Package 'abd'

October 12, 2022
Type Package
Title The Analysis of Biological Data
Version 0.2-8
Date 2015-07-02
Author Kevin M. Middleton <middletonk@missouri.edu>, Randall Pruim</middletonk@missouri.edu>
<rpre><rpruim@calvin.edu></rpruim@calvin.edu></rpre>
Maintainer Kevin M. Middleton <middletonk@missouri.edu></middletonk@missouri.edu>
Depends R (>= 3.0), nlme, lattice, grid, mosaic
Suggests boot, car, ggplot2, plyr, HH, ICC, vcd, Hmisc
Description The abd package contains data sets and sample code for The Analysis of Biological Data by Michael Whitlock and Dolph Schluter (2009; Roberts & Company Publishers).
License GPL-2
LazyLoad yes
LazyData yes
Encoding UTF-8
Collate 'abdData.R' 'histochart.R' 'datasets.R' 'themes.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-03 05:44:45
R topics documented:
abd-package 4 abdData 5 AlgaeCO2 6 Antilles 5 Aspirin 5 BeeGenes 5 BeeLifespans 5

Beetles	9
BirdSexRatio	10
Blackbirds	11
BodyFatHeatLoss	11
BrainExpression	12
BrookTrout	
Cavalry	
Chickadees	
ChimpBrains	
Cichlids	
CichlidsGnRH	
Clearcuts	
CocaineDopamine	
col.abd	
Convictions	
Convictions And Income	
Crickets	
DaphniaLongevity	
DaphniaResistance	
dataInfo	
DayOfBirth	
DEET	
DesertBirds	
Dioecy	
Dolphins	
DungBeetles	
Earthworms	
Earwigs	
Eelgrass	
ElectricFish	
ElVerde	
EndangeredSpecies	
FingerRatio	
Fireflies	
FireflyFlash	
FlycatcherPatch	
FlyTestes	
GeneRegulation	
GlidingSnakes	
GodwitArrival	
Grassland	
GreatTitMalaria	36
Greenspace	37
Guppies	38
Hemoglobin	38
HippocampusLesions	39
histochart	40
HornedLizards	40

HumanBodyTemp			 	 					 				 			41
HumanGeneLengths																42
Hurricanes																43
Iguanas			 	 					 				 			43
IntertidalAlgae			 	 					 				 			44
JetLagKnees			 	 					 				 			45
KenyaFinches			 	 					 				 		 	45
LanguageBrains			 	 					 				 		 	46
LarvalFish			 	 					 				 			46
Lefthanded			 	 					 				 			47
LionCubs			 	 					 				 		 	48
LionNoses			 	 		 			 				 			48
LiverPreparation			 	 		 			 				 			49
LizardBite			 	 					 				 			49
LizardSprint			 	 		 			 				 			50
Lobsters			 	 					 				 		 	51
LodgepolePines			 	 					 				 		 	51
LupusMice			 	 					 				 		 	52
Lynx																53
MarineReserve																53
MassExtinctions																54
MoleRats																54
Mosquitoes																55
MouseEmpathy																56
NeanderthalBrains .																56
NematodeLifespan .																57
NeotropicalTrees																58
Newts																58
NorthSeaCod																59
NoSmokingDay																60
OstrichTemp																60
Penguins																61
PlantPersistence																62
Pollen																62
Powerball																63
PrimateMetabolism .																63
PrimateWBC																64
ProgesteroneExercise																64
																65
Pufferfish																66
Rattlesnakes																66
Rigormortis																67
RopeTrick																68
														•	 •	68
SalmonColor														•	•	69
Seedlings														•	 •	69
Selection											• •	•	 	•	 •	70
Sevuel Calaction	• •	• •	 	 	• •	 •	• •	• •	 ٠.	•		•	 	•	 •	71

Index

ShadParasites	
ShrinkingSeals	
ShuttleDisaster	
Silversword	
SleepAndPerformance	
SockeyeFemales	
Sparrows	
SpiderColonies	
SpiderSpeed	
Stalkies1	
Stalkies2	
SticklebackPlates	
SticklebackPreference	
Sumo	
SyrupSwimming	
TeenDeaths	
Telomeres	
TimeOfDeath	
Toads	
Tobacco	
Tobacco2	
ToothAge	
TreeSeedlings	
Trematodes	
Trillium	 86
Truffles	 87
TsetseLearning	
TwoKids	 88
VampireBites	 89
VasopressinVoles	 90
Vines	 90
VoleDispersal	 91
WalkingStickFemurs	 92
WalkingStickHeads	 92
WeddellSeals	 93
WillsDebates	 94
WillsPresidents	 94
WolfTeeth	95
Wolves	95
WorldCup	 96
WrasseSexes	
YeastGenes	0.7
ZebraFinchBeaks	0.7
ZebraFinches	0.0
ZooMortality	
Zooplankton	
	100

abdData 5

abd-package

Data sets from The Analysis of Biological Data

Description

The abd package contains data sets and sample code for the book, *The Analysis of Biological Data* by Michael C. Whitlock and Dolph Schluter (2009; Roberts and Company Publishers).

Details

Package: abd
Type: Package
Version: 0.2-8
Date: 2015-07-02
License: GPL
LazyLoad: yes
LazyData: yes

Author(s)

Kevin M. Middleton (middletonk@missouri.edu); Randall Pruim (rpruim@calvin.edu)

References

Whitlock, M.C. and D. Schluter. 2009. *The Analysis of Biological Data*. Roberts and Company Publishers. ISBN: 0981519407. http://www.roberts-publishers.com/biology/the-analysis-of-biological-datahtml

Examples

abdData

Find data in Analysis of Biological Data

Description

A utility function to assist users to locate data sets in *Analysis of Biological Data* within the abd package.

6 AlgaeCO2

Usage

```
abdData(..., chapters = 1:21, types = c("Example", "Problem"),
  numbers = 1:100, pattern = "*", ignore.case = TRUE)
```

Arguments

chapters a numeric vector of chapters to search within types a sub-vector of c('Example','Problem') numbers a numeric vector of problem numbers

pattern a pattern to use for regular expression matching against the name of the data

frame.

ignore.case should case be ignored when matching pattern?

.. values for any of chapters, types, or pattern. Which is meant will be inferred

from the type of object supplied. This allows users to specify these values in any

order and without naming.

Value

A data frame describing data sets from abd that match the search criteria, or NULL if there are no matches.

Author(s)

Randall Pruim (<rpruim@calvin.edu>)

Examples

```
# find all data from examples in chapters 3 and 4
abdData(3:4, 'Example')

# order doesn't matter
abdData('Example', 3:4)

# look for data sets with Example in their name.
abdData(pattern='Example')

# look for data sets with Exercise in their name.
abdData('Exercise')
```

AlgaeC02

Carbon Dioxide and Growth Rate in Algae

Description

Growth rates of the unicellular alga *Chlamydomonas* after 1,000 generations of selection under High and Normal levels of carbon dioxide.

Antilles 7

Format

A data frame with 14 observations on the following 2 variables.

```
treatment a factor with levels Normal and High growthrate a numeric vector
```

Source

Collins, S. and G. Bell. 2004. Phenotypic consequences of 1,000 generations of selection at elevated CO_2 in a green alga. *Nature* 431: 566-569.

Examples

```
AlgaeCO2 xyplot(growthrate ~ treatment, AlgaeCO2, type = c('p', 'a'))
```

Antilles

Antilles Bird Immigration Dates

Description

Approximate dates of immigration for 37 species of birds in the Lesser Antilles.

Format

A data frame with 37 observations of one variable.

immigration.date approximate immigration date (in millions of years)

Source

inferred from Ricklefs, R.E. and E. Bermingham. 2001. Nonequilibrium diversity dynamics of the Lesser Antillean avifauna. *Science* 294: 1522-1524.

References

http://www.sciencemag.org/cgi/content/abstract/sci;294/5546/1522

```
histogram(~immigration.date, Antilles,n=15)
densityplot(~immigration.date, Antilles)
```

8 BeeGenes

Aspirin

Effects of Aspirin on Cancer Rates

Description

Frequency of cancer in 39,876 women taking and not taking aspirin.

Format

A data frame with 39876 observations on the following

treatment a factor with levels Aspirin and Placebo

cancer a factor with levels no and yes

Source

Cook, N.R., I. Lee, J.M. Gaziano, D. Gordon, P.M. Ridker, J.E. Manson, C.H. Hennekens, and J.E. Buring. 2005. Low-dose aspirin in the primary prevention of cancer. *Journal of the American Medical Association* 294: 47-55.

References

http://www.ncbi.nlm.nih.gov/pubmed/15998890

Examples

demo(sec9.2)

BeeGenes

Foraging Gene Expression

Description

Levels of expression of the foraging gene (*for*; Expression) in two worker types (type) in three bee colonies (colony). Note that colony is not coded as a factor.

Format

A data frame with 6 observations on the following 3 variables.

type a factor with levels forager nurse

colony a numeric identifier

expression expression level of the for gene

BeeLifespans 9

Source

Ben-Shahar, Y., A. Robichon, M.B. Sokolowski, and G.E. Robinson. 2002. Influence of gene action across different time scales on behavior. *Science* 296: 741-744.

Examples

```
str(BeeGenes)
BeeGenes
xtabs( expression ~ type + colony, BeeGenes )
```

BeeLifespans

Bee Lifespans

Description

Lifespan of 33 foraging honey bees.

Format

A data frame with 33 observations on the following variable.

hours a numeric vector

Source

inferred from Visscher, P.K. and R. Dukas. 1997. Survivorship of foraging honey bees. *Insectes Sociaux* 44: 1-5.

Examples

```
histogram(~hours, BeeLifespans, n=10)
densityplot(~hours, BeeLifespans)
```

Beetles

Beetle Wings and Horns

Description

Relative size of the horns and wings in 19 female Onthophagus sagittarius beetles.

Format

A data frame with 19 observations on the following 2 variables.

```
horn.size a numeric vector
wing.mass a numeric vector
```

10 BirdSexRatio

Source

Emlen, D.J. 2001. Costs and the diversification of exaggerated animal structures. *Science* 291: 1534-1536.

References

http://www.scienceonline.org/cgi/content/abstract/291/5508/1534

Examples

```
str(Beetles)
xyplot(wing.mass ~ horn.size, Beetles)
```

BirdSexRatio

Sex Ratios in Birds

Description

Correlation coefficient of sex ratio in bird offspring.

Format

A data frame with 15 observations of one variable

corr.coeff correlation coefficient of sex ratio in bird offspring

Source

West, S.A. and B.C. Sheldon. 2002. Constraints in the evolution of sex ratio adjustment. *Science* 295: 1695-1688.

```
histogram(~corr.coeff, BirdSexRatio, n = 10,
    xlab = "Correlation Coefficient")
```

Blackbirds 11

Blackbirds

Testosterone Levels in Blackbirds

Description

Experimental manipulation of testosterone levels in male Red-winged Blackbirds (*Agelaius phoeniceus*) and resulting changes in antibody levels

Format

A data frame with 13 observations on the following 6 variables.

```
before a numeric vector
after a numeric vector
log.before a numeric vector
log.after a numeric vector
diff.in.logs a numeric vector
diff a numeric vector
```

Source

Hasselquist, D., J.A. Marsh, P.W. Sherman, and J.C. Wingfield. 1999. Is avian immunocompetence suppressed by testosterone? *Behavioral Ecology and Sociobiology* 45: 167-175.

Examples

```
Blackbirds
xyplot(log.after ~ log.before, data = Blackbirds,
  ylab = "log Antibody production after implant",
  xlab = "log Antibody production before implant")
```

BodyFatHeatLoss

Heat Loss and Body Fat

Description

Heat loss during exercise and relative body fat in 12 boys.

Format

A data frame with 12 observations on the following 2 variables.

```
leanness a numeric vector lossrate a numeric vector
```

12 BrainExpression

Source

Sloan, R.E.G. and W.R. Keatinge. 1973. Cooling rates of young people swimming in cold water. *Journal of Applied Physiology* 35: 371-375.

References

```
http://www.ncbi.nlm.nih.gov/pubmed/4732330
```

Examples

```
xyplot(lossrate ~ leanness, BodyFatHeatLoss)
```

BrainExpression

Proteolipid Protein 1 Gene Expression

Description

Expression levels of the proteolipid protein 1 gene (PLP1; PLP1.expression) in 45 individuals in one of three groups.

Format

A data frame with 45 observations on the following 2 variables.

```
group a factor with levels: bipolar, control, and schizo
```

PLP1.expression a numeric vector

Source

inferred from Tkachev, D., M.L. Mimmack, M.M. Ryan, M. Wayland, T. Freeman, P.B. Jones, M. Starkey, M.J. Webster, R.H. Yolken, S. Bahn. 2003. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. *Lancet* 362(9386): 798-805.

```
bwplot(PLP1.expression ~ group, BrainExpression)
```

BrookTrout 13

BrookTrout	Salmon Survival in the Presence of Brook Trout	

Description

Total numbers of salmon released (salmon.released) and surviving (salmon.surviving) in 12 streams, 6 with brook trout present and 6 with brook trout absent. The proportion of salmon surviving (proportion.surviving) is given for each stream.

Format

BrookTrout is a data frame with 12 observations on the following 4 variables. BrookTrout2 is a different summary of the same study and gives survival rates for chinook in different years.

trout a factor with levels absent and present indicating whether brook trout are absent or present in the stream

salmon.released a numeric vector of the total number of salmon releasedsalmon.surviving a numeric vector of the number of salmon survivingproportion.surviving a numeric vector of the proportion of salmon surviving

Source

Levin, P.S., S. Achord, B.E. Fiest, and R.W. Zabel. 2002. Non-indigenous brook trout and the demise of Pacific salmon: a forgotten threat? *Proceedings of the Royal Society of London, Series B, Biological Sciences* 269: 1663-1670.

Examples

```
str(BrookTrout)
str(BrookTrout2)
bwplot(proportion.surviving ~ trout, BrookTrout)
aggregate(proportion.surviving ~ trout, BrookTrout, FUN = favstats)
summary(proportion.surviving ~ trout, BrookTrout, fun = favstats)
```

Cavalry

Deaths from Horse Kicks

Description

Numbers of deaths resulting from horse kicks per regiment-years for the Prussian army.

