CS 422 Data Mining Lecture 11 November 8, 2018

Acknowledgment:

■ This presentation is based on the book "Mining of Massive Datasets" by Anand Rajaraman and Jeff Ullman and the presentations by Jure Leskovec

PageRank

Large Graphs Analysis

Page Ranks

 Mining Massive Datasets Jure Leskovec, Stanford UnivCS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

Social Network Graphs

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Media Graph

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]

Citation Network Sciences

Citation networks and Maps of science

[Börner et al., 2012]

Communication Network

Internet

Technological Networks

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Technological Networks

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

How to Organize the Web?

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Web Pages

 All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example of Page Rank Scores

What are we looking for

- Rank nodes for a particular query
 - Top k matches for "Random Walks" from Citeseer
 - Who are the most likely co-authors of "Manuel Blum".
 - Top k book recommendations for Purna from Amazon
 - Top k websites matching "Sound of Music"
 - Top k friend recommendations for Purna when she joins "Facebook"

Lecture Outline

- Basic definitions
 - Random walks
 - Stationary distributions
- Properties
 - Perron frobenius theorem
- Applications
 - Pagerank
 - ■Power iteration
 - Convergence
 - Personalized pagerank
 - Rank stability

- nxn Adjacency matrix A.
 - A(i,j) = weight on edge from i to j
 - If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric
- nxn Transition matrix P.
 - P is row stochastic
 - P(i,j) = probability of stepping on node j from node i
 - $= A(i,j)/\sum iA(i,j)$
- nxn Laplacian Matrix L.
 - \Box L(i,j)= \sum iA(i,j)-A(i,j)
 - Symmetric positive semi-definite for undirected graphs
 - Singular

Definitions

0	1	0
0	0	1
1	1	0

0	1	0
0	0	1
1/2	1/2	0

Adjacency matrix A

Transition matrix P

□ Random Walk

- $\mathbf{x}_{\mathsf{t(i)}}$ = probability that the surfer is at node i at time t
- $\mathbf{x}_{t+1}(i) = \sum_{j} (Probability of being at node j)*Pr(j->i)$ = $\sum_{j} x t_{(j)} *P(j,i)$

What happens when the surfer keeps walking for a long time?

- When the surfer keeps walking for a long time
- When the distribution does not change anymore
 - \Box i.e. $x_{T+1} = x_T$
- □ For "well-behaved" graphs this does not depend on the start distribution!!

What is a stationary distribution? Intuitively and Mathematically

□ The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.

□ The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.

□ Remember that we can write the probability distribution at a node as

$$\square X_{t+1} = X_t P$$

- □ The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- Remember that we can write the probability distribution at a node as

$$\square x_{t+1} = x_t P$$

For the stationary distribution v₀ we have

$$\square$$
 $\mathbf{v}_0 = \mathbf{v}_0 P$

- □ The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- Remember that we can write the probability distribution at a node as
 - $\square x_{t+1} = x_t P$
- □ For the stationary distribution v0 we have
 - \Box $\mathbf{v}_0 = \mathbf{v}_0 \mathbf{P}$
- □ Whoa! that's just the left eigenvector of the transition matrix!

■ Back to PageRank

Example of Page Rank Scores

Simple Recursive Algorithm

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links,
 each link gets r_i / n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_j = r_i/3 + r_k/4$$

Flow Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

The web in 1839

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solve the Flow Equation

- 3 equations, 3 unknowns, no constants
 - No unique solution

- Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r: vector with an entry per page
 - $lacksquare r_i$ is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Matrix Formulation

Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page i links to 3 pages, including j

Eigenvalue Formulation

The flow equations can be written

$$r = M \cdot r$$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- We can now efficiently solve for r!
 The method is called Power iteration

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if:

 $Ax = \lambda x$

Example

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$
 - $\|\mathbf{x}\|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d_i}}$$

di out-degree of node i

Solving PageRank

Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto 1

Example:

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = 1/3 \\ 1/3 \\ 1/3$$
 Iteration 0, 1, 2, ...

