

Formaliseret førsteordenslogik

Bachelorforsvar

Andreas Halkjær From

Vejleder: Jørgen Villadsen

Medvejledere: Anders Schlichtkrull og John Bruntse Larsen

DTU Compute

Institut for Matematik og Computer Science

Disposition

- Førsteordenslogik
- Naturlig deduktion
- Isabelle
- Sundhed
- Komplethed
- Åbne formler
- Konklusion

Førsteordenslogik

Motivation

Værktøj til ræsonnering, f.eks om softwarekorrekthed. Software er alle steder, i vores telefoner, biler, fly, pacemakere osv.

Motivation

Værktøj til ræsonnering, f.eks om softwarekorrekthed. Software er alle steder, i vores telefoner, biler, fly, pacemakere osv.

Syntaks

Hvordan vi skriver ræsonnementer ned.

Semantik

Hvad de betyder.

Førsteordenslogik

Syntaks

Termer

- Variable, x, y, z, \dots
- ullet Funktioner, f,g,h,\ldots anvendt på lister af termer

DTU

Syntaks

Termer

- Variable, x, y, z, \dots
- Funktioner, f, g, h, \ldots anvendt på lister af termer

Formler

- Falskhed, ⊥.
- ullet Prædikater, p,q,r,\ldots , givet en liste af termer af bestemt længde.
- Konjuktion, $A \wedge B$, disjunktion, $A \vee B$, implikation, $A \rightarrow B$.
- Universel, $\forall x.A$, og eksistentiel, $\exists x.A$, kvantificering.

Termer

- Variable, x, y, z, \dots
- Funktioner, f, g, h, \ldots anvendt på lister af termer

Formler

- Falskhed, ⊥.
- ullet Prædikater, p,q,r,\ldots , givet en liste af termer af bestemt længde.
- Konjuktion, $A \wedge B$, disjunktion, $A \vee B$, implikation, $A \rightarrow B$.
- Universel, $\forall x.A$, og eksistentiel, $\exists x.A$, kvantificering.

Forkortelser

- $\top \equiv \bot \rightarrow \bot$
- $\bullet \neg A = A \rightarrow \bot$

Semantik

Fortolkning

- ullet Domæne, \mathcal{D} , f.eks. de naturlige tal eller personerne i dette lokale.
- ullet Tildeling af funktionssymboler, $\mathcal{F}:id o (\mathcal{D} o \ldots o \mathcal{D})$, f.eks. addition af tal.
- ullet Tildeling af prædikatsymboler, $\mathcal{G}:id o (\mathcal{D} o \ldots o \{T,F\})$, f.eks. ulighed.

Antagelse: Domænet er ikke tomt.

Semantik

Fortolkning

- ullet Domæne, \mathcal{D} , f.eks. de naturlige tal eller personerne i dette lokale.
- ullet Tildeling af funktionssymboler, $\mathcal{F}:id o (\mathcal{D} o \ldots o \mathcal{D})$, f.eks. addition af tal.
- ullet Tildeling af prædikatsymboler, $\mathcal{G}:id o (\mathcal{D} o \ldots o \{T,F\})$, f.eks. ulighed.

Antagelse: Domænet er ikke tomt.

Miljø

Oprindelig tildeling af værdier til variable, eks. for $\mathcal{D} = \mathbb{N}$:

$$\sigma(x) = 2, \sigma(y) = 17$$

Notation: $\sigma[x \leftarrow d]$:

$$\sigma[x \leftarrow d](x) = d$$

$$\sigma[x \leftarrow d](y) = \sigma(y)$$

Førsteordenslogik

Semantik

Termer

- $v_{\sigma}(x) = \sigma(x)$.
- $v_{\sigma}(f(t_1,\ldots,t_n)) = (\mathcal{F}(f))(v_{\sigma}(t_1),\ldots,v_{\sigma}(t_n)).$

Semantik

Termer

- $v_{\sigma}(x) = \sigma(x)$.
- $v_{\sigma}(f(t_1,\ldots,t_n)) = (\mathcal{F}(f))(v_{\sigma}(t_1),\ldots,v_{\sigma}(t_n)).$

