SEQUENCE LISTING

IAP20 Rec'd PCT/FTO 29 DEC 2005

<110> DOI, Hirofumi SAITO, Ken

<120> Method of treating diabetes by inhibiting degradation of at least one of CREBL1, ATF6, and HNF-4 alpha by ${\tt HtrA}$

<130> 3190-089

<140> US Unassigned

<141> 2005-12-30

<150> PCT/JP2004/014377

<151> 2004-09-30

<150> JP P2003-342587

<151> 2003-09-30

<160> 35

<170> PatentIn version 3.1

<210> 1

<211> 1377

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> DNA that codes for HtrA2 precursor protein

<400> 1

atggctgcgc	cgagggcggg	gcggggtgca	ggctggagcc	ttcgggcatg	gcgggctttg	60
gggggcattc	gctgggggag	gagaccccgt	ttgacccctg	acctccgggc	cctgctgacg	120
tcaggaactt	ctgacccccg	ggcccgagtg	acttatggga	ccccagtct	ctgggcccgg	180
ttgtctgttg	gggtcactga	accccgagca	tgcctgacgt	ctgggacccc	gggtccccgg	240
gcacaactga	ctgcggtgac	cccagatacc	aggacccggg	aggcctcaga	gaactctgga	300
acccgttcgc	gcgcgtggct	ggcggtggcg	ctgggcgctg	ggggggcagt	gctgttgttg	360
ttgtggggcg	ggggtcgggg	teeteeggee	gtcctcgccg	ccgtccctag	cccgccgccc	420
gcttctcccc	ggagtcagta	caacttcatc	gcagatgtgg	tggagaagac	agcacctgcc	480
gtggtctata	tcgagatcct	ggaccggcac	cctttcttgg	gccgcgaggt	ccctatctcg	540
aacggctcag	gattcgtggt	ggctgccgat	gggctcattg	tcaccaacgc	ccatgtggtg	600
gctgatcggc	gcagagtccg	tgtgagactg	ctaagcggcg	acacgtatga	ggccgtggtc	660
acagctgtgg	atcccgtggc	agacatcgca	acgctgagga	ttcagactaa	ggagcctctc	720
cccacgctgc	ctctgggacg	ctcagctgat	gtccggcaag	gggagtttgt	tgttgccatg	780
ggaagtccct	ttgcactgca	gaacacgatc	acatccggca	ttgttagctc	tgctcagcgt	840
ccagccagag	acctgggact	ccccaaacc	aatgtggaat	acattcaaac	tgatgcagct	900

attgattttg	gaaactctgg	aggtcccctg	gttaacctgg	atggggaggt	gattggagtg	960
aacaccatga	aggtcacagc	tggaatctcc	tttgccatcc	cttctgatcg	tcttcgagag	1020
tttctgcatc	gtggggaaaa	gaagaattcc	tcctccggaa	tcagtgggtc	ccagcggcgc	1080
tacattgggg	tgatgatgct	gaccctgagt	cccagcatcc	ttgctgaact	acagcttcga	1140
gaaccaagct	ttcccgatgt	tcagcatggt	gtactcatcc	ataaagtcat	cctgggctcc	1200
cctgcacacc	gggctggtct	gcggcctggt	gatgtgattt	tggccattgg	ggagcagatg	1260
gtacaaaatg	ctgaagatgt	ttatgaagct	gttcgaaccc	aatcccagtt	ggcagtgcag	1320
atccggcggg	gacgagaaac	actgacctta	tatgtgaccc	ctgaggtcac	agaatga	1377

<210> 2

<211> 458

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature <223> HtrA2 precursor protein

<400> 2

Met Ala Ala Pro Arg Ala Gly Arg Gly Ala Gly Trp Ser Leu Arg Ala

Trp Arg Ala Leu Gly Gly Ile Arg Trp Gly Arg Arg Pro Arg Leu Thr

Pro Asp Leu Arg Ala Leu Leu Thr Ser Gly Thr Ser Asp Pro Arg Ala 40

Arg Val Thr Tyr Gly Thr Pro Ser Leu Trp Ala Arg Leu Ser. Val Gly 55

Val Thr Glu Pro Arg Ala Cys Leu Thr Ser Gly Thr Pro Gly Pro Arg 75 70

Ala Gln Leu Thr Ala Val Thr Pro Asp Thr Arg Thr Arg Glu Ala Ser 85

Glu Asn Ser Gly Thr Arg Ser Arg Ala Trp Leu Ala Val Ala Leu Gly 100 105

Ala Gly Gly Ala Val Leu Leu Leu Trp Gly Gly Gly Arg Gly Pro 115 120 125

Pro Ala Val Leu Ala Ala Val Pro Ser Pro Pro Pro Ala Ser Pro Arg

130 135 140

Ser 145	Gln	Tyr	Asn	Phe	Ile 150	Ala	Asp	Val	Val	Glu 155	Lys	Thr	Ala	Pro	Ala 160
Val	Val	Tyr	Ile	Glu 165	Ile	Leu	Asp	Arg	His 170	Pro	Phe	Leu	Gly	Arg 175	Glu
Val	Pro	Ile	Ser 180	Asn	Gly	Ser	Gly	Phe 185	Val	Val	Ala	Ala	Asp 190	Gly	Leu
Ile	Val	Thr 195	Asn	Ala	His	Val	Val 200	Ala	Asp	Arg	Arg	Arg 205	Val	Arg	Val
Arg	Leu 210	Leu	Ser	Gly	Asp	Thr 215	Tyr	Glu	Ala	Val	Val 220	Thr	Ala	Val	Asp
Pro 225	Val	Ala	Asp	Ile	Ala 230	Thr	Leu	Arg	Ile	Gln 235	Thr	Lys	Glu	Pro	Leu 240
Pro	Thr	Leu	Pro	Leu 245	Gly	Arg	Ser	Ala	Asp 250	Val	Arg	Gln	Gly	Glu 255	Phe
Val	Val	Ala	Met 260	Gly	Ser	Pro	Phe	Ala 265	Leu	Gln	Asn	Thr	Ile 270	Thr	Ser
Gly	Ile	Val 275	Ser	Ser	Ala	Gln	Arg 280	Pro	Ala	Arg	Asp	Leu 285	Gly	Leu	Pro
Gln	Thr 290	Asn	Val	Glu	Tyr	Ile 295	Gln	Thr	Asp	Ala	Ala 300	Ile	Asp	Phe	Gly
Asn 305	Ser	Gly	Gly	Pro	Leu 310	Val	Asn	Leu	Asp	Gly 315	Glu	Val	Ile	Gly	Val 320
Asn	Thr	Met	Lys	Val 325	Thr	Ala	Gly	Ile	Ser 330	Phe	Ala	Ile	Pro	Ser 335	Asp
Arg	Leu	Arg	Glu 340	Phe	Leu	His	Arg	Gly 345	Glu	Lys	Lys	Asn	Ser 350	Ser	Ser
Gly	Ile	Ser 355	Gly	Ser	Gln	Arg	Arg 360	Tyr	Ile	Gly	Val	Met 365	Met	Leu	Thr
Leu	Ser 370	Pro	Ser	Ile	Leu	Ala 375	Glu	Leu	Gln	Leu	Arg 380	Glu	Pro	Ser	Phe

Pro Asp Val Gln His Gly Val Leu Ile His Lys Val Ile Leu Gly Ser 385 390 395 400

Pro Ala His Arg Ala Gly Leu Arg Pro Gly Asp Val Ile Leu Ala Ile
405 410 415

Gly Glu Gln Met Val Gln Asn Ala Glu Asp Val Tyr Glu Ala Val Arg 420 425 430

Thr Gln Ser Gln Leu Ala Val Gln Ile Arg Arg Gly Arg Glu Thr Leu 435 440 445

Thr Leu Tyr Val Thr Pro Glu Val Thr Glu 450 455

<210> 3

<211> 981

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<223> DNA that codes for mature HtrA2

<400> 3 atggccqtcc ctaqcccqcc qcccqcttct ccccqqaqtc aqtacaactt catcqcaqat 60 gtggtggaga agacagcacc tgccgtggtc tatatcgaga tcctqgaccg gcaccctttc 120 ttgggccgcg aggtccctat ctcgaacggc tcaggattcg tggtggctgc cgatgggctc 180 attgtcacca acgcccatgt ggtggctgat cggcgcagag tccgtgtgag actgctaagc 240 ggcgacacgt atgaggccgt ggtcacagct gtggatcccg tggcagacat cgcaacqctq 300 aggattcaga ctaaggagcc tctccccacg ctgcctctgg gacgctcagc tgatgtccgg 360 caaggggagt ttgttgttgc catgggaagt ccctttgcac tgcagaacac gatcacatcc 420 ggcattgtta gctctgctca gcgtccagcc agagacctgg gactccccca aaccaatgtg 480 gaatacattc aaactgatgc agctattgat tttggaaact ctggaggtcc cctggttaac 540 ctggatgggg aggtgattgg agtgaacacc atgaaggtca cagctggaat ctcctttgcc 600 atcccttctg atcgtcttcg agagtttctg catcgtgggg aaaagaagaa ttcctcctcc 660 ggaatcagtg ggtcccagcg gcgctacatt ggggtgatga tgctgaccct gagtcccagc 720 atccttgctg aactacagct tcgagaacca agctttcccg atgttcagca tggtgtactc 780 atccataaag tcatcctggg ctcccctgca caccgggctg gtctgcggcc tggtgatgtg 840 attttggcca ttggggagca gatggtacaa aatgctgaag atgtttatga agctgttcga 900 acccaatccc agttggcagt gcagatccgg cggggacgag aaacactgac cttatatgtg 960 <210> 4

<211> 326

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> mature HtrA2

<400> 4

Met Ala Val Pro Ser Pro Pro Pro Ala Ser Pro Arg Ser Gln Tyr Asn 1 5 10 15

Phe Ile Ala Asp Val Val Glu Lys Thr Ala Pro Ala Val Val Tyr Ile 20 25 30

Glu Ile Leu Asp Arg His Pro Phe Leu Gly Arg Glu Val Pro Ile Ser 35 40 45

Asn Gly Ser Gly Phe Val Val Ala Ala Asp Gly Leu Ile Val Thr Asn 50 60

Ala His Val Val Ala Asp Arg Arg Val Arg Val Arg Leu Leu Ser 65 70 75 80

Gly Asp Thr Tyr Glu Ala Val Val Thr Ala Val Asp Pro Val Ala Asp 85 90 95

Ile Ala Thr Leu Arg Ile Gln Thr Lys Glu Pro Leu Pro Thr Leu Pro
100 105 110

Leu Gly Arg Ser Ala Asp Val Arg Gln Gly Glu Phe Val Val Ala Met 115 120 125

Gly Ser Pro Phe Ala Leu Gln Asn Thr Ile Thr Ser Gly Ile Val Ser 130 135 140

Ser Ala Gln Arg Pro Ala Arg Asp Leu Gly Leu Pro Gln Thr Asn Val 145 150 155 160

Glu Tyr Ile Gln Thr Asp Ala Ala Ile Asp Phe Gly Asn Ser Gly Gly 165 170 175

Pro Leu Val Asn Leu Asp Gly Glu Val Ile Gly Val Asn Thr Met Lys
180 185 190

195 200 Phe Leu His Arg Gly Glu Lys Lys Asn Ser Ser Gly Ile Ser Gly 210 215 Ser Gln Arg Arg Tyr Ile Gly Val Met Met Leu Thr Leu Ser Pro Ser 230 Ile Leu Ala Glu Leu Gln Leu Arg Glu Pro Ser Phe Pro Asp Val Gln 245 250 His Gly Val Leu Ile His Lys Val Ile Leu Gly Ser Pro Ala His Arg Ala Gly Leu Arg Pro Gly Asp Val Ile Leu Ala Ile Gly Glu Gln Met 280 Val Gln Asn Ala Glu Asp Val Tyr Glu Ala Val Arg Thr Gln Ser Gln Leu Ala Val Gln Ile Arg Arg Gly Arg Glu Thr Leu Thr Leu Tyr Val 310 315 Thr Pro Glu Val Thr Glu 325 <210> 5 <211> 981 <212> DNA <213> Artificial <220> <223> Polynucleotide consisting of the same base sequence of SEQ ID NO: 3 wherein the nucleotide of position 520 is g <220> <221> misc_feature <223> DNA that codes for mature HtrA2(S306A) <400> 5 60 atggccgtcc ctagcccgcc gcccgcttct ccccggagtc agtacaactt catcgcagat gtggtggaga agacagcacc tgccgtggtc tatatcgaga tcctggaccg gcaccctttc 120 180 ttgggccgcg aggtccctat ctcgaacggc tcaggattcg tggtggctgc cgatgggctc attgtcacca acgcccatgt ggtggctgat cggcgcagag tccgtgtgag actgctaagc 240 300 ggcgacacgt atgaggccgt ggtcacagct gtggatcccg tggcagacat cgcaacgctg 360 aggattcaga ctaaggagcc tctccccacg ctgcctctgg gacgctcagc tgatgtccgg

Val Thr Ala Gly Ile Ser Phe Ala Ile Pro Ser Asp Arg Leu Arg Glu

caaggggagt	ttgttgttgc	catgggaagt	ccctttgcac	tgcagaacac	gatcacatcc	420
ggcattgtta	gctctgctca	gcgtccagcc	agagacctgg	gactccccca	aaccaatgtg	480
gaatacattc	aaactgatgc	agctattgat	tttggaaacg	ctggaggtcc	cctggttaac	540
ctggatgggg	aggtgattgg	agtgaacacc	atgaaggtca	cagctggaat	ctcctttgcc	600
atcccttctg	atcgtcttcg	agagtttctg	catcgtgggg	aaaagaagaa	ttcctcctcc	660
ggaatcagtg	ggtcccagcg	gcgctacatt	ggggtgatga	tgctgaccct	gagtcccagc	720
atccttgctg	aactacagct	tcgagaacca	agctttcccg	atgttcagca	tggtgtactc	780
atccataaag	tcatcctggg	ctcccctgca	caccgggctg	gtctgcggcc	tggtgatgtg	840
attttggcca	ttggggagca	gatggtacaa	aatgctgaag	atgtttatga	agctgttcga	900
acccaatccc	agttggcagt	gcagatccgg	cggggacgag	aaacactgac	cttatatgtg	960
acccctgagg	tcacagaatg	a				981

<210> 6 <211> 326 <212> PRT

<213> Artificial

<220>

<223> Polypeptide consisting of the same amino acid sequence of SEQ ID NO:4 wherein the 174th amino acid residue is substituted by Ala

<220>

<221> misc_feature

<223> mature HtrA2(S306A)

<400> 6

Met Ala Val Pro Ser Pro Pro Pro Ala Ser Pro Arg Ser Gln Tyr Asn

Phe Ile Ala Asp Val Val Glu Lys Thr Ala Pro Ala Val Val Tyr Ile

Glu Ile Leu Asp Arg His Pro Phe Leu Gly Arg Glu Val Pro Ile Ser 40

Asn Gly Ser Gly Phe Val Val Ala Ala Asp Gly Leu Ile Val Thr Asn

Ala His Val Val Ala Asp Arg Arg Arg Val Arg Val Arg Leu Leu Ser

Gly Asp Thr Tyr Glu Ala Val Val Thr Ala Val Asp Pro Val Ala Asp

Ile Ala Thr Leu Arg Ile Gln Thr Lys Glu Pro Leu Pro Thr Leu Pro 100 105 110

Leu Gly Arg Ser Ala Asp Val Arg Gln Gly Glu Phe Val Val Ala Met 115 120 125

Gly Ser Pro Phe Ala Leu Gln Asn Thr Ile Thr Ser Gly Ile Val Ser 130 135 140

Glu Tyr Ile Gln Thr Asp Ala Ala Ile Asp Phe Gly Asn Ala Gly Gly 165 170 175

Pro Leu Val Asn Leu Asp Gly Glu Val Ile Gly Val Asn Thr Met Lys 180 185 190

Val Thr Ala Gly Ile Ser Phe Ala Ile Pro Ser Asp Arg Leu Arg Glu 195 200205

Phe Leu His Arg Gly Glu Lys Lys Asn Ser Ser Ser Gly Ile Ser Gly 210 215 220

Ser Gln Arg Arg Tyr Ile Gly Val Met Met Leu Thr Leu Ser Pro Ser 225 230 235 240

Ile Leu Ala Glu Leu Gln Leu Arg Glu Pro Ser Phe Pro Asp Val Gln 245 250 255

His Gly Val Leu Ile His Lys Val Ile Leu Gly Ser Pro Ala His Arg 260 265 270

Ala Gly Leu Arg Pro Gly Asp Val Ile Leu Ala Ile Gly Glu Gln Met 275 280 285

Val Gln Asn Ala Glu Asp Val Tyr Glu Ala Val Arg Thr Gln Ser Gln 290 295 300

Leu Ala Val Gln Ile Arg Arg Gly Arg Glu Thr Leu Thr Leu Tyr Val 305 310 315

Thr Pro Glu Val Thr Glu 325

<210> 7 <211> 969 <212> DNA <213> Artificial

<220>

<223> Polynucleotide consisting of the same base sequence of SEQ ID NO: 3 wherein the nucleotides of position 4--15 are deleted

<220>

<221> misc_feature

<223> DNA that codes for mature HtrA2(delta AVPS)

< 4	00>	7

atgccgccgc	ccgcttctcc	ccggagtcag	tacaacttca	tcgcagatgt	ggtggagaag	60
acagcacctg	ccgtggtcta	tatcgagatc	ctggaccggc	accctttctt	gggccgcgag	120
gtccctatct	cgaacggctc	aggattcgtg	gtggctgccg	atgggctcat	tgtcaccaac	180
gcccatgtgg	tggctgatcg	gcgcagagtc	cgtgtgagac	tgctaagcgg	cgacacgtat	240
gaggccgtgg	tcacagctgt	ggatcccgtg	gcagacatcg	caacgctgag	gattcagact	300
aaggagcctc	tccccacgct	gcctctggga	cgctcagctg	atgtccggca	aggggagttt	360
gttgttgcca	tgggaagtcc	ctttgcactg	cagaacacga	tcacatccgg	cattgttagc	420
tctgctcagc	gtccagccag	agacctggga	ctccccaaa	ccaatgtgga	atacattcaa	480
actgatgcag	ctattgattt	tggaaactct	ggaggtcccc	tggttaacct	ggatggggag	540
gtgattggag	tgaacaccat	gaaggtcaca	gctggaatct	cctttgccat	cccttctgat	600
cgtcttcgag	agtttctgca	tcgtggggaa	aagaagaatt	cctcctccgg	aatcagtggg	660
tcccagcggc	gctacattgg	ggtgatgatg	ctgaccctga	gtcccagcat	ccttgctgaa	720
ctacagcttc	gagaaccaag	ctttcccgat	gttcagcatg	gtgtactcat	ccataaagtc	780
atcctgggct	cccctgcaca	ccgggctggt	ctgcggcctg	gtgatgtgat	tttggccatt	840
ggggagcaga	tggtacaaaa	tgctgaagat	gtttatgaag	ctgttcgaac	ccaatcccag	900
ttggcagtgc	agatccggcg	gggacgagaa	acactgacct	tatatgtgac	ccctgaggtc	960
acagaatga						969

<210> 8

<211> 322

<212> PRT

<213> Artificial

<220>

<223> Polypeptide consisting of the same amino acid sequence of SEQ ID NO:4 wherein the amino acid residues from the 2nd to the 5th are deleted

<220>

<221> misc_feature

<223> mature HtrA2(delta AVPS)

<400> 8

Met Pro Pro Pro Ala Ser Pro Arg Ser Gln Tyr Asn Phe Ile Ala Asp
1 5 . 10 15

Val Val Glu Lys Thr Ala Pro Ala Val Val Tyr Ile Glu Ile Leu Asp 20 25 30

Arg His Pro Phe Leu Gly Arg Glu Val Pro Ile Ser Asn Gly Ser Gly 35 40 45

Phe Val Val Ala Ala Asp Gly Leu Ile Val Thr Asn Ala His Val Val 50 60

Ala Asp Arg Arg Val Arg Val Arg Leu Leu Ser Gly Asp Thr Tyr 65 70 75 80

Glu Ala Val Val Thr Ala Val Asp Pro Val Ala Asp Ile Ala Thr Leu 85 90 95

Arg Ile Gln Thr Lys Glu Pro Leu Pro Thr Leu Pro Leu Gly Arg Ser 100 105 110

Ala Asp Val Arg Gln Gly Glu Phe Val Val Ala Met Gly Ser Pro Phe 115 120 125

Ala Leu Gln Asn Thr Ile Thr Ser Gly Ile Val Ser Ser Ala Gln Arg 130 135 140

Pro Ala Arg Asp Leu Gly Leu Pro Gln Thr Asn Val Glu Tyr Ile Gln 145 150 155 160

Thr Asp Ala Ala Ile Asp Phe Gly Asn Ser Gly Gly Pro Leu Val Asn 165 170 175

Ile Ser Phe Ala Ile Pro Ser Asp Arg Leu Arg Glu Phe Leu His Arg 195 200 205

Gly Glu Lys Lys Asn Ser Ser Ser Gly Ile Ser Gly Ser Gln Arg Arg 210 215 220

Tyr Ile Gly Val Met Met Leu Thr Leu Ser Pro Ser Ile Leu Ala Glu 225 230 235 240

Leu Gln Leu Arg Glu Pro Ser Phe Pro Asp Val Gln His Gly Val Leu 245 250 255

Ile His Lys Val Ile Leu Gly Ser Pro Ala His Arg Ala Gly Leu Arg 260 265 270

Pro Gly Asp Val Ile Leu Ala Ile Gly Glu Gln Met Val Gln Asn Ala . 275 280 285

Glu Asp Val Tyr Glu Ala Val Arg Thr Gln Ser Gln Leu Ala Val Gln 290 295 300

Ile Arg Arg Gly Arg Glu Thr Leu Thr Leu Tyr Val Thr Pro Glu Val 305 310 315 320

Thr Glu

<210> 9

<211> 981

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide consisting of the same base sequence of SEQ ID NO: 3 wherein the nucleotide of position 5 is g

<220>

<221> misc_feature

<223> DNA that codes for mature HtrA2(GVPS)

<400> 9

atgggcgtcc ctagcccgcc gcccgcttct ccccggagtc agtacaactt catcgcagat 60 gtggtggaga agacagcacc tgccgtggtc tatatcgaga tcctggaccg gcaccctttc 120 ttgggccgcg aggtccctat ctcgaacggc tcaggattcg tggtggctgc cgatgggctc 180 attgtcacca acgcccatgt ggtggctgat cggcgcagag tccgtgtgag actgctaagc 240 ggcgacacgt atgaggccgt ggtcacagct gtggatcccg tggcagacat cgcaacgctg 300 aggattcaga ctaaggagcc tetececacg etgeetetgg gacgeteage tgatgteegg 360 caaggggagt ttgttgttgc catgggaagt ccctttgcac tgcagaacac gatcacatcc 420 ggcattgtta gctctgctca gcgtccagcc agagacctgg gactccccca aaccaatgtg 480 gaatacattc aaactgatgc agctattgat tttggaaact ctggaggtcc cctggttaac 540 ctggatgggg aggtgattgg agtgaacacc atgaaggtca cagctggaat ctcctttgcc 600 atcccttctg atcgtcttcg agagtttctg catcgtgggg aaaagaagaa ttcctcctcc 660 ggaatcagtg ggtcccagcg gcgctacatt ggggtgatga tgctgaccct gagtcccagc 720 atccttgctg aactacagct tcgagaacca agctttcccg atgttcagca tggtgtactc 780

atccataaag tcatcctggg ctcccctgca caccgggctg gtctgcggcc tggtgatgtg 84	0										
attttggcca ttggggagca gatggtæcaa aatgctgaag atgtttatga agctgttcga 90	0										
acccaatccc agttggcagt gcagatccgg cggggacgag aaacactgac cttatatgtg 96	0										
acccctgagg tcacagaatg a 98	1										
<210> 10 <211> 326 <212> PRT <213> Artificial											
<220> <223> Polypeptide consisting of the same amino acid sequence of SEQ ID NO:4 wherein the 2nd amino acid residue is substituted by Gly											
<220> <221> misc_feature <223> mature HtrA2(GVPS)											
<400> 10											
Met Gly Val Pro Ser Pro Pro Pro Ala Ser Pro Arg Ser Gln Tyr Asn 1 5 10 15											
Phe Ile Ala Asp Val Val Glu Lys Thr Ala Pro Ala Val Val Tyr Ile 20 25 30											
Glu Ile Leu Asp Arg His Pro Phe Leu Gly Arg Glu Val Pro Ile Ser 35 40 45											
Asn Gly Ser Gly Phe Val Val Ala Ala Asp Gly Leu Ile Val Thr Asn 50 55 60											
Ala His Val Val Ala Asp Arg Arg Val Arg Val Arg Leu Leu Ser 70 75 80											
Gly Asp Thr Tyr Glu Ala Val Val Thr Ala Val Asp Pro Val Ala Asp 85 90 95´											
Ile Ala Thr Leu Arg Ile Gln Thr Lys Glu Pro Leu Pro Thr Leu Pro 100 105 110											
Leu Gly Arg Ser Ala Asp Val Arg Gln Gly Glu Phe Val Val Ala Met 115 120 125											
Gly Ser Pro Phe Ala Leu Gln Asn Thr Ile Thr Ser Gly Ile Val Ser 130 135 140											
Ser Ala Gln Arg Pro Ala Arg Asp Leu Gly Leu Pro Gln Thr Asn Val 145 150 155 160											

Glu Tyr Ile Gln Thr Asp Ala Ala Ile Asp Phe Gly Asn Ser Gly Gly 165 170 175

Pro Leu Val Asn Leu Asp Gly Glu Val Ile Gly Val Asn Thr Met Lys 180 185 190

Val Thr Ala Gly Ile Ser Phe Ala Ile Pro Ser Asp Arg Leu Arg Glu 195 200 205

Phe Leu His Arg Gly Glu Lys Lys Asn Ser Ser Ser Gly Ile Ser Gly 210 215 220

Ser Gln Arg Arg Tyr Ile Gly Val Met Met Leu Thr Leu Ser Pro Ser 225 230 235 240

Ile Leu Ala Glu Leu Gln Leu Arg Glu Pro Ser Phe Pro Asp Val Gln 245 250 255

His Gly Val Leu Ile His Lys Val Ile Leu Gly Ser Pro Ala His Arg 260 265 270

Ala Gly Leu Arg Pro Gly Asp Val Ile Leu Ala Ile Gly Glu Gln Met 275 280 285

Val Gln Asn Ala Glu Asp Val Tyr Glu Ala Val Arg Thr Gln Ser Gln 290 295 300

Leu Ala Val Gln Ile Arg Arg Gly Arg Glu Thr Leu Thr Leu Tyr Val 305 310 315 320

Thr Pro Glu Val Thr Glu

<210> 11

<211> 969

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide consisting of the same base sequence of SEQ ID NO: 5 wherein the nucleotides of position 4-15 are deleted

<220>

<221> misc_feature

<223> DNA that codes for mature HtrA2(S306A, delta AVPS)

<400> 11

atgccgccgc ccgcttctcc ccggagtcag tacaacttca tcgcagatgt ggtggagaag

acagcacctg	ccgtggtcta	tatcgagatc	ctggaccggc	accetttett	gggccgcgag	120
gtccctatct	cgaacggctc	aggattégtg	gtggctgccg	atgggctcat	tgtcaccaac	180
gcccatgtgg	tggctgatcg	gcgcagagtc	cgtgtgagac	tgctaagcgg	cgacacgtat	240
gaggccgtgg	tcacagctgt	ggatcccgtg	gcagacatcg	caacgctgag	gattcagact	300
aaggagcctc	tccccacgct	gcctctggga	cgctcagctg	atgtccggca	aggggagttt	360
gttgttgcca	tgggaagtcc	ctttgcactg	cagaacacga	tcacatccgg	cattgttagc	420
tctgctcagc	gtccagccag	agacctggga	ctcccccaaa	ccaatgtgga	atacattcaa	480
actgatgcag	ctattgattt	tggaaacgct	ggaggtcccc	tggttaacct	ggatggggag	540
gtgattggag	tgaacaccat	gaaggtcaca	gctggaatct	cctttgccat	cccttctgat	600
cgtcttcgag	agtttctgca	tcgtggggaa	aagaagaatt	cctcctccgg	aatcagtggg	660
tcccagcggc	gctacattgg	ggtgatgatg	ctgaccctga	gtcccagcat	ccttgctgaa	720
ctacagcttc	gagaaccaag	ctttcccgat	gttcagcatg	gtgtactcat	ccataaagtc	780
atcctgggct	cccctgcaca	ccgggctggt	ctgcggcctg	gtgatgtgat	tttggccatt	840
ggggagcaga	tggtacaaaa	tgctgaagat	gtttatgaag	ctgttcgaac	ccaatcccag	900
ttggcagtgc	agatccggcg	gggacgagaa	acactgacct	tatatgtgac	ccctgaggtc	960
acagaatga						969

<210> 12

<211> 322 <212> PRT <213> Artificial

<220>

<223> Polypeptide consisting of the same amino acid sequence of SEQ ID NO:6 wherein the amino acid residues from the 2nd to the 5th are deleted

<220>

<221> misc_feature

<223> mature HtrA2(S306A, delta AVPS)

<400> 12

Met Pro Pro Pro Ala Ser Pro Arg Ser Gln Tyr Asn Phe Ile Ala Asp 5

Val Val Glu Lys Thr Ala Pro Ala Val Val Tyr Ile Glu Ile Leu Asp 20

Arg His Pro Phe Leu Gly Arg Glu Val Pro Ile Ser Asn Gly Ser Gly 40 45 35

Phe Val Val Ala Ala Asp Gly Leu Ile Val Thr Asn Ala His Val Val

50

Ala Asp Arg Arg Val Arg Val Arg Leu Leu Ser Gly Asp Thr Tyr 65 70 75 80

- Glu Ala Val Val Thr Ala Val Asp Pro Val Ala Asp Ile Ala Thr Leu 85 90 95
- Arg Ile Gln Thr Lys Glu Pro Leu Pro Thr Leu Pro Leu Gly Arg Ser 100 . 105 110
- Ala Asp Val Arg Gln Gly Glu Phe Val Val Ala Met Gly Ser Pro Phe 115 120 125
- Ala Leu Gln Asn Thr Ile Thr Ser Gly Ile Val Ser Ser Ala Gln Arg 130 135 140
- Pro Ala Arg Asp Leu Gly Leu Pro Gln Thr Asn Val Glu Tyr Ile Gln 145 150 155 160
- Thr Asp Ala Ala Ile Asp Phe Gly Asn Ala Gly Gly Pro Leu Val Asn 165 170 175
- Leu Asp Gly Glu Val Ile Gly Val Asn Thr Met Lys Val Thr Ala Gly 180 185 190
- Ile Ser Phe Ala Ile Pro Ser Asp Arg Leu Arg Glu Phe Leu His Arg 195 200 205
- Gly Glu Lys Lys Asn Ser Ser Ser Gly Ile Ser Gly Ser Gln Arg Arg 210 215 220
- Tyr Ile Gly Val Met Met Leu Thr Leu Ser Pro Ser Ile Leu Ala Glu 225 230 235 240
- Leu Gln Leu Arg Glu Pro Ser Phe Pro Asp Val Gln His Gly Val Leu 245 250 255
- Ile His Lys Val Ile Leu Gly Ser Pro Ala His Arg Ala Gly Leu Arg 260 265 270
- Pro Gly Asp Val Ile Leu Ala Ile Gly Glu Gln Met Val Gl
n Asn Ala 275 280 285
- Glu Asp Val Tyr Glu Ala Val Arg Thr Gln Ser Gln Leu Ala Val Gln 290 295 300

Thr Glu

<210> 13 <211> 981 <212> DNA <213> Artificial	
<220> <223> Polynucleotide consisting of the same base sequence of SEG 5 wherein the nucleotide of position 5 is g) ID NO:
<220> <221> misc_feature <223> DNA that codes for mature HtrA2(S306A, GVPS)	
<400> 13 atgggcgtcc ctagcccgcc gcccgcttct ccccggagtc agtacaactt catcgcaga	60
gtggtggaga agacagcacc tgccgtggtc tatatcgaga tcctggaccg gcaccctttc	2 120
ttgggccgcg aggtccctat ctcgaacggc tcaggattcg tggtggctgc cgatgggctc	180
attgtcacca acgcccatgt ggtggctgat cggcgcagag tccgtgtgag actgctaag	240
ggcgacacgt atgaggccgt ggtcacagct gtggatcccg tggcagacat cgcaacgct	g 300
aggattcaga ctaaggagcc tetececacg etgeetetgg gaegeteage tgatgteegg	g 360
caaggggagt ttgttgttgc catgggaagt ccctttgcac tgcagaacac gatcacatco	420
ggcattgtta gctctgctca gcgtccagcc agagacctgg gactccccca aaccaatgt	g 480
gaatacattc aaactgatgc agctattgat tttggaaacg ctggaggtcc cctggttaac	540
ctggatgggg aggtgattgg agtgaacacc atgaaggtca cagctggaat ctcctttgc	600
atcccttctg atcgtcttcg agagtttctg catcgtgggg aaaagaagaa ttcctcctcc	660
ggaatcagtg ggtcccagcg gcgctacatt ggggtgatga tgctgaccct gagtcccagc	720
atccttgctg aactacagct tcgagaacca agctttcccg atgttcagca tggtgtactc	780
atccataaag tcatcctggg ctcccctgca caccgggctg gtctgcggcc tggtgatgtg	g 840
attttggcca ttggggagca gatggtacaa aatgctgaag atgtttatga agctgttcga	900
acccaatccc agttggcagt gcagatccgg cggggacgag aaacactgac cttatatgtg	960
acccctgagg tcacagaatg a	981

<210> 14 <211> 326 <212> PRT <213> Artificial

<220>

<223> Polypeptide consisting of the same amino acid sequence of SEQ ID NO:6 wherein the 2nd amino acid residue is substituted by Gly

<220>

<221> misc_feature

<223> mature HtrA2(S306A, GVPS)

<400> 14

Met Gly Val Pro Ser Pro Pro Pro Ala Ser Pro Arg Ser Gln Tyr Asn 1 5 10 15

Phe Ile Ala Asp Val Val Glu Lys Thr Ala Pro Ala Val Val Tyr Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Glu Ile Leu Asp Arg His Pro Phe Leu Gly Arg Glu Val Pro Ile Ser 35 40 45

Asn Gly Ser Gly Phe Val Val Ala Ala Asp Gly Leu Ile Val Thr Asn 50 60

Ala His Val Val Ala Asp Arg Arg Val Arg Val Arg Leu Leu Ser 65 70 75 80

Gly Asp Thr Tyr Glu Ala Val Val Thr Ala Val Asp Pro Val Ala Asp 85 90 95

Ile Ala Thr Leu Arg Ile Gln Thr Lys Glu Pro Leu Pro Thr Leu Pro 100 105 110

Leu Gly Arg Ser Ala Asp Val Arg Gln Gly Glu Phe Val Val Ala Met 115 120 125

Gly Ser Pro Phe Ala Leu Gln Asn Thr Ile Thr Ser Gly Ile Val Ser 130 135 140

Ser Ala Gln Arg Pro Ala Arg Asp Leu Gly Leu Pro Gln Thr Asn Val 145 150 155 160

Glu Tyr Ile Gln Thr Asp Ala Ala Ile Asp Phe Gly Asn Ala Gly Gly 165 170 175

Pro Leu Val Asn Leu Asp Gly Glu Val Ile Gly Val Asn Thr Met Lys
180 185 190

Val Thr Ala Gly Ile Ser Phe Ala Ile Pro Ser Asp Arg Leu Arg Glu 195 200 205 Phe Leu His Arg Gly Glu Lys Lys Asn Ser Ser Ser Gly Ile Ser Gly 210 215 220

Ser Gln Arg Arg Tyr Ile Gly Val Met Met Leu Thr Leu Ser Pro Ser 225 230 235 240

Ile Leu Ala Glu Leu Gln Leu Arg Glu Pro Ser Phe Pro Asp Val Gln 245 250 255

Ala Gly Leu Arg Pro Gly Asp Val Ile Leu Ala Ile Gly Glu Gln Met 275 280 285

Val Gln Asn Ala Glu Asp Val Tyr Glu Ala Val Arg Thr Gln Ser Gln 290 295 300

Leu Ala Val Gln Ile Arg Arg Gly Arg Glu Thr Leu Thr Leu Tyr Val 305 310 315 320

Thr Pro Glu Val Thr Glu

<210> 15

<211> 2112

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<223> DNA that codes for CREBL1

<400> 15

atggcggagc tgatgctgct cagcgagatt gctgacccga cgcgtttctt caccgacaac 60 ctgcttagcc cggaggactg gggtctgcag aacagcacct tgtattctgg cctagatgaa 120 gtggccgagg agcagacgca gctcttccgt tgcccggagc aggatgtccc gtttgacggc 180 agctccctgg acgtggggat ggatgtcagc ccctctgagc ccccatggga actcctgccg 240 atcttcccag atcttcaggt gaagtctgag ccatcttccc cctgctcttc ctcctccctc 300 agctccgagt catcgcgtct ctccacagag ccatccagcg aggctcttgg ggtaggggag 360 gtgctccatg tgaagacaga gtccttggca ccccactgt gtctcctggg agatgaccca 420 acatecteat ttgaaacegt ecagateaat gttateeeca eetetgatga tteeteagat 480 gtccagacca agatagaacc tgtctctcca tgttcttccg tcaactctga ggcctccctg 540 ctctcagccg actcctccag ccaggctttt ataggagagg aggtcctgga agtgaagaca 600

gagtccctgt ccccttcagg	atgcctcctg	tgggatgtcc	cagccccctc	acttggagct	660
gtccagatca gcatgggccc	atcccttgat	ggctcctcag	gcaaagccct	gcccacccgg	720
aageegeeae tgeageeeaa	acctgtagtg	ctaaccactg	tcccaatgcc	atccagagct	780
gtgcctccca gcaccacagt	ccttctgcag	tecetegtee	agccaccccc	agtgtcccca	840
gttgtcctca tccagggtgc	tattcgagtc	cagcctgaag	ggccggctcc	ctctctacca	900
cggcctgaga ggaagagcat	cgttcccgct	cctatgcctg	gaaactcctg	cccgcctgaa	960
gtggatgcaa agctgctgaa	gcggcagcag	cgaatgatca	agaaccggga	gtcagcctgc	1020
cagtcccgga gaaagaagaa	agagtatctg	cagggactgg	aggctcggct	gcaagcagta	1080
ctggctgaca accagcagct	ccgccgagag	aatgctgccc	tccggcggcg	gctggaggcc	1140
ctgctggctg aaaacagcga	gctcaagtta	gggtctggaa	acaggaaggt	ggtctgcatc	1200
atggtcttcc ttctcttcat	tgccttcaac	tttggacctg	tcagcatcag	tgagcctcct	1260
tcagctccca tctctcctcg	gatgaacaag	ggggagcctc	aaccccggag	acacttgctg	1320
gggttctcag agcaagagcc	agttcaggga	gttgaacctc	tccaggggtc	ctcccagggc	1380
cctaaggagc cccagcccag	ccccacagac	cagcccagtt	tcagcaacct	gacagccttc	1440
cctgggggcg ccaaggagct	actactaaga	gacctagacc	agctcttcct	ctcctctgat	1500
tgccggcact tcaaccgcac	tgagtccctg	aggcttgctg	acgagttgag	tggctgggtc	1560
cagcgccacc agagaggccg	gaggaagatc	cctcagaggg	cccaggagag	acagaagtct	1620
cagccacgga agaagtcacc	tccagttaag	gcagtcccca	tccaaccccc	tggaccccca	1680
gaaagggatt ctgtgggcca	gctgcaacta	tatcgccacc	cagaccgttc	gcagccagca	1740
ttcttggatg caattgaccg	acgggaagac	acattttatg	ttgtctcttt	ccgaagggac	1800
cacctgctgc tcccagccat	cagccacaac	aagacctccc	ggcccaagat	gtccctggtg	1860
atgcctgcca tggcccccaa	tgagaccctg	tcaggccgtg	gggccccggg	ggactatgag	1920
gagatgatgc agatcgagtg	tgaggtcatg	gacaccaggg	tgattcacat	caagacctcc	1980
acagtgcccc cctcgctccg	aaaacagcca	tccccaaccc	caggcaatgc	cacaggtggc	2040
cccttgccag tctctgcagc	cagccaggcc	caccaggcct	cccaccagcc	cctctacctc	2100
aatcatccct aa					2112

