

Roofline Modeling and Performance Engineering

Georg Hager

Erlangen National High Performance Computing Center

CSCS-USI Summer University

July 23, 2022

Motivation

Analytic performance modeling:

Constructing a simplified model for the interaction between software and hardware in order to understand lowest-order performance behavior

- Basic questions addressed by analytic performance models
 - What is the bottleneck?
 - What is the next bottleneck after optimization?
 - Impact of hardware features → co-design, architectural exploration
- What if the model fails?
 - We learn something
 - We may still be able to use the model in a less predictive way

Resource-based performance models

The questions to ask

How much of \$RESOURCE does \$STUFF need on \$HARDWARE, and why?

→ Analytic, resource-based, first-principles models

A general view on resource bottlenecks

- What is the maximum performance when limited by a bottleneck?
- Resource bottleneck i delivers resources at maximum rate R_i^{max}
- W_i = needed amount of resources
- Minimum runtime: $T_i = \frac{W_i}{R_i^{max}} + \lambda_i$

- Multiple bottlenecks $\rightarrow T_{\text{expect}} = f(T_1, ..., T_n)$
- Overall performance:

$$P_{\text{expect}} = \frac{W}{T_{\text{expect}}}$$

A simple bottleneck model of computing

Example: one loop, two bottlenecks

$$W_{flops} = 2 \times 10^7 \text{ flops}$$

$$W_{BW} = 3 \times 8 \times 10^7$$
 bytes

$$T_{flops} = \frac{2 \times 10^7 \text{ flops}}{768 \frac{\text{Gflops}}{\text{S}}} = 26.0 \ \mu\text{s}$$

$$T_{flops} = \frac{2 \times 10^7 \text{ flops}}{768 \frac{\text{Gflops}}{\text{S}}} = 26.0 \,\mu\text{s}$$
 $T_{BW} = \frac{2.4 \times 10^8 \text{ bytes}}{210 \frac{\text{Gbyte}}{\text{S}}} = 1.14 \text{ ms}$

Bottleneck models

How do we reconcile the multiple bottlenecks? I.e., what is the functional form of $f(T_1, ..., T_n)$?

- \rightarrow pessimistic model (no overlap): $f(T_1, ... T_n) = \sum_i T_i$
- \rightarrow optimistic model (full overlap): $f(T_1, ... T_n) = \max(T_1, ... T_n)$

Roofline for our example: $T_{\min} = \max(T_{flops}, T_{BW}) = 1.14 \text{ ms}$

Maximum performance ("light speed"): $P_{\text{expect}} = \frac{2 \times 10^7}{1.14 \times 10^{-3}} \frac{\text{flops}}{\text{s}} = 17.5 \text{ Gflop/s}$

(Hockney et al.)

Roofline: A simple performance model for loops

Simplistic view of the hardware:

Simplistic view of the software:


```
! may be multiple levels
do i = 1,<sufficient>
        <complicated stuff doing
        N flops causing
        V bytes of data transfer>
enddo
```

```
Computational intensity I = \frac{N}{V}

The intensity I = \frac{N}{V}

Unit: flop/byte
```

Naïve Roofline Model: The slowest bottleneck wins

How fast can work be done at maximum? *P* [flop/s]

The bottleneck is either

The execution of work:

P_{peak} [flop/s]

The data path:

 $I \cdot b_S$ [flop/byte x byte/s]

This is the "Naïve Roofline Model"

- High intensity: P limited by execution
- Low intensity: P limited by data transfer
- "Knee" at $P_{peak} = I \cdot b_S$: Best use of resources
- Roofline is an "optimistic" model (think "light speed")

More bottlenecks, more ceilings

Multiple ceilings may apply

- Different bandwidths / data paths
 - → different inclined ceilings
- Different P_{max}
 → different flat ceilings

In fact, P_{max} should always come from code analysis; generic ceilings are usually impossible to attain

