Introdução à Física Computacional II (4300318)

Prof. André Vieira apvieira@if.usp.br Sala 3120 – Edifício Principal

Aula 10

Integração por Monte Carlo

 Aplicações para a integração de funções estão na origem dos métodos de Monte Carlo. (Para uma perspectiva histórica, veja a seção 1.4 do livro de Newman e Barkema.)

• A ideia é que, para integrar uma função $f(x) \ge 0$ entre x=a e x=b, podemos "jogar N pedras" ao acaso em um retângulo que delimita a função e o intervalo de integração e contar o número k de "pedras" que caem abaixo da função.

• Em outras palavras, a probabilidade de que uma pedra caia abaixo da função é p=I/A, sendo I o valor da integral e A=(b-a)h a área do retângulo delimitante. A fração k/N é uma aproximação para p, e portanto para I.

$$I \simeq \frac{k}{N} A$$

• Em outras palavras, a probabilidade de que uma pedra caia abaixo da função é p=I/A, sendo I o valor da integral e A=(b-a)h a área do retângulo delimitante. A fração k/N é uma aproximação para p, e portanto para I.

$$I \simeq \frac{k}{N} A$$

O que fazer se a função assumir valores negativos no intervalo de integração?

• Se a função f(x) assumir valores negativos no intervalo de integração, podemos somar a ela uma constante positiva c cujo valor seja maior do que o módulo do valor mínimo de f(x) no intervalo, definindo assim uma outra função $g(x)=f(x)+c\geq 0$ tal que

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} g(x) dx - c(b-a),$$

com a integral de g(x) podendo ser feita sem problemas pelo método de jogar pedras.

• Vamos utilizar esse método para estimar o valor de π . Como a área de um círculo de raio r é πr^2 , metade da área de um círculo unitário é $\pi/2$. Da equação que define os pontos da circunferência de raio unitário centrada na origem, obtemos a função a integrar:

$$x^2 + y^2 = 1 \Rightarrow y = f(x) = \sqrt{1 - x^2}$$
.

Queremos então estimar a integral

$$I = \int_{-1}^{1} \sqrt{1 - x^2} \, dx.$$

Exemplo 1a

```
# Parâmetros de integração
a = -1.0 # Limite inferior de integração

b = 1.0 # Limite superior de integração
h = 1.0 # Altura do retângulo de integração
N = 10**4 # Número de pontos a utilizar para a integração
# Definição da função a ser integrada
def f(x):
    return sqrt(1-x*x)
# Laço de integração. Note que contamos os pontos sorteados e aqueles
# abaixo da curva da função, produzindo listas dos valores correspondentes.
x acima, x abaixo, y acima, y abaixo = [], [], []
for n in range(N):
    x = a+(b-a)*random() # Sorteamos a coordenada x do ponto
    y = h*random() # Sorteamos a coordenada y do ponto
    if y < f(x): # 0 ponto sorteado está abaixo da curva da função?
        k += 1  # Atualizamos o contador desses pontos
        x abaixo.append(x)
        y abaixo.append(y)
                   # O ponto sorteado está acima da curva da função?
        x acima.append(x)
        y acima.append(y)
integral = k/N*(b-a)*h # Estimativa para a integral
print("A estimativa para pi é ",2*integral)
```

No programa acima são criadas listas dos pontos acima e abaixo da função apenas para efeito de exibição em gráficos.

Exemplo 1a

Os pontos em azul (preto) foram sorteados abaixo (acima) da curva da função.

Exemplo 1b

Os pontos em vermelho vêm da integração por Monte Carlo, e a curva em azul é o inverso da raiz quadrada de n.

Estimando o erro

• A probabilidade de que um ponto sorteado caia abaixo da curva da função é p=I/A, enquanto a probabilidade de que exatamente k entre N pontos caiam abaixo da função é

$$P_N(k) = {N \choose k} p^k (1-p)^{N-k}.$$

• O valor esperado de k segundo essa distribuição é Np, enquanto a variância é

$$\operatorname{var} k = \overline{(k - \overline{k})^2} = Np(1 - p).$$

Interlúdio: deduções do slide anterior

• Substituindo 1-p por q, temos formalmente

$$\overline{k} = \sum_{k=0}^{N} k P_{N}(k) = \lim_{q \to 1-p} \left\{ \sum_{k=0}^{N} k \binom{N}{k} p^{k} q^{N-k} \right\}$$

