Unsupervised Classification (Clustering)

Introduction to MAchine Learning

Mathilde Mougeot

ENSIIE

2019

1 / 73

At this stage

- Outline
 - Observations (X_1,\ldots,X_n) in \mathbb{R}^d , d may be large
 - Target (Y_1, \ldots, Y_n) labels (classification) or continuous (regression)
 - Goal : Predictive modeling : understand the link between $X \mapsto Y$, reduce d.
- Methods
 - Classification models (Parametric/ Non Parametric) Linear Quadratic Discriminant Analysis, Logistic, KNN CART, Bagging, Random Forest
 - Regression models (Parametric/ Non Parametric)... Linear models, Linear models with penalization: LASSO, Ridge, KNN, CaRt, Bagging, Random Forest...
 - 3 Clustering (unsupervised Classification)

Outline

- Introduction/motivations
- ② Distance-based clustering Notations
- Model-based clustering
- 4 Graph-based clustering
- 6 Hierarchical clustering
- 6 Centroid-based clustering

Motivations

5 / 73

Unsupervised data (1) - Clustering

Clustering can be difficult!

Unsupervised data (2) - Anomaly/Mode detection

Unsupervised data (3) - Novelty detection

Distance-based clustering

_

Notations

Clustering input: distance matrix

- Data matrix
 - Individual index $i \in \{1, ..., n\}$
 - Feature index $p \in \{1, \ldots, d\}$
 - Measurements x_{ip}
- Distance matrix
 - p-th feature distance between individuals i and $j = d_p(x_i, x_j)$
 - Distance between individuals i and j :

$$D(x_i, x_j) = \sum_{p=1}^d w_p d_p(x_i, x_j)$$

where w_p p-th feature importance, $w_p > 0$

Examples of distances

- Quantitative features
 - Squared distance or absolute difference
 - 1-correlation

Examples of distances

- Quantitative features
 - Squared distance or absolute difference
 - 1-correlation
- Discrete ordinal variables
 - Equidistance encoding

Examples of distances

- Quantitative features
 - Squared distance or absolute difference
 - 1-correlation
- Discrete ordinal variables
 - Equidistance encoding
- Categorical variables
 - Zero-one distance
- What if missing values?

Cluster dispersion functions

- Encoder function $C: \{1, \ldots, n\} \mapsto \{1, \ldots, K\}$ (point to cluster)
- Within-cluster dispersion

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i)=k} D(x_i, x_j)$$

Cluster dispersion functions

- Encoder function $C: \{1, \ldots, n\} \mapsto \{1, \ldots, K\}$ (point to cluster)
- Within-cluster dispersion

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} D(x_i, x_j)$$

• Between-cluster dispersion

$$B(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(i)\neq k} D(x_i, x_j)$$

• Total dispersion : T = W(C) + B(C)

Clustering method #1 - Brute force

- Combinatorial assignment
- Number of possibilities for assigning n points to K clusters

$$S(n,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} \begin{pmatrix} K \\ k \end{pmatrix} k^{n}$$

Example : $S(19, 4) \simeq 10^{10}$

• Question : Limited search vs. approximate solution

Parametric approach

15 / 73

Density estimation (Course #1)

Reminder on gaussian mixture models

- Random vector X on \mathbb{R}^d with K components
- Gaussian densities f_k , $k=1,\ldots,K$,
- Component parameters (μ_k, Σ_k) ,
- Mixture parameter $p = (p_1, \dots, p_K)$ in the simplex
- Distribution of X = Mixture density

$$f_X(x) = \sum_{k=1}^K p_k f_k(x)$$
 , $\forall x \in \mathbb{R}^d$

• For estimation, use EM algorithm...

The dimension d

- The dimension d
- The number of clusters K

- The dimension d
- The number of clusters K
- The number of samples *n*

- The dimension d
- The number of clusters K
- The number of samples n
- The smallest mixture coefficient "min $_j p_j$ "

- The dimension d
- The number of clusters K
- The number of samples n
- The smallest mixture coefficient "min_j p_j"
- How separated the clusters are...

High dimension

19 / 73

Distance between observations

_	X^1	X^2	 X^{j}	 X^d
1	X11		 X _{1j}	X _{1d}
2				
$\rightarrow i$	Xi1		 Xij	Xid
n	X _{n1}		 Xnj	X_{nd}

- For two observations (x_i, x_k) , $x_i \in \mathbb{R}^d$, $x_k \in \mathbb{R}^d$
- \rightarrow Euclidian distance ℓ_2 between two observations

$$||x_i - x_k||_{\ell_2} = \sqrt{\sum_{j=1}^d (x_i(j) - x_k(j))^2}$$

Dimension curse

- Evaluation of the distance between two observations in dimension d
- Illustrations : n = 100 observations uniformly distributed, 1, 2, 3, ...

