PID Controller Design

Dr. Bishakh Bhattacharya

Professor, Department of Mechanical Engineering

IIT Kanpur

This Lecture Contains

- ➤ What is PID Control?
- ► Advantage of PID
- ➤ Advantage of PI and PD Controller
- **≻** Assignment

What is PID Control?

- Dynamic Systems are often controlled with the help of a three term compensator known as PID; P – stands for Proportional Control, I stands for Integral Control and D stands for Derivative Control.
- Consider a closed loop system with unity feedback as follows:

• The plant P, is controlled by a control input u(t), which can be expressed as follows:

$$u(t) = K_p e(t) + K_i \int e(t) dt + K_d e(t)$$

Frequency Domain Representation of Controller

The control input could be represented in frequency domain as follows:

$$U(s) = \left[K_p + \frac{K_i}{s} + K_d s\right] E(s)$$

The closed loop transfer function could be written as follows:

$$\frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1 + C(s)P(s)}$$

This tells us that the poles of the closed loop transfer functions are actually the
zeros of 1+C(s)P(s). By considering the three terms as three parameters, you
can study the effect of changing each one of these parameters on the root
locus.

Advantage of Different Parameters of PID Controller

Parameters	Advantage	Limitation
K _p	Adjustment of Controller output	May cause instability
K _i	Produces zero steady state error	Slow dynamic Response and Instability
K _d	Provides rapid system response	Sensitive to Noise and non-zero offset

Application of PI Controller on a First Order System

Consider a first order plant as follows:

$$P(s) = \frac{K}{1 + \tau s}$$

• If we apply a PI controller then *C(s)* becomes:

$$C(s) = K_p + \frac{K_i}{s} = K_p \frac{s + \frac{K_i}{K_p}}{s}$$

• The closed loop transfer function may be written as:

$$\frac{Y(s)}{R(s)} = (KK_p) \frac{s + K_i / K_p}{\tau s^2 + (1 + K K_p) s + KK_i}$$

Numerical Simulation of the system

• Let us consider the first order system with K=1 and τ = 10 s, hence the open loop system transfer function may be written as

$$T(s) = \frac{1}{1 + 10s}$$

 Let us look at the unit step response of this system – the controller has miserably failed to follow!

First Order System - Numerical Simulation

Now let us consider a PI controller with the following parameters:

$$K=1$$
 $K_p=1$
 $K_i=10$

The new closed loop transfer function may be written as:

$$T = \frac{s+10}{10\,s^2 + 2s + 10}$$

Response of the new system

 The unit step response of the new system is shown below vis a vis the old system:

Application of PD Controller on a First Order System

Consider a first order plant as follows:

$$P(s) = \frac{K}{1 + \tau s}$$

• If we apply a PD controller then *C(s)* becomes:

$$C(s) = K_p + K_d s = K_d (s + K_p / K_d)$$

The closed loop transfer function may be written as:

$$\frac{Y(s)}{R(s)} = \frac{KK_d s + KK_p}{(\tau + KK_d) s + (1 + KK_p)}$$

A numerical example

• Let us consider a numerical example where K=10 and τ = 0.1. The response of the system without any compensator is as follows: Note that it took about 0.05 seconds for the system to reach the steady state which is 0.9.

A Modified Response

• If you now add a compensator with $K_p = 9$ and $K_d = 1$, you can see the change in step response as follows. You may observe that the same value (0.9) is obtained in less than 0.2 seconds.

Assignment

Consider a second order system with natural frequency 10 Hz and Damping coefficient = 0.1. Find out a PID controller which will improve the steady state performance ten times and also improve the peak-time 5 times.

Hints: Consider the standard second order models discussed earlier and cascade it with a PID controller as shown in this lecture. Take trial values of K_{p_i} K_i and K_d and find out the response – continue till the performance is satisfactory.

Special References for this lecture

- Feedback Control of Dynamic Systems, Frankline, Powell and Emami, Pearson
- Control Systems Engineering Norman S Nise, John Wiley & Sons
- Design of Feedback Control Systems Stefani, Shahian, Savant, Hostetter
 Oxford