Instituto Superior de Engenharia do Porto Curso Preparatório 2006/2007

Prova de avaliação de Introdução à Informática

(Módulo de algoritmia)

Março de 2007 Duração 1h30m

Nome:			
Número:			

1) Desenvolva a função *calculaNumLatas*(*área inteiro*) que permite determinar o número de latas de tinta (inteiras) que são necessárias para pintar uma dada superfície (*área*). Sabe-se que cada lata de tinta permite pintar uma superfície 4m².

RESOLUÇÃO

```
FUNCAO calculaNumLatas(area inteiro)
ED: n
INICIO
n←area DIV 4
SE area % 4 ≠ 0ENTAO
n←n+1
FSE
calculaNumLatas ←n
FIM
```

2) Um número *n* é perfeito se a soma dos divisores inteiros de *n* (excepto o próprio n) é igual ao valor de *n*. Por exemplo, o número 28 tem os seguintes divisores: 1, 2, 4, 7, 14, cuja soma é exactamente 28. (Os seguintes números são perfeitos: 6, 28, 496, 8128.). Escreva um algoritmo que verifique se um número é perfeito.

RESOLUÇÃO

```
ED: n, i, soma
                              INTEIRO
INICIO
      soma ←0
      LER (n)
     REPETIR PARA i=1 ATÉ (n DIV 2), PASSO 1
           SE n% i =0 ENTAO
                  soma←soma+i
            FSE
      FPARA
      SE soma=n ENTAO
            ESCREVER(n "é perfeito")
      SENAO
            ESCREVER(n "não é perfeito")
      FSE
FIM
```

Número:	
Tullicio.	

3) Apresente a traçagem do seguinte algoritmo, assumindo que na linha 1 o utilizador atribui 343 à variável n.

```
ED: n, n1,a, aux INTEIRO
      INICIO
1
            LER(n)
2
            n1\leftarrow n
3
             aux\leftarrow 0
4
            REPETIR ENQUANTO n>0
5
                   a←n%10
                   aux←aux*10+a
6
7
                   n←n DIV 10
            FENQUANTO
8
             SE aux=n1 ENTAO
                   ESCREVER (n1 "é capicua")
             SENAO
                   ESCREVER (n1 "não é capicua")
10
            FSE
      FIM
```

RESOLUÇÃO

	n	n1	a	aux	n>0	aux=n1	Saida
1	343						
2	343	343					
3	343	343		0			
4	343	343		0	V		
5	343	343	3	0			
6	343	343	3	3			
7	34	343	3	3			
4	34	343	3	3	V		
5	34	343	4	3			
6	34	343	4	34			
7	3	343	4	34			
4	3	343	4	34	V		
5	3	343	3	34			
6	3	343	3	343			
7	0	343	3	343			
4	0	343	3	343	F		
8	0	343	3	343		V	
9	0	343	3	343			343 é capicua

4) Complete o seguinte algoritmo de forma a determinar quantos elementos são iguais à média. Assuma que a função *mediaVector(v (100) inteiro, n inteiro)* já esta implementada. Defina as variáveis que entender necessário.

```
ED: vec(100), nelem, i,conta,
                                                  INTEIRO
media
                                                        REAL
INICIO
      ESCREVER ("Digite quantos elementos quer inserir")
      LER(nelem)
      REPETIR ENQUANTO nelem<0 OU nelem>100
            ESCREVER ("O número de elementos inválido!!!")
            ESCREVER ("Digite um numero do intervalo ]0,100]")
            LER(nelem)
      FENQUANTO
      REPETIR PARA i=0 ATÉ nelem-1, PASSO 1
            LER(vec(i))
      FPARA
      media← mediaVector(vec,nelem)
      REPETIR PARA i=0 ATÉ nelem-1, PASSO 1
            SE vec(i)=media ENTAO
                  conta←conta+1
            FSE
      FPARA
FIM
```