25

WHAT IS CLAIMED IS:

- 1. A liquid crystal display device, comprising:
- a first substrate;
- a second substrate;
- a vertical alignment type liquid crystal layer provided between the first substrate and the second substrate;

voltage application means for applying a voltage across the liquid crystal layer;

a plurality of picture elements each including the liquid crystal layer whose orientation changes according to the voltage applied by the voltage application means, wherein:

the liquid crystal layer in each of the plurality of picture elements includes, at least in a presence of an applied voltage, a 4-divided domain including a first subdomain, a second sub-domain, a third sub-domain and a fourth sub-domain which are arranged in this order in predetermined direction and in each of which an orientation direction of liquid crystal molecules located in a vicinity of a center of the liquid crystal layer in the thickness direction is different from those of the other sub-domains;

for each 4-divided domain, the first substrate includes two first regions each having an orientation-regulating force for orienting the liquid crystal molecules of the liquid crystal layer in a first direction and a second

25

5

region provided between the two first regions and having an orientation-regulating force for orienting the liquid crystal molecules in a second direction that is opposite to the first direction, while the second substrate includes a third region having an orientation-regulating force for orienting the liquid crystal molecules in a third direction that crosses first direction and а fourth region having the orientation-regulating force for orienting the liquid crystal molecules in a fourth direction that is opposite to the third direction; and

the first sub-domain is formed between one of the two first regions and the third region, the second sub-domain is formed between the second region and the third region, the third sub-domain is formed between the second region and the fourth region, and the fourth sub-domain is formed between the other one of the two first regions and the fourth region.

- 2. The liquid crystal display device of claim 1, wherein the first direction and the third direction are perpendicular to each other.
- 3. The liquid crystal display device of claim 1, wherein the liquid crystal layer in each of the plurality of picture elements includes, at least in a presence of an applied voltage, the 4-divided domain and an additional first sub-domain that is adjacent to the fourth sub-domain included in the 4-divided domain.
 - 4. The liquid crystal display device of claim 3,

25

5

wherein a total area of the first sub-domain and the additional first sub-domain, an area of the second sub-domain, an area of the third sub-domain and an area of the fourth sub-domain are equal to one another for the liquid crystal layer in each of the plurality of picture elements.

- 5. The liquid crystal display device of claim 1, wherein the liquid crystal layer in each of the plurality of picture elements is substantially occupied by one 4-divided domain at least in a presence of an applied voltage.
- 6. The liquid crystal display device of claim 5, wherein respective areas of the first, second, third and fourth sub-domains are substantially equal to one another.
- 7. The liquid crystal display device of claim 1, wherein a relationship x=y/n (n is a positive integer equal to or greater than 1) is satisfied, where x is a length of the second sub-domain in the predetermined direction and y is a length of each of the second region and the fourth region in the predetermined direction.
- 8. The liquid crystal display device of claim 1, wherein a relationship P=4nx=2ny (n is a positive integer equal to or greater than 1) is satisfied, where P is a length of each of the plurality of picture elements in the predetermined direction, x is a length of the second subdomain in the predetermined direction, and y is a length of each of the second region and the fourth region in the predetermined direction.

25

5

- 9. The liquid crystal display device of claim 1, wherein the plurality of picture elements are arranged in a matrix having rows and columns, and the predetermined direction is parallel to the columns.
- 10. The liquid crystal display device of claim 9, wherein the two first regions, the second region, the third region and the fourth region are formed parallel to the rows in a stripe pattern so as to lie on a row of picture elements among the plurality of picture elements.
- 11. The liquid crystal display device of claim 10, wherein a length of the second region in the column direction and a length of the fourth region in the column direction are equal to each other.
- 12. The liquid crystal display device of claim 11, wherein a length of each of the first, second, third and fourth sub-domains in the column direction is one half of the length of the second region in the column direction.
- 13. The liquid crystal display device of claim 1, wherein a display is produced in a normally black mode.
- 14. The liquid crystal display device of claim 13, further comprising a pair of polarizers arranged so as to oppose each other via the first and second substrates therebetween, and a phase difference compensator provided between the first substrate and one of the pair of polarizers corresponding to the first substrate and/or between the second substrate and the other one of the pair of polarizers

25

5

corresponding to the second substrate,

wherein a slow axis of the phase difference compensator is in a plane of the liquid crystal layer and is perpendicular to an absorption axis of closer one of the pair of polarizers.

- 15. A method for producing a liquid crystal display device, the liquid crystal display device comprising:
 - a first substrate;
 - a second substrate;
- a vertical alignment type liquid crystal layer provided between the first substrate and the second substrate;

voltage application means for applying a voltage across the liquid crystal layer;

a plurality of picture elements each including the liquid crystal layer whose orientation changes according to the voltage applied by the voltage application means, wherein:

the liquid crystal layer in each of the plurality of picture elements includes, at least in a presence of an applied voltage, a 4-divided domain including a first subdomain, a second sub-domain, a third sub-domain and a fourth sub-domain which are arranged in this order in a predetermined direction and in each of which an orientation direction of liquid crystal molecules located in a vicinity of a center of the liquid crystal layer in the thickness

25

5

direction is different from those of the other sub-domains;

for each 4-divided domain, the first substrate includes two first regions each having an orientationregulating force for orienting the liquid crystal molecules of the liquid crystal layer in a first direction and a second region provided between the two first regions and having an orientation-regulating force for orienting the liquid crystal molecules in a second direction that is opposite to the first direction, while the second substrate includes a third region having an orientation-regulating force for orienting the liquid crystal molecules in a third direction that crosses direction fourth region having the first and а an orientation-regulating force for orienting the liquid crystal molecules in a fourth direction that is opposite to the third direction; and

the first sub-domain is formed between one of the two first regions and the third region, the second sub-domain is formed between the second region and the third region, the third sub-domain is formed between the second region and the fourth region, and the fourth sub-domain is formed between the other one of the two first regions and the fourth region, the method comprising the steps of:

injecting a liquid crystal material into a gap between the first substrate and the second substrate; and

after the injection step, holding the liquid crystal material at a temperature equal to or greater than a Tni

point of the liquid crystal material for a predetermined amount of time or longer and then cooling the liquid crystal material to normal temperature.