第2节 分段函数中的动态分段点问题(★★★)

内容提要

上一节我们学习了当分段函数解析式含参时,怎样根据函数的单调性求参数的范围,本节我们归纳当参数在分段点上时的有关问题,此时分段点是随着参数的变化而变化的,由此衍生出的函数问题,如研究零点、最值等,往往采用分类讨论或数形结合的方法求解.

典型例题

类型 I: 研究分段点含参的分段函数的零点

【例 1】已知 a>0,若函数 $f(x)=\begin{cases} x+2, x\leq a\\ \ln x+2, x>a \end{cases}$ 有两个不同的零点,则 a 的取值范围是())

(A)
$$(0,\frac{1}{e^2})$$
 (B) $(0,1)$ (C) $(\frac{1}{e^2},+\infty)$ (D) $[1,+\infty)$

解法 1: 分段函数研究零点,分段分别考虑,注意到 f(x)在 $(-\infty,a]$ 和 $(a,+\infty)$ 上均 \nearrow ,

所以要使 f(x)有 2 个零点,应满足 f(x)在 $(-\infty,a]$ 和 $(a,+\infty)$ 上各有 1 个零点,

当 $x \in (-\infty, a]$ 时, f(x) = x + 2, 令 f(x) = 0 可得 x = -2,

因为a > 0,所以 $-2 \in (-\infty, a]$,故-2是f(x)的1个零点;

当
$$x \in (a, +\infty)$$
时, $f(x) = \ln x + 2$, 令 $f(x) = 0$ 可得 $x = \frac{1}{e^2}$, 所以 $\frac{1}{e^2} \in (a, +\infty)$, 故 $0 < a < \frac{1}{e^2}$.

解法 2: f(x) 在两段上的解析式都很简单,可画图分析,注意到 $\ln x + 2 = 0 \Leftrightarrow x = e^{-2}$,所以按 a 和 e^{-2} 的大小来讨论,先把 y = x + 2 和 $y = \ln x + 2$ 的完整曲线画出来,如图 1,

当 $0 < a < e^{-2}$ 时,f(x)的图象如图 2,由图可知f(x)在 $(-\infty,a]$ 和 $(a,+\infty)$ 上各有 1 个零点,满足题意;

当 $a = e^{-2}$ 时,f(x)的图象如图 3,由图可知 f(x)仅在 $(-\infty,a]$ 上有 1 个零点,不合题意;

当 $a > e^{-2}$ 时,f(x)的图象如图 4,由图可知 f(x)仅在 $(-\infty,a]$ 上有 1 个零点,不合题意;

综上所述,a 的取值范围是 $(0,\frac{1}{e^2})$.

答案: A

【变式】已知函数 $f(x) = \begin{cases} |x-m| + 2m, x \le 2m \\ -x^2 + 4mx - 2m^2, x > 2m \end{cases}$, 其中 m > 0, 若存在实数 b, 使得方程 f(x) = b 有三个

不同的实数解,则m的取值范围为()

(A) (0,1) (B)
$$(1,+\infty)$$
 (C) $(0,\frac{3}{2})$ (D) $(\frac{3}{2},+\infty)$

解析:由题意,问题等价于存在直线 y=b与 f(x)的图象有 3 个交点,

要画 f(x) 的图象,可研究其单调性,先把 $x \le 2m$ 那一段的绝对值去掉,将解析式细分为三段,

 $\exists x \in (-\infty, m)$ 时, f(x) = -(x-m) + 2m = 3m - x; $\exists x \in [m, 2m]$ 时, f(x) = (x-m) + 2m = x + m; 所以 f(x) 在 $(-\infty, m)$ 上 \(\tau, \text{ at } [m, 2m] 上 \(\text{ } \);

当 x > 2m 时, $f(x) = -x^2 + 4mx - 2m^2 = -(x - 2m)^2 + 2m^2$, 所以 f(x) 在 $(2m, +\infty)$ 上 \(\sigma\);

记 f(x) 图象上的两个分段点分别为 A(m,2m), $B(2m,2m^2)$, 按 A, B 的位置关系可将图象分三类,

若 A, B 等高或 A 在 B 的上方,如图 1,图 2,都不存在直线 y = b 与 f(x) 的图象有 3 个交点;

若 A 在 B 的下方,如图 3 和图 4,存在直线 y=b 与 f(x) 的图象有 3 个交点,所以 $2m < 2m^2$,故 m > 1.

答案: B

【总结】含参的分段函数问题,常考虑画图辅助分析,想象分段点变化时图形的运动过程,抓住关键位置, 但注意不要遗漏.

类型Ⅱ: 研究分段点含参的分段函数的最值

【例 2】已知函数 $f(x) = \begin{cases} x^2 - 2ax + a^2 + 1, x \le a \\ \ln x, x > a \end{cases}$,若 f(x)存在最小值,则实数 a 的取值范围是(

$$(A) (0 + \infty)$$

(A)
$$(0,+\infty)$$
 (B) $[1,+\infty)$ (C) $(e,+\infty)$ (D) $[e,+\infty)$

(C)
$$(e, +\infty)$$

(D)
$$[e, +\infty)$$

解析: 注意到当 $x \le a$ 时, $f(x) = x^2 - 2ax + a^2 + 1 = (x - a)^2 + 1$, 所以 f(x)在 $(-\infty, a]$ 上 \(\sigma\), 按间断点处左右两侧的位置关系,f(x)的图象可能的情形有3种,如图,

其中图 1 和图 2, f(x)存在最小值,所以 $\ln a \ge 1$,故 $a \ge e$.

答案: D

【反思】对于分段函数,需要尤其重视分段处实心、空心点. 空心点处函数值取不到,意味着该点不能产 生零点、交点、最值.

强化训练

1. $(\bigstar \star \star \star)$ 设函数 $f(x) = \begin{cases} x^2, x \le a \\ \sqrt{x}, x > a \end{cases}$, 其中 a > 0,若存在实数 b,使得函数 g(x) = f(x) - b有 3 个零点, 则实数 a 的取值范围为 a .

2. $(\star\star\star\star)$ 设函数 $f(x) = \begin{cases} \ln x, x > a \\ x - x^2, x \le a \end{cases}$, 其中 a > 0,若 f(x) 在 $(0, +\infty)$ 上有最小值,则实数 a 的取值范围

- 3. $(2023 \cdot$ 重庆模拟 $\cdot \star \star \star \star$)已知函数 $f(x) = \begin{cases} x+1, x \leq a \\ 2^x, x > a \end{cases}$,若 f(x) 的值域是 **R**,则实数 a 的取值范围是
- (A) $(-\infty,0]$ (B) [0,1] (C) $[0,+\infty)$ (D) $(-\infty,1]$

4. $(2022 \cdot 北京模拟 \cdot \star \star \star \star)$ 设函数 $f(x) = \begin{cases} x^2, x \le a \\ x^2 - 2ax + a, x > a \end{cases}$, 若存在实数 b, 使得函数 g(x) = f(x) - b有 3 个零点,则 a 的取值范围为 a .