```
In [1]: import numpy as np
    import pandas as pd
    from sklearn.metrics import classification_report, confusion_matrix
    from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC
    from sklearn.metrics import f1_score
    import matplotlib.pyplot as plt
    %matplotlib inline

In [2]: df=pd.read_csv('prefinaloutput.csv')
In [3]: df.head(50)
```

1 of 7 4/20/2023, 12:20 AM

Out[3]:

ıt[3]:		amount	oldbalanceOrg	oldbalanceDest	icEraud	is Flagged Fraud	Time	Instrument or Mode_CREDIT-	
		amount	olubalanceorg	OlubalanceDest	isriauu	for Operations	Time	CARD	N
	0	0.000121	0.000864	0.000000	0	0	0.939583	1	
	1	0.000930	0.001620	0.000000	0	1	0.918056	1	
	2	0.055328	0.019373	0.358175	0	1	0.203472	0	
	3	0.013412	0.552665	0.846995	0	1	0.530556	0	
	4	0.000895	0.001013	0.000000	0	1	0.322917	1	
	5	0.000243	0.000427	0.000000	0	0	0.354167	1	
	6	0.001011	0.004672	0.000000	0	1	0.791667	1	
	7	0.000022	0.007654	0.000000	0	0	0.984722	1	
	8	0.010432	0.019373	0.010583	0	1	0.386806	0	
	9	0.062700	0.019373	0.247145	0	1	0.856250	0	
	10	0.018434	0.245232	0.508086	0	1	0.461806	0	
	11	0.008400	0.325994	1.000000	0	1	0.483333	0	
	12	0.011435	0.019373	0.023937	0	1	0.268056	0	
	13	0.014191	0.019373	0.568306	0	1	0.084722	0	
	14	0.002054	0.000939	0.000000	0	1	0.593750	1	
	15	0.002112	0.001364	0.005596	0	1	0.695139	0	
	16	0.007724	0.000077	0.025762	0	1	0.904167	0	
	17	0.000008	0.001629	0.000000	0	0	0.293750	1	
	18	0.000783	0.001140	0.000000	0	1	0.611806	1	
	19	0.027621	0.531522	0.017031	0	1	0.856944	0	
	20	0.000504	0.001821	0.000000	0	1	0.457639	1	
	21	0.001168	0.000076	0.000000	0	1	0.024306	1	
	22	0.012354	0.945736	0.013058	0	1	0.551389	0	
	23	0.020224	0.527536	0.013042	0	1	0.526389	0	
	24	0.002420	0.003227	0.000000	0	1	0.290278	1	
	25	0.000698	0.000794	0.000000	0	1	0.600000	1	
	26	0.000287	0.000011	0.000000	0	0	0.132639	1	
	27	0.005498	0.001646	0.002396	0	1	0.340972	0	
	28	0.026164	0.019373	0.325268	0	1	0.960417	0	
	29	0.001251	0.019373	0.000000	0	1	0.002083	1	
	30	0.003738	0.001610	0.003891	0	1	0.276389	0	

2 of 7

	amount	oldbalanceOrg	oldbalanceDest	isFraud	isFlaggedFraud for Operations	Time	Instrument or Mode_CREDIT- CARD	N
31	0.052143	0.019373	0.085251	0	1	0.809028	0	
32	0.000403	0.000463	0.000000	0	0	0.370833	1	
33	0.000019	0.002400	0.000000	0	0	0.174306	1	
34	0.000048	0.000168	0.000000	0	0	0.689583	1	
35	0.002425	0.000465	0.000000	0	1	0.918056	1	
36	0.011753	0.687853	0.016835	0	1	0.538889	0	
37	0.023077	0.706116	0.026484	0	1	0.475000	0	
38	0.000336	0.000693	0.000000	0	0	0.450694	1	
39	0.003391	0.017888	0.562842	0	1	0.631250	0	
40	0.001476	0.019373	0.000000	0	1	0.031250	1	
41	0.011776	0.626915	0.014575	0	1	0.863889	0	
42	0.005056	0.000004	0.000000	0	1	0.644444	0	
43	0.005074	0.019373	0.000000	0	1	0.918750	1	
44	0.038094	0.194751	0.253290	0	1	0.519444	0	
45	0.000013	0.000020	0.000000	0	0	0.230556	1	
46	0.000403	0.002252	0.000000	0	0	0.678472	1	
47	0.002363	0.354576	0.016878	0	1	0.015278	0	
48	0.017088	0.002429	0.000000	0	1	0.227083	0	
49	0.023968	0.013110	0.573770	0	1	0.177778	0	

In [4]: X=df.drop('isFraud',axis=1)

In [5]: X

3 of 7 4/20/2023, 12:20 AM

Out[5]:		amount	oldbalanceOrg	oldbalanceDest	isFlaggedFraud for Operations	Time	Instrument or Mode_CREDIT- CARD	Instrun Mode_DE C
	0	0.000121	0.000864	0.000000	0	0.939583	1	
	1	0.000930	0.001620	0.000000	1	0.918056	1	
	2	0.055328	0.019373	0.358175	1	0.203472	0	
	3	0.013412	0.552665	0.846995	1	0.530556	0	
	4	0.000895	0.001013	0.000000	1	0.322917	1	
	•••							
	994	0.000877	0.004998	0.000000	1	0.056250	1	
	995	0.013326	0.193793	0.003701	1	0.050694	0	
	996	0.002676	0.002068	0.005572	1	0.995833	0	
	997	0.003723	0.010631	0.298527	1	0.349306	0	
	998	0.006072	0.004700	0.000000	1	0.605556	0	
in [7]: In [8]:	pca pca	<pre>fit(X) a = pca.</pre>	.decomposition components=12 transform(X)					
Out[8]:	arra		6201235, -0.47 6354365, -0.02	7023336, -0.55 2744263],	869341,, -	0.069186	4 ,	
		[-0.7	-	4848174, 0.18	092689,,	0.906736	05,	
		[0.9		686877 , 0.73	396292,, -	0.058244	72,	
		[1.0	0081662, 1.12 0453852, -0.24	2656688, 0.19 4715737],	373739,,	0.016990	49,	
		_	7540244, -0.80 7245355, -0.03	0854093, 0.41 3850355],	19488 ,, -	0.011921	65,	
		-0.2			211662	0 019070		
		[1.3		6403993, 0.20 1056074]])	211662,, -	0.018070	18,	

4 of 7 4/20/2023, 12:20 AM


```
In [10]: X_train, X_test, y_train, y_test = train_test_split(X, y,stratify=y, test_size = 0.
    svclassifier = SVC(C=1000.0,kernel='poly',gamma= 1,degree=2)
    svclassifier.fit(X_train, y_train)
    y_pred = svclassifier.predict(X_test)
    print(confusion_matrix(y_test,y_pred))
    print(classification_report(y_test,y_pred))
```

		_ :			
[[232 [5	8] 5]]				
		precision	recall	f1-score	support
	0	0.98	0.97	0.97	240
	1	0.38	0.50	0.43	10
aco	curacy			0.95	250
macı	ro avg	0.68	0.73	0.70	250
weighte	ed avg	0.96	0.95	0.95	250

5 of 7 4/20/2023, 12:20 AM

about:srcdoc pca analysis

```
In [11]: cresult=[]
         ci=[]
         for j in range(50):
             X_train, X_test, y_train, y_test = train_test_split(X, y,stratify=y, test_size
             svclassifier = SVC(C=1000.0, kernel='poly', gamma= 1, degree=2)
             svclassifier.fit(X_train, y_train)
             y_pred = svclassifier.predict(X_test)
             cresult.append(f1_score(y_test,y_pred))
             ci.append(j)
         print("average of f1 score "+str(np.mean(cresult)))
         plt.figure().set_figwidth(30)
         plt.plot(cresult, linestyle = 'dotted')
         plt.xticks(range(len(ci)), ci)
         plt.xlabel("C parameter", labelpad=7)
         plt.show()
```

average of f1 score 0.3445743779012052

6]


```
In [12]: X_train, X_test, y_train, y_test = train_test_split(X_pca, y,stratify=y, test_size
         svclassifier = SVC(C=1000.0,kernel='poly',gamma= 1,degree=2)
         svclassifier.fit(X_train, y_train)
         y_pred = svclassifier.predict(X_test)
         print(confusion_matrix(y_test,y_pred))
         print(classification_report(y_test,y_pred))
```

```
[[234
        3]]
 [ 7
              precision
                            recall f1-score
                                                support
           0
                   0.97
                              0.97
                                        0.97
                                                    240
           1
                   0.33
                              0.30
                                        0.32
                                                     10
                                        0.95
                                                    250
    accuracy
                   0.65
                              0.64
                                        0.64
                                                    250
   macro avg
weighted avg
                              0.95
                                        0.95
                                                    250
                   0.95
```

6 of 7 4/20/2023, 12:20 AM

```
In [13]: cresult=[]
         ci=[]
         for j in range(50):
             X_train, X_test, y_train, y_test = train_test_split(X_pca, y,stratify=y, test_s
             svclassifier = SVC(C=1000.0, kernel='poly', gamma= 1, degree=2)
             svclassifier.fit(X_train, y_train)
             print(j,end=" ")
             y_pred = svclassifier.predict(X_test)
             cresult.append(f1_score(y_test,y_pred))
             ci.append(j)
         print("average of f1 score "+str(np.mean(cresult)))
         plt.figure().set_figwidth(30)
         plt.plot(cresult, linestyle = 'dotted')
         plt.xticks(range(len(ci)), ci)
         plt.xlabel("C parameter", labelpad=7)
         plt.show()
```

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 average of f1 score 0.3135 6781324596644

In []:

7 of 7