Alignment-free tools for metagenomics-data analysis

Robert Deibel

Eberhard-Karls Universität Tübingen robert.deibel@student.uni-tuebingen.de

November 27, 2017

Overview

- Metagenomics
 - Metagenome
 - NGS and alignment
- Alignment-based approach
- 3 Alignment-free methods
 - Statistics as similarity measurement
 - CVTree
 - D_2^S , D_2^* and their normalization
 - Consideration of mismatches
 - Consideration of mismatches
 - Machine learning BH-SNE

Metagenomics

Metagenome

- A metagenome is the whole set of transcripts found in a sample.
- Metagenomics is the study of those
- > 90% uncultureable microorganisms
- design of antibiotics, analysis of microorganismal life

NGS and alignment

- Advances in sequencing made metagenomics possible
- NGS generates comparable reads

Metagenomics

Goals

- insight in microorganismal life
- first evidence of origin and function
- independent from databases and coding regions

Alignment-based approach

Advantages

- Align sequences against database
- Profiles can be analyzed
- BLAST > 80% accuracy

Alignment-based approach

Advantages

- Align sequences against database
- Profiles can be analyzed
- BLAST > 80% accuracy

Disadvantages

- Low speed
- Dependent of databases
- Unsequenced transcripts cannot be matched
- Databases mostly consist of coding sequences

Different approaches

Statistics

- Utilizes statistics differing in power
- based on k-tuple counts
- Have to be applied through (dis)similarity matrix
- Further analysis follows

Machine learning

- Optimization of a function
- based on k-mer signature
- applies BH-SNE
- Visualizes data in scatter plots

$$D_2 = \sum_{w \in \mathcal{A}^k} X_w Y_w$$

where:

- X_w , Y_w number of occurrences in A, B
- ullet ${\cal A}$ alphabet
- k is length of w

$$D_2 = \sum_{w \in \mathcal{A}^k} X_w Y_w$$

where:

- X_w , Y_w number of occurrences in A, B
- ullet ${\cal A}$ alphabet
- k is length of w

Problem

 D_2 is not normalized \Rightarrow results vary on different factors

Assume sequences are generated through Markov chain

Assume sequences are generated through Markov chain

$$D2z(A,B) = \frac{D_2(A,B) - E(D_2)}{\sqrt{Var(D_2)}}$$

Assume sequences are generated through Markov chain

$$D2z(A,B) = rac{D_2(A,B) - E(D_2)}{\sqrt{Var(D_2)}}$$

• compared to five other measures D2z outperformed them

Assume sequences are generated through Markov chain

$$D2z(A,B) = \frac{D_2(A,B) - E(D_2)}{\sqrt{Var(D_2)}}$$

- compared to five other measures D2z outperformed them
- needs two parameters, k and r

Assume sequences are generated through Markov chain

$$D2z(A,B) = \frac{D_2(A,B) - E(D_2)}{\sqrt{Var(D_2)}}$$

- compared to five other measures D2z outperformed them
- needs two parameters, k and r
- \bullet $E(D_2)$ and $Var(D_2)$ calculated with Markov chain in mind

MC of order zero

Probability of A = B or...

MC of order zero

Probability of A = B or...

Sum of background probabilities f_a^A , f_a^B to the power of k

MC of order zero

Probability of A = B or. . .

Sum of background probabilities f_a^A , f_a^B to the power of k

$$E(D_2) = \left(\sum_{a \in \mathcal{A}} f_a^A f_a^B\right)^k$$

MC of order zero

Probability of A = B or...

Sum of background probabilities f_a^A , f_a^B to the power of k

$$E(D_2) = \left(\sum_{a \in \mathcal{A}} f_a^A f_a^B\right)^k$$

MC of order 1

Sum of probabilities for |w| = k, under consideration of MC

MC of order zero

Probability of A = B or. . .

Sum of background probabilities f_a^A , f_a^B to the power of k

$$E(D_2) = \left(\sum_{a \in \mathcal{A}} f_a^A f_a^B\right)^k$$

MC of order 1

Sum of probabilities for |w| = k, under consideration of MC

$$\sum_{|w|=k} p^{A}(w_{1})p^{A}(w|w_{1})p^{B}(w_{1})p^{B}(w|w_{1})$$

ullet considers (k-2)-th order MC estimated by E_w^X

 \bullet considers (k-2)-th order MC estimated by E_w^X

$$Hao = \frac{1}{2}(1-C)$$

ullet considers (k-2)-th order MC estimated by E_w^X

$$Hao = \frac{1}{2}(1-C)$$

$$C = \frac{\sum_{w} \left(\frac{X_{w} - E_{w}^{X}}{E_{w}^{X}}\right) \left(\frac{Y_{w} - E_{w}^{Y}}{E_{w}^{Y}}\right)}{\sqrt{\sum_{w} \left(\frac{X_{w} - E_{w}^{X}}{E_{w}^{X}}\right)^{2} \sum_{w} \left(\frac{Y_{w} - E_{w}^{Y}}{E_{w}^{Y}}\right)^{2}}}$$

