

Indian Institute of Technology Palakkad

Department of Computer Science and Engineering CS5616 Computational Complexity January May 2024

Problem Set – 1 Name: Neeraj Krishna N Roll no: 112101033 $\begin{array}{c} \hbox{Total Points} - 50 \\ \hbox{Given on } 03 \hbox{ Feb} \\ \hbox{Due on } 11 \hbox{ Feb} \end{array}$

Instructions

• Use of resources other than class notes and references is forbidden.

Collaboration is not allowed. Credit will be given for attempts and partial answers.

- 1. (15 points) [More properties of R and RE] We saw in class that recursive languages are closed under complement. We will see more properties below.
 - (a) (5 points) Show that recursively enumerable languages are closed under union and intersection.
 - (b) (5 points) For a language L, and $i \ge 1$, $L^i = \{a_1 a_2 \dots a_i \mid a_1, \dots, a_i \in L\}$. The Kleene closure of L, denoted by L^* , is defined as $\{\epsilon\} \cup \bigcup_{i\ge 1} L^i$. Show that recursive and recursively enumerable languages are closed under Kleene closure.
 - (c) (5 points) For languages $L_1, L_2 \subseteq \Sigma^*$, define $L_1/L_2 = \{x \in \Sigma^* \mid \exists y \in L_2 \ xy \in L_1\}$. Show that if L_1 and L_2 are recursively enumerable, then so is L_1/L_2 .

Solution: Write your answer here.

(a) 1. To show: recursively enumerable are closed under union

Let L_1 and L_2 be the 2 recursively enumerable languages and let the turing machines (not necessarily total) accepting them be M_1 and M_2 respectively. Now we need to give a turing machine M, which accepts $L = L_1 \cup L_2$.

The description of M is as follows:

- "On input x,
- (a) Run one step of M_1 on x
- (b) Run one step of M_2 on x
- (c) As long as either of them does not accept, repeat steps (a) and (b)
- (d) If one of them accept, accept and halt

To prove : M accepts $L = L_1 \cup L_2$

(a) Proof of $L \subseteq L(M)$:

 $x \in L$

 $\implies x \in L_1 \cup L_2$

 $\implies x \in L(M_1) \lor x \in L(M_2) \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$

 \implies Either M_1 or M_2 will halt and accept (and since we are performing

one step in each machine, we will not be stuck in a loop, even if one of the machine loops on the given input)

- $\Longrightarrow M$ halts and accepts
- $\implies x \in L(M)$
- (b) Proof of $L(M) \subseteq L$:
 - $x \in L(M)$
 - $\implies M$ accepts x
 - $\implies M_1$ accepted x and M reached (d) in the algorithm
 - \vee M_2 accepted x and M reached (d) in the algorithm
 - $\implies x \in L(M_1) \lor x \in L(M_2)$
 - $\implies x \in L_1 \lor x \in L_2 \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$
 - $\implies x \in L_1 \cup L_2$
 - $\implies x \in L$

Hence Proved

2. To show: recursively enumerable are closed under intersection

Let L_1 and L_2 be the 2 recursively enumerable languages and let the turing machines (not necessarily total) accepting them be M_1 and M_2 respectively. Now we need to give a turing machine M, which accepts $L = L_1 \cap L_2$.

The description of M is as follows:

- "On input x,
- (a) Run one step of M_1 on x
- (b) Run one step of M_2 on x
- (c) As long as both of them do not halt, repeat step (a) and step (b)
- (d) If both of them accept, accept and halt

To prove : M accepts $L = L_1 \cap L_2$

- (a) Proof of $L \subseteq L(M)$:
 - $x \in L$
 - $\implies x \in L_1 \cap L_2$
 - $\implies x \in L(M_1) \land x \in L(M_2) \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$
 - \Longrightarrow By the description of the machine, since both M_1 and M_2 accepts, M accepts (and since we are performing one step in each machine, we will not be stuck in a loop, even if one of the machine loops on the given input)
 - $\Longrightarrow M$ halts and accepts
 - $\implies x \in L(M)$
- (b) Proof of $L(M) \subseteq L$:
 - $x \in L(M)$
 - $\implies M$ accepts x
 - $\implies M_1$ accepted $x \land M_2$ accepted x

and hence M reached (d) in the algorithm

- $\implies x \in L(M_1) \land x \in L(M_2)$
- $\implies x \in L_1 \land x \in L_2 \text{ (since } L_1 = L(M_1) \text{ and } L_2 = L(M_2))$
- $\implies x \in L_1 \cap L_2$
- $\implies x \in L$

