Troy C. Haskin

University of Wisconsin-Madison

12/17/2012

Outline

Motivation

**RCCS** 

Literature

2 Thermohydraulic Theory

Conservation Laws

Numerics

Stability Theory

Derivation

Solutions

4 Current Work

Steady-State Solver

**5** Proposed Work

Introduction
OOOOOO

#### Goals

- Aim to assess, predict, and physically explain observed two-phase instabilities in a natural circulation loop
- Investigate the effects of different models for multiphase flow

# Leading Questions

Introduction

00000000

What are two-phase instabilities?

#### Definition (General)

Transient (possibly oscillatory) thermal hydraulic phenomenon stemming from nonlinear-geometric-multiphase feedback that could lead to system excursions causing dangerous mechanical or thermal damage and possibly human harm.

- Applications?
  - Thermosiphon
  - Power cycle loops
  - And...

### **RCCS Overview**

Introduction 0000000





#### **MELCOR Simulations**

Introduction

#### Is this behavior real?







# RCCS Experiment's Mass Flow Rate

Introduction 0000000





Introduction



Troy C. Haskin UW-Madison

#### Been done before?

Yes, two-phase, natural circulation stability has been done (see report). But...

- Extremely limited analytical work on non-simple, closed loop (multiple riser)
- None had depletion of inventory in two-phase

# General Conservation Law (CLaw)

Conservation laws balance a vector of conserved variables  $\mathbf{q}$  over a control volume.

Nonlinear form:

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{q}; z, t)}{\partial z} = \mathbf{S}(\mathbf{q}, z, t) \tag{1}$$

Quasilinear form:

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{q}; z, t)}{\partial \mathbf{q}} \frac{\partial \mathbf{q}(z, t)}{\partial z} = \mathbf{S}(\mathbf{q}, z, t)$$
 (2)

Characteristic speeds:

$$\Lambda = \text{Eig} \left[ \frac{\partial \mathbf{F}(\mathbf{q}; z, t)}{\partial \mathbf{q}} \right]$$
 (3)

# Homogenous Equilibrium Model (HEM)

#### Nonlinear form:

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho u \end{bmatrix} + \frac{\partial}{\partial z} \begin{bmatrix} \rho u \\ \frac{\rho u^2}{\rho} + P(\rho, \frac{\rho i}{\rho}) \\ \frac{\rho u}{\rho} [\rho i + P(\rho, \frac{\rho i}{\rho})] \end{bmatrix} = \begin{bmatrix} 0 \\ \rho g(z) - \frac{K_{\text{eff}}(\mathbf{q})}{2} \frac{\rho u |\rho u|}{\rho} \\ \dot{Q}_{\text{add}}(\mathbf{q}, z, t) \end{bmatrix} (4)$$

# Homogenous Equilibrium Model (HEM)

Flux Jacobian:

$$\mathbb{J}_{\mathsf{F}} = \begin{bmatrix}
0 & 1 & 0 \\
\frac{dP}{d\rho} - u^2 & 2u & \frac{1}{\rho} \frac{\partial P}{\partial i} \\
u \left(\frac{dP}{d\rho} - h\right) & h & u \left(1 + \frac{1}{\rho} \frac{\partial P}{\partial i}\right)
\end{bmatrix}$$
(5)

Characteristic speeds:

$$\lambda_{\text{HEM}} = \left| \frac{u}{\left(1 + \frac{1}{2\rho} \frac{\partial P}{\partial i}\right) u \pm \frac{1}{2\rho} \sqrt{4P(\rho, i) \frac{\partial P}{\partial i} + \left(u \frac{\partial P}{\partial i}\right)^2 + 4\rho^2 \frac{\partial P}{\partial \rho}} \right|$$
 (6)

