GEST DC Study

Gestational ExpoSure to Traffic pollution in the DC metro area

Background

- Ambient air pollution is associated with 3 million deaths worldwide each year.¹
- Traffic-related air pollutants (TRAP) may be particularly harmful and include nitrogen oxides, fine
 particulate matter (PM_{2.5}), and its constituents such as organic carbon, elemental carbon, and metallic
 species.²⁻⁴
- Exposure to air pollution during pregnancy may increase risk of pre-term birth, low birthweight, gestational diabetes, and preeclampsia.⁴⁻⁶
- Women in the DC metro area, compared with other cities,
 - are employed at higher rates (64.1% vs. 55% in LA and NYC).⁷
 - have long, congested auto commutes (>82 delay hours annually).8-9

No previous studies have comprehensively examined gestational exposure to TRAP during daily commutes and how women can modify their exposures.

*Note: Full references available upon request. ¹World Health Organization (2016) "Ambient air pollution: A global assessment of exposure and burden of disease"; ²Andersen et al. (2011) AJRCC; ³Health effects Institute; ⁴Bell et al. (2010) Epidemiology; ⁵Sapkota et al. (2012) Air Quality, Atmosphere & Health; ⁵Malmqvist et al. (2013) Environmental Health Perspectives; ¬Bureau of Labor Statistics; ³Texas A&M Transportation Institute (2015) Urban Mobility Scorecard; ⁴American Community Survey.

Project goals

Aim 1. Commute exposure:

Characterize personal exposure to TRAP during daily commutes for pregnant women.

PI: Anna Pollack, *Epidemiology*

Washington

Alexandria

Bowl

Aim 3. Visualization tools:

Create visualization tools to enable pregnant commuters to track their TRAP exposures.

Co-Pls: Vivian Motti, *Human* computer interaction; Yi-Ching Lee,

Psychology

Aim 2. Statistical methods:

Bethesda

Tysons

Develop novel statistical methods for estimating integrated exposure to TRAP during commutes.

PI: Jenna Krall, Statistics

Project description

Aim 1. Characterize personal in-vehicle exposure to TRAP during daily commutes for pregnant women.

PI: Anna Pollack, Epidemiology

Research Team: Jonathan Thornburg, RTI; Jenna Krall, Statistics; Leah Babin, graduate research assistant, Global and Community Health

Approach

Study recruitment

- Enroll 50 women from obstetric clinics in the northern Virginia metro area
- · Inclusion criteria:
 - 1st-2nd trimester
 - · live in the northern VA
 - commute >15 minutes to work by personal vehicle at least 3 days per week
- We will seek approval for this study from the GMU Institutional Review Board

Baseline survey

- Age
- Parity
- Race and ethnicity
- Education
- Income
- Average daily commute length
- · Average daily commute time
- Number of days spent commuting per week
- Type of vehicle for commute

Commute TRAP measurement

- Select one daily morning commute (Tuesday-Thursday)
- Sample in-vehicle exposure to PM_{2.5} using MicroPEMTM personal exposure monitors from RTI
- Characterize average invehicle exposure to PM_{2.5}

Novelty

- Characterize in-vehicle gestational exposure to TRAP, which is currently not well
 understood
- MicroPEMTM is lightweight, portable and can be used while commuting
- Demonstrate feasibility for studies of gestational TRAP exposure and health

Establish a **collaboration with RTI** to use MicroPEMTM PM_{2.5} personal exposure monitors in environmental and epidemiologic studies

Photo source: rti.org

Project description

Aim 2. Develop novel statistical methods for estimating integrated exposure to TRAP during commutes.

PI: Jenna Krall, Statistics

Research Team: Daniel Tong, CSISS; Cara Frankenfeld, Epidemiology;

Vadim Sokolov, Engineering

Integrated exposure

Approach:

- Develop prediction model for in-vehicle PM_{2.5} exposure: $y_i = \beta_0 + \beta_1 \text{PM}_i + \beta_2 \text{time}_i + \beta_3 \text{hwy}_i + \beta_4 \text{temp}_i + \epsilon_i$
- · Partial-commute prediction method: novel method for "small -big data" problem,
 - 1. Prediction model validation using partial commutes
 - i. divide y_i for commute i into partial-commutes y_{ij}
 - ii. predict y_{ij} using all $y_{i'j'}$, where $i' \neq i, j' \neq j$
 - 2. Develop time-activity matrix to incorporate survey questions about commute

Novelty:

- 1. Existing methods cannot estimate exposure to TRAP during commutes
- 2. Previous studies do not include (1) in-vehicle monitoring and (2) modeled PM_{2.5} at 12 x 12 resolution

Project description

Aim 3. Create visualization tools to enable pregnant commuters to track their TRAP exposures.

