Plan du cours

I.	Limites de fonctions	3
	1)Limite en l'infini	3
	புள்ளுite finie et asymptote horizontale	3
	Ľ(ilon) ite infinie	3
	L(icn)ite des fonctions de références	4
	2)Limite en un point	5
	L(ian)ite infinie et asymptote verticale	5
	ـ(ilɒŋ)ite à gauche et à droite	6
	L(icn) ite finie	6
	L'indi)ite des fonctions de références	7
H.	Opération sur les limites	7
	1)Limite d'une somme	7
	2)Limite d'un produit	7
	3)Limite d'un quotient	8
m.	Continuité d'une fonction	9
	1)Notion intuitive de continuité	9
	2)Continuité des fonctions de références	9
	3)Théorème des valeurs intermédiaires	9
	,	

Activité d'introduction 1 : Notion de limites, notion d'asymptote

On donne les représentations des fonctions cube $x \mapsto x^3$, inverse au carré $x \mapsto \frac{1}{x^2}$ et racine carrée $x \mapsto \sqrt{x}$.

- 1) En lisant les courbes, donner les limites suivantes : $\lim_{x\to +\infty} x^3$ et $\lim_{x\to -\infty} x^3$
- 2) (a) Donner les limites suivantes : $\lim_{x \to +\infty} \frac{1}{x^2}$ et $\lim_{x \to -\infty} \frac{1}{x^2}$.
- **(b)** Comment se comporte la courbe en $+\infty$ et en $-\infty$ de $\frac{1}{\chi^2}$ par rapport à l'axe des abscisses ? On dit alors que l'axe des abscisses est asymptote à la courbe en $+\infty$.
- 3) (a) Donner la limite suivante : $\lim_{x\to 0} \frac{1}{x^2}$
- **(b)** Comment se comporte la courbe en 0 de $\frac{1}{\chi^2}$ par rapport à l'axe des ordonnées? On dit alors que l'axe des ordonnées est asymptote à la courbe en 0.
- **4)** Donner la limite suivante : $\lim_{x \to +\infty} \sqrt{x}$.

Activité d'introduction 2 : Faire des opérations sur les limites

Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^2 + 2x - 3$.

- 1) Donner les limites suivantes : $\lim_{x\to +\infty} x^2$ et $\lim_{x\to +\infty} 2x-3$. Pourquoi peut-on affirmer que : $\lim_{x\to +\infty} f(x)=+\infty$.
- **2)** Donner les limites suivantes : $\lim_{x\to -\infty} x^2$ et $\lim_{x\to -\infty} 2x 3$. Peut-on en déduire la limite de f en $-\infty$? Pourquoi?
- **3)** Vérifier que pour $x \neq 0$, on a : $f(x) = x^2 \left(1 + \frac{2}{x} \frac{3}{x^2} \right)$. Donner la limite $\lim_{x \to -\infty} 1 + \frac{2}{x} \frac{3}{x^2}$. Peut-on en déduire la limite de f en $-\infty$? Pourquoi?

I. Limites de fonctions

1) Limite en l'infini

(a) Limite finie et asymptote horizontale

Définition Asymptote horizontale

Soit a un réel.

Dire que f(x) tend vers a quand x tend vers $-\infty$ ou $+\infty$ signifie que f(x) est aussi proche que l'on veut de a, pour x suffisamment grand (ou petit).

On écrit
$$\lim_{x \to -\infty} f(x) = a$$
 ou $\lim_{x \to +\infty} f(x) = a$

On dit que la droite d'équation y=a est asymptote à la courbe en $-\infty$ ou en $+\infty$.

Exemples: Soient $f(x) = 3 + \frac{1}{x}$ définie sur $\mathbb{R} \setminus \{0\}$ et $g(x) = tan^{-1}(x)$ définie sur \mathbb{R} :

(b) Limite infinie

Définition

On dit que la fonction f admet pour limite $+\infty$ en $+\infty$, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

3

On écrit alors que $\lim_{x \to +\infty} f(x) = +\infty$

Remarque : On définit de façon analogue :

$$\lim_{x \to +\infty} f(x) = -\infty$$
 ; $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$

Exemples : Soient $f(x) = -0.5x^3 + 1.5$ et $g(x) = -x^5 + 4x$ définies sur $\mathbb R$:

Remarques:

- Une fonction qui tend vers $+\infty$ lorsque x tend vers $+\infty$ n'est pas nécessairement croissante
- Il existe des fonctions qui ne possèdent pas de limite en l'infini. C'est le cas des fonctions sinusoïdales.

(c) Limite des fonctions de références

f(x) =	$\frac{1}{x}$	χ^2	<i>x</i> ³	x ⁿ	\sqrt{X}	e^{x}	e^{ax}
$\lim_{x\to -\infty} f(x) =$	0	$+\infty$	$-\infty$	$+\infty$ si n pair $-\infty$ si n impair	$+\infty$	non définie	$0 \text{ si } a > 0$ $-\infty \text{ si } a < 0$
$\lim_{x\to+\infty}f(x)=$	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$ si $a > 0$ 0 si $a < 0$