MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. (Ha a vizsgázó nem jelölte ki az értékelendő változatot, a javító tanár a legutolsó megoldási próbálkozást értékelje!)
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1,		
1.		
1. megoldás		
$\sin\frac{\pi}{2}=1.$	1 pont	
$\lg 1 = 0.$	1 pont	
$2^{\log_2 9} = 9$.	1 pont	
Így az $\frac{x^2 - 10x - 24}{x^2 - x - 6} = 10$ egyenletet kell		
megoldani.		
Ebből: $x^2 = 4$.	4 pont	
$x_1 = 2.$ $x_2 = -2.$	1 pont	
$x_2 = -2.$	1 pont	
Ellenőrzés:		
x = 2 megoldás.	1 pont	
x = -2 nem megoldás.	1 pont	
Összesen:	11 pont	
xx . /1. / 1 / . / / 1 1	. ,	2 1 1 1 2 2 1

Ha vizsgálja az értelmezési tartományt, és ennek alapján az x = -2-t kizárja, az x = 2-t pedig az ÉT alapján elfogadja (se nem ellenőrzi, se nem hivatkozik ekvivalens átalakításokra), akkor maximum 10 pont jár.

Ha a feladat megoldása során a tanuló csak az értelmezési tartományt vizsgálja ($x \neq -2$ és $x \neq 3$), és más értékelhető elemet nem tartalmaz a megoldása, akkor a helyes értelmezési tartomány megállapításáért 2 pont jár.

2. megoldás		
$x^{2}-10x-24=(x+2)(x-12)$.	1 pont	
$x^2 - x - 6 = (x+2)(x-3)$.	1 pont	
$x \neq -2$.	1 pont	
$\frac{x^2 - 10x - 24}{x^2 - x - 6} = \frac{x - 12}{x - 3}.$	1 pont	Az átalakítások után az egyszerűsített egyenletért 4 pont jár.
$\sin\frac{\pi}{2} = 1.$	1 pont	
$\lg 1 = 0.$	1 pont	
$2^{\log_2 9} = 9.$	1 pont	
Behelyettesítve az egyszerűsített egyenletbe:		
$\frac{x-12}{x-3} = 10.$	1 pont	
x=2.	2 pont	
Ellenőrzés:		
x = 2 megoldás.	1 pont	
Összesen:	11 pont	

2.		
a)		
A C A B B		
A szokásos jelölésekkel: $tg \beta = \frac{6}{18} = \frac{1}{3}$.	1 pont	
$\beta \approx 18,43^{\circ}$.	1 pont	
Ekkor $\alpha = 90^{\circ} - \beta \approx 71,57^{\circ}$.	1 pont	
Összesen:	3 pont	A fok jelölése nélkül legfeljebb 2 pont adható.
Minden helyesen (egészre, tizedre) kerekített érték elfogadható.		

b)		
Jelöljük a derékszögű háromszögben a PB szakasz hosszát x -szel. A PCA derékszögű háromszögben: $6^2 + (18 - x)^2 = x^2$.	2 pont 2 pont	Ezt a pontot akkor is meg- kapja, ha a magyarázó szöveg helyett megfelelő ábrát készít.
$36 + 324 - 36x + x^2 = x^2.$		Ha a négyzetre emelést rosszul végzi el, akkor ez a
x = 10.		2 pont nem jár.
Tehát $PB = 10$ cm.	2 pont	
Összesen:	6 pont	

Más megoldás esetén az adatok helyes rögzítésért (szövegben vagy ábrán) 1 pont; az AB szakasz kiszámolásáért 1 pont; a PB kiszámításáért (koszinusztétel vagy szinusztétel vagy szögfüggvény segítségével) 4 pont jár a helyesen kerekített értékkel számolva is.

(c)		
15 A B		
Tekintsük a tetraéder alapjának az ABC		Ezt elegendő az ábrán is
háromszöget, ekkor a testmagasság <i>CD</i> lesz:	_	jelölni.
m = 15 cm.	2 pont	
Az ABC háromszög területe: 54 cm ² .		
$V = \frac{Tm}{3}.$		A mértékegység nélküli válasz I pont
$V = \frac{54 \cdot 15}{3} .$	2 pont	
Így a keresett térfogat: 270 cm ³ .		
Összesen:	4 pont	

Ha a vizsgázó érdemben nem foglalkozik a feladattal, de a derékszögű tetraéder ábrája helyes (de nincs rajta a DC=15), akkor 1 pontot kap.

3.		
1. megoldás		
A mértani sorozat tagjai: a; aq; aq ² .		
(1) $a + aq + aq^2 = 26$.	1 pont	
A számtani sorozat tagiai:	1 pont	
$a + 1$: $aa + 6$: $aa^2 + 3$.	1 pont	
$a+1+aa^2+3$		
Ezért: $aq + 6 = \frac{a + 1 + aq^2 + 3}{2}$.	1 pont	
Rendezve:	1 pont	
$(2) \ a - 2aq + aq^2 = 8.$	1 pont	
A két egyenlet különbsége: $3aq = 18$,	1 pont	1
ahonnan $q = \frac{6}{a}$.	2 pont	
Behelyettesítve az (1)-be:	2 pont	
$a + a \cdot \frac{6}{a} + a \cdot \left(\frac{6}{a}\right)^2 = 26.$		
. ,	1 pont	
Ebből: $a^2 - 20a + 36 = 0$.	1 pont	
A másodfokú egyenlet gyökei:		
a = 2 és $a = 18$.	1 pont	
Visszahelyettesítés után:		
$q_1=3$,	1 pont	
$q_1 = 3,$ $q_2 = \frac{1}{3}.$	1 pont	
$q_2 - \frac{1}{3}$.	1 pont	
Tehát a keresett számtani sorozat első három tagja:		
3; 12; 21,	1 pont	
illetve: 19; 12; 5.	1 pont	
Ezek megfelelnek a feladat feltételeinek.	1 pont	
Összesen:	14 pont	
2. megoldás	<u> </u>	
A számtani sorozat első három tagjának összege:		
A szantani solozat első harolli tagjanak összege. $26 + (1+6+3) = 36$,	1 pont	
Ezért a második tagja 12.	2 nont	
Jelöljül a számtani sorozat különbségét d-vel,	2 pont	
ekkor a sorozat első három tagja:	1 pont	
12-d; 12; 12+d.	1 pont	
A mértani sorozat tagjai:		
11-d; 6; 9+d.	2 pont	
Ezért		
$6^2 = (11-d)\cdot(9+d);$	2 pont	
ahonnan	1	
$d^2 - 2d - 63 = 0.$	1 pont	
d = 9 vagy d = -7.	1 pont	
	1	

Tehát a keresett számtani sorozat első három tagja: 3; 12; 21,	1 pont
illetve: 19; 12; 5.	1 pont
Ezek megfelelnek a feladat feltételeinek: a mértani sorozat megfelelő tagjai: 2; 6; 18 illetve 18; 6; 2.	2 pont
Összesen:	14 pont

	1	
3. megoldás		
A mértani sorozat tagjai: $\frac{a}{q}$; a ; aq .		
$\frac{a}{q} + a + aq = 26.$	1 pont	
A feladat szerint az egyes tagok értékét megnövelve kapjuk:		
$\left(\frac{a}{q} + 1\right) + (a+6) + (aq+3) = 36.$	3 pont	
A számtani sorozat tulajdonságai miatt $a + 6 = 12$.	2 pont	
Tehát $a = 6$.	1 pont	
$6 \cdot \left(\frac{1}{q} + q + 1\right) = 26$		
$3q^2 - 10q + 3 = 0$	2 pont	
$q_1 = \frac{1}{3}$	1 pont	
$q_2 = 3$	1 pont	
Tehát a keresett számtani sorozat első három tagja: 3; 12; 21,	1 pont	
illetve: 19; 12; 5.	1 pont	
Ezek megfelelnek a feladat feltételeinek.	1 pont	
Összesen:	14 pont	

4.			
a)			
A helyes parabola ábrázolása az adott		3 pont	Ha nem a megadott interval-
intervallumban.		5 pont	lumon ábrázol, akkor 2 pont.
			Helyes ábra esetén
	Összesen:	3 pont	magyarázat hiánya miatt ne
			vonjunk le pontot!

b)		
1. megoldás		
A parabola egy adott pontjában húzott érintő meredekségét itt az első derivált segítségével		Az első derivált helyes
kaphatjuk meg. $y' = 2x - 8$.	4 pont	megadásáért indoklás nélkül is jár a 4 pont.
Az érintési pont első koordinátájának		
behelyettesítésével: $y'(5) = 2 = m$.	2 pont	
$y = mx + b \qquad P(5; -4),$		Az y + 4 = 2 (x - 5) alakkal is
-4 = 10 + b,		dolgozhat.
b = -14.	2 pont	
Az érintő egyenlete: $y = 2x - 14$.	2 pont	
Összesen:	10 pont	

