Markov Networks

[Michael Jordan, <u>Graphical Models</u>, Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004.]

> CS 486/686 University of Waterloo Lecture 18: Nov 8, 2012

Outline

 Markov networks (a.k.a. Markov random fields)

Recall Bayesian networks

- · Directed acyclic graph
- Arcs often interpreted as causal relationships
- Joint distribution: product of conditional dist

CS486/686 Lecture Slides (c) 2012 P. Poupart

3

Markov networks

- · Undirected graph
- Arcs simply indicate direct correlations
- Joint distribution: normalized product of potentials
- Popular in computer vision and natural language processing

CS486/686 Lecture Slides (c) 2012 P. Poupart

Parameterization

Joint: normalized product of potentials
$$Pr(X) = 1/k \prod_{i} f_{i}(CLIQUE_{i})$$

= $1/k f_{1}(C,S,R) f_{2}(S,R,W)$

where k is a normalization constant $\begin{aligned} & \mathbf{k} = \Sigma_{\mathsf{X}_i} \Pi_j \ f_j(\mathbf{CLIQUE}_j) \\ & = \Sigma_{\mathcal{C},\mathsf{S},\mathsf{R},\mathsf{W}} \ f_1(\mathcal{C},\mathsf{S},\mathsf{R}) \ f_2(\mathsf{S},\mathsf{R},\mathsf{W}) \end{aligned}$

- Non-negative factor
- Potential for each maximal clique in the graph
- Entries: "likelihood strength" of different configurations.

CS486/686 Lecture Slides (c) 2012 P. Poupart

5

Rain

Cloudy

Wet grass

Sprinkler

Markov property

- Markov property: a variable is independent of all other variables given its immediate neighbours.
- Markov blanket: set of direct neighbours

 $MB(A) = \{B,C,D,E\}$

CS486/686 Lecture Slides (c) 2012 P. Poupar

7

Conditional Independence

- X and Y are independent given Z iff there doesn't exist any path between X and Y that doesn't contain any of the variables in Z
- · Exercise:
 - A,E?
 - A,E|D?
 - A,E|C?
 - A,E|B,C?

CS486/686 Lecture Slides (c) 2012 P. Poupart

Interpretation

- Markov property has a price:
 - Numbers are not probabilities
- · What are potentials?
 - They are indicative of local correlations
- · What do the numbers mean?
 - They are indicative of the likelihood of each configuration
 - Numbers are usually learnt from data since it is hard to specify them by hand given their lack of a clear interpretation

CS486/686 Lecture Slides (c) 2012 P. Poupart

9

Applications

- · Natural language processing:
 - Part of speech tagging
- Computer vision
 - Image segmentation
- Any other application where there is no clear causal relationship

CS486/686 Lecture Slides (c) 2012 P. Poupart

Image Segmentation

Segmentation of the Alps Kervrann, Heitz (1995) A Markov Random Field model-based Approach to Unsupervised Texture Segmentation Using Local and Global Spatial Statistics, IEEE Transactions on Image Processing, vol 4, no 6, p 856-862

CS486/686 Lecture Slides (c) 2012 P. Poupart

11

Image Segmentation

- · Variables
 - Pixel features (e.g. intensities): X_{ij}
 - Pixel labels: Y_{ij}
- · Correlations:
 - Neighbouring pixel labels are correlated
 - Label and features of a pixel are correlated
- · Segmentation:
 - argmaxy Pr(Y|X)?

CS486/686 Lecture Slides (c) 2012 P. Poupart

Inference

- Markov nets: factored representation
 - Use variable elimination
- · P(X|E=e)?
 - Restrict all factors that contain E to e
 - Sumout all variables that are not X or in E
 - Normalize the answer

CS486/686 Lecture Slides (c) 2012 P. Poupart

13

Parameter Learning

- Maximum likelihood
 - $\theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)$
- Complete data
 - Convex optimization, but no closed form solution
 - Iterative techniques such as gradient descent
- Incomplete data
 - Non-convex optimization
 - EM algorithm

CS486/686 Lecture Slides (c) 2012 P. Poupar

Maximum likelihood

- $oldsymbol{\cdot}$ Let θ be the set of parameters and x, be the ith instance in the dataset
- Optimization problem:

```
- \theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)
       = argmax_{\theta} \Pi_{i} Pr(\mathbf{x}_{i} | \theta)
       = argmax_{\theta} \Pi_i \Pi_i f(X[j]=x_i[j])
                               \Sigma_{\mathbf{X}} \Pi_{i} f(\mathbf{X}[j] = \mathbf{x}_{i}[j])
  where X[j] is the clique of variables that
  potential j depends on and x[j] is a variable
  assignment for that clique
```

CS486/686 Lecture Slides (c) 2012 P. Poupart

15

Maximum likelihood

- Let $\theta_x = f(X=x)$
- Optimization continued:

 This is a non-concave optimization problem

CS486/686 Lecture Slides (c) 2012 P. Poupar

Maximum likelihood

- Substitute $\lambda = \log \theta$ and the problem becomes **concave**:
 - λ^* = argmax $_{\lambda} \Sigma_i \Sigma_j \lambda_{\mathbf{X}_i[j]}$ $\log \Sigma_{\mathbf{X}} e^{\Sigma_j \lambda_{\mathbf{X}_i[j]}}$
- · Possible algorithms:
 - Gradient ascent
 - Conjugate gradient

CS486/686 Lecture Slides (c) 2012 P. Poupart

17

Feature-based Markov Networks

- Generalization of Markov networks
 - May not have a corresponding graph
 - Use features and weights instead of potentials
 - Use exponential representation
- $Pr(X=x) = 1/k e^{\sum_{j} \lambda_{j} \phi_{j}(x[j])}$ where x[j] is a variable assignment for a subset of variables specific to ϕ_{j}
- Feature ϕ_j : Boolean function that maps partial variable assignments to 0 or 1
- Weight λ_j : real number

CS486/686 Lecture Slides (c) 2012 P. Poupart

Feature-based Markov Networks

 Potential-based Markov networks can always be converted to feature-based Markov networks

$$Pr(x) = 1/k \prod_{j} f_{j}(CLIQUE_{j} = x[j])$$

$$= 1/k e^{\sum_{j,clique_{j}} \lambda_{j,clique_{j}} \phi_{j,clique_{j}}(x[j])}$$

- $\lambda_{j,clique_j} = \log f_j(CLIQUE_j = x[j])$
- $\phi_{j,clique_j}(x[j])=1$ if $clique_j=x[j]$, 0 otherwise

CS486/686 Lecture Slides (c) 2012 P. Poupart

19

Example

$f_1(C,S,R)$	
csr	3
cs~r	2.5
c~sr	5
c~s~r	5.5
~csr	0
~cs~r	2.5
~c~sr	0
~c~s~r	7

weights	features	
$\lambda_{1,csr} = log 3$	$\phi_{1,csr}$ (CSR) =	1 if CSR = csr
		0 otherwise
$\lambda_{1,*s\sim r} = \log 2.5 \phi_{1,*s\sim r}(CSF)$	+ (CED) -	1 if CSR = *s~r
	φ _{1,*s~r} (CSR) -	0 otherwise
$\lambda_{1,c\sim sr} = \log 5$	$\phi_{c\sim sr}(CSR) =$	1 if CSR = c~sr
		0 otherwise
$\lambda_{1,c\sim s\sim r} = \log 5.5$	$\phi_{1,c\sim s\sim r}$ (CSR) =	1 if CSR = c~s~r
	•	0 otherwise
$\lambda_{1,\sim c^*r} = \log 0$	$\phi_{1,\sim c^*r}(CSR) =$	1 if CSR = ~c*r
,	•	0 otherwise
$\lambda_{1,\sim c\sim s\sim r} = \log 7$	$\phi_{\sim c \sim s \sim r}(CSR) =$	1 if CSR = ~c~s~r
,		0 otherwise

CS486/686 Lecture Slides (c) 2012 P. Poupart

Features

- Features
 - Any Boolean function
 - Provide tremendous flexibility
- · Example: text categorization
 - Simplest features: presence/absence of a word in a document
 - More complex features
 - · Presence/absence of specific expressions
 - · Presence/absence of two words within a certain window
 - · Presence/absence of any combination of words
 - · Presence/absence of a figure of style
 - · Presence/absence of any linguistic feature

CS486/686 Lecture Slides (c) 2012 P. Poupart

21

Next Class

· Conditional random fields