数理逻辑第五次作业

姓名	谢宇航	班级	5	学号	200110505			
第1题								
第2题								
第3题								
总分								
备注	1. 作业提交邮箱: hitsz_logic_2022@163.com。作业提交截止时间: 2022-06-30-24:00,超过提交截止时间的作业视为无效。 2. 确因网络等特殊原因无法及时提交作业的学生,应至少提前 1 小时与助教联系沟通(徐联燃,QQ: 1319282215,电话: 13713994811 许天骁,QQ: 1140931320,电话: 18800415868)。3. 作业文件名命名方式: 第×次-学号-姓名-x 班(例: 第5次-180110504-张三-5 班.pdf);邮件主题为: 第×次-学号-姓名-x 班(例: 第5次-180110504-张三-5 班)。缺少这些信息的作业将被酌情扣分。注意作业次数以阿拉伯数字命名。4. 可手写拍照转为 PDF 格式。							

- 1. P138 1. 设有如下推理语句:
 - (1) 没有无知的教授
 - (2) 所有无知者均爱虚荣
 - (3) 则没有爱虚荣的教授

试问由(1)和(2)能否推出(3)?

解:

令P(x):x是教授

Q(x): x是无知的

R(*x*): *x*爱虚荣

- $(1) \neg (\exists x) (P(x) \land Q(x))$
- $(2) (\forall x) (Q(x) \to R(x))$
- (3) $\neg(\exists x)(P(x) \land R(x))$

不能由(1)和(2)推出(3)

2. P138 3.

P138 3. 设 A, B 为FC中的任意公式,变元 v 在 A 中无自由出现,试证:

- $(1) \vdash (A \rightarrow \exists vB) \rightarrow \exists v(A \rightarrow B)$
- $(2) \vdash \exists v(A \rightarrow B) \rightarrow (A \rightarrow \exists vB)$
- $(3) \vdash (\forall vB \rightarrow A) \rightarrow \exists v(B \rightarrow A)$
- $(4) \vdash \exists v(B \to A) \to (\forall vB \to A)$

(1)

- 1. $\neg (A \rightarrow B) \rightarrow A$
- 2. $\neg (A \rightarrow B) \rightarrow \neg B$
- 3. $\forall v(\neg(A \rightarrow B) \rightarrow A)$
- 4. $\forall v(\neg(A \rightarrow B) \rightarrow \neg B)$
- 5. $\forall v(\neg(A \rightarrow B) \rightarrow A) \rightarrow (\forall v \neg(A \rightarrow B) \rightarrow \forall vA)$
- 6. $\forall v(\neg(A \rightarrow B) \rightarrow \neg B) \rightarrow (\forall v \neg (A \rightarrow B) \rightarrow \forall v \neg B)$
- 7. $\forall v \neg (A \rightarrow B) \rightarrow \forall vA$
- 8. $\forall v \neg (A \rightarrow B) \rightarrow \forall v \neg B$
- 9. $A \rightarrow \exists vB$
- 10. $\forall vA \rightarrow A$
- 11. $\forall vA \rightarrow \exists vB$
- 12. $\forall v \neg (A \rightarrow B) \rightarrow \exists vB$
- 13. $A \rightarrow \exists vB, \forall v \neg (A \rightarrow B) \vdash \forall v \neg B(\neg \exists vB)$
- 14. $A \rightarrow \exists vB, \forall v \neg (A \rightarrow B) \vdash \exists vB$
- 15. $A \rightarrow \exists vB \vdash \neg \forall v \neg (A \rightarrow B)$
- 16. $\vdash (A \rightarrow \exists vB) \rightarrow \neg \forall v \neg (A \rightarrow B)$
- 17. $\vdash (A \rightarrow \exists vB) \rightarrow \exists v(A \rightarrow B)$

(2)

- 1. $\exists v(A \rightarrow B), A \vdash \exists v(A \rightarrow B)$
- 2. $\exists v(A \rightarrow B), A, A \rightarrow B \vdash A \rightarrow B$
- 3. $\exists v(A \rightarrow B), A, A \rightarrow B \vdash A$
- 4. $\exists v(A \rightarrow B), A, A \rightarrow B \vdash B$
- 5. $B \rightarrow \exists vB$
- 6. $\exists v(A \rightarrow B), A, A \rightarrow B \vdash \exists vB$
- 7. $\exists v(A \rightarrow B), A \vdash \exists vB$
- 8. $\exists v(A \rightarrow B) \vdash A \rightarrow \exists vB$
- 9. $\vdash \exists v(A \rightarrow B) \rightarrow (A \rightarrow \exists vB)$

- PC 定理 6 逆否
- PC 公理 1 逆否
- (1)全称推广定理 4
- (2)全称推广定理 4
- 公理5
- 公理 5
- (3)(5) rmp 分离规则
- (4)(6) rmp 分离规则
- 假设
- 定理1
- (10)(9) rmp 分离规则
- (7)(11) rmp 分离规则
- (8)演绎定理 6
- (12)演绎定理 6
- (13)(14)定理8
- $(\rightarrow +)$

定义式

- (€) (€)
- (€)
- $(2)(3)(\to -)$
- 定理 2

(4)(5) rmp 分离规则

- (1)(6)定理 10
- 演绎定理6
- 演绎定理6

(3)

1. $\neg (B \rightarrow A) \rightarrow B$

2. $\neg (B \rightarrow A) \rightarrow \neg A$

- 3. $\forall v(\neg(B \rightarrow A) \rightarrow B)$
- 4. $\forall v(\neg(B \rightarrow A) \rightarrow \neg A)$
- 5. $\forall v(\neg(B \rightarrow A) \rightarrow B) \rightarrow (\forall v \neg(B \rightarrow A) \rightarrow \forall vB)$
- 6. $\forall v(\neg(B \rightarrow A) \rightarrow \neg A) \rightarrow (\forall v \neg (B \rightarrow A) \rightarrow \forall v \neg A)$
- PC 定理 6 逆否
- PC 公理 1 逆否
- (1)全称推广定理 4
- (2)全称推广定理 4
- (3)公理 5
- (4)公理5

7.	$\forall v \neg (B$	$\rightarrow A$)	\rightarrow	∀νB
	V V I(D	′ 11)	,	VVD

8.
$$\forall v \neg (B \rightarrow A) \rightarrow \forall v \neg A$$

9.
$$\forall v \neg A \rightarrow \neg A$$

10.
$$\forall \neg (B \rightarrow A) \rightarrow \neg A$$

11.
$$\forall vB \rightarrow A$$

12.
$$\forall v \neg (B \rightarrow A) \rightarrow A$$

13.
$$\forall vB \rightarrow A, \forall v \neg (B \rightarrow A) \vdash \neg A$$

14.
$$\forall vB \rightarrow A, \forall v \neg (B \rightarrow A) \vdash A$$

15.
$$\forall vB \rightarrow A \vdash \neg \forall v \neg (B \rightarrow A)$$

16.
$$\forall vB \rightarrow A \vdash \exists v(B \rightarrow A)$$

17.
$$\vdash (\forall vB \rightarrow A) \rightarrow \exists v(B \rightarrow A)$$

定理1

(8)(9) rmp 分离规则

已知假设

(7)(11) rmp 分离规则

定义式

$$(\rightarrow +)$$

(4)

1.
$$\exists v(B \rightarrow A), \forall vB \vdash \exists v(B \rightarrow A)$$

2.
$$\exists v(B \rightarrow A), \forall vB, B \rightarrow A \vdash B \rightarrow A$$

3.
$$\exists v(B \rightarrow A), \forall vB, B \rightarrow A \vdash \forall vB$$

4.
$$\forall vB \rightarrow B$$

5.
$$\exists v(B \rightarrow A), \forall vB, B \rightarrow A \vdash B$$

6.
$$\exists v(B \rightarrow A), \forall vB, B \rightarrow A \vdash A$$

7.
$$\exists v(B \rightarrow A), \forall vB \vdash A$$

8.
$$\exists v(B \rightarrow A) \vdash \forall vB \rightarrow A$$

9.
$$\vdash \exists v(B \rightarrow A) \rightarrow (\forall vB \rightarrow A)$$

(€)

(€)

(€)

定理1

(3)(4) rmp 分离规则

 $(5)(2)(\to -)$

(1)(6)定理 10

 $(\rightarrow +)$

 $(\rightarrow +)$

3. P138 4.

P138 4. 在FC中证明:

- (1) $\forall x(A \rightarrow B) \mapsto A \rightarrow \forall xB$
- (2) $\forall x(A \rightarrow B) \mapsto \exists xA \rightarrow B$
- (3) $\forall x(A \land B) \mapsto \forall xA \land \forall xB$
- (4) $\exists x(A \lor B) \mapsto \exists xA \lor \exists xB$

x在 A 中无自由出现 x在 B 中无自由出现

(1)

先证 $\forall x(A \rightarrow B)$ ⊢ $A \rightarrow \forall xB$

1.
$$\forall x(A \rightarrow B), A \vdash \forall x(A \rightarrow B)$$

2.
$$\forall x (A \rightarrow B), A \vdash A$$

3.
$$\forall x(A \rightarrow B) \rightarrow (A \rightarrow B)$$

4.
$$\forall x (A \rightarrow B), A \vdash A \rightarrow B$$

5.
$$\forall x(A \rightarrow B), A \vdash B$$

6.
$$\forall x (A \rightarrow B), A \vdash \forall x B$$

7.
$$\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$$

(€)

(€)

定理 1

(1)(3) rmp 分离规则

 $(2)(4) (\rightarrow -)$

(5)全称推广定理 5

(6)演绎定理 6

再证 $A \rightarrow \forall xB \vdash \forall x(A \rightarrow B)$

1.
$$\forall x B \rightarrow B$$

2.
$$(\forall x B \rightarrow B) \rightarrow ((A \rightarrow \forall x B) \rightarrow (A \rightarrow B))$$

定理1

PC 加前件定理 4

- 3. $(A \rightarrow \forall xB) \rightarrow (A \rightarrow B)$
- 4. $(A \rightarrow \forall xB) \vdash (A \rightarrow B)$
- 5. $(A \rightarrow \forall xB) \vdash \forall x(A \rightarrow B)$
- (1)(2) rmp 分离规则
- (3)演绎定理 6
- (4)全称推广定理5

(2)

先证 $\forall x(A \rightarrow B)$ ⊢ $\exists xA \rightarrow B$

- 1. $\forall x(A \rightarrow B) \vdash \forall x(A \rightarrow B)$
- 2. $\forall x(A \rightarrow B) \rightarrow (A \rightarrow B)$
- 3. $\forall x(A \rightarrow B) \vdash A \rightarrow B$
- 4. $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$
- 5. $\forall x(A \rightarrow B) \vdash \neg B \rightarrow \neg A$
- 6. $\forall x(A \rightarrow B), \neg B \vdash \neg A$
- 7. $\forall x (A \rightarrow B), \neg B \vdash \forall x \neg A$
- 8. $\forall x(A \rightarrow B) \vdash \neg B \rightarrow \forall x \neg A$
- 9. $\forall x(A \rightarrow B) \vdash \neg B \rightarrow \neg \exists xA$
- 10. $(\neg B \rightarrow \neg \exists xA) \rightarrow (\exists xA \rightarrow B)$
- 11. $\forall x(A \rightarrow B) \vdash \exists xA \rightarrow B$

(€)

定理1

- (1)(2) rmp 分离规则
- PC 定理 13
- (3)(4) rmp 分离规则
- (5)演绎定理 6
- (6)全称推广定理 5
- (7)演绎定理 6
- 定义式
- PC 公理 3
- (9)(10) rmp 分离规则

再证 $\exists x A \rightarrow B \vdash \forall x (A \rightarrow B)$

- 1. $A \rightarrow \exists xA$
- 2. $(A \rightarrow \exists xA) \rightarrow ((\exists xA \rightarrow B) \rightarrow (A \rightarrow B))$
- 3. $(\exists x A \rightarrow B) \rightarrow (A \rightarrow B)$
- 4. $\exists x A \rightarrow B \vdash A \rightarrow B$
- 5. $\exists x A \rightarrow B \vdash \forall x (A \rightarrow B)$

- 定理 2
- PC 加后件定理 5
- (1)(2)rmp 分离规则
- (3)演绎定理 6
- (4)全称推广定理5

(3)

先证 $\forall x(A \land B)$ ⊢ $\forall xA \land \forall xB$

- 1. $\forall x(A \land B) \rightarrow (A \land B)$
- 2. $\forall x(A \land B) \vdash (A \land B)$
- 3. $\forall x(A \land B) \vdash A$
- 4. $\forall x(A \land B) \vdash B$
- 5. $\forall x(A \land B) \vdash \forall xA$
- 6. $\forall x(A \land B) \vdash \forall xB$
- 7. $\forall x(A \land B) \vdash \forall xA \land \forall xB$

