In [1]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression,LogisticRegressio
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_per
df

Out[2]:

	O_3	OXY	NOx	NO_2	NMHC	MXY	EBE	СО	BEN	date	
!	10.550000	NaN	316.299988	73.900002	NaN	NaN	NaN	1.72	NaN	2003- 03-01 01:00:00	0
ţ	6.720000	0.73	250.000000	72.110001	0.26	NaN	NaN	1.45	NaN	2003- 03-01 01:00:00	1
(21.049999	NaN	224.199997	80.559998	NaN	NaN	NaN	1.57	NaN	2003- 03-01 01:00:00	2
(4.220000	NaN	450.399994	78.370003	NaN	NaN	NaN	2.45	NaN	2003- 03-01 01:00:00	3
!	8.460000	NaN	479.100006	96.250000	NaN	NaN	NaN	3.26	NaN	2003- 03-01 01:00:00	4
	34.049999	1.68	32.299999	31.799999	0.02	3.17	2.01	0.16	0.20	2003- 10-01 00:00:00	243979
	34.610001	1.00	14.760000	10.450000	NaN	0.72	0.36	0.08	0.32	2003- 10-01 00:00:00	243980
	32.160000	NaN	50.810001	34.639999	0.07	NaN	NaN	NaN	NaN	2003- 10-01 00:00:00	243981
	NaN	NaN	41.020000	32.580002	0.07	NaN	NaN	NaN	NaN	2003- 10-01 00:00:00	243982
	21.480000	2.28	56.849998	37.150002	0.07	6.41	2.15	0.29	1.00	2003- 10-01 00:00:00	243983

243984 rows × 16 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 243984 entries, 0 to 243983
Data columns (total 16 columns):

Data	CO CUIIINS	(total to columns,):
#	Column	Non-Null Count	Dtype
0	date	243984 non-null	object
1	BEN	69745 non-null	float64
2	C0	225340 non-null	float64
3	EBE	61244 non-null	float64
4	MXY	42045 non-null	float64
5	NMHC	111951 non-null	float64
6	N0_2	242625 non-null	float64
7	N0x	242629 non-null	float64
8	0XY	42072 non-null	float64
9	0_3	234131 non-null	float64
10	PM10	240896 non-null	float64
11	PXY	42063 non-null	float64
12	S0_2	242729 non-null	float64
13	TCH	111991 non-null	float64
14	T0L	69439 non-null	float64
15	station	243984 non-null	int64
dtype	es: float	64(14), int64(1),	object(1)
memo	ry usage:	29.8+ MB	

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3
5	2003- 03-01 01:00:00	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994	9.48	9.950000
23	2003- 03-01 01:00:00	3.46	1.27	3.43	7.08	0.18	54.250000	173.300003	3.37	6.540000
27	2003- 03-01 01:00:00	6.39	1.79	5.75	10.88	0.33	75.459999	281.100006	3.68	6.690000
33	2003- 03-01 02:00:00	7.42	1.47	10.63	24.73	0.35	83.309998	277.200012	11.00	9.900000
51	2003- 03-01 02:00:00	3.62	1.29	3.20	7.08	0.19	42.209999	166.300003	3.41	6.380000
243955	2003- 09-30 23:00:00	1.75	0.41	3.07	9.38	0.09	46.290001	77.709999	3.11	18.280001
243957	2003- 10-01 00:00:00	2.35	0.60	3.88	10.86	0.11	61.240002	133.100006	0.89	10.900000
243961	2003- 10-01 00:00:00	2.97	0.82	4.53	10.88	0.05	36.529999	131.300003	5.52	12.940000
243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000

33010 rows × 16 columns

In [5]: df1=df1.drop(["date"],axis=1)

In [6]: sns.heatmap(df1.corr())

Out[6]: <Axes: >


```
In [7]: plt.plot(df1["EBE"],df1["NMHC"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x7fd78926b370>]


```
In [8]: data=df[["EBE","NMHC"]]
```

```
In [9]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [10]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[10]:

v LinearRegression

LinearRegression()

```
In [11]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fd789242350>


