Módulo 5 Pipeline: Princípios Fundamentais

A duração de ciclo de relógio (Tcc) de um processador com uma organização encadeada é determinada pela latência da lógica combinatória do estágio mais demorado somada com a latência do registo que preserva os resultados de cada estágio.

Testagio_i – latência da lógica combinatória do estágio i

T_{registo} – latência dos registos

$$T_{\text{inst}} = \max(T_{\text{estagio}}) + T_{\text{registo}}$$

Assumindo que a instrução não é atrasada devido à ocorrência de anomalias, então:

- A **frequência do relógio** determina a taxa à qual o sistema pode mudar de estado. Se o CPI==1 então é igual ao débito de instruções, isto é, número de instruções executadas por unidade de tempo.
- O tempo de execução de uma instrução é o produto do número de estágios pelo período do relógio.

Exercício 1

Considere que a execução de instruções num processador pode ser decomposta em 4 blocos de igual duração (60 ps) conforme ilustrado na figura.

Sabendo que a latência dos registos é de 20 ps calcule o tempo de execução de uma instrução e a frequência máxima para uma organização de ciclo único (isto é, um *pipeline* degenerado num único estágio) e organizações com 2 e 4 estágios encadeados.

1 estágio (SE	Q) 2 estágios	4 estágios
Тсс	Tcc	Тсс
Tinst	Tinst	Tinst
f	F	f

Exercício 2

Considere que a execução de instruções num processador pode ser decomposta em 5 blocos com a duração indicada na figura.

Sabendo que a latência dos registos é de 20 ps calcule:

Para uma organização encadeada com 2 estágios como devem ser agrupados os blocos para maximizar a frequência? Qual a frequência máxima do relógio possível para esta organização e o tempo de execução de cada instrução? ii) Qual a máxima frequência que pode ser obtida e a quantos estágios corresponde.

Exercício 3

Pretende-se analisar o desempenho de um programa com 1000 instruções a executar nas organizações propostas abaixo.

Considere que a lógica combinatória de uma organização sequencial tem uma latência de 500 ps. Um bloco de registos tem uma latência de 20 ps. Considere também que a lógica que executa uma instrução pode ser dividida em qualquer ponto, permitindo sub-blocos com latências arbitrárias (exigindo-se apenas que a soma das latências de todos os sub-blocos combinatórios seja de 500 ps).

A partir das condições descritas acima pretende-se desenhar várias versões encadeadas, criando sub-blocos de lógica combinatória e acrescentando os registos necessários. Cada novo estágio de *pipeline* criado a partir da versão sequencial incorre em 2 custos:

- 1. tempo de registo e,
- 2. para este programa, 100 ciclos adicionais devido a dependências de dados e de controlo (causados por eventuais injecções de bolhas (*pipeline staling*)).
- i) Para uma organização sequencial: qual a frequência máxima, qual o tempo de execução de uma instrução e qual o tempo de execução do programa?
- ii) Para organizações com 2, 4 e 10 estágios calcule o tempo de execução deste programa.
- iii) Não esquecendo nunca o custo associado ao *stalling* do *pipeline* , qual o número de estágios que minimiza o tempo de execução?

Sugestão: Preencha a tabela abaixo usando uma folha de cálculo.

#estágios	Тсс	#ciclos	Texec
1			
2			
3			
5			
8			
10			
13			
14			
15			
16			
17			
20			