FlowNet: Learning Optical Flow with **Convolutional Networks** Paper by : Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg , Philip Hausser, Caner Hazırbas, Vladimir Golkov Presented By Tushar Nimbhorkar and Alexander Lell

Outline

- Introduction
- Introduction to the Optical Flow
- Usage of Optical Flow
- Motivation
- Requirements for Optical Flow Overview of the method in Paper
- Related Work
- Network architecture
 - FlowNetS
 - Refinement
- FlowNetC
- Experiments & Results
 - Datasets

 - conclusion and follow-up research (FlowNet 2.0)

Introduction

- What is Optical Flow?
- The pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene.

Video result of this paper

Where can it be used?

Object Tracking Face tracking Robotics

Motivation

- Convolutional neural networks in computer vision problems.
- Main Idea/Method: Train CNN end-to-end to learn predicting optical flow field for a pair of images.

Requirements for Optical Flow

- · Estimation needs per-pixel localization.
- Also need to find correspondences between the pair of images.
- It will involve not only learning image feature representations, but also learning to match them at different locations in the two images.

Overview of the Network

- Not sure whether this task could be solved with a standard CNN architecture
- Also developed architecture with a correlation layer that explicitly provides matching capabilities.

Related work

- Horn and Schunck(1981)
- Lucas-Kanade(1981)
- DeepMatching and DeepFlow (2013)
- EpicFlow (2015)
- Sun et al. (2008)

Continued.

- No direct work of predicting optical flow with CNNs.
- Why?

Network Architecture

Correlation

$$c(\mathbf{x}_1, \mathbf{x}_2) = \sum_{\mathbf{o} \in [-k, k] \times [-k, k]} \langle \mathbf{f}_1(\mathbf{x}_1 + \mathbf{o}), \mathbf{f}_2(\mathbf{x}_2 + \mathbf{o}) \rangle$$

Dataset

	Frame	Frames with	Ground truth			
	pairs	ground truth	density per frame			
Middlebury	72	8	100%			
KITTI	194	194	∽50%			
Sintel	1,041	1,041	100%			

Dataset

Experiment

Convolution layer: 9

Stride: 2 (Only in six of them)

Nonlinearity: ReLu (After each layer)

Filter sizes: Decreases as we go deeper in network.(7X7 to

Training loss: Endpoint error (EPE)

Optimization Method: Adam

Results

Method	Sintel Clean		Sintel Final		KITTI		Middlebury train		Middlebury test		Chairs	Time (sec)	
train	test	train	test	train	test	AEE	AAE	AEE	AAE	test	CPU	GPU	
EpicFlow [30]	2.27	4.12	3.57	6.29	3.47	3.8	0.31	3.24	0.39	3.55	2.94	16	-
DeepFlow [35]	3.19	5.38	4.40	7.21	4.58	5.8	0.21	3.04	0.42	4.22	3.53	17	-
EPPM [3]	-	6.49	-	8.38	-	9.2	-	-	0.33	3.36	-	-	0.2
LDOF [6]	4.19	7.56	6.28	9.12	13.73	12.4	0.45	4.97	0.56	4.55	3.47	65	2.5
FlowNetS	4.50	7.42	5.45	8.43	8.26	-	1.09	13.28	-	10	2.71	-	0.08
FlowNetS+v	3.66	6.45	4.76	7.67	6.50	-	0.33	3.87	-	-	2.86	-	1.05
FlowNetS+ft	(3.66)	6.96	(4.44)	7.76	7.52	9.1	0.98	15.20	-	-	3.04	-	0.08
FlowNetS+ft+v	(2.97)	6.16	(4.07)	7.22	6.07	7.6	0.32	3.84	0.47	4.58	3.03	-	1.05
FlowNetC	4.31	7.28	5.87	8.81	9.35	-	1.15	15.64	-	-	2.19	-	0.15
FlowNetC+v	3.57	6.27	5.25	8.01	7.45	-	0.34	3.92	-	-	2.61	-	1.12
FlowNetC+ft	(3.78)	6.85	(5.28)	8.51	8.79	-	0.93	12.33	-	-	2.27	-	0.15
FlowNetC+ft+v	(3.20)	6.08	(4.83)	7.88	7.31	-	0.33	3.81	0.50	4.52	2.67	-	1.12

Conclusion

- It is possible to train Network to directly predict OpticalFlow
- Even if training set in not real.
- On synthetic Test set : CNNs Outperforms state-of-the -art Methods.

Can we do better? Yes, with FlowNet 2.0

- · Realistic training data and improved training schedule

 - More iterations during training
 More realistic training data only presented during fine tuning
 First, the network learns basic features, then ones more refined

