#### **Virtual Memory: Details**

CS2011: Introduction to Computer Systems Lecture 15 (9.6.4, 9.7.1)

## **Virtual Memory: Details**

- Concrete examples of virtual memory systems
  - "Simple memory system" example from book 9.6.4
  - Intel Core i7

#### Simple Memory System Example

#### Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes



#### Simple Memory System TLB

- 4-way associative (4 entries per set)
- Total: 16 entries (4 entries per set x 4 sets)



VPN = 0b1101 = 0x0D

#### **Translation Lookaside Buffer (TLB)**

| Set | Tag | PPN | Valid |
|-----|-----|-----|-------|-----|-----|-------|-----|-----|-------|-----|-----|-------|
| 0   | 03  | -   | 0     | 09  | 0D  | 1     | 00  | -   | 0     | 07  | 02  | 1     |
| 1   | 03  | 2D  | 1     | 02  | -   | 0     | 04  | -   | 0     | 0A  | -   | 0     |
| 2   | 02  | -   | 0     | 08  | -   | 0     | 06  | -   | 0     | 03  | -   | 0     |
| 3   | 07  | -   | 0     | 03  | 0D  | 1     | 0A  | 34  | 1     | 02  | -   | 0     |

## Simple Memory System Page Table

Only showing the first 16 entries (out of 256)

| VPN | PPN | Valid |
|-----|-----|-------|
| 00  | 28  | 1     |
| 01  | _   | 0     |
| 02  | 33  | 1     |
| 03  | 02  | 1     |
| 04  | _   | 0     |
| 05  | 16  | 1     |
| 06  | _   | 0     |
| 07  | _   | 0     |

| VPN | PPN | Valid |
|-----|-----|-------|
| 08  | 13  | 1     |
| 09  | 17  | 1     |
| 0A  | 09  | 1     |
| 0B  | -   | 0     |
| OC  | _   | 0     |
| 0D  | 2D  | 1     |
| 0E  | 11  | 1     |
| OF  | 0D  | 1     |





# Simple Memory System L1 Cache

- 16 lines, 4-byte cache line size
- Physically addressed
- Direct mapped

V[0b00001101101001] = V[0x0369]P[0b101101101001] = P[0xB69] = 0x15



| ldx | Tag | Valid | В0 | B1 | B2 | В3 |
|-----|-----|-------|----|----|----|----|
| 0   | 19  | 1     | 99 | 11 | 23 | 11 |
| 1   | 15  | 0     | ı  | ı  | ı  | -  |
| 2   | 1B  | 1     | 00 | 02 | 04 | 08 |
| 3   | 36  | 0     | -  | -  | -  | -  |
| 4   | 32  | 1     | 43 | 6D | 8F | 09 |
| 5   | 0D  | 1     | 36 | 72 | F0 | 1D |
| 6   | 31  | 0     | -  | -  | -  | -  |
| 7   | 16  | 1     | 11 | C2 | DF | 03 |

| Idx | Tag | Valid | В0 | B1 | B2 | В3 |
|-----|-----|-------|----|----|----|----|
| 8   | 24  | 1     | 3A | 00 | 51 | 89 |
| 9   | 2D  | 0     | -  | _  | _  | -  |
| Α   | 2D  | 1     | 93 | 15 | DA | 3B |
| В   | OB  | 0     | -  | -  | -  | -  |
| С   | 12  | 0     | -  | -  | -  | -  |
| D   | 16  | 1     | 04 | 96 | 34 | 15 |
| E   | 13  | 1     | 83 | 77 | 1B | D3 |
| F   | 14  | 0     | -  | -  | -  | _  |

## **Another Address Translation Example**





#### **Another Address Translation Example L1 Cache**

- 16 lines, 4-byte cache line size
- Physically addressed
- Direct mapped

V[0b00001111010100] = V[0x03D4]P[0b001101010100] = P[0x354] = 0x36



| ldx | Tag | Valid | В0 | B1 | B2 | В3 |
|-----|-----|-------|----|----|----|----|
| 0   | 19  | 1     | 99 | 11 | 23 | 11 |
| 1   | 15  | 0     | ı  | ı  | ı  | -  |
| 2   | 1B  | 1     | 00 | 02 | 04 | 08 |
| 3   | 36  | 0     | -  | -  | -  | -  |
| 4   | 32  | 1     | 43 | 6D | 8F | 09 |
| 5   | 0D  | 1     | 36 | 72 | F0 | 1D |
| 6   | 31  | 0     | -  | -  | -  | -  |
| 7   | 16  | 1     | 11 | C2 | DF | 03 |

| ldx | Tag | Valid | B0 | B1 | B2 | В3 |
|-----|-----|-------|----|----|----|----|
| 8   | 24  | 1     | 3A | 00 | 51 | 89 |
| 9   | 2D  | 0     | ı  | 1  | 1  | -  |
| Α   | 2D  | 1     | 93 | 15 | DA | 3B |
| В   | 0B  | 0     | 1  | 1  | 1  | -  |
| С   | 12  | 0     | -  | -  | -  | -  |
| D   | 16  | 1     | 04 | 96 | 34 | 15 |
| E   | 13  | 1     | 83 | 77 | 1B | D3 |
| F   | 14  | 0     | _  | _  | _  | -  |

## **Intel Core i7 Memory System**



#### **End-to-end Core i7 Address Translation**



CR3 contains physical address of beginning of level 1 page table and is restored during each process context switch

## Core i7 Level 1-3 Page Table Entries



#### Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software). Used by kernel to implement its page replacement algorithm.

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table address (forces page tables to be 4KB aligned)

XD (execute disable): introduced in 64-bit systems. Disable or enable instruction fetches from all pages reachable from this PTE.

## **Core i7 Level 4 Page Table Entries**



#### Each entry references a 4K child page. Significant fields:

P: Child page is present in physical memory (1) or not (0).

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don't evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address (forces pages to be 4KB aligned)

**XD**: Disable or enable instruction fetches from this page.

#### **Core i7 Page Table Translation**



## **Cute Trick for Speeding Up L1 Access**



#### Observation

- Bits that determine CI identical in virtual and physical address
- Can index into cache while address translation taking place
- Generally we hit in TLB, so PPN bits (CT bits) available quickly
- "Virtually indexed, physically tagged"
- Cache carefully sized to make this possible