МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразования КС-грамматик.»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №2

Преобразования КС-грамматик. Вариант 8

Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Задание:

- 1. $T \rightarrow abETP$
- 2. $T \rightarrow aDE$
- $3. T \rightarrow D$
- 4. $D \rightarrow DTAb$
- 5. $D \rightarrow b$
- 6. $E \rightarrow \varepsilon$
- 7. $P \rightarrow BCa$
- 8. $P \rightarrow Cb$
- 9. $C \rightarrow abC$
- 10. $A \rightarrow Bbb$
- 11. $B \rightarrow aECb$
- 12. $B \rightarrow D$
 - 1. Преобразовать исходную грамматику G в грамматику G_1 без лишних символов. **Модификации:** в ходе выполнения лабораторной работы обнаружено, что в грамматике не будет недостижимых символов. Поэтому добавим правило:

13.
$$S \rightarrow ab$$

Найдём в исходной грамматике бесплодные нетерминалы.

Для начала найдём продуктивные нетерминалы.

В множество продуктивных нетерминалов Р включаем нетерминал D (правило 5) нетерминал E (правило 6) и нетерминал S (правило 13). Получаем = $\{D, E, S\}$. Повторяем проверку и включаем нетерминал T (правило 2) и нетерминал B (правило 12). Получаем $P = \{D, E, S, T, B\}$

Повторяем проверку и включаем A (правило 10). Получаем $P = \{D, E, S, T, B, A\}$ Множество P больше увеличить не можем.

Из множества нетерминалов исключаем продуктивные нетерминалы и получаем $\{P,C\}$ - множество бесплодных нетерминалов.

Исключаем правила 1, 7, 8, 9, 11 так как они содержат бесплодные нетерминалы. Получаем грамматику:

- 2. $T \rightarrow aDE$
- 3. $T \rightarrow D$
- 4. $D \rightarrow DTAb$

5.
$$D \rightarrow b$$

6.
$$E \rightarrow \varepsilon$$

10.
$$A \rightarrow Bbb$$

12.
$$B \rightarrow D$$

13.
$$S \rightarrow ab$$

Найдём достижимые символы.

Положим $P = \{T\}$, где T - начальный нетерминал.

Включим в список a, D, E (правило 2). $P = \{T, a, D, E\}$.

Включим в список b, A (правило 4), ε . $P = \{T, a, D, E, \varepsilon, b, A\}$.

Включим в список B (правило 10). $P = \{T, a, D, E, \varepsilon, b, A, B\}.$

Множество Р больше увеличить не можем.

Из множества терминалов и нетерминалов исключаем достижимые терминалы и нетерминалы и получаем $\{S\}$ - множество недостижимых нетерминалов и терминалов.

Исключаем из грамматики правило 13, так как оно содержит недостижимый символ.

Искомая грамматика G_1 :

1.
$$T \rightarrow aDE$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \to \varepsilon$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

2. Преобразовать грамматику G_1 в грамматику G_2 без ε -правил.

Выберем правило 5. Иключаем из правой части каждого правила исходной грамматики всеми возможными способами вхождение нетерминала Е. Полученные правила добавляем в множество правил грамматики.

1_1.
$$T \rightarrow aDE$$

1 2.
$$T \rightarrow aD$$

$$2.T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Исключаем из списка правил правило 5.

1 1.
$$T \rightarrow aDE$$

$$1^{-}2. T \rightarrow aD$$

$$2.T \rightarrow D$$

$$3. D \rightarrow DTAb$$

- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Исключим из правил непродуктивные символы:

- $1_2. T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- $4. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

В полученной грамматике G_2 нет правил вида $A \to A$, одинаковых правил и ε -правил. Получили искомую грамматику:

Искомая грамматика G_2 :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$
- 3. Преобразовать грамматику G_1 в грамматику G_3 без цепных правил.

