Cara: An Isomorphism-Based #SAT Solver

This work is partially published in AAAI 2025

Petr Illner

Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics Charles University, Czech Republic

illner3@gmail.com

To avoid redundant work

Input CNF formula

 φ : $(\mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3}) \land (\neg \mathbf{x_1} \lor \mathbf{x_2} \lor \mathbf{x_3})$

To avoid redundant work

Input CNF formula

$$\varphi$$
: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$

$$\varphi \mid x_1$$
 $(x_2 \lor x_3)$

To avoid redundant work

Input CNF formula

$$\varphi$$
: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$

To avoid redundant work Input CNF formula φ : $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$ $\varphi \mid \neg x_1$ $\varphi \mid X_1$ $\#(\phi \mid x_1) = 3 = \#(\phi \mid \neg x_1)$ $(x_2 \ V \ x_3)$ $(x_2 \vee x_3)$

A caching scheme is **correct**¹ if $\forall \psi_1, \psi_2 : (r(\psi_1) = r(\psi_2)) \Rightarrow (\psi_1 \Leftrightarrow \psi_2)$

¹ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. Enhanced Caching for# SAT Solving. 2020.

A caching scheme is **correct**¹ if $\forall \psi_1, \psi_2$: $(r(\psi_1) = r(\psi_2)) \Rightarrow (\psi_1 \leftrightarrow \psi_2)$ $(\#\psi_1 = \#\psi_2)$

¹ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. Enhanced Caching for# SAT Solving. 2020.

A caching scheme is **correct**¹ if $\forall \psi_1, \psi_2$: $(r(\psi_1) = r(\psi_2)) \Rightarrow (\psi_1 \leftrightarrow \psi_2)$ $(\#\psi_1 = \#\psi_2)$

Key properties of a caching scheme: strength of equivalence detection, representation size, computation time

¹ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. Enhanced Caching for# SAT Solving. 2020.

A caching scheme is **correct**¹ if $\forall \psi_1, \psi_2$: $(r(\psi_1) = r(\psi_2)) \Rightarrow (\psi_1 \leftrightarrow \psi_2)$ $(\#\psi_1 = \#\psi_2)$

Key properties of a caching scheme: strength of equivalence detection, representation size, computation time

Explicit representation: standard (Cachet²), basic, i (D4³),

Implicit representation: *hybrid* (*sharpSAT*⁴), *o*, *i*′,

probabilistic component caching (GANAK⁵)

⁴ THURLEY, Marc. sharp SAT-counting models with advanced component caching and implicit BCP. In: International Conference on Theory and Applications of Satisfiability Testing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. p. 424-429.

¹ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. Enhanced Caching for# SAT Solving. 2020.

² SANG, Tian, et al. Combining Component Caching and Clause Learning for Effective Model Counting. SAT, 2004, 4: 7th.

³ LAGNIEZ, Jean-Marie; MARQUIS, Pierre. An Improved Decision-DNNF Compiler. In: IJCAI. 2017. p. 667-673.

$$\varphi : (x_1 \lor \mathbf{x_2} \lor \neg x_4) \land (\mathbf{x_2} \lor x_3 \lor x_4) \land (x_1 \lor \mathbf{x_2} \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)$$

$$\phi \mid \neg x_2 : (x_1 \lor \neg x_4) \land (x_3 \lor x_4) \land (x_1 \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)$$

$$\varphi : (x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)$$

$$\varphi \mid \neg x_2$$
: $(x_1 \lor \neg x_4) \land (x_3 \lor x_4) \land (x_1 \lor \neg x_4) \land \underbrace{(x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)}_{\textbf{untouched clauses}}$

$$\varphi : (x_1 \lor \mathbf{x_2} \lor \neg x_4) \land (\mathbf{x_2} \lor x_3 \lor x_4) \land (x_1 \lor \mathbf{x_2} \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)$$

$$\phi \mid \neg x_2 : (x_1 \lor \neg x_4) \land (x_3 \lor x_4) \land (x_1 \lor \neg x_4) \land \underbrace{(x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)}_{\textbf{untouched clauses}}$$

$$r(\phi \mid \neg x_2) =$$

sorted residual variables

sorted touched residual clauses

$$\phi$$
: $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)$

$$\phi \mid \neg x_2 : (x_1 \lor \neg x_4) \land (x_3 \lor x_4) \land (x_1 \lor \neg x_4) \land \underbrace{(x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)}_{\textbf{untouched clauses}}$$

