PCT/EP03/06096

1/45

Fig. 1 - Sequence information for C-LytA.

SEQ ID NO:1 – amino acid sequence of C-LytA repeat 1 GWQKNDTGYWYVHSD 15

SEQ ID NO:2 – amino acid sequence of C-LytA repeat 2 GSYPKDKFEKINGTWYYFDSS 21

SEQ ID NO:3 – amino acid sequence of C-LytA repeat 3
GYMLADRWRKHTDGNWYWFDNS 22

SEQ ID NO:4 – amino acid sequence of C-LytA repeat 4

GEMATGWKKIADKWYYFNEE 20

SEQ ID NO:5 – amino acid sequence of C-LytA repeat 5

GAMKTGWVKYKDTWYYLDAKE 21

SEQ ID NO:6 — amino acid sequence of C-LytA repeat 6 GAMVSNAFIQSADGTGWYYLKPD 23

SEQ ID NO:7 — amino acid sequence of C-LytA cholin-binding domain

GWQKNDTGYW YVHSDGSYPK DKFEKINGTW YYFDSSGYML ADRWRKHTDG NWYWFDNSGE 60

MATGWKKIAD KWYYFNEEGA MKTGWVKYKD TWYYLDAKEG AMVSNAFIQS ADGTGWYYLK 120

PDGTLADRPE FTVEPDGLIT VK 142

SEQ ID NO:8 – amino acid sequence of C-LytA domain from truncated repeat 1 to repeat 6 (as part of our constructs shown in figure 2)

YVHSDGSYPKDKFEKINGTWYYFDSSGYMLADRWRKHTDGNWYWFDNSGEMATGWKKIADKWYYFNEEGAMKT
GWVKYKDTWYYLDAKEGAMVSNAFIQSADGTGWYYLKPD

SEQ ID NO:9 – DNA sequence encoding the amino acid sequence of SEQ ID NO:1 ggctggcaga agaatgacac tggctactgg tacgtacatt cagac

SEQ ID NO:10 - DNA sequence encoding the amino acid sequence of SEQ ID NO:2 ggctcttatc caaaagacaa gtttgagaaa atcaatggca cttggtacta ctttgacagt tca

PCT/EP03/06096

2/45

SEQ ID NO:11 - DNA sequence encoding the amino acid sequence of SEQ ID NO:3 ggctatatgc ttgcagaccg ctggaggaag cacacagacg gcaactggta ctggttcgac aactca

SEQ ID NO:12 - DNA sequence encoding the amino acid sequence of SEQ ID NO:4 ggcgaaatgg ctacaggctg gaagaaaatc gctgataagt ggtactattt caacgaagaa

SEQ ID NO:13 - DNA sequence encoding the amino acid sequence of SEQ ID NO:5 Ggtgccatga agacaggctg ggtcaagtac aaggacactt ggtactactt agacgctaaa gaa

SEQ ID NO:14 - DNA sequence encoding the amino acid sequence of SEQ ID NO:6 Ggcgccatgg tatcaaatgc ctttatccag tcagcggacg gaacaggctg gtactacctc aaaccagac

SEQ ID NO:15 - DNA sequence encoding the amino acid sequence of SEQ ID NO:7

ggctggcaga agaatgacac tggctactgg tacgtacatt cagacggctc ttatccaaaa 60

gacaagtttg agaaaatcaa tggcacttgg tactactttg acagttcagg ctatatgctt 120

gcagaccgct ggaggaagca cacagacggc aactggtact ggttcgacaa ctcaggcgaa 180

atggctacag gctggaagaa aatcgctgat aagtggtact atttcaacga agaaggtgcc 240

atgaagacag gctgggtcaa gtacaaggac acttggtact acttagacgc taaagaaggc 300

gccatggtat caaatgcctt tatccagtca gcggacggaa caggctggta ctacctcaaa 360

ccagacggaa cactggcaga caggccagaa ttcacagtag agccagatgg cttgattaca 420

gtaaaataa 429

SEQ ID NO:16 - DNA sequence encoding the amino acid sequence of SEQ ID NO:8

TACGTACATTCCGACGGCTCTTATCCAAAAGACAAGTTTGAGAAAATCAATGGCACTTGGTACTACTTTGACA
GTTCAGGCTATATGCTTGCAGACCGCTGGAGGAAGCACACAGACGGCAACTGGTACTGGTTCGACAACTCAGG
CGAAATGGCTACAGGCTGGAAGAAAATCGCTGATAAGTGGTACTATTTCAACGAAGAAGGTGCCATGAAGACA
GGCTGGGTCAAGTACAAGGACACTTGGTACTACTTAGACGCTAAAGAAGGCGCCATGGTATCAAATGCCTTTA
TCCAGTCAGCGGACGGAACAGGCTGGTACTACCTCAAACCAGAC

PCT/EP03/06096

3/45

FIG. 2. CPC and native Constructs

Construct 1 – coding sequence of CPC-P501₅₁₋₅₅₃ (see plasmid of figure 7 -Y1796)

Protein sequence (SEQ ID NO:27)

MAAA YVHSDGSYPKDKFEKINGTWYYFDSSGYMLADRWRKHTDGNWYWFDNSGEMATG

R5

R6

WKKIADKWYYFNEEGAMKTGWVKYKDTWYYLDAKEGA MOYIKANSKFIGITEGV MVSNAFIQS

ADGTGWYYLKPD GTLADRPEKFMYMVLGIGPVLGLVCVPLLGSASDHWRGRYGRRRPFIWALSL

GILLSLFLIPRAGWLAGLLCPDPRPLELALLILGVGLLDFCGQVCFTPLEALLSDLFRDPDHCRQAYSV

YAFMISLGGCLGYLLPAIDWDTSALAPYLGTQEECLFGLLTLIFLTCVAATLLVAEEAALGPTEPAEG

LSAPSLSPHCCPCRARLAFRNLGALLPRLHQLCCRMPRTLRRLFVAELCSWMALMTFTLFYTDFVGE

GLYQGVPRAEPGTEARRHYDEGVRMGSLGLFLQCAISLVFSLVMDRLVQRFGTRAVYLASVAAFPV

AAGATCLSHSVAVVTASAALTGFTFSALQILPYTLASLYHREKQVFLPKYRGDTGGASSEDSLMTSF

LPGPKPGAPFPNGHVGAGGSGLLPPPPALCGASACDVSVRVVVGEPTEARVVPGRGICLDLAILDSAF

LLSOVAPSLFMGSIVOLSOSVTAYMVSAAGLGLVAIYFATQVVFDKSDLAKYSAGGHHHHHH

R1 (plain): aa5-9 (fragment) R4 (bold): aa53-72 P2 (underline): 97-110

R2 (bold): aa10-30

R5 (plain): aa73-93

R3 (plain): aa31-52

R6a (bold): aa94-95

R6b (bold): 113-133

Nucleotide sequence (SEQ ID NO:28)

PCT/EP03/06096

4/45

Construct 2 – Coding sequence of P501₅₅₋₅₅₃ HIS (control) (yeast strain SC333) Protein sequence (SEQ ID NO:29)

MVLGIGPVLG	LVCVPLLGSA	SDHWRGRYGR	RRPFIWALSL	GILLSLFLIP	RAGWLAGLLC	60
PDPRPLELAL	LILGVGLLDF	CGQVCFTPLE	ALLSDLFRDP	DHCRQAYSVY	AFMISLGGCL	120
GYLLPAIDWD	TSALAPYLGT	QEECLFGLLT	LIFLTCVAAT	LLVAEEAALG	PTEPAEGLSA	180
PSLSPHCCPC	RARLAFRNLG	ALLPRLHQLC	CRMPRTLRRL	FVAELCSWMA	LMTFTLFYTD	240
FVGEGLYQGV	PRAEPGTEAR	RHYDEGVRMG	SLGLFLQCAI	SLVFSLVMDR	LVQRFGTRAV	300
YLASVAAFPV	AAGATCLSHS	VAVVTASAAL	TGFTFSALQI	LPYTLASLYH	REKQVFLPKY	360
RGDTGGASSE	DSLMTSFLPG	PKPGAPFPNG	${\tt HVGAGGSGLL}$	PPPPALCGAS	ACDVSVRVVV	420
GEPTEARVVP	GRGICLDLAI	LDSAFLLSQV	APSLFMGSIV	QLSQSVTAYM	VSAAGLGLVA	480
TYFATOVVFD	KSDLAKYSAG	СИННИН 50	07			

Nucleotide sequence (SEQ ID NO:30)

atgGTGCTGG	GCATTGGTCC	AGTGCTGGGC	CTGGTCTGTG	TCCCGCTCCT	AGGCTCAGCC	60
AGTGACCACT	GGCGTGGACG	CTATGGCCGC	CGCCGGCCCT	TCATCTGGGC	ACTGTCCTTG	120
GGCATCCTGC	TGAGCCTCTT	TCTCATCCCA	AGGGCCGGCT	GGCTAGCAGG	GCTGCTGTGC	180
CCGGATCCCA	GGCCCCTGGA	GCTGGCACTG	CTCATCCTGG	GCGTGGGGCT	GCTGGACTTC	240
TGTGGCCAGG	TGTGCTTCAC	TCCACTGGAG	GCCCTGCTCT	CTGACCTCTT	CCGGGACCCG	300
GACCACTGTC	GCCAGGCCTA	CTCTGTCTAT	GCCTTCATGA	TCAGTCTTGG	GGGCTGCCTG	360
GGCTACCTCC	TGCCTGCCAT	TGACTGGGAC	ACCAGTGCCC	TGGCCCCCTA	CCTGGGCACC	420
CAGGAGGAGT	GCCTCTTTGG	CCTGCTCACC	CTCATCTTCC	TCACCTGCGT	AGCAGCCACA	480
CTGCTGGTGG	CTGAGGAGGC	AGCGCTGGGC	CCCACCGAGC	CAGCAGAAGG	GCTGTCGGCC	540
CCCTCCTTGT	CGCCCCACTG	CTGTCCATGC	CGGGCCCGCT	TGGCTTTCCG	GAACCTGGGC	600

WO 03/104272 PCT/EP03/06096

5/45

GCCCTGCTTC	CCCGGCTGCA	CCAGCTGTGC	TGCCGCATGC	CCCGCACCCT	GCGCCGGCTC	660
TTCGTGGCTG	AGCTGTGCAG	CTGGATGGCA	CTCATGACCT	TCACGCTGTT	TTACACGGAT	720
TTCGTGGGCG	AGGGGCTGTA	CCAGGGCGTG	CCCAGAGCTG	AGCCGGGCAC	CGAGGCCCGG	780
AGACACTATG	ATGAAGGCGT	TCGGATGGGC	AGCCTGGGGC	TGTTCCTGCA	GTGCGCCATC	840
TCCCTGGTCT	TCTCTCTGGT	CATGGACCGG	CTGGTGCAGC	GATTCGGCAC	TCGAGCAGTC	900
TATTTGGCCA	GTGTGGCAGC	TTTCCCTGTG	GCTGCCGGTG	CCACATGCCT	GTCCCACAGT	960
GTGGCCGTGG	TGACAGCTTC	AGCCGCCCTC	ACCGGGTTCA	CCTTCTCAGC	CCTGCAGATC	1020
CTGCCCTACA	CACTGGCCTC	CCTCTACCAC	CGGGAGAAGC	AGGTGTTCCT	GCCCAAATAC	1080
CGAGGGGACA	CTGGAGGTGC	TAGCAGTGAG	GACAGCCTGA	TGACCAGCTT	CCTGCCAGGC	1140
CCTAAGCCTG	GAGCTCCCTT	CCCTAATGGA	CACGTGGGTG	CTGGAGGCAG	TGGCCTGCTC	1200
CCACCTCCAC	CCGCGCTCTG	CGGGGCCTCT	GCCTGTGAtG	TCTCCGTACG	TGTGGTGGTG	1260
GGTGAGCCCA	CCGAGGCCAG	GGTGGTTCCG	GGCCGGGGCA	TCTGCCTGGA	CCTCGCCATC	1320
CTGGATAGTG	CCTTCCTGCT	GTCCCAGGTG	GCCCCATCCC	TGTTTATGGG	CTCCATTGTC	1380
CAGCTCAGCC	AGTCTGTCAC	TGCCTATATG	GTGTCTGCCG	CAGGCCTGGG	TCTGGTCGCC	1440
ATTTACTTTG	CTACACAGGT	AGTATTTGAC	AAGAGCGACT	TGGCCAAATA	CTCAGCGggt	1500
ggacaccatc	accatcacca	ttaa 1524				

Construct 3 - Coding sequence of natssP501_{1.34} P501₅₁₋₅₅₃ HIS (yeast strain Y1800) Protein sequence (SEQ ID NO:31)

R1 R2

MAAVQRLWVSRLLRHRKAQLLLVNLLTFGLEVCLAAATVHSDGSYPKDKFEKINGTW

R4

YYFDSSGYMLADRWRKHTDGNWYWFDNSGEMATGWKKIADKWYYFNEEGAMKTGWVK

<u>P2</u> R

YKDTWYYLDAKEGAMOYIKANSKFIGITEGVMVSNAFIQSADGTGWYYLKPDGTLADRPEKFMY MVLGIGPVLGLVCVPLLGSASDHWRGRYGRRRPFIWALSLGILLSLFLIPRAGWLAGLLCPDPRPLEL ALLILGVGLLDFCGQVCFTPLEALLSDLFRDPDHCRQAYSVYAFMISLGGCLGYLLPAIDWDTSALAP YLGTQEECLFGLLTLIFLTCVAATLLVAEEAALGPTEPAEGLSAPSLSPHCCPCRARLAFRNLGALLPR LHQLCCRMPRTLRRLFVAELCSWMALMTFTLFYTDFVGEGLYQGVPRAEPGTEARRHYDEGVRMG SLGLFLQCAISLVFSLVMDRLVQRFGTRAVYLASVAAFPVAAGATCLSHSVAVVTASAALTGFTFSA LQILPYTLASLYHREKQVFLPKYRGDTGGASSEDSLMTSFLPGPKPGAPFPNGHVGAGGSGLLPPPPA LCGASACDVSVRVVVGEPTEARVVPGRGICLDLAILDSAFLLSQVAPSLFMGSIVQLSQSVTAYMVS AAGLGLVAIYFATQVVFDKSDLAKYSAGGHHHHHH

R1 (plain): aa38-42 (fragment) R4 (bold): aa77-106 P2 (underline): 130-143

R2 (bold): aa43-64 R5 (plain): aa107-126

R3 (plain): aa65-76 R6a (bold): aa127-128 R6b (bold): aa146-166

PCT/EP03/06096

6/45

natss stands for native signal sequence

Nucleotide sequence (SEQ ID NO:32)

ATGCCGCCGTGCAGAGGCTATGGGTATCGAGACTGCTAAGACACCGCAAAGCTCAGTTGTTGTTGGTTAACT TGTTGACCTTCGGGCTGGAAGTCTGTTTGGCggccgctTACGTACATTCCGACGGCTCTTATCCAAAAGACAA GTTTGAGAAAATCAATGGCACTTGGTACTACTTTGACAGTTCAGGCTATATGCTTGCAGACCGCTGGAGGAAG CACAGAGAGGGCAACTGGTACTGGTTCGACAACTCAGGCGAAATGGCTACAGGCTGGAAGAAAATCGCTGATA **AGTGGTACTATTTCAACGAAGAAGGTGCCATGAAGACAGGCTGGGTCAAGTACAAGGACACTTGGTACTACTT** ${\tt AGACGCTAAAGAAGGCGCCatg} {\tt caatacatcaaggctaactctaagttcattggtatcactgaa} {\tt ggcgtcATG}$ GTATCAAATGCCTTTATCCAGTCAGCGGACGGAACAGGCTGGTACTACCTCAAACCAGACGGAACACTGGCAG ACAGGCCAGAAaagttcatgtaCatgGTGCTGGGCATTGGTCCAGTGCTGGGCCTGGTCTGTGTCCCGCTCCT AGGCTCAGCCAGTGACCACTGGCGTGGACGCTATGGCCGCCGGCCCTTCATCTGGGCACTGTCCTTGGGC TGGAGCTGGCACTGCTCATCCTGGGCGTGGGGCTGCTGGACTTCTGTGGCCAGGTGTGCTTCACTCCACTGGA GGCCCTGCTCTCTGACCTCTTCCGGGACCCGGACCACTGTCGCCAGGCCTACTCTGTCTATGCCTTCATGATC AGTCTTGGGGGCTGCCTGGCTACCTCCTGCCTGCCATTGACTGGGACACCAGTGCCCTGGCCCCTACCTGG GCACCCAGGAGGAGTGCCTCTTTGGCCTGCTCACCCTCATCTTCCTCACCTGCGTAGCAGCCACACTGCTGGT GGCTGAGGAGGCAGCGCTGGGCCCCACCGAGCCAGAAGGGCTGTCGGCCCCTCCTTGTCGCCCCACTGC TGTCCATGCCGGGCCCGCTTGGCTTTCCGGAACCTGGGCGCCCTGCTTCCCCGGCTGCACCAGCTGTGCTGCC GCATGCCCGCACCCTGCGCCGGCTCTTCGTGGCTGAGCTGTGCAGCTGGATGGCACTCATGACCTTCACGCT GTTTTACACGGATTTCGTGGGCGAGGGGCTGTACCAGGGCGTGCCCAGAGCTGAGCCGGGCACCGAGGCCCGG AGACACTATGATGAAGGCGTTCGGATGGGCAGCCTGGGGCTGTTCCTGCAGTGCGCCATCTCCCTGGTCTTCT $\tt CTCTGGTCATGGACCGGCTGGTGCAGCGATTCGGCACTCGAGCAGTCTATTTGGCCAGTGTGGCAGCTTTCCCC$ TGTGGCTGCCGGTGCCACATGCCTGTCCCACAGTGTGGCCGTGGTGACAGCTTCAGCCGCCCTCACCGGGTTC ACCTTCTCAGCCCTGCAGATCCTGCCCTACACACTGGCCTCCTCTACCACCGGGAGAAGCAGGTGTTCCTGC CCAAATACCGAGGGGACACTGGAGGTGCTAGCAGTGAGGACAGCCTGATGACCAGCTTCCTGCCAGGCCCTAA GCCTGGAGCTCCCTTATGGACACGTGGGTGCTGGAGGCAGTGGCCTGCTCCCACCTCCACCGCGGCTC TGCGGGGCCTCTGCCTGTGAŁGTCTCCGTACGTGGTGGTGGTGGTGAGCCCACCGAGGCCAGGGTGGTTCCGG GCCGGGGCATCTGCCTGGACCTCGCCATCCTGGATAGTGCCTTCCTGCTGTCCCAGGTGGCCCCATCCCTGTT TATGGGCTCCATTGTCCAGCCCAGTCTGTCACTGCCTATATGGTGTCTGCCGCAGGCCTGGGTCTGGTC ${\tt GCCATTTACTTTGCTACACAGGTAGTATTTGACAAGAGCGACTTGGCCAAATACTCAGCGggtggacaccatc}$ accatcaccattaa

Construct 4 - Coding sequence of alphapreCPC-P501₅₁₋₅₅₃ HIS (yeast strain Y1802)

Protein sequence (SEQ ID NO:33)

Alpha-pre signal R1 R2 R3

MAARFPSIFTAVLFAASSALAAA[YVHSDGSYPKDKFEKINGTWYYFDSSGYMLADRWRKHTDGNWYWFD]

R4 R5 <u>P2</u>

MSGEMATGWKKIADKWYYFNBEGAMKTGWVKYKDTWYYLDAKEGA[MOYIKANSKFIGITEGV[MVSNAFI

PCT/EP03/06096

7/45

R6

QSADGTGWYYLKPDGTLADRPEKFMYMVLGIGPVLGLVCVPLLGSASDHWRGRYGRRRPFIWALSLGILLSLF
LIPRAGWLAGLLCPDPRPLELALLILGVGLLDFCGQVCFTPLEALLSDLFRDPDHCRQAYSVYAFMISLGGCL
GYLLPAIDWDTSALAPYLGTQEECLFGLLTLIFLTCVAATLLVAEEAALGPTEPAEGLSAPSLSPHCCPCRAR
LAFRNLGALLPRLHQLCCRMPRTLRRLFVAELCSWMALMTFTLFYTDFVGEGLYQGVPRAEPGTEARRHYDEG
VRMGSLGLFLQCAISLVFSLVMDRLVQRFGTRAVYLASVAAFPVAAGATCLSHSVAVVTASAALTGFTFSALQ
ILPYTLASLYHREKQVFLPKYRGDTGGASSEDSLMTSFLPGPKPGAPFPNGHVGAGGSGLLPPPPALCGASAC
DVSVRVVVGEPTEARVVPGRGICLDLAILDSAFLLSQVAPSLFMGSIVQLSQSVTAYMVSAAGLGLVAIYFAT
OVVFDKSDLAKYSAGGHHHHHH

Alpha-pre signal (bold): aa4-22

R1 (plain): aa24-28 (fragment) R4 (bold): aa72-91 P2 (underline): 116-129

R2 (bold): aa29-49 R5 (plain): aa92-112

Alphapre stands for alpha pre signal sequence

Nucleotide sequence (SEQ ID NO:34)

TACGTACATTCCGACGGCTCTTATCCAAAAGACAAGTTTGAGAAAATCAATGGCACTTGGTACTACTTTGACA
GTTCAGGCTATATGCTTGCAGACCGCTGGAGGAAGCACACAGACGGCAACTGGTACTGGTTCGACAACTCAGG
CGAAATGGCTACAGGCTGGAAGAAAATCGCTGATAAGTGGTACTATTTCAACGAAGAAGGTGCCATGAAGACA
GGCTGGGTCAAGTACAAGGACACTTGGTACTACTTAGACGCTAAAGAAGGCGCCCatgcaatacatcaaggcta
actctaagttcattggtatcactgaaggcgtcAtggtatCAAATGCCTTTATCCAGTCAGCGGACGGAACAGG
CTGGTACTACCTCAAACCAGACGGAACACTGGCAGACAGGCCAGAA

PCT/EP03/06096

8/45

Construct 5 - Coding sequence of alphaprepro-P501₅₁₋₅₅₃ HIS (in plasmid pRIT 15068 and yeast strain Y1790)

Protein sequence (SEQ ID NO:35)

MSFLNFTAVL	FAASSALAAP	VNTTTEDETA	QIPAEAVIGY	SDLEGDFDVA	VLPFSNSTNN	60
GLLFINTTIA	SIAAKEEGVS	LEKREAEAMV	LGIGPVLGLV	CVPLLGSASD	HWRGRYGRRR	120
PFIWALSLGI	LLSLFLIPRA	GWLAGLLCPD	PRPLELALLI	LGVGLLDFCG	QVCFTPLEAL	180
LSDLFRDPDH	CRQAYSVYAF	MISLGGCLGY	LLPAIDWDTS	ALAPYLGTQE	ECLFGLLTLI	240
FLTCVAATLL	VAEEAALGPT	EPAEGLSAPS	LSPHCCPCRA	${\tt RLAFRNLGAL}$	LPRLHQLCCR	300
MPRTLRRLFV	AELCSWMALM	TFTLFYTDFV	GEGLYQGVPR	AEPGTEARRH	YDEGVRMGSL	360
GLFLQCAISL	VFSLVMDRLV	QRFGTRAVYL	ASVAAFPVAA	GATCLSHSVA	VVTASAALTG	420
FTFSALQILP	YTLASLYHRE	KQVFLPKYRG	DTGGASSEDS	LMTSFLPGPK	PGAPFPNGHV	480
GAGGSGLLPP	PPALCGASAC	DVSVRVVVGE	PTEARVVPGR	GICLDLAILD	SAFLLSQVAP	540
SLFMGSIVQL	SQSVTAYMVS	AAGLGLVAIY	FATQVVFDKS	DLAKYSAGGH	ннннн 595	

Nucleotide sequence (SEQ ID NO:36)

ATGAGTTTCC	TCAATTTTAC	TGCAGTTTTA	TTCGCAGCAT	CCTCCGCATT	AGCTGCTCCA	60
GTCAACACTA	CAACAGAAGA	TGAAACGGCA	CAAATTCCGG	CTGAAGCTGT	CATCGGTTAC	120
TCAGATTTAG	AAGGGGATTT	CGATGTTGCT	GTTTTGCCAT	TTTCCAACAG	CACAAATAAC	180
GGGTTATTGT	TTATAAATAC	TACTATTGCC	AGCATTGCTG	CTAAAGAAGA	AGGGGTATCT	240
CTCGAGAAAA	GAGAGGCTGA	AGCCatgGTG	CTGGGCATTG	GTCCAGTGCT	GGGCCTGGTC	300
тататесесс	TCCTAGGCTC	AGCCAGTGAC	CACTGGCGTG	GACGCTATGG	CCGCCGCCGG	360

WO 03/104272 PCT/EP03/06096

9/45

CCCTTCATCT	GGGCACTGTC	CTTGGGCATC	CTGCTGAGCC	TCTTTCTCAT	CCCAAGGGCC	420
GGCTGGCTAG	CAGGGCTGCT	GTGCCCGGAT	CCCAGGCCCC	TGGAGCTGGC	ACTGCTCATC	480
CTGGGCGTGG	GGCTGCTGGA	CTTCTGTGGC	CAGGTGTGCT	TCACTCCACT	GGAGGCCCTG	540
CTCTCTGACC	TCTTCCGGGA	CCCGGACCAC	TGTCGCCAGG	CCTACTCTGT	CTATGCCTTC	600
ATGATCAGTC	TTGGGGGCTG	CCTGGGCTAC	CTCCTGCCTG	CCATTGACTG	GGACACCAGT	660
GCCCTGGCCC	CCTACCTGGG	CACCCAGGAG	GAGTGCCTCT	TTGGCCTGCT	CACCCTCATC	720
TTCCTCACCT	GCGTAGCAGC	CACACTGCTG	GTGGCTGAGG	AGGCAGCGCT	GGGCCCCACC	780
GAGCCAGCAG	AAGGGCTGTC	GGCCCCCTCC	TTGTCGCCCC	ACTGCTGTCC	ATGCCGGGCC	840
CGCTTGGCTT	TCCGGAACCT	GGGCGCCCTG	CTTCCCCGGC	TGCACCAGCT	GTGCTGCCGC	900
ATGCCCCGCA	CCCTGCGCCG	GCTCTTCGTG	GCTGAGCTGT	GCAGCTGGAT	GGCACTCATG	960
ACCTTCACGC	TGTTTTACAC	GGATTTCGTG	GGCGAGGGC	TGTACCAGGG	CGTGCCCAGA	1020
GCTGAGCCGG	GCACCGAGGC	CCGGAGACAC	TATGATGAAG	GCGTTCGGAT	GGGCAGCCTG	1080
GGGCTGTTCC	TGCAGTGCGC	CATCTCCCTG	GTCTTCTCTC	TGGTCATGGA	CCGGCTGGTG	1140
CAGCGATTCG	GCACTCGAGC	AGTCTATTTG	GCCAGTGTGG	CAGCTTTCCC	TGTGGCTGCC	1200
GGTGCCACAT	GCCTGTCCCA	CAGTGTGGCC	GTGGTGACAG	CTTCAGCCGC	CCTCACCGGG	1260
TTCACCTTCT	CAGCCCTGCA	GATCCTGCCC	TACACACTGG	CCTCCCTCTA	CCACCGGGAG	1320
AAGCAGGTGT	TCCTGCCCAA	ATACCGAGGG	GACACTGGAG	GTGCTAGCAG	TGAGGACAGC	1380
CTGATGACCA	GCTTCCTGCC	AGGCCCTAAG	CCTGGAGCTC	CCTTCCCTAA	TGGACACGTG	1440
GGTGCTGGAG	GCAGTGGCCT	GCTCCCACCT	CCACCCGCGC	TCTGCGGGGC	CTCTGCCTGT	1500
GATGTCTCCG	TACGTGTGGT	GGTGGGTGAG	CCCACCGAGG	CCAGGGTGGT	TCCGGGCCGG	1560
GGCATCTGCC	TGGACCTCGC	CATCCTGGAT	AGTGCCTTCC	TGCTGTCCCA	GGTGGCCCCA	1620
TCCCTGTTTA	TGGGCTCCAT	TGTCCAGCTC	AGCCAGTCTG	TCACTGCCTA	TATGGTGTCT	1680
GCCGCAGGCC	TGGGTCTGGT	CGCCATTTAC	TTTGCTACAC	AGGTAGTATT	TGACAAGAGC	1740
GACTTGGCCA	AATACTCAGC	Gggtggacac	catcaccatc	accattaa	1788	

