

Qi Qi

Customized Front-end for Zebrafish Acquisition System

Outline

- Introduction
- Background
- Requirement Analysis
- Design
- Implementation
- User Evaluation

Introduction

- A software implementation project
 - Work on a real experiment
 - Zebrafish research
 - Cooperate with researchers
 - SBCS
- Data acquisition and processing
 - Solution
 - User-friendly interface
 - Matlab

Background - Zebrafish

- Examine the effects of drugs
 - Behavioural test
- Evaluates on zebrafish
 - Performance
 - Attention
 - Impulse

Background - Cooperation

- LabVIEW => Control
 - Automatic system
 - SEMS
- Python => Computer Vision
 - Capture
 - EECS
- My Project => Summary
 - Data
 - EECS

Background - LabVIEW + Python

Requirement Analysis - Scenario

0

- Scenario Document
 - Provided by the researchers
 - Targets

Requirement Analysis - Summary

Data amount

- $420000 \text{ records} = 70 \text{ fishes } \times 1 \frac{\text{file}}{\text{day} \times \text{fish}} \times 60 \text{ days } \times 100 \frac{\text{records}}{\text{file}}$
- 12.6MB = 12600KB = 70 fishes $\times 1 \frac{file}{day \times fish} \times 60 \ days \times 10 \frac{KB}{file} \times 0.3$

Category classify

- Group
- Fish
- Day
- Extract key parameters
- Fix data bugs
- Show comparison figures

Design - Overview

Prototype 1 – Java UI

Prototype 2 - Website Front-end

- Link
 - http://webprojects.eecs.qmul.ac.uk/ee08b051/zebrafishJQuery

Prototype 3 – Web App Front-end

- Link
 - http://webprojects.eecs.qmul.ac.uk/ee08b051

Prototype 3 – Web App Front-end

- Design to be the FINAL
 - Spent lots of effort
 - But...

Design - Reconstruct the whole work

Design - Matlab for the FINAL

Design – Matlab for the FINAL

Design - Matlab for the FINAL

<u>Design – Revie</u>w!!!

Plot: v=>Parameter, x=>Day

0.45

0.4

0.35

0.3

0.25

0.2

Trials

Correct

C_Late

C_Return

W_Return

Early

0.2083

11.2204

Final Solution

Implementation - Overview

Implementation - Naming Rules

- Consistent
- Efficient
 - fn_SwapDataOrder.m
 - sc_LoadAllData.m
 - sSavePath
 - roGroupDayFishStatistics
 - maGroupDayFishDatas
 - stDataAll
 - OUT_coFishIDs
 - • •

Implementation - Avoid Using for-loop

Speed!

$$a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \xrightarrow{+} a = \begin{bmatrix} 1+10 & 2+20 \\ 3+10 & 4+20 \\ 5+10 & 6+20 \end{bmatrix}$$

EX.

Using for-loop:	Using matrix operation:
[row col] = size(a);	a(:,1) = a(:,1) + 10;
for I = 1:row	a(:,2) = a(:,2) + 20;
for j = 1:col	
if(j == 1)	
a(i,j) = a(i,j) + 10;	
else	
a(i,j) = a(i,j) + 20;	
end	
end	
end	

Implementation - Integration

- Data cluster
 - Front-end
 - LabVIEW
- Direct Access
 - Don't need to import data

Implementation - Other issues

- Text data parsing
 - Regular expression
- Data manipulation
 - Matrix
- Data processing
 - 'max()', 'mean()', etc.
- Database construction
 - stDataAll.mat
- • •

User Evaluation

- Dr Matthew Parker
 - ...not only very user friendly, but has a number of features which will make our research process much more effective. The software uses the output files from LabView to organize our data into groups. This facilitates simple comparison of our different treatments during the course of our experiments. As we test up to 70 fish at any one time, this has made our lives much easier, saving both time and effort. In addition, the software produces publication-quality graphs, which will be very useful when attempting to publish our data in the future. Finally, as we intend to market the software and the testing system in the future, we feel that Qi Qi's design will improve the marketability...

Link for the Source Code

https://bitbucket.org/qiqiuklife/zebrafish/src

Questions?

