Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of *Scutellaria lateriflora*

Zachary Marsh^{a,b}, Tianhong Yang^{a,b}, Luis Nopo-Olazabal^{a,b}, Shuchi Wu^a, Taylor Ingle^{a,1}, Nirmal Joshee^c and Fabricio Medina-Bolivar^{a,b,*}

^a Arkansas Biosciences Institute, Arkansas State University, State University, AR 72467, USA

^b Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA

^cAgricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA

*Corresponding author:

Fabricio Medina-Bolivar, Ph.D.

Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639,

State University, AR 72467, United States.

Tel.: +1 870 680 4319; fax +1 870 680 4348.

E-mail address: fmedinabolivar@astate.edu

¹Current address: National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA

Figure S1. Molecular characterization of *Scutellaria lateriflora* hairy root line 4. Genomic DNA extracted from the root tissue was analyzed by PCR. Analysis shows the presence of the rolC and aux1 genes from the T-DNA of A. rhizogenes. A negative PCR result for the virD2 gene confirms that no Agrobacterium remained in the root tissue. Each reaction includes + (Ri plasmid) and - (no template) control.

Figure S2. Values of conductivity (**A**) and pH (**B**) of the spent medium of hairy root cultures of *Scutellaria lateriflora* line 4 before elicitor treatment. Cultures were incubated for 30 days under continuous light or darkness. Each value represents the average + standard deviation of three biological replicates. C, control; β-CD, methyl-β-cyclodextrin; MeJA, methyl jasmonate.

Figure S3. Growth index of *Scutellaria lateriflora* hairy roots line 4 grown under either continuous darkness or light. Each treatment represents the average + standard deviation of three biological replicates. Cultures were elicited with methyl- β -cyclodextrin (β -CD) alone or in combination with methyl jasmonate (MeJA) for 24 h before harvesting of root tissue.

Figure S4: UV spectra and retention times of the seven phenolics identified in the hairy root tissue of *S. lateriflora* line 4. Rt: HPLC retention time.

Figure S5: LC-mass spectrometry analyses of baicalein (6), scutellarein (4) and wogonin (7). *Left*: Chemical structure and fragmentation pattern. *Right*: Full MS scan and MSⁿ spectra of each standard under positive ion mode with an ESI source.

Figure S6: LC-mass spectrometry analyses of baicalin (3), scutellarin (2) and wogonoside (5). *Left:* Chemical structure and fragmentation pattern. *Righ*t: Full MS scan and MSⁿ spectra of each standard under positive ion mode with an ESI source.

Figure S7. LC-mass spectrometry analyses of verbascoside (1). *Left:* Chemical structure. *Right:* Full MS scan and MSⁿ spectra under positive ion mode with an ESI source. *Below:* Fragmentation pattern.

Figure S8. HPLC chromatograms (UV 277 nm) of methanol extracts from the tissue of hairy root cultures of *Scutellaria lateriflora* line 4 incubated under continuous light. Cultures were treated with methyl-β-cyclodextrin (β-CD) at day 30 for 24 h. 1, Verbascoside; 2, scutellarin; 3, baicalin; 4, scutellarein; 5, wogonoside; 6, baicalein; 7, wogonin.

Figure S9. HPLC chromatograms (UV 277 nm) of methanol extracts from the tissue of hairy root cultures of *Scutellaria lateriflora* line 4 incubated under continuous light. Cultures were treated with methyl jasmonate (MeJA) alone or in combination with methyl- β -cyclodextrin (β -CD) at day 30 for 24 hours. 1, Verbascoside; 2, scutellarin; 3, baicalin; 4, scutellarein; 5, wogonoside; 6, baicalein; 7, wogonin.

Figure S10. HPLC chromatograms (UV 277 nm) of methanol extracts from the tissue of hairy root cultures of *Scutellaria lateriflora* line 4 incubated under continuous darkness. Cultures were treated with methyl-β-cyclodextrin (β-CD) at day 30 for 24 hours. **1**, Verbascoside; **2**, scutellarin; **3**, baicalin; **4**, scutellarein; **5**, wogonoside; **6**, baicalein; **7**, wogonin.

Figure S11. HPLC chromatograms (UV 277 nm) of methanol extracts from the tissue of hairy root cultures of *Scutellaria lateriflora* line 4 incubated under continuous darkness. Cultures were treated with methyl jasmonate (MeJA) alone or in combination with methyl-β-cyclodextrin (β-CD) at day 30 for 24 hours. **1**, Verbascoside; **2**, scutellarin; **3**, baicalin; **4**, scutellarein; **5**, wogonoside; **6**, baicalein; **7**, wogonin.

