

Prof. Ana Paula Piovesan Melchiori GAC104 - Computação Gráfica

Documentação de Software: Video-Game 3D

David de Jesus Costa - 10A Mateus Augusto da Silveira Pinto - 10A

Sumário

```
Definições e Siglas
<u>Introdução</u>
   Requisitos Funcionais
     [RF001]
     [RF002]
     [RF003]
     [RF004]
     [RF005]
     [RF006]
     [RF007]
     [RF008]
     [RF009]
     [RF010]
     [RF011]
  Requisitos Não Funcionais
     [NF001]
     [NF002]
     [NF003]
     [NF004]
     [NF005]
     [NF006]
     [NF007]
     [NF008]
     [NF009]
     [NF010]
     [NF011]
Estratégias de Codificação
```

Conclusão

Definições e Siglas

API: Application Programming Interface.

C++: Linguagem de Programação.

GLUT: OpenGL Utility Toolkit.

GLU: OpenGL Utility Library.

OpenGL: API para criação de programas gráficos 2D e 3D.

Viewport: Uma viewport é uma região de visualização de polígonos em computação gráfica.

Voxel Art: Voxel art é como pixel art, mas em formato 3D. Em vez de ter pixels planos, como em uma tela 2D, você adiciona unidades 3D ao espaço para criar essa forma de arte.

Introdução

O software é composto de um ambiente 3D utilizado como linguagem de programação o C++, a API OpenGL que é utilizada na computação gráfica para o desenvolvimento de ambientes 2D e 3D juntamente com suas bibliotecas GLUT e GLU, a primeira é uma biblioteca que serve para gerenciamento de janela e tratamento de eventos de dispositivos de entrada, por conseguinte a segunda consiste em funções que utilizam os recurso de baixo nível da biblioteca OpenGL para prover rotinas de desenho de alto nível.

Ademais, no ambiente é animado um vídeo-game 3D e uma empilhadeira, em que tais possuem textura, animação, iluminação e cor. Há também um menu pop-up onde pode ser alterada a frase do display do objeto ilustrado, ativar ou desativar a iluminação de todo o ambiente, alterar o tamanho da viewport. Esta animação foi inspirada na arte voxel (voxel art) em adicionamos unidades 3D ao espaço para criar essa forma de arte.

Levantamento de Requisitos

Requisitos definem o que um sistema deve fazer e sob quais restrições. Eles são divididos em dois, funcionais e não funcionais.

Requisitos Funcionais

Os requisitos funcionais são aqueles que delineiam o comportamento do sistema. Eles especificam as ações que um sistema deve ser capaz de executar, ou seja, descrevem o que se espera que o software faça. Os requisitos funcionais estabelecem as funcionalidades de que o sistema deve dispor, pois especificam o comportamento de entrada e saída do sistema.

Abaixo são informados os requisitos funcionais que estarão presentes na implementação Final do projeto Vídeo-Game 3D.

[RF001]	Desativar lighting							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá ser desativado a Lighting.							

[RF002]	Ativar lighting							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá ser ativado a Lighting.							

[RF003]	Desativar light 0							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá ser desativado a light 0.							

[RF004]	Ativar light 0							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá ser ativado a light 0.							

[RF005]	Alterar a resolução do display							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá ser alterada a resolução da tela.							

[RF006]	Encerrar o programa							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá encerrar o programa ou quando pressionar a tecla 'ESC' no teclado.							

[RF007]	Abrir o menu pop-up							
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde haverá opções que serão aplicadas na janela.							

[RF008]	Alterar a cor do videogame						
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá se alterar a cor do videogame.						

[RF009]	Pausar Animação						
Descrição	Ao pressionar o botão esquerdo do mouse ou o equivalente a este no touchpad a animação será pausada e soltando tal tecla ou o touchpad a animação retorna.						

[RF010]	Alterar a cor da empilhadeira						
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá se alterar a cor do videogame						

[RF011]	Alterar a cor de Fundo						
Descrição	Ao clicar com o botão direito do mouse dentro da janela será exibido um menu pop-up onde poderá se alterar a cor do videogame						

Requisitos Não Funcionais

Os requisitos não funcionais são aqueles que expressam como o sistema deve ser feito. Eles descrevem atributos do sistema ou atributos do ambiente do sistema. Em geral, relacionam-se com padrões de qualidade, como confiabilidade, performance, robustez etc. Os requisitos não funcionais também são essenciais, pois definem o grau de eficiência para a tarefa a qual o sistema se propõe a fazer. Portanto, eles indicam as qualidades do sistema, enfatizando as características que ele deverá possuir.

Abaixo são informados os atributos não funcionais que serão implementados no projeto final.

[NF001]	Linguagem de programação							
Descrição	0	software	deve	ser	desenvolvido	na		
	linguagem C++.							

[NF002]	Textura				
Descrição	O software deve possuir textura em pelo				
	menos um dos objetos 3D.				

[NF003]	Hierarquia de Objetos					
Descrição		software rarquia ent		•	objetos	com

[NF004]	Transformações Geométricas					
Descrição	O software deve possuir transformações					
	geométricas.					

[NF005]	Ambiente 3D				
Descrição	O ambiente deve ser na terceira dimensão				
	(3D).				

[NF006]	Executar no Windows 10 e 11					
Descrição	0	software	deve	rodar	no	sistema
	operacional windows 10 e 11.					

[NF007]	Interação com usuário			
Descrição	O software deve ter interação com o usuário			
	por meio do mouse, teclado e touchpad.			

[NF008]	Iluminação ambiente				
Descrição	O software deve possuir iluminação				
	am	biente.			

[NF009]	Animação
Descrição	O software deve possuir pelo menos uma
	animação em algum dos objetos 3D.

[NF010]	Colorização				
Descrição	O software deve possuir objetos coloridos				
	com cores diversas.				

[NF011]	Placa de video (GPU)
Descrição	A máquina que executa o software deve possuir placa de vídeo compatível com a API OpenGL e suas bibliotecas.

Estratégias de Codificação

O software foi desenvolvido no Sistema Operacional Windows 11. Ele foi codificado na linguagem de programação C++, linguagem que juntamente com a linguagem de programação C foi utilizada nesta disciplina de computação gráfica.

Foi utilizado a API OpenGL juntamente com suas bibliotecas GLUT e GLU. Essa API juntamente com suas bibliotecas ajudou e nos fizeram construir essa animação do Video-Game 3D.

Durante o processo de codificação utilizamos a IDE Visual Studio 2022 e o Editor de texto Visual Studio Code para implementarmos e testarmos o nosso software, o Visual Studio ajudou muito pois com ele ganhamos mais agilidade na hora de escrevermos e testarmos o programa.

A biblioteca GLUT é quem fica responsável pela criação de janelas e também pelo tratamento de eventos de dispositivos de entrada como mouse,

touchpad e teclado. O paradigma de programação em GLUT é orientado a eventos do tipo ou seja e captura por exemplo quando o botão direito foi pressionado e quando foi solto.

Resultados Esperados

Esperamos em primeiro lugar que o usuário tenha uma boa experiência e facilidade para usar o software, além disso, esse software deve ser acessível para todos computadores da atualidade, desde computadores considerados "fracos" até computadores considerados "parrudos" ou "fortes".

Inicialmente o programa iniciará com as animações ativas, a animação do display exibindo as cores no formato RGB (Red, Blue, Green) simboliza a taxa de atualização do display de um vídeo-game e como ela é rápida, a taxa de atualização do display do vídeo-game e consideravelmente lenta, naturalmente sabemos que é muito rápido. As animações poderão ser pausadas ao pressionar o botão esquerdo do mouse e ao soltar a animação continua sua rotina.

Estamos capturando essas rotinas através da função callback mouse(), tal função também captura quando clicamos com o botão direito do mouse ou o equivalente a este no touchpad, qual tão ação é feita é aberto um menu PopUp, que aparece algumas opções como alterar a cor de alguns objetos, ativar ou desativar a iluminação, resolução da janela e sair do software como mostra as imagens abaixo:

Como mostrado acima, o programa poderá ser encerrado pelo menu ou ao pressionar a tecla 'ESC' do teclado.

A cor dos objetos e do fundo também poderão ser alteradas como mostra as imagens abaixo:

Também a iluminação poderá ser desativada ou ativada, por padrão a deixamos ativada mas como dito o usuário poderá alterar tal ação, as imagens abaixo demonstram a esquerda como fica o ambiente quando desativamos a luz 0 (light 0) e do lado esquerdo quando desativamos totalmente a iluminação.

É possível observar por meio de como fica a tonalidade da luz do ambiente 3D quando o usuário desativa luz 0, apenas a luz ambiente fica ativa, ficando os objetos e o fundo com cores escuras.

Por fim, a resolução da tela também poderá ser alterada pelo usuário, as opções de resolução são SD, HD FHD ou deixar o ambiente 3D em tela cheia (fullscreen).

Conclusão

A Computação Gráfica está presente em praticamente todas as áreas, desde a médica até a propaganda. Foi bastante interessante ver como funciona a computação gráfica, como são feitas as transformações, como ela abstrai as informações do mundo real para o mundo computacional de uma forma espetacular e bastante complexa, pois não seria diferente visto que o nosso mundo é bastante complexo.

Também, confessamos que no começo foi difícil e ainda continua sendo difícil, implementar um software gráfico com o OpenGL visto a grande complexidade que há por trás de tudo, mas ele foi um grande alicerce, esperamos que esta API evolua e simplifique mais ainda a vida do desenvolvedor, sabemos que existe ferramentas mais sostificadas mais enfim, foi uma ótima e desafiadora experiência.