ANÁLISIS NUMÉRICO

Práctica N° 4: Transformada Z. Aplicación a la Resolución de Ecuaciones en Diferencias

1) Calcular por definición la transformada Z de las siguientes funciones:

1.1)
$$f(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$
 (función escalón unitario)

1.2)
$$f(t) = \begin{cases} 0, & t < 0 \\ 3t, & t \ge 0 \end{cases}$$
 (función rampa)

1.3)
$$f(t) = \begin{cases} 0, & t < 0 \\ e^{-2t}, & t \ge 0 \end{cases}$$
 (función exponencial)

2) A partir de las tablas y propiedades, calcular la Transformada Z de las siguientes funciones:

2.1)
$$f(t) = 4u(t - 3T)$$

2.2)
$$f(t) = tu(t + 3T)$$

2.3)
$$f(t) = t^2 e^{-3t}$$

3) Determinar el valor inicial y el valor final de la función cuya transformada Z está dada por:

$$X(z) = \frac{(1 - e^{-3T})z}{(z - 1)(z - e^{-3T})}$$

4) Hallar la transformada Z inversa de la siguiente función por el método de la expansión en fracciones parciales.

$$X(z) = \frac{(z+2)(z-1)}{(z+1)(z+3)(z-2)}$$

5) Calcular la transformada Z de las siguientes ecuaciones en diferencias:

donde
$$x(k) = 0$$
 para $k < 0$ y $u(k) = \begin{cases} 0, & k < 0 \\ 1, & k \ge 0 \end{cases}$

5.1)
$$4x(k) - 4x(k-1) + 2x(k-2) = u(k)$$

5.2)
$$x(k+2) - 3x(k+1) + 2x(k) = u(k)$$

5.3)
$$x(k+2) + x(k) = u(k)$$