<210> 16 <211> 703 <212> PRT <213> Homo sapiens

<220>

<221> misc_feature <223> CREBL1

Met Ala Glu Leu Met Leu Leu Ser Glu Ile Ala Asp Pro Thr Arg Phe 1 5 10 15

Phe Thr Asp Asn Leu Leu Ser Pro Glu Asp Trp Gly Leu Gln Asn Ser 20 25 30

Thr Leu Tyr Ser Gly Leu Asp Glu Val Ala Glu Glu Gln Thr Gln Leu 35 40 45

Phe Arg Cys Pro Glu Gln Asp Val Pro Phe Asp Gly Ser Ser Leu Asp 50 55 60

Val Gly Met Asp Val Ser Pro Ser Glu Pro Pro Trp Glu Leu Leu Pro 65 70 75 80

Ile Phe Pro Asp Leu Gln Val Lys Ser Glu Pro Ser Ser Pro Cys Ser 85 90 95

Ser Ser Ser Leu Ser Ser Glu Ser Ser Arg Leu Ser Thr Glu Pro Ser 100 105 110

Ser Glu Ala Leu Gly Val Gly Glu Val Leu His Val Lys Thr Glu Ser 115 120 125

Leu Ala Pro Pro Leu Cys Leu Leu Gly Asp Asp Pro Thr Ser Ser Phe 130 135 140

Glu Thr Val Gln Ile Asn Val Ile Pro Thr Ser Asp Asp Ser Ser Asp 145 150 155 160

Val Gln Thr Lys Ile Glu Pro Val Ser Pro Cys Ser Ser Val Asn Ser 165 170 175

Glu Ala Ser Leu Leu Ser Ala Asp Ser Ser Ser Gln Ala Phe Ile Gly 180 185 190

Glu Glu Val Leu Glu Val Lys Thr Glu Ser Leu Ser Pro Ser Gly Cys 195 200 205

Leu Leu Trp Asp Val Pro Ala Pro Ser Leu Gly Ala Val Gln Ile Ser 210 215 220

Met Gly Pro Ser Leu Asp Gly Ser Ser Gly Lys Ala Leu Pro Thr Arg 225 230 235 240

Lys Pro Pro Leu Gln Pro Lys Pro Val Val Leu Thr Thr Val Pro Met

245 250 255

Pro	Ser	Arg	A1a 260	Val	Pro	Pro	Ser	Thr 265	Thr	Val	Leu	Leu	G1n 270	Ser	Leu
Val	Gln	Pro 275	Pro	Pro	Val	Ser	Pro 280	Val	Val	Leu	Ile	Gln 285	Gly	Ala	Ile
Arg	Val 290	Gln	Pro	Glu	Gly	Pro 295	Ala	Pro	Ser	Leu	Pro 300	Arg	Pro	Glu	Arg
Lys 305	Ser	Ile	Val	Pro	Ala 310	Pro	Met	Pro	Gly	Asn 315	Ser	Cys	Pro	Pro	Glu 320
Val	Asp	Ala	Lys	Leu 325	Leu	Lys	Arg	Gln	Gln 330	Arg	Met	Ile	Lys	Asn 335	Arg
Glu	Ser	Ala	Cys 340	Gln	Ser	Arg	Arg	Lys 345	Lys	Lys	Glu	Tyr	Leu 350	Gln	Gly
Leu	Glu	Ala 355	Arg	Leu	Gln	Ala	Val 360	Leu	Ala	Asp	Asn	Gln 365	Gln	Leu	Arg
Arg	Glu 370	Asn	Ala	Ala	Leu	Arg 375	Arg	Arg	Leu	Glu	Ala 380	Leu	Leu	Ala	Glu
Asn 385	Ser	Glu	Leu	Lys	Leu 390	Gly	Ser	Gly	Asn	Arg 395	Lys	Val	Val	Cys	Ile 400
Met	Val	Phe	Leu	Leu 405	Phe	Ile	Ala	Phe	Asn 410	Phe	Gly	Pro	Val	Ser 415	Ile
Ser	Glu	Pro	Pro 420	Ser	Ala	Pro	Ile	Ser 425	Pro	Arg	Met	Asn	Lys 430	Gly	Glu
Pro	Gln	Pro 435	Arg	Arg	His	Leu	Leu 440	Gly	Phe	Ser	Glu	Gln 445	Glu	Pro	Val
Gln	Gly 450	Val	Glu	Pro	Leu	Gln 455	Gly	Ser	Ser	Gln	Gly 460	Pro	Lys	Glu	Pro
Gln 465	Pro	Ser	Pro	Thr	Asp 470	Gln	Pro	Ser	Phe	Ser 475	Asn	Leu	Thr	Ala	Phe 480
Pro	Gly	Gly	Ala	Lys 485	Glu	Leu	Leu	Leu	Arg 490	Asp	Leu	Asp	Gln	Leu 495	Phe

Leu Ser Ser Asp Cys Arg His Phe Asn Arg Thr Glu Ser Leu Arg Leu

Ala Asp Glu Leu Ser Gly Trp Val Gln Arg His Gln Arg Gly Arg Arg 520 515

Lys Ile Pro Gln Arg Ala Gln Glu Arg Gln Lys Ser Gln Pro Arg Lys 535

Lys Ser Pro Pro Val Lys Ala Val Pro Ile Gln Pro Pro Gly Pro Pro

Glu Arg Asp Ser Val Gly Gln Leu Gln Leu Tyr Arg His Pro Asp Arg 565 570

Ser Gln Pro Ala Phe Leu Asp Ala Ile Asp Arg Arg Glu Asp Thr Phe

Tyr Val Val Ser Phe Arg Arg Asp His Leu Leu Leu Pro Ala Ile Ser 600

His Asn Lys Thr Ser Arg Pro Lys Met Ser Leu Val Met Pro Ala Met 615

Ala Pro Asn Glu Thr Leu Ser Gly Arg Gly Ala Pro Gly Asp Tyr Glu 635

Glu Met Met Gln Ile Glu Cys Glu Val Met Asp Thr Arg Val Ile His 650

Ile Lys Thr Ser Thr Val Pro Pro Ser Leu Arg Lys Gln Pro Ser Pro

Thr Pro Gly Asn Ala Thr Gly Gly Pro Leu Pro Val Ser Ala Ala Ser 680

Gln Ala His Gln Ala Ser His Gln Pro Leu Tyr Leu Asn His Pro 690 695 700

<210> 17

<211> 2013

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <223> DNA that codes for ATF6

<400> 17

atgggggagc	cggctggggt	tgccggcacc	atggagtcac	cttttagccc	gggactcttt	60	
cacaggctgg	atgaagattg	ggattctgct	ctctttgctg	aactcggtta	tttcacagac	120	
actgatgagc	tgcaattgga	agcagcaaat	gagacgtatg	aaaacaattt	tgataatctt	180	
gattttgatt	tggatttgat	gccttgggag	tcagacattt	gggacatcaa	caaccaaatc	240	
tgtacagtta	aagatattaa	ggcagaacct	cagccacttt	ctccagcctc	ctcaagttat	300	
tcagtctcgt	ctcctcggtc	agtggactct	tattcttcaa	ctcagcatgt	tcctgaggag	360	
ttggatttgt	cttctagttc	tcagatgtct	cccctttcct	tatatggtga	aaactctaat	420	
agtctctctt	cagcggagcc	actgaaggaa	gataagcctg	tcactggtcc	taggaacaag	480	
actgaaaatg	gactgactcc	aaagaaaaaa	attcaggtga	attcaaaacc	ttcaattcag	540	
cccaagcctt	tattgcttcc	agcagcaccc	aagactcaaa	caaactccag	tgttccagca	600	
aaaaccatca	ttattcagac	agtaccaacg	cttatgccat	tggcaaagca	gcaaccaatt	660	
atcagtttac	aacctgcacc	cactaaaggc	cagacggttt	tgctgtctca	gcctactgtg	720	
gtacaacttc	aagcacctgg	agttctgccc	tctgctcagc	cagtccttgc	tgttgctggg	780	
ggagtcacac	agctccctaa	tcacgtggtg	aatgtggtac	cagccccttc	agcgaatagc	840	
ccagtgaatg	gaaaactttc	cgtgactaaa	cctgtcctac	aaagtaccat	gagaaatgtc	900	
ggttcagata	ttgctgtgct	aaggagacag	caacgtatga	taaaaaatcg	agaatccgct	960	
tgtcagtctc	gcaagaagaa	gaaagaatat	atgctagggt	tagaggcgag	attaaaggct	1020	
gccctctcag	aaaacgagca	actgaagaaa	gaaaatggaa	cactgaagcg	gcagctggat	1080	
gaagttgtgt	cagagaacca	gaggcttaaa	gtccctagtc	caaagcgaag	agttgtctgt	1140	
gtgatgatag	tattggcatt	tataatactg	aactatggac	ctatgagcat	gttggaacag	1200	
gattccagga	gaatgaaccc	tagtgtgagc	cctgcaaatc	aaaggaggca	ccttctagga	1260	
ttttctgcta	aagaggcaca	ggacacatca	gatggtatta	tccagaaaaa	cagctacaga	1320	
tatgatcatt	ctgtttcaaa	tgacaaagcc	ctgatggtgc	taactgaaga	accattgctt	1380	
tacattcctc	cacctccttg	tcagccccta	attaacacaa	cagagtctct	caggttaaat	1440	
catgaacttc	gaggatgggt	tcatagacat	gaagtagaaa	ggaccaagtc	aagaagaatg	1500	
acaaataatc	aacagaaaac	ccgtattctt	cagggtgctc	tggaacaggg	ctcaaattct	1560	
cagctgatgg	ctgttcaata	cacagaaacc	actagtagta	tcagcaggaa	ctcagggagt	1620	
gagctacaag	tgtattatgc	ttcacccaga	agttatcaag	acttttttga	agccatccgc	1680	
agaaggggag	acacatttta	tgttgtgtca	tttcgaaggg	atcacctgct	gttaccagct	1740	
accacccata	acaagaccac	aagaccaaaa	atgtcaattg	tgttaccagc	aataaacata	1800	
aatgagaatg	tgatcaatgg	gcaggactac	gaagtgatga	tgcagattga	ctgtcaggtg	1860	
atggacacca	ggatcctcca	tatcaaaagt	tcgtcagttc	ctccttacct	ccgagatcag	1920	

