1

Assignment 15

Pulkit Saxena

1 Problem Hoffman Pg 230 Q2

Let T be a linear operator on \mathbb{R}^3 which is represented in standard ordered basis by matrix

$$\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{pmatrix}$$
(1.0.1)

Prove that T has no cyclic vector. What is the T-cyclic subspace generated by the vector $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$?

2 Theorems

Theorem 1	T be a linear operator on vector space \mathbb{V} of n dimensional.	
	There exist a cyclic vector for T if and only if minimal polynomial	
	and characteristic polynomial are same.	
	Characteristics Polynomial:-	
	$f(x) = (\mathbf{x} - \lambda_1)^{d_1} \dots (\mathbf{x} - \lambda_k)^{d_k}$	
	Minimal Polynomial:-	
	$p_a(x) = (\mathbf{x} - \lambda_1)(\mathbf{x} - \lambda_k)$ for the given eigen values $\lambda_1\lambda_k$	
Theorem 2	$\mathbb{Z}(\mathbf{a};T)$ is the subspace spanned by vectors $T^k\mathbf{a}$, $k\geq 0$, and \mathbf{a} is a cyclic vector for T	
	if and only if these vector span \mathbb{V} , the α is called cyclic vector of T .	
Theorem 3 Cyclic Base	Let a be any non-zero vector in \mathbb{V} and let $p_a(minimal polynomial)$ be the T -annihilator of a	
	If the degree of p_a is k, then vectors $\mathbf{a}, T\mathbf{a}, T^2\mathbf{a}, \dots, T^{k-1}\mathbf{a}$ form of a basis for $\mathbb{Z}(\mathbf{a}; T)$	
	if $g(T)\mathbf{a} = 0$.	

TABLE 1: Illustration of theorem.

3 Solution

Characteristics polynomial of the matrix is $det(x\mathbf{I} - \mathbf{A})$

$$\det(x\mathbf{I} - \mathbf{A}) = \begin{vmatrix} (x-2) & 0 & 0 \\ 0 & (x-2) & 0 \\ 0 & 0 & (x+1) \end{vmatrix}$$

Characteristic Polynomial = $(x-2)^2(x+1)$

Minimal Polynomial= $p_a(x)$ =(x - 2)(x + 1) degree =2

Minimal Polynomial ≠ Characteristic Polynomial

Thus from Theorem 1 T doesn't have cyclic vector.

Cyclic subspace

For the given matrix $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

$$T(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (2\mathbf{x}, 2\mathbf{y}, -\mathbf{z})$$

$$T \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}$$

Since we know T^2 **a** = T(T**a**)

$$T^{2} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} = T \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix}$$

Degree of minimal polynomial is 2 therefore k=2

From Theorem 2

$$\mathbb{Z}(\mathbf{a}; T) \text{ spans } \{\mathbf{a}, T\mathbf{a}, T^2\mathbf{a}\} = \begin{pmatrix} 1 & 2 & 4 \\ -1 & -2 & -4 \\ 3 & -3 & 3 \end{pmatrix}$$

which is linearly dependent matrix. $g(T) = \det(\mathbb{Z}(\mathbf{a}; T)) = 0$

$$\begin{pmatrix} 4 \\ -4 \\ 3 \end{pmatrix}$$
 is a linear combination of $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}$.

Therefore from Theorem 3
Cyclic subspace of $\mathbb{Z}(\mathbf{a}; T)$ spans $\{\mathbf{a}, T\mathbf{a}\}$
Hence <i>T</i> -cycle subspace generated by $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$
$= \operatorname{span}\left(\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ -3 \end{pmatrix}\right)$

TABLE 2: Solution Table