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving PageRank

Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto 1

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Example:

$$\begin{bmatrix} \mathbf{r}_{y} \\ \mathbf{r}_{a} \\ \mathbf{r}_{m} \end{bmatrix} = \begin{array}{ccccc} 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\ 1/3 & 3/6 & 1/3 & 11/24 & \dots & 6/15 \\ 1/3 & 1/6 & 3/12 & 1/6 & 3/15 \\ \end{array}$$

Iteration 0, 1, 2, ...

- Why should this work?
- Write x_0 as a linear combination of the left eigenvectors $\{v_0, v_1, ..., v_{n-1}\}$ of P
- \square Remember that v_0 is the stationary distribution.

$$c_0 = 1$$

$$x_1 = x_0 \tilde{P}$$

$$\mathbf{x}_{2} = \mathbf{x}_{1} \tilde{\mathbf{P}} = \mathbf{x}_{0} \tilde{\mathbf{P}}^{2}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{v}_{0} \quad \mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \dots \quad \mathbf{v}_{n-1}$$

$$\sigma_{0}^{2} \quad \sigma_{1}^{2} \mathbf{c}_{1} \quad \sigma_{2}^{2} \mathbf{c}_{2} \quad \sigma_{n}$$

$$\mathbf{x}_{t} = \mathbf{x}_{0} \tilde{\mathbf{P}}^{t}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{v}_{0} \quad \mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \dots \quad \mathbf{v}_{n-1}$$

$$\sigma_{0}^{\dagger} \quad \sigma_{1}^{\dagger} \mathbf{c}_{1} \quad \sigma_{2}^{\dagger} \mathbf{c}_{2} \quad \sigma_{n-1}^{\dagger}$$

 C_{n-1}

$$x_t = x_0 \tilde{P}^t$$

$$\sigma_0 = 1 > \sigma_1 \ge ... \ge \sigma_n$$

C_{n-1}

$$\sigma_0 = 1 > \sigma_1 \ge ... \ge \sigma_n$$

Convergence Issues

- □ Formally $||x_0P^t v_0|| \le |\lambda|^t$
 - lacksquare λ is the eigenvalue with second largest magnitude
- The smaller the second largest eigenvalue (in magnitude), the faster the mixing.
- □ For λ <1 there exists an unique stationary distribution, namely the first left eigenvector of the transition matrix.

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

$$\mathbf{r}^{(1)} = \mathbf{M} \cdot \mathbf{r}^{(0)}$$

$$r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$$

$$r^{(3)} = M \cdot r^{(2)} = M(M^2 r^{(0)}) = M^3 \cdot r^{(0)}$$

Claim:

Sequence $M \cdot r^{(0)}$, $M^2 \cdot r^{(0)}$, ... $M^k \cdot r^{(0)}$, ... approaches the dominant eigenvector of M

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t+1, the surfer follows an out-link from i uniformly at random
- $r_{j} = \sum_{i \to j} \frac{r_{i}}{d_{\text{out}}(i)}$
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- **p**(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- ullet So, p(t) is a probability distribution over pages

Stationary Distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$

Suppose the random walk reaches a state $p(t+1) = M \cdot p(t) = p(t)$ then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Problems with PageRank

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

- (2) Spider traps
 (all out-links are within the group)
 - Eventually spider traps absorb all importance

Spider Trap

Power Iteration:

- Set $r_j = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

Example:

Iteration 0, 1, 2, ...

Teleports Solution

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β, follow a link at random
 - With prob. **1-** β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Dead Ends

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	у	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

Iteration 0, 1, 2, ...

