

Agenda

Introduction

Modeling of Dynamical Systems

Linear Time-Invariant Systems

Time-Domain Models

Continuous-Time State Space Models Discrete-Time State Space Models

Frequency-Domain Models

Transfer Functions
Discrete Transfer Functions

Summary

Introduction

Curriculum for Reguleringsteknik (REG)

Matematiske og grafiske metoder til syntese af lineære tidsinvariante systemer: 1

- diskret og kontinuert tilstandsbeskrivelse
- analyse i tid og frekvens
- stabilitet, reguleringshastighed, følsomhed og fejl
- ► digitale PI, PID, LEAD og LAG regulatorer (serieregulatorer)
- ► tilstandsregulering, pole-placement og tilstands-estimering (observer)
- ► optimal regulering (least squares) og optimal tilstands-estimation (Kalman-filter)

Færdigheder:

Efter gennemførelse af kurset kan den succesfulde studerende:

 kunne analysere, dimensionere og implementere såvel kontinuert som tidsdiskret regulering af lineære tidsinvariante og stokastiske systemer

Kompetencer:

Efter gennemførelse af kurset kan den succesfulde studerende:

 anvende og implementere klassiske og moderne reguleringsteknikker for at kunne styre og regulere en robot hurtig og præcist

Based on https://odin.sdu.dk/sitecore/index.php?a=fagbesk&id=76852&listid=10980

The twelve lectures of the course are

- ► Lecture 1: Introduction to Linear Time-Invariant Systems
- ► Lecture 2: Stability and Performance Analysis
- ► Lecture 3: Introduction to Control
- ► Lecture 4: Design of PID Controllers
- ► Lecture 5: Root Locus
- ► Lecture 6: The Nyquist Plot
- ► Lecture 7: Dynamic Compensators and Stability Margins
- ► Lecture 8: Implementation
- ► Lecture 9: State Feedback
- ► Lecture 10: Observer Design
- ► Lecture 11: Optimal Control (Linear Quadratic Control)
- ► Lecture 12: The Kalman Filter

The main prerequisites for this course are:

► Modeling of Dynamical Systems

You must be able to setup models of electro-mechanical systems based on fundamental physical laws.

► Differential Equations

You must be able to simulate and interpret solutions to ordinary differential equations.

► Laplace Transformation

You must be able to apply Laplace transformation to obtain transfer functions, and analyze their behavior in frequency domain.

► Z-Transformation

You must be able to apply the z-transformation to obtain discrete transfer functions, and analyze their behavior in frequency domain.

► Linear Algebra

You must be familiar with basic concepts from linear algebra such as eigenvalues, rank, and determinants.

Introduction

Overview of Today's Lecture

- ightharpoonup Control Input: Throttle position u
- Measured Output: Velocity of the car y
- ▶ Reference Input: Desired velocity of the car y_{ref}

Introduction Motivating Example

Task: Design a cruise control for a car.

In this course, answers to the following questions are provided:

1. How should the control input u be designed such that a desired velocity $y_{\rm ref}$ is reached?

In this course, answers to the following questions are provided:

1. How should the control input u be designed such that a desired velocity $y_{\rm ref}$ is reached?

- 1. How should the control input u be designed such that a desired velocity $y_{\rm ref}$ is reached?
- 2. Can y_{ref} be reached despite uncertainties in the system?

- 1. How should the control input u be designed such that a desired velocity $y_{\rm ref}$ is reached?
- 2. Can y_{ref} be reached despite uncertainties in the system?

- 1. How should the control input u be designed such that a desired velocity $y_{\rm ref}$ is reached?
- 2. Can y_{ref} be reached despite uncertainties in the system?
- 3. How can a "good" performance be obtained?

- 1. How should the control input u be designed such that a desired velocity $y_{\rm ref}$ is reached?
- 2. Can y_{ref} be reached despite uncertainties in the system?
- 3. How can a "good" performance be obtained?

Modeling of Dynamical Systems

Introduction

Modeling of Dynamical Systems

Linear Time-Invariant Systems

Time-Domain Models
Continuous-Time State Space Models
Discrete-Time State Space Models

Frequency-Domain Models
Transfer Functions
Discrete Transfer Functions

Summary

To reason about the behavior of a system, we setup *models* that describe the input-output behavior of the system.

The models are given by

- Differential equations
- ► Algebraic relations

Modeling of Dynamical Systems Example: Mass-Spring-Damper (1)

- ightharpoonup The force F is considered to be the input
- ► The mass velocity is considered to be the output of the system

The system is of second order, since the dynamics of the system depends on both position and velocity.

