Содержание

1	Свойства вероятности.	5
2	В каком случае события $A_1 \dots A_n$ называются независимыми в совокупности?	5
3	Формула полной вероятности.	6
4	Формулы Байеса.	6
5	Что такое испытания Бернулли и Формула Бернулли?	7
6	Интегральная теорема Муавра-Лапласа.	8
7	Теорема Пуассона и как её применять.	9
8	Локальная теорема Муавра-Лапласа.	9
9	Аксиомы вероятности.	9
10	Закон больших чисел в форме Бернулли	10
11	Теорема Радона Никодима и что такое производная Радона-Никодима меры μ по мере ν ?	10
12	В каком случае существует производная Радона-Никодима меры μ по мере ν и что означает запись $\mu \ll \nu$.	11
13	Какая функция называется измеримой?	11
14	Что называется случайной величиной?	12
15	Что называется функцией распределения случайной величины?	12
16	Как вычислить $P(\eta \in [0,1]),$ зная F_{η} ?	12
17	Какие случайные величины называются дискретными?	13
18	Какие случайные величины называют абсолютно непрерывными?	13
19	Четыре свойства функции распределения.	14
20	Что называется плотностью распределения случайной величины?	15
21	Как вычислить $P(\xi \in [a,b), \eta \in [c,d)),$ зная совместную функцию распределения $F_{\xi\eta}$?	16
22	Что называют условной вероятностью события A при условии события B (формула)?	16
23	Что называется функцией распределения случайного вектора?	17
24	Какие случайные вектора называют лискретными?	17

25	Что называют плотностью распределения случайного вектора?	17
26	Какие случайные величины называют независимыми?	18
27	Критерий независимости в терминах функций распределения.	18
28	Критерий независимости в терминах плотностей.	18
29	Что называется условной функцией распределения случайного вектора ξ при условии η ?	19
30	Что называется условной плотностью распределения случайного вектора ξ при условии η ?	19
31	Вычисление распределения суммы независимых случайный величин. Формула свёртки.	20
32	Мат. ожидание и его свойства.	20
33	Дисперсия и её свойства.	21
34	Что называется условным мат. ожиданием ξ при условии $\eta,$ если (ξ,η) абс. непр. случайный вектор?	21
35	Что называется условным мат. ожиданием ξ при условии $\eta,$ если (ξ,η) - дискретный случайный вектор?	21
36	Свойства условных мат. ожиданий.	22
37	Что такое ковариация и коэффициент корреляции?	22
38	Свойства ковариации и коэффициента корреляции	22
39	Неравенство Йенсена для мат. ожидания.	23
40	Неравенства Чебышева и где они применяются.	24
41	Неравенство Гёльдера для мат. ожидания.	24
42	Неравенство Минковского для мат. ожидания.	24
43	Неравенство Ляпунова для мат. ожидания.	24
44	Неравенство Коши-Буняковского для мат. ожидания.	24
45	Что означает $\xi_n \to \xi$ по вероятности?	25
46	Что означает $\xi_n \to \xi$ с вероятностью 1?	25
47	Что означает $\xi_n \to \xi$ в среднеквадратическом?	25
48	Какая связь между сходимостью по вероятности, с вероятностью 1 и в среднем?	25

49 Определение слабой сходимости.	26
50 Теорема Маркова о законе больших чисел.	26
51 Теорема Чебышева о законе больших чисел.	27
52 Что называется законом больших чисел и его запись с использованием известны видов сходимости последовательностей случайных величин.	ых 27
53 Сформулировать ЦПТ Леви в частном случае испытаний Бернулли.	28
54 Центральная предельная теорема Леви.	28
55 Последовательность независимых случайных величин (HCB) и марковские последовательности. Примеры марковских последовательностей, построенных по последовательности HCB.	
56 Критерий возвратности для цепей Маркова.	30
57 Марковское свойство, что называется цепью Маркова и уравнение Маркова.	30
58 Уравнение эргодичности неприводимой цепи Маркова и вычисление финальнов вероятностей.	ых 31
59 Что называется периодом неприводимой цепи Маркова?	32
60 В чём заключается классическое определение вероятности?	32
61 В чём заключается геометрическое определение вероятности?	32
62 Какое событие называется противоположным событию A .	33
63 Что такое полная система (группа) событий.	33
64 Продолжить формулу $P(A \cup B \cup C) = \dots$	33
65 μ_n - число успехов в сх. Бернулли с вер-ю успеха p . При каком k достигает максимум $P(\mu_n=k)$.	гся 34
66 Как вычислить $P(\eta \in [0,1])$ зная плотность распределения p_{η} ?	34
67 Формулы, связывающие плотность распределения и функцию распределения.	34
68 Записать формулу преобразования плотностей при преобразовании $g(\eta=g(\xi)),$ ли g -дифференцируемая функция и $g'(x)<0$ для любого $x.$	ec- 35
69 Привести пример попарно независимых событий, не являющихся независимых в совокупности.	ми 35
70 Что такое равномерное распределение $\xi \in U(a,b),$ его тип, $E\xi, D\xi.$	36
71 Что такое нормальное распределение $\xi \in \mathcal{N}(a,\sigma^2)$, его тип, $E\xi,D\xi$.	36

72	Что тако	е распределение	Пуассона	$\xi \in Pa$	$ois(\lambda)$,	его тип.	$E\xi, D\xi$

36

- 73 Как вычислить дисперсию $\xi + \eta,$ зная дисперсию величин ξ и η и коэффициент корреляции между ними.
- 74 Что такое распределение Бернулли. Его тип, мат. ожидание и дисперсия. 37

1 Свойства вероятности.

Отталкиваемся от общей модели: пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент. $A, B \in \mathcal{F}$.

- 1. $P(\emptyset) = 0$
- 2. Если определено событие A, то определено и обратное ему $\bar{A} = \Omega \backslash A$ такое, что $P(A) + P(\bar{A}) = 1$.
- 3. $B \supseteq A \Rightarrow P(B \backslash A) = P(B) P(A)$.
 - 3.' (Монотонность) $A \subset B$ (в этом случае принято говорить, что "событие A предшествует событию B" или "событие A влечёт за собой событие B") $\Rightarrow P(B) \geqslant P(A)$. Это следует из того, что $P(A) + P(\bar{A}B) = P(B)$.
- 4. $A, B \in \mathcal{F} \Rightarrow P(A \cup B) = P(A) + P(B) P(AB)$. 4. $A, B \in \mathcal{F} \Rightarrow P(A \cup B) \leq P(A) + P(B)$
- 5. Формула включения исключения:

$$A_1, \dots, A_n \in \mathcal{F} :$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{s=1}^n \sum_{|\sigma|=s} (-1)^{s-1} P\left(\bigcap_{i \in \sigma} A_i\right) =$$

$$= P(A_1) + \dots + P(A_n) - P(A_1A_2) - P(A_1A_3) - \dots \pm (-1)^n P(A_1, \dots, A_n)$$

 σ - сочетание индексов $\{1,\ldots,n\}, s=|\sigma|$ - число элементов сочетания.

6. Свойство непрерывности (⇔ АВ1, АВ3):

 \square имеется вложенный ∞ набор "расширяющихся" событий: $A_1 \subset A_2 \subset \dots A_i \in \mathcal{F}$, тогда

$$\lim_{n \to \infty} P\left(\bigcup_{i=1}^{n} A_i\right) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} P(A_n)$$

6.' (Комплементарное свойство) $A_1 \supset A_2 \supset \dots A_i \in \mathcal{F}$

$$\lim_{n \to \infty} P\left(\bigcap_{i=1}^{n} A_i\right) = \lim_{n \to \infty} P(A_1)$$

2 В каком случае события $A_1 \dots A_n$ называются независимыми в совокупности?

 $\exists (\Omega, \mathcal{F}, P)$ - вероятностный эксперимент.

События $A_1, \ldots, A_n \in \mathcal{F}$ называются независимыми в совокупности (взаимно независимыми), если для $\forall \{i_1, \ldots, i_s\} \subseteq \{1, \ldots, n\}, s \in [1, n]$ (\Leftrightarrow любого сочетания индексов) верно:

$$P(A_{i_1} \dots A_{i_s}) = P(A_{i_1}) \cdot \dots \cdot P(A_{i_s}), s = 1, \dots, s$$

Несколько событий называются независимыми в совокупности (или просто независимыми), если независимы каждые два из них и независимы каждое из них и все возможные произведения остальных.

3 Формула полной вероятности.

Пусть $\{A_i\}_{i=1}^n$ - ПГС и для всех $i\geqslant 0$ верно нер-во $P(A_i)>0$. Тогда для любого случайного события B его вероятность можно вычислить по формуле:

$$P(B) = \sum_{i} P(B|A_i)P(A_i)$$

Примечание. Количество элементов полной группы событий может быть и бесконечным, но обязательно счетным.

Для абсолютно непрерывных величин:

Пусть ξ_1, ξ_2 - абсолютно непрерывные случайные величины на (Ω, \mathcal{F}, P) с совместной плотностью распределения $p_{\vec{\epsilon}}(x,y)$.

$$\eta = \xi_1 + \xi_2$$

$$p_{\eta}(t) = \int_{\mathbb{R}} p_{\xi_1|\xi_2 = y}(t - y) p_{\xi_2}(y) dy = \int_{\mathbb{R}} p_{\xi_2|\xi_1 = x}(t - x) p_{\xi_1}(x) dx$$

Если ξ_1, ξ_2 - независимы, то

$$p_{\xi}(x,y) = p_{\xi_1}(x)p_{\xi_2}(y);$$
 $p_{\xi_1|\xi_2} = y(x) = p_{\xi_1}(x)$

Отсюда можно получить формулу свёртки для плотностей:

$$p_{\eta}(t) = \int_{\mathbb{R}} p_{\xi_1}(t-y)p_{\xi_2}(y)dy = \int_{\mathbb{R}} p_{\xi_2}(t-x)p_{\xi_1}(x)dx$$

Можно использовать и для других функций, например, $\eta = \xi_1 \xi_2$:

$$p_{\eta}(t) = \int_{\mathbb{R}} p_{\xi_1|\xi_2=y} \left(\frac{t}{y}\right) p_{\xi_2}(y) dy$$

Что такое ПГС?

Пусть $\{H_i\}_{i=1}^n$ - некоторый набор случайных событий. Назовём его ПГС, если выполняются следующие условия:

- 1. $H_i \cap H_j = \emptyset$ события попарно несовместны (не могут появится одновременно в рез-те однократного проведения эксперимента).
- $2. \bigcup_{i=1}^{n} H_i = \Omega$
- 3. $P(H_i) > 0, \forall i$

Примечание. Независимость \Rightarrow (\swarrow) попарная независимость.

4 Формулы Байеса.

