Sorting

DS 2018/2019

Content

Sorting based on comparisons

Bubble sort

Insertion sort

Selection sort

Merge sort

Quick sort

Counting sort

Distribution sort

The sorting problem

- ► Case 1:
 - ▶ Input: n, $(v_0, ..., v_{n-1})$
 - ▶ Output: $(w_0, ..., w_{n-1})$ such that $(w_0, ..., w_{n-1})$ is a permutation of $(v_0, ..., v_{n-1})$ and $w_0 \le ... \le w_{n-1}$
- ► Case 2:
 - ▶ Input: n, $(R_0, ..., R_{n-1})$ with the keys $k_0, ..., k_{n-1}$
 - ▶ Output: $(R'_0,...,R'_{n-1})$ such that $(R'_0,...,R'_{n-1})$ is a permutation of $(R_0,...,R_{n-1})$ and $R'_0.k_0 \le ... \le R'_{n-1}.k_{n-1}$
- ► Data structure

Array
$$a[0..n-1]$$

 $a[0] = v_0, ..., a[n-1] = v_{n-1}$

Content

Sorting based on comparisons Bubble sort

Insertion sort Selection sort Merge sort Quick sort

Counting sort

Distribution sort

Bubble-sort

- Basic principle:
 - (i,j) with i < j is an inversion if a[i] > a[j]
 - ▶ While there is an inversion (i, i + 1) interchange a[i] with a[i + 1]
- ► Algorithm:

```
Procedure bubbleSort(a, n)

begin

last \leftarrow n-1

while (last > 0) do

n1 \leftarrow last-1; last \leftarrow 0

for i \leftarrow 0 to n1 do

if (a[i] > a[i+1]) then

swap(a[i], a[i+1])

last \leftarrow i
```

5 / 44

Bubble sort - example

```
32147 (n1 = 2)
3 7 2 1 4 (n1 = 3) 2 3 1 4 7
3 7 2 1 4
                   2 3 1 4 7
3 2 7 1 4
                   2 1 3 4 7
3 2 7 1 4
                   2 1 3 4 7
                   21347
3 2 1 7 4
3 2 1 7 4
                   2 1 3 4 7 (n1 = 0)
3 2 1 4 7
3 2 1 4 7
                   1 2 3 4 7
                   12347
```

Bubble sort

- Analysis
 - Worst-case performance a[0] > a[1] > ... > a[n-1]Time for searching: $O(n-1+n-2+...+1) = O(n^2)$ $T_{bubbleSort}(n) = O(n^2)$
 - ▶ Best-case performance: O(n)

FII, UAIC Lecture 8 DS 2018/2019 7 / 44

Content

Sorting based on comparisons

Bubble sort

Insertion sort

Selection sort

Merge sort

Quick sort

Counting sort

Distribution sort

Insertion sort

▶ Basic principle: suppose a[0..i − 1] sorted insert a[i] such that a[0..i] becomes sorted

▶ Algorithm (search sequentially the position of a[i]):

```
Procedure insertSort(a, n) begin  \begin{aligned} & \text{for } i \leftarrow 1 \text{ to } n-1 \text{ do} \\ & j \leftarrow i-1 \text{ } / \text{ } a[0..i-1] \text{ sorted} \\ & temp \leftarrow a[i] \text{ } / \text{ search the place of temp} \\ & \text{ while } ((j \geq 0) \text{ and } (a[j] > temp)) \text{ do} \\ & a[j+1] \leftarrow a[j] \\ & j \leftarrow j-1 \\ & \text{ if } (a[j+1]! = temp) \text{ then} \\ & a[j+1] \leftarrow temp \end{aligned}
```

Insertion sort

- Example
 - **37**21
 - 37**2**1
 - 2 3 7 **1**
 - 1237
- Analysis
 - lacktriangle searching the position i in a[0..j-1] needs O(j-1) steps
 - worst-case scenario a[0] > a[1] > ... > a[n-1]Search time: $O(1+2+...+n-1) = O(n^2)$ $T_{insertSort}(n) = O(n^2)$
 - ▶ best-case scenario: O(n)

Content

Sorting based on comparisons

Bubble sort

Insertion sort

Selection sort

Merge sort Quick sort

Counting sort

Distribution sort

FII, UAIC

Selection sort

- ▶ Apply the following scheme:
 - the current step: select an element and bring it on the final position in the sorted table;
 - repeat the current step until all elements reach the final positions.
- ▶ After the type of the selection of an element:
 - Naive selection: choose elements in the order they are initially (from n-1 to 0 or from 0 to n-1)
 - Systematic selection: use max-heap

FII, UAIC Lecture 8 DS 2018/2019 12 / 44

Selection sort (naive selection)

```
▶ In the order n-1, n-2, ..., 1, 0, namely:
     (\forall i) 0 < i < n \implies a[i] = max\{a[0], ..., a[i]\}
   Procedure naivSort(a, n)
  begin
       for i \leftarrow n-1 downto 1 do
           imax \leftarrow i
           for i \leftarrow i - 1 downto \theta do
               if (a[i] > a[imax]) then
                   imax \leftarrow i
           if (i! = imax) then
               swap(a[i], a[imax])
  end
```

▶ The time complexity for all cases is $O(n^2)$

Heap sort (sorting by systematic selection)

Phase I

- ▶ organize the table like a max-heap: $(\forall k)1 \le k \le n-1 \implies a[k] \le a[(k-1)/2];$
- ▶ initially the table satisfies the max-heap property starting with the position n/2;
- insert in max-heap the elements from the positions n/2 - 1, n/2 - 2, \cdots , 1, 0.

3	9	8	7	1	12	4	5	2
0	1	2	3	4	5	6	7	8

Heap sort (sorting by systematic selection)

Phase II

- select the maximum element and bring it on his place by interchanging it with the last element;
- decrease n by 1 and then redo the max-heap;
- repeat the above steps until all elements reach their place.

Heap sort (sorting by systematic selection)

FII, UAIC

The operation of insertion in heap

```
Procedure insertTth(a, n, t)
begin
   i \leftarrow t
    heap ← false
    while ((2 * j + 1 < n)) and not heap) do
        k \leftarrow 2 * i + 1
        if ((k < n - 1)) and (a[k] < a[k + 1]) then
            k \leftarrow k + 1
        if (a[j] < a[k]) then
            swap(a[j], a[k])
            i \leftarrow k
        else
             heap \leftarrow true
end
```

Heap sort

```
Procedure heapSort(a, n)
begin
    // build the max-heap
    for t \leftarrow (n-1)/2 downto \theta do
        insertTth(a, n, t)
    // remove
    r \leftarrow n-1
    while (r > 0) do
       swap(a[0], a[r])
        insertTth(a, r, 0)
       r \leftarrow r - 1
end
```

18 / 44

FII, UAIC Lecture 8 DS 2018/2019

Heap sort - Example

10	17	5	23	7	(n = 5)
10	17	<u>5</u>	<u>23</u>	<u>7</u>	
10	<u>23</u>	<u>5</u>	<u>17</u>	<u>7</u>	
23	10	5	17	7	
<u>23</u>	<u>17</u>	<u>5</u>	<u>10</u>	<u>7</u>	(max-heap n)

FII, UAIC

Heap sort - Example

<u>23</u>	<u>17</u>	<u>5</u>	<u>10</u>	<u>7</u>	(max-heap n)
<u>7</u>	<u>17</u>	<u>5</u>	<u>10</u>	23	
<u>17</u>	<u>10</u>	<u>5</u>	<u>7</u>	23	(max-heap n-1)
<u>7</u>	<u>10</u>	<u>5</u>	17	23	
<u>10</u>	<u>7</u>	<u>5</u>	17	23	(max-heap n-2)
<u>5</u>	<u>7</u>	<u>10</u>	17	23	
<u>7</u>	<u>5</u>	<u>10</u>	17	23	(max-heap n-3)
<u>5</u>	7	10	17	23	
<u>5</u>	7	10	17	23	(max-heap n-4)
5	7	10	17	23	

Heap sort - complexity

- ▶ building the heap (suppose $n = 2^k 1$) $\sum_{i=0}^{k-1} 2(k-i-1)2^i = 2^{k+1} - 2(k+1)$
- remove from heap and redo the heap $\sum_{i=0}^{k-1} 2i2^i = (k-2)2^{k+1} + 4$
- ► complexity of the sorting algorithm $T_{heapSort}(n) = 2nlogn 2n = O(nlogn)$

FII, UAIC Lecture 8 DS 2018/2019 21 / 44

Content

Sorting based on comparisons

Bubble sort

Insertion sort

Selection sort

Merge sort

Quick sort

Counting sort

Distribution sort

Divide-et-impera paradigm

- \triangleright P(n): problem of dimension n
- base:
- ▶ if $n \le n_0$ then solve P by elementary methods
- ▶ divide-et-impera:
 - ▶ **divide** P in a problems $P_1(n_1),...,P_a(n_a)$ cu $n_i \leq n/b, b > 1$
 - ▶ **solve** $P_1(n_1), ..., P_a(n_a)$ in the same way and obtain the solutions $S_1, ..., S_a$
 - **assemble** $S_1, ..., S_a$ to obtain the solution S to the problem P

FII, UAIC Lecture 8 DS 2018/2019 23 / 44

Paradigma divide-et-impera: algorithm

```
Procedure DivideEtImpera(P, n, S)
begin
   if (n \le n_0) then
       find S by elementary methods
   else
       Divide P in P_1, ..., P_n
       DivideEtImpera(P_1, n_1, S_1)
       DivideEtImpera(P_a, n_a, S_a)
       Assemble(S_1, ..., S_a, S)
end
```

FII, UAIC Lecture 8

Merge sort

- ▶ generalization: a[p..q]
- ▶ base: $p \ge q$
- ► divide-et-impera
 - divide: m = [(p + q)/2]
 - ▶ subproblems: a[p..m], a[m+1..q]
 - lacktriangle assembling: interclass the sorted subsequences a[p..m] și a[m+1..q]
 - ▶ initially store the result of interclassing in *temp*
 - copy from temp[0..q p + 1] in a[p..q]
- complexity:
 - time: $T(n) = O(n \log n)$
 - ▶ additional space: O(n)

Interclassing two sorted sequences

- ▶ the problem:
 - ▶ given $a[0] \le a[1] \le \cdots \le a[m-1]$, $b[0] \le b[1] \le \cdots \le b[n-1]$, construct $c[0] \le c[1] \le \cdots \le c[m+n-1]$ such that $(\forall k)((\exists i)c[k] = a[i]) \lor (\exists j)c[k] = b[j])$ and for k! = p, c[k] and c[p] come from different elements
- the solution
 - ▶ initially: $i \leftarrow 0$, $j \leftarrow 0$, $k \leftarrow 0$
 - the current step:
 - ▶ if $a[i] \le b[j]$ then $c[k] \leftarrow a[i]$, $i \leftarrow i + 1$
 - if a[i] > b[j] then $c[k] \leftarrow b[j]$, $j \leftarrow j + 1$
 - $k \leftarrow k + 1$
 - ▶ termination criterion: i > m-1 or j > n-1
 - ▶ if it is the case, copy in c the elements from the unfinished table

Content

Sorting based on comparisons

Bubble sort

Selection sort

Merge sort

Quick sort

Counting sort

Distribution sort

Quick sort

- ▶ generalization: a[p..q]
- ▶ base: $p \ge q$
- ▶ divide-et-impera
 - divide: find k between p and q by interchanges such that after finding k we have:
 - $p \le i \le k \implies a[i] \le a[k]$
 - $k < j \le q \implies a[k] \le a[j]$

	≤ x	x	≥ x		
р		k		q	

- ▶ subproblems: a[p..k-1], a[k+1..q]
- ▶ assembling: none

Quick sort: partitioning

- initially:
 - ▶ $x \leftarrow a[p]$ (may choose x arbitrarily from a[p..q])
 - $i \leftarrow p+1; i \leftarrow q$
- ▶ the current step:
 - ▶ if a[i] < x then $i \leftarrow i + 1$
 - if $a[j] \ge x$ then $j \leftarrow j 1$
 - ▶ if a[i] > x > a[j] si i < j then swap(a[i], a[j]) $i \leftarrow i + 1$ $i \leftarrow j - 1$
- termination:
 - the condition i > j
 - ▶ operations $k \leftarrow i 1$ swap(a[p], a[k])

Quick sort: partitioning - example

```
Procedure partitioning(a, p, q, k) begin
```

end

```
x \leftarrow a[p]
i \leftarrow p + 1
i \leftarrow q
while (i <= j) do
      if (a[i] \le x) then i \leftarrow i + 1
      if (a[j] >= x) then
           i \leftarrow i - 1
      if (i < j) and (a[i] > x) and (x > a[j])
      then
            swap(a[i], a[j])
            i \leftarrow i + 1
j \leftarrow j - 1<br/>k \leftarrow j - 1
a[p] \leftarrow a[k]
a[k] \leftarrow x
```


FII, UAIC Lecture 8 DS 2018/2019 30 / 44

Quick sort: recursion - example

```
Procedure quickSort(a, p, q)
begin
while (p < q) do
partitioning(a, p, q, k)
quickSort(a, p, k - 1)
quickSort(a, k + 1, q)
end
```


31 / 44

FII, UAIC Lecture 8 DS 2018/2019

Quick sort: the recursion tree

999C

Quick sort - complexity

- ▶ The choice of the pivot influences the efficiency of the algorithm
- ▶ Worst-case scenario: the pivot is the smallest (the biggest) value. The time is proportional with n + n 1 + ... + 1.
- $ightharpoonup T_{quickSort}(n) = O(n^2)$

► The recursion tree:

FII, UAIC

Quick sort - complexity

- ➤ A "good" pivot divides the table in two subtables of comparable dimensions
- ▶ The height of the recursion tree is O(log n)
- ▶ The average complexity is $O(n \log n)$

FII, UAIC Lecture 8 DS 2018/2019 34 / 44

Content

Sorting based on comparisons

Bubble sort

Insertion sort

Selection sort

Merge sort

Quick sort

Counting sort

Distribution sort

Counting sort

- ▶ Assumption: $a[i] \in \{1, 2, ..., k\}$
- ► Find the position of each element in the sorted table by counting how many elements are lower than him

```
1 Procedure countingSort(a, b, n, k)
    begin
        for i \leftarrow 1 to k do
             c[i] \leftarrow 0
        for i \leftarrow 0 to n-1 do
 5
             c[a[i]] \leftarrow c[a[i]] + 1
 6
        for i \leftarrow 2 to k do
 7
             c[i] \leftarrow c[i] + c[i-1]
 8
        for j \leftarrow n-1 downto 0 do
 9
             b[c[a[i]] - 1] \leftarrow a[i]
10
             c[a[i]] \leftarrow c[a[i]] - 1
11
12 end
```

Complexity: O(k + n)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 9000

DS 2018/2019

36 / 44

Counting sort – example (k = 6)

```
1 2 3 4 5 6
                             lines 5-6
                                       c 2 0 2 3 0 1
                                              2 3 4 5 6
a 3 6 4 1 3 4 1 4
                                        c 2 2 4 7 7 8
                             lines 7-8
  0 1 2 3 4 5 6 7
                        0 1 2 3 4 5 6 7
                                               0 1 2 3 4 5 6 7
b
               4
                                                         4 4
   1 2 3 4 5 6
 c 2 2 4 6 7 8
                      c 1 2 4 6 7 8
                                             c 1 2 4 5 7 8
  lines 9-11, j = 7
                        lines 9-11, j = 6
                                              lines 9-11, i = 5
                          1 3
                               3
 sorted table:
```

FII, UAIC Lecture 8

DS 2018/2019

Content

Sorting based on comparisons

Bubble sort

Insertion sort

Selection sort

Merge sort

Quick sort

Counting sort

Distribution sort

FII, UAIC

Distribution sort

- Assumption: the elements a[i] are uniformly distributed over the interval [0,1)
- ► Principle:
 - be divide the interval [0,1) in n subintervals of equal sizes, indexed from 0 to n-1:
 - ▶ distribute the elements a[i] in the corresponding interval: $\lfloor n \cdot a[i] \rfloor$;
 - sort each package using another method;
 - combine the n packages in a sorted list.

FII, UAIC Lecture 8 DS 2018/2019 39 / 44

Distribution sort

Algorithm:

FII, UAIC Lecture 8 DS 2018/2019 40 / 44

Distribution sort – example

(Cormen T.H. et al., Introducere în algoritmi)

FII, UAIC

Sorting - complexity

Algorithm	Case				
Algoritiiii	best-case	average	worst-case		
bubbleSort	n	n^2	n^2		
insertSort	n	n^2	n^2		
naivSort	n^2	n^2	n^2		
heapSort	n log n	n log n	n log n		
mergeSort	n log n	n log n	n log n		
quickSort	n log n	n log n	$n^{\overline{2}}$		
countingSort	_	n + k	n + k		
bucketSort	_	n	_		

FII, UAIC Lecture 8 DS 2018/2019 42 / 44

When a sorting algorithm is favourite?

▶ A sorting method is *stable* if it keeps unchanged the relative order of elements with identical keys

Recommendations

- ▶ Quick sort: when you don't need a stable method and the average performance is more important than the worst one; $O(n \log n)$ the average time complexity, $O(\log n)$ auxiliary space
- Merge sort: when a stable method is required; time complexity
 O(n log n); drawback: O(n) auxiliary space, a larger constant than
 QuickSort
- ▶ Heap sort: when you don't need a stable method and you are interested more in the worst case performance than the average one; time $O(n \log n)$, space O(1)
- ▶ *Insert sort*: when *n* is small

When a sorting algorithm is favourite?

- ▶ Under some limited conditions, it is possible a sorting in O(n)
 - Counting sort: the values are in an interval
 - Bucket sort: the values are approximately uniformly distributed

FII, UAIC Lecture 8 DS 2018/2019 44 / 44