

Design IP and Verification IPDIP and VIP

Chun-Zhang Chen, Ph.D.

June 28 - July 2, 2021

Aspects of IP Design

Aspects of IP Design	
Analog and Mixed Signal IP	
Digital IP	
I/O, I/F and Other IPs	
Summary	

Contents in a SoC

University of Chinese Academy of Sciences

CPU Logic Input/Output (I/O) **Memory IP COT Block** Interface (I/F) IP

COT: custom-owned tooling

A sample SoC Design Architecture

Types of IPs: Functions

- Processors
- Memory IPs
- Other IPs
 - Embedded/Integrated, non-memory
 - I/O IP, I/F IP

SNPS DesignWare IP Portfolio

IP Reuse in SoC

- 3C to SoC in 19C/20C
- IP Reuse | Design-Reuse

IC Market Space (3C's)

- ◆Computer Intel, IBM, ATI, nVidia, Via
 - · CPU (PC, Server, Workstation, Mainframe)
 - · Graphic Accelerator
 - Chip Set (for PC, Server, ...)
- ◆Communication Moterola, Broadcom
 - · Wireless (Cellular phone, WLAN)
 - · Wired (LAN, Fiber backbone)
- ◆Consumer Many
 - ◆TV, Car, MP3, Toys, Game,

Microelectronic Circuit Design McGraw-Hill Chap 7 - 75

Features of IP, Design aspects

- Soft Core IP (rare)
 - RTL + functional verification
- •Hard Core IP (<65nm)</p>
 - GDSII + physical verification
- Firm Core IP (common)
 - GLN + performance (verification)
- DTCO
 - Design Technology Co-Optimization

Features of IP, Progressive

DIP

VIP

SIP

RIP

Design IP (DIP) - Types of IP Design

- Processors
- Memory
- Standard Cells
- Analog and Mixed Signal
- I/O, IF IP, BUS IP
- High-Speed IP

Semiconductor IP:

16,000 IP Cores from 450 Vendors (Design-Reuse.com)

Verification IP (VIP)

IP Name	IP Type	Application	Node/Foundry	Vnedor
HIS	VC VIP HIS			SNPS
MIPI DigRFv4	VC VIP MIPI DigRFv4	Media		SNPS
AMBA 4 AXI	VC VIP AMBA 4 AXI	BUS/SoC		SNPS
Spansion S25FL	UVM for Serial Flash	Ext. memory		HDL D House
HDH PIF 32000	Verif Solution	PIF-based		HDL D House
PCIe Gen4	PCIe Gen4 VIP	IF		CDNS
HBM	HBM Memory Model	HBM/SiP		CDNS
Ethernet 25G/50G	Ethernet 25G/50G VIP	IF		CDNS
LPDDR4	LPDDR4 Memory Model	Embedded		CDNS

Silicon-Proven IP (SIP) and DFY

- Silicon/Semiconductor IP
- A known mature product IP
- In massive production and application
- Verification coverage [>97%-98%]

Reliability IP (RIP) and MTTF

Causes, Targets and Scenarios

- ESD, TVS, EMI, IR
 - IR produced SEE (SEU, SET, SEL)
- FinFET, SRAM/DRAM/eRAM, NAND
 - SOI n-/p- FinFET;
 - Flash NAND in SSD
- Scenarios
 - Automotive, DC/SC, Military/Space

MTTF:

mean time to failure

MTBF:

mean time between failure

Types of Reliability Issues in IC/IP

- Soft Errors in IC/IP
 - On combinational logic; sequential logic
 - On chip level; system level
- Wear-out Mechanisms
 - EM, HCI, TDDB, NBTI
- Latchup
 - Silicide vs Salicide,
 - Bulk CMOS vs SOI
- ESD
- RadHard in advanced application

Characterization of Memory IP [90% Embedded Memory in a SoC] **ESD** (electro static discharge), LUP (latch-up), TDDB (time-dependent dielectric breakdown) **EM** (electro-migration) Effect

Aspects of IP Design

Aspects of IP Design	
Analog and Mixed Signal IP	
Digital IP	
I/O, I/F and Other IPs	
Summary	

Analog, MS and RF IPs

- Analog and MS IPs
 - ADC, DAC, Comparator, Op-Amp, LDO, I2C, Drivers,...
 - SerDes, SATA, USB, PCIe, Ethernet, ...

- RF IPs
 - RF PA, LNA, Mixer, Oscillator, Filter, BT, ZigBee, RF ID, ...

