Lecture Notes #1 Economics 120B Econometrics

Prof. Dahl UC San Diego

Brief Overview of the Course

Economics suggests important relationships, often with policy implications, but virtually never suggests quantitative magnitudes of causal effects.

- What is the *quantitative* effect of reducing class size on student achievement?
- How does another year of education change earnings?
- What is the price elasticity of cigarettes?
- What is the effect on output growth of a 1 percentage point increase in interest rates by the Fed?
- What is the effect on housing prices of environmental improvements?

This course is about using data to measure causal effects.

- Ideally, we would like an experiment
 - what would be an experiment to estimate the effect of class size on standardized test scores?
- But almost always we only have observational (nonexperimental) data.
 - returns to education
 - cigarette prices
 - monetary policy
- Most of the course deals with difficulties arising from using observational to estimate causal effects
 - confounding effects (omitted factors)
 - simultaneous causality
 - "correlation does not imply causation"

In this course you will:

- Learn methods for estimating causal effects using observational data;
- Learn some tools that can be used for other purposes, for example forecasting using time series data;
- Focus on applications as well as provide some theory to understand the methods;
- Learn to evaluate the regression analysis of others this means you will be able to read/understand empirical economics papers in other econ courses;
- Get some hands-on experience with regression analysis in your problem sets.

Review of Probability and Statistics

(SW Chapters 2, 3)

Empirical problem: Class size and educational output

- Policy question: What is the effect on test scores (or some other outcome measure) of reducing class size by one student per class? By 8 students/class?
- We must use data to find out (is there any way to answer this *without* data?)

The California Test Score Data Set

All K-6 and K-8 California school districts (n = 420)

Variables:

- 5th grade test scores (Stanford-9 achievement test, combined math and reading), district average
- Student-teacher ratio (STR) = no. of students in the district divided by no. full-time equivalent teachers

Initial look at the data:

(You should already know how to interpret this table)

TABLE 4.1 Summary of the Distribution of Student-Teacher Ratios and Fifth-Grade Test Scores for 420 K-8 Districts in California in 1998										
		Standard Deviation	Percentile							
	Average		10%	25%	40%	50% (median)	60%	75%	90%	
Student-teacher ra	tio 19.6	1.9	17.3	18.6	19.3	19.7	20.1	20.9	21.9	
Test score	665.2	19.1	630.4	640.0	649.1	654.5	659.4	666.7	679.1	

• This table doesn't tell us anything about the relationship between test scores and the *STR*.

Do districts with smaller classes have higher test scores? Scatterplot of test score v. student-teacher ratio

What does this figure show?

We need to get some numerical evidence on whether districts with low STRs have higher test scores – but how?

- 1. Compare average test scores in districts with low STRs to those with high STRs ("estimation")
- 2. Test the "null" hypothesis that the mean test scores in the two types of districts are the same, against the "alternative" hypothesis that they differ ("hypothesis testing")
- 3. Estimate an interval for the difference in the mean test scores, high v. low STR districts ("confidence interval")

Initial data analysis: Compare districts with "small" (STR < 20) and "large" (STR ≥ 20) class sizes:

Class Size	Average score (\overline{Y})	Standard deviation (s_y)	n
Small	657.4	19.4	238
Large	650.0	17.9	182

- 1. *Estimation* of Δ = difference between group means
- 2. Test the hypothesis that $\Delta = 0$
- 3. Construct a *confidence interval* for Δ

1. Estimation

C1 C2

$$\overline{Y}_{\text{small}} - \overline{Y}_{\text{large}} = \frac{1}{n_{\text{small}}} \sum_{i=1}^{n_{\text{small}}} Y_i - \frac{1}{n_{\text{large}}} \sum_{i=1}^{n_{\text{large}}} Y_i$$

$$= 657.4 - 650.0$$

$$= 7.4$$

Is this a large difference in a real-world sense?

- Standard deviation across districts = 19.1
- Difference between 60^{th} and 75^{th} percentiles of test score distribution is 666.7 659.4 = 7.3
- This is a big enough difference to be important for school reform discussions, for parents, or for a school committee?

2. Hypothesis testing

C3

Difference-in-means test: compute the *t*-statistic,

$$t = \frac{\overline{Y}_s - \overline{Y}_l}{\sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}}} = \frac{\overline{Y}_s - \overline{Y}_l}{SE(\overline{Y}_s - \overline{Y}_l)}$$
 (remember this?)

where $SE(\overline{Y}_s - \overline{Y}_l)$ is the "standard error" of $\overline{Y}_s - \overline{Y}_l$, the subscripts s and l refer to "small" and "large" STR districts, and

$$s_s^2 = \frac{1}{n_s - 1} \sum_{i=1}^{n_s} (Y_i - \overline{Y}_s)^2 \text{ (etc.)}$$

Compute the difference-of-means *t*-statistic:

Size	\overline{Y}	$S_{Y_{-}}$	n
small	657.4	19.4	238
large	650.0	17.9	182

$$t = \frac{\overline{Y_s} - \overline{Y_l}}{\sqrt{\frac{s_s^2}{n_s} + \frac{s_l^2}{n_l}}} = \frac{657.4 - 650.0}{\sqrt{\frac{19.4^2}{238} + \frac{17.9^2}{182}}} = \frac{7.4}{1.83} = 4.05$$

|t| > 1.96, so reject (at the 5% significance level) the null hypothesis that the two means are the same.

3. Confidence interval

A 95% confidence interval for the difference between the means is,

$$(\overline{Y}_s - \overline{Y}_l) \pm 1.96 \times SE(\overline{Y}_s - \overline{Y}_l)$$

$$= 7.4 \pm 1.96 \times 1.83 = (3.8, 11.0)$$

Two equivalent statements:

- 1. The 95% confidence interval for Δ doesn't include 0;
- 2. The hypothesis that $\Delta = 0$ is rejected at the 5% level.

What comes next...

- The mechanics of estimation, hypothesis testing, and confidence intervals should be familiar
- These concepts extend directly to regression and its variants
- Before turning to regression, however, we will review some of the underlying theory of estimation, hypothesis testing, and confidence intervals:
 - Why do these procedures work, and why use these rather than others?
 - So we will review the intellectual foundations of statistics and econometrics

Review of Statistical Theory

- 1. The probability framework for statistical inference
- 2. Estimation
- 3. Testing
- 4. Confidence Intervals

The probability framework for statistical inference

- (a) Population, random variable, and distribution
- (b) Moments of a distribution (mean, variance, standard deviation, covariance, correlation)
- (c) Conditional distributions and conditional means
- (d) Distribution of a sample of data drawn randomly from a population: $Y_1, ..., Y_n$

(a) Population, random variable, and distribution

Population

- The group or collection of all possible entities of interest (school districts)
- Often, we will think of populations as very large or infinite

Random variable Y

• Numerical summary of a random outcome (district average test score, district STR)

C1

Population distribution of Y

- The probabilities of different values of Y that occur in the population, for ex. Pr[Y = 650] (when Y is discrete)
- or: The probabilities of sets of these values, for ex.

 $Pr[640 \le Y \le 660]$ (when Y is continuous).

(b) Moments of a population distribution: mean, variance, standard deviation, covariance, correlation

$$mean$$
 = expected value (expectation) of Y = $E(Y)$ = μ_Y = long-run average value of Y over repeated realizations of Y $variance = E(Y - \mu_Y)^2$ = measure of the squared spread of the distribution

standard deviation = $\sqrt{\text{variance}} = \sigma_Y$

AB

Moments, ctd.

$$skewness = \frac{E\left[\left(Y - \mu_{Y}\right)^{3}\right]}{\sigma_{Y}^{3}}$$

- = measure of asymmetry of a distribution
- *skewness* = 0: distribution is symmetric A B
- *skewness* > (<) 0: distribution has long right (left) tail

$$kurtosis = \frac{E[(Y - \mu_Y)^4]}{\sigma_Y^4}$$

- = measure of mass in tails
- = measure of probability of large values
- *kurtosis* = 3: normal distribution
- *skewness* > 3: heavy tails ("*leptokurtotic*")

(b) Skewness = , kurtosis = 20

(d) Skewness = 0.6, kurtosis = 5

2 random variables: joint distributions and covariance

- Random variables X and Z have a *joint distribution*
- The *covariance* between *X* and *Z* is

$$cov(X,Z) = E[(X - \mu_X)(Z - \mu_Z)] = \sigma_{XZ}.$$
 AB

- The covariance is a measure of the linear association between X and Z; its units are units of $X \times \text{units of } Z$
- cov(X,Z) > 0 means a positive relation between X and Z
- If X and Z are independently distributed, then cov(X,Z) = 0 (but not vice versa!!)
- The covariance of a r.v. with itself is its variance: $cov(X,X) = E[(X \mu_X)(X \mu_X)] = E[(X \mu_X)^2] = \sigma_X^2$

The covariance between Test Score and STR is negative:

so is the *correlation*...

The correlation coefficient is defined in terms of the covariance:

$$\operatorname{corr}(X,Z) = \frac{\operatorname{cov}(X,Z)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Z)}} = \frac{\sigma_{XZ}}{\sigma_{X}\sigma_{Z}} = r_{XZ}$$
A B

- \bullet -1 \leq corr(X,Z) \leq 1
- corr(X,Z) = 1 mean perfect positive linear association
- corr(X,Z) = -1 means perfect negative linear association
- corr(X,Z) = 0 means no linear association

The correlation coefficient measures linear association

(c) Conditional distributions and conditional means

Conditional distributions

- The distribution of Y, given value(s) of some other random variable, X
- Ex: the distribution of test scores, given that STR < 20 *Conditional expectations and conditional moments*
 - conditional mean = mean of conditional distribution = E(Y|X=x) (important concept and notation)
 - conditional variance = variance of conditional distribution
 - Example: $E(Test\ scores|STR < 20)$ = the mean of test scores among districts with small class sizes

The difference in means is the difference between the means of two conditional distributions:

Conditional mean, ctd.

$$\Delta = E(Test\ scores|STR < 20) - E(Test\ scores|STR \ge 20)$$

Other examples of conditional means:

AB

- Wages of all female workers (Y =wages, X =gender)
- Mortality rate of those given an experimental treatment (Y = live/die; X = treated/not treated)
- If E(X|Z) = const, then corr(X,Z) = 0 (not necessarily vice versa however)

The conditional mean is a (possibly new) term for the familiar idea of the group mean

(d) Distribution of a sample of data drawn randomly from a population: $Y_1, ..., Y_n$

We will assume simple random sampling

Choose and individual (district, entity) at random from the population

A B

Randomness and data

- Prior to sample selection, the value of *Y* is random because the individual selected is random
- Once the individual is selected and the value of Y is observed, then Y is just a number – not random
- The data set is $(Y_1, Y_2, ..., Y_n)$, where Y_i = value of Y for the ith individual (district, entity) sampled

Distribution of $Y_1,..., Y_n$ under simple random sampling

- Because individuals #1 and #2 are selected at random, the value of Y_1 has no information content for Y_2 . Thus:
 - Y_1 and Y_2 are independently distributed
 - Y_1 and Y_2 come from the same distribution, that is, Y_1 , Y_2 are *identically distributed*
 - That is, under simple random sampling, Y_1 and Y_2 are independently and identically distributed (*i.i.d.*).
 - More generally, under simple random sampling, $\{Y_i\}$, i = 1, ..., n, are i.i.d.

This framework allows rigorous statistical inferences about moments of population distributions using a sample of data from that population ...

- 1. The probability framework for statistical inference
- 2. Estimation
- 3. Testing
- 4. Confidence Intervals

C2

Estimation

 \overline{Y} is the natural estimator of the mean. But:

- (a) What are the properties of \overline{Y} ?
- (b) Why should we use \overline{Y} rather than some other estimator?
 - Y₁ (the first observation)
 - maybe unequal weights not simple average
 - median $(Y_1, ..., Y_n)$

The starting point is the sampling distribution of \overline{Y} ...

(a) The sampling distribution of Y

 \overline{Y} is a random variable, and its properties are determined by the *sampling distribution* of \overline{Y}

- The individuals in the sample are drawn at random. C2
- Thus the values of $(Y_1, ..., Y_n)$ are random
- Thus functions of $(Y_1, ..., Y_n)$, such as \overline{Y} , are random: had a different sample been drawn, they would have taken on a different value
- The distribution of \overline{Y} over different possible samples of size n is called the *sampling distribution* of \overline{Y} .
- The mean and variance of \overline{Y} are the mean and variance of its sampling distribution, $E(\overline{Y})$ and $var(\overline{Y})$.
- The concept of the sampling distribution underpins all of econometrics.

The sampling distribution of Y, ctd.

Example: Suppose *Y* takes on 0 or 1 (a *Bernoulli* random variable) with the probability distribution,

$$Pr[Y=0] = .22, Pr(Y=1) = .78$$

Then

C2

$$E(Y) = p \times 1 + (1 - p) \times 0 = p = .78$$

$$\sigma_Y^2 = E[Y - E(Y)]^2 = p(1 - p) \text{ [remember this?]}$$

$$= .78 \times (1 - .78) = 0.1716$$

The sampling distribution of \overline{Y} depends on n.

Consider n = 2. The sampling distribution of \overline{Y} is,

$$Pr(\overline{Y} = 0) = .22^2 = .0484$$

$$Pr(\overline{Y} = \frac{1}{2}) = 2 \times .22 \times .78 = .3432$$

$$Pr(\overline{Y} = 1) = .78^2 = .6084$$

The sampling distribution of \bar{Y} when Y is Bernoulli

(p = .78):

(a)
$$n = 2$$

(c)
$$n = 25$$

(d) n = 100

Things we want to know about the sampling distribution:

- What is the mean of \overline{Y} ?
 - If $E(\overline{Y})$ = true μ = .78, then \overline{Y} is an *unbiased* estimator of μ
- What is the variance of \overline{Y} ?
 - How does var(Y) depend on n (famous 1/n formula)
- Does \overline{Y} become close to μ when n is large?
 - Law of large numbers: \overline{Y} is a *consistent* estimator of μ
- $\overline{Y} \mu$ appears bell shaped for *n* large...is this generally true?
 - In fact, $\overline{Y} \mu$ is approximately normally distributed for n large (Central Limit Theorem)

The mean and variance of the sampling distribution of \bar{Y}

General case – that is, for Y_i i.i.d. from any distribution, not just Bernoulli:

mean:
$$E(\overline{Y}) = E(\frac{1}{n} \sum_{i=1}^{n} Y_i) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{1}{n} \sum_{i=1}^{n} \mu_Y = \mu_Y$$
 C2

Variance:
$$\operatorname{var}(\overline{Y}) = E[\overline{Y} - E(\overline{Y})]^{2}$$

$$= E[\overline{Y} - \mu_{Y}]^{2}$$

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) - \mu_{Y}\right]^{2}$$

$$= E\left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - \mu_{Y})\right]^{2}$$

$$\operatorname{var}(\overline{Y}) = E \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y) \right]^2$$

$$= E \left\{ \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y) \right] \times \left[\frac{1}{n} \sum_{j=1}^{n} (Y_j - \mu_Y) \right] \right\}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} E \left[(Y_i - \mu_Y)(Y_j - \mu_Y) \right]$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(Y_i, Y_j)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma_Y^2$$

$$= \frac{\sigma_Y^2}{n^2}$$

Mean and variance of sampling distribution of \bar{Y} , ctd.

$$E(\overline{Y}) = \mu_{Y}$$

$$\operatorname{var}(\overline{Y}) = \frac{\sigma_Y^2}{n}$$

C2

Implications:

- 1. \overline{Y} is an *unbiased* estimator of μ_Y (that is, $E(\overline{Y}) = \mu_Y$)
- 2. $var(\overline{Y})$ is inversely proportional to n
 - the spread of the sampling distribution is proportional to $1/\sqrt{n}$
 - Thus the sampling uncertainty associated with Y is proportional to $1/\sqrt{n}$ (larger samples, less uncertainty, but square-root law)

The sampling distribution of \bar{Y} when n is large

For small sample sizes, the distribution of \overline{Y} is complicated, but if n is large, the sampling distribution is simple!

- 1. As *n* increases, the distribution of \overline{Y} becomes more tightly centered around μ_Y (the *Law of Large Numbers*)
- 2. Moreover, the distribution of $\overline{Y} \mu_Y$ becomes normal (the *Central Limit Theorem*)

The Law of Large Numbers:

An estimator is *consistent* if the probability that its falls within an interval of the true population value tends to one as the sample size increases.

If $(Y_1,...,Y_n)$ are i.i.d. and $\sigma_Y^2 < \infty$, then \overline{Y} is a consistent estimator of μ_Y , that is,

$$\Pr[|\overline{Y} - \mu_Y| < \varepsilon] \to 1 \text{ as } n \to \infty$$

which can be written, $\overline{Y} \stackrel{p}{\to} \mu_Y$

(" $\overline{Y} \xrightarrow{p} \mu_Y$ " means " \overline{Y} converges in probability to μ_Y ").

(the math: as
$$n \to \infty$$
, $var(\overline{Y}) = \frac{\sigma_Y^2}{n} \to 0$, which implies that

$$\Pr[|\overline{Y} - \mu_Y| < \varepsilon] \rightarrow 1.)$$

The Central Limit Theorem (CLT):

If $(Y_1,...,Y_n)$ are i.i.d. and $0 < \sigma_Y^2 < \infty$, then when n is large the distribution of \overline{Y} is well approximated by a normal distribution.

- \overline{Y} is approximately distributed $N(\mu_Y, \frac{\sigma_Y^2}{n})$ ("normal distribution with mean μ_Y and variance σ_Y^2/n ")
- $\sqrt{n} (\overline{Y} \mu_Y)/\sigma_Y$ is approximately distributed N(0,1) (standard normal)
- That is, "standardized" $\bar{Y} = \frac{\bar{Y} E(\bar{Y})}{\sqrt{\text{var}(\bar{Y})}} = \frac{\bar{Y} \mu_Y}{\sigma_Y / \sqrt{n}}$ is approximately distributed as N(0,1)
- The larger is n, the better is the approximation.

Sampling distribution of \bar{Y} when Y is Bernoulli, p = 0.78:

Same example: sampling distribution of

$$\frac{\overline{Y} - E(\overline{Y})}{\sqrt{\operatorname{var}(\overline{Y})}} :$$

Summary: The Sampling Distribution of \bar{Y}

For $Y_1,...,Y_n$ i.i.d. with $0 < \sigma_Y^2 < \infty$,

- The exact (finite sample) sampling distribution of \overline{Y} has mean μ_Y (" \overline{Y} is an unbiased estimator of μ_Y ") and variance σ_Y^2/n
- Other than its mean and variance, the exact distribution of *Y* is complicated and depends on the distribution of *Y* (the population distribution)
- When *n* is large, the sampling distribution simplifies:
 - $|\bar{Y} \xrightarrow{p} \mu_Y|$ (Law of large numbers)

•
$$\left| \frac{\overline{Y} - E(\overline{Y})}{\sqrt{\text{var}(\overline{Y})}} \right|$$
 is approximately $N(0,1)$ (CLT)

(b) Why Use Y To Estimate μ_Y ?

- \overline{Y} is unbiased: $E(\overline{Y}) = \mu_Y$
- \overline{Y} is consistent: $\overline{Y} \stackrel{p}{\to} \mu_Y$
- \overline{Y} is the "least squares" estimator of μ_Y ; \overline{Y} solves,

$$\min_{m} \sum_{i=1}^{n} (Y_i - m)^2$$

so, \overline{Y} minimizes the sum of squared "residuals" optional derivation (also see App. 3.2)

$$\frac{d}{dm}\sum_{i=1}^{n}(Y_{i}-m)^{2} = \sum_{i=1}^{n}\frac{d}{dm}(Y_{i}-m)^{2} = -2\sum_{i=1}^{n}(Y_{i}-m)$$

Set derivative to zero and denote optimal value of m by \hat{m} :

$$\sum_{i=1}^{n} Y_{i} = \sum_{i=1}^{n} \hat{m} = n\hat{m} \text{ or } \hat{m} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} = \overline{Y}$$

Why Use \overline{Y} To Estimate μ_Y ?, ctd.

- \overline{Y} has a smaller variance than all other *linear unbiased* estimators: consider the estimator, $\hat{\mu}_Y = \frac{1}{n} \sum_{i=1}^n a_i Y_i$, where C2 $\{a_i\}$ are such that $\hat{\mu}_Y$ is unbiased; then $var(\overline{Y}) \leq var(\hat{\mu}_Y)$ (proof: SW, Ch. 17)
- \overline{Y} isn't the only estimator of μ_Y can you think of a time you might want to use the median instead?

- 1. The probability framework for statistical inference
- 2. Estimation
- 3. Hypothesis Testing
- 4. Confidence intervals

Hypothesis Testing

C3

The *hypothesis testing* problem (for the mean): make a provisional decision, based on the evidence at hand, whether a null hypothesis is true, or instead that some alternative hypothesis is true. That is, test

$$H_0$$
: $E(Y) = \mu_{Y,0}$ vs. H_1 : $E(Y) > \mu_{Y,0}$ (1-sided, >)

$$H_0$$
: $E(Y) = \mu_{Y,0}$ vs. H_1 : $E(Y) < \mu_{Y,0}$ (1-sided, <)

$$H_0$$
: $E(Y) = \mu_{Y,0}$ vs. H_1 : $E(Y) \neq \mu_{Y,0}$ (2-sided)

Some terminology for testing statistical hypotheses: p-value = probability of drawing a statistic (e.g. \overline{Y}) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true.

The *significance level* of a test is a pre-specified probability of incorrectly rejecting the null, when the null is true.

Calculating the p-value based on \overline{Y} :

$$p$$
-value = $\Pr_{H_0}[|\overline{Y} - \mu_{Y,0}| > |\overline{Y}^{act} - \mu_{Y,0}|]$

where \overline{Y}^{act} is the value of \overline{Y} actually observed (nonrandom)

Calculating the p-value, ctd.

- To compute the p-value, you need the to know the sampling distribution of \overline{Y} , which is complicated if n is small.
- If *n* is large, you can use the normal approximation (CLT):

$$\begin{split} p\text{-value} &= \Pr_{H_0}[|\overline{Y} - \mu_{Y,0}| > |\overline{Y}^{act} - \mu_{Y,0}|], \\ &= \Pr_{H_0}[|\frac{\overline{Y} - \mu_{Y,0}}{\sigma_Y/\sqrt{n}}| > |\frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_Y/\sqrt{n}}|] \\ &= \Pr_{H_0}[|\frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{V}}}| > |\frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_{\overline{V}}}|] \end{split}$$

 \cong probability under left+right N(0,1) tails

where $\sigma_{\overline{V}} = \text{std. dev. of the distribution of } \overline{Y} = \sigma_{\overline{Y}} / \sqrt{n}$.

Calculating the p-value with σ_{Y} known:

- For large n, p-value = the probability that a N(0,1) random variable falls outside $|(\overline{Y}^{act} \mu_{Y,0})/\sigma_{\overline{Y}}|$
- In practice, $\sigma_{\overline{y}}$ is unknown it must be estimated

Estimator of the variance of Y:

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2 = \text{"sample variance of } Y\text{"}$$

Fact:

If
$$(Y_1,...,Y_n)$$
 are i.i.d. and $E(Y^4) < \infty$, then $s_Y^2 \xrightarrow{p} \sigma_Y^2$

Why does the law of large numbers apply?

- Because s_y^2 is a sample average; see Appendix 3.3
- Technical note: we assume $E(Y^4) < \infty$ because here the average is not of Y_i , but of its square; see App. 3.3

Computing the p-value with σ_Y^2 estimated:

$$p\text{-value} = \Pr_{H_0}[|\overline{Y} - \mu_{Y,0}| > |\overline{Y}^{act} - \mu_{Y,0}|],$$

$$= \Pr_{H_0}[|\frac{\overline{Y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}}| > |\frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}}|] \qquad C3$$

$$\cong \Pr_{H_0}[|\frac{\overline{Y} - \mu_{Y,0}}{s_Y / \sqrt{n}}| > |\frac{\overline{Y}^{act} - \mu_{Y,0}}{s_Y / \sqrt{n}}|] \text{ (large } n)$$

SO

$$p$$
-value = $\Pr_{H_0}[|t|>|t^{act}|]$ (σ_Y^2 estimated)

 \cong probability under normal tails outside $|t^{act}|$

where
$$t = \frac{\overline{Y} - \mu_{Y,0}}{s_v / \sqrt{n}}$$
 (the usual *t*-statistic)

What is the link between the *p*-value and the significance level?

The significance level is prespecified. For example, if the prespecified significance level is 5%,

- you reject the null hypothesis if $|t| \ge 1.96$
- equivalently, you reject if $p \le 0.05$.
- The *p*-value is sometimes called the *marginal significance level*.
- Often, it is better to communicate the *p*-value than simply whether a test rejects or not the *p*-value contains more information than the "yes/no" statement about whether the test rejects.

At this point, you might be wondering,...

What happened to the *t*-table and the degrees of freedom?

Digression: the Student t distribution

If Y_i , i = 1,..., n is i.i.d. $N(\mu_Y, \sigma_Y^2)$, then the *t*-statistic has the

Student *t*-distribution with n-1 degrees of freedom.

The critical values of the Student *t*-distribution is tabulated in the back of all statistics books. Remember the recipe?

- 1. Compute the *t*-statistic
- 2. Compute the degrees of freedom, which is n-1
- 3. Look up the 5% critical value
- 4. If the *t*-statistic exceeds (in absolute value) this critical value, reject the null hypothesis.

Comments on this recipe and the Student *t*-distribution

1. The theory of the t-distribution was one of the early triumphs of mathematical statistics. It is astounding, really: if Y is i.i.d. normal, then you can know the exact, finite-sample distribution of the t-statistic – it is the Student t. So, you can construct confidence intervals (using the Student t critical value) that have exactly the right coverage rate, no matter what the sample size. This result was really useful in times when "computer" was a job title, data collection was expensive, and the number of observations was perhaps a dozen. It is also a conceptually beautiful result, and the math is beautiful too – which is probably why stats profs love to teach the *t*-distribution. But....

Comments on Student t distribution, ctd.

2. If the sample size is moderate (several dozen) or large (hundreds or more), the difference between the *t*-distribution and N(0,1) critical values are negligible. Here are some 5% critical values for 2-sided tests:

degrees of freedom	5% <i>t</i> -distribution
(n-1)	critical value
10	2.23
20	2.09
30	2.04
60	2.00
∞	1.96

Comments on Student t distribution, ctd.

- 3. So, the Student-*t* distribution is only relevant when the sample size is very small; but in that case, for it to be correct, you must be sure that the population distribution of *Y* is normal. In economic data, the normality assumption is rarely credible. Here are the distributions of some economic data.
 - Do you think earnings are normally distributed?
 - Suppose you have a sample of n = 10 observations from one of these distributions would you feel comfortable using the Student t distribution?

FIGURE 2.4 Conditional Distribution of Average Hourly Earnings of U.S. Full-Time Workers in 2004, Given Education Level and Gender

The four distributions of earnings are for women and men, for those with only a high school diploma (a and c) and those whose highest degree is from a four-year college (b and d).

(a) Women with a high school diploma

(c) Men with a high school diploma

(b) Women with a college degree

(d) Men with a college degree

The Student-t distribution – summary

- The assumption that Y is distributed $N(\mu_Y, \sigma_Y^2)$ is rarely plausible in practice (income? number of children?)
- For n > 30, the *t*-distribution and N(0,1) are very close (as n grows large, the t_{n-1} distribution converges to N(0,1))
- The *t*-distribution is an artifact from days when sample sizes were small and "computers" were people
- For historical reasons, statistical software typically uses the *t*-distribution to compute *p*-values but this is irrelevant when the sample size is moderate or large.
- For these reasons, in this class we will focus on the large-*n* approximation given by the CLT

- 1. The probability framework for statistical inference
- 2. Estimation
- 3. Testing
- 4. Confidence intervals

Confidence Intervals

A 95% *confidence interval* for μ_Y is an interval that contains the true value of μ_Y in 95% of repeated samples.

Digression: What is random here? The values of $Y_1, ..., Y_n$ and thus any functions of them – including the confidence interval. The confidence interval it will differ from one sample to the next. The population parameter, μ_Y , is not random, we just don't know it.

Confidence intervals, ctd.

A 95% confidence interval can always be constructed as the set of values of μ_Y not rejected by a hypothesis test with a 5% significance level.

$$\{\mu_{Y}: \left| \frac{\overline{Y} - \mu_{Y}}{s_{Y} / \sqrt{n}} \right| \leq 1.96\} = \{\mu_{Y}: -1.96 \leq \frac{\overline{Y} - \mu_{Y}}{s_{Y} / \sqrt{n}} \leq 1.96\}$$

$$= \{\mu_{Y}: -1.96 \frac{s_{Y}}{\sqrt{n}} \leq \overline{Y} - \mu_{Y} \leq 1.96 \frac{s_{Y}}{\sqrt{n}}\}$$

$$= \{\mu_{Y} \in (\overline{Y} - 1.96 \frac{s_{Y}}{\sqrt{n}}, \overline{Y} + 1.96 \frac{s_{Y}}{\sqrt{n}})\}$$

This confidence interval relies on the large-n results that Y is approximately normally distributed and $s_Y^2 \xrightarrow{p} \sigma_Y^2$.

Summary:

From the two assumptions of:

- (1) simple random sampling of a population, that is, $\{Y_i, i=1,...,n\}$ are i.i.d.
- $(2) \quad 0 < E(Y^4) < \infty$

we developed, for large samples (large n):

- Theory of estimation (sampling distribution of \overline{Y})
- Theory of hypothesis testing (large-*n* distribution of *t*-statistic and computation of the *p*-value)
- Theory of confidence intervals (constructed by inverting test statistic)

Are assumptions (1) & (2) plausible in practice? Yes

Let's go back to the original policy question:

What is the effect on test scores of reducing STR by one student/class?

Have we answered this question?

