Electronics Systems

Computer Engineering

Designing for Low Power

Luca Fanucci

[Adapted from Rabaey's *Digital Integrated Circuits*, Second Edition, ©2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

Why Power Matters

- Packaging costs
- Power supply rail design
- Chip and system cooling costs
- Noise immunity and system reliability
- Battery life (in portable systems)
- Environmental concerns
 - Office equipment (professional, government and banks) accounted for 14% of total US commercial energy usage in 2012*
 - Energy Star compliant systems. The Energy Star program is incorporating standby energy into its ratings. Standby energy in office equipment represents a significant hidden energy cost.

^{*} U.S. Energy Information Administration, 2012 Commercial Building Energy Consumption Survey: Energy Usage Summary, Table 1 (March 2016)

Why worry about power? -- Power Dissipation

Lead microprocessors power continues to increase

Power delivery and dissipation will be prohibitive

Source: Borkar, De Intel®

Why worry about power? -- Chip Power Density

Source: Borkar, De Intel®

Chip Power Density Distribution

- Power density is not uniformly distributed across the chip
- Silicon is not a good heat conductor
- Max junction temperature is determined by hot-spots
 - Impact on packaging, w.r.t. cooling

Problem Illustration (1/2)

Problem Illustration (2/2)

The Intel's Tejas project

Craig R. Barrett, the chief executive of Intel, told analysts that the company would move down a "parallel track."

Intel Corporation's newest microprocessor (tejas) running slower and hotter than its predecessor.

Obtaining more computing power by stamping multiple processors on a single chip rather than straining to increase the speed of a single processor

New York Times, May 17, 2004

Pentium4 processor

- Dual-Core/Multi-Threaded Pentium®4 Processor on 90nm process
 - 2-1M caches, speeds to 3.2Ghz, support for over clocking, up to 4 threads.
- Shared 800Mhz quad-pumped FSB.
 - Independent bus tuning per agent
- Enhanced auto-halt and 2-state speed step power management
 - Independent events supported per core.

Highlights (3.2 GHz)

- 241M transistors
- 235mm2
- 9 cores, 10 threads
- >200 GFlops (SP)
- >20 GFlops (DP)
- Up to 25 GB/s memory B/W
- Up to 75 GB/s I/O B/W
- >300 GB/s EIB
- Top frequency >4GHz (observed in lab)

The Performance vs. Power Dilemma

Maintain Battery Life

Lowest leakage and/or dynamic power

Increased leakage IR-drop Electromigration

Increase Performance

Thermal management Packaging, cooling, cost

Power Management Is Challenging

Leakage power begins to dominate at advanced process geometries

Why worry about power? -- Battery Size/Weight

Expected battery lifetime increase over the next 5 years: 30 to 40%

From Rabaey, 1995

Why worry about power? -- Standby Power

Year	2002	2005	2008	2011	2014
Power supply V _{dd} (V)	1.5	1.2	0.9	0.7	0.6
Threshold V _T (V)	0.4	0.4	0.35	0.3	0.25

Drain leakage will increase as V_T decreases to maintain noise margins and meet frequency demands, leading to excessive battery draining standby power consumption.

...and phones leaky!

Source: Borkar, De Intel®

Low power design challenge

The challenge

"To design an embedded system (HW and SW) that provides the target functionality with minimum power consumption"

The solution

From the system concept down to the implementation phase, adopt a design style that includes power consumption as a figure of merit, and exploit all the opportunities and techniques available at each design level to reduce it

15

Power Saving Opportunities

CMOS Energy & Power Equations

$$E = C_L V_{DD}^2 P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} P_{0\rightarrow 1} + V_{DD} I_{leakage}$$

$$f_{0\to 1} = P_{0\to 1} * f_{clock}$$

$$P = C_L V_{DD}^2 f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1} + V_{DD} I_{leakage}$$

Dynamic power

Short-circuit power

Leakage power

Dynamic Power Consumption

Energy/transition =
$$C_L * V_{DD}^2 * P_{0\rightarrow 1}$$

 P_{dyn} = Energy/transition * f = $C_L * V_{DD}^2 * P_{0\rightarrow 1}$ * f

$$P_{dyn} = C_{EFF} * V_{DD}^2 * f$$
 where $C_{EFF} = P_{0\rightarrow 1} C_L$

Not a function of transistor sizes!

