

Ecuaciones-diferenciales-Final-2...

carlymb

Ecuaciones Diferenciales

2º Grado en Matemáticas

Facultad de Ciencias
Universidad Autónoma de Madrid

Año 2020/2021 3 de junio de 2021

Examen final

INSTRUCCIONES

- El examen consta de 5 preguntas y su duración es de tres horas.
- Cada problema se debe contestar en una hoja diferente. Pon tu nombre y tu número de DNI en todas las hojas.
- (3 puntos) Decide razonadamente si las siguientes afirmaciones son verdaderas o falsas. Las respuestas sin justificación no serán tenidas en cuenta.
 - (a) (0,5 puntos) Para que la sucesión $\{f_n\}_{n\in\mathbb{N}}$ de funciones definidas en [0,1] sea una sucesión de Cauchy en L^{∞} basta que $\{f_n(x)\}_{n\in\mathbb{N}}$ sea una sucesión de Cauchy para cada $x\in[0,1]$.
 - (b) (0,75 puntos) La sucesión

$$f_n(x) = \begin{cases} n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right), & x > 0\\ 0, & x = 0, \end{cases}$$

converge uniformemente en $0 \le x < \infty$.

(c) (0,75 puntos) La ecuación

$$y^2 + 2xyy' + \operatorname{sen}(y)y' = 0.$$

admite un factor integrante que depende solo de la variable y.

(d) (1 punto) El sistema

$$\begin{cases} x' &= -xy^4, \\ y' &= yx^4 \end{cases}$$

tiene al menos un punto crítico estable.

- 2. (1,5 puntos) Se considera la ecuación autónoma y' = f(y), de la que se sabe:
 - $f \in C^1(\mathbb{R})$.
 - f se anula exactamente en -1, 0 y 1.
 - f es negativa en (0,1) y no negativa en el resto de \mathbb{R} .
 - f' se anula en 1/2 y en -1/2.

$$0 < \int_{-\infty}^{-2} \frac{1}{f(s)} ds < \infty, \quad \int_{2}^{\infty} \frac{1}{f(s)} ds = \infty.$$

(0,75 puntos) Hacer una representación del diagrama de fases, especificando soluciones estacionarias y estabilidad.

(b) (0,75 puntos) Representar la gráfica de las soluciones correspondientes a los siguientes datos iniciales: y(0) = -1/4, y(0) = 1/4, y(0) = 2, indicando intervalos de crecimiento/decrecimiento y concavidad/convexidad.

3. (2 puntos) Sea la ecuación

$$x'(t) = \operatorname{sen}^2\left(\frac{\sqrt{x(t) - t^2}}{t}\right)$$

(a) (0,75 puntos) Determinar razonadamente los dominios donde es aplicable el teorema de existencia y unicidad de Cauchy-Picard.

(b) (0,5 puntos) Considerar el dato $(t_0, x_0) = (1, 3)$. Probar que en el intervalo de existencia, $I = [1, t_1)$, la solución verifica

$$3 \le x(t) \le 2 + t.$$

(c) (0.75 puntos) Estudiar razonadamente una estimación de t_1 .

4. (2 puntos) Supongamos que $q, r \in C^1$ cumplen que q(x) < r(x) < 0. Sean $y_1(x)$ e $y_2(x)$ soluciones no triviales de y'' + q(x)y = 0 e y'' + r(x)y = 0, respectivamente.

- (0.75 puntos) Probar que si y_1 , y_2 son negativas en cierto intervalo I, entonces el wronskiano $W = W(y_1, y_2)$ es estrictamente decreciente en dicho intervalo.
- (b) (0,5 puntos) Probar que si una función $f \in \mathcal{C}^1$ es negativa para a < x < b y f(a) = f(b) = 0, entonces $f'(a) \le 0 \le f'(b)$.
- (c) (0,75 puntos) Deducir de los apartados anteriores que si y₁, y₂ son como en el enunciado, entonces y_2 se anula al menos una vez entre cada par de ceros consecutivos de y_1 .

5. (1,5 puntos) Estudiar en función de los valores del parámetro $\alpha \in (-\infty, \infty)$ la estabilidad de los puntos críticos del sistema

 $\begin{cases} x' = y + \alpha x(x^2 + y^2), \\ y' = -x + \alpha y(x^2 + y^2) \end{cases}$