Outline

# Multiphase Model

$$\frac{\partial}{\partial t} \begin{bmatrix} \alpha \rho_{\phi} \\ \alpha \rho u_{\phi} \\ \alpha \rho i_{\phi} \end{bmatrix} + \frac{\partial}{\partial z} \begin{bmatrix} \alpha \rho u_{\phi} \\ u_{\phi} \alpha \rho u_{\phi} + P(\rho_{\phi}, i_{\phi}) \\ u_{\phi} [\alpha \rho i_{\phi} + P(\rho_{\phi}, i_{\phi})] \end{bmatrix} = (7)$$

$$egin{aligned} \mathbb{M}_{\phi} \ & lpha 
ho_{\phi} g(z) - rac{\mathcal{K}_{\mathsf{eff},\phi}(\mathbf{q})}{2} u_{\phi} \left| lpha 
ho u_{\phi} 
ight| + \mathbb{P}_{\phi} \ & \dot{Q}_{\mathsf{add},\phi}(\mathbf{q},z,t) + \mathbb{E}_{\phi} \end{aligned}$$

### Collocated Nodal Method (steady-state over simple, closed loop)

Simplest to derive; hardest to solve.

$$\frac{\partial \mathbf{F}(\mathbf{q}; z)}{\partial z} = \mathbf{S}(\mathbf{q}, z) \tag{8}$$

Integrating from  $z_i$  to  $z_{i+1}$ :

$$F(q; z_{i+1}) - F(q; z_i) = \beta_i S(q, z_i) + \beta_{i+1} S(q, z_{i+1}) + \mathcal{O}(|z_{i+1} - z_i|^2)$$
 (9)

Residual to drive to 0:

$$\mathbf{R}_{i}(\mathbf{q}) = [\mathbf{F}(\mathbf{q}; z_{i+1}) - \mathbf{F}(\mathbf{q}; z_{i})] - [\beta_{i}\mathbf{S}(\mathbf{q}, z_{i}) + \beta_{i+1}\mathbf{S}(\mathbf{q}, z_{i+1})]$$
(10)

## Collocated Nodal Method (steady-state over simple, closed loop)

Simple form for arbitrary node count:

$$\mathbf{R} = \mathbb{C}_F \mathbf{F} - \mathbb{C}_S \mathbf{S} \tag{11}$$

Connectivity matrices:

$$\mathbb{C}_* = \begin{bmatrix} \mathbf{C}_* & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_* & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{C}_* \end{bmatrix} \tag{12}$$

## Collocated Nodal Method (steady-state over simple, closed loop)

Matrices of this form are singular!

Sweeping approach used for steady-state solver:

- Tank thermodynamic state is known.
- Assume a momentum.
- Sweep through system back to the tank.
- Two possibilities
  - Integrated pressure is less than the tank's: reduce momentum
  - Integrated pressure is greater than the tank's: increase momentum

Momentum corrections are made through a secant method update using the pressure difference as an abscissa.

# Staggered Finite Volume Method

This is the method to be used for transient solution.

"Staggered" means that the mass and energy equations are integrated over a different space than the momentum equations

- Avoids velocity-pressure decoupling
- Allows a much more flexible interpretation of velocities: information propagators

Time integration method to be used on semi-discrete form (next slide) is implicit Euler

- Completely overcomes acoustic limitation on the time step value
- Unconditionally TVD (very diffusive)

# Staggered Finite Volume Method

$$\frac{\partial \rho_{\mathbf{k}}}{\partial t} = -\frac{1}{\Omega_{\mathbf{k}}} \sum \rho u_{\mathbf{k}} A_{\mathbf{k}} \tag{13a}$$

$$\frac{\partial \rho i_{k}}{\partial t} = -\frac{1}{\Omega_{k}} \sum u_{d} [\rho i_{d} + P(\rho_{d}, i_{d})] A_{k} + \dot{Q}_{\text{add},k}(z, t)$$
 (13b)

$$\frac{\partial \rho u_{\rm m}}{\partial t} = -\frac{1}{\Omega_{\rm m}} \left[ u \rho u |_{\rm from}^{\rm to} + P_{\rm to} - P_{\rm from} \right] A_{\rm m} + \tag{13c}$$

$$\frac{A_{\rm m}}{\Omega_{\rm m}} \int_{\rm from}^{\rm to} \left[ \rho g(z) - \frac{K_{\rm eff}(\mathbf{q})}{2} u |\rho u| \right] \mathrm{d}s \tag{13d}$$