Применим замену края:

Исходная грамматика:

- 1. $T \rightarrow aDE$
- 2. $\mathbf{T} \rightarrow \mathbf{D}$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Шаг 1:

- 1. $T \rightarrow aDE$
- 2 1. $T \rightarrow DTAb$
- 2_2. $T \rightarrow b$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- 7. $\mathbf{B} \rightarrow \mathbf{D}$

Шаг 2:

1. $T \rightarrow aDE$

```
2 1. T \rightarrow DTAb
```

2 2.
$$T \rightarrow b$$

3.
$$D \rightarrow DTAb$$

$$4. D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

7 1.
$$B \rightarrow DTAb$$

$$7^{-}2. B \rightarrow b$$

Цепных правил не осталось. Получили искомую грамматику G_3 .

Альтернативный вариант:

Исключим из грамматики все нецепные правила. Это правила 1, 3, 4, 5, 6.

$$2. T \rightarrow D$$

$$7. B \rightarrow D$$

Примем множества $M^T=\{T\}$. Включим нетерминал D в множество M^T , так как есть правило 2 $T\to D$. $M^T=\{T,D\}$. Больше в M^T ничего добавить не можем. Исключаем T: $M^T=\{D\}$.

Примем множества $M^B=\{B\}$. Включим нетерминал D в множество M^T , так как есть правило 7 $B\to D$. $M^B=\{B,D\}$. Больше в M^T ничего добавить не можем. Исключаем B: $M^B=\{D\}$.

Исключаем из грамматики G_1 все цепные правила:

1.
$$T \rightarrow aDE$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

6.
$$A \rightarrow Bbb$$

Для правила 3 добавим правило 3_1. $T \to DTAb$, так как D принадлежит $M^T = \{D\}$.

Для правила 3 добавим правило 3_2. $B \to DTAb$, так как D принадлежит $M^B = \{D\}$.

Для правила 4 добавим правило 4_1. $T \to b$, так как D принадлежит $M^T = \{D\}$.

Для правила 4 добавим правило 4_2. $B \to b$, так как D принадлежит $M^B = \{D\}$.

Искомая грамматика G_3 :

1.
$$T \rightarrow aDE$$

3.
$$D \rightarrow DTAb$$

3 1.
$$T \rightarrow DTAb$$

$$3^{-}2. B \rightarrow DTAb$$

$$4. D \rightarrow b$$

4 1.
$$T \rightarrow b$$

4_2.
$$B \rightarrow b$$

5.
$$E \rightarrow \varepsilon$$

4. Преобразовать грамматику G_1 в грамматику G_4 без левой рекурсии.

Алгоритм применим, если грамматика не имеет циклов (цепных правил) и ε -правил. Для получения грамматики без ε -правил воспользуемся грамматикой G_2 .

- $1. T \rightarrow aD$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

Преобразуем эту грамматику так, чтобы в ней не было цепных правил.

Исходная грамматика:

- 1. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- $4. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

Выполним замену края:

- $1. T \rightarrow aD$
- $2_1. T \rightarrow DTAb$
- $2 2. T \rightarrow b$
- $3. D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $\mathbf{B} \to \mathbf{D}$

Выполним замену края:

- 1. $T \rightarrow aD$
- 2 1. $T \rightarrow DTAb$
- $2^{-}2. T \rightarrow b$
- $3. D \rightarrow DTAb$
- $4. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7_1. $B \rightarrow DTAb$
- 7_2. $B \rightarrow b$

Получили грамматику G_3' без лишних символов, ε -правил и цепных правил:

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$

```
3. T \rightarrow b
```

4.
$$D \rightarrow DTAb$$

$$5. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow DTAb$$

8.
$$B \rightarrow b$$

Обозначим нетерминалы грамматики: T, D, A, B как A_1, A_2, A_3, A_4 соответственно.

$$1. A_1 \rightarrow aA_2$$

$$2. A_1 \rightarrow A_2 A_1 A_3 b$$

$$3. A_1 \rightarrow b$$

4.
$$A_2 \rightarrow A_2 A_1 A_3 b$$

5.
$$A_2 \rightarrow b$$

6.
$$A_3 \rightarrow A_4bb$$

7.
$$A_4 \rightarrow A_2 A_1 A_3 b$$

$$8. A_4 \rightarrow b$$

Рассмотрим нетерминал A_1 .

Правил вида $A_1 \to A_0 a$ не существует, следовательно замену края выполнять не будем.

