A. Conventional number system.

Carry-propagate adders (CPA)

- Switched carry-ripple adder
- Carry-skip adder
- Carry-lookahead adder
- Prefix adder
- Carry-select adder and conditional-sum adder
- Variable-time adder

B. Redundant number system.

Totally-parallel adders (TPA); adders with limited carry propagation

- Carry-save adder
- Signed-digit adder

$$x + y + c_{in} = 2^n c_{out} + s$$

The solution:

$$s = (x + y + c_{in}) \bmod 2^n$$

$$c_{out} = \begin{cases} 1 & \text{if } (x + y + c_{in}) \ge 2^n \\ 0 & \text{otherwise} \end{cases}$$

$$= \lfloor (x+y+c_{in})/2^n \rfloor$$

Figure 2.1: (a) An n-bit adder. (b) 1-bit adder (full adder module).

Primitive module full adder (FA)

$$x_i + y_i + c_i = 2c_{i+1} + s_i$$

with solution

$$s_i = (x_i + y_i + c_i) \mod 2$$

 $c_{i+1} = |(x_i + y_i + c_i)/2|$

- 1. Obtain carries (carry at i depends on $j \leq i$)
 - non-trivial to do fast
- 2. Compute sum bits (local function)

Figure 2.2: Steps in addition.

Case	x_i	y_i	$x_i + y_i$	c_{i+1}	Comment
1	0	0	0	0	kill (stop) carry-in
2	0	1	1	c_i	propagate carry-in
	1	0	1	c_i	propagate carry-in
3	1	1	2	1	generate carry-out

Case 1 (Kill): $k_i = x_i' y_i' = (x_i + y_i)'$

Case 2 (Propagate): $p_i = x_i \oplus y_i$

Case 3 (Generate): $g_i = x_i y_i$

Then

$$c_{i+1} = g_i + p_i c_i = x_i y_i + (x_i \oplus y_i) c_i$$

Alternative (simpler) expression:

$$c_{i+1} = g_i + a_i c_i$$

Since $a_i = k'_i$ we call it "alive"

Two types:

1-carry chain consisting of carry=1 0-carry chain consisting of carry=0

i	9	8	7	6	5	4	3	2	1	0
$\overline{x_i}$	1	0	1	0	1	1	1	1	0	0
y_i	0	0	0	1	0	1	0	0	1	0
	p	k	p	p	p	g	p	p	p	\overline{k}
	a		a	a	a	a	a	a	a	
c_{i+1}	0 ←	0	1 ←	- 1 ←	- 1 ←	1	0 ←	- 0 ←	- 0 ←	- 0

$$c_{j+1} = g_{(j,i)} + p_{(j,i)}c_i = g_{(j,i)} + a_{(j,i)}c_i$$

or, for i = 0

$$c_{j+1} = g_{(j,0)} + p_{(j,0)}c_0 = g_{(j,0)} + a_{(j,0)}c_0$$

Recursive combining of subranges of variables:

$$\begin{array}{ll} g_{(f,d)} &= g_{(f,e)} + p_{(f,e)} g_{(e-1,d)} = g_{(f,e)} + a_{(f,e)} g_{(e-1,d)} \\ a_{(f,d)} &= a_{(f,e)} a_{(e-1,d)} \\ p_{(f,d)} &= p_{(f,e)} p_{(e-1,d)} \end{array}$$

Figure 2.3: Computing $(g_{(f,d)}, a_{(f,d)})$.

Figure 2.4: Carry-ripple adder.

$$T_{CRA} = (n-1)t_c + \max(t_c, t_s)$$

Figure 2.5: Implementation of full-adder. (a) Two-level network. (b) Multilevel network with XOR, AND and OR gates; (c) Multilevel implementation with XOR and NAND gates.

Figure 2.6: Switch carry-ripple network (Manchester circuit)

Figure 2.7: Carry-skip adder: (a) A group with carry bypass. (b) n-bit CSK adder.

Figure 2.8: Carry chains in carry-skip adder: A case with several carry chains.

Figure 2.9: (a) Critical path in carry-skip adder. (b) The worst-case situation for n=16.

$$T_{CSK} = mt_c + t_{mux} + (\frac{n}{m} - 2)t_{mux} + (m - 1)t_c + t_s$$
$$= (2m - 1)t_c + (\frac{n}{m} - 1)t_{mux} + t_s$$

Figure 2.10: Carry-skip adder using AND-OR for bypass

Fixed-size:

$$m_{opt} = (\frac{t_{mux}}{2t_c}n)^{1/2}$$
 (minimum delay)
 $T_{opt} \approx (8t_{mux}t_cn)^{1/2}$

Variable-size:

Figure 2.11: Optimal distribution of group sizes in carry-skip adder.

