Horse colic dataset

• The main aim of this project is to classify if adult horses will succumb after being diagnosed with colic. Finding what attributes have a high correlation with the horse dying or being euthanized.

- The aim is to get the smallest tree, choosing the attribute that produces the purest nodes, that is the greatest information gain.
- Information gain, amount of information gained by knowing the value of the attribute
- Entropy of distribution before the split vs the entropy after the split

Horse colic dataset

- 300 samples, 28 features
 - 21 float64
 - 4 int 64
 - 3 objects (data about lesion types)
- I removed 9 features
 - 50-82% missing data in one
 - Not relevant according to the data description
 - Hospital number (284 unique values of 300 total)
- I also removed noisy data
 - 8% of the data is from 6 month old horses or younger, they have a much higher death rate, the values are extremely fluctuating compared to adult horses. (Higher pulse, respiratory rate, narrower temperature range)
- I discretisized values to simplify classification in the tree
 - Temperature, low, normal, high
 - Pulse, low, normal, high
 - Protein levels in blood
 - Mucous membrane (tongue color)

Data exploring

- I performed the data cleaning in Python.
- I also decided to try doing PCA because of the high dimensionality, to find the variance in the data using Scikit package in python

Data prep

A lot of missing data Numbers are the ratio of Missing data, 82.3% is the most

```
# Pre processing
   # Had to add the column names to the data file
   # Forcing data types to str to further examine data, forcing lesion attributes as strings because leading zero's will disappear
   data = pd.read_csv('horse-colic.data', delim_whitespace=True, na_values="?", dtype={'lesion_1':str, 'lesion_2':str, 'lesion_3':str})
   nullRatio = data.isna().sum() / len(data)*100
   nullRatio.sort_values(ascending=False)
nasogastric_reflux_ph
                         82.333333
                         66.000000
abdomo_protein
abdomo_appearance
                         55.000000
abdomen
                         39.333333
nasogastric_reflux
                         35.333333
nasogastric_tube
                         34.666667
rectal exam feces
                         34.000000
peripheral_pulse
                         23.000000
                         20.000000
rectal_temp
respiratory_rate
                         19.333333
temp_of_extremities
                         18.666667
abdominal_distention
                         18.666667
                         18.333333
pain
                         15.666667
mucous_membrane
peristalsis
                         14.666667
total_protein
                         11.000000
capillary refill time
                         10.666667
                          9.666667
packed_cell_volume
pulse
                          8.000000
                          0.333333
surgery
outcome
                          0.333333
lesion 3
                          0.000000
surgical lesion
                          0.000000
lesion 1
                          0.000000
lesion 2
                          0.000000
hospital_number
                          0.000000
age
                          0.000000
cp_data
                          0.000000
dtype: float64
```

Data examination – Before data prep

High standard deviation in pulse, respiratory rate and protein levels High range of values, mostly because of (8% young horses in the dataset)

	rectal_temp	pulse	respiratory_rate	peripheral_pulse	total_protein	packed_cell_volume
count	240.000000	276.000000	242.000000	231.000000	267.000000	271.000000
mean	38.167917	71.913043	30.417355	2.017316	24.456929	46.295203
std	0.732289	28.630557	17.642231	1.042428	27.475009	10.419335
min	35.400000	30.000000	8.000000	1.000000	3.300000	23.000000
25%	37.800000	48.000000	18.500000	1.000000	6.500000	38.000000
50%	38.200000	64.000000	24.500000	2.000000	7.500000	45.000000
75%	38.500000	88.000000	36.000000	3.000000	57.000000	52.000000
max	40.800000	184.000000	96.000000	4.000000	89.000000	75.000000

Data prep

Converted to True/False values. If the horse had:

Surgery

Long breathing

Pain

Peristalsis

Abdominal distension

Surgical lesions

High rectal temp

High pulse

Heat in extremities

Coloration of mucous

High cell count

High protein levels

- surgery,capillary_refill_time,pain,peristalsis,abdominal_distention,surgical_lesion,rectal_temp_bin,pulse_bin,extremeties,mucous,packedCell,proteinLevel,death
 False,True,True,True,True,False,True,True,True,True,True,True
 - Tour False Tour Tour Tour False Tour Tour False Tour Tour Tour
- True,False,True,True,False,True,True,False,True,True,True,True
- 4 False,False,True,True,False,False,False,False,False,True,True,False,False
- 5 False,True,False,False,False,False,True,False,True,True,False,True
- False, False, True, True, False, False, False, False, True, False, False, False
- 7 True, False, True, True, True, False, True, False, False, True, False, False
- 8 True, False, False, True, True, True, False, True, True, False, True, True, True
- False,False,True,True,True,False,True,True,True,True,False,True
- True,False,True,True,False,True,False,True,True,True,True,False,False
- False, False, True, True, True, True, True, False, False, True, True, False
- True, False, True, True, True, False, False, False, False, False, False
- True,False,True,True,False,True,False,True,True,False,True,True,False
- 14 True,False,True,True,True,False,True,True,True,True,False,True
- 15 False, False, False, False, False, False, True, False, False, False, False
- .6 True,False,True,True,False,True,False,True,False,False,False,False
- 17 False, False, False, True, True, False, True, True, True, True, True, False
- 18 True, True, True, True, True, True, True, False, True, True, False
- 9 False,False,False,True,False,False,True,True,False,False,True,False,False
- True,False,True,True,False,True,True,False,False,True,True,False,False
- 1 True,False,False,True,True,False,True,True,True,True,True,False
- False,False,False,False,False,False,True,False,False,False,False,False
- True,True,True,True,True,True,False,True,True,True,True,False,False
- True, False, True, False, False, False, True, False, False, False, False
- 25 True,False,False,False,False,False,False,False,False,False,False,True
- False, False, False, True, False, False, False, True, False, False, True, True, False
- False,True,True,True,True,False,True,True,True,True,False,True
- 8 False,True,True,True,True,True,False,True,True,True,True,True
- 29 True,False,True,True,True,False,True,False,False,True,False,False
- 30 True,False,True,True,False,True,False,True,False,False,True,True,False
- 31 True, True, True, True, True, True, False, True, True, True, True, False, False
- 32 False,True,True,True,True,False,True,True,True,True,True,True
- False, True, False, False, False, False, True, False, True, True, True, False, True
- 34 True, False, True, False, True, False, True, False, False, True, True, False
- 35 False, False, True, True, False, True, False, False, False, False, False
- 36 True,True,True,True,True,False,True,True,True,True,False,True
- 37 False, False, True, True, False, False, True, True, True, True, False, False
- 38 True, False, True, True, True, False, True, True, True, True, True, True
 39 True, True, True, False, True, False, True, True, True, True, True
- False,True,True,True,True,False,True,True,True,True,False,True

C4.5 tree generated with 13 attributes

A lot of leaf nodes with few cases, although good classifications but this may lead to over classification. By using this tree I got 74.6% correct classification.

C4.5 tree generated with 7 attributes

The algorithm ignored quite a few of the attributes but still gets a good classification. It only uses two of the 7 total attributes.

Few nodes with many cases, somewhat accurate clasifications but many misclassifications.

By using this tree I got 67% correct classification.

However I feel that using only two attributes is way to little data to rely on.

I tried playing with the variables, removing one or two from 13. But that always seemed to lead to overpruning

I would chose the first model because of the accuracy. Fewer attributes are omitted, but I would like to have time to play a little bit more with the pruning

Attributes – blue = dead horse

Blue indicates death

Lessons learned

Plot Matrix	sur	gery	capillary_	llary_refill_time pain		nin	peris	talsis	abdominal_distention surgical_lesion			rectal_te	mp_bin	pulse_bin		extremeties		mucous		packedCell		proteinLevel		death		
death	33		***				36			32			***			39	***					\$50 \$60 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$1				
					33	•		3			**************************************		% %			· %						\$8.00 00.00				
proteinLevel	**		\$		**		***	*	***	***	**		33		200	**	***			***	36				**	
	**				*			& 6 8 8 8 8			**		***						38			۰				
packedCell	\$000°		ॐ°	900 9000		%% %%	****	**	800	% %	\$ °	***	800	*		,	* °		8 600	° %			·			**************************************
	***		9 %		3		86				***		***			***								**		
mucous	***		3%	***	**	8	***	%		***************************************		***	***	%	***	** **	**			33	***	***		***	***	
			80		**			*	***	***	**		\$				%		***			960 9600	38			
extremeties	*	**			**		***		***	***	**		\$		***	>			***		**		35	**		
	100		3					& 88 & 88			*		2			***			\$			<u>*</u>		**		
pulse_bin		***	%	***	%		***	9 099 8 ¹ 80	***	33	***	***	386	****		***	***	>	***	%	****	8 00		**	· %	39
	***	***	8		35			*		***		***	***											**	23	

- Blue = Dead
- Correlation between temperature in extremities and coloration of mucous.
- If the horses have signs of discoloration of the mucous and heat in the extremities they are likely to be classified as dead

🕢 Weka Explorer: Visualizing test X: extremeties (Nom) Y: mucous (Nom) Colour: death (Nom) Rectangle Clear Open Save Plot: test False Class colour

Lessons learned

- Blue = Dead (true)
- Correlation between pain and death, a lot of horses that show pain levels are dead

Lessons learned

fin

• All code is on github, including python and weka

https://github.com/andriOlafsson/horseColic

- Data cleaning was performed in a jupyter notebook that can be run online
- https://nbviewer.jupyter.org/github/andriOlafsson/horseColic/blob/master/jupyter.ipynb

Thank you

- Andri Ólafsson