Graphes

Graphe

- Structure de données qui permet de représenter un réseau de données
 - Réseaux de télécommunication
 - Réseaux sociaux
 - Réseaux routier
 - Carte
 - **—** ...
- Objectifs
 - Représentation d'un graphe
 - Parcours de graphe
 - Quelques problèmes

Arbres

- Chaque chemin (de la racine à une feuille) représente un mot
- Optimisation en terme de taille
- Besoin de marquer la fin d'un mot
 - allez, allons, va, vais, vas, vont

Graphe

- Théoriquement la meilleure implémentation pour coder un lexique
 - Optimisation en terme de taille de stockage
- Quels mots sont représentés ci-dessous ?

Définitions

- Graphe: couple G[X,A] où
 - X est un ensemble de nœuds ou sommets et
 - A est l'ensemble des paires de sommets reliés entre eux (arêtes du graphe ou «arc»)
- Chemin = séquence d'arêtes menant d'un sommet i à un sommet j
- Circuit = chemin dont les sommets de départ et d'arrivée sont identiques
- degré d'un sommet = nombre d'arêtes ayant ce sommet pour extrémité
- Voisins : les voisins des sommets sont ceux qui sont reliés à ce sommet par une arête

Graphes orientés

- Graphe dans lequel chaque arete a une direction associée
- Arc = arête orientée

- Graphe orienté pondéré:
 - Graphe étiqueté ou chaque arc a un coût associé
- valuation, coût = valeur numérique associée à un arc ou à un sommet

3

4

Types de graphe

Opérations

- voisin : G x y → Booléen
 - Teste si x et y sont voisin
- voisins : G x → liste
 - Retourne la liste des voisins de x
- ajoute_noeud : G x → G
 - Ajoute le nœud x si x n'est pas déjà présent
- Supprime noeud : G x → G
 - Supprime x de G si x présent
- ajoute_arc : G x y → G
 - Ajoute un arc entre x et y si absent
- Supprime_arc : $G \times y \rightarrow G$
 - Supprimer l'arc entre x et y si présent
- valeur_arc : G x y → N
 - Retourne la valeur de l'étiquette de l'arc entre x et y; +oo sinon

Graphe : représentation matricielle

- Tout graphe G = (X,A) peut être représenté par une matrice d'adjacence
- m_{i,j} = val(a_{i,},a_i) si (a_{i,},a_i) € A, ∞ sinon

Arrivée →	0	1	3	4
0	∞	2	∞	∞
1	∞	-3	3	-5
3	9	∞	∞	-2
4	∞	∞	1	∞

Graphe : représentation matricielle

- Complexité spatiale → O(|X|²)
- Coût d'ajout/suppression d'un nœud \rightarrow O($|X|^2$)
- Coût d'ajout/suppression d'un arc → O(1)
- Fortement déconseillé pour les graphes creux !
- Meilleur choix si la rapidité d'accès est cruciale ou si le graphe est très dense (→ complet)

Graphe: représentation par liste d'adjacence

Sommets

- numérotés et stockés dans un tableau
- contiennentt une liste des arcs qui partent de ce sommet

Arc

– triplet <départ,arrivée,coût >

Graphe: représentation par liste

- Complexité spatiale → O(|X|+|A|)
- Coût d'ajout d'un nœud \rightarrow O(1)
- Coût d'ajout d'un arc \rightarrow O(1)
- Coût suppression d'un nœud → O(|E|)
- Coût suppression d'un arc → O(|E|)

- Parfait pour représenter les graphes creux !
- Meilleur compromis de complexité

Parcours de graphe

Parcours non ordonnés :

- Parcours du tableau de nœuds (p.ex., affichage des valeurs des nœuds)
- Parcours des listes d'arêtes (p.ex., initialisation de poids)

Parcours ordonnés selon les arêtes :

- Problème de cycle (comment être sur de ne pas passer plusieurs fois au même endroit ?)
- Problème d'initialisation (début) et de terminaison (fin)
- Problème de sens de parcours (tous les fils ou tous les frères d'abord ?)

Parcours en profondeur d'abord

- parcours_profondeur(graphe G, sommet X)
 - Si X n'a pas encore été parcouru alors
 - Noter X parcouru
 - Pour tout voisin V de X :
 - parcours_profondeur(G,V)

Exemple:

Même algorithme que pour les arbres

Parcours en largeur d'abord

- Stockage des frères par file d'attente
- parcours_largeur(graphe G, sommet X)
 - Noter X parcouru
 - File F \leftarrow {X}
 - Tant F != ∅
 - N = défiler (F)
 - Action (N) // exemple Afficher N.
 - Pour tout voisin V de N:
 - Si V non parcouru alors
 - » Noter V parcouru
 - » F = enfiler (F,V)

Exemple:

Même algorithme que pour les arbres

Problème : plus court chemin

- Les nœuds sont les intersections
- Les arcs sont valués par la distance ou le temps
- Un plus court chemin entre un nœud A et B ou à partir de A ou entre toutes paires
 - Dijkstra O(V²) une seule source
 - Bellman O(VE) une seule source
 - A* (en pire cas ; n log n meilleur cas) une seule paire
 - Floyd–Warshall O(V³) toutes les paires

16

Exemple de problème : Max flow

- Trouver le flux maximal entre une source et une cible (sink).
- Résolution par l'algorithme de Ford-Fulkerson
- Exemples
 - Flux de voitures entre deux villes selon un réseau
 - EDF et les coupures possibles :)
 - Optimiser le temps d'attente des remontées mécaniques

Problème : coloration de graphe

- Attribuer une couleur à chaque nœud de façon à ce qu'aucun nœud adjacent n'ait la même couleur
- Si on cherche le minimum alors on cherche le nombre chromatique du graphe
 - Utilisation en allocation de ressource minimale
 - Incompatibilité : des produits cocombustibles sont placés dans des wagons non voisins ==> de couleurs différentes

Et encore

- Test de planéité : un graphe est il planaire ?
 - Routage et circuits imprimés
- Arbre couvrant de poids minimal d'un graphe : sousensemble qui connecte tous les sommets dont la somme des poids des arêtes est minimale
 - Réseaux informatiques
- Ordonnancement et méthode PER, MPM
 - Ordonnancement des tâches

Projet 2018: PPC

- Plus court chemin dans
 - Un réseau routier
 - Le métro/Rer parisien

- Projet sur 4 seances
 - En binome : bien s'organiser
 - Travail personnel entre séances indispensable
 - Pas de plagiat : ni interne, ni externe :-)
 - Des données réelles:16 Millions de sommets

Projet 2018: PPC

Réseau routier USA

- Tous les arcs = toutes les routes
- Pas de noms de sommets réels
- CoordonnéesGPS dessommets

Représentation du graphe

```
Les sommets
  typedef struct {
     char* nom;
     double x,y;
     L_ARC voisins;}
     T SOMMET;
Les arcs
  typedef struct {
     int arrivee;
     double cout } T_ARC;
Les listes de successeurs :
  typedef struct Isucc {
     T_ARC val;
      struct Isucc* suiv ; }*
  L ARC;
```


Format du fichier

- Nb sommets, Nb Arcs
- Une ligne inutile
- Tous les sommets

Numero Latitude Longitude Ligne Nom

- Une ligne inutile
- Les arcs

Depart Arrivée cout

```
src2 - bash - 58×25
8 12
Sommets du graphe
        0.95
                 М1
                         Aaa
        0.7
                 М1
                          Baa
        0.7
                 М1
                         Caa
         0.7
                          Daa
        0.35
                          Faa
                 М1
5 0.5
        0.35
                 М1
                          Faa
         0.35
                 М1
                         Gaa
        0.05
                         Haa
Arêtes du graphe : noeud1 noeud2 valeur
0 1 5
0 2 20
0 3 40
2 5 10
4 5 10
6 5 20
7 5 10
laptop-235:src2 desvignm$
laptop-235:src2 desvignm$
```

Dijkstra

- C = sommets d qui restent à visiter ; initialement C=X
- S = sommets dont on connaît leur plus court chemin au point de départ; initialement, S={}

```
début
1.
        pour tous les sommets i de G[X,A] faire pcc[i]= INFINI ;
3.
        pcc[d] = 0
4.
        S = \{\}
5.
        C = X
        faire
7.
                Sélectionner le sommet j de C de plus petite valeur pcc[j]
8.
                C = C \setminus i
                                              // supprimer j de l'ensemble C
9.
                S = SUi
                                              // ajouter j à l'ensemble S
10.
               pour tous les sommets k adjacents à j faire
                     // tous les successeurs de i
                     // c(j,k) est le coût pour aller de j à k
11.
                       si pcc[k] > pcc[i] + c[i][k]
12.
                       alors // Passer par j est plus court pour aller de a en k
                               pcc[k] = pcc[j] + c[j][k];
13.
14.
                               pere[k]=j ;
15.
                       fin si
16.
               fin pour
17.
        tant que a n'est pas dans S et pcc[j]!=INFINI
18. fin
```

Dijkstra

- Chemin de A à F
- $C = \{A,B,C,D,E,F,G\}$
- **S**={}
- $PCC = \{0, \infty, \infty, \infty, \infty, \infty, \infty\}$

