Содержание

- 1 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Лекция 1

Содержание

- 1 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Напоминание: накрытие

Пусть X, Y — топологические пространства.

Определение (накрытие)

Накрытие — непрерывное отображение $p\colon Y\to X$ такое, что у каждой точки $x\in X$ есть правильно накрываемая окрестность, то есть окрестность $U\ni x$ такая, что:

 $p^{-1}(U)=\bigsqcup_{i\in I}V_i$ (дизъюнктное объединение V_i), где $V_i\subset Y$ — открытые множества такие, что для каждого i сужение $p|_{V_i}$ — гомеоморфизм между V_i и U.

Термины:

X - 6аза накрытия;

Y — накрывающее пространство;

Внимание

Буквы X и Y поменялись ролями по сравнению с прошлым семестром.

Напоминание: универсальное накрытие

Определение (односвязное пространство)

Топологическое пространство односвязно, если оно линейно связно и все петли в нём стягиваемы.

Напоминание: универсальное накрытие

Определение (односвязное пространство)

Топологическое пространство односвязно, если оно линейно связно и все петли в нём стягиваемы.

Определение (универсальное накрытие)

Накрытие — универсальное, если накрывающее пространство односвязно.

Замечание

В некоторых источниках (например, в русскоязычной Википедии) определение другое.

Разные определения не эквивалентны, они отличаются в некоторых патологических случаях.

Aprimep: $p: |R \rightarrow S|$ p(x) = (cos x, sln x)

Универсальное накрытие есть не всегда

Наша цель — построить универсальное накрывающее пространство для данного X и (позже) доказать его единственность.

Универсальное накрытие есть не всегда

Наша цель — построить универсальное накрывающее пространство для данного X и (позже) доказать его единственность.

Для некоторых патологических пространств универсального накрытия нет.

Пример (Гавайская серьга)

Рассмотрим на плоскости счетный набор окружностей, касающихся друг друга в одной точке и с радиусами, стремящимися к 0. Пусть X — объединение этих окружностей.

Тогда X не имеет универсального накрывающего.

Напоминание: локальная линейная связность

Пусть X — топологическое пространство.

Определение (локальная линейная связность)

X локально линейно связно, если для любой точки $x \in X$ и любой окрестности $U \ni X$ существует линейно связная подокрестность V ($x \in V \subset U$).

Напоминание

Напоминание: в локально линейно связном пространстве компоненты связности открыты и совпадают с компонентами связности.

Пример

Пример пространства, которое линейно связно, но не локально линейно связно: гребёнка.

Полулокальная односвязность

Определение (полулокальная односвязность)

Пространство X полулокально односвязно (или микроодносвязно), если для любой точки $x \in X$ и любой окрестности $V \Rightarrow x$ существует водокрестность V ($x \in V \bowtie U$) такая, что все петли в V стягиваемы в X.

Комментарий к определению

Подокрестность V не обязательно односвязна.

Полулокальная односвязность

Определение (полулокальная односвязность)

Пространство X полулокально односвязно (или микроодносвязно), если для любой точки $x \in X$ и любой окрестности $U \ni x$ существует подокрестность V ($x \in V$) такая, что все петли в V стягиваемы в X.

Комментарий к определению

Подокрестность V не обязательно односвязна.

Примеры

- Гавайская серьга не полулокально односвязна. \longleftarrow
- Конус над ней стягиваемое пространство (гомотопически эквивалентное точке). Следовательно, он полулокально односвязен. Но он не локально односвязен.

Org X ron. odnochegus

The rest

B & oup. In & Torker

J odnochegual.

wodoupeerhouse

Лекция 1

«Хорошие» пространства

Упражнение

Все многообразия и клеточные пространства локально стягиваемы: в любой окрестности любой точки есть стягиваемая подокрестность.

Как следствие, они локально линейно связны, локально односвязны, полулокально односвязны и т.д.

Формулировка теоремы

Теорема

Пусть X – топологическое пространство, которое

∀ • линейно связно;

✓ ● локально линейно связно;

✓ • полулокально односвязно.

Тогда существует универсальное накрытие с базой X.

Morunaso, 200 ber up ba

Лекция 1

План доказательства

Наша цель — построить односвязное пространство \widetilde{X} и накрытие $p\colon \widetilde{X} \to X$.

План:

- $oldsymbol{0}$ Определим множество \widetilde{X} и отображение $p\colon \widetilde{X} o X$
- $oldsymbol{arrho}$ Построим топологию на \widetilde{X}
- **3** Докажем, что p накрытие
- ullet Докажем, что X односвязно

Лекция 1 2 сентября 2020 г.

