best-4-1

September 21, 2021

```
[1]: base_transfer_set = ['01', '02', '04', '05', '08', '09', '12', '13', '16', __
     →'17', '18', '20']
    target_transfer_set = ['03', '06', '07', '10', '11', '14', '15', '19']
    import random
    def random combination(iterable, r):
         "Random selection from itertools.combinations(iterable, r)"
        pool = tuple(iterable)
        n = len(pool)
        indices = sorted(random.sample(range(n), r))
        return tuple(pool[i] for i in indices)
    transfers_size_6 = []
    for i in range(4):
        transfers_size_6.append(random_combination(target_transfer_set, 6))
    print(transfers_size_6)
    transfers_size_6 = [('03', '06', '07', '10', '11', '14'), ('03', '06', '07', \u00c4
     \rightarrow '10', '14', '15'), ('03', '06', '07', '10', '14', '15'), ('03', '07', '10', \Box
     →'14', '15', '19')]
    for i, tmp in enumerate(transfers_size_6):
        transfers_size_6[i] = list(transfers_size_6[i])
    print(transfers_size_6)
    transfers_size_4 = []
    for i in range(4):
        transfers_size_4.append(random_combination(target_transfer_set, 4))
    print(transfers size 4)
    transfers_size_4 = [('06', '10', '14', '15'), ('03', '10', '14', '19'), ('03', \_
     for i, tmp in enumerate(transfers_size_4):
        transfers_size_4[i] = list(transfers_size_4[i])
    print(transfers_size_4)
    transfers_size_3 = []
    for i in range(4):
        transfers_size_3.append(random_combination(target_transfer_set, 3))
    print(transfers size 3)
```

```
transfers_size_3 = [('07', '11', '14'), ('06', '07', '10'), ('03', '15', '19'),
     for i, tmp in enumerate(transfers_size_3):
         transfers size 3[i] = list(transfers size 3[i])
     print(transfers_size_3)
     transfers size 2 = []
     for i in range(4):
        transfers_size_2.append(random_combination(target_transfer_set, 2))
     print(transfers_size_2)
     transfers_size_2 = [('06', '10'), ('07', '11'), ('06', '15'), ('14', '15')]
     for i, tmp in enumerate(transfers_size_2):
         transfers_size_2[i] = list(transfers_size_2[i])
     print(transfers_size_2)
    [('03', '06', '07', '10', '11', '19'), ('03', '06', '11', '14', '15', '19'),
    ('06', '10', '11', '14', '15', '19'), ('03', '07', '10', '11', '14', '19')]
    [['03', '06', '07', '10', '11', '14'], ['03', '06', '07', '10', '14', '15'],
    ['03', '06', '07', '10', '14', '15'], ['03', '07', '10', '14', '15', '19']]
    [('03', '11', '14', '19'), ('10', '11', '14', '15'), ('06', '10', '14', '19'),
    ('11', '14', '15', '19')]
    [['06', '10', '14', '15'], ['03', '10', '14', '19'], ['03', '06', '10', '15'],
    ['03', '07', '10', '15']]
    [('07', '11', '14'), ('03', '10', '11'), ('06', '14', '15'), ('10', '11', '15')]
    [['07', '11', '14'], ['06', '07', '10'], ['03', '15', '19'], ['06', '14', '19']]
    [('06', '11'), ('03', '19'), ('07', '11'), ('07', '19')]
    [['06', '10'], ['07', '11'], ['06', '15'], ['14', '15']]
[2]: import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     def make confusion matrix(cf,
                               group_names=None,
                               categories='auto',
                               count=True,
                               percent=True,
                               cbar=True,
                               xyticks=True,
                               xyplotlabels=True,
                               sum_stats=True,
                               figsize=None,
                               cmap='Blues',
                               title=None):
         This function will make a pretty plot of an sklearn Confusion Matrix cm_{\sqcup}
      →using a Seaborn heatmap visualization.
```

```
Arguments
   cf:
                   confusion matrix to be passed in
   group names: List of strings that represent the labels row by row to be ...
\hookrightarrowshown in each square.
   categories:
                   List of strings containing the categories to be displayed on,
\hookrightarrow the x,y axis. Default is 'auto'
   count:
                    If True, show the raw number in the confusion matrix.
\hookrightarrow Default is True.
   normalize: If True, show the proportions for each category. Default is \sqcup
\hookrightarrow True.
                   If True, show the color bar. The cbar values are based of f_{\perp}
   cbar:
\hookrightarrow the values in the confusion matrix.
                    Default is True.
                    If True, show x and y ticks. Default is True.
   xyticks:
   xyplotlabels: If True, show 'True Label' and 'Predicted Label' on the \sqcup
\hookrightarrow figure. Default is True.
                   If True, display summary statistics below the figure.
   sum_stats:
\hookrightarrow Default is True.
                    Tuple representing the figure size. Default will be the
   fiqsize:
\rightarrow matplotlib rcParams value.
                    Colormap of the values displayed from matplotlib.pyplot.cm.
\hookrightarrow Default is 'Blues'
                    See http://matplotlib.org/examples/color/colormaps_reference.
\hookrightarrow h.t.ml.
   title:
                   Title for the heatmap. Default is None.
   IIII
   # CODE TO GENERATE TEXT INSIDE EACH SQUARE
   blanks = ['' for i in range(cf.size)]
   if group_names and len(group_names) == cf.size:
       group_labels = ["{}\n".format(value) for value in group_names]
   else:
       group_labels = blanks
   if count:
       group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()]
   else:
       group_counts = blanks
   if percent:
       group_percentages = ["{0:.2%}".format(value) for value in cf.flatten()/
\rightarrownp.sum(cf)]
```

```
else:
       group_percentages = blanks
   box_labels = [f''\{v1\}\{v2\}\{v3\}''.strip() for v1, v2, v3 in_{\square}]
→zip(group_labels,group_counts,group_percentages)]
   box labels = np.asarray(box labels).reshape(cf.shape[0],cf.shape[1])
   # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS
   if sum_stats:
       #Accuracy is sum of diagonal divided by total observations
       accuracy = np.trace(cf) / float(np.sum(cf))
       #if it is a binary confusion matrix, show some more stats
       if len(cf)==2:
           #Metrics for Binary Confusion Matrices
           precision = cf[1,1] / sum(cf[:,1])
           recall = cf[1,1] / sum(cf[1,:])
           f1_score = 2*precision*recall / (precision + recall)
           stats_text = "\n\nAccuracy={:0.3f}\nPrecision={:0.3f}\nRecall={:0.
\rightarrow3f}\nF1 Score={:0.3f}".format(
               accuracy, precision, recall, f1_score)
       else:
           stats_text = "\n\nAccuracy={:0.3f}".format(accuracy)
   else:
       stats_text = ""
   # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS
   if figsize==None:
       #Get default figure size if not set
       figsize = plt.rcParams.get('figure.figsize')
   if xyticks==False:
       #Do not show categories if xyticks is False
       categories=False
   # MAKE THE HEATMAP VISUALIZATION
   plt.figure(figsize=figsize)
→heatmap(cf,annot=box_labels,fmt="",cmap=cmap,cbar=cbar,xticklabels=categories,yticklabels=c
   if xyplotlabels:
       plt.ylabel('True label')
       plt.xlabel('Predicted label' + stats_text)
   else:
```

```
plt.xlabel(stats_text)

if title:
   plt.title(title)
```

```
RuntimeError Traceback (most recent call last)
RuntimeError: module compiled against API version Oxe but this version of numpy
is 0xd
```

```
RuntimeError Traceback (most recent call last)
RuntimeError: module compiled against API version Oxe but this version of numpy

→is Oxd
```

```
[3]: import os
     import pandas as pd
     import warnings
     warnings.filterwarnings("ignore")
     def create_best_model(gesture_subset):
         gesture_subset.sort()
         print("Loadind Dataset for gestures: ", gesture_subset)
         path = 'gestures-dataset'
         dataset = None
         samples = 0
         for subject in os.listdir(path):
             if os.path.isfile(os.path.join(path, subject)):
             if subject in ('U01', 'U02', 'U03', 'U04', 'U05', 'U06', 'U07', 'U08'):
                 for gesture in os.listdir(os.path.join(path, subject)):
                     if os.path.isfile(os.path.join(path, subject, gesture)):
                         continue
                     gesture = str(gesture)
                     if gesture not in gesture_subset:
                         continue
                     for samplefile in os.listdir(os.path.join(path, subject,
      →gesture)):
                         if os.path.isfile(os.path.join(path, subject, gesture,
     →samplefile)):
                             df = pd.read_csv(os.path.join(path, subject, gesture,__
      →samplefile), \
                                 sep = ' ', \
                                 names = ['System.currentTimeMillis()', \
```

```
'System.nanoTime()', \
                           'sample.timestamp', \
                           'X', \
                           'Υ', \
                           'Z' \
                           ])
                       df = df[["sample.timestamp", "X", "Y", "Z"]]
                       start = df["sample.timestamp"][0]
                       df["sample.timestamp"] -= start
                       df["sample.timestamp"] /= 10000000
                       df["subject"] = subject
                       df["gesture"] = gesture
                       df["sample"] = str(samplefile[:-4])
                       samples += 1
                       #print(df)
                       if dataset is None:
                           dataset = df.copy()
                       else:
                           dataset = pd.concat([dataset, df])
   dataset = dataset.sort_values(by=['gesture','subject','sample','sample.
→timestamp'])
   data = dataset
   print(str(samples) + " samples loaded")
   print("Scaling Dataset for gestures: ", gesture_subset)
   from sklearn.preprocessing import StandardScaler
   scaler = StandardScaler()
   dataset_scaled = None
   samples = 0
   for i, gesture in enumerate(gesture_subset):
       df_gesture=data[data['gesture']==gesture]
       for j, subject in enumerate(df_gesture['subject'].unique()):
           df_subject=df_gesture[df_gesture['subject']==subject]
           for k, sample in enumerate(df_subject['sample'].unique()):
               df_sample=df_subject[df_subject['sample']==sample].copy()
               df_sample.sort_values(by=['sample.timestamp'])
               sc = scaler
               sc = sc.fit_transform(df_sample[["X", "Y", "Z"]])
               sc = pd.DataFrame(data=sc, columns=["X", "Y", "Z"])
               df_sample['X'] = sc['X']
               df_{sample['Y']} = sc['Y']
               df_sample['Z'] = sc['Z']
```

```
if dataset_scaled is None:
                  dataset_scaled = df_sample.copy()
              else:
                  dataset_scaled = pd.concat([dataset_scaled, df_sample])
              samples += 1
  print(str(samples) + " samples scaled")
  data = dataset_scaled
  print("Cleaning Dataset for gestures: ", gesture_subset)
  dataset_outliers = None
  dataset cleaned = None
  samples = 0
  outliers = 0
  for i, gesture in enumerate(gesture_subset):
      df_gesture = data[data['gesture']==gesture]
      for j, subject in enumerate(df_gesture['subject'].unique()):
          df_subject = df_gesture[df_gesture['subject']==subject]
          time_mean = df_subject.groupby(["gesture", "subject", "sample"]).
time_std = df_subject.groupby(["gesture", "subject", "sample"]).
→count().groupby(["gesture", "subject"]).agg({'sample.timestamp': ['std']})
          time_max = time_mean['sample.timestamp'].iloc[0]['mean'] + 1.0 *_{LL}
→time_std['sample.timestamp'].iloc[0]['std']
          time_min = time_mean['sample.timestamp'].iloc[0]['mean'] - 1.0 *__
→time_std['sample.timestamp'].iloc[0]['std']
          for k, sample in enumerate(df_subject['sample'].unique()):
              df_sample=df_subject[df_subject['sample']==sample]
              df_sample_count = df_sample.count()['sample.timestamp']
              if df_sample_count < time_min or df_sample_count > time_max:
                  if dataset_outliers is None:
                      dataset_outliers = df_sample.copy()
                  else:
                      dataset_outliers = pd.concat([dataset_outliers,__
→df_sample])
                  outliers += 1
              else:
                  if dataset_cleaned is None:
                      dataset_cleaned = df_sample.copy()
                  else:
                      dataset_cleaned = pd.concat([dataset_cleaned,__
→df_sample])
                  samples += 1
  print(str(samples) + " samples cleaned")
  print(str(outliers) + " samples outliers")
```

```
data = dataset_cleaned
   print("Time slicing Cleaned Dataset for gestures: ", gesture subset)
   dataset_timecut = None
   samples = 0
   damaged = 0
   for i, gesture in enumerate(data['gesture'].unique()):
       df_gesture = data[data['gesture'] == gesture]
       for j, subject in enumerate(df gesture['subject'].unique()):
           df_subject = df_gesture[df_gesture['subject']==subject]
           time max = 19 # 18 * 11 = 198
           for i, sample in enumerate(df_subject['sample'].unique()):
               df_sample = df_subject[df_subject['sample'] == sample]
               df_sample_count = df_sample.count()['sample.timestamp']
               #print(df_sample_count)
               if df_sample_count >= time_max:
                   df_sample = df_sample[df_sample['sample.timestamp'] <= (11__
\rightarrow* (time_max-1))]
                   df_sample_count = df_sample.count()['sample.timestamp']
                   #print(df_sample_count)
               elif df sample count < time max:
                   for tmp in range(df_sample_count * 11, (time_max) * 11, 11):
                       df = pd.DataFrame([[tmp, 0.0, 0.0, 0.0, gesture,_
→subject, sample]], columns=['sample.timestamp', 'X', 'Y', 'Z', 'gesture', __
df_sample = df_sample.append(df, ignore_index=True)
               #print(df_sample)
               df_sample_count = df_sample.count()['sample.timestamp']
               #print(df_sample_count)
               if df_sample_count != time_max:
                   damaged += 1
                   continue
               if dataset_timecut is None:
                   dataset_timecut = df_sample.copy()
                   dataset_timecut = pd.concat([dataset_timecut, df_sample])
               samples += 1
   dataset_cleaned = dataset_timecut
   print(str(samples) + " cleaned samples sliced")
   print(str(damaged) + " cleaned samples damaged")
   data = dataset_outliers
   print("Time slicing Outliers Dataset for gestures: ", gesture_subset)
   dataset_timecut = None
   samples = 0
   damaged = 0
```

```
for i, gesture in enumerate(data['gesture'].unique()):
       df_gesture = data[data['gesture']==gesture]
       for j, subject in enumerate(df_gesture['subject'].unique()):
           df_subject = df_gesture[df_gesture['subject']==subject]
           time_max = 19 # 18 * 11 = 198
           for i, sample in enumerate(df_subject['sample'].unique()):
               df_sample = df_subject[df_subject['sample'] == sample]
               df_sample_count = df_sample.count()['sample.timestamp']
               #print(df sample count)
               if df_sample_count >= time_max:
                   df_sample = df_sample[df_sample['sample.timestamp'] <= (11__
\rightarrow* (time_max-1))]
                   df_sample_count = df_sample.count()['sample.timestamp']
                   #print(df_sample_count)
               elif df_sample_count < time_max:</pre>
                   for tmp in range(df_sample_count * 11, (time_max) * 11, 11):
                       df = pd.DataFrame([[tmp, 0.0, 0.0, 0.0, gesture,_
→subject, sample]], columns=['sample.timestamp', 'X', 'Y', 'Z', 'gesture', _
df_sample = df_sample.append(df, ignore_index=True)
               #print(df_sample)
               df_sample_count = df_sample.count()['sample.timestamp']
               #print(df_sample_count)
               if df_sample_count != time_max:
                   damaged += 1
                   continue
               if dataset timecut is None:
                   dataset_timecut = df_sample.copy()
                   dataset_timecut = pd.concat([dataset_timecut, df_sample])
               samples += 1
   dataset_outliers = dataset_timecut
   print(str(samples) + " outliers samples sliced")
   print(str(damaged) + " outliers samples damaged")
   data = dataset_cleaned
   from keras.models import Sequential
   from keras.layers import Bidirectional
   from keras.layers import LSTM
   from keras.layers import Dense
   from keras.layers import Dropout
   from keras.optimizers import adam_v2
   from keras.wrappers.scikit_learn import KerasClassifier
   from scikeras.wrappers import KerasClassifier
   from sklearn.model_selection import StratifiedGroupKFold
```

```
from sklearn.model_selection import cross_val_score
   from sklearn.model_selection import GridSearchCV
   from keras.utils import np_utils
   from sklearn.preprocessing import LabelEncoder
   from sklearn.pipeline import Pipeline
   import numpy as np
   # fix random seed for reproducibility
   seed = 1000
   np.random.seed(seed)
   # create the dataset
   def get_dataset(data):
       X train = []
       Y_train = []
       groups = []
       for i, gesture in enumerate(data['gesture'].unique()):
           df_gesture = data[data['gesture']==gesture]
           for j, subject in enumerate(df_gesture['subject'].unique()):
               df_subject = df_gesture[df_gesture['subject']==subject]
               for k, sample in enumerate(df_subject['sample'].unique()):
                   df_sample = df_subject[df_subject['sample'] == sample]
                   accel vector = []
                   for index, row in df_sample.sort_values(by='sample.
→timestamp').iterrows():
                       accel_vector.append([row['X'],row['Y'],row['Z']])
                   accel_vector = np.asarray(accel_vector)
                   X_train.append(accel_vector)
                   Y_train.append(gesture)
                   groups.append(subject)
       X_train = np.asarray(X_train)
       Y_train = LabelEncoder().fit_transform(Y_train)
       #print(Y_train)
       return X_train, Y_train, groups
   # Function to create model, required for KerasClassifier
   def create_model(dropout_rate=0.8, units=128, optimizer=adam_v2.
→Adam(learning_rate=0.001)):
       model = Sequential()
       model.add(
           Bidirectional(
               LSTM(
                   units=units,
                   input_shape=[19, 3]
           )
       model.add(Dropout(rate=dropout_rate))
```

```
model.add(Dense(units=units, activation='relu'))
       model.add(Dense(len(gesture_subset), activation='softmax'))
       model.compile(loss='sparse_categorical_crossentropy', __
→optimizer=optimizer, metrics=['accuracy'])
       #print(model.summary())
       return model
   model = KerasClassifier(build_fn=create_model, verbose=0)
   cv = StratifiedGroupKFold(n_splits=5, shuffle=True, random_state=1000)
   # get the dataset
   X, y, g = get_dataset(dataset_cleaned)
   \#cv = cv.split(X, y, g)
   batch_size = [19]
   epochs = [64, 128]
   #epochs = [128]
  units = [16, 32, 64, 128]
   units = \lceil 16 \rceil
  dropout_rate = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
   dropout \ rate = [0.5]
   param_grid = dict(epochs=epochs, units=units, batch_size=batch_size,__
→dropout rate=dropout rate)
   print("Hyperparameter tunning started for Dataset for gestures: ", u
→gesture_subset)
   grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=1,_
⇒cv=cv, verbose=1)
   grid_result = grid.fit(X, y, groups=g)
   # summarize results
   print("Best: %f using %s" % (grid_result.best_score_, grid_result.
→best_params_))
   means = grid_result.cv_results_['mean_test_score']
   stds = grid_result.cv_results_['std_test_score']
   train_mean = grid_result.cv_results_['mean_fit_time']
   train std = grid result.cv results ['std fit time']
   score_mean = grid_result.cv_results_['mean_score_time']
   score_std = grid_result.cv_results_['std_score_time']
   params = grid_result.cv_results_['params']
   for mean, stdev, train mean, train_std, score_mean, score_std, param in_u
→zip(means, stds, train_mean, train_std, score_mean, score_std, params):
       print("accuracy: %f (%f) train time: %f (%f) score time: %f (%f) with:
→%r" % (mean, stdev, train_mean, train_std, score_mean, score_std, param))
   print("Hyperparameter tunning completed for Dataset: ", gesture_subset)
   model = grid_result.best_estimator_
   import pickle
```

```
def save_model(model, gesture_subset):
       gesture_subset.sort()
       name = '-'.join(gesture_subset)
        # saving model
       pickle.dump(model.classes_, open(name + '_model_classes.pkl','wb'))
       model.model.save(name + '_lstm')
   print("Saving model to disk started for Dataset gestures: ", gesture_subset)
   save_model(model, gesture_subset)
   print("Saving model to disk completed for Dataset gestures: ", _
 →gesture_subset)
    import tensorflow as tf
   def load_model(gesture_subset):
       gesture_subset.sort()
       name = '-'.join(gesture_subset)
        # loading model
       build_model = lambda: tf.keras.models.load_model(name + '_lstm')
        classifier = KerasClassifier(build_fn=build_model, epochs=1,__
 ⇒batch size=10, verbose=0)
        classifier.classes_ = pickle.load(open(name + '_model_classes.
→pkl','rb'))
        classifier.model = build_model()
       return classifier
   print("Loading model to disk started for Dataset gestures: ", u
 →gesture_subset)
   model = load_model(gesture_subset)
    \#print(model.model.sumint("Loading model to disk completed for Dataset_{\sqcup}
→ gestures: ", gesture_subset)
   print("Testing model against outliers for Dataset gestures: ", u
→gesture_subset)
   data = dataset_outliers
   X, y, g = get_dataset(dataset_outliers)
   y_pred = model.predict(X)
   from sklearn.metrics import classification_report
   print(classification_report(y, y_pred, target_names=gesture_subset))
   from sklearn.metrics import confusion_matrix
   cf_matrix = confusion_matrix(y, y_pred)
   make_confusion_matrix(cf_matrix, categories=gesture_subset, figsize=[8,8])
   return grid_result
base transfer set = ['01', '02', '04', '05', '08', '09', '12', '13', '16', |
dataset = transfers_size_4[1]
```

Loadind Dataset for gestures: ['03', '10', '14', '19'] 660 samples loaded Scaling Dataset for gestures: ['03', '10', '14', '19'] 660 samples scaled Cleaning Dataset for gestures: ['03', '10', '14', '19'] 508 samples cleaned 152 samples outliers Time slicing Cleaned Dataset for gestures: ['03', '10', '14', '19'] 508 cleaned samples sliced O cleaned samples damaged Time slicing Outliers Dataset for gestures: ['03', '10', '14', '19'] 152 outliers samples sliced O outliers samples damaged 2021-09-21 12:19:22.463339: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2021-09-21 12:19:22.463376: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. Hyperparameter tunning started for Dataset for gestures: ['03', '10', '14', '19'] Fitting 5 folds for each of 72 candidates, totalling 360 fits 2021-09-21 12:19:25.667149: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory 2021-09-21 12:19:25.667173: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303) 2021-09-21 12:19:25.667188: I tensorflow/stream executor/cuda/cuda diagnostics.cc:156] kernel driver does not appear to be running on this host (mqx-public): /proc/driver/nvidia/version does not exist 2021-09-21 12:19:25.667589: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-09-21 12:19:25.738630: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2) Best: 0.975104 using {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 64,

results = create_best_model(dataset)

```
'units': 128}
accuracy: 0.967067 (0.034638) train time: 31.693255 (5.445814) score time:
2.070376 (0.305062) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 64,
'units': 16}
accuracy: 0.947034 (0.070143) train time: 36.676198 (3.259234) score time:
2.909958 (1.050282) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 64,
'units': 32}
accuracy: 0.956252 (0.052575) train time: 48.477525 (1.659183) score time:
5.154572 (0.560187) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 64,
'units': 64}
accuracy: 0.951839 (0.047406) train time: 78.571619 (2.336538) score time:
4.675085 (0.729748) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 64,
'units': 128}
accuracy: 0.959649 (0.050738) train time: 65.601852 (3.372236) score time:
4.505937 (0.572557) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 128,
'units': 16}
accuracy: 0.954748 (0.052700) train time: 67.812842 (3.443153) score time:
5.805562 (1.349794) with: {'batch size': 19, 'dropout rate': 0.1, 'epochs': 128,
'units': 32}
accuracy: 0.942078 (0.070295) train time: 89.072375 (6.574079) score time:
5.657636 (1.254548) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 128,
'units': 64}
accuracy: 0.957825 (0.053891) train time: 132.340737 (18.231696) score time:
6.387424 (1.768106) with: {'batch_size': 19, 'dropout_rate': 0.1, 'epochs': 128,
'units': 128}
accuracy: 0.940950 (0.069812) train time: 39.421155 (4.169345) score time:
4.902628 (0.659200) with: {'batch_size': 19, 'dropout_rate': 0.2, 'epochs': 64,
'units': 16}
accuracy: 0.962573 (0.050476) train time: 40.271610 (4.023712) score time:
5.497001 (1.163842) with: {'batch_size': 19, 'dropout_rate': 0.2, 'epochs': 64,
'units': 32}
accuracy: 0.954104 (0.073121) train time: 50.337803 (2.958088) score time:
5.403285 (1.034918) with: {'batch_size': 19, 'dropout_rate': 0.2, 'epochs': 64,
'units': 64}
accuracy: 0.959844 (0.038331) train time: 70.932499 (3.606466) score time:
4.480470 (1.178454) with: {'batch_size': 19, 'dropout_rate': 0.2, 'epochs': 64,
'units': 128}
accuracy: 0.962406 (0.055456) train time: 62.793112 (1.222073) score time:
4.542381 (1.144057) with: {'batch_size': 19, 'dropout_rate': 0.2, 'epochs': 128,
'units': 16}
accuracy: 0.967251 (0.044167) train time: 68.609645 (5.967210) score time:
3.856799 (0.854351) with: {'batch size': 19, 'dropout rate': 0.2, 'epochs': 128,
accuracy: 0.955887 (0.054662) train time: 96.164191 (10.165814) score time:
6.214754 (2.040907) with: {'batch_size': 19, 'dropout_rate': 0.2, 'epochs': 128,
'units': 64}
accuracy: 0.956350 (0.046397) train time: 112.236199 (7.352265) score time:
4.678393 (1.475569) with: {'batch size': 19, 'dropout rate': 0.2, 'epochs': 128,
```

```
'units': 128}
accuracy: 0.958007 (0.044542) train time: 42.069954 (3.786307) score time:
6.141001 (0.945857) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 64,
'units': 16}
accuracy: 0.963711 (0.051210) train time: 46.590305 (4.744876) score time:
4.840346 (0.967339) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 64,
'units': 32}
accuracy: 0.935784 (0.085930) train time: 49.517406 (2.225822) score time:
5.052038 (0.699069) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 64,
'units': 64}
accuracy: 0.975104 (0.032357) train time: 70.774649 (3.217451) score time:
3.384411 (0.676326) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 64,
'units': 128}
accuracy: 0.960986 (0.053312) train time: 73.034985 (4.097114) score time:
5.436537 (0.872740) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 128,
'units': 16}
accuracy: 0.964160 (0.047682) train time: 80.031383 (7.572690) score time:
6.021311 (0.976712) with: {'batch size': 19, 'dropout rate': 0.3, 'epochs': 128,
'units': 32}
accuracy: 0.964077 (0.049885) train time: 71.729769 (4.783643) score time:
4.316701 (1.041852) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 128,
'units': 64}
accuracy: 0.962587 (0.045123) train time: 119.704187 (10.482373) score time:
4.525391 (0.400703) with: {'batch_size': 19, 'dropout_rate': 0.3, 'epochs': 128,
'units': 128}
accuracy: 0.951117 (0.052562) train time: 46.298196 (2.146543) score time:
3.905712 (0.825034) with: {'batch_size': 19, 'dropout_rate': 0.4, 'epochs': 64,
'units': 16}
accuracy: 0.961167 (0.043867) train time: 44.422117 (2.325029) score time:
3.325424 (0.772470) with: {'batch_size': 19, 'dropout_rate': 0.4, 'epochs': 64,
'units': 32}
accuracy: 0.939627 (0.063140) train time: 52.076633 (4.190630) score time:
4.666687 (1.052856) with: {'batch_size': 19, 'dropout_rate': 0.4, 'epochs': 64,
'units': 64}
accuracy: 0.941966 (0.080076) train time: 75.727234 (5.436436) score time:
6.169465 (1.112423) with: {'batch_size': 19, 'dropout_rate': 0.4, 'epochs': 64,
'units': 128}
accuracy: 0.946032 (0.047511) train time: 75.328885 (5.851901) score time:
5.930279 (0.473715) with: {'batch_size': 19, 'dropout_rate': 0.4, 'epochs': 128,
'units': 16}
accuracy: 0.951643 (0.060530) train time: 65.135503 (3.686979) score time:
5.303149 (0.870670) with: {'batch size': 19, 'dropout rate': 0.4, 'epochs': 128,
accuracy: 0.964060 (0.036184) train time: 77.441216 (6.651068) score time:
5.897721 (1.428720) with: {'batch_size': 19, 'dropout_rate': 0.4, 'epochs': 128,
'units': 64}
accuracy: 0.967349 (0.036733) train time: 124.423230 (10.210331) score time:
6.315003 (1.948571) with: {'batch size': 19, 'dropout rate': 0.4, 'epochs': 128,
```

```
'units': 128}
accuracy: 0.968421 (0.055943) train time: 43.201371 (4.536752) score time:
4.277556 (0.723320) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 64,
'units': 16}
accuracy: 0.954720 (0.062487) train time: 47.154431 (6.330176) score time:
5.865364 (1.634004) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 64,
'units': 32}
accuracy: 0.965382 (0.045377) train time: 56.418716 (3.729706) score time:
6.190014 (0.993139) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 64,
'units': 64}
accuracy: 0.944546 (0.061335) train time: 79.715249 (8.824780) score time:
7.309173 (1.791776) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 64,
'units': 128}
accuracy: 0.957854 (0.046448) train time: 59.610066 (3.256297) score time:
4.450856 (0.431386) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 128,
'units': 16}
accuracy: 0.962876 (0.043292) train time: 65.650482 (7.594052) score time:
4.192535 (0.907167) with: {'batch size': 19, 'dropout rate': 0.5, 'epochs': 128,
'units': 32}
accuracy: 0.954634 (0.045780) train time: 87.212133 (5.689528) score time:
4.870413 (1.531892) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 128,
'units': 64}
accuracy: 0.967266 (0.038882) train time: 119.641664 (8.329335) score time:
5.148854 (1.300145) with: {'batch_size': 19, 'dropout_rate': 0.5, 'epochs': 128,
'units': 128}
accuracy: 0.960453 (0.060597) train time: 46.006288 (3.280841) score time:
5.157507 (0.898975) with: {'batch_size': 19, 'dropout_rate': 0.6, 'epochs': 64,
'units': 16}
accuracy: 0.965595 (0.044506) train time: 54.725076 (5.990738) score time:
5.412135 (1.321052) with: {'batch_size': 19, 'dropout_rate': 0.6, 'epochs': 64,
'units': 32}
accuracy: 0.970228 (0.034755) train time: 59.020951 (6.737357) score time:
4.877372 (0.820073) with: {'batch_size': 19, 'dropout_rate': 0.6, 'epochs': 64,
'units': 64}
accuracy: 0.963893 (0.040444) train time: 71.873782 (4.756049) score time:
4.100048 (1.223771) with: {'batch_size': 19, 'dropout_rate': 0.6, 'epochs': 64,
'units': 128}
accuracy: 0.959343 (0.049596) train time: 65.666005 (3.332458) score time:
4.956452 (0.542311) with: {'batch_size': 19, 'dropout_rate': 0.6, 'epochs': 128,
'units': 16}
accuracy: 0.943525 (0.086086) train time: 73.113974 (4.464466) score time:
5.262884 (0.942045) with: {'batch size': 19, 'dropout rate': 0.6, 'epochs': 128,
accuracy: 0.970426 (0.038645) train time: 82.646635 (8.726987) score time:
6.015208 (0.590609) with: {'batch_size': 19, 'dropout_rate': 0.6, 'epochs': 128,
'units': 64}
accuracy: 0.946700 (0.079992) train time: 126.073306 (8.031087) score time:
7.061113 (0.811673) with: {'batch size': 19, 'dropout rate': 0.6, 'epochs': 128,
```

```
'units': 128}
accuracy: 0.975104 (0.032357) train time: 53.552841 (7.861915) score time:
5.531963 (1.020300) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 64,
'units': 16}
accuracy: 0.961090 (0.042264) train time: 46.941224 (1.839293) score time:
5.296048 (2.000216) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 64,
'units': 32}
accuracy: 0.958145 (0.052065) train time: 50.432960 (3.244981) score time:
4.792424 (1.441591) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 64,
'units': 64}
accuracy: 0.943790 (0.072627) train time: 68.448469 (4.225629) score time:
6.246822 (1.081584) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 64,
'units': 128}
accuracy: 0.958751 (0.056504) train time: 68.281928 (4.430243) score time:
5.035241 (0.624480) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 128,
'units': 16}
accuracy: 0.967182 (0.041498) train time: 72.423596 (5.145906) score time:
5.346117 (0.982834) with: {'batch size': 19, 'dropout rate': 0.7, 'epochs': 128,
'units': 32}
accuracy: 0.959482 (0.053989) train time: 80.406424 (7.181721) score time:
3.973678 (0.791994) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 128,
'units': 64}
accuracy: 0.946547 (0.081587) train time: 126.004051 (9.128753) score time:
4.040153 (0.806882) with: {'batch_size': 19, 'dropout_rate': 0.7, 'epochs': 128,
'units': 128}
accuracy: 0.951727 (0.058270) train time: 44.419279 (4.142526) score time:
4.272211 (1.754877) with: {'batch_size': 19, 'dropout_rate': 0.8, 'epochs': 64,
'units': 16}
accuracy: 0.940281 (0.090697) train time: 43.805162 (1.396336) score time:
5.510804 (1.807949) with: {'batch_size': 19, 'dropout_rate': 0.8, 'epochs': 64,
'units': 32}
accuracy: 0.965497 (0.052277) train time: 49.824885 (4.466295) score time:
5.056177 (1.428866) with: {'batch_size': 19, 'dropout_rate': 0.8, 'epochs': 64,
'units': 64}
accuracy: 0.950139 (0.061082) train time: 76.382971 (4.986443) score time:
6.370194 (1.525359) with: {'batch_size': 19, 'dropout_rate': 0.8, 'epochs': 64,
'units': 128}
accuracy: 0.961334 (0.041646) train time: 78.121466 (14.244370) score time:
5.376747 (0.908505) with: {'batch_size': 19, 'dropout_rate': 0.8, 'epochs': 128,
'units': 16}
accuracy: 0.961069 (0.051237) train time: 79.151658 (6.310937) score time:
5.907252 (1.984520) with: {'batch size': 19, 'dropout rate': 0.8, 'epochs': 128,
accuracy: 0.954818 (0.054803) train time: 96.285882 (13.496187) score time:
7.644161 (0.889678) with: {'batch_size': 19, 'dropout_rate': 0.8, 'epochs': 128,
'units': 64}
accuracy: 0.957728 (0.061694) train time: 115.071675 (8.877195) score time:
4.057429 (0.934958) with: {'batch size': 19, 'dropout rate': 0.8, 'epochs': 128,
```

```
'units': 128}
accuracy: 0.948385 (0.069072) train time: 42.896361 (5.601735) score time:
3.427242 (0.759352) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 64,
'units': 16}
accuracy: 0.965943 (0.031825) train time: 42.325786 (2.062068) score time:
3.019643 (0.917326) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 64,
'units': 32}
accuracy: 0.965748 (0.044939) train time: 45.895106 (4.857491) score time:
4.397220 (1.503447) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 64,
'units': 64}
accuracy: 0.964370 (0.031150) train time: 65.695242 (4.499477) score time:
3.752982 (1.227437) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 64,
'units': 128}
accuracy: 0.951894 (0.054790) train time: 59.332187 (5.284952) score time:
3.776929 (0.581465) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 128,
'units': 16}
accuracy: 0.956457 (0.043869) train time: 63.309113 (4.718425) score time:
4.140449 (1.412666) with: {'batch size': 19, 'dropout rate': 0.9, 'epochs': 128,
'units': 32}
accuracy: 0.930827 (0.110749) train time: 73.598055 (16.073833) score time:
4.233389 (1.086384) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 128,
'units': 64}
accuracy: 0.941855 (0.092255) train time: 93.173285 (3.561433) score time:
3.538691 (0.956667) with: {'batch_size': 19, 'dropout_rate': 0.9, 'epochs': 128,
'units': 128}
Hyperparameter tunning completed for Dataset: ['03', '10', '14', '19']
Saving model to disk started for Dataset gestures: ['03', '10', '14', '19']
2021-09-21 19:45:25.364466: W tensorflow/python/util/util.cc:348] Sets are not
currently considered sequences, but this may change in the future, so consider
avoiding using them.
WARNING:absl:Found untraced functions such as
lstm_cell_1081_layer_call_and_return_conditional_losses,
lstm_cell_1081_layer_call_fn,
lstm_cell_1082_layer_call_and_return_conditional_losses,
lstm_cell_1082_layer_call_fn, lstm_cell_1081_layer_call_fn while saving (showing
5 of 10). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: 03-10-14-19_lstm/assets
INFO:tensorflow:Assets written to: 03-10-14-19 lstm/assets
Saving model to disk completed for Dataset gestures: ['03', '10', '14', '19']
Loading model to disk started for Dataset gestures: ['03', '10', '14', '19']
Testing model against outliers for Dataset gestures: ['03', '10', '14', '19']
             precision
                          recall f1-score
                                              support
          03
                   1.00
                             0.91
                                       0.95
                                                   34
          10
                   1.00
                             0.97
                                       0.99
                                                   39
          14
                   0.97
                            1.00
                                       0.98
                                                   32
```

19	0.92	0.98	0.95	47
accuracy			0.97	152
· ·	0.07	0.07		
macro avg	0.97	0.97	0.97	152
weighted avg	0.97	0.97	0.97	152

[4]: import os import pandas as pd import warnings

```
warnings.filterwarnings("ignore")
baseset = dataset
def evaluate_model(baseset):
    print("Baseset: ", baseset)
    print("Loadind Dataset: ", baseset)
    path = 'gestures-dataset'
    dataset = None
    samples = 0
    for subject in os.listdir(path):
        if os.path.isfile(os.path.join(path, subject)):
            continue
        if subject in ('U01', 'U02', 'U03', 'U04', 'U05', 'U06', 'U07', 'U08'):
            for gesture in os.listdir(os.path.join(path, subject)):
                if os.path.isfile(os.path.join(path, subject, gesture)):
                    continue
                gesture = str(gesture)
                if gesture not in baseset:
                    continue
                for samplefile in os.listdir(os.path.join(path, subject,
 ⇒gesture)):
                    if os.path.isfile(os.path.join(path, subject, gesture, __
 →samplefile)):
                        df = pd.read csv(os.path.join(path, subject, gesture,
→samplefile), \
                            sep = ' ', \
                            names = ['System.currentTimeMillis()', \
                            'System.nanoTime()', \
                            'sample.timestamp', \
                            'X', \
                            'Y', \
                            'Z' \
                            ])
                        df = df[["sample.timestamp", "X", "Y", "Z"]]
                        start = df["sample.timestamp"][0]
                        df["sample.timestamp"] -= start
                        df["sample.timestamp"] /= 10000000
                        df["subject"] = subject
                        df["gesture"] = gesture
                        df["sample"] = str(samplefile[:-4])
                        samples += 1
                        #print(df)
                        if dataset is None:
```

```
dataset = df.copy()
                       else:
                           dataset = pd.concat([dataset, df])
   dataset = dataset.sort_values(by=['gesture','subject','sample','sample.
→timestamp'])
   data = dataset
   print(str(samples) + " samples loaded")
   print("Scaling Dataset: ", baseset)
   from sklearn.preprocessing import StandardScaler
   scaler = StandardScaler()
   dataset_scaled = None
   samples = 0
   for i, gesture in enumerate(baseset):
       df_gesture=data[data['gesture']==gesture]
       for j, subject in enumerate(df_gesture['subject'].unique()):
           df_subject=df_gesture[df_gesture['subject']==subject]
           for k, sample in enumerate(df subject['sample'].unique()):
               df_sample=df_subject[df_subject['sample']==sample].copy()
               df_sample.sort_values(by=['sample.timestamp'])
               sc = scaler
               sc = sc.fit_transform(df_sample[["X", "Y", "Z"]])
               sc = pd.DataFrame(data=sc, columns=["X", "Y", "Z"])
               df_sample['X'] = sc['X']
               df_sample['Y'] = sc['Y']
               df_sample['Z'] = sc['Z']
               if dataset_scaled is None:
                   dataset_scaled = df_sample.copy()
               else:
                   dataset_scaled = pd.concat([dataset_scaled, df_sample])
               samples += 1
   print(str(samples) + " samples scaled")
   data = dataset_scaled
   print("Cleaning Dataset: ", baseset)
   dataset_outliers = None
   dataset_cleaned = None
   samples = 0
   outliers = 0
   for i, gesture in enumerate(baseset):
       df_gesture = data[data['gesture'] == gesture]
       for j, subject in enumerate(df_gesture['subject'].unique()):
```

```
df_subject = df_gesture[df_gesture['subject'] == subject]
          time_mean = df_subject.groupby(["gesture", "subject", "sample"]).
→count().groupby(["gesture", "subject"]).agg({'sample.timestamp': ['mean']})
          time_std = df_subject.groupby(["gesture", "subject", "sample"]).
time_max = time_mean['sample.timestamp'].iloc[0]['mean'] + 1.0 *__
→time_std['sample.timestamp'].iloc[0]['std']
          time_min = time_mean['sample.timestamp'].iloc[0]['mean'] - 1.0 *__
→time_std['sample.timestamp'].iloc[0]['std']
          for k, sample in enumerate(df_subject['sample'].unique()):
              df_sample=df_subject[df_subject['sample']==sample]
              df_sample_count = df_sample.count()['sample.timestamp']
              if df_sample_count < time_min or df_sample_count > time_max:
                  if dataset_outliers is None:
                      dataset_outliers = df_sample.copy()
                  else:
                      dataset_outliers = pd.concat([dataset_outliers,__
→df_sample])
                  outliers += 1
              else:
                  if dataset_cleaned is None:
                      dataset_cleaned = df_sample.copy()
                  else:
                      dataset_cleaned = pd.concat([dataset_cleaned,__
→df_sample])
                  samples += 1
  print(str(samples) + " samples cleaned")
  print(str(outliers) + " samples outliers")
  data = dataset_cleaned
  print("Time slicing Cleaned Dataset: ", baseset)
  dataset_timecut = None
  samples = 0
  damaged = 0
  for i, gesture in enumerate(data['gesture'].unique()):
      df gesture = data[data['gesture'] == gesture]
       for j, subject in enumerate(df_gesture['subject'].unique()):
          df_subject = df_gesture[df_gesture['subject']==subject]
          time max = 19 # 18 * 11 = 198
          for i, sample in enumerate(df subject['sample'].unique()):
              df_sample = df_subject[df_subject['sample'] == sample]
              df_sample_count = df_sample.count()['sample.timestamp']
              #print(df_sample_count)
              if df sample count >= time max:
```

```
df_sample = df_sample[df_sample['sample.timestamp'] <= (11__
\rightarrow * (time_max-1))
                   df_sample_count = df_sample.count()['sample.timestamp']
                   #print(df_sample_count)
               elif df_sample_count < time_max:</pre>
                   for tmp in range(df sample count * 11, (time max) * 11, 11):
                       df = pd.DataFrame([[tmp, 0.0, 0.0, 0.0, gesture,_
⇒subject, sample]], columns=['sample.timestamp', 'X', 'Y', 'Z', 'gesture', __
df_sample = df_sample.append(df, ignore_index=True)
               #print(df_sample)
               df sample count = df sample.count()['sample.timestamp']
               #print(df_sample_count)
               if df_sample_count != time_max:
                   damaged += 1
                   continue
               if dataset timecut is None:
                   dataset_timecut = df_sample.copy()
               else:
                   dataset_timecut = pd.concat([dataset_timecut, df_sample])
               samples += 1
   dataset_cleaned = dataset_timecut
   print(str(samples) + " cleaned samples sliced")
   print(str(damaged) + " cleaned samples damaged")
   data = dataset outliers
   print("Time slicing Outliers Dataset: ", baseset)
   dataset_timecut = None
   samples = 0
   damaged = 0
   for i, gesture in enumerate(data['gesture'].unique()):
       df_gesture = data[data['gesture']==gesture]
       for j, subject in enumerate(df_gesture['subject'].unique()):
           df_subject = df_gesture[df_gesture['subject']==subject]
           time_max = 19 # 18 * 11 = 198
           for i, sample in enumerate(df_subject['sample'].unique()):
               df_sample = df_subject[df_subject['sample'] == sample]
               df_sample_count = df_sample.count()['sample.timestamp']
               #print(df_sample_count)
               if df_sample_count >= time_max:
                   df_sample = df_sample[df_sample['sample.timestamp'] <= (11__
\rightarrow* (time_max-1))]
                   df_sample_count = df_sample.count()['sample.timestamp']
                   #print(df_sample_count)
               elif df_sample_count < time_max:</pre>
                   for tmp in range(df_sample_count * 11, (time_max) * 11, 11):
```

```
df = pd.DataFrame([[tmp, 0.0, 0.0, 0.0, gesture,_
df sample = df sample.append(df, ignore index=True)
              #print(df_sample)
              df sample count = df sample.count()['sample.timestamp']
              #print(df sample count)
              if df sample count != time max:
                 damaged += 1
                 continue
              if dataset_timecut is None:
                 dataset_timecut = df_sample.copy()
              else:
                 dataset_timecut = pd.concat([dataset_timecut, df_sample])
              samples += 1
  dataset_outliers = dataset_timecut
  print(str(samples) + " outliers samples sliced")
  print(str(damaged) + " outliers samples damaged")
  from keras import backend as K
  data = dataset cleaned
  from keras.models import Sequential
  from keras.layers import Bidirectional
  from keras.layers import LSTM
  from keras.layers import Dense
  from keras.layers import Dropout
  from keras.optimizers import adam_v2
  from keras.wrappers.scikit_learn import KerasClassifier
  from sklearn.model_selection import StratifiedGroupKFold
  from sklearn.model_selection import cross_validate
  from sklearn.model selection import GridSearchCV
  from keras.utils import np_utils
  from sklearn.preprocessing import LabelEncoder
  from sklearn.pipeline import Pipeline
  from sklearn.metrics import accuracy_score
  import numpy as np
  import tensorflow as tf
  # fix random seed for reproducibility
  seed = 1000
  np.random.seed(seed)
  # create the dataset
  def get_dataset(data, index=[]):
      X_train = []
      Y_train = []
      groups = []
```

```
samples_idx=0
       for i, gesture in enumerate(data['gesture'].unique()):
           df_gesture = data[data['gesture']==gesture]
           for j, subject in enumerate(df_gesture['subject'].unique()):
               df_subject = df_gesture[df_gesture['subject']==subject]
               for k, sample in enumerate(df_subject['sample'].unique()):
                   df_sample = df_subject[df_subject['sample'] == sample]
                   accel vector = []
                   for idx, row in df_sample.sort_values(by='sample.
→timestamp').iterrows():
                       accel_vector.append([row['X'],row['Y'],row['Z']])
                   accel_vector = np.asarray(accel_vector)
                   if len(index)==0:
                       X_train.append(accel_vector)
                       Y_train.append(gesture)
                       groups.append(subject)
                   else:
                       if samples_idx in index:
                           X train.append(accel vector)
                           Y_train.append(gesture)
                           groups.append(subject)
                   samples idx+=1
       X_train = np.asarray(X_train)
       Y_train = LabelEncoder().fit_transform(Y_train)
       #print(Y_train)
       return X_train, Y_train, groups
  def build_model(baseset):
       baseset.sort()
       basename = '-'.join(baseset)
      basemodel = tf.keras.models.load model(basename + ' lstm')
       basemodel.build([None, 19, 3])
       #print(model.summary())
       basemodel.compile(loss='sparse_categorical_crossentropy',_
→optimizer=adam_v2.Adam(learning_rate=0.001), metrics=['accuracy'])
       return basemodel
   # Function to create model, required for KerasClassifier
   import pickle
  def load_classifier(baseset):
      baseset.sort()
      basename = '-'.join(baseset)
       classifier = KerasClassifier(build_fn=build_model, baseset=baseset,_
→epochs=64, batch_size=19, verbose=0)
       classifier.classes_ = pickle.load(open(basename + '_model_classes.

→pkl','rb'))
```

```
classifier.model = build_model(baseset)
       return classifier
   #print(model.model.summary())
   #print(model.classes_)
   from sklearn.metrics import classification_report
   from sklearn.metrics import confusion_matrix
   for n splits in [5]:
       for epoch in [[results.best_params_['epochs']]]:
           cv = StratifiedGroupKFold(n_splits=n_splits, shuffle=True,_
→random_state=(1000+epoch[0]))
           X, y, g = get_dataset(dataset_cleaned)
           # Initialize the accuracy of the models to blank list. The accuracy
\rightarrow of each model will be appended to this list
           accuracy model = []
           best_estimator = None
           # Initialize the array to zero which will store the confusion matrix
           array = None
           outliers = None
           report_cleaned = None
           report_outliers = None
           print("Processing started for split estimator: " + str(n_splits) +__
→", epochs: " + str(epoch))
           # Iterate over each train-test split
           fold = 1
           for train_index, test_index in cv.split(X, y, g):
               #print(test_index)
               if len(test_index) == 0 or len(train_index) == 0:
               print("Processing ", fold, "-fold")
               fold += 1
               classifier = load_classifier(baseset)
               # Split train-test (Inverted)
               X_train, y_train, group_train = get_dataset(dataset_cleaned,__
→train index)
               X_test, y_test, group_test = get_dataset(dataset_cleaned,__
→test_index)
               X_outliers, y_outliers, group_test =
→get_dataset(dataset_outliers)
               # Train the model
               History = classifier.fit(X_train, y_train, epochs=epoch[0])
```

```
# Append to accuracy_model the accuracy of the model
               accuracy_model.append(accuracy_score(y_test, classifier.
→predict(X_test), normalize=True))
               if accuracy model[-1] == max(accuracy model):
                   best_estimator = classifier
               # Calculate the confusion matrix
               c = confusion_matrix(y_test, classifier.predict(X_test))
               # Add the score to the previous confusion matrix of previous_
\rightarrow model
               if isinstance(array, np.ndarray) == False:
                   array = c.copy()
               else:
                   array = array + c
               # Calculate the confusion matrix
               c = confusion_matrix(y_outliers, classifier.predict(X_outliers))
               # Add the score to the previous confusion matrix of previous_
\rightarrow model
               if isinstance(outliers, np.ndarray) == False:
                   outliers = c.copy()
               else:
                   outliers = outliers + c
               #Accumulate for classification report
               if isinstance(report cleaned, list) == False:
                   report_cleaned = [y_test, classifier.predict(X_test)]
               else:
                   report_cleaned[0] = np.append(report_cleaned[0],y_test)
                   report_cleaned[1] = np.append(report_cleaned[1], classifier.
→predict(X_test))
               #Accumulate for classification report
               if isinstance(report_outliers, list) == False:
                   report_outliers = [y_outliers, classifier.
→predict(X_outliers)]
                   report_outliers[0] = np.
→append(report_outliers[0],y_outliers)
                   report_outliers[1] = np.
→append(report_outliers[1],classifier.predict(X_outliers))
           # Print the accuracy
           print("At split estimator: " + str(n_splits) + ", epochs: " +__
→str(epoch))
           print("Accurace mean(std): " + str(np.mean(accuracy_model)) + "(" +__
→str(np.std(accuracy_model)) + ")")
```

```
# To calculate the classification reports
            print("Classification report for all valid cross_validations⊔
 →against their tests sets")
            print(classification_report(report_cleaned[0], report_cleaned[1],__
 →target names=baseset))
            print("Classification report for all valid cross_validations⊔
 →against outliers")
            print(classification_report(report_outliers[0], report_outliers[1],__
 →target_names=baseset))
            # To calculate the confusion matrix
            print("Confusion Matrix for all valid cross_validations against⊔
 →their tests sets")
            make_confusion_matrix(array, categories=baseset, figsize=[8,8])
            print("Confusion Matrix for all valid cross_validations against_

→outliers")
            make_confusion_matrix(outliers, categories=baseset, figsize=[8,8])
    def save model(model, baseset):
        baseset.sort()
        name = '-'.join(baseset)
        # saving model
        pickle.dump(model.classes_, open(name + '_model_classes.pkl','wb'))
        model.model.save(name + '_lstm')
    save_model(best_estimator, baseset)
model = evaluate_model(baseset)
Baseset: ['03', '10', '14', '19']
Loadind Dataset: ['03', '10', '14', '19']
660 samples loaded
Scaling Dataset: ['03', '10', '14', '19']
660 samples scaled
Cleaning Dataset: ['03', '10', '14', '19']
508 samples cleaned
152 samples outliers
Time slicing Cleaned Dataset: ['03', '10', '14', '19']
508 cleaned samples sliced
O cleaned samples damaged
Time slicing Outliers Dataset: ['03', '10', '14', '19']
152 outliers samples sliced
O outliers samples damaged
Processing started for split estimator: 5, epochs: [64]
```

Processing 1 -fold

Processing 2 -fold

Processing 3 -fold

Processing 4 -fold

Processing 5 -fold

At split estimator: 5, epochs: [64]

Accurace mean(std): 0.9985815602836879(0.0028368794326241176)

Classification report for all valid cross_validations against their tests sets precision recall f1-score support

	•			
03	0.99	1.00	1.00	132
10	1.00	0.99	1.00	125
14	1.00	1.00	1.00	136
19	1.00	1.00	1.00	115
cacy			1.00	508
avg	1.00	1.00	1.00	508
avg	1.00	1.00	1.00	508
	10 14 19 acy avg	10 1.00 14 1.00 19 1.00 racy avg 1.00	10 1.00 0.99 14 1.00 1.00 19 1.00 1.00 cacy avg 1.00 1.00	10 1.00 0.99 1.00 14 1.00 1.00 1.00 19 1.00 1.00 1.00 exacy 1.00 1.00

Classification report for all valid cross_validations against outliers

	precision	recall	II-score	support
03	1.00	0.91	0.95	170
10	1.00	0.98	0.99	195
14	0.98	1.00	0.99	160
19	0.93	0.99	0.96	235
accuracy			0.97	760
macro avg	0.98	0.97	0.97	760
weighted avg	0.97	0.97	0.97	760

Confusion Matrix for all valid cross_validations against their tests sets Confusion Matrix for all valid cross_validations against outliers

WARNING:absl:Found untraced functions such as

lstm_cell_1114_layer_call_and_return_conditional_losses,

lstm_cell_1114_layer_call_fn,

lstm_cell_1115_layer_call_and_return_conditional_losses,

lstm_cell_1115_layer_call_fn, lstm_cell_1114_layer_call_fn while saving (showing
5 of 10). These functions will not be directly callable after loading.

INFO:tensorflow:Assets written to: 03-10-14-19_lstm/assets

INFO:tensorflow:Assets written to: 03-10-14-19_lstm/assets

