

TP 3: Camino mínimo y Flujo máximo

20 de Junio, 2023

Algoritmos y Estructuras de Datos III

Integrante	LU	Correo electrónico	
Zaid, Pablo	869/21	pablozaid2002@gmail.com	
Arienti, Federico	316/21	fa.arienti@gmail.com	

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA

Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (++54 +11) 4576-3300

 $\rm http://www.exactas.uba.ar$

RESUMEN

En la teoría de grafos, el problema del camino mínimo¹ se refiere a una serie de problemas relacionados a encontrar, para un grafo —o digrafo—G = (V, E) con función de peso $w : E \to \mathbb{R}$ asociada y ciertos pares de vértices $s, t \in V$, un conjunto de caminos para los cuales la suma total del peso de sus aristas —su distancia— es mínima de entre todos los caminos posibles con extremos en algún par s y t. En este informe, nos vamos a concentrar en la variante del problema conocida como camino mínimo a partir de una única fuente, donde interesa conocer la distancia de cualquier camino mínimo entre una fuente $s \in V$ y todo el resto de los vértices $v \in V \setminus \{s\}$.

Existen diversos métodos para la resolución de este problema. Entre ellos, los algoritmos de *Bellman-Ford* y de *Dijkstra*, que se basan en el concepto de *relajación de aristas*² para la construcción de una solución.

El siguiente informe evalúa el problema del trafico, explicado en el próximo apartado, y lo reformula como una aplicación particular del problema de camino mínimo a partir de una única fuente que aprovecha la propiedad de subestructura óptima de los caminos mínimos. Además, evalúa la eficiencia de la solución propuesta de manera empírica.

Palabras clave: camino mínimo, algoritmo de Dijkstra.

Índice

1.	El problema del tráfico	2
1.1.	Modelado como un problema de camino mínimo	2
1.2.	Demostración de optimalidad	2
1.3.	Demostración de correctitud	2
1.4.	El algoritmo	2
1.5.	Complejidad temporal y espacial	2
2.	Evaluación empírica	2

¹Ver Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest y Clifford Stein. Introduction to algorithms. 2009. Sección 24: Single-source shortest paths.

²Podemos pensar en el proceso de relajación como un método por el cual se mejora, sucesivamente, la cota superior a la distancia que puede tener un camino mínimo. El mismo se basa en la propiedad de desigualdad triangular: si $\delta: E \to \mathbb{R}$ denota la distancia mínima entre cualquier par de vértices en V, entonces para cualquier par de vértices s y t y arista $(u, t) \in E$ con $u \neq s$, $\delta(s, t) < \delta(s, u) + w(u, t)$.

1. El problema del tráfico

El problema del trafico que consideraremos tiene la siguiente premisa. Dado una ciudad representada por n puntos conectados por m calles unidireccionales, dos puntos críticos s y t, y un conjunto

$$P := \{p_1 \dots p_k\}$$

de k calles bidireccionales candidatas, queremos saber por cuánto podemos mejorar la distancia mínima entre s y t, de construir una de estas calles.

Para ello, vamos a contar con la longitud l_i , $1 \le i \le n$ de cada calle en la ciudad y la longitud l_i , $1 \le j \le k$ de cada calle candidata.

Por ejemplo, si tuvieramos la siguiente ciudad, puntos críticos s=1 y t=4 y las calles candidatas marcadas en gris

podríamos construir la calle $2 \leftrightarrow 3$ con peso 5 para lograr una distancia mínima de largo 35.

- 1.1. Modelado como un problema de camino mínimo.
- 1.2. Demostración de optimalidad.
- 1.3. Demostración de correctitud.
- 1.4. El algoritmo.
- 1.5. Complejidad temporal y espacial.
 - 2. EVALUACIÓN EMPÍRICA