EE-309: Microprocessors SUMMARY

Virendra Singh

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

FE-309: Microprocessors

Lecture 43 (05 Nov 2015)

CADSL

Microprocessor Designs

Why Study Microprocessor Design?

Where are the Embedded Devices?

Computer Technology → Dramatic Change

Processor

2X in speed every 1.5 years;
 100X performance in last decade

Memory

- DRAM capacity: 2X / 2 years; 64X size in last decade
- Cost per bit: improves about 25% per year

Disk

- capacity: > 2X in size every 1.0 years
- Cost per bit: improves about 100% per year
- 250X size in last decade

What was this course about?

Coordination of many levels of abstraction

Microprocessor: 8085

8051 Internal Block Diagram

Running Program on Processor

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Micro-coded Implementation

Hardware Flowcharts

ADD RX AR RY

Register-to-Register

ADD RX AI (RY)

Register-to-Memory

Multicycle Datapath

CADSL

Pipelined Datapath

Memory Hierarchy

Single Processor Performance

Frequency Scaling

Virtuous Cycle, (1950 – 2005)

World-Wide Software Market (per IDC): \$212b (2005)

18

Single Processor Performance

Single Processor Performance

Future of Processor Architecture

Data centers and extreme scale computing

Architectures for programmability

Specialized architectures and heterogeneity

21

Energy and power consumption are the key limiters

Performance scaling:

Past: no SW changes

Now: extensive SW +HW changes Ultimate goal: fully automated generation of app-specific HW for programs

Future of Processor Architecture

End of road for conventional ISA

Secure, reliable and predictable from the HW up

Exploiting emerging technologies

Modern systems are skyscrapers built on the ISA of a bungalow

Foundation of computing is breaking apart; malicious parties are exploiting it

Architecture research enables new technologies to enter the market quickly

22

Thank You

