

NORTHWEST UNIVERSITY

2.5 连续映射

连续函数

回顾

函数 y = f(x) 在 x_0 点连续

$$f: R \rightarrow R$$

$$\iff \lim_{x \to x_0} f(x) = f(x_0)$$

$$\iff$$
 任给 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $|x - x_0| < \delta$ 时, $|f(x) - f(x_0)| < \varepsilon$.

$$\iff$$
 对任意的数列 $\{x_n\}$, 当 $\lim_{n\to\infty} x_n = x_0$ 时, $\lim_{n\to\infty} f(x_n) = f(x_0)$.

连续性的定义

T: X -> XI

设(X,d)与 (X_1,d_1) 是距离空间,T为X到 X_1 的映射, $x_0 \in X$. 如果

任给 $\varepsilon > 0$,存在 $\delta > 0$,当 $d(x,x_0) < \delta$ 时,有

$$d_1(T(x), T(x_0)) < \varepsilon,$$

则称 T 在 x_0 连续. 若 T 在 X 中的每一点都连续,则称 T 为 X 上的连续映射.

连续性的理解

T在 x_0 连续

任给 $\varepsilon > 0$,存在 $\delta > 0$,当 $d(x,x_0) < \delta$ 时,有 $d_1(T(x),T(x_0)) < \varepsilon$.

$$T(B(x_0,\delta)) \subset B_1(T(x_0),\varepsilon)$$

连续性的等价刻画

定理

T 在 x_0 连续的充要条件是对任意的点列 $\{x_n\}$, 当 $x_n \to x_0$ 时,

$$T(x_n) \to T(x_0) \ (n \to \infty).$$

证

(必要性) 设T在 x_0 连续,则任给 $\varepsilon > 0$,存在 $\delta > 0$,当 $d(x,x_0) < \delta$ 时, $d_1(T(x),T(x_0)) < \varepsilon.$

由 $x_n \to x_0 \ (n \to \infty)$ 知存在 N, 当 n > N 时, $d(x_n, x_0) < \delta$.

因而当 n > N时,

$$d_1(T(x_n), T(x_0)) < \varepsilon.$$

连续性的等价刻画

定理

T 在 x_0 连续的充要条件是对任意的点列 $\{x_n\}$, 当 $x_n \to x_0$ 时,

$$T(x_n) \to T(x_0) \ (n \to \infty).$$

证

(充分性) 假设T在 x_0 不连续,则存在 $\varepsilon_0 > 0$,对任意 $\delta > 0$,存在 x_δ ,虽有 $d(x_\delta, x_0) < \delta$,但是 $d_1(T(x_\delta), T(x_0)) \ge \varepsilon_0$.

对
$$\delta_n = \frac{1}{n} (n = 1, 2, \dots)$$
,存在 $\{x_n\}$,虽有 $d(x_n, x_0) < \frac{1}{n}$,但是
$$d_1(T(x_n), T(x_0)) \ge \varepsilon_0.$$

即点列 $\{x_n\}$ 收敛于 x_0 ,但是 $\{T(x_n)\}$ 不收敛于 $T(x_0)$,矛盾.

连续性的等价刻画

定理

T 在 x_0 连续的充要条件是对任意的点列 $\{x_n\}$, 当 $x_n \to x_0$ 时,

$$T(x_n) \to T(x_0) \ (n \to \infty).$$

$$\lim_{n \to \infty} T(x_n) = T(x_0) = T(\lim_{n \to \infty} x_n)$$

注 定理表明,若T连续,则极限运算可以和T交换顺序.

定理

T 在X 上连续的充分必要条件是 X_1 中任何开集G 的原像 $T^{-1}(G)$ 是X中的开集.

必要性

定理

T 在X 上连续的充分必要条件是 X_1 中任何开集G 的原像 $T^{-1}(G)$ 是X中的开集.

必要性

定理

T 在X 上连续的充分必要条件是 X_1 中任何开集G 的原像 $T^{-1}(G)$ 是X中的开集.

充分性

定理

T 在X上连续的充分必要条件是 X_1 中任何开集G 的原像 $T^{-1}(G)$ 是X中的开集.

证

(必要性) 任取 $x_0 \in T^{-1}(G)$. 则 $T(x_0) \in G$, 由 G 是开集知,存在 $\varepsilon > 0$, $B(T(x_0), \varepsilon) \subset G$.

因为 T 在 x_0 连续, 故存在 $\delta > 0$, 使得

$$T(B(x_0,\delta)) \subset B(T(x_0),\varepsilon) \subset G.$$

即 $B(x_0, \delta) \subset T^{-1}(G)$. 所以 $T^{-1}(G)$ 是开集.

定理

T 在X上连续的充分必要条件是 X_1 中任何开集G 的原像 $T^{-1}(G)$ 是X中的开集.

证

(充分性) 任取 $x_0 \in X$. 对任意的 $\varepsilon > 0$,由于 $B(T(x_0), \varepsilon)$ 是开集,故它的原像 $T^{-1}(B(T(x_0), \varepsilon))$ 是X中的开集.

注意到 $x_0 \in T^{-1}(B(T(x_0), \varepsilon))$,故存在 $\delta > 0$,使得

$$B(x_0, \delta) \subset T^{-1}(B(T(x_0), \varepsilon)),$$

即

$$T(B(x_0,\delta)) \subset B(T(x_0),\varepsilon).$$

所以T在 x_0 连续.

小结

- 连续性的定义
- 连续性的等价刻画
- 连续映射的等价刻画