H1 数理统计 2020-2021 春夏 回忆

from WJK, LXD, @TheSpectre

(n+1/(n+2) 62

H2 一、判断题

- **1.** $\{X \sim B(n,p) : n \in \mathbb{Z}^+, 0 ,则此分布族是指数分布族。$
- 2. MLE 一定是唯一的。 X
- 3. 总体为 $U(0,\theta)$,则在均方误差准则下, θ 的点估计 $X_{(n)}$ 比 $2\bar{X}$ 更优。
- 4. 大概是给了一个区间估计的方法,其中在枢轴量中没有出现待估参数。
- 5. 设正态总体中,假设检验 $H_0: \mu = 0 \longleftrightarrow H_1: \mu < 0$ 。已知 $\mu = -0.125$ (数据存疑),样本均值计算得到 $\bar{x} = -0.25$ (数据存疑),在 $\alpha = 0.1$ 的条件下,犯第二类错误的概率为 $1 \Phi(1.7...)$ 。 (最后的标准正态分布函数的自变量要么是1.76,要么是1.78)
- 6. 医院里有很多病人住院,他们中有不少是因为心脏病住院的,不少人是秃头。因为心脏病住院的总人数为 x_1 ,他们中有 y_1 人秃头;不是因为心脏病住院的总人数为 x_2 ,他们中有 y_2 人秃头。(卷子中 x_i,y_i 都是具体的数,回忆不起来了)使用列联表独立性检验,拒绝域为 $D=\{\chi^2>\chi^2_\alpha(1)\}$ 。

$H_2 =$

逛商场的人数 X 满足分布 $P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}, k=0,1,2,\cdots$ 。 去电影院的人数 $Y\sim B(k,p)$ (当 k=0 时,P(Y=0)=1) 。 抽样得两简单样本 (X_1,X_2,\cdots,X_n) 和 (Y_1,Y_2,\cdots,Y_n) 。

- 1. 写出合样本的联合密度函数, 并求 (λ, p) 的充分统计量。
- 2. 求 λ, p 的矩估计和MLE。

H2 三、

总体 $X \sim N(\mu, \sigma^2)$,简单样本 (X_1, X_2, \dots, X_n) 。

- 1. 如果 $T_n=rac{a_n}{n}\sum_{i=1}^n|X_i-ar{X}|$ 是 σ 的无偏估计,求 a_n 。
- 2. 证明 T_n 是 σ 的相合估计。
- 3. 求 σ^2 的 UMVUE。
- **4.** 求 $E_{\mu,\sigma^2}[(X_1-X_2)^2|\bar{X},S^2]$ 。

H2 四、

分别从两个总体,抽取两组简单样本,其值为 (x_1, x_2, \dots, x_6) , (y_1, y_2, \dots, y_6) 。 值是用表的形式给出了具体的数,具体是什么数记不清了。

- 1. 两总体是否有显著差异。
- **2.** 若两个总体的分布都是正态分布,方差均为 σ^2 ,均值分别为 μ_1, μ_2 ,求均值之差的置信度为95%的置信区间,然后在5%的显著性水平下比较两总体是否有显著差异。

H2 五、

总体 $X \sim \Gamma(1, \lambda)$ 。

- 1. 求参数 λ 的无偏估计的C-R下界
- **2.** 使用共轭先验分布, 求 λ 的期望型点估计。
- 3. 求90%可信区间的上界。