CVDL第一次作业报告

李浩辰 1500012746

2018.4

1 简介

本次作业的目的是在给定的数据集上,对测试集的图片进行正确的场景分类。训练集包含80个类,数据集难度较大,因此最后采用了Resnet作为最终的神经网络架构[1]。Resnet是2016年所提出的的深度卷积神经网络,其特点是梯度不易消失,因此可以有很深的层数,作者在不同的数据集上都取得了比较好的结果。本次采取了论文中所描述的Resnet-18结构。

除了Resnet之外,在寻找资料的过程中我还尝试了一种循环神经网络的结构[2]。可惜并未取得较好的结果,这部分会在下一节略作描述。

2 实现

2.1 预处理

输入的图像长宽比不同,大小也不同。所以将图像用双线性插值降采样到224 × 224大小的RGB三通道图像。

2.2 Resnet网络结构

论文中的标准Resnet-18网络,参数如下:

Table 1: Resnet网络结构

Table 1. Teshetiyashay							
conv1	conv1 conv2		conv4				
$\mathrm{conv7} \times 7 \times 64$	res_block $3 \times 3 \times 64$	$res_block3 \times 3 \times 128$	$res_block3 \times 3 \times 256$				
$\text{max-pool3} \times 3$	res_block $3 \times 3 \times 64$	$res_block3 \times 3 \times 128$	$res_block3 \times 3 \times 256$				
conv5	global_pool	fc_{-1}	fc_{-2}				
$res_block3 \times 3 \times 512$	512	$[512 \times 1000]$ with ReLU	$[1000 \times 80]$				
$res_block3 \times 3 \times 512$	512	[512 × 1000] WITH RELU					

每个conv层均包含一个conv,一个batch_norm和一个dropout。每个res_block包含两个conv层。 当尺寸或通道数不对应时,会使用卷积层来做统一处理。

2.3 调参过程

起初模型不含有dropout,在经过了相似的训练之后最终收敛在了68%左右。之后希望通过添加dropout来减少模型的过拟合,综合考虑到Resnet的参数冗余较多,采用dropout可能是比

较好的方式。结果提高了约2%,但是训练时间也略微延长了一些,总的来说略有提升,但是并不明显,可能是需要表达能力更强的模型才能从根本解决问题。

2.4 尝试循环神经网络

首先将图像预处理成多个不同大小的图像。基本思路是对图像进行卷积,之后将卷积得到的特征与小尺寸的图像concat,之后对此继续做卷积,这里的卷积和之前共享参数,如此重复,最后将几次卷积得到的结果输入全连接层。

验证集的正确率收敛在了51%左右,参数共享的目的是期望能从大尺寸的图像和小尺寸的 图像中发现共同的特征提取方式。从循环神经网络的性质来看也有从局部到整体的意味。但并 未取得预期的效果。

3 测试

3.1 测试环境

Intel(R) Core(TM) i7-4720HQ 2.60GHz Nvidia(R) GeForce GTX 970M tensorflow-gpu 1.7

3.2 测试结果

Table 2: 验证集top3正确率和loss

Table 2. 並此来top3止朔草和toss							
Epoch	1	2	3	4	5		
accuracy	0.420360	0.525586	0.585766	0.614955	0.631351		
loss	3.0	2.6	2.4	2.25	2.18		
Epoch	6	7	8	9	10		
accuracy	0.659459	0.672613	0.683063	0.686486	0.696577		
loss	2.07	2.02	1.97	1.95	1.90		

10个epoch过后出现了过拟合的现象,因此停止了训练。最终的验证集正确率收敛在70%左右。

4 总结

Resnet在图像分类方面的效果十分显著,对比循环神经网络有十分显著的提高。Resnet对于Identity的使得类似Identity的映射变得更容易学习,多次使用batch_norm有利于梯度不消失,同时还可以部分解决过拟合的问题[1]。但是添加了dropout之后,网络过拟合依然比较严重,当训练集正确率达80%时,验证集的正确率向70%收敛,可能是网络的表达能力不够,考虑需要使用更深的网络才能达到更好的效果。

循环神经网络在此处的利用[2]可能不如它在音频等领域内表现优秀,图像可能并不存在某种意义上的先后关系,这与语音的时间还有文字的先后是很不一样的。

参考文献

- [1] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016:770-778.
- [2] Pinheiro P H O, Collobert R. Recurrent Convolutional Neural Networks for Scene Labeling[C], International Conference on International Conference on Machine Learning. JMLR.org. 2014:I-82.