REAL ANALYSIS I

EDWARD O'CALLAGHAN

Contents

1.	Convergence	2
2.	Compactness	2
3.	Limits	2
4.	Differentiable	3
4.1.	Partial derivatives	4
5.	Mean Value Theorem	
6.	Taylor Series	1
7.	Constrain extrema - Lagrange multipliers	Ę
8.	Cylindrical Coordinates	Ę
9.	Green's theorem	6
10.	Fourier Transform	7

2

1. Convergence

Definition 1.1 (Limit). Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of vectors in \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that $\{x_k\}_{k=1}^{\infty}$ converges to a limit x if,

$$\lim_{k \to \infty} d(x_k, x) = \lim_{k \to \infty} ||x_k - x|| \to 0 \in \mathbb{R}$$

written $x_k \to x$.

2. Compactness

Let I denote any, possibly infinite, indexing set.

Definition 2.1 (Open Cover). A **open cover** of a set $S \subseteq \mathbb{R}^n$ is a collection $\{V_i\}_{i \in I}$ of open sets of \mathbb{R}^n such that $S \subset \bigcup_{i \in I} V_i$. A *subcover* is a subcollection which also covers S.

Definition 2.2 (Compact). A subset $S \subseteq \mathbb{R}^n$ is said to be **compact** if from every open cover of S we may find a *finite* subcover of S.

3. Limits

Definition 3.1. Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \bar{\Omega}$. A point $y \in \mathbb{R}^m$ is said to be the *limit* of f as $x \to \infty$, written as

$$\lim_{x \to \infty} f(x) = y,$$

if for every neighborhood $B_{\epsilon}(y)$ of $y \in \mathbb{R}^m$ there exists a neighborhood $B_{\delta}(a)$ of $a \in \Omega$ such that whenever $x \in \Omega \cap B_{\delta}(a)$, this implies $f(x) \in B_{\epsilon}(y)$. That is,

$$f(\Omega \cap B_{\delta}(a)) \subseteq B_{\epsilon}(y).$$

Proposition 3.2. For $f, g: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ we have

$$\lim_{x\to a}(f(x)\pm g(x))=\lim_{x\to a}f(x)\pm \lim_{x\to a}g(x).$$

If, $g(x) \neq 0$ everywhere on Ω , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

Problem 3.3. Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $\vec{a} \in \Omega$. Then,

$$\lim_{\vec{x}\to\vec{a}}f(\vec{x})=\vec{y}$$

if and only if,

$$\lim_{\vec{x}\to\vec{a}} f_i(\vec{x}) = y_i$$

for each i in $1 \le i \le m$.

Example 3.4. Show that,

$$\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}=0.$$

Let $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$ and fix some arbitrarily small $\epsilon > 0$. Then we must find a $\delta > 0$ such that $|f(x,y) - 0| < \epsilon$ whenever $0 < ||(x,y) - (0,0)|| < \delta$.

Now, note that $|x^3| \leq (x^2 + y^2)^{3/2}$ and so by the triangle inequality, we have

$$|f(x,y)| = \left| \frac{x^3 + y^3}{x^2 + y^2} \right|$$

$$\leq \frac{2(x^2 + y^2)^{3/2}}{x^2 + y^2}$$

$$= 2\sqrt{x^2 + y^2}.$$

whence, choosing $\delta=\epsilon/2$, we get $|f(x,y)|<\epsilon$ provided that $\sqrt{x^2+y^2}<\delta$. Thus, $\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}=0$.

Example 3.5. Show that,

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1.$$

Let $f(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$ and take $t = x^2 + y^2$ so that we have,

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

$$= \lim_{t\to 0} \frac{\sin(t)}{t} = 1.$$

4. Differentiable

Definition 4.1 (Differentiable). Let $f: \Omega \to \mathbb{R}^m$ be a function defined on an open set $\Omega \in \mathbb{R}^n$ and point $\vec{a} \in \Omega$. The function f is said to be differentiable at \vec{a} if there is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that,

$$\lim_{\mathbf{x} \to \vec{a}} \frac{\|f(\mathbf{x}) - f(\vec{a}) - T(\mathbf{x} - \vec{a})\|_m}{\|\mathbf{x} - \vec{a}\|_n} = 0.$$

If f is differentiable at every point $\vec{a} \in \Omega$ then f is differentiable on Ω .

Theorem 4.2 (Linear Approximation). The function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at point \vec{a} if and only if there is a function $\epsilon(\mathbf{x})$ so that for $\mathbf{x} \in \Omega$ we have,

$$f(\mathbf{x}) = f(\vec{a}) + T(\mathbf{x} - \vec{a}) + \epsilon(\mathbf{x}) \|\mathbf{x} - \vec{a}\|$$

with $\epsilon(\mathbf{x}) \to 0$ as $\mathbf{x} \to \vec{a}$.

