1 Popište možné tvary dynamických systémů pro modely: spojité-diskrétní, lineární-nelineární.

Lineární spojitý systém v časové oblasti

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$

Lineární spojitý systém ve frekvenční oblasti

$$sx = Ax + Bu$$
$$y = Cx + Du$$

Po úpravě $\boldsymbol{x}(s\boldsymbol{I}-\boldsymbol{A})=\boldsymbol{B}\boldsymbol{u}$ můžeme dosadit

$$y = C(sI - A)^{-1}Bu + Du$$
 (1)

Dynamická poddajnost

$$G(x) = \frac{y}{u} = C(sI - A)^{-1}B + D$$
(2)

Lineární diskrétní systém

$$egin{aligned} oldsymbol{x}_{t+\Delta t} &= oldsymbol{M} oldsymbol{x}_t + oldsymbol{N} oldsymbol{u}_t \ oldsymbol{y}_t &= oldsymbol{O} oldsymbol{x}_t + oldsymbol{P} oldsymbol{u}_t \end{aligned}$$

diskrétní tvar lze získat z tvaru spojitého modelu v časové oblasti

$$M = e^{A\Delta t} \doteq I + A\Delta t$$
, $N = B$, $O = C$, $P = D$

Nelineární systém

$$\dot{x} = f(x) + g(x)u \tag{3}$$

$$y = c(x) + d(x)u \tag{4}$$

2 Modelování poddajných struktur

Většinou vycházíme z mkp modelů s $10^4 \div 10^6$ tvarů

$$M\ddot{x} + C\dot{x} + Kx = F$$

Ty redukujem pomocí modální trasformace, kde hledáme řešení problému vlastních čísel

$$KV = \Omega^2 MV$$

kde ϕ_i jsou vlastní vektory a ω_i vlastní frekvence tvořící matice \boldsymbol{V} a $\boldsymbol{\Omega}$

$$V = \begin{bmatrix} \phi_i & \dots & \phi_N \end{bmatrix}, \ \Omega^2 = \operatorname{diag}(\omega_i^2), \quad i \in \langle 1, N \rangle$$

Po té platí

$$oldsymbol{V}^Toldsymbol{M}oldsymbol{V}=oldsymbol{1}\ ,\quad oldsymbol{V}^Toldsymbol{K}oldsymbol{V}=oldsymbol{\Omega}^2$$

Soustavu pohybovných rovnic systému s proporčním tlumením

lze zavedením modální souřadnic \boldsymbol{q} , $\boldsymbol{x} = \boldsymbol{V}\boldsymbol{q}$ a vynásobením transponovanou maticí modální transformace \boldsymbol{V}^T zleva, převést do tvaru

$$\ddot{\mathbf{q}} + \beta \dot{\mathbf{q}} + \Omega^2 \mathbf{q} = \mathbf{V}^T \mathbf{F}$$
, $\boldsymbol{\beta} = \operatorname{diag}(2 \, b_{r_i} \omega_i)$, $i \in \langle 1, N \rangle$

kde b_{r_i} jsou poměrné útlumy.

Soustava se pak rozpadá na rovnice ve tvaru

$$\ddot{q}_i + 2\omega_i \xi_i \dot{q} + \omega_i^2 q = f_i , \quad f_i = \phi_i \cdot \mathbf{F} , \quad i \in \langle 1, N \rangle$$

kde bere rovnice pro $10^1 \div 10^2$ nejnižších vlastních frekvencí.

