```
1. AP Signals generation and control:
(1) ap_done
always @(posedge axis_clk, negedge axis_rst_n) begin
     if(!axis_rst_n) begin
          ap_done_reg <= 0;
     end else if(ss_tlast) begin
          ap_done_reg <= 1;</pre>
     end else begin
          ap_done_reg <= ap_done_reg;</pre>
     end
end
(2) ap_start
always @(posedge axis_clk, negedge axis_rst_n) begin
     if(!axis_rst_n) begin
          ap_start_reg <= 0;</pre>
     end else if(ss_state_ps > SS_IDLE) begin//RESET after data start to process
          ap_start_reg <= 0;
     end else if(ap_start_r) begin
          ap_start_reg <= ~ap_start_reg;</pre>
     end else
          ap_start_reg <= ap_start_reg;</pre>
end
(3) ap_idle
pseudo code:
always @(*) begin
       case(ss_state_ps)
               SS IDLE:
               SS_LAST:
                      ap_idle_reg = 1
       endcase
end
2. Xin and Yout:
       step1: initialize data memory with zeros
       step2: read 1 Xin into data memory, and set ss_read1x_r = 1
       step3: start to compute 1 Yout, and after finishing computation, set sm_finish_cal1y_r = 1
       Note:
       (1). The computation for Yout is done by the module named fir_mac_op
       (2). The whole code uses only 1 multiplication and one addition
```

3. Time report:

(1). Setting

Timer Settings

ettings	Multi-Corner Configuration			
Enable Multi Corner Analysis:	Yes			
Enable Pessimism Removal:	Yes			
Pessimism Removal Resolution:	Nearest Common Node			
Enable Input Delay Default Clock:	No	Corner Name	Analyze Max Paths	Analyze Min Path
Enable Preset / Clear Arcs:	No		.,,	
Disable Flight Delays:	No	Slow	Yes	Yes
Ignore I/O Paths:	No	Fast	Yes	Yes
Timing Early Launch at Borrowing Latches:	No			
Borrow Time for Max Delay Exceptions:	Yes			
Merge Timing Exceptions:	Yes			

(2). Summary

Design Timing Summary

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS): 3.8	.826 ns	Worst Hold Slack (WHS):	0.137 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS): 0.	.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints: 0		Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints: 22	28	Total Number of Endpoints:	228	Total Number of Endpoints:	131	

4. Utilization report

LUT: 360(0.68%) FF: 142(0.13%) DSP: 3 (1.36%)

5. Waveform:

(1). Coefficient write & RAM control:

(2). Xin(AXI Stream slave), Yout(AXI Stream master)

(3). ap_start:

