Algoritmos Metaheurísticos Aplicados ao Problema de Minimização de Pilhas Abertas

Júnior Rhis Lima

Universidade Federal de Ouro Preto juniorrhis1@gmail.com

9 de outubro de 2016

Problemas de Corte

 Consistem no corte de unidades maiores de matéria-prima para produzir unidades menores (ou peças);

- Relevantes nas indústrias que realizam processamento de
 - metal;
 - madeira;
 - vidro;
 - papel.

Características do Problema

- A disposição de peças dentro de unidades maiores para realização do corte define um padrão de corte;
- Todas as peças de um mesmo padrão de corte devem ser cortadas antes que um padrão de corte diferente seja processado;
- A cada estágio um determinado padrão de corte diferente é processado;
- Durante a produção de uma peça, todas as suas cópias são armazenadas temporariamente em uma pilha mantida ao redor da máquina que as produziu;
- Quando a primeira peça de um dado tipo for produzida ela abre uma pilha que permanece aberta até que a última peça do mesmo tipo seja produzida.

Descrição do Problema

O Problema de Minimização de Pilhas Abertas (ou MOSP, de *Minimization of Open Stacks Problem*), remonta à um ambiente de produção em que peças com demandas específicas são produzidas por uma única máquina de corte e tem como objetivo atingir a melhor utilização do espaço físico disponível agilizando a linha de produção.

Motivação

- Cada vez mais as indústrias confiam questões operacionais a métodos computacionais;
- O MOSP é um problema NP-Difícil.

Objetivo

Elaborar métodos metaheurísticos consistentes e robustos que possam ser utilizadas no contexto do problema abordado e permitam a obtenção rápida de soluções próximas da solução ótima.

Instância

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	<i>p</i> ₆
1	1	0	0	1	1	0
2	1	1	1	0	0	0
3	0	0	1	1	0	0
4	1	1	1	0	1	0
5	0	1	0	0	1	1
6	1 1 0 1 0 0	1	0	0	0	1

- Matriz binária;
- Padrões representados nas colunas;
- Peças representados nas linhas;
- $I_{ij} = 1$ se o padrão i contém a peça j.

Objetivo

Encontrar uma permutação de padrões de modo a minimizar a quantidade máxima de pilhas abertas ao redor da máquina de corte.

Dois possíveis sequenciamentos

	<i>p</i> ₂	p_1	<i>p</i> ₃	<i>p</i> ₆	<i>p</i> ₄	<i>p</i> ₅
1	0	1	1	1	1	1
2	1	1	1	0	0	0
3	0	0	1	1	1	0
4	1	1	1	1	1	1
5	1	1	1	1	1	1
6	1	1	1	1	0	0

Algumas propriedades

- Estágios de produção Ordem de processamento dos padrões;
- 1s consecutivos Descontinuidade na produção;
- Gargalo Estágio (coluna) com maior quantidade de pilhas abertas;
- Quantidade máxima de pilhas abertas é definida pelo gargalo.

Solução Inicial

O processo para geração de uma solução para o problema consiste nas seguintes etapas:

- Pré-processamento por dominância entre padrões;
- Representação computacional por meio de grafos (Grafos MOSP)
 [Yanasse, 1997a];
- Geração da lista ϕ de peças (utilizando uma heurística de busca em grafos) [Carvalho e Soma, 2014];
- ullet Geração da lista π de padrões (Solução Inicial) [Becceneri et al.,2004]

Solução Inicial

Pré-Processamento por Dominância Entre Padrões

Consiste na eliminação de redundâncias em uma instância MOSP.

Exemplo

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆		p_1	p_2, p_6	<i>p</i> ₃	p_4	p_5
1	1	0	0	1	1	0	1	1	0	0	1	1
2	1	1	1	0	0	0	2	1	1	1	0	0
3	0	0	1	1	0	0	3	0	0	1	1	0
4	1	1	1	0	1	0	4	1	1	1	0	1
5	0	1	0	0	1	1	5	0	1	0	0	1
6	0	1	0	0	0	1	6	0	1	0	0	0

O problema é resolvido considerando apenas o padrão p_2 . O padrão p_6 é sequenciado imediatamente após o padrão p_2 na solução final sem perda de otimalidade.

Solução Inicial

Representação Computacional

- Modela o MOSP por meio de grafos, denominados grafos MOSP;
- Os vértices representam as peças;
- Existe uma aresta entre dois vértices se e somente se as peças correspondentes a estes vértices forem cortadas juntas em pelo menos um mesmo padrão de corte;
- A ligação entre as peças presentes em um mesmo padrão de corte forma uma clique.

Grafo MOSP

Formação de um grafo MOSP a partir da união de cliques

	p ₁	p ₂	p ₃	p ₄	p ₅
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1 0 0 1 1 0	0	0	0	0
5	1	1	0	0	1
6	0	0	1	0	0

Solução Inicial

Geração da lista de peças

Execução de uma busca em largura no grafo MOSP a partir do vértice de menor grau.

Solução Inicial

Geração da lista de padrões

Simula a abertura das pilhas e sequencia os padrões cuja composição de peças forem um subconjunto das pilhas abertas até o momento.

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	1 0 0 1 1	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

$$\pi = [p_3, p_4, p_2, p_5, p_1]$$

Métodos Propostos

- Um Novo Método de Busca Local;
- Descida em Vizinhança Variável;
- Descida Mais Rápida.

Consiste na análise da similaridade da composição dos padrões com o gargalo da solução.

Composto de 3 passos:

- Listar os padrões com alguma similaridade com o primeiro gargalo encontrado;
- Ordenar os padrões em ordem decrescente de similaridade com o gargalo;
- 3 Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

Exemplo

Passo 1 - Listar os padrões com alguma similaridade com o primeiro gargalo encontrado.

	<i>p</i> ₂	p_1	p ₃	<i>p</i> ₅	<i>p</i> ₄
1	1	1	1	1	1
2	1	1	1	1	1
3	0	1	1	0	0
4	1	0	0	0	0
5	1 1 0 1 0	0	1	1	0

$$L = [p_2, p_1, p_5, p_4]$$

Exemplo

Passo 2 - Ordenar os padrões em ordem decrescente de similaridade com o primeiro gargalo encontrado.

	<i>p</i> ₂	p_1	<i>p</i> ₃	<i>p</i> ₅	<i>p</i> ₄
1	1	1	1	1	1
2	1	1	1	1	1
3	1 1 0 1 0	1	1	0	0
4	1	0	0	0	0
5	0	0	1	1	0
	2	2	-	2	2

$$L = [p_2, p_1, p_5, p_4]$$

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₅	<i>p</i> ₄
1	0	1	1	1	1
2	1	1	1	1	1
3	1	1	1	0	0
4	0	1	0	0	0
5	0 1 1 0 0	0	1	1	0

$$L = [p_2, p_5, p_4, p_1]$$

Abre 2 pilhas.

Referentes as peças 1 e 4

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	<i>p</i> ₂	<i>p</i> ₅	<i>p</i> ₄
1	0	0	1	1	1
2	1	1	1	1	1
3	1	1	0	0	0
4	0	0	1	0	0
5	0 1 1 0 0	1	1	1	0

$$L=[\textcolor{red}{p_2},\textcolor{blue}{p_5},\textcolor{blue}{p_4},\textcolor{blue}{p_1}]$$

Abre 2 pilhas.

Referentes as peças 1 e 4

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	p_5	<i>p</i> ₂	<i>p</i> ₄
	0				
2	1	1	1	1	1
3	1	1	0	0	0
4	0	0	0	1	0
5	0	1	1	0	0

Melhor posição até o momento.

