Data Science in Python

Oxford Biomedical Data Science Training Programme

Python Data Science

- Data science analysis and visualisation of data
- Pandas is a Python package for data analysis
 - Gives R-like functionality to Python
 - Built using the numerical analysis package NumPy
 - N-dimensional data structures
 - Fast matrix algebra calculations
- Plotting in Python
 - Many packages built on Matplotlib
 - Seaborn
- Jupyter notebook / Jupyter Lab

- A lab book for exploratory data analysis
- Combines live code, equations, visualizations
 anarrative text
- Runs in your browser
- Build reports
- Shareable

Tunneling Jupyter Lab

- ssh to cgath1
- cd to working directory
- Load Python Conda environment
- Start Jupyter Lab
 - jupyter lab --no-browser --port=xxxx
 - Everyone use a different port number
- New ssh to cgath1 nb
- Copy jupyter URL to local browser
 - http://localhost:<port>/lab

.ssh/config

Host nb

hostname cgath1

User <username>

ExitOnForwardFailure yes

ServerAliveInterval 300

ServerAliveCountMax 2

RequestTTY no

ProxyCommand

ssh <username>@cgatui.imm.ox.ac.uk nc %h %p LocalForward localhost:<port> localhost:<port>

NumPy

- Array
 - N-dimensional
 - elements of the same type
- Many numeric datatypes
 - int64, float64
- mathematical functions operate elementwise on arrays
 - operator overloads
 - functions
- Fast matrix algebra operations
- Slicing and indexing

```
import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

# Elementwise sum
print(x + y)
print(np.add(x, y))

# Transpose attribute
print(x.T)

# Slicing
b = x[:2, 1:3]
```

Pandas

| pandas

- Dataframes in Python
- Built on numpy arrays
- Adds row and column metadata

Pandas

- Easy to convert Python and NumPy data structures into DataFrame objects
- Robust IO from **flat files** (CSV & delimited), Excel, databases, HDF5 format
- Size mutability: columns can be **inserted and deleted** from DataFrames
- Intelligent label-based slicing, fancy indexing, and subsetting data sets
- Easy handling of missing data (represented as NaN)
- Vectorised numerical and string operations
- Intuitive merging and joining data sets
- Powerful group by functionality to perform split-apply-combine operations
- Flexible reshaping and pivoting of data sets

Pandas Series

- One-dimensional vector
- Built on NumPy array
- Includes axis labels
- Can be sliced like a list
- Can be indexed by label
- Not only numeric data
 - Any Python Object
 - Single data type

```
import numpy as np
import pandas as pd
# pandas creates default integer index
S = pd.Series([1, 2, 3, 4, 5, 6, 7, 8])
# Add our own index
s = pd.Series(np.random.randn(5),
      index=['a', 'b', 'c', 'd', 'e'])
# index & name are attributes of Series class
s.index
s.name
# Slicing
s[:3] # list like slicing
s['a'] # Index using labels
s[[4, 3, 1]] \# array-based indexing
s + s # element-wise addition
s * 2 # element-wise multiplication
```

Pandas Dataframe

- Two-dimensional
- Like R dataframe
- Includes axis labels
- Create from any 2d Python data structure
 - Dict of Series / dict of dicts
 - List of dicts / dict of lists
 - Dict of tuples
- Not only numeric data
 - Any Python Object
- Different data type per column

```
# Dataframe from dictionary of series
d = \{ 'one' : pd.Series([1., 2., 3.], 
       index=['a', 'b', 'c']),
       'two': pd.Series([1., 2., 3., 4.],
       index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
# attributes
df.index # row labels
df.columns # column labels
df.shape # dataframe size
# Viewing dataframes
df.head()
df.tail()
# Summary
df.info()
```

Column Addition & Deletion

```
# Adding columns
df['three'] = df['one'] * df['two']
df['flag'] = df['one'] > 2
# Assign - like dplyr mutate
df.assign(four = df['one'] /df['two'])
# Deleting columns
del df['flag']
four = df.pop('four')
```

Slicing / Selection

- Slicing like Python lists
- Also optimised pandas methods loc/iloc
- By label or position (0-based, exclusive)
- Can use lists of labels / indexes
- Boolean indexing

Operation	Syntax	Result
Select column	df[col]	Series
Select row by label	df.loc[label]	Series
Select row by integer location	df.iloc[loc]	Series
Slice rows	df[5:10]	DataFrame
Select rows by boolean vector	df[bool_vec]	DataFrame

```
# Select single column
df['one']
# Select multiple columns (list)
df[['two', 'one']] # any order
# Slice data frame rows / cols
df[:3]
df.loc['b',:]
df.loc['c':, 'one':'three']
df.iloc[2:]
df.iloc[1:3, 2:3]
# Boolean indexing
# select rows on column values
df[df.one > 1]
# select values on condition
df[df > 2]
```

Categorical Variables

- Category column type in dataframe
- Like factor in R
- Categories can be ordered
- Sorting is per order in the categories, not lexical order
- Grouping by a categorical column also shows empty categories

```
df["biotype"] = df["raw_biotype"].astype("category")
df["biotype"].cat.categories = "protein_coding", "rRNA", "lincRNA"]
```

Missing data

- Pandas uses np.nan to represent missing data
- By default not included in computations
- Drop or fill NAs
- Create a Boolean mask where values are nan

```
# drop rows with nan
df.dropna(how='any')

# Replace nan with specific value
df.fillna(value=5)

# Create Boolean mask
pd.isna(df)
```

Operations

- Operations with scalars are element-wise
- Boolean operators
- Descriptive statistics
 - mean()
- Numpy functions
- Matrix algebra

```
# Element-wise mathematical operations
df * 5
df **3
# Boolean logic
df1 & df2
# Numpy functions
np.log(df)
# Statistical summary
df.describe()
# statistical functions
df.mean() # per column
df.mean(1) # per row
# Matrix algebra
df.T # transpose of matrix
df.dot(df) # matrix multiplication
```

Apply

- Apply functions along an axis of a data frame
- Like apply in R

```
# apply to entire dataframe
df.apply(np.sqrt)

# apply to cols
df.apply(np.sum, axis=0)

# apply to rows
df.apply(np.sum, axis=1)
```

Sorting Dataframes

```
# Sort by single column
df.sort values(by=['col1'])
# Sort by multiple columns
df.sort values(by=['col1', 'col2'])
# Descending order
df.sort values(by='col1', ascending=False)
# NAs first
df.sort values(by='col1', ascending=False, na position='first')
```

Combining datasets

- Linux like concatenation concat
- SQL style merges
 - merge()
 - join()
- Much faster than R

Merge method	SQL Join Name	Description
left	LEFT OUTER JOIN	Use keys from left frame only
right	RIGHT OUTERJOIN	Use keys from right frame only
outer	FULL OUTER JOIN	Use union of keys from both frames
inner	Use intersection of frames	

Grouping

- Group by
 - **Split** the data into groups based on some criteria
 - Apply a function to each group independently
 - Combine the results into a data structure

```
# Group rows by categorical variable in column A
# Then calculate the sum for each group
# Produces a dataframe where rows are groups in A
# and columns are sum of each numerical column
df.groupby('A').sum()
```

Reshaping

- Many plotting packages require tidy data
- melt = melt / gather in R
- pivot = cast / spread in R

country	year	cases	coun	try 1999	2000
Afghanistan	1999	745	Afghan	istan 745	2666
Afghanistan	2000	2666	Brazil	37737	80488
Brazil	1999	37737	China	212258	213766
Brazil	2000	80488			
China	1999	2122581			
China	2000	213766		Melt	

```
melted = df.melt(id_vars=['country'], var_name='year', value_name='cases')
# Unmelt
df = melted.pivot(index='country', columns='year')
```

Loading and Saving Data

- Read from / write to many formats
 - CSV
 - TSV
 - Excel
 - HDF5
 - Databases

```
# Read and write to CSV
pd.read csv('foo.csv')
df.to csv('foo.csv')
# tsv
pd.read csv('foo.tsv', sep='\t', header=0)
pd.read table(fpath) # tab default
# Excel
pd.read excel('foo.xlsx', 'Sheet1',
       index col=None, na values=['NA'])
df.to excel('foo.xlsx', sheet name='Sheet1')
# HDF5
pd.read hdf('foo.h5', 'df')
df.to hdf('foo.h5', 'df')
```

Plotting in Python

- Matplotlib plotting library
- Inspired by Matlab plotting
- Very fine control of plotting
 - Every line, shape & character
- Extensive capabilities
- Multiple interfaces
 - Pyplot
 - Object oriented

Seaborn

- Statistical graphics package for Python
- Built on top of Matplotlib
- Closely integrated with Pandas
 - Works with tidy data
- Built-in themes & colour palettes
- High-level plotting
- Can still control detail with Matplotlib

Visualizing the distribution of a dataset

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
x = np.random.normal(size=100)
sns.distplot(x)
# Select number of bins
# Remove kernel density estimation
# Add rug plot
sns.distplot(x, bins=20, kde=False, rug=True)
```


Scatterplot example

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="darkgrid")
tips = sns.load dataset("tips")
sns.relplot(x="total bill", y="tip",
       hue="smoker", data=tips);
sns.relplot(x="total bill", y="tip",
       hue="smoker", style="time",
       data=tips);
```


show up to three additional variables by modifying the hue, size, and style of the plot elements https://seaborn.pydata.org/tutorial/relational.html

Show multiple relationships with Facets

sns.relplot(x="total_bill", y="tip", hue="smoker", col="time", data=tips);

Pairs plot

```
iris = sns.load_dataset("iris")
g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend();
```


Lineplot example

```
fmri = sns.load_dataset("fmri")

sns.relplot(x="timepoint", y="signal",
hue="event", kind="line", data=fmri)

sns.relplot(x="timepoint", y="signal",
hue="region", style="event", dashes=False,
markers=True, kind="line", data=fmri);
```

Same API as scatterplot – hue, size and style

Facets

```
sns.relplot(x="timepoint",
    y="signal",
    hue="subject",
    col="region",
    row="event",
    height=3,
    kind="line",
    estimator=None,
    data=fmri);
```


Plotting categorical data

Combined violin plot and swarm plot

Data Science Summary

- Pandas provides powerful tools for manipulating matrix data
 - Reorganising / tidying
 - Subsetting / filtering
 - Sorting and merging
 - Grouping & summarising
- Producing meaningful plots requires data to be in the correct format
- High level plotting packages can produce pretty plots quickly
 - Seaborn, pandas
 - ggplot/plotnine
- If you are familiar with Matplotlib you can customise every detail

Pandas & Plotting Exercises

- Load read count dataset from week 1
- Rename columns and remove unwanted columns
- Filter out genes with no counts
- Plot scatter plot of correlation of replicates (pairs plot)
- Tidy data
- Plot histogram and density plot of read counts across all sample
- Plot a violin plot of read counts per sample
- Identify gene with highest expression in each sample
- Normalise read counts to total reads per sample total reads
- Log transform normalised read counts
- Create new dataframe of 100 genes with highest average variance across conditions
- Plot the of expression of the top 5 most variable genes across all samples (line plot)
- Plot a heatmap for top 100 most variable genes across all samples
- Optional:
 - Add TAD information to dataframe (http://chromosome.sdsc.edu/mouse/hi-c/download.html)
 - Calculate average expression for each TAD