Administrative

- Delay in Matlab2 grades; Matlab3 comments this week
- Matlab4 due on Thursday
- Trunk schedule change (fix!) for end-of term
 - no exam during finals week (last year's plan)
 - also no quiz 3; usually each quiz is 5% of grade. I'd like to keep each quiz at 5% of grade
- •Thursday office hours: 3-4 ok, can't do 4-5. When to switch?

Clarifications on Matlab4

• Part 1

- For non-fully-padded case; pad x and h to be same length as the longer of the two
- For the h(n) and x(n) given, you won't be able to hear the time aliasing, but plot of differences should show where it is

Part 2

- Better to compare DCT and FFT-based compression for 'on-screen' signal
- -Note that Matlab's DCT is not just a different normalization, but actually a different variant of the DCT than covered in book. However, Matlab's documentation will give you the formulas you need, as the PDF states

EE-125: Digital Signal Processing

Metrics for DFT-based spectrum analysis

Professor Tracey

Reminder: from lecture on windowing

- The DFT/FFT have two main uses
 - -Fast FFT-based FIR filtering (overlap/add, etc)
 - -Spectrum estimation / spectral analysis
- We may want to do spectral analysis in order to:
 - Learn something about a signal, either by human or automated analysis of the frequency content
 - Do processing in frequency domain (mp3, etc), then go back to time domain
- We'll consider three main topics
 - Deterministic, non-time-varying signals, possibly in random noise
 - Time-varying but non-random signals (spectrograms)
 - Random processes / noise (periodograms)

Reminder: Example: 3 sinusoids, 2 closely spaced, Rectangular window

- When doing DFT, we are applying a window (even if just boxcar)
- 2. Thus, spectrum estimate is given by convolution: $V(\omega) = X(\omega) * W(\omega)$
- 3. By increasing the window length, we get smaller mainlobe, and can resolve signals
- 4. High sidelobes can distort signal & mask weak signals

Figure 7.4.2 Magnitude spectrum for the signal given by (7.4.8), as observed through a rectangular window.

Reminder: Example: 3 sinusoids, 2 closely spaced, Hanning window

- By using other windows, we can suppress sidelobes at cost of widening the main lobe
- Intuition: window helps make signal look smoothly periodic
- 3. Mainlobe / sidelobe tradeoff

Figure 7.4.4 Magnitude spectrum of the signal in (7.4.8) as observed through a Hanning window.

Some common windows: Table 10.2 in book

Window type	Approx. main lobe width	Peak sidelobe, dB		
Boxcar (rectangle)	4 pi/M	-13		
Bartlett (triangle)	8 pi / M	-26		
Hanning	8 pi / M	-31		
Hamming	8 pi /M	-41		
Blackman	12 pi / M	-57		

Outline for today

- Some common misconceptions
 - -Spectrum is really sparse (picket fence effect)
 - -Zero-padding improves spectral resolution (i..e, my resolution is what the FFT gives me)
- Harris paper
 - -Famous paper on window design for spectrum estimation

Window Figures of Merit:

"On the use of windows for harmonic analysis with the Discrete Fourier Transform," F. Harris, Proc IEEE, 1978.

TABLE I
WINDOWS AND FIGURES OF MERIT

WINDOW		HIGHEST SIDE- SIDE- LOBE LOBE FALL- LEVEL OFF		COHERENT GAIN	EQUIV NOISE BW	3.0-dB BW (BINS)	SCALLOP LOSS (dB)	WORST CASE PROCESS LOSS	6.0-dB BW (BINS)	OVERLAP CORRELATION (PCNT)	
		(dB)	(dB/OCT)		(BINS)	L		(dB)		75% OL	50% OL
RECTANGLE	<u> </u>	-13	-6	1.00	1.00	0.89	3.92	3.92	1.21	75.0	50.0
TRIANGLE		-27	-12	0.50	1.33	1.28	1.82	3.07	1.78	71.9	25.0
cos ^a (x)	a - 1.0	-23	-12	0.64	1.23	1.20	2.10	3.01	1.65	75.5	31.8
HANNING	a = 2.0	-32	-18	0.50	1.50	1.44	1.42	3.18	2.00	65.9	16.7
	a = 3.0	-39	- 24	0.42	1.73	1.66	1.08	3.47	2.32	56.7	8.5
	a = 4.0	-47	-30	0.38	1.94	1.86	0.86	3.75	2.59	48.6	4.3
HAMMING		-43,	-6	0.54 /	1.36	1.30	1.78	3.10	1.81	70.7	23.5
RIESZ		-21	~12	0.67	1.20	1.16	2.22	3.01	1.59	76.5	34,4
RIEMANN		-26	-12	0.59	1.30	1.26	1.89	3.03	1.74	73.4	27,4
DE LA VALL POUSSIN	E-	-53	-24	0.38	1.92	1.82	0.90	3.72	2.55	49,3	5.0
TUKEY	a = 0.25	-14	-18	0.88	1.10	1.01	2.96	3.39	1.38	74,1	44,4
1	a = 0.50	-15	-18	0.75	1.22	1.15	2.24	3,11	1.57	72.7	36.4
	4 - 0.75	-19	-18	0.63	1.36	1.31	1.73	3.07	1.80	70.5	25.1
BOHMAN	·	-46	-24	0.41	1.79	1.71	1.02	3.54	2.38	54.5	7.4
POISSON	a = 2.0	-10									
POISSON	a = 3.0	-19 -24	-6	0.44	1.30	1.21	2.09	3.23	1.69	69.9	27.8
ļ.	a - 4.0	-31	-6 -6	0.32 0.25	1.65	1.45	1.46	3.64	2.08	54.8	15.1
		31		0.25	2;08	1.75	1.03	4.21	2.58	40.4	7.4
HANNING-	a - 0.5	-35	- 18	0.43	1.61	1.54	1.26	3.33	2.14	61.3	12.6
POISSON	a = 1.0	-39	-18	0.38	1.73	1.64	1.11	3.50	2.30	56.0	9,2
	a = 2.0	NONE	-18	0.29	2.02	1.87	0.87	3.94	2.65	44.6	4.7
CAUCHY	a - 3.0	-31	-6	0.42	1.48	1.34		3.40	1.00	51.6	20.2
	a = 4.0	-35	-6	0.42	1.48	1.50	1.71 1.36	3.40	1.90	61.6	20.2 13.2
Į.	a = 5.0	-30	~6	0.33	2.06	1.50	1.36	3.83 4.28	2.20 2.53	48.8 38.3	9.0
GAUSSIAN	a = 2.5									<u> </u>	
GAUSSIAN	a = 2.5 a = 3.0	-42 -55	-6 -6	0.51	1.39	1.33	1.69	3.14	1.86	67.7	20.0
	a = 3.5	-69	-6	0.43 0.37	1.64 1.90	1.55 1.79	1,25 0,94	3.40 3.73	2.18 2.52	57,5 47.2	10.6 4.9
								3.73		77.2	7.3
DOLPH.	a = 25	-50	_	0.52	1 20	1		242	4.05		

