FINANCIAL ECONOMETRICS- R_LAB

NGUYEN NGOC PHUNG

5/6/2021

Contents

REGRESSION MODEL AND TESTINGS	1
UKHP DATASET	2
SANDPHEDGE DATASET	3
MACRO DATASET	8
ARIMA MODELS	10
IMPORT LIBRARIES	10
IMPORT AND VIEW THE DATASET	11
EXTRACT THE HOUSE PRICE TIME SERIES AND ESTIMATE THE SIMPLE RETURNS	11
PLOTTING OF HP AND DHP	11
DESCRIPTIVE STATISTICS OF RETURNS	11
ACF AND PACF PLOTS OF HOUSE PRICE (HP)	12
ACF AND PACF PLOTS OF SIMPLE RETURNS (DHP)	13
AUGMENTED DICKEY-FULLER TEST	14
FIND THE COEFFICIENT MATRIX OF ARIMA MODEL BY coeftest() FUNCTION	14
FIND AIC (INFORMATION CRITERIA) OF ARIMA(1,0,2) AND ARIMA(1,0,1)	15
FORECASTING IN TIME SERIES	15
FINDING THE BEST ARIMA MODEL ACCORDING TO AIC, BIC VALUE	16
LJUNG-BOX TEST TO CHECK IF THE RESIDUALS SERIES IS WHITE NOISE PROCESS $$.	17

REGRESSION MODEL AND TESTINGS

IMPORT THE LIBRARIES

library(psych)
library(readxl)
library(car)
library(tseries)

```
library(lmtest)
library(MASS)
library(foreign)
library(sandwich)
```

UKHP DATASET

UKHP DATASET AND RETURNS

```
HP <- read_excel("UKHP.xls")

Z<-ts(HP$`Average House Price`)

DHP<-100*diff(Z)/lag(Z,-1)

DHP[1:20]

## [1] 0.8389504256 -1.1289220193  1.4833261822  1.3195330084  1.3269075933

## [6] -1.0275463501 -0.9174932632 -1.4456792164  0.3889743215 -0.8390243074

## [11] 0.1623230805 -2.1709901200 -0.1944398560  0.2456052867  0.0005801514

## [16] 1.4136151132  0.3660040378 -0.3377067136 -0.7873699395 -2.3221311513
```

HISTOGRAM OF RETURNS TIME SERIES (DHP)

```
hist(DHP, breaks = 70, col='deeppink3', main='HISTOGRAM OF SIMPLE RETURN (DHP)')
```

HISTOGRAM OF SIMPLE RETURN (DHP)

DESCRITIVE STATISTICS OF RETURNS (DHP)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.4047 -0.2557 0.4483 0.4315 1.1522 3.8022

describe(DHP)

## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 326 0.43 1.12 0.45 0.44 1.04 -3.4 3.8 7.21 -0.08 0.59 0.06
```

PLOTTING OF HOUSE PRICE AND RETURNS TIME SERIES

```
layout(matrix(c(1,2,1,2),2,2))
plot(Z,type='l',col='darkred')
plot(DHP,type='l',col='darkblue')
```


SANDPHEDGE DATASET

SANDPHEDGE DATASET AND RETURNS

```
# The dataset include the spot and future price @-@
SandPhedge <- read_excel('SandPhedge.xls')

spot<-SandPhedge$Spot ; future<- SandPhedge$Futures

spot<-ts(spot) ; future<-ts(future)

# Plotting of spot and future price 8-*
layout(matrix(c(1,2,1,2),2,2))
plot(spot,type='l',col='darkred')
plot(future,type='l',col='darkblue')</pre>
```



```
# Now, we calculate the log-returns of both spot and future prices @-@
rspot <- 100*diff(log(spot))
rfuture <- 100*diff(log(future))

