## Feuille d'exercice n° 25 : Espaces euclidiens

Exercice 1 ( $^{\circ}$ ) Sur  $\mathbb{R}_3[X]$  on considère les formes bilinéaires suivantes. Dire lesquelles sont des produits scalaires.

1. 
$$\varphi(P,Q) = \int_{-1}^{1} P(t)Q(t) dt$$

2. 
$$\varphi(P,Q) = \int_{-1}^{1} (P'(t)Q(t) + P(t)Q'(t)) dt$$

3. 
$$\varphi(P,Q) = \int_{-1}^{1} P'(t)Q'(t) dt + P(0)Q(0).$$

**Exercice 2** ( ) À deux polynômes  $P = a_0 + a_1X + a_2X^2$  et  $Q = b_0 + b_1X + b_2X^2$  de  $\mathbb{R}_2[X]$ , on associe

$$\langle P, Q \rangle = (a_0 + a_1)b_0 + (a_0 + 3a_1)b_1 + 3a_2b_2$$

Montrer qu'il s'agit d'un produit scalaire.

**Exercice 3** ( $\mathbb{Z}$ ) Soient (E, (,)) un espace euclidien et  $\|.\|$  la norme associée ;  $n \in \mathbb{N}^*$ , et  $v_1, \ldots, v_n \in E$ . Montrer l'inégalité :  $\left\|\sum_{i=1}^n v_i\right\|^2 \leqslant n \sum_{i=1}^n \|v_i\|^2$ .

**Exercice 4** ( $\bigcirc$   $\bigcirc$  Soit a < b deux réels.

1. Soient f et g deux applications continues de [a,b] dans  $\mathbb{R}$ . Montrer que :

$$\forall (f,g) \in \mathscr{C}^0([a,b],\mathbb{R}), \ \left(\int_a^b f(t)g(t)\,\mathrm{d}t\right)^2 \leqslant \int_a^b f^2(t)\,\mathrm{d}t \int_a^b g^2(t)\,\mathrm{d}t. \text{ Étudier le cas d'égalité}.$$

2. Soit f une application continue de [a,b] dans  $\mathbb R.$  Montrer que  $\,:\,$ 

$$\forall f \in \mathscr{C}^0([a,b],\mathbb{R}), \left(\int_a^b f(t)\,\mathrm{d}t\right)^2 \leqslant (b-a)\int_a^b f^2(t)\,\mathrm{d}t. \text{ Étudier le cas d'égalité}.$$

## Exercice 5 ( ( )

1. Montrer que sur  $\mathcal{M}_n(\mathbb{R})$  l'application :

$$(A,B) \to \operatorname{tr}({}^{t}AB)$$

est un produit scalaire.

2. Soit N la norme associée (on l'appelle norme de Frobenius), montrer que :

$$\forall (A, B) \in \mathscr{M}_n(\mathbb{R}), N(AB) \leqslant N(A)N(B).$$

3. Montrer que:

$$\forall A \in \mathscr{M}_n(\mathbb{R}), |\operatorname{tr}(A)| \leq \sqrt{n}N(A).$$

Soit E un espace euclidien, et  $(e_1,...,e_n)$  des vecteurs unitaires vérifiant :  $\forall x \in E$ ,  $||x||^2 = \sum_{i=1}^n (x|e_i)^2$ .

- 1. Montrer que  $(e_1, ..., e_n)$  est une famille orthogonale.
- 2. Montrer que  $(e_1, ..., e_n)$  est une base orthonormale.

(NB: on ne suppose pas que la dimension de l'espace est n.)

**Exercice 7** ( $\bigcirc$ ) Soit (E, (.|.)) un espace euclidien, F et G deux sous-espaces vectoriels de E. Montrer que :

1. 
$$F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$$

1. 
$$F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$$
; 2.  $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ ; 3.  $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$ .

3. 
$$(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$$
.

Exercice 8 (%)

On munit  $\mathscr{C}([0,1],\mathbb{R})$  du prod. scal.  $(f,g)\mapsto \int_0^1 f(t)g(t)\,\mathrm{d}t$ . Soit  $F=\{f\in\mathscr{C}([0,1],\mathbb{R})\mid f(0)=0\}$ . Déterminer  $F^{\perp}$ . (indication : Si  $f \in F^{\perp}$ , on pourra s'intéresser à la fonction  $t \mapsto tf(t)$ ). Conclusion ?

On sait que l'application  $(A, B) \mapsto \operatorname{tr}({}^{t}AB)$  de  $\mathscr{M}_{2}(\mathbb{R}) \times \mathscr{M}_{2}(\mathbb{R})$  à valeurs dans  $\mathbb{R}$ est un produit scalaire. Calculer l'orthogonal de l'ensemble des matrices diagonales puis celui des matrices symétriques.

**Exercice 10** ( $^{\circ}$ )  $\mathbb{R}^3$  est muni de sa structure canonique d'espace vectoriel euclidien. Vérifier que les vecteurs  $e_1=(1,0,1), e_2=(1,0,2)$  et  $e_3=(1,1,1)$  forment une base de  $\mathbb{R}^3$  et en déterminer l'orthonormalisée de Gram-Schmidt.

