Ejercicios VI

Víctor H. Cárdenas

October 7, 2024

1. Considere una espira de lados a y b que se mueve hacia la derecha con velocidad \vec{v} alejándose de un alambre infinito por el que circula una corriente I. Determine la f.e.m. inducida en la espira como función del tiempo. Suponga que en t=0 la distancia del lado mas cercano de la espira al alambre es r=h.

2. Asuma que en el semiplano yz con z>0 existe un campo magnético $\vec{B}=B_0\hat{i}$ constante. Además, en ese mismo plano, gira un circuito semicircunferencial de radio R (ver figura) con frecuencia angular constante $\omega=\pi/2\hat{i}$, y cuya resistencia por unidad de longitud es $\rho=1/(2+\pi)$.

Asuma que inicialmente el diámetro coincide con el eje y, y la semicircunferencia está en el plano z>0. Calcule

- (a) El flujo del campo a través del circuito.
- (b) La f.e.m. inducida en el circuito
- (c) La intensidad de la corriente que circula por el circuito, indicando sentido como función del tiempo.
- (d) La fuerza que el campo magnético ejerce sobre el circuito
- 3. Considere un plano conductor perfecto ($\vec{H}=0$ en el interior) en z=0 con un agujero circular de radio a centrado en el origen. Existe un campo magnetico externo tangencial \vec{H}_0 en la dirección y en la región z>0 lejos del agujero y un campo asintoticamente cero para z<0. Debido a que no existen corrientes, excepto en la superficie z=0, podemos usar que $\vec{H}=-\nabla\phi_M$ donde ϕ_M satisface la ecuación de Laplace con condiciones de borde adecuadas. Calcule las componentes tangencial y normal del campo magnético cerca del agujero

