Zadanie: KAN Kanapka

Potyczki Algorytmiczne 2016, runda próbna. Dostępna pamięć: 128 MB.

17.11.2016

Uwaga! To jest zadanie *rozproszone*. Zanim zaczniesz je rozwiązywać, zapoznaj się z informacjami dotyczącymi tego typu zadań dostępnymi w serwisie internetowym zawodów.

Niniejsze zadanie pojawiło się także w rundzie próbnej konkursu Distributed Google Code Jam 2015.

Żona przygotowała Bajtazarowi długą kanapkę. Kanapka składa się z N części różniących się pod względem użytych składników. Bajtazar wie dokładnie, które części będą mu smakować i jak bardzo: dla każdej części określił jej smakowitość liczbą całkowitą. Im większa jest ta liczba, tym bardziej Bajtazar chciałby zjeść tę część; ujemna smakowitość oznacza, że Bajtazar wolałby nie jeść danej części kanapki.

Oczywiście Bajtazar najchętniej zjadłby jedynie części o dodatniej smakowitości. Wyłamywanie środkowych części kanapki jest jednak niegrzeczne i z pewnością nie spodobałoby się żonie. Bajtazar postanowił więc, że zje po trosze z początku i z końca kanapki tak, aby sumaryczna smakowitość zjedzonych części była jak największa. W szczególności, Bajtazar dopuszcza zjedzenie całej kanapki bądź niezjedzenie ani kawałka.

Dane wejściowe

Twój program nie może używać standardowego wejścia. Zamiast tego dostęp do tablicy będzie odbywać się za pośrednictwem dostarczonej biblioteki interaktywnej. Aby jej użyć, wpisz w swoim programie (C/C++):

```
#include "kanapka.h"
```

Biblioteka udostępnia dwie funkcje:

- GetN() zwraca N ($1 \le N \le 5 \cdot 10^8$) liczbę części kanapki.
- GetTaste(i) zwraca liczbę całkowitą z przedziału $[-10^9, 10^9]$ oznaczającą smakowitość *i*-tej części kanapki. Części kanapki są ponumerowane liczbami od 0 do N-1.

Funkcjom tym odpowiadają następujące deklaracje w językach C bądź C++:

```
long long GetN();
long long GetTaste(long long i);
```

W dziale Pliki w systemie SIO2 znajduje się archiwum zawierające przykładowe pliki bibliotek oraz (niepoprawne) rozwiązania ilustrujące sposób ich użycia.

Wyjście

Twój program powinien wypisać na wyjście jedną liczbę – maksymalną sumaryczną smakowitość pewnego początkowego i końcowego fragmentu kanapki.

Komunikacja

Podczas oceny Twojego programu system sprawdzający uruchomi jednocześnie wiele jego instancji, każdą na osobnym komputerze. Instancje powinny komunikować się za pomocą biblioteki message. W tym celu w programie w języku C bądź C++ należy umieścić wiersz:

```
#include "message.h"
```

Instrukcja dotycząca używania tej biblioteki jest dostępna w serwisie internetowym zawodów w zakładce $Zadania\ rozproszone.$

Ograniczenia liczby i rozmiaru wysyłanych wiadomości

- Liczba wiadomości wysłanych przez pojedynczą instancję nie może przekroczyć 1000.
- Sumaryczny rozmiar wiadomości wysłanych przez jedną instancję nie może przekroczyć 8MB.

1/2 Kanapka

Przykładowy przebieg programu

Dla przebiegu programu:

Wywołanie funkcji	Zwrócona wartość
<pre>GetN();</pre>	7
<pre>GetTaste(0);</pre>	10
<pre>GetTaste(1);</pre>	-2
<pre>GetTaste(2);</pre>	5
<pre>GetTaste(3);</pre>	-4
<pre>GetTaste(4);</pre>	3
<pre>GetTaste(5);</pre>	-5
<pre>GetTaste(6);</pre>	1

poprawnym wynikiem jest: 14

Testy przykładowe

Po wysłaniu rozwiązania od razu poznasz wyniki Twojego programu na poniższych testach:

- 0a: test przykładowy z treści zadania, uruchamiany na 10 komputerach;
- \bullet 0
b: N=2n+2,gdzie $n=100\,000\,000.$ Smakowitości kolejnych części tworzą następujący ciąg:

$$0, -1, 2, -3, \ldots, (n-2), -(n-1), n, -n, (n-1), -(n-2), \ldots, 3, -2, 1, 0.$$

2/2

Test jest uruchamiany na 10 komputerach.

Kanapka