

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/052,999	11/02/2001	Partha P. Tirumalai	SUN-P7133-RA	1267
22835	7590	06/29/2005	EXAMINER	
A. RICHARD PARK, REG. NO. 41241 PARK, VAUGHAN & FLEMING LLP 2820 FIFTH STREET DAVIS, CA 95616			FOWLKES, ANDRE R	
		ART UNIT	PAPER NUMBER	
		2192		

DATE MAILED: 06/29/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary

Application No.	TIRUMALAI ET AL.
Examiner	Art Unit
Andre R. Fowlkes	2192

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 31 March 2005.
2a) This action is FINAL. 2b) This action is non-final.
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-17 is/are pending in the application.
4a) Of the above claim(s) _____ is/are withdrawn from consideration.
5) Claim(s) _____ is/are allowed.
6) Claim(s) 1-17 is/are rejected.
7) Claim(s) _____ is/are objected to.
8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)
2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____

4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____
5) Notice of Informal Patent Application (PTO-152)
6) Other: _____

DETAILED ACTION

1. This action is in response to the RCE amendment, filed 3/31/05.
2. Claims 1-17 are currently pending.

Claim Objections

3. The objection to claims 1, 8 and 13 has been withdrawn, in view of applicant's amendment.

Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

5. Claims 1-17 are rejected under 35 U.S.C. 102(b) as being anticipated by Santhanam, U.S. Patent No. 5,704,053.

As per claim 1, Santhanam discloses a **method for generating code to perform anticipatory prefetching for data references**, (col. 3:47-49, “The current invention provides a new compiler for such a processor that facilitates efficient insertion of explicit data prefetch instructions into loops within application programs”), **comprising:**

- receiving code to be executed on a computer system; analyzing the code to identify data references to be prefetched (col. 3:50-51, "The compiler uses ... analysis (techniques) to determine data prefetching requirements"),

- inserting prefetch instructions into the code in advance of the identified data references (col. 3:51-53, "Analysis and explicit data cache prefetch instruction insertion are performed by the compiler"),

- wherein inserting prefetch instructions involves inserting multiple prefetch instructions for a given cache line (col. 6:61-62, "the system is issuing a redundant (prefetch) instruction(s) to the memory system to retrieve the same cache line"),

- wherein inserting the prefetch instructions involves:

- attempting to calculate a stride value for a given data reference within a loop (col. 6:3-5, "The compiler can predict (by attempting to calculate a stride value) which data (reference) is needed in advance for loops that access array elements in a regular fashion"),

- if the stride value cannot be calculated, setting the stride value to a default stride value (col. 14:48-49, "(if the stride cant be calculated), then substitute some fixed constant, C"),

- inserting a prefetch instruction to prefetch the given data reference for a subsequent loop iteration based on the stride value (col. 6:5-8, "The compiler can then insert prefetch instructions into loops such that array elements

that are likely to be needed in future loop iterations are retrieved from memory ahead of time").

- wherein the stride value is constant for some (but not necessarily all) loop iterations (col. 2:25-28 , "because the analysis is done at the source code level, it is difficult to estimate the prefetch iteration distance (PFID) (in this situation the stride value is constant for some but not necessarily all loop iterations), i.e. the PFID used is always one loop iteration (i.e. default prefetch distance)").

As per claim 2, the rejection of claim 1 is incorporated and further, Santhanam discloses **allowing a system user to specify the default stride value** (col. 13:39, "Estimating the average loop iteration latency").

As per claim 3, the rejection of claim 1 is incorporated and further, Santhanam discloses that **calculating the stride value involves:**

- identifying an induction variable for the stride value (col. 11:23, "Identify simple basic loop induction variables"),
- identifying a stride function for the stride value and calculating the stride value based upon the stride function and the induction variable (col. 17:54-60, "a net loop increment of eight, and the element size of "A" is 8-bytes, this is a large stride equivalence class, assuming a 32-byte cache line size (8.times.8 bytes=64 bytes)>32 bytes").

As per claim 4, the rejection of claim 1 is incorporated and further, Santhanam discloses that **inserting the prefetch instruction based on the stride value involves:**

- calculating a prefetch cover distance by dividing a cache line size by the stride value (col. 15:64-67, "When the memory stride is <=cache line size, B(i) is considered to be in the same cluster as B(i+1), and therefore omitted for prefetch consideration (i.e. the prefetch cover distance is calculated based on the cache line size and stride value)", and col. 17:54-66, "(Because the loop has) a net loop increment of eight, and the element size of "A" is 8-bytes, this is a large stride equivalence class, assuming a 32-byte cache line size (8.times.8 bytes=64 bytes)>32 bytes. All eight references to " A" are placed into the same cluster because they exhibit group spatial locality, and no group temporal locality. The cluster leader is the reference to A[i+7], and the span of the cluster is 64-bytes (i.e. &A[i+7]-&A[i]). If the prefetch memory distance was computed earlier to be 128-bytes, i.e. corresponding to a prefetch iteration distance of two, it is only necessary to insert three prefetch instructions to account for the entire span of this 8-member cluster.") ,

- calculating a prefetch ahead distance as a function of a prefetch latency, the prefetch cover distance and an execution time of a loop (col. 7:11-18, "The memory address is determined based on the number of loop iterations in advance (i.e. the prefetch iteration distance or PFID) that data items need to be prefetched to fully hide the time required to service potential data cache misses. The PFID is determined taking into account the nature of the loop body instructions (i.e. execution time of the

loop and the prefetch cover distance) and characteristics of the target processor and memory system (i.e. the prefetch latency and prefetch cover distance"),

- calculating a prefetch address by multiplying the stride value by the prefetch cover distance and the prefetch ahead distance and adding the result to an address accessed by the given data reference (col. 7:11-18, "The memory address is determined based on the number of loop iterations in advance (i.e. the prefetch iteration distance or PFID) that data items need to be prefetched to fully hide the time required to service potential data cache misses. The PFID is determined taking into account the nature of the loop body instructions and characteristics of the target processor and memory system.").

As per claim 5, the rejection of claim 1 is incorporated and further, Santhanam discloses that analyzing the code involves:

- identifying loop bodies within the code; identifying data references to be prefetched from within the loop bodies (col. 8:30-35, "One important feature of the invention identifies loops and access patterns to allow a determination of how many cycles are devoted to loop iterations, and therefore allows insertion of the prefetch instruction to a location of an array that is sufficiently far in advance to make sure that the miss time is minimized.").

As per claim 6, the rejection of claim 5 is incorporated and further, Santhanam discloses that analyzing the code to identify data references to be prefetched involves

examining a pattern of data references over multiple loop iterations (col. 14:6-10, “Now, it is also necessary to address the issue of loops that have internal branches. The minimum loop iteration latency for such loops is estimated by using previously collected execution profile information, which indicates the execution count for each basic block in the loop body.”).

As per claim 7, the rejection of claim 1 is incorporated and further, Santhanam discloses that analyzing the code involves **analyzing the code within a compiler** (col. 3:47-49, “The current invention provides a new compiler for such a processor that facilitates efficient insertion of explicit data prefetch instructions into loops within application programs”).

As per claims 8-12, this is a computer readable medium/product version of the claimed method discussed above, in claims 1-7 , wherein all claimed limitations have also been addressed and/or cited as set forth above. For example, see Santhanam’s “new compiler” (col. 3:47-49).

As per claims 13-17, this is an apparatus version of the claimed method discussed above, in claims 1-7 , wherein all claimed limitations have also been addressed and/or cited as set forth above. For example, see Santhanam Fig. 1 computer architecture, item 10 and associated text.

Response to Arguments

6. Applicants arguments have been considered but they are not persuasive.

In the remarks, the applicant has argued substantially that:

1) Santhanam teaches away from the present invention because Santhanam teaches allowing only a single prefetch for a given cache line, while applicant's invention teaches inserting multiple prefetch instructions for a given cache line, at p. 8:16-9:1.

Examiner's response:

1) The examiner disagrees with the applicant's characterization of the applied art. Santhanam does teach inserting multiple prefetch instructions for a given cache line, at col. 6:61-62 "the system is issuing a redundant (i.e. multiple prefetch) instruction(s) to the memory system to retrieve the same cache line".

Conclusion

7. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Andre R. Fowlkes whose telephone number is (571) 272-3697. The examiner can normally be reached on Monday - Friday, 8:00am-4:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tuan Q. Dam can be reached on (571)272-3695. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Art Unit: 2192

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

ARF

TUAN DAM
SUPERVISORY PATENT EXAMINER