# Product Analyst Challenge

Kamilla Valeeva



I used Python (pandas library) to get familiar with the dataset and perform some data cleaning:

```
import pandas as pd

xls = pd.ExcelFile(r"C:\Users\never\Downloads\claims_provider_data_anonymized.xlsx")

claims = pd.read_excel(xls, "data_claims_anonymized")

provider = pd.read_excel(xls, "data_provider_anonymized")
```

shape – attribute, returns a tuple representing the dimensionality of the DataFrame.

info() – method, prints a concise summary of a DataFrame.

describe() – method, generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding NaN values, analyzes both numeric and object series



#### Claims dataset

#### claims.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 55462 entries, 0 to 55461 Data columns (total 19 columns):

| #                                     | Column         | Non-Nu | ll Count   | Dtype                   |  |
|---------------------------------------|----------------|--------|------------|-------------------------|--|
|                                       |                |        |            |                         |  |
| 0                                     | row            | 55462  | non-null   | int64                   |  |
| 1                                     | treatment_id   | 55462  | non-null   | object                  |  |
| 2                                     | claim_id       | 55462  | non-null   | object                  |  |
| 3                                     | claim_amount   | 55431  | non-null   | float64                 |  |
| 4                                     | claim_status   | 55462  | non-null   | object                  |  |
| 5                                     | payment_type   | 55462  | non-null   | object                  |  |
| 6                                     | date_treatment | 55462  | non-null   | datetime64[ns]          |  |
| 7                                     | date_submitted | 46668  | non-null   | datetime64[ns]          |  |
| 8                                     | date_modified  | 55046  | non-null   | datetime64[ns]          |  |
| 9                                     | modified_by    | 55462  | non-null   | object                  |  |
| 10                                    | provider_name  | 55462  | non-null   | object                  |  |
| 11                                    | patient_ref_id | 55462  | non-null   | object                  |  |
| 12                                    | patient_gender | 55450  | non-null   | object                  |  |
| 13                                    | patient_age    | 55456  | non-null   | float64                 |  |
| 14                                    | diagnosis_code | 55462  | non-null   | object                  |  |
| 15                                    | item_name      | 55462  | non-null   | object                  |  |
| 16                                    | item_quantity  | 52386  | non-null   | float64                 |  |
| 17                                    | item_amount    | 52386  | non-null   | float64                 |  |
| 18                                    | item_status    | 52388  | non-null   | object                  |  |
| <pre>dtypes: datetime64[ns](3),</pre> |                |        | float64(4) | ), int64(1), object(11) |  |
| memory usage: 8.0+ MB                 |                |        |            |                         |  |

memory usage: 8.0+ MB

#### print(claims.describe())

|       | row     | claim_amount | patient_age | item_quantity | item_amount |
|-------|---------|--------------|-------------|---------------|-------------|
| count | 55462.0 | 55431.0      | 55456.0     | 52386.0       | 52386.0     |
| mean  | 27730.5 | 1923.0       | 28.6        | 43.4          | 13538.4     |
| std   | 16010.6 | 243093.1     | 19.6        | 6179.7        | 3024769.9   |
| min   | 0.0     | -128.0       | -997.0      | 0.0           | 0.0         |
| 25%   | 13865.2 | 0.0          | 16.0        | 1.0           | 0.0         |
| 50%   | 27730.5 | 50.0         | 29.0        | 1.0           | 10.0        |
| 75%   | 41595.8 | 500.0        | 38.0        | 1.0           | 100.0       |
| max   | 55461.0 | 55071840.0   | 138.0       | 1000000.0     | 692307693.0 |

All claims amount negative values were only 0,02% of all values and all were with claim\_status = 'Rejected' so I did not do anything with that.

print(claims.shape)

(55462, 19)



#### Claims dataset cleaning

I found 12 missing values in column patient\_gender, so decided to replace it with "No Gender" string value to avoid nulls in data using fillna function:

```
claims["patient_gender"].fillna
("No Gender", inplace=True)
```

There were also found 6 missing values in column patient\_age, so those were replaced by the median value using fillna function:

```
claims["patient_age"].fillna
(claims["patient_age"].median(), inplace=True)
```

Finally, I have found some negative values in column patient\_age, so those were replaced by the median value using lambda-expression:

```
claims['patient_age'].apply(lambda x: x if x > 0
else claims["patient_age"].median())
```

