

B1

OPI DATE 20/10/98 APPLN. ID 64184/98
 AOJP DATE 03/12/98 PCT NUMBER PCT/JP98/01146

PC

AU9864184

(51) 国際特許分類6
 C12N 15/12, C12Q 1/68

A1

(11) 国際公開番号

WO98/42835

(43) 国際公開日

1998年10月1日(01.10.98)

(21) 国際出願番号 PCT/JP98/01146

(22) 国際出願日 1998年3月18日(18.03.98)

(30) 優先権データ
 特願平9/93044 1997年3月26日(26.03.97) JP

(71) 出願人 (米国を除くすべての指定国について)

大塚製薬株式会社

'OTSUKA PHARMACEUTICAL CO., LTD.)(JP/JP)
 〒101-0048 東京都千代田区神田司町2丁目9番地 Tokyo, (JP)

(72) 発明者; および

(75) 発明者／出願人 (米国についてのみ)

時野隆至(TOKINO, Takashi)(JP/JP)
 〒064-0806 北海道札幌市中央区南六条西18丁目3-14
 Hokkaido, (JP)中村祐輔(NAKAMURA, Yusuke)(JP/JP)
 〒226-0000 神奈川県横浜市緑区あざみ野1-17-33
 Kanagawa, (JP)

(74) 代理人

弁理士 有賀三幸, 外(ARUGA, Mitsuyuki et al.)
 〒103-0013 東京都中央区日本橋人形町1丁目3番6号
 共同ビル Tokyo, (JP)(81) 指定国 AU, CA, CN, ID, KR, MX, SG, US, 欧州特許
 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
 PT, SE).添付公開書類
 国際調査報告書

(54) Title: HUMAN GENES

(54) 発明の名称 ヒト遺伝子

(57) Abstract

Novel human genes usable in gene diagnosis and development of new therapeutics. Specifically, human genes containing a base sequence encoding the amino acid sequence represented by SEQ ID NO:1 or a part of the same, in particular, ones which are under the specific transcriptional regulation by a tumor suppressor gene p53.

காலத்திலே குறிப்பிடப்பட்டிருக்கிற சம்பந்தமாக அதை விவரிதிப்பார்கள்.

Streptomyces sp. C-100001 was isolated from soil collected at the site of a former industrial facility.

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C12N 15/12, C12Q 1/68	A1	(11) 国際公開番号 WO98/42835 (43) 国際公開日 1998年10月1日(01.10.98)
(21) 国際出願番号 PCT/JP98/01146 (22) 国際出願日 1998年3月18日(18.03.98) (30) 優先権データ 特願平9/93044 1997年3月26日(26.03.97) JP (71) 出願人（米国を除くすべての指定国について） 大塚製薬株式会社 (OTSUKA PHARMACEUTICAL CO., LTD.)[JP/JP] 〒101-0048 東京都千代田区神田司町2丁目9番地 Tokyo, (JP) (72) 発明者；および (75) 発明者／出願人（米国についてのみ） 時野隆至(TOKINO, Takashi)[JP/JP] 〒064-0806 北海道札幌市中央区南六条西18丁目3-14 Hokkaido, (JP) 中村祐輔(NAKAMURA, Yusuke)[JP/JP] 〒226-0000 神奈川県横浜市緑区あざみ野1-17-33 Kanagawa, (JP) (74) 代理人 弁理士 有賀三幸, 外(ARUGA, Mitsuyuki et al.) 〒103-0013 東京都中央区日本橋人形町1丁目3番6号 共同ビル Tokyo, (JP)	(81) 指定国 AU, CA, CN, ID, KR, MX, SG, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). 添付公開書類 国際調査報告書	
(54) Title: HUMAN GENES (54) 発明の名称 ヒト遺伝子 (57) Abstract Novel human genes usable in gene diagnosis and development of new therapeutics. Specifically, human genes containing a base sequence encoding the amino acid sequence represented by SEQ ID NO:1 or a part of the same, in particular, ones which are under the specific transcriptional regulation by a tumor suppressor gene p53.		

(57)要約

特に遺伝子診断並びに新しい治療法の開発に利用できる新規なヒト遺伝子を提供するものである。

配列番号：1で示されるアミノ酸配列の全部又は一部をコードする塩基配列を含むヒト遺伝子、特に癌抑制遺伝子p53による特異的な転写制御下にある上記遺伝子。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AL アルバニア	FI フィンランド	LR リベリア	SK スロヴァキア
AM アルメニア	FR フランス	LS レソト	SL シニラ・レオネ
AT オーストリア	GA ガボン	LT リトアニア	SN セネガル
AU オーストラリア	GB 英国	LU ルクセンブルグ	SZ スウェーデン
AZ アゼルバイジャン	GD グレナダ	LV ラトヴィア	TD ティード
BA ボスニア・ヘルツェゴビナ	GE グルジア	MC モナコ	TG トーゴー
BB バルバドス	GH ガーナ	MD モルドavia	TJ クジキスタン
BE ベルギー	GM ガンビア	MG マダガスカル	TM トルクメニスタン
BF ブルキナ・ファン	GN ギニア	MK マケドニア旧ユーゴスラヴィア	TR トルコ
BC ブルガリア	GW ギニア・ビサウ	共和国	TT ドミニカ共和国・トバゴ
BJ ベナン	GR ギリシャ	ML マリ	UA ウクライナ
BR ブラジル	HR クロアチア	MN モンゴル	UG ウガンダ
BY ベラルーシ	HU ハンガリー	MR モーリタニア	US 米国
CA カナダ	ID インドネシア	MW マラウイ	UZ ウズベキスタン
CF 中央アフリカ	IE アイルランド	MX メキシコ	VN ヴィニトナム
CG コンゴー	IL イスラエル	NE ニジェール	YU ユーゴースラビア
CH スイス	IS アイスランド	NL オランダ	ZW ジンバブエ
CI コートジボアール	IT イタリア	NO ノルグニー	
CM カメルーン	JP 日本	NZ ニュージーランド	
CN 中国	KE ケニア	PL ポーランド	
CU キューバ	KG キルギスタン	PT ポルトガル	
CY キプロス	KP 北朝鮮	RO ルーマニア	
CZ チェコ	KR 韓国	RU ロシア	
DE ドイツ	KZ カザフスタン	SD スーダン	
DK デンマーク	LC セントルシア	SE スウェーデン	
EE ニストニア	LI リヒテンシュタイン	SG シンガポール	
ES スペイン	LK 斯リ・ランカ	SI スロヴェニア	

明細書

ヒト遺伝子

技術分野

本発明は、ヒトの疾患の予防、診断及び治療の指針として有用な遺伝子、より詳しくは、癌抑制遺伝子 p53 による特異的な転写制御下にあるヒト遺伝子に関し、遺伝子診断並びに新しい治療法の開発に利用可能な遺伝子に関する。

背景技術

癌抑制遺伝子 p53 の変異は、ゼト癌に見出される遺伝的変異において最も普遍的なものであり、ヒトの発癌に関与する最も重要な遺伝子のひとつとされている (Hollstein M., et al., Science (Washington DC), 253: 49-53, 1991)。

p53 は転写因子として作用し (Vogelstein B., et al., Cell, 70: 523-526, 1992)、配列特異的な DNAへの結合により、p21/WAF1、MDM2、GADD45、BAX、cyclin G、IGF-BP3、PCNA 及びGML等の各種遺伝子を活性化することが確認されている (El-Deiry W. S., et al., Cell, 75: 817-825, 1993 ; Wu X., et al., Genes Dev., 7: 1126-1132, 1993 ; Kastan M. B., et al., Cell, 71: 587-597, 1992 ; Miyashita T., et al., Cell, 80: 293-299, 1995 ; Okamoto K., et al., EMBO J., 13: 4816-4822, 1994 ; Buckbinder L., et al., Nature, 377: 646-649, 1995 ; Morris G. E., et al., Proc. Natl. Acad. Sci. USA, 93: 895-899, 1996 ; Furuhata T., et al., Oncogene, 13: 1965-1970, 1996)。このうち、p21/WAF1、BAX 及びGMLは、p53 により介する細胞周期停止及びアポトーシスの主要因子と思われる。また、GADD45は、DNA修復に重要な役割を果たしている。