14 Chickadees

Format

A data frame with 5 observations on the following 2 variables.

```
deaths a numeric vector count a numeric vector
```

Source

Bortkiewicz, L. 1898. Das Gesetz der Kleinen Zahlen (Teubner, Leipzig), as cited in Larson, R.J. and M.L. Marx. 1981. An Introduction to Mathematical Statistics and its Applications. Prentice-Hall: Englewood Cliffs, NJ.

Examples

Chickadees

Alarm Calls in Chickadees

Description

Number of "dee" notes per call in Black-capped Chickadees (*Poecile atricapilla*) for 13 predator species with differing body masses.

Format

A data frame with 13 observations on the following 3 variables.

```
species a character vectormass a numeric vectordees a numeric vector
```

Source

Templeton, C.N., E. Greene, and K. Davis. 2005. Allometry of alarm calls: Black-capped Chickadees encode information about predator size. *Science* 308: 1934-1937.

References

http://www.sciencemag.org/cgi/content/short/308/5730/1934

ChimpBrains 15

Examples

```
str(Chickadees)
Chickadees

xyplot(dees ~ mass, data = Chickadees,
    xlab = "Predator body mass (kg)",
    ylab = "'Dees' per call", type=c('p','r')
)
```

ChimpBrains

Brodmann's Area 44 in Chimps

Description

Asymmetry of Brodmann's area 44 in 20 chimpanzees.

Format

A data frame with 20 observations on the following 3 variables.

```
name name of chimpsex a factor with levels F and Masymmetry asymmetry score
```

Source

Cantalupo, C. and W.D. Hopkins. 2001. Asymmetric Broca's area in great apes. Nature 414: 505.

Examples

```
xyplot(asymmetry ~ sex, ChimpBrains)
aggregate(asymmetry ~ sex, ChimpBrains, FUN = favstats)
summary(asymmetry ~ sex, ChimpBrains, fun = favstats)
```

Cichlids

Cichlid Mating Preference

Description

Preference index in F1 and F2 crosses of two species of cichlids from Lake Victoria, *Pundamilia pundamilia* and *P. nyererei*.

Format

A data frame with 53 observations on the following 2 variables.

```
genotype a factor with levels F1 and F2 preference a numeric vector
```

16 CichlidsGnRH

Source

Haeslery, M.P. and O. Seehausen. 2005. Inheritance of female mating preference in a sympatric sibling species pair of Lake Victoria cichlids: implications for speciation. *Proceedings of the Royal Society of London, Series B, Biological Sciences* 272: 237-245.

References

```
http://rspb.royalsocietypublishing.org/content/272/1560/237.full.pdf
```

Examples

CichlidsGnRH

GnRH Levels in Cichlids

Description

Levels of mRNA for gonadotropin-releasing hormone in cichlids ($Haplochromis\ burtoni$) that are (n = 5) and are not (n = 6) territorial.

Format

A data frame with 11 observations on the following 2 variables.

territorial a factor with levels No and Yes

GnRH.mRNA a numeric vector

Source

White, S.A., T. Nguyen, and R.D. Fernald. 2002. Social regulation of gonadotropin-releasing hormone. *Journal of Experimental Biology* 205: 2567-2581.

References

```
http://jeb.biologists.org/cgi/content/abstract/205/17/2567
```

```
xyplot(GnRH.mRNA ~ territorial, CichlidsGnRH, type=c('p','a'))
```

Clearcuts 17

Clearcuts

Biomass Change in Rainforests near Clearcuts

Description

Biomass change in 36 Amazonian rainforests following clearcuts ranging from 50 m to several kilometers.

Format

A data frame with 36 observations of one variable.

biomass.change

Source

Laurance, W.F., S.G. Laurance, L.V. Ferreira, J.M. Rankin-de Merona, C. Gascon, T.E. Lovejoy. 1997. Biomass collapse in Amazonian forest fragments. *Science* 278: 1117-1118.

References

http://www.sciencemag.org/cgi/content/abstract/278/5340/1117

Examples

```
str(Clearcuts)
histogram(~biomass.change, Clearcuts)
```

CocaineDopamine

Effects of Cocaine on Dopamine Receptors

Description

Percent of dopamine receptors blocked (percent.bocked) and the perceived level of high as determined by PET scans (high) in 34 humans.

Format

A data frame with 34 observations on the following 2 variables.

percent.blocked a numeric vector
high a numeric vector

Source

Volkow, N.D., G.-J. Wang, R.W. Foltin, J.S. Fowler, N.N. Abumrad, S. Vitkun, J. Logan, S.J. Gatley, N. Pappas, R. Hitzemann, and C.E. Shea. 1997. Relationship between subjective effects of cocaine and dopamine transporter occupancy. *Nature* 386: 827-830.

18 col.abd

References

http://www.nature.com/nature/journal/v386/n6627/abs/386827a0.html

Examples

```
str(CocaineDopamine)
xyplot(high ~ percent.blocked, CocaineDopamine)
```

col.abd

Lattice theme for Analysis of Biological Data

Description

This theme will help produce plots with color scheme similar to the one used in *Analysis of Biological Data*

Usage

```
col.abd(bw = FALSE, lty = 1:7)
theme.abd(bw = FALSE, lty = 1:7)
```

Arguments

bw a logical. Use a grayscale theme instead of color?line types used for panel.superpose

Details

theme. abd and col. abd are the same function with two names.

Value

a list that can be used as a lattice theme.

Author(s)

Randall Pruim (<rpruim@calvin.edu>)

```
trellis.par.set(theme=col.abd(bw=TRUE))
show.settings()
trellis.par.set(theme=theme.abd(lty=1))
show.settings()
```

Convictions 19

Convictions

Frequency of Convictions for a Cohort of English Boys

Description

Data on frequency of convictions for a cohort of 395 boys.

Format

A data frame with 15 observations on the following 2 variables.

convictions number of convictions

boys number of boys with given number of convictions

Source

Farrington, D.P. 1994. *Cambridge Study in Delinquent Development* [Great Britain], 1961-1981. 2nd ICPSR ed. Inter-university Consortium for Political and Social Research, Ann Arbor, MI.

References

```
http://www.icpsr.umich.edu/icpsrweb/NACJD/archive.jsp
```

Examples

```
str(Convictions)
barchart(boys ~ as.factor(convictions), Convictions, horizontal = FALSE, origin=0)
xyplot( boys ~ convictions, Convictions, type = "h", lwd = 20)
```

ConvictionsAndIncome

Convictions and Income Level in a Cohort of English Boys

Description

Data reporting the number of individual with and without convictions per income level.

Format

A data frame with 395 observations on the following 2 variables.

```
convicted a factor with levels no and yes
```

income a factor with levels adequate, comfortable, and inadequate

Source

Farrington, D.P. 1994. *Cambridge Study in Delinquent Development* [Great Britain], 1961-1981. 2nd ICPSR ed. Inter-university Consortium for Political and Social Research, Ann Arbor, MI.

20 Crickets

References

```
http://www.icpsr.umich.edu/icpsrweb/NACJD/archive.jsp
```

Examples

```
str(ConvictionsAndIncome)
ConvictionsAndIncome
xtabs(~ convicted + income, data = ConvictionsAndIncome)
```

Crickets

Immunity and Sperm Viability in Crickets

Description

Sperm viability and immune function, measured by lysozyme activity in crickets. Each observation is a mean for a single family of males.

Format

A data frame with 41 observations on the following 2 variables.

```
sperm.viability a numeric vector
lysozyme a numeric vector
```

Source

Simmons, L.W. and B. Roberts. 2005. Bacterial immunity traded for sperm viability in male crickets. *Science* 309: 2031.

```
Crickets
xyplot(lysozyme ~ sperm.viability, Crickets)
```

DaphniaLongevity 21

DaphniaLongevity

Daphnia Longevity

Description

Number of spores and host longevity in the crustacean Daphnia magna.

Format

A data frame with 32 observations on the following 2 variables.

```
longevity a numeric vector
sqrt.spores a numeric vector
```

Source

Jensen, K.H., T.J. Little, A. Skorping, and D. Ebert. 2006. Empirical support for optimal virulence in a castrating parasite. *PLoS Biology* 4(7): e197

References

```
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0040197
```

Examples

```
str(DaphniaLongevity)
xyplot(sqrt.spores ~ longevity, DaphniaLongevity)
```

DaphniaResistance

Daphnia Resistance to Cyanobacteria

Description

Resistance of Daphnia eggs to different levels of cyanobacteria (cyandensity) from 1962-1997.

Format

A data frame with 32 observations on the following 2 variables.

```
density a factor with levels: high, low, and med resistance a numeric vector
```

Source

inferred from Hairston, N.G., Jr., W. Lampert, C.E. Cáceres, C.L. Holtmeier, L.J. Weider, U. Gaedke, J.M. Fischer, J.A. Fox, and D.M. Post. 1999. Dormant eggs record rapid evolution. *Nature* 401: 446.

22 dataInfo

Examples

```
str(DaphniaResistance)

bwplot(resistance ~ density, DaphniaResistance)
# with such a small data set, we can display all the data
# rather than a summary
xyplot(resistance ~ density, DaphniaResistance)
histogram( ~ resistance| density, DaphniaResistance,
strip=FALSE, strip.left = TRUE,
layout=c(1,3)
)
```

dataInfo

abd Data Sets

Description

Information about the location of data sets in Analysis of Biological Data

Format

A data frame with 143 observations on the following 5 variables.

```
name name of data setchapter chapter in which data set appearstype used in an Example or a Problemnumber example or problem numbersub sub-problem: a b c
```

See Also

abdData

```
str(dataInfo)
```

DayOfBirth 23

DayOfBirth

Day of Birth

Description

Day of the week for 350 U.S. births in 1999.

Format

A data frame with 7 observations on the following 2 variables.

day a character vector

births a numeric vector

Source

Ventura, S.J., J.A. Martin, S.C. Curtin, F. Menacker, and B.E. Hamilton. 2001. Births: final data for 1999. *National Vital Statistics Reports* Vol. 49, No. 1.

References

http://cdc.gov/NCHS/products/nvsr.htm

```
DayOfBirth
barchart( day ~ births, DayOfBirth, origin=0)

# Fix bad ordering of days
DayOfBirth$oday <- with(DayOfBirth, ordered(day, levels = day))
barchart( oday ~ births, DayOfBirth, origin=0)
barchart( births ~ oday, DayOfBirth, horizontal = FALSE, origin=0)
barchart( births ~ oday, DayOfBirth, horizontal = FALSE, origin=0,
scales = list(x=list(rot=45)))

barplot(DayOfBirth$births,
   ylim = c(0, 70),
   names.arg = DayOfBirth$day,
   las = 2,
   mgp = c(3, 0.75, 0))</pre>
```

24 DesertBirds

DEET

DEET and Mosquito Bites

Description

Administered dose of DEET and number of mosquito bites for 52 women.

Format

A data frame with 52 observations on the following 2 variables.

```
dose a numeric vectorbites a numeric vector
```

Source

Golenda, C.F., V.B. Solberg, R. Burge, J.M. Gambel, and R.A. Wirtz. 1999. Gender-related efficacy difference to an extended duration formulation of topical N,N-diethyl-*m*-toluamide (DEET). *American Journal of Tropical Medicine and Hygiene* 60: 654-657.

Examples

```
str(DEET)
xyplot(bites ~ dose, DEET)
```

DesertBirds

Desert Bird Census Data

Description

Census data for desert birds.

Format

A data frame with 43 observations on the following 2 variables.

```
species a character vector
count a numeric vector
```

Source

Sauer, J.R., J.E. Hines, and J. Fallon. 2003. The North American breeding bird survey, results and analysis 1966-2002. Version 2003.1. USGS Patuxent Wildlife Research Center, Laurel, MD.

References

```
http://www.mbr-pwrc.usgs.gov/bbs/
```

Dioecy 25

Examples

```
str(DesertBirds)
histogram(~ count, DesertBirds,
    xlab = "Abundance"
)
```

Dioecy

Dioecy vs. Monomorphism in Plants

Description

Number of dioecious and monomorphic taxa among pairs of closely related plants.

Format

A data frame with 28 observations on the following 3 variables.

```
dioecious a numeric vector
monomorphic a numeric vector
taxon.pair identifier for pair
```

Source

Heilbuth, J.C. 2000. Lower species richness in dioecious clades. *The American Naturalist* 156: 221-241.

Examples

```
xyplot(dioecious ~ monomorphic, Dioecy, alpha = 0.65, pch = 16)
```

Dolphins

Dolphin Swimming Behavior

Description

Percentage of time 8 sleeping dolphins from the Southern Hemisphere spent swimming clockwise.

Format

A data frame with 8 observations on one variable.

percent.clockwise percent of time spent swimming clockwise while sleeping.

Source

Stafne, G.M. and P.R. Manger. 2004. Predominance of clockwise swimming during rest in Southern Hemisphere dolphins. *Physiology and Behavior* 82: 919-926.

26 DungBeetles

References

```
http://faculty.washington.edu/chudler/dolp.html
```

Examples

```
Dolphins
hist(Dolphins$percent.clockwise)
histogram(~ percent.clockwise, Dolphins)
```

DungBeetles

Heritability of Body Condition in Dung Beetles

Description

Body condition (offspring.condition) in 36 dung beetles (*Onthophagus taurus*) from 12 males each mated to 3 different virgin females.

Format

A data frame with 36 observations on the following 2 variables.

```
id a numeric vector
```

offspring.condition a numeric vector

Source

inferred from Kotiaho, J.S., L.W. Simmons, and J.L. Tomkins. 2001. Towards a resolution of the lek paradox. *Nature* 410: 684-686.

References

```
http://en.wikipedia.org/wiki/Dung_beetle
http://www.nature.com/nature/journal/v410/n6829/abs/410684a0.html
```

```
str(DungBeetles)
xyplot(offspring.condition ~ factor(id), DungBeetles,
    xlab='Dung Beetle',
    ylab='offspring condition')
```

Earthworms 27

Earthworms

Earthworm Diversity and Soil Nitrogen Levels

Description

Number of earthworm species and total nitrogen content in the soil in 39 hardwood forest plots.

Format

A data frame with 39 observations on the following 2 variables.

```
worm.species a numeric vector nitrogen a numeric vector
```

Source

Gundale, M.J., W.M. Jolly, and T.H. Deluca. 2005. Susceptibility of a northern hardwood forest to exotic earthworm invasion. *Conservation Biology* 19: 1075-1083.

