/MINIZED™

MiniZed: Test Applications

Overview

With the Hello World application operational, we will now move on to more advanced test applications. Xilinx provides a Memory Test as well as a Peripherals Test in the built-in templates for example applications.

This Tutorial assumes that you have already completed the Hardware Platform and Hello World tutorials. Your starting point will be the SDK project after the Hello World tutorial is complete.

Objectives

When this tutorial is complete, you will be able to:

- Add the Memory Test application
- Add the Peripherals Test application
- Run both test applications
- Edit the memory test to increase the test range

Experiment Setup

Software

The software used to test this reference design is:

- Windows-7 64-bit
- Xilinx SDK 2018.1
- FTDI FT2232H device driver

Hardware

The hardware setup used to test this reference design includes:

- Win-7 PC with the following recommended memory¹:
 - o 1.6 GB RAM available for the Xilinx tools to complete a XC7Z010 design
 - 2.3 GB RAM available for the Xilinx tools to complete a XC7Z015 design
 - o 1.9 GB RAM available for the Xilinx tools to complete a XC7Z020 design
 - 2.7 GB RAM available for the Xilinx tools to complete a XC7Z030 design
- MiniZed
- USB cable (Type A to Micro-USB Type B)

Page 1

Copyright © 2018 Avnet, Inc. AVNET, "Reach Further," is a registered trademark of Avnet, Inc. All other brands are the property of their respective owners.

LIT#

¹ Refer to www.xilinx.com/design-tools/vivado/memory.htm

Experiment 1: Create Memory and Peripherals Test Applications

Similar to Hello World, use templates to create two very useful test applications.

- 1. Launch SDK and open the workspace from the Hello World project.
- 2. In SDK, select **File** → **New** → **Application Project**.
- In the Project Name field type in Mem_Test. Change the BSP to the existing StandAlone BSP. Click Next >.

Figure 1 - New Application Wizard

4. Select **Memory Tests** from the *Available Templates* field. Click **Finish**.

Figure 2 - New Application Project: Hello World

- 5. Repeat steps 2 through 4 with the following options:
 - a. Project Name = Periph_Test
 - b. BSP = standalone_bsp_0
 - c. Template = Peripheral Tests
- 6. Repeat steps 2 through 4 with the following options:
 - a. Project Name = ZynqDRAM_Test
 - b. BSP = standalone bsp 0
 - c. Template = Zynq DRAM tests

When complete, Project Explorer should look similar to below.

Figure 3 – Project Explorer with New Apps Highlighted

Experiment 2: Run the Applications

- 1. Follow the instructions in the Hello World tutorial to configure the MiniZed for Cascaded JTAG and plug in the USB-JTAG-UART cable. Make sure to also program the bitstream so that the Blue DONE LED is lit.
- 2. Continue by right-clicking on the Mem_Test and Periph_Test applications selecting **Run As...**, as previously shown in the Hello World tutorial.
- 3. When asked to terminate the old configuration, select Yes.

Figure 4 – Terminate Old Configuration

When done you should see these terminal messages.

Figure 5 - Memory Test Console

Page 6

Copyright © 2018 Avnet, Inc. AVNET, "Reach Further," is a registered trademark of Avnet, Inc. All other brands are the property of their respective owners.

Figure 6 - Peripheral Test Console

The Zynq DRAM Test is a bit more complex. It is explained in detail in the ZYNQ_DRAM_DIAGNOSTICS_TEST.docx document that is included in the following directory:

C:\Avnet\MiniZed\Applications\MiniZed_Basic_System\ZynqDRAM_Test\src

A couple of the test outputs are shown below for a MiniZed.

