Appendix A: Supplementary material

Table A.1. Giant planets $(0.5\,\mathrm{M_{Jup}} < M_p < 13\,\mathrm{M_{Jup}})$ with well characterized masses $(\sigma_{M_p}/M_p < 25\%)$, radii $(\sigma_{R_p}/R_p < 8\%)$, and stellar metallicity errors <0.25 that have finite period, eccentricity, and T_{eff} values.

#	Planet	Mass [M _{Jup}]	Radius [R _{Jup}]	Period [days]	ecc	[Fe/H]	$T_{ m eff}$	Age [Gyr]	Discovery Reference
1	CoRoT-10 b	2.75±0.16	0.970±0.070	13.24060	0.530±0.040	0.26±0.07	5075	3.0±nan	Bonomo et al. 2010
2	CoRoT-11 b	2.33±0.34	1.430±0.030	2.99433	0.000±nan	-0.03±0.08	6440	2.0±1.0	Gandolfi et al. 2010
3	CoRoT-13 b	1.31±0.07	0.885±0.014	4.03519	0.000±nan	0.01±0.07	5945	1.635±1.515	Cabrera et al. 2010
4 5	CoRoT-14 b CoRoT-17 b	7.60 ± 0.60 2.43 ± 0.30	1.090±0.070 1.020±0.070	1.51214 3.76810	0.000±nan 0.000±nan	0.05 ± 0.15 0.00 ± 0.10	6035 5740	4.2±3.8 10.7±1.0	Tingley et al. 2011 Csizmadia et al. 2011
6	CoRoT-19 b	1.11±0.06	1.020±0.070 1.290±0.030	3.89713	0.047 ± 0.045	-0.02±0.10	6090	5.0±1.0	Guenther et al. 2012
7	CoRoT-27 b	10.39±0.55	1.007±0.044	3.57532	0.047 ± 0.043 $0.065\pm nan$	-0.10 ± 0.10	5900	4.21±2.72	Parviainen et al. 2014
8	CoRoT-30 b	2.90±0.22	1.009±0.076	9.06005	0.007 ± 0.031	0.02±0.10	5650	3.0±3.7	Borde et al. 2020
9	CoRoT-6 b	2.96±0.34	1.166±0.035	8.88659	0.100±nan	-0.20±0.10	6090	nan±nan	Fridlund et al. 2010
10	CoRoT-9 b	0.84 ± 0.05	1.066±0.075	95.27266	0.133 ± 0.042	-0.01 ± 0.06	5625	6.0 ± 3.0	Deeg et al. 2010
11	HAT-P-1 b	0.53 ± 0.02	1.319±0.019	4.46530	0.000 ± 0.000	0.13 ± 0.01	5980	nan±nan	Bakos et al. 2007
12	HAT-P-16 b	4.19±0.09	1.289±0.066	2.77596	0.036 ± 0.004	0.17 ± 0.08	6158	2.0 ± 0.8	Buchhave et al. 2010
13	HAT-P-20 b	7.25±0.19	0.867±0.033	2.87532	0.015±0.005	0.35±0.08	4595	6.7 ± 5.7	Bakos et al. 2010
14	HAT-P-25 b	0.57±0.02	1.135±0.048	3.65282	0.023±0.022	0.29±0.08	5519	nan±nan	Quinn et al. 2010
15	HAT-P-27 b	0.62±0.03	1.020±0.070	3.03958 2.15001	0.000±nan	0.30 ± 0.03	5316	nan±nan	Beky et al. 2011
16 17	HAT-P-32 b HAT-P-35 b	0.68±0.11 1.06±0.03	1.980±0.045 1.332±0.098	3.64671	0.159±0.051 0.020±nan	-0.16±0.08 0.11±0.08	6001 6096	$nan\pm nan$ 3.5 ± 0.8	Hartman et al. 2011 Bakos et al. 2012
18	HAT-P-50 b	1.35±0.07	1.288±0.064	3.12201	0.020±11an 0.115±nan	-0.18±0.08	6280	3.37±1.44	Hartman et al. 2015
19	HAT-P-52 b	0.82±0.03	1.009±0.072	2.75360	0.047±nan	0.28±0.08	5131	9.4±4.1	Hartman et al. 2015
20	HAT-P-53 b	1.48±0.06	1.318±0.091	1.96162	0.134±nan	0.00 ± 0.08	5956	4.67±1.45	Hartman et al. 2015
21	HAT-P-54 b	0.76 ± 0.03	0.944±0.028	3.79985	0.074±nan	-0.13±0.08	4390	3.9 ± 4.3	Bakos et al. 2015
22	HAT-P-55 b	0.58 ± 0.06	1.182±0.055	3.58525	0.139±nan	-0.03 ± 0.08	5808	4.2 ± 1.7	Juncher et al. 2015
23	HAT-P-59 b	1.54 ± 0.07	1.123±0.013	4.14198	0.030±nan	0.22 ± 0.05	5678	7.3 ± 1.0	Bakos et al. 2021
24	HAT-P-60 b	0.57 ± 0.04	1.631±0.024	4.79478	0.250±nan	0.04 ± 0.04	6212	2.765 ± 0.056	Bakos et al. 2021
