112-1 (Fall 2023) Semester

Reinforcement Learning

Assignment #2-2

TA: Guan-Ting Liu (劉冠廷)

Department of Electrical Engineering National Taiwan University

Outline

- Tasks
 - MC: Every-Visit Monte-Carlo Evaluation + ϵ -Greedy Improvement
 - SARSA: Temporal-Difference Prediction TD(0) $+\epsilon$ -Greedy Improvement
 - Q-Learning $+\epsilon$ -Greedy Improvement
- Environment
- Code structure
- Grading
- Submission
- Policy
- Contact

Tasks

Task 1 – Every-Visit Monte-Carlo Prediction with ϵ -Greedy Improvement

Problem

- Evaluate a policy by predicting the Q value function for each (state, action) pair
- Update the Q value function with the Every-Visit Monte-Carlo method using constant α
- Using collected trajectories to update the value function per episode

MC Policy Evaluation + ϵ -Greedy Improvement

- Sample *k*th episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_{T}$$

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha (G_{t} - Q(S_{t}, A_{t}))$$

■ Improve policy based on new action-value function

$$\epsilon \leftarrow \text{constant}$$
 $\pi \leftarrow \epsilon \text{-greedy}(Q)$

Estimation Loss

Task 1 – Every-Visit Monte-Carlo Prediction with ϵ -Greedy Improvement

Problem

- Evaluate a policy by predicting the Q value function for each (state, action) pair
- Update the Q value function with the Every-Visit Monte-Carlo method using constant α
- Using collected trajectories to update the value function per episode

∈-Greedy Improvement

- Simplest idea for ensuring continual exploration
- All *m* actions are tried with non-zero probability
- With probability 1ϵ choose the greedy action
- With probability ϵ choose an action at random

$$\pi(a|s) = \left\{ egin{array}{ll} \epsilon/m + 1 - \epsilon & ext{if } a^* = rgmax \ Q(s,a) \ & a \in \mathcal{A} \ \epsilon/m & ext{otherwise} \end{array}
ight.$$

Task 2 - SARSA: Temporal-difference Prediction TD(0) with ϵ -Greedy Improvement

Problem

- Evaluate a policy by predicting the Q value function for each (state, action)
- Update the Q value function with TD(0) method using the collected transition per step

TD(0) Policy Evaluation + ϵ -Greedy Improvement

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \begin{bmatrix} R + \gamma Q(S',A') - Q(S,A) \end{bmatrix}
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

Task 3 - Q-Learning with ϵ -Greedy Improvement

Problem

Assignment #2-2

- Store the collected transition (S, A, R, S', done) in the replay buffer at each time step
- Uniformly random sample transitions from the replay buffer and store them in the batch
- Update the Q value function method using the sampled transitions in the batch

Q-Learning + ϵ -Greedy Improvement

```
Given update frequency m and sample batch size n
Initialize transition count i = 0, value function Q(S, A), replay buffer \psi
Repeat (for each episode)
      Initialize S
      Repeat (for each step of the episode):
           Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
           Take action A, observe R, S', done
           Store the transition (S, A, R, S', done) to \psi
           i = i + 1
           Initialize sampled batch transition B = []
           If i \mod m == 0:
               Uniformly random sample n transitions from \psi and store them to B
           For each (S, A, R, S', done) in B:
                Q(S,A) \leftarrow Q(S,A) + \alpha \left[ R + \gamma \max_{A'} Q(S',A') - Q(S,A) \right]
           S \leftarrow S'
           Until S is terminal
                                                      Estimation Loss
```

Environment

Grid World

State space

- Nonterminal states: Empty, Wall
- Terminal states: Goal, Trap
- 0-indexed

Action space

- Up, down, left, right
- Hitting the wall will remain at the same state

Reward

- Step reward given at every transition
- Goal reward given after reaching goal state
- Trap reward given after reaching trap state

Interaction with Environments

- Learn to interact with a OpenAI gym-like environment
- Grid World in this assignment is a MDP (defined by gridworld.py)
- Grid World functions:
 - step(): Interact with the environment, taking one parameter (action) (in HW 2.1, no parameter is needed to call step())
 - reset(): Reset the environment to the initial state (only used once at the first step)
 - Update the values function with states, rewards and done flags

```
def run(self, max_episode=1000) -> None:
    """Run the algorithm until convergence."""
   # TODO: Implement the O_Learning algorithm
   iter_episode = 0
   current_state = self.grid_world.reset()
   prev_s = None
   prev_a = None
   prev_r = None
   is_done = False
   transition_count = 0
   while iter_episode < max_episode:</pre>
        # TODO: write your code here
        # hint: self.grid_world.reset() is NOT needed here
       raise NotImplementedError
```

Terminal State

- The value of the Goal and Trap state is considered in this assignment
- The final transition at the end of the ith episode will be:

$$(S_T^i, A_T^i, R_T^i, S_0^{i+1})$$

where the first state of the $(i+1)^{st}$ episode is S_0^{i+1}

Code Structure

DP_solver_2_2.py

class **DynamicProgramming**

Parent class for DP algorithms

class MonteCarloPolicyIteration

- TODO: run(), policy_evaluation(), policy_improvement()
- The implementation will be judged by run()
- policy_evaluation(), and policy_improvement() are just auxiliary functions, which will not be directly called during judgement

class SARSA

- TODO: run(), policy_eval_improve()
- The implementation will be judged by run().
- policy_eval_improve() is the auxiliary function, which will not be directly called during judgment.

class Q_learning

- TODO: run(), add_buffer(), sample_batch(), policy_eval_improve()
- The implementation will be judged by run().
- Add_buffer(), sample_batch(), and policy_eval_improve() are auxiliary functions, which will not be directly called during judgment.

