[5, 3]. See also [6, 2, 4, 1].

References

- [1] Paul Erdős. 'Integral distances'. In: *Bull. Amer. Math. Soc.* 51.12 (1945), p. 996. DOI: 10.1090/S0002-9904-1945-08490-0.
- [2] Lorenz Halbeisen and Norbert Hungerbühler. 'A geometric representation of integral solutions of $x^2 + xy + y^2 = m^2$ '. In: Quaestiones Mathematicae (2019), pp. 1–15.
- [3] Donald E. Knuth. Computers & Typesetting. Vol. E: Computer Modern Typefaces. Reading, Mass.: Addison-Wesley, 1986.
- [4] Axel Kohnert and Sascha Kurz. 'Integral point sets over \mathbb{Z}_n^m '. In: Discrete Appl. Math. 157 (2006), pp. 2105–2117.
- [5] Emma Sigfridsson and Ulf Ryde. 'Comparison of methods for deriving atomic charges from the electrostatic potential and moments'. In: *Journal of Computational Chemistry* 19.4 (1998), pp. 377–395. DOI: 10.1002/(SICI) 1096-987X(199803)19:4<377::AID-JCC1>3.0.CO;2-P.
- [6] Jozsef Solymosi and Frank De Zeeuw. 'On a question of Erdős and Ulam'. In: *Discrete Comput. Geom.* 43.2 (2010), pp. 393–401. arXiv: 0806.3095.