25	HAT-P-61 b	1.06±0.07	0.899±0.027	1.90231	0.113±nan	0.19±0.06	5587	2.6±2.0	Bakos et al. 2021
26	HAT-P-62 b	0.76±0.09	1.073±0.029	2.64532	0.101±nan	0.41±0.09	5629	8.1±1.1	Bakos et al. 2021
27	HAT-P-63 b	0.61 ± 0.02	1.119±0.033	3.37773 2.60546	0.069±nan	0.25 ± 0.06	5400 5835	9.0±1.7	Bakos et al. 2021
28 29	HAT-P-65 b HAT-P-68 b	0.53 ± 0.08 0.72 ± 0.04	1.890±0.130 1.072±0.012	2.29841	0.304±nan 0.041±nan	0.10±0.08 -0.06±0.04	3833 4508	5.46±0.61 11.1±6.9	Hartman et al. 2016 Lindor et al. 2021
30	HAT-P-69 b	3.58±0.58	1.676±0.051	4.78695	0.000±nan	-0.00±0.04 -0.07±0.07	7394	1.27±0.44	Zhou et al. 2019
31	HAT-P-9 b	0.75±0.06	1.393±0.067	3.92281	0.084 ± 0.052	0.12±0.20	6350	nan±nan	Shporer et al. 2009
32	HATS-10 b	0.53±0.08	0.969±0.061	3.31285	0.501±nan	0.15±0.10	5880	3.3±1.7	Brahm et al. 2015
33	HATS-13 b	0.54 ± 0.07	1.212±0.035	3.04405	0.181±nan	0.05 ± 0.06	5523	2.5 ± 1.7	Mancini et al. 2015
34	HATS-14 b	1.07 ± 0.07	1.039 ± 0.032	2.76676	0.142±nan	0.33 ± 0.06	5346	4.9 ± 1.7	Mancini et al. 2015
35	HATS-15 b	2.17 ± 0.15	1.105 ± 0.040	1.74749	0.126±nan	0.00 ± 0.05	5311	11.0 ± 2.0	Ciceri et al. 2016
36	HATS-17 b	1.34±0.07	0.777±0.056	16.25461	0.029±0.022	0.30±0.03	5846	2.1±1.3	Brahm et al. 2016
37	HATS-2 b	1.34±0.15	1.168±0.030	1.35413	0.000±nan	0.15±0.05	5227	9.7±2.9	Mohler-Fischer et al. 2013
38 39	HATS-22 b	2.74±0.11	0.953±0.048	4.72281 1.34850	0.079±0.026	0.00 ± 0.04	4803	nan±nan	Bento et al. 2017
40	HATS-24 b HATS-25 b	2.26±0.17 0.61±0.04	1.395±0.057 1.260±0.100	4.29864	0.000±nan 0.176±nan	-0.23±0.06 0.02±0.05	6125 5715	3.7±2.0 7.5±1.9	Bento et al. 2017 Espinoza et al. 2016
41	HATS-28 b	0.67±0.09	1.194±0.070	3.18108	0.170±nan 0.202±nan	0.02±0.05 0.01±0.06	5498	6.2±2.8	Espinoza et al. 2016 Espinoza et al. 2016
42	HATS-29 b	0.65±0.06	1.251±0.061	4.60587	0.158±nan	0.16±0.08	5670	5.5±2.6	Espinoza et al. 2016
43	HATS-3 b	1.07±0.14	1.381±0.035	3.54785	0.000±nan	-0.16±0.07	6351	3.2±0.6	Bayliss et al. 2013
44	HATS-30 b	0.71 ± 0.04	1.175±0.052	3.17435	0.096±nan	0.06 ± 0.05	5943	2.3 ± 1.2	Espinoza et al. 2016
45	HATS-35 b	1.22 ± 0.08	1.464±0.069	1.82100	0.306±nan	0.21 ± 0.06	6300	2.13 ± 0.51	de Val-Borro et al. 2016
46	HATS-39 b	0.63 ± 0.13	1.570±0.120	4.57763	0.275±nan	0.00 ± 0.04	6572	2.06 ± 0.3	Bento et al. 2018
47	HATS-4 b	1.32±0.03	1.020±0.037	2.51673	0.013±0.016	0.43±0.08	5403	2.1±1.6	Jordan et al. 2014
48	HATS-45 b	0.70 ± 0.15 0.76 ± 0.10	1.286±0.093	4.18762	0.240±nan	0.02±0.07	6450	1.52±0.7	Brahm et al. 2018
49 50	HATS-54 b HATS-55 b	0.76 ± 0.10 0.92 ± 0.08	1.067±0.052 1.251±0.026	2.54418 4.20420	0.126±nan 0.092±nan	0.40±0.03 0.11±0.05	5702 6214	6.6±0.76 0.4±0.29	Espinoza et al. 2019 Espinoza et al. 2019
51	HATS-56 b	0.60±0.04	1.688±0.055	4.32480	0.092±11an 0.019±nan	0.11 ± 0.03 0.19 ± 0.02	6536	1.894±0.077	Espinoza et al. 2019 Espinoza et al. 2019
52	HATS-57 b	3.15±0.07	1.139±0.028	2.35062	0.028±nan	0.17 ± 0.02 0.27 ± 0.04	5587	2.5±1.5	Espinoza et al. 2019
53	HATS-59 b	0.81±0.07	1.126±0.077	5.41608	0.129 ± 0.049	0.18±0.06	5670	4.3±2.3	Sarkis et al. 2018
54	HATS-60 b	0.66 ± 0.06	1.153±0.053	3.56083	0.191±nan	0.34 ± 0.03	5688	7.55 ± 0.7	Hartman et al. 2019
55	HATS-61 b	3.40 ± 0.14	1.195±0.067	7.81795	0.092±nan	0.25 ± 0.04	5542	8.9 ± 0.41	Hartman et al. 2019
56	HATS-63 b	0.96 ± 0.12	1.207±0.039	3.05665	0.136±nan	0.08 ± 0.04	5627	10.3 ± 1.1	Hartman et al. 2019
57	HATS-64 b	0.96±0.20	1.679±0.081	4.90890	0.151±nan	0.22±0.04	6554	1.861±0.18	Hartman et al. 2019
58	HATS-65 b	0.82±0.08	1.501±0.050	3.10516	0.062±nan	0.20±0.06	6277	1.78±0.55	Hartman et al. 2019
59 60	HATS-66 b	5.33±0.68	1.411±0.084	3.14144	0.064±nan	-0.02 ± 0.04	6626	2.17±0.16	Hartman et al. 2019
60 61	HATS-67 b	1.45±0.12 1.29±0.06	1.685±0.047 1.232±0.039	1.60918 3.58622	0.057±nan 0.036±nan	0.33±0.05 0.21±0.04	6594 6147	0.51±0.24 3.02±0.11	Hartman et al. 2019 Hartman et al. 2019
62	HATS-68 b HATS-70 b	1.29±0.06 12.90±1.80	1.232±0.039 1.384±0.079	3.38622 1.88824	0.036±nan 0.180±nan	0.21 ± 0.04 0.04 ± 0.11	6147 7930	0.81±0.5	Zhou et al. 2019
63	HATS-74 A b	1.46±0.14	1.032±0.079	1.73186	0.180±11an 0.044±nan	0.04 ± 0.11 0.51 ± 0.03	3776	11.0±5.1	Jordan et al. 2022
64	HATS-74 A b	2.63±0.09	1.079±0.031	1.94164	0.062±nan	0.31 ± 0.03 0.32 ± 0.07	4016	4.6±8.7	Jordan et al. 2022
65	HATS-77 b	1.37±0.10	1.165±0.021	3.08763	0.045±nan	0.25 ± 0.04	4071	12.1±5.0	Jordan et al. 2022
66	HD 202772 A b	1.02 ± 0.07	1.545 ± 0.060	3.30896	0.038 ± 0.042	0.30 ± 0.06	6272	1.7 ± 0.32	Wang et al. 2019
67	HD 2685 b	1.17±0.12	1.440 ± 0.050	4.12688	0.091 ± 0.039	0.02 ± 0.06	6801	1.31 ± 0.47	Jones et al. 2019
68	K2-114 b	2.01±0.12	0.932±0.031	11.39093	0.081±0.031	0.41±0.04	4920	7.2±4.5	Shporer et al. 2017
69	K2-140 b	0.93 ± 0.04	1.210±0.090	6.56919	0.000±nan	0.10 ± 0.10	5585	9.8±4.6	Giles et al. 2018

70	K2-237 b	1.36±0.11	1.445±0.049	2.18054	0.042 ± 0.034	0.14 ± 0.05	6360	1.02 ± 1.6	Soto et al. 2018
71	K2-260 b	1.42±0.32	1.552±0.057	2.62667	0.000±nan	-0.14±0.15	6367	1.9±0.3	Johnson et al. 2018
72	K2-29 b	0.73±0.04	1.190±0.020	3.25883	0.066±0.022	0.16±0.03	5358	2.6±1.2	Santerne et al. 2016
73	K2-290 c	0.77 ± 0.05	1.006 ± 0.050	48.36685	$0.000\pm nan$	-0.06 ± 0.10	6302	4.0 ± 1.6	Hjorth et al. 2019
74	K2-30 b	0.58 ± 0.03	1.039 ± 0.051	4.09850	$0.000 \pm nan$	-0.15 ± 0.05	5425	3.9 ± 2.1	Johnson et al. 2016
75	KELT-10 b	0.68 ± 0.04	1.399±0.069	4.16627	0.000 ± 0.000	0.09 ± 0.11	5948	4.5 ± 0.7	Kuhn et al. 2016
76	KELT-14 b	1.28±0.03	1.743±0.047	1.71006	$0.000\pm nan$	0.32 ± 0.09	5720	5.11 ± 0.8	Rodriguez et al. 2016
77	KELT-16 b	2.75±0.16	1.415±0.084	0.96900	0.000±nan	-0.00±0.09	6236	3.1±0.3	Oberst et al. 2017
78	KELT-17 b	1.31±0.29	1.525±0.065	3.08017	0.000 ± 0.000	-0.02±0.07	7454	0.65±0.15	Zhou et al. 2016
79	KELT-18 b	1.18 ± 0.11	1.570±0.042	2.87175	$0.000 \pm nan$	0.09 ± 0.13	6670	1.9 ± 0.2	McLeod et al. 2017
80	KELT-23 A b	0.94 ± 0.05	1.323 ± 0.025	2.25525	$0.000 \pm nan$	-0.10 ± 0.08	5899	6.4 ± 3.5	Johns et al. 2019
