CHAPTER 4:

PARAMETRIC METHODS

Parametric Estimation

□
$$X = \{x^t\}_t$$
 where $x^t \sim p(x)$ "distributed as" probability density function

Parametric estimation:

Assume a form for $p(x|\theta)$ and estimate θ , its sufficient statistics, using X

e.g., Normal distribution N(μ , σ^2) where $\theta = \{ \mu, \sigma^2 \}$

Remember that a probability density function is defined as:

$$p(x_0) \equiv \lim_{\varepsilon \to 0} P(x_0 \le x < x_0 + \varepsilon)$$

Maximum Likelihood Estimation

Likelihood of θ given the sample X $l(\theta|X) = p(X|\theta) = \prod_{t} p(x^{t}|\theta)$

Log likelihood

$$L(\theta|X) = \log l(\theta|X) = \sum_{t} \log p(x^{t}|\theta)$$

Maximum likelihood estimator (MLE)
 θ* = argmax_θ L(θ|X)

Examples: Bernoulli/Multinomial

Bernoulli: Two states, failure/success, x in {0,1}
 (e.g, coin)

$$P(x) = p_o^x (1 - p_o)^{(1-x)} \qquad p_o \text{ is the parameter for probability of success}$$

$$L(p_o|X) = \log \prod_t p_o^{x^t} (1 - p_o)^{(1-x^t)}$$

MLE: $p_o = \sum_t x^t / N$

□ Multinomial: *K*>2 states, *x*_i in {0,1} (e.g., die with 6 faces)

$$P(x_1,x_2,...,x_K) = \prod_i p_i^{x_i} p_i$$
 is the parameter for probability of state i success

$$L(p_1, p_2, ..., p_K | \mathbf{X}) = \log \prod_{t} \prod_{i} p_i^{x_i^t}$$

Gaussian (Normal) Distribution

$$\square p(x) = N (\mu, \sigma^2)$$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

□ MLE for μ and σ^2 :

$$m = \frac{\sum_{t} x^{t}}{N}$$

$$s^{2} = \frac{\sum_{t} (x^{t} - m)^{2}}{N}$$

Bias and Variance

Unknown parameter θ

Estimator $d_i = d(X_i)$ on sample X_i

Bias: $b_{\theta}(d) = E[d] - \theta$

Variance: $E[(d-E[d])^2]$

variance

Mean square error:

$$r(d,\theta) = E[(d-\theta)^2]$$

= $(E[d] - \theta)^2 + E[(d-E[d])^2]$
= Bias² + Variance

the smaller the bias and the variance, the better

Bayes' Estimator

- □ Treat θ as a random var with prior p (this prior may come from without looking at X
- □ Bayes rule: $p(\theta|X) = p(X|\theta) p(\theta) / p(X)$
- □ Full: $p(x|X) = \int p(x|\theta) p(\theta|X) d\theta$
- □ Maximum a Posteriori (MAP): θ_{MAP} = argmax_{θ} $p(\theta|X)$
- □ Maximum Likelihood (ML): $\theta_{ML} = \operatorname{argmax}_{\theta} p(X|\theta)$
- □ Bayes': $\theta_{\text{Bayes'}} = E[\theta|X] = \int \theta p(\theta|X) d\theta$

Comparing ML, MAP, and Bayes'

Let Θ be the set of all possible solutions θ 's

- □ Maximum a Posteriori (MAP): Selects the θ that satisfies θ_{MAP} = argmax_θ $p(\theta|X)$
- □ Maximum Likelihood (ML): Selects the θ that satisfies θ_{ML} = argmax_θ $p(X|\theta)$
- □ **Bayes':** Constructs the "weighted average" over all θ 's in Θ : θ_{Bayes} = $E[\theta|X] = \int \theta \ p(\theta|X) \ d\theta$

Note that if the θ 's in Θ are uniformly distributed then $\theta_{MAP} = \theta_{ML}$ since $\theta_{MAP} = \operatorname{argmax}_{\theta} p(\theta|X)$ = $\operatorname{argmax}_{\theta} p(X|\theta) p(\theta)/p(X) = \operatorname{argmax}_{\theta} p(X|\theta) = \theta_{ML}$

