

Sistemas de Ecuaciones Lineales

Relación 9: Rouché - Frobenius Departamento de Matemáticas

1.- Comprobar que los sistemas de ecuaciones siguientes uno es determinado, otro indeterminado y otro incompatible:

$$a)\begin{cases} 8x + y + 4z = 9 \\ 5x - 2y + 4z = 6 \\ x + y + 0z = 1 \end{cases} b)\begin{cases} 6x - y + 3z = 6 \\ -6x + 8y + 0z = -10 \\ 2x - 5y - z = 4 \end{cases} c)\begin{cases} x + y + z = 1 \\ 3x - 4y + 0z = 5 \\ 7x - y - 3z = 8 \end{cases}$$
2.- Discutir el siguiente sistema según los valores de k.
$$\begin{cases} kx - y = 1 \\ x - ky = 2k - 1 \end{cases}$$

a) S.C.I.; b) S.I.; c) S.C.D.

Si k=1: S.C.I.; Si k=-1: S.I y si $k \neq \pm 1$ S.C.D.

- 3.- Se considera el sistema de ecuaciones lineales: $\begin{cases} x + 2y + 3z = 1 \\ x + ay + 3z = 2 \end{cases}$
 - a) Encontrar un valor de a para que el sistema sea incompatible.
 - b) Discutir si existe algún valor de a para el cual el sistema sea compatible determinado.
 - c) Resolver el sistema para a=0.

Sol: a) a=2; b) No existe a; c) *S.C.I.* con $S = \{4 - 6\lambda, -1, 2\lambda\}$

- **4.-** Se consideran las matrices $A = \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & 1 \\ 2 & 3 & -9 \end{pmatrix}$, $C_1 = \begin{pmatrix} 1 \\ 2 \\ \alpha \end{pmatrix}$, $C_2 = \begin{pmatrix} -6 \\ -11 \\ \beta \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
 - a) Determina el valor de α para que el sistema $AX = C_1$ sea incompatible.
 - b) Determina los valores de β para los cuales el sistema $AX = C_2$ es compatible, y para uno de estos valores resuelve dicho sistema.
 - c) Para $\alpha = 3$ y $\beta = -13$ estudia el sistema $AX = C_1 + C_2$

Sol: a) $\alpha \neq 2$; b) $\beta = -13$ y $S = \{-5 - 3\lambda, 5\lambda - 1, \lambda\}$; c) S.I.

5.- Sea m un número real. Discútase, en función de m, el sistema de ecuaciones lineales homogéneo cuya matriz de coeficientes es A= $\begin{bmatrix} 1 & 1 & 1 \\ 1 & m & m \\ 2 & m+1 & 2 \end{bmatrix}.$

Sol: Si m=1; Sci y si $m\neq 1$ S.C.D. (0,0,0)

6.- Halla el valor de a para el cual es compatible el siguiente sistema de ecuaciones: $\begin{cases} 2x + 5y - 6z = 1 \\ x - y - 3z = -3 \end{cases}$ y resolverlo

para dicho valor de a.

- Sol: Compatible para todo valor de a; $x = \frac{3a-5}{4}$; y = 1; $z = \frac{a+1}{4}$
- **7.-** Halla el valor de m para que el sistema siguiente tenga solución distinta de la trivial. 3x + 2y + 4mz = 0http:\\selectividad.intergranad 2x+y+3z=0

Sol: m = 1

8.- Dado el sistema $\begin{cases} 2x - 3y + z = -1 \end{cases}$ halla el valor de k que lo hace incompatible.

Sol: k=0

- **9.-** Una matriz de 3 filas y 3 columnas tiene rango 3.
 - a) ¿Cómo puede variar el rango de la matriz si eliminamos una columna?
 - b) Si eliminamos una fila y una columna, ¿la matriz resultante debe tener a la fuerza rango 2?

Sol: a) Pasará a ser rango 2; b) No. Podría tener rango 1.

