Свойства свёртки Гермейера в векторных играх

Кононов Сергей 9 мая 2019 г.

Содержание

1	Введение	3
	1.1 Игровая модель	3
2	Подробное рассмотрение множества оптимальных стратегий	7
3	Выигрыш игрока Студент	13

1 Введение

В работе рассматриваются различные способы решения модельной задачи которая представляет собой игру двух лиц с противоположными интересами и двумерной функцией выигрыша. Для решения задачи применяется модифицированный метод свёрток предложенный Л.С. Шепли [1], который как правило используется в подобных задачах.

1.1 Игровая модель

Рассматриваются два игрока - Студент, далее обозначается ${\bf C}$, и Преподаватель, далее обозначается ${\bf \Pi}$, которые имеют противоположные интересы. Критерий интересов составляют две велечины, первая из которых является эффективностью работы ${\bf C}$ в научной сфере, а второй его эффективностью на подработке.

 ${f C}$ выбирает долю x рабочего времени, которую он тратит на подготовку диплома, оставшееся рабочее время 1-x он тратит на подработку. Считается, что производительность ${f C}$ при любых занятий падает с увеличением отводимого на них времени, эффективность труда ${f C}$ зададим функцией \sqrt{x} и $\sqrt{1-x}$ соответственно. ${f C}$ может распределять свое время между двумя видами деятельности, т.е. имеет множетсво стратегий $x\in X=\{0,1\}$, причём он может использовать смешанные стратегии.

 Π выбирает - отностится к ${\bf C}$ требовательно, способствую написанию диплома и мешая подработке или же не обращать на него внимания не мешая подработке и не помогая с дипломом. Π имеет множество стратегий $y \in Y = \{1,2\}$, причём тоже может использовать смешаные стратегии.

Получаем следующий функциональный критерий:

$$F(x,y) = \left(f_1(x,y), f_2(x,y)\right) = \left(\frac{y\sqrt{x}}{2}, \frac{\sqrt{1-x}}{y}\right) \tag{1}$$

 Π стремится минимизировать (выборая $y \in Y = \{1,2\}$) критерий F(x,y), а игрок ${\bf C}$ - максимизировать (выбирая $x \in X = [0,1]$).

Задачу можно представить в виде многокритериальную игру двух лиц с противоположными интересамив

$$\langle F(x,y), X, Y \rangle, \ y \in Y = \{1, 2\}, \ x \in X = [0, 1]$$
 (2)

Определение 1 Допустимое решение $\hat{x} \in X$ называется строго эффективным (эффективным по Слейтеру) для задачи

$$\max_{x \in X} F(x) = (f_1(x), \dots, f_n(x))$$
 (3)

если **не** существует $x \in X$ такого, что $f_k(x) > f_k(\hat{x})$ для всех $k = \{1, ..., n\}$. Множетсво всех эффективных по Слейтеру решений называвется множеством Слейтера задачи (3).

Для задачи (2) введеём следующие частные случаи:

$$S_x(y^*)$$
 - множество Слейтера задачи $\max_{x \in X} F(x, y^*)$ $S_y(x^*)$ - множество Слейтера задачи $\min_{y \in Y} F(x^*, y)$

Определение 2 Решением¹ (2) является множество точек (x^*, y^*) таких, что $x^* \in S_x(y^*)$ и $y^* \in S_y(x^*)$,

Для параметризации множеств Слейтера будем использовать метод свёрток. Он заключается в том, что задача $\max_{x \in X} F(x)$ заменяется параметрическим семейством скалярных задач $\max_{x \in X} C(\{f_i\}, \lambda, x)$, где C – функция свертки частных критериев $\{f_i\}_{i=1}^m$ задачи (3) в единый скалярный критерий, λ – параметр свертки.

