# **GRU Action Forecast**



# **Table of Contents**

- Table of Contents
- Todo
- Generate Dataset
  - Input
  - Output files
- Create GRU Model
  - Input
  - Output
- · Test the model
  - Input
  - Output
- · Predict using the model
  - input
  - output

# Todo

- 1. change trainning data format
- 2. all global variables should read from a configuration file
- 3. optimize Debug
- 4. optimize logging
- 5. clean code make all definitions at begining
- 6. separate plot function from data process code
- 7. 🛠 🎯 use class

- 8. send Test output to a file for future reference
- 9. train and test data should be the same other than start/end date
- 10. read output prediction data, find out accuracy
- 11. get rid of zigzagplus1.py
- 12. read any line of dataset, plot it on screen
- 13. write unit test for all functions and classes

## **Generate Dataset**

- Define Logger class for whole project
- Define global variables in cofig.ini
- load global variables from cofig.ini
- Generate dataset Source Code

```
def gen_zigzag_patterns(query_start, query_end):
    ...
    return ohlc_df, patterns_df
```

| ohlc_df                   |          |          |          |          |        |  |
|---------------------------|----------|----------|----------|----------|--------|--|
|                           | 0pen     | High     | Low      | Close    | Volume |  |
| Datetime                  |          |          |          |          |        |  |
| 2023-01-02 18:00:00       | 3872.998 | 3877.176 | 3863.860 | 3865.983 | 0      |  |
| 2023-01-02 18:01:00       | 3866.128 | 3867.372 | 3865.378 | 3865.980 | 0      |  |
| 2023-01-02 18:02:00       | 3865.878 | 3866.878 | 3865.360 | 3865.881 | 0      |  |
| 2023-01-02 18:03:00       | 3865.742 | 3865.742 | 3862.860 | 3863.613 | 0      |  |
| 2023-01-02 18:04:00       | 3863.363 | 3863.363 | 3860.742 | 3860.878 | 0      |  |
| ×                         |          |          |          |          |        |  |
| 2023-12-29 16:08:00       | 4768.076 | 4768.076 | 4767.564 | 4767.817 | 0      |  |
| 2023-12-29 16:09:00       | 4767.564 | 4768.079 | 4767.564 | 4768.079 | 0      |  |
| 2023-12-29 16:10:00       | 4767.826 | 4768.127 | 4767.817 | 4767.817 | 0      |  |
| 2023-12-29 16:11:00       | 4767.690 | 4767.820 | 4767.687 | 4767.817 | 0      |  |
| 2023-12-29 16:12:00       | 4767.567 | 4767.877 | 4767.070 | 4767.070 | 0      |  |
|                           |          |          |          |          |        |  |
| [291380 rows x 5 columns] |          |          |          |          |        |  |

| patterns_df |          |          |       |  |  |  |  |
|-------------|----------|----------|-------|--|--|--|--|
|             |          | Price    | Label |  |  |  |  |
| Datetime    |          |          |       |  |  |  |  |
| 2023-01-02  | 18:07:00 | 3867.372 | HH    |  |  |  |  |
| 2023-01-02  | 20:27:00 | 3820.613 | LL    |  |  |  |  |
| 2023-01-03  | 00:45:00 | 3850.378 | LH    |  |  |  |  |
| 2023-01-03  | 01:06:00 | 3846.426 | HL    |  |  |  |  |
| 2023-01-03  | 01:31:00 | 3851.110 | HH    |  |  |  |  |
|             |          |          |       |  |  |  |  |
| 2023-12-29  | 15:20:00 | 4770.626 | HL    |  |  |  |  |
| 2023-12-29  | 15:28:00 | 4776.177 | HH    |  |  |  |  |
| 2023-12-29  | 15:54:00 | 4765.623 | LL    |  |  |  |  |
| 2023-12-29  | 15:59:00 | 4772.629 | LH    |  |  |  |  |
| 2023-12-29  | 16:12:00 | 4767.070 | HL    |  |  |  |  |



• generate plots





✓ ⊌ Need explaination of above image, ? How to generate buy/sell points based on the image above ⊌ ? Better to have plot to support.

# Input

SQLite database file: [data/stock\_bigdata\_2019-2023.db]

# **Output files**

1. traning dataset

- 2. testing dataset
- 5 column data group
- 1. day of weeek
- 2. time of day
- 3. close price
- 4. velocity
- 5. accelerat
- first column
  - 1=long
  - -1=short

total 60 points end by long/short point for each row which will be total of 5X60=300 numbers

#### **Create GRU Model**

Generate GRU Action Forecast model

### Input

- Trainning Dataset
- Testing Dataset

### **Output**

• /GRU model with LH fixlen data 501.pth

#### Test the model

• Test model get R-Square and MSE

#### Input

/GRU model with LH fixlen data 501.pth

#### **Output**

data/SPX\_1m\_HL\_80\_500\_GRU\_fixlen\_500.txt

# Predict using the model

predict from testing data by using previous generated model that saved in a file

### input

- the model file name is defined in config.ini
- the test data file name is defined in config.ini

#### output

the predict result file name is defined in config.ini

```
Target[1.] : Output[0.9788] -> Signal[1.0]
Target[1.] : Output[0.9798] -> Signal[1.0]
Target[1.] : Output[0.9942] -> Signal[1.0]
Target[1.] : Output[0.9789] -> Signal[1.0]
Target[1.] : Output[0.9650] -> Signal[1.0]
Target[1.] : Output[0.9837] -> Signal[1.0]
. . . . . .
2024-09-24 10:31:19,875 - gru - INFO - 1. Load testing data from data/SPX_1m_TestingData HL 80 !
2024-09-24 10:31:21,394 - gru - INFO - Data shape: (1684, 80, 5)
2024-09-24 10:31:21,394 - gru - INFO - Targets shape: (1684, 1)
2024-09-24 10:31:21,394 - gru - INFO - 2. Define dataset and dataloader
2024-09-24 10:31:21,394 - gru - INFO - 3. Instantiate the model, define the loss function and the
2024-09-24 10:31:21,394 - gru - INFO - Number of layers: 5
2024-09-24 10:31:21,394 - gru - INFO - 4. Load trained model from models/GRU_model_with_LH_fixle
2024-09-24 10:31:21,394 - gru - INFO - 5. Start testing loop
2024-09-24 10:31:21,394 - gru - INFO - Randomly selected 10 rows and their corresponding outputs
2024-09-24 10:31:21,418 - gru - INFO - Test Output: 1.0135 => Categorized Output: 1.0,
2024-09-24 10:31:21,421 - gru - INFO - Test Output: -1.0031 => Categorized Output: -1.0,
2024-09-24 10:31:21,435 - gru - INFO - Test Output: -1.0092 => Categorized Output: -1.0,
2024-09-24 10:31:21,449 - gru - INFO - Test Output: 1.0013 => Categorized Output: 1.0,
2024-09-24 10:31:21,466 - gru - INFO - Test Output: -0.9915 => Categorized Output: -1.0,
2024-09-24 10:31:21,477 - gru - INFO - Test Output: -1.0087 => Categorized Output: -1.0,
2024-09-24 10:31:21,483 - gru - INFO - Test Output: -1.0060 => Categorized Output: -1.0,
2024-09-24 10:31:21,499 - gru - INFO - Test Output: -0.9803 => Categorized Output: -1.0,
2024-09-24 10:31:21,501 - gru - INFO - Test Output: -1.0313 => Categorized Output: -1.0,
2024-09-24 10:31:21,516 - gru - INFO - Test Output: 1.0100 => Categorized Output: 1.0,
2024-09-24 10:31:21,534 - gru - INFO - Test Output: -0.9957 => Categorized Output: -1.0,
2024-09-24 10:31:21,538 - gru - INFO - Test Output: 0.9820 => Categorized Output: 1.0,
2024-09-24 10:31:21,551 - gru - INFO - Test Output: -1.0023 => Categorized Output: -1.0,
2024-09-24 10:31:21,566 - gru - INFO - Test Output: 0.9771 => Categorized Output: 1.0,
2024-09-24 10:31:21,583 - gru - INFO - Test Output: 1.0199 => Categorized Output:
2024-09-24 10:31:21,583 - gru - INFO - Test Output: -1.0413 => Categorized Output: -1.0,
2024-09-24 10:31:21,603 - gru - INFO - Test Output: 0.9827 => Categorized Output: 1.0,
2024-09-24 10:31:21,617 - gru - INFO - Test Output: 0.9888 => Categorized Output: 1.0,
2024-09-24 10:31:21,632 - gru - INFO - Test Output: 1.0297 => Categorized Output: 1.0,
2024-09-24 10:31:21,637 - gru - INFO - Test Output: -1.0142 => Categorized Output: -1.0,
2024-09-24 10:31:21,637 - gru - INFO - =============== Done
```

Target[1.] : Output[0.9852] -> Signal[1.0]
Target[1.] : Output[0.9828] -> Signal[1.0]