可測関数

 $(X,\Sigma_X),\,(Y,\Sigma_Y)$ を可測空間、つまり、X,Y は集合で、 Σ_X,Σ_Y は σ -加法族とする。 関数 $f:X\to Y$ について $\forall E\in\Sigma_Y$ に対して $f^{-1}(E)\in\Sigma_X$ が成り立つとき、関数 $f:X\to Y$ が可測であるという。この集合 Y が $\overline{\mathbb{R}}=[-\infty,\infty]$ の時、 Σ_Y はボレル集合族として定義する。

μ -零集合

 (X, \mathcal{M}, μ) を測度空間とする。 $A \subset X$ が μ -零集合であるとは, $A \subset N$ かつ $\mu(N) = 0$ を満たす $N \in \mathcal{M}$ が存在することをいう。

完備

 (X, \mathcal{M}, μ) を測度空間とする。全ての μ -零集合が \mathcal{M} に属する時、 (X, \mathcal{M}, μ) あるいは μ のことを完備という。

完備化

 (X, \mathcal{M}, μ) を測度空間とする。X の部分集合族 $\overline{\mathcal{M}}$ を次のように定義する。

$$\overline{\mathcal{M}} = \{ A \subset X \mid B_1, B_2 \in \mathcal{M} \text{ が存在して}, B_1 \subset A \subset B_2 \text{ かつ } \mu(B_2 \backslash B_1) = 0 \}$$
 (1)

また、 $A \in \overline{\mathcal{M}}$ に対し、 $\overline{\mathcal{M}}$ の定義中の B_1 をとり、 $\overline{\mu}(A) = \mu(B_1)$ と定める。この時、 $(X, \overline{\mathcal{M}}, \overline{\mu})$ は完備測度空間となる。

この測度空間 $(X, \overline{\mathcal{M}}, \overline{\mu})$ を (X, \mathcal{M}, μ) の完備化という。

 (X, \mathcal{M}, μ) を測度空間とし、その完備化を $(X, \overline{\mathcal{M}}, \overline{\mu})$ で表す。また、 $f: X \to \overline{\mathbb{R}}$ とする。

1. $g:X\to \overline{\mathbb{R}}$ は \mathcal{M} -可測であるとする。 $\{x\in X\mid f(x)\neq g(x)\}$ が μ -零集合である ならば、f は $\overline{\mathcal{M}}$ -可測であることを示せ。

.....

 $B\subset \overline{\mathbb{R}}$ をボレル集合とする。g は \mathcal{M} -可測であるので、 $g^{-1}(B)\in \mathcal{M}$ である。 $S=\{x\in X\mid f(x)\neq g(x)\} \text{ が μ-零集合であるので、} N\in \mathcal{M} \text{ が存在し、} S\subset N$ かつ $\mu(N)=0$ である。

任意のボレル集合 $B \subset \mathbb{R}$ に対し、 $f^{-1}(B) \in \overline{M}$ を示せればよい。

集合 $f^{-1}(B)$ は次の 2 つの集合に分けられる。

$$f^{-1}(B) = \{ x \in f^{-1}(B) \mid f(x) \neq g(x) \} \cup \{ x \in f^{-1}(B) \mid f(x) = g(x) \}$$
 (2)

1つ目の集合は次のような包含関係がある。

$$\emptyset \subset \{x \in f^{-1}(B) \mid f(x) \neq g(x)\} \subset S \subset N \tag{3}$$

この時、 $\mu(N\backslash\emptyset)=\mu(N)=0$ であるので、 $\{x\in f^{-1}(B)\mid f(x)\neq g(x)\}\in\overline{\mathcal{M}}$ である。同様に $g^{-1}(B)$ についても考えられる。

$$\emptyset \subset \{x \in g^{-1}(B) \mid f(x) \neq g(x)\} \subset S \subset N \tag{4}$$

つまり、 $\{x \in g^{-1}(B) \mid f(x) \neq g(x)\} \in \overline{\mathcal{M}}$ である。

2つ目の集合 $\{x \in f^{-1}(B) \mid f(x) = g(x)\}$ は $g^{-1}(B) \in \mathcal{M}$ の部分集合である。

$$\{x \in f^{-1}(B) \mid f(x) = g(x)\} = \{x \in g^{-1}(B) \mid f(x) = g(x)\} \subset g^{-1}(B)$$
 (5)

つまり、次のような式が成り立つ。

$$\{x \in g^{-1}(B) \mid f(x) = g(x)\} = g^{-1}(B) \setminus \{x \in g^{-1}(B) \mid f(x) \neq g(x)\}$$
 (6)

