Лабораторная работа №1.

Метол Ритпа

Задание. Используя метод Ритца, решить численно предложенные простейшие вариационные задачи:

задачи a) и b) — используя конечно-линейный базис с n = 10, n = 15;задачи a) и b) — используя базис из B-сплайнов с n=5, n=10;

задачу с) — используя любой подходящий базис.

В случае необходимости, преобразовать исходную задачу к стандартному виду.

Оценка. Баллы за выполнение лабораторной работы распределяются следующим образом:

№	Подзадача	Балл
1	Реализация метода Ритца с конечно-линейным базисом $(n = 10,$	1.5
	n = 15) для задачи а)	
2	Реализация метода Ритца с базисом из В-сплайнов ($n=5,n=$	2
	10) для задачи а)	
3	Реализация метода Ритца с конечно-линейным базисом $(n=10,$	1.5
	n = 15) для задачи b)	
4	Реализация метода Ритца с базисом из В-сплайнов ($n=5,n=$	2
	10) для задачи b)	
5	Реализация метода Ритца с произвольным базисом $(n = 3,$	3
	$n=5)$ для задачи c). Необходимая точность $\varepsilon=0.01,$ точное	
	решение найти при помощи уравнения Эйлера.	
6	Повышение точности решения задачи c) из пункта 5. до $\varepsilon =$	1
	0.001.	
7	Блок-схема программного кода (в любой нотации), комменти-	1
	рование кода	
	ОТОТИ	12

Сроки выполнения. Четыре недели со дня выдачи задания.

Варианты заданий

Вариант 1.

ариант 1.
a)
$$V[y] = \int_0^1 \left[(y'(x))^2 + y^2(x) - (4 + 2x(1 - x))y(x) \right] dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_0^2 \left[2(y'(x))^2 + \pi^2 y^2(x) - 6\pi^2 \sin(\pi x)y(x) \right] dx$, $y(0) = 0$, $y(2) = -2$;
c) $V[y] = \int_0^1 y \sqrt{1 + y'^2} dx$; $y(0) = 2$; $y(1) = 3$;

Вариант 2.

ариант 2.
a)
$$V[y] = \int_{0}^{1} [(y'(x))^{2} + y^{2}(x) - 2(\pi^{2} + 1)\sin(\pi x)y(x)]dx$$
, $y(0) = 0$, $y(1) = 0$;

b)
$$V[y] = \int_{0}^{2} \left[x(y'(x))^{2} + \pi^{2}y^{2}(x) - \left(8x - 2 + 2\pi^{2}x(1 - x)\right)y(x) \right] dx, \quad y(0) = 0, \quad y(2) = -2;$$

c) $V[y] = \int_{0}^{1} \frac{\sqrt{1 + y'^{2}}}{y} dx; \quad y(0) = 2; \quad y(1) = 1;$

Вариант 3.

a)
$$V[y] = \int_{0}^{1} \left[2(y'(x))^{2} + \pi^{2}y^{2}(x) - 6\pi^{2}\sin(\pi x)y(x) \right] dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{\frac{3}{2}} \left[x(y'(x))^{2} + \pi^{2}y^{2}(x) + \left(\pi\cos(\pi x) - \pi^{2}(x+1)\sin(\pi x)\right)y(x) \right] dx$, $y(0) = 0$, $y\left(\frac{3}{2}\right) = -1$;
c) $V[y] = \int_{0}^{1} yy'^{2}dx$; $y(0) = 2$; $y(1) = 1$;

Вариант 4.

a)
$$V[y] = \int_{0}^{1} [(y'(x))^{2} + y^{2}(x) + 2(x^{3} - x^{2} - 6x + 2)y(x)]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{2} [(y'(x))^{2} + 2y^{2}(x) - (4 + 4x(1 - x))y(x)]dx$, $y(0) = 0$, $y(2) = -2$;
c) $V[y] = \int_{0}^{1} \sqrt{y(1 + y'^{2})}dx$; $y(0) = 1$; $y(1) = 3$;

