H3: Eigenvalue problems 3.1 introduction, concept and useful properties		
	> there is a certain vector x , the <i>eigenvector</i> for which:	
	$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$	
2.4.4	λ is the <i>eigenvalue</i> for x	
3.1.1 characteristic polynomial	For a surrous models A	
characteristic polynomial $p(\lambda)$	For a square matrix A	
	> define: $p(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I})$	
	De roots of $p(\lambda)$ give the eigenvalues	
computing problems of p(λ)	Calculating the roots of $p(\lambda)$ is not a good numerical way to find eigenvalues:	
	 Computing the coefficients of the characteristic polynomial for a large matrix is in itself already a substantial task The coefficients of the characteristic polynomial can be highly sensitive to small perturbations in A which can render their computation instable Rounding errors in finding the characteristic polynomial can destroy the accuracy of the roots Computing the roots of a polynomial of high degree is a nontrivial and substantial task 	
3.1.2 properties and transformat		
λ for symmetric/Hermitian	If A is symmetric/Hermitian, all of its eigenvalues are real	
transformations that preserve $\boldsymbol{\lambda}$	 Shift: if Ax = λx and σ any scalar, then (A – σI)x = (λ – σ)x; The eigenvalues are shifted by σ, but the eigenvectors remain unchanged. Inversion: A⁻¹ has the same eigenvectors as A, and eigenvalues 1/λ Powers: A^k has the same eigenvectors as A, and eigenvalues λ^k Polynomials: for a general polynomial p(t), p(A)x = p(λ)x. Thus the eigenvalues of a polynomial in a matrix A are given by the same polynomial, evaluated at the eigenvalues of A and the corresponding eigenvectors remain the same as those of A. Similarity: A matrix B is similar to a matrix A if there exists an invertible matrix T such that 	
	$\mathbf{B} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T} \tag{7}$	
	It follows that:	
	$\mathbf{B}\mathbf{y} = \lambda \mathbf{y} \Rightarrow \mathbf{T}^{-1} \mathbf{A} \mathbf{T} \mathbf{y} = \lambda \mathbf{y} \Rightarrow \mathbf{A} \mathbf{T} \mathbf{y} = \lambda \mathbf{T} \mathbf{y} $ (8)	
	In other words, ${f B}={f T^{-1}AT}$ has the same eigenvalues as ${f A}$, but systematically transforms its eigenvectors.	
	3.2 Calculating eigenvalues and eigenvectors	
3.2.1 power iteration		
power iteration	= multiply an arbitrary nonzero vector repeatedly by the matrix	
	proof: Assume that we can express the starting vector \mathbf{x}_0 as a linear combination $\mathbf{x}_0 = \sum_{j=1}^n \alpha_j \mathbf{v}_j$, with \mathbf{v}_j the eigenvectors of \mathbf{A} .	
	$\mathbf{x}_k = \mathbf{A}\mathbf{x}_{k-1} = \mathbf{A}^2\mathbf{x}_{k-2} = \dots = \mathbf{A}^k\mathbf{x}_0 \tag{9}$	
	$= \mathbf{A}^k \sum_{j=1}^n \alpha_j \mathbf{v}_j = \sum_{j=1}^n \alpha_j \mathbf{A}^k \mathbf{v}_j = \sum_{j=1}^n \lambda_j^k \alpha_j \mathbf{v}_j $ (10)	
	$= \lambda_1^k \left(\alpha_1 \mathbf{v}_1 + \sum_{j=2}^n (\lambda_j / \lambda_1)^k \alpha_j \mathbf{v}_j \right) $ (11)	
	Here is $ \lambda_j/\lambda_1 $ < 1 since λ_1 is of maximum modulus. As a result, this factor will converge to 0 when k becomes large.	

