

Lecture #6

Affine 3D Transformations – 3D Rotations

Computer Graphics Winter Term 2016/17

Marc Stamminger / Roberto Grosso

Affine Transformations in 3D

- very similar to 2D
- three unit vectors:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \vdots & \vdots & \vdots \\ e_1 & e_2 & e_3 \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$$

• In homogeneous coordinates:

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} \vdots & \vdots & \vdots & t_1 \\ e_1 & e_2 & e_3 & t_2 \\ \vdots & \vdots & \vdots & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}$$

Affine Transformations in 3D

Basic 3D transformations

• Translation:
$$translate(d_x, d_y, d_z) = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Scaling:
$$scale(s_x, s_y, s_z) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Z-Shear:
$$shear_z(d_x, d_y) = \begin{pmatrix} 1 & 0 & d_x & 0 \\ 0 & 1 & d_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Affine Transformations in 3D

• Rotation around the x-, y- and z-axis

$$\bullet \ Rot_{y}(\phi) = \begin{pmatrix} \cos \phi & 0 & \sin \phi & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \ Rot_{z}(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• But how do we describe arbitrary rotations?

- For now, we only rotate around the origin
 → a 3x3 matrix is sufficient
- The columns of a rotation matrix are the unit vectors after rotation:

$$R\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- Here u, v, w are the main axes after the rotation
- For rotation matrices, the inverse is simply the transpose:

$$R^{-1} = R^T$$

- The description of 3D rotations is a core problem in computer graphics
 - Positioning objects in the world
 - Animating objects (= interpolating rotations)
 - Modeling camera animations
 - ...
- Two important questions:
 - how to describe a rotation ?
 - how to interpolate rotations?
 - → Some representations result in awkward interpolation

- How to specify rotations in 3D
 - Orthogonal matrices
 - 3 Euler rotations, e.g.
 - Rotz \rightarrow Rotx \rightarrow Rotz
 - Rotz → Roty → Rotz
 - $Rotx \rightarrow Roty \rightarrow Rotz$
 - Axis of rotation and angle
 - Quaternions
- Etc, e.g. 2 (planar) reflections

- Orthonormal matrices
 - 9 degrees of freedom for matrix, 6 of which are fixed by constraints
 - Not very intuitive (user interface?)
 - Interpolation
 - Linear interpolation
 → interpolation of unit vectors
 - Requires renormalization
 - Non-uniform animation
 → see later: slerp-interpolation
 - Impossible for 180° rotations

linear interpolation on this line

non-uniform in angular space

Euler angles

- Any rotation can be given by three rotations about the main axes, e.g. X, Y, and Z (Leonhard Euler 1707 1783)
- If the rotations angles about Z, Y, and Z are ψ , θ , and ϕ respectively, then the rotation matrix is:

$$R = R_z(\phi)R_y(\theta)R_z(\psi)$$

$$= \begin{pmatrix} \cos\theta\cos\phi & \sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi & \cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi\\ \cos\theta\sin\phi & \sin\psi\sin\theta\sin\phi + \cos\psi\cos\phi & \cos\psi\sin\theta\sin\phi - \sin\psi\cos\phi\\ -\sin\theta & \sin\psi\cos\theta & \cos\psi\cos\theta \end{pmatrix}$$

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

- Euler angles for the Euler rotation z x z with angles $\alpha \beta \gamma$
- For given angles, the matrix can be computed as $R_z(\gamma)R_x(\beta)R_z(\alpha)$

 If the rotation matrix is given as:

$$R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$

the angles can be determined accordingly:

- $-\sin\beta = R_{31}$
- $\tan \alpha = R_{32}/R_{33}$
- $\tan \gamma = R_{21}/R_{11}$
- for $R = R_z(\gamma)R_x(\beta)R_z(\alpha)$

- Specify rotation by an axis n, ||n|| = 1, and a rotation angle ω
- Derivation: transform a point p
 - decompose p into parallel (to n) and orthogonal components: $p=p_{\parallel}+p_{\perp}$, where $p_{\parallel}=(n\circ p)n$ and $p_{\perp}=p-p_{\parallel}$
 - \bullet Create local coordinate system $\{p_{\perp}, n \times p, n\}$, where $n \times p = n \times p_{\perp}$
 - Rotate p_{\perp} about n

$$rot(p_{\perp}) = p_{\perp} \cos \omega + (n \times p) \sin \omega$$

add the parallel component

$$rot(p) = p_{\perp} \cos \omega + (n \times p) \sin \omega + p_{\parallel}$$

- Can we express this in a matrix?
- Rodrigues formula

$$\bullet \ p_{\parallel} = (p \circ n)n = \dots = \begin{pmatrix} n_x^2 & n_x n_y & n_x n_z \\ n_y n_x & n_y^2 & n_y n_z \\ n_z n_x & n_z n_y & n_z^2 \end{pmatrix} p = (n \cdot n^T)p = Pp$$

