$12n_{0575} (K12n_{0575})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 16u^4 + 11u^3 + 4u^2 + b - 1, \\ u^9 + 2u^8 + 6u^7 + 8u^6 + 11u^5 + 10u^4 + 6u^3 + 2u^2 + 2a - u - 2, \\ u^{10} + 4u^9 + 12u^8 + 24u^7 + 37u^6 + 44u^5 + 40u^4 + 26u^3 + 11u^2 - 2 \rangle \\ I_2^u &= \langle u^3 + u^2 + b + u + 2, \ u^3 + 3a + 3u, \ u^4 + 3u^2 + 3 \rangle \\ I_3^u &= \langle u^3 - u^2 + b + u, \ u^3 + a + u, \ u^4 + u^2 - 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^9 + 3u^8 + \dots + b - 1, \ u^9 + 2u^8 + \dots + 2a - 2, \ u^{10} + 4u^9 + \dots + 11u^2 - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{9} - 3u^{8} - 8u^{7} - 13u^{6} - 17u^{5} - 16u^{4} - 11u^{3} - 4u^{2} + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} + 3u^{6} + 5u^{5} + 8u^{4} + 6u^{3} + 5u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 2u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{9} + 2u^{8} + \dots + \frac{3}{2}u - 1 \\ u^{7} + 2u^{6} + 5u^{5} + 6u^{4} + 6u^{3} + 4u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{27}{2}u^{9} - 46u^{8} + \dots - \frac{25}{2}u + 24 \\ -8u^{9} - 32u^{8} + \dots - 11u + 19 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{27}{2}u^{9} - 46u^{8} + \dots - \frac{25}{2}u + 24 \\ -8u^{9} - 32u^{8} + \dots - 11u + 19 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u^{9} - 4u^{7} - 5u^{5} + 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^9 + 8u^8 + 22u^7 + 40u^6 + 52u^5 + 48u^4 + 28u^3 + 4u^2 - 8u - 20$$

Crossings	u-Polynomials at each crossing		
c_1	$u^{10} - 10u^9 + \dots + 22u + 1$		
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$u^{10} - 2u^9 + 7u^8 - 16u^7 + 54u^6 + 20u^5 - 38u^4 + 9u^2 - 2u - 1$		
c_3, c_8, c_9	$u^{10} + 4u^9 + 4u^8 + 6u^7 + 47u^6 + 34u^5 - 96u^4 - 96u^3 - 9u^2 - 28u - 10$		
c_4, c_5, c_{10}	$u^{10} - 4u^9 + 12u^8 - 24u^7 + 37u^6 - 44u^5 + 40u^4 - 26u^3 + 11u^2 - 2$		

Crossings	Riley Polynomials at each crossing
c_1	$y^{10} + 86y^9 + \dots - 170y + 1$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$y^{10} + 10y^9 + \dots - 22y + 1$
c_3, c_8, c_9	$y^{10} - 8y^9 + \dots - 604y + 100$
c_4, c_5, c_{10}	$y^{10} + 8y^9 + \dots - 44y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.011370 + 0.549500I		
a = -1.84526 + 1.65245I	5.53688 + 3.23949I	-14.4970 - 2.0733I
b = -1.36179 + 0.92941I		
u = -1.011370 - 0.549500I		
a = -1.84526 - 1.65245I	5.53688 - 3.23949I	-14.4970 + 2.0733I
b = -1.36179 - 0.92941I		
u = -0.815135		
a = 0.753180	-5.74502	-15.7930
b = 1.02757		
u = 0.055441 + 1.195260I		
a = -0.294506 + 0.301650I	2.90689 - 1.22324I	-8.89978 + 5.47255I
b = -0.641589 - 0.278823I		
u = 0.055441 - 1.195260I		
a = -0.294506 - 0.301650I	2.90689 + 1.22324I	-8.89978 - 5.47255I
b = -0.641589 + 0.278823I		
u = -0.362503 + 1.267330I		
a = -0.160758 - 0.440175I	-1.81239 + 4.23636I	-11.64407 - 4.22306I
b = -0.898467 + 0.647980I		
u = -0.362503 - 1.267330I		
a = -0.160758 + 0.440175I	-1.81239 - 4.23636I	-11.64407 + 4.22306I
b = -0.898467 - 0.647980I		
u = -0.42007 + 1.54013I		
a = 1.45657 + 0.91885I	12.1053 + 8.5018I	-12.65841 - 3.21110I
b = 3.27708 - 0.06119I		
u = -0.42007 - 1.54013I		
a = 1.45657 - 0.91885I	12.1053 - 8.5018I	-12.65841 + 3.21110I
b = 3.27708 + 0.06119I		
u = 0.292134		
a = 0.934719	-0.474672	-20.8080
b = 0.221971		

II.
$$I_2^u = \langle u^3 + u^2 + b + u + 2, u^3 + 3a + 3u, u^4 + 3u^2 + 3 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{3}u^{3} - u \\ -u^{3} - u^{2} - u - 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{3}u^{3} + u \\ u^{3} + u^{2} + 2u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{3}u^{3} + u^{2} + u + 1 \\ u^{3} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{3}u^{3} + u \\ u^{3} + u^{2} + u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 12$

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7	$(u-1)^4$		
c_3,c_8,c_9	$u^4 - 3u^2 + 3$		
c_4, c_5, c_{10}	$u^4 + 3u^2 + 3$		
c_6, c_{11}, c_{12}	$(u+1)^4$		

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$	
c_3, c_8, c_9	$(y^2 - 3y + 3)^2$	
c_4, c_5, c_{10}	$(y^2 + 3y + 3)^2$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.340625 + 1.271230I		
a = 0.196660 - 0.733945I	-3.28987 - 4.05977I	-18.0000 + 3.4641I
b = 0.771230 - 0.525400I		
u = 0.340625 - 1.271230I		
a = 0.196660 + 0.733945I	-3.28987 + 4.05977I	-18.0000 - 3.4641I
b = 0.771230 + 0.525400I		
u = -0.340625 + 1.271230I		
a = -0.196660 - 0.733945I	-3.28987 + 4.05977I	-18.0000 - 3.4641I
b = -1.77123 + 1.20665I		
u = -0.340625 - 1.271230I		
a = -0.196660 + 0.733945I	-3.28987 - 4.05977I	-18.0000 + 3.4641I
b = -1.77123 - 1.20665I		

III.
$$I_3^u = \langle u^3 - u^2 + b + u, u^3 + a + u, u^4 + u^2 - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - u \\ -u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} - u \\ -u^{3} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u \\ -u^{3} - u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - u \\ -u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 20$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_{11} c_{12}	$(u-1)^4$
c_{2}, c_{7}	$(u+1)^4$
c_3,c_8,c_9	$u^4 - u^2 - 1$
c_4, c_5, c_{10}	$u^4 + u^2 - 1$

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$	
c_3, c_8, c_9	$(y^2-y-1)^2$	
c_4, c_5, c_{10}	$(y^2+y-1)^2$	

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.786151		
a = -1.27202	-7.23771	-22.4720
b = -0.653986		
u = -0.786151		
a = 1.27202	-7.23771	-22.4720
b = 1.89005		
u = 1.272020	I	
a = 0.786151	I = 0.657974	-13.5280
b = -1.61803 + 0.78615I		
u = -1.27202)I	
a = -0.78615	II = 0.657974	-13.5280
b = -1.61803 - 0.78615I		

IV.
$$I_1^v = \langle a, b-1, v+1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7	u-1		
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u		
c_6, c_{11}, c_{12}	u+1		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_6 c_7, c_{11}, c_{12}	y-1		
c_3, c_4, c_5 c_8, c_9, c_{10}	y		

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^{10}-10u^9+\cdots+22u+1)$
c_{2}, c_{7}	$(u-1)^{5}(u+1)^{4}$ $\cdot (u^{10} - 2u^{9} + 7u^{8} - 16u^{7} + 54u^{6} + 20u^{5} - 38u^{4} + 9u^{2} - 2u - 1)$
c_3, c_8, c_9	$u(u^{4} - 3u^{2} + 3)(u^{4} - u^{2} - 1)$ $\cdot (u^{10} + 4u^{9} + 4u^{8} + 6u^{7} + 47u^{6} + 34u^{5} - 96u^{4} - 96u^{3} - 9u^{2} - 28u - 10)$
c_4, c_5, c_{10}	$u(u^{4} + u^{2} - 1)(u^{4} + 3u^{2} + 3)$ $\cdot (u^{10} - 4u^{9} + 12u^{8} - 24u^{7} + 37u^{6} - 44u^{5} + 40u^{4} - 26u^{3} + 11u^{2} - 2)$
c_6, c_{11}, c_{12}	$(u-1)^4(u+1)^5$ $\cdot (u^{10} - 2u^9 + 7u^8 - 16u^7 + 54u^6 + 20u^5 - 38u^4 + 9u^2 - 2u - 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^{10} + 86y^9 + \dots - 170y + 1)$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$((y-1)^9)(y^{10}+10y^9+\cdots-22y+1)$
c_3, c_8, c_9	$y(y^2 - 3y + 3)^2(y^2 - y - 1)^2(y^{10} - 8y^9 + \dots - 604y + 100)$
c_4, c_5, c_{10}	$y(y^2 + y - 1)^2(y^2 + 3y + 3)^2(y^{10} + 8y^9 + \dots - 44y + 4)$