日本国特許庁 JAPAN PATENT OFFICE

10.11.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 8月 6日

出願番号 Application Number:

特願2003-287820

[ST. 10/C]:

 $[\ J\ P\ 2\ 0\ 0\ 3\ -\ 2\ 8\ 7\ 8\ 2\ 0\]$

REC'D 27 NOV 2003

WIPO PCT

出 願 人
Applicant(s):

三菱レイヨン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年10月31日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願 【整理番号】 P030992

【提出日】 平成15年 8月 6日 【あて先】 特許庁長官 殿

【国際特許分類】 H01B 5/14

【発明者】

【住所又は居所】 広島県大竹市御幸町20番1号 三菱レイヨン株式会社大竹事業

所内

【氏名】 菅本 秀征 【発明者】

【住所又は居所】

広島県大竹市御幸町20番1号 三菱レイヨン株式会社大竹事業

所内

【氏名】 畠山 宏毅

【特許出願人】

【識別番号】 000006035

【氏名又は名称】 三菱レイヨン株式会社

【代理人】

【識別番号】 100123788

【弁理士】

【氏名又は名称】 宮崎 昭夫 【電話番号】 03-3585-1882

【選任した代理人】

【識別番号】 100088328

【弁理士】

【氏名又は名称】 金田 暢之

【選任した代理人】

【識別番号】 100106297

【弁理士】

【氏名又は名称】 伊藤 克博

【選任した代理人】

【識別番号】 100106138

【弁理士】

【氏名又は名称】 石橋 政幸

【手数料の表示】

【予納台帳番号】 201087 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【請求項1】

炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル単位3~30質量 %と、炭素数1~4のアルキル基を有するメタクリル酸アルキルエステル単位を含むモノ エチレン性不飽和単量体単位2~35質量%と、2個以上の(メタ)アクリロイル基を有 する多官能(メタ)アクリレート単位35~95質量%とを含むアクリル系樹脂。

【請求項2】

多官能(メタ)アクリレート単位が、下記一般式(1)で示される化合物から誘導され る単位である請求項1記載のアクリル系樹脂。

【化1】

(式中、 R^1 はHまたは CH_3 を示す。)

【請求項3】

請求項1または2記載の樹脂からなるアクリル系樹脂板。

【請求項4】

炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル3~30質量%と 、炭素数1~4のアルキル基を有するメタクリル酸アルキルエステルを含むモノエチレン 性不飽和単量体2~35質量%と、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート35~95質量%とを含む重合性混合物を重合硬化する工程を有する アクリル系樹脂板の製造方法。

【請求項5】

多官能(メタ)アクリレートが、下記一般式(1)で示される化合物である請求項4記 載のアクリル系樹脂板の製造方法。

【化2】

$$CH_2 = CCOCH_2$$

$$CH_2 OCC = CH_2$$

$$CH_2 OCC = CH_2$$

$$CH_2 OCC = CH_2$$

$$CH_2 OCC = CH_2$$

(式中、R¹はHまたはCH3を示す。)

【請求項6】

請求項3記載のアクリル系樹脂板の少なくとも一表面上に透明導電性膜を形成してなる アクリル系樹脂積層体。

【請求項7】

透明導電性膜がITO膜である請求項6記載のアクリル系樹脂積層体。

【請求項8】

請求項6または7記載のアクリル系樹脂積層体を有するタッチパネル用透明電極板。

【請求項9】

荷重たわみ温度が150℃以上である請求項8記載のタッチパネル用透明電極板。

【請求項10】

上部透明電極板と下部透明電極板とを備え、該上部透明電極板および該下部透明電極板 が、透明基板と該透明基板の少なくとも一表面上に形成された透明導電性膜とを有する透

明電極板であり、該上部透明電極板と該下部透明電極板が互いの透明導電性膜が対向するように間隔をおいて配置されたタッチパネルであって、該上部透明電極板および該下部透明電極板の少なくとも一方が、請求項8または9記載のタッチパネル用透明電極板であるタッチパネル。

【書類名】明細書

【発明の名称】アクリル系樹脂、樹脂板およびその製造方法、ならびに、タッチパネル用 透明電極板およびタッチパネル

【技術分野】

[0001]

本発明は、耐熱性、外観、形状安定性が良好なアクリル系樹脂、このアクリル系樹脂からなる樹脂板およびその製造方法、ならびに、耐熱性、透明性、導電性膜密着性に優れた透明基板を有するタッチパネル用透明電極板およびこの透明電極板を有するタッチパネルに関する。

【背景技術】

[0002]

<アクリル系樹脂板>

アクリル系樹脂板は、その優れた光学特性により、レンズ、自動車部品、照明部品、各種電子ディスプレイ等に使用されている。しかし、アクリル系樹脂板は高温で加熱処理加工が行われる場合は耐熱性が不十分であり、かつ吸水により反り等の形状変化が生じ易いという欠点がある。

[0003]

アクリル系樹脂板の耐熱性を改良する技術として、メタクリル酸メチルの重合時に多官能モノマーを添加することにより、架橋構造を導入する方法がある。例えば、主に耐熱性と耐衝撃性を改良する目的で、メタクリル酸メチル単独重合体とメタクリル酸メチルとからなる組成物に、アルキレングリコールの多官能(メタ)アクリレートを添加して鋳込重るする方法が提案されている(例えば、特許文献1参照)。また、耐熱性や外観を改良する目的で、メタクリル酸メチルと多官能(メタ)アクリレートを含む組成物を重合する方法が提案されている(例えば、特許文献2参照)。しかし、これらの方法では、通常は十分な耐熱性、形状安定性を得ることができない。これらの方法で十分な耐熱性を得るためには、多官能(メタ)アクリレートを大量に添加する必要があり、その際は得られる樹脂成形品の外観が悪化する傾向がある。さらに、得られる樹脂成形品には、吸水により反りが発生する傾向もある。

[0004]

また、耐熱性や外観を改良する目的で、アルキルメタクリレート単量体および (メタ) アクリレート系架橋剤を配合して、その一部を重合してなるアルキルメタクリレート系シラップと、架橋剤とからなる組成物を鋳込重合する方法が提案されている (例えば、特許文献3参照)。しかし、この方法では、架橋剤を配合してシラップを調製する際にゲル化が起こり易い。

[0005]

また、外観を改良する目的で、架橋剤とアルキルメタクリレート系重合体の比率を一定領域に規定する方法が提案されている(例えば、特許文献 4 参照)。しかし、ここでは、多官能性単量体が 2 0 質量%を超える実施の記載は無く、この方法では通常は十分な耐熱性を得ることができない。さらに、耐熱性が高くかつ外観に優れた樹脂板を得るためには組成上の制約があり、それが工業化する際の支障となる。

[0006]

また、メチルメタクリレートを主体とする単量体とアリル(メタ)アクリレートとを、10時間半減期温度が75℃を境に高いものと低いものでその差が5℃以上隔たっている少なくとも2種のラジカル重合開始剤を用いて注型重合するアクリル系樹脂板の製造方法が提案されている(例えば、特許文献5参照)。しかし、この方法ではアリル基の重合性が悪く、十分な耐熱性が得られない傾向にある。

[0007]

<タッチパネル用透明電極板およびタッチパネル>

液晶やプラウン管等の表示装置上に透明なタッチパネルを配置した表示装置一体型入力 装置は、その表示画面を入力ペンや指で触れることにより、タッチパネルが入力装置とし

[0008]

抵抗膜方式のアナログタッチパネルは、一般に、上部透明電極板と下部透明電極板とを備え、上部および下部透明電極板が、透明基板とこの透明基板上に形成された透明導電性膜とを有する透明電極板であり、上部および下部透明電極板が、互いの透明導電性膜が対向するように間隔をおいて配置された構成を有する。

[0009]

このような構成を有するタッチパネルの上部透明電極板を入力ペンまたは指で押圧すると、上部透明電極板が撓んでその押圧点において上部および下部透明電極板の透明導電性膜同士が接触する。そして、この接触点の座標が電気抵抗の測定によって検知されて、入力情報が読み取られる。

[0010]

このようなタッチパネルの透明電極板としては、一般に、上部透明電極板には樹脂板を、下部透明電極板にはガラス板または樹脂板を透明基板として使用し、これら透明基板の表面上に真空蒸着法、スパッタリング法、CVD (chemical vapor deposition) 法、イオンプレーティング法等の真空成膜法により透明導電性膜を形成したものが使用されている。

[0011]

しかしながら、ガラス板を透明基板として使用した下部電極板は、タッチパネルの組立および運搬の際、或いはペンまたは手で押圧する際に割れ易い、薄型化が困難である、軽量化が困難である等の問題がある。

[0012]

一方、樹脂板を透明基板として使用すると、ガラス板を透明基板として使用した場合に生ずる基板の破損、薄型化および軽量化の問題は容易に解決できる。実際、樹脂板を透明基板として使用した上部および下部電極板も種々検討されている(例えば、特許文献 6、7、8参照)。しかしながら、これら特許文献 6、7、8で開示されているポリエチレンテレフタレート樹脂等の樹脂板を用いた透明基板は、透明性が不十分である。また、耐熱性が不足しているため、透明基板上に透明導電性膜を形成させる際に熱変形し易い、透明導電性膜の密着性が低く耐久性が不十分であるため透明基板表面を更に加工する必要がある等の問題がある。

[0013]

また、メタクリル酸メチルと、多官能(メタ)アクリレートであるネオペンチルグリコールジメタクリレートとを単量体として重合して得たメタクリル系樹脂成形材料が開示されている(例えば、特許文献 9参照)。しかし、ここでは、このメタクリル系樹脂成形材料がタッチパネル用透明電極板の透明基板として利用できることについて全く開示されておらず、如何なる組成のものがタッチパネル用透明電極板として好適かは全く示唆されていない。さらに、特許文献 9 に記載のメタクリル系樹脂成形材料は、重合率が 4~6 2 質量%と低いので、この成形材料を製品とする際にはさらに圧縮成形、押出成形等の工程によって重合率を高くすることが必要である。このためひずみが発生し、タッチパネルへの使用には適していない。

【特許文献1】特公平4-75241号公報

【特許文献2】特開2002-265538号公報

【特許文献3】特開昭63-30510号公報

【特許文献4】特開昭61-225207号公報

【特許文献5】特開平9-25305号公報

【特許文献6】特開2000-276301号公報

【特許文献7】特開2001-14951号公報

【特許文献8】特開2001-34418号公報

【発明の開示】

【発明が解決しようとする課題】

[0014]

