Estimating Accuracy from Unlabeled Data

Anthony Platanios

Machine Learning Department Carnegie Mellon University

DAP Committee: Tom Mitchell, Avrim Blum, and Roy Maxion

Is "Pittsburgh" a city? Is city? $Y \in \{0,1\}$ $\mathcal{X} \sim \mathcal{D}$ "Pittsburgh"

Using only unlabeled data we can measure

consistency

but not

correctness

consistency Does this implication hold? correctness If yes, under what conditions?

Why only unlabeled data?

It is often **impossible** to have enough labeled data!

Never Ending Language Learning (NELL):

- 1. Huge knowledge-base with thousands of functions
- 2. Refined daily over several years
- 3. Constantly creating **new functions** automatically

Related Work

Disagreement rate as **distance metric for model selection and regularization** [Schuurmans et al., 2006; Bengio and Chapados, 2003].

Use of disagreement along with an ontology to estimate the error of the prediction vector for multi-class prediction, from unlabeled data, under an assumption of independence of the input features given the labeling [Balcan et. al., 2013].

Work at developing **more robust semi-supervised learning algorithms** by using the concept of agreement rates [Collins and Singer, 1999] or some task specific constraints [Chang et al., 2007].

Bounding error rates using the pairwise agreement rates only, under the **assumption** that the functions make independent errors [Dasgupta et. al., 2011].

Estimation of average error rate of two predictors using their disagreement rate [Madani et. al., 2004].

Estimation of per-function prediction risk, under the assumption that the true probability distribution of the output labels is known [Donmez et. al., 2010].

Outline

- 1. Useful Definitions
- 2. Agreement Rates Method
- 3. Graphical Model Approaches
 - i. Error Estimation
 - ii. Coupled Error Estimation
 - iii. Hierarchical Coupled Error Estimation
- 4. Experiments
 - i. NELL Data Set
 - ii. Brain Data Set
- 5. Conclusion

consistency

Agreement Rate: The probability over $\mathbb{P}(\mathcal{X}) = \mathcal{D}$ of two function outputs agreeing.

$$a_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \left(\bigcap_{\substack{i,j \in \mathcal{A} \\ i \neq j}} \left[\hat{f}_i(X) = \hat{f}_j(X) \right] \right)$$

consistency

Given unlabeled input data, X_1, \ldots, X_S , we observe the sample agreement rates:

$$\hat{a}_{\mathcal{A}} = \frac{1}{S} \sum_{s=1}^{S} \mathbb{I} \left\{ \hat{f}_i(X_s) = \hat{f}_j(X_s), \forall i, j \in \mathcal{A} : i \neq j \right\}$$

correctness

Error Rate: The probability over $\mathbb{P}(\mathcal{X}) = \mathcal{D}$ of disagreeing with the correct output label.

correctness

Error Rate
$$\longleftarrow e_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} \left[\hat{f}_i(X) \neq Y \right] \right)$$

$$E_{\mathcal{A}} \longrightarrow \text{Error Event}$$

$$e_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} \left[\hat{f}_i(X) = f(X) \right] \right)$$

Outline

- 1. Useful Definitions
- 2. Agreement Rates Method
- 3. Graphical Model Approaches
 - i. Error Estimation
 - ii. Coupled Error Estimation
 - iii. Hierarchical Coupled Error Estimation
- 4. Experiments
 - i. NELL Data Set
 - ii. Brain Data Set
- 5. Conclusion

$$a_{\{i,j\}} = \mathbb{P}_{\mathcal{D}} \left(E_{\{i\}} \cap E_{\{j\}} \right) + \mathbb{P}_{\mathcal{D}} \left(\bar{E}_{\{i\}} \cap \bar{E}_{\{j\}} \right)$$

both are wrong
$$a_{\{i,j\}}=\mathbb{P}_{\mathcal{D}}\left(E_{\{i\}}\cap E_{\{j\}}\right)+\mathbb{P}_{\mathcal{D}}\left(\bar{E}_{\{i\}}\cap \bar{E}_{\{j\}}\right)$$

$$a_{\{i,j\}} = \mathbb{P}_{\mathcal{D}}\left(E_{\{i\}}\cap E_{\{j\}}\right) + \mathbb{P}_{\mathcal{D}}\left(\bar{E}_{\{i\}}\cap \bar{E}_{\{j\}}\right)$$

$$a_{\{i,j\}} = \mathbb{P}_{\mathcal{D}}\left(E_{\{i\}} \cap E_{\{j\}}\right) + \mathbb{P}_{\mathcal{D}}\left(\bar{E}_{\{i\}} \cap \bar{E}_{\{j\}}\right)$$

$$a_{\{i,j\}} = 1 - e_{\{i\}} - e_{\{j\}} + 2e_{\{i,j\}}$$
 Probability Probability Probability that that \hat{f}_i makes an error an error error

