓ hour19
- ✓ hour20

Feature Exploratory Data Analysis

Time dependancy

Feature Exploratory Data Analysis

Pickup localization

Dropoff localization

Model of dataflow

Feature Selection

.

Mutual Information

Straight_dist

feat08

feat01

fare_amount

Correlation

1.0
0.5
0.0
-0.5
-1.0

3

All Values

4 Importance Score

LGBM Tuning

XGBoost Tuning

Decision Tree Tuning

Results

Iteration	Mape_Train	Mape_test	models_spec	model_name
3	10,40	9,77	trees = 853, min_n = 9, mtry = 6	random_forest
1	10,37	9,77	trees = 853, min_n = 5, mtry = 6	random_forest
2	10,37	9,78	trees = 853, min_n = 15, mtry = 6	random_forest
2	10,37	10,58	min_n = 8, tree_depth = 11, cost_complexity = 0	decision_tree
1	10,37	10,84	min_n = 19, tree_depth = 13, cost_complexity = 0	decision_tree
3	10,40	10,94	min_n = 31, tree_depth = 14, cost_complexity = 0	decision_tree
1	12,33	11,48	learn_rate = 0.02, tree_depth = 8, loss_reduction = 0.97, stop_iter = 18	lgbm
2	12,34	11,52	learn_rate = 0.02, tree_depth = 9, loss_reduction = 0, stop_iter = 19	lgbm
3	12,34	11,56	learn_rate = 0.02, tree_depth = 11, loss_reduction = 0, stop_iter = 7	lgbm
1	68,35	70,94	learn_rate = 0.02, tree_depth = 2, loss_reduction = 0.01, stop_iter = 11	xgboost
2	69,36	71,11	learn_rate = 0.02, tree_depth = 3, loss_reduction = 0.02, stop_iter = 9	xgboost
3	69,58	71,27	learn_rate = 0.02, tree_depth = 5, loss_reduction = 0, stop_iter = 5	xgboost

Classification problem

Executive Summary

92.1%

77%

XGB

CV GINI

Test GINI

Best Model?

Data cleaning

- Missing values no missing values
- Personal status column (female div/dep/mar, male div/sep, male mar/wid, male single) divided into 2 columns: sex, marital_status
- Ordered categorical variables as on the picture
- Boolean variables
- One hot-encoding applied to all categorical variables (remove_first_dummy = TRUE)

Finally we finished data cleaning process with 51 variables (including id) explained variable: bad: 30%, good: 70%

```
## credit_history : existing paid, delayed previously, critical/other existing credit, all paid, no cr
edits/all paid
## housing : own, for free, rent
## other_parties : none, guarantor, co applicant
## other_payment_plans : none, bank, stores
## property_magnitude : real estate, life insurance, car, no known property
## purpose : furniture/equipment, new car, radio/tv, used car, education, repairs, business, retrainin
g, other, domestic appliance
## marital_status : single, div/dep/mar, mar/wid, div/sep
```

```
checking_status_mapping <- c(
  "no checking" = 1,
  "<0" = 2,
  "0 <= X < 200" = 3.
  ">=200" = 4
employment_mapping <- c(
  "unemployed" = 1,
  "<1" = 2,
  "1 <= X < 4" = 3,
  "4<=X<7"= 4.
  ">=7" = 5)
job mapping <- c(
    "unemp/unskilled non res" = 1,
    "unskilled resident" = 1,
    "skilled" = 2.
    "high qualif/self emp/mgmt" = 3
savings status mapping <- c(
    "no known savings" = 1.
    "<100" = 2,
    "100<=X<500" = 3.
    "500<=X<1000" = 4.
    ">=1000" = 5
```

```
class foreign_worker own_telephone
## 1 good
                                  none
## 2 good
                                  none
## 3 good
                                  none
## 4 good
                     yes
                                  none
## 5 good
                     yes
                                   yes
## 6 good
                     ves
                                  none
```

Recursive feature elimination

50 variables (without class)

id	feat10	other_payment_plans_none
age	foreign_worker	other_payment_plans_stores
checking_status	installment_commitment	property_magnitude_life.insurance
class	job	property_magnitude_no.known.property
credit_amount	num_dependents	property_magnitude_real.estate
duration	own_telephone	purpose_domestic.appliance
employment	residence_since	purpose_education
existing_credits	savings_status	purpose_furniture.equipment
feat01	sex	purpose_new.car
feat02	credit_history_critical.other.existing.credit	purpose_other
feat03	credit_history_delayed.previously	purpose_radio.tv
feat04	credit_history_existing.paid	purpose_repairs
feat05	credit_history_no.credits.all.paid	purpose_retraining
feat06	housing_own	purpose_used.car
feat07	housing_rent	marital_status_div.sep
feat08	other_parties_guarantor	marital_status_mar.wid
feat09	other_parties_none	marital_status_single