Hence Proved

- (b)
- (c)
- 2. (10 points) [Non-determinism] The machines that we saw in class have a single valued transition function and hence are *deterministic*. A nondeterministic Turing machine is a machine where the transition function can take multiple values.
 - (a) (5 points) Give a rigorous formal definition of a non-deterministic Turing machine, including a definition of configuration, next configuration relation and acceptance.
 - (b) (5 points) Argue that deterministic machines and non-deterministic machines are equivalent (in the sense that they can simulate each other).

Solution:

- (a) Non-deterministic Turing Machine is a 9-tuple $N=(Q,\Sigma,\Gamma,\vdash,\sqcup,\Delta,s,t,r)$ where
 - Q is a finite set of states
 - Σ is a finite set of input alphabets
 - Γ is the finite set of tape symbols
 - $\vdash \in \Gamma \setminus \Sigma$ is the left end marker
 - $\sqcup \in \Gamma \setminus \Sigma$ is the blank symbol
 - $\Delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$ is the transition relation
 - $s \in Q$ is the start state
 - $t \in Q$ is the accept state
 - $r \in Q$ is the reject state

Configuration:

A configuration c is a tuple of $(q, w \sqcup^{\omega}, n)$ where $q \in Q, w \in \Gamma^*, n \in \mathbb{N}$

Next Configuration Relation:

It is the single step transition from one configuration to a set of configurations. $(p, z, n) \to (q, z', n')$ where n' = n + 1 if head moved right, else if head moved left, n' = n - 1, else n' = n and $((p, z), (q, z')) \in \Delta$

Acceptance:

Turing machine M, is said to accept an input x, if after a finite number of steps, the configuration becomes (t, y, n) for some $y \in \Gamma^*$ and $n \in \mathbb{N}$

(b) 1. Let $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ be a deterministic Turing Machine We want to construct an equivalent Turing Machine

$$N = (Q', \Sigma', \Gamma', \vdash, \sqcup, \Delta, s', t', r')$$

Now let

Q' = Q

 $\Sigma' = \Sigma$

$$\Gamma' = \Gamma$$

$$\Delta(p,z) = \{\delta(p,z)\}$$

$$s' = s$$

$$t' = t$$

$$r' = r$$
Now we have to prove $L(M) = L(N)$
Proof of $L(M) \subseteq L(N)$:
$$x \in L(M)$$

$$\Rightarrow \text{There is set of steps for } M \text{ which leads to terminal accept state } t$$

$$\Rightarrow \text{Since } \Delta \text{ has only one transition for every possible tuple } (p,z), N \text{ will also take the same steps as } M$$

$$\Rightarrow x \in L(N)$$
Proof of $L(N) \subseteq L(M)$:
$$x \in L(N)$$

$$\Rightarrow \text{There is a set of steps for which } N \text{ reaches } t'$$

$$\Rightarrow \text{Since } \Delta \text{ has only one transition for every possible tuple } (p,z), \text{ it behaves like a deterministic turing machine}$$

$$\Rightarrow M \text{ also takes the exact same transitions for input } x \text{ and reaches the accept state } t$$

$$\Rightarrow x \in L(M)$$
Hence $L(M) = L(N)$ and we have proved that every deterministic Turing Machine acan be simulated using a Non deterministic Turing Machine We want to construct an equivalent deterministic Turing Machine $M = (Q', \Sigma', \Gamma', \vdash, \sqcup, \Delta, s, t, r')$ buch that it accepts the same language as that of N
Let $Q' = 2^Q$

