Project Report

Project	IoT Based Safety Gadget for Child
	Safety Monitoring and Notification
Team Id	PNT2022TMID19486
Member 1	Dharani Dharan A
Member 2	Balaji L
Member 3	Benildus R
Member 4	Gowtham S

1. INTRODUCTION

1.1 PROJECT OVERVIEW

In most of the houses both the parents will be going to work. So, they can't monitor their child's activity continuously. In crowded area there is possibility of losing the child it becomes difficult to track the location of the child which makes the parents nervous.

1.2 PURPOSE

Child safety and tracking is of utmost importance as children are the most vulnerable. With increasing crime rates such as child kidnaping, child trafficking, child abuse and so on, the need for an advanced smart security system has become a necessity. Create a Geo-fence around the location of the child to continuously check whether the child is within the range of the Geo-fence. If the child crosses the range of the Geo-fence a notification will be automatically generated and will be sent to the parents/caretaker. The notification of the location of the child will be sent to the parents once every fixed amount of time.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

SMART CHILD SAFETY WEARABLE DEVICE

Bannuru Ranjeeth; B. Srinivasa Reddy; Y. Manoj Kumar Reddy; S. Suchitra; B. Pavithra

The Technical point of this paper is to have an ordinary correspondence between the kid and parent through the gadget which helps in finding the area, pulse and temperature of the kid utilizing the gadget empowered with the pulse sensor, temperature sensor and GPS tracker. This gadget empowers association between the youngster and parent through the WIFI module cooperation utilizing IoT. The parent can get to the kid data intermittently by interfacing through this gadget.

CHILD SAFETY WEARABLE DEVICE USING ARDUINO

S.Annapurna Devi; V.Preethi

The platform of this project will be running on Arduino microcontroller board based on the ATmega 328p and functions of sending and receiving SMS connecting to the internet which is provided by the GSM shield. Also, additional modules employed which will provide the currentlocation of the child to parent via SMS. The second measure added is SOS Light indicator that will be programmed with Arduino UNO boardto display the SOS signal using Morse code. Therefore, the wearabledevice proposed will be communicating with the parent via SMS, which would ensure that there is a secure communication link.

CHILD SAFETY DEVICE

Sai Pramodh Kumar.K; Bhavishya.p; Geetha.K; Rajesh Reddy.K; Patan Mahammad Akhil

This paper describes about safe and secured electronic system for child which comprises of an Arduino controller and buzzer, Node MCU, sim holder, power supply cable, GSM and GPS are used in this project. In this paper mainly focus on sensing the children's Temperature, humidity and GPS location. By monitoring the activities, the state of the child is analyzed. By using GPS, if child reaches the critical state then the latitude and longitude of that particular location is sent to the parents through

Blynk Application and the data of child is stored in the authenticated ThingSpeak personal account and will be easy to track the child's activity and can store for few days.

2.2 REFERENCES

- 1. B. Ranjeeth, B. S. Reddy, Y. M. K. Reddy, S. Suchitra and B. Pavithra, "Smart Child Safety Wearable Device," 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 116-120, doi: 10.1109/ICESC48915.2020.9156001.
- 2. A. Srinivasan, S. Abirami, N. Divya, R. Akshya and B. S. Sreeja, "Intelligent Child Safety System using Machine Learning in IoT Devices," 2020 5th International Conference on Computing, Communication and Security (ICCCS), 2020, pp. 1-6, doi: 10.1109/ICCCS49678.2020.9277136.
- 3. Z. Gao, H. Guo, Y. Xie, Y. Luo, H. Lu and K. Yan, "ChildGuard: A Child-Safety Monitoring System," in IEEE MultiMedia, vol. 24, no. 4, pp. 48-57, October-December 2017, doi: 10.1109/MMUL.2017.4031309.

2.3 PROBLEM STATEMENT DEFINITION

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	In most of the houses both the parents will be going to work. So, they can't monitor their child's activity continuously. In crowded area there is possibility of losing the child it becomes difficult to track the location of the child which makes the parents nervous.
2.	Idea / Solution description	To create an app which shows the location of the child through the GPS module. Create a Geo-fence around the location of the child to continuously check whether the child is within the range of the Geo-fence. If the child crosses the range of the Geo-fence a notification will be automatically generated and will be sent to the parents/caretaker. The notification of the location of the child will be sent to the parents once every fixed amount of time.
3.	Novelty / Uniqueness	Providing different types of notification for different types of situation. The device will automatically send a notification to the parents if it is required from the cloud.
4.	Social Impact / Customer Satisfaction	This will create a safe and peaceful environment for both the parents and the children by making the parents relaxed by knowing the child's location and providing the freedom for children. This device makes the parents to feel at ease about their child's location as they can monitor the location of the child any time from anywhere.

5.	Business Model (Revenue Model)	Selling the product to the parents and childcare centers with a device and three months free subscription for live tracking and notification service. If they like this usage of the device they can pay and get the subscription for different duration and packs. By using this device the parents can feel relaxed about their children and can concentrate on their work.
6.	Scalability of the Solution	The continuous tracking of the child's live location and storing the names of the past location the child has visited in a database for the use of any emergency purposes

3.4 PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)		
No.	(Epic)	· · · · · ·		
FR-1	User Registration	Registration through website		
		Registration through app		
FR-2	User Confirmation	Confirmation via Email		
		Confirmation via OTP		
FR-3	User login	Setting up User Id and password		
FR-4	App permission	Grant the permission for the app to to access		
		location, contact etc		
FR-5	Interface with the Device	Connecting the device with the registered		
		app with the device ID.		
FR-6	Setting Geo-location	Creating the Geo-location area in the map		
FR-7	Database	Location history is stored in the cloud.		
		Can be accessed from the dashboard.		
FR-8	Tracking location	Tracking the location through app.		
		Tracking the location through website.		

4.2 NON-FUNCTIONAL REQUIREMENTS

FR	Non-Functional	Description			
No.	Requirement				
NFR-	Usability	The device and its applications are user-			
1		friendly.			
		The device is portable and easy to use.			
NFR-	Security	Providing permission for some			
2		information can only be decided by the			
		user.			
		Location data can only be viewed by the			
		user.			
NFR-	Reliability	An update will be provided if any errors			
3		are found in the device.			
NFR-	Performance	The performance of the device decrease in			
4		a network less area.			
		No interference between users.			

		Location tracking will be accurate.		
NFR- 5	Availability	If there is any update then the device wont be able to operate for a amount of time.		
NFR-	Scalability	A single device can be monitored by two users.		

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

- 1. GPS tracking device tracks the location of a child.
- 2. Location data collected from the device is sends to IBM watson cloud.
- 3. The Processed data from the IBM watson cloud is send to User application.
- 4. The data are stored in the database can be accessed through the application
- 5. The user can use the application to view the child's location and the visited location history

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	User interacts with the	MIT app inventor.
		device through the	
		mobile application.	
2.	Application Logic-	The data from the	IBM Watson
	1	device are collected	
		and sent to the	
		application	
3.	Application Logic-	Connect the device to	Node RED
	2	the internet and the	
		application	

4.	Database	Child's visited	MySQL
		location history will	
		be stored	
5.	Cloud Database	Database Service on	IBM Cloudant
		Cloud	
6.	File Storage	File's based on the	IBM Block Storage
		location are stored	or Other Storage
			Service
7.	External API-1	To create the geo	Google maps API
		fence and monitor the	
		location	
8.	Infrastructure	Application	Cloud Foundry
	(Server / Cloud)	Deployment on Cloud	

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source	MIT app inventor
	Frameworks	frameworks used	
2.	Security	List all the security /	Encryption
	Implementations	access controls	
		implemented, use of	
		firewalls etc.	
3.	Scalable Architecture	Update for the	cloud
		application is	
		provided every time if	
		an error is found	
4.	Availability	The application has to	IBM cloud
		be available every	
		time without any	
		problems	
5.	Performance	The device works best	
		with good network	stable network

5.3 USER STORIES

User Type	Functional User User Story / Task Acceptance criteria Requirement (Epic) Number Acceptance criteria		Priority	Release		
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through G mail	I can register & access the dashboard with Gmail	Medium	Sprint-2
	Login	USN-5	As a user, I can log into the application by entering email & password	I can log in to the application with the email & password	High	Sprint-1
	Dashboard	USN-6	As a user I can log into the dashboard and use the functions in it	I can view the location of the child and see the visited location history	High	Sprint-4
Customer Care Executive	Help	USN-7	As a user I can contact the administrator through Help option	I can contact administrator in case of issues in	Medium	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Spri nt	Function al Require ment (Epic)	User Story Num ber	User Story / Task	Stor y Poin ts	Priori ty	Team Members
Spri nt-1	Registrati on	USN-	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Dharani Dharan, Benildus
Spri nt-1		USN- 2	As a user, I will receive confirmation email once I have registered for the application	1	Mediu m	Balaji
Spri nt-1	Login	USN- 3	As a user, I can log into the application by entering email & password	1	High	Gowtham
Spri nt-2	Dashboar d	USN- 4	As a user I can log into the dashboard and use the functions in it	2	High	Gowtham, Benildus
Spri nt-3	Interface	USN- 5	As a user I can connect the device to the mobile application	1	High	DharaniDh aran,Gowth am
Spri nt-3	Track the location	USN-	As the user I can track the location of the device	1	High	Benildus,B alaji

Spri nt	Function al Require ment (Epic)	User Story Num ber	User Story / Task	Stor y Poin ts	Priori ty	Team Members
Spri nt-4		USN-	As the user I can see the live location of the device in the dashboard	2	High	Balaji
Spri nt-2	Creating a Geo-fence	USN- 8	As a user I can create a geo-fence around a location that is required	2	High	Balaji,Dhar ani Dharan
Spri nt-4	Notificati on	USN- 9	As a user I can receive notification for certain events	2	High	Benildus
Spri nt-4	Database	USN- 10	As a user I can view the travelled location history	2	Mediu m	Dharani Dharan
Spri nt-4		USN- 11	As a user I can select the data that needs to be displayed	2	Low	Gowtham

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Durati on	Sprin Start		Sprin Date (Plan		Story Points Complete d (as on Planned End Date)	Sprint Releas Date (Actua	se
Sprint-	20	6 Days	24 2022	Oct	29 2022	Oct	20	29 2022	Oct
Sprint-	20	6 Days	31 2022	Oct		Nov	20	05 2022	Nov
Sprint-	20	6 Days	07 2022	Nov	12 2022	Nov	20	12 2022	Nov
Sprint-	20	6 Days	14 2022	Nov	19 2022	Nov	20	19 2022	Nov

6.3 REPORTS FROM JIRA

https://pnt2022tmid19486.atlassian.net/jira/software/projects/IBSGFCM N/boards/1/roadmap?shared=&atlOrigin=eyJpIjoiNGMyZTMwYjRjY2E 4NGMyYTgwY2Y1ZDc2ZmY5MGU0MjYiLCJwIjoiaiJ9

7.CODING AND SOLUTIONING

7.1 SPRINT - 1

Login or sign up page

7.2 SPRINT 2

name="Child"

test list

Creating Geo-fence using node-red

```
import json
import wiotp.sdk.device
import time
import random

myConfig={
    "identity":{
        "orgId":"hi70w8",
        "typeId":"gps",
        "deviceId":"987654321"
    },
    "auth":{
        "token":"24688462"
    }
} client=wiotp.sdk.device.DeviceClient(config=myConfig,logHandlers=None)
    client.connect()
```

77.080561],[10.826579, 77.059943],[10.828149,77.060658]]

[[10.820155, 77.016172],[10.832851,

```
random num = random.choice(test list)
#outside
#latitude=10.820155
#longitude=77.016172
#latitude=10.832851
#longitude=77.080561
#inside
#latitude=10.826579
#longitude=77.059943
#latitude=10.828149
#longitude=77.060658
latitude=random num[0]
longitude=random num[1]
myData={'name':name,'lat':latitude,'lon':longitude}
client.publishEvent(eventId="status",msgFormat="json",data=myData,
qos=0,onPublish=None)
print("Data published to IBM platform:",myData)
time.sleep(10)
client.disconnect()
```


7.3 SPRINT 3

Setting up a Email notification:

Connecting to the node red to IBM cloudant to store the time and location:

Notification is sent to email:

Location and time is stored in the cloud:

7.4 SPRINT 4:

Code in MIT app inventor:

Mobile Application:

Location:

8.TESTING

9. RESULT

Test 1-Result

Test 2-Result

10. ADVANTAGES AND DISADVANTAGES

10.1 ADVANTAGES

- Monitoring your child's location as they travel to and from school
- Tracking children with special needs
- Knowing where your child is while they play outside
- Keeping track of them on vacations or trips
- Peace of mind when they are in someone else's care
- Reducing the risk of abductions
- Contingency in case of emergency

10.2 DISADVANTAGES

Poor Signal & Battery Life Concerns. There is nothing theoretical about the harm that results from the misuse of location data. Databases of our movements can disrupt lives in terrible ways if the information is misused or winds up in the wrong hands – which it inevitably will, no matter how well-intentioned

11. CONCLUSION

Parent, especially who live in urban area, needed to work day and night to sustain the family which causes them cannot know where their child is going during the working hour. However, with the child tracking app, parent can track and monitor their child with just a simple app. The parent is not possible to always stay beside of children as most of the parents needs to go for work. By having this child tracking system, parents can track the location of their children. In order to avoid the kidnapping cases, the child tracking system is needed.

12. FUTURE SCOPE

This Child Tracking Device can be used to obtain the real time location of the child by parents. The location can be send to desired number of users. The alarm can indicate the discomfort of the child and the persons near them can help the child. This device uses SMS based technology so the parents are able to use it more efficiently. In future this device can be improved in battery life time. The camera can also be attached so that the accurate environment where the child lies can be monitored by the parents.

13.APPENDIX

```
Source Code
```

```
import json
import wiotp.sdk.device
import time
import random
myConfig={
    "identity":{
        "orgId":"hi70w8",
        "typeId":"gps",
        "deviceId":"987654321"
    },
    "auth":{
        "token":"24688462"
    }
} client=wiotp.sdk.device.DeviceClient(config=myConfig,logHandlers=None)
client.connect()
```

```
while True:
name="Child"
              test list
                              [[10.820155,
                                             77.016172],[10.832851,
77.080561],[10.826579, 77.059943],[10.828149,77.060658]]
  random num = random.choice(test list)
  #outside
  #latitude=10.820155
  #longitude=77.016172
  #latitude=10.832851
  #longitude=77.080561
  #inside
  #latitude=10.826579
  #longitude=77.059943
  #latitude=10.828149
  #longitude=77.060658
  latitude=random num[0]
  longitude=random num[1]
  myData={'name':name,'lat':latitude,'lon':longitude}
client.publishEvent(eventId="status",msgFormat="json",data=myData,qo
  s=0,onPublish=None)
  print("Data published to IBM platform:",myData)
  time.sleep(10)
client.disconnect()
GitHub & Project Demo Link
https://github.com/IBM-EPBL/IBM-Project-4409-1658731560
https://drive.google.com/folderview?id=1Iy8-
aMIVdOD6 Ut52COzQuP5px Xwvqi
```