

The IEEE 754 Standard

- Mantissa made positive or negative:
 - the first bit indicates the sign: 0 = positive and 1 = negative.
- General binary format is:

Highest	1 1001010	1010100010100000101	Lowest Bit	
Bit	Sign	Exponent	Mantissa	Dit

- Exponent made positive or negative using a "biased" or "shifted" representation:
 - If the stored exponent, c, is X bits long, then the actual exponent is c bias where the offset $bias = (2^{X}/2 1)$. e.g. X=3:

Stored (c,binary)	000	001	010	011	100	101	110	111
Stored (c,decimal)	0	1	2	3	4	5	6	7
Represents (c-3)	-3	-2	-1	0	1	2	3	4

IEEE Floating-point Discretisation

- This still cannot represent all numbers:
- And in two dimensions you get something like:

Limitations

- Numbers cannot be stored exactly
 - gives problems when they have very different magnitudes
- Eg 1.0E-6 and 1.0E+6
 - no problem storing each number separately, but when adding:

- in 32-bit will be rounded to 1.0E6
- So

```
(0.000001 + 1000000.0) - 1000000.0 = 0.0

0.000001 + (1000000.0) - 1000000.0) = 0.000001
```

– FP arithmetic is commutative but not associative!

Example I


```
program recurrence
  implicit none
  real (kind=16) :: q23
  real (kind=8) :: d23
  real (kind=4) :: s23
  integer :: i
  s23 = 2.0 / 3.0
  d23 = 2.0 8 / 3.0 8
  q23 = 2.0 16 / 3.0 16
  do i = 1,18
     s23 = s23 / 10 + 1
     d23 = d23 / 10 + 1
     q23 = q23 / 10 + 1
     write(*,*) s23, d23, q23
  end do
  do i = 1,18
     s23 = (s23 - 1) * 10
     d23 = (d23 - 1) * 10
     q23 = (q23 - 1) * 10
     write(*,*) s23, d23, q23
  end do
end program recurrence
```

- start with $\frac{2}{3}$
- single, double, quadruple
- divide by 10 add 1
- repeat many times (18)
- subtract 1 multiply by 10
- repeat many times (18)

The output

gfortran recurrence.f90 -o recurrence ./recurrence 1.06666672 1.0666666666666667 1.10666668 1.1066666666666667 1.11066663 1.1106666666666667 1.11106670 .1110666666666666 1.11110663 1.1111066666666667 . 1111106666666666 1.11111069 1111110666666666 1111111066666666 .1111111106666667 1111111110666667 1111111111066667 1111111111106666 1111111111110668 1.11111116 1111111111111067 1 . 11111116 1.11111116 1111111111111111 1.11111164 1111111111111116 1.11111641 1111111111111605 1.11116409 1.11164093 1.111111111116045 1.11640930 1111111111160454 1111111111604544 1.16409302 1.64093018 1.1111111116045436 6.40930176 1111111160454357 54.0930176 1111111604543567 530.930176 . 11111116045435665 5299.30176 .1111160454356650 52983.0156 1.1111604543566500 .1116045435665001 529820.125 5298191.00 .1160454356650007 52981900.0 1.1604543566500070 529819008 1.6045435665000696 5.29819034E+09 6.0454356650006957 5.29819034E+10 50.454356650006957

1.0666666666666666666666666666666 1.106666666666666666666666666666 1.1106666666666666666666666666666666661 1.111066666666666666666666666666 1.111106666666666666666666666666666 .111111066666666666666666666666666 1111111066666666666666666666666 1.11111111066666666666666666666666 1.111111111066666666666666666666672 1.11111111110666666666666666666666 1111111111106666666666666666666675 11111111111106666666666666666666671 1.111111111111066666666666666666666 111111111111110666666666666666666 1111111111111110666666666666666657 . 1111111111111111066666666666666673 11111111111111111066666666666666666 111111111111111106666666666666666535 11111111111111106666666666666666349 11111111111111066666666666666663487 1.111111111111106666666666666666634870 . 111111111111066666666666666666348700 1.11111111111066666666666666663487003 1.1111111111066666666666666634870034 . 1111111110666666666666666348700338 1.1111111106666666666666663487003375 1.1111111066666666666666634870033754 1.1111110666666666666666348700337535 1.11111066666666666666663487003375350 1.1111066666666666666634870033753501 1.1110666666666666666348700337535014 1.1106666666666666663487003375350137 1.10666666666666666634870033753501367 1.06666666666666666348700337535013669 0.666666666666666634870033753501366885 The result: Two thirds

Single precision fifty three billion!