しかし、p53によって制御されている遺伝子の確認は、p53の生物生理学的機能の解明に必須である。すなわち、かかるp53標的遺伝子の同定、解明は、癌研究の分野はもとより、その標的遺伝子を利用する新しい癌の診断乃至治療法の開発の面からも斯界で望まれているところである。

尚、本発明者等は、ヒトゲノムの機能的p53結合部位(functional p53-binding sites)或はp53タグサイト(p53-tagged sites)の近隣にp53標的遺伝子の候補を見出すようにデザインされた方法を確立しており、この方法に関して、本発明者はその発現が抗癌剤の感受性に相關すると考えられているGMLの単離に既に成功している(Furuhashi, T., et al., *Oncogene*, 13: 1965-1970, 1996)。

本発明は、癌抑制遺伝子p53の標的遺伝子(p53-target genes)或はp53誘導型遺伝子(p53-inducible genes)、すなわちp53による特異的な転写制御下にある新規なヒト遺伝子を見出し、これを同定して斯界で要望される所望の情報を提供することを目的とする。

発明の開示

本発明者等は、ヒトゲノムからの機能的p53タグサイトのクローニングにおいて、野生型p53によって誘導される新規な遺伝子を単離し、これが上記目的に合致する新規なヒト遺伝子であることを見出し、ここに本発明を完成するに至った。

すなわち、本発明は、配列番号：1で示されるアミノ酸配列の全部又は一部をコードする塩基配列を含むヒト遺伝子、特に、配列番号：2で示される塩基配列の全部又は一部を含む遺伝子を提供するものである。

図面の簡単な説明

図1は、野生型p53によるP2XM遺伝子発現の誘導を調べるために、野生

型 p 5 3 アレルを欠く大腸癌細胞株 SW 4 8 0 における p 5 3 誘導 mRNA の発現を RT - PCR により解析した結果を示す写真である。

図 2 は、ヒト組織における P 2 X M のノーザンプロット解析結果を示す写真である。

図 3 及び 4 は、 P 2 X M 遺伝子のゲノム構成を示す図であり、図 3 は 1 9 1 遺伝子のエクソン / イントロン境界のヌクレオチド配列を示し、図 4 の (b) はエクソン及び p 5 3 結合部位の存在位置を示し、図 4 の (c) はコスミド p 5 3 - 1 9 1 の p 5 3 結合部位と p 5 3 コンセンサス結合配列の比較を示す。

図 5 及び 6 は、各種 P 2 X レセプターのアミノ酸配列を示す図である。

図 7 は、別態様スプライシングバリエントを示す図である。

図 8 ~ 1 0 は、骨格筋及び各種癌細胞株におけるスプライシングバリエントの発現を RT - PCR により解析した結果を示す写真である。また、図 1 下は、蛍光 in situ バイオダイヤルーションの結果を示す写真である。

以下、本明細書におけるアミノ酸、ペプチド、塩基配列、核酸等の略号による表示は、 I U P A C 、 I U B の規定、「塩基配列又はアミノ酸配列を含む明細書等の作成のためのガイドライン」(特許庁編) 及び当該分野における慣用記号に従うものとする。

本発明遺伝子の一具体例としては、後述する実施例に示される「 P 2 X M 」と名付けられたクローシの有する DNA 配列から演繹されるものを挙げることができ、その塩基配列は、配列表に示される通りである。

本発明遺伝子は、例えば配列番号： 2 で示されるように、一本鎖 DNA 配列で表されるが、本発明はかかる一本鎖 DNA 配列に相補的な DNA 配列やこれらの両者を含むコンポーネントもまた包含する。尚、配列番号 2 に示す本発明遺伝子の配列は、これによりコードされる各アミノ酸残基を示すコドンの一つの組合

せ例であり、本発明遺伝子はこれに限らず、各アミノ酸残基に対して任意のコドンを組合せ選択した塩基配列を有することも勿論可能である。該コドンの選択は常法に従うことができ、例えば利用する宿主のコドン使用頻度を考慮することができる (Nucleic Acids Res., 9: 43-74, 1981)。

更に本発明遺伝子には、上記で示されるアミノ酸配列の一部のアミノ酸乃至アミノ酸配列を置換、欠失、付加等により改変してなり、同様の機能を有する同効物をコードするDNA配列もまた包含される。これらポリペプチドの製造、改変(変異)等は天然に生じることもあり、また翻訳後の修飾により或は遺伝子工学的手法により、天然の遺伝子(例えば本発明の具体例遺伝子)を、例えばサイトスペシフィック・ミュータゲネシス (Methods in Enzymology, 154: p. 350, 367-382, 1987; 同 100: p. 468, 1983; Nucleic Acids Res., 12: p. 9441, 1984; 続生化学実験講座 I 「遺伝子研究法 II」、日本化学会編, p. 105, 1986) 等の方法により改変したり、リソ酸トリエステル法やリソ酸アミダイト法等の化学合成手段 (J. Am. Chem. Soc., 89: p. 4801, 1967; 同 91: p. 3350, 1969; Science, 150: p. 178, 1968; Tetrahedron Lett., 22: p. 1859, 1981; 同 24: p. 245, 1983) により変異させたDNAを合成したり、或はそれらの組合せにより取得することができる。

本発明にかかる配列番号: 2.に示す遺伝子は、p53による特異的な転写制御下にある遺伝子であり、生体においてp53によりその発現が活性化され、癌の抑制に寄与すると考えられる。従って、本発明遺伝子の発現を目的とする遺伝子治療或は本発明遺伝子産物の生体への投与は、癌の予防及び治療に極めて有用であると考えられる。殊に、遺伝性の高発癌体质であるLi-Fraumeni症候群や、p53遺伝子のLOHや、変異が認められる各種の癌等の場合のようにp53による癌抑制機能が失われた結果として癌化に向かうとされる個体において、本発明遺伝子乃至同遺伝子産物の利用が好適と考えられる。

尚、上記した本発明遺伝子を利用する遺伝子治療或は同遺伝子産物を利用する

癌処置においては、必ずしも本発明遺伝子又はそのコードする産物の全て、すなわち全配列からなる遺伝子或は産物が必要とされることはなく、本発明にかかる配列番号：2に示す遺伝子における所望の機能と実質的に同質な機能を保持する限りにおいて、前記したそれらの改変体或はそれらの一部配列からなる遺伝子或は産物が良好に使用できる。

本発明遺伝子を利用して、すなわち例えば、これを微生物のベクターに組込み、形質転換された微生物を培養することによって、上記各遺伝子でコードされるp-5-3関連蛋白を容易にかつ安定して製造することができる。また本発明の遺伝子を利用して得られる各蛋白を用いて、特異抗体を作成することができる。ここで抗原として用いられるコンポーネントとしては、上記遺伝子工学的手法に従って大量に產生される蛋白を用いることができ、得られる抗体はポリクローナル抗体及びモノクローナル抗体のいずれでもよく、それぞれの蛋白の精製、測定、識別等に有利に利用できる。

本発明遺伝子は、本発明によって開示された配列情報に基づいて、一般的遺伝子工学的手法により容易に製造できる (Molecular Cloning, 2nd Ed., Cold Spring Harbor Laboratory Press (1989); 統生化学実験講座「遺伝子研究法」、II、III)、日本生化学会編 (1986) 等参照)。

例えば、ヒトcDNAライブラリー (各遺伝子の発現される適当な起源細胞より常法に従い調製されたもの) から、本発明遺伝子に特有の適当なプローブや抗体を用いて所望クローンを選択することができる (Proc. Natl. Acad. Sci. USA, 78, 6613, 1981; Science, 222, 778, 1983等)。

上記において、起源細胞としては、目的の遺伝子を発現する各種の細胞、組織やこれらに由来する培養細胞等が例示され、これらからの全RNAの分離、mRNAの分離や精製、cDNAへの変換 (合成) とそのクローニング等はいずれも常法に従い実施できる。また、cDNAライブラリーは市販されてもおり、本発明においてはそれらcDNAライブラリー、例えばクローンテック社