2. megoldás		
Az érintő nem párhuzamos az y-tengellyel, ezért		A gondolat ábrán való
egyenletét $y = mx + b$ alakban keressük.	1 pont	megjelenítése is elfogadható.
A $P(5; -4)$ koordinátáit behelyettesítve:		
-4=5m+b,		
b = -4 - 5m.	1 pont	
Visszahelyettesítve: $y = mx - 4 - 5m$.		
Ha a következő egyenletrendszernek egy		
megoldása van, akkor a keresett egyenes érintő		
lesz:	1 pont	
$y = x^2 - 8x + 11$	pont	
$y = x^2 - 8x + 11$ $y = mx - 4 - 5m$		
$mx - 4 - 5m = x^2 - 8x + 11$		
$x^2 - 8x - mx + 15 + 5m = 0$	1 pont	
$D = (-8 - m)^2 - 4(15 + 5m) = 0$	2 pont	
$m^2 - 4m + 4 = 0$	1 pont	
m=2	1 pont	
b = -14	1 pont	
Az érintő egyenlete: $y = 2x - 14$.	1 pont	
Összesen	10 pont	

Ha a vizsgázó az érintő egyenletét olyan tétel (ismeret) alapján írja fel, amely nem tartozik a vizsgakövetelményekhez, akkor a felhasznált tételre pontosan kell hivatkoznia. Ennek elmaradása esetén legfeljebb 8 pont adható.

II.

Az 5–9. feladatok közül a tanuló által megjelölt feladatot nem kell értékelni.

5.		
a)		
$x^2 - 6x + 9 = (x - 3)^2.$	1 pont	
Mivel ez minden valós x értékre nemnegatív, ezért		Magyarázó szöveg nélkül is
a legbővebb részhalmaz az R .	1 pont	jár az 1 pont.
Összesen:	2 pont	

b)		
$\sqrt{\left(x-3\right)^2} = \left x-3\right .$	2 pont	Ha nem jelöli az abszolútértéket, de esetszétválasztással indokol, akkor is jár a 2 pont.
$f(x) = \sqrt{x^2 - 6x + 9}$ 5 -5 -3 -1 1 3 5 8	3 pont	Ha elsőfokú függvényt ábrázol, legfeljebb 1 pontot kap. Ha a grafikon jó, de az intervallum nem, akkor 2 pont jár.
Összesen:	5 pont	

c)	
A: Hamis.	1 pont Az állítások igazságtartalmát
B: Hamis.	1 pont a tanuló által felrajzolt függ-
C: Igaz.	1 pont vény alapján kell eldönteni.
Ċ	sszesen: 3 pont

d)		
1. megoldás		
$\int_{-3}^{3} (x^2 - 6x + 9) dx = \left[\frac{x^3}{3} - 3x^2 + 9x \right]_{-3}^{3} =$	3 pont	
=(9-27+27)-(-9-27-27)=	2 pont	A jó eredményért, a számítás
=9-(-63)=72.	1 pont	részletezése nélkül is 3 pont adható.
Összesen:	6 pont	

2. megoldás		
$\int_{-3}^{3} (x^2 - 6x + 9) dx = \int_{-3}^{3} (x - 3)^2 dx =$	1 pont	
$= \left[\frac{(x-3)^3}{3} \right]_{-3}^3 =$	3 pont	
=0-(-72)=72.	2 pont	
Összesen:	6 pont	

írásbeli vizsga 0512 $$10\,/\,16$$ 2007. május 8.

6.			
a)			
10 kg leszedett szilvából kimagozás után 9,5 kg			
szilva lesz.	1 pont		
A 9,5 kg kimagozott szilvában 90% víz, míg 10%,			
azaz 0,95 kg a szárazanyag-tartalom.	1 pont		
A 10 kg nyers szilvából készült aszalt szilvában ez		Ha kiderül, hogy a száraz-	
a 0,95 kg a feltétel szerint a tömeg 95%-a, hiszen	2 pont	anyag-tartalom állandóságát	
csak 5%-a víz.		felismerte, akkor jár a 2 pont.	
Tehát keressük, hogy hány kg-nak a 95%-a lesz			
0,95 kg. Így adódik a 100%-ra 1 kg.	1 pont		
Azaz 10 kg szilvából valóban mindössze 1 kg	1 pont		
aszalt szilva lesz.			
Összesen:	6 pont		
A pontok akkor is járnak, ha a számolásból világosan kiderül a gondolatmenet.			

