Configuration Spaces of Compact Manifolds

Najib Idrissi

ETH Zürich, August 24th 2017

Introduction

M: n-manifold (+ adjectives) \leadsto configuration spaces

$$\underline{\mathrm{Conf}_k(M)} \coloneqq \{(x_1, \dots, x_k) \in M^k \mid \forall i \neq j, \ x_i \neq x_j\}$$

Goal

Obtain a CDGA model of $\operatorname{Conf}_k(M)$ from a CDGA model of M

Closed manifolds: Poincaré duality models

Poincaré duality CDGA (P,d,ε) (example: $P=H^*(N)$ for N closed)

- (P,d): finite type connected CDGA;
- $\varepsilon: P^n \to \mathbb{Q}$ such that $\varepsilon \circ d = 0$;
- $P^k \otimes P^{n-k} \to \mathbb{Q}, \ a \otimes b \mapsto \varepsilon(ab)$ non degenerate.

Theorem (Lambrechts & Stanley 2008)

Any simply connected closed manifold has such a model.

$$\Omega^*(N) \xleftarrow{\sim} \cdot \xrightarrow{\sim} \exists P$$

$$\int_N \mathbb{Q} \swarrow_{\exists \varepsilon}$$

Remark

Reasonable assumption: \exists non simply-connected $L \simeq L'$ but

 $\operatorname{Conf}_k(L) \not\simeq \operatorname{Conf}_k(L')$ for $k \geq 2$ [Longoni & Salvatore].

Manifolds with boundary: pretty models

Starting data:

- Poincaré duality CDGA P
- CDGA Q s.t. $Q^{\geq n/2-1}=0$
- $\psi: P \twoheadrightarrow Q$

Yields $\psi^!: Q^{\vee}[-n] \to P^{\vee}[-n] \cong P$ Surjective pretty model:

N, modeled by ${\cal P}$

 $A\coloneqq P/\operatorname{im}(\psi^!)\simeq\Omega^*(M)$, non-degen pairing with $\ker(\psi)\simeq\Omega^*(M,\partial M)$

Pretty models and nice models

Theorem (Lambrechts & Stanley, Cordova Bunlens & L. & S.)

M admits a pretty model if:

- M is closed (Q=0)
- M and ∂M are 2-connected + technical condition
- M is a disk bundle of rank 2k over a Poincaré duality space
- $M = N \setminus \text{Tub}(K)$ where N is closed and $2 \dim K + 3 \leq \dim N$

Rather restrictive. More general: nice model:

if $A:=B/\ker\theta\simeq\Omega^*(M)$ is isomorphic to $(\ker\lambda)^\vee[-n]\simeq\Omega^{n-*}(M,\partial M)$

Proposition

This exists if $\dim M \geq 7$ and M and ∂M are simply connected

Diagonal class

In cohomology, diagonal class (N is closed)

$$\begin{split} [N] \in H_n(N) \mapsto \delta_*[N] \in H_n(N \times N) & \qquad \delta(x) = (x,x) \\ & \leftrightarrow \Delta_N \in H^{2n-n}(N \times N) \end{split}$$

Representative in a Poincaré duality model (P, d, ε) :

$$\underline{\Delta_P} = \sum (-1)^{|x_i|} x_i \otimes x_i^\vee \in (P \otimes P)^n$$

 $\{x_i\}$: graded basis and $\varepsilon(x_ix_j^\vee)=\delta_{ij}$ (independent of chosen basis) Let Δ_A be the class in $A=P/(\cdots)\simeq\Omega^*(M)$

The model

 $\operatorname{Conf}_k(\mathbb{R}^n)$ is a formal space, with cohomology [Arnold, Cohen]:

$$\begin{split} H^*(\mathrm{Conf}_k(\mathbb{R}^n)) &= S(\omega_{ij})_{1 \leq i \neq j \leq k}/I, \quad \deg \omega_{ij} = n-1 \\ &I = \langle \omega_{ji} = \pm \omega_{ij}, \; \omega_{ij}^2 = 0, \; \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0 \rangle. \end{split}$$

- $\mathbf{G}_A(k)$ conjectured model of $\mathrm{Conf}_k(M) = M^{\times k} \setminus \bigcup_{i \neq j} \Delta_{ij}$
 - "Generators": $A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i \neq j \leq k}$
 - · Relations:
 - Arnold relations for the $\omega_{i,j}$

$$\bullet \ p_i^*(a) \cdot \omega_{ij} = p_j^*(a) \cdot \omega_{ij}.$$

$$(p_i^*(a) = 1 \otimes \cdots \otimes 1 \otimes a \otimes 1 \otimes \cdots \otimes 1)$$

• $d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A)$.