References

```
http://www3.interscience.wiley.com/journal/118701215/abstract
```

Examples

```
str(Earthworms)
xyplot(nitrogen ~ worm.species, Earthworms)
```

Earwigs

Earwig Density and Forceps

Description

Earwig (*Forficula auricularia*) density and the proportion of trapped earwigs with abdominal forceps (used for fighting and courtship).

Format

A data frame with 7 observations on the following 2 variables.

```
density a numeric vector proportion.forceps a numeric vector
```

Source

Tomkins, J.L. and G.S. Brown. 2004. Population density drives the local evolution of a threshold dimorphism. *Nature* 431: 1099-1103.

28 Eelgrass

References

```
http://en.wikipedia.org/wiki/Forficula_auricularia
http://www.arkive.org/common-european-earwig/forficula-auricularia/
http://eol.org/pages/473785
```

Examples

```
xyplot(proportion.forceps ~ density, data=Earwigs, type='h', lwd=6)
```

Eelgrass

Eelgrass Genotypes

Description

Number of shoots (shoots) surviving in each of 32 experimental plots planted with 1, 3, or 6 different genotypes of eelgrass (treatment.genotypes).

Format

A data frame with 32 observations on the following 2 variables.

genotypes a numeric vector of the number of genotypes planted in each plot **shoots** a numeric vector of the total number of shoots in each plot

Source

inferred from Reusch, T.B.H., A. Ehlers, A. Hämmerli, and B. Worm. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. *Proceedings of the National Academy of Sciences (USA)* 102: 2826-2831.

References

```
http://www.pnas.org/content/102/8/2826.abstract
```

```
Eelgrass
# Convert treatment.genotypes to a factor
Eelgrass$genotypesF <-
   factor(Eelgrass$genotypes)
str(Eelgrass)
xyplot(shoots ~ genotypes, Eelgrass)
xyplot(shoots ~ genotypesF, Eelgrass)</pre>
```

ElectricFish 29

ElectricFish

Electric Fish

Description

Species abundance of electric fish upstream and downstream of the entrance of a tributary in the Amazon basin.

Format

A data frame with 12 observations on the following 3 variables.

tributary a character vector

species.upstream a numeric vector of the number of species of electric fish present upstream of the tributary

species.downstream a numeric vector of the number of species of electric fish present downstream of the tributary

Source

Fernandes, C.C., J. Podos, and J.G. Lundberg. 2004. Amazonian ecology: tributaries enhance the diversity of electric fishes. *Science* 305: 1960-1962.

References

http://www.sciencemag.org/cgi/content/abstract/305/5692/1960

```
ElectricFish
require(grid)
xyplot(species.upstream ~ species.downstream, data = ElectricFish,
  panel=function(x, y, ...){
    grid.text(ElectricFish$tributary, x=x, y=y,
        rot = 45,
        gp = gpar(cex=.6),
        default.units = 'native')
    }
)
```

30 EndangeredSpecies

ElVerde

Diet Breadth in a Rainforest Community

Description

Number of different species (breadth) in 127 species (no. species) in the rainforest community at El Verde, Puerto Rico

Format

A data frame with 38 observations on the following 2 variables.

breadth a numeric vector
num.species a numeric vector

Source

Waide R.B. and W.B. Reagan, eds. 1996. *The Food Web of a Tropical Rainforest*. University of Chicago Press, Chicago.

Examples

```
ElVerde
xyplot(num.species ~ breadth, ElVerde, type='h',lwd=3)
```

EndangeredSpecies

Endangered and Threatened Species

Description

Frequency of taxon groups on the U.S. Fish and Wildlife Service list of endangered and threatened species (2002).

Format

A data frame with 11 observations on the following 2 variables.

taxon a character vectornum.species a numeric vector

Source

U.S. Fish and Wildlife Service. 2001. Number of U.S. listed species per calendar year.

References

http://www.fws.gov/endangered/

FingerRatio 31

Examples

```
str(EndangeredSpecies)
EndangeredSpecies
```

FingerRatio

2D:4D Finger Ratio

Description

The ratio of the lengths of the index finger to the ring finger in 46 males and the number of CAG repeats for each.

Format

A data frame with 46 observations on the following 2 variables.

CAGrepeats a numeric vector of the number of CAG repeats

finger.ratio a numeric vector of the ratio of digit 2 to digit 4

Source

inferred from Manning, J.T., P.E. Bundred, D.J. Newton, and B.F. Flanagan. 2003. The second to fourth digit ratio and variation in the androgen receptor gene. *Evolution and Human Behavior* 24: 399-405.

References

```
http://en.wikipedia.org/wiki/Digit_ratio
```

```
str(FingerRatio)
xyplot(finger.ratio ~ CAGrepeats, FingerRatio,
    xlab = "Number of CAG Repeats",
    ylab = "2D:4D Ratio"
)
```

32 FireflyFlash

Fireflies

Spermatophore Mass in Fireflies

Description

Measurements of spermatophore mass (milligrams) in 35 fireflies (*Photinus ignitus*).

Format

A data frame with 35 observations of one variable.

sp.mass

Source

inferred from Cratsley, C.K. and S.M. Lewis. 2003. Female preference for male courtship flashes in *Photinus ignitus* fireflies. *Behavioral Ecology* 14: 135-140.

References

```
http://beheco.oxfordjournals.org/cgi/content/abstract/14/1/135
http://en.wikipedia.org/wiki/Firefly
```

Examples

```
str(Fireflies)
histogram(~sp.mass, Fireflies, n=12)
```

FireflyFlash

Firefly Flash Duration

Description

Flash duration (measured in milliseconds) of a sample of male fireflies (*Photinus ignitus*; n = 35).

Format

A data frame with 35 observations of one variable.

flash duration of flash (milliseconds)

Source

inferred from Cratsley, C.K. and S.M. Lewis. 2003. Female preference for male courtship flashes in *Photinus ignitus* fireflies. *Behavioral Ecology* 14: 135-140.

FlycatcherPatch 33

Examples

```
str(FireflyFlash)
histogram(~flash, FireflyFlash)
```

FlycatcherPatch

Forehead Patch Size in Collared Flycatachers

Description

Forehead patch size in 30 male Collared Flycatachers measured in two consecutive years.

Format

A data frame with 30 observations on the following 2 variables.

```
patch98 a numeric vectorpatch99 a numeric vector
```

Source

Griffith, S.C. and B.C. Sheldon. 2001. Phenotypic plasticity in the expression of a sexually selected trait: neglected components of variation. *Animal Behaviour* 61: 987-993.

Examples

```
str(FlycatcherPatch)
xyplot(patch99 ~ patch98, FlycatcherPatch)
```

FlyTestes

Testes Size in Flies

Description

Testes size (square mm; Testes.area) in 8 populations of common yellow dung flies (*Scathophaga stercoraria*) with different mating systems (Mating.system).

Format

A data frame with 8 observations on the following 2 variables.

```
mating a factor with levels Monogamous Polyandrous testes.area a numeric vector
```

Source

Hosken, D.J. and P.I. Ward. 2001. Experimental evidence for testis size evolution via sperm competition. *Ecology Letters* 4: 10-13.

34 GlidingSnakes

References

http://en.wikipedia.org/wiki/Scathophaga_stercoraria

Examples

```
str(FlyTestes)
FlyTestes
```

GeneRegulation

Gene Regulation in Saccharomyces

Description

Number of genes regulated by 109 regulatory genes of Saccharomyces cerevisiae.

Format

A data frame with 26 observations on the following 2 variables.

```
genes.regulated a numeric vector
count a numeric vector
```

Source

Guelzim, N., S. Bottani, P. Bourgine and F. Képès. 2002. Topological and causal structure of the yeast transcriptional regulatory network. *Nature Genetics* 31: 60-63.

Examples

```
str(GeneRegulation)
xyplot(count ~ genes.regulated, GeneRegulation, type='h', lwd=3)
```

GlidingSnakes

GlidingSnakes

Description

Undulation rate (Hz) of 8 paradise tree snakes (Chrysopelea paradisi).

Format

A data frame with eight observations of one variable.

undulation.rate undulation rate

GodwitArrival 35

Source

Socha, J.J. 2002. Gliding flight in the paradise tree snake. Nature 418: 603-604.

References

```
http://www.nature.com/nature/journal/v418/n6898/abs/418603a.html
http://www.flyingsnake.org/
```

Examples

```
histogram(~undulation.rate , data=GlidingSnakes, n=7,
  xlab = "Undulation rate (Hz)",
  type='count')
```

GodwitArrival

Godwit Arrival Dates

Description

Arrival dates for males and females in 10 pairs of Black-tailed Godwits (Limosa limosa)

Format

A data frame with 10 observations on the following 2 variables.

```
female a numeric vector male a numeric vector
```

Source

Gunnarsson, T.G., J.A. Gill, T. Sigurbjörnsson, and W.J. Sutherland. 2004. Pair bonds: arrival synchrony in migratory birds. *Nature* 431: 646.

References

```
http://en.wikipedia.org/wiki/Black-tailed_godwit
```

```
xyplot(male~female, GodwitArrival, main='Arrival of Godwit pairs')
```

36 GreatTitMalaria

Grassland

Grassland Diversity

Description

Species diversity in 10 experimental plots in the Park Grass Experiment at Rothamsted Experimental Station to which varying numbers of nutrients have been added.

Format

A data frame with 10 observations on the following 2 variables.

```
nutrients a numeric vector
num.species a numeric vector
```

Source

Harpole, W. S. and D. Tilman. 2007. Grassland species loss due to reduced niche dimension. *Nature* 446: 791-793.

References

```
http://www.rothamsted.ac.uk/
```

Examples

```
xyplot(num.species ~ jitter(nutrients, amount=0.1), Grassland, pch=16)
```

GreatTitMalaria

Malaria in Populations of Great Tit

Description

Two-by-two contingency table of malaria (*Plasmodium*) infection status in control and egg-removal populations of Great Tit (*Parus major*).

Format

A data frame with 65 observations on the following 2 variables.

```
treatment a factor with levels Control and Egg removal
response a ordered factor with levels No Malaria and Malaria
```

Source

Oppliger, A., P. Christe, and H. Richner. 1996. Clutch size and malaria resistance. *Nature* 381: 565.

Greenspace 37

References

http://www.nature.com/nature/journal/v381/n6583/abs/381565a0.html

Examples

```
str(GreatTitMalaria)

table(GreatTitMalaria)

if(require(vcd)) {
  mosaic(~treatment + response, GreatTitMalaria)
}
```

Greenspace

Diversity in Urban Green Space

Description

Measures of biodiversity in 15 urban green spaces in Sheffield, England.

Format

A data frame with 15 observations on the following 6 variables.

```
site a factor with levels A - 0
attachment a numeric vector
area a numeric vector
butterfly a numeric vector
bird a numeric vector
In.plant a numeric vector
```

Source

Fuller, R.A., K.N. Irvine, P. Devine-Wright, P.H. Warren, and K.J. Gaston. 2007. Psychological benefits of greenspace increase with biodiversity. *Biology Letters* 3: 390-394.

References

```
http://rsbl.royalsocietypublishing.org/content/3/4/390.abstract
```

```
str(Greenspace)
splom(Greenspace[,2:6])
```

38 Hemoglobin

Guppies

Ornamentation and Attractiveness in Guppies

Description

The father's ornamentation (composite score of color and brightness) and son's attractiveness (relative rates of visits by females) in male guppies (*Poecilia reticulata*).

Format

A data frame with 36 observations on the following 2 variables.

```
father.ornament a numeric vector son.attract a numeric vector
```

Source

inferred from Brooks, R. 2000. Negative genetic correlation between male sexual attractiveness and survival. *Nature* 406: 67-70.

References

http://www.nature.com/nature/journal/v406/n6791/abs/406067a0.html

Examples

```
str(Guppies)
xyplot(son.attract ~ father.ornament,
   Guppies,
   xlab = "Father's ornamentation",
   ylab = "Son's attractiveness"
)
```

Hemoglobin

Hemoglobin Levels in High Altitude Populations

Description

Relative rates of hemoglobin concentration in four populations of humans living at different altitudes.

Format

A data frame with 40 observations on the following 3 variables.

```
hemoglobin a numeric vector
group a factor with levels: Andes, Ethiopia, Tibet, and USA
relative.frequency a numeric vector
```

HippocampusLesions 39

Source

inferred from Beall, C.M., M.J. Decker, G.M. Bittenham, I. Kushner, A. Gebremedhin, K.P. Strohl. 2002. An Ethiopian pattern of human adaptation to high-altitude hypoxia. *Proceeding of the National Academy of Sciences (USA)* 99(26): 17215-17218.

References

```
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139295/
```

Examples

```
str(Hemoglobin)

xyplot(relative.frequency ~ hemoglobin | group, Hemoglobin,
  type ='h', lwd=4, layout=c(1,4))
```

HippocampusLesions

Memory and the Hippocampus

Description

Spatial memory score (memory) and percent lesion of the hippocampus (lesion).

Format

A data frame with 57 observations on the following 2 variables.

```
lesion a numeric vector memory a numeric vector
```

Source

Broadbent, N.J., L.R. Squire, and R.E. Clark. 2004. Spatial memory, recognition memory, and the hippocampus. *Proceedings of the National Academy of Sciences (USA)* 101: 14515-14520.

```
HippocampusLesions

xyplot(memory ~ lesion, data = HippocampusLesions,
   pch = 16, col = "red")

plot(memory ~ lesion, data = HippocampusLesions,
   pch = 16, col = "red")
```

40 HornedLizards

histochart	Histogram fro	m tabulated data
1115tochai t	misiogram jro	т шошией аша

Description

Uses lattice::barchart() to build a histogram from tabulated data.

Usage

```
histochart(x, data = NULL, box.ratio = 100, origin = 0,
horizontal = FALSE, ...)
```

Arguments

X	formula of form frequency ~ value
data	data frame in which the formula x is interpreted
box.ratio	ratio of bar widths to gaps between bars
origin	where do bars begin?
horizontal	Should bars go horizontal?

. . . other arguments passed to lattice::barchart()

Details

This is just a convenience wrapper around lattice::barchart().

Author(s)

```
Randall Pruim (<rpruim@calvin.edu>)
```

Examples

```
histochart( dbinom(0:30, 30, 0.35) \sim 0:30 )
```

HornedLizards Horn Length and Predation Status of Horned Lizards

Description

Squamosal horn length (mm; horn.length) and predation status (group; living or killed) for 184 horned lizards (*Phrynosoma mcalli*).