33 final predictors

checking_status	purpose_radio.tv	
feat02	credit_history_existing.paid	
duration	existing_credits	
credit_amount	other_payment_plans_stores	
feat10	residence_since	
feat01	other_parties_guarantor	
age	job	
credit_history_critical.other.existing.credit	credit_history_delayed.previously	
savings_status	purpose_new.car	
property_magnitude_real.estate	own_telephone	
employment	housing_rent	
other_payment_plans_none	other_parties_none	
installment_commitment	purpose_used.car	
credit_history_no.credits.all.paid	marital_status_single	
property_magnitude_no.known.property	sex	
housing_own	property_magnitude_life.insurance	
purpose_education		

XGB - one by one

- The order of tuning parameters:
 - o nrounds 40
 - max_depth, min_child_weight (5, 12)
 - o colsample_bytree 0.65
 - o subsample 0.85
 - double nrounds, reduce by half learning rate (80, 0.12)
 - o double nrounds, reduce by half learning rate (160, 0.06)

The last model was the best - we choose this one

GINI train: **92.1%**

GINI test: 77%

	xgb_model.1	xgb_model.2	xgb_model.3	xgb_model.4	xgb_model.5	xgb_model.6
Accuracy	0.81	0.80	0.80	0.81	0.81	0.81
Sensitivity	0.92	0.92	0.90	0.91	0.91	0.91
Specificity	0.58	0.54	0.59	0.59	0.61	0.60
Gini	0.76	0.75	0.75	0.76	0.76	0.77

- colsample_bytree rule of thumb(number of predictors sqrt(35)/35 (0.17)
- min_child_weight 0.5 1% of num of obs (10-20)

GBM

- Hyperparameter tuning the best for this model
 - o n.trees = 500
 - o interaction.depth = 4
 - shrinkage = 0.1
 - o n.minobsinnode = 150

GINI train: **84.3%**

GINI test: 74.8%

	Accuracy	Sensitivity	Specificity	Gini
Train	0.88	0.94	0.72	0.87
Test	0.79	0.88	0.59	0.71

Random Forest

- Models with and without cv
- Hyperparameter tuning the best for this model:
 - o mtry = 6
 - o min.node.size = 50

GINI train: **94.1%**

GINI test: 77.9%

Results

gini_train	gini_test	models_spec	model_name
91.2	77.7	trees = 953, min_n = 75	random_forest
88.4	76.4	trees = 953, min_n = 100	random_forest
88.6	75.6	trees = 500, min_n = 25, tree_depth = 9, loss_reduction = 1, stop_iter = 10, learn_rate = 0.02	xgboost
88.6	75.6	trees = 500, min_n = 25, tree_depth = 9, loss_reduction = 1, stop_iter = 20, learn_rate = 0.02	xgboost
88.6	75.6	trees = 500, min_n = 25, tree_depth = 9, loss_reduction = 1, stop_iter = 30, learn_rate = 0.02	xgboost
84.7	74.9	trees = 953, min_n = 150	random_forest
77.1	61.2	cost_complexity = 0, tree_depth = 9, min_n = 25	decision_tree
72.3	57.8	cost_complexity = 0, tree_depth = 6, min_n = 25	decision_tree
66.1	53.1	cost_complexity = 0, tree_depth = 9, min_n = 50	decision_tree
	91.2 88.4 88.6 88.6 88.6 84.7 77.1 72.3	91.2 77.7 88.4 76.4 88.6 75.6 88.6 75.6 88.6 75.6 84.7 74.9 77.1 61.2 72.3 57.8	91.2 77.7 trees = 953, min_n = 75 88.4 76.4 trees = 953, min_n = 100 88.6 75.6 trees = 500, min_n = 25, tree_depth = 9, loss_reduction = 1, stop_iter = 10, learn_rate = 0.02 88.6 75.6 trees = 500, min_n = 25, tree_depth = 9, loss_reduction = 1, stop_iter = 20, learn_rate = 0.02 88.6 75.6 trees = 500, min_n = 25, tree_depth = 9, loss_reduction = 1, stop_iter = 30, learn_rate = 0.02 84.7 74.9 trees = 953, min_n = 150 77.1 61.2 cost_complexity = 0, tree_depth = 9, min_n = 25 72.3 57.8 cost_complexity = 0, tree_depth = 6, min_n = 25

ROC for selected models from table

random forest, iteration 1

xgb, iteration 2

