Dr. Jarad Niemi

STAT 544 - Iowa State University

January 23, 2024

Outline

- Parameter estimation
 - Beta-binomial example
 - Point estimation
 - Interval estimation
 - Simulation from the posterior
- Priors
 - Subjective
 - Conjugate
 - Default
 - Improper

For point or interval estimation of a parameter θ in a model M based on data y,

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

where

• $p(\theta)$ is the prior distribution for the parameter,

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

- $p(\theta)$ is the prior distribution for the parameter,
- $p(\theta|y)$ is the posterior distribution for the parameter,

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

- $p(\theta)$ is the prior distribution for the parameter.
- \bullet $p(\theta|y)$ is the posterior distribution for the parameter,
- $p(y|\theta)$ is the statistical model (or likelihood), and

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

- $p(\theta)$ is the prior distribution for the parameter.
- $p(\theta|y)$ is the posterior distribution for the parameter,
- $p(y|\theta)$ is the statistical model (or likelihood), and
- p(y) is the prior predictive distribution (or marginal likelihood).

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

- $p(\theta)$ is the prior distribution for the parameter.
- $p(\theta|y)$ is the posterior distribution for the parameter,
- $p(y|\theta)$ is the statistical model (or likelihood), and
- p(y) is the prior predictive distribution (or marginal likelihood).

For point or interval estimation of a parameter θ in a model M based on data y, Bayesian inference is based off

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta} \propto p(y|\theta)p(\theta)$$

- $p(\theta)$ is the prior distribution for the parameter.
- $p(\theta|y)$ is the posterior distribution for the parameter,
- $p(y|\theta)$ is the statistical model (or likelihood), and
- p(y) is the prior predictive distribution (or marginal likelihood).

The hard way:

The hard way:

1. Derive p(y).

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The easy way:

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The easy way:

1. Derive $f(\theta) = p(y|\theta)p(\theta)$.

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The easy way:

- 1. Derive $f(\theta) = p(y|\theta)p(\theta)$.
- 2. Recognize $f(\theta)$ as the kernel of some distribution.

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The easy way:

- 1. Derive $f(\theta) = p(y|\theta)p(\theta)$.
- 2. Recognize $f(\theta)$ as the kernel of some distribution.

Definition

The kernel of a probability density (mass) function is the form of the pdf (pmf) with any terms not involving the random variable omitted.

The hard way:

- 1. Derive p(y).
- 2. Derive $p(\theta|y) = p(y|\theta)p(\theta)/p(y)$.

The easy way:

- 1. Derive $f(\theta) = p(y|\theta)p(\theta)$.
- 2. Recognize $f(\theta)$ as the kernel of some distribution.

Definition

The kernel of a probability density (mass) function is the form of the pdf (pmf) with any terms not involving the random variable omitted.

For example, $\theta^{a-1}(1-\theta)^{b-1}$ is the kernel of a beta distribution.

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

=
$$\int \binom{n}{y}\theta^y (1-\theta)^{n-y} \frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta$$

$$\begin{array}{ll} p(y) &= \int p(y|\theta)p(\theta)d\theta \\ &= \int \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta \\ &= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta \end{array}$$

$$\begin{split} p(y) &= \int p(y|\theta)p(\theta)d\theta \\ &= \int \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta \\ &= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta \\ &= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \end{split}$$

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)$, then

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

$$= \int {n \choose y} \theta^y (1-\theta)^{n-y} \frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} d\theta$$

$$= {n \choose y} \frac{1}{\mathsf{Beta}(a,b)} \int \theta^{a+y-1} (1-\theta)^{b+n-y-1} d\theta$$

$$= {n \choose y} \frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)}$$

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)$, then

$$\begin{split} p(y) &= \int p(y|\theta)p(\theta)d\theta \\ &= \int \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta \\ &= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta \\ &= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \end{split}$$

$$p(\theta|y) = p(y|\theta)p(\theta)/p(y)$$

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)$, then

$$\begin{split} p(y) &= \int p(y|\theta)p(\theta)d\theta \\ &= \int \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta \\ &= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta \\ &= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \end{split}$$

$$\begin{array}{ll} p(\theta|y) &= p(y|\theta)p(\theta)/p(y) \\ &= \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} \left/ \binom{n}{y} \frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \right. \end{array}$$

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)$, then

$$\begin{split} p(y) &= \int p(y|\theta)p(\theta)d\theta \\ &= \int \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta \\ &= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta \\ &= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \end{split}$$

$$\begin{array}{ll} p(\theta|y) &= p(y|\theta)p(\theta)/p(y) \\ &= \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} \left/ \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \right. \\ &= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}}{\mathsf{Beta}(a+y,b+n-y)} \end{array}$$

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)$, then

$$\begin{split} p(y) &= \int p(y|\theta)p(\theta)d\theta \\ &= \int \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}d\theta \\ &= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta \\ &= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \end{split}$$

which is known as the Beta-binomial distribution.

$$\begin{array}{ll} p(\theta|y) &= p(y|\theta)p(\theta)/p(y) \\ &= \binom{n}{y}\theta^y(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} \left/ \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \right. \\ &= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}}{\mathsf{Beta}(a+y,b+n-y)} \end{array}$$

Thus $\theta|y \sim Be(a+y,b+n-y)$.

Suppose
$$Y \sim Bin(n,\theta)$$
 and $\theta \sim Be(a,b)$, then

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
$$\propto \theta^{y}(1-\theta)^{n-y}\theta^{a-1}(1-\theta)^{b-1}$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

$$\propto \theta^{y}(1-\theta)^{n-y}\theta^{a-1}(1-\theta)^{b-1}$$

$$= \theta^{a+y-1}(1-\theta)^{b+n-y-1}$$

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

$$\propto \theta^{y}(1-\theta)^{n-y}\theta^{a-1}(1-\theta)^{b-1}$$

$$= \theta^{a+y-1}(1-\theta)^{b+n-y-1}$$

Suppose $Y \sim Bin(n,\theta)$ and $\theta \sim Be(a,b)$, then

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

$$\propto \theta^{y}(1-\theta)^{n-y}\theta^{a-1}(1-\theta)^{b-1}$$

$$= \theta^{a+y-1}(1-\theta)^{b+n-y-1}$$

Thus $\theta|y \sim Be(a+y,b+n-y)$.

