Prototyping Data Pipeline

Capstone Step 5

Choices Regarding Data Cleaning/Transformation

During prototyping I observed a few high level improvements possible via treating the raw data. Specific choices are annoted in screenshots on the subsequent slides.

- 1. Location file is entirely redundant and will be descoped.
- 2. A number of columns are redundant and will be removed after verifying the other locations offer equivalent data
- 3. A number of columns can be joined/consolidated
- 4. A number of columns can be converted from varchar to numerical type

Choices Regarding Pipeline Automation

The prototyping phase helped form the following approach to automation in order to achieve the optimal reliability:

- 1. To handle embedded commas within csv columns, use Linux csvkit's csvcut tool from Python (cut and awk both have tremendous difficulty).
- 2 . Use sqlalchemy create_engine, pandas read_csv and dataframe.to_sql instead of looping through each row to execute mysql_connector_python insert statement. The latter fails in cases of NULL values.
- 3. Dot not declare any columns NOT NULL, and err on the side of caution with strings (TEXT instead of VARCHAR).
- 4. Delete files after processing to keep to manageable level.

Pipeline Script: transformdata.py

```
import mysql.connector
from mysql.connector import errorcode
from salalchemy import create engine, types
  can be established only when the user provides the proper target host, port, and user
      connection = mysal.connector.connect(user='root'.password=''.host='127.0.0.1'.port='3306')
      cursor.execute("DROP DATABASE IF EXISTS ()".format(DB NAME))
      cursor.execute("CREATE DATABASE ()".format(DB NAME))
   except mysql.connector.Error as err:
      cursor.execute("USE {}".format(DB NAME))
   except mysql.connector.Error as err:
      print("Database () does not exists,",format(DB NAME))
      if err.errno == errorcode.ER BAD DB ERROR:
           print("Database {} created successfully,",format(DB NAME))
          cnx.database = DB NAME
   TABLES['details'] = (
       "CREATE TABLE details ("
       " BEGIN YEARMONTH VARCHAR(6),"
      " BEGIN DAY VARCHAR(2)."
      " BEGIN TIME VARCHAR(4),"
       " END YEARHONTH VARCHAR(6),"
       " FND DAY VARCHAR(2).
        " END TIME VARCHAR(4),"
         EPISODE ID INT,
         EVENT ID INT,"
```

```
transformdata.pv
    TABLESI'fatalities'l = (
       "CREATE TABLE fatalities ("
        " EVENT ID INT,"
       FATALITY TYPE VARCHAR(1)."
       " FATALITY DATE VARCHAR(19),"
        * FATALITY AGE INT DEFAULT NULL,
       * FATALITY SEX ENUM('M'.'F').
        * EVENT YEARMONTH VARCHAR(6)
    for table name in TABLES:
       table description = TABLES(table name)
           cursor.execute(table description)
           if err.errno --- errorcode.ER TABLE EXISTS ERROR:
              print("already exists.")
if name == " main ":
    fatlist = sorted(glob,glob("/home/conner/Capstone/data/unzipped/storn fatalities *"))
```

Details

Index	DATATYPES V = VAICCHAR Ot = datetime 1 - int AD AE AF AG AH AI AJ AJ AK AL AM AN	0 N STANNARD ROCK LIGHT 0 N 0000X)
Description C	AD AE AF LOOG CAUSE CATEGORY TOR F. 50 EF2	
VANNA 42 XRIQ August Yorka August	Incommon	out based on suffix (e.g. K = 100
979989 GEORGIA 971998 NORTH CANGUINE 913793 TEXAS 913793 TEXAS 913793 TEXAS 9885003 WEST VIRGINA 971995 OHIO 97199	NAMAGE (CROPS SOURCE	r by multiplying out b
228	100.00K 0 10.00K 0 10.00K 0 10.00K 0 127.60K 0 10.00K 0 1.00K 0 0.00K	
202004 23 202006 6 4 202007 6 202007 25 202007 25 202007 25 202007 25 202008 27 202008 27 202009 28 202009 18 202009	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
950 528 528 5 1015 5 1055 5 1015 5 1056 6 1000 6 10	CT DEATHS D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Convert to i
233 4 6 6 6 7 25 25 25 26 13 3 28 8 13 3 9 6 6 13 15 13 15 13	V S INDIRE	

Details (cont)

							AQ	AR	AS	AT	AU		AW	AX	AY
							END_AZIMUTH	END_LOCATION	BEGIN_LA	T BEGIN_LC	ON END_LA	END_LON	EPISODE_NE	VENT_NAF	DATA_SOU
							E	MARS HILL	31.2047	-90.7432	31.2705	-90.446	A strong col A	very large	SV
								CORNWELLS HGTS	40.0815	-74.9592	40.0822	-74.9599	Tropical Stor A	tornado to	V
							NW	FOLSOM	34.3951	-84.8631	34.3968	-84.8576	A line of thu A	National V	- V
							SSE	KINGS MTN	35.177	-81.413	35.196	-81.325	Unusually hin	WS storm	cs /
													Hurricane H/H		
													Hurricane Hr To	COON site	CSV
													A tropical we'Th		
							F	ERBACON	38.5367	-80.5887	38 5186		Scattered ar C		
								BARTLICK	37.1988	-82.5269			An intense I A		
								WEIMERS MILL	40.1	-84.62			Thunderstor H		
								KIRKERSVILLE	39.97	-82.62	20.0542	-82 6201	Scattered th H	tigh water v	SEV.
								MACKSBURG	39.6391		20 6302	-81 4530	An intense I/O	on the Meet	COV.
								SAN JUAN	18.4149	-66.0901	19 4152	66 0976	An upper-lev Fl	tooding ron	Sev A
								SAN JUAN	18.414		10.4132	66 101	An upper-lev Fl	tooding ron	DOV.
							INV	SAN JUAN	10.414	-00.1010	10.4139		Strong gradi La		
							WNW	ALLENDALE OSWALD ARP	33.01	-81.4			An area of Ir Al	aw enlorce	-5V
							WNW	ALLENDALE OSWALD ARP	33.01	-81.4	33.01	-81.4	An area of It A	viiendale Co	JSV
													Very strong S	strong gradic	JSV
								FOLLY BEACH SULLIVANS ISLAND	32.65 32.76	-79.94 -79.82	32.65	-79.94	A severe qu'Ti	he Weather	CSY
											32.76	-79.82	A severe qu'Th		
											02.70				~
							N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	os /
							N				37.04	-76.08	Scattered sl W A potent sto Ti	Wind gust of	os /
							N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	os /
							N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
	ı.						N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
			_				N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	OS <mark>V</mark> OSV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	⊃sV ⊃SV
							N N	CHESAPEAKE BAY BRIDGE TUNNEL 3	RD ISLAN 37.04	-76.08	37.04	-76.08	Scattered shw	Wind gust of	os /

Fatalities

Α	В	C	l D	E	F	_ (G	н	l ı	J	K
FAT YEARMONTH									FATALITY SEY	FATALITY LOCATION	
202106		0	42960	953511	D D	06/09/2021		70	M	Golfing	202106
202100		0	43206	961309	ı	07/20/2021			M	Other	202100
202107		0	43207		1	07/20/2021			M	Other	202107
		0						31			
202107		y			!	07/20/2021			M	Other	202107
202107	27	<u> </u>	44279		I	07/27/2021			•	Other	202107
202103		0			D	03/28/2021			F	In Water	202103
202104		0	42962	954336	D	04/24/2021		2		Permanent Home	202104
202106		0	42963	954408	D	06/10/2021			M	In Water	202106
202106		0			D	06/14/2021		23	M	Outside/Open Areas	202106
202106	13	0	44482	970319	D	06/13/2021	L 00:00:00	32	F	Outside/Open Areas	202106
202106	13/	0	44483	970319	D	06/13/2021	L 00:00:00	42	M	Outside/Open Areas	202106
202106	M	0	44484	970319	D	06/13/2021	L 00:00:00	29	M	Outside/Open Areas	202106
202106	A	0	44485	970319	D	06/15/2021	L 00:00:00	34	F	Outside/Open Areas	202106
202106		0		970319	D	06/17/2021		28	M	Outside/Open Areas	202106
202106		0			D	06/20/2021			M	Outside/Open Areas	202106
202106		0		970319	D	06/20/2021			M	Outside/Open Areas	202106
202106		0		970319	D	06/15/2021		35	M	Outside/Open Areas	202106
202106		0	44491	970319	D	06/17/2021		36	M	Outside/Open Areas	202106
202106		0		970319	D	06/17/2021			M	Outside/Open Areas	202106
202106	13	0			D			35	F		202106
		<u> </u>		970320		06/13/2021				Outside/Open Areas	
202106	12	0	44480	970320	D	06/12/2021			M	Outside/Open Areas	202106
202106		0		970320	D	06/15/2021		37	M	Outside/Open Areas	202106
20210		0		970487	D	06/02/2021			M	Outside/Open Areas	202106
202106		0		970487	D	06/02/2021			M	Outside/Open Areas	202106
202106		0			D	06/07/2021			M	Outside/Open Areas	202106
202106	6	0	43771	970490	D	06/06/2021	L 00:00:00	47	M	Outside/Open Areas	202106
					1.7		- T			1.7	
					V		DT		V	V	
Redund				I	V		DT	I	V	V	The event can
(Will rer	nove after			I	V		DT	I	V	V	
(Will rer verifying	nove after equivale	nt		I	V		DT		V	V	occur prior to
(Will rer	nove after	nt		I	V				V	V	occur prior to the fatality, so
(Will rer verifying to FATA	nove after equivale	nt		I	V		Datatyp	2S:	V	V	occur prior to the fatality, so this is not
(Will-rer verifying to-FATA	nove after equivale	nt		I	V		Datatype I - Int		V	V	occur prior to the fatality, so
(Will rer verifying to FATA	nove after equivale	nt		I	V		Datatyp		V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt		I	V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifying to FATA	nove after equivale	nt		I	V		Datatype I - Int	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifying to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	the fatality, so this is not
(Will rer verifying to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifying to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt		I	V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to-FATA	nove after equivale	nt		I	V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to-FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not
(Will rer verifyin to FATA	nove after equivale	nt			V		Datatype I - Int V - Varci	ar	V	V	occur prior to the fatality, so this is not

After running transform.py, both tables are fully populated in mysql:

Data is returning meaningful queries for analysis:

