

Общероссийский математический портал

Э. А. Мухачева, А. С. Мухачева, Задача прямоугольной упаковки: методы локального поиска оптимума на базе блочных структур, Автомат.~u~menemex., 2004, выпуск 2, 101–112

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 93.175.9.132

2 марта 2021 г., 13:42:44

© 2004 г. Э. А. МУХАЧЕВА, д-р. техн. наук, А. С. МУХАЧЕВА, канд. физ.-мат. наук (Уфимский государственный авиационный технический университет)

ЗАДАЧА ПРЯМОУГОЛЬНОЙ УПАКОВКИ: МЕТОДЫ ЛОКАЛЬНОГО ПОИСКА ОПТИМУМА НА БАЗЕ БЛОЧНЫХ СТРУКТУР¹

Рассматривается задача ортогональной упаковки прямоугольников в полубесконечную полосу и ее представление блок-структурами, позволяющими сводить проблему к решению задач линейного раскроя специального вида. На этой базе предложены схемы конструирования методов локального поиска оптимума и разработаны детерминированный и вероятностные алгоритмы. Приведены результаты численного эксперимента, подтверждающие эффективность новых методов.

1. Введение

Под задачами раскроя-упаковки понимается широкий класс проблем, допускающих различное толкование. Общим является наличие двух групп объектов. Между элементами этих групп устанавливается и оценивается соответствие. Качественную типологию в области раскроя-упаковки провел в 1991 г. Н. Dyckhoff [1]. Среди различных моделей важное место занимают задачи ортогональной упаковки прямоугольных объектов в заданных областях. Эти задачи принято именовать 1.5D Bin Packing Problem (1.5DBPP) в случае упаковки в полубесконечную полосу и 2DBPP — в листы прямоугольной формы [2]. Предметом изучения в настоящей статье является 1.5DBPP. Вместе с тем предлагаемые здесь алгоритмы размещения в полубесконечной полосе можно легко модифицировать на случай упаковки предметов в листы. Кроме того, роль вспомогательной задачи выполняет задача линейного раскроя 1D Cutting Stock Problem, (1DCSP). Этой задаче также уделено внимание в статье.

Задача 1.5DBPP состоит в следующем. Имеется прямоугольная полоса фиксированной ширины и полубесконечной длины. Требуется разместить прямоугольные предметы в полосе так, чтобы стороны прямоугольников были параллельны сторонам полосы; прямоугольники не пересекались между собой и со сторонами полосы; длина занятой части полосы достигала минимума. Эта задача встречается при решении многих прикладных проблем экономики и производства. К ней сводятся задачи распределения двумерного ресурса; раскрой рулонного и листового материала; упаковка контейнеров в транспортные средства; размещение оборудования и другие. Каждая из перечисленных проблем может входить в оптимизационное ядро соответствующей автоматизированной системы. Например, раскрой рулонного или листового материала представляет подсистему заготовительного производства АСУ ТП.

 $^{^1}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 01-01-00510) и фонда президента Росийской Федерации (проект № МК 145.2003.01).

На заре появления проблемы раскроя Л.В. Канторовичем и В.А. Залгаллером было предложено использовать для решения задач раскроя линейное программирование [3], вернее – непрерывную релаксацию для решения целочисленных задач раскроя. Это позволило разработать эффективные методы расчета линейного и гильотинного раскроя в условиях массового производства. Аналогичные методы появились за рубежом [4, 5]. Для расчета раскроев на каждом шаге линейного программирования решается задача о загрузке рюкзака. Для ее решения был разработан метод склейки [6]. На базе линейного программирования были разработаны алгоритмы условной оптимизации [7]. Эти и другие работы по существу закрыли проблему массового раскроя. Задачи раскроя-упаковки являясь NP-трудными проблемами дискретного программирования, потребовали развития других методов для их решения. Для получения точного решения используются методы отсечения [8], где разработаны гибридные алгоритмы для решения задач линейного и гильотинного раскроя с использованием простых эвристик после построения каждого очередного отсечения Гомори. Прием позволяет в подавляющем большинстве случаев быстро получать оптимальное решение. Среди комбинаторных методов наибольшее применение получил метод "ветвей и границ" [9, 10]. Асимптотически точный подход разработан для некоторого класса задач линейной и прямоугольной упаковки [11]. Ввиду NP-трудности задач, вызывают интерес приближенные и эвристические методы локального поиска оптимума. В [12] проведен подробный обзор однопроходных эвристик для решения задачи упаковки контейнеров, описан принцип самого худшего случая и проведен анализ среднего случая, исследовано поведение офф-лайн и он-лайн вариантов эвристик. Среди эвристик более высокого уровня выделяются жадные алгоритмы [13]. К сложным уровневым алгоритмам относится способ последовательно-одиночного размещения [14]. Внесение в эвристику элементов случайности значительно повышает ее эффективность. Краткий обзор вероятностных методов локального поиска проведен [15]. С использованием элементов случайности разрабатываются бурно развивающиеся метаэвристики, характеристики и обоснования которых можно найти в [16]. Часто применяются для решения задач раскрояупаковки генетические алгоритмы, например для 1DBPP [17], для 1.5DBPP [18] и другие. Оригинальный способ кодирования генов применен в [19]. Этот подход оказался весьма результативным. С разработкой вероятностных алгоритмов появилась потребность в исследовании их поведения в зависимости от случайных параметров [20]. Здесь предлагается новый подход для решения 1.5DBPP, который базируется на методологии блочных структур упаковок. На этой базе конструируются различные группы алгоритмов. Они позволяют быстро получать близкое к оптимуму решение для различных классов исходной информации.

