DAILY ASSESSMENT FORMAT

Date:	11 JUNE 2020	Name:	PAVITHRAN S
Course:	R PROGRAMMING	USN:	4AL17EC068
Topic:	R PROGRAM MANIPULATION	Semester & Section:	6 ^{тн} В
Github	Pavithran		
Repository:			

FORENOON SESSION DETAILS Image of session

Report – Report can be typed or hand written for up to two pages.

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. R language is rich in built-in operators and provides following types of operators.

Types of Operators

We have the following types of operators in R programming -

- Arithmetic Operators
- Relational Operators
- Logical Operators
- Assignment Operators
- Miscellaneous Operators

Arithmetic Operators

Following table shows the arithmetic operators supported by R language. The operators act on each element of the vector.

+ /	Adds two vectors	v <- c(2,5.5,6) t <- c(8, 3, 4)
		t <- c(8, 3, 4)
		print(v+t)
		it produces the following result -
		[1] 10.0 8.5 10.0
_	Subtracts second vector from the first	Live De
v <- c(2,5.5,6) t <- c(8, 3, 4) print(v-t)	t <- c(8, 3, 4)	
		it produces the following result -
		[1] -6.0 2.5 2.0
* 1	Multiplies both vectors	Live De
		v <- c(2,5.5,6) t <- c(8, 3, 4) print(v*t)
		it produces the following result -
		[1] 16.0 16.5 24.0
/ [Divide the first vector with the second	Live De
		v <- c(2,5.5,6) t <- c(8, 3, 4) print(v/t)
	When we execute the about the following result –	When we execute the above code, it produ the following result –
		[1] 0.250000 1.833333 1.500000
	Give the remainder of the first vector with the second	Live De
V	with the second	v <- c(2,5.5,6) t <- c(8, 3, 4) print(v%%t)
		it produces the following result -

		[1] 2.0 2.5 2.0	
%/%	The result of division of first vector with second (quotient)	<pre>Live De v <- c(2,5.5,6) t <- c(8, 3, 4) print(v%/%t)</pre>	<u>emo</u>
		it produces the following result – [1] 0 1 1	
۸	The first vector raised to the exponent of second vector	<pre>Live De v <- c(2,5.5,6) t <- c(8, 3, 4) print(v^t)</pre>	<u>emo</u>
		it produces the following result – [1] 256.000 166.375 1296.000	

Relational Operators

Following table shows the relational operators supported by R language. Each element of the first vector is compared with the corresponding element of the second vector. The result of comparison is a Boolean value.

Operator	Description	Example
>	Checks if each element of the first vector is greater than the corresponding element of the second vector.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v>t) it produces the following result - [1] FALSE TRUE FALSE FALSE</pre>
<	Checks if each element of the first vector is less than the corresponding element of the second vector.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v < t) it produces the following result - [1] TRUE FALSE TRUE FALSE</pre>
==	Checks if each element of the first vector is equal to the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v == t) it produces the following result -

		[1] FALSE FALSE FALSE TRUE
<=	Checks if each element of the first vector is less than or equal to the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v<=t) it produces the following result -
		[1] TRUE FALSE TRUE TRUE
>=	Checks if each element of the first vector is greater than or equal to the	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v>=t)
	corresponding element of the second vector.	it produces the following result - [1] FALSE TRUE FALSE TRUE
!=	Checks if each element of the first vector is unequal to the	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v!=t)
	corresponding element of the second vector.	it produces the following result - [1] TRUE TRUE TRUE FALSE

Logical Operators

Following table shows the logical operators supported by R language. It is applicable only to vectors of type logical, numeric or complex. All numbers greater than 1 are considered as logical value TRUE.

Each element of the first vector is compared with the corresponding element of the second vector. The result of comparison is a Boolean value.

(It is called Element-wise Logical AND operator. It combines each element of the first vector with the corresponding	v <- c(3,1,TRUE,2+3i) t <- c(4,1,FALSE,2+3i) print(v&t)
6	element of the second vector and gives a	it produces the following result -
	output TRUE if both the elements are TRUE.	[1] TRUE TRUE FALSE TRUE

I	It is called Element-wise Logical OR operator. It combines each element of the first vector with the corresponding element of the second vector and gives a output TRUE if one the elements is TRUE.	v <- c(3,0,TRUE,2+2i) t <- c(4,0,FALSE,2+3i) print(v t) it produces the following result - [1] TRUE FALSE TRUE TRUE
!	It is called Logical NOT operator. Takes each element of the vector and gives the opposite logical value.	v <- c(3,0,TRUE,2+2i) print(!v) it produces the following result - [1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the vectors and give a vector of single element as output.

Operator	Description	Example
&&	Called Logical AND operator. Takes first	v <- c(3,0,TRUE,2+2i) t <- c(1,3,TRUE,2+3i) print(v&&t)
	element of both the vectors and gives the TRUE only if both are TRUE.	it produces the following result – [1] TRUE
II	Called Logical OR operator. Takes first	v <- c(0,0,TRUE,2+2i) t <- c(0,3,TRUE,2+3i) print(v t)
	element of both the vectors and gives the TRUE if one of them is TRUE.	it produces the following result – [1] FALSE

Assignment Operators

These operators are used to assign values to vectors.

Operator	Description	Example
<- or	Called Left Assignment	v1 <- c(3,1,TRUE,2+3i) v2 <<- c(3,1,TRUE,2+3i) v3 = c(3,1,TRUE,2+3i) print(v1)

= or		<pre>print(v2) print(v3)</pre>
VI <<-		it produces the following result -
		[1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i
->	Called Right Assignment	c(3,1,TRUE,2+3i) -> v1 c(3,1,TRUE,2+3i) ->> v2 print(v1) print(v2)
or		it produces the following result -
->>		[1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i