Listing of Claims

Claim 1. (Currently Amended)

A process for the preparation of a compound of

formula (II):

$$R^{1}$$
 H

 $R^{2}NH$
 N
 $CO_{2}R^{3}$
 R^{4}

(II)

[[which includes the step of]] comprising cyclising a compound of formula (III):

$$R^{2}NH$$
 X
 $CO_{2}R^{3}$
 OH
 $CO_{2}R^{3}$
 OH
 R^{4}
 $(CH_{2})_{m}$
 OH
 (III)

wherein in formulae (II) and (III), R¹ is hydrogen, methoxy or formamido;

R² is an acyl group;

[[CO₂R³ is a carboxy group or a carboxylate anion, or R³ is a readily removable carboxy protecting group]]R³ is hydrogen or an ester-forming carboxyl-protecting group which may be removed under conventional conditions, or an *in vivo* hydrolysable ester radical;

R⁴ represents hydrogen or up to four substituents independently selected from alkyl, alkenyl, alkoxy, hydroxy, halogen, amino, alkylamino, acylamino, dialkylamino, CO₂R, CONR₂, SO₂NR₂ (where R is hydrogen or C₁₋₆ alkyl), aryl and heterocyclyl[[, which may be the same or different]], where in formula (III) the substituent(s) when other than hydrogen may replace any of the hydrogen atoms bonded to carbon atoms in the side chain;

X is S, SO, SO₂, O, or CH₂; [[and]]

m is 1 or 2; and

the dotted line indicates [[that the compounds (II) and (III) may be a 2-cephem or a 3-cephem system,]]a double bond between C2 and C3 or between C3 and C4 of formula (II).

[[and where in formula (III) the \underline{R}^4 substituent(s) [[R^4]] when other than hydrogen may replace any of the hydrogen atoms bonded to carbon atoms in the side chain.]]

Claim 2. (Currently Amended) [[A]] The process according to claim 1 wherein the compound of formula (II) is a [[3-cephem]] compound of formula (IIA) where the double bond is between the C3 and C4 carbons of formula (II) or a pharmaceutically acceptable salt or pharmaceutically acceptable in vivo hydrolysable ester thereof:

$$R^1$$
 H
 R^2NH
 X
 CO_2R^5
 R^4 (IIA)

[[wherein R¹, R², R⁴, m and X are as defined with respect to formula (II)]] wherein in formulae (II) and (III), R¹ is hydrogen, methoxy or formamido;

R² is an acyl group;

R⁴ represents hydrogen or up to four substituents independently selected from alkyl, alkenyl, alkynyl, alkoxy, hydroxy, halogen, amino, alkylamino, acylamino, dialkylamino, CO₂R, CONR₂, SO₂NR₂ (where R is hydrogen or C₁₋₆ alkyl), aryl and heterocyclyl;

X is S, SO, SO₂, O, or CH₂;

m is 1 or 2; and

the dotted line indicates a double bond between C2 and C3 or between C3 and C4 of formula (II); and [[the group]]

_____CO₂R⁵ is CO₂R³ where [[CO₂R³ is a carboxy group, or a carboxylate anion]] R³ is hydrogen or an ester-forming carboxyl-protecting group which may be removed under conventional conditions, or an *in vivo* hydrolysable ester radical.

Claim 3. (Currently Amended)

[[A]] The process according to claim 1 or 2

wherein X is S, O, or CH_2 .

Claim 4. (Currently Amended)

[[A]] The process according to claim[[s]] 1, or 2

[[or 3]] wherein the cyclic ether at the 3-position of the cephalosporin nucleus in formulae (II) and (IIA) is unsubstituted.

Claim 5. (Currently Amended) [[A]] The process according to [[any one of]] claim[[s]] 1 [[to 4]] or 2 wherein m is 1, so that the cyclic ether at the 3-position in formulae (II) and (IIA) is a tetrahydrofuranyl system.

Claim 6. (Currently Amended) [[A]] The process according to claim 5 wherein the cyclic ether at the 3-position in formulae (II) and (IIA) is an (S)-tetrahydrofuran-2-yl ring system.

