CS446 Introduction to Machine Learning (Spring 2015) University of Illinois at Urbana-Champaign http://courses.engr.illinois.edu/cs446

LECTURE 4: LINEAR CLASSIFIERS

Prof. Julia Hockenmaier juliahmr@illinois.edu

Announcements

Homework 1 will be out after class.

http://courses.engr.illinois.edu/cs446/Homework/HW1.pdf

You have two weeks to complete the assignment.

Late policy:

- Up to two days late credit for the whole semester, but we don't give any
 partial late credit. If you're late for one assignment by up to 24 hours,
 that's 1 of your two late credit days.
- We don't accept assignments that are more than 48 hours late.

Is everybody on Compass???

https://compass2g.illinois.edu/

Let us know if you can't see our class.

Last lecture's key concepts

Decision trees for (binary) classification Non-linear classifiers

Learning decision trees (ID3 algorithm)

Greedy heuristic (based on information gain) Originally developed for discrete features

Overfitting

What is it? How do we deal with it?

Today's key concepts

Learning linear classifiers

Batch algorithms:

-Gradient descent for Least-mean squares

Online algorithms:

-Stochastic gradient descent

Linear classifiers

Linear classifiers: $f(\mathbf{x}) = w_0 + \mathbf{w}\mathbf{x}$

Linear classifiers are defined over vector spaces

Every hypothesis f(x) is a hyperplane:

$$f(\mathbf{x}) = \mathbf{w}_{o} + \mathbf{w}\mathbf{x}$$

f(**x**) is also called the decision boundary

- Assign $\hat{y} = 1$ to all x where f(x) > 0
- Assign $\hat{y} = -1$ to all x where f(x) < 0

$$\hat{y} = sgn(f(x))$$

Hypothesis space for linear classifiers

$ \begin{array}{ c c c c c } \hline & X_2 \\ & 0 & 1 \\ \hline & 0 & 0 & 0 \\ X_1 & 1 & 0 & 0 \end{array} $	$ \begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ \hline & 0 & 0 & 0 \\ & X_1 & 1 & 0 & 0 \end{array} $	$ \begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ \hline & 0 & 0 & 0 \\ & X_1 & 1 & 0 & 1 \end{array} $	$ \begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ \hline & 0 & 1 & 0 \\ & X_1 & 1 & 0 & 0 \end{array} $	$ \begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ & 0 & 0 & 1 \\ & X_1 & 1 & 0 & 0 \end{array} $	\mathcal{H}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} & X_2 & \\ & 0 & 1 \\ \hline & 0 & 1 & 0 \\ X_1 & 1 & 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} & X_2 & \\ & 0 & 1 \\ \hline & 0 & 0 & 1 \\ X_1 & 1 & 1 & 0 \\ \end{array}$	$\begin{array}{c cccc} & X_2 & \\ & 0 & 1 \\ \hline & 0 & 1 & 0 \\ X_1 & 1 & 0 & 1 \\ \end{array}$	$\begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ \hline & 0 & 0 & 1 \\ X_1 & 1 & 0 & 1 \\ \end{array}$	$ \begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ \hline & 0 & 1 & 1 \\ & X_1 & 1 & 0 & 0 \end{array} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} & X_2 & \\ & 0 & 1 \\ \hline & 0 & 0 & 1 \\ X_1 & 1 & 1 & 1 \\ \end{array}$	$ \begin{array}{c cccc} & X_2 \\ & 0 & 1 \\ \hline & 0 & 1 & 1 \\ & X_1 & 1 & 1 & 0 \end{array} $	$\begin{array}{c cccc} & X_2 & \\ & 0 & 1 \\ \hline & 0 & 1 & 1 \\ X_1 & 1 & 0 & 1 \\ \end{array}$	$\begin{array}{c cccc} & X_2 & \\ & 0 & 1 \\ \hline & 0 & 1 \\ X_1 & 1 & 1 \\ \end{array}$	

CS446 Machine Learning

Canonical representation

With
$$\mathbf{w} = (\mathbf{w}_1, ..., \mathbf{w}_N)^T$$
 and $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$:

$$f(\mathbf{x}) = \mathbf{w}_0 + \mathbf{w}\mathbf{x}$$

$$= \mathbf{w}_0 + \sum_{i=1...N} \mathbf{w}_i \mathbf{x}_i$$

 \mathbf{w}_0 is called the bias term.

The canonical representation redefines w, x

as
$$\mathbf{w} = (\mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_N)^T$$

and $\mathbf{x} = (\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_N)^T$
=> $\mathbf{f}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$

Learning a linear classifier

Input: Labeled training data $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), ..., (\mathbf{x}^D, \mathbf{y}^D)\}$ plotted in the sample space $\mathcal{X} = \mathbf{R}^2$ with $\mathbf{v}^i = +1, \quad \mathbf{x}^i : \mathbf{y}^i = 1$

Output: A decision boundary $f(\mathbf{x}) = 0$ that separates the training data $y^i \cdot f(\mathbf{x}^i) > 0$

Which model should we pick?

We need a metric (aka an objective function)

We would like to minimize the probability of misclassifying *unseen* examples, but we can't measure that probability.

Instead: minimize the number of misclassified training examples

Which model should we pick?

We need a more specific metric: There may be many models that are consistent with the training data.

Loss functions provide such metrics.

Loss functions for classification

$y \cdot f(x) > o$: Correct classification

An example (x, y) is correctly classified by f(x) if and only if $y \cdot f(x) > 0$:

Case 1 (
$$y = +1 = \hat{y}$$
): $f(\mathbf{x}) > o \Rightarrow y \cdot f(\mathbf{x}) > o$

Case 2
$$(y = -1 = \hat{y})$$
: $f(x) < 0 \implies y \cdot f(x) > 0$

Case 3 (y = +1
$$\neq$$
 \hat{y} = -1): $f(x) > 0 \implies y \cdot f(x) < 0$

Case 4 (y = -1
$$\neq$$
 \hat{y} = +1): f(x) < 0 \Rightarrow y·f(x) < 0

Loss functions for classification

Loss = What penalty do we incur if we misclassify \mathbf{x} ?

 $L(y, f(\mathbf{x}))$ is the loss (aka cost) of classifier f on example \mathbf{x} when the true label of \mathbf{x} is y.

We assign label $\hat{y} = \text{sgn}(f(\mathbf{x}))$ to \mathbf{x}

Plots of $L(y, f(\mathbf{x}))$: x-axis is typically y·f(\mathbf{x})

Today: 0-1 loss and square loss

(more loss functions later)

0-1 Loss

0-1 Loss

0-1 Loss

Square Loss: $(y - f(\mathbf{x}))^2$

Square loss as a function of f(x)

Square loss as a function of y*f(x)

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$$

Note: $L(-1, f(x)) = (-1 - f(x))^2 = (1 + f(x))^2 = L(1, -f(x))$ (the loss when y=-1 [red] is the mirror of the loss when y=+1 [blue])

The square loss is a **convex upper bound** on 0-1 Loss

Loss as a function of y*f(x)

Loss surface

Linear classification:

Hypothesis space is parameterized by w

Plain English: Each w yields a different classifier

Error/Loss/Risk are all functions of w

The loss surface

The loss surface

Convex loss surfaces

The risk of a classifier R(f)

The risk (aka generalization error) of a classifier $f(x) = w \cdot x$ is its **expected loss**: (= loss, averaged over all possible data sets):

$$R(f) = \int L(y, f(x)) P(x, y) dx, y$$

Ideal learning objective: Find an f that minimizes risk

Aside: The i.i.d. assumption

We always assume that training and test items are independently and identically distributed (i.i.d.):

- There is a distribution $P(\mathbf{X}, \mathbf{Y})$ from which the data $\mathcal{D} = \{(\mathbf{x}, \mathbf{y})\}$ is generated.

Sometimes it's useful to rewrite P(X, Y) as P(X)P(Y|X) Usually P(X, Y) is unknown to us (we just know it exists)

- Training and test data are samples drawn from the same P(X, Y): they are identically distributed
- Each (x, y) is drawn independently from P(X, Y)

The empirical risk of f(x)

The empirical risk of a classifier $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$ on data set $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), ..., (\mathbf{x}^D, \mathbf{y}^D)\}$ is its average loss on the items in \mathcal{D}

$$R_{\mathcal{D}}(\mathbf{f}) = \frac{1}{D} \sum_{i=1}^{D} L(y^{i}, \mathbf{f}(\mathbf{x}^{i}))$$

Realistic learning objective:

Find an f that minimizes empirical risk

(Note that the learner can ignore the constant 1/D)

Empirical risk minimization

Learning:

Given training data $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), ..., (\mathbf{x}^D, \mathbf{y}^D)\}$, return the classifier $f(\mathbf{x})$ that minimizes the empirical risk $R_{\mathcal{D}}(f)$

Batch learning: Gradient Descent for Least Mean Squares (LMS)

Gradient Descent

Iterative batch learning algorithm:

- Learner updates the hypothesis based on the entire training data
- Learner has to go multiple times over the training data

Goal: Minimize training error/loss

 At each step: move w in the direction of steepest descent along the error/loss surface

Gradient Descent

Error(w): Error of w on training data

wⁱ: Weight at iteration i

Least Mean Square Error

$$\operatorname{Err}(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} (y_d - \hat{y}_d)^2$$

LMS Error:

Sum of square loss over all training items (multiplied by 0.5 for convenience)

D is fixed, so no need to divide by its size

Goal of learning: Find $\mathbf{w}^* = \operatorname{argmin}(\operatorname{Err}(\mathbf{w}))$

Iterative batch learning

Initialization:

Initialize **w**^o (the initial weight vector)

For each iteration:

for i = 0...T:

Determine by how much to change w based on the entire data set \mathcal{D}

 $\Delta \mathbf{w} = \text{computeDelta}(\mathcal{D}, \mathbf{w^i})$

Update w:

 $\mathbf{w^{i+1}} = \text{update}(\mathbf{w^i}, \Delta \mathbf{w})$

Gradient Descent: Update

1. Compute $\nabla \text{Err}(\mathbf{w}^i)$, the gradient of the training error at \mathbf{w}^i

This requires going over the entire training data

$$\nabla \text{Err}(\mathbf{w}) = \left(\frac{\partial \text{Err}(\mathbf{w})}{\partial w_0}, \frac{\partial \text{Err}(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial \text{Err}(\mathbf{w})}{\partial w_N}\right)^T$$

2. Update w:

$$\mathbf{w}^{i+1} = \mathbf{w}^i - \alpha \nabla \operatorname{Err}(\mathbf{w}^i)$$

 $\alpha > 0$ is the learning rate

What's a gradient?

$$\nabla \text{Err}(\mathbf{w}) = \left(\frac{\partial \text{Err}(\mathbf{w})}{\partial w_0}, \frac{\partial \text{Err}(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial \text{Err}(\mathbf{w})}{\partial w_N}\right)^T$$

The gradient is a vector of partial derivatives
It indicates the direction of steepest *increase*in Err(w)

Hence the *minus* in the upgrade rule: $\mathbf{w}^{i} - \alpha \nabla \operatorname{Err}(\mathbf{w}^{i})$

33

Computing $\nabla \text{Err}(\mathbf{w}^i)$

$$\frac{\partial \text{Err}(\mathbf{w})}{\partial \mathbf{w}_{i}} = \frac{\partial}{\partial \mathbf{w}_{i}} \frac{1}{2} \sum_{\mathbf{d} \in \mathbf{D}} (\mathbf{y}_{\mathbf{d}} - \mathbf{f}(\mathbf{x}_{\mathbf{d}}))^{2} \underbrace{\text{Err}(\mathbf{w}^{(j)}) = \frac{1}{2} \sum_{\mathbf{d} \in \mathbf{D}} (\mathbf{y}_{\mathbf{d}} - \mathbf{f}(\mathbf{x}_{\mathbf{d}}))^{2}}_{= \frac{1}{2} \sum_{\mathbf{d} \in \mathbf{D}} 2(\mathbf{y}_{\mathbf{d}} - \mathbf{f}(\mathbf{x}_{\mathbf{d}})) \frac{\partial}{\partial \mathbf{w}_{i}} (\mathbf{y}_{\mathbf{d}} - \mathbf{w} \cdot \mathbf{x}_{\mathbf{d}})$$

$$= -\sum_{\mathbf{d} \in \mathbf{D}} (\mathbf{y}_{\mathbf{d}} - \mathbf{f}(\mathbf{x}_{\mathbf{d}})) \mathbf{x}_{di}$$

Gradient descent (batch)

```
Initialize w<sup>o</sup> randomly
for i = 0...T:
     \Delta \mathbf{w} = (0, ..., 0)
     for every training item d = 1...D:
          f(\mathbf{x_d}) = \mathbf{w^i} \cdot \mathbf{x_d}
          for every component of \mathbf{w} \mathbf{j} = 0...N:
     \Delta w_j += \alpha(y_d - f(\mathbf{x_d})) \cdot x_{dj}
\mathbf{w^{i+1}} = \mathbf{w^i} + \Delta \mathbf{w}
     return \mathbf{w}^{i+1} when it has converged
```

CS446 Machine Learning

35

The batch update rule for each component of **w**

$$\Delta w_i = \alpha \sum_{d=1}^{D} (y_d - \mathbf{w}^i \cdot \mathbf{x}_d) x_{di}$$

Implementing gradient descent:

As you go through the training data, you can just accumulate the change in each component w_i of \mathbf{w}

Learning rate and convergence

The learning rate is also called the step size.

More sophisticated algorithms (Conjugate Gradient) choose the step size automatically and converge faster.

- When the learning rate is too small, convergence is very slow
- When the learning rate is too large, we may oscillate (overshoot the global minimum)
- You have to experiment to find the right learning rate for your task

Online learning with Stochastic Gradient Descent

Stochastic Gradient Descent

Online learning algorithm:

- Learner updates the hypothesis with each training example
- No assumption that we will see the same training examples again
- Like batch gradient descent, except we update after seeing each example

Why online learning?

Too much training data:

- Can't afford to iterate over everything

Streaming scenario:

- New data will keep coming
- You can't assume you have seen everything
- Useful also for adaptation(e.g. user-specific spam detectors)

Stochastic Gradient descent (online)

Initialize $\mathbf{w^o}$ randomly for m = o...M: $f(\mathbf{x_m}) = \mathbf{w^i \cdot x_m}$ $\Delta w_j = \alpha(y_d - f(\mathbf{x_m})) \cdot x_{mj}$ $\mathbf{w^{i+1}} = \mathbf{w^i} + \Delta \mathbf{w}$ return $\mathbf{w^{i+1}}$ when it has converged

Today's key concepts

Linear classifiers

Loss functions

Gradient descent

Stochastic gradient descent