# 1. Chebyshev polynomials

# Definition: Chebyshev polynomials of the first kind

$$T_0(x) := 1,$$
  
 $T_1(x) := x,$   
 $T_n(x) := 2xT_{n-1}(x) - T_{n-2}(x), \quad n \ge 2.$ 

# Example 1:

| n  | $T_n(x)$                                             |
|----|------------------------------------------------------|
| 0  | 1                                                    |
| 1  | x                                                    |
| 2  | 2x-1                                                 |
| 3  | $4x^3 - 3x$                                          |
| 4  | $8x^4 - 8x^2 + 1$                                    |
| 5  | $16x^5 - 20x^3 + 5x$                                 |
| 6  | $32x^6 - 48x^4 + 18x^2 - 1$                          |
| 7  | $64x^7 - 112x^5 + 56x^3 - 7x$                        |
| 8  | $128x^8 - 256x^6 + 160x^4 - 32x^2 + 1$               |
| 9  | $256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x$             |
| 10 | $512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1$ |



Plots of  $T_0, T_1, \dots, T_5$  and  $T_{10}$  (red, green, blue ordering).

**Theorem** 

$$\begin{split} T_n(\cos\phi) &= \cos n\phi, \\ T_n(x) &= \cos(\arccos x), \quad |x| \le 1 \\ T_n(x) &= \frac{\left(x + \sqrt{x^2 - 1}\right)^n + \left(x - \sqrt{x^2 - 1}\right)^n}{2}, \quad |x| \ge 1. \end{split}$$

Proof: The proof is by induction. Let  $x = \cos \phi \in [-1, 1] \Leftrightarrow \phi = \cos^{-1}(x) \in [0, \pi]$ . Then, for n = 1, we have

$$T_n(x) = 1 = \cos(0 \cdot \phi), \quad T_1(x) = \cos \phi.$$

For  $n \ge 2$ , we have

$$T_{n}(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

$$= 2\cos\phi \cdot \cos((n-1)\phi) - \cos((n-2)\phi)$$

$$= \cos(n\phi) + \cos((n-2)\phi) - \cos((n-2)\phi)$$

$$= \cos n\phi.$$

Definition: Chebyshev polynomials of the second kind

$$U_n(x) := \frac{1}{n+1} T'_{n+1}(x), \quad n \geqslant 0.$$

Example 2:

| n  | $U_n(x)$                                              |
|----|-------------------------------------------------------|
| 0  | 1                                                     |
| 1  | 2 <i>x</i>                                            |
| 2  | $4x^2 - 1$                                            |
| 3  | $8x^3 - 4x$                                           |
| 4  | $16x^4 - 12x^2 + 1$                                   |
| 5  | $32x^5 - 32x^3 + 6x$                                  |
| 6  | $64x^6 - 80x^4 + 24x^2 - 1$                           |
| 7  | $128x^7 - 192x^5 + 80x^3 - 8x$                        |
| 8  | $256x^8 - 448x^6 + 240x^4 - 40x^2 + 1$                |
| 9  | $512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x$            |
| 10 | $1024x^{10} - 2304x^8 + 1792x^6 - 560x^4 + 60x^2 - 1$ |

2023 -2- v1.6



Plots of  $U_0, U_1, \ldots, T_5$  and  $U_{10}$  (red, green, blue ordering).

## **Theorem**

 $U_n(\cos\phi)\sin\phi = \sin n\phi$ ,

$$U_n(x) = \frac{\left(x + \sqrt{x^2 - 1}\right)^{n+1} - \left(x - \sqrt{x^2 - 1}\right)^{n+1}}{2\sqrt{x^2 - 1}}, \quad |x| \ge 1.$$

### Theorem

- 1. The leading term of  $T_n(x)$  and  $U_n(x)$  is  $2^{n-1}$  and  $2^n$  respectively.
- 2. For  $n \le 1$ ,  $T_n(x)$  has exactly n roots on [-1,1], namely,  $\cos\left(\frac{(2k-1)\pi}{2n}\right)$ ,  $k=1,\ldots,n$ .
- 3. For  $n \le 1$ ,  $U_n(x)$  has exactly n roots on [-1,1], namely,  $\cos\left(\frac{\pi k}{n+1}\right)$ ,  $k=1,\ldots,n$ .

Proof: Let  $x = \cos \phi \in [-1, 1]$ . Then, we have

$$T_n(x) = 0 \Leftrightarrow \cos(n\phi) = 0 \Leftrightarrow \phi_k = \frac{(2k-1)\pi}{2n}, k = 1, 2, \dots, n.$$

That means that  $x_k = \cos \phi_k = \cos \left(\frac{(2k-1)\pi}{2n}\right)$ ,  $k = 1, \ldots, n$  are the roots of  $T_n(x)$ .

