Semaine du 07/02/2023 : devoir maison pour la rentrée

Suites et récurrences

Suites arithmétiques et géométriques

1. Soit (u_n) une suite arithmétique de raison u_0 et de raison r telle que :

$$u_1 = 5$$

 $u_3 = 11$

- **a.** Déterminer u_0 et r.
- **b.** Calculer $u_0 + u_1 + ... + u_{10}$.
- **2.** Soit (u_n) une suite géoémtrique de raison u_0 et de raison q telle que :

$$u_3 = 250$$

 $u_4 = 1250$

- **a.** Déterminer u_0 et q.
- **b.** Calculer $u_0 + u_1 + ... + u_5$.
- **3.** Montrer, par récurrence, que pour a > 0 et pour tout entier naturel n non nul :

$$(1+a)^n > 1 + na$$

4. Soit la suite définie par :

$$\begin{cases} u_{n+1} = 0.8u_n - 2\\ u_0 = 5 \end{cases}$$

- **a.** Montrer par récurrence que $\forall n \in \mathbb{N}, 0 \le u_n \le 10$
- **b.** Montrer que la suite (u_n) est décroissante.
- **c.** En déduire que la suite (u_n) est convergente et justifier la valeur de sa limite.
- **d.** Montrer que la suite (v_n) , définie pour tout $n \in \mathbb{N}$ par $v_n = u_n 10$ est géométrique et donner l'expression de son terme général.

Fonction exponentielle

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = e^x - x$$

- **1.** Déterminer les limites de f en $-\infty$ et en $+\infty$.
- **2.** Calculer la dérivée de la fonction f.
- **3.** Déterminer le signe de f'(x).
- **4.** En déduire le tableau de variation de f.
- **5.** Justifier qu'il existe une unique valeur $\alpha \in \mathbb{R}$ telle que $f(\alpha) = 0$.
- **6.** Calculer f''(x).
- **7.** Que dire de la convexité ou la concavité de f?
- **8.** Déterminer l'équation de la tangente à la courbe représentant f en $\ln(2)$.
- 9. En déduire que :

$$\forall x \in \mathbb{R} f(x) \ge x$$

Analyse

Fonction logarithme

Soit la fonction f définie sur]0; $+\infty$ [par :

$$f(x) = x \ln(x) - x + 1$$

- **1.** Déterminer les limites de f en 0^+ et en $+\infty$.
- **2.** Calculer la dérivée de la fonction f.
- **3.** Déterminer le signe de f'(x).
- **4.** En déduire le tableau de variation de f.
- **5.** Justifier qu'il existe une unique valeur $\alpha \in]0; +\infty[$ telle que $f(\alpha) = 0$. Quelle est la valeur de α ?
- **6.** Calculer f''(x).
- **7.** Que dire de la convexité ou la concavité de f?

* Géométrie

On considère le cube ABCDEFGH d'arête de longueur 1.

L'espace est muni du repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$. Le point I est le milieu du segment [EF], K le centre du carré ADHE et O le milieu du segment [AG].

Le but de l'exercice est de calculer de deux manières différentes, la distance du point B au plan (AIG).

Partie 1. Première méthode

- 1. Donner, sans justification, les coordonnées des points A, B, et G. On admet que les points I et K ont pour coordonnées $I\left(\frac{1}{2}; 0; 1\right)$ et $K\left(0; \frac{1}{2}; \frac{1}{2}\right)$.
- 2. Démontrer que la droite (BK) est orthogonale au plan (AIG).
- **3.** Vérifier qu'une équation cartésienne du plan (AIG) est : 2x y z = 0.
- 4. Donner une représentation paramétrique de la droite (BK).
- **5.** En déduire que le projeté orthogonal L du point B sur le plan (AIG) a pour coordonnées $L\left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$.

4

TG

6. Déterminer la distance du point B au plan (AIG).

Partie 2. Deuxième méthode

On rappelle que le volume V d'une pyramide est donné par la formule $V = \frac{1}{3} \times b \times h$, où b est l'aire d'une base et h la hauteur associée à cette base.

- **1. a.** Justifier que dans le tétraèdre ABIG, [GF] est la hauteur relative à la base AIB.
 - b. En déduire le volume du tétraèdre ABIG.
- **2.** On admet que AI = IG = $\frac{\sqrt{5}}{2}$ et que AG = $\sqrt{3}$.

Démontrer que l'aire du triangle isocèle AIG est égale à $\frac{\sqrt{6}}{4}$ unité d'aire.

3. En déduire la distance du point B au plan (AIG).