Lecture 13: Hidden Markov Model

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

A Markov system

- There are N states S_1, S_2, \dots, S_N , and the time steps are discrete, $t = 0,1,2,\dots$
- ullet On the t-th time step the system is in exactly one of the available states. Call it q_t
- Between each time step, the next state is chosen only based on the information provided by the current state q_t
- The current state determines the probability distribution for the next state

Example

- Three states
- Current state: S_3

$$q_t = q_0 = s_3$$

- Three states
- Current state: S_2

- Three states
- The transition matrix

$$P(q_{t+1}=s_1|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_2|q_t=s_2) = 1/2$$

$$P(q_{t+1}=s_3|q_t=s_2) = 0$$

$$P(q_{t+1}=s_1|q_t=s_1) = 0$$

$$P(q_{t+1}=s_2|q_t=s_1)=0$$

$$P(q_{t+1}=s_3|q_t=s_1) = 1$$

 s_2

$$s_1$$

$$N = 3$$

$$q_t = q_1 = s_2$$

$$\left(\mathbf{s}_{3}\right)$$

$$P(q_{t+1}=s_1|q_t=s_3) = 1/3$$

$$P(q_{t+1}=s_2|q_t=s_3) = 2/3$$

$$P(q_{t+1}=s_3|q_t=s_3)=0$$

Markovian property

- q_{t+1} is independent of $\{q_{t-1}, q_{t-2}, \dots, q_0\}$ given q_t
- In other words:

$$P(q_{t+1} = s_j | q_t = s_i) =$$

 $P(q_{t+1} = s_i | q_t = s_i$, any earlier history)

$$P(q_{t+1}=s_1|q_t=s_2) = 1/2$$

 $P(q_{t+1}=s_2|q_t=s_2) = 1/2$
 $P(q_{t+1}=s_3|q_t=s_2) = 0$

$$q_t = q_1 = s_2$$

$$P(q_{t+1}=s_1|q_t=s_3) = 1/3$$

$$P(q_{t+1}=s_2|q_t=s_3) = 2/3$$

$$P(q_{t+1}=s_3|q_t=s_3)=0$$

Example 2

Markovian property

Hidden Markov Model

Example

A human and a robot wander around randomly on a grid

Note: N (num.states) = 18 * 18 = 324

Each time step the human/robot moves randomly to an adjacent cell

- Typical Questions:
 - "What's the expected time until the human is crushed like a bug?"
 - "What's the probability that the robot will hit the left wall before it hits the human?"
 - "What's the probability Robot crushes human on next time step?"

• The currently time is t, and human remains uncrushed. What's the probability of crushing occurring at time t+1?

- If robot is blind:
 - We can compute this in advance
- If robot is omnipotent (i.e. if robot knows current state):
 - can compute directly
- If robot has some sensors, but incomplete state information
 - Hidden Markov Models are applicable

$P(q_t = s)$ -- A clumsy solution

• Step 1: Work out how to compute P(Q) for any path $Q=q_1q_2\cdots q_t$

Given we know the start state q_1 (i.e. $P(q_1)=1$)

$$\begin{split} \mathsf{P}(\mathsf{q}_1 \; \mathsf{q}_2 \; .. \; \mathsf{q}_t) &= \mathsf{P}(\mathsf{q}_1 \; \mathsf{q}_2 \; .. \; \mathsf{q}_{t-1}) \; \mathsf{P}(\mathsf{q}_t | \mathsf{q}_1 \; \mathsf{q}_2 \; .. \; \mathsf{q}_{t-1}) \\ &= \mathsf{P}(\mathsf{q}_1 \; \mathsf{q}_2 \; .. \; \mathsf{q}_{t-1}) \; \mathsf{P}(\mathsf{q}_t | \mathsf{q}_{t-1}) \quad \textit{WHY?} \\ &= \mathsf{P}(\mathsf{q}_2 | \mathsf{q}_1) \mathsf{P}(\mathsf{q}_3 | \mathsf{q}_2) ... \mathsf{P}(\mathsf{q}_t | \mathsf{q}_{t-1}) \end{split}$$