First examples

$$\begin{split} \mathbf{G}_A(k) &= (A^{\otimes k} \otimes S(\omega_{ij})_{1 \leq i < j \leq k}/J, d\omega_{ij} = (p_i^* \cdot p_j^*)(\Delta_A)) \\ \\ \mathbf{G}_A(0) &= \mathbb{R} \text{: model of } \mathrm{Conf}_0(M) = \{\emptyset\} \quad \checkmark \end{split}$$

$$\begin{split} \mathbf{G}_A(2) &= \left(\frac{A \otimes A \otimes 1 \ \oplus \ A \otimes A \otimes \omega_{12}}{1 \otimes a \otimes \omega_{12} \equiv a \otimes 1 \otimes \omega_{12}}, d\omega_{12} = \Delta_A \otimes 1\right) \\ &\cong \left(A \otimes A \otimes 1 \ \oplus \ A \otimes_A A \otimes \omega_{12}, \ d\omega_{12} = \Delta_A \otimes 1\right) \\ &\cong \left(A \otimes A \otimes 1 \ \oplus \ A \otimes \omega_{12}, \ d\omega_{12} = \Delta_A \otimes 1\right) \\ &\stackrel{\sim}{\to} A^{\otimes 2}/(\Delta_A) \end{split}$$

 $G_A(1) = A$: model of $Conf_1(M) = M$

Brief history of ${\sf G}_A$

- 1969 [Arnold & Cohen] $H^*(\operatorname{Conf}_k(\mathbb{R}^n)) = \mathsf{G}_{H^*(D^n)}(k)$
- 1978 [Cohen & Taylor] $E^2 = \mathsf{G}_{H^*(N)}(k) \implies H^*(\mathrm{Conf}_k(N))$
- ~1994 For smooth projective complex manifolds (\$\iint \text{K\"a}hler):
 - [Kříž] $G_{H^*(N)}(k)$ model of $\mathrm{Conf}_k(N)$
 - [Totaro] The Cohen-Taylor SS collapses
 - 2004 [Lambrechts & Stanley] $P^{\otimes 2}/(\Delta_P)$ model of $\mathrm{Conf}_2(N)$ for a 2-connected manifold
- ~2004 [Félix & Thomas, Berceanu & Markl & Papadima] $\mathsf{G}^{\vee}_{H^*(M)}(k)\cong \mathsf{page}\ E^2$ of Bendersky–Gitler SS for $H^*(N^{\times k},\bigcup_{i\neq j}\Delta_{ij})$
 - 2008 [Lambrechts & Stanley] $H^*(\mathsf{G}_P(k)) \cong_{\Sigma_k \mathsf{gVect}} H^*(\mathrm{Conf}_k(N))$
 - 2015 [Cordova Bulens] $P^{\otimes 2}/(\Delta_P)$ model of $\mathrm{Conf}_2(N)$ for $\dim N = 2m$
 - 2015 [CB-L-S] $G_A(2)$ model of $Conf_2(M)$ if M has a surjective pretty model

First part of Theorem A

Theorem

 ${\sf G}_A(k)$ is a model over ${\Bbb R}$ of ${\rm Conf}_k(M)$ if M is simply connected, smooth, and

- $\partial M = \emptyset$ and $\dim M \geq 4$ [I., Campos & Willwacher], or
- M admits a surjective pretty model and $\dim M \geq 5$ [I. & Lambrechts], or
- M and ∂M are simply connected and $\dim M \geq 7$ [I. & Lambrechts].

In all these cases, $(M,\partial M)\simeq (M',\partial M')\implies {\sf G}_A(k)\simeq {\sf G}_{A'}(k).$

Idea of the proof

Idea

Study all of $\{\operatorname{Conf}_k(M)\}_{k\geq 0}$ at once: more structure! \to module over an operad

Fulton–MacPherson compactification $\operatorname{Conf}_k(M) \overset{\sim}{\hookrightarrow} \operatorname{FM}_M(k)$

Animation #1

Animation #2

Animation #3

Compactifying $Conf_k(\mathbb{R}^n)$

 $\text{Can also compactify } \operatorname{Conf}_k(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{Conf}_k(\mathbb{R}^n) / \operatorname{Aff}(\mathbb{R}^n) \xrightarrow{\sim} \operatorname{FM}_{\mathbb{R}^n}(k)$

(+ normalization to deal with \mathbb{R}^n being noncompact)

Operads

 $\mathrm{FM}_{\mathbb{R}^n}=\{\mathrm{FM}_{\mathbb{R}^n}(k)\}_{k\geq 0} \text{ is an } \underset{\text{operad}}{\text{operad}}\text{: we can insert an infinitesimal configuration into another}$

$$\operatorname{FM}_n(k) \times \operatorname{FM}_{\mathbb{R}^n}(l) \xrightarrow{\circ_i} \operatorname{FM}_n(k+l-1), \quad 1 \leq i \leq k$$

Remark

Weakly equivalent to the little n-disks operad.