Modeling of Dynamical Systems Example: Mass-Spring-Damper (2)

The system model is given by Newton's second law²

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where F is the input (corresponds to u in the drawing).

²The following shorthand notation is introduced for the time derivative $\dot{p} := \frac{dp}{dt}$

Modeling of Dynamical Systems Example: Mass-Spring-Damper (2)

The system model is given by Newton's second law²

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where F is the input (corresponds to u in the drawing).

The output y of the system is given by the relation

$$y = \dot{p}$$

²The following shorthand notation is introduced for the time derivative $\dot{p} := \frac{dp}{dt}$

Modeling of Dynamical Systems Example: Mass-Spring-Damper (2)

The system model is given by Newton's second law²

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where F is the input (corresponds to u in the drawing).

The output y of the system is given by the relation

$$y = \dot{p}$$

It is seen that the system model comprises

- ▶ a 2nd order differential equation (given by Newton's second law) and
- ► an algebraic relation (output relation)

²The following shorthand notation is introduced for the time derivative $\dot{p} := \frac{dp}{dt}$

Linear Time-Invariant Systems

Introduction

Modeling of Dynamical Systems

Linear Time-Invariant Systems

Time-Domain Models

Continuous-Time State Space Models

Discrete-Time State Space Models

Frequency-Domain Models
Transfer Functions
Discrete Transfer Functions

Summary

Linear Time-Invariant Systems

The map $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be *linear* if for any $x,y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, the following conditions hold

$$f(x+y) = f(x) + f(y)$$
$$f(\alpha x) = \alpha f(x)$$

Superposition Homogeneity

Linear Time-Invariant Systems

The map $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be *linear* if for any $x,y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, the following conditions hold

$$f(x + y) = f(x) + f(y)$$
$$f(\alpha x) = \alpha f(x)$$

Superposition Homogeneity

Linear Time-Invariant Systems Linear System

Linear Time-Invariant Systems Linear System

Linear Time-Invariant Systems Linear System

Linear Time-Invariant Systems Time-Invariant System

Let $\sigma: \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^p$ define the input-output behavior of a system model Σ . The system Σ is *time-invariant* if for any input signal $u: \mathbb{R} \to \mathbb{R}^m$ and any delay $\tau \in \mathbb{R}$ the following relation holds

$$y(t - \tau) = \sigma(t, u(t - \tau))$$

for all times $t \in \mathbb{R}$, where y denotes the output signal of the system.

Linear Time-Invariant Systems Time-Invariant System

Let $\sigma: \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^p$ define the input-output behavior of a system model Σ . The system Σ is *time-invariant* if for any input signal $u: \mathbb{R} \to \mathbb{R}^m$ and any delay $\tau \in \mathbb{R}$ the following relation holds

$$y(t - \tau) = \sigma(t, u(t - \tau))$$

for all times $t \in \mathbb{R}$, where y denotes the output signal of the system.

Linear Time-Invariant Systems Example: Mass-Spring-Damper

Consider the mass-spring-damper system

$$\ddot{p} = -\frac{k}{m} \cdot p - \frac{b}{m} \cdot \dot{p} + \frac{1}{m}F$$

Linear Time-Invariant Systems Example: Mass-Spring-Damper

Consider the mass-spring-damper system

$$\ddot{p} = -\frac{k}{m} \cdot p - \frac{b}{m} \cdot \dot{p} + \frac{1}{m} F$$

Linearity of Solution

- ▶ Let $p_1(t)$ be the solution to the differential equation for initial condition $(p_1(t_0), \dot{p}_1(t_0)) = (p_{1,0}, \dot{p}_{1,0})$ and input $F_1(t)$.
- Let $p_2(t)$ be the solution to the differential equation for initial condition $(p_2(t_0), \dot{p}_2(t_0)) = (p_{2,0}, \dot{p}_{2,0})$ and input $F_2(t)$.

Linear Time-Invariant Systems Example: Mass-Spring-Damper

15

Consider the mass-spring-damper system

$$\ddot{p} = -\frac{k}{m} \cdot p - \frac{b}{m} \cdot \dot{p} + \frac{1}{m} F$$

Linearity of Solution

- ▶ Let $p_1(t)$ be the solution to the differential equation for initial condition $(p_1(t_0), \dot{p}_1(t_0)) = (p_{1,0}, \dot{p}_{1,0})$ and input $F_1(t)$.
- Let $p_2(t)$ be the solution to the differential equation for initial condition $(p_2(t_0), \dot{p}_2(t_0)) = (p_{2,0}, \dot{p}_{2,0})$ and input $F_2(t)$.