Proof.

Set

$$\epsilon(\mathbf{x}) = \frac{f(\mathbf{x}) - f(\vec{a}) - T(\mathbf{x} - \vec{a})}{\|\mathbf{x} - \vec{a}\|} : \mathbf{x} \neq \vec{a}.$$

Now, if f is differentiable at \vec{a} , then $\lim_{\mathbf{x}\to\vec{a}} \epsilon(\mathbf{x}) = 0$.

Conversely, suppose

$$f(\mathbf{x}) = f(\vec{a}) + T(\mathbf{x} - \vec{a}) + \epsilon(\mathbf{x}) \|\mathbf{x} - \vec{a}\|$$

holds, and since $\mathbf{x} \neq \vec{a}$, we have

$$\frac{f(\mathbf{x}) - f(\vec{a}) - T(\mathbf{x} - \vec{a})}{\|\mathbf{x} - \vec{a}\|} = \epsilon(\mathbf{x}) \to 0$$

as $\mathbf{x} \to \vec{a}$ and so f is differentiable at the point \vec{a} .

Theorem 4.3 (Chain Rule). Let Ω be a open set in \mathbb{R}^n and $f:\Omega \to \mathbb{R}^m$ and $g:U \to \mathbb{R}^p$, where U is a open set in \mathbb{R}^m with $f(\Omega) \subseteq U$. If f is differentiable at $\vec{a} \in \Omega$ and g is differentiable at $f(\vec{a})$, then $g \circ f$ is differentiable at \vec{a} and

$$D_{(q \circ f)}(\vec{a}) = D_q(f(\vec{a}))D_f(\vec{a}).$$

Proof. TODO

4.1. Partial derivatives.

Definition 4.4 (Directional Derivative). The directional derivative of f at \vec{a} in the direction of a non-zero vector $\vec{u} \in \mathbb{R}^n$, denoted by $D_{\vec{u}} f(\vec{a})$ is defined by,

$$D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t},$$

whenever the limit exists.

Theorem 4.5. If $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\vec{a} \in \Omega$, then for any direction non-zero $\vec{u} \neq 0$, $\vec{u} \in \mathbb{R}^n$, $D_{\vec{u}} f(\vec{a})$ exists and

$$D_{\vec{u}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{u} \rangle.$$

Proof. TODO

5. Mean Value Theorem

Theorem 5.1. Suppose $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is some differentiable function on the open convex set Ω . Let $\vec{a}, \vec{b} \in \Omega$ and $\gamma(\lambda) = \vec{a} + \lambda(\vec{b} - \vec{a})$ be the line segment joining points \vec{a} and \vec{b} . Then there exists some point \vec{c} on the line $\gamma(\lambda)$ such that,

$$f(\vec{b}) - f(\vec{a}) = \langle \nabla f(\vec{c}), (\vec{b} - \vec{a}) \rangle.$$

Proof. TODO

Corollary. Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ be a differentiable function on a convex subset $K \subset \Omega$. If $\|\nabla f(x)\| \leq M \, \forall x \in K$, then

$$|f(x) - f(y)| \le M ||x - y||$$

for all $x, y \in K$.

Corollary. Let f be a differentiable function on an open convex set $\Omega \subseteq \mathbb{R}^n$. If $\nabla f(x) = 0 \forall x \in \Omega$, then f is constant on Ω .

Proof. Let $x, y \in \Omega : x \neq y$. Then we have |f(x) - f(y)| = 0. That is, f(x) = f(y).

6. Taylor Series

Theorem 6.1 (Taylor Series). Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ be $f \in C^2(\Omega)$ on the open convex set Ω and $a, x \in \Omega$. Then there exists a point c on the line segment joining a and x, such that

$$f(x) = f(a) + \langle \nabla f(a), (x-a) \rangle + \frac{1}{2!} \langle H_f(c)(x-a), (x-a) \rangle.$$

7. Constrain extrema - Lagrange multipliers

Theorem 7.1 (Lagrange multiplier). Let $f, g : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ be $C^1(\Omega)$ in the open set Ω . Let $S = \{x \in \Omega : g(x) = 0\}$ and $s \in S$ with $\nabla g(s) \neq 0$. If the restriction $f|_S$ of f to S takes on an extreme value at s, then there exists some $\lambda \in \mathbb{R}$ such that

$$\nabla f(s) = \lambda \nabla q(s)$$
.

Example 7.2. ..

