1. Sea

$$L = \{ \mathcal{P} \in \operatorname{Pro}^{\Sigma_p} : (\exists x \in \mathbf{N}) \ \Psi_{\mathcal{P}}^{1,1,*}(x, \operatorname{EBE}) = \operatorname{EBE} \}$$

Encuentre un programa $Q \in \operatorname{Pro}^{\Sigma_p}$ tal que $\operatorname{Im}(\Psi_{\mathcal{Q}}^{1,0,\Sigma_p^*}) = L \operatorname{y} \operatorname{Dom}(\Psi_{\mathcal{Q}}^{1,0,\Sigma_p^*}) = \omega$. Para cada macro usado dar el predicado o la funcion Σ_p -computable asociada dependiendo si es un macro de tipo IF o de asignacion

2. Sea $\Sigma = \{@,\$\}$ y sea

$$\begin{array}{cccc} P: \{\text{impares}\} \times \Sigma^* & \to & \omega \\ & (x,\alpha) & \to & \left\{ \begin{array}{ccc} x & & \text{si } x \geq 3 \\ & |\alpha| & & \text{caso contrario} \end{array} \right. \end{array}$$

3. (Booleano) Sea $\Sigma = \{@,\$\}$. De el diagrama de una maquina de Turing deterministica con unit que compute a la funcion

$$\begin{array}{cccc} f: \{(\alpha,\beta) \in \Sigma^{*2}: \alpha \in \{@\}^+\} & \to & \Sigma^* \\ & (\alpha,\beta) & \to & \beta \end{array}$$

- 4. V o F o I. Justifique
 - (a) $\{(\omega, 2)\}$ es una función cuyo dominio es $\{\omega\}$
 - (b) La funcion x + 1 es Σ -mixta, cualesquiera sea el alfabeto Σ
 - (c) Si \mathbb{P} es un procedimiento efectivo que computa una funcion $f: D_f \subseteq \omega \to \omega$ entonces el conjunto de datos de entrada de \mathbb{P} es D_f
 - (d) Sea $\Sigma = \{\triangle, \blacktriangle\}$. Entonces $R(p_1^{0,1}, \{(\triangle, p_3^{0,3}), (\blacktriangle, d_\blacktriangle \circ p_3^{0,3})\})(\triangle \blacktriangle, \triangle \blacktriangle) = \triangle \blacktriangle \blacktriangle \blacktriangle$
 - (e) Si P_1,P_2,P_3 son predicados Σ -p.r. y $D_{P_1}=D_{P_2}=D_{P_3}$, entonces el predicado $(P_1\vee P_2\wedge P_3)$ es Σ -p.r.
 - (f) Sea Σ un alfabeto y sea $\mathcal{P}_0 \in \operatorname{Pro}^{\Sigma}$. Entonces

$$\Phi^{n,m}_* \circ [p^{n,m}_1,...,p^{n,m}_{n+m},C^{n,m}_{\mathcal{P}_0}]$$

es una funcion Σ -mixta (aqui $p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m}$ son respecto del alfabeto $\Sigma \cup \Sigma_p$, es decir son funciones con dominio $\omega^n \times (\Sigma \cup \Sigma_p)^{*m}$)

- (g) Si $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ es una maquina de Turing, entonces $\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R,K\}$
- (h) Si $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ es tal que GOTO no es subpalabra de \mathcal{P} entonces $\Psi_{\mathcal{P}}^{1,0,\omega}$ es Σ -p.r.