Département de génie électrique et de génie informatique Faculté des sciences et de génie Vision numérique GIF-4100 / GIF-7001

Date 25 octobre 2018 Local PLT-2783 Heure 13h30 à 16h20

# **Examen partiel 1 A2018**

Toute documentation permise sauf Internet 30% de la note du trimestre

## Question 1. (20 points au total) Coordonnées homogènes

### A. (4 points)

Soit un point de coordonnées  $p = [x \ y \ z]^t$  dans l'espace cartésien à trois dimensions. Quelles sont les coordonnées du point p en coordonnées homogènes. **Expliquez votre réponse**.

## B. (4 points)

Soit un point  $\underline{p} = [x \ y \ z \ 1]^t$  en coordonnées homogènes. Est-ce que  $[2x \ 2y \ 2z \ 2]^t$  représente le même point en coordonnées cartésiennes en 3D?

### **c.** (4 points)

Soit la matrice définie en coordonnées homogènes par l'équation (1):

$$\underline{\underline{M}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 & 0 \\ \sin(\theta) & \cos(\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(1)

Est-ce que cette matrice préserve les angles et les longueurs? Justifiez votre réponse.

#### **D.** (4 points)

Soit la matrice définie en coordonnées homogènes par l'équation (2):

$$\underline{\underline{M}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \tag{2}$$

La matrice M a des allures de matrice de projection de perspective dans le plan image normalisé (i.e. focale du sténopé = 1).

Quelles sont les coordonnées images réelles (i.e. non-homogènes) du point  $\underline{p}_2 = [2 \ 2 \ 2 \ 2]^{t}$ ?

#### E. (4 points)

En utilisant la matrice de l'équation (2), les coordonnées images du point [1 1 1 1]<sup>t</sup> sont [1 1 1]. Comment se fait-il que le facteur d'échelle du point image soit 1?

### Question 2. (20 points au total) Transformations rigides et coordonnées homogènes

Deux référentiels dans le plan sont initialement confondus. Un référentiel subit une translation de 3 unités selon l'axe des x et de 2 unités selon l'axe des y. Il subit ensuite une rotation de -90 degrés par rapport à l'axe des z (sortant de la page). La configuration finale des référentiels est montrée à la Figure 1.



Figure 1. Configuration finale des référentiels de la Question 2.

### A. (7 points)

Donnez l'expression de la matrice de translation en coordonnées homogènes.

### **B.** (7 points)

Donnez l'expression de la matrice de rotation en coordonnées homogènes.

## **c.** (6 points)

Si un point a les coordonnées [1 1 1]<sup>t</sup> (en coordonnées homogènes) dans le référentiel *Ref 1*, quelles sont ses coordonnées dans le référentiel *Ref 2*? Expliquez votre réponse.

## Question 3. (20 points au total) Formation d'image avec un sténopé

Soit le sténopé non-inverseur de focale F = 10 mm de la Figure 2.



Figure 2. Géométrie de la Question 3.

# **A.** (10 points)

Quelles sont les coordonnées image du point  $\underline{P}_1$  de coordonnées réelles  $[0 \text{ m}, 1 \text{ m}, 10 \text{ m}]^t$ ?

# **B.** (10 points)

Quelle est l'équation du projecteur pour le point image  $\underline{P}_2$  de coordonnées  $[0 \text{ m}, 0.001 \text{ m}, 0.01 \text{ m}]^t$ ?

### Question 4. (20 points au total) Projection de perspective

Supposons qu'un sténopé **non-inverseur** de longueur focale F = 1 et d'axe optique Z observe deux droites parallèles dont l'origine est respectivement située à  $\underline{p}_1 = [-x -y 0]^t$  et  $\underline{p}_2 = [x -y 0]^t$  et dont l'orientation est donnée par le vecteur **unitaire**  $\underline{u} = [u_x \ 0 \ u_z]^t$ . Ces deux droites parallèles sont situées dans le plan  $\Pi$  tel que montré à la Figure 3. Les équations paramétriques des droites en coordonnées réelles sont données à l'équation (3).

$$\underline{L}_{1}(\lambda) = \underline{p}_{1} + \lambda \underline{u}$$

$$\underline{L}_{2}(\beta) = \underline{p}_{2} + \beta \underline{u}$$
(3)

## A. (5 points)

Quelles sont les coordonnées images des points sur  $\underline{L}_1(\lambda)$  et  $\underline{L}_2(\beta)$  pour une direction  $\underline{u}$  donnée?