 $g^{-1}(B)\in\mathcal{M}\subset\overline{\mathcal{M}}$ であり、 $\{x\in g^{-1}(B)\mid f(x)\neq g(x)\}\in\overline{\mathcal{M}}$ であるので、 $\{x\in g^{-1}(B)\mid f(x)=g(x)\}\in\overline{\mathcal{M}}$ である。

 $\{x\in f^{-1}(B)\mid f(x)\neq g(x)\}\in\overline{\mathcal{M}}$ であり、 $\{x\in f^{-1}(B)\mid f(x)=g(x)\}\in\overline{\mathcal{M}}$ であるので、 $f^{-1}(B)\in\overline{\mathcal{M}}$ であることがわかる。

これにより、f は $\overline{\mathcal{M}}$ -可測である。

2. $\{f_n\}_{n=1}^{\infty}$ は X 上の \mathbb{R} -値関数の列とし、任意の $n \in \mathbb{N}$ に対し、 f_n は \mathcal{M} -可則であるとする。 $\Big\{x \in X \ \Big| \ \lim_{n \to \infty} f_n(x) \neq f(x)\Big\}$ が μ -零集合であるならば、f は $\overline{\mathcal{M}}$ -可測になることを示せ。

.....

 $B \subset \overline{\mathbb{R}}$ をボレル集合とする。

 $\forall n \in \mathbb{N}$ に対して、 $f_n^{-1}(B) \in \mathcal{M}$ である。

 $S = \left\{x \in X \ \middle| \ \lim_{n \to \infty} f_n(x) \neq f(x) \right\}$ とすると、S は μ -零集合であるので、 $S \subset N$ が存在し、 $\mu(N) = 0$ である。

 $f^{-1}(B) \in \overline{\mathcal{M}}$ となることを示す。

 $f^{-1}(B)$ は S の内外に分けられる。

$$f^{-1}(B) = (f^{-1}(B) \cap S) \cup (f^{-1}(B) \cap S^c)$$
(7)

 $f^{-1}(B) \cap S$ は次の包含関係がある。

$$\emptyset \subset f^{-1}(B) \cap S \subset S \subset N \tag{8}$$

 $\mu(N\backslash\emptyset)=\mu(N)=0$ であるので、 $f^{-1}(B)\cap S\in\overline{\mathcal{M}}$ である。 $f^{-1}(B)\cap S^c$ について考える。

任意の $x \in S$ について関数列 $\{f_n\}_{n=1}^{\infty}$ の極限があり、次のように定義される。

$$\lim_{n \to \infty} f_n(x) = f(x) \iff {}^{\forall} \varepsilon > 0, \; {}^{\exists} N_0 \in \mathbb{N} \quad \text{s.t.} \quad N \ge N_0 \Rightarrow |f_N(x) - f(x)| < \varepsilon$$
(9)

つまり、 ε に対して十分に大きい $N\in\mathbb{N}$ をとってくれば $|f_N(x)-f(x)|<\varepsilon$ を満たす。

$$f^{-1}(B) \cap S^c = \left\{ x \in f^{-1}(B) \mid \lim_{n \to \infty} f_n(x) = f(x) \right\}$$
 (10)

 $x\in f^{-1}(B)$ に対して、 $\varepsilon_x>0$ を任意に定めると十分に大きな $N_x\in\mathbb{N}$ により $|f_{N_x}(x)-f(x)|<\varepsilon_x$ となる。

そこで、区間 $I_x \subset \mathbb{R}$ を次のように定義する。

$$I_x = \begin{cases} [f(x), f_{N_x}(x)], & (f_{N_x}(x) \ge f(x)) \\ [f_{N_x}(x), f(x)], & (\text{otherwise}) \end{cases}$$
 (11)

 $|I_x|<arepsilon_x$ であるが、十分小さな $arepsilon_x$ を取ってくることにより $I_x\subset B$ とする。 これにより $f^{-1}(B)\cap S^c=igcup_x f_{N_x}^{-1}(I_x)$ である。

 $f_{N_x}^{-1}(I_x)\in\mathcal{M}$ であるので、 $f^{-1}(B)\cap S^c\in\mathcal{M}\subset\overline{\mathcal{M}}$ である。

 $f^{-1}(B)\cap S\in\overline{\mathcal{M}}$ であることと合わせると $f^{-1}(B)\in\overline{\mathcal{M}}$ である事がわかる。よって、f は $\overline{\mathcal{M}}$ 可測である。