

By Mandel Oats Based on notes by Andrew Ng

TEXAS A&M

Machine Learning Model

Training Set

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	i :	i :

 x_1

 x_2

y

Plotting Data

Hypothesis

$$h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_2$$
 $h(x) = \sum_{i=0}^n \theta_i x_i = heta^T x_i$

Ordinary Least Squares

Cost Function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

Gradient Descent

Update

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Batch Update Equation

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_\theta(x^{(i)})) x_j^{(i)}$$

Repeat until convergence

Guaranteed to converge to global minimum

(Cost function is convex)

Alternative Minimization

- Stochastic Gradient Descent
 - Not guaranteed to converge exactly
 - Better for large training set
- Normal Equation

Normal Equation

$$abla_{ heta}J(heta) = X^TX heta - X^Tec{y}$$
 $X^TX heta = X^Tec{y}$
 $heta = (X^TX)^{-1}X^Tec{y}$

Linear Regression

Polynomial Regression

Regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\theta = \left(X^T X + \lambda \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \right)^{-1} X^T y$$

Example

AM T

TEXAS A&M