• Step 2: Use this knowledge to get $P(q_t = s)$

$$P(q_t = s) = \sum_{Q \in \text{Paths of length } t \text{ that end in } s} P(Q)$$

$P(q_t = s)$ -- A cleverer solution

- For each state S_i , define $p_t(i) = P(q_t = S_i)$ to be the probability of state S_i at time t
- Easy to do inductive computation

$$\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) = \\ \sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) = \\ \sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_{ij} p_t(i)$$

$P(q_t = s)$ -- A cleverer solution

- For each state S_i , define $p_t(i) = P(q_t = S_i)$ to be the probability of state S_i at time t
- Easy to do inductive computation

$$\forall i \quad p_0(i) = \begin{cases} 1 & \text{if } s_i \text{ is the start state} \\ 0 & \text{otherwise} \end{cases}$$

$$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

$$\sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =$$

$$\sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_{ij} p_t(i)$$

Complexity comparison

- Cost of computing $p_t(i)$ for all states S_i is now $O(tN^2)$
 - Why?
- The first method has $O(N^t)$
 - Why?

 This is the power of dynamic programming that is widely used in HMM

• It's currently time t, and human remains uncrushed. What's the probability of crushing occurring at time t + 1

- If robot is blind:
 - We can compute this in advance
- If robot is omnipotent (I.E. If robot knows state at time t):
 - can compute directly
- If robot has some sensors, but incomplete state information
 - Hidden Markov Models are applicable

Hidden state

- The previous example tries to estimate $P(q_t = S_i)$ unconditionally (no other information)
- Suppose we can observe something that's affected by the true state

What the robot see (uncorrupted data)

W		W
	R	W
Н	Н	

What the robot see (corrupted data) 17

Noisy observation of hidden state

- ullet Let's denote the observation at time t by O_t
- O_t is noisily determined depending on the current state

- Assume that O_t is conditionally independent of $\{q_{t-1},q_{t-2},\ldots,q_0,O_{t-1},O_{t-2},\ldots,O_1,O_0\}$ given q_t
- In other words

$$P(O_t = X | q_t = s_i) =$$

 $P(O_t = X | q_t = s_i, any earlier history)$

Example

Hidden Markov models

The robot with noisy sensors is a good example

- Question 1: (Evaluation) State estimation:
 - what is $P(q_t = S_i | O_1, \dots, O_t)$
- Question 2: (Inference) Most probable path:
 - Given O_1, \dots, O_t , what is the most probable path of the states? And what is the probability?
- Question 3: (Leaning) Learning HMMs:
 - Given O_1, \dots, O_t , what is the maximum likelihood HMM that could have produced this string of observations?
 - MLE

Application of HMM

- Robot planning + sensing when there's uncertainty
- Speech recognition/understanding
 - Phones → Words, Signal → phones
- Human genome project
- Consumer decision modeling
- Economics and finance

• ...

Basic operations in HMMs

• For an observation sequence $O=O_1,\ldots,O_T$, three basic HMM operations are:

Problem	Algorithm	Complexity
Evaluation:	Forward-Backward	O(TN ²)
Calculating $P(q_t=S_i \mid O_1O_2O_t)$, ,
Inference:	Viterbi Decoding	O(TN ²)
Computing $Q^* = argmax_Q P(Q O)$		
Learning:	Baum-Welch (EM)	O(TN ²)
Computing $\lambda^* = \operatorname{arg} \max_{\lambda} P(O \lambda)$		

T = # timesteps, N = # states

Formal definition of HMM

- The states are labeled $S_1, S_2, ..., S_N$
- For a particular trial, let
 - T be the number of observations
 - *N* be the number of states
 - *M* be the number of possible observations
 - $(\pi_1, \pi_2, ..., \pi_N)$ is the starting state probabilities
 - $O = O_1 \dots O_T$ is a sequence of observations
 - $Q = q_1 q_2 \cdots q_t$ is a path of states
- Then $\lambda = \langle N, M, \{\pi_{i,}\}, \{a_{ij}\}, \{b_{i}(j)\} \rangle$ is the specification of an HMM
 - \triangleright The definition of a_{ij} and $b_i(j)$ will be introduced in next page

Formal definition of HMM (cont.)

• The definition of a_{ij} and $b_i(j)$

Example

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random

N = 3

M = 3

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

Let's generate a sequence of

observations:

50-50 choice

between S₁ and

a ₁₁ = 0	a ₁₂ = ½	$a_{13} = \frac{2}{3}$
$a_{12} = \frac{1}{3}$	a ₂₂ = 0	$a_{13} = \frac{2}{3}$
$a_{13} = \frac{1}{3}$	$a_{32} = \frac{1}{3}$	$a_{13} = \frac{1}{3}$

$$b_1(X) = \frac{1}{2}$$

 $b_2(X) = 0$
 $b_3(X) = \frac{1}{2}$

$$b_1(Y) = \frac{1}{2}$$

 $b_2(Y) = \frac{1}{2}$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

Let's generate a sequence of

observations:

50-50 choice

between X and Y

1/3

a ₁₁ = 0	a ₁₂ = ½	$a_{13} = \frac{2}{3}$
a ₁₂ = 1/ ₃	a ₂₂ = 0	$a_{13} = \frac{2}{3}$
a ₁₃ = 1⁄ ₃	$a_{32} = \frac{1}{3}$	$a_{13} = \frac{1}{3}$

$$b_1(X) = \frac{1}{2}$$
 $b_1(Y) = \frac{1}{2}$ $b_1(Z) = 0$
 $b_2(X) = 0$ $b_2(Y) = \frac{1}{2}$ $b_2(Z) = \frac{1}{2}$
 $b_3(X) = \frac{1}{2}$ $b_3(Y) = 0$ $b_3(Z) = \frac{1}{2}$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

Let's generate a sequence of

observations:

Goto S₃ with probability 2/3 or S₂ with prob. 1/3

q_0 =	<u></u>	O ₀ =	Χ
q_1 =	0	O ₁ =	
$q_2 =$		O ₂ =	

$$\pi_1 = \frac{1}{2}$$

$$a_{11} = 0$$

 $a_{12} = \frac{1}{3}$

$$a_{13} = \frac{1}{3}$$

$$b_1(X) = \frac{1}{2}$$

 $b_2(X) = 0$
 $b_3(X) = \frac{1}{2}$

$$\pi_2 = \frac{1}{2}$$

$$a_{12} = \frac{1}{3}$$
 $a_{13} = \frac{2}{3}$

$$a_{22} = 0$$

$$a_{22} = 0$$
 $a_{13} = \frac{2}{3}$ $a_{32} = \frac{1}{3}$ $a_{13} = \frac{1}{3}$

$$b_1(Y) = \frac{1}{2}$$

$$b_2(Y) = \frac{1}{2}$$

$$b_3(Y) = 0$$

$$b_1(Z) = 0$$

$$b_2(Z) = \frac{1}{2}$$

$$b_3(Z) = \frac{1}{2}$$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

Let's generate a sequence of

observations:

q_0 =	S ₁	O ₀ = <	X
$q_1 =$	S ₃	O ₁ =	0
$q_2 =$		O ₂ =	

1/3

_		
	_	
_	= 0	

$$a_{12} = \frac{1}{3}$$

$$a_{13} = \frac{1}{3}$$

$$b_1(X) = \frac{1}{2}$$

 $b_2(X) = 0$
 $b_3(X) = \frac{1}{2}$

$$a_{32} = \frac{1}{3}$$

 $a_{12} = \frac{1}{3}$

a₂₂ = 0

$$b_2(Y) = \frac{1}{2}$$

 $b_1(Y) = \frac{1}{2}$

$$b_3(Y) = 0$$

$$a_{13} = \frac{2}{3}$$

$$a_{13} = \frac{2}{3}$$

$$a_{13} = \frac{1}{3}$$

$$b_1(Z) = 0$$

$$b_2(Z) = \frac{1}{2}$$

$$b_3(Z) = \frac{1}{2}$$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

 Let's generate a sequence of observations:

Each of the three next states is equally likely

$q_o =$	S ₁ (O ₀ =	X
q ₁ =	S ₃	O ₁ =	Χ
q_2 =	0	O ₂ =	

a ₁₁ = 0	a ₁₂ = 1/ ₃	$a_{13} = \frac{2}{3}$
a ₁₂ = 1/ ₃	a ₂₂ = 0	$a_{13} = \frac{2}{3}$
a ₁₃ = 1/ ₃	a ₃₂ = 1/ ₃	$a_{13} = \frac{1}{3}$

$$b_1(X) = \frac{1}{2}$$

 $b_2(X) = 0$
 $b_3(X) = \frac{1}{2}$

$$b_1(Y) = \frac{1}{2}$$

 $b_2(Y) = \frac{1}{2}$

$$b_1(Z) = 0$$

 $b_2(Z) = \frac{1}{2}$

$$b_3(Y) = 0$$

$$b_3(Z) = \frac{1}{2}$$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

Let's generate a sequence of

observations;

q_0 =	S ₁	O ₀ =	X
$q_1 =$	S_3	O ₁ =	X
$q_2 =$	S ₃	O ₂ =	0

$$a_{11} = 0$$

 $a_{12} = \frac{1}{3}$

$$a_{13} = \frac{1}{3}$$

$$b_1(X) = \frac{1}{2}$$

 $b_2(X) = 0$
 $b_3(X) = \frac{1}{2}$

$a_{12} = \frac{1}{3}$	$a_{13} = \frac{2}{3}$
a ₂₂ = 0	$a_{13} = \frac{2}{3}$
$a_{32} = \frac{1}{3}$	$a_{13} = \frac{1}{3}$

$$b_1(Y) = \frac{1}{2}$$

$$b_2(Y) = \frac{1}{2}$$
 $b_2(Z) = \frac{1}{2}$

$$b_3(Y) = 0$$

$$b_1(Z) = 0$$

$$b_3(Z) = \frac{1}{2}$$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.
- Let's generate a sequence of observations:

q_0 =	S ₁	O ₀ =	Χ
$q_1 =$	S_3	O ₁ =	X
$q_2 =$	S_3	O ₂ =	Z

a ₁₁ = 0	$a_{12} = \frac{1}{3}$	$a_{13} = \frac{2}{3}$
$a_{12} = \frac{1}{3}$	a ₂₂ = 0	$a_{13} = \frac{2}{3}$
a ₁₃ = 1/ ₃	$a_{32} = \frac{1}{3}$	$a_{13} = \frac{1}{3}$

b_1	$(X) = \frac{1}{2}$
b_2	(X) = 0
b_3	$(X) = \frac{1}{2}$

N = 3

M = 3

 $\pi_1 = \frac{1}{2}$

$$b_1 (Y) = \frac{1}{2}$$
 $b_1 (Z) = 0$
 $b_2 (Y) = \frac{1}{2}$ $b_2 (Z) = \frac{1}{2}$
 $b_3 (Y) = 0$ $b_3 (Z) = \frac{1}{2}$

- Start randomly in state 1 or 2
- Choose one of the output symbols in each state at random.

This is what the observer has to work with...

a ₁₁ = 0	a ₁₂ = 1/ ₃	$a_{13} = \frac{2}{3}$
$a_{12} = \frac{1}{3}$	a ₂₂ = 0	$a_{13} = \frac{2}{3}$
a ₁₃ = 1/ ₃	$a_{32} = \frac{1}{3}$	$a_{13} = \frac{1}{3}$

N = 3

M = 3

 $\pi_1 = \frac{1}{2}$

$$b_1(X) = \frac{1}{2}$$
 $b_1(Y) = \frac{1}{2}$ $b_1(Z) = 0$
 $b_2(X) = 0$ $b_2(Y) = \frac{1}{2}$ $b_2(Z) = \frac{1}{2}$
 $b_3(X) = \frac{1}{2}$ $b_3(Y) = 0$ $b_3(Z) = \frac{1}{2}$

Probability of a series of observations

• What is
$$P(O) = P(O_1O_2O_3) = P(O_1 = X \land O_2 = X \land O_3 = Z)$$
?