Figure 7 – Zyng DRAM Diagnostics Test Menu

	WORD	ERF	ROR	PE	R-BYTE	-LANE	ERRC	R COUNT [LANE-3]	TIME (sec)		
Memtest_0 (0: 0)	0]][0	0][0	0][0	0]	1.10946			
Memtest_s (0: 1)	0]][0][0	0][0]	0.717226			
Memtest_s (0: 2)	0	[][0][0][0	0]	0.717226			
Memtest_s (0: 3)	0	[][0][0][0	0]	0.717226			
Memtest_s (0: 4)	0]][0][0][0	0]	0.717226			
Memtest_s (0: 5)	0]][0][0][0	0]	0.717226			
Memtest_s (0: 6)	0]][0][0][0	0]	0.717226			
Memtest_s (0: 7)	0]][0][0][0	0]	0.717226			
Memtest_s (0: 8)	0]][0][0][0	0]	0.717226			
Memtest_p (0: 9)	0]][0] [0	0][0	0]	1.09176			
Memtest_p (0:10)	0]	0][0][0	0][0	0]	1.09176			
Memtest_I ((0:11)	0]	0][0	0][0][0	0]	1.14662			
Memtest_I ((0:12)	0]][0][0][0	0]	1.14662			
Memtest_I ((0:13)	0]][0][0][0	0]	1.14662			
Memtest_I ((0:14)	0]][0][0][0	0]	1.14662			
4											

Figure 8 – Test #1, 32MB test

Problems 、	Tasks	▣	Conso	le 🔳	Proper	ties	■ SDK Terminal □
Connected to: Serial (COM25, 115200, 0, 8)							
Test offset 48	0	[][0][0][0	0]	0.105578
Test offset 44	0]	0][0][0][0	0]	0.105578
Test offset 40	0]	0][0][0][0	0]	0.104989
Test offset 36	0]	0][0][0][0	0]	0.104989
Test offset 32	0]][0][0][0	0]	0.104989
Test offset 28	0]][0][0][0	0]	0.104399
Test offset 24	0]][0][0][0	0]	0.104989
Test offset 20	0]][0][0][0	0]	0.104989
Test offset 16	0]][0][0][0	0]	0.104399
Test offset 12	0]	0][0][0][0	0]	0.104989
Test offset 8	104893	[260]	[0]	[1022	75] [44578] 0.117965
Test offset 4	16164]	8457]	[300	3][13!	572]	[9465] 0.0495452
Read Eye Result: [128 units = 1 bit time (ideal eye width)]							
Description LANE-0 LANE-1 LANE-2 LANE-3							
EYE [MIN-MAX] : [12,112] [8,112] [12,116] [12,116] EYE CENTER : 62/128 60/128 64/128 64/128 EYE WIDTH : 78.12% 81.25% 81.25% 81.25%							

Figure 9 – Measure Read Data Eye

4. When finished with the Zynq DRAM Test, click **X** to disconnect the terminal. Switch to the *Console* tab.

Experiment 3: Edit Memory Test to Expand the Range

MiniZed contain 512 MBytest of DDR3 RAM. You may have noticed that the Memory Test application actually runs three different memory tests – 32-bit, 16-bit, and 8-bit. These tests completed very quickly, which should be an indication that the entire memory range was not tested.

1. Open the system.hdf in the hw platform 0 to investigate the memory map for the DDR.

Address Map for processor ps7_cortexa9_0

Cell	Base Addr	High Addr	Slave I/f	Mem/Reg
ps7_intc_dist_0	0xf8f01000	0xf8f01fff		REGISTER
ps7_gpio_0	0xe000a000	0xe000afff		REGISTER
ps7_scutimer_0	0xf8f00600	0xf8f0061f		REGISTER
ps7_slcr_0	0xf8000000	0xf8000fff		REGISTER
ps7_scuwdt_0	0xf8f00620	0xf8f006ff		REGISTER
ps7_l2cachec_0	0xf8f02000	0xf8f02fff		REGISTER
ps7_scuc_0	0xf8f00000	0xf8f000fc		REGISTER
ps7_qspi_linear_0	0xfc000000	0xfcffffff		FLASH
ps7_pmu_0	0xf8893000	0xf8893fff		REGISTER
ps7_afi_1	0xf8009000	0xf8009fff		REGISTER
ps7_afi_0	0xf8008000	0xf8008fff		REGISTER
ps7_qspi_0	0xe000d000	0xe000dfff		REGISTER
ps7_usb_0	0xe0002000	0xe0002fff		REGISTER
ps7_afi_3	0xf800b000	0xf800bfff		REGISTER
ps7_afi_2	0xf800a000	0xf800afff		REGISTER
ps7_globaltimer_0	0xf8f00200	0xf8f002ff		REGISTER
ps7_dma_s	0xf8003000	0xf8003fff		REGISTER
ps7_iop_bus_config_0	0xe0200000	0xe0200fff		REGISTER
ps7 xadc 0	0xf8007100	0xf8007120		REGISTER
ps7_ddr_0	0x00100000	0x1fffffff		MEMORY
ps7_ddrc_0	0xf8006000	0xf8006fff		REGISTER

Figure 10 – DDR3 Memory Map

Notice that the address range is 0x00100000 to 0x1fffffff, which is 0x1FF00000 or 535,822,336 bytes. (For an explanation on where the lowest 1 MB of DDR3 went, see the Zynq TRM, *On-Chip Memory (OCM)*.)

