PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12Q-1/68	A2	 (11) International Publication Number: WO 98/53097 (43) International Publication Date: 26 November 1998 (26.11.98)
(21) International Application Number: PCT/CAS (22) International Filing Date: 21 May 1998 (2)		CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
(30) Priority Data: 08/861,774 22 May 1997 (22.05.97)	ι	Published Without international search report and to be republished upon receipt of that report.
 (71) Applicant: TERRAGEN DIVERSITY INC. [CA/CA]; sity of British Columbia, Suite 300, 2386 East Micouver, British Columbia V6T 1Z3 (CA). (72) Inventors: WATERS, Barbara; 5706 Timbervalle Delta, British Columbia V4L 2E6 (CA). MIAO, V W.; 13750 31 Avenue, Surrey, British Columbia V(CA). YAP, Wai, Ho; 5 Elite Terrace, Singapore (SG). SEOW, Kah, Tong; 8 Jln Aneka, Serene Pa Baru, Johor 80300 (MY). (74) Agent: DEETH WILLIAMS WALL; National Bank Suite 400, 150 York Street, Toronto, Ontario M (CA). 	ey Roa ivian, l V4P 2I e 4587 rk, Joh	d, 2., 17 18 pp.

(54) Title: METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES

(57) Abstract

Degenerate primers which hybridize with various classes of antibiotic biosynthesis gene were used to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil or lichens by combining a sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes, cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and isolating the amplified DNA.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

codes doed to identify	- miles pu	.,				• •
A Ibania	ES	Spain	LS	Lesotho	SI	Slovenia
			LT	Lithuania	SK	Slovakia
		France	LU	Luxembourg	SN	Senegal
		Gabon	LV	Latvia	SZ	Swaziland
		United Kingdom	MC	Monaco	TD	Chad
		•	MD	Republic of Moldova	TG	Togo
_			MG	Madagascar	ТJ	Tajikistan
	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	GR	Greece		Republic of Macedonia	TR	Turkey
	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	IE	Ireland	MN	Mongolia	UA	Ukraine
	IL	Israel	MR	Mauritania	UG	Uganda
Belarus	IS	Iceland	MW	Malawi	US	United States of America
Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
•	KE	Kenya	NL	Netherlands	YU	Yugoslavia
Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
Cameroon		Republic of Korea	PL.	Poland		
China	KR	Republic of Korea	PT	Portugal		,
Cuba	KZ	Kazakstan	RO	Romania		
	LC	Saint Lucia	RU	Russian Federation		
	LI	Licchtenstein	SD	Sudan		
Denmark	LK	Sri Lanka	SE	Sweden		
Estonia	LR	Liberia	SG	Singapore		
	Albania Armenia Australia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark	Albania ES Armenia FI Australia FR Australia GA Azerbaijan GB Bosnia and Herzegovina GE Barbados GII Belgium GN Burkina Faso GR Bulgaria HU Benin IE Brazil IL Belarus IS Canada IT Central African Republic JP Congo KE Switzerland KG Cotte d'Ivoire KP Cameroon China KR Cuba KZ Czech Republic LC Germany LI Denmark LK	Albania ES Spain Amnenia FI Finland Australia FR France Australia GA Gabon Azerbaijan GB United Kingdom Bosnia and Herzegovina GE Georgia Barbados GII Ghana Belgium GN Guinea Burkina Faso GR Greece Bulgaria HU Hungary Benin IE Ireland Brazil IL Israel Belarus IS Iceland Canada IT Italy Central African Republic JP Japan Congo KE Kenya Switzerland KG Kyrgyzstan Cde d'Ivoire KP Democratic People's Cameroon China KR Republic of Korea Cuba KZ Kazakstan Czech Republic LC Saint Lucia Germany LI Liechtenstein Denmark LK Sri Lanka	Albania ES Spain LS Armenia FI Finland LT Austria FR France LU Australia GA Gabon LV Azerbaijan GB United Kingdom MC Bosnia and Herzegovina GE Georgia MD Barbados GII Ghana MG Belgium GN Guinea MK Burkina Faso GR Greece Bulgaria HU Hungary ML Benin IE Ireland MN Brazil IL Israel MR Belarus IS Iceland MW Canada IT Italy MX Central African Republic JP Japan NE Congo KE Kenya NL Switzerland KG Kyrgyzstan NO Cète d'Ivoire KP Democratic People's NZ Cameroon Republic of Korea PI Cuba KZ Kazakstan RO Czech Republic LC Saint Lucia RU Germany LI Licchtenstein SD Denmark LK Sri Lanka SE	Albania ES Spain LS Lesotho Amenia PI Finland LT Lithuania Austria FR France LU Luxembourg Australia GA Gabon LV Latvia Azerbaijan GB United Kingdom MC Monaco Bosnia and Herzegovina GE Georgia MD Republic of Moldova Barbados GII Ghana MG Madagascar Belgium GN Guinea MK The former Yugoslav Burkina Faso GR Greece Republic of Macedonia Bulgaria HU Hungary ML Mali Benin IE Ireland MN Mongolia Brazil IL Israel MR Mauritania Belarus IS Iceland MW Malawi Canada IT Italy MX Mexico Central African Republic JP Japan NE Niger Congo KE Kenya NL Netherlands Switzerland KG Kyrgyzstan NO Norway Côte d'Ivoire KP Democratic People's NZ New Zealand China KR Republic of Korea PI Poland China KR Republic of Korea PI Poland China KR Republic of Korea PI Portugal Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany LI Licchtenstein SD Sudan Denmark LK Sri Lanka SE Sweden	Albania ES Spain LS Lesotho SI Armenia F1 Finland LT Lithuania SK Australia FR France LU Luxembourg SN Australia GA Gabon LV Latvia SZ Azerbaijan GB United Kingdom MC Monaco TD Bosnia and Herzegovina GE Georgia MD Republic of Moklova TG Barbados GII Ghana MG Madagascar TJ Belgium GN Guinea MK The former Yugoslav TM Burkina Faso GR Greece Republic of Macedonia TR Bulgaria HU Hungary ML Mali TT Benin IE Ireland MN Mongolia UA Brazil IL Israel MR Mauritania UG Belarus IS Iceland MW Malawi US Canada IT Italy MX Mcxico UZ Central African Republic JP Japan NE Niger VN Congo KE Kenya NL Netherlands YU Switzerland KG Kyrgyzstan NO Norway ZW Cète d'Ivoire KP Democratic People's NZ New Zealand Cameroon Republic of Korea PI Portugal Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany I.I Licchtenstein SD Sudan Denmark LK Sri Lanka SE Sweden

- 1 -

METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES

DESCRIPTION

BACKGROUND OF THE INVENTION

This application relates to a method for the isolation of biosynthesis genes for antibiotics and other bioactive molecules from complex natural sources such as humus, soil and lichens.

5

Antibiotics play an important role in man's efforts to combat disease and other economically detrimental effects of microorganisms. Traditionally, antibiotics have been identified by screening microorganisms, especially those found naturally in soil, for their ability to produce an antimicrobial substance. In some cases, the gene or genes responsible for antibiotic synthesis have then been identified and cloned into producer organisms which produce the antibiotic in an unregulated manner for commercial applications. However, it has been estimated that less than 1% of the microorganisms present in soil are culturable. Torsvik et al., *Appl. Environ. Microbiol.* 56: 782-787 (1990). Thus, much of the genetic diversity potentially available in soil microorganisms is unavailable through traditional techniques.

15

10

As pathogenic microorganisms become increasingly resistant to known antibiotics, it would, however, be highly desirable to be able to access the reservoir of genetic diversity found in soil, and to facilitate the exploration of new species of antibiotics which may be made by the vast numbers of unculturable organisms found there. It would further be desirable to have access to novel biosynthetic enzymes and the genes encoding such enzymes, which could be used in recombinant organisms for antibiotic production or for *in vitro* enzymatic synthesis of desirable compounds. Thus, it is an object of the present invention to provide a method and compositions for isolating DNA and DNA fragments encoding enzymes relevant to the production of pharmaceutically active molecules such as antibiotic biosynthesis enzymes.

25

20

5

10

15

20

25

30

SUMMARY OF THE INVENTION

We have now identified degenerate primers which hybridize with various classes of antibiotic biosynthesis genes, and have used such primers to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil by a method in accordance with the present invention comprising the steps of:

- (a) combining a soil-derived sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes;
 - (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
 - (c) isolating the amplified DNA.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, antibiotic biosynthesis genes can be recovered from soil and lichens by a method comprising the steps of:

- (a) combining a humic or lichen-derived sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of an antibiotic biosynthesis gene;
- (b) cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and
 - (c) isolating the amplified DNA.

As used in the specification and claims of this application, the term "humic or lichen-derived sample" encompasses any sample containing the DNA found in lichens or in samples of humic materials including soil, mud, peat moss, marine sediments, and effluvia

5

10

15

20

25

30

from hot springs and thermal vents in accessible form for amplification, substantially without alteration of the natural ratios of such DNA in the sample. One exemplary form of a humic sample is a sample obtained by performing direct lysis as described by Barns et al., *Proc. Nat'l Acad. Sci. USA* 91:1609-1613 (1994) on a soil sample and then purifying the total DNA extract by column chromatography. Related extraction methods can be applied to the isolation of community DNA from other environmental sources. See, Trevors et al., eds. *Nucleic Acids in the Environment*, Springer Lab Manual (1995). Lichen-derived samples may be prepared from foliose lichens by the method of fungal DNA extraction described by Miao et al., *Mol. Gen. Genet.* 226: 214-223 (1991). Specific non-limiting procedures for isolation of DNA from humic and lichen samples are set forth in the examples herein.

The humic or lichen-derived sample is combined with at least one, and optionally with several pairs of amplification primers under conditions suitable for polymerase chain reaction amplification. Polymerase chain-reaction (PCR) amplification is a well known process. The basic procedure, which is described in US Patent No. 4,683,202 and 4,683,195, which are incorporated herein by reference, makes uses of two amplification primers each of which hybridizes to a different one of the two strands of a DNA duplex. Multiple cycles of primer extension using a polymerase enzyme and denaturation are used to produce additional copies of the DNA in the region between the two primers. In the present invention, PCR amplification can be performed using any suitable polymerase enzyme, including Taq polymerase and Thermo SequenaseTM.

The amplification primers employed in the method of the invention are degenerate primer sets selected to hybridize with conserved regions of known antibiotic biosynthetic genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes. Each degenerate primer set of the invention includes multiple primer species which hybridize with one DNA strand, and multiple primer species which hybridize with the other DNA strand. All of the primer species within a degenerate primer set which bind to the first strand are the same length, and hybridize with the same target region of the DNA. These primers all have very similar sequences, but have a few bases different in each species to account for the observed variations in the target region. For this reason, they are called degenerate primers.

Similarly, all of the primers within a degenerate primer set which bind to the second strand are the same length, hybridize with the same target region of the DNA, and have very similar sequences with a few bases different in each species to account for the observed variations in the target region.

5

The degenerate primer sets of the invention are selected to hybridize to highly conserved regions of known antibiotic biosynthesis genes in such a way that they flank a region of several hundred (e.g. 300) or more base pairs such that amplification leads to the selective reproduction of DNA spanning a substantial portion of the antibiotic biosynthesis gene. Selection of primer sets can be made based upon published sequences for classes of antibiotic biosynthesis genes.

10

15

For example, for amplification of Type I polyketide synthase genes, we have designed primers based upon the conserved sequences of six beta-ketoacyl carrier protein synthase domains of the erythromycin gene cluster. Donadio et al., Science 252: 675-679 (1991): Donadio and Staver, Gene 126: 147-151 (1993). These primers have the sequences 5'-GC(C/G) (A/G)T(G/C) GAC CCG CAG CG CGC-3' [SEQ ID No. 1] and

5'-GAT (C/G)(G/A)C GTC CGC (G/A)TT (C/G)GT (C/G)CC-3' [SEQ ID No. 2]. The expected size of the PCR product is 1.2 kilobase pairs. Other degenerate primer sets for Type I and Type II polyketide synthetase genes could be determined from sequence information available in Hutchinson and Fujii, Ann. Rev. Microbiol. 49: 201-238 (1995).

20

Type II polyketide synthase gene clusters are characterized by the presence of chain length factor genes which are arranged at the 3'-end of the ketosynthase genes. Primers were designed based on one conserved region near the 3'-end of the ketosynthase gene and one at the middle portion of the chain length factor gene. The sequences of one suitable set of amplification primers are:

25

30

5' CT(C/G)AC(G/C)(G/T)(C/G)GG(C/G)CGIAC(C/G)GC(C/G)AC(C/G)CG-3'SEQ ID No. 3 and

5' GTT(C/G)AC(C/G)GCGTAGAACCA(C/G)GCGAA-3'

SEQ ID No. 4

The expected size of the PCR product was 0.5 kilobase pairs. An alternative set of

degenerate primers has the sequence

5'-TTCGG(C/G)GGITTCCAG(T/A)(C/G)IGC(C/G)ATG

SEQ ID No. 5

and

5

15

20

25

30

5'-TC(C/G)A(G/T)(C/G)AG(C/G)GC(C/G)AI(C/G)GA(C/G)TCGTAICC SEQ ID No. 6. These primers were designed based upon consensus sequences for the regions flanking the Ks_{β} (chain length factor) genes. The consensus sequences are available from Hutchinson and Fujii, supra.

Primers were designed for beta-lactam biosynthetic genes on the basis of the conserved sequences of a number of isopenicillin N synthase genes as described in Aharanowitz et al., *Ann. Rev. Microbiol.* 46: 461-495 (1992). These primers have the sequences

10 5'-GG(C/G/T) TC(C/G) GG(C/G) TT(C/T) TTC TAC GC-3'

[SEQ ID No. 7]

and

5'-CCT (C/G)GG TCT GG(A/T) A(C/G)A G(C/G)A CG-3'

[SEQ ID No. 8].

The expected size of the PCR product is 570 base pairs. Other degenerate primer sets could be determined from sequence information available in Jensen and Demain, "Beta-Lactams" in *Genetics and Biochemistry of Antibiotic Production* (L.C. Vining and C, Studdard, eds.), pp 239-268, Butterworth-Heinemann, Newton, MA (1995).

For isolation of peptide synthetase genes, primers based on two of the conserved core sequences within the functional domains of peptide synthetase genes as described by Turgay and Marahiel, *Peptide Res.* 7: 238-241 (1994) were utilized. These primers had the sequence

5'-ATCTACAC(G/C)TC(G/C)GGCAC(G/C)AC(G/C)GGCAAGCC(G/C)AAGGG-3' SEQ ID No. 9

and

5'-A(A/T)IGAG(T/G)(C/G)ICCICC(G/C)(A/G)(A/G)(G/C)I(A/C)GAAGAA-3'

SEQ ID No. 10

The expected size of the PCR product is 1.2 kilobase pairs.

PCR amplification can also be used for isolating lichen-derived antibiotic biosynthesis genes and gene fragments. For isolation of Type I polyketide synthase genes from lichens, the primer set used was previously described by Keller et al. in *Molec. Appl. to*

PCT/CA98/00488

- 6 -

Food Safety Involving Toxic Microorganisms, J.L. Richard, ed., pp. 2630277 (1995), and had the following sequences.

5'-MGIGARGCIYTIGCIATGGAYCCICARCARMG

SEQ ID No. 11

and

5

10

15

20

25

30

5'-GGRTCNCCIARYTGIGTICCIGTICCRTGIGC

SEQ ID No. 12

The expected size of the PCR product is approximately 0.7 to 0.9 kilobases. Actual products evaluated ranged in size from 637 to 809 nucleotides (not including the 61 nt due to the primers).

Once the primers and the sample are cycled through sufficient thermal cycles to selectively amplify antibiotic biosynthetic DNA in the sample (generally around 25 cycles or more), the amplified DNA is isolated from the amplification mixture. Isolation can be accomplished in a variety of ways. For example, the PCR products can be isolated by electrophoresis on an agarose or polyacrylamide gel, visualized with a stain such as ethidium bromide and then excised from the gel for cloning. Primers modified with an affinity binding moiety such as biotin may also be used during the amplification step, in which case the affinity binding moiety can be used to facilitate the recovery. Thus, in the case of biotinylated primers, the amplified DNA can be recovered from the amplification mixture by coupling the biotin to a streptavidin-coated solid support, for example Dynal streptavidin-coated magnetic beads.

It will be appreciated that the DNA obtained as a result of this isolation will not generally be of a single type because of the degeneracy of the primers and the complexity of the initial sample. Thus, although these steps are sufficient to recover antibiotic biosynthesis genes from soil or lichen, it is preferable to further separate and characterize the individual species of amplified DNA.

This further separation and characterization can be accomplished by inserting the amplified DNA into an expression vector and cloning in a suitable host. The specific combination of vectors and hosts will be understood by persons skilled in the art, although bacterial expression vectors and bacterial hosts are generally preferred. Individual clones are then picked and the sequence of the cloned plasmid determined. While random selection has been employed successfully, selection of antibiotic biosynthesis gene-containing clones

5

10

15

20

25

30

can be facilitated by screening using hybridization with DNA probes based on conserved sequences or by overlay of bacterial clones with an antibiotic-sensitive test strain.

Once the sequence of the cloned DNA is determined, it can be screened against existing libraries of nucleotide and protein sequences for confirmation as an antibiotic biosynthetic gene or gene fragment. Amplified DNA so-identified can be used in several ways. First, the amplified DNA, or distinctive portions thereof, can be used to as probes to screen libraries constructed from humic-derived or lichen DNA to facilitate the identification and isolation of full length antibiotic biosynthetic genes. Once isolated, these genes can be expressed in readily cultivated surrogate hosts, such as a Streptomyces species for soilderived genes or an Aspergillus species for lichen-derived genes. General procedures for such expression are known in the art, for example from Fujii et al., Molec. Gen. Genet. 253: 1010 (1996) and Bedford et al., J. Bacteriol. 177: 4544-4548 (1995), which are incorporated herein by reference. Second, amplified DNA which is different from previously known DNA can be used to generate hybrid antibiotic biosynthesis genes using the procedures described by McDaniel et al, Nature 375: 549-554 (1995); Stachelhaus et al., Science 269: 69-72 (1995); and Stachelhaus et al, Biochem, Pharmacol. 52: 177-186 (1996). In these procedures, the novel DNA sequences isolated using the method of the invention are spliced into a known antibiotic gene to provide an expressible sequence encoding a complete gene product.

Using the method of the invention, a number of unique nucleotide sequences have been identified and characterized. The sequences and the biosynthetic polypeptides/proteins for which they encode, given by sequence ID Nos. 13 to 80, are a further aspect of the present invention.

EXAMPLE 1

Total DNA was extracted from soil samples by a direct lysis procedure as described by Barns et al. (1994). The high molecular weight DNA (>20 kb) in the extract was separated on a Sephadex G200 column (Pharmacia, Uppsala, Sweden) as described by Tsai and Olson, *Appl. Environ. Microbiol.* 58: 2292-2295 (1992).

The DNA extract (10-50 ng template DNA) was added to an amplification mixture (total volume 100 μ l) containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM

 $MgCl_2$, 200 μ M of each deoxynucleotide triphosphate, 25 pmol of each Type I polyketide primer (Seq ID Nos 1 and 2) and 5.0 units of Taq polymerase (BRL Life Technologies, Gaithersburg, MD). The mixture was then thermally cycled for 30 cycles in a MJ Research PTC-100 thermocycler using the following program:

denaturation 93°C 60 seconds

WO 98/53097

5

10

15

20

25

30

annealing 60°C 30 seconds

extension 72°C 90 seconds

The PCR products were then electrophoresed in 1% agarose gels and stained with ethidium bromide to visualize the DNA bands. Bands containing PCR product of the expected size were excised from the gel and purified using a Qiaex Gel Extraction kit (Qiagen GmBH). The purified DNA was ligated to pCRII (Invitrogen) to generate a clone library using *E. coli* INVaF competent cells. 18 clones were chosen at random from the library and sequenced using a Taq Dye Terminator Cycle Sequencing Kit and an Applied Biosystem DNA sequencer model 373. The sequencing primers used included the universal M13 (-20) forward primer, the M13 reverse primer and primers designed from the sequence data obtained. DNA sequences were translated into partial amino acid sequences using a software package from Geneworks (Intelligenetics, Inc.) with further manual adjustments and sent to the NCBI database by e-mail at blast@ncbi.nlm.nih.gov for comparison against protein databases. Altschul et al., "Basic Local Alignment Tool", *J. Mol. Biol.* 215: 403-410 (1990).

Blast analysis of the 18 clones pointed to 12 unique sequences that were not identical to each other or to published sequences. Seq. ID No. 13 shows the complete DNA sequence of a representative unique clone (Clone ksfs). Seq. ID No. 14 shows the translated amino acid sequence of this clone. The greatest homology as determined by a Blast analysis is indicated to be Type I polyketide synthases. Similar results were obtained on the Blast search of the other 11 unique clones based upon partial sequences which were determined.

EXAMPLE 2

The experiment of Example 1 was repeated using isopenicillin N synthase gene primers (Seq ID Nos. 7 and 8). The thermal cycling program was changed to include 60 second extension periods at 72°C, but otherwise the experimental conditions were the same. Twelve clones were picked at random and yielded one unique sequence that was not identical

- 9 -

to published sequences. The complete sequence of this clone (Clone ipnsfs) is shown in Seq. ID. No. 15 and the translated amino acid sequence in Seq. ID No. 16. The BLAST search indicated greatest homology for this sequence with isopenicillin N synthases.

5 EXAMPLE 3

> The experiment of Example 1 was repeated using peptide synthetase primers (Seq. ID Nos 9 and 10). The amplification mixture was changed to a 50 ul volume containing 10 to 50 ng of template DNA, 20 mM (NH₄), SO₄, 74 mM Tris-HCl (pH 8.8), 1.5 mM MgCl₂, 0.01% Tween 20, 200 µM of each deoxynucleotide triphosphate, 25 pmol of each primer, 0.25 % skim milk and 0.4 units of Ultra Therm DNA Polymerase (Bio/Can Scientific, Mississauga, Ontario). The mixture was thermocycled for 30 cycles using the following program:

denaturation 95°C 60 seconds

52°C 60 seconds annealing

15 extension 72°C 120 seconds.

10

20

25

30

Thirty clones containing a 1.2 kb insert have been partially sequenced. The BLAST analysis of the 30 clones pointed to 28 unique sequences that were not identical to each other or to published sequences. Varying degrees of homology to known peptide synthase genes were seen. Seq. ID No. 17 shows the complete DNA sequence of representative clone (ps32). Seq. ID No. 18 shows the translated amino acid sequence of this clone. Based on a Blast search of these sequences, the greatest homology is to a peptide synthase gene such as the pristinamycin synthase gene from Streptomyces pristinaespiralis and Bacillus sp. peptide synthetase genes such as gramicidin S synthase and surfactin synthetase. Stachelhaus and Marahiel, FEMS Micro. Letters 125: 3-14 (1995); Turgay et al., Mol. Micro 6: 529-546 (1992).

Sequence ID Nos. 81 to 94 show an additional 7 unique sequences (nucleic acid and translated amino acid sequences) of 1.2 kb PCR products amplified from soil DNA samples using these primers. These sequences have been named ps 2, ps 3, ps 7, ps 10, ps 24, ps 25 and ps 30. The sequences are unique in that they are all different from each other and from ps 32,

5

10

15

25

30

and while they show greatest homology to peptide synthetase sequences in the databases searched by BLAST analysis, they do not match any known sequence. Within each, the conserved motifs (TGD, KIRGXRIEL, NGK) common to peptide synthetase domains as described by Turgay and Marahiel (1994) can be identified. Descriptive information of the clones follows:

Clone ps 2, 1204 bp, with conserved motifs SGD, KIRGFRIEL, NGK, 67% G + C

Clone ps 3, 1178 bp, with conserved motifs TGD, KIRGSRIEL, NGK, 59 % G + C

Clone ps 7, 1222 bp with conserved motifs TGD, KIRGYRIEL, NGK, 55.5 % G + C

Clone ps 10, 1171 bp with conserved motifs TGD, KIRGHRIEL, NLK, 63% G + C

Clone ps 24, 1190 bp with conserved motifs TGD, KIRGHRIAM, NQK, 56 % G + C

Clone ps 25, 1178 bp with conserved motifs TGD, KLRGYRIEL, NDK 68 % G + C

Clone ps 30, 1200 bp with conserved motifs TGD, KVRGFRIEP, NGK, 64.5 % G + C

20 Clone ps 32, 1172 bp with conserved motifs TGD, KIRGFRIEL, SGK, 67 % G + C

EXAMPLE 4

The experiment of example 1 was repeated using the Type II polyketide synthase primers given by Seq. ID. Nos. 3 and 4. PCR amplification was carried out in a total volume of 50 ul containing 50 ng of soil DNA, 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM MgCl₂, 200 uM of each deoxynucleotide triphosphate, 25 pmol of each primer and 5.0 units of *Taq* polymerase (BRL Life Technologies, Gaithersburg, MD). The thermal cycling conditions included denaturations at 94°C for 60 seconds, annealing at 58°C for 30 seconds and extensions at 72°C for seconds, repeated for a total of 30 cycles.

PCR amplification yielded products of the expected size of 0.5 kilobase pairs. Sequencing of 18 randomly selected clones revealed the presence of 5 unique sequence that

- 11 -

were not identical to each other or to published sequences. Seq. ID No. 19 shows the complete DNA sequence of a representative clone (clone clf). The translated amino acid sequence of this clone is shown in Seq. ID. No. 20. In a BLAST search of this DNA sequence against the protein database, the greatest homology is indicated to chain length factor genes of the Type II polyketide synthases.

Example 5

The experiment of Example 1 was repeated using the Type I polyketide synthase primers designed for fungal sequences. (Seq. ID. Nos. 11 and 12) PCR amplifications were carried out with lichen DNA samples from a variety of lichen species representing 11 genera prepared as described in Miao et al. (1991), supra.

PCR amplifications were carried out in a total volume of 50 ul containing approximately 10 ng of lichen DNA and 1 unit of *Taq* polymerase in a reaction as per Example 4. The cycling protocol was 30 cycles of denaturation at 95°C for 60 seconds, annealing at 57°C for 2 minutes and extensions at 72°C for 2 minutes.

Forty seven clones with inserts of the expected size have been partially sequenced. The sequences all show homology to Type I fungal polyketide synthase genes but are all distinct from each other and from known sequences. Seq. ID. No. 21 shows the complete DNA sequence of a 637 base pair product amplified from DNA extracted from the lichen *Xanthoparmelia cumberlandia* (clone Xa.cum.6A). The translated amino acid sequence is shown in Seq. ID. No. 22. The greatest homology as determined by Blast analysis is indicated to fungal Type I polyketide synthase genes. Sequence ID Nos. 29 and 30 show the DNA sequence and conceptual amino acid sequence, respectively, for a further clone Xa.cum.6H isolated in this experiment. Sequences of DNA and the corresponding amino acid sequences for seven other lichen samples, *Leptogium corniculatum* (Seq. ID Nos. 31-42), *Parmelia sulcata* (Seq. ID Nos. 43-50); *Peltigera neopolydactyla* (Seq. ID Nos. 51-60); *Pseudocyphellaria anthrapsis* (Seq. ID Nos. 61-62); *Siphula ceratities* (Seq. ID. Nos. 63-66), *Thamnolia vermicularis* (Seq. ID Nos. 67-68); and *Usnea florida* (Seq. ID Nos. 69-80). Each of these sequences showed homology by Blast analysis to fungal Type I polyketide synthase.

25

5

10

15

20

- 12 -

EXAMPLE 6

The experiment of Example 5 was repeated on DNA from the lichen Solorina crocea using the degenerate peptide synthetase primers of Example 3. Freshly collected lichen (approximately 1.2 g) was washed in running tap water to remove conspicuous soil and field detritis, and then further cleaned under a dissecting microscope. The cleaned sample was then gently shaken in a 50 ml tube containing about 40 ml of 0.2% SDS for at least 30 minutes and rinsed thoroughly with water. Excess surface water was blotted from the washed, hydrated lichen, and the sample was frozen at -80°C for at least 15 minutes then vacuum dried at room temperature for 4 hours. The lichen was ground in liquid nitrogen using a mortar and pestle to produce a lichen powder for use in preparing DNA extracts.

5

10

15

20

25

30

To prepare the DNA extracts, 0.28g of lichen powder was placed into 18 2-ml microfuge tubes, and each aliquot was mixed with 1.25 ml isolation buffer (150 mM EDTA, 50 mM Tris pH 8, 1% sodium lauroyl sarcosine) and extracted for 1 hour at 62°C. The samples were centrifuged for three minutes to pellet cellular debris and a cloudy supernatant was decanted into new microfuge tubes. Each sample of the supernate was mixed with 750 μl 7.5 M ammonium acetate, incubated on ice for 30 minutes and centrifuged for five minutes at 16,000 X g to precipitate proteins. The supernatant fluid was saved in new microfuge tubes and nucleic acids were precipitated with 0.6 volumes of isopropanol overnight at 4°C. Samples were centrifuged for five minutes at 16,000 X g to pellet nucleic acids. The pellets were dissolved in TE containing RNAse (18 µg total) at 50°C for 45 minutes. The solutions were then extracted with an equal volume of TE saturated phenol:chloroform (1:1), and again with chloroform. DNA in the aqueous phase was precipitated with 0.1 M sodium acetate and two volumes of ethanol at -20°C for 2 hours, and then pelleted by centrifugation for five minutes at 16,000 X g. The DNA pellet was washed with 75% ethanol, vacuum dried at room temperature for 3 minutes and then dissolved in TE. The final amount of DNA recovered was approximately 70µg according to fluorometric measurement.

Two clones containing the expected 1.2 kb insert were sequenced and found to contain the same sequence shown in Seq. ID. No. 23. Seq. ID. No. 24 shows the translated amino acid sequence. The sequence is distinct, with greatest homology as determined by Blast analysis to the peptide synthase module of the cyanobacterium *Microcyctis aeruginosa*.

- 13 -

EXAMPLE 7

The experiment of example 4 was repeated using the Type II polyketide synthase primers given by Seq. ID. Nos. 5 and 6. Three starting samples were used for recovery of Type II polyketide synthase genes: two uncharacterized strains of *Streptomyces* (strains WEC 68A and WEC 71B) which had been shown to contain Type II polyketide synthase genes, and a soil sample obtained from a forest area near Vancouver, British Columbia. The soil sample was prepared using the basic protocol from Holben et al, *Appl. Environ. Microbiol.* 54: 703-711 (1988) with variations in parameters such as mix time to adjust for the individual characteristics of the soil samples.

