Informatics 2A: Tutorial Sheet 5 Solutions

SHAY COHEN

1. (a) For the purpose of a rough calculation, we can approximate the frequency graph by the curve y = c/x for a suitable constant c. The total number of tokens will then be

$$\int_{1}^{10000} c/x \ dx = c[\ln x]_{1}^{10000} = 4c \ln 10 = 100000$$

(and this fixes the value of c). So to obtain half the total number of tokens, we clearly want to take the 100 most common word types:

$$\int_{1}^{100} c/x \ dx = c[\ln x]_{1}^{100} = 2c \ln 10$$

- (b) From the above, we have $c\approx 10857$. So the frequency of about is roughly $10857/60\approx 181$.
- 2. Here's one way to tag the text, based on the Penn Treebank tagging guidelines:

I/PRP was/VBD walking/VBG down/IN the/DT high/JJ street/NN yesterday/NN when/CC I/PRP noticed/VBD an/DT old/JJ man/NN acting/VBG suspiciously/RB . He/PRP was/VBD peering/VBG into/IN various/JJ shop/NN windows/NN and/CC writing/VBG things/NNS in/IN a/DT notebook/NN . When/WRB he/PRP spotted/VBD me/PRP, he/PRP stuffed/VBD the/DT notebook/NN into/IN his/PRP\$ pocket/NN and/CC wandered/VBD off/RP ./.

Here's how the Stanford tagger tags it:

 $I/PRP\ was/VBD\ walking/VBG\ down/RP\ the/DT\ high/JJ\ street/NN\ yesterday/NN\ when/WRB\ I/PRP\ noticed/VBD\ an/DT\ old/JJ\ man/NN\ acting/VBG\ suspiciously/RB\ ./.\ He/PRP\ was/VBD\ peering/VBG\ into/IN\ various/JJ\ shop/NN\ windows/NNS\ and/CC\ writing/VBG\ things/NNS\ in/IN\ a/DT\ notebook/NN\ ./.\ When/WRB\ he/PRP\ spotted/VBD\ me/PRP\ ,/,\ he/PRP\ stuffed/VBD\ the/DT\ notebook/NN\ into/IN\ his/PRP\$\ pocket/NN\ and/CC\ wandered/VBD\ off/RP\ ./.$

You can see it sometimes makes mistakes, for example, denoting "down" as a particle.

Here is the Penn treebank POS tagset if needed for discussion:

1.	CC	Coordinating conjunction			
2.	CD	Cardinal number			
3.	DT	Determiner			
4.	$\mathbf{E}\mathbf{X}$	Existential there			
5.	FW	Foreign word			
6.	IN	Preposition or subordinating conjunction			
7.	JJ	Adjective			
8.	JJR	Adjective, comparative			
9.	JJS	Adjective, superlative			
10.	LS	List item marker			
11.	MD	Modal			
12.	NN	Noun, singular or mass			
13.	NNS	Noun, plural			
14.	NNP	Proper noun, singular			
15.	NNPS	Proper noun, plural			
16.	PDT	Predeterminer			
17.	POS	Possessive ending			
18.	PRP	Personal pronoun			
19.	PRP\$	Possessive pronoun			
20.	RB	Adverb			
21.	RBR	Adverb, comparative			
22.	RBS	Adverb, superlative			
23.	RP	Particle			
24.	SYM	Symbol			
25.	TO	to			
26.	UH	Interjection			
27.	VB	Verb, base form			
28.	VBD	Verb, past tense			
29.	VBG	Verb, gerund or present participle			
30.	VBN	Verb, past participle			
31.	VBP	Verb, non-3rd person singular present			
32.	VBZ	Verb, 3rd person singular present			
33.	WDT	Wh-determiner			
34.	WP	Wh-pronoun			
35.	WP\$	Possessive wh-pronoun			
36.	WRB	Wh-adverb			

For most words here the tagging is straightforward, but the following points might be discussed:

- \bullet If $high\ street$ were regarded as a compound noun, the tagging would be high/NN street/NN.
- One might very reasonably want to tag *yesterday* as a temporal adverb (RB). The Penn guidelines, however, say that it should be treated as a noun (even in contexts like the above), pointing out e.g. that it admits a possessive form *yesterday's news*.
- We have tagged the first *when* as a coordinating conjunction, and the second as a Wh-adverb, though it is not entirely clear whether this accords with Penn Treebank policy.

3. We only have to tag the words *old* and *man*, since the tagging of the other words is fixed. Proceeding from left to right, we see that if *old* is preceded by a DT, its most likely POS is Adj, while if *man* is preceded by Adj, its most likely POS is N.

(This is admittedly a rather weak example, in that the tagging of man would be the same whatever preceded it!)

4. The Viterbi matrix is as follows:

	the	old	man	the	lifeboats
DT	.4x.5 = .2	0	0	.00096x.4x.5 = .000192	0
N	0	.2x.6x.2 = .024	.032x.5x.3 = .0048	0	etc.
V	0	0	.024x.4x.1 = .00096	0	0
Adj	0	.2x.4x.4 = .032	0	0	0

Thus the most probable tagging is:

The/DT old/N man/V the/DT lifeboats/N

(The backtrace pointers can be read off from the above matrix in an ad hoc fashion: e.g. in the cell for (man,N), the first factor is .032 which comes from the cell for (the,Adj).)