深圳市长城物联科技有限公司

串行通信协议文档

日期: 20210705

拟定人: 蔡承恩

审核人:

修订记录

日期	版本	修订内容	修订人
20200319	V1. 0	制定协议	蔡承恩
20201123	V1. 1	增加修改部分指令	蔡承恩
20210705	V1. 2	精简完善部分指令	蔡承恩

1 文档说明

1.1 编写目的

此文档主要用于详细说明长城物联科技有限公司出品的读卡模块、读卡器、发卡器等产品所使用的通信方式以及通信协议。其中包括 TTL、RS232、RS485、USB 等接口。产品可能支持一个或者多个接口,具体参考产品说明书。

1.2 关键说明

此文档中可能包含的关键词有: mifare 卡、desfire 卡、cpu 卡、扇区、数据块、应用、密码、读卡流程。

此文档中的读卡设备已简化大部分卡片操作流程,但是操作卡片依然需要相关的卡片知识。

2 通信接口设置说明

2.1 硬件接口连接方式

2.1.1 TTL 接口

硬件 TTL, 0V - 5V 电压,交叉连接,读卡设备上的 RXD 线连接到主机上的 TXD,读卡设备上的 TXD 线连接到主机上的 RXD。

2.1.2 RS232接口

硬件 RS232,-12V - +12V 电压,交叉连接,读卡设备上的 RXD 线连接到主机上的 TXD,读卡设备上的 TXD 线连接到主机上的 RXD。

2.1.3 RS485 接口

硬件 RS485,差分信号,0V-6V 电压,直连,读卡设备上的 485+/A 线连接 到主机上的 485+/A,读卡设备上的 485-/B 线连接到主机上的 485-/B。

2.1.4 USB接口

硬件 USB 为 2.0 版本, 差分信号, 0V - 5V 电压, 直连, D+对应连接 D+, D-对应连接 D-。

2.2 软件设置

2.2.1 TTL/RS232/RS485 端口设置

主板上的软件需要找到连接模块对应的端口(COM),然后简单的配置端口即可正常和模块进行通信。配置参数如下:

参数	描述	
波特率	可选: 9600, 19200, 38400, 57600, 115200	
数据位	固定: 8 bits	
起始位	固定: 1 Bits	
停止位	固定: 1 bit.	
校验位	可选: Odd, Even, None	

下面为默认配置:

波特率 数据位		起始位	停止位	校验位
115200	8	1	1	None

2.2.2 USB 端口通信设置 USB 设备为 HID 通信模式。

HID 通信端点:

通信端点	通信方向
0x82	读卡设备发往主机
0x02	主机发往读卡设备

3 通信协议说明

3.1 数据包格式

3.1.1 命令包格式

一包完整的数据包含有包头、类型、地址、数据长度、命令字、数据、校验、 包尾。其中命令包是由主机发送到模块,返回包是由模块返回主机。

发送包格式 (主机到模块):

STX	DEVICE TYPE	DEVICE NUM	DATA LENGTH	CMD	DATA [ON]	XOR	ETX
返	回包格式(模切	2到主机):					_
STX	DEVICE TYPE	DEVICE NUM	DATA LENGTH	STATUS	DATA [ON]	XOR	ETX

3.1.2 命令包中字段描述

字段	长度	描述	备注
STX	1	0xAB - 包头。标准控制字节,表示一个 数据包的开始	
DEVICE TYPE	1	设备类型	设备类型 0 则 表示不论什么 设备都需要响 应命令。
DEVICE NUM	1	设备地址,在多机通讯所必需,模块在 收到数据包后判断包内的地址与自身预 设地址是否相符,相符才会响应。	读卡设备会响 应任何带 0x00 和 0xFF 地址的 数据包(不进行 地址判断)。

DATALENGTH	2	数据包中数据字节的长度.包括 CMD/STATUS 和 DATA,但不包括 XOR.	
		LENGTH=字节数(CMD/STATUS + DATA[0-N])	
CMD/STATUS	1	CMD: 主机发送至读卡设备 STAUS: 读卡设备返回主机,指示命令处 理结果	分别对应 3.2 命令列表和 3.3 状态列表
DATA [O-N]	N	这是一个长度与命令字有关的数据流。 也有部分命令不需要附加数据.	
XOR	1	8bits 的校验字节. 它包括除 STX, ETX 外 所有字节的异或校验.	
ETX	1	0xBA-包尾。标准控制字节,表示数据包的结束.	