10

15

20

25

30

5

Streptomyces genomic DNA preparations suitable for PCR amplification were prepared from the mycelia harvested from a 50 ml culture in tryptic soy broth (Difco) which had been grown for 3 days at 300 C. The mycelia were collected by centrifugation at 2500 x g for 10 minutes, the pellets were washed in 10% v/v glycerol and the washed pellets were frozen at -200C. The size of the pellets will vary with different strains; for extraction, 1 g samples were suspended in 5 ml TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) in a 50 ml screw cap Oakridge tube and lysozyme (to 10 mg/ml) and RNase (to 40 ug/g) were added. Following incubation at 300C for 45 min. a drop of each suspension was transferred to a microscope slide, one drop of 10% SDS was added and the suspension was checked for complete clearing and increased viscosity, indicating lysis. Most strains lyse with this incubation time, but incubation in lysozyme may be continued if necessary. (For strains which are very resistant to lysis, small amounts of DNA suitable for PCR amplification may often be prepared on a FastPrep™ instrument as described below.) Following confirmation of sufficient incubation time in lysozyme, 1.2 ml of 0.5 M EDTA, pH 8.0 was added to the suspension and mixed gently then 0.13 ml of 10 mg/ml Proteinase K (Gibco/BRL) solution was added and incubated for 5 min. at 300 C. 0.7 ml of 10% SDS was added, mixed gently by tilting, then incubated again at 300 C for 2 hours. Following lysis, three successive phenol/chloroform extractions were performed by adding a volume equivalent to the aqueous phase each time of a 1:1 mixture of ultrapure Tris buffer saturated phenol (Gibco/BRL) and chloroform. The aqueous phase was recovered each time following centrifugation at 2500 x g for 10 min. in a shortened (i.e.wide bore) Pasteur pipet to minimize shearing; DNA was precipitated from the final aqueous phase with the addition of 0.1 volume of 3M Na acetate,

pH 4.8 and 1 volume of isopropanol at room temperature. DNA was spooled from the solution onto a sealed Pasteur pipet, rinsed in ice cold 70% ethanol and solubilized in 0.5 ml TE buffer overnight at room temperature. DNA yields (as determined spectrophotometrically) typically range from 1 to 3 mg from 1 g of mycelia.

5

10

15

20

An alternative method for the preparation of small amounts of Streptomyces DNA suitable for PCR amplification has been found to be useful for strains resistant to lysis or when a faster method is desirable. This method makes use of the FastPrep™ instrument (Savant) and the methods and kit supplied by BIO 101 (Bio/Can Scientific, Mississauga, Canada). A 2 ml aliquot from a 20 ml, 3 day culture in tryptic soy broth is pelleted in a 2 ml microfuge tube and the size of the mycelial pellet is estimated. "Small" pellets are resuspended in 100 ul of sterile distilled water; larger pellets are resuspended in 200-300 ul of water. 200 ul of suspension is transferred to a homogenization tube from the kit. Following the manufacturer's protocol for the preparation of DNA from medium hard tissue, the large bead is added to this tube (which already contains a small bead) and 1 ml of solution CLS-TC from the kit is added and the samples are processed in the instrument for 10 seconds at speed setting 4.5. Samples are then spun 15 min. at 10,000 x g at 40C and 600 ul of the supernatant is transferred to a clean microfuge tube, 400 ul of Binding Matrix is added and mixed gently, then the sample is spun for 1 min. as above. The supernatant is discarded while the pellet is resuspended in 500 ul SEWS-M and transferred to a SPIN™ Filter unit. This is spun for 1 minute, the contents of the catch tube are discarded and the unit is spun again to dry. The filter unit is transferred to a new microfuge tube and DNA is eluted from the matrix in 100 ul DES which is left on the filter for 2-3 min. at room temperature. Eluted DNA is collected by spinning once again and this DNA is now ready to use in PCR amplifications. Due to components of the final solution, DNA prepared by this method is difficult to quantify. Typically 1 ul or 1/10 ul of this eluate is suitable as a template for PCR; larger quantities may be inhibitory to the PCR polymerase.

25

30

PCR amplification was carried out in a total volume of 50 ul containing 50 ng of DNA, 5 % DMSO, 1.25 mM MgCl₂, 200 uM of each deoxynucleotide triphosphate, 0.5 ug of each primer and 5.0 units of *Taq* polymerase (BRL Life Technologies, Gaithersburg, MD). The thermal cycling started with a 'touch-down' sequence, lowering the annealing temperature from 65°C to 58°C over the course of 8 cycles. The temperature of the annealing step

5

10

15

20

25

30

was then maintained at 58°C for a further 35 cycles. The overall cycle used was: denaturation at 94°C for 45 seconds, annealing at 65°C to 58°C for 1 minute and extension at 72°C for 2 minutes. The size of the amplified fragments was expected to be approximately 1.5 kb.

Amplification of the two *Streptomyces* strains produced DNA fragments of the expected size (1482 bp and 1538 bp). Open reading frame analysis of the two sequences revealed the presence of a set of three ORFs each, corresponding to the 3'-ends of the putative Ks_{α} -subunit genes (50 to 60 bp), possible full-length Ks_{β} genes (approx. 1.2 kb) and the first halves of potential ACP genes (approx 100 bp). In each sequence, the first and second ORFs were linked by a stop codon overlap typical of $Ks_{\alpha,\beta}$ gene pair junctions and a possible indication of tight coexpression through translational coupling. The two Ks_{β} genes were separated from the downstream ACP genes by a short spacer, again consistent with the expected gene organization.

Two clones were selected from among clones created using the soil DNA as a source which were found to produce 1.5 kb inserts. These inserts were sequenced and found to exhibit similarity to known KS_{β} genes with three ORFs as described above. The translated amino acid sequences of the four genes are shown in Sequence ID Nos 25 to 28.

The four putative KS_{β} genes had G+C content over 70% which is typical for the coding regions of Actinomycete genes. Results of data base searches established that the deduced products of all four ORFs were similar to known KS_{β} gene products from Type II polyketide synthases but they did not match any known sequences.

EXAMPLE 8

DNA can be extracted from large volumes of soil in accordance with the following procedure. Place dry soil into a sterile blender with 0.2% sodium pyrophosphate (100 ml/100 grams of soil). The pH of the sodium pyrophosphate solution should be about 10, although some variation to account for the characteristics of the soil may be appropriate. The mixture is blended for 30 seconds, decanted into centrifuges bottles and then centrifuged for 15 minutes at 100 X g at 4°C. The supernatant is decanted, filtered two times through cheese cloth and saved. The pelleted soil is extracted an additional two times using the same procedure.

- 16 -

After the extractions, the pooled supernatants are centrifuged for 15 minutes at 10,500 X g and the pellets are collected. The pellet may be incubated for 6 hours at 55°C in pre-germination medium (0.5% w/v yeast extract (Difco), 0.5% w/v casamino acids (Difco) with 0,005 M CaCl₂ and 0.025 M TES, pH 8.0 (added separately from sterile stock after autoclaving other components)) and then repelleted, or it may be used directly. In either case, the pellet (approximately 30-200 mg) is mixed with 5 ml 1X TE (pH 8.0), 500 μ l 0.5M EDTA (pH 8.0) and 500 μ l - 20 mg/ml lysozyme in 1X TE (pH 8.0) and incubated for 30 minutes at 37°C. 500 μ l of 20% SDS and 100 μ l - 1% proteinase K in TE and 1% SDS are then added and the mixture is vortexed gently before incubating for 60 minutes at 55°C or overnight at 37°C.

The incubated mixture is combined with 10 ml 20% polyvinylpyrrolidone (avg. MW=40,000) and incubated for 10 minutes at 70°C. One-half volume of 7.5 M ammonium acetate (stored at -20°C) is then added, the resulting mixture is placed for 10 minutes on a low speed shaker, and then centrifuged for 20 minutes at 18,5000 X g. The supernatant is combined with 1 volume of isopropanol and incubated for 30 minutes at -20°C before centrifuging for 20 minutes at 18,500 X g. The pellet from this centrifugation is washed in 70% ethanol, and centrifuged for 10 minutes at 18,500 X g. The pellet from this final centrifugation is collected and air dried.

20 <u>EXAMPLE 9</u>

5

10

15

25

30

To extract DNA from small amounts of soil the following procedure can be used. Combine soil (approx 1 g) with 1 ml distilled water, vortex to suspend and pellet at 19,000 X g for 5 minutes. After removing the supernatant, freeze/thaw the samples twice by either of the following techniques (a) -20°C freezer, 30 minutes, followed by 50-60°C water bath (2 minutes), repeated 2 times; or (b) quick freeze in EtOH-dry ice bath (dip in until frozen, approx one minute) followed by 60°C water bath (2 minutes), repeated 2 times. The pellets are then suspended in 350 μl TE buffer (pH 8.0), 50 μl 0.5 M EDTA and 50 μl-20 mg/ml lysozyme in TE buffer, vortexed and incubated at 37°C for 30 minutes in a water bath. 50 μl of 20% SDS and 10 μl 1% Proteinase K/ 1% SDS in TE buffer is added, vortexed, and incubated for one hour at 55°C or overnight at 37°C. One-tenth volume of 20% polyvinylpyrrolidone (avg. MW=40,000) is then added and incubated at 70°C for 10 minutes.

One-half volume of 7.5 M ammonium acetate (stored at -20°C) is added, the tubes are shaken at low speed for ten minutes and then centrifuged at 19,000 X g for 20 minutes. The supernatant is collected using pipets with cut tips to avoid shearing DNA, combined with one volume of isopropanol, mixed gently, and stored at -20°C for 30 minutes or 4°C overnight.

The DNA is then collected as a pellet by centrifugation at 19,000 X g for 10 minutes. The resulting pellet is washed with 0.5 ml of 70% ethanol (stored at -20°C) and then air or vacuum dried. The dried DNA is then dissolved in 50-150 ul of TE buffer, incubated at 4°C for one hour and then heated to 60°C for 10 minutes to facilitate dissolving DNA. The resulting solutions are stored at -20°C until use.

- 18 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Terragen Diversity Inc.
- (ii) TITLE OF INVENTION: METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES
 - (iii) NUMBER OF SEQUENCES: 94
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Deeth Williams Wall
 - (B) STREET: National Bank Building, 150 York Street, Suite 400
 - (C) CITY: Toronto
 - (D) STATE: Ontario
 - (E) COUNTRY: Canada
 - (F) ZIP: M5H 3S5
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.5 inch, 1.44 Mb
 - (B) COMPUTER: Dell (IBM Compatible)
 - (C) OPERATING SYSTEM: Windows 95
 - (D) SOFTWARE: Word 97
 - (vi) CURRENT APPLICATION DATA :
 - (A) APPLICATION NUMBER: Not yet assigned
 - (B) FILING DATE: May 21, 1998
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/861,774
 - (B) FILING DATE: May 22, 1997
 - (viii) ATTORNEY/AGENT INFORMATION :
 - (A) NAME: Eileen McMahon
 - (B) REGISTRATION NUMBER:
 - (C) REFERENCE/DOCKET NUMBER: 1694/0005
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 416-941-9440
 - (B) TELEFAX: 416-941-9443
 - (C) TELEX:
- (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GCSRTSGACC CGCAGCGCGC 20

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21
- (B) TYPE: nucleic acid

- 19 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GATSRCGTCC GCRTTSGTSC C 21

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 25
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTSACSKSGG SCGNACSGCS ACSCG 25

- (2) INFORMATION FOR SEQ ID NO:4:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 25
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

GTTSACSGCG TAGAACCASG CGAA 25

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: yes
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTCGGSGGNT TCCAGWSNGC SATG 24

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 26
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA

PCT/CA98/00488 WO 98/53097

- 20 -

```
(iii) HYPOTHETICAL: no
```

- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

TCSAKSAGSG CSANSGASTC GTANCC 26

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGBTCSGGST TYTTCTACGC 20

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 20
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CCTSGGTCTG GWASAGSACG

- (2) INFORMATION FOR SEQ ID NO:9:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 35
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: yes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATCTACACST CSGGCACSAC SGGCAAGCCS AAGGG

35

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 26
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

- 21 -

```
AWNGAGKSNC CICCSRRSNM GAAGAA 26
(2) INFORMATION FOR SEQ ID NO:11:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 32
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: other DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: yes
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
MGIGARGCIY TIGCIATGGA YCCICARCAR MG
                                           32
(2) INFORMATION FOR SEQ ID NO:12:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 32
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: other DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
GGRTCNCCIA RYTGIGTICC IGTICCRTGI GC
(2) INFORMATION FOR SEQ ID NO:13:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1206
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
GCGGTGGACC CGCAGCAGCG CCTCATGCTG GAGCTGGCCT GGTCCGCGCT
                                                               50
GGAAAGCGCA GGTCATCCGC CCTCGATATT CCCCGGCCTG ATCGGGGTCT
ATGTCGGCAT GAACTGGAAT CGCTATCGCG CGAATTGCAT TTCTGCACAC
CCTGATGTGG TGGAGCGATT CGGTGAATTG AACACAGCGC TCGCCAACGA
ATACGACTTT CTTGCTACCC GAATCTCCTA CAAGCTCAAT CTGCGCGGTC
CCAGCGTCAC TATCAGCACC GCTTGTTCGA CTTCCCTGGT TGCCATTGCT
CAGGCTTCGC AGGCGTTGCT CAACTATGAA TGCGACATTG CTTTGGCTGG
                                                             350
GGTTGCCTCC ATAACCGTGC CTGTCAATGC AGGCTACCTC TACCAAGAAA
                                                             400
GGTGGCATGC TTTCACCGAA GGGCATTGTC CTACATTCGA TGCCCCAGCA
                                                              450
CGGGACCACT TCAATGATGC CCCCTGTCTC CTTTTTGCGG GCCTGGAAAA
                                                              500
CCCATCCAGG AGGGGGGGG GGGCCCTCAT ACCCGGCCTT TCAAGCGGGA
                                                              550
ACCTCTCACA GGAAGCGGAT GTTTCAGCCG AAGGGATGTT GAACATTGAC
                                                              600
GCCGGCAGCA CGGGGGACAA GTTCAGGGAT GGGCGCGCTT TTGTTGTATG
                                                              650
GGGGGGCCT GGAAGAAGCA TTCAAGGGAC GGTGATCAAA CTTAACCCCT
TCATTGGCGG GTTTGCCGCG GAACAAGGAC GGGTTCGGAC AAGGCGAGTT
                                                              700
                                                              750
TACCGGCGCC CAGGCGTCAA TGGTCAGGGC GGAGTTCATT TCGCTTTGGC
                                                              800
```

- 22 -

GGTGGAGTTT GC AAAACCCACG GC GCGCTAAAGA TC CCTTGGATCG GT TGACCGGATT TT CCGACACTGT TT TCCTTTCTAT GT CACGCCGCGC GC GCGATC	GCACGGGC GGTTTTTC FCAAGAGT ATCAAGGC FTTCGAGA FCAATGCC	G ACGC() G CCGA() T GTGT() T GTCT' A AGCA()	CATTGO CGCTCO CGGACA CGTCGO AATCCO CGAGAA	GCG. TTC CCT TCT AGG GTG	ATCC(CAGA(GGTT(ACCA(CTCG(GACG(GAT A GGC (CAC) CGG GGC	AGAA GCCG GCCG CAAG TGGA GCCG	GTGG TTGC CCGG ATCG AGAC AGCA	GC CG CA AG	850 900 950 1000 1050 1100 1150 1200
(2) INFORMATION (i) SEQUENCE (A) LENGTH: (B) TYPE: am: (D) TOPOLOGY (ii) MOLECULA (A) DESCRIPT: (iii) HYPOTH (V) FRAGMENT (xi) SEQUENCE	CHARACTE 402 ino acid : linear E TYPE: ION: prot ETICAL: r TYPE: ir	ein no nternal	: fragm	ent NO:1	4:					
Ala Val Asp	Pro Gln 5	Gln Ar	g Leu	Met	Leu 10	Glu	Leu	Ala	Trp	Ser 15
Ala Leu Glu	Ser Ala 20	Gly Hi	s Pro	Pro	Ser 25	Ile	Phe	Pro	Gly	Leu 30
Ile Gly Val	Tyr Val	Gly Me	t Asn	Trp	Asn 40	Arg	Tyr	Arg	Ala	Asn 45
Cys Ile Ser	Ala His 50	Pro As	p Val	Val	Glu 55	Arg	Phe	Gly	Glu	Leu 60
Asn Thr Ala	Leu Ala 65	Asn Gl	u Tyr	Asp	Phe 70	Leu	Ala	Thr	Arg	Ile 75
Ser Tyr Lys	Leu Asn 80	Leu Ar	g Gly	Pro	Ser 85	Val	Thr	Ile	Ser	Thr 90
Ala Cys Ser	Thr Ser	Leu Va	l Ala	Ile	Ala 100	Gln	Ala	Ser	Gln	Ala 105
Leu Leu Asn	Tyr Glu 110	Cys As	p Ile	Ala	Leu 115	Ala	Gly	Val	Ala	Ser 120
Ile Thr Val	Pro Val		a Gly	Tyr	Leu 130	Tyr	Gln	Glu	Arg	Trp 135
His Ala Phe	Thr Glu	Gly H	s Cys	Pro	Thr 145	Phe	Asp	Ala	Pro	Ala 150
Arg Asp His	Phe Asn		la Pro	Cys	Leu 160	Leu	Phe	Ala	Gly	Leu 165
Glu Asn Pro	Ser Arg	Arg G	ly Gly	Gly	Ala	Leu	Ile	Pro	Gly	Leu

- 23 -

				170					175					180
Ser	Ser	Gly	Asn	Leu 185	Ser	Gln	Glu	Ala	Asp 190	Val	Ser	Ala	Glu	Gly 195
Met	Leu	Asn	Ile	Asp 200	Ala	Gly	Ser	Thr	Gly 205	Asp	Lys	Phe	Arg	Asp 210
Gly	Arg	Ala	Phe	Val 215	Val	Trp	Gly	Gly	Pro 220	Gly	Arg	Ser	Ile	Gln 225
Gly	Thr	Val	Ile	Lys 230	Leu	Asn	Pro	Phe	Ile 235	Gly	Gly	Phe	Ala	Ala 240
Glu	Gln	Gly	Arg	Val 245	Arg	Thr	Arg	Arg	Val 250	Tyr	Arg	Arg	Pro	Gly 255
Val	Asn	Gly	Gln	Gly 260	Gly	Val	His	Phe	Ala 265	Leu	Ala	Val	Glu	Phe 270
Ala	Gly	Tyr	Ser	Asn 275	Pro	Ala	Ser	Ile	Gly 280	Ile	Ser	Phe	Glu	Asn 285
Pro	Arg	Ala	Arg	Ala 290	Thr	Pro	Leu	Gly	Asp 295	Pro	Ile	Glu	Val	Ala 300
Ala	Leu	Lys	Met	Val 305	Phe	Arg	Arg	Arg	Ser 310	Phe	Gln	Arg	Arg	Arg 315
Cys	Ala	Leu	Gly	Ser 320	Val	Lys	Ser	Cys	Val 325	Gly	His	Leu	Val	His 330
Ala	Ala	Gly	Val	Thr 335	Gly	Phe	Ile	Lys	Ala 340	Val	Leu	Ser	Val	Tyr 345
His	Gly	Lys	Ile	Ala 350	Pro	Thr	Leu	Phe	Phe 355	Glu	Lys	Ala	Asn	Pro 360
Arg	Leu	Gly	Leu	Glu 365	Asp	Ser	Pro	Phe	Tyr 370	Val	Asn	Ala	Gly	Leu 375
Glu	Lys	Trp	Thr	Ala 380	Ala	Glu	Gln	Pro	Arg 385	Arg	Ala	Gly	Val	Ser 390
Ala	Phe	Gly	Val	Gly 395	Gly	Thr	Asn	Ala	His 400	Ala	Ile			

- (2) INFORMATION FOR SEQ ID NO:15
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 565
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no

PCT/CA98/00488 WO 98/53097

- 24 -

(iv) ANTI-SENSE: no

(IV) MAIL	JENOB. MO				
(xi) SEQUE	NCE DESCRIPT	ION: SEQ ID 1	10:15:		
GGCTCCGGGT	TTTTCTACGC	GTCCAACCAC	GGGATCGACG	TCACGCGGGT	50
GCGCGACGAG	GTGAACAAGT	TCCACGCCGA	GATGACGCCC	GGGGAGAAGT	100
	CATCAACGCC		CGAATCCGCA		150
GGGTATTACA	TGGCCGTCGA	AGGCAAGAAG	GCCGTCGAGT	CCTTCTGCTA	200
	GCCTTCACCC				250
	GGTGAACAAC				300
CGTGAGTACG	GGGGAGCAGT	ACTTCGAAGA	GGATCCTCCG	ACCTGTCACT	350
	CGTGGGTACG				400
	CGTCAAGCAC				450
	ACCTGGAGAA				500
CGAGAAGCTC	AGCTTCGAGG	ATCACTTCGA	CGTCTCGCTG	ATCACCGTGC	550
TCTTCCAGAC	CCAGG				565

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 188
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- Gly Ser Gly Phe Phe Tyr Ala Ser Asn His Gly Ile Asp Val Thr
- Arg Val Arg Asp Glu Val Asn Lys Phe His Ala Glu Met Thr Pro
- Gly Glu Lys Phe Glu Leu Ala Ile Asn Ala Tyr Asn Asp Ala Asn
- Pro His Thr Arg Asn Gly Tyr Tyr Met Ala Val Glu Gly Lys Lys
- Ala Val Glu Ser Phe Cys Tyr Leu Asn Pro Ala Phe Thr Pro Glu
- His Pro Met Ile Glu Ala Gly Ala Ala Gly His Glu Val Asn Asn
- Trp Pro Asp Glu Ala Arg His Pro Gly Phe Arg Glu Tyr Gly Gly
- Ala Val Leu Arg Arg Gly Ser Ser Asp Leu Ser Leu Val Leu Leu 115
- Arg Gly Tyr Ala Leu Ala Leu Gly Lys Asp Glu Asn Tyr Phe Asp
- Asp Tyr Val Lys His Ser Asp Thr Leu Ser Ala Val Ser Leu Ile

PCT/CA98/00488 WO 98/53097

- 25 -

145 150 140 Arg Tyr Pro Tyr Leu Glu Asn Tyr Pro Pro Val Lys Thr Gly Pro 160 Asp Gly Glu Lys Leu Ser Phe Glu Asp His Phe Asp Val Ser Leu 175 170

Ile Thr Val Leu Phe Gln Thr Gln 185

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1172
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

AAGGAGGGC	CGCCCGGGGC	GAAGAAGCTG	TCCGTCCGAC	TGACACGTTC	50
CACTCCGAGG	AGCCCGGACC	AGATGCGCGC	CAGCTTTACC	TCGACCGGCG	100
TAGATGGCGG	GTCGTAGTCA	GTGCGATCCG	ATGAGTCATC	TGGAGGTGCA	150
GGCAGCACCT	TCAGATCGAT	CTTGCCGCTC	GCCATGCGCG	GCATCTCGCG	200
GAGCTCGACG	AATGCAGCCG	GAATCATGTA	CTCGGGCAAC	CGCGTGCGAA	250
GATGATCGCG	CAGCTCGGAC	GCGGCGACCG	AGGCGAGCCG	AGGCGACCAG	300
TACGCAACGA	GACGCTTGTC	GCCGGCCCGC	TCCTGCCGCG	CCAGGACGAC	350
GGCCGTCTCG	ACACCGGGGT	GATCGGCCAG	CGCCGCCTCG	ATCTCACCGA	400
GCTCGATGCG	GAAGCCGCGG	ATCTTGACCT	GATGATCCGC	GCGCCCGATG	450
AAGTCGAGGT	TGCCGTCCGG	AAGCCAGCGC	ACCAGGTCGC	CGGTCCGGTA	500
CAGCCGCGAG	CCAGGTGCAC	CGAATGGATC	GGGTACGAAC	CGCGCTCCGG	550
TGAGGGCGGC	ATCATCGACA	TAGCCGCGCG	CGAGGTTCTC	GCCACCGATG	600
TACAGCTCGC	CGATCACGCG	CGCCGGAACG	GGCTCGAGTG	CGCTATCGAG	650
CACGTAGACC	TGAACGTTGT	CGAGCGGACG	GCCGATCGAC	GGCAGCTCGG	700
ACCCGTGTTC	GGACGCGGGC	GACACGATCG	CCCACGTCGT	ATCGACCGCG	750
TTCTCCGTCG	GGCCGTACTC	GTTGAGCATG	CGGTAGTGCG	CATCGCGCGG	800
TGGACGCCGC	GTGAGTCGAT	CACCGCCCGT	ACGCAGCACG	CGCAACGAGC	850
GTGGAAAGTC	GCCAGCCGCG	AGCAACGCGT	CGAGTAGCCG	GCCTGGAAGA	900
TCGGAGATCG	TGATCCCCCA	TCGCGTCAGG	TTCTCGAGCA	GGCGCGGCGG	950
ATCGAGGCGG	AGCTCGTTGT	CCACCAGATG	AAGCCGGGCG	CCCGTCGCCA	1000
GCGTGGACCA	CAGCTCGAGC	GCCGCGGCAT	CGAACGACAT	CGAGTAGATC	1050
TGCGTCACGC	GGTCGTCGGC	ACTGATCTCG	ACGGCACGCT	GGTTCCACGC	1100
GATCAAATTT	CTCAGTGCAC	GGTGCGGCAC	GGCGACGCCC	TTCGGCTTGC	1150
CCGTCGTGCC	CGACGTGTAG	AT			1172

- (2) INFORMATION FOR SEQ ID NO:18:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 390
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein

- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Ala Val
- Pro His Arg Ala Leu Arg Asn Leu Ile Ala Trp Asn Gln Arg Ala 20 25 30
- Val Glu Ile Ser Ala Asp Asp Arg Val Thr Gln Ile Tyr Ser Met
- Ser Phe Asp Ala Ala Ala Leu Glu Leu Trp Ser Thr Leu Ala Thr
 50 55 60
- Gly Ala Arg Leu His Leu Val Asp Asn Glu Leu Arg Leu Asp Pro
 65 70 75
- Pro Arg Leu Leu Glu Asn Leu Thr Arg Trp Gly Ile Thr Ile Ser 80 85 90
- Asp Leu Pro Gly Arg Leu Leu Asp Ala Leu Leu Ala Ala Gly Asp 95 100 105
- Phe Pro Arg Ser Leu Arg Val Leu Arg Thr Gly Gly Asp Arg Leu 110 115 120
- Thr Arg Arg Pro Pro Arg Asp Ala His Tyr Arg Met Leu Asn Glu 125 130 135
- Tyr Gly Pro Thr Glu Asn Ala Val Asp Thr Thr Trp Ala Ile Val 140 145 150
- Ser Pro Ala Ser Glu His Gly Ser Glu Leu Pro Ser Ile Gly Arg 155 160 165
- Pro Leu Asp Asn Val Gln Val Tyr Val Leu Asp Ser Ala Leu Glu 170 175 180
- Pro Val Pro Ala Arg Val Ile Gly Glu Leu Tyr Ile Gly Glu
 185 190 195
- Asn Leu Ala Arg Gly Tyr Val Asp Asp Ala Ala Leu Thr Gly Ala 200 205 210
- Arg Phe Val Pro Asp Pro Phe Gly Ala Pro Gly Ser Arg Leu Tyr 215 220 225
- Arg Thr Gly Asp Leu Val Arg Trp Leu Pro Asp Gly Asn Leu Asp 230 235 240
- Phe Ile Gly Arg Ala Asp His Gln Val Lys Ile Arg Gly Phe Arg 245 250 255
- Ile Glu Leu Gly Glu Ile Glu Ala Ala Leu Ala Asp His Pro Gly

- 27 -

				260					265					270
Val	Glu	Thr	Ala	Val 275	Val	Leu	Ala	Arg	Gln 280	Glu	Arg	Ala	Gly	Asp 285
Lys	Arg	Leu	Val	Ala 290	Tyr	Trp	Ser	Pro	Arg 295	Leu	Ala	Ser	Val	Ala 300
Ala	Ser	Glu	Leu	Arg 305	Asp	His	Leu	Arg	Thr 310	Arg	Leu	Pro	Glu	Tyr 315
Met	Ile	Pro	Ala	Ala 320	Phe	Val	Glu	Leu	Arg 325	Glu	Met	Pro	Arg	Met 330
Ala	Ser	Gly	Lys	Ile 335	Asp	Leu	Lys	Val	Leu 340	Pro	Ala	Pro	Pro	Asp 345
Asp	Ser	Ser	Asp	Arg 350	Thr	Asp	Tyr	Asp	Pro 355	Pro	Ser	Thr	Pro	Val 360
Glu	Val	Lys	Leu	Ala 365	Arg	Ile	Trp	Ser	Gly 370	Leu	Leu	Gly	Val	Glu 375
Arg	Val	Ser	Arg	Thr 380	Asp	Ser	Phe	Phe	Ala 385	Pro	Gly	Gly	Pro	Ser 390

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 472
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

- (2) INFORMATION FOR SEQ ID NO:20:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 142
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

PCT/CA98/00488 WO 98/53097

- 28 -

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
- Met Arg Ser Ser Val Ala Val Thr Gly Ile Gly Leu Val Ala Ala
- Asn Gly Leu Thr Thr Glu Asp Val Trp Ser Ala Val Leu Gly Gly
- Arg Ser Gly Leu Gly Thr Ile Thr Arg Phe Asp Ala Ala Gly Tyr
- Pro Ala Arg Ile Ala Gly Glu Val Ser Gln Phe Val Ala Glu Glu
- His Ile Ala Asp Arg Leu Ile Pro Gln Thr Asp His Met Thr Arg
- Leu Ala Leu Ala Ala Glu Ser Ala Ile Arg Asp Ala Lys Val
- Gly Pro Gly Arg Ala Ala Arg Phe Gly Ala Gly Val Val Thr Ala
- Ala Thr Ala Gly Gly Phe Glu Phe Gly Gln Arg Glu Leu Glu Asn
- Leu Trp Arg Lys Gly Pro Glu His Val Ser Pro Tyr Gln Ser Phe 125

Ala Trp Phe Tyr Ala Val Asn 140

- (2) INFORMATION FOR SEQ ID NO:21:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 637
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TATATTACTC	CAGGTTGCTT	ACGAAGCATT	GGAGATGTCC	GGATATTTCG	50
CCGATTCGTC	CAGGCCTGAG	GATGTCGGTT	GCTATATTGG	AGCTTGTGCA	100
ACAGATTACG	ATTTCAACGT	AGCATCCCAT	CCTCCCACGG	CGTATTCAGC	150
GACTGGCACG	CTCCGATCTT	TTCTAAGTGG	CAAGCTGTCG	CATTACTTTG	200
GTTGGTCCGG	TCCCTCTCTT	GTCCTAGACA	CTGCCTGCTC	TTCGTCGGCG	250
GTGGCTATTC	ATACTGCATG	TACTGCTTTG	AGGACTGGCC	AGTGTTCTCA	300
AGCTCTAGCA	GGCGGGATCA	CGTTGATGAC	AAGCCCGTAT	CTCTATGAGA	350
ACTTCTCTGC	AGCCCATTTC	TTGAGTCCAA	CGGGAGGTTC	AAAGCCGTTC	400

CTTG TCAT	AAAC CGCT	GA C GG C CA C	TTTC: TCGG: TTCG	GGAT AGAT CGGT TCTC CAAT	G CT C AA A GG	CTCA CCAG GAAA	.GGGA AACG .TCTC	TGA ACA TAT	TGAC ACTG GAAC	CAT CGT GAG	ATTA GCCT	TTAG ATCA	TG .CC	450 500 550 600 637
(i) (A) (B) (D) (ii (A) (ii (v)	SEQ LEN TYPE TOPE ODES .i) H FRA	QUENC IGTH: PE: a POLOC OLECU SCRIEN HYPOTAGMEN	E CH 212 minc Y: 1 JLE T TION THETI JT TY	aci inea YPE: I: pr CAL: YPE:	TERI d r otei no inte	n rnal	S: fra	gmen ID N	0:22	11			~ 1	
Ile	Leu	Leu	Gln	Val 5	Ala	Tyr	Glu	Ala	Leu 10	GIU	Met	ser	GIY	15 15
Phe	Ala	Asp	Ser	Ser 20	Arg	Pro	Glu	Asp	Val 25	Gly	Cys	Tyr	Ile	Gly 30
Ala	Cys	Ala	Thr	Asp 35	Tyr	Asp	Phe	Asn	Val 40	Ala	Ser	His	Pro	Pro 45
Thr	Ala	Tyr	Ser	Ala 50	Thr	Gly	Thr	Leu	Arg 55	Ser	Phe	Leu	Ser	Gly 60
Lys	Leu	Ser	His	Tyr 65	Phe	Gly	Trp	Ser	Gly 70	Pro	Ser	Leu	Val	Leu 75
Asp	Thr	Ala	Cys	Ser 80	Ser	Ser	Ala	Val	Ala 85	Ile	His	Thr	Ala	Cys 90
Thr	Ala	Leu	Arg	Thr 95	Gly	Gln	Cys	Ser	Gln 100	Ala	Leu	Ala	Gly	Gly 105
Ile	Thr	Leu	Met	Thr 110	Ser	Pro	Tyr	Leu	Tyr 115	Glu	Asn	Phe	Ser	Ala 120
Ala	His	Phe	Leu	Ser 125	Pro	Thr	Gly	Gly	Ser 130	Lys	Pro	Phe	Ser	Ala 135
Xaa	Ala	Asp	Gly	Tyr 140	Cys	Arg	Gly	Glu	Gly 145	Gly	Gly	Leu	Val	Val 150
Leu	Lys	Arg	Leu	Ser 155	Asp	Ala	Leu	Arg	Asp 160	Asp	Asp	His	Ile	Ile 165
Ser	Val	Ile	Ala	Gly 170	Ser	Ala	Val	Asn	Gln 175	Asn	Asp	Asn	Cys	Val 180
Pro	Ile	Thr	Val	Pro 185	His	Thr	Ser	Ser	Gln 190	Gly	Asn	Leu	Tyr	Glu 195

- 30 -

Arg Val Thr Arg Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 205 210

Val Glu

- (2) INFORMATION FOR SEQ ID NO:23:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1177
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GCACGACGGG CAAGCCCAAG GGGGGCGATG AACAGCCATC GAGGAATTTG 50 CAATCGCTTA CTGTGGATGC AAGATGCTTA CAAACTAACT GAAACTGATC 100 GCGTTCTGCA AAAAACGCCT TTTAGTTTCG ACGTTTCCGT TTGGGAGTTT 150 TTCTGGCCTC TCTTGACAGG GGCGCGTTTA GTGATGGCTC AACCAGGCGG 200
ACAGCGAGAT GCAACTTACT TAATTAACAC CATCGTCCAA GAGGAAATTA 250
CAACACTGCA TTTTGTCCCC TCCATGTTGC GGATATTTCT CCAAACTAAA 300
GGGCTAGAAC GTTGTCAATC TCTAAAACGG GTGTTTTGTA GTGGAGAAGC 350 CTTACCAGTT GACCTCCAGG AGCGGTTTTT TGACTCGATG GGATGTGAAC 400 TACACAACCT CTATGGTCCT ACCGAAGCGG CAATTGATGT CACATTTTGG 450 CAGTGTCAAA GAGAGAGTAA CTTAAAAAGT GTACCGATTG GGAGAGCGAT 500 CGCCAACACT CAAMTTTATA TCCTCGACTC CCATTTACAA GCAGTTCCCT 550 TGGGTGCGAT CGGCGAACTT TATATTGGTG GTATCGGCGT TGCTAGAGGS 600 TATCTTAACC GTCCAGACTT AACAGCCGAG CGATTTATTT CCCATCCCTT 650 TAAGGAAGGC GRRAAACTTT ACAAAACAGG AGACTTAGCC CGATATCTGG 700 CCGATGGCAA TATCGAATAC ATCGGTAGAA TTGATCATCA AGTAAAAATT 750 CGGGGTTTCC GCATCGAACT TGGAGAAATC GAAACTTTAC TAGCACAACA 800 CCCGACCATA CAGCAAACTG TCGTCACAGC TAGAATTGAT CATCTCGAAA 850 ACCAGCGATT AGTCGCCTAC ATCGTTCCTC ATTCAGAGCA GACACTAACC 900 ACAGACGAAC TGCGCCACTT CCTCAAAAAG AAACTGCCAG AATATATGGT 950 GCCTAGTACT TTCGTTTTCC TAGACACTCT ACCCCTAACC CCCAACGGCA 1000 AAATTGACCG TCGCGCTTTA CCAGCACCCG ACTCAACAAG GCTTGATTCA 1050 GAAAACACAT ATCTTGCTCC CCGCGATTAA TTAGAATTTC AGTTGACTAA 1100 AATTTGGTCA GAAATTTTAG GTATCCAGCC TATCGGTGTC AGGGACAACT 1150 TCTTCTTCCT TGGGCGGCCC CTCCCTT

- (2) INFORMATION FOR SEQ ID NO:24:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 392
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Ala Arg Arg Ala Ser Pro Arg Gly Ala Met Asn Ser His Arg Gly
5 10 15

Ile	Cys	Asn	Arg	Leu 20	Leu	Trp	Met	Gln	Asp 25	Ala	Tyr	Lys	Leu	Thr 30
Glu	Thr	Asp	Arg	Val 35	Leu	Gln	Lys	Thr	Pro 40	Phe	Ser	Phe	Asp	Val 45
Ser	Val	Trp	Glu	Phe 50	Phe	Trp	Pro	Leu	Leu 55	Thr	Gly	Ala	Arg	Leu 60
Val	Met	Ala	Gln	Pro 65	Gly	Gly	Gln	Arg	Asp [°] 70	Ala	Thr	Tyr	Leu	Ile 75
Asn	Thr	Ile	Val	Gln 80	Glu	Glu	Ile	Thr	Thr 85	Leu	His	Phe	Val	Pro 90
Ser	Met	Leu	Arg	Ile 95	Phe	Leu	Gln	Thr	Lys 100	Gly	Leu	Glu	Arg	Cys 105
Gln	Ser	Leu	Lys	Arg 110	Val	Phe	Cys	Ser	Gly 115	Glu	Ala	Leu	Pro	Val 120
Asp	Leu	Gln	Glu	Arg 125	Phe	Phe	Asp	Ser	Met 130	Gly	Cys	Glu	Leu	His 135
Asn	Leu	Tyr	Gly	Pro 140	Thr	Glu	Ala	Ala	Ile 145	Asp	Val	Thr	Phe	Trp 150
Gln	Cys	Gln	Arg	Glu 155	Ser	Asn	Leu	Lys	Ser 160	Val	Pro	Ile	Gly	Arg 165
Ala	Ile	Ala	Asn	Thr 170	Gln	Xaa	Tyr	Ile	Leu 175	Asp	Ser	His	Leu	Gln 180
Ala	Val	Pro	Leu	Gly 185	Ala	Ile	Gly	Glu	Leu 190	Tyr	Ile	Gly	Gly	Ile 195
Gly	Val	Ala	Arg	Gly 200	Tyr	Leu	Asn	Arg	Pro 205	Asp	Leu	Thr	Ala	Glu 210
Arg	Phe	Ile	Ser	His 215	Pro	Phe	Lys	Glu	Gly 220	Gly	Lys	Leu	Tyr	Lys 225
Thr	Gly	Asp	Leu	Ala 230	Arg	Tyr	Leu	Ala	Asp 235	Gly	Asn	Ile	Glu	Tyr 240
Ile	Gly	Arg	Ile	Asp 245	His	Gln	Val	Lys	Ile 250	Arg	Gly	Phe	Arg	Ile 255
Glu	Leu	Gly	Glu	Ile 260	Glu	Thr	Leu	Leu	Ala 265	Gln	His	Pro	Thr	Ile 270
Gln	Gln	Thr	Val	Val 275	Thr	Ala	Arg	Ile	Asp 280	His	Leu	Glu	Asn	Gln 285
Ara	Leu	Val	Ala	Tvr	Ile	Val	Pro	His	Ser	Glu	Gln	Thr	Leu	Thr

- 32 -

				290					295					300
Thr	Asp	Glu	Leu	Arg 305	His	Phe	Leu	Lys	Lys 310	Lys	Leu	Pro	Glu	Tyr 315
Met	Val	Pro	Ser	Thr 320	Phe	Val	Phe	Leu	Asp 325	Thr	Leu	Pro	Leu	Thr 330
Pro	Asn	Gly	Lys	Ile 335	Asp	Arg	Arg	Ala	Leu 340	Pro	Ala	Pro	Asp	Ser 345
Thr	Arg	Leu	Asp	Ser 350	Glu	Asn	Thr	Tyr	Leu 355	Ala	Pro	Arg	Asp	Xaa 360
Leu	Glu	Phe	Gln	Leu 365	Thr	Lys	Ile	Trp	Ser 370	Glu	Ile	Leu	Gly	Ile 375
Gln	Pro	Ile	Gly	Val 380	Arg	Asp	Asn	Phe	Phe 385	Phe	Leu	Gly	Arg	Pro 390
Leu	Pro													
(A) (B) (D) (ii (A) (ii (v) (xi	LENTYPOPO TOPO DES DES i) H FRA	GTH: E: ar OLOGY LECUI CRIPT YPOTH GMENT	406 mino Y: li LE TY TION: HETIC TYF CE DE	acid near PE: pro AL: i	no nterr PTION	nal f N: SE	ragm Q ID	NO:2		Gly	Ile	Ala	Ala	
			_	5					10					15
Asn	Gly	Leu	GLY	11e 20	Glu	Glu	Tyr	Trp	Ser 25	Ala	Thr	Leu	Ala	30 31
Arg	Gly			Gly 35				Arg	40		Ala		Ser	Tyr 45
Pro	Ser	Arg	Leu	Ala 50	Gly	Glu	Ile	Arg	Gly 55	Phe	Thr	Ala	Ala	Glu 60
His	Leu	Pro	Gly	Arg 65	Leu	Leu	Pro	Gln	Thr 70	Asp	Arg	Met	Thr	Gln 75
Leu	Ala	Leu	Val	Ser 80	Ala	Gly	Trp	Ala	Leu 85	Asp	Asp	Ala	Gly	Val 90
Val	Pro	Asp	Glu	Leu 95	Pro	Ala	Tyr	Asp	Met 100	Gly	Val	Ile	Thr	Ala 105

Ser	His	Ala	Gly	Gly 110	Phe	Glu	Phe	Gly	Gln 115	Asn	Glu	Leu	Lys	Ala 120
Leu	Trp	Ser	Lys	Gly 125	Gly	Lys	Tyr	Val	Ser 130	Ala	Tyr	Gln	Ser	Phe 135
Ala	Trp	Phe	Tyr	Ala 140	Val	Asn	Ser	Gly	Gln 145	Ile	Ser	Ile	Arg	Asn 150
Gly	Met	Arg	Gly	Pro 155	Ser	Gly	Val	Val	Val 160	Ser	Asp	Gln	Ala	Gly 165
Gly	Leu	Asp	Ala	Leu 170	Ala	Gln	Ala	Arg	Arg 175	Gln	Ile	Arg	Lys	Gly 180
Thr	Pro	Leu	Ile	Val 185	Ser	Gly	Ala	Val	Asp 190	Ala	Ser	Leu	Cys	Thr 195
Trp	Gly	Trp	Val	Ala 200	Gln	Leu	Ala	Gly	Gly 205	Arg	Leu	Ser	Arg	Ser 210
Asp	Asp	Pro	Gly	His 215	Ala	Tyr	Val	Pro	Phe 220	Asp	Asp	Ala	Ala	Val 225
Gly	His	Val	Pro	Gly 230	Glu	Gly	Gly	Ala	Leu 235	Leu	Ile	Leu	Glu	Glu 240
Ala	Glu	His	Ala	Arg 245	Ser	Arg	Gly	Ala	Arg 250	Arg	Ile	Tyr	Gly	Glu 255
Ile	Thr	Gly	His	Ala 260	Ser	Thr	Phe	Asp	Pro 265	Pro	Pro	Trp	Ser	Gly 270
Arg	·Gly	Pro	Ala	Val 275	Gln	Arg	Val	Ile	Glu 280	Glu	Ala	Leu	Ala	Asp 285
Ala	Gly	Thr	Val	Pro 290	Asp	Glu	Val	Asp	Val 295	Val	Phe	Ala	Asp	Ala 300
Ala	Ala	Leu	Pro	Glu 305	Leu	Asp	Arg	Ile	Glu 310	Ala	Ala	Ala	Ile	Thr 315
Lys	Val	Phe	Gly	Pro 320	His	Ala	Val	Pro	Val 325	Thr	Ala	Pro	Lys	Thr 330
Met	Thr	Gly	Arg	Leu 335	Tyr	Ser	Gly	Ala	Ala 340	Pro	Leu	Asp	Val	Ala 345
Ala	Ala	Cys	Leu	Ala 350		Arg	Asp	Gly	Leu 355	Ile	Pro	Pro	Thr	Ile 360
His	Ser	Ser	Leu	Ser 365		Arg	Tyr	Glu	Ile 370	Asp	Leu	Val	Thr	Gly 375
Ala	Pro	Arg	Thr	Ala	Pro	Val	Arg	Thr	Ala	Leu	Val	Val	Ala	Arg

- 34 -

380 385 390 Gly His Gly Gly Phe Asn Ser Ala Val Val Arg Ala Pro Arg 400 Asp (2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 415 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: Met Thr Ser Glu Leu Leu Glu Arg Thr Ala Val Arg Ser Ala Thr Ala Val Phe Thr Gly Ile Gly Val Thr Ala Pro Asn Gly Leu Gly Thr Ala Ala Trp Trp Gln Ala Thr Val Ala Gly Glu Ser Gly Ile Arg Pro Val Ser Arg Phe Asp Ala Ser Gly Tyr Pro Ser Thr Leu Ala Gly Glu Val Pro Gly Phe Asp Ala Glu Glu His Ile Pro Ser Arg Leu Leu Ser Gln Thr Asp His Met Thr Arg Leu Ala Leu Thr Ala Ala Lys Glu Ala Leu Glu Asp Ser Gly Ala Asp Pro Ala Glu Met Pro Gln Tyr Ser Ala Gly Ala Val Thr Ala Ala Ser Ala Gly Gly Phe Glu Phe Gly Gln Arg Glu Leu Gln Ala Leu Trp Ser Lys 130 Gly Gly Gln Tyr Val Ser Ala Tyr Gln Ser Tyr Ala Trp Phe Tyr Ala Val Asn Thr Gly Gln Ile Ser Ile Arg His Gly Leu Arg Gly 165 160 Pro Ser Gly Val Leu Val Thr Glu Gln Ala Gly Gly Leu Glu Ala 170 175

- 35 -

Val	Ala	Gln	Ala	Arg 185	Arg	Gln	Leu	Arg	Lys 190	Gly	Ser	Lys	Leu	Ile 195
Val	Thr	Gly	Gly	Val 200	Asp	Gly	Ala	Val	Cys 205	Pro	Trp	Gly	Trp	Thr 210
Ala	Gln	Leu	Ala	Gly 215	Gly	Arg	Met	Ser	Pro 220	Val	Ala	Asp	Pro	Ala 225
Arg	Ala	Phe	Leu	Pro 230	Phe	Asp	Ser	Glu	Ala 235	Ser	Gly	Tyr	Val	Ala 240
Gly	Glu	Gly	Gly	Ala 245	Ile	Leu	Val	Leu	Glu 250	Asp	Ala	Glu	Ala	Ala 255
Arg	Glu	Arg	Gly	Ala 260	Arg	Ile	Tyr	Gly	Arg 265	Leu	Ser	Gly	Tyr	Ala 270
Ala	Thr	Phe	Asp	Pro 275	Ala	Pro	Gly	Arg	Gly 280	Gly	Glu	Pro	Gly	Leu 285
Arg	Arg	Ala	Ala	Glu 290	Leu	Ala	Leu	Thr	Glu 295	Ala	Gly	Leu	Ser	Ala 300
Ser	Asp	Val	Asp	Val 305	Val	Phe	Ala	Asp	Ala 310	Ser	Gly	Val	Pro	Glu 315
Leu	Asp	Arg	Gln	Glu 320	Glu	Ala	Ala	Leu	Thr 325	Ala	Leu	Phe	Gly	Pro 330
Arg	Gly	Val	Pro	Val 335	Thr	Ala	Pro	Lys	Thr 340	Met	Thr	Gly	Arg	Leu 345
Ser	Ala	Gly	Gly	Ala 350	Ser	Leu	Asp	Leu	Ala 355	Ala	Ala	Leu	Leu	Ser 360
Ile	Arg	Asp	Ala	Val 365	Ile	Pro	Pro	Thr	Val 370	Asn	Val	Thr	Ser	Pro 375
Val	Ala	Ala	Asp	Ala 380	Leu	Asp	Leu	Val	Thr 385	Glu	Ala	Arg	Arg	Gly 390
Pro	Val	Arg	Thr	Ala 395	Leu	Val	Leu	Ala	Arg 400	Gly	Thr	Gly	Gly	Phe 405
Asn	Ala	Ala	Ala	Val	Val	Thr	Ala	Ala	Asn					

415

(2) INFORMATION FOR SEQ ID NO:27:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 403
(B) TYPE: amino acid
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE:

410

- (A) DESCRIPTION: protein

WO 98/53097 PCT/CA98/00

- 36 -

(iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: Met Ile Pro Val Ala Val Thr Gly Met Gly Val Ala Ala Pro Asn Gly Leu Gly Ala Ala Asp Tyr Trp Ala Ala Thr Arg Gly Gly Lys Ser Gly Ile Gly Arg Ile Thr Arg Phe Asp Pro Ser Ser Tyr Pro Ala Arg Leu Ala Gly Glu Ile Pro Gly Phe Glu Ala Ala Glu His Leu Pro Gly Arg Leu Leu Pro Gln Thr Asp Arg Val Thr Arg Leu Ser Leu Ala Ala Ala Asp Trp Ala Leu Ala Asp Ala Gly Val Glu Pro Glu Ser Phe Asp Pro Leu Asp Met Gly Val Val Thr Ala Gly His Ala Gly Gly Phe Glu Phe Gly Gln Gly Glu Leu Gln Lys Leu Trp Ala Lys Gly Ser Gln Phe Val Ser Ala Tyr Gln Ser Phe Ala Trp Phe Tyr Ala Val Asn Ser Gly Gln Ile Ser Ile Arg His Gly Met Lys Gly Pro Asn Gly Val Val Ser Asp Gln Ala Gly Gly Leu Asp Ala Leu Ala Gln Ala Arg Arg Leu Val Arg Lys Gly Thr Pro Leu Ile Val Cys Gly Ala Val Asp Ala Ser Ile Cys Pro Trp Gly Trp Val Ala Gln Leu Ala Gly Gly Arg Met Ser Asp Ser Asp Glu Pro Ala Arg Ala Tyr Leu Pro Phe Asp Arg Asp Ala Arg Gly 220 215 Tyr Leu Pro Gly Glu Gly Gly Ala Ile Leu Ile Met Glu Pro Ala 235 Ala Ala Ala Arg Ala Arg Gly Ala Lys Val Tyr Gly Glu Ile Ser 255 250 Gly Tyr Gly Ala Thr Phe Asp Pro Pro Pro Gly Ser Gly Ser Gly - 37 -

-	260					265					270
Ser Thr Leu	Arg Thr 275		Ile	Arg	Val	Ala 280	Leu	Asp	Asp	Ala	Gly 285
Val Ala Pro	Gly Asp 290		Asp	Ala	Val	Phe 295	Ala	Asp	Gly	Ala	Gly 300
Val Pro Glu	Leu Asp 305		Ala	Glu	Ala	Glu 310	Ala	Ile	Thr	Asp	Val 315
Phe Gly Ser	Gly Gly 320		Pro	Val	Thr	Val 325	Pro	Lys	Thr	Met	Thr 330
Gly Arg Lev	Tyr Ser 335		Ala	Ala	Pro	Leu 340	Asp	Val	Ala	Cys	Ala 345
Leu Leu Ala	Met Gln 350		Gly	Val	Ile	Pro 355	Pro	Thr	Val	His	Ile 360
Asp Pro Cys	Pro Glu 365		Gly	Leu	Asp	Leu 370	Val	Leu	His	Gln	Ala 375
Arg Pro Ala	Thr Val	_	Thr	Ala	Leu	Val 385	Leu	Ala	Arg	Gly	His 390
Gly Gly Phe	Asn Ser 395		Met	Ala	Val	Arg 400	Ala	Gly	Arg		
(i) SEQUEN (A) LENGTH (B) TYPE: (D) TOPOLO (ii) MOLEO (A) DESCRI (iii) HYPO (V) FRAGME	amino ac GY: line ULE TYPE PTION: p THETICAL NT TYPE:	CTERI id ar : rotei : no inte	n rna]	CS: L fra	agmer						
(xi) SEQUE Met Ser Ala							Gly	Val	Ala	Ala	Pro 15
Ser Gly Leu	Gly Val		Asp	Phe	Trp	Ser 25	Val	Thr	Arg	Ile	Gly 30
Lys Asn Ala	. Ile Gly 35		Val	Thr	Arg	Phe 40	Asp	Ala	Ser	Ala	Tyr 45
Pro Ser Arg	Leu Ala 50	_	Glu	Ile	His	Gly 55	Phe	Glu	Pro	Lys	Glu 60
His Leu Pro	Gly Arg		Val	Pro	Gln	Thr 70	Asp	Arg	Val	Thr	Gln 75

Leu	Ala	Leu	Val	Ala 80	Ala	Asp	Cys	Ala	Phe 85	Ala	Asp	Ala	Gly	Ile 90
Glu	Pro	Gly	Thr	Ile 95	Asp	Pro	Tyr	Ala	Met 100	Gly	Val	Val	Thr	Ala 105
Ala	Gly	Ala	Gly	Gly 110	Phe	Glu	Phe	Ala	Glu 115	Asn	Glu	Leu	Arg	Lys 120
Leu	Trp	Ser	Glu	Gly 125	Ala	Lys	Arg	Val	Ser 130	Ala	Tyr	Gln	Ser	Phe 135
Ala	Trp	Phe	Tyr	Ala 140	Val	Asn	Ser	Gly	Gln 145	Ile	Ser	Ile	Arg	Asn 150
Gly	Leu	Arg	Gly	Pro 155	Ala	Gly	Val	Val	Ile 160	Ser	Asp	Gln	Ala	Gly 165
Gly	Leu	Asp	Ala	Leu 170	Ala	Gln	Ala	Arg	Arg 175	Gln	Leu	Arg	Lys	Gly 180
Ser	Lys	Leu	Ile	Ala 185	Thr	Gly	Gly	Phe	Asp 190	Ala	Pro	Ile	Cys	Ser 195
Leu	Gly	Trp	Ala	Ser 200	Gln	Pro	Arg	Thr	Gly 205	Gly	Leu	Met	Phe	His 210
Glu	Arg	Thr	Glu	Pro 215	Glu	Arg	Ala	Tyr	Leu 220	Pro	Phe	Glu	Asp	Ala 225
Ala	Ala	Gly	Tyr	Val 230	Pro	Gly	Glu	Gly	Gly 235	Ala	Met	Leu	Ile	Leu 240
Glu	Asp	Glu	Asp	Ser 245	Ala	Arg	Asp	Arg	Gly 250	Ala	Arg	Thr	Val	Tyr 255
Gly	Glu	Phe	Ala	Gly 260	Tyr	Gly	Ala	Thr	Leu 265	Asp	Pro	Lys	Pro	Gly 270
Ser	Gly	Arg	Glu	Pro 275	Gly	Leu	Arg	Arg	Ala 280	Ile	Asp	Val	Ala	Leu 285
Thr	Asp	Ala	Ala	Cys 290	His	Pro	Ala	Glu	Val 295	Glu	Val	Val	Phe	Ala 300
Asp	Gly	Ala	Ala	Thr 305	Pro	Arg	Leu	Asp	Arg 310	Glu	Glu	Ala	Glu	Ala 315
Ile	Thr	Ala	Val	Phe 320	Gly	Pro	Arg	Ala	Val 325	Pro	Val	Thr	Val	Pro 330
Lys	Thr	Met	Thr	Gly 335	Arg	Ile	Asn	Ser	Gly 340	Gly	Ala	Pro	Ile	Asp 345
Val	Val	Ser	Ala	Val	Leu	Ser	Met	Arg	Glu	Gly	Leu	Ile	Pro	Pro

- 39 -

350 355 360 Thr Thr Asn Val Glu Leu Ser Asp Ala Tyr Asp Leu Asp Leu Val Ala Val Arg Pro Arg Thr Ala Ser Val Arg Thr Ala Leu Val Leu 385 Ala Arg Gly Arg Gly Gly Phe Asn Ser Ala Val Val Arg Ala 400 Val Asp (2) INFORMATION FOR SEQ ID NO:29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 643 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: GGATCTGCTT GAGGTAGTCT ACGAGGCACT GGAGTCAGCA GGGTACTTTG 50 GCGCCAAGTC AAACCCGGAA CCTGATGACT ATGGATGCTA TATCGGTGCA 100
GTGATGAACA ACTACTATGA CAACGTTTCT TGCCATCCAC CCACCGCATA 150
CGCTACTCTT GGAACGTCGC GTTGCTTCCT TAGTGGCTGC ATGAGCCATT 200
ACTTTGGATG GACGGACCT TCCTTGACA TTGATACGGC TTGCTCGTCA 250 TCACTAGTTG CTATAAACAC CGCTTGTAGA GCAATATGGT CTGGTGAGTG 300 CTCCCGGGCC ATAGCTGGGG GTACCAATGT CTTCACAAGT CCGTTTGACT 350 ACCAGAATCT TCGCGCCGCA GGATTCCTCA GCCCTAGCGG GCAATGCAAG 400 CCGTTTGATG CTTCTGCTGA TGGCTACTGC CGTGGAGAAG GAGTTGGTGT 450 CGTTGTGCTT AAGCCTTTGA CGGCTGCTAT GCAAGAGAAC GATAACATCC 500 TTGGCGTCAT TGTGGGGTCT GCAGCAAACC AAAACCAAAA CCTCAGTCAT 550 ATCACGGTGC CCCATTCGGG CTCACAAGTC CAGCTTTATC GAAAGGTGAT 600 GAAGCTTGCA GGTATAGAGC CAGAGTCAGT CTCCTACGTT GAG (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: Ile Leu Leu Gln Val Ala Tyr Glu Ala Leu Glu Met Ser Gly Tyr Phe Ala Asp Ser Ser Arg Pro Glu Asp Val Gly Cys Tyr Ile Gly Ala Cys Ala Thr Asp Tyr Asp Phe Asn Val Ala Ser His Pro Pro

				35					40					45
Thr	Ala	Tyr	Ser	Ala 50	Thr	Gly	Thr	Leu	Arg 55	Ser	Phe	Leu	Ser	Gly 60
Lys	Leu	Ser	His	Tyr 65	Phe	Gly	Trp	Ser	Gly 70	Pro	Ser	Leu	Val	Let 75
Asp	Thr	Ala	Cys	Ser 80	Ser	Ser	Ala	Val	Ala 85	Ile	His	Thr	Ala	Cys 90
Thr	Ala	Leu	Arg	Thr 95	Gly	Gln	Cys	Ser	Gln 100	Ala	Leu	Ala	Gly	Gl _y 105
Ile	Thr	Leu	Met	Thr 110	Ser	Pro	Tyr	Leu	Tyr 115	Glu	Asn	Phe	Ser	Ala 120
Ala	His	Phe	Leu	Ser 125	Pro	Thr	Gly	Gly	Ser 130	Lys	Pro	Phe	Ser	Ala 135
Xaa	Ala	Asp	Gly	Tyr 140	Cys	Arg	Gly	Glu	Gly 145	Gly	Gly	Leu	Val	Va] 150
Leu	Lys	Arg	Leu	Ser 155	Asp	Ala	Leu	Arg	Asp 160	Asp	Asp	His	Ile	Ile 165
Ser	Val	Ile	Ala	Gly 170	Ser	Ala	Val	Asn	Gln 175	Asn	Asp	Asn	Cys	Va]
Pro	Ile	Thr	Val	Pro 185	His	Thr	Ser	Ser	Gln 190	Gly	Asn	Leu	Tyr	Glu 195
Arg	Val	Thr	Arg	Gln 200	Ala	Gly	Val	Thr	Pro 205	Asn	Lys	Val	Thr	Phe 210
Val	Glu													

- (2) INFORMATION FOR SEQ ID NO:31:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

AATCCTCATG	GAATCAGCTT	GGCAAACACT	AGAAAACGCT	GGCATAACTG	50
CGAACAAAGT	AGCTGGCAGC	AGTACAGGAG	TTTTTGTGGG	TGCTAGTGGC	100
TCTGATTACT	GTTGGGTAAT	GGAGCGGGTA	GGTATTCCCA	TAGAAGCTCA	150
CGTTGCAACG	GGCACGTCGT	TGGCAGCGCT	GGCAAATCGC	ATCTCTTACT	200
TTTTTGACTT	GCGAGGCCCA	AGCATCGTCA	TTGATACGGC	GTGTTCTAGT	250
TCGTTGATGG	CAGTGCATCA	GGCGGTTCAA	TCTATCCGAG	CAGGTGAGTG	300

CTTACAAGCA C GTATTGCATA T ACATTTGACG A GCTTCTGCTC A ATGCGACAAT C CTCACCGTAC C GAAAGCCTCT G	TACAAGGCT GG TCGCGCAGA TG AGCAATTGC AT AAGGGGTCA GC GAATCCGCA AC	EGATGTTGG CG EGGTACGTT CG CCAGGCGGA AG CCTCGAATC AT CAGCAGGCA GC	CATGATGG CAGTGAAG CAGATGGC GGTGGACA ACTCTTAA	CAAGTGCAAG GCGCTGTGAT GATCTAATTT GTCCGCCGGC CCAATGCCTG	350 400 450 500 550 600 643
(i) SEQUENC (A) LENGTH: (B) TYPE: a (D) TOPOLOG (ii) MOLECU (A) DESCRIP (iii) HYPOT (v) FRAGMEN (xi) SEOUEN	mino acid Y: linear ULE TYPE: PTION: protei CHETICAL: no UT TYPE: inte	ISTICS: in ernal fragme: ION: SEQ ID 1	NO:32: Leu Glu	Asn Ala Gly	Ile
Thr Ala Asn	5 Lys Val Ala	Gly Ser Ser	10 Thr Gly	Val Phe Val	15 Gly
	20		25		30
Ala Ser Gly	Ser Asp Tyr 35	Cys Trp Val	Met Glu 40	Arg Val Gly	Ile 45
Pro Ile Glu	Ala His Val	Ala Thr Gly	Thr Ser 55	Leu Ala Ala	Leu 60
Ala Asn Arg	Ile Ser Tyr 65	Phe Phe Asp	Leu Arg 70	Gly Pro Ser	Ile 75
Val Ile Asp	Thr Ala Cys	Ser Ser Ser	Leu Met 85	Ala Val His	Gln 90
Ala Val Gln	Ser Ile Arg 95	Ala Gly Glu	Cys Leu 100	Gln Ala Leu	Val 105
Gly Gly Ile		Ser His Pro		Ser Ile Ala	Tyr 120
Tyr Lys Ala	Gly Met Leu 125	Ala His Asp	Gly Lys 130	Cys Lys Thr	Phe 135
Asp Asp Arg	Ala Asp Gly 140	Tyr Val Arg	Ser Glu 145	Gly Ala Val	Met 150
Leu Leu Leu	Lys Gln Leu 155	His Gln Ala	Glu Ala 160	Asp Gly Asp	Leu 165
Ile Tyr Ala	Thr Ile Lys 170	Gly Ser Ala	Ser Asn 175	His Gly Gly	Gln 180

- 42 -

Ser Ala Gly Leu Thr Val Pro Asn Pro Gln Gln Ala Ala Leu Leu Thr Asn Ala Trp Lys Ala Ser Gly Val Asp Pro Asn Thr Ile Ser Phe Ile Glu (2) INFORMATION FOR SEQ ID NO:33: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 637 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33: TATATTACTC CAGGTTGCTT ACGAAGCATT GGAAATGTCC GGGTATTTCG 50 CCGACTCGTC CAAGCCTGAG GACGTAGGTT GCTATATTGG AGCTTGTGCA 100 ACAGATTACG ATTTCAGCGT AGCGTCCCAT CCTCCTACGG CATACTCAGC 150 AACTGGCACG CTCCGATCTT TCCTGAGTGG CAAGCTGTCA CATTACTTTG 200 GTTGGTCTGG TCCCTCTCTT GTCCTGGACA CCGCCTGCTC TTCATCGGCG 250 GTGGCCATTC ACACTGCATG TACTGCTTTG AGGACTGGCC AGTGTTCTCA 300 GGCTTTAGCA GGCGGGATTA CTTTGATGAC CAGCCCGTAT CTCTTTGAGA 350 ACTTTGCTGC CGCCCATTTC TTGAGCCCAA CGGGAGGCTC AAAGCCGTTC 400 AGTGCAGATG CAGATGGGTA TTGTAGAGGA GAAGGGGGTG GGCTCGTGGT 450 CTTGAAACGA CTTTCAGATG CTATCAGGGA TAACGACCAC ATCATTAGCG 500 TCATCGCTGG CTCAGCCGTC AACCAGAACG CTAACTGTGT GCCTATCACC 550 GTCCCTCATA CTTCGTCTCA GGGCAATCTC TATGAACGAG TTACCGCACA 600 GGCAGGGGTG ACACCTAATA AGGTCACTTT TGTGGAA (2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: Ile Leu Leu Gln Val Ala Tyr Glu Ala Leu Glu Met Ser Gly Tyr Phe Ala Asp Ser Ser Lys Pro Glu Asp Val Gly Cys Tyr Ile Gly 20 Ala Cys Ala Thr Asp Tyr Asp Phe Ser Val Ala Ser His Pro Pro

Thr Ala Tyr Ser Ala Thr Gly Thr Leu Arg Ser Phe Leu Ser Gly

55

Lys Leu Ser His Tyr Phe Gly Trp Ser Gly Pro Ser Leu Val Leu 75 Asp Thr Ala Cys Ser Ser Ser Ser Ala Val Ala Ile His Thr Ala Cys 90 Thr Ala Leu Arg Thr 95 Gly Gln Cys Ser Gln Ala Leu Ala Gly Gly 105 Ile Thr Leu Met Thr Ser Pro Tyr Leu Phe Glu Asn Phe Ala Ala 120 Ala His Phe Leu Ser Pro Thr Gly Gly Ser Lys Pro Phe Ser Ala 135 Asp Ala Asp Gly Tyr Cys Arg Gly Glu Gly Gly Gly Leu Val Val 145 Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Asn Asp His Ile Ile 155 Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 177 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 185 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 Val Glu (2) INFORMATION FOR SEQ ID NO:35:														
Thr Ala Leu Arg Thr Gly Gln Cys Ser Gln Ala Leu Ala Gly Gly 105 Ile Thr Leu Met Thr Ser Pro Tyr Leu Phe Glu Asn Phe Ala Ala 120 Ala His Phe Leu Ser Pro Thr Gly Gly Ser Lys Pro Phe Ser Ala 135 Asp Ala Asp Gly Tyr Cys Arg Gly Glu Gly Gly Gly Leu Val Val 145 Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Asn Asp His Ile Ile 165 Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 170 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 195 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Lys	Leu	Ser	His	Phe	Gly	Trp	Ser	Gly 70	Pro	Ser	Leu	Val	Leu 75
Ile Thr Leu Met Thr Ser Pro Tyr Leu Phe Glu Asn Phe Ala Ala 120 Ala His Phe Leu Ser Pro Thr Gly Gly Ser Lys Pro Phe Ser Ala 135 Asp Ala Asp Gly Tyr Cys Arg Gly Glu Gly Gly Gly Leu Val Val 145 Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Asn Asp His Ile Ile 165 Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 170 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 195 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 210 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Asp	Thr	Ala	Cys	Ser	Ser	Ala	Val	Ala 85	Ile	His	Thr	Ala	Cys 90
Ala His Phe Leu Ser Pro Thr Gly Gly Ser Lys Pro Phe Ser Ala 135 Asp Ala Asp Gly Tyr Cys Arg Gly Glu Gly Gly Leu Val Val 145 Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Asn Asp His Ile Ile 165 Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 170 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 195 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 210 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Thr	Ala	Leu	Arg	Gly	Gln	Cys	Ser	Gln 100	Ala	Leu	Ala	Gly	Gly 105
Asp Ala Asp Gly Tyr Cys Arg Gly Glu Gly Gly Leu Val Val 145 Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Asn Asp His Ile Ile 165 Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 170 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 185 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Ile	Thr	Leu	Met	Ser	Pro	Tyr	Leu	Phe 115	Glu	Asn	Phe	Ala	Ala 120
Leu Lys Arg Leu Ser Asp Ala Ile Arg Asp Asn Asp His Ile Ile 165 Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 170 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 185 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Ala	His	Phe	Leu	Pro	Thr	Gly	Gly	Ser 130	Lys	Pro	Phe	Ser	Ala 135
Ser Val Ile Ala Gly Ser Ala Val Asn Gln Asn Ala Asn Cys Val 170 Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 185 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Asp	Ala	Asp	Gly	Cys	Arg	Gly	Glu	Gly 145	Gly	Gly	Leu	Val	Val 150
Pro Ile Thr Val Pro His Thr Ser Ser Gln Gly Asn Leu Tyr Glu 185 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Leu	Lys	Arg	Leu	Asp	Ala	Ile	Arg		Asn	Asp	His	Ile	Ile 165
185 190 195 Arg Val Thr Ala Gln Ala Gly Val Thr Pro Asn Lys Val Thr Phe 200 205 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Ser	Val	Ile	Ala	Ser	Ala	Val	Asn		Asn	Ala	Asn	Cys	Val 180
200 205 210 Val Glu (2) INFORMATION FOR SEQ ID NO:35:	Pro	Ile	Thr	Val	His	Thr	Ser	Ser		Gly	Asn	Leu	Tyr	Glu 195
(2) INFORMATION FOR SEQ ID NO:35:	Arg	Val	Thr	Ala	Ala	Gly	Val	Thr		Asn	Lys	Val	Thr	Phe 210
	Val	Glu												

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:691
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

(/					
CCATCTGCTA	GAAATCAGCT	ACGAGGCGCT	CGAGAATGCA	GGCTTTCCAC	50
TGCCTAGCAT	TGCTGGCACG	AACATGGGTG	TCTTTGTCGG	CGGAAGCAAC	100
	GAGCGCACAT				150
TGAAGCAACA	GGCAATGCAG	AATCTCTGCT	GGCGAATCGA	GTCTCTTATG	200
TGTATGATCT	CCACGGCGCA	AGTCTGACGA	TTGGTACCGC	TTGTTCCGTC	250
	GCTTTGGATA				300
GTCCACAGCA	ATTGTTGCCG	GCTCCGTTGT	TCGAATCGTA	CCGTCATCGA	350
CCATCTCACC	TTCTACTATG	AAGTAAGCAG	TCATGGCTCT	TGACACGGAG	400
ACTACTCACC	ATTCCAGGCT	TCTGTCACCA	GAAGGGCGGT	GTTATGCGTT	450
CGATGACAGA	GCCACTAGTG	GTTTTGGAAG	GGGTGAAGGT	TCTGCCTGCA	500
TAATATTGGA	AACCTTAGAG	GCAGCCTTAA	GAGACAACGA	CCCAATCCGA	550
TCGGTCATTC	GCAATTCGGG	AGTCAATCAA	GATGGTAAAA	CTGCAGGTAT	600

- 44 -

CACAATGCCA AATGG GCACTGCTGG ATTGG	GGAAG CGCAAG ACCCT CTGCAG	CTTC ATTGATA(ACAG ATTACGT	CAA TCTGTTT CGA G	ATC 650 691								
(2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 215 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: His Leu Leu Glu Ile Ser Tyr Glu Ala Leu Glu Asn Ala Gly F 5 10 Pro Leu Pro Ser Ile Ala Gly Thr Asn Met Gly Val Phe Val G												
Pro Leu Pro Ser	Ile Ala Gly 20	Thr Asn Met 25	Gly Val Phe	Val Gly 30								
Gly Ser Asn Ser	Glu Tyr Arg 35	Ala His Ile 40	Gly Asn Asp	Thr Asp 45								
Asn Leu Pro Met	Phe Glu Ala 50	Thr Gly Asn 55	Ala Glu Ser	Leu Leu 60								
Ala Asn Arg Val	Ser Tyr Val 65	Tyr Asp Leu 70	His Gly Ala	Ser Leu 75								
Thr Ile Gly Thr	Ala Cys Ser 80	Val Glu Phe 85	Ser Ser Phe	Gly Xaa 90								
Arg Val Ser Gln	Leu Ala Ala 95	Gly Lys Ser 100	Ser Thr Ala	Ile Val 105								
Ala Gly Ser Val	Val Arg Ile 110	Val Pro Ser 115	Ser Thr Ile	Ser Pro 120								
Ser Thr Met Lys	Leu Leu Ser 125	Pro Glu Gly 130	Arg Cys Tyr	Ala Phe 135								
Asp Asp Arg Ala	Thr Ser Gly	Phe Gly Arg	Gly Glu Gly	Ser Ala 150								
Cys Ile Ile Leu	Glu Thr Leu 155	Glu Ala Ala 160	Leu Arg Asp	Asn Asp 165								
Pro Ile Arg Ser	Val Ile Arg 170	Asn Ser Gly 175	Val Asn Gln	Asp Gly 180								
Lys Thr Ala Gly	Ile Thr Met 185	Pro Asn Gly 190	Glu Ala Gln	Ala Ser 195								
Leu Ile Gln Ser	Val Tyr Arg 200	Thr Ala Gly 205	Leu Asp Pro	Leu Gln 210								

PCT/CA98/00488 WO 98/53097

- 45 -

Thr Asp Tyr Val Glu

(2) INFORMATION FOR SEQ ID NO:37 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 680 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37: AACTGTTAGA GGTCAGTTAC GAGGCGTTTG AGAATGCGGG CATATCATTA 50 TCGAGTGTTG CAGGTACCGA CGTTGGGGTA TTCATCAGTG CCAGCACCAA TGATTACCGT TTCGTTTTCC ACAACGACCT CGACACATTG CCAATGTTTG 150 AATCCACTGG GAGTGAATTA TCGATCATGT CCAATCGTAT CTCCTATACT 200 TTCAATCTTA GAGGTCCAAG TATGACGATT GATACTCCCT GTTCCTCAAG 250 TTTGATCGCA CTCCATACAG CATTCAGAAG TCTACAGGTC GGAGAAAGCT 300 CTTGCGCCAT TGTCGGTGGA TCTAACCTCC ACATCACTCC AGATTCCTAC 350 ATTTCATTCT CGACGATGAG GTAAGCACTA TCGTTTGCGA ATTACCTATC 400 TTTGATTACG AGTGACTAAG TTGTACAGGC TCCTGTCGCC CCATGGACGA 450 TCGTGCAGTC AATGGGTTTG GGCGCGGAGA GGGCACAAGT TGCATAATAC 500 TGAAGCCTTT AGATGCCGCA TTGAAAGACC ACGATCCCAT AAGGGCAGTT 550 ATTCGCAATA CGGGCACTAA TCAAGATGGG AAGACGACAG GTATCACGAT 600 GCCGAATGGT GAAGCACAGG CCGCCTTAAT GCAATCAGTC TACGAGGCAG 650 CGGGCTTAGA TCCCCTTGAA ACAGACTATG (2) INFORMATION FOR SEQ ID NO:38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 209 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38: Leu Leu Glu Val Ser Tyr Glu Ala Phe Glu Asn Ala Gly Ile Ser Leu Ser Ser Val Ala Gly Thr Asp Val Gly Val Phe Ile Ser Ala Ser Thr Asn Asp Tyr Arg Phe Val Phe His Asn Asp Leu Asp Thr Leu Pro Met Phe Glu Ser Thr Gly Ser Glu Leu Ser Ile Met Ser Asn Arg Ile Ser Tyr Thr Phe Asn Leu Arg Gly Pro Ser Met Thr

- Ile Asp Thr Pro Cys 80 Ser Ser Leu Ile Ala Leu His Thr Ala 90

 Phe Arg Ser Leu Gln Val Gly Glu Ser Ser Cys Ala Ile Val Gly 105

 Gly Ser Asn Leu His Ile Thr Pro Asp Ser Tyr Ile Ser Phe Ser 120

 Thr Met Ser Cys Thr Gly Ser Cys Arg Pro Met Asp Asp Arg Ala 135

 Val Asn Gly Phe Gly Arg Gly Glu Gly Thr Ser Cys Ile Ile Leu 150

 Lys Pro Leu Asp Ala Ala Leu Lys Asp His Asp Pro Ile Arg Ala 165

 Val Ile Arg Asn Thr Gly Thr Asn Gln Asp Gly Lys Thr Thr Gly 180

 Ile Thr Met Pro Asn Gly Glu Ala Gln Ala Leu Met Gln Ser 195

 Val Tyr Glu Ala Ala Gly Leu Asp Pro Leu Glu Thr Asp Tyr
- (2) INFORMATION FOR SEQ ID NO:39:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 691
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

\10x / UDQUE					
GCATTTGCTG	GAGGTGAGCT	ATGAAGCGCT	TGAAAATGCT	GGCCTTTCTC	50
	TGCCGGCACC		TCTTCGTTGG	TGGAGGCAAT	100
GCAKAGTATC	GATCGCATAT	CGGCCAAGAT	ATTGACAATC	TGCCTATGTT	150
CGAGGCAACT	GGTAACGCAG	AGGCGCTATT	GGCGAATAGA	GTTTCTTATG	200
TATATGATCT	TCGAGGACCG	AGTCTAACCA	CCGATACCGC	CTGTTCCTCA	250
AGTCTCGCCG	CTTTGAACAC	GGCATTCTTA	AGTCTACAGG	CTGGCGAGTC	300
GTCTACAGCA	CTGGTCGGTA	GCTCAGTAAT	TCGGCTTAGG	CCTGAGTCAG	350
CCATCTCACT	TTCCAGCATG	CAGTAAGTCC	TTCATGGTGC	ACCTGCATAC	400
ATTGCTAATA	AGTGCAGGCT	TCTATCCCCA	GATGGAAAAT	CTTACGCGTT.	450
CGATGAGAGA	GCTACCAGTG	GTTTTGGAAG	GGGTGAGGGT	TCGGGTTGCA	500
TAATACTAAA	ACCCCTGGAC	GCAGCCGTGA	GAGACGGAGA	CCCAATTAGA	550
GCAGTCATTT	GTAACTCGGG	TGTAAACCAA	GACGGCAAGA	CTGCTGGTAT	600
TACAATGCCT	AATGGACACG	CGCAAGCTTC	TCTAATACGG	TCTGTTTATC	650
AGTCTACAGG	GATAGACCCT	TTAATGACGG	ACTATGTCGA	A	691

- 47 -

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 215

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE:

(A) DESCRIPTION: protein

(iii) HYPOTHETICAL: no

(v) FRAGMENT TYPE: internal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

His Leu Leu Glu Val Ser Tyr Glu Ala Leu Glu Asn Ala Gly Leu

Ser Leu Pro Cys Ile Ala Gly Thr Lys Met Gly Val Phe Val Gly

Gly Gly Asn Ala Xaa Tyr Arg Ser His Ile Gly Gln Asp Ile Asp

Asn Leu Pro Met Phe Glu Ala Thr Gly Asn Ala Glu Ala Leu Leu

Ala Asn Arg Val Ser Tyr Val Tyr Asp Leu Arg Gly Pro Ser Leu

Thr Thr Asp Thr Ala Cys Ser Ser Ser Leu Ala Ala Leu Asn Thr

Ala Phe Leu Ser Leu Gln Ala Gly Glu Ser Ser Thr Ala Leu Val 95

Gly Ser Ser Val Ile Arg Leu Arg Pro Glu Ser Ala Ile Ser Leu

Ser Ser Met Gln Leu Leu Ser Pro Asp Gly Lys Ser Tyr Ala Phe 125

Asp Glu Arg Ala Thr Ser Gly Phe Gly Arg Gly Glu Gly Ser Gly

Cys Ile Ile Leu Lys Pro Leu Asp Ala Ala Val Arg Asp Gly Asp 165

Pro Ile Arg Ala Val Ile Cys Asn Ser Gly Val Asn Gln Asp Gly

Lys Thr Ala Gly Ile Thr Met Pro Asn Gly His Ala Gln Ala Ser 185

Leu Ile Arg Ser Val Tyr Gln Ser Thr Gly Ile Asp Pro Leu Met

Thr Asp Tyr Val Glu 215 - 48 -

- (2) INFORMATION FOR SEQ ID NO:41:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 637
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GCTGTTTCTT CAAACTAGCT GGCAATGCAT TGAAGATGCG GGATATAACC 50 CCACATCCTT TGCAGGTAGC AAGTGTGGCG TATTTGTCGG CTGCGAAACG 100 GGAGACTATG GAAAGATTGT GCAGCGATAT GAATTGAGCG CTCTCGGATT 150 GCTAGGCTCT TCTGCGGCAC TGCTCCCGGC AAGGATCTCC TATTTCCTCA 200 ACCTCCAGGG CCCTTGTATG GCGATCGACA CAGCCTGCTC TGCATCCCTA 250 GTTGCCATAG CCAACGCCTG CGACAGCCTG GTACTGGGTC ACTCCGATGC 300 AGCCTTGGCC GGAGGAGTCT ACGTCCTCTC CGGGCCGGAA ATGCACATTA 350 TGATGAGCAA AGCTGGTATC TTGTCACCCG ATGGCAGATG TTTCACCTTC 400 GATCGACGTG CTAACGGCTT TGTACCGGGC GAAGGTGTGG GCGTCGTGTT 450 ACTCAAACGC CTTGCCGATG CCGAAAAAGA CGGTGATAAT ATCTGTGGTG 500 TGATTCGAGG CTGGGGGGTG AATCAAGACG GCAAGACCAG TGGAATTACA 550 GCACCTAACG GACAGTCACA GCAACGATTG CAGAAAGAAG TCTACGAACG 600 GTTTCAGATT CAGCCAGCAG ACATTCAACT GGTTGAG 637

- (2) INFORMATION FOR SEQ ID NO:42:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 212
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Leu Phe Leu Gln Thr Ser Trp Gln Cys Ile Glu Asp Ala Gly Tyr 10

Asn Pro Thr Ser Phe Ala Gly Ser Lys Cys Gly Val Phe Val Gly

Cys Glu Thr Gly Asp Tyr Gly Lys Ile Val Gln Arg Tyr Glu Leu

Ser Ala Leu Gly Leu Leu Gly Ser Ser Ala Ala Leu Leu Pro Ala

Arg Ile Ser Tyr Phe Leu Asn Leu Gln Gly Pro Cys Met Ala Ile

Asp Thr Ala Cys Ser Ala Ser Leu Val Ala Ile Ala Asn Ala Cys

- 49 -

Asp Ser Leu Val Leu Gly His Ser Asp Ala Ala Leu Ala Gly Gly 95 Val Tyr Val Leu Ser Gly Pro Glu Met His Ile Met Met Ser Lys 115 Ala Gly Ile Leu Ser Pro Asp Gly Arg Cys Phe Thr Phe Asp Arg 130 Arg Ala Asn Gly Phe Val Pro Gly Glu Gly Val Gly Val Val Leu Leu Lys Arg Leu Ala Asp Ala Glu Lys Asp Gly Asp Asn Ile Cys Gly Val Ile Arg Gly Trp Gly Val Asn Gln Asp Gly Lys Thr Ser Gly Ile Thr Ala Pro Asn Gly Gln Ser Gln Gln Arg Leu Gln Lys Glu Val Tyr Glu Arg Phe Gln Ile Gln Pro Ala Asp Ile Gln Leu 205 200

Val Glu

- (2) INFORMATION FOR SEQ ID NO:43:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
- GATGATGATA GAAGTCGCTT ACCAAGGACT TGAGAGTGCA GGGCTGTCTC 50 TTCAGGATGT TGCCGGATCG AGGACTGGAG TCTTCATTGG CCATTTCAGC 100 AGTGATTACC GAGACATGAT ATTCAGAGAT CCCGAGAGGG CACCGACCTA 150 CACTTCAGT GGGGTTAGTA AGACGTCATT GGCGAATCGC ATCTCCTGGC 200 TGTTCGACCT GAAAGGCCCA AGTTTCAGCT TGGACACAGC CTGCTCGTCG 250 AGTCTGGTCG CCCTGCATTT GGCTTGCCAA AGCTTACGCG CTGGAGAGTC 300 AGATATCGCC ATTGTCGGAG GGGTCAACCT TCTCTGGAAT CCGGAGTTGT 350 TCATGTATCT CTCCAATCAG CACTTTCTCT CGCCAGATGG GAAATGTAAA 400 AGCTTTGACG AATCCGGCGA TGGCTATGGT CGTGGCGAAG GCATTGCCGC 450 TCTTGTACTA AGAAGAGTCG ACGACGCGAT TGCGGCCCGG GACCCTATTC 500 GTGCCATCAT TCGCGGTACT GGGAGTAATC AGGACGGACA CACCAAAGGC 550 TTCACCCTCC CCAGCGCAGA AGCCCAGGCG AGGTTGATTA GAGATACGTA 600 CTCTGCCGCG GGGCTAGGTT TTAGAGACAC GCGATACGTA GAA
- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 214
 - (B) TYPE: amino acid

PCT/CA98/00488 WO 98/53097

- 50 -

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Met Met Ile Glu Val Ala Tyr Gln Gly Leu Glu Ser Ala Gly Leu

Ser Leu Gln Asp Val Ala Gly Ser Arg Thr Gly Val Phe Ile Gly

His Phe Ser Ser Asp Tyr Arg Asp Met Ile Phe Arg Asp Pro Glu

Arg Ala Pro Thr Tyr Thr Phe Ser Gly Val Ser Lys Thr Ser Leu

Ala Asn Arg Ile Ser Trp Leu Phe Asp Leu Lys Gly Pro Ser Phe

Ser Leu Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Leu His Leu

Ala Cys Gln Ser Leu Arg Ala Gly Glu Ser Asp Ile Ala Ile Val

Gly Gly Val Asn Leu Leu Trp Asn Pro Glu Leu Phe Met Tyr Leu

Ser Asn Gln His Phe Leu Ser Pro Asp Gly Lys Cys Lys Ser Phe

Asp Glu Ser Gly Asp Gly Tyr Gly Arg Gly Glu Gly Ile Ala Ala

Leu Val Leu Arg Arg Val Asp Asp Ala Ile Ala Ala Arg Asp Pro

Ile Arg Ala Ile Ile Arg Gly Thr Gly Ser Asn Gln Asp Gly His 175 180

Thr Lys Gly Phe Thr Leu Pro Ser Ala Glu Ala Gln Ala Arg Leu

Ile Arg Asp Thr Tyr Ser Ala Ala Gly Leu Gly Phe Arg Asp Thr 205 210

Arg Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:45:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:655
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

- 51 -

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

RGTCCTTATG GAGACCGTCT ACGAGGCAAT TGAGTCTGCG GGTATGACTT 50 TGAAGGGGCT GCAAGGCAGC GACACAAGTG TGTATGCCGG CGTCATGTGT 100 GGCGACTACG AGGCCATACA GCTCCGCGAT CTGGACGCGG CCCCGACTTA 150 TTTCGCAGTG GGAACCTCGC GAGCTATCCT CTCCAATCGA ATCTCGTATT 200 TCTTCAACTG GCACGGCGCG TCCATCACCA TGGACACGGC ATGTTCCTCT 250 AGTCTGGTCG CCATTCACTT GGCCGTTCAG RCGCTTCGGG CAAATGAATC 300 ACGRATGGCC GTGGCGTGTG GGTCGAACCT CATTCTCGGA CCCGAGAGTT 350 ACATTATTGA AAGCAAGGTG AAGATGCTGT CCCCGGACGG TCTCAGCCGA 400 ATGTGGGATA AAGACGCCAA CGGCTATGCG CGTGGAGATG GCGTTGCGGC 450 CGTTGTTTTG AAGACTCTCA GCGCCGCGCT GGCGGACGGA GACCACATTG 500 AATGTCTCAT ACGGGAGACG GGACTCAACC AGGACGGTGC GACAGCCGGT 550 CTCACCATGC CTAGCGCCAC TGCGCAGCGA GCTCTTATTC ACAGTACGTA 600 CACCAAGGCA GGTCTTGATC TCACTGCCCA GGCAGACCGT CCCCAGTATT 650 TCGAG

- (2) INFORMATION FOR SEQ ID NO:46:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 218
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Val Leu Met Glu Thr Val Tyr Glu Ala Ile Glu Ser Ala Gly Met

Thr Leu Lys Gly Leu Gln Gly Ser Asp Thr Ser Val Tyr Ala Gly

Val Met Cys Gly Asp Tyr Glu Ala Ile Gln Leu Arg Asp Leu Asp

Ala Ala Pro Thr Tyr Phe Ala Val Gly Thr Ser Arg Ala Ile Leu

Ser Asn Arg Ile Ser Tyr Phe Phe Asn Trp His Gly Ala Ser Ile

Thr Met Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Ile His Leu

Ala Val Gln Xaa Leu Arg Ala Asn Glu Ser Arg Met Ala Val Ala

Cys Gly Ser Asn Leu Ile Leu Gly Pro Glu Ser Tyr Ile Ile Glu

Ser Lys Val Lys Met Leu Ser Pro Asp Gly Leu Ser Arg Met Trp

Asp Lys Asp Ala Asn Gly Tyr Ala Arg Gly Asp Gly Val Ala Ala 150

Val Val Leu Lys Thr Leu Ser Ala Ala Leu Ala Asp Gly Asp Gly Asp His 165

Ile Glu Cys Leu Ile Arg Glu Thr Gly Leu Asn Gln Asp Gly Ala 180

Thr Ala Gly Leu Thr Met Pro Ser Ala Thr Ala Gln Arg Ala Leu 195

Ile His Ser Thr Tyr Thr Lys Ala Gly Leu Asp Leu Thr Ala Gln 210

Ala Asp Arg Pro Gln Tyr Phe Glu 215

- (2) INFORMATION FOR SEQ ID NO:47:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:754
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

AGGTCTGTTG GAGACGGTTT ATCGCGCCTT TGAAAACGGT AAGGCCACCC 50 TGGGAATAAA CCGGCTTCTC GTCCTGACGG CTTACTCTAT GCTAGCTGGT 100 ATACCCATGG AGCAGGTCCT CGGGTCGAAG ACATCCGTTT ACGTGGGATG 150 TTTCACCCGC GAGTTCGAGC AGTTGCTCGC GAGGGACCCC GAGATGAATC 200 TGAAATACAT CGCTACGGGC ACCGGCACGG CGATGCTGTC GAATCGCCTC 250 TCCTGGTTCT ATGACTTGAA AGGCGCCAGT ATCACTCTTG ATACTGCCTG 300 TTCGTCCAGT CTCAATGCGT GCCATCTTGC TTGCGCAAGC TTACGTAATG 350 GAGAAGCCAA TATGGTAAGA CTCCAACTCA TCGCGGGACT GAACAATTGC 400 ATACTGATCC ATCAAAGGCC CTGGTAGGAG GCTGCAATCT TTTCTATAAC 450 CCGGAAACGA TCATCCCTCT GACAAATCTA GGCTTTCTTT CTCCGGATAA 500 CAAATGTTAT AGTTTTGACC ATCGTGCTAA CGGTTACTCT CGCGGCGAGG 550 GGTTTGGTAT TCTTGTATTG AAGAGACTGT CGGACGCTCT ACGCGATAAC 600 GACACTGTCC GTGCAGTGAT TCGGGCCTCT TCGTCTAACC AGGATGGCAA 650 GTCTCCCGGT ATCACACAGC CTACCAAACA AGCGCAAATA CAACTGATCA 700 AAGACACTTA CGCGGCTGCC GGGCTGGACT ATACGCAAAC CCGCTACTTC 750 754 GANA

- (2) INFORMATION FOR SEQ ID NO:48:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid

- 53 -

- (D) TOPOLOGY: linear (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
- Gly Leu Leu Glu Thr Val Tyr Arg Ala Phe Glu Asn Ala Gly Ile
- Pro Met Glu Gln Val Leu Gly Ser Lys Thr Ser Val Tyr Val Gly
- Cys Phe Thr Arg Glu Phe Glu Gln Leu Leu Ala Arg Asp Pro Glu
- Met Asn Leu Lys Tyr Ile Ala Thr Gly Thr Gly Thr Ala Met Leu
- Ser Asn Arg Leu Ser Trp Phe Tyr Asp Leu Lys Gly Ala Ser Ile
- Thr Leu Asp Thr Ala Cys Ser Ser Ser Leu Asn Ala Cys His Leu
- Ala Cys Ala Ser Leu Arg Asn Gly Glu Ala Asn Met Ala Leu Val
- Gly Gly Cys Asn Leu Phe Tyr Asn Pro Glu Thr Ile Ile Pro Leu
- Thr Asn Leu Gly Phe Leu Ser Pro Asp Asn Lys Cys Tyr Ser Phe
- Asp His Arg Ala Asn Gly Tyr Ser Arg Gly Glu Gly Phe Gly Ile
- Leu Val Leu Lys Arg Leu Ser Asp Ala Leu Arg Asp Asn Asp Thr
- Val Arg Ala Val Ile Arg Ala Ser Ser Ser Asn Gln Asp Gly Lys 180 170
- Ser Pro Gly Ile Thr Gln Pro Thr Lys Gln Ala Gln Ile Gln Leu
- Ile Lys Asp Thr Tyr Ala Ala Gly Leu Asp Tyr Thr Gln Thr 210 205 200

Arg Tyr Phe Xaa

- (2) INFORMATION FOR SEQ ID NO:49:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 722
- (B) TYPE: nucleic acid

PCT/CA98/00488 WO 98/53097

- 54 -

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
- CTTGTTACTC GAGACTGTCT ACGAATCTCT CGAGTCGGCT GGTCAGACAA 50 TCGAAGGCTT GCAAGGATCG CAAACCGCAG TGTATATTGG TGTAATGTGC 100 GATGATTACG CCGAGCTCGT GTATCATGAT ACAGAGTCAA TCCCGACCTA 150 TGCTGCAACT GGTAGTGCAC GCAGCATGAT GTCGAACCGA ATCTCTTACT 200 TCTTTGACTG GAAGGGGCCG TCAATGACCA TTGATACTGC CTGTTCCTCT 250 AGTCTTGTCG CTGTCCACCA GGCCGTTCAA GTTCTCAGGA GCGGAGAATC 300 CCGCGTCGCA GTGGCTGCTG GGGCAAATCT CATCTTCGGA CCCAGTAAGT 350 CTTCCTAAAA TATGAGTAGG CTCCAGTCAT TGTGATTGCT AATCACTTCA 400 ACCATTTACA GAGATGTACA TTGCTGAGAG CAACCTCAAT ATGTTGTCCC 450 CAACTGGSCG STCCCGAATG TGGGACGCTA ACSCGGATGG CTATGCACGA 500 GGAGAGGGTA TTGCATCTGT CGTACTCAAA ACTCTTAGCT CTGCTATAGC 550 AGATGGTGAT ACCATCGAAT GTTTGATCCG AGAAACCGGT GTCAACCAGG 600 ATGGCCGCAC CACTGGTATC ACTATGCCAA GCTCCGCAGC CCAAGCCAGT 650 TTGATCCGTC AGACTTACGC CAGAGCTGGT TTGGACCTGG CGAAGCAAGC 700 TGATCGGCCT CAATTCTTTG AG
- (2) INFORMATION FOR SEQ ID NO:50:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 218
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Leu Leu Leu Glu Thr Val Tyr Glu Ser Leu Glu Ser Ala Gly Gln

Thr Ile Glu Gly Leu Gln Gly Ser Gln Thr Ala Val Tyr Ile Gly

Val Met Cys Asp Asp Tyr Ala Glu Leu Val Tyr His Asp Thr Glu

Ser Ile Pro Thr Tyr Ala Ala Thr Gly Ser Ala Arg Ser Met Met 50

Ser Asn Arg Ile Ser Tyr Phe Phe Asp Trp Lys Gly Pro Ser Met

Thr Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln

Ala Val Gln Val Leu Arg Ser Gly Glu Ser Arg Val Ala Val Ala

Ala Gly Ala Asn Leu Ile Phe Gly Pro Lys Met Tyr Ile Ala Glu 110 115

- 55 -

```
Ser Asn Leu Asn Met Leu Ser Pro Thr Gly Arg Ser Arg Met Trp
                                    130
                125
Asp Ala Asn Xaa Asp Gly Tyr Ala Arg Gly Glu Gly Ile Ala Ser
                140
Val Val Leu Lys Thr Leu Ser Ser Ala Ile Ala Asp Gly Asp Thr
Ile Glu Cys Leu Ile Arg Glu Thr Gly Val Asn Gln Asp Gly Arg
Thr Thr Gly Ile Thr Met Pro Ser Ser Ala Ala Gln Ala Ser Leu
Ile Arg Gln Thr Tyr Ala Arg Ala Gly Leu Asp Leu Ala Lys Gln
                                    205
Ala Asp Arg Pro Gln Phe Phe Glu
```

- (2) INFORMATION FOR SEQ ID NO:51:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 703
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

(VI) DEGOET					
AATATTACTT	GAGACGATCT	ACGAAGGACT	TGAGTCCGCC	GGACTTACCA	50
TAAAGGGGCT	GCAAGGTTCC	CAAACAGCTG	TGTACGTCGG	TCTCATGGCT	100
GGAGACTACT	ATGACATCCA	GATGCGCGAC	ATAGAGACTT	TGCCTCGATA	150
TGCTGCTACC	GGGACTGCTC	GTAGCATTAT	GAGCAACCGA	GTCTCTTATT	200
TCTTTGATTG	GAAAGGTCCG	TCCATGACAA	TTGATACGGC	CTGCTCTTCT	250
TCCCTCGTTG	CCGTTCATCA	GGCTGTCGAG	ATTCTCCGGA	GAGGTGATGT	300
TACCATGGCT	GTGGCTGCCG	GCGCCAACCT	GATCTATGGT	CCTGAGGCTT	350
ATATATCCGA	GTCGAATCTG	AACATGCTGT	CGCCGAGCGG	AAGATCGCGC	400
ATGTGGGATT	CAAGTGCGGA	CGGATACGGC	CGCGGAGAAG	GGTTTGCGGC	450
AGTGATGTTG	AAGACCCTGA	GCGCTGCAAT	TCGTGATGGA	GATCATATCG	500
AGTGCATTAT	CCGGGAGACA	GGAATTAACC	AGGATGGCAG	AACAGCCGGA	550
ATTACCATGC	CAAGTGCTGT	CAGCCAGACT	CGATTGATCA		600
TGCTCGAGCT		GCAGGAAAGA			650
TTGAAGGTAA	GCGAATAACT	TTTCTTGATA	AACGCACTTA	CTAAGATCTT	700
TAA					703

- (2) INFORMATION FOR SEQ ID NO:52:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 234
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(A)	DES	CRIP	ILE T TION HETI	: pr	otei no	n								
(v)	FRA	GMEN	IT TY	PE:	inte	rnal	fra	gmen	t					
(xi Ile) SE Leu	QUEN Leu	ICE D Glu	ESCR Thr 5	IPTI Ile	ON: Tyr	SEQ Glu	ID N Gly	10:52 Leu 10	: Glu	Ser	Ala	Gly	Leu 15
Thr	Ile	Lys	Gly	Leu 20	Gln	Gly	Ser	Gln	Thr 25	Ala	Val	Tyr	Val	Gly 30
Leu	Met	Ala	Gly	Asp 35	Tyr	Tyr	Asp	Ile	Gln 40	Met	Arg	Asp	Ile	Glu 45
Thr	Leu	Pro	Arg	Tyr 50	Ala	Ala	Thr	Gly	Thr 55	Ala	Arg	Ser	Ile	Met 60
Ser	Asn	Arg	Val	Ser 65	Tyr	Phe	Phe	Asp	Trp 70	Lys	Gly	Pro	Ser	Met 75
Thr	Ile	Asp	Thr	Ala 80	Cys	Ser	Ser	Ser	Leu 85	Val	Ala	Val	His	Gln 90
Ala	Val	Glu	Ile	Leu 65	Arg	Arg	Gly	Asp	Val 70	Thr	Met	Ala	Val	Ala 75
Ala	Gly	Ala	Asn	Leu 110	Ile	Tyr	Gly	Pro	Glu 115	Ala	Tyr	Ile	Ser	Glu 120
Ser	Asn	Leu	Asn	Met 125	Leu	Ser	Pro	Ser	Gly 130	Arg	Ser	Arg	Met	Trp 135
Asp	Ser	Ser	Ala	Asp 140	Gly	Tyr	Gly	Arg	Gly 145	Glu	Gly	Phe	Ala	Ala 150
Val	Met	Leu	Lys	Thr 155	Leu	Ser	Ala	Ala	Ile 160	Arg	Asp	Gly	Asp	His 165
Ile	Glu	Cys	Ile	Ile 170	Arg	Glu	Thr	Gly	Ile 175	Asn	Gln	Asp	Gly	Arg 180
Thr	Ala	Gly	Ile	Thr 185	Met	Pro	Ser	Ala	Val 190	Ser	Gln	Thr	Arg	Let 195
Ile	Lys	Asp	Thr	Tyr 200	Ala	Arg	Ala	Gly	Leu 205	Asp	Cys	Arg	Lys	Gli 210
Ala	Glu	Arg	Cys	Gln 215		Phe	Glu	Gly	Lys 220	Arg	Ile	Thr	Phe	Let 225
Asp	Lys	Arg	Thr	Tyr 230		Asp	Leu	Xaa						

- (2) INFORMATION FOR SEQ ID NO:53:
- (i) SEQUENCE CHARACTERISTICS:

- 57 -

```
(A) LENGTH: 643
```

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

GCTGTTGCTG GAGGTAAGTT GGGAAGCTTT AGAAAATGCT GGCAAAGCAC 50 CTGAAAAGCT AGCAGGAAGC AATACAGGTG TATTTGTTGG CATTAGCAAC 100 TTTGATTATT CACAGTTGCA AATTAATCAA ACCGCTCAAC TAGATGCCTA 150 TACAGGCACT GGCAATGCTT TTAGCATCGC AGCTAACCGT CTTTCCTATT 200 TTCTAGACTT GCACGGACCT AGCTGGGCAG TAGACACAGC CTGTTCATCA 250 TCTCTAGTAG CAGTCCATCA AGCTTGCCAA AGTCTGCGTC AAGGAGAATG 300 CGAACTAGCC CTCGCTGGTG GTGTAAATCT GATTCTCACC CCACAATTAA 350 CCATCACTTT TTCCCAAGCT GGGATGATGG CTGCTGATGG TCGTTGCAAA 400 ACCTTTGATG CTGATGCTGA TGGTTACGTG CGGGGCGAAG GTTGTGGTGT 450 TGTAATTCTC AAGCGTTTGG CCAACGCTCA ACGAGATGGA GACAATATTT 500 TGGCAGTTAT TAAAGGTTCG GCAGTTAACC AAGATGGTCG CAGCAACGGA 550 TTGACAGCAC CCAACGGTCA TGCCCAACAA GCAGTTATTC GCCAAGCATT 600 ACAAAATGCC AATGTTGCAG CTGCCGAGAT TAGCTATGTA GAA

- (2) INFORMATION FOR SEQ ID NO:54:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Leu Leu Glu Val Ser Trp Glu Ala Leu Glu Asn Ala Gly Lys

Ala Pro Glu Lys Leu Ala Gly Ser Asn Thr Gly Val Phe Val Gly

20 25

Ile Ser Asn Phe Asp Tyr Ser Gln Leu Gln Ile Asn Gln Thr Ala

Gln Leu Asp Ala Tyr Thr Gly Thr Gly Asn Ala Phe Ser Ile Ala

Ala Asn Arg Leu Ser Tyr Phe Leu Asp Leu His Gly Pro Ser Trp

Ala Val Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln

Ala Cys Gln Ser Leu Arg Gln Gly Glu Cys Glu Leu Ala Leu Ala

WO 98/53097 PCT/CA98/00488

- 58 -

- Gly Gly Val Asn Leu Ile Leu Thr Pro Gln Leu Thr Ile Thr Phe 110 115 Ser Gln Ala Gly Met Met Ala Ala Asp Gly Arg Cys Lys Thr Phe 125 Asp Ala Asp Ala Asp Gly Tyr Val Arg Gly Glu Gly Cys Gly Val 140 Val Ile Leu Lys Arg Leu Ala Asn Ala Gln Arg Asp Gly Asp Asn 155 Ile Leu Ala Val Ile Lys Gly Ser Ala Val Asn Gln Asp Gly Arg 175 Ser Asn Gly Leu Thr Ala Pro Asn Gly His Ala Gln Gln Ala Val 190 Ile Arg Gln Ala Leu Gln Asn Ala Asn Val Ala Ala Ala Glu Ile 210 205 200 Ser Tyr Val Glu
- (2) INFORMATION FOR SEQ ID NO:55:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 655
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

			CC2 2 2 2 TOCCT	GGTTATGACC	EΛ
TCTTTTTTTG	GAGTGTGCTT	GGGAAGCGCT	GGAAAATGCT		
CGAAAACAGA	CAAAAATCTA	ATTGGCGTTT	ATGCAGGGGG	GAATCTAAGT	100
ACCTACTTAC	TTAACAATCT	CGCCTCACAC	CCTGAACTCA	TTAAAGCGCT	150
GGAGTCACAA	ATTACAATTG	CTAATGATAA	GGACTTTATA	TGCACACGAG	200
TTTCTTACAA	ATTAAACCTG	AAAGGGCCGA	GTATTAGTGT	CGGCACGGCC	250
TGCTCTACGT	CATTAGTAGC	AGTTCACTTG	GCATGTCGAG	GATTGCTAAG	300
TTACCAGTGT	GATATGGCAC	TGGCTGGCGG	TATTGCGATA	CAAGTTCCAC	350
AAAAACAAGG	TTATTTCTAT	CAAGAAGGTG	GCATGGCCTC	TCCTGATGGC	400
CACTGTCGGG	CCTTTGATGC	TAAAGCACAA	GGTAGCCCTT	TTGGCAAAGG	450
AGCAGGTATT	GTCGTGCTGA	AAAGATTGGA	AGATGCTGTA	GCTGATGGAG	500
ACTGCATTTA	TGCGGTTATC	AAAGGTTCAG	CCATCAATAA	CGACGGTTCC	550
GAGAAGGTGA	GTTACACCGC	ACCCAGTGTA	ACAGGCCAAG	CAGAAGTGAT	600
TGCCGAGGCT	CAGGCGATCG	CTAACTTTGA	TTCTGAAACA	ATCACCTACA	650
TTGAA					655

- (2) INFORMATION FOR SEQ ID NO:56:
- (i) SEQUENCE CHARACTERISTICS:

- 59 -

- (A) LENGTH: 217 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56: Leu Phe Leu Glu Cys Ala Trp Glu Ala Leu Glu Asn Ala Gly Tyr Asp Pro Lys Thr Asp Lys Asn Leu Ile Gly Val Tyr Ala Gly Gly Asn Leu Ser Thr Tyr Leu Leu Asn Asn Leu Ala Ser His Pro Glu Leu Ile Lys Ala Leu Glu Ser Gln Ile Thr Ile Ala Asn Asp Lys Asp Phe Ile Cys Thr Arg Val Ser Tyr Lys Leu Asn Leu Lys Gly Pro Ser Ile Ser Val Gly Thr Ala Cys Ser Thr Ser Leu Val Ala Val His Leu Ala Cys Arg Gly Leu Leu Ser Tyr Gln Cys Asp Met Ala Leu Ala Gly Gly Ile Ala Ile Gln Val Pro Gln Lys Gln Gly Tyr Phe Tyr Gln Glu Gly Gly Met Ala Ser Pro Asp Gly His Cys Arg Ala Phe Asp Ala Lys Ala Gln Gly Ser Pro Phe Gly Lys Gly 140 Ala Gly Ile Val Val Leu Lys Arg Leu Glu Asp Ala Val Ala Asp Gly Asp Cys Ile Tyr Ala Val Ile Lys Gly Ser Ala Ile Asn Asn Asp Gly Ser Glu Lys Val Ser Tyr Thr Ala Pro Ser Val Thr Gly 190 Gln Ala Glu Val Ile Ala Glu Ala Gln Ala Ile Ala Asn Phe Asp 210 200
- Ser Glu Thr Ile Thr Tyr Ile 215
- (2) INFORMATION FOR SEQ ID NO:57:

- 60 -

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 765
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

ATTGCTGCTT GAAAACGTCT ATGAAGCTCT TGAAAACGGT GAGCGGTTCT 50 TCAAGAGAAT ATTGATGCAT CAATATGCTA ACTTGATGTC AATCATCAGC 100 TGGTATTCCT CTGAGCGAGT CCGTCTCTTC TAACACCTCC GTTTATGTTG 150 GCTCATTCGG TGATGACTAT AAGACGATTC TCAATACCGA TTTTGAGAGT 200 TGGGTCAAGT ACAAAGGCAC CGGTGTCTAT AACTCGATTC TGGCCAATCG 250 AATCAGCTGG TTCTACGACT TTAAAGGAGC CAGCGTCACG CTAGATACCG 300 CATGCTCGAG TAGCTTGGTA GCCGTGCATA TGGCTTGCCA GGATTTGAGG 350 TTGGGAGAGT CTAGAATGGT CAGTGTATTT CTCTATTGAA AAGTACTAGA 400 GGATTCTAAT TGACGTATTT GGATACCAGT CCGTTGTCGG CGGTGTCAAC 450 ATCATTGGCC ATCCGTTGCT CGTCCACGAT CTAAGCAAGC TCGGAGCGCT 500 CTCTCCTGAT GGCGTGTGCT ACACTTTCGA TGAACGGGCC AATGGATATT 550 CCCGGGGAGA AGGTGTCGGC ACCATCGTTC TCAAACGGCT CTCTGACGCA 600 ATCGAAGATG GTGATACCAT TCGCGCTATC ATCCGTGCAA GCGGGTGCAA 650 TCAAGACGGT AAAACAGCAG GTATATTTGT CCCTTCAGTC CAAGCCCAGG 700 AGCGACTTAT CCGGGATACC TATGAGAAGG CTGGGCTTGA CCGGACACGC 750 ACGACATATT TGGAA

- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 216
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Leu Leu Leu Glu Asn Val Tyr Glu Ala Leu Glu Asn Ala Gly Ile 10

Pro Leu Ser Glu Ser Val Ser Ser Asn Thr Ser Val Tyr Val Gly

Ser Phe Gly Asp Asp Tyr Lys Thr Ile Leu Asn Thr Asp Phe Glu

Ser Trp Val Lys Tyr Lys Gly Thr Gly Val Tyr Asn Ser Ile Leu

Ala Asn Arg Ile Ser Trp Phe Tyr Asp Phe Lys Gly Ala Ser Val

Thr Leu Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Met 85

WO 98/53097 PCT/CA98/00488

- 61 -

Ala	Cys	Gln	Asp	Leu 95	Arg	Leu	Gly	Glu	Ser 100	Arg	Met	Val	Ser	Ser 105
Val	Val	Gly	Gly	Val 110	Asn	Ile	Ile	Gly	His 115	Pro	Leu	Leu	Val	His 120
Asp	Leu	Ser	Lys	Leu 125	Gly	Ala	Leu	Ser	Pro 130	Asp	Gly	Val	Cys	Tyr 135
Thr	Phe	Asp	Glu	Arg 140	Ala	Asn	Gly	Tyr	Ser 145	Arg	Gly	Glu	Gly	Val 150
Gly	Thr	Ile	Val	Leu 155	Lys	Arg	Leu	Ser	Asp 160	Ala	Ile	Glu	Asp	Gly 165
Asp	Thr	Ile	Arg	Ala 170	Ile	Ile	Arg	Ala	Ser 175	Gly	Cys	Asn	Gln	Asp 180
Gly	Lys	Thr	Ala	Gly 185	Ile	Phe	Val	Pro	Ser 190	Val	Gln	Ala	Gln	Glu 195
Arg	Leu	Ile	Arg	Asp 200	Thr	Tyr	Glu	Lys	Ala 205	Gly	Leu	Asp	Arg	Thr 210
Arg	Thr	Thr	Tyr	Leu 215										

- (2) INFORMATION FOR SEQ ID NO:59:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 709
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

(YT) 200001					_ ^
TAAGTTACTG	GAAACAGCAT	ATACTGCGTT	TGAGAACGGT	GAGTACGCCT	
TGCGTCGTAT	CCCCTCCCC	CTCATGGAAG	ATCTCAATCT	GATCTCGTGA	100
		AAGCGGCACG	AGGATCAAAC	ACTTCAGTAC	150
AACAGCCGGC	ATCGGGTTAG		GCAACCATAG	TAGAGATCCA	
ATATAGGTTG	TTTTAATATC	GACTATACAA			250
GAGCAGATGC	ACAAATATAC	GGGGACTGGA	GGAGCACCTT	CCMICCICIO	
GAACAGACTG	AGTTGGTTTT	TCGATCTGAG	AGGACCGAGC	TTGACCTTGG	300
ACACGGCATG	CTCTAGTAGC	ATGGTTGCGC	TTGATTTAGC	ATGCCAGACT	350
		CATGGGTCTT	GTCGGGGGTT	GTAATCTCAT	400
TTGCAAAGTG	GACAATCTGA		CAAGCTTGGA	TTTCTCTCCC	450
CTACAGCGTC	GACATGACCA				500
ATAACAGTCG	GTGCTACAGT	TTTGACCATC	GAGCGGATGG	GTACGCCAGA	
GGTGAAGGCT	TTGGAGTTTT	AATTCTCAAA	CGTGTCGAAG	ACGCCATACG	550
	ACTATACGAG		ATTAACAAGC	TCCAATCAAG	600
AGATGGGGAT			GCAGAGACGC	CCAAGCAAGT	650
ACGGCCATAC				AGATGACAGG	700
TTGATTAGAA	AGACATACCA	ACAAGCTGGA	TTAGATATGC	AGAIGACAGG	
CTACTTTGA					709
CIMCITION					

(2) INFORMATION FOR SEQ ID NO:60:

- 62 -

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 213
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60: Lys Leu Leu Glu Thr Ala Tyr Thr Ala Phe Glu Asn Ala Gly Ile
- Gly Leu Glu Ala Ala Arg Gly Ser Asn Thr Ser Val His Ile Gly
- Cys Phe Asn Ile Asp Tyr Thr Ser Asn His Ser Arg Asp Pro Glu
- Gln Met His Lys Tyr Thr Gly Thr Gly Gly Ala Pro Ser Met Leu
- Ser Asn Arg Leu Ser Trp Phe Phe Asp Leu Arg Gly Pro Ser Leu
- Thr Leu Asp Thr Ala Cys Ser Ser Ser Met Val Ala Leu Asp Leu
- Ala Cys Gln Thr Leu Gln Ser Gly Gln Ser Asp Met Gly Leu Val 95
- Gly Gly Cys Asn Leu Ile Tyr Ser Val Asp Met Thr Met Ala Leu
- Ser Lys Leu Gly Phe Leu Ser His Asn Ser Arg Cys Tyr Ser Phe
- Asp His Arg Ala Asp Gly Tyr Ala Arg Gly Glu Gly Phe Gly Val
- Leu Ile Leu Lys Arg Val Glu Asp Ala Ile Arg Asp Gly Asp Thr 160
- Ile Arg Gly Val Ile Arg Leu Thr Ser Ser Asn Gln Asp Gly His
- Thr Pro Gly Ile Thr Met Pro Ser Arg Asp Ala Gln Ala Ser Leu 195
- Ile Arg Lys Thr Tyr Gln Gln Ala Gly Leu Asp Met Gln Met Thr 210 205 200

Gly Tyr Phe

- (2) INFORMATION FOR SEQ ID NO:61:
- (i) SEQUENCE CHARACTERISTICS:

- 63 -

(A) LENGTH: 649

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

AATGTTGCTC GAGATCACCT ACGAAGCCCT GGAGAACGCT GGACTTCCTT 50 TGAGTAAGGT TGTCGGCTCT GATACAGCCT GCTTCATTGG TGGCTTTACA 100 CGAGATTATG ATGATTTGAC CACTTCGGAG CTCGCGAAGA CCCTACTCTA 150 CACAACTACC GGCAACGGCC TGACGATGAT GTCGAATCGC TTATCCTGGT 200 TCTACGACCT TCATGGCCCG TCGGTTTCGC TCGACACAGC ATGTTCTAGC 250 TCGCTGGTTG CACTAAACCT TGCATGCCAG ACAATCCGAG CATCGACGAA 300 TGACTCTCGA CAGGCGATAG TTGGAGGTGT CAATCTCATG CTGCTCCCTG 350 ATCAGATGAC CACGATTAAT CCTCTGCATT TCTTAAGTCC TGATAGCCAA 400 TGCTACTCGT TTGATGACCG TGCAAACGGT TACACCCGTG GAGAAGGTAT 450 TGGCATACTG GTGCTCAAGC ACATCAATGA TGCTATTCGA GATGGAGACT 500 GTATAAGGGC AGTAATCCGC GGCACTGGGG TCAACTCCGA TGGCAAGACC 550 CCTGGCATTA CCTTGCCAAG CACGGCTGCA CAAGCCTCTT TAATTCGCGC 600 AACGTACGCC TCGGCAGGGC TGGACCCAGC TCACACCGGC TACTTTGAA 649

- (2) INFORMATION FOR SEQ ID NO:62:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 216
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:

- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

Met Leu Leu Glu Ile Thr Tyr Glu Ala Leu Glu Asn Ala Gly Leu

Pro Leu Ser Lys Val Val Gly Ser Asp Thr Ala Cys Phe Ile Gly

Gly Phe Thr Arg Asp Tyr Asp Asp Leu Thr Thr Ser Glu Leu Ala

Lys Thr Leu Leu Tyr Thr Thr Gly Asn Gly Leu Thr Met Met

Ser Asn Arg Leu Ser Trp Phe Tyr Asp Leu His Gly Pro Ser Val

Ser Leu Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Leu Asn Leu 85

Ala Cys Gln Thr Ile Arg Ala Ser Thr Asn Asp Ser Arg Gln Ala

Ile Val Gly Val Asn Leu Met Leu Pro Asp Gln Met Thr 110

- 64 -

Thr Ile Asn Pro Leu His Phe Leu Ser Pro Asp Ser Gln Cys Tyr Ser Phe Asp Asp Arg Ala Asn Gly Tyr Thr Arg Gly Glu Gly Ile Gly Ile Leu Val Leu Lys His Ile Asn Asp Ala Ile Arg Asp Gly Asp Cys Ile Arg Ala Val Ile Arg Gly Thr Gly Val Asn Ser Asp 170 Gly Lys Thr Pro Gly Ile Thr Leu Pro Ser Thr Ala Ala Gln Ala 185 Ser Leu Ile Arg Ala Thr Tyr Ala Ser Ala Gly Leu Asp Pro Ala 200 His Thr Gly Tyr Phe Glu 215

- (2) INFORMATION FOR SEQ ID NO:63:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 747
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TATGCTACTT GAATGCACAT ACGAAGCGTT AGAGAATGGT CAGTGAGCTA 50 CGAGCCGATT TTCATATATC ATGGCTAACA AGTTGAAGCT GGCATACCTC 100 TAGATAAAGT AGTAGGAGAA CCCGTAGGGG TGTACGTCGG CTCAGCTAGT 150 TCCGATTACT CGGACATCGT GAACTCAGAC GGCGAGATGG TCTCCACTTA 200 CACGGCCACG GGGTTGGCCG CAACGATGAT GGCAAACCGC ATATCCTATT 250 TCTATGATCT CCGGGGGCCA AGCTTCACAT TGGACACGGC GTGTTCATCG 300 AGTTTGATGG CGTTACACCT AGCGTGCCAA AGTCTTCGAG TCGGTGAATC 350 GAAGCAAGCC ATTGTGGGCG GGGTCCACCT TGTACTGAGC CCGGATTGTA 400 TGACTTCGAT GAGTTTATTA GGGTAAGACC TTCAAAATCT CCATGCAGAA 450 TTTCTAAATC TAACCTACCA CCCTAGTTTG TTCTCTAATG ACGGCCGATC 500 CTACACTTAT GACCATCGAG GTACTGGTTA TGGGCGCGGC GAAGGTATTG 550 CTACCTTAGT AATAAAACCT CTTAAAGATG CGATGGAAGC CGGTGATAAC 600 ATCCGGGCCA TCATCCGCAA TAGTGGGGCA AATCAAGATG GTCGAACACC 650 AGGTGTGACT TTTCCAAGTC AAGATGCTCA GATAGATCTT ATGAGATCGG 700 TATATCGTTC CGCTGGACTT GATGTACTTG ATACCGGCTA CGTGGAA 747

- (2) INFORMATION FOR SEQ ID NO:64:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

WO 98/53097 PCT/CA98/00488

(A)	DES	CRIE	ILE T TION THETI IT TY	: pr	no		fra	ıqmen	t					
			ICE D Glu	2000	TOTT	α	C 1.()	11111	O:D+	: Glu	Asn	Ala	Gly	Ile 15
Pro	Leu	Asp	Lys	Val 20	Val	Gly	Glu	Pro	Val 25	Gly	Val	Tyr	Val	Gly 30
Ser	Ala	Ser	Ser	Asp 35	Tyr	Ser	Asp	Ile	Val 40	Asn	Ser	Asp	Gly	Glu 45
Val	Ser	Thr	Tyr	Thr 50	Ala	Thṛ	Gly	Leu	Ala 55	Ala	Thr	Met	Met	60
Ala	Asn	Arg	Ile	Ser 65	Tyr	Phe	Tyr	Asp	Leu 70	Arg	Gly	Pro	Ser	Phe 75
Thr	Leu	Asp	Thr	Ala 80	Cys	Ser	Ser	Ser	Leu 85	Met	Ala	Leu	His	Leu 90
Ala	Cys	Gln	Ser	Leu 95	Arg	Val	Gly	Glu	Ser 100	Lys	Gln	Ala	Ile	Val 105
Gly	Gly	. Val	. His	Leu 110	Val	Leu	Ser	Pro	Asp 115	Cys	Met	Thr	Ser	Met 120
Ser	Leu	Leu	ı Gly	Leu 125	Phe	Ser	Asn	Asp	Gly 130	Arg	Ser	Tyr	Thr	Tyr 135
Xaa	His	arg	g Gly	Thr 140	Gly	Tyr	Gly	Arg	Gly 145	Xaa	Gly	Ile	Ala	Thr 150
Leu	. Val	l Ile	e Lys	Pro	Leu	Lys	s Asp	Ala	Met 160	Glu	Ala	Gly	Asp	Asn 165
Ile	e Arg	g Ala	a Ile	: Ile	arg	, Asr	ı Sei	c Gly	7 Ala 175	Asn	Glr	Asp	Gly	Arg 180
Thi	Pro	o Gl	y Val	L Thr 185	Phe	e Pro	se:	r Glr	n Asp 190	Ala	Glr	ı Ile	e Asp	Leu 195
Met	. Ar	g Se	r Va	1 Ty:	c Arg	g Se	r Al	a Gly	y Let 209	ı Asp	val	L Lev	ı Asp	210

Gly Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:65:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 643
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 66 **-**

(ii) MOLECULE TYPE: genomic DNA

- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65

AATTCTACTT GAAGTCGCCT ATCAAGCAAT GGAGTCAAGC GGCTGCTTAC 50
GGAACCATCG ACGCGAAGCT GGGGATCCTG TGGGATGTTT TATTGGAGCT 100
AGCTTTGCCG AATATCTTGA CAACACCTGT TCTAATCCGC CAACCAGCTA 150
TACTTCCACT GGCACCATCA GAGCTTTCCA CTGCGGTAGA CTCAGTTATT 200
ACTTTGGATG GAGCGGTCCT GCCGAGGTCA TTGATACAGC TTGCTCCTCT 250
TCGTTGGTTG CTATCAATCG AGCTTGCAAG TCAGTGCAGG CGGGTGAATG 300
TACAATGGCT CTTACTGGTG GAGTGAACAT TATAACTGGT ATCCACAACT 350
TCTTAGATCT GGCAAAGGCT GGCTTYTTAA GCCCCACAGG CCAATGCAGA 400
CCCTTTGACC AGTCTGCAGA TGGGTATTGT CGCTCAGAAG GAGCAGGACT 450
TCGGAGTTAT TCCAAGTGTG TCCACCAACC AAGCCGATT GTCATCTTCA 550
ATTACGATCC CTCATTCGCC TGCACAAAAA AAGTTGTATC AAACCGTGCT 600
TCGGCAAGCC GGCATGAAGC TAGAACAGT TAGCTACGTA GAG 643

- (2) INFORMATION FOR SEQ ID NO:66:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Ile Leu Leu Glu Val Ala Tyr Gln Ala Met Glu Ser Ser Gly Cys
5 10 15

Leu Arg Asn His Arg Arg Glu Ala Gly Asp Pro Val Gly Cys Phe 20 25 30

Ile Gly Ala Ser Phe Ala Glu Tyr Leu Asp Asn Thr Cys Ser Asn 35 40 45

Pro Pro Thr Ser Tyr Thr Ser Thr Gly Thr Ile Arg Ala Phe His 50 55 60

Cys Gly Arg Leu Ser Tyr Tyr Phe Gly Trp Ser Gly Pro Ala Glu 65 70 .75

Val Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Ile Asn Arg 80 85 90

Ala Cys Lys Ser Val Gln Ala Gly Glu Cys Thr Met Ala Leu Thr 95 100 105

Gly Gly Val Asn Ile Ile Thr Gly Ile His Asn Phe Leu Asp Leu 110 115 120

Ala Lys Ala Gly Phe Leu Ser Pro Thr Gly Gln Cys Arg Pro Phe 125 130 135

PCT/CA98/00488 WO 98/53097

- 67 -

Asp Gln Ser Ala Asp Gly Tyr Cys Arg Ser Glu Gly Ala Gly Leu

Val Val Leu Lys Leu Leu Ser Gln Ala Ile Ala Asp Gly Asp Gln 155

Ile Phe Gly Val Ile Pro Ser Val Ser Thr Asn Gln Gly Gly Leu 175

Ser Ser Ser Ile Thr Ile Pro His Ser Pro Ala Gln Lys Lys Leu 190

Tyr Gln Thr Val Leu Arg Gln Ala Gly Met Lys Leu Glu Gln Val 205

Ser Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:67:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 809
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

AGGAAACTAC TAGAGGTCGT GTTTGAATGT TTTGAGAGTG CCGGTACACC 50 ACTTCACGCA GTTTCAGGAG CTAATATTGG CTGCTATGTT GGGAATTTTA 100 CGTTGGATTA TCTTGTCATG CAGTCTAAGG ATACAGACTC TTTTCATCGA 150 TATACTGCTC CAGGAATGGG ACCTACATTG TTAGCTAACC GCATAAGTCA 200 TGTTTTTAAT CTTCAAGGTC CAAGTGTTAT GCTTGATACA GCGTGTTCTT 250 CATCGATCTA CGCTCTTCAT GCAGCTTGTG TGGCCTTGAA TGCAGATGAG 300 TGCAATGCAG CAATTGTTGC TGGGGCAAAC CTAATCCAGT CACCTGAGTG 350 GCATCTTGCA GTCTCCAAAT CAGGTGTGAT TTCACAAACT TCCACGTGTC 400 GCCCTCTATC TCAAGCGTCT AAGTGACGCA ATCCGAGATC GAGATCCTAT 500 ACGGTCTGTT ATTCGTGGTA CAGCTGTTAA TAGGTTAGTA CATCCTCTTA 550 CCTTTCTTTC ATGGATTAGC GAGAATTAGG GTTCCAAATG TTTGAAAGCT 600 CGGGTTCTAA TATTCATTCA CTGGACTAGT AATGGCAAGA CAAACGGCAT 650 CAGTCAGCCT AGTGCTTTGG CACAGGAAGC TGTGATTAAA AAAGCTTATG 700 CAAAGGCGGG ATTACCTGTT ACCGAGACTG ACTATGTTGA GGTAAGTGAG 750 CTATGTTTAA ATCAGAAAAC GTCATGCCAT TATTTCTTAT CCTTCACTGA 800 809 NCTCTTACA

- (2) INFORMATION FOR SEQ ID NO:68:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 237
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein

- 68 -

(iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:														
1 2	\ OT	ACT TON	ם סיי	ESCR Glu 5	TOTT	$\cap M$	SEO	11) N	U:bB	: Phe	Glu	Ser	Ala	Gly 15
Thr	Pro	Leu	His	Ala 20	Val	Ser	Gly	Ala	Asn 25	Ile	Gly	Cys	Tyr	Val 30
Gly	Asn	Phe	Thr	Leu 35	Asp	Tyr	Leu	Val	Met 40	Gln	Ser	Lys	Asp	Thr 45
Asp	Ser	Phe	His	Arg 50	Tyr	Thr	Ala	Pro	Gly 55	Met	Gly	Pro	Thr	Leu 60
Leu	Ala	Asn	Arg	Ile 65	Ser	His	Val	Phe	Asn 70	Leu	Gln	Gly	Pro	Ser 75
Val	Met	Leu	Asp	Thr 80	Ala	Cys	Ser	Ser	Ser 85	Ile	Tyr	Ala	Leu	His 90
Ala	Ala	Cys	Val	Ala 95	Leu	Asn	Ala	Asp	Glu 100	Cys	Asn	Ala	Ala	Ile 105
Val	Ala	Gly	Ala	Asn 110	Leu	Ile	Gln	Ser	Pro 115	Glu	Trp	His	Leu	Ala 120
Val	Ser	Lys	Ser	Gly 125	Val	Ile	Ser	Gln	Thr 130	Ser	Thr	Cys	His	Thr 135
Phe	Asp	Ala	Ser	Ala 140	Asp	Gly	Tyr	Gly	Arg 145	Gly	Glu	Gly	Val	Gly 150
Ala	Leu	Tyr	Leu	Lys 155	Arg	Leu	Ser	Asp	Ala 160	Ile	Arg	Asp	Arg	Asp 165
Pro	Ile	Arg	Ser	Val 170		Arg	Gly	Thr	Ala 175	Val	Asn	Ser	Asn	Gly 180
Lys	Thr	Asn	Gly	Ile 185		Gln	Pro	Ser	Ala 190	Leu	Ala	Gln	Glu	Ala 195
Val	Ile	Lys	Lys	Ala 200	Tyr	Ala	Lya	Ala	Gly 205	Leu	Pro	Val	Thr	Glu 210
Thr	: Asp	туі	val	. Glu 215	Val	Ser	Glu	Leu	Cys 220	Leu	Asr	Glr	Lys	Thr 225
Ser	Cys	His	з Туг	Phe 230		ser	Phe	Thr	235	Leu	ı Leı	1		

- (2) INFORMATION FOR SEQ ID NO:69:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 658
- (B) TYPE: nucleic acid

- 69 -

```
(C) STRANDEDNESS: single
```

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

, ,					
				GGTCACACGA	
				CACCATGGGC	
GTCGACTACA	ACGATACTGT	TATACGGGAC	CTGAACGTCA	TCCCGACGTA	150
CTTTGCTACT	GGAGTAAATC	GAGCTATCAT	CTCGAACCGA	GTCTCATACT	200
TCTTTGACTG	GCATGGGCCG	AGCATGACCA	TCGACACAGC	CTGTTCATCC	250
AGTCTCGTCG	CCGTGCACCA	AGGAGTGAAA	GCTCTTCGGA	GTGGGGAGTC	300
GCGTACTGCC	CTGGCATGTG	GGACGCAGGT	CATTCTAAAT	CCCGAGATGT	350
ATGTTATTGA	GAGCAAGCTG	AAAATGCTTT	CTCCTACGGG	CCGCTCCCGC	400
ATGTGGGATG	CGGACGCGGA	TGGCTACGCT	CGTGGGGAGG	GCGTAGCGGC	450
TGTAGTGCTG	AAACGGCTCA	GTGACGCTAT	TGCGGATGGA	SATCGCATCG	500
				TTCAAATGGT	
ATCACGGTGC	CGAGTACGGA	GGCCCAAGCG	GCCCTCATCC	ACCAAACCTA	600
TGCCAGAGCT	GGTCTAGACC	CGGAAAATAA	CCCTCACGAC	CGCCCTCAGT	650
TCTTCGAA					658

- (2) INFORMATION FOR SEQ ID NO:70:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 219
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

Leu Leu Glu Thr Val Tyr Glu Ala Leu Glu Ala Gly Gly His

Thr Ile Glu Ala Leu Arg Gly Ser Asp Thr Ser Val Phe Thr Gly

Thr Met Gly Val Asp Tyr Asn Asp Thr Val Ile Arg Asp Leu Asn

Val Ile Pro Thr Tyr Phe Ala Thr Gly Val Asn Arg Ala Ile Ile

Ser Asn Arg Val Ser Tyr Phe Phe Asp Trp His Gly Pro Ser Met

Thr Ile Asp Thr Ala Cys Ser Ser Ser Leu Val Ala Val His Gln

Gly Val Lys Ala Leu Arg Ser Gly Glu Ser Arg Thr Ala Leu Ala

Cys Gly Thr Gln Val Ile Leu Asn Pro Glu Met Tyr Val Ile Glu 115

- 70 -

Ser Lys Leu Lys Met Leu Ser Pro Thr Gly Arg Ser Arg Met Trp 135

Asp Ala Asp Ala Asp Gly Tyr Ala Arg Gly Glu Gly Val Ala Ala 150

Val Val Leu Lys Arg Leu Ser Asp Ala Ile Arg Gly Arg Gly --- Arg 165

Ile Glu Cys Ile Ile Arg Glu Thr Gly Ser Asn Gln Asp Gly His 180

Ser Asn Gly Ile Thr Val Pro Ser Thr Glu Ala Gln Ala Ala Leu 195

Ile His Gln Thr Tyr Ala Arg Ala Gly Leu Asp Pro Glu Asn Asn 210

Pro His Asp Arg Pro Gln Phe Phe Glu

215

- (2) INFORMATION FOR SEQ ID NO:71:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 753
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

TGGGCTACTC GAGACTGCTT ACAAGGCGTT CGAAAACGGT GAGTCTTGAA 50 GCTGCACAGA TCAAGACAAG AACACTAAAT CTCTCAGCGG GCATACGCAT 100 AGAAGAAGCC GCTGGCTCTA GAACTTCAGT TCATATCGGG AGTTTCACTC 150 ATGATTGGAG AGACATCCTC CAAAGGGATC CACTAATGGA TGTTAGCTAC 200 ATAGCTACCG CAACCGAGGT TTCTATGCTA GCGAGTCGAC TCAGCTGGTT 250 TTATGATCTA AGTGGGCCYA GCATCTCCTT GGATACAGCG TGTTCGAGTA 300 GCTTAATGGC TTTACATCTC GCCTGCCAGA GTCTAAAGAG TCGAGAGGCC 350 GACATGGTAA GGCTATGCTA CTTTCTGGCT CACTCAAACT GTTTTCCATA 400 TCTGATGCTT GCACAGGGCC TTGTTGGGAG GGGCTAATCT TCTTTTGGAT 450 CCTGTAGGGG TTATTGGCAT AACAAATGTT GGCATGCTTT CGCCAGATGG 500 CATTAGTTAC AGCTTTGATC ATCGTGCAAA CGGGTATGCC CGAGGAGAAG 550 GGTTCGGAGT CGTTGTCATC AAACGCTTGG ACGATGCTCT CAGACATGGC 600 GATACTATTC GCGGTATCGT TCGTGCCACA GGATCGAATC AAGATGGAAG 650 AACTCCAGGG ATTACCCAAC CTGATGGAGC CGCGCAAGAA GAGCTCATCC 700 GAGACACTTA CAAAGCTGCT GGCTTAGATA TGAGGCTAGT AAGGTATTCT 750 TAA

- (2) INFORMATION FOR SEQ ID NO:72:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 213
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

PCT/CA98/00488 WO 98/53097

- 71 -

(ii) MOLECULE TYPE:

(A) DESCRIPTION: protein

(iii) HYPOTHETICAL: no

(v) FRAGMENT TYPE: internal fragment

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

Gly Leu Leu Glu Thr Ala Tyr Lys Ala Phe Glu Asn Ala Gly Ile

Arg Ile Glu Glu Ala Ala Gly Ser Arg Thr Ser Val His Ile Gly

Ser Phe Thr His Asp Trp Arg Asp Ile Leu Gln Arg Asp Pro Leu

Met Asp Val Ser Tyr Ile Ala Thr Ala Thr Glu Val Ser Met Leu

Ala Ser Arg Leu Ser Trp Phe Tyr Asp Leu Ser Gly Pro Ser Ile

Ser Leu Asp Thr Ala Cys Ser Ser Ser Leu Met Ala Leu His Leu

Ala Cys Gln Ser Leu Lys Ser Arg Glu Ala Asp Met Gly Leu Val

Gly Gly Ala Asn Leu Leu Leu Asp Pro Val Gly Val Ile Gly Ile 110

Thr Asn Val Gly Met Leu Ser Pro Asp Gly Ile Ser Tyr Ser Phe 125

Asp His Arg Ala Asn Gly Tyr Ala Arg Gly Glu Gly Phe Gly Val

Val Val Ile Lys Arg Leu Asp Asp Ala Leu Arg His Gly Asp Thr 165

Ile Arg Gly Ile Val Arg Ala Thr Gly Ser Asn Gln Asp Gly Arg

Thr Pro Gly Ile Thr Gln Pro Asp Gly Ala Ala Gln Glu Glu Leu 195

Ile Arg Asp Thr Tyr Lys Ala Ala Gly Leu Asp Met Arg Leu Val 210 205 200

Arg Tyr Ser

- (2) INFORMATION FOR SEQ ID NO:73:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 753
- (B) TYPE: nucleic acid

WO 98/53097

- 72 -

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no

(C) STRANDEDNESS: single

- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

ATTGTTGCTC GAAGTAACCT ATGAAGCTTT AGAGAACGGT GGGTAGTTCC 50 AGGAAGCATT AATCAAGACA AAGCTATTGC TCACACTTTT CCAAAATAGC 100 CGGAATACCC TTGAACCAAA TTGTGGGCCA GGATGTTGGG GTTTTTGTTG 150 GCGGCTCAAT GTCCGACTAC CAGAACCTCC TCCACAAAGA CATCGCAAAT 200 GGTCCTATTT ACCAAGCCAC TGGCACTGCC ATGAGCTTCC TAGCCAACCG 250 AATATCTTAC ATCTATGACC TCAAGGGCCC AAGCGTAACA GTGGACACTG 300 CATGCTCCTC GGGTCTCACG GCACTTCATT TAGCATGCCA GAGCATACGC 350 ACTGGTGAGA TCCGACAAGC TTTGGTCGGC GGTGTATACA TTATCCTAAG 400 CCCGGAGAAT ATGATTGCCA TGAGCATGCT GGGGTGATGT CTCCTGTTCC 450 AGAAAGTAAT TGATAAAAGC TAATGCCAGT AGACTGTTTG GCACCGACGG 500 TCTCTCATAC AGCTATGATC ACCGAGCAAC TGGATATGGA CGTGGTGAAG 550 GAGGAGGCAT GATAGTCTTA AAGTCGCTAG ACGACGCGAT GGCAAACGGA 600 GACACAATAC ATGCGGTAAT TCGGCACACA GGGACAAATC AGGATGGTAA 650 GACCAGCGGC CCAACAATGC CCAGTCTGGA AGCCCAGGAG AGACTCATCA 700 AGAAAGTTTA CAGCCAGGCT GGTCTGGATC CATTGGATAC AGAATATGTC 750 GAG

- (2) INFORMATION FOR SEQ ID NO:74:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

Leu Leu Glu Val Thr Tyr Glu Ala Leu Glu Asn Ala Gly Ile

Pro Leu Asn Gln Ile Val Gly Gln Asp Val Gly Val Phe Val Gly

Gly Ser Met Ser Asp Tyr Gln Asn Leu Leu His Lys Asp Ile Ala

Asn Gly Pro Ile Tyr Gln Ala Thr Gly Thr Ala Met Ser Phe Leu

Ala Asn Arg Ile Ser Tyr Ile Tyr Asp Leu Lys Gly Pro Ser Val

Thr Val Asp Thr Ala Cys Ser Ser Gly Leu Thr Ala Leu His Leu

Ala Cys Gln Ser Ile Arg Thr Gly Glu Ile Arg Gln Ala Leu Val

Gly Gly Val Tyr Ile Ile Leu Ser Pro Glu Asn Met Ile Ala Met

- 73 -

	110	115	120
Ser Met Leu Gly	Leu Phe Gly	Thr Asp Gly Leu Se	r Tyr Ser Tyr
	125	130	135
Asp His Arg Ala	Thr Gly Tyr	Gly Arg Gly Glu Gl	y Gly Gly Met
	140	145	150
Ile Val Leu Lys	Ser Leu Asp	Asp Ala Met Ala As	n Gly Asp Thr
	155	160	165
Ile His Ala Val	Ile Arg His	Thr Gly Thr Asn Gl	n Asp Gly Lys
	170	175	180
Thr Ser Gly Pro	Thr Met Pro	Ser Leu Glu Ala Gl	n Glu Arg Leu
	185	190	195
Ile Lys Lys Val	Tyr Ser Gln	Ala Gly Leu Asp Pr	o Leu Asp Thr
	200	205	210
Glu Tyr Val Glu			

Giu Tyr vai Giu

- (2) INFORMATION FOR SEQ ID NO:75:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 692
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

		•			
AATGCTGCTT	GAGGTAGTCT	ATGAGGCGTT	AGAAGACGGT	AAGTCTAACG	50
AATTTCAATC	AGTGGTCCTG	AGCTAATTGC	GATCAAGCTG	GCATTACGCT	100
CGACGACATT	AAGGGTTCCC	AGACATCTGT	CTACTGTGGG	AGCTTCACCA	150
ACGACTACCG	TGAAATGCTG	AACAAAGATT	TGGGGTACTA	CCCCAAGTAC	200
ATGGCCACTG	GTGTTGGAAA	CTCCATCTTA	GCCAACCGCA	TTTCATATTT	250
CTATGACCTA	CACGGACCAA	GTGTGACTGT	CGACACAGCC	TGCTCTCTTC	300
CCCTGGTCTC	ATTCCATATG	GGCAACAGAT	CAATCCMAGA	TGGAGATGCT	350
GACATCTCAA	TCGTCATTGG	ATCTTCGCTC	CATTTTGATC	CCAACATGTT	400
CGTCACTATG	ACGGACCTTG	GGTTTCTCTC	AACCGACGGC	AGATGCCGTG	450
CTTTTGACGC	TAGCGGAAAG	GGGTATGTCC	GCGGTGAGGG	CATCTGCGCT	500
GTTGTTTTGA	AACAAAAATC	ACGCGCTGAA	CTTCACGACA	ACAACGTTCG	550
ATCCGTCATT	CGTGGCTCGG	ATGTCAACCA	CGACGGTGCC	AAAGACGGTA	600
TCACAATGCC	AAACTCGAAG	GCTCAGGAGA	GCCTCATCAG	AAAGACCTAC	650
AAAAACGCTG	GACTGAGTAC	AAACGACACC	CAGTACTTTG	AG	692

- (2) INFORMATION FOR SEQ ID NO:76:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

- 74 -

			LE T			n								
(ii	i) H	YPOI	TION	CAL:	no		fra	cmen	+					
(vi	1 95	OHEN	IT TY ICE D	ESCR	TPTT	ON:	SEO	ID N	0:76	:		_		
Met	Leu	Leu	Glu	Val 5	Val	Tyr	Glu	Ala	Leu 10	Glu	Asp	Ala	Gly	Ile 15
Thr	Leu	Asp	Asp	Ile 20	Lys	Gly	Ser	Gln	Thr 25	Ser	Val	Tyr	Cys	Gly 30
Ser	Phe	Thr	Asn	Asp 35	Tyr	Arg	Glu	Met	Leu 40	Asn	Lys	Asp	Leu	Gly 45
Tyr	Tyr	Pro	Lys	Tyr 50	Met	Ala	Thr	Gly	Val 55	Gly	Asn	Ser	Ile	Leu 60
Ala	Asn	Arg	Ile	Ser 65	Tyr	Phe	Tyr	Asp	Leu 70	His	Gly	Pro	Ser	Val 75
Thr	Val	Asp	Thr	Ala 80	Cys	Ser	Leu	Pro	Leu 85	Val	Ser	Phe	His	Met 90
Gly	Asn	Arg	Ser	Ile 95	Xaa	Asp	Gly	Asp	Ala 100	Asp	Ile	Ser	Ile	Val 105
Ile	Gly	Ser	Ser	Leu 110	His	Phe	Asp	Pro	Asn 115	Met	Phe	Val	Thr	Met 120
Thr	Asp	Leu	Gly	Phe 125	Leu	Ser	Thr	Asp	Gly 130	Arg	Cys	Arg	Ala	Phe 135
Asp	Ala	Ser	Gly	Lys 140	Gly	Tyr	Val	Arg	Gly 145	Glu	Gly	Ile	Cys	Ala 150
Val	Val	Leu	Lys	Gln 155	Lys	Ser	Arg	Ala	Glu 160	Leu	His	Asp	Asn	Asn 165
Val	Arg	Ser	Val	Ile 170	Arg	Gly	Ser	Asp	Val 175	Asn	His	Asp	Gly	Ala 180
Lys	Asp	Gly	Ile	Thr 185		Pro	Asn	Ser	Lys 190	Ala	Gln	Glu	Ser	Leu 195
Ile	Arg	Lys	Thr	Tyr 200		Asn	Ala	Gly	Leu 205	Ser	Thr	Asn	Asp	Thr 210

Gln Tyr Phe Glu

- (2) INFORMATION FOR SEQ ID NO:77:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 690
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

PCT/CA98/00488 WO 98/53097

- 75 -

```
(D) TOPOLOGY: linear
```

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

TATTTTATTG GAGACAACAT ACGAAGCACT TGAAAATAGT GAGTAAGCCA 50 TGACCGTATT AAGTAAAAGC TCACGAACAG TAAAGGTGGC ACCCCTCTGG 100 CTAGCATTCG CGGCCAAAAT GTAGGCGTTT ACGTTGGTGC ATCCATGTCA 150 GACTACAACG AGCTTTTCGC AAAGGACCCG GATACCAATT TGACATATCG 200 TATTACCGGA ACTGCATCAA ATATTTTGTC AAATCGACTC TCCTACATGT 250 TCGACCTTCA CGGGCCAAGT TTCACGGTGG ACACTGCGTG CTCATCAAGC 300 TTGGCCGCAT TCCATCTGGC CTGTCAGAGT TTGAAGACGG GAGAGGTCCG 350 GCAAGCCATC GTGGGCGGGG CTTACCTTGT ATTATCCCCA GATCCTACGA 400 TCGGAATGAG CAAACTCAGG CTTTACGGCG AACATGGTCG CTCATACACT 450 TACGATCACC GAGGGACTGG ATACGGTCGT GGCGAGGGCG TCGCTAGCCT 500 AATTCTTAAG CCTTTACAAG ATGCTATCGA CGTGGGTGAT ACAATTCGAG 550 CAATCATACG TAACACTGGA ATGAATCAAG ACGGGAAGAC GAACGGAATT 600 ACGCTCCCAA GCAAAGACGC CCAAGAAAGC CTCATAAGGT CTGTCTACAC 650 AGCTGCAGGT CTCGATCCAC TGTATACTTC CTACGTTGAG

- (2) INFORMATION FOR SEQ ID NO:78:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
- Ile Leu Leu Glu Thr Thr Tyr Glu Ala Leu Glu Asn Ser Gly Thr
- Pro Leu Ala Ser Ile Arg Gly Gln Asn Val Gly Val Tyr Val Gly
- Ala Ser Met Ser Asp Tyr Asn Glu Leu Phe Ala Lys Asp Pro Asp
- Thr Asn Leu Thr Tyr Arg Ile Thr Gly Thr Ala Ser Asn Ile Leu 50
- Ser Asn Arg Leu Ser Tyr Met Phe Asp Leu His Gly Pro Ser Phe
- Thr Val Asp Thr Ala Cys Ser Ser Ser Leu Ala Ala Phe His Leu
- Ala Cys Gln Ser Leu Lys Thr Gly Glu Val Arg Gln Ala Ile Val 100
- Gly Gly Ala Tyr Leu Val Leu Ser Pro Asp Pro Thr Ile Gly Met
- Ser Lys Leu Arg Leu Tyr Gly Glu His Gly Arg Ser Tyr Thr Tyr

- 76 -

				125					130					135
Asp	His	Arg	Gly	Thr 140	Gly	Tyr	Gly	Arg	Gly 145	Glu	Gly	Val	Ala	Ser 150
Leu	Ile	Leu	Lys	Pro 155	Leu	Gln	Asp	Ala	Ile 160	Asp	Val	Gly	Asp	Thr 165
Ile	Arg	Ala	Ile	Ile 170	Arg	Asn	Thr	Gly	Met 175	Asn	Gln	Asp	Gly	Lys 180
Thr	Asn	Gly	Ile	Thr 185	Leu	Pro	Ser	Lys	Asp 190	Ala	Gln	Glu	Ser	Leu 195
Ile	Arg	Ser	Val	Tyr 200	Thr	Ala	Ala	Gly	Leu 205	Asp	Pro	Leu	Tyr	Thr 210
Ser	Tvr	Val	Glu											

Ser Tyr Val Glu

- (2) INFORMATION FOR SEQ ID NO:79:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 761
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

(VI) ODČODI	TOD DEDUKTET.	.om. DEG -D .			
GCGAATGCTA	GAGACGGCTT	ATCACGCTCT	GGAGGACGGT	AAGTCTAACC	50
AGTGCAAATT	TAGGGGCTAT	AATCTTGGTG	TGTGAGAATA	ACATACCATC	100
AGCGAGCATC	CCCCTGGAGA	AGTGCTTCGG	CTCAGACACT	TCCGTTTATA	150
CCGGGTGCTT	CACCAACGAT	TATCTCAGCA	TACTGCAGCA	AGACTTTGAG	200
GCTGAGCAAA	GGCACGCAGC	CATGGGAATC	GCGCCCTCCA	TGTTGGCCAA	250
TCGCCTAAGC	TGGTTCTTCA	ACTTCAAGGG	GACATCGATG	AACCTGGATT	300
CGGCCTGCTC	CAGCAGTCTG	GTTGCACTGC	ATCTTGCTTC	ACAGGACCTC	350
CGTGCTGGTA	CCACATCGAT	GGTATGTATC	GATCATAAAA	TCACGTACTC	400
CTTCATTAAT	AAATAAATGT	TTTAGGCACT	AGTTGGAGGG	GCGAATCTTG	450
TCTACCACCC	CGACTTCATG	GAGATGATGT	CAAACTTCAA	CTTCCTGTCT	500
CCCGACAGCC	GTTCTTGGAG	TTTCGATCAA	CGTGCTAATG	GTTATGCGCG	550
TGGGGAAGGA	ACCGCCGTGA	TGGTCGTCAA	ACGCCTTGCA	GATGCACTGC	600
GAGATGGAGA	TACAATCAGA	ACCGTAATCT	GGAGTACCGG	GTCGAACCAA	650
GACGGGAGAA	CACCTGGGAT	CACGCAGCCA	AGTAAAGAAG	CGCAGTTAAA	700
TCTCATCGAG	CGCACCTACA	AACAAGCGAA	GATTGATATG	GAGCCTACCA	750
GATTCTTCGA	G				761

- (2) INFORMATION FOR SEQ ID NO:80:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 214
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein

(v)	FRA	GMEN	HETI T TY	PE:	inte	rnal	fra	gmen	1t	١.				
(xi Arg	.) SE Met	IQUEN Leu	ICE E Glu	ESCR Thr 5	Ala	Tyr	His	Ala	Leu 10	Glu	Asp	Ala	Ser	Ile 15
Pro	Leu	Glu	Lys	Cys 20	Phe	Gly	Ser	Asp	Thr 25	Ser	Val	Tyr	Thr	Gly 30
Cys	Phe	Thr	Asn	Asp 35	Tyr	Leu	Ser	Ile	Leu 40	Gln	Gln	Asp	Phe	Glu 45
Ala	Glu	Gln	Arg	His 50	Ala	Ala	Met	Gly	Ile 55	Ala	Pro	Ser	Met	Leu 60
Ala	Asn	Arg	Leu	Ser 65	Trp	Phe	Phe	Asn	Phe 70	Lys	Gly	Thr	Ser	Met 75
Asn	Leu	Asp	Ser	Ala 80	Суз	Ser	Ser	Ser	Leu 85	Val	Ala	Leu	His	Leu 90
Ala	Ser	Gln	Asp	Leu 95	Arg	Ala	Gly	Thr	Thr 100	Ser	Met	Ala	Leu	Val 105
Gly	Gly	Ala	Asn	Leu 110	Val	Tyr	His	Pro	Asp 115	Phe	Met	Glu	Met	Met 120
Ser	Asn	Phe	Asn	Phe 125	Leu	Ser	Pro	Asp	Ser 130	Arg	Ser	Trp	Ser	Phe 135
Asp	Gln	Arg	Ala	Asn 140	Gly	Tyr	Ala	Arg	Gly 145	Glu	Gly	Thr	Ala	Val 150
Met	Val	Val	Lys	Arg 155	Leu	Ala	Asp	Ala	Leu 160	Arg	Asp	Gly	Asp	Thr 165
Ile	Arg	Thr	Val	Ile 170	Trp	Ser	Thr	Gly	Ser 175	Asn	Gln	Asp	Gly	Arg 180
Thr	Pro	Gly	Ile	Thr 185	Gln	Pro	Ser	Lys	Glu 190	Ala	Gln	Leu	Asn	Leu 195
Ile	Glu	Arg	Thr	Tyr 200	Lys	Gln	Ala	Lys	Ile 205	Asp	Met	Glu	Pro	Thr 210

Arg Phe Phe Glu

- (2) INFORMATION FOR SEQ ID NO:81:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1221
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA

PCT/CA98/00488 WO 98/53097

- 78 -

(iii) HYPOTHETICAL: no

```
(iv) ANTI-SENSE: no
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: AAGGAGGGC CGCCCGGGAG AAGAAGTTAT CGTGGGCGCC GATTCGGTCG 50 ACCGGCAGCA ATTGCAGCCA GATTGCCGCG AGGGCTTCCT CCATTCCCGG 100 CGCGGGCGCA ACGAATCCGG TGTACTCCAG ATGCCGTGCG GTCCGGGGGA 150 GAGCTGCCTG ATCCAGTTTG AGATTCTTGT TTAAAGGAAG TTCGGCCAGC 200 TTCTCTATGG CGGCGGGGAC CATGTGAGCG GGGAGCAGAG CCTTCATGTG 250 CTGGCGAATC GTTTCCGTGG ACGCTCCGCC GACTGCATAC GCCGCGAGAT 300 ACTTCTCGCC GGGGATATCG TCTCGGACCA GCACAACGCC GTCCGTGACG 350 CCCGGGCACG ACTGCAGCGC GGCCTGAATT TCGCCGAGTT CTATGCGATG 400 CCCGCGAAGC TTGATCTGGC CGTCGTTTCT GCCCAGAAAA TCGATGCGCC 450 CATCCGGCAG ATAGCGCGCG CGATCGCCCG TGCGGTACAT ACGCGCGCCC 500 GGAAATGGGC TAAACGGGTT CGGCACAAAG TAGGCTGCGG TGAGATCGCT 550 GCGCCCCGCA TAGCCGCGCG CGACACCGTC TCCGGCAGCG TACAGCCAGC 600 CTTCCACTCC CGGCGGAACG GGAGCGAATT GCTCGTCGAG CACGTAGGTT 650 TGGACGTTCG AAATTGGACG GCCGATGGGA ATCGACGGGG TCCCGGCGGG 700 GACCGAATCG ATGACGCCAC ACGCCGTGAG CATCGTGTTC TCGGTAGGGC 750 CGTAACCGTT CAAGAGGCGG GCGGGCTTGC CGTGCTCGAT CACCATGCGC 800 ATCCAGTGGG GATCCAGCGC TTCGCCGCCG ACAATCACAT TGGTCAGCGA 850 TTCGAATCCG GCTGGATCTT CGCGGGCAAC CTGATTGAAC AGAGATGCAG 900 TAAGGATAAT CGTGTCCACG TGGAAGCGGC GAAAGGCGAG AATCAGCTCG 1000 CGGGGCGCCA TCAAGGTCTC TTTCGAAAGA ACGACGATTC GCGCGCCATG 1050 CAGCAGGCCG CCCCATAACT CGAAGGTGGG AGGGTCGAAA CCGAAGGCCG 1100 ACATCTGTCC CACGGTATCG GCGGGTGAGA ATTGTACGTA GTTGGTCCGG 1150 CTAACGAGGT TGACAATCGC CCCGTGGGGG ACGGCGACCC CCTTGGGCTT 1200 GCCGGTCGTG CCGGACGTGT A

- (2) INFORMATION FOR SEQ ID NO:82:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 390
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Ala Val Pro

His Gly Ala Ile Val Asn Leu Val Ser Arg Thr Asn Tyr Val Gln

Phe Ser Pro Ala Asp Thr Val Gly Gln Met Ser Ala Phe Gly Phe

Asp Pro Pro Thr Phe Glu Leu Trp Gly Gly Leu Leu His Gly Ala

Arg Ile Val Val Leu Ser Lys Glu Thr Leu Met Ala Pro Arg Glu

Leu Ile Leu Ala Phe Arg Arg Phe His Val Asp Thr Ile Ile Leu

PCT/CA98/00488 WO 98/53097 - 79 -

Thr	Ala	Ser	Leu	Phe 95	Asn	Gln	Val	Ala	Arg 100	Glu	Asp	Pro	Ala	Gly 105
Phe	Glu	Ser	Leu	Thr 110	Asn	Val	Ile	Val	Gly 115	Gly	Glu	Ala	Leu	Asp 120
Pro	His	Trp	Met	Arg 125	Met	Val	Ile	Glu	His 130	Gly	Lys	Pro	Ala	Arg 135
Leu	Leu	Asn	Gly	Tyr 140	Gly	Pro	Thr	Glu	Asn 145	Thr	Met	Leu	Thr	Ala 150
Cys	Gly	Val	Ile	Asp 155	Ser	Val	Pro	Ala	Gly 160	Thr	Pro	Ser	Ile	Pro 165
Ile	Gly	Arg	Pro	Ile 170	Ser	Asn	Val	Gln	Thr 175	Tyr	Val	Leu	Asp	Glu 180
Gln	Phe	Ala	Pro	Val 185	Pro	Pro	Gly	Val	Glu 190	Gly	Trp	Leu	Tyr	Ala 195
Ala	Gly	Asp	Gly	Val 200	Ala	Arg	Gly	Tyr	Ala 205	Gly	Arg	Ser	Asp	Leu 210
Thr	Ala	Ala	Tyr	Phe 215	Val	Pro	Asn	Pro	Phe 220	Ser	Pro	Phe	Pro	Gly 225
Ala	Arg	Met	Tyr	Arg 230	Thr	Gly	Asp	Arg	Ala 235	Arg	Tyr	Leu	Pro	Asp 240
Gly	Arg	Ile	Asp	Phe 245		Gly	Arg	Asn	Asp 250	Gly	Gln	Ile	Lys	Leu 255
Arg	Gly	His	Arg	Ile 260		Leu	Gly	Glu	Ile 265	Gln	Ala	Ala	Leu	Gln 270
Ser	. Cys	Pro	Gly	Val 275		Asp	Gly	. Val	Val 288	Leu	Val	Arg	Asp	Asp 285
Ile	Pro	Gly	Glu	Lys 290		Leu	Ala	Ala	Tyr 295	Ala	Val	Gly	Gly	Ala 300
Ser	Thr	Glu	Thr	305		g Gln	His	Met	Lys 310	Ala	. Leu	Leu	Pro	Ala 315
His	Met	. Val	Pro	320	Ala	ılle	glu	Lys	325	ı Ala	Glu	. Lev	Pro	Leu 330
Ası	n Lys	s Asr	ı Lev	1 Lys 335	Leu 5	a Asp	Glr	n Ala	340	a Lei	ı Pro	Arg	g Thr	Ala 345
Arg	g His	s Lev	ı Glu	350		Gly	7 Phe	e Val	. Ala 359	a Pro	Ala	a Pro	o Gly	Met 360
Glı	ı Glı	ı Ala	a Lev	ı Ala	a Ala	a Ile	e Tr	Let	ı Glı	n Lei	ג Leı	ı Pro	o Val	. Asp

- 80 -

365 370 375

Arg Ile Gly Ala His Asp Asn Phe Phe Ser Arg Ala Ala Pro Pro 380 390

- (2) INFORMATION FOR SEQ ID NO:83
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1222
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

CGTTTCACCC CAAGAATCTC AGACCATATA TCAGCAATGG CCTTCTCCCT 50 GGCATTGCCC GGAGCGACAT AGACCATATA TCAGCAATGG CCTTCTCCCT 50
GGCATTGCCC GGAGCGACAT AGATCGGATC CCGAATCACA GTATCGCGAT 100
CAAATGGCGG CAGGGCGTTT CGGTCAATCT TGCCGTTCGG CGTTAAAGGG 150
AGAGAATCGA CAATGACGAA GGCGCTGGGC ACCATGTAGT CCGGCAGTTT 200
TGCCTTCAGA TGGGCGCGCA ATTCGCTTAT TTCGGGAGCA CCTTCCCGTG 250
CGACGATATA AGCAACTAAT TGCTTTTCTT CGCTAGGGTC TTTTGTCGTT 300
GTGACCACAG CTTCTCGAAT CGGGGATGTT GCGCAACAGG ACTTCGATTT 350
CTCCAGCTCG ATGCGATAGC CGCGAATCTT GACCTGATTG TCGGTGCGGC 400
CGATAAACTC GATGTTGCCA TCCCGCAAAT AACCCCCAAC ATTCGCCACTT 450 CGATAAACTC GATGTTGCCA TCCGGCAAAT AACGCGCAAG ATCGCCAGTT 450 CGATAGAGGC GCTGCGCTGG CTCGCGATCG AATGAATGGT AGATGAACCT 500 CTCCGCCGTC AGTTCCGGCC GGTTGAGATA CCCTCGCGCC AGTCCGTCGC 550 CGCCAATGTA GATCTCTCCA ACCACGCCGA TCGGCACCGG ATTGAGATGA 600 GCATCCAGTA TGTAGATCTG CGTATTCGCG ATCGGTCGGC CAATGGGCGG 650 TAATTCTCCC CAGCACTCTG GCGGACCGTC CACAGTAAAC GCTGTCACAA 700 CGTGGCTTTC CGTCGGCCCA TACTGGTTGA CCAAATGACA CTCGGGCAAC 750 GTGTCAAGGA AACTTCTGAT CCGCGGCGTT ATCTGCAGCC GCTCTCCCGC 800 CGTAATGACT TCGCGCAGCT GCGGCAAAAC CACATTCTCC ATGTGCGCGG 850 CTTCCGCCAT CTGTTGCAGT ACGACAAAAG GCACAAAAAG TCTCTCTACT 900 CGCTTCATTC GCAGGAAATT CAACAGGGCT GGCGGATCGC GTCGGATTTG 950 CGCGGGCAGT AGCACCAGTG TGCCTCCTGA GCACCACGTG CTAAACATCT 1000 CTTGAAACGA AACATCGAAA CTCAACGAGG CAAACTGTAA CGTTCGCGCC 1050 GGCACCGAAC GAGAAAAATC CTCAATTTGC CACGCGATCA GGTTGGCAAG 1100 CGCGCGGTGT TCCATCACCA CACCCTTCGG CTTGCCCGTC GTGCCAATCC 1150 CGCGGCCATG GCGGCCGGGA GCATGCGACG TCGGGCCCAA TTCGCCCTAT 1200 1222 AGTGAGTCGT ATTACAATTC AA

- (2) INFORMATION FOR SEQ ID NO:84
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 396
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

Gly	Thr	Thr	Gly	Lys 5	Pro	Lys	Gly	Val	Val 10	Met	Glu	His	Arg	Ala 15
Leu	Ala	Asn	Leu	Ile 20	Ala	Trp	Gln	Ile	Glu 25	Asp	Phe	Ser	Arg	Ser 30
Val	Pro	Ala	Arg	Thr 35	Leu	Gln	Phe	Ala	Ser 40	Leu	Ser	Phe	Asp	Val 45
Ser	Phe	Gln	Glu	Met 50	Phe	Ser	Thr	Trp	Cys 55	Ser	Gly	Gly	Thr	Leu 60
Val	Leu	Leu	Pro	Ala 65	Gln	Ile	Arg	Arg	Asp 70	Pro	Pro	Ala	Leu	Leu 75
Asn	Phe	Leu	Arg	Met 80	Lys	Arg	Val	Glu	Arg 85	Leu	Phe	Val	Pro	Phe 90
Val	Val	Leu	Gln	Gln 95	Met	Ala	Glu	Ala	Ala 100	His	Met	Glu	Asn	Val 105
Val	Leu	Pro	Gln	Leu 110	Arg	Glu	Val	Ile	Thr 115	Ala	Gly	Glu	Arg	Leu 120
Gln	Ile	Thr	Pro	Arg 125	Ile	Arg	Ser	Phe	Leu 130	Asp	Thr	Leu	Pro	Glu 135
Cys	His	Leu	Val	Asn 140	Gln	Tyr	Gly	Pro	Thr 145	Glu	Ser	His	Val	Val 150
Thr	Ala	Phe	Thr	Val 155	Asp	Gly	Pro	Pro	Glu 160	Cys	Trp	Gly	Glu	Leu 165
Pro	Pro	Ile	Gly	Arg 170	Pro	Ile	Ala	Asn	Thr 175	Gln	Ile	Tyr	Ile	Leu 180
Asp	Ala	His	Leu	Asn 185	Pro	Val	Pro	Ile	Gly 190	Val	Val	Gly	Glu	Ile 195
Tyr	Ile	Gly	Gly	Asp 200		Leu	Ala	Arg	Gly 205	Tyr	Leu	Asn	Arg	Pro 210
Glu	Leu	Thr	Ala	Glu 215		Phe	Ile	Tyr	His 220	Ser	Phe	Asp	Arg	Glu 225
Pro	Ala	Gln	Arg	Leu 230		Arg	Thr	Gly	Asp 235	Leu	Ala	Arg	Tyr	Leu 240
Pro	Asp	Gly	Asn	11e 245		Phe	Ile	Gly	Arg 250		Asp	Asn	Gln	Val 255
Lys	Ile	arg	, Gly	Tyr 260		Ile	Glu	Leu	Glu 265	Lys	Ser	. Lys	Ser	Cys 270
Суя	Ala	Thr	Ser	Pro	Ile	Arg	Glu	ı Ala	Val	Val	Thr	Thr	Thr	Lys

- 82 -

				275					288					285
Asp	Pro	Ser	Glu	Glu 290	Lys	Gln	Leu	Val	Ala 295	Tyr	Ile	Val	Ala	Arg 300
Glu	Gly	Ala	Pro	Glu 305	Ile	Ser	Glu	Leu	Arg 310	Ala	His	Leu	Lys	Ala 315
Lys	Leu	Pro	Asp	Tyr 320	Met	Val	Pro	Ser	Ala 325	Phe	Val	Ile	Val	Asp 330
Ser	Leu	Pro	Leu	Thr 335	Pro	Asn	Gly	Lys	Ile 340	Asp	Arg	Asn	Ala	Leu 345
Pro	Pro	Phe	Asp	Arg 350	Asp	Thr	Val	Ile	Arg 355	Asp	Pro	Ile	Tyr	Val 360
Ala	Pro	Gly	Asn	Ala 365	Arg	Glu	Lys	Ala	Ile 370	Ala	Asp	Ile	Trp	Ser 375
Glu	Ile	Leu	Gly	Val 380	Lys	Arg	Ile	Gly	Val 385	His	Asp	Asn	Phe	Phe 390
Ala	Pro	Gly	Gly	Pro 395	Ser									

- (2) INFORMATION FOR SEQ ID NO:85
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:1200
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

AATCTACACG	TCCGGCACCA	CCGGCAAGCC	CAAGGGGGCC	ATAATCCATC	50
ACCTGGGACT	GGCGAATTAC	TTGGTGTGGT	GCTCGCGGGC	TTACGCGATT	100
GCTCAAGGAG	TGGGAGCACC	GGTCCACTCG	TCGATCTCGT	TCGATCTGAC	150
GATCACTGCC	TTGCTTGCCC	CCTTGGTCGT	CGGCCGGCGC	ATCGACCTGC	200
TTGATGAAGA	ACTGGGCATC	GAGCAACTGA	GTTACGCTCT	CCGGCGATCG	250
CGCGACTATA	GCCTGGTCAA	GATCACTCCG	GCTCACCTGC	GCTGGCTCGG	300
CGATGAACTG	GGACCCTGCG	AGGCCGAAGG	TCGTACGCGA	GCTTTCATCA	350
TCGGTGGTGA	GCAACTGACG	GCCGAACACG	TCKCATTCTG	GAGGCGGCAC	400
GCGCCGGGGA	CGAGCCTGAT	CAACGAGTAT	GGTCCGACCG	AGACGGTCGT	450
CGGCTGCTGC	GTGTACCGCG	TGCCTCCTGA	CCAGGAGATT	TCGGGGCCCA	500
TCCCGATTGG	CCGACCGATC	GCCAACACGC	GTCTCTACGT	CCTCGATCCG	550
GATCTCGCGC	TGGTACCCAT	CGGCGTTGCA	GGCGAGCTGT	ACATCGGCGG	600
TGCCGGGGTC	GCGCGGGGGT	ATCTCAACAG	GCCCGGCCTG	ACCGCTGAAA	650
GGTTCATCCC	CGACCCGTTC	GGCAAGAAGC	CGGGCGAGCG	CCTCTATCGC	700
ACCGGAGACC	TCGCCCGATG	GCGGTCCGAC	GGTAACCTCG	AGTATCTCGG	750
CAGGGTCGAT	CGCCAGGTTA	AAGTCCGCGG	GTTTCGGATC	GAACCCGGGG	800
AGATCGAACA	GGCACTCGCC	CGGCACTCCG	CGGTACGCGA	GTCCGTCGTG	850
GTCGCAAGCG	CAGGTGCATC	GGACGTGCAA	CGCCTCGTCG	CCTATCTGGT	900

TGCG GAGA GGCC GCGG (2) (i) (A) (B) (D) (ii	GACGCTGCCCGGAGCGGAGCGGAGCGGAGCGGAGCGGAG	TT A CC C GAG G GTA T CTA T CT	CAGG CTCC ACTG GGAAC CGGC LON E CH 399 amino	CCGA ACCC GCCC AGGA GCCC FOR ARAC inea YPE:	G CC A CA T TC G GT T TG SEQ TERI	GATG ACGG CGTG GGCA ACAA ID N STIC	ATAC GAAG GGGA TCGA .CTTC	GCT GTG TGC TCT	CGGC GACC TCGT GGGG	ATT GAG TTC TGC	CGTT AGGC GTTG AGTC	GTGC CCTG CTCC CTCG	TG 1 CC 1 CC 1 GA 1	100 150
(ii	.i) F	YPOI	PTION THETI T TY	CAL:	no		fra	gmen	ıt					
(xi) SE	OUEN	ICE D	ESCR	IPTI	ON:	SEQ	ID N	iO:86	: Lys	Gly	Ala	Ile	Ile
110	-7-			5				•	10	-	_			15
His	His	Leu	Gly	Leu 20	Ala	Asn	Tyr	Leu	Val 25	Trp	Cys	Ser	Arg	Ala 30
Tyr	Ala	Ile	Ala	Gln 35	Gly	Val	Gly	Ala	Pro 40	Val	His	Ser	Ser	Ile 45
Ser	Phe	Asp	Leu	Thr 50	Ile	Thr	Ala	Leu	Leu 55	Ala	Pro	Leu	Val	Val 60
Gly	Arg	Arg	Ile	Asp 65	Leu	Leu	Asp	Glu	Glu 70	Leu	Gly	Ile	Glu	Gln 75
Leu	Ser	Tyr	Ala	Leu 80	Arg	Arg	Ser	Arg	Asp 85	Tyr	Ser	Leu	Val	Lys 90
Ile	Thr	Pro	Ala	His 95	Leu	Arg	Trp	Leu	Gly 100	Asp	Glu	Leu	Gly	Pro 105
Cys	Glu	Ala	Glu	Gly 110	Arg	Thr	Arg	Ala	Phe 115	Ile	Ile	Gly	Gly	Glu 120
Gln	Leu	Thr	Ala	Glu 125	His	Val	Xaa	Phe	Trp 130	Arg	Arg	His	Ala	Pro 135
Gly	Thr	Ser	Leu	Ile 140	Asn	Glu	Tyr	Gly	Pro 145	Thr	Glu	Thr	Val	Val 150
Gly	Cys	Cys	Val	Tyr 155	Arg	Val	Pro	Pro	Asp 160	Gln	Glu	Ile	Ser	Gly 165
Pro	Ile	Pro	Ile	Gly 170	Arg	Pro	Ile	Ala	Asn 175	Thr	Arg	Leu	Tyr	Val 180
Leu	Asp	Pro	Asp	Leu 185	Ala	Leu	Val	Pro	Ile 190	Gly	Val	Ala	Gly	Glu 195

TGCG(GAGA(GGCC)	GACG CGCT CCTG	TT ACC C	CAGG(CTCC(ACTG) GTGT(GAAC) CGGC(CCGA ACCC GCCC AGGA	G CC A CA T TC G GT	GATG. ACGG CGTG GGCA	ATAC GAAG GGGA TCGA	CCT(GTG(TGC'	CGGC. GACC TCGT GGGG	ATT GAG TTC TGC	CGTT AGGC GTTG AGTC	GTGC CCTG CTCC CTCG	CC 1 CC 1 GA 1	050 050 100 150
(i) (A) (B) (D) (ii (A) (ii (V)	SEQ LEN TYP TOP) MO DES i) H FRA	UENC GTH: E: a OLOG CECU CRIP YPOT GMEN	ION E CH 399 mino Y: 1 LE T TION HETI T TY CE D Ser	aci inea YPE: pr CAL: PE:	TERI d r otei no inte	n rnal	S: fra	gmen ID N	0:86	: Lvs	Glv	Ala	Ile	Ile
116	тÀт	TIIL	261	5	1111		O1,	<i>L.</i> ₁ <i>L</i>	10	-1 -				15
His	His	Leu	Gly	Leu 20	Ala	Asn	Tyr	Leu	Val 25	Trp	Cys	Ser	Arg	Ala 30
Tyr	Ala	Ile	Ala	Gln 35	Gly	Val	Gly	Ala	Pro 40	Val	His	Ser	Ser	Ile 45
Ser	Phe	Asp	Leu	Thr 50	Ile	Thr	Ala	Leu	Leu 55	Ala	Pro	Leu	Val	Val 60
Gly	Arg	Arg	Ile	Asp 65	Leu	Leu	Asp	Glu	Glu 70	Leu	Gly	Ile	Glu	Gln 75
Leu	Ser	Tyr	Ala	Leu 80	Arg	Arg	Ser	Arg	Asp 85	Tyr	Ser	Leu	Val	Lys 90
Ile	Thr	Pro	Ala	His 95	Leu	Arg	Trp	Leu	Gly 100	Asp	Glu	Leu	Gly	Pro 105
Cys	Glu	Ala	Glu	Gly 110	Arg	Thr	Arg	Ala	Phe 115	Ile	Ile	Gly	Gly	Glu 120
Gln	Leu	Thr	Ala	Glu 125	His	Val	Xaa	Phe	Trp 130	Arg	Arg	His	Ala	Pro 135
Gly	Thr	Ser	Leu	Ile 140	Asn	Glu	Tyr	Gly	Pro 145	Thr	Glu	Thr	Val	Val 150
Gly	Cys	Cys	Val	Tyr 155	Arg	Val	Pro	Pro	Asp 160	Gln	Glu	Ile	Ser	Gly 165
Pro	Ile	Pro	Ile	Gly 170	Arg	Pro	Ile	Ala	Asn 175	Thr	Arg	Leu	Tyr	Val 180
Leu	Asp	Pro	Asp	Leu 185	Ala	Leu	Val	Pro	Ile 190	Gly	Val	Ala	Gly	Glu 195

- Leu Tyr Ile Gly Gly Ala Gly Val Ala Arg Gly Tyr Leu Asn Arg 205 Pro Gly Leu Thr Ala Glu Arg Phe Ile Pro Asp Pro Phe Gly Lys Lys Pro Gly Glu Arg Leu Tyr Arg Thr Gly Asp Leu Ala Arg Trp Arg Ser Asp Gly Asn Leu Glu Tyr Leu Gly Arg Val Asp Arg Gln Val Lys Val Arg Gly Phe Arg Ile Glu Pro Gly Glu Ile Glu Gln 265 260 Ala Leu Ala Arg His Ser Ala Val Arg Glu Ser Val Val Val Ala 288 Ser Ala Gly Ala Ser Asp Val Gln Arg Leu Val Ala Tyr Leu Val 300 295 Leu Ala Glu Ala Gly Pro Ala Pro Pro Asp Ser Glu Leu Arg Glu Phe Leu Arg Thr Leu Leu Pro Glu Pro Met Ile Pro Ser Ala Phe 325 Val Val Leu Glu Thr Leu Pro Leu Thr His Asn Gly Lys Val Asp 340 Arg Glu Ala Leu Pro Ala Pro Glu Gly Val Pro Phe Arg Gly Asp 355 Ala Arg Phe Val Ala Pro Arg Gly Pro Leu Glu Gln Glu Val Ala 370 Ser Ile Trp Gly Ala Val Leu Gly Leu Glu Arg Ile Gly Ala Leu Asp Asn Phe Phe Phe Pro Arg Arg Pro
- (2) INFORMATION FOR SEQ ID NO:87:

395

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1204
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

AGGGGCCGCC GGGCGAGAAG AAGTTCGCGG TGATGCTCAC CGGCGCGTCG 50 AGCTTCAACG CCTCCTGCCA GATCTCCGCG AGCTTGCTCT CCGTCTCCGT 100

PCT/CA98/00488 WO 98/53097

- 85 -

```
GCCCGGCGCT ACGTATTGGG CGCCGGCGCT ACGGTCGATG GACGGCAGCG 150
CCTTACGATC GATCTTGCCG TTGGCATTCA GCGGAAAGGC CTCCAGGACG 200
CGCCAGCCGC TGGGAATCAT GTACTCGGGC AGGGCCAGCT TGAGGCGCAT 250
CCGCAGCGCC GAGATGAGCA CCTCTTCGTC CGCGGTCTGG GCCACGACGT 300
AGGCGACGAG GGCCTTGTTC TCCCCCTCTC CCTGCGCCAC GACCAGGGCG 350
TCGTCGACGC CAGCCTCGGT CTTCAGCGCG GTCTCGATCT CGCCGAGCTC 400
GATGCGGAAG CCGCGGATCT TGATCTGGTC GTCGAGGCGG CCGAGGAACT 450
CGAGATCGCC GCTGGCGAGC CGGCGAACGA GGTCGCCGCT GCGATAGAGG 500
CGCCCTTCGC CGAAGGGATT GGCGATGAAC TTCGCCGCCG TCAGCTCCGG 550
CTGGTTGACG TAGCCTCTGG CCACCCCTGC CCCGCCAATG CACAGCTCGC 600
CGGCCACGCC GACCGGCGC ATCTCCAGTG CCTCGTTGAG GACATACAGC 650
TCCGTGTTGT CCATGGCCCT GCCGATGGGC AGGCCGTCCG GCAGGCCGCC 700
CTGGAGAGCG GCGGTGACGT CGAACATGGC GCAGCCGACC ACGGTCTCCG 750
TGGGACCGTA GTGGTTGTAG ATCTGGGCGT GGGGGAAGCG CGTTTGCAGC 800
TCGCGGGCGA GCGAGGCGGG AAACGATTCG CCGCCGATGA CGAAAACGTG 850
TTGAGATGAA GCCCGGGCCG TGTCTTCCGT CAGCTCCGCG CTGTCGAGCA 900
GAGCGAGCAT ACCGGTGAGA TGCATCGGCG TCATGCGCAG CAGATAAGCC 950
CGTTCGTCGC CGGCCAACGC TTTCGCGAGC TCGTTCAACT CATCGCCGGG 1000
CGTGGTCAGC GAGACGCAGC CACCCCGGAG CAAGGGAACA TACAGGCTGG 1050
GCACGGTGAT GTCGAAGCCG TGGGAGGTGA CGCCACTACT CACCGCCG 1150
CCCTTCGCGT AGTAGCGCTG CGAAGCGAAG GCGCAGTAGT CACTGAGGCC 1150
GGCGTGTCTG ATCTCCACGC CCTTCGGCTT GCCCGTCGTG CCGGACGTGT 1200
AGAT
```

- (2) INFORMATION FOR SEQ ID NO:88:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 401
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:
- (A) DESCRIPTION: protein
- (iii) HYPOTHETICAL: no
- (v) FRAGMENT TYPE: internal fragment
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:
- Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Glu Ile
- Arg His Ala Gly Leu Ser Asp Tyr Cys Ala Phe Ala Ser Gln Arg
- Tyr Tyr Ala Lys Gly Leu Ala Gly Ser Leu Val Val Thr Ser His
- Gly Phe Asp Ile Thr Val Pro Ser Leu Tyr Val Pro Leu Leu Arg
- Gly Gly Cys Val Ser Leu Thr Thr Pro Gly Asp Glu Leu Asn Glu
- Leu Ala Lys Ala Leu Ala Gly Asp Glu Arg Ala Tyr Leu Leu Arg
- Met Thr Pro Met His Leu Thr Gly Met Leu Ala Leu Leu Asp Ser

Ala	Glu	Leu	Thr	Glu 110	Asp	Thr	Ala	Arg	Ala 115	Ser	Ser	Gln	His	Val 120
Phe	Val	Ile	Gly	Gly 125	Glu	Ser	Phe	Pro	Ala 130	Ser	Leu	Ala	Arg	Glu 135
Leu	Gln	Thr	Arg	Phe 140	Pro	His	Ala	Gln	Ile 145	Tyr	Asn	His	Tyr	Gly 150
Pro	Thr	Glu	Thr	Val 155	Val	Gly	Cys	Ala	Met 160	Phe	Asp	Val	Thr	Ala 165
Ala	Leu	Gln	Ala	Gly 170	Leu	Pro	Glu	Arg	Leu 175	Pro	Ile	Gly	Arg	Ala 180
Met	Asp	Asn	Thr	Glu 185	Leu	Tyr	Val	Leu	Asn 190	Glu	Ala	Leu	Glu	Ile 195
Ala	Pro	Val	Gly	Val 200	Ala	Gly	Glu	Leu	Cys 205	Ile	Gly	Gly	Ala	Gly 210
Val	Ala	Arg	Gly	Tyr 215	Val	Asn	Gln	Pro	Glu 220	Leu	Thr	Ala	Ala	Lys 225
Phe	Ile	Ala	Asn	Pro 230	Phe	Gly	Glu	Gly	Arg 235	Leu	Tyr	Arg	Ser	Gly 240
Asp	Leu	Val	Arg	Arg 245	Leu	Ala	Ser	Gly	Asp 250	Leu	Glu	Phe	Leu	Gly 255
Arg	Leu	Asp	Asp	Gln 260	Ile	Lys	Ile	Arg	Gly 265	Phe	Arg	Ile	Glu	Leu 270
Gly	Glu	Ile	Glu	Thr 275	Ala	Leu	Lys	Thr	Glu 288	Ala	Gly	Val	Asp	Asp 285
Ala	Leu	Val	Val	Ala 290	Gln	Gly	Glu	Gly	Glu 295	Asn	Lys	Ala	Leu	Val
Ala	Tyr	Val	Val	Ala 305	Gln	Thr	Ala	Asp	Glu 310	Glu	Val	Leu	Ile	Ser 315
Ala	Leu	Arg	Met	Arg 320	Leu	Lys	Leu	Ala	Leu 325	Pro	Glu	Tyr	Met	11e 330
Pro	Ser	Gly	Trp	Arg 335		Leu	Glu	Ala	Phe 340	Pro	Leu	Asn	Ala	Asr 345
Gly	Lys	Ile	Asp	Arg 350		Ala	Leu	Pro	Ser 355	Ile	Asp	Arg	Ser	Ala 360
Gly	Ala	Gln	Tyr	Val 365		Pro	Gly	Thr	Glu 370	Thr	Glu	Ser	Lys	Le:
Ala	Glu	Ile	Trp	Gln	Glu	Ala	Leu	Lys	Leu	Asp	Ala	Pro	Val	Set

- 87 -

```
390
                                    385
                380
Ile Thr Ala Asn Phe Phe Ser Pro Gly Gly Pro
(2) INFORMATION FOR SEQ ID NO:8:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1190
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 (iii) HYPOTHETICAL: no
 (iv) ANTI-SENSE: no
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:
ATCTACACCT CGGGCACGAC CGGCAAGCCG AAGGGGATCA TGTATTCGCA 50
TCGATACCTG TTGCATAATA TGCGCAACTA CGGCGACTTA TTTCAGGTCT 100
CCCCCACGA TCGCTGGAGT TGGTTGCATT CCTACAGCTA TGCTTCGGCG 150
AATACTGATA TCCTTTGCCC GCTACTGCAC GGCGCCGCCG TCTGCCCTTG 200
GAATTTGCAT CGTAATGGCC TATCGGGCTT AGCTCGTTGG CTCGCCGAGT 250
CGCGAATCAC CATTTTGAAC TGGATGCCGA CACCGCTACG CAGTTTGGCA 300
AAGCTCTGGC CGCCAAAGCA CGTGCTTCCC GATCTGCGAC TTACAGTGTT 350
GGGCGGCGAA ACGCTGTTTG CCCAAGACGT TGCTGACTTT CGGCGAATAA 400
TTTCGCTGAA TTGCCTAATC GCCAATCGTC TGGGAACTTC GGAAACTGGA 450
TTGTTTCGGC TCGCGTTTCT CGACCGAGAG ACTCCCCTTG CTAATGGTTC 500
CATACAGGCC GGATACGAAG TTCCAGACAA GACCGTCGTC CTGTTCGACG 550
AATATGGAGT TGAGCTGGCC CCTGGCAACG TCGGTCAGAT TGGCGTGCGC 600
AGCAGGTACT TGCCGCCTGG ATACTGGCGA CGGCCGGAGT TGACAAGCGA 650
GCGATTTCTA ACCAGTAAAG GCGATGATGA CGTACGGACC TTCCTCACCG 700
GCGACCTTGG GCGAATGCGG GACGACGGAT GCCTCGAGCA CTGCGGACGG 750
CTCGACTCCC AAGTGAAGAT CCGTGGTCAC CGCATCGCAA TGGGAGAGAT 800
CGAATTCTTG CTTCGGACAT GCGACGGAGT CAGCGAAGCA GTTGTCATTG 850
CCAGGCCACA TTCAGACGGT GAAACCCGTT TGATAGCTTA TTTTGTGCCG 900
ACCGAGAAAA GCGCTATCGA TGTATCGAGC CTTCGTCGGC ACCTGCTGGG 950
AAAGCTGCCT GGCCACATGA TCCCCTCGGC GTTTGTGCGG CTCGACGGCG 1000
TGCCCAAAAA CGCCAACCAA AAAGTAGATT GGGCGGCCTT GCCAGCACCG 1050
AACTTCCAAA ACCAGGGACA GCAGCACGTA CCGCCACAAA CGCCTTGGCA 1100
GCGACATCTC GTGGAGTTGT GGCAAAAGTT GTTGAATGTG GAATCGATCG 1150
GCATCCACGA TGACTTCTTC GCCCTCGGCG GCCCCTCCTT
                                                        1190
(2) INFORMATION FOR SEQ ID NO:90:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 396
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
 (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
 (v) FRAGMENT TYPE: internal fragment
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:
Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Ile Met Tyr
```

Ser His Arg Tyr Leu Leu His Asn Met Arg Asn Tyr Gly Asp Leu

				20					25					30
Phe	Gln	Val	Ser	Pro 35	His	Asp	Arg	Trp	Ser 40	Trp	Leu	His	Ser	Tyr 45
Ser	Tyr	Ala	Ser	Ala 50	Asn	Thr	Asp	Ile	Leu 55	Cys	Pro	Leu	Leu	His 60
Gly	Ala	Ala	Val	Cys 65	Pro	Trp	Asn	Leu	His 70	Arg	Asn	Gly	Leu	Ser 75
Gly	Leu	Ala	Arg	Trp 80	Leu	Ala	Glu	Ser	Arg 85	Ile	Thr	Ile	Leu	Asn 90
Trp	Met	Pro	Thr	Pro 95	Leu	Arg	Ser	Leu	Ala 100	Lys	Leu	Trp	Pro	Pro 105
Lys	His	Val	Leu	Pro 110	Asp	Leu	Arg	Leu	Thr 115	Val	Leu	Gly	Gly	Glu 120
Thr	Leu	Phe	Ala	Gln 125	Asp	Val	Ala	Asp	Phe 130	Arg	Arg	Ile	Ile	Ser 135
Leu	Asn	Cys	Leu	Ile 140	Ala	Asn	Arg	Leu	Gly 145	Thr	Ser	Glu	Thr	Gly 150
Leu	Phe	Arg	Leu	Ala 155	Phe	Leu	Asp	Arg	Glu 160	Thr	Pro	Leu	Ala	Asn 165
Gly	Ser	Ile	Gln	Ala 170	Gly	Tyr	Glu	Val	Pro 175	Asp	Lys	Thr	Val	Val 180
Leu	Phe	Asp	Glu	Tyr 185	Gly	Val	Glu	Leu	Ala 190	Pro	Gly	Asn	Val	Gly 195
Gln	Ile	Gly	Val	Arg 200	Ser	Arg	Tyr	Leu	Pro 205	Pro	Gly	Tyr	Trp	Arg 210
Arg	Pro	Glu	Leu	Thr 215		Glu	Arg	Phe	Leu 220	Thr	Ser	Lys	Gly	Asp 225
Asp	Asp	Val	Arg	Thr 230		Leu	Thr	Gly	Asp 235	Leu	Gly	Arg	Met	Arg 240
Asp	Asp	Gly	. Cys	Leu 245		His	Cys	Gly	Arg 250	Leu	Asp	Ser	Gln	Val 255
Lys	Ile	Arg	Gly	His 260		, Ile	Ala	Met	Gly 265	r Glü	ıle	e Glu	Phe	Leu 270
Leu	Arg	Thr	Cys	275		v Val	. Ser	Glu	Ala 288	val	. Val	Ile	Ala	Arg 285
Pro	His	: Ser	: Asp	Gly 290	gli	ı Thr	Arg	g Leu	1 Ile 299	e Ala	а Туг	c Phe	e Val	Pro 300

WO 98/53097

- 89 -

PCT/CA98/00488

Thr	Glu	Lys	Ser	Ala 305	Ile	Asp	Val	Ser	Ser 310	Leu	Arg	Arg	His	Leu 315
Leu	Gly	Lys	Leu	Pro 320	Gly	His	Met	Ile	Pro 325	Ser	Ala	Phe	Val	Arg 330
Leu	Asp	Gly	Val	Pro 335	Lys	Asn	Ala	Asn	Gln 340	Lys	Val	Asp	Trp	Ala 345
Ala	Leu	Pro	Ala	Pro 350	Asn	Phe	Gln	Asn	Gln 355	Gly	Gln	Gln	His	Val 360
Pro	Pro	Gln	Thr	Pro 365	Trp	Gln	Arg	His	Leu 370	Val	Glu	Leu	Trp	Gln 375
Lys	Leu	Leu	Asn	Val 380	Glu	Ser	Ile	Gly	Ile 385	His	Asp	Asp	Phe	Phe 390
Ala	Leu	Gly	Gly	Pro 395	Ser									

- (2) INFORMATION FOR SEQ ID NO:91:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1178
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

	(YI) DIGORI	ica papentara				
A	AGGAGGGC	CGCCCGGCGC	GAAGAAGTTC	TCGTGTAGCC	CGACGCGTTC	50
С	AGCTGCAGC	ACGGCGCACC	AGATCGCTGC	GACCTGCCGC	TGGACGTCCG	100
Т	CATGATCGC	GGTGTCCGCT	GCGGCCGCTG	CCGCGCGATT	CACCTGTGGA	150
Α	TGGGCAGGG	CCTTGCGGTC	GATCTTGTCG	TTCGGCGTGA	GCGGCAGCGC	200
G	GCGAGCGAT	ACGATCACCT	GTGGCACCAT	GTACTCGGGG	AGTCTCGCGC	250
G	GAGCGCCGT	CCGGAGCTCG	TCGAGCGGCA	GCACGCCGTC	TTCTGCCGGG	300
Α	CGACGTACG	CCACCAGACG	CTGATCGCCG	GGGGTGTCCT	CGCGCACGAC	350
G	GCCACGCTG	CGGCGCACCG	ACGGATGCTC	GGACAGGACC	GATTCGATCT	400
C	CCCCAGCTC	GATCCGGTAG	CCGCGAAGCT	TCACCTGATG	ATCTCGGCGT	450
C	CGACGAACT	CGAGGGCCCG	ATCGGCGCGC	AGTCGTACGA	TGTCGCCGGT	500
G	CGGTACACG	CGCTCCGCCG	GTCTGCCCGC	GACCTCGACG	ACGACGAACT	550
T	TTCTGCCGT	GAGCTCGGGT	CGATGACGAT	AGCCCCGCGC	CACGCCCTCT	600
С	CTCCGATGC	ACAGCTCACC	CGGCACGCCG	ATGGGAGCCT	GGCGACCCGC	650
G	GCGTCGAGC	ACGTAGACGT	TCGTGTTGGC	GATGGGATGG	CCGATCGGAA	700
Ί	ATCGCGATC	GCAATCCGTG	ACCTGATGCA	CGGTCGACCA	GATCGTCGTC	750
Ί	CGGTCGGGC	CGTACATGTT	CCACAGCGCC	CGCACCCTCG	ACGAGAGATC	800
G	CGCGCGAGA	TCGCGTGGAA	GGGCCTCCCC	GCCGCAGAGC	GCGGTGAGAT	850
C	CGTCTTGCC	CTGCCAGCCG	GCGTCGATGA	GCAGGCGCCA	GGTCGCGGGG	900
G	TCGCCTGCA	TCATCGTCGC	TCTGCACGAT	TCGATGCGCT	CGCGAAGACG	950
C	TCGCCGTCG	AGCACGTCGC	CGCGGGAGGC	GATGACCGTC	CTCCCGCCGA	1000
C	GACGAGAGG	CAAGAACAGC	TCGAGACCCG	CGATGTCGAA	CGACGGCGTG	1050
G	TGACCGCGA	GGAGCACGTC	GCCGGCTCGC	AAGCCTGGCT	CCTTCTGCAT	1100
G	GCGCGCAGG	AAATTCACGA	GCTGGCGGTG	CTCGATCTCG	ACCCCCTTCG	1150

1178

GCTTGCCCGT CGTGCCCGAC GTGTAGAT

(2) INFORMATION FOR SEQ ID NO:92: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 392 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: (A) DESCRIPTION: protein (iii) HYPOTHETICAL: no (v) FRAGMENT TYPE: internal fragment (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92: Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Glu Ile Glu His Arg Gln Leu Val Asn Phe Leu Arg Ala Met Gln Lys Glu Pro Gly Leu Arg Ala Gly Asp Val Leu Leu Ala Val Thr Thr Pro Ser Phe Asp Ile Ala Gly Leu Glu Leu Phe Leu Pro Leu Val Val Gly Gly Arg Thr Val Ile Ala Ser Arg Gly Asp Val Leu Asp Gly Glu Arg Leu Arg Glu Arg Ile Glu Ser Cys Arg Ala Thr Met Met Gln Ala Thr Pro Ala Thr Trp Arg Leu Leu Ile Asp Ala Gly Trp 95 Gln Gly Lys Thr Asp Leu Thr Ala Leu Cys Gly Gly Glu Ala Leu Pro Arg Asp Leu Ala Arg Asp Leu Ser Ser Arg Val Arg Ala Leu 125 Trp Asn Met Tyr Gly Pro Thr Glu Thr Thr Ile Trp Ser Thr Val 145 His Gln Val Thr Asp Cys Asp Arg Asp Ile Pro Ile Gly His Pro Ile Ala Asn Thr Asn Val Tyr Val Leu Asp Ala Ala Gly Arg Gln 170 Ala Pro Ile Gly Val Pro Gly Glu Leu Cys Ile Gly Gly Glu Gly Val Ala Arg Gly Tyr Arg His Arg Pro Glu Leu Thr Ala Glu Lys 210 200

- 91 -

Phe	Val	Val	Val	Glu 215	Val	Ala	Gly	Arg	Pro 220	Ala	Glu	Arg	Val	Tyr 225
Arg	Thr	Gly	Asp	Ile 230	Val	Arg	Leu	Arg	Ala 235	Asp	Arg	Ala	Leu	Glu 240
Phe	Val	Gly	Arg	Arg 245	Asp	His	Gln	Val	Lys 250	Leu	Arg	Gly	Tyr	Arg 255
Ile	Glu	Leu	Gly	Glu 260	Ile	Glu	Ser	Val	Leu 265	Ser	Glu	His	Pro	Ser 270
Val	Arg	Arg	Ser	Val 275	Ala	Val	Val	Arg	Glu 288	Asp	Thr	Pro	Gly	Asp 285
Gln	Arg	Leu	Val	Ala 290	Tyr	Val	Val	Pro	Ala 295	Glu	Asp	Gly	Val	Leu 300
Pro	Leu	Asp	Glu	Leu 305	Arg	Thr	Ala	Leu	Arg 310	Ala	Arg	Leu	Pro	Glu 315
Tyr	Met	Val	Pro	Gln 320	Val	Ile	Val	Ser	Leu 325	Ala	Ala	Leu	Pro	Leu 330
Thr	Pro	Asn	Asp	Lys 335	Ile	Asp	Arg	Lys	Ala 340	Leu	Pro	Ile	Pro	Gln 345
Val	Asn	Arg	Ala	Ala 350	Ala	Ala	Ala	Ala	Asp 355	Thr	Ala	Ile	Met	Thr 360
Asp	Val	Gln	Arg	Gln 365	Val	Ala	Ala	Ile	Trp 370	Cya	Ala	Val	Leu	Glr 375
Leu	Glu	Arg	Val	Gly 380		His	Glu	Asn	Phe 385	Phe	Ala	Pro	Gly	Gly 390

Pro Ser

- (2) INFORMATION FOR SEQ ID NO:93:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH:1178
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

ATCTACACCT CCGGCACGAC GGGCAAGCCG AAGGGAGTAA AGATCACACA 50 TCGTGCCGTG GTGAATTTTC TGAACTCGAT GCGGCGTGAA CCAGGGCTGA 100 CCCCGGACGA TGTGGTGCTC TCGGTCACCA CGCTGTCGTT TGACATTGCC 150 GGACTCGAAC TCCACCTGCC CCTGACGACT GGAGCCACGG TCGTAGTGGC 200 GACCCAAGAC GCGGTGTCCG ACGCTGAACT GCTGGTCAGA GAGTTGGAGC 250

```
GGACCGGAAC AACTCTGTTG CAGGCGACGC CAGTCACATG GCGAATGCTT 300
CTGGAGTCGG GCTGGAAAGG AAATCCGCGA CTCAAGGCTC TGGTCGGAGG 350
TGAGGCAGTG CCGAGGGACC TGGTGAATCG GCTTGCTCCC CTTTGCGCGT 400
CACTTTGGAA CATGTACGGA CCAACGGAAA CCACGATCTG GTCAACGGTT 450
GGGCGTCTGG AGGCTGGAGA TGGTGTGTCT AGTATTGGCC GGCCCATCGA 500
CAATACGCGG ATTTACGTCG TGGATCCGTC GATACACCTT CAGCCCATCG 550
GAGTTCCCGG CGAATTGCTG ATTGGCGGAG AAGGATTGGC CGACGGATAT 600
CTGAAACGCG ATCAGTTGAC GGCAGAGAAG TTCATTCCTG ATCCATTTGG 650
TGGGAGGCCT GGGTCTCGGC TGTATCGAAC CGGAGATCTT GCGCGCTGGC 700
GCGCGGACGG CACCTTGGAG TGTCTCGGAC GAATGGACCA ACAGGTGAAG 750
ATTCGGGGTT CCCGGATCGA ATTGGGTGAG ATCGAAACCC TGTTGGCCTC 800
CCACCCGGAT GTGAAACAGA ACGTGGTGGT CGTACGCGAG GACAGCCCCG 850
GGGAAAAAA ATTGGTGGGC TATTTCGTGC CGGCGAACGG ACGCAATCCC 900
GGGAAAAAA ATTGGTGGGC TATTTCGTGC CGGCGAACGG ACGCAATCCC 900
GAAGTGATGG AATTTCGCAA ACATCTGCAG CGGACGCTTC CGGATTACAT 950
GGTCCCCTCA GTGTACGTGC CCTTGACCTC GGTTCCGCTT ACACCCAACG 1000
GAAAGATCGA CCGCAAGGCG CTGCCCGCAC CGGATATCAG CGCCGTCACG 1050
GTTTCCCGAG AGTCAATTGC GCCGCGCAAT CCCGCCGAAG AGCGGCTGGC 1100
AGCAATTTTC GCCAAGGTGC TTGGCACGCC GATCGCCTCG ATCCACGACA 1150
GCTTCTTCTC CCCGGGCGGC CCCTCCAT
(2) INFORMATION FOR SEQ ID NO:94
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 218
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE:
 (A) DESCRIPTION: protein
 (iii) HYPOTHETICAL: no
  (v) FRAGMENT TYPE: internal fragment
  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
Ile Tyr Thr Ser Gly Thr Thr Gly Lys Pro Lys Gly Val Lys Ile
Thr His Arg Ala Val Val Asn Phe Leu Asn Ser Met Arg Arg Glu
Pro Gly Leu Thr Pro Asp Asp Val Val Leu Ser Val Thr Thr Leu
                                           40
Ser Phe Asp Ile Ala Gly Leu Glu Leu His Leu Pro Leu Thr Thr
Gly Ala Thr Val Val Val Ala Thr Gln Asp Ala Val Ser Asp Ala
Glu Leu Leu Val Arg Glu Leu Glu Arg Thr Gly Thr Thr Leu Leu
Gln Ala Thr Pro Val Thr Trp Arg Met Leu Leu Glu Ser Gly Trp
Lys Gly Asn Pro Arg Leu Lys Ala Leu Val Gly Glu Ala Val
```

Pro Arg Asp Leu Val Asn Arg Leu Ala Pro Leu Cys Ala Ser Leu

				125					130					135
Trp	Asn	Met	Tyr	Gly 140	Pro	Thr	Glu	Thr	Thr 145	Ile	Trp	Ser	Thr	Val 150
Gly	Arg	Leu	Glu	Ala 155	Gly	Asp	Gly	Val	Ser 160	Ser	Ile	Gly	Arg	Pro 165
Ile	Asp	Asn	Thr	Arg 170	Ile	Tyr	Val	Val	Asp 175	Pro	Ser	Ile	His	Leu 180
Gln	Pro	Ile	Gly	Val 185	Pro	Gly	Glu	Leu	Leu 190	Ile	Gly	Gly	Glu	Gly 195
Leu	Ala	Asp	Gly	Tyr 200	Leu	Lys	Arg	Asp	Gln 205	Leu	Thr	Ala	Glu	Lys 210
Phe	Ile	Pro	Asp	Pro 215	Phe	Gly	Gly	Arg	Pro 220	Gly	Ser	Arg	Leu	Tyr 225
Thr	Gly	Asp	Leu	Ala 230	Arg	Trp	Arg	Ala	Asp 235	Gly	Thr	Leu	Glu	240
Cys	Leu	Gly	Arg	Met 245	Asp	Gln	Gln	Val	Lys 250	Ile	Arg	Gly	Ser	Arg 255
Glu	Leu	Gly	Glu	Ile 260	Glu	Thr	Leu	Leu	Ala 265	Ser	His	Pro	Asp	270
Lys	Gln	Asn	Val	Val 275	Val	Val	Arg	Glu	Asp 288	Ser	Pro	Gly	Glu	285
Lys	Lys	Leu	Val	Gly 290	Tyr	Phe	Val	Pro	Ala 295	Asn	Gly	Arg	Asn	Pro 300
Glu	Val	Met	Glu	Phe 305	Arg	Lys	His	Leu	Gln 310	Arg	Thr	Leu	Pro	Asp 315
Tyr	Met	Val	Pro	Ser 320	Val	Tyr	Val	Pro	Leu 325	Thr	Ser	Val	Pro	Leu 330
Thr	Pro	Asn	Gly	Lys 335	Ile	Asp	Arg	Lys	Ala 340	Leu	Pro	Ala	Pro	Asp 345
Ile	Ser	Ala	Val	Thr 350	Val	Ser	Arg	Glu	Ser 355	Ile	Ala	Pro	Arg	Asn 360
Pro	Ala	Glu	Glu	Arg 365	Leu	Ala	Ala	Ile	Phe 370	Ala	Lys	Val	Leu	Gly 375
Thr	Pro	Ile	Ala	Ser 380	Ile	His	Asp	Ser	Phe 385	Phe	Ser	Pro	Gly	Gly 390

Pro

PCT/CA98/00488 WO 98/53097

CLAIMS

- 94 -

1	1.	A method for recovery of antibiotic biosynthetic DNA from humic
2	materials or lichen co	omprising the steps of:
3	(a)	combining a humic or lichen-derived sample with a set of
4	amplification primers	s under conditions suitable for polymerase chain reaction amplification,
5	wherein the primer se	et is a degenerate primer set selected to hybridize with conserved regions
6	of antibiotic biosynt	hetic gene;
7	(b)	cycling the combined sample through a plurality of amplification
8	cycles to amplify DN	IA complementary to the primer set; and
9	(c)	isolating the amplified DNA.
1	2.	The method according to claim 1, wherein the primer set hybridizes
2	with a polyketide syr	nthase gene.
1	3.	The method according to claim 2, wherein the primer set comprises
2	primers having the se	equence set forth in SEQ ID Nos. 1 and 2.
1	4.	The method according to claim 2, wherein the primer set comprises
2	primers having the s	equence set forth in SEQ ID Nos. 3 and 4.
1	5.	The method according to claim 2, wherein the primer set comprises
2	primers having the s	equence set forth in SEQ ID Nos. 5 and 6.
1	6.	The method according to claim 2, wherein the primer set comprises
2	primers having the s	equence set forth in SEQ ID Nos. 11 and 12.
1	7.	The method according to claim 1, wherein the primer set hybridizes
2	with a isopenicillin	N synthase gene.

8.

1

WO 98/53097 PCT/CA98/00488

The method according to claim 7, wherein the primer set comprises

2	primers having the	e sequence set forth in SEQ ID Nos. 7 and 8.
1	9.	The method according to claim 1, wherein the primer set hybridizes
2	with a peptide syn	thetase gene.
l	10.	The method according to claim 9, wherein the primer set comprises
2	primers having the	e sequence set forth in SEQ ID Nos. 9 and 10.
1	11.	The method according to any of claims 1 to 10, wherein the sample
2	comprises DNA e	xtracted from a soil sample.
1	12	. The method according to claim 1, wherein the sample is a lichen-
2	derived sample.	·
1	13	. The method according to any of claims 1 to 12, further comprising the
2	steps of cloning the	he isolated DNA into a host organism, and isolating the cloned DNA.
1	14	The method according to claim 13, wherein the host organism is E .
2	coli.	
1	15	. An oligonucleotide primer having the sequence as defined in any of
2	Seq. ID. Nos. 1 th	nrough 8.
1	16	A composition comprising two oligonucleotide primers having the
2	sequence as defin	ned in Seq. ID Nos. 1 and 2; 3 and 4; 5 and 6; or 7 and 8.
1	17	A polynucleotide comprising a region having the sequence given by
2	any of sequence	ID Nos. 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,
3		1, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91 or 93.

- 1 18. A biosynthetic polypeptide encoded by a polynucleotide comprising a 2 region having the sequence given by any of sequence ID Nos. 13, 15, 17, 19, 21, 23, 29, 31, 3 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79 81, 83, 85, 87, 89, 91 or 93.
- 1 19. The biosynthetic polypeptide of claim 18, wherein the polypeptide has 2 the amino acid sequence given by any of Sequence ID Nos. 14, 16, 18, 20, 22, 24, 26, 28, 30, 3 32, 3,4 3,6 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 4 82, 84, 86, 88, 90, 92 or 94.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

1) International Patent Classification ⁶ : C12Q 1/68	A3	 (11) International Publication Number: WO 98/53097 (43) International Publication Date: 26 November 1998 (26.11.98)
21) International Application Number: PCT/CA 22) International Filing Date: 21 May 1998 (CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
 Priority Data: 08/861,774 22 May 1997 (22.05.97) Applicant: TERRAGEN DIVERSITY INC. [CA/CA] sity of British Columbia, Suite 300, 2386 East M couver, British Columbia V6T 1Z3 (CA). Inventors: WATERS, Barbara; 5706 Timbervall Delta, British Columbia V4L 2E6 (CA). MIAO, W.; 13750 31 Avenue, Surrey, British Columbia (CA). YAP, Wai, Ho; 5 Elite Terrace, Singapor (SG). SEOW, Kah, Tong; 8 Jln Aneka, Serene Pa Baru, Johor 80300 (MY). Agent: DEETH WILLIAMS WALL; National Bank Suite 400, 150 York Street, Toronto, Ontario M (CA).]; Unive fall, Va ey Roa /ivian, l V4P 2B e 4587 ark, Joh	(88) Date of publication of the international search report: 11 March 1999 (11.03.99) d., 7., 18

(54) Title: METHOD FOR ISOLATION OF BIOSYNTHESIS GENES FOR BIOACTIVE MOLECULES

(57) Abstract

Degenerate primers which hybridize with various classes of antibiotic biosynthesis gene were used to amplify fragments of DNA from soil and lichen extracts. Cloning and sequencing of the amplified products showed that these products included a variety of novel and previously uncharacterized antibiotic biosynthesis gene sequences, the products of which have the potential to be active as antibiotics, immunosuppressors, antitumor agents, etc. Thus, antibiotic biosynthesis genes can be recovered from soil or lichens by combining a sample with a pair of amplification primers under conditions suitable for polymerase chain reaction amplification, wherein the primer set is a degenerate primer set selected to hybridize with conserved regions of known antibiotic biosynthetic pathway genes, for example Type I and Type II polyketide synthase genes, isopenicillin N synthase genes, and peptide synthetase genes, cycling the combined sample through a plurality of amplification cycles to amplify DNA complementary to the primer set; and isolating the amplified DNA.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	A No and a	ES	Spain	LS	Lesotho	SI	Slovenia	
AL	Albania	FI	Finland	LT	Lithuania	SK	Slovakia	
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal	
AT	Austria		Gabon	LV	Latvia	SZ	Swaziland	
ΑU	Australia	GA	United Kingdom	MC	Monaco	TD	Chad	
AZ	Azerbaijan	GB	•	MD	Republic of Moldova	TG	Togo	
ВА	Bosnia and Herzegovina	GE	Georgia	MG	Madagascar	TJ	Tajikistan	
BB	Barbados	GH	Ghana		The former Yugoslav	TM	Turkmenistan	
BE	Belgium	GN	Guinea	MK		TR	Turkey	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TT	Trinidad and Tobago	
BG	Bulgaria	HU	Hungary	ML	Mali		Ukraine	
BJ	Benin	IE	Ireland	MN	Mongolia	UA		
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

Internatir 'Application No PCT/CA 98/00488

			PCT/CA 98/00488			
A CLASSII IPC 6	FICATION OF SUBJECT MATTER C12Q1/68					
	o International Patent Classification (IPC) or to both national classi	fication and IPC				
	SEARCHED commentation searched (classification system followed by classific	ation symbols)				
IPC 6	C12Q					
Documentat	tion searched other than minimum documentation to the extent tha	at such documents are includ	ed in the fields searched			
Sistemanic o	ata base consulted during the international search (name of data	oase alia, where practical, s				
C DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.			
	A STATE OF THE PROPERTY OF THE					
Υ	WO 97 12991 A (TERRAGEN DIVERSI April 1997 see the whole document	TY INC) 10	1-14			
Υ	MALPARTIDA F. ET AL.,: "Homolo Streptomyces genes coding for s different polyketides used to c antibiotic biosynthetic genes" NATURE,	synthesis of	1-14			
	vol. 325, - 26 February 1987 pages 818-821, XP002075972 see the whole document					
A	WO 87 03907 A (LUBRIZOL GENETIC July 1987 see the whole document	CS INC) 2	1-14			
		-/				
		•				
		<u> </u>				
X Furt	ther documents are listed in the continuation of box C.	X Patent family m	embers are listed in annex.			
* Special or	stegories of cited documents :		shed after the international filing date			
consid	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and cited to understand invention	not in conflict with the application but the principle or theory underlying the			
filing	document but published on or after the international date ent which may throw doubts on priority claim(s) or	cannot be consider	ar relevance; the claimed invention ad novel or cannot be considered to a stap when the document is taken alone			
which citatio	i is cited to establish the publication date of another an or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	"Y" document of particul cannot be consider document is combi	ar relevance; the claimed invention ed to involve an inventive step when the ned with one or more other such docu- nation being obvious to a person skilled			
P docum	nent published prior to the international filing date but than the priority date claimed	in the art.	of the same patent family			
Date of the	actual completion of the international search	Date of mailing of th	ne international search report			
3	31 August 1998	2 6. 01. 1999				
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer				
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Müller, F				

1

Internatio Application No
PCT/CA 98/00488

	· · · · · · · · · · · · · · · · · · ·	PCT/CA 98/00488
(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
1	KATZ L ET AL: "POLYKETIDE SYNTHESIS: PROSPECTS FOR HYBRID ANTIBIOTICS" ANNUAL REVIEW OF MICROBIOLOGY, vol. 47, 1993, pages 875-912, XP000654850 see the whole document	1-14
	CORTES J. ET AL.,: "An unusually large multifuntional polypeptide in the erythromycin producing polyketide synthase of Saccharopolyspora erythrarea" NATURE, vol. 348, - 8 November 1990 pages 176-178, XP002075973 see the whole document	1-14

1

Intern. nal application No.
PCT/CA 98/00488

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box I	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Ir	ternational Searching Authority found multiple inventions in this international application, as follows:
s	ee FURTHER INFORMATION SHEET
1. [As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. [As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. [No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-16 (complete)
Rei	nark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-16 (complete)

Invention 1: Method for recovering different polynucleotide species by using degenerated primers, primers and compositions therefore (Seq. Ids.: 1-12)

2. Claims 17-19 (complete)

Invention 2: Biosynthetic polypeptides (amino acid sequences, nucleic acid sequences (and regions thereof) Seq. Ids.: 13 and 14.

Inventions 3-42: ...ibidem for each sequence pair 15/16, 17-18 ...93/94 separately

Info ation on patent family members

Internation Application No PCT/CA 98/00488

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9712991	A 10-04-1997	AU 6922196 A CA 2232709 A EP 0851938 A	28-04-1997 10-04-1997 08-07-1998
WO 8703907	A 02-07-1987	AU 598516 B AU 6835487 A EP 0262154 A EP 0463707 A	28-06-1990 15-07-1987 06-04-1988 02-01-1992