НИЯУ МИФИ, факультет Кибернетики, Каф. 17

Компьютерная обработка изображений

Лекция 6: Фильтрация шумов.

Сафонов И.В., Крыжановский К.А., Егорова М.А.

2011

1

Восстановление и улучшение изображений

Модель процесса искажения/восстановления изображения

Если h линейный оператор, а шум аддитивный, то искажение в пространственной области может быть представлено в виде: g(r,c) = h(r,c)*f(r,c) + n(r,c) в частотной области: G(u,v) = H(u,v)F(u,v) + N(u,v)

Все алгоритмы повышения качества (коррекции) изображений разбиваются на две группы:

- алгоритмы восстановления изображений (*image restoration*) искажающий оператор h и модель шума n известны, используются строгие математические подходы для нахождения f (r,c);
- алгоритмы улучшения изображений (*image enhancement*) h и n не известны точно, используются эвристические подходы для повышения качества f '(r,c) с точки зрения человеческого восприятия или решаемой задачи.

Фильтрация шумов

На практике модель шума, как правило, неизвестна достаточно точно. Поэтому алгоритмы улучшения изображений используются гораздо чаще алгоритмов восстановления.

Существует огромное множество различных фильтров для подавления различных типов шумов (*noise reduction, noise suppression*). Ниже рассмотрена только небольшая часть способов фильтрации для пояснения базовых концепций.

Также необходимо помнить, что для фильтрации изображений могут быть применены фильтры, которые используются для фильтрации 1D сигналов и изучались в курсе ЦОС. Эти фильтры могут быть применены к строкам, а затем к столбцам изображения, или трансформированы в 2D фильтр, например, с помощью преобразования Мак-Клеллана (*McClellan transform*).

Линейные ФНЧ: АЧХ

Свертка реализует линейный фильтр низких частот (ФНЧ, Low-pass Filter, LPF) в том случае, когда сумма элементов ядра свертки равна 1, а все элементы ядра являются неотрицательными.

АЧХ одномерного идеального ФНЧ

АЧХ двумерного ФНЧ

Высокие частоты – это различного рода помехи, текстуры, контурные перепады (границы). Низкие частоты – это плавные изменения яркости. Линейные ФНЧ называют также размывающими (blurring) и сглаживающими (smoothing) фильтрами.

Линейные ФНЧ: Усредняющий (spatial)

Алгоритм работы усредняющего фильтра заключается в замене значения яркости в текущем пикселе на среднюю яркость вычисленную в окрестности данного пиксела. К недостаткам его можно отнести сильное уменьшение резкости изображения. Достоинство – такие фильтры имеют очень быстрые схемы вычислений.

Примеры ядер свертки:

$$\frac{1}{5} \times \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Пример вычисления ФНЧ в пространственной области

Усредняющий фильтр с порогом

Для подавления импульсных шумов существует простая модификация усредняющего фильтра: замена значения яркости на среднее производится в том случае, если разность между значением яркости и средним превышает порог. Такой фильтр является нелинейным.

 $I'(r,c) = \begin{cases} I_{\scriptscriptstyle c}(r,c), ec \textit{ли} & \left| I_{\scriptscriptstyle c}(r,c) - I(r,c) \right| \geq T \right| \\ I(r,c), \textit{иначе} \end{cases}$

I - исходное изображение, Ic - результат свертки со сглаживающей маской,

 I^\prime - новое изображение \mathcal{T} - пороговое значение

Исходное изображение

AWGN шум Импульсный шум

Результат фильтрации усредняющим фильтром с порогом

9

Фильтр Кувахары

Нелинейный нерекурсивный фильтр Кувахары (*Kuwahara*) предназначен для подавления аддитивных шумов с меньшим размытием границ, чем в случае линейных ФНЧ.

Размер маски: K=J=4L+1, L=1, 2, 3 ... Например, 5x5, 9x9, 13x13.

1. Маска разбивается на 4 области размером: $[(J+1)/2] \times [(K+1)/2]$.

подмаски

вычисляется

каждой

минимальна.

математическое ожидание m_i и дисперсия σ_i^2 . 3. Центральному пикселу x присваивается значение m_s дисперсия которого σ_i^2 Исходное изображение

AWGN шум

Результат фильтрации фильтром Кувахары

Билатеральный фильтр (1)

Нелинейный нерекурсивный билатеральный (bilateral) фильтр предназначен для подавления аддитивных шумов с предохранением границ (edge preserving filter):

 $I_{f}(r,c) = \frac{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} I(r+i,c+j) \times v(i,j) \times w(I(r+i,c+j)-I(r,c))}{\sum\limits_{j=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} v(i,j) \times w(I(r+i,c+j)-I(r,c))}$

V(i,j) – пространственное ядро весов размера SxS

w(x) — функция весов в зависимости от фотометрического расстояния. Также называется функцией по диапазону и edge-stop функцией.

Традиционный билатеральный фильтр использует Гауссианы для обеих весовых функций:

 $v(i, j) = \exp(-\frac{i^2 + j^2}{2\sigma_D^2})$ $w(x) = \exp(-\frac{x^2}{2\sigma_R^2})$

Исходное изображение

AWGN шум

Результат фильтрации билатеральным фильтром

Билатеральный фильтр (3)

Влияние параметров билатерального фильтра на его работу

Билатеральный фильтр (4)

Другие варианты весовых функций w(x):

- Другие варианты весовых функции $r_{(A)}$.

 Волна Эндрю (Andrew's wave): $g(x) = \begin{cases} \sin(-\pi x / \sigma) / (\pi x \sigma) : |x| \le \sigma \\ 0 : |x| > \sigma \end{cases}$
- Эл Фалла Форд (El Fallah Ford): $g(x) = \frac{1}{\sqrt{1 + (x/\sigma)^2}}$
- ullet Минимакс Хубера (Huber's minimax): $g(x) = \begin{cases} 1/\sigma : |x| \leq \sigma \\ sign(x)/x : |x| > \sigma \end{cases}$
- Лоренциан (Lorentzian): $g(x) = \frac{2}{2\sigma^2 + x^2}$
- Туки (Tukey's bi-weight): $g(x) = \begin{cases} 0.5 \times (1 (x/\sigma)^2)^2 : |x| \le \sigma \\ 0 : |x| > \sigma \end{cases}$ Плоская (Flat): $g(x) = \begin{cases} 1/\sigma : |x| \le \sigma \\ 0 : |x| > \sigma \end{cases}$ Косинусная: $g(x) = \begin{cases} \cos(\frac{\pi x}{2\sigma}) : |x| \le \sigma \\ 0 : |x| > \sigma \end{cases}$ Если данные функции преобразовать в двумерные, то их можно использовать как пространственные ядра

Фильтр нелокального усреднения (1)

Нелинейный нерекурсивный фильтр нелокального усреднения (non-local means, NL-means) предназначен для подавления аддитивных шумов с предохранением границ и текстур (edge and texture preserving filter):

$$I_f(r,c) = \frac{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-K/2}^{K/2} I(r+i,c+j) \times w(I,r+i,c+j)}{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-K/2}^{K/2} w(I,r+i,c+j)}$$

I – исходное изображение,

 I_f - результирующее изображение,

S и K – размеры скользящего окна, в пределах которого происходит усреднение пикселов исходного изображения с весами, задаваемыми функцией сходства w(I,r+i,c+j) между блоками размера MxL:

$$\frac{ \frac{M/2}{\sum_{j}} \frac{L/2}{\sum_{j}} (I(r+i+k,c+j+n)-I(r+k,c+n))^2 \cdot e^{-(k^2+n^2)/2\sigma^2} }{e^{-(k^2+n^2)/2\sigma^2}}$$

$$w(I,r+i,c+j) = e$$

h и σ – параметры фильтрации.

Следует отметить, что возможны и другие варианты функции сходства.

Фильтр нелокального усреднения (2)

Общей идеей фильтра нелокального усреднения является поиск похожих друг на друга блоков изображения по всему изображению и усреднение значений по этим блокам. Однако поиск по всему изображению требует гигантских вычислительных затрат, поэтому выполняется только в пределах локального окна.

