Data Mining: Concepts and Techniques

(3rd ed.)

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign &
Simon Fraser University
© 2011 Han, Kamber & Pei. All rights reserved.

Chapter 8. Classification - Cont.

Bayes Classification Methods

- Techniques to Improve Classification Accuracy:
 Ensemble Methods
- Summary

Monty Hall

Bayesian Classification: Why?

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance:</u> A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

- Total probability Theorem: $P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$
- Bayes' Theorem: $P(H | \mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$
 - Let X be a data sample ("evidence"): class label is unknown
 - Let H be a hypothesis that X belongs to class C
 - Classification is to determine P(H|X), (i.e., posteriori probability): the probability that the hypothesis holds given the observed data sample X
 - P(H) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
 - P(X): probability that sample data is observed
 - P(X|H) (likelihood): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40,
 medium income

Prediction Based on Bayes' Theorem

Given training data X, posteriori probability of a hypothesis H,
 P(H|X), follows the Bayes' theorem

$$P(H | \mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

- Informally, this can be viewed as posteriori = likelihood x prior/evidence
- Predicts **X** belongs to C_i iff the probability $P(C_i | \mathbf{X})$ is the highest among all the $P(C_k | \mathbf{X})$ for all the k classes
- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost

Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- Suppose there are m classes C_1 , C_2 , ..., C_m .
- Classification is to derive the maximum posteriori, i.e., the maximal $P(C_i | X)$
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

Naïve Bayes Classifier

- A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes): $P(\mathbf{X}|C_i) = \prod_{l=1}^{n} P(x_k|C_l) = P(x_1|C_l) \times P(x_2|C_l) \times ... \times P(x_n|C_l)$
- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

and
$$P(\mathbf{x}_k | \mathbf{C}_i)$$
 is
$$g(\mathbf{x}, \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\mathbf{x} - \mu)^2}{2\sigma^2}}$$
$$P(\mathbf{X} | \mathbf{C}_i) = g(\mathbf{x}_k, \mu_{C_i}, \sigma_{C_i})$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30,

Income = medium,

Student = yes

Credit_rating = Fair)

age	income	<mark>studen</mark> 1	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes Classifier: An Example

- $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $P(buys_computer = "no") = 5/14 = 0.357$
- Compute P(X | C_i) for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222

P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6

P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 
 <math>P(X|buys\_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
```

 $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

Avoiding the Zero-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)

Chapter 8. Classification: Basic Concepts

- Bayes Classification Methods
- Techniques to Improve Classification Accuracy:

Ensemble Methods

Summary

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M₁, M₂, ..., M_k, with the aim of creating an improved model M*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Bootstrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Adaboost (Freund and Schapire, 1997)

- Given a set of d class-labeled tuples, $(\mathbf{X_1}, \mathbf{y_1}), ..., (\mathbf{X_d}, \mathbf{y_d})$
- Initially, all the weights of tuples are set the same (1/d)
- Generate k classifiers in k rounds. At round i,
 - Tuples from D are sampled (with replacement) to form a training set
 D_i of the same size
 - Each tuple's chance of being selected is based on its weight
 - A classification model M_i is derived from D_i
 - Its error rate is calculated using D_i as a test set
 - If a tuple is misclassified, its weight is increased, o.w. it is decreased
- Error rate: $err(X_j)$ is the misclassification error of tuple X_j . Classifier M_i error rate is the sum of the weights of the misclassified tuples:

error
$$(M_i) = \sum_{j=1}^{d} w_j \times err(\mathbf{X_j})$$

The weight of classifier M_i's vote is

$$\log \frac{1 - error(M_i)}{error(M_i)}$$

Random Forest (Breiman 2001)

Random Forest:

- Each classifier in the ensemble is a decision tree classifier and is generated using a random selection of attributes at each node to determine the split
- During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
 - Forest-RI (random input selection): Randomly select, at each node, F
 attributes as candidates for the split at the node. The CART methodology
 is used to grow the trees to maximum size
 - Forest-RC (random linear combinations): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - Oversampling: re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
 - Threshold-moving: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors
 - Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Chapter 8. Classification: Basic Concepts

- Bayes Classification Methods
- Techniques to Improve Classification Accuracy:
 Ensemble Methods
- Summary

Summary (I)

- Classification is a form of data analysis that extracts models describing important data classes.
- Effective and scalable methods have been developed for decision tree induction, Naive Bayesian classification, and many other classification methods.