Rank-73987 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(4) is 1498830169

General information

Number of lines	5
Number of points	25
Number of singular points	3
Number of Eckardt points	1
Number of double points	4
Number of single points	14
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$3, 2^4, 1^{14}, 0^6$

Singular Points

The surface has 3 singular points:

0:
$$P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0)$$

1: $P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{37} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{108}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_{9}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

Rank of lines: (0, 16, 37, 340, 356)

Rank of points on Klein quadric: (0, 2, 108, 9, 1)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_3$$

$P_3 = (0,0,0,1) = \ell_3 \cap \ell_4$

Single Points

The surface has 14 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_8 = (1,0,1,0) \ \text{lies on line} \ \ell_1 \\ 3: \ P_9 = (2,0,1,0) \ \text{lies on line} \ \ell_1 \\ 4: \ P_{10} = (3,0,1,0) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_2 \\ 6: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_2 \\ 7: \ P_{22} = (3,3,1,0) \ \text{lies on line} \ \ell_2 \end{array}$

 $\begin{array}{l} 8: \, P_{26} = (0,1,0,1) \text{ lies on line } \ell_3 \\ 9: \, P_{30} = (0,2,0,1) \text{ lies on line } \ell_3 \\ 10: \, P_{34} = (0,3,0,1) \text{ lies on line } \ell_3 \\ 11: \, P_{38} = (0,0,1,1) \text{ lies on line } \ell_4 \\ 12: \, P_{53} = (0,0,2,1) \text{ lies on line } \ell_4 \\ 13: \, P_{69} = (0,0,3,1) \text{ lies on line } \ell_4 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \, P_{46} = (1,2,1,1) & 4: \, P_{75} = (2,1,3,1) \\ 1: \, P_{50} = (1,3,1,1) & 5: \, P_{83} = (2,3,3,1) \\ 2: \, P_{60} = (3,1,2,1) & & \\ 3: \, P_{64} = (3,2,2,1) & & \end{array}
```

Line Intersection Graph

	$\begin{array}{c} 0 & 1 & 2 & 3 & 4 \\ \hline 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ \end{array}$
0	01110
1	10101
2	11001
3	10001
4	01110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_5	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4
in point	P_5	P_2	P_2

Line 3 intersects

Line	ℓ_0	ℓ_4
in point	P_1	P_3

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_3

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$9: P_{10} = (3, 0, 1, 0)$	18: $P_{50} = (1, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{12} = (1, 1, 1, 0)$	19: $P_{53} = (0,0,2,1)$
$2: P_2 = (0, 0, 1, 0)$	$11: P_{17} = (2, 2, 1, 0)$	$20: P_{60} = (3, 1, 2, 1)$
$3: P_3 = (0,0,0,1)$	$12: P_{22} = (3, 3, 1, 0)$	$21: P_{64} = (3, 2, 2, 1)$
$4: P_5 = (1, 1, 0, 0)$	13: $P_{26} = (0, 1, 0, 1)$	$22: P_{69} = (0,0,3,1)$
$5: P_6 = (2, 1, 0, 0)$	$14: P_{30} = (0, 2, 0, 1)$	$23: P_{75} = (2, 1, 3, 1)$
$6: P_7 = (3, 1, 0, 0)$	$15: P_{34} = (0, 3, 0, 1)$	$24: P_{83} = (2,3,3,1)$
$7: P_8 = (1,0,1,0)$	$16: P_{38} = (0,0,1,1)$	
$8: P_9 = (2, 0, 1, 0)$	17: $P_{46} = (1, 2, 1, 1)$	