Diabetic Retinopathy Detection Using Machine Learning

By Pratye Aggarwal

Introduction

Diabetic Retinopathy is a well-known eye problem that results in vision loss and, in adverse cases, complete blindness. The complication is caused by high blood sugar levels and is associated with long-standing diabetes. Estimates done by the World Health Organisation (WHO) showed that over 347 million people have this disease worldwide, and these numbers will rise by 11-20% in the upcoming years.

A few of the most common symptoms of Diabetic Retinopathy include blurred vision, difficulty in perceiving colours and having dark areas in vision. Detection and the proper treatment of the disease in the early stages are crucial to prevent long-term vision impairment issues.

Proposed Solution

Detection of Diabetic Retinopathy requires highly experienced doctors. Standard tests like pupil dilation and visual acuity test often take time in the evaluation and detection process. The unavoidable delays lead to unnoticed changes that occur during that time. Moreover, the mass screening of the population with this disease cause more delays and difficulty in achieving reliable detections.

Machine Learning could help ease this issue. With the help of a model, we can easily detect the disease and its severity. The model will provide more accurate detections and will reduce the tedious job of evaluation. This will help the doctors in giving more accurate and quick diagnoses to their patients. The time and money that the patients need to invest each month will be drastically reduced along with their suffering.

Dataset And Augmentation

Dataset

I used the publicly available Kaggle Dataset of Diabetic Retinopathy Detection (link: https://www.kaggle.com/c/diabetic-retinopathy-detection) to train my Machine Learning Model. The database contains a large set of high-resolution retina images that were taken under different imaging conditions. The images are labelled into five categories: (1) No DR; (2) Mild; (3) Moderate; (4) Severe; (5) Proliferative DR. The images were labelled by a clinician, which makes the dataset ideal for training a model that is to replace the work of conventional evaluations. In total, there were 35126 labelled images in the dataset. The breakdown of the number of images in each class is as follows:

S. No.	Label	Number of Images
1	No DR	25,810
2	Moderate	5,292
3	Mild	2,443
4	Severe	873
5	Proliferative DR	708

Augmentation and Preprocessing

The dataset provided a good amount of images for training. Yet, due to the high-Class Imbalance issue, the dataset was not ideal for training a good model. Class Imbalance directly affects the performance of our model. Due to the significant difference in-class examples, the model tends to gain biases with more training examples. For training a good model, it is necessary to maintain class balance.

To encounter this problem, I made a couple of changes to my dataset by randomly taking the same number of training examples like the one with the least training examples. By doing so, I ended up with 3,540 images, with 708 images in each class.

The process of class balancing lead to a tremendous amount of data loss. For accurate prediction of the different severities of Diabetic Retinopathy required more data. For this, I performed a couple of augmentation techniques on the images to create more training samples. I used an online tool called Roboflow (website: https://roboflow.com), which provides different options for augmentation and preprocessing. I resized my images into 1080x720 and added the following augmentations on the images:

S. No.	Augmentation	Type and Amount		
1	Flip	Horizontal and Vertical		
2	Hue	Between -1° and +1°		
3	Saturation	Between -5% and +5%		
4	Brightness	Between -15% and +15%		
5	Exposure	Between -2% and +2%		
6	Blur	Up to 0.25px		
7	Noise	Up to 1% of pixels		

The augmentations outputted three images for every training example. This produced a total of 10,620 images, with 2,124 images in each class. The data was split into train, test and validation by AutoML Vision. Following is its breakdown:

Data Set	Total Number of Images	Total Number of Images Per Class
Train	8495	1699
Validation	1065	213
Test	1060	212

<u>Model</u>

The model was initially set for training for 240 node hours, as recommended by AutoML Vision. But due to some issues with the Free-Trial account, my model trained for over 200 node hours only. Yet, it could still achieve an average precision of 90.9 % (0.909 as shown on the console) and a recall of 83.21%.

Graphs and Stats

Overall Stats:

Precision and Recall:

Total images Test items Precision ? Recall ?		9,560 1,060 86.13% 83.21%
All labels	0.90941	
Mild	0.86764	
Moderate	0.88387	
No DR	0.89130	
Proliferative DR	0.97478	
Severe	0.93308	

Precision and Recall Graphs:

Confusion Matrix:

	redicted La	differative DR			
True Label	redic	rolifer P	ode "	iiid ç	evere
Proliferative DR	93%	-	0%	5%	1%
No DR	2%	82%	11%	0%	5%
Mild	1%	8%	80%	1%	9%
Severe	5%	2%	1%	85%	6%
Moderate	3%	3%	7%	4%	83%

	redicted Lat	diferative OR				
True Label	redicte	diterat	ODR 1	ild ç	evere 1	noderat
Proliferative DR	198	-	1	10	3	
No DR	4	173	24	1	10	
Mild	2	17	170	3	20	
Severe	11	5	3	180	13	
Moderate	6	7	15	9	175	