MUTATIONS OF FAKE WEIGHTED PROJECTIVE PLANES

MOHAMMAD E. AKHTAR AND ALEXANDER M. KASPRZYK

ABSTRACT. In previous work by Coates, Galkin, and the authors, the notion of mutation between lattice polytopes was introduced. Such a mutation gives rise to a deformation between the corresponding toric varieties. In this paper we study one-step mutations that correspond to deformations between weighted projective planes, giving a complete characterisation of such mutations in terms of T-singularities. We show also that the weights involved satisfy Diophantine equations, generalising results of Hacking-Prokhorov.

1. Introduction

In [ACGK12] we described a combinatorial notion of mutation between convex lattice polytopes. In this paper we begin to explore the geometry behind this idea. Given a convex lattice polytope P containing the origin and with primitive vertices, there is a corresponding toric variety X defined by the spanning fan of P. A mutation between polytopes P and Q determines a deformation between X_P and X_Q [Ilt12]. Our main result characterises mutations between triangles; thus we characterise certain deformations, over \mathbb{P}^1 , with fibers given by fake weighted projective planes. We recover and generalise certain results of Hacking and Prokhorov [HP10, Theorem 4.1] connecting the fake weighted projective planes with T-singularities to solutions of Markov-type equations. We prove the following:

Proposition 1.1. Let $X = \mathbb{P}(\lambda_0, \lambda_1, \lambda_2)$ be a weighted projective plane. Up to reordering of the weights, there exists a one-step mutation to a weighted projective plane Y if and only if $\frac{1}{\lambda_0}(\lambda_1, \lambda_2)$ is a T-singularity. When this is the case, $Y = \mathbb{P}\left(\lambda_1, \lambda_2, \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right)$. More generally, there exists a one-step mutation from the fake weighted projective plane $X/(\mathbb{Z}/n)$ to the fake weighted projective plane $Y/(\mathbb{Z}/n')$ only if n = n' and $\frac{1}{\lambda_0}(\lambda_1, \lambda_2)$ is a T-singularity.

In Proposition 3.12 we associate to a weighted projective plane X a Diophantine equation

(1.1)
$$mx_0x_1x_2 = k(c_0x_0^2 + c_1x_1^2 + c_2x_2^2).$$

The weights $(\lambda_0, \lambda_1, \lambda_2)$ of X correspond to a solution (a_0, a_1, a_2) , where $\lambda_i = c_i a_i^2$, i = 0, 1, 2, and the degree of X is given by

$$(-K_X)^2 = \frac{m^2}{c_0 c_1 c_2 k^2}.$$

One-step mutations of X correspond to transformations of the solutions to (1.1), and all such solutions can be generated from the so-called minimal weights by mutation.

2010 Mathematics Subject Classification: 52B20 (Primary); 14J45, 11D99 (Secondary).

When $X = \mathbb{P}^2$, equation (1.1) becomes the celebrated Markov equation [Mar80]. Certain other special cases were studied by Rosenberger [Ros79]. These cases all have finitely many minimal weights. In §4 we give an example where the corresponding Diophantine equation has infinitely many minimal weights.

2. Mutations of Fano Polytopes

Let $N \cong \mathbb{Z}^n$ be a lattice with dual $M := \operatorname{Hom}(N, \mathbb{Z})$. A lattice polytope $P \subset N_{\mathbb{Q}} := N \otimes_{\mathbb{Z}} \mathbb{Q}$ is called Fano if it satisfies three conditions:

- (1) P is of maximum dimension, dim $P = \dim N$;
- (2) The origin is contained in the strict interior of P, $\mathbf{0} \in \text{int}(P)$;
- (3) The vertices $\operatorname{vert}(P)$ of P are primitive lattice points, i.e. for any $v \in \operatorname{vert}(P)$ there are no other lattice points on the line segment $\overline{\mathbf{0}v}$ joining v and the origin.

The dual of P is defined to be the polyhedron

$$P^{\vee} := \{ u \in M_{\mathbb{O}} \mid u(v) \geqslant -1 \text{ for all } v \in P \} \subset M_{\mathbb{O}}.$$

By condition (2) this is a polytope with $\mathbf{0} \in \operatorname{int}(P^{\vee})$, although it need not be a lattice polytope. See [KN12] for an overview of Fano polytopes.

We briefly recall the notation of [ACGK12, §3]. Any choice of primitive vector $w \in M$ determines a lattice height function $w: N \to \mathbb{Z}$ which naturally extends to $N_{\mathbb{Q}} \to \mathbb{Q}$. A subset $S \subset N_{\mathbb{Q}}$ is said to lie at height $h \in \mathbb{Q}$ with respect to w if $w(S) := \{w(s) \mid s \in S\} = \{h\}$; we write w(S) = h. The set of all points of $N_{\mathbb{Q}}$ lying at height h with respect to a given w is an affine hyperplane $H_{w,h} := \{v \in N_{\mathbb{Q}} \mid w(v) = h\}$. In particular,

$$w_h(P) := \operatorname{conv}(H_{w,h} \cap P \cap N) \subset N_{\mathbb{O}}$$

will denote the (possibly empty) convex hull of all lattice points in P at height h.

Define

$$h_{\min} := \min\{w(v) \mid v \in P\}, \qquad h_{\max} := \max\{w(v) \mid v \in P\}.$$

Since P is a lattice polytope, both h_{\min} and h_{\max} are integers. Condition (2) guarantees that $h_{\min} < 0$ and $h_{\max} > 0$.

