same way the transitions $D^- \to D^+$ are also suppressed. Thus the resistance increases as a result of application of external magnetic field.

In our case of p-type structures the situation appears, again, more complicated due to more complex structure of A^+ centers. However, in general, the considerations given in [9], [10] still hold. Basing on the calculations similar to given in [10] one obtains for weak field limit $\mu gH < T$ the following estimate:

$$\ln \frac{R(H)}{R(0)} = CF \left(\frac{g\mu_b H}{T}\right)^2 \tag{32}$$

where $C \sim 1/3$,

$$F = \frac{2g_l g_u}{(g_l + g_u)^2} \tag{33}$$

while g_l , g_u are the densities of states of the lower and upper Hubbard bands. Note that for the low concentration of dopants g_u is controlled by the concentration of A^+ centers while g_l - by the concentration of A^- centers and thus $g_l = g_u$. At stronger magnetic fields when $\mu gH > T$, the corresponding contribution to magnetoresistance still increases with magnetic field increase until μgH reaches the value ξT and then saturates [9], [10].

One notes that at low enough temperatures the positive magnetoresistance of the spin nature suggested in [9] can exceed the wave shrinkage magnetoresistance. At the same time this contribution at relatively weak fields when $\mu gH < T$ is expected to be comparable to the spin magnetoresistance resulting from interference term discussed above. Summarizing the both spin contributions to quadratic magnetoresistance we estimate the coefficient k resulting from the similar parametrization of the positive quadratic and linear negative magnetoresistance as was done above:

$$k_{2} = g_{M} E_{B} r_{min}^{1/2} r_{h} 2a^{1/2} \beta \qquad \text{Mott law}$$

$$k_{2} = \frac{\kappa^{2}}{e^{4}} E_{B}^{2} r_{min} r_{h}^{1/2} 2a^{1/2} \beta \qquad \text{ES law}$$

$$\beta = P(H = 0) \frac{T}{g\mu_{B}} \frac{r_{h}^{3/2} a^{1/2} e}{c\hbar} (CF + \alpha \frac{\Delta R_{sat}}{R(0)})^{-1/2}$$
(34)

Thus, as it is seen, for the Mott case at $T \to 0$ $k \propto T^{1/3}$ while for the ES case it is $\propto T^{1/4}$.

Note that in our calculations we assumed that the value of H_{min} still corresponds to linear behavior of negative magnetoresistance which means that the magnetic flux through the interference area is much less than magnetic flux quantum Φ_0 . The critical field H_{sat}