74 등비수열의 합

개념 한눈에 보기 💄

개념

등비수열의 합

유형 117

첫째항이 a, 공비가 r $(r \neq 0)$ 인 등비수열의 첫째항부터 제n항까지의 합을 S_n 이라 하면

$$(\mathrm{i})\ r \! \neq \! 1$$
일 때, $S_n \! = \! rac{a(1 \! - \! r^n)}{1 \! - \! r} \! = \! rac{a(r^n \! - \! 1)}{r \! - \! 1} \; \leftarrow \! n$ 은 항의 개수이다.

(ii) r=1일 때, $S_n=na$

설명 첫째항이 a, 공비가 r인 등비수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하면

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

 \bigcirc 의 양변에 등비수열의 공비 γ 를 곱하면

$$rS_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

①. ①을 변끼리 빼면 다음과 같다.

$$S_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$-) rS_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

$$(1-r)S_n = a - ar^n$$

(i)
$$r \neq 1$$
 일 때, $S_n = \frac{a - ar^n}{1 - r} = \frac{a(1 - r^n)}{1 - r} = \frac{a(r^n - 1)}{r - 1}$

(ii)
$$r=1$$
일 때, \bigcirc 에서 $S_n=\underbrace{a+a+a+\cdots+a}_{n^{7}}=na$

CHECK

첫째항이 5이고 공비가 2인 등비수열의 첫째항부터 제5항까지의 합 S_5 의 값을 구하시오.

풀이
$$S_5 = \frac{5 \times (2^5 - 1)}{2 - 1} = 5 \times 31 = 155$$

개념 2 원리합계

유형 121

원금 a를 연(월)이율 r로 n년(월) 동안 예금할 때, 원리합계를 S_{v} 이라 하면

(1) 단리로 예금할 때, $S_n = a(1+rn)$

(2) 복리로 예금할 때, $S_n = a(1+r)^n$

tip 원리합계란 원금과 이자를 합한 금액을 말한다.

설명 원금 a를 연이율 r로 예금할 때, 원리합계를 구하면 다음과 같다.

단리로 예금하는 경우		복리로 예금하는 경우	
1년 후 ⇒	a+ar=a(1+r)	1년후 ➡	a+ar=a(1+r)
2년 후 ➡	a+ar+ar=a(1+2r)	2년 후 ➡	$a(1+r)+a(1+r)r=a(1+r)(1+r)=a(1+r)^2$
3년 후 ➡	a+ar+ar+ar=a(1+3r)	3년 후 ➡	$a(1+r)^2+a(1+r)^2r=a(1+r)^2(1+r)=a(1+r)^3$
i :	i i	:	i
n 년 후 $\Rightarrow a+ar+ar+\cdots+ar=a(1+nr)$		<i>n</i> 년 후 ⇒	$a(1+r)^{n-1}+a(1+r)^{n-1}r=a(1+r)^{n-1}(1+r)=a(1+r)^n$
첫째항이 $a(1+r)$, 공차가 ar 인 등차수열		첫째항이 $a(1+r)$, 공비가 $(1+r)$ 인 등비수열	

에 워금 100만 원을 연이율 10 %로 10년 동안 예금할 때의 원리합계를 구해 보자 (단. 1.1¹⁰=2.6으로 계산한다.)

(i) 단리로 예금하는 경우 : 100(1+0.1×10)=100×2=200(만 원)

(ii) 복리로 예금하는 경우 : $100(1+0.1)^{10} = 100 \times 1.1^{10} = 100 \times 2.6 = 260$ (만 원)

따라서 같은 금액에 같은 이율로 예금한다면 단리로 예금했을 때보다 복리로 예금했을 때 이자가 더 많이 붙음을 알 수 있다.

원금 a원을 연이율 r의 복리로 n년 동안 적립할 때, n년 말의 원리합계를 S_n 이라 하면

(1) 매년 초에 적립할 때, n년 말의 원리합계는

$$S_n = \frac{a(1+r)\{(1+r)^n-1\}}{r}$$
(원) 수첫째항: $a(1+r)$, 공비: $1+r$

(2) 매년 말에 적립할 때. n년 말의 원리합계는

$$S_n = \frac{a\{(1+r)^n-1\}}{r}$$
(원) \leftarrow 첫째항: a , 공비: $1+r$

(1) 연이율 r의 복리로 매년 초 a원씩 n년 동안 적립할 때. n년 말의 원리합계를 구하면 다음과 같다.

