mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Joybien Batman BM502 mmWave EVM Kit is a Texas Instruments (TI) IWR6843AOP ASIC based millimeter-wave (mmWave) Kit with Frequency-Modulated Continuous Wave (FMCW) radar technology capable of operation in the 60GHz to 64GHz band with up to 4 GHz continuous chirp, using 3 Transmission Antennas and 4 Receiving Antennas, for sensing target object's range, velocity, and angle parameters.

Batman BM502 mmWave EVM Kit consists of an extremely light and compact mmWave Module (with approx. 1/3 of the size of the previous Batman series mmWave Module; along with low-power, self-monitored, ultra-accurate, and lighting condition independent versatilities), a Module Carrier Board that brings user experience and hardware integration flexibilities, and a Pi-Hat-Board for simple and direct connectivity to a Raspberry Pi or NVIDIA Jetson Nano computer; suitable for various applications including: Education, Engineering, Science, Industrial, Medical, and Business & Consumer.

Applications

- Education's Practical Radar Introduction
- Engineering & Science's Motion Detection, Displacement, etc.
- Industrial sensor for Displacement & Safe Guard, Factory Automation, Robotics, etc.
- · Building Automation sensor for Occupancy Detection, Proximity & Position sensing, People Counting, People Density, Security and Surveillance,
- Healthcare's Vital Signs Detection, People Fall Detection, etc.
- Business' Traffic Monitoring, and Proximity Advertisement
- Consumer's Gesture Recognition, Obstacle Avoidance, etc.

Features

• Operating Frequency: 60GHz ~ 64GHz coverage

with 4GHz continuous bandwidth

• Antenna: 3 Tx and 4 Rx Antenna on Package (AOP), with:

TX Power: 15 dBm RX Noise Figure: 9 dB

Processors: ARM R4F based MCU, and C674x DSP

for FMCW signal processing

• On-Chip Memory: 1.75MB

Internal Memories With ECC

Integrated Peripherals

• Extremely light and compact Module design.

Supplied Voltage: 5VDC & 1.5A

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Packing List: mmWave Module on Carrier Board, Raspberry Pi-Hat Board, Python SDK

• Make sure you are using the correct power supply of 5 V, >1.5 A with a Micro USB connection

Python SDK upon purchasing BM502 EVM Kit via email or on Github at:

https://github.com/bigheadG/mmWave

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Selection: Key Data Mode or Raw Data Mode Application

(A) Raw Data Mode

(B) Key Data Mode

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman BM502 Module Pin Assignment Note

Batman BM502 Carry Board J10 Pin Assignment Note

PINHEADER J10 PIN12_GPIO_0 High: Raw Data Baud Rate 921600/8/n/1 selection for PIN23_TX1 PINHEADER J10 PIN12_GPIO_0 Low: Key Data Baud Rate 921600/8/n/1 selection for PIN23_TX1

Alert: All GPIO Pins base on 5V System. Pin23_TX1 is DC 5V system.

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Raspberry Pi Hat Pin Assignment

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

BM502 EVM Kit Installation on Desktop Computer

On Software side, please download & install Silicon Labs CP210x USB to UART Bridge Virtual COM Port (VCP) drivers for your Computer (Windows, Mac, or Linux) at:

https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers

to enable the UART communication between BM502 EVM Kit and Computer.

Please make sure that you have installed Python on your Computer at:

https://www.python.org/downloads/

Note: You must enable "Add Python to PATH" upon installation.

You may download GEANY as your Python code editor at:

https://www.geany.org/download/releases/

At this point, you may download and execute the corresponding BM502 EVM Kit's Python SDK examples at: https://github.com/bigheadG/mmWave

Note: Please follow the Python example to install relevant Libraries for proper execution.

To enable UART port on Computer, you will need to enable proper PORT setting within the Python Code. As an example, for Window PC having UART running at 921600 bps, please enable:

port = serial.Serial("COM#",baudrate = 921600, timeout = 0.5)

where the "#" of the COM# should correspond to the Enhanced COM Port dynamically assigned by Windows Device Manager's Ports (COM & LPT) after the USB cable is properly connected on the both ends. As an example, in the picture below, the COM port used is the Silicon Labs CP210x Enhanced COM Port assigned, and in this case, it is COM7; so you will need to enable your Python Code to include:

port = serial.Serial("COM7",baudrate = 921600, timeout = 0.5)

Silicon Labs Dual CP2105 USB to UART Bridge: Enhanced COM Port (COM7)

Silicon Labs Dual CP2105 USB to UART Bridge: Standard COM Port (COM8)

Please follow similar process for Mac or Linux Computer for the UART communication port used.