Definition 2.1. A factor of P with respect to w is a lattice polytope $F \subset N_{\mathbb{Q}}$ satisfying:

- (1) w(F) = 0;
- (2) For every integer h, $h_{\min} \leq h < 0$, there exists a (possibly empty) lattice polytope $G_h \subset N_{\mathbb{Q}}$ at height h such that

$$H_{w,h} \cap \operatorname{vert}(P) \subseteq G_h + (-h)F \subseteq w_h(P).$$

Note that, for given polytope $P \subset N_{\mathbb{Q}}$ and width vector $w \in M$, a factor F need not exist. When a factor does exist we make the following construction:

Definition 2.2 ([ACGK12, Definition 5]). Let $P \subset N_{\mathbb{Q}}$ be a polytope with width vector $w \in M$, factor F, and polytopes $\{G_h\}$. We define the corresponding *combinatorial mutation* to be the convex lattice polytope

$$\operatorname{mut}_w(P, F; \{G_h\}) := \operatorname{conv}\left(\bigcup_{h=h_{\min}}^{-1} G_h \cup \bigcup_{h=0}^{h_{\max}} (w_h(P) + hF)\right) \subset N_{\mathbb{Q}}.$$

For brevity we will refer to a combinatorial mutation simply as a *mutation*.

We summarise the key properties of mutation [ACGK12]:

(1) Since for any $v \in N$ such that w(v) = 0 we have that

$$\operatorname{mut}_{w}(P, F; \{G_h\}) \cong \operatorname{mut}_{w}(P, v + F; \{G_h + hv\}),$$

we need only consider factors F up to translation. In particular, choosing F to be a point leaves P unchanged (up to isomorphism).

(2) If $\{G_h\}$ and $\{G'_h\}$ are any two collections of polytopes for a factor F, then

$$\operatorname{mut}_{w}(P, F; \{G_{h}\}) \cong \operatorname{mut}_{w}(P, F; \{G'_{h}\}).$$

Thus the choice of collection $\{G_h\}$ is irrelevant and we write $\operatorname{mut}_w(P, F)$.

- (3) P is a Fano polytope if and only if $\operatorname{mut}_w(P,F)$ is a Fano polytope.
- (4) Let $Q := \operatorname{mut}_w(P, F)$. Then $\operatorname{mut}_{-w}(Q, F) = P$, so mutations are invertible.

In [ACGK12] it was also shown that mutations have a natural description as a piecewise linear transformation of the lattice M. We require the following definition.

Definition 2.3. The inner normal fan in M of a polytope $F \subset N_{\mathbb{Q}}$ is generated by the cones σ_{v_F} consisting of those linear functions which are minimal on a given vertex v_F of F. That is,

$$\sigma_{v_F} := \left\{ u \in M_{\mathbb{Q}} \mid u(v_F) = \min \left\{ u(v') \mid v' \in F \right\} \right\}.$$

(5) A mutation of $P \subset N_{\mathbb{Q}}$ induces a piecewise linear transformation φ of $M_{\mathbb{Q}}$ such that $(\varphi(P^{\vee}))^{\vee} = \operatorname{mut}_{w}(P, F)$, given by

$$\varphi: u \mapsto u - u_{\min} w, \qquad u \in M_{\mathbb{O}},$$

where $u_{\min} := \min\{u(v_F) \mid v_F \in \text{vert}(F)\}$. The inner normal fan of $F \subset N_{\mathbb{Q}}$ determines a chamber decomposition of $M_{\mathbb{Q}}$, and φ acts as a linear transformation on the interior of each maximal dimensional cone of this fan.

(6) As a consequence of (5), the toric varieties X_P and X_Q defined by the spanning fans of P and $Q := \text{mut}_w(P, F)$ have the same degree (in fact they have the same Hilbert series).

Example 2.4. Consider the triangle $P = \text{conv}\{(1, -1), (-1, 2), (0, -1)\} \subset N_{\mathbb{Q}}$ corresponding to the toric variety \mathbb{P}^2 . Let $w = (0, 1) \in M$ and set $F = \text{conv}\{\mathbf{0}, (1, 0)\} \subset N_{\mathbb{Q}}$. This defines a mutation from P to the triangle $Q = \text{conv}\{(1, 2), (-1, 2), (0, -1)\} \subset N_{\mathbb{Q}}$, as illustrated in

FIGURE 1. A mutation from the triangle associated with \mathbb{P}^2 to the triangle associated with $\mathbb{P}(1,1,4)$.

Figure 1. On the dual side, this corresponds to a piecewise linear map $\varphi: u \mapsto uM_{\sigma}$ for $u = (\alpha, \beta) \in M_{\mathbb{Q}}$, where

$$M_{\sigma} = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{if } \alpha \geqslant 0, \\ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} & \text{otherwise.} \end{cases}$$

In particular, $\varphi(P^{\vee}) = Q^{\vee}$.

Mutations are particularly simple in the two-dimensional case. In this setting, $w \in M$ defines a non-trivial mutation of $P \subset N_{\mathbb{Q}}$ if and only if $w \in \{\overline{u} \mid u \in \operatorname{vert}(P^{\vee})\} \subset M$, where $\overline{u} \in M$ is the unique primitive lattice vector on the ray passing through u. Nontrivial factors $F \subset N_{\mathbb{Q}}$ are just line segments, so it suffices to restrict attention to those F which have vertex set $\{0, f\}$, for some $f \in N$ with w(f) = 0. The inner normal fan of any factor F of P with respect to a given w is just the linear subspace of $M_{\mathbb{Q}}$ spanned by w. This divides $M_{\mathbb{Q}}$ into two chambers; the piecewise linear transformation φ acts trivially in one of the chambers, and as $u \mapsto u - u(f)w$ in the other.

