Machine Learning - Deep Learning fundamentals (69152)

Master in Robotics, Graphics and Computer Vision Ana C. Murillo

- What's deep learning?
 - Related topics
 - o DL pipeline
- Fundamentals of DL
 - Review basic concepts
 - NN and DNN

Many basic concepts should be familiar, related to a simple

Score function: map from data to class scores

- parametric-model. weights and biases. (parametric —> no need to keep all training data)
- linear image classifier example:

$$f(x_i, W, b) = Wx_i + b$$

· image: high-dimensional point.

· score: weighted sum of all pixel values

· one classifier (template) per row

source: http://cs231n.github.io

What about deep nets?

What about deep nets?

linear classifier

Score function: map from data to class scores

 Deep nets (CNN in particular) also do this with images but much more complex mapping function and params

- Common practice:
 - o preprocessing (e.g., substract mean, normalization)
 - o single multiplication

$$f(x_i, W, b) = Wx_i + b$$
 $f(x_i, W) = Wx_i$

Score function: map from data to class scores

Deep nets (CNN in particular) also do this with images but much more complex mapping function and params (more details in next classes)

How good are the scores?

Loss (cost | objective) function

Loss function: How good are the predictions (scores)?

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text{data loss}} + \underbrace{\lambda R(W)}_{\text{regularization loss}}$$

Some examples:

- Multiclass SVM (one of the possible formulations)
 - wants correct class to a have a score higher than incorrect classes by some **fixed margin**

hinge or

max-margin loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

the score of every incorrect class - score of actual class

Loss function: How good are the predictions (scores)?

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text{data loss}} + \underbrace{\lambda R(W)}_{\text{regularization loss}}$$

Some examples:

Cross-entropy/Softmax loss:

o equivalent to "difference" between perfect and actual distribution

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$
 Cross entropy between distributions p, q Ideally only the actual label is true: $\mathbf{p} = [0,...,1,...,0]$

Softmax Function: score of actual class normalised

Loss function: How good are the predictions (scores)?

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text{detaloss}} + \underbrace{\frac{\lambda R(W)}{\text{regularization loss}}}_{\text{regularization loss}}$$

"Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error."

• Regularization.

(Goodfellow 2016)

- o improve generalization (less overfitting). L2, L1, Dropout, batch-norm, ...
- o models preferences: e.g., L2, discourages large values

$$\widehat{\lambda} \sum_k \sum_l W_{k,l}^2$$

regularization *strength* (hyperparameter)

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \ w_2 &= [0.25,0.25,0.25,0.25] \end{aligned}$$

$$w_1^T x = w_2^T x = 1$$

What's best with L2? and with L1?

source: http://cs231n.github.io

Loss function: How good are the predictions (scores)?

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text{data loss}} + \underbrace{\lambda R(W)}_{\text{regularization loss}}$$

"Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error."

• Regularization.

(Goodfellow 2016)

- o improve generalization (less overfitting). L2, L1, Dropout, batch-norm, ...
- o models preferences: e.g., L2, discourages large values

$$\lambda \sum_{k} \sum_{l} W_{k,l}^{2}$$

regularization *strength* (hyperparameter)

$$x=[1,1,1,1] \ w_1=[1,0,0,0] \ ext{and with L2?}$$
 $w_2=[0.25,0.25,0.25,0.25]$

$$w_1^Tx=w_2^Tx=1$$

source: http://cs231n.github.io

https://b.socrative.com/login/student/

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text{data loss}} + \underbrace{\frac{\lambda R(W)}{\text{regularization loss}}}_{\text{regularization loss}}$$

b

source: http://cs231n.github.io

W

 y_i 2

56

 x_i

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}}_{\text{data loss}} + \underbrace{\frac{\lambda R(W)}{\text{regularization loss}}}_{\text{loss}}$$

More examples?