The system is linear if $\alpha p_1(t) + \beta p_2(t)$ is the solution to the differential equation for initial condition $(\alpha p_{1,0} + \beta p_{2,0}, \alpha \dot{p}_{1,0} + \beta \dot{p}_{2,0})$ and input $\alpha F_1(t) + \beta F_2(t)$.

Time-Domain Models

Introduction

Modeling of Dynamical Systems

Linear Time-Invariant Systems

Time-Domain Models
Continuous-Time State Space Models
Discrete-Time State Space Models

Frequency-Domain Models
Transfer Functions
Discrete Transfer Functions

Summary

We consider two types of linear time-domain models

► Continuous-time state space models (based on differential equations)

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

► Discrete-time state space models (based on difference equations)

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \Phi \boldsymbol{x}_k + \Gamma u_k \\ \boldsymbol{y}_k &= C \boldsymbol{x}_k + D u_k \end{aligned}$$

Continuous-Time State Space Models Definition

A continuous-time state space model is a system of first order differential equations and an output equation, given by

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Continuous-Time State Space Models

A continuous-time state space model is a system of first order differential equations and an output equation, given by

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where

- $ightharpoonup x \in \mathbb{R}^n$ is the state,
- ▶ $u \in \mathbb{R}^m$ is the input,
- ▶ $y \in \mathbb{R}^p$ is the output (measurement),
- ▶ $A \in \mathbb{R}^{n \times n}$ is the system matrix,
- ▶ $B \in \mathbb{R}^{n \times m}$ is the input matrix,
- $ightharpoonup C \in \mathbb{R}^{p \times n}$ is the output matrix,
- ▶ $D \in \mathbb{R}^{p \times m}$ is the direct feedthrough matrix.

Continuous-Time State Space Models

19

Transformation to State Space Form (1)

Continuous-Time State Space Models Transformation to State Space Form (1)

Given an n^{th} order differential equation

$$z^{(n)} - a_{n-1}z^{(n-1)} - \dots - a_1\dot{z} - a_0z = b_1\mathbf{u_1}(t) + \dots + b_m\mathbf{u_m}(t)$$

where $z^{(k)}$ denotes the k^{th} time derivative of z.

Reformulate the differential equation as a system of first order differential equations on the following form

$$\dot{x} = Ax + Bu$$

where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$.

Continuous-Time State Space Models Transformation to State Space Form (2)

To transform a differential equation into state space form, the following procedure can be followed, when z is the unknown function.

- 1. Define variables x_i according to $x_1 = z, x_2 = \dot{z}, \dots, x_n = z^{(n-1)}$.
- 2. Define the system matrix $A \in \mathbb{R}^{n \times n}$ and input matrix $B \in \mathbb{R}^{n \times m}$ as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{bmatrix}}_{=A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}}_{=x} + \underbrace{\begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ b_1 & \cdots & b_m \end{bmatrix}}_{=u(t)} \underbrace{\begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix}}_{=u(t)}$$

Continuous-Time State Space Models Transformation to State Space Form (2)

20

To transform a differential equation into state space form, the following procedure can be followed, when z is the unknown function.

- 1. Define variables x_i according to $x_1 = z$, $x_2 = \dot{z}$, ..., $x_n = z^{(n-1)}$.
- 2. Define the system matrix $A \in \mathbb{R}^{n \times n}$ and input matrix $B \in \mathbb{R}^{n \times m}$ as

$$\underbrace{\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix}}_{=\dot{x}} = \underbrace{\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{bmatrix}}_{=A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}}_{=x} + \underbrace{\begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \\ b_1 & \cdots & b_m \end{bmatrix}}_{=u(t)} \underbrace{\begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix}}_{=u(t)}$$

We associate the following output equation to the system description

$$y = Cx + Du$$

where $\mathbf{y} \in \mathbb{R}^p$ is the output (vector of measured variables).

Continuous-Time State Space Models Example: Mass-Spring-Damper

Recall the dynamics of the mass-spring-damper system

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where p is the position of the mass and F is the input force.

Continuous-Time State Space Models Example: Mass-Spring-Damper

21

Recall the dynamics of the mass-spring-damper system

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where p is the position of the mass and F is the input force.

