Camada de Transporte

Roteiro

- Introdução / Visão geral
- Transporte de dados
 - Protocolo UDP
- Transporte confiável de dados
 - Protocolo TCP

Introdução / Visão Geral

- <u>Objetivo</u>: oferecer transporte de dados entre processos do usuário (camada de aplicação) residentes em *hosts* distintos
 - Extensão dos serviços da camada de rede
 - Comunicação fim-a-fim
- Modalidades de transporte:
 - Transporte não confiável
 - Projeto mais simples
 - Exemplo: Protocolo UDP
 - Transporte confiável
 - Mais complexo
 - Exemplo: Protocolo TCP

Camada de Transporte

Presente nos Modelos

OSI/ISO

e

TCP/IP

Camada de Transporte

1.COMUNICAÇÃO LÓGICA ENTRE PROCESSOS DE APLICAÇÃO <u>Foco</u>: Transporte de dados

- Multiplexação/demultiplexação
- Endereçamento
- Entidades-pares
- Protocolo UDP
- Protocolo TCP

Por que camada de transporte?

- A camada de rede resolveria?
 - Contexto:
 - Oferece um serviço de comunicação entre hosts (host-to-host)
 - Algoritmos que interagem com roteadores vizinhos para localizar a melhor rota para o destino
 - Como prover paralelismo no host?
 - Para tratar um processo, tudo bem... mas e para N processos usuários?
- Um serviço de transporte intermediário entre as camadas de aplicação e de rede é mais lógico e prudente!
 - Nesse caso, pode-se ver transporte como um mecanismo para IPC (*Interprocess Communication*).

Multiplexação / demultiplexação

- Multiplexação
 - O protocolo de transporte aceita mensagens de vários processos
- Demultiplexação
 - Transporte entrega mensagens para vários processos

Endereçamento

 Processos (aplicações do usuário) são vinculados a endereços de transporte (portas)

Endereçamento

• Portas são números inteiros de 16 bits

Entidades-pares de transporte

- Paradigma cliente-servidor
 - Processo no host local (cliente) solicita serviços a outro processo, normalmente localizado no host remoto (servidor)

Protocolos de Transporte

Protocolo UDP User Datagram Protocol

Protocolo UDP

- Datagramas de tamanho variável
- Não há estabelecimento de conexão
- Pequeno overhead no cabeçalho do pacote
 - Favorece aplicações multimídia
- Apropriado para processos que transmitem mensagens curtas
- Taxa de envio não regulada
 - Não tem controle de fluxo
 - Receptor pode ser inundado se chegar um número excessivo de mensagens

Cabeçalho de datagramas UDP

- Portas de origem e destino
- Total length habilita datagramas UDP de até 64Kbytes
- Checksum (16 bits)
 - Detecção de erros
 - Erro => datagrama descartado

Quem usaria o UDP como camada de transporte?

- Qualquer aplicação que queira mais controle sobre o fluxo de transmissão de dados
- Aplicações que suportem perdas de dados pequenas
- Alguns exemplos:
 - Aplicações multimidia
 - VoIP
 - Gerenciamento de rede (SNMP)
 - Protocolo de roteamento RIP
 - Serviço de nomes DNS

Protocolo TCP Transmission Control Protocol

Características do TCP

- Conexão fim-a-fim de um para um
 - Não faz multicast!
- Unidade de informação: segmento
 - Os dados do usuário são divididos em segmentos, de acordo com o MSS (Maximum Segment Size)
- Orientado a conexão
 - o Porta de origem, porta de destino

Cabeçalho TCP

Segmentos TCP

Camada de Transporte

2.COMUNICAÇÃO LÓGICA ENTRE PROCESSOS DE APLICAÇÃO Foco: Transporte <u>CONFIÁVEL</u> de dados

- Estabelecimento de conexão
- Sequenciamento
- Controle de Fluxo
- Controle de Erros
- Encerramento de conexão

O que é transporte confiável de dados?

- Dados chegando em ordem e sem erros no receptor
 - Como garantir isso?
- Exige:
 - Sequenciamento dos segmentos
 - × Número de sequência e de reconhecimento
 - Estabelecimento e liberação de conexão
 - Controle de fluxo
 - Controle de erros
 - × Retransmissão de segmentos

Sequenciamento de segmentos

- Bytes transmitidos em cada conexão são numerados pelo TCP
 - Número inicial é escolhido aleatoriamente
 - O campo de sequência no cabeçalho define o número do primeiro byte contido no segmento
- O campo de reconhecimento indica o número do próximo byte esperado pelo receptor
 - Este número é cumulativo

Estabelecimento de conexão

- Útil para transmissão confiável de dados
 - Acordos entre as partes sobre o tipo de serviço prestado
 - Define valores iniciais para as variáveis de controle que serão utilizadas na fase de transferência de dados

Controle de Fluxo

- Uso de Janela Deslizante
 - × Receptor indica quantos bytes pode receber no máximo

Controle de Fluxo

- TCP possui funcionalidades similares ao Go-Back-N e à Repetição Seletiva
 - O emissor pode ter bytes transmitidos mas ainda não reconhecidos na janela
 - O receptor recebe segmentos ordenados
 - Ao receber, devolve um ACK para o emissor e entrega os bytes para a camada de aplicação
 - O receptor envia apenas reconhecimentos cumulativos
 - × Não reconhece segmentos que chegarem fora de ordem
 - Armazena segmentos fora de ordem em buffers de recepção (não os descarta)

Controle de Erros

- Checksum
- Confirmação
- Retransmissão
 - × Temporização (RTO − Retransmission Time-Out)
 - × Após três segmentos com ACK duplicados (retransmissão rápida)

Controle de Erros

RTO

Controle de Erros

Retransmissão rápida

Encerramento de conexão

- Finaliza a transmissão confiável de dados
 - Encerra os acordos feitos entre as partes sobre o tipo de serviço prestado

Referência Bibliográfica

• Fourozan, B. A. *Comunicação de Dados e Redes de Computadores*. 4. edição. São Paulo: McGraw-Hill, 2008.