PCT/EP03/06096

10/45

FIG. 3. Structure of CPC-p501 His fusion protein expressed in S. cerevisiae

0	Clyta repeats
	P2 peptide
	P501 sequences

PCT/EP03/06096

11/45

FIG. 4. Primary structure of CPC-P501 His fusion protein (SEQ ID NO.41)

MAAAYVHSDG	SYPKDKFEKI	NGTWYYFDSS	GYMLADRWRK	HTDGNWYWFD	NSGEMATGWK	60
KIADKWYYFN	EEGAMKTGWV	KYKDTWYYLD	AKEGAMQYIK	ANSKFIGITE	GVMVSNAFIQ	120
SADGTGWYYL	KPDGTLADRP	EKFMYMVLGI	GPVLGLVCVP	LLGSASDHWR	GRYGRRRPFI	180
WALSLGILLS	LFLIPRAGWL	AGLLCPDPRP	LELALLILGV	GLLDFCGQVC	FTPLEALLSD	240
LFRDPDHCRQ	AYSVYAFMIS	LGGCLGYLLP	AIDWDTSALA	PYLGTQEECL	FGLLTLIFLT	300
CVAATLLVAE	EAALGPTEPA	EGLSAPSLSP	HCCPCRARLA	FRNLGALLPR	LHQLCCRMPR	360
TLRRLFVAEL	CSWMALMTFT	LFYTDFVGEG	LYQGVPRAEP	GTEARRHYDE	GVRMGSLGLF	420
LQCAISLVFS	LVMDRLVQRF	GTRAVYLASV	AAFPVAAGAT	CLSHSVAVVT	ASAALTGFTF	480
SALQILPYTL	ASLYHREKQV	FLPKYRGDTG	GASSEDSLMT	SFLPGPKPGA	PFPNGHVGAG	540
GSGLLPPPPA	LCGASACDVS	VRVVVGEPTE	ARVVPGRGIC	LDLAILDSAF	LLSQVAPSLF	600
MGSIVOLSQS	VTAYMVSAAG	LGLVAIYFAT	QVVFDKSDLA	KYSAGGHHHH	HH 652	

PCT/EP03/06096

12/45

FIG. 5. Nucleotide sequence of CPC P501 His(pRIT15201) (SEQ ID NO.42)

ATGGCGGCCG	CTTACGTACA	TTCCGACGGC	TCTTATCCAA	AAGACAAGTT	TGAGAAAATC	60
AATGGCACTT	GGTACTACTT	TGACAGTTCA	GGCTATATGC	TTGCAGACCG	CTGGAGGAAG	120
CACACAGACG	GCAACTGGTA	CTGGTTCGAC	AACTCAGGCG	AAATGGCTAC	AGGCTGGAAG	180
AAAATCGCTG	ATAAGTGGTA	CTATTTCAAC	GAAGAAGGTG	CCATGAAGAC	AGGCTGGGTC	240
AAGTACAAGG	ACACTTGGTA	CTACTTAGAC	GCTAAAGAAG	GCGCCATGCA	ATACATCAAG	300
GCTAACTCTA	AGTTCATTGG	TATCACTGAA	GGCGTCATGG	TATCAAATGC	CTTTATCCAG	360
TCAGCGGACG	GAACAGGCTG	GTACTACCTC	AAACCAGACG	GAACACTGGC	AGACAGGCCA	420
GAAAAGTTCA	TGTACATGGT	GCTGGGCATT	GGTCCAGTGC	TGGGCCTGGT	CTGTGTCCCG	480
CTCCTAGGCT	CAGCCAGTGA	CCACTGGCGT	GGACGCTATG	GCCGCCGCCG	GCCCTTCATC	540
TGGGCACTGT	CCTTGGGCAT	CCTGCTGAGC	CTCTTTCTCA	TCCCAAGGGC	CGGCTGGCTA	600
GCAGGGCTGC	TGTGCCCGGA	TCCCAGGCCC	CTGGAGCTGG	CACTGCTCAT	CCTGGGCGTG	660
GGGCTGCTGG	ACTTCTGTGG	CCAGGTGTGC	TTCACTCCAC	TGGAGGCCCT	GCTCTCTGAC	720
CTCTTCCGGG	ACCCGGACCA	CTGTCGCCAG	GCCTACTCTG	TCTATGCCTT	CATGATCAGT	780
CTTGGGGGCT	GCCTGGGCTA	CCTCCTGCCT	GCCATTGACT	GGGACACCAG	TGCCCTGGCC	840
CCCTACCTGG	GCACCCAGGA	GGAGTGCCTC	TTTGGCCTGC	TCACCCTCAT	CTTCCTCACC	900
TGCGTAGCAG	CCACACTGCT	GGTGGCTGAG	GAGGCAGCGC	TGGGCCCCAC	CGAGCCAGCA	960
GAAGGGCTGT	CGGCCCCTC	CTTGTCGCCC	CACTGCTGTC	CATGCCGGGC	CCGCTTGGCT	1020
TTCCGGAACC	TGGGCGCCCT	GCTTCCCCGG	CTGCACCAGC	TGTGCTGCCG	CATGCCCCGC	1080
ACCCTGCGCC	GGCTCTTCGT	GGCTGAGCTG	TGCAGCTGGA	TGGCACTCAT	GACCTTCACG	1140
CTGTTTTACA	CGGATTTCGT	GGGCGAGGGG	CTGTACCAGG	GCGTGCCCAG	AGCTGAGCCG	1200
GGCACCGAGG	CCCGGAGACA	CTATGATGAA	GGCGTTCGGA	TGGGCAGCCT	GGGGCTGTTC	1260
CTGCAGTGCG	CCATCTCCCT	GGTCTTCTCT	CTGGTCATGG	ACCGGCTGGT	GCAGCGATTC	1320
GGCACTCGAG	CAGTCTATTT	GGCCAGTGTG	GCAGCTTTCC	CTGTGGCTGC	CGGTGCCACA	1380
TGCCTGTCCC	ACAGTGTGGC	CGTGGTGACA	GCTTCAGCCG	CCCTCACCGG	GTTCACCTTC	1440
TCAGCCCTGC	AGATCCTGCC	CTACACACTG	GCCTCCCTCT	ACCACCGGGA	GAAGCAGGTG	1500
TTCCTGCCCA	AATACCGAGG	GGACACTGGA	GGTGCTAGCA	GTGAGGACAG	CCTGATGACC	1560
AGCTTCCTGC	CAGGCCCTAA	GCCTGGAGCT	CCCTTCCCTA	ATGGACACGT	GGGTGCTGGA	1620
GGCAGTGGCC	TGCTCCCACC	TCCACCCGCG	CTCTGCGGGG	CCTCTGCCTG	TGATGTCTCC	1680
GTACGTGTGG	TGGTGGGTGA	GCCCACCGAG	GCCAGGGTGG	TTCCGGGCCG	GGGCATCTGC	1740
CTGGACCTCG	CCATCCTGGA	TAGTGCCTTC	CTGCTGTCCC	AGGTGGCCCC	ATCCCTGTTT	1800
ATGGGCTCCA	TTGTCCAGCT	CAGCCAGTCT	GTCACTGCCT	ATATGGTGTC	TGCCGCAGGC	1860
CTGGGTCTGG	TCGCCATTTA	CTTTGCTACA	CAGGTAGTAT	TTGACAAGAG	CGACTTGGCC	1920
AAATACTCAG	CGGGTGGACA	CCATCACCAT	CACCATTAA	1959		

PCT/EP03/06096

13/45

FIG. 6. Cloning strategy for generation of plasmid pRIT 15201

PCT/EP03/06096

14/45

FIG. 7. Plasmid map of pRIT15201

PCT/EP03/06096

15/45

FIG. 8. Comparative expression of CPC P501 and P501 in S.cerevisiae strain DC5 (gel Laemmli 10%)

- 1 MW Biolabs (175/83/62/47.5/32.5/16.5 Kda)
- 2 Y1796 purified
- 3 Y1795 Crude Extract (negative control)
- 4 SC333 Crude Extract
- 5 Y1796 Crude Extract
- 6 Y1790 Crude Extract
- 7 Y1802 Crude Extract

PCT/EP03/06096

16/45

FIG. 9A.

FIG. 9B.

- 1 Molecular Weight Marker (Biolabs Grow Range)175; 83; 62; 47.5; 32.5; 25; 16.5; 6.5 kD 10
- 2 Purified Reference CP2CP501S/12 135 ng
- 3 Purified Reference CP2CP501S/12 67.8 ng
- 4 Purified Reference CP2CP501S/12 33.9 ng
- 5 Purified Reference CP2CP501S/12 16.9 ng
- 6 Fermentation PRO119-21h30
- 7 Fermentation PRO124-21h30
- 8 Fermentation PRO124-22h30
- 9 Fermentation PRO127-0 h
- 10 Fermentation PRO127-4 h
- 11 Fermentation PRO127-6 h
- 12 Fermentation PRO127-22h20
- 13 Fermentation PRO127-22h45

PCT/EP03/06096

17/45

FIG. 10. Purification scheme of CPC-P501-His produced by Y1796.

S. Cerevisiae cells	
Ψ	
Dyno-mill disruption	OD 120 / 2 passes / 20 mM Tris pH 8.5 - 5 mM EDTA
₩	
Centrifugation	12.000 g / RT / 90 min (supernatant discarded)
Ψ	
Pellet washing step 1	20 mM Tris pH 8.5 - 0.15 M NaCl - 2.0 M Guanidine.HCl - 0.1% Empigen (30 min / RT)
Ψ	
Centrifugation	12.000 g / RT / 60 min (supernatant discarded)
Ψ	
Pellet washing step 2	20 mM Tris pH 8.5 - 0.15 M NaCl - 4.0 M Urea
₩	
Centrifugation	12.000 g / RT / 30 min (supernatant discarded)
<u> </u>	
Solubilisation / Reduction	20 mM Tris pH 8.5 - 0.15 M NaCl - 8.0 M Urea - 1% SDS - 0.2 M Glutathion (60 min / RT)
Ψ	
Centrifugation	12.000 g / RT / 30 min (pellet discarded)
¥	
Carbamidomethylation	0.3 M lodoacetamide (30 min / RT / in the dark) / pH adjusted to 8.5 (with 5 M NaOH solution) before incubation
₩	
R/C Supernatant	
Ψ	
10-fold dilution and	Dilution buffer: 20 mM Tris pH 8.5 - 1 M NaCl - 8.0 M Urea
pH adjustment (8.5)	
V	
Immobilised metal ion affinity chromatography on	Equilibration buffer: 20 mM Tris pH 8.5 - 0.9 M NaCl - 8.0 M Urea - 0.1% SDS
Ni [↔] -Chelating Sepharose FF	Washing buffers:
(Amersham)	1) Equilibration buffer
(10x25 cm column – 2000 ml)	2) 20 mM Tris pH 8.5 - 0.15 M NaCl - 8.0 M Urea - 0.1% SDS
	3) 20 mM Tris pH 8.5 - 8.0 M Urea - 0.1% Tween 80

Mary Contract would ?

