0.1. Cohomology in terms of Homological Algebra. Recall the Universal Coefficient Theorem for Cohomology:

Theorem 0.1 (Universal Coefficient Theorem for Cohomology). Let R be a ring and A an R- module. Let C_* be a complex of projective R-modules such that the subcomplex of boundaries B_* is also a complex of projective modules.

- (1) For all n, there is a SES
- $0 \to \operatorname{Ext}_{R}^{1}\left(H_{n-1}(C_{*}), A\right) \xrightarrow{\lambda_{n}} H^{n}\left(\operatorname{Hom}_{R}\left(C_{*}, A\right)\right) \xrightarrow{\mu_{n}} \operatorname{Hom}_{R}\left(H_{n}\left(C_{*}\right), A\right) \to 0$ where both λ_{n} and μ_{n} are natural in C_{*} and A.
- (2) If R is a PID, then the SES in (1) is split, but it is not always naturally split.

Also recall the basic properties:

Lemma 0.2. For a finitely generated H, we have

5-lemma, we obtain that α^* is an isomorphism also.

- $\operatorname{Ext}(H \oplus H', G) \cong \operatorname{Ext}(H, G) \oplus \operatorname{Ext}(H', G)$
- $\operatorname{Ext}(H,G) = 0$ if H is free.
- $\operatorname{Ext}(\mathbb{Z}/n, G) \cong G/nG$.

Corollary 0.3. If the homology groups H_n and H_{n-1} of a chain complex C of free abelian groups are finitely generated, with torsion subgroups $T_n \subset H_n$ and $T_{n-1} \subset H_{n-1}$, then $H^n(\text{Hom}_{\mathbb{Z}}(C_*,\mathbb{Z})) \cong (H_n/T_n) \oplus T_{n-1}$.

Proof. By the Universal Coefficient theorem for cohomology, we have that

$$H^{n}\left(\operatorname{Hom}_{\mathbb{Z}}\left(C_{*},\mathbb{Z}\right)\right)\cong\operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{n-1}(C_{*}),\mathbb{Z}\right)\oplus\operatorname{Hom}_{\mathbb{Z}}\left(H_{n}\left(C_{*}\right),\mathbb{Z}\right)$$

Now,
$$\operatorname{Ext}_{\mathbb{Z}}^{1}(H_{n-1}(C_{*}),\mathbb{Z}) \cong T_{n-1}$$
 and $\operatorname{Hom}_{\mathbb{Z}}(H_{n}(C_{*}),\mathbb{Z}) \cong H_{n}/T_{n}$.

Proposition 0.4. If a chain map between chain complexes of free abelian groups induces an isomorphism on homology groups, then it induces an isomorphism on cohomology groups with any coefficient group G.

Proof. Suppose $\alpha: C_* \to C'_*$ is the chain map such that $\alpha_*: H_n(C_*) \to H_n(C'_*)$ is an isomorphism for all n. Consider the diagram

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(C), G) \longrightarrow H^{n}(C; G) \stackrel{h}{\longrightarrow} \operatorname{Hom}(H_{n}(C), G) \longrightarrow 0$$

$$(\alpha_{*})^{*} \stackrel{\frown}{\cong} \qquad \alpha^{*} \stackrel{\uparrow}{\longrightarrow} \qquad (\alpha_{*})^{*} \stackrel{\frown}{\cong}$$

$$0 \longrightarrow \operatorname{Ext}(H_{n-1}(C'), G) \longrightarrow H^{n}(C'; G) \stackrel{h}{\longrightarrow} \operatorname{Hom}(H_{n}(C'), G) \longrightarrow 0$$

which follows form naturality of the Universal Coefficient theorem. Then by the

0.2. Cohomology of Spaces. Define $S^{-n}(X;G) := \operatorname{Hom}_{\mathbb{Z}}(S_n(X),A)$, so $S^*(X;A)$ is a chain complex. We define $H^n(X;A) := H_{-n}(S^*(X;A))$, called singular cohomology of X with coefficients in A.

Thus an n-cochain $\varphi \in S^{-n}(X;G)$ assigns to each n-simplex $\sigma \colon \Delta^n \to X$ a value $\varphi(\sigma) \in G$. Since the n-simplicies form a basis for $S_n(X)$, these values can be chosen arbitrarily, hence n-cochains are exactly equivalent to functions from singular n-simplices to G.

The coboundary map $\delta \colon S^{-n}(X;G) \to S^{-(n+1)}(X;G)$ is the dual ∂^* , so for a cochain $\varphi \in S^{-n}(X;G)$, its coboundary $\delta \varphi$ is the composition $\delta \varphi = \partial^* \varphi = \varphi \circ \partial$, i.e., the composition $C_{n+1}(X) \stackrel{\partial}{\to} C_n(X) \stackrel{\varphi}{\to} G$. Hence for a singular (n+1)-simplex $\sigma \colon \Delta^{n+1} \to X$, we have

$$\delta\varphi(\sigma) = \sum_{i} (-1)^{i} \varphi\left(\sigma|_{[v_0, \dots, \widehat{v_i}, \dots, v_{n+1}]}\right).$$

Since δ^2 is the dual of $\partial^2 = 0$, we have $\delta^2 = 0$ also, so $H^n(X; G)$ can be defined as above.

Note. For a cochain $\varphi \in S^{-n}(X;G)$ to be a cocyle means that $\delta \varphi = \varphi \partial = 0$, i.e., it means that φ vanishes on boundaries.