따라서 구하는 원리합계 S_n 은

$$S_n = a(1+r) + a(1+r)^2 + a(1+r)^3 + \cdots + a(1+r)^n$$
 는 첫째항이 $a(1+r)$, 공비가 $1+r$ 인 등비수열의 첫째항부터 제 n 항까지의 합 $= \frac{a(1+r)\{(1+r)^n-1\}}{(1+r)-1} = \frac{a(1+r)\{(1+r)^n-1\}}{r}$ (원)

(2) 연이율 r의 복리로 매년 말 a원씩 n년 동안 적립할 때 n년 말의 원리학계를 구하면 다음과 같다

따라서 구하는 원리합계 S_n 은

$$S_n = a + a(1+r) + a(1+r)^2 + \cdots + a(1+r)^{n-1}$$
 — 첫째항이 a , 공비가 $1+r$ 인 등비수열의
$$= \frac{a\{(1+r)^n - 1\}}{(1+r) - 1} = \frac{a\{(1+r)^n - 1\}}{r}$$
(원)

CHECK 901윰 5%의 복리로 매년 말 50만 워씩 4년 동안 적립할 때, 4년 말의 원리합계를 구하시오. (단. 1.05 = 1.22로 계산한다.)

풀이 1년 말 2년 말 3년 말 4년 말 (단위:만원)
1회 50 50(1+0.05) 50(1+0.05)² 50(1+0.05)³
2회 50 50(1+0.05) 50(1+0.05)
3회 50 50 1+0.05)
4회 8리하게

매년 말 50만 원씩 4년 동안 적립할 때. 4년 말의 적립금의 원리합계는

 $50+50(1+0.05)+50(1+0.05)^2+50(1+0.05)^3=50+50\times1.05+50\times1.05^2+50\times1.05^3$

$$=\frac{50(1.05^4-1)}{1.05-1}=\frac{50\times(1.22-1)}{0.05}=$$
220(만원)

유형 121

워리합계

연이율이 4%이고 1년마다 복리로 매년 초 100만 원씩 10년 동안 적립할 때, 10년 말의 적립금의 원리합계를 구하시오. (단, $1.04^{10}=1.5$ 로 계산한다.)

| 풀이 | 10년 말 (단위:만 원) 1년 초 2년 초 3년 초 4년 초 10년 초 100(1+0.04) $100(1+0.04)^2$ $100(1+0.04)^3$... $100(1+0.04)^9$ $100(1+0.04)^{10}$ 1회 100 2호 100 100(1+0.04) $100(1+0.04)^2$ ··· $100(1+0.04)^8$ $100(1+0.04)^9$ 100(1+0.04) ··· $100(1+0.04)^7$ $100(1+0.04)^8$ 3호 100 : 10회 100 100(1+0.04)워리한계

따라서 연이율 4%로 매년 초 100만 원씩 10년 동안 적립할 때, 10년 말의 적립금의 원리합계는 $100(1+0.04)+100(1+0.04)^2+100(1+0.04)^3+\cdots+100(1+0.04)^{10}$ $=100\times1.04+100\times1.04^2+100\times1.04^3+\cdots+100\times1.04^{10}\qquad - 첫째항: 100\times1.04$ $=\frac{100\times1.04\times(1.04^{10}-1)}{1.04-1}$ $=\frac{100\times1.04\times(1.5-1)}{0.04}$ =1300(만 원)

■ 정답과 풀이 78쪽

체크 333

월이율 5 %의 복리로 매월 초 20만 원씩 12개월 동안 적립할 때, 12개월 말의 적립금의 원리합계를 구하시오. (단, 1,05¹²=1,8로 계산한다.)

체크 334

채윤이의 부모님이 노후 생활을 위하여 2018년부터 2030년까지 매년 말에 500만 원씩 적립하려고 한다. 연이율은 4%이고 1년마다 복리로 계산할 때, 2030년 말의 적립금의 원리합계를 구하시오.

(단, 1.04¹³=1.7로 계산한다.)