Q∈Paths of length 3

• Slow, stupid way: $P(\mathbf{O}) = \sum_{\mathbf{Q} \in \text{Paths of length 3}} P(\mathbf{O} \wedge \mathbf{Q})$ $= \sum_{\mathbf{Q} \in \text{Paths of length 3}} P(\mathbf{O} \mid \mathbf{Q}) P(\mathbf{Q})$

- How do we compute P(Q) for an arbitrary path Q?
- How do we compute P(O|Q) for an arbitrary path Q?

Probability of a series of observations (cont.)

• P(Q) for an arbitrary path Q

$$P(Q) = P(q_1, q_2, q_3)$$

$$= P(q_1) P(q_2, q_3 | q_1) \text{ (chain rule)}$$

$$= P(q_1) P(q_2 | q_1) P(q_3 | q_2, q_1) \text{ (chain)}$$

$$= P(q_1) P(q_2 | q_1) P(q_3 | q_2) \text{ (why?)}$$

$$= P(q_1) P(q_2 | q_1) P(q_3 | q_2) \text{ (why?)}$$

$$= 1/2 * 2/3 * 1/3 = 1/9$$

Probability of a series of observations (cont.)

• P(O|Q) for an arbitrary path Q

```
P(O|Q)
= P(O_1 O_2 O_3 | q_1 q_2 q_3)
= P(O_1 | q_1) P(O_2 | q_2) P(O_3 | q_3) (why?)
Example in the case Q = S_1 S_3 S_3:
= P(X|S_1) P(X|S_3) P(Z|S_3) =
= 1/2 * 1/2 * 1/2 = 1/8
```


Probability of a series of observations (cont.)

- Computation complexity of the slow stupid answer:
 - P(O) would require 27 P(Q) and 27 P(O|Q)
 - A sequence of 20 observations would need $3^{20}=3.5$ billion P(Q) and 3.5 billion P(Q|Q)
- So we have to find some smarter answer

Probability of a series of observations (cont.)

- Smart answer (based on dynamic programming)
- Given observations $O_1O_2 \dots O_T$
- Define: $\alpha_t(i) = P(O_1 O_2 ... O_t \land q_t = S_i \mid \lambda)$ where $1 \le t \le T$

 $\alpha_t(i)$ = Probability that, in a random trial,

- We'd have seen the first t observations
- We'd have ended up in S_i as the t'th state visited.
- In the example, what is $\alpha_2(3)$?

$\alpha_t(i)$: easy to define recursively

$$\begin{split} &\alpha_{1}(i) = \mathrm{P}(O_{1} \wedge q_{1} = S_{i}) \\ &= \mathrm{P}(q_{1} = S_{i}) \mathrm{P}(O_{1} | q_{1} = S_{i}) \\ &= \qquad \qquad \text{what?} \\ &\alpha_{t+1}(j) = \mathrm{P}(O_{1}O_{2}...O_{t}O_{t+1} \wedge q_{t+1} = S_{j}) \\ &= \sum_{i=1}^{N} \mathrm{P}(O_{1}O_{2}...O_{t} \wedge q_{t} = S_{i} \wedge O_{t+1} \wedge q_{t+1} = S_{j}) \\ &= \sum_{i=1}^{N} \mathrm{P}(O_{t+1}, q_{t+1} = S_{j} | O_{1}O_{2}...O_{t} \wedge q_{t} = S_{i}) \mathrm{P}(O_{1}O_{2}...O_{t} \wedge q_{t} = S_{i}) \\ &= \sum_{i} \mathrm{P}(O_{t+1}, q_{t+1} = S_{j} | q_{t} = S_{i}) \alpha_{t}(i) \\ &= \sum_{i} \mathrm{P}(q_{t+1} = S_{j} | q_{t} = S_{i}) \mathrm{P}(O_{t+1} | q_{t+1} = S_{j}) \alpha_{t}(i) \\ &= \sum_{i} a_{ij} b_{j}(O_{t+1}) \alpha_{t}(i) \end{split}$$