```
In [12]: lis=li.score(x_test,y_test)
```

```
In [13]: df1["TCH"].value_counts()
```

```
Out[13]: 1.30
                   1344
          1.31
                   1342
          1.32
                   1281
          1.27
                   1279
          1.29
                   1262
          3.58
                      1
          3.28
                      1
          3.43
                      1
          3.03
                      1
          3.59
          Name: TCH, Length: 243, dtype: int64
```

```
In [14]: df1.loc[df1["TCH"]<1.40,"TCH"]=1
    df1.loc[df1["TCH"]>1.40,"TCH"]=2
    df1["TCH"].value_counts()
```

Out[14]: 1.0 21614 2.0 11396

Name: TCH, dtype: int64

Lasso

```
In [15]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[15]: v Lasso
Lasso(alpha=5)

```
In [16]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[16]: <matplotlib.collections.PathCollection at 0x7fd7894ed1e0>


```
In [17]: las=la.score(x_test,y_test)
```

Ridge

```
In [18]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[18]:

▼ Ridge

Ridge(alpha=1)

In [19]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[19]: <matplotlib.collections.PathCollection at 0x7fd7892e4f10>

In [20]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [21]: en=ElasticNet()
en.fit(x_train,y_train)

Out[21]: v ElasticNet
ElasticNet()
```

In [22]: prediction2=rr.predict(x_test)
 plt.scatter(y_test,prediction2)

Out[22]: <matplotlib.collections.PathCollection at 0x7fd7896283a0>

In [23]: ens=en.score(x_test,y_test)

In [24]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.9046329773630202

Out [24]: 0.9191186610151827

Logistic

```
In [25]: g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value_counts()
Out[25]: Low
                 21614
                 11396
         High
         Name: TCH, dtype: int64
In [26]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [27]:
          ▼ LogisticRegression
          LogisticRegression()
In [28]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[28]: <matplotlib.collections.PathCollection at 0x7fd7896fe560>
          Low
                High
                                                                       Low
In [29]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [30]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import GridSearchCV
In [31]: |q1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [32]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [33]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[33]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [34]: |parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators': [10,20,30,40,50]
         }
In [35]: | grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid search.fit(x train,y train)
Out[35]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [36]: rfcs=grid_search.best_score_
In [37]: rfc_best=grid_search.best_estimator_
```

