

Tyco Brahe and Johannes Kepler

These two scientists showed that the universe was not some ideal perfection as Ptolemy proposed and worked toward acceptance of Copernicus' heliocentric model.

. Proof of Kepler's first law

We can proof kepler's first law from Newtonian dynamics.

•
$$E = \frac{1}{2}mv^2 - \frac{GMm}{r}$$
....(1)

•
$$\frac{1}{2}$$
m ($\dot{r}^2 + r^2 \dot{\Theta}^2$).....(2)

• L=mr²
$$\dot{\Theta}$$
......(3)

•
$$\theta = \int_{-m}^{L} \rho 2$$
 (4)

• =
$$\int \frac{L}{m} \rho 2$$
 (5)

• But
$$\dot{r} = -\frac{1}{\rho^2} \frac{d\rho}{dt}$$
....(6)

• So that,
$$\theta = -\int \frac{L}{m\dot{r}} d\rho$$
....(7)

Proof of Kepler's first law

• Rearranging equation 2 we can see that \dot{r} is

•
$$\dot{r}^2 = \frac{2e}{m} + \frac{2GM\rho - L^2}{m^2}$$

Now for further manipulation we make the following substitutions

Proof of Kepler's first law

$$e^2 = 1 + \frac{2er_o}{GMm}$$
 (10)

•
$$\dot{r} = \frac{\dot{L}}{m} [e^2/r_o^2 - (\rho - 1/r_o)^2]^{1/2}$$
....(11)

•
$$\theta = -\int \frac{1}{\sqrt{(e/r_0)^2 - (\rho - 1/r_0)^2}} d\rho$$
 (12)

•
$$cos^{-1}\left(\frac{\rho-\frac{1}{r_o}}{\frac{e}{r_o}}\right)$$
....(13)

•
$$r = r_o/(1 + e \cos \theta)$$
....(14)

Proof of Kepler's first law

- Equation 14 is the equation of an ellipse in polar coordinates, with the origin at a focus. We can now identify r_o as the semi-major axis of the ellipse and e as its eccentricity.
- So you can proof Kepler's first way from Newtonian dynamics in this way.

Proof of Kepler's second law

- You can proof kepler's second law using the law of conservation of momentum.
- $r min + r max = 2a \times (length of major axis of an ellipse)$.

•
$$\Delta A = \frac{1}{2}[r(r\Delta\theta)] = \frac{1}{2}r^2\Delta\theta$$

•
$$\Delta A/\Delta t = \left[\frac{1}{2}r^2\right] d\theta/dt$$

•
$$\frac{dA}{dt} = \frac{1}{2}r^2\omega$$

•
$$\frac{dA}{dt} = \frac{L}{2m}$$

• Thus, $\frac{dA}{dt}$ = constant.

. Proof of Kepler's third law

The following four formulas can be used to proof Kepler's third law.

1.
$$a = v^2/r$$

2.
$$v = \omega r = 2\pi/T$$

3.
$$F = GMm/r^2$$

4.
$$F = ma$$

•
$$Mv^2/r = GMm/r^2$$

•
$$V^2/GM = 1/r$$

. Proof of kepler's Third Law

• $4\pi^2/GMT^2 = 1/r^3$

Multiplying by T²: T²/r³ = $4\pi^2$ /GM as required!