Definition 0.1 (Kategorie). Eine Kategorie e^x besteht aus den folgenden Daten:

- (1) Eine Klasse von Objekten $Ob(\mathcal{C})$.
- (2) Für alle $x, y \in \text{Ob}(\mathcal{C})$ eine Klasse von Morphismen $\text{Mor}_{\mathcal{C}}(x, y)$.
- (3) Für alle $x \in \text{Ob}(\mathcal{C})$ einen Identitätsmorphismus $\text{id}_x \in \text{Mor}_{\mathcal{C}}(x, x)$.
- (4) Für alle $x, y, z \in Ob(\mathcal{C})$ eine Verkettungsabbildung

$$\operatorname{Mor}_{\mathcal{C}}(y,z) \times \operatorname{Mor}_{\mathcal{C}}(x,y) \to \operatorname{Mor}_{\mathcal{C}}(x,z), \ (g,f) \mapsto g \circ f.$$

Dabei fordern wir, dass folgende Bedingungen erfüllt sind:

- (1) Für alle $f \in \operatorname{Mor}_{\mathcal{C}}(x, y)$ ist $f \circ \operatorname{id}_x = f = \operatorname{id}_y \circ f$.
- (2) Für alle $f \in \operatorname{Mor}_{\mathcal{C}}(w, x), g \in \operatorname{Mor}_{\mathcal{C}}(x, y)$ und $h \in \operatorname{Mor}_{\mathcal{C}}(y, x)$ ist

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Wir nennen eine Kategorie \mathcal{C} lokal klein, falls für alle $x, y \in \mathrm{Ob}(\mathcal{C})$ die Klasse $\mathrm{Mor}_{\mathcal{C}}(x, y)$ eine Menge ist, und klein, falls zusätzlich auch die Klasse $\mathrm{Ob}(\mathcal{C})$ eine Menge ist.

Definition 0.2 (Mono-,Epi-,Isomorphismus). Sei $f: x \to y$ ein Morphismus in einer Kategorie C.

(1) Wir sagen f ist ein Monomorphismus, falls für alle $z \in \mathcal{C}$ die Abbildung

$$f_* \colon \operatorname{Mor}_{\mathcal{C}}(z, x) \to \operatorname{Mor}_{\mathcal{C}}(z, y), \ g \mapsto f \circ g$$

injektiv ist. Dual dazu sagen wir f ist ein Epimorphismus, falls für alle $z \in \mathcal{C}$ die Abbildung

$$f^* \colon \operatorname{Mor}_{\mathcal{C}}(y, z) \to \operatorname{Mor}_{\mathcal{C}}(x, z), \ g \mapsto g \circ f$$

injektiv ist.

- (2) Wir sagen f ist ein spaltender Monomorphismus, falls es einen Morphismus $g: y \to x$ gibt mit $g \circ f = \mathrm{id}_x$. Wir nenn dann g eine Retraktion voon f Dual dazu sagen wir f ist ein spaltender Epimorphismus falls es einen Morphismus $g: y \to x$ mit $f \circ g = \mathrm{id}_y$. Wir nennen dann g einen Schnitt von f.
- (3) Wir sagen f ist ein Isomorphismus falls es einen Morphismus $f': y \to x$ gibt der gleichzeitig Retraktion und Schnitt von f ist. So ein f' ist dann eindeutig und wir schreiben $f^{-1} = f'$

Lemma 0.3. Sei $f: x \to y$ ein Morphismus in einer Kategorie C. Dann sind die folgenden Bedinungen äquivalent:

- (1) f ist ein Isomorphismus.
- (2) f ist sowohl ein Monomorphismus als auch ein spaltender Epimorphismus.
- (3) f ist sowohl ein Epimorphisus als auch ein spaltender Monomorphismus.
- (4) Für alle $z \in \mathcal{C}$ ist die Abbildung $f_* \colon \operatorname{Mor}_{\mathcal{C}}(z, x) \to \operatorname{Mor}_{\mathcal{C}}(z, y)$ bijektiv.
- (5) Für alle $z \in \mathcal{C}$ ist die Abbildung $f^* \colon \operatorname{Mor}_{\mathcal{C}}(y, z) \to \operatorname{Mor}_{\mathcal{C}}(x, z)$ bijektiv.

Beweis. Gelte 1). Dann ist für alle $z \in \mathcal{C}$:

$$f_*^{-1}f_* = (f^{-1}f)_* = \mathrm{id}_{\mathrm{Mor}_{\mathcal{C}}(z,x)}$$

also ist f_* injektiv und damit ist f ein Monomorphismus. Also gilt 2).

Gelte 2). Dann sei $g: y \to x$ ein Schnitt. Es gilt für z = x dass $f_*(\mathrm{id}_x) = f = f \circ g \circ f = f_*(g \circ f)$ also ist $\mathrm{id}_x = g \circ f$. Damit gilt 1). Gelte 1). Dann ist für Retration und Schnitt $g: y \to x$ und alle $z \in \mathcal{C}$: $\mathrm{id} = (\mathrm{id}_x)_* = (g \circ f)_* = g_* \circ f_*$ und analog $\mathrm{id} = f_* \circ g_*$. Also ist f_* injektiv und surjektiv. Also gilt 4). Gelte 4). Dann ist f ein Monomorphismus. Zu f_* gibt es f_* mit $f_*(g) = \mathrm{id}_y$ also $f \circ g = \mathrm{id}_y$. Dann ist f ein Schnitt und es gilt 2). Das zeigt 1) f_* 2) f_* 4). Analog zeigt man 1) f_* 3) f_* 5).

0.1. Funktoren.

Definition 0.4 (Funktor). Seien \mathcal{C} und \mathcal{D} Kategorien. Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ besteht aus folgenden Daten:

(1) Eine Abbildung

$$Ob(\mathcal{C}) \to Ob(\mathcal{C}), x \mapsto F(x).$$

(2) Für alle Objekte $x, y \in \mathcal{C}$ eine Abbildung

$$\operatorname{Mor}_{\mathcal{C}}(x,y) \to \operatorname{Mor}_{\mathcal{D}}(F(x),F(y)), \ f \mapsto F(f).$$

Dabei fordern wir, dass die folgenden Bedingungen erfüllt sind:

- (1) Für alle $x \in \mathcal{C}$ ist $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$.
- (2) Für alle $f: x \to y$ und $g: y \to z$ in \mathcal{C} ist $F(g \circ f) = F(g) \circ F(f)$.

Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ ist treu (bzw. volltreu), falls für alle $x, y \in \mathcal{C}$ die Abbildung

$$F \colon \operatorname{Mor}_{\mathcal{C}}(x, y) \to \operatorname{Mor} \mathcal{D}(F(x), F(y))$$

injektiv (bzw. bijektiv ist).

Bemerkung 0.5. Sei $F: \mathcal{C} \to \mathcal{D}$ ein treuer Funktor. Dann reflektiert F Mono- und Epimorphismen. Wenn F volltreu ist, dann reflektiert F auch spaltende Mono- und Epimorphismen.

Definition 0.6. Sei Cat die Kategorie deren Objekte kleine Kategorien \mathcal{C} sind mit Morphismen sind die Funktoren.

Definition 0.7. Sei I eine partiell geordnete Menge (zB. [n] = Set0, 1, ...n). Dann definiere eine Kategorie NP durch

$$\mathrm{Ob}(NP) = P \text{ und } \mathrm{Mor}_{NP}(p,q) = \begin{cases} \{*\} & \text{ falls } p \leq q \\ \emptyset & \text{ sonst.} \end{cases}$$

Das gibt einen volltreuen Funktor $N: \mathsf{CatOrd} \to \mathsf{Cat}$

0.2. Natürliche Transformationen.

Definition 0.8. Seien $F, G: \mathcal{C} \to \mathcal{D}$ Funktoren zwischen Kategorien. Eine natürliche Transformation $\tau: F \to G$ besteht aus den folgenden Daten:

(1) Für alle $x \in \mathcal{C}$ ein Morphismus $\tau_x \colon F(x) \to G(x)$ in \mathcal{D} .

Dabei fordern wir, dass folgende Bedingung erfüllt ist:

Wir schreiben Nat(F,G) für die Klasse der natürlichen Transformationen $\tau\colon F\to G$.

Definition 0.9 (Funktorkategorie). Seien \mathcal{C} und \mathcal{D} Kategorien. Dann definieren wir die Funktorkategorie $\mathsf{Fun}(\mathcal{C},\mathcal{D})$ wie folgt

- (1) Die Objekte sind Funktoren $F: \mathcal{C} \to \mathcal{D}$.
- (2) Morphismen $\tau \colon F \to G$ sind natürliche Transformationen mit Verkettung $(\nu \circ \tau)_x = v_x \circ \tau_x$ für $x \in \mathcal{C}$.

Lemma 0.10. Sei C eine kleine und D eine lokal kleine Kategorie. Dann ist Fun(C, D) wieder lokal klein.

Beweis. Seien $F, G: \mathcal{C} \to \mathcal{D}$ Funktoren. Dann ist

$$\operatorname{Nat}(F,G) \subseteq \prod_{x \in \mathcal{C}} \operatorname{Mor}_{\mathcal{D}}(F(x),G(x))$$

und das letze ist eine Menge.

Lemma 0.11. Eine natürliche Transformation $\tau \colon F \to G$ ist natürlicher Isomorphismus, wenn τ_x ein Isomorphismus für alle $x \in \mathcal{C}$ ist.

Beweis. Behauptung: $(\tau_x^{-1})_x$ ist eine natürliche Transformation. Sei $f: x \to y$ ein Morphismus. Dann ist

$$\tau_y^{-1} \circ G(f) = \tau_y^{-1} \circ (G(f) \circ \tau_x) \circ \tau_x^{-1}$$
$$= \tau_y^{-1} \circ (\tau_y \circ F(f)) \circ \tau_x^{-1}$$
$$= F(f) \circ \tau_x^{-1}$$

Satz 0.12. Sei $i: \mathcal{D}' \to \mathcal{D}$ ein volltreuer Funktor und $F: \mathcal{C} \to \mathcal{D}$ ein Funktor mit $\mathrm{im}(F) \subseteq \mathrm{im}(i)$. Dann existiert ein Paar (F', κ) bestehend aus einem Funktor $F': \mathcal{C} \to \mathcal{D}'$ und einen natürlichen Isomorphismus $\kappa: i \circ F' \cong F$. Weiter gibt es für zwei solcher Paare (F'_1, κ_1) und (F'_2, κ_2) einen eindeutigen natürlichen Isomorphismus $\nu: F'_1 \cong F'_2$ sodass $\kappa_2 \circ i(\nu) = \kappa_1$, das heißt das Paar (F', κ) ist eindeutig bis auf eindeutigen Isomorphismus.

Lemma 0.13. Seien C, D und E Kategorien. Dann gibt es einen natürlichen Isomorphismus von Kategorien

$$\mathsf{Fun}(\mathcal{C}\times\mathcal{D},\mathcal{E})\cong\mathsf{Fun}(\mathcal{C},\mathsf{Fun}(\mathcal{D},\mathcal{E})).$$

Beweis. Klar. \Box

Definition 0.14 (Kategorienäquivalenz). Sei $F: \mathcal{C} \to \mathcal{D}$ ein Funktor. Ein Quasiinverses zu F ist ein Funktor $G: \mathcal{D} \to \mathcal{C}$ zusammen mit natürlichen Isomorphismen $\alpha: G \circ F \cong \mathrm{id}_{\mathcal{C}}$ und $\beta: F \circ G \cong \mathrm{id}_{\mathcal{D}}$ sodass

$$F(\alpha) = \beta_F \colon FGF \cong F \text{ und } G(\beta) = \alpha_G \colon GFG \cong G.$$

Falls ein Quasiinverses existiert dann nennen wir F eine Kategorienäquivalenz.

Satz 0.15. Für einen Funktor $F: \mathcal{C} \to \mathcal{D}$ sind die folgenden Bedingunen äquivalent:

- (1) F ist eine Kategorienäquivalenz.
- (2) Es existiert ein Funktor $G: \mathcal{D} \to \mathcal{C}$ mit natürlichen Isomorphismen $\alpha: G \circ F \cong \mathrm{id}_{\mathcal{C}}$ und $\beta: F \circ G \cong \mathrm{id}_{\mathcal{D}}$.
- (3) F ist volltreu und essentiell surjektiv.

Außerdem ist ein Quasiinverses zu F eindeutig bis auf eindeutigen Isomorphismus.

Beweis. 1) nach 2) ist klar. Gelte 2). Für $y \in \mathcal{D}$ ist $\beta_y^{-1} \colon y \cong F(G(y))$ also ist F essentiell surjektiv. Außerdem sind für $x, y \in \mathcal{C}$ die Diagramme

Bemerkung 0.16. Sei $F \colon \mathcal{C} \to \mathcal{D}$ ein Funktor. Dann ist äquivalent

- (1) F ist Kategorienäguivalenz
- (2) Für alle Kategroien \mathcal{E} ist F_* : Fun $(\mathcal{E},\mathcal{C}) \to \text{Fun}(\mathcal{E},\mathcal{D})$ eine Kategorienäquivalenz
- (3) Für alle Kategroien \mathcal{E} ist F^* : $\operatorname{Fun}(\mathcal{D}, \mathcal{E}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{E})$ eine Kategorienäquivalenz

0.3. Yoneda Lemma.

Satz 0.17 (Yoneda Lemma). Sei C eine lokal kleine Kategorie. Sei $F: C^{op} \to \mathsf{Set}$ ein Funktor und $x \in C$. Dann ist die Abbildung

$$\operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(-,x),F) \to F(x), \ \tau \mapsto \tau_x(\operatorname{id}_x)$$

bijektiv.

Beweis. Für $s \in F(x)$ definiere $\tau^{(s)}$: $\operatorname{Mor}_{\mathcal{C}}(-,x) \to F$ durch

$$\tau_y^{(s)} \colon \operatorname{Mor}_{\mathcal{C}}(y, x) \to F(y), \ f \mapsto F(f)(s)$$

für $y \in \mathcal{C}$.

Es gilt
$$\tau_x^{(s)}(\mathrm{id}_x) = s$$
 und $\tau_y^{(\tau_x(\mathrm{id}_x))}(f) = \tau_y(f)$. Also gilt die Aussage.

Korollar 0.18 (Yoneda-Einbettung). Sei C eine lokal kleine Kategorie. Dann ist der Funktor

$$Y_{\mathcal{C}} \colon \mathcal{C} \to \mathsf{Fun}(\mathcal{C}^{\mathrm{op}},\mathsf{Set}), \ x \mapsto \mathrm{Mor}_{\mathcal{C}}(-,x)$$

volltreu.

Beweis. Seien $x, y \in \mathcal{C}$. Zeige

$$\operatorname{Mor}_{\mathcal{C}}(x,y) \to \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(-,x),\operatorname{Mor}_{\mathcal{C}}(-,y)), f \mapsto f_*$$

ist eine Bijektion. Das ist aber genau die Inverse Abbildung aus dem Yoneda Lemma für den Funktor $F = \text{Mor}_{\mathcal{C}}(-, y)$.

Bemerkung 0.19. Es gibt eine duale Version vom Yoneda Lemma. Sei \mathcal{C} eine lokal kleine Kategorie und $F: \mathcal{C} \to \mathsf{Set}$ ein Funktor und $x \in \mathcal{C}$. Dann ist die Abbildung

$$Nat(\operatorname{Mor}_{\mathcal{C}}(x,-),F)) \to F(x), \ \tau \mapsto \tau_x(\operatorname{id}_x))$$

bijektiv. Dann ist die duale Yoneda Einbettung $Y^{\mathcal{C}} : \mathcal{C}^{\mathrm{op}} \to \mathsf{Fun}(\mathcal{C}, \mathsf{Set}), \ x \mapsto \mathrm{Mor}_{\mathcal{C}}(x, -)$ volltreu.

Definition 0.20. Sei \mathcal{C} eine lokal kleine Kategorie. Ein Funktor $F: \mathcal{C}^{op} \to \mathsf{Set}$ heißt darstellbar falls er im essentiellen Bild der Yoneda Einbettung liegt. Analog heißt ein FUnktor $F: \mathcal{C} \to \mathsf{Set}$ kodarstellbar, wenn er im essentiellen Bild von $Y^{\mathcal{C}}$ liegt.

0.4. Adjunktionen.

Definition 0.21 (Adjungiertes Objekt). Sei $G: \mathcal{D} \to \mathcal{C}$ ein Funktor und $x \in \mathcal{C}$. Ein unter G zu x linksadjungiertes Objekt ist ein Objekt $y \in \mathcal{D}$ zusammen mit einem Morphismus $\eta: x \to G(y)$ sodass für alle $y' \in \mathcal{D}$ die Abbildung

$$\operatorname{Mor}_{\mathcal{D}}(y, y') \to \operatorname{Mor}_{\mathcal{C}}(x, G(y')), f \mapsto G(f) \circ \eta$$

bijektiv ist.

Bemerkung 0.22. sei $G\mathcal{D} \to \mathcal{C}$ ein Funktor sodass \mathcal{C}, \mathcal{D} lokal kleine Kategorien sind. Dann ist ein zu x linksadjungiertes Objekt das gleiche wie ein kodarstellendes Objekt für den Funktor

$$\operatorname{Mor}_{\mathcal{C}}(x,G(-))\colon \mathcal{D}\to\operatorname{\mathsf{Set}}$$

Satz 0.23 (Adjungierter Fuktor). Sei $G: \mathcal{D} \to \mathcal{C}$ ein Funktor und sei $i: \mathcal{C}' \subseteq \mathcal{C}$ eine volle Unterkategorie, sodass alle Objekte in \mathcal{C}' unter G ein linksadjungiertes Objekt besitzen. Dann existiert ein Funktor $F: \mathcal{C}' \to \mathcal{D}$ und eine natürliche Transformation $\eta: i \to G \circ F$ sodass $(F(x)\eta_x)$ für jedes $x \in \mathcal{C}$ ein unter G zu x linksadjungiertes Objekt ist. Das Paar (F, η) ist eindeutig bis auf eindeutigen Isomorphismus. Wir nennen F, zusammen mit der natürlichen Transformation , einen partiellen links adjungierten Funktor zu G. Wenn $\mathcal{C} = \mathcal{C}'$ dann nennen wir $F: \mathcal{C} \to \mathcal{D}$ auch einfach einen linksadjungierten Funktor zu G.

Beweis. Wähle ein linksadjungiertes Objekt $(F(x), \eta_x)$ für jedes $x \in \mathcal{C}$. Für einen Morphis mus $f : x \to y$ in \mathcal{C} definiere F(f) : F(x)F(y) als das eindeutige Urbild von $\eta_y \circ f$ unter der bijektiven Abbildung

$$\operatorname{Mor}_{\mathcal{D}}(F(x), F(y)) \to \operatorname{Mor}_{\mathcal{C}}(x, G(F(y)), g \mapsto G(g) \circ \eta_x;$$

wir haben also $G(F(f)) \circ \eta_x = \eta_y \circ f$. Wir behaupten nun noch, dass diese Daten einen Funktor $F \colon \mathcal{C} \to \mathcal{D}$ definieren; danach ist es dann sofort klar, dass die η_x eine natürliche Transformation $\eta \colon i \to G \circ F$ definieren. Für ein Objekt $x \in \mathcal{C}'$ ist

$$G(\mathrm{id}_{F(x)}) \circ \eta_x = \eta_x = \eta_x \circ \mathrm{id}_x$$

und somit $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$. Weiter ist für Morphismen $f \colon x \to y$ und $g \colon y \to z$

$$G(F(g) \circ F(f)) \circ \eta_x = G(F(g)) \circ G(F(f)) \circ \eta_x$$
$$= G(F(g)) \circ \eta_y \circ f$$
$$= \eta_z \circ g \circ f$$

und somit $F(g \circ f) = F(g) \circ F(f)$. Die Eindeutigkeit von (F, η) bis auf eindeutigen Isomorphismus folgt aus der Eindeutigkeit von linksadjungierten Objekten.

Bemerkung 0.24. Sei $G: \mathcal{D} \to \mathcal{C}$ ein Funktor und sei $\mathcal{C}' \subseteq \mathcal{C}$ die volle Unterkategorie der Objekte die unter G ein linksadjungiertes Objekt besitzen. Wir nehmen außerdem an, dass \mathcal{C} und \mathcal{D} lokal klein sind. Dann ist ein partieller Linksadjungierter $F: \mathcal{C}' \to \mathcal{D}$ von G das Gleiche wie eine Faktorisierung des Funktors

$$\mathcal{C}' \to \operatorname{\mathsf{Fun}}(\mathcal{D},\operatorname{\mathsf{Set}})^{\operatorname{op}}, \ x \mapsto \operatorname{Mor}_{\mathcal{C}}(x,G(-))$$

durch die (volltreue) duale Yoneda-Einbettung

$$Y^{\mathcal{D},\mathrm{op}} \colon \mathcal{D} \to \mathsf{Fun}(\mathcal{D},\mathsf{Set})^{\mathrm{op}}.$$

In dieser Situation ist also Satz 0.23 eine Folgerung aus Satz 0.12.

Definition 0.25. Sei \mathcal{C} eine Kategorie. Wir definieren die Pfeilkategorie von \mathcal{C} als

$$Arr(\mathcal{C}) = Fun(N[1], \mathcal{C}).$$

Lemma 0.26. Sei codom: $Arr(C) \to C$ der Funktor, der $\phi: A \to B$ auf B schickt und ein kommutatives Diagramm auf den rechten Morphismus. Dann ist codom links-adjungiert zum Funktor $R: C \to Arr(C), C \mapsto (id: C \to C)$

0.5. Moduln.

Definition 0.27. Sei \mathcal{C} eine Kategorie mit Pullbacks und sei $A \in \mathcal{C}$. Ein Modul ist ein abelsches Gruppenobjekt in der Slice Kategorie $\mathcal{C}_{/A}$.

1. Mengen

Lemma 1.1 (Zornsches Lemma). Sei M eine partiell geordnete Menge, sodass jede total geordnete Teilmenge von M eine obere Schranke in M hat. Dann hat M ein maximales Element.

2. Gruppen

Satz 2.1 (Gruppenordnung). Sei G eine Gruppe und $H \subseteq G$ eine Untergruppe. Dann ist $|G| = |H| \cdot [G:H]$

Beweis. Es ist $[G:H] = |G/H| = \{aH \mid a \in G\}$ und

$$G = \bigcup_{aH \in G/H} aH$$

disjunkte Vereinigung, denn wenn $g \in G$ dann ist $g \in gH$ und $aH \cap bH = \iff aH = bH$ Es ist $|H| \neq |aH|$ für alle $a \in G$.

Korollar 2.2 (Satz von Lagrange). Es gilt $|H| \mid |G|$

Korollar 2.3. Für $a \in G$ ist $ord(a) \mid |G|$. Also $a^{|G|} = e$.

Korollar 2.4. Sei p eine Primzahl und $a \in \mathbb{Z}$ sodass $p \mid a$. Dann ist $a^{p-1} \equiv 1 \mod p$.

Beweis. Sei $G = \mathbb{F}_p^*$. Dann ist |G| = p - 1 also gilt $\bar{a}^{p-1} = 1$.

Satz 2.5 (Struktursatz endlicher abelscher Gruppen). Jede endliche abelsche Gruppe G mit |G| lässt sich schreiben als

$$|G| \cong \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z}$$

 $mit \ m_1 \mid \cdots \mid m_r$

2.1. Bahnenformel und Klassengleichung.

Definition 2.6. Sei G eine Gruppe, X eine Meng und $G \times X \to X$ eine Gruppenwirkung.

- (1) Für $x \in X$ ist $Gx = \{ax \mid a \in G\}$ die Bahn von x.
- (2) Für ist $x \in X$ ist $\operatorname{Stab}_G(x) = G_x = \{a \in G \mid ax = x\}$ der Stabilisator von x.
- (3) Die Wirkung heißt transitiv, wenn X = Gx für ein $x \in X$ ist.
- (4) $x \in X$ heißt Fixpunkt der Wirkung, wenn $\operatorname{Stab}_G(X) = G$ ist.
- (5) X^G sie die Menge der Fixpunkte von G auf X.
- (6) Die Operation heißt treu, wenn der Homomorphismus $G \to S(X)$ injektiv ist.

Bemerkung 2.7. Sei $G \times X \to X$ eine Gruppenwirkung. Dann ist $X = \coprod_{i \in I} Gx_i$ für x_i ein Vertretersystem aller Bahnen.

Lemma 2.8. Für $x \in X$ qibt es eine natürliche Bijektion

$$G/\operatorname{Stab}_G(X) \to G_x, a\operatorname{Stab}_G(X) \mapsto ax$$

Beweis. Man prüft, dass das wohldefiniert ist. Die Abbildung ist surjektiv nach Definition und wenn ax = bx ist, dann ist $a^{-1}b \in \operatorname{Stab}_G(X)$ also $a \operatorname{Stab}_G(X) = b = \operatorname{Stab}_G(X)$.

Korollar 2.9. Sei $G \times X \to X$ eine Gruppenwirkung. Dann ist

$$|Gx| = [G : \operatorname{Stab}_G(X)].$$

Satz 2.10 (Bahnengleichung). Sei $G \times X \to X$ eine Gruppenwirkung wobei X eine endliche Menge ist. Seien x_1, \ldots, x_r Verterter der Bahnen. Dann ist

$$|X| = \sum_{i=1}^{r} [G \colon \operatorname{Stab}_{G}(X_{i})].$$

Beweis. Da $X = \coprod_{i=1}^r Gx_i$ eine disjunkte Vereinigung ist, folgt

$$|X| = \sum_{i=1}^{r} |Gx_i| = \sum_{i=1}^{r} [G: \operatorname{Stab}_G(x_i)].$$

Definition 2.11. Sei G eine Gruppe. Dann ist das Zentrum von G definiert als

$$Z(G) = \{ a \in G \mid ab = ba \ \forall b \in G \}.$$

Das ist ein abelscher Normalteiler. Z(G) sind Fixpunkte der Operation

$$G \times G \to G, (a, b) \mapsto aba^{-1}.$$

Definition 2.12. Der Zentralisator von $a \in G$ ist

$$C_G(a) = \{ b \in G \mid ba = ab \}.$$

Das ist eine Untergruppe von G und $a \in Z(C_G(a))$. Es ist $a \in Z(G)$ genau dann wenn $C_G(a) = G$. Es ist $C_G(a) = \operatorname{Stab}_G(a)$ für die Wirkung $G \times G \to G$, $(a,b) \mapsto aba^{-1}$

Satz 2.13 (Klassengleichung). Sei G eine endliche Gruppe und a_1, \ldots, a_r Verteter der Konjugationsklassen von nicht-zentralen Elementen. Dann ist

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(a_i)]$$

Beweis. Das ist die Bahnengleichung für die Wirkung $G \times G \to G$, $(a,b) \mapsto aba^{-1}$, denn wenn x_i ein Vertreter einer Bahn mit zentralen Element, dann ist $\operatorname{Stab}_G(x_i) = C_G(x_i) = G$

Definition 2.14. Sei p eine Primzahl. Eine p-Gruppe ist eine Gruppe G mit $|G|=p^r$ für $r\geq 0$.

Satz 2.15. Sei $G \times X \to X$ eine Wirkung einer p-Gruppe auf eine endliche Menge X. Dann ist

$$|X| \equiv |X^G| \mod p.$$

Beweis. Nach Satz 2.10 ist

$$|X| = |X^G| + \sum_{i=1}^r [G : \operatorname{Stab}_G(x_i)]$$

wobei x_i Vetreter von Bahnen mit mindestens zwei Elementen sind. Da G eine p-Gruppe ist, gilt $p \mid [G: \operatorname{Stab}_G(x_i)] = |X| - |X^G|$.

Satz 2.16. Eine nicht-triviale p-Gruppe G hat ein nicht-triviales Zentrum.

Beweis. Betrachte Wirkung $G \times G \to G, (a,b) \mapsto aba-1.$ Nach Satz 2.15 gilt $|G| = |Z(G)| \mod p$. Also $|Z(G)| \ge p$.

Beweis. Das ist der Hauptsatz über endlich erzeugte Moduln über Hauptidealringen zusammen mit dem Fakt, dass endliche Gruppen Torsionsmoduln sind. \Box

2.2. Sylowsätze. Sei G eine endliche Gruppe und p eine Primzahl.

Definition 2.17. Eine *p*-Sylowgruppe von G ist eine *p*-Gruppe $P \subseteq G$ mit $p \not\mid [G:P]$. Das heißt wenn $|G| = p^r \cdot m$ mit $p \not\mid m$ dann ist $P \subseteq G$ eine *p*-Sylowgruppe von G genau dann wenn $|P| = p^r$.

Lemma 2.18. Sei G eine endliche Gruppe und p eine Primzahl mit $p \mid |G|$. Dann gibt es ein $a \in G$ mit $\operatorname{ord}(a) = p$.

Beweis. $\mathbb{Z}/p\mathbb{Z}$ operiert auf der Menge $M=\{(g_1,\ldots,g_p)\in G^p\mid g_1\cdot g_2\cdot \cdots\cdot g_p=e\}$ durch $k\cdot (g_1,\ldots,g_p)=(g_{1+k\mod p},\ldots,g_{p+k\mod p})$. Es ist $|M|=|G|^{p-1}$. Nach Satz 2.15 ist

$$0 \equiv |G|^{p-1} \equiv |M^{\mathbb{Z}/p\mathbb{Z}}| \mod p$$

. Das heißt es gibt Fixpunkt (g_1, \ldots, g_p) wobei $g_i \neq e$. Dann ist aber $g_i = g_j$ für alle i, j also ist dieses Tupel (g, \ldots, g) für ein $g \in G$. Dann ist $g^p = e$.

Korollar 2.19. Sei G eine p-Gruppe, $|G| = p^n$. Dann gibt es für jedes $k \le n$ eine normale Untergruppe $H \subseteq G$ der Ordnung p^k .

Beweis. Da $|Z(G)| | p^n$ und Z(G) nach Satz 2.16 nicht trivial ist, gibt es nach Lemma 2.18 ein $a \in Z(G)$ von der Ordnung p. Wenn k = 1 dann ist $N = \langle a \rangle$ die Lösung denn N ist normal. Wenn k > 1 ist, dann hat G/N hat Ordnung p^{n-1} . Nach Induktion hat $\bar{G} = G/N$ eine normale Untergruppe \bar{H} der Ordnung p^{k-1} . Sei $H = \pi^{-1}\bar{H}$ wobei $\pi : G \to N$ die Projektion ist. Dann ist $H/N \cong \bar{H}$ also ist H normal von Ordnung p^{k-1} .

Satz 2.20 (1. Sylowsatz). G hat eine p-Sylowgruppe.

