Course Schedule

Sun.	Mon.	Tue.	Wed.	Thur.	Fri.	
		Lecture Apr. 13		Experiment Apr. 15		Week 8
		Lecture Apr. 20		Experiment Apr. 22		Week 9
Lecture Apr. 25		Lecture Apr. 27		Experiment Apr. 29		Week 10
				Lecture May 6		Week 11
		Lecture May 11		Experiment May 13		Week 12

EE359 Data Mining Lecture 9

Frequent Itemsets

Liyao Xiang
http://xiangliyao.cn/
Shanghai Jiao Tong University

_

Course Landscape

Apps

Recommen dation systems

Social networks

Spatiotemporal DM Frequent itemsets

Privacy-Preserving data mining

Adversarial data mining

High-dim. data

Finding similar items

Clustering

Dimensional ity reduction

Graph data

Link analysis

Community detection

Link prediction

Frameworks

Large-scale ML

MapReduce

Streaming data

Streaming alg.

Data Mining Fundamentals

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

• Frequent pattern: a pattern (a set of items, subsequences, substructures ...) that appear frequently in a database

- Finding frequent patterns is key to mining associations, correlations, clustering, classification and other relationships among data.
- Applications: basket data analysis, cross-marketing, catalog design

. . .

- itemset: a set of one or more items
- k-itemset: $X = \{x_1, ..., x_k\}$
- (absolute) support, or support count of X: frequency or occurrence of an itemset X
- (relative) support: the fraction of transactions that contains X over all transaction
- An itemset X is frequent if X's support is no less than a defined threshold min_sup

TID	Items Purchased
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

 support: probability that a transaction contains X&Y

$$support(X\Rightarrow Y) = P(X\&Y)$$

 confidence: conditional prob. that a transaction having X also contains Y

confidence(
$$X \Rightarrow Y$$
) = P($Y|X$)

$$P(Y|X) = \frac{\operatorname{support}(X \& Y)}{\operatorname{support}(X)}$$

TID	Items Purchased
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- min_sup: minimum support threshold
- min_conf: minimum support confidence threshold
- e.g., find all rules X ⇒ Y with min_sup and min_conf

let min_sup = 50%, min_conf = 50%

frequent pattern: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3, {Beer, Diaper}: 3

Association rules:

Beer⇒Diaper (60%, 100%)

Diaper⇒Beer (60%, 75%)

$$P(Y|X) = \frac{\text{support}(X\&Y)}{\text{support}(X)}$$

TID	Items Purchased		
10	Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper		
30	Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk		

- Association rule mining includes:
 - 1. Find all frequent itemsets: frequency of itemsets ≥ min_sup
 - 2. Generate strong association rules from the frequent itemsets
- 1 is the major step, but challenging in that there may be a huge number of itemsets satisfying min_sup
- An itemset is frequent ⇒ each of its subsets is frequent
- Solution: mine closed frequent itemset and maximal frequent itemset
- closed frequent itemset X: X is frequent and there is no super-itemset Y ⊃
 X with the same support count as X
 - closed frequent itemset is a lossless compression of frequent itemset
- maximal frequent itemset X: X is frequent and there is no super-itemset Y
 → X which is frequent

- e.g., {<a1, ..., a100>, < a1, ..., a50>}, min_sup = 1
- What is the set of closed frequent itemset?
 - <a1, ..., a100>: 1, < a1, ..., a50>: 2
- What is the set of maximal frequent itemset?
 - <a1, ..., a100>: 1
 - We can assert <a2, a45> is frequent since a2, a45 ∈ < a1, ..., a100>
 but cannot assert their actual support count
- How many itemsets are potentially to be generated in the worst case?
 - When min_sup is low, there exist potentially an exponential number of frequent itemsets
 - Worst case: M^N where M = # distinct items, N = max length of transactions

Summary

- frequent pattern
- k-itemset
- (absolute) support, support count, relative support
- min_sup, confidence
- closed frequent itemset, maximal frequent itemset

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FP-Growth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

- Downward Closure Property: any subset of a frequent itemset must be frequent
 - e.g., if {beer, diaper, nuts} is frequent, so is {beer, diaper} since every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori employs a level-wise search where k-itemsets are used to explore (k + 1)-itemsets. Steps:
 - 1. Scan database once to get frequent 1-itemsets L₁
 - 2. Join the k-frequent itemsets L_k to generate length (k+1) candidate itemsets C'_{k+1}
 - 3. Prune C'k+1 against the database to get Ck+1
 - 4. Scan (Test) database for the count of each candidate in Ck+1, obtain Lk+1
 - 5. Terminate when no frequent or candidate set can be generated

- How to generate candidates?
 - Step 1: self-joining Lk
 - Step 2: pruning
- Example of Candidate-generation
 - 1. $L_3 = \{abc, abd, acd, ace, bcd\}$
 - 2. Self-joining L₃ ⊗ L₃: abcd from abc and abd; acde from acd and ace
 - 3. Pruning: acde is removed because ade is not in L₃
 - 4. $C_4 = \{abcd\}$

