$12n_{0276} (K12n_{0276})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^3 - u^2 + b + u + 1, \ -u^2 + a - u, \ u^4 + 2u^3 + u^2 - 2u - 1 \rangle \\ I_2^u &= \langle u^3 - u^2 + b - u + 1, \ -2u^3 + u^2 + a + u, \ u^4 - u^2 + 1 \rangle \\ I_3^u &= \langle 2u^7 - 3u^6 + 3u^5 + 3u^3 + 2u^2 + 2b - 3u - 1, \ -3u^7 + 4u^6 - 3u^5 - 3u^4 - 3u^3 - 3u^2 + 2a + 4u + 3, \\ u^8 - 2u^7 + 2u^6 + u^4 - 2u^2 + 1 \rangle \\ I_4^u &= \langle 2u^7 - 3u^6 + 3u^5 + 3u^3 + 2u^2 + 2b - 3u - 1, \ -u^7 + u^6 - 2u^5 + u^4 - 4u^3 - u^2 + 2a - u, \\ u^8 - 2u^7 + 2u^6 + u^4 - 2u^2 + 1 \rangle \\ I_5^u &= \langle u^7 + u^6 + 2u^5 + u^4 + 2u^3 + 3u^2 + 4b + 5u + 6, \ -u^7 + 3u^6 + 2u^5 + 3u^4 - 10u^3 + 5u^2 + 8a + 11u + 10, \\ u^8 + 3u^7 + 4u^6 + u^5 + 7u^3 + 15u^2 + 12u + 4 \rangle \\ I_6^u &= \langle u^3 + b - u - 1, \ -u^2 + a + 1, \ u^4 - u^2 + 1 \rangle \\ I_7^u &= \langle u^3 + b - u - 1, \ -2u^3 - u^2 + a + u + 1, \ u^4 - u^2 + 1 \rangle \\ I_8^u &= \langle u^3 + u^2 + b - u, \ a - 1, \ u^4 - u^2 + 1 \rangle \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^3 - u^2 + b + u + 1, -u^2 + a - u, u^4 + 2u^3 + u^2 - 2u - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + u\\u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + 2u\\u^{2} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{2} - u - 1\\4u^{3} + 3u^{2} - 3u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 5u^{3} + 4u^{2} - 2u - 2\\-3u^{3} - 10u^{2} + 5u + 4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} - 4u^{2} + 2\\-4u^{3} - 2u^{2} + 4u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3}\\u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3}\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3}\\-u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{3} - 3u^{2} + 1\\3u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -4u^{2} + 2\\-6u^{3} - 5u^{2} + 6u + 3 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6u + 16

Crossings	u-Polynomials at each crossing
c_1	$u^4 + 10u^3 + 27u^2 - 22u + 1$
c_2, c_4, c_8 c_{12}	$u^4 - 2u^3 + 7u^2 - 6u + 1$
$c_3, c_5, c_7 \\ c_9, c_{11}$	$u^4 - 2u^3 + u^2 + 2u - 1$
c_6, c_{10}	$u^4 + 10u^2 - 16u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^4 - 46y^3 + 1171y^2 - 430y + 1$
c_2, c_4, c_8 c_{12}	$y^4 + 10y^3 + 27y^2 - 22y + 1$
c_3, c_5, c_7 c_9, c_{11}	$y^4 - 2y^3 + 7y^2 - 6y + 1$
c_6, c_{10}	$y^4 + 20y^3 + 108y^2 - 176y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.883204		
a = 1.66325	4.18641	21.2990
b = -0.414214		
u = -0.468990		
a = -0.249038	0.748389	13.1860
b = -0.414214		
u = -1.20711 + 0.97832I		
a = -0.70711 - 1.38355I	-17.2718 - 12.3509I	8.75736 + 5.86991I
b = 2.41421		
u = -1.20711 - 0.97832I		
a = -0.70711 + 1.38355I	-17.2718 + 12.3509I	8.75736 - 5.86991I
b = 2.41421		

II.
$$I_2^u = \langle u^3 - u^2 + b - u + 1, -2u^3 + u^2 + a + u, u^4 - u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{3} - u^{2} - u \\ -u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{3} - u^{2} - 2u \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{3} + u - 1 \\ -2u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} \\ u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} \\ u^{3} - 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{2} + 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{2} - 3 \\ u^{2} + 1 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -2u^{2} \\ u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-12u^2 + 16$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$(u^2 - u + 1)^2$
c_2, c_8	$(u^2+u+1)^2$
c_3, c_5, c_7 c_9, c_{11}	$u^4 - u^2 + 1$
c_6	$u^4 + 2u^3 + 2u^2 + 4u + 4$
c_{10}	$u^4 - 2u^3 + 2u^2 - 4u + 4$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4 c_8, c_{12}	$(y^2+y+1)^2$		
c_3, c_5, c_7 c_9, c_{11}	$(y^2 - y + 1)^2$		
c_6, c_{10}	$y^4 - 4y^2 + 16$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = -1.36603 + 0.63397I	6.08965I	10.0000 - 10.3923I
b = 0.366025 + 0.366025I		
u = 0.866025 - 0.500000I		
a = -1.36603 - 0.63397I	-6.08965I	10.0000 + 10.3923I
b = 0.366025 - 0.366025I		
u = -0.866025 + 0.500000I		
a = 0.36603 + 2.36603I	-6.08965I	10.0000 + 10.3923I
b = -1.36603 - 1.36603I		
u = -0.866025 - 0.500000I		
a = 0.36603 - 2.36603I	6.08965I	10.0000 - 10.3923I
b = -1.36603 + 1.36603I		

$$\begin{array}{c} \text{III. } I_3^u = \langle 2u^7 - 3u^6 + 3u^5 + 3u^3 + 2u^2 + 2b - 3u - 1, \ -3u^7 + 4u^6 + \cdots + \\ 2a + 3, \ u^8 - 2u^7 + 2u^6 + u^4 - 2u^2 + 1 \rangle \end{array}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{7} - 2u^{6} + \dots - 2u - \frac{3}{2} \\ -u^{7} + \frac{3}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - u^{6} + 2u^{4} + u^{3} + u^{2} - 2u - 2 \\ -\frac{1}{2}u^{7} + u^{6} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{7} - \frac{5}{2}u^{6} + \dots - \frac{1}{2}u - \frac{3}{2} \\ -u^{7} + \frac{1}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{7} + 3u^{6} - 2u^{5} - 2u^{4} - 3u^{3} + 2u + 1 \\ 2u^{5} - u^{4} + u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{3}{2}u^{7} - 2u^{6} + \dots - 2u - \frac{1}{2} \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{6} + \dots + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{2}u^{7} - 2u^{6} + \dots - 2u - \frac{3}{2} \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{6} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{7} - \frac{1}{2}u^{6} + \dots + \frac{1}{2}u^{2} - \frac{3}{2}u \\ \frac{1}{2}u^{6} - \frac{1}{2}u^{5} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^7 + 4u^6 2u^5 4u^4 8u^3 4u^2 + 6u + 16$

Crossings	u-Polynomials at each crossing	
c_1	$u^8 + 19u^7 + \dots + 1248u + 256$	
c_2, c_4	$u^8 - u^7 + 10u^6 - 13u^5 + 42u^4 - 41u^3 + 57u^2 - 24u + 16$	
c_3	$u^8 - 3u^7 + 4u^6 - u^5 - 7u^3 + 15u^2 - 12u + 4$	
c_5, c_7, c_9 c_{11}	$u^8 + 2u^7 + 2u^6 + u^4 - 2u^2 + 1$	
c_6, c_{10}	$u^8 + 7u^7 + 25u^6 + 52u^5 + 54u^4 + 16u^3 - 8u^2 + 4$	
c_8, c_{12}	$u^8 + 6u^6 - 5u^4 + 6u^2 - 4u + 1$	

