Annual Sales Report Analysis By Seghosime Joshua

```
In [31]: # import the libraries
         import pandas as pd
         import numpy as np
         import os
         import seaborn as sns
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings("ignore")
 In [4]: # load directly from folder dir
         path = r"C:\Users\user\Downloads\Lasop ebooks\excel data analysis\datasets\Sales Da
         # loop through the folder merge data
         files = [file for file in os.listdir(path)]
         # print the files in path
         files
 Out[4]: ['Sales_April_2019.csv',
           'Sales_August_2019.csv',
           'Sales_December_2019.csv',
           'Sales_February_2019.csv',
           'Sales_January_2019.csv',
           'Sales_July_2019.csv',
           'Sales_June_2019.csv',
           'Sales_March_2019.csv',
           'Sales_May_2019.csv',
           'Sales_November_2019.csv',
           'Sales_October_2019.csv',
           'Sales_September_2019.csv']
 In [5]: # concatenate all dataset into one dataframe
         df = pd.DataFrame()
         for file in files[1:]:
          data = pd.read_csv(path + '/' + file)
          df = pd.concat([df, data])
         # check
         df.shape
 Out[5]: (168467, 6)
 In [6]: # view all dataframes
         df.head()
```

Out[6]:	Order ID		Product	Quantity Price Ordered Each		Order Date	Purchase Address	
	0	236670	Wired Headphones	2	11.99	08/31/19 22:21	359 Spruce St, Seattle, WA 98101	
	1	236671	Bose SoundSport Headphones	1	99.99	08/15/19 15:11	492 Ridge St, Dallas, TX 75001	
	2	236672	iPhone	1	700.0	08/06/19 14:40	149 7th St, Portland, OR 97035	
	3	236673	AA Batteries (4- pack)	2	3.84	08/29/19 20:59	631 2nd St, Los Angeles, CA 90001	
	4	236674	AA Batteries (4- pack)	2	3.84	08/15/19 19:53	736 14th St, New York City, NY 10001	

Data Cleaning

```
In [7]: # general data info
         df.info()
       <class 'pandas.core.frame.DataFrame'>
       Index: 168467 entries, 0 to 11685
       Data columns (total 6 columns):
            Column
                              Non-Null Count
                                               Dtype
            -----
                              -----
            Order ID
                              167981 non-null object
            Product
                              167981 non-null object
            Quantity Ordered 167981 non-null object
            Price Each
                              167981 non-null object
            Order Date
                              167981 non-null object
            Purchase Address 167981 non-null object
       dtypes: object(6)
       memory usage: 9.0+ MB
In [8]: # check for misimg values
         df.isnull().sum()
Out[8]: Order ID
                             486
         Product
                             486
         Quantity Ordered
                             486
         Price Each
                             486
         Order Date
                             486
         Purchase Address
                             486
         dtype: int64
In [9]: # drop all NaN or missing values
         df.dropna(how = "all", inplace=True)
In [11]: # check for duplicates
         df.duplicated().sum()
```

```
Out[11]: 561
```

In [13]: # drop duplicates immediately
 df.drop_duplicates(inplace=True)

In [16]: # num of rows and cols
 df.shape

Out[16]: (167420, 6)

Sales By Month

In [19]: # create a new column and extract month from Order Date
 df['month'] = df['Order Date'].apply(lambda date : date.split('/')[0])
Check the updatated dataframe
 df.head()

Out[19]:	[19]: Order ID		Product	Quantity Ordered	Price Each	Order Date	Purchase Address	month
	0	236670	Wired Headphones	2	11.99	08/31/19 22:21	359 Spruce St, Seattle, WA 98101	08
	1	236671	Bose SoundSport Headphones	1	99.99	08/15/19 15:11	492 Ridge St, Dallas, TX 75001	08
	2	236672	iPhone	1	700.0	08/06/19 14:40	149 7th St, Portland, OR 97035	08
	3	236673	AA Batteries (4- pack)	2	3.84	08/29/19 20:59	631 2nd St, Los Angeles, CA 90001	08
	4	236674	AA Batteries (4- pack)	2	3.84	08/15/19 19:53	736 14th St, New York City, NY 10001	08

