Repeated Games I

A general framework

Let G be a normal form game with action spaces A_1, \ldots, A_I , payoff functions $g_i: A \to R$, where $A = A_1 \times \ldots \times A_I$.

Let $G^{\infty}(\delta)$ be the infinitely repeated version of G played at $t = 0, 1, 2, \ldots$ where players discount at δ and observe all previous actions.

A history is $H^t = \{(a_1^0, \dots, a_I^0), \dots, (a_1^{t-1}, \dots, a_I^{t-1})\}.$

A (pure) strategy is $s_{i,t}: H^t \to A_i$.

The average discounted payoff is:

$$u_i(s_i, s_{-i}) = (1 - \delta) \sum_{t=0}^{\infty} \delta^t g_i(s_i(h^t), s_{-i}((h^t))).$$

Our goal is to study the set of average payoffs that are associated to SPE of the repeated game as a function of δ .

A few constraints immediately bound this set:

Definition. The set of feasible payoffs is the set of R^I vectors C:

$$(v_1,\ldots,v_I)\in Co((v_1,\ldots,v_I)|\exists (a_1,\ldots,a_I) \text{ with } g_i(a)=v_i\forall i)$$

Naturally the set of equilibria must be included in this set.

Another constraint is individual rationality.

Definition. A player's min-max payoff is:

$$\underline{v}_i = \min_{S_{-i}} \max_{S_i} g_i(s_i, s_{-i})$$

Here s_i is a mixed strategy.

Definition. A payoff vector is individually rational if $v_i \ge \underline{v}_i$ $\forall i$.

It is easy to see that in any Nash equilibrium payoffs must be individually rational.

To see this suppose s_i^*, s_{-i}^* is a Nash equilibrium. If $v_i < \underline{v}_i$ then let s_i^{**} be the best response to s_{-i}^* :

$$u_{i}(s_{i}^{**}, s_{-i}^{*}) = \max_{\widetilde{s}_{i}} u_{i}(\widetilde{s}_{i}, s_{-i}^{*})$$

$$\geq (1 - \delta) \max_{s_{i}} \sum_{t=0}^{\infty} \delta^{t} g_{i}(s_{i}, s_{-i}(h^{t}))$$

$$\geq (1 - \delta) \sum_{t=0}^{\infty} \delta^{t} \min_{s_{-i}} \max_{s_{i}} g_{i}(s_{i}, s_{-i}))$$

$$= \min_{s_{-i}} \max_{s_{i}} g_{i}(s_{i}, s_{-i}) = \underline{v}_{i} > v_{i} = g_{i}(s_{i}^{*}, s_{-i}^{*}),$$

so s_i^* is not a best response to s_{-i}^* .

Classic Folk Theorem: perfect monitoring

We start from the first basic result, Folk theorem in Nash equilibrium.

This will highlight some key ideas in a simple setting.

But it will also highlight what is missing from a more satisfying result, i.e. the Folk Theorem in SPE.

Theorem. (Nash Folk Theorem) If $(v_1, ..., v_I)$ is feasible and strictly individually rational, then there exists $\delta^* < 1$ such that for all $\delta > \delta^*$, there is a Nash Equilibrium of $G^{\infty}(\delta)$ with average payoffs $(v_1, ..., v_I)$.

Assume there exists a profile $a = (a_1, ..., a_I)$ such that $g_i(a) = v_i$ for all i.

We do this for simplicity, such an action profile may not exist. We will return on this later.

Let m_{-j}^j denote the strategy profile of players other than j that holds j to at most \underline{v}_j and write m_j^j for i's best-response to m_{-j}^j . Let $m^j = \left(m_j^j, m_{-j}^j\right)$

Now consider the following strategies:

State I. Play $a = (a_1, ..., a_I)$ if there was no deviation or if there was more than one deviation.

State II. If j deviates, play m^j forever.

Let us verify this is a Nash equilibrium using the one-stage-deviation principle.

If *a* is played, then *j* receives $(1 - \delta)(v_i + \delta \frac{v_i}{1 - \delta}) = v_i$.

