Michael Wächter Digitalisierung und Industrie 4.0 - Wie verändert sich unsere Arbeitswelt?

Instandhaltung heute und morgen

Überblick Industrie 4.0 Industrie 4.0 in der Instandhaltung:

Stand der Technik

Zukunftsszenario

Entwicklung eines mobilen Assistenzsystems

Die intelligente Fabrik

Herausforderungen

- Individualisierung und Losgröße 1
- Kürzere Produktlebenszyklen
- Steigende Produktvarianz
- Steigende Bedeutung von Wertschöpfungsnetzwerken
- Kostendruck
- Verfügbarkeit von Fachkräften

Cyber-physische Systeme

- Verknüpfung von physischen und virtuellen Objekten/Prozessen
- über offene, teilweise global verbundene Informationsnetze

Intelligente, sich selbst steuernde Objekte

- Selbstständige Steuerung der Aufträge durch gesamte Wertschöpfungskette
- Selbstständige Buchung von Maschinen/Material
- automatische Organisation der Auslieferung zum Kunden

Beispiele intelligenter vernetzter Produktion

Der Rohling teilt der Fräsmaschine mit, wie er zu formen ist.

Der Ladungsträger sagt dem Roboter, wie er zu greifen und wohin er abzulegen ist.

Die Maschine meldet sich, wenn ein falsches Teil bei der Instandhaltung eingebaut wird.

Auf dem Weg zur Industrie 4.0 Fallbeispiel Industrie 4.0 für den sächsischen Mittelstand

Magna Exteriors & Interiors GmbH (Meerane, Sachsen) Stoßfängerproduktion

- RFID-basierte Bauteilverfolgung innerhalb der Maschinen und Anlagen
- Standortübergreifende Vernetzung der Systeme

Mehrwert:

- Schneller, transparenter Datenfluss
- Hohe Prozesssicherheit
- Ausschussminimierung
- 100-Prozent-Auslastung
- 100-Prozent-Rückverfolgbarkeit

Instandhaltungstätigkeit

Nach DIN EN 31051

Rollen im Instandhaltungsprozess

Führungsebene Instandhaltungsleiter/ Planungsleiter/ Servicetechnikleiter

Instandhalter

Einrichter/ Anlagenführer

Servicetechniker

- Studie bei einem deutschen Automobilhersteller

Verteilung der Arbeitsleistung

Anteil Informationsbeschaffung während des Instandhaltungsprozesses:

Anlagenführer: ca. 20%, Instandhalter: ca. 25%

Instandhalter: ca. 30% benötigen sehr oft zusätzliche Informationen

Unnötige Wege im Instandhaltungsprozess, u.a. durch:

- Schlechte Positionierung der Bedienpulte und Steuerungen
- Ungenaue Störtexte bzw. fehlende Informationen
- Keine Aktualität der Dokumente

- Studie bei einem deutschen Automobilhersteller

Vermeidung unnötiger Wege im Instandhaltungsprozess

Anlagenführer (n=20)

65% sind der Meinung, dass ein mobiles Assistenzsystem helfen würde, unnötige Wege zu reduzieren

Gründe

- mobiler Zugriff auf Bedienpulte und Steuerungen
- alle notwendigen Dokumente sind direkt auf dem Assistenzsystem zu finden

Instandhalter (n=18)

80% sind der Meinung, dass ein mobiles Assistenzsystem helfen würde, unnötige Wege zu reduzieren

Gründe

- mobiler Zugriff auf notwendige Dokumente
- Versenden von Fotos
- Sichtbarkeit von Lagerorten
- Sichtbarkeit von Informationen über Störungsannahmen

- Studie bei einem deutschen Automobilhersteller

Mobile Technikaffinität der Anlagenbediener und Instandhalter

	gar nicht	wenig	überwiegend	sehr
Wie erfahren sind Sie im Umgang mit mobilen				^
Endgeräten?				
Wie vertraut sind Sie mit der Bedienung eines				
Multitouchscreens?			444	
Wie aufgeschlossen sind Sie gegenüber				
mobilen Assistenzsystemen?			7	X
Für wie wichtig halten Sie die Einbeziehung der				\times
Mitarbeiter in die Entwicklung eines solchen				
Assistenzsystems?			(

 \leq 25 Jahre \bigcirc 26 – 33 Jahre \triangle

34 – 41 Jahre

50 - 57 Jahre

Zielstellung

- Verknüpfung von Produktion und Instandhaltung
- höhere Effizienz der Instandhaltung durch:
 - aufwandsarme Kommunikation
 - effizientes Planen von Wartungsarbeiten
 - ressourcensparende Überwachung
- verbessertes Zusammenspiel von Ferndiagnose, Fernwartung und Vor-Ort-Instandhaltung

- Vernetzung von IT-Systemen → intuitives Finden aller relevanten Daten
- mobiles Assistenzsystem Ressourcen-Cockpit

Aktuelle Situation

Service-Disponent (Maschinenhersteller)

Service-Mitarbeiter (Maschinenhersteller)

Zukunft

Integration des Ressourcen-Cockpits?

