Esercitazione 2

Mapping di Frame in WN Synsets

Consegna

Per ogni frame nel FrameSet è necessario assegnare un WN synset ai seguenti elementi:

- Frame name (nel caso si tratti di una multiword expression, come per esempio
 'Religious_belief', disambiguare il termine principale, che in generale è il sostantivo se
 l'espressione è composta da NOUN+ADJ, e il verbo se l'espressione è composta da
 VERB+NOUN; in generale l'elemento fondamentale è individuato come il reggente
 dell'espressione.)
- Frame Elements (FEs) del frame; e
- Lexical Units (LUs).

Creazione Contesto Ctx(w)

"I contesti di disambiguazione possono essere creati utilizzando le definizioni disponibili (sia quella del frame, sia quelle dei FEs), ottenendo Ctx(w), il contesto per FN terms w."

in code:

```
...
word1 = re.sub(r"[^a-zA-Z0-9]", "", local.definition).split()
word2 = []

for elem in local.FE:
   val = local.FE[elem]
   word2 = word2 + (re.sub(r"[^a-zA-Z0-9]", "",
val.definition).split())
word.append(set(word1 + word2))
...
```

Prendiamo le varie parole della definizione del frame e le inseriamo, ragionamento identico per i vari Frame Elements.

Nota: invece di applicare un controllo ad ogni inserimento per i possibili valori duplicati, al termine di tutti gli inserimenti trasformiamo la nostra lista in un set in modo da eliminare possibili valori duplicati.

Creazione contesto Ctx(s)

in code:

"Per quanto riguarda il contesto dei sensi presenti in WN è possibile selezionare glosse ed esempi dei sensi, e dei loro rispettivi iponimi e iperonimi, in modo da avere più informazione, ottenendo quindi il contesto di disambiguazione Ctx(s)"

```
for sense in senses_list:
    elem_ctx = []
    for example in sense.examples():
        elem_ctx = elem_ctx + example.split()
    for glos in sense.definition().split():
        elem_ctx = elem_ctx + re.sub(r"[^a-zA-Z0-9]", "", glos).split()
    for hypo in sense.hyponyms():
```

```
for example in hypo.examples():
        elem_ctx = elem_ctx + example.split()
    for glos in hypo.definition().split():
        elem_ctx = elem_ctx + re.sub(r"[^a-zA-Z0-9]", "", glos).split()
for hyper in sense.hypernyms():
    for example in hyper.examples():
        elem_ctx = elem_ctx + example.split()
    for glos in hyper.definition().split():
        elem_ctx = elem_ctx + re.sub(r"[^a-zA-Z0-9]", "", glos).split()
```

Approcci al mapping

Abbiamo sviluppato i due possibili approcci al mapping dei sensi:

- Approccio a bag of words
- Approccio Grafico

Approccio Bag of Words

Scelta del senso che permette di massimizzare l'intersezione fra i contesti. In questo caso lo score è calcolato come:

```
score(s, w) = |Ctx(s) \cap Ctx(w)| + 1
```

dove verrà selezionato l'argomento S che massimizza lo score, ossia:

```
BestSense's' per Word'w' = argmax |Ctx(s) \cap Ctx(w)| + 1
```

in code:

```
overlap = len(set(elem ctx).intersection(context))
if overlap >= max overlap FE:
  max overlap FE = overlap
  best sense = sense
```

Approccio Grafico

actual = toDo.pop()

while toDo:

In questo caso si procede con la costruzione di un grafo che contiene tutti i synset associati ai termini in Framenet (FN):

```
FN = w(FE) \cup w(LU)
if not actual in done:
```

```
len = actual.shortest_path_distance(start)
    if isinstance(len, int) and not len > 1:
        for child in actual.hyponyms():
            graph.add_edge(actual.name(), child.name())
            toDo.add(child)
        for parent in actual.hypernyms():
            graph.add_edge(actual.name(), parent.name())
            toDo.add(parent)
        done.add(actual)
    return graph
```

Lo score(s, w) è calcolato sfruttando i synset associati ai termini da mappare e al loro contesto di disambiguazione. In particolare, si tratta di costruire il sottografo di WN contenente i synset presenti in tutti i path di lunghezza $I \le L$ fra i possibili sensi dei termini del contesto di disambiguazione e s; la funzione che valuta l'importanza del senso s per il termine w calcola la seguente funzione:

$$score(s, w) = \sum_{cw \in Ctx(w)} \sum_{s' \in senses \ WN(cw)} \sum_{p \in path(s, s')} e^{-(len(p)-1)}$$

in code:

```
sum = 0
for term in ctx:
    for sense in wn.synsets(term):
        if graph.has_node(sense.name())
        and graph.has_node(poss_sense.name())
        and nx.has_path(graph,poss_sense.name(),sense.name()):
            p = nx.shortest_path_length(graph,poss_sense.name(),sense.name())
            sum = sum + math.exp(-(p-1))
```

Una volta definito il calcolo dell score possiamo calcolare probabilità condizionata di ottenere il senso *s* dal termine *w*:

$$p(s, w) = \frac{score(s, w)}{\sum_{s' \in SensesWN(w)} score(s', w')}$$

Scegliamo il valore che restituisce il massimo, ossia:

```
bestSense s = argmax p(sw)
```

in code:

```
prob = scores[i][1] / denominatore if denominatore != 0 else 0
if prob>=best_prob:
   best_prob=prob
   best_sense=i
```