- 定理1
- $(\rightarrow -)$
- $(2)(\Lambda -)$
- $(2)(\Lambda -)$
- (3)全称推广定理 5
- (4)全称推广定理5
- $(5)(6)(\Lambda +)$

再证 $\forall x A \land \forall x B \vdash \forall x (A \land B)$

- 1. $\forall x A \land \forall x B \vdash \forall x A \land \forall x B$
- 2. $\forall x A \land \forall x B \vdash \forall x A$
- 3. $\forall x A \land \forall x B \vdash \forall x B$
- 4. $\forall xA \vdash A$
- 5. $\forall xB \vdash B$ 6. $\forall x A \land \forall x B \vdash A$

- (€)
- $(\Lambda -)$
- $(\Lambda -)$
- 定理1
- 定理1
- (2)(4) rmp 分离规则

7. $\forall x A \land \forall x B \vdash B$ (3)(5) rmp 分离规则 8. $\forall x A \land \forall x B \vdash A \land B$ $(6)(7)(\Lambda +)$ 9. $\forall x A \land \forall x B \vdash \forall x (A \land B)$ (8)全称推广定理5

(4)

先证∃ $x(A \lor B)$ ⊢ ∃ $xA \lor ∃xB$

- 1. $\forall x \neg A \land \forall x \neg B \vdash \forall x \neg A \land \forall x \neg B$ (€) 2. $\forall x \neg A \land \forall x \neg B \vdash \forall x \neg A$ $(\Lambda -)$ 3. $\forall x \neg A \land \forall x \neg B \vdash \forall x \neg B$ $(\Lambda -)$ 4. $\forall x \neg A \vdash \neg A$ 定理1 5. $\forall x \neg B \vdash \neg B$ 定理1
- 6. $\forall x \neg A \land \forall x \neg B \vdash \neg A$ (2)(4) rmp 分离规则 7. $\forall x \neg A \land \forall x \neg B \vdash \neg B$ (3)(5) rmp 分离规则 8. $\forall x \neg A \land \forall x \neg B \vdash \neg A \land \neg B$ $(6)(7)(\Lambda +)$ 9. $\forall x \neg A \land \forall x \neg B \vdash \neg (A \lor B)$ (8)德摩根定理
- 10. $\forall x \neg A \land \forall x \neg B \vdash \forall x \neg (A \lor B)$ (9)全称推广定理 5 11. $\forall x \neg (A \lor B) \vdash \neg \exists x (A \lor B)$ 定理 13
- 12. $\forall x \neg A \land \forall x \neg B \vdash \neg \exists x (A \lor B)$ (10)(11) rmp 分离规则 13. $\exists x(A \lor B) \vdash \neg(\forall x \neg A \land \forall x \neg B)$ (12)定理7
- 14. $\exists x (A \lor B) \vdash (\neg \forall x \neg A \lor \neg \forall x \neg B)$ (13)德摩根定理 15. $\exists x(A \lor B) \vdash \exists xA \lor \exists xB$ (14)定义式

再证 $\exists x A \lor \exists x B \vdash \exists x (A \lor B)$

- 1. $\forall x \neg (A \lor B) \rightarrow \neg (A \lor B)$ 定理1 2. $\forall x \neg (A \lor B) \rightarrow (\neg A \land \neg B)$ (1)德摩根定理 3. $\forall x \neg (A \lor B) \vdash (\neg A \land \neg B)$ (2)演绎定理 6 4. $\forall x \neg (A \lor B) \vdash \neg A$ $(3)(\Lambda -)$ 5. $\forall x \neg (A \lor B) \vdash \neg B$ $(3)(\Lambda -)$
- 6. $\forall x \neg (A \lor B) \vdash \forall x \neg A$ (4)全称推广定理5
- 7. $\forall x \neg (A \lor B) \vdash \forall x \neg B$ (5)全称推广定理 5 8. $\forall x \neg (A \lor B) \vdash \forall x \neg A \land \forall x \neg B$ $(6)(7)(\Lambda +)$
- 9. $\neg(\forall x \neg A \land \forall x \neg B) \vdash \neg \forall x \neg (A \lor B)$ 定理 7
- 10. $(\neg \forall x \neg A \lor \neg \forall x \neg B)$ $\vdash \neg \forall x \neg (A \lor B)$ (9)德摩根定律
- 11. $\exists x A \lor \exists x B \vdash \exists x (A \lor B)$ 定义式