(Clontech Lab. Inc.) 等より市販の各種cDNAライブラリー等を用いることもできる。

cDNAライブラリーからの本発明遺伝子のスクリーニングは、前記通常の方法に従い実施できる。該スクリーニング方法としては、例えばcDNAの產生する蛋白質に対して、該蛋白質特異抗体を使用した免疫的スクリーニングにより、対応するcDNAクローニングを選択する方法、目的のDNA配列に選択的に結合するプローブを用いたブラークハイブリダイゼーション、コロニーハイブリダイゼーション等やこれらの組合せを例示できる。ここで用いられるプローブとしては、本発明遺伝子のDNA配列に関する情報をもとにして化学合成されたDNA配列等を用いるのが一般的であり、勿論既に取得された本発明遺伝子やその断片もかかるプローブとして利用できる。更に各細胞、組織より抽出、単離精製された天然抽出物の部分アミノ酸配列情報に基づき、センス・プライマー、アンチセンス・プライマーをスクリーニング用プローブとして用いることができる。

また、本発明遺伝子の取得に際しては、PCR法(Science, 230: 1350-1354, 1985)によるDNA／RNA增幅法が好適に利用できる。殊に、ライブラリーから全長のcDNAが得られ難いような場合には、シース法(RACE: Rapid amplification of cDNA ends; 実験医学, 12(6): 35-38, 1994)、殊に5'RACE(Froehman M. A. et al.; Proc. Natl. Acad. Sci. USA, 85: 8998-9002, 1988)の採用が好適である。かかるPCR法の採用に際して使用されるプライマーは、既に本発明によって明らかにされた本発明遺伝子の配列情報に基づいて適宜設定でき、これは常法に従い合成できる。

尚、増幅させたDNA／RNA断片の単離精製は、前記の通り常法に従うことができ、例えばゲル電気泳動法等によればよい。

上記で得られる本発明遺伝子或は各種DNA断片等の塩基配列の決定も、常法に従うことができ、例えばジデオキシ法(Proc. Natl. Acad. Sci. USA, 74

: 5463-5467, 1977] やマキサムニギルバート法 [Method in Enzymology, 65: 499, 1980] 等により行なうことができる。かかる塩基配列の決定は、市販のシーケンスキット等を用いても容易に行ない得る。

本発明遺伝子の利用によれば、通常の遺伝子組換え技術（例えば、*Science*, 224: p. 1431, 1984; *Biochem. Biophys. Res. Comm.*, 130: p. 692, 1985;

Proc. Natl. Acad. Sci. USA, 80: p. 5990, 1983及び前記引用文献等参照）に従うことにより、各組換え体蛋白を得ることができる。該蛋白の製造は、より詳細

には、本発明遺伝子が宿主細胞中で発現できる組換えDNAを作成し、これを宿主細胞に導入して形質転換し、該形質転換体を培養することにより行なわれる。

ここで宿主細胞としては、真核生物及び原核生物のいずれも用いることができる。該真核生物の細胞には、脊椎動物、酵母等の細胞が含まれ、脊椎動物細胞としては、例えばサルの細胞であるCOS細胞 (*Cell*, 23: 175-182, 1981) やチ

ャイニーズ・ハムスター卵巣細胞及びそのジヒドロ葉酸レダクター欠損株 (*Proc. Natl. Acad. Sci. USA*, 77: 4216-4220, 1980) 等がよく用いられているが、これらに限定される訳ではない。

脊椎動物の発現ベクターとしては、通常発現しようとする遺伝子の上流に位置するプロモーター、RNAのスプライス部位、ポリアデニル化部位及び転写終了配列等を保有するものを使用でき、これは更に必要により複製起点を有してもよい。

該発現ベクターの例としては、例えば、SV40の初期プロモーターを保有するpSV2dhfr (*Mol. Cell. Biol.*, 1: 854, 1981) 等を例示できる。また、真核微生物としては、酵母が一般によく用いられる中でもサッカロミセス属

酵母を有利に利用できる。該酵母等の真核微生物の発現ベクターとしては、例えば酸性ホスファターゼ遺伝子に対するプロモーターを有するpAM8-2 (*Proc.*

Natl. Acad. Sci. USA, 80: 1-5, 1983) 等を利用できる。また、本発明遺伝子の発現ベクターとしては、原核生物遺伝子融合ベクターを好ましく例示でき、該

ベクターの具体例としては、例えば分子量26000のGSTドメイン (S.

japonicum 由来) を有する p GEX - 2 TK や p GEX - 4 T - 2 等を例示できる。

原核生物の宿主としては、大腸菌や枯草菌が一般によく用いられる。これらを宿主とする場合、例えば該宿主菌中で複製可能なプラスミドベクターを用い、このベクター中に本発明遺伝子が発現できるように該遺伝子の上流にプロモーター及びSD (シャイン・アンド・ダルガーノ) 塩基配列、更に蛋白合成開始に必要な開始コドン (例えばATG) を付与した発現プラスミドを利用するのが好ましい。上記宿主としての大腸菌としては、エシエリヒア・コリ (Escherichia coli) JK 1-2 株等がよく用いられ、ベクターとしては一般に pBR322 及びその改良ベクターがよく用いられるが、これらに限定されず公知の各種の菌株及びベクターを利用できる。プロモーターとしては、例えばトリプトファン (trp) プロモーター、lpp プロモーター、lacZ プロモーター、SP1/PR プロモーター等を使用できる。また、本発明の組換え DNA の導入方法及びこれによる形質転換方法としては、一般的な各種方法を採用できる。また得られる形質転換体は、常法に従い培養でき、該培養により本発明遺伝子によりコードされる目的の蛋白が生産、発現される。該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択利用でき、その培養も宿主細胞の生育に適した条件下で実施できる。

上記により、形質転換体の細胞内、細胞外乃至細胞膜上に目的とする組換え蛋白が発現、生産、蓄積乃至分泌される。

各組換え蛋白は、所望により、その物理的性質、化学的性質等を利用した各種の分離操作 (〔「生化学データーブックII」、1175-1259 頁、第1版第1刷、1980 年 6月23日株式会社東京化学同人発行; Biochemistry, 25(25): 8274-8277, 1986; Eur. J. Biochem., 163: 313-321, 1987 等参照〕) により分離、精製できる。該方法としては、具体的には例えば通常の再構成処理、蛋白沈殿剤による処

理（塩析法）、遠心分離、浸透圧ショック法、超音波破碎、限外濾過、分子篩クロマトグラフィー（ゲル濾過）、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー、高速液体クロマトグラフィー（HPLC）等の各種液体クロマトグラフィー、透析法、及びこれらの組合せ等を例示でき、特に好ましい上記方法としては所望の蛋白を結合させたカラムを利用したアフィニティクロマトグラフィーを例示できる。

また、本発明によって明らかにされた本発明遺伝子の配列情報を基にすれば、例えば該遺伝子の一部又は全部の塩基配列を利用するにより、各種ヒト組織における本発明遺伝子の発現の検出を行なうことができる。これは常法に従って、例えばRT-PCR (Reverse transcribed-Polymerase chain reaction; Kawasaki E. S. et al., "Amplification of RNAs. In PCR Protocol-A Guide to methods and applications. Academic Press, Inc., San Diego, 21-27, 1991)

によるRNA增幅により、またノーザンブロッティング解析 (Molecular Cloning, Cold Spring-Harbor Laboratory, 1989) 等により、いずれも良好に実施し得る。

尚、前記PCR法を採用する場合において、用いられるプライマーは、本発明遺伝子のみを特異的に増幅できる本発明遺伝子に特有のものである限り何等限定ではなく、本発明遺伝情報に基いてその配列を適宜設定することができる。通常これは常法に従って2.0～3.0ヌクレオチド程度の部分配列を有するものとすることができる。

しかし、本発明はかかる新規なヒト遺伝子に特有の検出に有用なプライマー及び／又はプローブをも提供するものである。

実施例

以下、本発明を更に詳しく説明するため、実施例を挙げる。

実施例1

(1) コスミドライブラーのスクリーニング

p5'3タグサイト(クローンP5'3-191)は、時野等の方法に従い特定した(Tokino T., et al., Hum. Mol. Gene, 3: 1537-1542, 1994)。p5'3タグサイトを含む(³²P)標識プローブを使用して、ヒト末梢血リンパ球のコスミドライブラーをスクリーニングした。得られたコスミド:p5'3-cos191をEcoRIで消化し、該EcoRIフラグメントをpBluescript II SK (-)(Stratagene)にサブクローニングした。