**Exercice 11** ( $\circlearrowleft$ ) On munit  $\mathbb{R}[X]$  du produit scalaire :  $(P,Q) \to \int_0^1 P(t)Q(t) dt$ . Existe t-il  $A \in \mathbb{R}[X]$ tel que :  $\forall P \in \mathbb{R}[X], (P|A) = P(0)$ ?

Soit (E,(.|.)) un espace euclidien et  $p \in \mathcal{L}(E)$  un projecteur. Montrer que p est orthogonal (c'est-à-dire Ker $(p) \perp \text{Im}(p)$ ) si et seulement si :  $\forall x \in E : ||p(x)|| \leq ||x||$ . (indication : pour le sens  $\Leftarrow$ , considérer  $k \in \text{Ker } p$  et  $i \in \text{Im } p$ , et le vecteur  $i + \lambda k$  pour  $\lambda \in \mathbb{R}$ , et montrer que i et k sont orthogonaux).

Exercice 13 Soit  $(E,(\cdot,\cdot))$  un espace euclidien de dimension supérieure ou égale à 2. Soient x et  $y \in E$ . Montrer que:

- 1. Si ||x|| = ||y||, alors il existe un hyperplan H de E tel que y = s(x) où s est la symétrie orthogonale par rapport à H.
- 2. Si  $(x|y) = ||y||^2$ , alors il existe un hyperplan H de E tel que y = p(x) où p est la projection orthogonale sur H.
- 3. Les hyperplans trouvés précédemment sont-ils uniques ?

**Exercice 14** Déterminer 
$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (e^x - (ax+b))^2 dx$$
.

Exercice 15 ( $\circlearrowleft$ )  $E = \mathbb{R}_n[X]$ . A tout couple (P,Q) de E on associe  $: < P, Q >= \int_0^{\pi} P(\cos t)Q(\cos t)dt$ . Montrer que ceci définit un produit scalaire sur E. On appelle  $k^{\text{ème}}$  polynôme de Tschebychev le polynôme défini par  $: P_k(\cos \theta) = \cos(k\theta)$ . Montrer que les polynômes de Tchebychev  $P_0, \ldots, P_n$  constituent une base orthogonale de E.

Bonus : si cela n'est pas clair, montrez l'existence et l'unicité de ces polynômes, déterminer le degré et le coefficient dominant de chacun.

**Exercice 16** Soit E un espace euclidien, f et g deux endomorphismes de E qui commutent. On suppose que les matrices de f et de g dans une BON sont respectivement symétriques et antisymétriques. Montrer que  $\forall u \in E$ , (f(u)|g(u)) = 0, puis que  $\forall u \in E$ , ||(f-g)(u)|| = ||(f+g)(u)||.

**Exercice 17** ( $^{\bigcirc}$ ) Soit E un espace euclidien de dimension 3, (i, j, k) une base orthonormale de E. Déterminer la matrice dans la base (i, j, k) de :

- 1. la symétrie orthogonale par rapport au plan d'équation : x 2y + 3z = 0.
- 2. la projection orthogonale sur ce plan.
- 3. la symétrie orthogonale par rapport à la droite engendrée par le vecteur : i-4k.
- 4. la projection orthogonale sur cette droite.

**Exercice 18** Soit E un espace euclidien de dimension n, et  $\mathcal{B} = (e_k)_{1 \le k \le n}$  une base orthonormale de E. Soit  $u = \sum_{i=1}^{n} a_i e_i$  un vecteur unitaire de E.

- 1. Déterminer la matrice dans la base  $\mathcal{B}$  de la projection orthogonale sur la droite D engendrée par u.
- 2. En déduire les matrices de la projection orthogonale sur  $D^{\perp}$ , de la symétrie orthogonale par rapport à D et de la symétrie orthogonale par rapport à  $D^{\perp}$ .

**Exercice 19** Soit f un automorphisme orthogonal d'un espace euclidien E.

- 1. Montrer que  $Ker(f Id) = Im(f Id)^{\perp}$ .
- 2. En déduire que si  $(f Id)^2 = 0$ , alors f = Id.

Exercice 20 ( ) Déterminer la nature et déterminer les éléments caractéristiques des transformations de  $\mathbb{R}^2$  dont les matrices dans la base canonique sont les suivantes :

$$A = \frac{1}{25} \begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix} \qquad B = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \qquad C = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}$$

Exercice 21 ( $^{\circ}$ )
Caractériser les endomorphismes f et g dont les matrices dans la base canonique de  $\mathbb{R}^2$  sont A= $\frac{1}{2} \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} \text{ et } B = \frac{1}{2} \begin{pmatrix} \sqrt{3} & 1 \\ 1 & -\sqrt{3} \end{pmatrix}.$ 

Exercice 22 Soient E un espace euclidien orienté de dimension 2, r une rotation de E et s une réflexion de E. Calculer  $r \circ s \circ r$  et  $s \circ r \circ s$ .

