V206 Die Wärmepumpe

Alina Landmann, alina.landmann@tu-dortmund.de Jannine Salewski, jannine.salewski@tu-dortmund.de

Durchführung: 21.12.2017 Abgabe: 12.01.2018

TU Dortmund - Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	1
2	Theorie 2.1 Funktionsweise einer Wärmepumpe	
3	Durchführung	3
4	Auswertung	4
	4.1 Temperaturverläufe	4
	4.2 Güteziffer	
	4.3 Massendurchsatz	8
	4.4 Mechanische Kompressorleistung	9
5	Diskussion	10
Lit	iteratur	11

1 Zielsetzung

In diesem Versuch soll die Funktionsweise einer Wärmepumpe untersucht werden.

2 Theorie

Der zweite Hauptsatz der Thermodynamik sagt aus, dass Wärmeenergie immer von einem wärmeren zu einerm kälteren Medium übergeht, wenn keine weitere Arbeit aufgewendet wird. Die Wärmepumpe wirkt diesem entgegen, sie bewirkt also, dass Wärmeenergie von einem kälteren zu einem wärmeren Medium übergeht, indem sie diese mechanische Arbeit verrichtet.

Durch den 1. Hauptsatz der Themodynamik kann man folgenden Beziehung für die an das wärmere Medium abgegebene Wärmemenge Q_1 , die aufgenommene Wärmemenge aus dem kälteren Medium Q_2 und die verrichtete Arbeit A herstellen

$$Q_1 = Q_2 + A.$$

Durch einer Vorraussetzung, dass der Vorgang der Wärmetransport reversible sein muss, also dass es ohne Verluste wieder rückgängig gemacht werden kann, lässt sich aus dem 2. Hauptsatz der Thermodynamik eine weitere Gleichung zwischen den Wärmemengen Q_1 und Q_2 und deren Temperaturen Q_1 und Q_2 und deren Temperaturen Q_3 und Q_4 und deren Temperaturen Q_4 Q_4 und deren Tempera

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0. (1)$$

Da diese Vorraussetzung eines reversiblen Wärmetransportes aber technisch nicht umsetzbar ist, gilt für den realen Fall

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} > 0. (2)$$

Die Güteziffer ν einer realen Wärmepumpe, welche das Verhältnis zwischen der aufgewendeten Arbeit und der an das wärmere Medium abgegebenen Wärmemenge beschreibt, ist wie folgt definiert

$$\nu = \frac{Q_1}{A} < \frac{T_1}{T_1 - T_2} \,. \tag{3}$$

Abbildung 1: Schematischer Aufbau einer Wärmepumpe. [Dor]

2.1 Funktionsweise einer Wärmepumpe

In Abbildung 1 ist der schematische Aufbau dargestellt. Zum Wärmetransport wird bei der Wärmepumpe ein reales Gas verwendet, welches bei dem Verdampfen Wärme aufnimmt und bei der Verflüssigung Wärme abgibt. Dieses Gas durchläuft sowohl beide Reservoire als auch das Drosselventil. Wenn das Gas an zum Reservoir 2 gelangt, ist dieses flüssig und verdampft beim Durchströmen dieses Reserviors durch die Druckdifferenz und entzieht dem Reservoir 2 somit die Verdampfungswärme. Das verdampfte Gas durchströmt nun das Reseroir 1 und wird dort durch die Druckdifferenz wieder verflüssigt, es gibt also die Verdampfungswärme an das Reservoir 1 ab. Das Druckventil D sorgt dabei für die Druckdifferenz und der Kompressor K für die Bewegung des Kreislaufes. Weiterhin gibt es noch einige Bauelemente, die aber zu eigentlichen Funktionsweise einer Wärmepumpe nicht beitragen. So wird noch ein Reiniger vor dem Kompressor installiert, sodass die Gasbläschen aus dem flüssigen Medium herausgefiltert werden.

2.2 Berechnung der Kenngrößen einer Wärmepumpe

In diesem Versuch werden einige Kenngrößen dieser Wärmepumpe berechnet. Zunächst die schon oben beschriebene reale **Güteziffer**, diese kann durch die Messreihe in diesem Versuch wie folgt bestimmt werden

$$\nu = \frac{\Delta Q_1}{\Delta t N},\tag{4}$$

mit

$$\frac{\Delta Q_1}{\Delta t} = (m_1 c_w + m_k c_k) \frac{\Delta T_1}{\Delta t},\tag{5}$$

wobei m_1c_w die Wärmekapazität des Wasser aus Reservoir 1 und m_kc_k die Wärmekapazität der Kupferschlange und des Eimers beschreibt.