WO 03/104272

PCT/EP03/06096

18/45

	Elution buffer: 20 mM Tris pH 8.5 - 8.0 M Urea - 0.1% Tween 80 - 0.5 M Imidazole
Ψ	
2-fold dilution and	20 mM Piperazine pH 10.0 - 8.0 M Urea - 0.1% Tween 80
pH adjustment (10.0)	
↓	
Anion exchange chromatography on Q	Equilibration buffer: 20 mM Piperazine pH 10.0 - 8.0 M Urea - 0.1% Tween 80
Sepharose FF	Washing buffers:
(Amersham)	1) Equilibration buffer
(2,6 x 6.5 cm column - 35 ml)	2) 20 mM Tris pH 8.5 - 8.0 M Urea - 0.1% Tween 80
	Elution buffer: 20 mM Tris pH 7.5 - 8.0 M Urea - 0.1% Tween 80 - 0.5 M NaCl
₩	-
Concentration/Diafiltration	+/- 3-fold concentration
(Pall - Omega 10 kDa - 200 cm²)	Diafiltration buffer: Tris 20 mM pH 7.5
₩	
Sterile filtration	
(Millipore - Millex GV 0.22µm)	
₩	
Purified bulk	Final buffer: 20 mM Tris pH 7.5 - +/- 0.3% Tween 80
Ψ	
Storage –20°C	

PCT/EP03/06096

19/45

FIG. 11. Pattern of CPC P501 His purified protein (4-12% Novex Nu-Page polyacrylamide precasted gels)

Coomassie Blue R250

Daiichi Silver Staining

Western Blot anti P501S (Monoclonal antibody)

- 1: MW (250/150/75/50/37/25/15/10 kDa)
- 2: Purified bulk A (reducing conditions)
- 3: Purified bulk B (reducing conditions)
- 4: Purified bulk C (reducing conditions)
- 5: Purified bulk A (non reducing conditions)
- 6: Purified bulk B (non reducing conditions)
- 7: Purified bulk C (non reducing conditions)

PCT/EP03/06096

20/45

FIG. 12. Native full-length P501S sequence (SEQ ID NO:17 & 43)

Nucleotide sequence: SEQ ID NO.17 Polypeptide sequence: SEQ ID NO.43

GCCACCATGGTCCAGAGGCTGTGGGTGAGCCGCCTGCTGCGGCACCGG MVQRLWVSRLLRHR AAAGCCCAGCTCTTGCTGGTCAACCTGCTAACCTTTGGCCTGGAGGTGTGTTTTGGCCGCA KAQLLLVNLLTFGLEVCLAA GGCATCACCTATGTGCCGCCTCTGCTGCTGGAAGTGGGGGTAGAGGAGAAGTTCATGACC G I T Y V P P L L E V G V E E K F M T ATGGTGCTGGGCATTGGTCCAGTGCTGGGCCTGGTCTGTGTCCCGCTCCTAGGCTCAGCC M V L G I G P V L G L V C V P L L G S A AGTGACCACTGGCGTGGACGCTATGGCCGCCGCCGCCCTTCATCTGGGCACTGTCCTTG SDHWRGRYGRRRPFIWALSL G I L L S L F L I P R A G W L A G L L C CCGGATCCCAGGCCCCTGGAGCTGGCACTGCTCATCCTGGGCGTGGGGCTGCTGGACTTC PDPRPLELALLILGVGLLDF TGTGGCCAGGTGTGCTTCACTCCACTGGAGGCCCTGCTCTCTGACCTCTTCCGGGACCCG C G Q V C F T P L E A L L S D L F R D P GACCACTGTCGCCAGGCCTACTCTGTCTATGCCTTCATGATCAGTCTTGGGGGGCTGCCTG D H C R Q A Y S V Y A F M I S L G G C L GGCTACCTCCTGCCTGCCATTGACTGGGACACCAGTGCCCTGGCCCCCTACCTGGGCACC G Y L L P A I D W D T S A L A P Y L G T CAGGAGGAGTGCCTCTTTGGCCTGCTCACCTCATCTTCCTCACCTGCGTAGCAGCCACA Q E E C L F G L L T L I F L T C V A A T CTGCTGGTGGCTGAGGAGGCAGCGCTGGGCCCCACCGAGCCAGCAGAAGGGCTGTCGGCC LLVAEEAALGPTEPAEGLSA CCCTCCTTGTCGCCCCACTGCTGTCCATGCCGGGCCCGCTTGGCTTTCCGGAACCTGGGC P S L S P H C C P C R A R L A F R N L G GCCTGCTTCCCCGGCTGCACCAGCTGTGCTGCCGCATGCCCCGCACCCTGCGCCGGCTC A L L P R L H Q L C C R M P R T L R R L TTCGTGGCTGAGCTGTGCAGCTGGATGGCACTCATGACCTTCACGCTGTTTTACACGGAT F V A E L C S W M A L M T F T L F Y T D TTCGTGGGCGAGGGCTGTACCAGGGCGTGCCCAGAGCTGAGCCGGGCACCGAGGCCCGG F V G E G L Y Q G V P R A E P G T E A R AGACACTATGATGAAGGCGTTCGGATGGGCAGCCTGGGGCTGTTCCTGCAGTGCGCCATC RHYDEGVRMGSLGLFLQCAI TCCCTGGTCTTCTCTGGTCATGGACCGGCTGGTGCAGCGATTCGGCACTCGAGCAGTC S L V F S L V M D R L V Q R F G T R A V

PCT/EP03/06096

21/45

TA	TTT	GGC	CAG	TGT	GGC	AGC	TTT.	CCC	TGT	'GGC	TGC	CGG	TGC	CAC	ATG	CCT	GTC	CCA	CAGT	
Y	L	A	S	V	A	A	F	P	٧	A	A	G	A	T	С	L	S	Н	s	374
GT	GGC	CGT	GGT	GAC	AGC	TTC	AGC	CGC	CCI	CAC	CGG	GTT	CAC	CTT	CTC	AGC	CCT	GCA	GATC	
V	A	v	v	T	A	S	A	A	L	Т	G	F	T	F	S	A	L	Q	I	394
СТ	GCC	CTA	CAC	ACT	GGC	CTC	CCT	CTA	CCA	CCG	GGA	GAA	GCA	GGT	GTT	CCT	GCC	CAA	ATAC	
L	P	Y	T	L	A	S	L	Y	Н	R	E	K	Q	V	F	L	₽	K	Y	414
CG	AGG	GGA	CAC	TGG	AGG	TGC	TAG	CAG	TGA	GGA	CAG	CCT	GAT	GAC	CAG	CTT	CCI	GCC	AGGC	
R	G	D	T	G	G	A	S	s	Е	D	s	L	M	Т	S	F	L	P	G	434
																			GCTC	
P	K	P	G	A	P	F	P	N	G	Н	V	G	A	G	G	S	G	L	L	454
																			GGTG	
P	P	P	P	A	L	C	G	A	S	A	С	D	V	S	V	R	V	V	V	474
																			CATC	
G	E	P	T	Ε	A	R	V	v	P	G	R	G	I	С	L	D	L	A	I	494
CT	GGA	TAG	TGC	CTI	CCI	GC1	GTC	CCF	\GG1	rggc	ccc	ATC	CCI	GTT	TAT	'GGC	CTC	CAT	TGTC	
L	D	s	A	F	L	L	S	Q	V	A	P	s	L	F	M	G	s	I	v	514
CA	GCT	CAG	CCA	GTC	TGT	CAC	TGC	CT	\TA1	rggi	GTC	TGC	CGC	AGG	CCI	GGG	TCI	GGI	CGCC	
Q	L	s	Q	s	V	T	A	Y	M	V	s	A	Α	G	L	G	L	V	A	534
																			GTAG	
I	Y	F	A	T	Q	V	V	F	D	K	s	D	L	A	K	Y	S	A	*	554
GI	'CGA	\G																		

PCT/EP03/06096

22/45

FIG. 13. Sequence of the CPC-P501S expression cassette of JNW735 (SEQ ID NO:18 & 44)

