Master Thesis Project : Extreme Value Theory

- Introductory Task -

Killian Martin-Horgassan

February 18, 2015

1 SUMMARY - TASKS ASSIGNED

Let us consider a sequence of i.i.d. random variables $X_1, X_2, ... \sim \mathcal{N}(0,1)^1$. Let us define the maximum at stage n as $M_n = \max(X_1, ..., X_n)$. Let us consider the following example :

Figure 1.1: Distribution of the $x_1,...,x_n$ around 0.

Let us draw the plotting of M_n against n :

 (M_n) is a non-decreasing sequence with growth is of order $\sqrt{\log(n)}$.

¹ could be extended to $\mathcal{N}(\mu, \sigma^2)$

1.1 SUB-TASK 1

Write a R program that will generate the sequence of the maxima $M_1,...,M_n$ and make the plot of M_n against n. The signature is the following: NormMax(N,m,s,DIST), where:

- N is the number of stages
- m is the mean
- s is the standard deviation
- DIST is the common distribution of the X_i^2

1.1.1 SUB-TASK 2

Let us make the following observation, if F_n denotes the cumulated distribution function of M_n then : $F_n(t) = \Pr(\{M_n \le t\}) = \Pr(\{\max(X_1, ..., X_n) \le t\}) = \Pr(\{X_1 \le t\} \cap ... \cap \{X_n \le t\})$. By independence of the X_i , it boils down to $F_n(t) = \Phi(t)^n$.

- What is the limit, if any, when n goes to infinity?
- Is it possible to find two sequences (a_n) and (b_n) such that $\Pr(a_n + b_n M_n \le t)$ has a limit distribution?

2 RESULTS

3 WORK DONE

Please report to file 'JournalDeBord.pdf'³, section Week I.

²gaussian, exponential or Cauchy for instance.

 $^{^3} a vailable \ on \ \texttt{https://github.com/CillianMH/pdmExtremeValueTheory}$