

Aluno: ______ Data: _____ Nr. Matricula: _____

Laboratório - 1

Levantamento de parâmetros típicos de transistores na tecnologia de 180nm e polarização de um amplificador Fonte Comun:

Curvas Características e Parâmetros:

a) Implementar o circuito do esquemático acima na ferramenta Cadence/Virtuoso e plotar por simulação DC a curva de corrente (I_D versus V_{DS}) para uma polarização de Gate com Overdrive ($V_{GS} - V_t$)=0,2 V_t ;

Considere um transistor típico com L= ____um, e W=10L.

b) Realizar uma simulação paramétrica para um conjunto de valores de V_{GS} (0,3V; 0,6V; 0,8V; 1,0V; 1,2V; 1,4V; 1,6V; 1,8V);

Na região de saturação a corrente no Dreno do transistor pode ser representada por:

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

c) Obter os parâmetros típicos do processo para o caso do item a). Onde $\lambda=1/V_A$, e V_A é a tensão de Early.

$$Vt_{N}=$$
 V , $Vt_{P}=$ V
 $\mu_{N}C_{ox}=$ uA/V^{2} , $\mu_{P}C_{ox}=$ uA/V^{2}
 $\lambda_{N}=$ V^{-1} , $\lambda_{P}=$ V^{-1}

> Projeto: Amplificador Fonte Comum com carga ativa.

- ✓ Tecnologia 180nm;
- ✓ Ponto de Operação (OP): $(V_{GSI} - V_{tN}) = 0.2V \ e \ V_{DSI} = 0.9V; \ I_{DI} = uA \ (na \ curva);$
- ✓ Alimentação: Vdd=1,8V;
- ✓ Referência de corrente: $I_{REF}=1$ uA.
- \checkmark Carga: $C_L=0,1pF$,

> Caracterização (por simulação) do Amplificador:

- a) ponto de operação DC (OP_DC);
- b) transiente @ 1kHz; (TRAN);
- c) resposta em frequência (AC) (gráfico Bode).

Elaborar relatório conforme os itens acima.para entrega até:

Topologia:

