

6.2 隐马尔可夫模型

产生隐马尔可夫链模型

6.3 独立增量过程

1、独立增量过程(independence of increments)

设随机过程X(t), t≥0满足

(1)
$$P[X(t_0) = 0] = 1$$

(2) 对任意的时刻 $0 \le t_0 < t_1 < \dots < t_n < b$

过程的增量 $X(t_1) - X(t_0)$ 、 ··· 、 $X(t_n) - X(t_{n-1})$

是相互独立的随机变量,则称X(t)为<mark>独立增量过程</mark>,又称可加过程。

2、泊松过程 (齐次的)

泊松过程 $\{X(t), t\geq 0\}$ 在时间间隔 $[t_0, t_0+t]$ 内k次出现事件A的概率为:

$$P\left\{X(t_0+t)-X(t_0)=k\right\} \triangleq P_k\left(t_0,t_0+t\right) = \frac{\left(\lambda t\right)^k}{k!}e^{-\lambda t}$$

泊松脉冲列

设有脉冲随机出现过程Z(t), 脉冲出现是相互独立的, 即

$$Z(t) = \sum_{i} \delta(t - t_i) \qquad \qquad Z(t) = \frac{d}{dt} X(t)$$

Z(t) 称为泊松脉冲列。

散弹噪声

▽线性系统输入端为泊松脉冲序列Z(t),则系统的输出

为散弹噪声,即:
$$S(t) = \sum_{i} h(t - t_i)$$

3、维纳过程(热噪声)

第七章 估计理论

7.1 估计的基本概念

参量估计的统计推断模型

估计基本要素

- •参数空间
- •概率传递机制
- •观测空间
- •估计准则
- •估计空间

7.2 贝叶斯估计 (掌握)

频率派与贝叶斯派之争: 比较ML 和 MAP

$$p(\theta \mid z) = \frac{p(z \mid \theta)p(\theta)}{p(z)}$$

$$p(\theta | z) \propto p(z | \theta) p(\theta)$$

posterior likehood prior

- MLE(频率学派)认为参数 θ是一个未知的常量,需要从数据中估计出来。MAP(贝叶斯学派)认为参数 θ是一个随机变量,服从一个概率分布,应该充分利用先验概率。
- MLE的缺点是如果数据集太小会出现过拟合,或者严重偏差; MAP的缺点是使用不同的先验会得到不同的结果。

习题:

7. 3 7. 4 7. 6

1、贝叶斯估计

在估计某个量时,噪声的影响使估计产生误差,估计误差是要付出代价的,这种代价可以用代价函数来加以描述,记为 $c(\theta,\hat{\theta})=c(\theta-\hat{\theta})=c(\tilde{\theta})$ 。贝叶斯估计准则就是在已知代价函数及先验概率基础上,使估计付出的平均代价最小。

设观测值为z,待估参量为θ

估计误差: $\tilde{\theta} = \theta - \hat{\theta}(z)$

$$\hat{\theta}(z) \Leftarrow \min_{\hat{\theta}} E[C(\tilde{\theta})]$$

统计平均代价:

$$E[C(\tilde{\theta})] = E[C(\theta, \hat{\theta}(z))]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(\theta, \hat{\theta}(z)) f(\theta, z) d\theta dz$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} C(\theta, \hat{\theta}(z)) f(\theta \mid z) d\theta \right] f(z) dz$$

$$= \int_{-\infty}^{\infty} \overline{C}(\theta \mid z) f(z) dz$$
条件平均代价

等价于使下式最小:

$$\int_{-\infty}^{\infty} C(\theta, \hat{\theta}(z)) f(\theta | z) d\theta = 最小$$

2、典型代价函数及贝叶斯估计

平方代价:
$$C(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$$

绝对值代价:
$$C(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$$

均匀代价:
$$C(\theta, \hat{\theta}) = \begin{cases} 1, & |\theta - \hat{\theta}| \ge \frac{\Delta}{2} \\ 0, & |\theta - \hat{\theta}| < \frac{\Delta}{2} \end{cases}$$

平方代价:
$$C(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$$

☞ 最小均方估计(Minimal Square)

$$\overline{C}(\theta \mid z) = \int_{-\infty}^{\infty} (\theta - \hat{\theta})^2 f(\theta \mid z) d\theta = \mathbb{B} \, \text{in}$$

对 $\hat{\theta}$ 求导数,并使其等于零:

$$\frac{d\overline{C}(\theta \mid z)}{d\hat{\theta}} = -2\int_{-\infty}^{\infty} \theta f(\theta \mid z)d\theta + 2\hat{\theta}\int_{-\infty}^{\infty} f(\theta \mid z)d\theta$$

得:
$$\hat{\theta} = \int_{-\infty}^{\infty} \theta f(\theta \mid z) d\theta$$

即 $\hat{\theta} = E[\theta \mid z]$, 也称为条件均值估计。

绝对值代价: $C(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$

☞条件中位数估计(Median)

$$\overline{C}(\theta \mid z) = \int_{-\infty}^{\infty} |\theta - \hat{\theta}| f(\theta \mid z) d\theta$$

$$= \int_{-\infty}^{\hat{\theta}} (\hat{\theta} - \theta) f(\theta \mid z) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) f(\theta \mid z) d\theta$$

对 $\hat{\theta}$ 求导数,并使其等于零,得:

$$\int_{-\infty}^{\hat{\theta}_{abs}} f(\theta \mid z) d\theta = \int_{\hat{\theta}_{abs}}^{\infty} f(\theta \mid z) d\theta$$

可见,估计为条件概率密度 $f(\theta \mid z)$ 的中位数。

均匀代价:
$$C(\theta, \ \hat{\theta}) = \begin{cases} 1, \ |\theta - \hat{\theta}| \ge \frac{\Delta}{2} \\ 0, \ |\theta - \hat{\theta}| < \frac{\Delta}{2} \end{cases}$$
 ——

☞最大后验概率估计(maximal posterior probability)

$$\overline{C}(\theta \mid z) = 1 - \int_{\hat{\theta}_{map} - \frac{\Delta}{2}}^{\hat{\theta}_{map} + \frac{\Delta}{2}} f(\theta \mid z) d\theta$$

应当选择 $\hat{\theta}$,使它处在后验概率 $f(\theta \mid z)$ 的最大处。

最大后验概率方程:

$$\left. \frac{\partial f(\theta \mid z)}{\partial \theta} \right|_{\theta = \hat{\theta}_{map}} = 0 \, \, \vec{\boxtimes} \, \, \left. \frac{\partial \ln f(\theta \mid z)}{\partial \theta} \right|_{\theta = \hat{\theta}_{map}} = 0$$

由关系式:

$$f(\theta \mid z) = \frac{f(z \mid \theta) f(\theta)}{f(z)}$$

两边取对数并对θ求导,得最大后验概率方程的另一形式:

$$\left[\frac{\partial \ln f(z \mid \theta)}{\partial \theta} + \frac{\partial \ln f(\theta)}{\partial \theta} \right]_{\theta = \hat{\theta}_{man}} = 0$$

例7.2 设观测为 z = A + v,其中被估计量A在[-A₀,A₀]上均匀分布,测量噪声 $v\sim N(0\varsigma_v^2)$,求A的最大后验概率估计和最小均方估计。

解: 最大后验概率估计

$$f(A \mid z) = \frac{f(z \mid A)f(A)}{f(z)}$$

$$f(z \mid A) = \frac{1}{\sqrt{2\pi\sigma_{v}}} \exp\left\{-\frac{(z - A)^{2}}{2\sigma_{v}^{2}}\right\} \qquad f(A) = \begin{cases} \frac{1}{2A_{0}} & -A_{0} \le A \le A_{0} \\ 0 & \text{ #...} \end{cases}$$

当 $-A_0 \le z \le A_0$,f(A|z)的最大值出现在A=z处,所以, $\hat{A}_{map} = z$,当 $z > A_0$ 时,f(A|z)的最大值出现在 $A=A_0$ 处, $\hat{A}_{map} = A_0$,当 $z < -A_0$ 时, $f(\theta|z)$ 的最大值出现在 $A=-A_0$ 处, $\hat{A}_{map} = -A_0$,即

$$\hat{A}_{map} = \begin{cases} -A_0 & z < -A_0 \\ z & -A_0 \le z \le A_0 \\ A_0 & z > A_0 \end{cases}$$

再看最小均方估计:

$$\hat{A}_{ms} = E(A \mid z) = \int_{-\infty}^{\infty} Af(A \mid z) dA = \int_{-\infty}^{\infty} A \frac{f(z \mid A) f(A)}{f(z)} dA$$

$$= \frac{\int_{-\infty}^{\infty} Af(z \mid A) f(A) dA}{\int_{-\infty}^{\infty} f(z \mid A) f(A) dA} = \frac{\int_{-A_0}^{A_0} \frac{A}{\sqrt{2\pi\sigma_v}} \exp[-\frac{(z - A)^2}{2\sigma_v^2}] \cdot \frac{1}{2A_0} dA}{\int_{-A_0}^{A_0} \frac{1}{\sqrt{2\pi\sigma_v}} \exp[-\frac{(z - A)^2}{2\sigma_v^2}] \cdot \frac{1}{2A_0} dA}$$

$$= \frac{\int_{z - A_0}^{z + A_0} (z - u) \cdot \exp[-\frac{u^2}{2\sigma_v^2}] du}{\int_{z - A_0}^{z + A_0} \exp[-\frac{u^2}{2\sigma_v^2}] du}$$

$$= z - \frac{2\sigma_v^2 \int_{(x-a)/\sqrt{2}}^{(x+a)/\sqrt{2}} u \exp[-u^2] du}{\sigma_v \int_{x-a}^{x+a} \exp[-\frac{u^2}{2}] du}$$

$$= z - \frac{2\sigma_v^2 \int_{(x-a)/\sqrt{2}}^{(x+a)/\sqrt{2}} \operatorname{sexp}[-s^2] ds}{\sigma_v \int_{x-a}^{x+a} \exp[-\frac{t^2}{2}] dt} \qquad s = \frac{u}{\sqrt{2}\sigma_v}$$

$$t = \frac{u}{\sigma_v}$$

$$= z - \frac{\sigma_v \left\{ \exp[-(x-a)^2/2] - \exp[-(x+a)^2/2 \right\}}{\sqrt{2\pi}[Q(x-a) - Q(x+a)]}$$

Q(.)为标准正态概率密度函数的概率右尾函数,

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp(-u^2/2) du$$

例7. 3 高斯白噪声中的直流电平估计-高斯先验分布。设有N次独立观测 z_i =A+ v_i , i=1, 2, ···. N,其中v^N(0, σ^2),A^ $N(\mu_A, \sigma_A^2)$,求A的估计。 【阅读P204】

解 先求后验概率密度:

$$f(A|\mathbf{z}) = \frac{f(\mathbf{z}|A)f(A)}{\int_{-\infty}^{\infty} f(\mathbf{z}|A)f(A)dA}$$

$$= \dots$$

$$= \frac{1}{\sqrt{2\pi\sigma_{A|z}^2}} exp\left[-\frac{1}{2\sigma_{A|z}^2} (A - \mu_{A|z})^2\right]$$
(23)

由(23)可以看出,后验概率密度是高斯的。由于最小均方估计为被估计量的条件均值,所以

$$\hat{A}_{ms} = \mu_{A|z} = \left(\frac{N}{\sigma^2}\bar{z} + \frac{\mu_A}{\sigma_A^2}\right)\sigma_{A|z}^2 = \frac{\frac{N}{\sigma^2}\bar{z} + \frac{\mu_A}{\sigma_A^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_A^2}}$$
(24)

令
$$k = \frac{\sigma_A^2}{\sigma_A^2 + \sigma^2/N}$$
,则

$$\hat{A}_{ms} = k\bar{z} + (1 - k)\mu_A \tag{25}$$

另外,由于最大后验概率估计是使后验概率最大对应的A值,因

此,由 (23)式可得
$$\hat{A}_{map} = \mu_{A|z} = \hat{A}_{ms}$$
 (26)

即最大后验概率估计与最小均方估计相等。

中山大學 7.3 最大似然估计

1、最大似然估计 (Maximum Likelihood Estimate)

由最大后验概率估计

$$\left[\frac{\partial \ln f(z \mid \theta)}{\partial \theta} + \frac{\partial \ln f(\theta)}{\partial \theta} \right]_{\theta = \hat{\theta}_{map}} = 0$$

若先验概率密度函数 $f(\theta)$ 未知,则由左边第一项求解 参量 θ ,即最大似然估计,用 $\hat{\theta}_{mL}$ 表示。<mark>最大似然方程</mark>为:

$$\left. \frac{\partial \ln f(z \mid \theta)}{\partial \theta} \right|_{\theta = \hat{\theta}_{mL}} = 0$$

7.3 最大似然估计

例7.4 高斯白噪声中的直流电平估计-未知参数。设有N次独立观测 z_i =A+ v_i ,i=1,2,....N,其中 v_i ~N(0, σ^2),A为未知参数, σ^2 已知,求A的最大似然估计。

【解】
$$f(\mathbf{z} \mid A) = \left(\frac{1}{2\pi\sigma^2}\right)^{N/2} \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^{N}(z_i - A)^2\right]$$

$$\ln f(\mathbf{z}; A) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (z_i - A)^2$$

$$\frac{\partial \ln f(\mathbf{z}; A)}{\partial A} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (z_i - A) = \frac{N}{\sigma^2} \left(\frac{1}{N} \sum_{i=1}^{N} z_i - A \right) \qquad \hat{A}_{ml} = \overline{z} = \frac{1}{N} \sum_{i=1}^{N} z_i$$

7.3 最大似然估计

例7.6 高斯白噪声中的直流电平估计-未知参数与未知方差。 设有N次独立观测 z_i =A+ v_i ,i=1,2,....N,其中v-N(0, σ^2), σ^2 、A均为未知参数,求A和 σ^2 的最大似然估计。

【解】 \Rightarrow $\theta = [A \sigma^2]^T$

$$f(\mathbf{z} \mid \mathbf{\theta}) = \left(\frac{1}{2\pi\sigma^2}\right)^{N/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (z_i - A)^2\right]$$

$$\ln f(\mathbf{z}; \mathbf{\theta}) = -\frac{N}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (z_i - A)^2$$

中山大學 7.3 最大似然估计

$$\frac{\partial \ln f(\mathbf{z}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{N}{\sigma^2} \left(\frac{1}{N} \sum_{i=1}^N z_i - A \right) \\ -\frac{N}{2\sigma^4} \left[\sigma^2 - \frac{1}{N} \sum_{i=1}^N (z_i - A)^2 \right] \end{bmatrix} = 0$$

得到:

$$\hat{\boldsymbol{\theta}}_{ml} = \begin{bmatrix} \hat{A}_{ml} \\ \hat{\boldsymbol{\sigma}}^2 \end{bmatrix} = \begin{bmatrix} \overline{z} \\ \frac{1}{N} \sum_{i=1}^{N} (z_i - \overline{z})^2 \end{bmatrix}$$

7.3 最大似然估计

估计问题的案例: 时延估计(time delay estimation)

通过案例

- 阐述估计的基本概念
- 分析求解估计问题的基本步骤
- 如何评估估计量的性能

Problem:

How to determine the distance of target and sensor?

$$R = \frac{\tau_0 c}{2}$$

Also Be termed TOA (Time of Arrival)

Range estimation is equivalent to time delay estimation (TDE).

问题的统计描述 (Problem of formulation)

The noise corrupted signals received by the radar over some time interval can be modeled as

$$z(t) = as(t - \tau_0) + v(t) \qquad 0 \le t \le T$$

- •How to develop an estimator to determine τ_0 ?
- •How to evaluate the performance of the estimator?
- •If a is unknown, how to estimate τ_0 ?

步骤 1: 将连续的观测离散化

假定噪声是零均值高斯过程, 功率谱密度和相关函数分别为

$$R_{v}(\tau) = \int_{-B}^{B} G_{v}(f) df = N_{0}B \frac{\sin(2\pi B\tau)}{2\pi B\tau}$$

$$R_{v}(\tau) = N_{0}B \frac{\sin(2\pi B\tau)}{2\pi B\tau}$$

如果对z(t)以 △=1/(2B) 进行抽样

$$z(n\Delta) = s(n\Delta - \tau_0) + v(n\Delta) \qquad n = 0, 1, ..., N - 1$$

相互独立的噪声序列

$$z[n] = s(n\Delta - \tau_0) + v[n]$$
 $n = 0, 1, ..., N-1$

$$z[n] = \begin{cases} v[n] & 0 \le n \le n_0 - 1 \\ s[n - n_0] + v[n] & n_0 \le n \le n_0 + M - 1 \\ v[n] & n_0 + M \le n \le N - 1 \end{cases}$$

The problem is changed to estimate n₀

步骤2: 选择一种参数估计的方法

最大似然估计 (Maximum Likelihood Estimate) 是一种简单的

估计。

定义:
$$f(\mathbf{z}; \theta) \Big|_{\theta = \hat{\theta}_{ml}} = \max$$

定义:
$$f(\mathbf{z}; \theta) \Big|_{\theta = \hat{\theta}_{ml}} = \max$$
或 $\ln f(\mathbf{z}; \theta) \Big|_{\theta = \hat{\theta}_{ml}} = \max$

Probability of θ lied in the interval is maximum

$$f(\mathbf{z}; n_0) = \prod_{n=0}^{N-1} f(z[n], n_0)$$

$$= \prod_{n=0}^{n_0-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} z^2[n]\right]$$

$$\cdot \prod_{n=n_0}^{n_0+M-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (z[n] - s[n-n_0])^2\right]$$

$$\cdot \prod_{n=n_0+M}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} z^2[n]\right]$$

中山大學 7.8 信号处理实例

$$f(\mathbf{z}; n_0) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} z^2 [n]\right]$$

$$\cdot \prod_{n=n_0}^{n_0+M-1} \exp\left[-\frac{1}{2\sigma^2} \left(-2z[n]s[n-n_0] + s^2[n-n_0]\right)\right]$$

Equivalently

$$\exp\left[-\frac{1}{2\sigma^{2}}\sum_{n=n_{0}}^{n_{0}+M-1}\left(-2z[n]s[n-n_{0}]+s^{2}[n-n_{0}]\right)\right]$$
 Maximizing

$$\sum_{n=n_0}^{n_0+M-1} \left(-2z[n]s[n-n_0] + s^2[n-n_0]\right)$$
 Minimizing

$$\sum_{n=n_0}^{n_0+M-1} s^2[n-n_0] = \sum_{n=0}^{N-1} s^2[n]$$

因此, no 的MLE 可由使下式最大来求得

$$\sum_{n=n_0}^{n_0+M-1} z[n]s[n-n_0]$$

$$\hat{n}_0 = \arg \max \left\{ \sum_{n=n'_0}^{n'_0 + M - 1} z[n] s[n - n'_0] \right\}$$

由于 $R=c\tau_0/2=cn_0\Delta/2$,所以距离的最大似然估计为

$$\hat{R} = (c\Delta/2)\hat{n}_0$$

第三步:估计器的实现

$$\hat{n}_0 = \arg\max_{n_0} \left\{ \sum_{n=n_0'}^{n_0'+M-1} z[n] s[n-n_0'] \right\}$$

距离估计器的实现框图

