UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2018/2Prova da área IIA

1 - 5	6	7	Total

Nome:	Cartão:	

Regras Gerais:

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

d	ler	$_{ m 1ti}$	d	ad	es	:

$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$
$senh(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$
$(a+b)^n = \sum_{i=0}^{\infty} \binom{n}{i} a^{n-1}$	$-jb^j$, $\binom{n}{j} = \frac{n!}{j!(n-j)!}$

$$(a+b)^n = \sum_{j=0}^n {n \choose j} a^{n-j} b^j, \quad {n \choose j} = \frac{n!}{j!(n-j)!}$$

$$sen(x+y) = sen(x)cos(y) + sen(y)cos(x)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Propr	iedades:	
1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

_	Séries:
	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
	$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
	$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
	$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
	$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
	$senh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
	$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
	$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
	$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

Integrais:

integrals.
$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2}(\lambda x - 1) + C$
$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$
$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$
$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$
$\int x \operatorname{sen}(\lambda x) dx = \frac{\operatorname{sen}(\lambda x) - \lambda x \operatorname{cos}(\lambda x)}{\lambda^2} + C$

Tabela	de	transformadas	de	Laplace:

Tabel	a de transformadas de Laplace:	
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}$ $\frac{1}{s}$ $\frac{1}{s^2}$	1
2	$\frac{1}{a^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	t^{n-1}
		$\frac{(n-1)!}{\sqrt{\pi t}}$
4	$\overline{\sqrt{s}}$,	$\sqrt{\pi t}$
5	$\frac{1}{\sqrt{s}},$ $\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$	e^{at}
8	$\frac{\overline{s-a}}{1}$ $\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$ $\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(ae^{at} - be^{bt} \right)$
13	$\frac{1}{s^2 + w^2}$	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$ \frac{1}{s^2 + w^2} $ $ \frac{s}{s^2 + w^2} $ $ \frac{1}{s^2 - a^2} $ $ \frac{s}{s^2 - a^2} $ $ 1 $	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
0.4	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$	1 (() (12)
24	$(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2} (\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) -$
	(5 200)	$-\cos(at) \operatorname{senh}(at)$]
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^2)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$
	(0 4)	

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0,5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2 + w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (1.0 ponto) Seja $f(t) = \operatorname{sen}^2(t)$ e $g(t) = (\operatorname{sen}(t) + e^{-t})^2$. Assinale as alternativas que indicam respectivamente $\mathcal{L}{f(t)}$ e $\mathcal{L}{g(t)}$:

()
$$Y(s) = \frac{s^2 + 2}{s^3 + 4s}$$

()
$$Y(s) = \frac{s-2}{s^3+4s}$$

()
$$Y(s) = \frac{2}{s^2 + 4}$$

()
$$Y(s) = \frac{s}{s^2 + 4}$$

$$(x) Y(s) = \frac{2}{s^3 + 4s}$$

()
$$Y(s) = \frac{s^2 + 2}{s^3 + 4s}$$

()
$$Y(s) = \frac{2}{s^3 + 4s} + \frac{1}{s+2}$$

$$(x) Y(s) = \frac{2}{s^3 + 4s} + \frac{2}{(s+1)^2 + 1} + \frac{1}{s+2}$$

()
$$Y(s) = \frac{2}{s^2 + 4} + \frac{s}{s^2 + 1} + \frac{1}{s - 2}$$

()
$$Y(s) = \frac{1}{s^2 + 1} + \frac{1}{s + 1}$$

()
$$Y(s) = \frac{2}{s^3 + 4s} + \frac{2}{(s-1)^2 + 1} + \frac{1}{s-2}$$

• Questão 2 (1.0 ponto) Sabendo que y'''(t) + y'(t) = 1 e y''(0) = 1, y'(0) = 1 e y(0) = 0. Assinale as alternativas que indicam respectivamente uma expressão para $Y(s) := \mathcal{L}\{y(t)\}\ e\ y(t)$

()
$$Y(s) = \frac{s + 2s^2}{s^2 + 1}$$

()
$$Y(s) = \frac{2+s^2}{s^2(s^2+1)}$$

()
$$Y(s) = \frac{2+s}{s^2+1}$$

$$(x) Y(s) = \frac{1+s+s^2}{s^2(s^2+1)}$$

()
$$Y(s) = \frac{1+s+s^2}{s(s^2+1)}$$

$$(x) y(t) = 1 + t - \cos(t) + \sin(t)$$

()
$$y(t) = \delta(t) + \operatorname{sen}(t)$$

()
$$y(t) = 2 - 2\cos(t) + \sin(t)$$

$$() y(t) = 1 + \operatorname{sen}(t)$$

$$(\)\ y(t) = 1 - \cos(t)$$

• Questão 3 (1.0 ponto) Sabendo que f(t) = (u(t) + u(t-1) + u(t-2)) e $g(t) = 2^{f(t)}$ Assinale as alternativas que indicam respectivamente uma expressão para $F(s) := \mathcal{L}\{f(t)\}\ e\ G(s) := \mathcal{L}\{g(t)\}$ () $F(s) = \frac{1 + 2e^{-s} + 3e^{-2s}}{e^2}$

