PROBLEM SHEET 2: NUMERICAL INTEGRATION. COMPOSITE NEWTON-COTES QUADRATURE

1. Determine the number of intervals needed, in both the composite trapezoidal rule and the composite Simpson's rule, such that when approximating the value of the integral

$$I = \int_0^1 e^{-x^4} dx$$

the error is less than 10^{-5} . Calculate such an approximation to I, using both methods. Hint: You may assume that, if $f(x) = e^{-x^4}$ then

$$\max_{0 \le x \le 1} |f''(\xi)| \le 3.5$$
 and $\max_{0 \le x \le 1} |f^{(4)}(\xi)| \le 95$

2. Repeat Question 1 for the integral

$$I = \int_{1}^{3} \log(x) \, dx$$

3. Derive the composite midpoint rule and check that it has order of convergence $O(h^2)$ by approximating the value of the integral

$$I = \int_0^1 \sqrt{1 + x^3} \, dx$$

Hint: The explicit form of the error term for the midpoint rule is given below:

$$I(f) = \int_{a}^{b} f(x) dx = (b - a) f\left(\frac{a + b}{2}\right) + \frac{(b - a)^{3}}{24} f''(\xi), \qquad a \le \xi \le b.$$

4. Approximate the value of the following integrals using the composite trapezoidal rule, the composite midpoint rule and the composite Simpson's rule. For each method, use the smallest value of n that will guarantee an absolute error less than 5×10^{-5} .

(i)
$$\int_{1}^{2} \frac{1}{x} dx$$
; (ii) $\int_{0}^{1} e^{-x} dx$

5. Approximate the value of the integral

$$I = \int_0^1 2x f(x) \, dx$$

where f is given by

X	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
f(x)	0.667	0.671	0.689	0.711	0.742	0.790	0.841	0.910	0.975	1.052	1.130