

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-150079

(43) Date of publication of application: 31.05.1994

G06K 17/00 (51)Int.CI. G06F 1/26 G06K 19/07

(71)Applicant: PFU LTD (21)Application number: 04-303698

(72)Inventor: MASUNO HIROYUKI (22)Date of filing: 13.11.1992

(54) NON-CONTACT IC MEMORY CARD SYSTEM

(57)Abstract:

PURPOSE: To supply sufficient power from a power supply source even when the electrostatic capacity of a capacitor is small, as for non-contact IC memory card system.

CONSTITUTION: This system is provided with capacitors 7 and 9 for electrostatically coupling a main body unit 1 and a non-contact IC memory card 2 while connecting one electrode to the main body unit 1 and connecting the other electrode to the noncontact IC memory card 2. The main body unit 1 is provided with a power supply source 3 for supplying AC power to the capacitors 7 and 9 and a resonance coil 6 for forming a resonance circuit 4 together with the capacitors 7 and 9. And, the non-contact IC

memory card 2 is provided with a rectifier circuit 11 for rectifying the AC power to be supplied to the capacitors 7 and 9. Corresponding to the power supply frequency of the power supply source 3, the resonance circuit 4 is composed of the resonance

coil 6 and the capacitors 7 and 9 so that power can be supplied from the main body unit 1 to the non-contact IC memory card 2.

LEGAL STATUS

[Date of request for examination]

20.10.1995

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

2659315 [Patent number] 06.06.1997 [Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Inner 3 3 Blank (....

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-150079

(43)公開日 平成6年(1994)5月31日

			_		
(51) Int.Cl.5	識別記号	庁内整理番号	FΙ		技術表示箇所
G 0 6 K 17/00	F	7459-5L			
G06F 1/26					
G06K 19/07					
00011 10/01		7165-5B	G06F	1/00 330 E	
		7165 – 5B	0001	330 F	
		7100 515	審査請求 未請求	計成項の数5(全9頁)	最終頁に続く
(21)出願番号	特願平4-303698		(71)出願人	000136136	·
				株式会社ピーエフユー	•
(22)出願日	平成4年(1992)11月	月13日		石川県河北郡宇ノ気町宇宇	野気又98番地の
				2	
		•	(72)発明者	増野 浩幸	
	•			神奈川県大和市森見西四丁	目2番49号 株
				式会社ピーエフユー大和工場	島内
			(74)代理人	弁理士 長谷川 文廣 (外2名)
		•			
			- 1		

(54) 【発明の名称】 非接触型 I Cメモリカードシステム

(57)【要約】

【目的】 非接触型 I Cメモリカードシステムに関し、コンデンサの静電容量が小さくても、電力供給源から充分な電力が供給できることを目的とする。

【構成】 電極の一方は本体装置1にあり電極の他方は非接触型ICメモリカード2にあって本体装置1と非接触型ICメモリカード2を静電的に結合するコンデンサ7,9と大振回1はコンデンサ7,9に交流電力を供給する電力供給源3と、コンデンサ7,9と共振回路4を形成する共振コイル6を備え、非接触型ICメモリカード2は該コンデンサ7,9に供給される交流電力を整流する整流回路11を備え、電力供給源3の電力供給周波数に対して共振コイル6とコンデンサ7,9は共振回路4を構成することにより、本体装置1から非接触型1Cメモリカード2に電力を供給する構成を持つ。

本発明の基本構成

I

【特許請求の範囲】

【請求項1】 電気的接点を持たずに非接触に本体装置 (1) と信号の受け渡しを行う非接触型 I Cメモリカード (2) と,非接触型ICメモリカードと非接触にデータの 受け渡しを行うとともに非接触型ICメモリカード(2) に非接触に電力を供給する本体装置(1) よりなる非接触 型ICメモリカードシステムにおいて,電極の一方は本 体装置(1) にあり電極の他方は非接触型ICメモリカー ド(2)にあって本体装置(1) と非接触型ICメモリカー 体装置(1) はコンデンサ(7, 9)に交流電力を供給す る電力供給源(3) と, 該コンデンサ (7, 9) と共振回 路(4) を形成する共振コイル(6) を備え,非接触型 I C メモリカード(2) は該コンデンサ (7, 9) に供給され る交流電力を整流する整流回路(11)を備え,電力供給源 (3) の電力供給周波数に対して共振コイル(6) とコンデ ンサ (7, 9) は共振回路(4) を構成することにより, 本体装置(1) から非接触型ICメモリカード(2) に電力 を供給することを特徴とする非接触型ICメモリカード システム。

【請求項2】 請求項1において,電力供給源(3) は周被数可変とし,共振コイル(6) とコンデンサ (7,9) の共振回路(4) の電圧もしくは電流を検出し共振状態を検出する監視部と,監視部の出力に応じて電力供給源(3) の周波数制御をする周波数制御回路を備え,周波数制御回路は監視部の監視結果に従って,電力供給源の電力供給周波数を共振回路(4) の共振周波数に設定することを特徴とする非接触型ICメモリカードシステム。

【 請求項3】 請求項1において,共振コイル(6) は可変インダクタンスコイルとし,共振コイル(6) とコンデ 30 ンサ (7,9) の共振回路(4) の電圧もしくは電流を検出し,共振状態を検出する監視部と,監視部の出力に応じて可変インダクタンス(6) のインダクタンスを変更しインダクタンス制御部を備え,インダクタンス制御部は監視部の出力結果に従って,可変インダクタンスコイルのインダクタンスを変更し,電力供給源(3)の周波数に対して共振するインダクタンスに設定することを特徴とする非接触型ICメモリカードシステム。

【請求項4】 請求項1において,共振コイル(6) とコンデンサ(7,9)とともに共振回路を形成する可変容 40 量コンデンサと,共振コイル(6)とコンデンサ(7,9)の共振回路(4)の電圧もしくは電流を検出し,共振状態を検出する監視部と,監視部の出力に応じて可変容量コンデンサの静電容量を変更する容量変更部を備え,容量変更部は監視部の出力結果に従って,可変容量コンデンサの容量を変更し,電力供給源(3)の電力供給周波数に対して共振する静電容量に設定することを特徴とする非接触型ICメモリカードシステム。

【請求項5】 請求項1,2,3もしくは4において, 監視部は共振回路(4)の電流と電圧の位相差を監視し, 共振状態を検出するものであることを特徴とする非接触型ICメモリカードシステム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光、静電結合等を利用して非接触に本体装置とデータの受け被しを行う非接触型 I Cメモリカードと本体装置よりなる非接触型 I Cメモリカードシステムに関する。

ド(2) を静電的に結合するコンデンサ (7, 9) と、本 10 体装置(1) はコンデンサ (7, 9) と、本 10 体装置(1) はコンデンサ (7, 9) と交流電力を供給する電力供給源(3) と、該コンデンサ (7, 9) と共振回路(4) を形成する共振コイル(6) を備え、非接触型 I C メモリカードに電力を供給する場合はコンデンサもしくはコイルにメモリカード(2) は該コンデンサ (7, 9) に供給され より静電的もしくは電磁的に両者を結合し、電力を供給するようにしている。

【0003】本発明は、本体装置から非接触型 I Cメモリカードにコンピュータを利用して静電的に電力を供給する非接触型 I Cメモリカードシステムに関する。

[0004]

【従来の技術】図9は、従来の非接触型ICカードシス 20 テムにおける静電的な電力供給方法を示す。

【0005】図において、110は本体装置であって、 非接触型 I Cメモリカードに静電的に電力を供給し,光 学的、静電的もしく電磁的にデータの受け渡しを行うも のである。111は非接触型ICメモリカードであっ て,メモリを備えて光学的,静電的,電磁的に本体装置 から伝送されてくるデータを書き込み,またメモリから 読み出したデータを本体装置に転送するものである。 1 12はコンデンサA, 113はコンデンサ電極A, 11 3 ' はコンデンサ電極A' であって、コンデンサ電極A (113) とコンデンサ電板A' (113') とでコン デンサA (112) を形成するものである。 コンデンサ 電極A(113)は本体装置110に備えられ、コンデ ンサ電極A'(113')は非接触型ICメモリカード 111に備えられるものである。114はコンデンサ B, 115はコンデンサ電極B, 115'はコンデンサ 電極B'であって、コンデンサ電極B (115) とコン デンサ電極B'(115')とでコンデンサB(11 4) を形成するものである。コンデンサ電極B (11 5) は本体装置110に備えられ、コンデンサ電極B' (115~)は非接触型ICメモリカード111に備え られるものである。116は電力供給源であって,交流 **電力をコンデンサA(1 1 2),コンデンサB(1 1** 4) に供給するものである。117は整流回路であっ て, コンデンサA (112) とコンデンサB (114) に供給された交流電力を整流し、内部回路118に供給 するものである。118は内部回路であって,非接触型 ICメモリカード111の内部回路である。

【0006】図の構成の動作を説明する。電力供給額1 16からコンデンサA(112),コンデンサB(11 50 3)を介して整流回路117に電圧が印加され、整流回 (3)

路117で整流されて内部回路118に整流電圧が印加される。このような動作でコンデンサA(112)とコンデンサB(113)により本体装置110と非接触型ICメモリカードが静電的に結合されて、電力供給源116より内部回路118に電圧が印加される。

[0007]

【発明が解決しようとする課題】一般的に、非接触型 I CメモリカードシステムにおけるコンデンサA (1 1 2) とコンデンサB (1 1 3) の静電容量は極めて小さいので、従来の静電的な電力供給方法では、電力供給源 10 1 1 6 から充分な電力を非接触型 I Cメモリカード 1 1 の内部回路に供給することは困難であった。

【0008】本発明は、コンデンサA(112)とコンデンサB(113)の静電容量が小さくても、電力供給 源源116から電力を非接触型ICメモリカード111 の内部回路に充分な電力を供給することのできる非接触 型ICメモリカードシステムを提供することを目的とする。

[0009]

【課題を解決するための手段】本発明は本体装置から非 20 接触型ICメモリカードの静電的な結合回路を電力供給 周波数に対する共振回路とするようにした。

【0010】図1は本発明の基本構成を示す。図において、1は本体装置であって、非接触型メモリカード2に 静電的に電力を供給し、非接触型ICメモリカード2と 光学的、静電的もしくは電磁的に書き込みデータ、読み 出しデータ等の受け渡しを行うものである。2は非接触 型ICメモリカードであって、メモリ等の内部回路を備 え、本体装置1から非接触に電力の供給を受け、本体装 置と光学的、静電的もしくは電磁的に書き込みデータ、 読み出しデータ等の受け渡しを行うものである。

【0011】3は電力供給源(発振出力回路)であって、コンデンサ7、コンデンサ9、整流回路11を介して内部回路12に電力を供給するものである。4はの共振部であって、コンデンサ7、コンデンサ9と共振コイル6で共振回路4を構成するものである。6は共振コイルであって、コンデンサ7、コンデンサ9とで電力供給源3の交流周波数に対して共振するように選択されるものである。7、9はコンデンサである。8はコンデンサ7の電極であり、本体装置1に設けられるものである。8、はコンデンサ7の電極であり、非接触型ICメモリカード2に設けられるものである。10はコンデンサ9の電極であり、非接触型ICメモリカード2に設けられるものである。10、はコンデンサ9の電極であり、非接触型ICメモリカード2に設けられるものである。

【0012】11は非接触1Cメモリカードの整液回路であって、コンデンサ7、コンデンサ9を介して供給される電力を整流するものである。12は非接触ICメモリカードの内部回路である。

[0013]

【作用】図1の基本構成の動作を説明する。電力供給源3で発生した交流電力は共振コイル6,コンデンサ7,コンデンサ9を介して、整流回路11に入力され、整流されて、内部回路12に供給される。

【0014】コンデンサ7の静電容量をCa, コンデンサ9の静電容量をCbとすると, コンデンサ7とコンデンサ9の直列静電容量Cickyして, 1/C=1/Ca+1/Cbである。共振用コイルのインダクタンスをL, 電力供給源の角周波数を ω , 電力供給源3の電圧をE, 電流をI, 電力供給源3の内部抵抗, 共振電流の整流回路11および内部回路12による生成されるインピーダンスを2とすると

 $I = E \times 1 / (Z^2 + (\omega L - 1 / \omega C)^2)^{1/2}$ rbs.

【0015】従って、 ω L= $1/\omega$ Cとすることにより、内部回路12に流される電流は最大電流となり、最大電力が供給される。本発明は、共振コイルL、コンデンサC、電力供給源3の角周波数 ω に対して、 ω L= $1/\omega$ Cとなるようにし、本体装置1から非接触型1Cメモリカード2に最大電力が供給されるようにする。

[0016]

【実施例】以下に説明する各実施例において、共通の番 で 号は共通部分を表す。また、各コンデンサ (コンデンサ A、コンデンサB) の静電容量をそれぞれ Ca、Cb、コンデンサAとコンデンサBの直列接統容量を C、共振コイルのインダクタンスを L、電力供給源の各周波数を ωとする。

【0017】図2は本発明の実施例(1) (固定方式)である。(a)は装置構成である。図において、20は本体装置、21は非接触型ICメモリカード、22は発振出カ回路であって、正弦波もしくは方形波等を出力する交流電源である。23は共振コイルである。24はコンデンサA、25はコンデンサBであり電力供給源の電力を非接触型ICメモリカード21に伝送するものである。26は内部装置であって、非接触型Iメモリカードの内部装置であって、整流回数27、メモリ等の内部回路28よりなるものである。27は整流回路、28は内部回路である。

[0018] 図の構成において, Ca, Cb, C, L, ωに対して.

 ω L=1/ ω C, 1/C=1/Ca+1/Cb, の関係となるように、共振コイル23のインダクタンスしを設定する。

【0019】(b)は、発振出力回路22の出力波型を示す。図において、30は方形波の例であり、31は正弦波の例である。共振コイル23とコンデンサA(24)、コンデンサB(25)は発振出力回路22の発振周波数に対して共振するように共振コイル23のインダクタンスが設定されているので、発振出力回路22から

50 出力される電力が効率的に内部装置26に供給される。

5

【0020】内部装置26においては、本体装置から供 給される交流電力を整流回路27が整流し,内部回路2 6に供給する。図3は本発明の実施例(2) (周波数可変 方式)である。

【0021】(a)は装置構成である。図において、20 は本体装置、21は非接触型ICメモリカード、22は 発振出力回路, 23は共振コイル, 24はコンデンサ A, 25はコンデンサB, 26は非接触型ICメモリカ ード21の内部装置、30はコンデンサ電極Aであっ て, コンデンサA (24) の本体装置 20 の側の電極で 10 ある。31はコンデンサ電板Bであって、コンデンサB (25) の本体装置20の側の電極である。35は周波 数制御回路であって、発振出力回路22の発振周波数を 制御するものである。36は監視部であって、共振コイ ル23とコンデンサA(24)の接続点Dの電圧,電流 を監視するものである。

【0022】(b)は発振出力回路の発振周波数対電圧 (接続点Dの電圧)を示す。 (c)は発振出力回路の発振 周波数対電流(接続点Dの電圧)を示す。図の構成にお いて、非接触型ICメモリカード21が本体装置20に 20 挿入されると、周波数制御回路35はあらかじめ予想さ れる共振周波数の範囲 f ~~ f +で発振出力回路の周波 数を変化させる。その時、発振周波数と電圧、電流の関 係は図 (b), (c)のようになるので、監視部36はその 電圧と電流を監視する。そして、監視部36は発振周波 数が共振周波数に達したことを検出すると,それを周波 数制御回路35に伝える。周波数制御回路35はその時 点で発振出力回路22の発振周波数の変更を止める。こ のようにして、最適な共振周波数が設定され、発振出力 回路22から非接触型ICメモリカード21に最適に電 30 力が供給される。

【0023】図4は監視部,周波数制御回路,発振出力 回路の実施例である。図において、21は非接触型IC メモリカード、22は発振出力回路、23は共振コイ ル,30はコンデンサ電極A,31はコンデンサ電極 B, 36は監視部, 35は周波数制御回路である。

【0024】監視部36において、50はA/D変換器 であって、発振コイル23とコンデンサ電極A (30) の接続点Dの電圧をデジタル値に変換するものである。 51はCPUであって、A/D変換器50のデジタル出 40 力に基づいて、共振回路の共振状態を判定するものであ る。52はD/A変換器であって、CPU51の出力す る制御周波数のデジタル値をアナログ値に変換するもの である。

【0025】周波数制御回路35において、55は可変 容量ダイオードであって、入力されるアナログ電圧値に 応じて静電容量を可変するものである。56は共振用コ ンデンサ、57は共振用コイルである。58はトランジ スタである。

A/D変換器50に入力され、デジタル値に変換され る。CPU51はA/D変換器50の出力するデジタル 値に基づいて、その電圧が最小値に達したかを判定す る。最小値でなければ、次の制御周波数のデジタル値を D/A変換器52に出力する。D/A変換器52はCP **U51から出力される制御周波数のデジタル値をアナロ** グ値に変換するものである。D/A変換器52のアナロ グ電圧は可変容量ダイオード555に印加される。 可変容 **量ダイオード55の容量は印加される電圧に応じて定め** られる容量となり共振用コンデンサ56, 共振用コイル 57とによる共振回路の共振周波数の信号がトランジス **夕58に入力される。そして、その信号はトランジスタ** 58で増幅されて発振出力回路22で入力される。その 周波数の信号は発振出力回路22で電力増幅され、共振 コイル23とコンデンサ電極A(30)のコンデンサA とコンデンサ電極B (31)のコンデンサBとによる共 振回路に出力される。

【0027】CPU51はD点の電圧が最小に達したこ とを判定すると、周波数の変更停止する。そして、その 時の発振周波数の発振出力が持続される。 図5は本発明 の実施例(3)(インダクタンス可変方式)を示す。

【0028】図は共振コイルのインダクタンスを可変と して発振出力回路の出力を共振させるための最適インダ クスを求め,本体装置から非接触型 I Cメモリカードに 最大電力を供給するものである。

【0029】(a)は装置構成を示す。図において、20 は本体装置、21は非接触型ICメモリカード、22は 発振出力回路,24はコンデンサA,25はコンデンサ B, 36は監視部, 60は可変インダクタンスコイルで あって、インダクタンスを可変とした共振コイルであ る。61はインダクタンス制御部であって、可変インダ クタンスコイルのインダクタンスLを可変制御するもの である。例えば、可変インダクタンスコイルのμ等を機 械的に制御してインダクタンスを可変するものである。

【0030】(b)はインダクタンスと電圧の関係を表 し、可変インダクタンスコイル60のインダクタンスL とD点の電圧 (V) の関係を表すものである。 (c)はイ ンダクタンス対電流の関係を表し、可変インダクタンス コイル60のインダクタンスLとD点の電流(I)の関 係を表すものである。

【0031】図の構成において、非接触型ICメモリカ ード21が本体装置20に挿入されるとインダクタンス 制御部61はあらかじめ予想される範囲で可変インダク タンスコイル60のインダクタンス1-~1+を変化さ せる。その時、発振周波数と電圧、電流の関係は図 (b), (c)のようになるので、監視部36はその電圧と 電流を監視する。そして、監視部36は発振周波数が共 振周波数に達したことを検出すると、それインダクタン ス制御部61に伝える。インダクタンス制御部61はそ 【0026】図の構成において,接統点(D)の電圧が 50 の時点で可変インダクタンスコイル60のインダクタン

スレの変更を止め、共振状態を維持する。このようにし て、最適なインダクタンスが設定され、発振出力回路2 2から非接触型ICメモリカード21に最適に電力が供 給される。

[0032] 図6は本発明の実施例(4) (容量可変方 式)を示す。図は、共振コイル23に可変容量コンデン サ65を直列に接続し、可変容量コンデンサ65の容量 を変更して共振回路を共振させる最適容量を求め、本体 装置から非接触型ICメモリカードに最大電力を供給す **ろものである。**

【0033】(a)は装置構成を示す。図において、20 は本体装置、21は非接触型ICメモリカード、22は 発振出力回路、23は共振コイル、24はコンデンサ A. 25はコンデンサB, 36は監視部, 65は可変容 量コンデンサであって、容量可変のコンデンサである。 66は容量制御部であって、可変容量コンデンサ65の 容量を可変制御するものである。可変容量コンデンサ6 5の容量制御は可変容量コンデンサを可変容量ダイオー ドとして印加電圧を制御する。あるいは、機械的に制御 して容量を可変とする。

[0034](b)は容量と電圧の関係を表し、可変容量 コンデンサ65の容量CとD点の電圧(V)の関係を表 すものである。 (c)は容量対電流の関係を表し、可変容 量コンデンサ65の容量CとD点の電流(I)の関係を 表すものである。

【0035】図の構成において、非接触型ICメモリカ ード21が本体装置20に挿入されると容量制御部66 はあらかじめ予想される範囲で可変容量コンデンサ65 の容量C-~C+を変化させる。その時、発振周波数と 電圧, 電流の関係は図 (b), (c)のようになるので, 監 30 視部36はその電圧と電流を監視する。そして、監視部 36は発振周波数が共振周波数に達したことを検出する と、それ容量制御部66に伝える。容量制御部66はそ の時点で可変容量コンデンサ65の容量Cの変更を止 め、共振状態を維持する。このようにして、最適な共振 周波数が設定され、発振出力回路22から非接触型IC メモリカード21に最適に電力が供給される。

【0036】上記の実施例は電圧と電流の値を検出する 方法により共振状態を判定するようにしていたが、電圧 と電流の位相差を検出し、共振を判定することができ 40 る。図7は本発明の実施例(5)であって、電圧と電流の 位相差を検出し共振を判定する場合の監視部の構成の実 施例である (図は周波数可変方式の場合 (図3参照)を 示す)。

【0037】図において、70は監視部、71は電圧検 出回路であって、D点(図3参照)の電圧を検出するも のである。72は電流検出回路であって、D点の電圧を 検出するものである。73,74はA/D変換器であっ て,それぞれ電圧検出回路71と電流検出回路72の電 って、A/D変換された電圧値と電流値について位相差 を比較するものである(例えばそれそれの最大値の時間 差を判定し位相差を検出する)。76はD/A変換器で あって、位相比較部75の位相差をD/A変換するもの である。

[0038] 78は周波数制御回路である(図4参 照)。79は発振出力回路である(図4参照)。図の動 作は後述する。

[0039] 図8は本発明の(5) の動作説明図である。 図において、 (a)は非共振状態の電圧と電流の関係を示 す。非共振状態では電圧の位相と電流の位相が一致して いない。

【0040】(b)は共振状態の電圧と電流の関係を示 す。共振状態では電圧の位相と電流の位相が図のように 一致する。図7の構成の動作を説明する。

【0041】電圧検出回路71は共振回路の電圧を検出 する (図3のD点の電圧)。同様に電流検出回路72は D点の電流を検出する。そして、A/D変換器73、A /D変換器74はそれぞれ、検出されたD点の電圧値と 電流値をA/D変換する。位相比較器は、例えば、電圧 20 と電流の測定時刻の時間軸を共通にして、それぞれの最 大値の時間差を検出する。そして、D/A変換器76は 時間差のデジタル値をアナログ値に変換する。電圧と電 流の位相差が大きい程D/A変換器76の出力値は大き

【0042】そこで、周波数制御回路78は出力値に応 じて周波数を制御し、発振出力回路79は制御された周 波数の発振出力をする。共振状態になって、電圧と電流 の位相が一致すると、位相比較部75の出力は0とな り、D/A変換器76の出力も0となり周波数の変更動 作が停止される。

[0043] インダクタンス可変方式(図5), 容量可 変方式(図6)の場合も同様に、監視部36は電圧と電 流の位相を監視し、両者の位相が一致したことを検出す ると、その時点で可変容量インタクタンスコイルのイン ダクタンスもしくは可変容量コンデンサの容量の変更を 停止させることにより、周波数可変方式の場合と同様に 共振状態を持続させることができる。

【0044】上記の実施例において、周波数、可変イン ダクタンスコイルのインダクタンス制御、可変容量コン デンサの容量の可変をそれぞれの制御回路、制御部で自一 動的に行って,それぞれの最適値を設定するようにした。 が,工場において,製品の出荷時に手動で制御し,周波 数、インダクタンス、静電容量を決定するようにしても よい。

[0045]

【発明の効果】本発明によれば、本体装置から非接触型 ICメモリカードへの静電結合による電力供給を効率良 く行うことができる。そのため、非接触型ICメモリカ 流を \mathbf{A}/\mathbf{D} 変換するものである。 $\mathbf{7}\,\mathbf{5}\,\mathbf{1}$ は位相比較部であ $\mathbf{50}$ 一ドに大きな電力が供給され,電池を使用することなく

特開平6-150079

9

【図面の簡単な説明】

- 【図1】本発明の基本構成を示す図である。
- 【図2】本発明の実施例(1)(固定方式)を示す図である。
- 【図3】本発明の実施例(2) (周波数可変方式)を示す 図である。
- 【図4】監視回路, 周波数制御回路, 発振出力回路の実施例を示す図である。
- 【図 5 】 本発明の実施例(3) (インダクタンス可変方式) を示す図である。
- 【図 6 】本発明の実施例(4) (容量可変方式)を示す図である。
- 【図7】本発明の実施例(5)を示す図である。
- 【図8】本発明の実施例(5) の動作説明図である。

【図1】

本発明の基本構成

10 【図9】従来の非接触型 I Cメモリカードシステムにおける静電的な電力供給方法を示す図である。

【符号の説明】

- 1 : 本体装置
- 2 : 非接触型 I Cメモリカード
- 3 :電力供給源(発振出力回路)
- 4 : 共振回路
- 6 : 共振コイル
- 7 :コンデンサ
- 10 8 : コンデンサ電極
 - 8':コンデンサ電板
 - 9 : コンデンサ
 - 10:コンデンサ電極
 - 10':コンデンサ電極
 - 11:整流回路
 - 12: 内部回路

【図2】

本発明の実施例(1)(固定カ式)

[図3]

本発明の実施例(2)(周波教可変力式)

[図8]

本発明の実施例(5)の動作説明図

(b)共振状態

[図4]

監視。回路周波教制如回路免疫出力回路の実施例

[図9]

従来の非常触型IC/モリカードシステムにおける 静電的な電力供給方法

【図5】

本発明の実施例(3)(インダクタンス可要方式)

【図6】

本発明の実施例(4)(容量可変方式)

(9)

特開平6-150079

【図7】

フロントページの続き

(51) lat. Cl. 5

識別記号

庁内整理番号 8623-5L

FΙ

G06K 19/00

技術表示箇所

Н

This Page Blank (uspto