• Indicator : $\frac{\max_{i \neq j} ||x_i - x_k||_{\ell_2}}{\min_{i \neq j} ||x_i - x_k||_{\ell_2}}$

Dimension curse

Ratio study $\frac{\max_{i \neq j}||x_i - x_j||_{\ell_2}}{\min_{i \neq j}||x_i - x_j||_{\ell_2}}$ function of the dimension d Illustration : n = 100 observations uniformly distributed (K = 100 repetitions)

- \rightarrow The value of the ratio tends to ~ 1 when d increases.
- → The euclidian distance loses its discrimination ability in high dimension
- \rightarrow Serious problem especially for segmentation tasks...

Data segmentation (d=2)

Data segmentation (d=20)

data are embedded in a high dimensional space d = 20 = 2 + 18Observations distance matrix

Dimension reduction

Find good representations of the data initially coded in large dimensions

- Features: a small number of discriminant features based on data expertise or automatic extraction.
- Compress Sensing: sparse representation (S) of x based on a linear combinaison of p vectors.
- Manifold estimation: x is represented in a low-dimensional space using the Laplacian eigenvectors on the variety, estimated from a graph of neighborhoods using the examples
- ightarrow Mathematical tools at the interface of harmonic analysis, geometry, probability and statistics.

Model based Clustering

26 / 73

Model-based clustering

Set of observations $\{x_i, x_i \in \mathbb{R}^d, 1 \leq i \leq N\}$

Assumptions: Mixture of K gaussian : $f_X(x) = \sum_{k=1}^K \pi_k f_k(x)$ μ_k (means), Σ_k (covariances), π_k (mixing coefficients) $1 \le k \le K$

Find?:
$$\mu_k$$
, Σ_k , π_k

using the EM Algorithm:

- Initialization
- **E Step**: Expectation Step
- **M Step:** Maximization Step
- 4 LogLikelihood computation

EM for gaussian mixture (1/4)

• Initialization :

 μ_k (means), Σ_k (covariances), π_k (mixing coefficients) Compute Log Likelihood

$$\ln p(X|\mu, \Sigma, \pi) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)\}$$

- ② E Step:
- M Step:
- Evaluate the log likelihood:

EM for gaussian mixture (2/4)

- **1 Initialization** : μ_k , Σ_k , π_k , Compute Log Likelihood
- E Step: Evaluate the responsibilities using current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

- M Step:
- 4 Evaluate the log likelihood :

EM for gaussian mixture (3/4)

- **1 Initialization** : μ_k , Σ_k , π_k , Compute Log Likelihood
- **2 E** Step : $\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$
- M Step: Re-estimate the parameters using the current responsibilities:
 - $\mu_k^{\text{new}} = \frac{1}{N_L} \sum_{n=1}^{N} \gamma(z_{nk}) x_n$
 - $\sum_{k}^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (x_n \mu_k^{new}) (x_n \mu_k^{new})^T$
 - $\pi_k^{new} = \frac{N_k}{N}$ where $N_k = \sum_{n=1}^N \gamma(z_{nk})$
- Evaluate the log likelihood:

EM for gaussian mixture (4/4)

- **1 Initialization** : μ_k , Σ_k , π_k , Compute Log Likelihood
- **2 E** Step: $\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$
- **3 M Step**: Re-estimate the parameters using the current responsibilities:
 - $\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) x_n$
 - $\sum_{k}^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (x_n \mu_k^{new}) (x_n \mu_k^{new})^T$
 - $\pi_k^{new} = \frac{N_k}{N}$ where $N_k = \sum_{n=1}^N \gamma(z_{nk})$
- 4 Evaluate the log likelihood:

$$\ln p(X|\mu, \Sigma, \pi) = \sum_{n=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k)\}$$

REPEAT 2,3,4 UNTIL CONVERGENCE

31 / 73

Model-based clustering

- The mixture density assumption (gaussian) should be valid
- How to chose the number of clusters? (value of K) penalization of the likelihood

Illustration

Image segmentation based on model-based clustering

Mathilde Mougeot (ENSIIE) MAL 33 / 73

Graph-based clustering

Basics on graphs (1)

