

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Disciplina: MTM5812 - H-Álgebra II **Professora:** Melissa Weber Mendonça

5a Lista de Exercícios

1. Encontre os autovalores e autovetores das matrizes abaixo.

a)
$$\begin{pmatrix} 3 & -1 & -3 \\ 0 & 2 & -3 \\ 0 & 0 & -1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$

b)
$$\begin{pmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & -1 \end{pmatrix}$$

2. Encontre os autovalores e autovetores de

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}.$$

- a) Verifique que o traço é igual à soma dos autovalores e que o determinante é igual ao produto deles.
- b) Se mudarmos a matriz para A 7I, quais serão os autovalores e autovetores e como eles se relacionam com os de A?
- c) Considerando $\lambda \neq 0$, mostre que se x é autovetor de A, então x também é autovetor de A^{-1} , e encontre o autovalor correspondente.
- 3. Dê um exemplo para mostrar que os autovalores podem se alterar quando um múltiplo de uma linha é subtraido de outra linha. Por que um autovalor nulo não é alterado pelas etapas da eliminação gaussiana?
- 4. a) Construa matrizes 2 por 2 de modo que os autovalores de AB não sejam os produtos dos autovalores de A e B, λ_A e λ_B , respectivamente, e os autovalores de A+B não sejam a soma dos autovalores individuais $\lambda_A + \lambda_B$.

- b) Verifique, no entanto, que a soma dos autovalores de A + B é igual à soma de todos os autovalores individuais de A e B, assim como seus produtos. Por que isto é verdadeiro?
- 5. Os vetores $v_1=(1,1)$ e $v_2=(2,-1)$ são autovetores de $A\in\mathbb{R}^{2\times 2}$ associados a $\lambda_1=5$ e $\lambda_2=-1$, respectivamente. Encontre a imagem de v=(4,1) pela transformação A.
- 6. Suponha que *A* possui autovalores 0, 3, 5 com autovetores independentes u, v, w.
 - a) Forneça uma base para o espaço nulo de uma base para o espaçocoluna.
 - b) Encontre uma solução particular para Ax = v + w. Encontre todas as soluções.
 - c) Mostre que Ax = u não possui solução.
- 7. A partir do vetor unitário $u=(\frac{1}{6},\frac{1}{6},\frac{3}{6},\frac{5}{6})$, construa a matriz de projeção de posto 1 $P=uu^T$.
 - a) Mostre que Pu = u. Então, u é um autovetor com $\lambda = 1$.
 - b) Se v é perpendicular a u, mostre que Pv é o vetor nulo. Então, $\lambda = 0$.
 - c) Encontre três autovetores independentes de P, todos com autovalor $\lambda = 0$.
- 8. Sabe-se que uma matriz *B* 3 por 3 possui autovalores 0,1,2. Esta informação é suficiente para encontrar três dos seguintes itens (quais?):
 - a) o posto de *B*;
 - b) o determinante de B^TB ;
 - c) os autovalores de $B^T B$;
 - d) os autovalores de $(B + I)^{-1}$.
- 9. Mostre que se u e v são autovalores de uma transformação linear associados a um autovalor λ , então $\alpha u \beta v$ também é autovetor associado ao mesmo λ .

10. Quando P, matriz de permutação, troca as linhas 1 e 2 ou as colunas 1 e 2 de A, os autovalores de A não se alteram. Encontre os autovetores de A e PAP para $\lambda = 11$:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 4 & 8 & 4 \end{pmatrix}$$
e $PAP = \begin{pmatrix} 6 & 3 & 3 \\ 2 & 1 & 1 \\ 8 & 4 & 4 \end{pmatrix}.$

11. Verificar se cada matriz é diagonalizável, calculando sua diagonalização quando possível.

a)
$$\begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & -1 \\ 0 & -4 & 3 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 0 \\ 2 & -2 \end{pmatrix}$$

e)
$$\begin{pmatrix} 1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{pmatrix}$$

c)
$$\begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$$

$$f) \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -4 \\ 0 & 0 & 3 \end{pmatrix}$$

- 12. Se os autovalores de *A* são 1,1,2, quais das seguintes alternativas são verdadeiras? Justifique ou dê um contra-exemplo.
 - a) A é inversível
 - b) A é diagonalizável.
- 13. Verdadeiro ou falso: se as n colunas de S (matriz cujas colunas são autovetores de A) são independentes, então:
 - a) A é inversível
 - b) A é diagonalizável
 - c) S é inversível
 - d) S é diagonalizável
- 14. Se $A = S\Lambda S^{-1}$, então encontre a diagonalização de A^3 e A^{-1} .

