Chapitre 2: Théorème de Thalès

Plan du chapitre

- I. Réduction d'un triangle
 - 1. Enoncé des trois quotients égaux
 - 2. Exemple guidé
 - 3. Triangles semblables

II. Application au théorème de Thalès

- 1. Utilité du théorème
- 2. Exemples guidés

I/ Réduction d'un triangle

1/ Enoncé des trois quotients égaux

Si un triangle est coupé par une droite parallèle à un des côtés alors le petit triangle ainsi formé est une réduction du grand triangle.

(DE) // (BC) donc le triangle ADE est une réduction du triangle ABC.

I/ Réduction d'un triangle

2/ Exemple guidé

Si les points A,M,B sont alignés ainsi que A,N,C et si (MN)//(BC) alors le triangle AMN est une **réduction** du triangle ABC, de coefficient

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

Remarque:

- AM, AN et MN sont les petits côtés
- AB, AC et BC sont les grands côtés

I/ Réduction d'un triangle

3/ Triangles semblables

<u>Définition</u>: deux triangles sont <u>semblables</u> si l'un est <u>une réduction de</u> l'autre.

<u>Propriété</u>: deux triangles ayant leurs **angles égaux deux à deux** sont des triangles **semblables**.

<u>A noter</u> : on utilise très souvent la propriété pour démontrer que deux triangles sont semblables.

II/ Application au théorème de Thalès

1/ Utilité du théorème de Thalès

Quand on sera dans une situation de Thalès (il faut apprendre à reconnaître la figure et repérer le mot « parallèle » dans l'énoncé), on pourra calculer des longueurs manquantes à partir des longueurs connues.

Une démonstration sur YouTube :

https://www.youtube.com/watch?v=Yk1P1gNO4eE

Mots clés : théorème Thalès énoncé démonstration 2'54

II/ Application au théorème de Thalès

2/ Exemples guidés

Données:

-LC = 4 cm; AE = 1,8 cm; FC = 2,88 cm et LE = 3 cm- (AE) // (CF)

Calculer LF.

Données

On sait que L,E,F sont alignés ainsi que L,A,C et que (AE)//(FC).

Application du théorème

D'après le théorème de Thalès, on a $\frac{LA}{LC} = \frac{LE}{LE} = \frac{AE}{EC}$

$$\frac{LA}{4} = \frac{3}{LF} = \frac{1.8}{2.88}$$
 (on remplace les longueurs par leurs valeurs)
$$Donc \frac{3}{LF} = \frac{1.8}{2.88}$$
 soit LF = $\frac{3 \times 2.88}{1.8} = 4.8$ cm

Donc
$$\frac{3}{LF} = \frac{1.8}{2.88}$$
 soit LF = $\frac{3 \times 2.88}{1.8}$ = 4.8 cm

Conclusion

Le côté LF mesure 4,8 cm.