

ARM Update

David Brash
Linaro Connect, Hong Kong

ARM's market presence

- 30 billion+ ARM processors shipped
 - 8 billion ARM-based chips in 2011, 30% CAGR over last 5 years
- Mobile devices still the largest market
 - embedded and enterprise the fastest growing
- Unrivalled partner ecosystem serving 850+ processor licenses

Energy Efficiency Underlies It All

ARM activities

Virtual Platforms

Early-access Hardware

Code Generation

Debug Tools

Performance Analysis

Enabling the Design Flow

Early software development a critical factor

Initial Software Creation

RTL simulation

FPGA and Silicon

Final Product

Fast Models

VSTREAM virtual debug interface

DSTREAM debug and trace targeting Development boards

Streamline perf. analyzer

GNU tools / ARM Development Studio 5 (DS-5)

Cortex-A15/7 big.LITTLE Processing

- Uses the right processor for the right job
- Up to 70% energy savings on common workloads
- Flexible and transparent to apps importance of seamless software handover

big

LITTLE

DS-5 Debugger and {V,D}STREAM

Debug tools that fully utilize and support all the latest technologies on Cortex-A processors

Development of switching software on big.LITTLE targets & models

Upper Layer software development on Cortex-A7 & A15

Assisted kernel and driver debug on Linux UP and SMP targets

ARM Tools for big.LITTLE Systems

Debug and optimize your big.LITTLE software *now!*

- Fast Model of a Cortex-A15+ A7 big.LITTLE system
- Migration code developed and demonstrated on this model using DS-5
- Monitor thread migration between processors and clusters
- Correlate power on hardware targets

Monitor voltage, current and power on up to three power rails

big.LITTLE Approaches

Migration

Reusing existing power management strategies for switching

Common Hardware platform. Multiple Software Strategies

MP

OS scales through all CPUs in the system

All clusters may be in simultaneous use

Virtualiser software

- Nico's article: http://lwn.net/Articles/481055/
- Example code available through Linaro

Platform models

A hierarchy of models

- Align ARM platform recommendations and associated software development/ contributions to the community
- Used for big.LITTLE, key for ARMv8

Interface (Master)

Mali Midgard architecture - introduction

- A native 64-bit GPU architecture "ARMv8 ready"
- GPU Compute
- Extensive API support
 - Graphics APIs:
 Microsoft DirectX[®] 11,
 Khronos OpenGL[®] ES
 and OpenVG[™]
 - Compute APIs:
 Khronos OpenCL™,
 Google® Renderscript™,
 Microsoft DirectCompute®

Multicore Mali-T658 GPU

- Up to 10x graphics performance of Mali-400 MP
 - 4x GPU compute performance compared to Mali-T604
- Mali 400 & Mali-T6XX aligned around a common X11 and kernel infrastructure.
- Selected Linux DDK components are open-sourced:
 - Mali kernel Device Driver (GPLv2).
 - Linux X11 Display Drivers and Android Gralloc
 - Functionally identical to commercial code
 - ARM maintaining in Linaro GIT tree and published on the Mali Developer Portal.
- Base driver, ESSL compiler, EGL, GLES, OpenCL
 & VG drivers provided under a commercial license.
- ARM and Linaro working on a Mali profiling solution
 - Event visibility through perf, ARM's Streamline ...

Server Progress – Ecosystem Highlights

- Oct'11: Oracle demonstrated C2 JIT running on ARM
 - 20-40% performance uplift vs existing C1 JIT on ARM
- Oct'11: First release of Ubuntu server Linux for ARM
- Oct'11: Applied Micro announce ARMv8 based X-Gene device, support for up to 128 processors @ up to 3GHz per processor.
- **Nov'11**: HP announce Calxeda-based Redstone development platform and formation of Lab to explore optimized Hyperscale applications
- **Nov'11**: Calxeda announce EnergyCore
- **Nov'11**: nVidia announce Tegra (Quad core Cortex-A9) + CUDA GPGPU software development platform to pursue HPC market
- Dec'11: Oracle announce Server C2 JIT on ARM
- Apr'12: Ubuntu release 12.04LTS server for ARM implementing new Hard Float ABI
- May'12: First public demo of Calxeda server with 12.04LTS, MAAS, JuJu, OpenStack, node.js, RoR etc...

ORACLE'

JAVA SE FOR EMBEDDED DOWNLOAD

Java SE for Embedded 7

- · ARMv7 Linux Headless Server Compiler
- EABI, Hard Float (VFP), Little Endian

Ubuntu 12.04 LTS for ARM

Ubuntu Server and Ubuntu Desktop for ARM are a general purpose OS for ARM-based systems only. It supports, Marvell Armada-XP, TI Panda and BeagleXM development boards.

Calxeda EnergyCore + Ubuntu 12.04LTS @ UDS

Calxeda EnergyCore + Ubuntu 12.04LTS @ UDS

ARMv7-A => ARMv8-A development

ARMv8-A Public information

ARM.com/architecture

- TechCon talk architecture overview
- Instruction Set Overview
 - All new instructions including assembler syntax
- AArch64 ABI documents

NEW!!!

- Gcc for AArch64 public review
- svn://gcc.gnu.org/gcc/branches/ARM/aarch64-branch

ARMv8, Linaro and the community

- From the Techcon announcement (Oct-11):
 - 2012 ARM will start upstreaming open-source materials
 - ARM working with architectural partners & on its own implementations
- Goals: upstream/review 2012, adopted/maintained 2013:
 - AArch64 tools support via gnu.org
 - AArch64 Linux kernel support via kernel.org

- Alignment of ARMv8 efforts with ARMv7 developments
 - Linaro's current development programs as appropriate
 - Key technology areas
 - KVM, UEFI, ...
 - GNU tools and Linux distributions

Mali and ARMv8

- Midgard memory system alignment today
 - Mali-T604/Mali-T658 and LPAE physical address space
 - Cortex-A15 and Mali-T604 page table format
 - System I/O coherency with ACE/ACE-Lite and CCI-400
- Multiple simultaneous address spaces supported
 - Mali GPUs run many threads in parallel
 - Independent processes may execute on GPU simultaneously
 - Seamless process transitions ensures maximum utilization/efficiency
- Midgard architecture built for 64-bit addresses

48-bit VA

40-bit IPA/PA

Readying 64-bit Server Ecosystem

- ARM focused on enabling choice at all stages of the ecosystem.
 - Silicon partners
 - Operating systems
 - Hypervisors
 - Optimized application stacks and tools
- Partnering with semiconductor licensees to create 64-bit ecosystem momentum

AArch32 / ARMv7 today ... AArch64 / ARMv8 ???

DS-5 Community Edition

- Free for everyone!
- Make Android native development in C/C++ as easy as Java development
- Integrated with Android SDK & NDK

Thank you

5 Billion connected by ARM Powered Devices enabling a connected life.

