The Great UV Confusion

and why it is important to talk about it

Vertex grid, height maps and ortho photos

- Tiles
- Vertices
- Height map (5x5)
 - 1 texel overlap between tile borders
- Ortho photo (16x16)
 - Non-overlapping
 - Samples do not align with height grid

How to create an overlay texture derived from a height map?

Overlapping (like height map) vs non-overlapping (like ortho)?

Overlays with higher resolution than input heightmap?

Where to sample heights for to-be-calculated overlay texel?

Height-based overlay texture – No overlap?

- Non-overlapping, like ortho?
 - e.g. 4x4 (dots are height sample positions)
- Never aligns with height map
 - O Always need to interpolate heights!

Height-based overlay texture – No overlap?

- Non-overlapping, like ortho?
 - Higher res, e.g. 16x16
- Never aligns with height map
 - O Always need to interpolate heights!

Height-based overlay texture – No overlap?

- Non-overlapping, like ortho?
 - Higher res, e.g. 16x16
- Never aligns with height map
 - O Always need to interpolate heights!
- Height map UV from overlay texel pos:

$$\mathbf{heights_uv} = \begin{bmatrix} \frac{1}{2 \cdot \mathsf{overlay_width}} \\ \frac{1}{2 \cdot \mathsf{overlay_height}} \end{bmatrix} + \begin{bmatrix} \left(\frac{\mathsf{col_index}}{\mathsf{overlay_width}-1} + \frac{1}{2 \cdot \mathsf{overlay_width}} \right) \cdot \frac{\mathsf{heights_width}-1}{\mathsf{heights_width}} \\ \left(\frac{\mathsf{row_index}}{\mathsf{overlay_height}-1} + \frac{1}{2 \cdot \mathsf{overlay_height}} \right) \cdot \frac{\mathsf{heights_width}-1}{\mathsf{heights_height}-1} \end{bmatrix}$$

Height-based overlay texture – 1px overlap?

- 1-texel overlapping, like height map?
 - o e.g. 5x5
- Aligns with overlay exactly (if same res)
 - Sample exactly at height map texel centers
 - Can use given height values
 no interpolation required
- Implications
 - need to offset vertex UVs when rendering
 - overlap region needs to be written to all per-tile overlay textures

Height-based overlay texture – 1px overlap?

- 1-texel overlapping, like height map?
 Higher res, e.g. 17x17
- Some samples between height texels
 Need to interpolate heights at that points

Height-based overlay texture – 1px overlap?

- 1-texel overlapping, like height map?
 Higher res, e.g. 17x17
- Some samples between height texels
 Need to interpolate heights at that points
- Height map UV for overlay texel pos:

Considerations I

- Remark: our continuous approaches always needs interpolation
 - => mainly important for grid-based approaches directly using DEM
- Comparison with state-of-the-art
 - Flow-Py and Flow-R work directly on the height grid
 - => their output raster aligns with the height raster
 - => to compare, our output needs to align with theirs
- Is interpolating heights (for simulation) alright?
 - Values between height samples are not really known
 - Interpolation is only an approximation, can be wrong

Considerations II

- Image quality
 - o Possible to draw finer trajectories on finer grid
 - If higher resolution than height maps
 - => need to sample/interpolate heights

- Performance
 - Overlapping texels need to be written to multiple texture/buffer positions
 - Probably neglectable for now