Modules over operads

M framed \implies $\mathrm{FM}_M=\{\mathrm{FM}_M(k)\}_{k\geq 0}$ is a right $\mathrm{FM}_{\mathbb{R}^n}$ -module: we can insert an infinitesimal configuration into a configuration on M

$$\mathrm{FM}_M(k) \times \mathrm{FM}_n(l) \xrightarrow{\circ_i} \mathrm{FM}_M(k+l-1), \quad 1 \leq i \leq k$$

Cohomology of FM_n and coaction on G_A

 $H^*(\mathrm{FM}_n)$ inherits a Hopf cooperad structure One can rewrite:

$$\mathsf{G}_A(k) = (A^{\otimes k} \otimes H^*(\mathsf{FM}_n(k))/\mathsf{relations}, d)$$

Proposition

 $\chi(M)=0 \text{ or } \partial M \neq \emptyset \implies \mathsf{G}_A=\{\mathsf{G}_A(k)\}_{k\geq 0} \text{ is a Hopf right } H^*(\mathsf{FM}_n)\text{-comodule}$

Motivation

We are looking for something to put here:

$$\mathsf{G}_A(k) \xleftarrow{\sim} ? \xrightarrow{\sim} \Omega^*(\mathsf{FM}_M(k))$$

Hunch: if true, then hopefully it fits in something like this!

Fortunately, the bottom row is already known: formality of FM_n

Kontsevich's graph complexes

[Kontsevich] Hopf cooperad $\mathtt{Graphs}_n = \{\mathtt{Graphs}_n(k)\}_{k \geq 0}$

Theorem (Kontsevich 1999, Lambrechts-Volić 2014)

Labeled graph complexes

Labeled graph complex $Graphs_R$:

$$\underbrace{1}^{x} \underbrace{y}_{} \in \mathtt{Graphs}_{R}(1) \quad (\mathsf{where} \; x, y \in R)$$

Complete version of Theorem A

Theorem (Complete version)

$$\begin{split} \mathbf{G}_A & \longleftarrow^{\sim} & \mathbf{Graphs}_R & \stackrel{\sim}{\longrightarrow} & \Omega^*_{\mathrm{PA}}(\mathbf{FM}_M) \\ \circlearrowleft^{\dagger} & \circlearrowleft^{\dagger} & \circlearrowleft^{\dagger} \\ H^*(\mathbf{FM}_n) & \longleftarrow^{\sim} & \mathbf{Graphs}_n & \stackrel{\sim}{\longrightarrow} & \Omega^*_{\mathrm{PA}}(\mathbf{FM}_n) \end{split}$$

- † When $\chi(M)=0$ or $\partial M \neq \emptyset$
- ‡ When M is framed

Colored configuration spaces

When $\partial M \neq \emptyset$:

$$\begin{split} \operatorname{Conf}_{k,l}(M) &:= \{\underline{x} \in \operatorname{Conf}_{k+l}(M) \mid x_1, \dots, x_k \in \partial M, x_{k+1}, \dots, x_{k+l} \in \mathring{M} \} \\ &= \operatorname{Conf}_k(\partial M) \times \operatorname{Conf}_l(\mathring{M}) \end{split}$$

Remark

 $\operatorname{Conf}_l(M)$ deformation retracts onto $\operatorname{Conf}_l(\mathring{M})$

- \implies can be compactified into ${\tt SFM}_M(k,l)$
 - points infinitesimally close to each other inside \mathring{M}
 - points infinitesimally close to a point of ∂M

The Swiss-Cheese operad & graph complexes

Similar compactification $\operatorname{SFM}_n(k,l)$ of $\operatorname{Conf}_k(\mathbb{R}^{n-1}\times 0)\times\operatorname{Conf}_l(\mathbb{R}^{n-1}\times (0,+\infty))$ $\leadsto \operatorname{SFM}_n$ "relative" operad over FM_n

Theorem (Willwacher)

 ${\rm Graphs}_n\stackrel{\sim}{\to}\Omega^*_{\rm PA}({\rm SFM}_n)\colon$

Remarks

- if n=2, a bit more complicated
- Swiss-Cheese is not formal [Livernet, Willwacher] $\Longrightarrow \operatorname{SGraphs}_n \overset{\sim}{\nearrow} H^*(\operatorname{SFM}_n)$

Model for colored configuration spaces

Straightforward generalization using labeled graphs:

Theorem (I. & Lambrechts)

 ${\it M}$: smooth manifold with boundary satisfying the hypotheses of the previous theorem

 $\implies \mathsf{model}\;(\mathsf{SGraphs}_{\scriptscriptstyle R} \backsim \mathsf{SGraphs}_{\scriptscriptstyle n})\;\mathsf{of}\;(\Omega^*_{\mathrm{PA}}(\mathsf{SFM}_{\scriptscriptstyle M}) \backsim \Omega^*_{\mathrm{PA}}(\mathsf{SFM}_{\scriptscriptstyle n}))$

Thank you for your attention!

```
\partial M = \emptyset: arXiv:1608.08054
```

 $\partial M \neq \emptyset$: https://idrissi.eu/pdf/thesis.pdf These slides: https://idrissi.eu/talk/ethz2017/