PROOF TO FERMAT'S LAST THEOREM

Maher Ben

Department of software engineering ESPRIT Ariana, Tunisia ba.maher94@gmail.com maher.benabdessalem.1@esprit.tn

September 14, 2022

ABSTRACT

Fermat's last theorem is one of the greatest math problem that exists. In this article, the author tries to prove FLT is true By trying to apply a proof similar to infinite descent by exploiting the properties of Pythagorean triples.

1 Introduction

Pythagorean prime triples are the root for all others Pythagorean non-prime triples, We know that two natural numbers a, b that $\sqrt{a^2 + b^2}$ that will lead us to another natural number c but can the same numbers lead us to $a^n + b^n = c^n$? if not, are there any others natural numbers x, y that can satisfy the equation?

2 General formula for finding Pythagorean triples

Pythagorean triples $a^2 + b^2 = c^2$ for finding non-primitive Pythagorean triples, we use the constant multiplier m

$$m \cdot (a)^2 + m \cdot (b)^2 = m \cdot (c)^2 \tag{1}$$

2.1 Special cases

If we want a special case when we make a = m

$$a \cdot (a)^2 + a \cdot (b)^2 = a \cdot (c)^2$$
 (2)

Which means

$$a^3 + a \cdot b^2 = a \cdot c^2 \tag{3}$$

likewise for m = b and m = c respectively

$$b \cdot a^2 + b^3 = b \cdot c^2 \tag{4}$$

$$c \cdot a^2 + c \cdot b^2 = c^3 \tag{5}$$

which means the equations (3), (4) and (5) cannot be a solution for the equation

$$a^n + b^n = c^n (6)$$

since $a \neq b \neq c$ and a, b and c are all co-prime.

2.2 Proof of Fermat's last theorem

Let's assume that

$$a^n + b^n = c^n (7)$$

As proven by the equations (3), (4) and (5) that a and b cannot satisfy the equation(6) that will lead us to assume that there is two other natural number x, y which they have the property $a \neq b \neq x \neq y \neq c$ that can satisfy

$$x^n + y^n = c^n (8)$$

a rewriting for equation(8) to be equivalent to equation(5)

$$c^{n-2} \cdot (x^2 + y^2) = c^{n-2} \cdot c^2 \tag{9}$$

which leads to by dividing all equation(9) by c^{n-2} as a common multiplier m, from equation(1)

$$x^2 + y^2 = c^2 (10)$$

that will lead us to

$$x^2 + y^2 = a^2 + b^2 = c^2 (11)$$

which eventually lead us to

$$\sqrt{x^2 + y^2} = \sqrt{a^2 + b^2} = c \tag{12}$$

which is

$$\sqrt{x^2 + y^2} = \sqrt{a^2 + b^2} \tag{13}$$

Since a, b, c are natural numbers and co-prime (by dividing them with their multiplier m if they are not primitive Pythagorean triples), Furthermore only the root $\sqrt{a^2+b^2}$ can lead to a natural number c since $a^2+b^2=c^2$ are primitive Pythagorean triples (or any other Pythagorean triple with a multiplier m), and having the property that they can only be divisible by 1 or by themselves and holding the property of being natural numbers we can write and conclude that

$$\frac{a^2 + b^2}{x^2 + y^2} = \frac{c^2}{c^2} = 1\tag{14}$$

the same equation with multiplier m

$$\frac{m \cdot (a^2 + b^2)}{m \cdot (x^2 + y^2)} = \frac{m \cdot c^2}{m \cdot c^2} = 1 \tag{15}$$

Where x, y cannot be any other natural numbers than either a, b which mean (a = x and b = y) or (a = y and b = x) with contradiction of $a \neq b \neq x \neq y \neq c$ and as proven by equation(5) it cannot satisfy

$$x^n + y^n = c^n (16)$$

which means

$$x^n + y^n \neq c^n \tag{17}$$

and eventually

$$a^n + b^n \neq c^n \tag{18}$$

3 Conclusion

This article is trying to solve Fermat's last theorem by applying a proof with similar approach to Fermat's infinite descent which lead to proof FLT is true.