- 37. Определение всюду плотности. Последовательность ln(n) всюду плотна на [0, 1].
- 38. Определение всюду плотности. Если последовательность равномерно распределена по модулю 1, то она и всюду плотна.

Последовательность x_n всюду плотна на отрезке [a, b], если \forall $[c,d] \subset [a,b]$ \exists бесконечного много номеров N таких, что $\{x_N\} \in [c,d]$.

 $\{ln(n)\}$ всюду плотна на [0; 1].

 \blacktriangle Зафиксируем N. Тогда $[x_n] = k \in \{1, \dots, [ln(N)]\}$. $\{ln(n)\} \in [c; d] \Leftrightarrow ln(n) \in [k+c; k+d] \Rightarrow n \in [e^{k+c}; e^{k+d}]$. Для N число подходящих п будет $\sum_{k=1}^{[ln(N)]} (e^{k+d} - e^{k+c}) = \frac{e(e^{ln(N)}-1)}{e-1} (e^d - e^c) N \frac{e(e^d - e^c)}{e-1} \to \infty$

Теорема. Если последовательность x_n p.p. mod 1, то она всюду плотна на отрезке [0, 1].

▲ Из определения равномерной распределённости по модулю 1, $\forall c < d \in [0;1]$ $\lim_{N \to \infty} \frac{|k|k \leqslant N, \{x_k\} \in [c;d]|}{N} = d-c$, т.е. для любого подотрезка \exists бесконечное количество точек в нём