

Advanced Stochastic Finite Element Methods

Iason Papaioannou

Engineering Risk Analysis Group Technische Universität München

Phone: 089 289 25038

E-mail: <u>iason.papaioannou@tum.de</u>

Advanced Stochastic Finite Element Methods

Elective course for MSc and PhD students

3 ECTS

Lecturer: lason Papaioannou (<u>iason.papaioannou@tum.de</u>)

Guest lecturer: Elisabeth Ullmann (elisabeth.ullmann@ma.tum.de)

Course dates: June 6 – 10, 9am – 12:30pm and 14pm – 16pm

Lecture room: N2619

Course language: English

Motivation

Lecture Contents

- Advanced Monte Carlo methods
 - a) Advanced sampling (LHS, QRS)
 - b) Multi-level Monte Carlo
- 2. Spectral stochastic finite element methods
 - a) Spectral representation of random variables PC expansion
 - b) Stochastic Galerkin method
 - c) Stochastic collocation methods
 - d) Sparse PC expansions
- 3. Stochastic finite elements and reliability
 - a) Definition of the reliability problem
 - b) Reliability analysis with PC expansions

Class schedule

Day	Lectures 9am – 12:30pm	Tutorial 2pm – 4pm	Lecture notes
Monday June 6	Introduction, Review of probability theory, linear finite elements, discretization of random fields	Discretization of random fields (the Karhunen-Loève expansion)	Chapters 1 – 4
Tuesday June 7	Monte Carlo simulation advanced sampling methods	Finite elements with random field inputs	Chapters 4 – 5
Wed. June 8	Polynomial chaos expansion Stochastic Galerkin method	Monte Carlo finite element methods	Chapter 6
Thursday June 9	Stochastic collocation methods Sparse PCE	PCE represention of finite element solution	Chapter 6
Friday June 10	9.00-10.30: Stochastic finite elements and reliability 11.00 – 12.30: Multilevel Monte Carlo method (lecture held by Prof. Ullmann)		

Lecture organization

- Lecture: White board/slides
- Homework-exercises
- Examination: Project work
 - Students must hand in a Matlab code and a short report
 - Oral presentation of results
- Prerequisites
 - Linear finite element method
 - Probability theory (random variables/random fields)
 - Basic knowledge of functional analysis is recommended

Literature

Lecture Notes
Stochastic Finite Element Methods
I Papaioannou
TU München

Numerical methods for stochastic computations: A spectral method approach

D Xiu

Princeton University Press, 2010

Stochastic finite elements and reliability:

A state-of-the-art report

B Sudret, A Der Kiureghian

UC Berkeley, 2000

Stochastic finite elements:

A spectral approach

RG Ghanem, PD Spanos

Dover Publications, 2004

Random variables

Random variable – Mathematical tool for modeling uncertain quantities

- Random variables map possible outcomes of an experiment (collected in the sample space *S*) to the real numbers
- A random variable is represented by a capital letter, e.g. *X*
- An outcome of a random variable is represented by a lower case letter, e.g. x

Random variables

Cumulative distribution function (CDF) – Function that returns the probability that a random variable X is smaller than or equal to an outcome x

$$F_X(x) = P(X \le x)$$

Notes:

- The CDF is a non-decreasing function
- The CDF has limits $F_X(-\infty) = 0$, $F_X(\infty) = 1$
- $P(a < X \le b) = F_X(b) F_X(a)$

Discrete random variables

Random variables with discrete number of outcomes

Probability Mass Function (PMF) – Function that returns the probability that a discrete random variable *X* takes a specific value *x*

$$p_X(x) = P(X = x)$$

CDF of discrete random variable: $F_X(x) = \sum p_X(x_i)$

$$F_X(x) = \sum_{x_i \le x} p_X(x_i)$$

Normalization rule: $\sum_{\forall x} p_X(x_i) = 1$

$$\forall x_i$$

Discrete random variables

Random variables with discrete number of outcomes

Probability Mass Function (PMF) – Function that returns the probability that a discrete random variable *X* takes a specific value *x*

$$p_X(x) = P(X = x)$$

CDF of discrete random variable:

$$F_X(x) = \sum_{x_i \le x} p_X(x_i)$$

Continuous random variables

Random variables which can take any value within one or more intervals

Probability Density Function (PDF) – Function whose integral over an interval gives the probability that *X* takes a value within this interval

$$f_X(x)dx = P(x < X \le x + dx)$$

CDF of continuous random variable:
$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
 $\Rightarrow f_X(x) = \frac{dF_X(x)}{dx}$

Normalization rule:
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Continuous random variables

Random variables which can take any value within one or more intervals

Probability Density Function (PDF) – Function whose integral over an interval gives the probability that *X* takes a value within this interval

$$f_X(x)dx = P(x < X \le x + dx)$$

CDF of continuous random variable:
$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
 $\Rightarrow f_X(x) = \frac{dF_X(x)}{dx}$

