MCT333: Mechatronic Systems Design

Lecture 4: Actuator Selection

Presented by: Dr. Mohammed Ibrahim

How to Engineer a bio-inspired Robot

Actuators Power-to-weight Ratio

Operational Efficiency

Motion Control Capabilities

Comparing Motion Control Capabilities

Power Transmission Comparison

Characteristics	Pneumatic	Hydraulic	Electric			
Complexity	Simple	Medium	Medium/High			
Peak power	High	Very high	High			
Size	Low size/force	Very low size/force	Medium size/force			
Control	Simple valves	Simple valves	Electronic controller			
Position accuracy	Good	Good	Better			
Speed	Fast	Slow	Fast			
Purchase cost	Low	High	High			
Operating cost	Medium	High	Low			
Maintenance cost	Low	High	Low			
Utilities	Compressor/power/ pipes	Pump/power/ pipes	Power only			
Efficiency	Low	Low	High			
Reliability	Excellent	Good	Good			
Maintenance	Low	Medium	Medium			

Transmission Mechanisms

Operating Modes (Four Quadrant)

Operational Efficiency and Energy Conversion (Hydraulic System)

Operational Efficiency and Energy Conversion (Electrical Motor Actuation System)

Backdrivability (Passive behavior)

$$\eta_{back-drive} = 2 - \frac{1}{\eta_{forward}}$$

Where:

ηback-drive

, back-driving or reverse efficiency.

η forward

, driving or forward efficiency.

Backdrivability (Passive behavior)

Components of a motion control system

Open Loop Speed Control

Cascade Control Structure of High Performance DC Servo System (Review)

Torque Control Mode

Velocity Control Mode

Position Control Mode

Block Diagram of AC Servo System

cascading control loop

Control of Electric Machines

CASCADE CONTROL SYSTEM

In cascade control a process is controlled by two controllers in such way that both are acting for each other.
Cascade control is technique which contains two or more closed loop control cascade to each other in such way that first loop controller output will be set point for second loop controller. It is called remote set point for second controller.
In cascade control First Loop called Master Controller and second loop called Slave Controller. Master controller generate the set point for the slave controller.
Finally slave controller control the process depends upon the remote set point provide by the master controller

Current Control

Analysis of Electric Motors

Electric Motors convert electrical power to mechanical power.

Electrical Power = I*VMechanical Power = F*v for linear motor = $T*\omega$ for rotary motor

Analysis of Electric Motors

Data Sheet and Operating Ranges

			110061	110062	110063	110064	110065	110066	110067	110068	110069	110070
Мо	tor Data											
	Values at nominal voltage											
1	Nominal voltage	V	1.5	3.0	6.0	9.0	12.0	14.0	15.0	18.0	21.0	30.0
2	No load speed	rpm	10200	11700	9620	11800	11800	11800	11200	11200	11600	10800
3	No load current	mA	201	117	46.7	39.1	29.3	25.1	22.2	18.5	16.5	10.7
4	Nominal speed	rpm	867	Valu	96 3	it no	min	al vo	altac	10	70	4160
5	Nominal torque (max. continuous torque)	mNm	0.68	valu		1110		ai ve	Jitag		39	2.35
6	Nominal current (max. continuous current)	Α	0.720	0.720	0.494	0.394	0.294	0.253	0.225	0.186	0.162	0.105
7	Stall torque	mNm	4.93	4.51	4.02	4.82	4.76	4.81	4.53	4.47	4.48	4.03
8	Starting current	Α	3.76	1.97	0.721	0.700	0.519	0.450	0.377	0.310	0.275	0.164
9	Max. efficiency	%	58	57	56	58	58	58	58	57	57	55
	Characteristics											
10	Terminal resistance	Ω	0.399	1.52	8.32	12.8	23.1	31.1	39.8	58.0	76.2	183
11	Terminal inductance	mH	0.017	0.0519	0.306	0.467	0.831	1.13	1.42	2.05	2.61	6.01
12	Torque constant m	Nm / A	1.31	Chai	cact	ariet	ic m	otor	dat	2	.3	24.7
13	Speed constant	rpm / V	729	Ullai	aci	21151		Oloi	uai	a	37	387
14	Speed / torque gradient rpm	/ mNm	2220	2770	2560	2600	2630	2600	2630	2670	2750	2880
15	Mechanical time constant	ms	24.5	23.7	23.2	23.2	23.2	23.2	23.4	23.3	23.4	23.8
16	Rotor inertia	gcm ²	1.05	0.816	0.864	0.854	0.844	0.854	0.848	0.834	0.811	0.788

Speed-Torque Curve

Speed-torque line

Winding

- speed-torque gradient
- basically constant for the winding series
- constant filling factor: a constant amount of copper fills the air gap

Nominal Voltages

Values at nominal voltage

describe the special working points: • at rated voltage U_N

at rated current I_N

Friction and no-load

Friction and no-load

Data Sheet and Operating Ranges

			110061	110062	110063	110064	110065	110066	110067	110068	110069	110070
Мо	tor Data											
	Values at nominal voltage											
1	Nominal voltage	V	1.5	3.0	6.0	9.0	12.0	14.0	15.0	18.0	21.0	30.0
2	No load speed	rpm	10200	11700	9620	11800	11800	11800	11200	11200	11600	10800
3	No load current	mA	201	117	46.7	39.1	29.3	25.1	22.2	18.5	16.5	10.7
4	Nominal speed	rpm	867	Valu	96 3	it no	min	al vo	altac	10	70	4160
5	Nominal torque (max. continuous torque)	mNm	0.68	valu	CS B	1110		ai ve	Jitag		39	2.35
6	Nominal current (max. continuous current)	Α	0.720	0.720	0.494	0.394	0.294	0.253	0.225	0.186	0.162	0.105
7	Stall torque	mNm	4.93	4.51	4.02	4.82	4.76	4.81	4.53	4.47	4.48	4.03
8	Starting current	Α	3.76	1.97	0.721	0.700	0.519	0.450	0.377	0.310	0.275	0.164
9	Max. efficiency	%	58	57	56	58	58	58	58	57	57	55
	Characteristics											
10	Terminal resistance	Ω	0.399	1.52	8.32	12.8	23.1	31.1	39.8	58.0	76.2	183
11	Terminal inductance	mH	0.017	0.0519	0.306	0.467	0.831	1.13	1.42	2.05	2.61	6.01
12	Torque constant m	Nm / A	1.31	Chai	cact	ariet	ic m	otor	dat	2	.3	24.7
13	Speed constant	rpm / V	729	Ullai	aci	21151		Oloi	uai	a	37	387
14	Speed / torque gradient rpm	/ mNm	2220	2770	2560	2600	2630	2600	2630	2670	2750	2880
15	Mechanical time constant	ms	24.5	23.7	23.2	23.2	23.2	23.2	23.4	23.3	23.4	23.8
16	Rotor inertia	gcm ²	1.05	0.816	0.864	0.854	0.844	0.854	0.848	0.834	0.811	0.788

Operation Ranges

Motor limits: operation ranges

Operation Ranges

Short-term operation at overload

Influence of temperature

Influence of temperature

temperature coefficients

Cu + 0.39 % per K

AlNiCo - 0.02 % per K

Ferrite - 0.2 % per K

NdFeB - 0.1 % per K

temperature

resistance

magnetic properties

example: RE motor

$$\Delta T = +50K$$

$$\Delta T = +50K$$
 R: +19.5 %

k_M - 5 % (more current!)

stall torque M_H: - 22 %

Efficiency

Max. efficiency

Thermal motor data

Thermal motor data

describe the motor heating and thermal limits

- depend strongly on mounting conditions
- standard mounting:
- heating and cooling
 - thermal resistance housing-ambient R_{th2}
 - thermal resistance winding-housing R_{th1}
 - thermal time constant of winding τ_{thW}
 - thermal time constant of motor τ_{thS}
- temperature limits
 - ambient temperature range
 - max. winding temperature T_{max}

free convection at 25 °C ambient temperature

Motor Thermal Information

- ☐ The thermal data are needed to evaluate and calculate the thermal response of the motor. Thermal data depend on the details of heat dissipation. Thus, the values on the data sheet are given for **standard conditions** which are defined as follows
 - ❖ Ambient temperature of 25°C
 - ❖ Motor mounted horizontally on plastic plate: There is not much heat dissipation through the flange.
 - ❖ Free air convection, no additional cooling. Free air convection is quite effective for heat dissipation.
- ☐ These standard conditions represent **average mounting conditions**. Mounting the motor on a metallic frame (heat sink) will increase heat dissipation and hence there is more current allowed (see next slide). When the motor is encapsulated, there is no air convection, the ambient temperature increases and less current is permitted.
- The thermal resistances describe how well heat can flow from winding to housing and from the housing to the ambient. It's this second parameter which is influenced by the mounting conditions.
- ☐ The **thermal time constants** give the typical time frames for the heating of the winding and of the motor as a whole. While the winding temperature reacts with in a few seconds it takes several minutes to heat up or even longer for bigger motors. Measuring the housing temperature will not give short term information about the winding temperature. The housing will have reached its thermal equilibrium after typically half an hour or more.

Nominal Torque and Temperature

- ☐ This diagram shows the **influence of the ambient temperature** on the maximal permissible torque (**red curve**). One can see that at temperatures below 25° the permissible torque is higher, while it decreases at higher ambient temperatures.
- ☐ The influence of an improved heat dissipation is shown in the blue curve.

 Reducing the thermal resistance between housing and ambient by 2 leads to a maximum permissible current (or torque) which is about 30% higher at standard ambient conditions. Such a reduction of the thermal resistance is easily obtained, e.g. by mounting the motor on a metallic chassis.

Nominal Torque and Temperature

Motor Limit Lines for Motor selections

Questions

Thank You