Теория вероятностей

Случайные величины Черновик

Кафедра СМиМ

2019

```
План
```

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

Ссылки

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента

2/94

Outline Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🕬 🖘 🖘

Случайная величина

Случайная величина (Random variable) - величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.

Случайная величина обычно обозначается заглавной латинской буквой, например Х.

Случайная величина

Случайная величина (Random variable) - величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.

Случайная величина обычно обозначается заглавной латинской буквой, например Х.

Возможные значения случайной величины обозначаются соответствующей строчной буквой.

$$X = \{x_1, x_2, ..., x_n\}$$

Случайная величина и событие

Случайная величина может быть связана со случайным событием.

Например:

К - случайная величина: число очков выпавшее на игральной кости

А - случайное событие: выпадении более 3 очков на игральной кости (K>3)

R - случайная величина: расстояние от центра плоской мишени до места попадания B - случайное событие: попадание в мишень R < r, где r - радиус мишени

Случайная величина Примеры

- Число очков выпавшее на игральной кости
- ▶ Число орлов выпавшее в результате 10 бросков монеты
- ▶ Число детей в семье
- Число солнечных дней в году
- Средняя температура в аудитории в данный момент
- Рост случайно выбранного человека
- Кубиковая прочность бетона
- Количество выпавшего снега за месяц
- ▶ Время безотказной работы устройства

Случайная величина

- Дискретная (discrete)
 принимает конечное или счетное число значений.
- ► **Непрерывная** (continuous) может принимать все значения из некоторого конечного или бесконечного промежутка.

Случайная величина Примеры

Дискретная

Случайная величина Примеры

Дискретная

- Число очков выпавшее на игральной кости
- Число орлов выпавшее в результате 10 бросков монеты
- Число студентов на конкретном занятии
- Число солнечных дней в году

Непрерывная

- Средняя температура в аудитории в данный момент
- Рост случайно выбранного человека
- Кубиковая прочность бетона
- Количество выпавшего снега за месяц
- Время безотказной работы устройства

Случайная величина

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распрелеление

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🗥 🖘 🖘

Функция вероятности

- Случайные величины отличатся друг от друга диапазоном своих значений
 - Например время ожидания троллейбуса на остановке в будний день в 8:00 и в 22:00
- Даже если случайные величины имеют одинаковый диапазон значений, одна СВ может быть более склонна принимать принимать одни значения, а другая - другие Например: процент оценок отлично по философии и теоретической механике у студентов направления 08.05.01
- ▶ Поэтому есть необходимость описывать значения случайной величины связывая их с вероятностью

Функция вероятности

Функция вероятности, probability mass function (pmf) – функция, возвращающая вероятность того, что дискретная случайная величина X примет определённое значение.

Вероятность того, что CB X примет значение равное x

$$P(X = x)$$

х - возможное значение случайной величины

Способы задания функции вероятности

▶ Таблично (ряд распределения)

X_i	x_{I}	x_2	 X_n
p_{i}	$p_{_{I}}$	p_2	 p_n

Графически (многоугольник распределения)

Аналитически

$$P(K) = f(k)$$

Способы задания функции вероятности Гистограмма

Часто вместо многоугольника распределения строят гистограмму

Функция распределения

- Функция вероятности позволяет узнать вероятность только реализации одного значения случайной величины P(X=x).
- Однако часто нужно знать вероятность того, что случайная величина не превысит заданного значения P(X < x)
- Эта вероятность задаётся функцией распределения

$$F(x) = P(X < x)$$

▶ В англоязычних источниках используется название cumulative distribution function (cdf)

Функция распределения

Функция распределения дискретной СВ

Функция распределения Свойства

- ▶ неубывающая функция $x_1 < x_2, F(x_1) \le F(x_2)$
- $F(-\infty)=0$
- $F(+\infty)=1$

Функция распределения Пример

- В группе 5 человек
- ▶ Записать закон распределения в табличном виде СВ X число человек присутствующих на занятии
- ▶ р = 0.9 вероятность появления студента на занятии
- Считать появление отдельных студентов на занятии независимыми событиями