b)		
Ha x kg volt a termése, akkor a feltétel szerint:		Hibás egyenlet felírása elvi
$\frac{x}{2} \cdot 120 + \frac{x}{2} \cdot 0,1 \cdot 1400 = 286000.$	2 pont	hibának minősül.
x = 2200 kg volt a termése.	1 pont	Mértékegység nélkül ez a
		pont nem jár.
Összesen:	3 pont	

c)					
A:	150°	$\frac{150^{\circ}}{360^{\circ}} = \frac{5}{12} \text{ rész};$	(300 kg)		
B:	90°	$\frac{90^{\circ}}{360^{\circ}} = \frac{1}{4} \text{ rész};$	(180 kg)	1	Az arányok megállapításáért vagy a mennyiségek kiszámításáért jár az 1-1 pont.
C:	18°	$\frac{18^{\circ}}{360^{\circ}} = \frac{1}{20}$ rész;	(36 kg)	4 pont	
D:	102°	$\frac{102^{\circ}}{360^{\circ}} = \frac{17}{60}$ rész.	(204 kg)		
Az átla	agár a si	úlyozott közép:			
	$\frac{5.720}{12} + \frac{1}{12} \approx 185,$	720	$\frac{20}{0} + 260 \cdot \frac{17 \cdot 720}{60} =$	2 pont	Ha a megadott négy ár számtani közepét számolja, akkor nem kaphat pontot.
Tehát	az átlag	ár kb. 185 Ft.		1 pont	Mértékegység nélkül ez a pont nem jár.
			Összesen:	7 pont	
Minde	Minden helyesen (egészre, tizedre) kerekített érték elfogadható.				

7.		
(a)		
(6)		Ha szisztematikusan
	2 pont	felsorolja az összes
		háromelemű halmazt, akkor
		is teljes pontszám jár. Ha
		kihagy 1–3 esetet, akkor
		1 pont, ha ennél többet, akkor
		0 pont jár.
A háromelemű részhalmazok száma: 20.	1 pont	
Összesen:	3 pont	

b) Egy szám 5-tel osztható, ha nullára vagy ötre végződik.	1 pont	Ha ezt nem írja le, de a megoldásban felhasználja, akkor is jár ez a pont.
Nullára végződő hatjegyű számból 5! van.	1 pont	
Ötre végződő hatjegyű számból 4·4! van.	2 pont	Ha nem veszi figyelembe, hogy nullával nem kezdődhet a szám, akkor 0 pont jár.
Összesen: $5! + 4 \cdot 4! =$	1 pont	
= 120 + 96 = 216.	1 pont	
Összesen:	6 pont	

c)		
1. megoldás		
Komplementer halmaz segítségével számolható ki.	1 pont	Ha ezt nem írja le, de a megoldásban felhasználja, akkor is jár ez a pont.
Az összes hatjegyű szám: $5 \cdot 6^5$.	2 pont	Ha nem veszi figyelembe, hogy nullával nem kezdődhet a szám, akkor 1 pont jár.
Azok a hatjegyű számok, amelyekben nincs egyes: $4 \cdot 5^5$.	2 pont	Ha nem veszi figyelembe, hogy nullával nem kezdődhet a szám, akkor 1 pont jár.
Tehát: $5 \cdot 6^5 - 4 \cdot 5^5 =$	1 pont	
= 38 880 – 12 500 = 26 380 ilyen hatjegyű szám van.	1 pont	
Összesen:	7 pont	

írásbeli vizsga 0512 12 / 16 2007. május 8.

2. megoldás		
Az egyes lehetőségek felsorolása: a szám 6 db egyest, 5 db egyest, 1 db egyest tartalmaz.	1 pont	Ha ezt nem írja le, de a megoldásban felhasználja, akkor is jár ez a pont.
Azoknak a számoknak a darabszáma, amelyekben		
6 db egyes van: 1;		Ha csak három lehetőséget
5 db egyes van: 29;		számol ki jól, akkor 1 pontot
4 db egyes van: 350;		kap, minden további eset jó
3 db egyes van: 2250;		kiszámolásáért újabb 1 pont
2 db egyes van: 8125;		jár.
1 db egyes van: 15 625.	4 pont	
Ezek összege adja meg az eredményt.	1 pont	
26 380 ilyen hatjegyű szám van.	1 pont	
Összesen:	7 pont	

írásbeli vizsga 0512 13 / 16 2007. május 8.