Claim 7. (Currently Amended) [[A]] The process according to [[any one of the preceding]] claim[[s]] 1 or 2 wherein in formula (III) when m is 1 the 1, 4-dihydroxylbut-1-yl side chain is the less polar diastereoisomeric form.

Claim 8. (Currently Amended) [[A]] The process according to [[any one of the preceding]] claim[[s]] 1 or 2 wherein the cyclisation reaction of the process of the invention is carried out by treatment of the compounds (III) with an acid catalyst.

Claim 9. (Currently Amended) [[A]] The process according to [[any one of]] claim[[s]] 1 [[to 7]] or 2 wherein the cyclisation reaction is carried out by treatment of the compounds (III) with an acylating agent.

Claim 10. (Currently Amended) [[A]] The process according to [[any one of the preceding]] claim[[s]] 1 or 2, wherein the compound of formula (III) is prepared by reacting a compound of formula (IV):

with a compound of formula (V):

$$\underline{\underline{Y[[X]]Mg}} \underbrace{ (CH_2)_m}_{OMg[[X]]\underline{\underline{Y}}^1}$$

$$(V)$$

[[where R^4 and m are as defined with respect to formula (III), and X and X^1]]

wherein R¹ is hydrogen, methoxy or formamido;

R² is an amino-protecting group;

R³ is an ester-forming carboxyl-protecting group which may be removed under conventional conditions;

R⁴ represents hydrogen or up to four substituents independently selected from alkyl, alkenyl, alkynyl, alkoxy, hydroxy, halogen, amino, alkylamino, acylamino, dialkylamino, CO₂R, CONR₂, SO₂NR₂ (where R is hydrogen or C₁₋₆ alkyl), aryl and heterocyclyl;

m is 1 or 2;

Y and Y are the same or different halogen, and

the dotted line in formula (IV) indicates a double bond between C2 and C3 or between C3 and C4 of formula (IV).

Claim 11. (Currently Amended) [[A]] The process according to [[any one of]] claim[[s]] 1 [[to 10]] or 2, wherein the compound of formula III is prepared [[by converting a compound of formula (IV) [[(as defined in claim 10) into]] from a compound of formula (VIII):

$$R^{2}NH$$
 X
 $CO_{2}R^{3}$
 $CO_{2}R^{3}$

wherein said compound of formula VIII is then hydroxylated to form a compound of formula III: [[where R^1 , R^2 , R^3 , R^4 , m, and X are as defined with respect to formula (III).]]

$$R^{2}NH$$
 N
 CHO
 $CO_{2}R^{3}$ (IV)

wherein R¹ is hydrogen, methoxy or formamido;

R² is an amino-protecting group;

R³ is an ester-forming carboxyl-protecting group which may be removed under conventional conditions;

R⁴ represents hydrogen or up to four substituents independently selected from alkyl, alkenyl, alkynyl, alkoxy, hydroxy, halogen, amino, alkylamino, acylamino, dialkylamino, CO₂R, CONR₂, SO₂NR₂ (where R is hydrogen or C₁₋₆ alkyl), aryl and heterocyclyl;

m is 1 or 2; and

the dotted line in formula (IV) indicates a double bond between C2 and C3 or between C3 and C4 of formula (IV).

Claim 12. (Currently Amended) [[A]] The process according to claim 11 wherein the compound of formula (VIII) has a hydroxyl group configuration (VIII A):

Claim 13. (Currently Amended) A process according to claim [[11 or]] 12 wherein the compound of formula (IV) is formed into a compound of formula (VIII) by reaction with an organometallic reagent.

Claim 14. (Currently Amended) [[A]] <u>The process according to claim 13 wherein</u> the organometallic reagent is a compound of formula (IX):

$$Z = (CH_2)_m$$

(IX)

[[where m and R⁴ are as defined in formula (VIII), and]]

wherein R⁴ represents hydrogen or up to four substituents independently selected from alkyl, alkenyl, alkynyl, alkoxy, hydroxy, halogen, amino, alkylamino, acylamino, dialkylamino, CO₂R, CONR₂, SO₂NR₂ (where R is hydrogen or C₁₋₆ alkyl), aryl and heterocyclyl;

m is 1 or 2; and

Z is [[Y]]Z'Mg where [[Y]]Z' is a halogen.

