							$P = VI = RI^* = \frac{R}{R}$	(34)	$R = \frac{mv}{zD} \tag{1}$	(1119)
NOME: COGNOME:		· Potenziale scalare V		· Conduttori in equilibrio	· Campo elettrico E generato		$dP = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau$ · Resistori	(62)		
MATRICOLA:		$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$	(28)	– il campo è nullo	$\mathbf{E} = \frac{qd\left(2\cos\left(\theta\right)\mathbf{u}_r + \sin\left(\theta\right)\mathbf{u}_\theta\right)}{4\pi\varepsilon r^3}$	(71)	In serie	1	$T = \frac{2\pi m}{aB} \tag{1}$	(120)
■ FONDAMENTALI		$V(B) - V(A) = -\int_{A}^{B} \mathbf{E} \cdot d\mathbf{r}$	(29)	$\mathbf{E} = 0 \tag{52}$	· Momento torcente		$K_{eq} = \sum_{i=1} R_i$	(96)	Angolo deflessione elica (v 2 dimensioni)	ni)
· Teorema (divergenza)		$\mathbf{E} = -\nabla V$	(30)	 il potenziale è costante 	$\mathbf{M} = \mathbf{a} \times q \mathbf{E}(x, y, z)$	(72)	In parallelo		$\sin(\theta) = \frac{qBR}{\theta}$	(121)
$\int_{\Sigma} \mathbf{F} \cdot d\mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} d\tau$	(1)	· Energia di E		$\Delta V = 0 \tag{53}$			$R_{eq} = \left(\sum_{i=1}^{n} \frac{1}{R_i}\right)^{-1}$	(62)		1
· Teorema (Stokes)		$U = rac{1}{2} \int_{\mathbb{R}^3} ho(\mathbf{r}) V(\mathbf{r}) \mathrm{d} au$	(31)	Le cariche si distribuiscono sempre su sunerfici mai all'interno		(73)	· Generatore reale			(199)
$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\mathbf{\Sigma}$	(2)	$U = \frac{1}{\varepsilon} \varepsilon_0 \int \mathbf{E}^2 \mathrm{d}\tau$	(32)	· Pressione elettrostatica			$\Delta V = V_0 - r_i I$	(86)		ì
· Teorema (Gradiente)		$2^{-J}\mathbb{R}^3$. Equazione di Poisson		$\mathbf{p} = \frac{d\mathbf{F}}{d\Sigma} = \frac{\sigma^2}{2\varepsilon_o} \mathbf{u}_n = \frac{1}{2}\varepsilon_0 \mathbf{E}^2 \tag{54}$		(74)	· Leggi di Kirchhoff Legge dei nodi		■ INDUZIONE	
$\phi_2 - \phi_1 = \int_{\gamma} \nabla \phi \cdot d\mathbf{s}$	(3)	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$	(33)	· Capacità	Se E uniforme $W = pE[\cos(\theta_i) - \cos(\theta_t)]$	(75)	$\sum_{k=0}^{N} I_k = 0$	(66)		(123)
· Flusso di un campo		E e V di particolari distribuzioni	ızioni	$C = \frac{Q}{\Lambda V} \tag{55}$			$_{k=0}^{k=0}$ Legge delle maglie		erato da 1 attravers	. ~
$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\Sigma$	(4)	Carica puntiforme q	90	Il più delle volte c'è induzione com			$\sum_{k=0}^{N} \Delta V_k = 0$	(100)	$\Phi_{1,2} = NB_1 \Sigma_2 \tag{1}$	(124)
Equazioni di Maxwell		$\mathbf{E} = \frac{\mathbf{I}}{4\pi\varepsilon_0 r^2} \mathbf{u}_r$	(34)	pleta e C dipende dalla configurazione geometrica.		(92)	^{k=0} ■ MAGNETOSTATICA		· Induttanza Ф antoflusco	
$\nabla \cdot \mathbf{E} = \frac{\rho}{\rho}$	(5)	$V = \frac{1}{4\pi\epsilon_0 r}$ Sfore conice uniformements	(66)	· Condensatori Piano	· Energia del dipolo	ĺ	· Forza di Lorentz			(125)
$arepsilon = arepsilon_0$	5	$\int \frac{Qr}{1-r} = \frac{\rho r}{r} \text{ se } r < R$		$C = \frac{\varepsilon_0 \Sigma}{d} \tag{56}$	$U = -\mathbf{p} \cdot \mathbf{E}$. Forza agente sul dinolo	9	$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$	(101)	deale	
$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t}$ $\nabla \cdot \mathbf{B} = 0$	(a) (b)	$\mathbf{E}(r) = \begin{cases} \frac{4\pi\varepsilon_0 R^3}{Q} & 3\varepsilon_0 \\ \frac{Q}{Q} & \text{se r} \ge R \end{cases}$	(36)	Sferico	$\mathbf{F} = \nabla (\mathbf{p} \cdot \mathbf{E})$	(78)	Frima legge di Laplace $\mathbf{D}(\mathbf{r}_{r}) = \mu_{0} I \in \mathrm{ds} \times \mathbf{u}_{r}$	(109)	$L = \mu_0 \frac{N^2}{L} \Sigma = \mu_0 n^2 L \Sigma \tag{1}$	(126)
