Problem 1.

```
() of(x*)=[1.1] +0, and x =[1.2] {n: x,>1]
  it is definitively not a local minimizer
```

(b) X*=[1,2] and {12: X,31. X,22}, Pf(X*)=[1,0]

FONC : d, ≥0, d2>0, \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) it is a definitively local minimizer

(3) $\nabla f(y^4) = [0 \ 0]^T$. X^* is a interior point, $F(X^*) > 0$ sosc: it is definitively a local minimizer

(4) Xx=[1,2] and {1=x,>1, x,>2}. of(x*)=[1,0] Sonc = $d = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\nabla f^{\dagger}(x^4) \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = 0$

 $\begin{bmatrix} d_1 \end{bmatrix}^T \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = -1 < 0$

so it it definitively not a local minimizer

Problem 2.

$$0 + (x) = [x' \times x^{2}] \begin{bmatrix} -1 & 1 \\ y & Z \end{bmatrix} \begin{bmatrix} x^{1} \\ x^{1} \end{bmatrix} + [x' \times x^{2}] \begin{bmatrix} n \\ y \end{bmatrix} + \int (x' \times x^{2}) \begin{bmatrix} n \\ y \end{bmatrix} + \int (x' \times x^{2}$$

= 3x1+AX1X2+ x5+3X1+AX1+)

 $\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right]^T = \left[\frac{4x_1 + 4x_2 + 3}{2x_2 + 4x_2 + 4}\right]$

 $\nabla^{T}_{f}(x) \Big|_{x=[0,1]^{T}} d = [7 6] \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 7$

 $H(X^{4}) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{2}\partial x_{2}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}\partial x_{2}} \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix}, \text{ not positive , not satisfy some.}$

so f doesn't have a local minimizer

Problem 3

Problem 3
$$\forall f(x) = \begin{bmatrix} -3 \\ 0 \end{bmatrix} \qquad \vdash ((x) = \begin{bmatrix} 0 & 0 \\ 0 & \sigma \end{bmatrix} \qquad \left\{ \mathcal{N} = x, +x^{-1} \leq y \right\}$$

 $\mathbb{O} X^* = (2,0)^T$, feasible direction $d = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$, $d_1 \leq 0$, d_2 arbitrary

 $\nabla f^{T}(X^{*}) \left(\begin{array}{c} d_{1} \\ d_{2} \end{array} \right) = -3d_{1} > 0$

so it satisfy the FONC

DH(X*)=[00] →0, so it soutisfy the SONC

(3) Xx=[20] is a local minimizer

Problem 4.

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4(x_1 - x_2)^3 + \lambda x_1 - 2 \\ -4(x_1 - x_2)^3 - \lambda x_2 + \lambda \end{bmatrix}$$

Forc: $\frac{\partial f}{\partial x_1} = 0$ $\frac{\partial f}{\partial x_2} = 0$ \Rightarrow $\chi^{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$H(x_{\lambda}) = \begin{bmatrix} \frac{9x'9x'}{9x'} & \frac{9x'y}{9x'} \\ \frac{9x'}{9x'} & \frac{9x'9x'}{9x'} \end{bmatrix} = \begin{bmatrix} 0 & -5 \\ 5 & 0 \end{bmatrix}$$
 vot bezitive

soit not satisfy SDNC

Problem 5.

$$\frac{1}{2} \frac{3x_{1}y_{1}}{y_{1}^{2}} = 0 \quad (j \pm j)$$

$$\frac{3}{2} \frac{1}{2} \frac{$$

$$\frac{5}{5} \left(\frac{5}{5} \right) = 0 \quad (17)$$

$$\frac{3f}{3x} = 2$$

so H(x) is positive and satisfy sosc.

The centroid of p point defines as:
$$\frac{x^{(1)} + x^{(1)} + \dots + x^{(p)}}{p} = \frac{p}{x^{(1)}}$$
 $x = x^{(1)} + x^{(1)} + \dots + x^{(p)}$
 $x = x^{(1)} + x^{(1)} + \dots + x^{(p)}$

$$\Rightarrow X^{1} = \frac{X_{(1)}^{1} + X_{(2)}^{1} + \dots + X_{(b)}^{1}}{\sum_{i=1}^{b} 9x_{i} - i - 1}$$

 $\Delta f(x) = \partial x - p$

$$0 \Rightarrow x^{\vee} \text{ satisfy Fonc. } \nabla f(x^{*}) = 0 \Rightarrow Q \stackrel{?}{X} = b$$

HIX = Q, Q is positive

according to SOSC, Xx is a local minimizer

in fact, X is a global minimizer So Xx minimize f

D∈ X* minimize f, X* is a interior point

for any direction d

 $f(X'+d) > f(X^*)$, Taylor expension

 $f(x_* + q) = f(x_*) + q_\perp \Delta f(x_*) + O(||q||_{p}) > f(x_*)$

So dof(xx) > 0 => FONC

Problem 7 & Problem 8 Codes are attached.

