RAPORT DATA MINING – PODOBIEŃSTWO COSINUSOWE W ŚRODOWISKU R EMIL FILIPOWICZ

1. ZAŁADOWANE PAKIETY

- library("topicmodels")
- library("igraph")

2. ZBIÓR DANYCH

Proces przedstawiony w raporcie powstał przy pomocy takich danych, jak:

- korpus zawierający 10 dokumentów tekstowych
- macierz DTM przedstawiająca rozkład słów w poszczególnych dokumentach zawartych w korpusie

3. PODOBIEŃSTWO COSINUSOWE - DOKUMENTY

3.1 BUDOWANIE MACIERZY – ODLEGŁOŚCI COSINUSOWYCH

	Dangerous AI.txt	finance AI.txt	Healt care and	criminal justice.txt	Myths AI.txt
finance AI.txt	0.14119562				
Healt care and criminal justice.txt	0.14782532	0.24279690			
Myths AI.txt	0.36618801	0.11494648		0.10838243	
Qualities AI.txt	0.16450006	0.18116817		0.22113522	0.15852092
safe AI.txt	0.16805083	0.08158032		0.12630509	0.22094498
Security AI.txt	0.20427894	0.18993794		0.17914981	0.13884470
Smart citiesAI.txt	0.03669879	0.15503673		0.16410658	0.03112110
Start AI.txt	0.11901266	0.20034784		0.22005544	0.11503216
Transportation AI.txt	0.10816079	0.15623083		0.15526725	0.09554365
	Qualities AI.txt	safe AI.txt Sec	curity AI.txt S	mart citiesAI.txt Star	t AI.txt
finance AI.txt					
Healt care and criminal justice.txt					
Myths AI.txt					
Qualities AI.txt					
safe AI.txt	0.07328973				
Security AI.txt	0.29903694	0.11840764			
Smart citiesAI.txt	0.15394232	0.06941756	0.15751683		
Start AI.txt	0.29934767	0.11486973	0.20936858	0.16117930	
Transportation AI.txt	0.14233966	0.06277237	0.17886997	0.12189275 0.	07993410

Utworzona macierz przedstawia podobieństwo między każdym dokumentem zawartym w korpusie. Jednak nie wszystkie uzyskane wyniki są odpowiednio istotne, aby brać je pod uwagę podczas badania. Dlatego też macierz została wyczyszczona z danych nie istotnych dla dalszej analizy z progiem odległości przyjętym na poziomie min_cos = 0,15 (każdej mniejszej wartości od docelowej została przypisana wartość 0).

	Dangerous AI.txt	finance AI.txt Hea	lt care and crim	minal justice.txt	
finance AI.txt	0.000				
Healt care and criminal justice.tx	0.000	0.243			
Myths AI.txt	0.366	0.000		0.000)
Qualities AI.txt	0.165	0.181		0.221	L
safe AI.txt	0.168	0.000		0.000)
Security AI.txt	0.204	0.190		0.179)
Smart citiesAI.txt	0.000	0.155		0.164	1
Start AI.txt	0.000	0.200		0.220)
Transportation AI.txt	0.000	0.156		0.155	5
	Myths AI.txt Qua	lities AI.txt safe	AI.txt Security	AI.txt Smart cit	iesAI.txt
finance AI.txt					
Healt care and criminal justice.tx	t				
Myths AI.txt					
Qualities AI.txt	0.159				
safe AI.txt	0.221	0.000			
Security AI.txt	0.000	0.299	0.000		
Smart citiesAI.txt	0.000	0.154	0.000	0.158	
Start AI.txt	0.000	0.299	0.000	0.209	0.161
Transportation AI.txt	0.000	0.000	0.000	0.179	0.000
	Start AI.txt				
finance AI.txt					
Healt care and criminal justice.tx	t				
Myths AI.txt					
Qualities AI.txt					
safe AI.txt					
Security AI.txt					
Smart citiesAI.txt					
Start AI.txt					
Transportation AI.txt	0.000				

Dane z kroku pierwszego uległy drastycznej zmianie, niemal połowa z wcześniej wykazanych w macierzy odległości została wyzerowana. W macierzy pozostały odległości istotne dla analizy cosinusowej, a ich liczba wynosi 23. W drugim kroku widoczne jest, że największym podobieństwem charakteryzują się dokumenty "Myths AI.txt" oraz "Dangerous AI.txt" z wartością odległości równej 0,366, a najmniejszym "Smart cities AI.txt" i "Qualities AI.txt".

3.2 PRZEDSTAWIENIE GRAFICZNE PODOBIEŃSTWA COSINUSOWEGO DOKUMENTÓW NA TLE CAŁEGO KORPUSU.

Do przedstawienia podobieństwa został użyty wykres lay_2, który w najlepszy sposób przedstawia moc powiązań między poszczególnymi dokumentami, gdzie czym grubsza linia połączenia tym większe podobieństwo tematyczne dokumentów.

Dokumenty zostały podzielone na trzy grupy. W kolorze zielonym widnieją dokumenty, których podobieństwo względem całości jest najsilniejsze, następne teksty w hierarchii zaznaczone zostały na żółto oraz te, których podobieństwo jest najmniejsze na pomarańczowo.

3.3 COMMUNITY DETECTION – ALGORYTMY WYKRYWANIA SPOŁECZNOŚCI.

W tym przypadku analizowany wykres to algorytm 1. Przedstawia on 3 grupy relacyjne dokumentów. Widoczne jest, że grupa zielono-niebieska zawiera w sobie najwięcej dokumentów, czyli można stwierdzić, że te dokumenty wykazują między sobą większe podobieństwo od reszty grup. Druga grupa zawiera jedynie 2 dokumenty. Na wykresie widnieje także jeden dokument tworzący osobny obszar, co pokazuję jego odosobnienie relacyjne od reszty dokumentów w korpusie.

Podział grupowy dokumentów:

```
Dangerous.AI.txt finance.AI.txt

1 2
Healt.care.and.criminal.justice.txt Myths.AI.txt
2 3
Qualities.AI.txt safe.AI.txt
2 3
Security.AI.txt Smart.citiesAI.txt
2 2
Start.AI.txt Transportation.AI.txt
2 2
```

4. PODOBIEŃSTWO COSINUSOWE - SŁOWA

4.1 BUDOWANIE MACIERZY – ODLEGŁOŚCI COSINUSOWYCH

```
becom develop exampl human intellig research system applic data need peopl
         0.915
develop
         0.751
exampl
human
         0.744
                0.744 0.489
intellig 0.488
                0.474 0.396 0.751
research 0.485
                0.471 0.000 0.676
                                              0.000
system
         0.413
                0.379 0.415 0.000
         0.000
                0.441 0.759 0.000
                                     0.000
                                              0.000 0.505
applic
         0.370
                0.472 0.419 0.490
                                     0.584
                                              0.000 0.432 0.459
data
need
         0.000
                0.393 0.485 0.508
                                     0.719
                                              0.452
                                                     0.749 0.724 0.358
                                     0.418
0.717
peopl
         0.706 0.857 0.626 0.547
                                              0.404 0.367 0.454 0.740 0.000
process
         0.454
                0.567 0.483 0.434
                                              0.000 0.833 0.500 0.663 0.724 0.648
                                     0.381
technolog 0.465 0.521 0.609 0.000
                                              0.590 0.683 0.630 0.000 0.615 0.536
         process
devel on
exampl
human
intellia
research
system
applic
data
need
peopl
process
           0.552
technolog
```

Macierz przedstawia podobieństwo występowania słów w poszczególnych dokumentach. Macierz ta została już wyczyszczona, a jej cechy są analogiczne do cech macierzy stworzonej przy analizie dokumentów.

4.2 PRZEDSTAWIENIE GRAFICZNE PODOBIEŃSTWA COSINUSOWEGO DOKUMENTÓW NA TLE CAŁEGO KORPUSU.

Do wyjaśnienia tego przypadku został użyty podobnie jak w poprzednim wypadku wykres lay 2, który ukazuję poszczególne powiązania słów w najbardziej czytelny sposób.

Analogicznie jak przy analizie dokumentów, utworzone zostały 3 grupy powiązań słów. Grupa zielona charakteryzująca się najsilniejszymi podobieństwami względem całego korpusu, żółta – pośrednia oraz pomarańczowa cechująca się najsłabszym powiązaniem między innymi słowami w dokumentach korpusu.

4.3 COMMUNITY DETECTION

Aby zbadać community detection został wybrany algorytm 3. Jako jedyny z trzech podzielił słowa na dwie grupy, kiedy pozostałe dwa tworzyły jedną.

5. PODSUMOWANIE PODOBIEŃSTWA COSINUSOWEGO NA PODSTAWIE MACIERZY DTM ORAZ TDM.

Metoda	Źródło	Community 1	Community 2	Community 3
Community	Podobieństwo	Ryzyko związane	Rozwój oraz	Mity związane
detection	cosinusowe -	z korzystaniem	zastosowanie Al	z Al oraz ich
	DTM	AI	w różnych	wytłumaczenie
			sektorach życia	
Community	Podobieństwo	Słowa związane	Słowa związane	
detection	cosinusowe -	z AI w sferze	z AI w sferze	-
	TDM	technologicznej	rozwoju i	
			społeczeństwa	

- Dokumenty przy użyciu metody Community detection na podstawie podobieństwa cosinusowego wykazało dobre i sensowne pogrupowanie dokumentów na grupy tematyczne.
- Słowa pogrupowane za pomocą tych metod zostały podzielone na dwie społeczności pierwszą technologiczną oraz drugą społeczną. Jest to odpowiedni podział, jednak dla
 doprecyzowania powinny powstać jeszcze jedna grupa po rozbiciu pierwszej aby
 rozdzielić dokumenty z treścią bardziej ogólną od tych z szczegółową wiedzą
 technologiczną z obszaru AI.

6. TOPIC MODELING

- podział słów na 2 tematy:

```
Topic 1
                Topic 2
[1,] "human"
                "system"
 [2,] "intellig" "data"
 [3,] "goal" "technolog"
 [4,] "research" "citi"
 [5,] "machin"
                "advanc"
 [6,] "car"
                "autonom"
 [7,] "mani"
                "learn"
 [8,] "control" "vehicl"
 [9,] "develop" "exampl"
[10,] "robot"
                "deploy"
```

⁻ podział słów na 3 tematy:

```
Topic 1
                Topic 2
                           Topic 3
[1,] "system"
                 "human"
                           "data"
[2,] "technolog" "intellig" "citi"
[3,] "learn"
                "goal"
                           "becom"
[4,] "advanc"
                "machin" "exampl"
[5,] "autonom"
                "research" "deploy"
[6,] "vehicl"
                 "mani"
                           "state"
[7,] "artifici"
                           "imag"
                "control"
[8,] "speed"
                 "robot"
                           "use"
                "risk"
[9,] "new"
                           "develop"
                 "posit"
                           "applic"
[10,] "car"
```

- podział słów na 4 tematy:

```
Topic 1
                 Topic 2
                            Topic 3
                                       Topic 4
[1,] "technolog" "citi"
                            "human"
                                       "intellig"
                            "goal"
                 "becom"
[2,] "car"
                                       "data"
                 "exampl"
                            "research" "system"
[3,] "system"
[4,] "need"
                "deploy"
                                       "speed"
                            "mani"
[5,] "learn"
                "state"
                            "machin"
                                       "process"
                            "robot"
                "imag"
"use"
[6,] "advanc"
                                       "artifici"
[7,] "autonom"
                            "control" "human"
[8,] "inform"
                 "peopl"
                            "risk"
                                       "capabl"
                 "peopı
"algorithm" "posit"
[9,] "vehicl"
                                       "decis"
[10,] "invest"
                            "ant"
                                       "nation"
                 "applic"
```

Po sprawdzeniu 3 alternatyw podziału tematycznego, w niniejszej analizie wybrana została opcja grupująca na trzy tematy.

```
[,1]
                     ٧Z
                                V3 Dangerous AI.txt
                                                                         2
1 0.20570571 0.5525526 0.24174174 finance AI.txt
                                                                         3
2 0.31948566 0.1770524 0.50346192
                                   Healt care and criminal justice.txt
                                                                         3
3 0.24183007 0.1879085 0.57026144
                                   Myths AI.txt
                                                                         2
  0.07859848 0.8257576 0.09564394
5 0.38568935 0.2652705 0.34904014 Qualities AI.txt
                                                                         1
6 0.18954248 0.5669935 0.24346405 safe AI.txt
                                                                         2
7 0.60164609 0.1917695 0.20658436 Security AI.txt
                                                                         1
8 0.25157233 0.1836478 0.56477987 Smart citiesAI.txt
                                                                         3
9 0.23291492 0.2705718 0.49651325 Start AI.txt
                                                                         3
10 0.70983936 0.1495984 0.14056225 Transportation AI.txt
                                                                         1
```

W czerwonych ramkach zaznaczone zostało prawdopodobieństwo przynależności określonego dokumentu do określonego tematu.

#	Topic 1	Topic description	Example	% of Documents, mostly associated with This Topic
1	Rozwój technologii oraz możliwości idące za rozwojem AI	Opis technologii AI w kontekście rozwoju transportu, obronności narodowej oraz cechy i możliwości sztucznej inteligencji	"The big data analytics associated with AI will profoundly affect intelligence analysis, as massive amounts of data are sifted in near real time—if not eventually in real time—thereby providing commanders and their staffs a level of intelligence analysis and productivity heretofore unseen." Security.txt	30%
2	Zagrożenia, ryzyko i mity powstałe wraz z rozwojem AI	Obawy społeczne związane z wprowadzaniem sztucznej inteligencji w życiu codziennym, narastające mity oraz wytłumaczenie realnych zagrożeń związanych ze sztuczną inteligencją	"Typically, these articles are accompanied by an evil-looking robot carrying a weapon, and they suggest we should worry about robots rising up and killing us because they've become conscious and/or evil." Myths.txt	30%
3	Rozwój AI w kontekście użyteczności społecznej	Sztuczna inteligencja rozwój i wprowadzanie jej w różnych sektorach gospodarki oraz sfery publicznej.	"AI tools are helping designers improve computational sophistication in health care. For example, Merantix is a German company that applies deep learning to medical issues. It has an application in medical imaging that "detects lymph nodes in the human body in Computer Tomography (CT) images" Healt care and criminal justice.txt	40%

7. K-MEANS I HIERARCHICAL CLUSTERING/COSINE SIMILARITY

- Dokumenty (DTM)
 - Hierarchical Clustering

K-means

CLUSPLOT(as.matrix(d1))

These two components explain 36.6 % of the point variability.

- Słowa (TDM)

Hierarchical Clustering

K-means

CLUSPLOT(as.matrix(d1))

8. PODSUMOWANIE WYNIKÓW GRUPOWANIA

W tabeli zostały zebrane oraz podsumowane wszystkie metody grupowania dokumentów oraz słów w badanym korpusie 10 dokumentów powiązanych z obszarem sztucznej inteligencji.

Metoda	Źródło	1	2	3	4	Rating	
Documents							
K-means	DTM	Mity oparte na sztucznej inteligencji	Obszary ogólne i Społeczne kierunki rozwoju AI	Technologiczne rozwiązania AI w transporcie i bezpieczeństwie	-	5	
Hierarchical Clustering	DTM	Mity oparte na sztucznej inteligencji	Rozwój AI w transporcie	Rozwój bezpieczeństwa narodowego	Obszary ogólne i społeczne kierunki rozwoju AI	6	
K-means	Cosine similarity / DTM	Obszary ogólne, cechy oraz ochrona AI	Rozwój AI w kontekście użyteczności społecznej	Zagrożenia i mity powstałe wraz z rozwojem AI	Kontrola i rozwój AI w bezpiecznym kierunku	2	
Hierarchical Clustering	Cosine similarity / DTM	Zagrożenia, bezpieczeństwo oraz mity powstałe wraz z rozwojem AI	Rozwój AI w transporcie	AI w rozwoju inteligentnych miast	Rozwój AI w kontekście użyteczności społecznej	4	
Community detection	Cosine similarity/ DTM	Ryzyko związane z korzystaniem AI	Rozwój oraz zastosowanie AI w różnych sektorach życia	Mity związane z AI oraz ich wytłumaczenie	-	3	
Topic modelling	DTM	Rozwój technologii oraz możliwości idące za rozwojem AI	Zagrożenia, ryzyko i mity powstałe wraz z rozwojem AI	Rozwój AI w kontekście użyteczności społecznej	-	1	

Metoda	Źródło	1	2	3	4	Rating	
Terms							
K-means	TDM	Słowa występujące najczęściej	Dane	Słownictwo z zakresu technologii	-	5	
Hierarchical Clustering	TDM	Słowa występujące najczęściej definiujące tematykę korpusu	System	Słownictwo z zakresu technologii kształtujące pod tematy korpusu	-	4	
K-means	Cosine similarity / TDM	Słownictwo z zakresu technologii	Słowa związane z badaniami nad Al	Procesy zachodzące oraz systemy stosowane w obszarach AI		1	
Hierarchical Clustering	Cosine similarity / TDM	Słowa związane z badaniami nad Al	Słowa związane z danymi oraz cechami ludzkimi	Procesy zachodzące w systemach AI	Słownictwo z zakresu technologii	2	
Community detection	Cosine similarity/ DTM	Słowa związane z AI w sferze technologicznej	Słowa związane z Al w sferze rozwoju i społeczeństwa	-	-	3	