Статистический анализ многомерных лонгитюдных кардиологических данных

Орбидан Егор Владимирович науч. рук.: к.ф.-м.н., доцент Н.П. Алексеева рецензент: к.т.н., доцент Л.А. Белякова

Санкт-Петербургский Государственный Университет Кафедра статистического моделирования

2019

Описание эксперимента [1]

Участники эксперимента — 9 студентов НГУ им. П.Ф.Лесгафта.

Показатели — данные мониторинга пяти гемодинамических характеристик в течение 3 минут в обычных условиях и 5 минут в условиях гипоксии.

Этапы исследования:

- первоначальное перед трехмесячным курсом тренировок;
- сразу после окончания тренировок;
- через полгода.

Тренировки — чередование обычных условий с условиями гипоксии.

Описание полученных экспериментатором признаков

• Основные:

- SV систолический объем;
- EDP конечное диастолическое давление;
- SPR удельное периферическое (артериальное) сопротивление сосудов;
- HR частота сердцебиения;
- MBF минутный объем крови (кровообращения);

• Специальные:

- MCI = tg(EDP/SV) индекс, отражающий сократимость миокарда левого желудочка;
- QRS вектор деполяризации во фронтальной плоскости ЭКГ.

Практическая постановка задачи

- Проверить, происходит ли адаптация к условиям гипоксии после продолжительных тренировок;
- Выделить группы индивидов по характеристикам, активизирующимся в экстремальных условиях;
- Выявить зависимость между основными характеристиками сердечно-сосудистой системы и новыми характеристиками, которые ввел экспериментатор;
- Упорядочить признаки по степени информативности в задаче классификации состояния испытуемого.

Математическая постановка задачи

- Построить статистики Фишера для дисперсионного анализа с повторными измерениями со случайными эффектами для неполных данных;
- Выявить латентные характеристики по линейным комбинациям реализаций многомерных процессов, по которым достигается наиболее значимый эффект фактора взаимодействия;
- Построить кривые саногенеза для оценки параметров модели КМНС процесса;
- Статистические задачи: редуцировать данные, кластеризовать индивидов, упорядочить признаки по их информативности в классификации и выполнить канонический анализ.

Дисперсионный анализ с повторными наблюдениями для неполных данных

$$x_{ijt} = \mu + \alpha_i + \boldsymbol{e}_{ij}^1 + \beta_t + \gamma_{it} + \boldsymbol{e}_{ijt},$$

- μ генеральное среднее;
- $\alpha_i, \beta_t, \gamma_{it}$ фиксированные эффекты группы, времени и взаимодействия,
- ullet $e_{ij}^1 \sim N(0, \sigma_1^2), e_{ijt} \sim N(0, \sigma^2)$ взаимно независимые ошибки.
- ullet I число групп, T число временных точек.
- M_{it} множество индивидов группы i во временной точке t, m_{it} его мощность.

Матричная модель дисперсионного анализа для неполных данных

В работе [2] было показано, что $y_{ijt}=x_{ijt}-x_{ij.}+H_{ij}+G_i=eta_t+\gamma_{it}+\delta_{ijt},$ где

- H_{ii} , G_i индивидуальная и групповая поправки;
- $\delta_{ijt} = e_{ijt} e_{ij.} + \varepsilon_{ij} + \epsilon_i$, δ вектор зависимых в совокупности ошибок с ковариационной матрицей Λ ;
- ε_{ij} и ϵ_i ошибки, вызванные индивидуальной и групповой поправками соответственно.

В матричном виде модель можно записать как

$$Y = \mathbf{H}\Theta + \delta$$
, где

- ullet $Y = (y_{111}, \dots, y_{1m_{11}}, \dots, y_{I1T}, \dots, y_{Im_{IT}})^{\mathrm{T}}$ вектор наблюдений;
- $m{\Theta}=(eta_1,\gamma_{11},\ldots,\gamma_{\iota 1},\ldots,eta_{ au},\gamma_{1 au},\ldots,\gamma_{\iota au})$ вектор параметров размерности I(T-1), где $au=T-1,\iota=I-1.$

Обозначения

Матрица Λ^{-1} содержит блоки $\Lambda_{it,lk}^{-1}$ размерности $m_{it} imes m_{lk}, \, i,l=1,\ldots,I; \, t,k=1,\ldots,T.$

- ullet $\lambda_{it,lk}=J_{it}^T\Lambda_{it,lk}^{-1}J_{lk},$ где J_{it} вектор из единиц размерности m_{it} ;
- $\lambda_{.t,.k} = \sum_{i=1}^{I} \sum_{l=1}^{I} \lambda_{it,lk}$;
- $GTr(\Lambda^{-1}) = \sum_{i=1}^{I} \sum_{t=1}^{T} \lambda_{it,it};$
- ullet Н $_b$ и Н $_g$ матрицы плана усеченных моделей;
- $\begin{aligned} \bullet & \ R_0 = (Y \mathbf{H}\widehat{\Theta})^{\mathrm{T}} \Lambda^{-1} (Y \mathbf{H}\widehat{\Theta}), \\ R_1 &= (Y \mathbf{H}_b \widehat{\beta})^{\mathrm{T}} \Lambda^{-1} (Y \mathbf{H}_b \widehat{\beta}), \\ R_2 &= (Y \mathbf{H}_g \widehat{\gamma})^{\mathrm{T}} \Lambda^{-1} (Y \mathbf{H}_g \widehat{\gamma}); \end{aligned}$
- $\bullet \ \widehat{\Theta} = (\mathbf{H}^{\mathrm{T}} \Lambda^{-1} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \Lambda^{-1} Y, \ \widehat{\beta} = (\mathbf{H}_b^{\mathrm{T}} \Lambda^{-1} \mathbf{H}_b)^{-1} \mathbf{H}_b^{\mathrm{T}} \Lambda^{-1} Y.$

Математические ожидания R_0 , R_1 , R_2 для случайных эффектов

$$x_{ijt} = \mu + lpha_i + oldsymbol{e}_{ij}^1 + oldsymbol{b}_t + oldsymbol{g}_{it} + oldsymbol{e}_{ijt},$$
 где

 $b_t \sim N(0,\sigma_b^2)$, $g_{it} \sim N(0,\sigma_g^2)$ — случайные эффекты времени и взаимодействия.

- $c_0 = N I(T-1), a_0 = (T-1)(I-1), b_0 = T-1;$
- $a_1 = GTr(\Lambda^{-1} \Lambda^{-1}\mathbf{H}_b(\mathbf{H}_b^T\Lambda^{-1}\mathbf{H}_b)^{-1}\mathbf{H}_b^T\Lambda^{-1});$
- $b_1 = GTr(\Lambda^{-1}\mathbf{H}_b(\mathbf{H}_b^T\Lambda^{-1}\mathbf{H}_b)^{-1}\mathbf{H}_b^T\Lambda^{-1}), b_2 = \sum_{t=1}^T \lambda_{.t,.t};$

Утверждение

- $(R_2 R_0) = b_0 \sigma^2 + b_1 \sigma_a^2 + b_2 \sigma_b^2.$

Проверка гипотез о незначимости факторов взаимодействия и времени

Гипотеза	Статистика	Распределение
$H_0: \sigma_g^2 = 0$	$F_g = rac{(R_1 - R_0)/a_0}{R_0/c_0}$	$F(a_0,c_0)$
$H_0: \sigma_b^2 = 0$	$F_b = rac{rac{R_2 - R_0}{b_0} - d}{(R_1 - R_0)/a_0}, d = \left(rac{b_1}{b_0} - rac{a_1}{a_0} ight)$	$F(b_0,a_0)$

Рис.: Равномерность p-value для F_q (слева) и F_b (справа)

Многомерная модель со случайными эффектами

Модель:

$$\mathbf{x}_{ijt}^{(k)} = \boldsymbol{\mu}^{(k)} + \alpha_i^{(k)} + \boldsymbol{e}_{ij}^{1(k)} + \boldsymbol{b}_t^{(k)} + \boldsymbol{g}_{it}^{(k)} + \boldsymbol{e}_{ijt}^{(k)},$$

 $k=1,\ldots,K$, где K — число моделей.

