4 4	
เลขที่นั่งสอบ	

มหาวิทยาลัยเทค ใน โลยีพระจอมเกล้าธนบุรี **สานทหอสมุล** การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2556

ข้อสอบวิชา MEN218 Transport Phenomena in Materials Processing ภาควิชา วศ.วัสคุชั้นปีที่ 3 (ปกติ) สอบวันศุกร์ที่ 29 พฤศจิกายน 2556 เวลา 9.00-12.00 น.

- คำสั่ง 1. ข้อสอบมีทั้งหมค 13 หน้า (รวมหน้านี้) ข้อสอบมี 6 ข้อ 45 คะแนน
 - 2. ให้ทำในข้อสอบ และใช้ปากกาในการทำข้อสอบเท่านั้น ข้อความใคที่ไม่เอาให้ขีคฆ่า
 - 3. อนุญาตให้ใช้เครื่องคิดเลขที่ไม่มีปุ้มป้อนตัวอักษรได้
 - 4. ไม่อนุญาตให้นำเอกสารเข้าห้องสอบ
 - 5. ห้ามนำเอกสารข้อสอบออกนอกห้องสอบ หากนำออกไปเข้าข่ายทุจริตทันที

(อ. อรจีรา เคี่ยววณิชย์)

ผู้ออกข้อสอบ

ข้อสอบนี้ใค้ผ่านการประเมินจากภาควิชาวิศวกรรมเครื่องมือและวัสคุ

(รศ.คร.วารูณี เปรมานนท์)

หัวหน้าภาควิชาวิชาวิศวกรรมเครื่องมือและวัสคุ

จื่ ชื่อ-บายสกล	รหัสนักศึกษา
ภด-ห เทย น์ย	ยาแทบยา

Solidification of Metal (sand mold)

ชานีกหอกมุน บหาวิทยาลัยเทคในใลยีพระจะบบคลัว

$$\frac{T - T_m}{T_o - T_m} = \operatorname{erf}\left(\frac{x}{2\sqrt{\alpha_M t}}\right)$$

heat flux into the mold

$$\begin{aligned} q\Big|_{x=0} &= -k \left[\frac{\partial T}{\partial x} \right]_{x=0} = \frac{k \left(T_m - T_0 \right)}{\sqrt{\pi \alpha_M t}} \\ q\Big|_{x=0} &= \frac{\sqrt{k\rho C_p}}{\sqrt{\pi t}} \left(T_m - T_0 \right) \\ \frac{ds}{dt} &= \frac{\left(T_m - T_0 \right) \sqrt{k\rho C_p}}{\rho' H_f \sqrt{\pi t}} \\ s &= \frac{2}{\sqrt{\pi}} \left[\frac{T_m - T_0}{\rho' H_f} \right] \sqrt{k\rho C_p} \sqrt{t} \end{aligned}$$

Chvorinov's parameter

$$\beta = \frac{V/A}{\sqrt{\alpha_M t}}$$

$$\gamma = \left[\frac{T_m - T_o}{\rho_s H_f}\right] \rho_M C \rho_M$$

$$\beta = \gamma \left[\frac{2}{\sqrt{\pi}} + \frac{1}{a\beta}\right]$$

$$a = \infty \text{ (infinite plate)}$$

$$a = 4 \text{ (infinite cylinder)}$$

$$a = 3 \text{ (sphere)}$$

Error function for Diffusion

$$\frac{C - C_s}{C_o - C_s} = erf\left(\frac{x}{2\sqrt{Dt}}\right)$$

$$j_{x=0} = (C_s - C_0) \left[\frac{D}{\pi t} \right]^{1/2}$$

Thin film source infinite sink (เกิดการแพร่ 2 ฝั่ง)

$$C(x,t) = \frac{C_{I}\Delta x'}{2\sqrt{\pi Dt}} \exp\left[\frac{-x^{2}}{4Dt}\right]$$

