UNCLASSIFIED

AD NUMBER AD214199 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: RESTRICTED LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;

Administrative/Operational Use; 06 JAN 1944. Other requests shall be referred to Watertown Arsenal Laboratories, Watertown Arsenal, MA 21720. Document partially illegible.

AUTHORITY

E.O. 10502 dtd 5 Nov 1953; USAMMRC ltr, 9 Oct 1984

UNCLASSIFIED A DIA GIO

Armed Services Technical Information Agency

ARLINGTON HALL STATION ARLINGTON 12 VIRGINIA

FOR
MICRO-CARD
CONTROL ONLY

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER, AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIED

FRICTED

MEMORANDUM REPORT

NO. WAL 710/576

Effect of Directional Properties on

7 Rolled Homogeneous Armor

Return to
ASTIA
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

THE COP AND THE PARTY OF THE COPY OF THE PARTY OF THE PAR

BY

E. L. REED Research Metallurgist

DATE 6 January 1944

WATERTOWN ARSENAL

BEST

AVAILABLE

COPY

Natertown Arsenal Laboratory

Memorandum Report WAL 710/570

Final Report on Problem B-2.8

6 January 1944

Effect of Directional Properties on

Rolled Homogeneous Armor

- 1. As requested by The Proving Center, Aberdeen (APG 470.5/7436 Wth 470.5/6587(r)) and Tank Automotive Center (TAC 451.25/2-241 Wth 470.5/5734(r)), metallurgical examination has been completed on samples of eighteen (18) 12" thick "straight-away" rolled plates manufactured by the Great Lakes Steel Corporation. The plates were heat treated similarly to approximately the same Brinell hardness range and all plates were from heat number 9-13945. Ballistic tests are reported in Armor Test Report AD-555. The plates were tested as a part of a program at The Proving Center to compare the snock resistance of cross rolled armor with that of "straight-away" rolled armor. This articular phase of the test covered only the testing of 'straight-away" rolled armor. When cracking occurred in the ballistic test, these cracks always followed the direction of rolling. This fact indicates that this type of armor has less resistance to shock in that direction.
- 2. Metallurgical tests indicated that the direction of rolling was incorrectly designated by the manufacturer on plates numbers 5AX, 3B, 1D, 4C, 4, 5, 1, 2B, 3D. With the exception of plates numbers 2C, 2B, 3B, and 1D, the plates were of satisfactory steel quality. Apparently these four plates which had a "D" fracture were rolled from the segregated portion of the ingot. All plates with the exception of plate number 1 mad a fibrous fracture, indicating that the balance of the plates were satisfactorily heat treated. This characteristic was associated with a microstructure of essentially tempered martensite with traces of intermediate temperature transformation products.

Hardness surveys indicated the center of twelve plates to have a Brinell hardness of 281-289, which was some 20 points higher than that reported by the manufacturer on the surface of the plates and which in some cases was some 12-16 points higher than that obtained near the surface at this arsenal. Apparently, in several instances, the manufacturer did not remove all the decarburization on the surface of the plates previous to the hardness determinations. The relatively higher hardness at the center of some of the plates was correlated with an increase in the yield strength as compared with these values determined hallway between the center and surface

UNCLASSIFIED

of the plate. There see no surred variation in the bergness or the tensile properties from plate to plate.

Generally speaking the directional properties as determined by the differences between percentage elongation and reduction of area in the longitudinal and transverse directions were more pronounced in the plates of the poorest steel quality.

- 3. Metallurgical examination consisted of the following tests:
 - a. Fracture Tests for Steel quality.
 - o. briness marchess Surveys.
- c. Tensile Tests taken in the longitudinal and transverse directions of samples from the center and halfway between the center and the surface.
 - d. Microscopic Examination
 - 4. The results of the above tests in detail are presented below:
 - a. Fracture Tests for Steel Quality.

Samples 8" x 3" in size out from the longitudinal and transverse sections were notched transversely to the long dimension to a depth of approximately 3/4" on both sides and broken slowly under a forge press. The results of these tests are given in Table 1. Apparently plates 2C, 2B, 3B and 1D were rolled from segregated portions of the ingot since these plates showed evidence of excessive laminations in the fracture. The balance of the plates were relatively free from these defects. Plate No. 1 showed evidence of crystallinity in the fracture while the balance of the plates were all fibrous, as broken under the slow rate of load application by the press.

b. brineti Hardness

The results of the Brinell hardness tests are given in Table II. In general, the Brinell hardness values reported by the manufacturer were lower than those obtained at this arsenal. Plate No. 1, which was improperly quenched as revealed by its partially crystalline fracture, had the lowest hardness of the series. The balance of the plates were fairly uniform in hardness, that is, from plate to plate and also along the cross section of each plate.

c. Tensile Tests

The results of the tensile tests are shown in Table III. In general, the directional properties of the "straight-away" rolled material were reflected by the physical properties obtained in the longitudinal and transverse directions. This was particularly true in the case of the

poor quality plates.