$$\Sigma' = \Sigma$$

$$\Gamma' = \Gamma$$

$$s' = \{s\} \in Q'$$

$$t' = \{t\} \in Q'$$

$$t' = \{t\} \in Q'$$

$$t' = \{t\} \in Q'$$
Now for δ ,
Let $q' = \{q_1, q_2, \ldots, q_i\}$ for some $i \in \{0, 1, \ldots, |Q|\}$, where each $q_i \in Q$ (if $i = 0$, then $q' = \phi$)
$$\delta(q', z) = \bigcup_{q_i \in Q} \Delta(q_i, z)$$
Now, we have to prove $L(N) = L(M)$
Proof of $L(N) \subseteq L(M)$:
$$x \in L(N)$$

which leads to the terminal state t'

 \Rightarrow There exists a non deterministic set of choices for the machine N

 \Rightarrow Since, M is in essence, simulating every possible transitions of N, there exists a transition $\delta(\cdot)$ for which $(t, z) \in \delta(\cdot)$ for some z

 $\Rightarrow M$ accepts x

 $\Rightarrow x \in L(M)$

 $x \in L(M)$

 \Rightarrow There exists a set of transitions at the end of which $(t, z) \in \delta(\cdot)$

 \Rightarrow Then, if we take the same set of non deterministic choices in the non deterministic turing machine, we will reach t in N

 $\Rightarrow x \in L(N)$

Hence showed that L(N)=L(M) and hence every non deterministic turing machine can be simulated by a deterministic turing machine

(This construction works only because all of the following are finite : Q, Σ, Γ)

3. (15 points) [Undecidability]

- (a) (5 points) Consider the problem of deciding if two given Turing machines accept the same set. Formulate this as a language and show that it is undecidable.
- (b) (5 points) Consider the problem of deciding given a Turing machine and a state, whether it enters the state on some input. Formulate this as a language and show that it is undecidable.
- (c) (5 points) Show that if Membership problem is undecidable, then Halting problem is undecidable. [Note: We independently know the undecidability of both the problems. Nevertheless, this question asks to prove the implication.]

Solution:

(a) Let the language be

$$L = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

We will show that if L is decidable, then HP^{\complement} is decidable

Let M_{σ} be a machine such that on input $\langle M, x \rangle$, it produces a description of 2 machines $\langle M_1, M_2 \rangle$ which are as follows

Description of M_1 :

"On input y,

- (a) Run M on x
- (b) If M halts on x, Accept

,,

Description of M_2 :

- "On input y,
- (a) Run M on x
- (b) If M halts on x, Reject

,

We will prove that $\langle M, x \rangle \in HP \Leftrightarrow \langle M_1, M_2 \rangle \notin L$

Proof of forward direction

$$\langle M, x \rangle \in HP$$

- $\Rightarrow M$ halts on x
- $\Rightarrow M_1$ accepts all strings and M_2 rejects all strings

$$\Rightarrow L(M_1) = \Sigma^* \text{ and } L(M_2) = \phi$$

$$\Rightarrow L(M_1) \neq L(M_2)$$

$$\Rightarrow \langle M_1, M_2 \rangle \notin L$$

Proof of reverse direction

$$\langle M, x \rangle \notin HP$$

 $\Rightarrow M$ does not halt on x

$$\Rightarrow L(M_1) = \phi$$
 and $L(M_2) = \phi$

$$\Rightarrow L(M_1) = L(M_2)$$

$$\Rightarrow \langle M_1, M_2 \rangle \in L$$

Hence, L is undecidable

(b) Let the language be $L = \{ \langle M, q \rangle \mid M \text{ enters state } q \text{ on some input} \}$

We will show that if L is decidable, then HP is decidable

Let M_{σ} be a machine such which produces an instance of L, given an instance of HP, i.e on input $\langle M, x \rangle$, M_{σ} outputs $\langle M', t \rangle$ where t is the accept state of M' and the description of M' is as follows:

"

On input y,

- (a) Run M on x
- (b) If M halts on x, then enter accept state and accept

,,

We will now show that $\langle M, x \rangle \in HP \Leftrightarrow \langle M', t \rangle \in L$