• $n \cdot n^T$ is called "outer product"

• $n \times p$ can also be written as matrix:

$$n \times p = \begin{pmatrix} 0 & -n_z & n_y \\ n_z & 0 & -n_x \\ -n_y & n_x & 0 \end{pmatrix} p = Qp$$

• Q is called "skew symmetric" form of n

•
$$rot(p) = p_{\perp} \cos \omega + (n \times p) \sin \omega + p_{\parallel}$$

= $(p - p_{\parallel}) \cos \omega + Q p \sin \omega + p_{\parallel}$
= $(I - P) \cos \omega \cdot p + Q \sin \omega \cdot p + P \cdot p$

Then

$$R(\omega, n) = P + \cos \omega (1 - P) + \sin \omega Q$$

- Often used definition: scale rotation axis by rotation angle
 - Define rotation with an arbitrary vector w
 - Length of w is rotation angle, normalized w is axis

- Reverse problem:
 Given an orthonormal matrix O, find rotation axis and angle.
- Points on the axis are not transformed, thus the axis is given by the eigenvector with eigenvalue 1 of O
- The rotation angle can be computed as:

$$trace(0) = \lambda_1 + \lambda_2 + \lambda_3 = 1 + 2\cos\omega$$

$$\to \omega = arc \cos \left(\frac{trace(0) - 1}{2} \right)$$

 Remember: complex numbers add further, imaginary component to real number:

$$(x,y) = x + iy$$

- Addition, multiplication etc. can be defined on these such that they form a field (Körper), and we can use them almost like real numbers
- Multiplication with a unit length complex number $(\cos \omega, \sin \omega)$ is equivalent to a rotation by ω

Quaternions carry this idea further and add three imaginary components:

$$(x,y) = x + i_1y_1 + i_2y_2 + i_3y_3$$

- Note: y is a 3D-vector
- Computing with quaternions:

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b) \cdot (c,d) = (ac-b \circ d, ad+bc+b \times d)$

- Further operations:
 - Conjugate of a quaternion: $(a,b)^* = (a,-b)$
 - Norm of a quaternion $q = \sqrt{qq^*}$
 - Inverse $q^{-1} = \frac{q^*}{\|q\|^2}$

- Quaternions can be used to describe rotations in 3D, like complex numbers describe rotations in 2D:
 - Consider a unit length quaternion q
 - A rotation can be applied to a vector $v \in \mathbb{R}^3$
 - Transform v to a quaternion $v \to (0, v)$
 - Rotate using $q \cdot (0, v) \cdot q^{-1}$
 - Result will have real part 0, imaginary part is rotated vector!

$$v \to (0, v) \to q \cdot v \cdot q^{-1} \to rot(v)$$

• Every rotation can be described by a quaternion and vice versa!

- Rotation about axis n by angle ω is expressed by the quaternion $q = (\cos \frac{\omega}{2}, \mathbf{n} \cdot \sin \frac{\omega}{2})$
- q and -q describe the same rotation, otherwise the mapping is unique
 - Every rotation is represented by exactly two unit quaternions
 - Every unit quaternion describes a rotation

- Application: Interpolation of rotations
 - Assume you have an object under rotation R_1 and want to animate it to a new rotation R_2
 - Interpolating matrices fails
 - Interpolating Euler angles will result in very weird movements
 - Interpolating quaternions works better...
 - ... when using spherical interpolation

- Linear interpolation of unit vectors requires renormalization
- Velocity is not uniform
- Instead, we should directly interpolate on the sphere
 -> spherical interpolation:

$$q(t) = \frac{\sin((1-t)\Omega)}{\sin\Omega} q_1 + \frac{\sin(t\Omega)}{\sin\Omega} q_2 q(t)$$

often called "slerp"

Next Lecture

Viewing and Perspective in 3D