Exercise 10 參考解答

- 一、單選題: (100 小題, 每題 1 分, 共 100 分)
-)某日課堂上,老師對學生勉勵:「若每天增加百分之一的功力,則一年後至少會增加三 1. (十六倍的可觀效應;反之,每天減少百分之一的功力,則一年後至少流失現今功力的九 成七」,這段勉勵運用了指數函數成長及衰退的概念,其數學上的表達最貼切下列哪一 個選項? (A) $1.01^{365} \ge 37$ 且 $0.99^{365} \le 0.03$ (B) $365^{1.01} \le 37$ 且 $365^{0.99} \ge 0.03$ (C) $1.01^{365} \ge 63$ $\perp 0.99^{365} \le 0.97$ (D) $365^{1.01} \le 63 \perp 365^{0.99} \ge 0.97$

【111 數(B)歷屆試題】

:: 「每天增加百分之一的功力,則一年後至少會增加 36 倍」

 $\exists \Box (1+0.01)^{365} \ge 36+1 \quad \Rightarrow \quad 1.01^{365} \ge 37$

又「每天減少百分之一的功力,則一年後至少流失現今功力的9成7」

 $\mathbb{E}[(1-0.01)^{365} \le 1-97\% \quad \Rightarrow \quad 0.99^{365} \le 0.03$ 故選(A)

2. () 文謙將 20000 元年終獎金購買基金,每一年的報酬率為 9%,請問 10 年後文謙可領回多 少元?(已知 $\log 1.09 \approx 0.0374$, $\log 2.366 \approx 0.374$) (A)40723 (B)40732 (C)47230 (D)47320

【super 講義-綜合評量】

解答

D

複利的計算公式是: $S = P(1+i)^n$ 解析

其中P代表本金,n代表期數,i代表利率,S代表本利和

設 10 年後可得x元,則 $x = 20000 \times (1+9\%)^{10}$

 $\log x = \log \left\lceil 20000 \times \left(1 + 9\%\right)^{10} \right\rceil = \log \left(20000 \times 1.09^{10}\right) = \log 20000 + \log 1.09^{10}$

 $= \log 20000 + 10\log 1.09 \approx \log 20000 + 10 \times 0.0374 = \log 20000 + 0.374$

 $= \log 20000 + \log 2.366 = \log (20000 \times 2.366) = \log 47320$

 $\Rightarrow x = 47320$

故 10 年後可領回 47320 元

)已知 $\log 3 \approx 0.4771$, $\log 7 \approx 0.8451$,試求滿足 $\left(\frac{7}{3}\right)^n > 1000$ 的最小整數 n = (提示:將原式兩**3.** (邊同取常用對數) (A)7 (B)8 (C)9 (D)10

【super 講義-綜合評量】

解答

將 $\left(\frac{7}{3}\right)^n > 1000$ 兩邊同取常用對數得

$$\log\left(\frac{7}{3}\right)^n > \log 1000 \quad \Rightarrow \quad n\left(\log 7 - \log 3\right) > 3$$

 $\Rightarrow n(0.8451-0.4771) > 3$

 $\Rightarrow 0.368n > 3$

 $\Rightarrow n > \frac{3}{0.368} = 8.152 \cdots$

故所求最小整數n=9

)已知 log 2 ≈ 0.3010 , log 3 ≈ 0.4771 ,則 36¹⁰ 為幾位數 ? (A)14 (B)15 (C)16 (D)17 4. (

【super 講義-綜合評量】

 $\log 36^{10} = 10\log 36 = 10\log (4 \times 9) = 10(2\log 2 + 2\log 3) \approx 10(2 \times 0.3010 + 2 \times 0.4771)$ $=10\times1.5562=15.562=15+0.562$

- 首數為 15
- 3610 為 16 位數
- **5.** ()已知 $\log x \approx 3.3201$,則真數 x 的整數部分為 (A) 3 位數 (B) 4 位數 (C) 5 位數 (D) 6 位 數

【學習卷】

解答

В

 $\log x \approx 3.3201 = 3 + 0.3201$

⇒ 首數為3

故x的整數部分為3+1=4位數

)已知 $\log x \approx 3.3201$,則 $\log x$ 的首數為 (A)2 (B)3 (C)4 (D)5 **6.** (

【學習卷】

解答

В

 \mathbf{C}

 $\log x \approx 3.3201 = 3 + 0.3201$

- ⇒ 首數為3
-)下列各式何者正確? (A) $\log_2(-3) = \log_{(-2)}3$ (B) $10^{\log_{10}2} = 100$ (C) $\log_4 9 = \log_2 3$ (D) **7.** ($\log_2 2^3 = (\log_3 3)^2$

【light 講義-綜合評量】

解答

- (A)若 $\log_a b$ 有意義 \Leftrightarrow 三要素 $\begin{cases} a > 0 \text{ (底數須大於 0)} \\ a \neq 1 \text{ (底數不可以等於 1)} \\ b > 0 \text{ (真數須大於 0)} \end{cases}$
- (B) $\pm \pm = 10^{\log_{10} 2} = 2$, $\pm \pm = 100 = 10^2$
- (C) $\log_4 9 = \log_{2^2} 3^2 = \frac{2}{2} \log_2 3 = \log_2 3$
- (D) $/ = \log_2 2^3 = 3\log_2 2 = 3 \times 1 = 3$, $/ = (\log_3 3)^2 = 1^2 = 1$
-) 化簡 $\log_{10} 2 + \log_{10} \sqrt{15} \frac{1}{2} \log_{10} 6 =$ **8.** (
 - (A)-1 (B)- $\frac{1}{2}$ (C)0 (D) $\frac{1}{2}$

【西螺農工段考題 light 講義-類題】

解答

利用對數的運算公式

$$\log_{10} 2 + \log_{10} \sqrt{15} - \frac{1}{2} \log_{10} 6$$

係數往後次方 = $\log_{10} 2 + \log_{10} \sqrt{15} - \log_{10} 6^{\frac{1}{2}} = \log_{10} 2 + \log_{10} \sqrt{15} - \log_{10} \sqrt{6}$

分開相加減=合併相乗除
$$\log_{10}\left(2\times\sqrt{15}\div\sqrt{6}\right) = \log_{10}\sqrt{\frac{4\times15}{6}} = \log_{10}\sqrt{10} = \log_{10}10^{\frac{1}{2}} \overset{%万往前}{=} \frac{1}{2}\log_{10}10 = \frac{1}{2}$$

)若 $\log_{10} 2 = x \cdot \log_{10} 3 = y$,則 $\log_{12} 15$ 等於下列哪一式? (A) $\frac{5}{4}$ (B) $\frac{x+y-1}{x+2y}$ (C) $\frac{x-y+1}{2x+y}$ 9. (

(D) $\frac{y+1-x}{2x+y}$

【102 數(B)歷屆試題】

利用換底公式:

$$\log_{12} 15 = \frac{\log_{10} 15}{\log_{10} 12} = \frac{\log_{10} 3 + \log_{10} 5}{\log_{10} 2^2 + \log_{10} 3} = \frac{\log_{10} 3 + 1 - \log_{10} 2}{2\log_{10} 2 + \log_{10} 3} = \frac{y + 1 - x}{2x + y}$$

10. ()
$$\log_2 \left(\log_{10} \sqrt{\sqrt{10}} \right)$$
可化為下列何者? (A)-2 (B)-3 (C)-4 (D)-5

【101 數(A)歷屆試題】

解答 B

[解析] 原式
$$=\log_2\left(\log_{10}\left(\left(\frac{1}{10^{\frac{1}{2}}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\right) = \log_2\left(\log_{10}10^{\frac{1}{8}}\right) = \log_2\frac{1}{8} = \log_22^{-3} = -3$$

11. () 若
$$2^{x^2} = 16$$
,則 $x = (A) \pm 2$ (B) ± 1 (C)2 (D) -2

【super 講義-綜合評量】

解析
$$2^{x^2} = 16 \Rightarrow 2^{x^2} = 2^4 \Rightarrow x^2 = 4$$
$$\therefore x = \pm 2$$

12. ()
$$\stackrel{\text{#}}{=} 3^{4x+x^2} = \frac{1}{81}$$
, $\text{ [I] } x = \text{ (A)} -2 \text{ (B)} -1 \text{ (C)} 0 \text{ (D)} 2$

【super 講義-綜合評量】

解析
$$3^{4x+x^2} = \frac{1}{81} \implies 3^{4x+x^2} = 3^{-4}$$

$$\Rightarrow 4x + x^2 = -4 \implies x^2 + 4x + 4 = 0$$

$$\Rightarrow (x+2)^2 = 0$$

$$\therefore x = -2$$

13. ()設
$$a=3\log_4 3$$
, $b=2\log_2 3$, $c=\log_2 8$,則下列何者正確? (A) $b>a>c$ (B) $a>b>c$ (C) $c>b>a$ (D) $b>c>a$

【super 講義-綜合評量】

$$a = 3\log_4 3 = \log_4 27$$

$$b = 2\log_2 3 = \log_4 81$$

$$c = \log_2 8 = \log_4 64$$

:: 底數
$$4 > 1$$
 :. $y = \log_4 x$ 為遞增函數,又 $81 > 64 > 27$

$$\therefore b > c > a$$

14. ()設
$$10 < x < 100$$
,若 $\log x^3$ 與 $\log x$ 尾數相同,則 $x = (A)10\sqrt{10}$ (B)20 (C) $10\sqrt{2}$ (D) $10\sqrt{5}$

【super 講義-綜合評量】

⇒
$$\log x^3 - \log x = \log \frac{x^3}{x} = 2\log x$$
 為整數

$$\Rightarrow 1 < \log x < 2 \Rightarrow 2 < 2 \log x < 4$$

$$\Rightarrow 2\log x = 3 \Rightarrow \log x = \frac{3}{2}$$

$$x = 10^{\frac{3}{2}} = 10\sqrt{10}$$

15. () 已知
$$a = \frac{2}{\sqrt[4]{8}}$$
 、 $b = \sqrt{\frac{1}{2}} \cdot 4^{\frac{1}{3}}$,則下列敘述何者為真? (A) $a \cdot b < 2$ (B) $a + b < 2$ (C) $a < b$ (D) $b^3 < a^2$

【102 數(B)歷屆試題】

解答A

原料介 $a = \frac{2}{\sqrt[4]{8}} = 2^{\frac{1}{4}}$, $b = \sqrt{\frac{1}{2} \cdot 4^{\frac{1}{3}}} = 2^{\frac{1}{6}}$

(A)
$$a \cdot b = 2^{\frac{1}{4}} \cdot 2^{\frac{1}{6}} = 2^{\frac{5}{12}} < 2^{1} = 2$$

(B)
$$a = 2^{\frac{1}{4}} > 2^0 = 1$$
, $b = 2^{\frac{1}{6}} > 2^0 = 1$ $\Rightarrow a + b > 2$

(C)
$$a = 2^{\frac{1}{4}} > 2^{\frac{1}{6}} = b$$

(D)
$$b^3 = \left(2^{\frac{1}{6}}\right)^3 = 2^{\frac{1}{2}}$$
, $a^2 = \left(2^{\frac{1}{4}}\right)^2 = 2^{\frac{1}{2}}$ \Rightarrow $b^3 = a^2$

16. ()
$$\stackrel{\text{#}}{=} \log_8 a = \frac{1}{2}$$
, $\lim_{x \to \infty} \log_2 \left(\frac{a}{2} \right) = (A) \frac{1}{6} (B) \frac{1}{4} (C) \frac{1}{3} (D) \frac{1}{2}$

【106 數(A)歷屆試題】

解答I

解析 由 $\log_8 a = \frac{1}{2}$ 可得 $a = 8^{\frac{1}{2}} = (2^3)^{\frac{1}{2}} = 2^{\frac{3}{2}}$

則所求
$$\log_2\left(\frac{a}{2}\right) = \log_2\left(\frac{2^{\frac{3}{2}}}{2}\right) = \log_22^{\frac{3}{2}-1} = \log_22^{\frac{1}{2}} = \frac{1}{2}$$

17. () 已知
$$a \cdot b$$
為實數,且 $3^a = 5$, $5^b = 9$,則 $ab = (A)\log_{15} 45$ (B) $\log_3 5$ (C)2 (D)3

【104 數(C)歷屆試題】

解答 (

解析 由對數的定義:

$$3^a = 5 \implies \log_3 5 = a$$

$$5^b = 9 \implies \log_5 9 = b$$

$$\exists [] ab = \log_3 5 \times \log_5 9 = \log_3 9 = 2$$

18. () 若
$$x = 2$$
 ,則 $x^{-1} - x^0 + x =$ (A) $\frac{1}{2}$ (B) 1 (C) $\frac{3}{2}$ (D) $\frac{5}{2}$

【學習卷】

解答 (

解析
$$x^{-1} - x^0 + x = 2^{-1} - 2^0 + 2 = \frac{1}{2} - 1 + 2 = \frac{3}{2}$$

19. () 下列各式何者無意義? (A)
$$\log_5 55$$
 (B) $\log_{10} (-5)$ (C) $\log_{0.1} \frac{1}{5}$ (D) $\log_{\frac{4}{3}} \frac{3}{4}$

【學習卷】

解答B

解析 $\log_{10}(-5)$ 因為真數為-5<0,故無意義

20. ()
$$\frac{2\log_{10} 3 + \log_{10} 2}{1 + \frac{1}{2}\log_{10} 0.36 + \frac{1}{3}\log_{10} 27} = \frac{1}{1}$$

(A)-1 (B)0 (C)
$$\frac{1}{2}$$
 (D)1

解答 D

解析

$$\begin{split} \text{RT} &= \frac{\log_{10} 3^2 + \log_{10} 2}{\log_{10} 10 + \log_{10} \sqrt{0.36} + \log_{10} \sqrt[3]{27}} = \frac{\log_{10} 9 + \log_{10} 2}{\log_{10} 10 + \log_{10} 0.6 + \log_{10} 3} \\ &= \frac{\log_{10} \left(9 \times 2\right)}{\log_{10} \left(10 \times 0.6 \times 3\right)} = \frac{\log_{10} 18}{\log_{10} 18} = 1 \end{split}$$