Beweis. Sei $|G| = p^r \cdot m$ mit $p \mid m$. Sei ohne Einschränkung $r \geq 1$. Angenommen $p \mid |Z(G)|$ wobei Z(G) das Zentrum von G ist. Wähle $a \in Z(G)$ mit $\operatorname{ord}(a) = p$. Dann ist $N = \langle a \rangle \subseteq G$ ein Normalteiler, da a zentral ist. Es ist $|G/N| = p^{r-1} \cdot m$ und nach Induktion gibt es eine p-Sylowgruppe $Q \subseteq G/N$. Sei $P = \pi^{-1}(Q)$ wobei $\pi \colon G \to G/N$ die Projektion ist. Dann ist

 $P/N \cong Q$ also $|P| = p^r$. Somit ist $P \subseteq G$ eine p-Sylwogruppe. Angenommen p|/|Z(G)|. Dann gibt es die Klassengleichung

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G: C_G(a_i)].$$

Also gibt es ein i sodass $p \mid / [G: C_G(a_i)]$. Da

$$|G| = |C_G(a_i)| \cdot [G \colon C_G(a_i)]$$

ist $p^r \mid |C_G(a_i)|$. Da a_i nicht zentral ist, ist $C_G(a_i) \neq G$. Nach Induktion gibt es eine P-Sylowgruppe $P \subseteq C_G(a_i)$.

Satz 2.21 (2. Sylowsatz). Sei $P \subseteq G$ eine P-Sylowgruppe und $H \subseteq G$ eine p-Gruppe. Dann gibt es ein $a \in G$ sodass $aHa^{-1} \subseteq P$.

Beweis. H operiert auf G/P duch $h \cdot (aP) = haP$. Nach Satz 2.15 ist

$$|G/P| \equiv |(G/P)^H| \mod p.$$

Also ist $p \mid / \mid (G/P)^H \mid$ und somit gibt es einen Fixpunkt aP. Das heißt HaP = aP und somit $a^{-1}HaP = P$ also $a^{-1}Ha \subseteq P$.

Korollar 2.22. Wenn H eine weitere p-Sylowgruppe ist, dann folgt $aHa^{-1} = P$ wegen Anzahl der Elemente. somit sind alle p-Sylowgruppen konjugiert.

Bemerkung 2.23. Eine *p*-Sylowgruppe $P \subseteq G$ ist normal $\iff P$ die einzige *p*-Sylowgruppe ist.

Satz 2.24 (3. Sylowsatz). Sei $G = p^r \cdot m$ mit $p \mid /m$. Sei s die Anzahl der p-Sylowgruppen von G. Dann gilt

$$(1) s \equiv 1 \mod p$$

$$(2) s \mid m$$

Beweis. Zeige 1). Sei P eine p-sylowgruppe. P operiert auf der Menge X der p-Sylowgruppen von G durch Konjugation $P \times X \to X$, $(a,Q) \mapsto aQa^{-1}$. Bahnengleichung liefert

$$|X| = \sum_{i=1}^{r} [P : \operatorname{Stab}_{P}(P_{i})]$$

wobei P_i Verteter der Bahnen sind. Sei $P = P_1$. Dann ist $[P : \operatorname{Stab}_P(P_1)] = 1$ und für $i \geq 2$ gilt, dass P_i normal ist in $H_i = \{a \in G \mid aP_ia^{-1} = P_i\} = \operatorname{Stab}_G(P_i)$. Also ist P_i die einzige p-Sylowgruppe von H_i . Also ist $P \subsetneq H_i$ und damit $P \neq \operatorname{Stab}_P(P_i)$ also $p \mid [P : \operatorname{Stab}_P(P_i)]$. Damit ist

$$S = |X| = 1 + \sum_{i>2}^{k} [P \colon \operatorname{Stab}_{G}(P_{i})] \equiv 1 \mod p.$$

Zeige 2). Sei X wie oben. Wegen 2. Sylowsatz operiert G transitiv auf X durch Konjugation. Sei $H = \operatorname{Stab}_G(P)$ der Normalisator von P. Es ist $P \subseteq H$ und somit $p^r \mid H$. Es ist $|H| = p^r \cdot \ell$ mit $p \mid \ell$. Nach ist Dann ist $s = |X| = \operatorname{Bahn}(P) = |G|/|H| = \frac{m}{\ell}$. Also ist s ein Teiler von m.

Satz 2.25. Seien p, q Primzahlen und p < q und $p \mid /q - 1$. Dann ist jede Gruppe der Ordnung $p \cdot q$ zyklisch.

Beweis. Sei s die Anzahl der p-Sylwogruppen und t die Anzahl der q-Sylowgruppen. Nach 3. Sylowsatz gilt s=t=1. Seien also P eine p-Sylowgruppe und Q eine q-Sylowgruppen. Es ist $P\cap Q=\{e\}$ denn die Ordnung von $P\cap Q$ teilt p und q nach Korollar 2.3. Also gilt für $a\in P,b\in Q$ dass ab=ba, denn $b^{-1}aba^{-1}\in P\cap Q$ wegen Normalität von P und Q. Es sind P,Q zyklisch. Seien also $a\in P$ und $b\in Q$ Erzeuger. Es ist

$$(ab)^n = a^n b^n = e \iff a^n = b^{-n} \iff a^n = e = b^n \iff pq \mid n$$

Also ist ord(ab) = pq = |G| und somit $G = \langle ab \rangle$.

Lemma 2.26. Jede endliche abelsche Gruppe ist isomorph zum Produkt ihrer Sylowgruppen.

Beweis. Sei $|G| = \prod_{i=1}^r p_i^{e_i}$ wobei p_i verschiedene Primzahlen sind und $e_i \ge 1$. Da G abelsch ist, sind alle Untergruppen normal somit gibt es genau eine p_i -Sylowgruppe $P_i \subseteq G$. Die Abbildung

$$f: \prod_{i=1}^r P_i \to G, \ (a_1, \dots, a_r) \mapsto a_1 \cdot \dots \cdot a_r$$

ist Gruppenhomomorphismus. Wegen der Gruppenordnung ist f bijektiv wenn f injektiv ist. Angenommen $a_i \in P_i$ sodass $a_1 \cdots a_r = e$. Es ist $a_1 = (a_2 \cdots a_r)^{-1}$ und $\operatorname{ord}(a_1) = \operatorname{ord}(a_2 \cdots a_r) \mid \prod_{i=2}^r p_i^{e_i}$. Somit $\operatorname{ord}(a_1) \mid \operatorname{ggT}(p_1^{e_1}, \prod_{i=2}^r p_i^{e_i}) = 1$. Also $e_1 = e$ und genauso $a_i = e$ für alle i. Also ist f injektiv.

Lemma 2.27 (Chinesischer Restsatz). Seien $n, m \in \mathbb{Z}$ und $d = \operatorname{ggT}(n, m)$ und $k = \operatorname{kgV}(n, m)$. Dann ist $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/k\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z}$.

Beweis. Sei xn + ym = d für $x, y \in \mathbb{Z}$. Definiere

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}, (a,b) \mapsto (a-b\frac{xn}{d}+n\mathbb{Z}, a+b\frac{ym}{d})+m\mathbb{Z}.$$

Angenommen f(a,b) = (0,0). Dann ist

$$b\frac{xn}{d} \equiv a \mod n$$

und

$$-b\frac{ym}{d} \equiv a \mod m.$$

Also gilt

$$b\frac{xn}{d} \equiv -b\frac{ym}{d} \mod d$$

und somit

$$b(\frac{xn}{d} + \frac{ym}{d}) \equiv 0 \mod d.$$

Da

$$\frac{xn}{d} + \frac{ym}{d} \equiv 1 \mod d$$

gilt, ist

$$b \equiv 0 \mod d$$
.

Sei also $b = s \cdot d$. Dann ist

$$a \equiv \frac{xn}{d} \cdot b = xns \equiv 0 \mod n$$

und analog $a \equiv 0 \mod n$. Also ist $a \equiv 0 \mod k$. Das zeigt $\ker(f) = k\mathbb{Z} \times d\mathbb{Z}$ und somit ist $\bar{f} \colon \mathbb{Z}/k\mathbb{Z} \times \mathbb{Z}/d\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ injektiv und damit surjektiv wegen gleicher Anzahl der Elemente.

2.3. Semidirekte Produkte.

Definition 2.28. Sei G eine Gruppe und $N, H \subseteq G$ Untergruppen sodass N normal ist und $H \cap N = \{e\}$ und G = NH. Dannn heißt G das innere semidirekte Produkt von N und H.

Bemerkung 2.29. Wenn G das semidirekte Produkt von N und H ist, dann ist die Abbildung $N \times H \to G$, $(n,h) \mapsto n \cdot h$ bijektiv. Das Verleiht $N \times H$ mit der Gruppenstruktur $(n,h) \cdot (n',h') = (n \cdot hn'h^{-1},h \cdot h')$. Das heißt wenn

$$\alpha \colon H \to \operatorname{Aut}(N), \ \alpha(h) = (N \to N, n \mapsto hn'h^{-1})$$

dann ist $(n,h) \cdot (n',h') = (n \cdot \alpha(h)(n'),hh')$

Beweis. Wenn nh = n'h' dann ist $n^{-1}n = h'^{-1} \in N \cap H = \{e\}.$

Definition 2.30. Seien N, H Gruppen und $\alpha: H \to \operatorname{Aut}(N)$ ein Gruppenhomomorphismus. Definiere $N \rtimes H = N \rtimes_{\alpha} H$ als Menge $N \times H$ und Gruppenstuktur $(n,h)(n',h') = (n\alpha(h)(n'),hh')$. Das ist eine Gruppe. (Z.B. ist $(n,h)^{-1} = (\alpha(h^{-1})(n^{-1}),h^{-1})$). $N \rtimes_{\alpha} H$ heißt semidirektes Produkt von N und H bezüglich α . Es ist $N \subseteq N \times H$, $n \mapsto (n, e)$ und $H \subseteq N \times H$, $h \mapsto (e, h)$.

Lemma 2.31. $N \subseteq N \rtimes H = G$ ist normale Untergruppe, G = NH und $N \cap H = \{e\}$.

Beweis. Es sei $\tau=(\star,g)\in G$. Dann ist $\tau^{-1}=(\star,g^{-1})$. Es ist $\tau(n,e)\tau^{-1}=\tau\cdot(\star,g^{-1})=(\star,e)\in N$ also ist N normal. Sei $\tau = (n, h) \in G$. Dann ist $(n, e) \cdot (e, h) = \tau$.

Definition 2.32. Sei GroupActions die Kategorie mit Objekten (H, N, α) wobei H, N Gruppen sind und $\alpha \colon H \to \operatorname{Aut}(N)$ ein Gruppenhomomorphismus ist. Morphismen

$$(H, N, \alpha) \rightarrow (H', N', \alpha')$$

in GroupActions sind (f_H, f_N) wobei $f_H: H \to H'$ und $f_N: N \to N'$ H-equivariante Gruppenhomomorphismen sind. Das heißt $f_N(\alpha(h)(n)) = \alpha'(f_H(h))(f_N(n))$ for all $h \in H$ and $n \in N$.

Lemma 2.33. Sei Arr(Grp) die ?? von Grp. Der

$$R: \mathsf{Arr}(\mathsf{Grp}) \to \mathsf{GroupActions}, \ (\phi: H' \to N') \mapsto (H', N', \alpha')$$

wobei α' die Konjugation in N ist, das heißt $\alpha'(h')(n') = \phi(h')n'\phi(h')^{-1}$ für alle $h' \in H'$ und $n' \in N'$.

Der Funktor

$$L: \mathsf{GroupActions} \to \mathsf{Arr}(\mathsf{Grp}), (H, N, \alpha) \mapsto (H \subseteq N \rtimes_{\alpha} H)$$

Beweis. Sei $H \xrightarrow{i_H} N \rtimes_{\alpha} H$ ein kommutatives Diagramm von Gruppen. Definiere $f_N = i_N \circ f_{N \rtimes H} \colon N \to N'$ $\downarrow f_H \qquad \downarrow f_{N \rtimes H} \qquad \downarrow f_{N \rtimes H}$ $H' \xrightarrow{\phi} N'$ und sei (H' N')

$$\downarrow^{f_H} \qquad \downarrow^{f_{N \times 1}}$$

$$H' \xrightarrow{\phi} N'$$

und sei $(H', N', \alpha') = R(\phi)$. Dann ist

$$(f_H, f_{N \rtimes H} \circ i_N) \colon (H, N, \alpha) \to (H', N', \alpha')$$

ein Morphismus in GroupActions, denn

$$\alpha'(f_H(h))(f_{N \rtimes H}(n, e)) = f_{N \rtimes H}((e, h) \cdot (n, e) \cdot (e, h)^{-1})$$

und da

$$(e,h)(n,e)(e,h)^{-1} = (\alpha(h)(n),h)(e,h^{-1}) = (\alpha(h)(n),e)$$

ist

$$\alpha'(f_H(h))(f_N(n)) = f_N(\alpha(h)(n))$$

für alle $h \in H$ und $N \in N$.

Wenn andersrum $\phi \colon H' \to N'$ Gruppenhomomorphismus ist und

$$(f_H, f_N) \colon (H, N, \alpha) \to R(\phi) = (H', N', \alpha')$$

ein Morphismus in GroupActions ist, dann definiere $f_{N\rtimes H}\colon N\rtimes_{\alpha}H\to N'$ durch

$$f_{N \rtimes H}(n,h) = f_N(n)\phi(f_H(h)).$$

Man prüft dass das folgende Diagramm kommutiert, das heißt wir haben einen Morphismus in

$$H \xrightarrow{i_H} N \rtimes_{\alpha} H$$
 Arr (Grp) :
$$\downarrow^{f_H} \qquad \downarrow^{f_{N\rtimes H}}$$
 Man prüft das diese Zuordnungen einen natürlichen Isomorphis-
$$H' \xrightarrow{\phi} N'$$

mus der Hom-Funktoren definieren.

Lemma 2.34. Sei codom: $Arr(Grp) \rightarrow Grp$ der Codomain Funktor aus Lemma 0.26 mit Rechtadjungiertem $R': Grp \rightarrow Arr(Grp)$. Seien L, R wie in Lemma 2.33. Dann ist

$$\operatorname{codom} \circ L \colon \mathsf{GroupActions} \to \mathsf{Grp}, \ (H, N, \alpha) \mapsto N \rtimes_{\alpha} H$$

linksadjungiert zu

$$R \circ R' \colon \mathsf{Grp} \to \mathsf{GroupActions}, \ G \mapsto (G, G, \alpha')$$

wobei $\alpha'(h)(g) = hgh^{-1}$ für alle $h, g \in G$.

Beweis. Klar.
$$\Box$$

2.4. Einfache und auflösbare Gruppen. Sei G eine Gruppe.

Definition 2.35.

(1) Eine Normalreihe in G ist eine Folge

$$\{e\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$$

sodass $G_i \subseteq G$ eine normale Untergruppe ist.

- (2) Eine abelsche Normalreihe ist eine Normalreihe sodass G_i/G_{i-1} abelsch ist für alle i.
- (3) G ist auflösbar, wenn G eine abelsche Normalreihe hat.

Beispiel 2.36. Wenn G abelsch ist, dann ist G auflösbar denn $G_0 = \{e\} \subseteq G_1 = G$ ist abelsche Normalreihe.

Lemma 2.37. Sei $H \subseteq G$ normal. Es gilt

H auflösbar und G/H auflösbar $\Longrightarrow G$ auflösbar

Beweis. Sei

$$\{e\} = H_0 \subseteq H_1 \subseteq \cdots \subseteq H_n = H$$

eine abelsche Normalreihe und

$$\{e\} = \bar{G}_n \subseteq \bar{G}_{n+1} \subseteq \cdots \subseteq \bar{G}_m = G/H$$

eine abelsche Normalreihe. Sei $\pi \colon G \to G/H$ Projektion und setze $G_i = H_i$ für $0 \le i \le n$ und $G_i = \pi^{-1}\bar{G}_i$ für $n \le i \le n$. Dann bilden die G_i eine abelsche Normalreihe.

Satz 2.38. Seien p < q Primzahlen. Jede Gruppe der Ordnung $p \cdot q$ ist auflösbar.

Beweis. Sei s die Anzahl der q-Sylowgrupen. Dann ist $s \equiv 1 \mod q$ und $s \mid p$. Also ist s = 1 denn p < q. Somit ist eine q-Sylowgruppe $Q \subseteq G$ normal und $G/Q \cong \mathbb{Z}/p\mathbb{Z}$ und $Q \cong \mathbb{Z}/q\mathbb{Z}$. Dann ist $\{e\} \subseteq Q \subseteq G$ eine abelsche Normalreihe.

Satz 2.39. Jede p-Gruppe G ist auflösbar

Beweis. Wenn $G \neq \{e\}$ ist, dann ist $Z(G) \neq \{e\}$. Z(G) ist abelscher Normalteiler und somit auflösbar. Nach Induktion ist G/Z(G) auflösbar. Nach Lemma 2.37 folgt die Aussage.

Definition 2.40. Sei G eine Gruppe. Der Kommutatot von $a, b \in G$ ist $aba^{-1}b^{-1} = [a, b]$. Die Kommutatorgruppe oder derigierte Gruppe von G ist $D(G) = [G, G] = \langle \{[a, b] \mid a, b \in G\} \rangle$. Die Abelisierung von G ist $G^{ab} = G/D(G)$.

Lemma 2.41. D(G) ist normaler Untergruppe und G^{ab} ist abelsch.

Beweis. Klar, Rechnung
$$\Box$$

Satz 2.42 (Universelle Eigenschaft der Abelisierung). Abelisierung wird zu einem Funktor $(-)^{ab}$: Gr \to An der linksadjungiert ist zum Vergiss-Funktor U: An \to Grp

Beweis. Sei $f: G \to U(H)$ Gruppenhomomorphismus. Da U(H) abelsch ist, ist D(G) im Kern von f. Das induziert also $\bar{f}: G/D(G) \to H$.

Definition 2.43. Sei
$$D^{n}(G) = D(D^{n-1}(G))$$
 und $D^{0}(G) = G$.

Bemerkung 2.44. Wenn $G = G_0 \supseteq G_1 \supseteq \ldots$ abelsche Normalreihe ist, dann gilt $D^n(G) \subseteq G_n$ für alle n.

Beweis. Da G_n/G_{n+1} abelsch ist, ist $D(G_n) \subseteq G_{n+1}$. Damit folgt die Aussage per Induktion. \square

Satz 2.45. G ist auflösbar $\iff D^n(G) = \{e\}$ für ein $n \in \mathbb{N}$.

Beweis. Wenn G auflösbar ist, dann ist $G = G_0 \supseteq \cdots \supseteq G_n = \{e\}$ und somit $D^n(G) \subseteq \{e\}$. Wenn $D^n(G) = \{e\}$, dann ist $G \supseteq D(G) \supseteq \cdots \supseteq D^n(G)$ eine abelsche Normalreihe.

Beispiel 2.46. S_3 ist auflösbar, denn für $p = \langle (1,2,3) \rangle \subseteq S_3$ ist $G/P \cong \mathbb{Z}/2\mathbb{Z}$ und somit $\{e\}, P, S_3$ eine abelsche Normalreihe. Es gibt surjektiven Homomorphismus $\psi \colon S_4 \to S_3$ mit $\ker(\psi) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Das ist abelsch und da $S_4/\ker(\psi) = S_3$ auflösbar ist, ist S_4 auflösbar.

Satz 2.47. A_n ist nicht auflösbar für $n \geq 5$.

Beweis. Es ist

$$[(1,2,3),(3,4,5)] = (1,4,3).$$

Somit enthält $D(A_n)$ alle 3-Zykel, also $D(A_n) = A_n$ und $D^m(A_n) \neq \{e\}$ für alle m.

Definition 2.48. Eine Gruppe G heißt einfach, wenn $G \neq \{e\}$ und G keine Normalteler außer $\{e\}$ und G hat.

Bemerkung 2.49. Wenn G abelsch und einfach ist, dann ist $G \cong \mathbb{Z}/p\mathbb{Z}$ für eine Primzahl p.

Beweis. Es gibt $a \in G$ sodas $\operatorname{ord}(a) = p$ prim ist. Sei $H = \langle a \rangle \subseteq G$. Dann ist H normal und da $H \neq \{e\}$ ist H = G.

Bemerkung 2.50. Wenn G einfach ist und nicht abelsch, dann ist G nicht auflösbar.

Bemerkung 2.51. In A_n mit $n \geq 5$ sind alle 3-Zykel konjugiert. Denn sei $\tau_1 = (a \ b \ c)$ und $\tau_2 = (1 \ 2 \ 3)$. Sei $\sigma(1) = a, \sigma(2) = b, \sigma(3) = c$ und setzte σ fort zu $\sigma \in A_n$. Dann ist $\sigma \tau_2 \sigma^{-1} = \tau_1$.

Satz 2.52. Für $n \geq 5$ ist A_n einfach.

Beweis. Sei $N \subseteq A_n$ normale Untergruppe und $N \neq \{e\}$. Sei $\sigma \in N$ sodass die Anzahl der Fixpunkte von σ maximal ist und $\sigma \neq e$. Behauptung: Alle Zykel in der Zykeldarstellung von σ haben die gleiche Länge d. Denn wenn Längen m < d vorkommen, dann hat σ^m mehr Fixpunkte und $\sigma^m \neq e$. Behauptung: σ ist ein 3-Zykel. Dann enthält N als normale Untergruppe alle 3-Zykel, somit $N = A_n$. Sei $\sigma = (a \ b \ c \dots)(\dots) \dots$ Wenn $d \geq 3$ bilde $s = (\tau \sigma \tau^{-1})\sigma^{-1}$ für $\tau = (a \ b)(d \ e)$. Dann ist $s = (c \ d \ e)$ ein 3-Zykel. Wegen Maximalität ist dann σ dieser 3-Zykel. Wenn d = 2 dann ist $\sigma = (a \ b)(c \ d) \dots = \sigma^{-1}$. Sei $\tau = (b \ c)(e \ f)$. Dann ist $\tau \sigma \tau^{-1} \sigma^{-1} = (a \ d)(b \ c)$. Wegen der Maximalität von σ ist $\sigma = (a \ b)(c \ d)$ Dann ist aber für $\tau = (d \ e)(a \ b)$ der Folgende 3-Zykel $\tau \sigma \tau^{-1} \sigma^{-1} = (c \ d \ e)$ was ein Widerspruch zur Maximalität ist.

Satz 2.53 (Burnside 1911). Jede endliche Gruppe der Ordnung p^aq^b wobei p,q Primzahlen sind ist auflösbar.

Satz 2.54 (Feit-Thomson 1963). Jede Gruppe ungerader Ordnung ist auflösbar.

3. Kommutative Algebra

Definition 3.1. testtest hallo Ein Ring R heißt Integritätsbereich (oder nullteilerfrei), wenn $R \neq 0$ und $ab = 0 \implies a = 0$ oder $b = 0 \ \forall a, b \in R$.

Lemma 3.2. Sei R ein kommutativer Ring.

- (1) Ein Idea $I \subseteq R$ ist ein Primideal $\iff R/I$ ist Integritätsbereich.
- (2) R ist ein Körper \iff R hat genau zwei Ideale $\{0\}$ und R.
- (3) Ein Ideal $I \subseteq R$ ist maximal $\iff R/I$ ist ein Körper.

Beweis. 1) ist klar. Zeige 2). Wenn R ein Körper ist und $I \subseteq \{0\}$ ein Ideal, dann gibt es $x \in I$ mit $x \neq 0$. Dann ist $1 = x^{-1}x \in I$, also ist I = R. Andersrum zeige, dass $x \neq 0$ invertierbar ist. Es ist R = (x) also gibt es Inverses. Zeige 3). $I \subseteq R$ ist maximal $\iff R/I$ hat genau zwei Ideale $\{0\}, R/I \iff R/I$ ist Körper.

Lemma 3.3. Seien R_1, R_2 Ringe und $R = R_1 \times R_2$. Jedes Ideal von R hat die Form $I = I_1 \times I_2$ wobei $I_1 \subseteq R_1$ und $I_2 \subseteq R_2$ Ideale sind. I ist genau dann prim wenn entweder I_1 prim und $I_2 = R_2$ oder $I_1 = R_1$ und I_2 prim ist. Folglich ist $\operatorname{Spec}(R) = \operatorname{Spec}(R_1) \coprod \operatorname{Spec}(R_2)$.

Beweis. Die erste Behauptung ist klar. Es ist $R/I \cong R_1/I_1 \times R_2/I_2$ und I ist prim, genau dann wenn R/I nullteilerfrei ist. Da $(a,0) \cdot (0,b) = (0,0)$ ist, ist das genau dann der Fall, wenn eines der $I_j = R_j$ ist und das andere prim.

Satz 3.4. Sei R ein kommutativer Ring, $R \neq 0$. Dann hat R ein maximales Ideal.

Beweis. Sei M die Menge aller Ideale $I \subseteq R$ mit $I \neq R$ und sei $M' \subseteq M$ eine totale geordnete Teilmenge. Ohne Einschränkung ist $(0) \in M'$. Sei

$$J = \bigcup_{I \in M'} I.$$

Dann ist J ein Ideal mit $1 \notin J$ also $J \in M$. Das ist eine obere Schranke für M'. Also hat M ein maximales Element nach Lemma von Zorn.

Definition 3.5. Sei R ein kommutativer Ring. Sei $n \in \mathbb{N}$ gegeben sodass $(n) = \ker(\mathbb{Z} \to R)$. Dann heißt n die Charakteristik von R. Wenn R nullteilerfrei ist, dann ist n = 0 oder n eine Primzahl.

3.1. Euklidische Ringe, Hauptidealringe und faktorielle Ringe.

Definition 3.6. Sei R ein Ring. R ist Euklidisch wenn R ein Integritätsbereich ist und es eine Abbildung $\delta \colon R \setminus \{0\} \to \mathbb{N}$ gibt sodass für $a, q \in R$ mit $q \neq 0$ es $b, c \in R$ gibt mit a = bq + c und $\delta(x) < \delta(q)$ oder c = 0.

Definition 3.7. Ein Ring R ist ein Hauptidealring, wenn R ein Integritätsbereich ist und jedes Ideal ein Hauptideal ist.

Satz 3.8. Jeder Euklidische Ring ist ein Hauptidealring.

Beweis. Sei $I \subseteq R$ ein Ideal, $I \neq \{0\}$. wähle $q \in I$ sodass $\delta(q)$ minimal ist. Dann ist I = (q). \square

Beispiel 3.9. $R = \mathbb{Z}[X]$ ist kein Hauptidealring, also auch nicht Euklidisch. Denn (2, X) ist kein Hauptideal.

Definition 3.10. Sei R nullteilerfrei und $a \in R$. Wir nennen $a \in R$ Primelement, wenn $\{0\} \subsetneq (a) \subsetneq R$ ist und wenn für alle $b, c \in R$ mit $a \mid bc$ folgt, dass $a \mid b$ oder $a \mid c$. Wir nenne $a \in R$ irreduzibel, wenn $\{0\} \subsetneq (a) \subsetneq R$ und für alle $b, c \in R$ folgt, dass $b \in R^*$ oder $c \in R^*$.

Bemerkung 3.11. Es gilt $a \in R$ prim $\implies a \in R$ irreduzibel und wenn $\{0\} \subsetneq (a)$ ist, dann ist a prim $\iff (a)$ Primideal ist.

Beweis. Sei $a \in R$ prim und a = bc für $b, c \in R$. Dann ist $a \mid b$ oder $a \mid c$. Wenn $a \mid b$ dann ist b = ad = bcd. Da $b \neq 0$ und R nullteilerfrei ist, ist 1 = cd und $c \in R^*$.

Lemma 3.12. Sei R nullteilerfrei und $a \in R$ mit $a \neq 0$. Es gilt

a ist irreduzibel \iff (a) ist maximal unter Hauptidealen $\neq R$.

Beweis. Das ist eine direkte Übersetzung der Eigenschaft irreduzibel zu sein.

Definition 3.13. Ein faktorieller Ring R ist ein Integritätsbereich R, sodass jedes $a \in R$ mit $\{0\} \subseteq (a) \subseteq R$ eine Darstellung $a = p_1 \cdots p_r$ hat mit $r \in \mathbb{N}$ und p_i Primelementen. Die Darstellung ist automatisch eindeutig bis auf Reihenfolge und Assoziertheit.

Lemma 3.14. Sei R ein Integritätsbereich.

R ist faktoriell \iff Jedes irreduzible Element von R ist prim und Jedes $a \in R$ mit $\{0\} \subsetneq (a) \subsetneq R$ ist Produkt von irreduziblen Elementen

Beweis. Sei R faktoriell und $a \in R$ irreduzibel. Sei $a = p_1 \cdots p_r$ mit Primelementen p_i . Da a irreduzibel ist, ist $p_1 \in R^*$ oder $p_2 \cdots p_r \in R^*$. Da beides nicht der Fall ist, muss $a = p_1$ prim sein.

Satz 3.15. Jeder Hauptidealring R ist faktoriell. Für $a \in R$ prim ist R/(a) ein Körper.

Beweis. Zeige: Jedes irreduzible $a \in R$ ist prim. Es gilt

a ist irreduzibel \iff (a) ist maximal unter echten Hauptidealen

 $\stackrel{R \text{ HIR}}{\Longleftrightarrow} (a)$ ist maximales Ideal

 $\iff R/(a)$ ist Körper

 $\implies a \text{ ist Primelement.}$

Sei $n=p_1^{e_1}\cdots p_s^{e_s}$ die Primfaktorzerlegung in paarweise verschiedene Primzahlen. Dann ist nach ?? $\mathbb{Z}/n\mathbb{Z}\cong\prod\mathbb{Z}/p_i^{e_i}\mathbb{Z}$ und nach Lemma 3.3 haben maximale Ideale die Form $\mathbb{Z}/p_1^{e_1}\mathbb{Z}\times\cdots\times\mathfrak{m}_i\times\cdots\times\mathbb{Z}/p_s^{e_s}\mathbb{Z}$ für ein maximales Ideal $\mathfrak{m}_i\subseteq\mathbb{Z}/p_i^{e_i}\mathbb{Z}$. Da Primideale von $\mathbb{Z}/p_i^{e_i}\mathbb{Z}$ den Primidealen in \mathbb{Z} entsprechen, die $(p_i^{e_i})$ enthalten, folgt, das der Ring lokal ist. also folgt die Aussage.

Lemma 3.16. Es Sei R ein Ring und $I, J \subseteq R$ beliebige Ideale und $\mathfrak{p} \subseteq R$ ein Primideal. Dann gilt $IJ \subseteq \mathfrak{p} \implies I \subseteq \mathfrak{p}$ oder $J \subseteq \mathfrak{p}$

Beweis. Wenn $I \subseteq \mathfrak{p}$ dann gibt es $x \in I \setminus \mathfrak{p}$. Für $y \in J$ gilt dann $xy \in \mathfrak{p}$ also $y \in \mathfrak{p}$

Korollar 3.17. Für ein maximales Ideal $\mathfrak{m} \subseteq R$ hat der Ring R/\mathfrak{m}^n genau ein Primideal und ist insbesondere lokal.

Beweis. Primideale in R/\mathfrak{m} entsprechen den Primidealen \mathfrak{m}' in R mit $\mathfrak{m}^n \subseteq \mathfrak{m}'$. Nach Lemma 3.16 folgt $\mathfrak{m} \subseteq \mathfrak{m}'$ also $\mathfrak{m} = \mathfrak{m}'$.

