Machine Learning Package

Portfolio de algoritmos de Machine Learning

Sumário

- O objectivo de clustering consiste em criar grupos de observações que contêm dados semelhantes.
- O objectivo da decomposição consistem em reduzir as observações nas suas partes constituintes.
- No nosso portefólio, métodos de clustering e decomposição podem seguir a estrutura de um *Transformer*.
- Os métodos de clustering têm um método adicional chamado predict. Este método indica qual o cluster de cada amostra.

Datasets

- Os datasets estão disponíveis em:
 - https://www.dropbox.com/sh/oas4yru2r9n61hk/AADpRunbqES 44W49gx9deRN5a?dl=0

statistics sub-package

- No sub-package statistics adiciona o módulo chamado euclidean_distance.py.
- def euclidean_distance
 - assinatura/argumentos:
 - x uma amostra
 - y várias amostras
 - ouput esperado:
 - array com distância entre X e as várias amostras de Y
 - algoritmo:
 - Calcula a distância euclidiana entre X e Y usando a seguinte formula:
 - distance_y1n = $np.sqrt((x1 y11)^2 + (x2 y12)^2 + ... + (xn y1n)^2)$
 - distance_y2n = np. $sqrt((x1 y21)^2 + (x2 y22)^2 + ... + (xn y2n)^2)$

- ...

Objeto KMeans

- Na pasta clustering, adiciona o modulo kmeans.py que deve conter o objeto KMeans.
- O algoritmo k-means agrupa amostras em grupos chamados centroids. O algoritmo tenta reduzir a distância entre as amostras e o centroid.
- class KMeans:
 - Parâmetros:
 - k número de clusters/centroids
 - max iter número máximo de iterações
 - distance função que calcula a distância
 - Parâmetros estimados:
 - centroids média das amostras em cada centroid
 - labels vetor com a label de cada centroid
 - Métodos:
 - fit infere os centroids minimizando a distância entre as amostras e o centroid
 - transform calcula as distâncias entre as amostras e os centroids
 - predict infere qual dos centroids está mais perto da amostra

Objeto KMeans

KMeans.fit:

- Inicializa k centroids usando o np.random.permutation. Resultado: k centroids
- 2. Calcula a distância entre uma amostra e os vários centroids. Escolhe o centroid com distância mais curta. Aplica o método a todas as amostras do dataset.

Resultado: labels

- Agrupa as amostras pelo seus centroid. Calcula a média de cada centroid.
 Resultado: k centroids
- 4. Repete o passo 2 e 3 até não existirem diferenças nas labels

KMeans.transform:

- 1. Calcula a distância entre cada amostra e os vários centroids
- Retorna as distâncias

KMeans.predict:

 Calcula a distância entre uma amostra e os vários centroids. Escolhe o centroid com distância mais curta. Aplica o método a todas as amostras do dataset.

Resultado: labels

Avaliação

- Exercício 3: Implementar o PCA
 - 3.1) Adiciona o objeto *PCA* ao sub-package *decomposition*. Deves criar um módulo chamado *pca.py* para implementar este objeto
 - 3.2) Considera a estrutura do objeto *PCA* apresentada no diapositivo seguinte.
 - 3.3) Podes testar o objeto *PCA* num jupyter notebook usando o dataset iris.csv (classificação)

Objeto PCA

 Técnica de álgebra linear para reduzir as dimensões do dataset. O PCA a implementar usa a técnica de álgebra linear SVD (Singular Value Decomposition)

class PCA:

- Parâmetros:
 - n_components número de componentes
- Parâmetros estimados:
 - mean média das amostras
 - components os componentes principais aka matriz unitária dos eigenvectors
 - explained variance a variância explicada aka matriz diagonal dos eigenvalues
- Métodos:
 - fit estima a média, os componentes e a variância explicada
 - transform calcula o dataset reduzido usando os componentes principais.

Vê o slide seguinte para mais detalhes sobre a técnica SVD

PCA c/ SVD

- Os passos seguintes permitem implementar o método fit do PCA usando SVD:
 - 1. Começa por centrar os dados:
 - Infere a média das amostras
 - Subtrai a média ao dataset (X mean)
 - 2. Calcula o SVD:
 - SVD de X pode ser calculado pela seguinte formula X = U*S*V^T
 - A função numpy.linalg.svd(X, full_matrices=False) dá-nos o U, S, V[™]
 - 3. Infere os componentes principais:
 - Os componentes principais (components) correspondem aos primeiros n_components de V^T
 - 4. Infere a variância explicada:
 - A variância explicada pode ser calculada pela seguinte formula $EV = S^2/(n-1)$ n corresponde ao número de amostras e S é dado pelo SVD
 - A variância explicada (explained_variance) corresponde aos primeiros n_componentes de EV.

PCA c/ SVD

- Os passos seguintes permitem implementar o método transform do PCA usando SVD:
 - 1. Começa por centrar os dados:
 - Subtrai a média ao dataset (X mean).
 - Usa a média inferida no método fit
 - 2. Calcula o X reduzido:
 - A redução de X pode ser calculado pela seguinte formula Xreduced = X*V
 - A função numpy.dot(X, V) multiplicação de matrizes dá-nos a redução de X às componentes principais
 - NOTA: V corresponde à matriz transporta de V^T