ullet considers (k-2)-th order MC estimated by E_w^X

$$Hao = \frac{1}{2}(1-C)$$

$$C = \frac{\sum_{w} \left(\frac{X_{w} - E_{w}^{X}}{E_{w}^{X}}\right) \left(\frac{Y_{w} - E_{w}^{Y}}{E_{w}^{Y}}\right)}{\sqrt{\sum_{w} \left(\frac{X_{w} - E_{w}^{X}}{E_{w}^{X}}\right)^{2} \sum_{w} \left(\frac{Y_{w} - E_{w}^{Y}}{E_{w}^{Y}}\right)^{2}}}$$

- Observations in composition vector
- subtraction of background "noise" through MC
- C is cosine between vectors

Figure: Computed phylogenetic tree through application of neighbor joining dissimilarity matrix

Nucleotide frequency

- Related approach to Hao
- Consider di-nucleotide frequency

$$\rho_{ab}(A) = \frac{f_{ab}}{f_a f_b}$$

- Can be extended to tri- and tetra nucleotides
- \bullet I_p norm as dissimilarity measure

$$\delta(A,B) = \sum_{ab \in A} |\rho_{ab}(A) - \rho_{ab}(B)|$$

• For two normal random variables $XY/\sqrt{X^2+Y^2}$ is also normally distributed

• For two normal random variables $XY/\sqrt{X^2+Y^2}$ is also normally distributed

$$D_2^{\mathcal{S}} = \sum_{w \in \mathcal{A}^k} \frac{\widetilde{X}_w \widetilde{Y}_w}{\sqrt{\widetilde{X}_w^2 + \widetilde{Y}_w^2}}$$

• For two normal random variables $XY/\sqrt{X^2+Y^2}$ is also normally distributed

$$D_2^{\mathcal{S}} = \sum_{w \in \mathcal{A}^k} \frac{\widetilde{X}_w \widetilde{Y}_w}{\sqrt{\widetilde{X}_w^2 + \widetilde{Y}_w^2}}$$

D₂* utilizes that number of occurrences is approximately Poisson;
mean and variance are the same

• For two normal random variables $XY/\sqrt{X^2+Y^2}$ is also normally distributed

$$D_2^{\mathcal{S}} = \sum_{w \in \mathcal{A}^k} \frac{\widetilde{X}_w \widetilde{Y}_w}{\sqrt{\widetilde{X}_w^2 + \widetilde{Y}_w^2}}$$

D₂* utilizes that number of occurrences is approximately Poisson;
mean and variance are the same

Conclusions

- **1** D_2^S and D_2^* have higher power than D_2
- 2 D_2^* has highest power when k equals motif length

but again both not normalized

Normalization and Neighborhood

Normalization

- ullet Normalization to $d_2^{\mathcal{S}}$ and d_2^*
- 0 when sequences are the same and close to one if anti-correlated
- Now applicable to metagenomic data or varying types of sequences

Normalization and Neighborhood

Normalization

- Normalization to d_2^S and d_2^*
- 0 when sequences are the same and close to one if anti-correlated
- Now applicable to metagenomic data or varying types of sequences

Consideration of mismatches

- instead of w the statistics should consider the neighborhood $\varsigma(w)$
- If $w' \in \varsigma(w)$ w' has a certain number of mismatches with w
- Reverse complement can be included similarly
- statistics can then be modified

Performance under the mismatch model

Test parameters

- sequences from mouse embryo
- positive and negative set maximum of 30% repetitions
- Dissimilarity was calculated
- Threshold was applied
- prediction of dissimilarity lower than threshold resulted in positives
- Predictions were compared to real data
- Testing with different parameters for k, r and mismatch weight

Performance under the mismatch model

Test parameters

- sequences from mouse embryo
- positive and negative set maximum of 30% repetitions
- Dissimilarity was calculated
- Threshold was applied
- prediction of dissimilarity lower than threshold resulted in positives
- Predictions were compared to real data
- Testing with different parameters for k, r and mismatch weight

Test conclusions

- Hao performed worse than d_2^S and d_2^*
- d_2^S and d_2^* performed best with mismatch weight of 0.05 and k=4
- Overall d_2^S achieved best results in testing

Machine learning – BH-SNE

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.

The End