Lecture 1. Introduction and Syllabus

Yuan Yao

HKUST

Outline

Course Information

Part I: Geometric Data Analysis

Part II: Topological Data Analysis

Course Information 2

Course Information

- ▶ The course runs for about 13 weeks, every Wednesday 15:00-17:50.
 - Courseweb
 - https://yao-lab.github.io/course/csic5011/2025/
 - Occasionally invited speakers will present
 - Projects based evaluation, no final exam! Homework with bonus.

Course Information 3

Outline

Course Information

Part I: Geometric Data Analysis

Part II: Topological Data Analysis

Part I. Geometric Data Analysis

- A duality in linear dimensionality reduction
 - Principal Component Analysis (PCA)
 - Multidimensional Scaling (MDS)
 - Random matrix theory and phase transitions
 - Random projection and restricted isometry property
- Extended PCA/MDS via SDP
 - Robust PCA
 - Sparse PCA
 - Graph Realization or Sensor Network Localization
- Supervised PCA
 - Ridge Regression and PCA
 - Slice Inverse Regression and Linear Discriminant Analysis

Part I. Geometric Data Analysis (continued)

- Manifold Learning: nonlinear dimensionality reduction via spectral method on graphs
 - Locally Linear Embedding (PCA+), Isomap (MDS+)
 - Laplacian LLE, Diffusion Map, LTSA
- *Other topics in representation learning
 - tSNE
 - Steerable PCA
 - Dictionary learning and Matrix Factorization
 - Deep learning

Part I. Geometric Data Analysis (continued)

- Manifold Learning: nonlinear dimensionality reduction via spectral method on graphs
 - Locally Linear Embedding (PCA+), Isomap (MDS+)
 - Laplacian LLE, Diffusion Map, LTSA
- *Other topics in representation learning
 - tSNE
 - Steerable PCA
 - Dictionary learning and Matrix Factorization
 - Deep learning
- Summary: all these methods are based on spectral methods -
 - Can you hear the shape of drum? (by Hermann Weyl and Mark Kac)

Part I. Geometric Data Analysis (continued)

- Manifold Learning: nonlinear dimensionality reduction via spectral method on graphs
 - Locally Linear Embedding (PCA+), Isomap (MDS+)
 - Laplacian LLE, Diffusion Map, LTSA
- *Other topics in representation learning
 - tSNE
 - Steerable PCA
 - Dictionary learning and Matrix Factorization
 - Deep learning
- Summary: all these methods are based on spectral methods -
 - Can you hear the shape of drum? (by Hermann Weyl and Mark Kac)
 - Can you hear the shape of data? (in this course)

Outline

Course Information

Part I: Geometric Data Analysis

Part II: Topological Data Analysis

Part II. Topological Data Analysis

- Clustering method (0-homology)
 - k-center
 - k-means
 - hierarchical linakge
- Topological Data Analysis and Morse Theory
 - Reeb graph and mapper
 - Persistent homology and discrete Morse theory
 - *Critical nodes and graphs
- *Euler Calculus and signal processing

Part II. Topological Data Analysis (continued)

- ► Hodge Theory: a bridge connecting geometry and topology
 - Spectral clustering and graph Laplacian
 - Statistical ranking and graph Helmoholtzian/Hodge Laplacian
 - Experimental design and random graph theory
 - Online ranking and stochastic algorithms
 - Budget control and information maximization
 - Individual learning vs. social choice theory
 - Game theory
 - Finite game flow and combinatorial Hodge Theory
 - *Quantum Hodge Decomposition and TDA