A Quick Introduction to Machine Learning (Clustering)

Lecturer: John Guttag

6.00.2x

Clustering

Find an intrinsic grouping in set of unlabeled examples

```
Of great practical utility
```

Marketing

Biology

Insurance

Medicine

. . .

Marketing

Biology and Medicine

Nature Reviews | Genetics

Insurance

Depends upon the application

Depends upon the application Basketball player

Depends upon the application Sumo wrestler

Depends upon the application Political candidates

Like All ML, It's and Optimization Problem

Like All ML, It's and Optimization Problem

Need an objective function

Low intra-cluster dissimilarity High inter-cluster dissimilarity

Intra-cluster Dissimilarity

$$V(c) = \mathop{\mathrm{a}}_{x \mid c} (mean(c) - x)^{2}$$

$$badness(C) = \mathop{\mathring{a}}_{c \mid C} V(c)$$

6.00.2x

Are We Done?

Sufficient to find a set of clusters, C, such that badness(C) is minimized?

Suppose each example is in a cluster of size 1? badness(C) = ?

What do we need?

6.00.2x

Need a Constraint

Maximum distance between clusters is D

The maximum number of clusters is k

A Classic Formulation of Optimization

An objective function and a constraint

Like many optimization problems, computationally nasty

Usually rely on a greedy approximation K-means Hierarchical