Spotify Genre Classifier

By Harsha Malireddy

Problem

- Spotify has about 40-60,000 new songs added to the platform everyday which makes it very difficult for the platform to manually label each and every track that is uploaded.
- A solution to this is to use a machine learning genre classification model that can make predictions of the genre for each new track that is added.
- By adding this tag based genre classification feature across all platforms (web, computer, mobile) that use Spotify, Spotify could potentially convert free users of the platform into paying premium users as user satisfaction could increase due to the added feature.
- Free users might convert to premium users as they find Spotify to be the platform that offers the best and largest number of features to customize their listening experience.

Data

- 11 numerical: popularity, acousticness, danceability, duration_ms, energy, instrumentalness, liveness, loudness, speechiness, tempo, valence
- Genre: There are 26 genres of music

-1.828

0.3460

- Artist_name: Name of artist, Track_name: Name of track, Track_id: ID of track
- Key: ['D' 'C' 'F' 'B' 'E' 'G' 'G#' 'A#' 'C#' 'A' 'F#' 'D#']. The key or pitch the track is in
- Mode: [Major, Minor]. Modality of track, the type of scale from which its melodic content is derived.
- Time signature: ['4/4' '3/4' '5/4' '1/4' '0/4']. An estimated overall time signature of a track. The time signature (meter) is a notational convention to specify how many beats are in each bar (or measure).
- Popularity: Scale: [0, 100]. The popularity of the track with users on Spotify. 0 to 100 is an increase in popularity.
- Acousticness: Scale: [0.0, 1.0]. A confidence measure from 0.0 to 1.0 of whether the track is acoustic, 1.0 represents high confidence the track is acoustic.
- Danceability: Scale: [0.0, 1.0]. Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable.
- **Duration ms**: The duration of the track in milliseconds.

Major 0.0525

Energy: Scale: [0.0, 1.0]. It represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy.

166.969 4/4

- Instrumentalness: Scale: [0.0, 1.0]. Predicts whether a track contains no vocals. "Ooh" and "aah" sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly "vocal". The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content. Values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1.0.
- Liveliness: [0.0, 1.0]. Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live. A value above 0.8 provides strong likelihood that the track is live.
- Loudness: Scale: [-60, 0]. The overall loudness of a track in decibels (dB).
- Speechiness: Scale: [0.0, 1.0]. Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks.
- <u>Tempo</u>: The overall estimated tempo of a track in beats per minute (BPM).
- Valence: Scale: [0.0, 1.0]. Describes the musical positiveness conveyed by the track. High valence tracks sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed,

0.8140

Genre:

Comedy

	genre	artist_name	track_name	track_id		popularity	acousticness	danceability	eability duration_ms		instrumentalness	key
0	Movie	Henri Salvador	C'est beau de faire un Show	0BRj06ga9RKCKjfDqeFgWV		0	0.389		99373 0		0.000000	C#
liveness loudness		mode	speechiness		temp	o tim	ne_sign	re valen	се			

Soundtrack	9646
Indie	9543
Jazz	9441
Pop	9386
Electronic	9377
Children's Music	9353
Folk	9299
нір-нор	9295
Rock	9272
Alternative	9263
Classical	9256
Rap	9232
World	9096
Soul	9089
Blues	9023
R&B	8992
Anime	8936
Reggaeton	8927
Ska	8874
Reggae	8771
Dance	8701
Country	8664
Opera	8280
Movie	7806
Children's Music	5403
A Capella	119
Name: genre, dtype:	int64

9681

genre	object
rtist_name	object
rack_name	object
rack_id	object
opularity	int64
cousticness	float64
lanceability	float64
luration_ms	int64
energy	float64
nstrumentalness	float64
cey	object
iveness	float64
oudness	float64
node	object
speechiness	float64
empo	float64
ime_signature	object
valence	float64
ltype: object	