Window Figures of Merit:

"On the use of windows for harmonic analysis with the Discrete Fourier Transform," F. Harris, Proc IEEE, 1978.

TABLE I
WINDOWS AND FIGURES OF MERIT

WINDOW	HIGHEST SIDE- LOBE LEVEL	SIDE- LOBE FALL- OFF	COHERENT GAIN	EQUIV NOISE BW	3.0-dB BW (BINS)	SCALLOP LOSS (dB)	WORST CASE PROCESS LOSS	6.0-dB BW (BINS)	OVERLAP CORRELATION (PCNT)	
	(dB)	(dB/OCT)		(BINS)			(dB)		75% OL	50% OL
RECTANGLE	-13	-6	1.00	1.00	0.89	3.92	3.92	1.21	75.0	50.0
TRIANGLE	-27	-12	0.50	1.33	1.28	1.82	3.07	1.78	71.9	25.0
COS ^Q (X) a = 1, HANNING a = 2, a = 3, a = 4,	0 -32 0 -39	-12 -18 -24 -30	0.64 0.50 0.42 0.38	1.23 1.50 1.73 1.94	1.20 1.44 1.66 1.86	2.10 1.42 1.08 0.86	3.01 3.18 3.47 3.75	1.65 2.00 2.32 2.59	75.5 65.9 56.7 48.6	31.8 16.7 8.5 4.3
HAMMING	-43,	-6	0.54 /	1.36	1.30	1.78	3.10	1.81	70.7	23.5
RIESZ	-21	~12	0.67	1.20	1.16	2.22	3.01	1.59	76.5	34,4
RIEMANN	-26	-12	0.59	1.30	1.26	1.89	3.03	1.74	73.4	27,4
DE LA VALLE- POUS\$IN	-53	-24	บรล	1 92	1 82	0.00	3 72	255	40.2	5.0
TUKEY a = 0. a = 0. a = 0.	25 -14 50 -15 75 -19	mpo	rtan	t no	ote;	На	rris	pap	per	44,4 36,4 25,1
BOHMAN	-46	CCLIP	200	no	70 K	o n:	add:	n a		7.4
POISSON a = 2.	0 -19 0 -24	assumes no zero-padding								27.8 15.1
a-4.	0 -31	-6	0.25	2;08	1.75	1.03	4.21	2.58	40.4	7.4
HANNING- a = 0. POISSON a = 1. a = 2.	-39	18 18 18	0.43 0.38 0.29	1.61 1.73 2.02	1.54 1.64 1.87	1.26 1.11 0.87	3.33 3.50 3.94	2.14 2.30 2.65	61,3 56.0 44.6	12.6 9.2 4.7
CAUCHY a - 3. a - 4. a - 5.	-35	-6 -6 -6	0.42 0.33 0.28	1.48 1.76 2.06	1.34 1.50 1.68	1.71 1.36 1.13	3.40 3.83 4.28	1.90 2.20 2.53	61.6 48.8 38.3	20.2 13.2 9.0
GAUSSIAN α = 2. α = 3. α = 3.	-55	-6 -6 -6	0.51 0.43 0.37	1.39 1.64 1.90	1.33 1.55 1.79	1.69 1,25 0.94	3.14 3.40 3.73	1.86 2.18 2.52	67.7 57.5 47.2	20.0 10.6 4.9
DOLPH. a=2	-50	_	0.52	1 20			2.12	4.05		

AWGN – Additive Gaussian White Noise

- Additive added to signal, passes through system $y = h^*(x+w_{in}) = h^*x + w$
- Gaussian each individual sample is drawn from a Gaussian distribution: $N(0, \sigma^2)$ (sigma*randn in Matlab)
- White temporally uncorrelated; each time sample is unrelated to previous or next, so get "white" spectrum

We saw that power spectrum is Fourier transform of autocorrelation

$$\gamma_{ww}(l) = \sigma_w^2 \delta(l)$$

Example of integration time benefit for tonal signal in noise

Code integration_time_example.m uploaded to Trunk