По формуле Байеса можно более точно пересчитать вероятность, беря в расчет как ранее известную информацию, так и данные новых наблюдений. Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было

вызвано данной причиной. События, отражающие действие «причин», в данном случае называют гипотезами, так как они — предполагаемые события, повлекшие данное.

Дадим математическую формулировку:

 $\exists A \in \mathcal{F}(P(A) > 0), \{H_i\}_{i=1}^n$ - ПГС и для всех $i \geqslant 1$ верно неравенство $P(H_i) > 0$. Тогда

$$P(H_i|A) = \frac{P(A|H_i) \cdot P(H_i)}{\sum_{j=1}^{n} P(A|H_j) \cdot P(H_j)}$$

Объяснения:

- $\sum_{j=1}^{n} P(A|H_j) \cdot P(H_j)$ вероятность A, разложенная по ф-ле полной вероятности.
- $P(H_i)$ априорные (судим о результатах до проведения эксперимента).

Доказательство.

$$\frac{P(A|H_i)P(H_i)}{\sum\limits_{j\geqslant 1}P(A|H_j)P(H_j)} = \frac{P(A|H_i)P(H_i)}{P(A)} = \frac{P(H_iA)P(H_i)}{P(H_i)P(A)} = P(H_i|A)$$

вероятность того, что событие B вероятность того, что событие A истинно вероятность того, что событие A вероятность того, что событие A вероятность того, что событие B истинно событие B истинно вероятность того, что событие B истинно

Примечание. Формула работает, когда есть несколько последовательных событий и последующее считать легче, что какое-то 1-ое уже произошло.

5 Что такое испытания Бернулли и Формула Бернулли?

Испытание - эксперимент с 2-мя исходами

$$\Omega = \{\text{'успех', 'неудача'}\}$$
 $\mathcal{F} - \text{все п/н }\Omega$
$$P(\{\text{'y'}\}) = 1 - P(\{\text{'H'}\}) = p, p \in [0,1]$$

Испытание Бернулли - это совокупность n независимых испытаний с одинаковой вероятностью успеха $P(\{'y'\}) = p, p \in [0,1]$.

Исход
$$\omega = (i_1, \dots, i_n), i_j \in \{\text{'y', 'н'}\}$$

 $\#\Omega = 2^n$, где n - число испытаний Бернулли.

 $P(\{\omega\}) = p^k(1-p)^{n-k}, k$ — число 'y' в последовательности (i_1, \ldots, i_n) .

В n испытаниях Бернулли изучают:

- 1. μ_n число успехов в n испытаниях Бернулли.
- $2. \ \nu_1$ число успехов до 1-ой неудачи.
- 3. ν_k число успехов до k-ой неудачи.

Формула Бернулли.

$$P(\mu_n = k) = C_n^k p^k (1-p)^{n-k} = C_n^k p^k q^{n-k}, k = 0, 1, \dots, n$$

6 Интегральная теорема Муавра-Лапласа.

Пусть ξ_1, ξ_2, \ldots - последовательность независимых одинаково распределенных случайных величин, с распределением Бернулли, то есть $P(\xi_k = 1) = 1 - P(\xi_k = 0) = p$, где 0 .

Каждую из случайных величин ξ_k можем интерпретировать как результат при k-ом испытании. Если случайная величина приняла значение 1, то это означает, что в k-ом испытании произошел «успех», если ξ_k приняла значение 0, то в k-ом испытании - «неудача». Тогда $\mu_n = \sum_{k=1}^n \xi_k$ означает число «успехов» в n испытаниях. Для этих случайных величин $E\xi_k = p, D\xi_k = p(1-p)$. Тогда выполнены условия теоремы Леви, и, следовательно, выполняется соотношение из ЦПТ Леви для всех $x \in \mathbb{R}$.

$$\sup_{-\infty \leqslant a < b \leqslant \infty} \left| P_n \left(a \leqslant \frac{\mu_n - np}{\sqrt{np(1-p)}} < b \right) - \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt \right| \underset{n \to \infty}{\longrightarrow} 0$$

Если учесть монотонность и поведение на бесконечностях функций распределения, что приводит к окончательному выводу, фиксирующему наличие равномерной сходимости:

Всё аналогично, только вместо интеграла записываем $-(\Phi(b) - \Phi(a))$.

Следствие:

Если устремим a к минус бесконечности, а b к бесконечности, то получим равенство

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt = 1$$

Как применять данную теорему? Если *п* очень большое, то

$$P(\alpha \leqslant k \leqslant \beta) = P\left(\frac{\alpha - np}{\sqrt{npq}} \leqslant \frac{k - np}{\sqrt{npq}} < \frac{\beta - np}{\sqrt{npq}}\right) \approx$$

$$\approx \frac{1}{\sqrt{2\pi}} \int_{\frac{\alpha - np}{\sqrt{npq}}}^{\frac{\beta - np}{\sqrt{npq}}} e^{-\frac{t^2}{2}} dt = \Phi\left(\frac{\beta - np}{\sqrt{npq}}\right) - \Phi\left(\frac{\alpha - np}{\sqrt{npq}}\right),$$

где функция $\Phi(x)$ определяется следующим равенством:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = \int_{-\infty}^{x} \varphi(t) dt$$

7 Теорема Пуассона и как её применять.

Схема Пуассона

Рассматривают последовательность серий испытаний Бернулли, где n испытаний, при этом $n \to \infty$, но $\lambda = np_n = const.$ $P(\mu_n = k), k$ - не меняется с ростом n.

$$p = p_n = \frac{\lambda}{n}, \lambda > 0$$

Теорема Пуассона

В схеме Пуассона при фиксированном $k \in 0,1,...$

$$\left| P(\mu_n = k) - \frac{\lambda^k}{k!} e^{-\lambda} \right| \underset{n \to \infty}{\longrightarrow} 0 \qquad \left(P(\mu_n = k) \underset{n \to \infty}{\longrightarrow} \frac{\lambda^k}{k!} e^{-\lambda} \right)$$

Формула Пуассона

$$P(\mu_n = k) \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

Примечание. При большой величине np - $M\Pi$, при малом - Пуассон.

Обычно границу ставят: $np \ge 10$ и np < 10.

8 Локальная теорема Муавра-Лапласа.

Рассмотрим n испытаний Бернулли, где p=P('y') - вероятность успеха в одном испытании, k - число успехов в n испытаниях. Введем следующие обозначение $x_{n,k}=\frac{k-np}{\sqrt{npq}}, q=1-p$.

Справедливо следующее соотношение

$$\frac{P_n(k)}{\frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x_{n,k})^2}{2}}} \to 1 \qquad (n \to \infty)$$

равномерно по всем таким k, для которых при произвольных фиксированных c>0 и $\varepsilon>0$ выполнено неравенство: $|x_{n,k}|\leqslant c\cdot n^{\frac{1}{6}-\varepsilon}$.

Утверждение теоремы означает, что

$$P_n(k) \approx \frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{n,k}^2}{2}} = \frac{1}{\sqrt{npq}} \varphi(x_{n,k}),$$

где $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ - функция Гаусса.

9 Аксиомы вероятности.

Аксиоматика Колмогорова - общепринятая аксиоматика для математического описания теории вероятностей. То есть вероятность полностью определяется следующими аксиомами.

Аксиомы вероятности:

- 1. **AB1:** $P(\Omega) = 1$
- 2. **AB2:** Пусть есть два события $A, B \in F$, т.ч. (таких, что) $A \cap B = \emptyset$, то вероятность их объединения: $P(A \cup B) = P(A) + P(B)$ аддитивность.
- 3. **AB3:** если $A_1,A_2,\dots\in F$ и $A_i\cap A_j=\varnothing, i\neq j$, то $P\left(\bigcup_{i=1}^\infty A_i\right)=\sum_{i=1}^n P(A_i)$ счётная аддитивность.

10 Закон больших чисел в форме Бернулли

Пусть p = P('y') - вероятность успеха в одном испытании, μ_n - число успехов в n испытаниях. Тогда для любого положительного ε выполняется предельное соотношение:

$$P\left(\left|\frac{\mu_n}{n} - p\right| > \varepsilon\right) \underset{n \to \infty}{\to} 0$$

(Отношение $\frac{\mu_n}{n}$ принято называть частотой успеха).

11 Теорема Радона Никодима и что такое производная Радона-Никодима меры μ по мере ν ?

Пусть μ, ν - σ -конечные меры на измеримом пространстве (x, \mathcal{A}) .

1. Тогда $\exists \nu_1 \perp \nu$ и измеримая функция P такая, что $P: x \to [0, \infty]$ т.ч.

$$\forall A \in \mathcal{A}; \mu(A) = \nu_1(A) + \int_A P(x)d\nu(x)$$

- 2. ν_1 определена однозначно с точностью до множеств $\nu(B) = 0$.
- 3. Если μ абсолютно непрерывна $(\mu \ll \nu)$ по отношению к $\nu,$ то $\exists P: x \to [0, \infty)$

$$\mu(A) = \int_A p d\nu$$

 $\ensuremath{\varPipume}$ чание. В 3-ем пункте p - плотность меры μ по мере ν .

Производная Радона-Никодима:

$$p = \frac{d\mu}{d\nu}$$

Пример 11.1

1. μ - мера Лебега на $(\mathbb{R}, \mathcal{B}_1)$, ν - считающаяся мера на \mathbb{N} .

$$\nu(A) = \#\{x \in \mathbb{N} : x \in A\}$$

$$\mu \perp \nu; \quad \mu(\mathbb{N}) = 0; \quad \nu(\mathbb{R} \backslash \mathbb{N}) = 0$$

2. x - параллеленинед в \mathbb{R}^3 , $\mathcal{A} = \mathcal{B}_3 \cap x$.

m - масса, V - объём.

$$m(A) = \int_{A} \rho dV$$

 $\rho = \frac{dm}{dV}$ - плотность вещества.

12 В каком случае существует производная Радона-Никодима меры μ по мере ν и что означает запись $\mu \ll \nu$.

Пусть (x, A) - измеримое пространство.

Сингулярные меры

Меры μ и ν на (x, \mathcal{A}) сингулярны, если $\exists x_1, x_2 \in \mathcal{A} : x_1 \cap x_2 = \varnothing, x_1 \cup x_2 = x$, т.ч. $\mu(x_2) = 0$ и $\nu(x_1) = 0$.

Абсолютно непрерывная мера

Мера μ абсолютно непрерывна по отношению к ν ($\mu \ll \nu, \nu$ — доминирует μ), если $\nu(A) = 0 \Rightarrow \mu(A) = 0$.

Теорема Радона-Никодима

Пусть μ, ν - σ -конечные меры на измеримом пространстве (x, A).

