1/13

Figure 1: Novel Gene Sequence Analysis

Figure 2: Primer efficiency testing. A standard curve of Ct versus log of the starting RNA amount is shown for 2 genes.

Figure 3: Kits for discovery of, or application of diagnostic gene sets

A. Contents of kit for discovery of diagnostic gene sets using microarrays

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 8 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence microarray expression profiling:

Reverse transcriptase and 10x RT buffer

T7(dT)24 primer (primer with T7 promoter at 5' end)

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

2nd strand cDNA buffer

DNA polymerase

Rnase H

T7 RNA polymerase

Ribonucleotides

In Vitro transcription buffer

Cy3 and Cy5 labeled ribonucleotides

- 7. Microarrays containing candidate gene libraries
- 8. Cover slips for slides
- 9. Hybridization chambers
- 10. Software package for identification of diagnostic gene set from data Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server.

- 11. Password and account number to access central database server.
- 12. Kit User Manual

B. Contents of kit for application of diagnostic gene sets using microarrays

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence microarray expression profiling:

Reverse transcriptase and 10x RT buffer

T7(dT)24 primer (primer with T7 promoter at 5' end)

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

2nd strand cDNA buffer

DNA polymerase

Rnase H

T7 RNA polymerase

Ribonucleotides

In Vitro transcription buffer

Cy3 and Cy5 labeled ribonucleotides

- 7. Microarrays containing candidate gene libraries
- 8. Cover slips for slides
- 9. Hybridization chambers
- 10. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server.

- 11. Password and account number to access central database server.
- 12. Kit User Manual

C. Contents of kit for application of diagnostic gene sets using Realtime RT-PCR

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for real time RT-PCR (may vary for various real-time PCR techniques:

poly dT primers, random hexamer primers

Reverse Transcriptase and RT buffer

DTT

Deoxynucleotides 100 mM

RNase H

primer pairs for diagnostic and control gene set

10x PCR reaction buffer

Taq DNA polymerase

Fluorescent probes for diagnostic and control gene set

(alternatively, fluorescent dye that binds to only double stranded DNA)

reaction tubes with or without barcode for sample tracking

96-well plates with barcode for sample identification, one barcode for entire set, or individual barcode per reaction tube in plate

7. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server

- 8. Password and account number to access central database server.
- 9. Kit User Manual

Median Cy3 Background Subtracted Signals

李彦。

All columns use the same scale.

Mononuclear cells, resting and stimulated

·10 Buffy Coats, resting Mononuclear cells, resting

All markers are connected and ordered by Features.

10 μ g of each control RNA was labeled.

Figure 5: SLE diagnostic genes and algorithms

A.

B.

Lupus		Control	
Sample	Ratio	Sample	Ratio
16-0022-01	1.05	16-0025-01	0.60
16-0030-01	0.96	16-0029-01	0.75
16-0037-01	0.87	16-0031-01	0.63
16-0058-01	1.05	16-0033-01	0.62
16-0054-01	0.99	16-0040-01	0.61
16-0062-01	0.98	16-0015-01	0.72
16-0057-01	1.14	16-0016-01	0.78
		16-0020-01	0.79
		16-0023-01	0.71
		16-0024-01	0.69
		16-0036-01	0.65
		16-0045-01	0.59
		16-0007-01	0.77
		16-0013-01	0.60
		16-0010-01	0.57
	N.	16-0049-01	0.75

Control

L	upus s	S		
Average Ratio	1.00	0.68		
Std Dev of Ratio	80.0	0.08		
Fold Change	1.48			

PCT/US03/13015

C.

Model	• ·	Relative	SEQ ID			CART		
			50mer	Locus	Nominal Description	Splitter	CART Value for Dx SLE	
l laboM	2	D.118	514	NM_002946	replication protein A2 (32kD)	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909	
	<u> </u>		510	NM_004510	Interferon-induced protein 75	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909	
Model I	3	0.125	514	NM_002946	replication protein A2 (32kD)	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909	
1	ł		510	NM_004510	interferon-induced protein 75	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909	
L			509	BC002409	actin, beta (ACTB)	2nd	(G1436) > 0.0868	
Model	1	0.612	504	W16552	PKR	1st	(E087) > 0.4020	
Model	3	0.686	504	VV 10552	FKK	IISL	(5067) > 0.1030	
1	٢	0.000	504	W16552	PKR	1st	(5067) > 0.1030	
1	İ	į	875	AK024756	hypothetical protein FLJ21103	2nd	(G1025) <= 0.3968	
	l		876	AK024969	hypothetical protein DKFZp566i133	3rd	(G1035) <= 0.0073	
Model	5	0.745						
pi	1		504	W16552	PKR	1st	(5067) > 0.1030	
(Ì	1	874	AK024240	cDNA FLJ14178 fis	2nd	(G1003) > 0.2105	
[875	AK024756	hypothetical protein FLJ21103	2nd	(G1025) <= 0.3968	
		İ	873	AK024202	heat shock 90kD protein 1, alpha	3rd	(G1001) <= - 0.3107	
			876	AK024969	hypothetical protein DKFZp566I133	3rd	(G1035) <= 0.0073	

D.

	Model	Sensitivity	Specificity	Relative Cost
Tweining Set	Model 1 (2 genes)	100	94	
Training Set	Model 1 (2 genes) Model 1 (3 genes)	100	100	
10-fold Cross	Model 1 (2 genes)	100	88	0.118
Validation	Model 1 (3 genes)	93	94	0.125

E.

Model I (2 genes)

F.

Model 1 (3 genes)

Figure 6. Endpoint testing of PCR primers

PCT/US03/13015

Figure 7: Validation of differential expression of Granzyme B in CMV patients using Real-time PCR

A.

B.

QPCR of Granzyme B

Figure 8

Intensity of Control Genes from PAX RNA (2ug) and CPT RNA (0.5 ug)

