

MTO 225 - GÜNEŞ VE YER RADYASYONU

GÜNLÜK TOPLAM RADYASYON ve BİLEŞENLERİNİN ANALİZİ "17292 Numaralı Muğla İstasyonu"

AKADEMİSYEN

Prof. Dr. H. Sema Topcu

HAZIRLAYAN BİLGİLERİ

Adı Soyadı

Ebrar Taş 090200152

ITU ID

Kardelen Geçkin 090190810

Şevval Arı 090190121

Şeyma Kerküklü 090200124

GÜZ 2022

ÖZET

Bu çalışma 2022 – 2023 eğitim – öğretim yılı güz döneminde verilen Yer ve Gök Radyasyonu dersi proje ödevine göre tarafımıza ulaştırılan 17292 numaralı Muğla Hava Durumu Gözlem İstasyonu verilerini içermektedir. Çalışmaya göre aşağıdaki soruların cevapları aranacaktır.

- a. Günlük global radyasyonun (W/m2) hesaplayınız ve aylık değişimini çiziniz.
- b. Günlük global radyasyonun atmosfer dışına gelen radyasyona oranı olan açıklık indeksi ($kt=\frac{\mathrm{H}}{H_0}$) değerlerini günlük olarak hesaplayarak aylık dağılımını çiziniz.
- c. Açıklık indeksi değerlerinin frekans analizini yapınız. Atmosfer koşullarını irdeleyiniz ve yorumlayınız.
- d. Aşağıda verilen bağıntıdan yararlanarak günlük difüz radyasyon (D) değerlerini açıklık indeksine bağlı olarak hesaplayınız. Günlük difüz radyasyon dağılımını ve difüz radyasyon oranının $(\frac{D}{C})$ aylık değişimini çizerek yorumlayınız.
- e. Hesaplamalarda kullandığınız parametrelerin maksimum ve aylık ortalama değerlerini hesaplayarak, raporda Tablo halinde belirtiniz.
- f. Proje çalışmasını Şekil ve Tablo numaraları ve açıklamalarını yaparak, bir rapor halinde yazarak, teslim ediniz.

0.1 < kt < 0.8 ise D/H = 0.910 + 1.154 kt - 4.936 kt + 2.848 kt = 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.

kt < 0.1 ise D/H = 0.98

Tarafımıza ulaştırılan istasyon-aya ait saatlik global radyasyon verileri ve tarafımızca gerçekleştirilen hesaplamalar ile grafiklerimizi, aşağıda verilen Online Excel dosyasına ait internet adresinden incelenmek üzere gözlemlenebilir.

Tarafımıza ulaştırılan verilerin ve hesaplamalarımızın yapıldığı belgenin internet adresidir.

Soruları cevaplandırılmasından önce bazı notasyonların bilinmesi gereklidir.

- I. Güneş Sabiti $\equiv I_{SC} = 1367 W/m^{-2}$
- II. Güneşin Deklinasyon Açısı $\equiv \delta = 23.45 \sin \left[\frac{360}{365} (dn 284) \right]$ (derece)
 - Deklinasyon açısı hesaplamalarından biridir. Cooper modeli kullanılmıştır.
 - d_n: gün sayısı (1 Ocakta d_n=0)
 - Figür 1'de Eylül ayı için deklinasyon açıları seçilmiştir.

