1

NCERT 11.9.5

ee23btech11223 - Soham Prabhakar More

Question:

Which term of the following sequences:

(a)
$$2,2\sqrt{2},4...$$
 is 128

(b)
$$\sqrt{3}, 3, 3\sqrt{3}$$
... is 729

(c)
$$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}$$
 ... is $\frac{1}{19683}$

Answer: (a)

Variable	Explaination	Values
r	Common ratio of G.P	$\sqrt{2}$
a_n	Sequence	$2,2\sqrt{2},4\dots$
$x_a(n)$	Function equivalent of sequence a_n	_
$X_a(n)$	Z-transform of <i>a_n</i>	_

Table 1: Varibles used in (a)

Let $a_1 = 2$, $a_2 = 2\sqrt{2}$, $a_3 = 4$. Since, $\frac{a_2}{a_1} = \frac{a_3}{a_2}$, the sequence a_1, a_2, a_3 is a G.P Series. Let $r = \frac{a_2}{a_2} = \sqrt{2}$, then the general term is $a_n = a_1 r^{n-1}$.

Assume n^{th} term is 128, which gives:

$$a_n = a_1 r^{n-1} = 128 (1)$$

$$\implies r^{n-1} = \frac{128}{a_1} \tag{2}$$

$$\implies n - 1 = \log_r \frac{128}{a_1} \tag{3}$$

Substituting Values,

$$\implies n - 1 = \log_{\sqrt{2}} \frac{128}{2} \tag{4}$$

$$\implies n - 1 = \log_{\sqrt{2}} 64 \tag{5}$$

$$\implies n - 1 = \log_{\sqrt{2}} \sqrt{2}^{12} \tag{6}$$

$$\implies n - 1 = 12 \tag{7}$$

$$\therefore n = 13 \tag{8}$$

Thus the 13^{th} term of the G.P a_n is 128.

$$x_a(n) = a_1 r^n u[n] (9)$$

where u[0] = 1. Taking the Z - transform:

Fig. 1: Plot of $x_a(n)$ from n = -6 to 6

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) \cdot z^{-n}$$
 (10)

$$\implies X(z) = \sum_{n=0}^{\infty} a_1 r^n z^{-n} \tag{11}$$

$$\implies X(z) = a_1 \sum_{n=0}^{\infty} r^n z^{-n}$$
 (12)

$$\implies X(z) = \frac{a_1}{r} (\frac{1}{1 - \frac{r}{2}}) \tag{13}$$

$$\therefore X(z) = \frac{a_1 z}{r(z - r)} \forall |z| > |r| \tag{14}$$

$$\therefore X_a(z) = \frac{\sqrt{2}z}{z - \sqrt{2}} \forall |z| > \sqrt{2}$$
 (15)

with ROC:

$$|z| > \sqrt{2}$$

(b)

Variable	Explaination	Values
r	Common ratio of G.P	$\sqrt{3}$
b_n	Sequence	$\sqrt{3}$, 3, 3 $\sqrt{3}$
$x_b(n)$	Function equivalent of sequence b_n	_
$X_b(n)$	Z-transform of b_n	_

Table 2: Varibles used in (b)

Let $b_1 = \sqrt{3}$, $b_2 = 3$, $b_3 = 3\sqrt{3}$. Since $\frac{b_2}{b_1} = \frac{b_3}{b_2}$, the sequence b_1, b_2, b_3 is a G.P Series. Let $r = \frac{b_2}{b_2} = \sqrt{3}$, then the general term is $b_n = b_1 r^{n-1}$.

Assume n^{th} term is 729, which gives:

$$b_n = b_1 r^{n-1} = 729 (16)$$

$$\implies r^{n-1} = \frac{729}{b_1} \tag{17}$$

$$\implies n - 1 = \log_r \frac{729}{b_1} \tag{18}$$

Substituting Values,

$$\implies n - 1 = \log_{\sqrt{3}} \frac{729}{\sqrt{3}} \tag{19}$$

$$\implies n - 1 = \log_{\sqrt{3}} \frac{3^6}{\sqrt{3}} \tag{20}$$

$$\implies n - 1 = \log_{\sqrt{3}} \sqrt{3}^{11} \tag{21}$$

$$\implies n - 1 = 11 \tag{22}$$

$$\therefore n = 12 \tag{23}$$

Thus the 12^{th} term of the G.P b_n is 729.

$$x_b(n) = b_1 r^n u[n] (24)$$

By 14, the Z-transform of $x_b(n)$:

$$X_b(z) = \frac{z}{z - \sqrt{3}} \tag{25}$$

with ROC:

$$|z| > \sqrt{3}$$

Fig. 2: Plot of $x_b(n)$ from n = -6 to 6

Variable	Explaination	Values
r	Common ratio of G.P	$\frac{1}{3}$
C_n	Sequence	$\frac{1}{3},\frac{1}{9},\frac{1}{27}\cdots$
$x_c(n)$	Function equivalent of sequence c_n	_
$X_c(n)$	Z-transform of c_n	

Table 3: Varibles used in (c)

Let $r = \frac{c_2}{c_2} = \frac{1}{3}$, then the general term is $c_n = c_1 r^{n-1}$. Assume n^{th} term is $\frac{1}{19683}$, which gives:

$$c_n = c_1 r^{n-1} = \frac{1}{19683} \tag{26}$$

$$\implies r^{n-1} = \frac{1}{19683c_1} \tag{27}$$

$$\implies n - 1 = \log_r \frac{1}{19683c_1} \tag{28}$$

Substituting Values,

$$\implies n - 1 = \log_{\frac{1}{3}} \frac{1}{19683\frac{1}{3}} \tag{29}$$

$$\implies n - 1 = \log_{\frac{1}{3}} \frac{1}{6561} \tag{30}$$

$$\implies n - 1 = \log_{\frac{1}{3}} 3^{-8} \tag{31}$$

$$\implies n - 1 = 8 \tag{32}$$

$$\therefore n = 9 \tag{33}$$

Thus the 9th term of the G.P c_n is $\frac{1}{19683}$.

$$x_c(n) = c_1 r^n u[n] \tag{34}$$

Using the previous result, the Z-transform of x(n):

$$X(z) = \frac{z}{z - \frac{1}{3}} \implies X(z) = \frac{3z}{3z - 1}$$
 (35)

with ROC:

$$|z| > \frac{1}{3}$$

Fig. 3: Plot of $x_c(n)$ from n = -6 to 6