Tracking code optimizations in the Roofline Model

- Hit the BW bottleneck by good serial code (e.g., Ninja C++ → Fortran)
- 2. Increase intensity to make better use of BW bottleneck (e.g., spatial loop blocking)
- 3. Increase intensity and go from memory bound to core bound (e.g., temporal blocking)
- 4. Hit the core bottleneck by good serial code (e.g., -fno-alias, SIMD intrinsics)

Diagnostic modeling

- What if we cannot predict the intensity/balance?
 - Code very complicated
 - Code not available
 - Parameters unknown
 - Doubts about correctness of analysis
- Measure data volume V_{meas} (and work N_{meas})
 - Hardware performance counters
 - Tools: likwid-perfctr, PAPI, Intel Vtune,...
- Insights + benefits
 - Compare analytic model and measurement → validate model
 - Can be applied (semi-)automatically
 - Useful in performace monitoring of user jobs on clusters

Roofline and performance monitoring of clusters

https://github.com/RRZE-HPC/likwid/wiki/Tutorial%3A-Empirical-Roofline-Model

Case study: Sparse Matrix-Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV)

- Key ingredient in some important matrix algorithms
 - CG(+x), Pagerank, Lanczos, Davidson, Jacobi-Davidson, ...
- Store only N_{nz} nonzero elements of matrix and RHS, LHS vectors with N_r (number of matrix rows) entries
- "Sparse": N_{nz} ~ N_r
- Average number of nonzeros per row: $N_{nzr} = N_{nz}/N_{r}$

CSCS Summer School | Performance Modeling | Georg Hager

SpMVM characteristics

- For large problems, SpMV is inevitably memory-bound
 - Intra-socket saturation effect on modern multicores
- SpMV is easily parallelizable in shared and distributed memory
 - Load balancing
 - Communication overhead
- Data storage format is crucial for performance properties
 - Most useful general format on CPUs: Compressed Row Storage (CRS/CSR)
 - Depending on compute architecture

CSR matrix storage scheme

- val[] stores all the nonzeros (length N_{nz})
- col_idx[] stores the column index of each nonzero (length N_{nz})
- row_ptr[] stores the starting index of each new row in val[] (length: N_r)

Case study: Sparse matrix-vector multiply

- Strongly memory-bound for large data sets
 - Streaming, with partially indirect access:

```
\label{eq:somp} \begin{tabular}{ll} !\$OMP parallel do schedule(???) \\ do i = 1,N_r \\ do j = row\_ptr(i), row\_ptr(i+1) - 1 \\ C(i) = C(i) + val(j) * B(col\_idx(j)) \\ enddo \\ enddo \\ !\$OMP end parallel do \\ \end{tabular}
```

- Usually many spMVMs required to solve a problem
- Now let's look at some performance measurements...

Performance characteristics

- Strongly memory-bound for large data sets → saturating performance across cores on the chip
- Performance seems to depend on the matrix
- Can we explain this?

Is there a "light speed" for SpMV?

Optimization?

SpMV node performance model – CSR (1)

```
do i = 1, N_r
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
enddo
enddo
```

```
real*8 val(N<sub>nz</sub>)
integer*4 col_idx(N<sub>nz</sub>)
integer*4 row_ptr(N<sub>r</sub>)
real*8 C(N<sub>r</sub>)
real*8 B(N<sub>c</sub>)
```

Min. load traffic [B]: $(8 + 4) N_{nz} + (4 + 8) N_r + 8 N_c$

Min. store traffic [B]: $8 N_r$

Total FLOP count [F]: $2 N_{nz}$

$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$
Nonzeros per row $(N_{nzr} = N_{nz}/N_r)$ or column $(N_{nzc} = N_{nz}/N_c)$

