Introductory Econometrics

Tutorial 11 Solution

<u>Part B:</u> This part will be covered in the tutorial. It is still a good idea to attempt these questions before the tutorial.

1. **Answer**: The graph of the residuals is given below (the scale may be different depending on whether you used lag differences only or you multiplied them by 100 (to convert them to percentage points) or by 400 (to convert them to annual rates).

Dependent Variable: DLGDP Method: Least Squares Sample: 1955Q1 2017Q2 Included observations: 250

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.742741	0.300922	5.791343	0.0000
DLGDP(-1)	0.306892	0.063042	4.868049	0.0000
DLGDP(-2)	0.108769	0.063053	1.725045	0.0858
R-squared	0.130079	Mean dependent var		2.999617
Adjusted R-squared	0.123035	S.D. dependent var		3.499670
S.E. of regression	3.277315	Akaike info criterion		5.223854
Sum squared resid	2652.976	Schwarz criterion		5.266111

We can detect a slight pattern in the evolution of residuals but it does not necessarily persist over time. It is not clear from the visual inspection if the residuals are serially correlated. The correlogram gives us better information, and shows no evidence of serial correlation in errors.

Sample: 1955Q1 2017Q2 Included observations: 250

Q-statistic probabilities adjusted for 2 dynamic regressors

Autocorrelation	Partial Correlation	AC PAC
		1 -0.008 -0.008 2 0.005 0.006 3 -0.009 -0.009 4 0.008 0.008 5 -0.094 -0.094 6 0.033 0.032 7 -0.012 -0.011
()))) (8 -0.094 -0.097 9 0.041 0.043 10 0.083 0.076 11 0.028 0.032 12 -0.072 -0.076

A formal test for no serial correlation in errors against an AR(8) alternative starts with specifying an AR equation for errors:

$$dlgdp_{t} = \beta_{0} + \beta_{1}dldgp_{t-1} + \beta_{2}dlgdp_{t-2} + u_{t}$$
 $u_{t} = \rho_{1}u_{t-1} + \rho_{2}u_{t-2} + \dots + \rho_{8}u_{t-8} + e_{t}$
 $H_{0}: \rho_{j} = 0 \text{ for } j = 1, 2, \dots, 8$
 $H_{1}: \text{ at least one } \rho \text{ is not zero}$
 $BG = (n-8)R_{\hat{u}}^{2} \sim \chi_{8}^{2} \text{ under } H_{0}$

where $R_{\hat{u}}^2$ is the R^2 of the regression of residuals on a constant, $dldgp_{t-1}$, and $dlgdp_{t-2}$ and 8 lags of residuals. From the Eviews output we get

$$BG_{calc} = 8.972$$

with p-value of 0.345, which is much larger than 0.05. This means that we cannot reject the null at the 5% level of significance. Hence the AR(2) model seems adequate. We can then proceed to use *t*-test to see if both lags are needed, or an AR(1) would be sufficient.

2. Answer:

a. No, *spread* is not white noise. Its plot shows long swings. And its correlogram shows significant autocorrelation.

Sample: 1954Q1 2017Q2 Included observations: 254

Autocorrelation	Partial Correlation		AC	PAC
	<u> </u>	1	0.875	0.875
		3	0.723	-0.183 0.074
	≟:	4 5		0.044
	I 31	6	0.316	-0.013
: 5		8		0.008
:1:		10		-0.119 -0.074
idi			-0.028	0.006
	')'	12	-0.059	0.026

b. The unrestricted model:

Dependent Variable: DLGDP Method: Least Squares Sample: 1955Q1 2017Q2 Included observations: 250

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.103416	0.394741	2.795293	0.0056
DLGDP(1)	0.277960	0.063335	4.366716	0.0000
DLGDP(-2)	0.107821	0.062999	1.711453	0.0883
SPREAD(-1)	-0.122029	0.315459	-0.386831	0.6992
SPREAD(-2)	0.547081	0.317431	1.723466	0.0861
R-squared	0.160183	Mean dependent var		2.999617
Adjusted R-squared	0.146472	S.D. dependent var		3.499670
S.E. of regression	3.233226	Akaike info criterion		5.204635
Sum squared resid	2561.168	Schwarz criterion		5.275064

$$H_0: \beta_3 = \beta_4 = 0$$

$$H_1$$
: at least one of the above is not zero

$$F = \frac{(SSR_r - SSR_{ur})/2}{SSR_{ur}/(250 - 5)} \sim F_{2,245} \text{ under } H_0$$

$$F_{calc} = \frac{(2652.976 - 2561.168)/2}{2561.168/245} = 4.391$$

 $F_{crit} = 3.03$ (from Eviews) ≈ 3.07 from the table for $F_{2,120}$

 $F_{calc} > F_{crit} \Rightarrow$ we reject the null.