Beispiel 3.18. Es sei R der Ring der stetigen Funktionen $f: \mathbb{R} \to \mathbb{R}$. Für jedes $x \in \mathbb{R}$ ist $\mathfrak{m}_x = \{f \in R \mid f(x) = 0\}$ ein maximales Ideal von R, denn betrachte Abbildung $eval_x \colon R \to \mathbb{R}, f \mapsto f(x)$. Das ist surjektiv mit $\ker(eval_x) = \mathfrak{m}_x$. da \mathbb{R} ein Körper ist, ist folgt die Behauptung. Weiter ist die Menge I aller $f \in R$ mit kompaktem Träger ein echtes Ideal von R, das in keinem \mathfrak{m}_x enthalten ist, denn definiere

$$f_x \colon \mathbb{R} \to \mathbb{R}, \ y \mapsto \begin{cases} y - (x - 1), & y \in [x - 1, x] \\ -y + x + 1, & y \in [x, x + 1] \\ 0, & \text{sonst} \end{cases}$$

. Dann ist f_x stetig mit kompaktem Träger K = [x-1, x+1] also ist $f_x \in I$. Da aber $f_x(x) = 1$ folgt $I \subseteq \mathfrak{m}_x$. Also hat R maximale Ideale die nicht von der Form \mathfrak{m}_x sind.

Definition 3.19. Sei R ein Ring und $S \subseteq R$ eine multiplikative Menge, das heißt $1 \in S$ und $s, s' \in S$ impliziert $ss' \in S$. Definiere Äquivalenzrelation auf $R \times S$ durch

$$(a,s) \sim (a',s') \iff \exists t \in S \colon (as'-a's)t = 0$$

. Notation: $R_S=S^{-1}R=(R\times S)/\sim$ und schreibe $\frac{a}{s}$ für die Äquivalenzklasse [(a,s)]. $S^{-1}R$ wird Ring durch

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$$

 $S^{-1}R$ heißt Lokalisierung von R mit S. Es gibt Ringhomomorphismus $\tau: R \to S^{-1}R, a \mapsto \frac{a}{1}$. Es ist $\ker(\tau) = \{a \in R \mid \exists s \in S \colon as = 0\}$ und $S^{-1}R \neq 0 \iff 0 \not\in S$ and τ ist bijektiv wenn $S \subseteq R^*$. Wenn R ein Integritätsbereich ist, dann ist $S = R \setminus \{0\}$ multiplikativ und wir definieren $\operatorname{Quot}(R) = S^{-1}R$. Das ist ein Körper. Wenn $\mathfrak{p} \subseteq R$ ein primideal ist, dann ist $S = R \setminus \mathfrak{p}$ multiplikativ. Definiere $R_{\mathfrak{p}} = S^{-1}R$.

Satz 3.20. Sei R ein Ring und $S \subseteq R$ multiplikativ. Dann existiert ein kommutatives Diagramm:

$$\begin{split} \{\mathfrak{a} \mid \mathfrak{a} \subseteq R \ \mathit{Ideal} \ , S \cap \mathfrak{a} = \emptyset \} & \xrightarrow{\mathfrak{a} \mapsto aS^{-1}R} \ \ * \{\mathfrak{b} \mid \mathfrak{b} \subsetneq S^{-1}R \ \mathit{Ideal} \} \\ & \qquad \\ \{\mathfrak{p} \mid \mathfrak{p} \subseteq R \ \mathit{Primideal} \ S \cap \mathfrak{p} = \emptyset \} & \xrightarrow{\sim} \ \ \ \{\mathfrak{q} \mid \mathfrak{q} \subseteq S^{-1}R \ \mathit{Primideal} \} \end{split}$$

Beweis. Angenommen $\frac{a}{s}=1$ für $a\in\mathfrak{a}$ und $s\in S$. Das heißt $\exists t\in S$ sodass (a-s)t=0 also $at=ts\in S$. Dann ist aber $at\in\mathfrak{a}\cap S$. wenn $\mathfrak{b}\subsetneq S^{-1}R$ ein Ideal ist, definiere $\mathfrak{a}=\tau^{-1}(\mathfrak{b})$. Dann ist $\mathfrak{a}S^{-1}R=\mathfrak{b}$ und $S\cap\mathfrak{a}=$. Wenn $\mathfrak{p}\subseteq R$ prim ist mit $S\cap\mathfrak{p}=\emptyset$ dann ist $q=\mathfrak{p}S^{-1}R$ prim, denn wenn $\frac{a}{s},\frac{a'}{a}\in S^{-1}R$ mit $\frac{aa'}{ss'}=\frac{b}{t}\in\mathfrak{q}$ mit $b\in\mathfrak{p}$ dann ist

$$(aa't - ss'b)r = 0$$

für ein $r \in S$ also $aa't \in \mathfrak{p}$. Dann ist $a \in \mathfrak{p}$ oder $a' \in \mathfrak{p}'$ also $\frac{a}{s} \in \mathfrak{q}$ oder $\frac{a'}{s'} \in \mathfrak{q}$. Wenn \mathfrak{p} prim ist, dann ist $\mathfrak{p} = \tau^{-1}(\mathfrak{p}S^{-1}R)$ denn wenn $x \in b$ sodass $\frac{x}{1} = \frac{a}{s}$ für ein $a \in \mathfrak{p}$ dann folgt wie oben dass $x \in \mathfrak{p}$. Wenn $\mathfrak{q} \subseteq S^{-1}R$ prim ist, dann ist $\tau^{-1}(\mathfrak{q})$ prim. Somit ist untere Abbildung Bijektion.

Beispiel 3.21. Sei $R = \mathbb{Z}$ und $\mathfrak{a} = (2)$ sowie $\mathfrak{a}' = (6)$ und $S = \{1, 3, 3^2, 3^3, \dots\}$. Dann ist $\mathfrak{a}S^{-1}\mathbb{Z} = \{\frac{2x}{3^n} \mid x \in \mathbb{Z}, n \in \mathbb{N}\}$ und $\mathfrak{a}'S^{-1}\mathbb{Z} = \{\frac{6y}{3^m} \mid y \in \mathbb{Z}, m \in \mathbb{N}\} = \mathfrak{a}S^{-1}\mathbb{Z}$.

Korollar 3.22. $\tau \colon R \to S^{-1}R$ induziert Isomorphismus

$$\operatorname{Spec}(S^{-1}R) \to \{ \mathfrak{p} \in \operatorname{Spec} R \mid \mathfrak{p} \cap S \neq \emptyset \}. \, \mathfrak{q} \mapsto \tau^{-1}(\mathfrak{q})$$

Korollar 3.23. Für alle $\mathfrak{p} \subseteq R$ prim ist $R_{\mathfrak{p}}$ ein lokaler Ring mit maximalem Ideal $\mathfrak{p}R_{\mathfrak{p}}$

Beweis. $R_{\mathfrak{p}} \setminus \mathfrak{p}R_{\mathfrak{p}}$ besteht aus Einheiten.

Satz 3.24 (Universelle Eigenschaft der Lokalisierung). Es ist $\tau(S) \subseteq (S^{-1}R)^*$. Wenn $\varphi \colon R \to R'$ Ringhomorphismus ist, dann git $\varphi(S) \subseteq (R')^*$ genau dann, wenn es einen eindeutigen Ringhomomorphismus $\varphi' \colon S^{-1}R \to R'$ gibt sodass $\varphi = \varphi' \circ \tau$.

$$R \xrightarrow{\varphi} R'$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\varphi'}$$

$$S^{-1}R$$

Wenn $\varphi \colon R \to R'$ dieselbe Eigenschaft erfüllt wie τ , dann ist φ' Isomorphismus.

Beweis. Definiere $\varphi'(\frac{a}{s}) = \varphi(a)\varphi(s)^{-1}$. Prüfe dass das wohldefiniert und eindeutig ist. Angenommen τ, φ sind beide universell, das heißt es existiert $\varphi' \colon S^{-1}R \to R'$ mit $\varphi = \varphi' \circ \tau$ und $\tau' \colon R' \to S^{-1}R$ mit $\tau = \tau' \circ \varphi$. Dann ist

$$\mathrm{id}_{R'}\circ\varphi=\varphi'\circ\tau=(\varphi'\circ\tau')\circ\varphi$$

also $\mathrm{id}_{R'}=\varphi'\circ\tau'$ wegen Eindeutigkeit. Analog ist $\mathrm{id}_{S^{-1}R}=\tau'\circ\varphi'$

Lemma 3.25. Sei R ein Ring und $F = (f_i)_{i \in I}$ eine Familie in R und $S \subseteq R$ eine multiplikative Menge von F erzeugt. Seien Variablen $T = (t_i)_{i \in I}$ gegeben. Dann existiert ein Isomoprhismus

$$R_S \to R[T]/(1 - f_i t_i \mid i \in I)$$

Insbesondere ist $R_f \cong R[X]/(1-fX)$

Beweis. Sei $\varphi: R \to R'$ Ringhomomorphismus sodass $\varphi(S) \subseteq (R')^*$. Definiere $\tilde{\varphi}: R[T] \to R'$ durch φ und $t_i \mapsto \varphi(f_i)^{-1}$. Dann ist $\ker(\tilde{\varphi}) = (1 - f_i t_i \mid i \in I)$ was $\varphi': R[T]/(1 - f_i t_i \mid i \in I) \to R'$ induziert sodass $\varphi = \varphi' \circ \tau$ wobei $\tau: R \to R[T]/(1 - f_i t_i \mid i \in I)$. φ' ist eindeutig da $1 = \varphi'(f_i t_i) = \varphi(f_i)\tilde{\varphi}(t_i)$ ist. Also gibt es Isomorphismus nach Satz 3.24

Satz 3.26. Seien $f, g \in R$ und $d, e \in \mathbb{N}$ mit $d \geq 1$. Dann kommutiert

$$R \xrightarrow{R_f} R_f$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_{fg} \xrightarrow{\sim} (R_f)_{f^{-e}g^d}$$

Beweis. Die Abbildung $R \to R_f \to (R_f)_{f^{-e}g^d}$ schickt f, g und somit fg auf Einheiten. Das gibt $R_{fg} \to (R_f)_{f^{-e}g^d}$ $R \to R_{fg}$ schickt f auf Einheit, das gibt also $R_f \to R_{fg}$ und der schickt $f^{-e}g^d$ auf eine Einheit. Das gibt $(R_f)_{f^{-e}g^d} \to R_{fg}$ invers zu oben.

Satz 3.27. Sei \mathfrak{p} Primideal, $f \in R \setminus \mathfrak{p}$. Dann kommutiert

$$R \longrightarrow R_f$$

$$\downarrow \qquad \qquad \downarrow$$

$$R_{\mathfrak{p}} \stackrel{\sim}{\longrightarrow} (R_f)_{\mathfrak{p}R_f}$$

Beweis. Analog wie in Satz 3.26

Beispiel 3.28. Es gibt Isomorphismus $(\mathbb{Z}/12\mathbb{Z})[3^{-1}] \to \mathbb{Z}/4\mathbb{Z}$ und jeder Zwischenring $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$ ist eine Lokalisierung von \mathbb{Z} .

Beweis. Sei $\varphi \colon \mathbb{Z}/12\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$. Einheiten von $\mathbb{Z}/12\mathbb{Z}$ sind 1,5,5,11 und diese gehen auf Einheiten in $\mathbb{Z}/4\mathbb{Z}$. Sei $\tau' \colon \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/12\mathbb{Z}[-3]$, $x+4\mathbb{Z} \mapsto \frac{x+12\mathbb{Z}}{1}$. Das ist wohldefiniert wie man prüft und τ' ist eindeutig sodass $\tau' \circ \varphi = \tau$. also ist beides Isomorph. Sei $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$ Zwischenring und S die multiplikative Menge erzeugt von allen Primzaheln p sodas $\frac{1}{p} \in R$. Dann ist $S^{-1}\mathbb{Z} \subseteq R$. Sei $\frac{a}{b} \in R$ mit a,b teilerfremd, sei p eine Primzahl mit $p \mid b$. Dann ist $\frac{a}{p} \in R$ und da a,p teilerfremd, gibt es $m,n \in \mathbb{Z}$ sodass 1 = ma + np ist. Also ist

$$\frac{1}{p} + n = \frac{ma}{p} \in R$$

also ist $\frac{1}{p} \in R$. Dann ist $\frac{1}{b} \in S^{-1}R$ und somit $\frac{a}{b} \in S^{-1}\mathbb{Z}$.

Definition 3.29. Sei R ein Ring und $j(R) = \bigcap_{\mathfrak{m} \in \operatorname{Specm}(R)} \mathfrak{m}$ das Jacobson Radikal von R. Wenn $R = \{0\}$ dann setzte $j(R) = \{0\}$. Es ist j(R) maximal genau dann wenn R lokal ist

Bemerkung 3.30. Für $a \in R$ ist äquivalent:

- (1) $a \in j(R)$
- (2) $1 ab \in R^*$ für alle $b \in R$

Beweis. Angenommen $1 - ab \in R^*$ für alle b. Sei \mathfrak{m} ein maximales Ideal. Setze $\mathfrak{n} = (a, \mathfrak{m})$. Wenn $a \notin \mathfrak{m}$ dann ist $\mathfrak{n} = R$ und es gibt $b \in R$ und $m \in \mathfrak{m}$ sodass 1 = ab + m. Aber dann ist m eine Einheit. Also muss $a \in \mathfrak{m}$ sein für alle maximalen Ideal \mathfrak{m} . Also ist $a \in j(R)$.

Definition 3.31. Sei $rad(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec} R} \mathfrak{p}$ das Nilradikal. R heißt reduziert, wenn rad(R) = 0.

Satz 3.32.
$$rad(R) = \{a \in R \mid a \ nilpotent\}$$

Beweis. Sei a nicht nilpotent. Dann ist $0 \notin S = 1, a, a^2, \ldots$ also $S^{-1}R \neq 0$. Das heißt es gibt ein maximales Ideal in $S^{-1}R$ das zu Primideal $\mathfrak{p} \subseteq R$ korrespondiert mit $\mathfrak{p} \cap S = \emptyset$. Das heißt $a \notin \mathfrak{p}$ und $a \notin \operatorname{rad}(R)$. Die andere Inklusion ist klar.

Lemma 3.33. Es ist äquivalent:

- (1) R hat genau ein Primideal
- (2) $a \in R \implies a \in R^* \ oder \ aistnilpotent$
- (3) $R/\operatorname{rad}(R)$ ist ein Körper

Beweis. klar. \Box

Definition 3.34. Sei $\mathfrak{a} \subseteq R$ ein Ideal. $j(\mathfrak{a}) := \pi^{-1}(j(R/\mathfrak{a}))$ und $\operatorname{rad}(\mathfrak{a}) = \pi^{-1}(rad(R/\mathfrak{a}))$ wobei $\pi : R \to R/\mathfrak{a}$ kanonische Abbildung.

Satz 3.35. sei K Körper. $j(K[X_1,...,X_n]) = 0$

Beweis, sei \bar{K} der algebraische Abschluss von K. Sei

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \bar{K}^n$$

. Betrachte

$$\mathfrak{m}_x = \{ f \in K[X_1, \dots, X_n] \mid f(x) = 0 \} = \ker(K[X_1, \dots, X_n] \to \bar{K}, g \mapsto g(x))$$

Die letzte Abbildung ist surjektiv auf den Körper $K(x_1, \ldots, x_n)$ (Betrachte Minimalpolynom und dann modifiziere um Element zu erhalten). Also ist $K[X_1, \ldots, X_m]/\mathfrak{m}_x \cong K(x_1, \ldots, x_n)$ Körper und somit \mathfrak{m}_x maximales Ideal in $K[X_1, \ldots, X_n]$. $f \in j(K[X_1, \ldots, X_n])$ impliziert dass $f \in \mathfrak{m}_x$ ist also f(x) = 0 für alle $x \in \bar{K}^n$. Also ist f das Nullpolynom nach Induktion.

Lemma 3.36 (Primvermeidung). Sei $\mathfrak{a} \subseteq R$ ein Ideal. Wenn $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ Primideale sind mit $\mathfrak{a} \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$ dann ist $\mathfrak{a} \subseteq \mathfrak{p}_i$ für ein i.

Beweis. Induktion: n=1 ist klar. Gelte die Behauptung für n-1. Angenommen $\mathfrak{a} \not\subseteq \bigcup_{j\neq i} \mathfrak{p}_j$ für alle i. Das heißt es gibt $f_i \in \mathfrak{a}$ mit $f_i \not\in \bigcup_{j\neq i} \mathfrak{p}_j$ und $f_i \in \mathfrak{p}_i$. Es ist $f_1 + f_2 \cdots f_n \in \mathfrak{a}$ aber $f_1 + f_2 \cdots f_n \not\in \mathfrak{p}_1$ und $f_1 + f_2 \cdots f_n \not\in \mathfrak{p}_i$ für $i \geq 2$. Das ist ein Widerspruch. Also ist $\mathfrak{a} \subseteq \bigcup_{j\neq i} \mathfrak{p}_j$ für ein i. Also folgt die Aussagen mit Induktion.

Lemma 3.37 (Nakayama). Sei $I \subseteq R$ ein Ideal mit $I \subseteq j(R)$. Sei M ein endlich erzeugter R-Modul. Es gilt:

- (1) Wenn IM = M ist dann ist M = 0.
- (2) Wenn $N, N' \subseteq M$ und M = N + IN' wobei N' endlich erzeugt dann ist M = N.
- (3) Wenn $N \to M$ eine Abbildung sodass $N/IN \to M/IM$ surjektiv ist dann ist $N \to M$ surjektiv.
- (4) Wenn $x_1, \ldots, x_n \in M$ M/IM erzeugen dann erzeugen x_1, \ldots, x_n schon M.

Beweis. Angenommen $M \neq 0$. Da M endlich erzeugt ist, betrachte minimales Erzeugendensystem $x_1, \ldots, x_n \in M$. Da $\mathfrak{a}M = M$ gilt, ist $x_n = a_1x_1 + \cdots + a_nx_n$ für $a_i \in \mathfrak{a}$. Dann ist $(1-a_n)x_n = a_1x_1 + \cdots + a_nx_n$ und da $(1-a_n)$ eine Einheit ist, folgt x_n ist im Erzeugnis von (x_1, \ldots, x_{n-1}) was ein Widerspruch ist. Das zeigt 1. Wenn N' endlich erzeugt ist, dann auch M/N. Anwenden von 1 auf M/N liefert die Aussage. Es ist $M = \operatorname{im}(N \to M) + IM$ und nach 2. folgt, dass $M = \operatorname{im}(N \to M)$. Sei $R^n \to M, (a_1, \ldots, a_n) \mapsto a_1x_1 + \ldots a_nx_n$. Nach 3. folgt, dass die Abbildung surjektiv ist also gilt 4.

Definition 3.38. Eine partiell geordnete Menge Σ hat die aufsteigende Kettenbedingung, falls jede Kette $S_1 \leq S_2 \leq \cdots \leq S_k \leq \ldots$ irgendwann stationär wird.

Lemma 3.39. Sei Σ partiell geordnet. Σ hat die aufsteigende Ketten-Bedingung genau dann wenn für alle $S \subseteq \Sigma$ mit $S \neq \emptyset$ gilt, dass S ein maximales Element hat.

Beispiel 3.40. Unterräume eines endlich-dimensionalen Vektorraums oder Ideale in \mathbb{Z} erfüllen aufsteigende Kettenbedingung.

Satz 3.41. Sei A ein Ring. Es ist äquivalent:

- (1) Die Menge Σ der Ideale von A hat die aufsteigende Ketten-Bedingung.
- (2) Jede nicht-leere Menge $S \subseteq \Sigma$ hat ein maximales Element
- (3) Jedes Ideal $I \in \Sigma$ ist endlich erzeugt.

In dem Fall heißt A noethersch.

Beweis. Zeige 3 nach 1. Sei $I_1 \subseteq I_2 \subseteq ...$ Kette von Idealen. Dann ist $I = \bigcup_k I_k$ endlich erzeugt, $I = (f_1, ..., f_n)$ dann ist $f_1, ..., f_n \in I_k$ für ein k und somit wird Kette stationär nach k. \square

Satz 3.42. Sei M ein A-Modul. Es ist äquivalent:

- (1) Die Menge Σ der Untermoduln von M hat die aufsteigende Ketten-Bedingung.
- (2) Jede nicht-leere Menge $S \subseteq \Sigma$ hat ein maximales Element
- (3) Jeder Untermodul $N \in \Sigma$ ist endlich erzeugt.

In dem Fall heißt M noethersch.

Satz 3.43. Sei M ein A-Modul. Es ist äquivalent:

- (1) Die Menge Σ der Untermoduln von M hat die absteigende Ketten-Bedingung.
- (2) Jede nicht-leere Menge $S \subseteq \Sigma$ hat ein minimales Element
- (3) Für Jede Familie $\{M_i\}_{i\in I}$ von Untermoduln gibt es $I_0\subseteq I$ endlich sodass

$$\bigcap_{i \in I} M_i = \bigcap_{i \in I_0} M_i$$

In dem Fall heißt M artinsch.

Beweis. Zeige 1 nach 3. Wähle $i_1 \in I$ sodass $M_{i_1} \neq \bigcap_{i \in I} M_i$ (falls möglich). Für M_{i_1}, \ldots, M_{i_k} gegeben wähle $M_{i_{k+1}}$ so, dass $\bigcap_{j=1}^{k+1} M_{i_j} \neq \bigcap_{j=1}^k M_{i_j}$. Das gibt $M_{i_1} \supsetneq M_{i_1} \cap M_{i_2} \supsetneq \ldots$ Also gibt es ein k sodass $\bigcap_{j=1}^k M_{i_j} \neq \bigcap_{i \in I} M_i$. Sei $I_0 = \{i_1, \ldots, i_k\}$.

Lemma 3.44. Sei $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ eine exakte Sequenz von A-Moduln und $M_1 \subseteq M_2 \subseteq M$ Untermoduln. Es gilt

$$L \cap M_1 = L \cap M_2 \text{ und } \beta(M_1) = \beta(M_2) \implies M_1 = M_2$$

Satz 3.45. Sei $0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ eine exakte Sequenz von A-Moduln. Dann ist

M noethersch $\iff M$ und L noethersch

Beweis. Angenommen $M_1 \subseteq M_2 \subseteq ...$ ist aufsteigende Kette von Untermoduln von M. Das gibt aufsteigende Ketten $L \cap M_1 \subseteq L \cap M_2 \subseteq ...$ und $\beta(M_1) \subseteq \beta(M_2) \subseteq ...$ in L und N Beide Ketten werden stationär. Nach Lemma 3.44 wird also die ursprüngliche Kette stationär

Korollar 3.46. (1) M_i noethersch impliziert $\bigoplus_{i=1}^r M_i$ noethersch.

- (2) Wenn A noetherscher Ring dann ist A-Module M noethersch genau dann wenn M endlich ist über A.
- (3) sei A noetherscher Ring und $\varphi \colon A \to B$ Ringhomomorphismus sodass B endlicher A-Modul ist. Dann ist B noetherscher Ring.

Beweis. Zeige 2. sei M endlich erzeugt von f_1, \ldots, f_r und $A^r \to M$ surjektiv mit

$$(a_1,\ldots,a_n)\mapsto a_1f_1+\cdots+a_nf_n.$$

Sei N der Kern. Das gibt exakte Sequenz $0 \to N \to A^r \to M \to 0$ und nach 1 ist A^r noethersche also auch M.

Satz 3.47 (Hilbert Basis Theorem). Sei A Ring. Dann ist A[X] noethersch genau dann wenn A noethersch ist.

Beweis. Sei A noethersch. Sei $I \subseteq A[X]$. Definiere

$$J_n = \{ a \in A \mid \exists f \in I \colon f = aX^n + b_{n-1}X^{n-1} + \dots + b_0 \}.$$

 J_n ist Ideal da I Ideal ist. Es ist $J_n \subseteq J_{n+1}$ und da A noethersch ist, ist $J_n = J_{n+1} = \dots$ für ein n. Für $m \le n$ ist $J_m \subseteq A$ endlich erzeugt, $J_m = (a_{m,1}, \dots, a_{m,r_m})$. Sei $f_{m,j} \in I$ mit Leitkoeffizient $a_{m,j}$. Dann erzeugt $\{f_{m,j}\}_{\substack{m \le n \ 1 \le j \le r_m}}$ das Ideal I. Sei nämlich $f \in I$ vom Grad m

und a der Leitkoeffizient von f, $a \in J_m$. Wenn $m \ge n$ dann ist $a \in J_n$ sodass $a = \sum b_i a_{n,i}$ für $b_i \in A$ und $f - \sum b_i X^{m-n} f_{n,i}$ hat Grad < n. Wenn $m \le n$ dann ist $a \in J_m$ sodass $a = \sum b_i a_{mi}$ für $b_i \in A$ und $f - \sum b_i f_{m,i}$ hat Grad < m. Mit Induktion folgt die Behauptung. Sei A[X] noethersch. Dann ist $0 \to K \to A[X] \to R \to 0$ exakt, wobei K der Kern ist von $X \mapsto 0$. Also ist A noethersch.

Lemma 3.48. Eine Lokalisierung von noetherschen Ringen ist noethersch.

Beweis. Klar, betrachte aufsteigende Kette die zu aufsteigender Kette im Ring korrespondiert \Box

Lemma 3.49. Wenn $I \subseteq R$ ein endlich erzeugtes Ideal ist mit $I^2 = 0$ und wenn R/I noethersch ist, dann ist R noethersch.

Beweis. I ist R/I Modul und da endlich erzeugt, ist I als R/I Modul noehtersch. Das heißt jeder R/I-Untermodule $J \subseteq I$ ist endlich erzeugt und dann auch endlich erzeugt als R-Modul. Also ist I noetherscher R-Modul. Exakte Sequenz liefert, dass R noethersch ist da R/I endlicher R-Modul.

Lemma 3.50. Sei M noetherscher R-Modul. Zeigen Sie, dass jeder surjektive Endomorphismus $f: M \to M$ bijektiv ist.

Beweis. Sei $I_i = \ker(f^{(i)})$. Es ist $I_i \subseteq I_{i+1}$ also gibt es k sodass $I_k = I_{k+1}$. Da f jedoch surjektiv ist, folgt Ker(f) = 0

Satz 3.51. Sei $S \subseteq R$ multiplikative Menge, M R-Modul. $\tau \colon M \to S^{-1}M, m \mapsto \frac{m}{1}$. Dann gilt

- (1) $\ker(\tau) = \{ m \in M \mid \exists u \in S : um = 0 \}$
- (2) Wenn M endlich erzeugt ist, dann ist $S^{-1}M = 0 \iff M$ wird annuliert von einem $M \in S$.

Beweis. Wähle Erzeuger und multipliziere deren Annihilatoren.

Lemma 3.52. $S^{-1}R \otimes_R M \to S^{-1}M, \frac{r}{u} \otimes m \mapsto \frac{rm}{u}$ ist ein Isomorphismus.

Satz 3.53 (Lokalisierung ist flach). Sei $\varphi \colon M \to N$ injektiv. $\frac{\varphi(x)}{s} = 0$ Dann gibt es $t \in S$ sodass $t\varphi(x) = \varphi(tx) = 0$ also ist tx = 0 und somit $\frac{x}{s} = 0$

Korollar 3.54 (Lokalisierung erhält endliche Schnitte). Seien $M_1, \ldots, M_t \subseteq M$ Untermoduln. Dann ist $S^{-1}(\bigcap_i M_i) = \bigcap_i S^{-1}M_i$.

Beweis. Es ist exakt $0 \to \bigcap_i M_i \to M \to \bigoplus_i M/M_i \to 0$ also auch

$$0 \to S^{-1} \bigcap_{i} M_{i} \to S^{-1}M \to \bigoplus_{i} S^{-1}M/S^{-1}M_{i} \to 0$$

und somit gilt die Aussage.

Definition 3.55. Eine Kompositionsreihe ist Kette $M = N_0 \supseteq \cdots \supseteq N_n = 0$ sodass N_i/N_{i+1} keine echten Untermodule ungleich 0 hat.

Definition 3.56. Sei M ein R-Modul. Definiere length(M) als das Minimum aller Längen einer Komositionsreihe bzw als ∞ falls das nicht exisitert.

Beispiel 3.57. Sei V ein endlich-dimensionaler Vektorraum der Dimension n. Dann ist n = length(V).

Lemma 3.58. Sei $M' \subsetneq M$ ein echter Untermodul, length $(M) = n < \infty$. Dann ist length(M') < length(M)

Beweis. Sei $M=M_0 \supseteq \cdots \supseteq M_n=0$ eine Kompositionsreihe. Es ist

$$(M' \cap M_i)/(M' \cap M_{i+1}) \cong (M' \cap M_i + M_{i+1})/M_{i+1} \subseteq M_i/M_{i+1}.$$

Also ist $(M' \cap M_i)/(M' \cap M_{i+1}) = 0$ oder $(M' \cap M_i)/(M' \cap M_{i+1})$ hat keine echten Untermoduln und $M' \cap M_i + M_{i+1} = M_i$. Letzteres gilt nicht für alle i, denn angenommen doch. Es ist $M_n = 0 \subseteq M'$ und angenommen $M_{i+1} \subseteq M'$. Dann ist $M' \cap M_i = M' \cap M_i + M_{i+1} = M_i$ also $M_i \subseteq M'$ und mit Induktion $M \subseteq M'$. Also kann $M' \supseteq M' \cap M_1 \supseteq \cdots \supseteq M' \cap M_n = 0$ kann verändert werden durch Weglassen der Terme $M' \cap M_i$ sodass $M' \cap M_i = M' \cap M_{i+1}$. Das gibt length $M' \in M$

Lemma 3.59. sei length $(M) = n < \infty$ und $M = N_0 \supsetneq N_1 \supsetneq \cdots \supsetneq N_k$ Kette von Untermoduln. Dann ist $k \le \text{length}(M)$.

Beweis. Induktion: length $(M) = 0 \implies M = 0 \implies k = 0$. Allgemein ist

$$length(N_1) < length(M)$$

also ist $k-1 \leq \operatorname{length}(N_1)$ und damit $k \leq \operatorname{length}(M)$.

Korollar 3.60. length(M) ist das maximal aller Längen einer Kette in M.

Korollar 3.61. Alle Kompositionsreihen haben die gleiche Länge

Satz 3.62. Sei M ein R-Modul.

$$length(M) < \infty \iff M \text{ ist artinsch und noethersch}$$

Beweis. Sei M artinsch und noethersch. Wähle maximalen Untermodul $M_1 \subsetneq M$ und maximalen Untermodul $M_2 \subsetneq M_1$ usw. Das gibt $M \supsetneq M_1 \supsetneq M_2 \dots$ Da M artinsch wird das stationär also $M_n = 0$ für ein n. Dann ist das Kompositionsreihe. Angenommen M hat endliche Länge n. Das heißt jede aufsteigende oder abteigende Kette bricht ab also ist M artinsch und noethersch. \square

Satz 3.63. Sei M ein R-Modul. Es ist äquivalent:

- (1) M hat keine echten $Untermoduln \neq 0$
- (2) $\operatorname{length}(M) = 1$
- (3) $M \cong R/\mathfrak{m}$ für ein maximales Ideal $m \subseteq R$.

Beweis. Gelte a. sei $x \in M$ mit $x \neq 0$. $x \cdot R \neq 0 \implies xR = M$ also ist

$$0\to\mathfrak{m}\to R\overset{x}\to M\to 0$$

exakt mit $\mathfrak{m} = \ker(x)$. Da $M \cong R/\mathfrak{m}$ keine echten Ideale hat, ist \mathfrak{m} maximal.