81	KELT-24 b	5.18 ± 0.22	1.272±0.021	5.55149	0.077 ± 0.024	0.19 ± 0.08	6509	0.78 ± 0.61	Rodriguez et al. 2019
82	KELT-4 A b	0.90 ± 0.06	1.699±0.046	2.98959	$0.000\pm nan$	-0.12±0.07	6206	4.44 ± 0.89	Eastman et al. 2016
83	KOI-13 b	9.28±0.16	1.512±0.035	1.76359	0.001 ± 0.000	0.20±0.20	7650	nan±nan	Borucki et al. 2011
84	KOI-3680 b	1.93±0.21	0.990±0.070	141.24167	0.496±0.031	0.16±0.07	5830	3.2±9.6	Hebrard et al. 2019
85	Kepler-117 c	1.84±0.18	1.101±0.035	50.79039	0.032±0.003	-0.04±0.10	6150	5.3±1.4	Rowe et al. 2014
86	Kepler-14 b	8.40 ± 0.35	1.136±0.073	6.79012	0.035 ± 0.020	0.12 ± 0.06	6395	2.2 ± 0.2	Buchhave et al. 2011
87	Kepler-15 b	0.66 ± 0.09	0.960 ± 0.070	4.94278	$0.060 \pm nan$	0.36 ± 0.07	5515	3.7 ± 3.6	Endl et al. 2011
88	Kepler-1514 b	5.28 ± 0.22	1.108±0.023	217.83184	0.401 ± 0.013	0.12 ± 0.08	6145	2.9 ± 1.6	Morton et al. 2016
89	Kepler-1658 b	5.88 ± 0.47	1.070 ± 0.050	3.84937	0.063 ± 0.020	-0.18±0.10	6216	nan±nan	Chontos et al. 2019
90	Kepler-167 e	1.01±0.16	0.906±0.037	1071.23205	0.290±nan	0.02 ± 0.07	4884	7.1±4.6	Kipping et al. 2016
91									11 0
	Kepler-17 b	2.45±0.11	1.310±0.020	1.48571	0.011±nan	0.26±0.10	5781	nan±nan	Desert et al. 2011
92	Kepler-1704 b	4.15±0.29	1.065 ± 0.043	988.88113	0.921±0.010	0.20 ± 0.06	5745	7.4 ± 1.5	Dalba et al. 2021
93	Kepler-40 b	2.20 ± 0.40	1.170±0.040	6.87349	$0.000 \pm nan$	0.10 ± 0.15	6510	2.8 ± 0.3	Santerne et al. 2011
94	Kepler-41 b	0.56 ± 0.08	1.290±0.020	1.85556	$0.000 \pm nan$	0.38 ± 0.11	5750	4.4 ± 1.3	Santerne et al. 2011
95	Kepler-412 b	0.94 ± 0.12	1.341±0.046	1.72086	0.000 ± 0.000	0.27 ± 0.12	5750	nan±nan	Deleuil et al. 2014
96	Kepler-423 b	0.59 ± 0.08	1.192±0.052	2.68433	0.019 ± 0.028	-0.10±0.05	5560	11.0 ± 2.0	Endl et al. 2014
97	Kepler-428 b	1.27±0.19		3.52563	0.220±nan	0.09±0.17	5150	5.0±4.0	Hebrard et al. 2014
			1.080±0.030						
98	Kepler-43 b	3.23±0.26	1.219±0.065	3.02409	0.000 ± 0.000	0.33 ± 0.11	6041	nan±nan	Bonomo et al. 2011
99	Kepler-432 b	5.41 ± 0.32	1.145±0.039	52.50113	0.513 ± 0.010	-0.07 ± 0.10	4995	4.2 ± 1.0	Ciceri et al. 2015
100	Kepler-44 b	1.00 ± 0.10	1.090±0.070	3.24673	0.066±nan	0.15 ± 0.10	5800	5.8 ± 2.4	Bonomo et al. 2011
101	Kepler-5 b	2.11±0.09	1.426 ± 0.051	3.54847	0.000 ± 0.000	0.04 ± 0.06	6297	nan±nan	Koch et al. 2010
102	Kepler-56 c	0.57 ± 0.07	0.874 ± 0.041	21.40239	0.000 ± 0.010	0.20 ± 0.16	4840	3.5 ± 1.3	Steffen et al. 2013
103	Kepler-6 b	0.67±0.04	1.304±0.033	3.23470	0.000 ± 0.010	0.34 ± 0.04	5647	nan±nan	Dunham et al. 2010
104	Kepler-74 b	0.63±0.12	0.960±0.020	7.34071	0.000±nan	0.42±0.11	6000	0.8±0.9	Hebrard et al. 2013
105	Kepler-75 b	10.10 ± 0.40	1.050 ± 0.030	8.88491	0.570 ± 0.010	0.30 ± 0.12	5200	6.2 ± 3.5	Hebrard et al. 2013
106	Kepler-8 b	0.59 ± 0.13	1.416±0.062	3.52250	0.000 ± 0.000	-0.06 ± 0.03	6213	nan±nan	Jenkins et al. 2010
107	Kepler-87 b	1.02 ± 0.03	1.204±0.049	114.73635	0.036 ± 0.009	-0.17 ± 0.03	5600	7.5 ± 0.5	Ofir et al. 2014
