5.17 Multicensored Data

1 Warming-up: empirical distribution

Suppose that there are n observations, x_1, x_2, \ldots, x_n . We assume that there are k distinct observations, $y_1 < y_2 < \cdots < y_k$, with frequencies, f_1, f_2, \ldots, f_k , respectively. Then the likelihood function is given by

$$L(p_1, p_2, \dots, p_k) \propto \prod_{j=1}^k p_j^{f_j},$$

with the constraint $\sum_{j=1}^{k} p_j = 1$. The log-likelihood with the constraint is

$$\ell(p_1, p_2, \dots, p_k, \lambda) \propto \sum_{j=1}^k f_j \log p_j - \lambda \left(\sum_{j=1}^k p_j - 1\right),$$

where λ is the Lagrange multiplier. It is immediate from

$$\frac{\partial \ell}{\partial p_j} = \frac{f_j}{p_j} - \lambda = 0 \text{ and } \frac{\partial \ell}{\partial \lambda} = -\left(\sum_{j=1}^k p_j - 1\right) = 0$$

that $\lambda = \sum_{j=1}^{k} f_j = n$ and $\hat{p}_j = f_j/\lambda = f_j/n$. Thus, the empirical distribution is obtained as

$$\hat{F}_n(t) = \sum_{j=1}^k \hat{p}_j \cdot \mathbb{I}(y_j \le t) = \frac{1}{n} \sum_{j=1}^k f_j \cdot \mathbb{I}(y_j \le t),$$

which is equivalent to

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i \le t),$$

11

12

13

16

17

18

19

20

23

where $\mathbb{I}(\cdot)$ is an indicator function.

2 Nonparametric estimation method for the survival function

We consider the empirical survival function which can be obtained by the nonparametric maximum likelihood method.

Suppose that there are n observations $(x_1, x_2, ..., x_n)$ and that there are k distinct observations $(y_1 < y_2 < \cdots < y_k)$ at which failures occur. We set $y_0 = 0$ and $y_{k+1} = \infty$ by convention.

We assume that the values of survival function change only at the distinct failure points, that is, $S(y_j) = S(t)$ for $y_{j-1} < t \le y_j$. Similarly, $F(y_j) = F(t)$ for $y_j \le t < y_{j+1}$. Let d_j denote the number of observed failures at y_j and n_j denote the number of items on test just before time y_i .

Suppose that there are c_j right-censored observations within the interval $[y_j, y_{j+1})$. (Only for convenience, we summarize right-censored observations like this setup. Note that these are not interval-censored). Note that $n_1 = n$, $n_{k+1} = 0$, $n_{j+1} = n_j - c_j - d_j$, and $\sum_{j=i}^k (c_j + d_j) = n_i$.

Example 1 (6-MP data). An experiment is conducted to determine the effect of a drug named 6-mercaptopurine (6-MP) on leukemia remission times.¹ The 6-MP experiment data set contains n = 21 patients on test whose failure observations are given by **6**, 6, 6, 6, 6^+ , **7**, 9^+ , **10**, 10^+ , 11^+ , **13**, **16**, 17^+ , 19^+ , 20^+ , **22**, **23**, 25^+ , 32^+ , 32^+ , 34^+ , 35^+ .

j	1	2	3	4	5	6	7
y_{j}	6	7	10	13	16	22	23
y_j $[y_j, y_{j+1})$							
n_{j}	21	17	15	12	11	7	6
c_{j}	1	1	2	0	3	0	5
d_{j}	3	1	1	1	1	1	1

Δ

Let $t_{j1}, t_{j2}, \ldots, t_{jc_j}$ be the censoring times within the interval $[y_j, y_{j+1})$. Then the likelihood function becomes

$$L = \prod_{j=1}^{k} f(y_j)^{d_j} \times \prod_{j=1}^{k} \prod_{i=1}^{c_j} \{1 - F(t_{ji})\}.$$
 (1)

Since the values of survival function change only at the distinct failure points and the distribution $F(\cdot)$ is right-continuous, we have $F(y_j) = F(t_{ji})$ for $i = 1, 2, ..., c_j$. Thus, the above likelihood becomes

$$L = \prod_{j=1}^{k} f(y_j)^{d_j} \times \prod_{j=1}^{k} \left\{ 1 - F(y_j) \right\}^{c_j}.$$
 (2)

¹EXAMPLE 10.2 in: LEEMIS, L. M. Reliability: Probabilistic Models and Statistical Methods. 2nd edition. Williamsburg, Virginia: Lawrence M. Leemis, 2009.

