Kernel trick

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Optimization under inequality constraints
- SVM solution of dual task
- 3 Kernel SVM parameters

Kuhn-Takker conditions

Consider the optimization task:

$$\begin{cases} f(x) \to \min_{x} \\ g_{m}(x) \le 0 & m = \overline{1, M} \end{cases}$$
 (1)

Necessary conditions for optimality

Define Largangian

$$L(x,\lambda) = f(x) + \sum_{m=1}^{M} \lambda_m g_m(x)$$

Theorem (necessary conditions for optimality):

- Let x^* be the solution to (1),
- $f(x^*)$ and $g_m(x^*)$, m = 1, 2, ...M continuously differentiable at x^* .
- Slater regularity satisfied: $\exists x : g_m(x) < 0 \ \forall m$.

Then coefficients $\lambda_{\underline{1}}^*, \lambda_{\underline{2}}^*, ... \lambda_{\underline{M}}^*$ exist, such that x^* satisfies the conditions for $m = \overline{1, M}$:

$$\begin{cases} \nabla_{x} f(x^{*}) + \sum_{i=1}^{M} \lambda_{i}^{*} \nabla_{x} g_{i}(x^{*}) = 0 & \text{stationarity} \\ g_{m}(x^{*}) \leq 0 & \text{feasibility} \\ \lambda_{m}^{*} \geq 0 & \text{non-negativity} \\ \lambda_{m}^{*} g_{m}(x^{*}) = 0 & \text{comp.slackness} \end{cases}$$
 (2)

Kuhn-Takker conditions

- Suppose f(x) and $g_m(x)$, $m = \overline{1, M}$ are convex. Then
 - Kuhn-Takker conditions (2) become **sufficient** for x^* to be the solution of (1).
 - **2** (x^*, λ^*) form the saddle point for Lagrangian:

$$L(x^*, \lambda) \le L(x^*, \lambda^*) \le L(x, \lambda^*) \quad \forall x \, \forall \lambda \in \mathbb{R}_+^M$$

3 May find $x^* = x(\lambda^*)$ from $\nabla_x L(x^*, \lambda^*) = 0$. Since $L(x^*, \lambda^*)$ is saddle point, find λ^* from dual task:

$$\begin{cases} L(x(\lambda), \lambda) \to \mathsf{max}_{\lambda} \\ g_m(x(\lambda)) \le 0 & m = \overline{1, M} \\ \lambda_m \ge 0 & m = \overline{1, M} \\ \lambda_m g_m(x(\lambda)) = 0 & m = \overline{1, M} \end{cases}$$

Table of Contents

- Optimization under inequality constraints
- SVM solution of dual task
- Sernel SVM parameters

Making predictions

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

Find optimal w₀:

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle x_i, x_j \rangle \right)$$

 \odot Make prediction for new x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

Making predictions

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x}_j \rangle \right)$$

3 Make prediction for new x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

• On all steps we don't need exact feature representations, only scalar products $\langle x, x' \rangle$!

Kernel trick generalization

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(\mathbf{x}_i, \mathbf{x}_j) \right)$$

Make prediction for new x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i K(x_i, x) + w_0]$$

• We replaced $\langle x, x' \rangle \to K(x, x')$ for $K(x, x') = \langle \phi(x), \phi(x') \rangle$ for some feature transformation $\phi(\cdot)$.

Kernel results

Kernel trick

Kernel trick

If solution depends from x_n only through pairwise scalar products $\langle x_i, x_j \rangle$ and $\langle x_i, x \rangle$, extend it by replacing $\langle x, z \rangle$ with Mercer kernel K(x, z).

- K(x, z) corresponds to ordinary scalar product $\langle \phi(x), \phi(z) \rangle$ after feature transformation $x \to \phi(x)$.
- Kernelizable algorithms: ridge regression, K-NN, K-means, PCA, SVM, ...
- Specific types of kernels:
 - K(x, x') = K(x x') stationary kernels (invariant to translations)
 - K(x, x') = K(||x x'||) radial basis functions

Illustration

Example of feature extension

Consider SVM with
$$\phi(x^1, x^2) = [x^1, x^2, (x^1)^2 + (x^2)^2]$$
.

• So
$$K(x,z) = \langle x,z \rangle + ||x||^2 ||z||^2$$
.

Example video.

Kernel trick use cases

Kernel trick use cases:

- x not enough, need transformation $\phi(x)$ for better prediction.
- $\langle \phi(x), \phi(z) \rangle$ long to compute, but K(x,z) can be computed easily.
 - applies when $\phi(x)$ is high dimensional (polynomial kenrel) or infinite dimensional (rbf-kernel).
- cannot represent objects as fixed size vector, but natural scalar prodict (similarity function) K(x, z) exists:
 - strings of different lengths (K() depends on common substrings)
 - sets (K() depends on sets intersection)
 - graphs (K() depends on common subgraphs)
 - images of different sizes

Polynomial kernel¹

• Example 1: let D=2.

$$K(x,z) = (x^{T}z)^{2} = (x_{1}z_{1} + x_{2}z_{2})^{2} =$$

$$= x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}z_{1}x_{2}z_{2}$$

$$= \phi^{T}(x)\phi(z)$$

for
$$\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

¹What kind of feature transformation will correspond to $K(x, z) = (x^T z)^M$ for arbitrary M and D?