Declination for Each Day of the Year'												
Date	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
1	- 23.07	-17.28	-7.78	4.36	14.93	22.02	23.20	18.20	8.51	-2.95	-14.26	-21.7
2	-22.99	-17.00	-7.40	4.75	15.24	22.15	23.13	17.94	8.14	-3.33	-14.58	-21.9
3	-22.90	-16.71	-7.02	5.13	15.54	22.29	23.06	17.69	7.78	-3.72	-14.90	-22.0
4	-22.80	-16.41	-6.63	5.51	15.83	22.41	22.98	17.42	7.41	-4.11	-15.22	-22.1
5	-22.70	-16.11	-6.25	5.89	16.12	22.53	22.89	17.16	7.04	-4.50	-15.53	-22.3
6	-22.59	-15.81	-5.86	6.27	16.41	22.64	22.80	16.89	6.67	-4.88	-15.83	-22.4
7	- 22.47	-15.50	-5.47	5.65	16.69	22.74	22.70	16.61	6.30	-5.27	-16.13	-22.5
8	-22.34	-15.18	-5.08	7.03	16.96	22.84	22.59	16.33	5.93	-5.65	-16.43	-22.6
9	-22.21	-14.87	-4.69	7.40	17.24	22.93	22.48	16.05	5.55	-6.03	-16.72	-22.7
10	-22.07	- 14.54	-4.30	7.77	17.50	23.01	22.36	15.76	5.17	-6.41	-17.01	-22.2
11	-21.92	-14.22	-3.90	8.14	17.77	23.09	22.23	15.46	4.80	-6.79	-17.29	-22.9
12	-21.76	-13.89	-3.51	8.51	18.02	23.16	22.10	15.17	4.42	-7.17	-17.57	-23.0
13	- 21.60	-13.55	-3.12	8.87	18.28	23.23	21.96	14.87	4.03	-7.55	-17.84	-23.1
14	-21.43	-13.22	-2.72	9.24	18.52	23.28	21.81	14.56	3.65	-7.92	-18.11	-23.2
15	- 21.25	- 12.87	-2.33	9.60	18.77	23.33	21.66	14.25	3.27	-8.30	-18.37	- 23.
16	- 21.23	- 12.53	-1.93	9.95	19.00	23.38	21.50	13.94	2.88	-8.67	-18.62	- 23.
17	-20.88	-12.18	-1.54	10.31	19.23	23.41	21.34	13.62	2.50	-9.04	-18.87	- 23.
18	- 20.68	-11.83	-1.14	10.66	19.46	23.44	21.17	13.30	2.11	-9.40	-19.12	-23.
19	- 20.48	-11.47	-0.74	11.01	19.68	23.47	20.99	12.98	1.72	-9.77	-19.36	- 23.
20	- 20.43	-11.12	-0.35	11.35	19.00	23.48	20.81	12.66	1.34	-10.13	-19.59	- 23.
21	- 20.05	-10.76	0.05	11.70	20.10	23.49	20.63	12.33	0.95	-10.49	-19.82	-23.
22	- 19.83	-10.39	0.44	12.04	20.31	23.49	20.43	11.99	0.56	- 10.85	- 20.04	-23.
23	- 19.60	- 10.03	0.84	12.37	20.51	23.49	20.23	11.66	0.17	-11.21	-20.25	-23.
24	- 19.37	-9.66	1.23	12.71	20.70	23.47	20.03	11.32	-0.22	-11.56	-20.46	- 23.
25	- 19.13	-9.29	1.63	13.04	20.88	23.46	19.82	10.98	-0.61	-11.91	-20.67	-23.
26	- 18.88	-8.91	2.02	13.36	21.07	23.43	19.60	10.63	-1.00	- 12.25	-20.86	-23.
27	- 18.63	-8.54	2.41	13.68	21.24	23.40	19.38	10.28	-1.39	-12.60	-21.05	-23.
28	- 18.37	-8.16	2.80	14.00	21.41	23.36	19.15	9.93	-1.78	- 12.94	-21.23	-23.
29	-18.11	0.0	3.19	14.32	21.57	23.31	18.92	9.58	-2.17	-13.27	-21.41	-23.
30	- 17.84	0.0	3.58	14.63	21.73	23.26	18.68	9.22	-2.56	-13.61	-21.58	- 23.
31	-17.56	0.0	3.97	0.0	21.87	0.0	18.44	8.87	0.0	-13.94	0.0	-23.