With a deviation: $(1 - \delta)(\bar{v}_i + \delta \frac{v_i}{1 - \delta})$.

So the deviation is not profitable:

$$v_{i} + \delta \frac{v_{i}}{1 - \delta} \geq \bar{v}_{i} + \delta \frac{\underline{v}_{i}}{1 - \delta}$$

$$\Leftrightarrow (1 - \delta)(\bar{v}_{i} - v_{i}) \leq \delta(v_{i} - \underline{v}_{i}).$$

As $\delta \to 1$, we have $(1 - \delta)(\bar{v}_i - v_i) \to 0$, so this condition is always verified.

Note that here we are using the fact that v_i is *strictly IR*.

What is the problem here?

The problem is that we are asking players -j to minimax j after j's deviation.

The action profile that minimaxes j, i.e. m^j , may be associated to payoffs that are below the minmax value of some $i \neq j$.

So the subgame corresponding to Stage II may not be a SPE.

Consider this example:

Note that here $\underline{v}_1 = 0$ and $\underline{v}_2 = 1$.

So 8,8 is feasible and individually rational, the Nash Folk Theorem says that we can achieve it as a Nash equilibrium.

After a deviation by 1, however, the strategies seen above call for minmaxing 1. forever.

This implies that 2 chooses B forever, implying a payoff of $-50 < \underline{v}_2$.

The strategies in the subgame after a deviation cannot be a NE.

Theorem (Fudenberg and Maskin's (1986) Folk Theorem) Let V^* be the set of feasible and strictly individually rational payoffs.

Assume that dim $V^* = I$.

Then for any $(v_1,...,v_I) \in V^*$, there exists a $\delta^{**} < 1$, such that for any $\delta > \delta^{**}$, there is a subgame perfect equilibrium of $G^{\infty}(\delta)$ with average payoffs $(v_1,...,v_I)$.

Fixing a payoff vector $(v_1, ..., v_I) \in V^*$, we construct a SPE that achieves it.

For convenience, let's assume that there is some profile $(a_1,...,a_I)$ such that $g_i(a) = v_i$ for all i.

Choose $v' \in Int(V^*)$ such that $\underline{v}_i < v'_i < v_i$ for all i.

Choose *N* such that:

$$\max_{a} g_i(a) + N\underline{v}_i < \min_{a} g_i(a) + Nv_i'$$

Choose $\varepsilon > 0$ such that for each *i*:

$$v'(i) = (v'_1 + \varepsilon, \dots, v'_{i-1} + \varepsilon, \mathbf{v}'_i, v'_{i+1} + \varepsilon, \dots, v'_I + \varepsilon).$$

Assume there is an a^i such that $g(a^i) = v'(i)$

Assume there is a pure strategy profile m^i that minimaxes i, so $g_i(m^i) = \underline{y}_i$. We will return on this later.

We now construct the following "carrot and stick" strategies:

Stage I.

- Play a_i so long as no player deviates from (a_1, \ldots, a_I) .
- If j alone deviates, go to II_j . (If two or more players simultaneously deviate, play stays in I.)

Stage II_j .

- Play m^j for N periods, then go to III_j if no one deviates.
- If k deviates, re-start H_k .

Stage III_j .

- Play a^j so long as no one deviates.
- If k deviates, go to H_k .

To check that these are equilibrium strategies, we verified that in all subgames it is optimal to follow them.

Subgame *I*. Consider *i*'s payoff to playing the strategy and deviating:

If *i* follows the strategy: $(1 - \delta)[v_i + \delta v_i + ...] = v_i$

If *i* deviates: $(1 - \delta)(\max_a g_i(a) + \delta \underline{v}_i + \ldots + \delta^N \underline{v}_i + \delta^{N+1} v_i' \ldots)$

The second of which is obviously lower for large δ since $\underline{v}_i < v'_i < v_i$.

Subgame II_i . (suppose there are $N' \leq N$ periods left)

i follows strategy:

$$(1 - \delta^{N'})g_i(m^i) + \delta^{N'}v_i' = q(N')$$

= $(1 - \delta)g_i(m^i) + \delta q(N' - 1)$

where $g_i(m^i)$ is the payoff at the mimimax strategy m^i for i.

