Lei de Controle para Loop Acrobático Ótimo

Paulo Henriques Iscold Andrade de Oliveira Ricardo Luiz Utsch de Freitas Pinto Krisha Nóbrega de Lima

Centro de Estudos Aeronáuticos - Universidade Federal de Minas Gerais.

Copyright © 2004 Society of Automotive Engineers, Inc

RESUMO

O controle necessário para que uma aeronave realize satisfatoriamente trajetórias preestabelecidas permite elaborar estratégias eficientes para pilotos. Partindo desse princípio, o presente trabalho consiste em determinar a lei de deflexões do profundor que permite realizar perfeitamente uma das manobras mais clássicas da acrobacia aérea: o *loop*. O trabalho baseia-se em um modelo de movimento de uma aeronave considerando-se vôo no seu plano de simetria. A lei de deflexão do profundor ótima é determinada a partir de um procedimento de otimização. Para a geração numérica da trajetória, utiliza-se uma versão adaptativa de quinta ordem do Método de Runge Kutta.

INTRODUÇÃO

A manobra mais conhecida da acrobacia aérea é o *loop*. Considerada uma das manobras mais básicas, nem por isso é a mais fácil de ser bem executada. A manobra consiste na aeronave percorrer um círculo na vertical, sendo que, para isso, a entrada e a saída da manobra devem ocorrer na mesma altitude (Acrobrasil, 2003).

O objetivo deste trabalho consiste em determinar a lei de deflexões do profundor que permita realizar um *loop* "perfeito", ou seja, o mais próximo possível de uma trajetória circular. Para isso, o trabalho é baseado em um modelo de movimento considerando-se vôo simétrico (Iscold e Pinto, 2004).

MODELO DO MOVIMENTO SIMÉTRICO DE AERONAVES

O modelo do movimento simétrico da aeronave utilizado neste trabalho se baseia em Iscold e Pinto (2004), incluindo-se a força de tração proveniente do grupo motopropulsor da aeronave.

A Figura 1 apresenta o diagrama de forças utilizado para a dedução das equações de movimento.

Figura 1 – Diagrama de forças

Com as variáveis de estado definidas como:

$$x_{1} = x$$

$$x_{2} = y$$

$$x_{3} = \theta$$

$$x_{4} = \dot{x} = V_{x}$$

$$x_{5} = \dot{y} = V_{y}$$

$$x_{6} = \dot{\theta} = q$$

$$(1)$$

pode-se escrever as equações de estado como:

$$\dot{x}_1 = x_4
\dot{x}_2 = x_5
\dot{x}_3 = x_6
\dot{x}_4 = \frac{1}{m} \left[L \operatorname{sen} \eta - D \cos \eta + L_T \operatorname{sen} \gamma + T \cos x_3 \right]
\dot{x}_5 = \frac{1}{m} \left[-L \cos \eta - D \operatorname{sen} \eta + L_T \cos \gamma - T \operatorname{sen} x_3 + W \right]
\dot{x}_6 = \frac{1}{J} \left[M + L x_A \cos \alpha - L_T x_T \cos \alpha_T \right]$$
(2)

onde:

$$L = \frac{1}{2} \rho(y) S C_L(\alpha) V_R^2$$
$$D = \frac{1}{2} \rho(y) S C_D(\alpha) V_R^2$$

$$M = \frac{1}{2}\rho(y)S\overline{c}C_{M}(\alpha)V_{R}^{2}$$

$$V_{R} = \sqrt{(x_{4} + a_{X})^{2} + (x_{5} + a_{Y})^{2}}$$

$$\operatorname{sen} \eta = \frac{(x_{5} + a_{Y})}{V_{R}}$$

$$\operatorname{cos} \eta = \frac{(x_{4} + a_{X})}{V_{R}}$$

$$L_{T} = \frac{1}{2}\rho(y)S_{T}C_{LT}(\alpha_{T};\delta)V_{RT}^{2}$$

$$V_{RT} = \sqrt{+\left[\frac{2(x_{4} + u_{X})\operatorname{sen} x_{3}}{+2(x_{5} + u_{Y})\operatorname{sen} x_{3} + p - w}\right]} \cdot (p - w)$$

$$w \cong \alpha \frac{d\varepsilon}{d\alpha}V_{R}$$

$$p = x_{6} \cdot x_{T}$$

$$\gamma = \alpha_{T} - x_{3}$$

$$\alpha_{T} = \operatorname{atg}\left(\frac{V_{NT}}{V_{TT}}\right)$$

$$\operatorname{sen} \alpha_{T} = \frac{V_{NT}}{V_{RT}}$$

$$\operatorname{cos} \alpha_{T} = \frac{V_{NT}}{V_{RT}}$$

$$V_{TT} = (x_{4} + u_{X})\operatorname{cos} x_{3} - (x_{5} + u_{Y})\operatorname{sen} x_{3}$$

$$V_{NT} = (x_{4} + u_{X})\operatorname{sen} x_{5} + (x_{5} + u_{Y})\operatorname{cos} x_{5} + p - w$$

A força de tração do grupo motopropulsor (*T*) deve ser calculada como função da posição da manete de potência, da rotação do motor e da velocidade de vôo. De forma a simplificar este cálculo foi admitido que a aeronave será dotada de uma hélice de velocidade constante (comum em aeronaves acrobáticas) o que permite considerar a rotação do motor também constante (McCormick, 1979). A posição da manete de potência será tratada como uma entrada para o problema, tornando a tração função apenas da velocidade de vôo.

O PROBLEMA DE OTIMIZAÇÃO

Por definição, o *loop* perfeito é aquele que descreve exatamente uma circunferência no espaço. Assim, pode-se afirmar que o *loop* perfeito é aquele para o qual a equação,

$$(x_1 - a)^2 + (x_2 - b)^2 = R^2$$
 (3)

é obedecida para todos os pontos (x_1, x_2) da trajetória, onde a e b denotam, respectivamente, as coordenadas x_1 e x_2 do centro da circunferência, e R o seu raio.

Em princípio, a equação (3) seria suficiente para a realização do loop circular. Entretanto, considerando-se os efeitos inerciais da aeronave, é preciso também exigir que não apenas cada ponto (x_1, x_2) da trajetória esteja sobre a circunferência, mas também que cada vetor velocidade esteja tangencial à mesma.

A condição para que a velocidade da aeronave mantenha-se tangente à circunferência pode ser obtida derivando-se a equação (3), que fornece, após pequeno algebrismo:

$$\frac{x_5}{x_4} = \frac{a - x_1}{x_2 - b} \tag{4}$$

Assim, dentro da técnica de penalidade (Luenberger, 1984), a trajetória ótima durante o *loop* deverá ser aquela que minimiza, ponto a ponto, a seguinte função objetivo:

$$F = \frac{1}{2} \left[(x_1 - a)^2 + (x_2 - b)^2 - R^2 \right] + \frac{1}{2} \left[(x_1 - a)x_4 + (x_2 - b)x_5 \right]$$
 (5)

Note que o *loop* perfeitamente circular será obtido se, e somente se, a função (5) se anular.

PROCEDIMENTO DE INTEGRAÇÃO NUMÉRICA

A trajetória ótima deverá ser gerada utilizando-se um integrador numérico. No presente trabalho, adotou-se uma versão de quinta ordem do Método de Runge Kutta (Press et alli, 1992). A escolha desta versão se deve à sua precisão superior às versões de quarta ordem, mais comuns neste tipo de aplicação, e pela possibilidade que se tem de implementar um procedimento de passo adaptativo. Iscold e Pinto (2004) e Press et alli (1992) apresentam maiores detalhes a respeito deste procedimento.

PROCEDIMENTO DE OTIMIZAÇÃO

A lei de deflexão ótima do profundor $(\delta(t))$ é gerada, ponto a ponto, de tal modo a minimizar a função objetivo (5). Para isso, elaborou-se um algoritmo baseado no Método da Seção Áurea (Luenberger, 1984).

A idéia natural é que a função objetivo (5) seja minimizada a cada passo do integrador. Entretanto, testes numéricos indicaram que o melhor é que isto seja feito ao final de um número determinado de passos, evitando assim, dificuldades de instabilidade numérica, sem desviar a trajetória significativamente do círculo. No presente trabalho, a minimização da função objetivo (5) é requisitada a cada 10 passos de integração, com intervalo de integração igual a 3×10^{-4} seg .