8.	
(a)	
A dohányosok relatív gyakorisága	
az első cégnél $\frac{255}{800}$ (≈ 0.32),	2 pont
második cégnél: $\frac{680}{2000}$ (= 0,34).	2 pont
Összesen:	4 pont

b)		
Bármelyik 3 személy kiválasztása a 2000-es mintából egyformán lehetséges, ezért az összes esetek száma: $\binom{2000}{3}$ (=1331334000).	1* pont	
680 dohányosból kell kiválasztani egy személyt, ami 680-féleképpen tehető meg.	1* pont	
1320 nem dohányzóból kell kettőt kiválasztani, ez összesen $\binom{1320}{2}$ -féleképpen tehető meg (ami =870540-vel).	1* pont	
A kedvező esetek száma: $680 \cdot \binom{1320}{2}$.	1* pont	
A keresett valószínűség: $\frac{680 \cdot \binom{1320}{2}}{\binom{2000}{3}}.$	2 pont	A *-gal jelölt pontok akkor is járnak, ha a vizsgázó nem részletezi az indoklást.
Ennek közelítő értéke: 0,44.	1 pont	
Összesen:	7 pont	

(c)		
1 nem dohányos kiválasztásának a valószínűsége:		
1 - 0.34 = 0.66.	2 pont	
10 nem dohányos kiválasztásának a		A binomiális eloszlás
valószínűsége: 0,66 ¹⁰ ≈	2 pont	megfelelő tagjának felírása is
_		2 pont.
≈ 0,016 vagy 1,6%.	1 pont	
Összesen:	5 pont	
Ha a vizsgázó magad agy konkvát lakosságszámot (nl. 100 fő) ás azzal halvasan dolgozik		

Ha a vizsgázó megad egy konkrét lakosságszámot (pl. 100 fő), és azzal helyesen dolgozik, megoldására legfeljebb 3 pontot kapjon.

9.		
a)		
5 0 6		
A padlássíkra és a tetősíkra egyaránt merőleges síkmetszetből lehet a keresett szöget meghatározni.	2 pont	Világos ábra esetén magyarázó szöveg nélkül is megadható a 2 pont.
A keresztmetszeti ábrán a keresett szöget α -val		megaunaio a 2 poni.
jelölve, felírható, hogy tg $\alpha = \frac{5}{3}$,	1 pont	
ahonnan $\alpha \approx 59^{\circ}$.	1 pont	Mértékegység nélkül ez a pont nem jár.
Összesen:	4 pont	
Ha nem a két sík hajlásszögét számítja ki, akkor nem kaphat pontot.		

b)		
δ Keressük az ábrán s-sel jelölt szakasz hosszát.	2 pont	
Hasonlóság alapján: $\frac{1,9}{3-s} = \frac{5}{3}$.	2 pont	
Ebből $s = 1,86$.	1 pont	
A hasznos alapterület: $4s^2 \approx 13,84 \text{ m}^2$.	1 pont	Mértékegység nélkül ez a pont nem jár.
Összesen:	6 pont	

<u>c)</u>	1		
3,1 1,9-x 1,9-x 3 Az ábra jelöléseit használjuk, ahol $0 \le x \le 1,9$. Az ábra alapján $T = 4y^2$ -et (ami a hasznos			
alapterület) kell kifejeznünk x segítségével.	1 pont		
A két kisebb háromszög megfelelő szögei egyenlők, tehát hasonlóak. Így: $\frac{3,1}{y} = \frac{1,9-x}{3-y}$. Innen $y = \frac{9,3}{5-x}$.	1 pont	Magyarázó szöveg nélkül, jó rajz esetén is jár a 1 pont.	
Innen $y = \frac{9.3}{5-x}$.	1 pont		
Tehát a keresett összefüggés: $4y^2 = \left(\frac{18,6}{5-x}\right)^2$.	1 pont		
Ha $x \ge 1.9$, akkor 36 m ² a hasznos alapterület.	1 pont		
Összefoglalva:			
$T(x) = \begin{cases} \left(\frac{18,6}{5-x}\right)^2, & \text{ha} 0 \le x < 1,9\\ 36, & \text{ha} 1,9 \le x \le 5 \end{cases}$	1 pont	Megjegyzés: ha az első feltételnél $x \le 1,9$ szerepel és/vagy a második feltételnél $1,9 \le x$, akkor is 1 pont jár.	
Összesen:			
Megjegyzés: ha a vizsgázó helves összefűggéseket alkalmaz, de ábrát nem készít, akkor az			

Megjegyzés: ha a vizsgázó helyes összefüggéseket alkalmaz, de ábrát nem készít, akkor az ábráknál feltüntetett pontszámok értelemszerűen járnak.