2. Browse to the C source code for the Memory Test application in the *Project Explorer* at Mem_Test → src

Figure 11 – Memory Test C Sources

3. The main() function is located in memorytest.c. Open that source by double-clicking it.

In main(), a for loop iterates on a variable n_memory_ranges to run function test_memory_range. The n_memory_ranges will allow this application to test both the on-chipmemory (OCM) for cpu1 as well as the DDR3. The cpu0 OCM is not tested as that is the memory used to store and execute the application (as shown in source lscript.ld).

Looking up further in the file, you will notice the test_memory_range() function. To make it easier to reference code, we'll turn on line numbers now.

4. Turn on line numbers by right-clicking in the left-hand column, or use the **Window** → **Preferences** dialog. Go to **General** → **Editors** → **Text Editors** and then check the box for *Show line numbers*. Click **OK**.

Figure 12 - Show Line Numbers

- 5. Find lines 79, 82, and 85. You will see that the default function only tests the first 4K bytes:
 - 1024 locations in the 32-bit (4-bytes) test
 - 2048 locations in the 16-bit (2-bytes) test
 - 4096 locations in the 8-bit (1 byte) test

Since the cpu0 OCM is used to execute the code, there is no consequence to testing the entire range other than it will take much, much longer. We will change this to test the full DDR3. However, remember that this function is universally used to test 4KB on both cpu1 OCM and DDR3. Since cpu1 OCM doesn't have 1 GB, if we just change the range in the test function, it will cause the OCM to fail. Therefore, we will change the test to test only DDR3, and we will extend the range.

- 6. Open memory config g.c, which defines the memory range s structure.
- 7. Comment out lines 12 through 17. This can easily be done by selecting the range with your mouse then using Ctrl / on your keyboard.
- Change the n_memory_ranges to 1.
- 9. Return to memorytest.c. Make the following edits:
 - Line 79: replace 1024 with 535822336/4
 - Line 82: replace 2048 with 535822336/2
 - Line 85: replace 4096 with 535822336

Figure 13 - Modified Memory Test

- 10. Save all files using the licon, which will cause a re-build.
- 11. In the Console, notice the size of the application is ~44KB. Since cpu0 OCM has 196K useable bytes, we are well within the limits.

```
'Invoking: ARM v7 Print Size'
arm-none-eabi-size Mem_Test.elf | tee "Mem_Test.elf.size"
text data bss dec hex filename
28356 1168 14392 43916 ab8c Mem_Test.elf
'Finished building: Mem_Test.elf.size'
```

Figure 14 – Mem_Test Built

- 12. Reconnect the terminal and re-run this edited and newly built Mem_Test. Be patient as the test times are significantly longer.
 - 32-bit test: ~1:00
 16-bit test: ~1:45
 8-bit test: ~3:15

Page 14

Copyright © 2018 Avnet, Inc. AVNET, "Reach Further," is a registered trademark of Avnet, Inc. All other brands are the property of their respective owners.

Total elapsed time will be about 6 minutes.

Revision History

1.0 1.0.0.1							
Date	Version	Revision					
23 Aug 2013	2013_2.01	Initial Avnet release for Vivado 2013.2					
09 Jun 2014	2014_1.01	Update for Vivado 2014.1					
11 Jun 2014	2014_2.01	Update for Vivado 2014.2					
29 Jun 2015	2015_1.01	Update for Vivado 2015.1. Added support for PicoZed.					
15 Jul 2015	2015_2.01	Update for Vivado 2015.2					
06 Apr 2016	2015_4.01	Update to 2015.4. Add support for PZCC-FMC-V2.					
01 Jun 2016	2015_4.02	Update to 2015.4. Clarified terminal disconnect function.					
15 Sept 2016	2016_2.01	Updated to 2016.2					
20 Jan 2017	2016_4.01	Updated to 2016.4					
07 Jun 2017	2017_1.01	Updated to 2017.1 for MiniZed					
10 Apr 2018	2018_1.01	Updated to 2018.1 for MiniZed					