

Introduction to Deep Learning

Introduction to Deep Learning

Citation Note: The concept, the content, and the structure of this article were inspired by the awesome lectures and the material offered by Prof. <u>Mitesh M. Khapra</u> on <u>NPTEL</u>'s <u>Deep</u> <u>Learning</u> course

Ingredients- ML model

Recap : Supervised Learning

Recap

ld [‡]	Cl.thickness $^{\circ}$	Cell.size ‡	Cell.shape 🗦	Marg.adhesion $^{}$	Epith.c.size ‡	Bare.nuclei [‡]	Bl.cromatin +	Normal.nucleoli [‡]	Mitoses [‡]	Class
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	benign
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10	9	7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	1	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign
1035283	1	1	1	1	1	1	3	1	1	benign
1036172	2	1	1	1	2	1	2	1	1	benign
1041801	5	3		3	2	3	4	4	1	malignant

Train the model with the above data set

Is my cancer Malignat or benign

NO it is benign

Test the model with a new real time input.

1041801 5 3 3 3 2 3 4 4 1

Biological NeuronTakes an input, processes it, throws out an output.

Dendrite: Receives signals from other neurons

Soma: Processes the information

Axon: Transmits the output of this neuron

Synapse: Point of connection to other neurons

Courtesy: Towardsdatascience.com

Biological Neuron

Each neuron gets fired/activated only when its respective criteria is met

Our sense organs interact with the outer world and send the visual and sound information to the neurons

. Let's say you are watching a video clip. Now the information your brain receives is taken in by the "laugh or not" set of neurons that will help you make a decision on whether to laugh or not.

There is a massively parallel interconnected network of 10¹¹ neurons (100 billion) in our brain and their connections are not simple

Courtesy: Towardsdatascience.com

Neurons are arranged in a hierarchical fashion

Neurons are arranged in a hierarchical fashion and each layer has its own role and responsibility.

To detect a face, the brain could be relying on the entire network and not on a single layer.

Layer 1: detect edges & corners

Layer 2: form feature groups

Layer 3: detect high level objects, faces, etc.

Courtesy: Sample illustration of hierarchical processing. Credits: Mitesh M. Khapra's lecture slides

The very first step towards the perceptron we use today was taken in 1943 by McCulloch and Pitts, by mimicking the functionality of a biological neuron.

Recall Biological Neuron

Artificial Neuron

The fundamental Building block of Deep Learning

The most fundamental unit of deep neural networks is called an artificial neuron/perceptron

Artificial Neuron

The fundamental Building block of Deep Learning

Artificial Neural Networks

McCulloch-Pitts Neuron

The first computational model of a neuron was proposed by Warren MuCulloch (neuroscientist) and Walter Pitts (logician) in 1943

It may be divided into 2 parts. The first part, **g** takes an input (ahem dendrite ahem), performs an aggregation and based on the aggregated value the second part, **f** makes a decision.

Lets suppose that I want to predict my own decision, whether to watch a random football game or not on TV?.

The inputs are all boolean i.e., {0,1} and my output variable is also boolean {0: Will watch it, 1: Won't watch it}.

So, **x_1** could be *isPremierLeagueOn* (I like Premier League more)

- •x_2 could be isItAFriendlyGame (I tend to care less about the friendlies)
- •x_3 could be isNotHome (Can't watch it when I'm running errands. Can I?)
- •x_4 could be isManUnitedPlaying (I am a big Man United fan. GGMU!) and so on.

Excitatory or inhibitory inputs.

$$g(x_1, x_2, x_3, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$

$$y = f(g(\mathbf{x})) = 1$$
 if $g(\mathbf{x}) \ge \theta$
= 0 if $g(\mathbf{x}) < \theta$

These inputs can either be *excitatory* or *inhibitory*.

Inhibitory inputs are those that have maximum effect on the decision making irrespective of other inputs

i.e., if **x_3** is 1 (not home) then my output will always be 0 i.e., the neuron will never fire, so **x_3** is an inhibitory input

Excitatory inputs are NOT the ones that will make the neuron fire on their own but they might fire it when combined together

The mathematical Model- McCulloch-Pitts Neuron (MP Neuron)

- ϕ g aggregates the inputs and the function f takes a decision based on this aggregation.
- The inputs can be excitatory or inhibitory

These inputs can either be *excitatory* or *inhibitory*

$$y=0$$
 if any x_i is inhibitory, else $g(x_1,x_2,...x_n)=g(x)=\sum_{i=1}^n x_i$ $y=f(g(x))=1$ if $g(x)\geq b$ $=0$ if $g(x)< b$

What task can be done with MP Neuron

Pitch in line	Impact	Missing stumps	Is it LBW? (y)		
1	0	0	0		
0	1	1	0		
1	1	1	1		
0	1	0			

Courtesy:: Mitesh M. Khapra's lecture slides

Loss Function

We aim at minimizing the loss function

$$loss = \sum_i y_i - \hat{y_i}$$
Courtesy :: Mitesh M. Khapra's lecture slides

$$\hat{y} = \sum_{i=1}^n x_i \geq b$$

$$\hat{y} = x_1 + x_2 \ge b$$

$$loss = \sum_i (y_i - \hat{y_i})^2$$

Training data

0	1	1	0	0	1.	0	1	1	0
1	0	1	0	0	0	1	0	0	1
1	0	1	0	1	0	1	0	- 1	0
1	1	0	0	0	1	0	1	0	0
1	1	1	1	1	1	1	1	1	0
0	1	1	0	1	0	1	1	1	0
1	0	0	1	1	1	0	0	0	0
0	0	0	1	0	1	0	1	0	0
0	1	1	0	0	0	1	1	1	0
1	1	1	0	0	1	1	1	0	0
1	1	0	1	1	1	1	0	0	0
	1 1 1 1 0 1 0 0	0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1	1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1	0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0	0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1	0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0	0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1	0 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 </td <td>0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 <td< td=""></td<></td>	0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 <td< td=""></td<>

Boolean Functions Using M-P Neuron

sum ≥ theta, the neuron will fire otherwise, it won't.

Geometric Interpretation OR function

OR function

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$$

AND Function

An AND function neuron would only fire when ALL the inputs are ON i.e., $g(x) \ge 3$ here.

OR Function

neuron would fire if ANY of the inputs is ON i.e., $g(x) \ge 1$ here.

 $x_1 + x_2 = 1$ to graphically show that all those inputs whose output when passed through the OR function M-P neuron lie ON or ABOVE that line and all the input points that lie BELOW that line are going to output 0.

The M-P neuron just learnt a linear decision boundary!

OR Function With 3 Inputs

OR function

$$x_1 + x_2 + x_3 = \sum_{i=1}^{3} x_i \ge 1$$

The plane that satisfies the decision boundary equation $x_1 = x_2 + x_3 = 1$ is shown below:

Lets just generalize this by looking at a 3 input OR function M-P unit. In this case, the possible inputs are 8 points — (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1),... you got the point(s). We can map these on a 3D graph and this time we draw a decision boundary in 3 dimensions.

Boolean Functions Using M-P Neuron

In this case, the decision boundary equation is $x_1 + x_2 = 2$. Here, all the input points that lie ON or ABOVE, just (1,1), output 1 when passed through the AND function M-P neuron. It fits! The decision boundary works!

Boolean Functions Using M-P Neuron

$$x_1 AND !x_2^*$$

inhibitory input i.e., x_2 so whenever x_2 is 1, the output will be 0

 $x_1 AND !x_2$ would output 1 only when x_1 is 1 and x_2 is 0 so it is obvious that the threshold parameter should be 1.

$$g(x)$$
 i.e., $x_1 + x_2$ would be ≥ 1

NOR Function

For a NOR neuron to fire, we want ALL the inputs to be 0 so the thresholding parameter should also be 0 and we take them all as inhibitory input.

NOT Function

For a NOT neuron, 1 outputs 0 and 0 outputs 1. So we take the input as an inhibitory input and set the thresholding parameter to 0. It works!

Limitations Of M-P Neuron

- •What about non-boolean (say, real) inputs?
- •Do we always need to hand code the threshold?
- •Are all inputs equal? What if we want to assign more importance to some inputs?

Frank Rosenblatt

•What about functions which are not linearly separable? Say XOR function.

Overcoming the limitations of the M-P neuron, **Frank Rosenblatt**, an American psychologist, proposed the classical **perception model**, the mighty *artificial neuron*, in 1958. It is more generalized computational model than the McCulloch-Pitts neuron where weights and thresholds can be learnt over time

Namah Shiyaya