Data dependent - a function of switching activity!

Lowering Dynamic Power

Short Circuit Power Consumption

Finite slope of the input signal causes a direct current path between V_{DD} and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting.

Short Circuit Currents Determinates

$$E_{sc} = t_{sc} V_{DD} I_{peak} P_{0\rightarrow 1}$$

$$P_{sc} = t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1}$$

- Duration and slope of the input signal, t_{sc}
- I_{peak} determined by
 - the saturation current of the P and N transistors which depend on their sizes, process technology, temperature, etc.
 - strong function of the ratio between input and output slopes
 - a function of C₁

Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

All increase exponentially with temperature!

Leakage as a Function of V_T

Continued scaling of supply voltage and the subsequent scaling of threshold voltage will make subthreshold conduction a dominate component of power dissipation.

□ An 90mV/decade V_T roll-off - so each 255mV increase in V_T gives 3 orders of magnitude reduction in leakage (but adversely affects performance)

TSMC Processes Leakage and V_T

	CL018 G	CL018 LP	CL018 ULP	CL018 HS	CL015 HS	CL013 HS
V_{dd}	1.8 V	1.8 V	1.8 V	2 V	1.5 V	1.2 V
T _{ox} (effective)	42 Å	42 Å	42 Å	42 Å	29 Å	24 Å
L _{gate}	0.16 μm	0.16 μm	0.18 μm	0.13 μm	0.11 μm	0.08 μm
I _{DSat} (n/p) (μΑ/μm)	600/260	500/180	320/130	780/360	860/370	920/400
I _{off} (leakage) (ρΑ/μm)	20	1.60	0.15	300	1,800	13,000
V _{Tn}	0.42 V	0.63 V	0.73 V	0.40 V	0.29 V	0.25 V
FET Perf. (GHz)	30	22	14	43	52	80

Exponential Increase in Leakage Currents

Review: Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} P_{0\rightarrow 1} + V_{DD}$$

$$I_{leakage}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

$$P = C_L V_{DD}^2 f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1} + V_{DD} I_{leakage}$$

Dynamic power (% decreasing power power (% increasing with deep submicron)

Leakage power grows from <5% of power budget at .25 micron to 20-25% at 130nm to 40-50% at 90nm and continuing to increase at 65nm and beyond.

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active	Non-active Modules	
	Logic Design			DFS, DVS
Active	Reduced V _{dd}	Clock Gating		(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Tra	nsistors	
Leakage	+ Multi-V _T	Multi	-V _{dd}	+ Variable V _⊤
		Variable V _⊤		

Dynamic Power as a Function of Device Size

- Device sizing affects dynamic energy consumption
 - gain is largest for networks with large overall effective fan-outs (F = C_L/C_{g,1})
- The optimal gate sizing factor (f) for dynamic energy is smaller than the one for performance, especially for large F's
 - e.g., for F=20,
 f_{opt}(energy) = 3.53 while
 f_{opt}(performance) = 4.47
- If energy is a concern avoid oversizing beyond the optimal

From Nikolic, UCB

Standard-Cell Technology Library Austriamicrosystems, 0,35 um CMOS

analog meets digital

0.35µm CMOS

Digital Standard Cell Databook

INVX1

Conditions for characterization library c35_CORELIBD_BC, corner c35_CORELIBD_BC_best: Vdd= 3.63V, Tj= -50.0 deg. C . Output transition is defined from 20% to 80% (rising) and from 80% to 20% (falling) output voltage. Propagation delay is measured from 50% (input rise) or 50% (input fall) to 50% (output rise) or 50% (output fall).

State	Table
А	Q
L	Н
Н	L

Сар	acitance [fF]
Α	2.8210

Propagation Delay [ns]					
Input Transi	tion [ns]	0	.01	4.	.00
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	0.04	0.41	-0.36	0.63
	rise	0.06	0.67	0.83	1.88

Output Transition [ns]					
Input Transition [ns] 0.01 4.00					
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	0.04	0.54	0.70	1.43
	rise	0.08	1.03	0.62	1.58

Dynamic Power Consumption [nW/MHz]					
Input Transition [ns] 0.01 4.00					00
Load Capacitance [fF] 5.00		5.00	100.00	5.00	100.00
A to O	fall	1.93	2.35	516.63	510.09
A to Q	rise	38.82	40.07	813.89	712.95

