Mechatronics (ROB-GY 5103 Section A)

- Today's lecture:
 - PWM
 - Op-amps again
 - Sensors
- (See Topics #7 and #9 from Main Text for details)

- Objective: Use a digital circuit to produce an analog output
- PWM is one technique to achieve an equivalent "analog" output with rapid switching, just by changing the pulse duration
 - Hence, pulse-width modulation

- Objective: Use a digital circuit to produce an analog output
- PWM is one technique to achieve an equivalent "analog" output with rapid switching, just by changing the pulse duration
 - Hence, pulse-width modulation

- First, consider a fixed pulse frequency
 - 0% to 100% duty cycle maps to zero and maximum output

- First, consider a fixed pulse frequency
 - 0% to 100% duty cycle maps to zero and maximum output
- If the duty cycle varies over time, an approximate "analog" output is generated

- First, consider a fixed pulse frequency
 - 0% to 100% duty cycle maps to zero and maximum output
- If the duty cycle varies over time, an approximate "analog" output is generated
 - Frequency matters! Sufficiently high frequency is needed

Unipolar vs Bipolar PWM

• Edge-aligned vs Center-aligned

Symmetric and Asymmetric PWM Signals

PWM is a powerful idea

- Can be used to dim LEDs
- Can be used to drive motors
 - Motors and H-bridge

Operational Amplifier

- Active device composed of transistors
- Open-loop configuration:
 - Acts as comparator: voltage difference at inputs leads to high/low output
- Closed-loop configuration:
 - Interesting useful part

• We usually think of amplification vs. stabilization as opposing tendencies

- We usually think of amplification vs. stabilization as opposing tendencies
 - With feedback (closed-loop configuration), we see that amplification drives the two voltage inputs to be equal

- We usually think of amplification vs. stabilization as opposing tendencies
 - With feedback (closed-loop configuration), we see that amplification drives the two voltage inputs to be equal
 - Assume the + input is a fixed voltage. Then any tiny deviation at the input is magnified at the output and fed back into the – input.

- We usually think of amplification vs. stabilization as opposing tendencies
 - With feedback (closed-loop configuration), we see that amplification drives the two voltage inputs to be equal
 - Assume the + input is a fixed voltage. Then any tiny deviation at the input is magnified at the output and fed back into the – input.
 - This is self-correcting!

- We usually think of amplification vs. stabilization as opposing tendencies
 - With feedback (closed-loop configuration), we see that amplification drives the two voltage inputs to be equal
 - Assume the + input is a fixed voltage. Then any tiny deviation at the input is magnified at the output and fed back into the – input. Self-correcting!

- We usually think of amplification vs. stabilization as opposing tendencies
 - With feedback (closed-loop configuration), we see that amplification drives the two voltage inputs to be equal
 - Assume the + input is a fixed voltage. Then any tiny deviation at the input is magnified at the output and fed back into the – input. Self-correcting!
 - An ideal op-amp does all this with ZERO current at the + input.

- We usually think of amplification vs. stabilization as opposing tendencies
 - With feedback (closed-loop configuration), we see that amplification drives the two voltage inputs to be equal
 - Assume the + input is a fixed voltage. Then any tiny deviation at the input is magnified at the output and fed back into the – input. Self-correcting!
 - An ideal op-amp does all this with ZERO current at the + input.

Assume the + input is a varying voltage signal. The + input is equal to the – input and the output.

- Assume the + input is a **varying voltage signal**. The + input is equal to the input and the output.
 - Input = output. Why do we even need this?

- Assume the + input is a varying voltage signal. The + input is equal to the input and the output.
 - Input = output. Why do we even need this?
 - An ideal op-amp does all this with ZERO current at the + input. High input impedance (resists current and change in input current)

- Assume the + input is a varying voltage signal. The + input is equal to the input and the output.
 - Input = output. Why do we even need this?
 - An ideal op-amp does all this with ZERO current at the + input. High input impedance (resists current and change in input current)
 - Buffers **isolate** and prevent **loading effects**: if the input voltage source has non-zero output impedance, the input voltage varies with current.

Active Summing Circuit: Summing Amplifier

Passive Summing Circuit

Without op-amp

Passive Summing Circuit

- Without op-amp
 - Signal loss
 - No amplification
 - Crosstalk
 - Loading effects

Op-Amp Application: Integrator Amplifier

• What is relationship between output and input voltage?