Satz 3.64. Sei length $(M) < \infty$ und $M = M_0 \supsetneq \cdots \supsetneq M_n = 0$ Kompositionsreihe. Es ist $M \cong \bigoplus_{\mathfrak{p}} M_{\mathfrak{p}}$ wobei die Summe über alle maximalen Ideale $\mathfrak{p} \subseteq R$ geht sodass $M_i/M_{i+1} \cong R/\mathfrak{p}$. Die Anzahl der M_i/M_{i+1} isomorph zu R/\mathfrak{p} ist length $_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})$.

Beweis. Angenommen length(M)=1. Dann ist $M\cong R/\mathfrak{p}$ für ein maximales Ideal \mathfrak{p} . Sei \mathfrak{q} ein maximales Ideal. Wenn $\mathfrak{p}=\mathfrak{q}$ dann ist $M_{\mathfrak{q}}=(R/\mathfrak{p})_{\mathfrak{q}}=R/\mathfrak{p}=M$. Wenn $\mathfrak{p}\neq\mathfrak{q}$ dann ist $(R/\mathfrak{p})_{\mathfrak{q}}=0$. Somit ist $(M_{\mathfrak{q}})_{\mathfrak{q}'}=0$ für zwei verschiedene maximalen Ideale $\mathfrak{q},\mathfrak{q}'$. Allgemein für length(M)=n gilt dass die Kompositionsreihe $M=M_0\supsetneq\cdots\supsetneq M_n=0$ gibt $M_{\mathfrak{q}}=(M_0)_{\mathfrak{q}}\supsetneq\cdots\supsetneq (M_n)_{\mathfrak{q}}=0$

und length
$$(M_i/M_i+1) = 1$$
. Also ist $(M_i/M_{i+1})_{\mathfrak{q}} = \begin{cases} M_i/M_{i+1}, & M_i/M_{i+1} \cong R/\mathfrak{q} \\ 0, & \text{sonst} \end{cases}$ BehalteinReihenurdie $(M_i)_{\mathfrak{q}}$

aus oberen Fall, das gibt Kompositionsreihe von $M_{\mathfrak{q}}$. Sei $\alpha \colon M \to \bigoplus M_{\mathfrak{p}}$ Summe der Lokalisierungsabbildugen. Sei $Q \subseteq R$ maximales Ideal. Es ist $\alpha_{\mathfrak{q}} \colon M_{\mathfrak{q}} \to (\bigoplus M_{\mathfrak{q}})_{\mathfrak{q}}$ die Identität für alle Q.

Satz 3.65. Sei length $(M) < \infty$. Dann gilt

$$M = M_{\mathfrak{p}} \iff M \text{ wird von einer Potenz von } \mathfrak{p} \text{ annuliert}$$

Beweis. Sei $\mathfrak{q} \neq \mathfrak{p}$ maximales Ideal, $x \in \mathfrak{p} \setminus \mathfrak{q}$. Dann ist $\frac{x}{1}M_{\mathfrak{q}} = M_{\mathfrak{q}}$ aber $x^n = 0$ für ein n, also $M_{\mathfrak{q}} = 0$. Nach Satz 3.64 folgt $M = M_{\mathfrak{p}}$. Sei andererseits $M \cong M_{\mathfrak{p}}$ und $M = M_0 \supsetneq M_1 \supsetneq \cdots \supsetneq M_n$ Kompositionsreihe, $M_i/M_{i+1} \cong R/\mathfrak{p}$. Es ist $\mathfrak{p}M = M = M_0$ und wenn $\mathfrak{p}^iM \subseteq M_i$ dann ist $\mathfrak{p}^{i+1}M \subseteq \mathfrak{p}M_i \subseteq M_{i+1}$. Nach Induktion ist also $\mathfrak{p}^nM \subseteq M_n = 0$.

Satz 3.66. Sei R ein Ring. Es ist äquivalent:

- (1) R ist noethersch und alle Primideale in R sind maximal
- (2) R ist als R-Modul von endlicher Länge
- (3) R ist artinsch.

Wenn das git, dann hat R nur endlich viele maximale Ideale.

Beweis. Gelte 1. Sei $I \subseteq R$ ein Ideal maximal mit der Eigenschaft dass R/I keine endliche Länge hat. Dann ist I prim, denn seien $a \cdot b \in I$ und $a \notin I$. Haben exakte Sequenz

$$0 \to R/(I:a) \to R/I \to R/(I+(a)) \to 0$$

wobei $(I:a) = \{x \in R \mid ax \in I\}$. Da $I \subsetneq I + (a)$ hat R/(I+(a)) endliche Länge. Falls $b \notin I$ dann $I \subseteq (I:a)$ also hat R/(I:a) endliche Länge und damiit auch R/I was nicht sein kann Also ist I prim. Damit ist I maximal und somit R/I ein Körper. Ein Körper hat Länge = 1 was ein Widerspruch ist. Also hat R endliche Länge. Gelte 2. 3. Folgt mit Satz Satz 3.62. gelte 3. Sei also R artinsch. Zeige: 0 ist Produkt maximaler Ideal von R. sei $J \subseteq R$ minimal sodass J Produkt maximaler Ideale ist. Zeige J=0. Sei \mathfrak{m} maximales Ideal in R. Dann ist $\mathfrak{m}J=J$ wegen Minimalität von J also $J \subseteq \mathfrak{m}$. Es ist $J^2 = J$. Falls $J \neq 0$ wähle I minimal unter Idealen, die J nicht annihilieren. Es gilt $(IJ)J = IJ^2 = IJ \neq 0$ und $IJ \subseteq I$. Wegene Minimalität von I ist IJ = I. Das heißt es gibt $f \in I$ mit $fJ \neq 0$. Da I minimal ist, ist (f) = I. Es gibt ein $g \in J$ mit f = fg und somit (1-g)f = 0. g ist in allen maximalen Idealen enthalten also ist 1-g eine Einheit. Also ist f=0 und damit I=0. Also ist J=0. Somit ist $0=\mathfrak{m}_1\cdots\mathfrak{m}_t$ für maximale Ideale $\mathfrak{m}_i \subseteq R$. Der Quotient $V_S = \mathfrak{m}_1 \cdots \mathfrak{m}_s/\mathfrak{m}_1 \cdots \mathfrak{m}_{s+1}$ ist Vektorraum über R/\mathfrak{m}_{s+1} . Untermodule von V_s sind Ideale in R, die $\mathfrak{m}_1 \cdots \mathfrak{m}_{s+1}$ enthalten. Absteigende Kette von Untermoduln sind absteigende Kette in R. Da R artinsch ist, muss Kette endlich sein. Also ist V_s endlich-dimensional über R/\mathfrak{m}_{s+1} und hat also endliche Kompositionsreihe. Alle Ketten Vereinigen gibt endliche Kompositionsreihe von R. Also hat R endliche Länge und ist noethersch. Sei $\mathfrak{p} \subseteq R$ Primideal. Da $\mathfrak{m}_1 \cdots \mathfrak{m}_t = 0 \subseteq \mathfrak{p}$ ist $\mathfrak{m}_i = \mathfrak{p}$ für ein i. Also ist jedes Primideal maximal.

Korollar 3.67. Jeder Artinsche Ring ist Produkt allseiner Lokalisierungen an maximalen Idealen.

Lemma 3.68. Sei R ein Ring.

- (1) Jeder Untermodul eines Artinschen R-Modules ist artinsch
- (2) Jeder artinsche \mathbb{Z} -Modul ist torsionsmodul
- (3) Sei p eine Primzahl. Die echten Untermoduln des Moduls $\mathbb{Z}[1/p]/\mathbb{Z}$ sind K_n wobei K_n erzeugt ist von $\frac{1}{p^n}$ und $\mathbb{Z}[1/p]/\mathbb{Z}$ ist artinsch.

Beweis. (1) Klar

(2) Sei M artinscher \mathbb{Z} -Modul. Es gibt absteigende Kette $m\mathbb{Z} \supseteq 2m\mathbb{Z} \supseteq 4m\mathbb{Z} \supseteq 8m\mathbb{Z} \supseteq \ldots$ von Untermoduln für $m \in M$. Da M artinsch ist, ist $2^k m\mathbb{Z} = 2^{k+1} m\mathbb{Z}$ für ein k. Das heißt $2^k m = 2^{k+1} xm$ für ein $x \in \mathbb{Z}$. das heißt $m2^k (1-2x) = 0$. Alternativ kann man sehen dass

$$0 \to n\mathbb{Z} \to \mathbb{Z} \stackrel{\cdot m}{\to} m\mathbb{Z} \to 0$$

exakt ist für ein $n \in \mathbb{Z}$. Wenn n = 0 dan ist $m\mathbb{Z} = \mathbb{Z}$ artinsch nach 1 was ein Widerspruch ist. also ist $n \neq 0$ und $m\mathbb{Z} = \mathbb{Z}/n\mathbb{Z}$. Dann ist $n \cdot m = 0$ also M torionsmodul.

(3) Sei M ein Untermodul. Dann ist $\frac{a}{p^n} \in M$ für ein $p \mid a$. Damit gibt es $1 = p^n x + ay$ nach Lemma von Bezout ??? für $x, y \in \mathbb{Z}$. Also ist

$$\frac{ay}{p^n} = \frac{1 - p^n x}{p^n} = \frac{1}{p^n} \in M$$

Es gilt $\max\{n \in \mathbb{N} \mid \frac{1}{p^n} \in M\}$ ist ∞ oder $m \in \mathbb{N}$. Falls ∞ dann ist $M = \mathbb{Z}[1/p]/\mathbb{Z}$. Wenn das maximum m ist dann ist $M = K_m$. Also sind die einzigen Untermoduln $K_0 \subseteq K_1 \subseteq \ldots$ also muss jede absteigende Kette stationär werden und $\mathbb{Z}[1/p]/\mathbb{Z}$ ist artinsch.

Lemma 3.69. Sei $\mathfrak{m} \subseteq R$ ein maximales Ideal und $n \in \mathbb{N}$.

- (1) Wenn R noethersch ist, dann ist R/\mathfrak{m}^n artinsch.
- (2) Wenn \mathfrak{m} endlich erzeugt ist, dann ist R/\mathfrak{m}^n artinsch

(1) Es ist R/\mathfrak{m}^n noethersch. sei \mathfrak{p} ein Primideal von R mist $\mathfrak{m}^n \subseteq p \subseteq R$. Dann ist $\mathfrak{m} \subseteq \mathfrak{p}$ also $\mathfrak{m} = \mathfrak{p}$ und alle Primideale in R/\mathfrak{m}^n sind maximal. Also ist R/\mathfrak{m}^n artinsch.

(2) Sei \mathfrak{m} endlich erzeugt. Dann ist $\mathfrak{m}^k/\mathfrak{m}^{k+1}$ endlich erzeugt über R/\mathfrak{m} , das heißt ein endlichdimensionaler Vektorraum. Damit hat es endliche Kompositionsreihe nach???. all diese Kompositionsreihen Vereinigen ergibt Kompositionsreihe von R/\mathfrak{m}^n . Also hat R/\mathfrak{m}^n endliche Länge und ist artinsch.

Beweis. Nach Satz Satz 3.66 R ein R-Modul von endlicher Länge. Nach Satz Satz 3.64 ist $R \cong \prod R_{\mathfrak{p}}$ wobei \mathfrak{p} maximal ist.

Definition 3.70. Sei M ein R-Modul. Dann ist Supp $M = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq 0 \}$ der Support von M.

Lemma 3.71. Sei R ein Ring M ein R-Modul.

- (1) Für $m \in M$ ist $m = 0 \iff \frac{m}{1} = 0 \in M_{\mathfrak{m}}$ für alle maximalen Ideale $\mathfrak{m} \subseteq R$ (2) $M = 0 \iff M_{\mathfrak{m}} = 0$ für alle maximalen Ideale \mathfrak{m} von R.

Beweis. Sei I der Annihilator von M. $m=0 \iff I \subseteq \mathfrak{m}$ für alle maximalen Ideal m. 2. folgt direkt aus 1

Korollar 3.72. $\varphi \colon M \to N$ Homomorphism von R-Moduln. φ ist injektiv (surjektiv, bijektiv) $\iff \forall \mathfrak{m} \subseteq R \text{ maximal ist } \varphi_{\mathfrak{m}} \colon M_{\mathfrak{m}} \to N_{\mathfrak{m}} \text{ injektiv (surjektiv, bijektiv)}$

Beweis. φ injektiv $\iff \ker(\varphi) = 0 \iff \ker(\varphi)_{\mathfrak{m}} = \ker(\varphi_{\mathfrak{m}}) = 0 \forall \mathfrak{m}$. Surjektiv geht analog mit Cokern statt kern.

Lemma 3.73. Sei M ein R-Modul. Dann ist äquivalent:

- (1) $M \oplus M' = \bigoplus_{i \in I} R/f_i R \text{ für } f_i \in R \text{ und ein } R\text{-Modul } M'.$
- (2) Für jede kurze exakte Sequenz

$$0 \to A \to B \to C \to 0$$

von R-Moduln sodass $fA = A \cap fB$ ist für alle $f \in R$ ist die Abbildung

$$\operatorname{Hom}_R(P,B) \to \operatorname{Hom}_R(P,C)$$

surjektiv.

Beweis. Gelte 1 und sei eine exakte Sequenz wie im Satz gegebgen. Es reicht der Fall M = R/fR. Sei $\psi \colon R/fR \to C$ eine Abbildung und sei $b \in B$ mit $b \mapsto \psi(1)$ in C. Dann ist $fb \in A$ und es gibt $a \in A$ sodass fa = fb also f(b-a) = 0. Das gibt $\varphi \colon R/fR \to B, 1 \mapsto b-a$ das ψ liftet. Wenn andersrum 2 gilt, sie I die Menge der Paare (f,φ) wobei $f \in R$ ist und $\varphi \colon R/fR \to M$. Für $i \in I$ sei (f_i, φ_i) das entsprechende Paar. Betrachte $B = \bigoplus_{i \in I} R/f_i R \to M$ induziert durch φ_i . Sei $A = \ker(B \to M)$. Wenn die Sequenz $0 \to A \to B \to M \to 0$ exakt ist wie in 2. dann spaltet

sie also folgt (1). Sei also $f \in R$ und $a \in A$ mit $a \mapsto fb$ Sei $b = (r_i)_{i \in I}$ wobei $r_i = 0$ für fast alle i. dann ist $f \sum \varphi_i(r_i) = 0$ in M. Also gibt es $i_0 \in I$ sodass $f_{i_0} = f$ und $\varphi_{i_0}(1) = \sum \varphi_i(r_i)$. sei $x_{i_0} \in R/f_{i_0}R$ die Klasse von 1. Dann ist

$$a' = (r_i)_{i \in I} - (0, \dots, 0, x_{i_0}, 0, \dots)$$

ein Element von A und f'a = a.

Lemma 3.74. Sei $R \neq 0$ ein Ring. Dann ist äquivalent:

- (1) $F\ddot{u}r\ a,b\in R\ gilt\ a\mid b\ oder\ b\mid a$
- (2) Jedes endlich erzeugte Ideal ist ein Hauptideal und R ist lokal
- (3) Die Menge der Ideale ist linear geordnetet durch Inklusion

Das ist insebsondere erfüllt durch einen Bewertungsring

Beweis. Angenommen 2. gilt und $a, b \in R$. Dann ist (a, b) = (c). Wenn c = 0 ist, dann ist a = b = 0 und a teilt b. Wenn $c \neq 0$ sei c = ua + vb und a = wc und b = zc. Dann ist c(1 - uw - vz) = 0. Da R lokal ist, ist $1 - uw - vz \in \mathfrak{m}$. Also ist entweder w oder z eine Einheit. Also gilt 1. Wenn 1. gilt und R hat zwei maximale Ideal $\mathfrak{m}, \mathfrak{n}$ Dann wähle $a \in \mathfrak{m} \setminus \mathfrak{n}$ und $b \in \mathfrak{n} \setminus \mathfrak{m}$. Dann teilen a und b einander nicht. Also hat R nur ein maximales Ideal und ist lokal. Sei $I = (f_1, \ldots, f_n)$ und $I' = (f_2, \ldots f_n)$. Es ist nach Induktion I' = (c) und somit $I = (f_1, c) = (c')$. Es ist klar dass 1 und 3 äquivalent sind.

Die letzte Behauptung gilt in einem Bewertungsring, da im Quotientenkörper für $a, b \neq 0$ gilt, dass $\frac{a}{b} = x$ ist und $x \in R$ oder $x^{-1} \in R$. Das heißt a = bx oder b = ax für ein $x \in R$.

Lemma 3.75. Sei $0 \to M_1 \to M_2 \to M_3 \to 0$ eine kurze exakte Sequenz von R-Moduln. Dann gilt

- (1) M_1, M_3 endlich erzeugt $\implies M_2$ endlich erzeugt.
- (2) M_1, M_3 endlich präsentiert $\implies M_2$ endlich präsentiert.
- (3) M_2 endlich erzeugt $\implies M_3$ endlich erzeugt.
- (4) M_2 endlich präsentiert und M_1 endlich erzeugt $\implies M_3$ ist endlich präsentiert.
- (5) M_3 endlich präsentiert und M_2 endlich erzeugt $\implies M_1$ endlich erzeugt.

Beweis. 1 und 3 klar. Zeige 2.

$$0 \longrightarrow R^n \longrightarrow R^{n+m} \longrightarrow R^m \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

Snake Lemma liefert exakte Sequenz $0 \to \ker(R^n \to M_1) \to \ker(R^{n+m} \to M_2) \to \ker(R^m \to M_3) \to 0$. Nach (5) sind die beiden äußeren endlich erzeugt also der innere auch. Nach (4) ist dann M_2 endlich präsentiert.

Zeige 5. Wähle Auflösung $R^m \to R^n \to M_3 \to 0$. Da R^n projektiv ist nach ???? gibt es eine Abbildung $R^n \to M$ sodass das solide Diagramm kommutiert:

Das gibt dann gestrichelten Pfeil. Nach Schlangenlemma ist $\operatorname{coker}(R^m \to M_1) \cong \operatorname{coker}(R^n \to M_2)$. Also ist $\operatorname{coker}(R^m \to M_1)$ endlich erzeugt. Nach (3) ist $\operatorname{im}(R^m \to M_1)$ endlich erzeugt also ist M_1 endlich nach (1). Zeige 4. Wähle Auflösung $R^m \to R^n \to M_2 \to 0$ und Surjektion $R^k \to M_1$. Dann gibt es nach ?? $R^k \to R^n$ und $R^{k+m} \to R^n \to M_3 \to 0$ ist eine Auflösung.

Lemma 3.76. Sei R ein Ring sodass die Menge der Ideale linear geordnet ist durch Inklusion. Dann ist jeder endlich-präsentierte R-Modul isomorph zu einer endlichen direkten Summe von Moduln der Form R/fR.

Beweis. Es werden die Äquivalenten Bedinungen in Lemma 3.74 Benutzt. Sei M ein endlich präsentierter R-Modul. Sei $\mathfrak{m}\subseteq R$ das maximale Ideal und $\kappa=R/\mathfrak{m}$ der Restklassenkörper. Sei $I=\{r\in R\mid rM=0\}$. Wähle Basis y_1,\ldots,y_n des endlich-dimensionalen κ -Vektorraum $M/\mathfrak{m}M$. Nach Lemma 3.37 erzeugen Lifts x_1,\ldots,x_n von y_1,\ldots,y_n schon M. Es gibt i sodass für alle Wahlen von x_i gilt $I=\{r\in R\mid rx=0\}=:I_i$. Denn angenommen nicht. Dann gibt es Wahlen von x_1,\ldots,x_n sodass $I_i\neq I$ für alle i. Aber da $I\subseteq I_i$ gilt $I\subsetneq I_i$ für alle i. Da Ideale total geordnet sind, wäre auch $I=I_1\cap I_2\cap\cdots\cap I_n$ größer als I, was ein Widerspruch ist. Nach Umordnen ist i=1 und jeder Lift x_i von y_i erfüllt $I_1=I$. Sei $A=RX_1\subseteq M$ und betrachte die exakte Sequenz

$$0 \to A \to M \to M/A \to 0$$

. Da A endlich erzeugt ist, ist M/A endlich präsentiert nach Lemma 3.75 mit weniger Erzeugern. Nach Induktion ist also $M/A \cong \bigoplus_{j=1,\dots,m} R/f_jR$. Es gilt das wenn $f \in R$ dann ist $fA = A \cap fM$. Sei also $x \in A \cap fM$. dann ist $x = gx_1 = fy$ für ein $g \in R$ und $g \in M$. wenn $f \mid g$ dann ist $g \in A$. Wenn nicht, dann ist $g \in A$ m. Dann ist $g \in A$ und $g \in A$ end ist $g \in A$ und $g \in A$ und $g \in A$ end ist $g \in A$ und $g \in A$ und $g \in A$ und $g \in A$ end ist $g \in A$ und $g \in A$ und $g \in A$ end ist $g \in A$ und $g \in A$ end ist $g \in A$ und $g \in A$ end ist $g \in A$ und $g \in A$ end ist $g \in A$ end ist $g \in A$ und $g \in A$ end ist $g \in A$. Dann ist $g \in A$ end is $g \in A$. Dann ist $g \in A$ end is $g \in A$ end is $g \in A$. Dann ist $g \in A$ end is $g \in A$ end is $g \in A$. Dann ist $g \in A$ end is $g \in A$ end is $g \in A$. Dann ist

Lemma 3.77. Sei R ein Ring sodass alle Ideale von $R_{\mathfrak{m}}$ total geordnet sind für jedes maximale Ideal $\mathfrak{m} \subseteq R$. Dann ist jeder endlich präsentierte R-Modul direkter Summand von $\bigoplus_{i \in I} R/f_iR$ wobei I endlich.

Beweis. Sei $0 \to A \to B \to C \to 0$ eine kurze exakte Sequenz von R-Moduln sodass $fA = A \cap fB$ für alle $f \in R$. Nach Lemma Lemma 3.73 reicht es, zu zeigen dass $\operatorname{Hom}_R(M,B) \to \operatorname{Hom}_R(M,C)$ surjektiv ist. Es reicht, dass es surjektiv ist nach lokalisieren an maximalen Idealen \mathfrak{m} nach Korollar 3.72. Da Lokalisierungnach Satz 3.53 exakt ist $0 \to A_{\mathfrak{m}} \to B_{\mathfrak{m}} \to C_{\mathfrak{m}} \to 0$ exakt und $fA_{\mathfrak{m}} = A_{\mathfrak{m}} \cap fB_{\mathfrak{m}}$. Da M endlich präsentiert ist, gilt $\operatorname{Hom}_R(M,B)_{\mathfrak{m}} = \operatorname{Hom}_{R_{\mathfrak{m}}}(M_{\mathfrak{m}},B_{\mathfrak{m}})$ und $\operatorname{Hom}_R(M,C)_{\mathfrak{m}} = \operatorname{Hom}_{R_{\mathfrak{m}}}(M_{\mathfrak{m}},C_{\mathfrak{m}})$ nach ???. $M_{\mathfrak{m}}$ ist enldich präsentierter $R_{\mathfrak{m}}$ Modul und nach Lemma 3.76 gilt dass $M_{\mathfrak{m}}$ direkte Summe von Moduln der Form $R_{\mathfrak{m}}/fR_{\mathfrak{m}}$ ist. Nach Lemma 3.73 ist ist Abbildung der Lokalisierung surjektiv. Also ist M direkter Summand von $\bigoplus_{i \in I'} R/f_iR$. Betrachte $M \to \bigoplus_{i \in I'} R/f_iR$. Da M endlich erzeugt ist, ist das Bild von M in $\bigoplus_{i \in I} R/f_iR$ für eine endliche Teilmenge $I \subseteq I'$.

Definition 3.78. Sei R nullteilerfrei.

- (1) R ist ein Bézout Ring, wenn jedes endlich erzeugte Ideal ein Hauptideal ist.
- (2) R ist ein Elementarteiler Ring, falls für alle $n, m \geq 1$ und jede $n \times m$ matrix A es invertierbare Matrizen U, V der Größe $n \times n$ bzw. $m \times m$ gibt sodass

$$UAV = \begin{pmatrix} f_1 & 0 & 0 & \dots \\ 0 & f_2 & 0 & \dots \\ 0 & 0 & f_3 & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

mit $f_1, \ldots, f_{\min(n,m)} \in R$ und $f_1 \mid f_2 \mid \ldots$

Lemma 3.79. Ein Elementarteilerring ist Bézout Ring.

Beweis. Seien $a, b \in R$ nicht-null. Betrachte A = (ab). Dann gibt es $u \in R^*$ und $V = (g_{ij}) \in GL_2(R)$ sodass u(a,b)V = (f,0). Dann ist $f = uag_{11} + ubg_{21}$. Es ist auch

$$\begin{pmatrix} a & b \end{pmatrix} = u^{-1} \begin{pmatrix} f & 0 \end{pmatrix} V^{-1}$$

Also ist (a, b) = (f). Induktion zeigt das Ergebnis.

Satz 3.80. Die Lokalisierung eines Bezout-Rings ist Bezout. Ein lokaler Integritätsbereich ist Bezout genau dann wenn es ein Bezout ring ist.

Beweis. Erste Aussage ist klar und zweite gilt nach ??? was genau die Aussage ist.

Lemma 3.81. Sei R Bézout ring. Dann gilt

- (1) Jeder endliche Untermodul eines freien Moduls ist frei
- (2) Jeder endlich präsentierte R-Modul M ist direkte Summe eines endlich freien Moduls und einem torsions Modul M_{tors} der Summan ist einer direkten Summe $\bigoplus_{i=1,...,n} R/f_i R$ wobei f_i nicht-null sind.

Beweis. Sei $M \subseteq F$ endich erzeugter Untermodul, F frei. Da M endlich ist, ist ohne Einschränkung F auch endlich, $F = R^n$. Wenn n = 1 dann ist M ein endlich erzeugtes Ideal, also ein Hauptideal. Wenn n > 1 betrachte $pr_n \colon R^n \to R$ und $I = \operatorname{im}(pr_n|_M \colon M \to R)$. Wenn I = (0) dann ist $M \subseteq R^{n-1}$ und man ist fertig nach Induktion. Wenn $I \neq 0$ dann ist $I = (f) \cong R$. also $M \cong R \oplus \ker(M \to I)$ und Induktion.

Sei M also endlich präsentiert. Nach ??? sind lokalisierungen von R an maximalen Idealen Bewertungsringe, also können wir mit Lemma 3.77 folgern, dass M direkter Summand ist von

$$R^r \oplus \bigoplus_{i=1,\dots,n} R/f_i R$$

wobei $f_i \neq 0$. Dann ist M_{tors} ein Summand von $\bigoplus_{i=1,...,n} R/f_i R$ und M/M_{tors} ist ein Summand von R^r . Nach erstem Teil ist M/M_{tors} endlich frei und also $M \cong M_{tors} \oplus M/M_{tors}$.

Satz 3.82 (Struktursatz endlicher Moduln über Hauptidealrings). Sei R ein Hauptidealring. Dann ist jeder endliche R-Modul M isomorph zu einem Modul der Form

$$R^n \oplus \bigoplus_{i=1,\dots,n} R/f_i R$$

 $f\ddot{u}r \ r, n \geq 0 \ und \ f_i \ nicht-null \ mit \ f_1 \mid f_2 \mid \ldots$

Beweis. Ein Hauptidealring ist ein noetherscher Bézout Ring. Nach Lemma 3.81 reicht der Fall woM torsion ist. DaM endlich erzeugt, gibt es $f \in R \setminus \{0\}$ sodass fM = 0. Dannist M ein R/fR Modul und R/fR ist noethersch und jedes Primideal ist maximal. Also ist nach Korollar 3.67

$$R/fR = \prod R_j$$

endliches produkt wobei R_j lokal artinsch. Die Projektion $R/fR \to R_j$ gibt dass $R_j = R/f_jR$ für ein f_j . Dann erfüllt R_j die Bedinugnen von Lemma 3.74. Schreibe $M = \prod M_j$ mit $M_j = e_jM$ wobei $e_j \in R/fR$ das idempotente Element ist dass zu $1 \in R_j$ correspondiert. Nach Lemma Lemma 3.76 ist $M_j = \bigoplus_{i=1,\dots,n_j} R_j/\bar{f}_{ij}R_j$ für $\bar{f}_{ij} \in R_j$. wähle Lifts $f_{ij} \in R$ und $g_{ji} \in R$ mit $(g_{ji}) = (f_j, f_{ji})$. Dann ist

$$M \cong \bigoplus R/g_{ji}R$$

als R-Modul.

Lemma 3.83. Sei R ein Hauptidealring und $a \in R \setminus \{0\}$.

- (1) Es ist length(R/aR) gleich der Anzahl der Primfaktoren in der Primfaktorzerlegung von a.
- (2) Wenn M endlich erzeugter R-Modul ist und $M[a] = \{m \in M \mid am = 0\}$ dann sei $h_a(M) = \operatorname{length}(M/aM) \operatorname{length}(M[a]).$

Alle Zahlen in der Gleichung sind endlich.

(3) Wenn $0 \to M' \to M \to M'' \to 0$ exakt ist von endlichen R-Moduln, dann ist $h_a(M) = h_a(M') + h_a(M'')$.

(4) $Sei\ K = Quot(R)\ und\ M\ ein\ endlich-erzeugter\ R-Modul.\ Dann\ ist$

$$h_a(M) = \dim_K(M \otimes_R K) \cdot \operatorname{length}(R/aR)$$

Beweis. (1) Sei $a = p_1 \cdots p_r$ die Primfaktorzerlegung. Dann ist

$$(p_1) \supseteq (p_1p_2) \supseteq \cdots \supseteq (p_1 \cdots p_r) = (a)$$

und

$$(p_1 \cdots p_k)/(p_1 \cdots p_{k+1}) \cong R/p_{k+1}R$$

ein Körper, hat also keine echten Untermoduln ungleich 0. Somit ist

$$(p_1) \supseteq (p_1 p_2) \supseteq \cdots \supseteq (p_1 \cdots p_r) = 0$$

Kompositionsreihe in R/aR. Also ist length(R/aR) = r.

(2) Da M endlich erzeugt ist, ist M noethersch. Also ist M[a] auch endlich erzeugt. Es ist

$$M[a] \cong R^d \oplus \bigcap R/a_i R$$

und da M[a] Torsionsmodul ist, ist d=0. Nach 1. ist length $(R/a_iR) < \infty$ also auch die length $(M[a]) < \infty$. M/aM ist auch endlich erzeugt und Torsionsmodul. Also ist analog die Länge auch endlich.

