CUDA Assignment #1

Работа с глобальной и разделяемой памятью

Задание на выбор

 \mathbb{H} Поиск A^{-1} для заданной матрицы \mathbb{H} Поиск решений F(x) = 0 на интервале

Обращение Матрицы Метод Гаусса

Прямой Ход

-2	1	0	0	1	0	0	0		-2
1	-2	1	0	0	1	0	0	R2 * 2 + R1	C
0	1	-2	1	0	0	1	0		C
0	0	1	-2	0	0	0	1		C
-2	1	0	0	1	0	0	0		-2
0	-3	2	О	1	2	0	0		C
0	1	-2	1	0	0	1	0	R3 * 3 + R2	C
0	0	1	-2	0	0	0	1		C

-2	1	0	0	1	0	0	0
0	-3	2	0	1	2	0	0
0	0	-4	3	1	2	3	0
0	0	1	-2	0	0	0	1

-2	1	0	0	1	0	0	0
0	-3	2	0	1	2	0	0
0	0	-4	3	1	2	3	0
0	0	0	-5	1	2	3	4

Обращение Матрицы Метод Гаусса

Обратный Ход

-2	1	0	0
0	-3	2	0
0	0	-4	3
0	0	0	-5

1	0	0	0
1	2	0	0
1	2	3	0
1	2	3	4

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

	4	3	2	1
0.2 *	3	6	4	2
-0.2 *	2	4	6	3
	1	2	3	4

Обращение Матрицы

₩Метод Гаусса:

□Плохо параллелится

ЖАльтернатива?

-2	1	0	0
1	-2	1	0
0	1	-2	1
0	0	1	-2

	4	3	2	1
0.2 *	3	6	4	2
-0.2 *	2	4	6	3
	1	2	3	4

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Обращение Матрицы

ЖМетод Гаусса:

□Плохо параллелится

ЖАльтернатива?

-2	1	0	0
1	-2	1	0
0	1	-2	1
0	0	1	-2

х

х1	x2	х3	x4
y1	y2	у3	у4
z 1	z2	z3	z4
w1	w 2	w3	w 4

=

1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	

№ Итеративное решение четырех СЛАУ

Обращение Матрицы

жОформление программы:

□Программа принимает один параметр — имя файла, который содержит матрицу в формате:

📙 matrix.txt - Notepad

<u>E</u>dit F<u>o</u>rmat <u>V</u>iew <u>H</u>elp

```
< кол-во строк > < кол-во столбцов >
```

<cтрока 3>

×...

См. Matrix.txt как пример

Поиск решений F(x) = 0 на интервале

Поиск решений F(x) = 0 на интервале

 \mathbb{H} На каждом интервале $[x_i, x_{i+1}]$ необходимо проверить:

$$\triangle$$
 Знак $F(x_i) == F(x_{i+1})$?

 \boxtimes Да \rightarrow решения тут нет.

$$ightharpoonup$$
 Het $ightharpoonup$ $\exists \xi \in [x_i, x_{i+1}] : |F(\xi)| < \varepsilon, \forall \varepsilon > 0$

- Есть смысл искать решение на этом интервале
- Можно апроксимировать *F(x)* на этом интервале линейной функцией
- Для более точного решения можно воспользоваться интерполяцей более высокого порядка

Поиск решений F(x) = 0 на интервале

жОформление программы:

□Программа принимает один параметр – имя файла, который содержит значения в

формате:

```
<a> <b> <N>
```

<значения функции>

⋉См. Fx.txt как пример

```
Fx.txt - Notepad

File Edit Format View Help

-10 10 7

-1 1 -1 1 -1 1
```

Общие правила по оформлению прорамм

- **Ж**Программа должна делать проверки на ошибки:
 - **#** Наличие девайса?
 - ₩ Открылся ли нужный файл?
 - **Ж** Правильного ли он формата?
- Программа должна быть скомпилирована в Release и запускаться на Windows XP SP2 с CUDA Toolkit 2.1
- **Ж**Программа должна компилироваться
 - # Для этого должен быть приложен vcproj для VS2005 либо makefile

Общие правила по оформлению прорамм

- Ж Если вы используете любые другие инклюды кроме стандартных − не расчитывайте, что они прописаны на проверяющей машине.
- **Ж**Пример того, чего не будет на машине:

```
△cutil.h (требует установки CUDA SDK)
```

ЖПример того, что будет на машине:

```
□ cudart.h (ставиться вместе с CUDA toolkit)
```

Вопросы

