QUESTIONNAIRE CODE DE L'EPREUVE M 1 0 Q 2 0 S 4 H 4
9. Soit la fonction f définie par $f(x) = \frac{ax^2}{bx^2 + 6x + c}$ avec a, b, c des réels et (C) sa
$6x^2 + 6x + c$ courbe représentative. La courbe (C) admet pour asymptotes les équations
x-1=0, $y+2=0$ et $x-2=0$.
Le réel a + b + c est égal à :
1. 6. 2. 1. 32. 44. 542.
1. 6. 2. 1. 32. 44. 542. 10. On considère dans $\mathbb R$ la fonction f definie par $f(x) = \sqrt{\frac{x^2 - 1}{x^2 - 4}}$ et
f^{-1} sa réciproque. Le réel $f^{-1}(0)$ est é gal à :
1. 2. 2. $\sqrt{7}$. 3 3. 4. $\frac{1}{2}$. 5. 1. 11. Soft f la fonction définie dans \mathbb{R} par $f(x) = \frac{1}{x-2} - \frac{1}{x^2 - x - 2}$ et (C) sa courbe
11. Soit f la fonction définie dans \mathbb{R} par $f(x) = \frac{1}{x-2} - \frac{1}{x^2-x-2}$ et (C) sa courbe
représentative. La courbe (C) admet des asymptotes dont les équations sont :
1. $x-3=0$ et $y=2x$.
2. $x = 3$ et $y = 2x + 12$. 3. $x = 1$, $x = -1$ et $y = -1$.
4. $x = -1$. $x = 2$ et $y = 0$.
5. $x = 2$, $x = -2$ et $y = 1$.
12. Soit la fonction f dans \mathbb{R} définie par $f(x) = \frac{(x+1)^3}{x^2}$ et (C) sa courbe
représentative. La courbe (C) présente un :
1. minimum au point (1, 0). 4. minimum au point $(\frac{1}{2}, \frac{27}{4})$.
2. max au point $(\frac{1}{3},0)$. 5. minimum au point $(-1, 0)$ et $(\frac{1}{2},27)$.
3. max au point (-1, 0).
13. Soit f la fonction définie dans \mathbb{R} par $f(x) = \frac{x^2 - 6}{x + 3}$ et f et f sont
respectivement les dérivées 1 et 2 de la fonction f .
Le réel $f'(0) + f''(0) - [f'(0), f''(0)]$ vaut :
1. $-\frac{14}{9}$. 2. $\frac{2}{9}$. 3. $\frac{2}{3}$. 4. $\frac{20}{27}$. 5. 3.
14. La limite de la fonction $f(x) = \frac{\sqrt{4-x}-2}{x}$ lorsque x tend vers 0 vaut :
1. $\frac{4}{3}$. 2. $\frac{3}{4}$. 3. $\frac{1}{4}$. 4. $-\frac{1}{4}$. 5. $\frac{-3}{4}$. 15. Une pile de force électromotrice égale à 1,43 V, dont la résistance intérieure est de
15. Une pile de force électromotrice égale à 1,43 V, dont la résistance intérieure est de 1,5 Ω , débite un courant dans un circuit de résistance R = 3 Ω . La tension aux bornes de la pile vaut :
1. 0,95 V. 2. 0,97 V. 3. 0,93 V. 4. 0,91 V. 5. 0,86 V.
16. Une dynamo dont la résistance intérieure égale à 0,2 Ω débite un courant de 20 A dans un conducteur dont la résistance est égale à 3,5 Ω . La puissance de cette dynamo vaut :
1. 1 ch. 2. 1,3 ch. 3. 1,2 ch. 4. 1,5 ch. 5. 2 ch.