Selmer groups are finite

Xiaomin Chu

Nov 2023

Setup K a number field, E an ellipic curve over K. Fix an algebraic closure \overline{K} of K, and algebraic extensions of K means a subfield of \overline{K} . Specm \mathcal{O}_K denotes the set of finite places of K. For each $v \in \operatorname{Specm} \mathcal{O}_K$, choose a place $\overline{v} \in \operatorname{Specm} \mathcal{O}_{\overline{K}}$ extending v, and identify the absolute Galois group of K_v with the decomposition group of \overline{v}/v . Fix $n \geq 2$ a positive integer.

Recall that in order to prove the weak Mordell-Weil conjecture, we intruduced the Selmer groups

$$\operatorname{Sel}^{(n)}(E) = \ker H^1(K, E[n]) \to \prod_{v \in \operatorname{Specm} \mathcal{O}_K} H^1(K_v, E(\overline{K_v}))$$

and wished that it's finite.

1 For \mathbb{G}_m

We start with something much simpler than an elliptic curve, i.e. \mathbb{G}_m . Note that $\mathbb{G}_m(K) = K^{\times}$ is of course not finitely generated.

Consider the short exact sequence

$$0 \to \mu_n \to \overline{K}^{\times} \xrightarrow{n} \overline{K}^{\times} \to 0$$

We may extract the following exact sequence from the cohomological long exact sequence

$$0 \to K^{\times}/(K^{\times})^n \to H^1(K, \mu_n) \to H^1(K, \overline{K}^{\times}))[n] \to 0$$

But Hilbert 90 says that $H^1(K, \overline{K}^{\times}) = 0$, so actually $K^{\times}/(K^{\times})^n = H^1(K, \mu_n)$. $K^{\times}/(K^{\times})^n$ is approximately $\bigoplus_{v \in \text{Specm } \mathcal{O}_K} \mathbb{Z}v$. To make it precise, we use the celebrated exact sequence in algebraic number theory

$$0 \to \mathcal{O}_K^{\times} \to K^{\times} \to \bigoplus_{v \in \operatorname{Specm} \mathcal{O}_K} \mathbb{Z} v \to \operatorname{Cl}(K) \to 0$$

where Cl(K), the ideal class group of K, is finite. Applying the snake lemma to

$$K^{\times} \longrightarrow \bigoplus_{v \in \operatorname{Specm} \mathcal{O}_{K}} \mathbb{Z}v \longrightarrow \operatorname{Cl}(K) \longrightarrow 0$$

$$\downarrow^{n} \qquad \qquad \downarrow^{n} \qquad \qquad \downarrow^{n}$$

$$0 \longrightarrow K^{\times}/\mathcal{O}_{K}^{\times} \longrightarrow \bigoplus_{v \in \operatorname{Specm} \mathcal{O}_{K}} \mathbb{Z}v \longrightarrow \operatorname{Cl}(K)$$

gives us the exact sequence

$$\mathrm{Cl}(K)[n] \to K^\times/(\mathcal{O}_K^\times(K^\times)^n) \to \bigoplus_{v \in \mathrm{Specm}\,\mathcal{O}_K} (\mathbb{Z}/n\mathbb{Z})v \to \mathrm{Cl}(K)/n\mathrm{Cl}(K)$$

But Dirichlet's unit theorem says that \mathcal{O}_K^{\times} is a finitely generated abelian group, so $K^{\times}/(K^{\times})^n$ isn't much different from $K^{\times}/(\mathcal{O}_K^{\times}(K^{\times})^n)$. To be more precise, we have the following exact sequence

$$0 \to \mathcal{O}_K^\times/(\mathcal{O}_K^\times)^n \to K^\times/(K^\times)^n \to K^\times/(\mathcal{O}_K^\times(K^\times)^n) \to 0$$

To summurize the discussion above, we have

Theorem 1. There are two finite groups $R_1(K,n)$, $R_2(K,n)$ such that

$$R_1(K,n) \to K^{\times}/(K^{\times})^n \to \bigoplus_{v \in \operatorname{Specm} \mathcal{O}_K} (\mathbb{Z}/n\mathbb{Z})v \to R_2(K,n)$$

is exact.

In particular,

Corollary 2. If S is a subgroup of $K^{\times}/(K^{\times})^n$ whose image in $\bigoplus_{v \in \operatorname{Specm} \mathcal{O}_K} (\mathbb{Z}/n\mathbb{Z})v$ is finite, then S is finite.

Proof. S is an extension of its image in $\bigoplus_{v \in \text{Specm } \mathcal{O}_K} (\mathbb{Z}/n\mathbb{Z})v$ and a subgroup of $R_1(K, n)$.

2 Reducing to $E[n] \subset E(K)$

In general E is very different from $\mathbb{G}_m \times \mathbb{G}_m$. But we can compare their H^1 somehow forcefully. Suppose that $E[n] \subset E(K)$, then G_K acts trivially on E[n]. Then $H^1(K, E[n]) \cong \operatorname{Hom}(G_K, \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})$ by choosing a basis (a, b) of E[n]. In this case, Weil pairing implies that $\mu_n \subset K^{\times}$. So we have

$$H^1(K, E[n]) \cong \operatorname{Hom}(G_K, \mathbb{Z}/n\mathbb{Z}) \times \operatorname{Hom}(G_K, \mathbb{Z}/n\mathbb{Z}) \cong H^1(K, \mu_n) \times H^1(K, \mu_n)$$

Which then equals $K^{\times}/(K^{\times})^n \times K^{\times}/(K^{\times})^n$. This is very nice. Now we reduce to this situation.

Proposition 3. Suppose L/K is a finite Galois extension. If $Sel^n(E/L)$ is finite, then $Sel^n(E/K)$ is also finite.

Proof. We have the inflation-restriction exact sequence

$$0 \to H^1(G_{L/K}, E[n](L)) \xrightarrow{\operatorname{Inf}} H^1(K, E[n]) \xrightarrow{\operatorname{Res}} H^1(L, E[n])$$

and $H^1(G_{L/K}, E[n](L))$ is clearly finite. So res : $\mathrm{Sel}^n(E/K) \to \mathrm{Sel}^n(E/L)^{G_{L/K}}$ has finite kernel.

So if we can prove that $\mathrm{Sel}^n(E/K(E[n]))$ is finite, then we have $\mathrm{Sel}^n(E/K)$ is finite. From now on we assume that $E[n] \subset E(K)$.

Remark 4. If you don't like Weil pairing, you can take $\mu_n \subset K^{\times}$ as an additional assumption that doesn't hurt.

3 Proof