1. Define the state vector as

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}$$

Continuous-Time State Space Models Example: Mass-Spring-Damper

21

Recall the dynamics of the mass-spring-damper system

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where p is the position of the mass and F is the input force.

1. Define the state vector as

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}$$

2. Define the system equation as

$$\underbrace{\begin{bmatrix} \dot{p} \\ \ddot{p} \end{bmatrix}}_{\dot{x}} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}}_{=A} \underbrace{\begin{bmatrix} p \\ \dot{p} \end{bmatrix}}_{=x} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}}_{=B} \underbrace{F}_{=u}$$

Continuous-Time State Space Models

Example: Mass-Spring-Damper

Recall the dynamics of the mass-spring-damper system

$$m\ddot{p} = -k \cdot p - b \cdot \dot{p} + F$$

where p is the position of the mass and F is the input force.

1. Define the state vector as

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}$$

2. Define the system equation as

$$\underbrace{\begin{bmatrix} \dot{p} \\ \ddot{p} \end{bmatrix}}_{\mathbf{z}} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}}_{=A} \underbrace{\begin{bmatrix} p \\ \dot{p} \end{bmatrix}}_{=\mathbf{z}} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}}_{=B} \underbrace{F}_{=u}$$

3. Define the output equation as (we measure the velocity, i.e., \dot{p})

$$\mathbf{y} = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{=C} \underbrace{\begin{bmatrix} p \\ \dot{p} \end{bmatrix}}_{=D} + \underbrace{0}_{=D} \cdot \underbrace{F}_{=u}$$

Recall that one can write an analytical expression for the solution to first order linear ODEs. An example is

$$\frac{dx}{dt} + ax = u(t)$$

where $a \in \mathbb{R}$ is some constant, and u(t) is an input.

Recall that one can write an analytical expression for the solution to first order linear ODEs. An example is

$$\frac{dx}{dt} + ax = u(t)$$

where $a \in \mathbb{R}$ is some constant, and u(t) is an input.

Assume that u(t) = 0, then we obtain the first order linear **homogeneous** ODE

$$\frac{dx}{dt} + ax = 0.$$

Recall that one can write an analytical expression for the solution to first order linear ODEs. An example is

$$\frac{dx}{dt} + ax = u(t)$$

where $a \in \mathbb{R}$ is some constant, and u(t) is an input.

Assume that u(t) = 0, then we obtain the first order linear **homogeneous** ODE

$$\frac{dx}{dt} + ax = 0.$$

Separate the variables as

$$\frac{1}{x}dx = -adt$$

Recall that one can write an analytical expression for the solution to first order linear ODEs. An example is

$$\frac{dx}{dt} + ax = u(t)$$

where $a \in \mathbb{R}$ is some constant, and u(t) is an input.

Assume that u(t) = 0, then we obtain the first order linear **homogeneous** ODE

$$\frac{dx}{dt} + ax = 0.$$

Separate the variables as

$$\frac{1}{x}dx = -adt$$

$$\int \frac{1}{x} dx = \int -a dt$$

Assume that u(t) = 0, then we obtain the first order linear **homogeneous** ODE

$$\frac{dx}{dt} + ax = 0.$$

Separate the variables as

$$\frac{1}{x}dx = -adt$$

$$\int \frac{1}{x} dx = \int -a dt$$
$$\log |x| + c_1 = -at + c_2$$

Assume that u(t) = 0, then we obtain the first order linear **homogeneous** ODE

$$\frac{dx}{dt} + ax = 0.$$

Separate the variables as

$$\frac{1}{x}dx = -adt$$

$$\int \frac{1}{x} dx = \int -a dt$$
$$\log |x| + c_1 = -at + c_2$$
$$\log |x| = -at + c_3$$

Assume that u(t) = 0, then we obtain the first order linear **homogeneous** ODE

$$\frac{dx}{dt} + ax = 0.$$

Separate the variables as

$$\frac{1}{x}dx = -adt$$

$$\int \frac{1}{x} dx = \int -a dt$$
$$\log |x| + c_1 = -at + c_2$$
$$\log |x| = -at + c_3$$
$$|x| = e^{-at} e^{c_3}$$

Separate the variables as

$$\frac{1}{x}dx = -adt$$

Integrate the expression

$$\int \frac{1}{x} dx = \int -a dt$$
$$\log |x| + c_1 = -at + c_2$$
$$\log |x| = -at + c_3$$
$$|x| = e^{-at} e^{c_3}$$

The solution to the first order linear homogeneous ODE is then

$$x(t) = e^{-at}x(0).$$

Continuous-Time State Space Models Simulation in MATLAB

The solution to a system of first order differential can be found numerically in different software tools - In this course I use MATLAB.

```
1 % Define system dynamics
A = [0 \ 1; -1 \ -1];
B = [0: 1]:
4 C = [1 0]:
D = 0;
6 % Create object for dynamical system
7 \text{ sys} = \text{ss}(A,B,C,D);
8 % Simulate the system
  figure
  step(sys)
  figure
  impulse (svs)
```

Continuous-Time State Space Models Simulation in MATLAB

There are numerous methods for simulation in MATLAB; however, the following is quite general.

```
tEnd = 10; % End time of simulation
_{2} x0 = [1:2]; % Initial condition
3 % Specification of input
4 tu = linspace(0,tEnd);
  u = \cos(tu):
6 % Simulate the system
options = []; % Solver options (can be changed with odeset)
  [tSim, xSim] = ode45(@sysDesc, [0 tEnd], x0, options, [tu u], sys);
% Plot result
  figure: plot(tSim.xSim)
11
   function dxdt = sysDesc(t,x,u,sys)
12
       u = interp1(u(:,1),u(:,2),t);
13
       dxdt = sys.A*x+sys.B*u;
14
  end
```

Discrete-Time State Space Models Definition

A discrete-time state space model is a system of first order difference equations and an output equation, given by

$$\begin{aligned} \mathbf{x}_{k+1} &= \Phi \mathbf{x}_k + \Gamma u_k \\ \mathbf{y}_k &= C \mathbf{x}_k + D u_k \end{aligned}$$

Discrete-Time State Space Models Definition

A discrete-time state space model is a system of first order difference equations and an output equation, given by

$$\begin{aligned} \mathbf{x}_{k+1} &= \Phi \mathbf{x}_k + \Gamma u_k \\ \mathbf{y}_k &= C \mathbf{x}_k + D u_k \end{aligned}$$

where

- $ightharpoonup x_k \in \mathbb{R}^n$ is the state,
- ▶ $\mathbf{u}_k \in \mathbb{R}^m$ is the input,
- ▶ $y_k \in \mathbb{R}^p$ is the output (measurement),
- ▶ $\Phi \in \mathbb{R}^{n \times n}$ is the system matrix,
- $ightharpoonup \Gamma \in \mathbb{R}^{n \times m}$ is the input matrix,
- ▶ $C \in \mathbb{R}^{p \times n}$ is the output matrix,
- ▶ $D \in \mathbb{R}^{p \times m}$ is the direct feedthrough matrix.

Discrete-Time State Space Models Interpretation

The objective of the discrete-time model is to describe the solution at sampling instances.

Transformation from Continuous-Time to Discrete-Time

Discrete-Time State Space Models Transformation from Continuous-Time to Discrete-Time

A system on state space form

$$\dot{x} = Ax + Bu$$

has solution

$$\mathbf{x}(t) = e^{A(t-t_0)}\mathbf{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Transformation from Continuous-Time to Discrete-Time

A system on state space form

$$\dot{x} = Ax + Bu$$

has solution

$$\mathbf{x}(t) = e^{A(t-t_0)}\mathbf{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

The solution at time $t_{k+1} = t_k + T$ can be written as

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Transformation from Continuous-Time to Discrete-Time

A system on state space form

$$\dot{x} = Ax + Bu$$

has solution

$$\mathbf{x}(t) = e^{A(t-t_0)}\mathbf{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

The solution at time $t_{k+1} = t_k + T$ can be written as

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Assumption: The input is constant between samples, i.e., $u(\tau) = u(t_k)$ for all $\tau \in [t_k, t_k + T)$

Transformation from Continuous-Time to Discrete-Time

A system on state space form

$$\dot{x} = Ax + Bu$$

has solution

$$\mathbf{x}(t) = e^{A(t-t_0)}\mathbf{x}(t_0) + \int_{t_0}^t e^{A(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

The solution at time $t_{k+1} = t_k + T$ can be written as

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Assumption: The input is constant between samples, i.e., $u(\tau) = u(t_k)$ for all $\tau \in [t_k, t_k + T)$; thus,

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \left(\int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)}\mathbf{B}d\tau\right)\mathbf{u}(t_k)$$

Transformation from Continuous-Time to Discrete-Time

The solution at time $t_{k+1} = t_k + T$ can be written as

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Assumption: The input is constant between samples, i.e., $u(\tau) = u(t_k)$ for all $\tau \in [t_k, t_k + T)$; thus,

