MODELAGEM E INFERÊNCIA ESTATÍSTICA

Regressão Linear: Introdução

O QUE VOU ESTUDAR HOJE?

Modelo de regressão linear simples.

Representações das variáveis

Lembrar conceitos relacionados aos parâmetros usados na distribuição normal.

Modelo probabilístico linear.

O QUE É REGRESSÃO?

- Objetivo: Estudar a relação entre duas ou mais variáveis para estudar uma terceira.
- Tipos de variáveis: Determinísticas e Aleatórias.

Variáveis determinísticas

y = 25 + 0,3 x Aluguel de uma van R\$ 25 e 30 centavos a cada quilômetro andado

Variáveis aleatórias

x = idade de uma criança

y = tamanho do vocabulário da criança

O QUE É REGRESSÃO?

"A análise de regressão é a parte da estatística que investiga a relação entre duas ou mais variáveis relacionadas de maneira **não** determinística", (DEVORE, 2008, p. 455), mediante o uso da relação determinística

$$v = \beta_o + \beta_1 x_1$$

MODELO DE REGRESSÃO LINEAR SIMPLES

Variável aleatória Variável dependente Variável resposta Variável preditora Variável independente Variável explanatória

MODELO DE REGRESSÃO LINEAR SIMPLES

ORGANIZAÇÃO DE DADOS

$$y_1 = rand(x)$$
; $y_2 = 3 + 4x$; $y_3 = 3 - 4x$

EXEMPLO 1 (DEVORE, 2018, P. 456)

Problemas visuais e musculoesqueléticos associados ao uso de terminais de exibição visual (Visual Display Terminals - VDT) tornaram-se muito comuns nos últimos anos. Alguns pesquisadores concentraram-se na direção vertical do olhar como uma fonte de esforço e irritação ocular. Acredita-se que essa direção esteja intimamente relacionada com a Área da Superfície Ocular (ASO), de modo que é necessário um método para medi-la. Os dados representativos a seguir sobre $y = ASO (cm^2) e x = largura da$ fissura da pálpebra (isto é, a largura horizontal da abertura do olho, em cm) foram reproduzidos do artigo "Analysis of ocular surface area for comfortable VDT workstation layout" (Ergonomics, 1996: 877-884). A ordem na qual as observações foram obtidas não foi dada, de maneira que, por conveniência, são relacionadas na ordem crescente dos valores x

EXEMPLO 1: DADOS

X	0,4	0,42	0,48	0,51	0,57	0,6	0,7	0,85	0,75	0,75	0,84	0,95	0,99	1,03	1,12
У	1,02	1,21	0,88	0,98	1,52	1,83	1,5	1,8	1,74	1,63	2	2,8	2,48	2,47	3,05
X	1,15	1,2	1,25	1,25	1,28	1,3	1,34	1,37	1,4	1,43	1,46	1,49	1,55	1,58	1,6
у	3,18	3,76	3,68	3,82	3,21	4,27	3,12	3,99	3,75	4,1	4,18	3,77	4,34	4,21	4,92

Dados:

y = Área da Superfície Ocular, ASO (cm²)

x = Largura da fissura da pálpebra (isto é, a largura horizontal da abertura do olho, em cm)

EXEMPLO 1: DIAGRAMA DE DISPERSÃO

EXEMPLO 1: DIAGRAMA DE DISPERSÃO

EXEMPLO 2 (DEVORE, 2018, P. 457)

O arsênio é encontrado em muitas águas subterrâneas e algumas águas de superfície. Uma pesquisa recente sobre os efeitos de saúde levou a Agência de Proteção Ambiental a reduzir os níveis de arsênio permitidos na água potável, de modo que muitos sistemas de água não são mais compatíveis com os padrões. Isso estimulou o interesse no desenvolvimento dos métodos para remover o arsênio. Os dados a seguir (x = pH e y = arsênio removido (%) por um determinado processo) foram lidos em um gráfico de dispersão no artigo "Optimizing arsenic removal during iron removal: theoretical and practical considerations" (J. of Water Supply Res. and Tech., 2005: 545-560).

EXEMPLO 2: DADOS

X	7,01	7,11	7,12	7,24	7,94	7,94	8,04	8,05	8,07
у	60	67	66	52	50	45	52	48	40
X	8,9	8,94	8,95	8,97	8,98	9,95	9,86	9,86	9,87
У	23	20	40	31	26	9	22	13	7

Dados:

x = pH

y = arsênio removido (%)

EXEMPLO 2: DIAGRAMA DE DISPERSÃO

EXEMPLO 2: DIAGRAMA DE DISPERSÃO

Modelo de regressão simples

$$y = \beta_o + \beta_1 x_1$$

Modelo probabilístico

$$Y = \beta_o + \beta_1 x + \varepsilon$$

Modelo probabilístico

$$Y = \beta_o + \beta_1 x + \varepsilon$$

Variável aleatória Variável dependente Variável independente

Modelo probabilístico

$$Y = \beta_o + \beta_1 x + \varepsilon$$

Parâmetros

Modelo probabilístico

$$Y = \beta_o + \beta_1 x + \varepsilon$$

- ✓ Desvio aleatório ou termo do erro aleatório
- ✓ Variável aleatória com distribuição normal, com E(ε) = 0 e V(ε) = σ²

DISTRIBUIÇÕES DE PROBABILIDADE

Distribuições descrevem fenômenos probabilísticos:

Distribuição de Bernoulli.

Distribuição Binomial.

Distribuição de Poisson.

Distribuição Normal.

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÃO NORMAL

Onde se aplica:

Erro de medida em experimentos científicos.

Tempo de reação em experimentos psicológicos.

Medidas de aptidão.

Indicadores econômicos.

Pontuações em testes.

TERMOS IMPORTANTES

Função de distribuição (densidade) de probabilidade

População 🛑 amostra 🛑 variável

Variável aleatória (v.a.)

• Discreta ou Contínua

• Univariados, bivariados, multivariados

Variância

Desvio padrão

Valor médio ou valor esperado

Modelo de regressão simples, ou reta de regressão verdadeira (ou populacional)

$$y = \beta_o + \beta_1 x_1$$

Modelo probabilístico

$$Y = \beta_o + \beta_1 x + \varepsilon$$

 $\mu_{y,x^*} = Valor esperado de Y quando x adota o valor x^*$

$$\sigma^2_{y,x^*}$$
 = Variância de Y quando x adota o valor x*

Ex.:
$$\mu_{y,20} = 250 \,\mathrm{e} \,\sigma^2_{y,20} = 2,15$$