Formler

- $v_{\sigma}(\bot) = F$
- $v_{\sigma}(p(t_1,\ldots,t_n)) = \mathcal{G}(p)(v_{\sigma}(t_1),\ldots,v_{\sigma}(t_n))$
- $v_{\sigma}(A \wedge B) = T$ hviss $v_{\sigma}(A) = T$ og $v_{\sigma}(B) = T$
- $v_{\sigma}(A \vee B) = T$ hviss $v_{\sigma}(A) = T$ eller $v_{\sigma}(B) = T$
- $v_{\sigma}(A \to B) = T$ hviss $v_{\sigma}(A) = F$ eller $v_{\sigma}(B) = T$
- $v_{\sigma}(\forall x.A) = T$ hviss $v_{\sigma[x \leftarrow d]}(A) = T$ for alle $d \in \mathcal{D}$.
- $v_{\sigma}\left(\exists x.A\right) = T$ hviss $v_{\sigma[x \leftarrow d]}\left(A\right) = T$ for mindst et $d \in \mathcal{D}$.

Opfyldelighed og gyldighed

Opfyldelighed

A er opfyldelig hvis $v_{\sigma}\left(A\right)=T$ for mindst én fortolkning og miljø. Fortolkningen kaldes en model for A.

Eks.

$$\forall x. \exists y. p(x,y)$$

er sand i domænet af de naturlige tal hvor $\mathcal{G}(p) = \leq$.

Opfyldelighed og gyldighed

Opfyldelighed

A er opfyldelig hvis $v_{\sigma}\left(A\right)=T$ for mindst én fortolkning og miljø. Fortolkningen kaldes en model for A.

Eks.

$$\forall x. \exists y. p(x,y)$$

er sand i domænet af de naturlige tal hvor $\mathcal{G}(p) = \leq$.

Gyldighed

A er gyldig hvis $v_{\sigma}(A) = T$ i alle fortolkninger og miljøer.

Eks.

$$(\forall x.p(x)) \to (\exists x.p(x))$$

Naturlig deduktion

Bevissystem

Problem: Hvordan bestemmer vi at en formel er gyldig?

Naturlig deduktion

Bevissystem

Problem: Hvordan bestemmer vi at en formel er gyldig?

Løsning: Syntaktisk metode til at udlede formler.

Aksiomer

Formler der som udgangspunkt kan udledes.

Inferensregler

Regler til at udlede flere formler.

Bevissystem

Problem: Hvordan bestemmer vi at en formel er gyldig?

Løsning: Syntaktisk metode til at udlede formler.

Aksiomer

Formler der som udgangspunkt kan udledes.

Inferensregler

Regler til at udlede flere formler.

To vigtige egenskaber:

Sundhed

Kun gyldige formler kan udledes.

Komplethed

Alle gyldige formler kan udledes.

DTU

I en lærebog

Syntaks

Baseret på HOL. Alle beviser reduceres til grundlæggende aksiomer og inferensregler.

Med al sandsynlighed sundt.

Syntaks

Baseret på HOL. Alle beviser reduceres til grundlæggende aksiomer og inferensregler.

Med al sandsynlighed sundt.

Termer

```
type-synonym id = \langle char \ list \rangle
```

datatype $tm = Var \ nat \mid Fun \ id \langle tm \ list \rangle$

Formler

```
datatype fm = Falsity \mid Pre \ id \ (tm \ list) \mid

Imp \ fm \ fm \mid Dis \ fm \ fm \mid Con \ fm \ fm \mid Exi \ fm \mid Uni \ fm
```

Semantik I

Termer

primrec

```
semantics-term :: \langle (nat \Rightarrow 'a) \Rightarrow (id \Rightarrow 'a \ list \Rightarrow 'a) \Rightarrow tm \Rightarrow 'a \rangle and semantics-list :: \langle (nat \Rightarrow 'a) \Rightarrow (id \Rightarrow 'a \ list \Rightarrow 'a) \Rightarrow tm \ list \Rightarrow 'a \ list \rangle where \langle semantics-term \ e \ f \ (Var \ n) = e \ n \rangle \mid \langle semantics-term \ e \ f \ (Fun \ i \ l) = f \ i \ (semantics-list \ e \ f \ l) \rangle \mid \langle semantics-list \ e \ f \ (t \ \# \ l) = semantics-term \ e \ f \ t \ \# semantics-list \ e \ f \ l \rangle
```