本発明の目的は、耐熱性、外観、形状安定性が良好なアクリル系樹脂、この樹脂からなるアクリル系樹脂板およびその製造方法を提供することにある。さらに、本発明の目的は、耐熱性、透明性、薄膜密着性に優れた透明基板を有するタッチパネル用透明電極板、およびこの透明電極板を有するタッチパネルを提供することにある。

【課題を解決するための手段】

[0015]

本発明は、炭素数 $8\sim20$ のアルキル基を有するメタクリル酸アルキルエステル単位 $3\sim30$ 質量%と、炭素数 $1\sim4$ のアルキル基を有するメタクリル酸アルキルエステル単位 を含むモノエチレン性不飽和単量体単位 $2\sim35$ 質量%と、 2 個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート単位 $35\sim95$ 質量%とを含むアクリル系樹脂である。

[0016]

さらに本発明は、この樹脂からなるアクリル系樹脂板である。

[0017]

さらに本発明は、炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル3~30質量%と、炭素数1~4のアルキル基を有するメタクリル酸アルキルエステルを含むモノエチレン性不飽和単量体2~35質量%と、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート35~95質量%とを含む重合性混合物を重合硬化する工程を有するアクリル系樹脂板の製造方法である。

[0018]

さらに本発明は、上記アクリル系樹脂板の少なくとも一表面上に透明導電性膜を形成してなるアクリル系樹脂積層体である。

[0019]

さらに本発明は、上記アクリル系樹脂積層体を有するタッチパネル用透明電極板である

[0020]

さらに本発明は、上部透明電極板と下部透明電極板とを備え、該上部透明電極板および該下部透明電極板が、透明基板と該透明基板の少なくとも一表面上に形成された透明導電性膜とを有する透明電極板であり、該上部透明電極板と該下部透明電極板が互いの透明導電性膜が対向するように間隔をおいて配置されたタッチパネルであって、該上部透明電極板および該下部透明電極板の少なくとも一方が、上記タッチパネル用透明電極板であるタッチパネルである。

【発明の効果】

[0021]

本発明のアクリル系樹脂、この樹脂からなるアクリル系樹脂板およびその製造方法においては、特定の組成を採用しているので、アクリル系樹脂が本来有する優れた光学特性を維持したまま、さらに耐熱性、外観、形状安定性を大きく改善できる。また、このアクリル系樹脂板上にITO膜等の透明導電膜を形成してなるアクリル系樹脂積層体は、タッチパネル用透明電極板として非常に有用である。

[0022]

本発明のタッチパネル用透明電極板は、アクリル系樹脂が本来有する優れた光学特性を維持したまま、無機薄膜の成膜工程、電極の熱硬化工程に耐え得る耐熱性を持ち、薄膜密着性も極めて優れているので、樹脂基板の表面処理も不要となる。さらに、タッチパネル用透明電極板の基板に樹脂板が使用できることで、タッチパネルの破損防止、軽量化、薄肉化を容易にすることができ、従来のガラス板の使用においては成し得なかった用途、形状への適用が可能となる。

[0023]

<アクリル系樹脂および樹脂板>

本発明のアクリル系樹脂は、炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル単位3~30質量%と、炭素数1~4のアルキル基を有するメタクリル酸アルキルエステル単位を含むモノエチレン性不飽和単量体単位2~35質量%と、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート単位35~95質量%とを含むものである。

[0024]

ここで各単位の含有量は、樹脂を構成する1種または2種以上の重合体の全体的な単量体単位の割合を示す値である。すなわち本発明のアクリル系樹脂は、上述の各単位を構成する3つの単量体を一緒に共重合して得た共重合体1種からなる樹脂であってもよいし、また、上述の各単位を構成する3つの単量体のうちの少なくとも1つの一部を予め重合体とし、その重合体の存在下に残りの単量体を重合して得た樹脂であってもよい。後者の場合の樹脂は、例えばメタクリル酸アルキルエステルの(共)重合体と所望の単量体とを含んでなるシラップを重合して得ることができる。

[0025]

炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル単位の含有量は、 樹脂中、3~30質量%である。この含有量が3質量%以上であると形状安定性が向上し、30質量%以下であると耐熱性が向上する傾向がある。この含有量は、さらに5~20 質量%であることが好ましい。

[0026]

炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル単位としては、メタクリル酸2ーエチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸イソステアリル等から誘導される単位が挙げられる。これらは併用することもできる。

[0027]

炭素数 $1\sim4$ のアルキル基を有するメタクリル酸アルキルエステル単位を含むモノエチレン性不飽和単量体単位の含有量は、樹脂中、 $2\sim3$ 5質量%である。この含有量が2質量%以上であると外観が向上し、35質量%以下であると耐熱性および形状安定性が向上する傾向がある。この含有量は、さらに $5\sim2$ 5質量%であることが好ましい。また、炭素数 $1\sim4$ のアルキル基を有するメタクリル酸アルキルエステル単位を含むモノエチレン性不飽和単量体単位の総量を100質量部とした場合、炭素数 $1\sim4$ のアルキル基を有するメタクリル酸アルキルエステル単位の割合は50質量部以上であることが好ましく、それ以外のモノエチレン性不飽和単量体単位の割合は50質量部以下であることが好ましい。この割合にすると、透明性が向上する傾向があり、また耐熱性がより向上することがある。

[0028]

炭素数 $1\sim4$ のアルキル基を有するメタクリル酸アルキルエステル単位としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸 n-プロピル、メタクリル酸 t- でイソプロピル、メタクリル酸 t- でチル等から誘導される単位が挙げられる。これらは併用することもできる。中でも、メタクリル酸メチル単位が特に好ましい。

[0029]

炭素数 $1\sim4$ のアルキル基を有するメタクリル酸アルキルエステル単位以外のモノエチレン性不飽和単量体単位としては、炭素数 $8\sim2$ 0のアルキル基を有するメタクリル酸アルキルエステル単位以外の各種のものを挙げることができる。例えば、スチレン、 α ーメチルスチレン、アクリロニトリル、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸nープチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸インボルニル、メタクリル酸グリシジル、メタクリル酸テトラヒドロ

[0030]

2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート単位の含有量は、樹脂中、35~95質量%である。この含有量が35質量%以上であると耐熱性が向上し、95質量%以下であると外観が良好になる傾向がある。この含有量は、45~90質量%であることが好ましく、50~85質量%であることがより好ましい。

[0031]

2個以上の(メタ) アクリロイル基を有する多官能(メタ) アクリレートとは、2個以上のアクリロイル基を有する多官能アクリレート、または2個以上のメタクリロイル基を有する多官能メタクリレートである。

[0032]

多官能(メタ)アクリレートとしては、例えば、エチレングリコールジメタクリレート、エチレングリコールジアクリレート、1,3-プロパンジオールジメタクリレート、1,3-プロパンジオールジメタクリレート、1,4-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、2-メチルー1,3-プロパンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ネオペンチルグリコールジアクリレート、2,2'-ジメチルー1,4-ブタンジオールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリメタクリレート、ドリメチロールプロパントリメタクリレート、ベンタエリスリトールテトラメタクリレート、ジャンタエリスリトールへキサアクリレート、ジペンタエリスリトールへキサメタクリレート、ジペンタエリスリトールへキサアクリレート、下記一般式(1)

【0033】 【化1】

$$CH_2 = CCOCH_2$$

$$CH_2 = CCOCH_2$$

$$CH_2 OCC = CH_2$$

$$CH_2 OCC = CH_2$$

$$CH_2 OCC = CH_2$$

(式中、R¹はHまたはCH3を示す。)

で示される化合物等が挙げられる。これらは併用することもできる。

[0034]

これらの中では、一般式(1)で示される化合物単位が好ましい。一般式(1)で示される化合物としては、例えば、ビス(オキシメチル)トリシクロ $[5,2,1,0^{2.6}]$ デカンジアクリレート、ビス(オキシメチル)トリシクロ $[5,2,1,0^{2.6}]$ デカンジメタクリレートが挙げられる。これらは併用することもできる。

[0035]

本発明のアクリル系樹脂は、以上説明した各単量体単位を主たる構成単位として含む樹脂である。この樹脂はアクリル系樹脂板として使用することが好ましい。

[0036]

本発明のアクリル系樹脂板は、アクリル系樹脂の優れた光学特性を維持したまま、耐熱性、外観、製造時の剥離工程における板割れ防止性が大きく改良されたものである。

[0037]

このようなアクリル系樹脂板は、例えば、白熱灯カバー、ハロゲンランプカバー等の発 熱光源の周辺材料、衣類乾燥機、電子レンジ、オーブン等の加熱家電機器の部品、眼鏡レ ンズ、サングラスレンズ、カメラ用レンズ、ビデオカメラ用レンズ、ゴーグル用レンズ、

[0038]

本発明のアクリル系樹脂板の製造方法は、炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル3~30質量%と、炭素数1~4のアルキル基を有するメタクリル酸アルキルエステルを含むモノエチレン性不飽和単量体2~35質量%と、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート35~95質量%とを含む重合性混合物を重合硬化する工程を有する。ここで用いる各単量体の具体例等は上述の通りである。

[0039]

重合性混合物の重合硬化方法としては、従来より知られる各種の方法を用いることができる。特に、鋳型に重合性混合物を注入し、重合硬化して、鋳型から剥離する、いわゆる 鋳込重合法が好ましい。

[0040]

[0041]

以下に、炭素数 $8 \sim 20$ のアルキル基を有するメタクリル酸アルキルエステルとしてメタクリル酸イソステアリル、炭素数 $1 \sim 4$ のアルキル基を有するメタクリル酸アルキルエステルとしてメタクリル酸メチルを使用する鋳込重合の方法を例示する。ただし、本発明はこれに限定されない。

[0042]

まず、メタクリル酸イソステアリル、メタクリル酸メチル、多官能(メタ)アクリレート、必要に応じてメタクリル酸メチル単位を含有する(共)重合体、更に、必要に応じて共重合可能な他のモノエチレン性不飽和単量体を吸引瓶中に仕込み、攪拌して混合物とする。その混合物にラジカル重合開始剤を添加し、真空脱気を行う。この混合物を、一対の強化ガラスシートにガスケットを挟んで構成された鋳型に注入し、加熱炉に入れて $40 \sim 70 \text{ Cr} 2 \sim 5$ 時間、 $100 \sim 150 \text{ Cr} 1 \sim 6$ 時間重合硬化を行い、鋳型から剥離してアクリル系樹脂板を得ることができる。

[0043]

