# **INFORME DE "Proyecto WATER-DATA"**

Integrante 1: Facundo Spagnoletta

Integrante 1: facundospagnoletta@impatrq.com

Integrante 2: Valentino Sarniguette

Integrante 2: valentinosarniguette@impatrq.com

Integrante 3: Facundo Ledesma

Integrante 3: facundoezequielledesma@impatrq.com

Integrante 4: Thiago Albornoz

Integrante 4: thiagoagustinalbornoz@impatrq.com

# 1. INTRODUCCIÓN

Este dispositivo integral es capaz de proporcionar mediciones precisas y en tiempo real del nivel de agua, temperatura, humedad y presión en un tanque del líquido el cual necesita monitoreo.

La clave de nuestro dispositivo radica en su capacidad para integrar y visualizar la información de manera clara y accesible. Con un Display de 16x2, ofrecemos una interfaz intuitiva que presenta los datos de manera legible y comprensible. Este enfoque en la presentación de datos facilita a los usuarios tomar decisiones informadas sobre el manejo del agua u otros líquidos, optimizando su uso y contribuyendo a una gestión más eficiente de este recurso esencial.

### 2. MARCO DE APLICACIÓN

El proyecto se puede implementar en ámbitos en los cuales se necesite el control de un tanque de agua. Existen ejemplos como:

- En el control del consumo de agua en una casa: Instalar el dispositivo en tanques de agua domésticos. Se puede usar la información para entender y gestionar el consumo de agua en hogares, alertando así sobre niveles bajos o anomalías.
- Ambito agrícola: Se puede usar para la gestión de riego. Colocar el sensor en tanques de almacenamiento de agua para riego agrícola. Monitorea los niveles de agua y la calidad, y utiliza la información para automatizar y optimizar los sistemas de riego, contribuyendo así a un uso más eficiente del agua.
- Ámbito industrial: En este ambiente podría ser muy útil debido a que nos sirven la mayoría de los parámetros. Integra el dispositivo en tanques industriales para monitorear niveles, temperatura y presión.

Utiliza la información para garantizar condiciones óptimas en procesos industriales que requieran un control preciso del agua.

# 3. DESCRIPCIÓN TÉCNICA

### 3.1 SOBRE EL HARDWARE

Vamos a tener siete cables con tensión, los cuales están conectados a diferentes alturas para poder detectar el nivel del agua. Esto hace que la tensión de cada cable alimente la entrada del circuito integrado (ULN 2004), el cual, a la salida va a conmutar el valor que recibe. A la salida vamos a tener un divisor de tensión el cual lo usamos para bajar la tensión de 5V que necesita el integrado para funcionar, lo que hacemos reducirla a 3V para que al llegar a la Raspberry no la quememos mandándole tensión demás. Al recibir la información el microcontrolador el cual, mediante lo programado, va a muestrear lo recibido en el Display. El ULN 2004 tiene una salida (COM), esta va a estar puesta en el agua con un capacitor intermedio, este va a cumplir la función de eliminar el ruido que haya.

Por otra parte, tenemos los sensores conectados a la Raspberry que van a evaluar los parámetros y enviarlos al Display para ser muestreados.

### 3.1.1 ULN 2004

Este es un circuito integrado que se encarga de recibir la tensión que viene del agua (recibe un 1) en la entrada y en su interior se va a encargar de conmutar lo recibido (es decir, sale un 0) y cómo funciona por lógica negativa, se envía a la Raspberry la información.



#### **3.1.2 BUZZER**

Esta colocado para que cuando el tanque llegue a su capacidad máxima, este empiece a sonar, alertando así que no se tiene que seguir llenando.

#### 3.1.3 Capacitor

Este capacitor está conectado a la salida (COM) del integrado que va al agua y con su otra pata a masa. Lo que hace esto es cumplir la función de eliminar el ruido eléctrico que pueda haber.

### **CAPACITOR Y BUZZER:**



### 3.1.3 Sensores

- Sensor BMP 280: es el encargado de medir el dato de presión en el tanque.
- Sensor DHT 11: es el encargado de medir los datos de humedad y temperatura de agua en el tanque.



### 3.2 SOBRE EL SOFTWARE

### PROYECTO EN CANVA:

https://www.canva.com/design/DAF1mBcSCQ4/6s M6HTE\_yAVJ8xVtNRsx7g/edit?referrer=flowchartslanding-page



## 4. DIVISIÓN DE TAREAS

### 4.1 INTEGRANTE 1

Encargado principal en el desarrollo del circuito esquemático físico y esquemático en la aplicación de Kicad. Asistente en la realización de las conexiones del PCB. Realización de parte del código de programación de la placa.

### 4.2 INTEGRANTE 2

Encargado en la realización del código de programación de la placa. Encargado en la realización de la placa. Realizó la impresión del PCB e hizo el planchado del impreso en la placa. Encargado en realizar las soldaduras.

## 4.3 INTEGRANTE 3

Encargado en la realización de las conexiones del PCB. Asistente en la realización de la placa. Encargado de realizar soldaduras y poner la placa en ácido.

## **4.4 INTEGRANTE 4**

Encargado en la realización de la placa. Asistente en la colocación y soldadura de los componentes al PCB. Comprobador del funcionamiento de la placa.

## **5. LISTA DE MATERIALES**

| Ítem | Cantidades | Reference(s)                           | Value          |
|------|------------|----------------------------------------|----------------|
| 1    | 1          | Agua1                                  | Conn_01x08_Pin |
| 2    | 1          | BMP280                                 | Conn_01x06_Pin |
| 3    | 1          | BZ1                                    | Buzzer         |
| 4    | 1          | C1                                     | 100n           |
| 5    | 1          | DHT11                                  | Conn_01x03_Pin |
| 6    | 1          | Display1                               | Conn_01x04_Pin |
| 7    | 7          | R1, R17, R18,<br>R19, R20, R21,<br>R22 | 1K5            |
| 8    | 7          | R2, R3, R4, R5,<br>R6, R7, R8          | 47K            |
| 9    | 7          | R9, R10, R11,<br>R12, R13, R14,<br>R15 | 1K             |
| 10   | 1          | R16                                    | 580            |
| 11   | 1          | U1                                     | Pico           |
| 12   | 1          | U2                                     | ULN2004A       |

## 6. REFERENCIAS

### Referencia 1:

https://pdf1.alldatasheet.com/datasheet-pdf/view/25574/STMICROELECTRONICS/ULN2004.html

### Referencia 2:

https://github.com/raspberrypi/picoexamples/tree/master/gpio/dht\_sensor

### Referencia 3:

 $\underline{\text{https://github.com/StefKode/tinyDHT/blob/master/d}}\\ \underline{\text{ht11.h}}$ 

## Referencia 4: PINOUT Raspberry

https://www.google.com/url?sa=i&url=https%3A%2 F%2Flearn.adafruit.com%2Fgetting-started-with-raspberry-pi-pico-circuitpython%2Fpinouts&psig=AOvVaw0TkDQrHu

Ppl0nV53K4imAL&ust=1701389705161000&source =images&cd=vfe&ved=0CBEQjRxqFwoTCPjJ4Ny4 6olDFQAAAAAAAAAAAAAE