Equivalences in and between algebraic weak ω -categories j/w Soichiro Fujii¹ and Keisuke Hoshino

Yuki Maehara²

Kyoto University

 (∞, n) -Categories and their applications

 $^{^1\}mathsf{Supported}$ by JSPS Overseas Research Fellowship and Australian Research Council Discovery Project DP190102432

²Supported by JSPS KAKENHI Grant Number JP21K20329 & JP23K12960

1 Algebraic weak ω -categories

2 Equivalences in an algebraic weak ω -category

(Weak) equivalences between algebraic weak ω -categories

2 Equivalences in an algebraic weak ω -category

3 (Weak) equivalences between algebraic weak ω -categories

Our weak ω -categories will be globular sets

Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w}k}$.

Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w}k}$.

Question

How should we define T_{wk} ?

Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad T_{wk} .

Question

How should we define T_{wk} ?

We should have $\{\text{strict }\omega\text{-cats}\}\subset \{\text{weak }\omega\text{-cats}\},\$

Our weak ω -categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w}k}$.

Question

How should we define T_{wk} ?

We should have $\{\text{strict }\omega\text{-cats}\}\subset \{\text{weak }\omega\text{-cats}\}$, or equivalently a monad map $\alpha:T_{\mathrm{wk}}\to T_{\mathrm{st}}$.

The monad map $\alpha \colon T_{\le k} \to T_{st}$ encodes a sort of Pasting Theorem.

The monad map $\alpha \colon T_{\le k} \to T_{st}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

The monad map $\alpha \colon T_{\le k} \to T_{st}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category

The monad map $\alpha \colon T_{\le k} \to T_{\le t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2-cell $hg_1f_1 \rightarrow hg_3f_2$.

The monad map $\alpha \colon T_{\le k} \to T_{\le k}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2-cell $hg_1f_1 \rightarrow hg_3f_2$.

In a weak 2-category (bicategory), we similarly get a unique 2-cell, but

The monad map $\alpha: T_{wk} \to T_{st}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2-cell $hg_1f_1 \rightarrow hg_3f_2$.

In a weak 2-category (bicategory), we similarly get a unique 2-cell, but $"hq_1f_1" "hq_3f_2"$.

The monad map $\alpha: T_{wk} \to T_{st}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2-cell $hg_1f_1 \rightarrow hg_3f_2$.

In a weak 2-category (bicategory), we similarly get a unique 2-cell, but only after specifying what we mean by " hq_1f_1 " and " hq_3f_2 ".

$T_{\mathrm st}1$

The terminal globular set 1 has:

ullet a unique 0-cell x_0 ,

- ullet a unique 0-cell x_0 ,
- ullet a unique 1-cell $x_1:x_0 o x_0$,

- ullet a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \to x_1$, ...

- ullet a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \to x_1$, ...

In 1, everything is composable along everything.

- ullet a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \to x_1, \ldots$

In 1, everything is composable along everything. So

 $(T_{st}1)_n = \{n \text{-dimensional (globular) pasting schemes}\}.$

- a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \to x_1, \ldots$

In 1, everything is composable along everything. So

$$(T_{st}1)_n = \{n \text{-dimensional (globular) pasting schemes}\}.$$

e.g.

$$\bullet$$
 $(T_{st}1)_1 = \{ \bullet, \bullet \longrightarrow \bullet, \bullet \longrightarrow \bullet \longrightarrow \bullet, \cdots \}$

- a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \to x_1, \ldots$

In 1, everything is composable along everything. So

$$(T_{st}1)_n = \{n\text{-dimensional (globular) pasting schemes}\}.$$

e.g.

$$\bullet \ (T_{st}1)_1 = \{ \bullet, \quad \bullet \longrightarrow \bullet, \quad \bullet \longrightarrow \bullet \longrightarrow \bullet, \quad \cdots \}$$

$$\bullet$$
 $(T_{\mathrm{s}t}1)_2$ contains cells like \bullet

$$(T_{st}1)_n = \{n\text{-dimensional pasting schemes}\}$$

In the weak case, e.g. $(\to\to)\to$ and $\to(\to\to)$ should be distinct cells in $T_{\mathrm wk}1$. $(T_{\mathrm st}1)_n=\{n\text{-dimensional pasting schemes}\}$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow (\rightarrow \rightarrow)$ should be distinct cells in $T_{\mathrm{w}k}1$. $(T_{\mathrm{s}t}1)_n = \{n\text{-dimensional pasting schemes}\}$ $(T_{\mathrm{w}k}1)_n = \{n\text{-dimensional pasting instructions}\}$

In the weak case, e.g. $(\to\to)\to$ and $\to(\to\to)$ should be distinct cells in $T_{\mathrm{w}k}1$.

$$(T_{st}1)_n = \{n \text{-dimensional pasting schemes}\}$$

 $(T_{wk}1)_n = \{n \text{-dimensional pasting instructions}\}$

Existence part of Pasting Theorem

We ask that each commutative square

$$\partial G^n \longrightarrow T_{wk} 1$$

$$\downarrow \qquad \qquad \downarrow \alpha_1$$

$$G^n \longrightarrow T_{st} 1$$

admit a chosen diagonal lift.

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow (\rightarrow \rightarrow)$ should be distinct cells in $T_{wk}1$.

$$(T_{st}1)_n = \{n\text{-dimensional pasting schemes}\}\$$

 $(T_{wk}1)_n = \{n\text{-dimensional pasting instructions}\}\$

Existence part of Pasting Theorem

We ask that each commutative square

$$\partial G^n \longrightarrow T_{wk} 1$$

$$\downarrow \qquad \qquad \downarrow \alpha_1$$

$$G^n \longrightarrow T_{st} 1$$

admit a chosen diagonal lift.

The data of such lifts is called a contraction.

 $\label{eq:local_local} \mbox{Algebraic weak ω-categories} \\ \mbox{Equivalences in an algebraic weak ω-category} \\ \mbox{(Weak) equivalences $between$ algebraic weak ω-categories} \\$

 $T_{\mathbf{w}k}X$

$T_{wk}X$

For arbitrary X, we want a cell in $T_{\mathrm{w}k}X$ to be

$T_{wk}X$

For arbitrary X, we want a cell in $T_{\le k}X$ to be a pair consisting of:

- ullet a pasting diagram in X, and
- a pasting instruction.

For arbitrary X, we want a cell in $T_{wk}X$ to be a pair consisting of:

- ullet a pasting diagram in X, and
- a pasting instruction.

Cartesian over $T_{\rm st}$

For each globular set X, we ask

$$T_{wk}X \longrightarrow T_{wk}1$$

$$\alpha_X \downarrow \qquad \qquad \downarrow \alpha_1$$

$$T_{st}X \longrightarrow T_{st}1$$

to be a pullback.

For arbitrary X, we want a cell in $T_{wk}X$ to be a pair consisting of:

- ullet a pasting diagram in X, and
- a pasting instruction.

Cartesian over $T_{\rm st}$

For each globular set X, we ask

$$T_{wk}X \longrightarrow T_{wk}1$$

$$\alpha_X \downarrow \qquad \qquad \downarrow \alpha_1$$

$$T_{st}X \longrightarrow T_{st}1$$

to be a pullback.

Definition (Leinster)

 T_{wk} is the initial cartesian monad over T_{st} with contraction.

Identity and binary composition

Let $(X,T_{\le k}X\xrightarrow{\xi}X)$ be a weak ω -category and $x\in X_{n-1}.$ We can define $1_x\in X_n$ by

Identity and binary composition

Let $(X,T_{\le k}X\xrightarrow{\xi}X)$ be a weak ω -category and $x\in X_{n-1}.$ We can define $1_x\in X_n$ by

$$\partial G^{n(\eta_{\operatorname{wk}}(x),\eta_{\operatorname{wk}}(x))}T_{\operatorname{wk}}X \xrightarrow{\xi} X$$

$$\downarrow \alpha_X \text{ (inherits lifts from } \alpha_1\text{)}$$

$$G^n \xrightarrow{\operatorname{identity on } \eta_{\operatorname{st}}(x)} T_{\operatorname{st}}X$$

Identity and binary composition

Let $(X,T_{\le k}X\xrightarrow{\xi}X)$ be a weak ω -category and $x\in X_{n-1}.$ We can define $1_x\in X_n$ by

$$\partial G^{n(\eta_{\mathbf{w}k}(x),\eta_{\mathbf{w}k}(x))}T_{\mathbf{w}k}X \xrightarrow{\xi} X$$

$$\downarrow \alpha_X \text{ (inherits lifts from } \alpha_1\text{)}$$

$$G^n \xrightarrow{\mathrm{identity on } \eta_{st}(x)} T_{st}X$$

Similarly, given n-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using

$$\partial G^{n(\eta_{wk}(x),\eta_{wk}(z))} T_{wk} X \xrightarrow{\xi} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \alpha_X$$

$$G^n \xrightarrow{\eta_{st}(g)\eta_{st}(f)} T_{st} X$$

Identity and binary composition

Let $(X,T_{\le k}X\xrightarrow{\xi}X)$ be a weak ω -category and $x\in X_{n-1}.$ We can define $1_x\in X_n$ by

$$\partial G^{n(\eta_{\operatorname{wk}}(x),\eta_{\operatorname{wk}}(x))} T_{\operatorname{wk}} X \xrightarrow{\xi} X$$

$$\downarrow \qquad \qquad \downarrow \alpha_X \text{ (inherits lifts from } \alpha_1)$$

$$G^n \xrightarrow{\operatorname{identity on } \eta_{\operatorname{st}}(x)} T_{\operatorname{st}} X$$

Similarly, given *n*-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using

But we can't lift equalities between cells;

Identity and binary composition

Let $(X,T_{\le k}X\xrightarrow{\xi}X)$ be a weak ω -category and $x\in X_{n-1}.$ We can define $1_x\in X_n$ by

$$\partial G^{n(\eta_{\operatorname{wk}}(x),\eta_{\operatorname{wk}}(x))} T_{\operatorname{wk}} X \xrightarrow{\xi} X$$

$$\downarrow \qquad \qquad \downarrow \alpha_X \text{ (inherits lifts from } \alpha_1)$$

$$G^n \xrightarrow{\operatorname{identity on } \eta_{\operatorname{st}}(x)} T_{\operatorname{st}} X$$

Similarly, given *n*-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using

But we can't lift equalities between cells; more precisely, the resulting lifts will only be equivalences.

lacksquare Algebraic weak ω -categories

2 Equivalences in an algebraic weak ω -category

(Weak) equivalences between algebraic weak ω -categories

Definition

An $n\text{-cell }f:x\to y$ (with $n\ge 1$) is an equivalence if

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

 $\bullet \ \ \text{an} \ n\text{-cell} \ g:y\to x\text{,}$

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- ullet an equivalence (n+1)-cell $gf
 ightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \to 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- ullet an equivalence (n+1)-cell $gf o 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide:

- a 1-cell $g: y \to x$,
- an equivalence 2-cell $h: qf \to 1_x$,

• an equivalence 2-cell $k: fg \to 1_y$,

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- ullet an equivalence (n+1)-cell $gf
 ightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

- a 1-cell $g: y \to x$,
- an equivalence 2-cell $h: gf \to 1_x$,
 - a 2-cell $h': 1_x \to qf$,
 - an equivalence 3-cell $h'h \to 1_{gf}$,
 - an equivalence 3-cell $hh' o 1_{1_x}^{\circ\circ}$,
- an equivalence 2-cell $k:fg \to 1_y$,

