```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set() #Code in MatplotLib but show in Seaborn , Default Seaborn them, color pall
#Seaborn is upgraded version of MatplotLib
```

BAR CHART

```
In [8]: df_used_cars=pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udemy/Ude

In [9]: df_used_cars

Out[9]: Brand Cars Listings
```

```
0
            Audi
                           419
            BMW
                           636
1
                           820
  Mercedes-Benz
3
       Mitsubishi
                           306
          Renault
                           438
4
5
           Toyota
                           509
6
      Volkswagen
                           875
```


PIE CHART

```
In [17]:
    df_pie_chart = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udemy/U
    df_pie_chart
```

Out[17]:		Engine Fuel Type	Number of Cars
	0	Diesel	2019
	1	Gas	613
	2	Other	154
	3	Petrol	1559

```
In [25]: sns.set_palette('colorblind')
In [30]: plt.figure(figsize=(10,8))
```

Cars by Engine Fuel Type

AREA CHARTS

In [3]:
 df_area_charts = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udemy
 df_area_charts

Out[3]:		Year	Gas	Petrol	Diesel	Other
	0	1982	0	94	0	0
	1	1983	0	347	0	0
	2	1984	300	0	334	0
	3	1985	1030	1184	984	0
	4	1986	511	681	1066	340
	5	1987	1817	1840	400	940
	6	1988	2999	1882	2060	1
	7	1989	2626	1641	1304	330
	8	1990	1290	3247	1	0
	9	1991	1566	6776	1063	400
	10	1992	2358	1925	2824	350
	11	1993	1231	3375	2302	0
	12	1994	2386	5691	2569	77
	13	1995	2373	5115	4563	666
	14	1996	4264	6792	6996	1235

	Year	Gas	Petrol	Diesel	Other
15	1997	7031	7336	7877	370
16	1998	5578	7511	8634	310
17	1999	4069	6147	16742	1493
18	2000	6459	10754	23102	531
19	2001	3932	7590	22115	1029
20	2002	3375	7069	18144	479
21	2003	6032	8518	19605	281
22	2004	8332	7978	17400	1821
23	2005	5785	7269	23551	1918
24	2006	6439	12372	18024	1878
25	2007	10902	21258	24683	1525
26	2008	12876	22090	25471	1516
27	2009	2179	5682	10191	1204
28	2010	2649	7222	13150	442
29	2011	3893	11628	23221	1688
30	2012	1899	8763	27958	1736
31	2013	1055	6517	16255	607
32	2014	409	1942	4703	329
33	2015	50	702	1172	125
34	2016	0	108	220	25

```
In [23]:
          plt.figure(figsize=(12,6))
          colors=['#8CC084','#C792DF','#8AA29E']
          labels=['Gas','Petrol','Diesel']
          plt.stackplot(df_area_charts['Year']
                       ,df_area_charts['Gas']
                       ,df_area_charts['Petrol']
                       ,df_area_charts['Diesel']
                       ,colors = colors
                       ,edgecolor = 'None') #Outliners
          plt.xticks(df_area_charts['Year'], rotation = 45)
          plt.legend(labels = labels, loc = "upper left")
          plt.title('Popularity of Engine Fuel Types', fontsize=18, fontweight='bold')
          plt.ylabel("Number of Cars", fontsize=13)
          sns.set_style("white") #Background is white
          sns.despine() #Removing the borders of the Chart
          plt.show()
```


LINE CHARTS

```
In [24]:
    df_line_charts = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udemy
    df_line_charts
```

Out[24]:		Date	GSPC500	FTSE100
	0	1/3/2000	0.003264	0.000000
	1	1/4/2000	-0.009549	0.000000
	2	1/5/2000	-0.038345	-0.038137
	3	1/6/2000	0.001922	-0.019502
	4	1/7/2000	0.000956	-0.013571
	•••	•••	•••	•••
	2865	12/27/2010	-0.002282	0.002135
	2866	12/28/2010	0.003539	0.000000
	2867	12/29/2010	-0.000254	0.000000
	2868	12/30/2010	0.000524	-0.002080
	2869	12/31/2010	-0.002128	-0.004236

2870 rows × 3 columns

Out[27]:

	Date	GSPC500	FTSE100	NewDate
0	1/3/2000	0.003264	0.000000	2000-01-03
1	1/4/2000	-0.009549	0.000000	2000-01-04
2	1/5/2000	-0.038345	-0.038137	2000-01-05
3	1/6/2000	0.001922	-0.019502	2000-01-06
4	1/7/2000	0.000956	-0.013571	2000-01-07
•••	•••	•••	•••	•••
2865	12/27/2010	-0.002282	0.002135	2010-12-27
2866	12/28/2010	0.003539	0.000000	2010-12-28
2867	12/29/2010	-0.000254	0.000000	2010-12-29
2868	12/30/2010	0.000524	-0.002080	2010-12-30
2869	12/31/2010	-0.002128	-0.004236	2010-12-31

2870 rows × 4 columns


```
In [41]:
          #Constructing a new column for year 2008
          df line charts 08 = df line charts[(df line charts['NewDate'] >='2008-07-01')
                                              & (df_line_charts['NewDate'] <= '2008-12-31')]</pre>
In [42]:
          df_line_charts_08
Out[42]:
                     Date
                            GSPC500
                                      FTSE100
                                                 NewDate
          2216
                 7/1/2008
                           -0.001072
                                      0.017360 2008-07-01
          2217
                 7/2/2008
                           0.007151 -0.025951 2008-07-02
                 7/3/2008
                           -0.017779 -0.009781 2008-07-03
          2218
          2219
                 7/4/2008
                           0.000000
                                      0.009270 2008-07-04
          2220
                 7/7/2008
                           -0.000047 -0.011650 2008-07-07
                                      0.000000 2008-12-25
          2343 12/25/2008
                           0.000000
          2344 12/26/2008
                           0.006529
                                      0.000000 2008-12-26
                                      0.000000 2008-12-29
          2345 12/29/2008
                           0.003289
          2346 12/30/2008 -0.002052
                                     0.024380 2008-12-30
          2347 12/31/2008 0.022985 0.026578 2008-12-31
         132 rows × 4 columns
```

```
In [43]:
          plt.figure(figsize = (20,8)) #It should be placed before plot, defining fist
          sns.set()
          labels=['S&P 500', 'FTSE 100']
          plt.plot(df_line_charts_08['NewDate']
                   ,df_line_charts_08['GSPC500']
                  ,color='midnightblue')
          plt.plot(df_line_charts_08['NewDate']
                  ,df_line_charts_08['FTSE100']
                  ,color='crimson')
          plt.legend(labels=labels, fontsize="large")
          plt.title("S&P vs FTSE Returns for 2008", fontsize=16)
          plt.ylabel("Returns", fontsize=13)
          plt.xlabel("Date", fontsize=13)
          plt.show()
          #September 2008 The Great Recession
```


HISTOGRAM CHART

In [46]: df_histo_charts = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udem

In [47]: df_histo_charts

Out[47]:

0	ID	Building Type	Year of sale	Month of sale	Type of property	Property #	Area (ft.)	Price
0	1030	1	2005.0	11.0	Apartment	30	743.09	246
1	1029	1	2005.0	10.0	Apartment	29	756.21	246
2	2002	2	2007.0	7.0	Apartment	2	587.28	209
3	2031	2	2007.0	12.0	Apartment	31	1604.75	453
4	1049	1	2004.0	11.0	Apartment	49	1375.45	467
•••	•••	•••	•••	•••	•••	•••	•••	•••
262	5044	5	NaN	NaN	Apartment	44	1238.58	323
263	5047	5	NaN	NaN	Apartment	47	794.52	279
264	5048	5	NaN	NaN	Apartment	48	1013.27	288
265	5050	5	NaN	NaN	Apartment	50	1074.71	366
266	5051	5	NaN	NaN	Apartment	51	789.25	199

267 rows × 8 columns

```
In [48]: plt.hist(df_histo_charts['Price']) #Bin Size is default 10 Price is X axis here
```

Out[48]: (array([3., 31., 89., 47., 31., 18., 21., 7., 10., 10.]), array([118., 160., 202., 244., 286., 328., 370., 412., 454., 496., 538.]), <a list of 10 Patch objects>)

SCATTER PLOT

```
In [59]:
    df_scatter_plot = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udem
    df_scatter_plot
```

ut[59]:		ID	Building Type	Year of sale	Month of sale	Type of property	Property #	Area (ft.)	Price	Status
	0	1030	1	2005.0	11.0	Apartment	30	743.09	246.17268	Sold
	1	1029	1	2005.0	10.0	Apartment	29	756.21	246.33190	Sold
	2	2002	2	2007.0	7.0	Apartment	2	587.28	209.28091	Sold
	3	2031	2	2007.0	12.0	Apartment	31	1604.75	452.66701	Sold
	4	1049	1	2004.0	11.0	Apartment	49	1375.45	467.08331	Sold
	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
	262	5044	5	NaN	NaN	Apartment	44	1238.58	322.61074	Not Sold
	263	5047	5	NaN	NaN	Apartment	47	794.52	279.19126	Not Sold
	264	5048	5	NaN	NaN	Apartment	48	1013.27	287.99653	Not Sold
	265	5050	5	NaN	NaN	Apartment	50	1074.71	365.86878	Not Sold
	266	5051	5	NaN	NaN	Apartment	51	789.25	199.21640	Not Sold
	267 r	ows ×	9 columns							
[60]:	df_	scatte	r_plot.isn	ull().su	m()					
[60]:		ding T		0 0 72						

```
Year of sale
                             72
         Month of sale
                             72
         Type of property
                              0
         Property #
                              0
         Area (ft.)
                              0
         Price
                              0
                              0
         Status
         dtype: int64
In [67]:
          plt.figure(figsize=(12,8))
          scatter = plt.scatter(df_scatter_plot['Area (ft.)']
                     ,df_scatter_plot['Price']
                     ,alpha = 0.5
                                                              #Transparency of points
                     ,c = df_scatter_plot['Building Type'] #Color code due to third variable
                     ,cmap = 'viridis') #Color
          plt.legend(*scatter.legend_elements()
                    ,loc = 'upper left'
                    ,title= 'Building Type')
          plt.title('Relationship between Area and Price for California Real Estate', fontsize
          plt.xlabel('Area (in ft.)', weight='bold')
          plt.ylabel('Price (in thousand Dollars)', weight='bold')
          plt.show()
```


REGRESSION LINE CHART

In [75]:
 df_reg_line = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udemy/Ud
 df_reg_line

Out[75]:		Budget	Sales
	0	337.1	22.1
	1	128.9	10.4
	2	132.4	9.3
	3	251.3	18.5
	4	250.0	12.9
	•••	•••	•••
	195	55.7	7.6
	196	107.2	9.7
	197	192.7	12.8
	198	391.8	25.5
	199	249.4	13.4

200 rows × 2 columns

```
In [76]:
```

#We rely on Seaborn for Regression Analysis
#sns.regplot() & sns.lmplot()

#sns.regplot() supports x and y variables in Numpy arrays , pandas arrays
#sns.Lmplot() supports x and y variables in form of strings only (longform and tidyd

Effect on Ad Expenditure on Sales

PARETO CHART

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick #Format numbers as a percentage
```

In [100...
 df_pareto = pd.read_csv('C:/Users/abhinendr.sharma/Documents/Data Analyst_Udemy/Udem
 df_pareto

Out[100		Year	Python Users	Participants
	0	2012	0.149	798
	1	2013	0.133	1880
	2	2014	0.195	3285
	3	2015	0.303	2800
	4	2016	0.458	2895
	5	2017	0.526	2900

	Year	Python Users	Participants
6	2018	0.656	2300
7	2019	0.658	1800

Out[101... <BarContainer object of 8 artists>

Out[102... [<matplotlib.lines.Line2D at 0x1cf047fa188>]


```
In [113...
          fig, ax= plt.subplots(figsize = (10,7))
          sns.set_style('ticks') #Displays data over everything
          ax.bar(df_pareto['Year']
                ,df_pareto['Participants']
                ,color = 'k')
          ax.set_ylabel('Number of Participants', weight='bold')
          ax.tick_params(axis="y", width=2, labelsize='large')
          ax1 = ax.twinx()
          ax1.set_ylim(0,1)
          ax1.yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1.0))
          ax1.plot(df_pareto['Year']
                  ,df_pareto['Python Users']
                  ,color = '#b60000'
                  ,marker = 'D')
          ax.set_ylabel('Python Users', color = '#b60000', weight='bold')
          ax.tick_params(axis='y', width=2, labelsize='large', color='#b50000')
          ax.set_title("KD Nuggets Survey Python Users (2012-2019)", fontsize=14, weight='bold
```

Out[113... Text(0.5, 1.0, 'KD Nuggets Survey Python Users (2012-2019)')

In []: