Noircissez sur la feuille-réponse l'unique meilleure réponse à chaque question.

Calculatrice non programmable permise bien que peu utile.

- 1. Les courbes intégrales du champ de vecteurs $\mathbf{F}(x, y) = (x, y)$ sont :
 - (1)des demi-droites
 - des hyperboles (2)
 - \Box (3) des cercles
 - (4)des paraboles
 - $_{(5)}\square$ aucune de ces réponses
- 2. Les courbes isopotentielles du champ de vecteurs $\mathbf{F}(x, y) = (x, y)$ sont :
 - (1)des demi-droites
 - des hyperboles (2)
 - \square (3) des cercles
 - $_{(4)}\square$ des paraboles
 - $_{(5)}\square$ aucune de ces réponses
- 3. Soit $\mathbf{F}: \mathcal{U} \to \mathbf{R}^3$ un champ de vecteurs de classe \mathcal{C}^1 défini sur un ouvert simplement connexe \mathcal{U} de \mathbf{R}^3 . Lequel des énoncés suivants n'est pas équivalent aux autres?
 - $\mathbf{rot}(\mathbf{F}) = \mathbf{0} \ \mathrm{sur} \ \mathcal{U}$ (1)
 - pour toute courbe fermée $C \subseteq \mathcal{U}$, on a $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ (2)
 - \square (3) F est conservatif
 - il existe une fonction $\phi: \mathcal{U} \to \mathbf{R}$ de classe \mathcal{C}^2 pour laquelle $\mathbf{F} = \nabla \phi$ (4)
 - \Box $\operatorname{div}(\mathbf{F}) = 0 \operatorname{sur} \mathcal{U}$
- 4. Le rotationnel du champ de vecteurs $\mathbf{F}(x,y,z) = (x+y,-yz,\sin xy)$ vaut
 - (0, 0, 0)(1)
 - $(x\cos xy + y, -y\cos xy, 1)$ (2)
 - \square (1, -z, 0)
 - (4) $(\sin xy, x-z, y)$
 - $_{(5)}\square$ aucune de ces réponses
- 5. Soit $\vec{\omega}$ le champ de vecteurs défini par

$$\vec{\omega}(x, y) = \frac{-y \mathbf{i} + x \mathbf{j}}{x^2 + y^2}.$$

Que vaut la circulation de $\vec{\omega}$ le long du cercle \mathcal{C} : $(\cos t, \sin t)$, $0 \leq t \leq 2\pi$?

- $_{(1)}\square$ -2π $_{(2)}\square$ $-\pi$ $_{(3)}\square$ 0 $_{(4)}\square$ π

- $_{(5)}\Box 2\pi$
- 6. Le champ de vecteurs $\mathbf{F}(x, y) = (2xy, x^2)$ est conservatif. Calculez sa circulation le long de l'arc de cercle :

$$C: (\cos t, \sin t), \ 0 \leqslant t \leqslant \frac{\pi}{4}.$$

- $_{(1)}\Box$ -1 $_{(2)}\Box$ 0 $_{(3)}\Box$ $\frac{\pi}{4}$ $_{(4)}\Box$ $\frac{1}{2\sqrt{2}}$
- $_{(5)}\square$ 2

7.	Calculer le flux du champ de vecteurs $\mathbf{F}(x,y,z)=(x+y^2,y+z^2,z+x^2)$ à travers la surface du cube $[0,1]\times[0,1]\times[0,1]$ (orientée par la normale extérieure).
	$_{(1)}\square$ -2 $_{(2)}\square$ 0 $_{(3)}\square$ 3 $_{(4)}\square$ 2π $_{(5)}\square$ aucune de ces réponses
	Soit $\mathbf{F}: \mathcal{U} \to \mathbf{R}^3$ un champ de vecteurs et $\lambda: \mathcal{U} \to \mathbf{R}$ une fonction, tous deux de classe \mathcal{C}^1 , définis sur un ouvert \mathcal{U} simplement connexe. Donner une condition nécessaire et suffisante pour que $\lambda \mathbf{F}$ soit conservatif. $(1)^{\square} \mathbf{rot}(\lambda \mathbf{F}) = \nabla \lambda$ $(2)^{\square} \nabla \lambda + \lambda \mathbf{F} = 0$ $(3)^{\square} \mathrm{div}(\mathbf{F}) = \lambda$ $(4)^{\square} \nabla \lambda \wedge \mathbf{F} = -\lambda \mathbf{rot}(\mathbf{F})$ $(5)^{\square} \nabla \lambda \cdot \mathbf{F} = 0$ Parmi les régions suivantes, laquelle n'est pas simplement connexe?
	(1) \square \square \square (2) \square
	$_{(4)}\square$ \mathbf{R}^3 $_{(5)}\square$ $\mathbf{R}^3\setminus\{(0,0,0)\}$
10.	Que vaut l'intégrale impropre $\int_1^\infty \left(e^{-2x} - \frac{1}{x^4}\right) dx$?
	$_{(1)}\square$ 0 $_{(2)}\square$ $\frac{1}{3}$ $_{(3)}\square$ $\frac{1}{2}$ $_{(4)}\square$ $\frac{1}{6}$ $_{(5)}\square$ elle diverge
11.	La longueur totale de la courbe paramétrée en coordonnées polaires $r(\theta)=e^{-\theta}$ $(\theta\in[0,+\infty[)$ vaut
	$_{(1)}\Box \ \ 0 \qquad _{(2)}\Box \ \ 1 \qquad _{(3)}\Box \ \ \sqrt{2} \qquad _{(4)}\Box \ \ 2\pi \qquad _{(5)}\Box \ \ +\infty$
12.	Pour quelles valeurs de $\alpha \in \mathbf{R}$ l'intégrale impropre $\int_0^\infty x^\alpha \mathrm{d} x$ est-elle convergente?
	${}_{(1)}\square \alpha > 1 \qquad \qquad {}_{(2)}\square \alpha < 1 \qquad \qquad {}_{(3)}\square \alpha \geqslant 1 \qquad \qquad {}_{(4)}\square \alpha \leqslant 1 \qquad \qquad {}_{(5)}\square \text{aucune}$
13.	L'intégrale impropre $\int_0^\infty \frac{x^2-3x+1}{x^4+1} \mathrm{d}x \text{ est}$
	absolument convergente (2) semi-convergente (3) divergente $ (4) \square \text{on ne peut pas dire} $
14.	L'intégrale impropre $\int_0^\infty \frac{\cos x}{x} dx$ est
	$_{(1)}\square$ absolument convergente $_{(2)}\square$ semi-convergente $_{(3)}\square$ divergente $_{(4)}\square$ on ne peut pas dire
15.	Culture générale : de quelle planète viennent les wookiees?
	$_{(1)}\square$ Kashyyyk $_{(2)}\square$ Alderaan $_{(3)}\square$ Hoth $_{(4)}\square$ Dagobah $_{(5)}\square$ Tatooine