Определение 3 Линейной свёрткой с параметром λ для функции критериев задачи (3) называется функция:

$$L(\lbrace f_i \rbrace, \lambda, x) = \sum_{i=1}^{m} \lambda_i f_i, \ \textit{rde } \lambda \in \Lambda = \lbrace \lambda_i \ge 0 | \sum_{i=1}^{n} \lambda_i = 1 \rbrace, \tag{4}$$

свёрткой Гермейера или обратной логической свёрткой с параметром μ для функции критериев задачи (3) называется функция:

$$G(\{f_i\}, \mu, x) = \min_{i: \mu_i > 0} \frac{f_i}{\mu_i}, \ \text{ide } \mu \in M = \{\mu_i \ge 0 | \sum_{i=1}^n \mu_i = 1\}.$$
 (5)

 $^{^1}$ Согласно $\it Blackwell$ D. An analog of the minimax theorem for vector payoffs // Pac. J. of Math. 1956. No 6.

В случае конечных X и Y Шепли свел [1] описание данного множества к семейству задач поиска значений скалярных игр с функциями выигрышей – ЛС частных критериев при произвольном наборе весовых коэффициентов, своих у каждого игрока. Применение линейной свертки в многокритериальных задачах обосновывается леммой Карлина

Теорема 1 (Карлин [3]) Пусть x_0 – эффективная точка, Тогда существуют неотрицательные числа $\lambda_1, \ldots, \lambda_m$ такие, что $\sum_{i=1}^m \lambda_i = 1$ и x_0 является точкой максимума функции $L(x) = \sum_{j=1}^m \lambda_j f^j(x)$

Гермейером была предложена свертка, которая также аппроксимирует множество Слейтера. В работе используется ее модификация - обратная логическая свертка, она отличается тем, что веса стоят в знаменателе.

Теорема 2 (Гермейер [2]) Пусть x_0 – эффективная точка, причем $f^i(x_0) > 0$ для всех $i=1,\ldots,m$. Тогда существуют положительные числа $\lambda_1,\ldots,\lambda_m$ такие, что $\sum_{i=1}^m \lambda_i = 1$ и x_0 является точкой максимума функции $G(x) = \min_{1\leqslant j\leqslant m} \lambda_j f^j(x)$.

Рассмотрим случай, когда ${\bf C}$ использует обратную логическую свертку, с парамером μ , а ${\bf \Pi}$ использует линейную свертку с параметром λ . Тогда множество оптимальных решений:

$$\begin{cases} x^* = \arg\max_{x} G(\{f_1, f_2\}, \mu, x, y^*) \\ y^* = \arg\min_{y} L(\{f_1, f_2\}, \lambda, x^*, y) \end{cases}$$

Поскольку игроки используют смешанные стратегии т.е. распределения вероятностей $\rho_x(x)$ и $\rho_y(y)$ над чистыми стратегиями $x \in X$ и $y \in Y$. Далее каждый игрок осредняет свою функцию выигрыша по стратегиям противника

$$\overline{G}(\{f_1, f_2\}, \mu, q, p) = \iint_{PQ} G(\{f_1, f_2\}, \mu, q, p) \rho_x(x) \rho_y(y) dx dy$$

$$\overline{L}(\{f_1, f_2\}, \lambda, q, p) = \iint_{PQ} L(\{f_1, f_2\}, \lambda, q, p) \rho_x(x) \rho_y(y) dx dy$$

Определение 4 Пара стратегий (p^0, q^0) называется оптимальными, если для некоторых λ , μ верно:

$$\begin{cases}
p^{0}(q^{0}, \lambda) = \underset{p \in P}{\operatorname{argmin}} \overline{L}(p, q^{0}, \lambda) \\
q^{0}(p^{0}, \mu) = \underset{q \in Q}{\operatorname{argmin}} \overline{G}(p^{0}, q, \mu)
\end{cases}$$
(6)

Мы будем рассматривать конечную игру ${f C}-{f \Pi}$, полученную из исходной заменой множества X=[0,1] конечным множеством точек

$$X^{T} = \{0, \frac{1}{T}, \frac{2}{T}, \dots, \frac{T-1}{T}, 1\}, T \in \mathbb{N}$$

В работе исследуются случаи T=1: $X^1=\{0,1\},$ и T=2: $X^2=\{0,\frac{1}{2},1\}$

2 Подробное рассмотрение множества оптимальных стратегий

Для каждой пары параметров $(\hat{\mu}, \hat{\lambda})$ найдём множество соответсвующих оптимальных пар $(p^*(\hat{\mu}, \hat{\lambda}), q^*(\hat{\mu}, \hat{\lambda})) \in P \times Q$. Рассмотрим все возможные сочетания значений для p^* и q^* в системах $(\ref{eq:condition})$, что даст нам 6 следующих систем:

Учтём, что переменные p,q,μ и λ определены на отрезке [0,1]. (1)

$$\begin{cases} p^* = 0 \\ q^* = \frac{\mu}{2 - \mu} \\ q^* > 1 - \lambda \\ p^* + \mu - 1 \ge 0 \end{cases} \sim \begin{cases} p^* = 0 \\ q^* = \frac{\mu}{2 - \mu} \\ \frac{\mu}{2 - \mu} > 1 - \lambda \\ \mu \ge 1 \implies \mu = 1 \end{cases} \sim \begin{cases} p^* = 0 \\ q^* = 1 \\ \lambda > 0 \\ \mu = 1 \end{cases}$$

Значит при $\mu=1$ и $\lambda\in(0,1]$ имеем следующие оптимальные пары: $(p^*,q^*)\in(0,1)$

(2)

$$\begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} \\ q^* > 1 - \lambda \\ p^* + \mu - 1 \le 0 \end{cases} \sim \begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} \\ \frac{2\mu}{1+\mu} > 1 - \lambda \\ \mu \le 1 \end{cases} \sim \begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} \\ \lambda > \frac{1-\mu}{1+\mu} \\ \mu \le 1 \end{cases}$$

Значит при $\mu \in [0,1]$ и $\lambda \in (\frac{1-\mu}{1+\mu},1]$ имеем следующие оптимальные пары $(p^*,q^*)\in (0,\frac{2\mu}{1+\mu})$

(3)

$$\begin{cases} p^* = 1 \\ q^* = \frac{\mu}{2 - \mu} \\ q^* < 1 - \lambda \\ p^* + \mu - 1 \geqslant 0 \end{cases} \sim \begin{cases} p^* = 1 \\ q^* = \frac{\mu}{2 - \mu} \\ \frac{\mu}{2 - \mu} < 1 - \lambda \\ \mu \geqslant 0 \end{cases} \sim \begin{cases} p^* = 1 \\ q^* = \frac{\mu}{2 - \mu} \\ \lambda < 2\frac{1 - \mu}{2 - \mu} \\ \mu \geqslant 0 \end{cases}$$

Значит при $\mu \in [0,1]$ и $\lambda \in [0,2\frac{1-\mu}{2-\mu})$ имеем следующие оптимальные пары $(p^*,q^*)\in (1,\frac{\mu}{2-\mu})$

(4)

$$\begin{cases} p^* = 1 \\ q^* = \frac{2\mu}{1+\mu} \\ q^* < 1-\lambda \\ p^* + \mu - 1 \le 0 \end{cases} \sim \begin{cases} p^* = 1 \\ q^* = \frac{2\mu}{1+\mu} \\ \frac{2\mu}{1+\mu} < 1-\lambda \\ \mu \le 0 \Rightarrow \mu = 0 \end{cases} \sim \begin{cases} p^* = 1 \\ q^* = 0 \\ \lambda < 1 \\ \mu = 0 \end{cases}$$

Значит при $\mu=0$ и $\lambda\in[0,1)$ имеем следующие оптимальные пары $(p^*,q^*)\in(1,0)$

