Agricultural Classification of Multi-Temporal MODIS Imagery in Northwest Argentina Using Kansas Crop Phenologies

September 17, 2014

background.pdf

Jarrett Keifer Department of Geography

./logo.eps

#### RESEARCH QUESTIONS

#### Can I...

- develop a phenological classification toolset?
- extract crop signatures from Kansas data?
- classify an Argentina study area with the Kansas signatures?

#### RESEARCH QUESTIONS

#### Can I...

- develop a phenological classification toolset?
- extract crop signatures from Kansas data?
- classify an Argentina study area with the Kansas signatures?

#### RESEARCH QUESTIONS

#### Can I...

- develop a phenological classification toolset?
- extract crop signatures from Kansas data?
- classify an Argentina study area with the Kansas signatures?

## OUTLINE

- 1. Background
- 2. Study Areas
- 3. Data and Methods
- 4. Results and Discussion
- 5. Conclusion



- ▶ 1998 to 2002: 940,000 ha deforested
- ► Ley de Bosques passed in 2007
  - ► Classified red, yellow, and green areas

- ▶ 1998 to 2002: 940,000 ha deforested
- ► Ley de Bosques passed in 2007
  - ► Classified red, yellow, and green areas

- ▶ 1998 to 2002: 940,000 ha deforested
- ► Ley de Bosques passed in 2007
  - $\,\blacktriangleright\,$  Classified red, yellow, and green areas

Table: Deforestation in Argentina, 2006 to 2011

| Time Period                                                                    | <b>Hectares Deforested</b> |
|--------------------------------------------------------------------------------|----------------------------|
| 2006 to Ley de Bosques (2007)<br>Ley de Bosques to OTBN (2009)<br>OTBN to 2011 | 573 296<br>473 001         |
| Total                                                                          | 459 108<br>1 505 405       |

- ► Deforestation has remained extremely high
- ► The effect of the the *Ley de Bosques* has been questioned

- ► Argentina's soybean cultivation has continually increased
  - ▶ 5 million ha in 1993 to 19 million ha in 2011

- Soy production highly mechanized
- Over 99 percent of Argentine soy is genetically modified
  - ► Resistance to glyphosate = heavy pesticide use
- ► Capital requirements cut out small producers

- ► Soy production highly mechanized
- ► Over 99 percent of Argentine soy is genetically modified
  - ► Resistance to glyphosate = heavy pesticide use
- ► Capital requirements cut out small producers

- Soy production highly mechanized
- ► Over 99 percent of Argentine soy is genetically modified
  - ► Resistance to glyphosate = heavy pesticide use
- ► Capital requirements cut out small producers

- Soy production highly mechanized
- ► Over 99 percent of Argentine soy is genetically modified
  - ► Resistance to glyphosate = heavy pesticide use
- Capital requirements cut out small producers

- Prevailing perception that soy drives deforestation
- ► Deforestation research has neglected to analyze specific crop cover

- ► Prevailing perception that soy drives deforestation
- ► Deforestation research has neglected to analyze specific crop cover

# Goal

Develop a crop mapping toolset which is efficient and economical

# Goal

Develop a crop mapping toolset which is efficient and economical

## Why is this important?

- ► Better understanding of the dynamics of deforestation
- ► More effective land management policies

# Goal

Develop a crop mapping toolset which is efficient and economical

### Why is this important?

- ► Better understanding of the dynamics of deforestation
- ► More effective land management policies

# Goal

Develop a crop mapping toolset which is efficient and economical

### Why is this important?

- ► Better understanding of the dynamics of deforestation
- ► More effective land management policies

### Problem

#### Problem

- ► A Vegetation Index (VI) can help with crop identification
  - ► Normalized Difference Vegetation Index (NDVI)

#### Problem

- ► A Vegetation Index (VI) can help with crop identification
  - ► Normalized Difference Vegetation Index (NDVI)

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

- ► is a ratioing index
- minimizes multiplicative noise
- ▶ has issues with non-linearity and additive noise

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

- ► is a ratioing index
- ► minimizes multiplicative noise
- ▶ has issues with non-linearity and additive noise

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$

- ► is a ratioing index
- minimizes multiplicative noise
- ► has issues with non-linearity and additive noise

# Problem

## Problem

Must be able to classify crops by type

### Questions

- ► What if two crops have similar VI values on a single date?
- ► How does one determine a crop's VI values?

### Question

What if two crops have similar VI values on a single date?

### Question

What if two crops have similar VI values on a single date?

#### **Answer**

Use imagery from multiple dates.

#### TIME SERIES IMAGES

# NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor

- ► Terra and Aqua satellites
- Each images the Earth once per day
- ► Composite 16-day NDVI imagery at 250-meter resolution

#### TIME SERIES IMAGES

# NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor

- ► Terra and Aqua satellites
- ► Each images the Earth once per day
- ► Composite 16-day NDVI imagery at 250-meter resolution

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor

- ► Terra and Aqua satellites
- ► Each images the Earth once per day
- ► Composite 16-day NDVI imagery at 250-meter resolution

# Time Series Image (TSI)

- ► Each band is a 16-day VI composite
- Bands are sequential composites
- ► Contains enough bands to cover an entire growing season

# Time Series Image (TSI)

- ► Each band is a 16-day VI composite
- Bands are sequential composites
- Contains enough bands to cover an entire growing season

# Time Series Image (TSI)

- ► Each band is a 16-day VI composite
- Bands are sequential composites
- ► Contains enough bands to cover an entire growing season

# **Key Points**

- A TSI pixel shows VI values over time
- Each crop's phenology exhibits a unique temporal signature

# CROP TEMPORAL SIGNATURES



(From Wardlow and Egbert 2005)

## Question

How does one determine a crop's VI values?

## Question

How does one determine a crop's VI values?

## **Answer**

Existing approaches require training sites.

## Problem

What if you don't have training sites?

# **Key Points**

- A TSI pixel shows VI values over time
- Each crop's phenology exhibits a unique temporal signature

# **Key Points**

- ► A TSI pixel shows VI values over time
- ► Each crop's phenology exhibits a unique temporal signature

Sounds a lot like hyperspectral remote sensing...

# Idea

Could we use a hyperspectal-like method to fit known crop signatures to unknown pixels?

# TIME SERIES IMAGES Graphics/transformations.pdf

Two-Step Filter (TSF) method from sakamoto2010a-two-step

- ► Two steps: (1) wavelet smoothing and (2) curve fitting
- ► Curve fitting can fit reference signature to unknown pixels

# TSF Equation 1

$$RMSE = \left[\frac{1}{365/s} \sum_{x=j(0), j(1)...}^{n} (f(x) - g(x))^{2}\right]^{\frac{1}{2}}$$

### where

- $\triangleright$  n is the number of dates in the TSI
- $\blacktriangleright$  f(x) is the temporal signature for a given pixel in a dataset
- x is the DOY, as defined by j(y)

# TSF Equation 2

$$g(x) = yscale \times h(xscale \times (x + tshift))$$

### where

- ▶ yscale and xscale are coefficients controlling the vertical and horizontal scaling of a reference signature h(x)
- ► tshift is a constant representing the horizontal shift, in days, of h(x)
- $\triangleright$  x is the DOY

# TSF METHOD Graphics/transformations.pdf

# TSF Equation 1

$$RMSE = \left[\frac{1}{365/s} \sum_{x=j(0), j(1)...}^{n} (f(x) - g(x))^{2}\right]^{\frac{1}{2}}$$

Minimizing Equation 1 with appropriate constraints on *yscale*, *xscale*, and *tshift* will find the fit of a a reference signature to a pixel.

# Problem

What if you don't have training sites?

## Problem

What if you don't have training sites?

## Answer

The TSF equations allow the classification of unknown pixels using a library of crop signatures.



## KANSAS STUDY AREA

- ► 2012 Kansas top crops:
  - ▶ Winter wheat
  - ► Corn
  - ► Soy
- Ground truth: USDA Cropland Data Layer

Graphics/KSstudysite.pdf

# DEPARTMENT OF PELLEGRINI

Graphics/argentinaOverview\_landscape.pdf

# DEPARTMENT OF PELLEGRINI

Table: Deforestation in Pellegrini, 2001 to 2011

| Period       |        | <b>Hectares Cleared</b> | Percent of Land |
|--------------|--------|-------------------------|-----------------|
| 2001<br>2006 | to2005 | 5.968<br>75.249         | 0.9<br>10.8     |
|              | 102011 | /3.249                  | 10.0            |