Leakage [pW]

St	ate Tat	ole
Α	В	Q
L	-	Н
Н	Н	L
-	L	Н

Propagation Delay [ns]					
Input Transition [ns] 0.01 4.				.00	
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	0.06	0.58	-0.13	0.95
	rise	0.07	0.68	0.70	1.77
B to Q	fall	0.06	0.58	-0.37	0.60
	rise	0.08	0.69	0.91	1.87

Output Transition [ns]					
Input Transition [ns] 0.01 4.00					
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	0.07	0.83	0.77	1.64
	rise	0.10	1.05	0.75	1.71
B to Q	fall	0.07	0.83	0.76	1.53
	rise	0.11	1.06	0.82	1.72

Cap	acitance [fF]
Α	2.7240
В	3.0190

	Dynamic Power Consumption [nW/MHz]					
Input Transi	Input Transition [ns]		0.01		00	
Load Capacitance [fF]		5.00	100.00	5.00	100.00	
A to Q	fall	8.00	8.49	555.73	471.83	
7.00	rise	54.46	55.63	732.49	629.72	
B to Q	fall	7.37	7.81	616.29	518.84	
	rise	64.63	64.73	837.28	703.47	

State Table					
Α	B Q				
L	-	Н			
Н	Н	L			
-	L	Н			

Propagation Delay [ns]					
Input Transi	0.	.01	4.	.00	
Load Capacitance [fF]		10.00	200.00	10.00	200.00
A to Q	fall	0.06	0.66	-0.09	1.13
AloQ	rise	0.06	0.75	0.61	1.81
B to Q	fall	0.06	0.66	-0.27	0.79
	rise	0.06	0.69	0.75	1.78

Output Transition [ns]					
Input Transition [ns] 0.01				4.	.00
Load Capacitance [fF]		10.00	200.00	10.00	200.00
A to Q	fall	0.07	0.92	0.75	1.73
Aloq	rise	0.08	1.16	0.71	1.80
B to Q	fall	0.07	0.92	0.74	1.61
	rise	0.08	1.07	0.80	1.75

Cap	Capacitance [fF]			
Α	3.8420			
В	4.4020			

Dynamic Power Consumption [nW/MHz]					
Input Transi	tion [ns]	0.0	01	4.00	
Load Capacit	oad Capacitance [fF] 10.00		200.00	10.00	200.00
A to Q	fall	5.99	6.95	974.79	808.95
A GO	rise	64.40	64.67	1272.31	1068.90
B to O	fall	4.28	5.14	1162.42	945.27
B to Q	rise	77.18	78.81	1504.40	1252.61

State Table					
Α	A B Q				
L	-	Н			
Н	Н	L			
-	L	Н			

Propagation Delay [ns]					
Input Transition [ns]		0.01		4.00	
Load Capacit	ance [fF]	30.00	600.00	30.00	600.00
A to Q	fall	0.05	0.65	-0.04	1.16
AtoQ	rise	0.05	0.68	0.51	1.68
B to Q	fall	0.05	0.65	-0.28	0.80
	rise	0.06	0.69	0.73	1.77

Output Transition [ns]					
Input Transi	tion [ns]	0.	01	4.	00
Load Capacitance [fF]		30.00	600.00	30.00	600.00
A to Q	fall	0.06	0.92	0.72	1.70
A to Q	rise	0.07	1.06	0.70	1.73
B to Q	fall	0.06	0.92	0.72	1.59
	rise	0.08	1.07	0.78	1.74

Cap	acitance [fF]
Α	10.1390
В	11.0760

Dynamic Power Consumption [nW/MHz]					
Input Transi	tion [ns]	0.01 4.		00	
Load Capacitance [fF]		30.00	600.00	30.00	600.00
A to Q	fall	5.73	8.27	3025.58	2459.24
A to Q	rise	155.47	156.48	3806.99	3246.79
P to ∩	fall	5.87	8.76	3407.23	2766.61
B to Q	rise	196.60	199.91	4408.72	3647.73

State Table				
Α	В	Q		
L	L	Н		
Н	_	L		
-	Н	L		

Propagation Delay [ns]					
Input Transition [ns]		0.01		4.00	
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	0.04	0.41	-0.64	0.48
	rise	0.11	1.17	1.28	2.61
B to Q	fall	0.05	0.42	-0.45	0.56
	rise	0.11	1.18	1.00	2.25

Output Transition [ns]					
Input Transition [ns]		0.01		4.00	
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	0.04	0.55	0.73	1.46
	rise	0.15	1.81	0.62	2.12
B to Q	fall	0.05	0.55	0.94	1.55
	rise	0.15	1.81	0.80	2.12

Cap	acitance [fF]
Α	2.6610
В	2.9400

Dynamic Power Consumption [nW/MHz]					
Input Transition [ns]		0.01		4.00	
Load Capacitance [fF]		5.00	100.00	5.00	100.00
A to Q	fall	4.63	5.12	326.27	363.32
	rise	45.80	47.19	661.91	550.88
B to Q	fall	7.48	7.98	453.09	450.46
	rise	55.57	56.53	796.35	658.80

Dynamic Power Consumption is Data Dependent

- \square Switching activity, $P_{0\rightarrow 1}$, has two components
 - A static component function of the logic topology
 - A dynamic component function of the timing behavior (glitching)

2-input NOR Gate

А	В	Out
0	0	1
0	1	0
1	0	0
1	1	0

Static transition probability

$$P_{0\to 1} = P_{out=0} \times P_{out=1}$$

= $P_0 \times (1-P_0)$

With input signal probabilities

$$P_{A=1} = 1/2$$

 $P_{B=1} = 1/2$

NOR static transition probability $= 3/4 \times 1/4 = 3/16$

Transition Probabilities for Some Basic Gates

	$P_{0\rightarrow 1} = P_{out=0} \times P_{out=1}$
NOR	$(1 - (1 - P_A)(1 - P_B)) \times (1 - P_A)(1 - P_B)$
OR	$(1 - P_A)(1 - P_B) \times (1 - (1 - P_A)(1 - P_B))$
NAND	$P_A P_B x (1 - P_A P_B)$
AND	$(1 - P_A P_B) \times P_A P_B$
XOR	$(1 - (P_A + P_B - 2P_A P_B)) \times (P_A + P_B - 2P_A P_B)$

For X:
$$P_{0\to 1} = P_0 \times P_1 = (1-P_A) P_A$$

= 0.5 x 0.5 = 0.25

For Z:
$$P_{0\to 1} = P_0 \times P_1 = (1-P_XP_B) P_XP_B$$

= $(1 - (0.5 \times 0.5)) \times (0.5 \times 0.5) = 3/16$

Inter-signal Correlations

- Determining switching activity is complicated by the fact that signals exhibit correlation in space and time
 - reconvergent fan-out

$$P(Z=1) = P(B=1) & P(A=1 | B=1)$$

Have to use conditional probabilities

Logic Restructuring

 Logic restructuring: changing the topology of a logic network to reduce transitions

AND:
$$P_{0\to 1} = P_0 \times P_1 = (1 - P_A P_B) \times P_A P_B$$

Chain implementation has a lower overall switching activity than the tree implementation for random inputs

Ignores glitching effects

Input Ordering

$$(1-0.5x0.2)x(0.5x0.2)=0.09$$
0.5
A
B
C
C
F

$$\begin{array}{c}
(1-0.2x0.1)x(0.2x0.1)=0.0196 \\
0.2 \\
B \\
C \\
0.1 \\
A \\
D \\
F
\end{array}$$

Beneficial to postpone the introduction of signals with a high transition rate (signals with signal probability close to 0.5)

Glitching in Static CMOS Networks

- Gates have a nonzero propagation delay resulting in spurious transitions or glitches (dynamic hazards)
 - glitch: node exhibits multiple transitions in a single cycle before settling to the correct logic value

Glitching in an RCA

Balanced Delay Paths to Reduce Glitching

 Glitching is due to a mismatch in the path lengths in the logic network; if all input signals of a gate change simultaneously, no glitching occurs

So equalize the lengths of timing paths through logic

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
	Logic Design	Clock Gating		DFS, DVS
Active	Reduced V _{dd} Sizing Multi-V _{dd}			(Dynamic Freq, Voltage Scaling)
		Sleep Transistors		
Leakage	akage + Multi-V _⊤	Multi-V _{dd}		+ Variable V _T
		Variable V _T		

Dynamic Power as a Function of V_{DD}

- Decreasing the V_{DD}
 decreases dynamic energy
 consumption (quadratically)
- But, increases gate delay (decreases performance)

$$t_{p_{HL}} \propto \frac{K \cdot C}{\beta_{n} \cdot (V_{DD} - V_{Tn})}$$

$$t_{p_{LH}} \propto \frac{K \cdot C}{\beta_{p} \cdot (V_{DD} + V_{Tp})}$$

Determine the critical path(s) at design time and use high V_{DD} for the transistors on those paths for speed. Use a lower V_{DD} on the other gates, especially those that drive large capacitances (as this yields the largest energy benefits).

Multiple V_{DD} Considerations

- How many V_{DD}? Two is becoming common
 - Many chips already have two supplies (one for core and one for I/O)
- When combining multiple supplies, level converters are required whenever a module at the lower supply drives a gate at the higher supply (step-up)

 If a gate supplied with V_{DDL} drives a gate at V_{DDH}, the PMOS never turns off

 The cross-coupled PMOS transistors do the level conversion

The NMOS transistor operate on a reduced supply

 Level converters are not needed for a step-down change in voltage

 Overhead of level converters can be mitigated by doing conversions at register boundaries and embedding the level conversion inside the flipflop (see next slide)

\DDL

Dual-Supply Inside a Logic Block

- Minimum energy consumption is achieved if all logic paths are critical (have the same delay)
- Clustered voltage-scaling
 - Each path starts with V_{DDH} and switches to V_{DDL} (gray logic gates) when delay slack is available
 - Level conversion is done in the flipflops at the end of the paths

$$T \ge t_{c-q} + t_{plogic} + t_{su}$$

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
Active	Logic Design	Clock Gating		DFS, DVS
	Reduced V _{dd}			(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Transistors		
Leakage	+ Multi-V _T	Multi	$-V_{dd}$	+ Variable V _▼
		Variable V _⊤		

Leakage as a Function of Design Time V_T

- □ Reducing the V_T
 increases the sub threshold leakage
 current (exponentially)
 - 90mV reduction in V_T increases leakage by an order of magnitude
- But, reducing V_T
 decreases gate delay
 (increases performance)

- □ Determine the critical path(s) at design time and use low V_T devices on the transistors on those paths for speed.
 Use a high V_T on the other logic for leakage control.
 - A careful assignment of V_T's can reduce the leakage by as much as 80%

Dual-Thresholds Inside a Logic Block

- Minimum energy consumption is achieved if all logic paths are critical (have the same delay)
- Use lower threshold on timing-critical paths
 - Assignment can be done on a per gate or transistor basis; no clustering of the logic is needed
 - No level converters are needed

Example for evaluating minimum Clock Period

$$T \ge t_{c-q} + t_{plogic} + t_{su}$$

Example for evaluating minimum Clock Period

Low Power Techniques in Microarchitectures and Memories

Review: Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} P_{0\rightarrow 1} + V_{DD}$$

$$I_{leakage}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

$$P = C_L V_{DD}^2 f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1} + V_{DD} I_{leakage}$$

Dynamic power (% decreasing power power (% increasing with deep submicron)

Leakage power grows from <5% of power budget at .25 micron to 20-25% at 130nm to 40-50% at 90nm and continuing to increase at 65nm and beyond.

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
Active	Logic Design	Clock Gating		DFS, DVS
	Reduced V _{dd}			(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Transistors Multi-V _{dd} Variable V _T		
Leakage	+ Multi-V _T			+ Variable V _⊤

Bus Multiplexing

- Buses are a significant source of power dissipation due to high switching activities and large capacitive loading
 - 15% of total power in Alpha 21064
 - 30% of total power in Intel 80386
- Share long data buses with time multiplexing (S₁ uses even cycles, S₂ odd)

■ But what if data samples are correlated (e.g., sign bits)?

Correlated Data Streams

- For a shared (multiplexed) bus advantages of data correlation are lost (bus carries samples from two uncorrelated data streams)
 - Bus sharing should not be used for positively correlated data streams
 - Bus sharing may prove advantageous in a negatively correlated data stream (where successive samples switch sign bits) more random switching

Glitch Reduction by Pipelining

- Glitches depend on the logic depth of the circuit gates deeper in the logic network are more prone to glitching
 - arrival times of the gate inputs are more spread due to delay imbalances
 - usually affected more by primary input switching
- Reduce logic depth by adding pipeline registers
 - additional energy used by the clock and pipeline registers

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
Active	Logic Design Reduced V _{dd} Sizing Multi-V _{dd}	Clock Gating		DFS, DVS (Dynamic Freq, Voltage Scaling)
Leakage	+ Multi-V _T	Sleep Transistors Multi- V_{dd} Variable V_{T}		+ Variable V _⊤

Clock Gating

Most popular method for power reduction of clock signals and functional units

- Gate off clock to idle functional units
 - e.g., floating point units
 - need logic to generate disable signal
 - increases complexity of control logic
 - consumes power
 - timing critical to avoid clock glitches at OR gate output
 - additional gate delay on clock signal
 - gating OR gate can replace a buffer in the clock distribution tree

Clock Gating in a Pipelined Datapath

□ For idle units (e.g., floating point units in Exec stage, WB stage for instructions with no write back operation)

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
Active	Logic Design	Clock Gating		DFS, DVS
	Reduced V_{dd}			(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Transistors		
Leakage	eakage + Multi-V _T	$Multi-V_{dd}$		+ Variable V _⊤
		Variable V _T		

Review: Dynamic Power as a Function of V_{DD}

- Decreasing the V_{DD} decreases dynamic energy consumption (quadratically)
- But, increases gate delay (decreases performance)

□ Determine the critical path(s) at design time and use high V_{DD} for the transistors on those paths for speed. Use a lower V_{DD} on the other gates, especially those that drive large capacitances (as this yields the largest energy benefits).

Dynamic Frequency and Voltage Scaling

Intel's SpeedStep

- Hardware that steps down the clock frequency (dynamic frequency scaling – DFS) when the user unplugs from AC power
 - PLL from $650MHz \rightarrow 500MHz$
- CPU stalls during SpeedStep adjustment

Transmeta LongRun

- Hardware that applies both DFS and DVS (dynamic supply voltage scaling)
 - 32 levels of V_{DD} from 1.1V to 1.6V
 - PLL from 200MHz → 700MHz in increments of 33MHz
- Triggered when CPU load change is detected by software
 - heavier load → ramp up V_{DD}, when stable speed up clock
 - lighter load \rightarrow slow down clock, when PLL locks onto new rate, ramp down $V_{\rm DD}$
- CPU stalls only during PLL relock (< 20 microsec)

Dynamic Thermal Management (DTM)

Trigger Mechanism:
When do we enable
DTM techniques?

Initiation Mechanism: How do we enable technique?

Response Mechanism: What technique do we enable?

DTM Trigger Mechanisms

- Mechanism: How to deduce temperature?
- Direct approach: on-chip temperature sensors
 - Based on differential voltage change across 2 diodes of different sizes
 - May require >1 sensor
 - Hysteresis and delay are problems

- Policy: When to begin responding?
 - Trigger level set too high means higher packaging costs
 - Trigger level set too low means frequent triggering and loss in performance
- Choose trigger level to exploit difference between average and worst case power

DTM Initiation and Response Mechanisms

- Operating system or microarchitectural control?
 - Hardware support can reduce performance penalty by 20-30%
- Initiation of policy incurs some delay
 - When using DVS and/or DFS, much of the performance penalty can be attributed to enabling/disabling overhead
 - Increasing policy delay reduces overhead; smarter initiation techniques would help as well
- Thermal window (100Kcycles+)
 - Larger thermal windows "smooth" short thermal spikes

DTM Activation and Deactivation Cycle

- Initiation Delay OS interrupt/handler
- □ Response Delay Invocation time (e.g., adjust clock)
- Policy Delay Number of cycles engaged
- ☐ Shutoff Delay Disabling time (e.g., re-adjust clock)

DTM Savings Benefits

Power and Energy Design Space

	Constant Throughput/Latency		Variable Throughput/Latency	
Energy	Design Time	Non-active Modules		Run Time
Active	Logic Design	Clock Gating		DFS, DVS
	Reduced V_{dd}			(Dynamic
	Sizing			Freq, Voltage
	Multi-V _{dd}			Scaling)
		Sleep Transistors		
Leakage	+ Multi- V_T	Multi	$-V_{dd}$	+ Variable V _T
		Variable V _⊤		