Op-Amp Application: Differentiator Amplifier

• What is relationship between output and input voltage?

Op-Amp Application: Active First-Order Low-Pass Filter

• What is relationship between output and input voltage?

- To move about intelligently in its environment, a robot must have situational awareness
- Situational awareness necessitates knowing ranges and bearings of nearby objects

• **Tactile sensor:** Direct physical contact between an on-board sensor and an object indicates collision with the object (tactile feelers, tactile bumpers, microswitches, etc.)

- Tactile sensor: Direct physical contact between an on-board sensor and an object indicates collision with the object (tactile feelers, tactile bumpers, microswitches, etc.)
- Proximity sensor: a non-contact sensor provides advance warning on the presence of an object in close vicinity of the sensor (magnetic, inductive, capacitive, ultrasonic, optical, etc.)

- Tactile sensor: Direct physical contact between an on-board sensor and an object indicates collision with the object (tactile feelers, tactile bumpers, microswitches, etc.)
- Proximity sensor: a non-contact sensor provides advance warning on the presence of an object in close vicinity of the sensor (magnetic, inductive, capacitive, ultrasonic, optical, etc.)
- While tactile sensors indicate presence of object after physical contact with it, proximity sensors do not quantify the range to the object

- Range sensor: provides actual distance to a target of interest without physical contact (triangulation, time-of-flight, phase-shift measurement, frequency modulation, interferometry, return signal intensity); broadly classified as active and passive
 - Radar (radio direction and ranging): typically uses, time-of-flight, phase-shift measurements, or frequency modulation
 - Sonar (sound navigation and ranging): typically uses, time-of-flight since speed of sound is slow enough to be measured with inexpensive electronic
 - Lidar (light direction and ranging): laser-based schemes that typically use, time-of-flight or phase-shift measurements,

Ultrasonic Sensor—PING)))

- Time-of-flight distance measurement (range: 3.3 meters)
- Sensor emits a 40KHz tone and measures time till it receives the echo signal
 - Round-trip time-of-flight yields distance measurement: D=0.5×C×T, D=distance (m), C = speed of sound in air @ 72 °F (344.8 m/s), T=round trip time (s)

Interfacing PING))) to BS2

Connect BS2's Vss, Vdd, and one I/O pin (say P15) to PING)))'s GND, 5V, and

SIG pins, respectively

PING))): PBASIC Sample Code

- PULSOUT 15, 5: sends a 10µs pulse to P15
- PULSIN 15, 1, time: monitors for the return echo and stores it in the variable time (unit 2µs)

```
' {$PBASIC 2.5}

rawtime VAR Word

DO

PULSOUT 15, 5

PULSIN 15, 1, rawtime

DEBUG HOME, "rawtime = ", DEC5 rawtime

PAUSE 100

LOOP
```

Accelerometer

- Electromechanical device to measure acceleration forces
 - Static forces like gravity pulling at an object lying at a table
 - Dynamic forces caused by motion or vibration (D'Alembert's Principle)

Accelerometer

- Electromechanical device to measure acceleration forces
 - Static forces like gravity pulling at an object lying at a table
 - Dynamic forces caused by motion or vibration (D'Alembert's Principle)

Accelerometer Types

- Seismic mass accelerometer: a seismic mass is connected to the object undergoing acceleration through a spring and a damper;
- Piezoelectric accelerometers: a microscopic crystal structure is mounted on a mass undergoing acceleration; the piezo crystal is stressed by acceleration forces thus producing a voltage

Accelerometer Types

- Capacitive accelerometer: consists of two microstructures (micromachined features) forming a capacitor; acceleration forces move one of the structure causing a capacitance changes.
- Piezoresistive accelerometer: consists of a beam or micromachined feature whose resistance changes with acceleration
- Thermal accelerometer: tracks location of a heated mass during acceleration by temperature sensing

Accelerometer Applications

- Automotive: monitor vehicle tilt, roll, skid, impact, vibration, etc., to deploy safety devices (stability control, anti-lock breaking system, airbags, etc.) and to ensure comfortable ride (active suspension)
- Aerospace: inertial navigation, smart munitions, unmanned vehicles
- Industrial: machinery health monitoring
- Security: motion and vibration detection
- Robotics: self-balancing

