Math 523H-Homework 1

- 1. Prove, by induction, that $1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.
- 2. Show that $\sqrt{3}$ is not a rational number.
- 3. (a) Show that $|b| \le a$ if and only if $-a \le b \le a$.
 - (b) Show that $||a| |b|| \le |a b|$ (this sometimes called the reverse triangle inequality).
 - (c) Show that $|a-b| \le c$ if and only if $b-c \le a \le b+c$.
- 4. Compute the following limits. In this problem you should justify your claims using the definitions of limits.
 - (a) $\lim_{n\to\infty} \frac{1}{n^{1/3}}$.
 - (b) $\lim_{n\to\infty} \frac{7n-19}{3n+7}$.
 - (c) $\lim_{n\to\infty} \frac{n^2+3}{n+1}$.
- 5. Let $\{t_n\}$ be a bounded sequence and $\{s_n\}$ be a convergent sequence with $\lim_{n\to\infty} s_n = 0$. Show that $\lim_{n\to\infty} (s_n t_n) = 0$.
- 6. (a) Show that if $\lim_{n\to\infty} s_n = +\infty$ and $\lim_{n\to\infty} t_n = t > 0$ then $\lim_{n\to\infty} (s_n t_n) = +\infty$.

1

- (b) Construct examples of sequences $\{s_n\}$ and $\{t_n\}$ such that $\lim_{n\to\infty} s_n = +\infty$, $\lim_{n\to\infty} t_n = 0$ and
 - i. $\lim_{n\to\infty} (s_n t_n) = +\infty$
 - ii. $\lim_{n\to\infty} (s_n t_n) = c$ for any arbitrary constant c.
 - iii. The sequence $s_n t_n$ is bounded but not convergent.
- 7. Show using the appropriate limit laws that
 - (a) $\lim_{n\to\infty} (\sqrt{n^2+1} n) = 0$
 - (b) $\lim_{n\to\infty} (\sqrt{n^2 + n} n) = \frac{1}{2}$
- 8. Show that if $\lim_{n\to\infty} s_n = s$ then $\lim_{n\to\infty} \sqrt{s_n} = \sqrt{s}$.