Lecture - 6A

Energy Resources, Economics and Environment

Rangan Banerjee

Department of Energy Science and Engineering

IIT Bombay

Energy Economics

Example problem

A 100 h.p. motor is being used to run a pump in a process industry. The motor can be retrofitted with a variable speed drive that costs Rs. 8 lakhs. The motor runs for 7000 hours annually (3000 hours at part load). Take 90% as the full load efficiency. During part load operation, an average saving of 30 % of the full load consumption is possible with the variable speed drive (VSD). The life of the VSD can be taken as 10 years. The electricity price is Rs. 5 Rs/kWh. The minimum (real) rate of return on investment for the company is 30%. Calculate the simple payback period, Net Present Value, Benefit/Cost ratio, IRR, Cost of Saved Energy for the VSD. Comment on the viability of the VSD.

Annualised Life Cycle Cost

- Annualised Life Cycle Costs (ALCC) annual cost of owning and operating equipment
- ALCC = C_0 CRF(d,n) + AC_f + AC_{O&M}
- CRF $(d,n) = [d(1+d)^n]/[(1+d)^n-1]$
- discount rate d, Life n years, C_0 Capital Cost, AC_f , $AC_{0\&M}$, annual cost fuel and O&M CRF Capital recovery factor

Energy Efficient Refrigerator

 The cost of a standard refrigerator is Rs 10,000 and the expected electricity consumption per year is 450 kWh. The cost of an energy efficient refrigerator of the same capacity (and with the same features) is Rs 10,500. For the same load, the annual electricity consumption is expected to be 400 kWh. What is the cost of saved energy? The life of the refrigerator can be taken as 10 years.

Cost of Saved Energy

CSE = Annualised Investment / Annual Energy Saving

 $= C_0 CRF(d,n) / ES$

Unit: Rs/(energy unit)

viz. Rs/kWh, Rs/kJ, Rs/kg of coal, Rs/litre of oil.

Depreciation

Accounting concept

Approximation (A. Ni

Annual depreciation (A_D)is

$$A_D = (C_0 - S)/n$$

S is the salvage value at the end of the life of the equipment

$$A_D = C_0/n \qquad (if S=0)$$

 $Tax = t A_D$ where t is the tax rate

Tutorial problem 2 Solar Water Heater

Capital cost Rs 400,000

- (4L-1.5L)/20 = 12500
- Annual savings Rs 150,000 Life 20 years
- Discount rate 30%
- 100% accelerated depreciation
- Tax rate 30%

12500 * 0.3 = 3750

Solar Water Heater (Flat plate)

	Area	Cost	Viability	160 170 18
Residential Single	2m ² , 125lpd	20000	SPP 7.9 years CSE Rs 6.78/kWh	130 150
Six-Res HH	4 m ² 250 lpd	40000	SPP 2.4 years CSE Rs 1.99/kWh	
Hospital 20 beds	16 m ² 1000 lpd	1.6 lakh	SPP 3.2 years CSE Rs 2.68/kWh	
Hotel 30 rooms	34 m ² 2125lpd	3.4 lakh	SPP 3.9 years CSE Rs 3.31/kWh	

Economic indices

- SPP = 2.3 years
- NPV = 117,895 Rs
- B/C ratio = 1.4
- IRR = 42.8%

Economic indices with tax saving

- SPP = 2.3 years
- NPV = 182,511 Rs
- B/C ratio = 1.7
- IRR =53.2%

Marginal Abatement Cost Curve

http://www.climateworksaustralia.org/project/national-plan/how-read-marginal-abatement-cost-curve

Global Cost Curve

Summing Up

- Economic criteria used as basis for decisions
- Discount rate- scarcity of capital
- Life Cycle costing, Marginal cost of carbon saved
- Taxes, Government Policies
- Sensitivity, Impact of variables

References

- I. Pillai, R.Banerjee, Impact of Hot water usage patterns on economics of Solar Hot Water Systems, Proc of Intl Conf on Renewable Energy, CBIP, New Delhi, 2004.
- S.B.Kedare, Solar Concentrators for Process Heat, Proc ICORE 2005, p 41-51
- R.Banerjee, Comparison of Distributed generation Options for India, Energy Policy 34, 2006,p101-111
- www.oilnergy.com last visited on 21st April 2006
- Indu R. Pillai and R. Banerjee, 'Methodology for estimation of potential for solar water heating in a target area', Solar Energy, Vol.8, No.2 pp 162-17, 2007.
- Banerjee, R. "Solar Energy Applications in India." In Energy and Power Generation Handbook: Established and Emerging Technologies, ed. K. R. Rao. New York: ASME Press, ISBN: 9780791859551, 2011.

Lecture – 6B

Energy Resources, Economics and Environment

Energy Economics

Rangan Banerjee
Department of Energy Science and Engineering

IIT Bombay

Cost Of Carbon saved

- Incremental ALCC
 - =ALCC Project ALCC Base Case
- Annual Carbon Dioxide Savings
- = Annual CO_{2 Base Case} -Annual CO_{2 Project}
- Cost of Saved Carbon = Incremental ALCC/Annual Carbon Dioxide Savings

Telecom Tower

425,000 Towers – 16.5 Billion kWh, 5 Billion litres of diesel

Example Problem

Demand : Peak 5 kW, Average 2 kW continuous operation
 Options

A: Diesel engine-generator

B: PV- Battery system

A:Diesel Engine - Generator

- Rating 5 kW
- Cost Rs 1.7 lakhs, life 10 years,
- efficiency 35%,
- diesel price Rs 70 /kg, diesel NCV 42 MJ/kg (86% C by weight),
- Non fuel O&M cost Rs
 0.3/kWh

B.PV-Battery system

- Peak rating 12 kW
- Module cost Rs 6.5 lakhs life 25 years,
- Battery 50 kWh Rs 4.5 lakhs life 5 years,
- Balance of system costs Rs
 3.0 lakhs, 10 years
- O&M cost Rs 0.25/kWh