この強化ガラスシートに代えて、例えば、鏡面SUSシート、表面に細かな凹凸を付けたガラスシート、対向して走行する鏡面SUS製のエンドレスベルトを鋳型として使用することもできる。また、重合温度、時間は、所望に応じて適宜選択すればよい。

[0044]

本発明のアクリル系樹脂板の板厚は、 $0.5 \sim 5 \,\mathrm{mm}$ であることが好ましい。板厚が $0.5 \,\mathrm{mm}$ 以上であると、塊状重合により製板する場合、アクリル系樹脂板を鋳型から剥離させる時に割れが発生し難くなる傾向がある。また、 $5 \,\mathrm{mm}$ 以下であると、重合時に板割れし難くなる傾向がある。

[0045]

重合性混合物は、上述した各成分を主成分として含むものであるが、必要に応じて、さらに着色剤、離型剤、酸化防止剤、安定剤、帯電防止剤、抗菌剤、難燃剤、耐衝撃改質剤、光安定剤、紫外線吸収剤、光拡散剤、重合禁止剤、テルピノレン等の重合調節剤、連鎖

[0046]

<透明導電性膜>

本発明のアクリル系樹脂板は、その少なくとも一表面上に透明導電性膜を形成して、アクリル系樹脂積層体とすることができる。この透明導電性膜としては、透明かつ導電性の 薄膜であればよい。例えば、無機薄膜や有機高分子薄膜を使用できる。

[0047]

無機薄膜の材料としては、例えば、酸化錫、酸化インジウム、ITO(錫添加酸化インジウム)等の透明金属酸化物が挙げられる。中でも、ITOが好ましい。また、有機高分子薄膜の材料としては、ポリイソチアナフテン等が挙げられる。

[0048]

また、本発明のアクリル系樹脂板上の少なくとも一表面上にITO等の透明導電膜を形成したアクリル系樹脂積層体は、透明導電材の用途に利用可能である。例えば、コンデンサ、抵抗体等の電気部品回路材料、電子写真や静電記録等の複写用材料、液晶ディスプレイ用、エレクトロクロミックディスプレイ用、エレクトロルミネッセンスディスプレイ用、タッチパネル用等の信号入力用透明電極、太陽電池、光増幅器等の光電変換素子に、その他、帯電防止用部材、電磁波遮蔽用部材、面発熱体、センサー等の各種用途に用いることができる。中でも、タッチパネル用透明電極板として利用することが好ましい。

$[0\ 0.4\ 9]$

< タッチパネル用透明電極板>

本発明のタッチパネル用透明電極板は、透明基板としての本発明のアクリル系樹脂板と、このアクリル系樹脂板の少なくとも一表面上に形成された透明導電性膜とを有する。アクリル系樹脂板の上に透明導電性膜を成膜する方法としては、従来より知られる各種の成膜法を使用できる。成膜法の例としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法等の真空成膜法が挙げられる。ここで、ITO薄膜のスパッタリング法による成膜の具体例を説明する。まず、洗浄工程において純水またはアルカリ水で透明基板を洗浄し、大気中で120℃以上、好ましくは120~130℃の温度で1~4時間乾燥する。そして、真空下、100~140℃、好ましくは120℃の温度においてITOのスパッタリング処理を施す。その後、電極およびリード電極を銀ペーストにて塗布し、130~170℃、好ましくは150℃の温度において硬化する。

[0050]

タッチパネル用透明電極板は、荷重たわみ温度が150 $\mathbb C$ 以上であることが好ましい。荷重たわみ温度が150 $\mathbb C$ 以上であれば、銀ペーストを硬化する際に樹脂基板が変形し難くなる傾向がある。なお、透明電極板の荷重たわみ温度は、透明導電性膜の厚みが 1μ m以下と薄い場合は、透明電極板を構成するアクリル系樹脂板の荷重たわみ温度と同じとなる。したがって、この場合は、アクリル系樹脂板の荷重たわみ温度を測定して、それを透明電極板の荷重たわみ温度としても差し支えない。

[0051]

タッチパネル用透明電極板に使用するアクリル系樹脂板の厚さは、 $0.5 \sim 2 \, \mathrm{mm}$ が好ましく、 $0.5 \sim 1 \, \mathrm{mm}$ がより好ましい。また透明導電性膜の厚さは、 $1.0 \sim 5.0 \, \mathrm{nm}$ が好ましく、 $2.5 \sim 4.0 \, \mathrm{nm}$ がより好ましい。これら範囲内の厚さを採用すれば、ガラス基板を使用したタッチパネル用透明電極板と比べて軽量化、薄肉化を図ることができる。

[0052]

タッチパネル用透明電極板に使用するアクリル系樹脂板は無着色であることが好ましい。また、透明導電性膜の無い側に反射防止膜を形成することもできる。タッチパネル用透明電極板の厚みが1mmである場合、その全光線透過率は、JIS-K7361に示される全光線透過率の測定法に準拠した値で、91%以上であることが好ましい。全光線透過率が91%以上であれば、タッチパネル用透明電極板として充分な透明性を得ることができる。

[0053]

<タッチパネル>

本発明のタッチパネルは、上部透明電極板と下部透明電極板とを備え、該上部透明電極板および該下部透明電極板が、透明基板と該透明基板の少なくとも一表面上に形成された透明導電性膜とを有する透明電極板であり、該上部透明電極板と該下部透明電極板が互いの透明導電性膜が対向するように間隔をおいて配置されたタッチパネルであって、該上部透明電極板および該下部透明電極板の少なくとも一方が、本発明のタッチパネル用透明電極板であることを特徴とする。