Nucleotide sequence: SEQ ID NO.18 Polypeptide sequence: SEQ ID NO.44

######

					###															
				GC	CAC														AAAA	
						M	A	A	_A_	Y	V	H	S	D	G	s	<u>Y</u>	P	<u>K</u>	14
		~~~		a		~~ ~	<b></b>	a	mma	ama	am n	omm	ma n	C 2 C	TT C		רידיא	ጥአጥ	പ്രകൃത	
																			GCTT L	2.4
<u>D</u> _	K	F	E			N	G		**									1-1		34
cc	ארא.	cca	ርጥር	GAG	GDD	GC A	_ር ልር	מסמי	CGG	CAA	стс	GTA	стс	GTT	'CGA	CAA	СТС	AGG	CGAA	
A	_	R																	Е	54
ΑT	GGC	TAC	AGG	CTG	GAA	GAA.	AAT	CGC	TGA	TAA	GTG	GTA	CTA	TTT	CAA	CGA	AGA	AGG	TGCC	
		T																	_A	74
														-						
																			AGGC	
M	K	T	G	W	v	K	Y	K	D	T	W	<u>Y</u>	Y	L	D	A	K	E	G	94
		_																	GGTA	
<u>A</u>	M	Ø	Y	I_	<u> </u>	<u>A</u>	N	_ <u>s</u>	K	F	I	G	<u> I</u>	_T	_=	_ <u>G</u>	v	M	_ <u></u>	114
																~~ ~ ~	200	יאכיא	CCCA	
TC	AAA	TGC	CTT	TAT	CCA	GIC	AGC	.GG.	ICGG	AAC T	AGG	いしょい	V	V	T.	K.	שכנ	non.	.CGGA G	134
5_	N	<u> </u>	r		Q	3			<u> </u>			- "						_ <u>~</u>		
۸.	יא כיתי	יממר	ימכמ	CAG	ccc	מממי	מממ	ירים	יראיז	GTA	CAT	GGT	GCT	GGG	CAT	TGG	TCC	AGT	GCTG	
T		A						F		Y		v							L	154
-								_	•••	_										
GG	CCT	GGT	CTG	TGT	CCC	GCI	CCI	AGC	CTC	AGC	CAG	TGA	ACCA	CTC	GCG	TGC	ACG	CTA	TGGC	
		V						G		Α			H			G		Y		174
CG	CCG	CCG	GCC	CTI															CATC	
R	R	R	P	F	I	W	Α	L	s	L	G	I	L	L	s	L	F	L	Ι	194
																			GGCA	214
P	R	A	G	W	L	Α	G	L	L	С	P	Đ	Р	R	ь	ъ	E	L	A	214
									0007	ama	0000	ייייי			CTC	יייי	ירי א ר	יתיי	ACTG	
																			L L	
П	Ļ	1	L	G	٧	G	11	ш	J	F	C	G	×	•	·	٠	•	•	_	25.
G	יפפר	ירריו	יכריז	ירידי	ידנו	יייי	ירידי	raca	GGZ	ccc	CGGA	CCA	CTC	TCC	CCI	AGGC	СТА	CTC	TGTC	
E		L		s		L					D								v	254
_	••	_	_	_	-	_	-		_						_					
TP	TGC	CTI	CAT	'GA'	CAC	TCT	TGC	GGG	CTO	CC3	rgge	CTA	ACCI	rcc1	rgco	CTGC	CAT	TGA	CTGG	
	A		M								G							D	w	274
GP	CAC	CAC																	GCTC	
D	T	S	Α	L	A	P	Y	L	G	T	Q	E	E	С	L	F	G	L	L	294
		CAT	CTT	CCI	CAC	CTC	CG1	DAG	CAGO	CAC	CACI	rgc1	rggi	rGGC	TG!	AGG?	rGGC	AGC	GCTG	
T	L	I	F	L	T	С	V	A	A	т	L	L	V	A	E	E	A	A	L	314
									na					, m		יחחי	CTC	ıama	maas	
									LGTC	:GGC	CCCC P	CTC	.C ["]	IGT(	יטט. מ	ひしい	-C1C		TCCA P	334
G	₽	Τ,	E	Ъ	A	E	G	L	5	A	P	5	ш	3	-	п	C	C	r	234

PCT/EP03/06096

## 23/45

TG	CCG	GGC	CCG	CTT	GGC	TTT	CCG	GAA	CCT	'GGG	CGC	CCT	GCT	TCC	CCG	GCT	GCA	CCA	GCTG	
С	R	A	R	L	A	F	R	N	L	G	A	L	L	P	R	L	Н	Q	L	354
тс	CTG	CCG	САТО	GCC	CCG	CAC	CCT	GCG	CCG	GCT	CTT	CGT	GGC	TGA	GCT	GTG	CAG	CTG	GATG	
C	C	R	М	P	R	T	L	R	R	L	F	V	A	E	L	С	S	W	М	374
GC.	אפידי	САТ	GAC	стт	CAC	GCT	GTT	TTA	CAC	:GGA	TTT	CGT	GGG	CGA	GGG	GCT	GTA	CCA	.GGGC	
A	L	М	T	F	T	L	F	Y	T	D	F	V	G	E	G	L	Y	Q	G	394
СT	GCC	ሮልሮ	∆קכר <u>י</u>	тса	GCC	GGG	CAC	CGA	GGC	CCG	GAG	ACA	СТА	TGA	TGA	AGG	CGT	TCG	GATG	
v	P	R	A	Ε	P	G	Т	Е	A	R	R	Н	Y	D	E	G	V	R	M	414
ഭദ	രൂദ	ССТ	ഭഭഭ	GCT	стт	CCT	GCA	GTG	CGC	CAT	CTC	CCT	GGT	CTT	CTC	TCT	GGT	CAT	GGAC	
G	s	L	G	L	F	L	Q	С	A	I	s	L	V	F	s	L	V	M	D	434
CG	GCT	GGT	GCA	GCG	ATT	'CGG	CAC	TC	AGC	AGI	CTA	TTT	GGC	CAG	TGT	GGC	AGC	TTT	CCCT	
R	L	v	Q	R	F	G	T	R	A	v	Y	L	A	S	V	A	A	F	P	454
GT	GGC	TGC	CGG	TGC	CAC	'ATC	CCI	GTO	CCA	CAC	TGI	GGC	CGT	GGI	'GAC	:AGC	TTC	AGC	CGCC	
v	A	A	G	A	T	C	L	s	H	S	V	A	V	V	T	A	S	A	A	474
СТ	CAC	CGG	GTT	CAC	CTI	CTC	AGC	:cci	rgcz	GAT	CCI	GCC	CTA	CAC	ACT	GGC	CTC	CCI	CTAC	
L	T	G	F	T	F	s	A	L	Q	I	L	P	Y	T	L	A	s	L		494
CA	CCG	GGA	GAA	GCA	GGT	'GT'I	CCI	GCC	CA	\AT#	ACCG	AGG	GGA	CAC	TGC:	AGG	TGC	TAC	CAGT	
Н	R	E	K	Q	v	F	L	P	ĸ	Y	R	G	D	T	G	G	A	s	s	514
GΑ	GGA	CAC	CCT	'GAT	'GAC	CAC	CT1	CC	rgco	CAGO	CCC	TAP	GCC	TGG	AGC	TCC	CTT	ccc	TAAT	
E	D	s	L	М	Т	S	F	L	P	G	P	ĸ	P	G	A	P	F	P	N	534
GG	מימ	CGT	raga	TGC	ግርር የ	:AGC	CAC	TGO	GCT	rgci	rccc	ACC	TCC	:ACC	CGC	GCT	CTG	CGG	GGCC	
G	Н	V	G	A	G	G	s	G	L	L	P	P	P	P	A	L	C	G	A	554
TC	יידניני	יכיני	מיזיני	тсп	יריר	ירפי	PACC	ት ት	rggʻ	rgg	rgge	TGA	GCC	CAC	CGF	\GGC	CAG	GGT	GGTT	
s	A	C	D	v	s	v	R	V	V	٧	G	E	P	T	E	A	R	V	v	574
cc	aaa	ירכנ	יכככ	יר ב	יריזי	יררי	raai	ייטי	rcga	CA?	rcci	GGA	TAG	TGC	CTI	CCI	GCI	GTO	CCAG	
P	G	R	G	I	C	L	D	L	A	I	L	D	s	A	F	L	L	s	Q	594
СП	vece	,,,,,	ימירי	ירריו	ייייטיי	ימידים	raac	ict(	יכשי	רייניי	רכיצ	AGCT	CAG	CCA	GTC	TGT	CAC	TGC	CTAT	
V	A	P	S	L	F	M	G	s	I	v	Q	L	s	Q	s	v	Т	A	Y	614
24	100T	יריתר	ייזיריר	rece	ነ አርያር	יייי	ויכיכי	יייתב	ועבעי	רכני	ימיי	מידיידיי	יייי	ፕሮርር	TAC	ACA	GGT	'AGT	TTTA	
	V		A	A	G	L	G	L	V	A	I	Y	F	A	T	Q	V	V	F	634
GA	CAA	GAG	CGA	CTI	rggo	CAJ	AAT	ACT	CAG	CGTA	\GG7	CGF	\G							
							v					-								645

PCT/EP03/06096

#### 24/45

#### FIG. 14 - Codon optimised P501S sequences (SEQ ID NO:19-20)

#### SEQ ID NO:19

ATGGTGCAGCGCTCTGGGTGAGCCGCCTCCTGCGGCATCGCAAGGCCCAGCTCCTGCTGGTGAATCTGCTCA CATTCGGCCTGGAGGTGTGCCTGGCCGCCGCATCACCTACGTGCCCCCCCTCCTGCTGGAGGTGGGAGTCGA GCTTCCGACCATTGGCGCGGCCGGTATGGCCGCAGGAGACCCTTCATCTGGGCTCTGAGTCTCGGCATCCTGC TGAGCCTGTTCCTGATCCCTCGGGCCGGCTGGCTGGCCGGGCTGCTGTGCCCCGATCCTCGGCCCCTGGAGCT GGCCCTGCTGATCCTCGGCGTGGGCCTGCTGGACTTCTGCGGCCAGGTGTGCTTCACGCCCCTGGAGGCACTG CTGAGCGACCTGTTCCGGGACCCCGACCATTGCCGCCAGGCGTACAGCGTGTACGCCTTCATGATCTCCCTGG GAGGCTGCCTGGCTACCTGCTCCCCGCCATCGATTGGGACACCAGCGCACTCGCCCCCTATCTCGGAACACA GGAGGAATGCCTGTTCGGATTGTTGACGCTCATCTTCCTCACGTGCGTCGCGGCCACCCTGTTGGTGGCCGAG GAGGCCGCCTGGGGCCCACCGAGCCGAGGCACTGAGCCCCGAGCCTGAGTCCACACTGCTGCCCTT GCCGGCCCGCCTGGCCTTCCGTAATCTGGGCGCCCTCCTGCCTCGGCTCCATCAGCTGTGTTGCAGAATGCC TAGGACGCTGCGGCGCCTGTTCGTCGCTGAGTTGTGCTCCTGGATGGCTCTCATGACCTTCACCCTGTTTTAT ACGACGAGGAGTGCGTATGGGCTCCCTGGGCCTCTTCTTGCAGTGCGCCATCAGTCTGGTTTTCTCTCTGGT CATGGACAGGCTGGTGCAGCGCTTCGGAACCCGGGCGGTGTACCTGGCGAGCGTGGCCGCCTTCCCCGTGGCT GCCGGCGCCACCTGCCTCTCACTCGGTGGCCGTGGTCACCGCCAGCGCCGCCCTGACCGGGTTCACCTTCT CTGCCTGCAGATTCTGCCTTACACCCTGGCCAGCCTGTACCATCGCGAGAAACAGGTGTTTCTCCCCAAGTA CCAGCGCCTGCGACGTGAGCGTGCGCGTGGTGGTGGGCGAGCCCACCGAGGCCCGCGTGGTGCCGGGCAGAGG CATTTGTCTGGACCTGGCCATCCTCGACTCCGCCTTCCTCCTCAGCCAGGTGGCCCCGTCCCTCTTCATGGGC TCTATCGTCCAGCTGTCTCAGAGCGTCACCGCTTACATGGTGTCCGCTGCTGGACTGGGCTTGGTGGCTATTT ATTTCGCCACCCAGGTGGTGTTCGACAAGAGCGACCTGGCCAAATACTCCGCCTGA

#### **SEQ ID NO:20**

PCT/EP03/06096

#### 25/45

GGGGATGCCTGGGCTATCTGCCCGCTATCGACTGGGACACCAGCGCCCCTGGCCCCCTACCTGGGGACTCA GGAGGAGTGCCTGTTCGGCCTGCTCACCTTGATCTTCCTGACGTGCGTCGCCGCCACCCTGCTGGTGGCCGAG GAGGCGGCCTGGGGCCCACCGAGCCCGCCGAGGGCCTGAGCGCTCCCAGCCTGAGCCCCCATTGCTGCCCGT GCAGGGCTAGGCTCGCCTTCAGGAATCTGGGCGCTTTGCTGCCCCGCCTGCATCAGCTGTGCTGTCGCATGCC TCGCACCCTGCGCCGCCTGTTCGTCGCTGAGCTCTGTTCCTGGATGGCCCTGATGACGTTCACCCTCTTCTAC ACCGACTTCGTGGGGGAGGCCTGTACCAGGGCGTGCCCAGGGCCGAGCCCGGCACCGAGGCTAGGCGCCATT ACGACGAGGGCGTCAGGATGGGCTCTCTGGGCCTCTTCCTGCAGTGCGCCATCAGTCTGGTGTTCTCTCTGGT GATGGACCGGCTGCTGCAGCGCTTCGGCACCCGGGCCGTGTACCTCGCCTCTGTGGCGGCTTTCCCCGTCGCC GCCGGCGCGACCTGCCTGTCTCATTCTGTCGCCGTGGTGACCGCCAGCGCCCCTGACCGGCTTCACCTTCA GTGCGCTCCAGATTCTGCCCTACACCCTGGCGTCTCTGTACCATCGCGAGAAGCAGGTGTTCCTGCCCAAGTA  $\tt CCGCGGGGACACAGGGGGAGCTTCCTCTGAGGACAGCCTGATGACCAGCTTCTTGCCCGGCCCCAAGCCGGGG$ CTAGTGCCTGCGACGTGGGGGGTGGTGGTGGGGGGAGCCCACCGAGGCTAGGGTCGTGCCTGGCCGGGG GATCTGCCTGGACCTGGCCATCCTCGACTCCGCCTTCCTGCTCTCCCAGGTGGCGCCCAGCCTGTTCATGGGC A GTATCGTGCAGCTGAGCCAGAGCGTGACCGCCTACATGGTGAGCGCCGGCCTGGGGTTGGTGGCCATCTACTTTGCCACCCAGGTCGTGTTCGACAAGAGCGATCTCGCCAAGTATAGCGCCTGA

PCT/EP03/06096

#### 26/45

#### FIG. 15 – Re-engineered codon optimised sequence 19 (SEQ ID NO:21)

GACGGCTAGCGCCACCATGGTGCAGCGGCTCTGGGTGAGCCGCCTCCTGCGGCATCGCAAGGCCCAGCTCCTG CTGGTGAATCTGCTCACATTCGGCCTGGAGGTGTGCCTGGCCGCCGCCATCACCTACGTGCCCCCCCTCCTGC TGGAGGTGGGAGTCGAGGAGAAGTTCATGACCATGGTGCTGGGCATTGGGCCCTCGTGGGCCTCGTGTGCGT GCCTCTCCTCGGCAGCGCTTCCGACCATTGGCGCGGCCGGTATGGCCGCAGGAGACCCTTCATCTGGCTCTG AGTCTCGGCATCCTGAGCCTGTTCCTGATCCCTCGGGCCGGCTGCTGGCCGGGCTGCTGTGCCCCGATC CTCGGCCCTGGAGCTGGCCCTGCTGATCCTCGGCGTGGGCCTGCTGGACTTCTGCGGCCAGGTGTGCTTCAC GCCCCTGGAGGCACTGCTGAGCGACCTGTTCCGGGACCCCGACCATTGCCGCCAGGCGTACAGCGTGTACGCC TTCATGATCTCCCTGGGAGGCTGCCTGGGCTACCTGCTCCCCGCCATCGATTGGGACACCAGCGCACTCGCCC CCTATCTCGGAACACAGGAGGAATGCCTGTTCGGAQTGQTGACGCTCATCTTCCTCACGTGCGTCGCGGCCAC CCACACTGCCGCCCTGCCCTGGCCTTCCGTAATCTGGGCGCCCTCCTGCCTCGGCTCCATCAGC TGTGTTGCAGAATGCCTAGGACGCTGCGGCGCCTGTTCGTCGCTGAGTTGTGCTCCTGGATGGCTCTCATGAC GAGGCGCGCCGCCACTACGACGAGGGAGTGCGTATGGGCTCCCTGGGCCTCTTCTTGCAGTGCGCCATCAGTC TGGTTTTCTCTCTGGTCATGGACAGGCTGGTGCAGCGCTTCGGAACCCGGGCGGTGTACCTGGCGAGCGTGGC CGCCTTCCCCGTGGCTGCCGCCGCCACCTGCCTCTCTCACTCGGTGGCCGTGGTCACCGCCAGCGCCGCCCTG ACCGGGTTCACCTTCTCTGCCCTGCAGATTCTGCCTTACACCCTGGCCAGCCTGTACCATCGCGAGAAACAGG TGGTGCCGGCAGAGGCATTTGTCTGGACCTGGCCATCCTCGACTCCGCCTTCCTCAGCCAGGTGGCCCC GTCCCTCTTCATGGGCTCTATCGTCCAGCTGTCTCAGAGCGTCACCGCTTACATGGTGTCCGCTGCTGGACTG  ${\tt GGCTTGGTGGCTATTTATTTCGCCACCCAGGTGGTGTTCGACAAGAGGGGACCTGGCCAAATACTCCGCCTGA\underline{C}}$ **TCGAGGCAG** 

