9. Boje

Stvaranje slike:

osjet boje je biološki osjet

Čovjekov vid:

- prostorna razdioba fizikalnih veličina
- informacija predstavljena atributima kao što su svjetlina, boja, rubovi
- boja je rezultat interakcije svjetlosti s živčanim sustavom čovjeka
 (podražaj počinje s 5 fotona), boja je subjektivni psihički doživljaj,
 ista boja može dati različiti psihički doživljaj ovisno o prilagođenosti oka

 $\underline{http://www.echalk.co.uk/amusements/OpticalIllusions/colourPerception/colourPerception.html}$

- čovjek razlikuje 10 milijuna boja
- boje se češće koriste u kvalitativnom nego u kvantitativnom smislu
- pridjeljivanje različitog značenja boji

- slika se formira na mrežnici (retini) gdje se nalaze dvije vrste fotoreceptora osjetljivih na svjetlost
 - štapići ~ 10 milijuna, uski i dugački, aktivni pri slaboj svjetlosti
 - čunjići ~ 6.5 milijuna, manje osjetljivi, prema tropodražajnoj teoriji postoje tri vrste čunjića (boja)
 - daltonizam problem u razlikovanju nekih boja

http://www.tsi.enst.fr/~brettel/DaltonDemo/DD2.html http://www.tsi.enst.fr/~brettel/DaltonDemo/DD02.html

Are the horizontal lines parallel or do they slope?

Count the black dots! :o)

Svjetlost je elektromagnetsko zračenja Vidljivi spektar ~ 400 – 700 nm

http://www.colorado.edu/physics/2000/waves_particles/index.html

Vidljivi spektar ~ 400 - 700 nm

spektralna boja: valna duljina:

ljubičasta	400 - 450
plava	450 - 500
zelena	500 - 570
žuta	570 – 590
narančasta	590 – 610
crvena	610 - 700

http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=61

Sustavi boja

- RGB http://www.colorado.edu/physics/2000/laptops/laptop_screen.html
- CMYK
- HLS

dijagram kromatičnosti CIE (franc. Commission Internationale de l'Eclairage)

Munsell Color Science Laboratory

 $\underline{http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applet}\\ \underline{s/spectrum/two_materials_java_browser.html}$

RGB – sustav

R-red

G – green

B - blue

- http://www.cs.rit.edu/~ncs/color/a_spaces.html
- http://www.phy.ntnu.edu.tw/ntnujava/viewtopic.php?t=56
- http://micro.magnet.fsu.edu/primer/java/scienceopticsu/primarycolors/colorfilters/index.html
- aditivni sustav boja
- smjesa tri primarne boje RGB

$$256 \times 256 \times 256 = 16.777.216$$

256 razina sive

CMYK – sustav

C – cyan

M – magenta

Y - yellow

K – black

 $\underline{http://micro.magnet.fsu.edu/primer/java/scienceopticsu/primarycolors/colorseparation/index.html}\\ http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/combinedColorMixing/combined_color_mixing_java_browser.html$

HLS, HIS, HSV – sustav

H (hue) nijansa boje, tonalnost,
ime spektralne boje
L (lightness, luminance) svjetlina,
I (intensity) intenzitet
S (saturation) zasićenje – koliko je boju
razrijedila bijela odnosno siva svjetlost

Red Magenta

Yellow

Green

Cyan

http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/00-intro/02-imageprocess

Pokus podudaranja boja

Pokus podudaranja boja

- u području oko 500 nm podudaranje boja nije ostvarivo kao aditivna kombinacija tri primarne boje

CIE (franc. Commission Internationale de l'Eclairage) (engl. International Commission on Illumination) Dijagram kromatičnosti

- definira tri primarne hipotetske boje koje ne postoje i nisu vidljive, kako bi se izbjegli negativni koeficijenti
- boja se označava s XYZ
- koordinate kromatičnosti x y z
- projekcija na XY ravninu daje dijagram kromatičnosti

$$x = \frac{X}{X + Y + Z},$$

$$y = \frac{Y}{X + Y + Z},$$

$$z = \frac{Z}{X + Y + Z},$$

$$x + y + z = 1.$$

rub potkove označava (eng. spectral locus)

krivulju spektralnih boja

ravna linija određuje

dužinu purpurne boje(nespektarlne boje) Npr. duga.

boje u unutrašnjosti

- manje su zasićene od dominantne spektralne boje
- aditivna smjesa dvije boje C₁C₂
 leži C₃ na njihovoj spojnici

spektar zračenja crnog tijela

- boja užarenog karbona
- dnevna svjetlost 6500K

http://www.microscopy.fsu.edu/primer/java/colortemperature/index.html

- C standardno bijelo svjetlo,
 - neuniformna područja

komplementarne boje su one čijim se miješanjem može dobiti bijela boja smeđa boja - je crveno narančasta uz manju svjetlinu (lightness)

Gamut uređaja

gamut je definiran primarnim bojama koje uređaj koristi ne mogu se ostvariti sve vidljive boje

* http://www.cs.rit.edu/~ncs/color/a_chroma.html

Odabir intenziteta

 odabir intenziteta ne uzima u obzir važnu činjenicu da je oko osjetljivo na omjer intenziteta, a ne na apsolutni iznos

Npr:

Tipično $I_0 = 0.005 - 0.025$

Gamma korekcija

 pored toga karakteristika monitora je nelinearna što se često ne uzima u obzir (na SGI postoji ova korekcija)

 $I = k N^{\gamma}$

I.. intenzitet koji emitira fosfor

N .. broj elektrona koji pogađa fosfor

 $I = K V^{\gamma}$

~ proporcionalan je naponu V,

~ odnosno vrijednostima slikovnih elemenata

k, K, γ .. konstante, tipično za monitor $\gamma = 2.5$

LUT - tablice

Gamma korekcija

- podatak o korekciji načinjenoj na slici često nije predviđen u zapisu slike (za slike na Internetu često se pretpostavi γ i slike su korigirane)
- odabir intenziteta
- http://www.tsi.enst.fr/~brettel/TESTS/Gamma/Gamma.html
- http://epaperpress.com/monitorcal/index.html
- http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/00-intro/02-imageprocessing/gamma.html

HDR – veliki dinamički raspon boja (High Dynamic Range)

- 8 bita po boji (0-255) za visoko kvalitetan prikaz često nije dovoljno
- dolazi do izražaja na mjestima gdje se izvori svjetla vide izravno
- primjer kod fotografija:
 - promjenom kontrasta jedne slike nećemo dobiti dobre rezultate

kombinacija slika različitih osvjetljenja (ekspozicija) kako bi se ostvario rezultat → s dobro vidljivim sjenama (tamno) i vidljivim zelenilom kroz prozor (svjetlo)

HDR

vidimo detalje ili u osvijetljenom dijelu ili u pozadini

- povećanje raspona za dobivanje, zapis i reprodukciju komponenti boje
 - kamera, CT 14 bita, slike generirane praćenjem zrake jesu 0.0 1.0
 - zapisa OpenEXR ILM (Industrial Light & Magic)
 - slikovni elementi 16-bit floating-point, 32-bit floating-point, 32-bit integer sklopovska podrška na grafičkim karticama
 - programska podrška i postupci preslikavanja za npr. 8-bita po boji
 - izlazni uređaji monitori, printeri