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- ullet an equivalence (n+1)-cell $gf o 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

- ullet a 1-cell $g:y \to x$,
- an equivalence 2-cell $h: gf \to 1_x$,
 - a 2-cell $h': 1_x \to qf$,
 - an equivalence 3-cell $h'h \to 1_{gf}$,
 - an equivalence 3-cell $hh' \rightarrow 1_{gf}$,
- an equivalence 2-cell $k: fq \to 1_y$,
 - a 2-cell $k': 1_y \to fg$,
 - an equivalence 3-cell $k'k \to 1_{fg}$,
 - an equivalence 3-cell $kk' \to 1_{1_y}^{3.3}$,

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- ullet an equivalence (n+1)-cell $gf o 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

- a 1-cell $g: y \to x$,
- an equivalence 2-cell $h: gf \to 1_x$,
 - a 2-cell $h': 1_x \to gf$,
 - ullet an equivalence 3-cell $h'h o 1_{gf}$, a 3-cell $1_{gf} o h'h$, equivalence 4-cells...
 - an equivalence 3-cell $hh' o 1_{1_x}^{\sigma,\sigma}$, a 3-cell $1_{1_x}^{\sigma,\sigma} o hh'$, equivalence 4-cells...
- an equivalence 2-cell $k: fg \to 1_y$,
 - ullet a 2-cell $k':1_y o fg$,
 - an equivalence 3-cell $k'k \to 1_{fg}$, a 3-cell $1_{fg} \to k'k$, equivalence 4-cells...
 - an equivalence 3-cell $kk' \to 1_y^{r,s}$, a 3-cell $1_y^{r,s} \to kk'$, equivalence 4-cells...

Definition

An n-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- ullet an equivalence (n+1)-cell $gf o 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide:

- a 1-cell $g: y \to x$,
- an equivalence 2-cell $h: gf \to 1_x$,
 - a 2-cell $h': 1_x \to gf$,
 - ullet an equivalence 3-cell $h'h o 1_{gf}$, a 3-cell $1_{gf} o h'h$, equivalence 4-cells...
 - an equivalence 3-cell $hh' o 1_{1_x}$, a 3-cell $1_{1_x} o hh'$, equivalence 4-cells...
- an equivalence 2-cell $k: fg \to 1_y$,
 - ullet a 2-cell $k':1_y o fg$,
 - an equivalence 3-cell $k'k \to 1_{fg}$, a 3-cell $1_{fg} \to k'k$, equivalence 4-cells...
 - ullet an equivalence 3-cell $kk' o 1_{1y}^{\circ}$, a 3-cell $1_{1y}^{\circ} o kk'$, equivalence 4-cells...

"f is an equivalence" means "f admits such an infinite hierarchy of witnesses"

Uniqueness part of Pasting Theorem

Let $(X, T_{\le k}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T_{\le k}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Uniqueness part of Pasting Theorem

Let
$$(X, T_{\le k}X \xrightarrow{\xi} X)$$
 be a weak ω -category. If $f /\!\!/ g$ in $(T_{\le k}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence $(n+1)$ -cell $\xi(f) \to \xi(g)$ in X .

Instances of this result yield:

$$h(gf) \sim (hg)f$$
, $1f \sim f \sim f1$ etc.

Uniqueness part of Pasting Theorem

Let $(X,T_{\le k}X\xrightarrow{\xi}X)$ be a weak ω -category. If $f/\!\!/g$ in $(T_{\le k}X)_n$ and $\alpha_X(f)=\alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f)\to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \mathrel{\raisebox{.3ex}{$\scriptstyle\sim$}} (hg)f, \quad 1f \mathrel{\raisebox{.3ex}{$\scriptstyle\sim$}} f \mathrel{\raisebox{.3ex}{$\scriptstyle\sim$}} f1 \quad \text{etc.}$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω -category is closed under pastings.