21. ()在同一直角坐標平面上, $y = \log_2 x$ 與 $y = 2^x$ 的圖形共有幾個交點? (A)0 (B)1 (C)2 (D)3

【學習卷】

解答

A

由圖形知兩圖形對稱於直線y=x且沒有交點

22. () 下列有關 $\log_a b$ 與 $\log_a c$ (a > 0 且 $a \ne 1$) 之敘述,何者為真? (A)若 b > c ,則 $\log_a b > \log_a c$ (B)若 $\log_a b > \log_a c$,則 b > c (C) $\log_a b$ 為遞增函數 (D)若 0 < a < 1 且 b > 7 ,則 $\log_a b < 0$

【學習卷】

解答

- D
- (A)當a > 1時 \Rightarrow 若b > c,則 $\log_a b > \log_a c$,此敘述才成立
- (B)當a > 1時 \Rightarrow 若 $\log_a b > \log_a c$, 則b > c , 此敘述才成立
- (C)當a > 1時 $\Rightarrow \log_a b$ 為遞增函數,此敘述才成立
- (D) 當 0 < a < 1 時 $\Rightarrow \log_a b$ 為遞減函數 $\log_a b < \log_a 7 < \log_a 1 = 0 \Rightarrow \log_a b < 0$
- ∴ 選項(D)為真
- **23.** () 下列何值與 $\log_2 5$ 相等? (A) $\log 5 \log 2$ (B) $\log \left(\frac{5}{2}\right)$ (C) $\frac{\log 50}{\log 20}$ (D) $\frac{\log 25}{\log 4}$

【學習卷】

解答

D

解析 (A)
$$\log 5 - \log 2 = \log \frac{5}{2} \neq \log_2 5$$

(B)
$$\log \frac{5}{2} \neq \log_2 5$$

$$(C)\frac{\log 50}{\log 20} = \log_{20} 50 \neq \log_2 5$$

(D)
$$\frac{\log 25}{\log 4} = \log_4 25 = \log_{2^2} 5^2 = \log_2 5$$

24. () $(\frac{1}{4})^{-\frac{3}{2}}$ 其值為 (A)0.0125 (B)0.125 (C)4 (D)8

【龍騰自命題】

解答

解答 D

解析 原式= $\left[\left(\frac{1}{2} \right)^2 \right]^{-\frac{3}{2}} = \left(\frac{1}{2} \right)^{-3} = 2^3 = 8$

25. () 下列何者正確? (A) $\sqrt[3]{a^3+b^3} = a+b$,其中 $a \cdot b$ 為任意實數 (B) $(a^m)^n = a^{m+n}$,其中 $a \cdot b$

 $n \cdot m$ 為任意實數 $(C)\sqrt[3]{a^3} = a$,其中 a 為任意實數 $(D)\sqrt[m]{a^n} = a^{\frac{m}{n}}$,其中 a > 0 且 $m \cdot n$ 皆為正整數

【龍騰自命題】

解答

解析 (A) $\sqrt[3]{a^3 + b^3} = (a^3 + b^3)^{\frac{1}{3}}$

(B)
$$(a^m)^n = a^{m \times n}$$
 (C) $\sqrt[3]{a^3} = a^{\frac{3}{3}} = a$

(D)
$$\sqrt[m]{a^n} = a^{\frac{n}{m}}$$

26. () 5³×5⁴是 5 的幾次方? (A)12 (B)10 (C)7 (D)5

【龍騰自命題】

) 読 $a \cdot b > 0$,若 $4a^{\frac{1}{2}}b^{\frac{1}{3}} \div (-2a^{\frac{5}{6}}b^{\frac{5}{6}}) = -2a^tb^r$,則 $t + r = (A)\frac{5}{6}$ (B) $-\frac{5}{6}$ (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$

【龍騰白命題】

解析 原式= $-2a^{\frac{1-5}{2-6}b^{\frac{1-5}{3-6}}}=-2a^{-\frac{1}{3}b^{-\frac{1}{2}}}$ \Rightarrow $t=-\frac{1}{2}$, $r=-\frac{1}{2}$ \Rightarrow $t+r=-\frac{5}{6}$

28. () 設 $a \cdot b > 0$, 化簡 $\sqrt[3]{ab^3(\sqrt{ab})^3} = (A)_{a^{\frac{1}{5}}b^{\frac{3}{2}}} (B)_{a^{\frac{5}{6}}b^{\frac{1}{2}}} (C)_{a^{\frac{1}{5}}b^{\frac{1}{2}}} (D)_{a^{\frac{5}{6}}b^{\frac{3}{2}}}$

【龍騰白命題】

解析 原式= $[a^1b^3[(ab)^{\frac{1}{2}}]^3]^{\frac{1}{3}}=a^{\frac{1}{3}}b^1(ab)^{\frac{1}{2}}=a^{\frac{1}{3}+\frac{1}{2}}b^{\frac{1+\frac{1}{2}}{2}}=a^{\frac{5}{6}b^{\frac{3}{2}}}$

29. () 方程式 $9^{x+2} = 3^{11-x}$ 的解為 (A) $x = \frac{9}{2}$ (B) $x = \frac{7}{3}$ (C) $x = \frac{5}{2}$ (D) $x = \frac{8}{3}$

【龍騰自命題】

解答 B

解析 原式 \Rightarrow $3^{2x+4} = 3^{11-x}$ \Rightarrow 2x+4=11-x \Rightarrow 3x=7 \Rightarrow $x=\frac{7}{3}$

)關於 $y = -2^x$ 的圖形,下列各敘述何者**不真**? (A)恆在 x 軸下方 (B)通過點(0, -1) (C) **30.** (為遞增函數 (D)以 x 軸為漸近線

【龍騰自命題】

 $y = -2^x$ 的圖形如下:

為號減函數

)方程式 $9^{3x} = 3^{x^2+5}$,求x = (A)1 (B)5 (C)1 或 5 (D)0 或 3

【龍騰自命題】

解答 (

解析 原式 \Rightarrow $(3^2)^{3x} = 3^{x^2+5}$ \Rightarrow $6x = x^2 + 5$ \Rightarrow $x^2 - 6x + 5 = 0$ \Rightarrow (x-1)(x-5) = 0 \therefore x = 1 或 5

32. () 解($\frac{3}{4}$)^{x+2} = ($\frac{4}{3}$)^{2x-5} 得 x 之值為 (A) - 1 (B) - 2 (C)2 (D)1

【龍騰自命題】

解答 D

解析 原式 ⇒ $(\frac{3}{4})^{x+2} = [(\frac{3}{4})^{-1}]^{2x-5}$ ⇒ $(\frac{3}{4})^{x+2} = (\frac{3}{4})^{-2x+5}$ ⇒ x+2=-2x+5 ⇒ 3x=3 ⇒ x=1

【龍騰自命題】

解答 D

解析 原式 ⇒ $(\frac{11}{19})^{3x+2} = [(\frac{11}{19})^{-1}]^{x+6}$ ⇒ $(\frac{11}{19})^{3x+2} = (\frac{11}{19})^{-x-6}$ ⇒ 3x+2=-x-6 ⇒ 4x=-8 ⇒ x=-2

34. ()設 a > 0, $a \ne 1$,則在 $y = a^x$ 中,當 x 值增加 2 時,y 值為原來的 16 倍,則 a = (A)4 (B)2 (C)8 (D)16

