Flora vascular de uma área de campo úmido em Analândia, estado de São Paulo

Vascular flora of moist grassland area in Analândia, state of São Paulo

Naiara Lopes de Sousa^{1,2} & Julio Antonio Lombardi¹

A fitofisionomia de campo úmido integra-se ao bioma Cerrado quando próximo a nascentes e cursos d'água, e em áreas com lençol freático superficial. Devido às condições edáficas particulares que restringem e selecionam as espécies, esse ambiente apresenta uma flora bastante típica. O presente estudo objetivou listar as espécies de plantas vasculares registradas em área de campo úmido situada na Fazenda Pedra Vermelha, município de Analândia, estado de São Paulo, e comparar os resultados com outros de áreas campestres alagadas no Brasil. A área amostrada possui 5ha e está situada entre as coordenadas 22°7'50"–8'1"S e 47°46'40"–53"O, a 760–770 m de altitude. Foram realizados 18 expedições mensais de coleta, registrando-se 178 espécies em 121 gêneros e 62 famílias. Asteraceae (19 espécies), Cyperaceae (15), Poaceae (14), Melastomataceae (13), Xyridaceae e Eriocaulaceae (8) mostraram-se mais diversas. Uma provável espécie nova para Cyperaceae foi diagnosticada e sete espécies encontram-se listadas como em risco de extinção. A similaridade florística entre o campo úmido amostrado e as áreas usadas para comparação apresentou-se baixa. Os resultados obtidos comprovam uma riqueza florística significativa para o campo úmido da Fazenda Pedra Vermelha. **Palavras-chave:** campos úmidos, Cerrado, estado de São Paulo, estrato herbáceo, florística.

Abstract

The moist grassland phyto-physiognomy associates with the Cerrado biome near springs and streams, and in areas with shallow groundwater. This vegetation has a very typical flora, due the particular soil conditions that restrict and select species. The main objective of this study was to record the species of vascular plants in moist grassland in Fazenda Pedra Vermelha, at Analândia municipality, São Paulo, and to compare the floristic composition with other wetlands areas in Brazil. The area has 5ha and is located between the coordinates 22°07′50"–08′01"S and 47°46′40"–53"O, and at altitudes ranging from 760 to 770m. The floristic survey was carried along 18 months. A total of 178 species, 121 genera and 62 families were registered in the area. Asteraceae (19 species), Cyperaceae (15), Poaceae (14) Melastomaceae (13) Xyridaceae and Eriocaulaceae (8) were the richest families. A probable new species of Cyperaceae was diagnosed and seven endangered species were found. The floristic similarity between this sampled moist grassland and the compared areas was low. The results show a significant floristic richness of the moist grassland at the Fazenda Pedra Vermelha.

Key words: moist grassland, Cerrado, São Paulo state, herbaceous layer, floristic.

Introdução

Considerado um complexo vegetacional heterogêneo (Rizzini 1963), o bioma Cerrado é constituído basicamente por fisionomias vinculadas a solos bem drenados. Contudo, são vistas formações associadas a terrenos com excedente hídrico superficial, correspondendo aos ecossistemas de áreas úmidas, tais como os campos úmidos (Ribeiro & Walter 2008).

As áreas campestres úmidas normalmente ocorrem em regiões planas próximas a nascentes, cursos d'água, em fundo de vales e em áreas com lençol freático superficial, geralmente entre matas de galeria e o cerrado *sensu stricto*, atuando como uma área de transição entre essas fitofisionomias (Eiten 1983; Tannus & Assis 2004; Munhoz & Felfili 2006b, 2007; Ribeiro & Walter 2008; Eugênio *et al.* 2011).

¹ Universidade Estadual Paulista - UNESP, Depto. Botânica, Instituto de Biociências de Rio Claro, Av. 24-A 1515, 13506-900, Rio Claro, SP, Brasil.

² Autor para correspondência: naiaralsbio@gmail.com

Devido às condições edáficas particulares dos campos úmidos, esses ambientes possuem flora bastante típica (Munhoz & Felfili 2008). A absorção de nutrientes se torna comprometida pelo estado de alagamento do solo, o que seleciona e restringe o número de espécies com adaptações morfofisiológicas tolerantes a essas condições abióticas e que conseguem persistir na comunidade (Ivanauskas *et al.* 1997; Amorim & Batalha 2006).

Apesar de serem considerados sistemas conservatórios de água, essas fisionomias atualmente apresentam-se ameaçadas, principalmente no que diz respeito à preservação dos aquíferos (Reatto *et al.* 1998). Devido à prática de drenagem para o uso agrícola, o nível dos lençóis freáticos vem sofrendo rebaixamento, sendo contaminados pelo uso indiscriminado de pesticidas e fertilizantes, e pelo despejo de esgotos (Meirelles *et al.* 2006), além dos distúrbios causados na vegetação original devido à significativa presença de plantas invasoras, causando a diminuição da riqueza florísticas nos campos úmidos (Batalha 1997).

Ainda que Kier *et al.* (2005) tenham afirmado que as áreas úmidas estão entre as fitofisionomias menos inventariadas do mundo, nos últimos anos, observa-se um interesse e consequente aumento dos estudos sobre a composição da vegetação (Batalha 1997; Araújo *et al.* 2002; Tannus & Assis 2004; Linsingen *et al.* 2006; Munhoz & Felfili 2006a, 2007; Rezende 2007; Tannus 2007; Amaral 2008), motivados pela grande riqueza florística, bem como pela ocorrência restrita destas formações quando associadas ao Cerrado, e pelas transformações que a paisagem vem passando devido às intensas ações antrópicas.

Com isso, essa contribuição tem como objetivo ampliar o conhecimento sobre as áreas campestres alagadas através do inventário das espécies ocorrentes no campo úmido situado na Fazenda Pedra Vermelha, Analândia, estado de São Paulo, e analisar comparativamente outras áreas de campos úmidos inventariados no Brasil.

Materiais e Métodos

O campo úmido estudado compreende 5 hectares localizados na Fazenda Pedra Vermelha (FPV) no município de Analândia, estado de São Paulo, entre as coordenadas 22°7'50"–8'1"S e 47°46'40"–53"O, a 760–770 m de altitude sobre o nível do mar. O clima da região é do tipo tropical de altitude - Cwa que, segundo Köppen possui temperaturas médias entre 18° e 23°C, com verões quentes e chuvosos e uma estação seca

no inverno, podendo ocorrer geadas esporádicas. Baseado na classificação da Empresa Brasileira de Pesquisa Agropecuária - Embrapa (2006) o solo da área é tido como organossolo por apresentar coloração escura, acúmulo de restos vegetais em decomposição, e por encontrar-se associado a superfície com pouca drenagem, com consequente alagamento.