3. One-step mutations of triangles

Set $N \cong \mathbb{Z}^2$ and let $P := \operatorname{conv}\{v_0, v_1, v_2\} \subset N_{\mathbb{Q}}$ be a Fano triangle. Since $\mathbf{0} \in \operatorname{int}(P)$ there exists a (unique) choice of coprime positive integers $\lambda_0, \lambda_1, \lambda_2 \in \mathbb{Z}_{>0}$ with $\lambda_0 v_0 + \lambda_1 v_1 + \lambda_2 v_2 = \mathbf{0}$. The projective toric surface X given by the spanning fan of P has Picard rank 1, and is called a fake weighted projective plane with weights $(\lambda_0, \lambda_1, \lambda_2)$; X is the quotient of $\mathbb{P}(\lambda_0, \lambda_1, \lambda_2)$ by the action of a finite group of order mult(X) acting freely in codimension one [Con02, Buc08, Kas09].

Remark 3.1. Since the vertices of P are primitive, the weights $(\lambda_0, \lambda_1, \lambda_2)$ are well-formed: that is, $gcd\{\lambda_i, \lambda_j\} = 1, i \neq j$. In this paper we will always require that weights are well-formed.

Definition 3.2. We say that a fake weighted projective plane Y with defining Fano triangle $Q \subset N_{\mathbb{Q}}$ is obtained from X by a *one-step mutation* if $Q \cong \text{mut}_w(P, F)$ for some choice of w and factor F.

FIGURE 2. A one-step mutation, depicted in $M_{\mathbb{Q}}$, of the triangle conv $\{u_0, u_1, u_2\}$ to the triangle conv $\{u_2, u_3, u_4\}$.

3.1. One-step mutations in $M_{\mathbb{Q}}$ and weights. First we address how the weights $(\lambda_0, \lambda_1, \lambda_2)$ associated with a Fano triangle $T \subset N_{\mathbb{Q}}$ transform under mutation. We will require the following fact (see, for example, [Con02, Lemma 5.3]): Let $T^{\vee} = \text{conv}\{u_0, u_1, u_2\}$ by the triangle in $M_{\mathbb{Q}}$ dual to T. Then, after possible reordering, $\lambda_0 u_0 + \lambda_1 u_1 + \lambda_2 u_2 = \mathbf{0}$. Hence the weights of T and the weights of T^{\vee} are equivalent.

Proposition 3.3. Let X be a fake weighted projective plane with weights $(\lambda_0, \lambda_1, \lambda_2)$. Suppose there exists a one-step mutation to a fake weighted projective plane Y. Then, up to relabelling, $\lambda_0 \mid (\lambda_1 + \lambda_2)^2$ and Y has weights

$$\left(\lambda_1, \lambda_2, \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right).$$

Proof. Consider a lattice triangle $T_1 \subset N_{\mathbb{Q}}$, $\mathbf{0} \in \operatorname{int}(T_1)$, and suppose that there exists a width vector $w \in M$ and factor $F \subset N_{\mathbb{Q}}$, w(F) = 0, such that the mutation $T_2 = \operatorname{mut}_w(T_1, F)$ is also a triangle. Without loss of generality we can assume that $w = (0, 1) \in M$ and $F = \operatorname{conv}\{\mathbf{0}, (a, 0)\}$ for some $a \in \mathbb{Z}_{>0}$. The mutation corresponds to a piecewise linear action on $M_{\mathbb{Q}}$ via $u \mapsto uM_{\sigma}$ given by

$$M_{\sigma} = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{if } u \in M^+, \\ \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} & \text{otherwise,} \end{cases}$$

where M^+ is the half-space $\{(\alpha,\beta) \in M_{\mathbb{Q}} \mid \alpha > 0\}$. Let $T_1^{\vee} = \operatorname{conv}\{u_0,u_1,u_2\} \subset M_{\mathbb{Q}}$ be the (possibly rational) triangle dual to T_1 , where $u_2 \in M^+$ and so is fixed under the action of the mutation, and $u_1 \in M^- := \{(\alpha,\beta) \in M_{\mathbb{Q}} \mid \alpha < 0\}$. Since $T_2^{\vee} \subset M_{\mathbb{Q}}$ is also a triangle, the only possibility is that u_0 lies on the line $\langle w \rangle := \{\gamma w \in M_{\mathbb{Q}} \mid \gamma \in \mathbb{Q}\}$, $T_2^{\vee} = \operatorname{conv}\{u_2,u_3,u_4\}$ where u_0 is contained in the line segment $\overline{u_2u_4}$ joining u_2 and u_4 , and u_3 is contained in the line segment $\overline{u_1u_2}$. This situation is illustrated in Figure 2.

