# Session 504: Intro to Marine Composites DesignAdvanced Methods

Dr. Paul H. Miller, PE U. S. Naval Academy



#### Intro to the Advanced!

#### Goals:

- Advanced methods for marine composites design (Session 404 was basic methods)
- Some "lessons learned the hard way" (also called "case studies")
- Some entertainment value!

# If this is not you, don't worry!



### My assumptions!

- You have some background in composites fabrication and design
  - You know what the common fibers and resins are (E-glass, epoxy, etc.)
  - You know the basic English units of length, force, area, time
  - You have used "scantling rules" such as ABS, ISO, Herreshoff, etc.!
  - You have designed using metal.

### What is "design"?

- The purposeful arrangement o parts
- To create in a highly skilled manner
- A drawing or sketch



# What is "Marine Composites Design"?

- Intelligent selection and combination of materials (resins, fibers, cores) to create a structure that fulfills a customer's requirements
- Communicating that information!

# Drawing



# Or Simple Laminate Table

| Transom Ring Frame |                           |                   |                                 |
|--------------------|---------------------------|-------------------|---------------------------------|
| Ply                | Material                  | Fiber Orientation | Comments                        |
| 1                  | 12 C DB                   | 45                | 4" flange                       |
|                    | 300 g C uni's             | 0                 | 5 cap plies (dk beam only)      |
| 2                  | 12 C DB                   | 0                 | 3.75" flange                    |
|                    | 300 g C uni's             | 0                 | 5 cap plies (dk beam and frame) |
| 3                  | 12 C DB                   | 45                | 3.5" flange                     |
|                    | 300 g C uni's             | 0                 | 5 cap plies (dk beam and frame) |
| 4                  | 12 C DB                   | 0                 | 3.25" flange                    |
|                    | 300 g C uni's             | 0                 | 5 cap plies (dk beam only)      |
| 5                  | 12 C DB                   | 45                | 3" flange                       |
| Notes:             | 1" fillet radius to hull  |                   |                                 |
|                    | fabricated over 6 lb foam | ı                 |                                 |
| í                  |                           |                   |                                 |

#### **This Seminar's Focus**

- Demonstrating advanced analysis methods
- Some information on selecting materials

# General Design Approaches

- Numerical methods (number crunching)
- Experimentation (prototypes)
- Empirical development (small changes each time)
- Plagiarism! (Not recommended if you are in college) Also called, "benchmarking".

# Numerical Structural Design Requires:

- 1. Geometry (what will the part look like, dimensions of length, width, maybe thickness)
- 2. Loads
- 3. Material properties, and
- 4. An analysis method (what theory to use)

#### The Most Fun Part is:

- Figuring out what it will look like!
  - In general, smaller parts require less structure, but also require more tooling costs and labor costs
  - Joints are expensive!
  - Aim for few parts

#### The Hardest Part is:

- What are the loads?
- Brainstorm on all the reasonable ways your customers can abuse your product!
- Did you think about high heels?



# Easier Methods from Session 404

- Combined methods (loads and analysis). Often called "Scantling Rules"
- American Bureau of Shipping (ABS)
- Lloyds, DnV, ISO, etc.
- Gerr's Elements of Boat Strength
- Herreshoff's, etc.

# Advanced Methods in this Seminar

- Loads calculated independently from structural theory
- CFD, LPT, CLT, FEA, TLA, etc.
- Potentially more accurate, so potentially lighter and less expensive -break even point?

### **Material Properties**

- For preliminary analysis only you can get properties from Greene or Scott.
- For detailed design it is usually not worth the effort of advanced analysis methods if you don't know the actual laminate properties

#### **Scott Tables**

#### **Example Fig 11**

For a 45%
 resin
 content, all
 woven
 laminate
 typical of
 very good
 hand layup,
 tensile
 strength is
 36000 psi





Only for typical mat, cloth and woven roving with polyester

#### **Greene Tables**

- Appendix A
- Example
  - SCRIMP7781/epoxy
  - 34% resin content
  - Tensile strength is 56000 psi!



