Funda Tan 21801861 CS201 - 01

2.) Tables and plots for functions

Algorithm 1: I appended items of arr1 in the same order to arr3 then for items of arr2, I found the right place to insert in arr3 from the beginning and shifting the items in arr3 when needed.

Algorithm 2: Compare pairs of numbers across arr1 and arr2 and insert the smallest to arr3. In this algorithm you are allowed to visit every item only once.

Table	1
Case	1
NI	

N .	Algorithm 1 Algorithm 2			
10	0	0,0001		
100	0,1	0,0006		
1000	4,7	0,0049		
10000	364,7	0,0444		
100000	364334,5	0,3972		

Table 2 Case 2

N	Algorithm 1 Algorithm 2				
10	0	0,0002			
100	0,1	0,0008			
1000	4	0,0059			
10000	376,9	0,0496			
100000	36712,3	0,3936			

Table 3 Case 3

N	Algorith	m 1Al	gorithm 2
10)	0	0,0001
100)	0,1	0,0006
1000)	3,9	0,006
10000) :	381	0,1235
100000	3680)4,8	0,9471

Case 1 is the case that all numbers in arr1 are smaller than arr2.

Case 2 is the case that all numbers in arr2 are smaller than arr3.

Case 3 is the case that there is no such ordering between arrays items.

I simulated the functions with each three cases, took the results and put them in table 1, table 2, and table 3.

Table 1 is for algorithms I run with case 1, table 2 is for algorithms I run with case 2 and table 3 is for algorithms I run with case 3.

Plot 1: case (1) for algorithm 1 in orange line and algorithm 2 in blue line. (Case 1 is the case that all numbers in arr1 are smaller than arr2)

Plot 2: case (2) for algorithm 1 in orange line and algorithm 2 in blue line. (Case 2 is the case that all numbers in arr2 are smaller than arr3)

Plot 3: case (3) for algorithm 1 in orange line and algorithm 2 in blue line. (Case 3 is the case that there is no such ordering between arrays items)

3. Best case, average case and worst cases for algorithm

For Algorithm 1

Best case \Rightarrow Case 1 (in Plot 1)

Average case => Case 2 (in Plot 2)

Worst case => Case 3 (in Plot 3)

To compare plots for algorithm 2, I re-scaled them to see the difference.

Plot 4: For algorithm 2. Yellow line is for case 1, orange line is for case 2 and blue line if for case 3.

```
For Algorithm 2
Best case => Case 1 (in Plot 1)
Average case => Case 2 (in Plot 2)
Worst case => Case 3 (in Plot 3)
```

Worst case time complexity For Algorithm $1 \Rightarrow O(n^2)$ For Algorithm $2 \Rightarrow O(n)$

4.) Computer Specifications

CPU: Intel(R) Core(TM) i7-8550U CPU @ 1.80GH 1.99 Hz

RAM: 8.00 GB

5. , 6.) Expected worst case growth rates from theoretical analysis and comparison of them

I plotted the expected worst case growth rate $(O(n^2))$ and the growth rate I found from simulation for algorithm 1.

Plot 5: For algorithm 1. Orange line is the expected worst case growth rate $(O(n^2))$ and blue line is the growth rate I found from simulation.

I plotted the expected worst case growth rate (O(n)) and the growth rate I found from simulation for algorithm 2.

Plot 6: For algorithm 2. Orange line is the expected worst case growth rate (O(n)) and blue line is the growth rate I found from simulation.

Discussion:

To compare expected growth rates I obtained from step 5 and the growth rates which I obtained from simulation, I see that expected growth rates and the values which I have found from the simulation are similar with each other. For algorithm 1, I expected O(n^2) growth rate from theory, and I saw that it is similar to the growth rate of the simulation and for algorithm 2, I expected O(n) growth rate from theory and it is similar to the growth rate of the simulation so I may say that theoretical and experimental results are matching.