Prova di Comunicazioni Numeriche

27 Giugno 2016

Es. 1 - Sia dato un processo Gaussiano W(t) bianco in banda B, cioè con densità spettrale di potenza pari a $S_W(f) = \frac{N_0}{2} \operatorname{rect}\left(\frac{f}{2B}\right)$.

- 1. Si estragga la variabile aleatoria $W = W(t_0)$, dove t_0 è un generico istante di tempo. Se ne scriva la densità di probabilità.
- 2. Il processo W(t) viene quindi filtrato da un sistema LTI con risposta impulsiva $h(t) = \delta(t) + 0.5 \delta(t T)$ e poi inviato in un quadratore. Quanto vale il valor medio del processo Y(t) all'uscita del quadratore, sapendo che $B = \frac{3}{4T}$.

Es. 2 - In un sistema di comunicazione numerico QAM (Vedi Fig. 1 per la parte ricevente) il segnale trasmesso è $s(t) = \sum_k x_c[k] \, p \, (t - kT) \cdot \cos \left(2\pi f_0 t \right) - \sum_k x_s[k] \, p \, (t - kT) \cdot \sin \left(2\pi f_0 t \right)$, dove i simboli $x_c[k] \in A_s^c = \{-2,2\}$ e $x_s[k] \in A_s^s = \{-1,1\}$ sono indipendenti ed con probabilità $P(x_c = -2) = 2/3$, $P(x_c = 2) = 1/3$, $P(x_s = -1) = 1/2$ e $P(x_c = 1) = 1/2$. L'impulso sagomatore p(t) ha TCF pari a $P(f) = \sqrt{1 - |fT|} rect \left(\frac{fT}{2} \right)$, $f_0 \gg \frac{1}{T}$. Il canale di propagazione e' ideale e la DSP del rumore in ingresso al ricevitore e' bianco nella banda del segnale trasmesso con DSP pari a $\frac{N_0}{2}$. Il filtro in ricezione $h_r(t) = p(t)$. Sia per il ramo in fase che per il ramo in quadratura la soglia di decisione e' $\lambda = 0$. Calcolare:

- 1. L'energia media per simbolo trasmesso,
- 2. La potenza di rumore in uscita ai filtri in ricezione su entrambi i rami (in fase e quadratura, $P_{n_{uc}}$ e $P_{n_{us}}$)
- 3. La probabilità di errore sul simbolo.

Fig.1