Growing Seed Sets: QW Sampling and st-Connectivity

Simon Apers

Inria, CWI

ESA – September 9, 2019 – München

Classical vs Quantum Sampling

Classical sample:

- probability distribution $p \in \mathbb{R}^n$
- normalization $||p||_1 = 1$
- π = uniform distribution

Classical vs Quantum Sampling

Classical sample:

- probability distribution $p \in \mathbb{R}^n$
- normalization $||p||_1 = 1$
- π = uniform distribution

Quantum sample:

- quantum state $|q\rangle \in \mathbb{C}^n$
- normalization $||q\rangle||_2 = 1$
- $|\pi\rangle$ = uniform superposition

Random Walk Sampling

- initial node v, t-step RW $P^t v$
- stationary distribution π and $P^tv \to \pi$
- many applications in graph problems, statistical physics, ...

^{*} throughout talk, assume graphs are regular, bounded degree expanders

Quantum Walk Sampling

- quantum sample of RW distribution: $|P^t v\rangle = P^t |v\rangle / ||P^t |v\rangle||$
- use QWs to create $|P^t v\rangle \to |\pi\rangle$. Complexity?
- many applications in element distinctness, formula evaluation, ...

st-Connectivity

Classical: $O(n^{1/2})$

- use RWs from s and t to sample $\pi^{(s)}$ and $\pi^{(t)}$
- look for collision using $O(n^{1/2})$ samples

st-Connectivity

Classical: $O(n^{1/2})$

- use RWs from s and t to sample $\pi^{(s)}$ and $\pi^{(t)}$
- look for collision using $O(n^{1/2})$ samples

Quantum: ?

- use QWs from s and t to create $|\pi^{(s)}\rangle$ and $|\pi^{(t)}\rangle$
- do "swap test"
 using O(1) samples

? complexity of generating quantum sample $|\pi\rangle$

folklore scheme: [Watrous'98]

• t-step QW creates subnormalized quantum sample $P^t|v\rangle + |\Gamma\rangle$

? complexity of generating quantum sample $|\pi\rangle$

folklore scheme: [Watrous'98]

- t-step QW creates subnormalized quantum sample $P^t|v\rangle + |\Gamma\rangle$
- use "amplitude amplification" to obtain $|P^tv\rangle = P^t|v\rangle/\|P^t|v\rangle\|$

? complexity of generating quantum sample $|\pi\rangle$

folklore scheme: [Watrous'98]

- t-step QW creates subnormalized quantum sample $P^t|v\rangle + |\Gamma\rangle$
- use "amplitude amplification" to obtain $|P^tv\rangle = P^t|v\rangle/\|P^t|v\rangle\|$
- \rightarrow complexity: $O(\|P^t|v\|^{-1}) \in O(n^{1/2})$ copies of $P^t|v\rangle + |\Gamma\rangle$

st-Connectivity

Classical: $O(n^{1/2})$

- use RWs from s and t to sample $\pi^{(s)}$ and $\pi^{(t)}$
- look for collision using $O(n^{1/2})$ samples

Quantum: $O(n^{1/2})$

- use QWs from s and t to create $|\pi^{(s)}\rangle$ and $|\pi^{(t)}\rangle$
- do "swap test"
 using O(1) samples

? complexity of generating quantum sample $|\pi\rangle$

main bottleneck of folklore approach:

number of samples

$$||P^t|v\rangle||^{-1} \approx |\langle \pi|v\rangle|^{-1} \approx n^{1/2}$$

? complexity of generating quantum sample $|\pi\rangle$

main bottleneck of folklore approach:

number of samples

$$||P^t|v\rangle||^{-1} \approx |\langle \pi|v\rangle|^{-1} \approx n^{1/2}$$

improve projection on $|\pi\rangle$ by (classically) growing seed set from v

2 complexity of generating quantum sample $|\pi\rangle$

improve projection on $|\pi\rangle$ by (classically) growing seed set from v

$$S \subset \mathcal{V}, |S| = n^{1/3}$$
:
$$||P^t|\pi_S\rangle|| \ge |\langle \pi|\pi_S\rangle| \ge n^{-1/3}$$

? complexity of generating quantum sample $|P^tv\rangle$

improved scheme:

• classically "grow" seed set S of size $n^{1/3}$

? complexity of generating quantum sample $|P^tv\rangle$

improved scheme:

- classically "grow" seed set S of size $n^{1/3}$
- t-step QW creates subnormalized quantum sample $P^t |\pi_S\rangle + |\Gamma\rangle$

complexity of generating quantum sample $|P^tv\rangle$

improved scheme:

- classically "grow" seed set S of size $n^{1/3}$
- t-step QW creates subnormalized quantum sample $P^t |\pi_S\rangle + |\Gamma\rangle$
- use "amplitude amplification" to obtain $|P^t\pi_S\rangle = P^t|\pi_S\rangle/\|P^t|\pi_S\rangle\|$

 $m{?}$ complexity of generating quantum sample $|P^tv
angle$

improved scheme:

- classically "grow" seed set S of size $n^{1/3}$
- t-step QW creates subnormalized quantum sample $P^t|\pi_S\rangle + |\Gamma\rangle$
- use "amplitude amplification" to obtain $|P^t\pi_S\rangle = P^t|\pi_S\rangle/||P^t|\pi_S\rangle||$

complexity: $O(\|P^t|\pi_S)\|^{-1}) \in O(n^{1/3})$ copies of $P^t|\pi_S\rangle + |\Gamma\rangle$

? complexity of generating quantum sample $|P^tv\rangle$

improved scheme:

- classically "grow" seed set S of size $n^{1/3}$ t-step QW c quantum sample $|\pi\rangle$ in $O(n^{1/3})$ QW steps $|\pi\rangle + |\Gamma\rangle$

• use "amplitude amplification" to obtain $|P^t\pi_S\rangle = P^t|\pi_S\rangle/\|P^t|\pi_S\rangle\|$

complexity: $O(\|P^t|\pi_S)\|^{-1}) \in O(n^{1/3})$ copies of $P^t|\pi_S\rangle + |\Gamma\rangle$

? complexity of generating quantum sample $|P^tv\rangle$

improved scheme:

- classically "grow" seed set S of size $n^{1/3}$ t-step QW c quantum sample $|\pi\rangle$ in $O(n^{1/3})$ QW steps $|S\rangle$

space-time tradeoff: exchange $(1,n^{1/2})$ for $(n^{1/3},n^{1/3})$

st-Connectivity

Classical: $O(n^{1/2})$

- use RWs from s, t to sample $\pi^{(s)}, \pi^{(t)}$
- look for collision using $O(n^{1/2})$ samples

Quantum: $O(n^{1/3})$

- ullet grow seed sets S,T from s,t
- use QWs from $|\pi_S\rangle, |\pi_T\rangle$ to create $|\pi^{(s)}\rangle, |\pi^{(t)}\rangle$
- do "swap test" using O(1) samples

instance of st-connectivity: pairwise permutations describe RW over isomorphisms

$$G \to G' \to G'' \to \dots$$

? is there permutation that turns G into H?

quantum approach:

- 1. create superpositions $|G\rangle, |H\rangle$ over isomorphisms of G, H
- 2. compare states using swap test

quantum approach:

- 1. create superpositions $|G\rangle, |H\rangle$ over isomorphisms of G, H
- 2. compare states using swap test

• [AMRR'11]: $\Omega(2^{n/2})$ lower bound for generalized approach

quantum approach:

- 1. create superpositions $|G\rangle, |H\rangle$ over isomorphisms of G, H
- 2. compare states using swap test

- [AMRR'11]: $\Omega(2^{n/2})$ lower bound for generalized approach
- this work: $O(2^{n/3})$ using QW sampling

[Goldreich-Ron'97]:

does G have expansion $\geq \Upsilon$, or is G far from any such graph?

[Goldreich-Ron'97]:

does G have expansion $\geq \Upsilon$, or is G far from any such graph?

= robust connectivity

• pick uniformly random nodes s, t

GR expansion tester:

- ullet perform RWs of length Υ^{-2}
- count collisions between $O(n^{1/2})$ samples

if none, reject; otherwise, accept

ullet pick uniformly random nodes s,t

GR expansion tester:

$$O(n^{1/2}\Upsilon^{-2})$$

 \bullet perform RWs of length Υ^{-2}

• count collisions between $O(n^{1/2})$ samples

if none, reject; otherwise, accept

quantum expansion tester:

[arXiv:1907.02369]

- pick uniformly random nodes s, t
- "grow" seed sets S,T from s,t
- create $|P^{\tau}\pi_S\rangle, |P^{\tau}\pi_T\rangle$ for $T=\Upsilon^{-2}$
- compare states with swap test

if disjoint, reject; otherwise, accept

quantum expansion tester:

[arXiv:1907.02369]

$$O(n^{1/3}\Upsilon^{-2})$$

- ullet pick uniformly random nodes s,t
- "grow" seed sets S, T from s, t
- create $|P^{\tau}\pi_S\rangle, |P^{\tau}\pi_T\rangle$ for $T=\Upsilon^{-2}$
- compare states with swap test

if disjoint, reject; otherwise, accept

[Goldreich-Ron'97]:

does G have expansion $\geq \Upsilon$, or is G far from any such graph?

[Goldreich-Ron '00]

[CS '07], [KS '07], [NS '07]

[Ambainis-Childs-Liu '10]

[A-Sarlette '18]

[A '19]

$$O(n^{1/2}\Upsilon^{-2})$$
 (conj.)

$$O(n^{1/2}\Upsilon^{-2})$$

$$O(n^{1/3}\Upsilon^{-2})$$
 (q)

$$O(n^{1/2}\Upsilon^{-1})$$
 (q)

$$O(n^{1/3}\Upsilon^{-1})$$
 (q)

RW collision counting prove conjecture element distinctness

QFF

QFF and seed sets