# Predicting the best place to open Restaurant in New York

### Ritik Goel

June, 2019

### 1. Introduction

### 1.1 Background

In this project we analyze the dataset of New York City. We explore the dataset to find the Neighborhood. Neighborhood has a total of 5 boroughs and 306 neighborhoods. In order to segment the neighborhoods and explore them, we need a dataset that contains the 5 boroughs and the neighborhoods that exist in each borough as well as the latitude and longitude coordinates of each neighborhood. After that using explore function we get the most common venue categories in each neighborhood. Using this data we predicted the best place to open a Restaurant in New York.

#### 1.2 Problem

If in New York someone wants to open a restaurant then he/she must open it in such place where profit is more. And the place where people often visit Restaurant is best place to open it. This project aims to predict the best place to open a new Restaurant more over it will also predict which kind of restaurant it should be i.e. Indian, American, Mexican, Italian, etc.

#### 1.3 Interest

Obviously, anyone who would like to open a new restaurant in New York will like to know where to open it so as to maximize the profit.

## 2. Data acquisition and cleaning

#### 2.1 Data sources

Neighborhood has a total of 5 boroughs and 306 neighborhoods. In order to segment the neighborhoods and explore them, we will essentially need a dataset that contains the 5 boroughs and the neighborhoods that exist in each borough as well as the latitude and longitude coordinates of each neighborhood.

Luckily, this dataset exists for free on the web; <u>here</u> and <u>here</u> is the link of the dataset. Further we will use Foursquare API to fetch the most common places of every neighborhood to predict the best place to open restaurant.

#### 2.2 Data cleaning and Analyzing

Data downloaded or scraped from multiple sources were combined into one table. There were a lot of missing values from earlier seasons, because of lack of record keeping.

Since it is a json data we need all relevant data is in features key, which is basically a list of neighborhoods. So we defined a new variable that includes this data. After that we transform the data into Pandas dataframe as it is initially in Python Dictionaries. After cleaning dataframe will look like:

|   | Borough | Neighborhood | Latitude  | Longitude  |
|---|---------|--------------|-----------|------------|
| 0 | Bronx   | Wakefield    | 40.894705 | -73.847201 |
| 1 | Bronx   | Co-op City   | 40.874294 | -73.829939 |
| 2 | Bronx   | Eastchester  | 40.887556 | -73.827806 |
| 3 | Bronx   | Fieldston    | 40.895437 | -73.905643 |
| 4 | Bronx   | Riverdale    | 40.890834 | -73.912585 |

Neighborhood has a total of 5 boroughs and 306 neighborhoods.

# 3. Data Processing

After cleaning of data I have used Foursquare API to explore the neighborhood in our Dataframe. I have taken top 100 venues that are in every neighborhood within radius of 500 meters, with their latitudes and longitudes. This looks like this:

|   | Neighborhood | Neighborhood Latitude | Neighborhood Longitude | Venue         | Venue Latitude | Venue Longitude | Venue Category |
|---|--------------|-----------------------|------------------------|---------------|----------------|-----------------|----------------|
| 0 | Marble Hill  | 40.876551             | -73.91066              | Arturo's      | 40.874412      | -73.910271      | Pizza Place    |
| 1 | Marble Hill  | 40.876551             | -73.91066              | Bikram Yoga   | 40.876844      | -73.906204      | Yoga Studio    |
| 2 | Marble Hill  | 40.876551             | -73.91066              | Tibbett Diner | 40.880404      | -73.908937      | Diner          |
| 3 | Marble Hill  | 40.876551             | -73.91066              | Starbucks     | 40.877531      | -73.905582      | Coffee Shop    |
| 4 | Marble Hill  | 40.876551             | -73.91066              | Dunkin'       | 40.877136      | -73.906666      | Donut Shop     |

Then I analyze each neighborhood using one hot encoding and group rows by neighborhood and the mean of frequency of occurrence of each category. Then I created a new dataframe that contains top 10 venues for each neighborhood. This dataframe looks like:

|    | Neighborhood          | 1st Most Common<br>Venue | 2nd Most<br>Common Venue | 3rd Most Common<br>Venue | 4th Most Common<br>Venue     | 5th Most Common<br>Venue | 6th Most Common<br>Venue | 7th Most Common<br>Venue | 8th Most Common<br>Venue | 9th Most Common<br>Venue         | 10th Most<br>Common Venue |
|----|-----------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|---------------------------|
| 0  | Battery Park<br>City  | Park                     | Coffee Shop              | Hotel                    | Gym                          | Memorial Site            | Wine Shop                | Italian Restaurant       | Clothing Store           | Department Store                 | Men's Store               |
| 1  | Carnegie Hill         | Coffee Shop              | Pizza Place              | Café                     | Yoga Studio                  | Spa                      | Bar                      | Japanese Restaurant      | Bookstore                | Grocery Store                    | Gym                       |
| 2  | Central Harlem        | African Restaurant       | Gym / Fitness<br>Center  | French Restaurant        | Seafood Restaurant           | Public Art               | Art Gallery              | Chinese Restaurant       | Cosmetics Shop           | American Restaurant              | Bookstore                 |
| 3  | Chelsea               | Coffee Shop              | Ice Cream Shop           | Italian Restaurant       | Bakery                       | Nightclub                | Theater                  | Hotel                    | American<br>Restaurant   | Seafood Restaurant               | Art Gallery               |
| 4  | Chinatown             | Chinese Restaurant       | Cocktail Bar             | American<br>Restaurant   | Dumpling<br>Restaurant       | Vietnamese<br>Restaurant | Bubble Tea Shop          | Ice Cream Shop           | Salon / Barbershop       | Optical Shop                     | Spa                       |
| 5  | Civic Center          | Italian Restaurant       | Gym / Fitness<br>Center  | French Restaurant        | Coffee Shop                  | Sandwich Place           | Yoga Studio              | Sporting Goods Shop      | Cocktail Bar             | Bakery                           | Park                      |
| 6  | Clinton               | Theater                  | Gym / Fitness<br>Center  | Italian Restaurant       | Hotel                        | American<br>Restaurant   | Sandwich Place           | Wine Shop                | Spa                      | Coffee Shop                      | Thai Restaurant           |
| 7  | East Harlem           | Mexican Restaurant       | Deli / Bodega            | Bakery                   | Latin American<br>Restaurant | Thai Restaurant          | Convenience Store        | Café                     | Gas Station              | Taco Place                       | Steakhouse                |
| 8  | East Village          | Bar                      | Wine Bar                 | Ice Cream Shop           | Mexican Restaurant           | Chinese Restaurant       | Cocktail Bar             | Coffee Shop              | Ramen Restaurant         | Vegetarian / Vegan<br>Restaurant | Pizza Place               |
| 9  | Financial<br>District | Coffee Shop              | Wine Shop                | Gym                      | Steakhouse                   | Cocktail Bar             | Bar                      | Pizza Place              | Italian Restaurant       | Café                             | Juice Bar                 |
| 10 | Flatiron              | Gym                      | Yoga Studio              | Gym / Fitness<br>Center  | Japanese<br>Restaurant       | American<br>Restaurant   | Cycle Studio             | Café                     | Salon / Barbershop       | Clothing Store                   | Cosmetics Shop            |

## 4. Predictive Modeling

There are two types of models, regression and classification, that can be used to predict player improvement. Regression models can provide additional information on the amount of improvement, while classification models focus on the probabilities a player might improve. The underlying algorithms are similar between regression and classification models, but different audience might prefer one over the other.

Some graphs were made using folium library.

- 1. A map of New York with neighborhoods superimposed on top.
- 2. A map to visualize Manhattan and the neighborhoods in it.
- 3. A map to visualize the resulting clusters.
- 4. A map to visualize the resulting restaurants on the preferred places.

1.



2.





4.



## 5. Result and Conclusion

In this project we predicted the best place to open a new Restaurant, along with their locations more over it will also predicted which kind of restaurant it should be i.e. Indian, American, Mexican, Italian, etc.

In this study, first we have cleaned the data then using Foursquare API we explore the neighborhood in our Dataframe. We have taken top 100 venues that are in every neighborhood within radius of 500 meters, with their latitudes and longitudes.

The result will look like this:

|    | Prefered Place    | Prefered Restaurant | Latitude  | Longitude  |
|----|-------------------|---------------------|-----------|------------|
| 1  | Chinatown         | Chinese Restaurant  | 40.715618 | -73.994279 |
| 3  | Inwood            | Mexican Restaurant  | 40.867684 | -73.921210 |
| 5  | Manhattanville    | Italian Restaurant  | 40.816934 | -73.957385 |
| 6  | Central Harlem    | African Restaurant  | 40.815976 | -73.943211 |
| 7  | East Harlem       | Mexican Restaurant  | 40.792249 | -73.944182 |
| 8  | Upper East Side   | Italian Restaurant  | 40.775639 | -73.960508 |
| 9  | Yorkville         | Italian Restaurant  | 40.775930 | -73.947118 |
| 12 | Upper West Side   | Italian Restaurant  | 40.787658 | -73.977059 |
| 18 | Greenwich Village | Italian Restaurant  | 40.726933 | -73.999914 |
| 24 | West Village      | Italian Restaurant  | 40.734434 | -74.006180 |
| 25 | Manhattan Valley  | Indian Restaurant   | 40.797307 | -73.964286 |
| 27 | Gramercy          | Italian Restaurant  | 40.737210 | -73.981376 |
| 31 | Noho              | Italian Restaurant  | 40.723259 | -73.988434 |
| 32 | Civic Center      | Italian Restaurant  | 40.715229 | -74.005415 |
| 33 | Midtown South     | Korean Restaurant   | 40.748510 | -73.988713 |
| 35 | Turtle Bay        | Italian Restaurant  | 40.752042 | -73.967708 |
| 39 | Hudson Yards      | American Restaurant | 40.756658 | -74.000111 |
|    |                   |                     |           |            |