Interpretation of prior parameters

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

Interpretation of prior parameters

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

we can interpret the prior parameters in the following way:

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta | y \sim Be(a + y, b + n - y),$$

we can interpret the prior parameters in the following way:

• a: prior successes

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

- a: prior successes
- *b*: prior failures

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

- a: prior successes
- b: prior failures
- a + b: prior sample size

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

- a: prior successes
- b: prior failures
- a + b: prior sample size
- a/(a+b): prior mean

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

- a: prior successes
- b: prior failures
- a + b: prior sample size
- a/(a+b): prior mean

When constructing the Be(a,b) prior with the binomial likelihood which results in the posterior

$$\theta|y \sim Be(a+y, b+n-y),$$

we can interpret the prior parameters in the following way:

- a: prior successes
- b: prior failures
- a + b: prior sample size
- a/(a+b): prior mean

These interpretations may aid in construction of this prior for a given application.

The posterior is $\theta|y \sim Be(a+y,b+n-y)$.

The posterior is $\theta|y \sim Be(a+y,b+n-y)$. The posterior mean is

$$E[\theta|y] = \frac{a+y}{a+b+n}$$

The posterior is $\theta|y \sim Be(a+y,b+n-y)$. The posterior mean is

$$E[\theta|y] = \frac{a+y}{a+b+n} \\ = \frac{a}{a+b+n} + \frac{y}{a+b+n}$$

The posterior is $\theta|y \sim Be(a+y,b+n-y)$. The posterior mean is

$$E[\theta|y] = \frac{a+y}{a+b+n}$$

$$= \frac{a}{a+b+n} + \frac{y}{a+b+n}$$

$$= \frac{a+b}{a+b+n} \left(\frac{a}{a+b}\right) + \frac{n}{a+b+n} \left(\frac{y}{n}\right)$$

The posterior is $\theta|y \sim Be(a+y,b+n-y)$. The posterior mean is

$$E[\theta|y] = \frac{a+y}{a+b+n}$$

$$= \frac{a}{a+b+n} + \frac{y}{a+b+n}$$

$$= \frac{a+b}{a+b+n} \left(\frac{a}{a+b}\right) + \frac{n}{a+b+n} \left(\frac{y}{n}\right)$$

Thus, the posterior mean is a weighted average of the prior mean a/(a+b) and the MLE y/n with weights equal to the prior sample size (a+b) and the data sample size (n).

Assume $Y \sim Bin(n, \theta)$ and $\theta \sim Be(1, 1)$ (which is equivalent to Unif(0,1)).

Assume $Y \sim Bin(n, \theta)$ and $\theta \sim Be(1, 1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y = 3) out of ten attempts (n = 10).

Assume $Y \sim Bin(n,\theta)$ and $\theta \sim Be(1,1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y=3) out of ten attempts (n=10). Then our posterior is $\theta|y \sim Be(1+3,1+10-3) \stackrel{d}{=} Be(4,8)$.

Assume $Y \sim Bin(n,\theta)$ and $\theta \sim Be(1,1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y=3) out of ten attempts (n=10). Then our posterior is $\theta|y \sim Be(1+3,1+10-3) \stackrel{d}{=} Be(4,8)$. The posterior mean is

$$E[\theta|y] = \frac{2}{12} \times \frac{1}{2} + \frac{10}{12} \times \frac{3}{10} = \frac{4}{12}.$$

Assume $Y \sim Bin(n,\theta)$ and $\theta \sim Be(1,1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y=3) out of ten attempts (n=10). Then our posterior is $\theta|y\sim Be(1+3,1+10-3)\stackrel{d}{=}Be(4,8)$. The posterior mean is

$$E[\theta|y] = \frac{2}{12} \times \frac{1}{2} + \frac{10}{12} \times \frac{3}{10} = \frac{4}{12}.$$

Remark Note that a Be(1,1) is equivalent to $p(\theta) = I(0 < \theta < 1)$

Assume $Y \sim Bin(n,\theta)$ and $\theta \sim Be(1,1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y=3) out of ten attempts (n=10). Then our posterior is $\theta|y \sim Be(1+3,1+10-3) \stackrel{d}{=} Be(4,8)$. The posterior mean is

$$E[\theta|y] = \frac{2}{12} \times \frac{1}{2} + \frac{10}{12} \times \frac{3}{10} = \frac{4}{12}.$$

Remark Note that a Be(1,1) is equivalent to $p(\theta) = I(0 < \theta < 1)$, i.e.

$$p(\theta|y) \propto p(y|\theta)p(\theta) = p(y|\theta) \mathbf{I}(0 < \theta < 1)$$

Assume $Y \sim Bin(n,\theta)$ and $\theta \sim Be(1,1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y=3) out of ten attempts (n=10). Then our posterior is $\theta|y \sim Be(1+3,1+10-3) \stackrel{d}{=} Be(4,8)$. The posterior mean is

$$E[\theta|y] = \frac{2}{12} \times \frac{1}{2} + \frac{10}{12} \times \frac{3}{10} = \frac{4}{12}.$$

Remark Note that a Be(1,1) is equivalent to $p(\theta) = I(0 < \theta < 1)$, i.e.

$$p(\theta|y) \propto p(y|\theta)p(\theta) = p(y|\theta)I(0 < \theta < 1)$$

so it may seem that a reasonable approach to a default prior is to replace $p(\theta)$ by a 1 (times the parameter constraint).

Assume $Y \sim Bin(n,\theta)$ and $\theta \sim Be(1,1)$ (which is equivalent to Unif(0,1)). If we observe three successes (y=3) out of ten attempts (n=10). Then our posterior is $\theta|y\sim Be(1+3,1+10-3)\stackrel{d}{=}Be(4,8)$. The posterior mean is

$$E[\theta|y] = \frac{2}{12} \times \frac{1}{2} + \frac{10}{12} \times \frac{3}{10} = \frac{4}{12}.$$

Remark Note that a Be(1,1) is equivalent to $p(\theta) = I(0 < \theta < 1)$, i.e.

$$p(\theta|y) \propto p(y|\theta)p(\theta) = p(y|\theta)I(0 < \theta < 1)$$

so it may seem that a reasonable approach to a default prior is to replace $p(\theta)$ by a 1 (times the parameter constraint). We will see later that this depends on the parameterization.

Posterior distribution

Distribution — normalized likelihood ---- posterior --- prior

10 / 40

Try it yourself at https://jaradniemi.shinyapps.io/one_parameter_conjugate/.

Point and interval estimation

Nothing inherently Bayesian about obtaining point and interval estimates.

Point and interval estimation

Nothing inherently Bayesian about obtaining point and interval estimates.

Point estimation requires specifying a loss (or utility) function.

Point and interval estimation

Nothing inherently Bayesian about obtaining point and interval estimates.

Point estimation requires specifying a loss (or utility) function.

A 100(1-a)% credible interval is any interval in the posterior that contains the parameter with probability (1-a).

Define a loss (or utility) function
$$L\!\left(\theta,\hat{\theta}\right) = -U\!\left(\theta,\hat{\theta}\right)$$

Define a loss (or utility) function $L\Big(\theta,\hat{\theta}\Big) = -U\Big(\theta,\hat{\theta}\Big)$ where

 \bullet θ is the parameter of interest

Define a loss (or utility) function $L\Big(\theta,\hat{\theta}\Big) = -U\Big(\theta,\hat{\theta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Define a loss (or utility) function $L\Big(\theta,\hat{\theta}\Big) = -U\Big(\theta,\hat{\theta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Define a loss (or utility) function $L\Big(heta,\hat{ heta}\Big) = -U\Big(heta,\hat{ heta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

Define a loss (or utility) function $L\Big(heta,\hat{ heta}\Big) = -U\Big(heta,\hat{ heta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

or maximizes expected utility.

Define a loss (or utility) function $L\Big(\theta,\hat{\theta}\Big) = -U\Big(\theta,\hat{\theta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

or maximizes expected utility.

Define a loss (or utility) function $L\Big(heta,\hat{ heta}\Big) = -U\Big(heta,\hat{ heta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

or maximizes expected utility.

• Mean:
$$\hat{\theta}_{Bayes} = E[\theta|y]$$
 minimizes $L\Big(\theta,\hat{\theta}\Big) = \Big(\theta-\hat{\theta}\Big)^2$

Define a loss (or utility) function $L\!\left(\theta,\hat{\theta}\right) = -U\!\left(\theta,\hat{\theta}\right)$ where

- \bullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(u)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

or maximizes expected utility.

- Mean: $\hat{\theta}_{Bayes} = E[\theta|y]$ minimizes $L\Big(\theta,\hat{\theta}\Big) = \Big(\theta-\hat{\theta}\Big)^2$ Median: $\int_{\hat{\theta}_{Bayes}}^{\infty} p(\theta|y) d\theta = \frac{1}{2}$ minimizes $L\Big(\theta,\hat{\theta}\Big) = \Big|\theta-\hat{\theta}\Big|$

Define a loss (or utility) function $L\Big(heta,\hat{ heta}\Big) = -U\Big(heta,\hat{ heta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

or maximizes expected utility.

- $\bullet \ \ \text{Mean:} \ \hat{\theta}_{Bayes} = E[\theta|y] \ \ \text{minimizes} \ L\Big(\theta, \hat{\theta}\Big) = \Big(\theta \hat{\theta}\Big)^2$
- $\bullet \ \ \text{Median:} \ \int_{\hat{\theta}_{Bayes}}^{\infty} p(\theta|y) d\theta = \tfrac{1}{2} \ \ \text{minimizes} \ \stackrel{\checkmark}{L} \left(\theta, \hat{\theta}\right) = \left|\theta \hat{\theta}\right|$
- Mode: $\hat{\theta}_{Bayes} = \operatorname{argmax}_{\theta} p(\theta|y)$ is obtained by minimizing $L\Big(\theta, \hat{\theta}\Big) = -\mathrm{I}\Big(|\theta \hat{\theta}| < \epsilon\Big)$ as $\epsilon \to 0$,

Define a loss (or utility) function $L\Big(heta,\hat{ heta}\Big) = -U\Big(heta,\hat{ heta}\Big)$ where

- ullet θ is the parameter of interest
- $\hat{\theta} = \hat{\theta}(y)$ is the estimator of θ .

Find the estimator that minimizes the expected loss:

$$\hat{\theta}_{Bayes} = \operatorname{argmin}_{\hat{\theta}} E\left[\left.L\!\left(\theta, \hat{\theta}\right)\right| y\right]$$

or maximizes expected utility.

Common estimators:

• Mean: $\hat{\theta}_{Bayes} = E[\theta|y]$ minimizes $L\Big(\theta,\hat{\theta}\Big) = \Big(\theta-\hat{\theta}\Big)^2$

- $\bullet \ \ \text{Median:} \ \int_{\hat{\theta}_{Bayes}}^{\infty} p(\theta|y) d\theta = \tfrac{1}{2} \ \ \text{minimizes} \ \stackrel{\checkmark}{L} \left(\theta, \hat{\theta}\right) = \left|\theta \hat{\theta}\right|$
- Mode: $\hat{\theta}_{Bayes} = \operatorname{argmax}_{\theta} p(\theta|y)$ is obtained by minimizing $L(\theta, \hat{\theta}) = -I(|\theta \hat{\theta}| < \epsilon)$ as $\epsilon \to 0$, also called maximum a posterior (MAP) estimator.

Mean minimizes squared-error loss

Theorem

The mean minimizes expected squared-error loss.

Mean minimizes squared-error loss

Theorem

The mean minimizes expected squared-error loss.

Proof.

Suppose
$$L\!\left(\theta,\hat{\theta}\right) = \left(\theta - \hat{\theta}\right)^2$$

Theorem

The mean minimizes expected squared-error loss.

Suppose
$$L\Big(heta,\hat{ heta}\Big)=\Big(heta-\hat{ heta}\Big)^2= heta^2-2 heta\hat{ heta}+\hat{ heta}^2$$
 ,

Theorem

The mean minimizes expected squared-error loss.

Suppose
$$L\Big(\theta,\hat{\theta}\Big) = \Big(\theta-\hat{\theta}\Big)^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
$$E\left[L\Big(\theta,\hat{\theta}\Big)\Big|\,y\right] \qquad = E\left[\theta^2|y\right] - 2\hat{\theta}E[\theta|y] + \hat{\theta}^2$$

Theorem

The mean minimizes expected squared-error loss.

Suppose
$$L\Big(\theta,\hat{\theta}\Big) = \Big(\theta-\hat{\theta}\Big)^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
$$E\left[L\Big(\theta,\hat{\theta}\Big)\Big|\,y\Big] \qquad = E\left[\theta^2|y\right] - 2\hat{\theta}E[\theta|y] + \hat{\theta}^2$$

$$\frac{d}{d\hat{\theta}}E\left[L\Big(\theta,\hat{\theta}\Big)\Big|\,y\Big] \qquad = -2E[\theta|y] + 2\hat{\theta}$$

Theorem

The mean minimizes expected squared-error loss.

Suppose
$$L\left(\theta,\hat{\theta}\right) = \left(\theta - \hat{\theta}\right)^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
$$E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = E\left[\theta^2|y\right] - 2\hat{\theta}E[\theta|y] + \hat{\theta}^2$$

$$\frac{d}{d\hat{\theta}}E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = -2E[\theta|y] + 2\hat{\theta} \stackrel{set}{=} 0$$

Theorem

The mean minimizes expected squared-error loss.

Suppose
$$L\left(\theta,\hat{\theta}\right) = \left(\theta - \hat{\theta}\right)^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
$$E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = E\left[\theta^2|y\right] - 2\hat{\theta}E[\theta|y] + \hat{\theta}^2$$

$$\frac{d}{d\hat{\theta}}E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = -2E[\theta|y] + 2\hat{\theta} \stackrel{set}{=} 0 \implies \hat{\theta} = E[\theta|y]$$

Theorem

The mean minimizes expected squared-error loss.

Suppose
$$L\left(\theta,\hat{\theta}\right) = \left(\theta - \hat{\theta}\right)^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
$$E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = E\left[\theta^2|y\right] - 2\hat{\theta}E[\theta|y] + \hat{\theta}^2$$

$$\frac{d}{d\hat{\theta}}E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = -2E[\theta|y] + 2\hat{\theta} \stackrel{set}{=} 0 \implies \hat{\theta} = E[\theta|y]$$

$$\frac{d^2}{d\hat{\theta}^2}E\left[L\left(\theta,\hat{\theta}\right)\Big|y\right] = 2$$

Theorem

The mean minimizes expected squared-error loss.

Proof.

Suppose
$$L\Big(\theta,\hat{\theta}\Big) = \Big(\theta - \hat{\theta}\Big)^2 = \theta^2 - 2\theta\hat{\theta} + \hat{\theta}^2$$
, then
$$E\Big[L\Big(\theta,\hat{\theta}\Big)\Big|y\Big] = E\Big[\theta^2|y\Big] - 2\hat{\theta}E[\theta|y] + \hat{\theta}^2$$

$$\frac{d}{d\hat{\theta}}E\Big[L\Big(\theta,\hat{\theta}\Big)\Big|y\Big] = -2E[\theta|y] + 2\hat{\theta} \stackrel{set}{=} 0 \implies \hat{\theta} = E[\theta|y]$$

$$\frac{d^2}{d\hat{\theta}^2}E\Big[L\Big(\theta,\hat{\theta}\Big)\Big|y\Big] = 2$$

So $\hat{\theta} = E[\theta|y]$ minimizes expected squared-error loss.

Point estimation

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Some typical intervals

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Some typical intervals are

 \bullet Equal-tailed: $a/2 = \int_{-\infty}^L p(\theta|y) d\theta = \int_U^\infty p(\theta|y) d\theta$

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Some typical intervals are

- \bullet Equal-tailed: $a/2 = \int_{-\infty}^{L} p(\theta|y) d\theta = \int_{U}^{\infty} p(\theta|y) d\theta$
- One-sided: either $L=-\infty$ or $U=\infty$

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Some typical intervals are

- Equal-tailed: $a/2 = \int_{-\infty}^L p(\theta|y) d\theta = \int_U^\infty p(\theta|y) d\theta$
- One-sided: either $L=-\infty$ or $U=\infty$
- Highest posterior density (HPD): p(L|y) = p(U|y) for a uni-modal posterior

Definition

A 100(1-a)% credible interval is any interval (L,U) such that

$$1 - a = \int_{L}^{U} p(\theta|y) d\theta.$$

Some typical intervals are

- Equal-tailed: $a/2 = \int_{-\infty}^L p(\theta|y)d\theta = \int_U^\infty p(\theta|y)d\theta$
- One-sided: either $L=-\infty$ or $U=\infty$
- Highest posterior density (HPD): p(L|y) = p(U|y) for a uni-modal posterior which is also the shortest interval

type — equal --- HPD --- lower -- upper

Simulation from the posterior

An estimate of the full posterior can be obtained via simulation, i.e.

```
sim = data.frame(x = rbeta(10000, shape1 = a + y, shape2 = b + n - y))
```


Estimates via simulation

We can also obtain point and interval estimates using these simulations

```
round(c(mean = mean(sim$x), median = median(sim$x)),2)
  mean median
  0.34 0.33
round(quantile(sim$x, c(.025,.975)),2) # Equal-tail
 2.5% 97.5%
 0.11 0.61
round(c(quantile(sim$x, .05),1),2) # Upper
 5%
0.13 1.00
round(c(0,quantile(sim$x, .95)),2) # Lower
      95%
0.00 0.57
```

Guess the probability

What do you think the probability is?

• A 6-sided die lands on 1.

Guess the probability

What do you think the probability is?

- A 6-sided die lands on 1.
- The first base pair in my chromosome 1 is A.

Guess the probability

What do you think the probability is?

- A 6-sided die lands on 1.
- The first base pair in my chromosome 1 is A.
- Kansas City Chiefs win 2023 Super Bowl.

What are priors?

Definition

A prior probability distribution, often called simply the prior, of an uncertain quantity θ is the probability distribution that would express one's uncertainty about θ before the "data" is taken into account.

http://en.wikipedia.org/wiki/Prior_distribution

Definition

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y|\theta) \in \mathcal{F}$, $p(\theta|y) \in \mathcal{P}$ where \mathcal{F} and \mathcal{P} are families of distributions.

