Для каждого пункта сначала будем находить общее решение x = x(t), затем решение задачи Коши $\phi(t)$. Затем будем доказывать устойчивость или неустойчивость по Ляпунову.

a)
$$3(t-1)\dot{x}(t) = x(t)$$
. $\frac{dx}{dt}\sqrt[3]{t-1} - \frac{1}{3\sqrt[3]{(t-1)^2}}x(t) = 0$. $\frac{d}{dt}\left(\frac{x}{\sqrt[3]{t-1}}\right) = 0$. Oбщее реше-

ние имеет вид $x(t) = C\sqrt[3]{t-1}$; решение задачи Коши – это функция: $\varphi(t) = 0$.

При
$$t \ge t_0 = 1$$
 имеем: $|x(t) - \varphi(t)| = |C| \sqrt[3]{t-1}$, $|x(t_0) - \varphi(t_0)| = |C|$.

Условие устойчивости не выполняется, приведём пример. Пусть $\varepsilon=1,\,\delta>0$ и C такое, что $0<|C|<\delta$. При $t\geqslant |C|^{-3}+1$ получаем $|C|\sqrt[3]{t-1}\geqslant 1=\varepsilon$.

Таким образом, решение неустойчиво.

б)
$$\dot{x}(t) + \left(t^2 - 4\right)x(t) = 0$$
. $\dot{x}(t)e^{\frac{1}{3}t^3 - 4t} + \left(t^2 - 4\right)e^{\frac{1}{3}t^3 - 4t} = 0$. $\frac{d}{dt}\left(x(t)e^{\frac{1}{3}t^3 - 4t}\right) = 0$. $x(t) = Ce^{4t - \frac{1}{3}t^3}$ – общее решение; $\varphi(t) = 0$ – решение задачи Коши.

При
$$t \ge t_0 = 0$$
 имеем: $\left| x(t) - \varphi(t) \right| = |C|e^{4t - \frac{1}{3}t^3}, \quad \left| x(t_0) - \varphi(t_0) \right| = |C|.$

Функция $f(t)=e^{4t-\frac{1}{3}t^3}$ возрастает при $t\in[0;2]$, убывает при $t\in[2;+\infty)$. Значит t=2 – точка максимума и $\max_{t\in[0,+\infty)}f(t)=f(2)=e^{\frac{16}{3}}$.

Возьмём $\delta(\varepsilon)=e^{-\frac{16}{3}}\cdot \varepsilon$ для наперёд выбранного $\varepsilon>0$. Если $|C|<\delta$, то $|C|e^{4t-\frac{1}{3}t^3}<\delta e^{\frac{16}{3}}=\varepsilon$, и показана устойчивость решения.

в) $\dot{x}(t) + x(t) = t$. $\dot{x}(t)e^t + x(t)e^t = te^t$. $xe^t = (t-1)e^t + C$. $x(t) = Ce^{-t} + t - 1$ – общее решение; $\varphi(t) = 2e^{-t} + t - 1$ – решение задачи Коши.

При
$$t \ge t_0 = 0$$
 имеем: $|x(t) - \varphi(t)| = |C - 2|e^{-t}$, $|x(t_0) - \varphi(t_0)| = |C - 2|$.

Для таких t выполняется $e^{-t} \le 1$, а потому при выборе $\delta(\varepsilon) = \varepsilon$ из $|C-2| < \delta$ следует $|C-2|e^{-t} < \varepsilon$. Итак, решение устойчиво.

г) Поделив на
$$x^3$$
, получаем $\left(\frac{1}{x^2}\right) - 2\frac{1}{x^3}tx'(t) - 1 = 0$. $\frac{d}{dt}\left(\frac{t}{x^2}\right) = 1$. $\frac{t}{x^2} = t + C$. Итак, общее решение равняется $x(t) = \pm \sqrt{\frac{t}{t+C}}$; кроме того, есть дополнительное (но не особое) решение $\phi(t) = 0$, которое и является решением данной задачи Коши. В качестве переменного решения $x(t)$ будем рассматривать любое, кроме дополнительного.

При
$$t\geqslant t_0=1$$
 имеем: $\left|x(t)-\varphi(t)\right|=\sqrt{\frac{t}{t+C}}, \quad \left|x(t_0)-\varphi(t_0)\right|=\sqrt{\frac{1}{1+C}}.$

Кроме того, C > 0, так как, если C < 0, то решения непродолжаемы на $t \in [t_0; +\infty)$, а при C = 0 решение равняется ± 1 и интереса не представляет.

Покажем, что решение неустойчиво. Возьмём $\varepsilon=\frac{1}{2}$ и любое $\delta>0$. Пусть x(t) такое решение, что $\sqrt{\frac{1}{1+C}}<\delta$, то есть $C>1+\frac{1}{\delta^2}$. Однако, всякая функция $f(t)=\sqrt{\frac{t}{t+C}}$ возрастает, значит при $t\geqslant \frac{1}{3}C>\frac{1}{3}\Big(1+\frac{1}{\delta^2}\Big)$ получаем $\sqrt{\frac{t}{t+C}}\geqslant\sqrt{\frac{\frac{1}{3}C}{\frac{1}{3}C+C}}=\frac{1}{2}=\varepsilon$. Это означает неустойчивость решения.