Write your name here Surname	Othe	er names
Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0 Paper: 2C	y	
Friday 20 January 2012 – Time: 1 hour	Morning	Paper Reference 4CH0/2C
You must have: Ruler Calculator.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

THE PERIODIC TABLE

0

7

9

2

က

Group

N

Period

N

က

Hydrogen
Hydrogen
H Hydrogen
Hydrogen
Hydrogen
Hydrogen
Hydrogen
Hydrogen
55 56 Manganese 101 TC Ru Ruthenium Februatium Ruthenium Februatium Ruthenium Februatium Ruthenium Februatium Februatium Ruthenium Februatium
Hydrogen 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H Hydrogen 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u> </u>
52 Cr Chromium 24 Mo Molybdenum 42 184 W W Tungsten 74
Vanadium 23 83 83 Niobium 181 Tantatum 73
48 Titanium 22 22 Ticonium 40 179 Hahhuum 72
Scandium 221 Milliam 39 139 La anthanum 57 AC Actinium Ac
Ao Y
9 Be Beryllium A 4 A Mg Magnesium 12 24 Calcium 20 Calc

Key

Relative atomic mass Symbol Name Atomic number

4

2

9

_

Answer ALL questions.

1 (a) Complete the table to show the relative mass and relative charge of a proton, a neutron and an electron.

(4)

	Proton	Neutron	Electron
Relative mass			1/1840
Relative charge	+ 1		

(b) The symbol for an atom of one isotope of hydrogen is ${1 \atop 1}H$

(i)	State the number of	protons neutrons	and electrons	present in or	ne atom of	this isotone
(1)	State the number of	protons, neutrons	and electrons	present in on	ie atom or	uns isotope.

(2)

Number of protons

Number of neutrons

Number of electrons

(ii) What is meant by the term **isotopes**?

(2)

(c) Bromine has two naturally-occurring isotopes with mass numbers 79 and 81. A sample of bromine contained the two isotopes in the following proportions:

bromine-
$$79 = 50.7\%$$
 and bromine- $81 = 49.3\%$

Use this information to calculate the relative atomic mass of bromine. Give your answer to **two** decimal places.

(2)

(Total for Question 1 = 10 marks)

2	Use the Periodic Table on page 2 to help you answer this question.
	(a) Part of the Periodic Table is shown.

In each part of this question, place a cross (\boxtimes) in **one** box to identify the letter, **A** to **E**, that represents

(i) a metal that reacts violently with water

(ii) a noble gas

(1)

(iii) a Group 2 metal

(iv) a halogen

(b) Con	nplete these sentences by placing a cross (⋈) in one box next to the correct answer	wer.
(i)	The elements in the Periodic Table are arranged in order of increasing	(1)
\boxtimes	number of neutrons	
	atomic number	
×	relative atomic mass mass number	
(11)	Elements in the same group in the Periodic Table have the same number of	(1)
×	electrons in the outer shell	
×	neutrons in the nucleus	
×	atoms	
	(Total for Question 2 = 6 ma	arks)

3	Lead(II	() sulfate, PbSO ₄ , is an insoluble salt.	
	It can b	be made as a precipitate from a solution of lead(II) nitrate, Pb(NO ₃) ₂	
	(a) (i)	Identify a substance that could be added to lead(II) nitrate solution to form a precipitate of lead(II) sulfate.	
			(1)
	(ii)	Write a chemical equation for the reaction between lead(II) nitrate and the subst you identified in (a)(i).	rance (2)
	(iii)	Outline how you would produce a pure, dry sample of lead(II) sulfate from the reaction mixture in (a)(ii).	(3)
••••			
		olution of lead(II) nitrate can be made by reacting solid lead(II) carbonate with the nitric acid.	
	The	equation for this reaction is:	
		$PbCO_3(s) + 2HNO_3(aq) \rightarrow Pb(NO_3)_2(aq) + CO_2(g) + H_2O(l)$	
		te two observations you would make when dilute nitric acid is added to solid d(II) carbonate.	
			(2)
1			
2			
		(Total for Question 3 = 8 ma)	rks)

4 When magnesium is burned in air, it reacts with oxygen, O2, to form magnesium oxide, MgO

A class of students investigated the relationship between the mass of magnesium burned and the mass of magnesium oxide formed.

Each student was given a different mass of clean magnesium to heat.

The students used the following method.

- Weigh a crucible and lid
- Place the magnesium ribbon in the crucible, replace the lid, and reweigh
- Heat the crucible as shown in the diagram until the magnesium burns

- Lift the lid from time to time until there is no sign of further reaction
- Allow the crucible and lid to cool and reweigh
- Repeat the heating, cooling and reweighing until two consecutive masses are the same
- Calculate the mass of magnesium oxide formed

	Why is it necessary to lift the lid from time to time while heating?	(1)
(ii)) Why is it necessary to repeat the heating until two consecutive masses are th	e same?