$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial \mathbf{E}}$	<u> </u>	($4\piarepsilon_0R^2$ ($a(3R^2-r^2)$		$C = 4\pi\varepsilon_0 \frac{Rr}{R - r} \tag{57}$			$\mathbf{D}(\mathbf{r}) = \frac{1}{4\pi} \oint \frac{r^2}{r^2}$	(102)	Toroide	
$\oint \mathbf{E} \cdot \mathrm{d} \mathbf{\Sigma} = \frac{Q_{int}}{}$	6		(37)	Cilindrico	$U = \frac{\left[\mathbf{p_1} \cdot \mathbf{p_2} - 3(\mathbf{p_1}\mathbf{u_r})(\mathbf{p_2} \cdot \mathbf{u_r})\right]}{A\pi\epsilon_{con}3}$	(62)	$\mathbf{B}(\mathbf{r}) = \frac{r_0}{4\pi} \int \frac{-r}{r^2} d\tau$	(103)	$L = \frac{\mu_0 N^2 \pi a}{2\pi} \ln \left(\frac{R+b}{R} \right) \tag{1}$	(127) ■ DIPC
$\int_{f \Sigma} = arepsilon_0 = arepsilon_0$	(10)	$\begin{cases} \frac{1}{4\pi\varepsilon_0 r} & \text{se r} \ge R \\ \frac{1}{4\pi\varepsilon_0 r} & \text{origon uniformemente.} \end{cases}$	٥	$C = \frac{2\pi\varepsilon_0 h}{\ln\frac{R}{r}} \tag{58}$	$\frac{4\pi c_0}{1}$ · Forza tra dipoli		$\mathbf{B}(\mathbf{r}) = \nabla_r \times \left(\frac{r^0}{4\pi}\right) \frac{d}{r} d\tau$	(104)	· Fem autoindotta	
Jr cas = dt	(17)	(0 se r < R		In serie	Dipoli concordi = F repulsiva		· Seconda legge di Laplace $\mathbf{r} = \int_{\mathcal{L}_{A}(A, \mathbf{r}, \mathbf{r})} \mathbf{r}$	(104)		(128)
$\int_{\Sigma} \mathbf{D} \cdot \mathbf{u} \mathbf{Z} = 0$	(11)	$\mathbf{E}(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R^2} & \text{se } r \ge R \end{cases}$	(38)	$C_{eq} = \left(\sum_{cf} \frac{1}{cf}\right)^{-1} \tag{59}$	$\mathbf{F} = \frac{\partial p_1 p_2}{4\pi\varepsilon_0 r^4} \mathbf{u}_r$	(08)	$\mathbf{f} = \int I(\mathrm{d}\mathbf{s} \times \mathrm{d}\mathbf{b})$	(cor)	ut. . Fem indotta	
$\oint_{\Gamma} \mathbf{B} \cdot d\mathbf{s} = \mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{d \cdot \mathbf{E}}{dt}$ Nei mezzi:	(12)	$\begin{pmatrix} Q \\ \frac{Q}{4\pi\varepsilon_0 R} & \text{se r} < R \end{pmatrix}$		$\langle i=1 C_i \rangle$ In parallelo	■ DIELETTRICI		 B di corpi notevoli (ATTENZIONE: viene indicata la direzione, il verso dipen- de dalla corrente I) 	ZIONE: so dipen-	$-L\frac{\mathrm{d}I}{I}$	(129)
$\nabla \cdot \mathbf{D} = \rho_{libere}$	(13)	$V(r) = \begin{cases} \frac{4\pi c_0 t}{Q} \\ \frac{Q}{4-c} \end{cases} \text{ se } r \ge R$	(39)	$C_{eq} = \sum_{i}^{n} C_{i} \tag{60}$		03	Asse di una spira			
$\nabla \times \mathbf{H} = \mathbf{J}_{CIib} + \frac{\partial \mathbf{D}}{\partial \mathbf{D}}$	(14)	caric			$\mathbf{E}_k = \frac{\mathbf{E}_0}{k}$	(81)	$\mathbf{B}(z) = \frac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z$	(106)	ರ	6
$\mathcal{L}_{\mathcal{O}} = \mathcal{L}_{\mathcal{O}} = \mathcal{L}_{\mathcal{O}}$	(5)	$\mathbf{E}(r) = \frac{\lambda}{2\pi r} \mathbf{u}_r$	(40)	Con mercentico $C_{3:-1} = k \cdot C_0 \tag{61}$			Filo indefinito		I = R = -Rdt	(130)
$\oint_{\Sigma} \mathbf{U} \cdot d\mathbf{Z} = Q_{int,lib}$ $\oint_{\mathbf{U}} \mathbf{U} \cdot d\mathbf{Z} = Q_{int,lib}$	(19)	$2\pi\varepsilon_0 r$ λ , (r_0)	. (na del condensatore	$\mathbf{P} = \frac{dp}{d\tau}$	(82)	$\mathbf{B}(r) = \frac{\mu_0 I}{2\pi r} \mathbf{u}_\phi$	(107)	· Energia dell'induttanza Mutua (solo una volta ogni coppia):	
$\int_{\Gamma} \mathbf{u} \cdot \mathbf{u} = I_{conc, tib} + \frac{dt}{dt}$ Discontinuità dei campi	(10)	$V(r) = \frac{1}{2\pi\varepsilon} \ln \left(\frac{r}{r}\right)$ Diano S. infinito con carica uniforme	(41)	$U = \frac{Q^2}{2\Omega} = \frac{1}{2}CV^2 = \frac{1}{2}QV \tag{62}$	· Dielettrici lineari		Asse filo lungo 2a $\frac{1}{2}$		$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1 \tag{3}$	(131)