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	p_5	<i>p</i> ₄	<i>p</i> ₂
	0				
2	1	1	1	1	1
	1				
	0				
5	0	1	1	0	0

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	<i>p</i> ₅	<i>p</i> ₂	<i>p</i> ₄	
1	0	0	1	1	1	
2	1	1	1	1	1	
3	1	1	0	0	0	
4	0	0	0	1	0	
5	$ \begin{array}{c c} \rho_1 \\ 0 \\ 1 \\ 0 \\ 0 \end{array} $	1	1	0	0	

$$L = [\rho_2, \rho_5, \rho_4, \rho_1]$$

 p_2 inserido no 4° estágio.

Redução de 4 para 3 pilhas abertas.

O algoritmo continua para os próximos padrões da lista. Caso haja alguma melhoria o processo de repete para nova solução encontrada.

Descida em Vizinhança Variável

Definição

O método de **Descida em Vizinhança Variável** (ou *Variable Neighborhood Descent* – VND) utiliza o conceito de busca local para solucionar problemas de otimização combinatória.

Características

- Definição de N_k vizinhanças a serem exploradas, onde cada vizinhança é composta por soluções que diferem em exatamente k elementos da solução inicial;
- A cada iteração uma vizinhança é explorada;
- Atualiza a solução corrente caso encontre um melhor vizinho;
- Permanece na vizinhança enquanto houver melhoria.

Descida em Vizinhança Variável

Características do método proposto

- Agrupamento de padrões Grupos distintos com n padrões cada. Ex.: Seja $\pi = [1, 3, 5, 4, 2, 6]$ e n=2, os grupos seriam [1, 3], [5, 4] e [2, 6];
- k-opt Método que gera soluções que diferem em exatamente k elementos da configuração inicial;
- Trocas de grupos k-opt aplicado a grupos para geração dos vizinhos de cada vizinhança;
- A cada iteração uma vizinhança é explorada;
- Exploração dos vizinhos de uma vizinhança de forma aleatória;
- Aplicação da busca local proposta para cada vizinho;
- Atualiza a solução corrente caso a solução da busca local seja melhor;
- Permanece na vizinhança enquanto houver melhoria.
- Repete todo o processo caso haja melhoria.

Descida Mais Rápida

Definição

O método de **Descida Mais Rápida** (ou *Steepest Descent* – SD) é um método de busca local baseado no conceito de melhoria iterativa de uma solução inicial.

Características

- Aplicado sobre uma única vizinhança;
- Atualiza a solução corrente caso encontre um melhor vizinho;
- Repete todo o processo caso haja melhoria.

Descida Mais Rápida

Características do método proposto

- Janela deslizante Janelas de tamanho n padrões cada. Ex.: Seja $\pi = [1, 3, 5, 4, 2]$ e n=2, as janelas seriam [1, 3], [3, 5], [5, 4] e [4, 2];
- 2-opt soluções que diferem em 2 elementos da solução atual;
- Trocas de janelas 2-opt aplicado a janelas para geração dos vizinhos;
- Exploração dos vizinhos da vizinhança de forma aleatória;
- Aplicação da busca local proposta para cada vizinho;
- Atualiza a solução corrente caso a solução da busca local seja melhor;
- Repete todo o processo caso haja melhoria.

Experimentos Computacionais

Métodos

- Descida em Vizinhança Variável (VND);
- Descida Mais Rápida (SD).

Instâncias

- SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.
- VLSI 25 instâncias reais;
- Faggioli & Bentivoglio (F & B) 300 instâncias artificiais;
- Challenge 46 instâncias artificiais;
- Instâncias MOSP 200 instâncias MOSP de maiores dimensões geradas aleatoriamente por (Chu e Stuckey, 2009).

20 testes foram executados para cada conjunto de instâncias.

Experimentos Computacionais

Resultados Médios

- OPT Média das soluções ótimas;
- T Tempo médio em segundos;
- S* Média das melhores soluções encontradas;
- \bullet σ Desvio padrão das soluções obtidas (Componente aleatório).

Conjunto	OPT	VND			SD		
Conjunto	OF I	T	<i>S</i> *	σ	T	<i>S</i> *	σ
SCOOP	7,75	0,16	7,96	0,26	0,05	7,88	0,24
VLSI	7,12	163,74	7,16	0,13	1,53	7,24	0,18
F & B	93,00	0,15	94,83	0,26	0,05	94,17	0,27
Challenge	21,76	427,35	21,96	0,18	7,40	21,91	0,19
MOSP	1028,88	255,68	1041,25	0,30	15,61	1045,00	0,58
MOSP	1028,88	255,68	1041,25	0,30	15,61	1045,00	0,58

Experimentos Computacionais

gap

Distância das soluções obtidas em relação as soluções ótimas.

Conjunto	VND	SD	
Conjunto	gap	gap	
SCOOP	2,69%	1,61%	
VLSI	0,56%	1,69%	
F & B	1,97%	1,25%	
Challenge	0,90%	0,70%	
MOSP	1,20%	1,57%	

Conclusão

Este trabalho propõe dois métodos para solução do MOSP. O primeiro consiste na metaheurística Descida em Vizinhança Variável (VND) e o segundo consiste em um método de Descida Mais Rápida (SD). Primeira vez em que esses métodos são aplicados a resolução do MOSP.

Os experimentos computacionais demonstraram a eficiência dos métodos propostos, principalmente em relação a qualidade da solução obtida. O método de Descida Mais Rápida (SD) apresentou menores tempos mantendo a qualidade da solução, superando inclusive o VND em alguns conjuntos de instâncias. Os *gaps* e desvio padrão baixos demonstram a robustez dos métodos ao obterem soluções próximas aos valores ótimos.

Agradecimentos

Fim

Anexo

Geração da lista de peças

Execução de uma busca em largura no grafo MOSP a partir do vértice de menor grau.

Geração da lista de peças

29 / 29

 $\phi = [6]$

$$\phi = [{\color{red}6}, {\color{blue}3}]$$

Vértice 3 adicionado

$$\phi = [6, \frac{3}{3}, 2, 1, 5]$$

Vértices 2, 1 e 5 adicionados

$$\phi = [6, 3, \textcolor{red}{2}, 1, 5]$$

Nenhum vértice adicionado

$$\phi = [{\bf 6}, {\bf 3}, {\bf 2}, {\color{red} {\bf 1}}, {\bf 5}, {\bf 4}]$$

Vértice 4 adicionado

$$\phi = [{\bf 6},{\bf 3},{\bf 2},{\bf 1},{\color{red}{\bf 5}},{\bf 4}]$$

Nenhum vértice adicionado

$$\phi = [{\bf 6}, {\bf 3}, {\bf 2}, {\bf 1}, {\bf 5}, {\color{red} {\bf 4}}]$$

Nenhum vértice adicionado

$$\phi = [6, 3, 2, 1, 5, 4]$$

◆ロト ◆昼 > ◆ 差 > → を ● ・ り へ ○

Execução de uma busca em largura no grafo MOSP a partir do vértice de menor grau.

Simula a abertura das pilhas e sequencia os padrões cuja composição de peças forem um subconjunto das pilhas abertas até o momento.

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	1	0	1	0
2	0	1	0	1	1
3	$ \begin{array}{c c} p_1 \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	0	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

$$\pi = \emptyset$$

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	1 0 0 1 1	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

 $\pi = \emptyset$

	p_1	p_2	<i>p</i> ₃	p_4	<i>p</i> ₅
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	<i>p</i> ₁	0	1	0	0

$$\phi = [6, \frac{3}{3}, 2, 1, 5, 4]$$

$$\pi = [p_3]$$

	p_1	p_2	<i>p</i> ₃	p_4	p_5
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	<i>p</i>₁100110	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

 $\pi = [p_3]$

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	1 0 0 1 1	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

$$\pi = [p_3, p_4]$$

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	<i>p</i> ₁	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

$$\pi = [\rho_3, \rho_4, \rho_2, \rho_5]$$

	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	1 0 0 1 1	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

$$\pi = [p_3, p_4, p_2, p_5, p_1]$$