Practical Data Science: Reducing High Dimensional Data in R

Manuel Amunategui - amunategui@gmail.com

Feature Selection - Variable Selection with GBM

So, what if you want to reduce you data's high dimensionality but still need to preserve you variables?

PCA variables won't do the trick as they're synthetic and made up of bits and pieces of other variables. A common solution to this conundrum is variable selection (https://en.wikipedia.org/wiki/Feature_selection). This is the process of taking a sample of your wide data set and attempt to find the most valuable ones.

We'll keep working with the wonderful library caret (http://topepo.github.io/caret/index.html) and use its great function **varImp**.

We're going to use two models: gbm (Generalized Boosted Models) (https://en.wikipedia.org/wiki/Gradient_boosting) and glmnet (Generalized Linear Models) (https://en.wikipedia.org/wiki/Generalized_linear_model). Approaching a new data set using different models is one way of getting a handle on your data. gbm uses boosted trees while glmnet uses regression. (Note: gbm can handle NAs but glmnet cannot).

We're also going to keep working with the same data set as in the earlier lectures Gisette (https://archive.ics.uci.edu/ml/datasets/Gisette).

```
library(RCurl) # download https data

urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISE
TTE/gisette_train.data'

x <- getURL(urlfile, ssl.verifypeer = FALSE)
gisetteRaw <- read.table(textConnection(x), sep = '', header= FALSE, stringsAsFact
ors = FALSE)

urlfile <- "https://archive.ics.uci.edu/ml/machine-learning-databases/gisette/GISE
TTE/gisette_train.labels"

x <- getURL(urlfile, ssl.verifypeer = FALSE)
g_labels <- read.table(textConnection(x), sep = '', header = FALSE, stringsAsFacto
rs = FALSE)</pre>
```

```
# build data set
gisette_df <- cbind(as.data.frame(sapply(gisetteRaw, as.numeric)), cluster=g_label
s$V1)</pre>
```

We need to split the data into three sets, one for training, one for testing, and another for validating:

```
set.seed(1234)
split <- sample(nrow(gisette_df), floor(0.5*nrow(gisette_df)))
gisette_df_train_test <- gisette_df[split,]
gisette_df_validate <- gisette_df[-split,]

# split gisette_df_train_test data set into training and testing
set.seed(1234)
split <- sample(nrow(gisette_df_train_test), floor(0.5*nrow(gisette_df_train_test)))
traindf <- gisette_df_train_test[split,]
testdf <- gisette_df_train_test[-split,]</pre>
```

GBM

Let's start with a GBM model. We will use the trainControl (http://www.inside-r.org/packages/cran/caret/docs/trainControl) function from caret. This function will cross-validate our data in order to find the best parameters for the GBM model. Warning: this takes a while...

```
print(gbm_model)
```

```
## Stochastic Gradient Boosting
##
## 1500 samples
## 5000 predictors
##
      2 classes: 'no', 'yes'
##
## No pre-processing
## Resampling: Cross-Validated (3 fold)
##
## Summary of sample sizes: 1001, 999, 1000
##
## Resampling results across tuning parameters:
##
##
   interaction.depth n.trees
                                                               ROC SD
                               ROC
                                          Sens
                                                     Spec
                                                                            Sens
SD
       Spec SD
##
                       50
                               0.9624747 0.8694918 0.9352547
                                                               0.007416151
                                                                            0.01
   1
0626321 0.019833990
## 1
                      100
                               0.9788316 0.9107064 0.9417247 0.007507123 0.00
6458501 0.020140583
## 1
                      150
                               0.9839339 0.9381809 0.9455906 0.004461157
                                                                            0.00
4251992 0.021682348
## 2
                       50
                               0.9835423 0.9189538 0.9430016 0.005796000
                                                                            0.01
0380782 0.008134521
## 2
                      100
                               0.9877839 0.9478114 0.9507737 0.002950088
                                                                            0.00
6184166 0.011907544
## 2
                      150
                               0.9890942 0.9505549 0.9533627 0.001899431 0.00
7074401 0.014052696
                               0.9877592 0.9519210 0.9533677
                       50
                                                               0.005299019
                                                                            0.01
0370601 0.011673619
## 3
                      100
                               0.9898549 0.9574306 0.9559567
                                                               0.001869422
                                                                            0.01
0293466 0.009803711
## 3
                      150
                               0.9910399 0.9560589 0.9585508 0.002614481 0.01
2512957 0.009781739
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150, interaction.depth = 3,
shrinkage = 0.1 and n.minobsinnode = 10.
```

By print the gbm_model object, we get the best settings at the bottom of the report:

Tuning parameter 'shrinkage' was held constant at a value of 0.1 ROC was used to select the optimal model using the largest value. The final values used for the model were n.trees = 150, interaction.depth = 3 and shrinkage = 0.1.

```
testdf$cluster <- ifelse(testdf$cluster == 1, "yes", "no")
testdf$cluster <- as.factor(testdf$cluster )
predictions <- predict(object=gbm_model, testdf[,setdiff(names(testdf), 'cluste r')], type='raw')
head(predictions)</pre>
```

```
## [1] yes yes no yes yes no
## Levels: no yes
```

```
print(postResample(pred=predictions, obs=testdf$cluster))
```

```
## Accuracy Kappa
## 0.9573 0.9146
```

We get 95.73%. Now, let's see how many of these variables we can drop and still get a great accuracy score. If you print the summary of gbm_model, you will get a list and graph of the best variables. Unfortunately, this isn't convenient here as there are 5000 variables.

This is where the varImp (http://topepo.github.io/caret/varimp.html) function comes in handy. Let's plot only the top 50 best variables:

```
# only plot top 20 variables
plot(varImp(gbm_model,scale=F), top = 50)
```


Here you see that V3657 is the most predictive feature for the outcome 'cluster'. No, with a little handy work, we can do a much better job at presenting the information:

```
# display variable importance on a +/- scale
vimp <- varImp(gbm model, scale=F)</pre>
results <- data.frame(row.names(vimp$importance),vimp$importance$Overall)
results$VariableName <- rownames(vimp)</pre>
colnames(results) <- c('VariableName','Weight')</pre>
results <- results[order(results$Weight),]
# we do not want factors, just characters
results$VariableName <- as.character(results$VariableName)</pre>
# let's display the best 20 features
results temp <- tail(results,20)
par(mar=c(5,5,4,2)) # increase y-axis margin.
xx <- barplot(results temp$Weight, width = 0.85,</pre>
              main = paste("Variable Importance -", 'cluster'), horiz = T,
              xlab = "< (-) importance > < neutral > < importance (+) >", axes =
FALSE,
              col = ifelse((results temp$Weight > 0), 'blue', 'red'))
axis(2, at=xx, labels=results_temp$VariableName, tick=FALSE, las=2, line=-0.3, ce
x.axis=0.6)
```

Variable Importance - cluster

Now comes the fun part, let's run the GBM model different quantities of top variables and score it with our validation set.

```
head(results)
```

```
VariableName Weight
##
## 1
              V1
## 2
              V2
                       0
## 3
              V3
                       0
## 4
              V4
                       0
## 5
              V5
                       0
## 6
              V6
                       0
```

```
tail(results)
```

```
# Let's start by modeling only top 2 variable
traindf_truncated <- traindf[, c(tail(results$VariableName,2), 'cluster')]
# caret requires a factor of non-numeric value
dim(traindf_truncated)</pre>
```

```
## [1] 1500 3
```

```
predictions <- predict(object=gbm_model, gisette_df_validate[,setdiff(names(traind
f_truncated), 'cluster')], type='raw')
head(predictions)</pre>
```

```
## [1] yes yes yes no no
## Levels: no yes
```

```
# caret requires a factor of non-numeric value
gisette_df_validate$cluster <- ifelse(gisette_df_validate$cluster == 1, "yes", "n
o")
gisette_df_validate$cluster <- as.factor(gisette_df_validate$cluster)
print(postResample(pred=predictions, obs=gisette_df_validate$cluster))</pre>
```

```
## Accuracy Kappa
## 0.8326 0.6650
```

Not bad, accuracy of 83.26% with only 2 variables!! Much better than our small PCA set in the previous lecture.

Let's try larger amounts of the top variables and measure accuracy on the validation set. We'll try anything with a weight larger than 10 (turns out to be 20 variables):

```
head(results)
```

```
##
    VariableName Weight
## 1
              V1
                       0
## 2
              V2
                       0
## 3
             V3
                       0
## 4
              V4
                       0
## 5
              V5
                       0
## 6
              V6
```

```
tail(results)
```

```
# Let's start by modeling with different results$Weight values
traindf_truncated <- traindf[, c(results$VariableName[results$Weight > 10], 'clust
er')]
dim(traindf_truncated)
```

```
## [1] 1500 20
```

```
fitControl <- trainControl(method="none")

gbm_model <- train(cluster~., data=traindf_truncated,
  tuneGrid = expand.grid(n.trees = 150, interaction.depth = 3, shrinkage = 0.1, n.mi
  nobsinnode=10),
  trControl=fitControl, method="gbm", metric='roc')

predictions <- predict(object=gbm_model, gisette_df_validate[,setdiff(names(traind f_truncated), 'cluster')], type='raw')

print(postResample(pred=predictions, obs=as.factor(gisette_df_validate$cluster)))

## Accuracy Kappa
## 0.9356 0.8712</pre>
```

Nice! Accuracy of 93.56% with the top 20 variables, a bit better than with our PCA model. One more...

```
traindf_truncated <- traindf[, c(results$VariableName[results$Weight > 2], 'cluste
r')]
dim(traindf_truncated)
```

```
## [1] 1500 58
```

```
fitControl <- trainControl(method="none")

gbm_model <- train(cluster~., data=traindf_truncated,
tuneGrid = expand.grid(n.trees = 150, interaction.depth = 3, shrinkage = 0.1, n.mi
nobsinnode=10),
trControl=fitControl, method="gbm", metric='roc')</pre>
```

```
predictions <- predict(object=gbm_model, gisette_df_validate[,setdiff(names(traind
f_truncated), 'cluster')], type='raw')
print(postResample(pred=predictions, obs=as.factor(gisette_df_validate$cluster)))</pre>
```

```
## Accuracy Kappa
## 0.9576 0.9152
```

Yowza! Accuracy 95.76%!!!