正点原子 广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2019/10/21	首次发布
V1.1	2020/03/09	添加小型接收端相关说明
V1.2	2023/04/25	修改小型接收端图示
V2.0	2023/11/13	添加 WINUSB 固件说明

目录

1,	产品简介	3
	1.1,产品特点	3
	1.2,基本参数	3
	1.3,产品实物图	4
	1.4,接线示意图	
	1.5, 高速无线调试器工作原理示意图	7
2,	驱动安装	8
	2.1,注意事项	
	2.2,HID 通信模式驱动安装	8
	2.3,WINUSB 通信模式驱动安装	8
3,	MDK 配置教程	9
	3.1,注意事项	9
	3.2,配置步骤	9
4,	IAR 配置教程	12
	4.1,注意事项	12
	4.2,配置步骤	12
5,	参数配置	15
	5.1, 相关参数说明	15
	5.2, 通信参数配置	17
	5.2.1,自动频率模式配置	17
	5.2.2,手动频率模式配置	19
	5.3, 电压模式配置	22
	5.4,兼容模式设置	23
	5.5, SN 设置	24
6,	串口使用	26
7,	指示灯说明	27
8,		
	8.1,更新发送端固件	
	8.2,更新接收端固件	29
9,	读保护设置	31
10,	, 调试器简单问题查找步骤	32
	步骤一	32
	步骤二	32
	步骤三	32
	步骤四	33
	步骤五	35
11.	, 常见问题	36

1,产品简介

1.1,产品特点

采用 2.4G 无线通信,自动跳频 支持 1.8V~5V 设备,自动检测 支持 1.8V/3.3V/5V 电源输出,需上位机设置,且小型接收端不支持 支持目标板取电/给目标板供电 支持 MDK/IAR 编译器,无需驱动,不丢固件 支持 ARM Cortex-M 系列等内核 ARM 芯片 支持仿真调试,支持代码下载、支持虚拟串口 提供 20P 标准 JTAG 接口、提供 4P 简化 SWD 接口 支持 WIN7/WIN8/WIN10/WIN11 等操作系统 尺寸小巧,携带方便

1.2, 基本参数

产品名称	ATK-HSWLDBG 高速无线调试器	
产品型号	ATK-PTD02HW	
支持芯片	ARM Cortex-M 全系列	
通信方式	USB(免驱)	
仿真接口	JTAG、SWD	
支持编译器	MDK, IAR	
串口速度	1Mbps (max)	
烧录速度	10M	
通信距离	≥10 米(使用 RXmin 端的时候, ≥5 米)	
TX 端工作电压	5V (USB 供电)	
TX 端工作电流	151mA	
RX 端工作电压	3. 3V/5V (USB 或者 JTAG 或者 SWD 供电)	
RX 端工作电流	132mA@5V	
RXmin 端工作电压	3. 3V/5V (USB 或者 JTAG 或者 SWD 供电)	
RXmin 端工作电流	60mA@5V	
工作温度	-40°C~+85°C	
尺寸	66.5mm*40mm*17mm	
RXmin 尺寸	40mm*20mm	

1.3,产品实物图

图发送端

图接收端

图接收端接口

输出电压示意图,所有标注 GND 的引脚均为地线

小型接收端

1.4,接线示意图

高速无线调试器发送端,接线图:

高速无线调试器接收端, USB 接口供电, 接线示意图:

1.5 , 高速无线调试器工作原理示意图

2, 驱动安装

2.1, 注意事项

- 1、WIN8 及以上系统一般无需安装驱动。
- 2、HID 通信模式与 WINUSB 通信模式需要安装不同的驱动

2.2, HID 通信模式驱动安装

参考"HID 串口驱动"目录下的相关说明安装串口驱动

2.3, WINUSB 通信模式驱动安装

参考"WINUSB驱动"目录下的相关说明安装串口驱动和 DAP驱动。

3,MDK 配置教程

3.1, 注意事项

- 1,低版本 MDK 对高速无线调试器 的支持不完善,推荐 MDK5.23 及以上版本。
- 2,在 HID 模式下, MDK5. 23~MDK5. 26 对高速无线调试器 的支持都有 bug,必 须打补丁。参考"MDK 补丁"目录下的说明文档操作。
- 3,在 WINUSB 模式下, MDK 对高速无线调试器 的支持都有 bug,必须打补丁。 参考"MDK 补丁"目录下的说明文档操作。
- 4,不建议使用高速无线调试器对外供电,容易造成不稳定。如果 出现不稳定的情况,参考第 5 章参数设置,把电压设置为输入

