Image Domain Conversion (Model Construction)

Quang-Vinh Dinh Ph.D. in Computer Science

Motivation

Motivation

Motivation

Image

Input Space

Image

Output Space

Image Segmentation

https://www.v7labs.com/blog/image-segmentation-guide

Segmentation

Traditional method

Original Image

K-Mean Segmentation

Segmentation

Oxford-IIIT-Pet

https://www.robots.ox.ac.uk/~vgg/data/pets/

Discussion

Input/Output + Loss Function

Image Classification

Temperature Forecasting

Discussion

One-Hot Encoding and Cross-entropy

Feature	Label	
Detail I amath	T -1 -1	
Petal_Length	Label	
1.4	0	
1.3	0	
1.5	0	
4.5	1	
4.1	1	
4.6	1	
5.2	2	
5.6	2	
5.9	2	

 $y \in \{0,1,2\}$

One-hot encoding for label

$$\mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} \qquad y_i \in \{0,1\} \qquad \sum_i y_i = 1$$

$$y = 0 \to \mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad y = 1 \to \mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad y = 2 \to \mathbf{y} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Loss function

$$L(\mathbf{\theta}) = -y_2 \log(\hat{\mathbf{y}}_2) - y_1 \log(\hat{\mathbf{y}}_1) - y_0 \log(\hat{\mathbf{y}}_0)$$
$$= -\sum_i y_i \log(\hat{\mathbf{y}}_i)$$

Discussion – Classification Problem

Discussion – Regression Problem

Discussion – Segmentation Problem

Loss Function

Pixel-wise and color-based method

```
(1x1) Convolution
                        Batch
padding = 'same'
                        Norm
     ReLU
```

```
class CNN Segmentation(nn.Module):
        def _ init__(self):
            super().__init__()
            self.conv1 = ConvBlock(3, 64, kernel size=1)
            self.conv2 = ConvBlock(64, 64, kernel_size=1)
            self.conv3 = ConvBlock(64, 64, kernel_size=1)
 6
            self.conv4 = nn.Conv2d(64, 3, kernel size=1)
 8
        def forward(self, x):
 9
10
            x = self.conv1(x)
            x = self.conv2(x)
11
12
            x = self.conv3(x)
            x = self.conv4(x)
13
14
            return x
```


Result

Input Image

True Mask

Predicted Mask

Increase kernel sizes

```
(5x5) Convolution
                        Batch
padding = 'same'
                        Norm
     ReLU
```

```
class CNN_Segmentation(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1 = ConvBlock(3, 64, kernel_size=5)
            self.conv2 = ConvBlock(64, 64, kernel_size=5)
            self.conv3 = ConvBlock(64, 64, kernel_size=5)
            self.conv4 = nn.Conv2d(64, 3, kernel_size=5)
        def forward(self, x):
10
            x = self.conv1(x)
11
            x = self.conv2(x)
            x = self.conv3(x)
12
            x = self.conv4(x)
13
14
            return x
```


Result

for epoch in range(max_epoch): model.train() for inputs, targets in train_loader: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step()

Input Image

True Mask

Predicted Mask

Keep increasing

```
(9x9) Convolution
                        Batch
padding = 'same'
                   +
                        Norm
     ReLU
                      (5x5) Convolution
                                              Batch
                      padding = 'same'
                                              Norm
                           ReLU
```

```
class CNN_Segmentation(nn.Module):

def __init__(self, n_channels, n_classes):

super().__init__()

self.conv1 = ConvBlock(3, 64, kernel_size=9)

self.conv2 = ConvBlock(64, 64, kernel_size=9)

self.conv3 = ConvBlock(64, 64, kernel_size=5)

self.conv4 = ConvBlock(64, 64, kernel_size=5)

self.conv5 = ConvBlock(64, 64, kernel_size=5)

self.conv6 = nn.Conv2d(64, 3, kernel_size=3, padding='same')
```


Result

```
for epoch in range(max_epoch):
    model.train()

for inputs, targets in train_loader:
    inputs, targets = inputs.to(device), targets.to(device)

optimizer.zero_grad()

outputs = model(inputs)

loss = criterion(outputs, targets)

loss.backward()
optimizer.step()
```

Input Image

True Mask

Predicted Mask

Make it more efficient


```
1 class FCN_Segmentation(nn.Module):
        def init (self):
            super().__init__()
            self.enc_1 = Encoder(3, 64)
            self.enc_2 = Encoder(64, 128)
 5
            self.enc_3 = Encoder(128, 256)
 6
            self.enc_4 = Encoder(256, 512)
            self.enc_5 = Encoder(512, 512)
 8
            self.enc_6 = Encoder(512, 512)
 9
10
            self.out_conv = nn.Conv2d(512, 128*128*3,
                                      kernel_size=2)
11
12
13
        def forward(self, x):
            x = self.enc_1(x)
14
            x = self.enc_2(x)
15
            x = self.enc_3(x)
16
            x = self.enc 4(x)
17
            x = self.enc_5(x)
18
            x = self.enc_6(x)
19
            x = self.out_conv(x)
20
            return torch.reshape(x, (-1, 3, 128, 128))
21
```

Further Reading

Fully Convolutional Networks

https://arxiv.org/pdf/1411.4038.pdf

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley

{jonlong, shelhamer, trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [19],

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

- ***** Image upsampling
 - **Data interpolation**

Tìm giá trị cho các vị trí u, v, p và q

Nearest neighbor: Tính khoảng cách đến x_1 và x_2 , và lấy giá trị của x gần hơn

Nội suy theo hàm tuyến tính

***** Image upsampling

***** Data interpolation

Nội suy theo hàm tuyến tính

Nearest neighbor interpolation

Tìm giá trị cho các vị trí u, v, p và q

Nearest neighbor: Tính khoảng cách đến x_1 và x_2 , và lấy giá trị của x gần hơn

doto —	1	5
data =	4	8

1	1	5	5
1	1	5	5
4	4	8	8
4	4	8	8

Nearest neighbor interpolation

***** Bilinear interpolation

Tìm giá trị cho các vị trí u, v, p và q

Nội suy theo hàm tuyến tính

$$data = \begin{array}{|c|c|} \hline 1 & 5 \\ \hline 4 & 8 \\ \hline \end{array}$$

1.0	2.0	4.0	5.0
1.7	2.7	4.7	5.7
3.2	4.2	6.2	7.2
4.0	5.0	7.0	8.0

Bilinear interpolation

How to Upsample Feature Maps

***** Interpolation

Naïve approach: Only use 'image upsampling'

Output feature maps are lack of details

Use 'image upsampling'+Conv

Encoding


```
class Encoder(nn.Module):
        def __init__(self, in_channels, out_channels):
 2
 3
            super().__init__()
            self.encoder = nn.Sequential(
 4
                nn.Conv2d(in_channels, out_channels,
 5
                           kernel_size=3, padding=1),
 6
                nn.BatchNorm2d(out_channels),
                nn.ReLU(inplace=True),
 8
                nn.MaxPool2d(2)
10
11
12
        def forward(self, x):
13
            x = self.encoder(x)
14
            return x
```



```
class Decoder(nn.Module):
        def __init__(self, in_channels, out_channels):
            super().__init__()
            self.up_sample = inn.Upsample(scale_factor=2,
                                          mode='bilinear',
                                           align_corners=True)
            self.refinement = nn.Sequential(
                nn.Conv2d(in_channels, out_channels,
                           kernel_size=3, padding=1),
                nn.BatchNorm2d(out_channels),
10
                nn.ReLU(inplace=True)
11
12
13
        def forward(self, x):
14
            x = self.up_sample(x)
15
            x = self.refinement(x)
16
            return x
                                                           (256,16,16)
                                           (512,8,8)
```

(512,4,4)

Segmentation (5)

Decoding

ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, 2018

Perception-Oriented Single Image Super-Resolution using Optimal Objective Estimation, CVPR 2023

Using skip connections

With Skip Connections

Input Image

True Mask

Predicted Mask

Without Skip Connections