【龍騰自命題】

解答 A

解析 $\frac{x \mid 1 \mid 3}{y \mid a^1 \mid a^3} \quad \Rightarrow \quad a^3 = 16a \quad \Rightarrow \quad a^2 = 16 \quad a = 4 \quad \vec{x} \quad -4 \quad (不合)$

35. ()設 $a = \sqrt[3]{4}$, $b = \sqrt[4]{8}$, $c = \sqrt{2\sqrt[3]{2}}$,則 a 、b 、c 之大小順序為何? (A)a < c < b (B)c < a < b (C)b < a < c (D)a = c < b

【龍騰白命題】

解答 D

解析 $a = \sqrt[3]{4} = 2^{\frac{2}{3}} \quad b = \sqrt[4]{8} = 2^{\frac{3}{4}} \quad c = \sqrt{2\sqrt[3]{2}} = (2^{1} \times 2^{\frac{1}{3}})^{\frac{1}{2}} = (2^{\frac{4}{3}})^{\frac{1}{2}} = 2^{\frac{2}{3}}$ $\therefore \quad \frac{2}{3} < \frac{3}{4} \text{ 且底數 } 2 > 1 \qquad \therefore \quad 2^{\frac{2}{3}} < 2^{\frac{3}{4}} \quad \Rightarrow \quad a = c < b$

36. () 下列何者有意義? (A)log-24 (B)log₂(-4) (C)log₁3 (D)log₃1

【龍騰自命題】

解答 D

解析 對數 $\log_a b$ 有意義即底數 a > 0 且 $a \ne 1$,真數 b > 0 (A)底數-2 無意義 (B)真數-4 無意義 (C)底數 1 無意義

37. () $\log_2 3 \times \log_3 4 \times \log_4 5 \times \log_5 6 \times \log_6 7 \times \log_7 8 \times \log_8 2 =$ (A)3 (B)2 (C)1 (D)0

【龍騰自命題】

解答C

解析 利用對數的性質,連鎖律 原式= log₂2 = 1

38. () $\log_{10}4 + \log_{10}15 - \log_{10}0.6 =$ (A)10 (B)8 (C)4 (D)2

【龍騰自命題】

解答 D

解析 $\log_{10}4 + \log_{10}15 - \log_{10}0.6 = \log_{10}(4 \times 15 \div 0.6) = \log_{10}100 = 2$

39. () $\log_2(\log_2 49) + 2\log_4(\log_7 2) = (A) - 1$ (B)1 (C) - 3 (D)3

【龍騰自命題】

解答 B

解析

原式 = $\log_2(\log_2 49) + \log_2(\log_7 2) = \log_2(\log_2 49 \times \log_7 2)$ = $\log_2(\log_2 49 \times \log_{49} 4) = \log_2(\log_2 4) = \log_2 2 = 1$

40. ()關於 $y = -\log_3 x$ 的圖形,下列各敘述何者**不真**? (A)恆在 y 軸右方 (B)為遞減函數 (C) 以 y 軸為漸近線 (D)通過點(-1,0)

【龍騰自命題】

解答解析

D

 $y = -\log_3 x$ 圖形如下:

圖形不通過點(-1,0)

41. () 方程式 $\log_{\frac{1}{2}}(2x-1)=1$ 之解為 (A) $x=\frac{3}{4}$ (B) $x=\frac{4}{3}$ (C) $x=\frac{1}{2}$ (D) $x=\frac{3}{2}$

【龍騰自命題】

解答

A

解析 : $\log_{\frac{1}{2}}(2x-1) = \log_{\frac{1}{2}}\frac{1}{2}$: $2x-1=\frac{1}{2}$ \Rightarrow $2x=\frac{3}{2}$ \Rightarrow $x=\frac{3}{4}$

42. () 方程式 $\log_{\frac{1}{2}}(x-3) = \log_{\frac{1}{2}}(5-x)$ 之解為 (A)x = -4 (B)x = 4 (C)x = 5 (D)x = 3

【龍騰自命題】

解答

 $\therefore x-3=5-x \Rightarrow 2x=8$

 $\therefore x = 4$

43. () 設 $a = 3\log_4 3$, $b = 2\log_2 3$, $c = \log_2 8$,則 (A)a > b > c (B)b > c > a (C)c > b > a (D)b > a > c

【龍騰自命題】

解答

В

 $a = 3\log_4 3 = \log_4 27$, $b = 2\log_2 3 = \log_4 81$, $c = \log_2 8 = \log_4 64$

∴ 底數 4 > 1 為遞增函數,又 81 > 64 > 27

 $\therefore b > c > a$

44. () x > 0,logx 之首數為-4,則 x 之範圍為 (A) $-4 \le x < -3$ (B) $-3 \le x < -2$ (C) $10^{-4} \le x < 10^{-3}$ (D) $10^{-3} \le x < 10^{-2}$

【龍騰自命題】

解答

C

解析 : $\log x$ 之首數為 -4 : $-4 \le \log x < -3$,即 $10^{-4} \le x < 10^{-3}$

45. () logx = -5.4318 , 則 logx 之尾數為 (A)5.4318 (B) -0.4318 (C)0.5682 (D)0.4318 【龍騰自命題】

解答

C

解析 $\log x = -5.4318 = -6 + 0.5682$

- **二** 尾數為 0.5682
-)下列哪一個對數的尾數和其他 3 個不同 ? (A) $\log 35$ (B) $\log \frac{1}{35}$ (C) $\log 0.35$ (D) $\log 350$ **46.** (

【龍騰自命題】

解答 В

- $(A)\log 35 = \log(3.5 \times 10) = \log 3.5 + \log 10 = 1 + \log 3.5$ ⇒ 尾數為 $\log 3.5$ (B) $\log \frac{1}{25} = \log 3.5 + \log 10 = 1 + \log 3.5$ 解析 $\log 35^{-1} = -\log 35 = -(1 + \log 3.5) = -1 - \log 3.5$ $= -2 + (1 - \log 3.5)$ ⇒ 尾數為 $1 - \log 3.5$ (C) $\log 0.35 = \log (3.5 \times 10^{-1}) = \log 3.5 + \log 3.5 = \log 3.5 \times 10^{-1}$ $\log 10^{-1} = -1 + \log 3.5$
 - 尾數為 $\log 3.5$ (D) $\log 350 = \log(3.5 \times 10^2) = \log 3.5 + \log 10^2 = 2 + \log 3.5$
- 尾數為 log3.5
- **47.** ()log0.004038 的首數為 (A) − 5 (B) − 4 (C) − 3 (D) − 2

【龍騰自命題】

解答

 $log 0.004038 = log (4.038 \times 10^{-3}) = log 4.038 + log 10^{-3}$ $= -3 + \log 4.038$ \Rightarrow 首數= -3

)在同一直角坐標平面上,函數 $y = \log_{10} x$ 與 $y = 10^x$ 的圖形共有幾個交點? **48.** ((C)2 (D)3

【101 數(A)歷屆試題】

由圖形知

兩圖形對稱於直線 x = y 且沒有交點

)已知 $a \cdot b$ 為實數,若 $2^a = \sqrt{32}$ 且 $3^b = \frac{1}{\sqrt{27}}$,則 a + b = (A)-2 (B)-1 (C)1 (D)2 **49.** (