Исходное изображение

р и q близкие пикселы

р и а различные пикселы

Несмотря на поиск сходных блоков только в пределах локального окна, NL-means фильтр требует значительных вычислительных затрат. По этой причине существует несколько вариантов "быстрых" NL-means за счет быстрого сравнения блоков. Также NL-means может быть эффективно распараллелен, например для работы на GPU.

Импульсный шум

Результат фильтрации фильтром нелокального усреднения

Обобщенный билатеральный фильтр

Между билатеральным фильтром и NL-means фильтром много общего. Различие в том, что в билатеральном фильтре ищется сходство между значениями отдельных пикселов, а в NL-means сходство между блоками некоторого фиксированного размера. Несмотря на название и первоначальную идею в реализации NL-means фильтр, как правило, является локальным. Размер блока влияет на способность к предохранению различных типов текстур. Существует несколько вариантов обобщения этих фильтров в единый фильтр. Например два таких:

$$\begin{split} Y_{f+}(r,c) &= \frac{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} Y(r+i,c+j) \times V(i,j) \times W(\sum\limits_{k} a_k D_k(P_k(r+i,c+j),P_k(r,c)))}{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} V(i,j) \times W(\sum\limits_{k} a_k D_k(P_k(r+i,c+j),P_k(r,c)))} \\ Y_{f\times}(r,c) &= \frac{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} Y(r+i,c+j) \times V(i,j) \times W(\prod\limits_{k} a_k D_k(P_k(r+i,c+j),P_k(r,c)))}{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} V(i,j) \times W(\prod\limits_{k} a_k D_k(P_k(r+i,c+j),P_k(r,c)))} \\ &= \frac{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} V(i,j) \times W(\prod\limits_{k} a_k D_k(P_k(r+i,c+j),P_k(r,c)))}{\sum\limits_{i=-S/2}^{S/2} \sum\limits_{j=-S/2}^{S/2} V(i,j) \times W(\prod\limits_{k} a_k D_k(P_k(r+i,c+j),P_k(r,c)))} \end{split}$$

S — размер пространственного ядра, V(i,j) — пространственное ядро, W(x) — весовая функция, $Dk(P_k(r+i,c+j),P_k(r,c))$ — функция расстояния (сходства) между блоками размера k на k, $P_k(r,c)$ — блок пикселов, a_k — веса блоков разного размера, (r,c) — координаты центра блока.

Оба этих фильтра превосходят по критерию PSNR как билатеральный, так и NL-means. Однако данные обобщенные фильтры имеют крайне высокую вычислительную сложность и большое количество параметров, которые сложно оптимально настроить.

Ранговая фильтрация

Статистические порядковые (*order-statistic*) или ранговые фильтры являются нелинейными нерекурсивными фильтрами, в которых пикселы в окрестности некоторого пиксела упорядочиваются по возрастанию, и в качестве результата выбирается k-е по порядку значение. Иногда k называют рангом.

Окрестность пиксела задается с помощью структурного элемента (маски, апертуры фильтра). Текущий пиксел соответствует центральному элементу маски. Ненулевые элементы маски указывают на пикселы участвующие в составлении упорядоченного ряда. $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

Примеры структурных элементов: $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

Основной идеей порядковой фильтрации является то, что поврежденные шумом пикселы будут находиться по краям отсортированного ряда, а в центре ряда окажутся неповрежденные значения. Это справедливо особенно для импульсного шума.

Важнейшим частным случаем порядкового фильтра является медианный фильтр, в котором результатом является медиана ряда, т.е. результирующее значение берется из середины отсортированного ряда. Если в маске четное количество ненулевых элементов, то в качестве медианы берут среднее двух центральных элементов отсортированного ряда.

Модификации медианного фильтра

Существует несколько модификаций медианного фильтра, которые можно обобщить на ранговые фильтры в целом.

Например, существует несколько вариантов взвешенного медианного фильтра. В одном из простейших способов (предложен Brownrigg) значение в маске указывает сколько раз соответствующий пиксел необходимо учесть в отсортированном ряде.

