Eva Verschueren^{3,4}, Stephan Höcht¹ and Wim Schoutens^{2,4}

¹Assenagon, Munich

²Faculty of Science, Statistics and Risk Section, KU Leuven ³Faculty of Economics and Business, Research Centre Insurance, KU Leuven ⁴LRisk, Leuven Research Center on Insurance and Financial Risk Analysis, KU Leuven

On the Pricing of Capped Volatility Swaps using Machine Learning Techniques

The Capped Volatility Swap

A capped volatility swap is a forward contract, with strike K, on an asset's annualized, realized volatility σ_R , over a fixed period of length T [2].

The payoff structure is given by

Payoff = Notional
$$\times$$
 [min(Cap Level, σ_R) – K].

The Pricing Problem

At any time t, the **price** of a capped volatility swap is given by

$$\mathsf{Price}_t = \mathsf{DF}_t \times \mathbb{E} (\mathsf{Payoff}),$$

with discount factor DF and expectations taken under a pricing measure.

Volatility swaps are **traded over-the-counter**, meaning that no price is readily available on exchange. The above equation is nonlinear, due to the cap level and the square root operator, which makes it a complex problem to solve.

An ML-based Solution

A model-free, data-driven approach to price capped volatility swaps, based on machine learning techniques, is explored.

Step 1 - Data

The data consists of time series of prices of multiple swap contracts on different underliers.

Response Variable - IVOL

$$\mathsf{Price}_t = \mathsf{DF}_t imes \left(\sqrt{\mathsf{IVOL}_t^2 imes (1-W_t) + \mathsf{Accrued} \ \mathsf{Vol}_t^2 imes W_t} - K
ight)$$

Predictor Variables

	Model 1	Model 2
Accrued Volatility _t , Weight _t (W_t) , ITM*, K	√	\checkmark
Implied Volatility (IV)	\checkmark	\checkmark
30-day MA**(IV) - IV	\checkmark	\checkmark
Implied Skewness (IS)		\checkmark
30-day MA(IS) - IS		\checkmark

^{*}ITM = Initial Time to Maturity

Market-implied volatility and skewness are estimated from quoted European vanilla option prices, using the modelindependent method as explained in [4].

Step 2 - Modeling

A Gradient Boosting Machine [3], using XGBoost, is trained to make predictions of IVOL. Hyperparameter tuning and model performance measurement are done using 5-fold, purged, walk-forward validation [1].

Step 3 - Results

The models are evaluated using the mean absolute error (MAE) of prediction. We show the average error over the 5 folds, for that part of the test set which has feature values within the training boundaries.

References

- [1] M.L. de Prado. Advances in Financial Machine Learning. John Wiley Sons, Inc, Hoboken, New Jersev. 2018
- [2] K. Demeterfi, E. Derman, M. Kamal, and J. Zou. More than you ever wanted to know about Volatility Swaps. Quantitative Strategies Research Notes, Goldman Sachs, 1999.
- [3] J. Friedman. Greedy function approximation: a Gradient Boosting Machine. Annals of Statistics, 29(5):1189-1232, 2001.
- 4] D. Madan and W. Schoutens. Applied Conic Finance. Cambridge University Press, Cambridge, United Kingdom, 2016.

 $^{^{**}}MA = Moving Average$