Fall 2020

- Simple Games
- Problems on simple games
- 3 IsWeighted

Weighted voting games Vector weighted voting games The core Shapley and Banzhaf

- Simple Games
- 2 Problems on simple games
- 3 IsWeighted

• Simple Games were introduced by (Taylor & Zwicker, 1999)

- Simple Games were introduced by (Taylor & Zwicker, 1999)
- A simpe game is a cooperative game (N, v) such that $v : \mathcal{C}_N \to \{0, 1\}$ and it is monotone.

- Simple Games were introduced by (Taylor & Zwicker, 1999)
- A simpe game is a cooperative game (N, v) such that $v : \mathcal{C}_N \to \{0, 1\}$ and it is monotone.
- A simple game can be described by a pair (N, W):
 - N is a set of players,
 - $W \subseteq \mathcal{P}(N)$ is a monotone set of winning coalitions, those coalitions X with v(X) = 1.
 - $\mathcal{L} = \mathcal{C}_N \backslash \mathcal{W}$ is the set of losing coalitions those coalitions X with $\nu(X) = 0$.

- Simple Games were introduced by (Taylor & Zwicker, 1999)
- A simpe game is a cooperative game (N, v) such that $v : \mathcal{C}_N \to \{0, 1\}$ and it is monotone.
- A simple game can be described by a pair (N, W):
 - N is a set of players,
 - $W \subseteq \mathcal{P}(N)$ is a monotone set of winning coalitions, those coalitions X with v(X) = 1.
 - $\mathcal{L} = \mathcal{C}_N \backslash \mathcal{W}$ is the set of losing coalitions those coalitions X with v(X) = 0.
- Members of $N = \{1, ..., n\}$ are called players or voters.

Simple games: Representation

Due to monotonicity, any one of the following families of coalitions define a simple game on a set of players N:

- winning coalitions W.
- losing coalitions L.
- minimal winning coalitions \mathcal{W}^m $\mathcal{W}^m = \{X \in \mathcal{W}; \forall Z \in \mathcal{W}, Z \not\subseteq X\}$
- maximal losing coalitions \mathcal{L}^{M} $\mathcal{L}^{M} = \{X \in \mathcal{L}; \forall Z \in \mathcal{L}, X \not\subseteq L\}$

This provides us with many representation forms for simple games.

• Weighted voting games (WVG)

• Weighted voting games (WVG)

A simple game for which there exists a quota q and it is possible to assign to each $i \in N$ a weight w_i , so that $X \in \mathcal{W}$ iff $\sum_{i \in X} w_i \ge q$.

- Weighted voting games (WVG) A simple game for which there exists a quota q and it is possible to assign to each $i \in N$ a weight w_i , so that $X \in \mathcal{W}$ iff $\sum_{i \in X} w_i \ge q$.
- WVG can be represented by a tuple of integers
 (q; w₁,..., w_n).
 as any weighted game admits such an integer realization,
 [Carreras and Freixas, Math. Soc.Sci., 1996]

• Given two simple games $\Gamma_1 = (N, W_1)$ and $\Gamma_2 = (N, W_1)$ we can define their

- Given two simple games $\Gamma_1=(N,\mathcal{W}_1)$ and $\Gamma_2=(N,\mathcal{W}_1)$ we can define their
 - union

- Given two simple games $\Gamma_1 = (N, W_1)$ and $\Gamma_2 = (N, W_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_)$

- Given two simple games $\Gamma_1=(N,\mathcal{W}_1)$ and $\Gamma_2=(N,\mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_1)$
 - intersection

- Given two simple games $\Gamma_1=(N,\mathcal{W}_1)$ and $\Gamma_2=(N,\mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, W_1 \cup W_1)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

- Given two simple games $\Gamma_1=(N,\mathcal{W}_1)$ and $\Gamma_2=(N,\mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_1)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

• A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_1, \ldots, \Gamma_k$, for some $k \geq 1$, so that $\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_k$.

• There are simple games that are not WVGs

• There are simple games that are not WVGs The game with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

- There are simple games that are not WVGs The game with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.
 - Assume it is given by $(q; w_1, w_2, w_3, w_4)$.

- There are simple games that are not WVGs
 - The game with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.
 - Assume it is given by $(q; w_1, w_2, w_3, w_4)$.
 - We have $w_1 + w_2 \ge q$ and $w_3 + w_4 \ge q$.
 - Thus $\max\{w_1, w_2\} \ge q/2$ and $\max\{w_3, w_4\} \ge q/2$,
 - So, $\max\{w_1, w_2\} + \max\{w_3, w_4\} \ge q$ which cannot be.