Double precision fifty!

Quadruple precision has no information about two-thirds after 18th decimal place

Example II – order matters!


```
#include <iostream>
                                         This code adds three
template <typename T>
                                         numbers together in a
void order(const char* name) {
                                         different order.
 T a, b, c, x, y;
                                         Single and double
 a = -1.0e10;
 b = 1.0e10;
                                         precision.
 c = 1.0;
 x = (a + b) + c;
 y = a + (b + c);
 std::cout << name << ": x = " << x << ", y = " << y << std::endl;</pre>
int main()
                        x = (-1.0 \times 10^{10} + 1.0 \times 10^{10}) + 1.0
 order<float>(" float");
 order<double>("double");
                        y = -1.0 \times 10^{10} + (1.0 \times 10^{10} + 1.0)
 return 0;
```

What is the answer?

The result. One


```
$ clang++ -00 order.cpp -o order
$ ./order
float: x = 1, y = 0
double: x = 1, y = 1
```

Example III: Gauss

- C. 1785AD in what is now Lower Saxony, Germany
 - School teacher sets class a problem
 - Sum numbers 1 to 100
 - Nine year old boy quickly has the answer

$$S_n = \sum_{i=1}^n i = \frac{n}{2}(n+1)$$

$$S_{100} = \frac{100}{2}(100 + 1) = 5050$$

Carl Friedrich Gauss (C.1840 AD)

Summing numbers


```
#include <stdio.h>
int main() {
  int i, m;
 float sum up, sum down;
  int n = 100;
  for (m = 0; m < 3; ++m) {
    sum up = 0;
    for (i = 1; i <= n; ++i) {
      sum_up += i;
    sum down = 0;
    for (i = n; i >= 1; --i) {
      sum down += i;
    printf("Gaussian sum up to %5d: %11.1f %11.1f %9.d\n",
            n, sum up, sum down, n*(n+1)/2;
    n *= 10;
```

sums numbers to 100, 1000, 10000 performs sum low-to-high and high-to-low in single precision

The result: Gauss' sum


```
$ clang gauss.c -o gauss
$ ./gauss
Gaussian sum up to 100: 5050.0 5050.0 5050
Gaussian sum up to 1000: 500500.0 500500.0 500500
Gaussian sum up to 10000: 50002896.0 50009072.0 50005000
```

In single precision summing numbers 1 to 10000 produces the wrong answer high-to-low and low-to-high produce different wrong answers

What happens when in parallel same calculation, different numbers of processors!

Special Values

- We have seen that zero is treated specially
 - corresponds to all bits being zero (except the sign bit)
- There are other special numbers
 - infinity: which is usually printed as "Inf"
 - Not a Number: which is usually printed as "NaN"
- These also have special bit patterns

Infinity and Not a Number

- Infinity is usually generated by dividing any finite number by 0.
 - although can also be due to numbers being too large to store
 - some operations using infinity are well defined, e.g. -3/ ∞ = -0
- NaN is generated under a number of conditions:

$$\infty$$
 + (- ∞), 0 × ∞ , 0/0, ∞ / ∞ , $\sqrt{(X)}$ where X < 0.0

- most common is the last one, eg x = sqrt(-1.0)
- Any computation involving NaN's returns NaN.
 - there is actually a whole set of NaN binary patterns, which can be used to indicate why the NaN occurred.

Exponent, e (unshifted)	Mantissa, f	Represents
000000	0	±0
000000	≠ 0	$0.f \times 2^{(1-bias)}$ [denormal]
000 < e < 111	Any	1.f × 2 ^(e-bias)
111111	0	±∞
111111	≠ 0	NaN

- Most numbers are in standard form (middle row)
 - have already covered zero, infinity and NaN
 - but what are these "denormal numbers" ???

Range of Single Precision

- Have 8 bits for exponent, 1+23 bits for mantissa
 - unshifted exponent can range from 0 to 255 (bias is 127)
 - smallest and largest values are reserved for denormal (see later) and infinity or NaN
 - unshifted range is 1 to 254, shifted is -126 to 127
- Largest number:

Smallest number

But what is smallest exponent reserved for ...?