Situado na porção sudoeste da propriedade, onde há um predomínio de vegetação de Cerrado, o campo úmido encontra-se delimitado a nordeste por plantação de eucalipto, e pela presença de matas de galeria inundáveis no entorno dos ribeirões do Feijão e Quebra Canela a sudeste e a oeste, respectivamente, os quais, juntamente com o lençol freático superficial, influenciam diretamente no nível de umidade do solo, principalmente na estação chuvosa, onde o alagamento apresenta-se maior quando comparado com a estação seca (Fig. 1).

Para o levantamento florístico no campo úmido da Fazenda Pedra Vermelha foram realizadas 18 expedições de coleta mensais, através de caminhadas aleatórias ao longo da área a partir da estrada de acesso (Filgueiras *et al.* 1994).

O material botânico foi preparado segundo técnicas usuais de herborização, conforme proposto por Fidalgo & Bononi (1984). As exsicatas foram incorporadas ao Herbário Rioclarense (HRCB) do Instituto de Biociências de Rio Claro da Universidade Estadual Paulista "Júlio de Mesquita Filho".

As identificações taxonômicas foram feitas por meio de literatura especializada e chaves de identificação, bem como por comparação mediante consultas a herbários, e por determinação de especialistas em diferentes grupos taxonômicos. A classificação dos espécimes segue o modelo proposto pelo Angiosperm Phylogeny Group (APG) III (2009) para o reconhecimento das famílias de angiospermas, enquanto que aquela das Lycophytas e Monilophytas estão baseadas, respectivamente, em Kramer & Tryon (1990) e Smith *et al.* (2006). As espécies foram classificadas quanto aos tipos de hábitos (herbáceo, subarbustivo, arbustivo, arbóreo e trepador) como definidos em Gonçalves & Lorenzi (2011).

Quanto á similaridade florística, utilizou-se o índice de Sorensen para comparar as diferentes áreas de campo úmido já inventariadas (Mueller-Dombois & Ellemberg 1974). A sinonimia dos táxons foi conferida através de Prado *et al.* (2015) e BFG (2015).

Figura 1 – Mapa da localização do campo úmido em relação à Fazenda Pedra Vermelha, situada no município de Analândia, São Paulo.

Figure 1 - Location's map of the moist grassland relative to Fazenda Pedra Vermelha, located in the municipality of Analândia, Sao Paulo.

Resultados e Discussão

Foram encontradas 178 espécies (Tab. 1) para o campo úmido da FPV, as quais estão distribuídas em 121 gêneros e 62 famílias, sendo 85% delas pertencentes ao grupo das Angiospermas (53 famílias), 13% ao das Monilófitas (8) e 2% das Licófitas (1).

Famílias como Asteraceae (19 espécies), Cyperaceae (15), Poaceae (14), Melastomataceae (13), Xyridaceae e Eriocaulaceae (8) apresentaramse com o maior número de espécies, totalizando 43% da riqueza registrada. As mesmas têm sido apontadas como as mais representativas nos estudos sobre a flora de áreas alagadas no Brasil, apesar de não estarem restritas a esse tipo de ambiente, visto que Asteraceae, Poaceae e Melastomataceae também estão entre aquelas mais diversas para o bioma Cerrado (Mendonça et al. 2008). Os gêneros de grande importância quantitativa são representados por *Xyris* (8 espécies), *Rhynchospora* (7), *Utricularia* (6) e *Ocotea* (4). Destes, *Xyris* e *Rhynchospora* também se destacaram nos levantamentos florísticos de regiões campestres úmidas.

A cobertura herbácea densa da área está representada por 63,5% das espécies coletadas. Acima deste estrato observam-se indivíduos arbustivos e subarbustivos que, juntos, equivalem

Tabela 1 – Lista das espécies coletadas no campo úmido da Fazenda Pedra Vermelha, Analândia, São Paulo indicando para cada espécie a família a qual pertence, o hábito e o número do coletor.

Table 1 – List of species collected in moist grassland in Fazenda Pedra Vermelha, Analândia, São Paulo indicating the species, the family, the habit and the number of collector.

Família / Espécie	Hábito	Número do coletor		
ALISMATACEAE				
Echinodorus paniculatus Micheli	Herbáceo	N.L.S. 303		
APIACEAE				
Eryngium ebracteatum Lam.	Herbáceo	N.L.S. 306		
APOCYNACEAE				
Mandevilla scabra (Hoffmanns. ex Roem. & Schult.) K.Schum.	Trepador	N.L.S. 298		
Mandevilla tenuifolia (J.C.Mikan) Woodson	Herbáceo	N.L.S. 289		
Oxypetalum pachygynum Decne.	Trepador	N.L.S. 341		
Peplonia axillaris (Vell.) Fontella & Rapini	Trepador	J.A.L. 9314		
AQUIFOLIACEAE				
Ilex affinis Gardner	Arbóreo	N.L.S. 235		
Ilex brasiliensis (Spreng.) Loes.	Arbóreo	N.L.S. 253		
ARACEAE				
Xanthosoma striatipes (K.Koch & C.D.Bouché) Madison	Herbáceo	N.L.S. 304		
ASTERACEAE				
Achyrocline alata (Kunth) DC.	Herbáceo	J.A.L. 9245		
Acilepidopsis echitifolia (Mart. ex DC.) H.Rob.	Herbáceo	J.A.L. 9210		
Ageratum conyzoides L.	Herbáceo	J.A.L. 9273		
Ageratum fastigiatum (Gardner) R.M.King & H.Rob.	Arbustivo	J.A.L. 9291		
Baccharis dracunculifolia DC.	Arbustivo	N.L.S. 320		
Baccharis junciformis DC.	Herbáceo	J.A.L. 9222		
Baccharis singularis (Vell.) G.M.Barroso	Arbustivo	J.A.L. 9199		
Chromolaena odorata (L.) R.M.King & H.Rob.	Arbustivo	J.A.L. 9201		
Clibadium armani (Balb.) Sch.Bip. ex O.E.Schulz	Arbustivo	N.L.S. 249		
Elephantopus palustris Gardner	Herbáceo	J.A.L. 9246		
Emilia sonchifolia (L.) DC. ex Wight	Herbáceo	J.A.L. 9254		
Gochnatia pulchra Cabrera	Arbustivo	J.A.L. 9265		
Heterocondylus cf. pumilus (Gardner) R.M.King & H.Rob.	Herbáceo	N.L.S. 273		
Heterocondylus vitalbae (DC.) R.M.King & H.Rob.	Arbustivo	J.A.L. 9251		
Jungia floribunda Less.	Herbáceo	J.A.L. 9264		
Lessingianthus glabratus (Less.) H.Rob.	Herbáceo	J.A.L. 9197		
Mikania micrantha Kunth	Trepador	J.A.L. 9261		
Verbesina sordescens DC.	Arbustivo	J.A.L. 9255		
Vernonanthura cf. westiniana (Less.) H.Rob.	Arbustivo	J.A.L. 9198		
BEGONIACEAE				
Begonia cucullata Willd.	Herbáceo	J.A.L. 9221		
BIGNONIACEAE				

