Dimensions in Clustering

Clustering: Dimensions (1)

Where are the three clusters?

Clustering: Dimensions (2)

Simple assignment based on a 1D distribution

Clustering: Dimensions (3)

Simple assignment based on a 1D distribution

Clustering: Dimensions (4)

What if this was not a 1D distribution?

Clustering: Dimensions (5)

The distribution is in 2D. Some points differ in the 2nd D

Clustering: Dimensions (6)

If the difference is minor, we still get the same clusters

Clustering: Dimensions (7)

The difference could be significant

Clustering: Dimensions (8)

A big difference in the 2nd D can lead to different clusters

Clustering: Dimensions (9)

We can introduce another D by color coding. This is a Boolean Dimension

Clustering: Dimensions (10)

Create a 3rd
Dimansion

Clustering: Dimensions (11)

Create a 3rd
Dimansion

Clustering: Dimensions (12)

Where are the 3 clusters now?

Clustering: Dimensions (13)

If the 3rd is small, then the clustering is the same as in 2D

Clustering: Dimensions (14)

If the 3rd is big, then the clustering differs from 2D

Dimensions in Clustering