《线性代数与空间解析几何》

第三章几何空间

平面解析几何

推广

空间解析几何

工具:向量

主要内容:向量代数;空间平面与直线.

蒸

M

蒸

第一讲 空间直角坐标系与向量

- > 空间直角坐标系
- 向量及其线性运算
- 向量在轴上的投影
- > 向量线性运算的几何意义
- > 向量的方向余弦
- > 内容小结

第一讲 空间直角坐标系与向量

▶ 空间直角坐标系 向量及其线性运算 向量在轴上的投影 向量线性运算的几何意义 向量的方向余弦 内容小结

一、空间直角坐标系

1. 空间直角坐标系的概念

过空间一定点 o,由三条互相垂直的数轴按右手规则组成一个空间直角坐标系.

- 坐标原点
- 坐标轴
- 坐标面
- 卦限(八个)

特殊对称点:

关于xoy面:

 $(x,y,z) \longleftrightarrow (x,y,-z)$

关于 x轴:

$$(x,y,z) \leftrightarrow (x,-y,-z)$$

关于原点:

$$(x,y,z) \leftrightarrow (-x,-y,-z)$$

 $(-x,-y,-z)^{R}$

(x, -y, -z)

(x,y,-z)

M(x,y,z)

坐标轴与坐标面上的点:

坐标轴上的点P,Q,R,

$$x$$
轴 \lorangle $\begin{cases} y=0 \\ z=0 \end{cases}$
 y 轴 \lorangle $\begin{cases} z=0 \\ x=0 \end{cases}$
 z 轴 \lorangle $\begin{cases} x=0 \\ v=0 \end{cases}$

坐标面上的点A, B, C,

原点O(0,0,0)

$$xoy$$
 $\overrightarrow{\text{m}} \leftrightarrow z = 0$

$$yoz \overline{\coprod} \leftrightarrow x = 0$$

$$zox \overline{\coprod} \leftrightarrow y = 0$$

例 在 o—xyz 坐标系中表示以下三个点: $M_1(1,2,3), M_2(-1,2,3), M_3(1,2,-3).$

主要内容

- 1. 空间直角坐标系的概念;
- 2. 点的坐标.

练习

答案: (a,a,-a), (-a,a,a), (-a,-a,a), (a,-a,a)

第一讲 空间直角坐标系与向量

空间直角坐标系

▶ 向量及其线性运算 向量在轴上的投影 向量线性运算的几何意义 向量的方向余弦 内容小结

二、向量及其线性运算

1. 向量的概念

向量: 既有大小又有方向的量.

向量的表示:以A为起点,B为终点的有向线段.

记为 \overrightarrow{AB} 或 \overrightarrow{a} .

向量的模:向量的大小.记为 $\|\vec{a}\|$ 或 $\|\vec{AB}\|$ (模又称为长度或范数).

单位向量: 模为1的向量.

零向量:模为0的向量 $\vec{0}$.零向量没有确定的方向.

负向量:与 \vec{a} 的模相同而方向相反的向量称为 \vec{a} 的 负(反)向量,记为 $-\vec{a}$.

显然 $-(-\vec{a}) = \vec{a}$.

向量 \overrightarrow{AB} 的负向量为 \overrightarrow{BA} , 即: $\overrightarrow{AB} = -\overrightarrow{BA}$.

相等向量: 大小相等且方向相同的向量.

$$\vec{a} \longrightarrow \vec{b} \longrightarrow$$

向量由其模和方向确定,与它的位置无关, 称为自由向量. 以原点为起点的向量称为径向量 (径矢、向径).

2.向量的坐标表示

对空间向量 \vec{a} 作平移,使其起点与原点重合,设终点为P,则 \vec{a} 确定了点 P. 反之,空间中任一点 P 也确定一向量 \overrightarrow{OP} .

点
$$P \overset{1-1对应}{\longleftrightarrow} \overrightarrow{OP}$$

向量的坐标:设 \vec{a} 对应的向径为 \vec{OP} ,点P的坐标为(a_1 , a_2 , a_3),称 a_1 , a_2 , a_3 为向量 \vec{a} 的坐标或分量. 记为 $\vec{a} = (a_1, a_2, a_3)$.

零向量记为
$$\vec{0} = (0,0,0)$$
, 有时简记为0.

$$\vec{a}$$
 的负向量 $-\vec{a} = (-a_1, -a_2, -a_3)$.

$$(a_1,a_2,a_3) = (b_1,b_2,b_3) \Leftrightarrow a_1 = b_1,a_2 = b_2,a_3 = b_3.$$

3. 向量的线性运算

定义 向量 $\vec{a} = (a_1, a_2, a_3)$ 与 $\vec{b} = (b_1, b_2, b_3)$ 的加法 规定为

$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

 \vec{a} 与数k的乘法(简称数乘)规定为

$$k \cdot \vec{a} = (ka_1, ka_2, ka_3)$$

加法与数乘统称为线性运算.

滅法:
$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

或
$$\vec{a} - \vec{b} = \vec{a} + (-1) \cdot \vec{b} = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

八条运算规则:

$$(1) \quad \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

(2)
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

 $(3) \quad \vec{a} + \vec{0} = \vec{a}$

$$(4) \quad \vec{a} + (-\vec{a}) = \vec{0}$$

 $(5) \quad 1 \cdot \vec{a} = \vec{a}$

(6)
$$k(l\vec{a}) = (kl)\vec{a}$$

(7) $(k+l)\vec{a} = k\vec{a} + l\vec{a}$

(8)
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

加法

数乘

加法与数乘

例1. 求解以向量为未知元的线性方程组

$$\begin{cases} 5\vec{x} - 3\vec{y} = \vec{a} & \text{①} \\ 3\vec{x} - 2\vec{y} = \vec{b} & \text{②} \end{cases}$$

其中
$$\vec{a} = (2,1,2), \vec{b} = (-1,1,-2).$$

解
$$2\times (1)-3\times (2)$$
,得

$$\vec{x} = 2\vec{a} - 3\vec{b} = (7, -1, 10)$$

代入②得

$$\vec{y} = \frac{1}{2}(3\vec{x} - \vec{b}) = (11, -2, 16)$$

4. 基向量及向量的线性表示

在 x, y, z 轴上分别取单位向量

$$\vec{i} = (1,0,0), \ \vec{j} = (0,1,0), \ \vec{k} = (0,0,1)$$

称为基向量.

则
$$\vec{a} = (a_1, a_2, a_3)$$

 $= (a_1, 0, 0) + (0, a_2, 0) + (0, 0, a_3)$
 $= a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$
称 \vec{a} 可 由 \vec{i} , \vec{j} , \vec{k} 线性表出(示).

即:任一向量均可由基向量组线性表出.表出的系数就是向量的坐标.

主要内容

向量及其线性运算

- 1. 向量的概念与坐标表示;
- 2. 向量的线性运算法则.

练习 已知向量
$$\vec{a} = \vec{i} + \vec{j} + \vec{k}$$
, $\vec{b} = 2\vec{i} - 3\vec{j} + 5\vec{k}$ 及 $\vec{c} = -2\vec{i} - \vec{j} + 2\vec{k}$, 则 $2\vec{a} + \vec{b} - 3\vec{c} =$ _______;

答案:
$$10\vec{i} + 2\vec{j} + \vec{k}$$

第一讲 空间直角坐标系与向量

空间直角坐标系 向量及其线性运算

▶ 向量在轴上的投影 向量线性运算的几何意义 向量的方向余弦 内容小结

三、向量在轴上的投影

1. 空间两向量的夹角

设
$$\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0},$$

向量 \vec{a} 与 \vec{b} 的夹角:

$$\varphi = <\vec{a}, \vec{b}> = <\vec{b}, \vec{a}> \quad (0 \le \varphi \le \pi)$$

类似地,可定义向量与数轴,数轴与数轴的夹角.

特殊地,当两个向量中有一个零向量时,规定 它们的夹角可在0与π之间任意取值.

2. 空间一点在轴(平面)上的投影(射影)

过点A作u轴的垂直平面,交点A'即为点A在 u 轴上的投影.

练习: A(-4,3,5)在xoy平面上的投影点为(-4,3,0),在yoz面上的投影点为(0,3,5),在y 轴上的投影点为(0,3,0),在z 轴上的投影点为(0,0,0,5);

3. 向量在轴上的投影

设点A, B分别在u 轴上的投影点为A',B',

A',B' 在u轴上的坐标分别为 u_1,u_2 ,向量 \overrightarrow{AB} 在 u 轴

上的投影定义为

$$\operatorname{Prj}_{u}\overrightarrow{AB} = u_{2} - u_{1} = \begin{cases} ||\overrightarrow{A'B'}||, & \overrightarrow{A'B'} = u \text{ a} = u_{1} = \\ -||\overrightarrow{A'B'}||, & \overrightarrow{A'B'} = u \text{ a} = u_{2} = u_{1} \end{cases}$$

设 $\overrightarrow{OA} = (a_1, a_2, a_3)$,则 a_1, a_2, a_3 分别是 \overrightarrow{OA} 在三个

坐标轴上的投影.

利用勾股定理从图中可得

$$//OA//=\sqrt{a_1^2+a_2^2+a_3^2}$$

-----向量的模.

$$||k \cdot \overrightarrow{OA}|| = \sqrt{(k \cdot a_1)^2 + (k \cdot a_2)^2 + (k \cdot a_3)^2}$$

$$= |k| \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$= |k| \cdot ||\overrightarrow{OA}||$$

4. 投影的性质

(1)
$$\Pr \mathbf{j}_u \overrightarrow{AB} = ||\overrightarrow{AB}|| \cos \varphi$$
, $\varphi = \langle \overrightarrow{AB}, u \rangle$.

该性质可推广到有限多个和的情形.

练习: 设 $\vec{a} = (3,5,8), \vec{b} = (2,-4,-7), \vec{c} = (5,1,-4),$ 则向量 $4\vec{a} + 3\vec{b} - \vec{c}$ 在 y 轴上的投影为 7; 在 x轴上的投影为 13

$$\therefore 4\vec{a} + 3\vec{b} - \vec{c} = (13, 7, 15)$$

向量在轴上的投影

- 1. 向量在轴上投影的概念;
- 2. 向量在轴上投影的性质.

第一讲 空间直角坐标系与向量

空间直角坐标系 向量及其线性运算 向量在轴上的投影

▶ 向量线性运算的几何意义 向量的方向余弦 内容小结

四、向量线性运算的几何意义

1. 加法的几何意义

设
$$\overrightarrow{OA} = (a_1, a_2), \overrightarrow{OB} = (b_1, b_2), 则$$

$$\overrightarrow{OA} + \overrightarrow{OB} = (a_1 + b_1, a_2 + b_2) = \overrightarrow{OP}, a_2 + b_2$$

$$\mathbf{Pr}\,\mathbf{j}_{ox}\,\overline{BP} = a_1 + b_1 - b_1 = a_1$$

$$Pr j_{oy} BP = a_2 + b_2 - b_2 = a_2$$

故 \overrightarrow{BP} 经平行移动后可与 \overrightarrow{OA} 重合.

即
$$\overrightarrow{BP} = \overrightarrow{OA}$$
,所以, $OAPB$ 是平行四边形.

平行四边形法则:

$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OP}$$
,

 \overrightarrow{OP} 是以 OA,OB 为边的平行四边形的对角线.

$$\overrightarrow{AP} = \overrightarrow{OB}, \ \overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OP}.$$

平行四边形法则也可表示为三角形法则:

向量减法的几何意义:

三角形法则:

显然:

$$||\vec{a} \pm \vec{b}|| \le ||\vec{a}|| + ||\vec{b}||$$
.

投影性质

$$\Pr \mathbf{j}_{u}(\vec{a}_{1} + \vec{a}_{2}) = \Pr \mathbf{j}_{u}\vec{a}_{1} + \Pr \mathbf{j}_{u}\vec{a}_{2}.$$

的几何意义

思考:

(1)向量加法的三角形法则可推广到多个向量和的情况. 称为多边形法则. 按向量和的几何意义, 画出向量 $\vec{a} + \vec{b} + \vec{c} + \vec{d}$ 的几何图形.

(2) 四向量 \vec{a} , \vec{b} , \vec{c} , \vec{d} 能构成一空间四边形的充要条件 是什么? $\vec{a} + \vec{b} + \vec{c} + \vec{d} = \vec{0}$ 例1 设 $\vec{m} = \vec{i} + \vec{j}$, $\vec{n} = -2\vec{j} + \vec{k}$,求以向量 \vec{m} , \vec{n} 为边的平行四边形的对角线的长度.

解 对角线的长为 $\|\vec{m} + \vec{n}\|, \|\vec{m} - \vec{n}\|,$

$$\vec{m} + \vec{n} = (1, -1, 1), \quad \vec{m} - \vec{n} = (1, 3, -1)$$

$$||\vec{m} + \vec{n}|| = \sqrt{3}, \quad ||\vec{m} - \vec{n}|| = \sqrt{11},$$

平行四边形的对角线的长度各为√3,√11.

2. 数乘的几何意义

$$\vec{b} = \lambda \vec{a}$$

$$(1) \lambda > 0$$
, \vec{b} 与 \vec{a} 同向.

$$(2) \lambda = 0, \quad \vec{b} = 0.$$

(3)
$$\lambda$$
 < 0, \vec{b} 与 \vec{a} 反向.

$$\vec{b} = (b_1, b_2, b_3) = \lambda(a_1, a_2, a_3) = \lambda \vec{a}$$

$$\Rightarrow \vec{a} / / \vec{b} \Leftrightarrow \vec{b} = \lambda \vec{a} \Leftrightarrow \frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3}.$$

(若
$$a_i = 0$$
,则 $b_i = 0$).

例2 非零向量单位化.

设向量 $\vec{a} \neq 0$

$$\Rightarrow$$
 $\vec{e}_a = \frac{1}{\|\vec{a}\|}\vec{a}$, 则

$$\|\vec{e}_a\| = \frac{1}{\|\vec{a}\|} |\cdot||\vec{a}|| = \frac{1}{\|\vec{a}\|} ||\vec{a}|| = 1$$

 \vec{e}_a 是与 \vec{a} 同方向的单位向量(也称为 \vec{a} 的单位向量).

显然: $\vec{a} = ||\vec{a}||\vec{e}_a$.

 \vec{a} 的单位向量又记为 \vec{a}^0 .

例3 证明:三角形的中位线平行于底边且等于底边的一半.

证 (如图)设DE是中位线,则

$$\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AE}$$

$$= \frac{1}{2}\overrightarrow{BA} + \frac{1}{2}\overrightarrow{AC}$$

$$= \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AC})$$

$$= \frac{1}{2}\overrightarrow{BC}.$$

例4 证明四面体对边中点连线交于一点,而且相互平分。

证(如图)设EF是一组对边中点的连线, P_1 为其中点,其余两组对边的中点分别为 P_2,P_3 ,则

$$\overrightarrow{AP}_{1} = \frac{1}{2}(\overrightarrow{AE} + \overrightarrow{AF}),$$

$$\overrightarrow{AE} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}), \quad \overrightarrow{AF} = \frac{1}{2}\overrightarrow{AC}$$

$$\therefore \overrightarrow{AP}_{1} = \frac{1}{2}\left[\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD})\right]$$

$$= \frac{1}{4}[\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}]$$

$$\overrightarrow{AP}_{1} = \frac{1}{2}\overrightarrow{AP}_{1} = \frac{1}{2}\overrightarrow{AP}_$$

同理
$$\overrightarrow{AP}_2 = \frac{1}{4}[\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}],$$

$$\overrightarrow{AP}_3 = \frac{1}{4}[\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}],$$
 所以 P_1, P_2, P_3 重合。

例5 设 $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$ 为空间二点.

(1) 求
$$||M_1M_2||$$
;

解
$$\overrightarrow{M_1M_2} = \overrightarrow{OM_2} - \overrightarrow{OM_1}$$

= $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$

$$||\overrightarrow{M_1M_2}|| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

这就是空间两点间的距离公式.

特殊地: 若两点分别为 M(x,y,z), O(0,0,0)

$$\|\overrightarrow{OM}\| = \sqrt{x^2 + y^2 + z^2}.$$

(2) 设M为线段 M_1M_2 上一点, $\frac{\|M_1M\|}{\|MM\|} = \lambda$,求M的坐标.

解 M_1 M_2

由题意知 $\overrightarrow{M_1M} = \lambda \overrightarrow{MM_2}$, 设 M 的坐标为(x, y, z),

则 $(x-x_1, y-y_1, z-z_1) = \lambda (x_2-x, y_2-y, z_2-z)$

有 $x - x_1 = \lambda (x_2 - x), y - y_1 = \lambda (y_2 - y), z - z_1 = \lambda (z_2 - z),$

解出 $x = \frac{x_1 + \lambda x_2}{1 + \lambda}$, $y = \frac{y_1 + \lambda y_2}{1 + \lambda}$, $z = \frac{z_1 + \lambda z_2}{1 + \lambda}$.

若M为 M_1M_2 的中点,则M的坐标为

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$
.

向量线性运算的几何意义

- 1. 向量加法、数乘的几何意义;
- 2. 两点间的距离公式、定比分的公式.

练习 1. 在 yoz 面上,求与三个已知点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点 .

答案: (0,1,-2).

2. 若直线段落AB被点C(2,0,2)及点D(5,-2,0)内分为3等分,则端点A的坐标为________,端点B的坐标为_______.

答案: A(-1,2,4), B(8,-4,-2).

第一讲 空间直角坐标系与向量

空间直角坐标系 向量及其线性运算 向量在轴上的投影 向量线性运算的几何意义

▶ 向量的方向余弦 内容小结

五、向量的方向余弦

非零向量 ā 与三条坐标轴的正向的夹角称为方向角.

$$\alpha = <\vec{a}, \vec{i}>, \beta = <\vec{a}, \vec{j}>, \gamma = <\vec{a}, \vec{k}>,$$

$$0 \le \alpha \le \pi$$
,

$$0 \le \beta \le \pi$$
,

$$0 \le \gamma \le \pi$$
.

设
$$\vec{a} = (a_1, a_2, a_3)$$

由图示可知

$$\cos \alpha = \frac{a_1}{\sqrt{a_1^2 + a_2^2 + a_3^2}} = \frac{a_1}{\|\vec{a}\|}$$

$$\cos \beta = \frac{a_2}{\sqrt{a_1^2 + a_2^2 + a_3^2}} = \frac{a_2}{\|\vec{a}\|}$$

$$\cos \gamma = \frac{a_3}{\sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2}} = \frac{a_1}{\|\vec{a}\|}$$

 $\cos \alpha$, $\cos \beta$, $\cos \gamma$ 称为向量 \vec{a} 的方向余弦.

由此可得

$$\vec{e}_a = \frac{\vec{a}}{\|\vec{a}\|} = (\cos \alpha, \cos \beta, \cos \gamma).$$

或 $\vec{a} = ||\vec{a}|| (\cos \alpha, \cos \beta, \cos \gamma)$.

方向余弦的性质:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

例 1 设有向量 $\overrightarrow{P_1P_2}$,已知 $||\overrightarrow{P_1P_2}||=2$,它与 x 轴和 y 轴的夹角分别为 $\frac{\pi}{3}$ 和 $\frac{\pi}{4}$,如果 P_1 的坐标为(1,0,3),求 P_2 的坐标.

解 设向量 $\overrightarrow{P_1P_2}$ 的方向角为 $\alpha \setminus \beta \setminus \gamma$

$$\alpha = \frac{\pi}{3}$$
, $\cos \alpha = \frac{1}{2}$, $\beta = \frac{\pi}{4}$, $\cos \beta = \frac{\sqrt{2}}{2}$,

$$\because \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1, \qquad \therefore \cos \gamma = \pm \frac{1}{2}.$$

设
$$P_2$$
的坐标为 (x,y,z) ,

$$\overrightarrow{P_1P_2} = (x-1, y-0, z-3)$$

$$= ||\overrightarrow{P_1P_2}|| (\cos\alpha, \cos\beta, \cos\gamma)$$

$$=2(\frac{1}{2},\frac{\sqrt{2}}{2},\pm\frac{1}{2})=(1,\sqrt{2},\pm 1)$$

$$\therefore P_2(2,\sqrt{2},4)$$
 或 $(2,\sqrt{2},2)$.

例2 设 \overrightarrow{OA} 与三坐标轴的夹角相等,且 $||\overrightarrow{OA}|| = \sqrt{3}$,点B是点M(1,-3,2)关于点N(-1,2,1)的对称点,求 \overrightarrow{AB} .

解 设 $\overrightarrow{OA} = \sqrt{3}(\cos\alpha,\cos\beta,\cos\gamma)$

由 \overrightarrow{OA} 与三坐标轴的夹角相等,得

$$\cos \alpha = \cos \beta = \cos \gamma$$
 $\nabla \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

$$\Rightarrow \cos \alpha = \cos \beta = \cos \gamma = \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow \overrightarrow{OA} = \pm (1,1,1)$$

设B点的坐标为(x,y,z),由题意知N是 \overline{MB} 的中点,则

$$-1 = \frac{1+x}{2}, \quad 2 = \frac{-3+y}{2}, \quad 1 = \frac{2+z}{2}$$

$$\Rightarrow x = -3, y = 7, z = 0.$$

$$\Rightarrow \overrightarrow{OB} = (-3,7,0)$$

(1) 若
$$\overrightarrow{OA}$$
 = (1,1,1), 则

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (-3,7,0) - (1,1,1) = (-4,6,-1);$$

(2) 若
$$\overrightarrow{OA} = -(1,1,1)$$
,则

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (-3,7,0) + (1,1,1) = (-2,8,1).$$

主要内容

向量的方向余弦

- 1. 方向余弦的计算;
- 2. 方向余弦的性质.

练习 已知点A(1,2,-1)与点B(0,1,3),则与向量 \overrightarrow{AB}

平行的单位向量为_____

答案:
$$\pm \frac{\sqrt{2}}{6}$$
 (1,1,-4)

第一讲 空间直角坐标系与向量

空间直角坐标系 向量及其线性运算 向量在轴上的投影 向量线性运算的几何意义 向量的方向余弦

▶ 内容小结

内容小结

1. 空间直角坐标系

2. 向量
$$\vec{a} = \overrightarrow{OA} = (a_1, a_2, a_3)$$

模(长度):
$$||\overrightarrow{OA}|| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

方向:
$$\cos \alpha = \frac{a_1}{\sqrt{{a_1}^2 + {a_2}^2 + {a_3}^2}} = \frac{a_1}{\|\vec{a}\|}$$

$$\cos \beta = \frac{a_2}{\sqrt{a_1^2 + a_2^2 + a_3^2}} = \frac{a_2}{\|\vec{a}\|}$$

$$\cos \gamma = \frac{a_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}} = \frac{a_1}{\|\vec{a}\|}$$

单位向量:
$$\vec{e}_a = \frac{a}{\|\vec{a}\|} = (\cos \alpha, \cos \beta, \cos \gamma)$$
.

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

3. 向量的线性运算

$$\vec{b}$$
 \vec{a}
 \vec{a}
 \vec{b}

$$\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$k \cdot \vec{a} = (ka_1, ka_2, ka_3)$$

几个相关结果:

$$(1) \|\vec{a} \pm \vec{b}\| \le \|\vec{a}\| + \|\vec{b}\|;$$

$$(2) || k \cdot \vec{a} || = |k| \cdot ||a||$$
;