Família / Espécie	Hábito	Número do coletor	
Jacaranda caroba (Vell.) DC.	Arbustivo	N.L.S. 347	
BLECHNACEAE			
Blechnum brasiliense Desv.	Herbáceo	J.A.L. 9321	
Blechnum schomburgkii (Klotzsch) C.Chr.	Herbáceo	J.A.L. 9290	
CAMPANULACEAE			
Lobelia exaltata Pohl	Herbáceo	J.A.L. 9208	
Siphocampylus sulfureus E. Wimm.	Herbáceo	N.L.S. 297	
CARDIOPTERIDACEAE			
Citronella gongonha (Mart.) R.A.Howard	Arbóreo	N.L.S. 236	
CLUSICACEAE			
Clusia criuva Cambess.	Arbóreo	N.L.S. 299	
COMMELINACEAE			
Commelina diffusa Burm.f.	Herbáceo	J.A.L. 9220	
CYATHEACEAE			
Cyathea atrovirens (Langsd. & Fisch.) Domin	Herbáceo	J.A.L. 9214	
Cyathea delgadii Sternb.	Herbáceo	J.A.L. 9213	
CYPERACEAE			
Cyperus cf. distans L.	Herbáceo	N.L.S. 315	
Cyperus haspan L.	Herbáceo	J.A.L. 9206	
Cyperus cf. luzulae (L.) Retz.	Herbáceo	J.A.L. 9293	
Eleocharis minima Kunth	Herbáceo	N.L.S. 338	
Eleocharis sp. 1	Herbáceo	N.L.S. 337	
Rhynchospora albiceps Kunth	Herbáceo	N.L.S. 263	
Rhynchospora corymbosa (L.) Britton	Herbáceo	J.A.L. 9297	
Rhynchospora emaciata (Nees) Boeckeler	Herbáceo	N.L.S. 319,	
Rhynchospora globosa (Kunth) Roem. & Schult.	Herbáceo	N.L.S. 264	
Rhynchospora aff. marisculus Lindl. & Nees	Herbáceo	N.L.S. 33	
Rhynchospora aff. rugosa (Vahl) Gale	Herbáceo	N.L.S. 238	
Scleria latifolia Sw.	Herbáceo	J.A.L. 9318	
Scleria scabra Willd.	Herbáceo	J.A.L. 9250	
Sp. nov. ined.	Herbáceo	J.A.L. 9275	
DIOSCOREACEAE			
Dioscorea hassleriana Chodat	Trepador	J.A.L. 9217	
DROSERACEAE			
Drosera communis A.StHil.	Herbáceo	N.L.S. 312	
ERICACEAE			
Agarista chlorantha (Cham.) G.Don	Arbustivo	N.L.S. 259	
Gaylussacia brasiliensis (Spreng.) Meisn.	Arbustivo	J.A.L. 9278	
Gaylussacia pseudogaultheria Cham. & Schltdl.	Arbustivo	N.L.S. 246	
ERIOCAULACEAE			
Actinocephalus polyanthus (Bong.) Sano	Herbáceo	N.L.S. 305	

Família / Espécie	Hábito	Número do coleto
Comanthera xeranthemoides (Bong.) L.R.Parra & A.M.Giuletti	Herbáceo	N.L.S. 262
Eriocaulon elichrysoides Bong.	Herbáceo	N.L.S. 255
Paepalanthus flaccidus (Bong.) Kunth	Herbáceo	J.A.L. 9232
Paepalanthus aff. planifolius (Bong.) Körn.	Herbáceo	N.L.S. 358
Syngonanthus caulescens (Poir.) Ruhland	Herbáceo	N.L.S. 245
Syngonanthus densiflorus (Körn.) Ruhland	Herbáceo	J.A.L. 9234
Syngonanthus helminthorrhizus (Mart. ex Körn.) Ruhland	Herbáceo	J.A.L. 9233
ERYTHROXYLACEAE		
Erythroxylum cuneifolium (Mart.) O.E.Schulz	Arbustivo	N.L.S. 327
EUPHORBIACEAE		
Croton cf. gracilipes Baill.	Arbóreo	J.A.L. 9215
FABACEAE		
Aeschynomene sensitiva Sw.	Herbáceo	J.A.L. 9316
Chamaecrista cathartica (Mart.) H.S.Irwin & Barneby	Arbustivo	N.L.S. 342
Chamaecrista rotundifolia (Pers.) Greene	Herbáceo	N.L.S. 318
Senna pendula (Humb. & Bompl. ex Willd.) H.S. Irwin & Barneby	Arbustivo	J.A.L. 9306
GENTIANACEAE		
Chelonanthus alatus (Aubl.) Pulle	Herbáceo	J.A.L. 9240
Helia oblongifolia Mart.	Herbáceo	N.L.S. 284
Schultesia aptera Cham.	Herbáceo	J.A.L. 9239
Schultesia gracilis Mart.	Herbáceo	J.A.L. 9284
GESNERIACEAE		
Sinningia elatior (Kunth) Chautems	Herbáceo	N.L.S. 279
GLEICHENIACEAE		
Dicranopteris flexuosa (Schrad.) Underw.	Herbáceo	J.A.L. 9209
HYPERICACEAE		
Hypericum brasiliense Choisy	Herbáceo	J.A.L. 9307
IRIDACEAE		
Sisyrinchium vaginatum Spreng.	Herbáceo	N.L.S. 242
Iridaceae Indeterminada 1	Herbáceo	N.L.S. 293
LAMIACEAE		
Hyptis caespitosa A.StHil. ex Benth.	Herbáceo	N.L.S. 336
Hyptis pulchella Briq.	Herbáceo	N.L.S. 333
Hyptis sp. 1	Arbustivo	J.A.L. 9272
LAURACEAE		
Ocotea lancifolia (Schott) Mez	Arbóreo	N.L.S. 354
Ocotea pulchella (Nees & Mart.) Mez	Arbóreo	N.L.S. 280
Ocotea tristis (Nees & Mart.) Mez	Arbustivo	J.A.L. 9298
Ocotea velloziana (Meisn.) Mez	Arbóreo	N.L.S. 352
Persea venosa Nees & Mart.	Arbóreo	J.A.L. 9271
LENTIBULARIACEAE		