(5)

$$\begin{cases} p^* \in [0,1] \\ q^* = \frac{\mu}{2-\mu} \\ q^* = 1 - \lambda \\ p^* + \mu - 1 \geqslant 0 \end{cases} \sim \begin{cases} p^* \in [0,1] \\ q^* = \frac{\mu}{2-\mu} \\ \frac{\mu}{2-\mu} = 1 - \lambda \\ p^* \geqslant 1 - \mu \end{cases} \sim \begin{cases} p^* \in [1-\mu,1] \\ q^* = \frac{\mu}{2-\mu} \\ \lambda = 2\frac{1-\mu}{2-\mu} \end{cases}$$

Значит при $\mu\in[0,1]$ и $\lambda=2\frac{1-\mu}{2-\mu}$ имеем следующие оптимальные пары $(p^*,q^*)\in[1-\mu,1]\times\{\frac{\mu}{2-\mu}\}$

(6)

$$\begin{cases} p^* \in [0,1] \\ q^* = \frac{2\mu}{1+\mu} \\ q^* = 1-\lambda \\ p^* + \mu - 1 \leqslant 0 \end{cases} \sim \begin{cases} p^* \in [0,1] \\ q^* = \frac{2\mu}{1+\mu} \\ \frac{2\mu}{1+\mu} = 1-\lambda \\ p^* \leqslant 1-\mu \end{cases} \sim \begin{cases} p^* \in [0,1-\mu] \\ q^* = \frac{2\mu}{1+\mu} \\ \lambda = \frac{1-\mu}{1+\mu} \end{cases}$$

Значит при $\mu \in [0,1]$ и $\lambda = \frac{1-\mu}{1+\mu}$ имеем следующие оптимальные пары $(p^*, q^*) \in [0, 1 - \mu] \times \{\frac{2\mu}{1+\mu}\}$

Итого получаем:

Мтого получаем:
$$(p^*(\mu,\lambda),q^*(\mu,\lambda)) = \begin{cases} (0,1), & \mu=1,\ \lambda\in(0,1]\\ (0,\frac{2\mu}{1+\mu}), & \mu\in[0,1],\ \lambda\in(\frac{1-\mu}{1+\mu},1]\\ (1,\frac{\mu}{2-\mu}), & \mu\in[0,1],\ \lambda\in[0,2\frac{1-\mu}{2-\mu})\\ (1,0), & \mu=0,\ \lambda\in[0,1)\\ [1-\mu,1]\times\left\{\frac{\mu}{2-\mu}\right\}, & \mu\in[0,1],\ \lambda=2\frac{1-\mu}{2-\mu}\\ [0,1-\mu]\times\left\{\frac{2\mu}{1+\mu}\right\}, & \mu\in[0,1],\ \lambda=\frac{1-\mu}{1+\mu} \end{cases}$$

Некоторые условия оптимальных пар пересекаются, поэтому сагрегируем систему по условиям таким образом, чтобы множества (μ, λ) которые они задают имели пустое пересечение.

Теперь на квадрате $(p,q) \in [0,1]^2$ рассмотрим все области, в которых множества оптимальных пар постоянны. Введём обозначения для множества оптимальных стратегий:

$$\mathbb{O} = \{(p,q) \mid p \in P, q \in Q \text{ такие что верно } (4)\}$$

(b)
$$\begin{bmatrix} \mu = 0, \ \lambda = 1 \\ \mu = 1, \ \lambda = 0 \end{bmatrix}$$
 (c) $\mu \in (0, 1), \ \lambda \in (0, \frac{1-\mu}{1+\mu}]$

Рис. 1

(1)
$$\mu = 0, \lambda \in [0, 1)$$
:

$$\begin{cases} p^* = 1 \\ q^* = 0 \end{cases} \quad \cup \quad \begin{cases} p^* = 1 \\ q^* = \frac{\mu}{2 - \mu} = \{\mu = 0\} = 0 \end{cases}$$

Множество оптимальных стратегий $\mathbb{O} = \{(1,0)\}$

(2.1)
$$\mu = 0, \lambda = 1$$
:

$$\begin{cases} p^* \geqslant 1 - \mu = \{\mu = 0\} = 1 \\ q^* = \frac{\mu}{2 - \mu} = \{\mu = 0\} = 0 \end{cases} \quad \cup \quad \begin{cases} p^* \leqslant 1 - \mu = \{\mu = 0\} = 1 \\ q^* = \frac{2\mu}{1 + \mu} = \{\mu = 0\} = 0 \end{cases}$$

Множество оптимальных стратегий $\mathbb{O} = [0,1] \times \{0\}$, где \times - это декартово произведение.