Функция распределения Пример

- В группе 5 человек
- Записать закон распределения в табличном виде СВ X число человек присутствующих на занятии
- ▶ р = 0.9 вероятность появления студента на занятии
- Считать появление отдельных студентов на занятии независимыми событиями
- Записать в табличном виде функцию распределения

Функция распределения

Непрерывная случайная величина

- Для непрерывной случайной величины невозможно составить ряд распределения так же как для дискретной
- Но различные области значений непрерывной случайной величины могут не являются равновероятными Например рост случайно выбранного человека попадёт в интервал (150, 155) и в интервал от (170,175) с разной вероятностью.
- Поэтому вместо ряда распределения для описания непрерывной случайной величины используется функция распределения (cdf)

$$F(x) = P(X < x)$$

 Эту функцию иногда называют интегральным законом распределения

Вероятность попадания СВ на заданный участок

- ▶ Рассмотрим полуинтервал значений СВ [a, b)
- ▶ Согласно теореме о сумме событий

$$P(X < b) = P(X < a) + P(a \le X < b)$$

Отсюда

$$P(a \le X < b) = P(X < b) - P(X < a)$$

Используем функцию распределения

$$P(a \le X < b) = F(b) - F(a)$$

Функция распределения

Функция распределения непрерывной СВ

- Рассмотрим непрерывную СВ X
- Определим вероятность попадания этой CB на участок от x до $x+\Delta x$

$$P(x < X < x + \Delta x) = F(x + \Delta x) - F(x)$$

• Определим среднюю вероятность приходящуюся на длину этого участка при $\Delta x o 0$

$$\lim_{\Delta x \to 0} = \frac{F(x + \Delta x) - F(x)}{\Delta x} = F'(x)$$

Плотность распределения

Непрерывная случайная величина

Обозначим

$$f(x) = F'(x)$$

- Это плотность распределения (плотность вероятности)
- ▶ Кривая определяемая f(x) называется кривой распределения

Функция распределения и функция плотности

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́н та 🗥 👫 👫

Числовые характеристики

- Случайную величину можно исчерпывающим образом описать:
 - функцией распределения F(x) (дискретная и непрерывная СВ)
 - рядом распределения P(x) (дискретная CB)
 - плотностью распределения f(x) (непрерывная CB)
- ▶ Однако такое исчерпывающее описание не всегда удобно.
- Поэтому в дополнении к вышеприведённым способам описания СВ используют характеристики СВ вращающие наиболее существенные её особенности.
- Их называют числовыми характеристиками

Числовые характеристики

Некоторые числовые характеристики

- ▶ Математическое ожидание характеристика положения СВ на числовой оси
- Медиана характеристика положения СВ на числовой оси
- Мода
- Дисперсия, среднеквадратичное отклонение характеристики рассеивания СВ около её математического ожидания

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🕬 🐪 📜

Математическое ожидание

- Expected value, mean value
- ▶ Обозначение: M(X) или E(X)
- характеристика положения СВ на числовой оси
- Это среднее (взвешенное) значение СВ
- Для дискретной CB

$$M[X] = \sum_{i=1}^n x_i \, p_i.$$

Для непрерывной CB

$$M[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

Математическое ожидание Дискретная случайная величина. Пример

X	P(x)	x * P(x)
1	0.10	1 * 0.10 = 0.10
2	0.30	2 * 0.30 = 0.60
3	0.45	3 * 0.45 = 1.35
4	0.15	4 * 0.15 = 0.60
		$\mu_x = 2.65$

Математическое ожидание

Свойства

▶ Математическое ожидание числа есть само число.

$$M[a] = a$$

Сумма случайных величин

$$M[X + Y] = M[x] + M[Y]$$

Линейность математического ожидания

$$M[kX] = k \cdot M[X]$$

▶ Произведение независимых, некоррелированых случайных величин

$$M[X \cdot Y] = M[X] \cdot M[Y]$$

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🕬 👫 🛂

Дисперсия

- Variance
- ightharpoonup Обозначение: D(X), Var(X)
- ▶ Обозначение в статистике: σ_X^2
- Характеризует рассеивания СВ около её математического ожидания
- ► $D[X] = M[(X M[X])^2]$
- ightharpoonup X-M[X] отклонение случайной величины