Família / Espécie	Hábito	Número do coletor
Utricularia nana A.StHil. & Girard	Herbáceo	N.L.S. 314
Utricularia nervosa G.Weber ex Benj.	Herbáceo	N.L.S. 267
Utricularia praelonga A.StHil. & Girard	Herbáceo	N.L.S. 272
Utricularia tricolor A.StHil.	Herbáceo	N.L.S. 269
Utricularia triloba Benj.	Herbáceo	N.L.S. 326
Utricularia sp.1	Herbáceo	N.L.S. 286
LORANTHACEAE		
Struthanthus marginatus (Desr.) Blume	Arbustivo	N.L.S. 349
LYCOPODIACEAE		
Palhinhaea cernua (L.) Franco & Vasc.	Herbáceo	N.L.S. 344
LYGODIACEAE		
Lygodium volubile Sw.	Trepador	J.A.L. 9203
MALPIGHIACEAE		
Byrsonima intermedia A.Juss.	Arbustivo	J.A.L. 9302
Heteropterys umbellata A.Juss.	Arbustivo	N.L.S. 288
MALVACEAE		
Byttneria palustris Cristóbal	Subarbustivo	N.L.S. 292
MELASTOMATACEAE		
Acisanthera quadrata Pers.	Subarbustivo	N.L.S. 290
Cambessedesia hilariana (Kunth) DC.	Herbáceo	N.L.S. 283
Leandra polystachya (Naudin) Cogn.	Arbustivo	J.A.L. 9224
Macairea radula (Bonpl.) DC.	Arbustivo	J.A.L. 9228
Miconia chamissois Naudin	Arbóreo	N.L.S. 350
Miconia theizans (Bonpl.) Cogn.	Arbustivo	J.A.L. 9252
Microlepis oleifolia (DC.) Triana	Arbustivo	J.A.L. 9223
Rhynchanthera ursina Naudin	Arbustivo	J.A.L. 9229
Rhynchanthera verbenoides Cham.	Herbáceo	J.A.L. 9281
Tibouchina gracilis (Bonpl.) Cogn.	Herbáceo	J.A.L. 9309
Tibouchina herbacea (DC.) Cogn.	Herbáceo	J.A.L. 9226
Tibouchina ursina (Cham.) Cogn.	Arbustivo	J.A.L. 9227
Trembleya parviflora (D.Don) Cogn.	Arbustivo	N.L.S. 346
MELIACEAE		
Guarea macrophylla Vahl	Arbóreo	N.L.S. 248
MYRTACEAE (Sobra, M UFSJ)		
Myrcia hartwegiana (O.Berg) Kiaersk.	Arbóreo	J.A.L. 9267
Myrcia laruotteana Cambess.	Arbóreo	N.L.S. 265
OCHNACEAE		
Ouratea spectabilis (Mart.) Engl.	Arbustivo	J.A.L. 9304
Sauvagesia racemosa A.StHil.	Herbáceo	N.L.S. 300
ONAGRACEAE		
Ludwigia nervosa (Poir.) H.Hara	Arbustivo	J.A.L. 9230

Família / Espécie	Hábito	Número do coletor		
Ludwigia tomentosa (Cambess.) H.Hara	Arbustivo	N.L.S. 251		
ORCHIDACEAE				
Cleistes aff. montana Gardner	Herbáceo	N.L.S. 268		
Ionopsis utricularioides (Sw.) Lindl.	Herbáceo	N.L.S. 260		
Prescottia aff. oligantha (Sw.) Lindl.	Herbáceo	N.L.S. 351		
Rodriguezia decora (Lem.) Rchb.f.	Herbáceo	N.L.S. 252		
OSMUNDACEAE				
Osmunda regalis L.	Herbáceo	J.A.L. 9320		
Osmundastrum cinnamomeum (L.) C.Presl	Herbáceo	J.A.L. 9313		
PHYLLANTHACEAE				
Phyllanthus stipulatus (Raf.) G.L.Webster	Herbáceo	N.L.S. 296		
PIPERACEAE				
Piper fuligineum (Kunth) Steud.	Arbustivo	N.L.S. 234		
POACEAE (Viana, P MPEG)				
Andropogon bicornis L.	Herbáceo	J.A.L. 9308		
Andropogon virgatus Desv.	Herbáceo	J.A.L. 9200		
Andropogon sp. 1	Herbáceo	N.L.S. 281		
Anthaenantia lanata (Kunth) Benth.	Herbáceo	N.L.S. 282		
Dichanthelium surrectum (Chase ex Zuloaga & Morrone) Zuloaga	Herbáceo	J.A.L. 9207		
Eriochrysis cayennensis P.Beauv.	Herbáceo	J.A.L. 9310		
Eriochrysis holcoides (Nees) Kuhlm.	Herbáceo	J.A.L. 9247		
Luziola bahiensis (Steud.) Hitchc.	Herbáceo	J.A.L. 9315		
Otachyrium versicolor (Döll) Henrard	Herbáceo	N.L.S. 325		
Paspalum cordatum Hack.	Herbáceo	N.L.S. 321		
Saccharum asperum (Nees) Steud.	Herbáceo	N.L.S. 241		
Saccharum villosum Steud.	Herbáceo	J.A.L. 9204		
Trichanthecium parvifolium (Lam.) Zuloaga & Morrone	Herbáceo	J.A.L. 9216		
Poaceae Indeterminada 1	Herbáceo	N.L.S. 339		
POLYGALACEAE				
Polygala sabulosa A.W.Benn.	Herbáceo	N.L.S. 243		
POLYGONACEAE				
Polygonum meisnerianum Cham. & Schltdl.	Herbáceo	J.A.L. 9305		
Polygonum rubricaule Cham.	Herbáceo	J.A.L. 9303		
POLYPODIACEAE				
Pleopeltis pleopeltifolia (Raddi) Alston	Herbáceo	N.L.S. 356		
Serpocaulon vacillans (Link) A.R.Sm.	Herbáceo	N.L.S. 239		
PRIMULACEAE				
Cybianthus densicomus Mart.	Arbustivo	J.A.L. 9317		
Myrsine guianensis (Aubl.) Kuntze	Arbóreo	N.L.S. 322		
PTERIDACEAE				
Doryopteris lomariacea Klotzsch	Herbáceo	J.A.L. 9212		