Figür 1 Deklinasyon Tablosu

- III. Enlem $\equiv \varphi = 37.21^{\circ}$
- IV. Güneşin Doğuş Saat Açısı $\equiv \omega_s = \cos^{-1}(-\tan \varphi \times \tan \delta)$ (rad)

- V. Dünya ile Güneş Uzaklığı Düzeltme Faktörü $\equiv E_0 = (\frac{R}{R_0})^2$ (AU)
 - Spencer (1971) modeli ile hesaplanmıştır.
 - Figür 2'de Eylül ayı için seçili olan Düzeltme Faktörü seçilmiştir.
 - R₀: Ortalama Dünya Güneş Uzaklığı
 - R: Aktüel Dünya Güneş Uzaklığı

Eccentricity Correction Factor $E_0 = (r_0/r)^2$ for Each Day of the Year^a

						, , ,						
Date	Jan	Feb	Маг	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec
1	1.0350	1.0306	1.0190	1.0014	0.9845	0.9717	0.9666	0,9700	0.9814	0.9976	1.0155	1.0291
2	1.0351	1.0303	1.0185	1.0008	0.9840	0.9714	0.9666	0.9703	0.9819	0.9982	1.0161	1.0295
3	1.0351	1.0300	1.0180	1.0002	0.9835	0.9712	0.9666	0.9705	0.9823	0.9988	1.0166	1.0298
4	1.0351	1.0297	1.0174	0.9997	0.9830	0.9709	0.9666	0.9708	0.9828	0.9994	1.0171	1.0301
5	1.0351	1.0294	1.0169	0.9991	0.9825	0.9706	0.9666	0.9711	0.9833	0.9999	1.0177	1.0304
6	1.0350	1.0290	1.0164	0.9985	0.9821	0.9703	0.9666	0.9713	0.9838	1.0005	1.0182	1.0307
7	1.0350	1.0287	1.0158	0.9979	0.9816	0.9701	0.9666	0.9716	0.9843	1.0011	1.0187	1.0310
8	1.0350	1.0283	1.0153	0.9973	0.9811	0.9698	0.9666	0.9719	0.9848	1.0017	1.0192	1.0313
9	1.0349	1.0279	1.0147	0.9967	0.9806	0.9696	0.9667	0.9722	0.9854	1.0023	1.0197	1.0316
10	1.0348	1.0276	1.0142	0.9961	0.9802	0.9694	0.9667	0.9726	0.9859	1.0029	1.0202	1.0319
11	1.0347	1.0272	1.0136	0.9956	0.9797	0.9692	0.9668	0.9729	0.9864	1.0035	1.0207	1.0321
12	1.0347	1.0268	1.0131	0.9950	0.9793	0.9690	0.9668	0.9732	0.9869	1.0041	1.0212	1.0324
13	1.0346	1.0264	1.0125	0.9944	0.9788	0.9687	0.9669	0.9736	0.9875	1.0047	1.0217	1.0326
14	1.0344	1.0260	1.0119	0.9938	0.9784	0.9686	0.9670	0.9739	0.9880	1.0053	1.0222	1.0328
15	1.0343	1.0256	1.0114	0.9932	0.9780	0.9684	0.9671	0.9743	0.9885	1.0058	1.0226	1.0330
	1.0343						0.9671	0.9743	0.9885		1.0226	1.0330
16 17	1.0342	1.0251	1.0108	0.9927	0.9775	0.9682	0.9672	0.9750	0.9891	1,0064 1,0070	1.0231	1.0334
18	1.0340	1.0247	1.0097	0.9921	0.9767	0.9679	0.9674	0.9754	0.9890	1.0076	1.0240	1.033
19	1.0337	1.0238	1.0091	0.9910	0.9763	0.9677	0.9675	0.9758	0.9902	1.0078	1.0244	1.033
20	1.0337	1.0234	1.0085	0.9910	0.9759	0.9676	0.9677	0.9762	0.9913	1.0082	1.0244	1.033
21	1.0334	1.0229	1.0079	0.9899	0.9755	0.9675	0.9678	0.9762	0.9913	1.0093	1.0253	1.034
22	1.0332	1.0224	1.0073	0.9893	0.9751	0.9673	0.9680	0.9770	0.9924	1.0099	1.0257	1.034
23	1.0330	1.0220	1.0067	0.9888	0.9748	0.9672	0.9681	0.9774	0.9930	1.0105	1.0261	1.034
24	1.0327	1.0215	1.0062	0.9882	0.9744	0.9671	0.9683	0.9778	0.9935	1.0111	1.0265	1.034
25	1.0325	1.0210	1.0056	0.9877	0.9740	0.9670	0.9685	0.9782	0.9941	1.0116	1.0269	1.034
26	1.0323	1.0205	1.0050	0.9872	0.9737	0.9669	0.9687	0.9787	0.9947	1.0122	1.0273	1.034
27	1.0320	1.0200	1.0044	0.9866	0.9733	0.9669	0.9689	0.9791	0.9953	1.0128	1.0277	1.034
28	1.0318	1.0195	1.0038	0.9861	0.9730	0.9668	0.9691	0.9795	0.9959	1.0133	1.0281	1.034
29	1.0315	0.0	1.0032	0.9856	0.9727	0.9667	0.9693	0.9800	0.9964	1.0139	1.0284	1.034
30	1.0312	0.0	1.0026	0.9851	0.9724	0.9667	0.9695	0.9805	0.9970	1.0144	1.0288	1.0350

