Devoir à la maison n° 10

À rendre le 16 janvier

I. Entiers de Gauss.

On définit l'ensemble des entiers de Gauss : $\mathbb{Z}[i] = \{ a + ib \mid a, b \in \mathbb{Z} \}$. Pour $a, b \in \mathbb{Z}$, on définit $N(a + ib) = a^2 + b^2$.

1) Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif.

On rappelle qu'un élément $z \in \mathbb{Z}[i]$ est inversible s'il existe $y \in \mathbb{Z}[i]$ tel que zy = 1.

- 2) a) Montrer que, pour tout $x, y \in \mathbb{Z}[i]$, N(xy) = N(x)N(y).
 - b) En déduire que, pour tout $z \in \mathbb{Z}[i]$, z est inversible si et seulement si N(z) = 1.
 - c) Quels sont les éléments inversibles de $\mathbb{Z}[i]$?

On rappelle aussi que, si $x, y \in \mathbb{Z}[i]$, alors x divise y (ou est un diviseur de y) s'il existe $z \in \mathbb{Z}[i]$ vérifiant y = zx. On appelle élément irréductible de $\mathbb{Z}[i]$ tout élément non inversible de $\mathbb{Z}[i]$ qui ne peut s'écrire comme produit de deux éléments non inversibles de $\mathbb{Z}[i]$.

- 3) a) Soit $z \in \mathbb{Z}[i]$, supposons que N(z) est un nombre premier. Montrer que z est irréductible.
 - b) La réciproque est elle vraie?
 - c) Soit p un nombre premier. Montrer que p est irréductible dans $\mathbb{Z}[i]$ si et seulement si p ne s'écrit pas comme la somme de carrés de deux entiers.
 - d) Déterminer l'ensemble des diviseurs de 1-3i.
- 4) Division euclidienne sur $\mathbb{Z}[i]$.
 - a) Montrer que tout nombre réel est à distance au plus $\frac{1}{2}$ d'un entier. En déduire que si $z \in \mathbb{C}$, on peut trouver $q \in \mathbb{Z}[i]$ vérifiant |z - q| < 1.
 - **b)** En déduire que, pour tout $a, b \in \mathbb{Z}[i]$, avec $b \neq 0$, il existe $q, r \in \mathbb{Z}[i]$ vérifiant a = bq + r ainsi que N(r) < N(b).

Indication: On pourra considérer $\frac{a}{b}$

c) Y a-t-il unicité de cette écriture?

II. Indicatrice des rationnels et continuité.

Étudier la limite en tout point de la fonction indicatrice des rationnels.

— FIN —