Any simple game Γ is a VWVGs

- Any simple game Γ is a VWVGs
 - Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1.

Any set that is not contained in C wins!

- Any simple game Γ is a VWVGs
 - Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1.
 - Any set that is not contained in C wins!
 - The intersection of the above games describes Γ .

- Any simple game Γ is a VWVGs
 - Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1.
 - Any set that is not contained in C wins!
 - The intersection of the above games describes Γ.
 A winning coalition cannot be a subset of any losing coalition.

- Any simple game Γ is a VWVGs
 - Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1.
 - Any set that is not contained in C wins!
 - The intersection of the above games describes Γ.
 A winning coalition cannot be a subset of any losing coalition.
- The dimension of a simple games is the minimum number of WVGs that allows its representation as VWVG

The game Γ with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

The game Γ with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

• The maximal losing coalitions are $\{\{1,3\},\{1,4\},\{2,3\}\{2,4\}\}$

The game Γ with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

- The maximal losing coalitions are $\{\{1,3\},\{1,4\},\{2,3\}\{2,4\}\}$
- This gives four WVG, according to the previous construction

$$\Gamma = [1;0,1,0,1] \cap [1;0,1,1,0] \cap [1;1,0,0,1] \cap [1;1,0,1,0].$$

Input representations

Simple Games

```
(N, \mathcal{W}): extensive wining, (N, \mathcal{W}^m): minimal wining (N, \mathcal{L}): extensive losing, (N, \mathcal{L}^M) maximal losing (N, \mathcal{C}): monotone circuit winning (N, \mathcal{F}): monotone formula winning,
```

- Weighted voting games: $(q; w_1, \ldots, w_n)$
- Vector weighted voting games: $(q_1; w_1^1, \ldots, w_n^1), \ldots, (q_k; w_1^k, \ldots, w_n^k)$

All numbers are integers

- It is standard to assume that the grand coalition forms, even if the simple game is not superadditive.
- A player is a veto player if v(C) = 0, for any $C \subseteq N \setminus \{i\}$.
- Ex: Consider the unanimity game (N, v) where v(C) = 0, if $C \neq N$ and v(N) = 1.

The game indeed is a simple game and can be described in (minimal) winning form by $(N, \{N\})$.

In the unanimity game all players are veto players.

Theorem

A simple game has non-empty core iff it has a veto player.

Theorem

A simple game has non-empty core iff it has a veto player.

- If Γ has a veto player i.
 - Consider the payoff $x_i = 1$ and $x_j = 0$, for $j \neq i$
 - For C with $i \in C$, v(C) = 1 and x(C) = 1.
 - For C with $i \notin C$, v(C) = 0 and x(C) = 0.
 - Thus, x is in the core.
- If Γ does not have a veto player and non-empty core.
 - Consider a payoff x that is in the core.
 - x(N) = v(N) = 1, so there exists i with $x_i > 0$.
 - So, $x(N \setminus \{i\}) < 1$. But, $v(N \setminus \{i\}) = 1$ as i is not a veto player.
 - Thus, x is not in the core.

Is the core empty?

- Determining if the core is empty or not can be done by checking for every player whether it is a veto player or not.
- For this it is enough to check whether $v(N \setminus \{i\}) = 0$.
- For reasonable v, polynomial time computable, this can be done in poly time

Shapley value and Banzhaf index

- Player *i* is pivotal for coalition *C* if v(C) = 1 and $v(C \setminus \{i\}) = 0$.
- The sum counts those the terms for which the player is pivotal.

$$\varphi_i(\Gamma) = \frac{1}{n!} |\{i \text{ is pivotal for } S_\pi(i)\}|$$

- $\varphi_i(\Gamma)$ is the probability that the arrival of player i turns a losing coalition into a winning one.
- The Banzhaf value gives the probability of this fact over random coalitions.
 - Players in $N \setminus \{i\}$ select to be or not in the coalition tossing a fair coin.

- Simple Games
- Problems on simple games
- 3 IsWeighted

Problems on simple games

In general we state a property P, for simple games, and consider the associated decision problem which has the form:

Name: IsP

Input: A simple game/WVG/VWVG Γ Question: Does Γ satisfy property P?

