	Emne:	IELET2106 Industriell instrumentering	Leveringsfrist:
NTNU	Øving:		Se Blackboard

Oppgave 1 (frivillig oppgave, men fortsatt pensum)

Forklar kort hvordan de ulike måleprinsippene under fungerer.

Posisjonsmåling basert på:

- o Potensiometer
- Differensialtransformator: LVDTEnkodere: inkrementell og absolutt

Akselerasjonsmåling basert på:

- o Piezoresistans
- o Piezoelektrisitet
- Servoakselerometer

Oppgave 2 (frivillig oppgave, men fortsatt pensum)

- a) Hva omfattes av ATEX-direktivet?
- b) Hva menes med beskyttelsesartene: Ex o, Ex p, Ex q, Ex d, Ex e, Ex m, Ex n, Ex s og Ex i?
- c) Hva menes med Ex-sone 0, 1, 2, 20, 21 og 22?
- d) Hvilke krav stilles til elektrisk utstyr som skal brukes i Ex-sone 0, 1 og 2?
- e) Hvilke temperaturklasser finnes for utstyr som skal brukes i Ex-områder?
- f) Hvilke væske- og gassklasser finnes? Forklar og gi noen eksempler.
- g) Hvilken metode for eksplosjonssikring er mest aktuell for instrumenteringsutstyr?

Oppgave 3

Figuren under viser et potensiometer som brukes til å måle forskyvningen til en hydraulisk sylinder. Potensiometeret er 25cm lang med en total resistans på $2,5k\Omega$. Driftseffekten for potensiometeret er 4W. Det er en lineær sammenheng mellom resistansendringen og forskyvningen (x).

- a) Beregn nødvendig spenning fra spenningskilden (V_s) slik at potensiometret får riktig driftseffekt.
- b) Beregn potensiometerets følsomhet (forsterkning) i V/cm.
- c) Et voltmeter med svært høy inngangsresistans brukes til å måle utgangsspenningen (V_o) fra potensiometeret når forskyvningen (x) er 15cm. Beregn utgangsspenningen som måles.
- d) Forskyvningen (x) i punkt c skal nå måles med et voltmeter med en inngangsresistans på $5,0k\Omega$. Hvor stor blir målefeilen i volt sammenliknet med utgangsspenningen beregnet i punkt c?

Oppgave 4

- a) Hva blir oppløsningen i grader for en 4-bit absolutt kodeskive med et måleområde på 360°? En leser av gray-koden [0100] fra kodeskiven, i hvilket intervall vil verdien på vinkelposisjonen ligge når vi tar hensyn til oppløsningen til denne måleren?
- b) En inkrementell kodeskive som gir ut 1000 pulser per omdreining, skal brukes til å måle turtallet til en motor. Turtallet regnes ut fra antall pulser som registreres i løpet av en telletid på 200ms. Hvilket turtall (omdreininger/minutt) måles dersom antallet registrerte pulser i telletiden er 4600?

Oppgave 5

Figuren under viser et akselerometer som består av et elastisk element og en seismisk masse, og danner et mekanisk «masse-fjær-demper» system. Et potensiometer måler den relative bevegelsen (x_0) mellom den seismiske massen og måleobjektet.

Følgende data for systemet er oppgitt:

Måleområde: 0-5 g Målesignalområde: 0-10 V Egenfrekvens (f_0): 10 Hz Relativ dempning (ζ): 0,7Seismisk masse (m): 0,005 kg

- a) Utledd differensiallikningen for systemet.
- b) Beregn fjærstivheten (k) og dempekonstanten (D).
- c) Hvor langt bevegelsesområde (L) må glideren på potensiometeret ha dersom akselerometeret utsettes for maksimal akselerasjon (øvre målegrense)? Anta at $\omega \ll \omega_0$ og bruk g=9.81 N/kg.

Oppgave 6

- a) Hva menes med nedre eksplosjonsgrense (LEL), øvre eksplosjonsgrense (UEL), optimal blanding og minimum tennenergi (MIE)?
- b) En Pt-100 føler (platina temperaturføler) måler temperaturen i et eksplosjonsfarlig område. En zener-barriere brukes som barriere mellom sikker sone og Ex-sone. Zenerspenningen er 5V, resistansen i zener-barrieren er 10Ω , lederen fram til temperaturføleren har en kapasitans på $0.1\mu F$ og en induktans på 0.2mH.

I Ex-sonen er det fare for forekomst av propangass i atmosfæren. Minimum tennenergi (MIE) for konsentrasjonen av propan/luft-blanding er 300μJ. Er systemet sikkert for bruk i en propan-luft-atmosfære? Begrunn svaret.

Oppgave 7

Figuren under viser et P&ID av et anlegg. Forklar hva de ulike symbolene i figuren betyr.

Fasit:		
3a	100V	
3b	4V/cm	
3c	60V	
3d	6,43V	
4a	22,5°	$157,5^{\circ} \le \varphi < 180^{\circ}$
4b	1380o/min	
5b	19,7N/m	$0.5 \mathrm{Ns/m}$
5c	1,24cm	
6b	26,3μJ	