8. Cylindrical Coordinates

Definition 8.1 (Cylindrical Coordinates). The *cylindrical coordinates* are defined to be the polar map with z-coordinate. That is,

$$\phi(r, \theta, z) = \begin{pmatrix} r\cos(\theta), & r\sin(\theta), & z \end{pmatrix}$$

9. Green's Theorem

Green's theorem is a two dimensional analog of the Fundamental Theorem of Calculus.

Theorem 9.1. Let $\mathbf{F}(x,y) = (F(x,y), G(x,y))$ be, $C^1(\bar{\Omega})$, a continuous vector field on an open set containing domain $\Omega \subseteq \mathbb{R}^2$ whose boundary curve, $C = \partial \Omega$, is closed and piecewise smooth. Then, by considering $\partial \Omega$ to have positive, or counterclockwise, orientation, we have:

$$\iint_{\Omega} \left(\frac{\partial G(x,y)}{\partial x} - \frac{\partial F(x,y)}{\partial y} \right) dy dx = \int_{\partial \Omega} \left(F(x,y) dx + G(x,y) dy \right).$$

Proof.

First suppose Ω is an elementary region of the form:

$$\Omega = \{(x, y) : a \le x \le b, \phi_1(x) \le y \le \psi_1(x)\}$$
 (x-simple)

where $\phi_1, \psi_1 \in \mathcal{C}([a,b])$ and

$$\Omega = \{(x, y) : c \le y \le d, \phi_2(y) \le x \le \psi_2(y)\}$$
 (y-simple)

where $\phi_2, \psi_2 \in \mathcal{C}([c,d])$.

Since $\mathbf{F}(x,y) \in \mathcal{C}^1(\bar{\Omega})$ then $F(x,y) \in \mathcal{C}^1(\bar{\Omega})$. Hence we first show,

$$-\iint_{\Omega} \frac{\partial F}{\partial y} dy dx = \int_{\partial \Omega} F(x, y) dx.$$

By writing Ω as x-simple we see that,

$$\int_{\partial\Omega} F(x,y) dx = \int_{C_1} F dx + \underbrace{\int_{C_2} F dx}_{\dagger} + \int_{C_3} F dx + \underbrace{\int_{C_4} F dx}_{\dagger}.$$

Observe[†] that the curves C_2 , C_4 are the vertical line portions x = a and x = b respectively. So any parametrisation x'(t) = 0 of constant terms gives us dx = 0 and so the sums are zero measure.

Consider also the parameterisations $\gamma_1(x) = (x, \phi_1(x))$ and $\gamma_3(x) = (x, \psi_1(x))$ for the curves C_1 and C_3 respectively with $x \in [a, b]$. Since C_3 has negative orientation, we have

$$\int_{\partial\Omega} F(x,y) dx = \int_a^b \left(F(x,\phi_1(x)) - F(x,\psi_1(x)) \right) dx.$$

Holding x fixed we have, by the Fundamental Theorem of Calculus, the following

$$\iint_{\Omega} \frac{\partial F(x,y)}{\partial y} dy dx = \int_{a}^{b} \left(\int_{\phi_{1}(x)}^{\psi_{1}(x)} \frac{\partial F(x,y)}{\partial y} dy \right) dx$$

and so,

$$\iint_{\Omega} \frac{\partial F(x,y)}{\partial y} dy dx = -\int_{\partial \Omega} F(x,y) dx. \tag{1}$$

Similarly, expressing Ω as a y-simple region, we obtain,

$$\iint_{\Omega} \frac{\partial G(x,y)}{\partial x} dy dx = \int_{\partial \Omega} G(x,y) dy.$$
 (2)

By adding (1) and (2) together we have the required result in this simple case.

10. Fourier Transform

Definition 10.1 (Fourier transform). Let $f : \mathbb{R} \to \mathbb{C}$ be an absolutely integrable function on \mathbb{R} . The Fourier transform $\mathcal{F}(f) \equiv \hat{f}$ of f is defined by the integral

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-i\omega x} dx.$$

Definition 10.2 (Characteristic function).

$$\chi_{(-a,a)}(x) \doteq \begin{cases} 1 & \text{if } |x| < a, \\ 0 & \text{if } |x| \ge a. \end{cases}$$

Example 10.3. Suppose $f(x) = \chi_{(-1,1)}(x)$. Find the Fourier transform $\hat{f}(\omega)$.

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-i\omega x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \chi_{(-1,1)}(x)e^{-i\omega x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-i\omega x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \left\{ \frac{e^{-i\omega x}}{-i\omega} \right\}_{-1}^{1}$$

$$= \frac{2}{\sqrt{2\pi}} \left\{ \frac{e^{-i\omega x}}{2\omega i} \right\}_{1}^{-1}$$

$$= \sqrt{\frac{2}{\pi}} \left(\frac{\sin(\omega)}{\omega} \right).$$