Содержание

- 1 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Лекция 1

2 сентября 2020 г.

Множество X и отображение p

Зафиксируем $x_0 \in X$. Определим множество \widetilde{X} так:

Пусть PX — множество всех путей $\alpha: [0,1] \to X$ с началом в x_0 — отношение гомотопности путей (с фиксированными концами).

Положим

$$\widetilde{X} = PX/\sim$$
,

Т.е. точка из \widetilde{X} — класс гомотопных путей с началом x_0 . Класс пути $\alpha \in PX$ обозначаем через $[\alpha]$.

Множество X и отображение p

Зафиксируем $x_0 \in X$. Определим множество \widetilde{X} так:

Пусть PX — множество всех путей $\alpha \colon [0,1] \to X$ с началом в x_0 , \sim — отношение гомотопности путей (с фиксированными концами).

Положим

$$\widetilde{X} = PX/\sim$$
,

Т.е. точка из \widetilde{X} — класс гомотопных путей с началом x_0 . Класс пути $\alpha \in PX$ обозначаем через $[\alpha]$.

Определим $p \colon \widetilde{X} \to X$ равенством

$$p([\alpha]) = \alpha(1), \qquad \alpha \in PX.$$

Корректность очевидна.

«Хорошие» окрестности

Будем называть множество $U \subset X$ хорошим, если оно открыто, линейно связно и любая петля в U стягиваема в X (как в определении полулокальной односвязности).

Факт

Хорошие множества образуют базу топологии X.

Лекция 1

«Хорошие» окрестности

Будем называть множество $U \subset X$ хорошим, если оно открыто, линейно связно и любая петля в U стягиваема в X (как в определении полулокальной односвязности).

Факт

Хорошие множества образуют базу топологии Х.

Доказательство.

Свойство эквивалентно тому, что в любой окрестности любой точки есть хорошая подокрестность.
Это следует из полулокальной односвязности и локальной линейной связности.

baja: ∑ < forguone's 7 V orreprose -50 sédimenne mu-b ay 2

Лекция 1

Топология на \widetilde{X}

Пусть $U\subset X$ — хорошая окрестность, $\alpha\in PX$ — путь с $\alpha(1)\in U$. Определим множество $U^{\alpha}\subset X$ как множество всех классов вида $[\alpha s]$, где s — путь в U с началом $\alpha(1)$.

Введём на \widetilde{X} топологию, порождённую всевозможными множествами U^{α} такого вида (пока как предбазой). Будем называть множества вида U^{α} специальными.

Топология на \widetilde{X}

Пусть $U\subset X$ — хорошая окрестность, $\alpha\in PX$ — путь с $\alpha(1)\in U$. Определим множество $U^{\alpha}\subset\widetilde{X}$ как множество всех классов вида $[\alpha s]$, где s — путь в U с началом $\alpha(1)$.

Введём на \widetilde{X} топологию, порождённую всевозможными множествами U^{α} такого вида (пока как предбазой). Будем называть множества вида U^{α} специальными.

Факт

Если $[\beta] \in U^{\alpha}$, то $U^{\beta} = U^{\alpha}$.

Доказательство.

$$[eta] \in U^{lpha} \Longrightarrow eta \sim lpha s$$
 для некоторого пути $s \subset U$. $\Longrightarrow eta s_1 \sim lpha(ss_1)$ для любого $s_1 \subset U$ с $s_1(0) = eta(1)$ $\Longrightarrow U^{eta} \subset U^{lpha}$.

Обратно аналогично, так как
$$lpha \sim eta s^{-1}$$
 .

База топологии X

Факт

Специальные множества образуют базу топологии X.

Доказательство.

Достаточно проверить, что пересечения вида $U^{lpha} \cap V^{eta}$ являются объединениями специальных множеств. Достаточно для любого $[\gamma] \in U^{\alpha} \cap V^{\beta}$ найти окрестность вида W^{γ} , которая содержится в $U^{\alpha} \cap V^{\beta}$.

В качестве W подходит хорошая окрестность точки $\gamma(1)$, содержащуюся в $U \cap V$.

Действительно, $W^{\gamma} \subset U^{\gamma} = U^{\alpha}$, аналогично $W^{\gamma} \subset V^{\beta}$

 $\implies W \subset U^{\alpha} \cap V^{\beta}$.