Falling Film in z-direction

ยานักห**อสนุล** ยหาวิทยาลัยเทคในใลยีพระจอมแกล้ารา

$$\mathbf{v}_z = \frac{\rho g \delta^2 \cos \beta}{2\eta} \left(1 \cdot \left(\frac{x}{\delta} \right)^2 \right)$$

Fully Develop flow in Circular Tube

$$\mathbf{v_z} = \left(\frac{P_0 - P_L}{L} + \rho \mathbf{g}\right) \frac{1}{4\eta} \left(R^2 - r^2\right)$$

การไหลแบบปั่นป่วนภายในท่อ

แสดงค่าของแรงจลน์ (kinetic force)

$$F_K = AKf$$

A: characteristic area

K:characteristic kinetic energy (per unit volume)

f: friction factor (function of Reynolds number for a given geometrical shape)

Kinetic energy

$$K = \frac{1}{2} \rho \vec{v}^2$$

Friction Factor

$$f = \frac{1}{4} \left(\frac{D}{L} \right) \left(\frac{P_0 - P_L}{\frac{1}{2} \rho_V^{-2}} \right)$$

Error Function Table

สามักหช่อน งหาวิทยาลัยเทคในไลยีพระจอมเกลารมม

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

	Hundredths digit of x									
x	0	1	2	3	4	5	6	7	8	9
0.0	0.00000	0.01128	0.02256	0.03384	0.04511	0.05637	0.06762	0.07886	0.09008	0.10128
0.1	0.11246	0.12362	0.13476	0.14587	0.15695	0.16800	0.17901	0.18999	0.20094	0.21184
0.2	0.22270	0.23352	0.24430	0.25502	0.26570	0.27633	0.28690	0.29742	0.30788	0.31828
0.3	0.32863	0.33891	0.34913	0.35928	0.36936	0.37938	0.38933	0.39921	0.40901	0.41874
0.4	0.42839	0.43797	0.44747	0.45689	0.46623	0.47548	0.48466	0.49375	0.50275	0.51167
0.5	0.52050	0.52924	0.53790	0.54646	0.55494	0.56332	0.57162	0.57982	0.58792	0.59594
0.6	0.60386	0.61168	0.61941	0.62705	0.63459	0.64203	0.64938	0.65663	0.66378	0.67084
0.7	0.67780	0.68467	0.69143	0.69810	0.70468	0.71116	0.71754	0.72382	0.73001	0.73610
0.8	0.74210	0.74800	0.75381	0.75952	0.76514	0.77067	0.77610	0.78144	0.78669	0.79184
0.9	0.79691	0.80188	0.80677	0.81156	0.81627	0.82089	0.82542	0.82987	0.83423	0.83851
1.0	0.84270	0.84681	0.85084	0.85478	0.85865	0.86244	0.86614	0.86977	0.87333	0.87680
1.1	0.88021	0.88353	0.88679	0.88997	0.89308	0.89612	0.89910	0.90200	0.90484	0.90761
1.2	0.91031	0.91296	0.91553	0.91805	0.92051	0.92290	0.92524	0.92751	0.92973	0.93190
1.3	0.93401	0.93606	0.93807	0.94002	0.94191	0.94376	0.94556	0.94731	0.94902	0.95067
1.4	0.95229	0.95385	0.95538	0.95686	0.95830	0.95970	0.96105	0.96237	0.96365	0.96490
1.5	0.96611	0.96728	0.96841	0.96952	0.97059	0.97162	0.97263	0.97360	0.97455	0.97546
1.6	0.97635	0.97721	0.97804	0.97884	0.97962	0.98038	0.98110	0.98181	0.98249	0.98315
1.7	0.98379	0.98441	0.98500	0.98558	0.98613	0.98667	0.98719	0.98769	0.98817	0.98864
1.8	0.98909	0.98952	0.98994	0.99035	0.99074	0.99111	0.99147	0.99182	0.99216	0.99248
1.9	0.99279	0.99309	0.99338	0.99366	0.99392	0.99418	0.99443	0.99466	0.99489	0.99511
2.0	0.99532	0.99552	0.99572	0.99591	0.99609	0.99626	0.99642	0.99658	0.99673	0.99688
2.1	0.99702	0.99715	0.99728	0.99741	0.99753	0.99764	0.99775	0.99785	0.99795	0.99805
2.2	0.99814	0.99822	0.99831	0.99839	0.99846	0.99854	0.99861	0.99867	0.99874	0.99880
2.3	0.99886	0.99891	0.99897	0.99902	0.99906	0.99911	0.99915	0.99920	0.99924	0.99928
2,4	0.99931	0.99935	0.99938	0.99941	0.99944	0.99947	0.99950	0.99952	0.99955	0.99957
2.5	0.99959	0.99961	0.99963	0.99965	0.99967	0.99969	0.99971	0.99972	0.99974	0.99975
2.6	0.99976	0.99978	0.99979	0.99980	0.99981	0.99982	0.99983	0.99984	0.99985	0.99986
2.7	0.99987	0.99987	0.99988	0.99989	0.99989	0.99990	0.99991	0.99991	0.99992	0.99992
2.8	0.99992	0.99993	0.99993	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995	0.99996
2.9	0.99996	0.99996	0.99996	0.99997	0.99997	0.99997	0.99997	0.99997	0.99997	0.99998
3.0	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998	0.99999	0.99999	0.99999
3.1	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999	0.99999
3.2	0.99999	0.99999	0.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