【課本自我評量】

解答

 $2^a = \sqrt{32} = \sqrt{2^5} = (2^5)^{\frac{1}{2}} = 2^{\frac{5}{2}}$ $\exists a = \frac{5}{2}$ $3^{b} = \frac{1}{\sqrt{27}} = \frac{1}{\sqrt{3^{3}}} = \frac{1}{(3^{3})^{\frac{1}{2}}} = \frac{1}{3^{\frac{3}{2}}} = 3^{-\frac{3}{2}}$ $||b|| = -\frac{3}{2}$

) 對數方程式 $\log_2(x-5) + \log_2(x+2) = 3$,則 x = (A)0 (B)2 (C)4 (D)6 **50.** (

【課本自我評量】

D 原式可化為 $\log_2(x-5)(x+2) = \log_2 2^3$

比較真數得 $(x-5)(x+2)=2^3$

計算得 $x^2 - 3x - 10 = 8$

移項得 $x^2 - 3x - 18 = 0$

因式分解得(x-6)(x+3)=0

故x=6或-3(不合,使真數小於0)

) 若 $2^3 \times 2^5 = 2^t$, 則t =**51.** ((A)2 (B)15 (C)8 (D)-2

【隨堂卷】

由指數律 $a^m \times a^n = a^{m+n}$

 $2^3 \times 2^5 = 2^{3+5} = 2^8 = 2^t \implies t = 8$

)若 $\sqrt[3]{5} = 5^r$,則r =**52.** (

 $(A) - \frac{1}{3}$ (B) 3 $(C) \frac{1}{3}$ (D) - 3

【隨堂卷】

解析 有理數指數 $a^{\frac{1}{n}} = \sqrt[n]{a}$

 $\sqrt[3]{5} = 5^{\frac{1}{3}} = 5^r \implies r = \frac{1}{3}$

)設 $ab \neq 0$ 且a > 0,化簡 $\left(a^2b^4\right)^{\frac{1}{2}}$ = **53.** (

(A) a^4b^8 (B) a^2b^2 (C) ab^8 (D) ab^2

【隨堂卷】

由指數對乘法的分配律

)設 $a=2^2 \cdot b=2^4 \cdot c=\frac{7}{2}$,則 $a \cdot b \cdot c$ 之大小順序為 (A)b>a>c (B)c>b>a (C)a>c>b**54.** (

(D) b > c > a

【隨堂卷】

因為底數2>1,所以 $y=2^x$ 為遞增函數

且指數 $4 > \frac{7}{2} > 2$,故 $2^4 > 2^{\frac{7}{2}} > 2^2$,即b > c > a

) 若 $4^x = 8$, 則x =**55.** (

(A)3 (B)2 (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

【隨堂卷】

解答

D

因為 $4 = 2^2$, $8 = 2^3$, 所以原方程式可化為 $(2^2)^x = 2^3$

即 2x = 3 , 得 $x = \frac{3}{2}$

)設a>0且 $a\neq 1$,則 $y=\log_a x$ 的圖形恆在 (A)x軸上方 (B)x軸下方 (C)y軸右方 (D) **56.** (y軸左方

【隨堂卷】

解答

件台 '

 $y = \log_a x$ 的圖形如圖

57. () 設x > 1,若 $\log_3 x^2 = 2$,則x = (A)2 (B)3 (C)9 (D)4

【隨堂卷】

解答

Е

58. () log 0.03424 的首數為 (A) 0 (B) -1 (C) -2 (D) -3

【隨堂卷】

解答

 \mathbf{C}

解析 $\log 0.03424 = \log (3.424 \times 10^{-2}) = \log 3.424 + \log 10^{-2}$ = $-2 + \log 3.424$ 得首數為 -2

59. () 若 $f(x) = 2^x$,則下列何者正確? (A) f(-1) = -2 (B) f(0) = 0 (C) f(-3) > f(-2) (D) $x_2 > x_1$ 時, $f(x_2) > f(x_1)$

【課本習題】

解答

解析

$$f(x) = 2^x$$

(A)
$$f(-1) = 2^{-1} = \frac{1}{2}$$

(B)
$$f(0) = 2^0 = 1$$

(C)
$$f(-3) = \frac{1}{8}$$
, $f(-2) = \frac{1}{4}$, $\text{All } f(-3) < f(-2)$

(D) 2^x 之底數 2 > 1,為遞增函數,所以 $x_2 > x_1$ 時, $f(x_2) > f(x_1)$

11

60. () 化簡 $\frac{\sqrt[5]{4} \times \sqrt{8} \times (\sqrt[3]{\sqrt[5]{4}})^2}{\sqrt[3]{\sqrt{2}}} =$ (A)2 (B)4 (C) $\sqrt{2}$ (D) $2\sqrt{2}$

【龍騰自命題,進階卷】

解答 I

摩析 原式 = $\frac{2^{\frac{2}{5}} \times 2^{\frac{3}{2}} \times (2^{\frac{2}{15}})^2}{2^{\frac{1}{6}}} = \frac{2^{\frac{2}{5} + \frac{3}{2} + \frac{4}{15}}}{2^{\frac{1}{6}}} = \frac{2^{\frac{13}{6}}}{2^{\frac{1}{6}}} = 2^2 = 4$

61. () $\frac{1}{\sqrt[5]{x}} =$ (A) $\sqrt[1]{\frac{1}{30}}$ (B) x^{30} (C) $\sqrt[-\frac{1}{30}]{x^{-30}}$ (D) x^{-30}

【龍騰自命題,進階卷】

$$\frac{1}{\sqrt[5]{\frac{\sqrt[3]{x}}{\sqrt{x}}}} = \frac{1}{\left(\frac{x^{\frac{1}{3}}}{\frac{1}{x^{\frac{1}{2}}}}\right)^{\frac{1}{5}}} = (x^{\frac{1}{3} - \frac{1}{2}})^{-\frac{1}{5}} = x^{\frac{1}{30}}$$

)若a > 0,且 $m \cdot n$ 為正整數,則下列何者錯誤? (A) $(a^m)^n = a^{m+n}$ (B) $a^{-1} = \frac{1}{a}$ (C) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ **62.** ((D) $a^0 = 1$

【龍騰自命題】

 $(A)(a^m)^n = a^{mn} , a^m \times a^n = a^{m+n}$

)已知 a > 0,則 $y = a^x$ 的圖形與 $y = (\frac{1}{a})^x$ 的圖形對稱於 (A)x - y = 0 (B)x + y = 0 (C)x(D)y 軸

【龍騰自命題】

解答 D

觀察圖,知 $y = a^x$ 與 $y = (\frac{1}{a})^x$ 對稱於y軸

 $(\log_{\frac{1}{3}} 4) \times (\log_8 9) = (A) - 8 (B) - \frac{3}{2} (C) - \frac{4}{3} (D) - \frac{5}{2}$

【龍騰自命題】

解答C

解析 原式 = $(\log_{3^{-1}} 2^2) \times (\log_{2^3} 3^2) = -2 \times \frac{2}{3} = -\frac{4}{3}$

)已知 a > 0, $a \ne 1$, $\log_a x = 8$, $\log_a y = 3$ 且 n = 5,則 $\log_a \sqrt[n]{\frac{x}{y}} = (A)1$ (B) $\frac{3}{2}$ (C) $\sqrt[5]{\frac{3}{8}}$ **65.** (

