Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт з виконання розрахункової – графічної роботи з дисципліни "Функціонально – логічне проектування " Варіант 27

Виконав: студент групи ДК-82

Рудюк Б. Б.

Перевірив: ст. викладач

Варфоломеев А. Ю.

Завдання № 1

1) Представити логічну функцію обрану із таблиці 1.2 згідно власного варіанту у ДДНФ та ДКНФ.

Моя логічна функція обрана з таблиці, яка зображена на малюнку 1.

ДДНФ:

$$Y = \overline{x_3} \overline{x_2} \overline{x_1} \ V \ \overline{x_3} \overline{x_2} \overline{x_1} V \ \overline{x_3} \overline{x_2} \overline{x_1} V \ \overline{x_3} \overline{x_2} \overline{x_1} V$$

$$V \ x_3 \overline{x_2} x_1 V \ x_3 x_2 \overline{x_1}$$

	Apı	Аргументи				
i	<i>x</i> ₃	x_2	x_1	f_{27}		
0	0	0	0	1		
1	0	0	1	1		
2	0	1	0	1		
3	0	1	1	1		
4	1	0	0	0		
5	1	0	1	1		
6	1	1	0	1		
7	1	1	1	0		

мал. 1

Реалізація ДДНФ на логічних елементах:

Симуляція схеми ДДНФ:

ДКНФ:

$$Y = (\bar{x}_3 \lor x_2 \lor x_1) \cdot (\bar{x}_3 \lor \bar{x}_2 \lor \bar{x}_1)$$

Реалізація ДКНФ на логічних елементах:

Симуляція схеми ДКНФ:

2) Мінімізація ДДНФ за допомогою законів алгебри логіки.

ДДНФ:

$$Y = \overline{x_3} \overline{x_2} \overline{x_1} \vee \overline{x_3} \overline{x_2} \overline{$$

• Застосовуємо дистрибутивний закон:

$$Y = \overline{x_3}(\overline{x_2}\overline{x_1} \vee \overline{x_2}x_1 \vee x_2\overline{x_1} \vee x_2x_1) \vee x_3\overline{x_2}x_1 \vee x_3x_2\overline{x_1}$$

• Застосовуємо операцію склеювання:

$$Y = \bar{x}_3(\bar{x}_1 \vee x_1) \vee x_3 \bar{x}_2 x_1 \vee x_3 x_2 \bar{x}_1$$

• Застосовуємо закон заперечення:

$$Y = \bar{x}_3 V x_2 \bar{x}_1 V \bar{x}_2 x_1$$

3) Побудова схеми МДНФ.

Реалізація МДНФ на логічних елементах:

Симуляція схеми МДНФ:

4) Отримати аналітичне представлення функцій в базисах «І-НІ» та «АБО-НІ».

Базис «І-НІ»:

$$Y = \overline{\overline{x_3}\overline{x_2}\overline{x_1}} \ V \ \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \ V \ \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \ V \ \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \ V \ \overline{x_3}\overline{x_2}\overline{x_1} \ V \ \overline{x_3}\overline{x_2}\overline{x_1} \ =$$

$$= \overline{\overline{\overline{x_3}}\overline{x_2}\overline{x_1}} \cdot \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \cdot \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \cdot \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \cdot \overline{\overline{x_3}}\overline{x_2}\overline{x_1} \cdot \overline{\overline{x_3}}\overline{x_2}\overline{x_1}$$

Реалізація базису «І-НІ» на логічних елементах:

Симуляція схеми базису «І-НІ»:

Базис «АБО-НІ»:

$$Y = \overline{(\bar{x}_3 \ V \ x_2 V \ x_1)} \ V \overline{(\bar{x}_3 \ V \overline{x}_2 V \ \bar{x}_1)}$$

Реалізація базису «АБО-НІ» на логічних елементах:

Симуляція схеми базису «АБО-НІ»:

Завдання № 2

1) Виконати синтез перетворювача кодових комбінацій, що має три входи: a,b,c і три виходи f_i , f_j , f_k

Дані 3 варіанти обрані з таблиці, яка зображена на малюнку 2.