Самолеворекурсивных правил для A_1 также нет.

Рассмотрим нетерминал A_2 .

Правил вида $A_2 \to A_1 a$ не существует, следовательно замену края выполнять не будем.

Для A_2 существует самолеворекурсивное правило 4. Также существует несаморекурсивное правило 5. Заменим эти правила:

$$1. A_1 \rightarrow aA_2$$

$$2. A_1 \rightarrow A_2 A_1 A_3 b$$

3.
$$A_1 \rightarrow b$$

9.
$$A_2 \rightarrow bB_1$$

10.
$$B_1 \to A_1 A_3 b B_1$$

11.
$$B_1 \rightarrow \varepsilon$$

6.
$$A_3 \rightarrow A_4bb$$

7.
$$A_4 \rightarrow A_2 A_1 A_3 b$$

$$8. A_4 \rightarrow b$$

Рассмотрим нетерминал A_3 .

Правил вида $A_3 \to A_2 a$ не существует, следовательно замену края выполнять не будем.

Самолеворекурсивных правил для A_3 также нет.

Рассмотрим нетерминал A_4 .

Существует правило 7. $A_4 \to A_2 A_1 A_3 b$, выполним замену края:

1.
$$A_1 \rightarrow aA_2$$

- $2. A_1 \rightarrow A_2 A_1 A_3 b$
- 3. $A_1 \rightarrow b$
- 9. $A_2 \rightarrow bB_1$
- 10. $B_1 \to A_1 A_3 b B_1$
- 11. $B_1 \to \varepsilon$
- 6. $A_3 \rightarrow A_4bb$
- 12. $A_4 \to bB_1A_1A_3b$
- $8. A_4 \rightarrow b$

Искомая грамматика G_4 :

- $1. T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- 6. $B_1 \rightarrow \varepsilon$
- 7. $A \rightarrow Bbb$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$
- 5. Преобразовать грамматику G_1 в грамматику G_5 без несаморекурсивных нетерминалов.

Искходная грамматика:

- 1. $T \rightarrow aDE$
- $2. T \rightarrow D$
- 3. $D \rightarrow DTAb$
- 4. $D \rightarrow b$
- 5. $E \rightarrow \varepsilon$
- 6. $A \rightarrow Bbb$
- $7. B \rightarrow D$

Нетерминал Е несаморекурсивный.

Исключаем правило 5:

5.
$$E \rightarrow \varepsilon$$

Выбираем вхождение символа Е в правиле 1 и выполняем замену на правую часть правила 5:

- 1_1. $T \rightarrow aD$
- 2. $T \rightarrow D$
- 3. $D \rightarrow DTAb$
- $4. D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow D$

Нетерминал Т несаморекурсивный.

Исключаем правила 1 1, 2:

$$1_1. T \rightarrow aD$$

2.
$$T \rightarrow D$$

Выбираем вхождение символа Т в правиле 3 и выполняем замену на правую часть правил 1 1, 2:

3 1.
$$D \rightarrow DaDAb$$

3 2.
$$D \rightarrow DDAb$$

$$4. D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

$$7. B \rightarrow D$$

Нетерминал В несаморекурсивный.

Исключаем правило 7:

7.
$$B \rightarrow D$$

Выбираем вхождение символа В в правиле 6 и выполняем замену на правую часть правила 7:

3 1.
$$D \rightarrow DaDAb$$

3 2.
$$D \rightarrow DDAb$$

4.
$$D \rightarrow b$$

$$6_1. A \rightarrow Dbb$$

Нетерминал А несаморекурсивный.

Исключаем правило 6 1:

6 1.
$$A \rightarrow Db\bar{b}$$

Выбираем вхождение символа А в правилах 3_1, 3_2 и выполняем замену на правую часть правила 6_1:

$$3_1_1. D \rightarrow DaDDbbb$$

3 2 2.
$$D \rightarrow DDDbbb$$

$$4. D \rightarrow b$$

Искомая грамматика G_5 :

1.
$$D \rightarrow DaDDbbb$$

2.
$$D \rightarrow DDDbbb$$

3.
$$D \rightarrow b$$

6. Получить грамматику G_6 , эквивалентную грамматике G_1 , в которой правая часть каждого правила состоит либо из одного терминала, либо двух нетерминалов.