Feel free to add any function if needed

Grading

- 14 -

Grading

- MC: Running-Average Monte-Carlo Evaluation + ϵ -Greedy Improvement (15%)
 - Hyperparameters are the same as those in main.py
 - Test cases (3% x 5 cases)
- SARSA: Temporal-difference Prediction TD(0) + ϵ -Greedy Improvement (15%)
 - Hyperparameters are the same as those in main.py
 - Test cases (3% x 5 cases)
- Q-Learning + ϵ -Greedy Improvement (15%)
 - Hyperparameters are the same as those in main.py
 - Test cases (3% x 5 cases)
- Report (25%) (Report Template: https://www.overleaf.com/read/vczdnjcvmkbh)
 - Discuss and plot learning curves under ϵ values of (0.1, 0.2, 0.3, 0.4) on MC, SARSA, and Q-Learning (4%) Learning curves: #episode (X-axis) vs. Average Non-Discounted Episodic Reward of last 10 episodes (Y-axis)
 - Discuss and plot loss curves under ε values of (0.1, 0.2, 0.3, 0.4) on MC, SARSA, and Q-Learning (4%)
 Loss curves: #episode (X-axis) vs. Average Absolute Estimation Loss over each transition of the last 10 episodes (Y-axis)
 - Discuss (and plot) different settings in terms of step reward, discount factor, learning rate, buffer size, update_frequency, and sample batch size (16%)
 - Using Weights & Bias (https://wandb.ai/site) to plot all figures in the report (1%)

Hyperparameters in main.py

```
      STEP_REWARD
      = -0.1

      GOAL_REWARD
      = 1.0

      TRAP_REWARD
      = -1.0

      DISCOUNT_FACTOR
      = 0.99

      LEARNING_RATE
      = 0.01

      EPSILON
      = 0.2

      BUFFER_SIZE
      = 10000

      UPDATE_FREQUENCY
      = 200

      SAMPLE_BATCH_SIZE
      = 500
```

Learning Curves & Loss Curves

1. Learning curves: #episode (X-axis) vs. Average non-discounted Episodic Reward \mathcal{R} of last 10 episodes (Y-axis)

Example:

Episode 0: step1:
$$r_{01}$$
, step2: r_{02} , ..., step T: r_{0a} Episode 1: step1: r_{11} , step2: r_{12} , ..., step T: r_{1b} : Episode 9: step1: r_{91} , step2: r_{12} , ..., step T: r_{9j}
$$\mathcal{R} = \frac{\sum_{k=1}^{a} r_{0k}}{a} + \frac{\sum_{k=1}^{b} r_{1k}}{b} + ... + \frac{\sum_{k=1}^{j} r_{9k}}{j}$$

2. Loss Curves: #episode (X-axis) vs. Average Absolute Estimation Loss £ over each transition of the last 10 episodes (Y-axis)

Example:

Episode 0:
$$abs(EL_{01})$$
, $abs(EL_{02})$, ..., $abs(EL_{0a})$
Episode 1: $abs(EL_{11})$, $abs(EL_{12})$, ..., $abs(EL_{1b})$
:
Episode 9: $abs(EL_{91})$, $abs(EL_{92})$, ..., $abs(EL_{9j})$

$$\mathcal{L} = \frac{\sum_{k=1}^{a} \frac{abs(EL_{0k})}{a} + \sum_{k=1}^{b} \frac{abs(EL_{1k})}{b} + ... + \frac{\sum_{k=1}^{j} abs(EL_{9k})}{j}}{10}$$

Criteria

- Test cases:
 - Call run() and check the final output
 - Task 1, 2: Check the resulting max_state_values on every state (tolerance: 0.1)
 - Task 3: Check the resulting max_state_values on every state (tolerance: 0.001)
 - Tolerance: abs(estimated result_from_TAs)
 - Programs implemented in Task 1, 2 will be reviewed by TAs
 - Testing hyperparameters are listed in main.py
 - The implementation of max_state_values can be found in DP_solver.py
 - Run time limit of 5 minutes for each case to avoid infinite loops
 - Up to 512000 episodes will be conducted in Task1 and Task 2 on private test cases
 - Up to 50000 episodes will be conducted in Task3 on private test cases
- Sample solutions are provided for reference
 - Optimal policy may not be unique
 - Policy in sample solutions are obtained after running 512000 episodes on Task 1,2 and 50000 episode on Task 3

Sample Solutions: MC Policy Iteration

Sample Solutions: SARSA

Sample Solutions: Q-Learning

Submission

- 21 -

Submission

- Submit on NTU COOL with following zip file structure
 - DP_solver.py: containing your implementation for HW 2.1
 - DP_solver_2_2.py: containing your code for HW 2.2
 - Get rid of pycache, DS_Store, etc.
 - Student ID with lower case
 - 10% deduction for wrong format

- Deadline: 2023/10/19 Thu 09:30am
- No late submission is allowed

Policy

- 23 -

Policy

Package

- You can use any Python standard library (e.g., heap, queue...)
- System level packages are prohibited (e.g., sys, os, multiprocess, subprocess...) for security concern

Collaboration

- Discussions are encouraged
- Write your own codes

Plagiarism & cheating

- All assignment submissions will be subject to duplication checking (e.g., MOSS)
- Cheater will receive an F grade for this course

Grade appeal

Assignment grades are considered finalized two weeks after release

Contact

- 25 -

Questions?

- General questions
 - Use channel <u>#assignment 2</u> in slack as first option
 - Reply in thread to avoid spamming other people
- Personal questions
 - ・ DM us on Slack: **TA 劉冠廷 Guan-Ting Liu**

TA 陳尚甫 Shang-Fu Chen

