Chapter 1:

Introduction to Computers and Programming

Trịnh Thị Ngọc Linh

1.8

Number systems

Number systems

- A number system is defined as the representation of numbers by using digits or other symbols in a consistent manner.
- It is also called the system of numeration.

Types of Number Systems

- There are different types of number systems.
- Four main types are:
 - Binary number system (Base 2)
 - Octal number system (Base 8)
 - Decimal number system (Base 10)
 - Hexadecimal number system (Base 16)

Binary Number System

- The numbers in this system have a base of 2.
- The binary number system uses only two digits: 0 and 1.
- Digits 0 and 1 are called bits and 8 bits together make a byte. The data in computers is stored in terms of bits and bytes.
- For example: 10001₂ 111101₂

Octal Number System

- The numbers in this system have a base of 8.
- The octal number system uses eight digits:
 0,1, 2, 3, 4, 5, 6, 7.
- For example:

```
35<sub>8</sub> 141<sub>8</sub>
```

Decimal Number System

- The numbers in this system have a base of 10.
- The octal number system uses ten digits: 0,1, 2, 3, 4, 5, 6, 7, 8, 9.
- The decimal number system is the system that we generally use to represent numbers in real life
- For example: 723₁₀ 32₁₀ 4257₁₀

Hexadecimal Number System

- The numbers in this system have a base of 16.
- The hexadecimal number system uses sixteen digits/alphabets:

```
0,1, 2, 3, 4, 5, 6, 7, 8, 9
A, B, C, D, E, F (the numbers 10-15)
```

• For example: 7B3₁₆ 6F₁₆ 4B2A₁₆

Number systems

Number Systems				
System	Base	Digits		
Binary	2	01		
Octal	8	01234567		
Decimal	10	0123456789		
Hexadecimal	16	0123456789ABCDEF		

Decimal Base-10	Binary Base-2	Octal Base-8	Hexa Decimal Base-16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Conversion Rules of Number Systems

 A number can be converted from one number system to another number system.

- Example: Convert 100111₂ into the decimal system.
- Step 1: Identify the base of the given number.

 Here, the base of 100111₂ is 2.

Step 2:

- Multiply each digit of the given number, starting from the rightmost digit, with the exponents of the base.
- The exponents should start with 0 and increase by 1 every time as we move from right to left.

 Step 3: We just simplify each of the above products and add them.

$$100111_2 = 39_{10}$$

We can use the following steps to make this process simplified.

```
100111_{2} = (1 \times 2^{5}) + (0 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})
= (1 \times 3^{2}) + (0 \times 16) + (0 \times 8) + (1 \times 4) + (1 \times 2) + (1 \times 1)
= 3^{2} + 0 + 0 + 4 + 2 + 1
= 39_{10}
```

Conversion of Decimal Number System to Other Number Systems

- Example: Convert 4320₁₀ into the octal system
- Step 1: Identify the base of the required number.
- The base of the required number is

Conversion of Decimal Number System to Other Number Systems

• Step 2:

- Divide the given number by the base of the required number and note down the quotient and the remainder in the quotient-remainder form.
- Repeat this process (dividing the quotient again by the base) until we get the quotient to be less than the base.

$$\begin{vmatrix}
 4 & 3 & 2 & 0 \\
 8 & 5 & 4 & 0 & -0 \\
 8 & 6 & 7 & -4 \\
 8 & 8 & -3 \\
 1 & -0$$

Conversion of Decimal Number Systems to Other Number Systems

 Step 3: The required number in the octal number system obtained just by reading all the remainders and the last quotient from bottom to top.

Conversion of Decimal Number Systems to Other Number Systems

• Example: $2020.65625_{10} \rightarrow (?)_{16}$

For Real Part: The real part is 2020₁₀

We convert the real part from base 10 to base 16 using division method same as above.

So, $2020_{10} = 7E4_{16}$

For Fractional Part: The fractional part is 0.65625₁₀ We convert the fractional part from base 10 to base 16 using multiplication method.

	Real part	Fractional Part
0.65625 x 16	10 = A	0.5
0.5 x 16	8	0.0

Combining the result of real and fractional parts: 2020.65625₁₀ = 7E4.A8₁₆

From here, $0.65625_{10} = 0.48_{16}$

Conversion from One Number System to Another Number System

- To convert a number from one of the binary/octal/hexadecimal systems to one of the other systems:
 - Step 1: We first convert it into the decimal system.
 - Step 2: We convert it to the required systems.

Conversion from One Number System to Another Number System

- Example: Convert 1010111100₂ to the hexadecimal system.
- Step 1: Convert this number to the decimal number system as explained in the above process.

Conversion from One Number System to Another Number System

 Step 2: Convert the above number (which is in the decimal system), into the required number system.

16 7 0 0
16 4 3 - 12(or) C
2 - 11 (or) B

$$700_{10} = 2BC_{16}$$

$$1010111100_{2} = 700_{10}$$

$$700_{10} = 2BC_{16}$$

$$1010111100_{2} = 2BC_{16}$$

1.9

Algorithm

What is Algorithm?

- An algorithm is a procedure or formula for solving a problem, based on conducting a sequence of specified actions.
- For an algorithm to be useful, it must satisfy five properties:
 - The inputs must be specified.
 - The outputs must be specified.
 - Definiteness.
 - Effectiveness.
 - Finiteness.

What is Algorithm?

- How can we create an algorithm to show the steps in getting ready for school?
 - Get out of bed.
 - Take a shower and clean teeth.
 - Get dressed.
 - Turn on the kettle.
 - Put bread in the toaster and turn it on.
 - Wait for the kettle to boil and make tea.
 - Wait for bread to toast, butter it and add Jam.
 - Drink tea and eat toast.
 - Gather school books and put in bag.
 - Put on shoes and coat.
 - Leave the house.

What is Algorithm?

- Build a program:
 - Problem definition
 - Requirement analysis
 - Build the algorithms
 - Coding
 - Testing and debugging
 - Maintenance
 - Documentation

Algorithm development process

- Algorithm development process consists of five major steps:
 - Step 1: Obtain a description of the problem.
 - Step 2: Analyze the problem.
 - Step 3: Develop a high-level algorithm.
 - Step 4: Refine the algorithm by adding more detail.
 - Step 5: Review the algorithm.

Presentation of Algorithm

 There are two main ways that algorithms can be represented:

Pseudocode

- Pseudocode is a plain language description of the steps in an algorithm.
- It uses programming-style constructs, but is not written in an actual programming language.

Flowchart

- Flowcharts can be used to represent algorithms visually.
- They use diagrams which use particular symbols to show the flow of data, processing and input/output that takes place within a program or task.

Step 6: Stop

 Example 1: Add two numbers entered by the user

```
Step 1: Start
Step 2: Declare variables num1, num2 and sum.
Step 3: Read values num1 and num2.
Step 4: Add num1 and num2 and assign the result to sum.

sum←num1+num2
Step 5: Display sum
```

Example 2: Find the largest number among three numbers

```
Step 1: Start
Step 2: Declare variables a,b and c.
Step 3: Read variables a,b and c.
Step 4:
if ((a >= b) && (a >= c))
    Display a is the largest number.
if ((b >= a) && (b >= c))
    Display b is the largest number.
if ((c >= a) && (c >= b))
    Display c is the largest number.
Step 5: Stop
```

```
Step 1: Start
Step 2: Declare variables a,b and c.
Step 3: Read variables a,b and c.
Step 4:
if (a >= b)
       if (a >= c)
           Display a is the largest number.
       else
           Display c is the largest number
else
       if (b >= c)
           Display b is the largest number.
       else
           Display c is the largest number.
Step 5: Stop
```

Example 3:
 Check
 whether a
 number is
 prime or not

```
Step 1: Start
Step 2: Declare variables n, i, flag.
Step 3: Initialize variables
     flag ← 1
     i ← 2
Step 4: Read n from the user.
Step 5: If n == 2
           flag \leftarrow 0
            Go to step 7
        else
            Go to step 6
Step 6: Repeat the steps until i=(n/2)
   6.1 If remainder of n÷i equals 0
        flag \leftarrow 0
        Go to step 7
   6.2 i ← i+1
Step 7: If flag = 0
       Display n is not prime
     else
       Display n is prime
Step 8: Stop
```

 Example 4: Find the Fibonacci series till the term less than 1000

```
Step 1: Start
Step 2: Declare variables first_term, second_term, temp.
Step 3: Initialize variables first_term ← 0, second_term ← 1
Step 4: Display first_term and second_term
Step 5: Repeat the steps while second_term ≤ 1000
5.1: temp ← second_term
5.2: second_term ← second_term + first_term
5.3: first_term ← temp
5.4: Display second_term
Step 6: Stop
```

This represents the start or end point of the flowchart.	
You use this to represent data input or data output.	
You use this where a decision has to be made. It is also called selection and will contain a question.	
You use this to represent a process that must be carried out by the algorithm.	

Example 5

Connectors

The Sequence structure

Example 6

The Decision Structure

Example 8

The Case Structure

Repetition Structures

Example 9

Example 10

Flowchart

Modules