Since $\mathbf{0} \in T_1^{\vee}$ there exist unique weights $(\lambda_0, \lambda_1, \lambda_2) \in \mathbb{Z}_{>0}^3$, $\gcd\{\lambda_0, \lambda_1, \lambda_2\} = 1$, such that

(3.1)
$$\lambda_0 u_0 + \lambda_1 u_1 + \lambda_2 u_2 = \mathbf{0}.$$

Since $u_3 = (0, \beta_3) \in \overline{u_1 u_2}$ there exists some $0 < \mu < 1$ such that $\mu \alpha_1 + (1 - \mu)\alpha_2 = 0$. But $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 = 0$, hence

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} \alpha_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} \alpha_2 = 0.$$

By uniqueness of μ ,

(3.2)
$$u_3 = \frac{\lambda_1}{\lambda_1 + \lambda_2} u_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} u_2.$$

Similarly, since $u_0 = (0, \beta_0) \in \overline{u_2 u_4}$ there exists some $0 < \nu < 1$ such that $u_0 = \nu u_2 + (1 - \nu)u_4$, giving

$$u_4 = \frac{1}{1 - \nu} u_0 - \frac{\nu}{1 - \nu} u_2.$$

Comparing coefficients we see that

$$\alpha_1 = -\frac{\nu}{1-\nu}\alpha_2.$$

But $u_4 = u_1 + \kappa u_0$ for some $\kappa > 0$. Combining this with equation (3.1) we see that

$$u_4 = \frac{\lambda_1 \kappa - \lambda_0}{\lambda_1} u_0 - \frac{\lambda_2}{\lambda_1} u_2.$$

Comparing coefficients, we obtain

$$\alpha_1 = -\frac{\lambda_2}{\lambda_1} \alpha_2.$$

Equating equations (3.3) and (3.4) gives

$$(3.5) u_4 = \frac{\lambda_1 + \lambda_2}{\lambda_1} u_0 - \frac{\lambda_2}{\lambda_1} u_2.$$

Notice that, since both u_0 and u_3 are contained in $\langle w \rangle$, there exists some $\gamma > 0$ such that $-\gamma u_3 = u_0$. Substituting into equation (3.5) we have

$$\frac{\lambda_2}{\lambda_1}u_2 + u_4 + \gamma' u_3 = \mathbf{0}$$

where $\gamma' = \gamma(\lambda_1 + \lambda_2)/\lambda_1 > 0$. Substituting in equation (3.2) we obtain

$$\frac{\lambda_2}{\lambda_1}u_2 + u_4 + \frac{\gamma'\lambda_1}{\lambda_1 + \lambda_2}u_1 + \frac{\gamma'\lambda_2}{\lambda_1 + \lambda_2}u_2 = \mathbf{0}.$$

Using equation (3.5) to rewrite the first two terms and clearing denominators gives:

(3.7)
$$(\lambda_1 + \lambda_2)^2 u_0 + \gamma' \lambda_1^2 u_1 + \gamma' \lambda_1 \lambda_2 u_2 = \mathbf{0}.$$

Set $h := \lambda_0 + \lambda_1 + \lambda_2$ and $\Gamma := (\lambda_1 + \lambda_2)^2 + \gamma' \lambda_1^2 + \gamma' \lambda_1 \lambda_2$. By comparing equations (3.1) and (3.7), uniqueness of barycentric coordinates gives:

$$h(\lambda_1 + \lambda_2)^2 = \Gamma \lambda_0,$$

$$h\gamma' \lambda_1^2 = \Gamma \lambda_1,$$

$$h\gamma' \lambda_1 \lambda_2 = \Gamma \lambda_2.$$

In particular,

$$\gamma' = \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0 \lambda_1}.$$

Substituting this expression for γ' back into equation (3.6) gives

(3.8)
$$\lambda_0 \lambda_2 u_2 + (\lambda_1 + \lambda_2)^2 u_3 + \lambda_0 \lambda_1 u_4 = \mathbf{0}.$$

Finally, we consider the situation where $T_1 \subset N_{\mathbb{Q}}$ is the triangle associated with a fake weighted projective plane with weights $(\lambda_0, \lambda_1, \lambda_2)$, and assume that there exists a one-step mutation to some triangle $T_2 \subset N_{\mathbb{Q}}$. If λ_0 does not divide $(\lambda_1 + \lambda_2)^2$, then by equation (3.8) the associated weights are

$$(\lambda_0\lambda_1,\lambda_0\lambda_2,(\lambda_1+\lambda_2)^2),$$

and these fail to be well-formed when $\lambda_0 > 1$. Therefore, we must have $\lambda_0 \mid (\lambda_1 + \lambda_2)^2$, giving weights

$$\left(\lambda_1, \lambda_2, \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right).$$

Remark 3.4. Let $(\lambda_0, \lambda_1, \lambda_2)$ be well-formed weights such that $\lambda_0 \mid (\lambda_1 + \lambda_2)^2$, and suppose that there exists some prime p such that

$$p \mid \lambda_1$$
 and $p \mid \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}$.

Then $p \mid \lambda_2^2$ and so $p \mid \lambda_2$. But this contradicts $(\lambda_0, \lambda_1, \lambda_2)$ being well-formed. Hence

$$\left(\lambda_1, \lambda_2, \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right)$$

are also well-formed.

Example 3.5. There exists no one-step mutation from $\mathbb{P}(3,5,11)$ to any other weighted projective space, since $3 \nmid (5+11)^2$, $5 \nmid (3+11)^2$, and $11 \nmid (3+5)^2$.

Example 3.6. The requirement that $\lambda_0 \mid (\lambda_1 + \lambda_2)^2$ in Proposition 3.3 is necessary but not sufficient. For example, consider the triangle $T = \text{conv}\{(10, -7), (-5, 2), (0, 1)\} \subset N_{\mathbb{Q}}$. This has weights (1, 2, 3), however there exist no one-step mutations from T.

3.2. One-step mutations in $N_{\mathbb{Q}}$ and T-singularities. Our aim in this section is to characterise when a mutation exists. In order to do this, we require the definition of a T-singularity.

Definition 3.7 ([KSB88, Definition 3.7]). A quotient surface singularity is called a T-singularity if it admits a \mathbb{Q} -Gorenstein one-parameter smoothing.