# Histogram of both returns time series
layout(matrix(c(1,1,2,2),2,2))
hist(rspot,breaks=30, col='deeppink3',main='RETURNS OF SPOT PRICE')
hist(rfuture,breaks=30, col='darkgreen',main='RETURNS OF FUTURE PRICE')</pre>
```

RETURNS OF SPOT PRICE

RETURNS OF FUTURE PRICE

SIMPLE REGRESSION MODEL

We concern about whether the return of future price explain the changes of return in spot price or no

ReturnReg<-lm(rspot~rfuture)
summary(ReturnReg)</pre>

```
##
## Call:
## lm(formula = rspot ~ rfuture)
##
## Residuals:
##
       Min
                      Median
                  1Q
                                    3Q
                                            Max
## -2.45284 -0.16401 0.00236 0.23692 2.33789
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.013077
                          0.029473
                                     0.444
                                              0.658
              0.975077
                          0.006654 146.543
## rfuture
                                            <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.4602 on 244 degrees of freedom
## Multiple R-squared: 0.9888, Adjusted R-squared: 0.9887
## F-statistic: 2.147e+04 on 1 and 244 DF, p-value: < 2.2e-16
```

```
# Plotting of regression model @-@
plot(rspot, rfuture,col='green')
abline(ReturnReg,col='darkred',lwd=1.5)
```


GOODNESS-OF-FIT STATISTIC - DEVIANCE AND LOG-LIKELIHOOD

in order to assess how good our model fit the actual values, we calculate the deviance (SSR) deviance (ReturnReg)

[1] 51.68444

logLik(ReturnReg) # return the logLik objects s.a the degree of freedom

'log Lik.' -157.1574 (df=3)

BREUSCH-PAGAN TEST

bptest(ReturnReg)

```
##
## studentized Breusch-Pagan test
##
## data: ReturnReg
## BP = 0.070052, df = 1, p-value = 0.7913
```

BREUSCH-GODFREY TEST

bgtest(ReturnReg)

```
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: ReturnReg
## LM test = 59.696, df = 1, p-value = 1.107e-14
DURBIN-WATSON TEST FOR AUTO-CORRELATED ERRORS
dwtest(ReturnReg)
##
## Durbin-Watson test
## data: ReturnReg
## DW = 2.9694, p-value = 1
## alternative hypothesis: true autocorrelation is greater than 0
durbinWatsonTest(ReturnReg, max.lag=2)
## lag Autocorrelation D-W Statistic p-value
##
   1 -0.4860789 2.969363 0.000
   2
           -0.2293546
                          2.431056 0.002
## Alternative hypothesis: rho[lag] != 0
NON-CONSTANT VARIANCE SCORE TEST
ncvTest(ReturnReg)
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.3534588, Df = 1, p = 0.55216
AUGMENTED DICKEY-FULLER TEST FOR RETURNS (SPOT & FUTURE) AND
PRICE (SPOT & FUTURE)
# returns
adf.test(na.omit(rspot))
##
## Augmented Dickey-Fuller Test
## data: na.omit(rspot)
## Dickey-Fuller = -5.6811, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
```

```
adf.test(na.omit(rfuture))
##
##
   Augmented Dickey-Fuller Test
## data: na.omit(rfuture)
## Dickey-Fuller = -5.7291, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
# prices
adf.test(spot)
##
##
   Augmented Dickey-Fuller Test
## data: spot
## Dickey-Fuller = -0.88531, Lag order = 6, p-value = 0.953
## alternative hypothesis: stationary
adf.test(future)
##
##
   Augmented Dickey-Fuller Test
##
## data: future
## Dickey-Fuller = -0.9341, Lag order = 6, p-value = 0.9476
## alternative hypothesis: stationary
```

MACRO DATASET

MACRO DATASET AND RETURNS