A AERONAVE CEA-309 MEHARI

Para a geração de resultados numéricos, utilizou-se parâmetros da aeronave acrobática ilimitada CEA-309 *Mehari* (Figura 2) que está em desenvolvimento no Centro de Estudos Aeronáuticos da UFMG. Um resumo das

principais características desta aeronave é apresentado na Tabela 1.

Figura 2 – Três vistas da aeronave acrobática ilimitada CEA-309 *Mehari*

Tabela 1 – Características da aeronave CEA-309 *Mehari*

Número de Lugares	1 – monoplace
Envergadura	6.08m
Comprimento	5.86m
Área Alar	6.72m ²
Área da EH	1.50m^2
CMA asa	1.128m
Posição CA aeronave	18.54%CMA asa
Posição CG aeronave	28.16%CMA asa
Dist. CG aeronave – CA EH	3.26m
Dowh-wash médio	0.4032
Raio de giração estimado	0.38
Momento de inércia arfagem	33.03kg.m ²
Razão de rolamento	400°/sec
Fatores de carga limites	+11g/-11g
VNE	450 km/h
Peso Vazio	370 kgf
Peso máximo acrobático	523 kgf
Potência	200 hp

Trata-se de uma aeronave dotada de um motor de 200hp e uma hélice Hartzell HCCZYK-4/C7666A-2. As curvas de tração deste conjunto moto-propulsor, em regime de máxima potência e com 75% de potência, podem ser aproximadas pelos seguintes polinômios (Iscold, 2001):

$$T_{100\%}(V) = 0.0816V^2 - 28.8891V + 3229.0759$$
 (6)

$$T_{75\%}(V) = 0.0836V^2 - 23.9634V + 2365.8266$$
 (7)

As características aerodinâmicas da aeronave podem ser resumidas através de sua polar de arrasto, determinada por Iscold (2001) e apresentada na Figura 3

Figura 3 – Polar de arrasto da aeronave CEA-309 *Mehari*

RESULTADOS

Como a aeronave CEA309 *Mehari* é provida de uma hélice de velocidade constante (a rotação do motor é mantida constante para qualquer atitude de vôo), considerase ser possível a execução do *loop* sem alteração da posição da manete de potência (Oliveira et alli, 2001).

Para cada condição de vôo, do ponto de vista da velocidade de estol, o *loop* só será possível com um raio dentro de um limite mínimo e um limite máximo. Para o raio mínimo a aeronave estola no início da manobra e para o raio máximo, a aeronave estola no topo do *loop*.

Neste trabalho são apresentados resultados obtidos considerando-se 100% de potência do motor e ausência de vento, para raio máximo igual a 312m (Figura 4) e raio mínimo igual a 143m (Figura 5).

Note que em ambas as figuras, na entrada do loop ocorre uma rápida picada da aeronave (δ mais positivo), seguida de uma rápida cabrada (δ mais negativo). Em seguida ocorre uma variação gradual da deflexão do profundor, a qual atinge um valor máximo próximo ao topo do loop.

Figura 4 – Resultados para raio máximo de 312m

Figura 5 – Resultados para raio mínimo de 143m

Este comportamento esteve presente em todos os teste realizados, podendo ser justificado da seguinte maneira:

"Antes de iniciar o *loop*, a aeronave está em vôo reto nivelado (fator de carga igual a 1). Assim, para entrar na manobra, deve haver um acréscimo abrupto do fator de carga (aparecimento da força centrípeta). A maneira mais rápida de se obter isto é através de um aumento da sustentação global da aeronave, o que é possível de se realizar "instantaneamente" através da deflexão mais positiva do profundor (para baixo), aumentando a sustentação da empenagem horizontal. Entretanto, este procedimento resulta em um movimento angular picador (nariz se movendo para baixo). Por isso, logo após a deflexão mais positiva do profundor, deve-se realizar uma deflexão mais negativa do profundor, a qual induzirá o movimento de cabragem que deverá ser preservado, durante todo o *loop*, através de uma evolução gradativa da deflexão do profundor".

Note que, de fato, no início da manobra ocorre uma variação brusca positiva da sustentação na empenagem horizontal, em concordância com a picada abrupta no início da manobra.

