

Entropy & R-D | Lossless coding | Scalar & Vector | Subband & Wavelet DCT

Transform Coding

- Spatial image data (image or motion-compensated residual image) are transformed into a different representation, transform domain.
 - Make the image data easy to be compressed
- Techniques:
 - Discrete Cosine Transform (DCT)
 - Usually applied to small regular blocks of image, ex. 8 x 8 squares
 - JPEG, H.26x, MPEG-x
 - Discrete Wavelet Transform (DWT)
 - Usually applied to larger image section, ex. Tiles, or to complete image
 - JPEG 2000, MPEG-4 still texture

Basic Transformation Forms

■ 2-D forward transforms

$$T(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \underline{g(x,y)} f(x,y,u,v),$$
Original signal

2-D inverse transforms

$$g(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \underline{T(u,v)} i(x,y,u,v),$$
Transformed coefficients

where f(x, y, u, v) and i(x, y, u, v) are referred to as the forward and inverse transformation kernels, respectively.

■ DFT, DHT, DCT, DST, KLT, DWT,

Entropy & R-D Lossless coding Scalar & Vector Subband & Wavelet DCT

Compaction Efficiency For Various Image Transforms

Entropy & R-D | Lossless coding | Scalar & Vector | Subband & Wavelet DCT

DCT-Based Coding

- Optimal transform is KLT, but
 - KLT is image dependent
 - complex computing complexity
- DCT-based coding,
 - is image independent, unlike KLT for highly correlated image data,
 - DCT compaction efficiency is close to KLT.
 - Computations of DCT can be performance with fast algorithms which can be easily implemented on parallel architectures.

Reason why DCT is superior to DFT in terms of compression

Implementation of the DCT

- DCT-based codecs use a two-dimensional version of the transform.
- The 2-D DCT and its inverse (IDCT) of an N x N block are shown below:

• 2-D DCT:
$$F(u,v) = \frac{2}{N}C(u)C(v)\sum_{y=0}^{N-1}\sum_{x=0}^{N-1}f(x,y)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

• 2-D IDCT:
$$f(x,y) = \frac{2}{N} \sum_{v=0}^{N-1} \sum_{u=0}^{N-1} C(u)C(v)F(u,v) \cos\left[\frac{(2x+1)u\pi}{2N}\right] \cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

$$C_u$$
, $C_v = \frac{1}{\sqrt{2}} foru$, $v = 0$
 C_u , $C_v = 1 otherwise$

$$F(i,j) = \frac{2}{N}C(i)C(j)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)\cos\left[\frac{(2x+1)i\pi}{2N}\right]\cos\left[\frac{(2y+1)j\pi}{2N}\right]$$

$$f(i,j) = \frac{1}{N}c(i)c(j) \sum_{x=0}^{\infty} \sum_{y=0}^{\infty} f(x,y) \cos \left[\frac{1}{2N} \right] \cos \left[\frac{1}{2N} \right]$$

$$f(x,y) = 0 \qquad 1 \qquad 0 \qquad 1$$

$$f(x,y) = 0 \qquad 1 \qquad 0 \qquad 1$$

$$f(x,y) = 0 \qquad 1 \qquad 0 \qquad 1$$

$$1 \qquad 3 \qquad 4 \qquad 1 \qquad 1 \qquad 1$$

$$F(0,0) = \frac{2}{2} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times \frac{8 \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 1 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 1 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 1 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 1 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right)$$

=10

IDCT - 2D

$$f(x,y) = \frac{2}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} C(i)C(j)F(i,j) \cos\left[\frac{(2x+1)i\pi}{2N}\right] \cos\left[\frac{(2y+1)j\pi}{2N}\right]$$

Subband & Wavelet

$$f(0,0) = \frac{2}{2} \times \begin{pmatrix} \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} \times 10 \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) + \frac{1}{\sqrt{2}} \times 1 \times 1 \times \\ \cos\left(\frac{(2 \times 0 + 1) \times 0 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{\sqrt{2}} \times 3 \times \\ \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) + \frac{1}{2 \times 2} \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right) \times \cos\left(\frac{(2 \times 0 + 1) \times 1 \times \pi}{2 \times 2}\right)$$

= 8

Entropy & R-D Lossless coding Scalar & Vector Subband & Wavelet DCT

Discrete Cosine Transform

DCT Basis

$$F(i,j) = \frac{2}{N}C(i)C(j)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)\cos\left[\frac{(2x+1)i\pi}{2N}\right]\cos\left[\frac{(2y+1)j\pi}{2N}\right]$$

1D-DCT

- 1-D
- 8-point DCT

$$F(u) = C(u) \sum_{x=0}^{N-1} f(m) \cos \left[\frac{(2m+1)u\pi}{16} \right]$$

$$u = 0,1,\dots,7.$$

$$f(m) = \sum_{x=0}^{N-1} C(u)F(u)\cos\left[\frac{(2m+1)u\pi}{16}\right]$$

m = 0,1,...,7.

where

$$C(0) = \sqrt{\frac{1}{8}}, \quad C(u) = \sqrt{\frac{2}{8}}, \quad u = 1, 2, ..., M - 1$$

2-D DCT using a 1-D DCT Pair

- One of the properties of the 2-D DCT is that it is separable, meaning that it can be separated into a pair of 1-D DCTs.
- To obtain the 2-D DCT of a block, a 1-D DCT is first performed on the rows of the block then a 1-D DCT is performed on the columns of the resulting block.
- The same applies to the IDCT.
- This process is illustrated on the following slide.

2-D DCT using a 1-D DCT Pair

Fast Algorithms For The DCT

64x64

- An F(i,j) requires 64 multiplications and 64 additions.
- 4096 multiply accumulate operations are needed for each 8x8 block.
- Use the row-column decomposition, only 16 1-D DCTs (8 for row and 8 for column) is needed (total 1024 multiply-accumulate operations)

8x8x8x2

$$F(i,j) = \frac{2}{N}C(i)C(j)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)\cos\left[\frac{(2x+1)i\pi}{2N}\right]\cos\left[\frac{(2y+1)j\pi}{2N}\right]$$

Fast DCT algorithms

$$F(k) = \frac{c(k)}{2} \sum_{n=0}^{7} f(n) \cos(\frac{2n+1}{16} \cdot k\pi), c(0) = \frac{1}{\sqrt{2}}, c(x) = 1$$

■ Flowgraph algorithm

$$F_{2} = \frac{1}{2} \sum_{i=0}^{7} f_{i} \cos \left(\frac{(2i+1) \cdot 2\pi}{16} \right)$$

$$= \frac{1}{2} \left[f_{0} \cos \left(\frac{\pi}{8} \right) + f_{1} \cos \left(\frac{3\pi}{8} \right) + f_{2} \cos \left(\frac{5\pi}{8} \right) + f_{3} \cos \left(\frac{7\pi}{8} \right) + f_{4} \cos \left(\frac{9\pi}{8} \right) + f_{5} \cos \left(\frac{11\pi}{8} \right) + f_{6} \cos \left(\frac{13\pi}{8} \right) + f_{7} \cos \left(\frac{15\pi}{8} \right) \right]$$

$$2F_{2} = \left[(f_{0} - f_{4} + f_{7} - f_{3}) \cdot \cos \left(\frac{\pi}{8} \right) + (f_{1} - f_{2} - f_{5} + f_{6}) \cdot \cos \left(\frac{3\pi}{8} \right) \right]$$

$$D_{1} = (f_{0} - f_{4} + f_{7} - f_{3}) \quad and \quad D_{2} = (f_{1} - f_{2} + f_{5} + f_{6})$$

$$2F_{2} = \left[D_{1} \cos \left(\frac{\pi}{8} \right) + D_{2} \cos \left(\frac{3\pi}{8} \right) \right] \quad and \quad 2F_{6} = \left[D_{1} \cos \left(\frac{3\pi}{8} \right) + D_{2} \cos \left(\frac{\pi}{8} \right) \right]$$