2. Математическая модель задачи и способы кодирования упаковки

Задача 1.5DBPP. Имеются прямоугольная полоса заданной ширины W и неограниченной длины и набор из m прямоугольных предметов заданных размеров $(w_i; l_i)$, $i=\overline{1,m}$, где w_i — ширина; l_i — длина стороны, параллельной неограниченной грани полосы. Введем прямоугольную систему координат: оси Ox и Oy совпадают соответственно с нижней неограниченной и боковой сторонами полосы. Положение каждого прямоугольника P_i зададим координатами $(x_i; y_i)$ его левого нижнего угла.

Набор векторов $(x_i; y_i)$, $i = \overline{1, m}$ называется прямоугольной упаковкой (Rectangular Packing, **RP**), если для $i \neq j$; $i, j = \overline{1, m}$,

$$(1) x_i \geqslant (x_i + l_i) \lor x_i \geqslant (x_i + l_i),$$

или

$$(2) y_i \geqslant (y_i + w_j) \lor y_j \geqslant (y_i + w_i);$$

для
$$i = \overline{1, m}$$

$$(3) x_i \geqslant 0 \land y_i \geqslant 0 \land y_i + w_i \leqslant W.$$

Условие (1) означает раздвинутость прямоугольников по оси Ox, условие (2) — раздвинутость по оси Oy. Раздвинутость по оси Ox или по оси Oy означает непересечение прямоугольников между собой. Выполнение условий ((1) или (2)) и (3) означает допустимость упаковки. Если длина занятой части допустимой упаковки полосы достигает минимума, то \mathbf{RP} называется $onmuma_1$ ьной упаковкой и является решением $\mathbf{1.5DBPP}$. Исходную информацию для $\mathbf{1.5DBPP}$ принято задавать вектором $(W, m, w, l), w = (w_1, w_2, \ldots, w_m), l = (l_1, l_2, \ldots, l_m)$. Решение задачи определяет упаковка \mathbf{RP} с координатами $(x_i; y_i), i = 1, m$, прямоугольников.

Приведем два способа кодирования **RP**. Первый применяется многими авторами [18]. На втором способе базируются предлагаемые здесь алгоритмы.

Приоритетные списки. Предположим, что известна допустимая упаковка **RP**. В качестве шифра **RP** принято использовать список $\pi = \{1(\pi), 2(\pi), \ldots, i(\pi), \ldots, m(\pi)\}$, в котором $i(\pi)$ — номер прямоугольника, занимающего в π позицию i. Для фиксированного списка π с помощью того или иного алгоритма размещения $(\partial e \kappa o \partial e p a)$ вычисляют координаты $(x_i; y_i)$ прямоугольника P_i и строят эскиз упаковки. Ее длина зависит от перестановки элементов в π и от используемого декодера [21].

Блок-структуры. Пусть имеется прямоугольная упаковка **RP**. Проведем через правые стороны прямоугольников вертикальные резы, они разбивают **RP** на прямоугольные вертикальные блоки одной и той же ширины W и различной длины. Пусть длина **RP** равна L. Проведем через верхние стороны прямоугольников горизонтальные линии. Тогда **RP** разобьется на горизонтальные блоки одной и той же длины L и различной ширины. Таким образом, мы получаем две блок-структуры для **RP**, вертикальную и горизонтальную. Каждому блоку j сопоставим кортежс (запись номеров прямоугольников, пересекающих блок) и длину χ_j вертикального, η_j горизонтального блоков. В качестве шифров блок-структур используем списки:

(4)
$$S = \{1(j), 2(j), \dots, i(j), \dots\} \chi_j, \quad j = \overline{1, r};$$
$$\widetilde{S} = \{1(j), 2(j), \dots, i(j), \dots\} \eta_j, \quad j = \overline{1, q},$$

где i(j) – номер прямоугольника в позиции i, пересекающего блок j, r – количество вертикальных, q – горизонтальных блоков. На рис. 1,a и 1,b изображены вертикальная и горизонтальная блок-структуры упаковки с m=6. Разбиения на блоки

Рис. 1. Блок-структуры упаковок.

указаны штриховыми линиями. Там же указаны длины (ширины) блоков. Легко проверить, что блок-структурам отвечают следующие списки:

$$\begin{split} S &= \left\{ (2,1)20; \; (2,3)10; \; (4,3)22; \; (5,3)26; \; (6,3)5; \; (6)10 \right\}; \\ \widetilde{S} &= \left\{ (2,4,5,6)15; \; (2,4,5)12; \; (1,4,5)18; \; (1,3)10 \right\}. \end{split}$$

Длина
$$L(\mathbf{RP}) = 20 + 10 + 22 + 26 + 5 + 10 = 93$$
 и ширина $\widetilde{N}(\mathbf{RP}) = 15 + 12 + 18 + 10 = 55$.

