Relation R from A to B

Function from A to B

Definition:

Subset of $A \times B$

Examples:

$$A = \{0,1,2\}$$
 and $B = \{1,2,3\}$

$$xR_1y \longleftrightarrow x < y$$

Then
$$R_1 = \begin{cases} f(0) = 1, & f(1) = 1, \\ \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\} \end{cases}$$
 The graph of f is $\Gamma(f) = \{(0,1), (0,2), (0,3),$

$$A = \{0,1,2\}$$
 and $B = \{1,2,3\}$

$$f(x) = y \leftrightarrow y = 1 + x$$

Then

$$f(0) = 1$$
, $f(1) = 2$, $f(2) = 3$.

$$\Gamma(f) = \{(0,1), (1,2), (2,3)\}$$

$$xR_2y \longleftrightarrow x = y$$

Then
$$R_2 = \{(1,1), (2,2)\}.$$

$$g(x) = y \leftrightarrow y = |x - 1| + 1$$

Then

$$g(0) = 2$$
, $g(1) = 1$, $g(2) = 2$

The graph of g is

$$\Gamma(g) = \{(0,2), (1,1), (2,2)\}$$

Domain and Range

Domain of R_1

$$A = \{0,1,2\}$$

Range of R_1

$$B = \{1,2,3\}$$

Domain of R_2

Range of R_2

Domain of f

$$A = \{0,1,2\}$$

Range of *f*

$$B = \{1,2,3\}$$

Domain of g

$$A = \{0,1,2\}$$

Range of g

Arrow Diagram $R_{\scriptscriptstyle 1}$

The inverse function of g does not exist.