1

Lengoaiak, Konputazioa eta Sistema Adimendunak

6. gaia: Sistema Adimendunak – 0,9 puntu – Bilboko IITUE 2015/12/15

1 Formula DNF monotonoak (0,300 puntu)

Formula DNF monotonoak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

Formulak 5 aldagai erabiltzen ditu (n = 5) eta erabiltzaileak hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, F, T, T, T)$
- $v_2 = (T, T, F, T, T)$
- $v_3 = (F, T, T, F, F)$

Gainera, erabiltzaileak hurrengo egia-taulak erabiltzen ditu balorazio batek formula True egiten al duen erabakitzeko:

$\neg x_5$	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	F	F	F	T
$\neg x_3 \wedge x_4$	F	T	F	T
$x_3 \land \neg x_4$	F	T	F	T
$x_3 \wedge x_4$	T	T	T	T
x_5	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\frac{x_5}{\neg x_3 \land \neg x_4}$	$ \begin{array}{c c} \neg x_1 \land \neg x_2 \\ \hline F \end{array} $	$\frac{\neg x_1 \land x_2}{F}$	$\frac{x_1 \land \neg x_2}{F}$	$\frac{x_1 \wedge x_2}{F}$
$\neg x_3 \wedge \neg x_4$	F	\overline{F}	F	\overline{F}

2 k-DNF formulak (0,300 puntu)

k-DNF formulak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

Erabiltzaileak 2-DNF formula bat (k = 2) asmatzen du 3 aldagai erabiliz (n = 3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (F, F, T)$
- $v_2 = (T, T, T)$
- $v_3 = (F, T, F)$
- $v_4 = (T, F, T)$
- $v_5 = (F, F, F)$

3 *k*-CNF formulak (0,300 puntu)

k-CNF formulak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

Erabiltzaileak 1-CNF formula bat (k = 1) asmatzen du 6 aldagai erabiliz (n = 6), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (F, T, F, F, T, F)$
- $v_1 = (F, T, F, F, T, T)$
- $v_3 = (F, F, T, F, T, F)$
- $v_4 = (T, F, T, F, F, T)$