Família / Espécie	Hábito	Número do coletor		
RHAMNACEAE				
Rhamnus sphaerosperma Sw.	Arbóreo	N.L.S. 244		
ROSACEAE				
Prunus myrtifolia (L.) Urb.	Arbóreo	N.L.S. 257		
RUBIACEAE				
Borreria multiflora (DC.) Bacigalupo & E.L.Cabral	Herbáceo	J.A.L. 9253		
Coccocypselum aureum (Spreng.) Cham. & Schltdl.	Herbáceo	N.L.S. 247		
Galianthe valerianoides (Cham. & Schltdl.) E.L.Cabral	Herbáceo	N.L.S. 295		
Galium equisetoides (Cham. & Schltdl.) Standl.	Herbáceo	N.L.S. 261		
Galium hypocarpium (L.) Endl. ex Griseb.	Herbáceo	N.L.S. 248		
Posoqueria latifolia (Rudge) Schult.	Arbóreo	N.L.S. 250		
Psychotria tenerior (Cham.) Mull.Arg.	Arbustivo	N.L.S. 287		
SIPARUNACEAE				
Siparuna brasiliensis (Spreng.) A.DC.	Arbustivo	J.A.L. 9292		
SMILACACEAE				
Smilax polyantha Griseb.	Trepadeira	N.L.S. 270		
SOLANACEAE				
Schwenckia curviflora Benth.	Herbáceo	N.L.S. 311		
Solanum paniculatum L.	Arbustivo	N.L.S. 271		
SYMPLOCACEAE				
Symplocos sp. 1	Arbóreo	N.L.S. 330		
THELYPTERIDACEAE				
Thelypteris rivularioides (Fée) Abbiatti	Herbáceo	N.L.S. 323		
THYMELAEACEAE				
Daphnopsis racemosa Griseb.	Arbóreo	N.L.S. 258		
URTICACEAE				
Cecropia pachystachya Trécul	Arbóreo	J.A.L. 9202		
WINTERACEAE				
Drimys brasiliensis Miers	Arbóreo	J.A.L. 9279		
XYRIDACEAE				
Xyris fallax Malme	Herbáceo	J.A.L. 9235		
Xyris laxifolia Mart.	Herbáceo	N.L.S. 275		
Xyris rigida Kunth	Herbáceo	N.L.S. 254		
Xyris savanensis Miq.	Herbáceo	N.L.S. 285		
Xyris schizachne Mart.	Herbáceo	N.L.S. 294		
Xyris stenocephala Malme	Herbáceo	N.L.S. 277		
Xyris tenella Kunth	Herbáceo	N.L.S. 291		
Xyris tortula Mart.	Herbáceo	N.L.S. 278		

a 20%, além de indivíduos arbóreos de pequeno porte com 12,5% dos táxons. A proporção do número de espécies do componente herbáceo-subarbustivo em relação ao arbustivo-arbóreo foi de aproximadamente 2:1. Também registrou-se a presença de uma arbustiva hemiparasita da família Loranthaceae, e de espécies de hábito escandente, pertencentes às famílias Apocynaceae, Asteraceae, Dioscoreaceae, Lygodiaceae e Smilacaceae, que corresponde a 4% das espécies.

Constatou-se a ocorrência de cinco espécies listadas nas categorias de avaliações de risco de extinção para o estado de São Paulo de acordo com Lista Vermelha da Flora de São Paulo (Mamede et al. 2007), incluindo Echinodorus paniculatus, Mandevilla tenuifolia, Rhynchanthera ursina, R. verbenoides, e Galium equisetoides; e outras duas para a flora brasileira, baseado na Lista Vermelha da Flora do Brasil (Martinelli & Moraes 2013): Schwenckia curviflora e Xyris rigida. Entre as principais causas que as enquadram como ameaçadas pode-se citar a fragmentação dos habitats causadas pelas devastações ambientais; o fato de serem espécies típicas do bioma Cerrado o qual é considerado uma das 25 áreas prioritárias para a conservação, os chamados hotspots mundiais (Myers et al. 2000); a sua distribuição restrita; e/ou a ausência de novos registros de coleta, como assim diagnosticado para Schwenckia curviflora. Essa é uma espécie exclusiva de áreas úmidas e brejosas do sul e sudeste do Brasil que nos últimos 30 anos foi registrada em apenas 3 coletas. No estado de São Paulo, a última foi realizada em 1933 (Martinelli & Moraes 2013), sendo a presente coleta do campo úmido da FPV o quarto e mais recente registro da espécie.

Para o campo úmido da FPV, uma aparente espécie nova não descrita da família Cyperaceae foi registrada (M. Alves, comunicação pessoal). *Eriochrysis holcoides* aparece como um novo registro para o estado de São Paulo, de acordo com *Checklist* das Spermatophytas do Estado de São Paulo, (Wanderley *et al.* 2011) e com BFG (2015).

Esses resultados demonstram para o conhecimento da distribuição das espécies a importância de inventários criteriosos que evidenciam espécies não descritas, em extinção e novos registros, fenômenos particularmente frequentes em florística de áreas negligenciadas como os campos úmidos. Para Amaral (2008), muitas espécies presentes nessas formações, ou sua ocorrência ali, podem estar desconhecidas devido à escassez de informações.

A presença de alguns táxons com habitats de ocorrência restritos podem atuar como indicadora de áreas úmidas, tais como *Rhynchospora albiceps*, *R. globosa*, *R. rugosa* e *Syngonanthus densiflorus* encontradas somente em áreas de campo úmido e em veredas sobre solos hidromórficos (Munhoz *et al.* 2008; Munhoz & Felfili 2008). Já outros, como *Emilia sonchifolia* e *Andropogon bicornis*, por serem vistas em áreas campestres alagadas antropizadas são consideradas por Guimarães *et al.* (2002), e Munhoz & Felfili (2007) como invasoras dessas formações.

A variação sazonal entre uma estação seca e outra chuvosa é um fenômeno característico do bioma Cerrado. Na área amostrada, essa variação climática foi visivelmente observada influenciando a composição florística. A presença de algumas espécies foi registrada somente ao longo do período de estiagem, a exemplo de Eriocaulon elichrysoides, evidenciando que algumas espécies podem brotar em condições de seca, quando há redução do sombreamento e do alagamento do solo, talvez aproveitando a diminuição da competição para se desenvolverem (Munhoz & Felfili 2008). Por outro lado, outras aparentam ser mais sensíveis a estas variações, como é o caso de Drosera communis, a qual foi observada em um período muito limitado, apenas no mês de janeiro, e representada por um indivíduo. Em ambientes onde as condições ambientais e do solo são variáveis e interferem diretamente no ciclo reprodutivo das espécies que os colonizam, como nas formações do Cerrado, observa-se a relevância e a necessidade de aplicar períodos de amostragem maiores do que um ano nos levantamentos florísticos, buscando uma maior eficiência da coleta de táxons crípticos.

A fisionomia do campo úmido amostrado tem como característica a formação de touceiras emaranhadas de espécies com folhas filiformes ou estreitas, pertencentes principalmente às famílias Cyperaceae, Poaceae e Xyridaceae, por entre as quais indivíduos de espécies herbáceassubarbustivas conseguem transpor e expor as inflorescências e/ou infrutescências através de longos escapos. Algumas são capazes de se estabelecerem entre touceiras, no interior dos 'tuneis' formados pelas folhas que se curvam para baixo criando um ambiente com pouca luminosidade e maior umidade. Ao longo da área, indivíduos arbóreos mostraram-se reunidos principalmente em pequenas "ilhas" levemente elevadas em relação ao terreno circundante, onde se observa uma redução no grau de umidade do solo.