Ins relative higher hardness reported at the center of some of the plates as compared to that hear the surface was correlated in some cases of the management of the yield strength values. Otherwise, no particular variation was detected in the physical properties made at the center and at halfway between the center and surface of the plates.

Fracture Tests and Tensile Tests show that the direction of rolling was incorrectly indicated by the manufacturer on plates numbers 5AX, 3B, 1D, 40, 4, 5, 1, 2B, 3D.

d. Microscopic Examination

Figures 1-3 inclusive illustrate the average amount of non-metallic inclusions present in the plates. Several bands of aluminum oxide were present in plate XA. The balance of the plates contained fine elongated non-metallics associated in many cases with zirconium nitride.

Figures 4-6 inclusive injustrate the typical microstructure of the samples. With the exception of plate numbers I and ID and plates exhibited a tempered martensitic structure, consisting of sorbite and some traces of territe. The microstructure of plate No. I consisted of considerable amounts of ferrite and sorbite while plate No. ID showed evidence of intermediate temperature transformation products.

Note: Photomicrographic work done by M. You'a.

5. Metallurgical examination indicated that, in general, the plates were satisfactorily next treated but in some cases were rolled from the segregated portions of the heat which resulted in inferior steel quality.

E. L. REED

Research Metaliurgist

APPHOVED:

N. A. MATTHEAS
Major, ord. Dept.

TABLE I

Place No.	to Rolling Direction	n	Fract to K	ure Perpe	ndicular rection
3	C		C		
AA	C		С		
1 C	В	(4	C	, '	
6	В		В	t	
5▲	D		D		
2C	C		D		
5	C		D		
6 A	В.		C		
4C	c		C		
4	В		C		
5AX	C		С		
6C	В		Б		
1	В		B	Crystallin center of	ity at Tracture.
28	D		D		
3D	В		В		
2	D		D		
3B	D D		D		
10	C		D		

Beinell Hardness

	Reported		Reported by Watertown Arsenal Orose Sectional Values						
Plate	Manufa		Near Pacs	AY.	Center	ATA	Hear Back	ATA	
No.	Tage	Back			277-293	285	277-285	251	
3	262	262	269-277	273					
AI	5,5	262	277-277	277	262-262	262	265-217	273	
10	262	262	277-277	277	262-269	266	269-277	273	
6	262	269	265-265	285	285-293	289	277-255	251	
54	262	269	269-277	273	285-285	285	265-255	285	
20	269	269	277-277	277	285-285	255	277-285	251	
5	262	262	262-277	270	269-285	277	269-277	273	
64	262	262	277-277	277	269-277	273	277-277	277	
40	262	2 62	269-269	269	262-269	266	262-269	266	
14	262	262	277-277	277	277-285	251	269-277	273	
5AX	262	262	269-277	273	285-285	285	255-255	285	
60	262	262	269-277	273	277-285	281	269-285	277	
1	262	262	255-262	259	269-277	273	255-262	259	
233	269	262	269-269	269	277-265	251	269-285	277	
30	262	262	262-269	266	277-285	281	262-269	266	
2	262	262	269-269	269	285-265	255	277-277	277	
333	262	252			277-265	387	269-285	277	
ם	262	262			277-285	281	269-277	273	