$$= \lim_{q \to 1-p} \left\{ p \frac{\partial}{\partial p} \sum_{k=0}^{N} \binom{N}{k} p^{k} q^{N-k} \right\} = \lim_{q \to 1-p} \left\{ p \frac{\partial}{\partial p} (p+q)^{N} \right\}$$

$$= \lim_{q \to 1-p} \left\{ Np(p+q)^{N-1} \right\} = Np$$

Para calcular a variância, notemos primeiro que

$$\operatorname{var} k = \overline{(k - \overline{k})^2} = \overline{k^2 - 2k\overline{k} + \overline{k}^2} = \overline{k^2} - \overline{k}^2.$$

Interlúdio: deduções do slide anterior

• Substituindo 1-p por q, temos formalmente

$$\overline{k^{2}} = \sum_{k=0}^{N} k^{2} P_{N}(k) = \lim_{q \to 1-p} \left\{ \sum_{k=0}^{N} k^{2} {N \choose k} p^{k} q^{N-k} \right\}$$

$$= \lim_{q \to 1-p} \left\{ p \frac{\partial}{\partial p} \left[p \frac{\partial}{\partial p} \sum_{k=0}^{N} {N \choose k} p^{k} q^{N-k} \right] \right\}$$

$$= \lim_{q \to 1-p} \left\{ p \frac{\partial}{\partial p} \left[Np(p+q)^{N-1} \right] \right\}$$

$$= \lim_{q \to 1-p} \left\{ N(N-1) p^{2} (p+q)^{N-2} + Np(p+q)^{N-1} \right\}$$

$$= N(N-1) p^{2} + Np = N^{2} p^{2} + Np(1-p)$$

Interlúdio: deduções do slide anterior

Finalmente,

$$\operatorname{var} k = \overline{k^2} - \overline{k}^2 = N^2 p^2 + Np(1-p) - N^2 p^2$$
$$= Np(1-p)$$

Estimando o erro

 A raiz quadrada da variância de k fornece uma estimativa para o erro em k, de modo que uma estimativa para o erro na integral é

$$\sigma \equiv \operatorname{erro}(I_N) = \operatorname{erro}(k\frac{A}{N}) = \sqrt{\operatorname{var} k} \frac{A}{N} = \sqrt{Np(1-p)} \frac{A}{N}.$$

• Lembrando que p=I/A, obtemos por fim

$$\sigma = \frac{\sqrt{I(A-I)}}{\sqrt{N}}.$$

Note que a dependência em N concorda com o que observamos no slide do exemplo 1b.

• Um outro método de integração por Monte Carlo tira proveito da definição de valor médio de uma função. Entre x=a e x=b o valor médio da função f(x) é definido como

$$\langle f \rangle = \frac{1}{(b-a)} \int_{a}^{b} f(x) dx = \frac{I}{(b-a)},$$

de modo que podemos estimar o valor da integral estimando o valor médio da função:

$$\langle f \rangle \simeq f_N = \frac{1}{N} \sum_{i=1}^N f(x_i) \Rightarrow I \simeq (b-a) f_N,$$

sendo x_i sorteados uniformemente entre a e b.

• O erro associado a esse método é proporcional ao erro em f_N . A variância de f_N é

$$\operatorname{var} f_{N} = \operatorname{var} \left\{ \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) \right\}.$$

Agora, se x é uma variável aleatória e c é uma constante,

$$\operatorname{var} \{c x\} = \overline{(c x)^2} - \overline{c x}^2 = c^2 \operatorname{var} x$$

enquanto

$$\operatorname{var}\left\{\sum_{i=1}^{N} x_{i}\right\} = \overline{\left[\left(\sum_{i=1}^{N} x_{i}\right) - N\,\overline{x}\right]^{2}} = \overline{\left[\sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)\right]^{2}}.$$

Mas

$$\left[\sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)\right]^{2} = \left[\sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)\right] \left[\sum_{j=1}^{N} \left(x_{j} - \overline{x}\right)\right]$$

$$= \sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)^{2} + \sum_{i=1}^{N} \sum_{j \neq i} \left(x_{i} - \overline{x}\right) \left(x_{j} - \overline{x}\right)$$

