МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ДГТУ)

Факультет «Информатика и вычислительная техника» Кафедра «Программное обеспечение вычислительной техники и автоматизированных систем»

Лабораторная работа №2

по курсу «Сети и телекоммуникации»

Выполнила:

Студент группы ВМО31

Оганесьянц К.П

Принял:

Рыбалко И.П.

Исходные данные

 $N_{\Pi K}$ – Количество ПЭВМ в группе = 4

Интенсивность среднесуточного обмена в группе:

- ПЭВМ-Сервер 0,4 Кбайт/с;
- 2. Сервер-ПЭВМ 4 Кбайт/с;
- 3. Коэффициент пульсации 70:1.

Интенсивность среднесуточного внешнего обмена для любой ПЭВМ одинакова и равна:

- 1. ПЭВМ- Internet 0,09 Кбайт/с;
- 2. Internet-ПЭВМ 0,4 Кбайт/с;
- 3. Коэффициент пульсации 145:1.

Интенсивность среднего обмена между ПЭВМ:

- 1. одного отдела ПЭВМоо 0,5 Кбайт/с;
- 2. разных отделов ПЭВМро 0,3 Кбайта/с;
- 3. Коэффициент пульсации, для обеих групп 30:1.

Телефонный трафик - V_T – 128 Кбит/с.

Расчеты:

 $V_{\Pi C} = 0.4 \times 8 \times 70 = 224$ Бит/с.

 $V_{CII} = 3 \times 8 \times 70 = 2240$ Бит/с.

 $V_{\Pi M} = 0.09 \times 8 \times 145 = 104,4 \text{ } \text{Fut/c}.$

 $V_{\text{ИП}} = 0.4 \times 8 \times 145 = 464 \text{ Бит/c}.$

 $V_{OO} = 0.5 \times 8 \times 30 = 120 \text{ Бит/c}.$

 $V_{PO} = 0.2 \times 8 \times 30 = 72 \text{ GuT/c}.$

Вид трафика	Объём потоков в ветвях														
	$V_{\Pi K1}$	V_{ATC}	V1	$V_{\Pi K2}$	V_{ATC}	V2	$V_{\Pi K3}$	V_{ATC}	V3	$V_{\Pi K4}$	V _{ATC}	V4	$V_{\Phi C}$	V_{ATC}	V
ПЭВМ- Сервер	224		1346	165		1500	162		2180	175		1000	6054		
Сервер- ПЭВМ	2240		13443	1670		15121	1670		21834	1609		10023	60476		
ПЭВМ- Internet	104,4		742,4	92,8		935,2	92,8		1206,4	92,8		556,8			3440,8
Internet- ПЭВМ	464		4645	570		5213	490		7550	584		3423			20822
ПЭВМ- ПЭВМоо	120		768	96		864	96		1248	96		576			
ПЭВМ- ПЭВМро	72		384	48		432	48		625	42		278			
ATC		128	1024		128	1152		128	1664		128	768		4608	4608
Σ _{трафик в} ветви	2760,4	128	22342,4	2664,8	128	25235,2	2664,8	128	36306,4	2664,8		16756,8	66528	4608	24320,8
∑скорость в ветви	2,7	0,15	22	2,7	0,15	24,5	2,7	0,15	35	2,7	0,15	16	65	4,5	24,4

Формула для вычисления «Внутренней пропускной способности порта»: $N_{\Pi Kn} \times \Sigma \text{ скорость в ветви } V_{\Pi Kn} + N_{Tn} \times \Sigma \text{ скорость в ветви } V_{ATC} + V_{N\!e\!n} \times \Sigma \text{ скорость в ветви} V_n$

№	Подключаемое	Пропускная способность (Мбит/с)							
порта	устройство	Нагрузка	Перспективный	Внутренняя	Технология				
		на порт	трафик	пропускная	подключения				
		110 110 11	17.4	способность					
1	2	2	4	порта					
1	2	3	4	5	6				
1.0			Коммутатор 1	T	T				
1-8	ПК	2,6	3,4	.	Fast Ethernet				
9-16	ТЛФ	0,13	0,17	56,9					
17	ГК	21,8	28,3						
			Коммутатор 2						
1-9	ПК	2,6	3,4						
10-18	ТЛФ	0,13	0,17	64,1	Fast Ethernet				
19	ГК	24,6	32						
			Коммутатор 3						
1-13	ПК	2,6	3,4						
14 -26	ΤЛΦ	0,13	0,17	92,6	Fast Ethernet				
27	ГК	35,5	46,2						
			Коммутатор 4						
1-6	ПК	2,6	3,4						
7-12	ТЛФ	0,13	0,17	42,7	Fast Ethernet				
13	ГК	16,4	21,3	,					
	•		вный коммутатор						
1	Коммутатор 1	21,8	28,3						
2	Коммутатор 2	24,6	32						
3	Коммутатор 3	35,5	46,2	220,2	Gigabit Ethernet				
4	Коммутатор 4	16,4	21,3						
5	ФС	65	84,5						
6	ATC	4,5	5,9						
		N	Ларшрутизатор						
1	ГК	23,8	31		Fast Ethernet				
2	Internet	23,8	31						
			айловый сервер						
1	ГК	65	84,5		Fast Ethernet				

Вывод: в данной лабораторной работе были рассчитаны канальная скорость и телефонный трафик. Расчеты были выполнены, основываясь на исходных данных: количество компьютеров, пропускная способность канала, интенсивность среднесуточного обмена в группе, коэффициент пульсации.