

UNIDADI

Transformada Z

RELACIÓN CON LA TRANSFORMADA DE LAPLACE

$$s = d + j\omega$$

$$z = e^{(d+j\omega)T} = e^{dT}e^{j\omega T}$$

$$|z| = e^{dT}$$

$$\angle z = \omega T = \frac{2\pi f}{F_S} = \frac{2\pi\omega}{\omega_S}$$

MAPEO – PLANO S AL PLANO Z

Los polos y los ceros cuyas frecuencias difieren $2 \pi/T$ son mapeados en las mismas posiciones en z, es decir, la correspondencia $z \rightarrow S$ no es única.

RELACIÓN CON LA TRANSFORMADA DE LAPLACE

Plano s	Plano z
$\overline{\omega\left(\frac{rad}{S}\right)}$	$\overline{\omega T(rad)}$
0	0
$\omega_{\scriptscriptstyle \mathcal{S}}$	π
4	$\overline{2}$
$\frac{\omega_s}{2}$	π
2	_
$3\omega_s$	3π
4	2
$\omega_{\scriptscriptstyle S}$	2π

$$egin{array}{c} Plano \ s \ \hline \omega \left(rac{rad}{s}
ight) & \overline{\omega}T(rad) \ \hline \omega \left(rac{rad}{s}
ight) & rac{\pi}{2} \ \hline 3\omega_s \ \hline 2 \ 7\omega_s \ \hline 4 \ 2\omega_s & 2\pi \ \hline \end{array}$$

MAPEO ENTRE PLANOS ALGORITMOS DE INTEGRACIÓN NUMÉRICA

Regla	Algoritmo numérico	Proyección para s
Rectangular	y[n] = y[n-1] + tsx[n]	$s = \frac{1}{t_s} \left(\frac{z - 1}{z} \right)$
Trapezoidal	$y[n] = y[n-1] + \frac{2}{t_s}(x[n] + x[n-1])$	$s = \frac{2}{t_s} \left(\frac{z - 1}{z + 1} \right)$

 Representa señales discretas en tiempo en su equivalente en frecuencia compleja (Plano Z)

$$X[z] = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

- Unilateral
 - Sistemas causales

$$X[z] = \sum_{n=0}^{\infty} x[n]z^{-n}$$

- Región donde la transformada z converge.
- Ejemplo:

$$x = \begin{bmatrix} 0 & 1 & 3 & 5 & 3 & 1 & 0 \end{bmatrix}$$

$$X_1[z] = z^5 + 3z^4 + 5z^3 + 3z^2 + z$$

$$z = \infty \implies X_1[z] = \infty$$

• Ejemplo:

$$x = \begin{bmatrix} 0 & 1 & 3 & 5 & 3 & 1 & 0 \end{bmatrix}$$

$$X_1[z] = z^2 + 3z^1 + 5z^0 + 3z^{-1} + z^{-2}$$

$$z = 0 z = \infty$$
 $\Rightarrow X_1[z] = \infty$

• Ejemplo:

$$x = \begin{bmatrix} \emptyset \\ 0 & 1 & 3 & 5 & 3 & 1 & 0 \end{bmatrix}$$

$$X_1[z] = z^{-1} + 3z^{-2} + 5z^{-3} + 3z^{-4} + z^{-5}$$

$$z = 0 \Rightarrow X_1[z] = \infty$$

• Ejemplo:

$$x[n] = \begin{cases} 1 & 0 \le n \le \infty \\ 0 & n < 0 \end{cases}$$

$$X_1[z] = 1 + z^{-1} + z^{-2} + z^{-3} + \cdots$$

$$X_1[z] = \frac{1}{(1-z^{-1})} = \frac{z}{(z-1)}$$

• Secuencias finitas:

	Señal, x(n)	Transformada Z, X(z)	ROC
1	$\delta(n)$	1	todo z
2	u(n) - u(-n - N)	$\frac{1 - z^{-N}}{1 - z^{-1}}$	$z \neq 0$

• Señales causales:

	Señal, x(n)	Transformada Z, X(z)	ROC
3	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
4	$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	z > a
5	$(-a)^n u(n)$	$\frac{1}{1+az^{-1}}$	z > a
6	n u(n)	$\frac{1}{(1-z^{-1})^2}$	z > 1

7	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8	$\cos(\omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
9	$\sin(\omega_0 n)u(n)$	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	z > 1
10	$a^n \cos(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a
11	$a^n \sin(\omega_0 n) u(n)$	$\frac{az^{-1}\sin(\omega_0)}{1 - 2az^{-1}\cos(\omega_0) + a^2z^{-2}}$	z > a

• Señales anticausales:

	Señal, $x(n)$	Transformada Z, X(z)	ROC
12	-u(-n-1)	$\frac{1}{1-z^{-1}}$	z < 1
13	-nu(-n-1)	$\frac{1}{(1-z^{-1})^2}$	z < 1
14	$-a^n u(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
15	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a

TRANSFORMADA Z INVERSA

$$x[n] = Z^{-1}\big[X[z]\big]$$

$$X[z] = \sum_{n=0}^{\infty} x[n]z^{-n}$$

$$X[z] = x[0] + x[1]z^{-1} + x[2]z^{-2} + x[3]z^{-3} + \cdots$$

$$X[z] = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_N z^{-n}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_M z^{-M}}$$

PROPIEDADES DE LA TRANSFORMADA Z

Linealidad

$$ax_1[n] + bx_2[n] \rightarrow aX_1[z] + bX_2[z]$$

Desplazamientos

$$x[n] \to X[z]$$

 $x[n-m] \to z^{-m}X[z]$

PROPIEDADES DE LA TRANSFORMADA Z

Convolución

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$
$$Y[z] = H[z]X[z]$$

• Diferenciación

$$x[n] \to X[z]$$

 $nx[n] \to -z \frac{dX[z]}{dz}$

TRANSFORMADA Z INVERSA

- Se obtiene mediante:
 - Método de expansión series de potencias.
 - Método de expansión de fracciones parciales.
 - Método de residuo.

EXPANSIÓN DE SERIES DE POTENCIAS

Ecuaciones

$$x[0] = \frac{b_o}{a_0}$$

$$x[1] = \frac{(b_1 - x[0]a_1)}{a_0}$$

$$x[2] = \frac{(b_2 - x[1]a_1 - x[0]a_2)}{a_0}$$
...

$$x[n] = \frac{(b_n - \sum x[n-i]a_i)}{a_0}$$

EXPANSIÓN POR FRACCIONES PARCIALES

$$X[z] = \frac{1}{(z - 0.25)(z - 0.5)}$$