- **10.-** Dado el sistema $\begin{cases} 2x y + z = 3 \\ x + y + z = -1 \end{cases}$:
 - a) Añade una ecuación para que el sistema sea incompatible.
 - b) Añade una ecuación para que el sistema tenga infinitas soluciones.

Sol: a) x+y+z=5; b) x+y+z=-1.

Sistemas de Ecuaciones Lineales

Relación 9: Rouché - Frobenius

Departamento de Matemáticas

http://selectividad.intergranada.com

11.- ¿Puede tener solución un sistema en el que el determinante de la matriz de los coeficientes es 0?

Sol: Si.

12.- Un sistema con tres ecuaciones y dos incógnitas, ¿puede ser un sistema de Cramer? ¿Puede ser compatible y determinado?

Sol: Si porque si hay tres ecuaciones, y una es combinación lineal de las otras, entonces es como si solo hubiera dos.

13.- ¿Existen tres números tales que la suma de dos cualquiera de ellos sea siempre el otro más uno? En caso afirmativo, hállalos.

Sol:

14.- a) El rango de la matriz de coeficientes de un sistema homogéneo de cuatro ecuaciones y tres incógnitas es igual a 3. ¿Qué puedes decir de su solución? Razona tu respuesta.

b) El rango de una matriz de coeficientes de un sistema de tres ecuaciones con tres incógnitas es 1. ¿Qué rango, como máximo, puede tener la matriz ampliada?

Sol: a) S.C.D.; b) 2

15.- Discutir dependiendo del valor de los parámetros y resolver cuando sea posible, los siguientes sistemas:

$$\mathbf{01}$$
 $\begin{cases} y + z = 5 \\ (m-1) \cdot x + 3y + z = m \\ x + (m-1) \cdot y - z = 0 \end{cases}$

$$\begin{cases} ax - y + z = 1 \\ x + by = 1 \\ x + y + z = 0 \end{cases}$$

$$\mathbf{03}) \begin{cases}
3\lambda x + 2y + 3z = 0 \\
x - \lambda y - z = 0 \\
x - y - z = \lambda
\end{cases}$$

$$\begin{cases} ax + y - z = 1 \\ x + 2y + z = 2 \\ x + 3y - z = 0 \end{cases}$$

11)
$$\begin{cases} x + ay - z = 2 \\ 2x + y + az = 0 \\ 3x + (a+1)y - z = a - 1 \end{cases}$$

12)
$$\begin{cases} ax + y + z = 1 \\ x + ay + z = b \\ x + y + az = 1 \end{cases}$$

13)
$$\begin{cases} 2x + y + z = 4 \\ x - ay + z = a \\ 3x + 2z = 5 \end{cases}$$

$$\begin{cases} x + ay + z = 0 \\ y + z = b \\ y + az = 2 \end{cases}$$

21)
$$\begin{cases} x + 2y + 3z = 1 \\ x + ay + 3z = 2 \\ 2x + (2+a)y + 6z = 3 \end{cases}$$

$$\begin{cases} x + y + mz = 1 \\ x - y + 2z = 0 \\ 2x - y - z = m \end{cases}$$

$$\begin{cases} y + kz = 1 \\ kx - y + z = 1 \\ kx - z = -k \end{cases}$$

$$\begin{cases} 2x + y = 1 \\ x + y - 2z = 1 \\ 3x + y + az = b \end{cases}$$

31)
$$\begin{cases} (1+a)x + y + z = 1\\ x + (1+a)y + z = 1 + a\\ x + y + (1+a)z = 1 + a^2 \end{cases}$$

32)
$$\begin{cases} 2x - y + az = 1 + a \\ x - ay + z = 1 \\ x + y + 3z = a \end{cases}$$