Theorem 1. We have

$$S(y_j) = \prod_{i=1}^{j-1} [1 - h(y_i)]$$

for $j \ge 2$ and $S(y_1) = 1$.

Proof. The survival function is a step function because it changes only at the distinct failure points. Since $S(y_j) = P(Y \ge y_j) = f(y_j) + f(y_{j+1}) + \cdots + f(y_k)$ and $S(y_{j+1}) = f(y_{j+1}) + f(y_{j+2}) + \cdots + f(y_k)$, we have $f(y_j) = S(y_j) - S(y_{j+1})$. Also, it is easily seen that $S(y_1) = f(y_1) + f(y_2) + \cdots + f(y_k) = 1$.

The hazard rate function is then given by

$$h(y_j) = \frac{f(y_j)}{S(y_j)} = \frac{S(y_j) - S(y_{j+1})}{S(y_j)} = 1 - \frac{S(y_{j+1})}{S(y_j)}.$$

It is immediate from solving the above for $S(y_{j+1})$ that we have

$$S(y_{j+1}) = S(y_j)[1 - h(y_j)].$$

10

12

13

14

15

18

19

20

21

22

23

24

Then using the mathematical induction with $S(y_1) = 1$, we have

$$S(y_{j+1}) = [1 - h(y_j)][1 - h(y_{j-1})] \cdots [1 - h(y_1)] = \prod_{i=1}^{j} [1 - h(y_i)], \qquad (3)$$

which completes the proof.

For notational convenience, we let $h_j = h(y_j)$. We have $S(y_j) = \prod_{i=1}^{j-1} (1 - h_i)$ for $j \ge 2$. We can also rewrite as

$$S(y_j) = \prod_{i=1}^{j} (1 - h_i) \cdot (1 - h_j)^{-1}$$
(4)

for $j \geq 1$. It is easily seen from (4) that

$$f(y_j) = h(y_j)S(y_j) = h_j S(y_j) = h_j \prod_{i=1}^{j} (1 - h_i) \cdot (1 - h_j)^{-1}.$$
 (5)

Since $F(y_j) = f(y_1) + f(y_2) + \dots + f(y_j)$ and $S(y_{j+1}) = f(y_{j+1}) + f(y_{j+2}) + \dots$, we have $F(y_j) + S(y_{j+1}) = 1$. Using this and (3), we have

$$1 - F(y_j) = S(y_{j+1}) = \prod_{i=1}^{j} (1 - h_i).$$
(6)

It should be noted that $1 - F(x) \neq S(x)$ for this discrete case since $1 - F(x) = 1 - P(X \le x) = P(X > x)$ and $S(x) = P(X \ge x)$. Also, $F(x) = P(X \le x)$ is right-continuous, but

 $S(x) = P(X \ge x)$ is left-continuous. Note that R(x) = P(X > x) is right-continuous due to R(x) = 1 - F(x).

Substituting (5) and (6) into (2), we have

$$L = \prod_{j=1}^{k} f(y_j)^{d_j} \times \prod_{j=1}^{k} \left\{ 1 - F(y_j) \right\}^{c_j}$$

$$= \prod_{i=1}^{k} \left[h_j \prod_{j=1}^{j} (1 - h_i) \cdot (1 - h_j)^{-1} \right]^{d_j} \times \prod_{i=1}^{k} \left[\prod_{j=1}^{j} (1 - h_i) \right]^{c_j}.$$

10

11

12

15

Using the above results with tedious algebra, the likelihood is given by Substituting (5) and (6) into (2), we have

$$L = \prod_{j=1}^{k} h_{j}^{d_{j}} \times \prod_{j=1}^{k} \left[\prod_{i=1}^{j} (1 - h_{i}) \cdot (1 - h_{j})^{-1} \right]^{d_{j}} \times \prod_{j=1}^{k} \left[\prod_{i=1}^{j} (1 - h_{i}) \right]^{c_{j}}$$

$$= \prod_{j=1}^{k} h_{j}^{d_{j}} \times \prod_{j=1}^{k} \left[\prod_{i=1}^{j} (1 - h_{i}) \right]^{d_{j}} \times \prod_{j=1}^{k} \left[\prod_{i=1}^{j} (1 - h_{i}) \right]^{c_{j}} \times \prod_{j=1}^{k} (1 - h_{j})^{-d_{j}}$$

$$= \prod_{j=1}^{k} h_{j}^{d_{j}} \times \prod_{j=1}^{k} \left[\prod_{i=1}^{j} (1 - h_{i}) \right]^{d_{j} + c_{j}} \times \prod_{j=1}^{k} (1 - h_{j})^{-d_{j}}$$