Co-Pls: Vivian Motti, Human-Computer Interaction; Yi-Ching Lee, **Psychology**

pollution

Valarm Air monitoring

Clean Air **Partners**

Approach

Generally focus on ambient User-centric design and development of an online application to deliver personalized information for pregnant women about their commute-specific exposures to TRAP

US EPA Air Quality Index

Statistical models for commute exposure to TRAP

Novelty

Design tailored to the users' needs, personalized by:

- Location
- Commute times
- Commute length

Closing the loop between novel statistical methods and end users.

OAVYB App

Alima air quality app

Project team

Anna Pollack **Epidemiology**

Expertise in:

- **Epidemiologic** methods
- Reproductive epidemiology
- Environmental epidemiology

Jenna Krall **Statistics**

Expertise in:

- Statistical methods
- Data integration
- Exposure estimation
- Air pollution

Vivian Motti

Human computer interaction

Expertise in:

- Wearable computing
- User interfaces
- User studies
- Mobile health

Yi-Ching Lee Psychology

Expertise in:

- **Human factors**
- Study design
- Human subjects research
- Driving behavior

Zhu et al. (2017) AJE

Krall et al. (2017) EHP

Zheng & Motti (2017) HCII Wearable LIFE

Lee & LaVoie (under review) TRF

Internal team:

Cara Frankenfeld, Associate Professor, Epidemiology Daniel Tong, Research Professor, CSISS Vadim Sokolov, Assistant Professor, Engineering Graduate research assistants (GRAs) Leah Babin, Global and Community Health Andrea Carmichael, Global and Community Health

Dipleen Kaur, Global and Community Health Niloofar Kantalari, Information Science and Technology

External team:

Roger Peng, Johns Hopkins, Biostatistics Pauline Mendola, NICHD, Epidemiology Jonathan Thornburg, RTI, Exposure Science

Proposed budget and description

Class	Item	Description	Cost
Research team	Full-time graduate research assistant (GRA): Leah Babin (20 hours/week)	IRB submission, participant recruitment, data cleaning and preparation, analysis	\$18,000
	Travel compensation for GRA	Travel for recruitment/data collection	\$500
Exposure assessment	3 MicroPEM [™] exposure monitors on loan from RTI		***RTI: est. \$6,000
	Training for GMU faculty		***RTI
	Laboratory costs for MicroPEM [™]	MicroPEM [™] filters, flowmeter, batteries, tweezers, wipes, refrigeration	\$5,000
	In-vehicle data logger	Speed limit map development	\$3,000
Research materials	Participant recruitment	Postcards, advertising	\$1,000
	Compensation for study subjects	Amazon incentives	\$2,500
	Research trip for RTI training	Training for exposure assessment	\$3,000
	Research computers	To ensure confidential data storage, enable efficient computation of statistical models	\$4,000
	Software and analysis	Amazon EC2 cloud, statistical analysis tools	\$1,000
	Total		\$38,000

^{***}Partnership with RTI: We agree to

[•] Provide RTI all raw, processed, and analyzed MicroPEMTM datafiles.

[•] Include RTI as co-authors on resulting publications/presentations and include RTI as collaborator on proposals submitted using these data.

[•] Be financially responsible for any damage to the MicroPEMTMs beyond the normal wear from routine use.

Project outcomes

		2017	2018			
Item	Description	Q4	Q1	Q2	Q3	Q4
Study planning	IRB submission, MicroPEM [™] training, material acquisition					
	Study recruitment and data collection					
Statistical method development	Integration of observed, modeled pollution data					
Visualization tools	Create visualization methods and application tools					
Manuscript to Biostatistics	Krall: Statistical methods for estimating exposure to PM _{2.5} during daily commutes					
Manuscript to Environmental Health Perspectives	Pollack: Gestational exposure to PM _{2.5} during daily commutes					
Manuscript to <i>Transportation</i> Research Part F: Traffic Psychology and Behaviour	Lee: Commute behaviors and beliefs during pregnancy					
National Institute for Environmental Health Sciences (NIEHS) R15	PI: Krall. Statistical methods for estimating invehicle exposures					
NIEHS R01	PI: Pollack. Traffic-related air pollutants and birth outcomes					
National Institute for Child Health and Human Development (NICHD) R21	PI: Lee. Commute behaviors and adaptations during pregnancy				g	

Future work

Future work: Mobile and wearable applications with spatiotemporal information

Novel study of invehicle exposures to TRAP during pregnancy

Novel visualization tools to bring information back to women

Future work:
Associations between
TRAP and pregnancyrelated health
outcomes

Partnership with RTI

Novel statistical methods for estimating exposure to TRAP during commutes

Bethesda

Washington

Alexandria

Future work: Extend predictive models to chemical constituents and gaseous pollutants

Partnership with RTI