

Github Repository:

https://github.com/Moritz921/DataChallenges-SoSe25

Anna Windecker Moritz Kowalski

- 1. Datenbereinigung und SNA-Tools
- 2. Übersicht der verwendeten Algorithmen in Gephi
- 3. Social Network Analysis (SNA)
 - I. Handel zwischen allen Fundorten
 - II. Gruppe Nordost
 - III. Gruppe Südwest
 - IV. Austausch zwischen Nordost und Südwest Gruppe
- 4. Fazit

- 1. Datenbereinigung und SNA-Tools
- 2. Übersicht der verwendeten Algorithmen in Gephi
- 3. Social Network Analysis (SNA)
 - I. Handel zwischen allen Fundorten
 - II. Gruppe Nordost
 - III. Gruppe Südwest
 - IV. Austausch zwischen Nordost und Südwest Gruppe
- 4. Fazit

Datenbereinigung und SNA-Tools

Datenbereinigung:

- Alle Münzen ohne Fundort oder ohne Typ nicht berücksichtigt
- Typ 1 verwendet und bereinigt:
 BS 1 = BS Prototyp, BS 2 = BS A, BS 3 = BS B, ..., BS 9 = BS H
- Geodaten zu Fundorten selbst ermittelt

Tools zur Durchführung der SNA:

- Gephi: Erstellung der Netzwerke
- Orange: Abbildung der Knoten auf OpenStreetMap

- 1. Datenbereinigung und SNA-Tools
- 2. Übersicht der verwendeten Algorithmen in Gephi
- 3. Social Network Analysis (SNA)
 - I. Handel zwischen allen Fundorten
 - II. Gruppe Nordost
 - III. Gruppe Südwest
 - IV. Austausch zwischen Nordost und Südwest Gruppe
- 4. Fazit

Modularity Class

- Communities bestehen aus eng verbundenen Knoten (durchgezogene Linien)
- Minimierung der Verbindungen zwischen den Communities (gestrichelte Linien)

Louvain-Methode (zweiphasig):

- **1. Lokal:** Verschiebe Knoten in benachbarte Communities, wenn Modularität steigt
- **2. Global:** Fasse Communities zu Superknoten zusammen

Betweenness Centrality

- Misst "Vermittlungsrolle" im Netzwerk
- Häufigkeit, mit der ein Knoten auf den kürzesten Pfaden zwischen anderen Knoten liegt

ForceAtlas2

- Knoten stoßen sich gegenseitig ab, wenn sie nicht direkt miteinander verbunden sind
- Knoten ziehen sich an, wenn sie durch eine Kante verbunden sind
- Dichte Cluster ziehen sich zusammen
- Entfernte Gruppen stoßen sich ab

Ziel: Visuelle Trennung von Communities

- 1. Datenbereinigung und SNA-Tools
- 2. Übersicht der verwendeten Algorithmen in Gephi
- 3. Social Network Analysis (SNA)
 - I. Handel zwischen allen Fundorten
 - II. Gruppe Nordost
 - III. Gruppe Südwest
 - IV. Austausch zwischen Nordost und Südwest Gruppe
- 4. Fazit

Handel zwischen allen Fundorten

Einteilung in Nordost und Südwest Gruppe

Typ A

Тур В

Typ C

Typ D

Typ E

Typ F

Typ G

Тур Н

Prototyp

Community 1

Community 2

Community 3

Einteilung in Nordost und Südwest Gruppe

Gruppe Nordost

Gruppe Südwest

Austausch zwischen Nordost und Südwest Gruppe - Münztypen C, D, E

Тур В Тур Е Тур Н

Typ C Typ F Prototyp Community 3

- 1. Datenbereinigung und SNA-Tools
- 2. Übersicht der verwendeten Algorithmen in Gephi
- 3. Social Network Analysis (SNA)
 - I. Handel zwischen allen Fundorten
 - II. Gruppe Nordost
 - III. Gruppe Südwest
 - IV. Austausch zwischen Nordost und Südwest Gruppe
- 4. Fazit

Fazit

- Besondere Städte mit hoher Betweenness Centrality:
 - Manching (Oppidum, 264 Münzen)
 - **Egglfing** (Agglomeration, 127 Münzen)
- Austausch zwischen Nordost und Südwest fand wahrscheinlich statt
- Keine klare Trennung in (Nord-)Ost- und (Süd-)Westgruppe
- Ungerichtete Kanten erschweren Aussagen zur Austauschrichtung
- Rückschlüsse auf Herkunft/Ursprung der Münzen nur schwer möglich
- Ungleiche Anzahl an Münzen je Fundort erschwert Vergleichbarkeit
 - In Südwest-Gruppe deutlich weniger Münzen und Fundorte als in Nordost-Gruppe
 - An manchen Fundorten wurde nur eine einzige Münze gefunden

Quellen

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment, 2008*(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Brandes, U. (2001). A faster algorithm for betweenness centrality. *The Journal of Mathematical Sociology,* 25(2), 163–177. https://doi.org/10.1080/0022250X.2001.9990249

Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. *PLOS ONE*, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679

Bildquellen:

Gephi. The Open Graph Viz Platform. https://gephi.org/, abgerufen am 23.07.2025

Orange Data Mining. Workshops. https://orangedatamining.com/workshops/, abgerufen am 23.07.2025

Data Challenges Vorlesungsfolien. https://moodle.studiumdigitale.uni-frankfurt.de/moodle/pluginfile.php/792461/mod_resource/content/1/2025-04-24 Data Challenge SS2025 Bueschelquinare.pdf, abgerufen am 23.07.2025