IEEE Denormal Numbers

- Standard IEEE has mantissa normalised to 1.xxx
- But, normalised numbers can give x-y=0 when x≠y!
 - consider 1.10×2^{-Emin} and 1.00×2^{-Emin} where *Emin* is smallest exponent
 - upon subtraction, we are left with 0.10×2-Emin.
 - in normalised form we get 1.00×2-Emin-1:
 - this cannot be stored because the exponent is too small.
 - when normalised it must be flushed to zero.
 - thus, we have $x \neq y$ while at the same time x-y = 0!
- Thus, the smallest exponent is set aside for denormal numbers, beginning with 0.f (not 1.f).
 - can store numbers smaller than the normal minimum value
 - but with reduced precision in the mantissa
 - ensures that x = y when x-y = 0 (also called *gradual underflow*)

Denormal Example

- Consider the single precision bit patterns:
 - mantissa: 0000100....
 - exponent: 00000000
- Exponent is zero but mantissa is non-zero
 - a denormal number
 - value is 0. 0000100... x $2^{-126} \sim 2^{-5}$ x $2^{-126} = 2^{-131} \sim 3.7E-40$
- Smaller than normal minimum value
 - but we lose precision due to all the leading zeroes
 - smallest possible number is $2^{-23} \times 2^{-126} = 2^{-149} \sim 1.4E-45$

Exceptions

- May want to terminate calculation if any special values occur
 - could indicate an error in your code
- Can usually be controlled by your compiler
 - default behaviour can vary
 - eg some systems terminate on NaN, some continue
- Usual action is to terminate and dump the core

Exception	Result	
Overflow	±∞, f = 11111	
Underflow	0, ±2 ^{-bias} , [denormal]	
Divide by zero	±∞	
Invalid	NaN	
Inexact	round(x)	

- It is not necessary to catch all of these.
 - inexact occurs extremely frequently and is usually ignored
 - underflow is also usually ignored
 - you probably want to catch the others

IEEE Rounding

- We wish to add, subtract, multiply and divide.
 - E.g. Addition of two 3d.p. decimal numbers:

$$0.1241 \times 10^{-1}$$
 + 0.2815×10^{-2} = 0.1241×10^{-1} + 0.02815×10^{-1} = 0.15225×10^{-1}
But can only store 4 decimal places: 0.1522×10^{-1} or 0.1523×10^{-1}

In essence:

- we shift the decimal (radix) point,
- perform fixed point arithmetic,
- renormalise the number by shifting the radix point again.
- But what do we do with that 5?
 - do we round up, round down, truncate, ...

IEEE Rounding Modes

Rounding types:

- there are four types of rounding for arithmetic operations.
 - Round to nearest: e.g. -0.001298 becomes -0.00130.
 - Round to zero:e.g. -0.001298 becomes
 - Round to +infinity: e.g. -0.001298 becomes -0.00129.
 - Round to –infinity: e.g. -0.001298 becomes -0.00130.
- but how can we ensure the rounding is done correctly?

Guard digits:

- calculations are performed at slightly greater precision on the CPU, and then stored in standard IEEE floating-point numbers.
- usually uses three extra binary digits to ensure correctness.
- Your compiler may be able to change the mode

Implementations: C & FORTRAN

- Most C and FORTRAN compilers are fully IEEE 754 compliant.
 - compiler switches are used to switch on exception handlers.
 - these may be very expensive if dealt with in software.
 - you may wish to switch them on for testing (except inexact),
 and switch them off for production runs.
- But there are more subtle differences.
 - FORTRAN always preserves the order of calculations:
 - A + B + C = (A + B) + C, always.
 - C compilers are free to modify the order during optimisation.
 - -A+B+C may become (A+B)+C or A+(B+C).
 - Usually, switching off optimisations retains the order of operations.

Implementations: Java

In summary:

- Java only supports round-to-nearest.
- Java does not allow users to catch floating-point exceptions.
- Java only has one NaN.

All of this is technically a bad thing

- these tools can be used to to test for instabilities in algorithms
- this is why Java does not support these tools, and also why hardcore numerical scientists don't like Java very much
- however, Java also has some advantages over, say, C
 - forces explicit casting
 - you can use the strictfp modifier to ensure that the same bytecode produces identical results across all platforms.

Summary

Floating point numbers defined in IEEE 754 standard

- All real calculations suffer from rounding errors
 - important to choose an algorithm where these are minimised
- Practical exercise illustrates the key points