

Mestrado Integrado em Eng. BIOMÉDICA e Eng. FÍSICA

UC - BIOSSENSORES

Cap4 – Fatores de Desempenho

À medida que uma nova técnica é desenvolvida, é necessário estabelecer, tão rápido quanto possível, os critérios pelos quais o seu desempenho pode ser medido.

Estes critérios devem ser refinados continuamente à medida que as expectativas aumentam.

Isto é especialmente verdade para um dispositivo que contém material biológico.

Da validação de um método em laboratório, até à sua distribuição comercial de tal modo que seja fiável nas mãos de qualquer pessoa, ainda é um longo caminho.

Critérios necessários para fixar o desempenho de um biossensor:

Selectividade:

Este factor é fundamental porque o biossensor deve ter uma elevada afinidade para um único componente de interesse analítico e, assim, conseguir relacionar o sinal com a concentração do composto a analisar com total confiança.

Sensibilidade:

Este factor manifesta-se na variação do sinal por unidade de concentração do composto a analisar e na razão dos sinais da amostra e ruído (linha de base), que determina, por sua vez, o limite de detecção do biossensor.

Por exemplo um biossensor electroquímico pode medir analitos de concentrações ≈10-6M (suficiente para glucose, ureia, colestrerol, abuso de drogas, e para a maior parte das moléculas).

Contudo, estes biossensores têm dificuldades em medir concentrações de 10⁻⁹M (necessário para hormonas e alguns componentes do soro sanguíneo).

Gama

Gama Linear

O sinal medido, nas diferentes amostras, deverá ser proporcional à quantidade da variação da propriedade fisico-química resultante da reacção enzimática, mas principalmente não deve ser afectado por histerese.

Rapidez:

- Tempo de resposta
- Tempo de recuperação
- Tempo de vida

Um tempo lento pode afectar drasticamente o intervalo ou gama de resposta da aplicação e, inclusivamente, limitar o seu uso em monitorização ou detecção de um composto em tempo real.

Estabilidade:

O biossensor deve ter uma elevada estabilidade, tanto de armazenagem como operacional, pois são os factores mais importantes para o custo efectivo de fabrico de um biossensor enzimático.

Reprodutibilidade:

O biossensor deve poder ser reutilizado inúmeras vezes, para minimizar os custos de fabrico. Para além disso, a utilização repetitiva do mesmo agente biológico geralmente assegura que amostras semelhantes dão respostas similares.

De fácil manuseamento

Custo:

Barato (de fácil fabrico): o verdadeiro teste para um biossensor ser competitivo com as técnicas tradicionais é o seu custo por teste.

Exemplos: Biossensores utilizados para ureia, glucose, ácido úrico e amino-ácidos

enante de la companya de la company	· · · · · · · · · · · · · · · · · · ·					
Туре	Enzyme ^a	Sensor ^b	Stability	Response time (min)	Range (M)	
Urea	Urease (25 U)	Cation (P)	3 weeks	0.5-1	$10^{-1} - 5 \times 10^{-5}$	
Urea	Urease (75 U)	Cation (P)	4 months	1-2	$10^{-2} - 10^{-4}$	
Urea	Urease (100 U)	pH (P)	3 weeks	5-10	$5 \times 10^{-2} - 5 \times 10^{-5}$	
Urea	Urease (10 U)	Gas (NH ₃)(C)	4 months	2-4	$5 \times 10^{-2} - 5 \times 10^{-5}$	
Urea	Urease (25 U)	Gas $(CO_2)(P)$	3 weeks	1-2	$10^{-2} - 10^{-4}$	
Glucose	GOD (100 U)	pH (D)	1 week	5-10	$10^{-1} - 10^{-3}$	
Glucose	GOD (10 U)	Iodide (C)	> 1 month	2-8	$10^{-3} - 10^{-4}$	
L-Amino acids						
General	L-AA oxidase	Cation (P)	2 weeks	1-2	$10^{-2} - 10^{-4}$	
		Iodide (C)	> 1 month	1-3	$10^{-3} - 10^{-4}$	
L-Tyrosine	L-Tyrosine carboxylase	Gas (CO_2) (P)	3 weeks	1-2	$10^{-1} - 10^{-4}$	
L-Glutamine	Glutaminase	Cation (D)	2 days	1	$10^{-1} - 10^{-4}$	
L-Glutamic acid	Glutamate dehydrogenase	Cation (D)	2 days	1	$10^{-1} - 10^{-4}$	
L-Aspargine	Asparginase	Cation (P)	1 month	1	$10^{-2} - 5 \times 10^{-5}$	
D-Amino acids						
General	p-AA oxidase	Cation (P)	1 month	1	$10^{-2} - 5 \times 10^{-5}$	
Penicillin	Penicillinase					
	(400 U)	pH (P)	1-2 weeks	0.5 - 1	$10^{-2} - 10^{-4}$	
	(1000 U)	pH (D)	3 weeks	2	$10^{-2} - 10^{-4}$	
Amygdalin	β -Glucooxidase	Cyanide (P)	3 days	10-20	$10^{-2} - 10^{-5}$	
Nitrate	Nitrate reductase	Ammonium (D)	1 day	2-3	$10^{-2} - 10^{-4}$	

^aU, units of enzyme (urease) activity.

^bP, physical entrapment in polyacrylamide gel; C, covalent bonding with glutaraldehyde and albumin to poly(acrylic acid) (or acrylamide), followed by physical entrapment; D, dissolution.

Comparação dos factores de desempenho de alguns biossensores de glucose.

DISCUSSÃO

Туре	System	Range	Response time (min)	Lifetime
Glucorecorder (Analytical Instrument, Japan)	GOD-O ₂	0-5 mM (±2%)	0.5	90 (18) (- 186) - 18 (2000 - 18)
Radelkkis (Hungary)	OP-G1-7113-S	1.7-2.0 mM (±5%)	1.5	8 months
Yellow Springs Instruments, Model 23A (USA)	GOD-H ₂ O ₂	1.0-45.0 mM (±2%)	1.5	300 samples
Glukometer, GKM01 (ZWG Academy of Sciences, Germany)	$GOD-H_2O_2$	0.5-50 mM (±1.5%)	0.7-1	1000 samples
Glucose Analyser 5410 (Hofmann-LaRoche, Switzerland)	$GOD-[Fe(CN)_6]^{3-}$	2.5-27.5 mM (±1.5%)	1	8 weeks
ExacTech (Medisense, UK)	GOD-ferrocene	1-30 mM (±1%)	0.5	> 1 year
	GOD-TTF-TCNQ	0.5-20 mM		100 days
	GDH-PQQ	1-70 mM	< 0.3	8 h
	Con A-fluorescent dextran (optode)	2.0-25 mM (±0.5%)		15 days
	Hexakinase-bacterial luciferase-ATP	2-100 pmol		24 2 <u>21.</u> 2 1 1 2
	Hexokinase-O ₂ - thermistor	0.5-25 mM (±0.6%)	1.5	

Alguns factores que afectam os factores de desempenho dos biossensores:

Quantidade da enzima não são consumidas transporte de massa

Método de imobilização

pH ou buffer

Biossensores

Quais são os principais factores a considerar quando se projecta um novo biossensor?

Algum critério especial para a aplicação

Tomar decisões sobre o elemento selectivo

Seleccionar o transdutor

Decidir o método de imobilização

Quais os factores de desempenho necessários

Fabrico do dispositivo

Operação do biossensor

Testar o biossensor