Example: AFE or AFE Controller (AFEC)

- Ultrasound AFE
 - Resolution (bits), ch., LNA Gain (dB), Input Imped. (Ω), ...
- HS (high-speed) AFE
 - Speed (MSPS), SNR (dB), ... V (1.8-3.5)
- ADI data sheet: AD8450 (pp41)
- TI:
- Microsemi:

PCI and **PCIe**

- PCI
 - a standard for connecting computers and their peripherals
- PCle
 - a standard type of connection for internal devices in a computer

PCle

- PCIe links and lanes
- PCle connector
- PCle card

PCIe 1.0-4.0

500 MByte/s

0.9846 GByte/s

3.9 GByte/s

4 GByte/s

7.877 GByte/s

15.754 GByte/s

8 GByte/s

15.754 GByte/s

31.508 GByte/s

8b10b

128b/130b

128b/130b

			Gen 1/2				
			2015 2016 20	017 2018 2019	2020 2021 2022 20	²³ ²⁰²⁴ 2025	
PCle	Bandwidth per link	PCle x1	PCIe x4	PCle x8	PCle x16	Line Code	
1.0	2.5 GT/s 2.5 GBit/s	250 MByte/s	1 GByte/s	2 GByte/s	4 GByte/s	8b10b	

2 GByte/s

3.938 GByte/s

7.877 GByte/s

2.0

3.0

4.0

5 GT/s | 5 GBit/s

8 GT/s | 10 GBit/s

16 GT/s | 20 GBit/s

PCIe PHY IP

- VeriSilicon:
 - 1-lane, 4-lane PCIe PHY IP for chips and PCB
- Xilinx

Ethernet Controller IP

- Intel 800 Series, up to 100GbE
- Microchip
- Broadcom: 25, 50, 100, 200GbE

Gigabit Ethernet PHY IP

- OSI Layers
- 40, 100GbE

USB IP

- USB Versions: 1.0, 2.0/eUSB2, 3.0, 3.1, 3.2, 4,
 - 110G, 65G, 55LP, 40LP, 28
- USB Controller IP: 2.0, 3.0, 3.1, 3.2, 4
- USB PHY: 2.0, 3.0, 3.1, 3.2, 4
- Supports and Compatibility:
 - USB Type-C, Lighting
 - HDMI | DisplayPort

USB Features

Table 2-18 Parameter comparison of different USB standards

Version	Data transmission rate	Mode	Issue year
USB 1.0	1.5Mbit/s	Low Speed	1996
USB 1.1	12 Mbit/s	Full Speed	1998
USB 2.0	480 Mbit/s	High Speed	2000
USB 3.0	5 Gbit/s	Super Speed	2008
USB 3.1	10 Gbit/s	Super Speed+	2014
USB 3.2	20 Gbit/s	Super Speed+	2017
USB 4.0	40 Gbit/s	Super Speed+	2019

Role of PHY in I/F IP

- Used in
 - PCIe, Ethernet, RapidIO, etc.
- PHY has several components/modules
 - PCS, PMA, PMD, AN
- Medium
 - 1 Gb/s, 10 Gb/s, 40 Gb/s, or 100 Gb/s

Which SSD tech is faster? NVMe vs SATA ® 作時ではより

NVMe

	E8/E8T	E13T	E19T	E12	E16	E18
Market Segment	Mainstream Consumer			High-End Consumer		
Manufacturing Process	40 nm	28nm	28 nm	28 nm 12		12 nm FFC
CPU Cores	2x Cortex R5	1x Cortex R5	1x Cortex R5	2x Cor	tex R5	3x Cortex R5
Error Correction	StrongECC	4th Ger	n LDPC	3rd Gen LDPC	4th Ge	1 LDPC
DRAM	E8: DDR3 E8T: No	No	No	DDR3/4	DDR4	DDR4, LPDDR4
Host Interface	PCIe 3.0 x2	PCIe 3.0 x4	PCIe 4.0 x4	PCIe 3.0 x4	PCIe 4.0 x4	
NVMe Version	NVMe 1.2	NVMe 1.3	NVMe 1.4	NVM	NVMe 1.3 NVMe	
NAND Channels, Interface Speed	4 ch, 533 MT/s	4 ch, 800 MT/s	4 ch, 1200 MT/s	8 ch, 667 MT/s	8 ch, 800 MT/s	8 ch, 1200 MT/s
Max Capacity	2 TB	2 TB	2 TB	16 TB	16 TB	16 TB
Sequential Read	1.6 GB/s	2.5 GB/s	3.75 GB/s	3.4 GB/s	5.0 GB/s	7.0 GB/s
Sequential Write	1.3 GB/s	2.1 GB/s	3.75 GB/s	3.2 GB/s	4.4 GB/s	7.0 GB/s
4KB Random Read IOPS	E8: 240k E8T: 120k	350k	440k	700k	750k	1M IOPS
4KB Random Write IOPS	E8: 220k E8T: 130k	450k	500k	600k	750k	1M IOPS
Controller Power	1.8 W	1.2 W	1.6 W	2.1 W	2.6 W	3.0 W
Sampling	Q2 2017	Q2 2019	Q4 2019	Q2 2018	Q1 2019	Q1 2020
Retail SSD Availability	Q4 2017	Q4 2019	Q1 2020	Q4 2018	Q3 2019	Q3 2020