Expectations and moments

Expectation of a function

Discrete random variable

- $E[g(X)] = \sum_{\forall x_i} g(x_i) \cdot p_X(x_i)$ $E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$
- Continuous random variable

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

Expectations and moments

n-th moment of a random variable

Mean value

$$\mu_n = E[X^n]$$

$$\mu_{x} = E[X]$$

n-th central moment of a random variable

$$\mu_n' = \mathrm{E}[(X - \mu_X)^n]$$

Variance

Var[X] = E[
$$(X - \mu_X)^2$$
]
= E[X^2] - E[X]²

Standard deviation

$$\sigma_X = \sqrt{\text{Var}[X]}$$

Coefficient of variation

$$\delta_X = \frac{\sigma_X}{|\mu_X|}, \qquad \mu_X \neq 0$$

Normal (Gaussian) distribution

Defined by two parameters, the mean and the standard deviation $X \sim N(\mu, \sigma)$

PDF:
$$f_X(x) = \frac{1}{\sigma} \varphi \left(\frac{x - \mu}{\sigma} \right)$$
 CDF: $F_X(x) = \Phi \left(\frac{x - \mu}{\sigma} \right)$

 $\varphi(u), \Phi(u)$: PDF, CDF of the standard normal random variable $U \sim N(0,1)$

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{u^2}{2}\right] \qquad \Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z^2}{2}\right] dz$$

Normal (Gaussian) distribution

Defined by two parameters, the mean and the standard deviation $X \sim N(\mu, \sigma)$

PDF:
$$f_X(x) = \frac{1}{\sigma} \varphi \left(\frac{x - \mu}{\sigma} \right)$$
 CDF: $F_X(x) = \Phi \left(\frac{x - \mu}{\sigma} \right)$

 $\varphi(u), \Phi(u)$: PDF, CDF of the standard normal random variable $U \sim N(0,1)$

Lognormal distribution

The logarithm of a lognormal random variable is normal

$$X \sim LN(\mu, \sigma) \Rightarrow \ln(X) \sim N(\mu, \sigma)$$

Asymmetric distribution with strictly positive outcomes

Models of uncertain quantities that are observed simultaneously, e.g.

- Wave height and wave period
- Mechanical properties of the same material
- Load acting on structure and capacity of the structure

The individual random variables are gathered in a vector

$$\mathbf{X} = [X_1, X_2, \dots, X_n]^{\mathrm{T}}$$

Joint CDF

e.g. for two random variables X, Y

$$F_{XY}(x, y) = P[(X \le x) \cap (Y \le y)]$$

Notes:

- The joint CDF is a non-decreasing function in each argument
- The joint CDF has limits $F_{XY}(-\infty, y) = 0$, $F_{XY}(x, -\infty) = 0$, $F_{XY}(\infty, \infty) = 1$

Discrete random vectors - Joint PMF

e.g. for two discrete random variables *X*, *Y*

$$p_{XY}(x, y) = P[(X = x) \cap (Y = y)]$$

Normalization rule: $\sum_{\forall x_i} \sum_{\forall y_i} p_{XY}(x_i, y_i) = 1$

Continuous random vectors – Joint PDF

e.g. for two continuous random variables *X*, *Y*

$$f_{XY}(x, y)dxdy = P[(x < X \le x + dx) \cap (y < Y \le y + dy)]$$

Normalization rule: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x,y) dx dy = 1$

e.g. two continuous random variables

e.g. two continuous random variables

Joint CDF

Statistically independent random variables

Statistically independent events

$$P[(X = x) \cap (Y = y)] = P(X = x)P(Y = y)$$

For two S.I. discrete random variables *X*, *Y*

$$p_{XY}(x, y) = p_X(x) p_Y(y)$$

For two S.I. continuous random variables *X*, *Y*

$$f_{XY}(x, y) = f_X(x) f_Y(y)$$

Expectations – random vectors

Expectation of a function

Discrete random variable

$$E[g(X,Y)] = \sum_{\forall x_i} \sum_{\forall y_i} g(x_i, y_i) \cdot p_{XY}(x_i, y_i)$$

Continuous random variable

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{XY}(x,y) dx dy$$

Mean vector

$$\boldsymbol{\mu}_{\mathbf{X}} = \mathbf{E}[\mathbf{X}] = [\mu_1, \mu_2, \dots, \mu_n]^{\mathrm{T}}$$

Covariance

$$Cov[X,Y] = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= E[XY] - E[X]E[Y]$$