Definition

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y|\theta) \in \mathcal{F}$, $p(\theta|y) \in \mathcal{P}$ where \mathcal{F} and \mathcal{P} are families of distributions.

For example, the beta distribution (\mathcal{P}) is conjugate to the binomial distribution with unknown probability of success (\mathcal{F})

Definition

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y|\theta) \in \mathcal{F}$, $p(\theta|y) \in \mathcal{P}$ where \mathcal{F} and \mathcal{P} are families of distributions.

For example, the beta distribution (\mathcal{P}) is conjugate to the binomial distribution with unknown probability of success (\mathcal{F}) since

$$\theta \sim \mathsf{Be}(a,b)$$

$$\theta \sim \mathsf{Be}(a,b)$$
 and $\theta | y \sim \mathsf{Be}(a+y,b+n-y).$

Definition

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y|\theta) \in \mathcal{F}$, $p(\theta|y) \in \mathcal{P}$ where \mathcal{F} and \mathcal{P} are families of distributions.

For example, the beta distribution (P) is conjugate to the binomial distribution with unknown probability of success (F) since

$$\theta \sim \mathsf{Be}(a,b)$$
 and $\theta | y \sim \mathsf{Be}(a+y,b+n-y).$

Definition

A natural conjugate prior is a conjugate prior that has the same functional form as the likelihood.

Definition

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y|\theta) \in \mathcal{F}$, $p(\theta|y) \in \mathcal{P}$ where \mathcal{F} and \mathcal{P} are families of distributions.

For example, the beta distribution (\mathcal{P}) is conjugate to the binomial distribution with unknown probability of success (\mathcal{F}) since

$$\theta \sim \text{Be}(a, b)$$
 and $\theta | y \sim \text{Be}(a + y, b + n - y).$

Definition

A natural conjugate prior is a conjugate prior that has the same functional form as the likelihood.

For example, the beta distribution is a natural conjugate prior since

$$p(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$
 and $L(\theta) \propto \theta^y (1-\theta)^{n-y}$.

$$L(\theta) \propto \theta^y (1-\theta)^{n-y}$$

Theorem

Discrete priors are conjugate.

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete,

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete, i.e.

$$P(\theta = \theta_i) = p_i$$

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete, i.e.

$$P(\theta = \theta_i) = p_i \qquad \sum_{i=1}^{I} p_i = 1$$

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete, i.e.

$$P(\theta = \theta_i) = p_i \qquad \sum_{i=1}^{1} p_i = 1$$

and $p(y|\theta)$ is the model.

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete, i.e.

$$P(\theta = \theta_i) = p_i$$
 $\sum_{i=1}^{I} p_i = 1$

and $p(y|\theta)$ is the model. Then, $P(\theta=\theta_i|y)=p_i'$ is the posterior

Theorem

Discrete priors are conjugate.

Proof.

Suppose $p(\theta)$ is discrete, i.e.

$$P(\theta = \theta_i) = p_i \qquad \sum_{i=1}^{I} p_i = 1$$

and $p(y|\theta)$ is the model. Then, $P(\theta = \theta_i|y) = p_i'$ is the posterior with

$$p_i' = \frac{p_i p(y|\theta_i)}{\sum_{j=1}^{\mathcal{I}} p_j p(y|\theta_j)} \propto p_i p(y|\theta_i).$$

Discrete prior

Discrete mixtures of conjugate priors are conjugate

Theorem

Discrete mixtures of conjugate priors are conjugate.

Discrete mixtures of conjugate priors are conjugate

Theorem

Discrete mixtures of conjugate priors are conjugate.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$

Theorem

Discrete mixtures of conjugate priors are conjugate.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$,

Theorem

Discrete mixtures of conjugate priors are conjugate.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1,$

and
$$p_i(y) = \int p(y|\theta)p_i(\theta)d\theta$$
,

Theorem

Discrete mixtures of conjugate priors are conjugate.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1,$

and
$$p_i(y) = \int p(y|\theta)p_i(\theta)d\theta$$
, then

$$p(\theta|y) = \frac{1}{p(y)}p(y|\theta)p(\theta)$$

Theorem

Discrete mixtures of conjugate priors are conjugate.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1,$

and
$$p_i(y) = \int p(y|\theta)p_i(\theta)d\theta$$
, then

$$p(\theta|y) = \frac{1}{p(y)}p(y|\theta)p(\theta) = \frac{1}{p(y)}p(y|\theta)\sum_{i=1}^{\mathbf{I}}p_ip_i(\theta)$$

Theorem

Discrete mixtures of conjugate priors are conjugate.

Proof.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1,$

$$p(\theta|y) = \frac{1}{p(y)}p(y|\theta)p(\theta) = \frac{1}{p(y)}p(y|\theta)\sum_{i=1}^{\mathrm{I}}p_ip_i(\theta) = \frac{1}{p(y)}\sum_{i=1}^{\mathrm{I}}p_ip(y|\theta)p_i(\theta)$$

Theorem

Discrete mixtures of conjugate priors are conjugate.

Proof.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$,

$$\begin{array}{ll} p(\theta|y) & = \frac{1}{p(y)} p(y|\theta) p(\theta) = \frac{1}{p(y)} p(y|\theta) \sum_{i=1}^{I} p_i p_i(\theta) = \frac{1}{p(y)} \sum_{i=1}^{I} p_i p(y|\theta) p_i(\theta) \\ & = \frac{1}{p(y)} \sum_{i=1}^{I} p_i p_i(y) p_i(\theta|y) \end{array}$$

Theorem

Discrete mixtures of conjugate priors are conjugate.

Proof.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$,

$$\begin{array}{ll} p(\theta|y) & = \frac{1}{p(y)} p(y|\theta) p(\theta) = \frac{1}{p(y)} p(y|\theta) \sum_{i=1}^{I} p_i p_i(\theta) = \frac{1}{p(y)} \sum_{i=1}^{I} p_i p(y|\theta) p_i(\theta) \\ & = \frac{1}{p(y)} \sum_{i=1}^{I} p_i p_i(y) p_i(\theta|y) = \sum_{i=1}^{I} \frac{p_i p_i(y)}{p(y)} p_i(\theta|y) \end{array}$$

Theorem

Discrete mixtures of conjugate priors are conjugate.

Proof.

Let
$$p_i = P(H_i)$$
 and $p_i(\theta) = p(\theta|H_i)$,

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$,

$$p(\theta|y) = \frac{1}{p(y)}p(y|\theta)p(\theta) = \frac{1}{p(y)}p(y|\theta)\sum_{i=1}^{I}p_{i}p_{i}(\theta) = \frac{1}{p(y)}\sum_{i=1}^{I}p_{i}p(y|\theta)p_{i}(\theta)$$
$$= \frac{1}{p(y)}\sum_{i=1}^{I}p_{i}p_{i}(y)p_{i}(\theta|y) = \sum_{i=1}^{I}\frac{p_{i}p_{i}(y)}{p(y)}p_{i}(\theta|y) = \sum_{i=1}^{I}\frac{p_{i}p_{i}(y)}{\sum_{i=1}^{I}p_{i}p_{i}(y)}p_{i}(\theta|y)$$

Bottom line: if

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$

Bottom line: if

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$

Bottom line: if

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$

Bottom line: if

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$

$$\theta|y \sim \sum_{i=1}^{I} p_i' p_i(\theta|y)$$

Bottom line: if

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$

$$\theta|y \sim \sum_{i=1}^{I} p_i' p_i(\theta|y) \qquad p_i' \propto p_i p_i(y)$$

Bottom line: if

$$\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$$
 $\sum_{i=1}^{I} p_i = 1$

and $p_i(y) = \int p(y|\theta)p_i(\theta)d\theta$, then

$$\theta|y \sim \sum_{i=1}^{I} p_i' p_i(\theta|y) \qquad p_i' \propto p_i p_i(y)$$

where $p_i(\theta|y) = p(y|\theta)p_i(\theta)/p_i(y)$.

Recall, if $Y \sim Bin(n,\theta)$ and $\theta \sim \text{Be}(a,b)$,

Recall, if $Y \sim Bin(n,\theta)$ and $\theta \sim \text{Be}(a,b)$, then the marginal likelihood is

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

Recall, if $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then the marginal likelihood is

$$\begin{split} p(y) &= \int p(y|\theta) p(\theta) d\theta = \int \binom{n}{y} \theta^y (1-\theta)^{n-y} \frac{\theta^{a-1} (1-\theta)^{b-1}}{\mathsf{Beta}(a,b)} \\ &= \binom{n}{y} \frac{1}{\mathsf{Beta}(a,b)} \int \theta^{a+y-1} (1-\theta)^{b+n-y-1} d\theta \\ &= \binom{n}{y} \frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \quad y = 0,\dots,n \end{split}$$

which is called the beta-binomial distribution with parameters a + y and b + n - y.

Recall, if $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then the marginal likelihood is

$$p(y) = \int p(y|\theta)p(\theta)d\theta = \int \binom{n}{y}\theta^{y}(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}$$
$$= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta$$
$$= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \quad y = 0,\dots,n$$

which is called the beta-binomial distribution with parameters a+y and b+n-y. If $Y \sim Bin(n,\theta)$ and

$$\theta \sim p \operatorname{Be}(a_1, b_1) + (1 - p) \operatorname{Be}(a_2, b_2),$$

Recall, if $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then the marginal likelihood is

$$p(y) = \int p(y|\theta)p(\theta)d\theta = \int \binom{n}{y}\theta^{y}(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}$$
$$= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta$$
$$= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \quad y = 0,\dots,n$$

which is called the beta-binomial distribution with parameters a+y and b+n-y. If $Y \sim Bin(n,\theta)$ and

$$\theta \sim p \operatorname{Be}(a_1, b_1) + (1 - p) \operatorname{Be}(a_2, b_2),$$

then

$$\theta|y \sim p' \operatorname{Be}(a_1 + y, b_1 + n - y) + (1 - p') \operatorname{Be}(a_2 + y, b_2 + n - y)$$

Recall, if $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then the marginal likelihood is

$$p(y) = \int p(y|\theta)p(\theta)d\theta = \int \binom{n}{y}\theta^{y}(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}$$
$$= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta$$
$$= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \quad y = 0,\dots,n$$

which is called the beta-binomial distribution with parameters a+y and b+n-y. If $Y \sim Bin(n,\theta)$ and

$$\theta \sim p \operatorname{Be}(a_1, b_1) + (1 - p) \operatorname{Be}(a_2, b_2),$$

then

$$\theta|y \sim p' \operatorname{Be}(a_1 + y, b_1 + n - y) + (1 - p')\operatorname{Be}(a_2 + y, b_2 + n - y)$$

with

$$p' = \frac{p \, p_1(y)}{p \, p_1(y) + (1-p) p_2(y)}$$

Recall, if $Y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then the marginal likelihood is

$$p(y) = \int p(y|\theta)p(\theta)d\theta = \int \binom{n}{y}\theta^{y}(1-\theta)^{n-y}\frac{\theta^{a-1}(1-\theta)^{b-1}}{\mathsf{Beta}(a,b)}$$
$$= \binom{n}{y}\frac{1}{\mathsf{Beta}(a,b)}\int \theta^{a+y-1}(1-\theta)^{b+n-y-1}d\theta$$
$$= \binom{n}{y}\frac{\mathsf{Beta}(a+y,b+n-y)}{\mathsf{Beta}(a,b)} \quad y = 0,\dots,n$$

which is called the beta-binomial distribution with parameters a+y and b+n-y. If $Y \sim Bin(n,\theta)$ and

$$\theta \sim p \operatorname{Be}(a_1, b_1) + (1 - p) \operatorname{Be}(a_2, b_2),$$

then

$$\theta|y \sim p' \operatorname{Be}(a_1 + y, b_1 + n - y) + (1 - p') \operatorname{Be}(a_2 + y, b_2 + n - y)$$

with

$$p' = \frac{p \, p_1(y)}{p \, p_1(y) + (1-p) p_2(y)} \qquad p_i(y) = \binom{n}{y} \frac{\mathsf{Beta}(a_i + y, b_i + n - y)}{\mathsf{Beta}(a_i, b_i)}$$

Mixture priors

Binomial, mixture of betas

Definition

A default prior is used when a data analyst is unable or unwilling to specify an informative prior distribution.

Can we always use $p(\theta) \propto 1$?

