Week 7: Trophic Control

Christian Berrig

Amalia Bogri

Jonas Bolduan

October 26, 2021

Model description: *K*-dependence without predators. 1

$$\frac{dN}{dt} = \left[r \left(1 - \frac{N}{K} \right) - b_c C \right] N \tag{1}$$

$$\frac{dC}{dt} = (\varepsilon_c b_c N - d_c) C \tag{2}$$

the equilibria for this system can be found for the three regions:

Region	N	C
Trivial	0	0
$K < K_{crit}$	K	0
$K > K_{crit}$	K_{crit}	$\frac{r}{b_c} \left(1 - \frac{K_{crit}}{K} \right)$

where $K_{crit} = \frac{d_c}{\varepsilon_c b_c}$. This value is found from eq. 2. The K-dependent equilibrium $K > K_{crit}$, is found from setting to zero 1.

Model description: *K*-dependence with predators. 2

$$\frac{dN}{dt} = \left[r \left(1 - \frac{N}{K} \right) - b_c C \right] N \tag{3}$$

$$\frac{dC}{dt} = (\varepsilon_c b_c N - d_c - b_c P) C \tag{4}$$

$$\frac{dC}{dt} = (\varepsilon_c b_c N - d_c - b_c P) C$$

$$\frac{dP}{dt} = (\varepsilon_p b_p C - d_p) P$$
(5)

The equilibria for this system can be found as follows:

Region	N	C	P
Trivial	0	0	0
$K < K_{crit1}$	K	0	0
$K_{crit1} < K < K_{crit2}$	K_{crit}	$\frac{r}{b_c} \left(1 - \frac{K_{crit}}{K} \right)$	0
$K_{crit2} < K$	$K(1 - \frac{b_c}{r} \frac{d_p}{\varepsilon p b_p})$	$rac{d_p}{arepsilon p b_p}$	$K(1 - \frac{b_c}{r} \frac{d_p}{\varepsilon p b_p}) \varepsilon_c b_c - d_c$

3 Model description: K-dependence with predators.

The equations are identical to eq. - . The equilibria for this system can be found as follows:

Region	N	C	P
Trivial	0	0	0
$r < r_{crit1}$	$\frac{d_c}{arepsilon_c b_c}$	$\frac{r}{b_c} \left(1 - \frac{1}{K} \frac{d_c}{\varepsilon_c b_c} \right)$	0
$r_{crit1} < r$	$K\left(1-\frac{b_c}{r}\frac{d_p}{\varepsilon_p b_c}\right)$	$rac{d_p}{arepsilon_p b_c}$	$\frac{\varepsilon_c b_c}{b_p} K \left(1 - \frac{b_c}{r} \frac{d_p}{\varepsilon_p b_c} \right) - \frac{d_c}{b_p}$