Eine weitere Kenngröße ist der Massendurchsatz $\frac{\Delta m}{\Delta t}$, dieser kann durch T_2 und die Verdampfungswärme L berechnet werden mit

$$\frac{\Delta Q_2}{\Delta t} = (m_2 c_W + m_k c_k) \frac{\Delta T_2}{\Delta t} \tag{6} \label{eq:delta_Q2}$$

und

$$\frac{\Delta Q_2}{\Delta t} = L \frac{\Delta m}{\Delta t}.$$
 (7)

Zur Berechnung der **Mechanischen Kompressorleitung** N wird folgende Formel verwendet

$$N_{mech} = \frac{\Delta A_m}{\Delta t} = \frac{1}{\kappa - 1} \left(p_b \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a \right) \frac{1}{\rho} \frac{\Delta m}{\Delta t}, \tag{8}$$

wobei ρ die Dichte des gasförmigen Mediums und κ das Verhältnis der Molwärmen C_p und C_v ($\kappa>0$) beschreibt. Die Differenzenquotienten lassen sich auch die Differential-quotienten ersetzen.

3 Durchführung

Zu Beginn werden die zwei Behälter (siehe Abbildung 2) mit je 4 Litern Wasser befüllt. Zu überprüfen ist zunächst, ob die Rührmotoren in den Behältern einwandfrei funktionieren, um eine möglichst homogene Mischung des Wassers zu erhalten. Die Messung wird gestartet, sobald die Wärmepumpe läuft. Jede Minute werden sowohl die Drücke p_a und p_b , als auch die Temperaturen T_1 und T_2 abgelesen. Außerdem wird zusätzlich noch die Leistungsaufnahme des Kompressors notiert. Die Messreihe wird gestoppt, wenn T_1 die 50 °C erreicht.

Abbildung 2: Versuchsaufbau

4 Auswertung

4.1 Temperaturverläufe

In Tabelle 1 sind die im Wärme- beziehungsweise Kältereservoir gemessenen Temperaturen T_1 und T_2 mit den zugehörigen Drücken P_1 und P_2 , sowie die generierte Leistung der Wärmepumpe aufgelistet. Zu den Drücken P_1 und P_2 wurde bereits ein bar Atmosphärendruck dazuaddiert.

Der Temperaturverlauf in den beiden Reservoirs ist in Abbildung 3 zu sehen. Die eingezeichnete Ausgleichsfunktion der beiden Temperaturverläufe wird mittels der Funktion

Tabelle 1: Messwerte zur Erstellung der Plots

	$T / \circ C$	$T / \circ C$	D / l	D / 1	D / W/
t / s	$T_1 / ^{\circ}C$	$T_2 / ^{\circ}C$	P_1 / bar	P_2 / bar	P / W
0	20.3	20.4	5.1	8.00	210
60	21.3	20.4	2.4	7.75	160
120	22.1	20.3	2.7	7.00	175
180	23.4	19.4	2.9	7.50	185
240	25.1	17.9	3.0	7.75	195
300	27.0	16.0	3.1	8.00	200
360	29.0	14.1	3.2	8.50	203
420	31.0	12.3	3.2	9.00	205
480	33.0	10.5	3.2	9.50	206
540	34.9	8.6	3.1	9.75	206
600	36.7	6.8	3.2	10.25	210
660	38.5	5.2	3.2	10.50	211
720	40.2	3.6	3.2	11.00	215
780	41.9	2.2	3.2	11.50	215
840	43.5	1.2	3.2	11.75	215
900	45.1	0.4	3.2	12.00	213
960	46.5	0.0	3.2	12.50	210
1020	48.0	-0.6	3.2	12.75	207
1080	49.1	-1.0	3.1	13.00	205
1140	50.3	-1.4	3.1	13.50	205

$$T(t) = At^2 + Bt + C$$

beschrieben.

Abbildung 3: Temperaturverläufe in den Reservoirs gegen die Zeit aufgetragen

Die Koeffizienten für das Wärmereservoir werden mit Hilfe des Programms scipy.optimize ermittelt und betragen:

$$\begin{aligned} \mathbf{A}_1 &= (-1.7 \pm 1.4) \, \mu \mathrm{K/s}^2 \\ \mathbf{B}_1 &= (0.0302 \pm 0.0016) \, \frac{\mathrm{K}}{\mathrm{s}} \\ \mathbf{C}_1 &= (292.05 \pm 0.40) \, \mathrm{K} \end{aligned}$$

Die Koeffizienten für das Kältereservoir betragen:

$$\begin{split} A_2 &= (6.7 \pm 1.4) \, \mu \text{K/s}^2 \\ B_2 &= (0.0303 \pm 0.0031) \, \frac{\text{K}}{\text{s}} \\ C_2 &= (296.25 \pm 273.55) \, \text{K} \end{split}$$

In Tabelle 2 sind die Differenzenquotienten $f = \frac{\partial T}{\partial t}$ für die beiden Reservoirs, die nach folgender Formel berechnet wurden:

$$\frac{\Delta T}{\Delta t} = At + B,$$

zu sehen.

Tabelle 2: Differenzenquotienten des Wärme- und Kältereservoirs

t / s	$\frac{\Delta T_1}{\Delta t}$ / K/s	$\frac{\Delta T_2}{\Delta t}$ / K/s
120	$0,0300 \pm 0.0016$	$0,0295 \pm 0,0031$
240	0.0298 ± 0.0016	$0,0287 \pm 0,0031$
480	0.0294 ± 0.0017	$0,0271 \pm 0,0032$
960	0.0210 ± 0.0021	$0,0239 \pm 0,0034$

Der Fehler für den Diffenrenzenquotienten wird mit Hilfe der Gaußschen Fehlerfortpflanzung berechnet, da in dessen Berechnung zwei fehlerbehaftete Größen A und B auftauchen:

$$\Delta f = \sqrt{(\mathbf{A} \cdot \Delta \mathbf{A})^2 + \Delta \mathbf{B}^2}$$

4.2 Güteziffer

Im Anschluss daran wird mittels der Formel:

$$\nu_{\rm real} = \frac{1}{\mathcal{P}}(m_1 c_{\rm w} + m_{\rm k} c_{\rm k}) \frac{\Delta T_1}{\Delta t}$$

die reale Güteziffer der im Experiment verwendeten Wärmepumpe berechnet und mit dem Theoriewert für die ideale Güteziffer verglichen, der sich aus folgender Gleichung ergibt:

$$\nu_{\rm ideal} = \frac{T_1}{(T_1 - T_2)}.$$

Der Wert $c_k m_k$ ist dabei mit 660 J/K die spezifische Wärmekapazität der verwendeten Apparatur. Die Masse des Wassers m_1 beträgt in diesem Fall 3 kg und dessen spezifische Wärmekapazität c_w beträgt 4183 J/K [Lum]. Die Leistung der Wärmepumpe ist für die verschiedenen Zeiten unterschiedlich und ist ebenfalls zusammen mit den Ergebnissen in 3 angegeben:

Tabelle 3: Ideale und reale Güteziffer der Wärmepumpe im Vergleich

t / s	P/W	$\nu_{ m ideal}$	$ u_{\mathrm{real}} $	Abweichung / $\%$
120	175	12,27	$2,26\pm0,12$	81,51
240	195	3,49	$2,02\pm0,11$	$42,\!12$
480	206	1,46	$1,88 \pm 0,11$	28,76
960	210	0,99	$1,80\pm0,13$	81,82

4.3 Massendurchsatz

Der Massendurchsatz lässt sich mit folgender Formel berechnen:

$$(m_2 c_{\rm w} + m_{\rm k} c_{\rm k}) \frac{\Delta T_2}{\Delta t} = L \frac{\Delta m}{\Delta t}. \label{eq:cw_def}$$

Um dies zu berechnen, muss zunächst die Verdampfungswärme L des Transportgases Dichloridfluormethan bestimmt werden. Dies geschieht, indem eine lineare Ausgleichsrechnung durchgeführt wird:

$$ln(P_1) = a\frac{1}{T_1} + b$$

Der Logarithmus von P_1 wird dann gegen die Temperatur aufgetragen, was in Abbildung 4 zu sehen ist. Für a ergibt sich dann ein Wert von 2180 ± 90

Mit diesem Wert a lässt sich dann L berechnen :

$$L = -aR$$

R ist die ideale Gaskonstante mit 8.314 J/mol [Dem]. So ergbit sich ein Wert für L :

$$L = (18.1 \pm 0.7) \, \frac{\mathrm{kJ}}{\mathrm{mol}}$$

Die molare Masse von Dichloridfluormethan beträgt 120.91 g/mol [Lum], woraus sich für L folgender Wert ergibt: $L=(150\pm6)\,\mathrm{J/g}$. Der Fehler für die Verdampfungswärme errechnet sich mit der Formel:

$$\Delta L = -R\Delta a.$$

Abbildung 4: Lineare Regression zur Bestimmung von L

Der Massendurchsatz g lässt sich dann einfach berechnen, wobei sich der Fehler hierfür aus folgender Formel berechnet:

$$\varDelta g = \sqrt{\left((m_2 c_{\mathrm{w}} + m_{\mathrm{k}} c_{\mathrm{k}}) \frac{\varDelta T_2}{L^2 \varDelta t} \varDelta L\right)^2 + \left(\frac{(m_2 c_{\mathrm{w}} + m_{\mathrm{k}} c_{\mathrm{k}})}{L} \varDelta \left(\frac{\varDelta T_2}{\varDelta t}\right)\right)^2}$$

Hierbei beträgt m_2 wie m_1 3 kg.