- ▶ Для дискретной СВ $D[X] = \sum_{i=1}^{n} p_i(x_i M[X])^2$)
- ▶ Для непрерывной СВ $D[X] = \int_{-\infty}^{+\infty} (x M[X])^2 f(x) dx$
- Иногда дисперсию проще вычислить так:

$$D[X] = M[X^2] - (M[X])^2$$

Среднее квадратичное отклонение

- Дисперсия имеет размерность квадрата СВ, что не слишком наглядно
- Поэтому из дисперсии извлекают квадратный корень
- Такую величину называют средним квадратическим отклонением (с.к.о.) $\sigma[X]$
- ▶ В статистике с.к.о. обозначают SD

X	P(x)	x^2	$\chi^2 * \mathbf{P}(\mathbf{x})$
1	0.10	1*1 = 1	1 * 0.10 = 0.10
2	0.30	2*2 = 4	4 * 0.30 = 1.20
3	0.45	3*3 = 9	9 * 0.45 = 4.05
4	0.15	4*4 = 16	16 * 0.15 = 2.40

$$M[X] =$$

X	P(x)	x^2	$\chi^2 * \mathbf{P}(\mathbf{x})$
1	0.10	1*1 = 1	1 * 0.10 = 0.10
2	0.30	2*2 = 4	4 * 0.30 = 1.20
3	0.45	3*3 = 9	9 * 0.45 = 4.05
4	0.15	4*4 = 16	16 * 0.15 = 2.40

$$M[X] = 0.1 \cdot 1 + 1.2 \cdot 2 + 4.05 \cdot 3 + 2.4 \cdot 4 = 2.65$$

 $M[X^2] =$

X	P(x)	x^2	$x^2 * P(x)$
1	0.10	1*1 = 1	1 * 0.10 = 0.10
2	0.30	2*2 = 4	4 * 0.30 = 1.20
3	0.45	3*3 = 9	9 * 0.45 = 4.05
4	0.15	4*4 = 16	16 * 0.15 = 2.40

$$M[X] = 0.1 \cdot 1 + 1.2 \cdot 2 + 4.05 \cdot 3 + 2.4 \cdot 4 = 2.65$$

 $M[X^2] = 0.1 + 1.2 + 4.05 + 2.4 = 7.75$
 $D[X] =$

X	P(x)	x^2	$x^2 * P(x)$
1	0.10	1*1 = 1	1 * 0.10 = 0.10
2	0.30	2*2 = 4	4 * 0.30 = 1.20
3	0.45	3*3 = 9	9 * 0.45 = 4.05
4	0.15	4*4 = 16	16 * 0.15 = 2.40

$$M[X] = 0.1 \cdot 1 + 1.2 \cdot 2 + 4.05 \cdot 3 + 2.4 \cdot 4 = 2.65$$

 $M[X^2] = 0.1 + 1.2 + 4.05 + 2.4 = 7.75$
 $D[X] = 7.75 - 2.65^2 = 0.7275$
 $\sigma[x] = 0.8529$

Дисперсия Свойства

- ightharpoonup Дисперсия всегда неотрицательна: $D[X] \geq 0$
- ▶ Дисперсия константы равна нулю: D[a] = 0
- ightharpoonup Дисперсия суммы двух случайных величин $D[X+Y] = D[X] + D[Y] + 2cov(X,Y)^1$
- $D[kX] = k^2 D[X]$
- D[-X] = D[X]
- D[X+a]=D[X]

 $^{^{1}}cov(X,Y)$ - ковариация - мера линейной зависимости двух случайных величин. cov(X,Y)=0 если величины линейно независимы $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Коэффициент вариации

$$\nu[X] = \frac{\sigma[X]}{M[X]}$$

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🗥 🖘 🖘

Медиана

Медиана Me[X] - такое значение случайной величины для которого выполняется равенство

$$P(X < Me) = P(X > Me)$$

Для непрерывной СВ:

$$F(Me) = 0.5$$

Квантиль

- Квантиль значение, которое заданная случайная величина не превышает с фиксированной вероятностью
- ► Квартили Q1, Q2, Q3 значения случайной величины которые делят распределение на 4 равные части