【龍騰自命題,進階卷】

解析
$$\log_{\pi} \frac{x}{x} = \frac{1}{1}\log_{\pi} \frac{x}{x}$$

解析 $\log_a \sqrt[n]{\frac{x}{y}} = \frac{1}{n} \log_a \frac{x}{y} = \frac{1}{n} (\log_a x - \log_a y) = \frac{1}{5} (8 - 3) = 1$

) 設 $a = \log_{\frac{1}{3}} 2$, $b = \log_{\frac{1}{3}} \frac{1}{2}$, $c = \log_{\frac{1}{2}} 3$, $d = \log_{\frac{1}{2}} \frac{1}{3}$, 則 $a \cdot b \cdot c \cdot d$ 之大小關係為 (A)d > b**66.** (> a > c (B)a > c > d > b (C)c > d > b > a (D)b > d > c > a

【龍騰自命題,進階卷】

解答 A

解析
$$a = \log_{\frac{1}{3}} 2 = \log_{3} \frac{1}{2} = \log_{3} 1 - \log_{3} 2 = -\log_{3} 2$$

$$b = \log_{\frac{1}{3}} \frac{1}{2} = \log_{3} 2$$

$$c = \log_{\frac{1}{2}} 3 = \log_{2} \frac{1}{3} = \log_{2} 1 - \log_{2} 3 = -\log_{2} 3$$

$$d = \log_{\frac{1}{2}} \frac{1}{3} = \log_{2} 3$$

$$\not\Box d > b > a > c$$

67. ()方程式 $x^{\log_{10} 2} \times 2^{\log_{10} x} - 3 \times 2^{\log_{10} x} + 2 = 0$ 的解 x = (A)2 或 1 (B)4 或 2 (C)1 或 10 (D)10 或 100

【龍騰自命題,進階卷】

解答C

故 x = 1 或 1068. ()方程式 $\log_3 729 = 6^{x^2 - 15x - 125}$ 之解 x = (A) - 14 或 9 (B) - 21 或 6 (C) 14 或 - 9 (D) 21 或 - 6

解答 D

解析 原式 $\Rightarrow \log_3 3^6 = 6^{x^2 - 15x - 125}$ $\Rightarrow 6 = 6^{x^2 - 15x - 125}$ $\Rightarrow 1 = x^2 - 15x - 125$ $\Rightarrow x^2 - 15x - 126 = 0 \Rightarrow (x - 21)(x + 6) = 0 \Rightarrow x = 21$ 或 -6

69. ()若(a,b)是對數函數 $y = \log_{10}x$ 上一點,則下列哪一點也在該圖形上? (A)(10a,b+1) (B)(2a,2b) (C) $(\frac{1}{a},1-b)$ (D) (a^2,b^2)

【龍騰自命題】

【龍騰自命題】

解答

∴ (a,b) $\exists y = \log_{10}x \pm \cdots = 100$ ∴ $b = \log_{10}a$ (A)(10a,b+1) $\Rightarrow \log_{10}10a = \log_{10}10$ $+ \log_{10}a = 1 + b$ (B)(2a,2b) $\Rightarrow \log_{10}2a = \log_{10}2 + \log_{10}a = \log_{10}2 + b$ (C) $(\frac{1}{a},1-b)$ $\Rightarrow \log_{10}\frac{1}{a} = \log_{10}a^{-1} = -\log_{10}a = -b$ (D) (a^2,b^2) $\Rightarrow \log_{10}a^2 = 2\log_{10}a = 2b$

70. () 已知 47¹⁰⁰ 是 168 位數,則 47¹⁷ 是多少位數? (A)27 (B)28 (C)29 (D)30

【龍騰自命題,進階卷】

解答 C

依題意得 167 ≤ 100log47 < 168 ⇒ 1.67 ≤ log47 < 1.68

 \therefore 1.67×17 \le 17×log47 < 1.68×17 \Rightarrow 28.39 \le log47¹⁷ < 28.56

∴ log47¹⁷ 首數為 28

故為29位數

解答

解析 $\log(\frac{1}{5})^{10} = 10\log\frac{1}{5} = 10(-\log 5) = -10(1 - \log 2) \approx -6.99 = -7 + 0.01$

故 $(\frac{1}{5})^{10}$ 在小數點後第7位始不出現0

72. () 方程式
$$\log_3 x^2 = 2\log_9 x$$
 之解 $x = (A)0$ (B)1 (C)2 (D)3

【龍騰自命題】

解答 E

解析 原式 \Rightarrow $\log_3 x^2 = \log_{3^2} x^2$ \Rightarrow $2\log_3 x = \log_3 x$ \Rightarrow $\log_3 x = 0$ \Rightarrow x = 1

73. () 函數
$$y = \log_{\frac{1}{3}} x$$
 和 $y = (\frac{1}{3})^x$ 對稱於 (A) $x + y = 0$ (B) $x - y = 0$ (C) x 軸 (D) y 軸

【龍騰自命題】

解答B

 $y=\left(\frac{1}{3}\right)^x$ x=y 如圖 $y=\log_{\frac{1}{3}}x$,故對稱於 x=y ,即 x-y=0

74. ()
$$f(x) = 5^x$$
 圖形恆過哪一個定點? (A)(1,0) (B)(0,1) (C)(5,1) (D)(1,1)

【龍騰自命題】

解答

解析 $f(x) = 5^x$: $f(0) = 5^0 = 1$: 恆過點(0,1)

【龍騰自命題】

解答(C

解析 $y = (\frac{1}{2})^x$ \Rightarrow $\frac{x \mid -2 \mid -1 \mid 0 \mid 1 \mid 2}{y \mid 4 \mid 2 \mid 1 \mid \frac{1}{2} \mid \frac{1}{4}}$ \Rightarrow $y = (\frac{1}{2})^x$ \Rightarrow $x \mapsto x$

76. () 設
$$a > 0$$
,則 $y = a^x$ 的圖形恆在 (A) x 軸上方 (B) x 軸下方 (C) y 軸左方 (D) y 軸右方 【龍騰自命題】

解答 A

知 $y = a^x$ 的圖形恆在 x 軸上方

【龍騰自命題】

解答 E

解析 $\log_b \sqrt[3]{25} = \log_b 5^{\frac{2}{3}} = \frac{2}{3} \log_b 5 = \frac{2}{3}$ $\Rightarrow \log_b 5 = 1$ $\Rightarrow b = 5$

【龍騰自命題,進階卷】

解答I

解析 $\log_{2\sqrt{2}} x = -\frac{4}{3}$ \Rightarrow $x = (2\sqrt{2})^{-\frac{4}{3}} = (2^{\frac{3}{2}})^{-\frac{4}{3}} = 2^{-2} = \frac{1}{4}$

【龍騰自命題,進階卷】

解答

D

$$f(x) = -\log_2(-x) \quad \Rightarrow \quad -f(x) = \log_2(-x)$$

80. ()
$$\log x = 5.678$$
,則真數 x 的整數部分有 (A)4 位數 (B)5 位數 (C)6 位數 (D)7 位數 【龍騰自命題】

解答

C

 $\int \int \log x = 5.678 = 5 + 0.678$

首數為 5 \therefore x 的整數部分有 5+1=6 位數

81. ()已知
$$\log 2 \approx 0.3010$$
,若 $2^x = 100$,則 x 之值最接近下列何者? (A)6.64 (B)6.82 (C)6.41