# Derivation of perturbation equations

Assumed that the true solution is a summation of a steady-state and a transient

$$\mathbf{q}(z,t) = \mathbf{q}^{0}(z) + \widehat{\mathbf{q}}(z,t). \tag{14}$$

Stability Theory

General nonlinear perturbation equation:

$$\frac{\partial \widehat{\mathbf{q}}(z,t)}{\partial t} + \frac{\partial}{\partial z} \left[ \mathbf{F} \left( \mathbf{q}^0 + \widehat{\mathbf{q}}; z, t \right) \right] = \mathbf{S} \left( \mathbf{q}^0 + \widehat{\mathbf{q}}, z, t \right)$$
(15)

Taylor expansion about perturbation (neglecting H.O.T.) yields general linear perturbation equation:

$$\frac{\partial \widehat{\mathbf{q}}(z,t)}{\partial t} + \frac{\partial}{\partial z} \left[ \frac{\partial \mathbf{F}}{\partial \mathbf{q}^0} \widehat{\mathbf{q}} \right] = \frac{\partial \mathbf{S}}{\partial \mathbf{q}^0} \widehat{\mathbf{q}}$$
 (16)

# Solution methods of linear equation

Wave form ansatz:

$$\widetilde{\widehat{\mathbf{q}}} = \widehat{\mathbf{q}}^0 \operatorname{Exp}[j(\kappa z + \omega t)] \tag{17}$$

Eigenvalues of dynamical system (piecewise integration around loop):

$$\frac{\partial \overline{\widehat{\mathbf{q}}}}{\partial t} = \mathbb{A}(\mathbf{q}^0, t)\overline{\widehat{\mathbf{q}}}$$
 (18)

Laplace transform (zeros of transfer function):

$$s\tilde{\mathbf{q}} - \hat{\mathbf{q}}(z,0) + \frac{\partial}{\partial z} \left[ \frac{\partial \mathbf{F}}{\partial \mathbf{q}^0} \tilde{\mathbf{q}} \right] = \frac{\partial \mathbf{S}}{\partial \mathbf{q}^0} \tilde{\mathbf{q}}$$
 (19)

#### Test Problem

- Single phase
- Constant friction factor
- 10 kW load
- State:
  - P = 101325 Pa
  - T = 300 K



#### Test Problem

| Measure | Pressure [kPa] |        | Tempera | Temperature [K] |        | Density [kg/m <sup>3</sup> ] |  |
|---------|----------------|--------|---------|-----------------|--------|------------------------------|--|
| Point   | Solver         | Hand   | Solver  | Hand            | Solver | Hand                         |  |
| 1       | 101325         | 101325 | 300.0   | 300             | 996.6  | 996.6                        |  |
| 2       | 150192         | 150178 | 300.0   | 300             | 996.6  | 996.6                        |  |
| 3       | 150190         | 150175 | 300.0   | 300             | 996.6  | 996.6                        |  |
| 4       | 130640         | 130631 | 302.9   | 302.9           | 995.7  | 995.7                        |  |
| 5       | 101327         | 101328 | 302.9   | 302.9           | 995.7  | 995.7                        |  |
| 6       | 101326         | 101326 | 302.9   | 302.9           | 995.7  | 995.7                        |  |



#### Path Goals

#### Path Forward:

- Complete transient, HEM solver
- Look at HEM boiling behvarior
- Attain non-simple, closed-loop steady-state calculations

#### **End Goal**

Assess, model, and physically explain the observed instabilities





Troy C. Haskin UW-Madison

#### End

"We will do what is hard. We will achieve what is great."

Troy C. Haskin UW-Madison