dataframe basic maniputation

Peilin Chen 11/7/2017

dataframe is a collection of different class of data

Create a dataframe

```
quarters<-rep(paste('q',seq=(1:4),sep=''),3)
year<-rep(seq(2000,2002),each=4)
mydataframe<-cbind.data.frame(year,quarters)
mydataframe</pre>
```

```
##
     year quarters
## 1 2000
                q1
## 2 2000
                q2
## 3 2000
                q3
## 4 2000
                q4
## 5 2001
                q1
## 6 2001
                q2
## 7 2001
                q3
## 8 2001
                q4
## 9 2002
                q1
## 10 2002
                q2
## 11 2002
                q3
## 12 2002
                q4
```

access each column by calling the column name

```
mydataframe$year
```

mydataframe\$quarters

```
## [1] q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4
## Levels: q1 q2 q3 q4
```

access each column by indexing location

```
mydataframe[,1]
```

mydataframe[,2]

```
## [1] q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4
## Levels: q1 q2 q3 q4
```

```
mydataframe[1:5,] # first 5 rows
##
     year quarters
## 1 2000
## 2 2000
                 q2
## 3 2000
                 q3
## 4 2000
                 q4
## 5 2001
                 q1
select rows based on column values, using slicing, or subset() function
mydataframe[quarters=='q1',]
     year quarters
## 1 2000
## 5 2001
                 q1
## 9 2002
                 q1
subset(mydataframe,quarters=='q1')
##
     year quarters
## 1 2000
                 q1
## 5 2001
                 q1
## 9 2002
                 q1
using logic operator |(or) & (and)
\label{eq:mydataframe} \verb| [quarters == 'q1' | quarters == 'q2',] \\
##
      year quarters
## 1 2000
## 2 2000
                  q2
      2001
                  q1
## 6 2001
                  q2
## 9 2002
                  q1
## 10 2002
                  q2
mydataframe[quarters=='q1'&year==2000,]
     year quarters
## 1 2000
how to change row / column names:
row.names(mydataframe)
   [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"
```

```
row.names(mydataframe) <-letters[1:12]</pre>
row.names(mydataframe)
   [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"
colnames(mydataframe)
## [1] "year"
                  "quarters"
colnames(mydataframe)[1]<-'YEAR' #change the first column's name</pre>
mydataframe
     YEAR quarters
## a 2000
                q1
## b 2000
                q2
## c 2000
                q3
## d 2000
                q4
## e 2001
                q1
## f 2001
               q2
## g 2001
               q3
## h 2001
               q4
## i 2002
                q1
## j 2002
                q2
## k 2002
                q3
## 1 2002
                q4
create a new column in a dataframe:
set.seed(1)
mydataframe$newcolumn1<-rnorm(12,mean = 0,sd =1)</pre>
mydataframe$newcolumn2<-runif(12,min = 0,max = 1)</pre>
mydataframe
     YEAR quarters newcolumn1 newcolumn2
## a 2000 q1 -0.6264538 0.26722067
## b 2000
              q2 0.1836433 0.38611409
## c 2000
              q3 -0.8356286 0.01339033
              q4 1.5952808 0.38238796
## d 2000
              q1 0.3295078 0.86969085
## e 2001
## f 2001
              q2 -0.8204684 0.34034900
              q3 0.4874291 0.48208012
## g 2001
## h 2001
              q4 0.7383247 0.59956583
## i 2002
              q1 0.5757814 0.49354131
              q2 -0.3053884 0.18621760
## j 2002
## k 2002
               q3 1.5117812 0.82737332
## 1 2002
               q4 0.3898432 0.66846674
```

if our newcolumn3 is newcolumn1+newcolumn2

$\verb|mydataframe| snewcolumn3 < -mydataframe| snewcolumn1 + mydataframe| snewcolumn2 mydataframe| snewcolumn2 mydataframe| snewcolumn3 < -mydataframe| snewcolumn3 < -mydat$

```
##
    YEAR quarters newcolumn1 newcolumn2 newcolumn3
               q1 -0.6264538 0.26722067 -0.3592331
## a 2000
## b 2000
               q2 0.1836433 0.38611409 0.5697574
## c 2000
               q3 -0.8356286 0.01339033 -0.8222383
## d 2000
               q4 1.5952808 0.38238796 1.9776688
## e 2001
               q1 0.3295078 0.86969085 1.1991986
## f 2001
               q2 -0.8204684 0.34034900 -0.4801194
## g 2001
               q3 0.4874291 0.48208012 0.9695092
## h 2001
               q4 0.7383247 0.59956583 1.3378905
               q1 0.5757814 0.49354131 1.0693227
## i 2002
## j 2002
               q2 -0.3053884 0.18621760 -0.1191708
## k 2002
               q3 1.5117812 0.82737332 2.3391545
## 1 2002
               q4 0.3898432 0.66846674 1.0583100
```

if our newcolumn4 is an index column: when newcolumn1>0, it is 1, otherwise 0

```
mydataframe$newcolumn5<- ifelse(mydataframe$newcolumn1>0,1,0)
mydataframe
```

```
##
     YEAR quarters newcolumn1 newcolumn2 newcolumn3 newcolumn5
## a 2000
               q1 -0.6264538 0.26722067 -0.3592331
                                                            0
               q2 0.1836433 0.38611409 0.5697574
## b 2000
                                                            1
## c 2000
               q3 -0.8356286 0.01339033 -0.8222383
                                                            0
## d 2000
               q4 1.5952808 0.38238796 1.9776688
                                                            1
               q1 0.3295078 0.86969085 1.1991986
## e 2001
                                                            1
## f 2001
               q2 -0.8204684 0.34034900 -0.4801194
                                                            0
               q3 0.4874291 0.48208012 0.9695092
## g 2001
                                                            1
## h 2001
               q4 0.7383247 0.59956583 1.3378905
                                                            1
## i 2002
               q1 0.5757814 0.49354131 1.0693227
                                                            1
## j 2002
                                                            0
               q2 -0.3053884 0.18621760 -0.1191708
               q3 1.5117812 0.82737332 2.3391545
## k 2002
                                                            1
## 1 2002
               q4 0.3898432 0.66846674 1.0583100
                                                            1
```

Here we introduce how to two data manipulation packages in R

dplyr tidyr #### install packages and library the packages

```
install.packages('dplyr')
install.packages('tidyr')
library.packages('dplyr')
library.packages('tidyr')
```

what if we have a list of packages needs to install and library? Someone posted in Github https://gist.github. com/stevenworthington/3178163

```
ipak <- function(pkg){
   new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
   if (length(new.pkg))</pre>
```

```
install.packages(new.pkg, dependencies = TRUE)
    sapply(pkg, require, character.only = TRUE)
}
# usage
packages_toinstall <- c("ggplot2", "plyr", "reshape2", "RColorBrewer", "scales", "grid", 'dplyr', 'tidyr'</pre>
ipak(packages_toinstall)
library multiple packages
packages_toload<-c("ggplot2", "plyr", "reshape2", "RColorBrewer", "scales", "grid")
lapply(packages_toload, require, character.only = TRUE)
packages_toload<-c('dplyr','tidyr')</pre>
lapply(packages_toload,require,character.only=TRUE)
## [[1]]
## [1] TRUE
##
## [[2]]
## [1] TRUE
piping
using the output of the privious step as the input of the current step
input %>% function1 () %>% function2 ()
#equal to : function2(function1(input))
iris
##
       Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                              Species
## 1
                5.1
                             3.5
                                          1.4
                                                       0.2
                                                               setosa
## 2
                4.9
                             3.0
                                          1.4
                                                       0.2
                                                               setosa
## 3
                4.7
                             3.2
                                          1.3
                                                       0.2
                                                               setosa
## 4
                4.6
                             3.1
                                          1.5
                                                       0.2
                                                                setosa
## 5
                5.0
                             3.6
                                          1.4
                                                       0.2
                                                               setosa
## 6
                5.4
                             3.9
                                          1.7
                                                       0.4
                                                                setosa
## 7
                4.6
                             3.4
                                          1.4
                                                       0.3
                                                               setosa
## 8
                5.0
                             3.4
                                          1.5
                                                       0.2
                                                                setosa
## 9
                4.4
                             2.9
                                          1.4
                                                       0.2
                                                               setosa
## 10
                4.9
                             3.1
                                          1.5
                                                       0.1
                                                                setosa
                             3.7
                                          1.5
                                                       0.2
## 11
                5.4
                                                                setosa
## 12
                4.8
                             3.4
                                          1.6
                                                       0.2
                                                                setosa
                4.8
                             3.0
                                          1.4
## 13
                                                       0.1
                                                               setosa
## 14
                4.3
                             3.0
                                                       0.1
                                          1.1
                                                               setosa
                             4.0
                                                       0.2
## 15
                5.8
                                          1.2
                                                               setosa
## 16
                5.7
                             4.4
                                          1.5
                                                       0.4
                                                               setosa
## 17
                5.4
                             3.9
                                          1.3
                                                       0.4
                                                               setosa
```

0.3

setosa

1.4

18

5.1

3.5

шш	10	Г 7	2.0	1 7	0 0	
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7	1.4 ver	sicolor
##	52	6.4	3.2	4.5	1.5 ver	sicolor
##	53	6.9	3.1	4.9	1.5 ver	sicolor
##	54	5.5	2.3	4.0	1.3 ver	sicolor
##	55	6.5	2.8	4.6	1.5 ver	sicolor
##	56	5.7	2.8	4.5	1.3 ver	sicolor
##	57	6.3	3.3	4.7	1.6 ver	sicolor
##	58	4.9	2.4	3.3	1.0 ver	sicolor
##	59	6.6	2.9	4.6	1.3 ver	sicolor
##	60	5.2	2.7	3.9	1.4 ver	sicolor
##	61	5.0	2.0	3.5	1.0 ver	sicolor
##	62	5.9	3.0	4.2	1.5 ver	sicolor
##	63	6.0	2.2	4.0	1.0 ver	sicolor
##	64	6.1	2.9	4.7	1.4 ver	sicolor
##	65	5.6	2.9	3.6	1.3 ver	sicolor
##	66	6.7	3.1	4.4	1.4 ver	sicolor
##	67	5.6	3.0	4.5	1.5 ver	sicolor
##	68	5.8	2.7	4.1	1.0 ver	sicolor
##	69	6.2	2.2	4.5	1.5 ver	sicolor
##	70	5.6	2.5	3.9	1.1 ver	sicolor
##	71	5.9	3.2	4.8	1.8 ver	sicolor
##	72	6.1	2.8	4.0	1.3 ver	sicolor

##	73	6.3	2.5	4.9	1.5 v	ersicolor
##	74	6.1	2.8	4.7	1.2 v	ersicolor
##	75	6.4	2.9	4.3	1.3 v	ersicolor
##	76	6.6	3.0	4.4	1.4 v	ersicolor
##	77	6.8	2.8	4.8	1.4 v	ersicolor
##	78	6.7	3.0	5.0	1.7 v	ersicolor
##	79	6.0	2.9	4.5	1.5 v	ersicolor
##	80	5.7	2.6	3.5	1.0 v	ersicolor
	81	5.5	2.4	3.8	1.1 v	ersicolor
	82	5.5	2.4	3.7		ersicolor
	83	5.8	2.7	3.9		ersicolor
	84	6.0	2.7	5.1		ersicolor
	85	5.4	3.0	4.5		ersicolor
	86	6.0	3.4	4.5		ersicolor
	87	6.7	3.1	4.7		ersicolor
	88	6.3	2.3	4.4		ersicolor
			3.0			ersicolor
	89	5.6		4.1		
	90	5.5	2.5	4.0		rersicolor
	91	5.5	2.6	4.4		rersicolor
	92	6.1	3.0	4.6		rersicolor
	93	5.8	2.6	4.0		rersicolor
	94	5.0	2.3	3.3		ersicolor
	95	5.6	2.7	4.2		ersicolor
	96	5.7	3.0	4.2		ersicolor
	97	5.7	2.9	4.2		ersicolor
	98	6.2	2.9	4.3		ersicolor
	99	5.1	2.5	3.0		ersicolor
	100	5.7	2.8	4.1		ersicolor
	101	6.3	3.3	6.0		virginica
	102	5.8	2.7	5.1		virginica
	103	7.1	3.0	5.9		virginica
	104	6.3	2.9	5.6	1.8	virginica
##	105	6.5	3.0	5.8	2.2	virginica
	106	7.6	3.0	6.6	2.1	virginica
##	107	4.9	2.5	4.5	1.7	virginica
##	108	7.3	2.9	6.3	1.8	virginica
##	109	6.7	2.5	5.8		virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
##	112	6.4	2.7	5.3	1.9	virginica
##	113	6.8	3.0	5.5	2.1	virginica
##	114	5.7	2.5	5.0	2.0	virginica
##	115	5.8	2.8	5.1	2.4	virginica
##	116	6.4	3.2	5.3	2.3	virginica
##	117	6.5	3.0	5.5	1.8	virginica
##	118	7.7	3.8	6.7	2.2	virginica
##	119	7.7	2.6	6.9		virginica
##	120	6.0	2.2	5.0		virginica
	121	6.9	3.2	5.7		virginica
	122	5.6	2.8	4.9		virginica
	123	7.7	2.8	6.7		virginica
	124	6.3	2.7	4.9		virginica
	125	6.7	3.3	5.7		virginica
	126	7.2	3.2	6.0		virginica
	-			-		J -

##	127	6.2	2.8	4.8	1.8	virginica
##	128	6.1	3.0	4.9	1.8	virginica
##	129	6.4	2.8	5.6	2.1	virginica
##	130	7.2	3.0	5.8	1.6	virginica
##	131	7.4	2.8	6.1	1.9	virginica
##	132	7.9	3.8	6.4	2.0	virginica
##	133	6.4	2.8	5.6	2.2	virginica
##	134	6.3	2.8	5.1	1.5	virginica
##	135	6.1	2.6	5.6	1.4	virginica
##	136	7.7	3.0	6.1	2.3	virginica
##	137	6.3	3.4	5.6	2.4	virginica
##	138	6.4	3.1	5.5	1.8	virginica
##	139	6.0	3.0	4.8	1.8	virginica
##	140	6.9	3.1	5.4	2.1	virginica
##	141	6.7	3.1	5.6	2.4	virginica
##	142	6.9	3.1	5.1	2.3	virginica
##	143	5.8	2.7	5.1	1.9	virginica
##	144	6.8	3.2	5.9	2.3	virginica
##	145	6.7	3.3	5.7	2.5	virginica
##	146	6.7	3.0	5.2	2.3	virginica
##	147	6.3	2.5	5.0	1.9	virginica
##	148	6.5	3.0	5.2	2.0	virginica
##	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

iris %>% group_by(Species)

```
## # A tibble: 150 x 5
## # Groups:
              Species [3]
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
            <dbl>
                       <dbl>
                                  <dbl>
                                             <dbl> <fctr>
                                                 0.2 setosa
## 1
              5.1
                         3.5
                                      1.4
## 2
              4.9
                         3.0
                                      1.4
                                                 0.2 setosa
## 3
              4.7
                         3.2
                                      1.3
                                                 0.2 setosa
## 4
              4.6
                         3.1
                                      1.5
                                                 0.2 setosa
              5.0
                         3.6
                                      1.4
                                                 0.2 setosa
## 5
## 6
              5.4
                         3.9
                                      1.7
                                                 0.4 setosa
## 7
              4.6
                         3.4
                                     1.4
                                                 0.3 setosa
## 8
              5.0
                         3.4
                                     1.5
                                                 0.2 setosa
                                                 0.2 setosa
## 9
              4.4
                         2.9
                                      1.4
## 10
              4.9
                         3.1
                                     1.5
                                                 0.1 setosa
## # ... with 140 more rows
```

using slice

iris%>%slice(1:5)

```
## # A tibble: 5 x 5
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
##
            <dbl>
                        <dbl>
                                     <dbl>
                                                 <dbl> <fctr>
## 1
              5.1
                         3.5
                                       1.4
                                                   0.2 setosa
## 2
              4.9
                         3.0
                                       1.4
                                                   0.2 setosa
## 3
              4.7
                         3.2
                                       1.3
                                                  0.2 setosa
```

```
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
```

using summarize

iris%>%group_by(Species)%>%summarize(n_obs=n(),min_length=min(Sepal.Length),max_length=max(Sepal.Length

```
## # A tibble: 3 x 6
        Species n_obs min_length max_length min_petal_width max_petal_width
##
                           <dbl>
                                       <dbl>
                                                                        <dbl>
         <fctr> <int>
                                                       <dbl>
## 1
         setosa
                   50
                             4.3
                                         5.8
                                                          0.1
                                                                          0.6
## 2 versicolor
                   50
                             4.9
                                         7.0
                                                                          1.8
                                                          1.0
## 3 virginica
                   50
                             4.9
                                         7.9
                                                          1.4
                                                                          2.5
```

using select

iris%>%group_by(Species)%>%summarize(n_obs=n(),min_length=min(Sepal.Length),max_length=max(Sepal.Length

```
## # A tibble: 3 x 2
## Species n_obs
## <fctr> <int>
## 1 setosa 50
## 2 versicolor 50
## 3 virginica 50
```

There are many other useful methods you can call from the packages for example:

```
rename,
mutate
filter,
left_join,
right_join,
inner_join,
full_join ......
```