- Undirected graph G = (V, E) with vertex set $V = \{v_1, \dots, v_n\}$
- Weighted adjacency matrix $W = (w_{ij})_{ij}$ with positive coefficients
- If $w_{ij} = 0$ then vertices v_i and v_j are not connected
- Undirected graph means W symmetric

Basics on graphs (2)

Degree of vertex of index i

$$\deg_i = \sum_{j=1}^n w_{ij}$$

- Degree matrix : $D = \operatorname{diag}(\mathsf{deg}_1, \dots, \mathsf{deg}_n)$
- Let A and B two subsets of $\{1,\ldots,n\}$

The Mincut distance is defined by :

$$W(A,B) = \sum_{i \in A, i \in B} w_{ij}$$

• Measuring the cluster size with $A \subset \{1, \ldots, n\}$:

$$|A| = \text{cardinality of } A$$

$$\text{vol}(A) = \sum_{i \in A} \deg_i$$

Graph cut formulation

- Want : edges between groups to have low weights and edges within group to have high weights
- MinCut criterion :

$$\mathsf{MinCut}(A_1,\ldots,A_K) = rac{1}{2} \sum_{i=1}^K W(A_i,\overline{A}_i)$$

where
$$\overline{A}_i = V - A_i$$

• Drawback : Often leads to a cluster such that $|A_1| = 1$ if K = 2.

Alternatives to MinCut

• Other criteria:

$$\begin{aligned} \mathsf{RatioCut}(A_1, \dots, A_K) &= \frac{1}{2} \sum_{i=1}^K \frac{W(A_i, \overline{A}_i)}{|A_i|} \\ \mathsf{NCut}(A_1, \dots, A_K) &= \frac{1}{2} \sum_{i=1}^K \frac{W(A_i, \overline{A}_i)}{\mathsf{vol}(A_i)} \end{aligned}$$

- Idea : Guarantee that clusters are large enough
- Drawback : NP-hard problems

Idea of spectral clustering

- Relaxations of RatioCut and Ncut minimization
- ightarrow Eigenvectors of the Graph Laplacian operator approximate the solution of RatioCut

Spectral clustering

Full connected graph with *n* nodes.

Weight between two nodes (Z_i, Z_j) :

$$w_{i,j} = e^{\frac{-||Z_i - Z_j||_2^2}{2\mu^2}}$$

 μ heat parameter

Normalized Graph Laplacian:

$$L = I - D^{-1/2}WD^{-1/2}$$

$$L \in \mathbb{R}^{N \times N}$$
,

W adjacency matrix, $D_{i,i} = \sum_{j} w_{i,j}$.

Spectral clustering

Full connected graph with *n* nodes.

Weight between two nodes (Z_i, Z_j) :

$$w_{i,j} = e^{rac{-||Z_i - Z_j||_2^2}{2\mu^2}},$$
 μ heat parameter

Normalized Graph Laplacian:

$$L = I - D^{-1/2}WD^{-1/2}$$

 $L \in \mathbb{R}^{N \times N}$, W adjacency matrix, $D_{i,i} = \sum_{i} w_{i,j}$.

Ng et al. Algorithm (2002):

Input: Fix k nb . clusters

- ① Compute the first k eigenvectors $u_1, \ldots u_k$ of L corresponding to the "k" smallest eigenvalues,
- ② let $U \in \mathbb{R}^{n \times k}$ be the matrix of column vectors u_1, \dots, u_k .
- **3** Form the matrix $T \in \mathbb{R}^{n \times k}$ $t_{i,j} = u_{i,j} / (\sqrt{\sum_k u_{ik}^2})$. Let $y_i \in R^k$ i^{th} row of T.
- **4** Cluster $\{y_i\}$, $1 \le i \le n$ with the k-means into clusters $C_1, ..., C_k$

Output : Clusters A_1, \ldots, A_k with $A_i = \{y_i \in C_i\}$

Graph Laplacian (1)

Definition - Unnormalized graph Laplacian matrix

$$L = D - W$$

ullet Property 1 - For any vector $f \in \mathbb{R}^n$

$$f^T L f = \frac{1}{2} \sum_{i,j} w_{ij} (f_i - f_j)^2$$

- Property 2 L symmetric, positive
- Property 3 Smallest eigenvalue of L is 0
- Property 4 Relation between number of connected components and the spectrum of L

