2020

MATHEMATICS — GENERAL

Paper: GE/CC-1

Full Marks: 65

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পর্ণমান নির্দেশক।

১নং প্রশ্ন আবশ্যিক এবং প্রতি **ইউনিট** থেকে কমপক্ষে **একটি** করে মোট *নয়টি* প্রশ্নের উত্তর দাও।

১। নিম্নলিখিত প্রশ্নগুলির মধ্যে থেকে সঠিক উত্তরটি নির্বাচন করো ঃ

2×50

(ক)
$$\operatorname{Re}\left(i^{\frac{1}{2}}\right) + \left|\operatorname{Im}\left(i^{\frac{1}{2}}\right)\right|$$
 -এর সঠিক মান

(অ) -1.1

(আ) $0,\sqrt{2}$

(₹) 0.1

- $(\overline{\mathfrak{P}})$ $1,\sqrt{2}$
- (খ) যদি α , β , γ , $x^3-3x^2+3x+7=0$ -এই সমীকরণটির বীজগুলির মান হয় এবং একক এর ঘনমূল যদি ω হয় তাহলে $(\alpha-1)/(\beta-1)+(\beta-1)/(\gamma-1)+(\gamma-1)/(\alpha-1)$ -এর মান
 - (অ) ω
- (আ) w²
- (₹) 3ω
- $(\overline{\aleph})$ $3\omega^2$
- (গ) $\frac{dy}{dx} + Py = Q$, যেখানে P এবং Q হল x-এর অপেক্ষক (function), এই অবকল সমীকরণটির সমাকল গুণকটি হল
 - (অ) $\int e^P dx$
- (আ) $e^{\int Pdx}$
- $(\mathfrak{F}) e^{-\int P dx}$
- (ঈ) কোনোটিই নয়।
- (ঘ) $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x\sin\frac{dy}{dx}$ অবকল সমীকরণটির মাত্রা (degree) হল
 - (অ) 1
- (আ) 2
- **(₹)** 3
- (ঈ) সংজ্ঞায়িত না।
- (ঙ) $ax^2 + 2hxy + by^2 = 0$ -এই সরলরেখা যুগলের ওপর লম্ব সরলরেখা যুগলগুলি হল
 - ($ax^2 2hxy + by^2 = 0$
- (আ) $ax^2 + 2hxy + by^2 = 0$
- $(\overline{2})$ $bx^2 + 2hxy + ay^2 = 0$
- (5) $bx^2 2hxy + ay^2 = 0$
- (চ) α , β , γ যদি $x^3-3x^2+8x-5=0$ -এই সমীকরণটির বীজ হয় তাহলে সেই সমীকরণটি নির্ণয় করো যার বীজ হবে $2\alpha + 3$, $2\beta + 3$, এবং $2\gamma + 3$
 - (\mathfrak{P}) $v^3 + 15v^2 + 95v 217 = 0$
- (আ) $y^3 15y^2 + 95y 217 = 0$
- $(\overline{2})$ $y^3 15y^2 95y 217 = 0$ $(\overline{2})$ $y^3 + 15y^2 + 95y + 217 = 0$

Please Turn Over

(2)

- (ছ) k-এর মানটি নির্ণয় করো যার জন্য $x^2+y^2+2x+k=0$ সরলরেখা যুগল হবে
 - (অ)
- (আ) 2
- (麦) 3
- ()

- (জ) $\lim_{x\to 0} \frac{\cos^{-1}(1-x)}{\sqrt{x}}$ -এর মান হল
 - (অ) π
- (আ) $\frac{\pi}{2}$
- $(\overline{\mathfrak{Z}}) \frac{\pi}{3}$
- $(\overline{\mathfrak{P}}) \frac{\pi}{4}$
- (ঝ) A-এর কোন মান এর জন্য f(x) অপেক্ষকটি x=0 তে সন্তত যেখানে $f(x)=\sin x\cos\frac{1}{x}, x\neq 0$
 - = A, x = 0

- (অ) 0
- (আ) 1
- (ই) 2
- (7) 3
- (এঃ) যদি $u(x,y) = \tan^{-1}\frac{x^3+y^3}{x-y}, x \neq y$ হয়, তবে $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ -এর মান হল
 - (অ) sinu

(আ) cosu

(₹) sin2u

 $(\overline{\mathfrak{R}}) \cos 2u$

Unit-I

(Algebra - I)

- ২। (ক) যদি $\tan\log(x+iy)=a+ib, a^2+b^2\neq 1$ হয়, তবে দেখাও যে $\tan\log(x^2+y^2)=\frac{2a}{1-a^2-b^2}$
 - (খ) $x^3-9x^2+23x-15=0$ সমীকরণের বীজগুলি $\alpha-\beta,\,\alpha$ এবং $\alpha+\beta$ হলে দেখাও যে $3\alpha^2-\beta^2=23$ ৩+২
- ৩। যদি $A=\begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$ হয়, তাহলে দেখাও $A^3-5A^2+6A-5I=0$ এবং সেখান থেকে A^{-1} -এর মান নির্ণয় করো। ৩+২
- 8। Cardan-এর পদ্ধতির সাহায্যে সমাধান করো $x^3 12x + 65 = 0$

