1

OPAMP Stability

C Shruti*

An op amp having a low-frequency gain of 10³ and a single-pole rolloff at 10⁴ rad/s is connected in a negative feedback loop via a feedback network having a transmission k and a two-pole rolloff at 10⁴ rad/s. Find the value of k above which the closed-loop amplifier becomes unstable.

1. Find the OPAMP gain G(s)

Solution: The given oscillator has a low frequency gain 10³ and a single-pole rolloff at 10⁴ rad/s. So we have a open loop amplifier gain

$$G(s) = \frac{10^3}{1 + \frac{s}{10^4}} \tag{1.1}$$

2. Find the feedback H(s)

Solution:

$$H(s) = \frac{k}{\left(1 + \frac{s}{10^4}\right)^2} \tag{2.1}$$

3. Find the loop-gain.

Solution: The loop gain is given by

$$L(s) = G(s)H(s) = \frac{10^3 k}{\left(1 + \frac{s}{10^4}\right)^3}$$
(3.1)

and the various gains summarised in Table 3

Parame- ters	Definition	For given case
Open loop gain	G	$\frac{10^3}{1 + \frac{s}{10^4}}$
Feedback factor	Н	$\frac{k}{\left(1+\frac{s}{10^4}\right)^2}$
Loop gain	GH	$\frac{10^3 k}{(1 + \frac{s}{10^4})^3}$
Transfer Function	<u>G</u> 1+ <i>GH</i>	$\frac{\frac{\frac{10^3}{1+\frac{s}{10^4}}}{1+\frac{1}{\left(1+\frac{s}{10^4}\right)^3}}$

TABLE 3

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India . All content in this manual is released under GNU GPL. Free and open source.

4. Find the condition for stability. **Solution:** For stability, $(GM)_{dB}$ & PM > 0. For the given system :

$$\angle G(j\omega)H(j\omega) = \angle \frac{10^3 k}{\left(1 + \frac{j\omega}{10^4}\right)^3} = -3tan^{-1}\left(\frac{\omega}{10^4}\right)$$
(4.1)

So the phase crossover frequency is,

$$180^{\circ} = \left| -3tan^{-1} \left(\frac{\omega_{180}}{10^4} \right) \right| \tag{4.2}$$

$$\implies \omega_{180} = \sqrt{3} \times 10^4 \tag{4.3}$$

The Loop gain at ω_{180} is $|G(j\omega_{180})H(j\omega_{180})|$. (i) $GM_{dB} > 0$

$$\implies |G(j\omega_{180})H(j\omega_{180})| < 1$$
 (4.4)

$$\implies \left| \frac{10^3 k}{\left(1 + \frac{j\omega}{10^4}\right)^3} \right| < 1 \tag{4.5}$$

$$\left| \frac{10^3 k}{\left(1 - \sqrt{3}j\right)^3} \right| < 1 \tag{4.6}$$

$$\frac{10^3 |k|}{\left|\sqrt{1+\sqrt{3}^2}\right|^3} < 1\tag{4.7}$$

$$\frac{10^3 |k|}{8} < 1 \tag{4.8}$$

$$\implies |k| < 0.008 \tag{4.9}$$

(ii)
$$PM = \phi_m = 180^\circ + \angle L(j\omega_{gc}) > 0$$
 i.e.. $180^\circ - 3tan^{-1}(\frac{\omega_{gc}}{10^4}) > 0$.

Gain crossover frequency ω_{gc} ,

$$\left| G(j\omega_{gc})H(j\omega_{gc}) \right| = 1 \tag{4.10}$$

$$\left| \frac{10^3 k}{\sqrt{1 + \frac{\omega_{gc}^2}{10^8}}} \right| = 1 \tag{4.11}$$

$$\implies \omega_{gc} = \sqrt{10^8 \left(10^2 k^{\frac{2}{3}} - 1\right)}$$
 (4.12)

Now,

$$\phi_m = 180^\circ - 3tan^{-1} \left(\frac{\sqrt{10^8 \left(10^2 k^{\frac{2}{3}} - 1 \right)}}{10^4} \right) > 0$$
(4.13)

$$\sqrt{10^8 \left(10^2 k^{\frac{2}{3}} - 1\right)} < \sqrt{3} \times 10^4 \tag{4.14}$$

$$10^2 k^{\frac{2}{3}} < 4 \tag{4.15}$$

$$\implies |k| < 0.008 \tag{4.16}$$

From (i) and (ii) the value of k above which the system becomes unstable is 0.008.

5. Design the feedback circuit *H*.

Solution:

$$H(s) = \frac{V_f}{V_0} = \frac{k}{\left(1 + \frac{s}{10^4}\right)^2} = k \left(\frac{1}{1 + \frac{2s}{10^4} + \frac{s^2}{10^8}}\right)$$
(5.1)

This is of the form,

$$k\left(\frac{1}{1+sR_1C_1+s^2L_1C_1}\right) = k\left(\frac{\frac{1}{sC_1}}{R_1+sL_1+\frac{1}{sC_1}}\right)$$
(5.2)

This can be realized using the circuit,

Fig. 5

A set of values that satisfy these equations are,

$$R_1 = 200\Omega \tag{5.3}$$

$$C_1 = 1\mu F \tag{5.4}$$

$$L_1 = 10mH \tag{5.5}$$

6. Design the closed loop circuit. You may choose a suitable vale of k such that the system is stable.

Solution: Let k=0.001. The closed loop gain

is T(s).

$$T(s) = \frac{\frac{10^3}{1 + \frac{s}{10^4}}}{1 + \frac{1}{\left(1 + \frac{s}{10^4}\right)^3}}$$

$$= \frac{10^7 s^2 + 2 \times 10^{11} s + 10^{15}}{s^3 + 3 \times 10^4 s^2 + 3 \times 10^8 s + 2 \times 10^{12}}$$
(6.1)

The final circuit would be:

Fig. 6

$$R_1 = 200\Omega \tag{6.3}$$

$$C_1 = 1\mu F \tag{6.4}$$

$$L_1 = 10mH \tag{6.5}$$

$$L_2 = 1\mu F \tag{6.6}$$

$$R_2 = 100\Omega \tag{6.7}$$

$$k = 10^{-3} \tag{6.8}$$

7. Sketch the Bode plot of the closed loop system **Solution:** The following code gives the Bode plot of the closed loop system

codes/ee18btech11006/ee18btech11006 1.py

Bode Plot:

8. Find the output of the circuit for an appropriate input using spice.

Solution: The following readme file provides necessary instructions to simulate the circuit in spice.

codes/ee18btech11006/spice/README

The following netlist simulates the given circuit.

codes/ee18btech11006/spice/ee18btech11006.

The following code plots the output from the spice simulation which is shown in Fig. 8.4.

codes/ee18btech11006/spice/ ee18btech11006_spice.py

Fig. 8.4

Verification: The Output of the system would be :

$$Y(s) = T(s)X(s)$$
(8.1)

$$X(s) = \frac{A}{s} \tag{8.2}$$

$$Y(s) = A \frac{10^7 s^2 + 2 \times 10^{11} s + 10^{15}}{s^4 + 3 \times 10^4 s^3 + 3 \times 10^8 s^2 + 2 \times 10^{12} s}$$
(8.3)

The following python codes plot the inverse Laplace of Y(s) giving the time domain output for different values of A.

On plotting, we obtain the given figure. Hence verified that the designed circuit does

Fig. 8.5

represent the given system.