Ecuatii cu var separabile

$$x' = f(t)g(x)$$
, devine: $\int \frac{dx}{g(x)} = \int f(t)dt$

Ec omogene

$$x' = h\left(\frac{x}{t}\right)$$

Ec dif ordin I

$$x' = a(t)x + b(t)$$
 $x = e^{\int a(t)dt} \left(C + \int e^{-\int a(t)dt}b(t)dt\right)$

Ec Bernoulli

$$x' = a(t)x + b(t)x^{\alpha}$$
, împărțim la x^{α}

Ec Riccati

$$x' = a(t)x + b(t)x^{2} + c(t), \quad x = \varphi(t) + \frac{1}{z}$$

EDE

$$\frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0$$
, sol: $F(t,x) = c$

Ec Lagrange si Clairout (mere si cu t = f(x, x'))

$$x' = t\varphi(x') + \psi(x')$$
, derivam si $x' = p$

Ec liniare de ordin n cu coef constanți

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = e^{at} \left(P^1(t) \cos(bt) + P^2(t) \sin(bt) \right)$$

$$\tilde{y}(t) = t^m Q(t) e^{\lambda t}, \quad m = \text{multiplicitatea lui } \lambda, \quad \deg(Q) = \deg(P)$$

Ec Euler

$$t^n y^{(n)} + a_1 t^{n-1} y^{(n-1)} + \dots + a_n y = f(t), \qquad t = e^s$$

Sist dif liniare cu coef constanți

Metoda substitutiei

Stabilitate $x = \xi$ sol stationara

$$P_{J(\xi)}$$
 Hurwitzian \iff stabil

PDE

$$\sum f_i(x) \frac{\partial u}{\partial x_i} = g(x) \quad \frac{dx_i}{f_i} = \dots = \frac{dx_n}{f_n} = \frac{du}{g}$$
$$F(u_1, \dots) = 0, \quad u_i \text{ integrale prime}$$

Gut

Th inversare locala

$$\frac{d\varphi^{-1}}{dx}(x=\varphi(t)) = \frac{1}{\frac{d\varphi}{dt}(t)}, \qquad \varphi, \varphi^{-1} \in C^1$$

Teorie

(1) EVS

$$\begin{cases} x' = f(t)g(t), & f \in C^1(I = (t_1, t_2)), & g \in C^1(J = (x_1, x_2)) \\ x(t_0) = x_0 & \end{cases}$$

Are sol unica $\forall x_0, t_0$ data de:

$$x = G^{-1}\left(\int_{t_0}^t f(s)ds\right), \quad G(x) = \int_{x_0}^x \frac{du}{g(u)}$$

- (2) Ec dif lin de ord I FVC amplificam $\exp(\int a(\tau))$
- (3) Lema lui Gronwall, $k \geq 0$

$$x(t) \le m + \int_a^t k(s)x(s)ds \implies x(t) \le m \exp(\int_a^t k(s)ds)$$

Derivam, amplificam cu k(t) si apoi cu $\exp(-\int k(s)ds)$

(4) \exists ! local - Th Picard

$$f: \Delta = [a, a+h] \times B(\xi, r) \to \mathbb{R}^n \in C^1(\Delta), \quad f \text{ Lipschitz pe } B$$

$$pe[a, a+(\delta = \min\left\{h, \frac{r}{M}\right\}), \quad x' = f(t, x) \quad \text{are sol unica: lim}$$

$$\begin{cases} x_0(t) = \xi \\ x_{k+1}(t) = \xi + \int_a^t f(\tau, x_k(\tau) d\tau) \end{cases}$$

$$\|x_k(t) - x(t)\| \le M \frac{L^k \delta^{k+1}}{(k+1)!}$$

Th Peano: f cont $\implies \mathcal{PC}(I, \Omega, f, a, \xi)$ are cel putin o sol locala

(5) PC ec ordin $n, g \in C^0(I \times \Omega)$

$$(PC)y^n = g(y, y', ...), \quad g \text{ Lipschitz} \implies \text{ sol unica pe } [a - \delta, a + \delta]$$

(6) Depedenta cont de data initiala, $f \in C^0([a.b] \times \mathbb{R}^n)$, lipschitz, x' = f(t, x)

Lema: $\forall \xi \in \mathbb{R}^n$, sol saturata $\mathcal{PC}(a,\xi)$ este globala Th: $\xi \mapsto x(\cdot, \xi)$ lipschitz (\geq ec Voltera, lema Gronwall)

(7) Sist dif liniare ∃! global

$$x' = A(t)x + b(t), x(a) = \xi$$
 are sol unica

dem: f, local apoi global lipschitz, $\|A\| = \max_i \{\sum_i |a_{ij}|\}$ e norma matriceala.