(D)6.24

【龍騰自命題】

$$2^x = 100 \implies \log 2^x = \log 100 \implies x \log 2 = \log 10^2 \implies x \times 0.3010 \approx 2$$

$$\implies x \approx 6.64$$

)已知 $\log 7 \approx 0.8451$,試求使 $(\frac{1}{7})^n < 10^{-10}$ 的最小整數 n = (A)11 (B)12 (C)13 (D)10 **82.** (

【龍騰自命題】

解答B

解析
$$\therefore$$
 $(\frac{1}{7})^n < 10^{-10} \Rightarrow \log(\frac{1}{7})^n < \log 10^{-10}$
 $\Rightarrow (-n)\log 7 < -10 \Rightarrow n \times \log 7 > 10$
 $\Rightarrow n > \frac{10}{\log 7} \approx \frac{10}{0.8451} = 11.8329$
 \therefore 最小整數 $n \ge 12$

83. () 解方程式 $4^{x+1} - 2^{x+2} + 1 = 0$ 得 x 為 (A)0 (B)2 (C)1 (D) -1

【龍騰自命題】

解析
$$2^{2x+2} - 2^{x+2} + 1 = 0 \implies 2^2 \times (2^x)^2 - 2^2 \times 2^x + 1 = 0 \implies (2 \times 2^x - 1)^2 = 0$$

 $\therefore 2^x = \frac{1}{2} \implies x = -1$

)若 $\log_3 12 = a$,則 $\log_9 36 = (A) \frac{a+2}{a+1}$ (B) $\frac{a+1}{2}$ (C) $\frac{a+2}{a-1}$ (D) $\frac{2a-1}{2}$ **84.** (

【龍騰自命題】

解答 B

 $\log_{9}36 = \log_{3^{2}}(3 \times 12) = \log_{3^{2}}3 + \log_{3^{2}}12 = \frac{1}{2}\log_{3}3 + \frac{1}{2}\log_{3}12 = \frac{1}{2} + \frac{1}{2}a = \frac{a+1}{2}$

)方程式 $2^{2x}-12\times 2^x+32=0$ 的解 x=(A)2 或 3 (B)4 或 8 (C)2 或 4 (D)4 或 5 **85.** (

【龍騰自命題,進階卷】

$$\Leftrightarrow 2^x = y$$
,則 $y^2 - 12y + 32 = 0 \Rightarrow (y - 4)(y - 8) = 0 \Rightarrow y = 4 或 8$
當 $y = 4$ 時, $2^x = 4 \Rightarrow x = 2$
當 $y = 8$ 時, $2^x = 8 \Rightarrow x = 3$
故 $x = 2$ 或 3

)下列選項哪一個數值最大? (A) $\log_8 7^3$ (B) $\log_2 3 + \log_4 9$ (C) $0.19 \times \log_2 3^{10}$ 86. ($\log_{10} \sqrt{8.9}$ $\log_{100} 2$

【110 數(A)歷屆試題】

解答

(A) $\log_{2^3} 7^3 = \log_2 7$ 解析

(B)
$$\log_2 3 + \log_4 9 = \log_2 3 + \frac{2}{2} \log_2 3 = 2 \log_2 3 = \log_2 3^2$$

(C)
$$0.19 \times \log_2 3^{10} = 0.19 \times 10 \times \log_2 3 = 1.9 \log_2 3 = \log_2 3^{1.9}$$

(D)
$$\frac{\log_{10}\sqrt{8.9}}{\log_{100}2} = \frac{\log_{10^2}\sqrt{8.9}^2}{\log_{100}2} = \frac{\log_{100}8.9}{\log_{100}2} = \log_28.9$$

又底數 2 > 1 ,則 $y = \log_2 x$ 為號增函數月 $3^2, 8.9, 3^{1.9}, 7$,最大者是 3^2

) 設 a > 0,m、n 為正整數且 m、n 互質,若 $\sqrt{a} \times \sqrt[3]{a} = \sqrt[n]{a^m}$,試求 n + m = (A)11 (B)15 **87.** ((C)23 (D)27

【龍騰白命題, 淮階卷】

解析
$$\sqrt{a} \times \sqrt[3]{a} \times \sqrt[12]{a} = \sqrt[n]{a^m}$$
 \Rightarrow $a^{\frac{1}{2}} \times a^{\frac{1}{3}} \times a^{\frac{1}{12}} = a^{\frac{m}{n}}$ \Rightarrow $a^{\frac{1}{2} + \frac{1}{3} + \frac{1}{12}} = a^{\frac{m}{n}}$ \Rightarrow $a^{\frac{1}{12} + \frac{1}{3} + \frac{1}{12}} = a^{\frac{m}{n}}$ \Rightarrow $n = 12$, $m = 11$
 \therefore $n + m = 12 + 11 = 23$

88. ()根據報導,全球人口數在 2022 年底已經達到 80 億,為了因應人口成長對環境帶來的衝 擊,某城市預估在年份t(西元紀年)的人口概數為 $y(t) = \frac{600000}{1 + 2 \times 2.7^{-0.01(t-2022)}}$,其中 $t \ge 2022$ 。 以下敘述何者正確? (A)該城市在 2100 年人口概數將大於 60 萬 (B)該城市在 2022 年人口概數為20萬 (C)該城市在2070年人口概數小於2060年人口概數 (D)該城市在 2080年人口概數大於 2090年人口概數

【112 數(B)歷屆試題】

解答

В

(A)
$$y(2100) = \frac{600000}{1 + 2 \times 2.7^{-0.01 \times (2100 - 2022)}} = \frac{600000}{1 + 2 \times 2.7^{-0.78}} = \frac{600000}{1 + 2 \times \frac{1}{2.7^{0.78}}}$$

$$\therefore \frac{1}{2.7^{0.78}} > 0 \qquad \therefore 1 + 2 \times \frac{1}{2.7^{0.78}} > 1$$

(B)
$$y(2022) = \frac{600000}{1 + 2 \times 2.7^{-0.01 \times (2022 - 2022)}} = \frac{600000}{1 + 2 \times 2.7^{0}} = \frac{600000}{1 + 2} = 200000$$

·. 下確

(C)
$$y(2070) = \frac{600000}{1 + 2 \times \frac{1}{2.7^{0.48}}}, y(2060) = \frac{600000}{1 + 2 \times \frac{1}{2.7^{0.38}}}$$

$$\therefore \quad \frac{600000}{較小} > \frac{600000}{較大}$$

即 y(2070) > y(2060)

:. 不正確

(D)同(C)方法

得 y(2080) < y(2090)

: 不正確

89. ()若 $\log a \approx -2.0282$,則 $\log a$ 之首數為 (A)1 (B)0 (C)-2 (D)-3

【課本自我評量】

$$\log a \approx -2.0282 = -2 - 0.0282 = -2 + (-0.0282 + 1) - 1 = -3 + 0.9718$$

又 $0 \le 0.9718 < 1$
所以 $\log a$ 的首數為 -3

)已知 $\log 7 \approx 0.8451$, $\log 2 \approx 0.3010$,則 $\log \frac{\sqrt[3]{7}}{\sqrt{2}}$ 的值為 (A)0.1312 (B)0.1324 (C)0.1342