[0054]

以下、図 $1 \sim 3$ を用いて、本発明のタッチパネル用透明電極板およびそれを用いたタッチパネルの好適な例を説明する。図1 は本発明のタッチパネル用透明電極板の一例を示す模式的断面図であり、図2 はその模式的平面図である。また、図3 は、図1 および図2 で示した透明電極板を下部透明電極板として使用したタッチパネルの一例を示す模式的断面図である。

[0055]

図3に示すタッチパネルは、下部透明電極板1と上部透明電極板7とがスペーサー6を介して対向して配置された構造を有する。下部透明電極板1は、図1および図2に示すように、透明基板2と、この透明基板2の一表面上に形成された透明導電性膜3と、透明導電性膜3上の端部に電極4を有し、電極4にはリード電極5が接続されている。また、上部透明電極板7も下部透明電極板1と同様な構造を有している。すなわち上部透明電極板7は、同様に透明基板8、透明導電性膜9、電極10等を有している。

[0056]

下部透明電極板1と上部透明電極板7は、互いの透明導電性膜3、9を内側とし、両透明電極板1、7の間にドットスペーサー11を介在させ、かつ両電極4、10の方向が交差するように、スペーサー6を介して一定の間隔をおいて配置されている。このような構成を有するタッチパネルは、上部透明電極板7の上からペンや指で押圧すると、上部透明電極板7が変形して下部透明導電性膜3と上部透明導電性膜9が接触導通し、入力が完了する。

[0057]

本発明のタッチパネル用透明電極板は、透明性が高く、かつ剛性も高いので、下部透明電極板1として使用することが好適である。図1~図3は、そのような例を示している。ただし、本発明はこれに限定されない。例えば、本発明のタッチパネル用透明電極板を、上部透明電極板7として使用しても良いし、下部透明電極板1および上部透明電極板7の双方に使用しても良い。

【実施例】

[0058]

以下、実施例により本発明を更に具体的に説明する。なお、以下の記載において「部」 は質量基準である。また、表中の各評価は次の方法に従い実施した。

[0059]

- (1) アクリル系樹脂板の評価:
- (1-1) 荷重たわみ温度:

アクリル系樹脂板の耐熱性を評価する為に、JIS-K7207に示される測定法に準拠して、荷重たわみ温度を測定した。

[0060]

(1-2) ヘーズ:

アクリル系樹脂板の光学特性を評価する為に、JIS-K7136に示される測定法に 準拠して、ヘーズを測定した。

[0061]

(1-3) 外観:

アクリル系樹脂板の外観を評価する為に、サンプルを10枚作製し、目視により、白化、ヒケ等の欠陥の無いサンプル数をn/10で示した。

[0062]

(2) アクリル系樹脂積層体の評価:

(2-1) 反り量:

アクリル系樹脂積層体の形状安定性を評価する為に、形状安定性試験を行って、その反り量を測定した。具体的には、190mm×190mm×1.0mm(厚)のサンプルを、23℃、50%RHの恒温恒湿室に1日放置し、次いで60℃、90%RHの恒温恒湿機中にクリップで吊して10日間放置し、再び23℃、50%RHの恒温恒湿室に1時間放置し、その後冷却して、反り量を測定した。この反り量の測定においては、サンプルを上に凸の状態になる向きに水平な盤上に置き、盤面と、盤面から最も速い部分の下側までの距離 a(mm)をノギスで測定し、その距離のサンプル長さに対する割合を反り量(%)とした。即ち、

反り量(%) = $a/190 \times 100$

となる。ここで、透明導電性膜側に凸の反りの場合、反り量をプラス値とし、透明導電性 膜側に凹の反りの場合、反り量をマイナス値として表した。

[0063]

- (3) タッチパネル用透明電極板の評価:
- (3-1)全光線透過率:

タッチパネル用透明電極板の透明性を評価する為に、JIS-K7361に示される測定法に準拠して、全光線透過率を測定した。

[0064]

(3-2) 基板の変形:

アクリル系樹脂板(基板)の変形の有無について、透明導電性膜(ITO)を成膜する前の基板の乾燥、次いでスパッタリング法による成膜、成膜後の銀ペースト塗布硬化という一連のタッチパネル用透明電極板の製造工程において肉眼で観察し、アクリル系樹脂板に変形が無い場合は「〇」(良好)と評価し、変形が生じた場合は「×」(不良)と評価した。

[0065]

(3-3) ITOの状態:

透明導電性膜(ITO)の状態について、スパッタリング法による成膜、成膜後の銀ペースト塗布硬化という一連のタッチパネル用透明電極板の製造工程において観察し、光学的な歪みやクラック等が認められない場合は「〇」(良好)と評価し、光学的な歪みやクラックが認められる場合は「×」(不良)と評価した。

[0066]

(3-4) 密着性:

カッターを使用して、タッチパネル用透明電極板の透明導電性膜に $1 \, \mathrm{mm}$ 間隔で縦・横 $1 \, 1 \, \mathrm{a}$ 本ずつ格子状に、樹脂基板まで達するように傷を入れ、 $1 \, \mathrm{x} \, 1 \, \mathrm{mm}$ の升目 $1 \, 0 \, 0$ 個を作製した。この升目の上に粘着テープ(ニチバン製、商品名セロハンテープ)をよく密着させ、 $4 \, 5$ 手前方向に急激に剥した。このとき、透明導電性膜が剥離せずに残存した升目の数 $(n) \, \mathrm{e} \, \mathrm{n} / 1 \, 0 \, 0$ として表示した。 $n \, \mathrm{o} \, \mathrm{d} \, \mathrm{d} \, \mathrm{c} \, \mathrm{d} \, \mathrm{c} \, \mathrm{d} \, \mathrm{c} \, \mathrm{d} \, \mathrm{c}$ 人は $9 \, 6 \, \mathrm{d} \, \mathrm{d} \, \mathrm{d} \, \mathrm{c} \, \mathrm{d} \, \mathrm{d}$

[0067]

<アクリル系樹脂板の製造>

[実施例1]

メタクリル酸イソステアリル(新中村化学工業社製「NKエステルS-1800M」)10 部と、メタクリル酸メチル10 部と、ビス(オキシメチル)トリシクロ $[5,2,1,0^{2,6}]$ デカンジメタクリレート80 部との混合物 100 部当たり、重合開始剤として2,2'ーアゾビス(2,4ージメチルー4ーメトキシバレロニトリル)0.05 部、t-ヘキシルパーオキシピバレート0.05 部、t-ヘキシルパーオキシピバレート0.05 部、t-ヘキシルパーオキシピバレート0.05 部、t-ヘキシルパーオキシピバレート0.05 部、t-ヘキシルパーオキシイソプロピルモノカーボネート0.05 部、テルピノレン0.03 部を混合し、吸引瓶中に仕込んで攪拌し、真空脱

気を行い、重合性混合物を得た。

[0068]

この重合性混合物を、間隔 $1.7 \, \mathrm{mm}$ の一対の強化ガラスシートにガスケットを挟んで構成された鋳型に注入し、気泡を除き、加熱炉に入れて、 $5.5 \, \mathrm{C}$ で $1 \, \mathrm{時}$ 間、続いて $1.3.5 \, \mathrm{C}$ で $3 \, \mathrm{時}$ 間重合を行った。その後、鋳型を $4.0 \, \mathrm{C}$ 以下に冷却して剥離し、 $1.3.0 \, \mathrm{C}$ で $4 \, \mathrm{時}$ 間加熱して、厚み $1 \, \mathrm{mm}$ のアクリル系樹脂板を得た。

[0069]

この樹脂板は白化やヒケのない良好な外観を有していた。また、ヘーズを測定したところ 0.2%であり、良好な透明性を示した。荷重たわみ温度は 200℃を超えていた。本 実施例の重合性混合物の主要な原料組成および評価結果を表 1に示す。

[0070]

[実施例2~10、比較例1~6]

表1および表2に示す原料組成を採用したこと以外は、実施例1と同様にしてアクリル系樹脂板を製造した。評価結果を表1および表2に示す。

[0071]

<透明導電性膜の成膜>

[0072]

<タッチパネル用透明電極板の製造>

上記各アクリル系樹脂積層体を横 $250\,\mathrm{mm} \times$ 縦 $180\,\mathrm{mm}$ に切り取り、それに銀ペーストを所定パターンにて塗布し、 $150\,\mathrm{C}$ で硬化させて電極およびリード電極を形成し、図 1 および図 2 に示した構成のタッチパネル用透明電極板を各々製造した。この電極およびリード電極の膜厚は約 $10\,\mu$ mに調整した。得られた各タッチパネル用透明電極板の評価結果を表 1 および表 2 に示す。

[0073]

<タッチパネル>

[0074]

また、下部透明導電性膜 3 には、所定パターンで光硬化型アクリル系樹脂を塗布し、紫外線照射して硬化することにより、高さ $10\,\mu$ m、直径 $50\,\mu$ mのドットスペーサー 11 が、 $3\,\mathrm{mm}$ ピッチで千鳥状に配列するように形成した。さらに、絶縁膜(不図示)を電極 4 および電極 10 上に形成した。そして、下部透明電極板 1 と上部透明電極板 7 とがスペーサー 6 を介して対向して配置された構造に組み立てることにより、12 型に相当する大きさ、即ち横 $250\,\mathrm{mm}$ × 縦 $180\,\mathrm{mm}$ のタッチパネルを作製した。

[0075]

