Importing Libaries

```
import pandas as pd #used for data manipulation
import numpy as np #used for numerical analysis
from collections import Counter as c # return counts of number of classess
import matplotlib.pyplot as plt #used for data Visualization
import seaborn as sns #data visualization library
import missingno as msno #finding missing values
from sklearn.metrics import accuracy_score, confusion_matrix#model performance
from sklearn.model_selection import train_test_split #splits data in random train and test array
from sklearn.preprocessing import LabelEncoder #encoding the levels of categorical features
from sklearn.linear_model import LogisticRegression #Classification ML algorithm
import pickle #Python object hierarchy is converted into a byte stream,
```

data=pd.read_csv("chronickidneydisease.csv") #loading the csv data
data.head() #return you the first 5 rows values

	id	age	bp	sg	al	su	rbc	рс	рсс	ba		pcv	wc	rc	htn	dm	cad	appet	pe	ane	classification
0	0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent		44	7800	5.2	yes	yes	no	good	no	no	ckd
1	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent		38	6000	NaN	no	no	no	good	no	no	ckd
2	2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	***	31	7500	NaN	no	yes	no	poor	no	yes	ckd
3	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent		32	6700	3.9	yes	no	no	poor	yes	yes	ckd
4	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent		35	7300	4.6	no	no	no	good	no	no	ckd

5 rows × 26 columns

dtype='object')

```
Index(['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu',
      'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
      'appet', 'pe', 'ane', 'classification'],
     dtype='object')
    data.columns=['age', 'blood pressure', 'specific gravity', 'albumin',
                    'sugar', 'red blood cells', 'pus cell', 'pus cell clumps', 'bacteria',
                    'blood glucose random', 'blood urea', 'serum creatinine', 'sodium', 'potassium',
                    'hemoglobin', 'packed cell volume', 'white blood cell count', 'red blood cell count',
                    'hypertension', 'diabetesmellitus', 'coronary artery disease', 'appetite',
                    'pedal edema', 'anemia', 'class' | # manually giving the name of the columns
    data.columns
Index(['age', 'blood pressure', 'specific gravity', 'albumin', 'sugar',
      'red_blood_cells', 'pus_cell', 'pus_cell_clumps', 'bacteria',
      'blood glucose random', 'blood urea', 'serum creatinine', 'sodium',
      'potassium', 'hemoglobin', 'packed_cell_volume',
      'white_blood_cell_count', 'red_blood_cell_count', 'hypertension',
      'diabetesmellitus', 'coronary artery disease', 'appetite',
      'pedal edema', 'anemia', 'class'],
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 25 columns):
```

	Column	Non-Null	Count	Dtype
0	age	391 non-n	ull	float64
1	blood_pressure	388 non-n	ull	float64
2	specific_gravity	353 non-n	ull	float64
3	albumin	354 non-n	ull	float64
4	sugar	351 non-n	ull	float64
5	red_blood_cells	248 non-n	ull	object
6	pus_cell	335 non-n	ull	object
7	pus_cell_clumps	396 non-n	ull	object
8	bacteria	396 non-n	ull	object
9	blood glucose random	356 non-n	ull	float64
10	blood_urea	381 non-n	ull	float64
11	serum_creatinine	383 non-n	ull	float64
12	sodium	313 non-n	ull	float64
13	potassium	312 non-n	ull	float64
14	hemoglobin	348 non-n	ull	float64
15	packed_cell_volume	330 non-n	ull	object
16	white_blood_cell_count	295 non-n	ull	object
17	red_blood_cell_count	270 non-n	ull	object
18	hypertension	398 non-n	ull	object
19	diabetesmellitus	398 non-n	ul1	object
20	coronary_artery_disease	398 non-n	ull	object
21	appetite	399 non-n	ull	object
22	pedal_edema	399 non-n	ull	object
23	anemia	399 non-n	ull	object
24	class	400 non-n	ull	object
dtvn	es: float64(11), object(1	4)		

dtypes: float64(11), object(14)

