Implicit and Logarithmic Differentiation

- 1. Fill in the blanks: To use implicit differentiation, first, take the derivative of every term with respect to ______. Whenever the term _____ appears, use ______. Finally, solve for _____.
- 2. Consider the curve given by $y^3 = \sin x$.
 - (a) Solve for y first and then compute $\frac{dy}{dx}$ using the chain rule.
 - (b) Compute $\frac{dy}{dx}$ using implicit differentiation without first solving for y.
 - (c) Verify that your answers from parts a and b are the same (you may need to use your expression for y in terms of x from part a in order to do so).
- 3. The figure below at right is the curve given by $x^4 3x^2 + y^4 + y^2 + 2x^2y^2 = 0$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$ (do not try to simplify after solving for it!).

- (b) What condition needs to be satisfied for the tangent line to the curve to be vertical? Sketch on the graph where this will occur.
- (c) What condition needs to be satisfied for the tangent line to the curve to be horizontal? Sketch on the graph where this will occur.
- 4. The figure below at left is curve given by $(x^2 + y^2 1)^3 x^2y^3 = 0$.
 - (a) Differentiate each term with respect to x to obtain an equation in terms of x, y, and $\frac{dy}{dx}$, but do not try to simplify or solve for $\frac{dy}{dx}$.

(b) Use your equation from part a to find the value of $\frac{dy}{dx}$ at the point (1,1) by plugging in x = 1, y = 1 and solving.

(c) Use your result from part b to find the equation of the tangent line to the curve at the point (1,1). Sketch the tangent line on the graph.

- 5. Recall that f^{-1} represents the inverse function of f.
 - (a) Discuss with your group what it means for two functions to be inverses of each other.

(b) If y = f(x), what is the relationship between x, y, and f^{-1} ?

(c) If $y = f^{-1}(x)$, what is $\frac{dy}{dx} = (f^{-1})'(x)$? You may use your notes to find the equation, or derive it through implicit differentiation.

(d) If f(4) = 5 and $f'(4) = \frac{2}{3}$, find $(f^{-1})'(5)$.

(e) If $f(x) = x + e^x$, find $(f^{-1})'(1)$.

6. Fill in the blanks: We use logarithmic differentiation when we want to find the derivative of a function of the form _____. First, we set _____ = ____. Next, we take the natural logarithm of both sides and move _____ out of the logarithm. We can now apply _____ to solve for _____. Finally, we replace _____ with

7. Use logarithmic differentiation to find $\frac{dy}{dx}$ for each of the following equations:

(a)
$$y = x^x$$

(b)
$$y = (\sin x)^{\ln x}$$

(c)
$$x^y = y^x$$

8. Find the equation of the tangent line to the curve $y = \ln(x^2 + y^2)$ at the point (1,0).