	Teste de Matemática A				
	2019 / 2020				
Teste N.º 2					
Matemática A					
Duração do Teste: 90 minutos					
NÃO É PERMITIDO O USO DE CALCULADORA					
10.º Ano de Escolaridade					
Nome do aluno:	N.º: Turma:				

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Fixada uma unidade de comprimento, considere um cubo de aresta a.

O volume da esfera circunscrita ao cubo pode ser dado, em função de a e em unidades de volume, por:

(A) $4\sqrt{3}\pi a^3$

(B) $3\sqrt{3}\pi a^3$

(C) $\frac{4\sqrt{3}}{3}\pi a^3$

- **(D)** $\frac{\sqrt{3}}{2} \pi a^3$
- 2. Na figura está representado um triângulo equilátero [ABC].

Os pontos D, E e F são os pontos médios dos lados do triângulo.

O perímetro do triângulo [ABC] é igual a 8. Sejam X, Y e Z três pontos.

Sabe-se que:

- $Y = A \frac{1}{2}\overrightarrow{BD}$
- $Z = F + \frac{1}{4}\overrightarrow{CB}$

O perímetro do triângulo [XYZ] é igual a:

(A) 4

(B) 3

(C) 2

- **(D)** 1
- **3.** Considere, num referencial ortogonal e monométrico Oxy, a bissetriz dos quadrantes pares. Sejam $A \in B$ os pontos dessa bissetriz com ordenadas $2 \in S$, respetivamente.
 - **3.1.** Determine as coordenadas do vetor \vec{u} , colinear e com sentido contrário de \vec{AB} e de norma igual a 6.
 - **3.2.** Seja P um ponto que pertence à mediatriz do segmento de reta [AB]. Sabe-se que a ordenada do ponto P é igual ao dobro da sua abcissa.

Determine as coordenadas de P.

3.3. Considere que a semirreta $\dot{O}A$ roda 180° em torno da origem, no plano Oxy. Nessa rotação, o segmento de reta [AB], que está contido na semirreta $\dot{O}A$, descreve uma região plana. Uma condição que define essa região plana é:

(A)
$$\sqrt{8} \le x^2 + y^2 \le \sqrt{50} \ \land \ y \le -x$$

(B)
$$\sqrt{8} \le x^2 + y^2 \le \sqrt{50} \land y \ge -x$$

(C)
$$8 \le x^2 + y^2 \le 50 \land y \le -x$$

(D)
$$8 \le x^2 + y^2 \le 50 \land y \ge -x$$

4. Para um certo número real negativo a são paralelas as retas r e s, definidas, num referencial o.n. 0xy, pelas condições:

$$r: 8ax + a^2y - 3 = 0$$
 e $s: (x, y) = (-1, -1) + k(2a, -a^2), k \in \mathbb{R}$

Qual é o valor de a?

(A)
$$-1$$

(D)
$$-4$$

5. Fixado um referencial o.n. do plano, considere a seguinte condição:

$$3x - y \le 2$$
 \land $x \ge -3$ \land $3 - y \ge 0$

Sabe-se que a representação geométrica do conjunto de pontos do plano definido pela condição anterior é um triângulo.

Represente-o num referencial e determine o valor exato da sua área.

6. Na figura está representado, num referencial o.n. Oxyz, uma pirâmide quadrangular regular [ABCDV].

Os vértices A e C têm coordenadas (2,1,0) e (0,-1,2), respetivamente. O vértice V tem coordenadas (3,-1,2).

- 6.1. Defina por uma condição:
 - **6.1.1.** o plano que contém o vértice da pirâmide e é paralelo ao plano y0z.
 - **6.1.2.** a superfície esférica de centro em V e que passa em B.
 - **6.1.3.** o segmento de reta [VW], sendo W o ponto simétrico do ponto V, em relação ao plano xOy.
- **6.2.** Determine uma equação do plano *DVB*.

Apresente essa equação na forma ax + by + cz + d = 0.

6.3. Determine o volume da pirâmide.

- 7. A interseção da superfície esférica $(x-1)^2+y^2+(z+1)^2=25$ com o plano de equação x=4 é:
 - (A) uma circunferência de centro C(1, 0, -1) e raio igual a 5.
 - **(B)** uma circunferência de centro C(4, 0, -1) e raio igual a 5.
 - **(C)** uma circunferência de centro C(1, 0, -1) e raio igual a 4.
 - **(D)** uma circunferência de centro C(4, 0, -1) e raio igual a 4.

FIM

COTAÇÕES

	Item													
Ī	Cotação (em pontos)													
	1.	2.	3.1.	3.2.	3.3.	4.	5.	6.1.1.	6.1.2.	6.1.3.	6.2.	6.3.	7.	
Ī	8	8	20	20	8	8	25	10	20	20	20	25	8	200