Таким образом, имея упаковку, легко получить пару списков S и \widetilde{S} , отвечающих блок-структурам. Нас интересует обратная задача: по исходной информации (W;m;w;l) найти списки $S(\widetilde{S})$, соответствующие упаковке. Обозначим: $I_j(\widetilde{I_j})$ – множество прямоугольников, пересекающих j-й вертикальный (горизонтальный) блок; $I_j^+(\widetilde{I_j}^+)$ – множество прямоугольников $i\in I_j (i\in \widetilde{I_j})$, заканчивающихся в j-м блоке: $I_j^-(\widetilde{I_j}^-)$ – множество прямоугольников $i\in I_j (i\in \widetilde{I_j})$, начинающихся в j-м блоке. Определяющими для блок-структур являются следующие необходимые свойства соответствия:

 \mathcal{A} емма 1. Если список $S(\widetilde{S})$ соответствует допустимой упаковке \mathbf{RP} задачи **1.5DBPP**, то он удовлетворяет следующим свойствам.

- 1° . **Разнородность** прямоугольников. Элементы i(j) каждого кортежа j различные (один и тот же прямоугольник не может повторяться в одном кортеже);
- 2° . Продолженность прямоугольников. Если некоторый элемент $i(j) \overline{\in} I_{j}^{+}(\widetilde{I}_{j}^{+})$, то $i(j) \in I_{j+1}(\widetilde{I}_{j+1})$ (если прямоугольник не заканчивается в кортеже j, то он продолжен в следующем кортеже).

3. Задачи прямоугольно-ориентированного линейного раскроя

Базовой здесь является следующая хорошо известная проблема [22].

Задача линейного раскроя (Cutting Stock Problem, 1DCSP). Имеется материал, поступающий в виде стержней длины Z. Путем его раскроя требуется получить набор из m различных предметов заданной длины $\lambda_i, i = \overline{1,m}$ и в необходимом количестве b_i каждого вида $i = \overline{1,m}$. Требуется раскроить материал на линейные предметы (заготовки) с минимальными затратами материала.

Задача **1DCSP** задается информационным вектором $(Z;m;\lambda;b); \lambda=(\lambda_1,\ldots\lambda_m); b=(b_1,\ldots b_m).$ Вектор $\alpha^j=(a_{1j},a_{2j},\ldots,a_{mj})^T\in Z_+^m$ описывает j-й шаблон раскроя; компоненты a_{ij} указывают количество получаемых заготовок типа i. Матрица $A=(a_{ij}),\,i=\overline{1,m};\,j=\overline{1,n},$ называется раскройной матрицей. Обозначим через $\chi_j,\,j=\overline{1,n}$ количество стержней, раскраиваемых по шаблону j. Тогда проблема планирования оптимального раскроя материала сводится к решению следующей задачи:

(5)
$$\min N = \left\{ \sum_{j=1}^{n} \chi_j \middle| \chi = (\chi_1, \chi_2, \dots, \chi_n) \in Z_+^n; \sum_{j=1}^{n} \chi_j \alpha^j = b \right\}.$$

Если векторы α^j и количество n различных шаблонов известны, то (5) является задачей линейного целочисленного программирования. Однако в реальных задачах векторы α^j не заданы в явном виде и число n экспоненциально зависит от размерности m исходной задачи. Тогда (5) представляет задачу с неявно заданной матрицей ограничений, а неизвестными, кроме χ_j , являются векторы α^j (шаблоны) и число n. Известны методы решения этой задачи. Например, метод отсекающих плоскостей,

приведенный в [8] и комбинаторные алгоритмы [22]. Здесь для решения (5) с дополнительными ограничениями применяются схемы локального поиска.

Заметим, что шаблон раскроя j может быть задан кортежем $(1(j),2(j),\ldots,i(j),\ldots)$, в котором перечислены номера i(j) заготовок, получаемых по шаблону j. Тогда решение задачи (5) представляет совокупность из n различных кортежей с указанием количества χ_j стержней, раскраиваемых по j-му шаблону. Его можно записать как

(6)
$$S = (\{1(j), 2(j), \dots, i(j), \dots\}) \chi_j, \quad j = \overline{1, n}; \quad N = \sum_{j=1}^n \chi_j,$$

где S — список кортежей, N — расход материала, вычисляется через S и используется в качестве рекорда.

Если положить Z = W; $\lambda_i = w_i$; $b_i = l_i$; $i = \overline{1, m}$, то **1.5DBPP** трансформируется в **1DCSP** с $(Z = W; m; \lambda = w; b = l)$. Пара (S; N) определяет ее допустимое решение.

(7)
$$S = (1(j), 2(j), \dots, i(j), \dots) \chi_j, \quad j = \overline{1, r}, \quad N = \sum_{j=1}^r \chi_j,$$

где χ_i – количество стержней, раскраиваемых по кортежу (шаблону) j.