In [21]: #check unique values of month feature
 df['month'].unique().tolist()

```
Out[21]: ['08',
           'Order Date',
           '09',
           '12',
           '01',
           '02',
           '03',
           '07',
           '06',
           '04',
           '05',
           '11',
           '10']
 In [ ]: # Applying filter to remove invalid entry
         filter = df['month']=='Order Date'
         df = df[~filter]
In [25]: # Convert to month feature to integer
         df['month'] = df['month'].astype('int')
         df['month'].dtype
Out[25]: dtype('int32')
In [24]: # converting 'Quantity Ordered' feature to int
         df['Quantity Ordered']=df['Quantity Ordered'].astype('int')
         df['Quantity Ordered'].dtype
Out[24]: dtype('int32')
In [26]: # converting 'Price Each' feature to float
         df['Price Each']=df['Price Each'].astype('float')
         df['Price Each'].dtype
Out[26]: dtype('float64')
In [27]: # Add a new col to dataframe
         df['Total Sales'] = df['Quantity Ordered'] * df['Price Each'].round(2)
         df.head()
```

Out[27]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	month	Total Sales
	0	236670	Wired Headphones	2	11.99	08/31/19 22:21	359 Spruce St, Seattle, WA 98101	8	23.98
	1	236671	Bose SoundSport Headphones	1	99.99	08/15/19 15:11	492 Ridge St, Dallas, TX 75001	8	99.99
	2	236672	iPhone	1	700.00	08/06/19 14:40	149 7th St, Portland, OR 97035	8	700.00
	3	236673	AA Batteries (4-pack)	2	3.84	08/29/19 20:59	631 2nd St, Los Angeles, CA 90001	8	7.68
	4	236674	AA Batteries (4-pack)	2	3.84	08/15/19 19:53	736 14th St, New York City, NY 10001	8	7.68

Sales By Month Chart

```
In [29]: #Group by data on month feature
         dat =df.groupby('month')['Total Sales'].sum().sort_values(ascending=False)
         dat
Out[29]: month
          12
                4608295.70
          10
                3734777.86
          11
                3197875.05
          5
                3140056.94
          3
                2804973.35
          7
                2646461.32
          6
                2576280.15
          8
                2241083.37
          2
                2200078.08
          9
                2094465.69
          1
                1821413.16
                   5170.42
          Name: Total Sales, dtype: float64
In [33]: # Creating a bar chart
         plt.figure(figsize=(8,5))
         plt.bar(dat.index, dat, color="skyblue")
         plt.xticks(dat.index)
         plt.xlabel('month')
         plt.ylabel('sales in USD')
         # Conclusion: - December month has the best sales
```


Sales By City

```
In [34]: # Extract city form the purchase address
df['City'] = df['Purchase Address'].apply(lambda city : city.split(',')[-2])
df.head()
```

Out[34]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	month	Total Sales	City
	0	236670	Wired Headphones	2	11.99	08/31/19 22:21	359 Spruce St, Seattle, WA 98101	8	23.98	Seattle
	1	236671	Bose SoundSport Headphones	1	99.99	08/15/19 15:11	492 Ridge St, Dallas, TX 75001	8	99.99	Dallas
	2	236672	iPhone	1	700.00	08/06/19 14:40	149 7th St, Portland, OR 97035	8	700.00	Portland
	3	236673	AA Batteries (4-pack)	2	3.84	08/29/19 20:59	631 2nd St, Los Angeles, CA 90001	8	7.68	Los Angeles
	4	236674	AA Batteries (4-pack)	2	3.84	08/15/19 19:53	736 14th St, New York City, NY 10001	8	7.68	New York City
In []:	<pre># Count and plot by city df.groupby('City')['City'].count().plot.bar() # Conclusion:- San Francisco has maximum orders</pre>									

Out[]: <Axes: xlabel='City'>

In []: