Сохранение совокупной независимости

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Теория Вероятностей (/Subjects/Details?id=1)

Тема

Случайные события (/Topics/Details?id=5)

Раздел

Условная вероятность, формула Байеса, формула полной вероятности и независимость событий (/SubTopics/Details?id=32)

Дата публикации

21.12.2018

Дата последней правки

21.12.2018

Последний вносивший правки

sobody

Рейтинг

Условие

Имеется последовательность независимых в совокупности событий A_1, \dots, A_n . Докажите, что:

- 1, Система событий $\overline{A_1},\dots,A_n$ также независима в совокупности.
- 2. Система событий, отличающаяся от данной тем, что в ней некоторые события заменены на отрицания, будет независимой в совокупности.

Решение

1. Достаточно рассмотреть соблюдение необходимых условий для тех пересечений, куда входит A_1 . Рассмотрим произвольное пересечение с пересечением элементов подпоследовательности B_k (не содержащей $\overline{A_1}$):

$$P(\overline{A_1} \cap B_1 \cap \ldots \cap B_k) = P(\overline{A_1} | B_1 \cap \ldots \cap B_k) P(B_1 \cap \ldots \cap B_k) =$$

$$= (1 - P(A_1 | B_1 \cap \ldots \cap B_k)) P(B_1 \cap \ldots \cap B_k) =$$

$$= (1 - P(A_1)) P(B_1) * \ldots * P(B_k) = P(\overline{A_1}) P(B_1) * \ldots * P(B_k)$$

2. Доказательство следует из возможности применять полученный в предыдущем пункте результат до тех пор, пока в рассматриваемой последовательности все необходимые элементы не будут представлять из себя обратные события.

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 - 2022 Sobopedia