18.445 Introduction to Stochastic Processes Lecture 19: Galton-Watson tree

Hao Wu

MIT

27 April 2015

Hao Wu (MIT) 27 April 2015 1 / 7

Rooted trees

A **tree** is a connected graph with no cycles.

A **rooted tree** has a distinguished vertex v_0 , called the root.

The **depth** of a vertex v is its graph distance to the root.

A **leaf** is a vertex with degree one.

Consider a regular rooted tree:

- each vertex has a fixed number (say m) of offspring
- Z_n: the number vertices in the n-th generation
- for regular tree : $Z_n = m^n$

In real life, we often encounter trees where the number of offspring of a vertex is random.

Galton-Watson tree

- It starts with one initial ancestor
- \bullet it produces a certain number of offspring according to some distribution μ
- the new particles form the first generation
- each of the new particles produces offspring according to μ , independently of each other
- the system regenerates
- Z_n : the number of particles in n-th generation

Observation : If $Z_n = 0$ for some n, then $Z_m = 0$ for all $m \ge n$

 \rightarrow the family become extinct

Question: extinction probability $q = \mathbb{P}[Z_n = 0 \text{ eventuallly}]$?

Hao Wu (MIT) 18.445 27 April 2015 3/7

Extinction probability

Notations:

- μ : let p_k be the probability that a particle has k children, $k \ge 0$
- $\sum_{k=0}^{\infty} p_k = 1$
- $m := \mathbb{E}[Z_1] = \sum_{0}^{\infty} k p_k$
- Assume $p_0 + p_1 < 1$.
- Convention $0^0 = 1$
- extinction probability $q = \mathbb{P}[Z_n = 0 \text{ eventuallly}]$
- *f* : the generating function of the reproduction law :

$$f(s) := \mathbb{E}[s^{Z_1}] = \sum_{k=0}^{\infty} s^k p_k.$$

• $f(0) = p_0$, f(1) = 1, f'(1) = m.

Theorem

The extinction probability q is the smallest root of f(s) = s for $s \in [0, 1]$. In particular, q = 1 if $m \le 1$, and q < 1 if m > 1.

Extinction probability

Theorem

The extinction probability q is the smallest root of f(s) = s for $s \in [0, 1]$. In particular, q = 1 if $m \le 1$, and q < 1 if m > 1.

- In the subcritical case (m < 1),
 the GW tree dies out with probability 1
- In the critical case (m = 1),
 the GW tree dies out with probability 1
- In the supercritical case (m > 1), the GW tree survives with strictly positive probability 1 q.

Question : In the supercritical case m > 1, how fast the tree grows? We know that $\mathbb{E}[Z_n] = m^n$, do we have $Z_n \sim m^n$?

Growth rate

Assumption : $m \in (1, \infty)$. Define $W_n = Z_n/m^n$.

- $(W_n)_{n\geq 0}$ is a non-negative martingale
- *W_n* → *W* a.s.
- By Fatou's Lemma, we have $\mathbb{E}[W] \leq 1$

Observation : If W > 0, then $Z_n \sim m^n$; if W = 0, then $Z_n << m^n$.

Theorem (Kesten and Stigum)

$$\mathbb{E}[W] = 1 \Leftrightarrow \mathbb{P}[W > 0 \mid non\text{-extinction}] \Leftrightarrow \mathbb{E}[Z_1 \log^+ Z_1] < \infty$$

Hao Wu (MIT) 18.445 27 April 2015

Growth rate

Assumption : $m \in (1, \infty)$. Define $W_n = Z_n/m^n$.

- $(W_n)_{n\geq 0}$ is a non-negative martingale
- $W_n \rightarrow W$ a.s.
- By Fatou's Lemma, we have $\mathbb{E}[W] \leq 1$

Observation : If W > 0, then $Z_n \sim m^n$; if W = 0, then $Z_n << m^n$.

Theorem

If
$$\mathbb{E}[Z_1^2] < \infty$$
, then $\mathbb{E}[W] = 1$ and $\mathbb{P}[W = 0] = q$.

Lemma

 $\mathbb{P}[W=0]$ is either q or 1.

7/7

Hao Wu (MIT) 18.445 27 April 2015