OUELINES

- 1. Research background
- 2. Research objectives
- 3. Related works
- 4. Grasp detection
- 5. Pose estimation
- 6. Conclusion and future work

5.1 Algorithm pipeline

5.2 Network structure

• We use the network of YOLO [10] but redefine the output. YOLO is an end-to-end network used for 2D image detection by making grids on the image.

5.3 Definition of network output (1/3)

TOHOKU

• Make $W \times H$ grids for the image.

Output of *i*-th grid

- The output of i^{th} grid are:
 - $\triangleright \hat{x_i}, \hat{y_i}$: Estimated planar position of object center in grid coordinate.
 - $\triangleright \widehat{z_i}$: Estimated depth of object center in mm.
 - $\triangleright \hat{c_i}$: Estimated confidence of accuracy of 3D location
 - $\triangleright \hat{p}_i^j$: Estimated discrete orientations

-0.00	-0.00	0.00	0.00	-0.00	0.00
0.00	0.00	0.00	0.01	-0.00	0.00
0.00	0.00	0.00	0.09	0.01	0.00
0.01	0.01	-0.00	00,90	0.03	-0.00
0.00	0.01	0.00	0.02	-0.01	0.00
0.00	-0.00	0.00	-0.01	0.01	0.00
0.00	-0.00	-0.00	-0.00	-0.00	-0.00
	0.00 0.00 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 -0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 -0.00 0.00 0.01 0.00 0.00 -0.00 0.00	0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.09 0.01 0.01 -0.00 0.00 0.01 0.00 0.02	0.00 0.00 0.00 0.01 -0.00 0.01 0.01 0.01

Example of grids and their confidence 26

5.3 Definition of network output (2/3)

In training data, there are two types of grids.

Grid i doesn't contain center of any object:

$$> x_i = y_i = z_i = c_i = p_i^j = 0$$

• Grid *i* contains center of an object:

$$ightharpoonup x_i = rac{x_{obj} - x_{grid}}{L}$$
, $y_i = rac{y_{obj} - y_{grid}}{L}$, $z_i = rac{z_i - \min(z)}{\max(z) - \min(z)}$

- o x_{obj} , y_{obj} : Position of object center in image coordinate.
- o x_{grid} , y_{grid} : Position of grid center in image coordinate.
- o z: Depth of object center in mm.
- o *L*: Grid length in image coordinate.

$$ightharpoonup c_i = e^{-\sqrt{(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 + (z_i - \hat{z}_i)^2}}$$

- o \hat{x}_i , \hat{y}_i , \hat{z}_i : Estimated value of x_i , y_i , z_i .
- o c_i : Confidence of i^{th} grid.

Image of *i*th grid

> If the grid contains multi objects, we only compute the one with largest visible area.

(manually defined)

5.3 Definition of network output (3/3)

$> p_i^j$ is discrete orientations.

Sample 3D orientation from different viewpoints (decided by azimuth, elevation and rotation around optical axis), then transfer into one-hot code.

28

5.4 Training process (1/2)

Generate training data by simulation.

Hyper-parameters:

 \triangleright Data size: 448 \times 448 \times 3

➤ Dataset size: 5000

➤ Batch size: 32

> Dropout: 0.5

Regularization: 0.0002 L2

> Optimizers: GDO

➤ Learning rate: 0.001

5.4 Training process (2/2)

Loss function is divided into three terms.

$$L = \lambda_1 \sum_{i=1}^{W \times H} \delta_i^{obj} \{ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 + (z_i - \hat{z}_i)^2 \}$$
Location

$$+\lambda_{2} \underbrace{\sum_{i=1}^{W \times H} \delta_{i}^{obj} (c_{i} - \hat{c}_{i})^{2} + \lambda_{3} \sum_{i=1}^{W \times H} \left(1 - \delta_{i}^{obj}\right) (c_{i} - \hat{c}_{i})^{2}}_{\text{Confidence of accuracy of 3D location}}$$

$$+\lambda_4 \sum_{i=1}^{W \times H} \delta_i^{obj} \sum_{j=1}^{o} (p_i^j - \widehat{p_i^j})^2$$
Orientation

$$\delta_i^{obj} = \begin{cases} 1, & \text{if grid } i \text{ contains object} \\ 0, & \text{if grid } i \text{ doesn't contain} \end{cases}$$

 λ_1 : Weighting factor of location.

 λ_2 : Weighting factor of confidence of grid contains object.

 λ_3 : Weighting factor of confidence of grid doesn't contains object.

 λ_4 : Weighting factor of orientation.

5.5 Post-processing of network output

- Perform coarse estimation by using output of network.
 - 1. Compute the estimation scores s_i for every grid.

Estimation scores of grids threshold = 0.2

2. Use the estimation of grids whose scores are higher than threshold as the estimation result.

5.6 Experiment results

Example of pose estimation results.

Table: Experiment results of three mechanical parts

Object	Location Error	Orientation Error	Computation Time
No.	mm	degree	ms
A	10.2	18.5	59
В	9.3	19.3	61
C	9.8	14.8	59
Average	9.8	17.5	60

32