(3) Betrachte kommutatives Diagramm

Nach Schlangenlemma gibt das eine exakte Sequenz

$$0 \to M'[a] \to M[a] \to M''[a] \to M'/aM' \to M/aM \to M''/aM'' \to 0$$

Es gilt

- $0 = \operatorname{length}(M'[a]) \operatorname{length}(M[a]) + \operatorname{length}(M''[a]) \operatorname{length}(M'/aM') + \operatorname{length}(M/aM) \operatorname{length}(M''/aM'') \to 0$ Also gilt die Aussage.
 - (4) Nach 3. reich es, die Aussage für M=R und M Torsionsmodul zu zeigen wegen Struktursatz???. Es ist $\dim(R \otimes_R K) = 1$ und R[a] = 0 also ist $h_a(R) = \operatorname{length}(R/aR) = \dim(R \otimes_R K) \cdot \operatorname{length}(R/aR)$ Wenn M Torsionsmodul ist, dann hat M endliche Länge nach Struktursatz und somit ergibt die exakte Sequenz

$$0 \to M[a] \to M \overset{\cdot a}{\to} M \to M/aM \to 0$$

dass

$$0 = \operatorname{length}(M[a]) - \operatorname{length}(M) + \operatorname{length}(M) - \operatorname{length}(M/aM) = h_a(M)$$

. und

$$\dim(M \otimes_R K) = 0$$

Definition 3.84. Sei $\varphi \colon R \to R'$ ein Ringhomomorphismus. $x \in R'$ heißt ganz über R, wenn es eine Ganzheitsgleichung $x^n + a_1 x^{n-1} + \cdots + a_n = 0$ erfüllt für $a_1, \ldots, a_n \in R$. R' heißt ganz über R, falls jedes $x \in R'$ ganz ist. φ heißt endlich, wenn es R' mit einer endlichen R-Modulstruktur versieht.

Beispiel 3.85. Wenn R = K, R' = K' Körper sind, dann ist K'/K algebraisch wenn es ganz ist über K.

Lemma 3.86. Sei $\varphi \colon R \to R'$ injektive und R, R' Integritätsbereiche und R' ganz über R. Dann ist R ein Körper genau dann wenn R' ein Körper ist.

Beispiel 3.87. Sei K/\mathbb{Q} eine endliche Körpererweiterung und $a \in K$. Für einen Körperhomomorphismus $\sigma \colon K \to \overline{K}$ gilt a ist ganz über \mathbb{Z} genau dann wenn $\sigma(a)$ ganz ist über \mathbb{Z} und a ist ganz über \mathbb{Z} genau dann wenn das Minimalpolynom von a in $\mathbb{Z}[X]$ ist. Wenn $K = \mathbb{Q}(\sqrt{n})$ wobei n > 1 quadratfrei ist, dann ist $a + b\sqrt{n}$ mit $a, b \in \mathbb{Q}$ ganz über \mathbb{Z} genau dann, wenn $a, b \in \mathbb{Z}$ oder $a, b \in \frac{1}{2} + \mathbb{Z}$ und $n = 1 \mod 4$.

Beweis. Wenn $a^n+b_1a^{n-1}+\cdots+b_n=0$ mit $b_i\in\mathbb{Z}$ dann ist auch $\sigma(a)^n+b_1\sigma(a)^{n-1}+\cdots+b_n=0$ also ist $\sigma(a)$ ganz. Die Rückrichtung geht genauso unter Verwendung dass σ injektiv ist. Wenn a ganz ist, Sei $F\in\mathbb{Z}[X]$ Ganzheitsgleichung. Sei μ das Minimalpolynom von a. Dann ist $F=\mu g$ Nach Lemma von Gauß ??? ist $\mu\in\mathbb{Z}[X]$. Andere Richtung ist klar. Mipol von $a+b\sqrt{n}$ ist $(X-(a-b\sqrt{n}))(X-(a+b\sqrt{n}))=X^2-2aX+a^2-b^2n$. Also ist $a\in\mathbb{Z}$ oder $a\in\frac12+\mathbb{Z}$. Wenn $a\in\mathbb{Z}$ dann ist $b^2n\in\mathbb{Z}$ und da n quadratfrei ist, ist $b\in\mathbb{Z}$. Wenn $a\in\mathbb{Z}$ Dann ist $a=\frac12+x$ für ein $x\in\mathbb{Z}$. also ist $a^2=\frac14+x+x^2$ und somit $b^2n\in\frac14+\mathbb{Z}$ also $b\in\frac12+\mathbb{Z}$ und außerdem $b^2n\in\frac14+\mathbb{Z}$ $\Longrightarrow n=1\mod 4$.

Beweis. Sei R' ein Körper und $x \in R \setminus \{0\}$ Es ist $x^{-1} = x \in R'$ und es gibt $a_1, \dots, a_n \in R$ sodass

$$y^n + a_1 y^{n-1} + \dots + a_n = 0$$

ist. Also ist

$$y^n = -a_1 y^{n-1} - \dots - a_n$$

und somit

$$y = x^{n-1}y^n = -a_1y^{n-1}x^{n-1} - \dots - a_nx^{n-1} \in R$$

. also ist R Körper. Sei andersrum R ein Körper und $x \in R'$ mit $x \neq 0$. Dann gibt es $x^n + a_1 x^{n-1} + \cdots + a_n = 0$ mit $a_i \in R$. Da R' Integritätsbereich ist ohne Einschränkung $a_n \neq 0$. Im Quotientenkörper gilt

$$-x^{-1}a_n = x^{n-1} + a_1x^{n-2} + \dots + a_{n-1} \in R'$$

. Also ist

$$x^{-1} = -a_n^{-1}(x^{n-1} + \dots + a_{n-1}) \in R'$$

also ist R' ein Körper.

Lemma 3.88. Sei $\varphi \colon R \to R'$ ein ganzer (bzw. endlicher) Ringhomomorphismus.

- (1) Seien $I \subseteq R, J \subseteq R'$ Ideale mit $\varphi(I) \subseteq J$. Dann ist $R/I \to R'/J$ ganz (bzw. endlich)
- (2) Sei $S \subseteq R$ eine multiplikative Menge. dann ist $R_S \to R'_S$ ganz (bzw. endlich)

Lemma 3.89. Sei $\varphi \colon R \to R'$ ein Ringhom und $x \in R'$. Es ist äquivalent

- (1) x ist integralt über R.
- (2) Der Unterring $R[x] \subseteq R'$ ist endlich erzeugt als R-Modul.
- (3) Es gibt endlich-erzeugten R-Untermodul $M \subseteq R'$ sodass $1 \in M$ und $xM \subseteq M$.
- (4) Es gibt eine R[x]-Modul M sodss M ein endlicher R-Modul ist und $aM = 0 \implies a = 0$ für alle $a \in R[x]$.

Beweis. Gelte 1. Die Ganzheitsgleichung $x^n + a_1x^{n-1} + \dots a_n = 0$ zeigt, dass x^n Element ist von $M = \sum_{i=0}^{n-1} Rx^i$ und per Induktion ist $x^m \in M$ für alle m. Also ist M = R[x] und R[x] ist endlich erzeugt. Die Richtung von 2 nach 3 und von 3 nach 4 ist klar. Gelte 4. Sei M ein R[x]-Modul mit $y_1, \dots, y_n \in M$ Erzeuger über R. Es ist $xM \subseteq M$ also gibt es Gleichungen

$$xy_i = a_{i1}y_1 + \dots a_{in}y_n$$

für alle i mit $a_{ii} \in R$. Sei also Δ die Matrix über R[x] sodass

$$\Delta \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = 0$$

Es ist $\Delta^{adj}\Delta = \det(\Delta)E_n$ und somit

$$\det(\Delta) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \Delta^{adj} \Delta \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = 0$$

also ist $\det(\Delta)y_i = 0$ für alle *i*. Also ist $\det(\Delta)M = 0$ und somit $\det(\Delta) = 0$. Also ist $\det(\delta_{ij}X - a_{ij})$ Poylon über R das bei x verschwindet.

Korollar 3.90. Jeder endliche Ringhomomorphismus $R \to R'$ ist ganz

Beweis. sei M=R' Dann ist M endlich erzeugt. Nach Teil 3 von ?? ist $R\to R'$ ganz.

Korollar 3.91. sei $\varphi \colon R \to R'$ Ringhomomorphismus und $y_1, \ldots, y_r \in R'$ ganz über R sodass $R' = R[y_1, \ldots, y_n]$. dann ist φ endlich und insbesondere ganz.

Beweis. Es ist $\varphi(R) \subseteq \varphi(R)[y_1] \subseteq \cdots \subseteq \varphi(R)[y_1, \dots, y_r] = R'$ und alle Inklusionen sind endlich nach Lemma ??. Also ist inst R' endlich.

Korollar 3.92. Seien $\varphi \colon R \to R'$ und $\varphi' \colon R' \to R''$ endlich (bzw ganz). dann ist die Komposition $\varphi'\varphi$ auch endlich (bzw ganz)

Beweis. Endlich ist klar wie zuvor. Seien beide ganz. $z \in R''$ erfüllt Ganzheitsgleichung $z^n + b_1 z^{n-1} + \cdots + b_n = 0$ mit $b_i \in R'$. also ist z ganz über $R[b_1, \ldots, b_n]$ und $R[b_1, \ldots, b_n, z]$ ist endlich über $R[b_1, \ldots, b_n]$ was endlich ist über R da alle b_i ganz über R. Also ist $R \to R[b_1, \ldots, b_n, z]$ endlich und damit ganz. Also ist $R \to R''$ ganz.

Beweis. Sei $R \to R'$ injektiv und $\bar{R} = \{x \in R' \mid x \text{ ganz}\}$ Dann ist $R \subseteq \bar{R} \subseteq R'$ Unterring, gennant der ganze Abschluss von R in R'. \bar{R} ist ganzabgeschlossen in R'

Beweis. Seien $x, y \in R'$ ganz. Dann ist R[x, y] ganz über R also sind $x + y, x \cdot y \in \bar{R}$. Es ist $R \to \bar{R} \to \bar{R}$ ganz also $\bar{R} = \bar{R}$.

Definition 3.93. Ein Integritätsbereich R heißt normal, falls R ganz-abgeschlossen ist in seinem Quotientenkörper.

Bemerkung 3.94. Ein faktorieller Ring ist normal.

Lemma 3.95. Sei $S \subseteq R \setminus \{0\}$ eine multiplikative Menge und R normal. Dann ist R_S normal. Beweis. Es ist $R \subseteq R_S \subseteq \operatorname{Quot}(R)$ und $\operatorname{Quot}(R_S) = Q(R)$. Sei $x \in \operatorname{Quot}(R)$ ganz über R_S und

$$x^{n} + \frac{a_{1}}{s_{1}}x^{n-1} + \dots \frac{a_{n}}{s_{n}} = 0$$

Ganzheitsgleichung. Sei $s=s_1\cdots s_n$ Dann ist sx ganz über R also $sx\in R$ und somit $x=\frac{1}{s}sx\in R_S$ und somit R_S normal.

Lemma 3.96. Sei A nullteilerfrei und $K = \operatorname{Quot}(A)$ und L/K eine Körpererweiterung. sei $B \subseteq L$ der ganze Abschluss von A in L und $S \subseteq A$ eine multiplikative Menge. Dann ist $S^{-1}B$ der ganze Abschluss von $S^{-1}A$ in L.

Beweis.sei $x=\frac{b}{s}\in S^{-1}B$ dann ist sx=bganz über Aalso gibt es

$$b^n + a_1 b^{n-1} + \dots + a_0 = 0$$

dann ist

$$x^{n} + \frac{a_{1}}{s}x^{n-1} + \dots + \frac{a_{n}}{s^{n}} = 0$$

und somit x ganz über $S^{-1}A$. Sei $x \in L$ ganz über $S^{-1}A$

$$x^{n} + \frac{a_{1}}{s_{1}}x^{n-1} + \dots + \frac{a_{0}}{s_{0}} = 0$$

sei $s = s_1 \cdots s_n$ dann ist sx ganz über A also $sx \in B$ und $x \in S^{-1}B$.

Satz 3.97. Für einen Integritätsbereich R ist äquivalent:

- (1) R ist normal
- (2) $R_{\mathfrak{p}}$ ist normal für alle primideale $\mathfrak{p} \subseteq R$.
- (3) $R_{\mathfrak{m}}$ ist noraml für alle $\mathfrak{m} \subseteq R$ maximal.

Beweis. 1 impliziert 2 nach Lemma ?? 2 nach 3 ist klar. Gelte 3. und Sei $x \in \text{Quot}(R)$ ganz über R. Da $R_{\mathfrak{m}}$ normal ist, ist $x \in \bigcap_{\mathfrak{m}} R_{\mathfrak{m}}$. Zeige also $\bigcap_{\mathfrak{m}} R_{\mathfrak{m}} = R$. sei $x \in \bigcap_{\mathfrak{m}} R_{\mathfrak{m}}$. Wähle $a_{\mathfrak{m}} \in R$ und $b_{\mathfrak{m}} \in R \setminus \mathfrak{m}$ sodass $x = \frac{a_{\mathfrak{m}}}{b_{\mathfrak{m}}}$. Es ist $\sum (b_{\mathfrak{m}}) = R$ da es in keinem maximalen Ideal enthalten ist. Also gibt es Gleichung $\sum_{\mathfrak{m}} c_{\mathfrak{m}} b_{\mathfrak{m}} = 1$ mit $c_{\mathfrak{m}} \in R$ und $c_{\mathfrak{m}} = 0$ fast immer 0. Also ist

$$x=(\sum_{\mathfrak{m}}c_{\mathfrak{m}}b_{\mathfrak{m}})x=\sum_{\mathfrak{m}}c_{\mathfrak{m}}a_{\mathfrak{m}}\in R.$$

Also ist R normal.

Definition 3.98. Sei K ein Körper und R eine K-Algebra. $y_1, \ldots, y_n \in R$ heißen algebraisch unabhängig über K, falls die Surjektion

$$K[Y_1,\ldots,Y_n]\to K[y_1,\ldots,y_n]$$

ein Isomorphismus ist.

Lemma 3.99 (Horrible Lemma). Sei I eine endliche Menge von Tupeln $m=(m_1,\ldots,m_n)\in\mathbb{N}^n$. Es gibt $r_1,\ldots,r_{n-1}\in\mathbb{N}$ und $r_n=1$ sodass $m\neq m'\in I\implies \sum_{i=1}^n r_im_i\neq \sum_{i=1}^n r_im_i'$

Beweis. Wenn n=1 dann ist das klar. Sei $\bar{I}=\{\bar{m}=(m_2,\ldots,m_n)\mid \exists m_1\colon (m_1,m_2,\ldots,m_n)\in I\}$ Nach Induktion gibt es $r_2,\ldots r_n$ mit $r_n=1$ sodass

$$(m_2, \dots, m_n) \neq (m'_2, \dots, m'_n) \implies \sum_{i=2}^n r_i m_i \neq \sum_{i=2}^n r_i m'_i$$

Wähle $r_1 > \max\{\sum_{i=2}^n r_i m_i \mid \bar{m} = (m_2, \dots, m_n) \in \bar{I}\}$. Dann ist für $m \neq m'$ entweder $m_1 \neq m'_1$ oder $\bar{m}_{=}(m_2, \dots, m_n) \neq \bar{m}' = (m'_2, \dots, m'_n)$. In beiden Fällen ist $\sum_{i=1}^n r_i m_i \neq \sum_{i=1}^n r_i m'_i$.

Lemma 3.100. sei K ein Körper und $A = K[y_1, \ldots, y_n]$ sodass

$$K[Y_1,\ldots,Y_n]\to K[y_1,\ldots,y_n]$$

kein Isomorphismus ist. Dann gibt es $y_1^*, \ldots, y_{n-1}^* \in A$ sodass y_n ganz über $A^* = K[y_1^*, \ldots, y_{n-1}^*]$ und $A = A^*[y_n]$

Beweis. seien $r_1, \ldots, r_{n-1} \ge 1$ mit $r_i \in \mathbb{Z}$ und setzte $r_n = 1$. Setze

$$y_i^* = y_i - y_n^{r_i}$$

für i = 1, ..., n - 1. Sei F im Kern von

$$K[Y_1,\ldots,Y_n]\to K[y_1,\ldots,y_n]$$

. Definiere Relation G über $K[y_1^*, \dots, y_{n-1}^*]$ durch

$$G(y_1^*, \dots, y_{n-1}^*, y_n) = F(y_1^* + y_n^{r_i}, \dots, y_{n-1} + y_n^{r_{n-1}}, y_n) = F(y_1, \dots, y_n) = 0$$

Schreibe $F = \sum_{m=(m_1,\dots,m_n)\in I} a_m Y^m = \sum_m a_m \prod Y_i^{m_i}$. Dann ist

$$G = \sum_{i \neq n} a_m y_n^{m_n} \prod_{i \neq n} (y_i^* + y_n^{r_i})$$
$$= \sum_{i \neq n} a_m (y_n^{\sum_{i=1}^n r_i m_i} + \text{Rest}_m)$$

wobei der Rest ein Poylnom in y_n ist von Grad echt kleiner als $m_n + \sum r_i m_i$. Nach Lemma ??? kann man r_i so wählen, dass $m \neq m' \implies \sum_{i=1}^n r_i m_i \neq \sum_{i=1}^n r_i m_i'$. Dann wird $\max\{\sum r_i m_i \mid a_m \neq 0\}$ nur in einem Summanden angenommen, sodass sich nicht alle Terme wegheben. Da $a_m \neq 0$ wo das Maximum angenommen wird und $a_m \in K$ ist, folgt dass y_n ganz ist über $K[y_1^*, \ldots, y_{n-1}^*]$

Satz 3.101 (Noether Normalisierung). Sei K ein Körper und A eine K-Algebra von endlichem Typ. Dann gibt es $z_1, \ldots, z_m \in A$ sodass

- (1) z_1, \ldots, z_m algebraisch unabhängig über K sind und
- (2) A ist endlich über $K[z_1, \ldots, z_m] \subseteq A$

Beweis. Es ist $A = K[y_1, \ldots, y_n]$. Wenn n = 0 ist, ist nichts zu zeigen. Sei n > 0 Wenn y_1, \ldots, y_n algebraisch unabhängig sind über K, dann ist nichts zu zeigen. Seien y_1, \ldots, y_n also algebraisch abhängig. Das heißt

$$K[Y_1,\ldots,Y_n]\to K[y_1,\ldots,y_n]$$

hat nicht triviale Kern. Nach Lemma ?? gibt es also $y_1^*,\ldots,y_{n-1}^*\in A$ sodass y_n ganz über $A^*=K[y_1^*,\ldots,y_{n-1}^*]$ und $A=A^*[y_n]$. Nach Induktion gibt es $z_1,\ldots,z_m\in A^*$ algebraisch unabhängig sodass A^* endlich ist über $B=K[z_1,\ldots,z_m]$ da y_n ganz über A^* ist ist $A^*[y_n]$ endlich über A sodass A endlich über B ist.

Satz 3.102 (Schwacher Nullstellensatz). Sei K ein Körper, L eine K-Algebra von endlichem Typ die ein Körper ist. Dann ist L/K endlich.

Definition 3.103. Ein Ring R heißt lokal, wenn es genau ein maximales Ideal gibt.

Satz 3.104. Sei $\mathfrak{m} \subsetneq R$ ein Ideal. Es ist äquivalent:

- (1) R ist lokal mit maximalem Ideal \mathfrak{m}
- $(2) \ \forall a \in R \setminus \mathfrak{m} : a \in R^*$
- (3) \mathfrak{m} ist maximales Ideal und jedes Element a = 1 + m mit $m \in \mathfrak{m}$ ist eine Einheit.

Beweis. Gelte 1. Wenn a keine Einheit, dann ist a in einem maximalen Ideal enthalten. Also in \mathfrak{m} . Gelte 3. Sei $a \notin \mathfrak{m}$ das heißt $a + \mathfrak{m}$ ist Einheit in R/\mathfrak{m} . Also gibt es x sodass $ax + \mathfrak{m} = 1 + \mathfrak{m}$ also ist 1 = ax + m für ein $m \in \mathfrak{m}$. Dann ist $ax \in R^*$ also auch a.

Lemma 3.105. $\mathbb{Z}/n\mathbb{Z}$ ist lokal genau dann wenn $n=p^r$ für eine primzahl p und r>1.

Beweis. Sei $n=p^r$. Primideale in $\mathbb{Z}/n\mathbb{Z}$ sind Primideale in \mathbb{Z} die $n\mathbb{Z}$ enthalten. Das ist nur (p). Also ist der Ring lokal. Andersrum wenn $n=p_1^{e_1}\cdots p_s^{e_s}$ die Primfaktorzerlegung von n ist mit $p_i\neq p_j$ für $i\neq j$ dann korrespondier mit selber Begründung jedes (p_i) zu einem maximalen Ideal in $\mathbb{Z}/n\mathbb{Z}$.

Satz 3.106 (Schwacher Nullstellensatz). Sei K ein Körper, L eine K-Algebra von endlichem Typ die ein Körper ist. Dann ist L/K endlich.

Beweis. Nach Noether Normalisierung gibt es $z_1, \ldots, z_m \in L$ algebraisch unabhängig sodass L endlich ist über $A = K[z_1, \ldots, z_m]$. Dann ist $A \subseteq L$ ganz und da L ein Körper ist, ist A ein Körper. Da Z_1, \ldots, z_m algebraisch unabhängig sind, ist A ein Polynomring in m Variablen. Also ist m = 0 und L ist endlich über K.

Korollar 3.107. Sei K ein Körper und $f: A \to B$ ein Homomorphismus von K-algebra sodass B eine K-Algebra vom endlichen Typ ist. sei $\mathfrak{m} \subseteq B$ ein maximales Ideal. Dann ist $f^{-1}(\mathfrak{m})$ maximal.

Beweis. Es ist $K \to A/f^{-1}(\mathfrak{m}) \to B/\mathfrak{m}$ injektiv, da $B\mathfrak{m}$ eine endliche Körpererweiterung nach Schwachen NstSatz. Dann sind $K \to A/f^{-1}(\mathfrak{m}) \to B/\mathfrak{m}$ alle ganz und damit $A/f^{-1}(\mathfrak{m})$

Beispiel 3.108. Sei K ein Körper und $R = K[X_1, \ldots, X_m]$ und $\mathfrak{m} \subseteq R$ ein maximales Ideal und $L = R/\mathfrak{m}$. Nach Schwachem Nullstellensatz ist L/K endliche,algebraische Erweiterung.

Korollar 3.109. Sei K algebraisch abgeschlossen und $\mathfrak{m} \subseteq R = K[X_1, \ldots, X_m]$ ein maximales Ideal. Dann ist $\mathfrak{m} = (X_1 - a_1, \ldots, X_n - a_n)$ für a_1, \ldots, a_n in K und die Projektion $\pi \colon R \to R/\mathfrak{m}$ ist $f \mapsto f(a_1, \ldots, a_n)$. Das heißt es gibt Bijektion $K^n \to \operatorname{Specm}(R)$, $(a_1, \ldots, a_n) \mapsto (X - a_1, \ldots, X_n - a_n)$.

Beweis. Sei $L = K[X_1, \ldots, X_n]/\mathfrak{m}$. Dann ist nach ??? L/K algebraisch also L = K. Das heißt $\pi \colon K[X_1, \ldots, X_n] \to K$ und sei $a_i = \pi(X_i)$. Dann ist $\pi(X_i - a_i) = 0$ also $X_i - a_i \in \mathfrak{m}$ für alle i. Also ist $\mathfrak{m} \supseteq (X_1 - a_1, \ldots, X_n - a_n)$ und letzteres ist maximal denn die Abbildung $K[X_1, \ldots, X_n] \to K$, $f \mapsto f(a_1, \ldots, a_n)$ hat dieses Ideal als Kern.

Definition 3.110. Sei K ein Körper. Eine Varietät $V \subseteq K^n$ ist eine Teilmenge $V = V(J) = \{p = (a_1, \ldots, a_n) \in K \}$ für ein Ideal $J \subseteq K[X_1, \ldots, X_n]$ ein Ideal. Da $J = (f_1, \ldots, f_m)$ endlich erzeugt ist, ist V definiert durch $f_1(p) = \cdots = f_m(p) = 0$.

Satz 3.111. Sei K algebraisch abgeschlossen und $A = K[X_1, \ldots, X_n]/J$ für ein Ideal $J \subseteq K[X_1, \ldots, X_n]$. Dann hat jedes maximale Ideal von A die Form

$$(X-a_1,\ldots,X_n-a_n)$$

für ein $(a_1, \ldots, a_n) \in V(J)$. Das heißt es gibt Bijektion von Varietäten und Specm A gegeben durch $(a_1, \ldots, a_n) \leftrightarrow (X_1 - a_1, \ldots, X_n - a_n)$.

Beweis. Ideal von A sind Ideale in $K[X_1, \ldots, X_n]$ die J enthalten. Also haben alle maximalen Ideale von A die Form $(X_1 - a_1, \ldots, X_n - a_n)$ für a_1, \ldots, a_n sodass $J \subseteq (X_1 - a_1, \ldots, X_n - a_n)$. Da jedoch

$$(X_1 - a_1, \dots, X_n - a_n) = \ker(f \mapsto f(a_1, \dots, a_n))$$

ist, ist $J \subseteq (X_1 - a_1, \dots, X_n - a_n) \iff f(a_1, \dots, a_n) = 0 \ \forall f \in J \text{ also ist } (a_1, \dots, a_n) \in V(J).$

Bemerkung 3.112. Es gibt zwei Abbildungen

$$\{J \subseteq K[X_1, \dots, X_n] \text{ Ideal}\} \xrightarrow{V} \{X \subseteq K^n \text{ Teilmenge}\}$$

wobei $I(X) = \{ f \in K[X_1, \dots, X_n] \mid f(p) = 0 \, \forall p \in X \}$ ein Ideal ist. Es gilt

- $(1) \ J \subseteq J' \implies V(J) \supseteq V(J')$
- $(2) \ X \subseteq Y \implies I(X) \supseteq I(Y)$
- (3) $X \subseteq V(I(X))$
- (4) X ist Varietät $\iff X = V(I(X))$
- (5) $J \subseteq I(V(J))$.

Bemerkung 3.113. Sei K algebraisch abgeschlossen und $R = K[X_1, \ldots, X_n]$ und $Y \subseteq R$ eine Teilmenge. Dann gilt

- (1) V(Y) = V((Y))
- (2) $V(f) = V(f^n)$
- (3) $I \subseteq R \text{ Ideal } \Longrightarrow V(\sqrt{J}) = V(J)$
- $(4) \ Y \subseteq Y' \subseteq R \implies V(Y') \subseteq V(Y)$
- (5) $Y_i \subseteq R \implies V(\bigcup_i Y_i) = \bigcap_i V(Y_i)$

Satz 3.114 (Nullstellensatz). Sei K ein algebraisch abgeschlossenere Körper.

- (1) wenn $J \subseteq K[X_1, \dots, X_n]$ dann ist $V(J) \neq \emptyset$.
- (2) $I(V(J)) = \operatorname{rad}(J)$

Beweis. Sei $J \subseteq \mathfrak{m}$ für ein maximales Ideal $\mathfrak{m} = (X_1 - a_1, \dots, X_n - a_n)$. Dann ist $P = (a_1, \dots, a_n) \in V(J)$ Angenommen $f \in K[X_1, \dots, X_n]$ sodass f(p) = 0 für alle $p \in V(J)$. Sei $J' = (J, fY - 1) \subseteq K[X_1, \dots, X_n, Y]$. Ein Punkt $p \in V(J')$ ist (n+1)-Tupel $(a_1, \dots, a_n, b) \in K^{n+1}$. Angenommen $V(J') \neq \emptyset$. Dann gibt es so einen Punkt p und $p' = (a_1, \dots, a_n)$ ist dann in V(J). Da aber $bf(a_1, \dots, a_n) = 1$ ist, ist das ein Widerspruch. Also ist $V(J') = \emptyset$ und somit $J' = K[X_1, \dots, X_n, Y]$ Also gibt es Gleichung

$$1 = \sum_{i} g_i h_i + g_0 (fY - 1)$$

mit $g_i \in K[X_1, ..., X_n, Y]$ und $h_1 \in J$. Multipliziere die Gleichung mit f^m sodass Y nur in Kombination mit f auftritt und erhalte

$$f^{m} = \sum G_{i}(X_{1}, \dots, X_{n}, fY)h_{1} + G_{0}(X_{1}, \dots, X_{n}, fY)(fY - 1)$$

Gleichung gilt auch mod (fY-1) was zeigt, dass $f^m \in J$. Wenn $f^n(a)=0$ ist dann ist f(a)=0 also $\operatorname{rad}(J) \subseteq I(V(J))$ Denn wenn $f^n \in J$ dann ist $f^n \in I(V(J))$ also $f^n(p)=0$ für alle $p \in V(J)$. also f(p)=0 also $f \in I(V(J))$.

- **Bemerkung 3.115.** (1) Der Satz hat den Namen wegen 1. Sei M eine Menge von Poylonomen in $K[X_1, \ldots, X_n]$ gegeben. Dann gibt es eine gemeinsame Nullstelle. Der Satz ist falsch, wenn K nicht algebraisch abgeschlossen ist, denn wenn f ein Polynom K[X] ohne Nullstelle ist, dann ist $(f) \neq K[X]$ aber $V(f) = \emptyset$ und I(V(f)) = K[X].
 - (2) Es ist rad $J = \bigcap_{J \subset \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$ aber der Nullstellensatz ist stärker, denn 2. sagt es reichen die maximalen Ideale, die J enthalten.

Bemerkung 3.116. Sei K ein Körper und $R = K[X_1, \ldots, X_n]$. Dann ist für J, J' Ideale von R

$$V(J) = V(J') \iff \sqrt{J} = \sqrt{J'}$$

Denn $V(J)=V(J') \Longrightarrow I(V(J))=I(V(J'))$ und wenn $\sqrt{J}=\sqrt{J'}$ dann ist I(V(J))=I(V(J')) also $V(J)=V(I(V(J))=\cdots=V(J')$

3.2. Körper.

Definition 3.117. Ein Körper ist ein Ring, über dem jeder Modul frei ist. Ein Modul über einem Körper heißt Vektorraum.

Satz 3.118 (Hauptsatz über endlich erzeugte Moduln über Hauptidealringen). Sei R ein Hauptidealring. Jeder endlich erzeugte R-Modul M hat die Form

$$M = R^d \oplus \bigoplus_{i=1}^r R/a_i R$$

 $mit\ a_1, \ldots, a_r \in R \ sodass\ a_i \neq 0 \ und\ a_i \notin R^* \ und\ a_1 \mid a_2 \mid \cdots \mid a_r.$ Die Zahlen d, r und die Ideale $a_i R \ sind\ eindeutig\ durch\ M\ bestimmt.$

Beweis. Existenz: Wähle surjektiven Morphismus $\pi\colon R^n\to M$. Da R Hauptidealring ist, ist R noethersch und somit ist $\ker(\pi)$ endlich erzeugt. Das gibt exakte Sequenz

$$R^m \stackrel{f}{\to} R^n \to M \to 0.$$

Sei f gegeben durch Matrix, also $f(x) = A \cdot x$ für alle $x \in \mathbb{R}^m$. Elementarteiler Satz besagt: Es gibt $S \in \mathrm{GL}_n(\mathbb{R})$ und $T \in \mathrm{GL}_m(\mathbb{R})$ sodass

$$SAT = D$$

Matrix mit a_i auf der Diagonalen sodass $a_1 \mid a_2 \mid \dots$ wobei $(a_i = 0 \text{ und } a_i \in R^* \text{ vorkommen kann. Seien } f, g, h, f' \text{ durch } A, S, T, D \text{ gegeben. und } M' = \text{coker}(f'). Dann kommutiert$

$$R^{m} \xrightarrow{f} R^{n} \longrightarrow M \longrightarrow 0$$

$$\downarrow_{h} \qquad \downarrow_{g}$$

$$R^{m} \xrightarrow{f'} R^{n} \longrightarrow M' \longrightarrow 0$$

und somit ist $M \cong M'$. Da D diagonal ist, folgt $M' \cong R^d \oplus \bigoplus_{i=1}^r R/a_iR$ mit $r = \min(n, m)$ und d = 0 wenn $n \leq m$ bzw d = n - m wenn $n \geq m$. Wenn a_i Einheit ist, dann ist $R/a_iR = 0$ und wenn $a_i = 0$ dann ist $R/a_iR \cong R$. Damit kann man M' in Gestalt der Aussage des Satzes umwandeln wobei d größer und r kleiner werden kann.