$$= \prod_{i=1}^{k} h_{j}^{d_{j}} \times \prod_{j=1}^{k} \prod_{i=1}^{j} (1 - h_{i})^{c_{j} + d_{j}} \times \prod_{j=1}^{k} (1 - h_{j})^{-d_{j}}$$

$$= \prod_{i=1}^{k} h_{j}^{d_{j}} \times \prod_{j=1}^{k} \prod_{i=1}^{j} (1 - h_{i})^{c_{j} + d_{j}} \times \prod_{j=1}^{k} (1 - h_{j})^{-d_{j}}$$

$$(7)$$

Since $\prod_{j=1}^{k} \prod_{i=1}^{j} a_{ij} = \prod_{i=1}^{k} \prod_{j=i}^{k} a_{ij}$ and $\sum_{j=i}^{k} (c_j + d_j) = n_i$, we have

$$\prod_{j=1}^{k} \prod_{i=1}^{j} (1 - h_i)^{c_j + d_j} = \prod_{i=1}^{k} \prod_{j=i}^{k} (1 - h_i)^{c_j + d_j}
= \prod_{i=1}^{k} (1 - h_i)^{\sum_{j=i}^{k} (c_j + d_j)} = \prod_{i=1}^{k} (1 - h_i)^{n_i} = \prod_{i=1}^{k} (1 - h_j)^{n_j}.$$
16

Substituting the above into (7), we have

$$L = \prod_{j=1}^{k} h_j^{d_j} \times \prod_{j=1}^{k} (1 - h_j)^{n_j} \times \prod_{j=1}^{k} (1 - h_j)^{-d_j}$$

$$= \prod_{j=1}^{k} h_j^{d_j} \times \prod_{j=1}^{k} (1 - h_j)^{n_j - d_j}$$

$$= \prod_{j=1}^{k} h_j^{d_j} (1 - h_j)^{n_j - d_j}$$
21
$$= \prod_{j=1}^{k} h_j^{d_j} (1 - h_j)^{n_j - d_j}$$
22
23

and

$$\ell = \log L = \sum_{j=1}^{k} \left\{ d_j \log h_j + (n_j - d_j) \log(1 - h_j) \right\}.$$

It is immediate from $\partial \ell / \partial h_i = 0$ that

$$\hat{h}_i = \frac{d_i}{n_i}.$$

Since $S(y_j) = \prod_{i=1}^{j-1} (1 - h_i)$ for $j \ge 2$ from Theorem 1, we can estimate the survival function as

$$\hat{S}(t) = \prod_{j:y_j < t} \left(1 - \hat{h}_j \right) = \prod_{j:y_j < t} \left(1 - \frac{d_j}{n_j} \right) = \prod_{j:y_j < t} \frac{n_j - d_j}{n_j},\tag{8}$$

where $t > y_1$. This estimate is commonly known as the Kaplan-Meier or product limit estimate of the survival function. Note that $\hat{S}(t) = 1$ for $t \leq y_1$. The right-continuous version of the survival function estimate, denoted by $\hat{R}(t)$, is given by

$$\hat{R}(t) = \prod_{j:y_j \le t} \frac{n_j - d_j}{n_j}.$$

It should be noted that we have $\hat{R}(t) = \hat{S}(t^{+0})$.

Example 2 (6-MP data). For the previous example, we have following the survival function estimates.

\overline{j}	1	2	3	4	5	6	7
y_j	6	7	10	13	16	22	23
$[y_j, y_{j+1})$	1	[7, 10)	[10, 13)	[13, 16)	[16, 22)	[22, 23)	$[23,\infty)$
	21	17	15	12	11	7	6
$\frac{d_j}{n_j - d_j}$	3			1	1	1	1
$\frac{n_j - d_j}{n_j}$	$\frac{18}{21}$	$\frac{16}{17}$	$\frac{14}{15}$	$\frac{11}{12}$	$\frac{10}{11}$	$\frac{6}{7}$	$\frac{5}{6}$
$\hat{R}(y_j)$	$\frac{18}{21}$	$\frac{18}{21} \cdot \frac{16}{17}$	$\frac{18}{21} \cdot \frac{16}{17} \cdot \frac{14}{15}$	$\frac{18}{21} \cdot \frac{16}{17} \cdot \frac{14}{15} \cdot \frac{11}{12}$	$\frac{32}{51}$	$\frac{64}{119}$	160 357