Изображение	Маска	
[7 5 8 4]		1) 1 1 3 3 <u>5</u> 5 9 9 12
3 12 1 3	0 2 0	2) 1 3 3 8 8 12 12 12 12
6 0 12 19	2 1 2	3) 5 5 6 6 9 12 12 12 12
6 9 12 18	0 2 0	4) 1 1 6 6 9 9 12 18 18
11 5 6 7	[]	.,

Фильтр усеченного среднего

Положительные черты порядкового и усредняющего фильтров объединены в нелинейном фильтре усеченного среднего (*trimmed mean*).

Шаги фильтрации:

- 1. Из рассмотрения удаляются d/2 наименьших и d/2 наибольших значений яркости I в окрестности S_{xy}
- 2. Оставшиеся значения усредняются

$$I_{f}(r,c) = \frac{1}{KL - d} \sum_{(s,t) \in S_{rc}} I_{r}(s,t)$$

где I_f — результат фильтрации S_{rc} — окрестность пиксела (r,c) размером KxL d— количество пикселов из окрестности, которые не участвуют в усреднении, $d \in [0, \mathit{KL} - 1]$ I_r — значения пикселов из окрестности, участвующие в усреднении

$$d = 0 =>$$
 усредняющий фильтр $d/2 = (KL-1) =>$ медианный фильтр

Исходное изображение

AWGN шум

Импульсный шум

Результат фильтрации фильтром усеченного среднего

21

Сравнение фильтров по PSNR

Несмотря на ряд недостатков критерия PSNR, принято сравнивать алгоритмы для фильтрации шумов по этому критерию. Для AWGN и импульсного шума PSNR достаточно хорошо коррелирует с человеческим восприятием, хотя иногда наибольшие значения PSNR соответствуют изображениям размытым сильнее, чем этого бы хотелось. Для большинства приведенных выше примеров работы фильтров параметры были подобраны с целью максимизации PSNR.

Фильтр\Шум	Гаусса	Импульсный	Гаусса+Импульсный
Без фильтра	20,205	18,1951	16,4604
Фильтр Гаусса	25,1465	24,1405	22,7913
Медианный фильтр	23,8991	26,8375	23,6356
Усредняющий фильтр с порогом	22,134	28,624	21,1638
Фильтр Кувахары	22,9473	24,9451	21,719
Билатеральный фильтр	25,7038	23,1969	22,7039
Фильтр нелокального усреднения	32,7541	28,2687	24,7914

Гомоморфная фильтрация

Гомоморфная фильтрация применяется для подавления мультипликативного шума: I'=I*N

В результате логарифмирования мультипликативный шум преобразуется в аддитивный:

InI=InI'+InN

Далее удаляется шумовая составляющая, используя алгоритмы для фильтрации аддитивного шума.

Затем производится операция потенцирования для преобразования сигнала к исходному диапазону.

23

Адаптивная фильтрация AWGN

Для известной искажающей функции и модели шума существует теория адаптивной винеровской фильтрации (фильтра минимизации среднеквадратического отклонения). Для AWGN предложен частный случай адаптивного фильтра Винера.

Для фрагмента изображения размером MxN, вычисляют среднее μ и дисперсию σ^2 .

 $I_n(r,c) = \mu + \frac{\sigma^2 - V2}{\sigma^2} (I(r,c) - \mu)$

где V – это дисперсия шума для всего изображения.

Если ее нельзя определить из априорных сведений, либо тогда полагают дисперсии всего изображения, либо средней из

MxN – не должно быть слишком маленьким.

Исходное изображение

AWGN шум

Результат фильтрации адаптивном фильтром Винера

Выравнивание фона

Неравномерный фон (низкочастотный тренд) может мешать выделению на изображении объектов интереса с помощью алгоритмов сегментации.

Общий подход к выравниванию фона (background equalization)

Существует несколько способов оценки фона изображения:

- 1. Иногда фон можно просто снять отдельно от объектов переднего плана.
- 2. С помощью фильтра низких частот цифровым или оптическим способом (расфокусировка оптической системы).
- 3. С помощью разбиения изображения на непересекающиеся прямоугольники, оценки фона для каждого прямоугольника, в результате чего получается изображение фона, но меньшего размера чем исходное изображение, масштабирование изображения фона до размеров исходного изображения с помощью билинейной или бикубической интерполяции.