

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC139926 1 of 19 Page:

FCC Test Report FCC ID: 2ABQJ-N2

Original Grant for Computing Device Peripheral

: TB-FCC139926 Report No.

Applicant Shenzhen Sinopine Technology Co., Ltd

Equipment Under Test (EUT)

EUT Name : GSM Camera Alarm System

Model No. N2 **Series Model** : N1

No.

Brand Name : N/A

: 2014-04-28 **Receipt Date**

: 2014-04-29 to 2014-05-09 **Test Date**

Issue Date : 2014-05-12

: FCC Part 15: 2012, Subpart B, Class B Standards

: ANSI C63.4-2003 **Test Method**

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

IVAN SU fuglio. Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 19

Comments

1.	GENERAL INFORMATION ABOUT EUT	3
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Test Facility	5
2.	TEST SUMMARY	6
3.	CONDUCTED EMISSION TEST	
	3.1 Test Standard and Limit	7
	3.1.1Test Standard	
	3.1.2 Test Limit	7
	3.2 Test Setup	7
	3.3 Test Procedure	7
	3.4 Test Equipment Used	8
	3.5 EUT Operating Mode	8
	3.6 Deviation	8
	3.7 Test Data	8
4.	RADIATED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.1.1 Test Standard	11
	4.1.2 Test Limit	11
	4.2 Test Setup	11
	4.3 Test Procedure	12
	4.4 Test Equipment	12
	4.5 EUT Operating Condition	13
	4.6 Deviation	13
	4.7 Test Date	10

Page: 3 of 19

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Sinopine Technology Co., Ltd
Address	:	D Building, Huafeng Industrial Zone, Hangcheng Boulevard, Gushu Village, Xixiang Town, Bao'an District, Shenzhen City, China
Applicant	:	Shenzhen Sinopine Technology Co., Ltd
Address	:	D Building, Huafeng Industrial Zone, Hangcheng Boulevard, Gushu Village, Xixiang Town, Bao'an District, Shenzhen City, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	GSM Camera Alarm System
Model No.	:	N2, N1
Model difference	: The different models are identical in schematic, st and critical component, the only different is the appearance.	
Power Supply	:	DC power supplied by AC/DC Adapter DC Voltage supplied from Li-Polymer battery.
Power Rating	:	AC/DC Adapter(FD12SU-090-1000): Input: AC 100~240V 50/60Hz 0.4A Output: DC 9V 1A DC 7.4V from Li-ion battery
Connecting I/O Port(s)	:	The equipent have USB port for link with PC, so the equipment is considered as a Computing Device Peripheral.

Note: More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 4 of 19

1.3 Block Diagram Showing the Configuration of System Tested

USB Loading with PC

Normal Working

1.4 Description of Support Units

Equipment Information							
Name	Model	S/N	Manufacturer	Used "√"			
Printer	HP1505n	VNF3G06957	HP	√			
LCD Monitor	E170Sc		DELL	√			
PC	OPTIPLEX380		DELL	√			
Keyboard	L100	U01C	DELL	√			
Mouse	M-UARDEL7		DELL	√			
TF Card	1GB		Kingston	√			
Flash Disk	2GB		SSK				

Page: 5 of 19

Notebook	B470A2450	VNF3G06957	Lenovo	
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	YES	YES(2)	1.8M	
Cable 2	YES	YES(1)	2.0M	
Cable 3	YES	NO	1.5M	
Cable 4	YES	NO	1.5M	
Cable 5	NO	NO	0.8M	Accessories
Cable 6	NO	NO	1.15M	Accessories

1.5 Description of Test Mode

Mode	Description
Mode 1	USB loading with PC
Mode 2	Normal working mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of the EUT operation mode, and the maximum emission levels of the conducted and radiated emissions are compared to the FCC Part 15 Subpart B (Class B) limits.

Note: The test results for EUT's RF functions are contained in another Certification Report.

1.6 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

Page: 6 of 19

2. Test Summary

FCC Part15, Subpart B							
Section	Test Method	Test Item	Limit	Judgment			
15.109	ANSI C63.4:2003	Radiated Emission	Class B	PASS			
15.107 ANSI C63.4:2003 Conducted Emission (150 kHz to 30MHz) Class B PASS							
Note: N/A is an abbreviation for Not Applicable.							

Page: 7 of 19

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.107

3.1.2 Test Limit

Conducted Emission Test Limit

Frequency	Conducted Limit (dBuV)		
(MHz)	Quasi-peak Level	Average Level	
0.15~0.5	66 ~ 56 *	56 ~ 46 *	
0.5~5.0	56.00	46.00	
5.0~30.0	60.00	50.00	

Notes:(1) *Decreasing linearly with logarithm of the frequency.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance.

⁽²⁾ The lower limit shall apply at the transition frequencies.

Page: 8 of 19

The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

For the actual test configuration, please refer to the EUT test Photos.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&	ESCI	100321	2013-08-10	2014-08-09
Receiver	ceiver SCHWARZ		100321	2013-00-10	2014-00-09
50ΩCoaxial	Anritsu	MP59B	X10321	2013-08-10	2014-08-09
Switch	Ailliou	IVIF 39B	X10321	2013-00-10	2014-00-09
L.I.S.N	Rohde & Schwarz	ENV216	101131	2013-08-10	2014-08-09
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	2013-08-10	2014-08-09

3.5 EUT Operating Mode

(1) Setup the EUT and peripherals refer to the description of test mode.