Δ

16

12

13

3 Variance of the Kaplan–Meier estimate of the survival function

From (8), the logarithm of the Kaplan–Meier estimator of the survival function is given by

$$\log \hat{S}(t) = \sum_{j=1}^{k} \log \hat{\pi}_j,$$

2

11

12

14

15

17

18

20

22

23

where $k = \max\{j : y_j < t\}$ and $\hat{\pi}_j = (n_j - d_j)/n_j$. Then its variance becomes

$$\operatorname{Var}(\log \hat{S}(t)) = \sum_{j=1}^{k} \operatorname{Var}(\log \hat{\pi}_{j}). \tag{9}$$

We assume that the number of items which survive in the interval $[y_j, y_{j+1})$ has a binomial distribution with parameters n_j and π_j , that is,

$$n_j - d_j \sim \operatorname{Bin}(n_j, \pi_j).$$

Theorem 2 (Delta Method). Suppose that we are interested in the variance of g(Y). Then we can estimate it approximately with

$$\operatorname{Var}(g(Y)) \approx \{g'(\mu)\}^2 \operatorname{Var}(Y),$$
 13

where $\mu = E(Y)$.

Proof. The first-order Taylor series expansion of g(Y) around μ is

$$g(Y) - g(\mu) \approx g'(\mu)(Y - \mu),$$

where $E(Y) = \mu$. The result is easily obtained by taking the variance of the above. \square

Using the above theorem, we have

$$\operatorname{Var}(\log \hat{\pi}_j) \approx \left(\frac{1}{\pi_j}\right)^2 \operatorname{Var}(\hat{\pi}_j).$$

Since $n_j - d_j \sim \text{Bin}(n_j, \pi_j)$, we have $\text{Var}(\hat{\pi}_j) = \pi_j (1 - \pi_j) / n_j$. Then we have

$$\operatorname{Var}(\log \hat{\pi}_j) \approx \frac{1 - \pi_j}{\pi_j n_j},$$

and it can thus be estimated by $\widehat{\operatorname{Var}}(\log \hat{\pi}_j) \approx (1 - \hat{\pi}_j)/(\hat{\pi}_j n_j)$. Again, note that $\hat{\pi}_j = (n_j - d_j)/n_j$. Thus, we can estimate $\operatorname{Var}(\log \hat{\pi}_j)$ with

$$\widehat{\text{Var}}(\log \hat{\pi}_j) \approx \frac{d_j}{n_j(n_j - d_j)}.$$
 (10)

It is immediate upon using (9) and (10) that we have

$$\widehat{\text{Var}}(\log \hat{S}(t)) \approx \sum_{j=1}^{k} \frac{d_j}{n_j(n_j - d_j)},$$
(11)

where $y_j < t \le y_{j+1}$ and $k = \max\{j : y_j < t\}$ again.

Applying the delta method again to $\operatorname{Var}(\log \hat{S}(t))$ with $E[\hat{S}(t)] \approx S(t)$, we have

$$\operatorname{Var}(\log \hat{S}(t)) \approx \frac{1}{S(t)^2} \cdot \operatorname{Var}(\hat{S}(t)),$$
 (12)

so that we also have

$$\operatorname{Var}(\hat{S}(t)) \approx S(t)^2 \cdot \operatorname{Var}(\log \hat{S}(t)).$$

Using (11) and $\hat{S}(t)$ as an estimate of S(t), we can estimate the above with

$$\widehat{\operatorname{Var}}(\hat{S}(t)) \approx \hat{S}(t)^2 \cdot \sum_{j=1}^k \frac{d_j}{n_j(n_j - d_j)}.$$

10

11

13

14

15

16

17

29

This result is known as *Greenwood's formula*. The approximate standard error is also obtained by

$$SE(\hat{S}(t)) = \hat{S}(t) \cdot \left[\sum_{j=1}^{k} \frac{d_j}{n_j(n_j - d_j)} \right]^{1/2}.$$
 (13)

Example 3. Twenty five units of dry bearings are subjected to a creep test and their failure times are given by² **70**, **180**, 190⁺, **200**, **210**, **230**, **275**, **295**, **310**, 370⁺, **395**, **420**, **480**, **495**, **560**, 600⁺, 620⁺, **680**, **750**, **780**, **800**, **900**, 980⁺, 1010⁺, 1020⁺. For more details, see the textbook.

