# Organização de Computadores

Evolução e Desempenho de Computadores

> ra E



Prof. José Paulo G. de Oliveira Engenharia da Computação, UPE jpgo@poli.upe.br

### Conteúdo



- Histórico dos Computadores
  - ENIAC
  - von Neumann e Turing
  - IAS Institute for Advanced Study
- Computadores Comerciais
- Computadores Baseados em Transistores
  - Série IBM 360
  - DEC PDP-8
- Microeletrônica
  - Lei de Moore
  - Memórias de Semicondutores
  - Evolução das Características de RAM e de Processadores



## História

## Difference Engine Charles Babbage ~1820





## Tabulating Machine Herman Hollerith ⇒ IBM ~1890





#### Bombe Alan Turing ~1940





### Histórico dos Computadores



- Válvula 1946-1957
- Transistor 1958-1964
- Small Scale Integration SSI 1965
  - Até 100 dispositivos num único chip
- Medium Scale Integration MSI 1971
  - De 100 a 3000 dispositivos num único chip
- Large Scale Integration LSI 1971-1977
  - De 3000 a 100 000 dispositivos num único chip

### Histórico dos Computadores



- Very Large Scale Integration VLSI 1978
  - De 100 000 a 100 000 000 de dispositivos num único chip
- Ultra Large Scale Integration ULSI
  - Mais de 100 000 000 de dispositivos num único chip
- ????

### Válvulas



#### **ENIAC**



- Electronic Numerical Integrator And Computer
- Eckert e Mauchly
- University of Pennsylvania
- Cálculos balísticos
- Iniciado em 1943 e terminado em 1946
  - Tarde demais para o esforço de guerra
- Utilizado até 1955

#### **ENIAC - Detalhes**

- Decimal (não binário)
- 20 acumuladores de 10 dígitos
- Programado manualmente por chaves
- 18000 válvulas
- 30 toneladas
- 140 m<sup>2</sup>
- 140 kW de consumo
- 5000 somas/s

### **ENIAC - Programação**









### Von Neumann & Turing

### János von Neumann (e Alan Turing)



- Conceito de programa armazenado
- Memória principal armazenando programas e dados
- Unidade lógica e aritmética (ULA) operando com dados binários
- Unidade de controle interpretando instruções da memória e as executando
- Dispositivos de entrada e saída (E/S) operados pela unidade de controle (UC)
- Princeton Institute for Advanced Studies (1946-1952)
  - IAS

## Estrutura da Máquina de von Neumann





### Aquiteturas clássicas





Arquitetura Harvard



#### Arquitetura Super-Harvard







### **IAS Machine**

# IAS - Institute for Advanced Study



- 1000 x 40 bit words
  - Números binários
  - Instruções 2 x 20 bits
- Conjunto de registradores (armazenamento na CPU)
  - Registrador temporário de dados
    - Memory Buffer Register MBR
  - Registrador de endereçamento à memória
    - Memory Address Register MAR
  - Registrador de instruções
    - Instruction Register IR

# IAS - Institute for Advanced Study



- ...Conjunto de registradores (armazenamento na CPU)
  - Registrador de armazenamento temporário de instruções
    - Instruction Buffer Register IBR
  - Contador de programa
    - Program Counter PC
  - Acumulador
    - Accumulator AC
  - Quociente/Multiplicador
    - Multiplier Quotient MQ

## IAS - Institute for Advanced Study





























### Computadores comerciais (válvula)



### **Computadores Comerciais**



- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950
- Torna-se parte da Sperry-Rand Corporation
- Final dos anos 1950 UNIVAC II
  - Mais rápido
  - Mais memória

### **Computadores Comerciais**



- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950
- Torna-se parte da Sperry-Rand Corporation
- Final dos anos 1950 UNIVAC II
  - Mais rápido
  - Mais memória





#### **IBM**



- Equipamento de processamento de cartões perfurados ~1900
- 1953 linha 701
  - Primeiro computador eletrônico programável da IBM
  - Computação científica
- 1955 linha 702
  - Aplicações comerciais
- Início da série 700/7000
- PC





### **Transistores**



#### **Transistores**

- Substituição das válvulas
- Menores
- Mais baratos
- Menor dissipação de calor
- Dispositivos de estado sólido
- Silício (areia)
- Inventados em 1947 nos Bell Labs

## **Computadores Baseados em Transistores**



- Máquinas de segunda geração
- NCR & RCA produziram pequenas máquinas transistorizadas
- IBM 7090



## **Computadores Baseados em Transistores**



- Máquinas de segunda geração
- NCR & RCA produziram pequenas máquinas transistorizadas
- IBM 7090
- DEC-PDP 1

#### Ex.: IBM 7094



#### IBM 7094 computer

#### Peripheral devices



## Microeletrônica



#### Microeletrônica



- Literalmente "eletrônica pequena"
- Um computador passa a ser composto por portas lógicas, células de memória e interconexões
- Tudo isso pode ser fabricado em um único semicondutor
- Ex: pastilha de silício

#### **IBM 360**

- 1964
- Substituiu a série 7000, sem manter compatibilidade
- Primeira família planejada de computadores
  - Conjunto de instruções idêntico ou semelhante
  - Sistema operacional idêntico ou semelhante
  - Velocidade crescente
  - Número crescente de portas de E/S
  - Capacidade de memória crescente
  - Custo crescente
- Estrutura de comutação multiplexada





