

UFR Droit Economie et Gestion Master Economie Appliquée Parcours Ingénierie et Evaluation Economique

Intitulé de la matière : Économétries des données de panel

Étude du PIB à l'optique des dépenses

Préparé par : Alpha Tirera Bède MASSALLA **Professeur:** M. Philippe COMPAIRE

Table des matières

In	trodu	ction		3
I	Prés	entatio	n de la base	4
	I.1	Descrip	otion des variables et codage des pays	4
		I.1.1	Variable Endogène	4
		I.1.2	Variables Exogènes	4
		I.1.3	Codage des pays	4
	I.2	Équatio	on	5
II	Étud	le sur T	SP	6
	II.1	Choix	du meilleur modèle	6
		II.1.1	Estimation des variables	6
	II.2	Estima	tion	7
		II.2.1	MCO	7
		II.2.2	Estimation BETWEEN	7
		II.2.3	Estimation WITHIN	8
		II.2.4	Estimation GLS	9
		II.2.5	Test de Hausman	9
Ш	Etud	le sur S.	AS	10
	III.1	Descrip	otion des variables	10
	III.2	Estima	tions	10
		III.2.1	MCO	10
		III.2.2	Estimation 2 effets fixes	11
		III.2.3	ESTIMATION SANS EFFET TEMPS WITHIN	12
		III.2.4	ESTIMATION EFFET TEMPS seulement	12
		III.2.5	ESTIMATION EFFETS ALEATOIRES	13
		III.2.6	ESTIMATION EFFETS ALEATOIRE SANS EFFETS TEMPS	13
		III.2.7	ESTIMATION RESIDUS AUTOREGRESSIFS ORDRE 1 gls	14
		III.2.8	ESTIMATION BETWEEN GROUPE	
		III.2.9	ESTIMATION BETWEEN PERIODE	15
		III.2.10	ESTIMATION BETWEEN	15

		III.2.11 ESTIMATION WITHIN	16
		III.2.12 Test Hausman	16
IV	Étud	e sur STATA	17
	IV.1	Type de Panel	17
	IV.2	Statistiques descriptives des variables en logarithmes	17
		IV.2.1 Statistiques globales	17
		IV.2.2 Statistiques par type de variables (Années et Individus	18
	IV.3	Évolution du log PIB par pays	18
		IV.3.1 Graphique hétérogénéité entre les Pays	19
		IV.3.2 Graphique hétérogénéité entre les années	19
	IV.4	Estimation	20
	IV.5	Equation	20
		IV.5.1 MCO	20
		IV.5.2 Test de vif	20
		IV.5.3 Matrice de corrélation	21
		IV.5.4 Estimation Two-way fixed whitin	21
		IV.5.5 Estimation whitin (fe)	22
		IV.5.6 Estimation whitin avec effet temporel	24
		IV.5.7 Estimation effets aléatoires (re)	25
		IV.5.8 Estimation between (be)	26
		IV.5.9 Test d'Hausman fe et re	26
		IV.5.10 Test Hausman entre be et re	27
		IV.5.11 Test Hausman entre fe et be	27

Introduction

Le produit intérieur brut est un indicateur de mesure de la richesse d'un pays pour une année bien précise. Il peut être appréhendé sous trois angles à savoir le PIB à l'approche de la production, le PIB à l'approche du revenu et le PIB à l'approche des dépenses. Ce dernier fera l'objet d'études de notre dossier.

Notre étude porte sur l'évolution du produit intérieur brut (PIB) à l'optique des dépenses dans la zone de l'OCDE pendant 24 ans, c'est-à-dire sur la période allant de 1996-2019 de 28 pays membres de la zone.

Le PIB à l'approche des dépenses prend en compte l'ensemble des biens et services finaux dans une économie pendant une période donnée. Les dépenses effectuées pour ces biens et services sont diverses, on peut observer les dépenses de consommation, l'ensemble des dépenses publiques dans le système économique, les investissements effectués par les entreprises mais le solde de la balance commerciale.

L'objectif de ce travail est de montrer comment se comportent les variables exogènes sur la variable endogène sous la dimension individuelle (Pays) mais aussi temporelle. La prise en compte de ces deux dimensions (individuelle et temporelle) nécessite une modélisation de données avec l'application des méthodes économétriques spécifiques aux données de panel.

De ce fait nous posions la question suivante : quel modèle doit-on privilégier pour effectuer nos prévisions ?

Pour répondre à notre question d'étude, nous allons effectuer ce travail sous trois parties : Premièrement, nous allons effectuer une étude avec l'application TSP.

En second lieu nous effectuerons une application sur stata.

Enfin nous allons effectuer une application sous SAS.

Chapitre I

Présentation de la base

I.1 Description des variables et codage des pays

I.1.1 Variable Endogène

PIB: Produit intérieur brut - optique des dépenses

I.1.2 Variables Exogènes

CFPR: Dépense de consommation finale privée

CFPU: Dépense de consommation finale des administrations publiques

FBCF: Formation brute de capital fixe

VS: Variation des stocks et acquisitions moins cessions d'objets de valeur

X : Exportations de biens et de servicesM : Importations de biens et de services

D: Demande totale intérieure.