4. Galoistheory

4.1. Galoisextions.

Definition 4.1. Sei K ein Körper. Der Primkörper von K ist der Schnitt aller Teilkörper von K. Es gibt $\mathbb{Z}/(p) \subseteq K$ für $p = \operatorname{char} K$. Wenn p = 0, dann ist $\mathbb{Q} \subseteq K$ und \mathbb{Q} ist der Primkörper. Wenn $p \neq 0$, dann ist $\mathbb{F}_p \subset K$ der Primkörper.

Definition 4.2. Seien L, K Körper sodass $K \subseteq L$ Teilring ist. Dann heißt K Teilkörper von L und L eine Erweiterung von K. Wir setzen $[L:K] = \dim_K(L)$.

Satz 4.3. Sei L/K eine Körpererweiterung und V ein L-Vektorraum. Dann ist

$$\dim_K(V) = \dim_L(V) \cdot [L:K].$$

Beweis. Wenn $\dim_L(V) = \infty$ dann ist alles klar. Sonst wähle Isomorphismus $V = L^n$. Das ist Isomorphismus von K-Vektorräumen. Also gilt die Aussage.

Korollar 4.4. Wenn M/L/K Körpererweiterungen sind, dann ist

$$[M:K] = [M:L] \cdot [L:K]$$

4.1.1. Algebraische und transzendente Erweiterungen.

Definition 4.5. Sei L/K eine Körpererweiterung und $a \in L$ und $\phi \colon K[X] \to L$ der Ringhomomorphismus gegeben durch $\phi(f) = f(a)$.

- (1) Das Element a heißt algebraisch, falls $\ker(\phi) \neq 0$. Andereseits nennen wir a transzendental über K.
- (2) L/K heißt algebraisch, wenn jedes $a \in L$ algebraisch über K ist.
- (3) K[X] ist Euklidisch, somit Hauptidealring. Also ist $\ker(\phi) = (f)$ für ein normiertes Polynom f. Das Polynom f heißt das Minimalpolynom von a.

Definition 4.6. Sei L/K eine Körpererweiterung und $a_1, \ldots, a_r \in L$.

(1) Die Algebra erzeugt von a_1, \ldots, a_r ist

$$K[a_1, \dots, a_r] = \bigcap_{R \in M} R$$
$$= \operatorname{im}(\phi \colon K[X_1, \dots, X_R] \to L, \ X_i \mapsto a_i)$$

wobei M die Menge aller Unterringe von L ist, die K und die Elemente a_1, \ldots, a_r enthalten.

(2) Der Körper erzeugt von a_1, \ldots, a_r ist

$$K(a_1, \dots, a_r) = \bigcap_{K' \in M'} K'$$
$$= \operatorname{Quot}(K[a_1, \dots, a_r])$$

wobei M' die Menge aller Teilkörper von L ist, die K und die Elemente a_1, \ldots, a_r enthalten.

Satz 4.7. Sei L/K Körpererweiterung und $a \in L$.

- (1) a ist algebraisch über $K \iff K[a] = K(a) \iff \dim_K(K[a]) < \infty$
- (2) Wenn a algebraisch über K ist, dann ist $K[a] = K(a) \cong K[X]/(f)$ wobei f (irreduzibel) das Minimalpolynom von a ist und

$$\deg(f) = [K(a):K].$$

Beweis. Sei a algebraisch. Dann ist das Minimalpoylon f irreduzibel sodass

$$(f) = Ker(\phi \colon K[X] \to L, x \mapsto a).$$

Dann ist $K[a] \cong K[X]/(f)$ ein Körper, also ist auch K[a] = K(a). Wenn $K[a] \cong K[X]/(f)$ ein Körper ist, dann ist f irreduzibel also $f \neq 0$ und f(a) = 0. Also ist a algebraisch. In dem Fall ist $\infty > deg(f) = [K[a] : K]$. Wenn a nicht algebraisch ist, dann ist $K[a] \cong K[X]$ und $\dim_K(K[X]) = \infty$.

Beispiel 4.8. $\mathbb{C} = \mathbb{R}[i] \cong \mathbb{R}[X]/(X^2+1)$

Satz 4.9. Sei L/K eine Körpererweiterung.

$$L/K$$
 ist endlich $\iff L/K$ ist algebraisch und $L = K(a_1, \dots, a_n)$
 $\iff L = K(a_1, \dots, a_n)$ für K -algebraische $a_i \in L$

In dem Fall gilt $K(a_1, \ldots, a_n) = K[a_1, \ldots, a_n]$

Beweis. Sei L/K endlich. Dann ist L als K-Vektorraum erzeugt und insbesondere als Körpererweiterung. Für $a \in L$ gilt $K[a] \subseteq L$ und

$$\dim_K(K[a]) \leq \dim_K L < \infty$$

also ist a algebraisch. Sei $L=K(a_1,\ldots,a_n)$ sodass a_i algebraisch über K ist. Wenn n=0 ist, dann ist L=K also ist L/K endlich. Sei $K[a_1]=K'$. Das ist ein Körper und somit endlich über K und $L=K'[a_1,\ldots,a_n]$. Nach Induktion folgt $K'[a_2,\ldots,a_n]=K'(a_2,\ldots,a_n)$.

Korollar 4.10. Sei L/K eine Körpererweiterung und $a_1, \ldots, a_n \in L$. Es gilt

$$a_1, \ldots a_n$$
 algebraisch über $K \iff K(a_1, \ldots, a_n) = K[a_1, \ldots, a_n]$

Beweis. Die eine Richtung folgt aus Satz 4.9, die andere aus dem Satz 3.106.

Korollar 4.11. Seien M/L/K Körpererweiterungen. Es gilt

$$M/L$$
 und L/K algebraisch $\iff M/K$ algebraisch

Beweis. Sei $a \in M$ algebraisch über L und $f \in L[X]$ ein Polynom mit f(a) = 0. Sei

$$f = \sum_{i=0}^{n} b_i X^i$$

für $b_i \in L$ und $b_n = 1$. Dann ist $L' = K[b_0, \ldots, b_{n-1}]$ ein Körper sodass L'/K endlich ist. Da a algebraisch ist über L', ist L'(a) endlich über L'. Also ist L'(a) endlich über K und somit algebraisch.

Satz 4.12. Sei K Körper und $f \in K[X]$ irreduzibel. Dann gibt es eine Körpererweiterung L/K mit $[L:K] = \deg(f)$ und $a \in L$ mit f(a) = 0.

Beweis. Klar,
$$L = K[X]/(f)$$
.

Korollar 4.13. Zu endlich vielen $f_1, \ldots, f_r \in K[X]$ mit $deg(f_i) \geq 1$ gibt es eine endliche Erweiterung L/K, sodass $f_i \in L[X]$ in Linearfaktoren zerfällt.

Beweis. Angenommen es gibt L/K sodass f_1 in L[X] zerfällt und L_r/L_1 sodass f_2, \ldots, f_r in $L_r[X]$ zerfällt. Dann zerfällt f_1, \ldots, f_r in L_r/K . Also sei nach Induktion r=1. Sei $f=g_1, \ldots, g_s$ mit g_i irreduzibel. Nach letztem Satz gibt es L'/K endlich und $a \in L'$ mit $g_1(a) = 0$. In L'[X] gilt $f = (X - a)f_1$. Induktion über $\deg(f)$ gibt die Aussage.

Beispiel 4.14. $f = X^3 - 2 \in \mathbb{Q}[X]$ ist irreduzibel nach Eisenstein.

$$L_1 = \mathbb{Q}[X]/(f) \cong \mathbb{Q}(\sqrt[3]{2}).$$

In $L_1[X]$ ist $f = (X - a) \cdot g$ wobei $a = \sqrt[3]{2}$ und g irreduzibel ist (Irreduzibel in \mathbb{R} also in L_1). Wenn $L = L_1[X]/(g)$ dann hat L/\mathbb{Q} hat Grad 6 und $x^3 - 2$ zerfällt in Linearfaktoren in L.

Lemma 4.15 (Algebraisch Abgeschlossen). Für einen Körper K ist äquivalent:

- (1) Jedes nicht-konstante Polynom $f \in K[X]$ hat eine Nullstelle
- (2) Jedes irreduzible Polynom $f \in K[X]$ hat Grad 1
- (3) Für jede algebraische Erweiterung L/K gilt L=K

In dem Fall heißt K algebraisch abgeschlossen.

Beweis. $1 \implies 2$ ist klar.

Gelte 2. Dann sei f nicht-konstant. Also gibt es ein irreduzibles Polynom P mit P|f. Da P=aX+b für ein $a\neq 0$, ist $P(\frac{-b}{a})=0$ also hat f eine Nullstelle.

Gelte 2 und sei $a \in L$ algebraisch mit Minimalpolynom $f \in K[X]$. f ist irreduzibel, also ist f = X - a und somit $a \in K$.

Gelte 3. und sei f irreduzible. Dann ist $L = K[X]/(f) \cong K$. Also ist $\deg(f) = 1$ und f linear.

Definition 4.16. Sei K ein Körper. Ein algebraischer Abschluss von K ist eine algebraische Körpererweiterung L/K sodass L algebraisch abgeschlossen ist. Notation $L = \bar{K}$

Satz 4.17 (Existenz algebraischer Abschluss). Jeder Körper hat einen algebraischen Abschluss

Beweis. Sei I die Menge aller irreduziblen Polynome $f \in K[X]$ und sei $R = K[X_f \mid f \in I]$. Sei $J \subseteq R$ das ideal, das von allen Elementen der Form $f(X_f)$ mit $f \in I$ erzeugt wird.

Es gilt die Behauptung $J\subsetneq R$. Denn angenommen J=R, dann ist $1\in J$ also gibt es Darstellung

(3)
$$1 = \sum_{j=1}^{r} g_j f_j(X_{f_j})$$

wobei $g_j \in R$ und $f_1, \ldots, f_r \in I$. In g_1, \ldots, g_r kommen nur endlich viele X_{f_i} vor, somit gibt es eine endliche Menge $I' \subseteq I$, sodass die Gleichung 3 in $R' = K[X_f | f \in I']$ stattfindet. Nach Korollar 4.13 gibt es eine endliche Erweiterung M/K, sodass jedes $f \in I'$ in M eine Nullstelle a_f hat. Betrachte die Abbildung

$$\phi \colon R' \to M, \ \phi(X_f) = a_f.$$

Dann ist $\phi(f(X_f)) = f(a_f) = 0$ also $f(X_f) \in \ker(\phi)$. Die Gleichung 3 würde zeigen, dass $1 \in \ker(\phi)$, was ein Widerspruch ist zu $1 \neq 0$ in M. Also ist gilt die Behauptung $J \subsetneq R$.

Also ist $\bar{R} = R/J \neq 0$ und nach Satz 3.4 gibt es maximales Ideal $\mathfrak{m} \subseteq \bar{R}$. Für den Quotienten $L = \bar{R}/m$, ist L/K eine Körpererweiterung und L ist erzeugt von \bar{X}_f für $f \in I$. Es ist $f(X_f) = 0$ in \bar{R} und somit auch in L. Also ist $\bar{X}_f \in L$ algebraisch über K und damit ist auch L/K algebraisch und jedes $f \in I$ hat in L eine Nullstelle, nämlich \bar{X}_f . Sei $L_1 = L$. L_1/K ist algebraisch, sodass jedes irreduzible Polynom $f \in K[X]$ in L_1 eine Nullstelle hat. Konstruiere Analog $K \subseteq L_1 \subseteq L_2 \subseteq L_3 \ldots$ sodass jedes irreduzible Polynom in L_i in L_{i+1} eine Nullstelle hat. Sei $\tilde{L} = \bigcup_{i \geq 1} L_i$. Das ist ein Körper und \tilde{L}/K ist algebraisch. Der Körper \tilde{L} ist algebraisch

abgeschlossen, denn wenn $f \in \tilde{L}[X]$ irreduzibel dann gibt es $i \in \mathbb{N}$ sodass $f \in L_i[X]$ und dann hat f in L_{i+1} eine Nullstelle. Also hat f in \tilde{L} eine Nullstelle.

4.2. Körperhomomorphismen.

Definition 4.18. Ein Körperhomomorphismus ist ein Ringhomomorphismus zwischen Körpern. Seien L/K und M/K zwei Körpererweiterungen. Ein K-Homomorphismus ist ein Homomorphismus von K-Algebren. $\operatorname{Aut}_K(L) = \operatorname{Aut}(L/K)$ sei die Menge der invertierbaren K-Homomorphismen $f \colon L \to L$

Lemma 4.19. Seien L = K(a)/K eine Körpererweiterungen und sei f das Minimalpolynom von a. Sei M ein Körper mit einem Homomorphismus $\sigma \colon K \to M$. Sei

$$\Sigma = \{K - Homomorphismen \ \sigma' \colon L \to M\}.$$

Dann ist die Abbildung

$$\Sigma \to \{b \in M \mid f(b) = 0\}, \ \sigma' \mapsto \sigma'(a) = b$$

bijektiv

Beweis. Wir haben die Abbildung $\phi \colon K[X] \to M, X \mapsto b$. Es gilt ϕ lässt sich eindeutig fortsetzen zu $\sigma' \colon K[X]/(f) \to M$ genau dann, wenn $f \in \ker(\phi)$ ist, das heißt wenn f(b) = 0. Dann ist $\sigma'(a) = \sigma'(\bar{X}) = b$.

Beispiel 4.20. $L=M=\mathbb{C}$ und $K=\mathbb{R}$. Dann ist

$$\{\mathbb{R} - \operatorname{Hom} \sigma' \colon \mathbb{C} \to \mathbb{C}\} \stackrel{\sim}{\to} \{b \in \mathbb{C} \mid b^2 + 1 = 0\}, \ \sigma' \mapsto \sigma'(i)$$

also $\operatorname{Aut}(\mathbb{C}/\mathbb{R}) = \{\operatorname{id}, \sigma'\}$ wobei σ' komplexe Konjugation ist.

Satz 4.21. Sei L/K eine algebraische Erweiterung und M ein algebraisch abgeschlossener Körper. Sei weiter $\sigma\colon K\to M$ ein Körperhomomorphismus. Dann existiert eine Fortsetzung von σ zu einem Körperhomomorphismus $\sigma'\colon L\to M$ sodass

kommutiert

Beweis. Fall 1: Sei L = K(a) = K[a] = K[X]/(f). Die Menge der σ' ist bijektiv zur Menge der Nullstellen von f in M. Also existiert σ' .

Fall 2: Sei L/K allgemein. Sei X die Menge der Paare (L', σ') wobei L' ein Körper ist mit $K \subseteq L' \subseteq L$ und σ' eine Fortsetzung von σ . Definiere partielle Ordnung $(L', \sigma') \le (L'', \sigma'')$ durch $L' \subseteq L''$ und $\sigma''|_{L'} = \sigma'$. Sei $X' \subseteq X$ total geordnet. Dann ist

$$\tilde{L} = \bigcup_{(L',\sigma') \in X'} L'$$

ein Körper und zusammen mit $\tilde{\sigma} \colon \tilde{L} \to M$ definiert durch $\tilde{\sigma}(b) = \sigma'(b)$ für $b \in L'$ eine obere Schranke von X'. Nach Zornsches Lemma hat X ein maximales Element (L', σ') . Angenommen $L' \neq L$. Dann wähle $a \in L \setminus L'$ und setze L'' = L'(a). Nach Fall 1 existiert eine Fortsetzung $\sigma'' \colon L'' \to M$ was ein Widerspruch ist. Also ist L' = L.

Korollar 4.22. Seien L/K und M/K zwei algebraische Abschlüsse von K. Dann gibt es einen K-Isomorphismus $L \to M$

Beweis. Nach Satz 4.21 gibt es K-Homomorphismus $\sigma: L \to M$. Dadurch wird M eine algebraische Erweiterung von L. Also ist M/L triviale Erweiterung, dh. σ ist bijektiv. \square

4.3. Zerfällungskörper und normale Erweiterungen.

Definition 4.23. Sei K ein Körper und $\mathcal{F} \subseteq K[X]$ eine Menge von nicht-konstanten Polynomen. Ein Zerfällungskörper ist eine Körpererweiterung L/K sodass jedes $f \in \mathcal{F}$ in L[X] in Linearfaktoren zerfällt und $L = K(a \in \overline{K} \mid f(a) = 0$ für ein $f \in \mathcal{F}$)

Lemma 4.24. Für eine Menge $\mathcal{F} \subseteq K[X]$ nicht-konstanter Polynome existiert ein Zerfällungskörper und ein Zerfällungskörper ist eindeutig bist auf K-Isomorphismus.

Beweis. Sei $L = K(a \in \bar{K} \mid f(a) = 0$ für ein $f \in \mathcal{F}) \subseteq \bar{K}$. Dann ist L ein Zerfällungskörper. Sei M ein weiterer Zerfällungskörper. Dann gibt es nach Satz 4.21 einen K-Homomorphismus $\sigma \colon M \to \bar{K}$. Seien $f \in \mathcal{F}$ und a_1, \ldots, a_n die Nullstellen in \bar{K} von f und b_1, \ldots, b_n die Bilder der Nullstellen von f in M unter σ . Da $\prod_{i=1}^n (X - a_i) = f = \prod_{i=1}^n (X - b_i)$ in $\bar{K}[X]$ ist ohne Einschränkung $a_i = b_i$ für alle i. Somit ist $\sigma(M) = L$ und σ ist ein Isomorphismus $M \to L$. \square

Bemerkung 4.25. Das zeigt: Alle K-Homomorphismen $\sigma: M \to \overline{K}$ haben Bild L.

Beispiel 4.26. Sei $K = \mathbb{Q}$ und $f = X^3 - 2$. In $\mathbb{Q}[X]$ gilt $f = (X - a)(X - \zeta a)(X - \zeta^2 a)$ für $a = \sqrt[3]{2}$ und $\zeta = e^{2\pi i/3}$. Also ist der Zerfällungskörper $L = \mathbb{Q}(a, \zeta a, \zeta^2 a) = \mathbb{Q}(a, \zeta)$ Es ist $\mathbb{Q} \subseteq \mathbb{Q}(a) \subseteq \mathbb{Q}(a, \zeta a)$ und $[\mathbb{Q}(a) : \mathbb{Q}] = 3$ da f das Minimalpolynom ist. Es ist $g = (X - \zeta a)(X - \zeta^2 a)$ das Minimalpolynom von ζa über $\mathbb{Q}(a)$, also ist $[\mathbb{Q}(a, \zeta a) : \mathbb{Q}] = 6$

Definition 4.27. Eine algebraische Körpererweiterung L/K ist normal, wenn jedes irreduzible Polynom in K[X], das in L eine Nullstelle hat in L[X] in Linearfaktoren zerfällt.

Lemma 4.28. Sei L/K algebraisch und $\varphi \colon L \to L$ ein K-Homomorphismus. Dann ist ϕ bijektiv.

Beweis. Immer ist ϕ injektiv. Sei $a \in L$. Dann gibt es $f \in K[X]$ sodass K(a) = K[X]/(f). Seien $a = a_1, \ldots, a_n$ die Nullstellen von f in L. $\varphi|_{K(a_i)} \colon K(a_i) \to L$ gibt n verschiedene K-Homomorphismen $K[X]/(f) \to L$ da $\varphi(a_i) \neq \varphi(a_j)$ für $i \neq j$. Da diese in Bijektion zu der Menge der $\{a_1, \ldots, a_n\}$ stehen gilt für ein $i \colon \varphi|_{a_i}(a_i) = a_1 = a$. Also ist φ bijektiv. \square

Satz 4.29. Sei L/K algebraisch. Dann ist äquivalent:

- (1) L/K ist normal
- (2) L/K ist Zerfällungskörper einer Menge $\mathcal{F} \subseteq K[X]$.
- (3) Für jede Körpererweiterung M/L und jeden K-Homomorphismus $\varphi\colon L\to M$ gilt $\phi(L)=L$
- (4) Für Jeden K-Homomorphismus $\varphi \colon L \to \bar{L}$ gilt $\phi(L) = L$.

Beweis. Gelte 1. Dann sei

$$\mathcal{F} = \{ f \in K[X] \mid f \text{ ist irreduzibel und hat eine Nullstelle in } L \}.$$

Jedes $f \in \mathcal{F}$ zerfällt in L[X] in Linearfaktoren. Sei $a \in L$ mit Minimalpolynom $f \in K[X]$. Dann ist $f \in \mathcal{F}$ also ist L von allen Nullstellen erzeugt. Also ist L Zerfällungskörper. Gelte 2. Sei L/K Zerfällungskörper von \mathcal{F} und $\varphi \colon L \to M$ ein K-Homomorphismus. Für $f \in \mathcal{F}$ und $a \in L$ mit f(a) = 0 gilt $f(\varphi(a)) = 0$ also ist $\varphi(a)$ Nullstelle von f in M. Dann ist $L = K(a \in M \mid f(a) = 0$ für ein $f \in \mathcal{F}$) und somit $\varphi(L) \subseteq L$. Da L/K algebraisch ist, ist φ bijektiv und $\varphi(L) = L$.

3. \Longrightarrow 4 ist klar. Gelte 4. Sei $f \in K[X]$ irreduzibel mit f(a) = 0 für $a \in L$. Die Menge der K-Homomorphismen $\sigma \colon K(a) \to \bar{L}$ ist bijektiv zur Menge $\{b \in \bar{L} \mid f(b) = 0\}$. Zu $b \in \bar{L}$ wähle also $\sigma \colon K(a) \to \bar{L}$. Nach Satz 4.21 gibt es ein $\varphi \colon L \to \bar{L}$, das σ fortsetzt. Dann ist $\varphi(L) = L$. Also ist $b = \sigma(a) = \varphi(a) \in L$. Also zerfällt f in L[X].

Lemma 4.30 (Normalität in Türmen). Seien M/L/K Körpererweiterungen. Es gilt

$$M/K \ normal \implies M/L \ normal.$$

Beweis. Sei M ein Zerfällungskörper von $\mathcal{F} \subseteq K[X]$. Dann ist M/L ein Zerfällungskörper von \mathcal{F} als Teilmenge von L[X].

Definition 4.31. Sei L/K algebraisch. Eine normale Hülle von L/K ist eine Erweiterung M/L sodass M/K normal ist und für jede andere Erweiterung M'/L mit M'/K normal gibt es einen L-Homomorphismus $M \to M'$. Das zeigt: Eine normale Hülle ist eindeutig bis auf Isomorphismus

Satz 4.32. Die normale Hülle einer algebraischen Erweiterung L/K existiert

Beweis. Sei

$$\mathcal{F} = \{ f \in K[X] \text{ irreduzibel sodass } f \text{ eine Nullstelle in } L \text{ hat} \}.$$

Sei M/L Zerfällungskörper von $\mathcal{F} \subseteq L[X]$. Dann ist M/K Zerfällungskörper der selben Menge und somit M/K normal. Sei M'/L mit M'/L normal. Wähle \bar{M}'/M' algebraischen Abschluss. Nach Satz 4.21 gibt es einen L-Hom $\varphi \colon M \to \bar{M}'$. Jedes $f \in \mathcal{F}$ zerfällt in M'[X] und da M von allen Nullstellen erzeugt gilt $\phi(M) \subseteq M'$.

Beispiel 4.33. Eine normale Hülle von $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ ist $\mathbb{Q}(\sqrt[3]{2},\zeta a)$, der Zerfallskörper von x^2-2 .

4.4. Separable Erweiterungen.

Definition 4.34. $f \in K[X]$ heißt separable, wenn $f \in \bar{K}[X]$ keine mehrfachen Nullstellen hat.

Definition 4.35. Die formale Ableitung von $f \in K[X]$ ist $f = \sum_{i=0}^{n} a_i X^i$ ist $f' = \sum_{i=0}^{n} i \cdot a_i X^{i-1}$

Lemma 4.36 (Leibniz-Regel).

$$(fg)' = f'g + fg'$$

Beweis. Reduziere auf $f = X^n$ und $g = X^m$. Dann ist alles klar.

Lemma 4.37. Sei $f \in K[X]$.

- (1) $b \in \bar{K}$ ist mehrfache Nullstelle von $f \iff f(b) = 0 = f'(b) \iff (X b)| \operatorname{ggT}(f, f')$
- (2) f ist separable \iff ggT(f, f') = 1

Beweis. Der ggT ändert sich nicht bei Übergang zu einer Erweiterung L/K, also auch nicht bei \bar{K}/K . 1. ist eine Rechnung und 2. folgt aus 1.

Satz 4.38. Sei $f \in K[X]$ irreduzibel.

- (1) f ist separable $\iff f' \neq 0$ in K[X].
- (2) Wenn K Charakteristik 0 hat, ist f separable.

Beweis.

$$f$$
 separable \iff ggT $(f, f') = 1 \iff f' \neq 0$

da $f' \neq f$. Wenn K Charakteristik 0 hat, dann ist $f' \neq 0$ also ist f separable.

Bemerkung 4.39. Für f irreduzibel gilt: $f' = 0 \iff \operatorname{char} K = p > 0$ und $f = \sum_{i=0}^{n} b_i X^{p^i}$ für $b_i \in K$

Bemerkung 4.40. Sei p Primzahl und $K = \operatorname{Quot}(\mathbb{F}_p[Y])$. Das Polynom $f = X^p - Y \in K[X]$ ist irreduzibel nach Eisenstein für das Primelement $Y \in \mathbb{F}_p[X]$ und in-separable.

Definition 4.41. Sei L/K eine algebraische Körpererweiterung.

- (1) $a \in L$ ist separable über K, wenn das Minimalpolynom von a separable ist.
- (2) L/K ist separable, wenn jedes $a \in L$ separable ist.
- (3) Der Separabilitätsgrad von L/K ist $[L:K]_s = |\{K \text{Hom} : L \to K\}|$

Lemma 4.42. Sei L = K(a) algebraisch über K. Dann gilt

- (1) $[L:K]_s \leq [L:K]$
- (2) $[L:K]_s = [L:K] \iff a \text{ separable ""uber } K$

Beweis. Sei f Minimalpolynom von a sodass $L \cong K[X]/(f)$. Es gilt

$$|\{K - \text{Hom } L \to \bar{K}\}| = |\{b \in \bar{K} \mid f(b) = 0\}| \le \deg(f)$$

und "="genau dann, wenn f separable.

Lemma 4.43. Sei M/L/K endlich. Dann ist $[M:L]_s \cdot [L:K]_s = [M:K]_S$

Beweis. \bar{K} kann als algebraischer Abschluss von M und L aufgefasst werden. Dann gilt

$$[M:L]_s = |\{\psi \colon M \to \bar{K} \mid \psi|_L = \varphi\}|$$

für jeden $\phi \colon L \to \bar{K}$ erfüllt die Abbildung

$$R: \{\psi \colon M \to \bar{K} \mid \psi|_K = id\} \to \{\varphi \colon L \to \bar{K} \mid \varphi|_K = id\}, \ \psi \mapsto \psi|_L$$
$$|R^{-1}\{\varphi\}| = [M \colon L]_s.$$

Also

$$[M:K]_s = |\{\psi: M \to \bar{K} \mid \psi|_K = id\}| = [M:L]_s \cdot [L:K]_s$$

Satz 4.44. Sei L/K endlich.

- (1) $[L:K]_s \leq [L:K]$
- (2) Es ist äquivalent:
 - (a) $[L:K]_s = [L:K]$
 - (b) L/K ist separable
 - (c) L/K ist von separablen Elementen erzeugt

Beweis. (1) Wähle a_1, \ldots, a_r sodass $L = K(a_1, \ldots, a_r)$. Es gilt

$$[L:K] = [L:K(a_1)] \cdot [K(a_1):K]$$

und

$$[L:K]_s = [L:K(a_1)]_s \cdot [K(a_1):K]_s$$

Jetzt folgt 1. mit Induktion.

(2) b) \implies c) ist klar. Gelte c). $L = K(a_1, \ldots, a_r)$ mit a_i separable. Dann ist

$$[K(a_1):K]_s = [K(a_1):K]$$

und nach Induktion $[L:K(a_1)]_s=[L:K(a_1)]$. Also gilt a). Gelte a) und sei $a\in L$. Dann ist

$$[L:K] = [L:K(a_1)] \cdot [K(a_1):K]$$

$$\geq [L:K(a_1)]_s \cdot [K(a_1):K]_s$$

= $[L:K]_s = [L:K]$

Also ist $[K(a_1):K] = [K(a_1):K]_s$ und somit ist a separable. Also gilt b).

Korollar 4.45. Seien M/L/K algebraisch.

$$M/K$$
 separable $\iff M/L$ und L/K separable

Beweis. Sei M/K separable und $a \in M$. Sei $f \in K[X]$ das Minimalpolynom über K und $g \in L[X]$ das Minimalpolynom über L. Dann g|f in L[X] also ist g separable und damit auch a separable über L.

Seien M/L und L/K separable. Sei $a \in M$ und $g \in L[X]$ das Minimalpolynom. Wähle $K \subseteq L' \subseteq L$ sodass L'/K endlich ist und $g \in L'[X]$. Sei M' = L'(a). Dann ist M'/L'/K endlich. Minimalpolynom von a über L' ist g und das ist separable, da M/L separable. Somit ist M'/L' separable. L'/K ist separable das L/K separable. Somit ist ohne Einschränkung M/L/K endlich. Dann zeigt eine Rechnung mit den Graden der Erweiterungen, dass M/K separable ist

Korollar 4.46. Der Zerfällungskörper einer Menge von separablen Polynomen ist eine separable Erweiterung.

Beweis. Sei L/K Zerfällungskörper von $\mathcal{F} \in K[X]$ bestehend aus separablen Polynomen. Zu $a \in L$ gibt es endliche Teilmenge $\mathcal{F}' \subseteq \mathcal{F}$ sodass $a \in L'$ wobei $L' \subseteq L$ Zerfällungskörper von \mathcal{F}' . L'/K ist endlich und von separablen Elementen erzeugt. Somit ist L'/K separable. Insbesondere ist a separable über K.

Korollar 4.47. Die normale Hülle einer separablen Erweiterung ist ebenfalls separable

Beweis. Folgt aus der Konstruktion der normalen Hülle.

4.5. Endliche Körper.

Lemma 4.48. Sei K ein beliebiger Körper der Charakteristik p > 0. Die Abbildung $\phi \colon K \to K$, $\phi(x) = x^p$ ist ein Ringhomomorphismus. Wenn K endlich ist, dann ist ϕ bijektiv.

Beweis. Es ist

$$\phi(x+y) = \sum_{i=0}^{p} \binom{p}{i} x^{i} y^{p-i} = y^{p} + x^{p} = \phi(x) + \phi(y)$$

 ϕ ist immer injektiv. Wenn K endlich ist, dann automatisch bijektiv.

Definition 4.49. Sei $q = p^r$ und \mathbb{F}_q ein Zerfällungskörper von $x^q - x$ über \mathbb{F}_p .