## **B.** (5 points)

Que deviennent les coordonnées images quand  $\lambda = \beta = \infty$  (i.e. quelles sont les coordonnées images d'un point à l'infini sur chaque droite)?

## **c.** (5 points)

Quelles sont les équation des *images* des droites  $\underline{L}_1$  et  $\underline{L}_2$  dans le repère image et quelles sont les coordonnées de l'intersection entre celles-ci? **Expliquez votre résultat**.

## **D.** (5 points)

Où sont situés les points images des points à l'infini sur les droites parallèles  $\underline{L}_1$  et  $\underline{L}_2$  quand les composantes du vecteur unitaire  $\underline{u}$  changent? **Justifiez votre réponse**.



Figure 3. Géométrie de la Question 4.

### Question 5. (20 points au total) Homographies

Supposons un sténopé **non-inverseur**  $C_1$  de matrice de paramètres intrinsèques  $K_1$ . Supposons qu'un second sténopé  $C_2$ , de matrice de paramètres intrinsèques  $K_2$ , ait le même centre de projection que  $C_1$ , mais ait subi une rotation R de  $\theta$  degrés autour de l'axe des x (**entrant dans la page**) comme montré à la Figure 4. Supposons aussi que le repère "monde" soit celui du sténopé  $C_1$ . Un point objet P, qui réside sur un plan, est projeté sur les plans images des deux sténopés pour donner les images  $\underline{p}_1$  et  $\underline{p}_2$ .

Soit  $\underline{P}_1$  le vecteur exprimant les coordonnées du point P dans le repère  $C_1$  et  $\underline{P}_2$  les coordonnées du point P dans le repère  $C_2$ .

Dans le repère  $C_1$ , la projection de perspective du point P de coordonnées  $\underline{P}_1$  est donnée par l'équation (4).

$$\tilde{p}_1 = \underline{K}_1 \tilde{\underline{P}}_4 \tag{4}$$

Dans le repère  $C_2$ , la projection de perspective du point P de coordonnées  $\underline{P}_2$  est donnée par l'équation (5).

$$\underline{\tilde{p}}_2 = \underline{\underline{K}}_2 \underline{\tilde{P}}_2 \tag{5}$$

# A. (5 points)

Donnez l'équation de transformation rigide qui permet de calculer  $\underline{P}_2$  à partir de  $\underline{P}_1$ .

### **B.** (5 points)

Donnez l'équation de projection de perspective qui permet de calculer les coordonnées images (dans le repère image) du point image  $\underline{p}_2$  du point P en fonction des coordonnées  $\underline{P}_1$  en utilisant la transformation rigide trouvée en (A).

## **c.** (5 points)

On sait que le plan sur lequel réside le point P induit une homographie entre les sténopés  $C_1$  et  $C_2$  donnée par l'équation (6) où  $\underline{t}$  est la translation entre  $C_1$  et  $C_2$ ,  $\underline{n}$  est le vecteur normal au plan et d est la distance entre le plan et l'origine du repère monde.

$$\underline{\tilde{p}}_{2} = \underline{\tilde{K}}_{2} \left[ \underline{\tilde{R}} \quad \underline{\underline{t}} \underline{n}^{t} \right] \underline{\tilde{K}}_{1}^{-1} \underline{\tilde{p}}_{1} \tag{6}$$

Dans la configuration de la Figure 4, la translation entre  $C_1$  et  $C_2$  est nulle car  $C_2$  n'a subi qu'une rotation par rapport à  $C_1$ . Que devient alors l'équation (6)? En quoi ce résultat se compare-t-il au résultat de votre réponse en C?

#### **D.** (5 points)

Dans le présent problème, est-ce vraiment important que le point P se trouve sur un plan? Justifiez votre réponse.



Figure 4. Géométrie de la Question 5.