3.2, 配置步骤

- 1、高速无线调试器的发送端通过 USB 接口,连接上电脑。
- 2、高速无线调试器的接收端通过 JTAG 接口或者 SWD 接口,连接上目标 MCU。 注意可以直接使用 JTAG 接口或者 SWD 接口给高速无线调试器接收端供电(如 有问题,参考第 10 章,常见问题 3),发送端和接收端的灯必须是蓝色常亮。
- 3、打开 MDK,如下图点击红框中的图标。

4、在弹出的页面进行如下操作。如下图红框 1 所示,选择 Debug 页面。然后如下图红框 2 所示,配置成如下选项(注意英文 Use 前面的点)。最后点击红框 3 的 Settings 按钮。

5、在弹出的页面进行如下操作。如下图红框 1 所示,选择 Debug 页面。然后如下图红框 2 和红框 3 (注意红框 3"SWJ"前面的勾,要勾上),以及红框 4 所示,配置成如下选项。如果接收端接上 MCU 后,出现无法识别芯片 IDCODE,把时钟设置成 1M,并且参考第 4 章,设置兼容模式为"普通"。

6、切换到 Flash Download 页面。如下图红框 1 所示,选择 Flash Download 页面。然后如下图红框 2,配置成如下选项。红框 3 配置根据使用芯片进行相应的选择,本教程使用 stm32f103。

最后点击红框 4 的"OK"按钮。

7、回到上一级页面。如下图红框 1 所示,选择 Utilities 页面。然后如下图红框 2 所示,配置成如下选项。最后点击红框 3 的"OK"按钮。这样 MDK 的配置就完成了,然后就可以下载和调试了。

4,IAR 配置教程

4.1, 注意事项

- 1,注意低版本 IAR 对高速无线调试器 的支持不完善,推荐 IAR9.0 及以上版本。
- 2, IAR7.10 对高速无线调试器的支持有 bug,参考"iar710 补丁"目录下相关说明解决。
- 3,不建议使用高速无线调试器 对外供电,容易造成不稳定。如果 出现不稳定的情况,参考第 5 章参数设置,把输出电压设置为输入。

4.2, 配置步骤

- 1、高速无线调试器的发送端通过 USB 接口,连接上电脑。
- 2、高速无线调试器的接收端通过 JTAG 接口或者 SWD 接口,连接上目标 MCU。 注意可以直接使用 JTAG 接口或者 SWD 接口给高速无线调试器接收端供电(如有问题,参考第 10 章,常见问题 3),发送端和接收端的灯必须是蓝色常亮。
- 3、如下图,点击下图红框的菜单

4、点击下图红框的选项

5、选择红框1的选项,在红框2选择"CMSIS DAP"

6、选择红框 1 的选项,在红框 2 选择 "Setup" 页面,然后在红框 3 选择 "system"

7、在红框 1 选择"Interface"页面,然后按红框 2,选择对应的选项。**注意** 如果出现不稳定现象,把 interface 那个参数由"Auto detect"改成 1M。

8、参考第5章,设置兼容模式为"普通"。

5,参数配置

5.1, 相关参数说明

注意出厂之前已经配置好相关参数,一般无须配置。V1.2 版本及以上版本固件必须使用 V1.1 版本及以上版本的配置软件。

参数说明如下表

罗双地切知	1 70	
参数	描述	备注
频率模式	发送端和接收端通信的频率模式	发送端和接收端必须相
		同,默认"自动"频率模
		式
频率	发送端和接收端通信的频率,只在	发送端和接收端必须相同
	手动频率模式下有用	
ID	发送端和接收端通信的识别 ID	发送端和接收端必须相同
包大小	发送端和接收端通信的单个包的最	发送端和接收端必须相
	大大小	同,默认"小包"模式
电压模式	接收端在对应引脚的输出电压值	只有接收端可以配置,默
		认"输入"模式。小型接
		收端只能工作在 3.3V,不
		支持配置
兼容模式	设置调试器兼容性	只有接收端可以配置,默
		认"下载运行"模式
SN	设置 SN	只有发送端可以配置

频率模式说明

频率模式	描述	备注
自动频率	自动选择无线通信频率	最多可以 5 个高速无线
		调试器一起工作
手动频率	手动固定无线通信频率	范围 2406MHz~2480MHz,
		由频率参数指定

包大小说明

包大小	描述	备注	
大包	无线通信时,使用:	大 在所有包大小选项中, 无线传输速度最	
	包	快,但是稳定性最差	
中包	无线通信时,使用	在所有包大小选项中, 无线传输速度适	
	包	中,稳定性适中	
小包	无线通信时,使用/	、 在所有包大小选项中, 无线传输速度最	
	包	慢,但是稳定性最好	

电压模式说明

注意: 所有 Vext 引脚都是相连的,小型接收端只支持 3.3V 工作电压,不可以配置

电压模式	描述	备注
输入	没有电压输出,可以根据 Vext 引脚	串口或者 SWD 接 3 线的
	的电压适配 1.8V~5V 工作电压范围	时候,需要在 Vext 引脚
		提供电压输入才能正常
		工作
输出 1.8V	上电时, Vext 引脚输出 1.8V, 并且	用户需要注意电压是否
	所有 IO 引脚高电平电压变为 1.8V	匹配
	电压	
输出 3.3V	上电时, Vext 引脚输出 3.3V, 并且	用户需要注意电压是否
	所有 IO 引脚高电平电压变为 3.3V	匹配
	电压	
输出 5V	上电时, Vext 引脚输出 5V, 并且所	用户需要注意电压是否
	有 IO 引脚高电平电压变为 5V 电压	匹配

电压输出能力如下表

兼容模式说明

兼容模式	描述	备注
下载运行	不接 NRST 引脚,MDK 也能下载自动运行	可能影响稳定性
	不接 NRST 引脚,MDK 不	更好的稳定性
	能下载自动运行	

5.2, 通信参数配置

5.2.1,自动频率模式配置

- 1、需要先通过 USB 接口,把高速无线调试器的发送端和接收端一起连接的电脑上。
- 2、打开配置软件"高速无线调试器配置软件",如下图,选择发送端设备,并扫描设备

3、如下图,选择无线参数

4、参数选择如下图,最后点击"设置参数"按钮,设置参数

无线参数配置		
频率模式	自动~	
频率 (Hz)		有效范围2406Hz~2480Hz
ID	535DA35855A15551	生成ID
包大小	大包~	点击这里设置参数
	读取参数	设置参数

5、正常提示如下

6、如下图,选择接收端设备,如果使用小型接收端,选择设备类型为"RXmin"

7、如下图,注意红框的参数必须与步骤4中的一样,最后点击"设置参数"按钮

8、最后要断开设备,如下图

5.2.2,手动频率模式配置

- 1、需要先通过 USB 接口,把高速无线调试器的发送端和接收端一起连接的电脑上。
- 2、打开配置软件"高速无线调试器配置软件",如下图,选择发送端设备,并扫描设备

3、如下图,选择无线参数

4、 参数选择如下图,最后点击"设置参数"按钮,设置参数

无线参数配置		
频率模式	手动 ~	
频率(Hz)	2440	有效范围2406Hz~2480Hz
ID	535DA35855A15551	生成ID
包大小	大包~	点击这里,设置参数
	读取参数	设置参数

5、 正常提示如下

6、如下图,选择接收端设备,如果使用小型接收端,选择设备类型为"RXmin"

7、如下图,注意红框的参数必须与步骤4中的一样,最后点击"设置参数"按钮

8、最后要断开设备,如下图

5.3, 电压模式配置

需要先通过 USB, 把高速无线调试器的接收端连接电脑。**只有高速无线调试器的接收端可以配置电压模式。小型接收端也不行**。电压设置为输出的时候,请注意目标 mcu 的工作电压,以免造成冲突。

1、 如下图,选择接收端设备,并选择要设置的电压模式

2、 如下图,点击对应按钮设置电压模式

3、 正常结果如下图

4、最后要断开设备,如下图

5.4, 兼容模式设置

需要先通过 USB,把高速无线调试器的接收端连接电脑。**只有高速无线调试器的接收端可以配置兼容模式。**

1、如下图,选择接收端设备,如果使用小型接收端,选择设备类型为"RXmin"

