Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Aprendizagem de Máquina

Thaís Gaudêncio Tiago Maritan

Inteligência Artificial

- ► IA: "O estudo e projeto de agentes inteligentes"
- Agente inteligente: é um sistema que percebe seu ambiente (por meio de sensores) e toma atitudes (por meio de atuadores) que maximizam suas chances de sucesso.

Inteligência Artificial

Também pode ser definida como o ramo da ciência da computação que se ocupa do comportamento inteligente ou ainda

Estudo de como fazer os computadores realizarem coisas que, atualmente, os humanos fazem melhor.

Aprender

Significado de aprender:

"Ganhar conhecimento através do estudo, experiência ou sendo ensinado".

Aprendizagem de máquina seria o uso de algoritmos para adquirir descrições estruturais (modelos) sobre exemplos de dados.

Aprendizagem de Máquina

Estuda algoritmos que...
A partir de uma **Experiência E,**Melhoram a sua **Performance P**,
Para uma dada **Tarefa T.**

Exemplo

- ► Tarefa T: reconhecer e classificar caracteres manuscritos
- Medida de Desempenho P: porcentagem de caracteres classificados corretamente
- Experiência de Treinamento E: base de dados de caracteres manuscritos com a respectiva classificação

Aprendizagem de Máquina

- Aprendizagem supervisionada
- Aprendizagem não supervisionada
- Aprendizagem semi-supervisionada
- Aprendizagem por reforço
- Aprendizagem auto-supervisionada

Aprendizagem Supervisionada

- O algoritmo de aprendizado (indutor) recebe um conjunto de exemplos de treinamento para os quais os rótulos da classe associada são conhecidos
- Cada exemplo é descrito por um vetor de valores (atributos) e pelo rótulo da classe associada.
- O objetivo do indutor é construir um classificador que possa determinar corretamente a classe de novos exemplos ainda não rotulados.

Exemplo

Paolla Oliveira

Isis Valverde

Paolla Oliveira

Isis Valverde

Paolla Oliveira

Isis Valverde

Aprendizagem Supervisionada (Aprendizagem com um Professor)

Modelos Preditivos

- Problemas de classificação: o domínio é um conjunto de valores nominais ou valores discretos.
- Problemas de regressão (ou aproximação de funções): o domínio é um conjunto infinito ordenado de valores.

Exemplo - Classificação

Exemplo - Classificação

Tamanho (P)	Largura (P)	Tamanho (S)	Largura (S)	Espécie
5,1	3,5	1,4	0,2	Setosa
4,9	3,0	1,4	0,2	Setosa
7,0	3,2	4,7	1,4	Versicolor
6,4	3,2	4,5	1,5	Versicolor
6,3	3,3	6,0	2,5	Virginica
5,8	2,7	5,1	1,9	Virginica

Exemplo - Regressão

Exemplo - Regressão

No problema de classificação CLASSE

de Class

Objeto ou Observação -->

Fertilidade	Agricultura	Educação	Renda	Mortalidad
80,2	17,0	12	9,9	22,2
83,1	45,1	9	84,8	22,2
92,5	39,7	5	93,4	20,2
85,8	36,5	7	33,7	20,3
76,9	43,5	15	5,2	20,6

Atributos preditivos, Variáveis independente, Atributo alvo, Variável dependente, Variável objetivo

Aprendizagem Não-Supervisionada

- Algoritmo analisa os exemplos fornecidos e tenta determinar se alguns deles podem ser agrupados de alguma maneira
 - Formando agrupamentos (ou clusters)
- Após a determinação dos agrupamentos, em geral, é necessário uma análise para determinar o que cada agrupamento significa no contexto do problema sendo analisado

Aprendizagem Não-Supervisionada

Exemplo

Exemplo 2 - Walmart

- Fraldas tem relação com cerveja?
- Premissas dos gerentes de loja:
 - Mães compram fraldas => seção feminina e de bebês
 - ► Homens compram cerveja => seção masculina e bebidas
- Terada Wirehouse Miner fez a seguinte sugestão:
 - Coloquem a seção de fraldas do lado da seção de cervejas;

Exemplo 2 - Walmart

Resultado:

- Vendas de cerveja cresceram 30%
- Vendas de fraldas cresceram 40%

Por quê?

