Nome	Cognome		Numero di matricola

Terzo Appello di Fisica del 14/07/2023.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Un punto materiale di massa m si muove su una superficie parabolica definita dall'equazione $z=(x^2+y^2)/\ell$. La legge oraria per t>0, proiettata sul piano \hat{x} , \hat{y} in coordinate polari è $r(t)=v_0t$, $\theta(t)=\Omega t$, dove θ è l'angolo tra il versore polare \hat{r} e il versore cartesiano \hat{x} . Il punto materiale è soggetto alla forza peso diretta lungo $-\hat{z}$. Si consideri il moto del punto materiale dall'istante iniziale t=0, in cui è in quiete, fino all'istante di tempo $t=t_1$. Si utilizzino i seguenti valori numerici: m=1.80 kg, $\ell=5.60$ m, $v_0=1.60$ m/s, $\Omega=0.150$ rad/s, $t_1=2.50$ s.

Determinare:

- 1.1) il lavoro \mathcal{L}_{P} della forza peso; E 20.7 **X** 51.4 C 18.6 $\mathcal{L}_{\mathsf{P}}\left[\mathsf{J}\right] =$ 1.2) il modulo v della velocità del punto materiale; $v \, [m/s] =$ **X** 2.85 B 5.50 C 3.58 1.3) la somma \mathcal{L} dei lavori di tutte le forze agenti sul punto materiale; A 5.84 B 5.36 **X** 7.33 E 11.4 1.4) il modulo F_R della risultante delle forze agenti sul punto materiale; A 1.31 **X** 1.45 C 0.946 D 1.57
- 1.5) la componente $M_{O,x}$ del momento risultante delle forze agenti sul punto materiale, rispetto all'origine degli assi. $M_{O,x}$ [N m] = A 4.99 \times 4.63 C 7.28 D 6.85 E 7.68

Problema 2: Un rullo omogeneo di raggio R e massa M, in quiete all'istante t=0, rotola senza strisciare lungo un piano inclinato con angolo di inclinazione ϑ , sotto l'azione della forza peso. All'istante $t=t_1$ il rullo rotola sopra un punto materiale di massa m e dimensioni trascurabili, inizialmente in quiete sul piano inclinato, che aderisce alla superficie del rullo. Si utilizzino i seguenti valori numerici: M=3.70 kg, R=0.550 m, $\vartheta=0.230$ rad, $t_1=6.60$ s, m=0.750 kg.

Determinare:

2.1) il modulo α dell'accelerazione angolare del rullo un istante prima di t_1 ; α [rad/s²] = A 9.29 B 8.80 C 2.16 **X** 2.76 E 5.73 2.2) l'energia cinetica E_c del ru<u>llo un</u> istante prima di t_1 ; **X** 279 C 394 E 260 A 242 B | 100.0 2.3) il momento di inerzia I_G del sistema rullo+punto rispetto al proprio centro di massa G un istante dopo t_1 ; A 0.803 E | 0.958 **X** 0.748 C 0.380 D 0.472 $I_G [kg m^2] =$ 2.4) il modulo ω' della velocità angolare del rullo un istante dopo t_1 ; **X** 18.2 C 13.5 D 8.79 E 28.6 ω' [rad/s] = A 16.7 2.5) la componente parallela al piano \mathcal{J}_a dell'impulso della forza di attrito sul rullo all'istante t_1 . A 37.1 B | -37.1 | C 68.2 **X** 0.00 E 41.5 \mathcal{J}_{a} [Ns] =