Figure 2.12: One-level carry-lookahead adder

Figure 2.13: Carry-lookahead adder module (m = 4).

Figure 2.14: 4-bit carry-lookahead generator CLG-4.

Figure 2.15: Two-level carry-lookahead adder (n = 32)

carries from CLG-2 modules

Figure 2.16: Three-level carry-lookahead adder (n=8, m=2).

Figure 2.17: Composition of spans in computing (g, a) signals.

Figure 2.18: 8-bit prefix adder. (Modules to obtain p_i , g_i , and a_i signals not shown.)

Figure 2.19: 8-bit prefix adder with maximum fanout of three and five levels. (Modules to obtain p_i , g_i , and a_i signals not shown.)

Figure 2.20: 8-bit prefix adder with minimum number of levels and fanout of two. (Modules to obtain p_i , g_i , and a_i signals not shown.)

Digital Arithmetic - Ercegovac/Lang 2003

2 - Fast Two-Operand Adders

Figure 2.21: (a) Obtaining conditional outputs. (b) Combined conditi onal adder.

Figure 2.22: Carry-select adder.

 $Figure\ 2.23:$ Doubling the number of bits of the conditional sum.

Figure 2.24: 16-bit conditional-sum adder (m = 4).

$egin{array}{c} s_3^0 \ c_4^0 \end{array}$	s_2^0	$\begin{array}{c} s_1^0 \\ c_2^0 \end{array}$	s_0^0	Step 2		
$\begin{bmatrix} s_3^1 \\ c_4^1 \end{bmatrix}$	s_2^1	$egin{array}{c} s_1^1 \ c_2^1 \end{array}$	s_0^1			
$\begin{bmatrix} s_3^0 \\ c_4^0 \end{bmatrix}$	s_2^0	s_1^0	s_0^0			
$\begin{vmatrix} s_3^1 \\ c_4^1 \end{vmatrix}$	s_2^1	s_1^1	s_0^1	Step 3		

Figure 2.25: Conditional-sum addition for eight bits with m=1: (a) Template. (b) E xample.

Increase throughput

Figure 2.26: Pipelined carry-ripple adder (for group size of 1 and n=4)

Figure 2.27: Variable-time adder: Type 1.

Two carry signals:

$$c_i^0$$
 zero carry c_i^1 one carry

with coding:

STFA module expressions:

$$c_{i+1}^{0} = k_{i}(c_{i}^{0} + c_{i}^{1}) + p_{i}c_{i}^{0} = k_{i}c_{i}^{1} + (p_{i} + k_{i})c_{i}^{0}$$

$$c_{i+1}^{1} = g_{i}(c_{i}^{0} + c_{i}^{1}) + p_{i}c_{i}^{1} = g_{i}c_{i}^{0} + (p_{i} + g_{i})c_{i}^{1}$$

$$s_{i} = p_{i} \oplus c_{i}^{1}$$

$$k_i = x_i' y_i', \quad g_i = x_i y_i, \quad p_i = x_i \oplus y_i$$

Addition time: based on actual delays, not worst-case

$$T_{var-1} = \sum_{i=0}^{n-1} t_{c,i}$$

Figure 2.28: Variable-time adder: Type 2.

Carry chains initiated simultaneously CSFA module expressions:

$$c_{i+1}^0 = k_i + p_i c_i^0, \quad c_{i+1}^1 = g_i + p_i c_i^1$$

Completion signal:

$$F = \prod_{i=0}^{n-1} (c_i^0 + c_i^1)$$

Addition time: proportional to $log_2(n)$

Figure 2.29: Implementing ones' complement adder with prefix network. (Modules to obtain p_i , g_i , and a_i signals not shown.)

Figure 2.30: Accumulation with (a) non-redundant, and (b) redundant representation of sum.

Figure 2.31: Carry-save adder: (a) Bit level. (b) Bit-vector level.

X		0	1	1	1	0	1	0	0
Y		0	0	1	1	1	0	1	1
Z		1	0	1	0	1	0	1	0
\overline{VS}		1	1	1	0	0	1	0	1
(c_{out}, VC)	0	0	1	1	1	0	1	0	1
digit value	0	1	2	2	1	0	2	0	2

Figure 2.32: [4:2] adder.

