

Impacts of Video and Encoding Parameters on the Encoding Energy

Geetha Ramasubbu geetha.ramasubbu@fau.de

Lehrstuhl für Multimediakommunikation und Signalverarbeitung

- Global significance of energy consumption of the video coding systems
 - 1% of global greenhouse gas emissions (2018) [5]
 - 80% of IP traffic is video data [2]
 - Example: Youtube [1]
 - 300 hours new video materials per minute
 - Uploaded in arbitrary compression formats
 - Transcoded into a proprietary format
 - Different transmission channels with different transmission rates
 - Huge server farms to perform the encoding

- Limited battery life of portable devices
 - \triangleright Portable devices \rightarrow record videos, store them, upload them to the Internet, or play them back and video streaming \rightarrow video coding is a necessary step
 - ightharpoonup Less energy consumption ightharpoonup extend the battery life of portable devices.
 - Example: Typical coder for AVC [4]:
 - Average power: 7 W
 - Medium quality and relatively low resolution
 - ightharpoonup Typical smartphone battery \rightarrow empty \approx 2 hours

Energy-efficient video communication is critical and globally significant.

Goal: Energy-rate-distortion optimization

- Decoding-energy-rate-distortion optimization [3]
- Encoding-energy-rate-distortion optimization

ncoding energy energy change with

- ► How do the encoding energy energy change with respect to to encoding and video features?
- ► Is it possible to obtain valid encoding energy estimates using encoding and video features?

Outline

- Motivation
- ► Energy Measurement Setup
- ► Impact of Encoding Parameters on Encoding Energy
- ► Impact of Video parameters on Encoding Energy
- ► Conclusion & Outlook

Energy Measurement Setup

- Codec: HEVC, Software encoding process, encoder: x265
- Two consecutive measurements

$$E_{\text{enc}} = \int_{t=0}^{T} P_{\text{total}}(t) dt - \int_{t=0}^{T} P_{\text{idle}}(t) dt$$

- Intel CPU Integrated power meter - Running Average Power Limit (RAPL)
- Repetition of measurements
- Confidence interval test

Rate- and Energy-distortion Curves

Example: BasketballDrive

Preset

- Optimize the trade-off between encoding speed and compression efficiency
- Employ different coding features and its combinations
- 9 x265 presets are evaluated
- Faster presets: at the expense of quality and compression efficiency → consumes less energy
- Slower presets: encoder tests more encoding options → achieve the lowest bit rate at the selected quality → consumes more energy

Preset

Preset	Relative Diff (%)
ultrafast	0
superfast	0.98
veryfast	2.26
faster	0.01
fast	2.35
medium	0.56
slow	15.04
slower	75.66
veryslow	75.29

Average of all sequences, CRF=18, Energy normalized wrt resolution

Preset

Preset	BDR	BDEE
ultrafast	51.8994	-59.1178
superfast	11.5972	-51.4557
veryfast	3.4878	-27.7379
faster	3.2378	-27.7435
fast	-0.14815	9.8436
slow	-10.3175	207.2988
slower	-13.0689	1146.1795
veryslow	-14.3295	2041.9881

Average BD values, medium preset as reference

CRF

- Quality and rate control setting for the x265 encoder
- \bullet Encoder adjusts the QP \rightarrow achieve chosen quality level
- \bullet Lower CRF values \to better quality at the expense of a higher bitrate \to consumes more energy
- Higher CRF values \rightarrow mean more compression \rightarrow noticeable quality degradation \rightarrow consumes less energy
- 11 CRF values are evaluated: 0:5:50

Encoding Time

Energy to encode a sequence grows linearly with the encoder processing time

Example: BasketballDrive

Average, energy and time normalized wrt resolution

Resolution

- Video bit streams: coded with a medium preset, fixed number frames and a fixed CRF.
- Downsample and upsample: bi-cubic interpolation
- Energy to encode a sequence grows linearly with the number of pixels to be encoded.
- Slope and offset depends on content

Number of Frames

- Video bit streams: coded with a medium preset, and a fixed CRF.
- Energy to encode a sequence grows linearly with the number of frames to be encoded.
- Slope and offset depends on the resolution and content

Content

BDEE = 98.60%

BDEE = 45.59%

Conclusion & Outlook

- Relations between encoding and video and encoding parameters
- Linear relation between encoding time and encoding energy suggests →
 the minimization of the encoding time → the minimization of the
 processing energy → identifying energy-efficient configurations
- Exhibits linear relation between resolution, number of frames with encoding energy
- Suggests feasibility of obtaining valid encoding energy estimates these features

Simple encoding energy estimation model

Encoding time of a lightweight encoding process \rightarrow encoding energy of complex encoding configurations

Bibliography I

- [1] Tech. rep. accessed 2018-08. 2018.
- [2] Cisco Systems, Inc. Cisco Annual Internet Report (2018-2023).

 https://www.cisco.com/c/en/us/solutions/collateral/executiveperspectives/annual-internet-report/white-paper-c11-741490.pdf. Mar.
 2020.
- [3] C. Herglotz, A. Heindel, and A. Kaup. "Decoding-Energy-Rate-Distortion Optimization for Video Coding". In: *IEEE Transactions on Circuits and Systems for Video Technology* 29.1 (2019), pp. 171–182. DOI: 10.1109/TCSVT.2017.2771819.
- [4] Y. O. Sharrab and N. J. Sarhan. "Aggregate Power Consumption Modeling of Live Video Streaming Systems". In: Proceedings of the 4th ACM Multimedia Systems Conference. MMSys '13. Oslo, Norway: Association for Computing Machinery, 2013, pp. 60–71.
- [5] The Shift Project. Climate Crisis: The Unsustainable Use of Online Video. Tech. rep. 2019.

Thank You!

Thank You!

Backup

BDR = 322.85%

BDR = 451.85%