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🗥 🖘 🖘

Мода

Мода - значение СВ, которое встречается наиболее часто

Мода, медиана, математическое ожидание Пример

Мода, медиана, математическое ожидание Пример

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́н та 🗥 👫 👫

47 / 94

МО и дисперсия числа появления события

- Испытания независимы
- p вероятность появления события в единичном испытании
- Эта веротность не меняется от испытания к испытанию
- проводится п испытаний
- МО числа появлений события в независимых испытаниях

$$M(X) = np$$

 Дисперсия числа появлений события в независимых испытаниях

$$D(X) = npq$$

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́н та 🗥 🖘 🖘

Закон больших чисел

- ▶ При очень большом числе случайных явлений их результат практически перестаёт быть случайным и может быть определён с большой степенью определённости
- Закон больших чисел
 - Теорема Чебышёва
 - Теорема Бернулли

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распрелеление

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🗥 🖘 🖘

Теорема Чебышёва

- При достаточно большом числе независимых опытов среднее арифметическое наблюденных значении случайной величины сходится по вероятности к ее математическому ожиданию.
- Другими словами: на практике можно использовать вместо математического ожидания среднее значение случайной величины (если этих значений много)

Теорема Чебышёва

Математическое ожидание

Медиана, Квантиль

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́нТа 🗗 🔭 👫

Теорема Бернулли

Если в каждом из n независимых испытаний вероятность появления события A постоянна,

то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами: на практике можно использовать вместо вероятности события относительную частоту события (при условиях описанных выше)

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🕬 👫 👫

6 / 94

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́н а 🕬 🐪 57

Равномерное распределение

Все возможные значения случайной величины равновероятны.

Равномерное распределение может иметь как дискретная случайная величина, так и непрерывная scipy.stats.uniform.rvs (loc = a, scale = b)

Равномерное распределение. Примеры

- ▶ Количество очков, выпавших на игральной кости
- Число выпавшее на рулетке
- Номер автобусного билета (в единичном испытании)
- Время ожидания события, происходящего со строгой периодичностью. например время ожидания поезда, который отправляется со станции раз в 30 минут

Значения случайной величины с равномерным распределением используются для осуществления случайных выборок.

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента 🗗 🔭 🖘

Нормальное распределение

 μ - математическое ожидание, σ - среднеквадратичное отклонение.

Возможные значения СВ близкие к мат. ожидания наиболее вероятны.

Если CB является суммой большого числа других независимых величин, то она подчинятся нормальному закону распределения. 2

²см. центральная предельная теорема

Нормальное распределение. Примеры

- Рост человека
- Ошибка измерения
- Прочность бетона
- Масса новорождённых детей
- ▶ Объём молока производимый коровой каждый день

Нормальное распределение

Функция распределения

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

- Параметры
 - ightharpoonup математическое ожидание
 - $ightharpoonup \sigma$ стандартное отклонение

Стандартное нормальное распределение

- ▶ При $\mu=0$ и $\sigma=1$ распределение называется стандартным нормальным распределением
- Нормирование случайной величины:

$$z = \frac{x - \mu}{\sigma}$$

где x - исходное значение случайной величины; z - нормированное значение.

Тогда функция распределения

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$$

Нормальное распределение и функция Лапласа

▶ В таблицах может приводится значение функции, где нижний предел 0 вместо $-\infty$

$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$$

▶ Чтобы перейти от $F_0(x)$ к F(X):

$$F(X) = 0.5 + F_0(X)$$

▶ 0.5 соответствует площади под кривой слева от нуля

Правило трёх сигм

Вероятность того, что случайная величина отклонится от своего математического ожидания на большую величину, чем утроенное среднее квадратичное отклонение, практически равна нулю.

$$P(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 0.6827$$

 $Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$
 $Pr(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$

Outline

Математическое ожидание

Медиана, Квантиль

МО и дисперсия числа появления события

Теорема Чебышёва

Законы распределения

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́нта 🗗 🐪 👫

Распределение Пуассона

CB - количество событий на меру пространства или времени, при средней частоте λ

ДТП в определённом районе города случается в среднем дважды в неделю.

Какова вероятность того, что на этой неделе не будет ДТП?

Используем закон Пуассона³:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

где $\lambda=2$, k=0 - число событий.

тогда
$$P(0) = \frac{2^0 e^{-2}}{0!} = 0.14$$

³в пакете scipy: scipy.stats.distributions.poisson.pmf(x, lambda)

 $\ensuremath{\mathsf{ДT\Pi}}$ в определённом районе города случается в среднем дважды в неделю.

Какова вероятность того, что на этой неделе не будет ДТП?

Используем закон Пуассона³:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

где $\lambda = 2$, k = 0 - число событий.

тогда
$$P(0) = \frac{2^0 e^{-2}}{0!} = 0.14$$

Какова вероятность того, что на этой неделе будет 1 и 2 ДТП? $P(1)=\frac{2^1e^{-2}}{1!}=0.27$, $P(2)=\frac{2^2e^{-2}}{2!}=0.27$

Какова вероятность того, что на этой неделе будет больше 2-х ДТП?

$$P(X > 2) = 1 - P(0) - P(1) - P(2)$$

³в пакете scipy: scipy.stats.distributions.poisson.pmf(x, lambda)

Для при определении вероятности для заданного числа событий произошедших за t единиц времени параметр λ определяют так:

$$\lambda = tn$$

где п число событий за единицу времени

Сравним вероятности следующих событий:

- 3 ДТП за неделю
- 15 ДТП за 5 недель

Для при определении вероятности для заданного числа событий произошедших за t единиц времени параметр λ определяют так:

$$\lambda = tn$$

где п число событий за единицу времени

Сравним вероятности следующих событий:

- 3 ДТП за неделю
- 15 ДТП за 5 недель

$$n = 2$$
, $t_1 = 1$, $\lambda_1 = 2$, $t_2 = 5$, $\lambda_2 = 2 \cdot 5 = 10$

$$P(3, \lambda_1 = 2) = 0.18$$

$$P(15, \lambda_2 = 10) = 0.035$$

Величины подчиняющиеся распределению Пуассона

- ▶ Число изюминок в булочке
- Число мутация в ДНК
- Число звонков в службу технической поддержки
- Число смертей в год для заданной возрастной категории
- Число альфа-частиц излучённых за определённый промежуток времени

kvant.mccme.ru/1988/08/raspredelenie_puassona.htm

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргуме́н а 🎒 🐪 🤻 72

Экспоненциальное (показательное) распределение

$$\lambda$$
 - скорости. $M(X)=rac{1}{\lambda}$

моделирует время между двумя последовательными свершениями одного и того же события.

Экспоненциальное (показательное) распределение. Пример

Среднее время ожидания покупателя - 15 минут. Какова вероятность, что во время перерыва длительностью 5, 10 и 15 минут придёт покупатель?

Тогда
$$rac{1}{\lambda}=15
ightarrow\lambda=0.067.$$

$$P(X < 5) = F(5) = 1 - e^{-0.067 \cdot 5} = 0.28$$

 $P(X < 10) = F(10) = 1 - e^{-0.067 \cdot 10} = 0.49$
 $P(X < 15) = F(15) = 1 - e^{-0.067 \cdot 15} = 0.63$

scipy.stats.expon.cdf (
$$x = 5$$
, scale = 15) # 0.28

Экспоненциальное распределение vs распределение Пуассона

В чём разница и что общее у экспоненциального распределения и распределения Пуассона?

Экспоненциальное (показательное) распределение

Величины подчиняющиеся экспоненциальному распределению

- Расстояние между участками ДНК с мутациями
- Время ожидания звонка службу технической поддержки
- Время между излучением частиц
- ▶ Расстояние между местами ДТП на дороге⁴

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Линеаризация функции случайного аргумента