### **Testing Rules of Thumb**

- Choose tests most appropriate to your application.
- Greene has good summary of common tests



ASTM D3039 Test for tensile strength and

# **Panel Testing**



# Finding Laminate Properties Not in Scott

- Other than testing, the best method is Classical Lamination Theory (CLT). It is also called Laminate Plate Theory.
- It is nothing more than matrix math and can be done on a spreadsheet.
- Shareware programs are nice as they include features like material libraries

### **The \$29 Laminator**



### **Example:**

- We have a laminate that is three plies of 24 oz woven roving at 0/90, 0/90, 0/90, but it twists too much, so we want to know its properties if the middle ply is rotated 45 degrees
- Get 0/90 props from Scott
- Et=1.95 msi, Ec= 2.2 msi, ten str. =
  29 ksi, comp str = 26 ksi, shear str. =
  11 ksi, shear mod = ?, poisson's = ?

### **Select Output Options**

| 🗽 The Laminator - Classical Analysis of Composite Laminates                                                 |   |  |  |
|-------------------------------------------------------------------------------------------------------------|---|--|--|
| <u>F</u> ile <u>E</u> dit <u>L</u> ibrary <u>A</u> nalysis <u>H</u> elp                                     |   |  |  |
| Settings   Materials   Strength   Layup   Loads   About   Registration   Laminate Analysis Property Options |   |  |  |
| ✓ Display Apparent Laminate Material Properties                                                             |   |  |  |
| ☐ Display ABD and Inverse ABD Matrices                                                                      |   |  |  |
| □ Display Q, Q-Bar, S, and S-Bar Matrices for Each Layer                                                    |   |  |  |
|                                                                                                             | _ |  |  |
| Laminate Analysis Load Options  Display Laminate Load and Strain Vectors (Requires Load Input)              |   |  |  |
| ☐ Display Ply Stresses and Strains (Requires Load Input)                                                    |   |  |  |
| ✓ Display Ply Failure Analysis (Requires Load and Strength Input)                                           |   |  |  |
|                                                                                                             |   |  |  |
| Analyze Quit Help                                                                                           |   |  |  |

C:\My Documents\Laminator3\Laminates\

# Define Material Stiffness



#### **Define Material**



### **Define Stacking**



C:\My Documents\Laminator3\Laminates\

#### **Define Loads**













#### **CLT/LPT**

- Great way to find material properties for various combinations of mat, cloth, woven roving, uni, etc.
- Is used in composite elements in finite element analysis!

#### FEA

- Geometric modeler that internally generates equilibrium equations for force and displacement
- Steep learning curve, but great results
- Best for performance applications where stiffness or weight is critical

NLim DEF Step:1 =0.08

## A Case Study

 A 77-foot performance cruiser designed by Carl





#### **FEA work**

- Designer subcontracted out structural FEA design
- Designer provided dxf files for all geometries (hull, appendages)
- FEA consultants optimized and specified construction
- Designer did hull structure drawings
- Consultants did keel structure drawings and interfaced with keel and hull manufacturer to ease construction
- Consultants took 323 manhours, reduced structural weight 28%.

# Design Limit Load Cases

- Upwind in heavy air, wave height equal to freeboard, wave length equal to boat length
- Slamming (from CFD consultant)
- Grounding (to ABS loads!)
- Lifting

   Each load case drove the design
   of different parts of the boat.

## Upwind in 30 knots on port



## Displacements (25x)



# **Factors of Safety** In STRESS T-Sai-Wu or Max Stress or Hashin Minimum "real" FOS = 2.25 Not "real"!

## Interior



## Interior FOS



## Session 206: Grounded! Speed was 30% higher than ABS



## **Hull Damage**



## **FEA Suggestions**

- A great tool to evaluate unintentional and planned modifications
- Efficient if performance is an issue or is a simple case (some projects less than 1 hour)
- Practice makes perfect
- Must use composite elements!

## **Final Thoughts**

- Advanced marine composites design uses LPT and FEA more and more every day due to their demonstrated advantages
- Some engineering background is needed for the former, more for the latter!
- The Three Wright Brothers!
- Sleipner!



#### References

- Tsai
- Roark's







#### **Contact Information**

Paul H. Miller
Phmiller@usna.edu
410-293-6441
Google "Paul H. Miller" for
my webpages