GIẢI TÍCH I BÀI 13

§3.2. ĐẠO HÀM RIÊNG VÀ VI PHÂN (TT)

2. Vi phân toàn phân

Định nghĩa. f(x, y) xác định trên $D \subset \mathbb{R}^2$, $M_0(x_0; y_0) \in D$. Nếu $\exists A, B$ không phụ thuộc vào Δx , Δy để có $\Delta f = A \Delta x + B \Delta y + \alpha \Delta x + \beta \Delta y$, ở đó $\lim_{\Delta x \to 0} \alpha = 0$, $\lim_{\Delta x \to 0} \beta = 0$

thì ta bảo hàm f khả vi tại M_0 và có d $f(M_0) = A\Delta x + B\Delta y$ là vi phân toàn phần của hàm f tai M_0 .

Hàm f được gọi là khả vi trong miền $D \Leftrightarrow f$ khả vi tại $\forall M \in D$.

Chú ý. f(x, y) khả vi tại $M_0(x_0; y_0) \Rightarrow f(x, y)$ liên tục tại $M_0(x_0; y_0)$.

Ví dụ 1. Xét tính khả vi của các hàm số sau tại (0; 0)

a) u = x + 2y

b) $u = 2x + \sqrt[3]{y}$

b)
$$u = 2x + \sqrt[3]{y}$$

c) $f(x, y) = \begin{cases} \frac{x^3y}{x^6 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ (f không liên tục tại $(0; 0) \Rightarrow$ không khả vi)
d) $f(x, y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$
e)(K50) 1. $f(x, y) = \begin{cases} \frac{x \tan y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$
(f không liên tục tại $(0; 0) \Rightarrow$ không khả vi)

d)
$$f(x, y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

e)(K50) 1.
$$f(x, y) =\begin{cases} \frac{x \tan y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

(f không liên tục tại (0; 0) \Rightarrow không khả vi)

2.
$$f(x, y) = \begin{cases} \frac{x \sin y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$
 (không khả vi)
f)(K62) Cho $Z(x, y) = \sqrt[3]{x^4 + y^2}, Z \text{ có khả vi tại } (0, 0) ? \text{ Tại sao } ?$

(không có $Z_{v}(0,0) \Rightarrow$ không khả vi)

Định lí 1. f(x, y) có các đạo hàm riêng cấp 1 liên tục trong lân cận $M_0(x_0; y_0)$ \Rightarrow f(x, y) khả vi tại $M_0(x_0; y_0)$ và có $dz = f'_x \Delta x + f'_y \Delta y$

Ví dụ 2. Tính vi phân toàn phần

a)
$$z = \frac{1}{2} \ln(x^2 + y^2)$$
 b) $u = \frac{z}{\sqrt{x^2 + y^2}}$, $du(3, 4, 5)$

c) $z = \arctan xy$

d)(K59)

1) $u = x^{y^z}$ tại A(3;1;2) (dx+6ln3dy). 2) $u = x^{y^z}$ tại A(3;1;2) (dx+6ln2dy).

Chú ý. Dựa vào vi phân để tính gần đúng:

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y$$

Ví dụ 3. Tính gần đúng

a)
$$(1,02)^3(0,97)^2$$

b)
$$\sqrt{(4,05)^2 + (2,93)^2}$$

c)
$$(1,04)^{2,02}$$

d)
$$\ln(\sqrt[3]{1,03} + \sqrt[4]{0,98} - 1)$$

f) Tính gần đúng sự biến thiên của hàm số $z = \frac{x+3y}{y-3x}$ khi x biến thiên từ $x_1 = 2$

đến x_2 = 2,5 còn y từ y_1 = 4 đến y_2 = 3,5.

- g) Hình chữ nhật có hai cạnh a = 10cm và b = 24cm. Đường chéo / thay đổi như thế nào nếu cạnh a dài thêm 4mm còn cạnh b ngắn đi 1mm? Tính giá trị gần đúng và so sánh với giá trị đúng của nó.
- h) Chiều cao của một hình nón h = 30cm, bán kính đáy R = 10cm. Thể tích của nó thay đổi như thế nào nếu tăng h thêm 3mm và giảm R đi 1mm?

i)(K53) 1.
$$\ln(0.02 + \sqrt[3]{1.03})$$
 (0.03) 2. $\sqrt[3]{(1.97)^2 + 4e^{0.06}}$ (2.01)
k)(K55) 1. $A = \sqrt[3]{(1.04)^3 + (2.03)^2 + 3}$ (2.02)
2. $A = \sqrt[4]{(3.04)^2 + (2.02)^3 - 1}$ (2.015)
l)(K59) 1) $\sqrt[3]{2(2.98)^3 - 3(4.01)^2 + 2}$ (1.89).
2) $\sqrt[3]{4(1.97)^2 - (3.02)^3 + 3}$ (-2.085)

3. Vi phân hàm hợp, tính bất biến, các dạng vi phân

Cho hàm f. $B \subset \mathbb{R}^2 \to \mathbb{R}$, $\varphi: D \subset \mathbb{R}^2 \to B$

$$(x, y) \xrightarrow{\varphi} (u(x, y), v(x, y)) \xrightarrow{f} f(u(x, y), v(x, y))$$

Định lí 2. f có các đạo hàm riêng liên tục trên B, còn u, v có các đạo hàm riêng liên tục trên D thì $f \circ \varphi$ có các đạo hàm riêng và

$$\frac{\partial}{\partial x}(f \circ \varphi) = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} ; \quad \frac{\partial}{\partial y}(f \circ \varphi) = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}$$

Chú ý.

1°/
$$z = f(x, y), y = y(x)$$
 thì có $\frac{dz}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}y'(x)$

2°/
$$z = f(x, y), x = x(t), y = y(t)$$
 thì có $\frac{dz}{dt} = \frac{\partial f}{\partial x} x'(t) + \frac{\partial f}{\partial y} y'(t)$

Ví dụ 4. Tính

a)
$$\frac{dz}{dt}$$
, $z = \frac{x}{v}$, $x = e^t$, $y = \ln t$

b)
$$\frac{dz}{dx}$$
, $z = u^v$, $u = \sin x$, $v = \cos x$

c)
$$z'(x)$$
 và $\frac{dz}{dx}$, $z = \arctan \frac{y}{x}$, $y = x^2$

d)
$$\frac{\partial z}{\partial u}$$
, $\frac{\partial z}{\partial v}$, $z = \arctan \frac{x}{y}$, $x = u \sin v$, $y = u \cos v$

e)
$$u = \frac{e^{zx(y-z)}}{a^2+1}$$
, $y = a\sin x$, $z = \cos x$, tính $\frac{du}{dx}$.

f)(K58)

1. Cho z=f(x(t),y(t)), ở đó các hàm f(x,y), x=g(t), y=h(t) khả vi và có g(3)=2,

$$g'(3) = 5$$
, $h(3) = 7$, $h'(3) = -4$, $f'_{x}(2,7) = 6$ và $\frac{dz}{dt}(3) = -2$. Tính $f'_{y}(2,7)$. (8)

2. Cho z=f(x(t),y(t)), ở đó các hàm f(x,y), x=g(t), y=h(t) khả vi và có g(3)=0,

$$g'(3) = -5$$
, $h(3)=7$, $h'(3) = 4$ $f'_{y}(0,7) = 8$ và $\frac{dz}{dt}(3) = -3$. Tính $f'_{x}(0,7)$. (7)

g)(K61)

Cho z=z(u,v) khả vi trên \mathbb{R}^2 , $z'_u(1,-1)=2$, $z'_v(1,-1)=3$, đặt $z'_v(1,-1)=3$, đặt $z'_v(1,-1)=3$. Tính $z'_v(-1)$.

h)(K62)

1) Cho f(x) khả vi cấp hai trên \mathbb{R} . CMR w(u,t)=f(u-3t) thỏa mãn phương

trình truyền sóng,
$$\frac{\partial^2 w}{\partial t^2} = 9 \frac{\partial^2 w}{\partial x^2}$$
.

2) CMR hàm số $u(x,t) = e^{-16t}\cos(2x+3)$ thỏa mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}.$$

Tính bất biến của vi phân cấp 1:

$$z = z(u, v), u = u(x, y), v = v(x, y) \Rightarrow dz = \frac{\partial f}{\partial u} du + \frac{\partial f}{\partial v} dv$$

Phép toán: u, v là các hàm khả vi, khi đó ta có

$$d(u\pm v) = du\pm dv$$
, $d(uv) = udv + vdu$, $d(\frac{u}{v}) = \frac{vdu - udv}{v^2}$, $v \neq 0$

4. Đạo hàm của hàm ẩn

Khái niệm về hàm ấn:

Hệ thức F(x, y) = 0 xác định một hay nhiều hàm ẩn y theo x.

Tương tự, hệ thức F(x, y, z) = 0 xác định một hay nhiều hàm ẩn z theo các biến số x và y.

Hệ hai phương trình $\begin{cases} F(x, y, z, u, v) = 0 \\ G(x, y, z, u, v) = 0 \end{cases}$ xác định một hay nhiều cặp hàm số ẩn

u, v của ba biến số x, y, z.

Định lí 3. $F(x_0, y_0) = 0$, F(x, y) có các đạo hàm riêng liên tục trong lân cận $M_0(x_0, y_0)$ và $F'_{\mathcal{Y}}(M_0) \neq 0$ thì hệ thức F(x, y) = 0 xác định hàm ẩn y = f(x) trong lân cận nào đó của điểm x_0 , thoả mãn $y(x_0) = y_0$ và khả vi liên tục trong lân cận này, và có

$$y'(x_0) = -\frac{F_x'(M_0)}{F_y'(M_0)}$$

Ví dụ 5. Cho $x^2 + y^2 = r^2$, tính y'

Định lí 4. $F(x_0, y_0, z_0) = 0$, F(x, y, z) có các đạo hàm riêng liên tục trong lân cận $M_0(x_0, y_0, z_0)$ và $F'_z(M_0) \neq 0$, khi đó hệ thức F(x, y, z) = 0 xác định hàm ẩn z = f(x, y) trong lân cận nào đó của (x_0, y_0) thoả mãn $z(x_0, y_0) = z_0$ liên tục và có các đạo hàm riêng liên tục trong lân cận này, và có

$$Z'_{x}(x_{0}; y_{0}) = -\frac{F'_{x}}{F'_{z}}(M_{0}), \ Z'_{y}(x_{0}; y_{0}) = -\frac{F'_{y}}{F'_{z}}(M_{0})$$

Định lí 5. $F(x_0, y_0, z_0, u_0, v_0) = 0$, $G(x_0, y_0, z_0, u_0, v_0) = 0$, các hàm F(x, y, z, u, v), G(x, y, z, u, v) có các đạo hàm riêng liên tục trong lân cận $M_0(x_0, y_0, z_0, u_0, v_0)$ và định thức

$$D \equiv \frac{D(F,G)}{D(u,v)} = \begin{vmatrix} F'_u & F'_v \\ G'_u & G'_v \end{vmatrix} \neq 0,$$

khi đó hệ thức $\begin{cases} F(x, y, z, u, v) = 0 \\ G(x, y, z, u, v) = 0 \end{cases}$ xác định hai hàm ẩn u = f(x, y, z), v = g(x, y, z)

trong lân cận nào đó của (x_0, y_0, z_0) , thoả mãn $u(x_0, y_0, z_0) = u_0$, $v(x_0, y_0, z_0) = v_0$, các hàm u, v liên tục và có các đạo hàm riêng liên tục trong lân cận này và có

$$u_x'(x_0;y_0;z_0) = -\frac{1}{D} \cdot \frac{D(F,G)}{D(x,v)}(M_0); v_x'(x_0;y_0;z_0) = -\frac{1}{D} \cdot \frac{D(F,G)}{D(u,x)}(M_0).$$

Tương tự có $u_y'(x_0; y_0; z_0), v_y'(x_0; y_0; z_0), u_z'(x_0; y_0; z_0), v_z'(x_0; y_0; z_0)$

Ví du 6.

a)
$$z^{3} - 3xyz = a^{3}$$
, tính dz

b)
$$1 + xy - \ln(e^{xy} + e^{-xy}) = 0$$
, tính dy.

c)
$$\frac{x}{z} = \ln \frac{y}{z} + 10$$
, tính dz

d)
$$\begin{cases} x + y + z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$
, tính dy, dz.

- e) $x = u \cos v$, $y = u \sin v$, $z = u^2$, tính vi phân toàn phần dz.
- f) $x = v \cos u u \cos v + \sin u$, $y = v \sin u u \sin v \cos u$, $z = (u v)^2$, tính dz.
- g)(K50) Phương trình $x.e^{yz} = y + z + 1$ xác định hàm ẩn z(x, y). Tính dz(0; 0)

h)(K51) 1) Hàm ẩn z = z(x, y) xác định bởi phương trình $z - ye^{x/z} = 0$. Tính dz(0; 1) (dx + dy)

2) Hàm ẩn z = z(x, y) xác định bởi phương trình $xe^{y/z} - z = 0$. Tính dz(1;0)

(dx - dy)

i)(K53) 1) Phương trình $x + 2y + z = ye^{xz}$ xác định hàm ẩn z = z(x, y). Tính dz(0; 1) (-2dx - dy)

2) Phương trình $xe^{yz} = 2x - y - z$ xác định hàm ẩn z = z(x, y). Tính dz(1; 0) (dx - 2dy)

3) Phương trình $y(z-\sqrt{x^2-z})=-2$ xác định hàm ẩn z=z(x,y). Chứng minh rằng $\frac{1}{x}z_x'+y^2z_y'=2$

4) Phương trình $x\left(z-\sqrt{y^3-z}\right)=3$ xác định hàm ẩn z=z(x,y). Chứng minh rằng $x^2z_x'-\frac{1}{y^2}z_y'=-3$

k)(K55) 1)
$$x^3 - 2y^3 + 3z^3 = (x+y)z$$
. Tính $dz(1;-1)$ $\left(-\frac{4}{9}dx + \frac{5}{9}dy\right)$

2)
$$3x^3 + 2y^3 + z^3 = (x+y)z$$
. Tính $dz(-1;1)$ $\left(-\frac{8}{3}dx - \frac{5}{3}dy\right)$

I)(K56) 1)
$$\sin(x-z) = e^{y-z}$$
, tính $z'_x + z'_y$ (1)

2)
$$\cos(z+y) = e^{z+x}$$
, tính $z'_x + z'_y$ (-1)

m)(K57) 1) Cho
$$x(z-\sqrt{y-z})=-1$$
. CMR $x^2z'_x+z'_y=1$

2) Cho
$$y(z-\sqrt{x-z}) = -1$$
. CMR $z'_x + y^2 z'_y = 1$

n)(K58)

1) Cho
$$yz = \ln(x+z) . \text{Tính } z'_x, z'_y$$
 $(z'_x = \frac{1}{y(x+z)-1}, z'_y = \frac{z(x+z)}{1-y(x+z)})$

2)Cho
$$x - z = \arctan(yz)$$
. Tính z'_x , z'_y $(z'_x = \frac{1 + (yz)^2}{1 + y + (yz)^2}, z'_y = \frac{-z}{1 + y + (yz)^2})$

o)(K59) 1)Cho
$$x^3 + 2xy^2 + 2yz + z^3 = 2.\text{Tính } z'_x(1;0), z'_y(1;0)$$
 (-1;-\frac{2}{3})

2) Cho
$$2x^2y + 4y^2 + x^2z + z^3 = 3$$
. Tính $z'_x(0;1)$, $z'_y(0;1)$ $(0;-\frac{8}{3})$

p)(K60) Cho $x^2 \arctan z + 2xy^2 + y^4 + 2z^3 = 1$. Tính z'_x , z'_y .

$$(z'_x = -\frac{(2x\arctan z + 2y^2)(z^2 + 1)}{x^2 + 6z^2(z^2 + 1)}, z'_y = -\frac{4(xy + y^3)(z^2 + 1)}{x^2 + 6z^2(z^2 + 1)})$$

2) Cho $x^3 + y^2 \arctan z - 4x^2y + 2y + z^5 = 2$. Tính z'_x , z'_y .

$$(z'_{x} = -\frac{(3x^{2} - 8xy)(z^{2} + 1)}{y^{2} + 5z^{4}(z^{2} + 1)}, z'_{y} = -\frac{2(y \arctan z - 2x^{2} + 1)(z^{2} + 1)}{y^{2} + 5z^{4}(z^{2} + 1)})$$
3) Cho $x^{3} + 2y^{3} + 3x^{2}y = 2$. Tính $y'(0)$. (0)

q)(K61) Phương trình $x^3 - y^3 + 3xy - 13 = 0$ xác định hàm ẩn y=y(x). Viết phương trình tiếp tuyến của đồ thị hàm ẩn này, tại điểm A(-1;-2).

$$(y=-\frac{x+11}{5}).$$

Have a good understanding!