Нелинейность - это сложно

- ightharpoonup Система из независимых случайных величин $X_1, X_2, ..., X_n$
- ▶ Для каждой из величин известны математическое ожидание m_{x1} и стандартное отклонение σ_{x1}
- Рассмотрим новую случайную величину Y, которая зависит от $X_1, X_2, ..., X_n$

$$Y = f(X_1, X_2, ..., X_n)$$

▶ Требуется определить математическое ожидание и стандартное отклонение с.в. Ү

Функция случайного аргумента

- Определение математического ожидания с.в. требует знания функции плотности, а так же интегрирования этой функции.
- ▶ Эта процедура может быть сложной, кроме того некоторые интегралы невозможно вычислить аналитически
- ightharpoonup Однако если функция f линейна то математическое ожидание и дисперсия вычисляются просто
- ightharpoonup Даже если f нелинейна её можно рассматривать как линейную на небольшой области определения
- ightharpoonup Далее для простоты рассмотрим функцию для f одного аргумента

$$Y = f(X)$$

Линейная аппроксимация

- Нелинейную функцию можно аппроксимировать линейной в окрестности некоторой точки
- Аппроксимирующую прямую можно выбрать совпадающую с касательной к функции в этой точке
- Если предполагается, что рассматриваемая окрестность точки, через которую проведена касательная небольшая, то и ошибка аппроксимации может быть невелика

Ряд Тейлора

 Для аппроксимации используем разложении функции в ряд Тейлора в окрестности точки а

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(i)}(a)}{n!} (x - a)^n$$

 $f^{(n)}(a)$ - значение n-й производной функции f в точке а

Запишем только первые два слагаемых ряда

$$f(x) = \frac{f(a)}{0!}(x-a)^0 + \frac{f'(a)}{1!}(x-a)^1$$

Ряд Тейлора

 Для аппроксимации используем разложении функции в ряд Тейлора в окрестности точки а

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(i)}(a)}{n!} (x - a)^n$$

 $f^{(n)}(a)$ - значение n-й производной функции f в точке а

Запишем только первые два слагаемых ряда

$$f(x) = \frac{f(a)}{0!}(x-a)^0 + \frac{f'(a)}{1!}(x-a)^1$$

$$f(x) \approx f(a) + f'(a) \cdot (x - a)$$

ightharpoonup Это уравнение касательной к функции f в точке a

Ряд Тейлора _{Пример}

Разложим функцию sin(x) в окрестности 0

Ряд Тейлора _{Пример}

Разложим функцию sin(x) в окрестности 0

$$sin(x) \approx 0 + 1 \cdot (x - 0) = x$$

X	sin x	tailor	delta
0,000	0,000	0,000	0,000
0,001	0,001	0,001	0,000
0,010	0,010	0,010	0,000
0,100	0,100	0,100	0,000
0,200	0,199	0,200	0,001
0,300	0,296	0,300	0,004
0,400	0,389	0,400	0,011

Линеаризация функции случайного аргумента Математическое ожидание и дисперсия

Разложим функцию y = f(x) в окрестности математического ожидания m_x :

$$y = f(m_x) + f'(m_x) \cdot (x - m_x)$$

Найдём найдём математическое ожидание у:

$$m_y = M[f(m_x) + f'(m_x) \cdot (x - m_x)] = M[f(m_x)] = f(m_x)$$

Найдём найдём дисперсию у используя формулу со слайда 33:

$$D_{y} = M[[f(m_{x}) + f'(m_{x}) \cdot (x - m_{x}) - (f(m_{x}) + f'(m_{x}) \cdot (x - m_{x})]^{2}] = M[[f'(m_{x})]^{2} \cdot (x - m_{x})^{2}] = [f'(m_{x})]^{2} \sigma_{x}^{2}$$

Линеаризация функции случайного аргумента Математическое ожидание и дисперсия

Таким образом, чтобы определить математическое ожидание и дисперсию линеаризованной функции случайного аргумента

- ▶ Математическое ожидание аргумента
- Дисперсию аргумента

достаточно знать:

$$m_{y} = f(m_{x})$$
$$D_{v} = [f'(m_{x})]^{2} \sigma_{x}^{2}$$

Математическое ожидание и дисперсия функции нескольких переменных

Если функция зависит от нескольких переменных $x_1, x_2, ..., x_n$

$$m_y = f(m_{x1}, m_{x2}, ..., m_{xn})$$

$$D_{y} = \left[\sum \frac{\partial f'(m_{x1}, m_{x2}, ..., m_{xn})}{\partial x_{i}}\right]^{2} (\sigma_{x1}^{2} + \sigma_{x2}^{2} + \sigma_{xn}^{2})$$
(1)

Относ бомбы выражается приближенной аналитической формулой:

$$X = v_0 \sqrt{\frac{2H}{g}} (1 - 1.8 \cdot 10^{-5}) cH$$

где v_0 - скорость самолета (м/с), H - высота сбрасывания (м), с - баллистический коэффициент.

