EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

SCR Control Circuits

180° phase control:

 R_1 and C_1 determine triggering angle between $0^{\circ} \sim 180^{\circ}$

 R_2 restricts I_G .

-ve half-cycle \rightarrow

 C_1 is charged via D_1 to -ve peak.

After -ve peak \rightarrow

 D_1 and D_2 are reverse-biased

 C_1 discharges via R_1

 $R_1 = 0 \rightarrow SCR_1$ switches on at 0° .

 $R_1 \approx \frac{0.75 \, T}{c_1 \ln 6} \rightarrow \text{SCR}_1 \text{ remains off till } 180^{\circ}.$

TRIAC triggering:

DIAC:

Low-current TRIAC without gate terminal.

TRIAC phase-control circuit:

 Q_1 is off at beginning of +ve half-cycle.

 C_1 is charged via R_1 and R_2 .

 $V_{C_1} = D_1$ switching voltage

 Q_1 gate triggering voltage

 C_1 discharges through D_1 and $Q_1 \rightarrow$ discharge current falls below D_1 holding current. Q_1 switches off at end of +ve half-cycle.

Process is repeated during -ve half-cycle.

 Q_1 conduction angle is controlled by R_1 .

angle

Capacitor waveform

Problem-42:

Estimate the smallest conduction angle for Q_1 for the circuit in Fig. 42. The supply is 115 V, 60 Hz, and the components are R_1 = 25 k Ω , R_2 = 2.7 k Ω and C_1 = 3 μ F. The D_1 breakover voltage is 8 V and V_G = 0.8 V for Q_1 .

At Q_1 switch-on, $V_{C1} = V_{D1} + V_G = 8 + 0.8 = 8.8 \text{ V}$ Average charging voltage,

$$E = 0.636 \times V_{ac(pk)} = 0.636 \times 1.414 \times 115 \approx 103 \text{ V}$$
 Average charging current,

$$I_C \approx \frac{E}{R_1 + R_2} = \frac{103}{25 \times 10^3 + 2.7 \times 10^3} \approx 3.7 \text{ mA}$$

Charging time,
$$t \approx \frac{C_1 V_{C1}}{I_C} = \frac{3 \times 10^{-6} \times 8.8}{3.7 \times 10^{-3}} \approx 7.1 \text{ ms}$$

$$T = 1/f = 1/60 = 16.7 \text{ ms}$$

$$Q_1$$
 switch-on point, $\phi \approx \frac{t \times 360^0}{T} = \frac{7.1 \times 10^{-3} \times 360}{16.7 \times 10^{-3}} = 153^0$

Conduction angle,
$$\alpha = 180^{\circ} - \phi = 180^{\circ} - 153^{\circ} = 27^{\circ}$$

Series Voltage Negative Feedback

Series negative feedback:

Small portion of V_{out} is fed back to input.

Feedback voltage is in series with signal voltage.

Polarity of feedback voltage is opposite to signal voltage polarity.

$v_i = v_s - v_f$

Overall voltage gain v_o/v_i is reduced.

Stability of voltage gain is improved.

Voltage gain:

Open-loop gain, $A_v = v_o/v_i$

Feedback factor, $B = v_f/v_o$

Input voltage, $v_i = v_s - v_f = v_s - Bv_o$

Output voltage, $v_o = A_v v_i = A_v (v_s - Bv_o) = A_v v_s - A_v Bv_o$

$$v_o(1 + A_v B) = A_v v_s$$

Closed-loop gain, $A_{CL} = \frac{v_o}{v_s} = \frac{A_v}{1 + A_v B} \approx 1/B$ [$A_v B >>1$]

Open-loop gain, $A_v >>$ Closed-loop gain, A_{CL}

Series Voltage Negative Feedback

Problem-43:

Calculate the closed-loop gain for the negative feedback amplifier shown in Fig. 43. Also calculate the closed-loop gain when the open-loop gain is changed by $\pm 50\%$.

When $A_v = 100000$:

$$A_{CL} = \frac{A_v}{1 + A_v B} = \frac{100000}{1 + (100000/100)} = 99.9$$

When $A_v = 150000$:

$$A_{CL} = \frac{A_v}{1 + A_v B} = \frac{150000}{1 + (150000/100)} = 99.93$$

When $A_v = 50000$:

$$A_{CL} = \frac{A_v}{1 + A_v B} = \frac{50000}{1 + (50000/100)} = 99.8$$

Series Voltage Negative Feedback

Input impedance:

Input impedance without feedback, $Z_b = v_i/i_i$ Input impedance with negative feedback,

$$Z_i = \frac{v_s}{i_i} = \frac{v_s \times Z_b}{v_i}$$

$$v_i = v_s - v_f = v_s - Bv_o = v_s - A_v Bv_i$$

$$v_i (1 + A_v B) = v_s$$

$$Z_i = (1 + A_v B) Z_b$$

Problem-44:

The input impedance of the amplifier in Fig. 44 is 1 k Ω when negative feedback is not used, and the open-loop voltage gain is 100000. Calculate the circuit input impedance with negative feedback.

$$\begin{split} B &= v_f/v_o = \frac{R_{F2}}{R_{F1} + R_{F2}} = \frac{560}{560 + 56 \times 10^3} = 1/101 \\ Z_i &= (1 + A_v B) Z_b = \left[1 + 100000 \frac{1}{101} \right] \times 1 \times 10^3 = 991 \text{ k}\Omega \\ Z_{in} &= Z_i ||R_1||R_2 = 991||68||33 = 21.7 \text{ k}\Omega \end{split}$$

