Ανάλυση Κοινωνικών Δικτύων (Social Network Analysis)

2η Εργαστηριακή Άσκηση

Συμεών Παπαβασιλείου (papavass@mail.ntua.gr) Βασίλειος Καρυώτης (vassilis@netmode.ntua.gr) Ελένη Στάη (estai@netmode.ntua.gr)

2 Δεκεμβρίου, 2015

Study of Artificial – Real Topologies

- Computation of Ego-centrality
 - Another analysis metric to consider

- Acquisition of real topologies from datasets
- Study and comparison of real topologies with artificial counterparts

Community detection

Ego-network & Ego-centrality

- Ego networks: consist of a single actor (ego) together with the actors they are connected to (alters) and all the links among those alters
- Computation of ego-centrality (one actor)
 - Adjacency matric A (of ego network)
 - $A^{2}[1-A], 1$ is matrix of all 1's
 - # of geodesics of length 2 joining i to j
 - Sum of the reciprocal of the entries gives ego betweenness of the actor
 - Has to be halved if it is a graph
 - Repeat for rest of actors
- The calculation of all the ego betweenness scores for a whole network would be one order of magnitude faster than calculating the real betweenness scores

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}^{2}[1-\mathbf{A}] = \begin{bmatrix} * & * & * & * & * \\ * & * & * & 2 & 1 \\ * & * & * & * & 1 \\ * & * & * & * & 1 \\ * & * & * & * & * \end{bmatrix}$$

Initialization

- Run Pathadd.m in folder ComDetTBV090
- Run in folder Algorithms all other functions

Initialization

- importgml.m
- Directed graph -> undirected

	Τοπολογία	Αρχείο
Z.	American College football	football.gml
TIKON ENON	Les Miserables	lesmis.gml
IIPALWA AEAOM	<u>Dolphin social</u> <u>network</u>	dolphins.gml

Familiarize with the methods, check input & output

- Functions for community detection
- Compare algorithms based on modularity
- Print communities, for nodes in the same community use different colors
- Output of each algorithm, make it in the form
 of a vector showing for each node its community
 especially for Girvan-Newman (edge-betweenness)

Cell matrices

Μέθοδος Εντοπισμού Κοινοτήτων	Αρχείο ComDetTBv090\Algorithms
Spectral Clustering	GCSpectralClust2.m
Newman-Girvan	GGGirvanNewman.m
Modularity Maximization	GC ModulMax1.m