<210> 18 <211> 670

~211/ 0/0

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> ATF6

<400> 18

Met Gly Glu Pro Ala Gly Val Ala Gly Thr Met Glu Ser Pro Phe Ser 1 5 10 15

Pro Gly Leu Phe His Arg Leu Asp Glu Asp Trp Asp Ser Ala Leu Phe 20 25 30

Ala Glu Leu Gly Tyr Phe Thr Asp Thr Asp Glu Leu Glu Ala 35 40 45

Ala Asn Glu Thr Tyr Glu Asn Asn Phe Asp Asn Leu Asp Phe Asp Leu 50 55 60

Asp Leu Met Pro Trp Glu Ser Asp Ile Trp Asp Ile Asn Asn Gln Ile 65 70 75 80

Cys Thr Val Lys Asp Ile Lys Ala Glu Pro Gln Pro Leu Ser Pro Ala 85 90 95

Ser Ser Ser Tyr Ser Val Ser Ser Pro Arg Ser Val Asp Ser Tyr Ser 100 105 110

Ser Thr Gln His Val Pro Glu Glu Leu Asp Leu Ser Ser Ser Gln 115 $$120\,$ $$125\,$

Met Ser Pro Leu Ser Leu Tyr Gly Glu Asn Ser Asn Ser Leu Ser Ser 130 135 140

Ala Glu Pro Leu Lys Glu Asp Lys Pro Val Thr Gly Pro Arg Asn Lys 145 150 155 160

Thr Glu Asn Gly Leu Thr Pro Lys Lys Ile Gln Val Asn Ser Lys 165 170 175

Pro Ser Ile Gln Pro Lys Pro Leu Leu Pro Ala Ala Pro Lys Thr

180 185 190

Gln	Thr	Asn	Ser	Ser	Val	Pro	Ala	Lys	Thr	Ile	Ile	Ile	Gln	Thr	Val
		195					200					205			

- Pro Thr Leu Met Pro Leu Ala Lys Gln Gln Pro Ile Ile Ser Leu Gln 210 215 220
- Pro Ala Pro Thr Lys Gly Gln Thr Val Leu Leu Ser Gln Pro Thr Val 225 230 235 240
- Val Gln Leu Gln Ala Pro Gly Val Leu Pro Ser Ala Gln Pro Val Leu 245 250 255
- Ala Val Ala Gly Gly Val Thr Gln Leu Pro Asn His Val Val Asn Val 260 265 270
- Val Pro Ala Pro Ser Ala Asn Ser Pro Val Asn Gly Lys Leu Ser Val 275 280 285
- Thr Lys Pro Val Leu Gln Ser Thr Met Arg Asn Val Gly Ser Asp Ile 290 295 300
- Ala Val Leu Arg Arg Gln Gln Arg Met Ile Lys Asn Arg Glu Ser Ala 305 310 315 320
- Cys Gln Ser Arg Lys Lys Lys Glu Tyr Met Leu Gly Leu Glu Ala 325 330 335
- Arg Leu Lys Ala Ala Leu Ser Glu Asn Glu Gln Leu Lys Lys Glu Asn 340 345 350
- Gly Thr Leu Lys Arg Gln Leu Asp Glu Val Val Ser Glu Asn Gln Arg 355 360 365
- Leu Lys Val Pro Ser Pro Lys Arg Arg Val Val Cys Val Met Ile Val 370 380
- Leu Ala Phe Ile Ile Leu Asn Tyr Gly Pro Met Ser Met Leu Glu Gln 385 390 395 400
- Asp Ser Arg Arg Met Asn Pro Ser Val Ser Pro Ala Asn Gln Arg Arg $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415$
- His Leu Leu Gly Phe Ser Ala Lys Glu Ala Gln Asp Thr Ser Asp Gly 420 425 430

Ile Ile Gln Lys Asn Ser Tyr Arg Tyr Asp His Ser Val Ser Asn Asp 435 440 Lys Ala Leu Met Val Leu Thr Glu Glu Pro Leu Leu Tyr Ile Pro Pro 450 Pro Pro Cys Gln Pro Leu Ile Asn Thr Thr Glu Ser Leu Arg Leu Asn 470 His Glu Leu Arg Gly Trp Val His Arg His Glu Val Glu Arg Thr Lys 485 490 Ser Arg Arg Met Thr Asn Asn Gln Gln Lys Thr Arg Ile Leu Gln Gly Ala Leu Glu Gln Gly Ser Asn Ser Gln Leu Met Ala Val Gln Tyr Thr 520 Glu Thr Thr Ser Ser Ile Ser Arg Asn Ser Gly Ser Glu Leu Gln Val 535 540 Tyr Tyr Ala Ser Pro Arg Ser Tyr Gln Asp Phe Phe Glu Ala Ile Arg Arg Arg Gly Asp Thr Phe Tyr Val Val Ser Phe Arg Arg Asp His Leu Leu Leu Pro Ala Thr Thr His Asn Lys Thr Thr Arg Pro Lys Met Ser 585 Ile Val Leu Pro Ala Ile Asn Ile Asn Glu Asn Val Ile Asn Gly Gln Asp Tyr Glu Val Met Met Gln Ile Asp Cys Gln Val Met Asp Thr Arg 610 615 620 Ile Leu His Ile Lys Ser Ser Ser Val Pro Pro Tyr Leu Arg Asp Gln

Glu Ala Thr His Val Val Ser Thr Ile Pro Glu Ser Leu Gln 660 665 670

Gln Arg Asn Gln Thr Asn Thr Phe Phe Gly Ser Pro Pro Ala Ala Thr

650 655

<210> 19 <211> 36 <212> DNA

```
<213> Artificial
<220>
<223> Designed polynucleotide based on the base sequence of SEQ ID NO:3
       for use as a primer to obtain mature HtrA2 DNA
<400> 19
catatggccg tccctagccc gccgcccgct tctccc
                                                                     36
<210>
      20
<211>
      35
<212> DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:3
       for use as a primer to obtain mature HtrA2 DNA
<400> 20
                                                                     35
ctcgagttct gtgacctcag gggtcacata taagg
<210> 21
<211> 40
<212> DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:3
       for use as a primer to obtain mature HtrA2(S306A) DNA
                                                                     40
gctattgatt ttggaaacgc tggaggtccc ctggttaacc
<210> 22
<211> 40
<212>
      DNA
<213> Artificial
<220>
<223> Designed polynucleotide based on the base sequence of SEQ ID NO:3
       for use as a primer to obtain mature HtrA2(S306A) DNA
<400> 22
ggttaaccag gggacctcca gcgtttccaa aatcaatagc
                                                                     40
<210> 23
<211>
      27
<212>
      DNA
<213> Artificial
<220>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
<223>
      5 for use as a primer to obtain CREBL1 DNA
<400> 23
gcgaattcgc catggcggag ctgatgc
                                                                     27
```

<210> 24

```
<211>
      28
<212> DNA
<213> Artificial
<220>
<223> Designed polynucleotide based on the base sequence of SEQ ID NO:1
       5 for use as a primer to obtain CREBL1 DNA
<400> 24
                                                                      28
gcctcgaggg gatgattgag gtagaggg
<210>
      25
<211>
      30
<212>
      DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
       5 for use as a primer to obtain CREBL1 DNA
<400> 25
gcggatcccg cggagctgat gctgctcagc
                                                                      30
<210> 26
<211> 33
<212> DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
       5 for use as a primer to obtain CREBL1 DNA
cctcgaggtt tagggatgat tgaggtagag ggg
                                                                      33
<210> 27
<211> 30
<212>
      DNA
<213> Artificial
<220> .
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
       7 for use as a primer to obtain ATF6 DNA
<400> 27
                                                                      30
agttccaggg aaaaggaact tgtgaaatgg
<210> 28
<211> 30
<212>
      DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
       7 for use as a primer to obtain ATF6 DNA
<400> 28
                                                                      30
acgctcagtt ttccacatag ctgcgggtgc
```

```
<210> 29
<211>
      39
<212> DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
       7 for use as a primer to obtain ATF6 DNA
<400> 29
aaagatatca tgggggagcc ggctggggtt gccggcacc
                                                                      39
<210>
      30
<211>
      39
<212> DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
       7 for use as a primer to obtain ATF6 DNA
aaactcgagc tattgtaatg actcagggat ggtgctgac
                                                                      39
<210> 31
<211> 39
<212> DNA
<213> Artificial
<220>
      Designed polynucleotide based on the base sequence of SEQ ID NO:1
<223>
       7 for use as a primer to obtain ATF6 DNA
<400> 31
aaaagatcta tgggggagcc ggctggggtt gccggcacc
                                                                      39
<210> 32
<211> 36
<212> DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:3
       for use as a primer to obtain mature HtrA2(delta AVPS) DNA
<400> 32
gageteatge egeegeege tteteeegg agteag
                                                                      36
<210>
      33
<211>
      36
<212>
      DNA
<213> Artificial
<220>
<223>
      Designed polynucleotide based on the base sequence of SEQ ID NO:3
       for use as a primer to obtain mature HtrA2(GVPS) DNA
<400>
      33
```

<210> 34 <211> 1398 <212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<223> DNA that codes for HNF-4alpha

<400> 34

atggacatgg ccgactacag tgctgcactg gacccagcct acaccaccct ggaatttgag 60 aatgtgcagg tgttgacgat gggcaatgac acgtccccat cagaaggcac caacctcaac 120 gegeceaaca geetgggtgt cagegeettg tgtgecatet geggggaeeg ggecaeggge 180 aaacactacg gtgcctcgag ctgtgacggc tgcaagggct tcttccggag gagcgtgcgg 240 300 aagaaccaca tgtactcctg cagatttagc cggcagtgcg tggtggacaa agacaagagg aaccagtgcc gctactgcag gctcaagaaa tgcttccggg ctggcatgaa gaaggaagcc 360 gtccagaatg agcgggaccg gatcagcact cgaaggtcaa gctatgagga cagcagcctg 420 ccctccatca atgcgctcct gcaggcggag gtcctgtccc gacagatcac ctcccccgtc 480 teegggatea aeggegaeat tegggegaag aagattgeea geategeaga tgtgtgtgag 540 tccatgaagg agcagctgct ggttctcgtt gagtgggcca agtacatccc agctttctgc 600 gagetecece tggaegaeca ggtggeeetg etcagagece atgetggega geaectgetg 660 ctcggagcca ccaagagatc catggtgttc aaggacgtgc tgctcctagg caatgactac 720 attgtccctc ggcactgccc ggagctggcg gagatgagcc gggtgtccat acgcatcctt 780 gacgagetgg tgctgccctt ccaggagetg cagatcgatg acaatgagta tgcctacctc 840 aaagccatca tettetttga eecagatgee aaggggetga gegateeagg gaagateaag 900 960 cggctgcgtt cccaggtgca ggtgagcttg gaggactaca tcaacgaccg ccagtatgac tcgcgtggcc gctttggaga gctgctgctg ctgctgccca ccttgcagag catcacctgg 1020 cagatgatcg agcagatcca gttcatcaag ctcttcggca tggccaagat tgacaacctg 1080 ttgcaggaga tgctgctggg agggtccccc agcgatgcac cccatgccca ccacccctg 1140 cacceteace tgatgeagga acatatggga accaaegtea tegttgeeaa cacaatgeee 1200 actcacctca gcaacggaca gatgtgtgag tggccccgac ccaggggaca ggcagccacc 1260 cctgagaccc cacagccctc accgccaggt ggctcagggt ctgagcccta taagctcctg 1320 ccgggagccg tcgccacaat cgtcaagccc ctctctgcca tcccccagcc gaccatcacc 1380 aagcaggaag ttatctag 1398

<210> 35 <211> 465

<212> PRT <213> Homo sapiens

<220>

<221> misc feature

<223> HNF-4alpha

<400> 35

Met Asp Met Ala Asp Tyr Ser Ala Ala Leu Asp Pro Ala Tyr Thr Thr

Leu Glu Phe Glu Asn Val Gln Val Leu Thr Met Gly Asn Asp Thr Ser 25

Pro Ser Glu Gly Thr Asn Leu Asn Ala Pro Asn Ser Leu Gly Val Ser 40

Ala Leu Cys Ala Ile Cys Gly Asp Arg Ala Thr Gly Lys His Tyr Gly

Ala Ser Ser Cys Asp Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Arg

Lys Asn His Met Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp

Lys Asp Lys Arg Asn Gln Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe 100 105

Arg Ala Gly Met Lys Lys Glu Ala Val Gln Asn Glu Arg Asp Arg Ile

Ser Thr Arg Arg Ser Ser Tyr Glu Asp Ser Ser Leu Pro Ser Ile Asn 135

Ala Leu Leu Gln Ala Glu Val Leu Ser Arg Gln Ile Thr Ser Pro Val 145 150 155

Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys Lys Ile Ala Ser Ile Ala 165 170

Asp Val Cys Glu Ser Met Lys Glu Gln Leu Leu Val Leu Val Glu Trp

Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu Pro Leu Asp Asp Gln Val 195 200 205

Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Gly Ala Thr 210 215 220

Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu Gly Asn Asp Tyr 235 230 235

Ile Val Pro Arg His Cys Pro Glu Leu Ala Glu Met Ser Arg Val Ser 245 250 255

Ile Arg Ile Leu Asp Glu Leu Val Leu Pro Phe Gln Glu Leu Gln Ile 260 265 270

Asp Asp Asn Glu Tyr Ala Tyr Leu Lys Ala Ile Ile Phe Phe Asp Pro 275 280 285

Asp Ala Lys Gly Leu Ser Asp Pro Gly Lys Ile Lys Arg Leu Arg Ser 290 295 300

Gln Val Gln Val Ser Leu Glu Asp Tyr Ile Asn Asp Arg Gln Tyr Asp 305 310 315 320

Ser Arg Gly Arg Phe Gly Glu Leu Leu Leu Leu Leu Pro Thr Leu Gln 325 330 335

Ser Ile Thr Trp Gln Met Ile Glu Gln Ile Gln Phe Ile Lys Leu Phe 340 345 350

Gly Met Ala Lys Ile Asp Asn Leu Leu Gln Glu Met Leu Leu Gly Gly 355 360 365

Ser Pro Ser Asp Ala Pro His Ala His His Pro Leu His Pro His Leu 370 375 380

Met Gln Glu His Met Gly Thr Asn Val Ile Val Ala Asn Thr Met Pro 385 390 395 400

Thr His Leu Ser Asn Gly Gln Met Cys Glu Trp Pro Arg Pro Arg Gly
405 410 415

Gln Ala Ala Thr Pro Glu Thr Pro Gln Pro Ser Pro Pro Gly Gly Ser 420 425 430

Gly Ser Glu Pro Tyr Lys Leu Leu Pro Gly Ala Val Ala Thr Ile Val 435 440 445

Ile 465