Math 3A03 - Tutorial 3 Questions - Winter 2019

Nikolay Hristov

January 28/30, 2019

Problem 1. Prove, using the algebra of limits, $\lim_{n\to\infty} \left(\frac{1}{n^3} + \frac{n}{2(n+3)}\right) = \frac{1}{2}$.

Problem 2. Suppose that $a_n \geq 0$. Prove if $\lim_{n \to \infty} a_n \to L$ then $L \geq 0$ and $\lim_{n \to \infty} \sqrt{a_n} \to \sqrt{L}$.

Problem 3. Let $F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2}$,

- a) Prove F_n diverges as $n \to \infty$.
- b) How can you modify the above to show F_n diverges to ∞ ?

Problem 4. Let $x_n \to \infty$ (i.e. diverges to ∞), then $s_n = \frac{x_n}{x_n+1}$ converges to 1 as $n \to \infty$.

Problem 5. Show that the definition of the limit of a sequence is equivalent to the following slight modification (note this isn't the one from your assignment!):

A sequence $\{s_n\}$ converges to L if given any $\epsilon > 0$ there is some real number K such that if $n \geq K$ then $|s_n - L| < \epsilon$.

Problem 6. Show that "the set E is dense in \mathbb{R} " is equivalent to "given any $y \in \mathbb{R}$ there exists a sequence of points $x_n \in E$ such that $\lim_{n \to \infty} x_n = y$ ".