```
In [1]: import pandas as pd
        df = pd.read_csv('Housing.csv')
        df
```

Out[1]:

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwa
0	13300000	7420	4	2	3	yes	no	no	
1	12250000	8960	4	4	4	yes	no	no	
2	12250000	9960	3	2	2	yes	no	yes	
3	12215000	7500	4	2	2	yes	no	yes	
4	11410000	7420	4	1	2	yes	yes	yes	
5	10850000	7500	3	3	1	yes	no	yes	
6	10150000	8580	4	3	4	yes	no	no	
7	10150000	16200	5	3	2	yes	no	no	
8	9870000	8100	4	1	2	yes	yes	yes	
9	9800000	5750	3	2	4	yes	yes	no	
10	9800000	13200	3	1	2	PAN	nn	PAV	•

```
In [2]: df.isnull().sum()
```

Out[2]: price 0 0 area bedrooms 0 0 bathrooms stories 0 mainroad 0 guestroom 0 basement 0 hotwaterheating 0 airconditioning 0 parking 0 prefarea 0 furnishingstatus 0

```
In [19]: import matplotlib.pyplot as plt
    plt.scatter(df['area'],df['price'])
    plt.ylabel("Price")
    plt.xlabel("Area")
    plt.title("Area is independent")
    plt.show()
```



```
In [13]: from scipy import stats
    x = df['price']
    y = df['area']
    slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):
    return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
    plt.plot(x, mymodel , color="r")
    plt.show()
```



```
In [22]: from sklearn.model_selection import train_test_split
    x = df['area']
    y = df['price']
    x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.4, rando
```

In [24]: x_train

s, 11:42 AM		
Out[24]:	284 33 427 8 173 95 468 195 74 359 367 79 477 330 274 538 411 10 415 263 174 335 188 36 209 77 30 58	7770 5960 2145 8100 5300 4100 2835 4410 4040 3630 6000 4960 4050 6450 3649 2145 13200 4785 3968 3816 5720 7482 6720 6500 7475 7680
	29	5500
	296	4600
	0 462 316 269 56 480 35 194 103 214 15 187 417 403 57 297 12 192 459	7420 2160 5900 3900 11440 3480 7000 8150 6350 4350 6000 6100 3640 12944 9000 3640 6550 6600 3500
	49	7440
	524 429	3264 4775
	6	8580
	39 347	6000 3350
	460	8100

```
237
                  5010
          31
                  7000
          488
                  5200
          40
                  6550
         Name: area, Length: 327, dtype: int64
In [27]: import numpy as np
          x_train = np.array(x_train).reshape(-1,1)
          x_train
Out[27]: array([[ 7770],
                 [ 5960],
                 [ 2145],
                 [ 8100],
                 [ 5300],
                 [ 4100],
                 [ 2835],
                 [ 4410],
                 [ 4040],
                 [ 3600],
                 [ 3630],
                 [ 6000],
                 [ 4960],
                 [ 4050],
                 [ 6450],
                 [ 3649],
                 [ 2145],
                 [13200],
                 [ 4785],
                   2000
In [28]:
          import numpy as np
          x_test = np.array(x_test).reshape(-1,1)
          x_test
Out[28]: array([[ 4900],
                 [ 4040],
                 [ 3584],
                 [ 1905],
                 [ 6420],
                 [11175],
                 [ 7424],
                 [ 8250],
                 [ 3240],
                 [ 6930],
                 [ 4500],
                 [ 3000],
                 [ 6525],
                 [ 6000],
                 [ 3060],
                 [ 3480],
                 [ 9000],
                 [ 3000],
                 [ 3000],
                   24201
```

```
from sklearn.linear_model import LinearRegression
In [29]:
          lr =LinearRegression()
          lr.fit(x_train,y_train)
Out[29]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fals
In [30]: | c = lr.intercept_
          C
Out[30]: 2313418.6659722454
In [31]: | m = lr.coef_
         m
Out[31]: array([481.71534686])
         y_pred_train = m*x_train + c
In [32]:
         y_pred_train
                 [ 4481137.72684001],
                 [ 3655959.33766968],
                 [ 3252763.59234828],
                 [ 3903079.31060861],
                 [ 4240280.05341026],
                 [ 3975336.61263753],
                 [ 5545728.64339951],
                 [ 5796702.33911331],
                 [ 4408880.42481108],
                 [ 6407999.11427802],
                 [ 6889714.46113753],
                 [ 5131453.44510034],
                 [ 4394428.9644053 ],
                 [ 4336623.12278216],
                 [ 4066862.52854084],
                 [ 4418514.73174827],
                 [ 6287570.27756315],
                 [ 3670410.79807547],
                 [ 6215312.97553422],
                 Г 4876144 3112648 1.
```

```
In [33]:
          # same as above
          y_pred_train1 = lr.predict(x_train)
          y_pred_train1
Out[33]: array([ 6056346.91107059,
                                      5184442.13325488,
                                                          3346698.08498588,
                  6215312.97553422,
                                      4866510.00432761,
                                                          4288451.58809621,
                  3679081.67431894,
                                      4437783.34562266,
                                                          4259548.66728464,
                  4047593.91466646,
                                      4062045.37507224,
                                                          5203710.74712927,
                  4702726.78639538,
                                                          5420482.65321604,
                                      4264365.82075323,
                  4071197.96666257,
                                      3346698.08498588,
                                                          8672061.24451769,
                  4618426.60069497,
                                      4224865.16231075,
                                                          4143936.98403836,
                  4151644.42958811,
                                      5068830.4500086 ,
                                                          5917612.89117505,
                  5550545.79686811,
                                      5444568.42055902,
                                                          5914240.88374703,
                  6012992.52985323,
                                      4962853.07369951,
                                                          4529309.26152596,
                  4673823.86558381,
                                      3541792.80046398,
                                                          3468572.06774133,
                  5196485.01692637,
                                      4962853.07369951,
                                                          4481137.72684001,
                  4485954.8803086 ,
                                      4721995.40026976,
                                                          5203710.74712927,
                  4697909.63292679,
                                      4240280.05341026,
                                                          4018690.99385489,
                  3816370.5481739 ,
                                      4365526.04359373,
                                                          4124668.37016398,
                  3816370.5481739 ,
                                      3960885.15223175,
                                                          4168022.75138133,
                                      5492739.95524497,
                  4432966.19215406,
                                                          3758564.70655076,
                  6591050.94608463,
                                      4134302.67710117,
                                                          4664189.55864662,
                                      6143055.6735053 ,
                  3975336.61263753,
                                                          5121819.13816315,
```



```
In [40]: import numpy as np
    input_data = float(input("Enter the Area: "))

# Reshape the input_data to be a 2D array
    input_data = np.array(input_data).reshape(1, -1)

# Make prediction
    predicted_price = lr.predict(input_data)

# Display the predicted price
    print("Predicted Price:", predicted_price)

Enter the Area: 5000

Predicted Price: [4721995.40026976]

In []:
```