TABLE III

TENSILE TESTS

Test Bar . 357" Diameter

late	Location of Test Specimen	Direction	Yield Strength Lbs/sq in	Tensile Strength Lbe/sq in	g Elong.	Red Area	Cross Sect	Average ion of Brine Center	Herdness Hear Back
3	Midwall*	Longitudinal	114,0001	134,5001	17.91	64.11			
3	Midwalk	fransverse	112,000	134,600	15.4	50.0			281
3	Center	Longitudinal	117.000	136,500	18.3	61.5	273	285	€01
3	Center	Transverse	117.500	137.300	15.7	45.3			
I	Midwall	Longitudinal	109,000	130.400	18.6	63.7			
IA	Midwall	Transverse	108,000	131,800	15.4	50.2			
T	Center	Longitudinal	105.500	124.300	19.3	66.7	277	262	273
X	Center	Transverse	105.500	125.000	17.5	54.5			
10	Nidwall	Longitudinal	115,000	153.100	18.6	63.7			
10	Midwall	Transverse	111,500	132,100	16.1	51.8			
10	Center	Longitudinal	109,000	131,300	18.6	65.0	277	266	273
10	Center	Transverse	112,500	133.300	17.1	53.1			
6	Midwall	Longitudinal	116,500						
6	Kidwall	Transverse	114,000	136,900	18.3	62.7			
6	Center	Longitudinal	114,000	136,800	16.1	50.0	285	289	281
6	Center	Transverse	116,500	135.800	16.4	51.9			
54	Midwall	Longitudinal	106,500			63.4			
54	Midwall	Transverse	114,000	135,100	19.0	49.4			
54	Center	Longitudinal	115,000			61.8	273	285	285
54	Center	Transverse		138,500	18.6				
20	Midwall		109,000	137.300	14.3	43.1			
50	Midwall	Longitudinal	113,500	134,800	19.0	64.9			
50	Center	Transverse	112,000	134,100	15.7	48.6	277	285	281
50	Center	Longitudinal	117.000	131,000	,18.3	60.8			
		Transverse	115.300	134,500	14.3	47.6			
5	Midwall	Longitudinal	96,800	131,300	19.7	64.2			
5	Midwall	Transverse	101,000	130,600	17:5	51.2	270	277	273
5	Center	Longitudinal	85,000	132,300	19.0	63.2			
5	Center	Transverse	116,000	133,800	14.7	44.9			
64	Hidwall	Longitudinal	101,600	134,600	17.9	6¥.7			
64	Midwall	Transverse			15.7	51.6	277	273	277
64	Center	Longitudinal	116,000	135.300	18.6	63.4	277	C13	
64	Center	Transverse	112,000	132,500	15.0	47.6			
40	Midwall	Longitudinal	109,000	132,800	18.3	63.4			
4C	Hidwall	Transverse	105.500	130.300	17.9	52.1	269	266	266 .
40	Center	Longitudinal	105,000	125,800	19.3	66.2	209		
WC .	Center	Transverse	106,000	125.500	17.1	53.1			
14	Hidwall	Longitudinal	110,000	132,500	18.6	64.2			
4	Midwall	Transverse	102,000		16.8	49.0			217
4	Center	Longitudinal				63.7	277	281	273
u	Center	Transverse	116,500			48.8			
5AX	Midwall	Longitudinal							
SAX	Midvall	Transverse	109,800			51.4			

64	Midwall	Transverse			15.7	51.0	277	273	277
ŠA.	Center	Longitudinal	116,000	135.300	18.6	63.4			NAME OF TAXABLE PARTY.
	Center	Transverse	112,000	132,500	15.0	47.6			
c	Hidwall	Longitudinal	109.000	132,800	18.3	63.4			
4C	Hidwall	Transverse	105.500	130.300	17-9	52.1	269	266	266
IC .	Center	Longitudinal	105,000	125,800	19.3	66.2	209		
40	Center	Transverse	106,000	125.500	17.1	53.1			
4	Hidwall	Longitudinal	110,000	132,500	18.6	64.2			
	Midwall	Transverse	102,000	133,100	16.8	49.0		281	273
4	Center	Longitudinal	116,000	135.300	18.6	63.7	277	501	
4	Center	Transverse	116,500	135,500	15.7	48.8			
AX	Nidwall .	Longitudinal	105,300	133.900	17.5	63.4			
AX.	Kidwall	fransverse	109,800	131,900	17.5	51.4			AME
AX	Center	Longitudinal	112,500	136,500	17.1	61.4	273	285	285
AX	Center	Transverse	110,500	136.300	14.7	47.7			
6c	Midwall	Longitudinal	112,000	131.700	21.4	63.9			
6c	Midwall	Transverse	112,000	132,700	15.7	49.8			pa 40
6c	Center	Longitudinal	116,500	135,500	18.3	62.5	273	281	277
6c	Center	Transverse	118,000	135,300	14.7	46.4			
1	: Kidwall	Longitudinal	95.500	124,100	17.9	59.2			
1	Hidwa?1	Transverse	99.500	125.300	16.4	49.4			000
1	Center	Longitudinal	101,800	129,000	17.5	57.1	259	273	259
1	Center	Transverse	105,800	132,000	14.3	46.1			
23	Midwall	Longitudinal	105.700	131,100	19.3	65.8			
23	Midwall	Transverse	108,000	130,900	15.7	46.7			
23	Center	Longitudinal	111,300	131.300	18.3	61.2	269	281	211
28	Center	Transverse	114,300	133,300	15.0	43.0			
3D	Hidwall								
30		Longitudinal	107.500	132,900	19.0	63.5			
30	Kidwall Centan	Transverse	99,000	130,800	18.6	50.4	266	281	266
30	Center	Longitudinal	114,000	136,300	18.6	62.2		/-	
5		Transverse	111.500	135,800	15.0	47.4	t		
5	Midwall	Longitudinal	112,300	134.500	19.3	63.7			
5	Midwall	Transverse	112,000	133.300	16.4	51.2	269	285	277
5	Center	Longitudinal		136,300	: Parent	62.7			
	Center	Transverse	113.300	135,500		46.8			
38	Midwall	Longitudinal	A STANDARD STANDARD			64.5			
38	Midwall	Transverse	104,000			49.8	269	281	277
338	Center	Longitudinal							
330	Center	Transverse	111,000	132,300	15.3	48.4			
10	Midwall	Longitudinal	105.500	233,600	19.0	64.1			
10	Midwall	Transverse	111,000	133,000	17.5	50.6	277	281	273
10	Center	Longitudinal	115,300	136,500	18.6	61.7			
10	Center	Transverse	115,000	135.300	15.0	47.8			

