TPC1

Resultados dos exercícios propostos

1. (A)Converta cada um dos valores para os seguintes sistemas:

	Valor a converter	Resultado	Valor a converter	Resultado
a) decimal	1101.012	13.25	10.112	2.75
b) octal	111 110 011 1012	76358	11 011.112	33.68
c) hexadecimal	10 1010 1011.0112	0x2ab.6	72.25	0x48.4
d) binário	0xfc2f	1111 1100 0010 11112	36.0625	1 0100.00012
e) ternário	24	2203	174	201103

3. ^(A) Preencha a tabela abaixo com a gama de valores representáveis usando 5 bits em um dos sistemas de representação propostos.

Representação	Intervalo
Binário sem sinal, inteiros	[0 , 2 ⁵ -1] -> [0 , 31]
Binário sem sinal, 1 bit fracionário	[0 , 15.5]
Binário sem sinal, 3 bits fracionários	[0 , 3.875]
Sinal + Amplitude, inteiros	[-15 , 15]
Sinal + Amplitude, 1 bit fracionário	[-7.5 , 7.5]
Sinal + Amplitude, 3 bits fracionários	[-1.875 , 1.875]

4. (A) Efetue as seguintes operações aritméticas em binário usando apenas 8 bits:

00110011 ₂ + 01110101 ₂	101010002
011100.11 ₂ + 000011.01 ₂	100000.002
01001001 ₂ + 11010001 ₂	Overflow no resultado
0x4c + 0x2b	$01001100_2 + 00101011_2 = 01110111_2$
672 ₈ + 703 ₈	Overflow na codificação de cada operando

5. (A)Codificação binária para as divisões de um prédio de 15 andares, com 6 apartamentos por andar:

Para representar o andar usamos sinal+amplitude com 4 bits.

Para representar o apartamento usamos inteiros positivos com 3 bits.

Temos um máximo de 8 divisões por apartamento, logo usamos 3 bits, com a seguinte codificação:

000 - sala; 001 a 011 - quarto; 100 - cozinha; 101 a 111 - casa de banho.

Total: 10 bits.

O piso -5, apartamento 3, quarto 2, codifica-se como: 1101 011 010

6. ^(A)	⁾ Converta o número –	233 para uma repr	resentação binária com	10-bits.	com as seguintes representações:
-------------------	----------------------------------	-------------------	------------------------	----------	----------------------------------

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
Sinal & Ampl	1	0	1	1	1	0	1	0	0	1
Compl p/ 1	1	1	0	0	0	1	0	1	1	0
Compl p/ 2	1	1	0	0	0	1	0	1	1	1
Excesso 2 ⁿ⁻¹	0	1	0	0	0	1	0	1	1	1

7. (A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂; pode-se apresentar o resultado de uma de 2 maneiras: (i) escreve-se em cada célula o valor que cada bit (na codificação especificada) tem em decimal, sabendo-se que o <u>resultado</u> na coluna da direita toma em conta o bit do sinal (quando exista) e o seu valor é a soma desses valores, ou (ii) escreve-se em cada célula o valor que cada bit (na codificação especificada) tem no sistema de numeração binário, sabendo-se que o <u>resultado</u> na coluna da direita toma em conta o bit do sinal (quando exista) e o seu valor é a soma do produto dos bits indicados, pelo seu valor.

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codif em bin	1	0	0	1	1	1	0	1	0	1	
Int s/ sinal	512+	0+	0+	64+	32+	16+	0+	4+	0+	1=	629
Sinal & Ampl	_	(0+	0+	64+	32+	16+	0+	4+	0+	1)=	-117
Compl p/ 1	-	(256+	128+	0+	0+	0+	8+	0+	2+	0)=	-394
Compl p/ 2	-	(256+	128+	0+	0+	0+	8+	0+	2+	1)=	-395
Excesso 2 ⁿ⁻¹	512+	0+	0+	64+	32+	16+	0+	4+	0+	1-512=	117

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codif em bin	1	0	0	1	1	1	0	1	0	1	
Int s/ sinal	1	0	0	1	1	1	0	1	0	1	629
Sinal & Ampl	_	0	0	1	1	1	0	1	0	1	-117
Compl p/ 1	-	1	1	0	0	0	1	0	1	0	-394
Compl p/ 2	_	1	1	0	0	0	1	0	1	1	-395
Excesso 2 ⁿ⁻¹	0	0	0	1	1	1	0	1	0	1	117

8. (R)Executar código num computador de 6-bits; um inteiro "short" é codificado com 3-bits.

short sy =
$$-3$$
;
int y = sy;
int x = -17 ;
unsigned ux = x;

Expressão	Decimal	Binário
Zero	0	00 0000
	-6	11 1010
	18	01 0010
ux	47	10 1111
У	-3	11 1101
x>>1 *	-9	11 0111
TMax	31	01 1111
-Tmin	-(-32)	overflow
Tmin+Tmin	-64	overflow

- * Ver-se-á mais tarde porque razão este resultado é assim.

 <u>Sugestão para estudantes B</u>: analisar (e tentar compreender) como é que as operações de deslocamento de bits em C se comportam, e quais as diferenças entre deslocamento para a esquerda e deslocamento para a direita (para além da direção, como é óbvio).
- 9. ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:

	(i)	(ii)	(iii)
a) 6 bits]-25, 25[[-25, 25[[-2 ⁵ , 2 ⁵ [
b) 12 bits]-211, 211[[-2 ¹¹ , 2 ¹¹ [[-2 ¹¹ , 2 ¹¹ [

10. (A) Efetue os seguintes cálculos usando aritmética binária de 8-bits em complemento para 2:

```
a) 16 + 110 Res.: 0001 \ 00002 + 0110 \ 11102 = 0111 \ 11102
b) 70 + 80 Res.: 0100 \ 01102 + 0101 \ 00002 = 1001 \ 01102 \ overflow \ (devia ser >0)
c) 80 + (-60) Res.: 0101 \ 00002 + 1100 \ 01002 = 0001 \ 01002
d) -98 - 29 Res.: 1001 \ 11102 - 0001 \ 11012 = 1000 \ 00012
```