Chapter 9

Internet Control Message Protocol (ICMP)

CONTENTS

- TYPES OF MESSAGES
- MESSAGE FORMAT
- ERROR REPORTING
- QUERY
- CHECKSUM
- ICMP PACKAGE

Position of ICMP in the network layer

Encapsulation of ICMP packet

ICMP messages

General format of ICMP messages

ICMP always reports
error messages
to the original source.

Figure 9-5

Error-reporting messages

Important points about ICMP error messages:

- 1. No ICMP error message for a datagram carrying an ICMP error message.
- 2. No ICMP error message for a fragmented datagram that is not the first fragment.
- 3. No ICMP error message for a datagram having a multicast address.
- 4. No ICMP error message for a datagram with a special address such as 127.0.0.0 or 0.0.0.0.

Figure 9-6

Contents of data field for error messages

Destination-unreachable format

Destination-unreachable different codes

	Code 0: the network is unreachable
	Code 1: the host is unreachable
	Code 2: the protocol is unreachable
	Code 3: the port is unreachable
	Code 4: fragmentation is required but the DF flag is set
	Code 5: source routing can not be accomplished
	Code 6: the destination network is unknown
	Code 7: the destination host is unknown
	Code 9: communication with destination network is
	administratively prohibited
	Code 10: communication with destination host is administratively
	prohibited
	Code 11: the network is unreachable for specified type of service
	Code 12: the host is unreachable for specified type of service
	Code 14: the host is unreachable because the precedence is violated
	Code 15: the host is unreachable because the precedence was cut off
_	w-Hill ©The McGraw-Hill Companies Inc. 2003

Destination-unreachable messages with codes 2 or 3 can be created only by the destination host.

Other destination-unreachable messages can be created only by routers.

A router cannot detect all problems that prevent the delivery of a packet.

There is no flow-control mechanism in the IP protocol.

Source-quench format

A source-quench message informs the source that a datagram has been discarded due to congestion in a router or the destination host.

The source must slow down the sending of datagrams until the congestion is relieved.

One source-quench message should be sent for each datagram that is discarded due to congestion.

Whenever a router receives a datagram with a time-to-live value of zero, it discards the datagram and sends a time-exceeded message to the original source.

When the final destination does not receive all of the fragments in a set time, it discards the received fragments and sends a time-exceeded message to the original source.

In a time-exceeded message,
code 0 is used only by routers
to show that the value of
the time-to-live field is zero.
Code 1 is used only by the destination
host to show that not all of the
fragments have arrived within a set time.

Time-exceeded message format

Code 0: Time to live

Code 1: Fragmentation

A parameter-problem message can be created by a router or the destination host.

Parameter-problem message format

Type: 12	Code: 0 or 1	Checksum	
Pointer	Unused (All 0s)		
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

Code 0: Main header problem

Code 1: Problem in the option field

Figure 9-11

Redirection concept

A host usually starts with a small routing table that is gradually augmented and updated.

One of the tools to accomplish this is the redirection message.

Redirection message format

Code 0: Network specific

Code 1: Host specific

Code 2: Network specific (specified service)

Code 3: Host specific (specified service)

A redirection message is sent from a router to a host on the same local network.

Query messages

An echo-request message can be sent by a host or router.

An echo-reply message is sent by the host or router which receives an echo-request message.

Echo-request and echo-reply messages can be used by network managers to check the operation of the IP protocol.

Echo-request and echo-reply messages
can test the
reachability of a host.
This is usually done by
invoking the ping command.

Echo-request and echo-reply message format

8: Echo request
0: Echo reply

Type: 8 or 0

Code: 0

Checksum

Identifier

Sequence number

Optional data
Sent by the request message; repeated by the reply message

Ping command can use theses messages.

Figure 9-15

Timestamp-request and timestamp-reply message format

13: request

14: reply

Type: 13 or 14	Code: 0	Checksum		
Identifier		Sequence number		
Original timestamp				
Receive timestamp				
Transmit timestamp				

Sending time = value of receive timestamp –

value of original timestamp

Receiving time = time the packet returned –

value of transmit timestamp

Round-trip time = sending time +

receiving time

Note

Timestamp-request and timestamp-reply messages can be used to calculate the round-trip time between a source and a destination machine even if their clocks are not synchronized.

Given the following information:

Value of original timestamp: 46

Value of receive timestamp: 59

Value of transmit timestamp: 60

Time the packet arrived: 67

We can calculate:

Sending time = 59 - 46 = 13 milliseconds

Receiving time = 67 - 60 = 7 milliseconds

Round-trip time = 13 + 7 = 20 milliseconds

Given the actual one-way time,

```
Time difference = receive timestamp –

(original timestamp field + one-way time duration)
```

We have:

Time difference = 59 - (46 + 10) = 3

Note

The timestamp-request and timestamp-reply messages can be used to synchronize two clocks in two machines if the exact one-way time duration is known.

Mask-request and mask-reply message format

17: Request

18: Reply

Type: 17 or 18	Code: 0	Checksum		
Identifier		Sequence number		
Address mask				

Figure 9-17

Router solicitation message format

Type: 10	Code: 0	Checksum
Identifier		Sequence number

Router advertisement message format

Type: 9	Code: 0	Checksum		
Number of addresses	Address entry size	Lifetime		
Router address 1				
Address preference 1				
Router address 2				
Address preference 2				
•				
•				

Example of checksum calculation

ICMP package