【龍騰自命題】

解答

解析
$$\log \frac{\sqrt[3]{7}}{\sqrt{2}} = \frac{1}{3}\log 7 - \frac{1}{2}\log 2 \approx \frac{1}{3} \times 0.8451 - \frac{1}{2} \times 0.3010 = 0.1312$$

91. ()已知 $\log 2 \approx 0.301$, $\log 3 \approx 0.4771$,則滿足 $(\frac{3}{4})^n < \frac{1}{10}$ 的最小自然數 n 值為 (A)8 (B)9 (C)10 (D)11

【龍騰自命題】

解答 E

| 解析 |
$$\log(\frac{3}{4})^n < \log\frac{1}{10} \Rightarrow n(\log 3 - 2\log 2) < -1 \Rightarrow n > \frac{1}{2\log 2 - \log 3} \approx 8.0064$$

$$\therefore \quad$$
 最小自然數 $n = 9$

92. ()已知 $\log 74.2 \approx 1.8704$,若 $\log x \approx -3 + 0.8704$,則 x 最接近下列何值? (A)0.008704 (B)0.00742 (C)0.000742 (D)0.08704

【龍騰自命題】

解答B

log74.2 ≈ 1.8704 ⇒ log7.42 ≈ 0.8704 log $x \approx -3 + 0.8704 \approx \log 10^{-3} + \log 7.42 = \log 7.42 \times 10^{-3} = \log 0.0072$ tx = 0.00742

93. () 設 $\log_{10}2 = a$, $\log_{10}3 = b$,已知 $\log_{8x} = -\frac{2}{3}$, $\log_{y}27 = \frac{3}{2}$,則以 $a \cdot b$ 表示 $\log_{10}\frac{x}{y} = (A)\frac{a+b}{2}$ (B) $-\frac{a+b}{2}$ (C)2(a+b) (D)-2(a+b)

【龍騰自命題】

解答 D

解析 : $\log_8 x = -\frac{2}{3}$, $\log_y 27 = \frac{3}{2}$: $x = 8^{-\frac{2}{3}} = \frac{1}{4}$, $y^{\frac{3}{2}} = 27 = 3^3$ $\Rightarrow x = \frac{1}{4}$, y = 9 $\log_{10} \frac{x}{y} = \log_{10} \frac{1}{36} = -2\log_{10} 6 = -2(\log_{10} 2 + \log_{10} 3) = -2(a+b)$

94. ()已知 $a = \sqrt[4]{5}$, $b = \sqrt[4]{4}$, $c = \sqrt[6]{2}$,則此三數之大小為 (A) b > c > a (B) b > a > c (C) c > b > a (D) c > a > b

【super 講義-綜合評量】

解答A

解析 $a = \sqrt[15]{5} = 5^{\frac{1}{15}} = (5^2)^{\frac{1}{30}}$ $b = \sqrt[10]{4} = 4^{\frac{1}{10}} = (4^3)^{\frac{1}{30}}$ $c = \sqrt[6]{2} = 2^{\frac{1}{6}} = (2^5)^{\frac{1}{30}}$ $X = 4^3 > 2^5 > 5^2 > 1$ 為遞增函數 b > c > a

95. () 解方程式 $\log_{10}(x^2+x+18)=1+\log_{10}(x+1)$ 得兩根為 $\alpha \cdot \beta$,則下列何者正確? (A) $\alpha-\beta=10$ (B) $2\alpha+\beta=-10$ (C) $\alpha+\beta=10$ (D) $\alpha^2+\beta^2=65$

【super 講義-綜合評量】

解答 D

解析 原式
$$\Rightarrow \log_{10}(x^2 + x + 18) = \log_{10}[10(x+1)]$$

 $\Rightarrow x^2 + x + 18 = 10(x+1)$
 $\Rightarrow x^2 - 9x + 8 = 0$

$$\Rightarrow (x-1)(x-8) = 0$$

⇒
$$x=1$$
或 8 (代入使真數均大於 0)

$$\therefore$$
 $\alpha = 1$, $\beta = 8$, $\text{th} \alpha^2 + \beta^2 = 65$

96. () 方程式
$$x^{1+\log_2 x} = (2x)^3$$
之解 x 為何? (A) $x = 8$ 或 $x = \frac{1}{2}$ (B) $x = -8$ (C) $x = -\frac{1}{2}$ (D) $x = 8$

【super 講義-綜合評量】

解答 A

原式 ⇒
$$\log_2(x^{1+\log_2 x}) = \log_2(2x)^3$$

⇒ $(1+\log_2 x)\log_2 x = 3\log_2(2x)$
⇒ $(\log_2 x)^2 + \log_2 x = 3(1+\log_2 x)$
⇒ $(\log_2 x)^2 - 2(\log_2 x) - 3 = 0$
⇒ $(\log_2 x - 3)(\log_2 x + 1) = 0$
⇒ $\log_2 x = 3$ 或 $\log_2 x = -1$
∴ $x = 2^3 = 8$ 或 $x = 2^{-1} = \frac{1}{2}$

【108 數(A)歷屆試題】

解答

A細菌每3小時成長 $\frac{600}{500} = \frac{6}{5}$ 倍 解析

$$\therefore$$
 A細菌 9 小時後成長 $\left(\frac{6}{5}\right)^3 = \frac{216}{125}$ 倍

故 A 細菌數量為 $500 \times \frac{216}{125} = 864$ 個

98. () 已知
$$a \cdot b$$
 為實數,若 $\sqrt{32} = 2^a$ 且 $\frac{1}{\sqrt{8}} = 2^b$,則 $a + b =$ (A) -2 (B) -1 (C) 1 (D) 2

【106 數(A)歷屆試題】

解答

99. () $\frac{3^{\frac{1}{3}} \times 9^{\frac{1}{6}} \times 27^{\frac{1}{9}} \times 81^{5}}{243^{4}}$ 之值為何? (A)1 (B)3 (C)9 (D)243

【105 數(A)歷屆試題】

解答B

 $\frac{3^{\frac{1}{3}} \times 9^{\frac{1}{6}} \times 27^{\frac{1}{9}} \times 81^{5}}{243^{4}} = \frac{3^{\frac{1}{3}} \times \left(3^{2}\right)^{\frac{1}{6}} \times \left(3^{3}\right)^{\frac{1}{9}} \times \left(3^{4}\right)^{5}}{\left(3^{5}\right)^{4}} = \frac{3^{\frac{1}{3}} \times 3^{\frac{1}{3}} \times 3^{\frac{1}{3}} \times 3^{\frac{1}{3}} \times 3^{\frac{1}{3}}}{3^{20}} = 3^{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 3^{1} = 3$

100. () 下列何者與 $y = \frac{1}{2^{-x+1}}$ 的圖形最相近? (A)

【103 數(A)歷屆試題】

解答

 $y = \frac{1}{2^{-x+1}} = \frac{1}{2} \times \frac{1}{2^{-x}} = \frac{1}{2} \times (2^{-x})^{-1} = \frac{1}{2} \times 2^{x}$

描點繪圖

