DATA 1010 In-class exercises Samuel S. Watson 10 September 2018

Problem 1

In a first linear algebra course, one often learns to find the null space of a matrix using by-hand row reduction to solve the corresponding linear system. In Julia, you can find the null space of a matrix using nullspace. Try some small matrices (including some with nontrivial null spaces) and check that this function behaves as expected.

In a first linear algebra course, one often learns to find a basis for span of the columns of a matrix using by-hand row reduction to solve a linear system. In Julia, you can find such a basis by selecting the first k columns from the U factor in the SVD, where k is the rank of the matrix (which can be calculated using $\frac{\text{rank}}{\text{rank}}$). Try some small matrices and check that this algorithm behaves as expected.

Bonus: check out how Julia's standard library implements (nullspace).

Problem 2

Consider the matrix $A = \begin{bmatrix} 3 & 4 \\ 2 & 1 \\ 1 & 3 \\ 2 & 5 \\ 6 & 3 \end{bmatrix}$ which encodes the locations of five points in the first quadrant (each row contains the coordinates of a point).

In this problem we will find the line ℓ through the origin which minimizes the sum of the squares of the distances from the five points to ℓ .

- (a) Draw the points and make your best guess at the optimal line ℓ (just eyeball it).
- (b) Consider the vector \mathbf{u} which extends from the origin to the point on ℓ which is in the first quadrant and is one unit from the origin. Show that the squared distance from any point $\mathbf{a} \in \mathbb{R}^2$ to ℓ is $|\mathbf{a}|^2 (\mathbf{a} \cdot \mathbf{u})^2$.
- (c) Show that the unit vector \mathbf{u} which minimizes the sum of squared distances from the given points to ℓ is equal to the vector \mathbf{u} which maximizes $|A\mathbf{u}|^2$.
- (d) Find the value of **u** which maximizes $|A\mathbf{u}|^2$ by writing $\mathbf{u} = [\cos \theta, \sin \theta]$ and maximizing the single-variable function $|A[\cos \theta, \sin \theta]|^2$. To help you get started:

```
using Optim f(\theta) = \dots optimize(f,0,\pi/2) # _minimizes_ f over [0,\pi/2]
```

(e) How close was your guess from (a)?