Introduction à la robotique

TD N° 1 : Rotation et Transformation Homogène

Exercice 1:

1. D'après la figure ci-dessus, exprimer les transformations homogènes ${}^{0}T_{1}$, ${}^{0}T_{2}$, ${}^{2}T_{1}$ (aucun calcul n'est nécessaire, il suffit de lire la figure).

Vérifier la propriété de composition entre ces 3 transformations homogènes.

- 2. D'après la figure, exprimer les coordonnées homogènes ${}^0\boldsymbol{r}_P$ et ${}^1\boldsymbol{r}_P$ du point P dans les repères 0 et 1 respectivement. Vérifier la relation entre ces coordonnées grâce à 0T_1 .
- 3. Donner la transformation inverse ${}^{0}T_{1}^{-1} = {}^{1}T_{0}$ en utilisant deux méthodes.
- 4. Montrer que la base \mathcal{B}_1 peut être obtenue, à partir de \mathcal{B}_0 , par une rotation de π autour de \vec{y}_0 suivie d'une rotation de $\pi/2$ autour de \vec{x}_1 .

Montrer également qu'elle peut être aussi obtenue par une rotation de π autour de $\vec{y_0}$ suivie d'une rotation de $-\pi/2$ autour de $\vec{x_0}$.

Quelle est la différence entre ces deux types de rotation.

Exercice 2:

1. Le vecteur $\vec{u} = \vec{OP}$ de coordonnées $[0, 1, 0]^T$ subit successivement une rotation de 90° autour de l'axe x, et de 90° autour de l'axe y. Donnez la matrice de transformation globale. Vérifiez graphiquement.

2. Le point P tel que $\vec{OP} = [1, 1, 0]^T$ subit une translation de $[0, 0, 1]^T$ suivie d'une rotation de 60° autour de l'axe z. Calculer la nouvelle position P'.

Exercice 3:

- 1. Déterminer la matrice de transformation T correspondant à une rotation autour de l'axe x d'un angle 30° , puis une translation le long de l'axe y d'une longueur 3.
- 2. Déterminer la matrice de transformation T' correspondant à une translation le long de l'axe y d'une longueur 3 suivie d'une rotation autour de l'axe x de 30° .
- 3. Vérifier graphiquement que le produit matriciel n'est pas commutatif.

Exercice 4:

- 1. Déterminer la matrice rotation d'axe suivant la diagonale du cube unitaire (voir figure) et d'angle 120°.
- 2. Montrer que cette rotation réalise une permutation circulaire des vecteurs de la base $\vec{i}, \vec{j}, \vec{k}$.

Exercice 5:

Soit la transformation composée d'une rotation de $\pi/2$ suivant l'axe y, suivie d'une translation de d=2 suivant l'axe x et d'une rotation de $-\pi/2$ suivant l'axe z.

- 1. Quelles sont les coordonnées du point initial sachant que ses coordonnées homogènes après transformation est $[0,3,0,1]^T$? Vérifier le résultat graphiquement.
- 2. Connaissant les coordonnées homogènes d'un point $[1, 2, 0, 1]^T$ dans le repère de référence, quelles sont ses coordonnées après transformation? Trouver le résultat par deux méthodes différentes. Vérifier le résultat graphiquement.