Tabelle 4: Massendurchsatz der Wärmepumpe zu verschiedenen Zeiten

t / s	$\frac{\Delta m}{\Delta t}$ / g/s
120	$2,60 \pm 0,29$
240	$2,53 \pm 0,29$
480	$2,39 \pm 0,30$
960	$2,\!10\ \pm0,\!31$

4.4 Mechanische Kompressorleistung

Zur Bestimmung der mechanischen Kompressorleistung:

$$\mathbf{N_{mech}} = \frac{1}{\kappa - 1} \left(\mathbf{P_2} \sqrt[\kappa]{\frac{\mathbf{P_1}}{\mathbf{P_2}}} - \mathbf{P_1}) \right) \frac{1}{\rho} \frac{\Delta m}{\Delta t},$$

muss zunächst ρ bestimmt werden. Dies geschieht mit Hilfe folgender Formel:

$$\rho = \frac{\rho_0 P_1 T_0}{p_0 T_2}.$$

Hierbei ist $\rho_0 = 5.51 \,\mathrm{g/l}$, T = 273.15 K, p = 1 bar und $\kappa = 1, 14$ in der Versuchsanleitung angegeben. Der Fehler für die mechanische Kompressorleistung, der sich aus der weiteren Berechnung mit Hilfe des fehlerbehaftetetn Massendurchsatzes ergibt, wird mit Hilfe folgender Formel berechnet:

$$\varDelta N = \frac{1}{\kappa - 1} \left(\mathbf{P}_2 \sqrt[\kappa]{\frac{\mathbf{P}_1}{\mathbf{P}_2}} - \mathbf{P}_1 \right) \frac{1}{\rho} \cdot \varDelta \left(\frac{\varDelta m}{\varDelta t} \right)$$

Tabelle 5: Mechanische Kompressorleistung

t / s	$\rho / \mathrm{kg/m^3}$	$N_{ m mech}$ / W
120	13,85	$4,5 \pm 0,5$
240	15.51	$4, 3 \pm 0, 5$
480	16.98	$4,6 \pm 0,6$
960	17.63	$5,0\pm0,7$

5 Diskussion

Beim Vergleich der realen mit der idealen Güteziffer fallen sofort große Abweichungen auf. Diese sind eventuell durch eine nicht ausreichende Isolierung der beiden Reservoirs und der Wärmeleitungen zu erklären. Des Weiteren wurde das Abfüllen der Wassermengen für die Reservoirs lediglich ein einfacher Kolben mit einer Markierung verwendet und die Menge wurde im Anschluss nicht exakt vermessen, weshalb in der Auswertung immer von exakt drei Kilogramm Wassermenge ausgegangen wurde. Um hier genauer vorzugehen, müsste die Wassermenge, die sich in den beiden Behältern befindet, exakt bestimmt werden. Eine weitere Fehlerquelle bei der Durchführung des Versuchs besteht darin, dass es nicht möglich ist alle vier Messdaten simultan von den weit auseinanderliegenden Messuhren abzulesen. Ebenfalls ist nicht davon auszugehen, dass es sich es bei dem in der verwendeten Wärmepumpe befindlichen Gases um ein ideales Gas handelt. Des weiteren erfolgt die Kompression des Gases keinesfalls adiabatisch, was bedeutet, dass davon auszugehen ist, dass es im Innern der Leitungen zu Reibung kommt, die

wiederum zu einem irreversiblen Wärmeverlust führen. Die ebenfalls sehr geringe mechanische Kompressorleistung könnte ein weiteres Indiz dafür sein, dass es im Innern der Leitungen zu Reibungsverlusten kommt, weshalb nicht die gesamte Leistung in der Wärmepumpe umgewandelt wird.

Literatur

- [Dem] Wolfgang Demtröder. Experimentalphysik 1. 7. Auflage.
- [Dor] TU Dortmund. Versuchsanleitung zu Versuch Nr. 206 Die Wärmepumpe. URL: http://129.217.224.2/HOMEPAGE/MEDPHYS/BACHELOR/AP/SKRIPT/V206.pdf (besucht am).
- [Lum] Lumitos. Dichloridfluormethan. URL: http://www.chemie.de/lexikon/Dichlordifluormethan.html (besucht am).