Generali		$\mathbf{E} = \frac{\sigma}{2} \mathbf{u}_n$	(42)	2C 2 2 Differenziale circuito RC	$\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E}_k = \varepsilon_0 (k-1) \mathbf{E}_k$	(83)	$\mathbf{B}(r) = \frac{1}{2\pi r} \sqrt{r^2 + a^2} \mathbf{u}_{\phi}$	(108)	Interna	
$\Delta B_{\perp} = 0$	(17)	$2\epsilon_0$	(49)	$RQ'(t) + \frac{Q(t)}{\alpha} = V \tag{63}$		ata	Solenoide ideale N	(100)	$U_L = \frac{1}{9}LI^2 \tag{1}$	(132)
$\Delta E_{\parallel} = 0$ $\Delta D_{i} = \sigma_{E}$	(18)	$V(x) = \frac{1}{2\varepsilon_0}(x - x_0)$ (4) Apello con carica uniforme (xull'asse)	(49)		$\sigma_p = \mathbf{P} \cdot \mathbf{u}_n = \frac{k-1}{k} \sigma_l$	(84)	$\mathbf{D} = \mu_0 \frac{1}{L}$ Toroide	(103)	In un circuito (conta una volta ogni	gni
$\Delta E_1 = \frac{\sigma}{c_2}$	(20)	Fig. (300) assumed the control of λRx	(44)	$Q(t) = Q_0(1 - e^{-\frac{t}{RC}}) $ (64)	· Dens. volumetrica di q polarizzata	zata	$\mathbf{B}(r) = \frac{\mu_0 NI}{2} \mathbf{u}_{\phi}$	(110)	induttanza ed una ogni coppia)	
$\Delta H_{\parallel} = \mathbf{K}_c \times \mathbf{u}_n $	(21)	$\mathbf{E}(x) = \frac{1}{2\varepsilon_0(x^2 + R^2)^{3/2}}\mathbf{u}_x$	(44)	Scarica	$\rho_p = -\nabla \cdot \mathbf{P}$	(82)	$2\pi r$ Piano infinito su xy, con K \mathbf{u}_x	ф	$U = \frac{1}{2} \sum_{i}^{N} (L_{i} I_{i}^{2} + \sum_{i}^{N} M_{i,j} I_{i} I_{j}) i \neq j$	
In ipotesi di linearità		$V(x) = \frac{\lambda R}{2\varepsilon_0 \sqrt{x^2 + R^2}}$	(45)	$Q(t) = Q_0 e^{-\frac{t}{RC}} \tag{65}$					t = 1 $t = 1$ (1)	(133)
$\frac{D_{1,\parallel}}{k_1} = \frac{D_{2,\parallel}}{k_2}$	(22)	Disco carico uniformemente		· Condensatore pieno		(98)	$\mathbf{B} = \frac{\mathbf{a}}{2} \mathbf{u}_y$	(111)	· Legge di Felici	
Se $\sigma_L = 0$		$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{1}{\sqrt{1 + \frac{R^2}{x^2}}} \right) \mathbf{u}_x$	(46)	ρ	CORRENTI Lavoro del generatore		. Effetto Hall b spessore sonda, b // B, b \bot I, n car/vol	ı car/vol	$Q(t) = \frac{\Phi(0) - \Phi(t)}{R} \tag{1}$	(134)
$k_1 E_{1,\perp} = k_2 E_{2,\perp}$	(23)	$V(\pi) = \frac{\sigma}{(\sqrt{m^2 + D^2} - \pi)}$	(44)	$RC = \varepsilon_0 \rho \tag{66}$		î	$V_H = \frac{IB}{n a b}$	(112)	· Circuito RL in DC	
Rifrazione linee di B $\tan(\theta_2) \mu_2$	(40)	$V(x) = \frac{1}{2\varepsilon_0} (\sqrt{x^2 + n^2} - x)$ Disco carico uniformemente $(x >> R)$	(41) R)	rmature	$W_{gen} = \int_{t_1} V \mathrm{d}q(t) = 2U_E$	(87)	· Forza di Ampere		L si oppone alle variazioni di I smorzan- dole	an- MAC
$\overline{\tan(\theta_1)} = \overline{\mu_1}$	(47)	$\mathbf{E}(x) = \frac{\sigma}{2} \frac{R^2}{2} \mathbf{u}_x$	(48)	$F = \frac{\sqrt{c}}{2} \partial_x \left(\frac{\dot{z}}{C}\right) \tag{67}$		(88)	$E = \mu_0 I_1 I_2 L$		Appena mzia a circolare corrente $V_{\mathcal{L}}$	
■ ELETTROSTATICA		$\alpha = \frac{2\varepsilon_0 x^2}{\sigma}$		Condensatore piano	$\mathbf{J} = nq\mathbf{V} = \frac{1}{T}$	(00)	$F \equiv \frac{1}{2\pi} \frac{d}{d}$. Determined vertices Λ	(611)	$I(t) = \frac{V_0}{R} (1 - e^{-\frac{Rt}{L}t}) \tag{1}$	(135)
Forza di Coulomb $\mathbf{F} \equiv rac{q_1q_2}{q_2}$ n.	(98)	$V(x) = \frac{1}{4\varepsilon_0} \frac{1}{x}$ (49) Guscio cilindrico uniformemente carico	(49) rico	$F = \frac{Q\sigma}{2\epsilon_0} = \frac{Q^2}{2\epsilon_0 \Sigma} \tag{68}$		(68)	$\nabla \times \mathbf{A} = \mathbf{B}$	(114)		(136)
$r = 4\pi \epsilon_0 r^2 - 1, z$	(C2)	(0 ser< R		■ DIPOLO ELETTRICO	$\mathrm{d}t$ \int_{Σ}^{∞} .		$\mathbf{A}(\mathbf{r}_1) = rac{\mu_0}{4\pi} \int rac{\mathbf{j}(\mathbf{r}_2)}{r_{2,1}} \mathrm{d} au_2$	(115)	barra mobile (b lur	ez-
. Definizione campo elettrico $\mathbf{F}(\mathbf{r}_0)$		$\mathbf{E}(r) = \begin{cases} \frac{Q}{2\pi\varepsilon_0 h r} & \text{se } r \ge R \end{cases}$	(20)	· Momento di dipolo	. Leggi di Omin $V = RI$	(06)	Invarianza di Gauge		za barra) F.e.m. indotta	
$\mathbf{E} = \frac{\mathbf{r} \cdot (\mathbf{r}_0)}{q_0}$	(26)	f 0 ser <r< td=""><td>Ī</td><td>$\mathbf{p} = q\mathbf{a} \tag{69}$</td><td></td><td>(91)</td><td>$\mathbf{A}' = \mathbf{A} + \nabla \Psi$</td><td>(116)</td><td>$\varepsilon(t) = -Bbv(t) \tag{1}$</td><td>(137)</td></r<>	Ī	$\mathbf{p} = q\mathbf{a} \tag{69}$		(91)	$\mathbf{A}' = \mathbf{A} + \nabla \Psi$	(116)	$\varepsilon(t) = -Bbv(t) \tag{1}$	(137)
· En. potenziale due cariche		$V(r) = \begin{cases} \frac{Q}{2\pi\varepsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \end{cases}$	(1e)	· Potenziale del dipolo	$\mathbf{E} = \rho \mathbf{J}$	(92)	$\nabla \cdot \mathbf{A} = 0$	(117)	Corrente in un circuito chiuso	
17 9192						_				

a conduttore ohmico		· Moto ciclotrone	Lavoro fornito per muovere la barra	· Dens. LINEARE di corrente sulla	ulla
$=RI^2 = \frac{V^2}{P}$	(94)		$W = \frac{\left(Bbv(t)\right)^2}{} \tag{139}$	SUPERFICIE	
R $(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) \mathrm{d} au$	(92)	$R = \frac{mv}{qB} \tag{119}$		u,	(159)
ori	(2)	Periodo	Forza magnetica sulla barra	$\mathbf{M} = M\mathbf{u}_z \qquad \mathbf{K_m} = K_m \mathbf{u}_\phi$	
Q 2	(90)	$T = \frac{2\pi m}{qB} \tag{120}$	$F = m \frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{(Bb)^2 v(t)}{R} \tag{140}$	· Dens. SUPERFICIALE corrente	ente
, T	(96)	Angolo deflessione elica (v 2 dimensioni)	ATTENZIONE: per tenere v costante è necessaria una F esterna; altrimenti		(160)
		$\sin(\theta) = \frac{qBR}{} \tag{121}$	essa è opposta a v e il moto è smorzato esponenzialmente		(100)
$\sum_{i=1}^n rac{1}{R_i} ight)$	(26)			$I_{m,c}$	(191)
atore reale		$A = \frac{2\pi R}{4}$ (199)	· Disco di Barlow Campo elettrico	· Dens. SUPERFICIALE corrente LIBERA	ente
$I_0 - r_i I$	(86)		$\mathbf{E} = \frac{\mathbf{F}}{-} = \mathbf{v} \times \mathbf{B} = \omega x B \mathbf{u}_{x} \tag{141}$	$\mathbf{j}_1 \neq \mu_0 \mathbf{j} \tag{1}$	(162)
di Kirchhoff		■ INDUZIONE			(163)
lei nodi		· Coefficienti mutua induzione	tta	$\oint \mathbf{H} \cdot d\mathbf{l} = I_{l,c} \tag{1}$	(164)
0	(66)	$\Phi_{1,2} = MI_1 \qquad \Phi_{2,1} = MI_2 $ (123)	$\varepsilon = \frac{1}{2}\omega Br^2 \tag{142}$	· Energia di B	
lelle maglie		\cdot Flusso generato da 1 attraverso 2	Corrente in un circuito chiuso	$^2{ m d} au$	(165)
0 = 3	(100)	$\Phi_{1,2} = NB_1\Sigma_2 \tag{124}$	$I = \frac{\omega B r^2}{2R} \tag{143}$		
NETOSTATICA		· Induttanza	Se nuon ci sono forze esterne il moto è		(166)
di Lorentz			Smorzano Momento torcente frenante	liformi	
	(101)	$\Phi(\mathbf{B}) = IL \tag{125}$ Solomoide ideale	$\mathbf{M} = -\frac{\omega B r^4}{4R} \mathbf{u}_z \tag{144}$	$U_B = \frac{1}{2} \sum_{i=1}^{I} I_i \Phi_i \tag{1}$	(167)
legge di Laplace		2,5	Velocità angolare	CIRCUITI RLC	
	(102)	$L = \mu_0 \frac{1}{L} L = \mu_0 n L L$ Toroide	$\omega(t) = \omega_0 e^{-\frac{t}{\tau}}$ $\tau = \frac{2mR}{B^2 r^2}$ (145)	· Impedenza La somma delle impedenze in serie e	rie e
	(103)	$I = \frac{\mu_0 N^2 \pi a}{1 - \frac{1}{2} (R + b)}$	■ DIPOLO MAGNETICO	parallelo segue le regole dei resistori	
$\nabla_r \times \left(\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}}{r} \mathrm{d}\tau \right)$	(104)	R)	· Momento di dipolo	$Z = R + i \left(\omega L + \frac{1}{\omega C} \right) \tag{1}$	(168)
da legge di Laplace		· Fem autoindotta	$d\mathbf{m} = I d\Sigma \mathbf{u}_n \tag{146}$, , ,	
	(105)	$\Phi = -L\frac{dL}{dt} \tag{128}$	· Potenziale del dipolo	$ Z = \sqrt{R^2 + \left(\omega L + \frac{1}{\omega C}\right)} \tag{1}$	(169)
corpi notevoli (ATTENZI	ONE:	· Fem indotta	$\mathbf{A} = \frac{\mu_0}{4\pi m^2} (\mathbf{m} \times \mathbf{u}_r) \tag{147}$	· RLC serie in DC smorzato	
idicata la direzione, il verso dipen- a corrente I)	npen-	$\varepsilon = -\frac{\mathrm{d}\Phi(\mathbf{B})}{\mathrm{d}t} = -L\frac{\mathrm{d}I}{\mathrm{d}t} \tag{129}$. Campo magnetico B generato		(170)
una spira		Corrente indotta		2 - (2) - 2 B	6
$rac{\mu_0 I r^2}{2(z^2 + r^2)^{3/2}} \mathbf{u}_z$	(106)	75	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi r^3} [3\mathbf{u}_r(\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m}] \qquad (148)$	$\omega_0 = \frac{1}{\sqrt{LC}}$ $\gamma = \frac{n}{2L}$	
definito		$I = \frac{R}{R} = -\frac{\sqrt{30}}{Rdt} \tag{130}$	· Momento torcente	$\omega = \sqrt{\omega_0^2 - \gamma^2} \tau = \frac{1}{\gamma}$	
$rac{\mu_0 I}{2\pi r} \mathbf{u}_{\phi}$	(107)	· Energia dell'induttanza Mutua (solo una volta ogni coppia):	$\mathbf{M} = \mathbf{m} \times \mathbf{B} \tag{149}$	Smorz. DEBOLE $\gamma^- < \omega_0^-$ $I(t) = I_0 e^{-\gamma t} \sin(\omega t + \omega)$	(121)
o lungo 2a		$IL_{z} = -\frac{1}{2}ML_{z} + \frac{1}{2}ML_{z}$ (131)	· Forza agente sul dipolo	2	(+++
$rac{\mu_0 I a}{2\pi r \sqrt{r^2 + a^2}} \mathbf{u}_{\phi}$	(108)	M_{11}^{11} $\frac{1}{2}$ $\frac{1}{2}$ M_{12}^{11}	$\mathbf{F} = \nabla (\mathbf{m} \cdot \mathbf{B}) \tag{150}$		(179)
de ideale			· Energia del dipolo	ci.	(112)
$I \frac{1}{N} I$	(109)	$U_L = \frac{1}{2}LI^2 $ (132)	$U = -\mathbf{m} \cdot \mathbf{B} \tag{151}$	Smorz. Crillico $\gamma = \omega_0$ $I(t) = e^{-\gamma t} (A + Bt)$ (1)	(173)
		In un circuito (conta una volta ogni induttanza ed una ogni connia)	· Energia pot. tra due dipoli	A B e G irreavano impostande	(<u>a</u>
$rac{\mu_0 N I}{2\pi r} \mathbf{u}_{\phi}$	(110)	N N I	$U = -\mathbf{m_1} \cdot \mathbf{B_2} = -\mathbf{m_2} \cdot \mathbf{B_1} \tag{152}$	condizioni iniziali	3
$_{\rm r}$ xy, con K $_{\rm r}$	densità	$U = \frac{1}{2} \sum_{i=1}^{4} (L_i I_i^2 + \sum_{j=1}^{2} M_{i,j} I_i I_j) i \neq j$	generato d	· RLC serie in AC forzato Forzante	
	(111)	(133)	tro dipolo	$\cos(\Omega t + \Phi)$	(174)
		· Legge di Felici	$\mathbf{F}(\mathbf{r}) = rac{3\mu_0}{4\pi - 4} [(\mathbf{m}_1 \cdot \mathbf{u}_r) \mathbf{m}_2 + (\mathbf{m}_2 \cdot \mathbf{u}_r) \mathbf{m}_1 +$	Equazione differenziale	
da, b // B, b \perp I, n	car/vol	$Q(t) = \frac{\Phi(0) - \Phi(t)}{R}$ (134)	$+(m_1 \cdot m_2)u_n - 5(m_1 \cdot u_n)(m_2 \cdot u_n)u_n$	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{\Omega \varepsilon_0}{\sin(\Omega t + \Phi)}$	(ф +
$\frac{q b }{q b }$	(112)	· Circuito RL in DC	(153)		(175)
mpere		L si oppone alle variazioni di I smorzan- dole	■ MAGNETISMO	Soluzione	
attrattiva		Appena inizia a circolare corrente	· Campo magnetico nella materia	$I(t) = I_0(\Omega)\cos(\Omega t) \tag{1}$	(176)
	(113)	$I(t) = \frac{V_0}{R} (1 - e^{-\frac{R}{L}t})$ (135)	$\mathbf{B} = \mu_0(\mathbf{M} + \mathbf{H}) \tag{154}$	Corrente massima	
vettore A	3	Quando il circuito viene aperto	$\mathbf{B} = k_m \mathbf{B}_0 = (1 + \chi_m) \mathbf{B}_0 \tag{155}$	$I_0(\Omega) = \frac{\varepsilon_0}{ Z } = \frac{\varepsilon_0}{\sqrt{R^2 + (\omega L_+ \frac{1}{2})^2}} (1$	(177)
(");	(114)	$I(t) = I_0 e^{-\frac{R}{L}t} $ (136)	\cdot Campo magnetizzazione M	$(\frac{\partial \omega}{\partial \omega} + \Omega \omega) + \Omega \wedge \Omega$	
$=\frac{\mu_0}{4\pi}\int \frac{\mathbf{J(12)}}{r_{2,1}}\mathrm{d}\tau_2$	(115)	· Circuiti con barra mobile (b lunghezza barra)	$\mathbf{M} = n\mathbf{m} = \frac{d\mathbf{m}}{d\tau} \tag{156}$	Stasamento $L\Omega = \frac{1}{OC}$	Î
nza di Gauge	(110)	F.e.m. indotta		$\tan \Phi(M) = \frac{\sin \Phi(M)}{R} \tag{1}$	(178)
+∨♥ di Coulomb	(116)	$\varepsilon(t) = -Bbv(t) \tag{137}$	$\mathbf{M} = \frac{(\chi_m + 1)\mu_0}{(\chi_m + 1)}$	NOTA: Lo sfasamento di I rispetto a ε è e $-\Phi$	a ε è
	(111)	Corrente in un circuito chiuso			
$-\mu_0$ j	(118)	$I(t) = \frac{Dov(t)}{R} \tag{138}$	$\mathbf{H} = \frac{\mathbf{Z}}{\mu_0} - \mathbf{M} = \frac{\mathbf{Z}}{\mu} = \frac{\mathbf{Z}}{k_m \mu_0} = \frac{\mathbf{Z}}{\chi_m} $ (158)	$Im(Z) = 0 \to \omega_0 = \frac{1}{\sqrt{LC}} \tag{1}$	(179)

. D	y'	Sc)h	J & 1	y",	λ_1 as																																				
	(886)	(907)	(239)		(240)	(241)	ngolare	(242)		(243)			(244)		(245)	(246)		(247)		(248)	(249)		interre- lei due	6		(250)		(251)		(252)		(253)		(254)	(271)	()	(272)	(273)	(274)	1	x - (275)	(۵۰۰۰)
$\begin{aligned} \text{Massimi secondari} \\ m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z} \} \end{aligned}$	$\delta = \frac{2m+1}{\pi}$	$o = \frac{1}{2N} \pi \Rightarrow \sin \theta = \frac{1}{2N} \frac{d}{d}$	$I_{SEC} = \frac{I_0}{\left(\sin\frac{\pi d\sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N} \pi \to \sin \theta = \frac{m\lambda}{Nd}$	$I_{MIN} = 0$	Separazione angolare (distanza angolare tra min. e max. adiacente)	$\Delta heta pprox rac{1}{N} rac{\lambda}{d\cos heta}$	Potere risolutore	$\frac{\delta\lambda}{\lambda} = \frac{1}{Nn}$	· Diffrazione Intensità	$\lim_{x \to \infty} \frac{1}{x} \left(\sin \left(\frac{\pi a \sin \theta}{x} \right) \right)^2$	$I(\theta) = I_0 \left(\frac{\frac{\lambda}{\pi a \sin \theta}}{\frac{\lambda}{\lambda}} \right)$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$ Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$	$\sin\theta = \frac{2m+1}{}\frac{\lambda}{}$	2 a L	$I_{SEC} = \frac{10}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin\theta = \frac{m\lambda}{\sigma}$	$I_{MIN} = 0$	· Reticolo di diffrazione	Sovrapposizione di diffrazione e interfe- renza, l'intensità è il prodotto dei due effetti	and the Marian San San San San San San San San San S	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\frac{\pi a \sin \theta}{\lambda}} \right) \frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{\pi a \sin \theta}{\lambda})} \right)^2$		Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$		$\int \frac{dx}{\sqrt{x^2 + r^2}} dx = \sqrt{r^2 + x^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{-\mathrm{d}x} \mathrm{d}x = \left \log \left(\frac{1 + \sin x}{1 + \sin x} \right) \right $	$\int \cos x dx$	$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$	
	(220)		(221)		(222)	(223)		(224)		(225)	(226)		(227)			(228)		(229)			(230)	ttile	(231)		(232)		(233)		(234)		(235)		(236)	(237)		(267)		(268)			(269)	
· Interferenza generica Onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1 - \omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k \left(r_2 - r_1\right)\right)$ Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$	Massimi	$\delta = 2n\pi$ Minimi	$\delta = (2n+1)\pi$	· Condizione di Fraunhofer	$\theta = \frac{\Delta y}{L}$	L grande tale che $\tan \theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$		$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \rightarrow \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$		· Interf. riflessione su lastra sottile (n indice rifr., t spessore lastra)	Diff. cannino ottico $\delta = \frac{2\pi}{\sqrt{-2nt}}$	$\lambda \cos \theta_t$ Massimi $m \in \mathbb{N}$	$t = \frac{2m+1}{4n}\lambda\cos\theta_t$	$\text{Minimi } m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\sqrt{d}} d\sin\theta$	λ Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^2$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	$I_{MAX} = N^2 I_0$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{-} = K$	Soluzione	$v(t) = k\tau (1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA	\cdot Integrali ricorrenti	$\int \frac{x}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$ $\int \frac{1}{r^2 - r^2} dx = \ln \sqrt{x^2 + r^2} + x$	$\int \sqrt{x^2 + r^2}$
	(198)		(199)		(200)	(201)		(202)	(203)	(204)		(205)	(206)	(207)	(208)	1)	(209)		(210)	(211)	(212)	sso non	(213)	(214)	(215)		(010)	(216)	(217)		(218)	(219)		-0124	(001)	(261)	(262)	(263)	(264)		(265)	(~~~)
· Indice di rifrazione	$n = - = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1=n_2\sin\theta_2$	· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_i} \qquad R = \frac{P_r}{P_i} = \frac{I_r}{I_i}$	$t = rac{E_t}{E_i}$ $T = rac{P_t}{P_i} = rac{I_t}{I_i}$	Raggio RIFLESSO polarizzato	$r_{\sigma} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{\cos(\theta_t - \theta_i)}$	$\tan(\theta_t + \theta_i)$ $R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato $2n_z\cos\theta.$	$t_{\sigma} = \frac{2n_t \cos \sigma_t}{n_t \cos \theta_t + n_t \cos \theta_t}$	$t_p i = \frac{2n_i \cos \theta_i}{n_t \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	Luce NOIN polarizzata $B = \frac{1}{2}(B_{\sigma} + B_{\pi}) T = \frac{1}{2}(T_{\sigma} + T_{\pi})$	Incidenza normale $(\cos \theta_i ? \cos \theta_t = 1)$	$r = \frac{n_i - n_t}{n_t}$	$n_i + n_t$	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)$	$t = \frac{2n_i}{n_i + n_t}$	$T = \frac{4n_i n_t}{(n_i + n_x)^2}$	Angolo di Brewster (il raggio riflesso non	na potat: paraneta) $\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{2}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione	I_i	$p = \frac{-}{v}$ Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{}$	v . Bannorto di nolarizzazione	$\beta_R = \frac{P_R^a - P_R^a}{P_Q^a + P_R^a}$	$\beta_T = \frac{P_T^{\sigma} - P_T^{\pi}}{\sum_{n=0}^{T} P_T^{\pi}}$	Pa + Pr PT + PT	NE	· Lavoro	F = abla W = - abla U . Moto circolara	. Moto circolare unit. accelerato $v=\omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$	· Moto armonico Equazione differenziale	$x'' + \omega^2 x = 0$ Soluzione $x(t) = A \sin(\omega t + \omega)$	(1) - trestation : T)
	(180)		(181)		(182)			(183)	(184)			(185)		(186)		(187)	a dı 2		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)	(100)	(196)	(197)		(255)	(256)	(257)	(258)	(259)	(260)	()
\cdot Effetto Joule $_{V}$	$\langle P_R \rangle = \frac{V_0}{2R}$	· Potenza media totale	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$	· V e I efficace	$V_{eff} = \frac{\sqrt{2}}{2} V_0$ $I_{eff} = \frac{\sqrt{2}}{2} I_0$	■ CAMPO EM e OTTICA	· Campi in un'onda EM (Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v} \cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{\lambda} \lambda = \frac{v}{\nu}$	· Vettore di Poynting	$\mathbf{S} = \frac{1}{Ho} \mathbf{E} \times \mathbf{B}$	ر Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensita varia in base alla scelta di E. Fquazioni di continuità	Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	\cdot Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d}\tau$	· Densità di quantità di moto	$\mathbf{g} = \frac{1}{C^2} \mathbf{X}$	· Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	· Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	· Velocità dell'onda , 1	$v^{-} = \frac{k_e \varepsilon_0 k_m \mu_0}{1}$	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$	■ UNITÀ DI MISURA $Wh \qquad _{}^{m^2k\sigma}$	$H = \frac{Wb}{A} = Tm^2 = \frac{m^2 \kappa g}{A^2 s^2}$	$\Omega = \frac{V}{A} = \frac{V^2}{W} = \frac{m^2 kg}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m^2 kg}{s^3 A}$ - C $C^2 A^2 s^4$	$F = \frac{1}{V} = \frac{1}{J} = \frac{1}{m^2 kg}$	■ FISICA 1 · Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$	AM - 4 : 4 - 4 :