T-singularities include the du Val singularities $\frac{1}{r}(1,r-1)$, and are cyclic quotient singularities of the form $\frac{1}{nd^2}(1,dna-1)$, where $\gcd\{d,a\}=1$ [KSB88, Proposition 3.10].

Lemma 3.8. An isolated quotient singularity $\frac{1}{r}(a,b)$ is a T-singularity if and only if $r \mid (a+b)^2$.

Proof. We begin by noting that the condition that $r \mid (a+b)^2$ is independent of the choice of representation of $\frac{1}{r}(a,b)$. For let c be any integer coprime to r. Then $r \mid (a+b)^2$ if and only if $r \mid c^2(a+b)^2 = (ca+cb)^2$.

Suppose we are given a T-singularity. Writing the singularity in the form $\frac{1}{nd^2}(1,dna-1)$ where $\gcd\{d,a\}=1$, we see that $nd^2\mid d^2n^2a^2$. Conversely consider the isolated quotient singularity $\frac{1}{r}(a,b)$. Since a is invertible mod r, we can write this as $\frac{1}{r}(1,b'-1)$, where $b'\equiv ba^{-1}+1\pmod{r}$. Write $r=nd^2$ where n is square-free. Since $nd^2\mid b'^2$ by assumption, we see that $nd\mid b'$. In particular, we can express our singularity in the form $\frac{1}{nd^2}(1,dn\alpha-1)$ for some $\alpha\in\mathbb{Z}_{>0}$. Finally, we note that this really is a T-singularity: if $\gcd\{d,\alpha\}=c$ then we can absorb this factor into $n'=nc^2$ whilst rescaling d'=d/c and $\alpha'=\alpha/c$.

Proposition 3.9. Let X be a fake weighted projective plane corresponding to a triangle $T \subset N_{\mathbb{Q}}$, and suppose that the cone C spanned by an edge E of T corresponds to a $\frac{1}{r}(a,b)$ singularity. There exists a one-step mutation to a fake weighted projective plane Y given by $\operatorname{mut}_w(T,F)$ with $w(E) = h_{\min}$ if and only if $\frac{1}{r}(a,b)$ is a T-singularity.

Proof. Let X correspond to the lattice triangle $T = \text{conv}\{v_1, v_2, v_3\} \subset N_{\mathbb{Q}}$, where $\mathbf{0} \in \text{int}(T)$ and the vertices $\text{vert}(T) \subset N$ are all primitive. Consider the cone $C = \text{cone}\{v_1, v_2\}$ spanned by the edge $E = \overline{v_1v_2}$; this is an isolated quotient singularity (possibly smooth), so is of the form $\frac{1}{r}(a,b)$ for some $r,a,b \in \mathbb{Z}_{>0}$, $\gcd\{r,a\} = \gcd\{r,b\} = 1$.

Let $w \in M$ be a primitive lattice point such that $w(v_1) = w(v_2) = h$ for some h < 0. Then, up to translation, there exists a factor $F \subset N_{\mathbb{Q}}$, w(F) = 0, such that $T' := \text{mut}_w(T, F)$ is a triangle if and only if $v_1 + (-h)F = E$. Equivalently, if and only if $h \mid |E \cap N| - 1$.

Finally, we express the values of h and $|E \cap N| - 1$ in terms of the singularity $\frac{1}{r}(a, b)$. Set $k := \gcd\{r, a + b\}$. Then the height h = -r/k, and the number of points on the edge E is given by

$$|\{m \mid m \in \{0, \dots, r\} \text{ and } (a+b)m \equiv 0 \pmod{r}\}| = 1 + \frac{r}{h} = 1 + k.$$

Hence $h \mid |E \cap N| - 1$ if and only if $r/k \mid k$. But $r/k \mid k$ if and only if $r \mid \gcd\{r, a+b\}^2 = \gcd\{r^2, (a+b)^2\}$, and $r \mid \gcd\{r^2, (a+b)^2\}$ if and only if $r \mid (a+b)^2$. The result follows by Lemma 3.8.

Example 3.10. Returning to Example 3.6, we see that the corresponding fake weighted projective space X is a quotient of $\mathbb{P}(1,2,3)$ with $\operatorname{mult}(X)=5$. The three singularities are $\frac{1}{5}(1,3)$, $\frac{1}{10}(1,3)$, and $\frac{1}{15}(1,11)$, none of which is a T-singularity.

When X is a weighted projective plane, Proposition 3.9 tells us that the condition that $\lambda_0 \mid (\lambda_1 + \lambda_2)^2$ in Proposition 3.3 is both necessary and sufficient.

3.3. One-step mutations and Diophantine equations. Given the results of §3.1 and §3.2, we are now in a position to relate one-step mutations of Fano triangles to solutions of certain Diophantine equations.

Lemma 3.11. Let $(\lambda_0, \lambda_1, \lambda_2) \in \mathbb{Z}^3_{>0}$ with $d = \gcd\{\lambda_0, \lambda_1, \lambda_2\}$. Write:

- (1) $\lambda_i = dc_i a_i^2$, where $a_i, c_i \in \mathbb{Z}_{>0}$ and c_i is square-free;
- (2) $(\lambda_0 + \lambda_1 + \lambda_2)^2/(\lambda_0\lambda_1\lambda_2) = m^2/(rk^2)$, where $m, k, r \in \mathbb{Z}_{>0}$ and r is square-free;
- (3) $c_0c_1c_2 = gS^2$ and $dr = hT^2$, where $g, h, S, T \in \mathbb{Z}_{>0}$ and both g and h are square-free.

