

GEOMETRÍA

Capítulo 15

3rd SECONDARY

SEGMENTOS PROPORCIONALES

1. PROPORCIÓN ÁUREA

También llamada
sección áurea, se
halla presente en la
naturaleza, el arte y
la arquitectura.

Los griegos la
conocieron en el
estudio del cuerpo
humano y la
utilizaron, en la
escultura y la
arquitectura y la
definieron como una
característica
fundamental en su
estética.

SEGMENTOS PROPORCIONALES

RAZÓN GEOMÉTRICA DE DOS SEGMENTOS.-

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida.

 $\frac{2}{3}$: razón geométrica de \overline{AB} y \overline{CD}

SEGMENTOS PROPORCIONALES

Es la igualdad de dos o más razones geométricas de segmentos.

HELICO | THEORY

Teorema de Tales

$$\frac{a}{b} = \frac{m}{n}$$

Teorema de Tales

b

Teorema de la bisectriz Interior

Teorema de la Bisectriz Exterior

Teorema del incentro

I: Incentro del △ABC

$$\frac{m}{n} = \frac{a+b}{c}$$

Teorema de Menelao

Teorema de Ceva

$$a \cdot b \cdot c = x \cdot y \cdot z$$

1. Se tiene una escalera con peldaños paralelos tal que AB = FG, BC = 25 cm, EF = 16 cm y GH = 24 cm. Determine la longitud de la grada CD.

2. Del gráfico, halle el valor de x, si PQ // AC.

QLC: Notable de 30° y 60°

$$x = 30^{\circ}$$

3. En un triángulo ABC, se traza la bisectriz interior \overline{BD} . Calcule el perímetro del triángulo ABC, si AB = DC, AD = 8 m y BC = 18 m.

4. En la figura CD = 2(AD) y AB = 15 cm . Halle BD.

Resolución

Prolongamos AB

$$\angle$$
ext. B = $2\alpha + 3\alpha$

$$\angle$$
ext. **B** = 5 α

$$\frac{15}{x} = \frac{3a}{2a}$$

$$3x = 30$$

$$x = 10 cm$$

5. En la figura, halle el valor de x.

Resolución

(2)(a)(2n) = (2)(6)(n)

$$a = 3$$

ABM : Notable de 37° y 53°

x = 53°

6. Se muestra las rectas paralelas y coplanares L_1 , L_2 y L_3 . Si 3(AB) = 2(BC), DE = 4 m y EF = $x\sqrt{2}$; determine valor de x.

Resolución

- Prolongamos DE hasta H
- EFH : Notable de 45° y 45°

$$\Rightarrow$$
 EH = x

Por el teorema de Tales:

$$\frac{2x}{3x} = \frac{4}{x}$$

$$2x = 12$$

$$x = 6 \text{ m}$$

7. En la figura, halle el valor de x.

Resolución

. ACD: Corolario de Tales

$$\frac{20}{x} = \frac{4a}{5a}$$

$$4x = 100$$

$$x = 25$$