Exercise: Understanding Potential Outcomes

1. Generate data on a population of 1,000 people. Specifically, create a variable (a vector) that randomly assigns these people to be male or female (50:50). Hint: In R, try rbinom and in Stata, try rbinomial.

```
N <- 1000
x <- rbinom(N,1,0.5)
```

2. Now we are going to simulate the potential outcomes - a measure of attitudes - under control (y_0) for our population. Create another variable of random normally-distributed values with mean of 5 and standard deviation of 1.

```
y0 <- rnorm(N,5,1)
```

3. One problem with observational data is that potential outcomes are often correlated with other variables such as gender. Adjust your value of y_0 to add 1 (one) for all units who are male.

```
y0 <- y0 + x
```

4. Now simulate potential outcomes under treatment (y_1) for all units. Define a constant treatment effect of c = 2 and create another vector $y_1 = y_0 + c$.

```
c <-2
y1 <- y0 + c
```

5. To compare our two sets of potential outcomes, plot two density charts on the same figure - one for y_0 and one for y_1 .

```
data <- tibble(x,y0,y1)

data %>% ggplot() +
   geom_density(aes(x=y0), col="blue") +
   geom_density(aes(x=y1),col="dark green") +
   theme_classic()
```


6. Next, let us assume a specific **Treatment Assignment Mechanism** where men are more likely than women to receive treatment. First, create a temporary 'latent' variable which consists of two components added together: (i) 0.5 * x (i.e. half the value of the gender variable), and (ii) a random uniform value

between zero and one. Finally, create a new vector D which is equal to one when the latent variable is larger than 0.75, and zero otherwise.

7. To show that gender and treatment - maybe we can think of treatment as low income and high income - are related, calculate the correlation between x and D.

```
cor(data$x,data$D)
```

[1] 0.4879532

1

8. What is the average of the real indvidual treatment effects based on the potential outcomes, $E(y_1 - y_0)$?

```
Actual_causal_effect <- data %>%
    summarize(Actual_ATE=mean(y1-y0))
Actual_causal_effect

## # A tibble: 1 x 1
## Actual_ATE
## <dbl>
```

9. The Fundamental Problem of Causal Inference is that we *cannot* calculate (8.) above. Instead, we only observe one value: y_{obs} . Create a new variable y_{obs} which equals y_1 if D = 1 but which equals y_0 if D = 0.

10. Based on the observable data, run the basic regression of treatment (D) on observable outcomes (y_{obs}) . Interpret the result. Is this an accurate estimate of the treatment effect that we assumed at the start?

```
data %>% lm(y_obs~D,data=.) %>% stargazer(keep.stat=c("n"), header=F)
```

	Table 1:
	Dependent variable:
	y_obs
D	2.586*** (0.067)
Constant	5.219*** (0.047)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

11. Re-run all your code above but this time with c = 0 so we are assuming **NO** treatment effect. Run the regression in (10.) again - what is the result?

data_no_effect %>% lm(y_obs~D,data=.) %>% stargazer(keep.stat=c("n"), header=F)

	Table 2:
	Dependent variable:
	y_obs
D	0.520***
	(0.065)
Constant	5.259***
	(0.046)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

12. To see why, let's plot two density charts on the same figure - one for the distribution of observable y_{obs} for the treated group $(y_{obs}|D==1)$ and one for the distribution of observable y_{obs} for the control group $(y_{obs}|D==0)$.

```
data_no_effect %>% ggplot() +
  geom_density(data=data_no_effect %>% filter(D==0),aes(x=y_obs), col="blue") +
  geom_density(data=data_no_effect %>% filter(D==1),aes(x=y_obs),col="dark green") +
  theme_classic()
```


13. Run your code again for c = 0, but this time assume a larger population of N = 1,000,000. Does that solve the problem?

data_large_N %>% lm(y_obs~D,data=.) %>% stargazer(keep.stat=c("n"), header=F)

Table 3:

	140510 0.
	Dependent variable:
	y_obs
D	0.503***
	(0.002)
Constant	5.250***
	(0.002)
Observations	1,000,000
Note:	*p<0.1; **p<0.05; ***p<0.01

14. For c=0, run the regression of treatment on observable outcomes, but this time controlling for gender. data_no_effect %>% lm(y_obs~D + x,data=.) %>% stargazer(keep.stat=c("n"), header=F)

Table 4:

	$Dependent\ variable:$
	y_obs
D	0.029
	(0.069)
x	0.958***
	(0.069)
Constant	5.026***
	(0.045)
Observations	1,000
Note:	*p<0.1; **p<0.05; ***p<0.01

Stata Code

set obs 1000 gen x=rbinomial(1,0.5) gen y0=rnormal(5,1) replace y0=y0+x gen y1=y0+2 kdensity y0, addplot(kdensity y1) gen rnd=0.5*x+runiform(0,1) gen D=0 replace D=1 if rnd>0.75 correlate x D gen real_TE=y1-y0

mean real_TE gen y_obs=y0 replace y_obs=y1 if D==1 regress y_obs D regress y_obs D x