Claim 15. (Currently Amended) [[A]] The process according to claim 11 or 12 wherein the compound of formula (VIII) is prepared stereospecifically from a compound of formula (IV) by the use of a compound (IX):

$$Z = (CH_2)_m$$
 R^4

(IX)

in which Z is a chirally inducing group which leads to preferential formation of a desired configuration of the hydroxyl group in the compound (VIII).

Claim 16. (Currently Amended) [[A]] The process according to claim 15 wherein Z is the boronate group (X):

where R^a, R^b, R^c, and R^d are independently selected from hydrogen, alkyl and protected carboxy.

Claim 17. (Currently Amended) [[A]] The process according to claim 16 wherein group (X) is [[a pinacol boronate group or]] a tartrate boronate group wherein R^a is alkylcarboxylate, R^b is hydrogen, R^c is alkylcarboxylate and R^d is hydrogen.

Claim 18. (Currently Amended) [[A]] The process according to [[any one of]] claim[[s]] 10 [[to 17]] wherein the compound (IV) is [[converted into a 2-cephem]] alkylated with a compound of formula (V) to form a compound of formula (III), which is then hydroxylated to form a compound of formula (III A):

which is [[converted during the cyclisation process of the invention into a 2-cephem]] then cyclized to form a compound of formula (II B):

$$R^{1}$$
 H
 X
 O
 $CO_{2}R^{3}$
 $CO_{2}R^{4}$
(II B)

[[where R¹, R², R³, R⁴, X and m are as defined in formulae (II) and (III) above, and the 2-cephem]] and the compound of formula (IIB) is then converted into a [[3-cephem]] a compound formulae (II);

wherein R¹ is hydrogen, methoxy or formamido;

R² is an acyl group;

R³ is hydrogen or an ester-forming carboxyl-protecting group which may be removed under conventional conditions, or an *in vivo* hydrolysable ester radical;

R⁴ represents hydrogen or up to four substituents independently selected from alkyl. alkenyl, alkynyl, alkoxy, hydroxy, halogen, amino, alkylamino, acylamino, dialkylamino, CO₂R, CONR₂, SO₂NR₂ (where R is hydrogen or C₁₋₆ alkyl), aryl and heterocyclyl, where in formula (III) the substituent(s) when other than hydrogen may replace any of the hydrogen atoms bonded to carbon atoms in the side chain; X is S, SO, SO_2 , O, or CH_2 ; m is 1 or 2; and

the dotted line indicates a double bond between C2 and C3 or between C3 and C4 of formula (II).

Claim 19. (Withdrawn) A process according to any one of the preceding claims, substantially as hereinbefore described, with reference to the accompanying examples.

Claim 20. (Withdrawn) The product of a process according to any one of claims 1 to 19.

Claim 21. Delete

Claim 22. (New) The process according to claim 1 where the ester-forming carboxyl-protecting group of R³ is benzyl, p-methoxybenzyl, benzovlmethyl, p-nitrobenzyl, 4pyridylmethyl, 222,trichloroethyl, 2,2,2-tribromoethyl, t-butyl, t-amyl, allyl, diphenylmethyl, triphenylmethyl, adamantyl, 2-benzyloxyphenyl, 4-methylthiophenyl, tetrahydrofur-2-yl, tetrahydropyran-2-yl, pentachlorophenyl, acetonyl, p-toluenesulphonylethyl, methoxymethyl, or an oxime radical of formula -N=CHR⁷ where R⁷ is anyl or heterocyclic.

Claim 23. (New) The process according to claim 1 where the in vivo hydrolysable ester group of R³ is acetoxymethyl, pivaloyloxymethyl, α-acetoxyethyl, α-pivaloyloxyethyl, 1-(cyclohexylcarbonyloxy)prop-1-yl, (1-aminoethyl)carbonyloxymethyl, ethoxycarbonuloxymethul, α-ethoxycarbonyuloxyethyl, propoxycarbonyloxyethyl, dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl, diethylaminoethyl, 2-(isobutoxycarbonyl)pent-2-enyl, 2-(ethoxycarbonyl)but-2-enyl, phthalidyl, and dimethoxyphthalidyl.