I.1.3 Codage des pays

Autiche : 1 Belgique : 2 Chili : 3 République tchèque : 4 Danemark : 5 Estonie : 6 Finlande : 7 France : 8 : 9 Allemagne Grèce : 10 Hongrie : 11 Islande : 12 Irlande : 13 Italie : 14 Japon : 15 Corée : 16 Lettonie : 17 Luxembourg : 18 Pays-Bas : 19 Pologne : 20 Portugal : 21 République slovaque : 22 Slovénie : 23 Espagne : 24 Suède : 25 Suisse : 26 Royaume-Uni : 27 États-Unis : 28

I.2 Équation

Pour notre étude nous avons l'équation du PIB à l'approche des dépenses qui est comme ainsi :

$$PIB_{it} = \alpha + \beta_1 CF_{it} + \beta_2 FBCF_{it} + \beta_3 VS_{it} + \beta_4 X_{it} + \beta_5 M_{it} + \varepsilon_{it}$$

Chapitre II

Étude sur TSP

II.1 Choix du meilleur modèle

II.1.1 Estimation des variables

Nous allons effectuer une première estimation sur tsp pour déterminer le modèle qui est le meilleur.

```
Mean of dep. var. = .477056E+08
  Std. dev. of dep. var. = .217162E+09
Sum of squared residuals = .966031E+14
   Variance of residuals = .119263E+12
Std. error of regression = 345345.
                    R-squared = .999997
        Adjusted R-squared = .999997
               LM het. test = .668604 [.414]
               Durbin-Watson = .472008 ** [.000,.000]
              Schwarz B.I.C. = 11580.8
Akaike Information Crit. = 11566.7
             Log likelihood = -11560.7
Estimated Standard

Variable Coefficient Error t-statistic P-value

CF 1.00424 .636396E-03 1578.02 ** [.000]

FBCF .987274 .185015E-02 533.619 ** [.000]

X 1.00433 .283413E-02 354.371 ** [.000]

M -1.00249 .326843E-02 -306.719 ** [.000]

VS 1.01019 .721071E-02 140.095 ** [.000]

C 24374.1 12424.9 1.96171
                                                                            P-value
                        Variance Covariance of estimated coefficients
                                            FBCF
                           CF
CF
             4.05000D-07
             -1.01185D-06 3.42304D-06
FBCF
             1.41013D-06 -3.24227D-06 8.03231D-06
             -1.51338D-06 2.76130D-06 -8.99074D-06 0.000010683 2.28136D-06 -4.49301D-06 0.000012594 -0.000015672
VS
                   -0.42098
                                       0.35200
                                                           0.50761
                                                                             -0.45580
```

Figure II.1 -

Après une première estimation par les mco, on peut observer que toutes les variables sont significatives et le coefficient R^2 est très bon car ici il est de 99.99%.

Cependant les t-statistiques sont très élevées ce qui paraît anormal. Pour résoudre ce problème nous allons travailler avec les logarithmes des variables pour tous le restant du dossier.

La variable vs ayant des valeurs négatives ne sera pas considérée dans notre équation, car logarithme d'une valeur négative n'existe pas.

$$lpib_{it} = \alpha + \beta_1 lcf_{it} + \beta_2 lfbcf_{it} + \beta_3 lx_{it} + \beta_4 lm_{it} + \varepsilon_{it}$$

Après avoir transformé notre équation en log-log nous allons refaire l'estimation.

II.2 Estimation

II.2.1 MCO

```
Dependent variable: LPIB
       Mean of dep. var. = 13.5405
  Std. dev. of dep. var. = 2.55527
Sum of squared residuals = 1.77152
  Variance of residuals = .218437E-02
Std. error of regression = .046737
               R-squared = .999667
      Adjusted R-squared = .999665
            LM het. test = 14.5078 ** [.000]
           Durbin-Watson = .075705 ** [.000,.000]
           Schwarz B.I.C. = -1327.48
Akaike Information Crit. = -1339.24
          Log likelihood = 1344.24
           Estimated
Variable Coefficient
                           Error
                                         t-statistic
                                                            P-value
                         .722888E-02 99.6513 ** [.000]
.802186E-02 27.1386 ** [.0001
          .720367
.217702
LFBCF
                         .011617 26.9919 ** [.000]
.013819 -17.9087 ** [.000]
.013937 39.0369 ** [.000]
           .313557
LM
           -.247472 .013819
          .544066
```

FIGURE II.2 -

Ce tableau nous donne les résultats à la suite de l'estimation par les m
co, on peut constater que \mathbb{R}^2 ajusté est de 99.97% est parfait et toutes les variables sont significatives à tous les seuils. Ce modèle est bon.

On peut interpréter quelques résultats.

Si les exportations des pays augmentent d'un million de dollars, leurs PIB augmentent de 31.36 millions de dollars. Toutes choses égales par ailleurs.

Si la consommation finale des pays augmente d'un million de dollars, leurs PIB augmentent de 72.04 millions de dollars. Toutes choses égales par ailleurs.

II.2.2 Estimation BETWEEN

```
OLS on individual means (BETWEEN)
Dependent variable: LPIB
       Mean of dep. var. = 13.5405
  Std. dev. of dep. var. = 2.54626
Sum of squared residuals = .058428
   Variance of residuals = .201475E-02
Std. error of regression = .044886
                R-squared = .999727
      Adjusted R-squared = .999689
             LM het. test = 1.07546 [.300]
            Estimated Standard
Variable Coefficient
                            Error
                                          14.1385 ** [.000]
3.80573 ** [.0011
          .721617
.216863
                           .051039
                                                          ** [.001]
                          .056983 3.86575 ** [.000]
.073240 4.27137 ** [.000]
.082309 -2.99898 ** [.006]
.088459 6.09081 ** [.000]
LFBCF
                           .056983
LX
           .312836
           -.246844
           .538788
```

FIGURE II.3 -

Toutes nos variables sont significatives. \mathbb{R}^2 est de 99.97%, c'est parfait. La constante est significative. Donc ce modèle est bon.

Ce modèle examine comment l'individu influence la variance des résidus. L'effet individuel est aléatoire.

Dans ce modèle, l'unité d'analyse n'est pas l'individu mais le groupe, représenté par sa moyenne.

Les différences du niveau du PIB entre les différents individus avec les niveaux de nos variables exogènes différents jouent un rôle.

La constante représente une moyenne.