Marvell SSD Controller

Aspects of IP Design

Aspects of IP Design	
Analog and Mixed Signal IP	
Digital IP	
I/O, I/F and Other IPs	
Summary	

Digital IP List

- Audio/Video, Clock
- Communications, Controllers
- DSP, Mathematic Functions
- Memories, Microcontrollers
- Network-on-Chip, Processors
- Programmable Logic, Security
- Standard Cell Libraries, Subsystems

Processors

- CPU
- DSP
- MCU
- PowerPC
- RISC-V

Memory Providers

- Samsung
- Hynix
- Micron

Aspects of IP Design

Aspects of IP Design	
Analog and Mixed Signal IP	
(Other) Digital IP	
I/O IP, I/F IP and Other IPs	
Summary	

IP Market

- IP Vendors: ARM, Synopsys, Cadence
- IP Category:
 - Processors (CPU, DSP, GPU)
 - I/F IP
 - I/O IP

I/O IP

- I/O with ESD Protection
- GPIO
- RapidIO
- WidelO

I/F IP

- I/F IP types
 - USB, PCIe, Ethernet, SerDes
 - Protocol-Based, Speed-Based
- Memory I/F IP
- CCIX IP (chip-to-chip, new)

Speed-Based I/F IP

- Low
 - CAN, LIN
- Mid
 - LVDS, HDMI 1.3
- High
 - USB 3.0, PCle 3.0
 - MIPI, RapidIO

Popular IPs

- BANDGAP for LDO & PWM DC-DC, Silicon Gate
- Temperature Sensor ADC, Silicon Gate
- 14b-4.32Gsps ADC, T2M
- 112G LR SerDes PHY, Rambus
- VTSXXXX, Vidatronic
- 18OSMIC_TS_O2, NTLab

Ref: <u>https://www.chipestimate.com/Semiconductor-IP-Catalog</u>

Aspects of IP Design

Aspects of IP Design	
Analog and Mixed Signal IP	
Digital IP	
I/O, I/F and Other IPs	
Summary	

IP Market

Top 10 IP Company

Rank	Company	2017	2018	Growth	2018 Share	Cumulative Share
1	ARM (Softbank)	1659.9	1610	-3.0%	44.7%	44.7%
2	Synopsys	527.6	629.8	19.4%	17.5%	62.2%
3	Cadence	159.5	188.8	18.4%	5.2%	67.4%
4	Imagination Technologies	126.9	119.7	-5.7%	3.3%	70.7%
5	Ceva	87.5	77.9	-11.0%	2.2%	72.9%
6	Verisilicon	54.7	66.3	21.2%	1.8%	74.7%
7	Achronix	15.0	52.5	250.0%	1.5%	76.2%
8	Rambus	54.0	52.1	-3.5%	1.4%	77.6%
9	eMemory Technology	45.0	47.9	6.4%	1.3%	79.0%
10	Waves Computing	43.0	41.0	-4.7%	1.1%	80.1%
	Top 10 Vendors	2,773.1	2,886.0	4.1%	80.1%	80.1%
	Others	627.0	716.6	14.3%	19.9%	100.0%
	Total	3,400.1	3,602.6	6.0%	100.0%	100.0%

Source: IP Nest (May 2019)

IP Vendors

- Prime IP Partners
- Choice IP Partners
- Select IP Partners
- Standard IP Partners

Summary

- IC/IP
- EDA and IP
- VIP
- Focused Application

Al-Big Data & SoC Design 42 (SUMMER 2021 UCAS, Beijing)