Four properties

A simple game (N, \mathcal{W}) is

- strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$.
- proper if $S \in \mathcal{W}$ implies $N \setminus S \notin \mathcal{W}$.
- a weighted voting game.
- a vector weighted voting game.

IsStrong: Simple Games

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

IsStrong: Simple Games

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

$\mathsf{Theorem}$

The IsStrong problem, when Γ is given in explicit winning or losing form or in maximal losing form can be solved in polynomial time.

IsStrong: Simple Games

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

$\mathsf{Theorem}$

The IsStrong problem, when Γ is given in explicit winning or losing form or in maximal losing form can be solved in polynomial time.

- First observe that, given a family of subsets F, we can check, for any set in F, whether its complement is not in F in polynomial time.
- Therefore, the ISSTRONG problem, when the input is given in explicit losing form is polynomial time solvable.

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

• A simple game is not strong iff

$$\exists S \subseteq \mathsf{N} : S \in \mathcal{L} \ \land \ \mathsf{N} \setminus \mathsf{S} \in \mathcal{L}$$

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

• A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \ \land \ N \setminus S \in \mathcal{L}$$

which is equivalent to

$$\exists S \subseteq N : \exists L_1, L_2 \in \mathcal{L}^M : S \subseteq L_1 \land N \setminus S \subseteq L_2$$

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

• A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \land N \setminus S \in \mathcal{L}$$

which is equivalent to

$$\exists S \subseteq N : \exists L_1, L_2 \in \mathcal{L}^M : S \subseteq L_1 \land N \setminus S \subseteq L_2$$

• which is equivalent to there are two maximal losing coalitions L_1 and L_2 such that $L_1 \cup L_2 = N$.

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

• A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \ \land \ N \setminus S \in \mathcal{L}$$

which is equivalent to

$$\exists S \subseteq N : \exists L_1, L_2 \in \mathcal{L}^M : S \subseteq L_1 \ \land \ N \setminus S \subseteq L_2$$

- which is equivalent to there are two maximal losing coalitions L_1 and L_2 such that $L_1 \cup L_2 = N$.
- This can be checked in polynomial time, given \mathcal{L}^M .

IsStrong: explicit winning forms

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

- Given (N, W), for $i \in N$ consider the family $W_i = \{X \setminus \{i\} \mid X \in W\}$ and $R = \bigcup_{i \in N} W_i$.
- All the coalitions in $R \setminus W$ are losing coalitions.
- Furthermore for a coalition $X \in \mathcal{L}^M$ and $i \notin X$, $X \cup \{i\} \in \mathcal{W}$.
- Thereofore, $\mathcal{L}^M \subseteq R \setminus W$ and $(R \setminus W)^M = \mathcal{L}^M$.
- Then, we compute \mathcal{L}^M from \mathcal{W} in polynomial time and then use the algoritm for the maximal losing form.

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

Theorem

The ISSTRONG problem is coNP-complete when the input game is given in explicit minimal winning form.

 Γ is strong if $S \notin \mathcal{W}$ implies $N \setminus S \in \mathcal{W}$

$\mathsf{Theorem}$

The ISSTRONG problem is coNP-complete when the input game is given in explicit minimal winning form.

• The property can be expressed as

$$\forall S \ [(S \in \mathcal{W}) \ \text{or} \ (S \notin \mathcal{W} \ \text{and} \ N \setminus S \in \mathcal{W})]$$

- Observe that the property $S \in \mathcal{W}$ can be checked in polynomial time given S and \mathcal{W}^m .
- Thus the problem belongs to coNP.

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and $N \setminus P$ such that no subset in C is entirely contained in either P or $N \setminus P$.

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and N \ P such that no subset in C is entirely contained in either P or N \ P.
- We have to decide whether $P \subseteq N$ exists such that

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and N \ P such that no subset in C is entirely contained in either P or N \ P.
- We have to decide whether $P \subseteq N$ exists such that

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

We associate to a set splitting instance (N, C) the simple game in explicit minimal winning form (N, C^m) .

• C^m can be computed in polynomial time, given C. Why?

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

• This means that P and $N \setminus P$ are losing coalitions in the game (N, C^m) .

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- This means that P and $N \setminus P$ are losing coalitions in the game (N, C^m) .
- So, $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C^m$.

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- This means that P and $N \setminus P$ are losing coalitions in the game (N, C^m) .
- So, $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C^m$.
- This implies $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C$ since any set in C contains a set in C^m .