По приборам определены: H = 4000, σ_H = 40 м; ν_0 = 150 м/с, σ_{ν_0} = 1 м/с; c = 1, σ = 0.05. Ошибки приборов независимы друг от друга.

- Найти относ и среднее квадратическое отклонение точки падения бомбы вследствие неточности в определении параметров v_0 , H и c.
- Определить, какой из этих факторов оказывает наибольшее влияние на разброс точки падения бомбы.

Можно убедится, что при небольших изменениях параметров v_0 , H и c функция определяющая относ бомбы остаётся практически линейной

Поэтому замена формул для математического ожидания и стандартного отклонения на аналогичные для линейной аппроксимации оправдана

 Заданные значения величин v₀, H и с являются средними значениями, так как их отклонения в обе стороны равновероятны

Определим среднее значения относа X:

$$X = 150 \cdot \sqrt{\frac{8000}{9.81} \cdot (1 - 1.8^{-5}) \cdot 1 \cdot 4000} = 3975.12$$
м

- Определим величину, ошибка определения которой вносит наибольший вклад в величину относа бомбы X
- ▶ Для этого вычислим все слагаемые, из которых образуется дисперсия искомой величины (формула 1)
- Сначала определим производные

$$\frac{\partial X}{\partial H} = \frac{v_0}{\sqrt{2Hg}} (1 - 1.8 \cdot 10^{-5}) cH - v_0 \sqrt{\frac{2H}{g}} (-1.8 \cdot 10^{-5}) c$$

- Определим величину, ошибка определения которой вносит наибольший вклад в величину относа бомбы X
- ▶ Для этого вычислим все слагаемые, из которых образуется дисперсия искомой величины (формула 1)
- Сначала определим производные

$$\frac{\partial X}{\partial H} = \frac{v_0}{\sqrt{2Hg}} (1 - 1.8 \cdot 10^{-5}) cH - v_0 \sqrt{\frac{2H}{g}} (-1.8 \cdot 10^{-5}) c$$

$$\frac{\partial X}{\partial v_0} \cdot = \sqrt{\frac{2H}{g}} (1 - 1.8 \cdot 10^{-5}) cH$$

$$\frac{\partial X}{\partial c} \cdot = v_0 \sqrt{\frac{2H}{g}} (1 - 1.8 \cdot 10^{-5}) H$$

$$\left(\frac{\partial X}{\partial H} \cdot \sigma_h\right)^2 = 0.429^2 \cdot 40^2$$
$$\left(\frac{\partial X}{\partial \nu_0} \cdot \sigma_{\nu_0}\right)^2 = 26.4^2 \cdot 1^2$$
$$\left(\frac{\partial X}{\partial c} \cdot \sigma_c\right)^2 = (-307)^2 \cdot 0.05^2$$

Если предположить, что X имеет нормальное распределение, то с какой вероятностью бомба упадёт на далее чем в $_X$ м от расчетного места падения?

Outline

Случайная величина

Закон и функция распределения СВ

Числовые характеристики

Математическое ожидание

Дисперсия

Медиана, Квантиль

Мода

МО и дисперсия числа появления события

Закон больших чисел

Теорема Чебышёва

Теорема Бернулли

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

2 / 94

Источники

- ▶ Теория вероятностей и математическая статистика. Гмурман В.Е. biblio-online.ru/book/teoriya-veroyatnostey-imatematicheskaya-statistika-431095
- ▶ Руководство к решению задач по теории вероятностей и математической статистике. В. Е. Гмурман. 11-е изд., Издательство Юрайт, 2019. 406 с www.biblioonline.ru/book/02E0C1D3-4EEA-43AA-AA6B-5E25C4991D0

Ссылки

Материалы курса

github.com/VetrovSV/ST