Fachrichtung Mathematik • Institut für Algebra • Prof. Baumann, Dr. Noack

Einführung in die Mathematik für Informatiker: Lineare Algebra INF 110 Wintersemester 2018/19

1. Übungsblatt für die Woche 08.10. - 14.10.2018 Komplexe Zahlen

Hinweis: Es ist jede Woche eine Hausaufgabe zur Abgabe bestimmt. Diese ist mit einem A gekennzeichnet. Weitere Hausaufgaben dienen zum selbstständigen Nacharbeiten des Stoffes. Aufgaben mit * sind etwas zum Knobeln!

Ü1 (a) Gegeben sind die komplexen Zahlen $z_1 = 1 + i$, $z_2 = 3i$ und $z_3 = 1 - i$. Zeichnen Sie z_1, z_2 und z_3 in der Gaußschen Zahlenebene ein. Geben Sie sie in trigonometrischer und exponentieller Form an und berechnen Sie ihren Betrag. Berechnen Sie weiterhin Realteil und Imaginärteil der Zahlen

$$z_2 \cdot z_1, \quad z_2^{-1}, \quad z_1^{-1}, \quad z_1 + z_3, \quad z_1 - z_3, \quad z_1 \cdot z_3, \quad \frac{z_1}{z_3}$$
.

- (b) Verwenden Sie (a), um allgemeine Regeln für den Zusammenhang zwischen einer Zahl $z \in \mathbb{C}$ und ihrer konjugiert komplexen Zahl \overline{z} aufzustellen. Beweisen Sie diese Regeln!
- Ü2 (a) Welche komplexe Zahl ist das Spiegelbild von $z \in \mathbb{C}, z \neq 0$, bei Spiegelung
 - am Ursprung,
 - an der reellen Achse.
 - an der imaginären Achse,
 - an der Winkelhalbierenden des I. und III. Quadranten?
 - (b) Welche Werte kann iⁿ für natürliche Zahlen n annehmen? Berechnen Sie i²⁰¹⁸.
- Ü3 (a) Bestimmen Sie Real- und Imaginärteil der Zahl $z=2\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$.
 - (b) Finden Sie für jede der folgenden Bedingungen die Menge aller $z \in \mathbb{C}$, die diese Bedingung erfüllen, und skizzieren Sie diese Menge in der Gaußschen Zahlenebene:
 - (i) |z| = 2
- (ii) Re(z) = Im(z) (iii) $|z + 4 i| \le 1$
- H4 | A | (Hinweis: Denken Sie daran, den Lösungsweg detailliert aufzuschreiben!)
 - (a) Berechnen Sie den Realteil und den Imaginärteil folgender komplexer Zahlen

$$z_1 = (2 + i^5) \cdot \overline{3 + 5i}$$
 und $z_2 = \frac{2 + i}{1 + 3i}$.

(b) Bestimmen Sie für die komplexe Zahl $z=\frac{\sqrt{3}}{2}\cdot\frac{\sqrt{3}-\mathrm{i}}{\mathrm{i}}$ ihre exponentielle Form.

H5 (a) Berechnen Sie den Betrag und das Argument der folgenden komplexen Zahlen, und geben Sie die trigonometrische und die exponentielle Form an:

(i)
$$z = 2i(1-i)$$
, (ii) $z = i + \frac{1+i}{3+i}$, (iii) $z = \frac{(1-i)^2}{1+i}$.

- (b) Wo liegen in der komplexen Zahlenebene alle z, die folgende Bedingungen erfüllen? (i) $\text{Re}(z) \ge -1$ (ii) $\text{Arg}(z) \ge \frac{3}{2}\pi$ (iii) $|z+4| \le 2$
- H6 (a) Welche Werte kann $\left(\frac{1}{i}\right)^n$ für natürliche Zahlen n annehmen? Berechnen Sie $\left(\frac{1}{i}\right)^{1234}$.
 - (b) Zeigen Sie, dass für alle $z \in \mathbb{C}$ gilt: $\operatorname{Re}(z) \leq |z|$ und $\operatorname{Im}(z) \leq |z|$.

Warum heißt diese Ungleichung "Dreiecksungleichung"?

(*c) Zeigen Sie, dass für alle $z,w\in\mathbb{C}$ gilt: $|z+w|\leq |z|+|w|$.

Tipp: Betrachten Sie die Quadrate beider Seiten und benutzen Sie die kartesische Darstellung. Alternativ können Sie den Zusammenhang $z\cdot\overline{z}=|z|^2$ verwenden.