```
In [38]: from sklearn.tree import plot_tree
                                          plt.figure(figsize=(80,40))
                                           plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[38]: [Text(0.5080818965517241, 0.9285714285714286, 'CO <= 0.865\ngini =</pre>
                                           0.449 \times = 14577 \times = [15259, 7848] \times = Yes'),
                                                Text(0.2510775862068966, 0.7857142857142857, 'TOL <= 7.455\ngini
                                           = 0.305 \setminus 1.05 = 10478 \setminus 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.05 = 1.0
                                               Text(0.12284482758620689, 0.6428571428571429, 'NOx <= 88.445 \ngin
                                           i = 0.174 \setminus samples = 6820 \setminus samples = [9744, 1036] \setminus samples = Yes'),
                                                Text(0.06896551724137931, 0.5, '0_3 \le 19.005 \setminus gini = 0.116 \setminus gi
                                           les = 5846\nvalue = [8699, 572]\nclass = Yes'),
                                                Text(0.034482758620689655, 0.35714285714285715, 'NO_2 \le 21.0 
                                           ni = 0.35\nsamples = 555\nvalue = [710, 208]\nclass = Yes'),
                                                Text(0.017241379310344827, 0.21428571428571427, 'NOx <= 11.645 \ng
                                           ini = 0.412 \setminus samples = 20 \setminus samples = [9, 22] \setminus samples = No'),
                                                Text(0.008620689655172414, 0.07142857142857142, 'gini = 0.26 \nsam
                                           ples = 10\nvalue = [2, 11]\nclass = No'),
                                                Text(0.02586206896551724, 0.07142857142857142, 'gini = 0.475 \nsam
                                           ples = 10 \cdot value = [7, 11] \cdot value = No'),
                                                Text(0.05172413793103448, 0.21428571428571427, 'PM10 <= 32.735\ng
                                           ini = 0.331 \setminus samples = 535 \setminus samples = [701, 186] \setminus samples = Yes'),
                                                Text(0.04310344827586207, 0.07142857142857142, 'gini = 0.282 \nsam
                                         print("Linear:",lis)
print("Lasso:",las)
In [39]:
                                           print("Ridge:", rrs)
                                           print("ElasticNet:",ens)
                                           print("Logistic:",los)
                                           print("Random Forest:",rfcs)
```

Linear: 0.9046345936860489 Lasso: 0.7357327274811196 Ridge: 0.9046329773630202

ElasticNet: 0.8875959784048247 Logistic: 0.6531354135110573

Random Forest: 0.8828925435665907

Best Model is Random Forest

In [40]: df2=pd.read_csv("/Users/bob/Downloads/FP1_air/csvs_per_year/csvs_pe
df2

Out [40]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3
0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999
2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001
3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000
4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999
245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000
245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999
245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000

245496 rows × 17 columns

In [41]: df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 245496 entries, 0 to 245495
Data columns (total 17 columns):

Data		(totat 17 cotumns,	
#	Column	Non-Null Count	Dtype
0	date	245496 non-null	object
1	BEN	65158 non-null	float64
2	CO	226043 non-null	float64
3	EBE	56781 non-null	float64
4	MXY	39867 non-null	float64
5	NMHC	107630 non-null	float64
6	N0_2	243280 non-null	float64
7	N0x	243283 non-null	float64
8	0XY	39882 non-null	float64
9	0_3	233811 non-null	float64
10	PM10	234655 non-null	float64
11	PM25	58145 non-null	float64
12	PXY	39891 non-null	float64
13	S0_2	243402 non-null	float64
14	TCH	107650 non-null	float64
15	T0L	64914 non-null	float64
16	station	245496 non-null	int64
dtype	es: float	64(15), int64(1),	object(1)
memo	ry usage:	31.8+ MB	

In [42]: df3=df2.dropna()
df3

Out[42]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
5	2004- 08-01 01:00:00	3.24	0.63	5.55	9.72	0.06	103.800003	144.800003	5.04	32.480000
22	2004- 08-01 01:00:00	0.55	0.36	0.54	0.86	0.07	31.980000	32.799999	0.50	79.040001
26	2004- 08-01 01:00:00	1.80	0.46	2.28	4.62	0.21	62.259998	75.470001	2.47	54.419998
32	2004- 08-01 02:00:00	1.94	0.67	3.14	4.91	0.06	113.500000	165.800003	2.56	26.980000
49	2004- 08-01 02:00:00	0.29	0.30	0.47	0.76	0.07	33.919998	34.840000	0.46	75.570000
245463	2004- 05-31 23:00:00	0.62	0.08	0.54	0.70	0.04	44.360001	45.450001	0.42	43.419998
245467	2004- 05-31 23:00:00	2.39	0.67	2.49	3.92	0.20	89.809998	132.800003	2.09	14.740000
245473	2004- 06-01 00:00:00	3.72	1.12	4.33	8.79	0.24	113.900002	253.600006	4.51	9.380000
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000

19397 rows × 17 columns

In [43]: df3=df3.drop(["date"],axis=1)

In [44]: sns.heatmap(df3.corr())

Out[44]: <Axes: >


```
In [45]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

In [46]: li=LinearRegression()
li.fit(x_train,y_train)

Out[46]:

▼ LinearRegression

LinearRegression()

```
In [47]: prediction=li.predict(x_test)
         plt.scatter(y_test,prediction)
Out[47]: <matplotlib.collections.PathCollection at 0x7fd7b95cd690>
           3.5
           3.0
           2.5
           2.0
In [48]: lis=li.score(x_test,y_test)
In [49]: df3["TCH"].value_counts()
Out[49]: 1.34
                  740
          1.33
                  714
         1.35
                  708
          1.37
                  688
          1.36
                  679
         3.65
                    1
         2.86
                    1
         2.87
                    1
          3.86
         2.66
         Name: TCH, Length: 191, dtype: int64
In [50]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[50]: 1.0
                 11861
         2.0
                  7536
```

Lasso

Name: TCH, dtype: int64

```
In [51]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

In [52]: prediction1=la.predict(x_test)
 plt.scatter(y_test,prediction1)

Out[52]: <matplotlib.collections.PathCollection at 0x7fd789f275b0>

In [53]: las=la.score(x_test,y_test)

Ridge

In [54]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)

```
In [55]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[55]: <matplotlib.collections.PathCollection at 0x7fd789f77fd0>

In [56]: rrs=rr.score(x_test,y_test)