1.จงคำนวณหาค่าเวลาในการแข็งตัวของโลหะอะลูมิเนียมบริสุทธิ์ที่หล่อเป็นแท่งสีเหลียัมหมับตัวของโลหะอะลูมิเนียมบริสุทธิ์ที่หล่อเป็นแท่งสีเหลียัมหมับตัวของโลหะอะลูมิเนียมบริสุทธิ์ที่หล่อเป็นแท่งสีเหลียัมหมับตัวของโลหะอะลูมิเนียมบริสุทธิ์ ส่วนอุณหภูมิทรายแบบเท่ากับ 303 K และ เปรียบเทียบกับเวลาในการแข็งตัวหากหล่อแท่งโลหะอะลูมิเนียมขนาดเดียวกันนี้โดยใช้แบบหล่อถาวรซึ่ง ให้ค่าสัมประสิทธิ์การถ่ายเทความร้อนเป็น 250 Wm⁻²K⁻¹ และแบบหล่อถาวรนี้มีอุณหภูมิประมาณ 150 °C (10 คะแนน)

ข้อมูลของอะลูมิเนียม $T_m=889~{
m K},~H_f=398\,{
m kJ\,kg^{-1}}$, $ho_s=2710\,{
m kg\,m^{-3}}$ ข้อมูลของทราย $k=0.865~{
m W\,m^{-1}K^{-1}}$, $ho_M=1600~{
m kg~m^{-3}}$, $Cp_M=1170~{
m J\,kg^{-1}K^{-1}}$

ยานักหอกนุณ

2. ที่อุณหภูมิ 1500 °C สัมประสิทธิ์การแพร่ของโมลิบคินั่มในเหลีกหลอมเหล่วเท่ากับ ระสิทธิ์การแพร่ของโมลิบคินั่มในเหลีกหลอมเหล่วเท่ากับ ระสิทธิ์การแพร่ของโมลิบคินั่มในเหลีกหลอมเหล่วเท่ากับ 3.5 × 10⁻⁹m²s⁻¹ จงหาว่าที่อุณหภูมิ 1200 °C ค่าสัมประสิทธิ์การแพร่ของโมลิบคินั่มในเหล็กหลอมเหลวเท่ากับเท่าใด (7 คะแนน)

