KERNEL RECONSTRUCTION OF DPPs

J. Müller

University of Warwick

September 13, 2018

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency

Setting and basic definitions

Setting

Let \mathcal{Y} be a finite set, which we call the *ground set* and $N := |\mathcal{Y}|$ its cardinality. We call the elements of \mathcal{Y} items and assume for the sake of easy notation $\mathcal{Y} = \{1, \ldots, N\}$ unless specified differently.

Point process

A point process on \mathcal{Y} is a random subset of \mathcal{Y} , i.e. a random variable with values in the powerset $2^{\mathcal{Y}}$. We identify this random variable with its law \mathbb{P} and thus refer to probability measures \mathbb{P} on $2^{\mathcal{Y}}$ as point processes. Further, \mathbf{Y} will always denote a random subset distributed according to \mathbb{P} .

Definition of DPP and repulsive structure

Determinantal point process

We call \mathbb{P} a determinantal point process, or in short a DPP, if we have

$$\mathbb{P}(A \subseteq \mathbf{Y}) = \det(K_A) \quad \text{for all } A \subseteq \mathcal{Y}$$
 (1)

where K is a symmetric matrix indexed by the elements in \mathcal{Y} and K_A denotes the submatrix $(K_{ij})_{ij\in A}$ of K indexed by the elements of A. We call K the marginal kernel of the DPP. If the marginal kernel K is diagonal, we call \mathbb{P} a Poisson point process.

Choosing $A = \{i\}$ and $A = \{i, j\}$ for $i, j \in \mathcal{Y}$ in (1) yields

$$\mathbb{P}(i \in \mathbf{Y}) = K_{ii} \quad \text{and}$$

$$\mathbb{P}(i, j \in \mathbf{Y}) = K_{ii} K_{jj} - K_{ij}^2 = \mathbb{P}(i \in \mathbf{Y}) \cdot \mathbb{P}(j \in \mathbf{Y}) - K_{ij}^2.$$
(2)

Properties of the marginal kernel and existence

Positivity

The marginal kernel is always positive semi-definite. Further the complement of a DPP is also a DPP with marginal kernel I-K and hence $0 \le K \le I$.

Existence

Let K be a symmetric $N \times N$ matrix. Then K is the marginal kernel of a DPP if and only if $0 \le K \le I$.

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency

Main idea

Setting

Let \mathcal{Y} be a finite set of cardinality N and let $K \in \mathbb{R}^{N \times N}_{\text{sym}}$ satisfy $0 \leq K \leq I$. Let further $\mathbf{Y}_1, \mathbf{Y}_2, \ldots$ be independent and distributed according to a DPP with marginal kernel K. The goal is to estimate the kernel K based on the observations $(\mathbf{Y}_n)_{n \in \mathbb{N}}$.

Consider now the empirical measures

$$\hat{\mathbb{P}}_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{Y}_i}$$

and assume that they are determinantal with marginal kernel \hat{K}_n . Then \hat{K}_n would be a natural estimate for K since by the SLLN we have

$$\hat{\mathbb{P}}_n \xrightarrow{n \to \infty} \mathbb{P}.$$

The principal minor assignment problem

The principal minor assignment problem (PMAB)

Let $K \in \mathbb{R}^{N \times N}$ be a symmetric matrix. We want to investigate whether K is uniquely specified by its principal minors

$$\Delta_S := \det(K_S)$$
 where $S \subseteq \{1, \dots, N\}$

and if so how it can be reconstructed from those.

Determinantal equivalence

Two symmetric matrices $A, B \in \mathbb{R}^{N \times N}$ are called *determinantally equivalent* if they have the same principal minors and we write $A \sim B$.

Reconstruction for 3×3 matrix

The diagonal and absolut values of the off diagonal can be obtained by

$$\begin{split} K_{ii} &= \varDelta_{\{i\}} \quad \text{and} \\ K_{ij}^2 &= K_{ii} K_{jj} - \varDelta_{\{i,j\}}. \end{split}$$

In order to reconstruct the signs we need to consider the determinant

$$\Delta_{\{1,2,3\}} = K_{11}K_{22}K_{33} + 2K_{12}K_{13}K_{23} - K_{11}K_{23}^2 - K_{22}K_{13}^2 - K_{33}K_{12}^2.$$

Any assignment of the signs that satisfies this, i.e. such that

$$K_{12}K_{13}K_{23} = \frac{1}{2} \left(\Delta_{\{1,2,3\}} + K_{11}K_{23}^2 + K_{22}K_{13}^2 + K_{33}K_{12}^2 - K_{11}K_{22}K_{33} \right)$$

yields a matrix K with the prediscribed principles minors.

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency

Graph theoretical preliminaries

Let G = (V, E) be a finite graph. We will need the following notions:

- (i) Degree: Number of edges that contains $v \in V$.
- (ii) Subgraph: A graph $\tilde{G} = (\tilde{V}, \tilde{E}) \subseteq (V, E)$.
- (iii) Induced graph: For $S \subseteq V$ the induced graph G(S) = (S, E(S)) is formed of all edges $e \in E$ of G that are subsets of S.
- (iv) Path: A sequence $v_0v_1\cdots v_k$ of vertices such that $\{v_{i-1},v_i\}\in E$.
- (v) Connected graph: A graph where every two vertices $v, w \in V$ there is a path from v to w.
- (vi) Cycle: A cycle C is a connected subgraph such that every vertex has even degree in C.

Graph theoretical preliminaries II

(vii) Cycle space: Identify a cycle C with $x=x(C)\in\mathbb{F}_2^E$ such that

$$x_e := \begin{cases} 1 & \text{if } e \in C \\ 0 & \text{if } e \notin C. \end{cases}$$

The cycle space C is the span of $\{x(C) \mid C \text{ is a cycle}\}$ in \mathbb{F}_2^E .

- (viii) Simple cycle: A cycle C such that every vertex has degree 2 in C.
 - (ix) Chordless cycle: A cycle C such that two vertices $v,w\in C$ form an edge in G if and only they form an edge in C.
 - (x) Cycle sparsity: The minimal number l such that a basis of the cycle space consisting of chordless simple cycles of length at most l exists which we call shortest maximal cycle basis or short SMCB.
 - (xi) Pairings: A pairing P of $S \subseteq V$ is a subset of edges of G(S) such that two different edges of P are disjoint. Vertices contained in the edges of P are denoted by V(P), the set of all pairings by $\mathcal{P}(S)$.

Graph theoretical preliminaries III

Existence of SMCBs

There always exists a basis $\{x(C_1), \ldots, x(C_k)\}$ of the cycle space where C_1, \ldots, C_k are chordless simple cycles.

Proof.

We proceed in the two following steps:

- (i) Decompose a cycle into disjoint simple cycles.
- (ii) Write a simple cycle as the symmetric difference of simple chordless cycles.

Those two steps show that the set of simple chordless cycles generates the cycle space.

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency

- Motivation
- 2 Introduction and basic notions
- 3 Kernel reconstruction from the empirical measures
 - Graph theoretical preliminaries
 - Solution of the principal minor assignment problem
 - Definition of the estimator and consistency