• Agora, como os x_i são independentes entre si,

$$\sum_{i=1}^{N} \sum_{j \neq i} (x_i - \overline{x})(x_j - \overline{x}) = \sum_{i=1}^{N} \sum_{j \neq i} \overline{(x_i - \overline{x})} \overline{(x_j - \overline{x})} = 0$$

Portanto,

$$\left[\sum_{i=1}^{N} \left(x_{i} - \overline{x}\right)\right]^{2} = \sum_{i=1}^{\overline{N}} \left(x_{i} - \overline{x}\right)^{2},$$

de modo que

$$\operatorname{var}\left\{\sum_{i=1}^{N} x_i\right\} = \left[\sum_{i=1}^{N} \left(x_i - \overline{x}\right)\right]^2 = \sum_{i=1}^{N} \left(x_i - \overline{x}\right)^2 = N \operatorname{var} x.$$

 Combinando os resultados dos dois últimos slides, concluímos que

$$\operatorname{var} f_{N} = \operatorname{var} \left\{ \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) \right\} = \frac{1}{N^{2}} N \operatorname{var} f = \frac{1}{N} \operatorname{var} f.$$

 Como uma estimativa do erro é a raiz quadrada da variância, temos para a integral um erro

$$\sigma \equiv \text{erro}(I_N) = \text{erro}((b-a)f_N) = (b-a)\frac{\sqrt{\text{var}f}}{\sqrt{N}},$$

novamente proporcional ao inverso da raiz quadrada de N, embora com um prefator menor do que com o método anterior. (Ver Newman.)

Por que integrar por Monte Carlo?

- Um método com um erro que decai apenas com o inverso da raiz quadrada do número de operações é bastante ineficiente em comparação com as técnicas aprendidas em Introdução à Física Computacional I. Por que utilizá-lo?
 - 1)Há funções que variam muito rapidamente, de tal forma que os métodos usuais requerem um grande número de passos.
 - 2)Para integrais múltiplas de funções bem comportadas, os métodos mais eficientes com integrais simples tornam-se proibitivos.

Considere a integral

$$I = \int_{0}^{1} \sin^{2}\left(\frac{1}{x}\right) dx.$$

• Calculando a integral utilizando a regra do trapézio, o método de "jogar pedras" e o método do valor médio, sempre com $N=10^6$ pontos, os resultados são os mostrados abaixo.

```
O valor exato da integral entre x=0 e x=1 é 0.673457

A estimativa para a integral pela regra do trapézio é 0.6734672687672397
O tempo de cálculo em segundos foi 0.8062820434570312

A estimativa para a integral pelo método de jogar pedras é 0.6738209999326179
O tempo de cálculo em segundos foi 1.0446670055389404

A estimativa para a integral pelo método do valor médio é 0.6734217886854258
O tempo de cálculo em segundos foi 0.8824360370635986
```

 Note que os tempos de execução são comparáveis e que o método do ponto médio é um pouco mais preciso. O método do trapézio ainda é, contudo, o mais preciso.

O método do valor médio em muitas dimensões

 Para integrais múltiplas, o método do valor médio é generalizado para

$$\langle f \rangle \simeq f_N = \frac{1}{N} \sum_{i=1}^N f(\vec{r}_i) \Rightarrow I \simeq V f_N,$$

sendo V o "volume" de integração, a generalização multidimensional do intervalo de integração em integrais simples.

 O volume de uma hiperesfera de raio unitário em 10 dimensões é aquele delimitado pela hipersuperfície

$$\sum_{i=1}^{10} x_i^2 = 1,$$

em que supomos que a hiperesfera é centrada na origem e um ponto de sua hipersuperfície é descrito pelo vetor

$$\vec{r} = \sum_{i=1}^{10} \vec{e}_i x_i$$
.

• Tratando x_{10} como função das demais 9 coordenadas, e lembrando que um dos 2^{10} setores do espaço de 10 dimensões é aquele em que as coordenadas são todas positivas, o volume desejado é

Volume =
$$2^{10} \int_{0}^{1} dx_{1} \int_{0}^{\sqrt{1-x_{1}^{2}}} dx_{2} \cdots \int_{0}^{\sqrt{1-\sum_{i=1}^{8} x_{i}^{2}}} dx_{9} \sqrt{1-\sum_{i=1}^{9} x_{i}^{2}}.$$

 O cálculo usual exigiria dividir o hiperespaço em pequenos hipervolumes e calcular o integrando em cada um. Se em cada dimensão utilizarmos 100 divisões, teríamos 1018 hipervolumes.