II.2.3 Estimation WITHIN

```
Dependent variable: LPIB
      Mean of dep. var. = 13.5405
 Std. dev. of dep. var. = 2.55527
Sum of squared residuals = .322298
  Variance of residuals = .414264E-03
Std. error of regression = .020353
              R-squared = .999939
     Adjusted R-squared = .999937
           LM het. test = 4.36226 * [.037]
          Durbin-Watson = .432969 ** [.000,.000]
         Schwarz B.I.C. = -1912.13
Akaike Information Crit. = -2001.52
         Log likelihood = 2039.52
          Estimated Standard
                       Error t-statistic
Variable Coefficient
                                                      P-value
       .647767 .897071E-02 72.2091
LCF
                                                      [.0001
        .222807
.324004
                     .611017E-02 36.4649
.010162 31.8824
.012447 -16.9093
                                                  ** [.000]
LFBCF
LX
                                                  ** [.000]
         -.210467
                      .012447
                                                  ** [.000]
LM
```

Variance Covariance of estimated coefficients

Figure II.4 -

Toutes nos variables sont significatives. Signe attendu pour nos variables $R^2 = 99.99\%$, c'est parfait.

Il n'y a pas de constante dans l'estimation mais autant de constante que d'individu, ce qui fait que l'effet propre à chaque individu est pris en compte. La constante est appelée effet fixe.

Les coefficients estimés dépendent uniquement des variations au sein de chaque individu dans le temps.

Quand on estime les effets de nos variables exogènes sur le PIB, la variation de nos variables exogènes et du PIB dans le temps pour chaque individu qui contribue aux coefficients estimés. Les différences de niveau du PIB entre les individus avec des niveaux de variables exogènes différents ne jouent aucun rôle.

II.2.4 Estimation GLS

```
Random Effects - Individual - GLS
VWITH (variance of Uit) = 0.41426E-03
VBET (variance of Ai) = 0.17701E-02
(computed from small sample formula)
THETA (0=WITHIN, 1=TOTAL) = 0.96572E-02
Dependent variable: LPIB
        Mean of dep. var. = 13.5405
  Std. dev. of dep. var. = 2.55527
Sum of squared residuals = 2.93957
   Variance of residuals = .362462E-02
Std. error of regression = .060205
                 R-squared = .999632
      Adjusted R-squared = .999630
             LM het. test = 7.17101 ** [.007]
             Durbin-Watson = .045762 ** [.000,.000]
            Estimated
                            Standard
Variable Coefficient
                             Error
                                                                P-value
                                            t-statistic
          .679530 .764991E-02 88.8285 ** [.000]
.221135 .599676E-02 36.8757 ** [.000]
.320434 .994547E-02 32.2191 ** [.000]
-.228288 .011991 -19.0384 ** [.000]
.714499 .023916 29.8750 ** [.000]
LFBCF
LX
LM
С
```

Figure II.5 -

Pour l'estimation par la méthode des moindres carrés généralisés toutes les variables sont significatives à tous les seuils.

La constante est significative.

 R^2 est de 99.97%, c'est parfait.

 $Theta^2$ = 0.000093280 tend vers 0, donc vers les estimateurs Within.

Les différences de niveau du PIB entre les individus avec le niveau de nos variables exogènes différentes jouent un rôle.

Nous allons maintenant effectuer le test de Hausman pour voir le meilleur modèle. Sur tsp le test de Hausman nous est directement donné.

II.2.5 Test de Hausman

```
Hausman test of H0:RE vs. FE: CHISQ(4) = 49.540, P-value = [.0000]

Summary of estimated Panel models (* = best SBIC)

LOGL SBIC Model

1344.2 -1327.5 Plain OLS (TOTAL)

2859.2 -2289.3 * Varying slopes and intercepts (BYID)

2039.5 -1912.1 Fixed Effects - Individual (WITHIN)
```

Figure II.6 -

Le test de Hausman indique que le meilleur modèle est le modèle à effet fixe individuel.

Chapitre III

Etude sur SAS

III.1 Description des variables

Figure III.1 -

Avec proc contents on a les détails de notre base de données, cette dernière est constituée de 816 observations et 8 variables.

Nous allons maintenant effectuer les estimations.

III.2 Estimations

III.2.1 MCO

Figure III.2 -

On observe les mêmes valeurs avec les résultats obtenues sous TSP.

Toutes les variables sont significatives.

 R^2 ajusté est de 99.97%.

Ce modèle est bon.

