Dijkstra's and Kruskal's Algorithms

Ali Akbari

June 2025

Dijkstra's Algorithm Example

- ▶ **Problem**: Shortest path from A to D: $A \rightarrow B$ (4), $A \rightarrow C$ (2), $B \rightarrow D$ (5), $C \rightarrow D$ (8).
- Update distances based on shortest known paths.
- Step-by-Step:
 - 1. Start: A:0, B: ∞ , C: ∞ , D: ∞ .
 - 2. Visit A: B:4, C:2.
 - 3. Visit C: D:10 (via C).
 - 4. Visit B: D:9 (via B).
 - 5. Path: $A \rightarrow B \rightarrow D$ (cost 9).

Dijkstra's Algorithm

- Finds shortest path in weighted graph using priority queue.
- Always explores node with smallest known distance.
- ▶ Time Complexity: $O((V + E) \log V)$.
- **Space Complexity**: O(V).

Kruskal's Algorithm Example

- Problem: Minimum road length for cities: A-B (4), A-C (2), B-D (5), C-D (8), B-C (3).
- Select smallest edges, avoid cycles.
- Step-by-Step:
 - 1. Sort: A-C (2), B-C (3), A-B (4), A-B (4), C-D (8).
 - 2. Take A-C (2), B-C (3), B-D (5).
 - 3. Skip A-B (cycle).
 - 4. MST: A-C, B-C, B-D (total 10).

Kruskal's Algorithm

- Builds minimum spanning tree by selecting smallest edges.
- Uses union-find to avoid cycles.
- ▶ Time Complexity: $O(E \log E)$ (sorting edges).
- **Space Complexity**: O(V).