Uniqueness part of Pasting Theorem

Let $(X, T_{\le k}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T_{\le k}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \sim (hg)f$$
, $1f \sim f \sim f1$ etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω -category is closed under pastings.

Proof

Requires more work than one might expect

Uniqueness part of Pasting Theorem

Let $(X, T_{\le k}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T_{\le k}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \mathrel{\raisebox{.3ex}{$\scriptstyle\sim$}} (hg)f, \quad 1f \mathrel{\raisebox{.3ex}{$\scriptstyle\sim$}} f \mathrel{\raisebox{.3ex}{$\scriptstyle\sim$}} f1 \quad \text{etc.}$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω -category is closed under pastings.

Proof

Requires more work than one might expect because one has to deal with both "formal composites" and "actual composites."

Uniqueness part of Pasting Theorem

Let $(X, T_{\le k}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T_{\le k}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \sim (hg)f$$
, $1f \sim f \sim f1$ etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω -category is closed under pastings.

Proof

Requires more work than one might expect because one has to deal with both "formal composites" and "actual composites."

Using these theorems, we can treat weak ω -categories just like strict ones.

Uniqueness part of Pasting Theorem

Let $(X, T_{\le k}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T_{\le k}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \sim (hg)f$$
, $1f \sim f \sim f1$ etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω -category is closed under pastings.

Proof

Requires more work than one might expect because one has to deal with both "formal composites" and "actual composites."

Using these theorems, we can treat weak ω -categories just like strict ones...?

1 Algebraic weak ω -categories

2 Equivalences in an algebraic weak ω -category

(Weak) equivalences between algebraic weak ω -categories

A weak equivalence $F:X \to Y$ is a $T_{\le k}$ -algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

A weak equivalence $F:X \to Y$ is a $T_{\mathrm{w}k}$ -algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

• $[\forall y \in Y_0] [\exists x \in X_0] Fx \sim y$, and

A weak equivalence $F:X \to Y$ is a $T_{\mathrm{w}k}$ -algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $[\forall y \in Y_0] [\exists x \in X_0] Fx \sim y$, and
- $[\forall x, x' \in X_0]$ the induced map $X(x, x') \to Y(Fx, Fx')$ is a weak equivalence.

A weak equivalence $F:X \to Y$ is a $T_{\mathrm{w}k}$ -algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $[\forall y \in Y_0] [\exists x \in X_0] Fx \sim y$, and
- $[\forall x, x' \in X_0]$ the induced map $X(x, x') \to Y(Fx, Fx')$ is a weak equivalence.

Definition

A weak equivalence $F:X \to Y$ is a $T_{\mathrm{w}k}$ -algebra morphism such that

- \bullet F is eso (in the above sense), and
- induced maps between all iterated homs are eso.

A weak equivalence $F: X \to Y$ is a T_{wk} -algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $[\forall y \in Y_0] [\exists x \in X_0] Fx \sim y$, and
- $[\forall x, x' \in X_0]$ the induced map $X(x, x') \to Y(Fx, Fx')$ is a weak equivalence.

Definition

A weak equivalence $F:X \to Y$ is a $T_{\operatorname{w} k}$ -algebra morphism such that

- \bullet F is eso (in the above sense), and
- induced maps between all iterated homs are eso.

Theorem

The class of weak equivalences enjoys the 2-out-of-3 property. That is, if any two of F,G and GF are weak equivalences then so is the third.

