Homework 6 Key

Subrata Paul

10/25/2020

Problem 3.3

(a) The predictors sex and income are significant at the 0.05 level.

```
lmod = lm(gamble ~., data = faraway::teengamb)
xtable(lmod)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	22.5557	17.1968	1.31	0.1968
sex	-22.1183	8.2111	-2.69	0.0101
status	0.0522	0.2811	0.19	0.8535
income	4.9620	1.0254	4.84	0.0000
verbal	-2.9595	2.1722	-1.36	0.1803

(b) We predict that females will spend about 22 lbs less per year on gambling than their male counterparts, assuming that their socioeconomic status, income, and verbal scores are the same.

(c)

```
H_0: \beta_{\text{sex}} = \beta_{\text{status}} = \beta_{\text{verbal}} = 0 | \beta_{\text{income}} \neq 0
```

 $H_a: \beta_{\text{sex}} \text{ or } \beta_{\text{status}} \text{ or } \beta_{\text{verbal}} \neq 0 | \beta_{\text{income}} \neq 0$

```
full_mod = lm(gamble ~ ., data = faraway::teengamb)
reduced_mod = lm(gamble ~ income, data = faraway::teengamb)
(rssf = deviance(full_mod))
```

[1] 21623.77

```
(rssr = deviance(reduced_mod))
```

[1] 28008.59

```
(f = ((rssr - rssf)/3)/(rssf/42))
```

[1] 4.133761

$$1 - pf(f, df1 = 3, df2 = 42)$$

[1] 0.01177211

$$F = \frac{(28008.59 - 21623.77)/3}{21623.77/42} = 4.1337611$$

p-value =
$$P(F_{3,42} \ge 4.13) = 0.012$$

There is moderate evidence that at least one of the predictors sex, status, or verbal should be included in the regression model of gamble that already contains the income predictor.

Problem 3.4

[1] 0.01208607

```
(a)
H_0: \beta_{\text{salary}} = 0 | \beta_{\text{ratio}} \neq 0, \beta_{\text{expend}} \neq 0
H_0: \beta_{\text{salary}} \neq 0 | \beta_{\text{ratio}} \neq 0, \beta_{\text{expend}} \neq 0
fmod = lm(total ~ expend + ratio + salary, data = faraway::sat)
summary(fmod)
##
## Call:
## lm(formula = total ~ expend + ratio + salary, data = faraway::sat)
##
## Residuals:
                            Median
                                            3Q
##
         Min
                      1Q
                                                      Max
## -140.911 -46.740
                            -7.535
                                       47.966
##
## Coefficients:
##
                  Estimate Std. Error t value
                                                               Pr(>|t|)
## (Intercept) 1069.234
                                             9.639 0.0000000000129 ***
                                 110.925
                     16.469
                                  22.050
                                             0.747
                                                                 0.4589
## expend
                                   6.542
## ratio
                      6.330
                                             0.968
                                                                 0.3383
## salary
                    -8.823
                                   4.697 -1.878
                                                                 0.0667 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 68.65 on 46 degrees of freedom
## Multiple R-squared: 0.2096, Adjusted R-squared: 0.1581
## F-statistic: 4.066 on 3 and 46 DF, p-value: 0.01209
                                       t = \frac{-8.822632}{4.6967936} = -1.8784372
p-value = 2P(T_{46} \ge 1.8784372) = 0.0666677
There is weak evidence to conclude the salary predictor should be included in the model of sat scores that
already has the ratio and expend predictors.
H_0: \beta_{\text{salary}} = \beta_{\text{ratio}} = \beta_{\text{expend}} = 0
H_0: \beta_{\text{salary}} \neq 0 \text{ or } \beta_{\text{ratio}} \neq 0 \text{ or } \beta_{\text{expend}} \neq 0
rmod = lm(total ~ 1, faraway::sat)
(rssf = deviance(fmod))
## [1] 216811.9
(rssr = deviance(rmod))
## [1] 274307.7
(f = ((rssr - rssf)/(rmod$df.residual - fmod$df.residual))/(rssf/fmod$df.residual))
## [1] 4.066203
1 - pf(f, df1 = rmod$df.residual - fmod$df.residual, df2 = fmod$df.residual)
```

$$F = \frac{(274307.68 - 216811.94)/3}{216811.94/46} = 4.0662033$$

p-value = $P(F_{3,42} \ge 4.13) = 0.0120861$.

There is moderate evidence to conclude at least one of the predictors salary, ratio, or expend should be used in modeling the sat predictor.

(b)

F test:

 $H_0: \ \beta_{\text{takers}} = 0 | \beta_{\text{ratio}} \neq 0, \beta_{\text{expend}} \neq 0, \beta_{\text{salary}} \neq 0$

 $H_a: \beta_{\text{takers}} \neq 0 | \beta_{\text{ratio}} \neq 0, \beta_{\text{expend}} \neq 0, \beta_{\text{salary}} \neq 0$

```
options(scipen=5)
```

```
rmod = lm(total ~ expend + ratio + salary, faraway::sat)
fmod = lm(total ~ expend + ratio + salary + takers, faraway::sat)
(rssf = deviance(fmod))
```

[1] 48123.9

```
(rssr = deviance(rmod))
```

[1] 216811.9

```
(f = ((rssr - rssf)/(rmod$df.residual - fmod$df.residual))/(rssf/fmod$df.residual))
```

[1] 157.7379

[1] 2.220446e-16

$$F = \frac{(216811.94 - 48123.9)/1}{48123.9/45} = 157.7378885$$

p-value =
$$P(F_{3,42} \ge 4.13) = 2.220446 \times 10^{-16}$$
.

There is very strong evidence to conclude that the takers predictor should be included in the model of sat scores that already has the ratio, salary, and expend predictors.

t test:

library(xtable)
xtable(fmod)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1045.9715	52.8698	19.78	0.0000
expend	4.4626	10.5465	0.42	0.6742
ratio	-3.6242	3.2154	-1.13	0.2657
salary	1.6379	2.3872	0.69	0.4962
takers	-2.9045	0.2313	-12.56	0.0000

$$t = \frac{-2.9044805}{0.23126} = -12.5593745$$

p-value = $2P(T_{46} \ge 12.5593745) = 2.6065588 \times 10^{-16}$

Notice that $t^2 = F = 157.74$