Author: RCG, PVR

Causality and Pseudo-Code for Distributed Systems (2nd practical session)

This practical session contains exercises to assess your understanding in:

- Causality in Distributed Systems;
- Lamport clocks and vector clocks;
- Writing pseudo code for distributed algorithms.

1.	Give informal definitions of <i>liveness</i> and <i>safety</i> . What is the relation of these two properties with <i>correctness</i> in the specification of a system?
2.	What is causality in distributed systems?
3.	Explain with your own words: • What are Lamport clocks?
	• What are vector clocks?
	What are the differences between Lamport clocks and vector clocks?
4.	The Event-based Component Model (ECM) relies on requests and indications. Explain both concepts. What is the difference between them?

5. Follow the ECM to give an implementation of vector clocks.

Best effort broadcast with Controlled Flooding

The goal of best-effort global broadcast (hereafter referred simply as broadcast) is to send a message to all nodes in the network. This form of dissemination is not necessary reliable. Nodes may forward a message using local broadcast upon its first reception. We denote such nodes as relay nodes.

Controlled flooding is an implementation of broadcast that relies on a simple counter-based approach, which is efficient in a variety of practical situations; Figure 1 shows an example of this implementation.

Figure 1: Example of best effort broadcast using controlled flooding.

Controlled flooding works as follows:

- Upon the first reception of a message, a node sets up a timer t and a counter c;
- \bullet Every reception of a duplicate decreases c by one;
- When t expires, the node only acts as a relay if c > 0.

Exercise. Follow the ECM to give the specification of controlled flooding.