

本章一共包含三個小節

- **3-1** 向量的作圖_n
- 3-2 向量的座標表示法
 - 3-3 向量的內積

1. 有向線段

具有<u>方向</u>的線段,即為「有向線段」,以符號 \overline{AB} $=\overline{AB}$ 表示,其中的為起點、B為終點。

2. 向量

(1) 定義 具有大小及女向的量,即稱為「向量」。 BA· + AB

(2) 以A為起點、B為終點的向量,以符號 \overrightarrow{AB} 表示。

D AB

"O AB :蓝绿

3 AB : \$155

田 丽 : 廊

- 3. 其他向量的定義
 - (1) 零向量
 - I. 起點與終點同一點的向量,稱為「零向量」,以符號 O表示。 II. 長度為 O、沒有方向性。
 - (2) 相等向量 當兩個向量的大小即方向均相等時,稱這兩個向量為相等向量。
 - (3) 逆向量(反向量) 當兩個向量大小相等且方向相反時,此兩向量互為反向量(逆向量)。

例題1.

二、向量運算的作圖

- 1. 物理學上的向量
 - (1) 在物理學上,向量 \overline{AB} 可看作是一個物體由A點移動至 \overline{B} 點的位移

A->B->A:0

- (2) 向量是可平移的。
- 向量的加法

由於向量是可平移的,因此我們可以定義以下兩種算法:

(1) 三角形法

II. 若
$$\vec{a} = \overrightarrow{AB} \cdot \vec{b} = \overrightarrow{BC}$$
,則

(2) 平行四邊形法

I. 尾接尾。

Ⅱ. 圖示:

- (3) 向量加法滿足交換律,即 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- 3. 向量的减法
 - (1) 向量的本質是不存在減法的,所謂向量的減法,即是在一個向量上加上另一個向量的反向量,即 $\bar{a} \bar{b} = \bar{a} + (-\bar{b})$ 。
 - (2) 作圖方式有兩種:

例題2.

例題3.

例題4.

三、向量的實數積作圖

17

1. 實數積的定義 設 \bar{a} 為一個非零向量、r為實數,則實數r乘以向量 \bar{a} ,即為 \bar{a} 的實數積,以符號 $r\bar{a}$ 表示。

2. 大小與方向	ra	(1 <u>→</u> '/		r=-x
7	<i>r</i> > 0	r = 0	<i>r</i> < 0	$-(-\chi)a$
尼 茂. 大小	r倍	0	r 倍	$= \chi \cdot (-\alpha)$
方向	相同	找不到	相反	

例題5.

例題6.

一、向量的座標表示

- 1. 向量的表示法
 - (1) 設座標平面上有一點P(a,b),則以P點座標(a,b)表示有向線段 \overline{OP} ,記為 \overline{OP} = (a,b)。
 - (2) 若 $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 為平面上任意兩點,則向量 $\overline{AB} = (x_2 x_1, y_2 y_1)$,其中 $x_2 x_1$ 為x分量、 $y_2 y_1$ 為y分量。
 - (3) 每個向量在座標平面上都有<u>唯一</u>的座標表示法。
- 2. 向量的長度 $\ddot{v} = (a,b)$,則 $|\ddot{v}| = \sqrt{a^2 + b^2}$ 。

$$C = \chi \alpha + y \beta$$

 $(C,C_{2}) = \chi (a_{1}a_{2}) + y (b_{1}b_{2})$

3. 向量的相等 $(C, C_1) = (Xa_1, Xa_2) + (Yb_1, Yb_2)$ 設 $\vec{a} = (a_1, a_2) \cdot \vec{b} = (b_1, b_2)$ 為平面上兩個非零向量,若 $\vec{a} = \vec{b}$,則兩個向量相等,且 $a_1 = b_1$, $a_2 = b_2$ 。

例題1.

$$d = (-3, 4)$$
.

 $|a| = \sqrt{(-3)^{2} + 4^{2}}$
 $= 5$.

例題2.

$$\vec{x} = \vec{b}$$
 $(x+2, -5) = (5, y-1)$
 $(x+2-5) = (5, y-1)$
 $(x+2-5) = (5, y-1)$
 $(x+2-5) = (4, y-1)$
 $(x+2-5) = (4$

例題3.

$$A(4.8)$$
 $B(-1.20)$
 (1) $\overrightarrow{AB} = (-1-4, 20-8)$ (2) $|\overrightarrow{AB}| = \sqrt{(-5)^{\frac{3}{7}}+12^{\frac{3}{2}}}$
 $=(-5.12)_{\cancel{A}}$

例題4.

二、向量的運算

- 1. 設 $\vec{a} = (a_1, a_2) \cdot \vec{b} = (b_1, b_2)$, 則:
 - (1) $\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2)$
 - (2) $\vec{a} \vec{b} = (a_1 b_1, a_2 b_2)$
- 2. 運算性質

設 \vec{a} 、 \vec{b} 、 \vec{c} 為任意三個向量:

- (1) 交換律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- (2) 結合律: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- (3) 加零向量: $\vec{a} + \vec{0} = \vec{a}$
- (4) 加反向量: $\vec{a} + (-\vec{a}) = \vec{0}$

$$(1+2)+3 = (+(2+3))$$

例題5.

$$\vec{A} = (2, b) \qquad \vec{D} \quad \vec{A} + \vec{b} = (2, b) + (-1, 2)$$

$$= (2 + (-1), b + 2) = (1 - 8)_{\%}$$

$$= (2 + (-1), b + 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (1 - 8)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (-1, 2) = (3 + 4)_{\%}$$

$$\vec{A} = (2, b) + (2$$

例題6.

$$A(0,-2)$$
 $\overrightarrow{AB}+\overrightarrow{CD}$
 $B(2.3)$ $\overrightarrow{AB}=(2.5)$
 $C(-1.3)$ $\overrightarrow{CD}=(4.-2)$
 $D(31)$ $\overrightarrow{AB}+\overrightarrow{CD}$
 $=(6.3)$

$$(3) |\overrightarrow{AB} + \overrightarrow{CD}| = \sqrt{6^2 + 3^2}$$

= $\sqrt{45} = 3\sqrt{5}$.

例題7.

$$\overrightarrow{AB} = (-3.4) \overrightarrow{BC} = (0.-4).$$

$$\overrightarrow{DAC} = \overrightarrow{AB+BC}$$

$$= (-3.4) + (0.-4)$$

$$= (-3.4) + (0.-4)$$

$$= (-3.0)_{\times}.$$

(a)
$$|A| = \sqrt{1-3} + 6^{2}$$

$$= 3.$$

$$|A| = 5$$

$$|B| = 4$$

$$|A| = 5 + 3 + 4$$

$$= 12.$$

三、向量的實數積

- 1. 設 $\vec{a} = (a_1, a_2)$ 為平面上任一向量、r為實數,則 $r\vec{a} = (ra_1, ra_2)$
- 2. 運算性質

設 $\vec{a} \cdot \vec{b}$ 為乎面上兩個任意向量, $r \cdot s$ 為實數:

- $(1) \ \vec{r}(\vec{a} + \vec{b}) = r\vec{a} + r\vec{b} \ \ \vec{\phi} \ \vec{\phi} \vec{b} \vec{c} \vec{a}$
- $(2) \ (\vec{r} + s)\vec{a} = r\vec{a} + s\vec{a}$
- (3) $(rs)\vec{a} \neq r(s\vec{a}) = (r\vec{a})s \vec{a} = \vec{a} =$

- (1) 設 \vec{a} 、 \vec{b} 為平面上兩個非零向量,若 \vec{a} 與 \vec{b} 的大小金比例,則無論 \vec{a} 與 \vec{b} 是同向還是反向,均稱兩向量互為「平行向量」,記為 \vec{a} // \vec{b} 。 χy /= χ - χ - χ -
- (2) $\exists \vec{a} = (x_1, y_1) \cdot \vec{b} = (x_2, y_2) \cdot \vec{a} / \vec{b} \cdot \exists \vec{a} / \vec{b} \cdot \exists \vec{a} = r\vec{b} \cdot \exists \vec{a} = \frac{y_1}{y_2} \cdot \exists \vec{a} = \frac{y_1}{y_2$
- (3) 中很分量呈比例》以 2 (YX2, YY1) = (X1.41) ~ (YX2, YY1) = (YX2

$$\frac{\chi_{1}}{\chi_{1}} = \frac{y_{2}}{y_{1}}$$

$$\frac{\chi_{2}}{\chi_{1}} \neq \frac{y_{1}}{y_{2}}$$

$$\frac{\chi_{2}}{\chi_{1}} \neq \frac{y_{1}}{y_{2}}$$

例題8.