3.2 命令列表

	命令列表			
命令码	名称	描述		
		通信设备		
0x0B	dev_GetInfo	读取设备信息		
0x0C	dev_UpFirmware	更新固件		
0x0E	dev_EnterIAP	进入 IAP 模式		
0x0F	dev_ExitIAP	退出 IAP 模式		
0x10	dev_SetBaud	设置通信速率		
0x11	dev_SetAddr	设置设备编号		
0x16	dev_SetWorkMode	设置设备的工作模式		
0x17	dev_Restart	重启设备		
0x1A	dev_SwitchRF	开关射频信号		
0x1B	dev_SwitchBEEP	控制蜂鸣器		
0x1C	dev_SwitchLED	控制 LED 灯		
0x2E	dev_ReadNow	从命令超时等待立刻切换回正常读卡方式		

	IS014443 协议				
0x40	iso14_RequestA	TypeA 寻卡			
0x41	iso14_Anticoll	TypeA 防冲突			
0x42	iso14_Select	TypeA 选定卡			
0x43	iso14_ReqAntiSelect	TypeA 集寻卡,防冲突,选卡一体			
0x44	iso14_HaltA	TypeA 卡休眠			
0x45	iso14_RequestB	TypeB 寻卡			
0x46	iso14_SlotMarker	TypeB 设置间隙			
0x47	iso14_AttriB	TypeB 协商设置速率			
0x48	iso14_HaltB	TypeB 卡休眠			
0x49	iso14_RatsA	TypeA 获取卡片速率			
0x4A	iso14_PpsRate	TypeA 协商设置速率			
0x4B	iso14_APDU	ISO14443-4 APDU 通道			
0x4C	card_GetSnr	获取卡片序列号。TypeA、TypeB、ID 卡、iso15693、felica			
	Mifare 卡操作				
0x50	mf_AuthKey	Mifare 卡验证密码			
0x51	mf_Read	Mifare 卡读块			
0x52	mf_Write	Mifare 卡写块			
0x54	mf_OSRead	Mifare 卡操作集合寻卡、反冲突、选卡、验证密码、读块			
0x55	mf_OSWrite	Mifare 卡操作集合寻卡、反冲突、选卡、验证密码、写块			
0x56	mf_OSInitValue	Mifare 卡操作集合寻卡、反冲突、选卡、验证密码、初始化钱包值			
0x57	mf_OSDecrement	Mifare 卡操作集合寻卡、反冲突、选卡、验证密码、扣款			
0x58	mf_OSIncrement	Mifare 卡操作集合寻卡、反冲突、选卡、验证密码、充值			
0x59	mf_OSGetValue	Mifare 卡操作集合寻卡、反冲突、选卡、验证密码、获取钱包值			

	125KHz 低频卡操作				
0x5A	lf_ReadBlock	T5577 卡读块			
0x5B	lf_WriteBlock	T5577 卡写块			
0x5C	lf_FormatIDnum	T5577 卡格式化成 ID 卡			
0x5D	lf_AnthReadBlock	T5577 卡验证密码读块			
0x5E	lf_AnthWriteBlock	T5577 卡验证密码写块			

3.3 命令返回状态列表

	状态列表				
状态码	名称	描述			
0x00	ret_0k	命令执行成功			
0x01	ret_Fail	命令操作失败(具体说明参见函数)			
0x31	ret_MonitorData	主动上传的数据			
0x80	ret_NoSupportCmd	不支持此命令			
0x81	ret_LenghtErr	数据长度错误			
0x82	ret_AuthErr	验证失败			
0x83	ret_TimeOut	处理超时			
0x84	ret_NoCard	无卡响应			
0x85	ret_ParamErr	传入参数不正确			
0x86	ret_CmdCheckErr	命令校验错误			
0x87	ret_UndefErr	未定义错误			
0x88	ret_NoEnoughSpace	没有足够的空间			

4 命令详细分析

- 4.1 dev GetInfo (0x0B): 读取设备信息
 - 命令描述:

可读取出设备的部分信息,

- **发送数据:** N/A
- 正确返回:

STATUS: 0x00-0K

数据包含设备名称、硬件版本、芯片序列号、固件编译日期

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 01 0B 0A BA

返回数据包: AB 02 00 00 53 00 44 45 56 5F 4E 41 4D 45 3A 47 36 20 48 57 3A 30 33 34 31 20 0D 0A 53 4E 3A 31 43 43 30 30 32 30 39 42 44 35 32 36 30 30 34 30 30 33 32 34 44 34 44 0D 0A 42 75 69 6C 64 20 54 69 6D 65 3A 4E 6F 76 20 31 38 20 32 30 32 30 20 31 37 3A 31 37 3A 34 31 1B BA

DEV NAME:G6 HW:0341

SN:1CC00209BD52600400324D4D Build Time:Nov 18 2020 17:17:41

4.2 dev UpFirmware (0x0C): 更新固件

● 命令描述:

对设备固件进行更新升级,进入 IAP 模式之后才能使用。**更新固件模式下,波特率 固定为 115200**。固件分包最大 1024 字节一包。

● 发送数据:

DATA[0-1]: 固件一共多少包。

DATA[2-3]: 当前是第几包。从 0 包开始。

DATA[4-N]: 一包最大 1024 字节。最后一包按实际大小。

● 正确返回:

STATUS: 0x00-0K

最后一包成功会返回 4 字节的 CRC 校验结果。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包:

返回数据包:

4.3 dev EnterIAP (0x0E): 进入 IAP 模式

● 命令描述:

该命令使正常工作状态的设备重启进入升级模式。

- 发送数据: N/A
- 正确返回:

STATUS: 0x00-0K

模块进入升级模式的之后蜂鸣器会快速嘀嘀嘀几次,灯也会快速闪烁几次。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 01 0E 0F BA 返回数据包: AB 02 00 00 01 00 03 BA

4.4 dev ExitIAP (0x0F): 退出 IAP 模式

● 命令描述:

该命令使升级模式下的设备重启进入正常工作模式,如果没有升级固件成功,或者没有固件,则可能会导致设备无法再使用。

● **发送数据:** N/A

● 正确返回:

STATUS: 0x00-OK

模块进入升级模式的时候蜂鸣器会快速嘀嘀嘀几次,灯也会快速闪烁几次。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 01 0F 0E BA 返回数据包: AB 01 00 00 01 00 00 BA

4.5 dev SetBaud(0x10): 设置设备通信速率

● 命令描述:

该命令用于设置设备和主机的通信波特率,重启模块生效。支持TTL、RS232、RS485进行设置。

● 发送数据:

DATA[0]: 通信波特率

0x00-115200bps(默认)

0x01-57600bps

0x02-38400bps

0x03-19200bps

0x04-9600bps

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 10 01 13 BA(设置波特率为 57600, N, 8, 1)

返回数据包: AB 01 00 00 01 00 00 BA

4.6 dev_SetAddr(0x11): 设置设备地址

● 命令描述:

该命令用于设置模块的通信地址,可不用设置,默认为 0x00。该模式立即生效,重启依然有效。模块不过滤 0x00 和 0xFF 地址。

● 发送数据:

DATA[0]: 模块地址

● 正确返回:

STATUS: 0x00-0K

DATA[0]: 当前设备地址

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 11 01 12 BA(设置的设备地址为 0x01)

返回数据包: AB 01 01 00 01 00 01 BA

4.7 dev SetWorkMode (0x16)

● 命令描述:

该命令可切换设备的工作模式。该模式立即生效,重启依然有效。

● 发送数据:

DATA[0]: 设备工作模式

0x00-主动上传模式(默认)

0x01-命令通信模式

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 16 01 15 BA (仅使用命令通信)

返回数据包: AB 01 00 00 01 00 00 BA

$4.8 \text{ dev}_{Restart}(0x17)$

● 命令描述:

该命令可让设备立即重启。

- 发送数据: N/A
- 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

返回命令之后,延迟100ms设备立即重启。

● 通信例子:

发送数据包: AB 00 00 00 01 17 16 BA 返回数据包: AB 00 00 00 01 00 01 BA

4.9 dev SwitchRF(0x1A)

● 命令描述:

该命令单独设置高低频射频信号的开和关,只在命令模式有效,重启恢复。

● 发送数据:

DATA[0]: 0x01-HF 高频 13.56MHz

DATA[1]: 0x00-开

0x01-关

● 正确返回:

STATUS: 0x00-0K

DATA[0]: 射频信号当前状态

0x00-开 0x01-关

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 1A 00 18 BA 返回数据包: AB 01 00 00 02 00 00 03 BA

4. 10 dev SwitchBEEP (0x1B)

● 命令描述:

该命令单独设置蜂鸣器响灭的时间和频率

● 发送数据:

DATA[0]: 响的时间。单位为 10ms, 1-255。可以只有这一个参数。

DATA[1]: 灭的时间。单位为 10ms, 0-255。

DATA[2]: 响几次。1-20,最大20次

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 1B 14 0D BA (响 200ms)

返回数据包: AB 01 00 01 00 00 BA

发送数据包: AB 00 00 00 04 1B 14 14 02 1D BA (响 200ms 灭 200ms 两次)

返回数据包: AB 01 00 01 00 00 BA

4.11 dev_SwitchLED(0x1C)

● 命令描述:

该命令单独设置 LED 灯亮灭的时间和频率

● 发送数据:

DATA[0]: 亮的时间。单位为 10ms, 1-255。可以只有这一个参数。

DATA[1]: 灭的时间。单位为 10ms, 0-255。

DATA[2]: 亮几次。1-255

DATA[3]: 操作几个灯。(该参数可不发送)

DATA[4-N]: 灯号。(该参数根据 DATA[3]发送)

● 正确返回:

STATUS: 0x00-OK

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 1C 32 2C BA (灯闪 500ms)

返回数据包: AB 00 00 00 01 00 01 BA

4. 12 dev ReadNow (0x2E)

● 命令描述:

从命令超时等待立刻切换会正常读卡方式。此命令可用于主动读卡模式下,又需要命令通信读扇区,发送命令之后不需要3秒超时等待切换到主动读卡模式。

● **发送数据:** N/A

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 01 2E 2F BA 返回数据包: AB 02 00 00 01 00 03 BA

4.13 iso14_RequestA(0x40)

● 命令描述:

IS014443A 协议中的寻卡指令。

● 发送数据:

DATA[0]: 0x26-寻找没在休眠状态的卡片

0x52-寻找所有卡片

● 正确返回:

STATUS: 0x00-0K

DATA[0-1]: 卡片请求应答 ATQA

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 40 26 64 BA 返回数据包: AB 00 00 00 03 00 04 00 07 BA

4.14 iso14_Anticol1(0x41)

● 命令描述:

IS014443A 协议中的防冲突指令。

● 发送数据:

DATA[0]: 0x93-一级防冲突代码

0x95-二级防冲突代码

0x97-三级防冲突代码

● 正确返回:

STATUS: 0x00-0K

DATA[0-3]: 4字节卡片序列号

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 41 93 D0 BA

返回数据包: AB 00 00 00 05 00 A6 10 68 C2 19 BA

4.15 iso14 Select (0x42)

● 命令描述:

IS014443A 协议中的选定卡片指令。

● 发送数据:

DATA[0]: 0x93-一级防冲突代码

0x95-二级防冲突代码

0x97-三级防冲突代码

DATA[1-5]: 防冲突指令中返回的卡片序列号

● 正确返回:

STATUS: 0x00-OK

DATA[0]: 卡片选择应答 SAK

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 06 42 93 A6 10 68 C2 CB BA

返回数据包: AB 00 00 00 02 00 08 0A BA

4.16 iso14_ReqAntiSelect(0x43)

● 命令描述:

集合 IS014443A 寻卡、防冲突、选卡操作,一条命令即可获取卡号。

● 发送数据:

DATA[0]: 寻卡模式

0x26-IDEL 模块

0x52-ALL 模式

● 正确返回:

STATUS: 0x00-0K

DATA[0-1]: 卡片 ATQA

DATA[2]: 卡片应答 SAK

DATA[3]: 卡号长度

DATA[4-N]: 卡号

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 43 26 67 BB

返回数据包: AB 00 00 00 09 00 04 00 08 04 A6 10 68 C2 1D BA

4.17 iso14_HaltA(0x44)

● 命令描述:

该命令用于使卡片进入休眠状态,卡片工作在 IS014443-4 层 CPU 卡状态的情况下不能使用。

● 发送数据: N/A

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 01 44 45 BA 返回数据包: AB 00 00 00 01 00 01 BA

4.18 iso14 RequestB(0x45)

● 命令描述:

IS014443B协议中的寻卡指令。

● 发送数据:

DATA[0]: 0x00-空闲的卡

0x08-所有的卡

DATA[1]: AFI 应用标识符, 默认 0x00 全选

DATA[2]: 时隙总数 N (0-1N, 1-2N, 2-4N, 3-8N, 4-16N)

● 正确返回:

STATUS: 0x00-0K

DATA[0-11]: 卡片请求应答 ATQB

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 04 45 08 00 00 49 BA

返回数据包: AB 02 00 00 0D 00 50 00 00 00 00 D1 03 00 81 00 70 C0 BC BA (PUPI 为: 00 00 00 00)

4.19 iso14 SlotMarker (0x46)

● 命令描述:

该命令用于选择时隙。

● 发送数据:

DATA[0]: 时隙总数 N (0-1N, 1-2N, 2-4N, 3-8N, 4-16N)

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 46 00 44 BA (0-1N)

返回数据包: AB 00 00 00 01 00 01 BA

4.20 iso14 AttriB(0x47)

● 命令描述:

IS014443B 协议卡片协商通信速率。

● 发送数据:

DATA[0-3]: 4字节 PUPI

DATA[4]: BIT1(EOF:0-开启,1-关闭)BIT0(SOF:0-开启,1-关闭)

DATA[5]: PCD<-->PICC 速率选择

BIT3-BIT2 (PICC->PCD:0-106K、1-212K、2-424K、3-848K) BIT1-BIT0 (PCD->PICC:0-106K、1-212K、2-424K、3-848K)

DATA[6]: CID

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 08 47 00 00 00 00 00 00 04F BA

返回数据包: AB 00 00 00 01 00 01 BA

4.21 iso14 HaltB(0x48)

● 命令描述:

IS014443B 协议卡片进入休眠。

● 发送数据:

DATA[0-3]: 4字节 PUPI

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 05 48 00 00 00 00 4D BA

返回数据包: AB 00 00 00 01 00 01 BA

4.22 iso14_RatsA(0x49)

● 命令描述:

该命令为 IS014443A 中 RatsA 指令,主要用于支持 IS014443-4 协议的卡片复位。 选择卡片之后才能使用该命令。

● 发送数据:

DATA[0]: CID

● 正确返回:

STATUS: 0x00-0K

DATA[0-N]: 卡片 ATS 应答的数据。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 49 01 4A BA

返回数据包: AB 00 00 00 11 00 10 78 80 A0 02 20 90 00 00 00 00 00 93 43

7A OA 4B BA

4.23 iso14_PpsRate(0x4A)

命令描述:

ISO14443A 协议卡片协商通信速率,需要卡片返回的 ATS 支持才行。

● 发送数据:

DATA[0]: PCD<-->PICC 速率选择

> BIT3-BIT2 (PICC->PCD:0-106K、1-212K、2-424K、3-848K) BIT1-BIT0 (PCD->PICC:0-106K、1-212K、2-424K、3-848K)

● 正确返回:

STATUS: 0x00-0K

错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 4A 0A 42 BA(设置通信速率为 424K)

返回数据包: AB 00 00 00 01 00 01 BA

4.24 iso14_APDU(0x4B)

● 命令描述:

该命令用于支持 IS014443-4 协议的卡片。复位卡片之后才能正确使用该命令。

● 发送数据:

DATA[0]: CLA DATA[1]: INS DATA[2]: P1 DATA[3]: P2 DATA[4]:Lc

DATA[5-N]: Data (如果 Lc 为 0,则没有数据需要发送)

DATA[N+1]: Le (如果没有则不发送)

● 正确返回:

STATUS: 0x00-0K

DATA[0-N]: 卡片返回的数据。

● 错误返回:

STATUS: 0x01-FAIL

DATA[0]: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 08 4B 00 A4 00 00 02 3F 00 DA BA(目录 MF 3F00) 返回数据包: AB 00 00 00 1A 00 6F 15 84 0E 31 50 41 59 2E 53 59 53 2E 44

44 46 30 31 A5 03 88 01 01 90 00 33 BA

4. 25 card GetSnr (0x4C)

命令描述:

通过设备获取当前卡片序列号,轮询所有设备支持的卡片协议。比较耗时的命令

- 发送数据: N/A
- 正确返回:

STATUS: 0x00-0K DATA[0]: 卡片类型 DATA[1]: 卡号长度 DATA[2-N]: 卡号

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 01 4C 4D BA

返回数据包: AB 02 00 00 07 00 10 04 AB CC 06 B3 C3 BA

4. 26 $mf_AuthKey(0x50)$

● 命令描述:

Mifare 卡片密钥验证。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 指定块 S50 最大 63 块, S70 最大 255 块

DATA[2-7]: 6字节密钥,默认全为FF

DATA[8-11]; 4字节卡片序列号

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 0D 50 60 04 FF FF FF FF FF A6 10 68 C2 25 BA 返回数据包: AB 00 00 00 01 00 01 BA

$4.27 \quad \text{mf} \quad \text{Read} \quad (0x51)$

● 命令描述:

Mifare 卡片读指定块,一块 16 字节。

● 发送数据:

DATA[0]: 指定块 S50 最大 63 块, S70 最大 255 块

● 正确返回:

STATUS: 0x00-0K

DATA[0-15]: 16 字节块数据。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 02 51 04 57 BA

FF FF 11 BA

4.28 mf Write (0x52)

● 命令描述:

Mifare 卡片写指定块,一块 16 字节。

● 发送数据:

DATA[0]: 指定块 S50 最大 63 块, S70 最大 255 块

DATA[1-16]: 块数据

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 12 52 04 31 32 33 34 35 36 37 38 31 32 33 34 35

36 37 38 44 BA (块 4)

返回数据包: AB 00 00 00 01 00 01 BA

4.29 mf_OSRead(0x54)

● 命令描述:

Mifare 跨扇区读,跳过密钥块不读,必须每个扇区密钥一样才能成功。 此命令自动寻卡、防冲突、选卡,然后根据密钥验证扇区读出数据。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 开始要读的块

DATA[2]: 一共要读的块,不包括密钥块

DATA[3-8]: 密钥

● 正确返回:

STATUS: 0x00-0K

DATA[0-N]: 16 倍数的块数据。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 0A 54 60 04 05 FF FF FF FF FF FF 3F BA(从第 0x04 块开始读 5 块, 跨扇区了, 但是不读扇区的密钥块)

4.30 mf OSWrite(0x55)

● 命令描述:

Mifare 跨扇区写,跳过密钥块不写,必须每个扇区密钥一样才能成功。 此命令自动寻卡、防冲突、选卡,然后根据密钥验证扇区写入数据。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 从哪一块开始写

DATA[2-7]: 密钥

DATA[8-n]: 写入数据,16 个字节为一个单位,写完一块,自动切换写下一块,跳 讨密钥块不写。

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

返回数据包: AB 00 00 00 01 00 01 BA

4.31 mf_OSInitValue(0x56)

● 命令描述:

Mifare 卡使用钱包功能,随便指定一块作为钱包功能。 此命令自动寻卡、防冲突、选卡,然后根据密钥验证初始化钱包值。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 使用哪一块作为钱包功能

DATA[2-7]: 密钥

DATA[8-11]: int 类型的钱包值 (大端模式)

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 0D 56 60 04 FF FF FF FF FF FF 00 00 03 E8 D4 BA(钱包值为 1000)

返回数据包: AB 00 00 00 01 00 01 BA

4.32 mf_OSDecrement(0x57)

● 命令描述:

Mifare 卡使用钱包功能,对指定块中的钱包扣款。

此命令自动寻卡、防冲突、选卡,然后根据密钥验证扣款。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 哪一块为钱包值