• Tratando x_{10} como função das demais 9 coordenadas, e lembrando que um dos 2^{10} setores do espaço de 10 dimensões é aquele em que as coordenadas são todas positivas, o volume desejado é

Volume =
$$2^{10} \int_{0}^{1} dx_{1} \int_{0}^{\sqrt{1-x_{1}^{2}}} dx_{2} \cdots \int_{0}^{8} dx_{9} \sqrt{1-\sum_{i=1}^{8} x_{i}^{2}} dx_{9} \sqrt{1-\sum_{i=1}^{9} x_{i}^{2}}.$$

• Se a cada segundo pudéssemos realizar 1 bilhão de operações, demoraríamos ainda 10º segundos para chegar a uma estimativa do volume da hiperesfera.

• Tratando x_{10} como função das demais 9 coordenadas, e lembrando que um dos 2^{10} setores do espaço de 10 dimensões é aquele em que as coordenadas são todas positivas, o volume desejado é

Volume =
$$2^{10} \int_{0}^{1} dx_{1} \int_{0}^{\sqrt{1-x_{1}^{2}}} dx_{2} \cdots \int_{0}^{\sqrt{1-\sum_{i=1}^{8} x_{i}^{2}}} dx_{9} \sqrt{1-\sum_{i=1}^{9} x_{i}^{2}}.$$

 Em vez de aguardar um século pelo resultado, vamos utilizar o método do valor médio, escolhendo 10⁷ valores das 9 coordenadas.

Se estivéssemos trabalhando em 3D, o intervalo de integração corresponderia aos pontos do plano *xy* no primeiro quadrante e no interior da calota. Podemos contudo utilizar todo o primeiro quadrante como intervalo de integração se definirmos o integrando como nulo fora da calota. Procedemos de forma análoga em dimensões superiores.

```
from math import sqrt
from random import random
from numpy import empty
import time
tempo inicial = time.time()
# Parâmetros de integração
ndim = 10 # Número de dimensões da hiperesfera
N = 10**7 # Número de pontos a utilizar para a integração
# Definição da função a ser integrada
def f(r):
    soma = 0.0
   for i in range(ndim-1):
        soma += r[i]**2
    if soma >= 1.0:
                       # A função é nula fora da "calota"
        return 0.0
    else:
        return sqrt(1-soma)
# Laço de integração pelo método do valor médio.
# Note que a função a ser integrada retorna zero se o ponto sorteado
# em ndmin-1 dimensões está fora da "calota", por isso podemos utilizar
# como intervalo de integração todo o "hiperquadrante".
r = empty(ndim-1)
f medio = 0.0
for n in range(1,N+1):
    for i in range(ndim-1):
        r[i] = random() # Sorteamos cada coordenada do ponto
    f medio += f(r)
f medio /= N
integral = f medio # Estimativa para a integral
hipervolume = (2**ndim)*integral # Multiplicamos pelo número de "hiperquadrantes"
print("A estimativa para o volume pelo método do valor médio é ",hipervolume)
```

O resultado exato é 2.5502, contra uma estimativa de 2.5479 obtida em 117 s.

- Se o integrando possui divergências, o método do valor médio é problemático, uma vez que pode haver enormes variações de resultado entre diferentes tentativas de estimar a integral.
- Considere por exemplo a integral

$$I = \int_{0}^{1} \frac{x^{-1/2}}{e^{x} + 1} dx,$$

que é de interesse na teoria de gases de Fermi. Estimá-la pelo método do valor médio utilizando 100 pontos gera resultados como 0.8137, 0.8249 e 1.0479, contra um resultado exato de 0.8389.

- Para evitar grandes flutuações entre uma estimativa e outra, utiliza-se o método de amostragem por importância. A ideia é escolher os pontos x_i não uniformemente, mas segundo uma distribuição de probabilidades que elimine a divergência no integrando.
- Vamos definir a média ponderada por w(x) de uma função g(x):

$$\left\langle g\right\rangle_{w} = \frac{\int_{a}^{b} w(x)g(x)dx}{\int_{a}^{b} w(x)dx}$$

• Fazendo g(x)=f(x)/w(x), temos

$$\left\langle \frac{f(x)}{w(x)} \right\rangle_{w} = \frac{\int_{a}^{b} w(x)f(x)/w(x)dx}{\int_{a}^{b} w(x)dx} = \frac{\int_{a}^{b} f(x)dx}{\int_{a}^{b} w(x)dx},$$

de modo que a integral de f(x) é dada por

$$\int_{a}^{b} f(x) dx = \left\langle \frac{f(x)}{w(x)} \right\rangle_{w} \int_{a}^{b} w(x) dx,$$

e podemos estimar a integral se estimarmos a média ponderada de f(x)/w(x).

• Para estimar a média ponderada, supomos $w(x) \ge 0$ e definimos a distribuição de probabilidades

$$p(x) = \frac{w(x)}{b}, \quad \int_{a}^{b} p(x) dx = 1,$$

$$\int_{a}^{b} w(x) dx$$

e amostramos N pontos X_i a partir dessa distribuição. O número médio aproximado de amostras no intervalo entre $x_j = a + j\Delta x$ e $x_j + \Delta x$ é $Np(x_i)\Delta x$, com $\Delta x = (b-a)/M$, de modo que

$$\sum_{i=1}^{N} g(X_i) \simeq \sum_{j=1}^{M} g(x_j) Np(x_j) \Delta x \simeq N \int_{a}^{b} p(x) g(x) dx.$$

A média ponderada será

$$\langle g \rangle_{w} = \frac{\int_{a}^{b} w(x)g(x)dx}{\int_{a}^{b} w(x)dx} = \int_{a}^{b} p(x)g(x)dx \simeq \frac{1}{N} \sum_{i=1}^{N} g(X_{i}).$$

e portanto temos

$$\int_{a}^{b} f(x) dx = \left\langle \frac{f(x)}{w(x)} \right\rangle_{w} \int_{a}^{b} w(x) dx \simeq \left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{w(X_i)} \right] \int_{a}^{b} w(x) dx,$$

com os X_i amostrados da distribuição p(x).

 Vamos utilizar a amostragem por importância para calcular a integral

$$I = \int_{0}^{1} \frac{x^{-1/2}}{e^{x} + 1} dx$$

eliminando a divergência na origem. Para isso, vamos escolher $w(x)=x^{-1/2}$, de modo que

$$I = \left(\frac{1}{e^{x}+1}\right)_{w} \int_{0}^{1} x^{-1/2} dx \simeq \left[\frac{1}{N} \sum_{i=1}^{N} \frac{1}{e^{X_{i}}+1}\right] \times 2,$$

com x_i amostrado a partir de

$$p(x) = \frac{1}{2}x^{-1/2} \quad (0 \le x < 1).$$

 Para realizar a amostragem, vamos utilizar o método da transformação. Para isso, amostramos z uniformemente entre 0 e 1 e resolvemos a equação

$$\int_{0}^{x} p(x') dx' = x^{1/2} = z,$$

ou seja, fazemos

$$x=z^2$$
.

```
from math import exp, sqrt
from random import random
# Parâmetros de integração
                # Número de pontos a utilizar para a integração
N = 10**2
# Definição da função cujo valor médio será calculado.
# Note que aqui se trata da função de integração dividida por w(x)=x^{**}(-1/2)
def f(x):
    return 1/(\exp(x)+1)
print("0 valor exato da integral entre x=0 e x=1 é",0.83893296)
print("")
# Laço de integração pelo método do valor médio
# com amostragem por importância
fsw medio = 0.0
intw = 2.0 # Integral de w(x)=x^{**}(-1/2) entre x=0 e x=1
for n in range(1,N+1):
    x = random()**2  # Sorteamos a coordenada x do ponto não uniformemente
    fsw medio += f(x)
fsw medio /= N
integral = fsw medio*intw # Estimativa para a integral
print("A estimativa para a integral pelo método do valor médio é ",integral)
print("")
```

Agora obtemos, na maioria das execuções, valores entre 0.83 e 0.85 para a estimativa da integral, cujo valor exato é 0.838933.

 Voltaremos a discutir amostragem por importância no contexto das simulações de Monte Carlo em mecânica estatística, a partir da próxima aula.

Exercício no moodle

Há um único exercício, explorando o conteúdo da aula de hoje, e que pode ser feito com base nos programas dos exemplos desta aula e da aula anterior, disponíveis no moodle. O exercício deve ser entregue até o dia **27 de maio**.

O EP4 está liberado, e deve ser entregue até o início da aula do dia 3 de junho.