$MTH215 \star \star 2019-20 \star \star ASSIGNMENT - 6$

- 1. Show that $a_{n+1}^2 + a_{n-2}^2 = 2a_{2n-1}$ for $n \ge 3$.
- 2. Show that $a_{n+2}^2 + a_{n-1}^2 = 2(a_n^2 + a_{n-1}^2)$ for $n \ge 2$.
- 3. Show that $a_{n+1}^2 4a_n a_{n-1} = a_{n-2}^2$ for $n \ge 3$.
- 4. Show that $a_{n+1}a_{n-1} a_{n+2}a_{n-2} = 2(-1)^n$ for $n \ge 3$.
- 5. Show that $a_n^2 a_{n+2}a_{n-2} = (-1)^n$ for $n \ge 3$.
- 6. Show that $a_n^2 a_{n+3}a_{n-3} = 4(-1)^{n+1}$ for $n \ge 4$.
- 7. Show that $a_n a_{n+1} a_{n+2} a_{n+3} = a_{n+2}^4 1$ for $n \ge 1$.
- 8. Show that $(a_n a_{n+3})^2 + (2a_{n+1} a_{n+2})^2 = a_{2n+3}^2$ for $n \ge 1$.
- 9. Let $n \in \mathbb{N}$. Show that
 - (a) $a_{4n} + 1 = a_{2n-1}(a_{2n} + a_{2n+2}).$
 - (b) $a_{4n+1} + 1 = a_{2n+1}(a_{2n-1} + a_{2n+1}).$
 - (c) $a_{4n+2} + 1 = a_{2n+2}(a_{2n-1} + a_{2n+1}).$
 - (d) $a_{4n+3} + 1 = a_{2n+1}(a_{2n+1} + a_{2n+3}).$
 - (e) $a_n + 1$ is composite for $n \ge 4$.
- 10. $a_{2n-1}a_{2n+5}$ is a sum of two squares.
- 11. Show that the sum of any consecutive Fibonacci numbers is divisible by a_{10} .
- 12. Find a positive integer n such that $\mu(n) + \mu(n+1) + \mu(n+2) = 3$.
- 13. Let $n \in \mathbb{N}$. Show that $\mu(n)\mu(n+1)\mu(n+2)\mu(n+3) = 0$.
- 14. Let $m \in \mathbb{N}$. Show that there exist infinitely many $n \in \mathbb{N}$ such that $\mu(n+1) = \mu(n+2) = \cdots = \mu(n+m)$.
- 15. Find all Pythagorean triples (a, b, c) such that a, b, c are in GP.