²EXAMPLE 5.31 in: ELSAYED, E. A. Reliability Engineering. 2nd edition. Wiley, 2012.

```
# Compare the above with the following:
   nj = c(25,24,22,21,20,19,18,17,15,14,13,12,11,8,7,6,5,4)
   dj = rep(1,18)
15
   cumprod( (nj-dj)/nj )
16
17
   # Table 5.17 on Page 348
18
19 h.hat = dj / nj
   H.hat = cumsum(h.hat)
20
   R.ch = exp( -cumsum(dj/nj) )
21
   R.pl = cumprod((nj-dj)/nj)
22
                                                                                                        10
                                                                                                        11
23
   out = cbind( times[d==1], nj, dj, h.hat, H.hat, R.ch, R.pl)
24
   round(out,3)
                                                                                                        13
25
26
   # Plots of Survivals
27
   Sn = survfit(Surv(times,d)~1)
   plot(Sn)
  plot(Sn, conf.int=FALSE) # without CI
                                                                                                        18
```

△ 20

4 Point-wise confidence interval for the survival function

A $100(1-\alpha)\%$ confidence interval for S(t) for a given value of t can be obtained by using the approximate standard error in (13), which is called the standard (or linear plain) confidence interval. The confidence limits for this interval have

$$\hat{S}(t) \pm z_{\alpha/2} \cdot \text{SE}(\hat{S}(t)),$$

where $z_{\alpha/2}$ is the $\alpha/2$ upper quantile of the standard normal distribution. Note that this confidence interval is symmetric at $\hat{S}(t)$ so that it can be outside of the range of the survival function, [0,1], when the survival estimate, $\hat{S}(t)$, is very close to zero or one. One easy simple solution for this problems is to replace a limit greater than one with one and any value less than zero with zero.

We can obtain better confidence intervals by transforming the survival function. Possible choices can be $\log S(t)$ (log-transformation), $\log \left\{-\log S(t)\right\}$ (log-log-transformation), $\log \left[S(t)/(1-S(t))\right]$ (logistic-transformation), arcsin-square root transformation, etc. For more details, one can refer to Borgan and Liestøl³.

For the log-transformation alternative, the variance of $\log S(t)$ can be estimated by using the approximation in (11). Thus, the approximate standard error is given by

$$\operatorname{SE}(\log \hat{S}(t)) = \left[\sum_{j=1}^{k} \frac{d_j}{n_j(n_j - d_j)}\right]^{1/2}.$$
(14)

Then a $100(1 - \alpha)\%$ confidence limits for $\log S(t)$ is $\log \hat{S}(t) \pm z_{\alpha/2} SE(\log \hat{S}(t))$, which leads to a $100(1 - \alpha)\%$ confidence limits for S(t) of the form

$$\hat{S}(t) \exp \left[\pm z_{\alpha/2} \cdot \text{SE}\left(\log \hat{S}(t)\right) \right].$$

This log-transformation guarantees that the confidence limits are always greater than zero. However, it can have a value greater than one.

For the log-log-transformation, we need to estimate the variance of log $[-\log S(t)]$. Analogous with the approach used in (12) to obtain the variance of $\log \hat{S}(t)$, the variance of $\log \{-\log \hat{S}(t)\}$ is given by

$$\operatorname{Var}\left[\log\left\{-\log\hat{S}(t)\right\}\right] \approx \frac{1}{\{\log S(t)\}^2} \cdot \operatorname{Var}\left(\log\hat{S}(t)\right). \tag{15}$$

³Borgan, Ørnulf/Liestøl, Knut A Note on Confidence Intervals and Bands for the Survival Function Based on Transformations. Scandinavian Journal of Statistics, 17 1990.

The approximate standard error of log $\{-\log \hat{S}(t)\}$ is easily obtained using (11)

$$SE\left[\log\left\{-\log\hat{S}(t)\right\}\right] = \left[\frac{1}{\{\log\hat{S}(t)\}^2} \sum_{j=1}^k \frac{d_j}{n_j(n_j - d_j)}\right]^{1/2},\tag{16}$$

which results in the $100(1-\alpha)\%$ confidence limits of the form

$$\log \left\{ -\log \hat{S}(t) \right\} \pm z_{\alpha/2} \cdot SE = \log \left\{ -\log \hat{S}(t) \cdot \exp(\pm z_{\alpha/2}SE) \right\}$$
$$= \log \left\{ -\log \hat{S}(t)^{\exp(\pm z_{\alpha/2}SE)} \right\},$$

where we denote the approximate standard error formula in (16) by SE for brevity. Note that the inverse of the function, $y = \log(-\log x)$, is given by $x = \exp(-\exp(y))$. Using this inverse, we can obtain the $100(1 - \alpha)\%$ confidence limits for S(t)

$$\hat{S}(t)^{\exp(\pm z_{\alpha/2} \text{SE})}$$
.

It should be noted that these limits are always in [0, 1].