Quiz 10	Graded
Student	
Colin Cano	
Total Points	
8 / 10 pts	
Question 1	
1	5 / 5 pts
 ✓ - 0 pts Correct: Rectangles are drawn with left endpoints, estimated area is 8. 	
Question 2	
2	3 / 5 pts
Elements are incorrect. Select all that apply.	
 ✓ - 2 pts Student does not use the Riemann sum to solve the integral. 	

Name: COCH COMO

Student ID:

1. Use four rectangles to estimate the the area under the given curve using left endpoints. Draw the rectangles on the figure below.

$$f(x_0) = 3$$

 $f(x_1) = 1$
 $f(x_2) = 3$
 $f(x_3) = 4$

2. From the textbook we know that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \text{As a in the second of t$$

Use this fact to calculate the following integral, which has already been translated into a Riemann Sum:

$$\int_0^2 4x \, dx = \lim_{n \to \infty} \sum_{i=1}^n \frac{2}{n} \cdot 4 \cdot \frac{2i}{n}$$

SCRATCH PAPER