CIRCUIT & ELECTRONIC LABORATORY 4

วัตถุประสงค์

- 1. ฝึกอ่านสัญลักษณ์และ Datasheet ของตัวอุปกรณ์
- 2. ฝึกการออกแบบวงจรในการใช้งาน Opamp
- 3. ฝึกการเขียนแบบและการวาง Layout วงจร
- 4. ฝึกทักษะการดัด ตัดแต่งขาอุปกรณ์และการลงอุปกรณ์บอร์ดแบบไข่ปลา (Stripboard)
- 5. ฝึกการใช้คีมตัด คีมจับ การบัดกรี การถอดอุปกรณ์ที่บัดกรีแล้ว
- 6. ฝึกการใช้ Multi-meter

ทฤษฎีที่เกี่ยวข้อง

Op-Amp

ออปแอมป์ (Op-Amp) เป็นชื่อย่อสำหรับเรียกวงจรขยายที่มาจาก Operating Amplifier เป็น วงจรขยายแบบต่อตรง (Direct couled amplifier) ที่มีอัตราการขยายสูงมากใช้การป้อนกลับ แบบลบไปควบคุมลักษณะการทำงาน ทำให้ผลการทำงานของวงจรไม่ขึ้นกับพารามิเตอร์ภายในของออป แอมป์ วงจรภายในประกอบด้วยวงจรขยายที่ต่ออนุกรมกัน ภาคคือ วงจรขยายดิฟเฟอเรนเชียลด้านทางเข้า วงจรขยายดิฟเฟอเรนเชียลภาคที่สอง วงจรเลื่อนระดับและวงจรขยายกำลังด้านทางออก สัญลักษณ์ที่ใช้ แทนออปแอมป์จะเป็นรูปสามเหลี่ยม ไอชีออปแอมป์เป็นไอชีที่แตกต่างไปจากลิเนียร์ไอชีทั่วๆ ไปคือไอชี ออปแอมป์มีขาอินพุท 2 ขา เรียกว่าขาเข้าไม่กลับเฟส (Non-Inverting Input) หรือ ขา + และขา เข้ากลับเฟส (Inverting Input) หรือขา — ส่วนทางด้านออกมีเพียงขาเดียว เมื่อสัญญาณป้อนเข้า ขาไม่กลับเฟสสัญญาณทางด้านออกจะมีเฟสตรงกับทางด้านเข้า แต่ถ้าป้อนสัญญาณเข้าที่ขาเข้ากลับเฟสสัญญาณทางออกจะมีเฟสต่างไป 180 องศา จากสัญญาณทางด้านเข้า

อุปกรณ์ที่ใช้ในการทดลอง

- 1. หัวแร้ง ตะกั่ว ที่ดูดตะกั่ว
- 2. Stripboard
- 3. Power supply
- 4. ตัวต้านทาน สายไฟ ลวดทองแดง
- 5. คัตเตอร์ คีมจับ คีมตัด
- 6. Opamp
- 7. Multi-meter

Automation Engineering KMITL

ให้ออกแบบวงจร**Opamp**ให้ออกOutputตรงตามสมการข้างล่าง

$$y = mx + c$$

$$m = \frac{5-1}{6-0} = \frac{2}{3}$$

$$y = \frac{2}{3}x + 1$$

$$V_{out} = \frac{2}{3}V_{in} + 1$$

จาก
$$i_1 + i_2 = i_3$$

$$\frac{V_{in} - V_a}{R_1} + \frac{(1\ V) - V_a}{R_2} = \frac{V_a - V_2}{R_3}$$

กระแสที่ไหลเข้าOp-amp=0 \cdot ที่ node $V_a=0$ (คุณสมบัติOpampในอุดมคติ)

$$\frac{V_{in}}{30} + \frac{1}{20} = \frac{-V_2}{20}$$

$$V_2 = -(\frac{2}{3}V_{in} + 1)$$

จาก $i_4=i_5$

$$\frac{V_2 - V_b}{R_4} = \frac{V_b - V_{out}}{R_5}$$

กระแสที่ใหลเข้าOp-amp=0 \cdot ที่ node $V_b=0$ (คุณสมบัติOpampในอุดมคติ)

$$\frac{V_2}{10} = \frac{-V_{out}}{10}$$

$$-(\frac{2}{3}V_{in} + 1) = -V_{out}$$

$$V_{out} = \frac{2}{3}V_{in} + 1$$

ผลการทดลอง

จากการคำนวณ

V_{in}	V_2	V_{out}	
0	-1	1	
1	-1.667	1.667	
2	-2.333	2.333	
3	-3	3	
4	-3.667	3.667	
5	-4.333	4.333	
6	-5	5	

จากการทดลอง

V_{in}	$V_2($ ทดลอง $)$	V_{out} (ทดลอง)	V_{out} (คำนวณ)	% Error (%)
0	-1	1	1	0
1	-1.66	1.66	1.667	0.42
2	-2.33	2.33	2.333	0.12
3	-3	3	3	0
4	-3.65	3.66	3.667	0.19
5	-4.31	4.32	4.333	0.06
6	-4.96	4.98	5	0.4

Automation Engineering KMITL

สรุปผลการทดลอง

Op-amp เป็นอุปกรณ์ที่ไว้ขยายแรงดันซึ่งมี Input+ และ Input- ออกมาทาง Output ซึ่งจากการทดลองให้เราป้อนค่า V_{in} โดยให้ค่า Output ที่ได้ออกมาดังสมการ $V_{out}=\frac{2}{3}V_{in}+1$ ซึ่งการต่อ Inverting Amplifier ค่า Output ที่ได้ออกมาตอนแรกจะมีค่าติดลบ เพราะเราป้อน Input เข้าขา Op-amp Input- ซึ่งทำให้ค่า Output ที่ออกมามีค่าตรงข้ามกับค่า Input ที่เรา ป้อนไว้ เราจึงต้องต่อ Inverting Amplifier เข้าไปอีก 1 ชุด เพื่อให้ค่า Output ที่มีค่าติดลบ ออกมาเป็นค่าบวก ซึ่งตรงตามสมการ $V_{out}=\frac{2}{3}V_{in}+1$

