

2.设
$$\int_{-1}^{1} 3f(x)dx = 18$$
, $\int_{-1}^{3} f(x)dx = 4$, $\int_{-1}^{3} g(x)dx = 3$.求

(1) $\int_{-1}^{1} f(x)dx$;

$$u) \Rightarrow \int_{-1}^{1} f(x) dx = 18$$

$$\Rightarrow \int_{-1}^{1} f(x) dx > b$$

(3)
$$\int_{3}^{-1} g(x) dx$$
;

(2)
$$\int_{1}^{3} f(x)dx$$
;
(2) $\int_{1}^{3} f(x)dx$;
(2) $\int_{1}^{3} f(x)dx$;
(2) $\int_{1}^{3} f(x)dx$;
(3) $\int_{1}^{3} f(x)dx$;
(4) $\int_{1}^{3} f(x)dx$;
(5) $\int_{1}^{3} f(x)dx$;

$$(4) \int_{-5}^{3} \frac{1}{5} [4f(x) + 3g(x)] dx.$$

②
$$\int_1^2 x^2 dx$$
 还是 $\int_1^2 x^3 dx$?

$$\iint_{1}^{2} \ln x dx$$
还是
$$\int_{1}^{2} (\ln x)^{2} dx$$
?

$$\int_{0}^{1} e^{x} dx$$
 还是 $\int_{0}^{1} (1+x) dx$?

比较大大新过以了

5. (90-2) 下列两个积分的大小关系是:

$$\int_{-2}^{-1} e^{-x^3} dx = \sum_{-2}^{-1} e^{x^3} dx.$$

$$(-2, 7) \neq 2^{-x^3} > 1$$

$$2^{x^2} < 1$$

(A)
$$N < P < M$$
. (B) $M < P < N$.

(B)
$$M < P < N$$

$$(C)$$
 $N < M < P$

(C)
$$N < M < P$$
. (D) $P < M < N$.

$$N=1/0$$
 cost dx >0

7. (89-1;2) 设
$$f(x)$$
 是连续函数,且 $f(x) = x + 2 \int_0^1 f(t) dt$,则 $f(x) = x - 1$

7. 秋治中值之键:
$$f(x) = x + 2f(\xi)$$
. $\xi \in (0,1)$. $\frac{2f(\xi)=1+4f(\xi)}{\int_0^1 x + 2f(\xi)} dx = \pm x^2 + 2f(\xi) \times \left|_0^1 = \pm + 2f(\xi)\right| \left|_0^1 = \frac{1}{2} + 2f(\xi)\right|$

8.
$$(02-2)$$
 $\lim_{n\to\infty} \frac{1}{n} \left[\sqrt{1+\cos\frac{\pi}{n}} + \sqrt{1+\cos\frac{2\pi}{n}} + \dots + \sqrt{1+\cos\frac{n\pi}{n}} \right] = \frac{2\sqrt{2}}{n}.$

8.
$$\int_{0}^{1} \sqrt{1+\cos x} \, dx \qquad \text{if } x = t.$$

$$= \int_{0}^{\infty} \sqrt{1+\cos t} \, dt$$

$$= \int_{0}^{\infty} \sqrt{1+\cos t} \, dt = \int_{0}^{\infty} \cos t \, dt$$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) dx , 则有$$

- (A) N < P < M. (B) M < P < N.
- (C) N < M < P. (D) P < M < N.
- 7. (89-1;2) 设 f(x) 是连续函数,且 $f(x) = x + 2 \int_0^1 f(t) dt$,则 f(x) =______.

8.
$$(02-2)$$
 $\lim_{n\to\infty} \frac{1}{n} \left[\sqrt{1 + \cos\frac{\pi}{n}} + \sqrt{1 + \cos\frac{2\pi}{n}} + \dots + \sqrt{1 + \cos\frac{n\pi}{n}} \right] = \underline{\hspace{1cm}}.$