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40 B, E		
40	В, Е	

min_	_sup	= 2
	C_1	
		→

scan database for count of each candidate

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

L ₁
compar

compare candidate support count with min_sup

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

 Itemset
 sup

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

L2

compare candidate support count with min_sup

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3

C2

scan database for count of each candidate

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}

{C, E}

join and prune

join and prune

Itemset

{B, C, E}

C₃/L₃
scan database

Itemset sup {B, C, E} 2

{C, E}

Ck: Candidate itemset of size k

Lk: Frequent itemset of size k

```
L_1 = \{1-\text{frequent items}\};
for (k = 1; L_k != \emptyset; k++) do begin
  C_{k+1} = candidates generated from L_k; // join and prune
  for each transaction t in database do
     increment the count of all candidates in Ck+1 that are
      contained in t
  end
  Lk+1 = candidates in Ck+1 with min_sup
end
return Uk Lk;
```

- How to count supports of each candidate?
 - The total number of candidates can be huge
 - One transaction may contain many candidates
 - Support Counting Method:
 - store candidate itemsets in a hash-tree
 - leaf node of hash-tree contains a list of itemsets and counts
 - interior node contains a hash table

Prefix structure enumerating 3-itemset in Transaction t

Figures from https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf

- Challenges:
 - Multiple scans of transaction database
 - Huge number of candidates
 - Support counting for candidates
- Improving the Efficiency of Apriori
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

- Partition (reduce scans): partition data to find candidate itemsets
 - Any itemset that is potentially frequent (relative support ≥ min_sup) must be frequent (relative support in the partition ≥ min_sup) in at least one of the partition
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: assess the actual support of each candidate to determine the global frequent itemsets

- Dynamic itemset counting (reduce scans): adding candidate itemsets at different points during a scan
- new candidate itemsets can be added at any start point (rather than determined only before scan)

- once both A and D are determined frequent, the counting of AD begins
- Once all length 2 subsets of BCD are determined frequent, the counting of BCD begins

- Hash-based Technique (shrink number of candidates): hashing itemsets into corresponding buckets
 - A k-itemset whose corresponding hashing bucket count is below min_sup cannot be frequent

- Sampling: mining on a subset of the given data
 - Trade off some degree of accuracy against efficiency
 - Select sample S of original database, mine frequent patterns within S (a lower support threshold) instead of the entire database —> the set of frequent itemsets local to S = Ls
 - Scan the rest of database once to compute the actual frequencies of each itemset in Ls
 - If Ls actually contains all the frequent itemsets, stop; otherwise
 - Scan database again for possible missing frequent itemsets

Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FP-Growth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

A Frequent-Pattern Growth Approach

- Bottlenecks of Apriori
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test, often generates a huge number of candidates
- FP-Growth
 - Depth-first search
 - Avoid explicit candidate generation
 - Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc," i.e., project database D on abc: D |
 abc
 - "d" is a local frequent item in D | abc -> abcd is a frequent pattern

A Frequent-Pattern Growth Approach

<u>TID</u>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	$min_sup = 3$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	тт_оар
300	$\{b, f, h, j, o, w\}$	{ <i>f</i> , <i>b</i> }	F-list = f-c-a-b-m-p
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, \overline{a}, m, p\}$	

- Scan database once, find frequent 1-itemset
- 2. Sort frequent items in frequency descending order-> F-list

Header Table		
<u>Item</u>	frequency head	<u>l</u>
f	4	
c	4	
a	3	
b	3	
m	3	
p	3	

A Frequent-Pattern Growth Approach

<u>TID</u>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	$min_sup = 3$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	тт_оар — о
300	$\{b, f, h, j, o, w\}$	{f, b}	F-list = f-c-a-b-m-p
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	•
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, \overline{a}, m, p\}$	

- Scan database once, find frequent 1-itemset
- Sort frequent items in frequency descending order —> F-list
- 3. Scan database again, construct FP-tree
- 4. Mine FP-tree

How to Construct FP-tree?

FP-tree: a compressed representation of database. It retains the itemset association information.

To facilitate root **Header Table** tree traversal, each item Item frequency head increment counts of points to its existing nodes occurrence in the tree via p:1 create new nodes node-link p ₽*h:1* two branches share Items in each the common prefix: transaction are $p:2 \mid m:1$ f,c,a processed in F-list order 2nd branch is created 1st branch is created for transaction: for transaction: f,c,a,b,m f,c,a,m,p

How to Mine FP-tree?

1. Start from each frequent length-1 pattern (suffix pattern, usually the last item in F-list) to construct its conditional pattern base (prefix paths co-occurring with the suffix)

Conditional pattern bases

<u>item</u>	cond. pattern base
c	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1
p	fcam:2, cb:1

How to Mine FP-tree?

