Fundamentals of Statistical Inference

Measuring Uncertainty

Aaron R. Baggett, Ph.D.

Department of Psychology University of Mary Hardin-Baylor

August 10, 2017

Outline

Outline

- Descriptive vs. inferential statistics
- ▶ The normal distribution
- Comparing groups
- Statistical/practical significance

Resources

▶ Slides, data, and handouts available at:

bit.ly/umhb_dpt

Stigler (1986, p. 1):

[Modern statistics provides]...the logic and methodology for the measurement of uncertainty and for examination of the consequences of that uncertainty in the planning and interpretation of experimentation and observation.

- Experimentation and observation:
 - 1. Measurement of uncertainty
 - 2. Examination of the consequences of that uncertainty

- ► Two fundamental branches
 - 1. Descriptive statistics
 - Summarize data
 - ► Condense larger themes
 - 2. Inferential statistics
 - Infer meaning
 - Test predictions

Example

- Baystate Medical Center, Springfield, MA.
- Sample of 189 births in 1986
- Risk factors in low birth weight babies

Age	Weight	Race	Smoker?	Birth Weight
19	182	Black	Non-Smoker	5.56
33	155	Other	Non-Smoker	5.62
20	105	White	Smoker	5.64
21	108	White	Smoker	5.72
18	107	White	Smoker	5.73
21	124	Other	Non-Smoker	5.78

- ► How many babies were considered low birth weight (< 5.5 lbs.)?
- How many mothers smoked during pregnancy?
- How much did the average baby weigh?
 - By smoking status
 - By race

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

How should we answer this question?

Question:

[ON AVERAGE], do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Smoking Status	n	Min.	Max.	X	SD
Non-Smoker	115	2.25	11.00	6.74	1.66
Smoker	74	1.56	9.34	6.11	1.46

Question:

1. Based on our sample, what are we left to assume about the weights of babies *in the population* born to smoking and non-smoking mothers?

Question:

- 1. Based on our sample, what are we left to assume about the weights of babies *in the population* born to smoking and non-smoking mothers?
 - ▶ That the sample estimates represent the population parameters

Smoking Status	n	Min.	Max.	X	SD
Non-Smoker	115	2.25	11.00	6.74	1.66
Smoker	74	1.56	9.34	6.11	1.46

▶ In fact, we assume that the population distribution of baby weights is "normal"

Standard Deviations

Standard Deviations

- More useful than descriptives
- Allow for making predictions or generalizations
- Key to hypothesis testing

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Question:

Do babies born to mothers who smoked during pregnancy weigh [STATISTICALLY SIGNIFICANTLY] less than those born to mothers who did not?

How should we answer this question?

- What do we mean by statistical significance?
- Observed differences which exceed "normality."

- We usually consider differences beyond ± 2 *SDs* from *M* to be "statistically significant"
- **NOTE**: Statistical significance \neq practical significance

Question:

▶ Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Hypotheses:

- ▶ H_0 : There is no mean difference in the birth weight of babies born to mothers who did and did not smoke during pregnancy $(\mu_N \mu_S = 0)$
- ▶ H_1 : There is some difference in the birth weight of babies born to mothers who did and did not smoke during pregnancy $(\mu_N \mu_S \neq 0)$

- ▶ Let's test our hypothesis using an independent-samples *t*-test
 - IV: Mothers' smoking status (smoker, non-smoker)
 - DV: Baby birth weight

$$t = rac{\overline{X}_{non-smokers} - \overline{X}_{smokers}}{\sqrt{rac{s_{non-smokers}^2}{N_{non-smokers}} + rac{s_{smokers}^2}{N_{smokers}}}}$$

Table 1: Results of independent-samples *t*-test

$\overline{ n M SD n M}$	SD	t(187)	-	2
	JD	$\iota(101)$	ρ	ω
Baby birth weight 115 6.74 1.66 47 6.11 1	1.46	2.63	0.009	0.008

Note: M = Mean; SD = Standard deviation

- Assuming the null hypothesis, in reality, is true, the probability of obtaining a mean difference in birth weight ≥ 0.62 lbs. is $0.009 \ (0.90\%)$
- Birth weights appear to differ statistically significantly

Standard Deviations

▶ But, is the difference of M = 0.62 lbs. meaningful?

- ▶ But, is the difference of M = 0.62 lbs. meaningful?
- ► A meaningful difference implies practicality or usefulness in the real world

- ▶ But, is the difference of M = 0.62 lbs. meaningful?
- ► A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2) : Proportion of variance explained in the model

- ▶ But, is the difference of M = 0.62 lbs. meaningful?
- ▶ A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2) : Proportion of variance explained in the model
- ▶ Smoking status explains 0.009 (0.90%) of the variance in baby birth weight

- ▶ But, is the difference of M = 0.62 lbs. meaningful?
- ▶ A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2) : Proportion of variance explained in the model
- ► Smoking status explains 0.009 (0.90%) of the variance in baby birth weight
- ▶ Thus, 100% 0.991% = 99.10% of the variance in baby birth weight is left unexplained

Recap

Recap

- Descriptive statistics allow us to summarize data from a sample
- Inferential statistics allow us to predict and generalize about a population
- Hypothesis testing allows us to construct a sense of meaning about the world

Next Time

- Making decisions using hypothesis testing and prediction
 - Statistical variables
 - Multiple group comparisons (ANOVA)
 - Predicting outcomes (Regression)