Semantik II

Formler

```
primrec
  semantics :: \langle (nat \Rightarrow 'a) \Rightarrow (id \Rightarrow 'a \ list \Rightarrow 'a) \Rightarrow (id \Rightarrow 'a \ list \Rightarrow bool) \Rightarrow
fm \Rightarrow book where
  \langle semantics\ e\ f\ g\ Falsity = False \rangle
  \langle semantics \ e \ f \ g \ (Pre \ i \ I) = g \ i \ (semantics-list \ e \ f \ I) \rangle
  \langle semantics \ e \ f \ g \ (Imp \ p \ q) =
     (if semantics e f g p then semantics e f g q else True)
  \langle semantics\ e\ f\ g\ (Dis\ p\ q) =
     (if semantics e f g p then True else semantics e f g q) \mid
  \langle semantics\ e\ f\ g\ (Con\ p\ q) =
     (if semantics e f g p then semantics e f g q else False)
  \langle semantics\ e\ f\ g\ (Exi\ p) =
     (\exists x. \text{ semantics } (\lambda n. \text{ if } n = 0 \text{ then } x \text{ else } e(n-1)) \text{ } f \text{ } g \text{ } p) \rangle
  \langle semantics \ e \ f \ g \ (Uni \ p) =
    (\forall x. \text{ semantics } (\lambda n. \text{ if } n = 0 \text{ then } x \text{ else } e (n - 1)) \text{ f g } p)
```

OK


```
inductive OK :: \langle fm \Rightarrow fm | list \Rightarrow bool \rangle where
  Assume: \langle member p z \Longrightarrow OK p z \rangle
  Boole: \langle OK | Falsity | ((Imp | p | Falsity) | \# | z) \implies OK | p | z \rangle
  Imp-E: \langle OK (Imp p q) z \Longrightarrow OK p z \Longrightarrow OK q z \rangle
  Imp-I: \langle OK \ a \ (p \# z) \Longrightarrow OK \ (Imp \ p \ a) \ z \rangle
  Dis-E: \langle OK (Dis p q) z \Longrightarrow OK r (p \# z) \Longrightarrow OK r (q \# z) \Longrightarrow OK r z \rangle
  Dis-I1: \langle OK \ p \ z \Longrightarrow OK \ (Dis \ p \ q) \ z \rangle
  Dis-12: \langle OK | q | z \Longrightarrow OK (Dis p | q) | z \rangle
  Con-E1: \langle OK (Con p q) z \Longrightarrow OK p z \rangle
  Con-E2: \langle OK (Con p q) z \Longrightarrow OK q z \rangle
  Con-I: \langle OK \ p \ z \Longrightarrow OK \ q \ z \Longrightarrow OK \ (Con \ p \ q) \ z \rangle
  Exi-E: \langle OK (Exi p) z \Longrightarrow OK g ((sub 0 (Fun c []) p) \# z) \Longrightarrow
     news c(p \# a \# z) \Longrightarrow OK(az)
  Exi-I: \langle OK (sub \ 0 \ t \ p) \ z \Longrightarrow OK (Exi \ p) \ z \rangle
  Uni-E: \langle OK (Uni p) z \Longrightarrow OK (sub 0 t p) z \rangle
  Uni-I: \langle OK (sub \ 0 \ (Fun \ c \ []) \ p) \ z \Longrightarrow news \ c \ (p \# z) \Longrightarrow OK \ (Uni \ p) \ z \rangle
```

Substitution

sub

sub-term v s
$$(Var\ n) = (if\ n < v\ then\ Var\ n\ else\ if\ n = v\ then\ s\ else\ Var\ (n-1))$$

put

fun $put :: \langle (nat \Rightarrow 'a) \Rightarrow nat \Rightarrow 'a \Rightarrow nat \Rightarrow 'a \rangle$ where (put e v x = $(\lambda n. if n < v then e n else if n = v then x else e (n - 1))$

Sundhed

Kontekst

```
lemma soundness': (OK \ p \ z \Longrightarrow list-all \ (semantics \ e \ f \ g) \ z \Longrightarrow semantics \ e \ f \ g \ p)
```

