CHAPITRE 05

Probabilités élémentaires - Exercices (Correction)

Exercice 1

1. Compléter le tableau d'effectifs ci-dessous.

	Seconde	Première	Terminale	Total
Utilise régulièrement les RS	760	630	350	1740
N'utilise pas régulièrement les RS	40	70	150	260
Total	800	700	500	2 000

▶ Élèves de terminale : $\frac{1}{4} \times 2000 = 500$.

► Élèves de première : $\frac{35}{100} \times 2000 = 700$; il reste donc 2000 - (500 + 700) = 800 élèves en seconde.

Nombre d'élèves de terminale utilisant internet : $\frac{70}{100} \times 500 = 350$.

► Nombre d'élèves de seconde utilisant internet : par différence : 1740 – (350 + 630) = 760.

2. La probabilité d'obtenir le questionnaire d'un élève de 2^{de} qui utilise régulièrement les RS est $\frac{760}{2000} = 0.38$.

3. On a $P(T) = \frac{1}{4} = 0.25$ et $P_T(R) = \frac{P(T \cap R)}{P(T)} = \frac{\frac{350}{2000}}{\frac{1}{4}} = \frac{350}{500} = 0.7$. C'est la probabilité qu'un élève de terminale rencontré au hasard utilise les RS, et cette donnée est dans l'énoncé!

4. Sur 2 000 élèves 260 n'utilisent pas les RS régulièrement. $P(\overline{R}) = \frac{260}{2000} = \frac{13}{100} = 0.13$.

5. Sur les 1740 utilisateurs réguliers il y a 630 élèves de première; la probabilité est donc $P_R(E) = \frac{630}{1740} = \frac{21}{58}$.

Exercice 2

1. On peut proposer l'arbre suivant :

2. La probabilité que le questionnaire choisi soit celui d'un employé qui travaille dans le secteur B et qui est stressé est $p(B \cap S)$.

D'après la formule des probabilités composées, $p(B \cap S) = p(B) \times p_B(S) = 0.35 \times 0.3 = 0.105$.

3. D'après la formule des probabilités totales : $p(S) = p(A \cap S) + p(B \cap S) = 0.13 + 0.105 = 0.235$. Le résultat obtenu correspond à 23,5 % : la salle de relaxation ne sera pas installée.

4. Il faut trouver $p_S(A) = \frac{p(S \cap A)}{p(A)} = \frac{0.13}{0.235} \approx 0.55$ au centième près.

Exercice 3

- 1. L'énoncé nous donne p(T) = 0.3 et $P_T(C) = 0.6$.
- 2. L'arbre de probabilités est :

- **3. a.** $M \cap C$ représente l'évènement « le client a pris un macaron **et** un café ». Et on a $p(M \cap C) = p(M) \times p_M(C) = 0.5 \times 0.8 = 0.4$.
 - **b.** D'après la formule des probabilités totales, on a $p(C) = p(M \cap C) + p(T \cap C) + p(P \cap C)$. Et donc $p(C) = 0.4 + 0.3 \times 0.6 + 0.2 \times 0.9 = 0.4 + 0.18 + 0.18 = 0.76$.
- **4.** Il faut trouver $p_{\rm C}({\rm M}) = \frac{p({\rm C} \cap {\rm M})}{p({\rm C})} = \frac{0.4}{0.76} \approx 0.53 \, {\rm a} \, 0.01 \, {\rm pres}.$
- **5. a.** On a:
 - $P + M + C : 18 + 6 + 2 = 26 \in$;
 - P+M:18+6=24€;
 - $P + T + C : 18 + 7 + 2 = 27 \in$;
 - $P + T : 18 + 7 = 25 \in$;
 - $P + C : 18 + 2 = 20 \in$;
 - P:18€
 - b. le tableau complété est :

Sommes s_i	18	20	24	25	26	27
$p(s_i)$	0,02	0,18	0,1	0,12	0,4	0,18

c. On a $18 \times 0.02 + 20 \times 0.18 + 24 \times 0.1 + 25 \times 0.12 + 26 \times 0.4 + 27 \times 0.18 = 24.62$ (€). Sur un grand nombre de repas la recette par client s'élève à 24.62 €.

Exercice 4

1. a. L'arbre complété est :

- **b.** La probabilité de l'évènement « le joueur choisit la console déréglée et il gagne » est $P(D \cap G)$. D'après la formule des probabilités composées, $P(D \cap G) = P(D) \times P_D(G) = 0.5 \times 0.7 = 0.35$.
- c. La probabilité de l'évènement « le joueur choisit la console non déréglée et il gagne » est $P(\overline{D} \cap G)$. D'après la formule des probabilités composées, $P(\overline{D} \cap G) = P(\overline{D}) \times P_{\overline{D}}(G) = 0,5 \times 0,2 = 0,1$.
- **d.** La probabilité que le joueur gagne est égale à P(G). D'après la formule des probabilités totales, $P(G) = P(D \cap G) + P(\overline{D} \cap G) = 0,35 + 0,1 = 0,45$.
- e. La probabilité que le joueur ait choisit la console déréglée sachant qu'il a gagné est $P_G(D)$. D'après la formule des probabilités conditionnelles, $P_G(D) = \frac{P(D \cap G)}{P(G)} = \frac{0,35}{0,45} \approx 0,778$ au millième.
- 2. On va tester l'éventuelle indépendance de D et de G :

$$\left| \begin{array}{l} P(D) \times P(G) = 0.5 \times 0.45 = 0.225 \\ P(D \cap G) = 0.35 \end{array} \right| \Rightarrow D \text{ et } G \text{ ne sont pas indépendants.}$$

3. La probabilité de l'événement « le joueur gagne trois parties de suite » vaut (grâce à l'indépendance) $P(G)^3$. Et $P(G)^3 = 0.45^3 \approx 0.009$ au millième.

Exercice 5_

1. L'arbre de probabilités est :

- **2.** La probabilité que le client interrogé ait souscrit un prêt automobile avec une assurance *Zen* dans l'agence A est $p(A \cap Z)$. D'après la formule des probabilités composées, $p(A \cap Z) = p(A) \times p_A(Z) = 0.2 \times 0.8 = 0.16$.
- **3.** D'après la formule des probabilités totales : $p(Z) = p(A \cap Z) + p(B \cap Z) + p(C \cap Z) = 0.16 + 0.45 \times 0.3 + 0.35 \times \frac{5}{7} = 0.545.$
- **4.** On cherche ici $p_Z(C) = \frac{p(Z \cap C)}{p(Z)} = \frac{0.25}{0.545} \approx 0.459$ au millième.