- PCC= $\{0,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty\}$
- C = {A,B,C,D,E,F,G,H}
- A={}
- Recherche du meilleur sommet
 - non atteint de plus petit pcc
- ⇒ J=0 //Sommet A
- \blacksquare C = {B,C,D,E,F,G,H}
- S={A} // A est atteint avec son PCC
- Mise à jour des Voisins de A : B,C,D
 - Plus court chemin de A : pcc[0]=0
 - Pour B : pcc[0]+5 (5) < pcc[1] (∞)
 - Pour C : pcc[0]+20 (20) < pcc[2] (∞)
 - Pour D : pcc[0]+40 (40) < pcc[3] (∞)
- PCC= $\{0,5,20,40,\infty,\infty,\infty,\infty\}$

- PCC= $\{0,5,20,40,\infty,\infty,\infty\}$
- $C = \{B,C,D,E,F,G,H\}$
- A={A}
- Recherche du meilleur sommet
 - non atteint de plus petit pcc
- ⇒ J=1 //Sommet B
- $C = \{C,D,E,F,G,H\}$
- S={A,B} // B est aussi atteint
- Mise à jour des Voisins de B : C,F,E
 - Plus court chemin de B : pcc[1] = 5
 - Pour C : pcc[1] +10 (15) < pcc[2] (40)
 - Pour F : pcc[1] + 20 (25) < pcc[5] (∞)
 - Pour E : pcc[1] + 7 (12) < pcc[4] (∞)
- PCC= $\{0,5,15,40,12,25,\infty,\infty\}$

- **PCC=** $\{0,5,15,40,12,25,\infty,\infty\}$
- $C = \{C,D,E,F,G,H\}$
- A={A,B}
- Recherche du meilleur sommet
 - non atteint de plus petit pcc
- ⇒ J=4 //Sommet E
- $C = \{C, D, F, G, H\}$
- S={A,B,E} // E est aussi atteint
- Mise à jour des Voisins de E : F,H
 - Plus court chemin de E : pcc[4] = 12
 - Pour F : pcc[4] +10 (22) < pcc[5] (25)
 - Pour H : pcc[4] + 40 (52) < pcc[7] (∞)
- \blacksquare PCC={0,5,15,40,12,22, ∞ ,52}

- **PCC=** $\{0,5,15,40,12,22,\infty,52\}$
- $C = \{C,D,F,G,H\}$
- A={A,B,E}
- Recherche du meilleur sommet
 - non atteint de plus petit pcc
- ⇒ J=4 //Sommet C
- $C = \{D,F,G,H\}$
- S={A,B,E,C} // C est aussi atteint
- Mise à jour des Voisins de C : D,F
 - Plus court chemin de C : pcc[2] = 15
 - Pour F : pcc[2] +10 (25) > pcc[5] (22)
 - Pas de changement pour F
 - Pour D : pcc[2] + 10 (25) < pcc[3] (40)
- \blacksquare PCC={0,5,15,25,12,22, ∞ ,52}

Dijkstra: le chemin

- **PCC=**{0,5,15,25,12,22,∞,52}
- Etape de mise à jour : ajout de l'information du sommet dont on vient quand on change la valeur du PCC d'un voisin d'un sommet atteint
- Exemple : attributs de B:5 et 0 :
 - 5 est la valeur du PCC
 - 0 est l'indice du sommet par lequel on arrive sur 5 pour obtenir le PCC
- Retrouver le chemin de A à F
 - Plus court chemin de F
 - Pcc[5] = 22
 - Pere[5] = 4
 - Chercher le pere du sommet tant qu'il existe
 - Pere de F : E (4)
 - Pere de E : B (1)
 - Pere de B : A (0)
 - C'est le depart !!
 - Donc le chemin est A,B,E,F

- **PCC=** $\{0,5,15,25,12,22,\infty,52\}$
- \blacksquare C = {D,F,G,H}
- A={A,B,E,C}
- Recherche du meilleur sommet– non atteint de plus petit pcc
- ⇒ J=5 //Sommet F
- $C = \{D,G,H\}$
- S={A,B,E,C,F} // F est aussi atteint
- Mise à jour des Voisins de F : Aucun– Plus court chemin de F : pcc[2] = 15
- FIN : F est atteint : le plus cours chemin de A à F est 22

Dijkstra

- Définir les représentations
 - Comment représenter les couts ?
 - Comment représenter les peres ?
- Définir les fonctions utiles
 - Commencer par les fonctions les plus basiques
 - Listes, lecture du graphe, affichage du graphe
 - Tester au fur et à mesure
 - Tester d'abord sur des graphes simples
- Cas particulier du metro
 - Correspondance incluse dans le fichier
 - Gestion des sommets grâce à leur nom
 - Attention ; plusieurs sommets ont le même nom
 - Si on part de la gare du Nord, il y a 4 sommets de départ possibles
- Structure de données utiles pour optimiser
 - Tas de sommets : trouver le min de C
 - Table de hachage : trouver le numero d'un sommet à partir d'une chaine de caractères