- 3 Redukce modelů poddajných struktur pro syntézu řízení. Zohlednění vypuštěných stavů soustavy pomocí reziduí.
- 4 Balancovaný tvar stavového popisu soustavy, smysl tohoto tvaru při získání návrhového modelu.
- 5 Typy aktivních a poloaktivních aktuátorů používaných v mechatronických systémech, hlavní vlastnosti, důsledky pro použití.
- 6 Snižování vibrací (low-authority) versus řízení pohybu/polohy (high-authority). Princip, příklady
- 7 Aktivní absorbce kmitů soustav, příklad návrhu řízení
- 8 Mechatronická tuhost. Princip, model, příklad návrhu řízení.
- 9 Aktivní tlumení vibrací pomocí kolokovaných aktuátorů a senzorů. Příklad s použitím planárních piezo-aktuátorů.
- 10 Aktivní vibroizolace soustav, integrální silová zpětná vazba, příklad návrhu řízení.

Nahradíme piezostackem s tuhostí k, nastavitelnou volnou délkou $l_0(u) = l_{00} + qu$ a pozitivní, integrální, silovou zpětnou vazbou $u = p \int F dt$, kde p je volitelný parametr.

Pohybová rovnice systému bude nabývat tvar

$$m\ddot{y} = -\underbrace{k(y - z_0(t) - qu)}_{E} \tag{5}$$

Dosazením z pohybové rovnice můžeme určit tvar akčního zásahu

$$u = p \int F dt = p \int -m\ddot{y} = -pm\dot{y} + C \tag{6}$$

Dosazením tvaru akčního zásahu zpět do pohybové rovnice získáme pohybovou rovnici tlumeného systému

$$m\ddot{y} = -k(y - z_0(t)) - \underbrace{kmpq}_{b_{\text{sky}}} \dot{y} - kqC$$
(7)

kde hodnotu $b_{\rm sky}$ můžeme ladit volbou parametru p

11 Říditelnost a pozorovatelnost, Gramián říditelnosti a pozorovatelnosti

Uvažujme lin. systém ve tvaru

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

Říditelnost

Systém je říditelný pokud jej lze z libovolného stavu $x \in \mathbb{R}^n$ dostat do stavu nulového x = 0 působením vstupů u.

Matice říditelnosti

$$C = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$
 (8)

Pokud \mathcal{C} je plné hodnosti, systém je říditelný.

Gramián říditelnosti

$$\mathbf{W}_c = \int_0^\infty e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}^T e^{\mathbf{A}^T \tau} d\tau \tag{9}$$

Vlastní vektory W_c patřící k největším vlastním číslům jsou nejlépe říditelné směry ve stavovém prostoru. Podmíněností W_c můžeme hodnotit celkovou říditelnost systému (ve všech směrech stavového prostoru).

Pozorovatelnost

Systém je pozorovatelný pokud na konečném časovém intervalu lze ze změřeného průběhu vstupů u a výstupů y určit stav systému na počátku invervalu $x_0 \in \mathbb{R}^n$.

Matice pozorovatelnosti

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$
(10)

Pokud \mathcal{O} je plné hodnosti, systém je pozorovatelný.

Gramián pozorovatelnosti

$$\boldsymbol{W}_{o} = \int_{0}^{\infty} e^{\boldsymbol{A}\tau} \boldsymbol{C} \boldsymbol{C}^{T} e^{\boldsymbol{A}^{T}\tau} d\tau \tag{11}$$

Vlastní vektory W_o patřící k největším vlastním číslům jsou nejlépe pozorovatelné směry ve stavovém prostoru. Podmíněností W_o můžeme hodnotit celkovou pozorovatelnost systému (ve všech směrech stavového prostoru).

12 Computed Torques

$$\ddot{\boldsymbol{e}} = \ddot{\boldsymbol{q}}_d - \ddot{\boldsymbol{q}} = \ddot{\boldsymbol{q}}_d - \boldsymbol{M}^{-1}\boldsymbol{\tau} + \boldsymbol{M}^{-1}\boldsymbol{N}$$
(12)

$$\frac{d}{dt} \begin{bmatrix} e \\ \dot{e} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ I \end{bmatrix} u \tag{13}$$

13 Použití optimalizačních metod pro syntézu řízení. Aktivní a poloaktivní aktuátory, lineární a nelineární soustavy (ilustrace na příkladu nelineární soustavy).