$$A(-1,0) B(2,3) C(-3.4)$$
 $\Rightarrow \overrightarrow{AB} - 2BC + \overrightarrow{CA}$
 $\Rightarrow \overrightarrow{AB} = (3.3)$
 $\Rightarrow (3.3) - 2(-5.1) + (2.-4)$
 $\Rightarrow (-5,1) \Rightarrow (-9,9) + (10,-2) + (2.-4)$
 $\Rightarrow (-4,9) + (10,-2) + (2.-4)$
 $\Rightarrow (-4,1) \Rightarrow (-4,1) + (-4,1$

例題9.

$$a=(2,-1)$$

$$\frac{\chi_1}{\chi_2} = \frac{y_1}{y_2}$$

$$\frac{2}{R} = \frac{1}{3}$$

$$-\frac{1}{2} = \frac{1}{3}$$

4行分量至比例

$$\frac{\chi_2}{\chi_1} = \frac{y_2}{y_1}$$

$$\frac{1}{2} = \frac{3}{-1}$$

四、單位向量

設 $\vec{a} = (a_1, a_2)$,則與 \vec{a} 同**向**的單位向量為 $\vec{u}_a = \frac{\vec{a}}{|\vec{a}|} = \frac{(a_1, a_2)}{\sqrt{a_1^2 + a_2^2}}$ 。(將<u>向量</u> \vec{a} 除上自身長度)

$$e.9. \vec{a} = (3.4)$$

$$\vec{\lambda}_{a} = \frac{(3.4)}{\sqrt{3.44^{2}}} = \frac{(3.4)}{5} = \frac{(3.4)}{5}$$

例題10.

一、向量的夾角

設 $\vec{a} \cdot \vec{b}$ 為兩個非零向量,今將 $\vec{a} \cdot \vec{b}$ 兩個向量平移並使兩向量的起點重合,則重合處所形成之交角即為兩向量的夾角,以 θ 表示,同時 θ 的範圍必定落在 $0^{\circ} \leq \theta < 180^{\circ}$ 之間。

AB. BC 时块 : 0,

AB. AC 新英年: 02

部. 强耐灰角: 03

二、向量的內積

1. 內積符號的定義

設ā、b為平面上的兩個非零向量,且兩向量的夾角為θ,則ā與b的內積符號定為

$$\vec{a} : \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\vec{a} : \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 = \vec{b} .$$

2. 內積結果為純量。(实報)

例題1.

$$0 \overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AR}| \cdot |\overrightarrow{AC}| \cdot |\overrightarrow{AC}| = |\overrightarrow{AC}$$

(2)
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = |\overrightarrow{AB}| |\overrightarrow{BC}| |\cos \theta$$

= $4 \cdot 4 \cdot (-\frac{1}{a}) = -8$

例題2.

$$\ddot{a} = (-1, -2)$$
 $\ddot{b} = (3, 4)$
 $(50) \Rightarrow \ddot{a} \cdot \ddot{b} = -3 + (-8) = -11$

3. 內積求夾角

(1) 設 \vec{a} 、 \vec{b} 為平面上的兩個非零向量,且兩向量的夾角為 θ ,則 $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$ 。

(2) θ 角的討論

	cos θ值	角度類型
DEI.W	$\gtrsim 0$	鋭角
	=0	直角
	< 0	鈍角

$$\frac{broof:}{\lambda \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta}$$

$$\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \Leftrightarrow$$

例題3.

$$A(2,3)$$
 $D\overrightarrow{AB}.\overrightarrow{AC}$
 $B(1,5) = (-1,2)\cdot(-3,1.)$
 $C(-1,4) = 3+2$
 $=5$

$$\overrightarrow{AB} \cdot \overrightarrow{Ac} = |\overrightarrow{AB}| |\overrightarrow{Ac}| \cdot \omega so$$

$$\Rightarrow \omega so = \frac{\overrightarrow{AB} \cdot \overrightarrow{Ac}}{|\overrightarrow{AB}| |\overrightarrow{Ac}|} = \frac{5}{\sqrt{5}} = \frac{5}{\sqrt{5$$

