elliptic surface $\pi: S \to C$ の定義などは [Ueh15] に従う.

Thm.0.1 $\pi: S \to C$ を elliptic surface とし, $G \subset S$ を (-2)-curve, $a \in \mathbb{Z}$ を整数とする.このとき S の spherical object $\mathcal{O}_G(a)$ に付随する twist functor の核

$$P = \operatorname{Cone}(\mathcal{O}_G(a) \boxtimes \mathcal{O}_G(a)^{\vee} \xrightarrow{ev} \mathcal{O}_{\Delta})$$

は $S \times_C S$ 上の層である.

Lem.0.1 $\pi: S \to C$ を elliptic surface とする. この時 π は flat である.

 $\operatorname{\underline{\mathbf{Proof}}}$ $\pi(x)=y$ とおくと、局所環の射 $\mathcal{O}_{C,y}\to\mathcal{O}_{S,x}$ が誘導される。 $\mathcal{O}_{C,y}$ は PID で、 $\mathcal{O}_{S,x}$ は E則局所環だから特に整域である。よって $\mathcal{O}_{S,x}$ は PID 上の torsion-free 加群だから flat である。

Lem.0.2 図式

$$S \times_C S \longrightarrow S \times S$$

$$\downarrow \qquad \qquad \downarrow_{\pi \times \pi}$$

$$C \xrightarrow{\Delta_C} C \times C$$

はカルテシアンである.

Proof いわゆる magic diagram.

Lem.0.3 $X = S \times_C S, Y = S \times S$ とし、 $i: X \to Y$ を inclusion とする. このとき Y 上の line bundle L と完全列

$$0 \to L \to \mathcal{O}_Y \to \mathcal{O}_X \to 0$$

がある. ここで $\mathcal{O}_Y \to \mathcal{O}_X$ は自然な全射である.

Proof C は非特異だから, Δ_C : $C \to C \times C$ により C は $C \times C$ の中で local complete intersection であり、完全列

$$0 \to \mathcal{O}_{C \times C}(-\Delta) \to \mathcal{O}_{C \times C} \to \mathcal{O}_{\Delta} \to 0$$

がある. さらに Lem.0.1 より $\pi \times \pi$ は flat だから,この完全列を $\pi \times \pi$ で pullback して Lem.0.2 の図式と組み合わせると求める完全列を得る.

Lem.0.4 Lem.0.3 の状況で $F \in Coh(X)$ とすると

$$Li^*(i_*F) \cong F[0] \oplus (F \otimes L_{|X})[1]$$

である. さらに随伴 $Li^* \dashv i_*$ に付随する counit 射 ϵ : $Li^*(i_*F) \to F$ は,この同型により自然な projection $F[0] \oplus (F \otimes L_{|X})[1] \to F$ に対応する(はず,**まだ確かめてない!**).

Proof $i_*: D^*(X) \to D^*(Y)$ は exact だから $i_*Li^* \cong L(i_*i^*)$ である.ここで $i_*i^* \cong - \otimes_{\mathcal{O}_Y} \mathcal{O}_X$ だから, $L(i_*i^*) \cong - \otimes_{\mathcal{O}_Y}^L \mathcal{O}_X$ となる.よって Lem.0.3 の完全列により \mathcal{O}_X を分解することで

$$L(i_*i^*)(i_*F) \cong (\cdots \to 0 \to i_*F \otimes L \xrightarrow{d^{-1}} i_*F \to 0 \to \cdots)$$

となる $(i_*F$ が 0 次の complex). このとき, d^{-1} が 0 射であることをしめす.問題は local なので X,Y は affine としてよい. $Y=\operatorname{Spec} A,X=\operatorname{Spec} A/I$ とし,F は A/I 加群 M に付随する層だとする.Lem.0.3 の完全列は

$$0 \to A \to A \to A/I \to 0$$

となり、左の射は I の生成元 f による f 倍写像である。すると d^{-1} は f 倍写像 $M\to M$ となるが、M は A/I 加群なのでこれは 0 射に等しい.