PCT/EP03/06096

#### 27/45

## FIG. 16 - Re-engineered codon optimised sequence 20 (SEQ ID NO:22)

GACGGCTAGCGCCACCATGGTGCAGCGGCTGTGGGTGTCCCGGCTGCTGCGCCATAGAAAGGCCCAGTTGCTG GCCCTCCTCGGGAGTGCGTCCGATCATTGGCGGGGCCGCTACGGCCGCCGCAGACCGTTCATCTGGGCCCTG CCCGCCCTCTGGAGCTGGCCCTCCTGATCCTGGGCGTGGGCGTGTGTTGCGGCCAGGTGTGTTTCAC TTCATGATCAGTCTGGGGGGATGCCTGGGCTATCTGCTGCCCGCTATCGACTGGGACACCAGCGCCCTGGCCC CCTGCTGGTGGCCGAGGAGGCGGCCCTGGGGCCCACCGAGGCCCGCGAGGGCCTGAGCGCTCCCAGCCTGAGC  $\tt CCCCATTGCTGCCCGTGCAGGGCTAGGCTCGCCTTCAGGAATCTGGGCGCTTTGCTGCCCCGCCTGCATCAGC$ TGTGCTGTCGCATGCCTCGCACCCTGCGCCGCCTGTTCGTCGCTGAGCTCTGTTCCTGGATGGCCCTGATGAC GTTCACCCTCTTCTACACCGACTTCGTGGGGGAGGCCTGTACCAGGGCGTGCCCAGGGCCGAGCCCGGCACC GAGGCTAGGCGCCATTACGACGAGGGCGTCAGGATGGGCTCTCTGGGCCTCTTCCTGCAGTGCGCCATCAGTC TGGTGTTCTCTCTGGTGATGGACCGGCTGGTGCAGCGCTTCGGCACCCGGGCCGTGTACCTCGCCTCTGTGGC GGCTTTCCCCGTCGCCGGCGGCGCGCCTGCCTGTCTCATTCTGTCGCCGTGGTGACCGCCAGCGCCGCCCTG ACCGGCTTCACCTTCAGTGCGCTCCAGATTCTGCCCTACACCCTGGCGTCTCTGTACCATCGCGAGAAGCAGG TGTTCCTGCCCAAGTACCGCGGGGACACAGGGGGGAGCTTCCTCTGAGGACAGCCTGATGACCAGCTTCTTGCC CCCGCCCTGTGCGGCGCTAGTGCCTGCGACGTGAGCGTGCGGGTGGTGGTGGGGGAGCCCACCGAGGCTAGGG TCGTGCCTGGCCGGGGGATCTGCCTGGACCTGGCCATCCTCGACTCCGCCTTCCTGCTCTCCCAGGTGGCGCC CAGCCTGTTCATGGGCAGTATCGTGCAGCTGAGCCAGAGCGTGACCGCCTACATGGTGAGCGCCGGCCTG GGGTTGGTGGCCATCTACTTTGCCACCCAGGTCGTGTTCGACAAGAGCGATCTCGCCAAGTATAGCGCCTGA<u>C</u> TCGAGGCAG

PCT/EP03/06096

#### 28/45

# FIG. 17 – The starting sequence for the optimisation of CPC (SEQ ID NO:23) Four amino acids of P501S sequence are boxed.

ATGGCGGCCGCTTACGTACATTCCGACGGCTCTTATCCAAAAGACAAGTTTGAGAAAATCAATGGCACTTGGT
ACTACTTTGACAGTTCAGGCTATATGCTTGCAGACCGCTGGAGGAAGCACACAGACGGCAACTGGTACTGGTT
CGACAACTCAGGCGAAATGGCTACAGGCTGGAAGAAAATCGCTGATAAGTGGTACTATTTCAACGAAGAAGGT
GCCATGAAGACAGGCTGGGTCAAGTACAAGGACACTTGGTACTACTTAGACGCTAAAGAAGACGCCCATGCAAT
ACATCAAGGCTAACTCTAAGTTCATTGGTATCACTGAAGGCGTCATGGTATCAAATGCCTTTATCCAGTCAGC
GGACGGAACAGGCTGGTACTACCTCAAACCAGACGGAACACTGGCAGACAGGCCAGAAAAATTCATGTAC

## FIG. 18 - Representative codon optimised CPC sequences (SEQ ID NO:24-25)

#### SEQ ID NO:24

ATGGCCGCCGCCTACGTGCATAGCGACGGGAGCTACCCCAAGGACAAGTTCGAGAAGATCAACGGGACATGGT
ACTACTTCGACTCCTCCGGCTACATGCTCGCCGACCGCTGGCGGAAGCACCCGACGGCAACTGGTACTGGTT
CGATAACTCGGGAGAGATGGCCACCGGCTGGAAGAAGATCGCGGACAAGTGGTACTATTTCAACGAGGAGGGC
GCCATGAAGACCGGCTGGGTGAAGTATAAGGACACCTGGTACTACCTCGACGCCAAGGAGGGGCGCCATGCAGT
ATATCAAGGCCAACAGCAAGTTCATCGGCATCACCGAGGGAGTGATGGTCAGCAACGCCTTTATCCAGAGCGC
CGACGGCACCGGATGGTACTACTTGAAGCCGGACGGCACCCTCGCGGATCGGCCCGAGAAGTTCATGTAC

#### **SEQ ID NO:25**

ATGGCCGCCGCCTACGTGCACAGCGACGGGTCCTACCCAAAGGACAAGTTCGAGAAGATCAACGGCACGTGGT
ACTATTTCGACAGCAGCGGCTACATGCTCGCCGATCGCTGGCGCAAGCACACCGACGGGAACTGGTACTGGTT
CGACAACTCTGGCGAGATGGCTACGGGGTGGAAGAAGATCGCCGACAAGTGGTACTACTTCAACGAGGAGGGC
GCCATGAAGACCGGGTGGGTGAAGTACAAGGACACCTGGTACTACCTGGACGCTAAGGAGGGCGCCATGCAGT
ACATCAAGGCCAACTCGAAGTTCATCGGGATCACCGAGGGCGTGATGGTCAGTAACGCTTTCATCCAGAGCGC
GGACGGCACAGGCTGGTATTACCTGAAGCCCGATGGCACCCTGGCGGACAGACCTGAGAAATTCATGTAC

## FIG. 19 - Engineered CPC codon optimised sequence (SEQ ID NO:26)

#### **SEQ ID NO:26**

GACGGCTAGCGCCACCATGGCCGCCGCCTACGTGCATAGCGACGGGAGGCTACCCCAAGGACAAGTTCGAGAAG
ATCAACGGGACATGGTACTACTTCGACTCCTCCGGCTACATGCTCGCCGACCGCTGGCGGAAGCACCACCGACG
GCAACTGGTACTGGTTCGATAACTCGGGAGAGATGGCCACCGGCTGGAAGAAGATCGCGGACAAGTGGTACTA
TTTCAACGAGGAGGGCGCCATGAAGACCGGCTGGGTGAAGTATAAGGACACCTGGTACTACCTCGACGCCAAG
GAGGGCGCCATGCAGTATATCAAGGCCAACAGCAAGTTCATCGGCATCACCGAGGGAGTGATGGTCAGCAACG
CCTTTATCCAGAGCGCCGACGGCACCGGATGGTACTACTTGAAGCCGGACGCACCCTCGCGGATCGGCCCGA
GAAGTTCATGTACTGACTCGAGGCAG

PCT/EP03/06096

#### 29/45

FIG. 20 - P501S CPC fusion candidate constructs and sequences

Α	CPC	P50	1S (∆N term)					
В	СРС		P501S (ΔN	term)				
С	CPC	P501S	P501S (ΔN term)					
D	N term P501S	CPC	P501S (ΔN term)					

#### Construct A = SEQ ID NO:37 (nucleotide) & 45 (polypeptide)

GCGCCGCCACCATGGCCGCCCTACGTGCATAGCGACGGGAGCTACCCCAAGGACA M A A A Y V H S D G S Y P K D K AGTTCGAGAAGATCAACGGGACATGGTACTACTTCGACTCCTCCGGCTACATGCTCGCCG FEKINGTWYYFDSSGYMLAD ACCGCTGGCGGAAGCACACCGACGGCAACTGGTACTGGTTCGATAACTCGGGAGAGATGG R W R K H T D G N W Y W F D N S G E M A CCACCGGCTGGAAGAAGATCGCGGACAAGTGGTACTATTTCAACGAGGAGGGCGCCATGA T G W K K I A D K W Y Y F N E E G A M K AGACCGGCTGGGTGAAGTATAAGGACACCTGGTACTACCTCGACGCCAAGGAGGGCGCCA TGWVKYKDTWYYLDAKEGAM TGCAGTATATCAAGGCCAACAGCAAGTTCATCGGCATCACCGAGGGAGTGATGGTCAGCA Q Y I K A N S K F I G I T E G V M V S N ACGCCTTTATCCAGAGCGCCGACGGCACCGGATGGTACTACTTGAAGCCGGACGGCACCC A F I Q S A D G T G W Y Y L K P D G T L TCGCGGATCGGCCCGAGAAGTTCATGTACATGGTGCTGGGCATCGGCCCCGTCCTGGGCC A D R P E K F M Y M V L G I G P V L G L TCGTGTGTGTGCCCCTCCTCGGGAGTGCGTCCGATCATTGGCGGGGCCGCTACGGCCGCC V C V P L L G S A S D H W R G R Y G R R R P F I W A L S L G I L L S L F L I P R GGGCCGGCTGGCCGGCCTGCTGTCCCGACCCCGCCCTCTGGAGCTGGCCCTCC A G W L A G L L C P D P R P L E L A L L TGATCCTGGGCGTGGGCCTGCTGGACTTCTGCGGCCAGGTGTGTTTCACTCCCCTGGAGG

PCT/EP03/06096

#### 30/45

I L G V G L L D F C G Q V C F T P L E A L L S D L F R D P D H C R Q A Y S V Y A CCTTCATGATCAGTCTGGGGGATGCCTGGGCTATCTGCTGCCCGCTATCGACTGGGACA F M I S L G G C L G Y L L P A I D W D T CCAGCGCCCTGGCCCCTACCTGGGGACTCAGGAGGAGTGCCTGTTCGGCCTGCTCACCT S A L A P Y L G T Q E E C L F G L L T L TGATCTTCCTGACGTGCGCCGCCACCCTGCTGGTGGCCGAGGAGGCGGCCCTGGGGC T F L T C V A A T L L V A E E A A L G P CCACCGAGCCCGCGAGGGCCTGAGCGCTCCCAGCCTGAGCCCCCATTGCTGCCCGTGCA TEPAEGLSAPSLSPHCCPCR GGGCTAGGCTCGCCTTCAGGAATCTGGGCGCTTTGCTGCCCCGCCTGCATCAGCTGTGCT A R L A F R N L G A L L P R L H Q L C C GTCGCATGCCTCGCACCCTGCGCCGCCTGTTCGTCGCTGAGCTCTGTTCCTGGATGGCCC RMPRTLRRLFVAELCSWMAL M T F T L F Y T D F V G E G L Y Q G V P CCAGGGCCGAGCCCGAGGCTAGGCGCCATTACGACGAGGGCGTCAGGATGGGCT RAEPGTEARRHYDEGVRMGS CTCTGGGCCTCTTCCTGCAGTGCGCCATCAGTCTGGTGTTCTCTCTGGTGATGGACCGGC L G L F L Q C A I S L V F S L V M D R L TGGTGCAGCGCTTCGGCACCCGGGCCGTGTACCTCGCCTCTGTGGCGGCTTTCCCCGTCG V Q R F G T R A V Y L A S V A A F P V A CCGCCGGCGCGACCTGCCTGTCTCATTCTGTCGCCGTGGTGACCGCCAGCGCCCCTGA AGATCLSHSVAVVTASAALT CCGGCTTCACCTTCAGTGCGCTCCAGATTCTGCCCTACACCCTGGCGTCTCTGTACCATC G F T F S A L Q I L P Y T L A S L Y H R GCGAGAAGCAGGTGTTCCTGCCCAAGTACCGCGGGGACACAGGGGGAGCTTCCTCTGAGG EKQVFLPKYRGDTGGASSED ACAGCCTGATGACCAGCTTCTTGCCCGGCCCCAAGCCGGGGGCCCCTTTCCCCAACGGCC S L M T S F L P G P K P G A P F P N G H V G A G G S G L L P P P P A L C G A S A CCTGCGACGTGAGCGTGCGGGTGGTGGTGGGGGAGCCCACCGAGGCTAGGGTCGTGCCTG C D V S V R V V G E P T E A R V V P G GCCGGGGGATCTGCCTGGACCTGGCCATCCTCGACTCCGCCTTCCTGCTCTCCCAGGTGG R G I C L D L A I L D S A F L L S Q V A  $\tt CGCCCAGCCTGTTCATGGGCAGTATCGTGCAGCTGAGCCAGAGCGTGACCGCCTACATGG$ 

PCT/EP03/06096

#### 31/45

TGAGCGCCGCCGGGGTTGGTGGCCATCTACTTTGCCACCCAGGTCGTGTTCGACA
S A A G L G L V A I Y F A T Q V V F D K

AGAGCGATCTCGCCAAGTATAGCGCCTGAGGATCC
S D L A K Y S A *

