Лекция №3

Кросс-платформенное программирование

Определения

Граф – это набор вершин (узлов) и соединяющих их ребер

Направленный граф (ориентированный, орграф) – это граф, в котором все дуги имеют направления.

Цепь – это последовательность ребер, соединяющих две вершины (в орграфе – **путь**).

Цикл – это цепь из какой-то вершины в нее саму.

Взвешенный граф (сеть) – это граф, в котором каждому ребру приписывается вес (длина).

Дерево – это граф?

Да, без циклов!

Определения

Связный граф — это граф, в котором существует цепь между каждой парой вершин.

k-связный граф – это граф, который можно разбить на **k** связных частей.

Полный граф — это граф, в котором проведены все возможные ребра (n вершин $\rightarrow n(n-1)/2$ ребер).

Описание графа

Матрица смежности — это матрица, элемент **M**[i][j] которой равен **1**, если существует ребро из вершины i в вершину j, и равен **0**, если такого ребра нет.

Симметрия!

****	0	1	2	3	4
0	0	1	7	7	0
1	1	0.	0	1	1
2	1	0	0	0	0
3	1	1	0	0.	1
4	0	1	0	1	0.

	0	1	2	3	4
0	0	1	1	~	0
1	0	0	0	1	1
2	0	0	0	0	0
3	0	0	0	0	1
4	0	0	0	0	0

0	1	2	3	
1	0	3	4	
2	0			
3	0	1	4	
4	1	3		

Список смежности

0	1	2	3	
1	3	4		
2				
3	4			
4				4

Матрица и список смежности

0			
1			
2			
3			
4			

Построения графа по матрице смежности

0			
1			
2			
3			
4			

	0	1	2	3	4
0	0	0	1	1	1
1	0	1	0	1	0
2	0	1	0	1	0
3	1	1	0	0	0
4	0	1	1	0	0

Как обнаружить цепи и циклы?

3адача: определить, существует ли цепь длины ${f k}$ из вершины \mathbf{i} в вершину \mathbf{j} (или цикл длиной \mathbf{k} из вершины \mathbf{i} в

	U	I		3
) [0	0	1	0
1	1	0	0	0
2	0	1	0	1
3	1	0	0	0
	0 1 2 3	0 0 1 1 2 0	0 0 0 1 1 0 2 0 1	0 0 0 1 1 1 0 0 2 0 1 0

строка і

```
M^2[i][j]=1, если M[i][0]=1 и M[0][j]=1 или
      M[i][1]=1 u M[1][j]=1 u J U
      M[i][2]=1 \ M[2][j]=1 \ M\Pi
      M[i][3] = 1 \ M[3][j] = 1
```

логическое умножение столбец ј

логическое сложение

Как обнаружить цепи и циклы?

$$M^{2}[2][0] = 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 1 = 1$$

маршрут 2-1-0

маршрут 2-3-0

Как обнаружить цепи и циклы?

Матрица путей длины 3:

$$M^3 = M^2 \otimes M$$

	0	0	1	0
\otimes	1	0	0	0
	0	1	0	1
	1	0	0	0

0	1	0
1	0	1
2	0	0
3	0	1

на главной
диагонали –
циклы!

	1	0	0	0
$M^4 =$	0	1	0	1
	0	0	1	0
	0	1	0	1

\otimes	0	0	1	0
	~	0	0	0
	0	1	0	1
	1	0	0	0

	0	1	2	3
0	0	0	1	0
1	1	0	0	0
2	0	7	0	1
3	1	0	0	0

Весовая матрица

Весовая матрица – это матрица, элемент **W**[i][j] которой равен весу ребра из вершины i в вершину j (если оно есть), или равен ∞, если такого ребра нет.

	0	1	2	3	4
0	0	7	3	5	8
1	7	0	∞	4	8
2	3	8	0	8	∞
3	5	4	∞	0	6
4	8	8	8	6	0

	0	1	2	3	4
0	0	7	3	5	8
1	∞	0	8	4	8
2	3	8	0	8	∞
3	5	8	8	0	6
4	8	8	8	8	0