INM 430 Machine Learning Final coursework

A comparison of Decision Tree and k-Nearest Neighbours on Classification of Foetal Health Supplementary material

I. (Glossarv

	I. Glossary		
Accuracy	Total number of corrected classified samples out of all classified sample.		
AUC	Area under receive operating characteristic (ROC).		
Bayesian optimization	An approach that uses Bayes Theorem to direct the search in order to find		
	the optimal hyperparameters of a model.		
Bias	Simplifying assumptions made by a model to make the target variable		
	easier to predict.		
Cardiotocogram	A technique to monitor the heartbeat of a foetus and the uterine		
	contractions during pregnancy and labour.		
CART algorithm	Classification And Regression Tree algorithm.		
Classes	The output variable of a sample after being passed to a classification		
	algorithm.		
Classification	An algorithm to predict a distinct outcome.		
Computation cost	The execution time per time step during a simulation.		
Confusion matrix	A table that shows the performance of a classification model.		
Correlation heatmap	A 2D matrix to represent correlation between different variables.		
10-fold Cross	In k-fold cross-validation, the original sample is randomly partitioned into		
validation	k equal size subsamples. Of the k subsamples, a single subsample is		
	retained for testing the model and the remaining k-1 subsamples are used		
	as training data. The training data is used to train the model and the test		
	set is used to evaluate it.		
Decision tree	A machine learning model for classification and regression. To classify a		
	sample, the sample is passed from the root node, assessed by its feature,		
	and passed to another node via one of the branches. The end node		
	determines the class of the sample.		
Exhaustive search	Algorithm that searches for all possible combination of parameters.		
algorithm			
F1 score	Harmonic mean of precision and recall.		
	$F1$ score $-2 \times \frac{Precision \times Recall}{Precision}$		
	$F1 score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$		
False negative rate	Also called miss rate. It is the measure of incorrectly identified positive out of all actual positive samples. False negative (FN)		
	True positive (TP) + Faise negative (FN)		
False positive rate	Also called fall-out. It is the measure of incorrectly identified negative out		
	of all actual negative samples.		

	False positive (FP)			
	False positive rate = $\frac{False\ positive(FP)}{False\ positive\ (FP) + True\ negative\ (TN)}$			
Feature selection	A process to reduce the number of input variable when training a model.			
Gini's Diversity Index				
	randomly chosen. It ranges from 0 to 1. When building a decision tree, the			
	feature with least Gini Index is chosen as the root node.			
Hyperparameters	Parameters of a model that controls its learning process.			
k-Nearest Neighbours	A machine learning model for classification and regression which			
	searches for similar datapoints of a particular sample to be predicted.			
Node	A point of a decision tree that branches lead to.			
Noise	Additional meaningless information of data.			
Nonparametric	If a model is nonparametric, no assumption about the distribution of data			
	is made.			
Normalization	Rescaling the data such that all data resembles a normal distribution of			
	mean 0 and standard deviation 1.			
Outliers	Datapoints that differs significantly from other observations.			
Overfitting	Occurs when the model fits exactly on the training data. If a model			
	overfits, it cannot perform accurately on the test data.			
Precision	The measure of correctly identified positive out of all identified positive			
	samples.			
	Procision – True positive (TP)			
	$Precision = \frac{True\ positive\ (TP)}{True\ positive\ (TP) + False\ positive\ (FP)}$			
Precision-Recall (PR)	A graphical plot that illustrates the tradeoff between precision and recall			
curve	for different threshold.			
Recall	Also called sensitivity or true positive rate. It is the measure of correctly			
	identified positive out of all actual positive samples.			
	$Recall = \frac{True\ positive\ (TP)}{True\ positive\ (TP) + False\ negative\ (FN)}$			
Regression	An algorithm to predict a continuous outcome.			
ROC curve	Receiver operating characteristic – a graphical plot that illustrates the			
ROC curve	diagnostic ability of a binary classifier as its discrimination threshold is			
	varied.			
Scaling	Data transformation technique such that the data fits within a specific			
Souring	scale.			
Stratification	Dividing a dataset into subgroups (strata) such that each strata contains			
· 	the same proportion of each class label. It is used to guarantee that the test			
	set is representative of the entire dataset.			
Strip plots	Graphical data analysis technique to summarize a univariate data set.			
Supervised learning	A method that uses datasets with target features (classes) to train			
method	algorithms that can classify or predict outcomes.			
	-			

Synthetic Minority	A tope of data augmentation for the minority class. New data are	
Oversampling	synthesized from the existing data such that the total number of data for	
Technique (SMOTE)	each class is the same.	
Test set	Subset of data that is used to test the model for generalisation.	
Training set	Subset of data that is used to train a model.	
Variance	Amount that the estimate of class will change if different training data	
	was used.	
References	https://medium.com/analytics-steps/understanding-the-gini-index-and-	
	information-gain-in-decision-trees-ab4720518ba8	
	https://patient.info/pregnancy/cardiotocography	
	https://machinelearningmastery.com/parametric-and-nonparametric-	
	machine-learning-algorithms/	
	https://medium.com/analytics-vidhya/stratified-sampling-in-machine-	
	learning-f5112b5b9cfe	
	https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-	
	imbalance-using-smote-techniques/	

II. Intermediate results including any negative results

- Illustration of decision tree

- Performance of models on training test

	DT	kNN
Accuracy	0.935	0.940
Recall	0.938	0.973
Precision	0.932	0.912
F1 score	0.935	0.942
AUC	0.965	0.990

The performance of kNN is much better on the training set than on test set. This is because SMOTE was applied to training set but not on test set, so there is no class imbalance in the training set.

- Bayesian optimization for decision tree (left) and k-Nearest Neighbour (right)

III. Implementation details including a brief description of main implementation choices

All initial data analysis including the strip plots and correlation matrix was done in Python for convenience. The dataset was split into 70% training set and 30% test set by scikit-learn. SMOTE was done using imbalanced-learn.

The main MATLAB functions used were:

- fitctree() To train decision tree

- fitcknn() To train k-Nearest Neighbours

- bayesopt() To optimize hyperparameters using Bayesian optimization

- normalize() To rescale the numerical features into the range 0 to 1

- confusionmat() To compute confusion matrix

- confusionchart() To create confusion matrix chart

- perfcurve() To create ROC

When implementing Bayesian optimization, a function to calculate F1 score was used. Details of the function can be found here:

https://uk.mathworks.com/matlabcentral/fileexchange/71000-to-optimise-hyperparameter-of-ml-model-using-f1?s tid=prof contriblnk