Lower bound for code balance: $B_{C,min} \ge 6 \frac{B}{F}$ $\rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CSR (2)

do i = 1,
$$N_r$$

do j = row_ptr(i), row_ptr(i+1) - 1
 $C(i) = C(i) + val(j) * B(col_idx(j))$
enddo
enddo

$$B_{C,min} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$$

$$B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$$

Parameter (α) quantifies additional traffic for **B** (:) (irregular access):

$$\alpha \ge 1/N_{nzc}$$

$$\alpha N_{nzc} \geq 1$$

The " α effect"

DP CRS code balance

- α quantifies the traffic for loading the RHS
 - $\alpha = 0 \rightarrow RHS$ is in cache
 - $\alpha = 1/N_{nzr}$ \rightarrow RHS loaded once
 - $\alpha = 1 \rightarrow \text{no cache}$
 - $\alpha > 1 \rightarrow$ Houston, we have a problem!
- "Target" performance = b_S/B_c
- Caveat: Maximum memory BW may not be achieved with spMVM (see later)

Can we predict α ?

- Not in general
- Simple cases (banded, block-structured): Similar to layer condition analysis
- \rightarrow Determine α by measuring the actual memory traffic (\rightarrow measured code balance B_C^{meas})

$$B_{C}(\alpha) = \frac{12 + 20/N_{nzr} + 8 \alpha}{2} \frac{B}{F}$$
$$= \left(6 + 4 \alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F}$$

Determine α (RHS traffic quantification)

$$B_C(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2 F} \quad (= B_C^{meas})$$

- V_{meas} is the measured overall memory data traffic (using, e.g., likwid-perfctr)
- Solve for α :

$$\alpha = \frac{1}{4} \left(\frac{V_{meas}}{N_{nz} \cdot 2 \text{ bytes}} - 6 - \frac{10}{N_{nzr}} \right)$$

Example: kkt_power matrix from the UoF collection on one Intel SNB socket

- $N_{nz} = 14.6 \cdot 10^6$, $N_{nzr} = 7.1$
- $V_{meas} \approx 258 \text{ MB}$
- $\rightarrow \alpha = 0.36$, $\alpha N_{nzr} = 2.5$
- → RHS is loaded 2.5 times from memory

and:

 $\frac{B_C(\alpha)}{B_{C,min}} = 1.11$

11% extra traffic → optimization potential!

Three different sparse matrices

Benchmark system: Intel Xeon Ivy Bridge E5-2660v2, 2.2 GHz, $b_S = 46.6 \, \mathrm{GB/s}$

$$\rightarrow$$
 Roofline: $P_{opt} = {}^{b_S}/_{B_{C,min}}$

Matrix	N	N_{nzr}	$B_{C,min}$ [B/F]	P _{opt} [GF/s]
DLR1	278,502	143	6.1	7.64
scai1	3,405,035	7.0	8.0	5.83
kkt_power	2,063,494	7.08	8.0	5.83

DLR1

scai1

kkt_power

Now back to the start...

- $b_S = 46.6 \, \text{GB/s}$, $B_C = 6 \, \text{B/F}$
- Maximum spMVM performance:

$$P_{max} = 7.8 \, \text{GF/s}$$

- DLR1 causes minimum CRS code balance (as expected)
- scai1 measured balance:

$$B_c^{meas} \approx 8.5 \text{ B/F} > B_{C,min}$$

- \rightarrow good BW utilization, slightly non-optimal α
- kkt_power measured balance:

$$B_c^{meas} \approx 8.8 \text{ B/F} > B_{c.min}$$

→ performance degraded by load imbalance, fix by block-cyclic OpenMP schedule

SpMV node performance model – CPU

Intel Xeon Platinum 9242 24c@2.8GHz (turbo) $b_S = 122 GB/s$

Matrices taken from: C. L. Alappat et al.: *ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.* https://doi.org/10.1002/cpe.6512

What about GPUs?