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter,

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$,

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ is

$$p_{\theta}(\theta) \propto 1 \left| \frac{d}{d\theta} \log(\theta/[1-\theta]) \right|$$

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ is

$$p_{\theta}(\theta) \propto 1 \left| \frac{d}{d\theta} \log(\theta/[1-\theta]) \right|$$

$$= \frac{1-\theta}{\theta} \left[\frac{1}{1-\theta} + \frac{\theta}{[1-\theta]^2} \right]$$

$$= \frac{1-\theta}{\theta} \left[\frac{[1-\theta]+\theta}{[1-\theta]^2} \right]$$

$$= \theta^{-1}[1-\theta]^{-1}$$

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ is

$$p_{\theta}(\theta) \propto 1 \left| \frac{d}{d\theta} \log(\theta/[1-\theta]) \right|$$

$$= \frac{1-\theta}{\theta} \left[\frac{1}{1-\theta} + \frac{\theta}{[1-\theta]^2} \right]$$

$$= \frac{1-\theta}{\theta} \left[\frac{[1-\theta]+\theta}{[1-\theta]^2} \right]$$

$$= \theta^{-1} [1-\theta]^{-1}$$

a Be(0,0), if that were a proper distribution,

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ is

$$p_{\theta}(\theta) \propto 1 \left| \frac{d}{d\theta} \log(\theta/[1-\theta]) \right|$$

$$= \frac{1-\theta}{\theta} \left[\frac{1}{1-\theta} + \frac{\theta}{[1-\theta]^2} \right]$$

$$= \frac{1-\theta}{\theta} \left[\frac{[1-\theta]+\theta}{[1-\theta]^2} \right]$$

$$= \theta^{-1} [1-\theta]^{-1}$$

a Be(0,0), if that were a proper distribution, and is different from setting $p(\theta) \propto 1$ which results in the Be(1,1) prior.

Can we always use $p(\theta) \propto 1$?

Suppose we use $\phi = \log(\theta/[1-\theta])$, the log odds as our parameter, and set $p(\phi) \propto 1$, then the implied prior on θ is

$$p_{\theta}(\theta) \propto 1 \left| \frac{d}{d\theta} \log(\theta/[1-\theta]) \right|$$

$$= \frac{1-\theta}{\theta} \left[\frac{1}{1-\theta} + \frac{\theta}{[1-\theta]^2} \right]$$

$$= \frac{1-\theta}{\theta} \left[\frac{[1-\theta]+\theta}{[1-\theta]^2} \right]$$

$$= \theta^{-1} [1-\theta]^{-1}$$

a Be(0,0), if that were a proper distribution, and is different from setting $p(\theta) \propto 1$ which results in the Be(1,1) prior. Thus, the constant prior is not invariant to the parameterization used.

Definition

Fisher information, $\mathcal{I}(\theta)$, for a scalar parameter θ is the expectation of the second derivative of the log-likelihood,

Definition

Fisher information, $\mathcal{I}(\theta)$, for a scalar parameter θ is the expectation of the second derivative of the log-likelihood, i.e.

$$\mathcal{I}(\theta) = E\left[\left.\frac{\partial^2}{\partial \theta^2} \log p(y|\theta)\right| \theta\right].$$

Definition

Fisher information, $\mathcal{I}(\theta)$, for a scalar parameter θ is the expectation of the second derivative of the log-likelihood, i.e.

$$\mathcal{I}(\theta) = E\left[\left.\frac{\partial^2}{\partial \theta^2} \log p(y|\theta)\right| \theta\right].$$

Theorem (Casella & Berger (2nd ed) Lemma 7.3.11)

For exponential families,

$$\mathcal{I}(\theta) = -E\left[\left(\frac{\partial}{\partial \theta} \log p(y|\theta)\right)^2 \middle| \theta\right].$$

Definition

Fisher information, $\mathcal{I}(\theta)$, for a scalar parameter θ is the expectation of the second derivative of the log-likelihood, i.e.

$$\mathcal{I}(\theta) = E\left[\left.\frac{\partial^2}{\partial \theta^2} \log p(y|\theta)\right| \theta\right].$$

Theorem (Casella & Berger (2nd ed) Lemma 7.3.11)

For exponential families,

$$\mathcal{I}(\theta) = -E\left[\left(\frac{\partial}{\partial \theta} \log p(y|\theta)\right)^2 \middle| \theta\right].$$

If $\theta = (\theta_1, \dots, \theta_n)$, then the Fisher information is the expectation of the Hessian matrix, which has the ith row and jth column that is the partial derivative with respect to θ_i followed by the partial derivative with respect to θ_j , of the log-likelihood.

Definition

Jeffreys prior is a prior that is invariant to parameterization

Definition

Jeffreys prior is a prior that is invariant to parameterization and is obtained via

$$p(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}$$

Definition

Jeffreys prior is a prior that is invariant to parameterization and is obtained via

$$p(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}$$

where $\mathcal{I}(\theta)$ is the Fisher information.

Definition

Jeffreys prior is a prior that is invariant to parameterization and is obtained via

$$p(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}$$

where $\mathcal{I}(\theta)$ is the Fisher information.

For example, for a binomial distribution $\mathcal{I}(\theta) = \frac{n}{\theta[1-\theta]}$,

Definition

Jeffreys prior is a prior that is invariant to parameterization and is obtained via

$$p(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}$$

where $\mathcal{I}(\theta)$ is the Fisher information.

For example, for a binomial distribution $\mathcal{I}(\theta) = \frac{n}{\theta[1-\theta]}$, so

$$p(\theta) \propto \theta^{-1/2} (1-\theta)^{-1/2} = \theta^{1/2-1} (1-\theta)^{1/2-1}$$

Definition

Jeffreys prior is a prior that is invariant to parameterization and is obtained via

$$p(\theta) \propto \sqrt{\det \mathcal{I}(\theta)}$$

where $\mathcal{I}(\theta)$ is the Fisher information.

For example, for a binomial distribution $\mathcal{I}(\theta) = \frac{n}{\theta[1-\theta]}$, so

$$p(\theta) \propto \theta^{-1/2} (1 - \theta)^{-1/2} = \theta^{1/2 - 1} (1 - \theta)^{1/2 - 1}$$

a Be(1/2,1/2) distribution.