Teleports Solution

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Markov Chain Analogy

$$\mathbf{r}^{(t+1)} = \mathbf{M}\mathbf{r}^{(t)}$$

Markov chains

- Set of states X
- Transition matrix P where $P_{ij} = P(X_t=i \mid X_{t-1}=j)$
- π specifying the stationary probability of being at each state x ∈ X
- Goal is to find π such that π = P π

Markov Chain Analogy

- Theory of Markov chains
- Fact: For any start vector, the power method applied to a Markov transition matrix P will converge to a unique positive stationary vector as long as P is stochastic, irreducible and aperiodic.

Stochastic Matrix

- Stochastic: Every column sums to 1
- A possible solution: Add green links

•	a_i =1 if node <i>i</i> has
	out deg 0, =0 else

	y	a	m
у	1/2	1/2	1/3
a	1/2	0	1/3
a m	0	1/2	1/3

$$r_y = r_y/2 + r_a/2 + r_m/3$$

 $r_a = r_y/2 + r_m/3$
 $r_m = r_a/2 + r_m/3$

Aperiodic Matrix

- A chain is periodic if there exists k > 1 such that the interval between two visits to some state s is always a multiple of k.
- A possible solution: Add green links

Irreducible Matrix

- From any state, there is a non-zero probability of going from any one state to any another
- A possible solution: Add green links

Random Jumps Solution

- Google's solution that does it all:
 - Makes M stochastic, aperiodic, irreducible
- At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

This formulation assumes that **M** has no dead ends. We can either preprocess matrix **M** to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

The Google Matrix A:

$$A = \beta M + (1 - \beta) \frac{1}{n} \boldsymbol{e} \cdot \boldsymbol{e}^T$$
e...vector of all 1s

A is stochastic, aperiodic and irreducible, so

$$r^{(t+1)} = A \cdot r^{(t)}$$

- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps and jump)

Teleports

1/3

m

0.46

0.52

0.56

21/33

PageRank Computation

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

$$\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} - \beta) [\mathbf{1}/\mathbf{N}]_{\mathbf{N} \times \mathbf{N}}$$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

PageRank Computation

- Suppose there are N pages
- Consider page j, with d_i out-links
- We have $M_{ij} = 1/|d_j|$ when $j \rightarrow i$ and $M_{ii} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a teleport link from j to every other page and setting transition probability to (1-β)/N
 - Reducing the probability of following each out-link from 1/|d_j| to β/|d_j|
 - Equivalent: Tax each page a fraction (1-β) of its score and redistribute evenly

Rearrange

•
$$r = A \cdot r$$
, where $A_{ij} = \beta M_{ij} + \frac{1-\beta}{N}$
• $r_i = \sum_{j=1}^N A_{ij} \cdot r_j$
• $r_i = \sum_{j=1}^N \left[\beta M_{ij} + \frac{1-\beta}{N}\right] \cdot r_j$
 $= \sum_{j=1}^N \beta M_{ij} \cdot r_j + \frac{1-\beta}{N} \sum_{j=1}^N r_j$
 $= \sum_{j=1}^N \beta M_{ij} \cdot r_j + \frac{1-\beta}{N} \quad \text{since } \sum r_j = 1$
• So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_{N}$$

- where [(1-β)/N]_N is a vector with all N entries (1-β)/N
- M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_i r_i^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank

- Input: Graph G and parameter β
 - Directed graph G with spider traps and dead ends
 - Parameter β
- Output: PageRank vector r

• Set:
$$r_i^{(0)} = \frac{1}{N}$$
, $t = 1$

do:

$$\forall j: \mathbf{r'}_{j}^{(t)} = \sum_{i \to j} \boldsymbol{\beta} \frac{r_{i}^{(t-1)}}{d_{i}}$$
$$\mathbf{r'}_{j}^{(t)} = \mathbf{0} \text{ if in-deg. of } \mathbf{j} \text{ is } \mathbf{0}$$

Now re-insert the leaked PageRank:

$$\forall j: \ r_j^{(t)} = r_j^{(t)} + \frac{1-S}{N} \quad \text{where: } S = \sum_j r_j^{(t)}$$

- t = t + 1
- while $\sum_{j} \left| r_j^{(t)} r_j^{(t-1)} \right| > \varepsilon$

Problems with PageRank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank
- Uses a single measure of importance
 - Other models e.g., hubs-and-authorities
 - Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

- HITS (Hypertext-Induced Topic Selection)
 - Is a measure of importance of pages or documents, similar to PageRank
 - Proposed at around same time as PageRank ('98)
- Goal: Say we want to find good newspapers
 - Don't just find newspapers. Find "experts" people who link in a coordinated way to good newspapers
- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?