()
$$F(s) = \frac{1 + 2e^{-s} + 3e^{-2s}}{s^2}$$

()
$$G(s) = \frac{2 + 4e^{-s} + 8e^{-2s}}{s^2}$$

()
$$F(s) = \frac{1 + e^{-s} + e^{-2s}}{s^2}$$

()
$$G(s) = \frac{2 + 2e^{-s} + 4e^{-2s}}{s^2}$$

(x)
$$F(s) = \frac{1 + e^{-s} + e^{-2s}}{s}$$

()
$$G(s) = \frac{2 + 4e^{-s} + 8e^{-2s}}{s}$$

()
$$F(s) = \frac{1 + 2e^{-s} + 3e^{-2s}}{s}$$

$$(x) G(s) = \frac{2 + 2e^{-s} + 4e^{-2s}}{s}$$

() Nenhuma das anteriores.

() Nenhuma das anteriores.

• Questão 4 (1.0 ponto) Sabendo que y(t) satisfaz $y(t) = 2 - e^t + e^{-t} + \int_0^t (1+\tau)y(t-\tau)d\tau$ Assinale as alternativas que indicam respectivamente uma expressão para $Y(s) := \mathcal{L}\{y(t)\}$ e y(t).

$$(x) Y(s) = \frac{2s}{s^2 - 1}$$

$$(\)\ Y(s) = \frac{2}{s^2 - 1}$$

$$() y(t) = sen(2t)$$
$$() y(t) = cos(2t)$$

$$(\)\ Y(s) = \frac{2}{s^2 + 1}$$

$$(\)\ y(t) = e^t - e^{-t}$$

$$(\)\ Y(s) = \frac{2s}{s^2 + 1}$$

(x) $y(t) = e^t + e^{-t}$ () Nenhuma das anteriores.

() Nenhuma das anteriores.

• Questão 5 (1.0 ponto) Sabendo que $f(t) = 1 + \sum_{k=1}^{\infty} \delta(t-k)$ e $g(t) = \int_{0}^{t} f(\tau)d\tau$. Assinale as alternativas que indicam respectivamente f(7/2) e g(7/2)

() 0

(x)1

() 2

(
$$\mathbf{x}$$
) $13/2$

() 3

() 4

 \bullet Questão 6 (2.0 pontos) Considere a função $f_a:\mathbb{R}_+\to\mathbb{R}$ dada por

$$f_a(t) = a \sum_{n=1}^{\infty} u(t - an).$$

onde a é uma constante positiva.

- a) (0.5) Esboce o gráfico de $f_a(t)$.
- b) (1.5) Calcule $F_a(s) = \mathcal{L}\{f_a(t)\}$. Calcule o limite $F_a(s)$ quando $a \to 0+$ e interprete o resultado.

Gráfico com a = 1/2 com reta f(t) = t

$$F_a(s) = a \sum_{n=1}^{\infty} \frac{e^{-ans}}{s} = \frac{a}{s} \sum_{n=1}^{\infty} e^{-ans} = \frac{a}{s} \frac{e^{-as}}{1 - e^{-as}}$$

$$\lim_{a \to 0+} F_a(s) = \lim_{a \to 0+} \frac{a}{s} \frac{e^{-as}}{1 - e^{-as}}$$

$$= \frac{1}{s} \lim_{a \to 0+} \frac{a}{1 - e^{-as}}$$

$$= \frac{1}{s} \lim_{a \to 0+} \frac{1}{se^{-as}} = \frac{1}{s^2}$$

Onde se usou o teorema de L'Hôpital na última igualdade.

Nota-se que $f_a(t) \to t$ e $F(s) \to \frac{1}{s^2} = \mathcal{L}\{t\}.$

• Questão 7 (3.0 pontos)

$$x''(t) = -4x(t)$$

$$y'(t) = -y(t) + x(t)$$

Com condições iniciais dadas por x(0) = 0, x'(0) = 1 e y(0) = 0.

- a) (1.0) Escreva as transformadas de laplace, X(s) e Y(s), respectivamente de x(t) e y(t)
- b) (1.0) Encontre uma expressão para x(t) e esboce o gráfico.
- b) (1.0) Encontre uma expressão para y(t).

$$s^2X(s) - 1 + 4X(s) = 0$$

Assim $X(s) = \frac{1}{s^2 + 4}$ e $x(t) = \frac{1}{1} \operatorname{sen}(2t)$ Agora calculamos:

$$sY(s) + = -Y(s) + \frac{1}{s^2 + 4}$$

$$Y(s)(s+1) = \frac{1}{s^2 + 4} = \frac{s^2 + 5}{s^2 + 4}$$

$$Y(s) = \frac{1}{(s^2 + 4)(s+1)}$$

$$Y(s) = \frac{A}{s+1} + \frac{Bs + C}{s^2 + 4}$$

$$Y(s) = \frac{1}{5s+1} + \frac{1}{5s^2 + 4}$$

Portanto $y(t) = \frac{1}{5}e^{-t} - \frac{1}{5}\cos(2t) + \frac{1}{10}\sin(2t)$