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \left(\int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)} \mathbf{B} d\tau\right) \mathbf{u}(t_k)$$
$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \left(\int_{0}^{T} e^{A(T-\tau)} \mathbf{B} d\tau\right) \mathbf{u}(t_k)$$

Transformation from Continuous-Time to Discrete-Time

The solution at time $t_{k+1} = t_k + T$ can be written as

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)} \mathbf{B}\mathbf{u}(\tau) d\tau$$

Assumption: The input is constant between samples, i.e., $u(\tau) = u(t_k)$ for all $\tau \in [t_k, t_k + T)$; thus,

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \left(\int_{t_k}^{t_k+T} e^{A(t_k+T-\tau)} \mathbf{B} d\tau\right) \mathbf{u}(t_k)$$

$$\mathbf{x}(t_{k+1}) = e^{AT}\mathbf{x}(t_k) + \left(\int_{0}^{T} e^{A(T-\tau)} \mathbf{B} d\tau\right) \mathbf{u}(t_k)$$

$$\mathbf{x}(t_{k+1}) = \underbrace{e^{AT}\mathbf{x}(t_k)}_{=\Phi} + \underbrace{\left(\int_{0}^{T} e^{A(T-\tau)} \mathbf{B} d\tau\right) \mathbf{u}(t_k)}_{=\Phi} \mathbf{u}(t_k)$$

Example: Mass-Spring-Damper

Recall the dynamics of the mass-spring-damper system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

with

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}$$

Example: Mass-Spring-Damper

Recall the dynamics of the mass-spring-damper system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

with

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}$$

The discrete time system is given by

$$\begin{aligned} \mathbf{x}_{k+1} &= \Phi \mathbf{x}_k + \Gamma u_k \\ \mathbf{y}_k &= C \mathbf{x}_k \end{aligned}$$

Example: Mass-Spring-Damper

Recall the dynamics of the mass-spring-damper system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

with

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \ C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}$$

The discrete time system is given by

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \Phi \boldsymbol{x}_k + \Gamma u_k \\ \boldsymbol{y}_k &= C \boldsymbol{x}_k \end{aligned}$$

where (for m = 1, b = 3, k = 2, T = 0.1)³

$$\Phi = e^{AT} \approx \begin{bmatrix} 0.9909 & 0.0861 \\ -0.1722 & 0.7326 \end{bmatrix}, \quad \Gamma = \int_0^T e^{A(T-\tau)} \mathbf{B} d\tau \approx \begin{bmatrix} 0.0045 \\ 0.0861 \end{bmatrix}, \quad \mathbf{x}_k = \begin{bmatrix} p(t_k) \\ \dot{p}(t_k) \end{bmatrix}$$

³The matrix exponential can be computed with expm in MATLAB.

Frequency-Domain Models

Introduction

Modeling of Dynamical Systems

Linear Time-Invariant Systems

Time-Domain Models
Continuous-Time State Space Models
Discrete-Time State Space Models

Frequency-Domain Models
Transfer Functions
Discrete Transfer Functions

Summary

Frequency-Domain Models Single-Input Single-Output Transfer Function

A transfer function of a single-input single-output system is given by

$$G(s) = \frac{Q(s)}{P(s)}$$

where numerator Q(s) and denominator P(s) are polynomials in the variable s.

Frequency-Domain Models

Single-Input Single-Output Transfer Function

A transfer function of a single-input single-output system is given by

$$G(s) = \frac{Q(s)}{P(s)}$$

where numerator Q(s) and denominator P(s) are polynomials in the variable s.

- ▶ The roots of Q(s) are called **the zeros of** G(s).
- ▶ The roots of P(s) are called **the poles of** G(s).

Frequency-Domain Models Single-Input Single-Output Transfer Function

30

A transfer function of a single-input single-output system is given by

$$G(s) = \frac{Q(s)}{P(s)}$$

where numerator Q(s) and denominator P(s) are polynomials in the variable s.

- ▶ The roots of Q(s) are called **the zeros of** G(s).
- ▶ The roots of P(s) are called **the poles of** G(s).

Only proper transfer functions are considered, i.e., it is assumed that the degree of P(s) is higher than Q(s).

Transfer Functions Laplace Transform

The Laplace transform is defined as

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty f(t)e^{-st}dt.$$

Transfer Functions Laplace Transform

The Laplace transform is defined as

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty f(t)e^{-st}dt.$$

The main property that is exploited is

$$\mathcal{L}\{\dot{f}(t)\} = sF(s) - f(0).$$

State Space Model to Transfer Function

Taking Laplace transforms of the system and assuming that $x_0 = 0$

$$\begin{array}{rcl} \dot{x}(t) & = & Ax(t) & + & Bu(t) \\ y(t) & = & Cx(t) & + & Du(t) \end{array}$$

yields

Taking Laplace transforms of the system and assuming that $x_0 = 0$

$$\begin{array}{lcl} \dot{x}(t) & = & Ax(t) & + & Bu(t) \\ y(t) & = & Cx(t) & + & Du(t) \end{array}$$

yields

$$sx(s) = Ax(s) + Bu(s)$$

 $y(s) = Cx(s) + Du(s)$

rearranging, we obtain:

Taking Laplace transforms of the system and assuming that $x_0 = 0$

$$\begin{array}{rcl} \dot{x}(t) & = & Ax(t) & + & Bu(t) \\ y(t) & = & Cx(t) & + & Du(t) \end{array}$$

yields

$$sx(s) = Ax(s) + Bu(s)$$

 $y(s) = Cx(s) + Du(s)$

rearranging, we obtain:

$$(sI - A) x(s) = Bu(s)$$

 $y(s) = Cx(s) + Du(s)$

$$sx(s) = Ax(s) + Bu(s)$$

 $y(s) = Cx(s) + Du(s)$

rearranging, we obtain:

$$(sI - A) x(s) = Bu(s)$$

$$y(s) = Cx(s) + Du(s)$$

Premultiplying with $(sI - A)^{-1}$ on either side of the system equation, results in

$$x(s) = (sI - A)^{-1} Bu(s)$$

$$y(s) = Cx(s) + Du(s)$$

$$(sI - A) x(s) = Bu(s)$$

$$y(s) = Cx(s) + Du(s)$$

Premultiplying with $(sI - A)^{-1}$ on either side of the system equation, results in

$$\begin{array}{rcl}
x(s) & = & (sI - A)^{-1} Bu(s) \\
y(s) & = & Cx(s) + Du(s)
\end{array}$$

Finally, we obtain:

$$x(s) = (sI - A)^{-1} Bu(s)$$

$$y(s) = C(sI - A)^{-1} Bu(s) + Du(s)$$

Premultiplying with $(sI - A)^{-1}$ on either side of the system equation, results in

$$\begin{array}{rcl}
x(s) & = & (sI - A)^{-1} Bu(s) \\
y(s) & = & Cx(s) + Du(s)
\end{array}$$

Finally, we obtain:

$$\begin{array}{rcl}
\boldsymbol{x(s)} &=& (sI - A)^{-1} Bu(s) \\
\boldsymbol{y(s)} &=& C (sI - A)^{-1} Bu(s) + Du(s)
\end{array}$$

Consequently,

$$y(s) = G(s)u(s)$$
, where:
 $G(s) = C(sI - A)^{-1}B + D$

For the spring-mass-damper system with $m=1,\,b=3,\,k=2,$ the state space representation is:

Thus, the transfer function becomes:

$$G(s) = C (sI - A)^{-1} \mathbf{B} + D$$

$$G(s) = C (sI - A)^{-1} \frac{B}{B} + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix}$$

$$G(s) = C (sI - A)^{-1} \frac{B}{B} + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$G(s) = C (sI - A)^{-1} B + D$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + (0)$$

$$= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \frac{1}{s^2 + 3s + 2} \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s + 3 & 1 \\ -2 & s \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{split} G(s) &= C \left(sI - A \right)^{-1} \frac{B}{B} + D \\ &= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s & -1 \\ 2 & s+3 \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ &= \frac{1}{s^2 + 3s + 2} \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} s + 3 & 1 \\ -2 & s \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ &= \frac{s}{s^2 + 3s + 2} \end{split}$$

Consider the transfer function $g(s) = \frac{1}{s^2 + a_1 s + a_2}$. From the relationship

$$y(s) = \frac{1}{s^2 + a_1 s + a_2} u(s)$$

we infer

$$s^{2}y(s) + a_{1}sy(s) + a_{2}y(s) = u(s)$$

Taking inverse Laplace transform, this becomes:

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) = u(t)$$

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) = u(t)$$

A possible choice of states is: $x_1 = y$, $x_2 = \dot{y}$. With this choice, the system equations become:

$$\begin{aligned} \dot{x}_1 &= \dot{y} = x_2 \\ \dot{x}_2 &= \ddot{y} = -a_1 \dot{y} - a_2 y + u = -a_2 x_1 - a_1 x_2 + u \end{aligned}$$

