Answers to exercises in How To Prove It

Son To <son.trung.to@gmail.com>

StaffPoint Oy

July 10, 2019

This is to answer all the questions in the books "How to prove it" by Velleman. Comments are appreciated!

Contents

1	Introduction	3
2	Chapter 1	3

1 Introduction

Exercise 1.1. (a) a=3, b=5 \Rightarrow $x=2^5-1=31$, $y=1+2^5+2^{10}=1057$

(b) Since 32,767 is not a prime, $2^{32,767}-1$ is not a prime either. Therefore, there exists a positive integer $0 < x < 2^{32,767}-1$ such that $2^{32,767}-1$ is divisible by x. Hence, by (a), $x=2^{31}-1$ satisfies this.

Exercise 1.2.				
n	$3^{n}-1$	$3^n - 2^n$		
2, prime	8, not prime	5, prime		
3, prime	26, not prime	19, prime		
4	80, not prime	65, not prime		
5, prime	242, not prime	211, prime		
6	728, not prime	665, not prime		
7, prime	2,186, not prime	2,059, prime		
8	6,560, not prime	6,305, not prime		
9	19,682, not prime	$19,171 = 19 \cdot 1,009$, not prime		
10	59,048, not prime	58,025, not prime		

2 Chapter 1

Exercise 2.1. OK MAN