DNA配列決定は、キット(Taq DyeDeoxy Terminator Cycle Sequencing Kit; ABI)を使用してABI 377 DNAシーケンサーにて行った。

(2) cDNAクローニング:コスミドp5'3-cos191に存在する遺伝子の単離に、エクソントラップ法とRACEの両者を行った。

コスミドp5'3-cos191をBamHI及びBglIIにて消化し、該制限酵素フラグメントを、エクソントラップベクターpSP_L3(Gibco-BRL)のBamHIサイトにサブクローニングし、Lipofect ACE(Gibco-BRL)を用いてCOS7細胞に導入した。該細胞を2-4時間培養後、TRIZOL(Gibco-BRL)により全RNAを調製した。ファーストストランドcDNA合成及びスプライスしたフラグメントのPCR増幅は、North等の方法に従い実施した(North M. A., et al., Mamm. Genome, 4: 466-474, 1993)。cDNAフラグメントは、pBluescript II SK (-)にサブクローニングされ、上記のとおりT3又はT7プライマーを使用して配列決定された。候補のひとつとしての配列191E1を、cDNA増幅キット(Marathon cDNA amplification kit; Clontech)を用い、骨格筋ボリ(A)+RNAを錆型として使用する5'-及び3'-RACEに付した。

(3) RT-PCR解析

p5'3発現ベクター、p5'3-wt又はp5'3-273(Kern S. E., et al.,

Science (Washington DC), 256: 827-830, 1992]、による大腸癌細胞株 SW480の一過的DNA導入及びcDNAの調製は、Furuhashi 等の報告に従い行った [Furuhashi T., et al., Oncogene, 13: 1965-1970, 1996]。全RNAは、Superscript II (Gibco-BRL) を使用して逆転写した。RT-PCRの指數的成長相は、20-30サイクルにおいて決定され、同一反応により得られたcDNA間の半定量的比較を可能とした。各PCR反応は、200ngの全RNAからのcDNAを使用して実施した。PCR溶液は文献 [Han H-J., et al., Hum. Mol. Genet., 4: 237-242, 1995] 記載のものを用いし、反応は、94°C 2分の初期変性ステップに次ぐ30サイクル (191E1の場合) 又は25サイクル (p21/WAF1及びGAPDHの場合) のサイクリングステップ (94°C 30秒、55-60°C 30秒、72°C 1分) にて行った (GeneAmp PCR system 9600; PerkinElmer)。プライマー配列は、次表1のとおりである。

表1 プライマー配列

プライマー	塩基配列
(191E1)	
E1S2	5' - AGCCACTCACTGGTGGGA - 3'
E1A2	5' - CCCGGTGACGAGGATGTCGA - 3'
(p21/WAF1)	
W1S	5' - GTTCCTTGTGGAGCCGGAGC - 3'
W2A	5' - GGTACAAGACAGTGACAGGTC - 3'
(GAPDH)	
HGS	5' - CAACTACATGGTTACATGTT - 3'
HGA	5' - GCCAGTGGACTCCACGAC - 3'

增幅されたcDNAは、3%Nu-Sieve GTG (2:1) アガロースゲル

にて分離した。

(4) ノーザンプロット解析

正常ヒト組織由来のポリ(A) + RNAを含むノーザンプロット(Clontech)を本発明cDNAのヌクレオチド909-1583に相当するランダムプライム [³²P] 標識DNAプローブによりハイブリダイズした。プロットを50°Cにて洗浄し(0.1×SSC/0.1% SDS) -80°Cにて24時間オートラジオグラフィーの感光に付した。

(5) FISH

FISHは、Inazawa等の方法に従い実施した(Inazawa J., et al., Genomics, 17: 153-162, 1993)。ヒト分裂中期染色体は、常法(thymidine synchronization / bromodeoxyuridine release technique)に従い調製した。ハイブリダイゼーションに先立ち、分裂中期の細胞は染色(Hoechst 33258)及びUV照射した。コスミドクローンp53-cos191は、ニックトランスクレーションによりビオチン-16-dUTPにより標識し、変性した分裂中期染色体とハイブリダイズした。A-Tトリピットのような散在する繰返し配列によるノイズシグナルを除去する為に、染色体 *in situ* 抑制(chromosomal *in situ* suppression)ハイブリダイゼーションを使用した。ハイブリダイズシグナルは、FITC-アビシンにて検出した。ハイブリダイズシグナルの詳細な位置決定は、複製-Gバンドの可視化によって行った。

(6) 相同性検索

DNA比較は、FASTAプログラムによるデータベース検索により行った(non-redundant nucleic acid sequence database又はnon-redundant protein sequence database; ヒトゲノム解析センター、東京大学医科学研究所)。

(7) 結果

(イ) p53誘導遺伝子のクローニング

p53タグサイトのひとつ、クローンP53-191をプローブとして、ヒト

ゲノムコスミドライブラーをスクリーニングし、コスミドクローン：p 5 3 - cos 1 9 1を得た。このコスミドに由来する配列がp 5 3による転写制御を受けているかどうかを調べる為に、RT - PCR解析を行った。RT - PCRでは、野生型又は変異型p 5 3 c DNAを含む発現ベクターで一過的にDNA導入したSW 4 8 0細胞(SW 4 8 0 - wt 5 3又はSW 4 8 0 - mt 5 3)より調製したRNAを錆型として使用した。候補配列のひとつである1 9 1 E 1を試験した結果、SW 4 8 0 - mt 5 3(変異型)における場合に比べて、SW 4 8 0 - wt 5 3(野生型)における発現が著しく増加しており(図1参照)、1 9 1 E 1の発現は野生型p 5 3によって誘導されていると考えられた。

尚、図1は、野生型p 5 3アレルを欠く大腸癌細胞株SW 4 8 0におけるp 5 3誘導m RNAの発現をRT - PCRにより解析した結果を示す写真である。これによれば、SW 4 8 0を、p 5 3 - wt (W)又はp 5 3 - 2 7 3 (M)で一過的逆形質転換して、RT - PCR增幅によりP2 XM遺伝子の発現を確認した。RNAサンプルは、逆転写酵素(RT)存在下(+)又は非存在下(-)に逆転写反応に供した。RNA錆型はGAPDH転写物の増幅によりコントロールし、「これは両サンプルにおいて同程度のシグナルを与えた。」

次いで、1 9 1 E 1をプローブとして使用したc DNAスクリーニング並びに5' - 及び3' - RACEを行ない、3 5 5 - 2 bpからなるc DNAを単離した。「P2 XM」と名付けられた該c DNAは、431アミノ酸の蛋白をコードする1 2 9 3 bpのオープンリーディングフレームを有している。その全DNA配列は、配列番号：3に示すとおりである。即ち、P2 XM c DNAのコード領域は、塩基番号4 6から1 3 3 8に示され、潜在的なトランスマンブルードメイン(M 1及びM 2)は、それぞれアミノ酸番号で3 3～4 9番目及び3 2 4～3 4 4番目のアミノ酸配列にあり、またvoltage-gated K⁺ channels H 5領域の類似セグメント(H)は、アミノ酸番号3 0 6～3 1 9に存在していた。

該c DNAをプローブとするノーザンプロット解析によれば、骨格筋において

3. 6 kb の転写物が検出されており（図2参照）、従って、該cDNAは、ほぼ完全な転写物を含んでいるものと考えられる。

尚、図2はヒト組織におけるP2XMのノーザンプロット解析結果を示す写真であり、各種組織（Heart, Brain, Placenta, Lung, Skeletal muscle, Kidney, Spleen, Thymus, Prostate, Testis, Ovary, Small intestine, Colon, Leukocyte）からのポリ(A)⁺ RNA（2 μg／レーン）のプロットをP2XM cDNAとハイブリダイズさせた結果を示すものである。

（口）相同性検索

蛋白データベースの相同性検索によれば、本発明にかかるアミノ酸配列は、ATP-gated ion channel (P2X) レセプターファミリー [Valera S., et al., Nature, 371: 516-519, 1994; Brake A. J., et al., Nature, 371: 519-523, 1994] と類似性を有し、特にラット P2X6 [Collo G., et al., J. Neurosci., 16: 2495-2507 1996] と 80% の同一性を示した（図5及び6参照）。