3.6 Deviation

The test is no deviation from the standard.

3.7 Test Data

Please see the next page.

Page: 9 of 19

EUT:	GSM Camera	a Alarm	Model:		N2	
	System					
Temperature: 25 °C		Relative Humidity:		55%		
Test Voltage:	AC 120V/60 I	Ηz	Termin	al:	Line	
Test Mode:	Mode 1					
Remark:	N/A					
90.0 dBuV						
-10 0.150		MH.	Z)	5	QP: AVG:	peak AVG
	Reading	Correct N	Measure-			
No. Mk. Fred		Factor	ment	Limit Ove	r	
MHz	dBu∀	dB	dBuV	dBuV dB	Detector	Comment
1 0.153	9 25.96	9.93	35.89	65.78 -29.89	QP	
2 0.153	9 2.36	9.93	12.29	55.78 -43.49) AVG	
3 * 0.550	0 40.28	10.04	50.32	56.00 -5.68	QP	
4 0.550	0 12.75	10.04	22.79	46.00 -23.21	AVG	
5 0.978	0 35.90	10.06	45.96	56.00 -10.04	QP	
6 0.978	0 10.50	10.06	20.56	46.00 -25.44	AVG	
7 1.594	0 29.89	10.06	39.95	56.00 -16.05	G QP	
8 1.594	0 7.16	10.06	17.22	46.00 -28.78	8 AVG	
9 2.414	0 28.31	10.05	38.36	56.00 -17.64	QP	
10 2.414	0 7.33	10.05	17.38	46.00 -28.62	2 AVG	
11 24.318	0 24.60	10.16	34.76	60.00 -25.24	QP	
12 24.318	0 22.98	10.16	33.14	50.00 -16.86	8 AVG	
Emission Level= Read Level+ Correct Factor						

Page: 10 of 19

EUT:	GSM Camera Alarm	Model:	N2	
	System			
Temperature:	mperature: 25 °C		55%	
Test Voltage:	Test Voltage: AC 120V/60 Hz		Neutral	
Test Mode:	Mode 1			
Remark:	N/A			
90.0 dBuV			QP: — AVG: —	
-10	0.5	Hz) 5	peak AVG	
	Reading Correct	Measure-		
No. Mk. Free	<u> </u>	ment Limit Ove	r	
MHz		dBuV dBuV dB	Detector Comment	
1 0.370		46.05 58.50 -12.45		
2 0.370		21.56 48.50 -26.94		
3 * 0.554		50.58 56.00 -5.42		
4 0.554		23.57 46.00 -22.43		
5 0.990		45.54 56.00 -10.46		
6 0.990		20.22 46.00 -25.78		
7 1.582		41.00 56.00 -15.00		
8 1.582		18.57 46.00 -27.43		
9 2.374		38.09 56.00 -17.9		
10 2.374		17.67 46.00 -28.33		
11 11.478		25.56 60.00 -34.44		
12 11.478	0 5.29 10.13	15.42 50.00 -34.58	B AVG	
Emission Level= Read Level+ Correct Factor				

Page: 11 of 19

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.109

4.1.2 Test Limit

Radiated Emission Limit

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (meters)
30~88	40	3
88~216	43.5	3
216~960	46	3
Above 960	54	3

Note: Emission Level(dBuV/m)=20log Emission Level(uV/m)

4.2 Test Setup

30MHz to 1000MHz Test Setup

Coaxial Cable

Page:

12 of 19

Turntable

EUT

0.8 m 1m to 4m

Test
Receiver

Above 1GHz Test Setup

4.3 Test Procedure

Ground Plane .

- (1) The measuring distance of 3m shall be used for measurements at frequency from 30MHz up to1GHz.
- (2) The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The height of the equipment or of the substitution antenna shall be 0.8m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- (4) The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- (6) For more details, please refer to the EUT Test Photos.

4.4 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

Page: 13 of 19

EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.5 EUT Operating Condition

(1) Setup the EUT and peripherals refer to the description of test mode.

4.6 Deviation

The test is no deviation from the standard.

4.7 Test Data

Page: 14 of 19

Below 1 GHz

Page: 15 of 19

EUT:	GSM Camera Alarm	Model:	N2					
	System							
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz						
Ant. Pol.	Vertical							
Test Mode:	Mode 1: USB Charging v	Mode 1: USB Charging with loading to PC						
Remark: N/A								

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	34.5173	48.55	-16.76	31.79	40.00	-8.21	peak
2		94.7601	49.15	-22.28	26.87	43.50	-16.63	peak
3		143.8295	56.41	-21.67	34.74	43.50	-8.76	peak
4		239.9874	50.58	-18.59	31.99	46.00	-14.01	peak
5		480.5276	42.03	-11.62	30.41	46.00	-15.59	peak
6		962.1623	48.09	-4.84	43.25	54.00	-10.75	peak

Emission Level= Read Level+ Correct Factor

Page: 16 of 19

UT:				GSN Syst			era A	larm		Mod	del:				N2	!				
emper	atur	e:		25				Relative Humidity: 55%						_						
est Vol			-	AC 120V/60 Hz									-							
nt. Po			H	Horizontal																
est Mo	de:		ľ	Mode 2: Normal Link																
Remark	:		1	V/A	I/A															
80.0 dE	BuV/m																			
																			\dashv	
															FCC 15	6B 3M F	Radiati	on	\dashv	
														5		Ma	ırgin -E	dB	-[
						┵								×				Б X	긔	
30						_ſ														
			,	1 X				2 X		3		3	! \$4. ∧			الإسميدية	المعطيم	MAN	, Augus	
M			1	\			/~	1/\		Ž	Way wh	$\sqrt{}$	" h/ \	part Jily	Marketagenhard	MAX.				
-	Markey sail	May keep	MIN	74	way d	MAY	Ne. Pul	1	A STATE OF THE STA	Vil. pol	3.90	Ť							-	
																			-	
														-					_	
-20																				
30.000	40	5	50	60	70 (30			(MHz)			300	J	400	500	600	700	11	000.0	JUI
					F	Rea	ading	1 (Correc	t ſ	Measu	ıre-								
No.	Mk.		Fre	q.			vel		Facto		men			_imi	t	Ov	er			
			MH	Z		dE	Bu∀		dB/m		dBuV/	m	(dBuV	//m	dE	3	De	tect	to
1		59	.23	25		49	.69	-:	27.46		22.2	3		40.0	00	-17	.77	p	ea	k
2		124	4.56	390		49	.82	-:	25.30		24.5	2		43.5	50	-18	.98	p	ea	k
3		20	7.85	501		42	.94	-:	23.00		19.9	4		43.5	50	-23	.56		ea	
4		319	9.93	370		42	.45	-	19.28		23.1	7		46.0	00	-22	.83	p	ea	k
5	*	423	3.54	103		58	.64	-	15.87		42.7	7		46.0	00	-3.	23	p	ea	k
6	ļ	848	3.05	563		50	.49	-	-9.61		40.8	8		46.0	00	-5.	12	p	ea	k
																				_

Page: 17 of 19

EUT:	GSM Camer	ra Alarm	Model:		N2						
Temperature:	System 25 °C		Polativo Hun	nidity:	55%						
Test Voltage:		25 °C Relative Humidity: 55% AC 120V/60 Hz									
Ant. Pol.	Vertical										
Test Mode:		vertical Mode 2: Normal Link									
Remark:		N/A									
80.0 dBuV/m	14// (
80.0 dBuV/m											
					FCC 15B 3M Radia	17-1-					
					Margin -						
						6					
	3	3 4 3 X		5 X							
30 1	m Å	$\wedge \wedge$			June	and white with					
\\f	*\\	/ / /	Ms	MARKAN CONTRACTOR	haylor-out be known for the first of the fir						
W/4_71	-VVV	J. A. MAN	JUNES STATE BUILDING CONTRACTOR MANY	W							
-20											
30.000 40 5	0 60 70 80	(MHz)	30	00 400	500 600 700	1000.000					
	Read	ing Correc	t Measure-		_						
No. Mk. F	req. Lev	el Facto	r ment	Limit	Over						
N	VIHz dBu'	V dB/m	dBuV/m	dBuV/	m dB	Detector					
1 43.	6584 52.1	12 -24.65	27.47	40.0	0 -12.53	peak					
2 59.	2325 58.6	32 -27.46	31.16	40.0	0 -8.84	peak					
3 106	.3850 55.8	37 -24.80	31.07	43.5	0 -12.43	peak					
4 125	.4457 58.0)1 -25.28	32.73	43.5	0 -10.77	peak					
5 423	.5403 47.8	32 -15.87	31.95	46.0	0 -14.05	peak					
6 * 848	.0563 49.3	31 -9.61	39.70	46.0	0 -6.30	peak					
Emission Leve	el= Read Lev	vel+ Correct	t Factor								

Page: 18 of 19

1 GHz~26.5GHz

EUT:	GSM Camera Alarm	Model:	N2				
	System						
Temperature:	25 ℃ Relative Humidity: 55%						
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal						
Test Mode:	Mode 2: Normal Link						
Remark:	No report for the emissio	n which more than 10 c	dB below the				
	prescribed limit.						
100.0 dBu∀/m							

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1574.050	47.50	-2.78	44.72	74.00	-29.28	peak
2	*	1574.050	40.07	-2.78	37.29	54.00	-16.71	AVG

Emission Level= Read Level+ Correct Factor

Page: 19 of 19

EUT:	GSM Camera Alarm	Model:	N2					
	System							
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60 Hz							
Ant. Pol.	Vertical	Vertical						
Test Mode:	Mode 2: Normal Link							
Remark:	No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1574.050	48.83	-2.78	46.05	74.00	-27.95	peak
2	*	1574.050	41.56	-2.78	38.78	54.00	-15.22	AVG

Emission Level= Read Level+ Correct Factor