Если положить $Z=N;\; \lambda_i=l_i;\; b_i=w_i;\; i=\overline{1,m},\; \text{то } \mathbf{1.5DBPP}$ трансформируется в задачу линейного раскроя $\mathbf{1DCSP^*}$ с $(Z=N;m;\lambda=l;b=w).$ Пара $(\widetilde{S};\widetilde{N})$ определяет ее допустимое решение

(8)
$$\widetilde{S} = (1(j), 2(j), \dots, i(j), \dots) \eta_j, \quad j = \overline{1, q}, \quad \widetilde{N} = \sum_{j=1}^q \eta_j,$$

где η_j – количество стержней, раскраиваемых по кортежу (шаблону) j.

Определим прямоугольно-ориентированные задачи линейного раскроя (Rectangular Oriented $\mathbf{CSP}, \, \mathbf{RCSP}$).

Задача RCSP. При исходных данных **1.5DBPP** найти допустимое решение (S; N) задачи **1DCSP**, удовлетворяющее свойствам 1° , 2° .

Задача RCSP*. При исходных данных 1.5DBPP и Z=N найти допустимое решение $(\widetilde{S};\widetilde{N})$ задачи 1DCSP*, удовлетворяющее свойствам 1°, 2° и условию

(9)
$$\widetilde{N} \leqslant W$$
.

Допустимое решение задачи $\mathbf{RCSP}(\mathbf{RCSP^*})$ называется $npsmoyronьнo-opuenmu-poванным линейным раскроем (Rectangular Oriented Linear Cutting, <math>\mathbf{ROLC}$ ($\mathbf{ROLC^*}$)), ему отвечает вертикальная (горизонтальная) блок-структура, заданная парой (S;N) $((\widetilde{S};\widetilde{N}))$.

Блок-структуры **ROLC** (**ROLC***) можно найти, решая последовательно задачи **RCSP** и **RCSP***. Однако, только они не обеспечивают построения **RP**.

4. Алгоритмы на базе перестановок элементов в блоках

Здесь мы будем опираться только на одну, вертикальную блок-структуру.

Заметим, что решение **ROLC** линейного раскроя не зависит от порядка следования элементов в кортежах. Различные **ROLC**, различающиеся только перестановкой

Рис. 2. Перестройка.

элементов в блоках, назовем эквивалентными. Прямоугольно-ориентированный линейный раскрой назовем нормальным (normal, **n.ROLC**), если существует ему эквивалентный, являющийся прямоугольной упаковкой. Очевидно утверждение:

 \mathcal{N} ем ма 2. Если пара (S;N) является **n.ROLC**, то блок-структура прямоугольной упаковки длины L=N принадлежит множеству эквивалентных **ROLC**.

Поиск прямоугольной упаковки длины L = N сводится к перестановке элементов внутри блоков. Детерминированный алгоритм направленной перестановки, метод $nepecmpoŭ\kappa u$, описан в [23]. Здесь мы приводим его краткую характеристику.

Метод перестройки (Reconstruction, **REC**). Предположим, что имеется план линейного раскроя, удовлетворяющий условиям 1° и 2° , т.е. прямоугольно-ориентированный линейный раскрой, **ROLC**. Среди эквивалентных **ROLC** требуется найти, если это возможно, отвечающий прямоугольной упаковке **RP**. Очевидным является следующее утверждение:

 \mathcal{A} ем ма 3. **ROLC**, отвечающий исходным данным **1.5DBPP** и заданный парой (S;N) удовлетворяет условиям (1) или (2) непересечения прямоугольников в том, и только в том случае, если для каждой пары (j,j+1) кортежей из S имеет место следующее свойство:

 3° . Размещаемость. Если некоторые элементы $i \in I_{j}^{+}, j \in S$, то вместо них в освободившихся областях должны разместиться все новые элементы (j+1)-го кортежа.

На этом свойстве базируется алгоритм перестройки.

Пусть имеется допустимое решение (S,N) задачи **RCSP**. Каждому кортежу списка (7) отвечают блоки, удовлетворяющие свойствам 1° и 2° . Предположим, что при этом для некоторой пары (j,j+1) соседних кортежей нарушено свойство 3° . В этом случае будем говорить, что возникла ситуация $nepecmpoй\kappa u$, а соответствующие прямоугольники (элементы) назовем $\kappa pumuvec\kappa u mu$. Если для кортежа j возникает ситуация перестройки, то осуществляется перестановка критических и других элементов в предыдущих кортежах, обеспечивающая, если возможно, нужное расположение прямоугольников в кортеже j. На рис. 2,a и 2,b приведены упаковки различной длины до и после перестройки. В [23] приведены быстрые переборные алгоритмы сложности (m^2) . Алгоритм $nepecmpoй\kappa u$ является детерминированным. Его удобно применять в рамках вероятностных алгоримов в качестве декодера. Однако не всякая ситуация перестройки преодолима и тогда L > N.

Генетический блочный алгоритм (Genetic Block Algorithm, **GBA**). Пусть задана исходная информация (W, m, w, l) для решения **1.5DBPP**. Затем формируется исходная информация (Z, m, λ, b) для задачи **1DCSP**. Решая эту задачу с учетом свойств 1° и 2°, получаем **ROLC**, заданный парой (S; N). Полученная блок-структура, вообще говоря, не является упаковкой. Ее длина $\Lambda = N$ может использоваться в качестве квазиграницы **RP** в рассматриваемой окрестности.

Генетический алгоритм решения задачи 1.5DBPP интерпретируется как эволюционный процесс, связанный с перестановкой элементов в кортежах. Каждой допустимой упаковке **RP** отвечает ее блочное представление (4), кортежи в нем расположены в установленном порядке и связаны друг с другом (свойство 2°). Это позволяет интерпретировать их как гены, а блок-структуру, соответствующую ROLC, можно интерпретировать *хромосомой*, содержащей сцепленные между собой гены. Местоположение гена в хромосоме является локусом, а альтернативные формы одного и того же гена, расположенные в одинаковых локусах хромосомы, интерпретируются аллелями. Хромосома, содержащая в своих локусах конкретные значения аллелей, представляет генотип. Конечное множество всех допустимых генотипов образует генофонд. Первое допустимое решение определяется путем использования алгоритма SVC с ограничениями 1° и 2° для RCSP. Так определяют начальное ROLC, заданное парой (S; N). Далее, с помощью того или иного декодера находят прямоугольную упаковку длины L. Путем перестановки элементов в кортежах ROLC определяют эквивалентные **ROLC**' и отвечающие им $coce \partial nue$ решения длины L'. Таким образом фиксированный \mathbf{ROLC} со значением N функции цели определяет окрестность, в которой реализуется локальный поиск оптимума. Степенью $\mu(rp)$ приспособленности особи rp является значение L длины занятой части полосы прямоугольной упаковки **RP**. Оценочной функцией в окрестности с фиксированным значением $\Lambda = N$, является величина $\Delta = (L - \Lambda)/L$. Множество эквивалентных **ROLC** образует *ape*an, заданный окрестностью N, а совокупность особей (допустимых упаковок), принадлежащих ареалу, образует популяцию Р. Численность генофонда популяции в множестве эквивалентных **ROLC**, определяется параметром $k = \sum_{\nu=1}^{n} r_{\nu}!$, где r_{ν} – количество начатых в блоке ν элементов, n – количество блоков. В общем случае экстремальной задачи 1.5DBPP популяция соответствует совокупности допустимых решений. С помощью основных генетических процедур кроссовер и селекция может быть найдена особь с показателем $L=\Lambda$ в случае, когда исходный ${f ROLC}$ является нормальным. На этом заканчивается работа алгоритма. Иначе, выполняя заданное количество генетических итераций, находят \mathbf{RP} с $L < \Lambda$ и вычисляют значения оценочной функции. Далее ареал расширяется за счет применения мутации, перехода к новой окрестности. Тогда численность генофонда $k=n!\sum_{\nu=1}^n r_{\nu}!$.

Перечислим основные процедуры GBA.

Хромосома – вычисление **ROLC** с помощью модификаций алгоритма **SVC** [22].

 \mathcal{L} екоdep — построение допустимой прямоугольной упаковки **RP**, пользуясь алгоритмом $nepecmpoй\kappa u$ в сочетании с блочным декодером [21].

Генофонд – построение аллелей путем перестановок элементов в кортежах.

Кроссовер – выбор случайной хромосомы (родителя), выбор гена (блока) хромосомы, перестановка двух случайных элементов в блоках.

Мутация – построение новой начальной хромосомы.

Алгоритм **GBA** состоит из выполнения следующих шагов:

- G1. Построение блок-структуры начальной хромосомы.
- G2. Построение начальной популяции. Выполняются процедуры генофонд и де-кодер. Повторяется до получения заданного количества особей в популяции.
 - G3. Кроссовер и занесение в популяцию наиболее приспособленных особей.
 - G4. *Мутация* и переход на G1.

Выполняется алгоритм до тех пор, пока не достигнута *квазиграница*, полученная **SVC** или не выполнено заданное количество шагов.

5. Метод парных списков локального поиска оптимальной упаковки

Метод парных списков основан на утверждениях, связанных с допустимостью RP.

Лемма 4. Блок-структуры ROLC и ROLC*, отвечающие исходным данным **1.5DBPP** и заданные парами $(S;N)((\widetilde{S};\widetilde{N}))$, удовлетворяют условиям (1) или (2) непересечения прямоугольников в том и только в том случае, если для них справедливо следующее свойство:

- 4°. **Непересечение**. Для любого вертикального и любого горизонтального блока выполняется одно из следующих условий:
- (a) для любой пары $(i_1,i_2) \in I_k$, $k \in S$ и любого кортежа $j \in \widetilde{S}$: если $i_1 \in \widetilde{I}_j$, то $i_2 \notin \widetilde{I}_j$ или если $i_2 \in \widetilde{I}_j$, то $i_1 \notin \widetilde{I}_j$;
- (b) для любой пары $(i_1,i_2)\in \widetilde{I}_j,\ j\in \widetilde{S}$ и любого кортежа $k\in S$: если $i_1\in I_k,\ mo\ i_2\notin I_k$ или если $i_2\in I_k,\ mo\ i_1\notin I_k$.