III.2.2 **Estimation 2 effets fixes**

								Résultats estimés des paramètres							
		n	odele ave	ec deux eff	ets fixe	es		Variable	DDL	Estimation	Erreur type	Valeur du test t	Pr > t	Libellé	
		F-4		cédure PA				CS1	1	-0.14068	0.0108	-13.03	<.0001	Cross S	ectional Effect 1
		EST		oidirection èle : FIXETV		ixes		CS2	1	-0.24596	0.0161	-15.32	<.0001	Cross S	ectional Effect 2
			Variable	dépendant	e : lpib			CS3	1	-0.29134	0.0174	-16.76	<.0001	Cross S	ectional Effect 3
								CS4	1	-0.19075	0.0113	-16.95	<.0001	Cross S	ectional Effect 4
			Descrip	otion du mo	dèle			CS5	1	0.011512	0.0115	1.00	0.3166	Cross S	ectional Effect 5
		Libellé de	l'instructi	on MODEL		FIXE	wo	CS6	1	-0.22978	0.0138	-16.66	<.0001	Cross S	ectional Effect 6
		Méthode (d'estimati	ctions croisées		Fix	Two	CS7	1	-0.20277	0.0125	-16.25	<.0001	Cross S	ectional Effect 7
		Nombre d	e sections				34	CS8	1	-0.36019	0.0250	-14.40	<.0001	Cross S	ectional Effect 8
		Longueur	des série			24	CS9	1	-0.23088	0.0163	-14.16	<.0001	Cross S	ectional Effect 9	
								CS10	1	-0.16395	0.00996	-16.47	<.0001	Cross S	ectional Effect 10
			Tests	d'ajustem	ent			CS11	1	-0.17591	0.0107	-16.51	<.0001	Cross S	ectional Effect 11
		SSE	0.306	1 DFE		755		CS12	1	-0.14885	0.0142	-10.51	<.0001	Cross S	ectional Effect 12
		MSE			ASE A	.0201		C\$13	1	-0.21528	0.0131	-16.49	<.0001	Cross S	ectional Effect 13
					naE U	.0201		C\$14	1	-0.20747	0.0120	-17.24	<.0001	Cross S	ectional Effect 14
		Rca	rré 0.999	9				C\$15	1	-0.23245	0.0213	-10.93	<.0001	Cross S	ectional Effect 15
		_	4 F -II-L		-4- E			CS16	1	-0.15577	0.00993	-15.69	<.0001	Cross S	ectional Effect 16
				sence d'eff				CS17	1	-0.08217	0.0151	-5.43	<.0001	Cross S	ectional Effect 17
		DDL r	num. DDL	den. Val	eur F	Pr > F		C\$18	1	-0.31179	0.0225	-13.83	<.0001	Cross S	ectional Effect 18
			56	755	64.55	<.0001		CS19	1	-0.32786	0.0214	-15.32	<.0001	Cross S	ectional Effect 19
S21 S22	1	-0.12062 -0.24586	0.00817 0.0161	-14. -15.	24 <.00	001 Cros	ss Sectional Effects ss Sectional Effect	et 22	S9	1 (0.00029	0.00564	0.05	0.9591	Time Series Effect 9
23	1	-0.2072	0.0153	-13.			ss Sectional Effec	_	S10	1 -0	0.00333	0.00546	-0.61	0.5423	Time Series Effect 1
24	1	-0.15252	0.0126	-12			ss Sectional Effec		S11			0.00534	-1.13	0.2598	Time Series Effect 1
25	1	-0.19194	0.0116	-16.	50 <.00	001 Cros	ss Sectional Effec	t 25	S12	1 -0	0.00743	0.00522	-1.42	0.1548	Time Series Effect 1
26	1	-0.22298	0.0153	-14.	55 <.00	001 Cros	ss Sectional Effec	t 26	S13	1 -0	0.00507	0.00517	-0.98	0.3269	Time Series Effect 1
27	1	-0.33354	0.0212	-15.	70 <.00	001 Cros	ss Sectional Effec	t 27	S14	1 -0	0.01249	0.00507	-2.46	0.0140	Time Series Effect 1
28	1	-0.3069	0.0220	-13.	96 <.00	001 Cros	ss Sectional Effec	t 28 T	S15	1 -0	0.00625	0.00527	-1.19	0.2360	Time Series Effect 1
29	1	-0.17499	0.0115	-15	18 <.00								0.26		
	1	-0.19294					ss Sectional Effec		S16		001303	0.00507	0.20	0.7974	
			0.0113	-17.	01 <.00	001 Cros	ss Sectional Effec	et 30 T	S16 S17	1 -(001303	0.00507	-0.76	0.7974	
31	1	-0.23078	0.0158	-14	01 <.00 56 <.00	001 Cros	ss Sectional Effec	et 30 T	S17 S18	1 -(001303 0.00375 0.00931	0.00497			Time Series Effect 1
530 531 532	1	-0.15821	0.0158 0.0125	-14. -12.	01 <.00 56 <.00 70 <.00	001 Cros	ss Sectional Effects ss Sectional Effects ss Sectional Effects	et 30 T:	S17	1 -(001303 0.00375 0.00931	0.00497	-0.76	0.4501	Time Series Effect 1
31 32 33	1	-0.15821 -0.14841	0.0158 0.0125 0.00969	-14. -12. -15.	01 <.00 56 <.00 70 <.00 32 <.00	001 Cros	ss Sectional Effects ss Sectional Effects ss Sectional Effects ss Sectional Effects	et 30 T:	S17 S18	1 -(001303 (0.00375 (0.00931 (-0.0065 (0.00282 (0.00497 0.00495 0.00495 0.00493	-0.76 -1.88 -1.31 -0.57	0.4501 0.0604 0.1894 0.5679	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1
31 32 33	1 1 1	-0.15821 -0.14841 0.00836	0.0158 0.0125 0.00969 0.00687	-14. -12 -15.	01 <.00 56 <.00 70 <.00 32 <.00 22 0.22	001 Cros 001 Cros 001 Cros 001 Cros 238 Time	as Sectional Effect as Sectional Effect as Sectional Effect as Sectional Effect as Sectional Effect	et 30 T: et 31 T: et 32 T: et 33 T:	S17 S18 S19	1 -(1 -(1 -(1 -(1 0.	001303 (0.00375 (0.00931 (-0.0065 (0.00282 (0.00497 0.00495 0.00495	-0.76 -1.88 -1.31 -0.57 0.26	0.4501 0.0604 0.1894	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2
