Ch 11.5 Minimum Spanning Tree

Problem:

- A town has a set of houses and a set of roads
- A road connects 2 and only 2 houses.
- A road connecting houses u and v has a repair cost w(u, v)

Goal:

- Repair enough (and no more) roads such that
 - a) Everyone stays connected.
 - Can reach every house from all other houses.
 - b) Total repair cost is minimum.

Model As A Graph

- Undirected graph G = (V, E).
- Weight w(u, v) on each edge $(u, v) \in E$.
- Find $T \subseteq E$ such that
 - 1. T connects all vertices (T is a spanning tree), and
 - 2. $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized.

A spanning tree whose weight is minimum over all spanning trees is called a *minimum spanning tree*, or *MST*.

- A minimum spanning tree T is a subgraph of a weighted graph G which contains all the verticies of G and whose edges have the minimum summed weight.
- Example weighted graph G:

• A *minimum* spanning tree (weight = 12):

• A *non-minimum* spanning tree (weight = 20):

Some Properties of MST

- It has |V| 1 edges.
- It has no cycles.
- It might not be unique.

- Two algorithms can be used:
 - Prim's Algorithm
 - Robert Prim, 1957
 - Kruskal's Algorithm
 - Joseph Kruskal, 1956

Prim's Algorithm

 Prim's algorithm finds a minimum spanning tree T by iteratively adding edges to T.

 At each iteration, a minimum-weight edge is added that does not create a cycle in the current T.

Prim's Algorithm

- There may be more than one minimum spanning tree for a given connected weighted simple graph.
- If there are two edges with similar smallest weight, chose either one.

- For the graph G.
- 1) Add any vertex to T

$$- e.g A, T = \{A\}$$

- 2) Examine all the edges leaving {A} and add the vertex with the smallest weight.
 - edge weight(A,B) 4(A,C) 2(A,E) 3
 - add edge (A,C), T becomes {A,C}

• 3) Examine all the edges leaving {A,C} and add the vertex with the smallest weight.

```
  - edge weight
  (A,B) 4
  (A,E) 3
  (C,E) 6
  (C,F) 3
```

– add edge (C,D), T becomes {A,C,D}

• 4) Examine all the edges leaving {A,C,D} and add the vertex with the smallest weight.

```
  - edge weight
  (A,B) 4
  (A,E) 3
  (C,E) 6
  (C,F) 3
```

- add edge (A,E) or (C,F), it does not matter
- add edge (A,E), T becomes {A,C,D,E}

• 5) Examine all the edges leaving {A,C,D,E} and add the vertex with the smallest weight.

```
  - edge weight
  (A,B) 4
  (C,F) 3
  (E,F) 2
  edge weight
  (D,B) 5
  (D,F) 6
```

– add edge (E,F), T becomes {A,C,D,E,F}

• 6) Examine all the edges leaving {A,C,D,E,F} and add the vertex with the smallest weight.

```
- edge weight(A,B) 4(D,B) 5
```

- add edge (A,B), T becomes {A,B,C,D,E,F}
- All the verticies of G are now in T, so we stop.

Prim's Algorithm

 Resulting minimum spanning tree (weight = 12):

Pseudocode

```
Tree prim (Graph G, int numVerts)
Tree T = anyVert(G);
for i = 1 to numVerts-1{
  Edge e = an edge of minimum weight incident to
           a vertex in T and not forming a
           cycle in T when added to T;
  T = T with e added;
return T
```


Prim's Algorithm

FIGURE 1

The minimum spanning tree is given by:

Total weight = 40

CHOICE	EDGE	WEIGHT	SPANNING TREE
1	{a, b}	7	7 a
2	{a, d}	10	7 10 d
3	{b, e}	11	7 10 11 e
4	{e, c}	12	7 10 11 e

A Greedy Algorithm

- Prim's algorithm is an example of a greedy algorithm
 - its choice at each iteration does not depend on any previous choices

 A greedy algorithm does the best thing at this time without considering the past (or the future).

Greed is not Always Best

- An example where greed is not the best approach:
 - a greedy shortest-path algorithm can lead to a non-optimal solution (not the best)

 the algorithm selects an edge with the minimum weight connected to the last vertex added

Greed is not Always Best

- Find the shortest path a --> z.
- The greedy algorithm produces (a,c,z), but the shortest is (a,b,z)

Kruskal's Minimum Spanning Tree Algorithm

- At the start, the minimum spanning tree T consists of all the verticies of the weighted graph G, but no edges.
- At each iteration, add an edge e to T having minimum weight that does not create a cycle in T.
- When T has n-1 edges, stop.

Kruskal's Minimum Spanning Tree Algorithm

- There may be more than one minimum spanning tree for a given connected weighted simple graph.
- If there are two edges with similar smallest weight, chose either one.

Pseudocode

```
Tree kruskal (Graph G, int numVerts)
 Tree T = allVerts(G);
 for i = 1 to numVerts-1 {
   Edge e = an edge of minimum weight in G
            and not forming a
            cycle in T when added to T;
   T = T with e added;
 return T
```


Example

• Graph G:

edge
(c,d)
(k,l)
(b,f)
(c,g)
(a,b)
(f, j)
(b,c)
(j,k)
(g,h)
(i, j)
(a,e)

Example

Minimum spanning tree (weight = 24):

Kruskal's Algorithm

FIGURE 1

The minimum spanning tree is given by:

Total weight = 40

	CHOICE	EDGE	WEIGHT	SPANNING TREE
	1	{a, b}	7	b 7
				a
	2	{b, d}	10	10 7 a
	3	{b, e}	11	b 10 7 11 e
d	4	{e, c}	12	7 10 12 a

Difference between Prim and Kruskal

 Prim's algorithm chooses an edge that must already be connected to a vertex in the minimum spanning tree T.

 Kruskal's algorithm can choose an edge that may not already be connected to a vertex in T.

Exercise

 Construct a minimum spanning tree for each of the following connected weighted graphs using Prim's and Kruskal's algorithm.

FIGURE 1 FIGURE 2