(8) Sist dif liniare omogene, spatial solutiilor x = A(t)x

$$S = \{x: I \to \mathbb{R}^n sol\} \subseteq C^1(I; \mathbb{R}^n); \quad \dim(S) = n; \quad \Gamma_a(x) = x(a), \text{izomorfism de sp lin}$$

Def: $X = (X_i^i)$ sn matrice asociata sist de sol $\{x^1 \dots x^n\}$

Def: $\{x^1 \dots x^n\}$ syst fundametal \iff baza in $S \implies X$ mat fundametala Def: $W(t) = \det X(t)$ wronskian X fundamental $\iff W(t) \neq 0$, $\forall t \iff \exists a \ W(a) \neq 0$ (dem cu baza in \mathbb{R}^n)

Th: X mat fundamentala $\implies \forall Y$ mat fundamentala, Y(t) = X(t)C, $C \in M_{n \times n}(\mathbb{R})$.

Lema: $D(t)=(d_{i,j}), \quad D'(t)=\sum_{l}D_k(t), \quad D_k(t)=\text{det obtinut linia derivand doar linia }k$

Th Liouville: $W(t) = W(a) \exp \left(\int_a^t \mathrm{tr} A(s) ds \right)$

(9) Formula variatiei constantelor

Th:
$$x_{SGN} = x_{SGO} + \tilde{x}_{SPN}$$

Th: Sol $x' = A(t)x + b(t)$ este $x(t) = X(t) \left(X^{-1}(a)\xi + \int_a^t X^{-1}(s)b(s)\right)$ (cautam $\tilde{x} = X(t)c(t)$)

(10) Exponentiala de mat

$$x' = Ax(t)$$
, not $S_A(t) = X(t)$,mat $cuX(0) = I$, avem $S_A(t+s) = S_A(t)S_A(s)$, $S_A(0) = I$, $\lim_{t\to 0} S_A(t)\xi = \xi$ $\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A$

- (11) ec lin de ordin n are sol global unica
- (12) ec lin omogene de ordin n, sp sol- Totu izomorf cu totu
- (13) ec lin de ordin n cu coef constanti: ec omogene -th generare syst fundamental

(14) T stabilitatii: Tipuri

Def $\varphi : \mathbb{R}_+ \to \Omega$ simplu stabila daca $\forall \varepsilon > 0, a \ge 0, \ \exists \delta(\varepsilon, a) > 0$ ai $\forall \xi \in \Omega \text{ cu } \|\xi - \varphi(a)\| \le \delta \ x(\cdot, a, \xi)$ def pe $[a, \infty], \|x(t, a, \xi) - \varphi\| \le \varepsilon$

Def: uniform stabila $\|\xi - \varphi(a)\| \le \mu(a)$, și $\lim_{t \to \infty} \|x(t, a, \xi) - \varphi(t)\| = 0$

Daca nu deinde de a at uniform stabila

(15) Stabilitatea sist liniare

Th: tot sist (omogen sau neomogen) e la fel ca sol nula

Th: E s. stabil daca are o mat fundamentala marginita, si at toate sunt marginite

Th: E asimpt stabil daca are o mat cu $\lim_{t\to\infty}\|X(t)\|=0$

Th: uniform stabil daca $||U(t,a) = X(t)X^{-1}(a)|| \le M$

Th: uniform asimpt stabil daca $\lim_{t-a\to\infty} ||U(t,a)|| = 0$

(16) Stab sist lin perturbate

Lema: A hurwitziana daca $||e^{tA}|| \leq Me^{\omega t}$

 $x' = Ax + F(t, x), \quad F \text{ cont si local lipschitz, lipschitz pe } B(0, r) \subset \Omega$

Th Poincare-Liapunov: daca $L < \frac{\omega}{M}$ at sol nula (SLP) e asimpt stab

Th Perron: $||F(t,x)|| \le \alpha(||x||)$ și $\lim_{\rho \to 0} \frac{\alpha(\rho)}{\rho} = 0$ at sol nula asimpt stab

(17) Sist autonom, sp fazelor

Traiectorie/ orbita = $\mathrm{Im}(\varphi)$ Prop: Multimea sol e inchisa la transaltii in rap cu t

Prop: Prin orice pct trece o singura traiectorie

Prop: Traiectoria unui pet nestationar e o curba regulata de C^1 , (cu parametrizare $x=\varphi(t)$)

(18) Integrale prime pt sist autonome

Def: U integrala prima: $\in C^1$, $\nabla U(\xi) = 0$ izolate, $U(x(t)) = c \ \forall x$ sol

Th: conditie echivalenta: $\langle \nabla U(\xi), f(\xi) \rangle = 0 \ \forall \xi$

Def $U_1, \dots U_k$ functional independente \iff rang $\left(\frac{\partial U_i}{\partial x_j}(\xi)\right) = k$

Th: In vecinatatea oricarui pct nestationar exista exact n-1 integrale prime functional independente

Th: Fie $U_1 \dots U_{n-1}$ integrale prime functional independente, at orice alta int prima e de forma $V(x) = F(U_1(x) \dots U_{n-1}(x))$