Задача: поиск $c_1, \ldots, c_K, c_k \in [0,1], \sum_{k=1}^K c_k = 1$:

$$\sum_{k=1}^K c_k x_{ijt}^{(k)}
ightarrow \max_{c_1,...,c_K} F_g$$

Результат поиска латентных характеристик по реализациям многомерных процессов

Индивид	SV	EDP	HR	QRS
Dol	0.7	0.1	0.1	0.1
Sav	0.1	0.1	0.2	0.6
She	0.1	0.1	0.2	0.6
Sir	0.1	0.1	0.1	0.7
Hid	0.3	0.1	0.5	0.1
Ism	0.1	0.2	0.6	0.1
Rub	0.1	0.1	0.7	0.1
Shu	0.1	0.1	0.7	0.1
Spi	0.1	0.1	0.6	0.2

- SV систолический объем;
- EDP конечное диастолическое давление;
- HR частота сердцебиения;
- QRS вектор деполяризации во фронтальной плоскости ЭКГ.

Оценка параметров корреляционной функции КМНС процесса [3, 4]

- \bullet $x_i(t) = \alpha_i(t) + i\beta_i(t)$ некоррелированные признаки, где $j = 1, \ldots, n, t = 1, \ldots, k_i$, где k_i — число первых точек наблюдения у j-го индивида;
- ullet $S(t) = e^{-\eta t}\cos(\tau t)$ вещественная часть корреляционной функции;
- ullet оценка параметра au:

$$\operatorname{tg}\widehat{ au} = rac{\operatorname{Im}(A_3)}{\operatorname{Re}(A_3)},$$

где
$$A_3 = \sum_{j=1}^n \sum_{i=1}^{k_j-1} x_j^*(i) x_j(i+1)$$
;

• оценки остальных параметров имеют вид:

$$\widehat{\eta} = -\mathrm{ln}rac{Z(\widehat{ au})k}{A_1(k-1)}, \widehat{\sigma}^2 = rac{A_1}{kn},$$

где
$$A_1 = \sum_{j=1}^n \sum_{i=1}^{k_j} x_j^*(i) x_j(i),$$
 $Z(au) = Re(A_3) \cos(au) + Im(A_3) \sin(au).$

Сравнение результатов кластеризации и кривых саногенеза

Рис.: Кластеризация и кривые саногенеза по данным за первые 2 этапа эксперимента (до и после тренировки)

Результаты применения канонического корреляционного анализа

Таблица: Факторные нагрузки канонической величины специальных признаков (слева) и основных признаков (справа)

	V_1	V_2
MCI	1	-0.03
QRS	-0.003	-1

	V_1	V_2
SV	-0.7	-0.05
EDP	0.7	-0.1
SPR	0.5	-0.06
HR	0.2	0.3
MBF	-0.5	0.06

Выводы:

- Переменная MCI сильно коррелирует с основными переменными, но при этом зависимости от QRS нет;
- Переменная QRS не зависит от основных переменных.

Применение алгоритма случайного леса

- Классы: 0 нормоксия, 1 гипоксия;
- Критерий информативности индекс Джини.

Наиболее важные признаки: HR (частота сердцебиения), SPR (удельное периферическое сопротивление сосудов), QRS (вектор деполяризации во фронтальной плоскости ЭКГ), MBF (минутный объем крови).

Заключение

- Построены статистики для проверки гипотез в модели со случайными эффектами для неполных лонгитюдных данных;
- Разработан алгоритм оценки параметров линейной комбинации реализаций многомерного процесса с наиболее значимым эффектом фактора взаимодействия для выявления ведущих факторов, активирующихся в экстремальных условиях;
- Оценены параметры кривых саногенеза, ассоциированные с эффективностью тренировочного процесса;
- Подтверждена информационно-статистическая значимость специальных характеристик на основе канонического корреляционного анализа;
- Предложен метод упорядочивания признаков по их значимости для задачи классификации состояний при наличии и без гипоксии.

Литература

- Радченко А. С. Взаимодействие пред- и постнагрузки сердца и RR интервалов при нормобарическом жестком гипоксическом воздействии у молодых здоровых лиц // Обзоры по клинической фармакологии и лекарственной терапии 2013.
- Alexeyeva N. Dual balance correction in repeated measures anova with missing data // Electronic Journal of Applied Statistical Analysis. — 2017.
- Алексеева Н. П. Анализ медико-биологических систем. Реципрокность, эргодичность, синонимия. — 2012.
- Барт А. Г. Анализ медико-биологических систем. Метод частично обратных функций. 2003.