Convex Hull

Beyond 3 Dimension

- 4D

Junhui DENG

deng@tsinghua.edu.cn

O(nlogn): Upper Bound For Higher Dimensions?

- ❖ From the theoretical point of view,
 two important questions in Combinatorial Geometry are:
 - What's the largest number of faces/vertices/edges/.../facets of a d-polyt
 - Which polytopes achieve this largest number?
- ❖ From the algorithmic point of view, we have seen that
 both 2D and 3D convex hulls can be constructed in ⊘(nlogn) time
- ❖ We will, unfortunately, see from the followings that this is not true

How Complex Could A d-Polytope Be?

- ❖ It can be deduced from Euler's formula that convex polytope in $\boxed{\mathcal{E}^3}$ has a linear number of edges and faces
- ❖ Specifically, 3*(n-2) edges and 2*(n-2) faces
 e.g., a tetrahedron has n = 4 vertices, 6 edges and 4 faces
- *However, we will show that the convex hull of n points in \mathcal{E}^4 may has as many as $\Omega(n^2)$ edges
- *This fact immediately implies that we can't hope to construct \Box to less than \Box \Box time in the worst cases
- lacktriangledow Generally, the CH of n points in $oxedow{\mathcal{E}}^{ exttt{d}}$ may have as many as $\Omega(n^{\lfloor d/2 \rfloor})$ facets
- riangle So one can't expect an algorithm for computing convex hulls in $|\mathcal{E}^d|$ in less than $|\Omega(n^{\lfloor d/2 \rfloor})|$ time in the worst cases

Moment Curve

❖ parametric curve:

$$\gamma^{(d)} = \{ (t, t^2, t^3, ..., t^d) | t \in R \}$$

*To imagine the shape of the MC in \mathcal{E}^d , try to draw the unit parabola in the plane:

$$\gamma^{(2)} = \{ (t, t^2) | t \in R \}$$

- ❖ Each point $p^{(d)}(t) = (t, t^2, t^3, ..., t^d)$ is given by the single parameter [t]
- ❖ When the context is clear,

 $\gamma^{(d)}$ / $p^{(d)}(t)$ will be simplified as γ / p(t)

Cyclic Polytopes

♣ For any n distinct reals $u_1 < u_2 < u_3 < ... < u_n$ there is a set of n distinct points on γ, $S = \{ p_i = p(u_i) \mid 1 \le i \le n \}$

 \Leftrightarrow cyclic polytope in \mathcal{E}^d : CP({ u_1 , u_2 , u_3 , ..., u_n }) = conv(S)

A cyclic polytope with 6 vertices in \mathcal{E}^3

Note that when projected to the x_1x_2 -plane, all the 6 vertices lie on the parabola $x_2 = x_1^2$

Moment Curve & Cyclic Polytope in 4D

- ❖ Consider the 4D MC: $\gamma^{(4)}(t) = \{ (t, t^2, t^3, t^4) \mid t \in R \}$
- ❖ Let S = { p_i = $p(u_i)$ | 1 ≤ i ≤ n } be a set of n distinct points on $\gamma^{(4)}$ CP(S) be the corresponding cyclic polytope
- ❖ Surprisely, it can be proved that
 every segment between these points is an EE of CP(S)

A cyclic polytope with 6 vertices in \mathcal{E}^3

Note that when projected to the x_1x_2 -plane, all the 6 vertices lie on the parabola $x_2 = x_1^2$

9

Tangent Hyperplane

❖ Now, for any fixed i and j, consider the polynomial

$$P(t) = (t - u_i)^2 \times (t - u_j)^2$$

❖ This polynomial can be rewritten as

$$P(t) = t^4 + a_3t^3 + a_2t^2 + a_1t + a_0$$
, where $a_{0\sim 3} \in R$

\diamondsuit It is easy to see that 1) P(t) \geq 0 for any t; and

2)
$$P(t) = 0$$
 iff $t = u_i$ or u_i

- At the same time, h: $x_4 + a_3x_3 + a_2x_2 + a_1x_1 + a_0 = 0$ (1) is a hyperplane in \mathcal{E}^4
- ❖ We observe that
 - 1) at any point p on γ , equation (1) evaluates to a non-negative value; and
 - 2) the equation evaluates to zero iff $p = p_i$ or p_i

Edges on Convex Hull

- **\diamondsuit** The above facts mean that $\gamma^{(4)}$
 - 1) lies on the same side of hyperplane h, and
 - 2) touches h at and only at p_i and p_j
- **❖** That means
 - 1) all points, except p_i and p_i , lie strictly on the same side of h
 - 2) segment p_ip_i
 - is on the boundary of CP(S), and hence
 - defines an edge of CH(S)

Edges on Convex Hull

- ❖ Since i and j were chosen arbitrarily, it can be concluded that
 - every pair of points in S
 defines a (distinct) edge on CH(S) and asymptotically,
 - 2) the convex hull of n points in \mathcal{E}^4 has $C(n, 2) = \Theta(n^2)$ edges
- ❖ That's why we cannot hope to devise an algorithm which constructs a 4D convex hull
 - in less than $\Omega(n^2)$ time in the worst cases
- ❖ This is quite different from the cases of 1D, 2D, and 3D convex hulls