problems with power iteration	It might fail because of:
	 The starting vector x₀ may have no component in the dominant eigenvector v₁. In practice this is very unlikely and is mitigated after a few iterations due to rounding errors that introduce such a component. There may be more than 1 eigenvalue with the same maximum modulus, in which case the algorithm might converge to a linear combination of the corresponding eigenvectors. For a real matrix and real starting vector, the iteration can never converge to a complex vector.
3.2.2 inverse iteration	
inverse iteration	= method to find the smallest eigenvalue
	eigenvalues of A^{-1} are $1/\lambda$ > we could do power iteration of A^{-1}
	instead: the system of linear eq. is solved at each iteration using the triangular factors > eg. from LU-factorization of A > using L and U we can efficiently solve Ay = x
3.2.3 Rayleigh quotient iteratio	n
Rayleigh quotient	the eigenvalue problem can be considered a linear least squares problem:
	$\mathbf{x}\lambda\cong\mathbf{A}\mathbf{x}$
	It's solution, the Rayleigh quotient is given by
	$\lambda = rac{\mathbf{x^{TAx}}}{\mathbf{x^{Tx}}}$
	Given an eigenvector, this is a good estimate for the eigenvalue
Rayleigh quotient iteration	= Combination of Rayleigh quotient and inverse iteration
3.2.4 deflation	
deflation	= process that removes a known eigenvalue of a matrix > further eigenvalues and eigenvectors can be determined > similar remove a root λ_1 from p(λ) by dividing it out: p(λ)/(λ - λ_1) This can be achieved by letting \mathbf{u}_1 be any vector such that $\frac{\mathbf{mathbf}(\mathbf{u}_1 \cap \mathbf{Tx}_1) = \mathbf{lambda}_1}{\mathbf{n}_1}$. Then the matrix $\mathbf{A} - \mathbf{x}_1 \mathbf{u}_1^T$ has eigenvalues $0, \lambda_2, \ldots, \lambda_n$.
3.2.5 QR iteration	
QR-iteration	= fastest method of finding eigenvalues
	For a matrix A define the following sequence
	$egin{aligned} \mathbf{A}_m = & \mathbf{Q}_m \mathbf{R}_m \ \mathbf{A}_{m+1} = & \mathbf{R}_m \mathbf{Q}_m \end{aligned}$
	with Q an orthogonal matrix and an upper triangular matrix R > sequence will converge to a triangular matrix with eigenvalues of A on its diagonal

3.3 calculating the singular value decomposition

single value decomposition

For an mxn matrix A this has the form:

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$$

With **U** an mxm orthogonal matrix

V an nxn orthogonal matrix

Σ an mxn diagonal matrix with singular values:

$$\sigma_{ij} = egin{cases} 0, & ext{for } i
eq j \ \sigma_i \geq 0, & ext{for } i = j \end{cases}$$

the columns \mathbf{u}_i of \mathbf{U} and \mathbf{v}_i of \mathbf{V} are the corresponding left and right singular vectors

The singular values of **A** are the nonnegative square roots of the eigenvalues of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ and the columns of **U** and **V** are orthrogonal eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ and $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ respectively

vb:

Example

The singular value decomposition of the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \tag{20}$$

is given by

$$\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathbf{T}} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}. \tag{21}$$

This statement can be verified by explicitly calculating \mathbf{U} , Σ and \mathbf{V} . We begin with

$$\mathbf{A}^{\mathbf{T}}\mathbf{A} = \mathbf{A}\mathbf{A}^{\mathbf{T}} = \begin{bmatrix} 10 & 6\\ 6 & 10 \end{bmatrix}$$
 (22)

which are equal here because A is a symmetric matrix. We can employ one of the methods discussed above to calculate its eigenvalues and eigenvectors. These are $\lambda_1=\sigma_1^2=16$ with eigenvector $\mathbf{v_1}=[1,1]^\mathbf{T}$ and $\lambda_2=\sigma_2^2=4$ with $\mathbf{v_2}=[-1,1]^\mathbf{T}$. The eigenvectors are easily converted to their orthonormal form, which results in

$$\mathbf{U} = \mathbf{V} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}. \tag{23}$$

Now we construct Σ as diag $\left(\sqrt{\lambda_1},\sqrt{\lambda_2}\right)$ and transpose V in order to find the proposed SVD.

3.4 Software

eigenvectors calculating

Method	Description
eig	Solve an ordinary or generalized eigenvalue problem of a square matrix.
eigvals	Compute eigenvalues from an ordinary or generalized eigenvalue problem.
eigh	Solve a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
eigvalsh	Solves a standard or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
eig_banded	Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
eigvals_banded	Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
eigh_tridiagonal	Solve eigenvalue problem for a real symmetric tridiagonal matrix.
eigvalsh_tridiagonal	Solve eigenvalue problem for a real symmetric tridiagonal matrix.
svd	Compute the single decomposition matrices.
svdvals	Compute singular values of a matrix.