 Homens casados compram fraldas e/ou cervejas no final das tardes de sexta-feira no retorno do trabalho pra casa.

Aprendizagem semi-supervisionada

O aprendizado semi-supervisionado, assume que, juntamente com o conjunto de treinamento, há um segundo conjunto, de exemplos não rotulados, também disponível durante o treinamento.

Uma das metas do aprendizado semi-supervisionado é o treinamento de classificadores quando uma grande de exemplos não rotulados está disponível juntamente com um pequeno conjunto de exemplos rotulados.

Exemplo

Isis Valverde

Isis Valverde

Paolla Oliveira

Paolla Oliveira

- Método de programação que oferece "recompensas" e "punições" a agentes inteligentes
 - Não é necessário especificar COMO a tarefa deve ser realizada
- Agente aprende por "tentativa e erro" ao atuar sobre um ambiente dinâmico.
 - Não são fornecidos exemplos (dados) para o agente
 - A única fonte de aprendizado é a própria experiência do agente

- Formalmente, o modelo é constituído por:
 - Um conjunto de estados que o ambiente pode assumir;
 - Um conjunto ações que o agente pode tomar sobre o ambiente;
 - Um conjunto de valores de reforço;
 - Geralmente {0,1} ou números reais

Exemplo:

Ação	Recompensa
a_1	1
a_2	0.5
a_1	0
a_2	1
a_1	1
a_2	0.5
	a_1 a_2 a_1 a_2 a_2 a_1

Exemplo:

- Abordagem proposta em 1989 por J. Schmidhuber, mas só passou a ser utilizada mais recentemente (2019);
 - Muito usado em aplicações de PLN;

- ► Ideia: sistema aprender a entender o mundo analisando apenas os dados de entrada
 - Predizer parte da sua entrada a partir de outras partes da entrada.
 - Não requer dados rotulados;
 - Mas o foco não é em agrupar/clusterizar dados, como na aprendizagem não-supervisionada

 Aprendizagem supervisionada geralmente requer milhares de exemplos rotulados manualmente para funcionar bem.

Paolla Oliveira

Isis Valverde

Paolla Oliveira

Isis Valverde

Paolla Oliveira

Isis Valverde

- Como funciona:
 - ▶ 1) Pretext task: Faz um pré-treinamento usando muitos exemplos não-rotulados para uma outra tarefa (não-supervisionado)

 2) Downstream task: Depois aplica um refinamento (novo treinamento - fine tuning) para a tarefa alvo usando poucos exemplos rotulados. (supervisionado)

- Exemplo 1: ULMFit Análise de Sentimentos
 - https://arxiv.org/abs/1801.06146
 - Pretext task: Pré-treina um modelo de linguagem usando um grande conjunto de textos não rotulados.
 - Modelo de linguagem: modelo que processa muitos textos e aprende a prever a próxima palavra da sentença;
 - ► Vai processando os textos não rotulados e acaba aprendendo como as palavras se relacionam entre si.
 - Ou seja, modelo acaba aprendendo sobre a natureza da linguagem e um pouco sobre o mundo;

- Exemplo 1: ULMFit Análise de Sentimentos
 - Downstream task: Analisar sentimentos em textos

- Pode fazer isso usando poucos exemplos rotulados
- Modelo pré-treinado já aprendeu bastante sobre como as palavras se relacionam, sobre o mundo em questão.
- Modelo agora só precisa ser refinado para aprender a classificar textos positivamente ou negativamente.

- Exemplo 2: Wave2Vec Facebook:
 - https://ai.facebook.com/blog/wav2vec-20-learning-the-stru cture-of-speech-from-raw-audio
 - 1) Pretext task: Aprende as subunidades básicas da fala a partir de muitos áudios não rotulados (não transcritos)
 - Cada subunidade tem 25 ms de duração;
 - 2) Downstream tas: Reconhecimento de voz usando poucos exemplos de áudios transcritos

- Exemplo 2: Wave2Vec Facebook:
 - https://ai.facebook.com/blog/wav2vec-20-learning-the-s tructure-of-speech-from-raw-audio
 - Reconhece voz com novas línguas usando:
 - 53 horas de áudios não rotulados;
 - ► 10 minutos de áudios transcritos;

Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

Aprendizado Profundo Aprendizagem de Máquina

Thaís Gaudêncio Tiago Maritan