Towards Automated Bot Detection in Political Social Networks

Berat Biçer Vahid Namakshenas

Motivation & Definitions

Social media impacts the political discourse and the propagation of information.

Bots threatens this for political gain in the name of lobbyists or state actors.

Bots seek to connect to many real accounts, real accounts have a mixed incoming connections.

Real accounts are local hubs, have high degree and betweenness.

Methodology - Graph and Node-Level Analysis

Density: Bot clusters have larger local density than graph average.

Clustering Coefficient (CC): Bots likely have strong CC than network average.

Mean path length (MPC): MPC is likely large if bots are numerous.

Eigenvector centrality (EIC): Helps discovering bot farms, a cluster consists of many connected bots influencing real accounts.

Betweenness centrality (BC): A bot is less likely to be a broker between real accounts, and has low betweenness.

Page Rank (PR): A node with high Page Rank value is a reference node and is less likely to be a bot.

Methodology - Community Detection

Bots likely share similarities and connect to other bots. So, they are likely to be placed in the same clusters.

Hierarchical clustering starting from the leaves to obtain several small communities to see whether bots can be clustered.

Methodology - Neighbourhood Embedding

Let S be a sample in the dataset and N_S be set of vertices that are the immediate neighbours of the node S.

Assume $y_s = 1$ if S is a bot and $y_s = 0$ otherwise.

Construct the binary string NE_S where $|NE_S| = ||NS||$ as follows:

$$NE_S[i] = \begin{cases} 1 & if \ y_{N_S,i} = 1 \\ 0 & if \ otherwise \end{cases}$$

where $y_{Ns,i}$ is the label of *i*th neighbour of S.

 NE_s can be used as a feature vector, or converted into a real number for thresholding.

Methodology - Natural Language Processing (NLP)

Learn a single representation vector for an account from a collection of tweets.

Multi-stage pipeline:

- Filtering: Removal non-English characters and emojis; hashtags, account mentions, URLs; HTML character encodings, special characters, punctuation, stop words, etc. Lemmatization.
- Vectorization: TF-IDF, word2vec[1,2], doc2vec[3], transformers[4]
- Representations merged for each account and fed to a classifier.

^[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

^[2] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.

^[3] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In International conference on machine learning. PMLR, 188–1196.

^[4] Yinhan Liu et al. 2019. Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Dataset - TwiBot-20 [1,2]

~10K labelled accounts for tweet classification, ~200 Tweets from each.

After filtering out disconnected nodes, ~2.6K accounts for network-based analysis.

Accounts are political figures & their connections from contemporary U.S. politics.

Figure 2: Layout of vertices after filtering based on degree centrality.

^[1] Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, and Minnan Luo. 2021. Twibot-20: a comprehensive twitter bot detection benchmark. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 4485–4494.

^[2] Shangbin Feng et al. 2022. Twibot-22: towards graph-based twitter bot detection. arXiv preprint arXiv:2206.04564.

Nodes	2605
Links	2070
Degree Distribution	.795
Density	.001
Clustering Coefficient	.005
Mean Path Length	2.794
Diameter	9

Hitmap - Correlations

Experiments and Results - Neighbourhood Embedding

Table 1: Contrastive view on correct classification rate (CCR) computed over the test split. These results are obtained via experiments exploring neighbourhood information as feature representation.

Setup	Classifier	CCR
Neighbour BS	Threshold	None
Neighbour BS	Weighted Threshold	None
Neighbour Sum	Weighted Threshold	None
Neighbour Frequency	Weighted Threshold	0.474
Neighbour Embedding	MLP	None
Neighbour Embedding	SVM	None
Neighbour Embedding	Random Forest	0.583

Experiments and Results - Community Detection

Dendrogram - Hierarchical clustering

Experiments and Results - Community Detection

Clustering Results

	Bot Distribution in Clusters								
Cluster_ID	0	1	2	3	4	5	6	8	10
# of labels	986	339	24	6	75	0	0	4	3212
# of nodes	1744	492	37	256	105	38	14	5	5585
%	56%	69%	65%	2.30%	71%	0	0	80%	58%

Bot Distribution in Clusters

Experiments and Results - NLP

Table 2: Contrastive view on correct classification rate (CCR) computed over the test split. Results are obtained when specified algorithm is used for account-level representations.

# Features	Method	CCR		
64	doc2vec	0.5822		
128	doc2vec	0.5916		
256	doc2vec	0.6036		
512	doc2vec	0.6122		
1024	doc2vec	0.5959		
64	word2vec-avg	0.7158		
128	word2vec-avg	0.6901		
256	word2vec-avg	0.7166		
512	word2vec-avg	0.7080		

Future Work

Investigating use of recurrent nets for tweet embeddings.

Investigating use of transformers for tweet embeddings.