Em particular, na Figura 4 (*loop* com raio máximo) observa-se que a velocidade mínima durante o *loop* é superior à velocidade de estol (28.6m/s), como de fato deveria ocorrer. Por outro lado, vê-se que a velocidade máxima durante o *loop* (velocidade na saída) ultrapassa a VNE (430km/h – 119m/s) da aeronave, ou seja, na verdade não é possível realizar o *loop* com raio de 312m utilizando 100% de potência.

Na Figura 5 (*loop* com raio mínimo), observa-se também que, a velocidade mínima durante o *loop* é superior à velocidade de estol (28.6m/s), como de fato deveria ocorrer. Por outro lado, a velocidade máxima durante o *loop*, é inferior à VNE (430km/h – 119m/s) da aeronave. Portanto, ao contrário do *loop* com raio máximo, é possível realizar o *loop* com raio de 143m nas condições especificadas.

A título de ilustração, na Figura 6 estão desenhados os *loops* correspondentes ao raio máximo e ao raio mínimo, perfeitamente circulares.

A Figura 6 apresenta também trajetórias obtidas ao se tentar realizar *loops* perfeitos com raios além dos limites mínimo e máximo desta condição de vôo. Note que, na tentativa de executar um *loop* com raio menor do que o mínimo, ocorrerá o estol (de velocidade) da aeronave no início da manobra. Por sua vez, ao se tentar realizar um *loop* com raio maior do que o máximo, o estol ocorrerá próximo ao topo da manobra, onde a velocidade é mínima.

Figura 6 – Comportamento da aeronave na tentativa de realizar loops perfeitos com raios além dos limites mínimo e máximo

CONCLUSÃO

Os resultados indicam que é possível determinar uma lei de deflexão do profundor que permite a execução de um *loop* perfeitamente circular, mesmo com potência constante, embora a velocidade de saída do *loop* seja diferente da velocidade de entrada.

A lei de deflexão ótima é iniciada por dois deslocamentos abruptos do manche (um picador e outro cabrador), seguidos de uma evolução contínua no tempo, relativamente suave.

A fase inicial da lei de controle ótimo obtida surpreende o raciocínio natural de pilotos e engenheiros. Entretanto, se justifica pela necessidade do aparecimento imediato de sustentação adicional.

A função objetivo, construída para satisfazer ao critério de geometria circular e de tangência da trajetória, mostrou-se plenamente satisfatória. É importante salientar que a minimização é feita ponto a ponto, ao longo da realização da integração numérica, o que facilita muito a geração da trajetória ótima.

Problemas de instabilidade numérica significativos não foram observados.

REFERÊNCIAS BIBLIOGRÁFICAS

- Etkin, B., 1959, "Dynamics of Flight", John Wiley & Sons, Nova Iorque, EUA.
- Iscold, P. H. A. de O., 2001, "Projeto da Aeronave CEA-309 Mehari", Centro de Estudos Aeronáuticos da UFMG, Belo Horizonte, Brasil.
- Iscold, P. H. A. de O., 2004, "Um Estudo sobre a Otimização de Trajetórias de Vôo de Planadores de Competição", Relatório de qualificação para defesa de tese de doutorado, UFMG, Belo Horizonte, Brasil.

- Iscold, P., Pinto, R.L.U de F., 2003, "Mathematical modeling for Optimization of Competition Sailplane Flight:
 A Preliminary Approach", XI Congresso Internacional da Engenharia da Mobilidade, SAE Brasil, São Paulo, Brasil, 9p.
- Luenberger, D. G., 1984, "Linear and Nonlinear Programing", Addison-Wesley Publisching Company, EUA.
- McCormick, B. W., 1979, "Aerodynamics, Aeronautics and Flight Mechanice", John, Wiley & Sons, EUA.
- Oliveira, P. H. A. de , Pinto, R. L. U. de F., Barros, C. P., 1999, "Um Procedimento Alternativo para Cálculo Aerodinâmico de Aeronaves Leves", Congresso SAE Brasil 1999, São Paulo, Brasil.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 1992, "Numerical Recipes in FORTRAN 77", Second Edition, Cambridge University Press, Cambridge, USA.

Acrobrasil, 2003, www.acrobrasil.com.br.