Figür 2 Dünya ile güneş uzaklığı düzeltme faktörü E₀

VI. Atmosfer Dışına Gelen Radyasyon $\equiv H_0$

$$H_0 = \frac{24}{\pi} I_{SC} E_0 \left[\left(\frac{\pi}{180} \right) w_s (\sin \delta \sin \varphi) + (\cos \delta \cos \varphi \sin w_s) \right]$$

- VII. Ölçülen Global Radyasyon≡ *H*
- VIII. Difüz Radyasyon $\equiv H_{\beta}$

Saatlik ayrımlarla verilmiş veri toplanarak günlük global veriye dönüştürüldü. Figür 3'te verilerin yeni hali gösterilmiştir.

Gün	Günlük Global Radyasyon H (W / m²)	Gün	Günlük Global Radyasyon H (W / m²)
1	5477,73	16	1839,866
2	5024,16	17	5547,51
3	5231,7555	18	5442,84
4	5052,072	19	5559,14
5	4748,529	20	5229,4295
6	5125,341	21	4888,089
7	5538,206	22	4828,776
8	4556,634	23	4875,296
9	3729,741	24	4102,4825
10	4024,5615	25	3414,568
11	4196,104	26	4738,062
12	4493,832	27	4643,859
13	4123,998	28	4382,184
14	4371,717	29	1707,284
15	2086,422	30	3558,78

Figür 3 Günlük Global Radyasyon

Veriler işlenerek grafik haline getirildi. 30 günlük veri yatayda "günler" ve dikey ekseninde "günlük global radyasyon oranı" olarak Figür 4'te gösterildi.

Figür 4 Günlük Global Radyasyonun Aylık Değişimi

SORU 2 : Günlük global radyasyonun atmosfer dışına gelen radyasyona oranı olan açıklık indeksi ($kt=rac{H}{H_0}$) değerlerini günlük olarak hesaplayarak aylık dağılımını çiziniz

H₀'a ulaşmak için öncelikle Figür 1'deki deklinasyon açısını, Figür 2'deki düzeltme faktörünü kullanmak ve w₅ açısını hesaplamamız gerekmektedir.

$$\omega_s = \cos^{-1}(-\tan\varphi \times \tan\delta)$$

Atmosfer Dışına Gelen Radyasyon, formül ile günlük olarak hesaplandı ve sonuç Figür 5'te gösterildi.

$$H_0 = \frac{24}{\pi} I_{SC} E_0 \left[\left(\frac{\pi}{180} \right) w_S(\sin \delta \sin \varphi) + (\cos \delta \cos \varphi \sin w_S) \right]$$