Uni-I: $\langle OK (sub \ 0 \ (Fun \ c \ |) \ p) \ z \Longrightarrow news \ c \ (p \# z) \Longrightarrow OK \ (Uni \ p) \ z \rangle$

```
case (Uni-I \ c \ p \ z)

then have \forall x. list-all (semantics e \ (f(c := \lambda w. \ x)) \ g) \ z \land

by simp

then have \forall x. semantics e \ (f(c := \lambda w. \ x)) \ g \ (sub \ 0 \ (Fun \ c \ []) \ p) \land

using Uni-I by blast

then have \forall x. semantics (put e \ 0 \ x) \ (f(c := \lambda w. \ x)) \ g \ p \land

by simp

then have \forall x. semantics (put e \ 0 \ x) \ f \ g \ p \land

using \langle news \ c \ (p \ \# \ z) \rangle by simp

then show \langle semantics \ e \ f \ g \ (Uni \ p) \rangle

by simp
```

Komplethed

Overblik

Fittings bevis fra First-Order Logic and Automated Theorem Proving. Formaliseret af Berghofer for en anden formulering af naturlig deduktion. Oversat til Isar, tilpasset til NaDeA og udvidet til åbne formler af mig.

Abstrakt

- Konsistensegenskab, C
- Alternativ konsistensegenskab, C⁺
- Finit karakter. C*
- Maksimal udvidelse, H, er Hintikka og har en Herbrand model

Konkret

- Konsistens af formler hvorfra falsk ikke kan udledes.
- Komplethed via modstrid
 - Antag p er gyldig men ikke kan udledes
 - Så er $\{\neg p\} \in C$ og har en model

Beviset er givet i rapporten. Fokus her på oversættelsen.

Apply til Isar I


```
theorem mk-alt-consistency-closed:
 subset-closed C \improx
 subset-closed (mk-alt-consistency C)
 apply (unfold mk-alt-consistency-def
    subset-closed-def)
 apply (rule ball all impl)+
 apply (rule Collectl)
 apply (erule CollectE)
 apply (erule exE)
 apply (subgoal-tac
    psubst f' S \subseteq psubst f' S'
 apply blast+
 done
```

```
theorem mk-alt-consistency-closed:
  assumes (subset-closed C)
  shows (subset-closed (mk-alt-consistency C))
  unfolding subset-closed-def
proof (intro ballI allI impl)
  fix S S'
  assume \langle S \in mk\text{-}alt\text{-}consistency C \rangle \langle S' \subseteq S \rangle
  then obtain f where *: \langle psubst\ f \ 'S \in C \rangle
    unfolding mk-alt-consistency-def by blast
  moreover have \langle psubst\ f\ 'S' \subseteq psubst\ f\ 'S \rangle
    using \langle S' \subseteq S \rangle by blast
  ultimately have \langle psubst\ f\ 'S' \in C \rangle
    using ⟨subset-closed C⟩
    unfolding subset-closed-def by blast
  then show \langle S' \in mk\text{-}alt\text{-}consistency C \rangle
    unfolding mk-alt-consistency-def by blast
qed
```

Apply til Isar II

Kontekst

```
theorem close-consistency:

assumes conc: (consistency C)

shows (consistency (close C))
```

apply (erule conjE')
apply (rule allI impl)+
apply (erule allE impE)+
apply (erule subsetD)
apply assumption
apply blast

```
{ fix P assume \langle Exi\ P \in S' \rangle then have \langle Exi\ P \in S \rangle using \langle S' \subseteq S \rangle by blast then have \langle \exists\ c.\ S \cup \{sub\ 0\ (Fun\ c\ [])\ P\} \in C \rangle using \langle S \in C \rangle conc consistency-def by blast then show \langle \exists\ c.\ S' \cup \{sub\ 0\ (Fun\ c\ [])\ P\} \in close\ C \rangle using \langle S' \subseteq S \rangle subset-in-close by blast }
```

Strategi

- Luk formel
- Brug oprindeligt komplethedsbevis
- Genudled oprindelig formel

Universel lukning

Binder alle frie variable til en alkvantor.

$$\forall p(0,1,2) \leadsto \forall \forall \forall p(0,1,2)$$

Direkte eliminering

$$\begin{split} (\forall \forall p(0,1,2))[2/0] \leadsto \forall ((\forall p(0,1,2))[3/1]) \leadsto \forall \forall (p(0,1,2)[4/2]) \leadsto \forall \forall p(0,1,4) \\ (\forall p(0,1,4))[1/0] \leadsto \forall (p(0,1,4)[2/1]) \leadsto \forall p(0,2,3) \\ p(0,2,3))[0/0] \leadsto p(0,1,2) \end{split}$$