三、向量內積的運算性質

- 1. 設 $\vec{a} \cdot \vec{b} \cdot \vec{c}$ 為平面上的三個任意向量,r為實數:

 - $(4) \vec{a} \cdot \vec{a} = |\vec{a}|^2 \ge 0$

(1)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 表才教徒
(2) $(r\vec{a}) \cdot \vec{b} = \vec{a} \cdot (r\vec{b}) = r(\vec{a} \cdot \vec{b})$ 煮ま合作
(3) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ 分西之律
(4) $\vec{a} \cdot \vec{a} = |\vec{a}|^2 \ge 0$

2~~人~~ 平行向量
$$\chi_1:\chi_2=\hat{y}_1:\hat{y}_2$$
 $\chi_1:\hat{y}_1=\hat{\chi}_2:\hat{y}_2$ 設 $\vec{a}=(x_1,y_1)\cdot\vec{b}=(x_2,y_2)$,若 $\vec{a}//\vec{b}$,則 $\vec{a}=r\vec{b}$,即 $\frac{x_1}{x_2}=\frac{y_1}{y_2}$ 。

(平行分量呈比例)

設
$$\vec{a} = (x_1, y_1) \cdot \vec{b} = (x_2, y_2) \cdot \vec{a} \perp \vec{b} \cdot \vec{b} \neq 0$$
,即 $x_1x_2 + y_1y_2 = 0$ 。

例題4.

$$\vec{\lambda}_{+}\vec{b}$$
. $< 501 > \vec{\lambda}_{+}\vec{b} = 0$

$$\vec{\lambda}_{-}(\vec{k},3) \qquad \vec{k}(\vec{k}+2) - 3 = 0$$

$$\vec{k}_{-}(\vec{k}+2,-1) \qquad \vec{k}_{-}^{2} + 2\vec{k}_{-}^{2} = 0$$

$$(\vec{k}_{-}1)(\vec{k}+3) = 0$$

$$(\vec{k}_{-}1)(\vec{k}+3) = 0$$

$$(\vec{k}_{-}1)(\vec{k}+3) = 0$$

例題5.

$$|\vec{a}| = 2 \quad V \quad D \quad \vec{a} \cdot \vec{b}$$

$$|\vec{b}| = 3 \quad V \quad = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta$$

$$|\vec{b}| = 60^{\circ} \quad V \quad = 2 \cdot 3 \cdot \cos 60^{\circ}$$

$$|\vec{b}| = 60 \cdot \vec{a}$$

$$|3\vec{a}-2\vec{b}|^{2}$$

$$=|3\vec{a}|^{2}-2\cdot 3\vec{a}\cdot 2\vec{b}+|2\vec{b}|^{3}$$

$$=|9|\vec{a}|^{2}-|2\vec{a}\cdot\vec{b}+4|\vec{b}|^{2}$$

$$=|9|\vec{a}|^{2}-|2\vec{a}\cdot\vec{b}+4|\vec{b}|^{2}$$

$$=|9|\vec{a}|^{2}-|2|\vec{a}|\vec{b}|\cdot \omega + 4|\vec{b}|^{2}$$

$$=|9\cdot 2|^{2}-|2\cdot 2\cdot 3\cdot \omega + 4|\vec{b}|^{2}$$

$$=|9\cdot 2|^{2}-|2\cdot 2\cdot 3\cdot \omega + 4|\vec{b}|^{2}$$

$$=|3\vec{a}|^{2}-|2\vec{a}|\vec{b}| + |3\vec{a}|^{2}$$

$$=|3\vec{a}|^{2}-|2\vec{a}|\cdot |3\vec{b}| + |3\vec{a}|\cdot |3\vec{b}|$$

$$=|3\vec{a}|^{2}-|2\vec{a}|\cdot |3\vec{b}|\cdot |3\vec{b}| + |3\vec{b}|\cdot |3\vec{b}|$$

$$=|3\vec{a}|^{2}-|2\vec{a}|\cdot |3\vec{b}|\cdot |3\vec{b}$$