Data Wrangling

- No null values nor duplicate rows.
- I deleted the rows containing the 'movie' genre from the data set as I felt the label of 'movie' wasn't a very useful or proper genre tag for which the
 model could classify on.
- I combined the genre labels of "Children's Music" and "Children's Music" since the apostrophes in the data file for each of the labels was different, leading them to seen as different labels. I gave one specific apostrophe character for all of the 'Children's Music' labels to solve this issue.
- I converted 3 categorical columns (mode, key, time_signature) to numerical values by assigning integer values to each of the unique categorical values and then merged the numerical conversions into the dataset dataframe as additional columns.
- Next, I eliminated any rows that classified the same song into more than one genre since I'm treating this as a multi-classification problem and not
 as a multi-label classification problem. This elimination left only one row for each unique song that classifies it into one genre.
 - To do this, first I changed the artist name and track name columns to uppercase strings so no two same strings with different capitalizations would be treated as different tracks.
 - Then, I used the pandas 'drop_duplicates()' function with 'track_id' to find and drop rows with the same track id.
 - Lastly, I used 'drop_duplicates()' again but with the subset ['artist_name', 'track_name]. This would identify identical songs that have the different 'track_id' values for reasons such as appearing in different albums, among others. These songs could be potentially classified into different genres and thus this final filtering ensures each unique track has one row and genre associated with it.
 - The result of all the filtering created a final data set of 152,864 tracks from the original 232,725 tracks.

```
Genre:
['R&B' 'A Capella' 'Alternative' 'Country' 'Dance' 'Electronic' 'Anime'
'Folk' 'Blues' 'Opera' 'Hip-Hop' 'Children's Music' 'Rap' 'Indie'
'Classical' 'Pop' 'Reggae' 'Reggaeton' 'Jazz' 'Rock' 'Ska' 'Comedy'
'Soul' 'Soundtrack' 'World']

Key:
['D' 'C' 'F' 'B' 'E' 'G' 'G#' 'A#' 'C#' 'A' 'F#' 'D#']

Time Signature:
['4/4' '3/4' '5/4' '1/4' '0/4']

Mode:
['Minor' 'Major']
```

key_num	mode_num	time_signature_num
2	0	4
0	0	3
5	0	4

EDA

- I plotted a seaborn correlation heatmap to understand the relationship between the 11 numerical attributes of a track.
- I found that energy and loudness had a strong correlation.

• I created a table to show the summary statistics of each of the attributes of a track.

	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	liveness	loudness	speechiness	tempo	valence
count	224919.000000	224919.000000	224919.000000	2.249190e+05	224919.000000	224919.000000	224919.000000	224919.000000	224919.000000	224919.000000	224919.000000
mean	42.132354	0.357150	0.556557	2.359802e+05	0.577908	0.149095	0.214534	-9.452503	0.121159	117.795684	0.455164
std	17.487794	0.351677	0.185452	1.142341e+05	0.261571	0.303435	0.198291	5.976156	0.185723	30.909935	0.259384
min	0.000000	0.000000	0.056900	1.538700e+04	0.000020	0.000000	0.009670	-52.457000	0.022200	30.379000	0.000000
25%	30.000000	0.034700	0.439000	1.844780e+05	0.399000	0.000000	0.097100	-11.530000	0.036800	92.992000	0.239000
50%	44.000000	0.216000	0.573000	2.213870e+05	0.614000	0.000047	0.128000	-7.643000	0.050400	115.970000	0.445000
75%	55.000000	0.697000	0.694000	2.665470e+05	0.791000	0.037700	0.263000	-5.450000	0.106000	139.479000	0.660000
max	100.000000	0.996000	0.989000	5.552917e+06	0.999000	0.999000	1.000000	3.744000	0.967000	242.903000	1.000000

EDA

 I created a table to show the summary statistics grouped by genre of each attribute of a track.