```
macro <- read_excel('macro.xls')

spread<-ts(macro$BMINUSA)
  credit<-ts(macro$CCREDIT)
  prod<-ts(macro$INDPRO)
  msoft<-ts(macro$MICROSOFT)
  sandp<-ts(macro$SANDP)
  money<-ts(macro$M1SUPPLY)
  cpi<-ts(macro$CPI)

dspread<-diff(spread)
  dcredit<-diff(credit)
  dprod<-diff(prod)
  dmoney<-diff(money)

rmsoft<-100*diff(log(msoft))
  rsandp<-100*diff(log(sandp))</pre>
```

```
term<-ts(macro$USTB10Y)-ts(macro$USTB3M)
inflation<-100*diff(log(cpi))
dinflation<-diff(inflation)
mustb3m<-ts(macro$USTB3M)/12
rterm<-diff(term)
ermsoft<-rmsoft - mustb3m
ersandp<-rsandp - mustb3m</pre>
```

MULTIPLE REGRESSION MODEL

(Intercept)

```
msoftreg <- lm(ermsoft[2:325] ~ersandp[2:325] + dprod[2:325] + dcredit[2:325] +
              dinflation[2:325] + dmoney[2:325] + dspread[2:325] + rterm[2:325])
summary(msoftreg)
##
## Call:
## lm(formula = ermsoft[2:325] ~ ersandp[2:325] + dprod[2:325] +
##
      dcredit[2:325] + dinflation[2:325] + dmoney[2:325] + dspread[2:325] +
##
      rterm[2:325])
##
## Residuals:
##
     Min
             1Q Median
                         3Q
                                Max
## -36.924 -4.671 -0.384 4.574 24.382
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                 ## (Intercept)
## ersandp[2:325]
                 ## dprod[2:325]
                 -0.91455 0.82171 -1.113 0.26656
## dcredit[2:325] -0.01683 0.03488 -0.482 0.62986
## dmoney[2:325] -0.01194 0.02317 -0.516 0.60652
## dspread[2:325]
                 0.72326
                           4.38207 0.165 0.86901
## rterm[2:325]
                  4.75868
                           1.86769 2.548 0.01131 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 8.202 on 316 degrees of freedom
## Multiple R-squared: 0.3608, Adjusted R-squared: 0.3466
## F-statistic: 25.48 on 7 and 316 DF, p-value: < 2.2e-16
```

NEWEY-WEST TEST FOR HETEROSCEDASTICITY AND AUTOCORRELATION

```
# Simply stated, this function return teh HAC Covariance matric Estimation
NeweyWest(msoftreg)
##

(Intercept) ersandp[2:325] dprod[2:325] dcredit[2:325]
```

0.305520096 5.178095e-03 -0.0158598406 -9.926349e-03

```
## ersandp[2:325]
                      0.005178095
                                    1.110974e-02 -0.0150081345
                                                                 -5.396904e-04
## dprod[2:325]
                     -0.015859841 -1.500813e-02 0.2711811688
                                                                 -2.192278e-04
## dcredit[2:325]
                     -0.009926349 -5.396904e-04 -0.0002192278
                                                                  7.688322e-04
## dinflation[2:325] -0.072675457
                                   -6.173293e-02 0.1534943327
                                                                  8.265343e-03
  dmoney[2:325]
                     -0.001846171
                                    2.103895e-05
                                                   0.0019349167
                                                                  2.355234e-06
## dspread[2:325]
                                    4.140168e-03 0.0055105657
                                                                 -1.437012e-02
                      0.317658305
## rterm[2:325]
                      0.120233907
                                    5.964648e-02 -0.1669457032 -1.309566e-02
##
                     dinflation[2:325] dmoney[2:325] dspread[2:325] rterm[2:325]
## (Intercept)
                          -0.072675457 -1.846171e-03
                                                         0.317658305
                                                                       0.12023391
## ersandp[2:325]
                          -0.061732930
                                        2.103895e-05
                                                         0.004140168
                                                                       0.05964648
## dprod[2:325]
                           0.153494333
                                        1.934917e-03
                                                         0.005510566
                                                                      -0.16694570
## dcredit[2:325]
                                                        -0.014370121
                                                                      -0.01309566
                           0.008265343
                                        2.355234e-06
## dinflation[2:325]
                           1.801701889 -2.244382e-03
                                                         0.116674663
                                                                      -0.90465206
## dmoney[2:325]
                                                                      -0.01021057
                          -0.002244382 3.158284e-04
                                                        -0.026330103
## dspread[2:325]
                           0.116674663 -2.633010e-02
                                                         7.288247914
                                                                       0.83785431
## rterm[2:325]
                          -0.904652057 -1.021057e-02
                                                         0.837854309
                                                                       3.03324948
bwNeweyWest(msoftreg)
```

[1] 7.695043

```
NeweyWest(msoftreg, lag = 4, prewhite = FALSE)
```

```
(Intercept) ersandp[2:325] dprod[2:325] dcredit[2:325]
##
## (Intercept)
                      0.293262795
                                    7.658101e-03 -0.039611730
                                                                -8.789173e-03
                                    1.142868e-02 -0.012309860
## ersandp[2:325]
                      0.007658101
                                                               -6.050553e-04
## dprod[2:325]
                     -0.039611730
                                   -1.230986e-02 0.325312764
                                                                -1.624426e-03
## dcredit[2:325]
                     -0.008789173
                                   -6.050553e-04 -0.001624426
                                                                 7.790433e-04
## dinflation[2:325] -0.028438008
                                   -5.576858e-02 0.164841144
                                                                 3.318870e-03
## dmoney[2:325]
                     -0.001499844
                                   -5.774214e-05
                                                  0.002728501
                                                                -2.556316e-05
## dspread[2:325]
                      0.241051820
                                    5.773703e-02 0.019427240
                                                               -1.446388e-02
## rterm[2:325]
                      0.101233416
                                    4.471238e-02 -0.195826416 -1.046251e-02
##
                     dinflation[2:325] dmoney[2:325] dspread[2:325] rterm[2:325]
## (Intercept)
                          -0.028438008 -1.499844e-03
                                                         0.24105182 0.101233416
                          -0.055768584 -5.774214e-05
## ersandp[2:325]
                                                         0.05773703 0.044712382
## dprod[2:325]
                           0.164841144 2.728501e-03
                                                         0.01942724 -0.195826416
                                                         -0.01446388 -0.010462512
## dcredit[2:325]
                           0.003318870 -2.556316e-05
## dinflation[2:325]
                           1.886506252 -1.597368e-03
                                                         -0.12534855 -0.379002137
## dmoney[2:325]
                          -0.001597368 3.224004e-04
                                                        -0.02163564 -0.009477304
## dspread[2:325]
                          -0.125348548 -2.163564e-02
                                                         7.39953192 0.706771660
                                                         0.70677166 2.946691601
## rterm[2:325]
                          -0.379002137 -9.477304e-03
```

ARIMA MODELS

IMPORT LIBRARIES

```
library(psych)
library(lmtest)
library(forecast)
library(readxl)
library(tseries)
```

IMPORT AND VIEW THE DATASET

```
HP <- read_excel("UKHP.xls")</pre>
```

EXTRACT THE HOUSE PRICE TIME SERIES AND ESTIMATE THE SIMPLE RETURNS

```
Z<-HP$`Average House Price`
Z<-ts(HP$`Average House Price`)
DHP<-100*diff(Z)/lag(Z,-1)
```

PLOTTING OF HP AND DHP

```
layout(matrix(c(1,2,1,2),2,2))
plot(HP,type='l',col='darkred')
plot(DHP,type='l',col='darkblue')
```


DESCRIPTIVE STATISTICS OF RETURNS

summary(DHP)

Min. 1st Qu. Median Mean 3rd Qu. Max. ## -3.4047 -0.2557 0.4483 0.4315 1.1522 3.8022

ACF AND PACF PLOTS OF HOUSE PRICE (HP)

acf(HP, lag=24)

Month

Month & Average House Price

Average House Price & Month

Average House Price

pacf(HP,lag=24)

Month & Average House Price

Average House Price

ACF AND PACF PLOTS OF SIMPLE RETURNS (DHP)