[GF is eso]

$$[GF \text{ is eso}]$$
 Let $z \in Z_0$.

$$\begin{aligned} &[GF \text{ is eso}] \\ &\text{Let } z \in Z_0. \\ &G \text{ is eso} \Longrightarrow \exists y \in Y_0 \text{ s.t. } Gy \sim z. \end{aligned}$$

$$\begin{aligned} &[GF \text{ is eso}] \\ &\text{Let } z \in Z_0. \\ &G \text{ is eso} \Longrightarrow \exists y \in Y_0 \text{ s.t. } Gy \sim z. \\ &F \text{ is eso} \Longrightarrow \exists x \in X_0 \text{ s.t. } Fx \sim y. \end{aligned}$$

$$\begin{split} & [GF \text{ is eso}] \\ & \text{Let } z \in Z_0. \\ & G \text{ is eso} \Longrightarrow \exists y \in Y_0 \text{ s.t. } Gy \sim z. \\ & F \text{ is eso} \Longrightarrow \exists x \in X_0 \text{ s.t. } Fx \sim y. \\ & \text{So we have } GFx \sim Gy \sim z. \end{split}$$

[GF is eso]

Let
$$z \in Z_0$$
. G is eso $\Longrightarrow \exists y \in Y_0$ s.t. $Gy \sim z$. F is eso $\Longrightarrow \exists x \in X_0$ s.t. $Fx \sim y$. So we have $GFx \sim Gy \sim z$, which compose to $GFx \sim z$.

$$\begin{array}{l} [GF \text{ is eso}] \\ \text{Let } z \in Z_0. \\ G \text{ is eso} \Longrightarrow \exists y \in Y_0 \text{ s.t. } Gy \sim z. \\ F \text{ is eso} \Longrightarrow \exists x \in X_0 \text{ s.t. } Fx \sim y. \\ \text{So we have } GFx \sim Gy \sim z, \text{ which compose to } GFx \sim z. \end{array}$$

[induced maps are eso]

$$[GF \text{ is eso}]$$

Let $z \in Z_0$.

G is eso $\Longrightarrow \exists y \in Y_0$ s.t. $Gy \sim z$.

F is eso $\Longrightarrow \exists x \in X_0 \text{ s.t. } Fx \sim y.$

So we have $GFx \sim Gy \sim z$, which compose to $GFx \sim z$.

[induced maps are eso]

Let $x, x' \in X_0$. Then we have

$$[GF \text{ is eso}]$$

Let $z \in Z_0$.

G is eso $\Longrightarrow \exists y \in Y_0$ s.t. $Gy \sim z$.

F is eso $\Longrightarrow \exists x \in X_0 \text{ s.t. } Fx \sim y.$

So we have $GFx \sim Gy \sim z$, which compose to $GFx \sim z$.

[induced maps are eso]

Let $x, x' \in X_0$. Then we have

and we can repeat the argument above.

 $[F ext{ is eso}]$ Equally easy.*

 $[F ext{ is eso}]$ Equally easy.*

[induced maps are eso]

 $[F ext{ is eso}]$ Equally easy.*

[induced maps are eso] Let $x, x' \in X_0$ and consider

 $[G ext{ is eso}]$ Equally easy.

 $[G ext{ is eso}]$ Equally easy.

[induced maps are eso]

 $[G ext{ is eso}]$ Equally easy.

[induced maps are eso] Let $y, y' \in Y_0$.

 $[G ext{ is eso}]$ Equally easy.

[induced maps are eso]

Let $y,y'\in Y_0$. Then we have $Fx\sim y$ and $Fx'\sim y'$ for some $x,x'\in X_0$, but...

 $[G ext{ is eso}]$ Equally easy.

[induced maps are eso]

Let $y,y'\in Y_0$. Then we have $Fx\sim y$ and $Fx'\sim y'$ for some $x,x'\in X_0$, but...

$$X(x,x') \xrightarrow[F_{x,x'}]{(GF)_{x,x'}} Y(Fx,Fx') \xrightarrow[G_{Fx,Fx'}]{} Z(GFx,GFx')$$

$$Y(y,y') \xrightarrow{G_{y,y'}} Z(Gy,Gy')$$

 $[G ext{ is eso}]$ Equally easy.

[induced maps are eso]

Let $y,y'\in Y_0$. Then we have $Fx\sim y$ and $Fx'\sim y'$ for some $x,x'\in X_0$, but...

We need whiskering!