1. Тогда $\exists \nu_1 \perp \nu$ и измеримая функция P такая, что $P: x \to [0, \infty]$

$$\forall A \in \mathcal{A}; \mu(A) = \nu_1(A) + \int_A P(x) d\nu(x)$$

- 2. ν_1 определена однозначно с точностью до множеств $\nu(B) = 0$.
- 3. Если μ абсолютно непрерывна ($\mu \ll \nu$) по отношению к ν , то $\exists P : x \to [0, \infty)$

$$\mu(A) = \int_{A} p d\nu$$

Примечание. В 3-ем пункте p - **плотность** меры μ по мере ν .

Производная Радона-Никодима, её существование гарантируется теоремой Радона-Никодима:

$$p = \frac{d\mu}{d\nu}$$

13 Какая функция называется измеримой?

Пусть $f: x \to \mathbb{R}$, где (x, \mathcal{A}) - измеримое пространство. f - измеримая, если $\forall A \in \mathcal{B}_1(A \subset \mathbb{R})$. Здесь \mathcal{B}_1 - борелевские множества, их \cup и \cap не более чем счётные.

$$\{x\in X: f(x)\in A\}(=f^{-1}(A))\in \mathcal{A}$$

Свойства измеримых функций

- 1. f(x) = const измерима
- 2. f,g измерима, $\alpha,\beta\in\mathbb{R}$

$$\alpha f + \beta g; \alpha f - \beta g; fg; f \backslash g; g > 0; |f|; f_+; f_-$$
 измеримые

3. $\{f_n\}_{n\in\mathbb{N}}$ - последовательность измеримых

$$\lim_{n\to\infty} f_n(x) = f(x), \forall x \in X \Rightarrow f$$
 — измеримая

Дополнительная тема для размышлений!

Данный вопрос следует из определения случайной величины.

Пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент. ξ - случайная величина, если ξ - вещественная измеримая функция (или отображение), определенной на множестве элементарных событий, т.е. $\xi: \Omega \to \mathbb{R}$, и функция ξ является измеримой.

Измеримость означает, что для любого измеримого подмножества B (B - борелевское подмножество множества вещественных чисел) прообраз $\xi^{-1}(B) \in \mathcal{F}$

14 Что называется случайной величиной?

Случайная величина — это измеримая функция, заданная на каком-либо вероятностном пространстве. Дадим более строгое математическое определение:

Пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент. ξ - случайная величина, если ξ - вещественная измеримая функция (или отображение), определенной на множестве элементарных событий, т.е. $\xi: \Omega \to \mathbb{R}$, и функция ξ является измеримой¹.

Примечание. Свойства случайной величины полностью описывается её распределением.

15 Что называется функцией распределения случайной величины?

Распределение случайной величины.

Рассмотрим функцию $\mathcal{P}_{\xi}: \mathcal{B} \to \mathbb{R}$ такую, что для любого измеримого $B \in \mathcal{B}$ выполняется равенство:

$$\mathcal{P}_{\xi}(B) = P(\xi^{-1}(B)),$$

где \mathcal{B} - множество борелевских подмножеств множества вещественных чисел. Такая функция \mathcal{P}_{ξ} называется распределением случайной величины ξ .

Функция распределения случайной величины.

Функция распределения — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина ξ примет значение, меньшее или равное x, где x — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.

Строгое определение.

Пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент, в котором определена случайная величина ξ , и \mathcal{P}_{ξ} - её распределение. Заметим, что \mathcal{P}_{ξ} - это нормированная мера.

Функцией распределения случайной величины ξ будем называть функцию $F_{\xi}: \mathbb{R} \to \mathbb{R}$ такую, что для любого $x \in \mathbb{R}$ значение функции определяется равенством $F_{\xi} = \mathbb{P}_{\xi}((-\infty, x))$.

16 Как вычислить $P(\eta \in [0,1])$, зная F_{η} ?

Функция распределения случайной величины

Функция распределения — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина ξ примет значение, меньшее или равное x, где x — произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

¹Измеримость означает, что для любого измеримого подмножества B (B - борелевское подмножество множества вещественных чисел) прообраз $\xi^{-1}(B) \in \mathcal{F}$

Строгое определение.

Пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент, в котором определена случайная величина ξ , и \mathcal{P}_{ξ} - её распределение. Заметим, что \mathcal{P}_{ξ} - это нормированная мера².

Функцией распределения случайной величины ξ будем называть функцию $F_{\xi}: \mathbb{R} \to \mathbb{R}$ такую, что для любого $x \in \mathbb{R}$ значение функции определяется равенством $F_{\xi} = \mathbb{P}_{\xi}((-\infty, x))$.

Примечание. При x < y верно равенство $\mathcal{P}_{\xi}([x,y)) = F_{\xi}(y) - F_{\xi}(x)$.

$$P(\eta \in [0,1]) = F_{\eta}(1) - F_{\eta}(0)$$

Насчет круглых и квадратных скобок - подразумеваем, что равенство выполняется с точностью до множеств вероятности 0.

17 Какие случайные величины называются дискретными?

Говорим, что ξ - случайная величина с дискретным законом распределения, если существует $A \subset \mathbb{R}$ такое, что A - не более чем счётное и $P(\xi \in A) = 1$.

Так как A — не более чем счетное, то занумеруем элементы множества $A = \{a_1, a_2, \dots\}$ и составим следующую таблицу:

$$\begin{array}{c|ccccc}
\xi & a_1 & a_2 & \dots \\
p & p_1 & p_2 & \dots
\end{array}$$

Здесь $p_i = P(\xi = a_i)$. Эту таблицу будем называть законом распределения дискретной случайной величины ξ . Отметим, что для чисел p_i выполняются следующие соотношения:

- 1. $p_i \ge 0$;
- 2. $\sum_{i} p_i = 1$.

Если случайная величина ξ дискретна, то есть её распределение однозначно задаётся функцией вероятности $P(\xi=a_i)=p_i, p_i\geqslant 0, \sum_i p_i=1, i=1,2,\ldots$, то функция распределения F_ξ этой случайной величины кусочно-постоянна и может быть записана как:

$$F_{\xi}(x) = \sum_{i:x_i \leq x} p_i.$$

Эта функция непрерывна в любой точке $x \in \mathbb{R}$, такой что $x \neq x_i, \forall i$, и имеет разрыв, равный p_i , в $x = x_i$.

18 Какие случайные величины называют абсолютно непрерывными?

Говорим, что ξ - случайная величина, имеющая абсолютно непрерывное распределение, если существует функция p_{ξ} такая, что для любого $B \in \mathcal{B}$ справедливо равенство

$$P(\xi \in B) = \int_{B} p_{\xi}(x)dx,$$

 $^{^2}$ Пусть Ω - множество и $\mathcal{F}-\sigma$ -алгебра его подмножеств. Мера $\mu:\mathcal{F}\to\mathbb{R}$ называется нормированной, если $\mu(\Omega)=1$. Другое название нормированной меры - вероятность или вероятностная мера.

где p_{ξ} - некоторая функция, которую будем называть *плотностью распределения случайной вели- чины* (плотность по отношению к мере Лебега) ξ .

В частности, если $B = (-\infty; y)$, то

$$P(\xi \in B) = F_{\xi}(y) = \int_{-\infty}^{y} p_{\xi}(x)dx$$

Из последнего равенства следует, что $p_{\xi}(x) = F'(x)$ почти всюду.

Свойства функции $p_{\varepsilon}(x)$

Для плотности случайной величины верны следующие соотношения, справедливость которых непосредственно следует из определения,

- 1. $p_{\xi}(x) \ge 0$ почти всюду;
- $2. \int_{-\infty}^{\infty} p_{\xi}(x) dx = 1.$

19 Четыре свойства функции распределения.

1-3 - основные свойства (характеристические).

- 1. $F\xi(x) \in [0, 1], \lim_{x \to -\infty} F\xi(x) = 0, \lim_{x \to \infty} F\xi(x) = 1$
- 2. $F\xi(x)$ непрерывна слева, имеет пределы справа, $\lim_{x\to x^-}F(x)=F(x_0)$
- 3. $F\xi(x)$ монотонна (не убывает), $\forall x, y : x < y \Rightarrow F\xi(x) \leqslant F\xi(y)$ (не убывает).
- 4. Любой полуоткрытый интервал $(a, b], \forall a, b \in \mathbb{R}, a < b$ числовой оси представляет собой *событие*, вероятность которого выражается по формуле

$$P(\xi \in (a,b]) = P(a < \xi \leqslant b) = F\xi(b) - F\xi(a)$$

Так же определяются вероятности событий, представленных интервалами других типов:

$$P(\xi \in [a,b]) = P(a \leqslant \xi \leqslant b) = F\xi(b) - F\xi(a-0)$$

$$P(x \in (a,b)) = P(a < \xi < b) = F\xi(b-0) - F\xi(a)$$
 и т.п.,

а также событий, представленных объединением конечного или счётного множества непересекающихся интервалов.

Если интервалы (a,b] и (c,d] пересекаются (например, a < c < b < d), то их пересечение и объединение представляют события, вероятности которых определяются по формулам $P((a,b] \cap (c,d]) = P((c,b]) = F\xi(b) - F\xi(c), P((a,b] \cup (c,d]) = P((a,d]) = F\xi(d) - F\xi(a)$ и т.п.

Корректность данного определения вероятности для счетного объединения непересекающихся интервалов обеспечивается абсолютной сходимостью соответствующего ряда в силу того, что вероятность положительна и нормирована на единицу.

5. $\forall x \in \mathbb{R} \exists \lim_{x \to x_{0+}} F(x) = l_{x_0}$ (существует предел справа).

20 Что называется плотностью распределения случайной величины?

Сайт с примерами и графиками на всякий.

Абсолютно непрерывная случайная величина

Говорим, что ξ - случайная величина, имеющая абсолютно непрерывное распределение, если существует функция p_{ξ} такая, что для любого $B \in \mathcal{B}$ справедливо равенство

$$P(\xi \in B) = \int_{B} p_{\xi}(x)dx,$$

где p_{ξ} - некоторая функция, которую будем называть *плотностью распределения случайной вели- чины* (плотность по отношению к мере Лебега) ξ .

В частности, если $B = (-\infty; y)$, то

$$P(\xi \in B) = F_{\xi}(y) = \int_{-\infty}^{y} p_{\xi}(x)dx$$

Из последнего равенства следует, что $p_{\xi}(x) = F'(x)$ почти всюду.

Свойства функции $p_{\varepsilon}(x)$

Для плотности случайной величины верны следующие соотношения, справедливость которых непосредственно следует из определения,

1. $p_{\xi}(x) \ge 0$ почти всюду;

$$2. \int_{-\infty}^{\infty} p_{\xi}(x) dx = 1.$$

Примечание. У дискретных (принимающих конечное или счетное число значений) величин плотности нет.

Геометрическая интерпретация

Вероятность P попадания случайной величины в интервал между a и b равна площади S под графиком функции плотности вероятности p_{ξ} .

$$P(\xi \in [a,b]) = \int_{a}^{b} p_{\xi}(x)dx$$

Зная плотность вероятности, можно также определить наиболее вероятное значение (моду) случайной величины как максимум $p_{\xi}(x)$. Также с помощью плотности вероятности находится среднее значение случайной величины:

$$E\xi = \int_{-\infty}^{\infty} x p_{\xi}(x) dx$$

Пример

Широко известным распределением является «нормальное», оно же гауссово, плотность которого записывается как

 $p_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

где μ и σ - параметры: математическое ожидание и среднеквадратичное отклонение.

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием $\mu=0$ и стандартным отклонением $\sigma=1$.

21 Как вычислить $P(\xi \in [a,b), \eta \in [c,d))$, зная совместную функцию распределения $F_{\xi\eta}$?

$$F_{\xi\eta}(b,d) = P(\xi < b, \eta < d)$$

$$F_{\xi\eta}(a,c) = P(\xi < a, \eta < c)$$

Тогда:

$$P(\eta \in [a,b), \xi \in [c,d)) = F_{\xi\eta}(b,d) - F_{\xi\eta}(a,c)$$

22 Что называют условной вероятностью события A при условии события B (формула)?

Пусть A, B - события, P(B) > 0. Условная вероятность A при условии $B: P(A|B) = \frac{P(AB)}{P(B)}$

 Π римечание. Пусть B - произошло, тогда

$$P(B|B) = 1$$
 $P(A^*|B) = \frac{P(A^*)}{P(B)}, A^* \subset B$ $P(A^{**}|B) = 0, A^{**} \cap B = \emptyset$
 $P(\bar{B}|B) = 0$ $A = AB \cup A \setminus B$ $P(A|B) = P(AB|B) + P(A\bar{B}|B)$

Свойства:

1.
$$A \cap B = \emptyset \Rightarrow P(A|B) = 0$$

2.
$$A \supseteq B \Rightarrow P(A|B) = \frac{P(A)}{P(B)}$$

3.
$$A, B$$
 - независимы, $P(A|B) = P(A)$

4.
$$P_B: \mathcal{F} \to [0,1]$$
, т.ч. $P_B(A) = P(A|B), A \in \mathcal{F}$ P_B - вероятность (т.е. удовл. AB1-AB3)

23 Что называется функцией распределения случайного вектора?

Функцию распределения случайного вектора $\xi=(\xi_1,\xi_2,\ldots,\xi_d)$ определяем как функцию $F_\xi:\mathbb{R}^d\to\mathbb{R}^1$ такую, что для любого $(x_1,\ldots,x_d)\in\mathbb{R}^d$

$$F_{\xi}(x_1, x_2, \dots, x_d) = P(\xi_1 < x_1, \xi_2 < x_2, \dots, \xi_d < x_d)$$

Через распределение случайного вектора функция распределения выражается так:

$$F_{\varepsilon}(x_1,\ldots,x_d) = \mathcal{P}_{\varepsilon}((-\infty,x_1]\times(-\infty,x_n])$$

Свойства функции распределения случайного вектора:

- 1. $0 \leqslant F_{\epsilon}(x_1, \dots, x_d) \leqslant 1$.
- 2. F_{ξ} непрерывна слева по каждой координате³.
- 3. $F_{\xi}(x_1,\ldots,x_k,\ldots,x_d) \underset{x_k\to-\infty}{\longrightarrow} 0$, для любого $k\leqslant d$.
- 4. $F_{\xi}(x_1,\ldots,x_k,\ldots,x_d) \underset{x_k\to\infty}{\to} F_{(\xi_1,\ldots,\xi_{k-1},\xi_{x+1},\ldots,\xi_d)}(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_d)$, для любого $k\leqslant d$, и $F_{\xi}(x_1,\ldots,x_d)\to 1$, если одновременно все переменные x_1,x_2,\ldots,x_d стремятся к бесконечности.
- 5. Пусть d = 2 и пусть $a_1 < b_1, a_2 < b_2$. Тогда

$$P((\xi_1, \xi_2) \in [a_1; b_1) \times [a_2; b_2)) = F_{\xi}(b_1, b_2) - F_{\xi}(a_1, b_2) - F_{\xi}(b_1, a_2) + F_{\xi}(a_1, a_2)$$

24 Какие случайные вектора называют дискретными?

Случайный вектор $\vec{\xi}$ имеет дискретное распределение, если существует такое не более чем счётное множество $A \subset \mathbb{R}^d$, что $P(\xi \in A) = 1$.

Отметим, что следующие два утверждения равносильны:

- 1. $\xi = (\xi_1, \dots, \xi_d)$ случайный вектор с дискретным распределением.
- 2. Для всех $k\leqslant d$ случайные величины ξ_k имеют дискретное распределение.

25 Что называют плотностью распределения случайного вектора?

Случайный вектор ξ с абсолютно непрерывным распределением, если существует такая функция $p_{\xi}(x_1, x_2, \dots, x_d)$, что при любом (y_1, y_2, \dots, y_d) справедливо равенство

$$F_{\vec{\xi}}(y_1, \dots, y_d) = \int_{-\infty}^{y_1} \dots \int_{-\infty}^{y_d} p_{\vec{\xi}}(x_1, \dots, x_d) dx_1 \dots dx_d = \int_{(-\infty; y_1] \times \dots \times (-\infty; y_n]} p_{\vec{\xi}}(\vec{x}) d\mu_n(\vec{x})$$

Здесь функция $p_{\vec{\xi}}$ называется nлотностью pаспределения случайного вектора, а μ_n - мера Лебега.

 $^{^3\}Phi$ ункция f(x) называется непрерывной слева в точке a, если $f(a-0)=\lim_{x\to a-0}f(x)=f(a).$

Mepa

Функция, действующая $\mu: \mathcal{A} \to [0, \infty]$ называется мерой.

Мера - неотрицательная счётно-аддитивная функция множеств из $\mathcal{A}-\sigma$ -алгебра.

Мера Лебега

 $X = \mathbb{R}, \mathcal{A} = \mathcal{B}_1$, где \mathcal{B}_1 - борелевская σ -алгебра - наименьшая сигма-алгебра, содержащая все интервалы $(a,b], a,b \in \mathbb{R}, b > a$.

 μ_1 - мера Лебега, определённая на интервалах $\mu((a,b]) = b - a$. По свойствам меры μ_1 продолжается единственным образом на \mathcal{B}_1 .

26 Какие случайные величины называют независимыми?

Пусть на некотором вероятностном пространстве (Ω, \mathcal{F}, P) определены ξ_1, \ldots, ξ_n - случайные величины, $\vec{\xi} = (\xi_1, \ldots, \xi_n)$ - соответствующий случайный вектор. $\mathcal{P}_{\xi_1, \ldots, \xi_n}$ - распределение $(F_{\xi_1, \ldots, \xi_n}$ - ф-я распределения), p_{ξ_1, \ldots, ξ_n} - плотность распределения. B_1, \ldots, B_n - борелевские подмножества множества вещественных чисел, $B_1, \ldots, B_n \in \mathcal{B}$ - множество борелевских подмножеств множества вещественных чисел (борелевская σ -алгебра).

В терминах борелевских подмножеств:

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = \prod_{i=1}^n P(\xi_i \in B_i)$$

27 Критерий независимости в терминах функций распределения.

В терминах распределения случайного вектора:

$$\mathcal{P}_{\vec{\xi}}(B_1 \times \cdots \times B_n) = \mathcal{P}_{\vec{\xi}}(B_1 \times \mathbb{R} \times \cdots \times \mathbb{R}) \cdot \mathcal{P}_{\vec{\xi}}(\mathbb{R} \times B_2 \times \cdots \times \mathbb{R}) \cdot \dots \cdot \mathcal{P}_{\vec{\xi}}(\mathbb{R} \times \dots \times \mathbb{R} \times B_n)$$

В терминах функций распределения:

Говорим, что ξ_1, \ldots, ξ_n - независимые случайные величины, если для любых $x_1, x_2, \ldots, x_n \in \mathbb{R}$ при условии совпадения всех функций распределений справедливо равенство:

$$F_{\xi}(x_1 \dots x_n) = F_{\xi_1}(x_1) \cdot \dots \cdot F_{\xi_n}(x_n) = \prod_{i=1}^n F_{\xi_i}(x_i)$$

Это означает, что

$$P(\xi_1 < x_1, \dots, \xi_n < x_n) = \prod_{i=1}^n P(\xi_i < x_i)$$

Заметим, что здесь речь идет о независимости в совокупности.

28 Критерий независимости в терминах плотностей.

В терминах плотностей:

Для абсолютно непрерывных величин независимость можно задать в терминах плотностей: для любых $x_1, x_2, \ldots, x_n \in \mathbb{R}$:

$$p_{\vec{\xi}}(x_1 \dots x_n) = p_{\xi_1}(x_1) \dots p_{\xi_n}(x_n)$$

$$p_{\xi_i}(x_i) = \int_{\mathbb{R}^{n-1}} p_{\vec{\xi}}(\vec{x}) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n$$

29 Что называется условной функцией распределения случайного вектора ξ при условии η ?

Дискретный случай Пусть $\xi=(\xi_1,\ldots,\xi_n)$ - случайный вектор, $\xi=(\eta_1,\eta_2)$, где $\eta_1=(\xi_1,\ldots,\xi_k),\eta_2=(\xi_{k+1},\ldots,\xi_n)$.

Пусть $\eta_1 = y$ - известен. Условное распределение η_2 при условии η_1 ?

$$P(\eta_2 = b_{2i} | \eta_1 = b_{1i}) = \underbrace{\frac{P(\xi = a_i)}{P(\eta_1 = b_{1i})}}_{>0} = \underbrace{\frac{P(\eta_2 = b_{2i}, \eta_1 = b_{1i})}{P(\eta_1 = b_{1i})}}_{>0}$$

Тогда функция распределения

$$F(\eta_2 | \eta_1 = b_{1i})(b_{2i}) = P(\eta_2 < b_{2i} | \eta_1 = b_{1i}) = \sum_{k < b_{2i}} P(\eta_2 = k | \eta_1 = b_{1i})$$

Абсолютно непрерывный случай Пусть (ξ_1,ξ_2) - случайные величины (векторы), $p_{\vec{\xi}}(x,y)$ - плотность совместного распределения.

$$p_{\xi_1}(x)=\int_{-\infty}^{\infty}p_{\vec{\xi}}(x,y)dy$$
- плотность распределения ξ_1
$$p_{\xi_2|\xi_1=x}(y)=\underbrace{\frac{p_{\xi}(x,y)}{p_{\xi_1}(x)}},y\in\mathbb{R},x\text{ - фиксированный}$$

Для определенности положим, что $\xi_2 = (\xi_{21}, \dots, \xi_{2n})$. Тогда условная функция распределения (в абс. непрерывном случае)

$$F_{\xi_2|\xi_1=x}(y) = \int_{-\infty}^{y_1} \dots \int_{-\infty}^{y_n} p_{\xi_2|\xi_1=x}(y) dy$$

30 Что называется условной плотностью распределения случайного вектора ξ при условии η ?

Пусть $\xi = (\xi_1, \dots, \xi_n)$ - случайный вектор, $\xi = (\eta_1, \eta_2)$, где $\eta_1 = (\xi_1, \dots, \xi_k)$, $\eta_2 = (\xi_{k+1}, \dots, \xi_n)$. Пусть $\eta_1 = y$ - известен. Условное распределение η_2 при условии η_1 ?

Абсолютно непрерывный случай Пусть (ξ_1, ξ_2) - случайные величины (векторы), $p_{\vec{\xi}}(x,y)$ - плотность совместного распределения.

$$p_{\xi_1}(x)=\int_{-\infty}^\infty p_{\vec{\xi}}(x,y)dy$$
 - плотность распределения ξ_1
$$p_{\xi_2|\xi_1=x}(y)=\underbrace{\frac{p_{\xi}(x,y)}{p_{\xi_1}(x)}}_{>0},y\in\mathbb{R},x\text{ - фиксированный}$$

31 Вычисление распределения суммы независимых случайный величин. Формула свёртки.

Предположим, что ξ, η - независимые случайные величины с известными нам функциями распределения F_{ξ}, F_{η} . Как вычислить $P(\xi + \eta \in D)$, где D - произвольное измеримое подмножество вещественной прямой⁴? Известно, что

$$P(\xi + \eta \in D) = \int_{D} dF_{\xi + \eta}(x)$$

$$p_{(\xi+\eta)}(x) = \int_{-\infty}^{\infty} p_{\xi}(x-y)p_{\eta}(y)dy = \int_{-\infty}^{\infty} p_{\eta}(x-y)p_{\xi}(y)dy.$$

Данная формула называется формулой свертки для плотностей.

Формула свертки для функций распределения

$$F_{\xi+\eta}(x) = \int_{-\infty}^{\infty} F_{\xi}(x-y)dF_{\eta}(y) = \int_{-\infty}^{\infty} F_{\eta}(x-y)dF_{\xi}(y)$$

32 Мат. ожидание и его свойства.

Математическим ожиданием случайной величины ξ называют **число** $E\xi$, определяемое равенством

$$E\xi = \int_{\omega \in \Omega} \xi(\omega) dP(\omega) = \int_{-\infty}^{\infty} x dF_{\xi}(x) = \begin{bmatrix} \sum\limits_{i:p_i>0} a_i p_i, p_i = P(\xi=a_i), \sum_i p_i = 1 \text{ (дискретное)} \\ \int\limits_{\mathbb{R}} x p_{\xi}(x) dx, p_{\xi} - \text{ плотность распределения } \xi(\exists \text{ если } \int \text{ сход.}) \end{bmatrix}$$

где F_{ξ} - функция распределения величины ξ . Если оно (это число) существует. Если интеграл расходится, то говорят, что у случайной величины отсутствует математическое ожидание.

 Π римечание. Математическое ожидание часто еще называют средним случайной величины. Предположим, что у случайной величины ξ ровно n значений, и все $p_i = \frac{1}{n}$, тогда $\xi = \frac{1}{n} \sum_i a_i$ - среднее арифметическое значений случайной величины.

Свойства математического ожидания

- 1. Если $P(\xi = c) = 1$, то $E\xi = c$.
- 2. Линейность математического ожидания. Пусть ξ, η случайные величины. Тогда для любых $\alpha, \beta \in \mathbb{R}$ справедливо равенство: $E(\alpha \xi + \beta \eta) = \alpha E \xi + \beta E \eta$. В данном случае предполагаем, что математические ожидания, о которых идет речь, существуют.
- 3. Если $P(\xi \ge 0) = 1$, то $E\xi \ge 0$.
- 4. Если $P(\xi \geqslant \eta) = 1$, то $E\xi \geqslant E\eta$.
- 5. Справедливо неравенство $|E\xi| \leqslant E|\xi|$.

⁴Напомним, что борелевская сигма-алгебра - это минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (впрочем, она содержит и все замкнутые). Обычно в качестве топологического пространства выступает множество вещественных чисел.

33 Дисперсия и её свойства.

Дисперсией случайной величины ξ называется центральный момент второго порядка $E(\xi-E\xi)^2$, если этот момент существует.

Стандартное обозначение для дисперсии - $D\xi$.

Из определения математического ожидания следует, что

$$D\xi = \int_{\Omega} (\xi(\omega) - E\xi)^2 dP(\omega)$$

Таким образом, дисперсия — это среднее значение квадрата отклонения случайной величины от её математического ожидания.

Свойства дисперсии

- 1. $D\xi \geqslant 0$ и $D\xi = 0$ тогда и только тогда, когда $P(\xi = c) = 1$ для некоторого $c \in \mathbb{R}$ (т.е. случайная величина ξ имеет вырожденное распределение).
- 2. Если $\alpha, \beta \in \mathbb{R}$, то $D(\alpha \xi + \beta) = \alpha^2 D \xi$
- 3. $D\xi = E\xi^2 (E\xi)^2$
- 4. $D(\xi + \eta) = D\xi + D\eta + 2E(\xi E\xi)(\eta E\eta)$
- 5. Если ξ и η независимые случайные величины и существуют их дисперсии, то $D(\xi + \eta) = D\xi + D\eta$. Верно и для произвольного числа попарно независимых случайных величин. В обратную сторону неверно.

Примечание. Дисперсия разности: $D(\xi - \eta) = D\xi + D(-\eta) = D\xi + D\eta$, т.е. дисперсия разности – это НЕ разность дисперсий.

34 Что называется условным мат. ожиданием ξ при условии η , если (ξ, η) абс. непр. случайный вектор?

$$E(\xi|\eta=x)=\int_{-\infty}^{\infty}y\cdot p_{\xi|\eta=x}(y)dy=f(x)$$
 - зависит от значения фиксированного x

Условное ожидание случайной величины ξ относительно η :

$$E(\xi|\eta)=E(\xi|\eta=x)|_{\xi=x}=f(\eta)$$
 - то же самое, но зависит от η

35 Что называется условным мат. ожиданием ξ при условии η , если (ξ,η) - дискретный случайный вектор?

Если (ξ,η) - дискретный вектор, то ξ,η - дискретные величины. Условное мат ожидание ξ при условии η :

$$E(\xi|\eta = y) = \sum_{i=1}^{\infty} x_i P(\xi = x_i|\eta = y)$$

36 Свойства условных мат. ожиданий.

$$f(\eta) = E(\xi|\eta)$$

- 1. $E(E(\xi|\eta)) = E\xi$
- 2. Если ξ,η независимые, то $E(\xi|\eta)=E\xi$
- 3. $E(g(\xi)|\xi) = g(\xi)$, если g фиксированная изначально функция
- 4. $E(\xi \eta | \xi) = \xi E(\eta | \xi)$
- 5. $E(\xi|\eta) = E(E(\xi|(\eta,\nu))|\eta), \forall \xi, \eta = E((E|\xi|\eta)|(\eta,\nu))$

Примечание. Смотри 217 стр. Ананьевский

37 Что такое ковариация и коэффициент корреляции?

Ковариация

Пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент, а ξ, η - случайные величины, определённые в нём. Смешанный центральный момент второго порядка

$$E(\xi - E\xi)(\eta - E\eta) = cov(\xi, \eta)$$

называется ковариацией случайных величин ξ и η .

Для ковариации выполняются следующие свойства:

- 1. $cov(\xi, \eta) = E\xi\eta E\xi E\eta;$
- 2. Если ξ, η независимые случайные величины, то $\text{cov}(\xi, \eta) = 0;$ Обратное утверждение неверное.
- 3. Если a, b числа, то $cov(a\xi + b, \eta) = a cov(\xi, \eta)$.

Коэффициент корреляции

Пусть ξ, η - случайные величины, у которых существуют дисперсии и $D\xi D\eta > 0$. Тогда число

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{D\xi \cdot D\eta}}$$

называется коэффициентом корреляции случайных величин ξ и η .

38 Свойства ковариации и коэффициента корреляции

Ковариация

Пусть (Ω, \mathcal{F}, P) - вероятностный эксперимент, а ξ, η - случайные величины, определённые в нём. Смешанный центральный момент второго порядка

$$E(\xi - E\xi)(\eta - E\eta) = cov(\xi, \eta)$$

называется ковариацией случайных величин ξ и η .

Для ковариации выполняются следующие свойства:

- 1. $cov(\xi, \eta) = E\xi\eta E\xi E\eta$;
- 2. Если ξ, η независимые случайные величины, то $\mathrm{cov}(\xi, \eta) = 0;$ Обратное утверждение неверное.
- 3. Если a, b числа, то $cov(a\xi + b, \eta) = a cov(\xi, \eta)$.

Коэффициент корреляции

Пусть ξ, η - случайные величины, у которых существуют дисперсии и $D\xi D\eta > 0$. Тогда число

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{D\xi \cdot D\eta}}$$

называется коэффициентом корреляции случайных величин ξ и η .

Для коэффициента корреляции выполняются следующие свойства.

1. Справедливы неравенства:

$$-1 \le \rho(\xi, \eta) \le 1$$
 (r.e. $|\rho(\xi, \eta)| \le 1$)

- 2. Если ξ, η независимые случайные величины, то $\rho(\xi, \eta) = 0$. (Обратное утверждение неверное.)
- 3. Если $|\rho(\xi,\eta)|=1$, то это означает, что существуют числа $a\neq 0$ и b такие, что $P(\xi=a\eta+b)=1$ (т.е. ξ и η линейно связные с вероятностью единица величины), и $a\rho(\xi,\eta)>0$ (т.е. знак a совпадает со знаком коэффициента корреляции).

Дополнительно:

Сайт с этим и другим трэшем.

Ковариационная матрица - матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.

$$\vec{\xi} = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \dots & \dots & \dots \\ r_{n1} & \dots & r_{nn} \end{pmatrix}, r_{ij} = \text{cov}(\xi_i, \xi_j)$$

Ковариационная матрица случайного вектора — квадратная симметрическая неотрицательно определенная матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы — ковариации между компонентами.

Корреляционная матрица — матрица коэффициентов корреляции нескольких случайных величин с ненулевыми дисперсиями.