Segundo Guimarães e colaboradores (2002), essa diferença na estrutura e na composição de espécies entre ou dentro de ambientes úmidos pode ser uma consequência das alterações no nível do lenço freático. Em meio ao campo úmido da Fazenda Pedra Vermelha, tal fato tem, possivelmente, permitido a instalação de um número significativo de indivíduos arbóreo-arbustivos (12,5% das espécies registradas).

Em ambientes alagados, o estabelecimento do estrato arbóreo-arbustivo é limitado pelas condições de umidade do solo, que acabam influenciando negativamente a germinação e a permanência de plantas de grande porte (Munhoz & Felfili 2007; Brito et al. 2008; Ribeiro & Walter 2008). São relativamente poucas as espécies arbóreas tropicais que desenvolveram mecanismos adaptativos que permitem sua sobrevivência nas condições anaeróbicas causadas pelo alagamento. Em se tratando de áreas de campo limpo úmido, é possível registrar a total ausência de espécies arbóreas, como foi observado para a Fazenda da Máquina, no município de Itirapina, São Paulo (Tannus & Assis 2004).

Para o campo úmido da FPV, sabe-se que desde a década de 80 a área encontra-se isolada da ação do fogo. Este longo período de ausência de queimadas também pode atuar como um fator favorável à instalação das espécies lenhosas (Oliveira-Filho & Ratter 2002). No Cerrado, as áreas campestres são mantidas por queimadas frequentes, que são capazes de alterar a estrutura original da vegetação, reduzindo a densidade do estrato arbóreo, mais sensível à presença do fogo (Coutinho 1978; Ratter et al. 1997; Munhoz & Felfili 2006b).

Além disso, por encontrar-se inserida em uma região de transição entre remanescente de cerrado e de mata de galeria, essas fitofisionomias podem estar exercendo uma forte influência quanto à manutenção e à composição das espécies arbóreas. O que sugere a ocorrência de uma substituição gradativa de espécies no campo úmido da FPV, visto que o aumento progressivo desses indivíduos supostamente vem causando um sombreamento das herbáceas e um consequente declínio da abundância das mesmas, de forma a permitir a futura instalação sucessional de uma estrutura florestal (Scholes & Archer 1997) se as condições do solo se alterarem. No campo úmido da FPV, a presença de um gênero predominantemente arbóreo (Ocotea) dentre aqueles com o maior número de espécies registradas pode ser vista como um indício dessa sucessão de estratos.

Tannus (2007) também observou esse fenômeno no campo úmido da Estação Ecológica de Itirapina, e afirmou que a instauração de espécies típicas de florestas paludosas e de galeria, como *Miconia chamissois*, *M. theaezans*, *Ilex affinis*, *Drimys brasiliensis*, *Cecropia pachystachya*, *Cyathea atrovirens* e *C. delgadii*, pode ser considerado um indicativo da fase inicial desse processo.

Diante das possíveis evidências da instalação sucessional de uma estrutura florestal no campo úmido da FPV, salienta-se a necessidade de estudos a longo prazo sobre a dinâmica florística da área a fim de verificar-se, ou não, a presença desta substituição de estratos.

Apesar da sua pequena extensão, a área apresentou um relevante número de espécies coletadas, indicando uma expressiva riqueza florística quando comparada a outros levantamentos em formações campestres alagadas associadas ao bioma Cerrado: 64 espécies em um campo úmido do Parque Estadual do Cerrado, em Jaguariaíva, estado do Paraná (Linsingen et al. 2006); 207 espécies para o campo limpo úmido em Alto Paraíso de Goiás (Munhoz & Felfili 2006a); 197 (Munhoz & Felfili 2007) e 299 (Amaral 2008) espécies para a Fazenda Água Limpa no Distrito Federal, 136 espécies em campos limpos úmidos associados a veredas no Parque Estadual de Jalapão em Tocantins (Rezende 2007); 526 espécies em quatro comunidades de veredas em Minas Gerais, no município de Uberlândia (Araújo et al. 2002). No estado de São Paulo, registraram-se para o município de Itirapina 114 espécies em área particular (Tannus & Assis 2004), 167 espécies na Estação Ecológica de Itirapina (Tannus 2007) e 189 espécies na Unidade de Pesquisa e Desenvolvimento de Itararé (Tannus 2007); e para a Área de Relevante Interesse Ecológico Cerrado Pé-de-Gigante, em Santa Rita do Passa Quatro, listou-se 150 espécies (Batalha 1997).

De acordo com o índice de Sorensen, observou-se uma similaridade florística baixa entre o campo úmido amostrado e as áreas campestres alagadas no Brasil (Tab. 2). Esse resultado é visto mesmo entre localidades pouco distantes, como ocorre entre a Fazenda da Máquina (Tannus & Assis 2004), a Estação Ecológica de Itirapina (Tannus 2007) e a Fazenda Pedra Vermelha, visto que o município de Itirapina, encontra-se a 23km de Analândia. Ainda assim, as composições florísticas destas áreas foram as que mais se assemelharam ao campo úmido amostrado, por apresentarem os maiores valores de índice.

Tabela 2 – Similaridade florística entre áreas campestres alagadas com o campo úmido da Fazenda Pedra Vermelha, Analândia, São Paulo. ISS: índice de similaridade de Sorensen. *Estudo florístico realizado em parcelas. **Ausência de informação sobre o tamanho da área amostrada. ***Desconsiderou as Lycofitas e Monilófitas.

Table 2 – Floristic similarity between wetlands areas and the moist grassland in Fazenda Pedra Vermelha, Analândia, São Paulo. ISS: Sorensen similarity index. * Floristic study carried out in plots. ** Without information about the size of the sampled area. *** Studies that discounted the Lycofitas and Monilófitas.

Local de estudo	Área (ha)	Tempo de coleta (meses)		Número de espécie em comum	(ISS) %	Referência
ARIE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro - SP)	7	23	150	21	12,80	Batalha 1997***
Estação Ecológica do Panga - área 1 (Uberlândia - MG)	5	24	218	31	15,57	Araújo et al. 2002
Estação Ecológica do Panga - área 2 (Uberlândia - MG)	12	24	242	38	17,61	Araújo et al. 2002
Reserva Vegetal do Clube Caça e Pesca Itororó (Uberlândia - MG)	45	24	307	41	16,49	Araújo et al. 2002
Margem da estrada de Campo Florido (Uberlândia - MG)	8	24	266	35	15,31	Araújo et al. 2002
Fazenda da Máquina (Itirapina - SP)	67	46	124	41	27,15	Tannus & Assis 2004
O Parque Estadual do Cerrado (Jaguariaíva - PR)	24,70	28	64	16	13,22	Linsingen et al. 2006***
Fazenda Água Fria (Alto do Paraíso - GO)	21	14	207	21	10,90	Munhoz e Felfili (2006a)
Fazenda Água Limpa (Distrito Federal)	16	18	197	20	10, 66	Munhoz e Felfili 2007
Parque Estadual do Jalapão (Tocantins)	-	24	136	11	6,41	Rezende 2007
Estação Ecológica de Itirapina (Itirapina - SP)	56	36	167	57	33,04	Tannus 2007*
Unidade de Pesquisa e Desenvolvimento de Itararé (Itararé - SP)	-	12	89	35	26,21	Tannus 2007**
Fazenda Água Limpa (Distrito Federal)	16	12	221	34	16,79	Amaral (2008)
Fazenda Pedra Vermelha (Analândia - SP)	5	18	178	-	-	Presente estudo