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo

SVM vs Soft-max loss: comparable but different meaning of output values Softmax interprets scores as probabilities

Q1: Can we know the min/max possible L_i ? Q2: What loss can we expect at

initialisation?

matrix multiply + bias offset

 x_i source: http://cs231n.github.io y_i 2

$$L_i = -\log\left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}\right)$$

SVM vs Soft-max loss:

comparable but different *meaning* of output values

matrix multiply + bias offset

Q: What is the min/max possible loss Li? A: min 0, max infinity

Q2: At initialization all s will be approximately equal; what is the loss?

A: $-\log(1/C) = \log(C)$ If C = 10, then $L = \log(10) \approx 2.3$

How good are the scores?

Many options for loss functions

-> critical to choose a right one

We can measure how good a set of parameters (W) is

How do we find the best W?

Optimisation (training)

Optimisation —> best way to find the parameters.

We know how to measure how good a set of parameters is. Start with random weights. Iteratively refine to get lower loss.

Some options ...

- Random search or "local" search: not ideal for DL. Used in other problems
- Follow the "gradient": vector of derivatives for each dimension of input space
 - o compute gradient of loss function with respect to model weights W

step size (learning rate)
 hyperparameter

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$(\nabla_W L(W)) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$
 source: <http://cs231rg>

Optimisation. Critical points: Zero gradient, and Hessian with...

All positive eigenvalues

All negative eigenvalues

Some positive and some negative (Goodfellow 2015)

- Optimisation GD & Deep Learning.
 - Ideally, find the exact minimum. Actually, not feasible. N is very large (#samples). W has too many params (1K-1000K)

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

• Newton method & saddle points :- (. SGD has better chances.

$$heta = heta - lpha rac{1}{N} \sum_{i=1}^{N}
abla_{ heta} J_i(heta)$$
 GD: for all samples (or BGD)
 $heta = heta - lpha
abla_{ heta} J_i(heta)$ SGD: for one sample (or a few)

- Stochastic GD: start "improving" from the first sample processed. One step per sample (or per mini-batch: 32, 64, 128, 256, ... No more that you can fit in your CPU/GPU memory!).
- Most common training strategy in DL: SGD + Backpropagation (later)

• Optimisation - SGD - Still many challenges for the vainilla version

. <mark>▼ </mark>	BGD	SGD
1. redundant computations for similar examples		
2. faster		
3. high variance and high fluctuations during training		
4. converges to the minimum of the "basin" where it starts		
5. needs to shuffle training data		
6. suitable for online or incremental learning		

What's true for which variation?

• Optimisation - SGD - Still many challenges for the vainilla version

. <mark>√ </mark>	BGD	SGD
1. redundant computations for similar examples	V	
2. faster		V
3. high variance and high fluctuations during training		V
4. converges to the minimum of the "basin" where it starts	V	
5. needs to shuffle training data		V
6. suitable for online or incremental learning		V

- Optimisation SGD Many optimization algorithms with different properties
 - Contours of a loss surface and time evolution. Different behaviours, speeds, stuck-points, ...
 - Saddle point (curvature along different dimension with different signs). Vainilla
 SGD gets stuck. Adaptive learning-rate methods (Adagrad, Adadelta, RMSprop, Adam, ...) usually get the best compromise in these cases.

- Optimisation SGD Many optimization algorithms with different properties
 - Momentum
 - Average
 - AdaGrad
 - ∘ RMSProp
 - Adam
 - Nesterov Accelerated gradient (NAG)

Many available optimizers on standard libraries

Fundamentals of DL - a few key concepts

- Score function —> map from data to class scores.
 Weights and biases (w, b)
- Loss function —> how good are the predictions (scores).
 SVM, SoftMax, ...
- Optimization —> best way to find the parameters (w, b): *Train*

Bibliography - Resources for materials in this block

- Stanford classes on deep learning for Computer Vision (http://cs231n.stanford.edu) and Deep Learning (https://cs230.stanford.edu/)
- Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. http://www.deeplearningbook.org
- Deep Learning Summer School Montreal: https://mila.quebec/en/ cours/deep-learning-summer-school-2017/