108	Kepler-91 b	0.81 ± 0.18	1.367±0.069	6.24658	0.050 ± 0.020	0.11 ± 0.07	4550	nan±nan	Lillo-Box et al. 2014
109	NGTS-13 b	4.84 ± 0.44	1.142 ± 0.046	4.11903	0.086 ± 0.034	0.25 ± 0.17	5819	4.23 ± 2.65	Grieves et al. 2021
110	NGTS-2 b	0.74±0.13	1.595±0.047	4.51116	0.000±nan	-0.06±0.09	6478	2.17±0.37	Raynard et al. 2018
111	NGTS-20 b	2.98±0.16	1.070±0.040	54.18915	0.432±0.023		5980	4.1±2.7	Ulmer-Moll et al. 2022
						0.15±0.08			
112	NGTS-8 b	0.93 ± 0.04	1.090±0.030	2.49970	0.010 ± 0.014	0.24 ± 0.09	5241	12.48±3.68	Costes et al. 2020
113	NGTS-9 b	2.90 ± 0.17	1.070 ± 0.060	4.43527	0.060 ± 0.076	0.31 ± 0.15	6330	0.96 ± 0.6	Costes et al. 2020
114	Qatar-1 b	1.29 ± 0.05	1.143±0.026	1.42002	$0.000 \pm nan$	0.17 ± 0.10	5013	nan±nan	Alsubai et al. 2011
115	Qatar-10 b	0.74 ± 0.09	1.543 ± 0.040	1.64532	$0.000\pm nan$	0.02 ± 0.09	6124	3.2 ± 1.9	Alsubai et al. 2019
116	Qatar-2 b	2.49±0.05	1.254±0.013	1.33712	0.000±nan	0.02±0.08	4645	5.0±nan	Bryan et al. 2011
117	Qatar-5 b	4.32±0.18	1.107±0.064	2.87923	0.000±nan	0.38±0.08	5747	0.53±0.004	Alsubai et al. 2017
118	Qatar-6 b	0.67±0.07	1.062±0.071	3.50619	0.000±nan	-0.03±0.09	5052	1.02±0.62	Alsubai et al. 2018
119	Qatar-7 b	1.88 ± 0.25	1.700 ± 0.030	2.03205	$0.000\pm nan$	0.28 ± 0.07	6387	1.69 ± 0.25	Alsubai et al. 2019
120	Qatar-9 b	1.19±0.16	1.009 ± 0.014	1.54073	$0.000\pm nan$	0.25 ± 0.08	4309	7.5 ± 4.5	Alsubai et al. 2019
121	TIC 172900988 b	2.96 ± 0.02	1.004±0.039	200.45200	0.027 ± 0.001	0.34 ± 0.10	6050	3.1 ± 0.1	Kostov et al. 2021
122	TIC 237913194 b	1.94±0.09	1.117 ± 0.054	15.16887	0.575 ± 0.011	0.14 ± 0.05	5788	5.7 ± 1.7	Schlecker et al. 2020
123	TOI-1107 b	3.35±0.18	1.300±0.050	4.07824	0.025 ± 0.023	-0.10±0.09	6311	2.6±0.2	Psaridi et al. 2022
123	TOI-1107 b	1.18±0.14	1.300±0.030 1.300±0.080	2.10319	0.000±0.000	0.05 ± 0.10	5990	2.59±0.51	Kabath et al. 2022
125	TOI-1333 b	2.37±0.24	1.396±0.056	4.72022	0.073±0.092	0.12±0.08	6274	2.33±0.71	Rodriguez et al. 2021
126	TOI-1431 b	3.12±0.18	1.490±0.050	2.65024	0.002 ± 0.003	0.09 ± 0.03	7690	0.29 ± 0.32	Addison et al. 2021
127	TOI-1478 b	0.85 ± 0.05	1.060 ± 0.040	10.18025	0.024 ± 0.032	0.08 ± 0.07	5597	9.1±3.9	Rodriguez et al. 2021
128	TOI-150.01	2.51 ± 0.12	1.255 ± 0.021	5.85749	0.262 ± 0.045	0.28 ± 0.04	6255	2.346±0.901	Canas et al. 2019
129	TOI-1516 b	3.16 ± 0.12	1.360 ± 0.030	2.05601	0.000 ± 0.000	-0.05 ± 0.10	6520	4.82 ± 2.44	Kabath et al. 2022
130	TOI-157 b	1.18±0.13	1.286±0.023	2.08454	0.000±nan	0.24 ± 0.09	5404	12.82 ± 1.4	Nielsen et al. 2020
131	TOI-1601 b	0.99±0.11	1.239±0.046	5.33175	0.036±0.044	0.33 ± 0.07	5948	2.64±0.39	Rodriguez et al. 2021
									2
132	TOI-163 b	1.22±0.12	1.489±0.034	4.23131	0.000±nan	0.22±0.04	6495	1.823±0.331	Kossakowski et al. 2019
133	TOI-1670 c	0.63 ± 0.09	0.987 ± 0.025	40.74976	0.090 ± 0.050	0.09 ± 0.07	6170	2.53 ± 0.43	Tran et al. 2022