В которой элементы $r_{ij} = \frac{\text{cov}(\xi_i, \xi_j)}{\sqrt{D\xi_i}\sqrt{D\xi_j}}$ есть коэффициенты корреляции соответствующих случайных величин. Диагональные элементы матрицы равны единице.

39 Неравенство Йенсена для мат. ожидания.

Если $E\xi$ существует и g(x) - выпуклая вниз функция, то $g(E\xi)\leqslant Eg(\xi)$.

40 Неравенства Чебышева и где они применяются.

Для произвольной случайной величины ξ , имеющей математическое ожидание, справедливо неравенство

$$P(|\xi - E\xi| \geqslant \varepsilon) \leqslant \frac{D\xi}{\varepsilon^2}$$

при $D\xi < \infty$ и $\xi > 0$.

Применение:

- С помощью неравенства Чебышева мы имеем возможность оценивать вероятности различных уклонений ξ (от мат. ожидания), зная лишь $E\xi$ и $D\xi$.
- Из данного нер-ва можно получить так называемый закон больших чисел в форме Чебышева.

Другая форма записи нер-ва Чебышева (используется реже):

 $g:\mathbb{R}_+ o\mathbb{R}_+$ — неотрицательная, неубывающая функция Случайная величина $\xi:P(\xi>0)=1,\qquad Eg(\xi)<\infty, g(x)>0, x>0$ $P(|\xi|>\varepsilon)\leqslant \frac{Eg(\xi)}{g(\xi)}$

41 Неравенство Гёльдера для мат. ожидания.

Если r, s > 0 и $\frac{1}{r} + \frac{1}{s} = 1$, то

$$E|\xi\eta| \le (E|\xi|^r)^{\frac{1}{r}} ((E|\eta|^s)^{\frac{1}{s}})$$

для любых случайных величин ξ, η (если соответствующие моменты существуют).

42 Неравенство Минковского для мат. ожидания.

Если p,q>0 и $\frac{1}{p}+\frac{1}{q}=1,$ то

$$(E|\xi + \eta|^p)^{\frac{1}{p}} \le (E|\xi|^p)^{\frac{1}{p}} + (E|\eta|^p)^{\frac{1}{p}}$$

для любых случайных величин ξ , η .

43 Неравенство Ляпунова для мат. ожидания.

Если p < q, то $(E|\xi|^p)^{\frac{1}{p}} \leqslant (E|\xi|^q)^{\frac{1}{q}}$. (Это свойство можно сформулировать иначе: введем функцию $g_{\xi}(p) = (E|\xi|^p)^{\frac{1}{2}}$, тогда $g_{\xi}(p)$ не убывает).

44 Неравенство Коши-Буняковского для мат. ожидания.

Неравенство Коши–Буняковского–Шварца (частный случай неравенства Гёльдера при p=q=2).

Если положим p=q=2, то неравенство Гёльдера будет иметь следующий вид:

$$E|\xi\eta| \le (E|\xi|^2)^{\frac{1}{2}} \cdot (E|\eta|^2)^{\frac{1}{2}}$$

45 Что означает $\xi_n \to \xi$ по вероятности?

Будем говорить, что последовательность случайных величин ξ, ξ_1, ξ_2, \dots сходится к случайной величине ξ по вероятности (обозначение: $\xi_n \stackrel{P}{\to} \xi$), если

$$P(|\xi_n - \xi| \geqslant \varepsilon) \underset{n \to \infty}{\longrightarrow} 0$$

для любого $\varepsilon > 0$.

46 Что означает $\xi_n \to \xi$ с вероятностью 1?

Будем говорить, что последовательность случайных величин ξ_1, ξ_2, \dots сходится к случайной величине ξ почти наверное или с вероятностью 1 (обычно обозначается $\xi_n \to \xi$ п.н.), если верно равенство

$$P(\omega : \lim \xi_n(\omega) = \xi(\omega)) = 1$$

47 Что означает $\xi_n \to \xi$ в среднеквадратическом?

Будем говорить, что последовательность случайных величин ξ_1, ξ_2, \dots сходится к случайной величине ξ в среднем порядка p (обозначение: $\xi_n \stackrel{L_p}{\to} \xi$), если существует $E\xi^p$ и $E\xi^p_n$ и имеет место сходимость:

$$E|\xi-\xi_n|^p \underset{n\to\infty}{\to} 0$$

В среднеквадратическом - значит в среднем порядка 2.

48 Какая связь между сходимостью по вероятности, с вероятностью 1 и в среднем?

Пусть:

- 1. Сходимость по вероятности.
- 2. Сходимость с вероятностью 1 или почти наверное.
- 3. Сходимость в среднем порядке p(p > 0).
- 4. Сходимость по распределению.

Имеют место следующие соотношения:

$$2 \Rightarrow 1, 3 \Rightarrow 1, 1 \Rightarrow 4,$$

т.е. из сходимости почти наверное следует сходимость по вероятности, из сходимости в среднем следует сходимость по вероятности и из сходимости по вероятности следует сходимость по распределению.

Критерий сходимости почти наверное

Пусть ξ_1, ξ_2, \ldots - случайные величины на (Ω, \mathcal{F}, P) , тогда:

$$\xi_n \stackrel{\text{i.i.}}{\to} \xi \Leftrightarrow \forall \varepsilon > 0 : P(\sup_{k \ge n} |\xi_k - \xi| > \varepsilon) \to 0, n \to \infty$$

Именно из этого критерия получаем, что из сходимости почти наверное следует сходимость по вероятности.

Примечание. Доказательство этого смотри в Ананьевский - стр. 116 - Теорема 4.2.1.

49 Определение слабой сходимости.

Будем говорить, что последовательность случайных величин ξ_1, ξ_2, \dots сходится к случайной величине ξ по распределению (обозначение: $\xi_n \stackrel{d}{\to} \xi$), если

$$F_{\xi_n}(x) \underset{n \to \infty}{\longrightarrow} F_{\xi}(x)$$

для любой x - точки непрерывности функции F_{ε} .

50 Теорема Маркова о законе больших чисел.

Пусть ξ_1, ξ_2, \ldots - случайные величины и пусть при всех $n \geqslant 1$ существуют дисперсии $D\left(\sum_{k=1}^n \xi_k\right)$. Кроме того, пусть

$$\frac{1}{n^2}D\left(\sum_{k=1}^n \xi_k\right) \underset{n \to \infty}{\longrightarrow} 0$$

Тогда для данной последовательности выполняется закон больших чисел.

51 Теорема Чебышева о законе больших чисел.

Неравенство Чебышева

Для произвольной случайной величины ξ , имеющей математическое ожидание, справедливо неравенство

 $P(|\xi - E\xi| \geqslant \varepsilon) \leqslant \frac{D\xi}{\varepsilon^2}$

Примечание. С помощью неравенства Чебышева мы имеем возможность оценивать вероятности различных уклонений ξ , зная лишь $E\xi$ и $D\xi$.

ЗБЧ Чебышёва

Пусть ξ_1, ξ_2, \ldots - попарно независимые случайные величины и пусть для всех $k=1,2,\ldots$ существуют и равномерно ограничены дисперсии случайных величин, т.е. $\sigma_k^2 = D\xi_k \leqslant c$, где c - некоторая неотрицательная константа. Тогда для данной последовательности случайных величин выполняется закон больших чисел.

Доказательство. Утверждение сразу следует из теоремы Маркова, если учесть, что в данной ситуации

$$\frac{1}{n^2}D\left(\sum_{k=1}^n \xi_k\right) = \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 \leqslant \frac{n \cdot c}{n^2} \underset{n \to \infty}{\to} 0$$

Следствия из теоремы Чебышёва

- 1. Если ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины и при всех $k \geqslant 1$ существуют дисперсии $D\xi = \sigma^2 > 0$, то выполняется ЗБЧ.
- 2. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, принимающие значения 0 и 1 с вероятностями (1-p) и p, соответственно. Тогда

$$\frac{1}{n} \sum_{k=1}^{n} \xi_k \stackrel{P}{\to} p$$

Заметим, что следствие 2 можно рассматривать как теорему о законе больших чисел для испытаний Бернулли.

52 Что называется законом больших чисел и его запись с использованием известных видов сходимости последовательностей случайных величин.

Пусть ξ_1, ξ_2, \ldots - последовательность случайных величин, с математическими ожиданиями $a_k = E\xi_k, k=1,2,\ldots$ Будем говорить, что для последовательности случайных величин выполняется закон больших чисел, если имеет место сходимость

$$\frac{1}{n} \sum_{k=1}^{n} (\xi_k - a_k) \stackrel{P}{\to} 0$$

Это означает, что

$$P\left(\left|\frac{1}{n}\sum_{k=1}^{n}\xi_{k}-\frac{1}{n}\sum_{k=1}^{n}a_{k}\right|\geqslant\varepsilon\right)\underset{n\to\infty}{\longrightarrow}0$$

или, что то же самое,

$$P\left(\left|\frac{1}{n}\sum_{k=1}^{n}(\xi_k - a_k)\right| \geqslant \varepsilon\right) \underset{n \to \infty}{\to} 0$$

для любого $\varepsilon > 0$.

В записи закона используется сходимость по вероятности.

ЗБЧ утверждает, что среднее значение случайных величин из заданного распределения близко к теоретическому среднему значению (математическое ожидание) этого распределения

На неформальном языке закон можно трактовать так: при увеличении числа испытаний частота появления события будет все меньше отличаться от вероятности его появления.

53 Сформулировать ЦПТ Леви в частном случае испытаний Бернулли.

Интегральная теорема Муавра—Лапласа

Пусть ξ_1, ξ_2, \ldots - последовательность независимых одинаково распределенных случайных величин, с распределением Бернулли, то есть $P(\xi_k = 1) = 1 - P(\xi_k = 0) = p$, где 0 .

Каждую из случайных величин ξ_k можем интерпретировать как результат при k-ом испытании. Если случайная величина ξ_k приняла значение 1, то это означает, что в k-м испытании произошел "успех", если ξ_k приняла значение 0, то в k-м испытании "неудача". Тогда $\sum_{k=1}^n \xi_k$ означает число "успехов"в n испытаниях. Для этих случайных величин $E\xi_k=p, D\xi_k=p(1-p)$. Тогда выполнены условия теоремы Леви, и, следовательно, выполняется указанное соотношение для всех $x\in\mathbb{R}$. Можно для любых $a,b\in\mathbb{R}$ написать, что

$$P\left(a \leqslant \frac{\sum\limits_{k=1}^{n} \xi_k - np}{\sqrt{np(1-p)}} < b\right) - \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{u^2}{2}} du \underset{n \to \infty}{\to} 0$$

или

$$P\left(a \leqslant \frac{\sum\limits_{k=1}^{n} \xi_k - np}{\sqrt{np(1-p)}} < b\right) - (\Phi(b) - \Phi(a)) \underset{n \to \infty}{\to} 0$$

Осталось учесть монотонность и поведение на бесконечностях функций распределения, что приводит к окончательному выводу, фиксирующему наличие равномерной сходимости:

$$\sup_{a < b} \left| P\left(a \leqslant \frac{\sum_{k=1}^{n} \xi_k - np}{\sqrt{np(1-p)}} < b \right) - \left(\Phi(b) - \Phi(a) \right) \right| \underset{n \to \infty}{\to} 0$$

54 Центральная предельная теорема Леви.

Пусть ξ_1, ξ_2, \ldots - последовательность независимых одинаково распределенных случайных величин, у которых существует математическое ожидание $a = E\xi_k$ и существует конечная дисперсия

 $\sigma^2 = D\xi_k > 0$. Тогда, для всех $x \in \mathbb{R}$ имеет место сходимость

$$P\left(\frac{\sum\limits_{k=1}^{n}\xi_{k}-na}{\sqrt{n\sigma^{2}}} < x\right) \underset{n\to\infty}{\to} \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^{2}}{2}} du$$

(Это предельное соотношение записывают ещё следующим образом:

$$\frac{\sum_{k=1}^{n} \xi_k - na}{\sqrt{n\sigma^2}} \stackrel{d}{\to} \mathcal{N}(a, \sigma^2))$$

55 Последовательность независимых случайных величин (HCB) и марковские последовательности. Примеры марковских последовательностей, построенных по последовательности HCB.

Марковское свойства:

$$p(\xi_{k+1} \in A_{k+1} | \xi_1 = x_1, \dots, \xi_k = x_k) = p(\xi_{k+1} \in A_{k+1} | \xi_k = x_k),$$
 $\forall x_1, \dots, x_k \in \mathbb{R}$ (почти наверное), $\forall A_{k+1} \in \mathcal{B}_1, k \in \mathbb{N}$

Цепь Маркова

Цепь Маркова - последовательность случайных величин, удовлетворяющих Марковскому свойству.

$$E = \bigcup_{i \in \mathbb{N}} supp(\xi_i)$$
 — не более, чем счётное множество состояний ЦМ

$$E = 1, \dots, k, E = \mathbb{N}$$

Е - множество состояний цепи Маркова.

- 1. ξ_1, ξ_2, \ldots дискретные независимые случайные величины образуют цепь Маркова
- 2. Суммы ξ_1, ξ_2, \ldots дискретных независимых случайных величин вида $\eta_k = \sum_{i=1}^k \xi_i$, то есть последовательность η_1, η_2, \ldots тоже образует цепь Маркова.
- 3. ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины. Последовательность $\eta_k = \sum\limits_{i=1}^k \xi_i$ случайное блуждание, когда $P(\xi_1=1)=p, P(\xi_1=-1)=(1-p)$

$$P = \begin{pmatrix} \dots & \ddots & p & 0 & \dots & \dots \\ \dots & 1-p & 0 & p & 0 & \dots & \dots \\ \dots & 0 & 1-p & 0 & p & 0 & \dots \\ \dots & 0 & 1-p & 0 & p & 0 \\ \dots & \dots & 0 & 1-p & 0 & p \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

56 Критерий возвратности для цепей Маркова.

Если $\exists j: i \to j$, но $j \not\to i$, то j - **несущественное**; в противном случае j - существенное. Состояние i эргодичное, если среднее время возвращения конечно

$$E\tau_i = \sum_{s=1}^{\infty} s f_{ii}^{(s)} < \infty,$$

где τ_i - время 1-ого возвращения в состояние i.

- 1. Несущественные состояния невозвратны;
- 2. Состояние i возвратно (т.е. $f_i = 1$) $\Leftrightarrow \sum_{s=1}^{\infty} p_{ii}^{(s)} = \infty$
- 3. Состояние i возвратно, но не эргодическое $\Leftrightarrow \sum_{s=1}^{\infty} p_{ii}^{(s)} = \infty \& \lim_{s \to \infty} p_{ii}^{(s)} = 0$
- 4. Состояние эргодическое $\Leftrightarrow \sum\limits_{s=1}^{\infty} p_{ii}^{(s)} = \infty$ & не выполнено $\lim\limits_{s \to \infty} p_{ii}^{(s)} = 0$

57 Марковское свойство, что называется цепью Маркова и уравнение Маркова.

Пусть $\xi_1, \dots, \xi_n, \dots$ - случайная последовательность (последовательность случайных величин). Конечномерное распределение (КМР)

Распределение последовательности определяют конечномерные распределения

$$\mathcal{P}_{\xi_1,\ldots,\xi_k}(A_1\times\cdots\times A_k)=p(\xi_1\in A_1,\ldots,\xi_k\in A_k), k\in\mathbb{N}$$

Условие согласования:

$$p(\xi_1 \in A_1, \dots, \xi_{k-1} \in A_{k-1}) = \mathcal{P}_{(\xi_1, \dots, \xi_k)}(A_1 \times \dots A_{k-1} \times \mathbb{R})$$

Марковское свойства:

$$p(\xi_{k+1} \in A_{k+1} | \xi_1 = x_1, \dots, \xi_k = x_k) = p(\xi_{k+1} \in A_{k+1} | \xi_k = x_k),$$
 $\forall x_1, \dots, x_k \in \mathbb{R}$ (почти наверное), $\forall A_{k+1} \in \mathcal{B}_1, k \in \mathbb{N}$

Цепь Маркова

Цепь Маркова - последовательность случайных величин, удовлетворяющих Марковскому свойству.

$$E = \bigcup_{i \in \mathbb{N}} supp(\xi_i)$$
 — не более, чем счётное множество состояний ЦМ

$$E = 1, \dots, k, E = \mathbb{N}$$

Е - множество состояний цепи Маркова.

Уравнение Маркова (формула полной вероятности)

$$p_{i,j}^{r+s} = \sum_{k \in E} p_{ik}^{(r)} p_{kj}^{(s)}, \forall i, j \in E; r, s \in \mathbb{N}$$

Вывод: в однородной цепи Маркова

$$p^{(s)} = ||p_{ij}^{(s)}|| = \underbrace{P \times ... \times P}_{*} = p^{s}, *-s$$
 раз умножение матрицы по правилам матричного умножения

Структуру однородной цепи Маркова характеризует матрица вероятностей перехода (МВП) или граф.

1. (Случайное блуждание) Заданы начальные распределения вероятностей:

$$q_i = \begin{cases} 1, & i = 0 \\ 0, & i \neq 0 \end{cases}$$
 $E = \mathbb{Z}$ и МВП $p_{ij} = \begin{cases} p, & j = i+1 \\ 1-p, & j = i-1 \\ 0, j \notin \{i-1, i+1\}\} \end{cases}$

58 Уравнение эргодичности неприводимой цепи Маркова и вычисление финальных вероятностей.

Вероятность возвращения на s-м шаге впервые

$$f_{ii}^{(s)} = p(\xi_{k+s} = i, \xi_{k+s-1} \neq i, \dots, \xi_{k+1} \neq i | \xi_k = i)$$

Вероятность возвращения в состояние i:

$$f_i = \sum_{s=1}^{\infty} f_{ii}^{(s)} \leqslant 1$$

(!) Состояние i возвратное, если вероятность возвращения $f_i = 1$. Состояние i эргодичное, если среднее время возвращения конечно

$$E\tau_i = \sum_{s=1}^{\infty} s f_{ii}^{(s)} < \infty,$$

где τ_i - время 1-ого возвращения в состояние i.

Утв. 5. (Эргодическая теорема)

В неприводимой непериодической эргодической (т.е. состояния эргодические) цепи Маркова

$$\exists p_j^* = \lim_{m \to \infty} p_{ij}^{(m)}$$

независящие от i и удовлетворяющих системе уравнений

$$(*) = \begin{cases} p_j^* = \sum_{i \in E} p_i^* p_{ij}, j \in E \\ \sum_{j \in E} p_j^* = 1 \end{cases}$$

Или в матричной форме:

$$P^{*^T}(\mathbb{P} - I) = 0((\mathbb{P}^T - I)p^* = 0)$$

$$p^* = \begin{pmatrix} p_1^* \\ p_2^* \\ \vdots \\ \vdots \end{pmatrix}$$
 с условием $\sum_j p_j^* = 1$

- (!) Решение (*) единственно (в условиях утв. 5)
- (!) При наличии нескольких классов сообщающихся состояний финальные вероятности (если классы эргодические) считаются в каждом из классов.
 - (!) При наличии периода можно рассмотреть ЦМ с шагом T.
- (!) Финальные вероятности p_i определяют среднее время нахождение НЦМ в соответствующем состоянии.

59 Что называется периодом неприводимой цепи Маркова?

- **Утв. 1.** Все существенные состояния однородной ЦМ можно разделить на *классы сообщающихся* состояний, которые не пересекаются, и любые два состояния внутри класса сообщаются, а состояния из разных классов недостижимы друг для друга.
- (!) Однородная ЦМ, состоящая из одного класса сообщающихся состояний неприводима (НЦМ). Период НЦМ: $T = \text{HOД}(s:p_{ii}^{(s)}>0)$ Утв. 2.
 - 1. Период НЦМ не зависит от выбора i.
 - 2. Все состояния НЦМ можно разделить на T непересекающихся классов, так что на каждом шаге с вероятностью 1 происходит переход из \forall состояния класса r в какое-то состояние класса $r+1, r \in \{1, \ldots, T-1\}$, и из \forall состояния класса T в какое-то состояние класса 1.

60 В чём заключается классическое определение вероятности?

Классическая схема:

- 1. множество исходов конечно: $|\Omega| < \infty, \Omega = \{\omega_1, \dots, \omega_n\};$
- 2. События \mathcal{F} любые подмножества мн-ва Ω , т.е. содержит полный набор из 2^n событий;
- 3. Предполагаем, что все исходы равновозможны, т.е. $P(\{\omega_1\}) = P(\{\omega_2\}) = \cdots = P(\{\omega_n\}) = \frac{1}{n}$.

Рассмотрим произвольное событие $A = \{\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k}\}$ тогда $P(A) = \frac{\#A}{\#\Omega} = \frac{k}{n} = \frac{\text{число исх., благопр. } A}{\text{общее число событий}},$ где # - число элементов множества.

61 В чём заключается геометрическое определение вероятности?

Классическое определение вероятности неприменимо, если логически возможных исходов эксперимента бесконечно много. В качестве примера рассмотрим следующую геометрическую задачу. Пусть Ω - квадрируемое (то есть имеющее площадь) множество, A - его квадрируемое подмножество. Какова вероятность, что случайно выбранная точка M из Ω принадлежит также и A (как говорят, "попадет в A")? Если предположить, что вероятность попадания в произвольную квадрируемую часть Ω зависит только от площади этой части (причём прямо пропорционально) и не зависит от ее расположения в Ω , то естественно за эту вероятность принять, по определению, отношение площадей:

$$P(A) = \frac{\text{площадь}(A)}{\text{площадь}(\Omega)}$$

Это определение хорошо согласуется с классическим. Действительно, если множество Ω разбито на n частей равной площади, то вероятность попадания случайной точки в каждую такую часть по обоим определениям равна $\frac{1}{n}$.

Хорошо известно, что квадрируемые подмножества Ω образуют σ -алгебру. В силу этого можно рассматривать сигма-алгебру \mathcal{F} событий на Ω , состоящую из всех его квадрируемых подмножеств. В них будут иметь смысл сумма, произведение, разность событий и дополнение их до Ω .

Аналогичная модель (Ω, \mathcal{F}, P) может быть построена при условии, что Ω - спрямляемое множество (имеющее длину) или кубируемое множество (имеющее объем).

Дадим более строгое математическое определение данному факту.

Выбираем множество $\Omega \subset \mathbb{R}^d$. Включает в себя ряд моделей d-размерностей. $V_d(\Omega) \in (0,\infty)$.

- $d = 1, V_d$ длина
- $d = 2, V_d$ площадь
- $d = 3, V_d$ объём

$$\mathcal{F} = \{ A \in \mathcal{B}_d : A \subseteq \Omega \}$$
 $P(A) = \frac{V_d(A)}{V_d(\Omega)}$

62 Какое событие называется противоположным событию A.

Два случайные события A и B называются противоположными, если они несовместны и образуют полную группу событий. Примеры: студент может сдать или не сдать экзамен, день и ночь.

$$\bar{A} = \Omega \backslash A$$
 — событие, противоположное к событию A

63 Что такое полная система (группа) событий.

Пусть $\{H_i\}_{i=1}^n$ - некоторый набор случайных событий. Назовём его ПГС, если выполняются следующие условия:

- 1. $H_i \cap H_j = \emptyset$ события попарно несовместны (не могут появится одновременно в рез-те однократного проведения эксперимента).
- $2. \bigcup_{i=1}^{n} H_i = \Omega$
- 3. $P(H_i) > 0, \forall i$

64 Продолжить формулу $P(A \cup B \cup C) = \dots$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$

Формула включения исключения:

$$A_{1}, \dots, A_{n} \in \mathcal{F} :$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{s=1}^{n} \sum_{|\sigma|=s} (-1)^{s-1} P\left(\bigcap_{i \in \sigma} A_{i}\right) =$$

$$= P(A_{1}) + \dots + P(A_{n}) - P(A_{1}A_{2}) - P(A_{1}A_{3}) - \dots \pm (-1)^{n} P(A_{1}, \dots, A_{n})$$

65 μ_n - число успехов в сх. Бернулли с вер-ю успеха p. При каком k достигается максимум $P(\mu_n = k)$.

Формула Бернулли

$$P(\mu_n = k) = C_n^k p^k (1-p)^{n-k} = C_n^k p^k q^{n-k}, k = 0,1,\dots, n$$

Возрастает: k < np - (1 - p)Убывает: k > np - (1 - p)

Найдём наибольшее значение данной вероятности.

a) $P_n(k) \leqslant P_n(k_0), \forall n$

при $k_0 \in [np - (1-p), np + p]$

6) $(n+1)p \in \mathbb{N} \Rightarrow P_n(np-(1-p)) = P_n((n+1)p)$

Максимум в k_0 :

$$P_n(k) \leqslant P_n(k_0) \Rightarrow$$

$$\begin{cases} P_n(k_0 - 1) \leqslant P_n(k_0) \\ P_n(k_0 + 1) \leqslant P_n(k_0) \Leftrightarrow P_n(k_0) \geqslant P_n(k_0 + 1) \end{cases}$$

$$\begin{cases} (k_0 - 1) \leqslant np - (1 - p) \\ k_0 \geqslant np - (1 - p) \end{cases}$$

$$\begin{cases} k_0 \leqslant np + p \\ k_0 \geqslant np - (1 - p) \end{cases}$$

В итоге имеем, что максимум достигается при

$$k \in [np - (1-p), np + p]$$

66 Как вычислить $P(\eta \in [0,1])$ зная плотность распределения p_{η} ?

$$P(\eta \in [0,1]) = F_{\eta}(1) - F_{\eta}(0) = \int_{-\infty}^{1} p_{\eta}(x)dx - \int_{-\infty}^{0} p_{\eta}(x)dx = \int_{0}^{1} p_{\eta}(x)dx$$
$$\int_{0}^{1} p_{\eta}(x)dx$$

67 Формулы, связывающие плотность распределения и функцию распределения.

Абсолютно непрерывная случайная величина

Говорим, что ξ - случайная величина, имеющая абсолютно непрерывное распределение, если существует функция p_{ξ} такая, что для любого $B \in \mathcal{B}$ справедливо равенство

$$P(\xi \in B) = \int_{B} p_{\xi}(x) dx,$$

где p_{ξ} - некоторая функция, которую будем называть *плотностью распределения случайной величины* (плотность по отношению к мере Лебега) ξ .

В частности, если $B = (-\infty; y)$, то

$$P(\xi \in B) = F_{\xi}(y) = \int_{-\infty}^{y} p_{\xi}(x)dx$$

Из последнего равенства следует, что $p_{\xi}(x) = F'(x)$ почти всюду.

68 Записать формулу преобразования плотностей при преобразовании $g(\eta = g(\xi))$, если g-дифференцируемая функция и g'(x) < 0 для любого x.

Пусть ξ - абсолютно непрерывное распределение, p_{ξ} - плотность распределения, f - функция, $\eta = f(\xi), \exists f^{-1}$

$$F_{\eta}(x) = P(\eta < y) = P(f(\xi) < y)$$

1. f - строго возрастает и дифференцируема

$$F_{\eta}(y) = P(\xi < f^{-1}(y))$$

$$p_{\eta}(y) = \frac{1}{f'(f^{-1}(y))} p_{\xi}(f^{-1}(y))$$

2. f - строго убывает и дифференцируема (вот это и нужно, так как производная отрицательная, значит, f строго убывает)

$$F_{\eta}(y) = P(\xi > f^{-1}(y))$$

$$p_{\eta}(y) = -\frac{1}{f'(f^{-1}(y))} p_{\xi}(f^{-1}(y))$$

3. f - строго монотонна и дифференцируема

$$p_{\eta}(y) = \frac{1}{|f'(f^{-1}(y))|} p_{\xi}(f^{-1}(y))$$

69 Привести пример попарно независимых событий, не являющихся независимыми в совокупности.

Имеется правильный тетраэдр, все грани которого — правильные треугольники, раскрашенные в один из трех цветов. Одна грань — белая, другая — красная, третья — синяя, а четвертая — пестрая, так как на ней присутствуют и белый, и синий, и красный цвета. Нас будет интересовать грань, которая при бросании тетраэдра окажется внизу, и одно из трех событий: B, K, C ($B = \{$ на нижней грани присутсвует белый цвет $\}, K = \{$ на нижней грани присутсвует красный цвет $\}, C = \{$ на нижней грани присутсвует синий цвет $\}$). Тогда справедливы равенства: $P(B) = P(K) = P(C) = \frac{1}{2}$. Будут ли указанные события попарно независимы? Проверяем. Поскольку событие BC означает, что на нижней грани присутствуют белый и синий цвета, то это означает выпадение пестрой грани. Следовательно,

$$P(BC) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(B) \cdot P(C)$$

Так же проверяем любую другую пару и убеждаемся в попарной независимости событий B, K и C.

Независимы ли все эти три события в совокупности? Попробуем проверить. Имеем

$$P(BKC) = \frac{1}{4} \neq \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = P(B)P(K)P(C),$$

т.е. одно из необходимых равенств не выполняется. Этот пример показывает, что понятия попарной независимости и независимости в совокупности различаются.

70 Что такое равномерное распределение $\xi \in U(a,b)$, его тип, $E\xi, D\xi$.

Равномерное распределение на отрезке $\xi \in U[a,b]$. Плотность распределения задается функцией:

$$p(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$$

Это непрерывное распределение, у которого плотность почти всюду постоянна. Мат. ожидание, моменты и дисперсия:

$$E(X) = \frac{a+b}{2}$$

$$E(X^2) = \frac{a^2 + ab + b^2}{3}$$

$$D(X) = \frac{(b-a)^2}{12}$$

Стандартное равномерное распределение - это U[0,1]

71 Что такое нормальное распределение $\xi \in \mathcal{N}(a, \sigma^2)$, его тип, $E\xi, D\xi$.

Нормальное (гауссово) распределение - $\xi \in N(a, \sigma^2)$ - непрерывное распределение. Здесь a - математическое ожидание, σ^2 - дисперсия.

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-a)^2}{2\sigma^2}\right\}$$

Стандартное нормальное распределение - это N(0,1). Его плотность вероятности:

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$$

72 Что такое распределение Пуассона $\xi \in Pois(\lambda)$, его тип, $E\xi, D\xi.$

Распределение Пуассона $\xi \in Pois(\lambda)$ - распределение дискретного типа случайной величины (представляющей собой число событий, произошедших за фиксированное время)

Здесь λ - математическое ожидание и дисперсия (они равны).

$$p(x) = \frac{\lambda^x}{x!}e^{-\lambda}, \lambda > 0$$

73 Как вычислить дисперсию $\xi + \eta$, зная дисперсию величин ξ и η и коэффициент корреляции между ними.

По свойствам дисперсии:

$$D(\xi + \eta) = D\xi + D\eta + 2E(\xi - E\eta)(\eta - E\xi) = D\xi + D\eta + 2cov(\xi, \eta)$$

Коэффициент корреляции вычисляется по формуле:

$$\rho(\xi,\eta) = \frac{cov(\xi,\eta)}{\sqrt{D\xi D\eta}}$$

Из этого получаем, что дисперсию можно выразить так:

$$D(\xi + \eta) = D\xi + D\eta + 2\rho(\xi, \eta)\sqrt{D\xi D\eta}$$

74 Что такое распределение Бернулли. Его тип, мат. ожидание и дисперсия.

Распределение Бернулли является дискретным. Случайная величина ξ с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью p успеха : ни одного успеха или один успех. Функция распределения ξ имеет вид:

$$F_{\xi}(x) = P(\xi < x) = \begin{cases} 0, & x \le 0\\ 1 - p, & 0 < x \le 1\\ 1, & x > 1 \end{cases}$$

Мат. ожидание: $E\xi = p$. Дисперсия: $D\xi = p(1-p) = pq$, так как $E\xi^2 - (E\xi)^2 = p - p^2 = p \cdot (1-p) = pq$.