ここまでで

$$i_*Li^*(i_*F) \cong i_*F[0] \oplus i_*(F \otimes L)[1]$$

が示せた. よって後は「 i_* を施して層のシフトの(bounded な)直和になる complex は,元々層のシフトの直和である」ことを証明すればよい. それは complex の長さによる帰納法でわかる.

また counit 射
$$\epsilon$$
: $Li^*(i_*F) \to F$ は

Lem.0.5 $G \subset S$ が (-2)-curve で $a \in \mathbb{Z}$ のとき, $\mathcal{O}_G(a) \boxtimes \mathcal{O}_G(a)^{\vee} \in D^b(S \times S)$ は $G \times G \perp \mathcal{O}_G(a)$ $\mathbb{Z}_G(a) \otimes \mathcal{O}_G(a)$ $\mathbb{Z}_G(a) \otimes \mathcal{O}_G(a)$ である.

Proof S 上の divisor D であって G.D=a であるものを 1 つとる. ($G.G=-2\neq 0$ と Poincaré duality により必ずとれる.) このとき $\mathcal{O}_S(D)_{|G}\cong\mathcal{O}_G(a)$ である. 完全列

$$0 \to \mathcal{O}_S(-G) \to \mathcal{O}_S \to \mathcal{O}_G \to 0$$

より、 $D^b(S)$ において

$$\mathcal{O}_G(a) \cong (\cdots \to 0 \to \mathcal{O}_S(D-G) \to \mathcal{O}_S(D) \to 0 \to \cdots)$$

となる(右辺は 0 次に $\mathcal{O}_S(D)$ がある complex). よって

$$\mathcal{O}_G(a)^{\vee} \cong (\cdots \to 0 \to \mathcal{O}_S(-D) \to \mathcal{O}_S(G-D) \to 0 \to \cdots)$$

 $\cong \mathcal{O}_S(G-D)_{|G}[-1]$

となる. すると

$$\mathcal{O}_{G}(a) \boxtimes \mathcal{O}_{G}(a)^{\vee}$$

$$\cong p_{1}^{*}\mathcal{O}_{S}(D)_{|G} \otimes^{L} p_{2}^{*}\mathcal{O}_{S}(G-D)_{|G}[-1]$$

$$\cong \mathcal{O}_{S \times S}(D \times S)_{|G \times S|} \otimes^{L} \mathcal{O}_{S \times S}(S \times G - S \times D)_{|S \times G}[-1]$$

となる. よって derived tensor の higher cohomology が消えていることを示せばこれは

$$\mathcal{O}_{S\times S}(D\times S)_{|G\times S}\otimes \mathcal{O}_{S\times S}(S\times G - S\times D)_{|S\times G}[-1]$$

= $\mathcal{O}_{S\times S}(D\times S + S\times G - S\times D)_{|G\times G}[-1]$

となり命題が示される. 問題は local なので $\mathcal{O}_{S\times S}(D\times S)_{|G\times S}$ と $\mathcal{O}_{S\times S}(S\times G-S\times D)_{|S\times G}$ は それぞれ $\mathcal{O}_{G\times S}$ と $\mathcal{O}_{S\times G}$ だと思ってよく,すると $G\times S$ と $S\times G$ が $S\times S$ の中で transversal intersection なので全ての q>0 について

$$\mathcal{T}or_{q}^{\mathcal{O}_{S\times S}}(\mathcal{O}_{G\times S},\mathcal{O}_{S\times G})=0$$

となり derived tensor の higher cohomology が消えていることがわかる.

Thm.0.2 $\pi: S \to C$ を elliptic surface とし、 $G \subset S$ を (-2)-curve、 $a \in \mathbb{Z}$ を整数とする.このとき S の spherical object $\mathcal{O}_G(a)$ に付随する twist functor の核

$$P = \operatorname{Cone}(\mathcal{O}_G(a) \boxtimes \mathcal{O}_G(a)^{\vee} \xrightarrow{ev} \mathcal{O}_{\Delta})$$

は $S \times_C S$ 上の complex (より強く, 層) の pushforward である.