Quando comparado o tamanho da área amostral *versus* a riqueza de espécies, observase que o campo úmido da Fazenda da Máquina (Tannus & Assis 2004), da Estação Ecológica de Itirapina (Tannus 2007) e do Parque Estadual do Cerrado (Linsingen *et al.* 2006) possuem área significativamente maior em relação à área do campo úmido amostrado, contudo relatam a presença de um número menor de espécies. Esses resultados reforçam o conceito estabelecido por Odum (2001), que, embora ocorrente com frequência, nem sempre há uma proporção direta entre o aumento do número de espécie e o aumento da área amostrada.

Para Moreira *et al.* (2015), as físionomias de campo úmido e vereda situadas no Brasil Central

possuem uma forte similaridade estrutural e florística, principalmente em relação ao estrato herbáceo. Contudo, em se tratando de áreas localizadas no sudeste brasileiro, baseado no Índice de Sorensen entre a área campestre alagada da Fazenda Pedra Vermelha, São Paulo e as quatro veredas situadas no município de Uberlândia, Minas Gerais (Araújo *et al.* 2002), não foi possível observar-se a existência de uma significativa similaridade florística entre essas formações. Esse resultado permite propor uma investigação aprofunda e detalhada sobre a flora dessas, e de outras áreas campestres alagadas da região Sudeste, a fim de verificar-se, assim como no Brasil Central, é possível diagnosticar uma afinidade florística entre elas.

Fundamentado nos resultados obtidos através da listagem das espécies ocorrentes no campo úmido da FPV, consta-se o quão pouco se conhece sobre a composição florística e estrutura das formações alagadas. Ressalta-se a relevância e a necessidade de multiplicação de investigações sobre a flora dessas áreas negligenciadas. Além disso, torna-se evidente a importância de se manter o atual status de conservação do campo úmido amostrado, a fim de proteger as espécies ameaçadas, bem como conservar os recursos hídricos e edáficos, além de proporcionar e facilitar meios e incentivos para atividades de pesquisa científica, estudos e monitoramento ambiental.

Agradecimentos

À Fapesp, a bolsa de Mestrado concedida a NLS (processo 2012/12772-5). Ao MCT/CNPq/MEC/CAPES/PROTAX (processo 562240/2010-1), e ao CNPq, a bolsa de produtividade (processo 300240/2009-0), os dois últimos concedidos a JAL. Aos especialistas que auxiliaram na identificação de espécies e aos proprietários da Fazenda Pedra Vermelha.

Referências

- Amaral, A.G. 2008. Mudanças estruturais e florística do estrato herbáceo-arbustivo em um campo sujo e campo limpo úmido na fazenda Água Limpa DF após um período de sete anos. Dissertação de Mestrado. Universidade de Brasília, Brasília. 180p.
- Amorim, P.K. & Batalha, M.A. 2006. Soil characteristics of a hyperseasonal cerrado compared to a seasonal cerrado and a floodplain grassland: implications for plant community structure. Brazilian Journal of Biology 66: 661-670.
- Angiosperm Phylogeny Group (APG). 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121.
- Araújo, G.M.; Barbosa, A.A.A.; Arantes, A.A. & Amaral, A.F. 2002. Composição florística de veredas no Município de Uberlândia, MG. Revista Brasileira de Botânica 25: 475-493.
- Batalha, M.A. 1997. Análise da vegetação da ARIE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, Goiás). Dissertação de Mestrado. Universidade de São Paulo, São Paulo. 184p.
- BFG. 2015. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia 66: 1085-1113.
- Brito, E.R.; Martins, S.V.; Oliveira-Filho, A.T.; Silva, E. & Silva, A.F. 2008. Estrutura fitossociológica de um fragmento natural de floresta inundável em área de Campo Sujo, Lagoa da Confusão, Tocantins. Acta Amazônica 38: 379-386.

Coutinho, L.M. 1978. O conceito de cerrado. Revista Brasileira de Botânica 1: 17-23.

- Eiten, G. 1983. Classificação da Vegetação do Brasil. CNPq/ Coordenação Editorial, Brasília. 305p.
- Eugênio, C.U.O.; Munhoz, C.B.R. & Felfili, J.M. 2011. Dinâmica temporal do estrato herbáceo-arbustivo de uma área de campo limpo úmido em Alto Paraíso de Goiás, Brasil. Acta Botanica Brasilica 25: 497-507.
- Empresa Brasileira de Pesquisa Agropecuária Embrapa. 2006. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. Embrapa Produção de Informação, Brasília; Embrapa Solos, Rio de Janeiro. 306p.
- Fidalgo, O. & Bononi, V.L.R. 1984. Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo. 62p.
- Filgueiras, T.S.; Nogueira, P.E.; Brochado, A.L. & Guala II, G.F. 1994. Caminhamento - um método expedito para levantamentos florísticos qualitativos. Caderno de Geociência 12: 39-43.
- Gonçalves, E.G. & Lorenzi, H. 2011. Morfologia vegetal: organografia e dicionário ilustrado de morfologia das plantas vasculares. 2ª ed. Editora Plantarum, Nova Odessa. 416p.
- Guimarães, A.J.M.; Araújo, G.M. & Corrêa, G.F. 2002. Estrutura fitossociológica em área natural e antropizada de uma vereda em Uberlândia, MG. Acta Botanica Brasilica 16: 317-329.
- Ivanauskas, N.M.; Rodrigues, R.R. & Nave, A.G. 1997.
 Aspectos ecológicos de um trecho de floresta de brejo em Itatinga, SP: florística, fitossociologia e seletividade de espécies. Revista Brasileira de Botânica 20: 139-153.
- Kier, G.; Mutke, J.; Dinerstein, E.; Ricketts, T.H.; Küper, W.; Kreft, H. & Barthlot, W. 2005. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography 32: 1107-1116.
- Kramer, K.U. & Tryon, R.M. 1990. Introduction to the treatment of pterodophytes. *In*: Kramer, K.U. & Green, P.S. (eds.). The families and genera of vascular plants.
 I. Pteridophytes and Gymnosperms. Springer-Verlag, Berlin. Pp. 12-13.
- Linsingen, L.V.; Sonehara, J.S.; Uhlmann, A. & Cervi, A. 2006. Composição florística do Parque Estadual do Cerrado de Jaguariaíva, Paraná, Brasil. Acta Biológica Paranaense 35: 197-232.
- Mamede, M.C.H.; Souza, V.C.; Prado, J.; Barros, F.; Wanderley, M.G.L. & Rando, J.G. 2007. Livro vermelho das espécies vegetais ameaçadas do estado de São Paulo. Instituto de Botânica, São Paulo. 158p.
- Martinelli, G. & Moraes, M.A. (org.). 2013. Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro. 1100p.
- Meirelles, M.L.; Ferreira, E.A.B. & Franco, A.C. 2006. Dinâmica sazonal do carbono em campo úmido do Cerrado. Série Documentos, 164. Embrapa Cerrados, Planaltina. 29p.

