Table 3.1.3 Solution forms.

E	luation	Solution form
First order: $\dot{x} + ax = b$ $a \neq 0$ Second order: $\ddot{x} + a\dot{x} + bx = c$ $b \neq 0$		$x(t) = \frac{b}{a} + Ce^{-at}$
1.	$(a^2 > 4b)$ distinct, real roots: s_1 , s_2	$x(t) = C_1 e^{s_1 t} + C_2 e^{s_2 t} + \frac{c}{h}$
2.	$(a^2 = b/4)$ repeated, real roots: s_1, s_1	$x(t) = (C_1 + tC_2)e^{s_1t} + \frac{c}{b}$
3.	$(a = 0, b > 0)$ imaginary roots: $s = \pm j\omega$, $\omega = \sqrt{b}$	$x(t) = C_1 \sin \omega t + C_2 \cos \omega t + \frac{c}{b}$
4.	$(a \neq 0, a^2 < 4b)$ complex roots: $s = \sigma \pm j\omega$, $\sigma = -a/2, \omega = \sqrt{4b - a^2}/2$	$x(t) = e^{\sigma t} (C_1 \sin \omega t + C_2 \cos \omega t) + \frac{c}{b}$

Table 3.3.1 Table of Laplace transform pairs

Table 3.3.1 Table of Laplace transform pairs.			
X(s))	$x(t), t \geq 0$	
1.	1	$\delta(t)$, unit impulse	
2.	$\frac{1}{s}$	$u_s(t)$, unit step	
3.	$\frac{c}{s}$	constant, c	
4.	$\frac{s}{e^{-sD}}$	$u_s(t-D)$, shifted unit step	
5.	$\frac{n!}{s^{n+1}}$	t ⁿ	
	$\frac{1}{s+a}$	e^{-at}	
	$\frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	
8.	$\frac{b}{s^2+b^2}$	$\sin bt$	
9.	$\frac{s}{s^2+b^2}$	$\cos bt$	
	$(s+a)^2+b^2$	$e^{-at}\sin bt$	
11.	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$	
12.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	
13.	(- 1) (- 1 -)	$\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$	
14.		$\frac{1}{b-a}\Big[(p-a)e^{-at}-(p-b)e^{-bt}\Big]$	
15.	$\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$	
16.	$\frac{s+p}{(s+a)(s+b)(s+c)}$	$\frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)} + \frac{(p-c)e^{-ct}}{(a-c)(b-c)}$	

Table 8.1.1 Free, step, and ramp response of $\tau \dot{y} + y = r(t)$.

Tesponse of $iy + y = i(i)$.
Free response $[r(t) = 0]$ $y(t) = y(0)e^{-t/\tau}$
$y(\tau) \approx 0.37y(0)$ $y(4\tau) \approx 0.02y(0)$
Step response $[r(t) = Ru_s(t), y(0) = 0]$
$y(t) = R(1 - e^{-t/\tau})$
$y(\infty) = y_{ss} = R$ $y(\tau) \approx 0.63 y_{ss}$
$y(4\tau) \approx 0.98y_{ss}$
Ramp response $[r(t) = mt, y(0) = 0]$
$y(t) = m(t - \tau + \tau e^{-t/\tau})$

Table 3.1.2 The exponential function.

Taylor series

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots + \frac{x^{n}}{n!} + \dots$$

Euler's identities

$$e^{j\theta} = \cos \theta + j \sin \theta$$

 $e^{-j\theta} = \cos \theta - j \sin \theta$

Limits

 $\lim_{x \to \infty} xe^{-x} = 0 \quad \text{if } x \text{ is real.}$ $\lim_{t \to \infty} e^{-st} = 0 \quad \text{if the real part of } s \text{ is positive.}$ If a is real and positive, $e^{-at} < 0.02 \text{ if } t > 4/a.$ $e^{-at} < 0.01 \text{ if } t > 5/a.$ The time constant is $\tau = 1/a$.

Table 8.3.1 Unit step response of a stable second-order model.

