Proof. Our general definition of instability has four parts: This means that we have to make sure that none of the four bad things happens.

First, suppose there is an instability of type (i), consisting of pairs (m, w) and (m', w') in S with the property that $(m, w') \notin F$, m prefers w' to w, and w' prefers m to m'. It follows that m must have proposed to w'; so w' rejected m, and thus she prefers her final partner to m—a contradiction.

Next, suppose there is an instability of type (ii), consisting of a pair $(m, w) \in S$, and a man m', so that m' is not part of any pair in the matching, $(m', w) \notin F$, and w prefers m' to m. Then m' must have proposed to w and been rejected; again, it follows that w prefers her final partner to m'—a contradiction.

Third, suppose there is an instability of type (iii), consisting of a pair $(m, w) \in S$, and a woman w', so that w' is not part of any pair in the matching, $(m, w') \notin F$, and m prefers w' to w. Then no man proposed to w' at all; in particular, m never proposed to w', and so he must prefer w to w'—a contradiction.

Finally, suppose there is an instability of type (iv), consisting of a man m and a woman w, neither of which is part of any pair in the matching, so that $(m, w) \notin F$. But for m to be single, he must have proposed to every nonforbidden woman; in particular, he must have proposed to w, which means she would no longer be single—a contradiction.

Exercises

1. Decide whether you think the following statement is true or false. If it is true, give a short explanation. If it is false, give a counterexample.

True or false? In every instance of the Stable Matching Problem, there is a stable matching containing a pair (m, w) such that m is ranked first on the preference list of w and w is ranked first on the preference list of m.

2. Decide whether you think the following statement is true or false. If it is true, give a short explanation. If it is false, give a counterexample.

True or false? Consider an instance of the Stable Matching Problem in which there exists a man m and a woman w such that m is ranked first on the preference list of w and w is ranked first on the preference list of m. Then in every stable matching S for this instance, the pair (m, w) belongs to S.

There are many other settings in which we can ask questions related to some type of "stability" principle. Here's one, involving competition between two enterprises. Suppose we have two television networks, whom we'll call A and B. There are n prime-time programming slots, and each network has n TV shows. Each network wants to devise a *schedule*—an assignment of each show to a distinct slot—so as to attract as much market share as possible.

Here is the way we determine how well the two networks perform relative to each other, given their schedules. Each show has a fixed *rating*, which is based on the number of people who watched it last year; we'll assume that no two shows have exactly the same rating. A network *wins* a given time slot if the show that it schedules for the time slot has a larger rating than the show the other network schedules for that time slot. The goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network \mathcal{A} reveals a schedule S and Network \mathcal{B} reveals a schedule T. On the basis of this pair of schedules, each network wins certain time slots, according to the rule above. We'll say that the pair of schedules (S,T) is *stable* if neither network can unilaterally change its own schedule and win more time slots. That is, there is no schedule S' such that Network A wins more slots with the pair (S',T) than it did with the pair (S,T); and symmetrically, there is no schedule T' such that Network B wins more slots with the pair (S,T') than it did with the pair (S,T).

The analogue of Gale and Shapley's question for this kind of stability is the following: For every set of TV shows and ratings, is there always a stable pair of schedules? Resolve this question by doing one of the following two things:

- (a) give an algorithm that, for any set of TV shows and associated ratings, produces a stable pair of schedules; or
- (b) give an example of a set of TV shows and associated ratings for which there is no stable pair of schedules.
- 4. Gale and Shapley published their paper on the Stable Matching Problem in 1962; but a version of their algorithm had already been in use for ten years by the National Resident Matching Program, for the problem of assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals, each with a certain number of available positions for hiring residents. There were n medical students graduating in a given year, each interested in joining one of the hospitals. Each hospital had a ranking of the students in order of preference, and each student had a ranking of the hospitals in order of preference. We will assume that there were more students graduating than there were slots available in the m hospitals.

