

291135US0PCT.ST25
SEQUENCE LISTING

<110> Grappin, Philippe
Oge, Laurent
Bove, Jerome

<120> USE OF L-ISOASPARTYL METHYLTRANSFERASE AS LONGEVITY MARKER IN
SEEDS

<130> 291135US0PCT

<140> US 10/580,712
<141> 2006-12-19

<150> PCT/FR04/03042
<151> 2004-11-26

<150> FR 0313858
<151> 2003-11-26

<160> 17

<170> PatentIn version 3.3

<210> 1
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Xaa = E, V or S

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> Xaa = A or E

<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> Xaa = R, G or Q

<400> 1

Arg Tyr Val Pro Leu Thr Ser Arg Xaa Xaa Gln Leu Xaa
1 5 10

<210> 2
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Peptide

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa = D or E

<220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> Xaa = Q or K

 <220>
 <221> MISC_FEATURE
 <222> (6)..(6)
 <223> Xaa = V or I

 <220>
 <221> MISC_FEATURE
 <222> (9)..(9)
 <223> Xaa = N or S

 <220>
 <221> MISC_FEATURE
 <222> (10)..(10)
 <223> Xaa = S, E or A

 <220>
 <221> MISC_FEATURE
 <222> (14)..(14)
 <223> Xaa = I, V, T or a peptide bond

 <220>
 <221> MISC_FEATURE
 <222> (15)..(15)
 <223> If the amino acid in position 14 is I, Xaa = S; If the amino acid in position 14 is V, Xaa = S or T; If the amino acid in position 14 is T, Xaa = S ; if position 14 is a peptide bond, Xaa is not present.

<220>
 <221> MISC_FEATURE
 <222> (16)..(16)
 <223> Xaa = I or V

<220>
 <221> MISC_FEATURE
 <222> (17)..(17)
 <223> Xaa = K, Q or R

<400> 2

Gln Xaa Leu Xaa Val Xaa Asp Lys Xaa Xaa Asp Gly Ser Xaa Xaa Xaa Xaa
 1 5 10 15

<210> 3
 <211> 17
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 3

Gln Asp Leu Gln Val Val Asp Lys Asn Ser Asp Gly Ser Val Ser Ile
 1 5 10 15

Lys

<210> 4
 <211> 15
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 4

Gln Glu Leu Lys Val Ile Asp Lys Asn Glu Asp Gly Ser Ile Lys
1 5 10 15

<210> 5

<211> 13

<212> PRT

<213> *Arabidopsis thaliana*

<400> 5

Arg Tyr Val Pro Leu Thr Ser Arg Glu Ala Gln Leu Arg
1 5 10

<210> 6

<211> 13

<212> PRT

<213> *Arabidopsis thaliana*

<400> 6

Arg Tyr Val Pro Leu Thr Ser Arg Val Glu Gln Leu Gly
1 5 10

<210> 7

<211> 13

<212> PRT

<213> *Arabidopsis thaliana*

<400> 7

Arg Tyr Val Pro Leu Thr Ser Arg Ser Ala Gln Leu Gln
1 5 10

<210> 8

<211> 17

<212> PRT

<213> *Arabidopsis thaliana*

<400> 8

Gln Asp Leu Gln Val Ile Asp Lys Ser Ala Asp Gly Ser Thr Ser Val
1 5 10 15

Arg

<210> 9

<211> 17

<212> PRT

<213> *Arabidopsis thaliana*

<400> 9

Gln Glu Leu Gln Val Val Asp Lys Asn Ala Asp Gly Ser Val Thr Val
1 5 10 15

Gln

<210> 10
 <211> 8
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 10

Arg Tyr Val Pro Leu Thr Ser Arg
 1 5

<210> 11
 <211> 12
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 11

Arg Tyr Val Pro Leu Thr Ser Arg Glu Ala Gln Leu
 1 5 10

<210> 12
 <211> 15
 <212> PRT
 <213> *Arabidopsis thaliana*

<400> 12

Arg Tyr Val Pro Leu Thr Ser Arg Glu Ala Gln Leu Arg Gly Asp
 1 5 10 15

<210> 13
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic DNA

<400> 13
 gctatggagg ctgtggatag agg

23

<210> 14
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic DNA

<400> 14
 tcagtccttc ctcagctgcg c

21

<210> 15
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic DNA

<400> 15
 ggaccgggta cttaactgct t

21

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 16
ttggccggcac ccttagctgg atca

24

<210> 17
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic DNA

<400> 17
atgccccagg acatcgtgat ttcat

25