News Sources

- Hubs and Authorities Each page has 2 scores:
 - Quality as an expert (hub):
 - Total sum of votes of authorities pointed to
 - Quality as a content (authority):
 - Total sum of votes coming from experts

Principle of repeated improvement

Interesting pages fall into two classes:

- Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers
- 2. Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of US auto manufacturers

In-links: Authority

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

In-links: Authority

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Expers Quality: Hub

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

Reweighting

(Note this is idealized example. In reality graph is not bipartite each page has both the hub and authority score)

Definitions

- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors h and a

Each page i has 2 scores:

- Authority score: a_i
- Hub score: h_i

HITS algorithm:

- Initialize: $a_i = 1/\sqrt{n}$, $h_i = 1/\sqrt{n}$
- Then keep iterating until convergence:
 - $\forall i$: Authority: $a_i = \sum_{j \to i} h_j$
 - lacksquare $\forall i$: Hub: $oldsymbol{h_i} = \sum_{i o j} oldsymbol{a_j}$
 - $\forall i$: Normalize a, h such that:

$$\sum_{i} a_{i}^{2} = 1, \sum_{i} h_{i}^{2} = 1$$

$$h_i = \sum_{i \to j} a_j$$

- HITS converges to a single stable point
- Notation:
 - Vector $\mathbf{a} = (a_1 ..., a_n), \quad \mathbf{h} = (h_1 ..., h_n)$
 - Adjacency matrix $A(n \times n)$: $A_{ij} = 1$ if $i \rightarrow j$
- Then $h_i = \sum_{i o j} a_j$ can be rewritten as $h_i = \sum_j A_{ij} \cdot a_j$ So: $h = A \cdot a$
- Similarly, $a_i = \sum_{j o i} h_j$ can be rewritten as $a_i = \sum_j A_{ji} \cdot h_i = A^T \cdot h$

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

HITS algorithm in vector notation:

• Set: $a_i = h_i = \frac{1}{\sqrt{n}}$

Repeat until convergence:

- $h = A \cdot a$
- $\mathbf{a} = \mathbf{A}^T \cdot \mathbf{h}$
- Normalize a and h
- Then: $a = A^T \cdot (\underline{A \cdot \underline{a}})$

• Thus, in 2k steps:

$$a = (A^T \cdot A)^k \cdot a$$
$$h = (A \cdot A^T)^k \cdot h$$

Convergence criterion:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t-1)} \right)^2 < \varepsilon$$

$$\sum_i \left(a_i^{(t)} - a_i^{(t-1)}\right)^2 < \varepsilon$$

a is updated (in 2 steps):

$$a = A^T(A \ a) = (A^T A) \ a$$

h is updated (in 2 steps):

$$h = A(A^T h) = (A A^T) h$$

Repeated matrix powering

$$\mathbf{h} = \lambda A \mathbf{a}$$

$$\mathbf{a} = \mu A^T \mathbf{h}$$

$$\bullet \mathbf{h} = \lambda \, \mu \, A \, A^T \, \mathbf{h}$$

$$\mathbf{a} = \lambda \, \mu \, A^T A \, \mathbf{a}$$

$$\lambda = 1/\sum h_i$$
$$\mu = 1/\sum a_i$$

- Under reasonable assumptions about A,
 HITS converges to vectors h* and a*:
 - h^* is the principal eigenvector of matrix $A A^T$
 - a^* is the principal eigenvector of matrix $A^T A$