Lecture Note-6 Complex Integration

Line integral in the complex plane

Complex definite integrals are called (complex) line integrals. They are written as

$$\int_C f(z) dz.$$

Here the **integrand** f(z) is integrated over a given curve C. This curve C in the complex plane is called the **path of integration**.

If C is a **closed path** (one whose terminal point coincides with its initial point),

then it is denoted by $\oint_C f(z)dz$.

Partitioning of path C: If C is a combination of C1 and C2 then, $\int_C f(z) dz = \int_{C1} f(z) dz + \int_{C2} f(z) dz$.

We may represent C by a parametric representation z(t) = x(t) + i y(t) $a \le t \le b$. That is,

 $\int_C f(z) dz = \int_C f(z(t)) z'(t) dt$. The sense of increasing t is called the **positive sense** on C.

Note: Parametric representation of any curve is not unique.

Example 1: Find and sketch the path whose orientation is given by z(t) = (1 + 3i)t $(1 \le t \le 2)$.

Solution:

$$z(t) = (1+3i)t \ (1 \le t \le 2)$$

$$x(t) + i y(t) = t + i 3t$$

Comparing real and imaginary part, we get

$$x(t) = t$$
, $y(t) = 3t$ $(1 \le t \le 2)$.

t x y (x,y)

1 1 3 (1,3)

2 2 6 (2,6)

So, z(t) = (1 + 3i)t $(1 \le t \le 2)$ represents

the line segment from (1,3) to (2,6) in complex

plane.

Fig: 1

Example 2: Find and sketch the path whose orientation is given by $z(t) = 2e^{it}$ ($0 \le t < \pi$).

Solution:

$$z(t) = 2e^{it} (0 \le t < \pi)$$

$$x(t) + i y(t) = 2 \cos(t) + i 2 \sin(t)$$

Comparing real and imaginary part,

we get
$$x(t) = 2\cos(t)$$
, $y(t) = 2\sin(t)$ $(0 \le t < \pi)$.

So, $z(t) = 2e^{it}$ ($0 \le t < \pi$) represents upper semicircle of radius 2 with center (0,0).

Fig: 2

Example 3: Sketch and represent the line segment from 1 + i to 4 - 2i parametrically.

Solution:

The equation of straight line passing through the

points (1,1) to (4,-2) is,
$$y - 1 = \left(\frac{-2-1}{4-1}\right)(x-1)$$

That is,
$$y = -x + 2$$

Let,
$$x = t$$
 then $y = -t + 2$ where t varies from $t = 1$ to $t = 4$.

So, the parametric equation of line segment from 1 + i to 4 - 2i is,

$$x(t) = t, y(t) = -t + 2 \ (1 \le t \le 4).$$

Fig: 3

Example 4: Sketch and represent unit circle (counterclockwise) parametrically.

Solution:

unit circle (counterclockwise)

That is, |z| = 1 (counterclockwise)

Or,
$$|x + iy| = 1 \Rightarrow \sqrt{x^2 + y^2} = 1 \Rightarrow x^2 + y^2 = 1$$

.

Let, $x = \cos t$ and $y = \sin t$,

Then $(\cos t)^2 + (\sin t)^2 = 1$ where

t varies from t = 0 to $t = 2\pi$.

Fig: 4

So, the parametric equation of unit circle

(counterclockwise) is,

$$x(t) = \cos t$$
, $y(t) = \sin t$ (0 \le t < 2\pi).

Example 5: Sketch the path C consisting of two line segments, one from z = 0 to z = 2 and other from z = 2 to z = 3 + i, hence evaluate $\int f(z) dz$, if $f(z) = z^2$.

Solution:

Given, C consists of two line segments, one

from

$$z = 0$$
 to $z = 2$ and other from $z = 2$ to $z = 3+i$.

Along C1:

Equation of the line, which passes through

$$(0,0)$$
 and $(2,0)$, is $y=0$

$$f(z) = z^2 = (x + iy)^2 = x^2$$
 [using $y = 0$]

We know, z = x + iy = x, dz = dx

$$\int_{C_1} f(z) dz = \int_0^2 x^2 dx = \frac{8}{3}.$$

Fig: 5

Along C2:

Equation of the line, which passes through (2,0) and (3,1) is,

$$y - 0 = \left(\frac{1 - 0}{3 - 2}\right)(x - 2) \Longrightarrow y = x - 2.$$

$$f(z) = z^2 = (x + iy)^2 = [(y + 2) + iy]^2$$
 [using $x = y + 2$]

We know, z = x + iy = y + 2 + iy, dz = (1 + i)dy and y varies from 0 to 1.

$$\int_{C^2} f(z) dz = \int_0^1 [(y+2) + iy]^2 (1+i) dy = i \int_0^1 (4+4i-2y^2+2iy^2+8iy) dy = \frac{10}{3} + \frac{26}{3}i$$

Now,
$$\int_{C} f(z)dz = \int_{C1} f(z)dz + \int_{C2} f(z)dz = 6 + \frac{26}{3}i$$
.

Example 6. Sketch the path C from z=0 to z=4+2i along the curve $z=t^2+it$ and hence evaluate $\int_C f(z) dz$, where $f(z) = \overline{z}$.

Solution:

Given,
$$z = 0$$
 to $z = 4 + 2i$ and $z = t^2 + it \Rightarrow x + iy = t^2 + it$.

$$\therefore x = t^2 \text{ and } y = t$$

Now,
$$f(z) = \bar{z} = x - iy = y^2 - iy$$

and
$$z = x + iy = y^2 + iy$$

$$\Rightarrow dz = 2ydy + idy = (2y + i)dy$$

Fig: 6

Therefore,

$$\int_{C} f(z) dz = \int_{0}^{2} (y^{2} - iy)(2y + i) dy = \int_{0}^{2} (2y^{3} - iy^{2} + y) dy = \left[\frac{2y^{4}}{4} - i\frac{y^{3}}{3} + \frac{y^{2}}{2} \right]_{0}^{2} = 10 - \frac{8}{3}i$$

Example 7: Sketch the path C from z = -1 - i to z = 1 + i along the curve $y = x^3$ and hence

evaluate
$$\int_C f(z) dz$$
, where $f(z) = \begin{cases} y, & \text{when } y > 0 \\ 2, & \text{when } y < 0 \end{cases}$.

Solution:

Given, C is the arc from z = -1 - i to z = 1 + i along the curve $y = x^3$.

$$f(z) = \begin{cases} y, & \text{when} \quad y > 0 \\ 2, & \text{when} \quad y < 0 \end{cases} = \begin{cases} x^3, & \text{when} \quad x > 0 \\ 2, & \text{when} \quad x < 0 \end{cases}$$

and,
$$z = x + iy = x + ix^3$$
, $dz = (1 + 3x^2i)dx$

Now,
$$\int_{C} f(z) dz = \int_{C1} f(z) dz + \int_{C2} f(z) dz$$
$$= \int_{-1}^{0} 2 \cdot (1 + 3x^{2}i) dx + \int_{0}^{1} x^{3} (1 + 3x^{2}i) dx$$
$$= \frac{9}{4} + \frac{5}{3}i.$$

Fig: 7

Example 8: Sketch the path C from z=-1 to z=1 along the upper half of the circle |z|=1 and hence evaluate $\int_C f(z) dz$, where $f(z) = \overline{z}$.

Solution:

Given, C is the upper half of the circle |z|=1

from
$$z = -1$$
 to $z = 1$.

$$|z|=1, z=1.e^{i\theta}, dz=ie^{i\theta}d\theta$$
, where

 θ varies from π to 0, and $f(z) = \overline{z} = e^{-i\theta}$

Now,
$$\int_C f(z) dz = \int_{\pi}^0 e^{-i\theta} i e^{i\theta} d\theta = -\pi i$$
.

Fig: 8

Matlab command to evaluate line integrals:

1. Evaluate $\int_{C} \operatorname{Re}(z)dz$, where C is the shortest path from 0 to 1+2i along z(t) =t + 2it, $0 \le t \le 1$.

>> fun=@(z) real(z);

>> q=integral(fun,0,1+2i)

q = 0.5000 + 1.0000i

3. Evaluate $\int_C \bar{z} dz$, where C is the line

>> fun=@(z) conj(z);

>> q=integral(fun,2,2+3i)

segment from z=2 to z=2+3i.

q = 4.5000 + 6.0000i

2. Evaluate $\int_C \operatorname{Re}(z)dz$, where C consists of the shortest path from z= 0 to z=1 and then to z=1+2i.

>> fun=@(z) real(z);

>> q=integral(fun, 0,1+2i, 'Waypoints',1)

q = 0.5000 + 2.0000i

Sample Exercise Set on Line Integral: 6

Sample Exercise

- 1. Find and sketch the path and its orientation. Also classify whether the indicated points are interior, exterior or boundary of the following curves-(vi):
- (i) z(t) = (1+3i)t $(1 \le t \le 4)$

(iii) $z(t) = 3e^{it} \ (0 \le t \le \pi)$

(ii) $z(t) = (2 - i)t (-2 \le t \le 2)$

- (iv) $z(t) = 3 \sin t + i 3 \cos t \quad (-\pi \le t \le \pi)$
- (v) $z(t) = 3 + i + 4e^{it}$ (0 < t < 2π)
- (vi) $z(t) = 6\sin(t) + i 4\cos(t) (0 \le t \le 2\pi); (5,1)$
- (vii) $z(t) = 2\sin(t) + i3\cos(t) + 3 + 2i$, $(0 \le t \le 2\pi)$; (6.5)
- (viii) $z(t) = 4 \cosh(t) + 3 i \sinh(t)$.
- $(ix) z(t) = 3 + 4i + (5 \cosh t + 2 i \sinh t).$
- 2. Sketch and represent them parametrically. Also classify whether the indicated points are interior, exterior or boundary of the following curves-(iii & iv):
 - (i) Line segment from -1 + 2i to 4 2i, (ii) unit circle: |z| = 1 (clockwise)

 - (iii) |z-4i|=3 (counter clockwise); (1,6) (iv) |z-5+i|=4 (counter clock wise); (1,2)
- 3. Sketch the path C from z = 0 to z = 3i and hence evaluate $\int_C z^2 dz$.
- 4. Sketch the path C from z = 0 to z = 3 and hence evaluate $\int_C \bar{z} dz$.
- 5. Sketch the path C from z = 1 to z = 4 and hence evaluate $\int_C (z + \overline{z}) \sin z \ dz$.
- 6. $\int_C \ln(z) dz$, C is the shortest path from i to 2i.
- 7. Sketch the path C, which is the unit circle |z| = 2 and hence evaluate $\int_C (z + z^{-1}) dz$.
 - Sketch the corresponding paths and hence evaluate them (8-11):
- 8. $\int_C (e^{2z} + \cos z) dz$, C is the shortest path from z = 2 to z = 4.
- 9. $\int_C (z \cdot \bar{z}) dz$, C is the path around the square with vertices 0, 1, 1+i, i.
- 10. $\int_C \left(\frac{1}{z-i} \frac{2}{(z-i)^2}\right) dz$, C is the circle |z-i| = 3, clockwise.
- 11. $\int_C (x+y-ix^2) dz$, C is the shortest path along the real axis from z=0 to z=1 and then along a line parallel to imaginary axis from z = 1 to z = 1 + i.