#### claims.isnull().sum()

| row            | Θ    | row            | 0    |
|----------------|------|----------------|------|
| treatment_id   | 0    | treatment_id   | 0    |
| claim_id       | 0    | claim_id       | 0    |
| claim_amount   | 31   | claim_amount   | 31   |
| claim_status   | Θ    | claim_status   | 0    |
| payment_type   | 0    | payment_type   | 0    |
| date_treatment | 0    | date_treatment | 0    |
| date_submitted | 8794 | date_submitted | 8794 |
| date_modified  | 416  | date_modified  | 416  |
| modified_by    | 0    | modified_by    | 0    |
| provider_name  | 0    | provider_name  | 0    |
| patient_ref_id | 0    | patient_ref_id | 0    |
| patient_gender | 12   | patient_gender | 0    |
| patient_age    | 6    | patient_age    | 0    |
| diagnosis_code | 0    | diagnosis_code | 0    |
| item_name      | 0    | item_name      | 0    |
| item_quantity  | 3076 | item_quantity  | 3076 |
| item_amount    | 3076 | item_amount    | 3076 |
| item_status    | 3074 | item_status    | 3074 |
| dtype: int64   |      | dtype: int64   |      |
|                |      |                |      |



#### Provider dataset

#### provider.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 396 entries, 0 to 395

Data columns (total 4 columns):

| # | Column               | Non-Null Count | Dtype  |
|---|----------------------|----------------|--------|
|   |                      |                |        |
| 0 | provider_name        | 396 non-null   | object |
| 1 | provider_type        | 1 non-null     | object |
| 2 | provider_country     | 396 non-null   | object |
| 3 | provider_star_rating | 396 non-null   | int64  |

dtypes: int64(1), object(3)

memory usage: 12.5+ KB

#### print(provider.describe())

```
provider_star_rating
                        396.0
count
                          2.6
mean
                          1.2
std
                          1.0
min
                          2.0
25%
                          2.0
50%
75%
                          4.0
                          5.0
max
```

print(provider.shape)

(396, 4)



#### Analytics visualization

I have prepared an analytics dashboard in Power BI and used different visuals/metrics to find any data patterns, correlations and anomalies





1b. Claim process visualization



# SOL

#### 1c. SQL Queries

What are the top 5 most expensive items (on average) for Kenyan providers?

#### 1c. SQL Queries



How many claims have been approved by 5-star rated Nigerian providers?

```
SELECT count(DISTINCT claim_id)
FROM dbo.data_claims c
JOIN dbo.data_provider p ON c.provider_name = p.provider_name
AND p.provider_country = 'Nigeria'
AND provider_star_rating = 5
WHERE claim_status = 'Approved'
```

# Task 2. Payer suggestions

While creating different visuals in Power BI, I noticed that the most expensive patient for the Benefit payer was patient 135, also patient 10 and patient 5509 were quite expensive as well.

Almost 200 treatment cases per one year looks quite suspicious, so I would recommend to check this case if there is a fraud.

Also, I have noticed that most popular approved cases were related to some specific diagnoses: diagnosis 13, 17, 4, 1, 9.



# Task 2. Payer suggestions

However, there are also most expensive diagnoses (average claim > 20K): diagnosis 735, 448, 802, 1088.

Here I would also suggest to check on these cases, does it really take that much treatments and prescriptions what causes so much expenditure.



#### Correlations

Below I have built a key influencers visual, which shows us what influences the claim to be approved. So, I found that the claims are mostly approved when the patient is female, younger than 20 or older than 38 and living in Tanzania.



#### **Anomalies**

Here I found anomaly in claims count on January 1<sup>st</sup>, April 2<sup>nd</sup>, May 1<sup>st</sup> and December 12<sup>th</sup>, but after check I realized that it is related to public holidays.



#### **Anomalies**

On July 13<sup>th</sup> and 14<sup>th</sup> there were a huge count of deleted claims. The reason is not determined, but probably it could relate to any application/server/network failure.



To improve the analysis process, I suggest the following:

- 1) Ensure the needed data is being collected and is correct, and that the data is ready and available for the analysis.
- 2) Define meaningless data to reduce waste time on looking there.
- 3) Track the system performance and outages to ensure that weak or incorrect data is related to technical issues, and not look for other reasons.
- 4) Bring more external data to the analysis by integrations: add public health data, medical data, pricing data, etc.

### Task 4. Work plan

#### System improvements

- 1) Correct data: add the initial data checks to the system to avoid input errors and typos in the data.
- 2) More data:
  - a) collect and analyze more data, such as a prescription categories;
  - b) add more data to the analysis, such as public health data, comorbidities data, patient history.
- 3) Automatize the decision-making process, which could reduce human mistakes in the process and improve productivity:
  - Collect a huge data pool with different diagnoses and treatment plans to check if the prescription was correct or any treatment was added intentionally or by mistake;
  - b) Collect or integrate pricing references for the amount check, if the item is correct or too overpriced;
  - c) Prepare an algorithm which could predict the decision based on points a) and b)
- 4) Use predictive analytics to help people pick their providers. This could help to generate for patient a list of clinics/doctors with the specialty they need.

## Task 4. Work plan

#### Questions to claim manager

- 1) Describe the process of you reviewing the claim? How much time could it take?
- 2) How is the document management organized? Is there any digital documents storage/content management system?
- 3) What mostly makes you to reject the claim?
- 4) Are there any diagnoses references or pricing references you use for the decision?
- 5) What happens if the hospital is not agree with the decision? Can they then appeal this decision?