Gün	W_s	H_{o}	(Gün	W_s	H_{o}
1	965.238	9.5654	_	16	921.892	8.7151
2	962.351	9.5112		17	918.998	8.6555
3	959.548	9.4574		18	916.031	8.5949
4	956.596	9.4012		19	913.065	8.5332
5	953.806	9.3478		20	910.177	8.4738
6	950.944	9.2927		21	907.214	8.4116
7	948.087	9.2372		22	904.252	8.3500
8	945.236	9.1816		23	901.291	8.2881
9	942.313	9.1249		24	898.329	8.2252
10	939.395	9.0671		25	895.368	8.1629
11	936.557	9.0107		26	892.406	8.1003
12	933.648	8.9524		27	889.443	8.0375
13	930.666	8.8931		28	886.479	7.9745
14	927.763	8.8342		29	883.513	7.9104
15	924.864	8.7752		30	880.545	7.8469

Figür 5 Saat Açısı ve Atmosfer Dışından Gelen Radyasyon Hesaplaması

Açıklık indexi ($kt=\frac{\mathrm{H}}{\mathrm{H_0}}$), veriler kullanılarak hesaplandı. Veriler Figür 6'da gösterilmiştir.

Gün	Açıklık İndexi	Gül	n	Açıklık İndexi
1	0,5727	1	6	0,2111
2	0,5282	1	7	0,6409
3	0,5532	10	8	0,6333
4	0,5374	1:	9	0,6515
5	0,508	2	0	0,6171
6	0,5515	2	1	0,5811
7	0,5996	2	2	0,5783
8	0,4963	2	3	0,5882
9	0,4087	2	4	0,4988
10	0,4439	2	5	0,4183
11	0,4657	2	6	0,5849
12	0,502	2	7	0,5778
13	0,4637	2	8	0,5495
14	0,4949	2	9	0,2158
15	0,2378	3	0	0,4535

Figür 6 Açıklık Index'inin Hesaplaması

Aylık dağılım Figür 7'de gösterilmiştir.

Figür 7 Açıklık İndex'i Aylık Dağılımı

Açıklık indexine göre yapılan frekans analizi Figür 8'de gösterilmiştir.

Açıklık indeksi	Verilerin sıklığı-frekans	
0		0
0.1		0
0.2		3
0.3		0
0.4		3
0.5		11
0.6		12
0.7		1
0.8		0

Açıklık indexi, atmosferin geçirgenlik oranını belirtir.					
$0 < k_t < 0.3$	= kapalı atmosfer				
0.3 < k _t < 0.7	= parçalı bulutlu atmosfer				
0.7 ≤ k _t	= açık atmosfer				

Figür 8 Frekans Analizi

Figür 9 Frekans Analizinin Histogram ile Gösterimi

Güneş radyasyonu seviyeleri, bölge hakkında fikir edinmek ve veri tabanlarının bölge hakkında doğru kaynak toplamasına izin vermek için çizilir. Bu haritaları normalleştirmek ve konuma özgü güneş radyasyonu verilerini sunmak için kullanılan bir kavram olan açıklık indeksi, bir sahadaki küresel yatay

güneş radyasyonunun o sahanın üzerindeki atmosfer dışı yatay güneş radyasyonuna oranının ifadesidir. Bu çalışmada, yukarıda ayrıntıları verilen eşitlikler kullanılarak Muğla istasyonu için söz konusu ayda meydana gelen günlük küresel radyasyon değerleri incelendi ve açıklık indeksi bulundu. Eylül ayında, 37.1° enlemindeki Muğla ilinde Figür 9 grafiğine göre daha fazla parçalı bulutlu atmosfer görülmüştür. Eylül ayında açık ve kapalı atmosfer görülme oranı %10 olduğu tespit edilmiştir. Bu durum, eğimin düşük olduğu durumlarda global radyasyonun daha yüksek olması şeklinde açıklanabilmektedir.

SORU 4: Aşağıda verilen bağıntıdan yararlanarak günlük difüz radyasyon (D) değerlerini açıklık indeksine bağlı olarak hesaplayınız. Günlük difüz radyasyon dağılımını ve difüz radyasyon oranının $(\frac{D}{C})$ aylık değişimini çizerek yorumlayınız.

