CSE 431/531: Algorithm Analysis and Design

Fall 2021

Homework 6

Instructor: Shi Li Deadline: 12/19/2021

Your Name: _____ Your Student ID: _____

Problems	1	2	Total
Max. Score	50	30	80
Your Score			

Problem 1 For each of the following 5 problems, state (i) whether the problem is known to be in NP, and (ii) whether the problem is known to be in Co-NP. For problems (1c), (1d) and (1e), if your answer for (i) (or (ii)) is yes, you need to give the certificate and the certifier that establishes that the problem is in NP (or Co-NP).

- (1a) Given a graph G = (V, E) and $s \leq |V|$, the problem asks whether G contains an independent set of size s.
- (1b) Given two circuits C_1 and C_2 , each with m input variables z_1, z_2, \dots, z_m , decide if the two circuits compute the same function. That is, whether C_1 and C_2 give the same output for every boolean assignment of z-variables.
- (1c) Given a graph G = (V, E), decide if G is 3-colorable.
- (1d) Given a graph G = (V, E), decide if G is 2-colorable.
- (1e) An undirected graph G=(V,E) is called a 1-expander if for every $U\subseteq V$, the number of edges between U and $V\setminus U$ in G is at least $\min\{|U|,|V\setminus U|\}$. Given a graph G, decide if G is a 1-expander.

Problem 2 Let NPC be the set of NP-Complete problems. Prove the following statements:

- If $P \neq NP$, then $P \cap NPC = \emptyset$.
- If P = NP, then P = NPC.