31 32 33 1	1 1 1 1	-0.15821 -0.14841 0.00836 0.001821	0.0158 0.0125 0.00969 0.00687 0.00663	-14. -12. -15. 1.	01 <.00 56 <.00 70 <.00 32 <.00 22 0.22 27 0.78	001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 038 Time	ss Sectional Effect ss Sectional Effect ss Sectional Effect ss Sectional Effect s Series Effect 1	tt 30 T. tt 31 T. tt 32 T. tt 33 T. tt 33 T.	\$17 \$18 \$19 \$20	1 -(1 -(1 -(1 -(1 0.	001303 (0.00375 (0.00931 (-0.0065 (0.00282 (001288 (0.00497 0.00495 0.00495 0.00493	-0.76 -1.88 -1.31 -0.57	0.4501 0.0604 0.1894 0.5679	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2 Time Series Effect 2
31 32 33 1	1 1 1	-0.15821 -0.14841 0.00836	0.0158 0.0125 0.00969 0.00687	-14. -12 -15.	01 <.00 56 <.00 70 <.00 32 <.00 22 0.22 27 0.78	001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 038 Time	as Sectional Effect as Sectional Effect as Sectional Effect as Sectional Effect as Sectional Effect	tt 30 T: tt 31 T: tt 32 T: tt 33 T: tt	S17 S18 S19 S20 S21	1 -(1 -(1 -(1 -(1 0.	001303 (0.00375 (0.00931 (-0.0065 (0.00282 (001288 (003065 (0.00497 0.00495 0.00495 0.00493	-0.76 -1.88 -1.31 -0.57 0.26	0.4501 0.0604 0.1894 0.5679 0.7932	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2 Time Series Effect 2 Time Series Effect 2
31 32 33 1 2	1 1 1 1	-0.15821 -0.14841 0.00836 0.001821	0.0158 0.0125 0.00969 0.00687 0.00663	-14. -12. -15. 1.	01 <.00 56 <.00 70 <.00 32 <.00 22 0.22 27 0.78 335 0.72	001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 038 Time 038 Time	ss Sectional Effect ss Sectional Effect ss Sectional Effect ss Sectional Effect s Series Effect 1	tt 30 T. tt 31 T. tt 32 T. tt 33 T. tt	\$17 \$18 \$19 \$20 \$21 \$22	1 -(1 -(1 -(1 0. 1 0. 1 0.	001303 (0.00375 (0.00931 (-0.0065 (0.00282 (001288 (003065 (0.00497 0.00495 0.00495 0.00493 0.00491	-0.76 -1.88 -1.31 -0.57 0.26 0.62	0.4501 0.0604 0.1894 0.5679 0.7932 0.5329	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2 Time Series Effect 2 Time Series Effect 2
531	1 1 1 1 1 1	-0.15821 -0.14841 0.00836 0.001821 -0.00225	0.0158 0.0125 0.00969 0.00687 0.00663 0.00634	-14 -12 -15 1. 0.	01 <.00 56 <.00 70 <.00 32 <.00 22 0.22 27 0.78 0.72 0.5 0.29	001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 038 Time 038 Time 039 Time	ss Sectional Effects Sectional	tt 30 T. tt 31 T. tt 32 T. tt 33 T. tt	\$17 \$18 \$19 \$20 \$21 \$22 \$23 htercept	1 -(1 -(1 -(1 0. 1 0. 1 0.	001303 0.00375 0.00931 0.00931 0.0065 0.00282 0.00282 0.00288 0.003065 0.00186	0.00497 0.00495 0.00495 0.00493 0.00491 0.00491	-0.76 -1.88 -1.31 -0.57 0.26 0.62 0.04	0.4501 0.0604 0.1894 0.5679 0.7932 0.5329 0.9697	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2 Time Series Effect 2 Time Series Effect 2 Time Series Effect 2
31 32 33 1 2 3 3 4	1 1 1 1 1	-0.15821 -0.14841 0.00836 0.001821 -0.00225 -0.00649	0.0158 0.0125 0.00969 0.00687 0.00663 0.00634 0.00618	-14. -12 -15. 1. 0. -0.	01 <.00 56 <.00 70 <.00 32 <.00 32 <.00 33	001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 001 Cros 0038 Time 038 Time 039 Time 0352 Time	ss Sectional Effects Sectional Effects Sectional Effects Sectional Effects Sectional Effect Properties Effect 1 Series Effect 2 Series Effect 3 Series Effect 4	tt 30 T. tt 31 T. tt 32 T. tt 32 T. tt 33 T. tt 32 T. tt 33 T. tt 33 T. tt 33 T. tt 34 T. tt	\$17 \$18 \$19 \$20 \$21 \$22 \$23 htercept	1 -(1 -(1 -(1 0. 1 0. 1 0. 1 0. 1 0.	001303 0.00375 0.00931 -0.0065 0.00282 001288 003065 000186 054635 638299 001303 0.00186 0.0	0.00497 0.00495 0.00495 0.00493 0.00491 0.00491 0.00489 0.0517	-0.76 -1.88 -1.31 -0.57 0.26 0.62 0.04 20.39	0.4501 0.0604 0.1894 0.5679 0.7932 0.5329 0.9697 <.0001	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2 Time Series Effect 2 Time Series Effect 2 Time Series Effect 2
331 332 333 11 22 3	1 1 1 1 1 1 1	-0.15821 -0.14841 0.00836 0.001821 -0.00225 -0.00649 -0.00425	0.0158 0.0125 0.00969 0.00687 0.00663 0.00634 0.00618 0.00609	-1412 -15 -1. 001.	01 <.000 556 <.000 770 <.000 32 <.000 222 0.22 27 0.78 35 0.72 05 0.29 770 0.48 33 0.18	001 Cross 001 Cross 001 Cross 001 Cross 001 Cross 001 Cross 003 Time 039 Time 039 Time 0352 Time 0324 Time	ss Sectional Effect series Effect 1 series Effect 2 Series Effect 3 series Effect 4 Series Effect 5	tt 30 T. tt 31 T. tt 32 T. tt 32 T. tt 33 T. tt 32 T. tt 33 T. tt 33 T. tt 33 T. tt 34 T. tt	\$17 \$18 \$19 \$20 \$21 \$22 \$23 htercept	1 -(1 -(1 -(1 0. 1 0. 1 0. 1 0. 1 0. 1 0.	001303 0.00375 0.00931 -0.0065 0.00282 001288 003065 000186 054635 638299 001303 0.00186 0.0	0.00497 0.00495 0.00495 0.00493 0.00491 0.00491 0.00491 0.00491	-0.76 -1.88 -1.31 -0.57 0.26 0.62 0.04 20.39 65.99	0.4501 0.0604 0.1894 0.5679 0.7932 0.5329 0.9697 <.0001	Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 1 Time Series Effect 2 Intercept

Figure III.3 -

La probabilité F est inférieure à 5%, donc les individus sont hétérogènes.

Ici soit il y a un effet temps, soit un effet individuel ou on a les deux à la fois. Pour savoir quel est le choix, nous allons effectuer un test dans l'estimation avec effet individuel sans effet temps.

Ici on ne commente pas les CS mais on peut les regrouper suivant leurs signes. Une analyse de ce tableau, a permis de constater qu'ils sont tous négatifs sauf CS5.

Les TS représentent les temps, on peut voir qu'ils ne sont pas significatifs. Donc les effets temps ne sont pas adéquats pour expliquer le PIB.

Toutes nos variables sont significatives à tous les seuils ainsi que la constante.

III.2.3 ESTIMATION SANS EFFET TEMPS WITHIN

Figure III.4 -

La probabilité F est inférieure à 5%, l'effet individuel le remporte sur l'effet temps. Donc il y a un effet individuel.

Nous pouvons faire un test dans l'estimation avec effet de temps pour confirmer effectivement qu'il y a absence d'effet de temps.

Tout CS sont significatifs sauf CS5.

Toutes les variables sont significatives.

la constante est significative.

III.2.4 ESTIMATION EFFET TEMPS seulement

Figure III.5 -

La probabilité F est supérieure 5%, donc y a pas effet fixe, le test vient de confirmer effectivement qu'il y a absence d'effet de temps.

Les effets temps ne sont pas significatifs. Toutes les variables sont significatives. La constante est significative.

En conclusion, le modèle WITHIN avec effet individuel est meilleur que le modèle WITHIN avec effet temps seul et le modèle WITHIN avec les deux effets.

III.2.5 ESTIMATION EFFETS ALEATOIRES

Figure III.6 -

Toutes nos variables sont significatives.

 R^2 est de 99.80%, c'est parfait.

La probabilité du test de Hausman est inférieure à 5%, donc on accepte le modèle à effets fixes.

III.2.6 ESTIMATION EFFETS ALEATOIRE SANS EFFETS TEMPS

Figure III.7 -

Toutes les variables sont significatives. La probabilité de Hausman est inférieure 5%. Ce modèle est bon.

III.2.7 ESTIMATION RESIDUS AUTOREGRESSIFS ORDRE 1 gls

Figure III.8 -

Les variables sont significatives. R^2 est de 99.99%, c'est parfait.

III.2.8 ESTIMATION BETWEEN GROUPE

Figure III.9 -

III.2.9 ESTIMATION BETWEEN PERIODE

Figure III.10 -

Toutes les variables sont significatives. R^2 est 99.99%

III.2.10 ESTIMATION BETWEEN

Figure III.11 -

III.2.11 ESTIMATION WITHIN

Figure III.12 -

Toutes les variables sont significatives. R^2 est 99.83%

III.2.12 Test Hausman

Figure III.13 -

La probabilité de Hausman est inférieure 5%, donc le meilleur modèle est le modèle à effets fixes. Tout en sachant que dans le modèle à effet fixe, les effets individuels le remportent sur les effets de temps.

Donc le meilleur modèle pour notre étude est le modèle à effet fixe individuel.

Chapitre IV

Étude sur STATA

IV.1 Type de Panel

tsset Pays Annees

panel variable: Pays (strongly balanced)
time variable: Annees, 1995 to 2018
delta: 1 year

Figure IV.1 -

L'individu est représenté par les pays et l'année est la période.

Le panel est fortement cylindré (strongly balanced) car toutes les variables sont renseignées.

Le panel ne comporte pas de données manquantes.

IV.2 Statistiques descriptives des variables en logarithmes

IV.2.1 Statistiques globales

En résumé sur le tableau ci-après on peut voir que les variables principales ont le même nombre d'observations.

. summarize Pays	Annees 1p	ib lcf	lfbcf l	.x 1m	
Variable	0bs	Mean	Std. Dev.	Min	Max
Pays	816	17.5	9.816725	1	34
Annees	816	2006.5	6.926432	1995	2018
lpib	816	13.54052	2.555265	7.958006	21.36417
1cf	816	13.24286	2.560013	7.740597	20.91905
lfbcf	816	12.04052	2.570463	6.355585	20.17587
lx	816	12.62828	2.38727	7.246375	20.48982
lm	816	12.62446	2.374221	7.374945	20.42176

Figure IV.2 -

IV.2.2 Statistiques par type de variables (Années et Individus

Variabl	e	Mean	Std. Dev.	Min	Max	0bserva	ations
lpib	overall between	13.54052	2.555265 2.546258	7.958006 9.310816	21.36417 20.72004	N = n =	816 34
	within		.4784533	9.675369	15.53746	T =	24
1cf	overall	13.24286	2.560013	7.740597	20.91905	N =	816
	between		2.553306	8.994127	20.28661	n =	34
	within		.4672055	9.364897	15.17716	T =	24
1fbcf	overall	12.04052	2.570463	6.355585	20.17587	N =	816
	between		2.558408	8.033123	19.55153	n =	34
	within		.4965375	8.079	14.20685	T =	24
1x	overall	12.62828	2.38727	7.246375	20.48982	N =	816
	between		2.344119	8.704016	19.75427	n =	34
	within		.5993618	8.466477	14.9426	T =	24
lm	overall	12.62446	2.374221	7.374945	20.42176	N =	816
	between		2.335513	8.878021	19.68207	n =	34
	within		.579862	8.406513	14.8677	T =	24

Figure IV.3 -

IV.3 Évolution du log PIB par pays

Figure IV.4 -

IV.3.1 Graphique hétérogénéité entre les Pays

Figure IV.5 -

La figure IV.5 met en évidence une représentation de série stationnaire qui fluctue autour de sa moyenne.

IV.3.2 Graphique hétérogénéité entre les années

Figure IV.6 -

IV.4 Estimation

IV.5 Equation

 $lpib_{it} = \alpha + \beta_1 lcf_{it} + \beta_2 lfbcf_{it} + \beta_3 lx_{it} + \beta_4 lm_{it} + \varepsilon_{it}$ α est la constante.

 β_1 à β_4 les paramètres des variables exogènes.

IV.5.1 MCO

Source	SS	df	MS		Number of obs F(4, 811) Prob > F R-squared Adj R-squared		816 99999.00
Model Residual	5319.67375 1.77152319	4 811	1329.91844 .002184369	4 Prob 9 R-sq			0.0000 0.9997
Total	5321.44527	815	6.5293807	•		=	0.9997 .04674
lpib	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
lcf lfbcf lx lm _cons	.7203673 .2177022 .3135569 2474718 .5440656	.0072289 .0080219 .0116167 .0138185 .0139372	99.65 27.14 26.99 -17.91 39.04	0.000 0.000 0.000 0.000 0.000	.706177 .201956 .290754 274596 .516708	1 5 2	.7345569 .2334483 .3363592 2203475 .5714229

Figure IV.7 -

Toutes nos variables sont significatives.

La constante est significative.

La probabilité de Fisher est nulle, le modèle est globalement significatif.

 R^2 est de 99.97%, ce qui est parfait.

On peut interpréter la variable CF :

Si la consommation finale des pays augmente d'un million de dollars, leurs PIB augmentent de 72.84 millions de dollars.

Toutes choses égales par ailleurs

IV.5.2 Test de vif

Le test nous permet de vérifier la multicolinéarité entre les individus.

1/VIF	VIF	Variable
0.002490 0.003485 0.006304 0.007826	401.60 286.95 158.64 127.78	lm lx lfbcf lcf
	243.74	Mean VIF

Figure IV.8 -

Dans notre exemple les vifs sont très éloignés de 1, donc il y multicolinéarité.

Pour essayer de comprendre d'où vient ce problème de multicolinéarité on peut afficher la matrice de corrélation pour voir s'il n'y a pas de variable redondante.

IV.5.3 Matrice de corrélation

Figure IV.9 -

Toutes nos variables sont fortement corrélées entre, ce qui peut expliquer ce problème de multicolinéarité.

Pour corriger ce problème de multicolinéarité la logique voudrait qu'on supprime de notre régression la variable redondante c'est-à-dire celles qui sont fortement corrélées, mais ici c'est le cas pour toutes nos variables.

IV.5.4 Estimation Two-way fixed whitin

Figure IV.10 -

Toutes nos variables sont significatives.

La probabilité F est nulle, ce modèle est un bon candidat.

Nous allons effectuer les estimations avec effets temporel seul et effet individuel pour voir le meilleur modèle.

IV.5.5 Estimation whitin (fe)

. xtreg lpib	lcf lfbcf lx :	lm , fe /*	whitin a	vec effet :	individuel *	' /
Fixed-effects	(within) reg	ression		Number o	f obs =	816
Group variable	: Pays			Number o	f groups =	34
R-sq:				Obs per	roun:	
within =	= 0.9983			000 pc. (min =	24
between =	0.9996				avg =	24.0
overall =	0.9996				max =	24
				F(4,778)	=	112395.42
corr(u i, Xb)	= 0.7742			Prob > F	=	0.0000
lpib	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcf	.647767	.0089707	72.21	0.000	.6301573	.6653767
1fbcf	.2228069	.0061102	36.46	0.000	.2108125	.2348013
1x	.3240043	.0101625	31.88	0.000	.3040552	.3439535
lm	2104669	.0124468	-16.91	0.000	2349002	1860337
_cons	.8449378	.0293993	28.74	0.000	.7872266	.9026491
sigma u	.08061233					
sigma e	.02035348					
rho	.94007127	(fraction	of varia	nce due to	u_i)	
F test that all	 ll u_i=0: F(3 :	3, 778) = 10	6.01		Prob >	F = 0.0000

Figure IV.11 -

La probabilité F est nulle.

Le signe est attendu pour les importations.

Rhô qui est la corrélation intra-classe est égal à 0.9401, ce qui se traduit par : 94.01% de la variance est due à la différence entre les pays.

Corr = 0.7742, ce qui veut dire que les résidus sont corrélés positivement avec les variables exogènes dans le modèle à effets fixes.

Ce modèle est un bon candidat.

Les résultats d'estimation montrent que tous les coefficients associés aux variables explicatives sont significatifs compte tenu des probabilités critiques associées à ces variables.

La probabilité de Fisher est nulle, ce qui confirme bien l'hétérogénéité des individus.

On peut interpréter la variable CF :

Si la consommation finale des pays augmente d'un million, leurs PIB augmentent de 64.78%. Toutes choses égales par ailleurs.

Pour le modèle à effets fixes, le \mathbb{R}^2 le plus pertinent est le \mathbb{R}^2 within, car il donne une idée de la part de la variabilité intra-individuelle de la variable dépendante expliquée par celles des variables explicatives.

Le R^2 between quant à lui donne une idée de la contribution des effets fixes.

 R^2 within =99.83%.

Test Pasaran: test d'indépendance/corrélation entre les individus

```
. xtcsd, pesaran

Pesaran's test of cross sectional independence = 8.043, Pr = 0.0000
```

Figure IV.12 –

La probabilité est nulle, il y a une indépendance en coupe transversale ie les résidus sont corrélés avec les individus.

Test d'hétéroscédasticité

```
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (34) = 9849.49

Prob>chi2 = 0.0000
```

Figure IV.13 -

la probabilité chi2 est nulle, donc il y a hétéroscédasticité.

Le test Breusch-Pagan LM: test d'indépendance/corrélation entre les individus

Une fois l'estimation du modèle à effets fixes effectué on exécute la commande xttest2.

Étant donné que nos variables sont fortement interdépendantes, notre matrice est singulière il est impossible d'avoir des résultats avec xttest2 comme l'atteste la sortie de stata.

```
Correlation matrix of residuals is singular. not possible with test r(131);
```

Figure IV.14 -

Test l'autocorrélation entre les données

```
Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation F( 1, 33) = 191.066 Prob > F = 0.0000
```

FIGURE IV.15 -

La probabilité est nulle, il n'y a pas d'autocorrélation.

IV.5.6 Estimation whitin avec effet temporel

Figure IV.16 -

Toutes nos variables sont significatives La probabilité F est nulle, ce modèle est un bon candidat.

Interprétation de la variable CF :

Si la consommation finale des pays augmente d'un million, leurs PIB augmente de 63.82%. Toutes choses égales par ailleurs.

Le test TESTPARM: effets fixes temporels

Figure IV.17 -

La probabilité est inférieure à 5%, l'effet fixe temporel n'est pas nécessaire dans le modèle.

IV.5.7 Estimation effets aléatoires (re)

Random-effects Group variable		ion		Number (of obs of groups	=	816 34
R-sq:				Obs per			
within =						in =	24
between =						/g =	24.0
overall =	0.9996				ma	ax =	24
				Wald ch	i2(4)	=	528212.31
corr(u_i, X)	= 0 (assumed	1)		Prob >	chi2	=	0.0000
lpib	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
lcf	.6773918	.007949	85.22	0.000	.66181	L21	.6929715
lfbcf	.2212492	.0061632	35.90	0.000	.20916	595	.2333289
1x	.320678	.0102246	31.36	0.000	.30063	881	.340718
1m	2270938	.0123392	-18.40	0.000	25127	781	2029095
_cons	.7232874	.0251645	28.74	0.000	.67396	558	.772609
sigma_u	.0446933						
sigma_e	.02035348						
rho	.82823129	(fraction	of varia	nce due to	o u_i)		

Figure IV.18 -

La probabilité chi2 est nulle.

Par hypothèse la corr est nulle.

Rhô (0.8282), 82.82% de la variance est due à la différence entre les pays.

Ce modèle est un bon candidat.

Pour le modèle à effets aléatoires, le \mathbb{R}^2 le plus pertinent est le \mathbb{R}^2 between, c'est la mesure de la variabilité inter-individuelle de la variable dépendante expliquée par celles variables explicatives. Le \mathbb{R}^2 within quant à lui donne une idée de la contribution des efftes aléatoires du modèle.

 R^2 between = 99.97%.

On effectue le test de Breusch-Pagam pour le choix entre le modèle à effets aléatoires et modèle simple (OLS).

Le test Breusch-Pagan LM : test des effets aléatoires

Figure IV.19 -

La probabilité est nulle, donc on choisit le modèle aléatoire.

IV.5.8 Estimation between (be)

Between regres Group variable	, ,	p means)	Number o		816 34	
R-sq:				Obs per	group:	
within :	0.9981				min =	24
between :	0.9997				avg =	24.0
overall =	= 0.9997				max =	24
sd(u_i + avg(e_i.))= . 04 4	1886		F(4,29) Prob > F	=	26541.08 0.0000
lpib	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcf	.7216175	.0510394	14.14	0.000	.6172303	.8260047
lfbcf	.2168628	.0569833	3.81	0.001	.1003189	.3334067
lx	.3128365	.0732404	4.27	0.000	.1630431	.4626299
lm	2468441	.0823094	-3.00	0.006	4151857	0785025
_cons	.5387881	.0884593	6.09	0.000	.3578686	.7197077

Figure IV.20 -

Toutes les variables sont significatives.

La probabilité F est nulle, ce modèle est un bon candidat.

IV.5.9 Test d'Hausman fe et re

	(b) within	cients —— (B) random	(b-B) Difference	<pre>sqrt(diag(V_b-V_B)) S.E.</pre>
lcf lfbcf	.647767	.6773918 .2212492	0296248 .0015577	.0046341
lx	.3240043	.320678	.0033263	.0020266
lm	2104669	2270938	.0166269	.0032756

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

$$chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)$$

= 43.92
Prob>chi2 = 0.0000

Figure IV.21 -

La probabilité chi2 est nulle, ici les effets fixes sont meilleurs.

IV.5.10 Test Hausman entre be et re

	Coeffi	cients ——		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	between	random	Difference	S.E.
lcf	.7216175	.6773918	.0442257	.0504166
1fbcf	.2168628	.2212492	0043864	.056649
1x	.3128365	.320678	0078415	.0725231
1m	2468441	2270938	0197503	.0813792

 $\mbox{\bf b = consistent under Ho and Ha; obtained from xtreg} \mbox{\bf B = inconsistent under Ha, efficient under Ho; obtained from xtreg}$

Test: Ho: difference in coefficients not systematic

$$chi2(4) = (b-B)'[(V_b-V_B)^{-1}](b-B)$$

= 47.89
Prob>chi2 = 0.0000

Figure IV.22 -

La probabilité est nulle, ici le modèle between est meilleur.

IV.5.11 Test Hausman entre fe et be

	—— Coefficients ——			
	(b) within	(B) between	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
	WICHIH	Detween	DITTERence	3.L.
1cf	.647767	.7216175	0738505	
lfbcf	.2228069	.2168628	.0059441	
lx	.3240043	.3128365	.0111678	•
lm	2104669	2468441	.0363771	•

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

Figure IV.23 -

La probabilité est nulle, donc le modèle à effet fixe est le meilleur modèle.

Sachant que les effets fixes individuels le remportent sur les effets fixes temporels, donc meilleur modèle est le modèle à effet fixe individuels sans effet temps.

CONCLUSION

Ce travail avait pour but d'appliquer la méthode de données de panel dans le but de comprendre entre le modèle à effet fixe et le modèle à effet aléatoire le quel pouvait mieux expliquer le modèle que nous avons sélectionné dans le cadre de notre étude.

Les trois logiciels ont été mis en évidence, le premier TSP qui nous a permis de savoir dès le départ qu'on avait affaire à un modèle à effet individuel, ensuite nous avons éffectués l'étude sur le logiciel SAS nous à permis d'aboutir également au même modèle, et enfin le logiciel STATA qui nous confirme les résultats obtenus par les deux logiciels.

Ce travail nous a également permis de comprendre comment les données de panel permettent de contrôler les limites des données de séries temporelles et de données transversales, et ce sont ces limites qui sont à l'origine des données de panel.