Stochastik

Statistischer Test

Mirko Birbaumer

Hochschule Luzern Technik & Architektur

Statistische Tests

2 Binomialtest

3 Einseitiger vs. zweiseitiger Test

Statistischer Test: Idee und Ziel

Können wir basierend auf Daten entscheiden oder nachweisen

- ob ein Grenzwert überschritten wird, z.B. bei Asbestfasern?
- ob ein Hersteller bei einem Produkt die Spezifikationen verletzt?
- ob die Wirkung eines Medikamentes tatsächlich der Behauptung einer Pharmafirma entspricht?

Statistischer Test: Idee und Ziel

- Wir wollen also herausfinden, ob eine bestimmte Annahme oder ein bestimmter Parameter mit unseren beobachteten Daten verträglich ist oder nicht
- Wir müssen eine objektive, reproduzierbare Entscheidungsregel verwenden

Beispiel:

- Sie vermuten, dass eine Münze nicht "fair" ist und zu oft Kopf zeigt
- In 10 neuen Würfen haben wir 9 mal Kopf erhalten. Passt das mit der Annahme $\pi=0.5$ (Münze ist fair) zusammen?

Statistischer Test: Vorgehensweise

- Spezifiziere **Nullhypothese** $H_0: \pi = \pi_0 = 0.5$ $(\pi = \text{Wahrscheinlichkeit für Kopf})$ Dies ist die angezweifelte Behauptung, der "Normalzustand", was sie verwerfen wollen, "Status Quo", . . .
- Spezifiziere **Alternativhypothese** H_A : $\pi > 0.5$ (was sie nachweisen wollen, ihre Vermutung)

Was für Möglichkeiten gibt es?

- H_0 stimmt und es war Zufall, dass wir so oft Kopf gesehen haben ("kann vorkommen, wenn auch selten")
- H_A stimmt und deshalb haben wir so oft Kopf gesehen

Ab welcher Grenze H_0 verwerfen?

- Schlussendlich müssen wir eine Grenze finden, ab der wir sagen, dass wir H_0 verwerfen zugunsten von H_A
- In unserem Beispiel macht es Sinn, H_0 zu verwerfen, wenn die Anzahl Würfe mit Kopf sehr hoch ist (da es unter $\pi=0.5$ sehr unwahrscheinlich ist einseitiger Test).
- X sei die Anzahl Würfe mit Kopf von insgesamt 10 Würfen
- Wir wählen also eine Grenze c derart, dass wir bei $X \ge c$ sagen, dass wir die Nullhypothese verwerfen

Bestimmung Verwerfungsbereich

 Die Wahrscheinlichkeit, dass wir H₀ verwerfen, obwohl H₀ stimmt - soll tief sein, d.h. es soll gelten

$$P_{\pi_0}[X \geq c] \leq \alpha$$

wobei α das sogenannte **Signifikanzniveau** (auch **Irrtumswahrscheinlichkeit**) ist, typischerweise $\alpha = 0.05, 0.01$

- Falls die Nullhypothese doch stimmen sollte ("Münze fair"), dann würde $X \ge c$ nur bei jedem zwanzigsten, resp. jedem hundertsten Spiel passieren
- Wir wählen das kleinste c, so dass obige Bedingung erfüllt ist (sonst wird es unnötig schwierig, H₀ zu verwerfen wenn H_A stimmt)
- Ab $X \ge c$ verwerfen wir also die Nullhypothese, d.h. der sogenannte **Verwerfungsbereich** ist $\{c, \ldots, 10\}$

Verteilung unter Nullhypothese

Unter H_0 (d.h. $\pi_0=0.5$) ist $X\sim \text{Bin}(10,0.5)$ verteilt. Wir schreiben dafür auch $P_{\pi_0}[X=x]$.

Berechnung des Verwerfungsbereichs mit R

R-Befehl: dbinom()

```
> sum(dbinom(9:10,size=10,prob=0.5))
[1] 0.01074219
```

oder eleganter

R-Befehl: pbinom()

```
> 1-pbinom(8,10,prob=0.5)
[1] 0.01074219
```

Testentscheid

- Ab X ≥ 9 verwerfen wir also die Nullhypothese, d.h. der sogenannte Verwerfungsbereich ist {9,10}
- Wir haben x = 9 beobachtet, also können wir die Nullhypothese verwerfen
- Wir haben also "statistisch nachgewiesen", dass die Münze nicht fair ist und zu oft Kopf zeigt

Statistischer Test: Schematisch

Modell:

X: Anzahl Würfe, die Kopf zeigen, wenn man 100 mal wirft.

$$X \sim \text{Binomial}(10, \pi)$$

Nullhypothese:

$$H_0: \pi_0 = 0.5$$

Alternative:

$$H_A: \pi > 0.5$$

Teststatistik:
T: Anzahl Würfe, die Kopf zeigen,

T: Anzahl Würfe, die Kopf zeigen, wenn man 100 mal wirft **Verteilung der Teststatistik unter** H_0 :

$$T \sim \text{Binomial}(10, 0.5)$$

Signifikanzniveau:

$$\alpha = 0.05$$

Statistischer Test: Schematisch

Verwerfungsbereich:

Aus Tabelle $P[T \ge 9]$ kleiner als 5 % ist

Also ist der Verwerfungsbereich

$$K = \{9, 10\}$$

Testentscheid:

- Der beobachtete Wert der Teststatistik t=9 liegt im Verwerfungsbereich $K=\{9,10\}$
- \bullet Daher kann die Nullhypothese auf dem Signifikanzniveau 5 % verworfen werden
- D.h.: es gibt nicht genügend statistische Evidenz (auf dem Signifikanzniveau lpha=0.05) dafür, dass die Münze zu gezinkt ist

Bemerkungen

- Wir müssen Null- und Alternativhypothese vor der Datenerhebung festlegen
- Bzw. der Test muss auf neuen Daten durchgeführt werden
- Man kann zwar basierend auf einer Datenanalyse Hypothesen bilden, um diese zu verifizieren werden aber neue Daten benötigt

Binomialtest: Zauberwürfel

Binomialtest

- 1. Modell: X: Anzahl 6er bei 50 Würfen; $X \sim \text{Bin}(n = 50, \pi)$
- 2. Nullhypothese: H_0 : $\pi_0 = \frac{1}{6}$ (Würfel ist fair: status quo) Alternative: H_A : $\pi > \frac{1}{6}$ (wir glauben, Würfel ist gezinkt, einseitiger Test)
- Teststatistik T: Anz. 6er bei 50 Würfen Verteilung der Teststatistik, wenn Nullhypothese stimmt:

$$T \sim \mathsf{Bin}(50, \frac{1}{6})$$

4. Signifikanzniveau: $\alpha = 0.05$ (Konvention)

Binomialtest

5. Verwerfungsbereich der Teststatistik:

$$P[T=t]=inom{n}{t}\pi_0^t(1-\pi_0)^{n-t}; \quad ext{berechne } P[T\geq t]$$

Verwerfungsbereich

t	 13	14	15			
$P[T \ge t]$	 0.06	0.03	0.01			

6. Testentscheid: Liegt die beobachtete Anzahl 6er bei 50 Würfen im Verwerfungsbereich der Nullhypothese? Falls ja: H₀ wird auf dem 5% Niveau verworfen

Falls nein: H₀ kann auf dem 5% Niveau nicht verworfen werden

Einseitige vs. zweiseitige Tests

- Die Entscheidung für eine zweiseitige oder eine einseitige Alternative H_A hängt von der Fragestellung ab
- Eine einseitige Alternative ist dann angebracht, wenn nur ein Unterschied in eine bestimmte Richtung von Bedeutung ist (Bsp. Überschreitung Grenzwert)
- Der einseitige Test ist auf der einen Seite "blind", dafür verwirft er auf der anderen Seite früher als der zweiseitige Test (da der Verwerfungsbereich früher beginnt)
- Man sagt auch, dass er eine grössere Macht hat in diesem Bereich (siehe später)

Verwerfungsbereich für Teststatistik

Form vom Verwerfungsbereich:

•
$$K = [0, c_u] \cup [c_o, n]$$
 falls $H_A : \pi \neq \pi_0$ zweiseitiger Test

• $K = [c_>, n]$ falls $H_A : \pi > \pi_0$

• $K = [0, c_<]$ falls $H_A : \pi < \pi_0$

• Grenzen (c's) werden bestimmt, so dass folgendes gilt:

•
$$P(T \le c_u) \approx \frac{\alpha}{2}$$

• $P(T \ge c_o) \approx \frac{\alpha}{2}$
• $P(T \ge c_>) \approx \alpha$
• $P(T \le c_>) \approx \alpha$
• $P(T \le c_<) \approx \alpha$
• $P(T \le c_<) \approx \alpha$

Verwerfungsbereich für Teststatistik: Grenzen exakt

• Beispiel: $T \sim \text{Bin}(10, 0.4) \text{ mit } \alpha = 0.05$

t	0	1	2	3	4	5	6	7	8	9	10
P[T=t]	0.006	0.04	0.12	0.21	0.25	0.20	0.11	0.04	0.01	0.002	0.0001

• Aus Tabelle:

$$c_u = 0$$

•
$$c_0 = 8$$

•
$$c_{>} = 8$$

•
$$c_{<} = 1$$

Einseitiger Test - bei zu vielen 6er

Einseitiger Test - bei zu wenigen 6er

Zweiseitiger Test - bei zu vielen 6er

Zweiseitiger Test - bei zu wenigen 6er

Zweiseitiger versus Einseitiger Test

• Einseitig:

- Auf einer Seite blind
- Auf anderer Seite sehr grosse Sehschärfe (grosse Macht)

Zweiseitig:

- Sieht auf beide Seiten
- Sieht auf keiner Seite besonders gut (kleine Macht)