Satz 4.50. Sei $q = p^r$ für eine Primzahl p. \mathbb{F}_q ist ein endlicher Körper mit q Elementen und jeder endlich Körper ist isomorph zu \mathbb{F}_q für ein $q = p^r$ wobei $p = \operatorname{char} K$.

Beweis. Sei K irgendein endlicher Körper der Charakteristik p>0 und $b\in K$. Es ist $(X^q-X)(b)=0\iff \phi^r(b)=b$. Dann ist $\{x\in K\mid \phi^r(x)=x\}$ ein Teilkörper von K. In $\mathbb{F}_q[X]$ zerfällt X^q-X in Linearfaktoren. Die Ableitung ist $(X^q-X)'=-1$ was teilerfremd ist zu X^q-X . Also ist X^q-X separable. Also hat X^q-X q-viele verschiedene Nullstellen, die einen Teilkörper $L\subseteq \mathbb{F}_q$ bilden. Somit $\mathbb{F}_q=L$ und $|\mathbb{F}_q|=q$. Sei K ein endlicher Körper der Charakteristik p. Dann ist $[K:\mathbb{F}_p]=r<\infty$ und damit $|K|=p^r=q$. Für $a\in K$ gilt $a^q=a$. Denn wenn a=0 dann ist das richtig und wenn $a\neq 0$ dann ist $a\in K^*$ und $a\in K$ 0 und somit gibt es Homomorphismus $a\in K$ 2 mit $a\in K$ 3 und somit gibt es Homomorphismus $a\in K$ 4 mit $a\in K$ 6 mit $a\in K$ 6 und $a\in K$ 8. Das heißt $a\in K$ 9 und somit gibt es

Satz 4.51. Sei K ein beliebiger Körper und $G \subseteq K^*$ eine endliche Untergruppe. Dann ist G zyklisch.

Beweis. Sei n = |G|. Der Struktursatz für endlich abelsche Gruppen impliziert

$$G \cong \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z}$$

mit $m_1|m_2|\dots|m_r$ und $n=\prod_{i=1}^r m_i$. Für jedes $a\in G$ gilt $a^{m_r}=1$. Sei also $f=X^{m_r}-1$. Jedes $a\in G$ ist Nullstelle von f und f hat höchstens m_r verschiedene Nullstellen. Somit ist $n=m_r$ und $G\cong \mathbb{Z}/m_r\mathbb{Z}$ zyklisch.

Korollar 4.52. Wenn K ein endlicher Körper ist, dann ist K^* zyklisch mit $K^* \cong \mathbb{Z}/(q-1)\mathbb{Z}$

Beispiel 4.53. Sei $K = \mathbb{C}$ und $G = \{z \in \mathbb{C} \mid z^n = 1\} = \mu_n(\mathbb{C})$. Dann ist G zyklisch. $x^n - 1$ ist separable da die Ableitung nicht 0 ist. Somit ist $G \cong \mathbb{Z}/n\mathbb{Z}$ $G = \{e^{2\pi i k/n} \mid 0 \le k \le n-1\}$ erzeugt von $e^{2\pi i/n}$. Es gilt: $e^{2\pi i k/n}$ erzeugt $\mu_n(\mathbb{C})$ genau dann wenn $\operatorname{ggT}(k,n) = 1$.

4.6. Galoiserweiterungen.

Definition 4.54. Eine Körpererweiterung L/K ist eine Galoiserweiterung, wenn L/K normal und separable ist. In dem Fall ist $Gal(L/K) = Aut_K(L)$

Satz 4.55. Sei L/K endlich. Dann ist $|\operatorname{Aut}_K(L)| \leq [L:K]$ und Gleichheit gilt genau dann, wenn L/K Galoisch.

Beweis. Wähle algebraischen Abschluss \bar{L}/L . Es gilt

$$\operatorname{Aut}_K(L) = \operatorname{Hom}_K(L, L) \subseteq \operatorname{Hom}_K(L, \bar{L})$$

Somit $|\operatorname{Aut}_K(L)| \leq [L:K]_s \leq [L:K]$. Gleichheit in 1 ist genau dann, wenn L/K normal und Gleichheit in 2 genau dann, wenn L/K separable.

Beispiel 4.56. Sei $L = \mathbb{Q}(\sqrt[3]{2}, \zeta)/\mathbb{Q}$ wobei $\zeta = e^{2\pi i/3}$. Es ist [L:K] = 6 und L/K Galoisch. Sei $N = \{a, \zeta a, \zeta^2 a\}$ und $\sigma \in \operatorname{Gal}(L/K)$ $\sigma(N) \subseteq N$. Haben also

$$\psi \colon \operatorname{Gal}(L/K) \to S(N) \cong S_3, \ \sigma \mapsto \sigma|_N$$

 ψ ist injektiv denn σ ist Identität auf \mathbb{Q} also muss es sich auf Erzeugern unterscheiden. Da $|\operatorname{Gal}(L/K)| = [L:K] = 6 = |S_3|$ ist ψ bijektiv.

Definition 4.57. Sei L ein Körper und $G \subseteq \operatorname{Aut}(L)$ Untergruppe. Der Körper der G-Invarianten ist $L^G = \{x \in L \mid \sigma(x) = x \ \forall \sigma \in G\}$

Lemma 4.58. Wenn L/K endlich Galoisch ist mit G = Gal(L/K), dann ist $K = L^G$.

Beweis. Es gilt $K \subseteq L^G \subseteq L$ und $G \subseteq \operatorname{Aut}_{L^G}(L)$. Es ist L/L^G Galoisch und deshalb

$$[L:K] \ge [L:L^G] = |\operatorname{Aut}_{L^G}(L)| \ge |G| = [L:K]$$

Somit $[L^G:K]=1$ und $L^G=K$.

Satz 4.59. Sei $G \subseteq \operatorname{Aut}(L)$ eine endliche Untergruppe und $K = L^G$. Dann ist L/K Galoisch und [L:K] = |G| und $\operatorname{Gal}(L/K) = G$.

Beweis. Sei $b \in L$ und $N \subset L$ die G-Bahn von b, das heißt $N = \{\sigma(b) \mid \sigma \in G\} = \{b_1, \ldots, b_r\}$ wobei r = |N|. Sei $f = \prod_{i=1}^r (X - b_i) \in L[X]$. Es ist

$$f^{\sigma} = \prod_{i} (X - b_i)^{\sigma} = \prod_{i} (X - \sigma(b_i)) = \prod_{i} (X - b_i) = f$$

für alle $\sigma \in G$. Also ist $f \in K[X]$ und b algebraisch über K und separable da f in verschiedene Nullstellen zerfällt. Also ist L/K Galoisch. Angenommen [L:K] > |G|. Sei $G = \{\sigma_1, \ldots, \sigma_n\}$. Wähle $y_1, \ldots, y_m \in L$ K-linear unabhängig und sei A die Matrix $A = (\sigma_i(y_j))_{i,j} \in M_{n \times m}(L)$. Aus m > n folgt es gibt ein $b \in L^m \setminus \{0\}$ im Kern von A. Sei $b = (b_1, \ldots b_m)$ und $\sigma(b) = (\sigma(b_1), \ldots, \sigma(b_m))$. Dann ist $A \cdot \sigma(b) = 0$. Sei $\ell(b)$ die Anzahl der j mit $b_j \neq 0$ Wähle also $b \neq 0$ mit Ab = 0 und $\ell(b)$ minimal. Ohne Einschränkung $b_j = 1$ für ein j. Für $\sigma \in G$ ist $\ell(b - \sigma(b)) < \ell(b)$ da $\sigma(1) = 1$ und $A(b - \sigma(b)) = 0$. Da $\ell(b)$ minimal ist $b = \sigma(b)$ und somit $b \in K^m$. Da Ab = 0 ist $\sum_{j=1}^m y_j b_j = 0$ und somit sind die y_i linear abhängig Was ein Widerspruch darstellt. Also ist [L:K] = |G| und damit

$$|G| \le |\operatorname{Gal}(L/K)| = [L:K] = |G|$$

Beispiel 4.60. \mathbb{F}_q ist Galoisch über \mathbb{F}_p . Sei $\phi \colon \mathbb{F}_q \to \mathbb{F}_q, \phi(x) = x^p$ der Frobenius. Es ist $G = \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p) = \langle \phi \rangle$, denn $\phi(x) = x \iff x^p - x = 0$ hat nur p verschiedene Lösungen. Also ist $\mathbb{F}_p \subseteq \mathbb{F}_q^{\langle \phi \rangle}$ eine Gleichheit. Der Satz zeigt, dass G von ϕ erzeugt ist.

Satz 4.61 (Galoiskorrespondenz). Sei L/K eine endliche Galoiserweiterung und G = Gal(L/K).

(1) Folgende Abbildungen sind zueinander inverse Bijektionen:

$$\{\textit{Untergruppen } H \subseteq G\} \xrightarrow[\text{Gal}(L/M) \leftarrow M]{} \{\textit{Zwischenk\"{o}rper } K \subseteq M \subseteq L\}$$

- (2) Wenn H mit M korrespondiert, dann ist [M:K] = [G:H] oder äquivalent [L:M] = |H|
- (3) Wenn $\sigma \in G$ ist und M zu H korrespondiert, dann korrespondiert $\sigma(M)$ zu $\sigma H \sigma^{-1}$
- (4) wenn H_1 zu M_1 korrespondiert und H_2 zu M_2 korrespondiert, dann ist

$$H_1 \subseteq H_2 \iff M_1 \supseteq M_2$$

(5) M = K korrespondiert zu H = G und M = L korrespondiert zu $H = \{e\}$.

Beweis.

also $G = \operatorname{Gal}(L/K)$

(1) Man prüft leicht, dass beide Abbildungen wohldefiniert sind. Wenn $K \subseteq M \subseteq L$ Zwischenkörper ist, dann ist $M = L^{\operatorname{Gal}(L/M)}$ wegen Lemma 4.58. Wenn $H \subseteq G$ eine Untergruppe ist, dann ist $H = \operatorname{Gal}(L/L^H)$ nach Satz 4.59.

$$[M:K][L:M] = [L:K] = |G| = |H|[G:H]$$

und
$$[L:M] = |\operatorname{Gal}(L/M)| = H$$

(3) Sei $\tau \in G$

$$\tau \in \operatorname{Gal}(L/M) \iff \tau(b) = b, \ \forall b \in M$$

$$\iff \sigma \tau \sigma^{-1} \sigma(b) = \sigma(b), \ \forall b \in M$$

$$\iff \sigma \tau \sigma^{-1}(c) = c, \ \forall c \in \sigma(M)$$

$$\iff \sigma \tau \sigma^{-1} \in \operatorname{Gal}(L/\sigma(M))$$

- (4) Klar
- (5) klar

Satz 4.62. Sei L/K endlich Galoisch. Korrespondiere M zu H in der Galoiskorrespondenz. Es gilt

$$M/K$$
 Galoisch $\iff M/K$ normal $\iff H \subseteq G$ ist normale Untergruppe.

In dem Fall gilt $Gal(M/K) \cong G/H$.

 $Beweis.\ L/K$ separable $\implies M/K$ separable. Somit gilt die erste Äquivalenz. Jeder K-Homomorphismus

$$\sigma \colon M \to \bar{L}$$

hat Fortsetzung zu einem K-Homomorphismus

$$\tilde{\sigma} \colon L \to \bar{L}$$
.

Da L/K normal ist, gilt $\tilde{\sigma}(L) = L$ das heißt $\tilde{\sigma} \in \operatorname{Aut}(L/K) = \operatorname{Gal}(L/K) = G$

$$M/K$$
 normal $\iff \forall \sigma \in \operatorname{Hom}_K(M, \overline{L}) : \sigma(M) = M$
 $\iff \forall \tilde{\sigma} \in G : \tilde{\sigma}(M) = M$
 $\iff \operatorname{F\"{ur}} \text{ jedes } \tilde{\sigma} \in G : \tilde{\sigma}H\tilde{\sigma}^{-1} = H$
 $\iff H \subseteq G \text{ normal.}$

Sei M/K normal. Für $g \in G$ ist g(M) = M. Somit haben wir einen Homomorphismus von Gruppen $\psi \colon \operatorname{Gal}(L/K) \to \operatorname{Gal}(M/K), \sigma \mapsto \sigma|_M$ Jedes $\tau \in \operatorname{Gal}(M/K) = \bar{G}$ hat Fortsetzung zu $\bar{\tau} \in \operatorname{Gal}(L/K)$. Somit ist ψ surjektiv. ψ induziert $\operatorname{Gal}(L/K)/\ker(\psi) \xrightarrow{\sim} \operatorname{Gal}(M/K)$ und

$$\ker(\psi) = \{g \in G \mid g|_M = \operatorname{id}\} = \{g \in \operatorname{Aut}(L) \mid g|_M = \operatorname{id}\} = \operatorname{Gal}(L/M) = H.$$

Korollar 4.63. Wenn L/K endlich separable ist, dann hat L/K nur endlich viele Zwischenkörper.

Beweis. Sei \bar{L}/K eine normale Hülle von L/K. \bar{L}/K ist Galoisch. Zwischenkörper von L/K sind Zwischenkörper von \bar{L}/K . Diese korrespondieren zu Untergruppen von $G = \operatorname{Gal}(\bar{L}/K)$. Die letzte Menge ist endlich.

Beispiel 4.64. Sei L Zerfällungskörper von X^3-2 über $K=\mathbb{Q}$. Die Abbildung $\psi\colon G\to S_3$ sei definiert durch Formel $\sigma(a_i)=a_{\psi(\sigma)(i)}$ für $a_1=\sqrt[3]{2},\ a_2=\zeta a_1,\ a_3=\zeta^2 a_1$. Untergruppen von G sind

Das entspricht den Teilkörpern

Satz 4.65 (Satz vom primitiven Element). Sei L/K eine endliche separable Erweiterung. Dann gibt es ein $a \in L$ mit L = K(a).

Beweis. Wenn K endlich ist, dann ist $L = \mathbb{F}_q$ endlich. $L^* = \mathbb{Z}/(q-1)\mathbb{Z}$ ist zyklisch. Sei $a \in L^*$ Erzeuger als Gruppe. Dann ist $L = \{0\} \cup \{a^n \mid n \in \mathbb{N}\}$ und somit L = K(a). Wenn K unendlich wähle $a \in L$ sodass [K(a):K] maximal ist und sei $b \in L$. Für $c \in K$ sei $M_C = K(a+cb)$. Da es nach Korollar 4.63 nur endlich viele Zwischenkörper gibt, gibt es nur endlich viele Möglichkeiten für M_C . Somit gibt es $c_1 \neq c_2$ mit $M_{c_1} = M_{c_2}$. Dann ist $a + c_1b$, $a + c_2b \in K(a + c_1b) = K(a + c_2b)$ Also ist $(c_1 - c_2)b \in M_{c_1}$ also ist $b \in M_{c_1}$ und damit $a \in M_{c_1}$ Somit $K(a) \subseteq K(a+c_1b)$ und wegen Maximalität von [K(a):K] ist $K(a) = M_{c_1}$. Somit $b \in K(a)$ also $b \in K(a)$.

Definition 4.66. Sei L/K eine Körpererweiterung und M_1, M_2 zwei Zwischenkörper. Die Komposition M_1M_2 ist der kleinste Teilkörper von L, der M_1 und M_2 enthält.

Satz 4.67. Sei L/K eine endliche Galoiserweiterung und G = Gal(L/K). Wenn M_1, M_2 jeweils zu H_1, H_2 korrespondieren, dann korrespondiert M_1M_2 zu $H_1 \cap H_2$ und $M_1 \cap M_2$ korrespondiert zu $\langle H_1, H_2 \rangle$.

Beweis. Der Kleinste Teilkörper der M_1 und M_2 enthält korrespondiert zu größten Untergruppe von G, die in H_1 und H_2 liegt. Analog folgt die andere Aussage.

Satz 4.68 (Translationssatz). Sei L/K eine endliche Galoiserweiterung und $K \subseteq M \subseteq L$ sodass M/K Galoisch. Sei $K \subseteq K' \subseteq L$ ein Zwischenkörper und M' = MK' Kompositum. Dann ist M'/K' Galoisch und $Gal(M'/K') \cong Gal(M/M \cap K')$. Insbesondere ist $[M': K'] = [M: K' \cap M]$

Beweis. M/K ist der Zerfällungskörper von separablen Polynomen $f \in K[X]$. Dann ist M'/K' der Zerfällungskörper von den selben Polynomen aufgefasst in K'[X]. Somit ist M'/K' Galoisch. Für $\sigma \in \operatorname{Gal}(M'/K')$ ist $\sigma|_K = id_K$. Da M/K normal ist, folgt $\sigma(M) = M$ das heißt $\sigma|_M \in \operatorname{Gal}(M/K)$. Das gibt Gruppenhomomorphismus

$$\psi \colon \operatorname{Gal}(M'/K') \to \operatorname{Gal}(M/K), \sigma \mapsto \sigma|_M$$

. Angenommen $\psi(\sigma)=id$ Dann ist $\sigma|_{MK'}=id$ also $\sigma=id$. Also ist ψ injektiv. Sei $H\subseteq \mathrm{Gal}(M/K)$ das Bild. Dann ist

$$M^{H} = M^{\psi(\operatorname{Gal}(M'/K')}$$

$$= \{x \in M \mid \sigma(x) = x \ \forall \sigma \in \operatorname{Gal}(M'/K')\}$$

$$= M \cap \{x \in M' \mid \sigma(x) = x \ \forall \sigma \in \operatorname{Gal}(M'/K')\}$$

$$= M \cap K'$$

Also ist $H = \operatorname{Gal}(M/M \cap K')$

4.7. Galoisgruppe einer Gleichung.

Definition 4.69. Sei $f \in K[X]$ ein separables Polynom und L/K ein Zerfallskörper von f. Die Galoisgruppe von f ist Gal(L/K)

Bemerkung 4.70. Sei N die Menge der Nullstellen von f in L. Haben injektiven Gruppenhomomorphismus $Gal(L/K) \to S(N) \cong S_n, \ \sigma \mapsto \sigma|_N$ wobei $n = \deg(f) = |N|$. Das zeigt

Satz 4.71. Wenn L/K Zerfällungskörper eine separablen Polynoms f von Grad n ist, dann $Gal(L/K) \rightarrow S_n$ injektiv.

Definition 4.72 (Diskriminante). Sei $f \in K[X]$ ein normiertes Polynom,

$$f = \prod_{i=1}^{n} (X - \alpha_j)$$

in $\bar{K}[X]$ und $n = \deg(f)$. Sei

$$\delta = \prod_{\substack{i,j \in \{1,\dots,n\}\\i < j}} (\alpha_i - \alpha_j) \in \bar{K}.$$

Dann ist $\Delta = \delta^2 \in \bar{K}$ die Diskriminante von f

Lemma 4.73. Es ist $\Delta \in K$ und es gilt

$$\Delta \neq 0 \iff f \text{ ist separable.}$$

Beweis. Sei $\Delta \neq 0$ und L/K Zerfällungskörper von f. Dann ist L/K Galoisch und für $\sigma \in G = \operatorname{Gal}(L/K)$ gilt

$$\sigma(a_i) - \sigma(\alpha_i) = \alpha_{i'} - \alpha_{i'} = -(\alpha_{i'} - \alpha_{i'})$$

und einer der letzten beiden Terme taucht als Faktor in δ auf. Also ist $\sigma(\delta) = \pm \delta$ und damit $\sigma(\Delta) = \Delta$. Also gilt $\Delta \in L^G = K$.

Bemerkung 4.74. Wenn f separablel, dann ist für $\sigma \in Gal(L/K)$

$$\sigma(\delta) = \operatorname{sign}(\sigma)\delta$$

wobei wir σ als Element in S_n auffassen.

Bemerkung 4.75. sei $f \in K[X]$ und $n = \deg(f)$.

- (1) Sei n = 2 und $f = X^2 + pX + q = (X \alpha_1)(X \alpha_2) = X^2 (\alpha_1 + \alpha_2)X + \alpha_1\alpha_2$ und $\Delta = (\alpha_1 \alpha_2)^2 = (\alpha_1 + \alpha_2)^2 4\alpha_1\alpha_2 = p^2 4q$
- (2) Sei n = 3 und char $(K) \notin \{2,3\}$ und $f = X^3 + a_2X^2 + a_1X + a_0$. Für $Y = X + \frac{1}{3}a_2$ erhalten wir können wir X ersetzen und behalten die gleiche Diskrimminante. Wir bekommen

$$f = (Y - \frac{1}{3}a_2)^3 + a_2(Y - \frac{1}{3}a_2)^2 + a_1(Y - \frac{1}{3}a_2) + a_0$$

= Y³ + aY + b

für irgendwelche $a, b \in K$. Sei also $f = X^3 + aX + b$. Eine ähnliche Rechnung wie für n = 2 ergibt $\Delta = -4a^3 - 27b^2$

Satz 4.76. Sei char $(K) \notin \{2,3\}$ und $f = X^3 + aX + b \in K[X]$ irreduzibel. Dann ist ein Zerfällungskörper L/K von f Galoisch. Es ist $Gal(L/K) \subseteq S_3$.

- (1) Δ ist Quadrat in $K \implies G = A_3 \cong \mathbb{Z}/3\mathbb{Z}$
- (2) Δ kein Quadrat in $K \implies G = S_3$

Beweis. Da f irreduzibel gilt für eine Nullstelle α von f dass $[K(\alpha):K]=3$ ist. Also ist $[L:K]\in\{3,6\}$. Die einzigen Untergruppen von S_3 mit 3 bzw. 6 Elementen sind A_3 bzw S_3

$$G = A_3 \iff G = \ker(\text{sign} \colon S_3 \to \{\pm 1\})$$

 $\iff \forall \sigma \in G \colon \text{sign}(\sigma) = 1$
 $\iff \forall \sigma \in G \colon \sigma(\delta) = \delta$
 $\iff \delta \in L^G = K$
 $\iff \Delta \text{ ist Quadrat in K}$

Beispiel 4.77. Sei $f = X^3 - a$ wobei a keine dritte Potenz in $K = \mathbb{Q}$ ist. f hat keine Nullstelle also ist f irreduzibel. $\Delta = -27a^2$ ist kein Quadrat in \mathbb{Q} . Also ist $Gal(L/K) = S_3$

Lemma 4.78. Sei R faktoriell und $g, h \in K[X]$ normiert und sei $K = \operatorname{Quot}(R)$. Wenn $g \cdot h \in R[X]$ dann ist $g, h \in R[X]$.

Beweis. Es ist $g/c(g), h/c(h) \in R[X]$. Also sind $1/c(g), 1/c(h) \in R$ da g, h normiert. Es ist 1 = c(gh) = c(g)c(h) also ist $1/c(g), 1/c(h) \in R^*$ also ist $c(g), c(h) \in R^*$ also ist $h, g \in R[X]$. \square

Korollar 4.79. Wenn $f \in \mathbb{Z}[X]$ normiert ist und $a \in \mathbb{Q}$ eine Nullstelle von f, dann ist $f = (X - a) \cdot g$, wobei g normiert ist. Dann ist $a \in \mathbb{Z}$ und $g \in \mathbb{Z}$.

Beispiel 4.80. $X^3 - 3x + 1$ mögliche Nullstellen in \mathbb{Q} sind Teiler von 1 in \mathbb{Z} . Das sind aber keine Nullstellen, also ist f irreduzibel in $\mathbb{Q}[X]$. $\Delta = -4(-3)^3 - 27 \cdot 1^2 = 3^4$ ist Quadrat, also $\mathrm{Gal}(L/K) = A_3$

Definition 4.81. Sei K ein Körper und $\mu_n(K) = \{x \in K \mid x^n = 1\}$ Gruppe der n-ten Einheitswurzeln in K.

Satz 4.82. Sei char(K) | / n | Dann ist $\mu_n(\bar{K})$ zyklisch von Ordnung n.

Beweis. $f = X^n - 1$ und $f' = nX^{n-1} \neq 0$. Einzige Nullstelle von f' ist x = 0 aber $f(0) \neq 0$. Somit ist ggT(f, f') = 1 und damit f separabel.

Definition 4.83. Sei char(K) $\not| n$. Ein $\zeta \in \mu_n(K)$ heißt primitive n-te Einheitswurzel, wenn ζ die Gruppe $\mu_n(\bar{K})$ erzeugt. Sei $K(\zeta_n) = K(\mu_n(\bar{K}))$ der Zerfällungskörper von $x^n - 1$. $K(\zeta_n)$ heißt der n-te Kreisteilungskörper über K.

Lemma 4.84. Sei G eine zyklische Gruppe mit |G| = n. Dann ist $\operatorname{End}(G) \cong \mathbb{Z}/n\mathbb{Z}$ als Ring und $\operatorname{Aut}(G) \cong (\mathbb{Z}/n\mathbb{Z})^*$ als Gruppe.

Beweis. Wähle Isomorphismus $\psi \colon \mathbb{Z}/n\mathbb{Z} \to G$ Wenn $f \colon G \to G$ Endomorphismus ist, dann ist $\psi^{-1}f\psi$ ein Endomorphismus von $\mathbb{Z}/n\mathbb{Z}$. somit $End(G) \cong End(\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z}$ denn Endomorphismen eindeutig bestimmt durch f(1) = a.

Definition 4.85. Die Anzahl der zu n teilerfremden Zahlen in $\{0, 1, \dots, n-1\}$ ist

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|.$$

Die Funktion φ heißt Eulersche φ -Funktion

Lemma 4.86. Es gilt

- (1) $ggT(n,m) = 1 \implies \varphi(nm) = \varphi(n)\varphi(m)$
- (2) $\varphi(\text{kgV}(n,m))\varphi(\text{ggT}(n,m)) = \varphi(n)\varphi(m)$

(3) Wenn $n = \prod_{i=1}^r p_i^{e_i}$ wobei p_i paarweise verschiedene Primzahlen, dann ist

$$\varphi(n) = \prod_{i=1}^{n} \varphi(p_i^{e_i}) = \prod_{i=1}^{n} (p_i - 1) p_i^{e_i - 1}$$

Beweis. Nach Chinsesischem Restzatz ist $\mathbb{Z}/nm\mathbb{Z}\cong\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/m\mathbb{Z}$ also gilt die erste Aussage. Die zweite Aussage folgt aus der ersten. Für die dritte reicht $\varphi(p^e)=p^{e-1}(p-1)$ für eine Primzahl p. Nicht-Einheiten in $\mathbb{Z}/p^e\mathbb{Z}$ sind $0,p,2p,\ldots,(p^{e-1}-1)p$, das sind also p^{e-1} viele. Somit $|(\mathbb{Z}/p^e\mathbb{Z})^*|=p^e-p^{e-1}$

Satz 4.87. Sei $L = K(\zeta_n)/K$. Die Abbildung

$$\psi \colon \operatorname{Gal}(L/K) \to \operatorname{Aut} \mu_n(\bar{K}), \ \sigma \mapsto \sigma|_{\mu_n(L)}$$

ist ein injektiver Gruppenhomomorphismus.

Beweis. ψ ist injektiv, da L/K von $\mu_n(L)$ erzeugt ist.

Korollar 4.88. Sei

$$\phi \colon (\mathbb{Z}/n\mathbb{Z})^* \to Aut(\mu_n(\bar{K})), \ a \mapsto (\mu_n(\bar{K}) \to \mu_n(\bar{K}), \ \zeta \mapsto \zeta^a)$$

der Isomorphismus aus Lemma 4.84. Dann ist

$$\chi = \phi^{-1}\psi \colon G \to (\mathbb{Z}/n\mathbb{Z})^*$$

gegeben durch

$$\zeta^{\chi(\sigma)} = \zeta^{\phi^{-1}(\sigma|_{\mu_n(\bar{K})})} = \sigma(\zeta).$$

Insbesondere ist χ injektiv und $\sigma(\zeta_n) = \zeta_n^{\chi(\sigma)}$ und dadurch $\chi(\sigma)$ schon bestimmt.

Korollar 4.89. Gal($K(\zeta_n)/K$) ist eine abelsche Gruppe.

Beispiel 4.90. $K = \mathbb{R}$ and $n \geq 3$. Dann ist $\mu_n(\mathbb{C}) \subsetneq \mathbb{R}$ und somit $K(\mu_n(\mathbb{C})) = \mathbb{C}$. Gal(\mathbb{C}/\mathbb{R}) = {id, σ } wobei σ die komplexe Konjugation ist. Es ist $\chi(\sigma) = -1$ denn für $\zeta \in \mu_n(\mathbb{C})$ ist $\sigma(\zeta) = \bar{\zeta} = \zeta^{-1}$

Satz 4.91. Sei $q = p^r$ für eine Primzahl p und L/\mathbb{F}_q eine endliche Galoiserweiterung. Dann ist $G = \operatorname{Gal}(L/\mathbb{F}_q)$ von ϕ_q erzeugt, wobei $\phi_q(x) = x^q$.

Beweis. \mathbb{F}_q ist Zerfällungskörper von $x^q - x$ über \mathbb{F}_p und $\mathbb{F}_q = \{x \in L \mid \phi_q(x) = x\}$. Somit ist $\phi_q \in G$. Für $H = \langle \phi_q \rangle \subseteq G$ ist dann $L^H = \mathbb{F}_q = L^G$ also ist H = G.

Korollar 4.92. Sei $q = p^r$ und $n \in \mathbb{N}$ mit $p \mid n$. Sei $L = \mathbb{F}_q(\zeta_n)$ wobei $\zeta_n \in \overline{\mathbb{F}}_q$ primitive n-te Einheitswurzel. Sei χ : Gal $(L/\mathbb{F}_q) \to (\mathbb{Z}/n\mathbb{Z})^*$, $\phi_q \mapsto k = \chi(\phi_q)$ wie in Korollar 4.88. Dann ist

$$|\operatorname{Gal}(L/\mathbb{F}_a)| = \operatorname{ord}(\phi_a) = \operatorname{ord}(\chi(\phi_a)) = \operatorname{ord}(q \in (\mathbb{Z}/n\mathbb{Z})^*)$$

Beispiel 4.93. Sei n = 12 und p = 7. Es ist $7^2 = 49 = 48 + 1$ also ist die Ordnung von 7 gleich 2. Also $[\mathbb{F}_7(\zeta_{12}) : \mathbb{F}_7] = |\operatorname{Gal}(..)| = 2$ und somit $\mathbb{F}_7(\zeta_{12}) = \mathbb{F}_{49}$

Satz 4.94. Der Homomorphismus χ : Gal($\mathbb{Q}(\zeta_n/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*$ aus Korollar 4.88 ist bijektiv, das heißt $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n)$.