HumanBodyTemp 41

Format

A data frame with 184 observations on the following 2 variables.

```
horn.length a numeric vector
group a numeric vector
```

Source

Young, K.V., E.D. Brodie, Jr., and E.D. Brodie, III. 2004. How the horned lizard got its horns. *Science* 304: 65.

References

```
http://www.sciencemag.org/cgi/pdf_extract/304/5667/65
```

Examples

```
str(HornedLizards)
histogram(~horn.length | group, HornedLizards,
    layout=c(1,2),
    xlab="Horn Length (mm)")
```

HumanBodyTemp

Human Body Temperature

Description

Body temperature for 25 randomly chosen health people

Format

A data frame with 25 observations of one variable.

```
temp body temperature (degrees F)
```

Source

Shoemaker, A. L. 1996. What's normal? – Temperature, gender, and heart rate. *Journal of Statistics Education* 4(2).

References

```
http://www.amstat.org/publications/jse/v4n2/datasets.shoemaker.html
```

Mackowiak, P.A., Wasserman, S.S., and Levine, M.M. 1992. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. *Journal of the American Medical Association* 268: 1578-1580.

42 HumanGeneLengths

Examples

```
histogram(~temp, HumanBodyTemp)
stem(HumanBodyTemp$temp, scale = 2)
favstats(HumanBodyTemp$temp)
```

HumanGeneLengths

Human Gene Lengths

Description

Lengths in number of nucleotides (gene.length) for 20,290 human genes

Format

A data frame with 20,290 observations on the following variable.

gene.length a numeric vector

Source

Hubbard, T., D. Andrews, M. Caccamo, G. Cameron, Y. Chen, M. Clamp, L. Clarke, G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts, T. Down, R. Durbin, X. M. Fernandez-Suarez, J. Gilbert, M. Hammond, J. Herrero, H. Hotz, K. Howe, V. Iyer, K. Jekosch, A. Kahari, A. Kasprzyk, D. Keefe, S. Keenan, F. Kokocinsci, D. London, I. Longden, G. McVicker, C. Melsopp, P. Meidl, S. Potter, G. Proctor, M. Rae, D. Rios, M. Schuster, S. Searle, J. Severin, G. Slater, D. Smedley, J. Smith, W. Spooner, A. Stabenau, J. Stalker, R. Storey, S. Trevanion, A. Ureta-Vidal, J. Vogel, S. White, C. Woodwark, and E. Birne. 2005. Ensembl 2005. *Nucleic Acids Research* 33: D447-D453.

References

```
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC540092/
http://www.ensembl.org/
```

Hurricanes 43

Hurricanes

Intense Hurricanes

Description

Number of hurricanes greater than or equal to category 3 on the Safir-Simpson scale during the 20th century.

Format

A data frame with 4 observations on the following 2 variables.

hurricanes a numeric vector

count a numeric vector

Source

Blake, E.S., E.N. Rappaport, J.D. Jarrell, and C.W. Landsea. 2005. The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts). *NOAA Technical Memorandum NWS TPC-4*.

References

http://www.aoml.noaa.gov/hrd/Landsea/Blakeetal_noaamemoApr2007.pdf

Examples

Hurricanes

Iguanas

Iguana Body Length Changes

Description

Body size change in 64 Galápagos marine iguanas (*Amblyrhynchus cristatus*) that survived the 1992-1993 El Niño event.

Format

A data frame with 64 observations of one variable.

change.in.length

Source

Wikelski, M. and C. Thom. 2000. Marine iguanas shrink to survive El Niño. Nature 403: 37-38.

44 IntertidalAlgae

References

```
http://en.wikipedia.org/wiki/Marine_iguana
```

Examples

```
str(Iguanas)
histogram(~ change.in.length, Iguanas, n = 10)
```

IntertidalAlgae

Intertidal Algae

Description

Area coverage of red algae (*Mazzaella parksii*) in two herbivore treatments (herbivores) at two tide levels (height).

Format

A data frame with 64 observations on the following 3 variables.

```
height a factor with levels low and midherbivores a factor with levels minus and plussqrt.area a numeric vector
```

Source

Harley, C.D.G. 2003. Individualistic vertical responses of interacting species determine range limits across a horizontal gradient. *Ecology* 84: 1477-1488.

```
str(IntertidalAlgae)
# Using * includes the main effects and the interaction
aov.fit <- aov(sqrt.area ~ herbivores * height, data = IntertidalAlgae)
summary(aov.fit)
lm.fit <- lm(sqrt.area ~ herbivores * height, data = IntertidalAlgae)
anova(lm.fit)</pre>
```

JetLagKnees 45

JetLagKnees

Circadian Rhythm Phase Shift

Description

Shift in circadian rhythm (hours; shift) in three light treatments (treatment).

Format

A data frame with 22 observations on the following 2 variables.

treatment a factor with levels control, eyes, and knee **shift** a numeric vector

Source

inferred from Wright, K.P., Jr. and C.A. Czeisler 2002. Absence of circadian phase resetting in response to bright light behind the knees. *Science* 297: 571.

References

http://www.sciencemag.org/cgi/content/full/297/5581/571

Examples

demo(sec15.1)

KenyaFinches

Body Mass and Beak Length in Three Species of Finches in Kenya

Description

Data on body mass and beak length in three species of finches: Crimson-rumped waxbill (CRU. WAXB), Cutthroat finch (CUTTHROA), and White-browed sparrow weaver (WB. SPARW).

Format

A data frame with 45 observations on the following 3 variables.

```
species a factor with levels: CRU.WAXB, CUTTHROA, and WB.SPARWmass mass (g)beak.length beak length (mm)
```

Source

Schluter, D. 1988. The evolution of finch communities on islands and continents: Kenya vs. Galapagos. *Ecological Monographs* 58: 229-249.

46 LarvalFish

Examples

```
table(KenyaFinches$species)
xyplot(beak.length ~ species, KenyaFinches)
bwplot(beak.length ~ species, KenyaFinches)
```

LanguageBrains

Brain Structure in Bilingual Humans

Description

Proficiency score (summary of reading, writing, and speech) in subjects' second language and density of gray matter in the left inferior parietal region.

Format

A data frame with 22 observations on the following 2 variables.

```
proficiency a numeric vector
greymatter a numeric vector
```

Source

Mechelli, A., J.T. Crinion, U. Noppeney, J. O'Doherty, J. Ashburner, R.S. Frackowiak, and C.J. Price. 2004. Structural plasticity in the bilingual brain. *Nature* 431: 757.

Examples

```
str(LanguageBrains)
xyplot(proficiency ~ greymatter, LanguageBrains)
```

LarvalFish

Exploited Larval Fish

Description

Age (age) and coefficient of variation (cv) in larval fish from exploited and unexploited species (exploited).

Format

A data frame with 28 observations on the following 3 variables.

```
age a numeric vectorcv a numeric vectorexploited a factor with levels no and yes
```

Lefthanded 47

Source

Hsieh, C.H., C.S. Reiss, J.R. Hunter, J.R. Beddington, R.M. May, and G. Sugihara. 2006. Fishing elevates variability in the abundance of exploited species. *Nature* 443: 859-862.

Examples

```
str(LarvalFish)
xyplot(cv ~ age | exploited, LarvalFish)
xyplot(cv ~ age, groups=exploited, LarvalFish)
```

Lefthanded

Left-handedness and Rates of Violence

Description

Prevalence of left-handedness (percent.left) and homicide rates (murder) for 8 societies.

Format

A data frame with 8 observations on the following 2 variables.

```
percent.left a numeric vector
murder.rate a numeric vector
```

Source

Faurie, C. and M. Raymond. 2005. Handedness, homicide and negative frequency-dependent selection. *Proceedings of the Royal Society of London B* 272: 25-28.

References

```
http://rspb.royalsocietypublishing.org/content/272/1558/25.abstract
```

```
str(Lefthanded)
xyplot(murder.rate ~ percent.left, Lefthanded)
```

48 LionNoses

LionCubs

Time to Reproduction in Female Lions

Description

Time to reproduction (Days) based on whether death of previous cubs was due to infanticide (New) or accidental (Same).

Format

A data frame with 14 observations on the following 2 variables.

```
cause.of.death a factor with accident and infanticide
days.to.next.cub a numeric vector
```

Source

Packer, C. and A.E. Pusey. 1983. Adaptations of female lions to infanticide by incoming males. *The American Naturalist* 121: 716-728.

Examples

```
xyplot(days.to.next.cub ~ cause.of.death, LionCubs)
```

LionNoses

Lion Age and Nose Coloration

Description

Ages (in years; age) of 32 male lions and relative coloration of their noses (proportion.black).

Format

A data frame with 32 observations on the following 2 variables.

```
age a numeric vector
proportion.black a numeric vector
```

Source

Whitman, K., A.M. Starfield, H.S. Quadling and C. Packer. 2004. Sustainable trophy hunting of African lions. *Nature* 428: 175-178.

References

http://www.nature.com/nature/journal/v428/n6979/abs/nature02395.html

LiverPreparation 49

Examples

```
xyplot(age ~ proportion.black, LionNoses)
```

LiverPreparation

Liver Preparation

Description

The unbound fraction of taurocholate for each of five concentrations of administered taurocholate.

Format

A data frame with 5 observations on the following 2 variables.

```
concentration a numeric vector
unbound.fraction a numeric vector
```

Source

Smallwood, R.H., D.J. Morgan, G.W. Mihaly, and R.A. Smallwood. 1998. Effect of a protein binding change on unbound and total plasma concentrations for drugs of intermediate hepatic extraction. *Journal of Pharmacokinetics and Pharmacodynamics* 16:397-411.

References

```
http://www.ncbi.nlm.nih.gov/pubmed/3199317
```

Examples

```
str(LiverPreparation)
xyplot(unbound.fraction ~ concentration, LiverPreparation)
```

LizardBite

Bite Force in Collard Lizards

Description

Bite force (N) and territory area in 11 male collared lizards (Crotaphytus collaris).

Format

A data frame with 11 observations on the following 2 variables.

```
bite force of bite (N)
territory area of territory
```

50 LizardSprint

Note

In the original publication (Lappin and Husak, 2005; Figure 3A), the data are presented in log-10 units. The data in LizardBite and in chapter 17, question 9 was back-transformed using e (i.e., exp()). To recover the data from the original publication, use 10^(log(LizardBite\$territory)) and 10^(log(LizardBite\$bite)).

Source

Lappin, A. K., and J. F. Husak. 2005. Weapon performance, not size, determines mating success and potential reproductive output in the collared lizard (*Crotaphytus collaris*). *The American Naturalist* 166: 426-436.

Examples

```
str(LizardBite)
xyplot(territory ~ bite, LizardBite)
```

LizardSprint

Sprint Speeds in Canyon Lizards

Description

Sprint speeds (speed) in 34 canyon lizards (*Sceloporous merriami*) measured in successive years in Big Bend National Park. Note that lizard is not coded as a factor.

Format

A data frame with 68 observations on the following 2 variables.

```
lizard a numeric vector speed a numeric vector
```

Source

inferred from Huey, R.B. and A.E. Dunham. 1987. The repeatability of locomotor performance in natural populations of the lizard *Sceloporus merriami*. *Evolution* 42: 1116-1120.

References

```
http://en.wikipedia.org/wiki/Sceloporus_merriami
```

```
histogram(~ speed, LizardSprint)
Lizard2 <- aggregate(speed ~ lizard, LizardSprint, mean)
histogram(~ speed, Lizard2)</pre>
```

Lobsters 51

Lobsters

Lobster Orientation

Description

Orientation of 15 lobsters relative to initial position.

Format

A data frame with 15 observations of one variable.

orientation

Source

Boles, L.C. and K.J. Lohmann. 2003. True navigation and magnetic maps in spiny lobsters. *Nature* 421: 60-63.

References

http://www.unc.edu/depts/geomag/PDFGeomag/BolesandLohmann2003.pdf

Examples

```
histogram(~ orientation, Lobsters)
dotplot(~ orientation, Lobsters)
```

LodgepolePines

Lodgepole Pine Cone Masses

Description

Masses of cones of lodgepole pines (conemass) from 16 different habitat types (habitat) in western North America.

Format

A data frame with 16 observations on the following 4 variables.

habitat a factor with levels: island absent, island present, and mainland present

conemass mass of cone
location island or mainland
squirrels absent or present

52 LupusMice

Source

Edelaar, P. and C.W. Benkman. 2006. Replicated population divergence caused by localised co-evolution? A test of three hypotheses in the Red Crossbill-lodgepole pine system. *Journal of Evolutionary Biology* 19: 1651-1659.

References

```
http://en.wikipedia.org/wiki/Lodgepole_pine
http://en.wikipedia.org/wiki/Red_crossbill
```

Examples

```
LodgepolePines
str(LodgepolePines)
xyplot(conemass ~ habitat, LodgepolePines)
```

LupusMice

Autoimmune Reactivity in Lupus-prone Mice

Description

Autoimmune reactivity (dilution at which reactivity could be detected) in three treatments of lupus-prone mice.

Format

A data frame with 20 observations on the following 2 variables.

```
treatment a factor with levels: enhanced, sham, and untreateddilution a numeric vector of the dilution level at which reactivity could be detected
```

Source

McGaha, T.L., B. Sorrentino, and J.V. Ravetch. 2005. Restoration of tolerance in lupus by targeted inhibitory receptor expression. *Science* 307: 590-593.

```
str(LupusMice)
```

Lynx 53

Lynx

Population Cycles of Lynx in Canada 1752-1819

Description

Number of lynx pelts (pelts) reported in Canada per year from 1752 to 1819.

Format

A data frame with 68 observations on the following 2 variables.

```
year a numeric vectorpelts a numeric vector
```

Source

Elton, C. and M. Nicholson. 1942. The ten-year cycle in numbers of the lynx in Canada. *Journal of Animal Ecology* 11: 215-244.

Examples

```
xyplot(pelts ~ year, Lynx, type=c('p','l'))
```

MarineReserve

Marine Reserve Biomass

Description

Relative biomass in 32 marine reserves.

Format

A data frame with 32 observations of one variable.

biomass.ratio

Source

Halpern, B.S. 2003. The impact of marine reserves: do reserves work and does reserve size matter? *Ecological Applications* 13: S117-S137.

```
str(MarineReserve)
histogram(~ biomass.ratio, MarineReserve)
```

54 MoleRats

MassExtinctions Mass Extinct	ion Frequency
------------------------------	---------------

Description

The frequency of mass extinctions in the fossil record.

Format

A data frame with 21 observations on the following 2 variables.

```
num.extinctions a numeric vector
count a numeric vector
```

Source

Raup, D.M. and J.J. Sepkoski, Jr. 1982. Mass extinctions in the marine fossil record. *Science* 215: 1501-1503.

References

http://www.sciencemag.org/cgi/content/abstract/sci;215/4539/1501

Examples

MassExtinctions

	MoleRats	Energy Expenditure in Mole Rats	
--	----------	---------------------------------	--

Description

Energy expenditure (ln.energy) in two castes (caste) of Damaraland mole rats (*Cryptomys damarensis*) with body mass (ln.mass) as a covariate.

Format

A data frame with 35 observations on the following 3 variables.

```
caste a factor with levels lazy and workerln.mass a numeric vector
```

In.energy a numeric vector

Mosquitoes 55

Source

inferred from Scantlebury, M., J.R. Speakman, M.K. Oosthuizen, T.J. Roper and N.C. Bennett. 2006. Energetics reveals physiologically distinct castes in a eusocial mammal. *Nature* 440: 795-797.

References

http://www.nature.com/nature/journal/v440/n7085/abs/nature04578.html

Examples

MoleRats

Mosquitoes

Body Size in Anopheles Mosquitoes

Description

Weights of female and male mosquitos (Anopheles darlingi)

Format

A data frame with 20 observations on the following 2 variables.

weight a numeric vector
sex a factor with levels female and male

Source

Lounibos, L.P., N. Nishimura, J. Conn, and R. Lourenco-de-Oliveira. 1995. Life history correlates of adult size in the malaria vector *Anopheles darlingi*. *Memórias do Instituto Oswaldo Cruz* 90: 769-774.

References

```
http://www.bioline.org.br/request?oc95154
```

```
xyplot(weight ~ sex, Mosquitoes)
```

56 NeanderthalBrains

MouseEmpathy

Mouse Empathy

Description

Percentage of time spent stretching in three treatments of mice. Both condition and treatment code for the same variable.

Format

A data frame with 42 observations on the following 3 variables.

```
treatment a factor with levels Both Writhing, Isolated, and One Writhing
percent.stretching a numeric vector
trt a factor with levels bw, isolated, and ow
```

Source

Langford, D.J., S.E. Crager, Z. Shehzah, S.B. Smith, S.G. Sotocinal, J.S. Levenstadt, M.L. Chande, D.J. Levitin, J.S. Mogill. 2006. Social modulation of pain as evidence for empathy in mice. *Science* 312: 1967-1970.

Examples

```
str(MouseEmpathy)
aov.fit <- aov(percent.stretching ~ treatment, data = MouseEmpathy)
summary(aov.fit)
lm.fit <- lm(percent.stretching ~ treatment, data = MouseEmpathy)
anova(lm.fit)</pre>
```

NeanderthalBrains

Cranial Capacity in Neanderthals and Modern Humans

Description

Brain size (Inbrain) and body mass (Inmass) in Neanderthals and early modern humans (species).

Format

A data frame with 39 observations on the following 3 variables.

```
In.mass log of body mass (kg)
In.brain log of brain size
species a factor with levels neanderthal recent
```

NematodeLifespan 57

Source

Ruff, C.B., E. Trinkaus, and T.W. Holliday. 1997. Body mass and encephalization in Pleistocene *Homo. Nature* 387: 173-176.

Examples

```
xyplot(ln.brain ~ ln.mass, data=NeanderthalBrains, groups=species)
```

NematodeLifespan

Effects of Trimethadione on Lifespan in Nematodes

Description

lifespan of the nematode *Caenorhabditis elegans* in control and three experimental treatments of the anticonvulsant drug trimethadione.

Format

A data frame with 200 observations on the following 2 variables.

 ${\bf treatment}\ \ a\ factor\ with\ levels:\ {\tt adult},\ {\tt larva},\ {\tt larva+adult},\ and\ {\tt water}$

lifespan a numeric vector of lifespan

Source

inferred from Evason, K., C. Huang, I. Yamben, D.F. Covey, and K. Kornfeld. 2005. Anticonvulsant medications extend worm life-span. *Science* 307: 258-262.

References

http://www.sciencemag.org/cgi/content/abstract/307/5707/258

Examples

str(NematodeLifespan)

58 Newts

NeotropicalTrees

Photosynthesis in Neotropical Trees

Description

Photosynthetic capacity (photosynthetic.capacity) and number of fruits produced in the previous season (previous.fruits) of 9 females of *Ocotea tenera*.

Format

A data frame with 9 observations on the following 2 variables.

```
previous.fruits a numeric vector
photosynthetic.capacity a numeric vector
```

Source

inferred from Wheelwright, N.T. and B.A. Logan. 2004. Previous-year reproduction reduces photosynthetic capacity and slows lifetime growth in females of a neotropical tree. *Proceedings of the National Academy of Sciences (USA)* 101: 8051-8055.

References

```
http://www.pnas.org/content/101/21/8051.long
```

Examples

str(NeotropicalTrees)
NeotropicalTrees

Newts

Tetrodotoxin Resistance in Garter Snakes

Description

Percent reduction in crawl speed (resistance) in the garter snake after injection of the neurotoxin tetrodotoxin from the rough-skinned newt (*Taricha granulosa*).

Format

A data frame with 12 observations on the following 2 variables.

locality a factor with levels: Benton and Warrenton

resistance a numeric vector

NorthSeaCod 59

Source

Geffeney, S., E.D. Brodie, Jr., P.C. Ruben, and E.D. Brodie III. 2002. Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. *Science* 297: 1336-1339.

References

http://www.sciencemag.org/cgi/content/abstract/297/5585/1336

Examples

Newts

NorthSeaCod

Atlantic Cod Recruits

Description

Number (\log_{10} transformed) of Atlantic cod (*Gadus morhua*) that recruited (grew to catchable size) in the North Sea over a 39 years span.

Format

A data frame with 39 observations of one variable.

log10.recruits

Source

inferred from Beaugrand, G., K.M. Brander, J.A. Lindley, S. Souissi, and P.C. Reid. 2003. Plankton effect on cod recruitment in the North Sea. *Nature* 426: 661-664.

References

http://www.nature.com/nature/journal/v426/n6967/abs/nature02164.html

Examples

favstats(NorthSeaCod\$log10.recruits)

60 OstrichTemp

NoSmokingDay

No Smoking Day

Description

Number of workplace injuries on No Smoking Day (Injuries.on.NSD) compared to the same Wednesday in the previous year (Injuries.before.NSD) for 1987-1996.

Format

A data frame with 10 observations on the following 3 variables.

year a numeric vector

injuries.before.NSD a numeric vector

injuries.on.NSD a numeric vector

Source

Waters, A.J., M.J. Jarvis, and S.R. Sutton. 1998. Nicotine withdrawal and accident rates. *Nature* 394: 137.

References

http://www.nosmokingday.org.uk/

Examples

NoSmokingDay

OstrichTemp

Ostrich Body and Brain Temperatures

Description

Body and brain temperatures (°C) in free-ranging ostriches (*Struthio camelus*) at the Lichtenburg Game Breeding Centre, Lichtenburg, South Africa.

Format

A data frame with 6 observations on the following 3 variables.

ostrich a numeric vector identifying ostrich number

body.temp a numeric vector of body temperature in °C

brain.temp a numeric vector of brain temperature in °C

Penguins 61

Source

Fuller, A., P.R. Kamerman, S.K. Maloney, G. Mitchell, and D. Mitchell. 2003. Variability in brain and arterial blood temperatures in free-ranging ostriches in their natural habitat. *Journal of Experimental Biology* 206: 1171-1181.

References

```
http://jeb.biologists.org/cgi/content/abstract/206/7/1171
http://www.sa-venues.com/game-reserves/nwp_lichtenburg.htm
```

Examples

```
xyplot(brain.temp ~ body.temp, OstrichTemp)
```

Penguins

Penguin Heart Rate

Description

Slope of regressions of mass-specific metabolic rate on heart rate for three groups of Macaroni Penguins.

Format

A data frame with 24 observations on the following 2 variables.

```
group a factor with levels BF, BM, and MFslope a numeric vector
```

Source

Green, J. A., P. J. Butler, A. J. Woakes, I. L. Boyd and R. L. Holder. 2001. Heart rate and rate of oxygen consumption of exercising macaroni penguins. *Journal of Experimental Biology* 204: 673-684.

```
str(Penguins)
dotplot(slope ~ group, Penguins)
```

62 Pollen

PlantPersistence

Population Persistence Times

Description

Persistence times (generations) in the annual plant *Cardamine pensylvanica* in four experimental populations (treatment).

Format

A data frame with 16 observations on the following 2 variables.

```
generations a numeric vector
```

treatment a factor with levels: Isolated, Medium, Long, and Continuous

Source

Molofsky, J. and J.-B. Ferdy. 2005. Extinction dynamics in experimental metapopulations. *Proceedings of the National Academy of Sciences (USA)* 102: 3726-3731.

Examples

```
xyplot(generations~treatment, PlantPersistence)
```

Pollen

Sterility in Hybrid Pollens

Description

Genetic distance between pairs of species of the genus *Silene* and proportion of their hybrid offspring that are sterile.

Format

A data frame with 23 observations on the following 2 variables.

```
genetic.distance a numeric vector proportion.sterile a numeric vector
```

Source

Moyle, L.C., M.S. Olson, and P. Tiffin. 2004. Patterns of reproductive isolation in three angiosperm genera. *Evolution* 58: 1195-1208.

```
str(Pollen)
xyplot(proportion.sterile ~ genetic.distance, Pollen)
```

Powerball 63

Powerball

Powerball Tickets Sold

Description

The number of Powerball tickets sold per day of the week for three years.

Format

A data frame with 7 observations on the following 2 variables.

day a character vector

millions.of.tickets.sold a numeric vector

Source

Oster, E. 2004. Dreaming big: Why do people play Powerball? Chance News 13.02.

References

http://www.dartmouth.edu/~chance_news/recent_news/chance_news_13.02.html

Examples

```
Powerball xyplot(millions.of.tickets.sold ~ day, Powerball)
```

PrimateMetabolism

Primate Metabolic Rates

Description

Body mass (g) and metabolic rate (watts) for 17 species of primates.

Format

A data frame with 17 observations on the following 2 variables.

```
mass mass (g)
```

bmr metabolic rate (watts)

Source

Heusner, A.A. 1991. Size and power in mammals. Journal of Experimental Biology 160: 25-54.

ProgesteroneExercise

References

http://jeb.biologists.org/cgi/content/abstract/160/1/25

Examples

```
str(PrimateMetabolism)
xyplot(bmr ~ mass, PrimateMetabolism)
xyplot(bmr ~ mass, PrimateMetabolism, scales=list(log=TRUE))
```

PrimateWBC

Primate White Blood Cell Counts and Promiscuity

Description

White blood cell (WBC) counts in pairs of closely related primate species

Format

A data frame with 9 observations on the following 2 variables.

WBC.less a numeric vector
WBC.more a numeric vector

Source

Nunn, C.L., J.L. Gittleman, and J. Antonovics. 2000. Promiscuity and the primate immune system. *Science* 290: 1168-1170.

Examples

```
xyplot(WBC.more ~ WBC.less, PrimateWBC)
```

Description

Progesterone levels and rates of ventilation during submaximal exercise in 30 women.

Format

A data frame with 30 observations on the following 2 variables.

```
progesterone a numeric vector
ventilation a numeric vector
```

Pseudoscorpions 65

Source

Brutsaert, T.D., H. Spielvogel, E. Caceres, M. Araoz, R.T. Chatterton, V.J. Vitzthum. 2002. Effect of menstrual cycle phase on exercise performance of high-altitude native women at 3600 m. *Journal of Experimental Biology* 205: 233-239

References

http://jeb.biologists.org/cgi/content/abstract/205/2/233

Examples

```
str(ProgesteroneExercise)
xyplot(ventilation ~ progesterone, ProgesteroneExercise)
```

Pseudoscorpions

Multiple Mating in Pseudoscorpions

Description

Successful numbers of broods (Number.of.successful.broods) in two groups of female pseudo-scrpions (*Cordylochernes scorpioides*), one mated to the same male twice and one to two different males.

Format

A data frame with 36 observations on the following 2 variables.

```
treatment a factor with levels DM SM successful.broods a numeric vector
```

Source

Newcomer, S.D., J.A. Zeh, and D.W. Zeh. 1999. Genetic benefits enhance the reproductive success of polyandrous females. *Proceedings of the National Academy of Sciences (USA)* 96: 10236-10241.

References

```
http://www.pnas.org/content/96/18/10236.long
```

```
str(Pseudoscorpions)
bwplot(successful.broods ~ treatment, Pseudoscorpions)
aggregate(successful.broods ~ treatment, Pseudoscorpions, favstats)
```

66 Rattlesnakes

Pufferfish

Pufferfish Mimicry

Description

Number of predators approaching models painted to resemble pufferfish (*Canthigaster valentini*) across a range of similarities (resemblance)

Format

A data frame with 20 observations on the following 2 variables.

```
resemblance a numeric vector predators a numeric vector
```

Source

Caley, M.J. and D. Schluter. 2003. Predators favour mimicry in a tropical reef fish. *Proceedings of the Royal Society of London Series B, Biological Sciences* 270: 667-672.

References

```
http://rspb.royalsocietypublishing.org/content/270/1516/667.full.pdf
http://en.wikipedia.org/wiki/Canthigaster_valentini
http://www.fishbase.org/Summary/SpeciesSummary.php?id=6544
```

Examples

```
str(Pufferfish)
xyplot(predators ~ jitter(resemblance, amount = 0.1), Pufferfish)
Pufferfish
```

Rattlesnakes

Temperature Change and Meal Size in Rattlesnakes

Description

Temperature change after a meal (rattlesnakes (Crotalus durissus).

Format

A data frame with 17 observations on the following 2 variables.

```
meal.size a numeric vector temp.change a numeric vector
```

Rigormortis 67

Source

Tattersall, G.J., W.K. Milsom, A.S. Abe, S.P. Brito, and D.V. Andrade. 2004. The thermogenesis of digestion in rattlesnakes. *Journal of Experimental Biology* 207: 579-585.

References

```
http://jeb.biologists.org/cgi/content/abstract/207/4/579
```

Examples

```
str(Rattlesnakes)
xyplot(meal.size ~ temp.change, Rattlesnakes)
```

Rigormortis

Rigormortis and Time of Death

Description

Number of bodies reaching rigormortis in each hour after death.

Format

A data frame with 12 observations on the following 2 variables.

```
hours a numeric vectorcount a numeric vector
```

Source

Pounder, D.J. 1995. Postmortem changes and time of death. University of Dundee.

```
xyplot(count ~ hours, Rigormortis, type='h', lwd=3)
barchart(count ~ hours, Rigormortis, horizontal=FALSE, origin=0)
```

SagebrushCrickets

RopeTrick

Indian Rope Trick

Description

Perceived impressiveness (impressiveness) of a written account of the Indian Rope Trick and the corresponding number of years since it was witnessed.

Format

A data frame with 21 observations on the following 2 variables.

years a numeric vector

impressiveness a numeric vector

Source

Wiseman, R. and P. Lamont. 1996. Unravelling the Indian rope-trick. *Nature* 383: 212-213.

References

http://www.richardwiseman.com/resources/ropeJSPR.pdf

Examples

xyplot(impressiveness ~ years, RopeTrick)

SagebrushCrickets

Sagebrush Cricket Mating Times

Description

Time to mating (time.to.mating) in fed and unfed (treatment) sagebrush crickets (*Cyphoderris strepitans*).

Format

A data frame with 24 observations on the following 2 variables.

treatment a factor with levels: fed and starved

time.to.mating a numeric vector

Source

Chadwick Johnson, J., T.M. Ivy, and S.K. Sakaluk. 1999. Female remating propensity contingent on sexual cannibalism in sagebrush crickets, *Cyphoderris strepitans*: a mechanism of cryptic female choice. *Behavioral Ecology* 10: 227-233.

SalmonColor 69

Examples

SagebrushCrickets
str(SagebrushCrickets)

SalmonColor

Pacific Salmon Color

Description

Skin color sockeye and kokanee morphs of the Pacific salmon (*Oncorhynchus nerka*) raised in a low carotenoid environment.

Format

A data frame with 35 observations on the following 2 variables.

```
species a factor with levels kokanee and sockeye skin.color a numeric vector
```

Source

Craig, J.K. and C. Foote. 2001. Countergradient variation and secondary sexual color: phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromous morphs of sockeye salmon (*Oncorhynchus nerka*). *Evolution* 55: 380-391.

Examples

```
SalmonColor
histogram(~ skin.color | species, SalmonColor)
bwplot(skin.color ~ species, SalmonColor)
```

Seedlings

Number of Seedlings Per Quadrat

Description

Data on frequency of seeding per quadrat for 80 hypothetical quadrats.

Format

A data frame with 8 observations on the following 2 variables.

```
seedlings a numeric vector count a numeric vector
```

Examples

Seedlings

70 Selection

Selection

Data for Meta-analysis

Description

Data for meta-analysis on the relationship between testosterone and aggression.

Format

A data frame with 814 observations on the following 8 variables.

```
species species investigated
traitname trait investigated
strength.of.selection strength of selection
sample.size size of sample
authors authors of publication
year year of publication
journal journal of publication
volume.pages volume and pages
```

Source

Kingsolver, J.G., H.E. Hoekstra, J.M. Hoekstra, D. Berrigan, S.N. Vignieri, C.E. Hill, A. Hoang, P. Gibert, and P. Beerli. 2001. The strength of phenotypic selection in natural populations. *The American Naturalist* 157: 245-261.

```
histogram(~ strength.of.selection, Selection,n=40)
table(Selection$species) -> s
table(s)
s[s>10] # most common species
table(Selection$traitname) -> t
table(t)
t[t>10] # most common traits
```

SexualSelection 71

SexualSelection

Sexual Conflict

Description

Number of species in each of two taxa in closely related taxon pairings and the difference between the two groups. One taxon has multiple matings (polyandrous.species) and one has only single matings (monandrous.species).

Format

A data frame with 25 observations on the following 4 variables.

```
polyandrous.species a numeric vector
monandrous.species a numeric vector
difference a numeric vector
taxon.pair identifier
```

Source

Arnqvist, G., M. Edvardsson, U. Friberg, and T. Nilsson. 2000. Sexual conflict promotes speciation in insects. *Proceedings of the National Academy of Sciences (USA)* 97: 10460-10464.

References

```
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC27046/
```

```
SexualSelection
histogram(~ difference, SexualSelection, n = 20)
hist(SexualSelection$difference, breaks = 20)

# Calculate the number of tests and the number of negative tests
(n <- length(SexualSelection$difference))
(n.neg <- sum(SexualSelection$difference < 0))

2 * pbinom(q = n.neg, size = n, prob = 0.5)

# With a binomial test
binom.test(n.neg, n, p = 0.5)</pre>
```

72 ShrinkingSeals

ShadParasites

Shad Parasites

Description

Frequency of the nematode Camallanus oxycephalus per fish.

Format

A data frame with 7 observations on the following 2 variables.

```
parasites a numeric vector
count a numeric vector
```

Source

Shaw, D.J., B.T. Grenfell, and A.P. Dobson. 1998. Patterns of macroparasite aggregation in wildlife host populations. *Parasitology* 117: 597-610.

References

```
http://www.ncbi.nlm.nih.gov/pubmed/9881385
```

Examples

ShadParasites

ShrinkingSeals

Seal Body Lengths and Age

Description

Body length (cm) and age (days) for 9,665 female Northern fur seals (Callorhinus ursinus).

Format

A data frame with 9,665 observations on the following 2 variables.

```
age age (days)
length body length (cm)
```

Source

Trites, A.W. and M.A. Bigg. 1996. Physical growth of northern fur seals: seasonal fluctuations and migratory influences. *Journal of Zoology (London)* 238: 459-482.

ShuttleDisaster 73

Examples

```
str(ShrinkingSeals)
plot(ShrinkingSeals, pch = 16, cex = 0.5)
xyplot(length ~ age, ShrinkingSeals, pch=16, alpha=0.65, cex=0.6)
```

ShuttleDisaster

Ambient Temperature and O-Ring Failures

Description

Data on temperature and number of O-ring failures for 23 space shuttle launches.

Format

A data frame with 23 observations on the following 2 variables.

temperature a numeric vector

failures a numeric vector

Source

Dalal, S.R., E.B. Fowlkes, and B. Hoadley. 1989. Risk analysis of the Space Shuttle: Pre-Challenger prediction of failure. *Journal of the American Statistical Association* 408: 945-957.

References

Tufte, E.R. 1997. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics Press.

```
http://www.edwardtufte.com/tufte/
```

```
str(ShuttleDisaster)
xyplot( jitter(failures, amount=0.1) ~ temperature, ShuttleDisaster,
  ylab='number of failures'
)
```

Silversword

Rate of Speciation in Silverswords

Description

Speciation "waiting times" in Hawaiian silverswords (Dubautia).

Format

A data frame with 21 observations on the following variable.

waiting.time a numeric vector

Source

inferred from Baldwin, B. G. and M. J. Sanderson 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). *Proceedings of the National Academy of Sciences (USA)* 95: 9402-9406.

Examples

Silversword

SleepAndPerformance

Sleep and Learning

Description

The increase in "slow-wave" sleep and improvements in spatial learning tasks in 10 humans.

Format

A data frame with 10 observations on the following 2 variables.

sleep a numeric vector

improvement a numeric vector

Source

Huber, R., M.F. Ghilardi, M. Massimini, and G. Tononi. 2004. Local sleep and learning. *Nature* 430: 78-81.

References

http://www.ncbi.nlm.nih.gov/pubmed/15184907

SockeyeFemales 75

Examples

```
str(SleepAndPerformance)
xyplot(improvement ~ sleep, SleepAndPerformance)
```

SockeyeFemales

Body Masses of Female Sockeye Salmon

Description

Body Masses of 228 female Sockeye Salmon (*Oncorhynchus nerka*; http://www.nmfs.noaa.gov/pr/species/fish/sockeyesalmon.htm)

Format

A data frame with 228 observations of a single variable.

```
mass body mass (kg)
```

Source

Hendry, A.P., O.K. Berg, and T.P. Quinn. 1999. Condition dependence and adaptation-by-time: Breeding date, life history, and energy allocation within a population of salmon. *Oikos* 85: 499-514.

Examples

```
str(SockeyeFemales)
summary(SockeyeFemales)
```

Sparrows

Lifetime Reproductive Success in House Sparrows

Description

A cross table of lifetime reproductive success (LifetimeRS) in female and male house sparrows *Passer domesticus* in Norway.

Format

A data frame with 9 observations on the following 3 variables.

lifetimeRS a numeric vector females a numeric vector males a numeric vector 76 SpiderColonies

Source

Jensen, H., B.-E. Saether, T.H. Ringsby, J. Tufto, S.C. Griffith, and H. Ellegren. 2004. Lifetime reproductive success in relation to morphology in the House Sparrow *Passer domesticus*. *Journal of Animal Ecology* 73: 599-611.

Examples

Sparrows

SpiderColonies

Social Spiders

Description

Web height above ground (cm) and colony size for 17 colonies of the spider *Cryptophora citricola* in Gabon.

Format

A data frame with 17 observations on the following 3 variables.

colony identifier

height height of web above ground (cm)

spiders number of spiders in colony

Source

Rypstra, A. L. 1979. Foraging folks of spiders, a study of aggregate behavior in *Cryptophora citricola* Forskal (Araneae: Araneidae) in West Africa. *Behavioral Ecology and Sociobiology* 5: 291-300.

Examples

str(SpiderColonies)
SpiderColonies

SpiderSpeed 77

SpiderSpeed

Spider Running Speeds after Amputation

Description

Data on speed before and after amputation of a pedipalp in the spider genus Tidarren.

Format

A data frame with 32 observations on the following 2 variables.

```
speed.before speed (cm/s) before amputation
speed.after speed (cm/s) after amputation
```

Source

Ramos, M., D.J. Irschick, and T.E. Christenson. 2004. Overcoming an evolutionary conflict: Removal of a reproductive organ greatly increases locomotor performance. *Proceedings of the National Academy of Sciences (USA)* 101: 4883-4887.

References

```
http://en.wikipedia.org/wiki/Pedipalp, http://en.wikipedia.org/wiki/Tidarren, http://www.pnas.org/content/101/14/4883
```

Examples

```
xyplot(speed.after ~ speed.before, SpiderSpeed)
favstats(SpiderSpeed$speed.before)
favstats(SpiderSpeed$speed.after)
favstats(SpiderSpeed$speed.after - SpiderSpeed$speed.before)
```

Stalkies1

Eye Widths in Stalk-Eyed Flies

Description

Eye width in 9 male stalk-eyed flies (Cyrtodiopsis dalmanni).

Format

```
a data frame with 9 observations of 1 variable
```

```
eye.span eye span (mm)
```

78 SticklebackPlates

Source

Data provided by Kevin Fowler, University College, London.

Examples

Stalkies1

Stalkies2

Stalk-eyed Fly Eyespan

Description

Eyespan width (mm; Eye. span) in 45 stalk-eyed flies (*Cyrtodiopsis dalmanni*) fed a corn or cotton diet (Food).

Format

A data frame with 45 observations on the following 2 variables.

food a factor with levels Corn Cotton **eye.span** a numeric vector

Source

David, P., T. Bjorksten, K. Fowler, and A. Pomiankowski. 2000. Condition-dependent signalling of genetic variation in stalk-eyed flies. *Nature* 406: 186-188.

Examples

```
str(Stalkies2)
xyplot(eye.span ~ food, Stalkies2)
aggregate(eye.span ~ food, Stalkies2, FUN = favstats)
```

SticklebackPlates

Number of Lateral Plates in Sticklebacks

Description

Number of lateral plates (plates) in threespine sticklebacks (*Gasterosteus aculeatus*) with three different *Ectodysplasin* genotypes (mm, Mm, and MM).

Format

A data frame with 344 observations on the following 2 variables.

```
genotype a factor with levels mm, Mm, and MM plates number of plates
```

SticklebackPreference 79

Source

Colosimo, P.F., C.L. Peichel, K. Nereng, B.K. Blackman, M.D. Shapiro, D. Schluter, and D.M. Kingsley. 2004. The genetic architecture of parallel armor plate reduction in threespine stickle-backs. *PLoS Biology* 2: 635-641. http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0020109

References

Colosimo P.F., K.E. Hosemann, S. Balabhadra, G. Villarreal, M. Dickson, J. Grimwood, J Schmutz, R.M. Myers, D. Schluter, D.M. Kingsley. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. *Science* 307: 1928-33. http://www.sciencemag.org/cgi/content/full/307/5717/1928

Examples

```
aggregate(plates ~ genotype, SticklebackPlates, FUN = favstats)
histogram( ~ plates | genotype, SticklebackPlates,
    layout = c(1,3),
    n = 15,
    xlab = "Number of Lateral Body Plates"
    )

densityplot( ~ plates | genotype, SticklebackPlates,
    xlab = "Number of Lateral Body Plates",
    layout = c(1,3)
    )
```

SticklebackPreference Mating Preferences in Sticklebacks

Description

Mating preference in 9 populations of three-spined sticklebacks.

Format

A data frame with 9 observations of one variable.

preference.index a numeric vector

Source

McKinnon, J. S., S. Mori, B.K. Blackman, L. David, D.M. Kingsley, L. Jamieson, J. Chou, and D. Schluter. 2004. Evidence for ecology's role in speciation. *Nature* 429: 294-298.

References

http://www.nature.com/nature/journal/v429/n6989/abs/nature02556.html

80 SyrupSwimming

Examples

SticklebackPreference histogram(~ preference.index, SticklebackPreference) dotplot(~ preference.index, SticklebackPreference)

Sumo

Sumo Wrestling Wins

Description

Counts of number of wins for sumo wrestlers.

Format

A data frame with 16 observations on the following 2 variables.

wins a numeric vector
count a numeric vector

Source

Duggan, M. and S.D. Leavitt. 2002. Winning isn't everything: Corruption in sumo wrestling. *The American Economic Review* 92: 1594-1605.

Examples

```
xyplot(count ~ wins, Sumo, type='h', lwd=4)
```

SyrupSwimming

Syrup Swimming

Description

Relative swimming speed (speed in syrup / speed in water) for 18 swimmers.

Format

A data frame with 18 observations of one variable.

relative.speed ratio of speed in syrup to speed in water

Source

Gettelfinger, B. and E. L. Cussler. 2004. Will Humans Swim Faster or Slower in Syrup? *AIChE Journal* 50: 2646-2647.

TeenDeaths 81

References

```
http://www3.interscience.wiley.com/journal/109665380/issue
```

Examples

```
SyrupSwimming
histogram(~ relative.speed, SyrupSwimming)
dotplot(~ relative.speed, SyrupSwimming)
```

TeenDeaths

Causes of Teenage Deaths

Description

Data from Table 1 (p. 14) on causes of death for all races, both sexes, ages 15-19.

Format

A data frame with 11 observations on the following 2 variables.

```
cause a character vectordeaths a numeric vector
```

Source

Anderson, R.N. 2001. Deaths: Leading causes for 1999. *National vital statistics reports* 49(11):1-88. National Center for Health Statistics; Hyattsville, Maryland.

```
str(TeenDeaths)
TeenDeaths

barchart(deaths ~ cause, TeenDeaths,
   horizontal = FALSE,
   ylab = "Number of Deaths",
   xlab = "Cause of Death", origin=0,
   scales = list(x = list(rot=45)))

barchart(deaths~ordered(cause, levels=cause), TeenDeaths,
   horizontal = FALSE,
   ylab = "Number of Deaths",
   xlab = "Cause of Death", origin=0,
   scales=list(x=list(rot=45))
)
```

82 TimeOfDeath

Telomeres

Telomere Shortening

Description

Telomere length (ratio) and years since their child's diagnosis with chronic illness.

Format

A data frame with 39 observations on the following 2 variables.

```
years a numeric vector
telomere.length a numeric vector
```

Source

Epel, E.S., E.H. Blackburn, J. Lin, F.S. Dhabhar, N.E. Adler, J.D. Morrow, and R.M. Cawthon. 2004. Accelerated telomere shortening in response to life stress. *Proceedings of the National Academy of Sciences (USA)* 101: 17312-17315.

References

```
http://www.pnas.org/content/101/49/17312
```

Examples

```
xyplot(years ~ telomere.length, Telomeres,
  xlab = "Time since diagnosis (years)",
  ylab = "Telomere length (ratio)"
)
```

TimeOfDeath

Hypoxanthine and Time Since Death

Description

Hypoxanthine levels in the vitreous humour of the eye and time since death (hours) for 48 subjects.

Format

A data frame with 48 observations on the following 2 variables.

hours a numeric vector

hypoxanthine a numeric vector

Toads 83

Source

James, R.A., P.A. Hoadley, and B.G. Sampson. 1997. Determination of postmortem interval by sampling vitreous humor. *American Journal of Forensic Medicine and Pathology* 18: 158-162.

Examples

```
xyplot(hypoxanthine ~ hours, TimeOfDeath, type=c('p','r'))
```

Toads

Right-handed Toads

Description

Hypothetical probability of a toad being right-handed

Format

A data frame with 19 observations on the following 2 variables.

```
n.toads a numeric vectorprob a numeric vector
```

Examples

```
Toads
# generate this data manually
cbind(0:18, dbinom(0:18, 18, 0.5))
xyplot(prob ~ n.toads, Toads, type = 'h', lwd = 4)
barchart(prob ~ n.toads, Toads, origin=0, horizontal=FALSE)
plotDist('binom', params = list(18,0.5), kind = 'hist')
```

Tobacco

Flower Length in Tobacco Plants

Description

Distribution of flow lengths in F1 and F2 populations of *Nicotiana*.

Format

A data frame with 13 observations on the following 3 variables.

flower.length a numeric vector of flower length in mm

fl.count a numeric vector of the number of F1 plants with flower lengths in this size range

f2.count a numeric vector of the number of F2 plants with flower lengths in this size range

84 Tobacco2

Source

East, E.M. 1916. Studies on size inheritance in Nicotiana. Genetics 1: 164-176.

References

```
http://www.genetics.org/content/vol1/issue2/
http://en.wikipedia.org/wiki/Nicotiana
```

See Also

Tobacco2

Examples

Tobacco

Tobacco2

Flower Length in Tobacco Plants

Description

Distribution of flow lengths in F1 and F2 populations of Nicotiana.

Format

A data frame with 617 observations on the following 2 variables.

```
flower.length a numeric vector generation a factor with levels F1 F2
```

Source

East, E.M. 1916. Studies on size inheritance in Nicotiana. Genetics 1: 164-176.

References

```
http://www.genetics.org/content/vol1/issue2/
http://en.wikipedia.org/wiki/Nicotiana
```

See Also

Tobacco

```
xtabs(~ flower.length + generation, Tobacco2)
bwplot(flower.length ~ generation, Tobacco2)
```

ToothAge 85

ToothAge

Radioactive Teeth

Description

Actual birth year and birth year estimated from relative radioactivity of the enamel for 20 samples.

Format

A data frame with 20 observations on the following 2 variables.

```
actual a numeric vector
estimated a numeric vector
```

Source

Spalding, K.L., B.A. Buchholz, L.-E. Bergman, H. Druid, and J. Frisén. 2005. Age written in teeth by nuclear tests. *Nature* 437: 333-334.

Examples

```
str(ToothAge)
xyplot(actual ~ estimated, ToothAge)
```

TreeSeedlings

Tree Seedlings and Sunflecks

Description

Fleck duration (min) and relative seedling growth rate (mm/mm/week) for 21 seedlings of *Shorea leprosula*.

Format

A data frame with 21 observations on the following 2 variables.

```
fleck.duration a numeric vector growth a numeric vector
```

Source

Leakey, A.D.B., J.D. Scholes, and M.C. Press. 2005. Physiological and ecological significance of sunflecks for dipterocarp seedlings. *Journal of Experimental Botany* 56: 469-482.

References

http://jxb.oxfordjournals.org/cgi/content/short/56/411/469

86 Trillium

Examples

```
str(TreeSeedlings)
splom(TreeSeedlings)
```

Trematodes

Frequencies of Fish Eaten by Trematode Infection Level

Description

Frequencies of killifish (*Fundulus parvipinnis*) eaten by birds depending on level of infection by the trematode *Euhaplorchis californiensis*.

Format

A data frame with 141 observations on the following 2 variables.

infection.status a factor with levels: high, light, and uninfected

eaten a factor with levels: no and yes

Source

Lafferty, K.D. and A.K. Morris. 1996. Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. *Ecology* 77: 1390-1397.

Examples

demo(sec9.3)

Trillium

Trillium Recruitment near Clearcuts

Description

Recruitment of *Trillium* and distance to nearest clearcut in eight populations in southwestern Oregon.

Format

A data frame with 8 observations on the following 3 variables.

population a numeric vector
edge.dist a numeric vector
recruitment a numeric vector

Truffles 87

Source

Jules, E.S. and B.J. Rathcke. 1999. Mechanisms of reduced trillium recruitment along edges of old-growth forest fragments. *Conservation Biology* 13: 784-793

Examples

```
str(Trillium)
splom(Trillium)
```

Truffles

Truffle Distribution

Description

Number of truffles per plot for 288 plots in an old growth forest in northeastern California.

Format

A data frame with 5 observations on the following 2 variables.

```
truffles a numeric vector
count a numeric vector
```

Source

Waters, J.R., K.S. McKelvey, D.L. Luoam, and C.J. Zabel. 1997. Truffle production in old-growth and mature fir stands in northeastern California. *Forest Ecology and Management* 96: 155-166.

References

```
http://www.fs.fed.us/psw/publications/watersj/waters2.PDF
```

```
Truffles
xyplot(count ~ truffles, Truffles, type='h', lwd=4)
barchart(count ~ truffles, Truffles, origin=0, horizontal=FALSE)
```

88 TwoKids

TsetseLearning

Dietary Learning in Tsetse Flies

Description

Dietary conditioning treatment and subsequent proportion of tsetse flies (*Glossina palpalis*) feeding on cow blood in each of 13 cohorts.

Format

A data frame with 13 observations on the following 2 variables.

```
treatment a factor with levels cow and lizard proportion.cow a numeric vector
```

Source

inferred from Bouyer, J., M. Pruvot, Z. Bengaly, P.M. Guerin, and R. Lancelot. 2007. Learning influences host choice in tsetse. *Biology Letters* 3: 113-116.

References

http://rsbl.royalsocietypublishing.org/content/3/2/113.full

Examples

```
xyplot(proportion.cow ~ treatment, TsetseLearning)
```

 ${\sf TwoKids}$

Number of Boys in Two-Child Families

Description

The number of boys in a sample of 2,444 two-child families.

Format

A data frame with 3 observations on the following 2 variables.

```
num.boys a numeric vector
count a numeric vector
```

Source

Rodgers, J.L. and D. Doughty. 2001. Does having boys or girls run in the family? *Chance Magazine* Fall 2001: 8-13.

VampireBites 89

References

http://www.dartmouth.edu/~chance/chance_news/recent_news/chance_news_10.11.html#item13

Examples

```
TwoKids
observed <- TwoKids$count
expected <- c(585.3, 1221.4, 637.3)
chisq.test(observed, p = expected, rescale.p = TRUE)
# Alternate calculation, using Pr[male] = 0.512
# and rbinom. See Figure 5.7-1
n <- sum(observed)</pre>
pr.m < - 0.512
pr.f <- 0.488
# Calculate the probabilities of 0, 1, and 2 males
(pr.0 <- pr.f^2)
(pr.1 <- pr.m * pr.f + pr.f * pr.m)
(pr.2 <- pr.m^2)
set.seed(1)
(expected2 <- c(rbinom(1, n, pr.0),</pre>
                rbinom(1, n, pr.1),
                rbinom(1, n, pr.2)))
chisq.test(observed, p = expected2, rescale.p = TRUE)
```

VampireBites

Vampire Bat Bites

Description

Numbers of cattle bitten by the cow's estrous cycle.

Format

A data frame with 4 observations on the following 3 variables.

```
estrous a factor with levels: no and yesbitten a factor with levels: no and yescount a numeric vector
```

Source

Turner, D.C. 1975. *The Vampire Bat: a Field Study in Behavior and Ecology*. Johns Hopkins Press: Baltimore, MD.

90 Vines

Examples

```
demo(sec9.4)
```

VasopressinVoles

Vasopressin Manipulation in the Meadow Vole

Description

Time spent with a female (percent) in control and vasopressin-enhanced groups (treatment) of meadow voles (*Microtus pennsylvanicus*).

Format

A data frame with 31 observations on the following 2 variables.

```
treatment a factor with levels control and enhanced percent a numeric vector
```

Source

inferred from Lim, M.M., Z. Wang, D.E. Olazabal, X. Ren, E.F. Terwilliger, and L.J. Young. 2004. Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. *Nature* 429: 754-757.

Examples

Vines

Climbing Vines

Description

Number of climbing and nonclimbing species within closely related general of plants.

Format

A data frame with 48 observations on the following 2 variables.

```
climbing a numeric vector
nonclimbing a numeric vector
```

Source

Gianoli, E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. *Proceedings of the Royal Society of London, Series B, Biological Sciences* 271: 2011-2015.

VoleDispersal 91

References

http://rspb.royalsocietypublishing.org/content/271/1552/2011.full.pdf

Examples

```
xyplot(nonclimbing ~ climbing, Vines, scales=list(log=TRUE))
```

VoleDispersal

Home Range Size in Field Voles

Description

Home range size size in field voles (Microtus agrestis).

Format

A data frame with 5 observations on the following 3 variables.

homeranges a numeric vector

count a numeric vector

sex a factor with levels female and male

Source

Sandell, M., J. Agrell, S. Erlinge, and J. Nelson. 1991. Adult philopatry and dispersal in the field vole *Microtus agrestis*. *Oecologia* 86: 153-158.

```
xtabs(count~sex+homeranges,VoleDispersal)
barchart( xtabs(count~sex+homeranges,VoleDispersal), origin=0, auto.key=TRUE)
barchart(count~sex+homeranges,VoleDispersal, origin=0)
barchart(count~sex,groups=homeranges,VoleDispersal, origin=0)
barchart(count~sex,groups=homeranges,VoleDispersal, origin=0,stack=TRUE)
```

92 WalkingStickHeads

WalkingStickFemurs

Walking Stick Femur Length

Description

Two measures of femur length femur.length for each of 25 walking sticks (*Timema cristinae*). Note that specimen is not coded as a factor.

Format

A data frame with 50 observations on the following 2 variables.

specimen a integer denoting specimen number.

femur.length a numeric vector of femur length

Source

Nosil, P. and B.J. Crespi. 2006. Experimental evidence that predation promotes divergence in adaptive radiation. *Proceedings of the National Academy of Sciences (USA)* 103: 9090-9095.

References

http://www.sfu.ca/biology/faculty/crespi/pdfs/96-Nosil&Crespi2006PNAS.pdf

Examples

demo(sec15.6)

WalkingStickHeads

Walking Stick Head Width

Description

Two measures of head width (head.width) for each of 25 walking sticks (Timema cristinae).

Format

A data frame with 50 observations on the following 2 variables.

specimen a factor with levels 1-25head.width a numeric vector

Source

Nosil, P. and B.J. Crespi. 2006. Experimental evidence that predation promotes divergence in adaptive radiation. *Proceedings of the National Academy of Sciences (USA)* 103: 9090-9095.

WeddellSeals 93

References

http://www.sfu.ca/biology/faculty/crespi/pdfs/96-Nosil&Crespi2006PNAS.pdf

Examples

```
\label{eq:continuous} $$ \operatorname{aggregate(head.width $\sim$ specimen, data=WalkingStickHeads, mean) -> WS $$ \operatorname{histogram($\sim$ head.width, WS)} $$
```

WeddellSeals

Energetic Cost of Diving

Description

Comparison of oxygen consumption in feeding vs. non-feeding dives of the same length in the Weddell seal (*Leptonychotes weddellii*).

Format

A data frame with 10 observations on the following 3 variables.

```
individual a numeric vectoroxygen.use.nonfeeding a numeric vectoroxygen.use.feeding a numeric vector
```

Source

Williams, T.M., L.A. Fuiman, M. Horning, and R.W. Davis. 2004. The cost of foraging by a marine predator, the Weddell seal *Leptonychotes weddellii*: pricing by the stroke. *Journal of Experimental Biology* 207: 973-982.

