Real Analysis

Problem Set 4

June 03, 2021

I. Denote $A \sim B$ iff A and B are equicontinuous. Prove the following:

(a)
$$A \sim A$$
 for all sets A .

- (b) If $A \sim B$ then $B \sim A$, for all sets A, B.
- (c) If $A \sim B$ and $B \sim C$ then $A \sim C$, for all sets A, B, C.

2. Prove the following.

(e)
$$\mathbb{R}^{\mathbb{N}} \not\sim \mathbb{N}$$

(b)
$$(0,1) \sim (0,1] \sim [0,1]$$

(f)
$$\mathbb{R}^{(\mathbb{N})} \sim \mathbb{N}$$

(c)
$$(0,1) \sim \mathbb{R}$$

(g)
$$\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$$

(d)
$$2^{\mathbb{N}} \sim \mathbb{R}$$

(h)
$$\mathbb{N} \times \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$$

3. Let S be any set. Show that f is not a surjection $\forall f \in \mathscr{P}(S)^S$.

- 4. Let $S \subseteq \mathbb{R}$ be a finite set. Show that $S' = \emptyset$.
- 5. Let $X = (x_n) \in \mathbb{R}^{\mathbb{N}}$. And let X' be the set of its limit points in \mathbb{R} . Let $q \in \mathbb{R}$ be a limit point of X' in \mathbb{R} . Show that $q \in X'$.
- 6. For any set $S \subseteq \mathbb{R}$ define the diameter of S as diam $(S) := \sup \{|x y| : x, y \in S\}$.
 - (a) Let $X = (x_n) \in \mathbb{R}^{\mathbb{N}}$. Show that X is Cauchy iff $\lim_{n \to \infty} \text{diam} (\{x_k : k \ge n\}) = 0$.
 - (b) Let $S \subseteq \mathbb{R}$ be a bounded set. Show that diam $(S' \cup S) = \text{diam}(S)$.
- 7. Let $X \in \mathbb{R}^{\mathbb{N}}$ be monotone. Show that X converges iff it is bounded.
- 8. Let $x_n = \frac{(-1)^n}{1 + \frac{1}{n}}$. Compute $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$.
- 9. Let $X = (x_n) \in \mathbb{R}^{\mathbb{N}}$. Show that $\lim_{n \to \infty} x_n = a \in \overline{\mathbb{R}}$ iff $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = a$.
- io. For $a \in \mathbb{R}$ what is $\lim_{n \to \infty} n^a$?
- II. For $a \in \mathbb{R}$ what is $\lim_{n \to \infty} a^{\frac{1}{n}}$?
- 12. Let $x_1 = \sqrt{2}$ and inductively define $x_{n+1} = \sqrt{2 + \sqrt{x_n}}$. Show that $x_n < 2$. Show that x_n converges.

13. Let $x_1 = 0$ and inductively define

$$x_n = \begin{cases} \frac{x_{n-1}}{2} & \text{if } 2 \mid n \\ \frac{1}{2} + x_{n-1} & \text{otherwise} \end{cases}$$

- Find $\limsup_{n\to\infty} x_n$, $\liminf_{n\to\infty} x_n$ converges.
- 14. Let J be an indexing set and $\{A_{\alpha} : \alpha \in J\}$ be a collection of sets, indexed by J. Describe the following sets:

$$\bigcap_{\alpha \in J} A_{\alpha} \qquad \bigcup_{\alpha \in J} A_{\alpha}$$

- 15. Let $f: X \to Y$ be a function and $A, B \subseteq X, C, D \subseteq Y$. Define $f^{-1}(Y') \coloneqq \{x \in X : f(x) \in C\}$ for any $Y' \subseteq Y$. For $y \in Y$ define $f^{-1}(y) \coloneqq f^{-1}(\{y\})$. Show that
 - (a) $f(A \cup B) = f(A) \cup f(B)$
 - (b) $f(A \cap B) \subseteq f(A) \cap f(B)$
 - (c) $A \subseteq f^{-1}(f(A))$
 - (d) $f(f^{-1}(C)) \subseteq C$
 - (e) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
 - (f) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
 - (g) $f^{-1}(C^c) = (f^{-1}(C))^c$ where $C^c = Y \setminus C$, $(f^{-1}(C))^c = S \setminus f^{-1}(C)$
- 16. Let $x_1 = a$, $x_2 = b$. Inductively define $a_{n+1} = \frac{a_n + a_{n+1}}{2} \forall n \ge 1$. Show that x_n converges. Further show that the limit of this sequence is $\frac{a+2b}{3}$.
- 17. Let $a_1 = b_1 = 1$. Inductively define $a_{n+1}, b_{n+1} \in \mathbb{Z}$ to be such that $a_{n+1} + b_{n+1}\sqrt{2} = \left(a_n + b_n\sqrt{2}\right)^2$. Show that $a_n 2b_n^2 = 1 \forall n$. Deduce that $\frac{a_n}{b_n}$ converges to $\sqrt{2}$.
- 18. Let $a \in (0,1)$ and $x_1 = a$. Inductively define $x_{n+1} = \sqrt{1 x_n^2} \ \forall n \ge 1$. Prove that $\lim_{n \to \infty} x_n = 0$ and $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \frac{1}{2}$.
- 19. Let $x \in [0, 1]$. Define a sequence as $a_{n,m} = \cos^{2n}(m!\pi x)$. Show that $\lim_{m \to \infty} \lim_{n \to \infty} a_{n,m}$ exists in all cases. **Hint**: Consider separate cases for $x \in [0, 1] \cap \mathbb{Q}$ and $x \in [0, 1] \setminus \mathbb{Q}$.
- 20. For some $x_1 \in \mathbb{R}$ define a sequence inductively by $x_{n+1} = x_n^3 + 6$. if $x_1 = \frac{1}{2}$, prove that the sequence converges. What happens if $x_1 = \frac{3}{2}$ or $x_2 = \frac{5}{2}$?

2