Memory Management

Basic Hardware

A pair of base and limit registers define the logical address space

- base register holds the smallest legal physical memory address
- the limit register specifies the size of the range

Address binding of instructions and data to memory addresses can happen at three different stages

- Compile time: If memory location known a priori, absolute code can be generated; must recompile code if starting location changes
- Load time: Must generate relocatable code if memory location is not known at compile time
- Execution time: Binding delayed until run time if the process can be moved during its execution from one memory segment to another
- The concept of a logical address space that is bound to a separate physical address space is central to proper memory management
- Logical address generated by the CPU; also referred to as virtual address
- Physical address address seen by the memory unit
- Logical address space is the set of all logical addresses generated by a program
- Physical address space is the set of all physical addresses generated by a program

Memory-Management Unit (MMU)

The run-time mapping from virtual to physical addresses is done by a hardware device called the MMU

- The base register is now called are location register
- The value in the relocation register is added to every address generated by a user process at the time the address is sent to memory
- Ex: if the base is at 14000; an access to location 346 is mapped to location 14346

Dynamic Loading

- With dynamic loading, a routine is not loaded until it is called
- The advantage of dynamic loading is that a routine is loaded only when it is needed

Dynamic Linking

- Static linking system libraries and program code combined by the loader into the binary program image
- Dynamically linked libraries are system libraries that are linked to user programs when the programs are run

Small piece of code, stub, used to locate the appropriate memoryresident library routine

Swapping

• A process can be swapped temporarily out of memory to a backing store, and then brought back into memory for continued execution

- Total physical memory space of processes can exceed physical memory
- Backing store fast disk large enough to accommodate copies of all memory images for all users
- Roll out, roll in swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out so higher-priority process can be loaded and executed

Memory allocation

Variable-partition scheme, the OS keeps a table indicating which parts of memory are available

- Hole block of available memory; holes of various size are scattered throughout memory
- The ones most commonly used to select a free hole from the set of available holes
- First-fit Allocate the first hole that is big enough
- Best-fit Allocate the smallest hole that is big enough
- Worst-fit Allocate the largest hole

Fragmentation

- As processes are loaded and removed from memory, the free memory space is broken into little pieces
- External Fragmentation total memory space exists to satisfy a request, but it is not contiguous
- Reduce external fragmentation by compaction
- Internal Fragmentation allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used

Paging

- Physical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available
- Avoids external fragmentation
- Avoids the need for compaction
- Divide physical memory into fixed-sized blocks called frames
- Size is power of 2, between 512 bytes and 16 Mbytes
- Divide logical memory into blocks of same size called pages
- To run a program of size N pages, need to find N free frames and load program
- Set up a page table to translate logical to physical addresses Address generated by CPU is divided into:
- Page number (p) used as an index into a page table which contains base address of each page in physical memory
- Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit

Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

Memory Protection

if read-only or read-write access

Segment table – maps two-dimensional physical addresses; each table entry has:

• base – contains the starting physical address where the segments reside in

memory

limit – specifies the length of the segment
 Segment-table base register (STBR) points to the segment table's

location in memory

• Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR

- Hierarchical Paging
- Hashed Page Tables

Hierarchical Page Tables

• Break up the logical address space into multiple page tables• Inverted Page Tables

A logical address (on 32-bit machine with 1K page size) is divided into:

- a page number consisting of 22 bits
- a page offset consisting of 10 bits
- Since the page table is paged, the page number is further divided into:
- a 12-bit page number
- a 10-bit page offset
- where p1

is an index into the outer page table, and p2

is the

displacement within the page of the inner page table

- Known as forward-mapped page table
 Hashed Page Tables
- For handling address spaces larger than 32 bits
- The virtual page number is hashed into a page table
- This page table contains a chain of elements hashing to the same location
- Each element contains
- (1) the virtual page number
- (2) the value of the mapped page frame
- (3) a pointer to the next element
- Virtual page numbers are compared in this chain searching for a match
- If a match is found, the corresponding physical frame is extracted Inverted Page Table
- Rather than each process having a page table and keeping track of all possible logical pages, track all physical pages
- One entry for each real page of memory
- Entry consists of the virtual address of the page stored in that real memory location, with information about the process that owns that page
- Inverted Page Table has one entry for each real page (or frame) of memory