(2.2)
$$\mu = 1, \lambda = 0$$
:

$$\begin{cases} p^* \geqslant 1 - \mu = \{\mu = 1\} = 0 \\ q^* = \frac{\mu}{2 - \mu} = \{\mu = 1\} = 1 \end{cases} \quad \cup \quad \begin{cases} p^* \leqslant 1 - \mu = \{\mu = 1\} = 0 \\ q^* = \frac{2\mu}{1 + \mu} = \{\mu = 1\} = 1 \end{cases}$$

Множество оптимальных стратегий $\mathbb{O} = [0,1] \times \{1\}$

(3)
$$\mu \in (0,1), \lambda \in (0,\frac{1-\mu}{1+\mu}]$$
:

$$\begin{cases} p^* = 1 \\ q^* = \frac{\mu}{2 - \mu} \end{cases}$$

Множество оптимальных стратегий $\mathbb{O} = \{1\} \times \{\frac{\mu}{2-\mu}\}$

(4)
$$\mu \in (0,1), \lambda = \frac{1-\mu}{1+\mu}$$
:

$$\begin{cases} p^* \in [0, 1 - \mu] \cup \{1\} \\ q^* = \frac{\mu}{2 - \mu} \end{cases}$$

Множество оптимальных стратегий $\mathbb{O}=\{1\}\times\{\frac{\mu}{2-\mu}\}\cup[0,1-\mu]\times\{\frac{2\mu}{1+\mu}\}$

(5)
$$\mu \in [(1, 1), \lambda \in [0, 2\frac{1-\mu}{2-\mu}] \cap (\frac{1-\mu}{1+\mu}, 1]$$
:

$$\begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} \end{cases} \cup \begin{cases} p^* = 1 \\ q^* = \frac{\mu}{2-\mu} \end{cases}$$

Множество оптимальных стратегий $\mathbb{O} = (0, \frac{2\mu}{1+\mu}) \cup (1, \frac{\mu}{2-\mu})$

(6)
$$\mu \in (0,1), \lambda = 2\frac{1-\mu}{2-\mu}$$
:

$$\begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} \end{cases} \cup \begin{cases} p^* \in [0, 1-\mu] \\ q^* = \frac{\mu}{2-\mu} \end{cases}$$

Множество оптимальных стратегий $\mathbb{O}=(0,\frac{2\mu}{1+\mu})\cup[1-\mu,1]\times\{\frac{\mu}{2-\mu}\}$

Рис. 3

(7)
$$\mu \in (0,1), \lambda \in (2\frac{1-\mu}{2-\mu}, 1]$$
:

$$\begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} \end{cases}$$

Множество оптимальных стратегий $\mathbb{O} = (0, \frac{2\mu}{1+\mu})$

(8)
$$\mu = 1, \lambda \in (0, 1]$$
:

$$\begin{cases} p^* = 0 \\ q^* = 1 \end{cases} \quad \cup \quad \begin{cases} p^* = 0 \\ q^* = \frac{2\mu}{1+\mu} = \{\mu = 1\} = 1 \end{cases}$$