134	TOI-169 b	0.79 ± 0.06	1.086±0.081	2.25545	$0.000\pm nan$	0.24 ± 0.09	5880	4.7 ± 2.7	Nielsen et al. 2020
135	TOI-172 b	5.42 ± 0.22	0.965 ± 0.032	9.47725	0.381 ± 0.009	0.15 ± 0.08	5645	7.4 ± 1.6	Rodriguez et al. 2019
136	TOI-1899 b	0.66 ± 0.07	1.150 ± 0.050	29.02000	0.118 ± 0.073	0.31 ± 0.12	3841	7.4 ± 4.6	Canas et al. 2020
137	TOI-2046 b	2.30±0.28	1.440±0.110	1.49718	0.000 ± 0.000	-0.06±0.15	6250	0.45 ± 0.43	Kabath et al. 2022
138	TOI-2109 b	5.02±0.75	1.347±0.047	0.67247	0.000 ± 0.000	0.07 ± 0.07	6540	1.77±0.88	Wong et al. 2021
139	TOI-2180 b	2.75±0.09	1.010±0.022	260.79000	0.368±0.007	0.25±0.06	5695	8.1±1.5	Dalba et al. 2022
140	TOI-2184 b	0.65±0.16	1.017±0.051	6.90683	0.080±0.070	0.14±0.08	5966	2.3±0.8	Saunders et al. 2022
141	TOI-3362 b	5.03 ± 0.67	1.142 ± 0.043	18.09547	0.815 ± 0.023	0.02 ± 0.06	6532	2.14 ± 0.66	Dong et al. 2021
142	TOI-3714 b	0.70 ± 0.03	1.010 ± 0.030	2.15485	0.030 ± 0.030	0.10 ± 0.10	3660	2.9 ± 2.2	Canas et al. 2022
143	TOI-481 b	1.53 ± 0.03	0.990 ± 0.010	10.33111	0.153 ± 0.006	0.26 ± 0.05	5735	6.7 ± 0.6	Brahm et al. 2020
144	TOI-5153 b	3.26±0.18	1.060±0.040	20.33003	0.091±0.024	0.12±0.08	6300	5.4±1.0	Ulmer-Moll et al. 2022
145	TOI-558 b	3.61±0.15	1.086±0.041	14.57407	0.298±0.022	-0.00±0.06	6466	1.79±0.91	Ikwut-Ukwa et al. 2022
146	TOI-559 b	6.01±0.24	1.091±0.028	6.98391	0.151±0.012	-0.07±0.08	5925	6.8±2.5	Ikwut-Ukwa et al. 2022
147	TOI-628 b	6.33 ± 0.31	1.060 ± 0.041	3.40957	0.072 ± 0.021	0.26 ± 0.08	6250	1.28±1.6	Rodriguez et al. 2021

148	TOI-640 b	0.88 ± 0.16	1.771±0.060	5.00378	0.050 ± 0.054	0.07 ± 0.09	6460	1.99±0.55	Rodriguez et al. 2021
149	TOI-677 b	1.24 ± 0.07	1.170±0.030	11.23660	0.435 ± 0.024	0.00 ± 0.05	6295	2.92 ± 0.8	Jordan et al. 2020
150	TOI-892 b	0.95±0.07	1.070±0.020	10.62656	0.125±nan	0.24±0.05	6261	2.2±0.5	Brahm et al. 2020
151	TOI-905 b	0.67±0.04	1.171±0.053	3.73949	0.024 ± 0.025	0.14 ± 0.22	5570	3.4±3.8	Davis et al. 2020
152				1.48225					
	TrES-5 b	1.79±0.07	1.194±0.015		0.000±0.000	0.20±0.10	5171	nan±nan	Mandushev et al. 2011
153	WASP-103 b	1.49±0.09	1.528±0.073	0.92554	0.000 ± 0.000	0.06±0.13	6110	4.0 ± 1.0	Gillon et al. 2014
154	WASP-104 b	1.27±0.05	1.137±0.037	1.75541	$0.000\pm nan$	0.32 ± 0.09	5475	3.0 ± 2.0	Smith et al. 2014
155	WASP-105 b	1.80 ± 0.10	0.960 ± 0.030	7.87288	$0.000 \pm nan$	0.28 ± 0.16	5070	nan±nan	Anderson et al. 2017
156	WASP-110 b	0.51 ± 0.06	1.238±0.056	3.77840	$0.000 \pm nan$	-0.06 ± 0.10	5400	nan±nan	Nikolov et al. 2021
157	WASP-114 b	1.77 ± 0.06	1.339±0.064	1.54877	0.012 ± 0.022	0.14 ± 0.07	5940	4.3 ± 1.4	Barros et al. 2016
158	WASP-118 b	0.51 ± 0.02	1.440±0.036	4.04604	0.000±nan	0.16 ± 0.10	6410	1.17±5.72	Hay et al. 2016
159	WASP-120 b	4.85±0.21	1.473±0.096	3.61127	0.057 ± 0.022	-0.05 ± 0.07	6450	2.6±0.5	Turner et al. 2016
160				2.97764	0.007 ± 0.022 0.000±nan				
	WASP-123 b	0.90±0.04	1.318±0.065			0.18±0.08	5740	6.9±1.4	Turner et al. 2016
161	WASP-124 b	0.60±0.07	1.240±0.030	3.37265	0.017±nan	-0.02±0.11	6050	2.1±1.4	Maxted et al. 2016
