Wolkite University

Department of Mathematics Applied Mathematics III

Assignment 2

Vector Calculus and Complex Analysis

Prepared by: Solomon Amsalu

Instructions

- This is an **individual assignment**. Collaboration is not allowed.
- Attempt all 10 questions. Show all necessary working for full credit.
- Submit your solutions neatly written by May 14, 2025.

Vector Calculus Questions

1. Find the domain of the following vector-valued functions.

(a)
$$\mathbf{f}(t) = \ln t \,\mathbf{i} + 10t \,\mathbf{j} + 4t \,\mathbf{k}$$

(b)
$$\mathbf{g}(t) = \frac{1}{t+2}\mathbf{i} + 10\mathbf{j} + e^{2t}\mathbf{k}$$

(c)
$$\mathbf{h}(t) = \frac{t+2}{t}\mathbf{i} + \ln(25 - t^2)\mathbf{j} + \frac{1}{\ln t}\mathbf{k}$$

- 2. Show that the curve $\mathbf{r}(t) = t \mathbf{i} + 2\sqrt{t} \mathbf{j} + 10 \mathbf{k}$ is not smooth. Verify also that it is not piecewise smooth.
- 3. Find a parametric equation for the tangent line to the curve $\mathbf{r}(t) = (\cos t, \sin t, e^{4t})$ at t = 2.
- 4. A particle has a position vector $\mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j} + 3\sin(2t) \mathbf{k}$. Find:
 - (a) Velocity $\mathbf{v}(t)$
 - (b) Speed $|\mathbf{v}(t)|$
 - (c) Acceleration $\mathbf{a}(t)$
- 5. Using Green's Theorem evaluate $\oint_C (y^2 dx + x dy)$ where C is the circle $x^2 + y^2 = 1$ positively oriented.

1

Complex Analysis Questions

- 6. Evaluate $\oint_C \frac{1}{z^2 + 2z + 2} dz$ where C is the circle |z 1| = 2.
- 7. Find
 - (a) the principal value of i^i .
 - (b) all values of $\log(-1+i)$.
- 8. Show that $f(z) = z^2$ is differentiable everywhere and analytic everywhere.
- 9. Evaluate $\int_C \frac{e^z}{z} dz$ where C is the circle |z| = 2 traversed once counterclockwise.
- 10. Evaluate

$$I = \oint_C \frac{z^2 + 3}{(z - 1)(z - 3)(z + 2)^2} dz,$$

where C is the contour $|z| = \frac{5}{2}$, oriented counterclockwise.