We want:

Lemma

For an equivalence 1-cell $u\colon y\to z$ in a weak ω -category X, the whiskering map

$$u * (-): X(x,y) \to X(x,z)$$

is a weak equivalence

We want:

Lemma

For an equivalence 1-cell $u\colon y\to z$ in a weak ω -category X, the whiskering map

$$u * (-): X(x,y) \to X(x,z)$$

is a weak equivalence (except that it's not strictly functorial).

We want:

Lemma

For an equivalence 1-cell $u\colon y\to z$ in a weak ω -category X, the whiskering map

$$u * (-): X(x,y) \to X(x,z)$$

is a weak equivalence (except that it's not strictly functorial).

The proof of the strict case (Lafont-Métayer-Worytkiewicz) implicitly relies on:

Obvious fact in strict case

We want:

Lemma

For an equivalence 1-cell $u\colon y\to z$ in a weak ω -category X, the whiskering map

$$u * (-): X(x,y) \to X(x,z)$$

is a weak equivalence (except that it's not strictly functorial).

The proof of the strict case (Lafont-Métayer-Worytkiewicz) implicitly relies on:

Obvious fact in strict case

For x,y in a strict ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is (the identity and so in particular) a weak equivalence.

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$\frac{1_{y}}{}*(-):X(x,y)\to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$\mathbf{1}_{\mathbf{y}} * (-) \colon X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy,

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_{\mathbf{y}} * (-) : X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites."

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites." We actually prove

padded
$$(1_y * (padded cell)) \sim padded (original cell)$$

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites." We actually prove

padded
$$(1_y * (padded cell)) \sim padded (original cell) = padded cell)$$

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites." We actually prove

$$\mathsf{padded}\ \left(1_y*(\mathsf{padded}\ \mathsf{cell})\right) \sim \mathsf{padded}\ (\mathsf{original}\ \mathsf{cell}) = \mathsf{padded}\ \mathsf{cell}$$

and argue

$$u*(-)$$
 is essentially surjective.

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites." We actually prove

$$\mathsf{padded}\ \left(1_y*(\mathsf{padded}\ \mathsf{cell})\right) \sim \mathsf{padded}\ (\mathsf{original}\ \mathsf{cell}) = \mathsf{padded}\ \mathsf{cell}$$

and argue

$$1_y * (-)$$
 is essentially surjective $\Longrightarrow u * (-)$ is essentially surjective.

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites." We actually prove

$$\mathsf{padded}\ \left(1_y*(\mathsf{padded}\ \mathsf{cell})\right) \sim \mathsf{padded}\ (\mathsf{original}\ \mathsf{cell}) = \mathsf{padded}\ \mathsf{cell}$$

and argue

$$u*(-)$$
 is essentially injective

 $\implies 1_y * (-)$ is essentially surjective $\implies u * (-)$ is essentially surjective.

We want:

Lemma

For x, y in a weak ω -category X, the whiskering map

$$1_y * (-): X(x,y) \to X(x,y)$$

is a weak equivalence (except that it's not strictly functorial).

Constructing the pads is relatively easy, but proving

$$1_y * (padded cell) \sim (original cell)$$

is tricky because of "formal" vs "actual composites." We actually prove

$$\mathsf{padded} \ \left(1_y * (\mathsf{padded} \ \mathsf{cell})\right) \sim \mathsf{padded} \ (\mathsf{original} \ \mathsf{cell}) = \mathsf{padded} \ \mathsf{cell}$$

and argue

$$1_y*(-)$$
 is essentially injective $\Longrightarrow u*(-)$ is essentially injective $\Longrightarrow 1_y*(-)$ is essentially surjective.

Thank you!

Papers (Fujii-Hoshino-M.)

- Weakly invertible cells in a weak ω -category, to appear in Higher Structures, arXiv:2303.14907
- ω -weak equivalences between weak ω -categories, will put up on arXiv soon
- more to come!