DATA[2-7]: 密钥

DATA[8-11]: int 类型的值(大端模式)

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 0D 57 60 04 FF FF FF FF FF FF 00 00 03 E8 D5 BA(扣款值为 1000)

返回数据包: AB 00 00 00 01 00 01 BA

4.33 mf_OSIncrement(0x58)

● 命令描述:

Mifare 卡使用钱包功能,对指定块中的钱包充值。 此命令自动寻卡、防冲突、选卡,然后根据密钥验证充值。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 哪一块为钱包值

DATA[2-7]: 密钥

DATA[8-11]: int 类型的值(大端模式)

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 0D 58 60 04 FF FF FF FF FF 00 00 03 E8 DA BA(充值值为 1000)

返回数据包: AB 00 00 00 01 00 01 BA

4.34 mf OSGetValue (0x59)

● 命令描述:

Mifare 卡使用钱包功能,随便指定一块作为钱包功能。

此命令自动寻卡、防冲突、选卡,然后根据密钥验证初始化钱包值。

● 发送数据:

DATA[0]: 0x60-A 组密钥

0x61-B 组密钥

DATA[1]: 使用哪一块作为钱包功能

DATA[2-7]: 密钥

● 正确返回:

STATUS: 0x00-0K

DATA[0-3]: 4字节钱包值(大端模式)。

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据句: AB 00 00 00 09 59 60 04 FF FF FF FF FF FF 34 BA

返回数据包: AB 00 00 00 05 00 00 00 03 E8 EE BA

4.35 1f ReadBlock (0x5A)

● 命令描述:

T5577 卡读某一块数据, 使用曼彻斯特编码。

● 发送数据:

DATA[0]: 速率。16、32、40、50、64、100、128

DATA[1]: 哪一页。0、1

DATA[2]: 哪一块。0、1、2、3、4、5、6、7

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

DATA[0-3]: 4字节块数据。

● 通信例子:

发送数据包: AB 00 00 00 04 5A 40 00 00 1E BA (速度 64, page0 block0)

返回数据包: AB 02 00 00 05 00 00 14 80 41 D2 BA

4.36 If WriteBlock (0x5B)

● 命令描述:

T5577 卡写某一块数据, 使用曼彻斯特编码。

● 发送数据:

DATA[0]: 哪一页。0、1

DATA[1]: 哪一块。0、1、2、3、4、5、6、7

DATA[2]: 是否锁住。0-不锁,1-锁住

DATA[3-4]: 4字节块数据

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 08 5B 00 01 00 31 32 33 34 56 BA

返回数据包: AB 02 00 00 01 00 03 BA

4.37 1f FormatIDnum(0x5C)

● 命令描述:

把 T5577 卡格式化成 ID 卡。

● 发送数据:

DATA[0-4]: 5字节 ID 卡号,第一个字节一般不使用

DATA[5]: 是否锁卡。0-不锁卡,1-锁卡

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 07 5C 2E 00 6F 85 B6 00 29 BA

返回数据包: AB 02 00 00 01 00 03 BA

4.38 1f AnthReadBlock (0x5D)

● 命令描述:

T5577 卡验证密码读某一块数据,使用曼彻斯特编码。

● 发送数据:

DATA[0]: 速率。16、32、40、50、64、100、128

DATA[1]: 哪一页。0、1

DATA[2]: 哪一块。0、1、2、3、4、5、6、7

DATA[3-6]: 4个字节密码。密码存在块 7.

● 正确返回:

STATUS: 0x00-0K

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

DATA[0-3]: 4字节块数据。

● 通信例子:

发送数据包: AB 00 00 00 08 5D 40 00 01 FF FF FF FF 14 BA (速度 64,

pageO block1 密码FF FF FF FF)

返回数据包: AB 02 00 00 05 00 30 31 32 33 07 BA

4.39 1f AnthWriteBlock(0x5E)

● 命令描述:

T5577 卡验证密码写某一块数据, 使用曼彻斯特编码。

● 发送数据:

DATA[0]: 哪一页。0、1

DATA[1]: 哪一块。0、1、2、3、4、5、6、7

DATA[2]: 是否锁住。0-不锁, 1-锁住

DATA[3-4]: 4字节密码 DATA[5-8]: 4字节块数据

● 正确返回:

STATUS: 0x00-OK

● 错误返回:

STATUS: 错误代码,详细请看状态列表。

● 通信例子:

发送数据包: AB 00 00 00 0C 5E 00 01 00 FF FF FF FF 31 32 33 34 57 BA

返回数据包: AB 02 00 00 01 00 03 BA

5 主动上传卡号模式说明

5.1 数据包格式

不同型号产品可能略有差异,请以产品说明书为准。

数据头	长度	卡片类型	卡号数据	异或校验	数据尾
0x02	包含数据	参考附录一	4-8 字节	不包含数据 头尾	0x03

5.2 举例说明

例如: 串口工具接收到的数据为 02 0A 01 2E 00 B6 D7 B5 F1 03

第一个字节 0x02 表示数据开始。

第二个字节 0x0A 表示整条数据长度为 10 个字节,包括数据开始和数据结束。

第三个字节 0x01 表示该卡片类型为 EM4100。

第四个字节到第八个字节 $(0x2E\ 0x00\ 0xB6\ 0xD7\ 0xB5)$ 这5个字节表示读取到的卡号,其中第四个字节0x2E为1D卡隐藏卡号。

第九个字节 0xF1 表示第二个字节到第八个字节的 BCC 校验。

第十个字节 0x03 表示数据结束。

6 注意事项

6.1 设备工作模式

6.1.1 监控上传模式 (默认)

在此模式下,设备会主动上传数据到主机,并附带数据类型。 在此模式下,设备只响应设置工作模式命令和获取序列号命令。

编号	数据类型说明	
0	未定义	
1	卡号	
2	二维码数据	
3	触摸按键键值	
4	实体按键(防盗开关)	
5	软复位	
6	其他	

6.1.2 命令通信模式

此模式下,设备支持的命令需要参考设备的详细说明书。通信命令可查看3.2中的命令列表。

6.2 设备通信注意事项

6.2.1 关于设备类型

设备类型为0的时候,不管当前设备是什么类型,都可以响应命令,否则只响应符合自身设备类型的命令。

设备类型	说明
0	不过滤当前通信命令
1	模块
2	读卡器
3	发卡器
4	主板
5	控制器
6	其他

6.2.2 关于设备地址

设备地址为 0x00 或者 0xFF 的时候,不管当前设备是什么地址,一定会响应命令,否则只响应符合自身地址的命令。

7 附录

7.1 附录一、卡片类型

卡片类型						
编码	卡片名称	卡号长度	备注			
0x01	EM41XX	5	ID卡			
0x02	T5577	4				
0x03	HID Prox	8				
0x10	TypeA-4Byte	4	Mifare1K/S50/S70			
0x11	TypeA-7Byte	7				
0x12	TypeA-10Byte					
0x13	PBOC	8	银行卡、手机 PAY,把 17 或者 19 位 十进制银行卡号转为 8 字节十六进 制			
0x14	DesFire(加密信息)	7	DesFire 中文件内容			
0x15	FMcos(加密信息)	4	CPU 卡中文件内容			
0x16	Gicard	4	深圳市长城物联科技有限公司-G卡			
0x17	MifareBlock	16	Mifare 卡块数据			
0x18	MFOEM1	不定长	CPU 卡定制			
0x19	TypeA-CPU	4	TypeA 协议的 CPU 卡 uid 号			
0x20	ChinaID	8	二代证 uid 号			
0x21	TypeB-4Byte	4				
0x30	Felica	8	索尼卡			
0x31	15693-8Byte	8	标签卡			
0x32	iClass	8				
0xFF	Keyboard	1	按键类型			

(注: 此表格中卡片类型为自定义,仅供参考,各个型号产品略有不同。)

7.2 附录二、Mifare 卡操作流程

7.3 附录三、CPU 卡操作流程

注: APDU 命令用于和 CPU 卡通信,例如获取随机数、选中文件、外部认证、读二进制文件

8 联系方式

深圳市长城物联科技有限公司

地址:深圳市龙华新区观湖街道樟坑径下围工业区景山大厦 A 座 4G, 4H.

电话: 0755-28579196 邮箱: <u>master@gwiot.com</u>