162	WASP-129 b	1.00 ± 0.10	0.930 ± 0.030	5.74815	0.096±nan	0.15 ± 0.09	5900	1.0 ± 0.9	Maxted et al. 2016
163	WASP-130 b	1.23 ± 0.04	0.890 ± 0.030	11.55098	$0.000 \pm nan$	0.26 ± 0.10	5625	$2.0\pm$ nan	Hellier et al. 2017
164	WASP-133 b	1.16±0.09	1.210±0.050	2.17642	0.170±nan	0.29 ± 0.12	5700	6.8 ± 1.8	Maxted et al. 2016
165	WASP-135 b	1.90 ± 0.08	1.300±0.090	1.40138	0.000±nan	0.02 ± 0.13	5675	0.6 ± 1.4	Spake et al. 2016
166	WASP-138 b	1.22±0.08	1.090±0.050	3.63443	0.000 ± 0.000	-0.09 ± 0.10	6272	3.44±0.93	Lam et al. 2017
167	WASP-141 b	2.69±0.15	1.210±0.080	3.31065	0.000±0.000	0.29 ± 0.09	5900	5.0±nan	Hellier et al. 2017
168	WASP-142 b	0.84±0.09	1.530±0.080	2.05287	0.000±nan	0.26±0.12	6010	2.0±nan	Hellier et al. 2017
169	WASP-150 b	8.46 ± 0.28	1.070±0.025	5.64421	0.378 ± 0.004	0.16 ± 0.10	6218	2.95±0.229	Cooke et al. 2020
170	WASP-159 b	0.55 ± 0.08	1.380 ± 0.090	3.84040	$0.000 \pm nan$	0.22 ± 0.12	6120	3.4 ± 0.95	Hellier et al. 2019
171	WASP-161 b	2.49 ± 0.21	1.143±0.065	5.40604	0.000 ± 0.430	0.16 ± 0.09	6400	nan±nan	Barkaoui et al. 2019
172	WASP-162 b	5.20 ± 0.20	1.000 ± 0.050	9.62468	0.434 ± 0.005	0.28 ± 0.13	5300	12.97±2.35	Hellier et al. 2019
173	WASP-164 b	2.13±0.13	1.128±0.043	1.77713	0.000±nan	-0.01±0.20	5806	4.08 ± 2.38	Lendl et al. 2019
174	WASP-170 b	1.60±0.20	1.096±0.085	2.34478	0.000 ± 0.000	0.22 ± 0.09	5600	nan±nan	Barkaoui et al. 2019
175	WASP-171 b	1.08±0.09	0.980±0.070	3.81862	0.000±0.000	0.04±0.07	5965	5.908±1.051	Nielsen et al. 2019
176				1.38665		0.16±0.14		6.78±2.93	
	WASP-173 A b	3.69±0.18	1.200±0.060		0.000±nan		5800		Hellier et al. 2019
177	WASP-175 b	0.99±0.13	1.208±0.081	3.06529	0.000±nan	0.15±0.07	6229	1.745±0.995	Nielsen et al. 2019
178	WASP-176 b	0.85 ± 0.07	1.505 ± 0.050	3.89905	$0.000\pm nan$	0.16 ± 0.08	5941	4.81 ± 0.191	Cooke et al. 2020
179	WASP-178 b	1.66 ± 0.12	1.810±0.090	3.34483	$0.000 \pm nan$	0.21 ± 0.16	9360	nan±nan	Hellier et al. 2019
180	WASP-18 b	10.20±0.35	1.240±0.079	0.94145	0.005 ± 0.007	0.11 ± 0.08	6432	1.57 ± 1.4	Hellier et al. 2009
181	WASP-180 A b	0.90 ± 0.10	1.240 ± 0.040	3.40926	0.000±nan	0.10 ± 0.20	6600	1.2 ± 1.0	Temple et al. 2019
182	WASP-184 b	0.57 ± 0.10	1.330±0.090	5.18170	0.000±nan	0.12 ± 0.08	6000	4.7 ± 1.1	Hellier et al. 2019
183	WASP-185 b	0.98±0.06	1.250±0.080	9.38755	0.240 ± 0.040	-0.02±0.06	5900	6.6±1.6	Hellier et al. 2019
184				5.02680		-0.02±0.00			
	WASP-186 b	4.22±0.18	1.110±0.030		0.330±0.010		6361	3.1±1.0	Schanche et al. 2020
185	WASP-187 b	0.80±0.09	1.640±0.050	5.14788	0.000±nan	0.00 ± 0.11	6150	2.55±0.49	Schanche et al. 2020
186	WASP-189 b	1.99±0.16	1.619±0.021	2.72403	$0.000\pm nan$	0.29 ± 0.13	8000	0.73 ± 0.13	Lendl et al. 2020
187	WASP-190 b	1.00 ± 0.10	1.150±0.090	5.36775	$0.000 \pm nan$	-0.02 ± 0.05	6400	nan±nan	Temple et al. 2019
188	WASP-192 b	2.30 ± 0.16	1.230 ± 0.080	2.87868	$0.000\pm nan$	0.14 ± 0.08	5910	5.7 ± 1.9	Hellier et al. 2019