Table S1. Yield of phenolic compounds in the tissue of hairy root cultures of *Scutellaria lateriflora* line 4 incubated under continuous light and treated with different elicitors. Each value represents the average yield \pm standard deviation of three biological replicates. Yields are expressed in mg/g dry wt root. β -CD; methyl- β -cyclodextrin; MeJA; methyl jasmonate.

		β-CD				100 μM MeJA + β-CD		
	Control	0.75 mM	7.5 mM	15 mM	100 μM MeJA	0.75 mM	7.5 mM	15 mM
Verbascoside (1)	9.584	11.88	8.057	10.04	12.974	12.225	13.054	13.797
	± 4.11	± 1.12	±3.03	± 2.48	± 2.81	± 3.74	± 6.10	± 1.78
Scutellarin (2)	0.233	0.362	0.211	0.254	0.329	0.332	0.290	0.377
	± 0.09	± 0.06	± 0.09	± 0.09	± 0.11	±0.06	± 0.12	±0.13
Scutellarein (3)	0.033	0.010	0.005	0.030	0.009	0.011	0.016	0.003
	± 0	± 0.005	± 0	± 0	± 0.002	± 0.012	± 0.007	± 0.004
Baicalin	0.510	0.400	0.202	0.071	0.435	0.515	0.397	0.510
(4)	± 0.46	± 0.30	± 0.20	± 0.04	± 0.25	± 0.23	± 0.45	± 0.26
Baicalein	3.635	2.194	1.955	5.712	3.615	3.272	4.88	3.481
(5)	± 2.80	± 2.69	± 0.75	± 0.56	± 1.50	± 2.27	± 5.21	± 1.19
Wogonoside	0.317	0.412	0.207	0.089	0.432	0.338	0.350	0.330
(6)	± 0.37	± 0.29	± 0.14	± 0.05	± 0.30	± 0.26	± 0.45	± 0.18
Wogonin	0.557	0.322	0.352	0.751	0.479	0.274	0.284	0.334
(7)	± 0.42	±0.44	± 0.17	± 0.15	± 0.21	± 0.16	± 0.35	± 0.06

Table S2. Yield of phenolic compounds in the tissue of hairy root cultures of *Scutellaria lateriflora* line 4 incubated under continuous dark and treated with different elicitors. Each value represents the average yield \pm standard deviation of three biological replicates. Yields are expressed in mg/g dry wt root. β -CD; methyl- β -cyclodextrin; MeJA; methyl jasmonate.

			β-CD			β-CD + 100 μM MeJA		
	Control	0.75 mM	7.5 mM	15 mM	100 μM MeJA	0.75 mM	7.5 mM	15 mM
Verbascoside (1)	14.481	11.423	13.608	16.462	16.191	10.725	11.121	15.537
	± 1.65	± 2.81	± 3.11	± 1.14	± 3.91	± 1.18	± 3.84	± 2.87
Scutellarin (2)	0.315	0.228	0.315	0.453	0.356	0.230	0.211	0.355
	± 0.07	± 0.06	± 0.09	± 0.01	± 0.05	± 0.04	± 0.02	± 0.16
Scutellarein (3)	0.010	0.009	0.005	0.022	0.013	0.017	0.003	0.036
	± 0.01	± 0.01	± 0	± 0.02	± 0.01	± 0.01	± 0	± 0.04
Baicalin (4)	0.558	0.337	0.361	0.867	0.698	0.173	0.101	0.363
	± 0.14	± 0.34	± 0.21	± 0.33	± 0.36	± 0.15	± 0.12	± 0.32
Baicalein	0.242	0.282	0.427	0.186	0.449	0.688	0.606	0.670
(5)	± 0.13	± 0.32	± 0.20	± 0.15	± 0.29	± 0.20	± 0.26	± 0.36
Wogonoside	0.335	0.253	0.212	0.515	0.360	0.099	0.019	0.227
(6)	± 0.14	± 0.29	± 0.08	± 0.25	± 0.18	± 0.08	± 0.02	± 0.16
Wogonin	0.203	0.162	0.162	0.218	0.212	0.386	0.191	0.253
(7)	± 0.25	± 0.17	± 0.26	± 0.17	± 0.19	± 0.18	± 0.18	± 0.15