Iteration k	ak	bk	f (ak)	f (bk)	New uncertainty interval
0 1 2 3 4	1 1.38200000000000001 1.617999999999999 1.763924 1.854076	2 1. 6179999999999999 1. 763924 1. 854076 1. 909818968	3. 161209223472559 2. 660630985058765 2. 429179418434649 2. 343710459527045 2. 319573396142112	2. 3354126538114306 2. 429179418434649 2. 343710459527045 2. 319573396142112 2. 317146396751533	[1, 2] [1. 3820000000000001, 2] [1. 61799999999999, 2] [1. 763924, 2] [1. 854076, 2]
Iteration k	xk(Newton1st)	f (xk)	! 		
0 1 2 3 4 5	1 1.2314405443006367 1.4490091416772217 1.6901209926731962 2.092671582017154 1.7603716497126456	3. 161209223472559 2. 8479645498370587 2. 5855728845877293 2. 3803421599033046 2. 3852477674664057 2. 3451409720508267			
Iteration k	xk (Newton2nd)	f (xk)	- † - !		
0 1 2 3 4 5	1 -7. 4727406398312315 14. 478520982873837 6. 935115408046103 16. 63568412143092 8. 34393754931617	3. 161209223472559 57. 33014327366494 208. 28851659077012 51. 275482705508004 274. 34734843892346 67. 7389458654033			

PS C:\Users\zzw\Desktop\hw\Optimization> python .\hw2_problem8.py						
Iteration k	х0	x1				
Iteration 0	x0=0	x1=1				
Iteration 1	x1=1	x2=6.030862576000828e-08				
Iteration 2	x2=6.030862576000828e-08	x3=1.2061445465253277e-07				
Iteration 3	x3=1.2061445465253277e-07	x4=0.0013021502646188051				
Iteration 4	x4=0.0013021502646188051	x5=0.0018503987473188718				
Iteration 5	x5=0. 0018503987473188718	x6=0.002381502809472576				
Iteration 6	x6=0. 002381502809472576	x7=0.0027475406654164105				
Iteration 7	x7=0. 0027475406654164105	x8=0.0030339486001054457				
Iteration 8	x8=0. 0030339486001054457	x9=0.003247321447495228				
Iteration 9	x9=0. 003247321447495228	x10=0.0034094181887987453				
Iteration 10	x10=0.0034094181887987453	x11=0.0035318503094257173				
Iteration 11	x11=0.0035318503094257173	x12=0.003624909056394602				
Iteration 12	x12=0. 003624909056394602	x13=0.0036961508185400045				
Iteration 13	x13=0.0036961508185400045	x14=0.003751783721272053				
Iteration 14	x14=0.003751783721272053	x15=0.0037972734727107745				
Iteration 15	x15=0.0037972734727107745	x16=0.003838895123668396				
Iteration 16	x16=0. 003838895123668396	x17=0.0038898895296839197				
Iteration 17	x17=0.0038898895296839197	x18=0.004050296550614562				
Iteration 18	x18=0. 004050296550614562	x19=0.003939275554084987				
Iteration 19	x19=0. 003939275554084987	x20=0.003972697925030309				
Iteration 20	x20=0. 003972697925030309	x21=0.004057272781496471				
Iteration 21	x21=0. 004057272781496471	x22=0.003989755791974867				
Iteration 22	x22=0. 003989755791974867	x23=0. 003997977735150837				
Iteration 23	x23=0.003997977735150837	x24=0.004004949573289028				
Iteration 24	x24=0.004004949573289028	x25=0.004003873910240935				
Iteration 25	x25=0.004003873910240935	x26=0.004003937621816487				
Iteration 26	x26=0.004003937621816487	x27=0.004003938289811941				
++ Last x = 0.004003938289811941, f(x)=0.9844488981267419						