- 3. ในการเติมชาตุอะลูมิเนียมลงในซิลิคอนทำโดยนำซิลิคอนไปอบที่อุณหภูมิ 1473 K เพื่อให้สัมผัสกับ บรรยากาศของอะลูมิเนียมที่มีความเข้มข้น 10¹⁸ atoms cm⁻³ หากความเข้มข้นเริ่มต้นของอะลูมิเนียมใน ซิลิคอนเท่ากับ 5 × 10¹⁵ atoms cm⁻³
- 3.1 ภายหลังเวลาผ่านไป 30 นาที อยากทราบว่าที่ความลึกจากผิวเท่าใคที่ความเข้มข้นของอะลูมิเนียมเท่ากับ 10¹⁶ atoms cm⁻³ (4 คะแนน)
- 3.2 ปริมาณอะลูมิเนียมที่เติมลงในซิลิคอนเป็นเท่าใด (ตอบในหน่วย atom cm⁻³) หลังจากอบซิลิคอนที่ อุณหภูมินี้เป็นเวลา 30 นาที (4 คะแนน)

กำหนดให้ค่าสปส.การแพร่ของอะลูมิเนียมในซิลอนเท่ากับ $5.8 \times 10^{-16}~{
m m^2 s^{-1}}$

บทาวทยาลัยเทคใน ใลยีพระจอมเกล_{ัง เ}

4. โลหะหลอมเหลวใหลลงช้ำๆบนพื้นเอียงที่ทำมุม 30° กับแนวคิ่งเป็นระยะทาง L หากชั้นโลหะ หลอมเหลวมีความหนาเท่ากับ 2 cm สมมติให้การใหล่มีลักษณะเป็นชั้น (laminar flow) ความหนาแน่นของโลหะหลอมเหลวเท่ากับ 7.0 kg m⁻³

ความหนืดของโลหะหลอมเหลว $3 \times 10^{-3} \, \mathrm{N \, s \, m^{-2}}$ จงหา

- 4.1 สมการ velocity profile ของโลหะหลอมเหลวเมื่อความเร็วในการใหลอยู่ในขณะ fully develop (3 คะแนน)
- 4.2 ความเร็วสูงสุดของโลหะหลอมเหลวมีค่าเท่าใด และเป็นความเร็วที่ตำแหน่งใด (2 คะแนน)
- 4.3 ความเร็วเฉลี่ยของโลหะหลอมเหลวมีค่าเท่าใค (3 คะแนน)

สามักษอกลุก

5.ของเหลวไหลผ่านท่อในแนวราบ มีความยาว 0.3 m. ขนาดเส้นผ่านศูนย์กลางภายในของท่อเท่ากับ 2.5 mm. ความหนาแน่นของของเหลวเท่ากับ 1260 kg m $^{-3}$ อัตราการไหล (mass flow rate) เท่ากับ 3.8 imes 10^{-5} kg s $^{-1}$

- 5.1 จงคำนวณหาค่าความหนืดของของเหลวในหน่วย N s ${
 m m}^{-2}$ (4 คะแนน)
- 5.2 จงตรวจสอบคำตอบของข้อ 5.1 ว่าถูกต้องหรือไม่ (4 คะแนน) หมายเหตุ ไม่คิดผลของความคันตก

6.จงคำนวณหาความดันตก (pressure drop) ของน้ำที่มีอุณหภูมิ 300 K ซึ่งไหลผ่านท่อในแนวราบความยาว 180 เมตร มีเส้นผ่านศูนย์กลางภายใน 125 มิลลิเมตร โดยมีความเร็วในการไหลเฉลี่ย 1 เมตรต่อวินาที กำหนดให้ ท่อมีความหยาบสัมพัทธ์ ɛ/D ประมาณ 0.001 หากที่อุณหภูมินี้น้ำมีความหนืด 8.55×10⁻⁴N s m⁻² (5 คะแนน)