Then (da_0, da_1, da_2) is a solution to the Diophantine equation

$$Smx_0x_1x_2 = Tk(c_0x_0^2 + c_1x_1^2 + c_2x_2^2).$$

Proof. By substituting expressions (1) and (3) into (2) we obtain

$$gS^{2}m^{2}(da_{0})^{2}(da_{1})^{2}(da_{2})^{2} = hT^{2}k^{2}\left(c_{0}(da_{0})^{2} + c_{1}(da_{1})^{2} + c_{2}(da_{2})^{2}\right)^{2}.$$

Comparing square-free parts, we conclude that g = h. Cancelling and taking square-roots on both sides establishes the result.

Since the weights are assumed to be well-formed, d = S = T = 1 and equation (3.9) becomes

$$(3.10) mx_0x_1x_2 = k(c_0x_0^2 + c_1x_1^2 + c_2x_2^2).$$

Suppose that (a_0, a_1, a_2) is a positive integral solution to equation (3.10), so that $\lambda_i = c_i a_i^2$. The expression

$$\frac{(\lambda_0 + \lambda_1 + \lambda_2)^2}{\lambda_0 \lambda_1 \lambda_2}$$

occurring in Lemma 3.11 is equal to the degree of $\mathbb{P}(\lambda_0, \lambda_1, \lambda_2)$. More generally if X is a fake weighted projective plane with weights $(\lambda_0, \lambda_1, \lambda_2)$ then (3.11) is equal to $\text{mult}(X)(-K_X)^2$.

Proposition 3.12. Let X be a fake weighted projective plane and suppose that there exists a one-step mutation to a fake weighted projective plane Y. Then the weights of X and Y give solutions to the same Diophantine equation (3.10). In particular, $\operatorname{mult}(X) = \operatorname{mult}(Y)$.

Proof. With notation as in Lemma 3.11, we can write the weights $(\lambda_0, \lambda_1, \lambda_2)$ of X in the form $\lambda_i = c_i a_i^2$, where the c_i are square-free positive integers. From Proposition 3.3 we know that Y has weights

$$\left(\lambda_1, \lambda_2, \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right) = \left(c_1 a_1^2, c_2 a_2^2, \frac{(c_1 a_1^2 + c_2 a_2^2)^2}{c_0 a_0^2}\right).$$

The final weight is an integer; in particular, it has square-free part c_0 . Thus the c_i are invariant under mutation. Furthermore,

$$\frac{\left(\lambda_1 + \lambda_2 + \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right)^2}{\lambda_1 \cdot \lambda_2 \cdot \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}} = \frac{\left(\lambda_0 \lambda_1 + \lambda_0 \lambda_2 + (\lambda_1 + \lambda_2)^2\right)^2}{\lambda_0 \lambda_1 \lambda_2 (\lambda_1 + \lambda_2)^2}$$

$$= \frac{(\lambda_0 + \lambda_1 + \lambda_2)^2}{\lambda_0 \lambda_1 \lambda_2}$$

$$= \frac{m^2}{rk^2}$$

and so the ratio m/k is also preserved by mutation. Hence the weights of X and of Y both generate solutions to the same Diophantine equation (3.10).

Finally we recall that degree is fixed under mutation, hence $(-K_X)^2 = (-K_Y)^2$. But

$$\frac{m^2}{rk^2} = \text{mult}(X)(-K_X)^2 = \text{mult}(Y)(-K_Y)^2$$

and so $\operatorname{mult}(X) = \operatorname{mult}(Y)$.

By combining Propositions 3.3, 3.9, and 3.12 we obtain Proposition 1.1.

Remark 3.13. The weights of a fake weighted projective plane correspond to a solution (a_0, a_1, a_2) of equation (3.10). A one-step mutation gives a second solution via the transformation:

$$(a_0, a_1, a_2) \mapsto \left(\frac{m}{k} \frac{a_1 a_2}{c_0} - a_0, a_1, a_2\right).$$

Example 3.14. Consider \mathbb{P}^2 . In this case m/k = 3, $c_0 = c_1 = c_2 = 1$, and $(1, 1, 1) \in \mathbb{Z}^3_{>0}$ is a solution of

$$3x_0x_1x_2 = x_0^2 + x_1^2 + x_2^2.$$

Up to isomorphism, there is a single one-step mutation to $\mathbb{P}(1,1,4)$, giving a solution $(1,1,2) \in \mathbb{Z}^3_{>0}$ of equation (3.12). Proceeding in this fashion we obtain a graph of one-step mutations corresponding to solutions of (3.12), which we illustrate to a depth of five mutations:

Definition 3.15. The *height* of the weights $(\lambda_0, \lambda_1, \lambda_2)$ is given by the sum $h := \lambda_0 + \lambda_1 + \lambda_2 \in \mathbb{Z}_{>0}$. We call the weights *minimal* if for any sequence of one-step mutations $(\lambda_0, \lambda_1, \lambda_2) \mapsto \ldots \mapsto (\lambda'_0, \lambda'_1, \lambda'_2)$ we have that $h \leq h'$.

Lemma 3.16. Given weights $(\lambda_0, \lambda_1, \lambda_2)$ at height h there exists at most one one-step mutation such that $h' \leq h$. Moreover, if h' = h then the weights are the same.