図3及び4は、P2XM遺伝子のゲノム構成を示す図であり、図3(a)は、191遺伝子のエクソン／イントロン境界のヌクレオチド配列を示している。エクソン及びイントロンの配列は、順次、大文字及び小文字で示されている。図4中、(b)は、エクソンの存在位置を、そのサイズに応じた、番号付き箱により示したものである。また、図4中(c)は、コスマド p53-191のp53結合部位とp53コンセンサス結合配列を比較したものであり、矢印は、p53コンセンサス結合配列（ペントマー）を示す。大文字のヌクレオチドは、コンセンサス位に一致するゲノム配列を示し、小文字はコンセンサス配列と相違する配列を示している。P2Xレセプター (P2X1-X6) ファミリーの全てのメンバーは、2つのトランスメンブラン領域 (M1及びM2)、voltage-gated K⁺ channel のH5領域に類似しているセグメント (H5)、N-ケリコシレーションサイト及び進化上保存されている11システイン残基を有している（図5及び6参照）。

図5及び6は、各種P₂Xレセプターのアミノ酸配列を示すものであり、図中、箱囲みした残基は、P₂X Mの配列及びラットP₂X₁ - P₂X₇レセプターに共通して保存されている。上線は、保存されている2つの疎水性領域(M₁及びM₂)及びH₅を示す。星印は、P₂X Mの潜在的N-結合グリコシレーションサイトを示す。

本発明のかかる遺伝子によってコードされているアミノ酸配列は、同様にこれらP₂Xレセプターファミリーの基本的特徴を有しており、これはヒトP₂Xレセプターファミリーの新規なメンバーであると考えられる。

(ハ) 構造解析

上記cDNAとその対応するゲノムDNA配列(p53-cos191)の比較により、エクソン/イントロン境界及び近接イントロンの近傍DNA配列を含む、この遺伝子のゲノム構成が明らかとなった(図3参照)。この遺伝子は、約1.2 kbのゲノム領域におよんでおり、12のエクソンからなる(図4のb参照)。p53タグサイトは、この遺伝子の約1.6 kb下流に存在している(図4のb及びc参照)。コスミドp53-cos191をプローブとする蛍光in situハイブリダイゼーション法(FISH法)により、この遺伝子の染色体位置は、22q11と確認された(図11参照:特異的なハイブリダイゼーションシグナルがヒト染色体バンド22q11に認められ、他の染色体上にはシグナルは認められなかった)。

(二) 骨格筋(Skeletal muscle)における別態様スプライシング(alternative splicing)

骨格筋より調製したRNAのRT-PCR後の直接DNA配列決定では、エクソン1.0、エクソン1.0-1.1又はエクソン1の一部(エクソン1のドナーサイトから下流18 bp)を欠く、別態様スプライシングの3種のインフレーム転写物(AL1、L2及びAL3)が確認された(図7参照)。

この別態様スプライシングの模式図を図7に示す。正常骨格筋からの主要な

RT-PCR増幅産物は、N1とN2で示されている。3つのタイプのバリアントは、AL1、AL2及びAL3で示されている。

これら別態様スプライシング転写物のそれぞれは、3の倍数のヌクレオチドを欠失しており、いずれもそのリーディングフレームは維持されていた。

図3及び4に示すように、エクソン1-2及びエクソン11は、順次、トランスマンプラン領域M1及びM2に相当する。該M1及びM2領域は、エクソン10によってコードされる近接疎水性セグメント(H5)とともに、ion pore and ion-binding サイトを形成するとされている。(Valera S., et al., *Nature*, 371: 516-519, 1994; Brake A. J., et al., *Nature*, 371: 519-523, 1994)。

構造的推定によれば、これらのエクソンは、生物学的機能に重要なドメインをコードしているものと思われる。

(ホ)ヒト癌細胞株における発現と別態様スプライシング
 近年、異常な別態様スプライシングがヒト癌の発生、進展及び又は転移に何等の関与をなしていることが報告されている(Gunther U., et al., *Cell*, 65: 13-24, 1991; Arch R., et al., *Science (Washington DC)*, 257: 682-685, 1992)。そこで、4種の横紋筋肉腫、2種の骨肉腫及び1種の脂肪肉腫に由来する細胞株で、本発明遺伝子のmRNAレベル及び別態様スプライシングをRT-PCR解析により評価した。結果を図8~10に示す。同図において、RT-PCRは、細胞株から調製した全RNA(200ng)を用いて前記に従い実施したものであり、各レーン(Cell lines)は、横紋筋肉腫(A204: レーン1, A673: レーン2, Hs729T: レーン3, RD: レーン4), 脂肪肉腫(SW872: レーン5)及び骨肉腫(NY: レーン6, Hu03NI: レーン7)におけるものである。また、骨格筋の全RNA(200ng)から調製し希釈(1, 1:2, 1:4, 1:8, 1:16, 1:32)したcDNAを用いてPCR増幅した結果を併せて示している("Skeletal muscle" レーン)。

図8及び9は、前記のN1、AL1、N2、AL2及びAL3における結果を

示すものであり、それらのPCR産物サイズは、順次、392、314、450、384及び306 bpである。尚、RNA鑄型は、GAPDHの増幅をとおしてコントロールし、これは全てのサンプルにおいて同様のシグナルを与えた（図10）。

その結果、この遺伝子の発現は、試験した7種の細胞株中、ひとつの横紋筋肉種細胞株（A673）において顕著に減少していた。また、これら細胞株における別々のスプライシングは、次のとおりであった。エクソン10及びエクソン10-11を欠くスプライスバリアントは、癌細胞におけるその転写パターンが、正常骨格筋でのそれに類似していた。一方、エクソン11の一部を欠失しているバリエントの割合は、正常骨格筋では少なかったのに対し、ひとつの横紋筋肉種細胞株（RD）及びひとつの骨肉腫（Hu03N1）では相対的により多く認められた。

（ヘ）考察

本発明によりATP-gated ion channelsをコードするP2Xファミリーの新規なメンバーであると考えられる新規なp5'3'-誘導型遺伝子が単離された。p5'3'結合性配列は、この遺伝子を含む全コスミドDNAの配列決定により、該遺伝子の下流約1.6 kbに見出された。p5'3'により制御されている遺伝子の機能的p5'3'結合部位は、今まで、これら遺伝子のイントロン又はプロモーター領域中に見出されてきている。本発明の新規遺伝子においては、該機能的p5'3'結合部位は、その下流に位置していた。これらの結果は、p5'3'結合部位がエンハンサー配列として働く可能性を示唆している。

本発明cDNAから推定されるアミノ酸配列は、P2Xレセプターファミリーのメンバー、特にラットP2X6（80%同一性）、に相同意を有する。しかししながら、ラットP2X6 mRNAが脳の広い範囲において見出されるのに対し、この遺伝子は骨格筋において特異的に発現されており、従って、これがラットP2X6のヒト相同物であるとは考えられない。P2Xレセプターは、ATP-gated ion channelsに分類され、細胞死やシナプス伝達のような細胞外ATP

誘導型生物活性のメディエーターとして機能するとされてきている (Zheng L.M., et al., J. Cell Biol., 113: 279-288 1991; Zoetewij J.P., et al., Biochem. J., 288: 207-213, 1992; Kennedy C., et al., Nature, 377: 385-386, 1995)。また、アミノ酸レベルでの配列類似性は、RP-2と呼ばれる部分配列 cDNAとの間でも認められる。RP-2は、ガンマ照射によりアボートーシスを起こしているラット胸腺細胞において誘導されるmRNAからの subtractive バイブリダイゼーションによって単離されている (Owens G.W.P., et al., Mol. Cell. Biol., 11: 4177-4188 1991)。ATPは、細胞内カルシウム濃度を増加することにより、胸腺細胞、肝細胞及び各種のリンパ球細胞株において細胞死を誘導する。これらの事実によれば、本発明遺伝子は、骨格筋における p¹⁵/3 依存性アボトーシス (おそらく細胞外 ATPにより仲介される) に密接に関与しているものと考えられる。