Clustering method #4b - Unnormalized Spectral Clustering Algorithm

Input: number K of clusters, Similarity matrix S

Preprocessing:

Build a similarity graph with adjacency matrix W Compute the unnormalized Laplacian L

Solve eigenvalue problem: compute the first K eigenvectors of L

Clustering in feature space : Let $U \in \mathbb{R}^{n \times K}$ be the matrix containing the vectors u_1, \ldots, u_K as columns

- For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^K$ be the vector corresponding to the i-th row of U
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^K with the K-means algorithm into clusters encoded by a partition A_1,\ldots,A_K

42 / 73

Building a similarity graph

In practice:

Input : Similarities $s(x_i, x_j)$ or distances $D(x_i, x_j)$, $\forall i, j$

- Following options are often applied on the similarity matrix, and appeared to be very useful (introduction of thresholding or non-linearities)
- ightarrow Option 1 ϵ -neighborhood graph
- → Option 2- k-nearest neighbor graph
- → Option 3 Fully connected graph

$$s(x_i, x_j) = \exp(-\|x_i - x_j\|^2/(2\sigma^2))$$

Hierarchical clustering

Dendrogram

Clustering method #2a - Bottom-up heuristic

Input: number K of clusters, distance matrix $D(x_i, x_i)$, cluster distance Δ

Initial step : find the pair (x_i, x_j) the minimal element in the distance matrix and form cluster $A_1 = \{i, j\}$, the remaining x_k 's form clusters with one element A_2, \ldots, A_{n-1}

Agglomeration step : Consider A_1, \ldots, A_{n-1} clusters and find the pair (k^*, ℓ^*) such that

$$(k^*, I^*) = \operatorname*{arg\,min}_{k \neq I} \Delta(A_k, A_l)$$

and merge these clusters into $A = A_{k^*} \cup A_{l^*}$.

Stopping criterion: Iterate until the target number of clusters is reached.

Linkage distance

- $A, B \subset \{1, ..., n\}$
- Single linkage

$$\Delta(A, B) = \min_{i \in A, j \in B} \{D(x_i, x_j)\}$$

Complete linkage

$$\Delta(A, B) = \max_{i \in A, i \in B} \{D(x_i, x_j)\}$$

Centroid linkage

$$\Delta(A,B)=D(\overline{x}_A,\overline{x}_B)$$

Average linkage

$$\Delta(A,B) = \frac{1}{|A| \cdot |B|} \sum_{i \in A} \sum_{i \in B} D(x_i, x_j)$$

Ward linkage

$$\Delta(A,B) = \frac{|A| + |B|}{|A| \cdot |B|} D(\overline{x}_A, \overline{x}_B)$$

Hierachical Clustering. Impact of Linkage. Illustration

MAL

Hierachical Clustering. Impact of Scaling. Illustration

Hierachical Clustering. Impact of Scaling. Illustration

MAL

50 / 73

Hierachical Clustering. R instructions.

Clustering method #2b -Top-down heuristic

Parameters: Threshold t

Initial step : find the pair (x_i, x_j) having the maximal element in the distance matrix denoted d_{ij} .

matrix denoted d_M

Division step: if $d_M > t$ consider each of them as a center and affect

remaining points to the closest center

Iteration: Iterate until $d_M < t$ within each cluster.

52 / 73

What about theory?

Pessimistic result (Kleinberg, 2003)

There is no clustering function satisfying scale invariance, richness and consistency.

• Optimistic result (von Luxburg, Ben-David, 2005)

Some stability for clustering can be guaranteed.

Centroid-based clustering

The celebrated *K*-means (1)

- Use for : Quantitative features
- Squared Euclidean distance
- Barycenter cluster k with n_k elements

$$\bar{x}_k = n_k^{-1} \sum_{C(i)=k} x_i$$

• Note that : for any subset $I \subset \{1, \ldots, n\}$ of individuals

$$\bar{x}_I = \arg\min_{m} \sum_{i \in I} \|x_i - m\|^2$$

The celebrated *K*-means (2)

Optimization criterion

$$W(C) = \sum_{k=1}^{K} \sum_{C(i)=k} ||x_i - \bar{x}_k||^2$$

Solution

$$C^* = \operatorname*{arg\,min}_{C} W(C) = \operatorname*{arg\,min}_{C,m_1,...,m_K} \sum_{k=1}^K \sum_{C(i)=k} \|x_i - m_k\|^2$$

Clustering method #3a - K-means algorithm

Parameter: encoder range K

Initialization: initial encoder $C^{(0)}$, and centers $m_k^{(0)}$

Step 1: Fix encoder *C*, compute the centers

$$m_k = \frac{1}{n_k} \sum_{C(i)=k} x_i$$

Step 2 : Fix the centers m_1, \ldots, m_K , assign with new encoder

$$C(i) = \operatorname*{arg\,min}_{1 \leq k \leq K} \|x_i - m_k\|^2$$

Iteration : repeat Steps 1 & 2 until *C* does not change anymore.

K-means algorithm - How it works

A variation : K-medoids

- Use for : any type of features
- Arbitrary distance
- ullet Centers $\{m_1,\ldots,m_K\}$ belong to the data set $\{x_1,\ldots,x_n\}$

Clustering method #3b - K-medoids algorithm

Parameter : encoder range K

Initialization: initial encoder $C^{(0)}$, and centers $m_k^{(0)}$

Step 1 : Fix encoder C, compute the centers $m_k = x_{i_k^*}$ with

$$i_k^* = \underset{C(i)=k}{\operatorname{arg\,min}} \sum_{C(i)=k} D(x_i, x_j)$$

Step 2 : Fix the centers m_1, \ldots, m_K , assign with new encoder

$$C(i) = \operatorname*{arg\,min}_{1 \leq k \leq K} D(x_i, m_k)$$

Iteration : repeat Steps 1 & 2 until *C* does not change anymore.

Kmeans Clustering. Illustration

Use of PCA to project the observations, and to represent the clusters.

Kmeans Clustering. R instructions.

```
# tab : dataframe
pca=dudi.pca(tab,scannf=FALSE,nf=2);
K=4;
mycol=rainbow(K); mypch=c(1,3,4,8)
#Scale data
res=kmeans(tab,centers=4);
plot(pca$li,col=mycol[res$cluster],pch=mypch[res$cluster])
```


Calibrating the number of clusters

63 / 73

Calibrating the number of clusters (1)

• Calinski & Harabasz (1974)

maximize
$$F_{CH}(K) = \frac{B(C_K)/(K-1)}{W(C_K)/(n-K)}$$
, $\forall K > 1$.

• Hartigan (1975)

take smallest
$$K \ge 1$$
 such that $F_H(K) \le 10$,

where

$$F_H(K) = \left(\frac{W(C_K)}{W(C_{K+1})} - 1\right)/(n-K-1)$$
.

Calibrating the number of clusters (2)

Krzanowski & Lai (1985)

maximize
$$F_{KL}(K) = \left| \frac{\Delta(K)}{\Delta(K+1)} \right|$$

where $\Delta(K) = (K-1)^{2/d}W(C_{K-1}) - K^{2/d}W(C_K)$ and d is the dimension of input data.

65 / 73

Illustration. Calibrating the number of clusters

Illustration. Calibrating the number of clusters

Calibrating the number of clusters (3)

• Rousseeuw (1987) - Silhouette statistic

$$F_S(K) = \sum_{i=1}^n \left(\frac{b(i) - a(i)}{\max(a(i), b(i))} \right),$$

where for $i \in C_k$

$$a(i) = \frac{1}{n_k} \sum_{C(i)=k} ||x_j - x_i||_2^2 ,$$

and, if $\ell = \ell(i)$ is the next nearest cluster of the point x_i :

$$b(i) = \frac{1}{n_{\ell}} \sum_{C(i)=\ell} ||x_j - x_i||_2^2.$$

Illustration. Calibrating the number of clusters

Illustration. Calibrating the number of clusters

Calibrating the number of clusters (4)

• Tibshirani, Walther, Hastie (2001) - Gap statistic

Calibrating the number of clusters (4)

• Tibshirani, Walther, Hastie (2001) - Gap statistic

Theoretical analysis

- An information-theoretic formulation
- References on Vector Quantization
- Work of Pollard (1981, 1982), but also Linder (2001)
- Proofs of strong consistency of K-means clustering

K-means clustering vs EM Algorithm

• Distortion measure :

$$J = \sum_{i=1}^{n} \sum_{k=1}^{k} r_{ik} ||x_i - \mu_k||^2$$

 $r_{ik} = 1$ if $k = \arg\min_{j} ||x_i - \mu_j||^2$ (=0 otherwise)

- K-means algorithm :
 - **1** E-Step : r_{nk} computation
 - **2** M-step : μ_k computation

REPEAT 1, 2 UNTIL convergence