Conclusion is that at least one of the spread lags is significant

c. The first lag of spread is insignificant judging by its *t*-statistic. We drop that and re-estimate:

Dependent Variable: DLGDP Method: Least Squares Sample: 1955Q1 2017Q2 Included observations: 250

mode de de de de la constantina.				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.058540	0.376556	2.810351	0.0053
DLGDP(-1)	0.281108	0.062701	4.483279	0.0000
DLGDP(-2)	0.111661	0.062105	1.797950	0.0734
SPREAD(-2)	0.438723	0.149062	2.943227	0.0036
R-s quared	0.159670	Mean dependent var		2.999617
Adjusted R-s quared	0.149422	S.D. dependent var		3.499670
S.E. of regression	3.227633	Akaike info criterion		5.197246
Sum squared resid	2562.733	Schwarz criterion		5.253589

According to these estimates, a one percentage point decrease in the spread does not change the growth rate immediately. It takes two quarters before this will start to affect the GDP growth, when it is expected to decrease by 0.44 percentage points. In the long-run the GDP growth will decline by

$$\frac{0.438723}{(1-0.281108-0.111661)} = 0.723$$
 percentage points.

Note that I have generated growth rate using $400*\triangle\log(GDP)$ to get the annualised rate. If you multiply by 100 only point estimates will be different but the test results should all be the same as here. Some may notice that the second lag of GDP growth is not significant at the 5% level either. Dropping that does not cause any serial correlations in the errors either. With that decision, we get

Dependent Variable: DLGDP Method: Least Squares Sample: 1955Q1 2017Q2 Included observations: 250

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.286932	0.356188	3.613068	0.0004
DLGDP(-1)	0.320048	0.059107	5.414679	0.0000
SPREAD(-2)	0.434482	0.149715	2.902056	0.0040
R-squared	0.148628	Mean dependent var		2.999617
Adjusted R-squared	0.141734	S.D. dependent var		3.499670
S.E. of regression	3.242187	Akalke Info criterion		5.202301
Sum squared resid	2596,409	Schwarz criterion		5.244558

which tells us that it takes two periods before a decline in the spread affect GDP growth by decreasing it by 0.43 percentage points initially and by

$$\frac{0.434482}{1 - 0.320048} = 0.639$$

in the long-run.

d. We generate a dummy variable called pre86 = @year < 1986. This uses the EViews function @year that extracts the year component of the date for each observation. This dummy variable is zero for all observations before 1986 and is 1 for all observation from 1986 onward. Since the hypothesis is only about the effect of spread on GDP growth, we interact this dummy with spread only (they may want to consider more elaborate test of structural break, that is OK if they want to explore, but not necessary for answering this specific question). Using this with either ARDL(2,2) or ARDL(1,2) confirms that the leading indicator power of spread has deteriorated after 1986.

Dependent Variable: DLGDP Method: Least Squares Sample: 1955Q1 2017Q2 Included observations: 250

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.211209	0.362702	3.339408	0.0010
DLGDP(-1)	0.203201	0.062346	3.260521	0.0013
DLGDP(-2)	0.078950	0.059966	1.316575	0.1892
PRE86*SPREAD(-2)	1.213964	0.217398	5.584054	0.0000
(1-PRE86)*SPREAD(-2)	0.228862	0.149687	1.528941	0.1276
R-squared	0.230086	Mean dependent var		2.999617
Adjusted R-squared	0.217516	S.D. dependent var		3.499670
S.E. of regression	3.095743	Akalke Info criterion		5.117730
Sum squared resid	2347.988	Schwarz criterion		5.188159

Dependent Variable: DLGDP Method: Least Squares Sample: 1955Q1 2017Q2 Included observations: 250

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.375443	0.341083	4.032578	0.0001
DLGDP(-1)	0.227953	0.059552	3.827831	0.0002
PRE86*SPREAD(-2)	1.235853	0.217085	5.692954	0.0000
(1-PRE86)*SPREAD(-2)	0.219178	0.149729	1.463832	0.1445
R-squared	0.224639	Mean dependent var		2.999617
Adjusted R-squared	0.215183	S.D. dependent var		3.499670
S.E. of regression	3.100354	Akaike Info criterion		5.116780
Sum squared resid	2364.600	Schwarz criterion		5.173124