^{*}NOTE: Nidwall indicates a position halfway between the center and surface of the plate.

**Note: Nidwall indicates a position halfway between the center and surface of the plate.

. The second is the second of the second of

No. 3
Fine elongated nonmetallics associated with zirconium nitrides.

No. XA
Pronounced segregation of aluminum oxide.

No. 1C Fairly uniform distribution of rounded nonmetallic inclusions.

No. 6
Typical group of elongated non-metallics.

No. 5A

Typical group of elongated non-metallics.

Typical continuous series of elongated nonmetallic inclusions.

Photomicrographs were taken on unetched longitudinal sections at a magnification of 100 diameters.

Truical Assastablia Inclusions Present in "Straight Fac Bolles" Great Lakes Armor Flates

Na. 5 Typical segregation of elongated nonmetallics.

No. 40 Typical fine elongated nonmetallics associated with small inclusions.

No. 4 Typical elongated nonmetallics.

No. bA

No. 5AX

No. 60

Typical elongated nonmetallics asso- Typical scattered nonmetallics. ciated with fine inclusions.

Photomicrographs were taken on unetched longitudinal sections at a magnification of 100 diameters.

Typical Bonnetellite Inclusions Present in *Straight-Away Bolled* Great Lab. Armor Flates

No. 1
Typical elongated nonmetallics.

No. 3D
Typical fine elongated nonmetallics.

No. 2 No. 2 Typical streak of elongated non-metallics.

No. 3B
Typical streak of elongated nonmetallics associated with fine
inclusions.

No. 1D
Typical segregation of fine elongated nonmetallics associated with
zirconium nitride.

Photomicrographs were taken on unetched longitudinal sections at a magnification of 100 diameters.

Typical Microstructure of "Straight Avay Mulled" Great Lakes Armor Plates

No. 3
Fairly uniform spheroidized sorbite and trace of ferrite.

No. 10 Sorbite.

No. 5A Sorbite and trace of ferrite.

No. XA
Fine sorbite with partially dissolved carbide lamallae. Grain
boundaries evident.

No. 6 Sorbite, trace of ferrite.

No. 2C Sorbite and trace of ferrite.

Photomicrographs were taken on picral etched longitudinal sections at a magnification of 100 diameters.

Typical Microstructure of "Straight Amay Enlled" Oreat Lakes Armor Plates

No. 5 Sorbite and trace of ferrite.

No. 6A Sorbite and trace of ferrite.

No. 4C Sorbite and trace of ferrite.

No. 4 Sorbite and trace of ferrite.

No. AAX Sorbite and trace of ferrite.

No. 60 Sorbite and trace of ferrite.

Photomicrographs were taken on picral etched longitudinal sections at a magnification of 100 diameters.

Typical Microst ructure of "Straight away Rolled" Great lakes Armor Plates

Perrite and sorbite.

Fairly uniform sorbite.

Swidence of intermediate temperature transformation products.

No. 3B

No. 1D

Fairly uniform sorbite.

Intermediate temperature transformation products.

WTN.639-6024

Photomicrographs X1000 - Picral Etch

UNCLASSIFIED A MARCHANIST OF THE STATE OF T

Armed Services Technical Information Agency

ARLINGTON HALL STATION ARLINGTON 12 VIRGINIA

FOR MICRO-CARD

CONTROL ONLY

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA AME USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEPINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THERESY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

UNCLASSIFIE