- Mendonça, R.C.; Felfili J.M.; Walter, B.M.T.; Júnior, M.C.S.; Rezende, A.V.; Filgueiras, T.S.; Nogueira, P.E. & Fagg, C.W. 2008. Flora vascular do bioma Cerrado: checklist com 12.356 espécies. *In*: Sano, S.M.; Almeida, S.P. & Ribeiro, J.F. (eds.). Cerrado: ecologia e flora. Embrapa Informação Tecnológica, Brasília. Pp. 423-1279.
- Moreira, S.N.; Eisenlohr, P.V.; Pott, A.; Pott, V.J. & Oliveira-Filho, A.T. 2015. Similar vegetation structure in protected and non-protected wetlands in Central Brazil: conservation significance. Environmental Conservation 42: 356-362.
- Munhoz, C.B.R. & Felfili, J.M. 2006a. Floristic of the herbaceous and subshrub layer of a moist grassland in the Cerrado biosphere reserve (Alto Paraíso de Goiás), Brazil. Edinburgh Journal of Botany 63: 343-354.
- Munhoz, C.B.R. & Felfili, J.M. 2006b. Fitossociologia do estrato herbáceo-subarbustivo de uma área de campo sujo no Distrito Federal, Brasil. Acta Botanica Brasilica 20: 671-685.
- Munhoz, C.B.R. & Felfili, J.M. 2007. Florística do estrato herbáceo-subarbustivo de um campo limpo úmido em Brasília, Brasil. Biota Neotropica 7: 205-215.
- Munhoz, C.B.R. & Felfili, J.M. 2008. Fitossociologia do estrato herbáceo-subarbustivo em campo limpo úmido no Brasil Central. Acta Botanica Brasilica 22: 905-913.
- Munhoz, C.B.R.; Felfili, J.M. & Rodrigues, C. 2008. Species-environment relationship in the herb-subshrub layer of a moist Savanna site, Federal District, Brazil. Brazilian Journal of Biology 68: 25-35.
- Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York. 547p.
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 430: 853-858.
- Odum, E.P. 2001. Fundamentos de ecologia. Fundação Calouste Gulbekian, Lisboa. 235p.
- Oliveira-Filho, A.T. & Ratter, J.A. 2002. Vegetation physiognomies and woody flora of the Cerrado biome. *In*: Oliveira, P.S. & Marquis, R.J. (eds.). The Cerrados of Brazil. Columbia University Press, New York. Pp. 91-120.
- Prado, J.; Sylvestre, L.S.; Labiak, P.H.; Windisch, P.G.; Salino, A.; Barros, I.C.L.; Hirai, R.Y.; Almeida, T.E.; Santiago, A.C.P.; Kieling-Rubio, M.A.; Pereira, A.F.N.; Øllgaard, B.; Ramos, C.G.V.; Mickel, J.T.;

- Dittrich, V.A.O.; Mynssen, C.M.; Schwartsburd, P.B.; Condack, J.P.S.; Pereira, J.B.S.& Matos, F.B. 2015. Diversity of ferns and lycophytes in Brazil. Rodriguésia 66: 1073-1083.
- Ratter, J.A.; Ribeiro, J.F. & Bridgewater, S. 1997. The brazilian Cerrado vegetation and threats to its biodiversity. Annals of Botany 80: 223-230.
- Reatto, A.; Correia, J.R. & Spera, S.T. 1998. Solos do bioma Cerrado: aspectos pedológicos. *In*: Sano, S.M. & Almeida, S.P. (ed.). Cerrado: ambiente e flora. Embrapa, Planaltina. Pp. 46-86.
- Rezende, J.M. 2007. Florística e fitossociologia e a influência do gradiente de umidade do solo em campos limpos úmidos no Parque Estadual de Jalapão, Tocantins. Dissertação de Mestrado. Universidade de Brasília. Brasília. 74p.
- Ribeiro, J.F. & Walter, B.M.T. 2008. As principais fitofisionomias do bioma Cerrado. *In*: Sano, S.M.; Almeida, S.P. & Ribeiro, J.F. (eds.). Cerrado: ecologia e flora. Embrapa Informação Tecnológica, Brasília. Pp. 152-212.
- Rizzini, C.T. 1963. Nota prévia sobre a divisão fitogeográfica (florístico-sociocológica) do Brasil. Revista Brasileira de Geografia 25: 3-64.
- Sarmiento, G. 1992. Adaptive strategies of perennial grasses in South American savanas. Journal of Vegetation Science 3: 325-336.
- Scholes, R.J. & ARCHER, S.R. 1997. Tree-grass interactions in Savanas. Annual Review of Ecology and Systematics 28: 517-544.
- Smith, A.R.; Pyer, K.M.; Schuettpelz, E.; Korall, P.; Schneider, H. & Wolf, P.G. 2006. A classification for extant ferns. Taxon 55: 705-731.
- Tannus, J.L.S. & Assis, M.A. 2004. Composição de espécies vasculares de campo sujo e campo úmido em área de Cerrado, Itirapina, SP, Brasil. Revista Brasileira de Botânica 27: 498-506.
- Tannus, J.L.S. 2007. Estudo da vegetação dos campos úmidos do Cerrado: aspectos florísticos e ecológicos. Tese de Doutorado. Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro. 147p.
- Wanderley, M.G.L.; Shepherd, G.J.; Martins, S.E.;
 Estrada, T.E.M.D.; Romanini, R.P.; Koch, I.; Pirani,
 J.R.; Melhem, T.S.; Harley, A.M.G.; Kinoshita,
 L.S.; Magenta, M.A.G.; Wagner, H.M.L.; Barros,
 F.; Lohmann, L.G.; Amaral, M.C.E.; Cordeiro,
 I.; Aragaki, S.; Bianchini, R.S. & Esteves, G.L.
 2011. Checklist das Spermatophyta do Estado de
 São Paulo, Brasil. Biota Neotropica 11: 193-390.