memory usage: 78.2+ KB

age	True
blood_pressure	True
specific_gravity	True
albumin	True
sugar	True
red_blood_cells	True
pus_cell	True
pus_cell_clumps	True
bacteria	True
blood glucose random	True
blood_urea	True
serum_creatinine	True
sodium	True
potassium	True
hemoglobin	True
packed_cell_volume	True
white_blood_cell_count	True
red_blood_cell_count	True
hypertension	True
diabetesmellitus	True
coronary_artery_disease	True
appetite	True
pedal_edema	True
anemia	True
class	False
dtype: bool	

```
data['blood glucose random'].fillna(data['blood glucose random'].mean(),inplace=True)

data['blood_pressure'].fillna(data['blood_pressure'].mean(),inplace=True)

data['blood_urea'].fillna(data['blood_urea'].mean(),inplace=True)

data['hemoglobin'].fillna(data['hemoglobin'].mean(),inplace=True)

data['packed_cell_volume'].fillna(data['packed_cell_volume'].mean(),inplace=True)

data['potassium'].fillna(data['potassium'].mean(),inplace=True)

data['red_blood_cell_count'].fillna(data['red_blood_cell_count'].mean(),inplace=True)

data['serum_creatinine'].fillna(data['serum_creatinine'].mean(),inplace=True)

data['white_blood_cell_count'].fillna(data['white_blood_cell_count'].mean(),inplace=True)
```

```
data['age'].fillna(data['age'].mode()[0],inplace=True)
data['hypertension'].fillna(data['hypertension'].mode()[0],inplace=True)
data['pus cell clumps'].fillna(data['pus cell clumps'].mode()[0],inplace=True)
data['appetite'].fillna(data['appetite'].mode()[0],inplace=True)
data['albumin'].fillna(data['albumin'].mode()[0],inplace=True)
data['pus cell'].fillna(data['pus cell'].mode()[0],inplace=True)
data['red_blood_cells'].fillna(data['red_blood_cells'].mode()[0],inplace=True)
data['coronary artery disease'].fillna(data['coronary artery disease'].mode()[0],inplace=True)
data['bacteria'].fillna(data['bacteria'].mode()[0],inplace=True)
data['anemia'].fillna(data['anemia'].mode()[0],inplace=True)
data['sugar'].fillna(data['sugar'].mode()[0],inplace=True)
data['diabetesmellitus'].fillna(data['diabetesmellitus'].mode()[0],inplace=True)
data['pedal edema'].fillna(data['pedal edema'].mode()[0],inplace=True)
data[ 'specific gravity'].fillna(data[ 'specific gravity'].mode()[0],inplace=True)
```

```
catcols=set(data.dtypes[data.dtypes=='0'].index.values) # only fetch the object type columns
print(catcols)

('hypertension', 'packed_cell_volume', 'class', 'coronary_artery_disease', 'anemia', 'red_blood_cell_count', 'red_blood_cells', 'bacteria', 'pedal_edema', 'appetite', 'pus_cell', 'diabetesmellitus', 'pus_cell_clumps', 'white_blood_cell_count')
```

```
1 for i in catcols:
        print("Columns :",i)
        print(c(data[i])) #using counter for checking the number of classess in the column
        print('*'*120+'\n')
Columns : hypertension
Counter({'no': 251, 'yes': 147, nan: 2})
Columns : packed cell volume
Counter({nan: 70, '52': 21, '41': 21, '44': 19, '48': 19, '40': 16, '43': 14, '45': 13, '42': 13, '32': 12, '36': 12, '33': 12, '28': 12,
'50': 12, '37': 11, '34': 11, '35': 9, '29': 9, '30': 9, '46': 9, '31': 8, '39': 7, '24': 7, '26': 6, '38': 5, '47': 4, '49': 4, '53': 4,
'51': 4, '54': 4, '27': 3, '22': 3, '25': 3, '23': 2, '19': 2, '16': 1, '\t?': 1, '14': 1, '18': 1, '17': 1, '15': 1, '21': 1, '20': 1,
'\t43': 1, '9': 1})
Columns : class
Counter({'ckd': 250, 'notckd': 150})
Columns : coronary artery disease
Counter({'no': 362, 'yes': 34, '\tno': 2, nan: 2})
Columns : anemia
Counter({'no': 339, 'yes': 60, nan: 1})
Columns : red blood cell count
Counter({nan: 130, '5.2': 18, '4.5': 16, '4.9': 14, '4.7': 11, '3.9': 10, '4.8': 10, '4.6': 9, '3.4': 9, '3.7': 8, '5.0': 8, '6.1': 8, '5.
5': 8, '5.9': 8, '3.8': 7, '5.4': 7, '5.8': 7, '5.3': 7, '4.3': 6, '4.2': 6, '5.6': 6, '4.4': 5, '3.2': 5, '4.1': 5, '6.2': 5, '5.1': 5,