## Construct B = SEQ ID NO:38 (nucleotide) & 46 (polypeptide)

GCGGCCGCCACCATGGCCGCCCTACGTGCATAGCGACGGGAGCTACCCCAAGGACA M A A A Y V H S D G S Y P K D K AGTTCGAGAAGATCAACGGGACATGGTACTACTTCGACTCCTCCGGCTACATGCTCGCCG FEKINGTWYYFDSSGYMLAD ACCGCTGGCGGAAGCACCCGACGGCAACTGGTACTGGTTCGATAACTCGGGAGAGATGG R W R K H T D G N W Y W F D N S G E M A  ${\tt CCACCGGCTGGAAGAAGATCGCGGACAAGTGGTACTATTCAACGAGGAGGCGCCATGA}$ TGWKKIADKWYYFNEEGAMK AGACCGGCTGGGTGAAGTATAAGGACACCTGGTACTACCTCGACGCCAAGGAGGGCGCCA T G W V K Y K D T W Y Y L D A K E G A M TGCAGTATATCAAGGCCAACAGCAAGTTCATCGGCATCACCGAGGGAGTGATGGTCAGCA Q Y I K A N S K F I G I T E G V M V S N ACGCCTTTATCCAGAGCGCCGACGGCACCGGATGGTACTACTTGAAGCCGGACGGCACCC A F I Q S A D G T G W Y Y L K P D G T L TCGCGGATCGGCCCGAGATGGTGCAGCGGCTGTGGGTGTCCCGGCTGCTGCGCCATAGAA ADRPEMVQRLWVSRLLRHRK AGGCCCAGTTGCTGGTGAACCTGCTGACTTTCGGACTGGAGGTGTGCCTGGCTGCCG AQLLLVNLLTFGLEVCLAAG GGATCACGTACGTGCCCCCCTGCTGCTGGAGGTGGGCGTGGAGGAGAAGTTCATGACAA I T Y V P P L L E V G V E E K F M T V L G I G P V L G L V C V P L L G S A S  ${\tt CCGATCATTGGCGGGGCCGCTACGGCCGCCGCAGACCGTTCATCTGGGCCCTGAGCCTGG}$ D H W R G R Y G R R P F I W A L S L G I L L S L F L I P R A G W L A G L L C P  $\tt CCGACCCCGCCCTCTGGAGCTGGCCCTCCTGATCCTGGGCGTGGGCCTGCTGGACTTCT$ D P R P L E L A L L I L G V G L L D F C G Q V C F T P L E A L L S D L F R D P D ACCACTGTAGGCAGGCTTACAGCGTGTACGCCTTCATGATCAGTCTGGGGGGATGCCTGG H C R Q A Y S V Y A F M I S L G G C L G GCTATCTGCTGCCCGCTATCGACTGGGACACCAGCGCCCTGGCCCCTACCTGGGGACTC Y L L P A I D W D T S A L A P Y L G T Q

PCT/EP03/06096

#### 32/45

AGGAGGAGTGCCTGTTCGGCCTGCTCACCTTGATCTTCCTGACGTGCGTCGCCGCCACCC EECLFGLLTLIFLTCVAATL TGCTGGTGGCCGAGGAGGCCGCCTGGGGCCCACCGAGCCCGCCGAGGGCCTGAGCGCTC LVAEEAALGPTEPAEGLSAP CCAGCCTGAGCCCCCATTGCTGCCCGTGCAGGGCTAGGCTCGCCTTCAGGAATCTGGGCG SLSPHCCPCRARLAFRNLGA CTTTGCTGCCCCGCCTGCATCAGCTGTGCTGTCGCATGCCTCGCACCCTGCGCCCCCTGT LLPRLHQLCCRMPRTLRRLF TCGTCGCTGAGCTCTGTTCCTGGATGGCCCTGATGACGTTCACCCCTCTTCTACACCGACT V A E L C S W M A L M T F T L F Y T D F TCGTGGGGAGGCCTGTACCAGGGCGTGCCCAGGGCCGAGCCCGAGGCTAGGC V G E G L Y Q G V P R A E P G T E A R R GCCATTACGACGAGGGCGTCAGGATGGGCTCTCTGGGGCCTCTTCCTGCAGTGCGCCATCA H Y D E G V R M G S L G L F L Q C A I S GTCTGGTGTTCTCTCTGGTGATGGACCGGCTGGTGCAGCGCTTCGGCACCCGGGCCGTGT LVFSLVMDRLVQRFGTRAVY LASVAAFPVAAGATCLSHSV TCGCCGTGGTGACCGCCAGCGCCCCTGACCGGCTTCACCTTCAGTGCGCTCCAGATTC A V V T A S A A L T G F T F S A L Q I L TGCCCTACACCCTGGCGTCTCTGTACCATCGCGAGAAGCAGGTGTTCCTGCCCAAGTACC PYTLASLYHREKQVFLPKYR GCGGGGACACAGGGGGAGCTTCCTCTGAGGACAGCCTGATGACCAGCTTCTTGCCCGGCC G D T G G A S S E D S L M T S F L P G P CCAAGCCGGGGCCCCTTTCCCCAACGGCCATGTCGGGGCGGCGGCAGCGGCCTGCTCC K P G A P F P N G H V G A G G S G L L P CTCCCCCCCCCCCGCCTGTGCGGCGCTAGTGCCTGCGACGTGAGCGTGCGGGTGGTGGTGG PPPALCGASACDVSVRVVG GGGAGCCCACCGAGGCTAGGGTCGTGCCTGGCCGGGGGATCTGCCTGGACCTGGCCATCC E P T E A R V V P G R G I C L D L A I L TCGACTCCGCCTTCCTGCTCTCCCAGGTGGCGCCCAGCCTGTTCATGGGCAGTATCGTGC D S A F L L S Q V A P S L F M G S I V Q AGCTGAGCCAGAGCGTGACCGCCTACATGGTGAGCGCCGGCCTGGGGTTGGTGGCCA L S Q S V T A Y M V S A A G L G L V A I TCTACTTTGCCACCCAGGTCGTGTTCGACAAGAGCGATCTCGCCAAGTATAGCGCCTGAG Y F A T Q V V F D K S D L A K Y S A GATCC

Construct C = SEQ ID NO:39 (nucleotide) & 47 (polypeptide)

PCT/EP03/06096

#### 33/45

GCGGCCGCCACCATGGCCGCCCTACGTGCATAGCGACGGGAGCTACCCCAAGGACA M A A A Y V H S D G S Y P K D K AGTTCGAGAAGATCAACGGGACATGGTACTACTTCGACTCCTCCGGCTACATGCTCGCCG FEKINGTWYYFDSSGYMLAD ACCGCTGGCGGAAGCACCCGACGGCAACTGGTACTGGTTCGATAACTCGGGAGAGATGG RWRKHTDGNWYWFDNSGEMA CCACCGGCTGGAAGAAGATCGCGGACAAGTGGTACTATTTCAACGAGGAGGGCGCCATGA T G W K K I A D K W Y Y F N E E G A M K AGACCGGCTGGGTGAAGTATAAGGACACCTGGTACTACCTCGACGCCAAGGAGGGCGCCA T G W V K Y K D T W Y Y L D A K E G A M TGCAGTATATCAAGGCCAACAGCAAGTTCATCGGCATCACCGAGGGAGTGATGGTCAGCA O Y I K A N S K F I G I T E G V M V S N ACGCCTTTATCCAGAGCGCCGACGGCACCGGATGGTACTACTTGAAGCCGGACGGCACCC A F I Q S A D G T G W Y Y L K P D G T L  ${\tt TCGCGGATCGGCCCGAGAAGTTCATG} \underline{{\tt TAC}} {\tt ATGGTGCTGGGCATCGGCCCCGTCCTGGGCC}$ ADRPEKFM YMVLGIGPVLGL V C V P L L G S A S D H W R G R Y G R R R P F I W A L S L G I L L S L F L I P R GGGCCGGCTGGCCGGCCTGCTGTTCCCGACCCCCGCCCTCTGGAGCTGGCCCTCC AGWLAGLLCPDPRPLELALL TGATCCTGGGCGTGGGCCTGCTGGACTTCTGCGGCCAGGTGTGTTTCACTCCCCTGGAGG I L G V G L L D F C G Q V C F T P L E A L L S D L F R D P D H C R Q A Y S V Y A CCTTCATGATCAGTCTGGGGGATGCCTGGGCTATCTGCTGCCCGCTATCGACTGGGACA F M I S L G G C L G Y L L P A I D W D T  ${\tt CCAGCGCCCTGGCCCCTACCTGGGGACTCAGGAGGAGTGCCTGTTCGGCCTGCTCACCT}$ SALAPYLGTQEECLFGLLTL TGATCTTCCTGACGTGCGTCGCCGCCACCCTGCTGGTGGCCGAGGAGGCGGCCCTGGGGC I F L T C V A A T L L V A E E A A L G P CCACCGAGCCCGCGAGGCCTGAGCGCTCCCAGCCTGAGCCCCCATTGCTGCCCGTGCA T E P A E G L S A P S L S P H C C P C R GGGCTAGGCTCGCCTTCAGGAATCTGGGCGCTTTGCTGCCCCGCCTGCATCAGCTGTGCT ARLAFRNLGALLPRLHQLCC GTCGCATGCCTCGCACCCTGCGCCGCCTGTTCGTCGCTGAGCTCTGTTCCTGGATGGCCC RMPRTLRRLFVAELCSWMAL M T F T L F Y T D F V G E G L Y Q G V P

PCT/EP03/06096

#### 34/45

 ${\tt CCAGGGCCGAGCCGGGGCTAGGCGCCATTACGACGAGGGCGTCAGGATGGGCT}$ RAEPGTEARRHYDEGVRMGS  $\tt CTCTGGGCCTCTTCCTGCAGTGCGCCATCAGTCTGGTGTTCTCTCTGGTGATGGACCGGC$ LGLFLQCAISLVFSLVMDRL TGGTGCAGCGCTTCGGCACCCGGGCCGTGTACCTCGCCTCTGTGGCGGCTTTCCCCGTCG V Q R F G T R A V Y L A S V A A F P V A CCGCCGGCGCGACCTGCCTGTCTCATTCTGTCGCCGTGGTGACCGCCAGCGCCCCTGA AGATCLS HS V A V V T A S A A L T  ${\tt CCGGCTTCACCTTCAGTGCGCTCCAGATTCTGCCCTACACCCTGGCGTCTCTGTACCATC}$ G F T F S A L Q I L P Y T L A S L Y H R GCGAGAAGCAGGTGTTCCTGCCCAAGTACCGCGGGGACACAGGGGGAGCTTCCTCTGAGG E K Q V F L P K Y R G D T G G A S S E D ACAGCCTGATGACCAGCTTCTTGCCCGGCCCCAAGCCGGGGCCCCTTTCCCCAACGGCC S L M T S F L P G P K P G A P F P N G H V G A G G S G L L P P P P A L C G A S A C D V S V R V V V G E P T E A R V V P G GCCGGGGGATCTGCCTGGACCTGGCCATCCTCGACTCCGCCTTCCTGCTCTCCCAGGTGG R G I C L D L A I L D S A F L L S Q V A  ${\tt CGCCCAGCCTGTTCATGGGCAGTATCGTGCAGCTGAGCCAGAGCGTGACCGCCTACATGG}$ PSLFMGSIVQLSQSVTAYMV TGAGCGCCGCCGGCCTGGGGTTGGTGGCCATCTACTTTGCCACCCAGGTCGTGTTCGACA S A A G L G L V A I Y F A T Q V V F D K S D L A K Y S A M V Q R L W V S R L L R GCCATAGAAAGGCCCAGTTGCTGCTGGTGAACCTGCTGACTTTCGGACTGGAGGTGTGCC HRKAQLLVNLLTFGLEVCL TGGCTGCCGGGATCACGTACGTGCCCCCCTGCTGCTGGAGGTGGGCGTGGAGGAGTGAG AAGITYVPPLLLEVGVEE* GATCC

## Construct D = SEQ ID NO:40 (nucleotide) & 48 (polypeptide)

GCGGCCGCCCACCATGGTGCAGCGGCTGTGGGTGTCCCCGGCTGCTGCGCCATAGAAAGG

M V Q R L W V S R L L R H R K A

CCCAGTTGCTGCTGGTGAACCTGCTGACTTTCGGACTGGAGGTGTGCCTGGCTGCCGGGA

Q L L L V N L L T F G L E V C L A A G I

TCACGTACGTGCCCCCCCTGCTGCTGGAGGTGGGCGTGGAGGAGATGGCCGCCCTACG

T Y V P P L L L E V G V E E M A A A Y V

PCT/EP03/06096

#### 35/45

TGCATAGCGACGGGAGCTACCCCAAGGACAAGTTCGAGAAGATCAACGGGACATGGTACT H S D G S Y P K D K F E K I N G T W Y Y ACTTCGACTCCTCCGGCTACATGCTCGCCGACCGCTGGCGGAAGCACACCGACGGCAACT F D S S G Y M L A D R W R K H T D G N W GGTACTGGTTCGATAACTCGGGAGAGATGGCCACCGGCTGGAAGAAGATCGCGGACAAGT Y W F D N S G E M A T G W K K I A D K W GGTACTATTTCAACGAGGAGGGCGCCATGAAGACCGGCTGGGTGAAGTATAAGGACACCT YYFNEEGAMKTGWVKYKDTW GGTACTACCTCGACGCCAAGGAGGGCGCCATGCAGTATATCAAGGCCAACAGCAAGTTCA Y Y L D A K E G A M Q Y I K A N S K F I TCGGCATCACCGAGGGAGTGATGGTCAGCAACGCCTTTATCCAGAGCGCCGACGGCACCG G I T E G V M V S N A F I Q S A D G T G GATGGTACTACTTGAAGCCGGACGCCACCCTCGCGGATCGGCCCGAGAAGTTCATGTACA WYYLKPDGTLADRPEKFMYM V L G I G P V L G L V C V P L L G S A S  $\tt CCGATCATTGGCGGGCCGCTACGGCCGCCGCAGACCGTTCATCTGGGCCCTGAGCCTGG$ D H W R G R Y G R R P F I W A L S L G I L L S L F L I P R A G W L A G L L C P CCGACCCCGCCCTCTGGAGCTGGCCCTCCTGATCCTGGGCGTGGGCCTGCTGGACTTCT D P R P L E L A L L I L G V G L L D F C GQVCFTPLEALLSDLFRDPD ACCACTGTAGGCAGGCTTACAGCGTGTACGCCTTCATGATCAGTCTGGGGGGATGCCTGG H C R Q A Y S V Y A F M I S L G G C L G GCTATCTGCTGCCCGCTATCGACTGGGACACCAGCGCCCTGGCCCCCTACCTGGGGACTC YLLPAIDWDTSALAPYLGTQ  ${\tt AGGAGGAGTGCCTGTTCGGCCTGCTCACCTTGATCTTCCTGACGTGCGTCGCCGCCACCC}$ E E C L F G L L T L I F L T C V A A T L TGCTGGTGGCCGAGGAGGCGGCCCTGGGGCCCACCGAGCCCGAGGGCCTGAGCGCTC L V A E E A A L G P T E P A E G L S A P CCAGCCTGAGCCCCCATTGCTGCCCGTGCAGGGCTAGGCTCGCCTTCAGGAATCTGGGCG SLSPHCCPCRARLAFRNLGA  $\tt CTTTGCTGCCCCGCCTGCATCAGCTGTGCTGCCATGCCTCGCACCCTGCGCCGCCTGT$ LLPRLHQLCCRMPRTLRRLF TCGTCGCTGAGCTCTGTTCCTGGATGGCCCTGATGACGTTCACCCTCTTCTACACCGACT V A E L C S W M A L M T F T L F Y T D F TCGTGGGGGAGGCCTGTACCAGGGCGTGCCCAGGGCCGAGCCCGGCACCGAGGCTAGGC