Zi - Lama yuddaya. Z. - Saya (=) V A, B = [A n B - o 5 reduneme min. l (=) YXE A n B 3 VE E: ~ = IZ = AnB

Содержание

- 📵 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Лекция 1

Непрерывность и открытость

Факт

Пусть $U\subset X$ — хорошее множество. Тогда

- $oldsymbol{0}$ $p(U^lpha)=U$ для любого $lpha\in PX$ с $lpha(1)\in U.$
- u ② $p^{-1}(U) = \bigcup_{\alpha} U^{\alpha}$ где объединение берется по всем таким α .

Доказательство.

Из линейной связности U.

1) p(nd) = U. (- oreh (VS koney dS - 6 W).

Непрерывность и открытость

Факт

Пусть $U \subset X$ — хорошее множество. Тогда

- ightarrow $ho(U^{lpha})=U$ для любого $lpha\in PX$ с $lpha(1)\in U$.
- $\mathbf{V} \ \mathbf{O} \ p^{-1}(U) = \bigcup_{\alpha} U^{\alpha}$ где объединение берется по всем таким α .

Доказательство.

Из линейной связности U.

Следствие

р непрерывно и открыто (т.е. образ любого открытого множества открыт).

Доказательство.

Достаточно проверить открытость образов и прообразов базовых множеств. \Box

Правильно накрываемые окрестности

Пусть $U\subset X$ — хорошее множество. Докажем, что U — правильно накрываемая окрестность.

Факт

Для любых $\alpha, \beta \in PX$ с $\alpha(1) \in U$ и $\beta(1) \in U$, множества U^{α} и U^{β} либо не пересекаются, либо совпадают.

Доказательство.

Если существует $[\gamma]\in U^{\alpha}\cap U^{\beta}$, то по одному из предыдущих свойств $U^{\alpha}=U^{\gamma}=U^{\beta}$.

Правильно накрываемые окрестности

Пусть $U\subset X$ — хорошее множество. Докажем, что U — правильно накрываемая окрестность.

Факт

Для любых $\alpha,\beta\in PX$ с $\alpha(1)\in U$ и $\beta(1)\in U$, множества U^{α} и U^{β} либо не пересекаются, либо совпадают.

Доказательство.

Если существует $[\gamma]\in U^{\alpha}\cap U^{\beta}$, то по одному из предыдущих свойств $U^{\alpha}=U^{\gamma}=U^{\beta}$.

Следствие

 $p^{-1}(U)$ — дизъюнктное объединение открытых множеств вида U^{α} .

Правильно накрываемые окрестности – 2

Факт

 $p|_{U^{\alpha}}$ — биекция между U^{α} и U.

Доказательство.

Сюръективность была, осталось доказать инъективность.

Пусть $[\beta], [\gamma] \in U^{\alpha}$ и $p([\beta]) = p([\gamma])$.

Тогда $\beta(1)=\gamma(1)$ и $\beta\sim\alpha s_1$, $\gamma\sim\alpha s_2$ для некоторых путей $s_1,s_2\subset U$.

 $\implies s_1 s_2^{-1}$ — петля, лежащая в $U \implies$ она стягиваема

$$\implies s_1 \sim s_2 \implies \beta \sim \gamma \implies [\beta] = [\gamma].$$

Правильно накрываемые окрестности – 2

Факт

 $p|_{U^{\alpha}}$ — биекция между U^{α} и U.

Доказательство.

Сюръективность была, осталось доказать инъективность.

Пусть
$$[\beta], [\gamma] \in U^{\alpha}$$
 и $p([\beta]) = p([\gamma])$.

Тогда $\beta(1)=\gamma(1)$ и $\beta\sim\alpha s_1$, $\gamma\sim\alpha s_2$ для некоторых путей $s_1,s_2\subset U$.

$$\Longrightarrow s_1s_2^{-1}$$
 — петля, лежащая в $U\Longrightarrow$ она стягиваема

$$\implies s_1 \sim s_2 \implies \beta \sim \gamma \implies [\beta] = [\gamma].$$

Отсюда и из непрерывности и открытости:

Следствие

 $p|_{U^{\alpha}}$ — гомеоморфизм между U^{α} и U.

Мы доказали, что p — накрытие

Содержание

- 🚺 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Лекция 1

Поднятие путей и линейная связность

Обозначим $o=[const_{x_0}]\in \widetilde{X}$. Для пути $\alpha\in PX$ и $t\in [0,1]$ определим путь $\alpha_t\in PX$:

$$\alpha_t(x) = \alpha(tx), \qquad x \in [0,1].$$

Получается отображение $\widetilde{lpha}\colon [0,1] o \widetilde{X}\colon$

$$\widetilde{\alpha}(t) = [\alpha_t]$$

Факт

 \widetilde{lpha} — поднятие пути lpha в \widetilde{X} (с началом о и концом [lpha]).

Поднятие путей и линейная связность

Обозначим $o = [\mathit{const}_{\mathsf{x}_0}] \in \widetilde{X}$.

Для пути $\alpha \in PX$ и $t \in [0,1]$ определим путь $\alpha_t \in PX$:

$$\alpha_t(x) = \alpha(tx), \qquad x \in [0,1].$$

Получается отображение $\widetilde{lpha}\colon [0,\underline{1}] o \widetilde{X}$:

$$\widetilde{\alpha}(t) = [\alpha_t]$$

Факт

 \widetilde{lpha} — поднятие пути lpha в \widetilde{X} (с началом о и концом [lpha]).

Доказательство.

Тривиально всё, кроме непрерывности $\widetilde{\alpha}$.

Непрерывность проверяется по определению.

Поднятие путей и линейная связность

Обозначим $o = [const_{x_0}] \in \widetilde{X}$.

Для пути $\alpha \in PX$ и $t \in [0,1]$ определим путь $\alpha_t \in PX$:

$$\alpha_t(x) = \alpha(tx), \qquad x \in [0,1].$$

Получается отображение $\widetilde{lpha}\colon [0,\underline{1}] o \widetilde{X}\colon$

$$\widetilde{\alpha}(t) = [\alpha_t]$$

Факт

 \widetilde{lpha} — поднятие пути lpha в \widetilde{X} (с началом о и концом [lpha]).

Доказательство.

Тривиально всё, кроме непрерывности $\widetilde{\alpha}.$

Непрерывность проверяется по определению.

Следствие

 \widetilde{X} линейно связно.

Стягиваемость петель

Обозначение: $\Omega(X,x_0)$ — множество петель в X с концами в x_0

Факт

Любая петля из $\Omega(\widetilde{X},o)$ стягиваема.

Доказательство.

Рассмотрим петлю из $\Omega(\widetilde{\phi})$. Она является поднятием некоторой петли $\alpha \in \Omega(X,x_0)$ — своей композиции с p. Поэтому её можно обозначить $\widetilde{\alpha}$ и использовать предыдущие факты.

Имеем $\widetilde{\alpha}(1) = o \implies [\alpha] = [const] \implies \alpha$ стягиваема $\implies \widetilde{\alpha}$ стягиваема (по теореме о поднятии гомотопии!)

Итак, p — универсальное накрытие. Теорема доказана!

22 / 45

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

Содержание

- 1 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Лекция 1

2 сентября 2020 г.

Пространства с отмеченными точками,

Определение

Пространство с отмеченной точкой — пара (X, x_0) , где X — топологическое пространство и $x_0 \in X$.

Отображение пространств с отмеченными точками

$$f:(X,x_0)\to (Y,y_0)$$

— непрерывное отображение $f\colon X o Y$ такое, что $f(x_0)=y_0.$

Лекция 1 2 сентября 2020 г.

Напоминание: индуцированный гомоморфизм фундаментальных групп

Отображение $f:(X,x_0)\to (Y,y_0)$ индуцирует гомоморфизм фундаментальных групп

$$f_* \colon \pi_1(X, x_0) \to \pi_1(Y, y_0),$$

$$f_*([\alpha]) = [f \circ \alpha], \qquad \alpha \in \Omega(X, x_0).$$

Выполняются равенства

$$id_* = id$$

И

$$(f\circ g)_*=f_*\circ g_*$$

Содержание

- 📵 Построение универсального накрывающего
 - Определения и формулировка теоремы
 - Доказательство: построение
 - Доказательство: накрытие
 - Доказательство: односвязность
- 2 Поднятие отображений и морфизмы накрытий
 - Теорема о поднятии отображений
 - Морфизмы накрытий
 - Группа скольжений (автоморфизмов накрытия)

Лекция 1

Формулировка

Пусть $p: (Y, y_0) \to (X, x_0)$ — накрытие. Поднятие отображения $f: (Z, z_0) \to (X, x_0)$ в данное накрытие — это такое $\widetilde{f}: (Z, z_0) \to (Y, y_0)$, что $p \circ \widetilde{f} = f$.

Теорема

Пусть Z линейно связно и локально линейно связно.