'6.4': 5, '5.7': 5, '6.5': 5, '3.6': 4, '6.0': 4, '6.3': 4, '4.0': 3, '4': 3, '3.5': 3, '3.3': 3, '5': 2, '2.6': 2, '2.8': 2, '2.5': 2,
'3.1': 2, '2.1': 2, '2.9': 2, '2.7': 2, '3.0': 2, '2.3': 1, '8.0': 1, '3': 1, '2.4': 1, '\t?': 1})
```

```
1 for i in catcols:
       print("Columns :",i)
       print(c(data[i])) #using counter for checking the number of classess in the column
       print('*'*120+'\n')
Columns : hypertension
Counter({'no': 251, 'yes': 147, nan: 2})
Columns : packed cell volume
Counter({nan: 70, '52': 21, '41': 21, '44': 19, '48': 19, '40': 16, '43': 14, '45': 13, '42': 13, '32': 12, '36': 12, '33': 12, '28': 12,
'50': 12, '37': 11, '34': 11, '35': 9, '29': 9, '30': 9, '46': 9, '31': 8, '39': 7, '24': 7, '26': 6, '38': 5, '47': 4, '49': 4, '53': 4,
'51': 4, '54': 4, '27': 3, '22': 3, '25': 3, '23': 2, '19': 2, '16': 1, '\t?': 1, '14': 1, '18': 1, '17': 1, '15': 1, '21': 1, '20': 1,
'\t43': 1, '9': 1})
Columns : class
Counter({'ckd': 250, 'notckd': 150})
Columns : coronary_artery_disease
Counter({'no': 362, 'yes': 34, '\tno': 2, nan: 2})
Columns : anemia
Counter({'no': 339, 'yes': 60, nan: 1})
Columns : red blood cell count
Counter({nan: 130, '5.2': 18, '4.5': 16, '4.9': 14, '4.7': 11, '3.9': 10, '4.8': 10, '4.6': 9, '3.4': 9, '3.7': 8, '5.0': 8, '6.1': 8, '5.
5': 8, '5.9': 8, '3.8': 7, '5.4': 7, '5.8': 7, '5.3': 7, '4.3': 6, '4.2': 6, '5.6': 6, '4.4': 5, '3.2': 5, '4.1': 5, '6.2': 5, '5.1': 5,
'6.4': 5, '5.7': 5, '6.5': 5, '3.6': 4, '6.0': 4, '6.3': 4, '4.0': 3, '4': 3, '3.5': 3, '3.3': 3, '5': 2, '2.6': 2, '2.8': 2, '2.5': 2,
'3.1': 2, '2.1': 2, '2.9': 2, '2.7': 2, '3.0': 2, '2.3': 1, '8.0': 1, '3': 1, '2.4': 1, '\t?': 1})
```

```
Columns : red blood cells
Counter({'normal': 201, nan: 152, 'abnormal': 47})
Columns : bacteria
Counter({'notpresent': 374, 'present': 22, nan: 4})
Columns : pedal edema
Counter({'no': 323, 'yes': 76, nan: 1})
Columns : appetite
Counter({'good': 317, 'poor': 82, nan: 1})
Columns : pus cell
Counter({'normal': 259, 'abnormal': 76, nan: 65})
Columns : diabetesmellitus
Counter({'no': 258, 'yes': 134, '\tno': 3, '\tyes': 2, nan: 2, ' yes': 1})
Columns : pus cell clumps
Counter({'notpresent': 354, 'present': 42, nan: 4})
Columns : white blood cell count
Counter({nan: 105, '9800': 11, '6700': 10, '9600': 9, '9200': 9, '7200': 9, '6900': 8, '11000': 8, '5800': 8, '7800': 7, '9100': 7, '940
0': 7, '7000': 7, '4300': 6, '6300': 6, '10700': 6, '10500': 6, '7500': 5, '8300': 5, '7900': 5, '8600': 5, '5600': 5, '10200': 5, '5000':
5, '8100': 5, '9500': 5, '6000': 4, '6200': 4, '10300': 4, '7700': 4, '5500': 4, '10400': 4, '6800': 4, '6500': 4, '4700': 4, '7300': 3,
'4500': 3, '8400': 3, '6400': 3, '4200': 3, '7400': 3, '8000': 3, '5400': 3, '3800': 2, '11400': 2, '5300': 2, '8500': 2, '14600': 2, '710
0': 2, '13200': 2, '9000': 2, '8200': 2, '15200': 2, '12400': 2, '12800': 2, '8800': 2, '5700': 2, '9300': 2, '6600': 2, '12100': 1, '1220
0': 1, '18900': 1, '21600': 1, '11300': 1, '\t6200': 1, '11800': 1, '12500': 1, '11900': 1, '12700': 1, '13600': 1, '14900': 1, '16300':
1, '\t8400': 1, '10900': 1, '2200': 1, '11200': 1, '19100': 1, '\t?': 1, '12300': 1, '16700': 1, '2600': 1, '26400': 1, '4900': 1, '1200
0': 1, '15700': 1, '4100': 1, '11500': 1, '10800': 1, '9900': 1, '5200': 1, '5900': 1, '9700': 1, '5100': 1})
```

```
catcols.remove('red_blood_cell_count') # remove is used for removing a particular column
catcols.remove('packed_cell_volume')
catcols.remove('white_blood_cell_count')
print(catcols)

{'hypertension', 'class', 'coronary_artery_disease', 'anemia', 'red_blood_cells', 'bacteria', 'pedal_edema', 'appetite', 'pus_cell', 'diab etesmellitus', 'pus_cell_clumps'}
```