- 15. Se $A = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$, encontre A^{100} diagonalizando A.
- 16. As potências A^k da matriz

$$A = \begin{pmatrix} 0, 8 & 0, 3 \\ 0, 2 & 0, 7 \end{pmatrix}$$

tendem a um limite quando $k \to \infty$.

- a) Encontre este limite.
- b) Verifique que $A^2 = \frac{A+A^{\infty}}{2}$. Por que?
- 17. Diagonalize A e calcule $S\Lambda^kS^{-1}$ para provar esta fórmula para A^k :

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 é tal que $A^k = \frac{1}{2} \begin{pmatrix} 3^k + 1 & 3^k - 1 \\ 3^k - 1 & 3^k + 1 \end{pmatrix}$.

18. Lucas começou a sequência de Fibonacci com $L_0 = 2$ e $L_1 = 1$. A regra $L_{k+2} = L_{k+1} + L_k$ é a mesma, de modo que A ainda é uma matriz de Fibonacci. Some seus dois autovetores:

$$\begin{pmatrix} \lambda_1 \\ 1 \end{pmatrix} + \begin{pmatrix} \lambda_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(1+\sqrt{5}) \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{1}{2}(1-\sqrt{5}) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} L_1 \\ L_0 \end{pmatrix}.$$

Calcule o número de Lucas L_{10} pela regra iterativa, e aproximadamente por λ_1^{10} .

- 19. Considere todas as matrizes A 4 por 4 que são diagonalizadas pela mesma matriz fixa de autovetores. Mostre que as matrizes A formam um subespaço. Qual é o subespaço quando S = I, e qual é sua dimensão nesse caso?
- 20. Para cada matriz simétrica abaixo, encontrar a sua diagonalização $\Lambda = P^T A P$.

a)
$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$

21. Encontre uma "raiz quadrada matricial" para $A = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$. Por que não existe esta raiz quadrada para $B = \begin{pmatrix} 4 & 5 \\ 5 & 4 \end{pmatrix}$?

22. Apresente a matriz A^H e calcule $C = A^H A$ para

$$A = \begin{pmatrix} 1 & i & 0 \\ i & 0 & 1 \end{pmatrix}.$$

Qual é a relação entre C e C^H ? Isto continua sendo verdadeiro para qualquer A?

- 23. Como o determinante de uma matriz A^H está relacionado ao determinante de A? Prove que o determinante de uma matriz hermitiana é real.
- 24. Verdadeiro ou falso? Justifique ou dê um contra-exemplo:
 - a) Se A for hermitiana, então A + iI será inversível.
 - b) Se Q for ortogonal, então $Q + \frac{1}{2}I$ será inversível.
 - c) Se A for real, então A + iI será inversível.
- 25. Descreva todas as matrizes 3 por 3 que são simultaneamente hermitianas, unitárias e diagonais. Quantas existem?
- 26. Como os autovalores de A^H (quadrada) se relacionam com os autovalores de A?
- 27. Se A + iB é uma matriz hermitiana (A e B reais), mostre que $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ é simétrica.
- 28. Se $u^H u = 1$, mostre que $I 2uu^H$ é hermitiana e também unitária. A matriz de posto $1 uu^H$ é a projeção sobre qual reta em \mathbb{C}^n ?
- 29. Uma matriz com autovetores ortonormais tem a forma $A = U\Lambda U^{-1} = U\Lambda U^H$. Prove que $AA^H = A^HA$.