Let
$$p = x, = F, x_2 = T$$
Note that $\Psi \mid_{\mathcal{B}} = T$

We prove that it Ψ $X_i = U_i - X_H = U_K$ = T, then we con denve W from X' -- Xy if $\Psi|_{X,=Y,-X_k=Y_k} = F$, the we can devive 74 from X,41 Xue (base case) if $\Psi = \times i$ for $i \in IHJ$ · Consider case when $\Psi|_{X_i=u_i...x_c=u_e}$ =T

So $u_i = T$, hence $x_i^{u_i} = x_i$ and

we need to device $x_i^{u_i}$ from ... $x_i^{u_i}$...

which is eass.

Consider cose when $\Psi|_{x_1=y_1,\dots,x_n=y_k}=F$

$$x_i|_{x_i=u_i}$$
 = x_i = x_i x

1) if
$$\Psi = P_1 A P_2$$

• Consider case when
$$\Psi|_{x_1=u_1,...,x_e=u_e} = T$$

50 $\Psi_1|_{x_1=u_1,...,x_e=u_e} = \Psi_2|_{x_1=u_1,...,x_e=u_e} = T$

Hence, by I'll, there is

a derivation of Ψ , from χ_1^u , χ_2^u

for $i=1$ and $i=2$

this is the as · Consider ouse when $\Psi|_{K_1=U_1,...K_p=u_n}$ WLOG) V Hence, by Ill, there is a dev. of -4 hon