Question Number	Scheme	Marks
8 (a)	$355 = \pi r^2 h \Rightarrow h = \frac{355}{\pi r^2}$ or $\pi r h = \frac{355}{r}$	B1
	$S = 2\pi r^{2} + 2\pi rh \Rightarrow S = 2\pi r^{2} + 2\pi r \left(\frac{355}{\pi r^{2}}\right) = 2\pi r^{2} + \frac{710}{r} $ *	M1A1 A1cso (4)
(b)	$\frac{\mathrm{d}S}{\mathrm{d}r} = 4\pi r - 710r^{-2}$	M1
	$4\pi r - 710r^{-2} = 0 \Rightarrow 4\pi r = \frac{710}{r^2} \Rightarrow r^3 = \frac{710}{4\pi}$	dM1
	$r = \sqrt[3]{\frac{710}{4\pi}}$ ($r = 3.837215$) cm	A1
	$S = 2\pi \times \left(\sqrt[3]{\frac{710}{4\pi}}\right)^2 + \frac{710}{\sqrt[3]{\frac{710}{4\pi}}} = 277.5450 \approx 278 \text{ (cm}^2\text{)}$	dM1A1cao (5)
(c)	$\frac{d^2S}{dr^2} = 4\pi + \frac{1420}{r^3} \qquad \left\{ = 4\pi + \frac{1420}{3.837215^3} = 37.699 \right\}$	M1
	(r positive so) $\frac{d^2S}{dr^2} > 0$:: S is minimum	A1ft (2) [11]
(a)		
B1	$h = \frac{355}{\pi r^2}$ or $\pi r h = \frac{355}{r}$ seen explicitly	
M1	Use a correct formula for the surface area and substitute their expression for h which must	
	have been seen explicitly. (eg $S = 2\pi r^2 + 2\pi rh \Rightarrow S = 2\pi r^2 + \left(\frac{355 \times 2}{r}\right)$ alone scores M0 as	
A1 A1cso (b)	does any other re-arrangement of the answer.) Correct expression for h used Obtain the given result from a fully correct solution. Must see $S =$	
M1 dM1 A1	Differentiate the given expression for S - power of either term to decrease Equate their derivative to 0 and solve for r Depends on the first M mark Correct value for r , exact or decimal (3 sf sufficient) seen explicitly or used to calculate the minimum value of S .	
dM1 A1cao (c)	Substitute their value for r in the given expression for S Depends on the previous 2 M marks. 278	
M1 A1ft	Obtain the second derivative (or use an other method to test for a min value of S). Methods involving testing value of S on either side of their value of S or looking at the change of sign of the first derivative must include evaluating S or dS/dt Concluding (correct) statement. No need to evaluate the second derivative provided their value	
	of r is positive and the second derivative is algebraically correct. (Ignore incorrect unless negative.)	evaluation