Facultad de Ciencias, UNAM Criptografía y Seguridad Tarea 3

Altamirano Vázquez Jesús Fernando Rubí Rojas Tania Michelle

11 de agosto de 2020

- 1. Sea $\mathbb{E}: y^2 + 20x = x^3 + 21 \pmod{35}$ y sea $Q = (15, -4) \in \mathbb{E}$.
 - a) Factoriza 35 tratando de calcular 3Q.
 - b) Factoriza 35 tratando de calcular 4Q duplicándolo.
 - c) Calcula 3Q y 4Q sobre \mathbb{E} (mód 5) y sobre \mathbb{E} (mód 7). Explica por qué el factor 5 se obtiene calculando 3Q y por qué el factor 7 se obtiene calculando 4Q.
- 2. Sea \mathbb{E} la curva elíptica $y^2 = x^3 + x + 28$ definida sobre \mathbb{Z}_{71} .
 - a) Calcula y muestra el número de puntos de E.
 SOLUCIÓN: Sabemos que los puntos en una curva elíptica

$$E: y^2 = x^3 + Ax + B \pmod{n}$$

son los pares (x,y) (mód n) con $x,y \in K$ tales que satisfacen la ecuación anterior, junto con el punto en el infinito.

Dada la siguiente implementación

```
Regresa los puntos que pertenecen a la curva eliptica
          E: y^2 = x^3 + Ax + B \pmod{n}
3
          def encontrar_puntos(A, B, n):
               puntos = []
               # Sabemos que x pertenece al conjunto [0, 70].
               for i in range (0, n):
                   # Sabemos que y pertenece al conjunto [0, 70].
9
                   for j in range (0, n):
                       # Encontramos el valor de x^3 + Ax + B \pmod{n}
                       valor = (pow(i, 3, n) + ((A * i) % n) + B) % n
                       # Encontramos los posibles valores para y.
                       y2 = pow(j, 2)
14
                       # Verificamos que el par satisface la ecuacion.
                       if (((y2 - valor) % n) == 0):
                           puntos.append((i, j))
18
               print("La curva eliptica E tiene " + str(len(puntos) + 1) +
19
                     " puntos.")
20
21
               return puntos
22
          if __name__ == "__main__":
23
               print(encontrar_puntos(1, 28, 71))
24
25
```

obtenemos que, junto con el punto en el infinito, hay 72 puntos en la curva elíptica, los cuales son:

(1, 32)	(1, 39)	(2, 31)	(2, 40)	(3, 22)	(3, 49)	(4, 5)	(4, 66)	(5, 4)
(5, 67)	(6, 26)	(6, 45)	(12, 8)	(12, 63)	(13, 26)	(13, 45)	(15, 9)	(15, 62)
(19, 27)	(19, 44)	(20, 5)	(20, 66)	(21, 3)	(21, 68)	(22, 30)	(22, 41)	(23, 19)
(23, 52)	(25, 22)	(25, 49)	(27, 0)	(31, 32)	(31, 39)	(33, 1)	(33, 70)	(34, 23)
(34, 48)	(35, 14)	(35, 57)	(36, 12)	(36, 59)	(37, 33)	(37, 38)	(39, 32)	(39, 39)
(41, 7)	(41, 64)	(43, 22)	(43, 49)	(47, 5)	(47, 66)	(48, 11)	(48, 60)	(49, 24)
(49, 47)	(52, 26)	(52, 45)	(53, 0)	(58, 27)	(58, 44)	(61, 15)	(61, 56)	(62, 0)
(63, 17)	(63, 54)	(65, 27)	(65, 44)	(66, 18)	(66, 53)	(69, 35)	(69, 36)	∞

b) Muestra que \mathbb{E} no es un grupo cíclico.

Demostraci'on. Sabemos que un elemento $P \in E$ es un punto primitivo si genera a todo el conjunto de puntos que pertenecen a E, es decir, todos los elementos del grupo pueden ser expresados de la forma

$$P + P + \cdots + P(k \text{ veces})$$
 para alguna $k \in \{1, 2, ..., \#E(\mathbb{F}_q)\}$

Por un corolario del teorema de Lagrange sabemos que el órden de un subgrupo generado por un elemento en E necesariamente divide a $\#E(\mathbb{F}_q) = 72$, por lo que

$$D = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36\}$$

son los posibles valores para el órden de cada uno de los puntos en $E(\mathbb{F}_{71})$, ya que son justamente todos los divisores de 72.

Por el ejercicio 2.c sabemos que el órden de cada uno de los elementos en E se encuentra dentro del conjunto

$$O = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$$

Entonces, como

$$\#E(\mathbb{F}_{71}) = n = 72 = 2^3 \cdot 3^2$$

no es primo, podemos buscar al punto primitivo P de la siguiente forma: para cada primo p que divide a 72, calculamos $(\frac{n}{p})P$. Si ninguno de estos puntos es el punto en el infinito, entonces P genera a E. Por ejemplo, si P=(1,32) tenemos que

$$\left(\frac{72}{2}\right)P = 36(1,32) = \infty$$
$$\left(\frac{72}{3}\right)P = 24(1,32) = (20,5)$$

Como $36P = \infty$, entonces no genera a E.

Ahora bien, podemos seguir el siguiente camino: el órden de un elemento en E siempre será múltiplo de 36 o 24, y eso implica que kP, con $k=|P|\cdot i=36$ o 24, genera el punto en el infinito. Tomando un elemento P cuyo órden pertenezca al conjunto O, tenemos que

$$|P = (1,32)| = 18 \Rightarrow 18 \cdot 2 = 36 \Rightarrow 36P = \infty$$

$$|P = (2,31)| = 6 \Rightarrow 6 \cdot 4 = 24 \Rightarrow 24P = \infty$$

$$|P = (3,22)| = 12 \Rightarrow 12 \cdot 2 = 24 \Rightarrow 24P = \infty$$

$$|P = (4,5)| = 36 \Rightarrow 36 \cdot 1 = 36 \Rightarrow 36P = \infty$$

$$|P = (5,4)| = 4 \Rightarrow 4 \cdot 6 = 24 \Rightarrow 24P = \infty$$

$$|P = (20,5)| = 3 \Rightarrow 3 \cdot 8 = 24 \Rightarrow 24P = \infty$$

$$|P = (27,0)| = 2 \Rightarrow 2 \cdot 12 = 24 \Rightarrow 24P = \infty$$

$$|P = (31,32) = 9 \Rightarrow 9 \cdot 4 = 36 \Rightarrow 36P = \infty$$

Notemos que todas las operaciones fueron verificadas con la función $suma_puntos()$, implementada en el ejercicio 2.c.

Como $|\infty|=1$ no puede ser el generador del grupo, y el órden del resto de los puntos en E oscila entre los valores del conjunto O, eso quiere decir que todos los puntos generan el punto en el infinito, lo que implica que E no es generado por ninguno de sus elementos. Por lo tanto, E no es cíclico.

c) ¿Cuál es el máximo órden de un elemento en \mathbb{E} ? Encuentra un elemento que tenga este órden. Solución: Por un corolario del teorema de *Lagrange* sabemos que el órden de un punto siempre divide el órden del grupo $E(\mathbb{F}_{71})$.

Dada la siguiente implementación

```
# Regresa los divisores de un numero n.
def divisores(n):
    div = []

for i in range (1, n):
    if ((n % i) == 0):
        div.append(i)

return div

if __name__ == "__main__":
    print(divisores(72))
```

sabemos que

```
D = [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36]
```

son los posibles valores para el órden de cada uno de los puntos en $E(\mathbb{F}_{71})$. En particular, por el teorema de Lagrange tenemos que $\#E(\mathbb{F}_{71})P = 72P = \infty$, con $P \in E(\mathbb{F}_{71})$.

Ahora bien, el órden de un punto en $E(\mathbb{F}_{71})$ será el mínimo entero $k \in D$ tal que $kP = \infty$. Dada la siguiente implementación

```
Regresa una tupla (mcd, s, t) que obtenemos al aplicar el algoritmo extendido de Euclides, donde as + bt = mcd(a, b) son los elementos que conforman la tupla.

def aee(a, b):
s = 0; s_i = 1
```

```
t = 1; t_i = 0
8
9
               g = b; g_i = a
10
               while g != 0:
11
                   cociente = g_i // g
                   g_i, g = g, g_i - cociente * g
                   s_i, s = s, s_i - cociente * s
14
15
                   t_i, t = t, t_i - cociente * t
16
               return (g_i, s_i, t_i)
17
           # Regresa el inverso multiplicativo de a modulo m.
18
           def inverso(a, m):
19
               g, s, t = aee(a, m)
20
               # El inverso de a modulo m existe si y solo si (a, m) = 1.
21
               if g != 1:
22
                   print("No tiene inverso multiplicativo.")
23
               else:
24
25
                   inverso = s % m
26
               return inverso
27
28
           # Regresa la suma de dos puntos P y Q en E.
30
           def suma_puntos(P, Q, A, p):
               # Casos especiales.
31
               if (P == None):
32
                   return Q
33
               if (Q == None):
34
35
                   return P
36
               x1, y1 = P
37
               x2, y2 = Q
38
39
               if (x1 == x2):
40
41
                   m = (3 * x1 * x1 + A) * inverso(2 * y1, p)
42
                   m = (y1 - y2) * inverso(x1 - x2, p)
43
44
               x3 = m * m - x1 - x2
45
               y3 = m * (x1 - x3) - y1
46
               suma = (x3 \% p, y3 \% p)
47
48
               return suma
49
           # Regresa el orden de un elemento en E.
50
           def orden(P, a, p):
51
               # Como P = P y y_1 = 0 entonces P+P = infinito.
               if(P[1] == 0):
                   return 2
54
56
               # Calculamos 2P.
               P2 = suma_puntos(P, P, a, p)
57
               aux = P2
58
               orden = 3
60
               for i in range(0, p):
61
                   # Calculamos P + kP
62
                   aux = suma_puntos(P, aux, a, p)
63
                   # Si encontramos a 2P, entonces hemos encontrado el orden.
64
                   if(aux == P2):
65
                        break
66
                   orden += 1
67
68
               return orden
```

```
69
           # Regresa el orden de cada uno de los elementos en la lista puntos.
70
           def get_ordenes(puntos, a, p):
71
               ordenes = []
72
               for punto in puntos:
                   o = orden(punto, a, p)
74
                   ordenes.append(o)
75
76
77
               return ordenes
78
           if __name__ == "__main__":
79
               print(get_ordenes(encontrar_puntos(1, 28, 71), 1, 71))
80
81
```

obtenemos la siguiente tabla, la cual indica el órden de cada uno de los elementos que pertenecen a ${\cal E}.$

(1,32) = 18	(1,39) = 18	(2,31) = 6	(2,40) = 6	(3,22) = 12
(3,49) = 12	(4,5) = 36	(4,66) = 36	(5,4) = 4	(5,67) = 4
(6,26) = 18	(6,45) = 18	(12,8) = 18	(12,63) = 18	(13, 26) = 36
(13,45) = 36	(15,9) = 36	(15,62) = 36	(19, 27) = 6	(19,44) = 6
(20,5) =3	(20,66) = 3	(21,3) = 36	(21,68) = 36	(22,30) = 18
(22,41) = 18	(23,19) = 36	(23,52) = 36	(25,22) = 18	(25,49) = 18
(27,0) = 2	(31,32) = 9	(31,39) = 9	(33,1) = 36	(33,70) = 36
(34,23) = 36	(34,48) = 36	(35,14) = 12	(35,57) = 12	(36,12) = 9
(36,59) = 9	(37,33) = 36	(37,38) = 36	(39,32) = 6	(39,39) = 6
(41,7) = 36	(41,64) = 36	(43,22) = 36	(43,49) = 36	(47,5) = 36
(47,66) = 36	(48,11) = 36	(48,60) = 36	(49,24) = 4	(49,47) = 4
(52, 26) = 12	(52,45) = 12	(53,0) =2	(58, 27) = 18	(58,44) = 18
(61, 15) = 18	(61, 56) = 18	(62,0) = 2	(63,17) = 9	(63, 54) = 9
(65, 27) = 18	(65,44) = 18	(66, 18) = 12	(66,53) = 12	(69, 35) = 18
(69, 36) = 18	$ \infty = 1$			

Por lo tanto, el punto P = (4,5) con |P| = 36 es un elemento en E con el máximo órden.

- 3. Sea $\mathbb{E}: y^2 2 = x^3 + 333x$ sobre \mathbb{F}_{347} y sea P = (110, 136).
 - a) Es Q = (81, -176) un punto de \mathbb{E} ?
 - b) Si sabemos que $|\mathbb{E}| = 358$. ¿Podemos decir que \mathbb{E} es criptográficamente útil? ¿Cuál es el órden de P? ¿Entre qué valores se puede escoger la clave privada?
 - c) Si tu clave privada es k = 101 y algún conocido te ha enviado el mensaje cifrado

$$(M_1 = (232, 278), M_2 = (135, 214))$$

¿Cuál era el mensaje original?

- 4. Sea \mathbb{E} : $F(x,y) = y^2 x^3 2x 7$ sobre \mathbb{Z}_{31} con $\#\mathbb{E} = 39$ y P = (2,9) es un punto de órden 39 sobre \mathbb{E} , el ECIES simplificado definido sobre \mathbb{E} tiene \mathbb{Z}_{31}^* como espacio de texto plano, supongamos que la clave privada es m = 8.
 - a) Calcula Q = mP.
 - b) Descifra la siguiente cadena de texto cifrado

$$((18,1),21),((3,1),18),((17,0),19),((28,0),8)$$

c) Supongamos que cada texto plano representa un carácter alfabético, convierte el texto plano en una palabra en Inglés. Usa la asociación $(A \to 1, ..., Z \to 26)$.