$\alpha_t(i)$ in the example

$$\alpha_{t}(i) = P(O_{1}O_{2}..O_{t} \land q_{t} = S_{i}|\lambda)$$

$$\alpha_{1}(i) = b_{i}(O_{1})\pi_{i}$$

$$\alpha_{t+1}(j) = \sum_{i} a_{ij}b_{j}(O_{t+1})\alpha_{t}(i)$$

• We see $O_1O_2O_3 = XXZ$

$$\alpha_1(1) = \frac{1}{4}$$
 $\alpha_1(2) = 0$ $\alpha_1(3) = 0$
 $\alpha_2(1) = 0$ $\alpha_2(2) = 0$ $\alpha_2(3) = \frac{1}{12}$
 $\alpha_3(1) = 0$ $\alpha_3(2) = \frac{1}{72}$ $\alpha_3(3) = \frac{1}{72}$

$$\alpha_2(3) = \frac{1}{12}$$

$$\alpha_3(3) = \frac{1}{72}$$

Easy question

We can cheaply compute

$$\alpha_t(i)=P(O_1O_2...O_t \land q_t=S_i)$$

• (How) can we cheaply compute

$$P(O_1O_2...O_t)$$
 ?

(How) can we cheaply compute

$$P(q_t=S_i|O_1O_2...O_t)$$

Easy question (cont.)

We can cheaply compute

$$\alpha_t(i)=P(O_1O_2...O_t \land q_t=S_i)$$

• (How) can we cheaply compute

$$P(O_1O_2...O_t)$$
 ?

(How) can we cheaply compute

$$P(q_t=S_i|O_1O_2...O_t)$$

$$\sum_{i=1}^{N} \alpha_{t}(i)$$

$$\frac{\alpha_t(i)}{\sum_{j=1}^N \alpha_t(j)}$$

Recall: Hidden Markov models

The robot with noisy sensors is a good example

- Question 1: (Evaluation) State estimation:
 - what is $P(q_t = S_i | O_1, \dots, O_t)$
- Question 2: (Inference) Most probable path:
 - Given O_1, \dots, O_t , what is the most probable path of the states? And what is the probability?
- Question 3: (Leaning) Learning HMMs:
 - Given O_1, \dots, O_t , what is the maximum likelihood HMM that could have produced this string of observations?
 - MLE

Most probable path (MPP) given observations

What's most probable path given $O_1O_2...O_T$, i.e.

What is
$$\underset{Q}{\operatorname{argmax}} P(Q|O_1O_2...O_T)$$
?

Slow, stupid answer:

$$\underset{Q}{\operatorname{argmax}} P(Q|O_1O_2...O_T)$$

= argmax
$$\frac{P(O_1O_2...O_T|Q)P(Q)}{P(O_1O_2...O_T)}$$

=
$$\underset{O}{\operatorname{argmax}} P(O_1 O_2 ... O_T | Q) P(Q)$$

Efficient MPP computation

We're going to compute the following variables

$$\delta_t(i) = \max_{\substack{q_1 q_2 ... q_{t-1}}} P(q_1 q_2 ... q_{t-1} \wedge q_t = S_i \wedge O_1 ... O_t)$$

• It's the probability of the path of length t-1 with the maximum chance of doing all these things OCCURING and ENDING UP IN STATE S_i and PRODUCING OUTPUT $O_1...O_t$

