PATENT SPECIFICATION

(11) **1 482 724**

(21) Application No. 24367/75

(22) Filed 6 June 1975

(31) Convention Application No. 2428821

(32) Filed 14 June 1974 in

(33) Federal Republic of Germany (DT)

(44) Complete Specification published 10 Aug. 1977

(51) INT CL2 C22C 37/10

(52) Index at acceptance

(72) Inventors HORST BEYER and HANS-JÜRGEN VEUTGEN

(54) WEAR-RESISTANT CAST-IRON ALLOY

(71) We, GOETZEWERKE FRIED-RICH GOETZE AKTIENGESELL-SCHAFT, a Body Corporate organised and existing under the laws of the Federal Republic of Germany, of Bürgermeister-Schmidt-Strasse 17, 5763 Burscheid, Germany, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to a wearresistant cast iron alloy suitable for the construction of machine parts subject to high

frictional stresses.

30

Machine elements subjected to friction are strongly stressed both with regard to wear and thermally, so that particularly high demands have to be made on their materials. Certain machine elements, such as the piston rings of internal combustion engines and the sealing strips of rotary piston engines, are furthermore subjected to particularly heavy stresses. Experience has shown that only very expensive materials of complicated manufacture withstand such high stresses. Usually, these materials are sintered metal carbides, to which very specific alloying elements have been added.

The sorts of cast iron so far tested, however, cannot be used for these highly stressed machine parts. It is known that the wear resistance of cast iron can be increased by the addition of alloying elements. On solidification of the cast iron, however, these elements form relatively coarse grains and very hard carbides, which then cause damage, accompanied by scoring, to the contacting surfaces. At the same time, carbide formation uses up the greater part of the carbon, so that these alloys do not contain in their structure the necessary graphite for emergency running of machine elements. Furthermore, these materials are so brittle that they are unable to withstand mechanical stresses and therefore break.

In accordance with the present invention there is provided a wear-resistant cast iron alloy, suitable for the construction of machine parts subject to high frictional stresses, the alloy containing

1.5 to 4.0% by weight of carbon
1.5 to 6.0% by weight of silicon
less than 0.2% by weight of sulphur
less than 2.5% by weight of phosphorus
1.0 to 7.0% by weight of copper
0.4 to 3.2% by weight of nickel and/or cobalt
0.1 to 1.8% by weight of tin and/or antimony

0.1 to 4.0% by weight of molybdenum 0.1 to 4.0% by weight of tungsten 0.05 to 2.5% by weight of manganese

35

40

45

50

55

60

for rotary piston engines are wear resistance and in test runs exhibit very good wear resistance with the trochoidal surface of the rotary piston engine. The embodiment example describes one of the cast-iron alloys according to the invention. The cast-iron melt comprises the elements

55	2.2% by weight carbon 3.9% by weight silicon
	0.9% by weight phosphorus
	0.08% by weight sulphur
	1.4% by weight copper
60	0.6% by weight nickel
	0.2% by weight tin
	1.5% by weight molybdenum
	3.4% by weight tungsten

1.5 to 4.0% by weight of carbon
1.5 to 6.0% by weight of silicon
less than 0.2% by weight of sulphur
less than 2.5% by weight of phosphorus
1.0 to 7.0% by weight of copper
0.4 to 3.2% by weight of nickel and/or
cobalt
0.1 to 1.8% by weight of in and/or antimony
115
0.1 to 4.0% by weight of molybdenum
0.1 to 4.0% by weight of tungsten
0.05 to 2.5% by weight of manganese
0.3 to 2.5% by weight of chromium
0.3 to 4.0% by weight of vanadium
120
0 to 2.0% by weight of itanium
0.1 to 4.0% by weight of niobium and/or
tantalum

0.1 to 2.0% by weight of aluminium

and the rest iron except for atmospheric nitrogen combined with the metals as a result

of melting and heat treatment.

2. An alloy as claimed in Claim 1 modified by the addition of up to 0.5% by weight in total of one or more of the elements boron, bismuth, magnesium, zirconium and rare earth

3. An alloy as claimed in Claim 1 or 2

which has been subjected to heat treatment by annealing above 700°C, quenching to below 500°C and then tempering up to a temperature of 700°C.

REDDIE & GROSE, Agents for the Applicants, 6 Bream's Buildings, London, EC4A 1HN.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1977 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

FIG. 1

F16. 2

FIG. 3

FIG. 4