XS		1	0	1	1	0	1	1	0	0
XC				1			1			0
Υ		0	1	0	0	0	1	1	1	1
VS		0	0	0	1	1	1	0	1	1
(c_{out}, VC)	1			0			1			0

 $Figure\ 2.33:\ {\sf Radix-8\ carry-save\ adder}.$

Uses signed-digit representation (redundant)

$$x = \sum_{i=0}^{n-1} x_i r^i$$

with digit set

$$D = \{-a, \dots, -1, 0, 1, \dots, a\}$$

- Limits carry propagation to next position
- Addition algorithm:

Step 1:
$$x + y = w + t$$

 $x_i + y_i = w_i + rt_{i+1}$

Step 2:
$$s = w + t$$

 $s_i = w_i + t_i$

• No carry produced in Step 2

Figure 2.34: Signed-digit addition.

 x_{n-1}

 t_n

 S_n

Case A: two SD operands; result SD Step 1:

$$(t_{i+1}, w_i) = \begin{cases} (0, x_i + y_i) & \text{if } -a + 1 \le x_i + y_i \le a - 1 \\ (1, x_i + y_i - r) & \text{if } x_i + y_i \ge a \\ (-1, x_i + y_i + r) & \text{if } x_i + y_i \le -a \end{cases}$$

- algorithm modified for r=2

 ${f Case}\ {f B}$: two conventional operands; result SD

Case C: one conventional, one SD; result SD

RECODING 1:

$$x_i + y_i = 2h_{i+1} + z_i \in \{-2, -1, 0, 1, 2\}$$
$$h_i \in \{0, 1\}, z_i \in \{-2, -1, 0\}$$
$$q_i = z_i + h_i \in \{-2, -1, 0, 1\}$$

RECODING 2:

$$q_i = z_i + h_i = 2t_{i+1} + w_i \in \{-2, -1, 0, 1\}$$

 $t_i \in \{-1, 0\}, \ w_i \in \{0, 1\}$

THE RESULT: $s_i = w_i + t_i \in \{-1, 0, 1\}$

Figure 2.35: Double recoding method for signed-bit addition

SIGNED BINARY ADDITION: METHOD 2 (Using Previous Digit)

$$P_{i} = \begin{cases} 0 & \text{if } (x_{i}, y_{i}) \text{ both nonnegative} \\ & \text{(which implies } t_{i+1} \geq 0) \\ 1 & \text{otherwise } (t_{i+1} \leq 0) \end{cases}$$

$x_i + y_i$	P_{i-1}	t_{i+1}	$ w_i $
2	-	1	0
1	$0(t_i \ge 0)$	1	-1
1	$1(t_i \le 0)$	0	1
0	-	0	0
-1	$0(t_i \ge 0)$	0	-1
-1	$1(t_i \le 0)$	-1	1
-2	-	-1	0

Figure 2.36: Signed-bit addition using the information from previous digit

Example

X	0	-		1	1	1	1	0	1	1
Y	0	-	[1	0	1	0	1	0	1
Р	0	()	0	0	1	0	0	1	0
W T	0 0 1				$\frac{1}{1}$					
S	1	_	1	0	0	1	1	1	0	0

BIT-LEVEL IMPLEMENTATION OF RADIX-2 ALGORITHMS

- Case C: $x_i \in \{0, 1\}$, $y_i, s_i \in \{-1, 0, 1\}$
- \bullet Code: borrow-save $y_i = y_i^+ y_i^-$, $y_i^+, y_i^- \in \{0, 1\}$, sim. for s_i
- $x_i + y_i \in \{-1, 0, 1, 2\}$: recode to (t_{i+1}, w_i) , $t_{i+1} \in \{0, 1\}$, $w_i \in \{-1, 0\}$

$$x_i + y_i^+ - y_i^- = 2t_{i+1} + w_i$$

x_i	y_i^+	y_i^-	$x_i + y_i$	t_{i+1}	$-w_i$
0	0	0	0	0	0
0	0	1	-1	0	1
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	2	1	0
1	1	1	1	1	1

$$w_{i} = (x_{i} \oplus y_{i}^{+} \oplus (y_{i}^{-})')'$$

$$t_{i+1} = x_{i}y_{i}^{+} + x_{i}(y_{i}^{-})' + y_{i}^{+}(y_{i}^{-})'$$

⇒ implemented using a full-adder and inverters (for variables subtracted)

Figure 2.37: Redundant adder: one operand conventional, one operand redundant, result redundant.

Apply double recoding

Figure 2.38: Redundant adder: operands and result redundant

SUMMARY

Scheme	Delay	Area
	proportional to	proportional to
Linear structures:		
Carry ripple	$\mid n \mid$	$\mid n \mid$
Carry lookahead (one level)	n/m	$ (k_m m)(n/m) = k_m n $
Carry select (one level)	n/m	$ (k_m m)(n/m) = k_m n $
Carry skip (one level)	\sqrt{n}	$\mid n \mid$
Logarithmic structures:		
Carry lookahead (max. levels)	$2\log_m n$	$ (k_m m)(n/m) = k_m n $
Prefix	$\log_m n$	$((k_m m) \log_m n)n$
Conditional sum	$\log_2(n/m)$	$(k_m + \log_2(n/m))n$
Completion signal (avg. delay)	$\log_2 n)/m$	$k_m m(n/m) = k_m n$
Redundant	const.	n