- DEFINE: mpp₊(i) = that path
- So: $\delta_t(i) = \text{Prob}(\text{mpp}_t(i))$

The Viterbi algorithm

$$\begin{split} & \delta_t(i) = q_1 q_2 ... q_{t-1} \quad \mathrm{P}(q_1 q_2 ... q_{t-1} \wedge q_t = S_i \wedge O_1 O_2 ... O_t) \\ & \mathit{mpp}_t(i) = q_1 q_2 ... q_{t-1} \quad \mathrm{P}(q_1 q_2 ... q_{t-1} \wedge q_t = S_i \wedge O_1 O_2 ... O_t) \\ & \delta_1(i) = \text{one choice } \mathrm{P}(q_1 = S_i \wedge O_1) \\ & = \mathrm{P}(q_1 = S_i) \mathrm{P}(O_1 | q_1 = S_i) \end{split} \qquad \begin{aligned} & \mathsf{Now, \, suppose \, we \, h} \\ & = \sigma_i b_i(O_1) \end{aligned}$$

Now, suppose we have all the $\delta_t(i)$'s and mpp $_t(i)$'s for all i.

The Viterbi algorithm (cont.)

The most prob path with last two states S_i S_j

is

the most prob path to S_i , followed by transition $S_i \rightarrow S_j$

The Viterbi algorithm (cont.)

The most prob path with last two states S_i S_j

is

the most prob path to S_i , followed by transition $S_i \rightarrow S_i$

time t S_1

What is the prob of that path?

$$\begin{aligned} & \delta_t(i) \times P(S_i \rightarrow S_j \land O_{t+1} \mid \lambda) \\ & = & \delta_t(i) \ a_{ij} \ b_j \ (O_{t+1}) \end{aligned}$$

SO The most probable path to S_j has S_{i^*} as its penultimate state where i*=argmax $\delta_t(i)$ a_{ij} b_i (O_{t+1})

time t+1

The Viterbi algorithm (cont.)

Summary

```
What is the prob of that path?  \begin{array}{l} \delta_t(i) \times P(S_i \to S_j \wedge O_{t+1} \mid \lambda) \\ = \delta_t(i) \ a_{ij} \ b_j \ (O_{t+1}) \\ \text{SO The most probable path to } S_j \ \text{has} \\ S_{i^*} \ \text{as its penultimate state} \\ \text{where } \ i^* = \text{argmax} \ \delta_t(i) \ a_{ij} \ b_j \ (O_{t+1}) \\ \\ i \\ \delta_{t+1}(j) \ = \ \delta_t(i^*) \ a_{ij} \ b_j \ (O_{t+1}) \\ mpp_{t+1}(j) \ = \ mpp_{t+1}(i^*) S_{i^*} \end{array} \right\} \ \ \text{with } \ i^* \ \text{defined} \\ \text{to the left}
```

Recall: Hidden Markov models

The robot with noisy sensors is a good example

- Question 1: (Evaluation) State estimation:
 - what is $P(q_t = S_i | O_1, \dots, O_t)$
- Question 2: (Inference) Most probable path:
 - Given O_1, \dots, O_t , what is the most probable path of the states? And what is the probability?
- Question 3: (Leaning) Learning HMMs:
 - Given O_1, \dots, O_t , what is the maximum likelihood HMM that could have produced this string of observations?
 - MLE

Inferring an HMM

Remember, we've been doing things like

$$P(O_1 O_2 .. O_T | \lambda)$$

- That " λ " is the notation for our HMM parameters
- Now we want to estimate λ from the observations
- AS USUAL: We could use
 - (i) MAX LIKELIHOOD $\lambda = \operatorname{argmax} P(O_1 ... O_T | \lambda)$
 - (ii) BAYES

```
Work out P( \lambda | O<sub>1</sub> .. O<sub>T</sub> ) and then take E[\lambda] or max P( \lambda | O<sub>1</sub> .. O<sub>T</sub> ) \lambda
```

• Define:
$$\begin{aligned} \gamma_t(i) &= P(q_t = S_i \mid O_1O_2...O_T \ , \ \lambda \) \\ \epsilon_t(i,j) &= P(q_t = S_i \land q_{t+1} = S_j \mid O_1O_2...O_T \ , \lambda \) \end{aligned}$$