Множество оптимальных стратегий $\mathbb{O}=(0,1)$

3 Выигрыш игрока Студент

Теперь на квадрате $(\mu, \lambda) \in [0, 1]^2$ мы рассмотрели все точки и для каждой нашли оптимальные пары $p^*(\mu, \lambda)$ и $q^*(\mu, \lambda)$ и соответсвующие значения функции $M(p^*(\mu, \lambda), q^*(\mu, \lambda), \mu)$. Далее на квадрате $[0, 1]^2$ изобразим все точки, которые принимает вектор $(\mu M(p^*, q^*, \mu), (1 - \mu) M(p^*, q^*, \mu))$ при $(\mu, \lambda) \in [0, 1]^2$

Поясним график:

нижняя огибающая в координатах $X,Y\colon y=\frac{1}{2}-x,$ верхняя огибающая в координатах $X,Y\colon y=\begin{cases} 1-2x, & x\in[0,\frac{1}{3})\\ \frac{1-x}{2}, & x\in[\frac{1}{3},1] \end{cases}.$

И найдём множества значений функции

$$\overline{G}(p,q,\mu) = p \min\{\frac{q}{\mu}; \frac{1-q}{2(1-\mu)}\} + (1-p) \min\{\frac{q}{2\mu}; \frac{1-q}{1-\mu}\},$$

В этих областях Далее рассмотрим игру с точки зрения игрока С. найдём значение свёртки для игрока С в этих точка:

, тогда
$$\overline{G}(1,0,0) = \frac{1}{2}$$

$$\overline{G}([0,1],0,0) = [0.5,1]$$

$$\overline{G}([0,1],1,1) = [0.5,1]$$

$$\begin{split} \overline{G}(1,\frac{\mu}{2-\mu},\mu) &= \min\big\{\frac{\mu}{2-\mu}; \frac{1-\frac{\mu}{2-\mu}}{2(1-\mu)}\big\} = \frac{1}{2-\mu} \\ \overline{G}(1,\frac{\mu}{2-\mu},\mu) &= \frac{1}{2-\mu} \\ \overline{G}(p,\frac{2\mu}{1+\mu},\mu) &= p\frac{1}{2(1+\mu)} + (1-p)\frac{1}{1+\mu} = \frac{2-p}{2(1+\mu)} \geqslant \frac{2-(1-\mu)}{2(1+\mu)} = \\ \frac{1+\mu}{2(1+\mu)} &= \frac{1}{2} \\ \overline{G}(p,\frac{2\mu}{1+\mu},\mu) &\leq \frac{1}{1+\mu} \Rightarrow \overline{G}(p,\frac{2\mu}{1+\mu},\mu) = [0.5,\frac{1}{1+\mu}] \\ \overline{G}(0,\frac{2\mu}{1+\mu},\mu) &= \frac{1}{1+\mu} \\ \overline{G}(1,\frac{\mu}{2-\mu},\mu) &= \frac{1}{1+\mu} \\ \overline{G}(0,\frac{2\mu}{1+\mu},\mu) &= \frac{1}{1+\mu} \\ \overline{G}(p,\frac{\mu}{2-\mu},\mu) &= p\frac{1}{2-\mu} + (1-p)\frac{1}{2(2-\mu)} = \frac{1+p}{2(2-\mu)} \geqslant \frac{2-\mu}{2(2-\mu)} = \frac{1}{2} \\ \overline{G}(p,\frac{\mu}{2-\mu},\mu) &\leq \frac{1}{2-\mu} \Rightarrow \overline{G}(p,\frac{\mu}{2-\mu},\mu) = [0.5,\frac{1}{2-\mu}] \\ \overline{G}(0,\frac{2\mu}{1+\mu},\mu) &= \min\big\{\frac{1}{2-\mu}; \frac{1-\frac{2\mu}{1+\mu}}{1-\mu}\big\} &= \frac{1}{1+\mu} \\ \overline{G}(0,1,1) &= \frac{1}{2} \end{split}$$

Список литературы

- [1] Shapley L.S. Equilibrium points in games with vector payoffs. 1959.
- [2] Ю.Б. Гермейер. Введение в теорию исслежования операций.
- [3] Карлин С. Математические методы в теории игр, программировании и экономике. 1964.