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- This means that P and $N \setminus P$ are losing coalitions in the game (N, C^m) .
- So, $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C^m$.
- This implies $S \nsubseteq P$ and $S \nsubseteq N \setminus P$, for any $S \in C$ since any set in C contains a set in C^m .
- Therefore, (N, C) has a set splitting iff (N, C^m) is not strong.

 Γ is proper if $S \in \mathcal{W}$ implies $N \setminus S \notin \mathcal{W}$.

Theorem

The IsProper problem, when the game is given in explicit winning or losing form or in minimal winning form, can be solved in polynomial time.

 Γ is proper if $S \in \mathcal{W}$ implies $N \setminus S \notin \mathcal{W}$.

$\mathsf{Theorem}$

The IsProper problem, when the game is given in explicit winning or losing form or in minimal winning form, can be solved in polynomial time.

- As before, given a family of subsets F, we can check, for any set in F, whether its complement is not in F in polynomial time.
 - Taking into account the definitions, the ${\rm IsProper}$ problem is polynomial time solvable for the explicit forms

Γ is not proper iff

$$\exists \textit{S} \subseteq \textit{N}: \textit{S} \in \mathcal{W} \ \land \ \textit{N} \setminus \textit{S} \in \mathcal{W}$$

 \bullet Γ is not proper iff

$$\exists S \subseteq N : S \in \mathcal{W} \ \land \ N \setminus S \in \mathcal{W}$$

which is equivalent to

$$\exists \textit{S} \subseteq \textit{N}: \exists \textit{W}_{1}, \textit{W}_{2} \in \mathcal{W}^{\textit{m}}: \textit{W}_{1} \subseteq \textit{S} \ \land \ \textit{W}_{2} \subseteq \textit{N} \setminus \textit{S}.$$

• Γ is not proper iff

$$\exists S \subseteq N : S \in \mathcal{W} \land N \setminus S \in \mathcal{W}$$

which is equivalent to

$$\exists S \subseteq N : \exists W_1, W_2 \in \mathcal{W}^m : W_1 \subseteq S \land W_2 \subseteq N \setminus S.$$

• equivalent to there are two minimal winning coalitions W_1 and W_2 such that $W_1 \cap W_2 = \emptyset$.

Γ is not proper iff

$$\exists S \subseteq N : S \in \mathcal{W} \land N \setminus S \in \mathcal{W}$$

which is equivalent to

$$\exists S \subseteq N : \exists W_1, W_2 \in \mathcal{W}^m : W_1 \subseteq S \land W_2 \subseteq N \setminus S.$$

- equivalent to there are two minimal winning coalitions W_1 and W_2 such that $W_1 \cap W_2 = \emptyset$.
- ullet Which can be checked in polynomial time when \mathcal{W}^m is given.

IsProper: maximal losing form

 Γ is proper if $S \in \mathcal{W}$ implies $N \setminus S \notin \mathcal{W}$.

Theorem

The IsProper problem is coNP-complete when the input game is given in extensive maximal losing form.

IsProper: maximal losing form

 Γ is proper if $S \in \mathcal{W}$ implies $N \setminus S \notin \mathcal{W}$.

$\mathsf{Theorem}$

The IsProper problem is coNP-complete when the input game is given in extensive maximal losing form.

• A game is not proper iff

$$\exists S \subseteq N : S \not\in \mathcal{L} \ \land \ N \setminus S \not\in \mathcal{L}$$

which is equivalet to

$$\exists S \subseteq N : \forall T_1, T_2 \in \mathcal{L}^M : S \not\subseteq T_1 \land N \setminus S \not\subseteq T_2$$

 Γ is proper if $S \in \mathcal{W}$ implies $N \setminus S \notin \mathcal{W}$.

Theorem

The IsProper problem is coNP-complete when the input game is given in extensive maximal losing form.

• A game is not proper iff

$$\exists S \subseteq N : S \not\in \mathcal{L} \ \land \ N \setminus S \not\in \mathcal{L}$$

which is equivalet to

$$\exists S \subseteq N : \forall T_1, T_2 \in \mathcal{L}^M : S \not\subseteq T_1 \land N \setminus S \not\subseteq T_2$$

• Therefore IsProper belongs to coNP.

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

- If a family C of subsets of N is minimal then the family $\{N \setminus L : L \in C\}$ is maximal.
- Given a game $\Gamma = (N, \mathcal{W}^m)$, in minimal winning form, we construct the game $\Gamma' = (N, \{N \setminus L : L \in \mathcal{W}^m\})$ in maximal losing form.
- Which can be obtained in polynomial time.