【表1】

	炭素数 8~20の	アルキ	メタク	₩ <u></u>	淵	771	アクリル系樹脂板		アクリル系	カツ	ッチパネル用透明電極板	用透明	電極板
	ル基を有するメタク ル酸アルキルエステ	タマクトリー	ルドの実践。	(ダメ)) V	荷重たわ	ドーく	外額	樹脂積層体	全光線	基板	1 T O	数件
	10 HX 1 10 T 10 T.	2	イエル	166	i	や温度			反り量	透過率	の数形	の状態	
	種類	(銀)	(銀)	種類	(制)	(၁့)	(%)		(%)	(%)			
	メタクリル酸 イソステアリル	10	10	4	8 0	200超	0.2	10/10	0.2	9.2	0	0	100/100
	2 メタクリル酸 イソステアリル	2	15	∢	8 0	200超	0.2	10/10	0.3	9.2	0	0	100/100
က	メタクリル酸 イソステアリル	10	20	∢	7.0	197	0.2	10/10	0.3	9.2	0	0	100/100
4	メタクリル酸 ラウリル	10	20	4	7.0	190	0.2	10/10	0.3	9.2	0	0	100/100
12	メタクリル酸 トリデシル	1 0	20	∢	7.0	196	0.2	10/10	0.3	9.2	0	0	100/100
	メタクリル酸 ステアリル	1 0	20	∢	7.0	200	0.2	10/10	0.3	9.2	0	0	100/100
7	メタクリル酸 イソステアリル	2	2 5	∢	7.0	1 9 8	0.2	10/10	0.4	9.2	0	0	100/100
ω	メタクリル酸 イソステアリル	20	ស	∢	75	190	0.2	10/10	0.1	9.2	0	0	100/100
	メタクリル酸 イソステアリル	15	2.0	∢	6 5	171	0.2	10/10	0.2	9 2	0	0	100/100
10	メタクリル酸 イソステアリル	20	2 5	Ω	5 5	200超	0.2	10/10	0.3	9.2	0	0	100/100

02.6] デカンジメタクリレート A:ビス(オキシメチル)トリシクロ[5, B:ネオペンチルグリコールジメタクリレー

[0076]

【表2】

		112 4									
	冒極板	松遊体	<u> </u>		100/100	100/100	100/100	100/100	80/100	68/100	
	タッチパネル用透明電極板	0 ± 1	の状態		0	0	0	0	×	×	
	チパネル	基板	の終形		0	0	0	0	×	×	
	ダグ	全光線	以高水	(%)	92.	9.2	9.2	92	9.2	9.2	
	アクリル系	樹脂積層体	反り量	(%)	1.1	1.0	1.0	1.9	0.1	10/10 成膜時変形	デカンジメタクリレート
	旨板	外観			10/10	10/10	10/10	10/10	10/10	10/10	オンジン
	アクリル系樹脂板	メート		(%)	0.2	0.2	0.2	0.2	0.2	0.2	02.6] +7
		荷重たわ	を削め	(၁)	200超	200超	200超	200超	132	115	2, 1, 0
	細細	(X)		(皡)	7.0	8 0	7.0	20	09	30	[5,
	多官能 (メタ)ア クリレート			種類	∢	٧	∢	В	∢	⋖	リシクロ
	メ タ ク ル 形 を ル 形		`	(堤)	3 0	20	29	5 0	5	65	_
i	アルキタクリステル		(部)	0	0	-	0	3 5	ß	ナベ	
	炭素数8~20のアルキル基を有するメタクリル酸アルキルエステル		- A	種類	1	ı	メタクリル酸 イソステアリル	1	メタクリル酸 イソステアリル	メタクリル酸 イソステアリル	A: ピス (オキシメチル)
2					_	0	က	4	2	9	
表				开							

い: ピス (オキシメチル) トリシクロ [5, 2, 1, 0^{2,6}]は: ネオペンチルグリコールジメタクリレート

表1に示すように、実施例1~10では、アクリル系樹脂板の耐熱性、透明性、外観、アクリル樹脂積層体の形状安定性、タッチパネル用透明電極板の透明性、外観、密着性について良好な結果が得られた。また、タッチパネルも正常に動作した。

[0077]

一方、表 2 に示すように、比較例 1 ~ 4 では、アクリル樹脂積層体の反り量が大きく形状安定性が劣っていた。また、比較例 5 および 6 では、アクリル系樹脂板の耐熱性が低く、ITO成膜時の 1 2 0 ℃加熱や電極形成時の 1 5 0 ℃の加熱時に変形が生じ、タッチパネル用としては不適当なものであった。

【図面の簡単な説明】

[0078]

- 【図1】本発明のタッチパネル用透明電極板の一例を示す模式的断面図である。、図2はその模式的平面図である。
- 【図2】本発明のタッチパネル用透明電極板の一例を示す模式的平面図である。
- 【図3】図1および図2で示した透明電極板を下部透明電極板として使用したタッチパネルの一例を示す模式的断面図である。

【符号の説明】

[0079]

- 1 下部透明電極板
- 2 透明基板
- 3 透明導電性膜
- 4 電極
- 5 リード電極
- 6 スペーサー
- 7 上部透明電極板
- 8 透明基板
- 9 透明導電性膜
- 10 電極
- 11 ドットスペーサー

【図2】

【図3】

【書類名】要約書

【要約】

【課題】タッチパネル用透明電極板の用途に適した耐熱性、外観、形状安定性等を有するアクリル系樹脂を提供する。

【解決手段】C8-20アルキル基を有するメタクリル酸アルキルエステル単位3-30質量%と、C1-4アルキル基を有するメタクリル酸アルキルエステル単位を含むモノエチレン性不飽和単量体単位2-35質量%と、2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート単位35-95質量%とを含むアクリル系樹脂;この樹脂からなる樹脂板;この樹脂板の製造方法;この樹脂板からなるタッチパネル用透明電極板;並びに、上部透明電極板7及び下部透明電極板1の少なくとも一方がその透明電極板であるタッチパネル。

【選択図】図1

特願2003-287820

出願人履歴情報

識別番号

[000006035]

1. 変更年月日 [変更理由] 住 所 氏 名 1998年 4月23日 住所変更 東京都港区港南一丁目6番41号 三菱レイヨン株式会社