. Differenziale di nrimo ordine	Soluzioni	in	. Ide	. Identità vettoriali		. Identità geometriche	
Forma generale		0 <		· · · · · · · · · · · · · · · · · · ·	(686)	0	
y'(t) + a(t)y(t) = b(t)	(276) $u(t) =$	$u(t) = c \cdot e^{\lambda_1 t} + c \cdot e^{\lambda_2 t}$) · ^	$V \cdot (V \times \mathbf{A}) = 0$	(787)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta (288)$	β (288)
		-cle + c2e		$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = e^{-A(t)(c+\int b(t)e^{A(t)}dt)}$	Se $\Delta = 0$	0 =) · △	$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$	(284)	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(x) = c Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	$(280) \qquad \nabla(\mathbf{A}$	$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$		$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(282)		
Forma generate $y'' + ay' + by = 0 \qquad a, b \in \mathbb{R}$	(278) $y(t) =$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$		$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$\operatorname{con} \alpha = Re(\lambda) e \beta = Im(\lambda)$	A×	$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$	(292)
		Cartesiane	Sferiche	che	Cilindriche		
	Gradiente ($\nabla f =$)	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial \mathbf{f}}{\partial \mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{1}{r\sin\theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{\partial f}{\partial r}\mathbf{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\theta + \frac{\partial f}{\partial z}\mathbf{z}$	SZ.	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial F_\theta \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$	$\frac{\partial \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}$	$\frac{1}{r}\frac{\partial (rF_r)}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{\partial F_z}{\partial z}$	
	Rotore $(\nabla \times \mathbf{F} =)$	$ \begin{pmatrix} \partial F_z \\ \partial y \\ \partial y \\ \partial F_x \\ \frac{\partial F_x}{\partial x} \\ \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} \\ \end{pmatrix} $	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial F_{\phi}\sin\theta}{\partial\theta} - \frac{\partial F_{\theta}}{\partial\phi}\right)\right)$ $\frac{1}{r}\left(\frac{1}{\sin\theta}\frac{\partial F_{r}}{\partial\phi} - \frac{\partial (rF_{\phi})}{\partial r}\right)$ $\frac{1}{r}\left(\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial\theta}\right)$	$\begin{pmatrix} \frac{\partial F_{\phi} \sin \theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \\ \frac{\partial \theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \end{pmatrix}$ $\frac{1}{r} \begin{pmatrix} \frac{\partial (F_{\theta})}{\partial r} \\ \frac{\partial (F_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \\ \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \\ \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \end{pmatrix}$		
		 laplaciano di un cam	I laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	nque coordinata, è ∇	ΦΔ.,		