Linear Classification - Stochastic Gradient

Abdelouahed Benjelloun

February 2017

1 Introduction

The statistical machine learning approach begins with the collection of a sizable set of examples $(x_1, y_1), ..., (x_N, y_N)$, where for each $i \in 1..n$ the vector x_i represents the features and the scalar y_i a label indicating whether x_i belongs $(y_i = 1)$ or not $(y_i = 1)$ to a particular class. With such a set of examples, one can construct a classification program, defined by a prediction function h, and measure its performance by counting how often the program prediction $h(x_i)$ differs from the correct prediction y_i . To avoid rote memorization, one should aim to find a prediction function that generalizes the concepts that may be learned from the examples. One way to achieve good generalized performance is to choose between a carefully selected class of prediction functions.

Thanks to such a high-dimensional sparse representation of documents, it has been deemed empirically sufficient to consider prediction functions of the form h(x; w,) = < w, x >. The risk to be optimized can be written as:

$$R_N(W) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \langle w, x_i \rangle)^2$$

2 The algorithm

To get the appropriate w^* the stochastic gradient descent is a good algorithm that gets a good results faster than the classical optimization algorithms, especially when it's applied to a very large data : N very large.

Algorithm 1 Sctochastic Gradient

- 1: Initialisation : $w^* = w_0$
- 2: $loop \ k = 1 : K$

$$i \sim U([0, N])$$

$$w^* = w^* - \alpha_k * (-2y_i * x_i + 2 < x_i, w^* > x_i)$$

3 Results

In the following exemples we choosed $\alpha_k = \frac{1}{k}$, the index *i* with a uniform distribution. The ground truth data has been simulated with W = (1, -1)

2. Results for 1000 data points without noise, we find $w^* = (1.1, -1.06)$

Figure 1: True data

Figure 2: GS results, K=100

3. Results for 1000 data points with gaussien noise : $\epsilon \sim \frac{1}{5} * N(0,1)$: we find $w^* = (1.07, -1.02)$

Figure 3: True noisy data

Figure 4: GS results, K=100