Для получения грамматики G_6 необходимо привести грамматику G_1 к нормальной форме Хомского.

Воспользуемся грамматикой G_3' , в которой нет цепных правил, ε -правил и цепных правил.

Исходная грамматика:

1.
$$T \rightarrow aD$$

$$2. T \rightarrow DTAb$$

- 3. $T \rightarrow b$
- 4. $D \rightarrow DTAb$
- 5. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow DTAb$
- 8. $B \rightarrow b$

Выполним пункт 1 алгоритма (преобразование правил вида $A \to Xa$):

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow Bbb$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow TAb$
- 1. $T \rightarrow aD$
- $2. T \rightarrow DN_1$
- $3. T \rightarrow b$
- 4. $D \rightarrow DN_1$
- $5. D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- $8. B \rightarrow b$
- 9. $N_1 \rightarrow TAb$
- 10. $N_2 \rightarrow bb$
- 1. $T \rightarrow aD$
- $2. T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow N_3 b$
- 10. $N_2 \rightarrow bb$
- 11. $N_3 \to TA$

Выполним пункт 2 алгоритма (преобразование правил вида $A \to tB$):

- 1. $T \rightarrow N_4D$
- 2. $T \rightarrow DN_1$
- 3. $T \rightarrow b$

- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow N_3 b$
- 10. $N_2 \rightarrow bb$
- 11. $N_3 \rightarrow TA$
- 12. $N_4 \rightarrow a$

Выполним пункт 3 алгоритма (преобразование правил вида $A \to Bt$):

- 1. $T \rightarrow N_4D$
- 2. $T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow N_3 T$
- 10. $N_2 \rightarrow bb$
- 11. $N_3 \rightarrow TA$
- 12. $N_4 \rightarrow a$

Выполним пункт 4 алгоритма (преобразование правил вида $A \to tt$):

- $1. T \rightarrow N_4 D$
- $2. T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$
- 7. $B \rightarrow DN_1$
- 8. $B \rightarrow b$
- 9. $N_1 \rightarrow N_3 T$
- 10. $N_2 \rightarrow TT$
- 11. $N_3 \rightarrow TA$
- 12. $N_4 \rightarrow a$

Искомая грамматика G_6 :

- 1. $T \rightarrow N_4D$
- $2. T \rightarrow DN_1$
- 3. $T \rightarrow b$
- 4. $D \rightarrow DN_1$
- 5. $D \rightarrow b$
- 6. $A \rightarrow BN_2$

7.
$$B \rightarrow DN_1$$

8.
$$B \rightarrow b$$

9.
$$N_1 \rightarrow N_3 T$$

10.
$$N_2 \rightarrow TT$$

11.
$$N_3 \rightarrow TA$$

12.
$$N_4 \rightarrow a$$

7. Получить грамматику G_7 , эквивалентную грамматике G_1 , в которой правая часть каждого правила начинается терминалом.

Для получения грамматики G_7 необходимо привести грамматику G_1 к нормальной форме Грейбах.

Используем преобразованную грамматику G_1 без левой рекурсии G_4 :

В G_4 есть ε -правила. Исключим их и получим грамматику G_4' :

- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- $3. T \rightarrow b$
- 4. $D \rightarrow bB_1$
- 5. $B_1 \rightarrow TAbB_1$
- 6. $B_1 \rightarrow \varepsilon$
- 7. $A \rightarrow Bbb$
- 8. $B \rightarrow bB_1TAb$
- 9. $B \rightarrow b$
- 1. $T \rightarrow aD$
- 2. $T \rightarrow DTAb$
- 3. $T \rightarrow b$
- **4_1.** $D \to bB_1$
- $4^{-}2. D \rightarrow b$
- $5_1. B_1 \rightarrow TAbB_1$
- $5_2. B_1 \rightarrow TAb$
- 7. $A \rightarrow Bbb$
- 8 1. $B \rightarrow bB_1TAb$
- $8^{-}2. B \rightarrow bTAb$
- $9.B \rightarrow b$

Упорядочим грамматику:

- 1. $B_1 \to TAb$
- 2. $B_1 \rightarrow TAbB_1$
- 3. $T \rightarrow aD$
- 4. $T \rightarrow DTAb$
- 5. $D \rightarrow bB_1$
- 6. $A \rightarrow Bb\bar{b}$

7.
$$B \rightarrow bB_1TAb$$

8.
$$B \rightarrow bTAb$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$D \rightarrow b$$

Выполнение замены края:

- 1. $B_1 \rightarrow TAb$
- 2. $B_1 \rightarrow TAbB_1$
- 3. $T \rightarrow aD$
- 4. $T \rightarrow DTAb$
- 5. $D \rightarrow bB_1$
- 6 1. $A \rightarrow bB_1TAbbb$
- 6 2. $A \rightarrow bTAbbb$
- $6_3. A \rightarrow bbb$
- 7. $B \rightarrow bB_1TAb$
- 8. $B \rightarrow bTAb$
- 9. $B \rightarrow b$
- 10. $T \rightarrow b$
- 11. $D \rightarrow b$
- 1. $B_1 \rightarrow TAb$
- 2. $B_1 \rightarrow TAbB_1$
- $3. T \rightarrow aD$
- 4. $T \rightarrow bB_1TAb$
- 5. $D \rightarrow bB_1$
- $6_1. A \rightarrow bB_1TAbbb$
- 6_2 . $A \rightarrow bTAbbb$
- $6^{-}3. A \rightarrow bbb$
- $7. B \rightarrow bB_1TAb$
- 8. $B \rightarrow bTAb$
- 9. $B \rightarrow b$
- 10. $T \rightarrow b$
- 11. $D \rightarrow b$
- $1_1. B_1 \rightarrow aDAb$
- 1_2. $B_1 \rightarrow bB_1TAbAb$
- $2^-1. B_1 \rightarrow aDAbB_1$
- 2^- 2. $B_1 \rightarrow bB_1TAbAbB_1$
- $3.T \rightarrow aD$
- 4. $T \rightarrow bB_1TAb$
- 5. $D \rightarrow bB_1$
- 6_1 . $A \rightarrow bB_1TAbbb$
- $6^{-}2. A \rightarrow bTAbbb$
- $6_{3}. A \rightarrow bbb$

```
7. B \rightarrow bB_1TAb
```

8.
$$B \rightarrow bTAb$$

9.
$$B \rightarrow b$$

10.
$$T \rightarrow b$$

11.
$$D \rightarrow b$$

Искомая грамматика G_7 :

- 1. $B_1 \rightarrow aDAb$
- 2. $B_1 \rightarrow bB_1TAbAb$
- 3. $B_1 \rightarrow aDAbB_1$
- 4. $B_1 \rightarrow bB_1TAbAbB_1$
- 5. $T \rightarrow aD$
- 6. $T \rightarrow bB_1TAb$
- 7. $D \rightarrow bB_1$
- 8. $A \rightarrow bB_1TAbbb$
- 9. $A \rightarrow bTAbbb$
- 10. $A \rightarrow bbb$
- 11. $B \rightarrow bB_1TAb$
- 12. $B \rightarrow bTAb$
- 13. $B \rightarrow b$
- 14. $T \rightarrow b$
- 15. $D \rightarrow b$
- 8. Получить грамматику G_8 , эквивалентную грамматике G_1 , в которой правая часть каждого не ε -правила начинается терминалом и любые два правила с одинаковой левой частью различаются первым символом в правой части.

Для получения такой грамматики можем проводить множественную левую факторизацию и замену в грамматике G_7 .

Модификации: в ходе выполнения задания было выявлено, что грамматика G_7 преобразовать к искомой невозможно, так как алгоримт зациклился. Попробуем удалить из грамматики G_7 правила 2, 3, 4, 5.

$$B_1 \rightarrow aDAb$$

$$T \to bB_1TAb$$

$$D \to bB_1$$

$$A \rightarrow bB_1TAbbb$$

$$A \rightarrow bTAbbb$$

$$A \rightarrow bbb$$

$$B \to bB_1TAb$$

$$B \to bTAb$$

$$B \to b$$

$$T \to b$$

$$D \to b$$

Выполним левую факторизацию:

$$B_{1} \rightarrow aDAb$$

$$T \rightarrow bB_{1}TAb$$

$$D \rightarrow bB_{1}$$

$$A \rightarrow bE_{1}$$

$$E_{1} \rightarrow B_{1}TAbbb$$

$$E_{1} \rightarrow TAbbb$$

$$E_{1} \rightarrow bb$$

$$B \rightarrow bE_{2}$$

$$E_{2} \rightarrow B_{1}TAb$$

$$E_2 \rightarrow TAb$$

$$E_2 \to \varepsilon$$

$$T \to b$$

$$D \to b$$

Выполним замену:

$$B_1 \to aDAb$$

$$T \to bB_1TAb$$

$$D \to bB_1$$

$$A \rightarrow bE_1$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bB_1TAbAbbb$$

$$E_1 \rightarrow bb$$

$$B \to bE_2$$

$$E_2 \to aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$T \to b$$

$$D \to b$$

Выполним левую факторизацию:

$$B_1 \to aDAb$$

$$T \rightarrow bB_1TAb$$

$$D \to bB_1$$

$$A \to bE_1$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bE_3$$

$$E_3 \rightarrow B_1 T Ab Abbb$$

$$E_3 \to b$$

$$B \to bE_2$$

$$E_2 \rightarrow aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$T \to b$$

$$D \to b$$

Выполним замену:

$$B_1 \to aDAb$$

$$T \rightarrow bB_1TAb$$

$$D \rightarrow bB_1$$

$$A \to bE_1$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bE_3$$

$$E_3 \rightarrow aDAbTAbAbbb$$

$$E_3 \to b$$

$$B \to bE_2$$

$$E_2 \rightarrow aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$T \rightarrow b$$

$$D \to b$$

Искомая грамматика G_8 :

$$B_1 \rightarrow aD\bar{A}b$$

$$T \rightarrow bB_1TAb$$

$$D \rightarrow bB_1$$

$$A \rightarrow bE_1$$

$$B \to bE_2$$

$$T \to b$$

$$D \to b$$

$$E_1 \rightarrow aDAbTAbbb$$

$$E_1 \rightarrow bE_3$$

$$E_2 \to aDAbTAb$$

$$E_2 \rightarrow bB_1TAbAb$$

$$E_2 \to \varepsilon$$

$$E_3 \rightarrow aDAbTAbAbbb$$

$$E_3 \to b$$

9. Получить грамматику G_9 , эквивалентную грамматике G_1 , в которой правая часть каждого правила не содержит двух стоящих рядом нетерминала.

Для получения такой грамматики преобразуем грамматику G_7 к операторной КС-грамматике.

Для приведения грамматики G_7 к форме Грейбах введём правило: $G \to b$: Исходная грамматика:

$$B_1 \rightarrow aDAG$$

$$B_1 \rightarrow bB_1TAGAG$$

$$B_1 \rightarrow aDAGB_1$$

$$B_1 \rightarrow bB_1TAGAGB_1$$

$$T \to aD$$

$$T \to bB_1TAG$$

$$D \to bB_1$$

```
A \rightarrow bB_1TAGGG
```

 $A \rightarrow bTAGGG$

 $A \rightarrow bGG$

 $B \to bB_1TAG$

 $B \to bTAG$

 $B \to b$

 $T \to b$

 $D \to b$

 $G \to b$

Введём операторные правила:

 $B_1 \to aN_1$

 $B_1 \rightarrow bN_2$

 $B_1 \to aN_3$

 $B_1 \to bN_4$

 $T \to aD$

 $T \rightarrow bN_5$

 $D \rightarrow bB_1$

 $A \rightarrow bN_6$

 $A \rightarrow bN_7$

 $A \rightarrow bN_8$

 $B \to bN_5$

 $B \to bN_9$

 $B \to b$

 $T \to b$

 $D \to b$

 $G \to b$

 $N_1 \to DAG$

 $N_2 \rightarrow B_1 TAGAG$

 $N_3 \to DAGB_1$

 $N_4 \rightarrow B_1 TAGAGB_1$

 $N_5 \rightarrow B_1 TAG$

 $N_6 \rightarrow B_1 TAGGG$

 $N_7 \rightarrow TAGGG$

 $N_8 \to GG$

 $N_9 \to TAG$

Выполним замену:

 $B_1 \to aN_1$

 $B_1 \to bN_2$

 $B_1 \to aN_3$

 $B_1 \to bN_4$

 $T \to aD$

 $T \rightarrow bN_5$

 $D \rightarrow bB_1$

- $A \rightarrow bN_6$
- $A \rightarrow bN_7$
- $A \rightarrow bN_8$
- $B \to bN_5$
- $B \rightarrow bN_9$
- $B \to b$
- $T \rightarrow b$
- $D \rightarrow b$
- $G \to b$
- $N_1 \to DbN_6b$
- $N_1 \rightarrow DbN_7b$
- $N_1 \rightarrow DbN_8b$
- $N_2 \rightarrow B_1 a D b N_6 b A b$
- $N_2 \rightarrow B_1 a D b N_7 b A b$
- $N_2 \rightarrow B_1 a D b N_8 b A b$
- $N_2 \to B_1 b N_5 b N_6 b A b$
- $N_2 \rightarrow B_1 b N_5 b N_7 b A b$
- $N_2 \rightarrow B_1 b N_5 b N_8 b A b$
- $N_3 \to DbN_6bB_1$
- $N_3 \to DbN_7bB_1$
- $N_3 \rightarrow DbN_8bB_1$
- $N_4 \rightarrow B_1 a D b N_6 b A b B_1$
- $N_4 \rightarrow B_1 a D b N_7 b A b B_1$
- $N_4 \rightarrow B_1 a D b N_8 b A b B_1$
- $N_4 \rightarrow B_1 b N_5 b N_6 b A b B_1$
- $N_4 \rightarrow B_1 b N_5 b N_7 b A b B_1$
- $N_4 \rightarrow B_1 b N_5 b N_8 b A b B_1$
- $N_5 \to B_1 a D b N_6 b$
- $N_5 \rightarrow B_1 a D b N_7 b$
- $N_5 \rightarrow B_1 a D b N_8 b$
- $N_5 \to B_1 b N_5 b N_6 b$
- $N_5 \rightarrow B_1 b N_5 b N_7 b$
- $N_5 \to B_1 b N_5 b N_8 b$
- $N_6 \to B_1 a D b N_6 b G b$
- $N_6 \to B_1 a D b N_7 b G b$
- $N_6 \to B_1 a D b N_8 b G b$
- $N_6 \rightarrow B_1 b N_5 b N_6 b G b$
- $N_6 \rightarrow B_1 b N_5 b N_7 b G b$
- $N_6 \to B_1 b N_5 b N_8 b G b$
- $N_7 \to TbN_6bGb$
- $N_7 \to TbN_7bGb$
- $N_7 \to TbN_8bGb$
- $N_8 \to Gb$
- $N_9 \to TbN_6b$
- $N_9 \to TbN_7b$
- $N_9 \rightarrow TbN_8b$

Получена искомая грамматика G_9 :