$$r(\phi \mid \neg x_2) = \underbrace{1, 3, 4, 5, 6, 0,}_{\text{sorted residual variables}} \underbrace{1, -4, 0, 1, -4, 0, 3, 4, 0}_{\text{residual clauses}}$$

$$\varphi : (x_1 \lor \mathbf{x_2} \lor \neg x_4) \land (\mathbf{x_2} \lor x_3 \lor x_4) \land (x_1 \lor \mathbf{x_2} \lor \neg x_4) \land (x_3 \lor x_4 \lor x_5) \land (x_1 \lor \neg x_6)$$

$$\begin{array}{c|c} \phi \mid \neg x_2 : \underline{\quad (x_1 \vee \neg x_4) \quad} \wedge (x_3 \vee x_4) \wedge (x_1 \vee \neg x_4) \wedge \underline{\quad (x_3 \vee x_4 \vee x_5) \wedge (x_1 \vee \neg x_6) \\ \hline \\ redundant \\ clause \end{array}$$

$$r(\phi \mid \neg x_2) = 1, 3, 4, 5, 6, 0, \frac{1, -4, 0, 1, -4, 0, 3, 4, 0}{1, -4, 0, 1, -4, 0, 3, 4, 0}$$

sorted residual variables sorted touched non-redundant residual clauses

$$\psi_1$$
: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$

$$\psi_1$$
: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$ # $\psi_1 = 6$

$$\psi_1$$
: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$ # $\psi_1 = 6$

$$\psi_2$$
: $(x_5 \lor x_6) \land (\neg x_5 \lor x_7) \land (x_7 \lor \neg x_8) \land (x_5 \lor \neg x_7 \lor x_8)$

$$\psi_1$$
: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$ # $\psi_1 = 6$

$$\psi_2$$
: $(x_5 \lor x_6) \land (\neg x_5 \lor x_7) \land (x_7 \lor \neg x_8) \land (x_5 \lor \neg x_7 \lor x_8)$ # ψ_2 = **6**
variable names are NOT relevant

$$\psi_1$$
: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$

$$#\psi_1 = 6$$

$$ψ_2 : (x_5 \lor x_6) \land (\neg x_5 \lor x_7) \land (x_7 \lor \neg x_8) \land (x_5 \lor \neg x_7 \lor x_8)$$
variable names are NOT relevant

$$#\psi_2 = \mathbf{6}$$

$$\psi_3$$
: $(\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_3 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4)$

$$\psi_1$$
: $(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$ # $\psi_1 = 6$

$$\psi_2: (x_5 \lor x_6) \land (\neg x_5 \lor x_7) \land (x_7 \lor \neg x_8) \land (x_5 \lor \neg x_7 \lor x_8) \qquad \#\psi_2 = \mathbf{6}$$
 variable names are NOT relevant

$$\psi_3: (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (\neg x_3 \lor x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \qquad \#\psi_3 = \mathbf{6}$$
literal polarity is NOT relevant

Isomorphism-aware caching scheme

Isomorphism-aware caching scheme

An isomorphism-aware caching scheme is **correct** if:

$$\forall \psi_1, \psi_2 : (r(\psi_1) = r(\psi_2)) \Rightarrow (M_{\psi_1}(\psi_1) \Leftrightarrow M_{\psi_2}(\psi_2)) \equiv (\#\psi_1 = \#\psi_2)$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$V_{\psi_1} = \{ 3, 4, 5, 6 \}$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID$$

$$C_I = \text{the number of }$$
 clauses containing l
$$\mu_I = \text{the average size of }$$
 clauses containing l
$$C_x < C_{\neg x} = \text{sign flip}$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID$$

$$V_{\psi 1} = \{\ 3,\ 4,\ 5,\ 6\ \}$$

$$C_l = \text{the number of }$$

$$\text{clauses containing } l$$

$$\mu_l = \text{the average size of }$$

$$\text{clauses containing } l$$

$$X_5 \quad C_x < C_{\neg x} = \text{sign flip}$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (\underline{x_3} \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID$$

$$X_3 \quad 1 \qquad 3 \qquad \qquad 3 \qquad \qquad C_I = \text{the number of }$$

$$clauses \ containing \ l$$

$$x_4 \qquad \qquad \mu_I = \text{the average size of }$$

$$clauses \ containing \ l$$

$$X_5 \qquad \qquad \qquad C_x < C_{\neg x} = \text{sign flip}$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID \quad Order$$

$$x_3 \quad 1 \quad 1 \quad 3 \quad 2 \quad 3 \quad 2 \quad C_1 = \text{the number of }$$