2、 如下图,选择要设置的兼容模式,并设置兼容模式

基础参数配置	● 选择兼容模式	2 设置兼容模式
复位兼容模式	下载运行 ~	设置
电压模式	输出3.3V ~	设置
SN	Ů	设置

3、最后要断开设备,如下图

设备连接			1 点击这里断
设备类型	RX	~	开连接,变为黑色
设备列表	ATK-HSWL-DAP-RX-V2	~	

5.5, SN 设置

注意: 只有发送端可以设置 SN。修改 SN 后,拔下发送端,再插上会重新安装驱动,安装驱动需要一点时间,请耐心等待。

1、 如下图,选择发送端设备

2、 如下图,生成SN,并设置SN

3、 正常结果提示,如下图

4、最后要断开设备,如下图

6,串口使用

如下图所示,高速无线调试器的接收端配置有调试串口。注意串口使用时,必须接入 Vext 并且串口也是无线的,需要配合发送端使用。使用方式跟普通的 USB 转串口一样,WIN7 上需要安装驱动,WIN8 及以上系统一般系统会自动安装驱动。正确驱动后,打开串口助手就可以看到串口。

串口数据发送过程如下:

电脑->TX 端->无线->RX 端->RX 端的串口引脚接收过程则路径相反。

7, 指示灯说明

高速无线调试器的发送端和接收端均有一颗指示灯,这颗指示灯是双色 led (蓝色和红色)。**注意:无论是发送端还是接收端的蓝灯均指示无线通信状态。如果蓝灯闪,表示通信时断时续。如果蓝灯灭,则不能正常使用。**

1、发送端指示灯,指示如下表

状态	描述
蓝色 (蓝亮, 红灭)	发送端和接收端通信正确
红蓝色 (蓝亮,红亮)	正在进行下载、调试或者串口传输数据
蓝色闪烁(蓝闪,红灭)	通信时断时续,可能可以正常使用
红蓝色闪烁 (蓝亮,红闪)	正在进行下载、调试或者串口传输数据
灭 (蓝灭,红灭)	通信中断,无法使用
红色闪烁(蓝灭,红闪)	进入了更新模式

2、接收端指示灯,指示如下表

状态	描述
蓝色(蓝亮,红灭)	发送端和接收端通信正确
红蓝色(蓝亮,红亮)	正在调试,并且 MCU 在运行状态
蓝色闪烁(蓝闪,红灭)	通信时断时续,可能可以正常使用
红蓝色闪烁(蓝亮,红闪)	一般在单步调试时,才会出现
灭 (蓝灭,红灭)	通信中断,无法使用
红色闪烁 (蓝灭,红闪)	进入了更新模式

8, 固件更新

8.1, 更新发送端固件

新版本的发送端硬件支持 WINUSB 固件和 HID 固件, 2 种固件只有通信协议的区别。

1、 如下图,选择要更新固件的设备

2、 如下图,点击更新按钮开始更新

3、 如下图,在弹出的对话框,选择固件类型

4、正常结果提示,如下图

4、 最后要断开设备,如下图

8.2, 更新接收端固件

1、 如下图,选择要更新固件的设备

2、如下图,点击更新按钮开始更新

3、正常结果提示,如下图

4、最后要断开设备,如下图

9, 读保护设置

参数说明如下表

读保护等级	说明
LEVEL_0	无读保护
LEVEL_1	对应芯片的读保护等级

打开"ATK-DAP助手"目录下的"ATK-DAP助手 V1.0.exe"。然后如设置下图:

10, 调试器简单问题查找步骤

如果一时无法确定调试器问题所在,可初步尝试以下步骤查找问题所在。

步骤一

- 1、用配置软件把电压模式设置为"输入"(有些配置软件显示"输出 OV",而且普通版 DAP 不支持)
- 2、接 4 引脚 SWD 或者 20 引脚的 JTAG
- 3、把时钟设置成 1M
- 4、用配置软件把兼容模式设置成"普通"(普通版 DAP 旧固件不支持)

注意: 配置软件的使用参考用户手册

步骤二

如果步骤一无效, 把固件更新到最新版本, 再尝试步骤一

注意: 普通版 DAP 旧固件不支持

步骤三

配合 MDK 问题的查找 出现如下图红框所示情况,表示找不到调试

可能原因:

1、USB线连接有问题。

解决方法: 用配置软件查找设备,如果能查找到表示 usb 连线没有问题,否则可能有问题。

2、其他驱动占用了

解决方法:请检查驱动。如下图,正常插上会多 2 个人体输入学设备。**注意:** 设备名称可能不一样。

3、其他软件占用了

解决方法: 关闭相关软件。如配置软件就会占用调试器

4、如果是无线调试器,有可能是无线参数不一致

解决方法:用配置软件配置成一样的无线参数。TX 端和 RX 正常通信的时候,蓝色 led 灯会同时常亮。

步骤四

配合 MDK 问题的查找

出现如下图红框所示情况,表示调试器与芯片连接异常,就是 SWD/JTAG 连线那里出了问题。先参考步骤一解决,如果不行参考下面的解决方法。

1、SWD 或者 JTAG 接口的接线不正确、不稳定、太长。

解决方法:接好线。线长度最好不超过30厘米。

2、板子的 IO 电平与调试器的 IO 电平不匹配。

解决方法: 用配置软件进行工作电压设置。

3、JTAG/SWD的调试接口是被关闭。

解决方法 1: 具体芯片需要具体分析。如用串口下载功能,下载一个没有关闭调试接口的代码到芯片。

解决方法 2:接上调试接口的 NRST 引脚,然后如下图配置 MDK,对应选项选择 "under Reset"。

步骤五

配合 MDK 问题的查找 出现如下图红框所示情况,跟步骤四的解决方法一样.

11,常见问题

1、SWD 接 3 线, 怎么处理?

答:设置接收端输出电压为对应的工作电压,1.8V、3.3V、或者5V。例如mcu的io工作电压为3.3V,则设置输出电压为3.3V。设置电压的方式请按照4.3节步骤操作。

2、串口不接 Vext, 怎么处理?

答:设置接收端输出电压为对应的工作电压,1.8V、3.3V、或者5V。例如mcu的io工作电压为3.3V,则设置输出电压为3.3V。设置电压的方式请按照4.3节步骤操作。注意所有的Vext都是相连的,不一定必须连4P串口的Vext。

3、无线调试器接收端无法使用 JTAG/SWD 接口供电。

答:接收端需要 0.8W 的功率,电压范围是 $3.3V^5V$ 。大概是 (5V, 151mA) 或者 (3.3V, 240mA)。接上后可以测试 Vext 跟 GND 的引脚电压,检测供电电压是否正常。

- 4、无线通信不稳定。
- 答:可以通过以下方法提升无线通信的稳定性:
- 1) 设置无线通信参数的包大小为"小包"模式。
- 2) 如果知道哪个频率无线通信干扰少,则使用"手动"频率模式,固定在干扰少的频率上。
- 3) 接收端使用 usb 供电。
- 4) 发送端与接收端尽可能靠近,而且中间无遮挡。
- 5、MDK 退出调试时卡死, 出现如下提示:

- 答: 这是 mdk 的 bug, 在 5. 24~5. 28 都存在。解决方法如下
- 1) 使用 mdk5.23
- 2) 所有文件名,文件夹(包括整个路径)的名都要用英文,还有".c"和".h"文件也只用英文,不能用中文注释。
- 6、会与 2.4wifi 或者 2.4G 蓝牙等设备互相干扰吗?

答:由于 2.4G 无线频段带宽有限,会与其他 2.4Gwifi、2.4G 蓝牙等无线设备 干扰。

- 7、多个高速无线调试器同时使用要怎么设置?
- 答:两个或以上高速无线调试器同时使用,需要确保高速无线调试器在不同的频率工作。出厂默认设置即可。
- 8、自动选择频率的模式之下,最多可以多少个设备同时一起工作? 答:在自动选择频率的模式之下,最多同时 5 个高速无线调试器一起工作。
- 9、插上 TX 端或者 RX 端, 配置软件识别不到设备。
- 答:请检查驱动。如下图,正常插上会多 2 个人体输入学设备。**注意:设备名 称可能不一样。**

- 10、可以读芯片 ID, 无法下载。
- 答: 请检查芯片是否设置了 flash 读保护。还可以尝试降低时钟频率
- 11、某些板子不能下载。
- 答: 检查以下几个方面
- 1) 供电与高速无线调试器的电压是否匹配。
- 2) JTAG/SWD 的调试接口是否被关闭。
- 3) 芯片是否设置了 flash 读保护。
- 12、IDCODE 读取出错,出现如下错误

答: 检查以下几方面

- 1) SWD 或者 JTAG 接口的接线是否正确。
- 2) 板子的 IO 电平与调试器的 IO 电平是否匹配。用配置软件进行工作电压设置。
- 3) JTAG/SWD 的调试接口是否被关闭。