Задание 10

LL-анализ

Ключевые слова 1 :язык, контекстно-свободный язык, магазинный автомат, грамматика, LL(k)-грамматика, LL(1)-анализатор, функции FIRST, FOLLOW.

1 Нисходящий и восходящий разбор

Напомним определение вывода КС-грамматики.

Выводом цепочки α называется такая последовательность применений правил с указанием раскрываемого нетерминала, что применяя правила из неё начиная с аксиомы получается цепочка α . Если цепочка α не содержит нетерминалов, то α принадлежит языку, порождаемому КС-грамматикой. Нам будет удобно пользоваться такими понятиями как левый вывод (правый вывод). Левым выводом называют такой вывод, что на каждом его шаге раскрывается самый левый нетерминал в промежуточной цепочке. Правый вывод определяется аналогично.

Также напомним что мы называем деревом вывода или деревом разбора. С формальным определением дерева разбора вы можете познакомиться, например, в книге Хопкрофта, Мотвани и Ульмана, а мы воспользуемся неформальным описанием этого понятия. Деревом разбора для грамматики G называется упорядоченное дерево, в корне которого находится аксиома S, каждая вершина помечена нетерминалом, терминалом или пустым словом, если вершина помечена терминалом или ε , то эта вершина является листом, если же вершина помечена нетерминалом A, то существует такое правило $A \to X_1 X_2 \dots X_n \in P \ (X_i \in N \cup T)$, что вершины-потомки A помечены символами $X_1, X_2 \dots X_n$ слева направо.

Будем говорить, что для КС-грамматики G слово w разобрано, если известно хотя бы одно из её деревьев вывод.

¹минимальный необходимый объем понятий и навыков по этому разделу)

Пример 1. Грамматики G=(N,T,P,E), и $G_{\pi}=(N,T',P',E),$ $T=\{a,+,*\}$ заданы правилами:

$E \to E + T$	(1)	$E \rightarrow 1ET$
$E \to T$	(2)	$E \rightarrow 2T$
$T \to T * F$	(3)	$T \rightarrow 3TF$
$T \to F$	(4)	$T \rightarrow 4F$
$F \to (E)$	(5)	$F \rightarrow 5E$
$F \to a$	(6)	$F \rightarrow 6$

Построим дерево разбора для слова w=a+(a*a) и дерево вывода в грамматики G', соответствующее выводу w :

Если грамматика G выводит слово w, то применяя соответствующие правила в G' выводим из неё слово $\pi_l(w)$, соответствующее левому выводу слова w.

Назовём переводом бинарное отношение T, действующее из языка L_1 в язык L_2 . Если пара слов (u,v) удовлетворяет отношению T, то будем говорить, что слово u транслируется переводом T в слово v, а слово v будем называть выходом для u. Мы будем рассматривать синтаксически управляемые переводы. Неформально, перевод является синтаксически управляемым, если существует пара грамматик, правила которых занумерованы и если на шаге вывода из одной грамматики получена цеапочка α , а для соответствующего шага вывода из другой грамматики получена цепочку β с одинаковой кратностью. Например, в лингвистике нетерминалы могут соответствовать частям речи. Тогда при переводе с одного языка

на другой подлежащее перейдёт в подлежащее, а сказуемое в сказуемое, таким образом, синтаксис определяет некоторые особенности семантики языка. Эта особенность также весьма полезна и при построении компиляторов. Формально, перевод называется синтаксически управляемым, если есть синтаксически управляемая схема (СУ-схема), его реализующая. Определим формально СУ-схему.

Определение 1. Синтаксически управляемой схемой назовём пятёрку $T=(N,\Sigma,\Delta,R,S)$, где N множество нетерминалов, Σ и Δ алфавиты входа и выхода схемы, R — множество правил вида $A\to\alpha,\beta$, причём нетерминалы входящие в цепочку α входят также и в цепочку β , причём с той же кратностью.

Как легко видеть, из языка L(G) существует СУ-перевод в язык L(G'), схема которого строится по грамматикам. А именно множество R строится по соответствующим парам правил, описанных выше.

Упражнение 1. Предъявить алгоритм построения по грамматики G синтаксический перевод T_l , переводящий слово w из L(G) в левый вывод данного слова $\pi_l(w)$.

Восходящий разбор строится аналогично по правому выводу.

Упражнение 2. Построить правый вывод w = a + (a * a) по дереву разбора. По правому выводу построить разбор $\pi_r(w)$.

Упражнение 3. Построить по описанной выше грамматике G схему СУ-перевода, реализующую перевод $w \to \pi_r(w)$. Предъявить алгоритм построения схемы данного СУ-перевода по грамматике.

2 Функция FIRST

При построении (детерминированных) анализатаров по грамматике, нам потребуется определять множество первых k символов слов, выводимых из цепочки $\alpha \in (N \cup T)^*$. Для этого мы будем использовать функцию FIRST $_k$, которая определена через функцию FIRST $_1$ или просто FIRST. Таким образом умение вычислять функцию FIRST является ключевым при построении анализаторов.

Формально,

$$FIRST_k(\alpha) = \{w[1, k] \mid \alpha \Rightarrow w, |w| > k\} \cup \{w \mid \alpha \Rightarrow w, |w| < k\}$$

Если $\alpha \Rightarrow \varepsilon$, то пустое слово лежит в FIRST $_k(\alpha)$.

Приведём процедуру вычисления функции $FIRST(\alpha)$.

Идея алгоритма: Если $\alpha = X_1 X_2 \dots X_n$ начинается с терминала σ , то первым символом может быть только этот терминал, таким образом, мы сразу получаем ответ σ . Если же α начинается с нетерминала, то $FIRST(\alpha) = FIRST(X_1)$, если из нетерминала X_1 не выводится пустое слово, и $FIRST(\alpha) = FIRST(X_1) \cup FIRST(X_2 X_3 \dots X_n)$, если $X_1 \Rightarrow \varepsilon$.

Таким образом, мы описали вычисление функции FIRST на множестве терминалов и цепочек, начинающихся с терминалов, осталось описать вычисление функции на множестве нетерминалов, как видно вычисление функции FIRST на множестве сентенциальных форм сводится к вычислению функции на отдельных нетерминалах.

Пусть мы вычисляем функцию FIRST(X) для нетерминала X. Рассмотрим все правила вида $X \to \beta$. Очевидно, что $FIRST(\beta)$ является подмножеством FIRST(X), но просто добавляя множество $FIRST(\beta)$ к FIRST(X) мы получим порочный круг, в случае правил вида $X \to Xa$. Как нам избежать порочного круга при вычислении множества FIRST(X)?

Определим множества $F_i(Y)$, $Y \in N$. При i = 0 для любого нетерминала Y, множество $F_i(Y) = \emptyset$, или $\{\varepsilon\}$, если есть правило $Y \to \varepsilon$. На i-ом шаге алгоритма будем вычислять множества $F_i(X)$ следующим образом. В начале шага $F_i(X)$ включает себя множество $F_{i-1}(X)$ Если есть правило $X \to \beta = Y_1Y_2\dots Y_n$ и Y_1 — терминал или β — пустое слово, то добавим к множеству $F_i(X)$ элемент Y_1 (быть может пустое слово). Если же Y_1 — нетерминал, и при этом пустое слово не лежит в $F_{i-1}(Y_1)$, то добавим к множеству $F_i(X)$ множество $F_{i-1}(Y_1)$ и вычислим множество $F_i(Y_1)$. Если же $\varepsilon \in F_{i-1}(Y_1)$, то добавим к $F_i(X)$ множество $F_i(Y_1)$ (ε) и повторим описанную операцию для $\beta = Y_2 \dots Y_n$.

Алгоритм останавливается, как только для каждого нетерминала Y, множества F_i и F_{i-1} совпадают.

Aлгоритм:

Шаг 0. Для каждого терминала σ положим $F_i(\sigma) = \sigma$ для любого i. Для каждого нетерминала Y, если есть правило $Y \to \varepsilon$, положим $F_0(Y) = \{\varepsilon\}$, иначе положим $F_0(Y) = \emptyset$.

Шаг і. Добавить к множеству $F_i(X)$ множество $F_{i-1}(X)$. Для каждого правила $X \to \beta = Y_1 \dots Y_n$ выполнить:

$$j=1$$

```
Пока \varepsilon \in F_{i-1}(Y_j) добавить F_{i-1}(Y_j) \setminus \{\varepsilon\} к F_i(X), вычислить F_i(Y_j), увеличить j. Добавить F_{i-1}(Y_j) к F_i(X), вычислить F_i(Y_j). Остановка. F_i(Y) = F_{i-1}(Y) для любого Y из N. Положить FIRST(X) = F_i(X).
```

Упражнение 4. Доказать корректность данного алгоритма.

3 Функция FOLLOW

Помимо префикса порождаемого цепочкой β нас будет интересовать также и множество слов, которые могут следовать после слова, выведенного из цепочки β . Запишем сначала формальное определение функции FOLLOW_k.

$$\mathrm{FOLLOW}_k(\beta) = \{ w \, | \, S \Rightarrow \alpha\beta\gamma, w \in \mathrm{FIRST}_k(\gamma) \}.$$

Неформально, в множестве $\mathrm{FOLLOW}_k(\beta)$ содержатся те слова, которые могут следовать за словом, выведенным из β , в цепочке $\alpha\beta\gamma$, выводимой из аксиомы. Длина этих слов ограничена k, что означает, что если $\gamma \Rightarrow w$ и длина слова w меньше k, то w лежит в множестве $\mathrm{FOLLOW}_k(\beta)$, а если же длина слова w больше k, то в множестве $\mathrm{FOLLOW}_k(\beta)$ лежит префикс w длины k.

Аналогично функции FIRST, мы будем обозначать FOLLOW $_1$ как FOLLOW.

Мы будем часто пользоваться функцией $FOLLOW_k$ в теоретических целях и для обозначения объектов, однако на практике мы будем вычислять функцию FOLLOW только на множестве нетерминалов.

Приведём алгоритм для вычисления функции FOLLOW.

Идея алгоритма: Если в грамматике есть правило $A \to \alpha X \beta$, то за словом, выведенным из нетерминала X следует слово выведенное из β , таким образом множество FOLLOW(X) включает в себя множество $FIRST(\beta)$. Если, при этом из цепочки β выводимо пустое слово, то

за словом, выводимым из нетерминала X следует слово из множества $\mathrm{FOLLOW}(A)$, поскольку из вывода

$$S \Rightarrow^* \gamma Aw \Rightarrow \gamma \alpha X \beta w \Rightarrow \gamma \underbrace{\alpha X}_A w$$

следует, что если элемент $\mathrm{FIRST}(w)$ лежит в множестве $\mathrm{FOLLOW}(A)$, то элемент $\mathrm{FIRST}(w)$ лежит так же в множестве $\mathrm{FOLLOW}(X)$. Таким образом, по определению функции FOLLOW , если в грамматике есть правило $\mathcal{A} \to \alpha X \beta$ и при этом из цепочки β выводимо пустое слово, то множество $\mathrm{FOLLOW}(X)$ включает в себя множество $\mathrm{FOLLOW}(A)$. В частности, возможно что $\beta = \varepsilon$, поэтому при наличии в грамматике правила $A \to \alpha X$, справедливо $\mathrm{FOLLOW}(X) \supset \mathrm{FOLLOW}(A)$.

В итоге, мета-алгоритм сводится к следующим шагам:

- Вычислить множества FIRST для грамматики G;
- Для правил $A \to \alpha X \beta$ добавить $FIRST(\beta) \setminus \{\varepsilon\}$ к FOLLOW(X);
- Для правил $A \to \alpha X \beta$, таких что, $\varepsilon \in \mathrm{FIRST}(\beta)$ добавить $\mathrm{FOLLOW}(A)$ к $\mathrm{FOLLOW}(X)$.

Упражнение 5. Доказать корректность данного мета-алгоритма. То есть, что все элементы множеств FOLLOW будут найдены и ничего лишнего найдено не будет.

Замечание 1. По хорошему, возникает проблема с тем, лежит ли пустое слово в FOLLOW(X). Эта проблема решается следующим образом: ко всем словам, порождаемым G добавляется маркер конца слова, и если этот маркер оказывается в FOLLOW(X), то пустое слово принадлежит FOLLOW(X). Для этого по грамматике G строится пополненная грамматика G', которая содержит правило $S' \to S\$$, где \$ – маркер конца слова. Все остальные правила грамматики G' взяты из грамматики G. На практике, функция FOLLOW используется в анализаторах, на вход которым и так подаётся пополненная грамматика, поэтому решать проблему наличия пустого слова в множестве FOLLOW(X) не надо.

Теперь опишем сам алгоритм. Идея алгоритма схожа с индуктивным вычислением множеств FIRST.

Aлгоритм:

Шаг 0. Для каждого нетерминала Y положим $F_0(Y) = \emptyset$. Вычислим значение функции FIRST для грамматики G.

Шаг і. Положить множество $F_i(X)$ равным множеству $F_{i-1}(X)$. Для каждого правила $A \to \alpha X \beta$ добавить $\mathrm{FIRST}(\beta) \setminus \{\varepsilon\}$ к $F_i(X)$; Если $\varepsilon \in \mathrm{FIRST}(\beta)$ добавить $F_{i-1}(A)$ к $F_i(X)$.

Oстановка. Как только $F_i(Y) = F_{i-1}(Y)$ для любого Y из N. Положить $FIRST(X) = F_i(X)$.

4 OT FIRST K FIRST_k

Сначала введём вспомогательную операцию на множествах. Пусть L_1 и L_2 некоторые языки. Тогда язык $L_1 \oplus_k L_2$ состоит из всех таких слов w, что либо в языке L_1 есть слово w_1 длины не меньшей k и $w=w_1[1,k]$, либо слово x длины не большей k лежит в L_1 , слово y лежит в L_2 , слово u есть их конкатенация xy и, наконец, w=u[1,k], если |u|>k или просто w=u, если |u|< k. Формально

$$L_1 \oplus_k L_2 = \{ w \mid \exists x \in L_1, \exists y \in L_2, u = xy, |u| \leqslant k \Rightarrow w = u, |u| > k \Rightarrow w = u[1, k] \}$$

Другой вариант формального определения, чтобы окончательно запутать читателя:

$$L_1 \oplus_k L_2 = \{xy \mid x \in L_1, y \in L_2, |xy| \le k\} \cup \{u[1, k] \mid \exists x \in L_1, \exists y \in L_2, u = xy, |xy| > k\}$$

Из определения операции \oplus_k следует, что для $X_1, X_2, \ldots X_n \in N \cup T$ справедливо

$$FIRST_k(X_1X_2...X_n) = FIRST_k(X_1) \oplus_k FIRST_k(X_2) \oplus_k ... \oplus_k FIRST_k(X_n).$$

Фактически, когда мы вычисляли функцию FIRST, мы вычисляли её используя оператор \oplus_1 . Перепишем алгоритм вычисления функции FIRST для вычисления функции FIRST_k.

Алгоритм:

Шаг 0. Для каждого терминала σ положим $F_i(\sigma) = \sigma$ для любого i. Для каждого нетерминала Y, рассмотрим все правила вида $Y \to x\alpha$,, где x – слово (быть может пустое!), а цепочка α либо начинается с нетерминала, либо пуста. Если $|x| \geqslant k$, добавим к множеству $F_0(Y)$ слово x[1,k], иначе добавим к множеству $F_0(Y)$ слово x.

Шаг і. Добавить к множеству $F_i(X)$ множество $F_{i-1}(X)$. Для каждого правила $X \to \beta = Y_1 \dots Y_n$

```
добавить к F_i(X) множество F_{i-1}(Y_1) \oplus_k \ldots \oplus_k F_{i-1}(Y_n), вычислить F_i(Y_j), для j = 1..n
```

 $Oстановка. F_i(Y) = F_{i-1}(Y)$ для любого Y из N. Положить $\mathrm{FIRST}_k(X) = F_i(X)$.

Упражнение 6. Доказать корректность работы данного алгоритма.

На практике удобно вычислять функцию FIRST_k для всех нетерминалов сразу.

5 LL(k)-грамматики

Мы не будем строить анализаторы для $\mathrm{LL}(k)$ -грамматик, где k>1 в силу нехватки времени. Тем не менее, мы будем работать с определением $\mathrm{LL}(k)$ -грамматики и её свойствами.

Вспомним, что грамматика является LL(k)-грамматикой тогда и только тогда, когда она левоанализируема, т.е. существует детерминированный анализатор (ДМП-автомат с выходом), который реализует СУ перевод $w \to \pi_l(w)$.

С таким определением не очень удобно работать с точки зрения анализа грамматики, поэтому мы будем также использовать эквивалентные ему определения.

Теорема 1. Грамматика является LL(k)-грамматикой тогда и только тогда, когда для любых двух правил $A \to \beta, A \to \gamma$, $FIRST_k(\gamma\alpha) \cap FIRST_k(\beta\alpha) = \emptyset$ для таких α , что $S \Rightarrow_t^* wA\alpha, S \Rightarrow_t^* wA\beta$.

Не все грамматики, задающие LL-языки являются LL-грамматиками. Но некоторые из них можно преобразовать к LL(k)-грамматике используя приёмов левой факторизации и удаления левой рекурсии. Изучите эти приёмы по книжке Серебрякова или по Axo и Yльману.

6 Задачи

В первых двух задачах под грамматикой G понимается грамматика, порождающая арифметические выражения.

Задача 1. Построить дерево вывода, левые и правые разборы для слова ((a)) в грамматике G, определённой выше.

Задача 2. Построить детерминированный левый анализатор для грамматики

$$S \to 0S$$
 (1)

$$S \to 1S$$
 (2)

$$S \to \varepsilon$$
 (3)

3*. Добавим в грамматику G правило $E \to \varepsilon$. Вычислите значение функции FIRST(E).

Задача 4. Докажите, что грамматика не является LL(1)-грамматикой, но является LL(2)-грамматикой. Вычислите функции $FIRST_2$ и $FOLLOW_2$ для всех нетерминалов.

$$S \to aAaa|bAba$$
$$S \to b|\varepsilon$$

Задача 5. Для грамматики написать эквивалентную LL(1)-грамматику и вычислить функции FIRST и FOLLOW для каждого нетерминала. Постройте по получившейся грамматике LL(1)-анализатор.

$$S \to ba|A$$
$$A \to a|Aab|Ab$$

Задача 6*. Докажите, что язык $a^* \cup a^n b^n$ не является LL-языком.