- $1. B_1 \rightarrow aN_1$
- 2. $B_1 \rightarrow bN_2$
- $3. B_1 \rightarrow aN_3$
- 4. $B_1 \rightarrow bN_4$
- 5. $T \rightarrow aD$
- 6. $T \rightarrow bN_5$
- 7. $D \rightarrow bB_1$
- $8. A \rightarrow bN_6$
- 9. $A \rightarrow bN_7$
- 11. $A \rightarrow bN_8$
- 12. $B \rightarrow bN_5$
- 13. $B \rightarrow bN_9$
- 14. $B \rightarrow b$
- 15. $T \rightarrow b$
- 16. $D \rightarrow b$
- 17. $G \rightarrow b$
- 18. $N_1 \rightarrow DbN_6b$
- 19. $N_1 \rightarrow DbN_7b$
- 20. $N_1 \rightarrow DbN_8b$
- 21. $N_2 \rightarrow B_1 a D b N_6 b A b$
- 22. $N_2 \rightarrow B_1 a D b N_7 b A b$
- 23. $N_2 \rightarrow B_1 a D b N_8 b A b$
- 24. $N_2 \rightarrow B_1 b N_5 b N_6 b A b$
- 25. $N_2 \rightarrow B_1 b N_5 b N_7 b A b$
- 26. $N_2 \rightarrow B_1 b N_5 b N_8 b A b$
- 27. $N_3 \rightarrow DbN_6bB_1$
- 28. $N_3 \rightarrow DbN_7bB_1$
- 29. $N_3 \rightarrow DbN_8bB_1$
- 30. $N_4 \rightarrow B_1 a D b N_6 b A b B_1$
- 31. $N_4 \rightarrow B_1 a D b N_7 b A b B_1$
- 32. $N_4 \rightarrow B_1 a D b N_8 b A b B_1$
- 33. $N_4 \rightarrow B_1 b N_5 b N_6 b A b B_1$
- 34. $N_4 \rightarrow B_1 b N_5 b N_7 b A b B_1$
- 35. $N_4 \rightarrow B_1 b N_5 b N_8 b A b B_1$
- 36. $N_5 \rightarrow B_1 a D b N_6 b$
- 37. $N_5 \rightarrow B_1 a D b N_7 b$
- 38. $N_5 \rightarrow B_1 a D b N_8 b$
- 39. $N_5 \to B_1 b N_5 b N_6 b$
- 40. $N_5 \rightarrow B_1 b N_5 b N_7 b$
- 41. $N_5 \rightarrow B_1 b N_5 b N_8 b$
- 42. $N_6 \rightarrow B_1 a D b N_6 b G b$
- 43. $N_6 \rightarrow B_1 a D b N_7 b G b$ 44. $N_6 \rightarrow B_1 a D b N_8 b G b$
- 45. $N_6 \rightarrow B_1 b N_5 b N_6 b G b$

```
46. N_6 \rightarrow B_1 b N_5 b N_7 b G b
```

47.
$$N_6 \rightarrow B_1 b N_5 b N_8 b G b$$

48.
$$N_7 \rightarrow TbN_6bGb$$

49.
$$N_7 \rightarrow TbN_7bGb$$

50.
$$N_7 \rightarrow TbN_8bGb$$

51.
$$N_8 \rightarrow Gb$$

52.
$$N_9 \rightarrow TbN_6b$$

53.
$$N_9 \rightarrow TbN_7b$$

54.
$$N_9 \rightarrow TbN_8b$$

10. Получить грамматику G_{10} , эквивалентную грамматике G_1 , в которой любой символ занимает либо только крайнюю правую позицию в правых частях правил, либо находится левее самого правого символа в правых частях правил.

Возьмём грамматику G_2 :

1.
$$T \rightarrow aD$$

$$2. T \rightarrow D$$

3.
$$D \rightarrow DTAb$$

4.
$$D \rightarrow b$$

6.
$$A \rightarrow Bbb$$

7.
$$B \rightarrow D$$

Введём правило $N \to \varepsilon$. Добавим символ N к концу всех правил:

1.
$$T \rightarrow aDN$$

2.
$$T \rightarrow DN$$

3.
$$D \rightarrow DTAbN$$

4.
$$D \rightarrow bN$$

6.
$$A \rightarrow BbbN$$

7.
$$B \rightarrow DN$$

8.
$$N \to \varepsilon$$

Если выполним замену символа N во всех правилах, получим эквивалентную G_2 , а значит и G_1 грамматику. Символ N занимает только крайнюю правую позицию в правилах. Остальные символы находятся левее него.

Получили искомую грамматику G_{10} :

1.
$$T \rightarrow aDN$$

2.
$$T \rightarrow DN$$

3.
$$D \rightarrow DTAbN$$

4.
$$D \rightarrow bN$$

6.
$$A \rightarrow BbbN$$

$$7. B \rightarrow DN$$

8.
$$N \to \varepsilon$$

Вывод: в ходе лабораторной работы изучили основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.