Fisher information

Theorem

The Fisher information for $Y \sim Bin(n,\theta)$ is $\mathcal{I}(\theta) = \frac{n}{\theta(1-\theta)}$.

Proof.

Since the binomial is an exponential family,

$$\mathcal{I}(\theta) = -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log p(y|\theta) \right]$$

Fisher information

Theorem

The Fisher information for $Y \sim Bin(n, \theta)$ is $\mathcal{I}(\theta) = \frac{n}{\theta(1-\theta)}$.

Proof.

Since the binomial is an exponential family,

$$\mathcal{I}(\theta) = -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log p(y|\theta) \right] = -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log \binom{n}{y} + y \log \theta + (n-y) \log(1-\theta) \right]$$

Fisher information

Theorem

The Fisher information for $Y \sim Bin(n, \theta)$ is $\mathcal{I}(\theta) = \frac{n}{\theta(1-\theta)}$.

Proof.

Since the binomial is an exponential family,

$$\mathcal{I}(\theta) = -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log p(y|\theta) \right] = -E_{y|\theta} \left[\frac{\partial^2}{\partial \theta^2} \log \binom{n}{y} + y \log \theta + (n-y) \log(1-\theta) \right]$$

$$= -E_{y|\theta} \left[\frac{\partial}{\partial \theta} \frac{y}{\theta} - \frac{n-y}{1-\theta} \right] = -E_{y|\theta} \left[-\frac{y}{\theta^2} - \frac{n-y}{(1-\theta)^2} \right] = -\left[-\frac{n\theta}{\theta^2} - \frac{n-n\theta}{(1-\theta)^2} \right] = \frac{n}{\theta} + \frac{n}{(1-\theta)}$$

$$= \frac{n}{\theta(1-\theta)}$$

Distribution — normalized likelihood ---- prior

If
$$Y \sim Bin(n, \theta)$$
 and $p(\theta) = e^{\theta}/(e-1)$, then

$$p(\theta|y) \propto f(\theta) = \theta^y (1-\theta)^{n-y} e^{\theta}$$

which is not a known distribution.

If
$$Y \sim Bin(n,\theta)$$
 and $p(\theta) = e^{\theta}/(e-1)$, then

$$p(\theta|y) \propto f(\theta) = \theta^y (1-\theta)^{n-y} e^{\theta}$$

which is not a known distribution.

Options

• Plot $f(\theta)$ (possibly multiplying by a constant).

If
$$Y \sim Bin(n,\theta)$$
 and $p(\theta) = e^{\theta}/(e-1)$, then

$$p(\theta|y) \propto f(\theta) = \theta^y (1-\theta)^{n-y} e^{\theta}$$

which is not a known distribution.

Options

- Plot $f(\theta)$ (possibly multiplying by a constant).
- Find $i = \int f(\theta) d\theta$, so that $p(\theta|y) = f(\theta)/i$.

If $Y \sim Bin(n,\theta)$ and $p(\theta) = e^{\theta}/(e-1)$, then

$$p(\theta|y) \propto f(\theta) = \theta^y (1-\theta)^{n-y} e^{\theta}$$

which is not a known distribution.

Options

- Plot $f(\theta)$ (possibly multiplying by a constant).
- Find $i = \int f(\theta) d\theta$, so that $p(\theta|y) = f(\theta)/i$.
- ullet Evaluate $f(\theta)$ on a grid and normalize by the grid spacing.

Plot of $f(\theta)$

Binomial, nonconjugate prior

Numerical integration

Find
$$i = \int f(\theta) d\theta$$
, so that $p(\theta|y) = f(\theta)/i$.

```
(i = integrate(f, 0, 1))
```

0.001066499 with absolute error < 1.2e-17

Nonconjugate prior, numerical integration

Binomial, nonconjugate prior

Nonconjugate prior, evaluated on a grid

Binomial, nonconjugate prior


```
theta[c(which(cumsum(d)*w>0.025)[1]-1, which(cumsum(d)*w>0.975)[1])] # 95\% CI
[1] 0.105 0.625
```

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

to see that $p(\theta|y)$ is a proper normalized density

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

$$\int p(\theta|y)d\theta$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

$$\int p(\theta|y)d\theta = \int \frac{f(\theta)}{\int f(\theta)d\theta}d\theta$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

$$\int p(\theta|y)d\theta = \int \frac{f(\theta)}{\int f(\theta)d\theta}d\theta = \int \frac{f(\theta)}{c}d\theta$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

$$\int p(\theta|y)d\theta = \int \frac{f(\theta)}{\int f(\theta)d\theta}d\theta = \int \frac{f(\theta)}{c}d\theta = \frac{1}{c}\int f(\theta)d\theta$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

$$\int p(\theta|y)d\theta = \int \frac{f(\theta)}{\int f(\theta)d\theta}d\theta = \int \frac{f(\theta)}{c}d\theta = \frac{1}{c}\int f(\theta)d\theta = \frac{c}{c}$$

Definition

An unnormalized density, $f(\theta)$, is proper if $\int f(\theta)d\theta = c < \infty$, and otherwise it is improper.

To create a normalized density from a proper unnormalized density, use

$$p(\theta|y) = \frac{f(\theta)}{c}$$

$$\int p(\theta|y)d\theta = \int \frac{f(\theta)}{\int f(\theta)d\theta}d\theta = \int \frac{f(\theta)}{c}d\theta = \frac{1}{c}\int f(\theta)d\theta = \frac{c}{c} = 1$$

Recall that Be(a, b) is a proper probability distribution if a > 0, b > 0.

Recall that Be(a, b) is a proper probability distribution if a > 0, b > 0.

Suppose $Y \sim Bin(n,\theta)$ and $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$, i.e. the kernel of a Be(0,0) distribution.

Recall that Be(a, b) is a proper probability distribution if a > 0, b > 0.

Suppose $Y \sim Bin(n,\theta)$ and $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$, i.e. the kernel of a Be(0,0) distribution. This is an improper distribution.

Recall that Be(a, b) is a proper probability distribution if a > 0, b > 0.

Suppose $Y \sim Bin(n,\theta)$ and $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$, i.e. the kernel of a Be(0,0) distribution. This is an improper distribution.

The posterior, $\theta | y \sim Be(y, n - y)$, is proper if 0 < y < n.