また、ソーザンプロット解析により、骨格筋において 3.4-6 kb 転写物が検出された。この遺伝子の発現は、4種の横紋筋肉種細胞株のひとつにおいて著しく減少していた。加えて、既ransメンブランドメインM1の一部をコードするエクソン 1 の一部を欠失するマイナーなスプライスバリアントが、残り 6 種の癌細胞株の内 2 つにおいて相対的に多く認められた。試験した癌細胞株で別態様スプライシングで生じる異常産物の割合が高かったことは注目され、アミノ末端での不均一性の生物学的意義を明らかにする事が重要となる。更に、横紋筋肉種を含む種々の組織の癌では、この遺伝子を含む染色体領域 (22q11) に欠失があることが報告されており (Newsham E., et al., Genomics, 19: 433-440, 1994; Schofield D. E., et al., Genes Chromosom. Cancer, 15: 10-17, 1996; Biegel J. A., et al., Genes Chromosom. Cancer, 16: 94-105, 1996)、この遺伝子がこの領域に存在する癌抑制遺伝子である可能性を示唆している。

本発明の遺伝子は、多くの有用な特徴を有するため、本発明の目的を達成するための手段として、医薬学的・生物学的・農業的・工業的・商業的・産業上の利用可能性がある。

ヒトゲノムからの機能的 p 5.3 タグサイトのクローニングにおいて、野生型 p 5.3 によって誘導される新規な遺伝子を単離した。この c-DNA 配列は、P 2 X レセプターファミリーに相同意を示す 431 アミノ酸ペプチドをコードするオーブンリーディングフレームを含んでいる。このペプチドは、P 2 X ファミリーのメンバーの主要な特徴を有し (ATP-gated ion channels)、また、プログラム細胞死 (programmed cell death) を誘導された胸腺細胞において活性化される遺伝子、RP-2、と類似する。この遺伝子は、主に骨格筋に発現され、P 2 XM (P2X specifically expressed in skeletal muscle) と名付けられた。該 P 2 XM 遺伝子は、細胞増殖の抑制及び／又は骨格筋におけるアポトーシスに関与すると思われる。

この遺伝子の発現は、試験した 4 種の横紋筋肉種細胞株のひとつにおいて著しく抑制されていた。トランスマンプラン領域 M1 をコードするエクソン 1 の一部を欠くマイナーなスプライスバリエントが、試験した 7 種の癌細胞株の 2 つにおいて相対的に多かった。このことは、このスプライシングによって生じる変異産物の比率が、これらの癌細胞株において著しく増加することを示唆する。この遺伝子は、杆状癌 (rhabdoid tumor) において欠失が知られている染色体バンド 22q11 に位置していた。

本発明によれば、癌抑制遺伝子 p 5.3 による特異的な転写制御下にある新規なヒト遺伝子が提供され、該遺伝子を用いれば、該遺伝子の各種組織での発現の検出や、そのコードする産物の構造及び機能等を解析でき、また、該遺伝子産物の遺伝子工学的製造が可能となり、これらにより、癌の発生、進展、転移等の解明やその診断、予防、治療等に有用な技術が提供される。

配列表

配列番号：1

配列の長さ：431

配列の型：アミノ酸

トポロジー：直線状

配列の種類：蛋白質

配列：

Met Gly Ser Pro Gly Ala Thr Thr Gly Trp Gly Leu Leu Asp Tyr Lys
 1 5 10 15

Thr Glu Lys Tyr Val Met Thr Arg Asn Trp Arg Val Gly Ala Leu Gln
 20 25 30

Arg Leu Leu Gln Phe Gly Ile Val Val Tyr Val Val Gly Trp Ala Leu
 35 40 45

Leu Ala Lys Lys Gly Tyr Gln Glu Arg Asp Leu Glu Pro Gln Phe Ser
 50 55 60

Ile Ile Thr Lys Leu Lys Gly Val Ser Val Thr Gln Ile Lys Glu Leu
 65 70 75 80

Gly Asn Arg Leu Trp Asp Val Ala Asp Phe Val Lys Pro Pro Gln Gly
 85 90 95

Glu Asn Val Phe Phe Leu Val Thr Asn Phe Leu Val Thr Pro Ala Gln
 100 105 110

Val Gln Gly Arg Cys Pro Glu His Pro Ser Val Pro Leu Ala Asn Cys
 115 120 125

Trp Val Asp Glu Asp Cys Pro Glu Gly Glu Gly Thr His Ser His
 130 135 140

Gly Val Lys Thr Gly Gln Cys Val Val Phe Asn Gly Thr His Arg Thr

145 150 155 160
 Cys Glu Ile Trp Ser Trp Cys Pro Val Glu Ser Gly Val Val Pro Ser
 165 170 175
 Arg Pro Leu Leu Ala Gln Ala Gln Asn Phe Thr Leu Phe Ile Lys Asn
 180 185 190
 Thr Val Thr Phe Ser Lys Phe Asn Phe Ser Lys Ser Asn Ala Leu Glu
 195 200 205
 Thr Trp Asp Pro Thr Tyr Phe Lys His Cys Arg Tyr Glu Pro Gln Phe
 210 215 220
 Ser Pro Tyr Cys Pro Val Phe Arg Ile Gly Asp Leu Val Ala Lys Ala
 225 230 235 240
 Gly Gly Thr Phe Glu Asp Leu Ala Leu Leu Gly Gly Ser Val Gly Ile
 245 250 255
 Arg Val His Trp Asp Cys Asp Leu Asp Thr Gly Asp Ser Gly Cys Trp
 260 265 270
 Pro His Tyr Ser Phe Gln Leu Gln Glu Lys Ser Tyr Asn Phe Arg Thr
 275 280 285
 Ala Thr His Trp Trp Glu Gln Pro Gly Val Glu Ala Arg Thr Leu Leu
 290 295 300
 Lys Leu Tyr Gly Ile Arg Phe Asp Ile Leu Val Thr Gly Gln Ala Gly
 305 310 315 320
 Lys Phe Gly Leu Ile Pro Thr Ala Val Thr Leu Gly Thr Gly Ala Ala
 325 330 335
 Trp Leu Gly Val Val Thr Phe Phe Cys Asp Leu Leu Leu Tyr Val
 340 345 350
 Asp Arg Glu Ala His Phe Tyr Trp Arg Thr Lys Tyr Glu Glu Ala Lys

355	360	365
Ala Pro Lys Ala Thr Ala Asn Ser Val Trp Arg Glu Leu Ala Leu Ala		
370	375	380
Ser Gln Ala Arg Leu Ala Glu Cys Leu Arg Arg Ser Ser Ala Pro Ala		
385	390	395
Pro Thr Ala Thr Ala Ala Gly Ser Gln Thr Gln Thr Pro Gly Trp Pro		
405	410	415
Cys Pro Ser Ser Asp Thr His Leu Pro Thr His Ser Gly Ser Leu		
420	425	430

配列番号 : 2
配列の長さ : 1293
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直線状
配列の種類 : DNA (cDNA)
配列 :
ATGGGCTCCC CAGGGCTAC GACAGGCTGG GGGCTTCTGG ATTATAAGAC GGAGAAGTAT 60
GTGATGACCA GGAACCTGGCG GGTGGGGCGCC CTCCAGAGGC TGCTCCAGTT TGGGATCGTG 120
GTCTATGTGG TAGGGTGGCC GCTCCTCGCC AAAAAAGGCT ACCAGGAGCG GGACCTGGAA 180
CCCCAGTTTT CCATCATCAC CAAACTCAAA GGGTTTCCG TCACTCAGAT CAAGGAGCTT 240
GGAAACCCGC TGTGGGATGT GCCCGACTTC GTGAAGCCAC CTCAGGGAGA GAACTGTTC 300
TTCTTGGTGA CCAACTTCCT TGTGACGCCA CCCCAAGTTC AGGGCAGATG CCCAGGACAC 360
CCGTCCGTCC CACTGGCTAA CTGCTGGTC GACGAGGACT GCCCCGAACC GGAGGGAGGC 420
ACACACAGCC ACGCTGTAAA AACAGGCCAG TGTGTGCTGT TCAATGGGAC CCACAGGACC 480
TGTGAGATCT CGAGTTGGTG CCCCGTGGAG ACTGGCCTTG TGCCCTCGAG GCCCCGTGCTG 540
GCCCGAGGCC AGAACCTTCAC ACTGTTCATC AAAAACACAG TCACCTTCAG CAAGTTCAAC 600