189	WASP-2 b	0.93 ± 0.06	1.081 ± 0.041	2.15218	0.000 ± 0.000	0.12 ± 0.21	5180	nan±nan	Collier Cameron et al. 2007
190	WASP-36 b	2.36±0.07	1.327±0.021	1.53737	0.000 ± 0.000	-0.26±0.10	5959	1.4 ± 3.4	Smith et al. 2012
191	WASP-4 b	1.19±0.10	1.321±0.039	1.33823	0.000±nan	-0.07±0.19	5400	7.0±nan	Wilson et al. 2008
192	WASP-42 b	0.53±0.03	1.122±0.039	4.98168	0.000±0.000	0.29±0.05	5315	4.4±4.4	Lendl et al. 2012
193	WASP-44 b	0.87±0.06	1.100±0.081	2.42380	0.000±0.000	-0.00±0.10	5420	nan±nan	Anderson et al. 2011
194	WASP-45 b	0.96 ± 0.06	0.946 ± 0.058	3.12609	0.000 ± 0.000	-0.03 ± 0.20	5150	nan±nan	Anderson et al. 2011
195	WASP-47 b	1.14 ± 0.02	1.127±0.013	4.15913	0.000 ± 0.000	0.38 ± 0.05	5552	nan±nan	Hellier et al. 2012
196	WASP-5 b	1.58 ± 0.13	1.087 ± 0.071	1.62843	0.038 ± 0.026	0.09 ± 0.09	5700	5.4 ± 4.4	Anderson et al. 2008
197	WASP-53 b	2.13 ± 0.09	1.074 ± 0.037	3.30984	0.030±nan	0.22 ± 0.11	4953	nan±nan	Triaud et al. 2017
198	WASP-57 b	0.64 ± 0.06	1.050 ± 0.053	2.83892	0.000 ± 0.000	-0.25±0.10	5600	nan±nan	Faedi et al. 2013
199	WASP-64 b	1.27±0.07	1.271±0.039	1.57329	0.000±nan	-0.08±0.11	5400	1.2 ± 1.2	Gillon et al. 2013
200	WASP-65 b	1.55±0.16	1.112±0.059	2.31142	0.000±nan	-0.07 ± 0.07	5600	8.0±nan	Gomez et al. 2013
201	WASP-7 b	0.96±0.13	1.330±0.093	4.95464	0.000±0.000	0.00±0.10	6400	2.4±1.1	Hellier et al. 2008
202	WASP-75 b	1.07 ± 0.05	1.270±0.048	2.48419	0.000±nan	0.07 ± 0.09	6100	3.5 ± 0.5	Gomez et al. 2013
203	WASP-76 b	0.92 ± 0.03	1.830±0.060	1.80989	0.000±nan	0.23 ± 0.10	6250	5.3 ± 6.1	West et al. 2016
204	WASP-77 A b	1.67 ± 0.07	1.230 ± 0.031	1.36003	0.007 ± 0.007	-0.10 ± 0.11	5617	6.2 ± 4.0	Maxted et al. 2013
205	WASP-80 b	0.54 ± 0.04	0.999 ± 0.031	3.06785	0.002 ± 0.010	-0.13 ± 0.17	4143	nan±nan	Triaud et al. 2013
206	WASP-81 b	0.73 ± 0.04	1.429±0.051	2.71648	0.066±nan	-0.36±0.14	5870	nan±nan	Triaud et al. 2017
207	WASP-84 b	0.69 ± 0.03	0.942±0.022	8.52349	0.000±nan	0.00 ± 0.10	5314	1.0±nan	Anderson et al. 2014
208	WASP-89 b	5.90±0.40	1.040±0.040	3.35642	0.193±0.009	0.15 ± 0.14	5130	1.3±1.5	Hellier et al. 2015
		0.63±0.07		3.91624	0.000±nan				
209	WASP-90 b		1.630±0.090			0.11±0.14	6430	4.4±8.4	West et al. 2016
210	WASP-91 b	1.34±0.08	1.030±0.040	2.79858	0.000±nan	0.19±0.13	4920	nan±nan	Anderson et al. 2017
211	WASP-92 b	0.81±0.07	1.461±0.077	2.17467	0.000±nan	0.00±0.14	6280	2.29±6.8	Hay et al. 2016
212	WASP-93 b	1.47±0.29	1.597±0.077	2.73253	0.000±nan	0.07 ± 0.17	6700	0.7 ± 0.65	Hay et al. 2016
213	WASP-98 b	0.92 ± 0.08	1.144 ± 0.034	2.96264	0.000 ± 0.000	-0.49 ± 0.10	5473	2.7 ± 6.8	Hellier et al. 2014
214	XO-5 b	1.19±0.03	1.140 ± 0.030	4.18776	$0.000\pm nan$	0.05 ± 0.06	5430	nan±nan	Burke et al. 2008
215	XO-7 b	0.71 ± 0.03	1.373±0.026	2.86414	0.038 ± 0.033	0.43 ± 0.06	6250	1.18±0.98	Crouzet et al. 2020
216	TOI-5542b	1.31±0.11	1.006±0.036	75.12368	0.020 ± 0.033	-0.21 ± 0.08	5700	10.8±3.6	This Work
							2.00		