If *i* deviates:

$$(1 - \delta) \max_{a} g_{i}(a, m_{-i}^{i}) + \delta(1 - \delta^{N}) \underline{v}_{i} + \delta^{N+1} v_{i}'$$

$$= (1 - \delta)g_{i}(m^{i}) + \delta q(N) < (1 - \delta)g^{i}(m^{i}) + \delta q(N' - 1).$$

Subgame II_i . (suppose there are $N' \leq N$ periods left)

i follows strategy : $(1 - \delta^{N'})g_i(m^j) + \delta^{N'}(v_i' + \varepsilon)$

i deviates : $(1 - \delta) \max_{a} g_i(a, m_{-i}^j) + \delta(1 - \delta^N) \underline{v}_i + \delta^{N+1} v_i'$

Subgame III_i . Consider i's payoff to playing the strategy and deviating:

i follows strategy : v_i'

i deviates :
$$(1 - \delta) \max_{a} g_i(a, a_{-i}^i) + \delta(1 - \delta^N) \underline{v}_i + \delta^{N+1} v_i'$$
.

But

$$\leq (1 - \delta) \max_{a} g_{i}(a) + \delta(1 - \delta^{N}) \underline{v}_{i} + \delta^{N+1} v'_{i}$$

$$= (1 - \delta) \left[\max_{a} g_{i}(a) + \delta \frac{1 - \delta^{N}}{1 - \delta} \underline{v}_{i} \right] + \delta^{N+1} v'_{i}$$

$$\simeq (1 - \delta) \left[\max_{a} g_{i}(a) + N \underline{v}_{i} \right] + \delta^{N+1} v'_{i}$$

$$< (1 - \delta) \left[\min_{a} g_{i}(a) + N v'_{i} \right] + \delta^{N+1} v'_{i} < v'_{i}$$

Where we are using:

$$\max_{a} g_i(a) + N\underline{v}_i < \min_{a} g_i(a) + Nv'_i.$$

For $j \neq i$, it also can be verified deviating is unprofitable for δ large.

Notes

At two steps we assumed the existence of action profiles a, a^i and m^i that generates utility v, v^i and \underline{v}_i .

If this is not the case, we can generates the payoffs if we have **public randomizations**.

In the punishment phase II, we are assuming that the **minimax punishment** can be implemented with a **pure strategy**.

If this is not the case, we need to make sure that the players are willing to use a mixed minimax strategy.

To this goal, a player i must be willing to mix over a set of actions. This is possible only if the player is indifferent among the actions.

For this to be the case, the payoff promised to i after II_j may have to depend on the realization of minimax actions in phase II_j .

This is possible since the exact value of v'(i) is not important.

This of course considerably complicates the proof.

Fudenberg and Maskin's theorem generalizes the Folk theorem under a mild assumption: full rank, i.e. $\dim V^* = I$.

The assumption may be weakened (what is really necessary is that no two players have payoffs that are **affine transformations** of each others).

However a qualification on payoffs is necessary.

Consider the following example.

P1 selects rows, P2 column and P3 matrix (A on the left and B on the right).

In this game the minimax is 0 for all players.

The set of feasible, individually rational payoffs is $V^* = \{(v, v, v) : v \in [0, 1]\}.$

Can we obtain all of these payoffs as SPE?

Let $\underline{v} = \inf\{v \text{ s.t. } (v, v, v) \text{ is a SPE payoff}\}.$

For *v* to be a SPE we need:

$$v \ge \frac{1}{4}(1-\delta) + \delta \underline{v}$$

since there must be at least two players among the 3 with $s_i(A) \ge 1/2$ or $s_i(B) \ge 1/2$ in the first period

Say $s_1(A) \ge 1/2$ or $s_2(B) \ge 1/2$.

But then $\underline{v} \ge \frac{1}{4}(1-\delta) + \delta\underline{v} \Leftrightarrow \underline{v} \ge \frac{1}{4}$, since 3 can choose A in the first period.

So there is no equilibrium with payoff, say, (1/8, 1/8, 1/8).