

Mestrado Integrado em Engenharia Informática e Computação Análise Matemática | 1^o Semestre | 2018/2019 1^o Mini Teste | 2018.11.06 | Duração: 1h30m

(d) 0

Nome COMPLETO:

IMPORTANTE: Teste sem consulta. Resolva cada GRUPO em folhas separadas: GRUPO I responda na grelha do enunciado; GRUPO II e GRUPO III em folhas de capa separadas. Apresente e justifique convenientemente todos os cálculos que efetuar. Não são consideradas folhas sem identificação. Não é permitida a utilização de tabelas, formulários, telemóveis ou máquina de calcular com capacidade gráfica. Durante a realização da prova não é permitida a saída da sala. A desistência só é possível 30 minutos após o início do teste.

GRUPO I - Versão A

(a) 1

(Preencha a tabela de RESPOSTAS na folha de enunciado. Não são consideradas respostas múltiplas. **COTAÇÃO prevista**: **1.2** valores por cada resposta CORRETA. Cada resposta ERRADA desconta **0.5** valor na cotação deste Grupo.)

RESPOSTAS

1	2	3	4	5

1. Calcule, se existif, o	$x \to 0$	$x \sin x$	
(a) $\frac{1}{2}$	(b) $-\infty$	(c) 0	(d) $-\frac{1}{2}$

2. Calcule, se existir, o valor de $\lim_{x\to 0^+} (2-e^{x^2})^{1/x}$

(b) e

Coloulo as existin a valor de line $\ln{(1+x)} - \sin{x}$

3. Qual o valor do integral definido $\int_{-\pi/2}^{\pi/2} (\sin x)^5 \cos x \, dx$

(a) $\frac{1}{3}$ (b) 0 (c) $-\frac{1}{3}$ (d) $\frac{\pi}{3}$

(c) e^2

4. Qual a expressão de $\frac{d}{dx} \left[\sin \left(\frac{\cos x}{x} \right) \right]$?

(a) $-\frac{1}{x^2}\cos\left(\frac{\cos x}{x}\right)(x\sin x + \cos x)$ (b) $-\frac{1}{x^2}\cos\left(\frac{\sin x}{x}\right)(x\cos x + \cos x)$

(c) $\frac{1}{x}\cos\left(\frac{\cos x}{x^2}\right)(x\cos x + \cos x)$ (d) $\frac{1}{x^2}\cos\left(\frac{\cos x}{x}\right)(x\sin x + \cos x)$

5. Considere a função $f(x) = x^2$ no intervalo $x \in [0,2]$. Qual o valor da aproximação da área sinalada de f(x) obtida pela soma de Riemann superior para 4 partições de $\Delta x_i = 1/2$

(a) $\frac{14}{8}$ (b) $\frac{8}{3}$ (c) $\frac{30}{8}$

GRUPO II

- 6. [3] Café escoa através de um filtro cónico (diâmetro e altura máxima de D=6 cm e H=5 cm, respectivamente) para uma caneca cilíndrica de diâmetro $D_c=3$ cm. A taxa de variação de volume de café no filtro é de $\frac{9}{4}\pi$ cm³/segundo. Supondo que não há mais café a entrar no filtro, calcule:
 - (a) a velocidade de subida do nível de café no caneca, quando o nível de café no filtro for de $2.5~\mathrm{cm}^{?}$
 - (b) qual a velocidade de descida do nível de café no filtro para o mesmo instante?
- 7. [2] Usando os conceitos de <u>derivada da função composta</u> e de <u>derivada da função inversa</u>, calcule a derivada $\frac{dy}{dx}$ para $y = \arcsin(\ln x)$.

GRUPO III

- 8. [2] Esboce a região Q do plano limitada pelos gráficos das funções $f_1(x) = 4 x^2$ e $f_2(x) = x 2$. Determine a área da região Q.
- 9. [5] Calcule os seguintes integrais usando técnicas apropriadas:

(a)
$$\int \frac{1}{x} \left(\sqrt{x} + \ln x \right) dx$$

(b)
$$\int x \arctan x \, dx$$

(c)
$$\int x\sqrt{16-4x^2}\,\mathrm{d}x$$

(d)
$$\int \frac{e^x}{\sqrt{e^x - 1}} \, \mathrm{d}x$$

10. [2] Usando o <u>Teorema Fundamental do Cálculo</u>, determine uma função f(x) contínua, não nula e derivável que satisfaça a equação:

$$\ln|f(x)| = \int_{\pi}^{x^2} \frac{1}{t f(\sqrt{t})} dt$$

Justifique todos os cálculos efectuados.