Labeling Encoding of Categorical Column

```
#'specific_gravity', 'albumin', 'sugar'(as these columns are numerical it is removed)

catcols=['anemia', 'pedal_edema', 'appetite', 'bacteria', 'class', 'coronary_artery_disease', 'diabetesmellit

'hypertension', 'pus_cell', 'pus_cell_clumps', 'red_blood_cells'] #only considered the text class columns
```

```
from sklearn.preprocessing import LabelEncoder #imorting the LabelEncoding from sklearn
for i in catcols: #looping through all the categorical columns
    print("LABEL ENCODING OF:",i)
    LEi = LabelEncoder() # creating an object of LabelEncoder
    print(c(data[i])) #getting the classes values before transformation
    data[i] = LEi.fit_transform(data[i])# trannsforming our text classes to numerical values
    print(c(data[i])) #getting the classes values after transformation
    print("*"*100)
```

```
LABEL ENCODING OF: anemia
Counter({'no': 340, 'yes': 60})
Counter({0: 340, 1: 60})
LABEL ENCODING OF: pedal_edema
Counter({'no': 324, 'yes': 76})
Counter({0: 324, 1: 76})
LABEL ENCODING OF: appetite
Counter({'good': 318, 'poor': 82})
Counter({0: 318, 1: 82})
LABEL ENCODING OF: bacteria
Counter({'notpresent': 378, 'present': 22})
Counter({0: 378, 1: 22})
LABEL ENCODING OF: class
Counter({'ckd': 250, 'notckd': 150})
Counter({0: 250, 1: 150})
LABEL ENCODING OF: coronary artery disease
Counter({'no': 366, 'yes': 34})
Counter({0: 366, 1: 34})
LABEL ENCODING OF: diabetesmellitus
Counter({'no': 263, 'yes': 137})
Counter({0: 263, 1: 137})
LABEL ENCODING OF: hypertension
Counter({'no': 253, 'yes': 147})
Counter({0: 253, 1: 147})
LABEL ENCODING OF: pus_cell
Counter({'normal': 324, 'abnormal': 76})
Counter({1: 324, 0: 76})
LABEL ENCODING OF: pus cell clumps
Counter({'notpresent': 358, 'present': 42})
Counter({0: 358, 1: 42})
LABEL ENCODING OF: red blood cells
Counter({'normal': 353, 'abnormal': 47})
```

```
contcols=set(data.dtypes[data.dtypes!='0'].index.values)# only fetech the float and int type columns

// #contcols=pd.DataFrame(data,columns=contcols)

print(contcols)

{'blood_urea', 'serum_creatinine', 'albumin', 'blood_pressure', 'blood glucose random', 'sugar', 'sodium', 'hemoglobin', 'specific_gravit y', 'age', 'potassium'}
```

```
for i in contcols:
    print("Continous Columns :",i)
    print(c(data[i]))
    print('*'*120+'\n')
```

```
contcols.remove('specific_gravity')
contcols.remove('albumin')
contcols.remove('sugar')
print(contcols)
```

```
contcols.add('red_blood_cell_count') # using add we can add the column
contcols.add('packed_cell_volume')
contcols.add('white_blood_cell_count')
print(contcols)

{'blood_urea', 'serum_creatinine', 'packed_cell_volume', 'blood_pressure', 'blood_glucose random', 'sodium', 'hemoglobin', 'red_blood_cell_count', 'age', 'potassium', 'white_blood_cell_count'}
```

```
catcols.add('specific_gravity')
catcols.add('albumin')
catcols.add('sugar')
print(catcols)

{'hypertension', 'class', 'albumin', 'coronary_artery_disease', 'anemia', 'sugar', 'red_blood_cells', 'specific_gravity', 'bacteria', 'ped al_edema', 'appetite', 'pus_cell', 'diabetesmellitus', 'pus_cell_clumps'}
```

```
data['coronary_artery_disease'] = data.coronary_artery_disease.replace('\tno','no') # replacing \tno wi
c(data['coronary_artery_disease'])

Counter({'no': 364, 'yes': 34, nan: 2})

data['diabetesmellitus'] = data.diabetesmellitus.replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'
```

```
data['coronary_artery_disease'] = data.coronary_artery_disease.replace('\tno','no') # replacing \tno wi
c(data['coronary_artery_disease'])

Counter({'no': 364, 'yes': 34, nan: 2})

data['diabetesmellitus'] = data.diabetesmellitus.replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'
c(data['diabetesmellitus'])
Counter({'yes': 137, 'no': 261, nan: 2})
```