Quentin Fortier

February 17, 2022

Pour résoudre un problème, il est courant de le ramener à des sous-problèmes plus simples.

Pour résoudre un problème, il est courant de le ramener à des sous-problèmes plus simples.

Deux grandes méthodes pour le faire :

• Diviser pour régner : résoudre les sous-problèmes (récursivement) puis les combiner pour obtenir une solution du problème initial.

Pour résoudre un problème, il est courant de le ramener à des sous-problèmes plus simples.

Deux grandes méthodes pour le faire :

- Diviser pour régner : résoudre les sous-problèmes (récursivement) puis les combiner pour obtenir une solution du problème initial.
- Programmation dynamique / mémoïsation : similaire, mais en conservant en mémoire tous les sous-problèmes pour éviter de les calculer plusieurs fois.

Diviser pour régner : Dichotomie

La méthode par dichotomie est un cas particulier de la méthode diviser pour régner, où on se ramène à un seul sous-problème :

```
let dichotomie t e =
    (* détermine si e appartient au tableau trié t *)
    let rec aux i j =
    (* détermine si e appartient à t.(i), ..., t.(j) *)
        if i > j then false (* aucun élément *)
        else let m = (i + j)/2 in (* milieu *)
            if t.(m) = e then true
        else if t.(m) < e then aux (m + 1) j
        else aux i (m - 1)
    in aux 0 (Array.length t - 1)</pre>
```

Complexité:

Diviser pour régner : Dichotomie

La méthode par dichotomie est un cas particulier de la méthode diviser pour régner, où on se ramène à un seul sous-problème :

```
let dichotomie t e =
    (* détermine si e appartient au tableau trié t *)
    let rec aux i j =
    (* détermine si e appartient à t.(i), ..., t.(j) *)
        if i > j then false (* aucun élément *)
        else let m = (i + j)/2 in (* milieu *)
            if t.(m) = e then true
        else if t.(m) < e then aux (m + 1) j
        else aux i (m - 1)
    in aux 0 (Array.length t - 1)</pre>
```

Complexité : $O(\log(n))$ où n est la taille de t.

[5, 1, -4, 2, -8, 7]

Tri fusion: exemple

Tri fusion: division

Diviser une liste en deux :

Complexité:

Tri fusion: division

Diviser une liste en deux :

Complexité : O(n) où n est la taille de la liste

Tri fusion: fusion

Fusionner deux listes triées :

Complexité:

Tri fusion : fusion

Fusionner deux listes triées :

Complexité : O(n) où n est la taille de la plus petite liste

Tri fusion

Complexité:

Tri fusion

Complexité : Soit C(n) la complexité de $\operatorname{tri}\ 1$ pour 1 de taille n.

Tri fusion

 $\underline{\mathsf{Complexit\acute{e}}} : \mathsf{Soit}\ C(n)$ la complexit\'e de tri 1 pour 1 de taille n.

$$C(n) = \underbrace{O(n)}_{split} + \underbrace{O(n)}_{fusion} + 2C(n/2) \le Kn + 2C(n/2)$$

$$\le Kn + 2K\frac{n}{2} + 4C(n/4) = 2Kn + 4C(n/4)$$

$$\le \dots \le pKn + 2^pC(n/2^p) = \underbrace{O(n\log_2(n))}_{p=\log_2(n)} \boxed{O(n\log_2(n))}$$

où Kn est un majorant de la complexité de split plus fusion.

Tri fusion : complexité $O(n \ln(n))$ avec l'arbre des appels récursifs

On peut représenter les appels récursifs du tri fusion sous forme d'un arbre et compter le nombre d'opérations niveau par niveau :

Chaque rond (sommet) correspond à un appel récursif, avec la taille du sous-tableau à l'intérieur.

Tri fusion : exemple

On peut représenter les appels récursifs du tri fusion sous forme d'un arbre et compter le nombre d'opération niveau par niveau :

Chaque rond (sommet) correspond à un appel récursif, avec la taille du sous-tableau à l'intérieur.

Problème

 ${\bf Entr\'ee}:\ n\ {\bf points}\ {\bf dans}\ {\bf le}\ {\bf plan}.$

Sortie: la plus petite distance entre 2 points.

<u>1ère solution</u>:

<u>1ère solution</u>: calculer toutes les distances en conservant le minimum.

```
let dist p q =
    ((fst p - . fst q)**2. + . (snd p - . snd q)**2.)**0.5
let closest brute points =
    let n = Array.length points in
    let d = ref max float in
    for i = 0 to n - 1 do
        for j = i + 1 to n - 1 do
            d := min !d (dist points.(i) points.(j))
        done
    done;
    l d
```

Complexité:

<u>1ère solution</u>: calculer toutes les distances en conservant le minimum.

```
let dist p q =
    ((fst p -. fst q)**2. +. (snd p -. snd q)**2.)**0.5
let closest brute points =
    let n = Array.length points in
    let d = ref max float in
    for i = 0 to n - 1 do
        for j = i + 1 to n - 1 do
            d := min !d (dist points.(i) points.(j))
        done
    done;
    l d
```

Complexité : $O(n^2)$

<u>2ème solution</u> (diviser pour régner) :

• Choisir une abscisse x_m séparant les points en 2 sous-ensembles P_1 et P_2 de même taille (à ± 1)

- Choisir une abscisse x_m séparant les points en 2 sous-ensembles P_1 et P_2 de même taille (à ± 1)
- 2 Trouver les plus petites distances d_1 et d_2 dans P_1 et P_2

- ① Choisir une abscisse x_m séparant les points en 2 sous-ensembles P_1 et P_2 de même taille (à ± 1)
- ② Trouver les plus petites distances d_1 et d_2 dans P_1 et P_2
- **③** Trouver la plus petite distance d_3 parmi les points dans la bande d'abscisse $[x_m \min(d_1, d_2), x_m + \min(d_1, d_2)]$

- Choisir une abscisse x_m séparant les points en 2 sous-ensembles P_1 et P_2 de même taille (à ± 1)
- ② Trouver les plus petites distances d_1 et d_2 dans P_1 et P_2
- **3** Trouver la plus petite distance d_3 parmi les points dans la bande d'abscisse $[x_m \min(d_1, d_2), x_m + \min(d_1, d_2)]$
- **4** Renvoyer $\min(d_1, d_2, d_3)$.

Séparer les points en 2 sous-ensembles de même taille (à $\pm 1)$:

Calculer la plus petite distance d_1 dans la 1ère moitié :

Calculer la plus petite distance d_2 dans la 2ème moitié :

Calculer la plus petite distance d_3 dans la bande centrale :

Calculer la plus petite distance d_3 dans la bande centrale :

 $\min(\mathit{d}_1,\mathit{d}_2,\mathit{d}_3)$ est la plus petite distance de l'ensemble des points :

On note $d_0 = \min(d_1, d_2)$.

Théorème

Soient $p_1 \in P_1$ et $p_2 = (x_2, y_2) \in P_2$ vérifiant $x_2 > x_m + d_0$. Alors :

$$d(p_1, p_2) > d_0$$

On note $d_0 = \min(d_1, d_2)$.

Théorème

Soient $p_1 \in P_1$ et $p_2 = (x_2, y_2) \in P_2$ vérifiant $x_2 > x_m + d_0$. Alors :

$$d(p_1, p_2) > d_0$$

De même si $x_1 < x_m - d_0$.

Corollaire

Pour trouver la plus petite distance entre un point de P_1 et un point de P_2 , on peut se ramener à trouver la plus petite distance entre deux points dans la bande centrale.

Théorème

On suppose les points triés par ordre croissant d'ordonnée dans un tableau P.

Deux points de la bande centrale situés à une distance $< d_0$ sont séparés par au plus 6 points dans P.

Théorème

On suppose les points triés par ordre croissant d'ordonnée dans un tableau P.

Deux points de la bande centrale situés à une distance $< d_0$ sont séparés par au plus 6 points dans P.

 $\underline{\mathsf{Preuve}} : \mathsf{Supposons} \ \mathsf{que} \ d(P[i], P[j]) < d_0 \ \mathsf{avec} \ i < j.$

Il faut montrer que j - i < 8.

<u>Preuve</u>: Supposons que $d(P[i], P[j]) < d_0$ avec i < j.

Il faut montrer que j-i < 8. Pour cela, notons y_i l'ordonnée de P[i] et considérons le rectangle de sommet inférieur gauche (x_m-d_0,y_i) et de sommet supérieur droit (x_m+d_0,y_i+d_0) :

 $\underline{\mathsf{Preuve}} : \mathsf{Supposons} \ \mathsf{que} \ d(P[i], P[j]) < d_0 \ \mathsf{avec} \ i < j.$

Il faut montrer que j-i<8. Pour cela, notons y_i l'ordonnée de P[i] et considérons le rectangle de sommet inférieur gauche (x_m-d_0,y_i) et de sommet supérieur droit (x_m+d_0,y_i+d_0) :

Comme $d(P[i], P[j]) < d_0$, P[j] doit être dans ce rectangle.

Subdivisons ce rectangle en 8 petits rectangles de côté $\frac{d_0}{2}$:

Subdivisons ce rectangle en 8 petits rectangles de côté $\frac{d_0}{2}$:

• La diagonale d'un petit rectangle est $\frac{d_0}{\sqrt{2}} < d_0$

Subdivisons ce rectangle en 8 petits rectangles de côté $\frac{d_0}{2}$:

- La diagonale d'un petit rectangle est $\frac{d_0}{\sqrt{2}} < d_0$
- 2 points dans le même petit rectangle sont dans le même sous-ensemble $(P_1 \text{ ou } P_2)$

Subdivisons ce rectangle en 8 petits rectangles de côté $\frac{d_0}{2}$:

- La diagonale d'un petit rectangle est $\frac{d_0}{\sqrt{2}} < d_0$
- 2 points dans le même petit rectangle sont dans le même sous-ensemble $(P_1 \text{ ou } P_2)$
- Il y a donc au plus 1 point par petit rectangle

ullet La diagonale d'un petit rectangle est $rac{d_0}{\sqrt{2}} < d_0$

- ullet La diagonale d'un petit rectangle est $rac{d_0}{\sqrt{2}} < d_0$
- 2 points dans le même petit rectangle sont dans le même sous-ensemble $(P_1 \ {\rm ou} \ P_2)$

- ullet La diagonale d'un petit rectangle est $rac{d_0}{\sqrt{2}} < d_0$
- 2 points dans le même petit rectangle sont dans le même sous-ensemble $(P_1 \ {\rm ou} \ P_2)$
- Il y a donc au plus 1 point par petit rectangle

- ullet La diagonale d'un petit rectangle est $rac{d_0}{\sqrt{2}} < d_0$
- 2 points dans le même petit rectangle sont dans le même sous-ensemble (P_1 ou P_2)
- If y a donc au plus 1 point par petit rectangle
- D'après le principe des tiroirs,
 il y a au plus 8 points dans le grand rectangle

- ullet La diagonale d'un petit rectangle est $rac{d_0}{\sqrt{2}} < d_0$
- 2 points dans le même petit rectangle sont dans le même sous-ensemble $(P_1 \text{ ou } P_2)$
- If y a donc au plus 1 point par petit rectangle
- D'après le principe des tiroirs,
 il y a au plus 8 points dans le grand rectangle
- P[i] et P[j] sont dans le grand rectangle, donc ils sont séparés par au plus 6 points dans P

```
(* renvoie la plus petite distance dans la bande centrale *)
let closest_strip points =
   let d = ref max_float in
   let n = Array.length points in
   for i = 0 to n - 1 do
        for j = i + 1 to min (n - 1) (i + 7) do
            d := min !d (dist points.(i) points.(j))
        done
   done;
!d;;
```

Code entier : Binder 8 launch binder

```
let rec closest points_x points_y =
  let n = Array.length points_x in
  if n <= 3 then closest_brute points_x
  else
    let xm = fst points_x.(n/2) in
    let points_x1, points_x2 = split xm points_x in
    let points_y1, points_y2 = split xm points_y in
    let d1 = closest points_x1 points_y1 in
    let d2 = closest points_x2 points_y2 in
    let d = min d1 d2 in
    min d (closest_strip (select (xm -. d) (xm +. d) points_x)</pre>
```

Complexité:

 $\frac{\mathsf{Complexit\'e}: \mathsf{Soit}\ C(n) \ \mathsf{la}\ \mathsf{complexit\'e}\ \mathsf{de}\ \mathsf{closest}\ \mathsf{pour}\ n\ \mathsf{points}.}{\mathsf{Supposons}\ \mathsf{que}\ n\ \mathsf{est}\ \mathsf{une}\ \mathsf{puissance}\ \mathsf{de}\ 2,\ \mathsf{pour}\ \mathsf{simplifier}:$

$$C(n) = 2C(\frac{n}{2}) + \underbrace{O(n)}_{diviser} + \underbrace{O(n)}_{bandecentrale}$$
$$= 2C(\frac{n}{2}) + O(n)$$

 $\frac{\mathsf{Complexit\'e}}{\mathsf{Supposons}} : \mathsf{Soit} \ C(n) \ \mathsf{la} \ \mathsf{complexit\'e} \ \mathsf{de} \ \mathsf{closest} \ \mathsf{pour} \ n \ \mathsf{points}.$ Supposons que n est une puissance de 2, pour simplifier :

$$C(n) = 2C(\frac{n}{2}) + \underbrace{O(n)}_{diviser} + \underbrace{O(n)}_{bandecentrale}$$
$$= 2C(\frac{n}{2}) + O(n)$$

Même équation que pour le tri fusion! Donc:

$$C(n) = O(n\log(n))$$