IN-2023

EE23BTECH1153-R.Rahul*

QUESTION:

61. In the diagram shown, the frequency of the sinusoidal source voltage V_s is 50 Hz.The load voltage is 230 V (RMS), and the load impedance is $\frac{230}{\sqrt{2}} + j\frac{230}{\sqrt{2}} \Omega$. The value of attenuator $A_1 = \frac{1}{50\sqrt{2}}$. The multiplier output voltage $V_o = \frac{V_x V_y}{1V}$, where V_x and V_y are the inputs. The magnitude of the average value of the multiplier output V_0 is

Parameter	Description	Value
V_s	sinusoidal Source voltage	230 V(RMS)
V_1	voltage across attenuator	
V_x and V_y	inputs voltages	
A_1	attenuator	$\frac{1}{50\sqrt{2}}$
Z	Load Impedance	$\frac{230}{\sqrt{2}} + j\frac{230}{\sqrt{2}} \Omega$
V_0	output voltage	$V_0 = \frac{V_x V_y}{1V}$

TABLE I

VARIABLES

voltage at attenuator

$$V_1 = V_s A_1 \tag{4}$$

$$=230\frac{1}{50\sqrt{2}}V\tag{5}$$

$$=\frac{4.6}{\sqrt{2}}V\tag{6}$$

$$V_y = 4.6\sin(\omega t + 90^\circ) \tag{7}$$

$$V_x = I \times 1\Omega \tag{8}$$

$$=2\sqrt{2}\sin(\omega t - 45^{\circ})\tag{9}$$

$$V_0 = 9.2\sqrt{2}(\frac{\cos(135) - \cos(2\omega t)}{2}) \quad (10)$$

$$= 4.6 - 4.6\sqrt{2}\cos(2\omega t) \tag{11}$$

$$V_0 < avg > = 4.6$$
 (12)

Solution:

Let the curret in load be I

$$I = \frac{V_s(peak)}{Z} \tag{1}$$

$$=\frac{230\sqrt{2}}{\frac{230}{\sqrt{2}}+j\frac{230}{\sqrt{2}}}\tag{2}$$

$$=\sqrt{2}(1-j)\tag{3}$$