Polynomial kernel²

• Example 2: let D=2.

$$K(x,z) = (1+x^Tz)^2 = (1+x_1z_1+x_2z_2)^2 =$$

$$= 1+x_1^2z_1^2+x_2^2z_2^2+2x_1z_1+2x_2z_2+2x_1z_1x_2z_2$$

$$= \phi^T(x)\phi(z)$$
for $\phi(x) = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$

²What kind of feature transformation will correspond to $K(x,z) = (1+x^Tz)^M$ kernels for arbitrary M and D?

Kernel properties

Theorem (Mercer): Function K(x, x') is a Mercer kernel is and only if

- it is symmetric: K(x, x') = K(x', x)
- 2 it is non-negative definite:
 - definition 1: for every function $g: X \to \mathbb{R}$

$$\int_X \int_X K(x,x')g(x)g(x')dxdx' \ge 0$$

• definition 2 (equivalent): for every finite set $x_1, x_2, ... x_M$ Gramm matrix $\{K(x_i, x_j)\}_{i,j=1}^M \succeq 0$ (p.s.d.)

Kernel construction

- Kernel learning separate field of study.
- Hard to prove non-negative definitness of kernel in general.
- Kernels can be constructed from other kernels, for example from:
 - \bigcirc scalar product $\langle x, z \rangle$
 - ② constant $K(x, z) \equiv 1$
 - 3 $x^T Az$ for any $A > 0^3$

 $^{^3}$ Prove that it is a Mercer kernel. You may use Choletsky decomposition. $_{18/42}$

Constructing kernels from other kernels

If $K_1(x,z)$, $K_2(x,z)$ are arbitrary kernels, c>0 is a constant, $q(\cdot)$ is a polynomial with non-negative coefficients, h(x) and $\varphi(x)$ are arbitrary functions $\mathcal{X} \to \mathbb{R}$ and $\mathcal{X} \to \mathbb{R}^M$ respectively, then these are valid kernels⁴:

$$(2) K(x,z) = K_1(x,z)K_2(x,z)$$

$$(x,z) = K_1(x,z) + K_2(x,z)$$

$$(x,z) = K_1(\varphi(x),\varphi(z))$$

6
$$K(x,z) = e^{K_1(x,z)}$$

⁴prove some of these statements

Commonly used kernels

Kernel	Mathematical form
linear	$\langle x, z \rangle$
polynomial	$(\alpha\langle x,z\rangle+\beta)^M$
RBF	$\exp(-\gamma \ x-z\ ^2)$

- Parameter constraints: $\alpha > 0, \beta > 0, \gamma > 0, M = 1, 2, 3, ...$
- Linear kernel reduces to method in its original form $(\phi(x) \equiv x)$.
- Polynomial kernel corresponds to extension of x with polynomial features of order $\leq d$.
 - direct scalar product takes $O\left(C_{M+D}^{D}\right)$
 - K(x,z) takes O(D)
- Gaussian kernel corresponds to $\phi(x)$ mapping to infinite dimensional space!

Kernelized distance⁵

Kernelization of distance:

 $^{^5 \}text{How can we calculate distance between vectors } \phi(x)/\,\|\phi(x)\|$ and $\phi(z)/\,\|\phi(z)\|?$

Kernelized distance⁵

• Kernelization of distance:

$$\rho(x,z)^{2} = \langle \phi(x) - \phi(z), \phi(x) - \phi(z) \rangle$$

$$= \langle \phi(x), \phi(x) \rangle + \langle \phi(z), \phi(z) \rangle - 2\langle \phi(x), \phi(z) \rangle$$

$$= K(x,x) + K(z,z) - 2K(x,z)$$

 So all distance based algorithms are kernelizable: K-NN, K-means? nearest centroid, PCA, etc.

⁵How can we calculate distance between vectors $\phi(x)/\|\phi(x)\|$ and $\phi(z)/\|\phi(z)\|$?

Table of Contents

- Optimization under inequality constraints
- SVM solution of dual task
- Sernel SVM parameters

Kernel SVM prediction

Kernel SVM prediction for x:

$$\widehat{y}(x) = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i \frac{K(x_i, x)}{K(x_i, x)} + w_0]$$

- $\alpha_i^* = 0$ for non-informative vectors
- $\alpha_i^* = C$ for violating support vectors
- $\alpha_i^* \in [0, C]$ for boundary support vectors

Solution for kernels:

- $(\alpha \langle x, z \rangle + \beta)^M$
- $\bullet \ \exp(-\gamma \|x-z\|^2)$

Kernel SVM prediction

Kernel SVM prediction for x:

$$\widehat{y}(x) = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i \frac{K(x_i, x)}{K(x_i, x)} + w_0]$$

- $\alpha_i^* = 0$ for non-informative vectors
- $\alpha_i^* = C$ for violating support vectors
- $\alpha_i^* \in [0, C]$ for boundary support vectors

Solution for kernels:

- $(\alpha \langle x, z \rangle + \beta)^M$ polynomial degree M boundary.
- $\exp(-\gamma \|x z\|^2)$ weighted Parzen window method among support vectors.

RBF kernel - variable C

RBF kernel - variable C

RBF kernel - variable C

Summary

- Kernel trick applies when:
 - x not enough, need transformation $\phi(x)$ for better prediction.
 - $\langle \phi(x), \phi(z) \rangle$ is long to compute, K(x, z) is fast to compute.
 - cannot represent objects as fixed size vector, but natural scalar prodict (similarity function) K(x, z) exists.
- Kernelizable algorithms: SVM, ridge regression, K-NN, K-means, PCA and more.
- Mostly used kernels: polynomial, RBF.
- Mercer theorem: condition for K(x, z) to be a kernel.
- Kernels can be constructed from other kernels.