33)
$$\begin{cases} 6x - 2y + 2az = 2\\ 3x + ay - z = 0\\ 2x + y + z = 0 \end{cases}$$

$$\begin{cases} ax + y + z = 1 \\ x + ay + z = 1 \\ x + y + az = 1 \end{cases}$$

41)
$$\begin{cases} x + y + z = 1 \\ x - y - z = 0 \\ 3x + my + z = m + 1 \end{cases}$$

$$42) \begin{cases} x + ay + z = 2 + a \\ (1 - a)x + y + 2z = 1 \\ ax - y - z = 1 - a \end{cases}$$

43)
$$\begin{cases} x + 2y + z = 3 \\ (1+a)y + z = 4 \\ x + 2y + az = 4 \end{cases}$$

44)
$$\begin{cases} x + y + z = k \\ x + y + kz = 1 \\ x + ky + z = 1 \end{cases}$$

$$\begin{cases} x + z = -1 \\ y + (a - 1)z = 0 \\ x + (a - 1)y + az = a \end{cases}$$

$$\begin{cases} x + 2z = 3 \\ 3x + y + z = -1 \\ 2y - z = -2 \\ x - y + az = -5 \end{cases}$$

53)
$$\begin{cases} a \cdot x + y + z = a^{2} \\ x - y + z = 1 \\ 3x - y - z = 1 \\ 6x - y + z = 3 \cdot a \end{cases}$$

54)
$$\begin{cases} x - y + z = -1 \\ y + z = 2a \\ x + 2z = a^2 \end{cases}$$

61)
$$\begin{cases} ax + y + z = a^2 \\ ax + (1 - a)y + (a - 1)z = a^2 \\ ax + y + az = 2a^2 \end{cases}$$

$$62) \begin{cases} kx + y + z = 1 \\ x + ky + z = k \\ x + y + kz = k^2 \end{cases}$$

63)
$$\begin{cases} 2x - 3y = 0 \\ x - y + z = 0 \\ x + 2y + mz = m \end{cases}$$

64)
$$\begin{cases} (2-m)x - y = 1\\ x + (1-m)y = 1\\ x - y = m \end{cases}$$

71)
$$\begin{cases} x + y = 1 \\ m \cdot y + z = 0 \\ x + (m+1)y + mz = m+1 \end{cases}$$

$$72) \begin{cases}
ax + y + 2z = 1 \\
2x - 2y = 0 \\
ax + y - z = 1
\end{cases}$$

73)
$$\begin{cases} 2z + y = 1 \\ x + y - 2z = 1 \\ 3x + y + az = b \end{cases}$$

$$\begin{cases} kx + 3y = 0 \\ 3x + 2y = k \\ 3x + ky = 0 \end{cases}$$

81)
$$\begin{cases} mx + 2y + z = 0 \\ 4x + 2my + mz = 0 \\ 2x + (2m - 2) \cdot y + z = 0 \end{cases}$$

82)
$$\begin{cases} 6x - 2y + 2az = 2\\ 3x + ay - z = 0\\ 2x + y + z = 0 \end{cases}$$

83)
$$\begin{cases} x - 2y - z = -1 \\ ax - y + 2z = 2 \\ x + 2y + az = 3 \end{cases}$$

84)
$$\begin{cases} y + kz = 1 \\ kx - y + z = 1 \\ kx - z = -k \end{cases}$$

91)
$$\begin{cases} x - y = m \\ x + m^2 \cdot z = 2m + 1 \\ x - y + (m^2 - m) \cdot z = 2m \end{cases}$$

92)
$$\begin{cases} x + y + mz = 1 \\ x - y + 2z = 0 \\ 2x - y - z = m \end{cases}$$

93)
$$\begin{cases} x + 2y - z = 2 \\ x + (1+a)y - az = 2a \\ x + ay + (1+a)z = 1 \end{cases}$$

94)
$$\begin{cases} kx + y + (k+1)z = 0 \\ ky + (k+1)z = 0 \\ x + 2z = 1 \end{cases}$$