ETH Zurich

Advanced Graph Algorithms and Optimization

Rasmus Kyng & Maximilian Probst Gutenberg

Spring 2024

These notes will be updated throughout the course. They are likely to contain typos, and they may have mistakes or lack clarity in places. Feedback and comments are welcome. Please send to kyng@inf.ethz.ch or, even better, submit a pull request at

https://github.com/rjkyng/agao24_script.

We want to thank scribes from the 2020 edition of the course who contributed to these notes: Hongjie Chen, Meher Chaitanya, Timon Knigge, and Tim Taubner – and we're grateful to all the readers who've submitted corrections, including Martin Kucera, Alejandro Cassis, and Luke Volpatti.

A important note: If you're a student browsing these notes to decide whether to take this course, please note that the current notes are incomplete. We will release parts later in the semester. You can take a look at last year's notes for an impression of the what the rest of the course will look like. Find them here:

https://github.com/rjkyng/agao23_script/raw/main/agao23_script.pdf

There will, however, be some changes to the content compared to last year.

Contents

1	Course Introduction				
	1.1	Overview	Ę		
	1.2	Electrical Flows and Voltages - a Graph Problem from Middle School?	Ę		
	1.3	Convex Optimization	12		
	1.4	More Graph Optimization Problems	14		
Ι	In	troduction to Convex Optimization	17		
2	Some Basic Optimization, Convex Geometry, and Linear Algebra				
	2.1	Overview	18		
	2.2	Optimization Problems	18		
	2.3	A Characterization of Convex Functions	20		
		2.3.1 First-order Taylor Approximation	21		
		2.3.2 Directional Derivatives	22		
		2.3.3 Lower Bounding Convex Functions with Affine Functions	22		
	2.4	Conditions for Optimality	24		
3	Convexity, Second Derivatives and Gradient Descent				
	3.1	A Review of Linear Algebra	25		
	3.2	Characterizations of Convexity and Optimality via Second Derivatives	27		
		3.2.1 A Necessary Condition for Local Extrema	28		
		3.2.2 A sufficient condition for local extrema	29		

		3.2.3	Characterization of convexity	29		
	3.3	Gradie	ent Descent - An Approach to Optimization?	31		
		3.3.1	A Quantitative Bound on Changes in the Gradient	31		
		3.3.2	Analyzing Gradient Descent	32		
II	$\mathbf{S}_{\mathbf{j}}$	pectr	al Graph Theory	35		
4	Intr	oducti	ion to Spectral Graph Theory	36		
	4.1	Recap: Incidence and Adjacency Matrices, the Laplacian Matrix and I cal Energy				
	4.2	2 Understanding Eigenvalues of the Laplacian				
	4.3	The Complete Graph				
	4.4	4 The Path Graph				
		4.4.1	Upper Bounding $\lambda_2(P_n)$ via Test Vectors	39		
		4.4.2	Lower Bounding $\lambda_n(P_n)$ via Test Vectors	40		
		4.4.3	Upper bounding $\lambda_n(P_n)$ via the Loewner Order	41		
		4.4.4	Lower bounding $\lambda_2(P_n)$ via the Loewner Order	43		
	4.5	The C	Complete Binary Tree	45		
		4.5.1	Deriving Bounds on $\lambda_n(T_n)$	45		
		4.5.2	Upper Bounding λ_2 via Test Vectors	46		
		4.5.3	Lower Bounding λ_2	46		
5	Conductance, Expanders and Cheeger's Inequality					
	5.1	Condu	actance and Expanders	49		
	5.2	A Low	ver Bound for Conductance via Eigenvalues	50		
	5.3	An Uı	oper Bound for Conductance via Eigenvalues	52		
	F 1	O 1				

Chapter 1

Course Introduction

1.1 Overview

This course will take us quite deep into modern approaches to graph algorithms using convex optimization techniques. By studying convex optimization through the lens of graph algorithms, we'll try to develop an understanding of fundamental phenomena in optimization. Much of our time will be devoted to flow problems on graphs. We will not only be studying these problems for their own sake, but also because they often provide a useful setting for thinking more broadly about optimization.

The course will cover some traditional discrete approaches to various graph problems, especially flow problems, and then contrast these approaches with modern, asymptotically faster methods based on combining convex optimization with spectral and combinatorial graph theory.

1.2 Electrical Flows and Voltages - a Graph Problem from Middle School?

We will dive right into graph problems by considering how electrical current moves through a network of resistors.

First, let us recall some middle school physics. If some of these things don't make sense to you, don't worry, in less than a paragraph from here, we'll be back to safely doing math.

Recall that a typical battery that one buys from Migros has two endpoints, and produces what is called a *voltage difference* between these endpoints.

One end of the battery will have a positive charge (I think that means an excess of positrons¹), and the other a negative charge. If we connect the two endpoints with a wire, then a current will flow from one end of the battery to the other in an attempt to even out this imbalance of charge.

Figure 1.1: A 9 volts battery with a wire attached.

We can also imagine a kind of battery that tries to send a certain amount of current through the wires between its endpoints, e.g. 1 unit of charge per unit of time. This will be a little more convenient to work with, so let us focus on that case.

Figure 1.2: A 1 ampere battery with a wire attached.

A resistor is a piece of wire that connects two points u and v, and is completely described by a single number r called its resistance.

¹I'm joking, of course! Try Wikipedia if you want to know more. However, you will not need it for this class.

If the voltage difference between the endpoints of the resistor is x, and the resistance is r then this will create a flow of charge per unit of time of f = x/r. This is called Ohm's Law.

Figure 1.3: Ohm's Law for a resistor with resistance r = 1.

Suppose we set up a bunch of wires that route electricity from our current source s to our current sink t in some pattern:

Figure 1.4: A path of two resistors.

We have one unit of charge flowing out of s per unit of time, and one unit coming into t. Because charge is conserved, the current flowing into any other point u must equal the amount flowing out of it. This is called Kirchhoff's Current Law.

To send one unit of current from s to t, we must be sending it first from s to u and then from u to t. So the current on edge (s,u) is 1 and the current on (u,t) is 1. By Ohm's Law, the voltage difference must also be 1 across each of the two wires. Thus, if the voltage is x at s, it must be x+1 at u and x+2 at t. What is x? It turns out it doesn't matter: We only care about the differences. So let us set x=0.

Figure 1.5: A path of two resistors.

Let us try one more example:

Figure 1.6: A network with three resistors.

How much flow will go directly from s to t and how much via u?

Well, we know what the net current flowing into and out of each vertex must be, and we can use that to set up some equations. Let us say the voltage at s is x_s , at u is x_u and at t is x_t .

- Net current at s: $-1 = (x_s x_t) + (x_s x_u)$
- Net current at u: $0 = (x_u x_s) + (x_u x_t)$
- Net current at t: $1 = (x_t x_s) + (x_t x_u)$

The following is a solution: $x_s = 0$, $x_u = \frac{1}{3}$, $x_t = \frac{2}{3}$. And as before, we can shift all the voltages by some constant x and get another solution $x_s = x + 0$, $x_u = x + \frac{1}{3}$, $x_t = x + \frac{2}{3}$. You might want to convince yourself that these are the only solutions.

Electrical flows in general graphs. Do we know enough to calculate the electrical flow in some other network of resistors? To answer this, let us think about the network as a graph. Consider an undirected graph G = (V, E) with |V| = n vertices and |E| = m edges, and let us assume G is connected. Let's associate a resistance $\mathbf{r}(e) > 0$ with every edge $e \in E$.

To keep track of the direction of the flow on each edge, it will be useful to assign an arbitrary direction to every edge. So let's do that, but remember that this is just a bookkeeping tool that helps us track where flow is going.

A flow in the graph is a vector $\mathbf{f} : \mathbb{R}^E$. The net flow of \mathbf{f} at a vertex $u \in V$ is defined as $\sum_{v \to u} \mathbf{f}(v, u) - \sum_{u \to v} \mathbf{f}(u, v)$.

We say a flow routes the demands $d \in \mathbb{R}^V$ if the net flow at every vertex v is d(v).

We can assign a voltage to every vertex $\boldsymbol{x} \in R^V$. Ohm's Law says that the electrical flow induced by these voltages will be $\boldsymbol{f}(u,v) = \frac{1}{r(u,v)}(\boldsymbol{x}(v) - \boldsymbol{x}(u))$.

Say we want to route one unit of current from vertex $s \in V$ to vertex $t \in V$. As before, we can write an equation for every vertex saying that the voltage differences must produce the desired net current:

- Net current at s: $-1 = \sum_{(s,v)} \frac{1}{r(s,v)} (\boldsymbol{x}(v) \boldsymbol{x}(s))$
- Net current at $u \in V \setminus \{s, t\}$: $0 = \sum_{(u,v)} \frac{1}{r(u,v)} (\boldsymbol{x}(v) \boldsymbol{x}(u))$
- Net current at t: $1 = \sum_{(t,v)} \frac{1}{r(t,v)} (\boldsymbol{x}(v) \boldsymbol{x}(t))$

This gives us n constraints, exactly as many as we have voltage variables. However we have to be a little careful when trying to conclude that a solution exists, yielding voltages x that gives induce an electrical flow routing the desired demand.

You will prove in the exercises (Week 1, Exercise 3) that a solution \boldsymbol{x} exists. The proof requires two important observations: Firstly that the graph is connected, and secondly that summed over all vertices, the net demand is zero, i.e. as much flow is coming into the network as is leaving it.

The incidence matrix and the Laplacian matrix. To have a more compact notation for net flow constraints, we also introduce the *edge-vertex incidence matrix* of the graph, $\mathbf{B} \in \mathbb{R}^{V \times E}$.

$$\boldsymbol{B}(v,e) = \begin{cases} 1 & \text{if } e = (u,v) \\ -1 & \text{if } e = (v,u) \\ 0 & \text{o.w.} \end{cases}$$

Now we can express the net flow constraint that f routes d by

$$Bf = d$$
.

This is also called a conservation constraint. In our examples so far, we have d(s) = -1, d(t) = 1 and d(u) = 0 for all $u \in V \setminus \{s, t\}$.

If we let $\mathbf{R} = \operatorname{diag}_{e \in E} \mathbf{r}(e)$ then Ohm's law tells us that $\mathbf{f} = \mathbf{R}^{-1} \mathbf{B}^{\top} \mathbf{x}$. Putting these observations together, we have $\mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{\top} \mathbf{x} = \mathbf{d}$. The voltages \mathbf{x} that induce \mathbf{f} must solve this system of linear equations, and we can use that to compute both \mathbf{x} and \mathbf{f} . It is exactly

the same linear equation as the one we considered earlier. We can show that for a connected graph, a solution \boldsymbol{x} exists if and only if the flow into the graph equals the net flow out, which we can express as $\sum_{v} \boldsymbol{d}(v) = 0$ or $\mathbf{1}^{\top} \boldsymbol{d} = 0$. You will show this as part of Exercise 3. This also implies that an electrical flow routing \boldsymbol{d} exists if and only if the net flow into the graph equals the net flow out, which we can express as $\mathbf{1}^{\top} \boldsymbol{d} = 0$.

The matrix $\boldsymbol{B}\boldsymbol{R}^{-1}\boldsymbol{B}^{\top}$ is called the *Laplacian* of the graph and is usually denoted by \boldsymbol{L} .

An optimization problem in disguise. So far, we have looked at electrical voltages and flows as arising from a set of linear equations – and it might not be apparent that this has anything to do with optimization. But transporting current through a resistor requires energy, which will be dissipated as heat by the resistor (i.e. it will get hot!). If we send a current of f across a resistor with a potential drop of x, then the amount of energy spent per unit of time by the resistor will be $f \cdot x$. This is called Joule's Law. Applying Ohm's law to a resistor with resistance r, we can also express this energy per unit of time as $f \cdot x = x^2/r = r \cdot f^2$. Since we aren't bothering with units, we will even forget about time, and refer to these quantities as "energy", even though a physicist would call them "power".

Figure 1.7: Energy as a function of flow in a resistor with resistance r = 1.

Now, another interesting question would seem to be: If we want to find a flow routing a certain demand d, how should the flow behave in order to minimize the electrical energy spent routing the flow? The electrical energy of a flow vector \mathbf{f} is $\mathcal{E}(\mathbf{f}) \stackrel{\text{def}}{=} \sum_{e} \mathbf{r}(e) \mathbf{f}(e)^2$. We can phrase this as an optimization problem:

$$\min_{oldsymbol{f} \in \mathbb{R}^E} \mathcal{E}(oldsymbol{f}) \ ext{s.t.} \ oldsymbol{B} oldsymbol{f} = oldsymbol{d}.$$

We call this problem *electrical energy-minimizing flow*. As we will prove later, the flow f^* that minimizes the electrical energy among all flows that satisfy Bf = d is precisely the electrical flow.

A pair of problems. What about our voltages, can we also get them from some optimization problem? Well, we can work backwards from the fact that our voltages solve the equation $\mathbf{L}\mathbf{x} = \mathbf{d}$. Consider the function $c(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{L}\mathbf{x} - \mathbf{x}^{\top}\mathbf{d}$. We should ask ourselves some questions about this function $c: \mathbb{R}^V \to \mathbb{R}$. Is it continuous and continuously differentiable? The answer to this is yes, and that is not hard to see. Does the function have a minimum? This is maybe not immediately clear, but the minimum does indeed exist.

When this is minimized, the derivative of $c(\mathbf{x})$ with respect to each coordinate of \mathbf{x} must be zero. This condition yields exactly the system of linear equations $\mathbf{L}\mathbf{x} = \mathbf{d}$. You will confirm this in Exercise 4 of the first exercise sheet.

Based on our derivative condition for the optimum, we can also express the electrical voltages as the solution to an optimization problem, namely

$$\min_{m{x} \in \mathbb{R}^V} c(m{x})$$

As you are probably aware, having the derivative of each coordinate equal zero is not a sufficient condition for being at the optimum of a function².

It is also interesting to know whether *all* solutions to Lx = d are in fact minimizers of c. The answer is yes, and we will see some very general tools for proving statements like this in Chapter 2.

Altogether, we can see that routing electrical current through a network of resistors leads to a *pair* of optimization problems, let's call them f^* and x^* , and that the solutions to the two problems are related, in our case through the equation $f^* = R^{-1}B^{\top}x^*$ (Ohm's Law). But why and how are these two optimization problems related?

Instead of minimizing $c(\boldsymbol{x})$, we can equivalently think about maximizing $-c(\boldsymbol{x})$, which gives the following optimization problem: $\max_{\boldsymbol{x} \in \mathbb{R}^V} -c(\boldsymbol{x})$. In fact, as you will show in the exercises for Week 1, we have $\mathcal{E}(\boldsymbol{f}^*) = -c(\boldsymbol{x}^*)$, so the minimum electrical energy is exactly the maximum value of $-\boldsymbol{c}(\boldsymbol{x})$. More generally for any flow that routes \boldsymbol{d} and any voltages \boldsymbol{x} , we have $\mathcal{E}(\boldsymbol{f}) \geq -c(\boldsymbol{x})$. So, for any \boldsymbol{x} , the value of $-c(\boldsymbol{x})$ is a lower bound on the minimum energy $\mathcal{E}(\boldsymbol{f}^*)$.

This turns out to be an instance of a much broader phenomenon, known as Lagrangian duality, which allows us to learn a lot about many optimization problems by studying two related pairs of problems, a minimization problem, and a related maximization problem that gives lower bounds on the optimal value of the minimization problem.

²Consider the function in one variable $c(x) = x^3$.

Solving Lx = d. Given a graph G with resistances for the edges, and some net flow vector d, how quickly can we compute x? Broadly speaking, there are two very different families of algorithms we could use to try to solve this problem.

We could solve the linear equation using something like *Gaussian Elimination* to compute an exact solution.

Alternatively, we could start with a guess at a solution, e.g. $\mathbf{x}_0 = \mathbf{0}$, and then we could try to make a change to \mathbf{x}_0 to reach a new point \mathbf{x}_1 with a lower value of $c(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{L}\mathbf{x} - \mathbf{x}^{\top}\mathbf{d}$, i.e. $c(\mathbf{x}_1) < c(\mathbf{x}_0)$. If we repeat a process like that for enough steps, say t, hopefully we eventually reach \mathbf{x}_t with $c(\mathbf{x}_t)$ close to $c(\mathbf{x}^*)$, where \mathbf{x}^* is a minimizer of $c(\mathbf{x})$ and hence $\mathbf{L}\mathbf{x}^* = \mathbf{d}$. Now, we also need to make sure that $c(\mathbf{x}_t) \approx c(\mathbf{x}^*)$ implies that $\mathbf{L}\mathbf{x}_t \approx \mathbf{d}$ in some useful sense.

One of the most basic algorithms in this framework of "guess and adjust" is called *Gradient Descent*, which we will study in Week 2. The rough idea is the following: if we make a very small step from \boldsymbol{x} to $\boldsymbol{x} + \boldsymbol{\delta}$, then a multivariate Taylor expansion suggests that $c(\boldsymbol{x} + \boldsymbol{\delta}) - c(\boldsymbol{x}) \approx \sum_{v \in V} \boldsymbol{\delta}(v) \frac{\partial c(\boldsymbol{x})}{\partial \boldsymbol{x}(v)}$.

If we are dealing with smooth convex function, this quantity is negative if we let $\delta(v) = -\epsilon \cdot \frac{\partial c(x)}{\partial x(v)}$ for some small enough ϵ so the approximation holds well. So we should be able to make progress by taking a small step in this direction. That's Gradient Descent! The name comes from the vector of partial derivatives, which is called the gradient.

As we will see later in this course, understanding electrical problems from an optimization perspective is crucial to develop fast algorithms for computing electrical flows and voltages, but to do very well, we also need to borrow some ideas from Gaussian Elimination.

What running times do different approaches get?

- 1. Using Gaussian Elimination, we can find x s.t. Lx = d in $O(n^3)$ time and with asymptotically faster algorithms based on matrix multiplication, we can bring this down to roughly $O(n^{2.372})$.
- 2. Meanwhile Gradient Descent will get a running time of $O(n^3m)$ or so at least this is a what a simple analysis suggests.
- 3. However, we can do much better: By combining ideas from both algorithms, and a bit more, we can get \boldsymbol{x} up to very high accuracy in time $O(m \log^c n)$ where c is some small constant.

1.3 Convex Optimization

Recall our plot in Figure 1.7 of the energy required to route a flow f across a resistor with resistance r, which was $\mathcal{E}(f) = r \cdot f^2$. We see that the function has a special structure: the

graph of the function sits below the line joining any two points $(f, \mathcal{E}(f))$ and $(g, \mathcal{E}(g))$. A function $\mathcal{E}: \mathbb{R} \to \mathbb{R}$ that has this property is said to be convex.

Figure 1.8 shows the energy as a function of flow, along with two points $(f, \mathcal{E}(f))$ and $(g, \mathcal{E}(g))$. We see the function sits below the line segment between these points.

Figure 1.8: Energy as a function of flow in a resistor with resistance r = 1. The function is convex.

We can also interpret this condition as saying that for all $\theta \in [0, 1]$

$$\mathcal{E}(\theta f + (1 - \theta)g) \le \theta \mathcal{E}(f) + (1 - \theta)\mathcal{E}(g).$$

This immediately generalizes to functions $\mathcal{E}: \mathbb{R}^m \to \mathbb{R}$.

A convex set is a subset of $S \subseteq \mathbb{R}^m$ s.t. if $\boldsymbol{f}, \boldsymbol{g} \in S$ then for all $\theta \in [0, 1]$ we have $\theta \boldsymbol{f} + (1 - \theta) \boldsymbol{g} \in S$.

Figure 1.9 shows some examples of sets that are and aren't convex.

Convex functions and convex sets are central to optimization, because for most problems of minimization of a convex function over a convex set, we can develop fast algorithms ³.

So why convex functions and convex sets? One important reason is that for a convex function defined over a convex feasible set, any local minimum is also a global minimum, and this fact makes searching for an optimal solution computationally easier. In fact, this is closely related to why Gradient Descent works well on many convex functions.

Notice that the set $\{f: Bf = d\}$ is convex, i.e. the set of all flows that route a fixed demand

³There are some convex optimization problems that are NP-hard. That said, polynomial time algorithms exist for almost any convex problem you can come up with. The most general polynomial time algorithm for convex optimization is probably the Ellipsoid Method.

Figure 1.9: A depiction of convex and non-convex sets. The sets A and B are convex since the straight line between any two points inside them is also in the set. The set C is not convex.

d is convex. It is also easy to verify that $\mathcal{E}(f) = \sum_{e} r(e) f(e)^2$ is a convex function, and hence finding an electrical flow is an instance of convex minimization:

1.4 More Graph Optimization Problems

Maximum flow. Again, let G = (V, E) be an undirected, connected graph with n vertices and m edges. Suppose we want to find a flow $\mathbf{f} \in \mathbb{R}^E$ that routes \mathbf{d} , but instead of trying to minimize electrical energy, we try to pick an \mathbf{f} that minimizes the largest amount of flow on any edge, i.e. $\max_e |\mathbf{f}_e|$ – which we also denote by $||\mathbf{f}||_{\infty}$. We can write this problem as

$$\min_{oldsymbol{f} \in \mathbb{R}^E} \left\lVert oldsymbol{f}
ight
Vert_{\infty} \ ext{s.t. } oldsymbol{B} oldsymbol{f} = oldsymbol{d}$$

This problem is known as the Minimum Congested Flow Problem⁴. It is equivalent to the more famous Maximum Flow Problem.

The behavior of this kind of flow is very different than electrical flow. Consider the question of whether a certain demand can be routed $\|f\|_{\infty} \leq 1$. Imagine sending goods from a source s to a destination t using a network of train lines that all have the same capacity and asking whether the network is able to route the goods at the rate you want: This boils down to whether routing exists with $\|f\|_{\infty} \leq 1$, if we set it up right.

We have a very fast, convex optimization-based algorithm for Minimum Congested Flow: In $m\epsilon^{-1}\log^{O(1)} n$ time, we can find a flow $\tilde{\boldsymbol{f}}$ s.t. $\boldsymbol{B}\tilde{\boldsymbol{f}} = \boldsymbol{d}$ and $\|\tilde{\boldsymbol{f}}\|_{\infty} \leq (1+\epsilon) \|\boldsymbol{f}^*\|_{\infty}$, where \boldsymbol{f}^*

⁴This version is called undirected, because the graph is undirected, and *uncapacitated* because we are aiming for the same bound on the flow on all edges.

is an optimal solution, i.e. an actual minimum congestion flow routing d.

But what if we want ϵ to be very small, e.g. 1/m? Then this running time isn't so good anymore. But, in this case, we can use other algorithms that find flow f^* exactly. Unfortunately, these algorithms take time roughly $m^{4/3+o(1)}$.

Just as the electrical flow problem had a dual voltage problem, so maximum flow has a dual voltage problem, which is know as the s-t minimum cut problem.

Maximum flow, with directions and capacities. We can make the maximum flow problem harder by introducing directed edges: To do so, we allow edges to exist in both directions between vertices, and we require that the flow on a directed edge is always nonnegative. So now G = (V, E) is a directed graph. We can also make the problem harder by introducing capacities. We define a capacity vector $\mathbf{c} \in \mathbb{R}^E \geq \mathbf{0}$ and try to minimize $\|\mathbf{c}^{-1}\mathbf{f}\|_{\infty}$, where $\mathbf{c} = \operatorname{diag}_{e \in E} \mathbf{c}(e)$. Then our problem becomes

$$egin{aligned} \min_{m{f} \in \mathbb{R}^E} \left\| m{C}^{-1} m{f}
ight\|_{\infty} \ & ext{s.t.} \ m{B} m{f} = m{d} \ & ext{f} \geq 0. \end{aligned}$$

For this capacitated, directed maximum flow problem, our best algorithms run in about $O(m\sqrt{n})$ time in sparse graphs and $O(m^{1.483})$ in dense graphs⁵, even if we are willing to accept fairly low accuracy solution. If the capacities are allowed to be exponentially large, the best running time we can get is O(mn). For this problem, we do not yet know how to improve over classical combinatorial algorithms using convex optimization.

Multi-commodity flow. We can make the problem even harder still, by simultaneously trying to route two types of flow (imagine pipes with Coke and Pepsi). Our problem now looks like

$$egin{aligned} \min_{m{f}_1,m{f}_2\in\mathbb{R}^E} \left\|m{C}^{-1}(m{f}_1+m{f}_2)
ight\|_{\infty} \ & ext{s.t.} \ m{B}m{f}_1=m{d}_1 \ &m{B}m{f}_2=m{d}_2 \ &m{f}_1,m{f}_2\geq m{0}. \end{aligned}$$

Solving this problem to high accuracy is essentially as hard as solving a general linear program! We should see later in the course how to make this statement precise.

If we in the above problem additionally require that our flows must be integer valued, i.e. $f_1, f_2 \in \mathbb{N}_0$, then the problem becomes NP-complete.

Frovided the capacities are integers satisfying a condition like $c \le n^{100}$ 1.

Random walks in a graph. Google famously uses⁶ the PageRank problem to help decide how to rank their search results. This problem essentially boils down to computing the *stable distribution* of a random walk on a graph. Suppose G = (V, E) is a directed graph where each outgoing edge (v, u), which we will define as going from u to v, has a transition probability $p_{(v,u)} > 0$ s.t. $\sum_{z \leftarrow u} p_{(z,u)} = 1$. We can take a step of a random walk on the vertex set by starting at some vertex $u_0 = u$, and then randomly pick one of the outgoing edges (v, u) with probability $p_{(v,u)}$ and move to the chosen vertex $u_1 = v$. Repeating this procedure, to take a step from the next vertex u_1 , gives us a random walk in the graph, a sequence of vertices $u_0, u_1, u_2 \ldots, u_k$.

We let $\mathbf{P} \in \mathbb{R}^{V \times V}$ be the matrix of transition probabilities given by

$$\mathbf{P}_{vu} = \begin{cases} p_{(v,u)} & \text{for } (u,v) \in E \\ 0 & \text{o.w.} \end{cases}$$

Any probability distribution over the vertices can be specified by a vector $\mathbf{p} \in \mathbb{R}^V$ where $\mathbf{p} \geq \mathbf{0}$ and $\sum_v \mathbf{p}(v) = 1$. We say that probability distribution $\boldsymbol{\pi}$ on the vertices is a *stable distribution* of the random walk if $\boldsymbol{\pi} = \boldsymbol{P}\boldsymbol{\pi}$. A strongly connected graph always has exactly one stable distribution.

How quickly can we compute the stable distribution of a general random walk? Under some mild conditions on the stable distribution⁷, we can find a high accuracy approximation of π in time $O(m \log^c n)$ for some constant c.

This problem does not easily fit in a framework of convex optimization, but nonetheless, our fastest algorithms for it use ideas from convex optimization.

Topics in this Course

In this course, we will try to address the following questions.

- 1. What are the fundamental tools of fast convex optimization?
- 2. What are some problems we can solve quickly on graphs using optimization?
- 3. What can graphs teach us about convex optimization?
- 4. What algorithm design techniques are good for getting algorithms that quickly find a crude approximate solution? And what techniques are best when we need to get a highly accurate answer?
- 5. What is special about flow problems?

⁶At least they did at some point.

⁷Roughly something like $\max_{v} 1/\pi(v) \le n^{100}$.

Part I

Introduction to Convex Optimization

Chapter 2

Some Basic Optimization, Convex Geometry, and Linear Algebra

2.1 Overview

In this chapter, we will

- 1. Start with an overview (i.e. this list).
- 2. Learn some basic terminology and facts about optimization.
- 3. Recall our definition of convex functions and see how convex functions can also be understood in terms of a characterization based on first derivatives.
- 4. See how the first derivatives of a convex function can certify that we are at a global minimum.

2.2 Optimization Problems

Focusing for now on optimization over $x \in \mathbb{R}^n$, we usually write optimization problems as:

where $\{g_i(\boldsymbol{x})\}_{i=1}^m$ encode the constraints. For example, in the following optimization problem from the previous chapter

$$\min_{\boldsymbol{f} \in \mathbb{R}^E} \sum_{e} \boldsymbol{r}(e) \boldsymbol{f}(e)^2$$
 s.t. $\boldsymbol{B}\boldsymbol{f} = \boldsymbol{d}$

we have the constraint Bf = d. Notice that we can rewrite this constraint as $Bf \leq d$ and $-Bf \leq -d$ to match the above setting. The set of points which respect the constraints is called the *feasible set*.

Definition 2.2.1. For a given optimization problem the set $\mathcal{F} = \{ \boldsymbol{x} \in \mathbb{R}^n : g_i(\boldsymbol{x}) \leq b_i, \forall i \in [m] \}$ is called the **feasible set**. A point $\boldsymbol{x} \in \mathcal{F}$ is called a **feasible point**, and a point $\boldsymbol{x}' \notin \mathcal{F}$ is called an **infeasible point**.

Ideally, we would like to find optimal solutions for the optimization problems we consider. Let's define what we mean exactly.

Definition 2.2.2. For a maximization problem \mathbf{x}^* is called an **optimal solution** if $f(\mathbf{x}^*) \geq f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{F}$. Similarly, for a minimization problem \mathbf{x}^* is an optimal solution if $f(\mathbf{x}^*) \leq f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{F}$.

What happens if there are *no feasible points*? In this case, an optimal solution cannot exist, and we say the problem is infeasible.

Definition 2.2.3. If $\mathcal{F} = \emptyset$ we say that the optimization problem is **infeasible**. If $\mathcal{F} \neq \emptyset$ we say the optimization problem is **feasible**.

Figure 2.1

Consider three examples depicted in Figure 2.1:

- (i) $\mathcal{F} = [a, b]$
- (ii) $\mathcal{F} = [a, b)$

(iii)
$$\mathcal{F} = [a, \infty)$$

In the first example, the minimum of the function is attained at b. In the second case the region is open and therefore there is no minimum function value, since for every point we will choose, there will always be another point with a smaller function value. Lastly, in the third example, the region is unbounded and the function decreasing, thus again there will always be another point with a smaller function value.

Sufficient Condition for Optimality. The following theorem, which is a fundamental theorem in real analysis, gives us a sufficient (though not necessary) condition for optimality.

Theorem (Extreme Value Theorem). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function and $\mathcal{F} \subseteq \mathbb{R}^n$ be nonempty, bounded, and closed. Then, the optimization problem min $f(\boldsymbol{x}): \boldsymbol{x} \in \mathcal{F}$ has an optimal solution.

2.3 A Characterization of Convex Functions

Recall the definitions of convex sets and convex functions that we introduced in Chapter 1:

Definition 2.3.1. A set $S \subseteq \mathbb{R}^n$ is called a **convex set** if any two points in S contain their line, i.e. for any $\boldsymbol{x}, \boldsymbol{y} \in S$ we have that $\theta \boldsymbol{x} + (1 - \theta) \boldsymbol{y} \in S$ for any $\theta \in [0, 1]$.

