Name: <u>Caleb McWhorter — Solutions</u>	"I turned myself into a pickle, Morty!
MATH 101	
Fall 2023	I'm Pickle Rick!"
HW 5. Due 00/25	–Rich Sanchez, Rick & Morty

Problem 1. (10pt) Express each of the following decimal numbers as a rational number in simplest form and express each of the rational numbers as a decimal number:

- (a) 0.85
- (b) $\frac{5}{12}$
- (c) 1.12
- (d) $\frac{11}{6}$

Problem 2. (10pt) Showing all your work, express the number $0.\overline{2023}$ as a rational number.

Problem 3. (10pt) Perform the following operations in \mathbb{C} :

(a)
$$(\frac{2}{3} + 5i) + (\frac{1}{2} - \frac{3}{4}i)$$

(b)
$$(15+6i)-(9-4i)$$

(c)
$$(6-3i)(8+5i)$$

(d)
$$\frac{5-7i}{4+3i}$$

(e)
$$(1+2i)(\overline{1+2i})$$

Problem 4. (10pt) Every quadratic equation $ax^2 + bx + c = 0$ has exactly two (not necessarily distinct) solutions when the solutions are allowed to be complex numbers. Without explicitly solving the equation, verify that the two solutions to $x^2 - 2x + 5 = 0$ are $x_0 = 1 \pm 2i$; that is, substitute both x = 1 + 2i and x = 1 - 2i into $x^2 - 2x + 5$ and show that one obtains a zero for this function in each case.