Future of GLADE

<u>Gábor Galgóczi</u>, Gergely Dálya, Péter Raffai, Zsolt Frei, <u>László Dobos, Rafael de Souza</u>

Eötvös University, Budapest, Hungary dalyag@caesar.elte.hu

May 31, 2016

Outline

1. Motivation

- 2. Current status of GLADE
- 3. Future of GLADE

4. Discussion about VO tools

Motivation

One of the next main goals of LIGO is to find the EM-counterpart of binary neutron star mergers

Method:

- 1. GW alert
- 2. Resconstruced position of the source
- 3. Scanning the reconstructed area using several telescopes

The reconstruced area is currently $\sim 100\text{-}1000~\text{deg}^2[1]$ Using galaxy catalogs, the area can be reduced by a factor of 1000 [2]

^[1] LIGO Scientific Collaboration, Virgo Collaboration, Aasi, J., et al. 2013, ArXiv e-prints, arXiv:1304.0670

^[2] Bartos, I., Crotts, A. P. S., & Marka, S. 2015, ApJ, 801, L1

Requirements

Horizon distances of Advanced LIGO-VIRGO network [3]

Binary Neutron Star: 445 Mpc Neutron Star-Black Hole: 927 Mpc Black Hole-Black Hole: 2187 Mpc

GLADE capabilites

Complete to 73 Mpc 53 % complete at 300 Mpc [4] Catalogs with 75 % completeness perform comparably to the complete ones [5]

Inspiral ranges of BNS with the Advanced LIGO[6]

 $^[3] LIGO \ Scientific \ Collaboration, \ Virgo \ Collaboration, \ 2010, \ arXiv:1003.2480$

^[4] Dalya et al., 2016 (in prep.)

^[5] C. Hanna et al., 2013, ArXiv e-prints, arXiv:1312.2077

GLADE

Parameters

1.9 million galaxies after matching71% complete at O2 BNS inspiral rangeCatalogs included:

- ► GWGC (53.000) [7]
- ▶ 2MASS XSC (1.6 million) [8]
- ▶ 2MPZ (0.9 million) [9]
- ▶ HyperLEDA (0.8 million) [10]

^[7] White, D. J., Daw, E. J., & Dhillon, V. S. 2011, Classical and Quantum Gravity, 28, 085016

^[8] Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163

 ^[9] Bilicki, M., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014, ApJS, 210, 9
[10] Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Vauglin, I. 2014, A&A, 570, A13

Challenges

- ▶ None of the deep catalogs cover the full southern sky
- ▶ Southern sky: WISE (only IR)

- ► Large photometric surveys:
 - ▶ There are no spectra
 - ightharpoonup No spectro-z ightharpoonup photo-z
 - \blacktriangleright Star, galaxy and quasar classification without spectra \rightarrow machine learning
- Introducing classification probability

Development of galaxy/star/qso classification of WISE [11]

WISE source classification

- Support Vector Machine for SDSSxWISE
- ▶ Flux-limitation of W1 < 16 mag
- ► Three classification parameters:
 - ► W1 magitude
 - ▶ W1-W2 color
 - ▶ Differential aperture magnitude
- $ightharpoonup \sim 45$ million galaxy candidates
- ► Completness of galaxy sample:96-80%
- ▶ Purity is $\sim 80\%$
- ► Photo-z must be done

Pan-STARRS

Pan-STARRS parameters

- ► EGRG is a member of the Pan-STARRS project
- ► Soon to be published
- \triangleright 3 π
- ► Galaxy/star/quasar classification is partly done

Pan-STARRS

Current source classification

- ▶ 91 million gxs with ≥ 75% probability
- ► 22 million gxs with ≥ 90% probability
- ► At 300 Mpc:
 - ~ 10 million gxs with $\geq 75\%$ probability
 - ~ 1.5 million gxs with $\geq 90\%$ probability
- ▶ Photo-z must be done

Future of GLADE

- Galaxy/star/quasar classification probability
- ► Target selection strategy
- ▶ BNS rate for EM-follow up searches:
 - ▶ B magnitude [7]
 - ▶ Stellar mass
- ► Photo-z

Catalogs to be included:

- ▶ WISE \sim 5-10 million galaxies
- ▶ Pan-STARRS \sim 10-20 million galaxies
- ► GALEX / DPOSS (?)
- ▶ On the fly catalogs [12]

White, D. J., Daw, E. J., & Dhillon, V. S. 2011, Classical and Quantum Gravity, 28, 085016
Bartos, I., Crotts, A. P. S., & Marka, S. 2015, ApJ, 801, L1

Proposed EM-follow up search method

The key for a successful afterglow search is time Automated pipeline is needed

Discussion about VO tools

We did not use VO tools so far We would like to upload GLADE to VizieR

Scalable and multi-dimensional cross-matching of galaxies in multiple catalogs

Defining standardized full-sky and multi-directional completeness measures for galaxy catalogs:

- ▶ Using blue luminosity density
- ▶ Using Schechter function

Improving photo-z calculation with combined multi-catalog data