1. 
$$T_n(x) = 2^{n-1}(x - \cos\frac{\pi}{2n})(x - \cos\frac{3\pi}{2n})\dots(x - \cos\frac{(2n-1)\pi}{2n}).$$

**2.** 
$$U_n(x) = 2^n (x - \cos \frac{\pi}{n+1}) (x - \cos \frac{2\pi}{n+1}) \dots (x - \cos \frac{\pi}{n+1}).$$

Proof: Simple corollary from previous theorem.

#### **Theorem**

Polynomial  $T_n(x)$  on the segment [0,1] reaches its extreme values, 1 and -1, at n+1 points including the ends of the segment.



Plot of extreme points of  $T_6$ .  $T_6$  and  $U_5$  is bold and dashed respectively.

### Definition: Least deviating from zero polynomial

Let  $||\cdot||$  be a norm on the space of continuous functions. A polynomial  $f(x) = x^n + ...$  of degree n with the leading coefficient 1 is called the least deviating from zero with respect to the given norm if for any other polynomial  $g(x) = x^n + ...$  the following holds

$$||f|| \le ||g||.$$

## Theorem: Chebyshev

The least deviating from zero polynomial on the segment [-1,1] with respect to the Chebyshev norm (maximum of the function's absolute value on the segment)

$$||f||_0 = \max_{[-1,1]} |f(x)|$$

is

$$\widetilde{T}_n(x) := \frac{1}{2^{n-1}} T_n(x).$$

Example 3: The deviation from zero of the polynomial  $\widetilde{T}_3(x)=4T_3(x)=x^3-\frac{3}{4}x$  with respect to the Chebyshev norm  $||f||_0$  is equal to

$$||\frac{1}{4}T_3(x)||_0 = \frac{1}{4}||T3(x)||_0 = \frac{1}{4},$$

and, for example, the deviation from zero of the polynomial  $x^3$  is  $||x^3||_0 = 1$ .

Example 4: Given  $f(x) = x^3$ , let us find  $\tilde{f}(x) = ax^2 + bx + c$  such that

$$||f(x) - \tilde{f}(x)||_0 = \max_{[-1,1]} |f(x) - \tilde{f}(x)| \to \min.$$

Using Chebyshev Theorem, we get

$$f(x) - \widetilde{f}(x) = \widetilde{T}_3(x),$$

which means that

$$\tilde{f}(x) = x^3 - \frac{1}{4}(4x^3 - 3x) = \frac{3}{4}x.$$

The least deviating from zero polynomial on the segment [a,b] with respect to the Chebyshev norm (maximum of the function's absolute value on the segment)

$$||f||_0 = \max_{[a,b]} |f(x)|$$

is

$$\overline{T}_n(x) := \frac{(b-a)^n}{2^{n-1}} T_n \left( \frac{2x - (b+a)}{b-a} \right).$$

**Proof:** The result is obtained by replacing variables in the previous theorem.

#### Theorem: Korkin-Zolotarev

The least deviating from zero polynomial on the segment [-1,1] with respect to the norm (the area under the curve on the segment)

$$||f||_1 = \int_{-1}^1 |f(x)| dx$$

is

$$\widetilde{U}_n(x) := \frac{1}{2^n} U_n(x).$$

#### Theorem: Chebyshev Equioscillation Theorem

A polynomial q(x) of degree  $\leq n$  is an algebraic polynomial of best approximation (w.r.t. the norm  $\|\cdot\|_0$ ) for a continuous function f on [a,b] if and only if there are least n+2 points  $a\leq x_1\leq \cdots \leq x_{n+2}\leq b$  (alternate points) such that

$$f(x_i) - q(x_i) = \alpha (-1)^i ||f - q||_0$$

where  $\alpha = -1$  or  $\alpha = 1$  simultaneously for all i.

# Theorem: The best approximation of a function f by polynomial of degree $\leq n$

A scalar product of continuous functions on the segment [-1,1]

$$\langle f,g\rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx.$$

The corresponding norm is

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_{-1}^{1} \frac{f(x)^2}{\sqrt{1 - x^2}} dx}.$$

The orthogonality relations

$$\langle T_k, T_m \rangle = \begin{cases} 0, & k \neq m \\ \frac{\pi}{2}, & k = m \neq 0 \\ \pi, & k = m = 0 \end{cases}$$

The best approximation of a function f by polynomial of degree  $\leq n$  is

$$\tilde{f}(x) = \sum_{i=0}^{n} \frac{\langle T_i, f \rangle}{\langle T_i, T_i \rangle} T_i(x).$$