

Norwegian University of Science and Technology Deptartment of Mathematical Sciences TMA4190 Introduction to Topology Spring 2018

Solutions to exercise set 12

- 1 Let $\beta = (v_1, \dots, v_k)$ be an ordered basis of a vector space V.
 - a) Replacing v_i by a multiple cv_i corresponds to multiplying β with the matrix which equals the identity matrix except at the *i*th position on the diagonal where 1 is replaced with c. The determinant of this matrix is equal to c. Hence (v_1, \ldots, v_k) and $(v_1, \ldots, cv_i, \ldots, v_k)$ are in the same equivalence class if and only if c > 0. If c < 0, they have opposite orientations.
 - b) Interchanging the places of v_i and v_j for $i \neq j$ corresponds to multiplying β with the matrix which equals the identity matrix with the *i*th and *j*th rows switched. We know from Linear Algebra that the determinant of this matrix is -1.
 - c) Subtracting from one v_i a linear combination of the others corresponds to multiplying β with a matrix that we obtain from the identity matrix by subtracting the corresponding linear combination of rows from the *i*th row. We know from Linear Algebra that this operation does not change the determinant of the matrix. Hence the determinant of the change-of-basis-matrix is still +1.
 - d) Suppose that V is the direct sum of V_1 and V_2 . Let (v_1, \ldots, v_k) be an ordered positively oriented basis of V_1 and (w_1, \ldots, w_m) an ordered positively oriented basis of V_2 . Then $(v_1, \ldots, v_k, w_1, \ldots, w_m)$ is an ordered positively oriented basis of $V_1 \oplus V_2$, and $(w_1, \ldots, w_m, v_1, \ldots, v_k)$ is an ordered positively oriented basis of $V_2 \oplus V_1$. Switching from the given positive basis of $V_1 \oplus V_2$ to the positive basis of $V_2 \oplus V_1$ corresponds to transposing exactly $(\dim V_1)(\dim V_2)$ many elements in the basis. Hence the determinant of the change-of-basis-matrix is $(-1)^{(\dim V_1)(\dim V_2)}$.
- Let $(e_1, ..., e_k)$ be the ordered basis of \mathbb{R}^k which defines the standard orientation of \mathbb{R}^k . The orientation of \mathbb{H}^k is given by the standard orientation of \mathbb{R}^k restricted to the subspace $\mathbb{H}^k \subset \mathbb{R}^k$. The boundary orientation of $\partial \mathbb{H}^k$ is given by requiring that, at any point $x \in \partial \mathbb{H}^k$, the outward pointing unit normal vector $n_x = -e_k$ fits into a positively oriented basis for \mathbb{R}^k

$$(n_x, e_1, \dots, e_{k-1}) = (-e_k, e_1, \dots, e_{k-1}).$$

But the matrix which sends (e_1, \ldots, e_k) to $(-e_k, e_1, \ldots, e_{k-1})$ is given by

$$A = \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & & 1 \\ -1 & 0 & \dots & & 0 \end{pmatrix}.$$

The matrix A can be transormed into the diagonal matrix

$$D = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & -1 \end{pmatrix}$$

by interchanging two columns exactly k-1 times. Hence $\det(D)=(-1)^{k-1}\det(A)$. But $\det(D)=-1$. Thus $\det(A)=1>0$ if and only if $(-1)^k=1$, i.e., if k is even.

a) At $x = (a, b, c) \in S^2$, the tangent space $T_x(S^2)$ is the two-dimensional vector subspace of \mathbb{R}^3 which is orthogonal to x. Since $(a, b, c) \neq (0, 0, 0)$, let us assume that, say, $b \neq 0$. A basis for $T_x(S^2)$ is given by, for example, v = (-b, a, 0) and v = (0, c, -b). The outward pointing normal vector is given by $n_x = (a, b, c)$. The boundary orientation of S^2 , is the orientation of $T_x(S^2)$ determined by the basis (n_x, v, w) . This basis is positively oriented in $T_x(\mathbb{R}^3) = \mathbb{R}^3$ if and only

if the matrix $A = \begin{pmatrix} a & -b & 0 \\ b & a & c \\ c & 0 & -b \end{pmatrix}$ has positive determinant, since this is the

matrix that transforms the standard basis of \mathbb{R}^3 into the basis (n_x, v, w) . The determinant of A is

$$\det(A) = -a^2b - b^3 - bc^2 = -b(a^2 + b^2 + c^2) = -b.$$

Thus, if b < 0, (n_x, v, w) is a positively oriented basis of $T_x(S^2)$. If b > 0, we take the basis (n_x, w, v) . And if b = 0, we start over with either a or c replacing b.

b) The boundary orientation of S^k is, at any point $x \in S^k$, given on $T_x(S^k)$ by chosing the ordered basis (n_x, v_1, \ldots, v_k) to be positively oriented where n_x is the outward pointing unit normal vector in $T_x(\mathbb{R}^{k+1}) = \mathbb{R}^{k+1}$ and (v_1, \ldots, v_k) is an ordered basis of $T_x(S^k)$. But since $S^k \subset \mathbb{R}^{k+1}$ is of codimension one, n_x spans the orthogonal complement $N_x(S^k, \mathbb{R}^{k+1})$ of $T_x(S^k)$ in \mathbb{R}^{k+1} . Hence the orientation of $T_x(S^k)$ induced by the direct sum

$$N_x(S^k, \mathbb{R}^{k+1}) \oplus T_x(S^k) = T_x(\mathbb{R}^{k+1}) = \mathbb{R}^{k+1}$$

equals the orientation of S^k as the preimage under g.

- Assume that $df_{x_0}: T_{x_0}(X) \to T_{f(x_0)}(Y)$ preserves orientation at some point $x_0 \in X$. Since f is a diffeomorphism, df_x is an isomorphism for all $x \in X$. Hence $\det(df_x) \neq 0$ for all $x \in X$. In particular, the two disjoint open subsets $U := \{x \in X : \det(df_x) > 0\}$ and $V := \{x \in X : \det(df_x) < 0\}$ cover X. By assumption $x_0 \in U$, and hence U is nonempty. Since X is connected, this implies U = X.
- 5 Let X and Z be transversal submanifolds in Y and assume X, Z and Y are oriented. Let $i: X \hookrightarrow Y$ be the inclusion of X into Y. The intersection $X \cap Z$ equals the

preimage $i^{-1}(Z)$. By the lecture, the preimage orientation on $S := i^{-1}(Z)$ is induced, at any $y \in X \cap Z$, by the direct sum

$$N_y(S,X) \oplus T_y(S) = T_y(X),$$

where $N_y(S, X)$ is the orthogonal complement of $T_y(S)$ in $T_y(X)$. The orientation on $N_y(S, X)$ is induced by the direct sum

$$di_y(N_y(S,X)) \oplus T_y(Z) = T_y(Y),$$

and the fact that $d(i_y)_{|N_y(S,X)}$ is an isomorphism onto its image. Since all these vector spaces are subspaces in $T_y(Y)$, and are oriented as subspaces of $T_y(Y)$, we can identify $N_y(S,X)$ with its image under di_y in $T_y(Y)$ and can rewrite this equation

$$N_u(S,X) \oplus T_u(Z) = T_u(Y).$$

Now let $N_y(S, Z)$ be the orthogonal complement of $T_y(S)$ in $T_y(Z)$. Then the orientation of $T_y(S)$ is determined by the direct sum

$$N_y(S,X) \oplus N_y(S,Z) \oplus T_y(S) = T_y(Y).$$

Now if we start the inclusion $j: Z \hookrightarrow Y$ of Z in Y instead, we get that the orientation of S considered as the preimage $j^{-1}(X)$ in Z, is determined by the direct sum

$$N_y(S,Z) \oplus N_y(S,X) \oplus T_y(S) = T_y(Y).$$

We learned in the first exercise that the signs of the orientations of $N_y(S,X) \oplus N_y(S,Z)$ and $N_y(S,Z) \oplus N_y(S,X)$ differ by $(-1)^{(\dim N_y(S,X))(\dim N_y(S,Z))}$. Now it remains to remark that, by defintion of the normal spaces as orthogonal complements, we have

$$\dim N_y(S,X) = \operatorname{codim} X \cap Z \text{ in } X = \operatorname{codim} Z \text{ in } Y, \text{ and } \dim N_y(S,Z) = \operatorname{codim} X \cap Z \text{ in } Z = \operatorname{codim} X \text{ in } Y.$$

6 a) Any basis of $V \times V$ consists of the product $(\alpha \times 0, 0 \times \beta)$ where α and β are ordered bases of V. The sign of this basis satisfies

$$sign(\alpha \times 0, 0 \times \beta) = sign(\alpha) \cdot sign(\beta).$$

Switching the orientation of V changes both signs, $\operatorname{sign}(\alpha)$ and $\operatorname{sign}(\beta)$. Changing both signs simultaneously results in multiplying with $(-1)^2 = 1$. Hence the sign of the basis of $V \times V$ is independent of the choice of orientation for V.

b) Let X be an orientable manifold. The orientation of $X \times X$ is given by a smooth choice of orientation of each tangent space

$$T_{(x,y)}(X \times X) = T_x(X) \times T_y(X).$$

Changing the orientation of X means changing the orientation of both $T_x(X)$ and $T_y(X)$. As in the previous point, this means multiplying the sign of any ordered basis of $T_{(x,y)}(X \times X)$ by +1. Hence the product orientation on $X \times X$ is the same for all choices of orientation on X.

- c) Let X be a smooth manifold which is not orientable. Any Euclidean space \mathbb{R}^m is oriented as a manifold by the choice of the standard orientation of the tangent space $T_z(\mathbb{R}^m) = \mathbb{R}^m$ for any $z \in \mathbb{R}^m$. For any points $x \in X$ and $vzin\mathbb{R}^m$, the tangent space $T_{(x,z)}(X \times \mathbb{R}^m)$ is just $T_x(X) \times \mathbb{R}^m$. If there was a smooth choice for an orientation of $X \times \mathbb{R}^m$, then each tangent space $T_x(X)$ of X would inherit a smooth choice of orientation from the product $T_x(X) \times \mathbb{R}^m$. This contradicts the non-orientability of X.
 - Now let Y by any smooth manifold. If $X \times Y$ was orientable, then also $X \times U$ for an open subspace $U \subset Y$ which is diffeomorphic to some \mathbb{R}^m . But then $X \times \mathbb{R}^m$ would also inherit an orientation which is not possible. Applied to Y = X, we see that $X \times X$ is not orientable.
- d) We can cover X by local parametrizations $\phi \colon U \to X$. The union of the images of the maps $\phi \times \phi \colon U \times U \to X \times X$ is then an open subspace V of $X \times X$ which includes Δ . We orient each individual $\phi(U)$ by requiring the diffeomorphism $\phi \colon U \to \phi(U)$ to be orientation preserving. This induces an orientation on $(\phi \times \phi)(U \times U) = \phi(U) \times \phi(U)$. As we argued before, changing the orientation on $\phi(U)$ does not change the orientation on the product $\phi(U) \times \phi(U)$, since we multiply the signs of all tangent spaces by +1. Hence there is a well-defined orientation on $\phi(U) \times \phi(U)$ which is independent on the local parametrizations chosen. Thus V which is an open neighborhood of Δ in $X \times X$ is orientable. However, this does not mean that Δ is always orientable. For, the tangent space to Δ at any point (x, x) is the diagonal of $T_x(X) \times T_x(X)$. This diagonal is isomorphic to $T_x(X)$. Hence changing the orientation of $T_x(X)$ does change the

to Δ at any point (x,x) is the diagonal of $T_x(X) \times T_x(X)$. This diagonal is isomorphic to $T_x(X)$. Hence changing the orientation of $T_x(X)$ does change the orientation of the diagonal in $T_x(X) \times T_x(X)$. Thus if we had a smooth choice of orientations for all diagonals in $T_x(X) \times T_x(X)$, then we had a smooth choice of orientations for all $T_x(X)$. In other words, Δ is orientable if and only if X is orientable.