Bayes' Estimator: Example

- □ If $x^t \sim N(\theta, \sigma_0^2)$ and $\theta \sim N(\mu, \sigma^2)$ where σ_0^2 , μ , and σ^2 are known
- then:
 - $\blacksquare \theta_{ML} = m$ sample mean
 - $\blacksquare \theta_{MAP} = \theta_{Bayes} = \theta_{Bayes}$

$$E[\theta \mid X] = \frac{N/\sigma_0^2}{N/\sigma_0^2 + 1/\sigma^2} m + \frac{1/\sigma^2}{N/\sigma_0^2 + 1/\sigma^2} \mu$$

Note: if the θ 's in Θ are normally distributed and $p(X|\theta)$ is normal, then $p(\theta|X)$ is normal and $\theta_{MAP} = \theta_{Bayes}$

Parametric Classification

Remember from Chapter 3, where g_i is a discriminant function

$$P(C_{i} | \mathbf{x}) = \frac{p(\mathbf{x} | C_{i})P(C_{i})}{p(\mathbf{x})}$$

$$= \frac{p(\mathbf{x} | C_{i})P(C_{i})}{\sum_{k=1}^{K} p(\mathbf{x} | C_{k})P(C_{k})}$$

$$g_{i}(\mathbf{x}) = p(\mathbf{x} | C_{i})P(C_{i})$$
or
$$g_{i}(\mathbf{x}) = \log p(\mathbf{x} | C_{i}) + \log P(C_{i})$$

If $p(x \mid C_i)$ are Gaussian, then: (here "log" is natural log)

$$p(x \mid C_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(x - \mu_i)^2}{2\sigma_i^2}\right]$$

$$g_i(x) = -\frac{1}{2}\log 2\pi - \log \sigma_i - \frac{(x - \mu_i)^2}{2\sigma_i^2} + \log P(C_i)$$

□ Given the sample $X = \{x^t, r^t\}_{t=1}^N$

$$x \in \Re \qquad r_i^t = \begin{cases} 1 & \text{if } x^t \in \mathcal{C}_i \\ 0 & \text{if } x^t \in \mathcal{C}_j, j \neq i \end{cases}$$

ML estimates are

$$\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N} \qquad m_i = \frac{\sum_{t} x^t r_i^t}{\sum_{t} r_i^t} \qquad s_i^2 = \frac{\sum_{t} \left(x^t - m_i\right)^2 r_i^t}{\sum_{t} r_i^t}$$

□ Discriminan $\mathbf{g}_{i}(x) = -\frac{1}{2}\log 2\pi - \log s_{i} - \frac{(x - m_{i})^{2}}{2s_{i}^{2}} + \log \hat{P}(C_{i})$

Parametric Classification – Notes

- Note that the equations for parametric classification derived in the last few slides assume the data follows a Gaussian distribution
- Hence, you need to determine whether or not your univariate data X follows a Gaussian distribution

using a statistical test for normality (e.g., Shapiro–Wilk test, Kolmogorov–Smirnov test, Lilliefors test, ...)

before you consider applying these equations

Regression

$$r = f(x) + \varepsilon$$

estimator: $g(x | \theta)$
 $\varepsilon \sim N(0, \sigma^2)$
 $p(r | x) \sim N(g(x | \theta), \sigma^2)$

$$L(\theta \mid X) = \log \prod_{t=1}^{N} p(x^{t}, r^{t})$$

$$= \log \prod_{t=1}^{N} p(r^{t} \mid x^{t}) + \log \prod_{t=1}^{N} p(x^{t})$$

second term can be ignored

Regression: From LogL to Error

$$L(\theta \mid X) = \log \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{\left[r^{t} - g(x^{t} \mid \theta)\right]^{2}}{2\sigma^{2}}\right]$$

$$= -N\log\sqrt{2\pi}\sigma - \frac{1}{2\sigma^{2}} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta)\right]^{2}$$

$$E(\theta \mid X) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta)\right]^{2}$$

Maximizing the log likelihood above is the same as minimizing the Error.

θ that minimizes Error is called "least squares estimate"

Trick: When maximizing a likelihood *l* that contains exponents, instead minimize error E = - log *l*

Linear Regression

$$g(x^{t} | w_{1}, w_{0}) = w_{1}x^{t} + w_{0}$$

$$\sum_{t} r^{t} = Nw_{0} + w_{1} \sum_{t} x^{t}$$

$$\sum_{t} r^{t}x^{t} = w_{0} \sum_{t} x^{t} + w_{1} \sum_{t} (x^{t})^{2}$$

$$\mathbf{A} = \begin{bmatrix} N & \sum_{t} x^{t} \\ \sum_{t} x^{t} & \sum_{t} (x^{t})^{2} \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix} \mathbf{y} = \begin{bmatrix} \sum_{t} r^{t} \\ \sum_{t} r^{t}x^{t} \end{bmatrix}$$

$$\mathbf{A}\mathbf{w} = \mathbf{y} \quad \text{and so} \quad \mathbf{w} = \mathbf{A}^{-1}\mathbf{y}$$

Polynomial Regression

$$g(x^{t} | w_{k},...,w_{2},w_{1},w_{0}) = w_{k}(x^{t})^{k} + \cdots + w_{2}(x^{t})^{2} + w_{1}x^{t} + w_{0}$$

$$\mathbf{D} = \begin{bmatrix} 1 & \mathbf{x}^{1} & (\mathbf{x}^{1})^{2} & \cdots & (\mathbf{x}^{1})^{k} \\ 1 & \mathbf{x}^{2} & (\mathbf{x}^{2})^{2} & \cdots & (\mathbf{x}^{2})^{k} \\ \vdots & & & & \\ 1 & \mathbf{x}^{N} & (\mathbf{x}^{N})^{2} & \cdots & (\mathbf{x}^{N})^{2} \end{bmatrix} \quad \mathbf{r} = \begin{bmatrix} \mathbf{r}^{1} \\ \mathbf{r}^{2} \\ \vdots \\ \mathbf{r}^{N} \end{bmatrix}$$

$$\mathbf{A}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{A} = (\mathbf{D}^T \mathbf{D})$ and $\mathbf{y} = \mathbf{D}^T \mathbf{r}$
then $\mathbf{w} = (\mathbf{D}^T \mathbf{D})^{-1} \mathbf{D}^T \mathbf{r}$

Maximum Likelihood and Least Squares

Taken from Tom Mitchell's Machine Learning textbook:

"... under certain assumptions (*) any learning algorithm that minimizes the squared error between the output hypothesis predictions and the training data will output a maximum likelihood hypothesis."

(*): Assumption:

"the observed training target values are generated by adding random noise to the true target value, where the random noise is drawn independently for each example from a Normal distribution with zero mean."

Other Error Measures

□ Square Error:

$$E(\theta \mid \mathbf{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(\mathbf{x}^{t} \mid \theta) \right]^{2}$$

□ Relative Square Error (E_{RSE}):

$$E(\theta \mid X) = \frac{\sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}}{\sum_{t=1}^{N} \left[r^{t} - \bar{r} \right]^{2}}$$

□ Absolute Error:

$$E(\theta | X) = \sum_{t} |r_{t} - g(x_{t} | \theta)|$$

ε-sensitive Error:

$$E(\theta | X) = \sum_{t} 1(|r_{t} - g(x_{t}|\theta)| > \epsilon) (|r_{t} - g(x_{t}|\theta)| - \epsilon)$$

□ R²: Coefficient of Determination: $R^2 = 1 - E_{RSE}$ (see next slide)

Coefficient of Determination: R²

Figure adapted from Wikipedia (Sept. 2015)

"Coefficient of Determination" by Orzetto - Own work. Licensed under CC BY-SA 3.0 via Commons – https://commons.wikimedia.org/wiki/File:Coefficient_of_Determination.svg#/media/File:Coefficient_of_Determination.svg

$$R^{2} = 1 - \frac{\sum_{t=1}^{N} \left[r^{t} - g(x^{t} \mid \theta) \right]^{2}}{\sum_{t=1}^{N} \left[r^{t} - \bar{r} \right]^{2}}$$

