List the following functions from the lowest to highest order. Explain your answers in detail, and show the comparisons between the functions clearly. Otherwise, you will not receive any points.

n
$$\log(n!)$$
 $n^{\cos(n)}$ $n^{\log(n)}$ $\log(n)^n$ $3^{\log(n)}$

Solution

(Disclaimer: I calculated derivates of logarithmic functions as if they are in base e to avoid extra constants that do not affect end results.)

Let's start with initial analysis over all functions.

Before we start let's show log(n) grows slower than n: $\lim_{n\to\infty}\frac{\log{(n)}}{n}=\lim_{n\to\infty}\frac{1}{n}=0$ (by L'hopital).

- 1) n $\rightarrow n \in \Theta(n)$ This function will be probably one of the lowest orders.
- 2) $\log(n!)$ \rightarrow We can use Stirling approximation here for n!. $\log(n!) \sim \log\left(\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\right) = \log(\sqrt{2\pi n}) + \log\left(\left(\frac{n}{e}\right)^n\right) = \frac{1}{2}\log(2\pi n) + n\log(n) n\log(e)$ If we take the highest order term in this expression, we find that $\log(n!) \in n\log(n)$
- 3) $n^{\cos(n)} \implies$ Since $-1 \le cosn \le 1$ and $\frac{1}{n} \le n^{\cos(n)} \le n$ and $\cos(n)$ oscillates between those boundaries. Since $n^{\cos(n)}$ either equals to n or smaller than it, we can take it as it grows slower than n^1 .
- 4) $n^{\log(n)}$ \rightarrow Since $\log(n)$ grows with n, for any $n_0 \in N$, $n^{\log(n)} \in \Omega(n^{n_0})$. So, this grows faster than $\log(n!)$ since $n^*\log(n)$ grows slower than n^2 .

Since, $\forall n_0 \in N$, $\exists n$ such that $n_0 < n$; $n_0^{\log(n)} < n^{\log(n)}$ so $n^{\log(n)} \in \omega(3^{\log(n)})$. So $n^{\log(n)}$ has the higher order.

5) $\log(n)^n \rightarrow$ This is possibly the one with highest order so let's compare it with the other competitor $n^{\log(n)}$.

Let's start with taking logarithm of both: $log(log(n)^n) = n*log(log(n))$ $log(n^{log(n)}) = log(n)*log(n) = log(n)^2$

Let's show any constant integer exponent of logarithm grows slower than n:

$$\lim_{n \to \infty} \frac{n}{\log(n)^k} = \lim_{n \to \infty} \frac{n}{(k) * \log(n)^{k-1}} = \lim_{n \to \infty} \frac{n}{(k) * (k-1) * \log(n)^{k-2}} = \dots = \lim_{n \to \infty} \frac{n}{k!} = \infty$$

Eventually k is reduced to zero and limit becomes infinity. So we showed any constant exponent of logarithm grows slower than n. Since first expression has n term, log(log(n)) is non-

decreasing, and second expression is a constant exponent of logarithm; we can say that first one is higher order than the second.

6) $3^{\log(n)}$ \rightarrow We know the upper bound, so we need to find a lower bound too. Let's start with the biggest order candidate: $\log(n!)$:

Let's take the limit (note
$$n^{\log(3)} = 3^{\log(n)}$$
):
$$\lim_{n \to \infty} \frac{n^{\log(3)}}{n * \log(n)} = \lim_{n \to \infty} \frac{n^{\log(3)-1}}{\log(n)} = \lim_{n \to \infty} \frac{(\log(3)-1)n^{\log(3)-2}}{n^{-1}} = \lim_{n \to \infty} (\log(3)-1)n^{\log(3)-1} = \infty$$

Therefore, we found our lower bound too.

So, the following is the ordering of functions from lowest order to highest:

- 1) n^{cos(n)}
- 2) n
- $3) \log(n!)$
- 4) 3^{log(n)}
- 5) n^{log(n)}
- 6) $log(n)^n$