B. Tech. Semester - III

Tutorial Planning

2101CS303 - Digital Fundamentals

Tut.	Туре	Tutorial				
1	-	Logic Exam (Quantitative Aptitude and Reasoning)				
Unit :	Unit : I – Fundamentals of Digital System					
2	Α	Q-1 Perform the Following				
		1. $(32.15)_{10} = ()_2$ 2. $(11011.101)_2 = ()_{10}$ 3. $(378.93)_{10} = ()_8$				
		4. $(4057.06)_8 = ()_{10}$ 5. $(2598.675)_{10} = ()_{16}$ 6. $(110101.101010)_2 = ()_8$				
		7. $(A0F9.0EB)_{16} = ()_{10}$ 8. $(367.52)_8 = ()_2$ 9. $(01011111011.011111)_2 = ()_{16}$				
		10. $(3A9E.B0D)_{16} = ()_2$ 11. $(756.603)_8 = ()_{16}$ 12. $(B9F.AE)_{16} = ()_8$				
	В	Q-2 Given that $(4096)_{10} = (1000)_x$, Find the value of x.				
	Α	Q-3 Convert the decimal number 250.5 to base 3, base 4, base 7 & base 8.				
	С	Q-4 Covert Number (4433)₅ to Base 10 and Base 2.				
	С	Q-5 Convert the decimal number (2598.675) ₁₀ to Base 2, Base 4, Base 8, Base 16.				
3	В	Q-1 Convert (33.45) ₁₀ to binary. Result should be accurate to within (0.01) ₁₀ .				
	В	Q-2 Convert (99.99) ₁₀ to Octal. Result should be accurate to within (0.02) ₁₀ .				
	С	Q-3 Perform the following for Octal numbers.				
		1. 26.5 * 2.5 2. Divide 153.6 by 7				
	С	Q-4 Perform the following for Hexadecimal numbers.				
		1. 92.5 X B.3 2. Divide 6ABF.6D by 1A				
	В	Q-5 Perform the following;				
		1. $(-128)_{10} = (?)_2$ 2. $(-1)_{10} = (?)_2$				
		3. $(-39.79)_{10} = (?)_2$ 4. $(-49.02)_{10} = (?)_2$				
	С	Q-6 Find the value of X.				
	_					
		1. $\sqrt{(61)_X} = (7)_{10}$ 2. $\sqrt{(144)_X} = (18)_{10}$				

Α

Academic Year 2023-24

B. Tech. Semester - III

Tutorial Planning

2101CS303 - Digital Fundamentals

4	В	Q-1 Find the 10's complement of	the following.
		1. (935)11	2. (6106) ₁₀
	В	Q-2 Add (6E) ₁₆ and (C5) ₁₆	
	Α	Q-3 Subtract (45) ₈ from (66) ₈	
	A	Q-4 Perform the following sub (10000) ₂	traction using 2's complement method: (11010) ₂ -
	В	Q-5 Convert (1000 0110) _{BCD} to De	ecimal, Binary & Octal.
	С	Q-6 Convert (96) ₁₀ into Gray code	e.
	Α	Q-7 Find the XS-3 code of 37.	
	В	Q-8 Perform the following in BCI) :
		1. 308 + 789	2. 205.7 + 193.65
		3. 86 – 24	4. 467.6 – 258.9
	С	Q-9 Add the following in XS-3:	
		1. 575 + 496	2. 89.6 + 273.7
		3. 788 – 299	4. 65.44 – 39.99
Unit :	II – Sim _l	plification of Logic function	
5	Α	Q-1 Using laws of Boolean algebr	a, prove that AB + BC + A'C = AB + A'C
	Α	Q-2 Show that: AB'C + B + BD' + A	ABD' + A'C = B + C
	В	Q-3 Show that (A+C) (A+D) (B+C)	(B+D) = AB + CD
	В	Q-4 Simplify using Boolean algeb F = (ABC)' + (AB)'C + A'BC' + A(BC	
	С	Q-5 Show that: AB + AB'C + BC' =	AC + BC'
	С	Q-6 Simplify the function f((A,B,C	C) = (A+B) (A+C') + A'B' + A'C'

Q-7 Reduce the expression using K-Map: $F = \sum_{m} (0,2,3,4,5,6)$

Q-8 Reduce to simplest form using K-Map:

 $F(A,B,C,D) = \sum_{m} (0,1,2,5,8,9,10)$

B. Tech. Semester – III

2101CS303 - Digital Fundamentals

Tutorial Planning

	Α	Q-9 Reduce the Expression: F = ∏M (2,8,9,10,11,12,14)	
	В	Q-10 Reduce the Expression: $F = \prod_{M} (0,1,3,4,5,6,7,13,15)$	
6	В	Q-1 Reduce using K-Map: f = ∑m(0, 2, 4, 6, 7, 8, 10, 12, 13, 15)	
	С	Q-2 Obtain the simplified expression using K-Map: F = ABD + A'C'D' + A'B + A'CD' + AB'D	
	Α	Q-3 Minimize following Boolean function using K-Map: $F = \sum_{m} (1,2,4,6,7,11,15) + d(0,3)$	
	В	Q-4 Simplify following Boolean function using K-Map: $F(W,X,Y,Z) = \sum_{m} (1,3,5,8,9,11,15) + d(2,13)$	
	В	Q-5 Reduce the expression in SOP and POS form using K-Map: $F(A,B,C,D) = \sum_{m} (1,5,6,12,13,14) + d(2,4)$	
	С	Q-6 Reduce using K-Map: f = ∑m(6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)	
	С	Q-7 Reduce using K-Map: $f = \sum m(0, 1, 4, 5, 6, 7, 9, 11, 15) + d(10, 14)$	
7	Α	Perform hands on practical of Logic gates in Digital IC Logic Trainer Kit.	
8	Α	Q-1 Using D as MEV, reduce Y =A'B'C'D' + A'B'CD' + AB'C'D' + AB'C'D + AB'CD'	
	Α	Q-2 Simplify the following Boolean function using VEM. F = AB'CD + A'BC'D + AB'CD' + A'B'C'D	
	В	Q-3 Simplify following Boolean function using VEM. $F = A'B'C'D + A'BC'D' + A'BC'D + AB'C'D' + AB'CD' + AB'CD'$	
	В	Q-4 Using E as the MEV, reduce F = A'B'C'D'E + A'B'C'DE + A'BCD'E' + A'BCD'E + AB'C'D'E' + AB'C'D'E + AB'C'D + A'BCDE'	
	С	Q-5 Using C & D as MEVs, reduce Y = A'B'C'D' + A'B'C'D + A'B'CD' + A'BCD + ABCD + AB'CD	
	С	Q-6 Simplify following Boolean function using VEM. $F(A,B,C,D) = \sum_{m} (1,2,3,5,6,7,8,9,12,13,15)$	
	С	Q-7 Simplify following Boolean function using VEM. $F(A,B,C,D) = \sum_{m} (0,1,3,7,8,9,11,15)$	

B. Tech. Semester – III

2101CS303 - Digital Fundamentals

Tutorial Planning

9	A	Q-1 Simplify the following Boolean function by means of Tabulation method: F $(A,B,C,D) = \sum_{m} (1,2,3,5,6,7,8,9,12,13,15)$			
	В	Q-2 Simplify the following Boolean function by means of Tabulation method: F $(A,B,C,D) = \sum_{m} (0,1,3,7,8,9,11,15)$			
	С	Q-3 Simplify the following Boolean function by means of Tabulation method: F = A'B'C'D + A'BC'D' + A'BC'D + AB'C'D' + AB'CD' + AB'CD'			
Unit :	Unit: III – Combinational Digital Circuits				
10	A	Q-1 Minimize the logic function $X = A(B'+C')(A+D)$. Also realize the reduced function using NOR gates only.			
	В	Q-2 Simplify using Boolean laws and draw the logic diagram for the given expression. F = (ABC)' + (AB)'C + A'BC' + A(BC)' + AB'C			
	A	Q-3 Reduce the expression $F = \sum_m (0,2,3,4,5,6)$ using K-map and implement using NAND gates only.			
	A	Q-4 Implement following Boolean function using 8 : 1 multiplexer. Y (A,B,C,D) = \sum_{m} (15,7,4,6,8,9,12,14)			
	В	Q-5 Implement following Boolean function using 8 : 1 multiplexer. $F(A,B,C,D) = \sum_{m} (2,3,5,7,8,9,12,13,14,15)$			
	A	Q-6 Implement following Boolean function using 4 : 1 multiplexer. F (A,B,C) = \sum_{m} (1,3,5,6)			
	В	Q-7 Implement following Boolean function using 4 : 1 multiplexer. F (A,B,C) = \sum_{m} (1,2,4,7)			
	С	Q-8 Design a 4-Bit Binary to BCD Code Converter.			
Unit :	IV – Sec	quential Digital Circuits			
11	Α	Q-1 Design 3-bit ripple up-counter using negative edge JK Flip-flops.			
	В	Q-2 Design 4-bit ripple up-counter using negative edge JK Flip-flops.			
12	С	Q-1 Design Modulo-8 counter using T Flip-flops.			
	Α	Q-2 Design Mod-10 (Decade) Counter using T Flip-flops.			
	В	Q-3 Design Mod-12 using JK Flip-flops.			

B. Tech. Semester – III

2101CS303 - Digital Fundamentals

Tutorial Planning

13	Α	Q-1 Design a counter to generate the repetitive sequence 0, 3, 5, 7, 4 using D Flip-flop.
	В	Q-2 Design a counter to generate the repetitive sequence 0, 1, 2, 4, 3, 6 using T Flip-flop.
	С	Q-3 Design a JK counter that goes through states 3,4,6,7 and 3.
14	Α	Q-4 Design 3-bit synchronous up counter using T Flip-flop.
	В	Q-5 Design a synchronous BCD counter with JK Flip-flop.
15	-	Practical Viva