The interest, naturally, was in finding a way of assigning each student to at most one hospital, in such a way that all available positions in all hospitals were filled. (Since we are assuming a surplus of students, there would be some students who do not get assigned to any hospital.)

We say that an assignment of students to hospitals is *stable* if neither of the following situations arises.

- First type of instability: There are students s and s', and a hospital h, so that
 - s is assigned to h, and
 - s' is assigned to no hospital, and
 - h prefers s' to s.
- Second type of instability: There are students s and s', and hospitals h and h', so that
 - s is assigned to h, and
 - s' is assigned to h', and
 - h prefers s' to s, and
 - s' prefers h to h'.

So we basically have the Stable Matching Problem, except that (i) hospitals generally want more than one resident, and (ii) there is a surplus of medical students.

Show that there is always a stable assignment of students to hospitals, and give an algorithm to find one.

5. The Stable Matching Problem, as discussed in the text, assumes that all men and women have a fully ordered list of preferences. In this problem we will consider a version of the problem in which men and women can be *indifferent* between certain options. As before we have a set M of n men and a set W of n women. Assume each man and each woman ranks the members of the opposite gender, but now we allow ties in the ranking. For example (with n = 4), a woman could say that m_1 is ranked in first place; second place is a tie between m_2 and m_3 (she has no preference between them); and m_4 is in last place. We will say that w prefers m to m' if m is ranked higher than m' on her preference list (they are not tied).

With indifferences in the rankings, there could be two natural notions for stability. And for each, we can ask about the existence of stable matchings, as follows.

(a) A *strong instability* in a perfect matching S consists of a man m and a woman w, such that each of m and w prefers the other to their partner in S. Does there always exist a perfect matching with no

Figure 1.8 An example with two input wires and two output wires. Input 1 has its junction with Output 2 upstream from its junction with Output 1; Input 2 has its junction with Output 1 upstream from its junction with Output 2. A valid solution is to switch the data stream of Input 1 onto Output 2, and the data stream of Input 2 onto Output 1. On the other hand, if the stream of Input 1 were switched onto Output 1, and the stream of Input 2 were switched onto Output 2, then both streams would pass through the junction box at the meeting of Input 1 and Output 2—and this is not allowed.

8. For this problem, we will explore the issue of *truthfulness* in the Stable Matching Problem and specifically in the Gale-Shapley algorithm. The basic question is: Can a man or a woman end up better off by lying about his or her preferences? More concretely, we suppose each participant has a true preference order. Now consider a woman *w*. Suppose *w* prefers man *m* to *m'*, but both *m* and *m'* are low on her list of preferences. Can it be the case that by switching the order of *m* and *m'* on her list of preferences (i.e., by falsely claiming that she prefers *m'* to *m*) and running the algorithm with this false preference list, *w* will end up with a man *m''* that she truly prefers to both *m* and *m'*? (We can ask the same question for men, but will focus on the case of women for purposes of this question.)

Resolve this question by doing one of the following two things:

(a) Give a proof that, for any set of preference lists, switching the order of a pair on the list cannot improve a woman's partner in the Gale-Shapley algorithm; or

(b) Give an example of a set of preference lists for which there is a switch that would improve the partner of a woman who switched preferences.

Notes and Further Reading

The Stable Matching Problem was first defined and analyzed by Gale and Shapley (1962); according to David Gale, their motivation for the problem came from a story they had recently read in the *New Yorker* about the intricacies of the college admissions process (Gale, 2001). Stable matching has grown into an area of study in its own right, covered in books by Gusfield and Irving (1989) and Knuth (1997c). Gusfield and Irving also provide a nice survey of the "parallel" history of the Stable Matching Problem as a technique invented for matching applicants with employers in medicine and other professions.

As discussed in the chapter, our five representative problems will be central to the book's discussions, respectively, of greedy algorithms, dynamic programming, network flow, NP-completeness, and PSPACE-completeness. We will discuss the problems in these contexts later in the book.