

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination March 2020

Max. Marks: 20

Class: T.E.

Duration: 1 Hr.

Course Code: CE63

Semester: VI Branch: COMP

Name of the Course: Digital Signal Processing

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.	Questions	Max. Marks	CO-BL-PI
1	Determine and sketch the linear convolution y(n) of the signals using tabular method	6	2-3-2.2.3
	$x(n) = \begin{cases} \frac{1}{3}n, & 0 \le n \le 6\\ 0, & elsewhere \end{cases}$		
	$h(n) = \begin{cases} 1, & -2 \le n \le 2 \\ 0, & elsewhere \end{cases}$		
2	A discrete-time signal x(n) is defined as	5	2-3-2.1.3
	$\left(1 + \frac{n}{3}, -3 \le n \le -1\right)$		
	$\begin{cases} 1 + \frac{n}{3}, & -3 \le n \le -1 \\ 1, & 0 \le n \le 3 \\ 0, & elsewhere \end{cases}$		
	a) sketch the signal that result if we,		
	1. First fold x(n) and then delay the resulting signal by 4 samples.		
	2. First delay x(n) by 4samples and then fold the resulting signal.b) Sketch the signal x(-n+4)		
	c) Compare the results in parts (b) and (c) and derive a rule for obtaining signal x(-n+k) from x(n)		
-	d) Can you express the signal $x(n)$ in terms of signals $\delta(n)$ and $u(n)$		
3	Describe Time Variant and Time Invariant System. Write a procedure to test for time invariance. Test the following system for time invariance $y(n) = x(n^2)$	4	1-2- 1.3.1
	OR		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

	Describe Linear and nonlinear system with suitable diagram. Test the following	4	1-2- 1.3.1
	system for linearity		
	$y(n) = x(n^2)$		
4	Discover the Relation between DFT and DTFT. State and explain properties of DFT	5	3-2-1.3.1

tells much pithely has