

Face normalisation

Plan of the lecture

- testing issues
- Geometric normalisation
- Lighting normalisation
- Advanced normalisation issues

Face recognition process

Normalisation – general

- similar properties of generated images
 - geometry
 - conditions (e.g.: lighting, expression)
 - occlusions
- Intra-class differences minimised
- Extra-class differences not influenced

Normalisation – general

- Effectiveness criteria
 - visual effect
 - recognition performance
- Detection error influences normalisation result

Normalisation – general

- Perfect detection
 - real location of face and facial features
 - data input by human
- Elimination of detection error propagation
- Better assessment of subsequent recognition stages

Geometric normalisation

- Requirements:
 - constant image size
 - fixed eye positions
 - frontal orientation (soft requirement)
- Frontal faces goal:
 - given positions of eyes
 - affine transform
- Actions:
 - clipping
 - rotation
 - scaling
- Time for example

Geometric normalisation

- Speed optimisation
 - larger image = more time consumed
- Optimal algorithm:
 - 1. Calculate rotation angle
 - 2. Find and clip the ROI
 - 3. Rotate the clipped image
 - 4. Clip again
 - 5. Scale to the defined size

Laboratory reference (ex 2)

- Function parameters
- Eye positions:
 - left (49, 24)
 - right (15, 24)
- ◆ IPP reference
 - RotateCenter
 - Resize
- Operations...

- Lighting codnitions affect effectiveness
- Normalisation techniques:
 - global filtering
 - local modifications
- Histogram modifications:
 - stretching
 - equalisation
 - fitting to the average face histogram
- Filtering

Average face
$$\mu = \frac{1}{M} \sum_{i=1}^{M} \mathbf{x}_{i}$$

M – number of faces in a set

x – a single face vector

Brightening filters – example of effects

- Directional lighting:
 - strong influence on the image
 - recognition effectiveness much worse
- Light direction normalisation:
 - light angle detection
 - compensation to the frontal light conditions

- Mirror reflection
- Lighting compensation masks:
 - lighting symmetrisation
 - compensation to the average
 - model-based mask
- Filtering based on lighting model
- Compensation based on lighting model

- Condition: no information in one image half
- Image half recovery
- Applicable to frontal faces only
- Brightness and angle thresholding

Lighting normalisation - masks

- Image-based lighting compensation masks
 - dark areas lightened
 - highlights darkened
- Mask imposition on the original image:
 - addition
 - multiplication
 - advanced imposition to be investigated...

Lighting normalisation - masks

Symmetric mask

Compensation to the average

- Lighting compensation face model
- Detection of lighting direction
 - based on average 3D face model
 - classifiers (SVM, PCA)
- Compensation based on 3D model
 - mask generation
- Works correctly for artificial data

- Lighting-model based compensation
- Initial object (ambient light):
 - a[m,n]
- ◆Illuminated object:
 - \bullet c[m,n] = a[m,n] \bullet I[m,n]

- Light low frequencies in the image
- Low frequencies elimination:
 - ln(c[m,n]) = ln(l[m,n]) + ln(a[m,n])
 - $HP\{In(c[m,n])\} \approx In(a[m,n])$
 - $a'[m,n] = \exp\{HP\{In(c[m,n])\}$
- Theory seems nice...

Advanced normalisation

- Head rotation normalisation
 - frontal image desired
- Face expression normalisation
 - neutral expression
 - expression detection
- Elimination of occlusions
 - glasses
 - beard and moustache

Non-frontal images

- Significant influence on recognition effectiveness
- Normalisation (rotation):
 - 3D
 - 2D + depth map
- The most serious problem: angle detection

Summary

- Normalisation important step in face recognition process
- ◆Tasks:
 - size and position normalisation
 - image properties normalisation
- Many areas for further research

Thank you for your attention!