 f_{28} :

$$f_{28} = \bar{x}_1 \vee x_3 \bar{x}_2$$

i	x_3	x_2	x_1	f_{28}	f_{29}	f_{30}
0	0	0	0	1	0	1
1	0	0	1	0	0	0
2	0	1	0	1	1	0
3	0	1	1	0	1	0
4	1	0	0	1	0	1
5	1	0	1	1	0	0
6	1	1	0	1	1	0
7	1	1	1	0	1	1

мал. 2

 f_{29} :

$$f_{29} = x_2$$

 f_{30} :

$$f_{30} = \bar{x}_2 \bar{x}_1 \vee x_3 x_2 x_1$$

2) Побудувати схему синтезованого перетворювача кодів в середовищі Quartus II та провести його моделювання.

Схема синтезованого перетворювача кодів на логічних елементах:

Симуляція схеми синтезованого перетворювача:

3) Виконати мінімізацію функції f_x методом Квайна-Мак-Класкі.

Моя логічна функція f_x обрана з таблиці, яка зображена на малюнку 3.

$$Y = \overline{x_3} \overline{x_2} \overline{x_1} \ V \ \overline{x_3} \overline{x_2} \overline{x_1} V \ \overline{x_3} \overline{x_2} \overline{x_1} V \ \overline{x_3} \overline{x_2} \overline{x_1} V$$

$$V \ x_3 x_2 \overline{x_1}$$

$$Y = 000 \text{ V } 001 \text{ V } 010 \text{ V } 011 \text{ V } 101 \text{ V } 110$$
Homep: 0 Homep: 1 Homep: 2 Homep: 3 Homep: 5 Homep: 6 Homep: 1 Homex: 1 Homex: 2 Homex: 2

i	Apı	Аргументи						
	<i>x</i> ₃	x_2	x_1	f_{27}				
0	0	0	0	1				
1	0	0	1	1				
2	0	1	0	1				
3	0	1	1	1				
4	1	0	0	0				
5	1	0	1	1				
6	1	1	0	1				
7	1	1	1	0				

мал. 3

Отримана матриця склеювання методу Квайна-Мак-Класкі:

Індекси	Номери	Результат склеювання				
0	000	00- 0				
1	001 010	0-1				
2	011 101 110	01-				

Отримана імплікантна матриця:

Імпліканти	Мінтерми (набори)								
	$\overline{X_3X_2X_1}$	$\overline{x_3}\overline{x_2}x_1$	$\overline{x}_3 x_2 \overline{x_1}$	$\overline{X_3}X_2X_1$	$x_3\overline{x}_2x_1$	$x_3x_2\overline{x}_1$			
$\overline{x_3}$	•	•	•	•					
$\bar{x}_2 x_1$		•			•				
$x_2 \bar{x}_1$			•			•			

Отримана мінізована функція:

$$Y = \bar{x}_3 V x_2 \bar{x}_1 V \bar{x}_2 x_1$$

Завдання № 3

1) Виконати синтез лічильника, що рахує підряд двійкові числа, обираючи модуль М, напрямок підрахунку та тип використовуваних тригерів за таблицею 3.2. (мій варіант зображений на малюнку 4).

Варіант	17
Тип	D,
тригерів	2ЈК
Модуль	6
Напрямок	+

мал.4

Таблиця істинності для моїх тригерів:

	D	JK	JK				D	J	K	J	K
		t		t-1		T2 T1		T0			
i	Q2	Q1	Q0	Q2-	Q1-	Q0-	D2	J1	K1	J0	K0
0	0	0	0	1	0	0	1	0	Φ	0	Ф
1	0	0	1	0	0	0	0	0	Φ	Φ	1
2	0	1	0	0	0	1	0	Φ	1	1	Ф
3	0	1	1	0	1	0	0	Φ	0	Ф	1
4	1	0	0	0	1	1	0	1	Φ	1	Ф

$$D2 = Q_2 \overline{Q}_0 V Q_1 Q_0$$

$$J1 = \bar{Q}_2 Q_0$$

$$K1 = Q_0$$

$$J0 = 1$$

$$K0 = 1$$

2) В середовищі Quartus II реалізувати та промоделювати схему синтезованого лічильника.

Схема синтезованого лічильника на логічних елементах:

Симуляція схеми синтезованого лічильника:

