Développement 11. Dimension du commutant

La preuve théorème principal constitue l'exercice 2.45 page 133 du livre [1]. On considère un corps \mathbf{K} et un entier $n \in \mathbf{N}^*$. Soit $A \in \mathcal{M}_n(\mathbf{K})$ une matrice. On définit son *commutant*

$$\mathscr{C}_{\mathbf{K}}(A) := \{ B \in \mathscr{M}_n(\mathbf{K}) \mid AB = BA \}.$$

Lemme 1. On a $\dim_{\mathbf{K}}(\mathscr{C}_{\mathbf{K}}(A)) \geqslant n$.

Preuve Traitons d'abord le cas où la matrice A est trigonalisable. À la vue de la définition de commutant, on peut supposer que la matrice A est triangulaire supérieure. Il s'agit de montrer que la dimension de l'espace S des solutions de l'équation

$$AX - XA = 0 (1)$$

d'inconnue $X \in \mathcal{M}_n(\mathbf{K})$ est supérieure à n. Ainsi il suffit de savoir le faire quand l'inconnue X est triangulaire supérieure. Pour une telle matrice solution X, comme la matrice AX - XA est triangulaire supérieure, le système (1) possède (n+1)n/2 inconnues pour autant d'équations. Cependant, les équations induites par les égalités des coefficients diagonaux, à savoir $a_{i,i}x_{i,i} = x_{i,i}a_{i,i}$, ne nous disent rien. En conclusion, le système (1) possède (n+1)n/2 inconnues pour n(n+1)/2 - n équations linéairement indépendantes, donc l'espace S intersecté avec l'espace des matrices triangulaires supérieures est de dimension au moins n, donc l'espace $S = \mathscr{C}_{\mathbf{K}}(A)$ est de dimension au moins n.

On ne suppose plus que la matrice A est trigonalisable. Soit \mathbf{L} un corps de décomposition du polynôme caractéristique χ_A de la matrice A dans le corps \mathbf{K} . Alors la matrice A est trigonalisable sur ce corps \mathbf{L} et le paragraphe précédent nous assure l'inégalité $\dim_{\mathbf{L}}(\mathscr{C}_{\mathbf{L}}(A)) \geqslant n$. Les deux applications

$$\varphi_{\mathbf{K}} : \left| \begin{array}{c} \mathcal{M}_n(\mathbf{K}) \longrightarrow \mathcal{M}_n(\mathbf{K}), \\ X \longmapsto AX - XA \end{array} \right| \text{ et } \varphi_{\mathbf{L}} : \left| \begin{array}{c} \mathcal{M}_n(\mathbf{L}) \longrightarrow \mathcal{M}_n(\mathbf{L}), \\ X \longmapsto AX - XA. \end{array} \right|$$

sont K-linéaire et L-linéaire et leurs matrices $M_{\mathbf{K}} \in \mathscr{M}_{n^2}(\mathbf{K})$ et $M_{\mathbf{L}} \in \mathscr{M}_{n^2}(\mathbf{L})$ sont égales, donc $\operatorname{rg}_{\mathbf{L}}(M_{\mathbf{L}}) = \operatorname{rg}_{\mathbf{L}}(M_{\mathbf{K}})$. La rang étant invariant par extension de corps, on en déduit que $\operatorname{rg}_{\mathbf{L}}(M_{\mathbf{L}}) = \operatorname{rg}_{\mathbf{K}}(M_{\mathbf{K}})$. Comme $\dim_{\mathbf{L}}(\mathscr{M}_n(\mathbf{L})) = n = \dim_{\mathbf{K}}(\mathscr{M}_n(\mathbf{K}))$, le théorème du rang permet de conclure que

$$n \leqslant \dim_{\mathbf{L}}(\mathscr{C}_{\mathbf{L}}(A)) = \dim_{\mathbf{K}}(\mathscr{C}_{\mathbf{K}}(A)).$$

Théorème 2. Le commutant $\mathscr{C}_{\mathbf{K}}(A)$ et l'algèbre $\mathbf{K}[A]$ sont égaux si et seulement si les polynômes minimal π_A et caractéristique χ_A de la matrice A sont égaux.

Preuve On suppose $\mathscr{C}_{\mathbf{K}}(A) = \mathbf{K}[A]$. L'algèbre $\mathbf{K}[A]$ étant de dimension deg π_A , le lemme assure que deg $\pi_A \geqslant n = \deg \chi_A$. Grâce au théorème de Cayley-Hamilton, le polynôme π_A divise le polynôme χ_A . Ceci implique $\pi_A = \chi_A$.

Réciproquement, on suppose $\pi_A = \chi_A$. Alors la matrice A est cyclique, c'est-à-dire qu'il existe un vecteur $e \in \mathbf{K}^n$ tel que la famille $\mathscr{B} := (e, Ae, \dots, A^{n-1}e)$ soit une base

de \mathbf{K}^n . L'application

$$\begin{vmatrix} \mathscr{C}_{\mathbf{K}}(A) \longrightarrow \mathbf{K}^n, \\ B \longmapsto Be \end{vmatrix}$$

est linéaire et injective. En effet, soit $B \in \mathscr{C}_{\mathbf{K}}(A)$ une matrice telle que Be = 0. Comme AB = BA, on a $B(A^k e) = A^k(Be) = 0$ pour tout entier $k \in [0, n-1]$. La famille \mathscr{B} étant une base, on en déduit B = 0. Combinée avec le lemme, l'injectivité donne alors

$$n \leqslant \dim_{\mathbf{K}}(\mathscr{C}_{\mathbf{K}}(A)) \leqslant \dim_{\mathbf{K}}(\mathbf{K}^n) = n.$$

Comme $\pi_A = \chi_A$, l'algèbre $\mathbf{K}[A]$ est de dimension n. Comme $\mathbf{K}[A] \subset \mathscr{C}_{\mathbf{K}}(A)$, on conclut l'égalité $\mathbf{K}[A] = \mathscr{C}_{\mathbf{K}}(A)$

Serge Francinou, Hervé Gianella et Serge Nicolas. Exercices de mathématiques. Oraux X-ENS. Algèbre 2. Cassini, 2006.