Introduction to Logic for Computer Science

Spring 2024

Assignment 3 (Deadline: 6:00pm on 17 May 2024)

Prof Hongseok Yang

Submit your solutions in KLMS. (Reminder: We adopt a very strict policy for handling dishonest behaviours. If a student is found to copy answers from fellow students or other sources in his or her homework submission, she or he will get F.)

- 1. Given an undirected graph G = (V, E), a set of vertices $S \subseteq V$ is a *clique* if every pair of distinct vertices $u, v \in S$ is connected by an edge and S is an *independent set* if no pair of distinct vertices $u, v \in S$ is connected by an edge. Now consider the following two statements:
 - (A) Every infinite graph either has an infinite clique or an infinite independent set.
 - (B) For all k there exists n such that any graph with n vertices has a clique of size k or an independent set of size k.

Using the Compactness Theorem, prove that (A) implies (B).

(25 points)

- 2. Are the following claims correct? Justify your answers.
 - (a) For any formula F and term t, if F is valid then F[t/x] is valid. (5 points)
 - (b) $\exists x (P(x) \to \forall y P(y))$ is valid.

(10 points)

- (c) For any formula F and constant symbol c, if F[c/x] is valid and c does not appear in F then $\forall x F$ is valid. (10 points)
- 3. Fix a signature σ . Consider a relation \sim on σ -assignments that satisfies the following two properties:
 - (P1) If $A \sim B$, then for every atomic formula F we have $A \models F$ iff $B \models F$.
 - (P2) If $\mathcal{A} \sim \mathcal{B}$, then for each variable x we have (i) for each $a \in U_{\mathcal{A}}$ there exists $b \in U_{\mathcal{B}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$, and (ii) for all $b \in U_{\mathcal{B}}$ there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \sim \mathcal{B}_{[x \mapsto b]}$.

Prove that if $A \sim B$ then for any formula F, $A \models F$ if and only if $B \models F$. You may assume that F is built from atomic formulas using the connectives \land and \neg and the quantifier \exists .

(25 points)

- 4. In this question we work with first-order logic without equality.
 - (a) Consider a signature σ containing only a binary relation symbol R. For each positive integer n show that there is a satisfiable σ -formula F_n such that every model \mathcal{A} of F_n has at least n elements. (10 points)
 - (b) Consider a signature σ containing only unary predicate symbols P_1, \ldots, P_k . Using Question 3, or otherwise, show that any satisfiable σ -formula has a model with at most 2^k elements. (15 points)

¹As an optional exercise, beyond the scope of the course, you can try to prove (A). This result is Theorem 1 in https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf. Combining this with your answer, we obtain a proof of (B).