Model:
$$m\ddot{x} + c\dot{x} + kx = u_s(t)$$

Initial conditions:
$$x(0) = \dot{x}(0) = 0$$

Characteristic roots:
$$s = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m} = -r_1, -r_2$$

1. Overdamped case $(\zeta > 1)$: distinct, real roots: $r_1 \neq r_2$

$$x(t) = A_1 e^{-r_1 t} + A_2 e^{-r_2 t} + \frac{1}{k} = \frac{1}{k} \left(\frac{r_2}{r_1 - r_2} e^{-r_1 t} - \frac{r_1}{r_1 - r_2} e^{-r_2 t} + 1 \right)$$

2. Critically damped case ($\zeta = 1$): repeated, real roots: $r_1 = r_2$

$$x(t) = (A_1 + A_2 t)e^{-r_1 t} + \frac{1}{k} = \frac{1}{k}[(-r_1 t - 1)e^{-r_1 t} + 1]$$

3. Underdamped case $(0 \le \zeta < 1)$: complex roots: $s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$

$$x(t) = Be^{-t/\tau} \sin\left(\omega_n \sqrt{1 - \zeta^2}t + \phi\right) + \frac{1}{k}$$
$$= \frac{1}{k} \left[\frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin\left(\omega_n \sqrt{1 - \zeta^2}t + \phi\right) + 1 \right]$$

$$\phi = \tan^{-1}\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right) + \pi$$
 (third quadrant)

Time constant: $\tau = 1/\zeta \omega_n$

Table 10.5.3 Routh-Hurwitz stability conditions.

1. Second-Order: $a_2s^2 + a_1s + a_0 = 0$

Stable if and only if a_2 , a_1 , and a_0 all have the same sign.

2. Third-Order: $a_3s^3 + a_2s^2 + a_1s + a_0 = 0$

Assuming $a_3 > 0$, stable if and only if a_2 , a_1 , and a_0 are all positive and $a_2a_1 > a_3a_0$.

3. Fourth-Order: $a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0 = 0$

Assuming $a_4 > 0$, stable if and only if a_3 , a_2 , a_1 , and a_0 are all positive, $a_2a_3 > a_1a_4$, and

$$a_1(a_2a_3-a_1a_4)-a_0a_3^2>0$$

Figure 5.1.4 (a) and (b) Simplification of series blocks. (c) and (d) Simplification of a feedback loop.

Sinusoidal Stable, linear system Steady-state response
$$A \sin \omega t \longrightarrow \boxed{T(s)} \longrightarrow B \sin(\omega t + \phi)$$

Figure 9.1.2 Frequency response of a stable linear system.

Table 9.1.2 Frequency response of the model $\tau \dot{y} + y = f(t)$.

$$M = \frac{|Y|}{|F|} = \frac{1}{\sqrt{1 + \omega^2 \tau^2}} \tag{1}$$

$$\phi = -\tan^{-1}(\omega\tau) \tag{2}$$

Table 9.2.2 Frequency response of a second-order system.

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

Resonant frequency:

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \quad 0 \le \zeta \le 0.707$$

Resonant response:

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \quad 0 \le \zeta \le 0.707$$

$$M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}} \quad 0 \le \zeta \le 0.707$$

$$m_r = -20\log\left(2\zeta\sqrt{1-\zeta^2}\right) \quad 0 \le \zeta \le 0.707$$

$$\phi_r = -\tan^{-1} \frac{\sqrt{1 - 2\zeta^2}}{\zeta} \quad 0 \le \zeta \le 0.707$$

Figure 9.2.4 Semilog plot of log magnitude ratio of the model $\omega_n^2/(s^2 + 2\zeta \omega_n s + \omega_n^2)$.

Table 10.5.2 Useful results for second-order systems.

- 1. Model: $m\ddot{x} + c\dot{x} + kx = f(t)$
- 2. Transfer function:

$$\frac{X(s)}{F(s)} = \frac{1}{ms^2 + cs + k}$$

- 3. Characteristic equation: $ms^2 + cs + k = 0$
- 4. Characteristic roots:

$$s = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}$$

5. Damping ratio and undamped natural frequency:

$$\zeta = \frac{c}{2\sqrt{mk}} \qquad \omega_n = \sqrt{\frac{k}{m}}$$

6. Time constant: If $\zeta \leq 1$,

$$\tau = \frac{2m}{c}$$

If $\zeta > 1$, the dominant (larger) time constant is

$$\tau_1 = \frac{2m}{c - \sqrt{c^2 - 4mk}}$$

and the secondary (smaller) time constant is

$$\tau_2 = \frac{2m}{c + \sqrt{c^2 - 4mk}}$$

7. Maximum percent overshoot and peak time:

$$M_{\%} = 100e^{-\pi\zeta/\sqrt{1-\zeta^2}} \qquad t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$$

8. The complex root pair $s=-a\pm bj$ corresponds to the characteristic equation

$$(s+a)^2 + b^2 = 0$$

9. The value $\zeta = 0.707$ corresponds to a root pair having equal real and imaginary parts: $s = -a \pm aj$.

Figure 8.2.6 Graphical interpretation of the parameters ξ , τ , ω_n , and ω_d .

$$\zeta = \cos \theta = \cos \left[\tan^{-1} (\tau \omega_d) \right]$$