Вариант 5.

a)
$$V[y] = \int_{0}^{1} [(y'(x))^{2} + 2y^{2}(x) - (4 + 4x(1 - x))y(x)]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{2} [(y'(x))^{2} + y^{2}(x) - (4 + 2x(1 - x))y(x)]dx$, $y(0) = 0$, $y(2) = -2$;
c) $V[y] = \int_{1}^{3} y\sqrt{y'}dx$; $y(1) = 2$; $y(3) = 8$;

Вариант 6.

a)
$$V[y] = \int_{0}^{1} [(y'(x))^{2} + 2y^{2}(x) - 2(\pi^{2} + 2)\sin(\pi x)y(x)]dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{2} [(y'(x))^{2} + 2y^{2}(x) + (2x^{3} - 2x^{2} - 6x + 2)y(x)]dx$, $y(0) = 0$, $y(2) = -4$;

c)
$$V[y] = \int_{0}^{2} y \sqrt{1 + y'^2} dx$$
; $y(0) = -1$; $y(2) = -3$;

Вариант 7.

риант 7.
a)
$$V[y] = \int_{0}^{1} \left[(y'(x))^2 + 2y^2(x) + (2x^3 - 2x^2 - 6x + 2) y(x) \right] dx$$
, $y(0) = 0$, $y(1) = 0$;
b) $V[y] = \int_{0}^{\frac{3}{2}} \left[(y'(x))^2 + y^2(x) - 2(\pi^2 + 1) \sin(\pi x) y(x) \right] dx$, $y(0) = 0$, $y\left(\frac{3}{2}\right) = -1$;
c) $V[y] = \int_{0}^{2} yy'^2 dx$; $y(0) = 1$; $y(2) = 3$;

Вариант 8.

appears of a)
$$V[y] = \int_{0}^{1} \left[x(y'(x))^{2} + \pi^{2}y^{2}(x) - (8x - 2 + 2\pi^{2}x(1 - x))y(x) \right] dx, \quad y(0) = 0, \quad y(1) = 0$$

0;

b)
$$V[y] = \int_{0}^{2} \left[e^{x} (y'(x))^{2} + x^{2} y^{2}(x) - \left(4x^{3} (1-x) - (4x+2)e^{x} \right) y(x) \right] dx, \quad y(0) = 0, \quad y(2) = 0;$$

c)
$$V[y] = \int_{0}^{2} \frac{\sqrt{1+y'^2}}{y} dx$$
; $y(0) = 4$; $y(2) = 2$;

Вариант 9.

a)
$$V[y] = \int_{0}^{1} \left[x(y'(x))^{2} + \pi^{2}y^{2}(x) + \left(\pi \cos(\pi x) - \pi^{2}(x+1) \sin(\pi x) \right) y(x) \right] dx, \quad y(0) = 0,$$

b) $V[y] = \int_{0}^{2} \left[(y'(x))^{2} + y^{2}(x) + 2\left(x^{3} - x^{2} - 6x + 2 \right) y(x) \right] dx, \quad y(0) = 0, \quad y(2) = -4;$
c) $V[y] = \int_{0}^{2} y\sqrt{y'}dx; \quad y(0) = 2; \quad y(2) = 4;$

Вариант 10.

a)
$$V[y] = \int_{0}^{1} \left[e^{x} (y'(x))^{2} + x^{2} y^{2}(x) - \left(4x^{3} (1-x) - (4x+2)e^{x} \right) y(x) \right] dx, \quad y(0) = 0, \quad y(1) = 0$$
:

b)
$$V[y] = \int_{0}^{\frac{3}{2}} \left[(y'(x))^2 + 2y^2(x) - 2(\pi^2 + 2)\sin(\pi x)y(x) \right] dx$$
, $y(0) = 0$, $y\left(\frac{3}{2}\right) = -1$;

c)
$$V[y] = \int_{0}^{2} \sqrt{y(1+y'^2)} dx$$
; $y(0) = 2$; $y(2) = 1$;