	popularity acousticness							 tempo		valence							
	count	mean	std	min	25%	50%	75%	max	count	mean	75%	max	count	mean	std	min	25%
genre																	
A Capella	119.0	9.302521	7.868145	0.0	4.0	8.0	13.0	44.0	119.0	0.829941	129.68300	181.714	119.0	0.328724	0.255005	0.0380	0.1:
Alternative	9263.0	50.213430	7.661040	0.0	45.0	49.0	55.0	83.0	9263.0	0.162313	143.96550	213.788	9263.0	0.449590	0.216426	0.0321	0.21
Anime	8936.0	24.258729	9.648703	0.0		23.0	30.0	65.0	8936.0	0.286843	149.99125	220.276	8936.0	0.441682	0.249619	0.0000	0.2:
Blues	9023.0	34.742879	9.755328	0.0	28.0	33.0	40.0	80.0	9023.0	0.327840	140.63550	242.903	9023.0	0.579425	0.224677	0.0315	0.4(
Children's Music	14756.0	36.202426	25.536529	0.0	2.0	49.0	56.0	86.0	14756.0	0.320112	140.09250	220.119	14756.0	0.532251	0.250929	0.0000	0.3:
Classical	9256.0	29.282195	14.133541	0.0	25.0	32.0	38.0	69.0	9256.0	0.868843	127.18125	212.923	9256.0	0.214463	0.200275	0.0000	0.0!
Comedy	9681.0	21.342630	8.428764	0.0	15.0	20.0	26.0	61.0	9681.0	0.793098	115.12800	207.157	9681.0	0.412764	0.207258	0.0237	0.2!
Country	8664.0	46.100416	9.745975	0.0	39.0	45.0	52.0	82.0	8664.0	0.270172	144.48075	217.538	8664.0	0.535160	0.219819	0.0395	0.3!
Dance	8701.0	57.275256	11.208370	0.0	51.0	57.0	64.0	100.0	8701.0	0.152888	134.03000	218.081	8701.0	0.517754	0.226822	0.0340	0.34
Electronic	9377.0	38.056095	9.741981	0.0	31.0	37.0	44.0	96.0	9377.0	0.119839	144.99000	220.169	9377.0	0.388129	0.236938	0.0205	0.1!
Folk	9299.0	49.940209	8.218284	0.0	44.0	49.0	55.0	84.0	9299.0	0.463201	136.30850	236.799	9299.0	0.440237	0.241416	0.0277	0.2:
Нір-Нор	9295.0	58.423131	8.269761	14.0	52.0	57.0	63.0	98.0	9295.0	0.176172	141.98650	214.126	9295.0	0.473381	0.222325	0.0336	0.3(
Indie	9543.0	54.701561	7.355754	0.0	49.0	54.0	59.0	97.0	9543.0	0.331214	137.93400	219.331	9543.0	0.428665	0.221606	0.0277	0.2!
Jazz	9441.0	40.824383	9.588840	0.0	35.0	40.0	46.0	79.0	9441.0	0.499606	127.87100	239.848	9441.0	0.508961	0.251218	0.0266	0.3(
Opera	8280.0	13.335628	8.460264	0.0		11.0	17.0	63.0	8280.0	0.945202	120.66900	236.735	8280.0	0.189864	0.172322	0.0207	9.0!
Pop	9386.0	66.590667	7.248797	3.0	62.0	66.0	71.0	100.0	9386.0	0.224819	140.01575	213.990	9386.0	0.481371	0.225029	0.0277	0.3(
R&B	8992.0	52.308719	9.246359	0.0	46.0	51.0	58.0	92.0	8992.0	0.288216	134.17175	216.636	8992.0	0.450346	0.215387	0.0321	0.21
Rap	9232.0	60.533795	8.177226	14.0	55.0	59.0	65.0	99.0	9232.0	0.168080	142.00050	216.115	9232.0	0.455918	0.213913	0.0331	0.2!
Reggae	8771.0	35.589328	10.779762	0.0	28.0	34.0	42.0	78.0	8771.0	0.185783	142.31400	218.184	8771.0	0.679665	0.198141	0.0331	0.5!
Reggaeton	8927.0	37.742915	13.544414	0.0	28.0	35.0	46.0	98.0	8927.0	0.218923	146.03850	234.923	8927.0	0.659439	0.202052	0.0381	0.5;
Rock	9272.0	59.619392	7.474083	0.0	54.0	59.0	64.0	95.0	9272.0	0.196429	142.00875	219.331	9272.0	0.517113	0.231137	0.0277	0.3
Ska	8874.0	28.612351	10.757129	5.0	21.0	27.0	35.0	74.0	8874.0	0.099728	155.57725	221.578	8874.0	0.653472	0.223245	0.0331	0.4
Soul	9089.0	47.027836	9.235035	0.0	41.0	46.0	53.0	85.0	9089.0	0.360679	132.44500	216.636	9089.0	0.480562	0.245857	0.0287	0.21
Soundtrack	9646.0	33.954800	8.639645	0.0	28.0	33.0	39.0	72.0	9646.0	0.717349	126.14200	216.429	9646.0	0.118483	0.139913	0.0000	0.0:
World	9096.0	35.524077	9.399816	0.0	29.0	34.0	41.0	76.0	9096.0	0.393341	141.55675	212.923	9096.0	0.295657	0.230914	0.0000	0.1:

• I displayed the summary statistics for each of the 9 important numerical features of a track for each genre: 'acousticness', 'danceability', 'energy', 'instrumentalness', 'liveness', 'loudness', 'speechiness', 'tempo', and 'valence.'