Proof. Without loss of generality suppose we have two one-step mutations

$$\left(\lambda_1, \lambda_2, \frac{(\lambda_1 + \lambda_2)^2}{\lambda_0}\right)$$
 and $\left(\lambda_0, \frac{(\lambda_0 + \lambda_2)^2}{\lambda_1}, \lambda_2\right)$

with respective heights h' and h'' such that $h' \leq h$ and $h'' \leq h$. Since $h' \leq h$ we obtain $(\lambda_1 + \lambda_2)^2 \leq \lambda_0^2$, and so

$$\lambda_1^2 + \lambda_2^2 < \lambda_0^2.$$

From $h'' \leq h$ we obtain

$$\lambda_0^2 + \lambda_2^2 < \lambda_1^2.$$

Combining equations (3.13) and (3.14) gives a contradiction, hence there exists at most one one-step mutation such that $h' \leq h$. If we suppose that h' = h then

$$\frac{(\lambda_1 + \lambda_2)^2}{\lambda_0} = \lambda_0$$

and equality of the weights is immediate.

The height imposes a natural direction on the graph of all one-step mutations generated by the weight $(\lambda_0, \lambda_1, \lambda_2)$. Lemma 3.16 tells us that this directed graph is a tree, with a uniquely defined minimal weight.

4. Example: An infinite number of minimal weights

In this section we shall focus on the Diophantine equation

$$(4.1) 12x_0x_1x_2 = 3x_0^2 + 5x_1^2 + 7x_2^2.$$

Any solution (a_0, a_1, a_2) such that $(3a_0^2, 5a_1^2, 7a_2^2)$ is well-formed corresponds to weighted projective space $\mathbb{P}(3a_0^2, 5a_1^2, 7a_2^2)$ of degree 144/105. One possible such solution is (2, 1, 1) giving $\mathbb{P}(12, 5, 7)$. Consider the graph \mathcal{G} of all such solutions. Two solutions lie in the same component if and only if there exists a sequence of one-step mutations between the corresponding weighted projective planes. Furthermore, each component is a tree with unique minimal weight. We shall show that there exists an infinite number of components, and that every component contains at most two solutions; in fact the only component with a single solution is (2, 1, 1).

4.1. Coprime solutions give well-formed weights. Let (a_0, a_1, a_2) be a solution of equation (4.1) such that $gcd\{a_0, a_1, a_2\} = 1$. Clearly this is a necessary condition for the corresponding weights $(3a_0^2, 5a_1^2, 7a_2^2)$ to be well-formed. We shall show that it is sufficient. For suppose that there exists some prime p such that $p \mid c_i a_i^2$ and $p \mid c_j a_j^2$, $i \neq j$. Since p cannot simultaneously divide both c_i and c_j , we have that p must divide either a_i or a_j . In particular, $p \mid 12a_0a_1a_2$ and so, by equation (4.1), p divides the remaining weight $c_k a_k^2$. Similarly, since p can divide at most one of p, and p we see that $p^2 \mid 12a_0a_1a_2$ and so p^2 divides each of the three weights. We conclude that $p \mid \gcd\{a_0, a_1, a_2\}$, contradicting coprimality.

4.2. A necessary and sufficient condition for rational solutions when a_1 and a_2 are fixed. Fix $a_1, a_2 \in \mathbb{Z}_{>0}$ and consider the quadratic

$$(4.2) 12xa_1a_2 = 3x^2 + 5a_1^2 + 7a_2^2.$$

The discriminant is given by

$$12^{2}a_{1}^{2}a_{2}^{2} - 12(5a_{1}^{2} + 7a_{2}^{2}) = 12\left(5a_{1}^{2}(a_{2}^{2} - 1) + 7a_{2}^{2}(a_{1}^{2} - 1)\right),\,$$

which is always non-negative. The discriminant is zero only in the case $a_1 = a_2 = 1$, corresponding to the solution (2,1,1) of equation (4.1). Furthermore, we see that a rational solution to equation (4.2) exists if and only if

$$5a_1^2(a_2^2 - 1) + 7a_2^2(a_1^2 - 1) = 3N^2, \quad \text{for some } N \in \mathbb{Z}_{>0}.$$

4.3. Any rational solution is an integral solution. Suppose that $\alpha, \beta \in \mathbb{R}$ are the two solutions of equation (4.2). We obtain:

$$(4.4) \alpha + \beta = 4a_1a_2,$$

$$(4.5) 3\alpha\beta = 5a_1^2 + 7a_2^2.$$

In particular, since the right-hand side in each case is a strictly positive integer, we see that $\alpha, \beta > 0$. Furthermore, α is rational if and only if β is rational. Since we are only interested in rational solutions, we can assume that both α and β are rational. Let us write

$$\alpha = \frac{n_1}{m_1}$$
 and $\beta = \frac{n_2}{m_2}$,

where the fractions are expressed in their reduced form, i.e. $gcd\{n_i, m_i\} = 1$. Then

$$(4.6) m_1 m_2 \mid 3n_1 n_2,$$

$$(4.7) m_1 m_2 \mid n_1 m_2 + n_2 m_1.$$

By (4.7), $m_2 \mid m_1$ and $m_1 \mid m_2$, forcing $m_1 = m_2$. Without loss of generality, from (4.6) we may assume that $m_1 \mid 3n_2$ and $m_2 \mid n_1$. But then $m_1 \mid n_1$, forcing $m_1 = m_2 = 1$. Hence $\alpha, \beta \in \mathbb{Z}_{>0}$.