In matrix form, we obtain:

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_2 y(t) = u(t)$$

A possible choice of states is: $x_1 = y$, $x_2 = \dot{y}$. With this choice, the system equations become:

$$\dot{x}_1 = \dot{y} = x_2$$

 $\dot{x}_2 = \ddot{y} = -a_1\dot{y} - a_2y + u = -a_2x_1 - a_1x_2 + u$

In matrix form, we obtain:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -a_2 & -a_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$

$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \end{pmatrix} u$$

Discrete Transfer Functions

Z-Transform

The *z*-transform is defined as

$$\mathcal{Z}{f(k)} = F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}.$$

The *z*-transform is defined as

$$\mathcal{Z}{f(k)} = F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}.$$

The main property that is exploited is

$$\mathcal{Z}\{f(k-1)\} = z^{-1}(F(z) - f(0)).$$

Consider the difference equation

$$y(k) = -a_1 y(k-1) - a_2 y(k-2) + b_0 u(k) + b_1 u(k-1) + b_2 u(k-2)$$

Consider the difference equation

$$y(k) = -a_1 y(k-1) - a_2 y(k-2) + b_0 u(k) + b_1 u(k-1) + b_2 u(k-2)$$

The z-transformation of y(k) is given by

$$Y(z) = (-a_1 z^{-1} - a_2 z^{-2})Y(z) + (b_0 + b_1 z^{-1} + b_2 z^{-2})U(z)$$

Consider the difference equation

$$y(k) = -a_1y(k-1) - a_2y(k-2) + b_0u(k) + b_1u(k-1) + b_2u(k-2)$$

The z-transformation of y(k) is given by

$$Y(z) = (-a_1 z^{-1} - a_2 z^{-2})Y(z) + (b_0 + b_1 z^{-1} + b_2 z^{-2})U(z)$$

This leads to the discrete transfer function

$$\frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

Taking the *z*-transform of the discrete-time state space model

$$\begin{aligned} \mathbf{x}_{k+1} &= \Phi \mathbf{x}_k + \Gamma u_k \\ \mathbf{y}_k &= C \mathbf{x}_k + D u_k \end{aligned}$$

yields

Taking the *z*-transform of the discrete-time state space model

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \Phi \boldsymbol{x}_k + \Gamma u_k \\ \boldsymbol{y}_k &= C \boldsymbol{x}_k + D u_k \end{aligned}$$

yields

$$zx(z) = \Phi x(z) + \Gamma u(z)$$
$$y(z) = Cx(z) + Du(z)$$

rearranging, we obtain:

Taking the *z*-transform of the discrete-time state space model

$$\begin{aligned} \mathbf{x}_{k+1} &= \Phi \mathbf{x}_k + \Gamma \mathbf{u}_k \\ \mathbf{y}_k &= C \mathbf{x}_k + D \mathbf{u}_k \end{aligned}$$

yields

$$zx(z) = \Phi x(z) + \Gamma u(z)$$
$$y(z) = Cx(z) + Du(z)$$

rearranging, we obtain:

$$G(z) = C(zI - \Phi)^{-1}\Gamma + D$$

Discrete Transfer Functions Discretization

Discrete Transfer Functions Discretization Methods

There are many methods for transforming a transfer function from s-domain to z-domain including

- ► Matched *z*-transformation
- ► Impulse invariant *z*-transformation
- ► Bilinear *z*-transformation

Discrete Transfer Functions Discretization Methods

There are many methods for transforming a transfer function from s-domain to z-domain including

- ► Matched *z*-transformation
- ► Impulse invariant *z*-transformation
- ► Bilinear *z*-transformation

These methods have different properties, as you have seen previously in connection with design of IIR filters.

Discrete Transfer Functions

Relation between s and z

The equivalent characteristics in the z-plane are related to those in the s-plane by the expression

$$z = e^{sT}$$

where T is the sample period.

Discrete Transfer Functions

Relation between s and z

The equivalent characteristics in the z-plane are related to those in the s-plane by the expression

$$z = e^{sT}$$

where T is the sample period.

Summary

Introduction

Modeling of Dynamical Systems

Linear Time-Invariant Systems

Time-Domain Models

Continuous-Time State Space Models

Discrete-Time State Space Models

Frequency-Domain Models
Transfer Functions
Discrete Transfer Functions

Summary

