Exercici 5

[Exam on DFAs, February 29th, 2016]

Minimum DFA for $\{x \in \{0,1\}^{\cdot} \mid \text{valor}_2(xx) \in \dot{3}\}$

Describe the minimum DFA that recognizes the words xx over $\{0,1\}$ such that the natural number represented by xx in binary notation is a multiple of 3.

Una solució:

Recordem el DFA mínim A_3 que reconeix els múltiples de 3 ($\{w \mid \text{valor}_2(w) \in \dot{3}\}$, exercici 21 del RACSO):

Per a reconéixer el llenguatge L que ens demana l'exercici construirem un DFA A que anirà fent tres simulacions d'execurció del DFA A_3 :

- a) simularà l'execució d'A₃ començant des de l'estat 0,
- b) simularà l'execució d'A₃ començant des de l'estat 1, i
- c) simularà l'execució d'A₃ començant des de l'estat 2.

Construïm A tenint, com a conjunt d'estats, tripletes $< e_0, e_1, e_2 >$, amb $e_0, e_1, e_2 \in \{0, 1, 2\}$. Definim l'estat inicial i les transicions de manera que e_0 és l'estat al qual s'hi arriba en A_3 començant l'execució des de l'estat 0, e_1 és l'estat al qual s'hi arriba en A_3 començant l'execució des de l'estat 1, i e_2 és l'estat al qual s'hi arriba en A_3 començant l'execució des de l'estat 2.

Així doncs, l'estat inicial és <0,1,2>, i les transicions es defineixen, per a qualsevol símbol c, com a

$$\delta_A(,\,c)=<\delta_{A_3}(e_0,\,c),\,\delta_{A_3}(e_1,\,c),\,\delta_{A_3}(e_2,\,c)>.$$

Per tal de reconéixer el llenguatge L, hem de posar com a acceptadors a aquells estats $< e_0, e_1, e_2 >$ tals que $e_{e_0} = 0$, ja que per a qualsevol mot w, i anomenant $< e_0, e_1, e_2 > = \delta_A (< 0, 1, 2 >, w)$, es compleix que

$$\delta_{A_3}(0, ww) = \delta_{A_3}(\delta_{A_3}(0, w), w) = \delta_{A_3}(e_0, w) = e_{e_0}.$$

Aquest és el resultat:

