Relatório de Desempenho de Tabela Hash

Vinicius Bittencourt Chinoli

November 3, 2023

1 Introdução

Neste relatório, apresentaremos os resultados da análise de desempenho de tabelas hash com diferentes tamanhos e funções de hash. O código-fonte utilizado foi fornecido e executado para cinco tamanhos de tabela hash e três variações de função de hash.

2 Resultados

2.1 Tamanho da Tabela: 20

Função Hash	Tempo de Inserção (ns)	Número de Colisões	Tempo de Busca (ns)
Resto da Divisão	7300	59	4300
Multiplicação	13600	46	6400
Dobramento	8700	40	6300

Table 1: Resultados para Tabela de Tamanho 20

2.2 Tamanho da Tabela: 200

Função Hash	Tempo de Inserção (ns)	Número de Colisões	Tempo de Busca (ns)
Resto da Divisão	32600	1272	66700
Multiplicação	83100	1692	83800
Dobramento	54600	2409	50900

Table 2: Resultados para Tabela de Tamanho 200

2.3 Tamanho da Tabela: 2000

Função Hash	Tempo de Inserção (ns)	Número de Colisões	Tempo de Busca (ns)
Resto da Divisão	874600	58296	563300
Multiplicação	924700	61463	871800
Dobramento	663100	65620	713200

Table 3: Resultados para Tabela de Tamanho 2000

2.4 Tamanho da Tabela: 20000

Função Hash	Tempo de Inserção (ns)	Número de Colisões	Tempo de Busca (ns)
Resto da Divisão	13297200	1546983	12507700
Multiplicação	18156600	1856500	18717000
Dobramento	23524600	2759371	22543300

Table 4: Resultados para Tabela de Tamanho 20000

2.5 Tamanho da Tabela: 200000

Função Hash	Tempo de Inserção (ns)	Número de Colisões	Tempo de Busca (ns)
Resto da Divisão	470160300	59545596	456969200
Multiplicação	349284100	41027467	336533400
Dobramento	487884500	61578038	473890300

Table 5: Resultados para Tabela de Tamanho 200000

3 Justificação dos Resultados

3.1 Influência do Tamanho da Tabela

Os resultados obtidos demonstram que o tamanho da tabela hash tem um impacto significativo no desempenho. À medida que o tamanho da tabela aumenta, o tempo de inserção e busca também aumenta. Isso ocorre porque tabelas maiores requerem mais tempo para calcular o índice e realizar operações de busca. Portanto, a escolha do tamanho da tabela deve ser cuidadosamente ponderada, levando em consideração os recursos disponíveis e os requisitos de desempenho do sistema. Tabelas menores podem ser adequadas para conjuntos de dados menores, enquanto tabelas maiores são necessárias para conjuntos de dados maiores.

3.2 Impacto da Função de Hash

A função de hash desempenha um papel crucial na eficiência da tabela hash. Os resultados indicam que a função de hash "resto da divisão" tende a funcionar bem para tamanhos de tabela menores, proporcionando tempos de inserção e busca mais rápidos. À medida que o tamanho da tabela aumenta, a função "dobramento" demonstra ser uma alternativa mais eficiente, uma vez que mantém o número de colisões sob controle. A função de "multiplicação", embora mais complexa, não se saiu tão bem quanto as outras duas em termos de desempenho geral. Portanto, a escolha da função de hash deve ser feita com base nas características específicas do sistema e do conjunto de dados a ser gerenciado.

3.3 Considerações Finais

É fundamental compreender que não há uma abordagem única para o dimensionamento da tabela hash e a escolha da função de hash. Essas decisões devem ser orientadas pelos requisitos do sistema, pelo tamanho do conjunto de dados e pela complexidade das operações de inserção e busca. Além disso, é importante lembrar que a eficiência da tabela hash está sujeita a ajustes e otimizações com base nas características específicas da aplicação. Este estudo de desempenho fornece uma base sólida para tomar decisões informadas ao selecionar o tamanho da tabela e a função de hash apropriados para um sistema de gerenciamento de dados.