- 1. Start from each frequent length-1 pattern (suffix pattern, usually the last item in F-list) to construct its conditional pattern base
- 2. Construct the conditional FP-tree based on the conditional pattern base

How to Mine FP-tree?

- 1. Start from each frequent length-1 pattern (suffix pattern, usually the last item in F-list) to construct its conditional pattern base
- 2. Construct the conditional FP-tree based on the conditional pattern base
- 3. Mining recursively on each conditional FP-tree until the resulting FP-tree is empty, or it contains only a single path which will generate frequent patterns out of all combinations of its subpaths

fcm, fam, cam,

fcam

m-conditional FP-tree

a:3

Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree has a shared single prefix-path
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

The 2nd Example of FP-Growth

Transactional Data for an *AllElectronics* Branch

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

 Then we consider I4, generates a single-node conditional FPtree, <I2: 2>, and derives one frequent pattern, {I2, I4: 2}.

- first we consider I₅, the paths formed are <I2, I1, I5: 1> and <I2, I1, I3, I5: 1>
- I5-conditional FP-tree contains only <I2, I1:2>
- I3 is not included since its support count of 1 < min_sup
- The single path generates {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}

The 2nd Example of FP-Growth

- I3's conditional pattern base: {{I2, I1: 2}, {I2: 2}, {I1: 2}}
- Conditional FP-tree has two branches: <I2: 4, I1: 2> and <I1: 2>
- Frequent patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}

Scaling FP-Growth

- What if FP-tree cannot fit into memory?
 - Database projection: partition a database into a set of projected databases, then construct and mine FP-tree for each projected database
 - Parallel projection:
 - project the database in parallel for each frequent item
 - all partitions are processed in parallel
 - space costly
 - Partition projection:
 - project a transaction to a frequent item x if there is no any other item after x in the list of frequent items appearing in the transaction
 - a transaction is projected to only one projected database

Benefits of FP-tree

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info infrequent items are gone
 - Items in frequency descending order: occurs more frequently, the more likely to be shared
 - Never be larger than the original database (not including nodelinks and the count fields)

Benefits of FP-Growth

- Divide-and-conquer:
 - Decompose both the mining task and database according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors:
 - No candidate generation, no candidate test
 - Compressed database: FP-tree
 - No repeated scan of the entire database
 - Basic operations: count local frequent items and build sub FPtree, no pattern search and matching

Performance of FP-Growth in Large Datasets

FP-Growth vs. Apriori

Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FP-Growth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

ECLAT: Frequent Pattern Mining with Vertical Data Format

- Vertical data format: itemset transID_set
 - transID_set: a set of transaction IDs containing the itemset
- Derive frequent patterns based on the intersections of transID_set

itemset	TID_set			
I1	{T100, T400, T500, T700, T800, T900}		itemset	TID_set
I2		T400, T600, T800, T900}	{I1, I2}	{T100, T400, T800, T900}
I3	{T300, T500, T600,		▶ {I1, I3}	{T500, T700, T800, T900}
I4	{T200, T400}	,,,	$\{I1, I4\}$	{T400}
15	{T100, T800}		{I1, I5}	{T100, T800}
	(,		$\{I2, I3\}$	{T300, T600, T800, T900}
			$\{I2, I4\}$	{T200, T400}
		TID and	{I2, I5}	{T100, T800}
	itemset	TID_set	{I3, I5}	{T800}
	$\{I1, I2, I3\}$	{T800, T900}	2	000 000000
	{I1, I2, I5}	{T100, T800}		

ECLAT: Frequent Pattern Mining with Vertical Data Format

- Vertical data format: itemset transID_set
 - transID_set: a set of transaction IDs containing the itemset
- Derive frequent patterns based on the intersections of transID_set
- Use diffset to reduce the cost of storing long transID_set
 - {I1} = {T100, T400, T500, T700, T800, T900}
 - {I1, I2} = {T100, T400, T800, T900}
 - diffset({I1}, {I1, I2}) = {T500, T700}

Summary

- Frequent itemset mining methods:
 - Apriori: candidate generation-and-test
 - Improving efficiency of Apriori: partition, dynamic item counting, hash-based technique, sampling
 - FP-Growth: depth-first search
 - Scaling of FP-Growth: database projection
 - Frequent pattern mining with vertical data format

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

Pattern Evaluation Methods: Correlations

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - the overall % of students eating cereal is 75% > 66.7%
- play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate
- Lift: a measure of dependent/correlated event

lift =
$$\frac{P(A,B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)}$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(Basketball, Cereal) = \frac{2000/5000}{(3000/5000) \times (3750/5000)} = 0.89 \quad < \text{1, negatively correlated} \\ lift(Basketball, Notcereal) = \frac{1000/5000}{(3000/5000) \times (1250/5000)} = 1.33$$

Other Pattern Evaluation Methods

• χ^2 measure, all_confidence measure, max_confidence measure, Kulczynski measure, ...

Reading

• "Data Mining: Concepts and Techniques, 3rd Edition," Chapter 6.