#### DEC PDP-8

- 1965
- Primeiro minicomputador
- Não necessitava de uma sala de ar condicionado
- Pequeno o bastante para ser colocado sobre uma mesa (1º Desktop?)
- US\$ 16.000,00
  - Os IBM 360 custavam mais de US\$ 100.000,00
- Aplicações embarcadas e O&M
- Primeiro a utilizar estrutura de barramento





# Estrutura de Barramento do DEC PDP-8









- Aumento da densidade de componentes por chip
- Gordon Moore um dos fundadores da Intel
- O número de transistores em um chip dobrará a cada ano
- Desde os anos 1970 a taxa de crescimento tem diminuído um pouco
  - O número de transistores dobra a cada 18 meses
- O custo de um chip tem se mantido praticamente constante



"Reduced cost is one of the big attractions of integrated electronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate." Electronics, Volume 38, Number 8, April 19, 1965.





- Maior densidade de dispositivos implica caminhos elétricos mais curtos e maior desempenho
- Menor tamanho aumenta a flexibilidade
- Menor potência e menos necessidade de sistemas de resfriamento
- Menos interconexões implicam maior confiabilidade



elena silenok @silenok



Moore's law visualized through the evolution of Lara Croft pic.twitter.com/X2IJ4KH82A

23:07 - 30 de jan de 2015



# Lei de Moore ....consequências





### Crescimento do Número de Transistores na CPU





#### Moore's Law – The number of transistors on integrated circuit chips (1971-2018)



Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.







SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

## Microprocessadores



#### Intel





- 1971 4004
  - Primeiro microprocessador
  - Todos os componentes da CPU num único chip
  - 4 bits
  - 40 kHz até 92 mil instruções por segundo
- Seguido em 1972 pelo 8008
  - 8 bits
  - Ambos projetados para aplicações específicas
- 1974 8080
  - Primeiro microprocessador de uso geral da Intel





| Chip        | Date    | MHz     | Transistors | Memory | Notes                               |
|-------------|---------|---------|-------------|--------|-------------------------------------|
| 4004        | 4/1971  | 0.108   | 2,300       | 640    | First microprocessor on a chip      |
| 8008        | 4/1972  | 0.108   | 3,500       | 16 KB  | First 8-bit microprocessor          |
| 8080        | 4/1974  | 2       | 6,000       | 64 KB  | First general-purpose CPU on a chip |
| 8086        | 6/1978  | 5-10    | 29,000      | 1 MB   | First 16-bit CPU on a chip          |
| 8088        | 6/1979  | 5-8     | 29,000      | 1 MB   | Used in IBM PC                      |
| 80286       | 2/1982  | 8-12    | 134,000     | 16 MB  | Memory protection present           |
| 80386       | 10/1985 | 16-33   | 275,000     | 4 GB   | First 32-bit CPU                    |
| 80486       | 4/1989  | 25-100  | 1.2M        | 4 GB   | Built-in 8K cache memory            |
| Pentium     | 3/1993  | 60-233  | 3.1M        | 4 GB   | Two pipelines; later models had MMX |
| Pentium Pro | 3/1995  | 150-200 | 5.5M        | 4 GB   | Two levels of cache built in        |
| Pentium II  | 5/1997  | 233-400 | 7.5M        | 4 GB   | Pentium Pro plus MMX                |

## Evolução Intel















#### **Aumentando o Desempenho**



- Pipelining
- On board cache
- On board L1 & L2 cache
- Predição de desvios
- Análise de fluxo de dados
- Execução especulativa



## **Pipelining**

## Ciclo de instrução básico



- Três passos:
  - Busca
  - Decodificação
  - Execução



### Sem Pipelining



BUSCA DECODIFICA EXECUTA BUSCA DECODIFICA EXECUTA ----

## Com Pipelining





#### Com Pipelining





## Memórias semicondutoras



#### Memórias de Semicondutores



- 1970
- Fairchild
- Tamanho de um único núcleo
  - i.e. 1 bit de armazenamento em núcleo magnético
  - Armazenava 256 bits
- Leitura não-destrutiva
- Muito mais rápida que o núcleo magnético
- Capacidade aproximadamente dobra a cada ano

# Balanceamento do Desempenho



- Crescimento da velocidade do processador
- Crescimento da capacidade de memória



- Entretanto...
- A taxa de transferência de dados entre a memória principal e o processador e a velocidade da memória não evoluiu tanto



# Evolução das Características de RAM e de Processadores





### Soluções



- Aumentar o número de bits obtidos em cada acesso à memória
  - Aumentar a largura da DRAM e não sua capacidade
  - Barramentos mais largos
- Mudar a interface da memória DRAM, tornando-a mais eficiente
  - Cache

### Soluções



- Reduzir a frequência de acesso à memória
  - Estruturas de cache mais complexas e eficientes na pastilha do processador e fora dela
- Aumentar a largura de banda da conexão entre processadores e memórias
  - Barramentos de alta velocidade
  - Hierarquia de barramentos















https://www.notebookcheck.net/Researchers-develop-firstelectro-optical-processor-bridging-the-gap-between-electricaland-light-based-computers.445056.0.html

#### Recursos na Internet

- http://www.intel.com/
  - Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- Intel Developer Home