Prova 1

Algoritmos e Estruturas de Dados I - turma TF

Professor: Pedro O.S. Vaz de Melo

17 de setembro de 2013

Nome:	
rvonie.	
	escrevendo o meu nome eu juro que seguirei o código de honra

Código de Honra para este exame (baseado no Honor Code da Universidade de Stanford):

- Não darei ajuda a outros colegas durante os exames, nem lhes pedirei ajuda;
- não copiarei nem deixarei que um colega copie de mim;
- não usarei no exame elementos de consulta não autorizados.

Informações importantes:

- Em questões que pede um **programa**, este deve ser completo, com bibliotecas (incluindo, quando necessário, a biblioteca **prova1.h**), função main, etc. Se deve ser feita uma **função**, somente a função é suficiente. Se deve ser feito um **procedimento**, somente o procedimento é suficiente.
- A interpretação das questões da prova faz parte do critério de avaliação. Caso tenha dúvida sobre a sua interpretação de uma determinada questão, escreva as suas suposições na resolução da mesma.
- As funções implementadas no módulo proval. h podem ser usadas em qualquer exercício da prova.

Referências:

Função/Operador	Descrição	Biblioteca	Exemplo
<pre>float exp(float x)</pre>	retorna e^x	math.h	$exp(1) retorna e^1 = 2.71828$
<pre>float pow(float b, float e)</pre>	retorna b^e	math.h	pow(2,3) retorna $2^3 = 8$
<pre>int abs(int x)</pre>	retorna $ x $	stdlib.h	abs(-3) retorna $ 3 = 3$
double sqrt(double x)	retorna \sqrt{x}	math.h	$sqrt(9) retorna \sqrt{9} = 3$
%	retorna o resto da divisão	-	20 % 3 retorna 2

1. (5 points) Um matemático maluco lhe procurou pois precisa de uma implementação em C da função:

$$f(x,\alpha) = \begin{cases} \alpha\sqrt{-x} & \text{se } x < 0\\ \alpha e^{-\alpha x} & \text{se } x \ge 0 \text{ e } x < |\alpha^3|\\ \alpha & \text{se } x \ge |\alpha^3| \end{cases}$$
 (1)

Assim, implemente uma **função** de nome **flouca** que recebe os parâmetros x e α e retorna $f(x,\alpha)$, todos pontos flutuantes.

2. (5 points) Escreva um **programa** que lê três números inteiros do teclado: x_{min} , x_{max} e α e imprime na tela os valores resultantes da função flouca com parâmetro α para todos os valores inteiros entre x_{min} e x_{max} (inclusive para ambos). Enquanto o usuário inserir um valor de x_{min} maior ou igual a x_{max} , o programa deve pedir a ele novos valores de x_{min} e x_{max} .

- **3.** (5 points) Escreva uma função que recebe um número inteiro positivo n como parâmetro e que retorna o enésimo termo da sequência de Fibonacci. Essa sequência começa com 0 e depois 1 e, a partir do terceiro termo, seu valor é dado pela soma dos dois termos anteriores. Alguns termos dessa sequência são: 0,1,1,2,3,5,8,13,21,34. Assim, se o valor de n for 5, a função deve retornar o quinto termo da sequência de Fibonacci, que é 3.
- **4.** (6 points) Para as questões a seguir, considere que a implementação da letra **a** será feita no módulo "prova1.h". Para a letra **b**, considere que o módulo "prova1.h" tem a função aumenta0sDiferentes da letra **a** implementada corretamente.
- a. (3 pts) Escreva um procedimento de nome aumentaOsDiferentes que recebe como parâmetro dois endereços de memória de variáveis inteiras end_var1 e end_var2. A função deve verificar se esses endereços de memória têm o mesmo valor inteiro armazenado neles. Caso positivo, a função deve armazenar o valor 0 nos dois endereços de memória. Caso negativo, a função deve fazer a soma dos dois valores e armazenar essa soma em ambos endereços de memória. Assim, no final da execução, os dois endereços end_var1 e end_var2 devem conter o mesmo valor: 0 caso os inteiros armazenados nesses endereços eram iguais quando essa função foi chamada ou a soma desses valores caso eram diferentes.
- **b.** (2 pts) Complete o código abaixo, considerando que as variáveis x e y vão ser usadas como parâmetros nas linhas 8 e 10:

c. (1 pt) O que foi impresso nas linhas 9 e 11 no código do exercício **3b** caso o usuário tenha entrado com os valores x = 5 e y = 10 na linha 7?