Agreement rates and error rates are related!

$$a_{\{i,j\}} = 1 - e_{\{i\}} - e_{\{j\}} + 2e_{\{i,j\}}$$

$$\downarrow \text{Independent errors}$$

$$e_{\{i\}}e_{\{j\}}$$

3 functions that make independent errors:

$$\binom{3}{2} = 3$$
 equations 3 unknowns

$$e_{\{i\}} = \frac{c \pm (1 - 2\hat{a}_{\{j,k\}})}{\pm 2(1 - 2\hat{a}_{\{j,k\}})}$$

where $i \in \{1,2,3\}$, $j,k \in \{1,2,3\} \backslash i$ with j < k and:

$$c = \sqrt{(2\hat{a}_{\{1,2\}} - 1)(2\hat{a}_{\{1,3\}} - 1)(2\hat{a}_{\{2,3\}} - 1)}$$

Independent errors → **Too strong** assumption → We do not make it

But we end up with more unknowns than equations

The objective function tries to **minimize the dependence** between the error rates:

$$c(\mathbf{e}) = \sum_{i,j \in \{1,...,N\}} \left(e_{\{i,j\}} - e_{\{i\}} e_{\{j\}} \right)^2$$

Relaxes the independence assumption

More constraints:

$$e_{\{i,j\}} \le \min \{e_{\{i\}}, e_{\{j\}}\}$$

$$a_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} E_i \right) + \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} \bar{E}_i \right)$$

all are wrong
$$a_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} E_i \right) + \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} \bar{E}_i \right)$$

$$a_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \bigg(\bigcap_{i \in \mathcal{A}} E_i \bigg) + \mathbb{P}_{\mathcal{D}} \bigg(\bigcap_{i \in \mathcal{A}} \bar{E}_i \bigg)$$

$$a_{\mathcal{A}} = \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} E_i \right) + \mathbb{P}_{\mathcal{D}} \left(\bigcap_{i \in \mathcal{A}} \bar{E}_i \right)$$

$$\downarrow$$

$$a_{\mathcal{A}} = e_{\mathcal{A}} + 1 + \sum_{k=1}^{|\mathcal{A}|} \left[(-1)^k \sum_{\substack{I \subseteq \mathcal{A} \\ |I| = k}} e_I \right]$$

Objective function:

$$c(\mathbf{e}) = \sum_{\mathcal{A}: |\mathcal{A}| > 2} \left(e_{\mathcal{A}} - \prod_{i \in \mathcal{A}} e_i \right)^2$$

Inequality constraints:

$$e_{\mathcal{A}} \le \min_{i \in \mathcal{A}} e_{\mathcal{A} \setminus i}$$

Outline

- 1. Useful Definitions
- 2. Agreement Rates Method
- 3. Graphical Model Approaches
 - i. Error Estimation
 - ii. Coupled Error Estimation
 - iii. Hierarchical Coupled Error Estimation
- 4. Experiments
 - i. NELL Data Set
 - ii. Brain Data Set
- 5. Conclusion

Error Estimation

We designed a **generative process** describing how our observations are generated.

Error Estimation

Label Prior
$$\longleftarrow p \sim \operatorname{Beta}(\alpha_p, \beta_p),$$

True Labels $\longleftarrow \ell_i \sim \operatorname{Bernoulli}(p), \text{ for } i = 1, \dots, S,$

Error Rates $\longleftarrow e_j \sim \operatorname{Beta}(\alpha_e, \beta_e), \text{ for } j = 1, \dots, N,$

Actual Outputs $\longleftarrow \hat{f}_{ij} = \begin{cases} \ell_i & , \text{ with probability } 1 - e_j, \\ 1 - \ell_i & , \text{ otherwise.} \end{cases}$

Error Estimation

We use Gibbs sampling to perform inference:

$$P(p \mid \cdot) = \text{Beta}(\alpha_p + \sigma_{\ell}, \beta_p + S - \sigma_{\ell}),$$

$$P(\ell_i \mid \cdot) \propto p^{\ell_i} (1 - p)^{1 - \ell_i} \pi_i,$$

$$P(e_j \mid \cdot) = \text{Beta}(\alpha_e + \sigma_j, \beta_e + S - \sigma_j),$$

where:

$$\sigma_{\boldsymbol{\ell}} = \sum_{i=1}^{S} \ell_i, \quad \sigma_j = \sum_{i=1}^{S} \mathbb{1}_{\{\hat{f}_{ij} \neq \ell_i\}},$$

$$\pi_i = \prod_{j=1}^{N} e_j^{\mathbb{1}_{\{\hat{f}_{ij} \neq \ell_i\}}} \underbrace{(1-e_j)^{\mathbb{1}_{\{\hat{f}_{ij} = \ell_i\}}}}_{\text{Rate}}.$$
 Rate

Single Domain Settings So Far

What About Multiple Domains?

We have functions of the **same parametric form** using the same input data and features, answering **different questions**!

We could potentially gain by **sharing information** across those accuracy estimation problems.

We can cluster the functions across domains.

Coupled Error Estimation

$$p^{d} \sim \text{Beta}(\alpha_{p}, \beta_{p}), \text{ for } d = 1, \dots, D,$$

$$\ell_{i}^{d} \sim \text{Bernoulli}(p^{d}), \text{ for } i = 1, \dots, S^{d}, \text{ and } d = 1, \dots, D,$$

$$[\phi_{l}]_{j} \sim \text{Beta}(\alpha_{e}, \beta_{e}), \text{ for } j = 1, \dots, N, \text{ and } l = 1, \dots, \infty,$$

$$z^{d} \sim \text{CRP}(\alpha), \text{ for } d = 1, \dots, D,$$

$$e_{j}^{d} = [\phi_{z^{d}}]_{j}, \text{ for } j = 1, \dots, N, \text{ and } d = 1, \dots, D,$$

$$\hat{f}_{ij}^{d} = \begin{cases} \ell_{i}^{d}, & \text{with probability } 1 - e_{j}^{d}, \\ 1 - \ell_{i}^{d}, & \text{otherwise.} \end{cases}$$

Coupled Error Estimation

Dirichlet process

clusters function error rates across domains

S
$$p^d \sim \text{Beta}(\alpha_p, \beta_p)$$
, for $d = 1, \dots, D$,
 $\ell_i^d \sim \text{Bernoulli}(p^d)$, for $i = 1, \dots, S^d$, and $d = 1, \dots, D$,
 $[\phi_l]_j \sim \text{Beta}(\alpha_e, \beta_e)$, for $j = 1, \dots, N$, and $l = 1, \dots, \infty$,
 $z^d \sim \text{CRP}(\alpha)$, for $d = 1, \dots, D$,
 $e_j^d = [\phi_{z^d}]_j$, for $j = 1, \dots, N$, and $d = 1, \dots, D$,
 $\hat{f}_{ij}^d = \begin{cases} \ell_i^d & \text{, with probability } 1 - e_j^d, \\ 1 - \ell_i^d & \text{, otherwise.} \end{cases}$

Hierarchical Coupled Error Estimation

We can further cluster error rates across functions to share even more information in a structured manner.

Note that this sharing of information can in general be very **useful** in the case of **limited data**.

Hierarchical Coupled Error Estimation

 $CRP(\gamma)$

$$p^{d} \sim \operatorname{Beta}(\alpha_{p}, \beta_{p}), \text{ for } d = 1, \dots, D,$$

$$\ell_{i}^{d} \sim \operatorname{Bernoulli}(p^{d}), \text{ for } i = 1, \dots, S^{d}, \text{ and } d = 1, \dots, D,$$

$$\phi_{l} \sim \operatorname{Beta}(\alpha_{e}, \beta_{e}), \text{ for } l = 1, \dots, \infty,$$

$$k_{m}^{d} \sim \operatorname{CRP}(\gamma), \text{ for } d = 1, \dots, D, \text{ and } m = 1, \dots, \infty,$$

$$z_{j}^{d} \sim \operatorname{CRP}^{d}(\alpha), \text{ for } d = 1, \dots, D, \text{ and } j = 1, \dots, N,$$

$$e_{j}^{d} = \phi_{k_{z_{j}^{d}}^{d}}, \text{ for } j = 1, \dots, N, \text{ and } d = 1, \dots, D,$$

$$\hat{f}_{ij}^{d} = \begin{cases} \ell_{i}^{d}, & \text{with probability } 1 - e_{j}^{d}, \\ 1 - \ell_{i}^{d}, & \text{otherwise.} \end{cases}$$

Hierarchical Coupled **Error Estimation**

 $CRP^d(\alpha)$ Hierarchical further clusters

Dirichlet process

function error rates across classifiers

 $CRP(\gamma)$

Outline

- 1. Useful Definitions
- 2. Agreement Rates Method
- 3. Graphical Model Approaches
 - i. Error Estimation
 - ii. Coupled Error Estimation
 - iii. Hierarchical Coupled Error Estimation

4. Experiments

- i. NELL Data Set
- ii. Brain Data Set
- 5. Conclusion

We report the **error mean absolute deviation (MAD**error) between:

- True error rates (estimated from labeled data)
- Error rates estimates from unlabeled data

and the label mean absolute deviation (MAD_{label}) between:

- True labels
- Predicted labels

Note that this is simply the **label accuracy**.