Definition 2.3.2. For a convex set $S \subseteq \mathbb{R}^n$, we say that a function $f: S \to \mathbb{R}$ is **convex on** S if for any two points $x, y \in S$ and any $\theta \in [0, 1]$ we have that:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$$

Figure 2.2: This plot shows the function f(x,y) = xy. For any fixed y_0 , the function $h(x) = f(x,y_0) = xy_0$ is linear in x, and so is a convex function in x. But is f convex?

We will first give an important characterization of convex function. To do so, we need to characterize multivariate functions via their Taylor expansion.

Notation for this section. In the rest of this section, we frequently consider a multivariate function f whose domain is a set $S \subseteq \mathbb{R}^n$, which we will require to be open. When we additionally require that S is convex, we will specify this. Note that $S = \mathbb{R}^n$ is both open and convex and it suffices to keep this case in mind. Things sometimes get more complicated if S is not open, e.g. when the domain of f has a boundary. We will leave those complications for another time.

2.3.1 First-order Taylor Approximation

Definition 2.3.3. The **gradient** of a function $f: S \to \mathbb{R}$ at point $x \in S$ is denoted $\nabla f(x)$ and is defined as

$$oldsymbol{
abla} f(oldsymbol{x}) = \left[rac{\partial f(oldsymbol{x})}{\partial oldsymbol{x}(1)}, \ldots, rac{\partial f(oldsymbol{x})}{\partial oldsymbol{x}(n)}
ight]^{ op}$$

First-order Taylor expansion. For a function $f: \mathbb{R} \to \mathbb{R}$ of a single variable, differentiable at $x \in \mathbb{R}$

$$f(x + \delta) = f(x) + f'(x)\delta + o(|\delta|)$$

where by definition:

$$\lim_{\delta \to 0} \frac{o(|\delta|)}{|\delta|} = 0.$$

Similarly, a multivariate function $f: S \to \mathbb{R}$ is said to be (Fréchet) differentiable at $\mathbf{x} \in S$ when there exists $\nabla f(\mathbf{x}) \in \mathbb{R}^n$ s.t.

$$\lim_{\boldsymbol{\delta} \to \mathbf{0}} \frac{\left\| f(\boldsymbol{x} + \boldsymbol{\delta}) - f(\boldsymbol{x}) - \boldsymbol{\nabla} f(\boldsymbol{x})^\top \boldsymbol{\delta} \right\|_2}{\left\| \boldsymbol{\delta} \right\|_2} = 0.$$

Note that this is equivalent to saying that $f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\top} \boldsymbol{\delta} + o(\|\boldsymbol{\delta}\|_{2}).$

We say that f is continuously differentiable on a set $S \subseteq \mathbb{R}^n$ if it is differentiable and in addition the gradient is continuous on S. A differentiable convex function whose domain is an open convex set $S \subseteq \mathbb{R}^n$ is always continuously differentiable¹.

Remark. In this course, we will generally err on the side of being informal about functional analysis when we can afford to, and we will not worry too much about the details of different notions of differentiability (e.g. Fréchet and Gateaux differentiability), except when it turns out to be important.

Theorem 2.3.4 (Taylor's Theorem, multivariate first-order remainder form). If $f: S \to \mathbb{R}$ is continuously differentiable over [x, y], then for some $z \in [x, y]$,

$$f(\boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{z})^{\top} (\boldsymbol{y} - \boldsymbol{x}).$$

¹See p. 248, Corollary 25.5.1 in *Convex Analysis* by Rockafellar (my version is the Second print,

^{1972).} Rockefellar's corollary concerns finite convex functions, because he otherwise allows convex functions that may take on the values $\pm \infty$.

This theorem is useful for showing that the function f can be approximated by the affine function $\mathbf{y} \to f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$ when \mathbf{y} is "close to" \mathbf{x} in some sense.

Figure 2.3: The function $f(\boldsymbol{y})$ equals its linear approximation based at x, with gradient coming from an intermediate point z, i.e. $f(\boldsymbol{y}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{z})^{\top} (\boldsymbol{y} - \boldsymbol{x})$.

2.3.2 Directional Derivatives

Definition 2.3.5. Let $f: S \to \mathbb{R}$ be a function differentiable at $\mathbf{x} \in S$ and let us consider $\mathbf{d} \in \mathbb{R}^n$. We define the **derivative of** f **at** \mathbf{x} **in direction** \mathbf{d} as:

$$Df(\boldsymbol{x})[\boldsymbol{d}] = \lim_{\lambda \to \boldsymbol{0}} \frac{f(\boldsymbol{x} + \lambda \boldsymbol{d}) - f(\boldsymbol{x})}{\lambda}$$

Proposition 2.3.6. $Df(x)[d] = \nabla f(x)^{\top} d$.

Proof. Using the first order expansion of f at x:

$$f(\boldsymbol{x} + \lambda \boldsymbol{d}) = f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\lambda \boldsymbol{d}) + o(\|\lambda \boldsymbol{d}\|_2)$$

hence, dividing by λ (and noticing that $\|\lambda \mathbf{d}\|_2 = \lambda \|\mathbf{d}\|_2$):

$$\frac{f(\boldsymbol{x} + \lambda \boldsymbol{d}) - f(\boldsymbol{x})}{\lambda} = \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} \boldsymbol{d} + \frac{o(\lambda \|\boldsymbol{d}\|_2)}{\lambda}$$

letting λ go to 0 concludes the proof.

2.3.3 Lower Bounding Convex Functions with Affine Functions

In order to prove the characterization of convex functions in the next section we will need the following lemma. This lemma says that any differentiable convex function can be lower bounded by an affine function.

Theorem 2.3.7. Let S be an open convex subset of \mathbb{R}^n , and let $f: S \to \mathbb{R}$ be a differentiable function. Then, f is convex if and only if for any $\mathbf{x}, \mathbf{y} \in S$ we have that $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$.

Figure 2.4: The convex function f(y) sits above the linear function in y given by $f(x) + \nabla f(x)^{\top} (y - x)$.

Proof. [\Longrightarrow] Assume f is convex, then for all $\mathbf{x}, \mathbf{y} \in S$ and $\theta \in [0, 1]$, if we let $\mathbf{z} = \theta \mathbf{y} + (1 - \theta) \mathbf{x}$, we have that

$$f(\mathbf{z}) = f((1 - \theta)\mathbf{x} + \theta\mathbf{y}) \le (1 - \theta)f(\mathbf{x}) + \theta f(\mathbf{y})$$

and therefore by subtracting f(x) from both sides we get:

$$f(\mathbf{x} + \theta(\mathbf{y} - \mathbf{x})) - f(\mathbf{x}) \le \theta f(\mathbf{y}) + (1 - \theta)f(\mathbf{x}) - f(\mathbf{x})$$
$$= \theta f(\mathbf{y}) - \theta f(\mathbf{x}).$$

Thus we get that (for $\theta > 0$):

$$\frac{f\left(\boldsymbol{x} + \theta(\boldsymbol{y} - \boldsymbol{x})\right) - f(\boldsymbol{x})}{\theta} \le f(\boldsymbol{y}) - f(\boldsymbol{x})$$

Applying Proposition 2.3.6 with d = x - y we have that:

$$oldsymbol{
abla} f(oldsymbol{x})^ op (oldsymbol{y} - oldsymbol{x}) = \lim_{ heta o 0^+} rac{f(oldsymbol{x} + heta(oldsymbol{y} - oldsymbol{x})) - f(oldsymbol{x})}{ heta} \leq f(oldsymbol{y}) - f(oldsymbol{x}).$$

[\Leftarrow] Assume that $f(y) \geq f(x) + \nabla f(x)^{\top} (y - x)$ for all $\mathbf{x}, \mathbf{y} \in S$ and show that f is convex. Let $\mathbf{x}, \mathbf{y} \in S$ and $\mathbf{z} = \theta y + (1 - \theta)x$. By our assumption we have that:

$$f(\mathbf{y}) \ge f(\mathbf{z}) + \nabla f(\mathbf{z})^{\mathsf{T}} (\mathbf{y} - \mathbf{z})$$
 (2.1)

$$f(\mathbf{x}) \ge f(\mathbf{z}) + \nabla f(\mathbf{z})^{\mathsf{T}} (\mathbf{x} - \mathbf{z})$$
 (2.2)

Observe that $\mathbf{y} - \mathbf{z} = (1 - \theta)(\mathbf{y} - \mathbf{x})$ and $\mathbf{x} - \mathbf{z} = \theta(\mathbf{x} - \mathbf{y})$. Thus adding θ times (2.1) to $(1 - \theta)$ times (2.2) gives cancellation of the vectors multiplying the gradient, yielding

$$\theta f(\boldsymbol{y}) + (1 - \theta)f(\boldsymbol{x}) \ge f(\boldsymbol{z}) + \boldsymbol{\nabla} f(\boldsymbol{z})^{\top} \boldsymbol{0}$$

= $f(\theta \boldsymbol{y} + (1 - \theta)\boldsymbol{x})$

This is exactly the definition of convexity.

2.4 Conditions for Optimality

We now want to find necessary and sufficient conditions for local optimality.

Definition 2.4.1. Consider a differentiable function $f: S \to \mathbb{R}$. A point $\mathbf{x} \in S$ at which $\nabla f(\mathbf{x}) = \mathbf{0}$ is called a **stationary point**.

Proposition 2.4.2. If x is a local extremum of a differentiable function $f: S \to \mathbb{R}$ then $\nabla f(x) = 0$.

Proof. Let us assume that \boldsymbol{x} is a local minimum for f. Then for all $\boldsymbol{d} \in \mathbb{R}^n$, $f(\boldsymbol{x}) \leq f(\boldsymbol{x} + \lambda \boldsymbol{d})$ for λ small enough. Hence:

$$0 \le f(\boldsymbol{x} + \lambda \boldsymbol{d}) - f(\boldsymbol{x}) = \lambda \nabla f(\boldsymbol{x})^{\top} \boldsymbol{d} + o(\|\lambda \boldsymbol{d}\|)$$

dividing by $\lambda > 0$ and letting $\lambda \to 0^+$, we obtain $0 \le \nabla f(\boldsymbol{x})^\top \boldsymbol{d}$. But, taking $\boldsymbol{d} = -\nabla f(\boldsymbol{x})$, we get $0 \le -\|\nabla f(\boldsymbol{x})\|_2^2$. This implies that $\nabla f(\boldsymbol{x}) = 0$.

The case where x is a local maximum can be dealt with similarly.

Remark 2.4.3. For this proposition to hold, it is important that S is open.

For convex functions however it turns out that a stationary point necessarily implies that the function is at its minimum. Together with the proposition above, this says that for a convex function on \mathbb{R}^n a point is optimal if and only if it is stationary.

Proposition 2.4.4. Let $S \subseteq \mathbb{R}^n$ be an open convex set and let $f: S \to \mathbb{R}$ be a differentiable and convex function. If \mathbf{x} is a stationary point then \mathbf{x} is a global minimum.

Proof. From Theorem 2.3.7 we know that for all $\boldsymbol{x}, \boldsymbol{y} \in S : f(\boldsymbol{y}) \geq f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x})$. Since $\nabla f(\boldsymbol{x}) = \mathbf{0}$ this implies that $f(\boldsymbol{y}) \geq f(\boldsymbol{x})$. As this holds for any $\boldsymbol{y} \in S$, \boldsymbol{x} is a global minimum.

Chapter 3

Convexity, Second Derivatives and Gradient Descent

Notation for this chapter. In this chapter, we sometimes consider a multivariate function f whose domain is a set $S \subseteq \mathbb{R}^n$, which we will require to be open. When we additionally require that S is convex, we will specify this. Note that $S = \mathbb{R}^n$ is both open and convex and it suffices to keep this case in mind. Things sometimes get more complicated if S is not open, e.g. when the domain of f has a boundary. We will leave those complications for another time.

3.1 A Review of Linear Algebra

Semi-definiteness of a matrix. The following classification of symmetric matrices will be useful.

Definition 3.1.1. Let **A** by a symmetric matrix in $\mathbb{R}^{n \times n}$. We say that **A** is:

- 1. positive definite iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$;
- 2. positive semidefinite iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0$ for all $x \in \mathbb{R}^n$;
- 3. If neither A nor -A is positive semi-definite, we say that A is indefinite.

Example: indefinite matrix. Consider the following matrix A:

$$\mathbf{A} := \begin{bmatrix} +4 & -1 \\ -1 & -2 \end{bmatrix}$$

For $\mathbf{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, we have $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 4 > 0$. For $\mathbf{x} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ we have $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = -2 < 0$. \mathbf{A} is therefore indefinite.

The following theorem gives a useful characterization of (semi)definite matrices.

Theorem 3.1.2. Let **A** be a symmetric matrix in $\mathbb{R}^{n \times n}$.

- 1. A is positive definite iff all its eigenvalues are positive;
- 2. A is positive semidefinite iff all its eigenvalues are non-negative;

In order to prove this theorem, let us first recall the Spectral Theorem for symmetric matrices.

Theorem 3.1.3 (The Spectral Theorem for Symmetric Matrices). For all symmetric $\mathbf{A} \in \mathbb{R}^{n \times n}$ there exist $\mathbf{V} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\mathbf{\Lambda} \in \mathbb{R}^{n \times n}$ s.t.

- 1. $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top}$.
- 2. $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$ (the $n \times n$ identity matrix). I.e. the columns of \mathbf{V} form an orthonormal basis. Furthermore, \mathbf{v}_i is an eigenvector of $\lambda_i(\mathbf{A})$, the ith eigenvalue of \mathbf{A} .
- 3. $\boldsymbol{\Lambda}_{ii} = \lambda_i(\boldsymbol{A})$.

Using the Spectral Theorem, we can show the following result:

Theorem 3.1.4 (The Courant-Fischer Theorem). Let \mathbf{A} be a symmetric matrix in $\mathbb{R}^{n \times n}$, with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$. Then

$$\lambda_i = \min_{\substack{subspace \ W \subseteq \mathbb{R}^n \ \mathrm{dim}(W) = i}} \max_{oldsymbol{x} \in W, oldsymbol{x}
eq oldsymbol{u}} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}}$$

$$\lambda_i = \max_{\substack{subspace \ W \subseteq \mathbb{R}^n \\ \dim(W) = n+1-i}} \min_{\boldsymbol{x} \in W, \boldsymbol{x} \neq \boldsymbol{0}} \frac{\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}}$$

Theorem 3.1.2 is an immediate corollary of Theorem 3.1.4, since we can see that the minimum value of the quadratic form $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$ over $\boldsymbol{x} \in W = \mathbb{R}^n$ is $\lambda_1(\boldsymbol{A}) \|\boldsymbol{x}\|_2^2$.

Proof of Theorem 3.1.4. We start by showing Part 1.

Consider letting $W = \text{span}\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_i\}$, and normalize $\boldsymbol{x} \in W$ so that $\|\boldsymbol{x}\|_2 = 1$. Then $\boldsymbol{x} = \sum_{j=1}^i \boldsymbol{c}(j)\boldsymbol{v}_j$ for some vector $\boldsymbol{c} \in \mathbb{R}^i$ with $\|\boldsymbol{c}\|_2 = 1$.

Using the decomposition from Theorem 3.1.3 $\boldsymbol{A} = \boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^{\top}$ where $\boldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues of \boldsymbol{A} , which we take to be sorted in increasing order. Then $\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{x}^{\top}\boldsymbol{V}^{\top}\boldsymbol{\Lambda}\boldsymbol{V}\boldsymbol{x} = (\boldsymbol{V}\boldsymbol{x})^{\top}\boldsymbol{\Lambda}(\boldsymbol{V}\boldsymbol{x}) = \sum_{j=1}^{i} \lambda_{j}\boldsymbol{c}(j)^{2} \leq \lambda_{i} \|\boldsymbol{c}\|_{2}^{2} = \lambda_{i}$. So this choice of W ensures the maximizer cannot achieve a value above λ_{i} .

