Chair of Communication Networks
TUM School of Computation, Information and Technology
Technical University of Munich

Graph Neural Networking Challenge 2023

3rd Place Solution

Team LKN

08.12.2023

Kaan Aykurt

Maximilian Stephan

Serkut Ayvasik

Johannes Zerwas

Chair of Communication Networks, TUM

What is a Digital Twin (DT)?

 A digital twin is a virtual representation of a physical object, person, or process, contextualized in a digital version of its environment.

- It enables what-if analysis:
 - What will happen in case of an engine failure?
 - □ What would happen if the wingspan was greater?

Network Digital Twin and Al Network Manager

Existing ML-based models have been developed and trained using simulated data.

How would the models perform in a real network?

Let's participate in GNN Challenge 2023.

Approach

LKN Compute Testbed

Model Architecture

Hyperparameters

Parameter	Value	
Link State Dimensions	64	
Path State Dimensions	64	
Readout Layer Size	64	
Message Passing Rounds	8	
Learning Rate	0.001 (Adaptive)	
Optimizer	Adam	
Loss	MAPE	
Early Stopping	∆validation_loss < 1e-4	

Layer Descriptions

Parameter	Number of Units	Activation
Link Embedding (2 Layers)	64	RELU
Path Embedding (2 Layers)	64	RELU
Link Update	64	GRU
Path Update	64	GRU
Readout (3 Layers)	64	RELU

Features

Features	
Average bandwidth per flow	
Number of packets per flow	
Size of the generated packets per flow	
Flow type	
Flow length (physical path)	
Link capacity	
List of links traced per flow	
List of flows per link	
Inter packet gap per flow (mean, var, percentiles)	

Results

Best Validation MAPE: 41.39

Test MAPE: ∼45

Best Validation MAPE: 28.91

Test MAPE: 35.39

Outlook

- Real-world networks exhibit complex characteristics.
- Incorporating percentage of packet losses in a flow as a feature improves predictions.
- Queue Hidden State features may benefit the prediction accuracy.

Questions