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

- If a family C of subsets of N is minimal then the family $\{N \setminus L : L \in C\}$ is maximal.
- Given a game $\Gamma = (N, \mathcal{W}^m)$, in minimal winning form, we construct the game $\Gamma' = (N, \{N \setminus L : L \in \mathcal{W}^m\})$ in maximal losing form.
- Which can be obtained in polynomial time.
- Besides, Γ is strong iff Γ' is proper.

Some of the proofs are based on reductions from the NP-complete problem PARTITION:

Some of the proofs are based on reductions from the NP-complete problem Partition:

Name: Partition

Input: n integer values, x_1, \ldots, x_n

Question: Is there $S \subseteq \{1, ..., n\}$ for which

$$\sum_{i\in S} x_i = \sum_{i\notin S} x_i.$$

Some of the proofs are based on reductions from the NP-complete problem PARTITION:

Name: Partition

Input: n integer values, x_1, \ldots, x_n

Question: Is there $S \subseteq \{1, ..., n\}$ for which

$$\sum_{i\in S} x_i = \sum_{i\notin S} x_i.$$

Observe that, for any instance of the Partition problem in which the sum of the n input numbers is odd, the answer must be NO.

Theorem.

The ISSTRONG and the ISPROPER problems, when the input is described by an integer realization of a weighted game (q; w), are coNP-complete.

Theorem

The IsStrong and the IsProper problems, when the input is described by an integer realization of a weighted game (q; w), are coNP-complete.

• From the definitions of strong, proper it is straightforward to show that both problems belong to coNP.

Theorem

The ISSTRONG and the ISPROPER problems, when the input is described by an integer realization of a weighted game (q; w), are coNP-complete.

- From the definitions of strong, proper it is straightforward to show that both problems belong to coNP.
- Observe that the weighted game with integer representation (2; 1, 1, 1) is both proper and strong.

Hardness

We transform an instance $x = (x_1, ..., x_n)$ of PARTITION into a realization of a weighted game according to the following schema

$$f(x) = \begin{cases} (q(x); x) & \text{when } x_1 + \dots + x_n \text{ is even,} \\ (2; 1, 1, 1) & \text{otherwise.} \end{cases}$$

Hardness

We transform an instance $x = (x_1, ..., x_n)$ of PARTITION into a realization of a weighted game according to the following schema

$$f(x) = \begin{cases} (q(x); x) & \text{when } x_1 + \dots + x_n \text{ is even,} \\ (2; 1, 1, 1) & \text{otherwise.} \end{cases}$$

 Function f can be computed in polynomial time provided q does.

Hardness

We transform an instance $x = (x_1, ..., x_n)$ of PARTITION into a realization of a weighted game according to the following schema

$$f(x) = \begin{cases} (q(x); x) & \text{when } x_1 + \dots + x_n \text{ is even,} \\ (2; 1, 1, 1) & \text{otherwise.} \end{cases}$$

- Function f can be computed in polynomial time provided q does.
- Independently of q, when $x_1 + \cdots + x_n$ is odd, x is a NO input for partition, but f(x) is a YES instance of ISSTRONG or ISPROPER.

IsStrong

Assume that $x_1 + \cdots + x_n$ is even. Let $s = (x_1 + \cdots + x_n)/2$ and $N = \{1, \dots, n\}$. Set q(x) = s + 1.

IsStrong

Assume that $x_1 + \cdots + x_n$ is even. Let $s = (x_1 + \cdots + x_n)/2$ and $N = \{1, \dots, n\}$. Set q(x) = s + 1.

• If there is $S \subset N$ such that $\sum_{i \in S} x_i = s$, then $\sum_{i \notin S} x_i = s$, thus both S and $N \setminus S$ are losing coalitions and f(x) is not strong.

IsStrong

Assume that $x_1 + \cdots + x_n$ is even. Let $s = (x_1 + \cdots + x_n)/2$ and $N = \{1, \dots, n\}$. Set q(x) = s + 1.

- If there is $S \subset N$ such that $\sum_{i \in S} x_i = s$, then $\sum_{i \notin S} x_i = s$, thus both S and $N \setminus S$ are losing coalitions and f(x) is not strong.
- If S and $N \setminus S$ are losing coalitions in f(x). If $\sum_{i \in S} x_i < s$ then $\sum_{i \notin S} x_i \ge s+1$, $N \setminus S$ should be winning. Thus $\sum_{i \in S} x_i = \sum_{i \notin S} x_i = s$, and there exists a partition of x.