- I plotted box plots grouped genre for each of the 9 important numerical features of a track for each genre: 'acousticness', 'danceability', 'energy', 'instrumentalness', 'liveness', 'loudness', 'speechiness', 'tempo', and 'valence.'
- he data showed many outliers when grouped by each genre as seen in the box plots.

Modeling

- I set the features that would be used to train the model to be the columns: ['acousticness', 'danceability', 'energy', 'instrumentalness', 'key_num', 'liveness', 'loudness', 'mode_num', 'speechiness', 'tempo', 'time_signature_num', 'valence'].
- I removed outliers by finding the upper and lower bounds by (mean + cutoff (3 * std)) and (mean cutoff (3 * std)) respectively.
- I used the StandardScaler() method to fit and transform my training set and used the training set scaler on the testing set to avoid data leakage.
- I trained and tested on 4 ML models: logistic regression (multinomial), Random Forest Classifier, Gradient Boosting Classifier, and Linear Support Vector Classifier.
- I took the following 5 steps to implement each of the 4 ML models:
 - I used GridSearchCV for hyperparameter tuning to pick the best model version
 - 2. I fit the model and madee predictions for the test set.
 - 3. Printed the classification report displaying the accuracy, precision, recall, and F1-scores for each unique class variable ('genre').
 - 4. Calculated the accuracy, precision, recall, F1-score, and log loss scores, and ROC-AUC (area under the curve) for the model.
 - 5. Lastly, displayed the confusion matrix to see the distribution of predictions being made across all genres.

Classification Report

	precision	recall	f1-score	support	
A Capella	0.60	0.11	0.18	28	
Alternative	0.26	0.20	0.23	2240	
Anime	0.39	0.31	0.34	2177	
Blues	0.28	0.31	0.29	2000	
Children's Music	0.50	0.42	0.45	1569	
Classical	0.56	0.55	0.55	1777	
Comedy	0.78	0.35	0.48	210	
Country	0.31	0.43	0.36	1802	
Dance	0.25	0.27	0.25	1974	
Electronic	0.45	0.61	0.52	2245	
Folk	0.27	0.33	0.30	1968	
Hip-Hop	0.40	0.57	0.47	1829	
Indie	0.11	0.01	0.01	820	
Jazz	0.36	0.39	0.38	1937	
Opera	0.68	0.74	0.71	1836	
Pop	0.32	0.01	0.02	596	
R&B	0.21	0.14	0.16	1308	
Rap	1.00	0.00	0.01	359	
Reggae	0.34	0.40	0.37	2108	
Reggaeton	0.44	0.57	0.50	2095	
Rock	0.55	0.01	0.02	543	
Ska	0.45	0.51	0.48	1924	
Soul	0.13	0.03	0.05	1075	
Soundtrack	0.57	0.75	0.64	1954	
World	0.47	0.38	0.42	1842	
accuracy			0.40	38216	
macro avq	0.43	0.33	0.33	38216	
weighted avg	0.39	0.40	0.38	38216	
gncca avg	0.55	3.10	0.50	-3210	

Confusion Matrix

Models Comparison

- The accuracy, precision, recall, and F1 scores are compared for all 4 models.
- The delta between the best and worst model in accuracy: 1%, precision: 9%, recall: 9%, f1: 13%

Models Comparison

 The lowest Log Loss score was 2.0 for the Gradient Boosting Classifier model but the Random Forest Classifier model was close with a negligible 0.06 delta at 2.06. The ROC curves and the area under the curve (AUC) is the largest at 0.89 for both the gradient boosting and random forest classifiers.