Variante B: Direkte Vernetzung

Variante C: Digitales Bewusstsein

Industrie 4.0 in der Instandhaltung: Entwicklung eines mobilen Assistenzsystems

Entwicklung der Mensch-Maschine-Schnittstelle

Leitfadengestützte Interviews

Ableitung der Anforderungen an die rollenspezifischen Assistenzsysteme

(Software/Hardware)

- 2 Entwicklung Prototyp
- Fokusgruppen, Fragebogen, Story Telling, Fallstudie

Entwicklung der Mensch-Maschine-Schnittstelle

Leitfadengestützte Interviews

Ableitung der Anforderungen an die rollenspezifischen Assistenzsysteme

(Software/Hardware)

- 2 Entwicklung Prototyp
- Fokusgruppen, Fragebogen, Story Telling, Fallstudie

Softwareseitige Anforderungen

- Entwicklung einer geeigneten Nutzeroberfläche als Mensch-Maschine Schnittstelle
 - Abbildung aller relevanten Daten
 - intuitive Bedienung
- \rightarrow

Akzeptanz

Übersichtlichkeit

Herausforderung Usability und Software-Ergonomie

schlechte Software-Ergonomie

gute Software-Ergonomie

Softwareseitige Anforderungen

Studie:

Leitfadengestützte Interviews

Empirisches Feld:

- Unternehmen aus den Bereichen Automotive und Windkraft
- Instandhalter, Einrichter/Anlagenführer, Servicetechniker

Ergebnisse

 Anforderungen mit hoher, mittlerer und niedriger Priorität

Softwareseitige Anforderungen

Anforderungen mit hoher Priorität

Funktionale Anforderungen

- Kommunikation
- Zugriff auf relevante Maschinendaten
- Zugang auf relevante Webanwendungen
- Bearbeiten von **Dokumenten**

Inhaltliche Anforderungen

- Automatische, detaillierte Fehlermeldung inkl.
 Störungsart
- Maschinenpläne (Steuerungspläne, SPS, etc.)
- Handlungsanweisungen
- Ersatzteilhandling (Information und Verfügbarkeit)
- Anlagen-, Bauteil, und Maßnahmenhistorie
- Priorisierung der abzuarbeitenden Tätigkeiten

Maintenance-Service-Cockpit ÜBERSICHT

Aktuelles

Anlagenübersicht

Anlagen Produktionsplanung Technische Verfügbarkeit Service-/Wartungsverträge

Störungsmeldungen Störungsbehebungen

Dokumentation

Fehlerbehebungen Anlagentagebucht

Anlagenhistorie

Ausfallzeiten Störungen

MSC

Zugriff Anlage

Funktionen

Bedienpult

SPS Prozess-gerät

Frau Lehmann ist angemeldet. <u>Abmelden</u>

Anlagenübersicht

Aktuelle Störungen

Sersonaleinsatz

Dokumentation

MSC

AKTUELLE STÖRUNGEN

Störungsmeldungen

Filtern nach

Datum: 19.05.2015 Zeit:

06:00:05 Anlage:

XY

Fehler: 1234

Datum: 17.05.2015 Zeit:

15:10:29 Anlage: Z Fehler: 5837A

Störungsbehebungen

Filtern nach

Datum: 17.05.2015 Dauer:

15:30:57 Anlage: XY

Beheber: G. Meier

Funktionen

Kamera

Barcode-Scanner

Zugriff Anlage

Bedienpult

SPS Prozess-gerät

Frau Lehmann ist angemeldet. Abmelden

Mensch-Maschine-Schnittstelle

Leitfadengestützte Interviews

Ableitung der Anforderungen an die rollenspezifischen Assistenzsysteme

(Software/Hardware)

- 2 Entwicklung Prototyp
- Fokusgruppen, Fragebogen, Story Telling, Fallstudie

Hardwareseitige Anforderungen

Anforderungen der Anwender

Hardware - Prototyping

1. Stufe: Kreativ-Workshop

2.Stufe: CAD-Konstruktion

4. Stufe: Rapid-Prototyping

3. Stufe: Anthropometrische Analyse

Industrie 4.0 in der Instandhaltung

Mobiles Assistenzsystem: Ressourcen Cockpit

- Verknüpfung von Produktion und Instandhaltung
- Verbesserung der Instandhaltungsprozesse durch
 - Aufbereitung von Wissen und Informationen
 - Aufwandsarme Kommunikation

Kontakt

Michael Wächter Instandhaltung heute und morgen

Vielen Dank für Ihr Interesse!

Erfenschlager Straße 73 D-09125 Chemnitz Tel.: +49 371 531 23210

E-Mail: awi@tu-chemnitz.de

www.tu-chemnitz.de/ mb/ArbeitsWiss