Ny regel

Udvidelse

```
inductive OK-star :: \langle fm \Rightarrow fm | list \Rightarrow bool \rangle where
  Proper: \langle OK \ p \ z \Longrightarrow OK\text{-star} \ p \ z \rangle
  Subtle: \langle OK\text{-star }p \mid \implies OK\text{-star }(subc \ c \ s \ p) \mid \rangle
```

Konstanter for kvantorer

```
fun consts-for-unis :: \langle fm \Rightarrow id | list \Rightarrow fm \rangle where
  \langle consts-for-unis\ (Uni\ p)\ (c\#cs) =
    consts-for-unis (sub 0 (Fun c []) p) cs> |
  \langle consts-for-unis p - = p \rangle
```

Variable for konstanter

```
primrec vars-for-consts :: \langle fm \Rightarrow id | list \Rightarrow fm \rangle where
 \langle vars-for-consts p | p \rangle
  \langle vars-for-consts \ p \ (c \# cs) =
    subc c (Var (length cs)) (vars-for-consts p cs)
```

Teleskoperen

subc
$$c_0$$
 (m-1) (subc c_1 (m-2) (... (subc c_{m-1} 0 (sub 0 c_{m-1} ...))))

Parvis annullering

```
lemma subc-sub: \langle c \notin params \ p \Longrightarrow closed \ (Suc \ m) \ p \Longrightarrow subc \ c \ (Var \ m) \ (sub \ m \ (Fun \ c \ []) \ p) = p \rangle
by (induct p arbitrary: m) simp-all
```

Annullering

lemma vars-for-consts-for-unis:

 $\langle closed\ (length\ cs)\ p\Longrightarrow \forall\ c\in set\ cs.\ c\notin params\ p\Longrightarrow distinct\ cs\Longrightarrow vars-for-consts\ (consts-for-unis\ (put-unis\ (length\ cs)\ p)\ cs)\ cs=p\rangle$ using sub-free-params-all subc-sub by $(induct\ cs\ arbitrary:\ p)\ auto$

Udledning af oprindelig formel

```
lemma remove-unis-star:
 assumes \langle sentence (put-unis m p) \rangle \langle OK (put-unis m p) \rangle
 shows (OK-star p [])
proof -
 obtain cs :: \langle id | list \rangle where \langle length | cs = m \rangle
   and *: \langle distinct \ cs \rangle and **: \langle \forall \ c \in set \ cs. \ c \notin params \ p \rangle
   using assms fresh-constants by blast
 then have (OK (consts-for-unis (put-unis (length cs) p) cs) [])
   using assms consts-for-unis by blast
 then have (OK-star (vars-for-consts (consts-for-unis
     (put-unis (length cs) p) cs) cs) []>
   using Proper vars-for-consts-star by blast
 moreover have (closed (length cs) p)
   using assms (length cs = m) closed-put-unis by simp
 ultimately show ⟨OK-star p []⟩
   using vars-for-consts-for-unis * ** by simp
ged
```

Komplethed


```
theorem completeness-star:
 assumes (infinite (UNIV :: ('a :: countable) set))
   and \langle \forall (e :: nat \Rightarrow 'a) \ f \ g. \ semantics \ e \ f \ g \ p \rangle
 shows (OK-star p [])
proof -
 obtain m where *: (sentence (put-unis m p))
   using ex-closure by blast
 moreover have \langle \forall (e :: nat \Rightarrow 'a) \ f \ g. \ semantics \ e \ f \ g \ (put-unis \ m \ p) \rangle
   using assms valid-put-unis by blast
 ultimately have ⟨OK (put-unis m p) []⟩
   using assms completeness by blast
 then show (OK-star p [])
   using * remove-unis-star by blast
ged
```

Konklusion

NaDeA er

- Sundt.
- Komplet for lukkede formler.
 - Deklarativt bevis.
 - Eget valg af (tælleligt uendeligt) domæne.
- Komplet for åbne formler med en udvidelse.
 - Med vilkårlige antagelser.
 - Weakening delresultat.