TTCTCTAACT CCAATCCCTT GGAGACCTGG GACCCCCACCT ATTTTAAGCA CTGCCCCCTAT	660
GAACCACAAT TCAGCCCCTA CTGTCCCCGTG TTCCGCATTG GGGACCTCTG ·GCCCAAGGCT	720
GGAGGGACCT TCGAGGACCT GGCGTTGCTG GGTGGCTCTG TAGGCATCAG AGTTCACTGG	780
GATTGTGACC TGGACACCCGG GGACTCTGGC TGCTGGCCTC ACTACTCCTT CCAGCTGCCAG	840
GAGAAGAGCT ACAACTTCAG GACAGCCACT CACTGGTGGG ACCAACCGGG TGTGGAGGCC	900
CCGACCCCTGC TCAAGCTCTA TCCAATCCGC TTCCGACATCC TCGTCACCCGG GCAGGCAGGG	960
AAGTTCCGGGC TCATCCCCAC GGCGTCACA CTGGGCACCG GGGCAGCTTG GCTGGGGCTG	1020
GTCACCTTTT TCTGTGACCT GCTACTGCTG TATGTGGATA GAGAAGCCCA TTTCTACTGG	1080
AGGACAAAGT ATGAGGAGGC CAAGGCCCCG AAAGCAACCG CCAACTCTGT GTGGAGGGAG	1140
CTGGCCCTTG CATCCCAAGC CCGACTGGCC GACTGCCTCA GACGGAGCTC ACCACCTGCCA	1200
CCCACGGCCA CTGCTGCTGG GAGTCAGACA CAGACACCAAG GATGGCCCTG TCCAAGTTCT	1260
GACACCCACT TGCCCAACCA TTCCGGGAGC CTG	1293

配列番号：34-007501-00000000000000000000000000000000

配列の長さ: 1 6 9 7

配列の型：核酸

鎖の数：一本鎖

トボロジー・直線状

配列の種類: DNA (cDNA)

配列の特徴

特徴を表わす記号 : CDS

存在位置：4 6 . . 1 3 3 8

特徵

配列：[]

CTGCCATGCT GACTCATGTC CCCGGAGCTA GCAGGGAGCTG GCAGC ATG GGC TCC

Met Gly Ser

CCA GGG GCT ACG ACA GGC TGG GGG CTT CTG GAT TAT AAG ACG GAG AAG 102
 Pro Gly Ala Thr Thr Gly Trp Gly Leu Leu Asp Tyr Lys Thr Glu Lys
 5 10 15
 TAT GTG ATG ACC AGG AAC TGG CGG GTG GGC GCC CTG CAG AGG CTG CTG 150
 Tyr Val Met Thr Arg Asn Trp Arg Val Gly Ala Leu Gln Arg Leu Leu
 20 25 30 35
 CAG TTT GGG ATC GTG GTC TAT GTG GTA GGG TGG GCG CTC CTC GCC AAA 198
 Gln Phe Gly Ile Val Val Tyr Val Val Gly Trp Ala Leu Leu Ala Lys
 40 45 50
 AAA GGC TAC CAG GAG CCG GAC CTG GAA CCC CAG TTT TCC ATC ATC ACC 246
 Lys Glu Tyr Gln Glu Arg Asp Leu Glu Pro Gln Phe Ser Ile Ile Thr
 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285 10290 10295 10300 10305 10310 10315 10320 10325 10330 10335 10340 10345 10350 10355 10360 10365 10370 10375 10380 10385 10390 10395 10400 10405 10410 10415 10420 10425 10430 10435 10440 10445 10450 10455 10460 10465 10470 10475 10480 10485 10490 10495 10500 10505 10510 10515 10520 10525 10530 10535 10540 10545 10550 10555 10560 10565 10570 10575 10580 10585 10590 10595 10600 10605 10610 10615 10620 10625 10630 10635 10640 10645 10650 10655 10660 10665 10670 10675 10680 10685 10690 10695 10700 10705 10710 10715 10720 10725 10730 10735 10740 10745 10750 10755 10760 10765 10770 10775 10780 10785 10790 10795 10800 10805 10810 10815 10820 10825 10830 10835 10840 10845 10850 10855 10860 10865 10870 10875 10880 10885 10890 10895 10900 10905 10910 10915 10920 10925 10930 10935 10940 10945 10950 10955 10960 10965 10970 10975 10980 10985 10990 10995 11000 11005 11010 11015 11020 11025 1103

135	140	145	
ACA GGC CAG TGT GTG GTG TTC AAT GGG ACC CAC AGG ACC TGT GAG ATC			534
Thr Gly Gln Cys Val Val Phe Asn Gly Thr His Arg Thr Cys Glu Ile			
150	155	160	
TGG AGT TGG TCC CCC GTG GAG AGT GCC GTT GTG CCC TCG AGG CCC CTG			582
Trp Ser Trp Cys Pro Val Glu Ser Gly Val Val Pro Ser Arg Pro Leu			
165	170	175	
CTG GCC CAG CCC CAG AAC TTC ACA CTG TTC ATC AAA AAC ACA GTC ACC			630
Leu Ala Gln Ala Gln Asn Phe Thr Leu Phe Ile Lys Asn Thr Val Thr			
180	185	190	195
TTC AGC AAG TTC AAC TTC TCT AAG TCC AAT GCC TTG GAG ACC TGG GAC			678
Phe Ser Lys Phe Asn Phe Ser Lys Ser Asn Ala Leu Glu Thr Trp Asp			
Asp Gln Asp 200 Asp Val Val Val 205 Asp Val Val Val 210 Asp Val Val			
CCC ACC TAT TTT AAG CAC TGC CCC TAT GAA CCA CAA TTC ACC CCC TAC			726
Pro Thr Tyr Phe Lys His Cys Arg Tyr Glu Pro Gln Phe Ser Pro Tyr			
215	220	225	
TGT CCC GTG TTC CGC ATT GGG GAC CTC GTG GCC AAG GCT GGA GGG ACC			774
Cys Pro Val Phe Arg Ile Gly Asp Leu Val Ala Lys Ala Gly Gly Thr			
230	235	240	
TTC GAG GAC CTG CGC TTG CTC CGT CGC TCT GTC GGC ATC AGA GTT CAC			822
Phe Glu Asp Leu Ala Leu Leu Gly Gly Ser Val Gly Ile Arg Val His			
245	250	255	
TGG GAT TGT GAC CTG GAC ACC GGG GAC TCT GGC TGC TGG CCT CAC TAC			870
Trp Asp Cys Asp Leu Asp Thr Gly Asp Ser Gly Cys Trp Pro His Tyr			
260	265	270	275
TCC TTC CAG CTG CAG GAG AAC AGC TAC AAC TTC AGG ACA CCC ACT CAC			918

Ser Phe Gln Leu Gln Glu Lys Ser Tyr Asn Phe Arg Thr Ala Thr His
 280 285 290
 TGG TCG GAG CAA CCG GGT GTG GAG GCC CGC ACC CTG CTC AAG CTC TAT 966
 Trp Trp Glu Gln Pro Gly Val Glu Ala Arg Thr Leu Leu Lys Leu Tyr
 295 300 305
 GGA ATC CGC TTC GAC ATC CTC GTC ACC GGG CAG GCA GGG AAG TTC GGG 1014
 Gly Ile Arg Phe Asp Ile Leu Val Thr Gly Gln Ala Gly Lys Phe Gly
 310 315 320
 CTC ATC CCC ACG CCC CTC ACA CTG GGC ACC GGG GCA GCT TGG CTG GGC 1062
 Leu Ile Pro Thr Ala Val Thr Leu Gly Thr Gly Ala Ala Trp Leu Gly
 325 330 335
 CTG GTC ACC TTT TTC TGT GAC CTG CTA CTG CTG TAT GTG GAT AGA GAA 1110
 Val Val Thr Phe Phe Cys Asp Leu Leu Leu Tyr Val Asp Arg Glu
 340 345 350 355
 GCC CAT TTC TAC TGG AGG ACA AAG TAT GAG GAG GCC AAG GCC CCG AAA 1158
 Ala His Phe Tyr Trp Arg Thr Lys Tyr Glu Glu Ala Lys Ala Pro Lys
 360 365 370
 GCA ACC CCC AAC TCT GTG TGG AGG GAG CTG CCC CTT GCA TCC CAA CCC 1206
 Ala Thr Ala Asn Ser Val Trp Arg Glu Leu Ala Leu Ala Ser Gln Ala
 375 380 385
 CCA CTG CCC GAG TGC CTC AGA CGG AGC TCA GCA CCT GCA CCC ACG CCC 1254
 Arg Leu Ala Glu Cys Leu Arg Arg Ser Ser Ala Pro Ala Pro Thr Ala
 390 395 400
 ACT GCT GCT GGG AGT CAG ACA CAG ACA CCA GGA TGG CCC TGT CCA ACT 1302
 Thr Ala Ala Gly Ser Gln Thr Gln Thr Pro Gly Trp Pro Cys Pro Ser
 405 410 415

TCT GAC ACC CAC TTG CCA ACC CAT TCC GGG AGC CTG TAGCCGTTCC 1348
Ser Asp Thr His Leu Pro Thr His Ser Gly Ser Leu
420 425 430
CTGCTGGTTG AGAGTTGGGG GCTGGGAAGG GCGGGGCCCT GCCTGGGGAT TTCAAGGATG 1408
AGGCCCCAGC ATGGAGGATT GGGGGTAGAA TTCCACCCCT GAACCCCAGC AAACAGTCCC 1468
TCCCCCTGACT CCCACCTTGG TAGGGTGCTG CCTCAGGGAG CCATAAAAGT CGGCTGTGTT 1528
TTGAGACGGC GACAGAACCT GACCCGTGGA CACTGGGAGA GCCCAGCAGG CACCTGTATT 1588
GCAGGGCTCC CACTGCATGT GGCAAGGGCT CCTGGCTGGT CTGGGCCTGA AGGTCTCTCT 1648
CCCAGTGCTC TGTCCCCACT GTTCCTAGCA GAGGTATGCT TACCAGCTG 1697

請求の範囲

1. 配列番号：1で示されるアミノ酸配列の全部又は一部をコードする塩基配列を含むヒト遺伝子。
2. 配列番号：2で示される塩基配列の全部又は一部を含む請求項1記載の遺伝子。
3. 請求項1又は2記載の遺伝子の一部の塩基配列を有することを特徴とする請求項1又は2記載の遺伝子検出用プローブ又はプライマー。

图 1

図 2

図 3

a	Exon	Length(bp)	Coordinates	Splice acceptor	Splice donor
1	>179	1-179	-	-	CTG GAA CG / gtaaaggag
2	151	180-330	cctcccccag / G TGG GCG	CCA CCT CAG / gtgggggg	
			Gly Try Ala	Val Val Gly	
3	72	331-402	gcctccatcg/GCA GAG AAC	GGC CCA GAG / gtgagttt	
			Gly Glu Asn	Cys Pro Glu	
4	76	403-478	ccacatcg/CAC CCC TCC	AGC CAC G / gtaaagtgc	
			Gly His Pro Ser	Ser His Gly	
5	94	479-572	tttttcgtttcg/GT GAA AA	CTG CCA TC / gtaaagtgc	
			Gly Val Lys	Val Pro Ser	
6	81	573-653	cacctcgag / G AGG CCC	TTC TCT AA / gtaaaggaa	
			Ser Arg Pro	Phe Ser Lys	
7	142	654-795	tccctcccg / G TCC ATT	GCG TTG CTG / gtgggtccc	
			Lys Ser Asn	Ala Leu Leu	
8	110	796-905	tatgtcgag/GCT GCC TCT	AAC TTG AG / gtgaggccc	
			Gly Ser	Tyr Asn Arg	
9	94	906-999	tgcaccacag / G ACA GCC	ACC GGG CAG / gtaggcaca	
			Arg Thr Ala	Thr Gly Gin	
10	66	1000-1065	ctctctcgag/GCA GGG AAG	CTG GGC GTG / gtgagtgcg	
			Ala Gly Lys	Leu Gly Val	
11	78	1066-1143	ctctcccg/GTC ACC TTT	TAT CAC GAC / gtaggtcta	
			Val Thr Phe	Tyr Glu Glu	
12	>2409	1144-3552	catctcgag/GCC AAG GCC	-	
			Ala Lys Ala	-	

図 4

图 5

M1

6

P21N -SINERTAPAHWOPGUARTL P211 -P212 -P213 -P214 -P215 -P216 -P217
P21N REPAIR HVO -NGTURREH SKVFS EHDLLDCKAGND P211 REPAIR KI KING GTRPRRMRV P212 SGNHR REPAIR KI KING GTRPRRMRV P213 PGTR REPAIR KMEGSEYRTLMEKREAR P214 PGTR REPAIR KIRDLAGEBORNLMAYC8R8D P215 SGTR REPAIR YRDPRCEPDRDPMAYCRD P216 -GTRPRRANHWAASQESRSLEL P217 PGTR REPAIR KTKEN -GTRPRRTHAASGRDLDCTGSND

M2

15

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
217

P211	ALADARLACRASSSPPAPTPAAGSQTQGPCCPSDTALPHSCSL	431
P211	TSSPLGQEWHRTS	399
P212	ALVAGOIPPSPSYSDQQPPSPSPSGCTLGEGEPLPLVQSPDPCISLTZQVDTLQCGHNGQPRPVPLPQDQDSSTSDVCLAQI	472
P213	PASQATVEQSTDAYSIGI	397
P213	ENHQERPEDEPLERIAQDEQQLAEQSGRKNSCIVLLEPARTGLREHAIWVYIOSQILIPKVTK	455
P214	KCPDIVEPPLKTVSFYDDEPIINHVQOLLSLQD1QGQVRPPODPELTSQSLSLSHSPPPRGOPSENQLOIPEAVPSSRDSPVWCQCHCLPSQ	486
P214	LPPMRRALFELCRAKPQGOCITSELPSKIVSREALLLIQPPLAEGEAMINSLLRCAKISIAATHVPSQDHAELPSPCCRMIKIRAEFPKTQG	585

図 7

図 8

图 9

図 10

10/11

图 11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/01146

A CLASSIFICATION OF SUBJECT MATTER
Int.Cl' C12N15/12, C12Q1/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl' C12N15/12, C12Q1/68

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
DDBJ, GenBank, EMBL, GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X	FEBS Lett. 418 (1997 Nov.) Khanh-Tuoc Le et al., "Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system." p. 195-199	1-3
P, X	Cancer Res. 57 [15] (1997 Aug.) Tsutomu Urano et al., "Cloning of P2XM, a Novel Human P2X Receptor Gene Regulated by p53" p.3281-3287	1-3
X	WO, 95/33048, A2 (Glaxo Group Ltd.), July 12, 1995 (12. 07. 95) & EP, 760850, A1 & JP, 10-501122	1-3
X	Receptors Channels 3 [4] (1995) Valera S et al., "Characterization and chromosomal localization of a human P2X receptor from the urinary bladder" p.283-289	1-3

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "U" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "V" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search June 17, 1998 (17. 06. 98)	Date of mailing of the international search report June 30, 1998 (30. 06. 98)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

国際調査報告

国際出願番号 PCT/JP98/01146

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl^a C12N15/12, C12Q1/68

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl^a C12N15/12, C12Q1/68

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

DDJ, GenBank, EMBL, GeneSeq

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, X	FEBS Lett. 418 (1997 Nov.) Khanh-Tuoc Le et al. "Primary structure and expression of a naturally truncated human P2X ATP receptor subunit from brain and immune system." p. 195-199	1-3
P, X	Cancer Res. 57 [15] (1997, Aug.) Tsutomu Urano et al. "Cloning of P2XM, a Novel Human P2X Receptor Gene Regulated by p53" p. 3281-3287	1-3
X	WO, 95/33048, A2 (グラクソ、グループ、リミテッド) 12. 7月. 1995 (12. 07. 9 5) & EP, 760850, A1 & JP, 10-501122, A	1-3

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたものの

「I」優先権主張に疑惑を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

17. 06. 98

国際調査報告の発送日

30 jun 1998

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

吉住 和之

印 4B 9548

電話番号 03-3581-1101 内線 3449

C (続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文獻の カテゴリーや*	引用文獻名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	Receptors Channels 3 [4] (1995) Valera S et al "Characterization and chromosomal localization of a human P2X receptor from the urinary bladder" p. 283-289	1-3

様式PCT/ISA/210 (第2ページの続き) (1992年7月)