

Nombre: Moisés Pineda

Fecha: 05/05/2025

Curso: GR1CC

Docente: Jonathan A. Zea

Repositorio:

https://github.com/SantiagoTmg/Metodos Numericos GRCC1/tree/main/Tareas/%5BTarea%2004%5D%20Ejercicios%20Unidad%2002-A%20-%20Bisecci%C3%B3n

CONJUNTO DE EJERCICIOS

1. Use el método de la bisección para encontrar soluciones precisas dentro de 10^{-2} para $x^3 - 7x^2 + 14x - 6 = 0$ en cada intervalo.

a. [0, 1]

Raíz encontrada: p = 0.59, iteración 7

b. [1, 3.2]

Raíz encontrada: p = 3.00, iteración 8

c. [3.2, 4]

Raíz encontrada: p = 3.42, iteración 7

2. a. Dibuje las gráficas para y = x y $y = \sin x$.

b. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-5} para el primer valor primitivo de x con $x = 2 \sin x$.

Raíz encontrada: p = 0.59, iteración 19 La solución aproximada en el intervalo (0, 3.141592653589793) es $x \approx 0.58578$

3. a. Dibuje las gráficas para y = x y $y = \tan x$.

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

b. Use el método de bisección para encontrar una aproximación dentro de ${f 10}^{-5}$ para el primer valor positivo de x con x = tan x.

Raíz encontrada: p = 0.59, iteración 18 La solución aproximada en el intervalo (0, 1.4707963267948965) es $x \approx 0.58579$

4. a. Dibuje las gráficas para $y = x^2 - 1$ y $y = e^{1-x^2}$.

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

b. Use el método de bisección para encontrar una aproximación dentro de 10^{-3} para un valor en [-2, 0] con $x^2 - 1 = e^{1-x^2}$.

Raíz encontrada: p = -0.00, iteración 11 La solución aproximada en el intervalo (-2, 0) es $x \approx -0.001$

- 5. Sea $f(x) = (x+3)(x+1)^2x(x-1)^3(x-3)$. ¿En qué cero f converge el método de bisección cuando se aplica en los siguientes intervalos?
 - a. [-1.5, 2.5]

Raíz encontrada: p = 0.00, iteración 3 Raíz en el intervalo (-1.5, 2.5): 0.00000

b. [-0.5, 2.4]

Raíz encontrada: p = 0.00, iteración 12 Raíz en el intervalo (-0.5, 2.4): 0.00056

c. [-0.5, 3]

Raíz encontrada: p = 3.00, iteración 12 Raíz en el intervalo (-0.5, 3): 2.99915

d. [-3, -0.5]

Raíz encontrada: p = -3.00, iteración 12 Raíz en el intervalo (-3, -0.5): -2.99939

EJERCICIOS APLICADOS

1. Un abrevadero de longitud L tiene una sección transversal en forma de semicírculo con radio r. (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia h a partir de la parte superior, el volumen V de agua es

$$V = L \left[0.5\pi r^2 - r^2 arcsen \left(\frac{h}{r}\right) - h(r^2 - h^2)^{\frac{1}{2}} \right]$$

Suponga que L=10 cm, r=1cm y $V=12.4cm^3$. Encuentre la profundidad del agua en el abrevadero dentro de 0.01 cm.

Respuesta: La profundidad aproximada del agua es $h \approx 0.16$ cm

2. Un objeto que se cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa m cae desde una altura s_o y que la altura del objeto después de t segundos es

$$s(t) = s_o - \frac{mg}{k}t + \frac{m^2g}{k^2}\left(1 - e^{\frac{-kt}{m}}\right),$$

Donde $g = 9.81 \, m/s^2 \, y \, k$ representa el coeficiente de la resistencia del aire en Ns/m. Suponga $s_o = 300 \, m$, $m = 0.25 \, kg \, y \, k = 0.1 \, Ns/m$. Encuentre, dentro de $0.01 \, segundos$, el tiempo que tarda un cuarto de kg en golpear el piso.

Respuesta: El tiempo aproximado de caída es $t \approx 14.73$ segundos

EJERCICIOS TEORICOS

1. Use el teorema 2.1 para encontrar una cota para el numero de iteraciones necesarias para lograr una aproximación con precisión de 10^{-4} para la solución de $x^3 - x - 1 = 0$ que se encuentra dentro del intervalo [1, 2]. Encuentre una aproximación para la raíz con este grado de precisión.

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE CIENCIAS DE LA COMPUTACIÓN

2. La función definida por $f(x) = \sin \pi x$ tiene ceros en cada entero. Muestre cuando -1 < a < 0 y 2 < b < 3, el método de bisección converge a

a.
$$0, \sin a + b < 2$$

Raíz encontrada: p = 0.00, iteración 15 Raíz en el intervalo (-0.9, 2.1): 0.00005

b.
$$2, \sin a + b > 2$$

Raíz encontrada: p = 2.00, iteración 16 Raíz en el intervalo (-0.5, 2.9): 2.00004

c.
$$1, \sin a + b = 2$$

Raíz encontrada: p = -0.00, iteración 15 Raíz en el intervalo (-0.5, 2.5): -0.00003