Заметим, что выполнение 4° не является достаточным условием эквивалентности **ROLC** и **RP**. На рис. З изображена блок-структура **ROLC**, удовлетворяющая 4° , которая не является **RP**. Простым следствием из леммы 4 является следующий достаточный признак эквивалентности **ROLC** и **RP**.

 $T \ e \ o \ p \ e \ ma \ 1.$ Блок-структуры $\mathbf{ROLC}(\mathbf{ROLC^*}) \ c \ ucxod$ ными данными $\mathbf{1.5DBPP}$, заданные парами $(S; N)((\widetilde{S}; \widetilde{N}))$ и удовлетворяющие свойству 4° , отвечают упаковке \mathbf{RP} , если координаты (x_i, y_i) всех прямоугольников вычислены по формулам:

(10)
$$x_{i(k)} = \sum_{j=1}^{k-1} \chi_j, \quad i(k) \in I_k^-; \quad y_{i(k)} = \sum_{j=1}^{\widetilde{k}-1} \eta_j, \quad i(\widetilde{k}) \in \widetilde{I}_{\widetilde{k}}^-,$$

где $I_k^-(\widetilde{I}_{\widetilde{k}}^-)$ – множество прямоугольников с началом в блоке $k(\widetilde{k}).$

Рандомизированный поиск парных списков (Random Doublicity List Search, **RDLS**). По общему методу локального спуска алгоритм состоит из выполнения процедур:

- RL1. Инициализация. Выбрать начальное допустимое решение и вычислить для него значение критерия оптимальности (верхняя граница).
- $RL2.\ \mathit{Houck\ cocedhero\ pemenus}.$ Выбрать допустимое соседнее решение из окрестности начального и вычислить для него значение оценочной функции.
- RL3. *Анализ перехода*. Проверить, следует ли совершить переход к новому решению: если да, то принять новое решение в качестве текущего. Иначе текущим оставить предыдущее решение и вернуться на RL2.
 - RL4. Конец. Завершить работу алгоритма и вывести решение.

P2	Р3	
		Р3
P1		P4

Рис. 3. Недопустимая упаковка.

Процедуры RL1 и RL2 в схеме парных списков представляют последовательное решение пары задач RCSP и RCSP*. Для поиска соответствующих им списков S и S* на каждой итерации применяется алгоритм FF с учетом 1° , 2° , 4° .

Рандомизированный поиск парных списков генерирует новый список π путем перестановки всех элементов. Используя полученный список π решаем **RCSP** (алгоритм **FF** с учетом 1° и 2°) и получаем пару (S; N). **RCSP*** решается с помощью **FF** с учетом 1°, 2° и 4°. После получения первого варианта решения $(\widetilde{S}; \widetilde{N})$ возможны следующие случаи.

- 1. Выполнено условие $\widetilde{N}\leqslant W$, переходим к RL3.
- 2. Оказалось, что $\widetilde{N} > W$, переходим к RL2, отбраковывая **ROLC**.

Процедура ananus nepexoda оставляет лучшую из найденных упаковок и оценивает в процентах отклонение ее длины от лучшего решения \mathbf{RCSP} .

6. Численный эксперимент

Целью численного эксперимента являлось сравнение эффективности генетического блочного алгоритма (GBA) и рандомизированного поиска парных списков (RDLS) между собой, а также сравнение с известными методами: классическим генетическим алгоритмом (CGA) [18] и мультиметодным генетическим алгоритмом (MMA) [19]. Здесь приведен небольшой срез эксперимента.

В качестве исходных использовались данные, сгенерированные случайным образом. При этом были заданы параметры: W=1000 – ширина полосы; $m=20,\ 40,\ 60,\ 80,\ 100$ – количество прямоугольников; (w_i,l_i) – размеры i-го прямоугольника, $i=\frac{1}{1,m}$.

Расчеты проводились для трех наборов исходных данных с параметрами: ν_1 — нижнее ограничение ширины прямоугольника по ширине, т.е. $w_i \geqslant \nu_1 W$; ν_2 — верхнее ограничение ширины, т.е. $w_i \leqslant \nu_2 W$; ω_1 — нижнее ограничение длины прямоугольника по ширине, т.е. $l_i \geqslant \omega_1 W$; ω_2 — верхнее ограничение длины, т.е. $l_i \leqslant \omega_2 W$.

Расчеты проводились на ПЭВМ Pentium III-933 для сгенерированных наборов данных.

Набор № 1: $\nu_1 = 0.10$; $\nu_2 = 0.50$; $\omega_1 = 0.15$; $\omega_2 = 0.50$.

Набор № 2: $\nu_1 = 0.25$; $\nu_2 = 0.40$; $\omega_1 = 0.35$; $\omega_2 = 0.60$

Набор № 3: $\nu_1=0.10;\ \nu_2=0.15;\ \omega_1=0.15;\ \omega_2=0.20.$

В каждом классе задач и для каждого набора было просчитано по 50 примеров и средние результаты решения в виде коэффициентов раскроя (Cutting Coefficient,

 ${\bf CC}$) записаны в ячейки таблице. Коэффициент ${\bf CC} = \sum\limits_{i=1}^m w_i l_i \Big/ (L \times W).$

Жирным шрифтом в таблице выделены лучшие значения коэффициентов СС.

Результаты численного эксперимента

	Набор № 1			Набор № 2			Набор № 3					
m	GBA	RDLS	GCA	MMA	GBA	RDLS	GCA	MMA	GBA	RDLS	GCA	MMA
20 40 60	94,10 94,29 94,18	94,65 94,03 94,10	89,76 89,65 88,85	94,27 94,70 95,62	94,29 94,50 95,63	92,86 $94,19$ $94,65$	90,67 $92,10$ $91,51$	85,22 93,22 93,61	87,07 93,85 93,92	91,90 94,04 93,56	85,06 92,19 92,16	90,12 $92,83$ $93,42$
80 100	$94,11 \\ 93,91$	$93,87 \\ 93,91$	88,34 87,83	95,57 95,80	94,95 95,96	$94,22 \\ 94,37$	$91,27 \\ 90,62$	$94,29 \\ 95,21$	94,57 95,08	$94,32 \\ 94,88$	$92,00 \\ 91,72$	93,31 $93,84$

Анализируя результаты, можно сделать следующие выводы:

- эффективность блочных алгоритмов мало зависит от выделенных наборов данных и от количества m прямоугольников;
- лучшие решения получены с помощью блочных алгоритмов для прямоугольников средних или мелких габаритов (наборы № 2 и № 3);
- как правило, **GBA** дает лучший коэффициент раскроя по сравнению с **RDLS**; это можно объяснить тем, что в двойственной схеме применялся примитивный рандомизированный вариант простой эвристики **FF**;
 - обе блочные схемы значительно эффективнее генетического алгоритма GCA;
- мультиметодный алгоритм И.П. Норенкова по своей эффективности для $m \leq 100$ мало отличается от схемы поиска парных списков и блочного генетического алгоритма. Он показал лучшие решения для набора № 1, смеси прямоугольников различных размеров.

Заметим, что временные затраты были отведены примерно равные для всех алгоритмов и увеличивались по мере роста m. Однако, при m > 100 эффективность **ММА** значительно выше. Для $m \ge 500$ удалось получать решения лишь с помощью **ММА**. Это можно объяснить тем, что алгоритм **ММА** работает фактически без декодера, изменяя случайно алгоритмы упаковки.

7. Заключение

Статья посвящена блочной методологии конструирования алгоритмов прямоугольной упаковки: введены понятия блок-структур и блочные способы кодирования упаковок; сформулированы и обоснованы основные свойства блок-структур, в том числе необходимые и достаточные условия эквивалентности блок-структур и прямоугольной упаковки. На этой основе разработаны методы прямоугольной упаковки на базе линейного раскроя специального вида и предложены две группы алгоритмов. Первая использует вертикальную блок-структуру, вторая – вертикальную и горизонтальную структуры. Разработаны конкретные реализации общих схем: детерминированный алгоритм перебора элементов в блоках (пререстройка); генетический блочный алгоритм и рандомизированный поиск парных списков. Приведены результаты среза численного сравнения эффективности алгоритмов с известными генетическими алгоритмами (классическим и мультиметодным алгоритмом И.П. Норенкова). Блочные алгоритмы не уступают им. Основным достоинством является открытая методология разработки блочных алгоритмов. На этой базе могут создаваться более эффективные эвристики, приближенные и точные алгоритмы. Более того, методология может применяться и для разработки методов расчета параллелепипедной упаковки.

ПРИЛОЖЕНИЕ

 \mathcal{A} о к а з а т е ль с т в о леммы 1. Нетрудно видеть, что 1° и 2° являются необходимыми, но не достаточными условиями соответствия $S(\widetilde{S})$ и \mathbf{RP} . Необходимость очевидна. Отрицание достаточности следует из контрпримера: при изменении порядка (P_2, P_1) на (P_1, P_2) следования прямоугольников в блоке № 1, см. рис. 1(а), прямоугольники P_2 и P_3 в блоке № 2 пересекутся.

 \mathcal{A} о к азательство леммы 3. Необходимость очевидна. Пусть теперь имеет место свойство 3°. Тогда прямоугольники раздвинуты по оси Oy, т.е. условие (2) выполнено. Это означает по определению непересечение прямоугольников между собой.

 \mathcal{A} о казательство леммы 4. Необходимость очевидна. Пусть теперь имеет место условие (a) свойства 4° . Тогда если два прямоугольника i_1 и i_2 пересекают один и тот же вертикальный блок, то они не могут пересечь один и тот же горизонтальный блок. А это означает раздвинутость прямоугольников по оси Oy, т.е. (2). Аналогично, выполнение условия (b) свойства 4° означает раздвинутость прямоугольников i_1 и i_2 по оси Ox, т.е. (1). Выполнение условия (a) или (b) свойства 4° означает непересечение прямоугольников P_{i_1} и P_{i_2} по определению.