But is it possible that the "minimizer" can do better by choosing a different W? Let $T = \text{span } \{ \boldsymbol{v}_i, \dots, \boldsymbol{v}_n \}$. As $\dim(T) = n+1-i$ and $\dim(W) = i$, we must have $\dim(W \cap T) \geq 1$, by a standard property of subspaces. Hence for any W of this dimension,

$$egin{aligned} \max_{oldsymbol{x} \in W, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} \geq \max_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} rac{oldsymbol{x}^ op oldsymbol{x}}{oldsymbol{x}^ op oldsymbol{x}} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, oldsymbol{x}
eq 0} oldsymbol{x} & \sum_{oldsymbol{x} \in W \cap T, old$$

where the last equality follows from a similar calculation to our first one. Thus, λ_i can always be achieved by the "maximizer" for all W of this dimension.

Part 2 can be dealt with similarly.

Example: a positive semidefinite matrix. Consider the following matrix A:

$$\mathbf{A} := \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

For $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, we have $\mathbf{A}\mathbf{x} = \mathbf{0}$, so $\lambda = 0$ is an eigenvalue of \mathbf{A} . For $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, we have $\mathbf{A}\mathbf{x} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2\mathbf{x}$, so $\lambda = 2$ is the other eigenvalue of \mathbf{A} . As both are non-negative, by the theorem above, \mathbf{A} is positive semidefinite.

Since we are learning about symmetric matrices, there is one more fact that everyone should know about them. We'll use $\lambda_{\max}(\mathbf{A})$ denote maximum eigenvalue of a matrix \mathbf{A} , and $\lambda_{\min}(\mathbf{A})$ the minimum.

Claim 3.1.5. For a symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\|\mathbf{A}\| = \max(|\lambda_{\max}(\mathbf{A})|, |\lambda_{\min}(\mathbf{A})|)$.

3.2 Characterizations of Convexity and Optimality via Second Derivatives

We will now use the second derivatives of a function to obtain characterizations of convexity and optimality. We will begin by introducing the *Hessian*, the matrix of pairwise second derivatives of a function. We will see that it plays a role in approximating a function via a second-order Taylor expansion. We will then use *semi-definiteness* of the Hessian matrix to characterize both conditions of optimality as well as the convexity of a function.

Definition 3.2.1. Given a function $f: S \to \mathbb{R}$ its **Hessian** matrix at point $\mathbf{x} \in S$ denoted $\mathbf{H}_f(\mathbf{x})$ (also sometimes denoted $\nabla^2 f(\mathbf{x})$) is:

$$m{H}_f(m{x}) := egin{bmatrix} rac{\partial^2 f(x)}{\partial m{x}(1)^2} & rac{\partial^2 f(x)}{\partial m{x}(1)\partial m{x}(2)} & \cdots & rac{\partial^2 f(x)}{\partial m{x}(1)\partial m{x}(n)} \ rac{\partial^2 f(x)}{\partial m{x}(2)\partial m{x}(1)} & rac{\partial^2 f(x)}{\partial m{x}(2)\partial m{x}(n)} & \cdots & rac{\partial^2 f(x)}{\partial m{x}(2)\partial m{x}(n)} \ dots & dots & dots & dots & dots & dots \ rac{\partial^2 f(x)}{\partial m{x}(n)\partial m{x}(1)} & rac{\partial^2 f(x)}{\partial m{x}(n)\partial m{x}(2)} & \cdots & rac{\partial^2 f(x)}{\partial m{x}(n)\partial m{x}(n)} \ \end{pmatrix}$$

Second-order Taylor expansion. When f is twice differentiable it is possible to obtain an approximation of f by quadratic functions. Our definition of $f: S \to \mathbb{R}$ being twice (Fréchet) differentiable at $\mathbf{x} \in S$ is that there exists $\nabla f(\mathbf{x}) \in \mathbb{R}^n$ and $\mathbf{H}_f(\mathbf{x}) \in \mathbb{R}^{n \times n}$ s.t.

$$\lim_{\boldsymbol{\delta} \to \mathbf{0}} \frac{\left\| f(\boldsymbol{x} + \boldsymbol{\delta}) - f(\boldsymbol{x}) - \left(\boldsymbol{\nabla} f(\boldsymbol{x})^\top \boldsymbol{\delta} + \frac{1}{2} \boldsymbol{\delta}^\top \boldsymbol{H}_f(\boldsymbol{x}) \boldsymbol{\delta} \right) \right\|_2}{\left\| \boldsymbol{\delta} \right\|_2^2} = 0.$$

This is equivalent to saying that for all δ

$$f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} \boldsymbol{\delta} + \frac{1}{2} \boldsymbol{\delta}^{\top} \boldsymbol{H}_f(\boldsymbol{x}) \boldsymbol{\delta} + o(\|\boldsymbol{\delta}\|_2^2).$$

where by definition:

$$\lim_{\delta \to \mathbf{0}} \frac{o(\|\boldsymbol{\delta}\|^2)}{\|\boldsymbol{\delta}\|_2^2} = 0$$

We say that f is twice continuously differentiable on a set $S \subseteq \mathbb{R}^n$ if it is twice differentiable and in addition the gradient and Hessian are continuous on S.

As for first order expansions, we have a Taylor's Theorem, which we state in the so-called remainder form.

Theorem 3.2.2 (Taylor's Theorem, multivariate second-order remainder form). If $f: S \to \mathbb{R}$ is twice continuously differentiable over $[\boldsymbol{x}, \boldsymbol{y}]$, then for some $\boldsymbol{z} \in [\boldsymbol{x}, \boldsymbol{y}]$,

$$f(\boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \frac{1}{2} (\boldsymbol{y} - \boldsymbol{x})^{\top} \boldsymbol{H}_f(\boldsymbol{z}) (\boldsymbol{y} - \boldsymbol{x})$$

3.2.1 A Necessary Condition for Local Extrema

Recall that in the previous chapter, we show the following proposition.

Proposition 3.2.3. If x is a local extremum of a differentiable function $f: S \to \mathbb{R}$ then $\nabla f(x) = 0$.

We can now give the second-order necessary conditions for local extrema via the Hessian.

Theorem 3.2.4. Let $f: S \to \mathbb{R}$ be a function twice differentiable at $\mathbf{x} \in S$. If \mathbf{x} is a local minimum, then $\mathbf{H}_f(\mathbf{x})$ is positive semidefinite.

Proof. Let us assume that \boldsymbol{x} is a local minimum. We know from Proposition 3.2.3 that $\nabla f(\boldsymbol{x}) = \mathbf{0}$, hence the second-order expansion at \boldsymbol{x} takes the form:

$$f(\boldsymbol{x} + \lambda \boldsymbol{d}) = f(\boldsymbol{x}) + \lambda^2 \frac{1}{2} \boldsymbol{d}^{\top} \boldsymbol{H}_f(\boldsymbol{x}) \boldsymbol{d} + o(\lambda^2 \|\boldsymbol{d}\|_2^2)$$

Because \boldsymbol{x} is a local minimum, we can then derive

$$0 \leq \lim_{\lambda \to 0^+} \frac{f(\boldsymbol{x} + \lambda \boldsymbol{d}) - f(\boldsymbol{x})}{\lambda^2} = \frac{1}{2} \boldsymbol{d}^\top \boldsymbol{H}_f(\boldsymbol{x}) \boldsymbol{d}$$

This is true for any d, hence $H_f(x)$ is positive semidefinite.

Remark 3.2.5. Again, for this proposition to hold, it is important that S is open.

3.2.2 A sufficient condition for local extrema

A local minimum thus is a stationary point and has a positive semi-definite Hessian. The converse is almost true, but we need to strengthen the Hessian condition slightly.

Theorem 3.2.6. Let $f: S \to \mathbb{R}$ be a function twice differentiable at a stationary point $x \in S$. If $H_f(x)$ is positive definite then x is a local minimum.

Proof. Let us assume that $H_f(x)$ is positive definite. We know that x is a stationary point. We can write the second-order expansion at x:

$$f(\boldsymbol{x} + \boldsymbol{\delta}) = f(\boldsymbol{x}) + \frac{1}{2} \boldsymbol{\delta}^{\top} \boldsymbol{H}_f(\boldsymbol{x}) \boldsymbol{\delta} + o(\|\boldsymbol{\delta}\|_2^2)$$

Because the Hessian is positive definite, it has a strictly positive minimum eigenvalue λ_{\min} , we can conclude that $\boldsymbol{\delta}^{\top} \boldsymbol{H}_{f}(\boldsymbol{x}) \boldsymbol{\delta} \geq \lambda_{\min} \|\boldsymbol{\delta}\|_{2}^{2}$. From this, we conclude that when $\|\boldsymbol{\delta}\|_{2}^{2}$ is small enough, $f(\boldsymbol{x}+\boldsymbol{\delta}) - f(\boldsymbol{x}) \geq \frac{1}{4}\lambda_{\min} \|\boldsymbol{\delta}\|_{2}^{2} > 0$. This proves that \boldsymbol{x} is a local minimum. \square

Remark 3.2.7. When $H_f(x)$ is indefinite at a stationary point x, we have what is known as a *saddle point*: x will be a minimum along the eigenvectors of $H_f(x)$ for which the eigenvalues are positive and a maximum along the eigenvectors of $H_f(x)$ for which the eigenvalues are negative.

3.2.3 Characterization of convexity

Definition 3.2.8. For a convex set $S \subseteq \mathbb{R}^n$, we say that a function $f: S \to \mathbb{R}$ is **strictly convex on** S if for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ and any $\theta \in (0,1)$ we have that:

$$f(\theta \boldsymbol{x}_1 + (1 - \theta)\boldsymbol{x}_2) < \theta f(\boldsymbol{x}_1) + (1 - \theta)f(\boldsymbol{x}_2).$$

Theorem 3.2.9. Let $S \subseteq \mathbb{R}^n$ be open and convex, and let $f: S \to \mathbb{R}$ be twice continuously differentiable.

- 1. If $H_f(\mathbf{x})$ is positive semi-definite for any $\mathbf{x} \in S$ then f is convex on S.
- 2. If $H_f(\mathbf{x})$ is positive definite for any $\mathbf{x} \in S$ then f is **strictly** convex on S.
- 3. If f is convex, then $H_f(\mathbf{x})$ is positive semi-definite $\forall \mathbf{x} \in S$.

Proof.

1. By applying Theorem 3.2.2, we find that for some $z \in [x, y]$:

$$f(\boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \frac{1}{2} \Big((\boldsymbol{y} - \boldsymbol{x})^{\top} H_f(\boldsymbol{z}) (\boldsymbol{y} - \boldsymbol{x}) \Big)$$

If $H_f(z)$ is positive semi-definite, this necessarily implies that:

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x})$$

and from Theorem 2.3.7 we get that f is convex.

2. if $H_f(\boldsymbol{x})$ is positive definite, we have that:

$$f(\boldsymbol{y}) > f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}).$$

Applying the same idea as in Theorem 2.3.7 we can show that in this case f is **strictly** convex.

3. Let f be a convex function. For $\mathbf{x} \in S$, and some small $\lambda > 0$, for any $\mathbf{d} \in \mathbb{R}^n$ we have that $\mathbf{x} + \lambda \mathbf{d} \in S$. From the Taylor expansion of f we get:

$$f(\boldsymbol{x} + \lambda \mathbf{d}) = f(\boldsymbol{x}) + \lambda \nabla f(\boldsymbol{x})^{\top} \mathbf{d} + \frac{\lambda^2}{2} \mathbf{d}^{\top} H_f(\boldsymbol{x}) \mathbf{d} + o(\lambda^2 \|\boldsymbol{d}\|_2^2).$$

From Lemma 2.3.7 we get that if f is convex then:

$$f(\boldsymbol{x} + \lambda \mathbf{d}) \ge f(\boldsymbol{x}) + \lambda \nabla f(\boldsymbol{x})^{\top} \mathbf{d}.$$

Therefore, we have that for any $\mathbf{d} \in \mathbb{R}^n$:

$$\frac{\lambda^2}{2} \mathbf{d}^{\top} H_f(\boldsymbol{x}) \mathbf{d} + o(||\lambda \mathbf{d}||^2) \ge 0$$

Dividing by λ^2 and taking $\lambda \to 0^+$ gives us that for any $\mathbf{d} \in \mathbb{R}^n$: $\mathbf{d}^\top H_f(\boldsymbol{x}) \mathbf{d} \geq 0$.

Remark 3.2.10. It is important to note that if S is open and f is strictly convex, then $\mathbf{H}_f(\mathbf{x})$ may still (only) be positive semi-definite $\forall \mathbf{x} \in S$. Consider $f(x) = x^4$ which is strictly convex, then the Hessian is $\mathbf{H}_f(x) = 12x^2$ which equals 0 at x = 0.

3.3 Gradient Descent - An Approach to Optimization?

We have begun to develop an understanding of convex functions, and what we have learned already suggests a way for us to try to find an approximate minimizer of a given convex function.

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable, and we want to solve

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x})$$

We would like to find \boldsymbol{x}^* , a global minimizer of f. Suppose we start with some initial guess \boldsymbol{x}_0 , and we want to update it to \boldsymbol{x}_1 with $f(\boldsymbol{x}_1) < f(\boldsymbol{x}_0)$. If we can repeatedly make updates like this, maybe we eventually find a point with nearly minimum function value, i.e. some $\tilde{\boldsymbol{x}}$ with $f(\tilde{\boldsymbol{x}}) \approx f(\boldsymbol{x}^*)$?

Recall that $f(\boldsymbol{x}_0 + \boldsymbol{\delta}) = f(\boldsymbol{x}_0) + \boldsymbol{\nabla} f(\boldsymbol{x}_0)^{\top} \boldsymbol{\delta} + o(\|\boldsymbol{\delta}\|_2)$. This means that if we choose $\boldsymbol{x}_1 = \boldsymbol{x}_0 - \lambda \boldsymbol{\nabla} f(\boldsymbol{x}_0)$, we get

$$f(\boldsymbol{x}_0 - \lambda \nabla f(\boldsymbol{x}_0)) = f(\boldsymbol{x}_0) - \lambda \|\nabla f(\boldsymbol{x}_0)\|_2^2 + o(\lambda \|\nabla f(\boldsymbol{x}_0)\|_2)$$

And because f is convex, we know that $\nabla f(x_0) \neq \mathbf{0}$ unless we are already at a global minimum. So, for some small enough $\lambda > 0$, we should get $f(x_1) < f(x_0)$ unless we're already at a global minimizer. This idea of taking a step in the direction of $-\nabla f(x_0)$ is what is called *Gradient Descent*. But how do we choose λ each time? And does this lead to an algorithm that quickly reaches a point with close to minimal function value? To get good answers to these questions, we need to assume more about the function f that we are trying to minimize.

In the following subsection, we will see some conditions that suffice. But there are also many other settings where one can show that some form of gradient descent converges.

3.3.1 A Quantitative Bound on Changes in the Gradient

Definition 3.3.1. Let $f: S \to \mathbb{R}$ be a differentiable function, where $S \subseteq \mathbb{R}^n$ is convex and open. We say that f is β -gradient Lipschitz iff for all $\boldsymbol{x}, \boldsymbol{y} \in S$

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2 \le \beta \|\boldsymbol{x} - \boldsymbol{y}\|_2$$
.

We also refer to this as f being β -smooth.

Proposition 3.3.2. Consider a twice continuously differentiable $f: S \to \mathbb{R}$. Then f is β -gradient Lipschitz if and only if for all $\mathbf{x} \in S$, $\|\mathbf{H}_f(\mathbf{x})\| \leq \beta$.

You will prove this in Exercise 13 (Week 2) of the first exercise set.

Proposition 3.3.3. Let $f: S \to \mathbb{R}$ be a β -gradient Lipschitz function. Then for all $\mathbf{x}, \mathbf{y} \in S$,

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \frac{\beta}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}$$

To prove this proposition, we need the following result from multi-variate calculus. This is a restricted form of the fundamental theorem of calculus for line integrals.

Proposition 3.3.4. Let $f: S \to \mathbb{R}$ be a differentiable function, and consider \mathbf{x}, \mathbf{y} such that $[\mathbf{x}, \mathbf{y}] \in S$. Let $\mathbf{x}_{\theta} = \mathbf{x} + \theta(\mathbf{y} - \mathbf{x})$. Then

$$f(\boldsymbol{y}) = f(\boldsymbol{x}) + \int_{\theta=0}^{1} \boldsymbol{\nabla} f(\boldsymbol{x}_{\theta})^{\top} (\boldsymbol{y} - \boldsymbol{x}) d\theta$$

Now, we're in a position to show Proposition 3.3.3

Proof of Proposition 3.3.3. Let $f: S \to \mathbb{R}$ be a β -gradient Lipschitz function. Consider arbitrary $x, y \in S$ such that $[x, y] \in S$

$$f(\boldsymbol{y}) = f(\boldsymbol{x}) + \int_{\theta=0}^{1} \boldsymbol{\nabla} f(\boldsymbol{x}_{\theta})^{\top} (\boldsymbol{y} - \boldsymbol{x}) d\theta$$

$$= f(\boldsymbol{x}) + \int_{\theta=0}^{1} \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) d\theta + \int_{\theta=0}^{1} (\boldsymbol{\nabla} f(\boldsymbol{x}_{\theta}) - \boldsymbol{\nabla} f(\boldsymbol{x}))^{\top} (\boldsymbol{y} - \boldsymbol{x}) d\theta$$
Next we use Cauchy-Schwarz pointwise.
We also evaluate the first integral.
$$\leq f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \int_{\theta=0}^{1} \|\boldsymbol{\nabla} f(\boldsymbol{x}_{\theta}) - \boldsymbol{\nabla} f(\boldsymbol{x})\| \|\boldsymbol{y} - \boldsymbol{x}\| d\theta$$
Then we apply β -gradient Lipschitz and note $\boldsymbol{x}_{\theta} - \boldsymbol{x} = \theta(\boldsymbol{y} - \boldsymbol{x})$.
$$\leq f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \int_{\theta=0}^{1} \beta \theta \|\boldsymbol{y} - \boldsymbol{x}\|^{2} d\theta.$$

$$= f(\boldsymbol{x}) + \boldsymbol{\nabla} f(\boldsymbol{x})^{\top} (\boldsymbol{y} - \boldsymbol{x}) + \frac{\beta}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^{2}.$$

3.3.2 Analyzing Gradient Descent

It turns out that just knowing a function $f: \mathbb{R}^n \to \mathbb{R}$ is convex and β -gradient Lipschitz is enough to let us figure out a reasonable step size for Gradient Descent and let us analyze its convergence.

We start at a point $\mathbf{x}_0 \in \mathbb{R}^n$, and we try to find a point $\mathbf{x}_1 = \mathbf{x}_0 + \boldsymbol{\delta}$ with lower function value. We will let our upper bound from Proposition 3.3.3 guide us, in fact, we could ask, what is the *best* update for minimizing this upper bound, i.e. a $\boldsymbol{\delta}$ solving

$$\min_{\boldsymbol{\delta} \in \mathbb{R}^n} f(\boldsymbol{x}_0) + \boldsymbol{\nabla} f(\boldsymbol{x}_0)^{\top} \boldsymbol{\delta} + \frac{\beta}{2} \left\| \boldsymbol{\delta} \right\|^2$$

We can compute the best according to this upper bound by noting first that function is convex and continuously differentiable, and hence will be minimized at any point where the gradient is zero. Thus we want $\mathbf{0} = \nabla_{\boldsymbol{\delta}} \left(f(\boldsymbol{x}_0) + \nabla f(\boldsymbol{x}_0)^{\top} \boldsymbol{\delta} + \frac{\beta}{2} \|\boldsymbol{\delta}\|^2 \right) = \nabla f(\boldsymbol{x}_0) + \beta \boldsymbol{\delta}$, which occurs at $\boldsymbol{\delta} = -\frac{1}{\beta} \nabla f(\boldsymbol{x}_0)$.

Plugging in this value into the upper bound, we get that $f(\mathbf{x}_1) \leq f(\mathbf{x}_0) - \|\nabla f(\mathbf{x}_0)\|_2^2/2\beta$.

Now, as our algorithm, we will start with some guess x_0 , and then at every step we will update our guess using the best step based on our Proposition 3.3.3 upper bound on f at x_i , and so we get

$$\boldsymbol{x}_{i+1} = \boldsymbol{x}_i - \frac{1}{\beta} \nabla f(\boldsymbol{x}_i) \text{ and } f(\boldsymbol{x}_{i+1}) \le f(\boldsymbol{x}_i) - \frac{\|\nabla f(\boldsymbol{x}_i)\|_2^2}{2\beta}.$$
 (3.1)

Let us try to prove that our algorithm converges toward an \boldsymbol{x} with low function value.

We will measure this by looking at

$$gap_i = f(\boldsymbol{x}_i) - f(\boldsymbol{x}^*)$$

where \mathbf{x}^* is a global minimizer of f (note that there may not be a unique minimizer of f). We will try to show that this function value gap grows small. Using $f(\mathbf{x}_{i+1}) - f(\mathbf{x}_i) = \text{gap}_{i+1} - \text{gap}_i$, we get

$$\operatorname{gap}_{i+1} - \operatorname{gap}_{i} \le -\frac{\|\boldsymbol{\nabla} f(\boldsymbol{x}_{i})\|_{2}^{2}}{2\beta}$$
(3.2)

If the gap_i value is never too much bigger than $\frac{\|\nabla f(x_i)\|_2^2}{2\beta}$, then this should help us show we are making progress. But how much can they differ? We will now try to show a limit on this.

Recall that in the previous chapter we showed the following theorem.

Theorem 3.3.5. Let S be an open convex subset of \mathbb{R}^n , and let $f: S \to \mathbb{R}$ be a differentiable function. Then, f is convex if and only if for any $\mathbf{x}, \mathbf{y} \in S$ we have that $f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$.

Using the convexity of f and the lower bound on convex functions given by Theorem 3.3.5, we have that

$$f(\boldsymbol{x}^*) \ge f(\boldsymbol{x}_i) + \nabla f(\boldsymbol{x}_i)^{\top} (\boldsymbol{x}^* - \boldsymbol{x}_i)$$
(3.3)

Rearranging gets us

$$\operatorname{gap}_{i} \leq \nabla f(\boldsymbol{x}_{i})^{\top} (\boldsymbol{x}_{i} - \boldsymbol{x}^{*})$$

$$\leq \|\nabla f(\boldsymbol{x}_{i})\|_{2} \|\boldsymbol{x}_{i} - \boldsymbol{x}^{*}\|_{2}$$
 by Cauchy-Schwarz.

At this point, we are essentially ready to connect Equation (3.2) with Equation (3.4) and analyze the convergence rate of our algorithm.

However, at the moment, we see that the change $\operatorname{gap}_{i+1} - \operatorname{gap}_i$ in how close we are to the optimum function value is governed by the norm of the gradient $\|\nabla f(\boldsymbol{x}_i)\|_2$, while the size of the gap is related to *both* this quantity and the distance $\|\boldsymbol{x}_i - \boldsymbol{x}^*\|_2$ between the current solution \boldsymbol{x}_i and an optimum \boldsymbol{x}^* . Do we need both or can we get rid of, say, the distance? Unfortunately, with this algorithm and for this class of functions, a dependence on the distance is necessary. However, we can simplify things considerably using the following observation, which you will prove in the exercises (Exercise 2):

Claim 3.3.6. When running Gradient Descent as given by the step in Equation (3.1), for all $i \| \mathbf{x}_i - \mathbf{x}^* \|_2 \le \| \mathbf{x}_0 - \mathbf{x}^* \|_2$.

Combining this Claim with Equation (3.2) and Equation (3.4),

$$\operatorname{gap}_{i+1} - \operatorname{gap}_{i} \le -\frac{1}{2\beta} \cdot \left(\frac{\operatorname{gap}_{i}}{\|\boldsymbol{x}_{0} - \boldsymbol{x}^{*}\|_{2}} \right)^{2}$$
(3.5)

At this point, a simple induction will complete the proof of following result.

Theorem 3.3.7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a β -gradient Lipschitz, convex function. Let \mathbf{x}_0 be a given starting point, and let $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ be a minimizer of f. The Gradient Descent algorithm given by

$$oldsymbol{x}_{i+1} = oldsymbol{x}_i - rac{1}{eta} oldsymbol{
abla} f(oldsymbol{x}_i)$$

ensures that the kth iterate satisfies

$$f(x_k) - f(x^*) \le \frac{2\beta \|x_0 - x^*\|_2^2}{k+1}.$$

Carrying out this induction is one of the exercises in problem set 2.

Part II Spectral Graph Theory

Chapter 4

Introduction to Spectral Graph Theory

In this chapter, we will study graphs through linear algebra. This approach is known as Spectral Graph Theory and turns out to be surprisingly powerful. An in-depth treatment of many topics in this area can be found in [Spi19].

4.1 Recap: Incidence and Adjacency Matrices, the Laplacian Matrix and Electrical Energy

To exploit tools from linear algebra, we first have to introduce some interesting matrices that capture important properties of the graph G. In Chapter 1, we have already seen some of these matrices. Let us recall them and also revisit some additional material from the lectures before. For the rest of the lecture, we let $G = (V, E, \mathbf{w})$ be an undirected graph, with n = |V| vertices and m = |E| edges, where $\mathbf{w} \in \mathbb{R}_+^E$ assigns a positive weight for every edge. We also assume that G is connected!

Fundamental Matrices. We start by re-introducing the edge-vertex incidence matrix \mathbf{B} of the graph G. Therefore, we first have to associate an arbitrary direction to every edge. We then let $\mathbf{B} \in \mathbb{R}^{V \times E}$.

$$\mathbf{B}(v,e) = \begin{cases} 1 & \text{if } e = (u,v) \\ -1 & \text{if } e = (v,u) \\ 0 & \text{o.w.} \end{cases}$$

The edge directions are only there to help us track the meaning of signs of quantities defined on edges: The math we do should not depend on the choice of sign.

We define the weight matrix $\mathbf{W} \in \mathbb{R}^{E \times E}$ be the diagonal matrix given by $\mathbf{W} = \operatorname{diag}(\mathbf{w})$, i.e $\mathbf{W}(e,e) = \mathbf{w}(e)$. The weighted degree of a vertex is defined as $\mathbf{d}(v) = \sum_{\{u,v\} \in E} \mathbf{w}(u,v)$.

Again we treat the edges as undirected. Let $\mathbf{D} = \operatorname{diag}(\mathbf{d})$ be the degree matrix that is a diagonal matrix in $\mathbb{R}^{V \times V}$ with weighted degrees on the diagonal.

We define the weighted adjacency matrix $\mathbf{A} \in \mathbb{R}^{V \times V}$ of a graph by

$$\mathbf{A}(u,v) = \begin{cases} \mathbf{w}(u,v) & \text{if } \{u,v\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

Note that we treat the edges as undirected here, so $\boldsymbol{A}^{\top} = \boldsymbol{A}$.

Finally, we define the *Laplacian* of the graph as $\boldsymbol{L} = \boldsymbol{B} \boldsymbol{W} \boldsymbol{B}^{\top}$. Note that in the first chapter, we defined the Laplacian as $\boldsymbol{B} \boldsymbol{R}^{-1} \boldsymbol{B}^{\top}$, where \boldsymbol{R} is the diagonal matrix with edge resistances on the diagonal. We want to think of high *weight* on an edge as expressing that two vertices are highly connected, whereas we think of high resistance on an edge as expressing that the two vertices are poorly connected, so we let $\boldsymbol{w}(e) = 1/\boldsymbol{R}(e,e)$. In Problem Set 1, you showed that $\boldsymbol{L} = \boldsymbol{D} - \boldsymbol{A}$, and that for $\boldsymbol{x} \in \mathbb{R}^V$,

$$oldsymbol{x}^{ op} oldsymbol{L} oldsymbol{x} = \sum_{\{a,b\} \in E} oldsymbol{w}(a,b) (oldsymbol{x}(a) - oldsymbol{x}(b))^2.$$

Flows and Voltages. Let us next briefly review flows and voltages. Given the edge-vertex incidence matrix B, we can now express the net flow constraint that f routes a demand d by

$$Bf = d$$
.

This is also called a conservation constraint. In our examples so far, we have d(s) = -1, d(t) = 1 and d(u) = 0 for all $u \in V \setminus \{s, t\}$. Note that, unfortunately, the demand vector is typically denoted by d, but so is the degree vector. Since it should always be clear from context which is which, we will also overload d in this way!

We then define for any flow $\mathbf{f} \in \mathbb{R}^E$ the electrical energy by

$$\mathcal{E}(\boldsymbol{f}) = \sum_{e} \boldsymbol{r}(e) \boldsymbol{f}(e)^2 = \boldsymbol{f}^{\top} \boldsymbol{R} \boldsymbol{f}$$

and for any electrical voltages $\boldsymbol{x} \in \mathbb{R}^E$

$$\mathcal{E}(f) = f^{ op} R f = x^{ op} L x$$

While the former definition is standard, the second definition is motivated by the fact that by Ohm's law, where we use $\mathbf{R} = \operatorname{diag}_{e \in E} \mathbf{r}(e)$, we have that electrical voltages \mathbf{x} will induce an electrical flow $\mathbf{f} = \mathbf{R}^{-1} \mathbf{B}^{\top} \mathbf{x}$. And for such a pair \mathbf{f} and \mathbf{x} , we then have that the energy associated with \mathbf{x} is equal to the energy consumed by the flow \mathbf{f} induced by \mathbf{x} :

$$\mathcal{E}(\boldsymbol{f}) = \boldsymbol{f}^{\top} \boldsymbol{R} \boldsymbol{f} = \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} = \mathcal{E}(\boldsymbol{x}).$$

The Courant-Fisher Theorem. Let us also recall the Courant-Fisher theorem, which we proved in Chapter 3 (Theorem 3.1.4). Here we add an additional characterization of λ_i . Note that the second equality for both versions to obtain λ_i can be extracted from our proof of the Courant-Fischer theorem in Chapter 3.

Theorem 4.1.1 (The Courant-Fischer Theorem, eigenbasis version). Let \mathbf{A} be a symmetric matrix in $\mathbb{R}^{n \times n}$, with eigenvalues $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$, and corresponding eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ which form an other normal basis. Then

$$\lambda_i = \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{\boldsymbol{x} \in W, \boldsymbol{x} \neq \boldsymbol{0}} \frac{\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}} = \min_{\substack{\boldsymbol{x} \perp \boldsymbol{x}_1, ... \boldsymbol{x}_{i-1} \\ \boldsymbol{x} \neq \boldsymbol{0}}} \frac{\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}}$$

$$\lambda_i = \max_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = n+1-i}} \min_{\boldsymbol{x} \in W, \boldsymbol{x} \neq \boldsymbol{0}} \frac{\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}} = \max_{\substack{\boldsymbol{x} \perp \boldsymbol{x}_{i+1}, \dots \boldsymbol{x}_n \\ \boldsymbol{x} \neq \boldsymbol{0}}} \frac{\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}}$$

Of course, we also have $\lambda_i(\mathbf{A}) = \frac{\mathbf{x}_i^{\top} \mathbf{A} \mathbf{x}_i}{\mathbf{x}_i^{\top} \mathbf{x}_i}$.