Proof Lem.0.5 より, $G \times G$ 上の層 F を用いて $\mathcal{O}_G(a) \boxtimes \mathcal{O}_G(a)^{\vee} \cong F[-1]$ と表せる. よって $D^b(S \times S)$ における distinguished triangle

$$F[-1] \xrightarrow{ev} \mathcal{O}_{\Delta} \to P \xrightarrow{+1} F$$

がある.ここでもし $ev \in \operatorname{Hom}_{D^b(S \times S)}(F[-1], \mathcal{O}_{\Delta})$ が $\operatorname{Hom}_{D^b(S \times_C S)}(F[-1], \mathcal{O}_{\Delta})$ の元の像だったとすると, $D^b(S \times_C S)$ での Cone

$$P' = \operatorname{Cone}(\mathcal{O}_G(a) \boxtimes \mathcal{O}_G(a)^{\vee} \xrightarrow{ev} \mathcal{O}_{\Delta})$$

を $D^b(S \times S)$ に push したものは P と同型になる. よって inclusion $S \times_C S \to S \times S$ による (derived) pushforward が誘導する射

$$\operatorname{Hom}_{D^b(S\times_C S)}(F[-1],\mathcal{O}_{\Delta})\to \operatorname{Hom}_{D^b(S\times S)}(F[-1],\mathcal{O}_{\Delta})$$

が全射であることを証明すれば定理が示される.

以下 $X = S \times_C S$, $Y = S \times S$ とおき, $i: X \to Y$ を自然な inclusion とする.

$$\operatorname{Hom}_{D^b(S\times S)}(F[-1], \mathcal{O}_{\Delta})$$

$$= \operatorname{Ext}_Y^1(i_*F, i_*\mathcal{O}_{\Delta})$$

$$\cong \operatorname{Ext}_X^1(Li^*(i_*F), \mathcal{O}_{\Delta})$$

となるが、Lem.0.4 よりこれは $\operatorname{Hom}_X(F\otimes L_{|X},\mathcal{O}_\Delta)\oplus\operatorname{Ext}^1_X(F,\mathcal{O}_\Delta)$ と同型である. さらに pushforward が誘導する射

$$\operatorname{Ext}^1_X(F, \mathcal{O}_\Delta) \to \operatorname{Ext}^1_Y(i_*F, i_*\mathcal{O}_\Delta)$$

は随伴同型 $\operatorname{Ext}^1_Y(i_*F,i_*\mathcal{O}_\Delta)\cong\operatorname{Ext}^1_X(Li^*(i_*F),\mathcal{O}_\Delta)$ により counit 射 $\epsilon\colon Li^*(i_*F)\to F$ の誘導する射

$$\operatorname{Ext}^1_X(F, \mathcal{O}_{\Delta}) \to \operatorname{Ext}^1_X(Li^*(i_*F), \mathcal{O}_{\Delta})$$

に対応するので、Lem.0.4 の結果と合わせると $\mathrm{Hom}_X(F\otimes L_{|X},\mathcal{O}_\Delta)=0$ を証明すればよいことがわかる.

以下それを示す. 随伴により

$$\operatorname{Hom}_X(F \otimes L_{|X}, \mathcal{O}_{\Delta}) \cong \operatorname{Hom}_{\Delta}((F \otimes L_{|X})_{|\Delta}, \mathcal{O}_{\Delta})$$

だが,F は $G\times G\subset X$ 上の層だったため, $(F\otimes L_{|X})_{|\Delta}$ は $(G\times G)\cap\Delta=\Delta_G$ 上の層 F' である.よって

$$\operatorname{Hom}_{\Delta}((F \otimes L_{|X})_{|\Delta}, \mathcal{O}_{\Delta}) = \operatorname{Hom}_{\Delta}(F', \mathcal{O}_{\Delta})$$

となり、 $\Delta_G \subset \Delta$ は $G \subset S$ とみなせるため、結局 G 上の層 F' について $\operatorname{Hom}_S(F', \mathcal{O}_S) = 0$ を証明すればよい.これは Serre duality より明らか.

参考文献

[Ueh15] H. Uehara, Autoequivalences of derived categories of elliptic surfaces with non-zero Kodaira dimension, arXiv e-prints (2021), arXiv:1501.06657v2.