Hanford

Data

```
In[2]:= index = {2.5, 2.6, 3.4, 1.3, 1.6, 3.8, 11.6, 6.4, 8.3};
    deaths = {147, 130, 130, 114, 138, 162, 208, 178, 210};
In[4]:= l1 = Sort[Transpose[{index, deaths}]];
In[5]:= Grid[Prepend[l1, {"index", "deaths"}], Dividers → All]
```

)ut[5]=	index	deaths
	1.3	114
	1.6	138
	2.5	147
	2.6	130
	3.4	130
	3.8	162
	6.4	178
	8.3	210
	11.6	208

```
ln[6]:= lp1 = ListPlot[11, PlotLabel \rightarrow "Cancer Deaths",

AxesLabel \rightarrow {"Index", "Deaths"}, PlotStyle \rightarrow Black]
```


Lines of Fit

Two-Point

Residuals

In[11]:= twopointressum = Total[twopointres]

Out[11]= 18.3684

Median - Median

```
In[12]:= median1x = Median[Sort[Table[11[[i]][[1]], {i, 1, 3}]]];
In[13]:= median1y = Median[Sort[Table[11[[i]][[2]], {i, 1, 3}]]];
In[14]:= median2x = Median[Sort[Table[11[[i]][[1]], {i, 4, 6}]]];
In[15]:= median2y = Median[Sort[Table[11[[i]][[2]], {i, 4, 6}]]];
```


Method 1: difference

 $\label{eq:line2} $$\inf[1p_1, Plot[line2[x], \{x, 0, 12\}, PlotStyle \rightarrow Green], median]$$$

Method 2: point slope

```
In[26]:= b = line[0]
Out[26]= 121.284

In[27]:= Clear[line2]
In[28]:= line2[x_] := ((median1y - median3y) / (median1x - median3x)) * (x - median2x) + median2y;
In[29]:= b2 = line2[0]
Out[29]:= 94.4776

In[30]:= line3[x_] = ((median1y - median3y) / (median1x - median3x)) * x + b - (b - b2) / 3;
In[31]:= Expand[line3[x]]
Out[31]:= 112.348 + 10.4478 x
In[32]:= Show[lp1, Plot[line3[x], {x, 0, 12}, PlotStyle → Green], median]
```


Residuals

```
In[33]:= medianres = Table[deaths[[i]] - line3[index[[i]]], {i, 1, 9}]
Out[33]= {8.53234, -9.51244, -17.8706, -11.9303, 8.93532, 9.95025, -25.5423, -1.21393, 10.9353}
```

ln[34]:= medianlp = ListPlot[medianres, PlotLabel \rightarrow "Median-Median Residuals", AxesLabel \rightarrow {"Residual", "index"}, PlotStyle \rightarrow Blue]

In[35]:= medianressum = Total[medianres]

Out[35]= -27.7164

Least Squares

In[36]:= Clear[A, B, C1, D1, E1, m, b]
In[37]:= n = 9;

$$\ln[38]:= \ \textbf{z1[m_, b_]} := \sum_{i=1}^{n} \textbf{11[[i]][[2]]} - \big(\textbf{m} \star \textbf{11[[i]][[1]]} + b\big);$$

In[39]:= $A = \sum_{i=1}^{n} 11[[i]][[2]]^2;$

$$\ln[40]:= B = \sum_{i=1}^{n} 11[[i]][[1]] * 11[[i]][[2]];$$

In[41]:= $C1 = \sum_{i=1}^{n} 11[[i]][[2]];$

In[42]:= D1 = $\sum_{i=1}^{n} 11[[i]][[1]]^2$;

 $ln[43]:= E1 = \sum_{i=1}^{n} 11[[i]][[1]];$

ln[44]:= **z2[m_, b_]** := A - 2 * m * B - 2 * b * C1 + m² D1 + 2 * m * b * E1 + n * b²;

 $ln[45]:= m = (B * n - C1 * E1) / (D1 * n - E1^2)$

Out[45]= 9.27386

 $ln[46]:= b = (C1 * D1 - B * E1) / (D1 * n - E1^2)$

Out[46]= **114.682**

ln[47]:= leastsquares[x_] := m * x + b

ln[48]:= Show[lp1, Plot[leastsquares[x], {x, 0, 12}, PlotStyle \rightarrow Blue]]

Residuals

In[49]:= leastres = Table[deaths[[i]] - leastsquares[index[[i]]], {i, 1, 9}]
Out[49]:= {9.13371, -8.79367, -16.2128, -12.7376, 8.48019, 12.0777, -14.2585, 3.96564, 18.3453}

In[50]:= leastlp = ListPlot[leastres, PlotLabel \rightarrow "Least Squares Residuals", AxesLabel \rightarrow {"Residual", "index"}, PlotStyle \rightarrow Blue]

In[51]:= leastsum = Total[leastres]

Out[51]= 0.

Compare Residuals

ln[52]:= GraphicsRow[{twopointlp, medianlp, leastlp}, ImageSize \rightarrow Full]