(b) Show how the mass of magnesium oxide formed can be calculated from the reading	s obtained.
	(1)

(c) The results of each experiment are given in the table.

Mass of magnesium in g	Mass of magnesium oxide in g
0.24	0.40
0.26	0.64
0.42	0.70
0.62	1.04
0.70	1.20
0.80	1.33

(i) Plot the results on the grid and draw a straight line of best fit.

(3)

Mass of magnesium in g

(ii) Draw a circle around the anomalous result.

(1)

(iii) Use your graph to find the mass of magnesium oxide formed when 0.48 g of magnesium is burned.

(1)

(Total for Question 4 = 8 marks)

5 The apparatus shown can be used to electrolyse aqueous sodium chloride in the laboratory.

(a) Gases are evolved at both electrodes.

(i)	Describe a of	chemical	test to s	how that	at the g	gas evo	lved a	it the p	ositive e	electrode	is ch	lorine.
											(2))

(ii) Identify gas A.

(1)

Explain this result.	(1)
) The equation for the reaction taking place at the positive electrode is:	
$2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$	
Ten faradays (10 F) of electricity were passed through an aqueous solution of s	sodium chlorid
(i) Calculate the amount, in moles, of chlorine formed.	(1)
	(1)
(ii) Calculate the volume of chlorine formed.	
(One mole of a gas occupies 24 dm ³ at this temperature and pressure)	(2)
	(=)
(Total for Question 5 =	7 marks)

6	Compound X is a blue, crystalline solid. It contains copper(II) ions (Cu^{2+}), sulfate ions (and water of crystallisation.	(SO ₄ ²⁻)
	(a) A student dissolved some of compound \mathbf{X} in water and then added aqueous sodium hydroxide solution. She obtained a blue precipitate.	
	Give the formula of the blue precipitate formed in the reaction.	(1)
	(b) Another student tested a solution of compound X for sulfate ions using dilute hydrochloric acid, followed by a few drops of barium chloride solution. She obtained a white precipitate.	
	Why is the dilute hydrochloric acid necessary in this test?	(1)
	(c) The empirical formula of compound \mathbf{X} is $\text{CuSO}_9\text{H}_{10}$	
	Write the formula of compound X to show its water of crystallisation.	(1)
••••	(d) Compound X gives a blue-green colour in a flame test.	
	Outline how you would carry out a flame test.	(2)
_	(Total for Question 6 = 5 ma	rks)

7 The table shows percentage by mass of the fractions obtained from a sample of crude oil and the percentage market demand for these fractions.

Fraction	Percentage by mass in crude oil	Market demand (%)
refinery gases	3	5
gasoline	12	28
kerosene	9	20
diesel	15	25
fuel oil	51	20
bitumen	10	2

(a) Why is the market demand for the gasoline fraction greater than that for the fuel of	oil fraction?
	(1)

- (b) Cracking is used to make long-chain hydrocarbon molecules into shorter-chain hydrocarbon molecules.
 - (i) Complete the equation to show the other hydrocarbon molecule formed when $C_{20}H_{42}$ is cracked.

$$C_{20}H_{42} \rightarrow C_{16}H_{34} + \dots$$

(1)

Catalyst _____

Temperature

ъ.		
Et	hanol can also be made by the fermentation of sugars.	
(i)	Give two advantages of making ethanol from ethene, rather than by fermentation	n. (2)
(ii		
(11	Suggest two reasons why ethanol is sometimes made by fermentation, rather than from ethene.	
(11		(2)
		(2)
	than from ethene.	(2)
	than from ethene.	(2)
	than from ethene.	(2)

TURN OVER FOR QUESTION 8

8 Sulfur dioxide, SO₂, is used as a preservative in wine.

The sulfur dioxide content of a wine can be found by titration. A chemist found that 25.0 cm³ of a sample of wine reacted with exactly 15.00 cm³ of 0.0010 mol/dm³ aqueous iodine, I₂(aq).

The equation for the reaction is

$$SO_2(aq) + I_2(aq) + 2H_2O(1) \rightarrow SO_4^{2-}(aq) + 2I^{-}(aq) + 4H^{+}(aq)$$

(a) Calculate the amount, in moles, of iodine in $15.00~\text{cm}^3$ of a $0.0010~\text{mol/dm}^3$ solution.

(2)

(b) Deduce the amount, in moles, of sulfur dioxide in 25.0 cm³ of the wine.

(1)

(c) Calculate the concentration, in mol/dm³, of sulfur dioxide in the wine.

(2)

(d) Calculate the concentration, in g/dm³, of sulfur dioxide in the wine.

(2)

(e) A concentration of sulfur dioxide that is greater than 0.16 g/dm³ makes wine unpleasant to drink.

Use the value you have calculated in (d) to state whether the wine is drinkable.

(1)

(Total for Question 8 = 8 marks)

TOTAL FOR PAPER = 60 MARKS