```
layout(matrix(c(1,1,2,2),2,2))
acf(DHP,lag=20)
pacf(DHP,lag=20)
```


AUGMENTED DICKEY-FULLER TEST

```
\# In order to test whether the DHP time series is stationary or not(unit root), we perform the ADF test adf.test(DHP)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: DHP
## Dickey-Fuller = -5.1732, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
```

FIND THE COEFFICIENT MATRIX OF ARIMA MODEL BY coeftest() FUNCTION $\,$

```
# Setting the order: ARIMA(0,1,2), we can estimate the coefficient matrix (including estimates, SEs, te arima11<-arima(DHP,order=c(0,1,2)) coeftest(arima11)
```

```
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ma1 -0.758418  0.052550 -14.432  <2e-16 ***</pre>
```

```
## ma2 -0.067894  0.057246 -1.186  0.2356
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
```

FIND AIC (INFORMATION CRITERIA) OF ARIMA(1,0,2) AND ARIMA(1,0,1)

```
# ARIMA(1,0,2)
arima11<-arima(DHP,order=c(1,0,2))
AIC(arima11)

## [1] 925.6487

# ARIMA(1,0,1)
arima11<-arima(DHP,order=c(1,0,1))
AIC(arima11)

## [1] 933.4199</pre>
```

FORECASTING IN TIME SERIES

```
# forecasting for ARIMA(1,0,1) over 2 periods (h=2)
fcast <- forecast(arima11, h=2)</pre>
summary(fcast)
##
## Forecast method: ARIMA(1,0,1) with non-zero mean
## Model Information:
## Call:
## arima(x = DHP, order = c(1, 0, 1))
##
## Coefficients:
##
            ar1
                     ma1 intercept
        0.8224 -0.5417
                             0.4286
##
## s.e. 0.0596 0.0877
                             0.1414
## sigma^2 estimated as 0.9999: log likelihood = -462.71, aic = 933.42
##
## Error measures:
##
                                  RMSE
                                              MAE
                                                       MPE
                                                              MAPE
                                                                        MASE
                          ME
## Training set 5.715104e-06 0.9999633 0.7567761 86.34112 206.557 0.8067148
##
                       ACF1
## Training set -0.05935702
##
## Forecasts:
##
       Point Forecast
                          Lo 80
                                   Hi 80
                                             Lo 95
                                                       Hi 95
## 328
           0.2706600 -1.010844 1.552164 -1.689232 2.230552
            0.2987119 -1.032304 1.629727 -1.736901 2.334324
## 329
```

Plotting
plot(fcast)

Forecasts from ARIMA(1,0,1) with non-zero mean

FINDING THE BEST ARIMA MODEL ACCORDING TO AIC, BIC VALUE

```
# Instead of finding the best ARIMA model for time series, we can use the auto.arima() function to find
auto.arima(DHP, max.order = 5) #example with max order =5
## Series: DHP
## ARIMA(2,0,0) with non-zero mean
##
## Coefficients:
##
            ar1
                    ar2
                           mean
         0.2361 0.3340 0.4275
## s.e. 0.0521 0.0523 0.1259
## sigma^2 estimated as 0.9756: log likelihood=-457.23
## AIC=922.46
                AICc=922.58
                              BIC=937.61
# we find optimal ARIMA model for returns (DHP) using max arima order =10
fit<-auto.arima(DHP, max.order = 10)</pre>
# forecasting of 'fit' over 20 periods (extra)
plot(forecast(fit, h=20), col='darkmagenta')
```

Forecasts from ARIMA(2,0,0) with non-zero mean

LJUNG-BOX TEST TO CHECK IF THE RESIDUALS SERIES IS WHITE NOISE PROCESS

checkresiduals(fit)

Residuals from ARIMA(2,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(2,0,0) with non-zero mean
## Q* = 5.1323, df = 7, p-value = 0.6438
##
## Model df: 3. Total lags used: 10
```