$$clauses containing l$$

$$x_4 \quad 1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 1$$

$$x_5 \quad 2 \quad 1 \quad 3 \quad 2 \quad 5 \quad 4$$

$$clauses containing l$$

$$\mu_1 = \text{the average size of }$$

$$clauses containing l$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \# \psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID \quad Order$$

$$x_3 \quad 1 \quad 1 \quad 3 \quad 2 \quad 3 \quad 2 \quad C_I = \text{the number of }$$

$$clauses containing l \quad M_{\psi 1} = \{3, 4, 5, 6\}$$

$$x_4 \quad 1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 1 \quad clauses containing l \quad M_{\psi 1} = \{3 \mapsto 2, \\ \mu_I = \text{the average size of } \quad 4 \mapsto 1, \\ clauses containing l \quad 5 \mapsto 4,$$

$$x_6 \quad 1 \quad 2 \quad 3 \quad 2.5 \quad 6 \quad 3 \quad C_x < C_{\neg x} = \text{sign flip} \qquad 6 \mapsto 3\}$$

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID \quad Order$$

$$x_3 \quad 1 \quad 1 \quad 3 \quad 2 \quad 3 \quad 2 \quad C_I = \text{the number of }$$

$$x_4 \quad 1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 1 \quad \text{clauses containing } l \quad M_{\psi 1} = \{3 \mapsto 2, \\ \mu_I = \text{the average size of } \quad 4 \mapsto 1, \\ \text{clauses containing } l \quad 5 \mapsto 4, \\ x_6 \quad 1 < 2 \quad 3 \quad 2.5 \quad 6 \quad 3 \quad C_x < C_{\neg x} = \text{sign flip} \qquad 6 \mapsto -3 \}$$

Cara caching scheme¹

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID \quad Order$$

$$X_3 \quad 1 \quad 1 \quad 3 \quad 2 \quad 3 \quad 2 \quad C_1 = \text{the number of }$$

$$C_{1} = \text{the number of }$$

$$C_{2} \quad C_{3} \quad C_{4} \quad C_{5} \quad C_{$$

$$M_{\psi 1}(\psi_1) = (\neg x_2 \lor \neg x_4) \land (x_1 \lor x_3) \land (x_2 \lor x_4 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3)$$

Cara caching scheme¹

$$\psi_1 = (\neg x_3 \lor \neg x_5) \land (x_4 \lor \neg x_6) \land (x_3 \lor x_5 \lor x_6) \land (\neg x_4 \lor x_5 \lor \neg x_6) \qquad \#\psi_1 = ?$$

$$C_x \quad C_{\neg x} \quad \mu_x \quad \mu_{\neg x} \quad ID \quad Order$$

$$X_3 \quad 1 \quad 1 \quad 3 \quad 2 \quad 3 \quad 2 \quad C_1 = \text{the number of }$$

$$C_1 \quad C_2 \quad C_3 \quad C_4 \quad C_5 \quad C_6 \quad C_7 \quad C_8 \quad C_9 \quad$$

$$M_{\psi 1}(\psi_1) = (\neg x_2 \lor \neg x_4) \land (x_1 \lor x_3) \land (x_2 \lor x_4 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3)$$
$$r(\psi_1) = 1, 3, 0, -2, -4, 0, -1, 3, 4, 0, 2, -3, 4, 0$$

sorted residual clauses

Cara caching scheme¹

$$M_{\psi 1}(\psi_1) = (\neg x_2 \lor \neg x_4) \land (x_1 \lor x_3) \land (x_2 \lor x_4 \lor \neg x_3) \land (\neg x_1 \lor x_4 \lor x_3)$$

 $r(\psi_1) = 1, 3, 0, -2, -4, 0, -1, 3, 4, 0, 2, -3, 4, 0$ cache entry: key = $r(\psi_1)$, sorted residual clauses value = $\#\psi_1 = 5$

MODEL COUNTING COMPETITION 2025

Cara caching scheme¹ - key properties

- 1) Deterministic representations
- Syntactically identical (up to ordering) CNF formulae yield the same representation and mapping function
 - => everything detected by i is also detected by Cara
- 3) Additional moments can be used in tuples to enhance isomorphism detection
- 4) Construction is computationally expensive
- 5) Representations tend to be larger

Cara caching scheme vs caching scheme **i**

The time-out (resp. memory-out) was set to **1 hour** (resp. **32 GB**).

Each instance was solved **3** times, and the given results are averages.

#solved runs	Cara	i
3/3	593	586
2/3	1	5
1/3	0	0
Total	594	591

Cara vs i - runtime

The time-out (resp. memory-out) was set to **1 hour** (resp. **32 GB**).

