

ADNI dataset

Alzheimer desease (AD)
detection based on MR
images through Random
Forest and CNNs
approaches

Data Analysis The problem

- ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset:
 - **3D** PET and MR images (labelled).
 - **AD** (107 MR images) and **HC** (346 RM images).
 - Unbalanced classes.
 - Common shape: (105 x 127 x 105)
- Classification tasks:
 - Random Forest classifier trained on features extracted by PyRadiomics and re-trained on the 5-most informative features selected through RFE (Recursive Feature Elimination)
 - Classification based on a Convolutional Neural Network

Splitting data

- Delate useless columns of the AD and HC .csv and combine them
- Split the overall data into:
 - 60% train
 - 20% validation and
 - 20% test set

In a **fixed way** in order to select the same images for the different tasks execution (*Classification through RF* and *Classification through CNN*).

Random Forest Classifier Put a mask and extract features

- Load the mask and set the **coordinates** in oder to **automatically center** the image and overlap it on the focused **brain area for each slice**
- Make a list of the files for healthy subjects and ill ones
- Extract images with the default setting and apply mask:
 ext = featureextractor.RadiomicsFeatureExtractor()
 ext.execute(healthFile, maskFile)
- Save the **features names** and the **extracted features (107x346/class)** lists as **arrays** and combine them

Random Forest

- Build a RF Classifier with:
 - on_estimators = 100 . Number of decision trees to include.
 - max_depth = 5. This parameter controls the maximum depth of each decison tree. Each tree has at most 5 levels.
 - random_state = 42 . It sets the seed for the random number generator used by the RF. Ensures that the same sequence of random numbers --> reproducible results

Results

- 107 extracted features from **unbalanced classes** (AD and HC)
- More attention on: Recall $\frac{TP}{TP+FN}$, Precision $\frac{TP}{TP+FP}$, F1 score $2\frac{Precision\cdot Recall}{Precision+Recall}$

Precision: 1

Recall: **0.62**

F1 score: **0.76**

Acc: **0.91**

Precision: 0.95

Recall: **0.86**

F1 score: **0.90**

Acc: **0.95**

5-most informative features

- RFE (Recursive Feature Elimination)
 - Build RF model using all available features
 - Rank the importance of each feature based on the model performance, and then remove the least important feature(s) from the model.
 - The importance of each feature is then calculated based on the weights or coefficients assigned to the features by the model (with mean absolute error, R-squared, or F1-score)
 - Can help to reduce overfitting, improve model accuracy, and reduce computational complexity
- Extracted features (5): "firstorde Minimum", "firstorder Skewness", "glcm Imc2", "gldm SmallDependenceLowGrayLevelEmphasis", "ngtdm Coarseness"

Random Forest re-trained results

- Performance metrics **increase on the test** set
- It can be explained due to the presence of the most informative features selected by RFE. Using less features = more generalized algorithm

Precision: **1**Recall: **0.62**F1 score: **0.76**

Acc: **0.91**

Precision: **1**Recall: **0.95**F1 score: **0.98**Acc: **0.99**

3-Dimensional CNN

- **IDEA:** Since Convolutional Neural Networks are **state of the art** in image classification, it is important to try this kind of approach
- Start with a very **simple** architecture:
 - 2 Convolutional layers, composed by 32 and 64 filters,
 with ReLU activation
 - 1 Hidden dense layer (128 units)

Problems

- Too **few images** (Only 107 for the positive class)
- **Unbalanced** data (23% 77%)
- Very heavy images (1 400 175 voxels each)
- Don't have a powerful **GPU**, Google colab has usage limitations

- Need to resize images at (64,64,64) shape, losing data quality
- Can't perform undersampling because we have few images
- Can't perform oversampling because images are very similar (position and colors)

Very bad performance

Results

- Only classify images as negative, since it is the most numerous class
- Many modifications to the network architecture have been tried, however the computationally sustainable ones have not produced different results from the situation shown in this confusion matrix
- Decided **not to continue** with the 3D approach

2-Dimensional CNN

- **IDEA:** Divide the original 3D image in a lot of slices, cutting on a given dimension, and learn a classifier to predict them.
- All slices of the same original MR are put **in the same dataset split**, so there are not too similar images in different partitions
- After many attempts the best dimension was found to be the transverse plan
 - Each image is divided in 105 slices
- **Simple CNNs** perform better than complex ones
- Not possible to perform **data augmentation** for the previous mentioned reasons

Architecture

- Different possible architecture have been tried
 - Dimension and number of convolutional filters
 - Optimizer
 - Activation function
 - Normalization
 - Regularization
- Best result are provided by the most **simple** one:
 - 2 Convolutional layers, 32 and 64 filters, with ReLU activation
 - ReLU activation
- The netwok have been trained with the following **parameters**:
 - Adam optimizer
 - Learning Rate = 0.001
 - 40 epochs

Results

- Good Performances on single slices
- To classify a complete image, all its slices are classified and the final prediction is based on the **percentage** of positive/negative images

- Good performance on Validation Set
- Need a final proof on Test set, there may be overfitting

Precision: **0.73**

Recall: **0.90**

F1 score: **0.81**

Acc: **0.90**

Results on Test Set

- Performance metrics **increase on the test** set
- It is possible that Test set contains **easier images** to classify

Precision: **0.90**Recall: **0.86**F1 score: **0.88**Acc: **0.94**

Alberto Gadda (ID 824029) Greta Gravina (ID 881470)

Thanks for your attention

a.gadda@campus.unimib.it g.gravina8@campus.unimib.it