C

Unit-II

(Differential Calculus - I)

৫। (ক) a এবং b-এর মান নির্ণয় করো যার জন্য $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}=1$

(খ) যদি
$$f(x) = \begin{cases} \frac{|x-a|}{x-a}, & x \neq a \\ 1, & x = a \end{cases}$$
 হয়,

তবে
$$x=a$$
 তে f সন্তত কি না নির্ধারণ করো।

ঙ। (ক) যদি $y=e^{ax}\cos^2x\,\sin\!x$ হয়, তবে y_n -এর মান নির্ণয় করো।

(খ) যদি
$$y^{1/m} + y^{-1/m} = 2x$$
 হয়, তবে দেখাও $\left(x^2 - 1\right)y_{n+2} + \left(2n + 1\right)xy_{n+1} + \left(n^2 - m^2\right)y_n = 0$ ২+৩

৭।
$$f(x) = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x, \forall x \in [0, \pi]$$
 -এর চরম এবং অবম মান নির্ণয় করো।

৮। যদি
$$u = \log\left(x^3 + y^3 + z^3 - 3xyz\right)$$
 হয়, তাহলে দেখাও $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{-3}{(x+y+z)^2}$

ৡ।
$$x^3+2x^2y-xy^2-2y^3+xy-y^2-1=0$$
-এর সমস্ত স্পর্শপ্রবণ রেখাগুলি নির্ণয় করো।

Unit-III

(Differential Equation - I)

১০। (ক) $y=e^{-x}(A\cos x+B\sin x)$ সমীকরণ থেকে অবকল সমীকরণটি নির্ণয় করো, যেখানে A,B হল Parameters।

খে) সমাধান করো
$$\left(1+e^{\frac{x}{y}}\right)dx+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)dy=0$$

১১। সমাধান করো
$$\frac{dy}{dx} + \left(\frac{1}{1+x^2}\right)y = \frac{e^{\tan^{-1}x}}{1+x^2}$$
 ৫

১২।
$$y = px + ap(1-p), p = \frac{dy}{dx}$$
 সমীকরণটির সাধারণ (General) ও অনন্য (Singular) সমাধান নির্ণয় করো। ২+৩

Unit-IV

(Co-ordinate Geometry)

- ১৩। যদি $(a+b)(al^2+2hlm+bm^2)=0$ হয়, তবে দেখাও যে $ax^2+2hxy+by^2=0$ এবং lx+my=1 দারা নির্মিত ত্রিভুজটি সমকোণী।
- ১৪। যদি $ax^2+2hxy+by^2=0$ একটি সামান্তরিকের দুটি সংলগ্ন বাহুর সমীকরণ হয় এবং lx+my=1 তার একটি কর্ণ হয় তাহলে দেখাও যে y(bl-hm)=x(am-hl) তার আর একটি কর্ণ হবে।
- ১৫। $7x^2-2xy+7y^2-16x+16y-8=0$ সমীকরণটিকে তার canonical রূপে পরিবর্তিত করো এবং সেখান থেকে কণিকটির প্রকৃতি (nature) নির্ণয় করো।

Please Turn Over

(4)

১৬। $\frac{l}{r} = A\cos\theta + B\sin\theta$ সরলরেখাটি $\frac{l}{r} = 1 + e\cos\theta$ কণিকটিকে স্পর্শ করলে প্রমাণ করো যে $(A-e)^2 + B^2 = 1$ ।

১৭। যদি $y^2=4ax$ -এর সাপেক্ষে একটি বিন্দুর পোলার $x^2=4by$ অধিবৃত্তকে স্পর্শ করে তবে দেখাও ওই বিন্দুর সঞ্চারপথের সমীকরণ xy + 2ab = 0 হবে। Œ

[English Version]

The figures in the margin indicate full marks.

Answer question no. 1 and any nine from the rest, taking at least one question from each Unit.

1. Choose the correct option from each of the following questions: 2×10

(a) Find the possible value(s) of $Re(i^{1/2}) + |Im(i^{1/2})|$.

(i) -1, 1

(ii) $0.\sqrt{2}$

(iii) 0, 1

(iv) $1,\sqrt{2}$

(b) If α , β , γ are the roots of equation $x^3 - 3x^2 + 3x + 7 = 0$ and ω is cube root of unity, then value of $(\alpha-1)/(\beta-1)+(\beta-1)/(\gamma-1)+(\gamma-1)/(\alpha-1)$ is

(i) ω

(ii) ω^2

(iii) 3\omega

(iv) $3\omega^2$

(c) Integrating factor of differential equation $\frac{dy}{dx} + Py = Q$, where P and Q are functions of x is

(i) $\int e^P dx$

(ii) $e^{\int Pdx}$

(iii) $e^{-\int_{P}dx}$

(iv) None of these.

(d) The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x\sin\frac{dy}{dx}$ is

(i) 1

(ii) 2

(iii) 3

(iv) not defined.

(e) The pair of straight lines perpendicular to the pair of lines $ax^2 + 2hxy + by^2 = 0$ has the equation

(i) $ax^2 - 2hxy + by^2 = 0$

(ii) $ax^2 + 2hxy + by^2 = 0$

(iii) $bx^2 + 2hxy + ay^2 = 0$

(iv) $bx^2 - 2hxy + ay^2 = 0$

(f) If α , β , γ be the roots of the equation $x^3 - 3x^2 + 8x - 5 = 0$ then the equation whose roots are $2\alpha + 3, 2\beta + 3, 2\gamma + 3$ is

(i) $v^3 + 15v^2 + 95v - 217 = 0$

(ii) $v^3 - 15v^2 + 95v - 217 = 0$

(iii) $v^3 - 15v^2 - 95v - 217 = 0$

(iv) $v^3 + 15v^2 + 95v + 217 = 0$

- (g) The value of k for which the equation $x^2 + y^2 + 2x + k = 0$ represents a pair of straight line is
 - (i) 1

- (h) The value of $\lim_{x\to 0} \frac{\cos^{-1}(1-x)}{\sqrt{x}}$ is
 - (i) π
- (ii) $\frac{\pi}{2}$ (iii) $\frac{\pi}{3}$
- (i) The value of A for which the function f(x) is continuous at x = 0 where

$$f(x) = \sin x \cos \frac{1}{x}, x \neq 0$$
$$= A, x = 0 \text{ is}$$

- (i) 0
- (ii) 1
- (iii) 2
- (iv) 3
- (j) If $u(x, y) = \tan^{-1} \frac{x^3 + y^3}{x y}$, $x \neq y$ then the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is
 - (i) sinu
- (ii) $\cos u$
- (iii) $\sin 2u$
- (iv) $\cos 2u$

Unit-I

(Algebra - I)

- 2. (a) If $\tan \log(x + iy) = a + ib$, where $a^2 + b^2 \ne 1$, then prove that $\tan \log(x^2 + y^2) = \frac{2a}{1 a^2 b^2}$.
 - (b) If $\alpha \beta$, α , $\alpha + \beta$ are the roots of the equation $x^3 9x^2 + 23x 15 = 0$ then prove that
- 3. If $A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$ show that $A^3 5A^2 + 6A 5I = 0$. Hence find A^{-1} . 3+2
- **4.** Solve by Cardan's method : $x^3 12x + 65 = 0$.

Unit-II

(Differential Calculus - I)

5. (a) Find the values of a and b in order that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}$ may be equal to 1.

Please Turn Over

5

(6)

- (b) Examine the continuity of the function defined by $f(x) = \begin{cases} \frac{|x-a|}{x-a}, & x \neq a \\ 1, & x = a \end{cases}$ at the point x = a.
- **6.** (a) Find y_n , if $y = e^{ax}\cos^2 x \sin x$.

(b) If
$$y^{1/m} + y^{-1/m} = 2x$$
, prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ 2+3

- 7. Find the maxima and minima of the function $f(x) = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x, \forall x \in [0, \pi]$.
- 8. If $u = \log(x^3 + y^3 + z^3 3xyz)$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{-3}{(x+y+z)^2}$.
- **9.** Find all asymptotes of $x^3 + 2x^2y xy^2 2y^3 + xy y^2 1 = 0$

Unit-III

(Differential Equation - I)

10. (a) Find the differential equation of the curve $y = e^{-x}(A\cos x + B\sin x)$, A, B are parameters.

(b) Solve:
$$\left(1 + e^{x/y}\right) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$$
. 2+3

11. Solve:
$$\frac{dy}{dx} + \left(\frac{1}{1+x^2}\right)y = \frac{e^{\tan^{-1}x}}{1+x^2}$$

12. Find the general and singular solution of
$$y = px + ap(1-p)$$
, $p = \frac{dy}{dx}$.

Unit-IV

(Co-ordinate Geometry)

- 13. Show that the triangle formed by the straight lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is right angled, if $(a + b)(al^2 + 2hlm + bm^2) = 0$.
- 14. If $ax^2 + 2hxy + by^2 = 0$ be the equation of two adjacent sides of a parallelogram and lx + my = 1 be the equation of one of its diagonals, then show that the equation of its other diagonal is y(bl hm) = x(am hl).

- 15. Reduce the equation $7x^2 2xy + 7y^2 16x + 16y 8 = 0$ to its canonical form and hence determine the nature of the conic.
- **16.** If the straight line $\frac{l}{r} = A\cos\theta + B\sin\theta$ touches the conic $\frac{l}{r} = 1 + e\cos\theta$, then show that $(A e)^2 + B^2 = 1$.
- 17. If the polar of a point with respect to the parabola $y^2 = 4ax$ touches the parabola $x^2 = 4by$, then show that the locus of the point is xy + 2ab = 0.