Crossings	Riley Polynomials at each crossing		
c_1	$y^8 - 45y^7 + \dots - 213504y + 65536$		
c_2, c_4	$y^8 + 19y^7 + \dots + 1248y + 256$		
c_3	$y^8 - y^7 + 10y^6 - 13y^5 + 42y^4 - 41y^3 + 57y^2 - 24y + 16$		
c_5, c_7, c_9 c_{11}	$y^8 + 6y^6 - 5y^4 + 6y^2 - 4y + 1$		
c_6, c_{10}	$y^8 + y^7 + 5y^6 - 244y^5 + 860y^4 - 920y^3 + 496y^2 - 64y + 16$		
c_8, c_{12}	$y^8 + 12y^7 + 26y^6 - 48y^5 + 99y^4 - 48y^3 + 26y^2 - 4y + 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.273242 + 1.017440I		
a = -0.038323 + 1.295230I	-3.00645 - 3.35673I	6.09240 + 3.01308I
b = 0.307345 + 0.392902I		
u = -0.273242 - 1.017440I		
a = -0.038323 - 1.295230I	-3.00645 + 3.35673I	6.09240 - 3.01308I
b = 0.307345 - 0.392902I		
u = 0.796321 + 0.241667I		
a = -1.41328 + 1.73710I	1.17763 + 4.62470I	15.0023 - 5.8935I
b = 0.545221 - 1.041750I		
u = 0.796321 - 0.241667I		
a = -1.41328 - 1.73710I	1.17763 - 4.62470I	15.0023 + 5.8935I
b = 0.545221 + 1.041750I		
u = -0.666028 + 0.230992I		
a = 0.439021 - 0.264857I	0.403528 - 0.080080I	11.24335 + 0.17507I
b = -0.768780 - 0.277812I		
u = -0.666028 - 0.230992I		
a = 0.439021 + 0.264857I	0.403528 + 0.080080I	11.24335 - 0.17507I
b = -0.768780 + 0.277812I		
u = 1.14295 + 1.14532I		
a = 0.512578 - 0.434756I	-18.3139 + 4.2344I	7.66195 - 1.86062I
b = -2.08379 - 0.09016I		
u = 1.14295 - 1.14532I		
a = 0.512578 + 0.434756I	-18.3139 - 4.2344I	7.66195 + 1.86062I
b = -2.08379 + 0.09016I		

$$\text{IV. } I_4^u = \langle 2u^7 - 3u^6 + 3u^5 + 3u^3 + 2u^2 + 2b - 3u - 1, \ -u^7 + u^6 - 2u^5 + u^4 - 4u^3 - u^2 + 2a - u, \ u^8 - 2u^7 + 2u^6 + u^4 - 2u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u^{7} - \frac{1}{2}u^{6} + \dots + \frac{1}{2}u^{2} + \frac{1}{2}u \\ -u^{7} + \frac{3}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{7} - \frac{1}{2}u^{6} + \dots + \frac{1}{2}u^{2} + \frac{3}{2}u \\ -u^{7} + \frac{3}{2}u^{6} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{7} + u^{6} + \dots + u + \frac{1}{2} \\ -\frac{1}{2}u^{7} + \frac{1}{2}u^{6} + \dots + \frac{1}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{7} + \frac{5}{2}u^{6} + \dots + \frac{5}{2}u + \frac{9}{2} \\ -\frac{1}{2}u^{6} + \frac{3}{2}u^{5} + \dots - \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -\frac{3}{2}u^{7} + 2u^{6} + \dots - \frac{3}{2}u^{2} + \frac{1}{2} \\ u^{7} - u^{6} + u^{5} + u^{4} + u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{5}{2}u^{7} + 3u^{6} + \dots + 3u + \frac{9}{2} \\ -\frac{1}{2}u^{6} + \frac{1}{2}u^{5} + \dots - \frac{3}{2}u - \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^7 + 4u^6 2u^5 4u^4 8u^3 4u^2 + 6u + 16$

Crossings	u-Polynomials at each crossing		
c_1	$u^8 + 12u^7 + 26u^6 - 48u^5 + 99u^4 - 48u^3 + 26u^2 - 4u + 1$		
c_2, c_4, c_{12}	$u^8 + 6u^6 - 5u^4 + 6u^2 - 4u + 1$		
c_3, c_7, c_{11}	$u^8 + 2u^7 + 2u^6 + u^4 - 2u^2 + 1$		
c_5, c_9	$u^8 - 3u^7 + 4u^6 - u^5 - 7u^3 + 15u^2 - 12u + 4$		
<i>C</i> ₆	$u^8 + 12u^6 - 16u^5 + 49u^4 - 56u^3 + 78u^2 - 54u + 27$		
c ₈	$u^8 - u^7 + 10u^6 - 13u^5 + 42u^4 - 41u^3 + 57u^2 - 24u + 16$		
c_{10}	$u^8 - 4u^7 + 18u^6 - 58u^5 + 111u^4 - 126u^3 + 92u^2 - 40u + 11$		

Crossings	Riley Polynomials at each crossing	
c_1	$y^8 - 92y^7 + \dots + 36y + 1$	
c_2, c_4, c_{12}	$y^8 + 12y^7 + 26y^6 - 48y^5 + 99y^4 - 48y^3 + 26y^2 - 4y + 1$	
c_3, c_7, c_{11}	$y^8 + 6y^6 - 5y^4 + 6y^2 - 4y + 1$	
c_5,c_9	$y^8 - y^7 + 10y^6 - 13y^5 + 42y^4 - 41y^3 + 57y^2 - 24y + 16$	
c_6	$y^8 + 24y^7 + \dots + 1296y + 729$	
<i>c</i> ₈	$y^8 + 19y^7 + \dots + 1248y + 256$	
c_{10}	$y^8 + 20y^7 + 82y^6 - 192y^5 + 719y^4 + 304y^3 + 826y^2 + 424y + 121$	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.273242 + 1.017440I		
a = 0.170826 - 0.749091I	-3.00645 - 3.35673I	6.09240 + 3.01308I
b = 0.307345 + 0.392902I		
u = -0.273242 - 1.017440I		
a = 0.170826 + 0.749091I	-3.00645 + 3.35673I	6.09240 - 3.01308I
b = 0.307345 - 0.392902I		
u = 0.796321 + 0.241667I		
a = 1.33140 + 1.33913I	1.17763 + 4.62470I	15.0023 - 5.8935I
b = 0.545221 - 1.041750I		
u = 0.796321 - 0.241667I		
a = 1.33140 - 1.33913I	1.17763 - 4.62470I	15.0023 + 5.8935I
b = 0.545221 + 1.041750I		
u = -0.666028 + 0.230992I		
a = -0.471568 + 0.932013I	0.403528 - 0.080080I	11.24335 + 0.17507I
b = -0.768780 - 0.277812I		
u = -0.666028 - 0.230992I		
a = -0.471568 - 0.932013I	0.403528 + 0.080080I	11.24335 - 0.17507I
b = -0.768780 + 0.277812I		
u = 1.14295 + 1.14532I		
a = 0.469343 - 1.233450I	-18.3139 + 4.2344I	7.66195 - 1.86062I
b = -2.08379 - 0.09016I		
u = 1.14295 - 1.14532I		
a = 0.469343 + 1.233450I	-18.3139 - 4.2344I	7.66195 + 1.86062I
b = -2.08379 + 0.09016I		

V.
$$I_5^u = \langle u^7 + u^6 + 2u^5 + u^4 + 2u^3 + 3u^2 + 4b + 5u + 6, -u^7 + 3u^6 + \dots + 8a + 10, u^8 + 3u^7 + 4u^6 + u^5 + 7u^3 + 15u^2 + 12u + 4 \rangle$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{8}u^{7} - \frac{3}{8}u^{6} + \dots - \frac{11}{8}u - \frac{5}{4} \\ -\frac{1}{4}u^{7} - \frac{1}{4}u^{6} + \dots - \frac{5}{4}u - \frac{3}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{11}{8}u^{7} + \frac{15}{8}u^{6} + \dots + \frac{47}{8}u + \frac{1}{4} \\ -\frac{5}{4}u^{7} - \frac{13}{4}u^{6} + \dots - \frac{57}{4}u - \frac{15}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{9}{8}u^{7} - \frac{17}{8}u^{6} + \dots - \frac{57}{8}u - \frac{9}{4} \\ \frac{5}{4}u^{7} + \frac{17}{4}u^{6} + \dots + \frac{65}{4}u + \frac{13}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{7} + u^{6} + u^{5} - u^{4} + 2u^{3} + 5u^{2} + 4u \\ -3u^{7} - 6u^{6} - 3u^{5} + 2u^{4} - 4u^{3} - 18u^{2} - 19u - 8 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{17}{8}u^{7} - \frac{25}{8}u^{6} + \dots - \frac{81}{8}u - \frac{1}{4} \\ \frac{11}{4}u^{7} + \frac{23}{4}u^{6} + \dots + \frac{99}{4}u + \frac{23}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -2.37500u^{7} - 5.37500u^{6} + \dots - 21.3750u - 8.75000 \\ -\frac{1}{4}u^{7} + \frac{3}{4}u^{6} + \dots + \frac{19}{4}u + \frac{7}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{11}{8}u^{7} - \frac{23}{8}u^{6} + \dots - \frac{87}{8}u - \frac{13}{4} \\ \frac{1}{4}u^{7} + \frac{9}{4}u^{6} + \dots + \frac{29}{4}u + \frac{7}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^6 4u^5 2u^4 + 6u^3 10u^2 20u 2$

Crossings	u-Polynomials at each crossing
c_1	$u^{8} + 12u^{7} + 26u^{6} - 48u^{5} + 99u^{4} - 48u^{3} + 26u^{2} - 4u + 1$
c_2, c_4, c_8	$u^8 + 6u^6 - 5u^4 + 6u^2 - 4u + 1$
c_3, c_5, c_9	$u^8 + 2u^7 + 2u^6 + u^4 - 2u^2 + 1$
c_6	$u^8 - 4u^7 + 18u^6 - 58u^5 + 111u^4 - 126u^3 + 92u^2 - 40u + 11$
c_7, c_{11}	$u^8 - 3u^7 + 4u^6 - u^5 - 7u^3 + 15u^2 - 12u + 4$
c_{10}	$u^8 + 12u^6 - 16u^5 + 49u^4 - 56u^3 + 78u^2 - 54u + 27$
c_{12}	$u^8 - u^7 + 10u^6 - 13u^5 + 42u^4 - 41u^3 + 57u^2 - 24u + 16$

Crossings	Riley Polynomials at each crossing		
c_1	$y^8 - 92y^7 + \dots + 36y + 1$		
c_2, c_4, c_8	$y^8 + 12y^7 + 26y^6 - 48y^5 + 99y^4 - 48y^3 + 26y^2 - 4y + 1$		
c_3, c_5, c_9	$y^8 + 6y^6 - 5y^4 + 6y^2 - 4y + 1$		
c_6	$y^{8} + 20y^{7} + 82y^{6} - 192y^{5} + 719y^{4} + 304y^{3} + 826y^{2} + 424y + 121$		
c_7, c_{11}	$y^8 - y^7 + 10y^6 - 13y^5 + 42y^4 - 41y^3 + 57y^2 - 24y + 16$		
c_{10}	$y^8 + 24y^7 + \dots + 1296y + 729$		
c_{12}	$y^8 + 19y^7 + \dots + 1248y + 256$		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.937027 + 0.585611I		
a = 0.68623 + 1.54063I	1.17763 - 4.62470I	15.0023 + 5.8935I
b = -1.261650 - 0.312913I		
u = -0.937027 - 0.585611I		
a = 0.68623 - 1.54063I	1.17763 + 4.62470I	15.0023 - 5.8935I
b = -1.261650 + 0.312913I		
u = -0.678952 + 0.516253I		
a = 0.018648 + 0.423357I	0.403528 + 0.080080I	11.24335 - 0.17507I
b = -0.966437 - 0.300245I		
u = -0.678952 - 0.516253I		
a = 0.018648 - 0.423357I	0.403528 - 0.080080I	11.24335 + 0.17507I
b = -0.966437 + 0.300245I		
u = 1.064320 + 0.829887I		
a = -0.584890 + 0.825215I	-3.00645 + 3.35673I	6.09240 - 3.01308I
b = 1.44426 - 0.35067I		
u = 1.064320 - 0.829887I		
a = -0.584890 - 0.825215I	-3.00645 - 3.35673I	6.09240 + 3.01308I
b = 1.44426 + 0.35067I		
u = -0.94834 + 1.25418I		
a = -0.369985 - 0.584379I	-18.3139 + 4.2344I	7.66195 - 1.86062I
b = 2.28383 - 0.12843I		
u = -0.94834 - 1.25418I		
a = -0.369985 + 0.584379I	-18.3139 - 4.2344I	7.66195 + 1.86062I
b = 2.28383 + 0.12843I		

VI.
$$I_6^u = \langle u^3 + b - u - 1, -u^2 + a + 1, u^4 - u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} - 1 \\ -u^{3} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} + u^{2} + u - 1 \\ -u^{3} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 1 \\ -u^{3} + u^{2} + 2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} \\ u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} + 2u \\ -2u^{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u \\ -2u^{3} \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} u^{3} + u \\ -u^{2} - 1 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} 2 \\ -3u^{2} + 1 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} 2 \\ -3u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 12$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$(u^2 - u + 1)^2$
c_{2}, c_{8}	$(u^2+u+1)^2$
c_3, c_5, c_7 c_9, c_{11}	$u^4 - u^2 + 1$
c_6	$(u^2 - 2u + 2)^2$
c_{10}	$(u^2 + 2u + 2)^2$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4 c_8, c_{12}	$(y^2+y+1)^2$		
c_3, c_5, c_7 c_9, c_{11}	$(y^2-y+1)^2$		
c_6, c_{10}	$(y^2+4)^2$		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = -0.500000 + 0.866025I	2.02988I	10.00000 - 3.46410I
b = 1.86603 - 0.50000I		
u = 0.866025 - 0.500000I		
a = -0.500000 - 0.866025I	-2.02988I	10.00000 + 3.46410I
b = 1.86603 + 0.50000I		
u = -0.866025 + 0.500000I		
a = -0.500000 - 0.866025I	-2.02988I	10.00000 + 3.46410I
b = 0.133975 - 0.500000I		
u = -0.866025 - 0.500000I		
a = -0.500000 + 0.866025I	2.02988I	10.00000 - 3.46410I
b = 0.133975 + 0.500000I		

VII.
$$I_7^u = \langle u^3 + b - u - 1, -2u^3 - u^2 + a + u + 1, u^4 - u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u^{3} + u^{2} - u - 1 \\ -u^{3} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{3} + u^{2} - 2u - 1 \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{3} + u^{2} + u \\ -2u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3u^{3} + u^{2} - 3u - 2 \\ u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u^{2} + u + 1 \\ -2u^{3} - 2u^{2} + u + 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{3} + 2u^{2} + u + 1 \\ -2u^{3} - 2u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 12$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$(u^2 - u + 1)^2$
c_2, c_8	$(u^2+u+1)^2$
c_3, c_5, c_7 c_9, c_{11}	$u^4 - u^2 + 1$
c_6	$u^4 - 4u^3 + 5u^2 - 2u + 1$
c_{10}	$u^4 - 2u^3 + 5u^2 - 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_8, c_{12}	$(y^2+y+1)^2$
c_3, c_5, c_7 c_9, c_{11}	$(y^2 - y + 1)^2$
<i>c</i> ₆	$y^4 - 6y^3 + 11y^2 + 6y + 1$
c_{10}	$y^4 + 6y^3 + 11y^2 - 6y + 1$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = -1.36603 + 2.36603I	2.02988I	10.00000 - 3.46410I
b = 1.86603 - 0.50000I		
u = 0.866025 - 0.500000I		
a = -1.36603 - 2.36603I	-2.02988I	10.00000 + 3.46410I
b = 1.86603 + 0.50000I		
u = -0.866025 + 0.500000I		
a = 0.366025 + 0.633975I	-2.02988I	10.00000 + 3.46410I
b = 0.133975 - 0.500000I		
u = -0.866025 - 0.500000I		
a = 0.366025 - 0.633975I	2.02988I	10.00000 - 3.46410I
b = 0.133975 + 0.500000I		

VIII.
$$I_8^u = \langle u^3 + u^2 + b - u, \ a - 1, \ u^4 - u^2 + 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} + u + 1 \\ -u^{3} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} \\ -u^{3} - u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3} \\ 2u^{3} + u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u - 1 \\ u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{3} + u^{2} - u \\ -u^{3} + 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 + 8$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_{12}	$(u^2 - u + 1)^2$
c_2, c_8	$(u^2+u+1)^2$
c_3, c_5, c_7 c_9, c_{11}	$u^4 - u^2 + 1$
c_6	$u^4 + 2u^3 + 5u^2 + 4u + 1$
c_{10}	$u^4 + 4u^3 + 5u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_8, c_{12}	$(y^2 + y + 1)^2$
$c_3, c_5, c_7 \ c_9, c_{11}$	$(y^2 - y + 1)^2$
	$y^4 + 6y^3 + 11y^2 - 6y + 1$
c_{10}	$y^4 - 6y^3 + 11y^2 + 6y + 1$

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = 1.00000	-2.02988I	10.00000 + 3.46410I
b = 0.36603 - 1.36603I		
u = 0.866025 - 0.500000I		
a = 1.00000	2.02988I	10.00000 - 3.46410I
b = 0.36603 + 1.36603I		
u = -0.866025 + 0.500000I		
a = 1.00000	2.02988I	10.00000 - 3.46410I
b = -1.36603 + 0.36603I		
u = -0.866025 - 0.500000I		
a = 1.00000	-2.02988I	10.00000 + 3.46410I
b = -1.36603 - 0.36603I		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{8}(u^{4} + 10u^{3} + 27u^{2} - 22u + 1)$ $\cdot (u^{8} + 12u^{7} + 26u^{6} - 48u^{5} + 99u^{4} - 48u^{3} + 26u^{2} - 4u + 1)^{2}$ $\cdot (u^{8} + 19u^{7} + \dots + 1248u + 256)$
c_2, c_8	$(u^{2} + u + 1)^{8}(u^{4} - 2u^{3} + 7u^{2} - 6u + 1)$ $\cdot (u^{8} + 6u^{6} - 5u^{4} + 6u^{2} - 4u + 1)^{2}$ $\cdot (u^{8} - u^{7} + 10u^{6} - 13u^{5} + 42u^{4} - 41u^{3} + 57u^{2} - 24u + 16)$
$c_3, c_5, c_7 \ c_9, c_{11}$	$(u^{4} - u^{2} + 1)^{4}(u^{4} - 2u^{3} + u^{2} + 2u - 1)$ $\cdot (u^{8} - 3u^{7} + 4u^{6} - u^{5} - 7u^{3} + 15u^{2} - 12u + 4)$ $\cdot (u^{8} + 2u^{7} + 2u^{6} + u^{4} - 2u^{2} + 1)^{2}$
c_4, c_{12}	
<i>C</i> ₆	$(u^{2} - 2u + 2)^{2}(u^{4} + 10u^{2} - 16u + 4)(u^{4} - 4u^{3} + 5u^{2} - 2u + 1)$ $\cdot (u^{4} + 2u^{3} + 2u^{2} + 4u + 4)(u^{4} + 2u^{3} + 5u^{2} + 4u + 1)$ $\cdot (u^{8} + 12u^{6} - 16u^{5} + 49u^{4} - 56u^{3} + 78u^{2} - 54u + 27)$ $\cdot (u^{8} - 4u^{7} + 18u^{6} - 58u^{5} + 111u^{4} - 126u^{3} + 92u^{2} - 40u + 11)$ $\cdot (u^{8} + 7u^{7} + 25u^{6} + 52u^{5} + 54u^{4} + 16u^{3} - 8u^{2} + 4)$
c ₁₀	$(u^{2} + 2u + 2)^{2}(u^{4} + 10u^{2} - 16u + 4)(u^{4} - 2u^{3} + 2u^{2} - 4u + 4)$ $\cdot (u^{4} - 2u^{3} + 5u^{2} - 4u + 1)(u^{4} + 4u^{3} + 5u^{2} + 2u + 1)$ $\cdot (u^{8} + 12u^{6} - 16u^{5} + 49u^{4} - 56u^{3} + 78u^{2} - 54u + 27)$ $\cdot (u^{8} - 4u^{7} + 18u^{6} - 58u^{5} + 111u^{4} - 126u^{3} + 92u^{2} - 40u + 11)$ $\cdot (u^{8} + 7u^{7} + 25u^{6} + 52u^{5} + 54u^{4} + 16u^{3} - 8u^{2} + 4)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{2} + y + 1)^{8}(y^{4} - 46y^{3} + 1171y^{2} - 430y + 1)$ $\cdot ((y^{8} - 92y^{7} + \dots + 36y + 1)^{2})(y^{8} - 45y^{7} + \dots - 213504y + 65536)$
c_2, c_4, c_8 c_{12}	$(y^{2} + y + 1)^{8}(y^{4} + 10y^{3} + 27y^{2} - 22y + 1)$ $\cdot (y^{8} + 12y^{7} + 26y^{6} - 48y^{5} + 99y^{4} - 48y^{3} + 26y^{2} - 4y + 1)^{2}$ $\cdot (y^{8} + 19y^{7} + \dots + 1248y + 256)$
$c_3, c_5, c_7 \\ c_9, c_{11}$	$(y^{2} - y + 1)^{8}(y^{4} - 2y^{3} + 7y^{2} - 6y + 1)$ $\cdot (y^{8} + 6y^{6} - 5y^{4} + 6y^{2} - 4y + 1)^{2}$ $\cdot (y^{8} - y^{7} + 10y^{6} - 13y^{5} + 42y^{4} - 41y^{3} + 57y^{2} - 24y + 16)$
c_6, c_{10}	$(y^{2} + 4)^{2}(y^{4} - 4y^{2} + 16)(y^{4} - 6y^{3} + 11y^{2} + 6y + 1)$ $\cdot (y^{4} + 6y^{3} + 11y^{2} - 6y + 1)(y^{4} + 20y^{3} + 108y^{2} - 176y + 16)$ $\cdot (y^{8} + y^{7} + 5y^{6} - 244y^{5} + 860y^{4} - 920y^{3} + 496y^{2} - 64y + 16)$ $\cdot (y^{8} + 20y^{7} + 82y^{6} - 192y^{5} + 719y^{4} + 304y^{3} + 826y^{2} + 424y + 121)$
	$ (y^8 + 20y^7 + 82y^7 - 192y^8 + 719y^7 + 304y^8 + 820y^7 + 424y + 121) $ $ (y^8 + 24y^7 + \dots + 1296y + 729) $