Korollar 4.95. Für $n, m \in \mathbb{Z}$ mit ggT(n, m) = d und kgV(n, m) = k qilt

$$\mathbb{Q}(\zeta_n) \cap \mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_d)$$

und

$$\mathbb{Q}(\zeta_n)\mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_k)$$

Beweis. Es ist $\mathbb{Q}(\zeta_k) \supseteq \mathbb{Q}(\zeta_n)\mathbb{Q}(\zeta_m)$. Sei ζ_n eine primitive n-te Einheitswurzel und ζ_m primitive m-te Einheitswurzel und sei d=an+bm für $a,b\in\mathbb{Z}$. Dann ist $\xi=\zeta_n^b\zeta_m^a$ primitive k-te Einheitswurzel, denn $\xi^k=1$ und wenn $\xi^s=1$ ist, dann ist $\zeta_n^{sb}=\zeta_m^{-sa}$ woraus $n\mid sbm$ und somit $n\mid sd$ folgt. Also $n/d\mid s$. Analog $m/d\mid s$ also folgt zusammen $k\mid s$. Also gilt

$$\mathbb{Q}(\zeta_k) = \mathbb{Q}(\zeta_n)\mathbb{Q}(\zeta_m).$$

Außerdem gilt $\mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\zeta_n) \cap \mathbb{Q}(\zeta_m)$. Für $M = \mathbb{Q}(\zeta_n)$, $K' = \mathbb{Q}(\zeta_n)$, $K = \mathbb{Q}$ und M' = MK' gilt nach Satz 4.68

$$\varphi(k)\varphi(d) = \varphi(n)\varphi(m)$$

$$= [M:K] \cdot [K':K]$$

$$= [M':K][K' \cap M:K]$$

$$= \varphi(k)[K' \cap M:K]$$

Also $K' \cap M = \mathbb{Q}(\zeta_d)$

Definition 4.96. Sei $n \in \mathbb{N}$. Das n-te Kreisteilungspolynom ist

$$\phi_n = \prod_{\substack{\zeta \in \mu_n(\mathbb{C}) \\ \text{primitiv}}} (X - \zeta) = \prod_{k \in (\mathbb{Z}/n\mathbb{Z})^*} (X - \zeta_n^k) \in \mathbb{C}[X]$$

für $\zeta_n = e^{2\pi i/n}$

Lemma 4.97. Es gilt

$$X^n - 1 = \prod_{d|n} \phi_d$$

Beweis. Es ist

die Aussage.

$$X^n - 1 = \prod_{\zeta \in \mu_n(\mathbb{C})} (X - \zeta)$$

und jedes ζ ist eine primitive d-te Einheitswurzel für $d = \operatorname{ord}(\zeta)$ und jede primitive d-te Einheitswurzel für $d \mid n$ ist ein Element von $\mu_n(\mathbb{C})$. Dann impliziert

$$\mu_n(\mathbb{C}) = \coprod_{d|n} \{ \zeta_d \text{ primitive } d\text{-te Einheitswurzel} \}$$

Lemma 4.98. Es ist $\phi_d \in \mathbb{Z}[X]$ und ϕ_d ist das Minimalpolynom von ζ_d über \mathbb{Q} .

Bemerkung 4.99. Für
$$n = p$$
 prim gilt $\phi_p = (X^p - 1)/(X - 1) = \sum_{k=0}^{p-1} X^k$

Beispiel 4.100. $\mathbb{Q}(\zeta_9)/\mathbb{Q}$ hat Galoisgruppe $(\mathbb{Z}/9\mathbb{Z})^*$ mit $\phi(9)=6$ Elementen. Der ??Satz:StuktEndlAb] liefert

$$G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$$

und das hat die vier Untergruppen $\{0\}$, $\mathbb{Z}/2\mathbb{Z} \times \{0\}$, $\{0\} \times \mathbb{Z}/3\mathbb{Z}$. Das entspricht den Untergruppen $\{1\}$, $\langle -1 \rangle$, $\langle 4 \rangle$, G. Es ist $\chi(\sigma) = -1$ für die komplexe Konjugation $\sigma : \mathbb{C} \to \mathbb{C}$. Also ist für $L = \mathbb{Q}(\zeta_9)$

$$L^{\langle -1 \rangle} = L \cap \mathbb{C}^{\langle \sigma \rangle} = L \cap \mathbb{R} = \mathbb{Q}(\zeta_9 + \zeta_9^{-1})$$

Wobei die letzte Gleichung gilt, da für $b = \zeta_9 + \zeta_9^{-1}$

$$b\zeta_9 = \zeta_9^2 + 1$$

also ist $\zeta_9^2 - b\zeta + 1 = 0$ und somit $[\mathbb{Q}(\zeta_9) : \mathbb{Q}(b)] \leq 2$. Da $\mathbb{Q}(\zeta_3) \subseteq \mathbb{Q}(\zeta_9)$ und $[\mathbb{Q}(\zeta_3) : \mathbb{Q}] = 2$ folgt $L^{\langle 4 \rangle} = \mathbb{Q}(\zeta_3)$.

4.8. Konstruktion mit Zirkel und Lineal. Starte mit einer Menge von Punkten in $\mathbb{R}^2 = \mathbb{C}$ Erlaubte Konstruktionen: Geraden durch 2 Verschiedene Punkte die gegeben sind und Kreise durch 2 Punkte, einer davon der Mittelpunkt, und Schnittpunkte von 2 Objekten dieser Art.

Beispiel 4.101. Man kann gleichseitige Dreiecke konstruieren.

Bemerkung 4.102. Klassische Probleme sind

(1) Winkeldreiteilung: Wenn P, R_1, R_2, R_3 gegeben sind, suche R_3 sodass $3\alpha = \beta$.

- (2) Würfeldoppelung: Gegeben P,Q such
eQ' sodass $|PQ'|^3=2|PQ|^3.$
- (3) Quadratur des Kreises: Gegeben P, Q suche Q' sodass $|PQ|^2 = \pi |PQ|^2$.
- (4) Kubatur der Kugel: Suche Q' sodass Würfel mit Kante PQ' das gleiche Volumen hat wir Kugel mit Radius PQ.
- (5) Konstruktion des regulären n-Ecks mit 2 gegebenen benachbarten Ecken.

Definition 4.103. Für $z, w \in \mathbb{C}$ sei

$$\ell(z, w) = \{ z + \lambda(w - z) \mid \lambda \in \mathbb{R} \}$$

die Gerade durch z, w und

$$k(z, w) = \{ w' \in \mathbb{C} \mid |z - w| = |z - w|' \} = \{ z + \lambda(w - z) \mid \lambda \in \mathbb{C}, |\lambda| = 1 \}$$

der Kreis mit Mittelpunkt z durch w.

Definition 4.104. Für $M \subseteq \mathbb{C}$ sei $K(M) \subseteq \mathbb{C}$ die kleinste Menge sodass

- (1) $M \subseteq K(M)$
- (2) Wenn $z, w, z', w' \in K(M)$ mit $z \neq w$ und $z' \neq w'$ dann

$$\ell(z, w) \cap \ell(z', w') \subseteq K(M)$$

$$\ell(z,w) \cap k(z',w') \subseteq K(M)$$

$$k(z, w) \cap k(z', w') \subseteq K(M)$$

falls die Schnitte jeweils endlich sind.

K(M) ist die Menge aller Elemente von \mathbb{C} die durch endlich viele Schnitte in M wie oben gewonnen werde können. Wir nennen K(M) die Menge der aus M konstruierbaren Zahlen.

Bemerkung 4.105. Wenn $M \neq \emptyset$ oder |M| = 1 dann ist K(M) = M. Sei $|M| \geq 2$. Ohne Einschränkung $0, 1 \in M$. Es gilt

(1) $\mathbb{Z} \subseteq K(0,1)$

(2) Man kann Orthogonalen zu einer Geraden durch einen Punkt konstruieren. Seien P,Q und PQ gegeben. Sei R' nicht auf PQ. Bilde den roten Kreis und danach den blauen. Das gibt Schnittpunkt R'' Die grüne Gerade ist Orthogonale

(3) Parallele zu Geraden durch Punkt R

Verfahren: Bestimme Orthogonale durch R. Dann konstruire gleichseitiges Dreieck wo R der Mittelpunkt einer Seite ist. Das gibt Parallele.

(4) Veschiebung von Vektoren. Seien P, Q, R gegeben. Suche R + (Q - P). Klar, Konstruiere Parallele, Verbinde Punkte und konstruiere parallele.

Lemma 4.106. Sei $0, 1 \in M$ und $a \in \mathbb{C}$. Es ist äquivalent:

- (1) $a \in K(M)$
- (2) $\bar{a} \in K(M)$
- $(3) \Re(a), \Im(a) \in K(M)$
- (4) $|a|, \frac{a}{|a|} \in K(M)$

Lemma 4.107. Sei $0, 1 \in M$. Dann ist K(M) ein Körper. Insbesondere ist $\mathbb{Q} \subseteq K(M)$.

Beweis. Zeige, dass K(M) abgeschlossen ist unter Multiplikation und Inverse. Für Multiplikation reicht die Multiplikation von reellen Zahlen und von Zahlen mit Betrag 1 (dh. Addition von Winkeln).

Addition von Winkeln:

Bemerkung 4.108. Sei $0, 1 \in M$. Dann ist $\mathbb{Q}(M \cup \overline{M}) \subseteq K(M)$.

Satz 4.109 (Konstruierbare Zahlen). Sei $0, 1 \in M$ und $a \in \mathbb{C}$. Es gilt

$$a \in K(M) \iff \exists \ \mathbb{Q}(M \cup \bar{M}) = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r \ mit \ [K_i : K_{i-1}] = 2 \ und \ a \in K_r.$$

Insbesondere ist $[\mathbb{Q}(M \cup \bar{M} \cup \{a\}) : \mathbb{Q}(M \cup \bar{M})]$ eine Zweierpotenz, das heißt a ist algebraisch über $\mathbb{Q}(M \cup \bar{M})$.

Beweis. Kurzform: Schnitt von Geraden vergrößert den Körper nicht. Schnitt von Geraden mit Kreisen führt auf quadratische Gleichung. Das heißt K_i/K_{i-1} hat Grad 2. Das zeigt: $a \in K(M)$ impliziert, dass eine Kette wie im Satz existiert. Zeige: Wenn L/K eine quadratische Erweiterung ist mit $L \subseteq \mathbb{C}$ und $K \subseteq K(M)$ dann ist auch $L \subseteq K(M)$. Sei L = K(b) wobei b eine Nullstelle von $X^2 + cX + d$ ist. Die Substitution $X = X - \frac{c}{2}$ erreicht c = 0. Also sei ohen Einschränkung das Polynom $X^2 + d$ und $b' = \sqrt{d'}$. Zeige also: Quadratwurzeln in \mathbb{C} sind konstruierbar. Es ist $z = |z| \cdot \frac{z}{|z|}$. Zeige also: Wurzeln aus reellen Zahlen und Winkelhalbierungen sind konstruierbar.

Sei $a \in \mathbb{R}$ und $a \ge 0$.

$$b^{2} = (a+1)^{2} - (a-1)^{2}$$
$$= 4a$$

also
$$b = 2\sqrt{a}$$

Lemma 4.110. Sei K ein Körper und $K = K_0 \subseteq K_1 \cdots \subseteq K_n$, $K = L_0 \subseteq L_1 \cdots \subseteq L_m$ Ketten quadratischer Körpererweiterungen. Dann ist $K = L_0 \subseteq \cdots \subseteq L_m \subseteq K_1L_m \subseteq \cdots \subseteq K_nL_m$ Kette höchstens quadratischer Körpererweiterungen.

Beweis. Es ist
$$[K_iL_n: K_{i-1}L_n] \leq [K_i: K_{i-1}] = 2$$

Satz 4.111. Sei K ein Körper der Charakterisitik $\neq 2$ und $a \in \overline{K}$. Dann sind äquivalent:

- (1) Es gibt Kette quadratischer Erweiterungen $K = K_0 \subseteq \cdots \subseteq K_n$ and $a \in K_n$
- (2) Es gibt Galoiserweiterung L/K mit $a \in L$ und $[L:K] = 2^r$.

Beweis. Gelte 1 und sei K_n/K gegeben. Dann ist K_n/K ist separabel und nach Satz 4.65 gilt $K_n = K(b)$ für ein $b \in K_n$. Sei L/K die normale Hülle von K_n/K . Nach Konstruktion ist L/K der Zerfällungskörper vom Minimalpolynom f von b. Seien b_1, \ldots, b_n die Nullstellen von f in L mit $b = b_1$. Es ist $L = K(b_1) \cdots K(B_n)$ Komposition. Da f das Minimalpolynom von b_i ist, ist $K_n = K(b) = K(b_i)$ für alle i und somit ist $K(b_i)/K$ durch Kette quadratischer Erweiterungen erreichbar. Nach Lemma 4.110 ist L als Kompositum durch quadratische Kette erreichbar. Gelte 2. und sei L/K Galoisch vom Grad 2^r . Dann ist $G = \operatorname{Gal}(L/K)$ eine p-Gruppe für p = 2. G ist auflösbar somit gibt es nach Korollar 2.19 eine normale Untergruppe $H \subseteq G$ mit [G:H] = 2. Sei $K_r = L$ und $K_1 = L^H$. Dann ist $[K_1:K_0] = 2$ und K_r/K Galoisch von Grad 2^{r-1} . Also folgt die Aussage nach Induktion.

Satz 4.112. $\pi \in \mathbb{R}$ ist transzendent über \mathbb{Q} .

Korollar 4.113. $\pi \notin K(0,1)$ $da [\mathbb{Q}(\pi) : \mathbb{Q}] = \infty$.

Korollar 4.114. Wäre Winkeldrittelung immer möglich, so wäre $\zeta_9 \in K(0,1)$.

Aber $[\mathbb{Q}(\zeta_9):\mathbb{Q}]=6$ ist keine Zweierpotenz also Widerspruch und die Aussage ist falsch.

Korollar 4.115 (Würfelverdoppelung). Ist $\sqrt[3]{2} \in K(0,1)$? Es ist

$$[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$$

keine Zweierpotenz, also nein.

Definition 4.116.

- (1) Ein Körper L heißt quadratische abgeschlossen, wenn jedes quadratische Polynom in L[X] in L eine Nullstelle hat.
- (2) Ein quadratischer Abschluss von K ist eine Erweiterung L/K sodass L quadratisch abgeschlossen ist und jede endliche Zwischenerweiterung L/L'/K lässt sich durch Kette quadratischer Erweiterungen erreichen.

Bemerkung 4.117 (Konstruktion eines quadratische Abschluss). Sei

 $L = \{a \in \bar{K} \mid K(a)/K \text{ ist durch Kette quadratischer Erweiterungen erreichbar } \}.$

Wir haben gesehen: K(M) ist der quadratische Abschluss von $\mathbb{Q}(M \cup \overline{M})$

4.9. Konstruktion des regulären n-Ecks. Sei E die Menge der Ecken des regulären n-Ecks mit $E \subseteq S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. Es gilt $E = \mu_n(\mathbb{C})$. Sei $\zeta_n \in \mu_n(\mathbb{C})$ primitiv. Ist $\zeta_n \in K(0,1)$? Bekannt ist: $[Q(\zeta_n)/\mathbb{Q}]$ ist Galoisch mit $G = \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^*$ und $|G| = \varphi(n)$. Antwort:

$$\zeta_n \in K(0,1) \iff \varphi(n) = 2^r.$$

Wenn $n = \prod_i p_i^{e_i}$ für verschiedene Primzahlen p_i , dann ist $\varphi(n) = \prod_i (p_i - 1) p_i^{e_i - 1}$. Das ist Zweierpotenz genau dann wenn $e_i < 2$ für $p_i \neq 2$ und $e_i = 1$ nur wenn $p_i - 1$ eine Zweierpotenz ist.

Definition 4.118 (Fermatsche Primzahl). Eine Fermatsche Primzahl ist eine Primzahl der Form $p = 2^m + 1$.

Bemerkung 4.119. Wenn p prim dann ist ζ_p konstruierbar $\iff p$ ist Fermatsche Primzahl Lemma 4.120. $2^m + 1$ $prim \implies m = 2^r$

Beweis. Sei m = qm' wobei q ungerade. Dann ist nach geometrischer Summe

$$\frac{2^m + 1}{2^{m'} + 1} = \frac{1 - (-2^{m'})^q}{1 - (-2^{m'})} = \sum_{k=0}^{q-1} (-2^{m'})^k = \sum_{k=1}^q (-1)^{k+1} 2^{m-km'}$$

also $2^m + 1$ nicht prim.

Bemerkung 4.121. $2^{2^r} + 1$ ist prim für r = 0, 1, 2, 3, 4 aber für $2^{2^5} + 1 = 641 \cdot 6700417$

Bemerkung 4.122. Fazit: Reguläre 3, 5, 17 Eck ist konstruierbar. Reguläre 7, 11, 13, 19-Eck nicht.

Beispiel 4.123. Sei $\alpha = \frac{2\pi}{5}$ und $\beta = \frac{\pi - \alpha}{2} = \frac{3\pi}{16}$ und $\gamma = 2\beta = \frac{3}{5}\pi$

Sei weiter $\delta = \frac{\pi - \gamma}{2}$. Dann ist $\delta = \frac{1}{5}\pi$ und $\gamma - 2\delta = \frac{1}{5}\pi = \delta$

Die Dreiecke A und C sind ähnlich und die Dreiecke B und D sind ähnlich, da sie gleiche Winkel haben. Sei d die Länge der Diagonalen und e=d-1 Es gilt also $\frac{1}{d}=\frac{1}{e}=\frac{1}{d-1}$ Also ist $d^2-d=1$ was $d=\frac{\sqrt{5}+1}{2}$ impliziert. Konstruiere also

und dann konstruiere 5-Eck.

4.10. Auflösbarkeit durch Radikale.

Definition 4.124. Sei K ein Körper der Charakteristik 0.

- (1) Eine einfache Radikalerweiterung ist eine Körpererweiterung L/K sodass L=K(a) für ein a mit $a^n \in K$ für ein $n \in \mathbb{N}_1$
- (2) L/K heißt Radikalerweiterung, wenn es eine Kette $K = K_0 \subseteq \cdots \subseteq K_r = L$ gibt sodass K_i/K_{i-1} eine einfache Radikalerweiterung ist.
- (3) L/K ist auflösbar durch Radikale, wenn es für jedes $a \in L$ eine Radikalerweiterung L'/K und Einbettung $K(a) \subseteq L'$ existiert.

Bemerkung 4.125. Wenn L/K endlich, dann ist L = K(a) für ein $a \in L$. Dann

L/K ist auflösbar durch Radikale $\iff L$ ist in einer Radikalerweiterung enthalten

Bemerkung 4.126. Notation: Wenn L/K einfache Radikalerweiterung, L = K(a) und a Nullstelle von $X^n - b$ könnte schreiben $a = \sqrt[n]{b}$ aber das ist ungenau da $X^n - b$ n verschiedene Nullstellen hat.

Beispiel 4.127. Sei $f = X^3 - 2$ und sei $a = \sqrt[3]{2} \in \mathbb{R}$. Wenn $K = \mathbb{Q}(a)$ dann ist [K(a) : K] = 1 aber $[K(\zeta_3 a) : K] = 2$

Bemerkung 4.128. Angenommen K ist ein Körper von Charakteristik $\neq n$ und $\mu_n(\bar{K}) \subseteq K$ Dann sei $\zeta_n \in \mu_n(\bar{K})$ primitiv. Die Nullstellen von $f = X^n - b$ sind $a, \zeta_n a, \zeta_n^2 a, \ldots, \zeta_n^{n-1} a$ also $X^n - b = \prod_{k=0}^{n-1} (X - \zeta_n^k a)$ und $K(a) = K(\zeta_n^k a)$ für jedes k da K ζ_n enthält. In diesem Fall ist die Bezeichnung $K(\sqrt[n]{b}) = K(a)$ für irgendein a mit $a^n = b$. Das ist ein Zerfallskörper von $X^n - b$.

Lemma 4.129. Sei K ein Körper der Charakteristik $\neq n$ und $\mu_n(\bar{K}) \subseteq K$. Dann gibt es einen injektiven Gruppenhomomorphismus $\operatorname{Gal}(K(\sqrt[n]{a})/K) \to \mu_n(K) \cong \mathbb{Z}/n\mathbb{Z}$. Insbesondere ist $G = \operatorname{Gal}(L/K)$ zyklisch.

Beweis. Sei $\sigma \in G$ und $b = \sqrt[n]{a}$. Es ist $\sigma(b)$ ist eine Nullstelle von $X^n - a$ also ist $\sigma(b) = \zeta b$ für ein $\zeta \in \mu_n(K)$. Da $\mu_n(\bar{K}) \subseteq K$ ist für $\zeta' \in \mu_n(\bar{K})$:

$$\sigma(\zeta'b) = \zeta'\sigma(b) = \zeta'\zeta b.$$

Sei $\psi \colon G \to \mu_n(\bar{K}), \ \psi(\sigma) = \frac{\sigma(b)}{b}$. Eine Rechnung zeigt, dass das ein Gruppenhomomorphismus ist. Angenommen $\psi(\sigma) = 1$. Dann ist $\sigma = \mathrm{id}$ auf Menge der Nullstellen und da $K(\sqrt[n]{a})/K$ Zerfällungskörper ist, ist $\sigma = \mathrm{id}$.

Definition 4.130. Sei E eine Eigenschaft von Gruppen (z.B. zyklisch, auflösbar, abelsch...) Eine Körpererweiterung L/K hat die Eigenschaft E, wenn L/K Galoisch ist und Gal(L/K) diese Eigenschaft E hat.

Satz 4.131. Sei $Char(K) \neq n$ und $\mu_n(\bar{K}) \subseteq K$. Wenn L/K zyklisch von Grad n, dann ist $L = K(\sqrt[n]{a})$ für ein $a \in K$.

Beweis. Sei $\sigma \in \operatorname{Gal}(L/K)$ ein Erzeuger. Als Endormorphismus gilt $\sigma^n - \operatorname{id} = 0$. Sei μ_{σ} Minimalpolynom von σ . Dann gilt $\mu_{\sigma} \mid X^n - 1 = \prod_{\zeta \in \mu_n} (X - \zeta)$. Somit ist σ diagonalisierbar und die Eigenwerte sind die Nullstellen von μ_{σ} . Sei $B \subseteq \mu_n$ die Menge dieser Nullstellen. Für $\zeta \in \mu_n(\bar{K})$ sei $V_{\zeta} = \{x \in L \mid \sigma(x) = \zeta x\}$. Es gilt $V_{\zeta} \neq 0 \iff \zeta \in B$ und $L = \bigoplus_{\zeta \in \mu_n} V_{\zeta}$. Sei $x \in V_{\zeta}$ mit $x \neq 0$. Dann gilt $x^{-1} \in V_{\zeta^{-1}}$ und somit haben wir inverse Abbildungen

$$V_{\zeta'} \stackrel{x}{\to} V_{\zeta\zeta'} \stackrel{x^{-1}}{\to} V_{\zeta'}$$

somit ist $V_{\zeta'} \cong V_{\zeta\zeta'}$ Das zeigt: $B \subseteq \mu_n(\bar{K})$ ist Untergruppe und wenn $\zeta \in B$ Erzeuger ist, dann ist $V_1 \cong V_{\zeta} \cong V_{\zeta^2} \cong \dots$ Also ist

$$\dim(V_{\zeta^i}) = \dim(V_1)$$

und $\dim(V_1) = [\mu_n : B]$ denn $n = \dim(L) = |B| \cdot \dim(V_1)$. Es ist

$$V_1 = \{x \in L \mid \sigma(x) = x\} = L^{\langle \sigma \rangle} = L^G = K$$

also $\dim(V_1) = 1$ und somit $\mu_n = B$ und $\dim(V_\zeta) = 1$ für alle $\zeta \in \mu_n$. Sei $\zeta_n \in \mu_n$ primitiv. Wähle $b \in V_{\zeta_n}$ mit $b \neq 0$. Es ist $\langle b^i \rangle = V_{\zeta_n^i}$ somit erzeugen $1, b, \ldots, b^{n-1}$ den K-Vektorraum L. Also ist L = K(b). Es ist $\sigma(b) = \zeta_n b$ also $\sigma(b^n) = b^n$ und somit ist $a = b^n \in L^G = K$. Das zeigt: b ist Nullstelle von $X^n - a \in K[X]$

Lemma 4.132. Die Komposition von Radikalerweiterungen ist eine Radikalerweiterung.

Beweis. Seien $K = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r$ und $K = L_0 \subseteq L_2 \subseteq \cdots \subseteq L_n$ Ketten von einfachen Radikalerweiterungen. Dann ist $K = K_0 \subseteq \ldots K_r = K_r L_0 \subseteq K_r L_1 \subseteq \cdots \subseteq K_r L_n$ Kette von einfachen Radikalerweiterungen, denn wenn $L_i = L_{i-1}(a_i)$ mit $a_i^n \in L_{i-1}$ dann ist $K_r L_i = K_r L_{i-1}(a_i)$ und $a_i^n \in K_r L_{i-1}$

Lemma 4.133. Sei L/K eine endliche Körpererweiterung in Charakterisitk 0.

- (1) L/K ist Radikalerweiterung \implies normale Hülle von L/K ist Radikalerweiterung.
- (2) L/K ist auflösbar durch Radikale \iff normale Hülle von L/K ist auflösbar durch Radikale.

Beweis. 1):Sei L = K(a) und seien $a = a_1, \ldots, a_r \in \overline{K}$ die Nullstellen vom Minimalpolynom von a. Also ist die normale Hülle gegeben durch $M = K(a_1) \cdots K(a_r)$. Es ist $K(a_i) \cong K(a)$ Radikalerweiterung über K. Nach Section 4.10 ist also M/K eine Radikalerweiterung.

2): Sei $L = K(a_1)/K$ auflösbar durch Radikale, dh. es gibt L'/L sodass L'/K Radikalerweiterung ist. Sei M/K bzw M'/K die normale Hülle von L/K bzw L'/K. Dann ist $M \subseteq M'$. Nach 1) ist M'/K Radikalerweiterung also M/K auflösbar durch Radikale. Sei andersrum M/K die

normale Hülle von L/K und M/K auflösbar durch Radikale, dh. Es gibt M'/M sodass M'/K Radikalerweiterung. Dann ist L/K auflösbar durch Radikale nach Definition.

Satz 4.134. Sei L/K endliche Körpererweiterung in Charakteristik 0 und M/K eine normale Hülle. Dann ist L/K auflösbar durch Radikale $\iff L/K$ auflösbar.

Beweis. Nach Lemma 4.133 ist ohne Einschränkung L/K Galoisch. Sei n=[L:K] und $K'=K(\mu_n)$ und $L'=L(\mu_n)$. Da L/K Galoisch ist L'/K' Galoisch und L'/K Galoisch. Es sind $\operatorname{Gal}(K'/K)$ und $\operatorname{Gal}(L'/L)$ abelsch, insbesondere auflösbar. Es ist

$$\operatorname{Gal}(L/K) \cong \operatorname{Gal}(L'/K)/\operatorname{Gal}(L'/L)$$

und $\operatorname{Gal}(L'/K)/\operatorname{Gal}(L'/K') \cong \operatorname{Gal}(K'/K)$. Also ist

$$\operatorname{Gal}(L/K)$$
 auflösbar $\iff \operatorname{Gal}(L'/K)$ auflösbar $\iff \operatorname{Gal}(L'/K')$ auflösbar

und K'/K und L'/L sind Radikalerweiterungen. Somit ist L/K auflösbar durch Radikale $\iff L'/K'$ auflösbar durch Radikale. Somit ist ohne Einschränkung L = L' und K = K'. Sei L/K auflösbar. Wähle Normalreihe in $\operatorname{Gal}(L/K)$ mit primzyklischen Quotienten. Das entsprich $K = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = L$ mit K_i/K_{i-1} Galoisch und $\operatorname{Gal}(K_i/K_{i-1}) \cong \mathbb{Z}/p_i\mathbb{Z}$. Satz 4.131 impliziert, dass K_i/K_{i-1} eine einfache Radikalerweiterung ist. Somit ist L/K eine Radikalerweiterung. Insbesondere ist L/K auflösbar durch Radikale.

Sei andersrum L/K auflösbar durch Radikale. Es gibt L'/L, sodass L'/K Radikalerweiterung ist. Ohne Einschränkung ist L'/K Galoisch. Es gibt Kette $K = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n = L'$ sodass K_i/K_{i-1} einfache Radikalerweiterung ist. Behauptung: $\operatorname{Gal}(L'/K)$ ist auflösbar. Dann ist $\operatorname{Gal}(L/K)$ als Quotient von $\operatorname{Gal}(L'/K)$ auch auflösbar. Lemma 4.129 impliziert, dass K_i/K_{i-1} Galoisch ist mit zyklischer Galoisgruppe. DIe Körperkette entspricht Kette von Untergruppen in $\operatorname{Gal}(L'/K)$. Das ist eine abelsche Normalreihe.

Korollar 4.135. Jede Gleichung von Grad ≤ 4 in Charakterisitk 0 ist durch Radikale auflösbar, dh. $f \in K[X]$ mit $\deg(f) \leq 4$ und L/K Zerfällungskörper von f, dann ist $G = \operatorname{Gal}(L/K)$ auflösbar.

Beweis. Haben injektiven Gruppenhomomorphismus $G \to S_4$. Da S_4 auflösbar ist, ist G auflösbar.

Satz 4.136. Für jede endliche Gruppe G gibt es eine Galoiserweiterung L/K in Charakteristik 0 mit G = Gal(L/K).

Beweis. Wähle $G \to S_n$ injektiv mit |n| = G. Wenn L/K' existiert mit $\operatorname{Gal}(L/K') = S_n$ dann gilt für $K = L^G$ dass $\operatorname{Gal}(L/K) = G$ ist. S_n operiert auf $L = \mathbb{Q}(X_1, \ldots, X_n)$ durch Permutation der Variablen. Das gibt Homomorphismus $S_n \to \operatorname{Aut}(L)$ der injektiv ist. Der Körper $K = L^{S_n}$ gibt $\operatorname{Gal}(L/K) = S_n$.

Bemerkung 4.137. S_5 ist nicht auflösbar.

Bemerkung 4.138.

- (1) Es gibt eine Definition von Auflösbar durch Radikale in beliebiger Charakteristik, für die der letzte Satz gilt
- (2) Frage: Wenn K gegeben, welche Gruppen G sind als Galoisgruppen über K realisierbar, dh. gibt es L/K Galoisch mit Gal(L/K) = G.
 - (a) $K = \mathbb{R}$ Dann ist $G = \{1\}$ und $G = \mathbb{Z}/2\mathbb{Z}$ möglich.
 - (b) Wenn K endlich ist: Genau die zyklischen Gruppen sind möglich, denn

$$\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \cong \langle Fr \rangle \cong \mathbb{Z}/n\mathbb{Z}.$$

(c) $K = \mathbb{Q}$ Frage ist offen. $G = S_p$ nach Übungsaufgabe? $G = S_n$ möglich (Hilbert).

Satz 4.139. Es gibt Gleichungen vom Grad 5 die nicht auflösbar sind

Beweis. S_5 ist Galoisgruppe von M/\mathbb{Q} für ein M/\mathbb{Q} Galoisch. Es ist $H=S_4=\operatorname{Stab}(1)\subseteq S_5$ also [G:H]=5 und somit $[M^H:K]=5$. Es ist M=K(a) für ein a. Die normale Hülle von M^H/K entspricht nach Galoiskorrespondenz $\bigcap_{g\in S_5}gHg^{-1}=\{e\}$, also ist M/K die normale Hülle von $M^H=\mathbb{Q}(a)=\mathbb{Q}[X]/(f)$ wobei f das Minimalpolynom von a ist. Damit ist S_5 Galoisgruppe von f und S_5 ist nicht auflösbar. Es ist $\deg(f)=[\mathbb{Q}(a):\mathbb{Q}]=5$