4.4. The values a_1 and a_2 are fixed under one-step mutations. We now show that, given a solution (a_0, a_1, a_2) such that $gcd\{a_0, a_1, a_2\} = 1$, the values of a_1 and a_2 are fixed under one-step mutation. For suppose that

$$\frac{(3a_0^2 + 7a_2^2)^2}{5a_1^2} \in \mathbb{Z}.$$

Without loss of generality we may take $\alpha = a_0$. We see that $5 \mid 3a_0^2 + 7a_2^2 = 3\alpha^2 + 3\alpha\beta - 5a_1^2$ by (4.5), hence $5 \mid 3\alpha(\alpha + \beta) = 12a_0a_1a_2$ by (4.4). Since the weights are pairwise coprime, the only possibility is that $5 \mid a_1$. Returning to equation (4.8) we see that $5^2 \mid 3a_0^2 + 7a_2^2$, and proceeding as before we find that $5^2 \mid a_1$. Clearly we can repeat this process an arbitrary number of times, increasing the power of 5 at each step. This is a contradiction. The case when

$$\frac{(3a_0^2 + 5a_1^2)^2}{7a_2^2} \in \mathbb{Z}$$

is dealt with similarly.

4.5. An infinite number of components. Set $a_1 = 1$ in condition (4.3). The condition becomes $a_2^2 - 1 = 15M^2$, where 5M = N. This is a Pell equation, and Emerson [Eme69] has shown that there exists an infinite number of integer solutions given by a recurrence relation. In this case we see that $a_2^{(n)}$ and $M^{(n)}$ are generated by:

$$a_2^{(0)} = 1,$$
 $M^{(0)} = 0,$ $a_2^{(1)} = 4,$ $M^{(1)} = 1,$ $a_2^{(n+1)} = 8a_2^{(n)} - a_2^{(n-1)},$ $M^{(n+1)} = 8M^{(n)} - M^{(n-1)}.$

Substituting these expressions back into the original quadratic (4.2) gives:

$$a_0^{(n+1)} = 2a_2^{(n)} \pm 5M^{(n)}.$$

These solutions are coprime (since $a_1 = 1$) and so correspond to well-formed weights. We will focus on the smaller of the two solutions, corresponding to the minimum of the two weights. Substituting the expressions for $a_2^{(n)}$ and $M^{(n)}$ gives:

$$\begin{split} a_0^{(n+1)} &= 2a_2^{(n+1)} - 5M^{(n+1)} \\ &= 8\left(2a_2^{(n)} - 5M^{(n)}\right) - \left(2a_2^{(n-1)} - 5M^{(n-1)}\right) \\ &= 8a_0^{(n)} - a_0^{(n-1)}. \end{split}$$

Hence we obtain the recurrence relation:

$$a_0^{(0)} = 2,$$

 $a_0^{(1)} = 3,$
 $a_0^{(n+1)} = 8a_0^{(n)} - a_0^{(n-1)}.$

Remark 4.1. If instead we insist that $a_2 = 1$, we obtain the Pell equation $a_1^2 - 1 = 21M^2$, where 7M = N. In this case the recurrence relation is given by:

$$a_1^{(0)} = 1,$$
 $M^{(0)} = 0,$ $a_1^{(1)} = 55,$ $M^{(1)} = 12,$ $a_1^{(n+1)} = 110a_1^{(n)} - a_1^{(n-1)},$ $M^{(n+1)} = 110M^{(n)} - M^{(n-1)}.$

Proceeding as above we find that

$$a_0^{(0)} = 2,$$

 $a_0^{(1)} = 26,$
 $a_0^{(n+1)} = 110a_0^{(n)} - a_0^{(n-1)}.$

Hence we have a second infinite family of components of \mathcal{G} . Notice that these two families do not exhaust all the possibilities: for example, $a_1 = 5$, $a_2 = 4$ satisfies condition (4.3), giving the two solutions (1,5,4) and (79,5,4).

Acknowledgments. Our thanks to Tom Coates, Alessio Corti, and Song Sun for many useful conversations. The authors are supported by EPSRC grant EP/I008128/1.

References

- [ACGK12] Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), 094, pp. 707.
- [Buc08] Weronika Buczyńska, Fake weighted projective spaces, arXiv:0805.1211v1, May 2008.
- [Con02] Heinke Conrads, Weighted projective spaces and reflexive simplices, Manuscripta Math. 107 (2002), no. 2, 215–227.
- [Eme69] Edgar I. Emerson, Recurrent sequences in the equation $DQ^2 = R^2 + N$, Fibonacci Quart. 7 (1969), no. 3, 231–242.
- [HP10] Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), no. 1, 169–192.
- [Ilt12] Nathan Owen Ilten, Mutations of Laurent polynomials and flat families with toric fibers, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), 047, pp. 7.
- [Kas09] Alexander M. Kasprzyk, Bounds on fake weighted projective space, Kodai Math. J. 32 (2009), 197–208.
- [KN12] Alexander M. Kasprzyk and Benjamin Nill, Fano polytopes, Strings, Gauge Fields, and the Geometry Behind – the Legacy of Maximilian Kreuzer (Anton Rebhan, Ludmil Katzarkov, Johanna Knapp, Radoslav Rashkov, and Emanuel Scheidegger, eds.), World Scientific, 2012, pp. 349–364.
- [KSB88] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338.
- [Mar80] A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 17 (1880), no. 3, 379–399.
- [Ros79] Gerhard Rosenberger, Über die diophantische Gleichung $ax^2 + by^2 + cz^2 = dxyz$, J. Reine Angew. Math. **305** (1979), 122–125.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, LONDON, SW7 2AZ, UK

 $E ext{-}mail\ address: mohammad.akhtar03@imperial.ac.uk}$ $E ext{-}mail\ address: a.m.kasprzyk@imperial.ac.uk}$