Type of uncertainty	Uncertainty evaluation
Uncertainties of direct	
measurements	
Standard uncertainty: Type A (quantity X estimated from n direct, independent, repeated observations x_i)	For an input quantity X determined from n independent repeated observations the standard uncertainty is represented by standard deviation estimator calculated according to the following formula: $u_A(x) \equiv s_{\bar{x}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)}}$
	where $X \approx \bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$
Standard uncertainty: Type B (quantity X obtained from single measurement or experimental results are not spread)	is the arithmetic mean (average) of the n observations. The standard uncertainty is evaluated by scientific judgement based on all of the available information on the possible variability of measurand including: - calibration uncertainty (e.g. uncertainty of used instrument $\Delta_p x$ resulting from finite instrument resolution or discrimination threshold); - experimentalist uncertainty $\Delta_e x$ (e.g. personal bias in reading analogue instruments); - inexact values of constants $\Delta_t x$
Total standard uncertainty: Assumption: Type A and Type B evaluation appears at the same time	$u(x) = \sqrt{u_A^2(x) + u_B^2(x)} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n(n-1)} + \frac{\left(\Delta_p x\right)^2}{3} + \frac{(\Delta_e x)^2}{3} + \frac{(\Delta_t x)^2}{3} + \cdots$
Uncertainties of indirect measurements	
Combined standard uncertainty: is calculated using an appropriate combination of some measured quantites x_i and its standard uncertainties.	If the measurand $y=f\left(x_1,x_2,,x_j\right)$ then: $u_c(y)=\sqrt{\sum_{j=1}^k\left(\frac{\partial f}{\partial x_j}\right)^2u^2(x_j)}$ (all input quantities x_i are independent)
Expanded uncertainty:	$U(x) = ku(x) \text{ or } U_c(x) = ku_c(x)$
a coverage factor k may be used e.g. when the empirical result is	in most cases (including the General Physics Laboratory experiments) it is assumed that $k=2$.

based on a few measurements	
Reporting results and uncertainty: 1. Round uncertainty up to two significant figures. 2. Round the value to the same digit.	using parentheses, whereas for expanded uncertainties the '±' symbol should be used. Example: • Mass measurement
	• Empirical results of a block volume calculation: $V=23,5835~m^3,~u_c(V)=0,786~m^3$ Expanded uncertainty: $U_c(V)=1,572~m^3\approx 1,6~m^3$ Final result: $V=23,6\pm 1,6~m^3$