WO 03/104272 PCT/EP03/06096

#### 36/45

V G E G L Y Q G V P R A E P G T E A R R GCCATTACGACGAGGGCGTCAGGATGGGCTCTCTGGGCCTCTTCCTGCAGTGCGCCATCA H Y D E G V R M G S L G L F L Q C A I S GTCTGGTGTTCTCTCTGGTGATGGACCGGCTGGTGCAGCGCTTCGGCACCCGGGCCGTGT LVFSLVMDRLVQRFGTRAVY ACCTCGCCTCTGTGGCGGCTTTCCCCGTCGCCGCCGCGCGCGCCTGCCTGTCTCATTCTG L A S V A A F P V A A G A T C L S H S V  ${\tt TCGCCGTGGTGACCGCCAGCGCCCCTGACCGGCTTCACCTTCAGTGCGCTCCAGATTC}$ A V V T A S A A L T G F T F S A L Q I L  ${\tt TGCCCTACACCCTGGCGTCTCTGTACCATCGCGAGAAGCAGGTGTTCCTGCCCAAGTACC}$ PYTLASLYHREKQVFLPKYR GCGGGGACACAGGGGGAGCTTCCTCTGAGGACAGCCTGATGACCAGCTTCTTGCCCGGCC G D T G G A S S E D S L M T S F L P G P K P G A P F P N G H V G A G G S G L L P CTCCCCCCCCCCCGCCTGTGCGGCGCTAGTGCCTGCGACGTGAGCGTGCGGGTGGTGGTGG GGGAGCCCACCGAGGCTAGGGTCGTGCCTGGCCGGGGGATCTGCCTGGACCTGGCCATCC E P T E A R V V P G R G I C L D L A I L TCGACTCCGCCTTCCTCCCCAGGTGGCGCCCAGCCTGTTCATGGGCAGTATCGTGC D S A F L L S Q V A P S L F M G S I V Q AGCTGAGCCAGAGCGTGACCGCCTACATGGTGAGCGCCGCCGGCCTGGGGTTGGTGGCCA L S Q S V T A Y M V S A A G L G L V A I TCTACTTTGCCACCCAGGTCGTGTTCGACAAGAGCGATCTCGCCAAGTATAGCGCCTGAG Y F A T Q V V F D K S D L A K Y S A * GATCC

PCT/EP03/06096

#### 37/45

FIG. 21 – Western blot analysis of CHO cells following transient transfection with P501S (JNW680), CPC-P501S (JNW735) and empty vector control.



Lane Sample

- 1 CPC-P501S (JNW735)
- 2 CPC P501S protein (62.5ng)
- 3 P501S (JNW680)
- 4 P501S (JNW680)
- 5 Empty vector control

PCT/EP03/06096

#### 38/45

FIG. 22 – Anti-P501S antibody responses following immunisation at day0, 21 & 42 with pVAC-P501S (JNW680, mice B1-9) or Empty vector (pVAC, mice A1-6).



PCT/EP03/06096

## 39/45

FIG. 23 – Peptide library screen using C57BL/6 mice immunised at day 0, 21, 42, and 70 with pVAC-P501S (JNW680).





PCT/EP03/06096

#### 40/45

FIG. 24 – Cellular responses by ELISPOT at day 77 following PMID immunisation at day 0, 21, 42, and 70 with pVAC-P501S (JNW680, B6-9) and pVAC empty (A4-6).

Graph A shows the IFN-y responses whilst Graph B shows the IL-2 responses.





PCT/EP03/06096

41/45

FIG. 25 - Comparison of P501S and CPC-P501S.



FIG. 26 – Immune response (lymphoproliferation on spleen cells) following protein immunisation with CPC-P501S.



PCT/EP03/06096

42/45

FIG. 27 - Evaluation of the immune response to different CPC-P501S constructs



PCT/EP03/06096

#### 43/45

#### FIG.28. MUC1-CPC DNA and polypeptide sequences

## FIG. 28A. DNA sequence (SEQ ID NO.49)

ATGACACCGGGCACCCAGTCTCCTTCTTCCTGCTGCTGCTCCTCACAGTGCTTACAGTTGTTACAGGTTCTG GTCATGCAAGCTCTACCCCAGGTGGAGAAAAGGAGACTTCGGCTACCCAGAGAAGTTCAGTGCCCAGCTCTAC TGAGAAGAATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGCCACAGCCCCGGTTCAGGCTCCTCCACCACT CAGGGACAGGATGTCACTCTGGCCCCGGCCACGGAACCAGCTTCAGGTTCAGCTGCCACCTGGGGACAGGATG TCACCTCGGTCCCAGTCACCAGGCCAGCCCTGGGCTCCACCACCCCGCCAGGCCCACGATGTCACCTCAGCCCC GGACAACAAGCCAGCCCCGGGCTCCACCGCCCCCCAGCCCACGGTGTCACCTCGGCCCCGGACACCAGGCCG CCCCGGGCTCCACCGCCCCCCAGCCCACGGTGTCACCTCGGCCCCGGACACCAGGCCGCCCCCGGGCTCCA TCGGCCTCAGGCTCTGCATCAGGCTCAGCTTCTACTCTGGTGCACAACGGCACCTCTGCCAGGGCTACCACAA TAGCACCAAGACTGATGCCAGTAGCACTCACCATAGCACGGTACCTCCTCTCACCTCCTCCAATCACAGCACT TCTCCCCAGTTGTCTACTGGGGTCTCTTTCTTTTTCCTGTCTTTTCACATTTCAAACCTCCAGTTTAATTCCT CTCTGGAAGATCCCAGCACCGACTACTACCAAGAGCTGCAGAGAGACATTTCTGAAATGTTTTTGCAGATTTA TABACAAGGGGGTTTTCTGGGCCTCTCCAATATTAAGTTCAGGCCAGGATCTGTGGTGGTACAATTGACTCTG GCCTTCCGAGAAGGTACCATCAATGTCCACGACGTGGAGACACAGTTCAATCAGTATAAAACGGAAGCAGCCT TGGGGTGCCAGGCTGGGGCATCGCGCTGCTGGTGCTGGTCTGTGTTCTGGTTGCGCTGGCCATTGTCTATCTC ATTGCCTTGGCTGTCAGTGCCGCCGAAAGAACTACGGGCAGCTGGACATCTTTCCAGCCCGGGATACCT ACCATCCTATGAGCGAGTACCCCACCTACCACACCCATGGGCGCTATGTGCCCCCTAGCAGTACCGATCGTAG CCCCTATGAGAAGGTTTCTGCAGGTAATGGTGGCAGCAGCCTCTCTTACACAAACCCAGCAGTGGCAGCCACT TCTGCCAACTTGATGGCGGCCGCTTACGTACATTCCGACGGCTCTTATCCAAAAGACAAGTTTGAGAAAATCA ATGGCACTTGGTACTACTTTGACAGTTCAGGCTATATGCTTGCAGACCGCTGGAGGAAGCACACAGACGGCAA CTGGTACTGGTTCGACAACTCAGGCGAAATGGCTACAGGCTGGAAGAAAATCGCTGATAAGTGGTACTATTTC AACGAAGAAGGTGCCATGAAGACAGGCTGGGTCAAGTACAAGGACACTTGGTACTACTTAGACGCTAAAGAAG GCGCCATGCAATACATCAAGGCTAACTCTAAGTTCATTGGTATCACTGAAGGCGTCATGGTATCAAATGCCTT TATCCAGTCAGCGGACGGAACAGGCTGGTACTACCTCAAACCAGACGGAACACTGGCAGACAGGCCAGAATGA

## FIG. 28B. MUC1-CPC polypeptide sequence (SEQ ID NO.50)

MTPGTQSPFFLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSGSSTT
QGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRP
PPGSTAPPAHGVTSAPDTRPPPGSTAPAAHGVTSAPDTRPAPGSTAPPAHGVTSAPDNRPALASTAPPVHNVT
SASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDASSTHHSTVPPLTSSNHST
SPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQGGFLGLSNIKFRPGSVVVQLTL



PCT/EP03/06096

#### 44/45

AFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGIALLVLVCVLVALAIVYL IALAVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSAGNGGSSLSYTNPAVAAT SANLMAAAYVHSDGSYPKDKFEKINGTWYYFDSSGYMLADRWRKHTDGNWYWFDNSGEMATGWKKIADKWYYF NEEGAMKTGWVKYKDTWYYLDAKEGAMQYIKANSKFIGITEGVMVSNAFIQSADGTGWYYLKPDGTLADRPE

#### FIG.29. ss-CPC-MUC1 construct and sequence

## 5 FIG. 29A. DNA sequence (SEQ ID NO.51)

ATGGGATGGAGCTGTATCATCCTCTTCTTGGTAGCAACAGCTACAGGTGTCCACTCCCAGGTCCAAATGGCGG  $\tt CCGCTTACGTACATTCCGACGGCTCTTATCCAAAAGACAAGTTTGAGAAAATCAATGGCACTTGGTACTACTT$ TGACAGTTCAGGCTATATGCTTGCAGACCGCTGGAGGAAGCACACAGACGGCAACTGGTACTGGTTCGACAAC TCAGGCGAAATGGCTACAGGCTGGAAGAAATCGCTGATAAGTGGTACTATTTCAACGAAGAAGGTGCCATGA A GACAGGCTGGGTCAAGTACAAGGACACTTGGTACTACTTAGACGCTAAAGAAGGCGCCATGCAATACATCAAACAGGCTGGTACTACCTCAAACCAGACGGAACACTGGCAGACAGGCCAGAAATGACACCGGGCACCCAGTCTC CTTTCTTCCTGCTGCTGCTCCTCACAGTGCTTACAGTTGTTACAGGTTCTGGTCATGCAAGCTCTACCCCAGG TGGAGAAAAGGAGACTTCGGCTACCCAGAGAAGTTCAGTGCCCAGCTCTACTGAGAAGAATGCTGTGAGTATG ACCAGCAGCGTACTCTCCAGCCACAGCCCCGGTTCAGGCTCCTCCACCACTCAGGGACAGGATGTCACTCTGG CCCCGGCCACGGAACCAGCTTCAGGTTCAGCTGCCACCTGGGGACAGGATGTCACCTCGGTCCCAGTCACCAG TCCACCGCCCCCAGCCCACGGTGTCACCTCGGCCCCGGACACCAGGCCGCCCCCGGGCTCCACCGCCCCCC CAGCCCACGGTGTCACCTCGGCCCCGGACACCAGGCCGCCCCCGGGCTCCACCGCGCCCCGCAGCCCACGGTGT CACCTCGGCCCCGGACACCAGGCCGGCCCCGGGCTCCACCGCCCCCAGCCCATGGTGTCACCTCGGCCCCG GACAACAGGCCGCCTTGGCGTCCACCGCCCCTCCAGTCCACAATGTCACCTCGGCCTCAGGCTCTGCATCAG AGCACTCACCATAGCACGGTACCTCCTCTCACCTCCCAATCACAGCACTTCTCCCCAGTTGTCTACTGGGG TCTCTTTCTTTTTCCTGTCTTTTCACATTTCAAACCTCCAGTTTAATTCCTCTCTGGAAGATCCCAGCACCGA CTACTACCAAGAGCTGCAGAGAGACATTTCTGAAATGTTTTTGCAGATTTATAAACAAGGGGGTTTTCTGGGC CTCTCCAATATTAAGTTCAGGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCCGAGAAGGTACCATCA ATGTCCACGACGTGGAGACACAGTTCAATCAGTATAAAACGGAAGCAGCCTCTCGATATAACCTGACGATCTC AGACGTCAGCGTGAGTGATGTGCCATTTCCTTTCTCTGCCCAGTCTGGGGGTGCCAGGCTGGGGCATC CACCTACCACACCCATGGGCGCTATGTGCCCCCTAGCAGTACCGATCGTAGCCCCTATGAGAAGGTTTCTGCA GGTAATGGTGGCAGCAGCCTCTCTTACACAAACCCAGCAGTGGCAGCCACTTCTGCCAACTTGTAG

PCT/EP03/06096

#### 45/45

## FIG. 29B. ss-CPC-MUC1 protein sequence Polypeptide sequence (SEQ ID NO.52)

MGWSCIILFLVATATGVHSQVQMAAAYVHSDGSYPKDKFEKINGTWYYFDSSGYMLADRWRKHTDGNWYWFDN
SGEMATGWKKIADKWYYFNEEGAMKTGWVKYKDTWYYLDAKEGAMQYIKANSKFIGITEGVMVSNAFIQSADG
TGWYYLKPDGTLADRPEMTPGTQSPFFLLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSM
TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPG
STAPPAHGVTSAPDTRPPPGSTAPPAHGVTSAPDTRPPPGSTAPAAHGVTSAPDTRPAPGSTAPPAHGVTSAP
DNRPALASTAPPVHNVTSASGSASGSASTLVHNGTSARATTTPASKSTPFSIPSHHSDTPTTLASHSTKTDAS
STHHSTVPPLTSSNHSTSPQLSTGVSFFFLSFHISNLQFNSSLEDPSTDYYQELQRDISEMFLQIYKQGGFLG
LSNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGAGVPGWGI
ALLVLVCVLVALAIVYLIALAVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDRSPYEKVSA
GNGGSSLSYTNPAVAATSANL