Modeling Homogeneous Penetrable Materials --*PMCHWT Formulation

Donald R. Wilton

Scattering Notes, pp. 37,38

*Poggio, Miller, Chang, Harrington, Wu, Tsai

Formulation of Problems Involving Piecewise Homogeneous Media

• $\left(\mathbf{E}^{\pm},\mathbf{H}^{\pm}\right)$ are *incident* fields i.e., they are radiated by $\left(\mathbf{J}^{\pm},\mathbf{M}^{\pm}\right)$ in a *homogeneous* medium with parameters $\left(\varepsilon^{\pm},\mu^{\pm}\right)$

Exterior Equivalence, Interior Null Field Conditions

$$\left(egin{aligned} k^+ &\equiv \omega \sqrt{\mu^+ \mathcal{E}^+} \,, \ \eta^+ &\equiv \sqrt{rac{\mu^+}{\mathcal{E}^+}} \end{aligned}
ight)$$

Tested null field conditions:

1)
$$\langle \Lambda_m; \mathbf{E}(\mathbf{J}, \mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{E}^+ \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \uparrow \mathcal{S}} \mathcal{S}$$

2)
$$\langle \Lambda_m; \mathbf{H}(\mathbf{J}, \mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{H}^+ \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \uparrow \mathcal{S}} \mathcal{S}$$

Interior Equivalence, Exterior Null Field Conditions

$$\begin{pmatrix}
k^{-} \equiv \omega \sqrt{\mu^{-} \varepsilon^{-}}, \\
\eta^{-} \equiv \sqrt{\frac{\mu^{-}}{\varepsilon^{-}}}
\end{pmatrix}$$

Tested null field conditions:

3)
$$\langle \Lambda_m; \mathbf{E}(-\mathbf{J}, -\mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{E}^- \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \downarrow \mathcal{S}} \mathcal{S}$$

4)
$$<\Lambda_m; \mathbf{H}(-\mathbf{J}, -\mathbf{M})>+<\Lambda_m; \mathbf{H}^->=0, \quad \mathbf{r}\in \lim_{\mathbf{r}\downarrow\mathcal{S}}\mathcal{S}$$

The PMCHWT Equations

Tested null field conditions:

1)
$$\langle \Lambda_m; \mathbf{E}(\mathbf{J}, \mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{E}^+ \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \uparrow \mathcal{S}} \mathcal{S}$$

2)
$$\langle \Lambda_m; \mathbf{H}(\mathbf{J}, \mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{H}^+ \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \uparrow \mathcal{S}} \mathcal{S}$$

3)
$$\langle \Lambda_m; \mathbf{E}(-\mathbf{J}, -\mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{E}^- \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \downarrow \mathcal{S}} \mathcal{S}$$

4)
$$\langle \Lambda_m; \mathbf{H}(-\mathbf{J}, -\mathbf{M}) \rangle + \langle \Lambda_m; \mathbf{H}^- \rangle = 0, \quad \mathbf{r} \in \lim_{\mathbf{r} \downarrow \mathcal{S}} \mathcal{S}$$

Most common formulation is PMCHWT, obtained by equating 1) to 3) and 2) to 4); it is equivalent to enforcing continuity of tangential \mathbf{E} and \mathbf{H} at \mathcal{S} :

Any linear combination of 1) and 2) and of 3) and 4) constitutes a valid coupled pair of integral equations for unknowns J and Mthough their solution may not be unique at all frequencies

PMCHWT is both unique and well-conditioned

$$\lim_{\mathbf{r} \uparrow \mathcal{S}} < \Lambda_m; \mathbf{E}(\mathbf{J}, \mathbf{M}) > + < \Lambda_m; \mathbf{E}^+ > = \lim_{\mathbf{r} \downarrow \mathcal{S}} < \Lambda_m; \mathbf{E}(-\mathbf{J}, -\mathbf{M}) > + < \Lambda_m; \mathbf{E}^- > \\
\lim_{\mathbf{r} \uparrow \mathcal{S}} < \Lambda_m; \mathbf{H}(\mathbf{J}, \mathbf{M}) > + < \Lambda_m; \mathbf{H}^+ > = \lim_{\mathbf{r} \downarrow \mathcal{S}} < \Lambda_m; \mathbf{H}(-\mathbf{J}, -\mathbf{M}) > + < \Lambda_m; \mathbf{H}^- > \\
\mathbf{r} \uparrow \mathcal{S}$$

Field and Current Representations

Represent fields via their potentials:

$$\mathbf{E}(\pm \mathbf{J}, \pm \mathbf{M}) = \mp j\omega \mathbf{A}^{\pm}(\mathbf{J}) \mp \nabla \Phi^{\pm}(\mathbf{J}) \mp \frac{1}{\varepsilon^{\pm}} \nabla \times \mathbf{F}^{\pm}(\mathbf{M})$$

$$= \mp j\omega \mu^{\pm} \int_{\mathcal{S}} G^{\pm}(\mathbf{r}, \mathbf{r}') \mathbf{J}(\mathbf{r}') d\mathcal{S}' \pm \frac{\nabla}{j\omega \varepsilon^{\pm}} \int_{\mathcal{S}} G^{\pm}(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{J}(\mathbf{r}') d\mathcal{S}'$$

$$\mp \lim_{\mathbf{r} \uparrow \downarrow \mathcal{S}} \nabla \times \int_{\mathcal{S}} G^{\pm}(\mathbf{r}, \mathbf{r}') \mathbf{M}(\mathbf{r}') d\mathcal{S}'$$

$$G^{\pm}(\mathbf{r}, \mathbf{r}') = \frac{e^{-jk^{\pm}R}}{4\pi R}$$

$$\mathbf{H}(\pm \mathbf{J}, \pm \mathbf{M}) = \mp j\omega \mathbf{F}^{\pm}(\mathbf{M}) \mp \nabla \Psi^{\pm}(\mathbf{M}) \pm \frac{1}{\mu^{\pm}} \nabla \times \mathbf{A}^{\pm}(\mathbf{J})$$

$$= \mp j\omega \varepsilon^{\pm} \int_{\mathcal{S}} G^{\pm}(\mathbf{r}, \mathbf{r}') \mathbf{M}(\mathbf{r}') d\mathcal{S}' \pm \frac{\nabla}{j\omega \mu^{\pm}} \int_{\mathcal{S}} G^{\pm}(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{M}(\mathbf{r}') d\mathcal{S}'$$

$$\pm \lim_{\mathbf{r} \uparrow \downarrow \mathcal{S}} \nabla \times \int_{\mathcal{S}} G^{\pm}(\mathbf{r}, \mathbf{r}') \mathbf{J}(\mathbf{r}') d\mathcal{S}'$$

Expansion of Equivalent Currents

Represent currents using div-conforming bases:

$$\mathbf{J}(\mathbf{r}) \approx \sum_{n=1}^{N} I_{n} \mathbf{\Lambda}_{n}(\mathbf{r})$$

$$\mathbf{M}(\mathbf{r}) \approx \sum_{n=1}^{N} V_n \mathbf{\Lambda}_n(\mathbf{r})$$

Substitute these into the tested (weak form) of the PMCHWT equations and rearrange.

Discretized Form of PMCHWT Equations

$$\begin{bmatrix} \begin{bmatrix} Z_{mn}^+ + Z_{mn}^- \end{bmatrix} & \begin{bmatrix} -\beta_{mn}^+ - \beta_{mn}^- \end{bmatrix} \end{bmatrix} \begin{bmatrix} I_n \\ V_n \end{bmatrix} = \begin{bmatrix} V_m^i \\ I_m^i \end{bmatrix}$$

where

$$Z_{mn}^{\pm} = \eta_{mn}^{\pm 2} Y_{mn}^{\pm} = j\omega L_{mn}^{\pm} + \frac{1}{j\omega} S_{mn}^{\pm} = j\eta_{mn}^{\pm} \left[k^{\pm} \iint_{\mathcal{S}} G^{\pm} \left(\Lambda_m \cdot \Lambda_n - \frac{1}{k^{\pm 2}} \nabla \cdot \Lambda_m \nabla \cdot \Lambda_n \right) d\mathcal{S}' d\mathcal{S} \right]$$

$$L_{mn}^{\pm}=\mu^{\pm}<\Lambda_{m};G^{\pm},\Lambda_{n}>,~S_{mn}^{\pm}=rac{1}{arepsilon^{\pm}}<
abla\cdot\Lambda_{m},G^{\pm},
abla\cdot\Lambda_{n}>,~S_{mn}^{\pm}=rac{1}{arepsilon^{\pm}}<
abla\cdot\Lambda_{m},G^{\pm},
abla\cdot\Lambda_{m}>,~S_{mn}^{\pm}=rac{1}{arepsilon^{\pm}}<
abla\cdot\Lambda_{m},S_{mn}^{\pm}=rac{1}{arepsilon^{\pm}}<
abla\cdot\Lambda_{m}>,~S_{mn}^{\pm}=rac{1}{arepsilon^{\pm}}<
abla\cdot\Lambda$$

$$\beta_{mn}^{\pm} = -\langle \Lambda_m; \nabla G^{\pm} \times, \Lambda_n \rangle = - \iint_{\mathcal{S}} \Lambda_m \cdot \nabla G^{\pm} \times \Lambda_n \, d\mathcal{S}' d\mathcal{S} \, , \, G^{\pm} = \frac{e^{-jk^{\pm}R}}{4\pi R},$$

$$V_{m}^{i} = \langle \Lambda_{m}; \mathbf{E}^{+} - \mathbf{E}^{-} \rangle, \quad I_{m}^{i} = \langle \Lambda_{m}; \mathbf{H}^{+} - \mathbf{H}^{-} \rangle,$$

Note that $\pm \frac{J}{2}$, $\pm \frac{M}{2}$ terms *cancel* both in formulation and

in self term element matrices (i.e., $\frac{1}{2} < \Lambda_m$; $\Lambda_n > \text{terms}$).

Row Scaling

Consider

$$[a_{mn}][x_n] = [b_m] \Rightarrow \begin{vmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{vmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_N \end{vmatrix} = \begin{vmatrix} b_1 \\ \vdots \\ b_N \end{vmatrix}$$

To scale row p by C_R ,

- Multiply all elements of pth row of $[a_{mn}]$ by C_R
- Multiply pth row of $[b_m]$ by C_R

$$\mathbf{row p \rightarrow} \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ C_R a_{pq} & \cdots & C_R a_{pN} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ C_R b_p \\ \vdots \\ b_N \end{bmatrix}$$

Column Scaling

Consider

$$[a_{mn}][x_n] = [b_m] \Rightarrow \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

To scale column q by C_c ,

- Multiply all elements of qth column of $\begin{bmatrix} a_{mn} \end{bmatrix}$ by C_C
- Divide qth row of $[x_n]$ by C_C

$$\begin{bmatrix} a_{11} & \cdots & C_C a_{1q} & \cdots & a_{1N} \\ \vdots & & \vdots & & \vdots \\ a_{N1} & \cdots & C_C a_{Nq} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_q / C_C \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

• Note that column scaling scales the solution vector, $[x_n]$, which must be "unscaled" after the system is solved!

Normalization and Symmetrization of PMCHWT Equations

Normalize and symmetrize the system matrix by

- multiplying first column block by $1/\eta_0$, renormalizing the current vector I_n
- multiplying the second row block by $-j\eta_0$
- multiplying the second column block by j:

$$\begin{bmatrix} \begin{bmatrix} Z_{mn}^{+} + Z_{mn}^{-} \\ \eta_{0} \end{bmatrix} & -j \begin{bmatrix} \beta_{mn}^{+} + \beta_{mn}^{-} \end{bmatrix} \\ -j \frac{\eta_{0}}{\eta_{0}} \begin{bmatrix} \beta_{mn}^{+} + \beta_{mn}^{-} \end{bmatrix} & \begin{bmatrix} \eta_{0} I_{n} \\ -j V_{m} \end{bmatrix} = \begin{bmatrix} V_{m}^{i} \\ -j \eta_{0} I_{m}^{i} \end{bmatrix}$$

Note that, unfortunately,

$$\eta_0 \left(Y_{mn}^+ + Y_{mn}^- \right) = \eta_0 \left(\frac{Z_{mn}^+}{\eta^{+2}} + \frac{Z_{mn}^-}{\eta^{-2}} \right) \neq \frac{Z_{mn}^+ + Z_{mn}^-}{\eta_0}$$

Far Field Computation

$$\mathbf{E} \xrightarrow[r \to \infty]{} - j\omega(\hat{\theta}\hat{\theta} + \hat{\phi}\hat{\phi}) \cdot \mathbf{A} + j\omega\eta(\hat{\phi}\hat{\theta} - \hat{\theta}\hat{\phi}) \cdot \mathbf{F} \quad (\mathbf{Note} \ \nabla\Phi \xrightarrow[r \to \infty]{} - j\omega\hat{\mathbf{r}}\hat{\mathbf{r}} \cdot \mathbf{A})$$

$$\mathbf{H} \xrightarrow[r \to \infty]{} - j\omega(\hat{\boldsymbol{\theta}}\hat{\boldsymbol{\theta}} + \hat{\boldsymbol{\phi}}\hat{\boldsymbol{\phi}}) \cdot \mathbf{F} + \frac{j\omega}{\eta}(\hat{\boldsymbol{\theta}}\hat{\boldsymbol{\phi}} - \hat{\boldsymbol{\phi}}\hat{\boldsymbol{\theta}}) \cdot \mathbf{A} \quad (\mathbf{Note} \ \nabla \Psi \xrightarrow[r \to \infty]{} - j\omega\hat{\mathbf{r}}\hat{\mathbf{r}} \cdot \mathbf{F})$$

where

$$\mathbf{A} = \frac{\mu^{+} e^{-jk^{+}r}}{4\pi r} \int_{\mathcal{S}} \mathbf{J}(\mathbf{r}') e^{jk^{+}\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathcal{S}' \approx \frac{\mu^{+} e^{-jk^{+}r}}{4\pi r} [\tilde{\mathbf{\Lambda}}_{n}]^{t} [I_{n}]$$

$$\mathbf{F} = \frac{\varepsilon^{+} e^{-jk^{+}r}}{4\pi r} \int_{\mathcal{S}} \mathbf{M}(\mathbf{r}') e^{jk^{+}\hat{\mathbf{r}}\cdot\mathbf{r}'} d\mathcal{S}' \approx \frac{\varepsilon^{+} e^{-jk^{+}r}}{4\pi r} [\tilde{\mathbf{\Lambda}}_{n}]^{t} [V_{n}]$$

$$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi\sin\theta + \hat{\mathbf{y}}\sin\phi\sin\theta + \hat{\mathbf{z}}\cos\theta$$

$$\hat{\mathbf{\theta}} = \hat{\mathbf{x}}\cos\phi\cos\theta + \hat{\mathbf{y}}\sin\phi\cos\theta - \hat{\mathbf{z}}\sin\theta$$

$$\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$$

$$[\tilde{\boldsymbol{\Lambda}}_n] \equiv \left[\int_{\mathcal{S}} \boldsymbol{\Lambda}_n (\mathbf{r}') e^{jk^+ \hat{\mathbf{r}} \cdot \mathbf{r}'} d\mathcal{S}' \right]$$

Surface Magnetic Field, \mathbf{H}_{ϕ} Dielectric Sphere

Surface Magnetic Field, H_{θ} Dielectric Sphere

Radar Cross Section, Dielectric Sphere

$$\sigma(\hat{\boldsymbol{r}}, \hat{\boldsymbol{k}}) = \lim_{r \to \infty} 4\pi r^2 \frac{|\boldsymbol{E}|^2}{|\boldsymbol{E}^{\rm inc}|^2}.$$

The End