Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 100% growth in both areas. Circle each subnet on the graphic and answer the questions below

Address class
Custom subnet mask

255.255.224.0

Minimum number of subnets needed 4

Extra subnets required for 100% growth (Round up to the next whole number)

Total number of subnets needed = 8

Number of host addresses in the largest subnet group 60

Number of addresses needed for 100% growth in the largest subnet (Round up to the next whole number) + 60

Total number of address needed for the largest subnet = /20

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

IP address range for Management 172.16.64.0 to 172.95.255

IP address range for Router A to Router B serial connection 172.16.96.0 to 172.127.255

Show your work for Practical Subnetting 1 in the space below.

N 65,536 D	
₹ 32.768 N O	222222222222222222222222222222222222222
∞ _{16,384} → 0	522255
° 8,192 ∞ o	20272900 20202000 20202000
m 4,096 9 0	00000000
\$ 20 ⁴⁸ % O	22222222
80 1024 ts	
1957	00000000
512 8	00000004
1,024 87 ~ 0	0.80 0.40 0.00 0.00 0.00 0.00 0.00 0.00
2,048 \$ \$ 0	9999999
4,096 n 0	
8,192 \$ \$ 0	
16.384 ® N O	0-0-0-0-
32,768 * 5 O	00
65,536 7 7 7	
	ンジングンジング
er of losts er of nets alue	5,0,6,4,0,6,0,0
Number of Hosts - Number of Subnets - Inary values - I.	
Number of Hosts - Number of Subnets - Binary values - 172.16.1	
	40 4 0 × 0
	X

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of hosts per subnet</u>, and allow enough extra subnets and hosts for 30% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Address class B

Custom subnet mask 255.255.255.224

Minimum number of subnets needed 5

Extra subnets required for 30% growth (Round up to the next whole number)

Total number of subnets needed = 7

Number of addresses needed for 30% growth in the largest subnet (Round up to the next whole number)

Total number of address needed for the largest subnet = 26

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

IP address range for English <u>/35./26.0.32 to /35./26.0.63</u>

IP address range for Science 135.126.0.64 to 135.126.0.95

IP address range for Router A to Router B serial connection /35./26.0.96 to /35./26.0.127

IP address range for Router A to Router B serial connection /35./26.0./28 to /35./26.0./59

Show your work for **Problem 2** in the space below.

		35 260.31 35 260.31 35 260.63 35 260.95 35 260.127 35 260.127 35 260.255 35 260.255 35 260.159 35 260.159 35 260.159 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 35 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 260.1255 25 25 25 25 25 25 25
N 65,536	0	222222222222222222222222222222222222222
	0	200 200 200 200 200 200 200 200 200 200
° 16,384 °	r 0	
	0	
	0 0	ω
~	0 %	0-0-0-0-0-0-
N 1024	0 0	0000
957 512	0 %	0000
512 8		
00	0	こびがまでついめらりこびばまであ
2,048 \$	b 0	
4,096 N	0	
	0	
	0 2	
	0 87	
65,536 N	0	
(()		
r of osts r of ets	12 (nes	2 2
Number of Hosts - Number of Subnets -	135. 126.	(Round up to 2) $ \begin{array}{c} x.3 \\ x.3 \\ 6 \end{array} $
\$ \$ 20	135. 126.	

Based on the information in the graphic shown, design a classfull network addressing scheme that will supply the **minimum number of hosts per subnet**, and allow enough extra subnets and hosts for 25% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP address range for Marketing

to Router B serial connection _____

IP address range for Administrative _____

IP address range for Router A

Show your work for **Problem 3** in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of subnets**, and allow enough extra subnets and hosts for 70% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address 135.126.0.0		
	New York 25 Hosts	
Address class		
Custom subnet mask		
Minimum number of subnets needed		
Extra subnets required for 70% growth (Round up to the next whole number)		
Total number of subnets needed =		
Number of host addresses in the largest subnet group		
Number of addresses needed for 70% growth in the largest subnet (Round up to the next whole number)		
Total number of address needed for the largest subnet =		
Start with the first subnet and arrange your sub-networks from the largest gr	roup to the smallest.	
IP address range for New York		
IP address range for Washington D. C		
IP address range for Dallas		
IP address range for Router A to Router B serial connection		
IP address range for Router A to Router C serial connection		

Show your work for Problem 4 in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of hosts per subnet**, and allow enough extra subnets and hosts for 100% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address 210.15.10.0

Show your work for <u>Problem 5</u> in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of subnets**, and allow enough extra subnets and hosts for 20% growth in all areas. Circle each subnet on the graphic and answer the questions below.

S0/0/0	s 10.0.0.0
F0/0 S0/0/1	S0/0/1 Technology Building 320 Hosts
S0/0/0 Art & Drama 75 Hosts F0/0	Administration 35 Hosts
Science Building 225 Hosts	
Address class	
Extra subnets required for 20% growth (Round up to the next whole number)	
Total number of subnets needed	<u>=</u>
Start with the first subnet and arrange your sub-	networks from the largest group to the smallest.
IP address range for Technology	
IP address range for Science	
IP address range for Arts & Drama	
IP Address range Administration	
IP address range for Router A to Router B serial connection	
IP address range for Router A to Router C serial connection	
IP address range for Router B to Router C serial connection	

Show your work for <u>Problem 6</u> in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of hosts per subnet**, and allow enough extra subnets and hosts for 125% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address 177.135.0.0 S0/0/0	\$0/0/0 F0/1
Administration Marketing 33 Hosts Sales 75 Hosts 255 Hosts	Research 135 Hosts 63 Hosts
Address class	
Custom subnet mask	
Minimum number of subnets needed	_
Extra subnets required for 125% growth (Round up to the next whole number)	_
Total number of subnets needed =	_
Number of host addresses in the largest subnet group	<u> </u>
Number of addresses needed for 125% growth in the largest subnet (Round up to the next whole number)	
Total number of address needed for the largest subnet =	_
Start with the first subnet and arrange your sub-networks from	n the largest group to the smallest.
IP address range for Router A Port F0/0	
IP address range for Research	
IP address range for Deployment	
IP address range for Router A to Router B serial connection	

Show your work for <u>Problem 7</u> in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number subnets</u>, and allow enough extra subnets and hosts for 85% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Show your work for Problem 8 in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of hosts per subnet</u>, and allow enough extra subnets and hosts for 15% growth in all areas. Circle each subnet on the graphic and answer the questions below.

	IP Address	148.55.0.0	
	S0/0/0 S0/0/1	F0/0	F0/1
		S0/0/0	Dallas
F0/0	RouterD	Router C \$0/0/1	1500 Hosts
Ft. Worth 2300 Hosts	Address class		
	ustom subnet mask		
	of subnets needed		
Extra subnets requi	red for 15% growth	+	
Total number	of subnets needed	=	
	of host addresses		
15% growth ir	dresses needed for the largest subnet und up to the next whole number)	+	
	number of address the largest subnet	<u>=</u>	
Start with the first subne	et and arrange your sub-ı	networks from the larges	st group to the smallest.
IP address	range for Ft. Worth		
IP addre	ss range for Dallas		
	range for Router A B serial connection		
IP address to Router	range for Router A C serial connection		
IP address	range for Router C		

Show your work for **Problem 9** in the space below.

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of subnets**, and allow enough extra subnets and hosts for 110% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address	172.16.0.0
Sales 115 Hosts	Marketing 56 Hosts
F0/0 Router A S0/0/0	F0/0 S0/0/1
Management 25 Hosts	F0/1 Research 35 Hosts
Address class	
Custom subnet mask	
Minimum number of subnets needed	
Extra subnets required for 110% growth (Round up to the next whole number)	+
Total number of subnets needed	<u>=</u>
Number of host addresses in the largest subnet group	
Number of addresses needed for 110% growth in the largest subnet (Round up to the next whole number)	+
Total number of address needed for the largest subnet	<u>=</u>
Start with the first subnet and arrange your sub-	networks from the largest group to the smallest.
IP address range for Sales/Managemnt	
IP address range for Marketing	
IP address range for Router A to Router B serial connection	

Show your work for **Problem 10** in the space below.