Classificação de estresses bióticos em folhas de café utilizando visão computacional e aprendizado profundo

Discente: Luís Henrique Vieira - BCC

Orientador: Gabriel Marcelino Alves

Contexto, Motivação — e Objetivos

Contexto

Café no Brasil:

- Maior produtor e exportador do mundo;
- 2° maior consumidor do mundo;
- Estados com maior produção: Minas Gerais, Espírito Santo e São Paulo;

Figura 1 - Pé de café

Estresses bióticos

- É o dano causado nas plantas por outros seres vivos;
- Os principais são:
 - Ferrugem;
 - Bicho mineiro;
 - Mancha de phoma;
 - Cercosporiose.
- Identificação a partir de coleta, separação e observação

Figura 2 – (a) bicho mineiro, (b) ferrugem, (c) mancha de phoma, (d) cercosporiose.

Fonte: Elaborado por Esgario, Krohling e Ventura (2020)

Motivação e Objetivos

Motivação:

 Apresentar um método de identificação de estresses bióticos no cafeeiro, com Inteligência Artificial.

Objetivos:

- Implementar redes neurais (CNN);
- Aplicar e avaliar as redes;
- Construir base de imagens adicional do leste paulista.

Aprendizado 3 — profundo

Aprendizado profundo

- O aprendizado profundo é uma subárea do aprendizado de máquina;
- Permite a extração de características de dados brutos;

Figura 3 - Exemplo da extração de características.

Fonte: Elaborado por LeCun; Bengio; Hinton (2015)

Transferência de aprendizagem

Transferência de aprendizagem

- Transferência entre o domínio de origem e destino;
- Relaxa a necessidade de dados rotulados.

Figura 4 - Exemplos intuitivos de transferência de aprendizagem.

Fonte: (Zhuang et al., 2021)

Redes neurais convolucionais (CNN)

Rede neural convolucional

- Utilizada no reconhecimento de imagem e voz;
- Arquitetura composta pelas camadas:
 - Convolução;
 - Não linearidade;
 - Polling;
 - Totalmente conectadas.

Figura 5 - Exemplo da Arquitetura VGG16

Fonte: Elaborado por Bezdan e Džakula (2019).

Criação da base de imagens

Criação da base de imagens

- Estresses bióticos: Ferrugem e Cercosporiose;
- Total de Folhas: 264;
- Ferrugem (193), Cercosporiose (20) e Saudáveis (51);
- Coletadas:
 - Divinolândia;
 - São Sebastião da Grama;
 - Caconde;
 - Santo Antônio do Jardim.
- Não utilizada nas redes neurais

Figura 6 - Imagens da base do leste paulista

Fonte: Elaborado pelo autor.

Desenvolvimento

Desenvolvimento da rede neural

- Utilização do conjunto Symptom da base de imagens BRACOL;
- Processo de data augmentation;
- Divisão do conjunto de treinamento (70%), validação (15%) e teste (15%);
- Arquiteturas desenvolvidas:
 - VGG16
 - ResNet50V2
 - MobileNetV2

Figura 7 - Código do método de criação das redes

```
def create model(self) -> None:
   if self.architecture == Architecture.RESNET50V2:
     from keras.applications.resnet v2 import ResNet50V2
     model choose = ResNet50V2(include top=False, weights='imagenet', input shape=self.input shape)
   elif self.architecture == Architecture.MOBILENETV2:
     from keras.applications.mobilenet v2 import MobileNetV2
    model choose = MobileNetV2(include top=False, weights='imagenet', input shape=self.input shape)
     from keras.applications.vgg16 import VGG16
     model choose = VGG16(include top=False, weights='imagenet', input shape=self.input shape)
   if self.fine tune > 0:
     for layer in model choose.layers[:-self.fine tune]:
             laver.trainable = False
     for layer in model choose.layers:
             layer.trainable = True
   top model = model choose.output
   top model = GlobalAveragePooling2D()(top model)
   top model = Dense (4096, activation='relu')(top model)
   top model = Dense(1072, activation='relu')(top model)
   output layer = Dense(self.n classes, activation='softmax')(top model)
   self.model = Model(inputs=model choose.input. outputs=output laver)
   self.model.compile(optimizer=self.optimizer, loss='categorical crossentropy', metrics=['accuracy'])
   return self.model
```

Fonte: Elaborado pelo autor.

Figura 8 - Código de uso método de criação das redes

```
model_mobilenet = mobilenet.create_model()
model_mobilenet_fine_tune = mobilenet_fine_tune.create_model()

model_resnet = resnet.create_model()
model_resnet_fine_tune = resnet_fine_tune.create_model()

model_vgg = vgg.create_model()
model_vgg_fine_tune = vgg_fine_tune.create_model()
```


Hiperparâmetros para treino

Tabela 1 - Hiperparâmetros utilizados

HiperParâmetro	Valor	
Otimizador	Adam	
Função de perda	Entropia cruzada	
Tamanho do batch	32	
Épocas	100	
Taxa de aprendizagem	0,0001	

6 Resultados

Avaliação dos modelos

Tabela 2 - Resultados das métricas de avaliação

Arquitetura	Acurácia	Precisão	Recall
ResNet50V2	93,4%	93,4%	93,4%
VGG16	91,9%	92,1%	91,9%
MobileNetV2	89,9%	90,8%	89,9%

Figura 9 - VGG16 Matriz de Confusão VGG16 39 1.00 0.00 0.00 0.00 0.00 0.00 0,00 0.02 5 Classe Verdadeira 3_rust 0.00 0,00 90 0.99 0.00 4 0.04 4_phoma 63 0.93 0.00 3 0.00 3 5_cercospora 0.00 6 1 0.02 3

Fonte: Elaborado pelo autor.

Classe Prevista

Figura 10 - VGG16 com ajuste fino

Figura 11 - ResNet50V2 Matriz de Confusão RESNET50V2 37 1.00 1 0.03 0,00 0.00 78 0.92 0.00 0.00 2 0.02 3 Classe Verdadeira 0.00 0.00 92 0.97 0.00 2 0.00 67 0.94 2 0,00 0.00 42 0.89 0 4 2 2 0.04 0.00

Fonte: Elaborado pelo autor.

Classe Prevista

Figura 12 - ResNet50V2 com ajuste fino

Figura 13 - MobileNetV2

Fonte: Elaborado pelo autor.

Figura 14 - MobileNetV2 com ajuste fino

7 — Conclusões

Conclusões

- Alcançou seu objetivo ao identificar e classificar os estresses bióticos;
- ResNet50V2 apresentou os melhores resultados, com todas as camadas;
- A utilização das técnicas de transferência de aprendizagem melhorou os resultados;
- Iniciou-se a construção de uma base de dados do leste paulista.

Referências

AGRICULTURA, P. e. A. Ministério da. Café no Brasil. 2017. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/cafe/cafeicultura-brasileira. 2, 3

Bezdan, T.; Džakula, N. B. Convolutional Neural Network Layers and Architectures.In: Proceedings of the International Scientific Conference - Sinteza 2019. Novi Sad, Serbia: Singidunum University, 2019. p. 445–451. ISBN 9788679127037. Disponível em: http://portal.sinteza.singidunum.ac.rs/paper/700. 7

ESGARIO, J. G.; KROHLING, R. A.; VENTURA, J. A. Deep learning for classification and severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture, v. 169, p. 105162, 2020. ISSN 0168-1699. Disponível em: https://www.sciencedirect.com/science/article/pii/S0168169919313225, 2, 3, 4, 6, 7

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature, Nature Publishing Group, v. 521, n. 7553, p. 436-444, 2015. 5, 6

ZHUANG, F.; QI, Z.; DUAN, K.; XI, D.; ZHU, Y.; ZHU, H.; XIONG, H.; HE, Q. Acomprehensive survey on transfer learning. Proceedings of the IEEE, v. 109, n. 1, p. 43–76, 2021. 5

Obrigado!

Perguntas?

E-mail: luis.hv2306@gmail.com