Proof of forward direction:

$$\langle M, x \rangle \in HP$$

- $\Rightarrow M$ halts on x
- $\Rightarrow M'$ enters t and accepts for all inputs y
- $\Rightarrow \langle M, t \rangle \in L$

Proof of reverse direction:

$$\langle M, x \rangle \notin HP$$

- $\Rightarrow M$ does not halt on x
- $\Rightarrow M'$ loops and never enters state t for any input

$$\Rightarrow \langle M', t \rangle \notin L$$

Hence L is undecidable

(c) We need to show that if MP is undecidable, then HP is undecidable which is same as proving its contrapositive, i.e

HP is decidable $\Rightarrow MP$ is decidable

Let M_{σ} be a machine which on input $\langle M, x \rangle$ (an instance of MP) outputs $\langle M', \epsilon \rangle$ (which is an instance of HP) where the description of M' is as follows:

On input y,

- (a) Run M on x
- (b) If M accepts x, halt
- (c) If M rejects x, loop

,,

Now, we will show that $\langle M, x \rangle \in MP \Leftrightarrow \langle M', \epsilon \rangle \in HP$

Proof of forward direction:

$$\langle M, x \rangle \in MP$$

- $\Rightarrow M$ accepts x
- $\Rightarrow M'$ halts on every input, in particular ϵ also

$$\Rightarrow \langle M', \epsilon \rangle \in HP$$

Proof of reverse direction:

$$\langle M, x \rangle \notin MP$$

- $\Rightarrow M$ does not accept x
- $\Rightarrow M$ rejects x or M loops on x
- \Rightarrow If M rejects x, then M' loops on every input (in particular ϵ) and

If M loops on x, then also M' gets stuck in step (a) and M' loops on every input (in particular ϵ)

$$\Rightarrow \langle M', \epsilon \rangle \notin HP$$

Hence proved that if MP is undecidable, then HP is undecidable

- 4. (10 points) [**Decidable or Undecidable ?**] Let |M| denote the length of the Turing machine description. Are the following problems decidable ? Justify.
 - (a) (5 points) Does a Turing machine M takes at least |M| steps on some input?
 - (b) (5 points) Does a Turing machine M takes at least |M| steps on all inputs?

Solution:

(a) This is decidable because every Turing Machine takes at least |M| steps on some inputs. Below is the justification Let us take a Turing Machine M_{σ} whose description is as follows

On input M,

- 1. If M is not a valid encoding of Turing Machine, reject
- 2. Else accept

,

The above machine accepts any valid encoding of Turing Machine. The above machine is total because there exists a **total turing machine** which checks if a string is a valid encoding of a Turing Machine

Let us take an arbitrary Turing Machine M

Let n = |M|

Let string x be $0^{|M|+1}$

For this string, the Turing Machine will take at least |M| steps Hence for every Turing Machine M, there exists an input for which M will take at least |M| steps.

- (b) Let the language be $L = \{M \mid M \text{ takes at least } |M| \text{ steps on all inputs} \}$ This is undecidable because, we can show that if the given problem is decidable, then HP is decidable. Let us take a turing machine M_{σ} which on input $\langle M, x \rangle$, provides a description of another turing machine M' which is "On input y,
 - (1) Run M on x
 - (2) If M halts on x, perform |M'| steps and accept

,,

We will prove that $\langle M, x \rangle \in HP \Leftrightarrow M' \in L$

Proof of forward direction

 $\langle M, x \rangle \in HP$

- $\Rightarrow M$ halts on x
- $\Rightarrow M'$ reaches step (2) and performs at least |M'| steps and then accepts
- $\Rightarrow M' \in L$

Proof of reverse direction

 $\langle M, x \rangle \notin HP$

- $\Rightarrow M$ does not halt on x
- $\Rightarrow M'$ is stuck in step 1 itself
- $\Rightarrow M'$ does not perform even a single step on any input
- $\Rightarrow M' \notin L$

Since HP is undecidable, L is undecidable