**Problem 4):** We denote the cross product of groups  $\mathcal{G}$  and  $\mathcal{H}$  as  $\mathcal{G} \times \mathcal{H}$  and define it by

$$(g,h) \circ (g',h') \equiv (g \circ_{\mathcal{G}} g', h \circ_{\mathcal{H}} h') \tag{4.1}$$

To show that  $\mathcal{G} \times \mathcal{H}$  is a group, we begin by proving closure under its operation. Since  $\mathcal{G}$  and  $\mathcal{H}$  are groups, the we have  $(g \circ_{\mathcal{G}} g') \in \mathcal{G}$  and  $(h \circ_{\mathcal{H}} h') \in \langle$ . Thus  $\mathcal{G} \times \mathcal{H}$  is closed under its operation. Next, we must show the existence of an identity in  $\mathcal{G} \times \mathcal{H}$ . If we modify the expression in 4.1 so that  $g' = e_{\mathcal{G}}$  and  $h' = e_{\mathcal{H}}$ , then we have

$$(g,h) \circ (e_{\mathcal{G}}, e_{\mathcal{H}}) = (g \circ_{\mathcal{G}} e_{\mathcal{G}}, h \circ_{\mathcal{H}} e_{\mathcal{H}})$$
  
=  $(g,h)$ 

Therefore,  $\mathcal{G} \times \mathcal{H}$  contains an identity element and it is defined as  $(e_{\mathcal{G}}, e_{\mathcal{H}})$ . Next, we must demonstrate the existence of inversed in  $\mathcal{G} \times \mathcal{H}$ . To do this, we again modify the expression in 4.1. This time we substitute  $g' = g^{-1}$  and  $h' = h^{-1}$ . Applying this substitution to the expression in 4.1 gives

$$(g,h) \circ (g^{-1}, h^{-1}) = (g \circ_{\mathcal{G}} g^{-1}, h \circ_{\mathcal{H}} h^{-1})$$
$$= (e_{\mathcal{G}}, e_{\mathcal{H}})$$

Thus,  $\mathcal{G} \times \mathcal{H}$  contains inverses for each of its elements. Lastly, we show that associativity holds in  $\mathcal{G} \times \mathcal{H}$ . We begin with

$$((g_1, h_1) \circ (g_2, h_2)) \circ (g_3, h_3) = (g_1 \circ_{\mathcal{G}} g_2, h_1 \circ_{\mathcal{H}} h_2) \circ (g_3, h_3)$$

$$= ((g_1 \circ_{\mathcal{G}} g_2) \circ_{\mathcal{G}} g_3, (h_1 \circ_{\mathcal{H}} h_2) \circ_{\mathcal{H}} h_3)$$

$$(4.2)$$

Using the associativity of  $\mathcal{G}$  and  $\mathcal{H}$ , we have

$$((g_1 \circ_{\mathcal{G}} g_2) \circ_{\mathcal{G}} g_3, (h_1 \circ_{\mathcal{H}} h_2) \circ_{\mathcal{H}} h_3) = (g_1 \circ_{\mathcal{G}} (g_2 \circ_{\mathcal{G}} g_3), h_1 \circ_{\mathcal{H}} (h_2 \circ_{\mathcal{H}} h_3))$$

Thus, the expression in 4.2 becomes

$$((g_1, h_1) \circ (g_2, h_2)) \circ (g_3, h_3) = ((g_1 \circ_{\mathcal{G}} g_2) \circ_{\mathcal{G}} g_3, (h_1 \circ_{\mathcal{H}} h_2) \circ_{\mathcal{H}} h_3)$$
$$= (g_1 \circ_{\mathcal{G}} (g_2 \circ_{\mathcal{G}} g_3), h_1 \circ_{\mathcal{H}} (h_2 \circ_{\mathcal{H}} h_3))$$

which implies that associativity holds for  $\mathcal{G} \times \mathcal{H}$ .