IsProper

Assume that $x_1 + \cdots + x_n$ is even. Let $s = (x_1 + \cdots + x_n)/2$ and $N = \{1, \dots, n\}$. Set q(x) = s.

IsProper

Assume that $x_1 + \cdots + x_n$ is even. Let $s = (x_1 + \cdots + x_n)/2$ and $N = \{1, \dots, n\}$. Set q(x) = s.

• If there is $S \subset N$ such that $\sum_{i \in S} x_i = s$, then $\sum_{i \notin S} x_i = s$, thus both S and $N \setminus S$ are winning coalitions and f(x) is not proper.

IsProper

Assume that $x_1 + \cdots + x_n$ is *even*.

Let
$$s = (x_1 + \cdots + x_n)/2$$
 and $N = \{1, \dots, n\}$.
Set $q(x) = s$.

- If there is $S \subset N$ such that $\sum_{i \in S} x_i = s$, then $\sum_{i \notin S} x_i = s$, thus both S and $N \setminus S$ are winning coalitions and f(x) is not proper.
- When f(x) is not proper

$$\exists S \subseteq N : \sum_{i \in S} x_i \ge s \land \sum_{i \notin S} x_i \ge s,$$

and thus
$$\sum_{i \in S} x_i = s$$
.

- Simple Games
- 2 Problems on simple games
- 3 IsWeighted

Explicit forms

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit winning or losing form.

Explicit forms

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit winning or losing form.

We can obtain \mathcal{W}^m and \mathcal{L}^M in polynomial time. Once this is done we write, in polynomial time, the LP

min
$$q$$
 subject to $w(S) \geq q$ if $S \in W^m$ $w(S) < q$ if $S \in L^M$ $0 \leq w_i$ for all $1 \leq i \leq n$ $0 \leq q$

IsWeighted: Minimal and Maximal

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

IsWeighted: Minimal and Maximal

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

• For $C \subseteq N$ we let $x_C \in \{0,1\}^n$ denote the vector with the *i*'th coordinate equal to 1 if and only if $i \in C$.

IsWeighted: Minimal and Maximal

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

- For $C \subseteq N$ we let $x_C \in \{0,1\}^n$ denote the vector with the *i*'th coordinate equal to 1 if and only if $i \in C$.
- In polynomial time we compute the boolean function Φ_{W^m} given by the DNF:

$$\Phi_{W^m}(x) = \bigvee_{S \in W^m} (\wedge_{i \in S} x_i)$$

IsWheigthed: Minimal winning

By construction we have the following:

$$\Phi_{W^m}(x_C) = 1 \Leftrightarrow C$$
 is winning in the game given by (N, W^m)

IsWheigthed: Minimal winning

By construction we have the following:

$$\Phi_{W^m}(x_C) = 1 \Leftrightarrow C$$
 is winning in the game given by (N, W^m)

• It is well known that Φ_{W^m} is a threshold function iff the game given by (N, W^m) is weighted.

IsWheigthed: Minimal winning

By construction we have the following:

$$\Phi_{W^m}(x_C) = 1 \Leftrightarrow C$$
 is winning in the game given by (N, W^m)

- It is well known that Φ_{W^m} is a threshold function iff the game given by (N, W^m) is weighted.
- Further Φ_{W^m} is monotonic (i.e. *positive*)
- But deciding whether a monotonic formula describes a threshold function can be solved in polynomial time.

IsWheigthed: Maximal loosing

- we can prove a similar result given (N, L^M) .
- The dual of game $\Gamma = (N, W)$ is the game $\Gamma^d = (N, W^d)$ where $S \in W^d$ iff $N \setminus S \notin W$.
- Observe that Γ is weighted iff Γ^d is weighted.
- We can compute a monotone CNF formula describing the loosing coalitions of Γ . Negating this formula we get a DNF on negated variables. Replacing \overline{x}_i by y_i we get a DNF describing \mathcal{W}^d .
- As the formula can be computed in polynomial time the result follows.

References

- Haris Aziz, Algorithmic and complexity aspects of simple coalitional games (Ph.D.thesis). Computer Science Dept., U. Warwick, 2009.
- Josep Freixas, Xavier Molinero, Martin Olsen, Maria Serna: On the complexity of problems on simple games. RAIRO -Operations Research 45(4): 295-314 (2011)