ME756A

Instructor: Prof. Bishakh Bhattacharya

Department of Mechanical Engineering

IIT Kanpur

E-mail: bishakh@iitk.ac.in

Dynamic Mechanical Analysis (DMA)

- Most useful for studying the viscoelastic behavior of polymers.
- A **sinusoidal stress** is applied and the **strain** in the material is measured to determine the **modulus**.
- The **temperature** of the sample or the **frequency of the stress** are often varied, leading to variations in the modulus.
- This approach can be used to locate the glass transition temperature of the material
- Because sinusoidal stress is applied, complex elastic modulus can be expresesed as E* = E' + jE";
 - ✓ **Storage modulus (E')** Measure of **elastic response** & the stored energy.
 - ✓ Loss modulus (E") Measure of viscous response & the energy dissipated as heat.

Stress,
$$\sigma(t) = \sigma_0 \sin(\omega t + \delta)$$

Strain, $\epsilon(t) = \epsilon_0 \sin\omega t$

Pure elastic case, stress is proportional to strain, we have

$$\sigma(t) = E \epsilon(t)$$
 Therefore, $\sigma_0 \sin(\omega t + \delta) = E\epsilon_0 \sin\omega t$ Hence , $\delta = 0$

• **Pure Viscous case,** stress is proportional to strain rate, we have

$$\sigma(t) = E \frac{d\epsilon}{dt} \Longrightarrow \sigma_0 \sin(\omega t + \delta) = E\epsilon_0 \cos\omega t \Longrightarrow \delta = \pi/2$$

Experiment set-up

Image: Wikipedia

Dynamic Mechanical Analysis Test Set-up

(a) DMA instrument along with accessories

(b) Clamped rubber specimen before placing inside nitrogen bath chamber

(c) Specimen under testing in a controlled atmosphere

$$\tan \delta = \frac{E''}{E'}$$

where, E" = Loss modulus (measure of heat dissipated, viscous behavior)
E' = Storage modulus (measure of stored energy, elastic behavior)

 $an\delta$ signifies how good a material will be at absorbing energy.

Loss modulus,
$$E'' = \frac{\sigma_o}{\epsilon_o} sin\delta$$

Storage modulus, $E' = \frac{\sigma_o}{\epsilon_o} cos\delta$

- δ ranges between 0° 90°.
- As δ approaches 0° (Purely elastic behavior).
- As δ approaches 90° (Purely viscous behavior).
- At the glass transition, the storage modulus decreases dramatically and the loss modulus reaches a maximum.

The complex Young's modulus E*

$$E^* = E' + jE''$$

where, E' = Storage modulus (measure of stored energy, elastic behavior) E" = Loss modulus (measure of heat dissipated, viscous behavior)

The loss factor η is expressed as

$$\eta = \tan \delta = \frac{E''}{E'}$$

This signifies how good a material will be at absorbing energy

Hence,
$$E^* = E'(1+j\eta)$$

Similarly, the **shear modulus** of VEM $G^* = G'(1+j\eta)$

and the **bulk modulus** of VEM $B^*=B'(1+j\eta)$

The various moduli are interrelated as

$$E^* = \frac{9B^*G^*}{3B^* + G^*}$$

Viscoelastic material: Frequency & temperature dependence of Shear modulus and Loss factor