The closer R^2 is to 1 the better as this means that the g(.) estimates (on the right graph) fit the data well in comparison to the simple estimate given by the average value (on the

Bias and Variance

□ Given $X = \{x^t, r^t\}$ drawn from unknown pdf p(x,r)Expected Square Error of the g(.) estimate at x:

$$E[(r-g(x))^2 | x] = E[(r-E[r|x])^2 | x] + (E[r|x]-g(x))^2$$

noise variance of noise added does not depend on g(.) or X squared error
g(x) deviation from E[r|x]
depend on g(.) and X

it may be that for a sample X, g(.) is a very good fit, and for another sample it is not

Given samples X's, all of size N drawn from the same joint density p(x,r). Expected value,

how much g(.) is wrong how much g(.) fluctuates disregarding effect of varying samples as samples varies

variance

Estimating Bias and Variance

□ M samples $X_i = \{x_i^t, r_i^t\}, i = 1,...,M$ are used to fit $g_i(x)$, i = 1,...,M

Bias²(g) =
$$\frac{1}{N} \sum_{t} [\overline{g}(x^{t}) - f(x^{t})]^{2}$$

Variance
$$(g) = \frac{1}{NM} \sum_{t} \sum_{i} [g_i(x^t) - \overline{g}(x^t)]^2$$

where
$$\overline{g}(x) = \frac{1}{M} \sum_{i} g_i(x)$$

Bias/Variance Dilemma

- Examples:
 - $\square g_i(x)=2$ has no variance and high bias
 - $g_i(x) = \sum_t r_i / N$ has lower bias but higher variance

- As we increase complexity of g(.),
 bias decreases (a better fit to data) and
 variance increases (fit varies more with data)
- Bias/Variance dilemma: (Geman et al., 1992)

bias

5

Polynomial Regression

Same settings as plots on the previous slide, but using 100 models instead of 5

Settings as plots on previous slides, but using training and validation sets (50 instances eac

Model Selection (1 of 2 slides)

Methods to fine-tune model complexity

- Cross-validation: Measures generalization accuracy by testing on data unused during training
- Regularization: Penalizes complex models
 E'=error on data + λ model complexity (where λ is a penalty weight)
 the lower the better
- Other measures of "goodness of fit" with complexity penalty:
 - Akaike's information criterion (AIC)

$$AIC = log p(X|\theta_{ML}, M) - k(M)$$

■ Bayesian information criterion (BIC)

BIC =
$$log p(X|\theta_{ML},M) - k(M) log(N)/2$$

where: M is a model

 $log \ p(X|\theta_{ML},M)$: is the $log \ likelihood \ of \ M$ where M's parameters θ_{ML} have been estimated using maximum likelihood

k(M) = number of adjustable parameters in θ_{ML} of the model M

N= size of sample X

For both AIC and BIC, the higher the better

Model Selection (2 of 2 slides)

Methods to fine-tune model complexity

Minimum description length (MDL): Kolmogorov complexity, shortest description of data
 Given a dataset X,
 MDL (M) = Description length of model M +
 Description length of data in X not correctly described by M
 the lower the better

- Structural risk minimization (SRM)
 - Uses a set of models and their complexities (measured usually using their number of free parameters or their VC-dimension)
 - Selects the simplest model in terms of order and best in terms of empirical error on the data

Bayesian Model Selection

Used when we have Prior on models, p(model)

$$p(\text{model} \mid \text{data}) = \frac{p(\text{data} \mid \text{model}) p(\text{model})}{p(\text{data})}$$

- Regularization, when prior favors simpler models
- Bayes, MAP of the posterior, p(model|data)
- Average over a number of models with high posterior (voting, ensembles: Chapter 17)

Regression example

Coefficients increase in magnitude as order increases:

1: [-0.0769, 0.0016]

2: [0.1682, -0.6657,

[0800.0]

3: [0.4238, -2.5778,

3.4675, -0.0002

4: [-0.1093, 1.4356,

-5.5007, 6.0454, -0.0019]

Regularization (L2):
$$E(\mathbf{w} \mid \mathbf{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(\mathbf{x}^{t} \mid \mathbf{w}) \right]^{2} + \lambda \sum_{i} w_{i}^{2}$$