

Human-Computer Interaction

Dr. Ibrar Hussain

Week: 04

LTM - Forgetting

decay

information is lost gradually but very slowly

interference

- new information replaces old: retroactive interference
- old may interfere with new: proactive inhibition

so may not forget at all memory is selective ...

... affected by emotion – can subconsciously `choose' to forget

LTM - retrieval

recall

• information reproduced from memory can be assisted by cues, e.g. categories, imagery

recognition

- information gives knowledge that it has been seen before
- less complex than recall information is cue

Thinking

Reasoning

deduction, induction, abduction

Problem solving

Deductive Reasoning

- Deduction:
 - derive logically necessary conclusion from given premises.
 - e.g. If it is Friday then she will go to work
 It is Friday
 Therefore she will go to work.
- Logical conclusion not necessarily true:
 - e.g. If it is raining then the ground is dryIt is rainingTherefore the ground is dry

Deduction (cont.)

• When truth and logical validity clash ...

e.g. Some people are babies
Some babies cry
Inference - Some people cry

Correct?

• People bring world knowledge to bear

Inductive Reasoning

- Induction:
 - generalize from cases seen to cases unseen
 e.g. all elephants we have seen have trunks therefore all elephants have trunks.
- Unreliable:
 - can only prove false not true
 - ... but useful!

Abductive reasoning

- reasoning from event to cause
 e.g. Sam drives fast when drunk.
 If I see Sam driving fast, assume drunk.
- Unreliable:
 - can lead to false explanations

Problem solving

- It is the process of finding solution to unfamiliar task, using the knowledge we have.
- Several theories.
- <u>Gestalt</u> problem solving involves both reuse of knowledge and insight.
 - Addresses <u>productive problem solving</u> (insight and restructuring of a problem) and <u>reproductive problem solving</u> (on previous knowledge).
 - Backed up their claims with experimental evidence.
 - Move away from behaviourism and led towards information processing theories.

Problem solving (cont.)

Problem space theory -

- Problem space comprises problem states, problem solving involves generating states using legal operators.
- Heuristics may be employed to select operators. E.g. means-ends analysis.
- Operates within human information processing system
 e.g. STM limits etc.
- Largely applied to problem solving in well-defined areas e.g. puzzles rather than knowledge intensive areas.

Problem solving (cont.)

- Analogy
 - analogical mapping:
 - novel problems in new domain?
 - use knowledge of similar problem from similar domain
 - analogical mapping difficult if domains are semantically different
- Skill acquisition:
 - skilled activity characterized by chunking
 - lot of information is chunked to optimize STM
 - conceptual rather than superficial grouping of problems
 - information is structured more effectively

Errors and mental models

Types of error

- slips
 - right intention, but failed to do it right
 - causes: poor physical skill, inattention etc.
 - change to aspect of skilled behaviour can cause slip.
- mistakes
 - wrong intention
 - cause: incorrect understanding humans create mental models to explain behaviour.
 if wrong (different from actual system) errors can occur.

Emotion

- Various theories of how emotion works
 - James-Lange: emotion is our interpretation of a physiological response to a stimuli.
 - Cannon: emotion is a psychological response to a stimuli.
 - Schacter-Singer: emotion is the result of our evaluation of our physiological responses, in the light of the whole situation we are in.
- Emotion clearly involves both cognitive and physical responses to stimuli.

Emotion (cont.)

- The biological response to physical stimuli is called *affect*
- Affect influences how we respond to situations
 - positive creative problem solving
 - negative an narrow thinking

"Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks"

(Donald Norman)

Emotion (cont.)

- Implications for interface design
 - stress will increase the difficulty of problem solving.
 - relaxed users will be more forgiving of shortcomings in design.
 - aesthetically pleasing and rewarding interfaces will increase positive affect.

Individual differences

- long term
 - Gender, physical and intellectual abilities
- short term
 - effect of stress or fatigue
- changing
 - age

Ask yourself:

will design decision exclude section of user population?

Psychology and the Design of Interactive System

- Some direct applications
 - e.g. blue acuity is poor
 - blue should not be used for important detail

 However, correct application generally requires understanding of context in psychology, and an understanding of particular experimental conditions.