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Batman Kit + NVIDIA Jetson Nano / Batman Kit + Raspberry Pi

Please make sure that the JUMPER SETTING is for Raw Data Mode

Batman BM502 EVM Kit + Jetson Nano

Batman BM502 EVM Kit + Raspberry Pi

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Specifications

mmWave Sensor Evaluation Module

mmWave ASIC	TI IWR6843AOP Single Chip mmWave Sensor		
FMCW Transceiver	Integrated PLL, Transmitter, Receiver, Baseband, and A2D		
	60GHz to 64GHz Coverage With 4GHz Continuous Bandwidth		
	Four Receive Channels		
	Three Transmit Channels		
	Ultra-Accurate Chirp Engine Based on Fractional-N PLL		
	TX Power: 15 dBm		
	RX Noise Figure: 9 dB		
	● Phase Noise at 1 MHz: –92 dBc/Hz		
	● Antenna Type : Antenna On Package(AOP)		
Built-in Calibration and Self-Test (Monitoring)	ARM® Cortex® -R4F-Based Radio Control System		
	● Built-in Firmware (ROM)		
	Self-calibrating System Across Frequency and Temperature		
DSP	C674x DSP for Advanced Signal Processing		
On-Chip Memory	● 1.75MB		
MCU	ARM R4F Microcontroller for Object Detection, and Interface Control		
	Joybien mmWave Protocol (Per configuration)		
I/O	• UART x 2		
	• GPIO x 2(GPIO_31,GPIO_32)		
	• I2C x 1		
Power Management	Built-in LDO Network for Enhanced PSRR		
	● I/Os Support Dual Voltage 3.3 V		
Clock Source	40MHz		
Antenna Orientation	4 receive(RX) 3 transmit (TX) antenna with 120° azimuth field of view (FoV) and 120° elevation FoV		
Input Power	5VDC, 1.5A source		
Operating Temperature	0°C ~ 40°C		
& Humidity	10% ~ 85% Non-Condensing		
Dimensions & Weight	37mm x 16mm x 2.4mm ; 3 grams net		

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Raspberry Pi / Jetson Nano

Hat Board

Connector	Matching mmWave Module Female Connector Matching Raspberry Pi GPIO Female Connector
Operating Temperature Operating Humidity	 0° to 40° degree Celsius 10 ~ 85% Non-Condensing
Dimensions & Weight	● 65mm x 30mm 21 grams

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

mmWave Carrier Board Pin Assignment

J10 Pin Assignment

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

J10 Pin Assignment

"X" = Not applicable

3 10 F III	Assignment		"X" = Not applicable
Pin No	Name	Pin Type	Function Description
01	5VDC	1	POWER 5VDC Input
02	5VDC	ı	POWER 5VDC Input
03	5VDC	ı	POWER 5VDC Input
04	х	Х	x
05	GND	GROUND	Digital ground
06	х	х	x
07	RS232 RX0	ı	UART A Receive
08	х	Х	X
09	RS232 TX0	0	UART A Transmit
10	GND	GROUND	Digital ground
11	nRST	ı	Power on reset for chip. Active low
12	GPIO 0	I	Select KeyData or RawData
13	GND	GROUND	Digital ground
14	x	Х	x
15	GPIO 31	10	GPIO Pin
16	X	Х	x
17	GPIO 32	10	GPIO Pin
18	Х	Х	x
19	GND	GROUND	Digital ground
20	х	Х	x
21	х	Х	x
22	X	Х	X
23	MSS LOGGER JBTX1	0	UART B Transmit
24	х	Х	x
25	Х	Х	X
26	GND	GROUND	Digital ground
27	x	Х	Mistake Proofing Pin
28	x	×	X
29	GND	GROUND	Digital ground
30	X	×	X
31	х	х	X
32	GPIO2	0	LED Indicator

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Product Dimensions

Hat board

mmWAVE SENSOR EVALUATION SOLUTION

mmWAVE SENSOR EVALUATION SOLUTION

Product Dimensions

Copyright ©2023, Joybien Technologies Co., Ltd.

Joybien reserves the right to make changes without further notice to and products herein. Joybien makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Joybien assume any liability arising out of the application or use of any product or circuit. Joybien's products are not to be used in life support devices or systems, if a failure of an Joybien's product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system.

> For the latest version of this document, visit our website: www.joybien.com

Note:

NVIDIA logo, and Jetson Nano are trademarks and/or registered trademarks of NVIDIA Corporation.

Raspberry Pi logo and Raspberry Pi 4 are trademarks and/or registered trademarks of Raspberry Pi Foundation.

"Python" is a registered trademark of the PSF.

This EVM Kit does not include Raspberry Pi computer, nor NVIDIA Jetson Nano computer.

Please contact us at Joybien in advance for BM502 commercial application for mass production.