```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import integrate
from sklearn.linear_model import LinearRegression
```

1.1 Two-Box Model without Buffer Effect (Equations 1-2)

```
In [2]: # Load carbon emission data
ess = pd.read_csv("global_1751_2017.csv")
ess
```

Out[2]:

	Year	Total carbon emissions from fossil fuel consumption and cement production (million metric tons of C)	Carbon emissions from solid fuel consumption	Carbon emissions from liquid fuel consumption	Carbon emissions from gas fuel consumption	Carbon emissions from cement production	Carbon emissions from gas flaring	Per capita carbon emissions (metric tons of carbon; after 1949 only)
0	1751	3	3	0	0	0	0	0.00
1	1752	3	3	0	0	0	0	0.00
2	1753	3	3	0	0	0	0	0.00
3	1754	3	3	0	0	0	0	0.00
4	1755	3	3	0	0	0	0	0.00
262	2013	9568	4086	3233	1808	377	63	1.33
263	2014	9595	4060	3269	1816	385	65	1.32
264	2015	9623	3985	3339	1851	383	65	1.31
265	2016	9674	3915	3400	1899	390	69	1.28
266	2017	9790	3944	3429	1958	384	76	1.29

267 rows × 8 columns

```
In [3]: # Calculate carbon fluxes
         ess['co2fluxes'] = ess['Total carbon emissions from fossil fuel consumption and cement production (million metric tons of C)']
         \# Convert carbon fluxes to \gamma
         # !!! NOTE: 1 million metric tons = 1e-3 Pg
         ess['Gamma'] = ess['co2fluxes'] / (1000 * 2.13)
         # Define parameters and initial conditions
         k12 = 105 / 740
         k21 = 102 / 900
         N1 = 740 / 2.13  # Initial conditions
         N2 = 900 / 2.13  # Initial conditions
         start year = 1986
         end year = 2005
         # Generate time series and define constants
         time = np. arange(start year, end year+1, 1)
         atmosphere = [N1]
         ocean = [N2]
```

load所需数据之后进行提取处理,在进行多参数的定义和初始状态的设置。 其中我根据文章内容进行了单位转换

```
In [4]: for t in range(start_year, end_year):
    gamma = ess.loc[ess['Year'] == t, 'Gamma'].values[0] # Calculate γ of the current year
    dNl_dt = -k12 * atmosphere[-1] + k21 * ocean[-1] + gamma
    dN2_dt = k12 * atmosphere[-1] - k21 * ocean[-1]

N1_new = atmosphere[-1] + dN1_dt * 1
    N2_new = ocean[-1] + dN2_dt * 1
    atmosphere.append(N1_new)
    ocean.append(N2_new)
```

根据论文中的方程进行模型建立, 代码如上

```
In [5]: # Linear regression
    tt = np.array(time[1: ].reshape(-1,1))
        cc = np.array(atmosphere[1: ]).reshape(-1,1)
    # Regression model
    regression1 = LinearRegression()
    regression1.fit(tt,cc)
    line = regression1.predict(tt)
```

上面,我采用了sklearn包中的linear model模型进行线性回归(LinearRegression)

In [6]: # Plot the results fig = plt.figure(figsize=(7, 5), dpi=150) plt.scatter(time, atmosphere, marker = 'o', c='b', label='Atmosphere') plt.plot(time[1:], line, color='r', linestyle='--', label='Linear Regression') plt.xlabel('Year') plt.ylabel("Concentration (ppm)") plt.xticks([1985, 1990, 1995, 2000, 2005]) plt.title('Atmospheric CO2 concentration from 1987 to 2005') plt.legend() plt.show()

Atmospheric CO2 concentration from 1987 to 2005

1.2 Two-Box Model with Buffer Effect (Equations 3-4)

line_with_buffer = regression2.predict(ttt)

```
In [7]: # # Define parameters and initial conditions
          k12 = 105 / 740
          k21 = 102 / 900
          N2 0 = 821 / 2.13
          N11 = 740 / 2.13
          N22 = 900 / 2.13
 In [8]: # Generate time series and define constants
          start year = 1986
          end year = 2005
          time = np. arange(start year, end year+1, 1)
          atmosphere with buffer = [N11]
          ocean with buffer =[N22]
          进行多参数的定义和初始状态的设置。
 In [9]: for t in range(start year, end year):
              gamma = ess.loc[ess['Year'] == t, 'Gamma'].values[0] # Calculate γ of the current year
              z = atmosphere_with_buffer[-1]  # z is the atmospheric CO2 concentration of ppm unit, z= N1.
              ksi = 3.69 + 1.86e - 2 * z - 1.8e - 6 * z**2 # Calculate the buffer factor \xi, according to equation (A9)
              dN11\_dt = -k12 * atmosphere\_with\_buffer[-1] + k21 * (N2\_0 + ksi * (ocean\_with\_buffer[-1] - N2\_0)) + gamma
              dN22_dt = k12 * atmosphere_with_buffer[-1] - k21 * (N2_0 + ksi * (ocean_with_buffer[-1] - N2_0))
              N11 new = atmosphere with buffer[-1] + dN11 dt * 1
              N22 \text{ new} = \text{ocean with buffer}[-1] + dN22 dt * 1
              atmosphere with buffer.append(N11 new)
              ocean with buffer.append(N22 new)
In [10]: # Linear regression
          ttt = np. array(time[1:]). reshape(-1, 1)
          ccc = np. array(atmosphere_with_buffer[1:20]).reshape(-1,1)
          regression2 = LinearRegression()
          regression2.fit(ttt,ccc)
```

```
In [11]: # Plotting the results
    fig = plt.figure(figsize=(7, 5),dpi=150)
    plt.scatter(time[1:], atmosphere_with_buffer[1:20], marker = 'o', c='b',label='Atmosphere')
    plt.plot(time[1:], line_with_buffer, color='r', linestyle='--', label='Linear Regression')
    plt.xlabel('Year')
    plt.ylabel('Concentration (ppm)')
    plt.xticks([1985, 1990, 1995, 2000, 2005])
    plt.title('Atmospheric CO2 Concentration with buffer effect from 1987 to 2005')
    plt.legend()
    plt.show()
```