Accelerometer Applications

- Sports/Gaming: monitor athlete performance and injury, joystick, tilt
- Personal electronics: cell phones, digital devices

Helmet: Impact Detection

WII Nunchuk: 3 axis accelerometer

Memsic 2125 2-axis Accelerometer

- Measure acceleration, tilt angle, rotation angle
 - G-force measurements for X and Y axis reported in pulse-duration
- Temperature measurement: analog output (Tout)
- Low current operation: < 4 mA @ 5VDC
- Measures 0 to ±2 g on either axis
- Resolution: <1 mg
- Operating temperature: 0 °C to 70 °C

MX2125 Chip

MX2125 Accelerometer: How it Works

- A micro-electromechanical system (MEMS) device consisting of
 - a chamber of gas with a heating element in the center
 - four temperature sensors around its edge

MX2125 Accelerometer: How it Works

- Hold accelerometer level→hot gas pocket rises to the top-center of the accelerometer's chamber→all sensors measure same temperature
- Tilt the accelerometer

 hot gas pocket collects closer to one or two temperature sensors

 sensors sensors closer to gas pocket measure higher temperature

MX2125 Accelerometer: How it Works

 MX2125 electronics compares temperature measurements and outputs pulses (pulse duration encodes sensor o/p)

Interfacing Accelerometer to BS2

• Connect BS2's V_{ss} , V_{dd} , and two I/O pin (say P6 and P7) to MX2125's pins 3, 6, 5, and 2, respective

Vdd

- X_{out} and Y_{out} pulse outputs are set to 50% duty cycle at 0g; the duty cycle changes in proportion to acceleration
- G Force can be computed from the duty cycle as shown below
- T_{out} provides analog output 1.25 volts @25.0°C, output change: 5 mV/°C

Accelerometer Axis Pulse Measurements

'{\$PBASIC 2.5}

x VAR Word

y VAR Word

DEBUG CLS

DO

PULSIN 6, 1, x

PULSIN 7, 1, y

DEBUG HOME, DEC4 ? x, DEC4 ? y

PAUSE 100

LOOP

Pulse Measurements: Offset and Scaling

- Let X_{raw}= Pulsin output
- $X_{raw} \in \{1875, 3125\}$ and when level X_{raw} =2500
- We wish X_{out} : $X_{raw} \rightarrow X_{out} \in \{\text{-127, 127}\}, \text{ and } X_{out} = 0 \text{ when level}$

- Let Scale=INT((254/1250) ×65536)=13316
- Now compute X_{out} by using $X_{raw}**13316-508$

'{\$STAMP BS2} '{\$PBASIC 2.5} scalecon CON 13316 xraw VAR Word yraw VAR Word Xo VAR Word Yo VAR Word **DEBUG CLS** DO PULSIN 6, 1, xraw PULSIN 7, 1, yraw Xo=xraw**scalecon-508 Yo=yraw**scalecon-508 DEBUG HOME, SDEC Xo, SDEC Yo PAUSE 100 LOOP

Clamp input range to {1875, 3125} using the following: xout=(xraw Min 1875 Max 3125) **scalecon-508

yout=(yraw Min 1875 Max 3125) **scalecon-508

g-Force Measurements in mili-g—I

- Let T_{raw}= Pulsin output (2μs units)
- $T_{raw} \in \{1875, 3125\}$ and when level $T_{raw}=2500$
- T_{raw} =1875 \rightarrow -g (-1000 milli-g) and T_{raw} =3125 \rightarrow g (-1000 milli-g)
- So, we wish T_{out} : $T_{raw} \rightarrow T_{out} \in \{-1000, 1000\}$, and $T_{out} = 0$ when level