Difüz radyasyon, güneşten atmosfere girmiş olan radyasyonun bulutlar, aerosoller, kuru hava ve toz molekülleri tarafından çeşitli şekilde dağılıp, saçıldıktan sonra tekrar yer yeryüzüne dönen kısmıdır. Difüz ve direkt radyasyon hem yatay düzlemler için hem de eğik yüzeyler için bir olgudur. Yatay ve eğik yüzeylere gelen radyasyon miktarları farklıdır. Eğimli yüzeylere gelen enerji miktarı yaz ayları hariç daha fazladır, fakat yatay düzleme gelen radyasyon miktarlarının ölçülebilir olmasına rağmen eğik yüzeylere gelen değerlerin hesaplanmaları gerekmektedir. Enleme bağlı olarak en uygun açı tespitleri yapan modeller güneşli iklimlerde direkt ışının daha fazla olduğunu doğrulamıştır. Sık sık bulutlu hava koşullarında ise difüz radyasyon daha önemlidir, direkt radyasyon azalmaktadır (Armstrong ve Hurley, 2009). Literatürde de en yüksek radyasyon alan yüzey eğiminin enlem açısına yakın olduğu, kışın bu eğim açısının enlem açısından 15 derece fazla, yazın ise enlem açısından 15 derece eksik olduğu yaklaşık olarak kabul edilmektedir (Bulut, t.y).

Gün	D	Gün	D
1	2667,6	16	1767,1
2	2823,9	17	2062,7
3	2720,5	18	2093,3
4	2761,9	19	1969,8
5	2829,3	20	2152,8
6	2679,4	21	2310,3
7	2444,4	22	2305,4
8	2802,8	23	2245,4
9	2803	24	2506,7
10	2812,4	25	2518,2
11	2788,7	26	2208,8
12	2722,2	27	2221,2
13	2753,5	28	2305,9
14	2699,3	29	1635,2
15	1968,8	30	2433,4

Figür 10 Difüz radyasyon değerlerinin günlere göre değişimi

Figür 11 Günlük difüz radyasyon değerlerinin günlere göre dağılımı

Gün	D/H	Gün)	D/H
1	0,487	16	3	0,9604
2	0,5621	17	7	0,3718
3	0,52	18	3	0,3846
4	0,5467	19	9	0,3543
5	0,5958	20)	0,4117
6	0,5228	21	ı	0,4726
7	0,4414	22	?	0,4774
8	0,6151	23	3	0,4606
9	0,7515	24	1	0,611
10	0,6988	25	5	0,7375
11	0,6646	26	3	0,4662
12	0,6058	27	7	0,4783
13	0,6677	28	3	0,5262
14	0,6174	29	9	0,9578
15	0,9436	30)	0.6638

Figür 12 D/G Oranının günlere göre dağılımı

Figür 12'de gösterildiği üzere Eylül ayının 16. ve 29. gününde maksimum difüz radyasyon oranına erişim olmuştur. Söz konusu günde saçılma şiddeti, bulut miktarı, hava kirliliği, pus veya sis durumlarına göre artmış olabilir. Figür 7'de görüldüğü üzere 16.ve29. gününde kapalı atmosfer olduğu sonucuna varılmıştır. En düşük difüz radyasyon oranı değeri ise Figür 12 üzerinden Eylül ayının 19.gününde olduğu görülmüştür. Figür 7'ye göre açık bir atmosferin olduğu sonucuna varılmıştır.

SORU 5: Hesaplamalarda kullandığınız parametrelerin maksimum ve aylık ortalama değerlerini hesaplayarak, raporda Tablo halinde belirtiniz.

Maksimum günlük global radyasyon	5559,14
Ortalama günlük global radyasyon	4417,965633
Açıklık indeksi maksimum	0,6515
Aylık ortalama açıklık indeksi	0,5054566667
Maksimum difüz radyasyon oranı	0,9604
Ortalama difüz radyasyon oranı	0,59
Maksimum günlük difüz radyasyon	2.829,30
Ortalama günlük difüz radyasyon	2.433,80
, , ,	•