Atmospheric CO2 Concentration with buffer effect from 1987 to 2005

1.3 Reproduce Fig. 2

```
In [12]: # Load the emissions data
          obs = pd. read csv('co2 annmean mlo. csv')
          # Filter data for the years 1986-2004
          obs 1 = obs[(obs['year'] >= 1986) & (obs['year']<=2005)]
          # Plotting and decorating
          fig = plt.figure(figsize=(6, 5), dpi=200)
          plt.title('The CO2 trends by observation and calculation from 1987 to 2005', size=12, weight='bold')
          plt.scatter(obs_1['year'], obs_1['mean'], marker='o', c='b', label='observations')
          plt.plot(time[1:], line, c='r', linestyle='--', label='Linear Regression(without buffer effect)')
          plt.plot(time[1:], line_with_buffer, color='k', linestyle='-', label='Linear Regression(with buffer effect)')
          plt. text(1986, 407, 'calculation with buffer effect', size=11, weight='bold')
          plt. text(1998, 383, 'observations', size=11, weight='bold')
          plt.text(1994, 350, 'calculation without buffer effect', size=11, weight='bold')
          plt.xlabel('Year')
          plt.ylabel('CO2 Concentration (ppm)')
          plt.xticks([1985, 1990, 1995, 2000, 2005])
          plt. vlim(340, 429)
          plt.legend(prop = {'size': 9})
          plt.tight layout()
          plt.show()
```

The CO2 trends by observation and calculation from 1987 to 2005

将1.1和1.2的运行结果进行整合处理,对比分析气象台站观测和模型计算拟合 的1987-2005年CO2浓度变化趋势。 可以看出有缓冲效应的数据计算结果偏高,无缓冲效应的数据和观测数据更贴近。

Bonus: The seven box model

```
In [13]: # Load the carbon emissions data
          ess = pd. read csv('global 1751 2017. csv')
          obs = pd. read csv('co2 annmean mlo. csv')
          ff_lulc = pd. read_csv('feec_lulc_emissions.csv')
          ice = pd. read csv('ice. csv')
In [15]: # unit conversion
          lulc = ff_lulc[['Year', 'land-use change emissions']]
          lulc['Delta'] = lulc['land-use change emissions']/(1000 * 2.13)
          # Extract relevant columns
          ess['co2fluxes'] = ess[['Year', 'Total carbon emissions from fossil fuel consumption and cement production (million metric tons of C)']]
          # Calculate Y
          ess['Gamma'] = ess['co2fluxes']/(1000 * 2.13)
          # Define parameters
          k12 = 60 / 615
          k21 = 60 / 842
          k23 = 9 / 842
          k24 = 43 / 842
          k32 = 52 / 9744
          k34 = 162 / 9744
          k43 = 205 / 26280
          k45 = 0.2 / 26280
          k51 = 0.2 / 9e7
          k67 = 62 / 731
          k71 = 62 / 1238
          N2 0= 842 /2.13
          start year=1750
          end year=1980
          s 1=0.2
          s_2=0.5
          f0 = 62/2.13
          atml = atmosphere
          P0 = 615 / 2.13
          beta = [0.38, 0.5]
          atmosphere_rr =[]
```

In []:	<pre>def seven_box_model(beta): year = np.arange(1750, 2001, 1) for t in range(start_year, end_year+1): f=[f0*(1 + beta*np.log(atmospherel-11/ P0))]</pre>
	gamma = ess.loc[ess['Year'] == t, 'Gamma'].zero[0] delta = lulc.loc[lulc['Year'] == t, 'Delta'].zero[0]

整体思路同1.1-1.3, 首先进行数据下载与处理过滤, 在定义参数(注意单位换算), 定义函数建立7box模型, 进行运算

In []:[
In []:[
In []:[
In []:[