Each instance was solved **3** times, and the given results are averages.

#solved runs	Cara	i
3/3	593	586
2/3	1	5
1/3	0	0
Total	594	591

Cara vs i - runtime

Which caching scheme is better?

search space

larger residual formulae lower isomorphism detection more untouched clauses

search space

larger residual formulae lower isomorphism detection more untouched clauses

smaller residual formulaehigher isomorphism detectionfewer untouched clauses

search space

caching scheme

(standard, basic, i, hybrid, PCC, ...)

isomorphism-aware caching scheme (*Cara*, ...)

search space

Adaptive threshold:

for example, the **average** / maximum **#variables** / #clauses / formula size of positively cached residual formulae

Note: Invalid cache entries can be easily detected and removed when the next cache cleaning strategy is triggered.

Cara¹ + Arjun^{*2} vs Ganak³

* ensuring identical preprocessing

¹ https://github.com/Illner/carasolver

² https://github.com/meelgroup/arjur

³ https://github.com/meelgroup/ganak

The time-out (resp. memory-out) was set to **1 hour** (resp. **32 GB**).

Each instance was solved 3 times, and the given results are averages.

#solved runs	Cara	Ganak
3/3	623	632
2/3	0	0
1/3	0	0
Total	623	632

Cara + Arjun vs Ganak - runtime

The time-out (resp. memory-out) was set to **1 hour** (resp. **32 GB**).

Each instance was solved 3 times, and the given results are averages.

#solved runs	Cara	Ganak
3/3	623	632
2/3	0	0
1/3	0	0
Total	623	632

Cara¹ VS SymGanak*2

* no Arjun

¹ https://github.com/Illner/carasolve

² https://github.com/meelgroup/ganak

The time-out (resp. memory-out) was set to **1 hour** (resp. **32 GB**).

Each instance was solved 3 times, and the given results are averages.

#solved runs

3/3 593 512

2/3 1 0

1/3 0 0

Total 594 512

* strict dominance

The time-out (resp. memory-out) was set to **1 hour** (resp. **32 GB**).

Each instance was solved 3 times, and the given results are averages.

Symmetric problems

Dualstana1	#instances	#successfully solved instances		
Problem ¹	#instances	Cara	SymGanak	
Battleship problems	12	1	0	
ProbLog programs	6	6	5	
N-Queens problem (symmetry)	11	10	10*	
N-Queens problem (classic)	17	13	12	
Latin square problems	30	20	17	
Counting principle	9	3	6	
k-coloring graph problems	23	21	18	
Parity principle	21	8	7	
Tseitin transformation problems	16	7	13	
FPGA Switch-Box	20	11	6	
hub.com/VincentDerk/Paper-SymGANAK-benchmark		* invalid num	nber of models	

Functional pigeonhole principle (FPHP)

Instance ¹	#pigeons	#holes
fphp-010-020	10	20
fphp-015-020	15	20

¹ https://www.cril.univ-artois.fr/kc/benchmarks.htm

Functional pigeonhole principle (FPHP)

Instance ¹	#pigeons	#holes
fphp-010-020	10	20
fphp-015-020	15	20

Instance1			Runtime	[s]		
Instance ¹ Cara ²	Cara ² + Arjun ³	SymGanak ⁴	Ganak ⁴	SharpSAT-TD ⁵	D4 ⁶	
fphp-010-020	3.04	124.81	2.37	3 176.17*	—	_
fphp-015-020	14.61	314.69	7.03	—	<u> </u>	

* invalid number of models

¹ https://www.cril.univ-artois.fr/kc/benchmarks.html

² https://github.com/Illner/carasolver

³ https://github.com/meelgroup/arjun

⁴ https://github.com/meelgroup/ganak

https://github.com/Laakeri/sharpsat-to

⁶ https://github.com/crillab/d4v

N-Queens problem

N	Runtime [s]		
IN	Cara ¹	SymGanak ²	
10	0.17	0.05	
11	0.62	0.47	
12	3.37	9.81	
13	25.89	92.09	
14	128.39	1858.32	
15	1264.51	_	

¹ https://github.com/llher/carasolver ² https://github.com/meelgroup/ganak

Future research

- 1) Adaptive balance of caching schemes
- Replace the obsolete MiniSat¹, which is used for satisfiability checks and implied literals at each inner node, with CaDiCaL².
- 3) Integrate the decomposability approach used by *Ganak* and *SharpSAT-TD* into the adaptiveness framework.

