计算机导论

计算机科学也是交叉学科

- 以中科大计算机专业为例。1958年创校时成立应用数学和计算技术系,系主任是华罗庚。
 - 1952年华罗庚在中科院数学所创建了我国第一个计算机科研小组(包括闵乃大、夏培肃和王传英),开展电子计算机研究工作。
 - 1946年华罗庚在美国普林斯顿高等研究院访问时,参观过冯·诺依曼的通用电子计算机实验室,与他一起讨论过计算技术的研究问题。
- "华夏" 英才班名字取自计算机专业的两位创始人: 华罗庚(数学)和夏培肃(电机)。

世界数学巨头的聚会: 1946年12月17-19日

- 普林斯顿大学两百周年庆典,主办了一个以二十世纪数学领袖希尔伯特的著名演讲"数学问题"为主题的数学家大会(Princeton University Bicentennial Conference on The Problems of Mathematics)。
- 这是一次国际数学领域的盛会,包括冯·诺依曼、N·维纳、R·贝尔曼、A·塔克、W·霍奇、H·外尔、 M·黎斯、G·伯克霍夫、 K·哥德尔、W·蒯因、M·莫尔斯、J·怀海特、R·布饶尔、H·霍特林、H·克拉美、W·费勒、华罗庚在内的多位全世界最著名的数学家出席了这次会议。

为什么要上大学?

大学的起源

世界上现存具有800年以上历史的机构中,大学占据了其中大学

大学功能的发展

大学的存在与发展,关键在于大学功能的保持与发展 也在于大学有自己独特的精神与文化

大学精神与文化的体现

著名大学是人生的熔炉,个人的世界观、人生观、品德修养、待人接物等行为准则基本成型

大学的品格、大学的精神与文化在校友身上体现

从中学到大学的转变

• 中学

- 理想: 德智体美劳全面发展
- 现实: 作为"第一职业",面向升学(好学校、好专业)
- •实践不足:被动接收"权威"知识,效率低
 - "权威": 教科书、老师、考题

• 大学

- 学习一生所需的知识、能力、思维方式
- 学术传承
- 批判思维 (critical thinking) 与主动学习
 - 从较多资料中自行主动领悟,更加深入、更加全面的理解知识点
 - 初步理解"计算机科学与技术"、"计算思维"

为什么要学计算机专业?

"计算机科学并不只是关于计算机,就像天文学并不只是关于望远 镜一样。"

"Computer science is no more about computers than astronomy is about telescopes."

——Edsger Dijkstra

计算机科学

自动 理解1:自动执行。计算机能够自动执行由离散步骤组成的计算过程。 理解2:正确性。计算机求解问题的正确性往往可以精确地定义并分析。 通用 理解3:通用性。计算机能够求解任意可计算问题。 理解4:构造性。人们能够构造出聪明的方法让计算机有效地解决问题。 理解5:复杂度。这些聪明的方法(算法)具备时间/空间复杂度。 理解6:连接性。很多问题涉及用户/数据/算法的连接体,而非单体。 理解7:协议栈。连接体的节点之间通过协议栈通信交互。 理解8:抽象化。少数精心构造的计算抽象可产生万千应用系统。 理解9:模块化。多个模块有规律地组合成为计算系统。 理解10: 无缝衔接。计算过程在计算系统中流畅地执行。

计算机科学

• 研究计算过程

• 计算过程: 信息变换过程, 即信息运动过程

• 时间: 存储

•空间:传输

• 表达: 语法语义

• 自然科学研究: 物质运动、能量运动

• 计算机科学研究: 信息运动

为什么计算机科学可以解决多类问题?

• 乔姆斯基: 数字无穷性假说(也称为离散无穷性)

维基百科: Digital infinity is a technical term in theoretical linguistics. Alternative formulations are "discrete infinity" and "the infinite use of finite means". The idea is that all human languages follow a simple logical principle, according to which a limited set of digits—irreducible atomic sound elements—are combined to produce an infinite range of

potentially meaningful expressions.

为什么计算机科学可以解决多类问题?

科学、技术、经济、社会的各种问题和过程

各领域的专业表达

数字无穷性假说

计算透镜假说

有穷数字符号的组合可 表达无穷语言

Nature computes. Society computes.

计算问题和计算过程

计算无处不在

计算过程与计算思维

- 计算过程
 - 计算过程在计算系统中运行
 - 逻辑描述计算过程
 - 算法构造计算过程
 - 网络组合多个计算过程
- 举例
- 计算思维
 - 逻辑思维
 - 算法思维
 - 网络思维
 - 系统思维

计算机科学

自动 理解1:自动执行。计算机能够自动执行由离散步骤组成的计算过程。 理解2:正确性。计算机求解问题的正确性往往可以精确地定义并分析。 通用 理解3:通用性。计算机能够求解任意可计算问题。 理解4:构造性。人们能够构造出聪明的方法让计算机有效地解决问题。 理解5:复杂度。这些聪明的方法(算法)具备时间/空间复杂度。 理解6:连接性。很多问题涉及用户/数据/算法的连接体,而非单体。 理解7:协议栈。连接体的节点之间通过协议栈通信交互。 理解8:抽象化。少数精心构造的计算抽象可产生万千应用系统。 理解9:模块化。多个模块有规律地组合成为计算系统。 理解10: 无缝衔接。计算过程在计算系统中流畅地执行。

世界上有10种人,懂二进制和不懂二进制的