Доказательство теоремы 1. Пусть имеются блок-структуры **ROLC** (**ROLC***), удовлетворяющие свойству 4° , и координаты (x_i, y_i) прямоугольников вычислены через блок-структуры по формулам (10). Совокупность прямоугольников с координатами (x_i, y_i) является упаковкой. На основании леммы 4 прямоугольники не пересекаются между собой, т.е. выполнены условия (1) или (2). Кроме того, по определению **ROLC*** справедливо (9). А это, в свою очередь, с учетом нулевых координат прямоугольников, касающихся осей Ox и Oy, означает выполнение условий (3). Таким образом, мы имеем допустимую упаковку **RP** с блок-структурами **ROLC(ROLC***).

СПИСОК ЛИТЕРАТУРЫ

- 1. Dyckhoff H. A typology of cutting and packing problems // F.R. Germany, 1991.
- 2. $Hinxman\ A$. The Trim-Loss and Assortment Problems: A Survey // Europ. J. Oper. Res. 1980. V. 11. P. 863–888.
- 3. *Канторович Л.В.*, *Залгаллер В.А*. Расчет рационального раскроя материалов. Л.: Лениздат, 1951.
- 4. Gilmory P., Gomory R. Multistage cutting stock problem of two and more dimensions // Oper. Res. 1965. V. 13. № 1. P. 94–120.
- 5. Terno J., Lindeman R., Scheithauer G. Zuschnitprobleme und ihre praktische Losung. Leiprig, 1987.
- 6. Романовский И.В. Алгоритмы решения экстремальных задач. М.: Наука, 1977.
- Мухачева Э.А. Рациональный раскрой промышленных материалов: Применение АСУ. М.: Машиностроение, 1984.
- 8. Belov G., Scheithauer G. A Cutting Plane Algorithm for the One Dimensional Cutting Stock Problem with Multiple Stock Lengths // Europ. J. Oper. Res. 2002. 141(2). P. 274-294.
- 9. Martello S., Toth P. Knapsack problems: Algorithms and Computer Implementations. Chichester. John Wiley&Sons. 1990.
- 10. *Кацев С.В.* Об одном классе дискретных минимаксных задач // Кибернетика. 1979. \mathbb{N} 5. С. 139–141.
- 11. Гимади Э.Х., Залюбовский В.В. Задача упаковки в контейнеры: асимптотически точный подход // Изв. вузов. Математика. 1997. № 12. С. 25–33.
- 12. Coffman E., Garey M., Jchonson D. Approximation algorithms for bin-packing. An updated survey // Algorithm Design for Computer System Design (Ausiello G., Lucertini M., Serafini P. eds) Berlin et al. 1984. P. 49–106.
- 13. Мухачева Э.А. Валеева А.Ф. Метод динамического перебора в задаче двумерной упаковки // Информ. технологии. 2000. № 5. С. 30–37.
- 14. Стоян Ю.Г., Гиль Н.И. Методы и алгоритмы размещения плоских геометрических объектов. Киев: Наук. думка, 1976.
- 15. *Кочетов Ю.А.* Вероятностные методы локального поиска для задач дискретной оптимизации / Дискретная математики и ее приложения. Сб. лекций молодежных и научных школ. М.: МГУ, 2001. С. 87–117.
- 16. Aarts E., Lenstra J. Local Search in Combinatorial Optimization. John Wiley&Sons, 1996.
- 17. Falkenauer E. A hybrid Grouping Genetic Algorithm for Bin Packing // J. Heuristics. 1998. V. 2. No. 1. P. 5–30.

- Liu D., Teng H. An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles // Europ. J. Oper. Res. 1999. 112. P. 413–420.
- 19. Норенков И.П. Эвристики и их комбинации в генетических методах дискретной оптимизации // Информ. технологии. 1999. № 1. С. 2–7.
- 20. Гончаров Е.Н., Кочетов Ю.А. Поведение вероятностных жадных алгоритмов для многостадийной задачи размещения // Дискретный анализ и исследование операций. 1999. Сер. 2. 6. № 1. С. 12–32.
- 21. *Мухачева А.С.*, *Чиглинцев А.В.*, *Смагин М.А.*, *Мухачева Э.А.* Задачи двумерной упаковки: развитие генетических алгоритмов на базе смешанных процедур локального поиска оптимального решения // Информ. технологии. 2001. № 9. Приложение. 25с.
- 22. Mukhacheva E.A., Belov G.N., Kartak V.M., Mukhacheva A.S. Linear one-dimensional cutting-packing problems: numerical experiments with sequential value correction method (SVC) and a modified branch-and-bound method (MBB) // Pesquisa Operacional. V. 20. $\[Mathack{N}^{\underline{\alpha}}\]$ 2. P. 153–168.
- 23. Мухачева Э.А. Мухачева А.С. Метод перестройки для решения задачи прямоугольной упаковки // Информ. технологии. 2000. \mathbb{N} 4. С. 30–36.

Статья представлена к публикации членом редколлегии А.И. Кибзуном.

Поступила в редакцию 27.06.2003