Genre Prediction & Similar Tracks Recommender Functions

- I created a function that classifies song inputs from users into their predicted genre label and the next 2 most likely genres the song can be classified into in case Spotify decides to classify songs into more than one genre based on likelihood.
- To accomplish this I built methods called 'get_token(),' 'search_for_track(),' 'get_features(),' and 'predict_genres()' to use the API and get the required audio features in cases where tracks inputted by a user don't exist in the dataset.
- Then, I used the random forest model to predict on the track and get the genre it predicts is the classification.
- Lastly, I use the 'predict_proba()' method to get the likelihood
 of classification into the different genres and display the top
 2 likeliest ones after the actual predicted genre label.
- I created a function that recommends the top K (user inputted integer K) songs similar to the one the user inputs that the user might want to listen to.
- I asked for the inputs of artist name and track name as well as the k number of songs they want recommended to them.
- To accomplish this I mimicked the KNN (K-Nearest Neighbor) algorithm by finding the euclidean distance of each of the inputted track's features with every other songs features in the dataset and recommending the top k songs in order of smallest euclidean distance.

```
In [211]: predict_genres()

Please enter track name to find its genre:
sad

Please enter artist name of song to find its genre:
bo burnham

The genre the song can be classified into is: Blues at 13.80% probaility.
The next 2 likeliest genres the song can be classified into are: Jazz at 10.2
0% probability and Children's Music at 9.00% probability.
```

```
In [24]: recommend songs()
         Please enter the number of similar songs you would like to get recommended be
         Please enter track name to find its 10 closest similar songs:
         Please enter artist name of song to find its 10 closest similar songs:
         baekhvun
         Your top 10 song recommendations are:
         1. TRIO FOR HORN, VIOLIN AND PIANO IN EB, OP. 40; I by TOM'S MUSIC BOX
         2. LACRIMOSA DOMINAE by IMMEDIATE
         3. テルーの唄(ゲド戦記より) by YUKA
         4. RIDE TO THE NAZI HIDEOUT by JOHN WILLIAMS
         5. JESUS ON THE MOUNT by MATT BRAUNGER
            INTRODUCTION - LIFE OF BRIAN / SOUNDTRACK VERSION by MONTY PYTHON
            JACQUARD CAUSEWAY by BOARDS OF CANADA
         8. EVERYTHING'LL CHANGE by MICHL
         9. LEON WITH CLAIRE by CAPCOM SOUND TEAM
         10. CAT RESTAURANT by BECKY DONOHUE
```

Takeaways

• The random forest classifier was the best model although the gradient boosting classifier was also very close in performance with a 0.06 lower log loss score but was 7% less in precision than the random forest classifier.

Model	Hyperperameters	Accuracy	Precision	Recall	F1-Score	Log Loss	ROC-AUC
Random Forest Classifier	n_estimators = 500, criterion = gini	0.4	0.43	0.33	0.33	2.06	0.89

Based on the displayed feature importances horizontal bar graph, the three categorical variables seem to not be very
useful in training the model.

- There is a possibility that the tracks have not been accurately labeled as this dataset was compiled by a kaggle user who didn't explain the method by which they were able to label all the tracks.
- 'Garbage in, garbage out' could possibly be an accurate saying to represent the reason for the lack of an accurately created model.
- Further experimentation and testing would be necessary to come to this conclusion of whether the data is intrinsically problematic and needs further feature engineering or the data compilation by the creator of the dataset is the issue.

Further Research

• In the future, I would like to eliminate outliers for each genre grouped by its associated features and see the results of refitting the model with the filtered data. As seen in the EDA step there were many outliers that could potentially have significantly hurt the fit of the random forest classifier.

- Another thing to try would be to try and use different binning of features to see if that could help differentiate the genres more from one another.
- This binning could be done with grouping the categorical variables such as keys (ex. C and C#, etc.) or even certain ranges of numerical features could be taken together to represent certain integer values.
- Trying different binning techniques would allow us to see what leads to more distinct stratification of data between genres.

- The third thing to try would be to compile the dataset myself by accessing the API and getting genres based on artist and album and synthesizing them in a way that would lead to more accurate pre-labeled data to use to train the model.
- I already tried to look at genres based on tracks which don't exist, and I similarly couldn't find genre labels for albums as well.
- Maybe the genre labels for albums are rare in the Spotify database but there seems to be some genre labels for artists. Although using
 artist overall genre labels might seem improper when constructing a dataset, only further testing will determine how accurate it could be.

