ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Подкидышев Алексей Сергеевич Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа №2.5.1 «Измерение коэффициента поверхностного натяжения»

Долгопрудный 14 апреля 2018 г.

1 Установка

1.1 Оборудование:

Рис. 1: Схема установки

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) В (рис.1). Тестовая жидкость (этиловый спирт) наливается в сосуд Е. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла С. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разряжения воз-

духа в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP , необходимого для прохождения пузырьков (при известном радиусе иглы). Разряжение в системе создается с помощью аспиратора A. Кран K2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K2 заполняется водой. Затем кран K2 открывают и заполняют водой нижнюю полость аспиратора. Разряжение воздуха создается в нижней полости при открывании крана K1, когда вода вытекает из неё по каплям. В колбах В и С, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром (устройство микроманометра описано в Приложении). Для стабилизации температуры исследуемой жидкости через рубашку D колбы В непрерывно прогоняется вода из термостата.

1.2 Цель работы:

- Измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта;
- Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре

2 Ход работы

2.1 Измерение диаметра иглы:

- 1. С помощью микроскопа: 1,1 mm \pm 0,1 mm
- 2. С помощью помощью формулы Лапласа, предполагая $\sigma_{\text{спирта}}$:

P_0, mm	P_0 , Π a	$r_{\text{иглы}}, \text{mm}$
41,3	81,002929	0,550597374

Значения близки друг к другу. Возьмём среднее значение для $r_{\rm иглы}=0.55\,$ mm. В дальнейшем будем считать, что радиус пузырьков воздуха будет равен полученному радиусу иглы.

2.2 Измерения h_1, h_2 :

Перенесём предварительно промытую и просушенную от спирта иглу в колбу с дистиллированной водой.

- Измерим расстояние между верхним концом иглы и любой неподвижной часть прибора h_1 (игла лишь касается поверхности)
- Утопим иглу до предела и измерим h_2 .

$$h_1 = 2.2cm$$
 $h_2 = 0.67cm \Rightarrow \Delta H = 1,53cm$

Измерим ΔH используя :

$$\Delta p = \rho * q * h$$

Р1, Па	Р2, Па	$\Delta H, cm$
236,34	398,14999	1,651119643

Итого:

Среднее значние $\Delta H = 1.59 \mathrm{~cm}$

2.3 Измерение $\sigma(T)$ дистилированной воды:

$$\Delta P = rac{2\sigma}{r}$$
 ,где $\Delta P = P -
ho * g * h_2$

Воспользуемся этой формулой, так как h_2 - не зависит от температуры

T, C	Т, К	P, mm	Р, Па	▲ Р, Па	σ(T), 10^-3 H/м
22,5	295,5	203	398,15	242,2751275	66,62566006
30	303	202,5	397,1693	241,2944625	66,35597719
35	308	200,3	392,8544	236,9795365	65,16937254
40	313	198,5	389,324	233,4491425	64,19851419
45	318	197	386,382	230,5071475	63,38946556
50	323	195	382,4594	226,5844875	62,31073406
55	328	192,8	378,1444	222,2695615	61,12412941
60	333	191,7	375,987	220,1120985	60,53082709

Эталонные значения для дистиллированной воды:

0	10	20	30	40	50	60	70	80	90	100
75,64	74,22	72,25	71,18	69,56	67,91	66,18	64,42	62,61	60,75	58,85

2.4 Измерение q

	Т	295,5	303	308	313	318	323	328	333
Γ,	\mathbf{q}	52,4217	53,7522	54,6392	55,5262	56,4132	57,3002	58,1872	59,0742

2.5 Измерение F:

T	295,5	303	308	313	318	323	328	333
sigma	66,6257	66,355977	65,16937254	64,19851	63,38947	62,31073	61,12413	60,53083
U/F	119,047	120,10818	119,8085725	119,7247	119,8027	119,6109	119,3113	119,605

2.5.1 Оценка полученных значений:

$$\sigma_a = \frac{1}{\sqrt{n}} \sqrt{\frac{(\tilde{y^2}) - (\tilde{y})^2}{\tilde{x^2} - (\tilde{x})^2} - b^2}$$

Значение $\sigma_{\mathrm{a,b}}$ для каждый коэфицентов составит:

$$\sigma_{\rm a,b} \approx 17\%$$

3 Вывод

Используя данное оборудование, мы можем измерить коэффициент поверхностного натяжения жидкости и определить поверхностную энергию и теплоту образования единицы поверхности жидкости. Полученные нами значения для коэфф. Поверхностного натяжения воды сходятся с табличными по порядку величины (относительная пошрешность 17%):

T°	$\sigma_{ ext{воды}}$	Табличное значение
30	66,36	71,18
40	64,2	69,56
50	62,31	67,91

Погрешность эксперимента объясняется неточностью приборов и самого процесса измерения: фиксация максимального давления «на глаз», отличие радиуса пузыря от радиуса иглы, температурное расширение металла иглы и неточность определения столба жидкости над иглой или момента касания поверхности.