COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

March 19, 2023

Lecture 22: Turing Machines: Variants, CT Thesis

Deterministic single-tape Turing Machines

Deterministic single-tape Turing Machines

Definition

```
Q: set of states \Sigma: input alphabet
```

$$q_0$$
: start state Γ : tape alphabet, $\Sigma \subseteq \Gamma$, & $\in \Gamma$

$$q_{acc}$$
: accept state q_{rej} : reject state

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}.$$

Deterministic single-tape Turing Machines

Definition

A Turing machine (TM) is given by $M = (Q, \Sigma, \Gamma, \delta, q_0, q_f, q_{rej})$

```
\begin{array}{lll} Q\colon & \text{set of states} & \Sigma\colon & \text{input alphabet} \\ q_0\colon & \text{start state} & \Gamma\colon & \text{tape alphabet, } \Sigma\subseteq\Gamma, \ \&\in\Gamma \\ q_{acc}\colon & \text{accept state} & q_{rej}\colon & \text{reject state} \\ \end{array}
```

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}.$$

Configurations: start, accept, rejecting, halting.

Deterministic single-tape Turing Machines

Definition

```
Q: set of states \Sigma: input alphabet q_0: start state \Gamma: tape alphabet, \Sigma \subseteq \Gamma, & \in \Gamma q_{acc}: accept state q_{rej}: reject state
```

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}.$$

- Configurations: start, accept, rejecting, halting.
- Acceptance: Accepting vs rejecting configuration/run.
- ▶ *L* is Turing recognizable

Deterministic single-tape Turing Machines

Definition

```
\begin{array}{lll} Q\colon & \text{set of states} & \Sigma\colon & \text{input alphabet} \\ q_0\colon & \text{start state} & \Gamma\colon & \text{tape alphabet}, \ \Sigma\subseteq\Gamma, \ \&\in\Gamma \\ q_{acc}\colon & \text{accept state} & q_{rej}\colon & \text{reject state} \\ \delta\colon Q\times\Gamma\to Q\times\Gamma\times\{L,R\}. \end{array}
```

- • • •
- Configurations: start, accept, rejecting, halting.
- Acceptance: Accepting vs rejecting configuration/run.
- ▶ L is Turing recognizable $\implies \exists M \forall w \in L$, (M has an accepting run on w).

Deterministic single-tape Turing Machines

Definition

```
\begin{array}{lll} Q\colon & \text{set of states} & \Sigma\colon & \text{input alphabet} \\ q_0\colon & \text{start state} & \Gamma\colon & \text{tape alphabet}, \ \Sigma\subseteq\Gamma, \ \&\in\Gamma \\ q_{acc}\colon & \text{accept state} & q_{rej}\colon & \text{reject state} \\ \delta\colon Q\times\Gamma\to Q\times\Gamma\times\{L,R\}. \end{array}
```

- Configurations: start, accept, rejecting, halting.
- ► Acceptance: Accepting vs rejecting configuration/run.
- ▶ L is Turing recognizable $\implies \exists M \forall w \in L$, (M has an accepting run on w).
- ightharpoonup L is Turing decidable

Deterministic single-tape Turing Machines

Definition

```
\begin{array}{lll} Q\colon & \text{set of states} & \Sigma\colon & \text{input alphabet} \\ q_0\colon & \text{start state} & \Gamma\colon & \text{tape alphabet}, \ \Sigma\subseteq\Gamma, \ \&\in\Gamma \\ q_{acc}\colon & \text{accept state} & q_{rej}\colon & \text{reject state} \\ \end{array}
```

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}.$$

- Configurations: start, accept, rejecting, halting.
- ▶ Acceptance: Accepting vs rejecting configuration/run.
- ▶ L is Turing recognizable $\implies \exists M \forall w \in L$, (M has an accepting run on w).
- ▶ L is Turing decidable $\implies \exists M(\forall w \in L, M \text{ has an accepting run on } w)$ and $(\forall w \notin L, M \text{ has a rejecting run on } w)$.

A hierarchy of languages

A hierarchy of languages

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If L is Turing decidable then L is also Turing recognizable

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If L is Turing decidable then L is also Turing recognizable If L is Turing decidable, then \overline{L} is also Turing decidable.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If L is Turing decidable then L is also Turing recognizable

If L is Turing decidable, then \overline{L} is also Turing decidable. (Needs proof.)

Therefore, \overline{L} is also Turing recognizable.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If ${\cal L}$ is Turing decidable then ${\cal L}$ is also Turing recognizable

If L is Turing decidable, then \overline{L} is also Turing decidable. (Needs proof.)

Therefore, \overline{L} is also Turing recognizable.

(⇐)

Let M_1, M_2 be two TMs recognizing L, \overline{L} , respectively.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If L is Turing decidable then L is also Turing recognizable

If L is Turing decidable, then \overline{L} is also Turing decidable. (Needs proof.)

Therefore, \overline{L} is also Turing recognizable.

(⇐)

Let M_1, M_2 be two TMs recognizing L, \overline{L} , respectively.

We wish to come up with a TM M that will decide L.

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If ${\cal L}$ is Turing decidable then ${\cal L}$ is also Turing recognizable

If L is Turing decidable, then \overline{L} is also Turing decidable. (Needs proof.)

Therefore, \overline{L} is also Turing recognizable.

(⇐)

Let M_1, M_2 be two TMs recognizing L, \overline{L} , respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both M_1, M_2

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If ${\cal L}$ is Turing decidable then ${\cal L}$ is also Turing recognizable

If L is Turing decidable, then \overline{L} is also Turing decidable. (Needs proof.)

Therefore, \overline{L} is also Turing recognizable.

(⇐)

Let M_1, M_2 be two TMs recognizing L, \overline{L} , respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both M_1, M_2 , if M_1 reaches accepting configuration then accept

Theorem

A language L is Turing decidable if and only if L and \overline{L} are both Turing recognizable.

Proof.

 (\Rightarrow)

If ${\cal L}$ is Turing decidable then ${\cal L}$ is also Turing recognizable

If L is Turing decidable, then L is also Turing decidable. (Needs proof.)

Therefore, \overline{L} is also Turing recognizable.

(⇐)

Let M_1, M_2 be two TMs recognizing L, \overline{L} , respectively.

We wish to come up with a TM M that will decide L.

Idea: on input w run both M_1, M_2 , if M_1 reaches accepting configuration then accept.

Else M_2 will reach the accepting configuraion. In that case, reject.

Closure Properties

Theorem

Turing recognizable languages are closed under the following operations:

- Union
- Intersection
- Concatenation
- Kleene closure
- Homomorphism

Closure Properties

Theorem

Turing recognizable languages are closed under the following operations:

- Union
- Intersection
- Concatenation
- Kleene closure
- Homomorphism

Turing decidable languages are closed under the following operations:

- Union
- Intersection
- Complement
- Concatenation
- 6 Kleene closure

 Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes

- Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes
- ▶ To prove that a mathematical object is robust one needs to show that it is equivalent with its variants.

- Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes
- To prove that a mathematical object is robust one needs to show that it is equivalent with its variants.
- Are DFA/NFA/PDA robust?

- Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes
- To prove that a mathematical object is robust one needs to show that it is equivalent with its variants.
- Are DFA/NFA/PDA robust?
- Is the definition of a Turing machine robust?

- Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes
- To prove that a mathematical object is robust one needs to show that it is equivalent with its variants.
- Are DFA/NFA/PDA robust?
- Is the definition of a Turing machine robust?
- Variants of TM with multiple tapes or with nondeterminism abound.

- Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes
- To prove that a mathematical object is robust one needs to show that it is equivalent with its variants.
- Are DFA/NFA/PDA robust?
- Is the definition of a Turing machine robust?
- Variants of TM with multiple tapes or with nondeterminism abound.
- Original model of a TM and its variants all have the same computation power, i.e., they recognize the same class of languages.

- Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes
- To prove that a mathematical object is robust one needs to show that it is equivalent with its variants.
- Are DFA/NFA/PDA robust?
- Is the definition of a Turing machine robust?
- Variants of TM with multiple tapes or with nondeterminism abound.
- Original model of a TM and its variants all have the same computation power, i.e., they recognize the same class of languages.
- Hence, robustness of TM definition is measured by the invariance of its computation power to certain changes in design features of the machine.

Transition function of a TM in our definition forces the head to move to the left or right after each step.

- ▶ Suppose the head is allowed to stay put, i.e., $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}.$
- Does this feature allow TM to recognize additional languages?

- ► Suppose the head is allowed to stay put, i.e., $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}.$
- Does this feature allow TM to recognize additional languages?
 Answer: NO.
- Sketch of proof:
 - An S transition can be represented by two transitions: one that move to the left followed by one that moves to the right.
 - Since we can convert a TM which stay put into one that does not have this facility the answer is No.

- ▶ Suppose the head is allowed to stay put, i.e., $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}.$
- Does this feature allow TM to recognize additional languages?
 Answer: NO.
- Sketch of proof:
 - An S transition can be represented by two transitions: one that move to the left followed by one that moves to the right.
 - Since we can convert a TM which stay put into one that does not have this facility the answer is No.
- ▶ To show that two models of TM are equivalent we need to show that we can simulate one by another.

Transition function of a TM in our definition forces the head to move to the left or right after each step. Let us vary the type of transition function permitted.

- Suppose the head is allowed to stay put, i.e., δ: Q × Γ → Q × Γ × {L, R, S}.
- Does this feature allow TM to recognize additional languages?
 Answer: NO.
- Sketch of proof:
 - An S transition can be represented by two transitions: one that move to the left followed by one that moves to the right.
 - Since we can convert a TM which stay put into one that does not have this facility the answer is No.
- ▶ To show that two models of TM are equivalent we need to show that we can simulate one by another.

Exercise: What about $\delta: Q \times \Gamma \to Q \times \Gamma \times \{R, S\}$

Variants of Turing machines

k-tape Turing machines

k-tape Turing machines

Usual $\mathsf{TM} + \mathsf{Multiples}$ tapes + independent tape-head for each tape.

k-tape Turing machines

Usual $\mathsf{TM} + \mathsf{Multiples}$ tapes + independent tape-head for each tape.

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k.$$

k-tape Turing machines

 $\label{thm:condition} \mbox{Usual TM} + \mbox{Multiples tapes} + \mbox{independent tape-head for each tape}.$

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k.$$

Example

k-tape Turing machines

Usual $\mathsf{TM} + \mathsf{Multiples}$ tapes + independent tape-head for each tape.

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$
.

Example

Given: 1^n on the input tape

k-tape Turing machines

Usual $\mathsf{TM} + \mathsf{Multiples}$ tapes + independent tape-head for each tape.

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$
.

Example

Given: 1^n on the input tape

Example

Given: 1^n on the input tape

Output: 1^{n^2} on the same tape.

 θ While there is a 1 symbol on the first tape,

Example

Given: 1^n on the input tape

Output: 1^{n^2} on the same tape.

 θ While there is a 1 symbol on the first tape,

0.1 Change the leftmost 1 symbol to X.

Example

Given: 1^n on the input tape

Output: 1^{n^2} on the same tape.

- θ While there is a 1 symbol on the first tape,
 - 0.1 Change the leftmost 1 symbol to X.
 - 0.2 For each X or 1 symbol on the first tape

Example

Given: 1^n on the input tape

Output: 1^{n^2} on the same tape.

- θ While there is a 1 symbol on the first tape,
 - 0.1 Change the leftmost 1 symbol to X.
 - 0.2 For each X or 1 symbol on the first tape write a 1 symbol on the second tape.

Example

Given: 1^n on the input tape Output: 1^{n^2} on the same tape.

- θ While there is a 1 symbol on the first tape,
 - 0.1 Change the leftmost 1 symbol to X.
 - $0.2\,$ For each X or 1 symbol on the first tape write a 1 symbol on the second tape.

end for

end while

Example

Given: 1^n on the input tape Output: 1^{n^2} on the same tape.

- θ While there is a 1 symbol on the first tape,
 - 0.1 Change the leftmost 1 symbol to X.
 - 0.2 For each X or 1 symbol on the first tape write a 1 symbol on the second tape.

end for

end while

1 Copy the contents of the second tape on the first tape.

Example

Given: 1^n on the input tape

Output: 1^{n^2} on the same tape.

- θ While there is a 1 symbol on the first tape,
 - 0.1 Change the leftmost 1 symbol to X.
 - 0.2 For each X or 1 symbol on the first tape write a 1 symbol on the second tape.

end for

end while

- 1 Copy the contents of the second tape on the first tape.
- 2 Halt and accept.

Example

Given: 1^n on the input tape

Output: 1^{n^2} on the same tape.

- θ While there is a 1 symbol on the first tape,
 - 0.1 Change the leftmost 1 symbol to X.
 - 0.2 For each X or 1 symbol on the first tape write a 1 symbol on the second tape.

end for

end while

- 1 Copy the contents of the second tape on the first tape.
- 2 Halt and accept.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$ be the k-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$ be the k-tape Turing machine. Let $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$ be such that

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$ be the k-tape Turing machine. Let $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$ be such that, $\overline{\Gamma} = \{\overline{a} \mid a \in \Gamma\}$

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Let
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$$
 be the k -tape Turing machine. Let $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$ be such that,
$$\overline{\Gamma} = \{\overline{a} \mid a \in \Gamma\}, \ \Gamma' = \Gamma \cup \overline{\Gamma} \cup \{\#\}.$$

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$$
 be the k -tape Turing machine.

Let
$$M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$$
 be such that,

$$\overline{\underline{\Gamma}} = \{ \overline{a} \mid a \in \Gamma \}, \ \Gamma' = \Gamma \cup \overline{\Gamma} \cup \{ \# \}.$$

 $\overline{\Gamma}$ symbols used to denote tape head positions.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state,

sweeps the input left to right again to update marked symbols.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state,

sweeps the input left to right again

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state,

sweeps the input left to right again to update marked symbols.