Organoboron Compounds: Prevalent and Novel Applications

Jian-Qing Qi

Tsinghua University

2019.12.3

Contents

- Introduction
- 2 Boron-Substituted 1,3-Dienes
- 3 Organoboron Compounds for SET
- Metal-Free Borylation
- 6 Annex

Characteristics of Boron¹

Table: Atomic Radii

	В	С
$r_{vdw}(A)$		1.70
$r_{cov}(\text{Å})$	0.83	0.68

Table: Bond Dissociation Energy

Bonds	$D_{298K}^{\circ} (kJ \cdot mol^{-1})$
B-B	290
B-H	345.2 ± 2.5
C - C	618 ± 15.4
C - H	$\textbf{318.4} \pm \textbf{1.2}$
B-C	448 ± 29

¹David R. Lide. *CRC Handbook of Chemistry and Physics*. 90th Edition (CD-ROM Version 2010). Boca Raton, FL: CRC Press/Taylor and Francis.

Asymmetric Reduction of $C = C^2$ and $C = O^3$ Bonds

²Herbert C. Brown, Manoj C. Desai, and Prabhakar K. Jadhav. "Hydroboration. 61. Diisopinocampheylborane of high optical purity. Improved preparation and asymmetric hydroboration of representative cis-disubstituted alkenes". In: *The Journal of Organic Chemistry* 47.26 (1982). DOI: 10.1021/jo00147a004.

³Herbert C. Brown, J. Chandrasekharan, and P. V. Ramachandran. "Chiral synthesis via organoboranes. 14. Selective reductions. 41. Diisopinocampheylchloroborane, an exceptionally efficient chiral reducing agent". In: Journal of the American Chemical Society 110.5 (1988). DOI: 10.1021/ja00213a030.

Diastereoselective Allylboration⁴

Figure: Diastereoselective Allylboration

Suzuki-Miyaura Cross-Coupling

Tandem Diels-Alder Cycloaddition

Figure: A Module Figure

The diastereoselectivity of this two-step process is very high, that is why this process is very important for generating multiple stereocentres from rather simple starting materials.⁵

A Synthetic Example⁶

⁶Alexandre Cannillo et al. "Fast Synthesis of Complex Enantiopure Heterocyclic Scaffolds by a Tandem Sequence of Simple Transformations on -Hydroxyaldehydes". In: Chemistry – A European Journal 19.28 (2013). 4D601: 10.1002/chēm 2013@1712; Q (2013).

Latest application of B₂pin₂⁷

$$\begin{array}{c} \text{RO} \\ \text{B} \\ \text{RO} \end{array} \qquad \begin{array}{c} \text{O} \\ \text{B} \\ \text{O} \end{array} \qquad \begin{array}{c} \text{O} \\ \text{B} \\ \text{O} \end{array} \qquad \begin{array}{c} \text{O} \\ \text{B} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \end{array} \qquad \begin{array}{c} \text{D} \\ \text{D} \\$$

⁷Li Zhang and Lei Jiao. "Super electron donors derived from diboron". In: *Chemical Science* 9.10 (2018). DOI: 10.1039/C8SC00008E. 4 D F 4 P F F F F F F

Synthetic Applications of the New Method

When applied with B_2pin_2 , p-PhPy, MeOK, the following reactions can take place⁸:

⁸Li Zhang and Lei Jiao. "Pyridine-Catalyzed Radical Borylation of Aryl Halides". In: Journal of the American Chemical Society 139.2 (2017). DOI: 10.1021/jacs.6b11813.

Mechanisms of this Method

11 / 17

Metal-Free Directed C—H Borylation⁹

yield: 78%

yield: 99%

⁹ Jiahang Lv et al. "Metal-free directed C-H bond activation and borylation". In: Nature (2019). DOI: 10.1038/s41586-019-1640-2.

Mechanism of this Reaction

Acknowledgments

Associate Prof. Jiao

Associate Prof. Chen

Authors of the brilliant works mentioned above

Annex

This slide and articles cited in the slide can be found here:

https://github.com/Alexander-Qi/organoboron/releases/tag/1.1

Or Scan this QRcode:

IPC₂B-Cl Related Information

Boryl-pyridine species and their interconversion