References

```
http://jeb.biologists.org/cgi/content/full/207/6/973
```

```
xyplot(oxygen.use.nonfeeding ~ oxygen.use.feeding, WeddellSeals)
```

94 WillsPresidents

WillsDebates

Presidential "Wills"

Description

Number of times a presidential candidate said "will," "shall," or "going to" in presidential debates from 1960-2004 (years incomplete).

Format

A data frame with 8 observations on the following 6 variables.

year year of presidential debate(s)

winner winner of the popular vote (may not be winner of election)

loser loser of popular vote (may not be loser of election)

winner.wills number of times will/shall used by winner during debates

loser.wills number of times will/shall used by loser during debates

diff.wills difference between number of times will/shall used by two candidates

Examples

WillsDebates

WillsPresidents

Presidential "Wills"

Description

Number of times a presidential candidate said "will," "shall," or "going to" in presidential debates from 1960-2004 (years incomplete).

Format

A data frame with 16 observations on the following 3 variables.

candidate a character vector with the candidate's name

winner a factor with levels n y indicating whether the candidate won the election y or not.

wills a numeric vector

loser.wills a numeric vector

difference a numeric vector

year a numeric vector

WolfTeeth 95

See Also

WillsDebates

Examples

WillsPresidents

WolfTeeth

Wolf Tooth Measurements

Description

Measurement (cm) of the distance between the canine and last molar teeth in 35 wolves.

Format

A data frame with 35 observations of one variable.

length distance from canine to last molar teach (cm)

Source

Whitlock, M. 1996. The heritability of fluctuating asymmetry and the genetic control of developmental stability. *Proceedings of the Royal Society, Series B* 263: 849-853.

References

http://rspb.royalsocietypublishing.org/content/263/1372/849.abstract

Examples

histogram(~ length, WolfTeeth)

Wolves

Inbreeding in Wolves

Description

Inbreeding coefficient and the number of pups produced in 24 mated pairs of wolves (*Canis lupus*) from 1983-2002.

Format

A data frame with 24 observations on the following 2 variables.

inbreeding.coefficient a numeric vector

pups a numeric vector

96 WrasseSexes

Source

Liberg, O.H., H. Andrén, H.-C. Pedersen, H. Sand, D. Sejberg, P. Wabakken, M. Åkesson, and S. Bensch. 2005. Severe inbreeding depression in a wild wolf (*Canis lupus*) population. *Biology Letters* 1: 17-20.

Examples

```
Wolves
xyplot(inbreeding.coefficient ~ jitter(pups, amount=0.15), Wolves)
```

WorldCup

World Cup Goals

Description

Number of goals per team during the 2002 World Cup.

Format

A data frame with 7 observations on the following 2 variables.

```
score a numeric vector
count a numeric vector
```

Examples

```
xyplot(count ~ score, WorldCup, type='h', lwd=4)
barchart(count ~ score, WorldCup, origin=0, horizontal=FALSE)
```

WrasseSexes

Distribution of Wrasses

Description

Number and sex of adult wrasses in a section of the Great Barrier Reef.

Format

A data frame with 3 observations on the following 3 variables.

```
males a numeric vectorfemales a numeric vectorcount a numeric vector
```

```
xtabs(count ~ males + females, WrasseSexes)
```

YeastGenes 97

YeastGenes

Yeast Regulatory Genes

Description

Number of genes regulated by 109 yeast regulatory genes.

Format

A data frame with 6 observations on the following 2 variables.

```
genes.controlled a numeric vector
count a numeric vector
```

Source

Guelzim, N., S. Bottani, P. Bourgine and F. Képès. 2002. Topological and causal structure of the yeast transcriptional regulatory network. *Nature Genetics* 31: 60-63.

Examples

```
str(YeastGenes)
barchart(count ~ genes.controlled , origin=0, YeastGenes, horizontal=FALSE)
```

ZebraFinchBeaks

Mate Preference in Zebra Finches

Description

Percentage of time that a female spent next to a carotenoid-supplemented male Zebra Finch compared to his non-supplemented brother.

Format

A numeric vector with 10 observations.

Source

Blount, J.D., N.B. Metcalfe, T.R. Birkhead, P.F. Surai. 2003. Carotenoid modulation of immune function and sexual attractiveness in Zebra Finches. *Science* 300: 125-127.

References

http://www.sciencemag.org/cgi/content/abstract/300/5616/125

Examples

ZebraFinchBeaks

98 ZooMortality

ZebraFinches

Zebra Finch Carotenoids

Description

Data on cell-mediated immunocompetence (PHA) and humoral immunity (SRBC) in Zebra Finches that received supplemental carotenoids (CAROT) and those that did not (NO).

Format

A data frame with 20 observations on the following 3 variables.

treatment a factor with levels: CAROT and NO

PHA a numeric vector **SRBC** a numeric vector

Source

McGraw, K.J. and D.R. Ardia. 2003. Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. *The American Naturalist* 162: 704-712.

Examples

ZebraFinches

ZooMortality

Home Range Size and Mortality

Description

Home range size (\log_{10}) and captive infant mortality (for 20 species of carnivores.

Format

A data frame with 20 observations on the following 2 variables.

log.homerange a numeric vector
mortality a numeric vector

Source

Clubb, R. and G. Mason. 2003. Captivity effects on wide ranging carnivores. *Nature* 425: 473-474.

Examples

str(ZooMortality)

Zooplankton 99

Zooplankton

Zooplankton Depredation

Description

Diversity of zooplankton (zooplankton) prey in each of 5 replicate blocks (block) of three treatment levels (treatment). By default, block is not coded as a factor.

Format

A data frame with 15 observations on the following 3 variables.

```
treatment a factor with levels control, high, and low
zooplankton a numeric vector
block a numeric vector
```

Source

inferred from Svanbäck, R. and D.I. Bolnick. 2007. Intraspecific competition drives increased resource use diversity within a natural population. *Proceedings of the Royal Society of London Series B, Biological Sciences* 274: 839-844.

```
Zooplankton
Zooplankton$block <- factor(Zooplankton$block)
str(Zooplankton)
aov.fit <- aov(zooplankton ~ block + treatment,
   data = Zooplankton)
summary(aov.fit)</pre>
```

Index

* datasets	Fireflies, 32
abdData, 5	FireflyFlash, 32
AlgaeCO2, 6	FlycatcherPatch, 33
Antilles, 7	FlyTestes, 33
Aspirin, 8	GeneRegulation, 34
BeeGenes, 8	GlidingSnakes, 34
BeeLifespans, 9	GodwitArrival, 35
Beetles, 9	Grassland, 36
BirdSexRatio, 10	GreatTitMalaria, 36
Blackbirds, 11	Greenspace, 37
BodyFatHeatLoss, 11	Guppies, 38
BrainExpression, 12	Hemoglobin, 38
BrookTrout, 13	HippocampusLesions, 39
Cavalry, 13	HornedLizards, 40
Chickadees, 14	HumanBodyTemp, 41
ChimpBrains, 15	HumanGeneLengths, 42
Cichlids, 15	Hurricanes, 43
CichlidsGnRH, 16	Iguanas, 43
Clearcuts, 17	IntertidalAlgae, 44
CocaineDopamine, 17	JetLagKnees, 45
Convictions, 19	KenyaFinches, 45
ConvictionsAndIncome, 19	LanguageBrains, 46
Crickets, 20	LarvalFish, 46
DaphniaLongevity, 21	Lefthanded, 47
DaphniaResistance, 21	LionCubs, 48
dataInfo, 22	LionNoses, 48
DayOfBirth, 23	LiverPreparation, 49
DEET, 24	LizardBite, 49
DesertBirds, 24	LizardSprint, 50
Dioecy, 25	Lobsters, 51
Dolphins, 25	LodgepolePines, 51
DungBeetles, 26	LupusMice, 52
Earthworms, 27	Lynx, 53
Earwigs, 27	MarineReserve, 53
Eelgrass, 28	MassExtinctions, 54
ElectricFish, 29	MoleRats, 54
ElVerde, 30	Mosquitoes, 55
EndangeredSpecies, 30	MouseEmpathy, 56
FingerRatio, 31	NeanderthalBrains, 56

INDEX 101

NematodeLifespan, 57	Truffles, 87
NeotropicalTrees, 58	TsetseLearning, 88
Newts, 58	TwoKids, 88
NorthSeaCod, 59	VampireBites, 89
NoSmokingDay, 60	VasopressinVoles, 90
OstrichTemp, 60	Vines, 90
Penguins, 61	VoleDispersal, 91
PlantPersistence, 62 WalkingStickFem	
Pollen, 62	WalkingStickHeads, 92
owerball, 63 WeddellSeals, 93	
PrimateMetabolism, 63	WillsDebates, 94
PrimateWBC, 64	WillsPresidents, 94
ProgesteroneExercise, 64	WolfTeeth, 95
Pseudoscorpions, 65	Wolves, 95
Pufferfish, 66	WorldCup, 96
Rattlesnakes, 66	WrasseSexes, 96
Rigormortis, 67	YeastGenes, 97
RopeTrick, 68	ZebraFinchBeaks, 97
SagebrushCrickets, 68	ZebraFinches, 98
SalmonColor, 69	ZooMortality, 98
Seedlings, 69	Zooplankton, 99
Selection, 70	* graphics
SexualSelection, 71	col.abd, 18
ShadParasites, 72	histochart, 40
ShrinkingSeals, 72	* package
ShuttleDisaster, 73	abd-package, 5
	, ,
Silversword, 74	abd (abd-package), 5
SleepAndPerformance, 74	abd-package, 5
SockeyeFemales, 75	abdData, $5, 22$
Sparrows, 75	AlgaeCO2, 6
SpiderColonies, 76	Antilles, 7
SpiderSpeed, 77	Aspirin, 8
Stalkies1,77	
Stalkies2, 78	BeeGenes, 8
SticklebackPlates, 78	BeeLifespans, 9
SticklebackPreference, 79	Beetles, 9
Sumo, 80	BirdSexRatio, 10
SyrupSwimming, 80	Blackbirds, 11
TeenDeaths, 81	BodyFatHeatLoss, 11
Telomeres, 82	BrainExpression, 12
TimeOfDeath, 82	BrookTrout, 13
Toads, 83	BrookTrout2 (BrookTrout), 13
Tobacco, 83	
Tobacco2, 84	Cavalry, 13
ToothAge, 85	Chickadees, 14
TreeSeedlings, 85	ChimpBrains, 15
Trematodes, 86	Cichlids, 15
Trillium, 86	CichlidsGnRH, 16

INDEX

Clearcuts, 17	JetLagKnees, 45	
CocaineDopamine, 17		
col.abd, 18	KenyaFinches, 45	
col.abd, theme.abd (col.abd), 18		
Convictions, 19	LanguageBrains, 46	
ConvictionsAndIncome, 19	LarvalFish,46	
Crickets, 20	Lefthanded, 47	
,	LionCubs, 48	
DaphniaLongevity, 21	LionNoses, 48	
DaphniaResistance, 21	LiverPreparation, 49	
dataInfo, 22	LizardBite,49	
DayOfBirth, 23	LizardSprint, 50	
DEET, 24	Lobsters, 51	
DesertBirds, 24	LodgepolePines, 51	
Dioecy, 25	LupusMice, 52	
Dolphins, 25	Lynx, 53	
DungBeetles, 26		
builgbeeties, 20	MarineReserve, 53	
Earthworms, 27	MassExtinctions, 54	
Earwigs, 27	MoleRats, 54	
Eelgrass, 28	Mosquitoes, 55	
ElectricFish, 29	MouseEmpathy, 56	
ElVerde, 30		
EndangeredSpecies, 30	NeanderthalBrains, 56	
Litualiger euspectes, 30	NematodeLifespan, 57	
FingerRatio, 31	NeotropicalTrees, 58	
Fireflies, 32	Newts, 58	
FireflyFlash, 32	NorthSeaCod, 59	
FlycatcherPatch, 33	NoSmokingDay, 60	
-		
FlyTestes, 33	OstrichTemp, 60	
GeneRegulation, 34	Penguins, 61	
GlidingSnakes, 34	PlantPersistence, 62	
GodwitArrival, 35	Pollen, 62	
Grassland, 36	Powerball, 63	
GreatTitMalaria, 36	PrimateMetabolism, 63	
Greenspace, 37	PrimateWBC, 64	
Guppies, 38	ProgesteroneExercise, 64	
	Pseudoscorpions, 65	
Hemoglobin, 38	Pufferfish, 66	
HippocampusLesions, 39	1 411 611 1311, 00	
histochart, 40	Rattlesnakes, 66	
HornedLizards, 40	Rigormortis, 67	
HumanBodyTemp, 41	RopeTrick, 68	
HumanGeneLengths, 42	,	
Hurricanes, 43	SagebrushCrickets, 68	
,	SalmonColor, 69	
Iguanas, 43	Seedlings, 69	
IntertidalAlgae, 44	Selection, 70	
- ·	•	

INDEX 103

SexualSelection, 71 ShadParasites, 72 ShrinkingSeals, 72 ShuttleDisaster, 73 Silversword, 74 SleepAndPerformance, 74 SockeyeFemales, 75 Sparrows, 75 SpiderColonies, 76 SpiderSpeed, 77 Stalkies1, 77 Stalkies2, 78 SticklebackPlates, 78 SticklebackPreference, 79 Sumo, 80 SyrupSwimming, 80	ZebraFinches, 98 ZooMortality, 98 Zooplankton, 99
TeenDeaths, 81 Telomeres, 82 theme.abd(col.abd), 18 TimeOfDeath, 82 Toads, 83 Tobacco, 83, 84 Tobacco2, 84, 84 ToothAge, 85 TreeSeedlings, 85 Trematodes, 86 Trillium, 86 Truffles, 87 TsetseLearning, 88 TwoKids, 88	
VampireBites, 89 VasopressinVoles, 90 Vines, 90 VoleDispersal, 91	
WalkingStickFemurs, 92 WalkingStickHeads, 92 WeddellSeals, 93 WillsDebates, 94, 95 WillsPresidents, 94 WolfTeeth, 95 Wolves, 95 WorldCup, 96 WrasseSexes, 96	
YeastGenes, 97	
ZebraFinchBeaks, 97	