γ_t(i) and ε_t(i,j) can be computed efficiently ∀i,j,t

(Details in Rabiner paper)

$$\sum_{t=1}^{T-1} \gamma_t(i) = \sum_{t=1}^{T-1} \gamma_t(i)$$

$$\sum_{t=1}^{T-1} \mathcal{E}_t(i,j) = \text{Expected number of transitions from state i to state j during the path}$$

Notice
$$\frac{\sum_{t=1}^{T-1} \varepsilon_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} = \frac{\left(\begin{array}{c} \text{expected frequency} \\ i \to j \\ \hline \left(\begin{array}{c} \text{expected frequency} \\ i \end{array}\right)}{\left(\begin{array}{c} \text{expected frequency} \\ i \end{array}\right)}$$

= Estimate of Prob(Next state S_i) This state S_i

We can re - estimate

$$\mathbf{a}_{ij} \leftarrow \frac{\sum \varepsilon_t(i,j)}{\sum \gamma_t(i)}$$

We can also re - estimate

$$b_j(O_k) \leftarrow \cdots$$
 (See Rabiner)

We want
$$a_{ij}^{\text{new}} = \text{new estimate of } P(q_{t+1} = s_j \mid q_t = s_i)$$

$$= \frac{\text{Expected \# transitions } i \rightarrow j \mid \lambda^{old}, O_1, O_2, \cdots O_T}{\sum_{k=1}^{N} \text{Expected \# transitions } i \rightarrow k \mid \lambda^{old}, O_1, O_2, \cdots O_T}$$

$$= \frac{\sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i \mid \lambda^{old}, O_1, O_2, \cdots O_T)}{\sum_{k=1}^{N} \sum_{t=1}^{T} P(q_{t+1} = s_k, q_t = s_i \mid \lambda^{old}, O_1, O_2, \cdots O_T)}$$

$$= \frac{S_{ij}}{\sum_{k=1}^{N} S_{ik}} \text{ where } S_{ij} = \sum_{t=1}^{T} P(q_{t+1} = s_j, q_t = s_i, O_1, \cdots O_T \mid \lambda^{old})$$

$$= a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$$

We want
$$a_{ij}^{\text{new}} = S_{ij} / \sum_{k=1}^{N} S_{ik}$$
 where $S_{ij} = a_{ij} \sum_{t=1}^{T} \alpha_t(i) \beta_{t+1}(j) b_j(O_{t+1})$

EM for HMMs

- If we knew λ we could estimate EXPECTATIONS of quantities such as
 - Expected number of times in state i
 - Expected number of transitions $i \rightarrow j$

- If we knew the quantities such as
 - Expected number of times in state i
 - Expected number of transitions $i \rightarrow j$
- We could compute the MAX LIKELIHOOD estimate of

$$\lambda = \langle \{a_{ij}\}, \{b_i(j)\}, \pi_i \rangle$$

EM for HMMs

- Get your observations O₁ ...O_T
- 2. Guess your first λ estimate $\lambda(0)$, k=0
- 3. k = k+1
- 4. Given $O_1 ... O_T$, $\lambda(k)$ compute $\gamma_t(i)$, $\epsilon_t(i,j)$ $\forall 1 \le t \le T$, $\forall 1 \le i \le N$, $\forall 1 \le j \le N$
- 5. Compute expected freq. of state i, and expected freq. i→j
- 6. Compute new estimates of a_{ij} , $b_j(k)$, π_i accordingly. Call them $\lambda(k+1)$
- Goto 3, unless converged.
- Also known (for the HMM case) as the BAUM-WELCH algorithm.

EM for HMMs

- Bad news
 - There are lots of local minima
- Good news
 - The local minima are usually adequate models of the data
- Notice
 - EM does not estimate the number of states. That must be given.
 - Often, HMMs are forced to have some links with zero probability. This is done by setting $a_{ij}=0$ in initial estimate $\lambda(0)$
 - Easy extension of everything seen today:
 - HMMs with real valued outputs