Memsic 2125 Pulse Output

T₁: Pulsin output returns T_{raw} T₂: 10milli-seconds @ 25°C

Moreover, recall g force is given by

$$g_{\text{Force}} = \left(\frac{T_1}{T_2} - 0.5\right) \times \left(\frac{1}{12.5\%}\right) \text{ (units:g)}$$

g-Force Measurements in mili-g—II

b. x=0/1000, y=1000/1000

d. x=0/1000, y=-1000/1000

Sample Readings at Various Orientations (start at top left, rotate clockwise)

g-Force Measurements in mili-g—III

•
$$T_1$$
: Pulsin output returns T_{raw} in $2\mu s$ units

- T₂: 10mili-seconds @ 25°C
- Thus,

$$T_1=2\times10^{-6}\times T_{raw}$$
 seconds= $2\times10^{-3}\times T_{raw}$ mili-seconds

$$\begin{split} T_{\text{out}} &= \left(T_{\text{raw}} - 2500\right) \times \left(\frac{2000}{1250}\right) \\ &= \left(\frac{2 \times T_{\text{raw}}}{10}\right) \times \left(\frac{1000}{125}\right) - 2500 \times \left(\frac{2000}{1250}\right) \\ &= \left(\frac{2 \times T_{\text{raw}}}{10}\right) \times 8 - 4000 \\ &= \left(\left(\frac{2 \times T_{\text{raw}}}{10}\right) - 500\right) \times 8 \end{split}$$

$$= (T_{\text{raw}} - 2500) \times \left(\frac{2000}{1250}\right)$$

$$= \left(\frac{2 \times T_{\text{raw}}}{10}\right) \times \left(\frac{1000}{125}\right) - 2500 \times \left(\frac{2000}{1250}\right)$$

$$= \left(\frac{2 \times T_{\text{raw}}}{10}\right) \times 8 - 4000$$

$$= \left(\left(\frac{2 \times T_{\text{raw}}}{10}\right) - 500\right) \times 8$$

$$= \left(\frac{2 \times T_{\text{raw}}}{10}\right) - 500 \times 8$$

$$g_{\text{Force}} = \left(\frac{T_1}{T_2} - 0.5\right) \times \left(\frac{1}{12.5\%}\right), \text{ (units : g)}$$

$$= \left(\frac{T_1}{T_2} - 0.5\right) \times \left(\frac{1}{12.5\%}\right) \times 10^3, \text{ (units : milli - g)}$$

$$= \left(\frac{T_{\text{raw}} \times 2 \times 10^{-3}}{10} - 0.5\right) \times \left(\frac{100}{12.5}\right) \times 10^3$$

$$= \left(\frac{T_{\text{raw}} \times 2}{10} - 500\right) \times 8$$

MX2125 Angle of Rotation in Vertical Plane—I

• MX2125's angle of rotation in the vertical plane:

$$\theta = \tan^{-1} \left(\frac{A_{y}}{A_{x}} \right)$$
, BS2 returns $A_{x}, A_{y} \in \{1875, 3125\}$

• To compute $tan^{-1}(Y/X)$ use PBASIC ATAN command: X ATN Y; ATN requires X, Y \in {-127, 127} which is accomplished using

$$X = (A_{x} - 2500) \times \left(\frac{254}{1250}\right)$$
$$= A_{x} \times \left(\frac{254}{1250}\right) - 508$$

- Let INT((254/1250) ×65536)=13316
- Now compute X by using Ax**13316-508

MX2125 Angle of Rotation in Vertical Plane—II

- ATN returns its output in binary radians (i.e., a circle is split up into 256 segments instead of 360 segments as in degrees)
- Convert ATN output from brad to degrees as follows:

$$\theta_{\text{Deg}} = \theta_{\text{BRad}} \times \left(\frac{360}{256}\right)$$
 • Let INT((360/256)×256)=360
• Now compute θ_{Deg} by using θ_{BRad} */360

Unit circle in degrees and binary radians

MX2125 Angle of Rotation in Vertical Plane: Sample Code

```
'{$STAMP BS2}
'{$PBASIC 2.5}
scale1 CON 13316
scale2 CON 360
Ax VAR Word
Ay VAR Word
angle VAR Word
DEBUG CLS
DO
PULSIN 6, 1, Ax
PULSIN 7, 1, Ay
Ax=(Ax MIN 1875 MAX 3125)**scale1-508
Ay=(Ay MIN 1875 MAX 3125)**scale1-508
angle=Ax ATN Ay
angle=angle*/scale2
DEBUG HOME, "Ax =", SDEC Ax, "Ay=", SDEC Ay, "angle=", SDEC3 angle, 176, " "
PAUSE 300
LOOP
```

Hands-on Exercises: Digital Input

Smart Sensors and Applications	Chapter 2
The Ping))) Ultrasonic Distance Sensor Activities #1 – #4	