- 3. **Fall2007.** Let T be a linear transformation on a complex vector space V, not necessarily finite dimensional. Let $\lambda_1, \ldots, \lambda_s$ be distinct eigenvalues of T.
 - (a) Suppose that for each $j(1 \le j \le s)$, v_j s an eigenvector of T with eigenvalue λ_j . Prove that $\{v_1, \ldots, v_s\}$ is linearly independent.
 - (b) Now suppose that for each j, v_j is a generalized eigenvector of T with eigenvalue j; that is, there is some integer $m_j \geq 1$ such that

$$(T - \lambda_i)^{m_j} v_i = 0.$$

Again conclude that $\{v_1, \ldots, v_s\}$ g is linearly independent. (As a matter of notational convenience, assume each mj is chosen to be minimal; $(T - \lambda_j)^{m_j - 1} v_j \neq 0$.)

a) Assume $\{V_1, ..., V_5\}$ is not LI. Let K < 5 be the largest integer such that $\{V_1, ..., V_K\}$ is LI. Then $V_{K+1} = \sum_{i=1}^{K} C_i V_i$,

where af least one $C; \neq 0$. Because all V are eigenvectors, we have

$$Tv_{k+1} = T \sum_{i=1}^{k} c_i v_i$$

$$= \sum_{i=1}^{k} c_i Tv_i$$

$$= \sum_{i=1}^{k} c_i \lambda_i v_i$$

and OTOH,

$$TV_{k+1} = \lambda_{k+1}V_{k+1}$$

$$= \lambda_{k+1}\sum_{i=1}^{k} c_i V_i$$

$$= \sum_{i=1}^{k} c_i \lambda_{k+1}V_i$$

So
$$T_{V_{K+1}} - T_{V_{K+1}} = \sum_{i=1}^{K} c_i \lambda_{K+1} V_i - \sum_{i=1}^{K} c_i \lambda_i V_i$$

= $\sum_{i=1}^{K} (\lambda_{K+1} - \lambda_i) c_i V_i$

As all λ_i are distinct, $(\lambda_{k+1} - \lambda_i) \neq 0$. Thus as the V_i s are LI (not all the V_i s, just these ones), we must have that $C_i \equiv 0$ $\not\subset$

b) Recall a generalized eigenvector v; of rank M; satisfies

$$(T-\lambda_j)^{m_j}$$
 $\forall_j = 0$

for a minimal $m \in \mathbb{Z}^+$, i.e., $(T-\lambda_j)^{m_j-1} \vee_j \neq 0$.

Assume $\{v_1,...,v_5\}$ are not LI; i.e., $\sum_{i=1}^{5} C_i V_i = 0$ with at least

one nonzero C_i . We will show WLOG that $C_i = 0$, and thus that all $C_i = 0$, which is a contradiction.

Let $w = (T - \lambda_i I)^{M_i - 1} V_i$. Then $(T - \lambda_i I)^{W} = 0$, meaning w is an eigenvector of T with eigenvalue λ_i .

Thus we know:
$$TV = \lambda_1 V \Rightarrow TV - \lambda_2 V = \lambda_1 V - \lambda_2 V \stackrel{(ii)}{=}$$

$$\Rightarrow (T - \lambda_2 II) V = (\lambda_1 - \lambda_2) V \qquad (T - \lambda_2 II) (\lambda_1 - \lambda_2) V \qquad (T - \lambda_2 II) (\lambda_1 - \lambda_2) V \qquad (X - \lambda_$$

Now we can knock out all but one of the general eigenvectors by applying a giant transformation:

$$O = \sum_{i=1}^{S} C_{i} V_{i}$$

$$= \sum_{i=1}^{N_{i}} (T - \lambda_{i} I)^{n} \sum_{i=1$$

But each $(\lambda_i - \lambda_i)^n$ as well as we nonzero, so $C_i = 0$. The result follows because I said WLOG before so I win