ElasticNet

ElasticNet()

```
In [57]: en=ElasticNet()
en.fit(x_train,y_train)

Out[57]: v ElasticNet
```

```
In [58]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[58]: <matplotlib.collections.PathCollection at 0x7fd789dd48b0>


```
In [59]: ens=en.score(x_test,y_test)
```

In [60]: print(rr.score(x_test,y_test))
 rr.score(x_train,y_train)

0.5675301031753455

Out[60]: 0.5998074340539438

Logistic

```
In [61]: g={"TCH":{1.0:"Low",2.0:"High"}}
    df3=df3.replace(g)
    df3["TCH"].value_counts()
```

Out[61]: Low 11861 High 7536

Name: TCH, dtype: int64

```
In [62]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [63]: |lo=LogisticRegression()
         lo.fit(x_train,y_train)
Out [63]:
          ▼ LogisticRegression
          LogisticRegression()
In [64]: prediction3=lo.predict(x_test)
         plt.scatter(y_test,prediction3)
Out[64]: <matplotlib.collections.PathCollection at 0x7fd7b95cde40>
          Low
```

In [65]: los=lo.score(x_test,y_test)

Random Forest

Low

In [66]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV

High

```
In [67]: |g1={"TCH":{"Low":1.0,"High":2.0}}
         df3=df3.replace(q1)
In [68]: |x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [69]: | rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out [69]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [70]:
         parameter={
              'max_depth': [1,2,4,5,6],
              'min_samples_leaf':[5,10,15,20,25],
              'n_estimators':[10,20,30,40,50]
In [71]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,sc
         grid_search.fit(x_train,y_train)
Out[71]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [72]: | rfcs=grid_search.best_score_
In [73]: | rfc_best=grid_search.best_estimator_
```

```
In [74]: from sklearn.tree import plot_tree
          plt.figure(figsize=(80,40))
          plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_nam
Out[74]: [Text(0.49848790322580644, 0.9285714285714286, 'NO_2 <= 66.86\ngin
          i = 0.474 \setminus samples = 8629 \setminus samples = [8336, 5241] \setminus samples = Yes'),
           Text(0.2550403225806452, 0.7857142857142857, 'TOL <= 9.875\ngini
          = 0.204\nsamples = 5025\nvalue = [6998, 910]\nclass = Yes'),
           Text(0.12903225806451613, 0.6428571428571429, 'NO_2 <= 40.035 \ngi
          ni = 0.138 \setminus samples = 4535 \setminus samples = [6608, 531] \setminus samples = Yes'),
           Text(0.06451612903225806, 0.5, 'BEN <= 1.685\ngini = 0.037\nsampl
          es = 2569 \setminus es = [4007, 77] \setminus es = Yes'),
           Text(0.03225806451612903, 0.35714285714285715, 'OXY <= 1.155\ngin
          i = 0.029 \times = 2516 \times = [3937, 59] \times = Yes'),
           Text(0.016129032258064516, 0.21428571428571427, 'NO 2 <= 23.005 \ n
          gini = 0.012\nsamples = 1905\nvalue = [3020, 19]\nclass = Yes'),
           Text(0.008064516129032258, 0.07142857142857142, 'gini = 0.0 \nsamp
          les = 1173\nvalue = [1877, 0]\nclass = Yes'),
           Text(0.024193548387096774, 0.07142857142857142, 'gini = 0.032\nsa
          mples = 732 \setminus value = [1143, 19] \setminus class = Yes'),
           Text(0.04838709677419355, 0.21428571428571427, 'NMHC <= 0.165 \ngi
          ni = 0.08 \setminus samples = 611 \setminus samples = [917, 40] \setminus samples = Yes'),
           Text(0.04032258064516129, 0.07142857142857142, 'gini = 0.068 \nsam
          print("Linear:",lis)
print("Lasso:",las)
In [75]:
          print("Ridge:", rrs)
          print("ElasticNet:",ens)
          print("Logistic:",los)
          print("Random Forest:",rfcs)
```

Linear: 0.5675063934890017 Lasso: 0.47670581670145473 Ridge: 0.5675301031753455

ElasticNet: 0.5009515759428786 Logistic: 0.6051546391752577

Random Forest: 0.8972527875997542

Best model is Random Forest