Classifying Data into Predefined Categories

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Recognize Classification problems in different fields: from Spam Detection to Quant Trading

Set up all the elements of a classification problem : Problem statement, Features, Labels

Classifying Data into Predefined Categories

Is this e-mail Spam or Ham?

Is this tweet positive or negative?

Is this trading day an up-day or a down-day?

All Classification Problems have the same setup

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

We are given a Problem Instance

An e-mail

A Tweet

A trading day

Problem Statement

Labe

Spam or Ham?

positive or negative?

up-day or down-day?

The Classifier assigns a label

This classifier is like a black box

Machine Learning Objective

Build this black box

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement **Features**

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Features

Classifier

Classifiers are basically mathematical/statistical algorithms

Features

Problem Instance Lassifier

Every datapoint that they see, needs to be represented using numerical attributes

Problem Statement

Define the problem statement **Features**

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

The Classification algorithm will look at a set of instances which are correctly labeled

Data

Label

Ex: e-mails explicitly

marked by users as Spam or Ham

Classifier

Training
Data

The classifier "learns" from the training data

Training
Data

Tuples of (Features, Label)

Classifier

Training
Data

The patterns that the Classifier "learns" in this phase, constitute the Model

Classifier

Training
Data

ML techniques which have an explicit "training a model" phase are examples of

Supervised Learning

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Test Phase

The classifier classifies new instances

Test Phase

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

These 2 steps require careful consideration

Plug and play a standard algorithm using pre-built libraries

Training

"Train a model" using the training data

Test

There are several standard algorithms to choose from

Training

"Train a model" using the training data

Test

Algorithms for Solving Classification Problems

Naive Bayes
Support Vector Machines

Decision Trees

K-Nearest Neighbors

Random Forests

Logistic Regression

Many online services collect customer information during the registration process

Knowing demographic information like gender

Can help the business create targeted offers for specific customers

The problem

Folks will often fill in just the mandatory fields

Only a fraction fill out all the fields

Given the first name of a user

Can the system make a good guess?

This can be set up as a Classification problem

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Let's set these up for Gender detection

Problem Statement

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Features

Represent the training data and test data using numerical attributes

We need to represent Names using numeric attributes

Name

Use characteristics that usually differentiate male and female names

Name

Last letter a vowel? (1/0)

Number of characters

Presence of prefixes/suffixes common to a specific gender

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Use the data of folks who did fill in their gender

Training

"Train a model" using the training data

Test

Feed the data to any standard Classification algorithm

Training

"Train a model" using the training data

Test

What is the market sentiment around Apple's latest product launch?

How are voters feeling towards a particular candidate?

What do customers think about a particular brand?

The answers to all of these questions involve analyzing how people feel about something

How people feel about something

can be measured using a technique known as

Sentiment Analysis

These days, folks express - all too freely and in public online forums - how they feel

ashok @ashokpandian · 32m

@travisk dear sir, uber doing good job in India. However car quality inconsistent especially in city of chennai. Help.

1 2

...

nochillmikeym @nochillmikeym · 5h

Just paid 100 dollars for a 5 min uber wtf @BeyondBrandon

13 24

251

000

This data is

Huge (100s/1000s of tweets, reviews)

Unstructured

Semantically complicated

Freely and publicly available for anyone to analyse!

To paraphrase Bill Gates, any big dataset is a learning opportunity - use Sentiment Analysis to seize it!

Sentiment Analysis

Positive

This comment is positive

Negative

nochillmikeym @nochillmikeym · 5h

1→ 24

These comments are negative

Just paid 100 dollars for a 5 min uber wtf @BeyondBrandon

The Key Challenge

Positive or Negative

This is called Identifying the Polarity of a comment

Identifying the Polarity

Positive or Negative

This is a classic example of a Classification problem

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Let's set these up for Sentiment Analysis

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training

lest |

Problem Statement

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training

IGSL

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

We need to represent text data using numeric attributes

Features

Create a list representing the universe of all words that can appear in any text

```
(W_1, W_2, \dots, W_N) (hello, this, is, the, universe, of, all, words, in, any, text, a, an, test, goodbye)
```

Any text can then be represented using the frequencies of these words

Features

Hello, this is a test

```
(hello, this, is, the, universe, of, all, words, in, any, text, a, an, test, goodbye)
(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0)
```

Term Frequency Representation

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Use a comments dataset where comments are already labelled as positive/negative

Training

"Train a model" using the training data

Test

Feed the data to any standard Classification algorithm

Training

"Train a model" using the training data

Test

Let's say you work for a hedge fund

You trade stocks on a Stock Exchange

Every morning, you need to decide

Buy Or Sell

Buy Or Sell

This can be set up as a Classification problem

Problem Statement

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training

"Test the model"

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

We need to represent a Trading Day for a stock using numeric attributes

Trading Day Features

Day of the week

Month of the year

Price of the Stock on previous days

Price of related Stocks on previous days

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Financial Data for the last 10 years

Represent each trading day as an up day or a down day for a stock

Training

"Train a model" using the training data

Test

Feed the data to any standard Classification algorithm

Training

"Train a model" using the training data

Test

Let's say you want to build an ad-block extension for a browser

The browser has to render a number of images

Your extension should block out any ad images

This can be set up as a Classification problem

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Let's set these up for Ad Detection

rain a model" "Test the model' ing the training using test data

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training

"Test the model"

Features

Represent the training data and test data using numerical attributes

We need to represent an Image using numeric attributes

Height, Width

Image Features

Page URL
Image URL
Page text
Image Caption text

Image Features

Height, Width

Text attributes: Use a method like Term Frequency

Page URL
Image URL
Page text
Image Caption text

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Use an image dataset where images are already labelled as Ad/NonAd

Training

"Train a model" using the training data

Test

Feed the data to any standard Classification algorithm

Training

"Train a model" using the training data

Test

Customer Behavior

Businesses often study customer activity to draw insights

Customer Churn

Does a customer's behavior indicate that they will stop using our service in the future?

Fraud Detection

Does a customer's behavior indicate that they are committing payment fraud?

Credit Risk

Does a customer's behavior indicate that they are at risk of defaulting on their loan/payment?

Customer Churn Fraud Detection Credit Risk

Each of these can be set up as a Classification problem

Example 1: Customer Churn

Problem Instance

A Customer

Labels

Will repurchase, will not repurchase

Features

Purchases, demographics, days since last purchase

Training Data

A large number of customers categorized as repurchased, did not repurchase

Example 2: Fraud Detection

Problem Instance

A Payment

Labels

Fraud or Not Fraud

Features

Payment type, Frequency of use, Failed attempts in the last hour

Training Data

A large number of historical transactions

Example 3: Credit Risk

Problem Instance

A Customer

Labels

Will default payment, will not default payment

Features

Income, education, employment sector, history of defaults

Training Data

Past customers labelled as Defaulted/Did not Default

Summary

Recognize Classification problems in different fields: from Spam Detection to Quant Trading

Set up all the elements of a classification problem : Problem statement, Features, Labels