For the agreement rates method we used the **IpOpt 3.11.9** interior point optimization solver and all the methods were implemented in **Java**.

- 1 NELL Data Set
- 2 Brain Data Set

NELL Data Set

Task: Predict whether a noun phrase (NP) belongs to a category (e.g. city)

4 logistic regression classifiers using different features:

ADJ: Adjectives that occur with the NP

CMC: Orthographic features of the NP

CPL: Phrases that occur with the NP

VERB: Verbs that appear with the NP

Category	# Examples
animal	20,733
beverage	18,932
bird	19,263
bodypart	21,840
city	21,778
disease	21,827
drug	20,452
fish	19,162
food	19,566
fruit	18,911
muscle	21,606
person	21,700
protein	21,811
river	21,723
vegetable	18,826

1 NELL Data Set

True error rates (estimated from labeled data)

Error rates estimated from unlabeled data

1 NELL Data Set

4 functions without the independence assumption:

x10 ⁻²	All Data Samples		10% of Data Samples	
	MADerror	MAD _{label}	MADerror	MAD _{label}
MAJ	-	5.60	-	5.47
AR-2	0.59	2.21	1.00	2.36
AR	0.66	2.20	0.70	2.36
EE	0.29	0.96	0.65	1.32
CEE	0.31	0.94	0.58	0.96
HCEE	0.31	0.96	0.31	0.95

1 NELL Data Set

4 functions without the independence assumption:

x10 ⁻²	All Data Samples		10% of Data Samples	
	MADerror	MAD _{label}	MADerror	MAD _{label}
MAJ	-	5.60	_	5.47
AR-2	0.59	2.21	1.00	2.36
AR	0.66	2.20	0.70	2.36
EE	0.29	0.96	0.65	1.32
CEE	0.31	0.94	0.58	0.96
HCEE	0.31	0.96	0.31	0.95

³ functions under independence assumption: 2.82x10⁻².

2 Brain Data Set

Task: Find which of two 40 second long story passages corresponds to an unlabeled 40 second time series of fMRI neural activity

11 logistic regression classifiers using a different representation of the text passage. For example:

- Number of letters in each word
- Part of speech tag of each word
- Emotions experienced by characters in the story
- etc.

1,000 labeled samples for 11 brain regions

2 Brain Data Set

True error rates (estimated from labeled data)

Error rates estimated from unlabeled data

0.0

2

3

True error rates (estimated from labeled data) Error rates estimated from unlabeled data Brain Data Set Region #3 0.5 True Value AR-2 0.4 CEE HCEE Error Rate 0.3 0.2 0.1 0.0 6 7 2 3 5 8 10 11 4 Region #4 0.5 0.4 Error Rate 0.3 0.2 0.1

5

4

6

7

8

9

10

11

2 Brain Data Set

x10 ⁻²	All Data Samples		10% of Data Samples	
	MADerror	MAD _{label}	MADerror	MAD _{label}
MAJ	-	19.82	-	20.82
AR-2	5.14	18.67	5.84	20.14
AR	15.29	19.82	14.96	19.86
EE	6.77	17.23	20.20	20.03
CEE	4.07	17.51	4.69	17.42
HCEE	4.04	17.34	5.74	18.51

2 Brain Data Set

High order sample agreement rates are often bad estimates of the actual agreement rates

All agreement rates equations

x10 ⁻²	Pairwise Agreement Rates		All Agreement Rates	
X 1U-2	NELL	NELL 10%	NELL	NELL 10%
MADerror	0.59	1.00	0.66	0.70
MAD _{label}	2.21	2.36	2.20	2.36

2 Brain Data Set

High order sample agreement rates are often bad estimates of the actual agreement rates

All agreement rates equations

x10 ⁻²	Pairwise Agreement Rates		All Agreement Rates	
	NELL	NELL 10%	NELL	NELL 10%
MADerror	0.59	1.00	0.66	0.70
MAD _{label}	2.21	2.36	2.20	2.36

Runs 4 times faster and performs as well on average!

Conclusion

Estimating binary functions' error rates using unlabeled data

Methods presented

1 formulated as an optimization problem and 3 graphical models

Highly accurate error rates estimates

on two very different data sets

consistency

correctness

Much higher than when making the independence assumption

Conclusion

Estimating binary functions' error rates using unlabeled data

Methods presented

1 formulated as an optimization problem and 3 graphical models

Extend to non-boolean, discrete-valued and even real-valued functions

Use those error rates in the context of **self-reflection**

Try using different objective functions for AR

Highly accurate error rates estimates

on two very different data sets

Much higher than when making the independence assumption

Thank You