Week #10

- \bullet Give an example of two variables which would have a correlation of close to 1
- \bullet Give an example of two variables which would have a correlation of close to -1
- \bullet Give an example of two variables which would have a correlation of close to 0
- Draw a a relationship which cannot be accurately described by Pearson's r
- Why doesn't correlation imply causation? Does causation imply correlation?
- Why does df = n 2?
- Rank each set of scores as though you were calculating Spearman's rho:

Pearson's r

$$\bar{X} = \Sigma(X_i)/n$$

$$df = n - 1$$

$$SP = \Sigma[(X_i - \bar{X})(Y_i - \bar{Y})]$$

$$SS_X = \Sigma[(X_i - \bar{X})^2]$$

$$SS_Y = \Sigma[(Y_i - \bar{Y})^2]$$

$$r_{XY} = SP/\sqrt{SS_X \times SS_Y}$$

Critical r values

		α	
(n-2)	0.2	0.1	0.05
2	0.8	0.9	0.95
3	0.69	0.81	0.88
4	0.61	0.73	0.81

Question #1

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.2$.

X	i Y	i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$
	4 9)	-0	2	0	6	-1
į	5 8	3	0	2	0	2	1
•	7 5	Ó	2	-2	6	2	-4
4	2 4	1	-2	-2	6	6	6

$$ar{X}=4.5$$

 $ar{Y}=6.5$
 $SS_X=13$
 $SS_Y=17$

$$SP=2$$

$$r_{XY}=2/\sqrt{13\times17}=0.13$$

$$r_{\rm crit}=\pm0.8$$
 Fail to reject because $0.8>0.13>-0.8$

Question #2

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

X_i	Y_i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$	$(X_i - \bar{X})(Y_i - \bar{Y})$
7	9	2	4	4	16	8
5	2	0	-3	0	9	-0
2	6	-3	1	9	1	-3
6	3	1	-2	1	4	-2

$$\begin{split} \bar{X} &= 5 \\ \bar{Y} &= 5 \\ SS_X &= 14 \\ SS_Y &= 30 \end{split}$$

$$SP=3$$

$$r_{XY}=3/\sqrt{14\times30}=0.15$$

$$r_{\rm crit}=\pm0.9$$
 Fail to reject because $0.9>0.15>-0.9$

Question #3

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

X_i	Y_i
8	6
4	1
3	3
9	4

Question #4

Calculate r_{XY} and test H_0 : $\rho_{XY}=0$ at $\alpha=0.2$.

X_i	Y_i
1	7
3	8
2	9
5	1
7	4

${\bf Question}~\# {\bf 5}$

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.2$.

X_i	Y_i
7	7
8	5
$\overset{\circ}{2}$	6
1	9

Question #6

Calculate r_{XY} and test H₀: $\rho_{XY}=0$ at $\alpha=0.1$.

X_i	Y_i
9	9
$\frac{3}{8}$	7
8	4
5	1
6	8

Question #7

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.2$.

X_i	Y_i
4	9
1	2
8	4
2	8
9	6
6	7

Question #8

Calculate r_{XY} and test H₀: $\rho_{XY} = 0$ at $\alpha = 0.2$.

X_i	Y_i
2	3
7	8
5	6
9	4
4	9

Question #9

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

X_i	Y_i
1	2
2	4
8	3
3	5

Question #10

Calculate r_{XY} and test H_0 : $\rho_{XY}=0$ at $\alpha=0.1$.

X_i	Y_i
3	3 9
4	9
5	5 8
1	8
$\overline{2}$	4