4.2 Understanding Eigenvalues of the Laplacian

We would like to understand the eigenvalues of the Laplacian matrix of a graph.

But first, why should we care? It turns out that Laplacian eigenvalues can help us understand many properties of a graph. But we are going to start with a simple motivating observation: Electrical voltages $\boldsymbol{x} \in \mathbb{R}^V$ consume electrical energy $\mathcal{E}(\boldsymbol{x}) = \boldsymbol{x}^\top \boldsymbol{L} \boldsymbol{x}$. This means that by the Courant-Fischer Theorem

$$\mathcal{E}(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} \leq \lambda_n(L) \boldsymbol{x}^{\top} \boldsymbol{x}$$

And, for any voltages $x \perp 1$,

$$\mathcal{E}(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} \ge \lambda_2(L) \boldsymbol{x}^{\top} \boldsymbol{x}.$$

Thus, we can use the eigenvalues to give upper and lower bounds on how much electrical energy will be consumed by the flow induced by \boldsymbol{x} , in terms compared to $\boldsymbol{x}^{\top}\boldsymbol{x} = \|\boldsymbol{x}\|_{2}^{2}$.

In a couple of chapters, we will also prove the following claim, which shows that the Laplacian eigenvalues can directly tell us about the electrical energy that is required to route a given demand.

Claim 4.2.1. Given a demand vector $\mathbf{d} \in \mathbb{R}^V$ such that $\mathbf{d} \perp \mathbf{1}$, the electrical voltages \mathbf{x} that route \mathbf{d} satisfy $\mathbf{L}\mathbf{x} = \mathbf{d}$ and the electrical energy of these voltages satisfies

$$\|oldsymbol{d}\|_2^2 \leq \mathcal{E}(oldsymbol{x}) \leq rac{\|oldsymbol{d}\|_2^2}{\lambda_2}$$

While the techniques in this section can be used to analyze various Laplacian matrices, we focus on understanding the eigenvalues of certain graph families that are particularly instructive. In this section, we obtain the following results.

Graph Family	λ_2 lower bound	λ_2 upper bound	λ_n lower bound	λ_n upper bound
Complete Graph K_n	n	n	n	n
Path Graph P_n	$\frac{1}{n^2}$	$\frac{12}{n^2}$	1	4
Binary Tree T_n	$\frac{1}{2n\log_2(n)}$	$\frac{2}{n-1}$	1	6

4.3 The Complete Graph

To get a sense of how Laplacian eigenvalues behave, let us start by considering the *n*-vertex complete graph with unit weights, which we denote by K_n . The adjacency matrix of K_n is $\mathbf{A} = \mathbf{1}\mathbf{1}^{\top} - \mathbf{I}$, since it has ones everywhere, except for the diagonal, where entries are zero. The degree matrix $\mathbf{D} = (n-1)\mathbf{I}$. Thus the Laplacian is $\mathbf{L} = \mathbf{D} - \mathbf{A} = n\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}$.

Thus for any $\boldsymbol{y} \perp \boldsymbol{1}$, we have $\boldsymbol{y}^{\top} \boldsymbol{L} \boldsymbol{y} = n \boldsymbol{y}^{\top} \boldsymbol{y} - (\boldsymbol{1}^{\top} \boldsymbol{y})^2 = n \boldsymbol{y}^{\top} \boldsymbol{y}$.

From this, we can conclude that any $\mathbf{y} \perp \mathbf{1}$ is an eigenvector of eigenvalue n, and that all $\lambda_2 = \lambda_3 = \ldots = \lambda_n = n$.

4.4 The Path Graph

Next, let us try to understand λ_2 and λ_n for P_n , the *n* vertex path graph with unit weight edges. I.e. the graph has edges $E = \{\{i, i+1\} \text{ for } i=1 \text{ to } (n-1)\}$. This is in a sense the least well-connected unit weight graph on *n* vertices, whereas K_n is the most well-connected.

4.4.1 Upper Bounding $\lambda_2(P_n)$ via Test Vectors

We can use the eigenbasis version of the Courant-Fisher theorem to observe that the secondsmallest eigenvalue of the Laplacian is given by

$$\lambda_2(\mathbf{L}) = \min_{\substack{\mathbf{x} \neq \mathbf{0} \\ \mathbf{x}^\top \mathbf{1} = 0}} \frac{\mathbf{x}^\top \mathbf{L} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}.$$
 (4.1)

We can get a better understanding of this particular case through a couple of simple observations. Suppose $\boldsymbol{x} = \boldsymbol{y} + \alpha \boldsymbol{1}$, where $\boldsymbol{y} \perp \boldsymbol{1}$. Then $\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x} = \boldsymbol{y}^{\top} \boldsymbol{L} \boldsymbol{y}$, and $\|\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{y}\|^{2} + \alpha^{2} \|\boldsymbol{1}\|^{2}$.

So for any given vector, you can increase the value of $\frac{x^{\top}Lx}{x^{\top}x}$, by replacing x with its component orthogonal to 1, which we denoted by y.

We can conclude from Equation (4.1) that for any vector $\mathbf{y} \perp \mathbf{1}$,

$$\lambda_2 \leq rac{oldsymbol{y}^ op oldsymbol{L} oldsymbol{y}}{oldsymbol{y}^ op oldsymbol{y}}$$

When we use a vector \boldsymbol{y} in this way to prove a bound on an eigenvalue, we call it a test vector.

Now, we'll use a test vector to give an upper bound on $\lambda_2(\mathbf{L}_{P_n})$. Let $\mathbf{x} \in \mathbb{R}^V$ be given by $\mathbf{x}(i) = (n+1) - 2i$, for $i \in [n]$. This vector satisfies $\mathbf{x} \perp \mathbf{1}$. We picked this because we wanted a sequence of values growing linearly along the path, while also making sure that the vector is orthogonal to $\mathbf{1}$. Now

$$\lambda_{2}(\mathbf{L}_{P_{n}}) \leq \frac{\sum_{i \in [n-1]}^{n} (\mathbf{x}(i) - \mathbf{x}(i+1))^{2}}{\sum_{i=1}^{n} \mathbf{x}(i)^{2}}$$

$$= \frac{\sum_{i=1}^{n-1} 2^{2}}{\sum_{i=1}^{n} (n+1-2i)^{2}}$$

$$= \frac{4(n-1)}{(n+1)n(n-1)/3}$$

$$= \frac{12}{n(n+1)} \leq \frac{12}{n^{2}}.$$

Later, we will prove a lower bound that shows this value is right up to a constant factor. But the test vector approach based on the Courant-Fischer theorem doesn't immediately work when we want to prove lower bounds on $\lambda_2(\mathbf{L})$.

4.4.2 Lower Bounding $\lambda_n(P_n)$ via Test Vectors

We can see from either version of the Courant-Fischer theorem that

$$\lambda_n(\mathbf{L}) = \max_{\mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^\top \mathbf{L} \mathbf{v}}{\mathbf{v}^\top \mathbf{v}}.$$
 (4.2)

Thus for any vector $\mathbf{y} \neq 0$,

$$\lambda_n \geq rac{oldsymbol{y}^ op oldsymbol{L} oldsymbol{y}}{oldsymbol{y}^ op oldsymbol{y}}.$$

This means we can get a test vector-based lower bound on λ_n . Let us apply this to the Laplacian of P_n . We'll try the vector $\boldsymbol{x} \in \mathbb{R}^V$ given by $\boldsymbol{x}(1) = -1$, and $\boldsymbol{x}(n) = 1$ and $\boldsymbol{x}(i) = 0$ for $i \neq 1, n$.

Here we get

$$\lambda_n(\mathbf{L}_{P_n}) \ge \frac{\mathbf{x}^\top \mathbf{L} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}} = \frac{2}{2} = 1. \tag{4.3}$$

Again, it's not clear how to use the Courant-Fischer theorem to prove an upper bound on $\lambda_n(\mathbf{L})$. But, later we'll see how to prove an upper that shows that for P_n , the lower bound we obtained is right up to constant factors.

4.4.3 Upper bounding $\lambda_n(P_n)$ via the Loewner Order

In the previous sections, we first saw a complete characterization of the eigenvalues and eigenvectors of the unit weight complete graph on n vertices, K_n . Namely, $\mathbf{L}_{K_n} = n\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}$, and this means that every vector $\mathbf{y} \perp \mathbf{1}$ is an eigenvector of eigenvalue n. Ideally, we would like to prove an almost matching lower bound on $\lambda_2(P_n)$ and an almost matching upper bound on $\lambda_n(P_n)$, but it is not clear how to get that from the Courant-Fischer theorem.

To get there, we need to introduce some more tools. We now introduce an ordering on symmetric matrices called the *Loewner order*, which I also like to just call the positive semi-definite order. As we will see in a moment, it is a partial order on symmetric matrices, we denote it by " \preceq ". For convenience, we allow ourselves to both write $A \preceq B$ and equivalently $B \succeq A$.

The Loewner Order, aka. the Positive Semi-Definite Order. For a symmetric matrix $A \in \mathbb{R}^{n \times n}$ we define that

$$A \succeq 0$$

if and only if \boldsymbol{A} is positive semi-definite.

More generally, when we have two symmetric matrices $A, B \in \mathbb{R}^{n \times n}$, we will write

$$\boldsymbol{A} \leq \boldsymbol{B}$$
 if and only if for all $\boldsymbol{x} \in \mathbb{R}^n$ we have $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x}$ (4.4)

This is a partial order, because it satisfies the three requirements of

- 1. Reflexivity: $\mathbf{A} \leq \mathbf{A}$.
- 2. Anti-symmetry: $A \leq B$ and $B \leq A$ implies A = B
- 3. Transitivity: $A \leq B$ and $B \leq C$ implies $A \leq C$

Check for yourself that these properties hold!

The PSD order has other very useful properties: $\mathbf{A} \leq \mathbf{B}$ implies $\mathbf{A} + \mathbf{C} \leq \mathbf{B} + \mathbf{C}$ for any symmetric matrix \mathbf{C} . Convince yourself of this too!

And, combining this observation with transitivity, we can see that $A \leq B$ and $C \leq D$ implies $A + C \leq B + D$.

Here is another useful property: If $\mathbf{0} \leq \mathbf{A}$ then for all $\alpha \geq 1$

$$\frac{1}{\alpha} \mathbf{A} \preceq \mathbf{A} \preceq \alpha \mathbf{A}.$$

Here is another one:

Claim 4.4.1. If $A \leq B$, then for all i

$$\lambda_i(\boldsymbol{A}) \leq \lambda_i(\boldsymbol{B}).$$

Proof. We can prove this Claim by applying the subspace version of the Courant-Fischer theorem.

$$\lambda_i(\boldsymbol{A}) = \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{\boldsymbol{x} \in W, \boldsymbol{x} \neq \boldsymbol{0}} \frac{\boldsymbol{x}^\top \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}} \leq \min_{\substack{\text{subspace } W \subseteq \mathbb{R}^n \\ \dim(W) = i}} \max_{\boldsymbol{x} \in W, \boldsymbol{x} \neq \boldsymbol{0}} \frac{\boldsymbol{x}^\top \boldsymbol{B} \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}} = \lambda_i(\boldsymbol{B}).$$

Note that the converse of Clam 4.4.1 is very much false, for example the matrices $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ have equal eigenvalues, but both $\mathbf{A} \not\preceq \mathbf{B}$ and $\mathbf{B} \not\preceq \mathbf{A}$.

Remark 4.4.2. It's useful to get used to and remember some of the properties of the Loewner order, but all the things we have established so far are almost immediate from the basic characterization in Equation (4.4). So, ideally, don't memorize all these facts, instead, try to see that they are simple consequences of the definition.

Upper bounding $\lambda_n(L_G)$ Using Degrees. In an earlier chapter, we observed that for any graph $G = (V, E, \boldsymbol{w}), \ \boldsymbol{L} = \boldsymbol{D} - \boldsymbol{A} \succeq \boldsymbol{0}$. We can see this from $\boldsymbol{x}^\top (\boldsymbol{D} - \boldsymbol{A}) \boldsymbol{x} = \sum_{(u,v)\in E} \boldsymbol{w}(u,v) (\boldsymbol{x}(u) - \boldsymbol{x}(v))^2 \geq 0$. Similarly $\boldsymbol{D} + \boldsymbol{A} \succeq \boldsymbol{0}$. because $\boldsymbol{x}^\top (\boldsymbol{D} + \boldsymbol{A}) \boldsymbol{x} = \sum_{(u,v)\in E} \boldsymbol{w}(u,v) (\boldsymbol{x}(u) + \boldsymbol{x}(v))^2 \geq 0$. But this means that $-\boldsymbol{A} \preceq \boldsymbol{D}$ and hence $\boldsymbol{L} = \boldsymbol{D} - \boldsymbol{A} \preceq \boldsymbol{D}$.

So, for the path graph P_n , we have $\mathbf{L}_{P_n} \leq \mathbf{D} - \mathbf{A} \leq 2\mathbf{D} \leq 4\mathbf{I}$. So by Claim 4.4.1 $\lambda_n(\mathbf{L}_{P_n}) < 4$. (4.5)

We can see that our test vector-based lower bound on $\lambda_n(\mathbf{L}_{P_n})$ from Equation (4.3) is tight up to a factor 4.

Since this type of argument works for any unit weight graph, it proves the following claim.

Claim 4.4.3. For any unit weight graph G, $\lambda_n(\mathbf{L}_G) \leq 2 \max_{v \in V} \mathbf{d}(v)$.

This is tight on a graph consisting of a single edge.

4.4.4 Lower bounding $\lambda_2(P_n)$ via the Loewner Order

We will now conclude our analysis of the eigenvalues λ_2 and λ_n of the path graph P_n by finally deriving a lower bound on $\lambda_2(P_n)$. Again, this requires us to use new tools. As in the last section, we first introduce the new tool for general graphs and then exploit the tool to derive the lower bound.

The Loewner Order for Graphs. It's sometimes convenient to overload the PSD order to also apply to graphs. We will write

$$G \preceq H$$

if $\boldsymbol{L}_{G} \leq \boldsymbol{L}_{H}$.

For example, given two unit weight graphs G = (V, E) and H = (V, F), if H is a subgraph of G, then

$$\boldsymbol{L}_{H} \prec \boldsymbol{L}_{G}$$
.

We can see this from the Laplacian quadratic form:

$$\boldsymbol{x}^{\top} \boldsymbol{L}_{G} \boldsymbol{x} = \sum_{(u,v) \in E} \boldsymbol{w}(u,v) (\boldsymbol{x}(u) - \boldsymbol{x}(v))^{2}.$$

Dropping edges will only decrease the value of the quadratic form. The same is for decreasing the weights of edges. The graph order notation is especially useful when we allow for scaling a graph by a constant, say c > 0,

$$c \cdot H \prec G$$

What is $c \cdot H$? It is the same graph as H, but the weight of every edge is multiplied by c. Now we can make statements like $\frac{1}{2}H \leq G \leq 2H$, which turn out to be useful notion of the two graphs approximating each other.

The Path Inequality. Now, we'll see a general tool for comparing two graphs G and H to prove inequalities like $cH \leq G$ for some constant c. Our tools won't necessarily work well for all cases, but we'll see some examples where they do.

In the rest of the chapter, we will often need to compare two graphs defined on the same vertex set $V = \{1, ..., n\} = [n]$.

We use $G_{i,j}$ to denote the unit weight graph on vertex set [n] consisting of a single edge between vertices i and j.

Lemma 4.4.4 (The Path Inequality).

$$(n-1)\cdot P_n \succeq G_{1,n}$$

Proof. We want to show that for every $\boldsymbol{x} \in \mathbb{R}^n$,

$$(n-1)\cdot\sum_{i=1}^{n-1}(\boldsymbol{x}(i+1)-\boldsymbol{x}(i))^2\geq (\boldsymbol{x}(n)-\boldsymbol{x}(1))^2.$$

For $i \in [n-1]$, set

$$\Delta(i) = x(i+1) - x(i).$$

The inequality we want to prove then becomes

$$(n-1)\sum_{i=1}^{n-1} (\boldsymbol{\Delta}(i))^2 \ge \left(\sum_{i=1}^{n-1} \boldsymbol{\Delta}(i)\right)^2.$$

But, this is immediate from the Cauchy-Schwarz inequality $\boldsymbol{a}^{\top}\boldsymbol{b} \leq \|\boldsymbol{a}\|_{2} \|\boldsymbol{b}\|_{2}$:

$$(n-1)\sum_{i=1}^{n-1} (\boldsymbol{\Delta}(i))^2 = \|\mathbf{1}_{n-1}\|^2 \cdot \|\boldsymbol{\Delta}\|^2$$
$$= (\|\mathbf{1}_{n-1}\| \cdot \|\boldsymbol{\Delta}\|)^2$$
$$\geq (\mathbf{1}_{n-1}^{\mathsf{T}} \boldsymbol{\Delta})^2$$
$$= (\sum_{i=1}^{n-1} \boldsymbol{\Delta}(i))^2$$

Lower Bounding λ_2 of a Path Graph. We will now use Lemma 4.4.4 to prove a lower bound on $\lambda_2(\mathbf{L}_{P_n})$. Our strategy will be to prove that the path P_n is at least some multiple of the complete graph K_n , measured by the Loewner order, i.e. $K_n \leq f(n)P_n$ for some function $f: \mathbb{N} \to \mathbb{R}$. We can combine this with our observation earlier that $\lambda_2(\mathbf{L}_{K_n}) = n$ to show that

$$f(n)\lambda_2(\mathbf{L}_{P_n}) \ge \lambda_2(\mathbf{L}_{K_n}) = n, \tag{4.6}$$

and this will give our lower bound on $\lambda_2(\mathbf{L}_{P_n})$. When establishing the inequality between P_n and K_n , we can treat each edge of the complete graph separately, by first noting that

$$oldsymbol{L}_{K_n} = \sum_{i < j} oldsymbol{L}_{G_{i,j}}$$

For every edge (i, j) in the complete graph, we apply the Path Inequality, Lemma 4.4.4:

$$G_{i,j} \leq (j-i) \sum_{k=i}^{j-1} G_{k,k+1}$$
$$\leq (j-i)P_n$$

This inequality says that $G_{i,j}$ is at most (j-i) times the part of the path connecting i to j, and that this part of the path is less than the whole.

Summing inequality (4.3) over all edges $(i, j) \in K_n$ gives

$$K_n = \sum_{i < j} G_{i,j} \leq \sum_{i < j} (j - i) P_n.$$

To finish the proof, we compute

$$\sum_{i < j} (j - i) \le \sum_{i < j} n \le n^3$$

So

$$L_{K_n} \leq n^3 \cdot L_{P_n}$$
.

Plugging this into Equation (4.6) we obtain

$$\frac{1}{n^2} \le \lambda_2(P_n).$$

This only differs from our test vector-based upper bound in Equation (4.3) by a factor 12. We could make this considerably tighter by being more careful about the sums.

4.5 The Complete Binary Tree

To consolidate our new expertise, let us finally consider the complete binary tree T_n with unit weight edges on n vertices. Note that in order to have T_n be a complete binary tree, we require that n is such that there is an integer d for which $n = 2^{d+1} - 1$.

 T_n is the balanced binary tree on this many vertices, i.e. it consists of a root node, which has two children, each of those children have two children and so on until we reach a depth of d from the root, at which point the child vertices have no more children. A simple induction shows that indeed $n = 2^{d+1} - 1$.

We can also describe the edge set by saying that each node i has edges to its children 2i and 2i + 1 whenever the node labels do not exceed n. We emphasize that we still think of the graph as undirected.

4.5.1 Deriving Bounds on $\lambda_n(T_n)$

We'll start by above bounding $\lambda_n(\mathbf{L}_{T_n})$ using a test vector.

We let x(i) = 0 for all nodes that have a child node, and x(i) = -1 for even-numbered leaf nodes and x(i) = +1 for odd-numbered leaf nodes. Note that there are (n+1)/2 leaf nodes, and every leaf node has a single edge, connecting it to a parent with value 0. Thus

$$\lambda_n(\mathbf{L}) = \max_{\mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^\top \mathbf{L} \mathbf{v}}{\mathbf{v}^\top \mathbf{v}} \ge \frac{\mathbf{x}^\top \mathbf{L} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}} = \frac{(n+1)/2}{(n+1)/2} = 1.$$
(4.7)

Meanwhile, every vertex has degree at most 3, so by Claim 4.4.3, $\lambda_n(\mathbf{L}) \leq 6$. So we can bound the largest eigenvalue above and below by a constant.

4.5.2 Upper Bounding λ_2 via Test Vectors

Let us give an upper bound on λ_2 of the tree using a test vector. Let $\mathbf{x} \in \mathbb{R}^v$ have $\mathbf{x}(1) = 0$ and $\mathbf{x}(i) = -1$ for i in the left subtree and $\mathbf{x}(i) = +1$ in the right subtree. Then

$$\lambda_2(\boldsymbol{L}_{T_n}) = \min_{\substack{\boldsymbol{v}
eq \boldsymbol{0} \ \boldsymbol{v}^{ op} \mathbf{1} = 0}} \frac{\boldsymbol{v}^{ op} \boldsymbol{L} \boldsymbol{v}}{\boldsymbol{v}^{ op} \boldsymbol{v}} \leq \frac{\boldsymbol{x}^{ op} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{ op} \boldsymbol{x}} = \frac{2}{n-1}.$$

So, we have shown $\frac{1}{2n\log_2(n)} \leq \lambda_2(\boldsymbol{L}_{T_n}) \leq \frac{2}{n-1}$, and unlike the previous examples, the gap is more than a constant.

4.5.3 Lower Bounding λ_2

The following lemma gives a simple lower bound on λ_2 for any graph.

Lemma 4.5.1. For any unit weight graph G with diameter D,

$$\lambda_2(\boldsymbol{L}_G) \geq \frac{1}{nD}.$$

Proof. We will again prove a lower bound comparing G to the complete graph. For each edge $(i, j) \in K_n$, let $G^{i,j}$ denote a shortest path in G from i to j. This path will have length at most D. So, we have

$$K_n = \sum_{i < j} G_{i,j}$$

$$\leq \sum_{i < j} DG^{i,j}$$

$$\leq \sum_{i < j} DG$$

$$\leq n^2 DG.$$

So, we obtain the bound

$$n^2 D\lambda_2(G) \ge n$$
,

which implies our desired statement.

Since the complete binary tree T_n has diameter $2d \le 2\log_2(n)$, by Lemma 4.5.1, $\lambda_2(\boldsymbol{L}_{T_n}) \ge \frac{1}{2n\log_2(n)}$.

In the exercises for Week 3, I will ask you to improve the lower bound to 1/(cn) for some constant c.

Chapter 5

Conductance, Expanders and Cheeger's Inequality

A common algorithmic problem that arises is the problem of partitioning the vertex set V of a graph G into clusters X_1, X_2, \ldots, X_k such that

- for each i, the induced graph $G[X_i] = (X_i, E \cap (X_i \times X_i))$ is "well-connected", and
- only an ϵ -fraction of edges e are not contained in any induced graph $G[X_i]$ (where ϵ is a very small constant).

Figure 5.1: After removing the red edges (of which there are few in relation to the total number of edges), each connected component in G is "well-connected".

In this lecture, we make precise what "well-connected" means by introducing the notions of conductance and expanders.

Building on the chapter, we show that the second eigenvalue of the Laplacian L associated with graph G can be used to certify that a graph is "well-connected" (more precisely the second eigenvalue of a normalized version of the Laplacian). This result, called Cheeger's inequality, is one of the key tools in Spectral Graph Theory. Moreover, it can be turned into an algorithm that computes the partition efficiently!

5.1 Conductance and Expanders

Graph Definitions. In this lecture, we let G = (V, E) be unweighted¹ and always be connected, and let d(v) be the degree of a vertex v in G. We define the volume vol(S) for any vertex subset $S \subseteq V$, to be the sum of degrees, i.e. $vol(S) = \sum_{v \in S} d(v)$.

For any $A, B \subseteq V$, we define E(A, B) to be the set of edges in $E \cap (A \times B)$, i.e. with one endpoint in A and one endpoint in B. We let G[A] be the *induced* graph G by $A \subseteq V$, which is the graph G restricted to the vertices A, i.e. an edge e in G is in G[A] iff both endpoints are in A.

Conductance. Given set $\emptyset \subset S \subset V$, then we define the conductance $\phi(S)$ of S by

$$\phi(S) = \frac{|E(S, V \setminus S)|}{\min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\}}.$$

It can be seen that $\phi(\cdot)$ is symmetric in the sense that $\phi(S) = \phi(V \setminus S)$. We define the conductance of the graph G denoted $\phi(G)$ by

$$\phi(G) = \min_{\emptyset \subset S \subset V} \phi(S).$$

We note that finding the conductance of a graph G is NP-hard. However, good approximations can be found as we will see today (and in a later lecture).

Expander and Expander Decomposition. For any $\phi \in (0,1]$, we say that a graph G is a ϕ -expander if $\phi(G) \geq \phi$. We say that the partition X_1, X_2, \ldots, X_k of the vertex set V is a ϕ -expander decomposition of quality q if

- each induced graph $G[X_i]$ is a ϕ -expander, and
- the number of edges not contained in any $G[X_i]$ is at most $q \cdot \phi \cdot m$.

¹Everything we present here also works for weighted graphs, however, we focus on unweighted graphs for simplicity.

Today, we obtain a ϕ -expander decomposition of quality $q = O(\phi^{-1/2} \cdot \log n)$. In a few lectures, we revisit the problem and obtain quality $q = O(\log^c n)$ for some small constant c. In practice, we mostly care about values $\phi \approx 1$.

An Algorithm to Compute Conductance and Expander Decomposition. In this lecture, the main focus is *not* to obtain an algorithm to compute conductance but rather only to show that the conductance of a graph can be approximated using the eigenvalues of the "normalized" Laplacian.

However, this proof gives then rise to an algorithm CertifyOrCut (G, ϕ) that given a graph G and a parameter ϕ either:

- Certifies that G is a ϕ -expander, or
- Presents a cut S such that $\phi(S) < \sqrt{2\phi}$.

Careful but rather straight-forward recursive application of this procedure then yields an algorithm to compute a ϕ -expander decomposition.

To implement this algorithm above, we are required to find the second eigenvalue of the 'normalized' Laplacian N that we introduce in this lecture. We can find the eigenvalues using the power method² which multiplies a random vector with the matrix multiple times to find the largest eigenvalue. In our case, we want to use the inverse of N and pick a random vector orthogonal to the trivial first eigenvector which yields the 2nd eigenvalue of N. The inverse-matrix vector multiplications can be done extremely fast given a solver for Laplacian systems Lx = d which we learn about in the next chapters.

5.2 A Lower Bound for Conductance via Eigenvalues

An Alternative Characterization of Conductance. Let us now take a closer look at the definition of conductance and observe that if a set S has $vol(S) \le vol(V)/2$ then

$$\phi(S) = \frac{|E(S, V \setminus S)|}{\min\{\operatorname{vol}(S), \operatorname{vol}(V \setminus S)\}} = \frac{|E(S, V \setminus S)|}{\operatorname{vol}(S)} = \frac{\mathbf{1}_S^\top \mathbf{L} \mathbf{1}_S}{\mathbf{1}_S^\top \mathbf{D} \mathbf{1}_S}.$$

To see this, observe that we can rewrite the numerator above using the Laplacian of G as

$$|E(S, V \setminus S)| = \sum_{(u,v) \in E} (\mathbf{1}_S(u) - \mathbf{1}_S(v))^2 = \mathbf{1}_S^{\mathsf{T}} \mathbf{L} \mathbf{1}_S$$

where $\mathbf{1}_{S}$ is the characteristic vector of S. Further, we can rewrite the denominator as

$$\operatorname{vol}(S) = \mathbf{1}_{S}^{\top} \boldsymbol{d} = \mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}$$

²See https://en.wikipedia.org/wiki/Power_iteration.

where D = diag(d) is the degree-matrix. We can now alternatively define the graph conductance of G by

$$\phi(G) = \min_{\substack{\emptyset \in S \subset V, \\ \text{vol}(S) \le \text{vol}(V)/2}} \frac{\mathbf{1}_S^{\top} \mathbf{L} \mathbf{1}_S}{\mathbf{1}_S^{\top} \mathbf{D} \mathbf{1}_S}$$

$$(5.1)$$

where we use that $\phi(S) = \phi(V \setminus S)$ such that the objective value is unchanged as long as for each set $\emptyset \subset S \subset V$ either S or $V \setminus S$ is in the set that we minimize over.

The Normalized Laplacian. Let us next define the normalized Laplacian

$$N = D^{-1/2}LD^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

To learn a bit about this new matrix, let us first look at the first eigenvalue where we use the test vector $y = \mathbf{D}^{1/2}\mathbf{1}$, to get by Courant-Fischer (see Theorem 3.1.4) that

$$\lambda_1(\mathbf{N}) = \min_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top \mathbf{N} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}} \le \frac{\mathbf{y}^\top \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} \mathbf{y}}{\mathbf{y}^\top \mathbf{y}} = \frac{\mathbf{1}^\top \mathbf{L} \mathbf{1}}{\mathbf{y}^\top \mathbf{y}} = 0$$
 (5.2)

because $\mathbf{D}^{-1/2}\mathbf{D}^{1/2}=I$ and $\mathbf{L}\mathbf{1}=0$ (for the former we use the assumption that G is connected). Since \mathbf{N} is PSD (as you will show in the exercises), we also know $\lambda_1(\mathbf{N})\geq 0$, so $\lambda_1(\mathbf{N})=0$.

Let us use Courant-Fischer again to reason a bit about the second eigenvalue of N:

$$\lambda_2(\mathbf{N}) = \min_{\substack{\mathbf{x} \perp \mathbf{D}^{1/2} \mathbf{1} \\ \mathbf{x} \neq \mathbf{0}}} \frac{\mathbf{x}^\top \mathbf{N} \mathbf{x}}{\mathbf{x}^\top \mathbf{x}} = \min_{\substack{\mathbf{z} \perp d \\ \mathbf{z} \neq \mathbf{0}}} \frac{\mathbf{z}^\top \mathbf{D}^{1/2} \mathbf{N} \mathbf{D}^{1/2} \mathbf{z}}{\mathbf{z}^\top \mathbf{D}^{1/2} \mathbf{D}^{1/2} \mathbf{z}} = \min_{\substack{\mathbf{z} \perp d \\ \mathbf{z} \neq \mathbf{0}}} \frac{\mathbf{z}^\top \mathbf{L} \mathbf{z}}{\mathbf{z}^\top \mathbf{D} \mathbf{z}}.$$
 (5.3)

Relating Conductance to the Normalized Laplacian. At this point, it might become clearer why N is a natural matrix to consider when arguing about conductance: if we could argue that for every $\emptyset \subset S \subset V$, $\operatorname{vol}(S) \leq \operatorname{vol}(V)/2$, we have $\mathbf{1}_S \perp \mathbf{d}$, then it would be easy to see that taking the second eigenvalue of N in equation 5.3 is a relaxation of the minimization problem 5.1 defining $\phi(G)$.

While this is clearly not true, we can still argue along these lines.

Theorem 5.2.1 (Cheeger's Inequality, Lower Bound). We have $\frac{\lambda_2(N)}{2} \leq \phi(G)$.

Proof. Instead of using $\mathbf{1}_S$ directly, we shift $\mathbf{1}_S$ by $\mathbf{1}$ such that it is orthogonal to \mathbf{d} : we define $\mathbf{z}_S = \mathbf{1}_S - \alpha \mathbf{1}$ where α is the scalar that solves

$$0 = \boldsymbol{d}^{\top} \boldsymbol{z}_{S}$$

$$\iff 0 = \boldsymbol{d}^{\top} (\boldsymbol{1}_{S} - \alpha \boldsymbol{1})$$

$$\iff 0 = \boldsymbol{d}^{\top} \boldsymbol{1}_{S} - \alpha \boldsymbol{d}^{\top} \boldsymbol{1}$$

$$\iff \alpha = \frac{\boldsymbol{d}^{\top} \boldsymbol{1}_{S}}{\boldsymbol{d}^{\top} \boldsymbol{1}} = \frac{\operatorname{vol}(S)}{\operatorname{vol}(V)}.$$

To conclude the proof, it remains to argue that $\frac{\mathbf{1}_{S}^{\top} \mathbf{L} \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} \mathbf{D} \mathbf{1}_{S}} \geq \frac{1}{2} \cdot \frac{\mathbf{z}_{S}^{\top} \mathbf{L} \mathbf{z}_{S}}{\mathbf{z}_{S}^{\top} \mathbf{D} \mathbf{z}_{S}}$:

- Numerator: since $\mathbf{1}^{\top} \mathbf{L} \mathbf{1} = 0$, we have that $\mathbf{1}_{S}^{\top} \mathbf{L} \mathbf{1}_{S} = \mathbf{z}_{S}^{\top} \mathbf{L} \mathbf{z}_{S}$.
- Denominator: observe by straight-forward calculations that

$$\boldsymbol{z}_{S}^{\top} \boldsymbol{D} \boldsymbol{z}_{S} = \operatorname{vol}(S) \cdot (1 - \alpha)^{2} + \operatorname{vol}(V \setminus S) \cdot (-\alpha)^{2}
= \operatorname{vol}(S) - 2 \operatorname{vol}(S) \cdot \alpha + \operatorname{vol}(V) \cdot \alpha^{2}
= \operatorname{vol}(S) - \frac{\operatorname{vol}(S)^{2}}{\operatorname{vol}(V)}
= \operatorname{vol}(S) - \operatorname{vol}(S) \cdot \frac{\operatorname{vol}(S)}{\operatorname{vol}(V)}
\geq \frac{1}{2} \operatorname{vol}(S) = \frac{1}{2} \mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}$$

where we use the assumption that $vol(S) \leq vol(V)/2$.

5.3 An Upper Bound for Conductance via Eigenvalues

Slightly more surprisingly, we can also show that the second eigenvalue $\lambda_2(N)$ can be used to upper bound the conductance.

Theorem 5.3.1 (Cheeger's Inequality, Upper Bound). We have $\phi(G) \leq \sqrt{2 \cdot \lambda_2(\mathbf{N})}$.

Proof. To prove the theorem, we want to show that for any $z \perp d$, we can find a set $\emptyset \subset S \subset V$ with $\operatorname{vol}(S) \leq \operatorname{vol}(V)/2$, such that

$$\frac{\mathbf{1}_{S}^{\top} \mathbf{L} \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} \mathbf{D} \mathbf{1}_{S}} \leq \sqrt{2 \cdot \frac{\mathbf{z}^{\top} \mathbf{L} \mathbf{z}}{\mathbf{z}^{\top} \mathbf{D} \mathbf{z}}}.$$
 (5.4)

As a first step, we would like to change z slightly to make it more convenient to work with:

 \bullet we renumber the vertices in V such that we have

$$z(1) \leq z(2) \leq \cdots \leq z(n).$$

• we center z, that is we let $z_c = z - \alpha 1$ where α is chosen such that

$$\sum_{\boldsymbol{z}_c(i) < 0} \boldsymbol{d}(i) < \text{vol}(V)/2 \text{ and } \sum_{\boldsymbol{z}_c(i) \le 0} \boldsymbol{d}(i) \ge \text{vol}(V)/2$$

i.e. $\sum_{z_c(i)>0} d(i) \leq \text{vol}(V)/2$.

• we scale, let $z_{sc} = \beta z_c$ for some scalar β such that $z_{sc}(1)^2 + z_{sc}(n)^2 = 1$.

In the exercises, you will show that changing z to z_{sc} can only make the ratio we are interested in smaller, i.e. that $\frac{z^{\top}Lz}{z^{\top}Dz} \geq \frac{z_{sc}^{\top}Lz_{sc}}{z_{sc}^{\top}Dz_{sc}}$. Thus, if we can show that equation 5.4 holds for z_{sc} in place of z, then it also follows for z itself.

We now arrive at the main idea of the proof: we define the set $S_{\tau} = \{i \in V \mid \boldsymbol{z}_{sc}(i) < \tau\}$ for some random variable τ with probability density function

$$p(t) = \begin{cases} 2 \cdot |t| & t \in [\boldsymbol{z}_{sc}(1), \boldsymbol{z}_{sc}(n)], \\ 0 & \text{otherwise.} \end{cases}$$
 (5.5)

So, we have probability $\mathbb{P}[\alpha < \tau < \beta] = \int_{t=\alpha}^{\beta} p(t) dt$.

Figure 5.2: The probability density function p(t). The area between α and β for $\alpha < 0 < \beta$ is $\alpha^2 + \beta^2$. This is the probability of the event $\mathbb{P}[\alpha < \tau < \beta]$. Note in particular that the total area is $z_{sc}(1)^2 + z_{sc}(n)^2$ which is equal to 1 by assumption and thus p(t) is a valid pdf.

Since the volume incident to S_{τ} might be quite large, let us define S for convenience by

$$S = \begin{cases} S_{\tau} & \operatorname{vol}(S_{\tau}) < \operatorname{vol}(V)/2, \\ V \setminus S_{\tau} & \text{otherwise.} \end{cases}$$

Claim 5.3.2. We have $\frac{\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top}\boldsymbol{L}\mathbf{1}_{S}\right]}{\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top}\boldsymbol{D}\mathbf{1}_{S}\right]} \leq \sqrt{2 \cdot \frac{\boldsymbol{z}_{sc}^{\top}\boldsymbol{L}\boldsymbol{z}_{sc}}{\boldsymbol{z}_{sc}^{\top}\boldsymbol{D}\boldsymbol{z}_{sc}}}.$

Proof. Recall $\mathbf{1}_{S}^{\top} \mathbf{L} \mathbf{1}_{S} = E(S_{\tau}, V \setminus S_{\tau})$, and by choice of τ , we have for any edge $e = \{i, j\} \in E$

where $\boldsymbol{z}_{sc}(i) \leq \boldsymbol{z}_{sc}(j)$,

$$\begin{split} \mathbb{P}_{\tau}[e \in E(S_{\tau}, V \setminus S_{\tau})] &= \mathbb{P}_{\tau}[\boldsymbol{z}_{sc}(i) < \tau \leq \boldsymbol{z}_{sc}(j)] \\ &= \int_{t=i}^{j} 2|t| \ dt \\ &= \begin{cases} \boldsymbol{z}_{sc}(i)^{2} + \boldsymbol{z}_{sc}(j)^{2} & \boldsymbol{z}(i) < 0 < \boldsymbol{z}(j), \\ |\boldsymbol{z}_{sc}(i)^{2} - \boldsymbol{z}_{sc}(j)^{2}| & \text{otherwise.} \end{cases} \end{split}$$

The last equality can be seen from Figure 5.2. We can further upper bound either case by $|\boldsymbol{z}_{sc}(i) - \boldsymbol{z}_{sc}(j)| \cdot (|\boldsymbol{z}_{sc}(i)| + |\boldsymbol{z}_{sc}(j)|)$ (we leave this as an exercise).

Using our new upper bound, we can sum over all edges $e \in E$ to conclude that

$$\begin{split} \mathbb{E}_{\tau}[|E(S_{\tau}, V \setminus S_{\tau})|] &\leq \sum_{i \sim j} |\boldsymbol{z}_{sc}(i) - \boldsymbol{z}_{sc}(j)| \cdot (|\boldsymbol{z}_{sc}(i)| + |\boldsymbol{z}_{sc}(j)|) \\ &\leq \sqrt{\sum_{i \sim j} (\boldsymbol{z}_{sc}(i) - \boldsymbol{z}_{sc}(j))^{2} \cdot \sum_{i \sim j} (|\boldsymbol{z}_{sc}(i)| + |\boldsymbol{z}_{sc}(j)|)^{2}} \end{split}$$

where the last line follows from $\langle \boldsymbol{x}, \boldsymbol{y} \rangle^2 \leq \langle \boldsymbol{x}, \boldsymbol{x} \rangle \cdot \langle \boldsymbol{y}, \boldsymbol{y} \rangle$ (i.e. Cauchy-Schwarz).

The first sum should look familiar by now: it is simply the Quadratic Laplacian Form $\sum_{i\sim j}(\boldsymbol{z}_{sc}(i)-\boldsymbol{z}_{sc}(j))^2=\boldsymbol{z}_{sc}^{\top}\boldsymbol{L}\boldsymbol{z}_{sc}$.

It is not hard to reason about the second term either

$$\sum_{i \sim j} (|\boldsymbol{z}_{sc}(i)| + |\boldsymbol{z}_{sc}(j)|)^2 \leq 2 \sum_{i \sim j} \boldsymbol{z}_{sc}(i)^2 + \boldsymbol{z}_{sc}(j)^2 = 2 \sum_{i \in V} \boldsymbol{d}(i) \boldsymbol{z}_{sc}(i)^2 = 2 \boldsymbol{z}_{sc}^{\top} \boldsymbol{D} \boldsymbol{z}_{sc}$$

Putting everything together, we obtain

$$\mathbb{E}_{\tau}[|E(S_{\tau}, V \setminus S_{\tau})|] \leq \sqrt{\boldsymbol{z}_{sc}^{\top} \boldsymbol{L} \boldsymbol{z}_{sc} \cdot 2\boldsymbol{z}_{sc}^{\top} \boldsymbol{D} \boldsymbol{z}_{sc}} = \sqrt{2 \cdot \frac{\boldsymbol{z}_{sc}^{\top} \boldsymbol{L} \boldsymbol{z}_{sc}}{\boldsymbol{z}_{sc}^{\top} \boldsymbol{D} \boldsymbol{z}_{sc}}} \cdot \boldsymbol{z}_{sc}^{\top} \boldsymbol{D} \boldsymbol{z}_{sc}$$
(5.6)

While this almost looks like what we want, we still have to argue that $\boldsymbol{z}_{sc}^{\top} \boldsymbol{D} \boldsymbol{z}_{sc} = \mathbb{E}_{\tau}[\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}]$ to finish the proof.

To this end, when unrolling the expectation, we use a simple trick that splits by cases:

$$\begin{split} \mathbb{E}_{\tau}[\mathbf{1}_{S}^{\top}\boldsymbol{D}\mathbf{1}_{S}] &= \sum_{i \in V} \boldsymbol{d}(i) \cdot \mathbb{P}[i \in S] \\ &= \sum_{i \in V, \boldsymbol{z}_{sc}(i) < 0} \boldsymbol{d}(i) \cdot \mathbb{P}[i \in S \wedge S = S_{\tau}] + \sum_{i \in V, \boldsymbol{z}_{sc}(i) \geq 0} \boldsymbol{d}(i) \cdot \mathbb{P}[i \in S \wedge S \neq S_{\tau}] \\ &= \sum_{i \in V, \boldsymbol{z}_{sc}(i) < 0} \boldsymbol{d}(i) \cdot \mathbb{P}[\boldsymbol{z}_{sc}(i) < \tau \wedge \tau < 0] + \sum_{i \in V, \boldsymbol{z}_{sc}(i) \geq 0} \boldsymbol{d}(i) \cdot \mathbb{P}[\boldsymbol{z}_{sc}(i) \geq \tau \wedge \tau \geq 0] \end{split}$$

where we use the centering of z_{sc} the definition of S and that the event $\{i \in S \land S = S_{\tau}\}$ can be rewritten as the event $\{i < \tau \land \tau < 0\}$ (the other case is analogous).

Let i be a vertex with $\mathbf{z}_{sc}(i) < 0$, then the probability $\mathbb{P}[i \in S \land S = S_{\tau}]$ is exactly $\mathbf{z}_{sc}(i)^2$ by choice of the density function of τ (again the case for i with $\mathbf{z}_{sc}(i)$ non-negative is analgous). Thus, summing over all vertices, we obtain

$$\mathbb{E}_{\tau}[\mathbf{1}_{S}^{\top}\boldsymbol{D}\mathbf{1}_{S}] = \sum_{i \in V, \boldsymbol{z}_{sc}(i) < 0} \boldsymbol{d}(i) \cdot \mathbb{P}[\boldsymbol{z}_{sc}(i) < \tau \wedge \tau < 0] + \sum_{i \in V, \boldsymbol{z}_{sc}(i) \geq 0} \mathbb{P}[\boldsymbol{z}_{sc}(i) \geq \tau \wedge \tau \geq 0]$$

$$= \sum_{i \in V} \boldsymbol{d}(i) \cdot \boldsymbol{z}_{sc}(i)^{2} = \boldsymbol{z}_{sc}^{\top}\boldsymbol{D}\boldsymbol{z}_{sc}.$$

Therefore, we can plug in our result directly into Equation 5.6 and the proof is completed by dividing both sides by $\mathbb{E}_{\tau}[\mathbf{1}_{S}^{\top}\boldsymbol{D}\mathbf{1}_{S}]$.

While Theorem 5.3.2 only ensures our claim in expectation, this is already sufficient to conclude that there exists some set S that satisfies the same guarantees deterministically, as you will prove in Problem Set 4. This is often called the *probabilistic method of expectation* and can be seen from the definition of expectation. We have thus proven the upper bound of Cheeger's inequality.

5.4 Conclusion

Today, we have introduced the concepts of conductance and formalized expanders and expander decompositions. These are crucial concepts that you will encounter often in literature and also again in this course. They are a key tool in many recent breakthroughs in Theoretical Computer Science.

In the second part of the lecture (the main part), we discussed Cheeger's inequality which allows to relate the second eigenvalue of the normalized Laplacian to a graphs conductance. We summarize the full statement here.

Theorem 5.4.1 (Cheeger's Inequality). We have
$$\frac{\lambda_2(N)}{2} \leq \phi(G) \leq \sqrt{2 \cdot \lambda_2(N)}$$
.

We point out that this Theorem is tight as you will show in the exercises. The proof for Cheeger's inequality is probably the most advanced proof, we have seen so far in the course. The many tricks that make the proof work might sometimes seem a bit magical but it is important to remember that they are a result of many people polishing this proof over and over. The proof techniques used are extremely useful and can be re-used in various contexts. We therefore strongly encourage you to really understand the proof yourself!

Bibliography

 $[\mathrm{Spi}19]\,$ Daniel A Spielman. Spectral and Algebraic Graph Theory, 2019.