Expectations – random vectors

$$\mathbf{Covariance\ matrix} \qquad \boldsymbol{\Sigma}_{\mathbf{XX}} = \left[\begin{array}{cccc} \mathbf{Var}[X_1] & \mathbf{Cov}[X_1, X_2] & \dots & \mathbf{Cov}[X_1, X_n] \\ & \mathbf{Var}[X_2] & \dots & \mathbf{Cov}[X_2, X_n] \\ & & \ddots & \vdots \\ symmetric & & \mathbf{Var}[X_n] \end{array} \right]$$

Correlation coefficient
$$\rho_{XY} = \frac{\text{Cov}[X,Y]}{\sigma_{V}\sigma_{V}}, \quad -1 \le \rho_{XY} \le 1$$

Covariance and correlation coefficient measure the linear dependence between two random variables

Two random variables are **uncorrelated** if $\rho_{xy} = 0$

Multinormal distribution

Defined through the mean vector and covariance matrix $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

Joint PDF:
$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} (\det \mathbf{\Sigma})^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) \right]$$

Some properties of the multinormal distribution:

Linear functions of normal random vectors are normal

$$\mathbf{X} \sim N(\mathbf{\mu}, \mathbf{\Sigma}) \implies \mathbf{A}\mathbf{X} + \mathbf{b} \sim N(\mathbf{A}\mathbf{\mu} + \mathbf{b}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^{\mathrm{T}})$$

Uncorrelated normal random variables are also independent!

Multinormal distribution

Binormal distribution with varying correlation coefficients

Central limit theorem

Consider a set of i.i.d. random variables $X_1, X_2, ..., X_n$ with means μ and st. dev. σ

i.i.d.: Independent and identically distributed

The random variable

$$Y = \frac{1}{n} \sum_{i=1}^{n} X_i$$

converges in distribution to the normal distribution with mean μ and st. dev. $\sigma/n^{1/2}$

Transformation of random variables

Consider a random variables X with CDF $F_X(x)$ and a random variables Y with CDF $F_Y(y)$

Set

$$F_{X}(x) = F_{Y}(y)$$

$$\Rightarrow x = F_X^{-1} \Big[F_Y(y) \Big]$$

Isoprobabilistic transformation

Transformation of random variables

Sampling from a normal distribution

Random field – A collection of random variables indexed by a spatial parameter

Let X(z) be a random field, where z is a location parameter

- For every \mathbf{z}_i , $X(\mathbf{z}_i)$ is a random variable
- A random outcome (realization or sample function) of the random field is a spatial function denoted x(z)

Sample functions of a 1D random field

Sample functions of a 2D random field

A random field can be treated as a collection of random vectors

We can define finite-dimensional distributions, e.g.

- First order (marginal) PDF: $f_{X(\mathbf{z})}(x,\mathbf{z})$
- Second-order PDF: $f_{X(\mathbf{z}_1)X(\mathbf{z}_2)}(x_1,\mathbf{z}_1;x_2,\mathbf{z}_2)$

Moment functions of random fields

Mean function: $\mu_X(\mathbf{z}) = \mathrm{E}[X(\mathbf{z})]$

Variance function: $\sigma_X^2(\mathbf{z}) = \mathrm{E}[(X(\mathbf{z}) - \mu_X(\mathbf{z}))^2]$

Auto-covariance function: $\Gamma_{XX}(\mathbf{z}_1, \mathbf{z}_2) = \operatorname{Cov}[X(\mathbf{z}_1), X(\mathbf{z}_2)]$ $= \operatorname{E}[(X(\mathbf{z}_1) - \mu_X(\mathbf{z}_1))(X(\mathbf{z}_2) - \mu_X(\mathbf{z}_2))]$

Auto-correlation coefficient function: $\rho_{XX}(\mathbf{z}_1, \mathbf{z}_2) = \frac{\Gamma_{XX}(\mathbf{z}_1, \mathbf{z}_2)}{\sigma_X(\mathbf{z}_1)\sigma_X(\mathbf{z}_2)}$

Homogeneous random field

Strictly homogeneous random field:

The joint distributions of $X(\mathbf{z}_1), X(\mathbf{z}_2), ..., X(\mathbf{z}_n)$ and $X(\mathbf{z}_1 + \zeta), X(\mathbf{z}_2 + \zeta), ..., X(\mathbf{z}_n + \zeta)$ are the same for any ζ

Weakly homogeneous random field:

- The mean function is constant: $\mu_X(\mathbf{z}) \rightarrow \mu_X$
- The auto-covariance function depends on the difference in location:

$$\Gamma_{XX}(\mathbf{z}_1,\mathbf{z}_2) \rightarrow \Gamma_{XX}(\mathbf{z}_1 - \mathbf{z}_2) = \Gamma_{XX}(\zeta)$$

Note: A weakly homogeneous Gaussian random field is also strictly homogeneous

Homogeneous random field

Exponential correlation model

$$\rho(\zeta) = \exp\left(-\frac{2|\zeta|}{\theta}\right)$$

θ : Scale of fluctuation

Sample functions

