Week 07 Participation Assignment

Corey Mostero - 2566652

13 October 2023

Contents

Wee																				2
1.1																				
1.2																				
1.3																				
1.4																				
1.5																				
1.6																				
1.7																				4
1.8																				

1 Week 07 Participation Assignment

1.1

Show that the positive integers less than 11, except 1 and 10, can be split into pairs of integers such that each pair consists of integers that are inverses of each other modulo 11.

$$2 \cdot 6 \equiv 12 = 1 \pmod{11}$$

 $3 \cdot 4 \equiv 12 = 1 \pmod{11}$
 $5 \cdot 9 \equiv 45 = 1 \pmod{11}$
 $7 \cdot 8 \equiv 56 = 1 \pmod{11}$

1.2

Show that if p is a prime, the only solutions of $x^2 \equiv 1 \pmod{p}$ are the integers x such that $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$.

$$x^{2} \equiv 1(\operatorname{mod}(p))$$

$$x^{2} - 1 \equiv 0(\operatorname{mod}(p))$$

$$(x - 1)(x + 1) \equiv 0(\operatorname{mod}(p))$$

$$\therefore p \mid (x - 1)(x + 1)$$

$$x - 1 \equiv 0(\operatorname{mod}(p))$$

$$x \equiv 1(\operatorname{mod}(p))$$

$$x + 1 \equiv 0(\operatorname{mod}(p))$$

$$x \equiv -1(\operatorname{mod}(p))$$

1.3

Generalize the result in part 1.1; that is, show that if p is a prime, the positive integers less than p, except 1 and p-1, can be split into $\frac{p-3}{2}$ pairs of integers

such that each pair consists of integers that are inversed of each other.

$$S = \mathbb{Z}_p = \{1, 2, \cdots, p-2, p-1\}$$

From 1.2 we can see that there is x that makes $x \cdot x^{-1} \equiv 1 \pmod{(p)}$. It can also be observed that the equivalences for x can be written as x = 1, p - 1. The set S can now be rewritten as

$$S = \{2, 3, \cdots, p-3, p-2\}$$

where we have p-3 (cannot be p-2 as primes cannot be even, and the result of an odd divided by an even is not an integer) positive integers, $\therefore \frac{p-3}{2}$ pairs.

1.4

From part 1.3, conclude that $(p-1)! \equiv -1 \pmod{p}$ whenever p is prime.

$$(p-1)! \equiv 1 \cdot 2 \cdots (p-2) \cdot (p-1)$$

$$(p-1)! \equiv 1 \cdot (2 \cdot 2^{-1}) \cdots [(p-2)(p-2)^{-1}] \cdot (p-1), \text{ using } 1.3$$

$$(p-1)! \equiv 1 \cdot (1) \cdots [1] \cdot (p-1)$$

$$(p-1)! \equiv 1 \cdot (p-1)$$

$$(p-1)! \equiv (p-1) \bmod (p)$$

$$(p-1)! \equiv (p \bmod (p)) - (1 \bmod (p))$$

$$(p-1)! \equiv 0 - 1 \bmod (p)$$

$$(p-1)! \equiv -1 \bmod (p)$$

1.5

Suppose that a is not divisible by the prime p. Show that no two of the integers $1 \cdot a, 2 \cdot a, \dots, (p-1) \cdot a$ are congruent modulo p.

Let the two integers be x and y, where $1 \le x < y < p$, giving $p \mid a(y-x)$. As a is not divisible by the prime p, it must conclude that $p \mid (y-x)$. Though as p is prime, and $1 \le y - x < p$, this cannot be true by the definition of a prime number.

1.6

Conclude from part 1.5 that the product of $1, 2, \dots, p-1$ is congruent modulo p to the product of $a, 2a, \dots, (p-1)a$. Use this to show that $(p-1)! \equiv a^{p-1}(p-1)! \pmod{(p)}$.

1.5 shows that no two integers $1 \cdot a, 2 \cdot a, \dots, (p-1) \cdot a$ are congruent modulo p.

$$a \cdot 2a \cdots (p-1)a = (1 \cdot 2 \cdots p - 1) \mod (p)$$
$$(1 \cdot 2 \cdots (p-1)) \cdot (a^{p-1}) = (p-1)!$$
$$(p-1)! \cdot a^{p-1} = (p-1)!$$

1.7

Use Theorem 7 of Section 4.3 to show that from part 1.6 that $a^{p-1} \equiv 1 \pmod{p}$ if $p \mid a$.

$$(p-1)! \equiv -1(\operatorname{mod}(p))$$

$$(-1) \cdot a^{p-1} \equiv -1(\operatorname{mod}(p))$$

$$-1 \cdot (-1) \cdot a^{p-1} \equiv -1(\operatorname{mod}(p)) \cdot -1$$

$$a^{p-1} \equiv 1(\operatorname{mod}(p))$$

1.8

Use part 1.3 to show that $a^p \equiv a(\text{mod}(p))$ for all integers a.

• Case 1: $p \mid a$

$$\forall a \in \mathbb{Z}(a^p \equiv 0 \bmod (p) \iff a(\bmod(p)) \equiv 0 \bmod (p))$$

• Case 2: $p \nmid a$ (Fermat's Little Theorem)

$$a^{p-1} \equiv 1 \pmod{p}$$

 $a^p \equiv a \pmod{p}$