

ARQUITECTURA Y SISTEMAS OPERATIVOS

Introducción a la seguridad en sistemas operativos

1. Introducción:

La seguridad en los sistemas operativos es un pilar fundamental en la protección de la información y en la estabilidad de los sistemas. Con el creciente número de amenazas cibernéticas, es esencial comprender los riesgos y vulnerabilidades que pueden comprometer la integridad de un sistema operativo.

Cada dispositivo conectado a una red es una puerta de entrada que debemos proteger. Identificar los riesgos clave, analizar las principales vulnerabilidades y aprender estrategias para mitigarlas de manera efectiva es fundamental. Comprender cómo estas vulnerabilidades impactan en la operación y administración de sistemas permitirá anticiparse a problemas críticos y diseñar soluciones robustas.

2. Principales vulnerabilidades en sistemas operativos

Vulnerabilidad	Descripción	Windows	Linux
Malware y virus	Programas maliciosos diseñados para dañar o acceder a un sistema sin permiso.	Se propagan a través de archivos ejecutables (.exe), macros de Office y correos electrónicos maliciosos. Ejemplo: Ransomware como WannaCry.	Menos común, pero puede infectarse a través de scripts maliciosos y paquetes no verificados. Ejemplo: Rootkits como Snakso.
Explotación de vulnerabilidades	Uso de fallos en el software para obtener acceso no autorizado.	Uso de exploits en servicios como SMBv1 (Ejemplo: EternalBlue).	Explotación de kernel a través de vulnerabilidades en sudo o polkit.
Ataques de fuerza bruta	Intentos repetidos de adivinación de contraseñas.	Ataques en RDP y cuentas de administrador. Herramientas como Hydra o John the Ripper pueden ser usadas.	Ataques SSH en servidores expuestos con usuarios root.
Ingeniería social	Manipulación psicológica para obtener información confidencial.	Phishing mediante correos electrónicos y suplantación de identidad.	Ataques de phishing contra usuarios con acceso sudo.

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

3. Estrategias de mitigación

Estrategia	Descripción	Windows	Linux
Actualizaciones y parches de seguridad	Mantener el sistema actualizado reduce las vulnerabilidades explotables.	Uso de Windows Update y WSUS para aplicar parches.	Aplicación de actualizaciones con APT, YUM o Zypper.
Antivirus y software de seguridad	Herramientas esenciales para la detección y eliminación de amenazas.	Uso de Windows Defender, Malwarebytes.	Uso de ClamAV, Rootkit Hunter.
Configuración segura	Deshabilitar servicios innecesarios y restringir accesos.	Uso de GPO (Group Policy) para restringir accesos.	Uso de SELinux y AppArmor para control de acceso obligatorio.
Autenticación y control de acceso	Implementación de múltiples factores de autenticación y políticas de acceso restrictivas.	Implementación de MFA con Azure AD y autenticación biométrica.	Uso de autenticación con SSH Keys y PAM para políticas de acceso.

4. Impacto de las vulnerabilidades en el contexto operativo

La presencia de vulnerabilidades en un sistema operativo puede tener consecuencias graves, tales como:

Pérdida de datos debido a accesos no autorizados.

Ejemplo: Un ataque de ransomware en Windows que cifra archivos críticos.

Interrupción de servicios esenciales para una organización.

Ejemplo: Un ataque DDoS a un servidor Linux que aloja bases de datos.

Compromiso de la privacidad de usuarios y entidades.

Ejemplo: Un atacante que obtiene credenciales mediante phishing y accede a información sensible.

TECNICATURA UNIVERSITARIA EN PROGRAMACIÓN A DISTANCIA

5. Conclusión

La seguridad en sistemas operativos es una responsabilidad clave. La comprensión de los riesgos, junto con la aplicación de estrategias efectivas, permite mantener un entorno seguro y confiable para la operación de los sistemas informáticos. Implementar buenas prácticas, utilizar herramientas adecuadas y estar en constante actualización son medidas esenciales para minimizar amenazas y garantizar la estabilidad de los sistemas.

6. Glosario de seguridad en sistemas operativos

- Autenticación multifactor (MFA): Método de autenticación que requiere dos o más factores para verificar la identidad del usuario.
- Backdoor: Mecanismo oculto en un software que permite el acceso no autorizado a un sistema.
- Botnet: Red de dispositivos infectados utilizados para realizar ataques coordinados.
- Cifrado: Técnica utilizada para proteger la información mediante algoritmos de codificación.
- **DDoS (Denegación de Servicio Distribuida**): Ataque que sobrecarga un sistema o red con tráfico malicioso.
- **Exploit:** Código o software diseñado para aprovechar vulnerabilidades en sistemas informáticos.
- **Firewall:** Sistema de seguridad que controla y filtra el tráfico de red para prevenir accesos no autorizados.
- **Ingeniería social:** Técnicas de manipulación psicológica para obtener información confidencial.
- **Phishing:** Estrategia fraudulenta para engañar a los usuarios y obtener información sensible.
- Ransomware: Malware que cifra los archivos del usuario y exige un rescate para su recuperación.
- **Rootkit:** Software malicioso que oculta procesos o archivos para mantener acceso persistente a un sistema.
- **Sandboxing:** Técnica de seguridad que ejecuta programas en entornos aislados para evitar daños al sistema principal.
- **SELinux/AppArmor:** Mecanismos de control de acceso en Linux para restringir permisos a procesos.
- Spyware: Software diseñado para recopilar información sin el consentimiento del usuario.
- **Trojan (Troyano):** Programa malicioso que aparenta ser legítimo, pero oculta funcionalidades dañinas.
- **Vulnerabilidad:** Debilidad en un sistema que puede ser explotada por atacantes para comprometer su seguridad.
- **Vulnerabilidad Zero-Day:** Falla de seguridad desconocida por el fabricante del software y aún sin parche oficial, lo que la hace especialmente peligrosa para ataques dirigidos.