- GPUs need
 - Enough work per kernel launch in order to leverage their parallelism

 Coalesced access to memory (consecutive threads in a warp should access consecutive memory addresses)

- Plain CRS for SpMV on GPUs is not a good idea
 - 1. Short inner loop
 - 2. Different amount of work per thread
 - 3. Non-coalesced memory access
- Remedy: Use SIMD/SIMT-friendly storage format
 - ELLPACK, SELL-C-σ, DIA, ESB,...

CRS SpMV in CUDA (y = Ax)

```
template <typename VT, typename IT>
global static void
spmv csr(const ST num rows,
         const IT * RESTRICT row ptrs, const IT * RESTRICT col idxs,
         const VT * RESTRICT values, const VT * RESTRICT x,
                                             VT * RESTRICT V)
   ST row = threadIdx.x + blockDim.x * blockIdx.x; // 1 thread per row
   if (row < num rows) {</pre>
       VT sum{};
        for (IT j = row ptrs[row]; j < row ptrs[row + 1]; ++j) {
            sum += values[j] * x[col idxs[j]];
       y[row] = sum;
```

$$B_c(\alpha) = \left(6 + 4 \alpha + \frac{6}{N_{nzr}}\right) \frac{B}{F}$$

No write-allocate on GPUs for consecutive stores

SpMV CRS performance on a GPU

NVIDIA Ampere A100 Memory bandwidth $b_S = 1400 \text{ GB/s}$

- Strong " α effect" large deviation from optimal α for many matrices
 - Many cache lines touched b/c every thread handles one row → bad cache usage
- Mediocre memory bandwidth usage (≪ 1400 GB/s) in many cases
 - Non-coalesced memory access
 - Imbalance across rows/threads of warps

M. Kreutzer et al.: A Unified Sparse Matrix
Data Format For Efficient General Sparse
Matrix-vector Multiplication On Modern
Processors With Wide SIMD Units, SIAM
SISC 2014, DOI: 10.1137/130930352

Idea

- Sort rows according to length within sorting scope σ
- Store nonzeros column-major in zero-padded chunks of height C

SELL-C- σ SpMV in CUDA (y=Ax)

```
template <typename VT, typename IT> global static void
spmv scs(const ST C, const ST n chunks, const IT * RESTRICT chunk ptrs,
        const IT * RESTRICT chunk lengths, const IT * RESTRICT col idxs,
        const VT * RESTRICT values, const VT * RESTRICT x, VT * RESTRICT y)
  ST row = threadIdx.x + blockDim.x * blockIdx.x;
  ST c = row / C; // the no. of the chunk
  ST idx = row % C; // index inside the chunk
  if (row < n chunks * C) {
      VT tmp{};
      IT cs = chunk ptrs[c]; // points to start indices of chunks
      for (ST j = 0; j < chunk lengths[c]; ++j) {
          tmp += values[cs + idx] * x[col idxs[cs + idx]];
          cs += C;
      y[row] = tmp;
```

Code balance of SELL-C- σ (y=Ax)

When measuring B_C^{meas} , take care to use the "useful" number of flops (excluding zero padding) for work

How to choose the parameters C and σ on GPUs?

- **-** C
 - $n \times$ warp size to allow good utilization of GPU threads and cache lines

- 0
 - As small as possible, as large as necessary
 - Large σ reduces zero padding (brings β closer to 1)
 - Sorting alters RHS access pattern $\rightarrow \alpha$ depends on σ

SpMV node performance model – GPU

NVIDIA Ampere A100

 $b_S = 1400 \text{ GB/s}$

Roofline analysis for spMVM

- Conclusion from the Roofline analysis
 - The roofline model does not "work" for spMVM due to the RHS traffic uncertainties
 - We have "turned the model around" and measured the actual memory traffic to determine the RHS overhead
 - Result indicates:
 - 1. how much actual traffic the RHS generates
 - 2. how efficient the RHS access is (compare BW with max. BW)
 - 3. how much optimization potential we have with matrix reordering
- Do not forget about load balancing!

Consequence: Modeling is not always 100% predictive. It's all about learning more about performance properties!

Thank You.