Поднятие отображения $f:(Z,z_0)\to (X,x_0)$ в накрытие $p:(Y,y_0)\to (X,x_0)$ существует тогда и только тогда,

когда

 $Im(f_*)\subset Im(p_*),$

Hur prome

где f_* и p_* — индуцированные гомоморфизмы фундаментальных групп.

При этом поднятие единственно.

Замечание

 $Im(p_*)$ — группа накрытия. Она состоит из петель, которые не размыкаются при поднятии.

Лекция 1 2 сентября 2020 г.

Единственность: Пусть \widetilde{f} — искомое поднятие. Рассмотрим $z \in Z$, соединим z_0 с z путём α . Путь $\widetilde{f} \circ \alpha$ — поднятие $f \circ \alpha$ с началом y_0 и концом $\widetilde{f}(z)$. По теореме о поднятии пути, поднятие $f \circ \alpha$ с началом y_0 единственно. Это определяет $\widetilde{f}(z)$ однозначно.

28 / 45

4□ > 4□ > 4□ > 4□ > 4□ > 90

Единственность: Пусть \widetilde{f} — искомое поднятие. Рассмотрим $z \in Z$, соединим z_0 с z путём α . Путь $\widetilde{f} \circ \alpha$ — поднятие $f \circ \alpha$ с началом y_0 и концом $\widetilde{f}(z)$. По теореме о поднятии пути, поднятие $f \circ \alpha$ с началом y_0 единственно. Это определяет $\widetilde{f}(z)$ однозначно.

 \Longrightarrow : Если $f=p\circ \widetilde{f}$, то $f_*=p_*\circ \widetilde{f}_*$, откуда $Im(f_*)\subset Im(p_*).$

28 / 45

Единственность: Пусть \widetilde{f} — искомое поднятие.

Рассмотрим $z \in Z$, соединим z_0 с z путём α .

Путь $\widetilde{f}\circ\alpha$ — поднятие $f\circ\alpha$ с началом y_0 и концом $\widetilde{f}(z)$. По теореме о поднятии пути, поднятие $f\circ\alpha$ с началом y_0 единственно. Это определяет $\widetilde{f}(z)$ однозначно.

 \Longrightarrow : Если $f=p\circ\widetilde{f}$, то $f_*=p_*\circ\widetilde{f}_*$, откуда $Im(f_*)\subset Im(p_*)$.

 \longleftarrow : Пусть $Im(f_*) \subset Im(p_*)$

Построим $f\colon Z\to Y$ как в доказательстве единственности: для $z\in Z$ выберем путь $\alpha\colon [0,1]\to Z$ с $\alpha(0)=z_0$ и $\alpha(1)=z$, и определим $\widetilde f(z)$ как конец поднятия пути $f\circ \alpha$ с началом в y_0 .

Равенство $p \circ \widetilde{f} = f$ тривиально.

Надо проверить корректность и непрерывность.

28 / 45

Корректность (почему $\widetilde{f}(z)$ не зависит от выбора lpha):

Пусть α, β — два пути из z_0 в z.

Тогда $\alpha\beta^{-1}$ — петля из $\Omega(Z, z_0)$.

Её образ $f \circ (\alpha \beta^{-1})$ представляет в π_1 элемент из $\mathit{Im}(f_*)$

- \implies он лежит в $Im(p_*)$ по условию $Im(f_*) \subset Im(p_*)$.
- \implies поднятие петли $f \circ (\alpha \beta^{-1})$ тоже петля
- \implies поднятия $f\circ \alpha$ и $f\circ \beta$ имеют общие концы
- $\implies f(z)$, определяемое с помощью α и β , одно и то же.

29 / 45

Корректность (почему $\widetilde{f}(z)$ не зависит от выбора α):

Пусть α, β — два пути из z_0 в z.

Тогда $\alpha\beta^{-1}$ — петля из $\Omega(Z, z_0)$.

Её образ $f\circ(\alpha\beta^{-1})$ представляет в π_1 элемент из $\mathit{Im}(f_*)$

- \implies он лежит в $Im(p_*)$ по условию $Im(f_*) \subset Im(p_*)$.
- \implies поднятие петли $f\circ(lphaeta^{-1})$ тоже петля
- \Longrightarrow поднятия $f\circ lpha$ и $f\circ eta$ имеют общие концы
- $\implies f(z)$, определяемое с помощью α и β , одно и то же.

Непрерывность \hat{f} : Проверяем по определению, пользуясь локальной линейной связностью.

J- went 6 7.2.

