Estadística Descriptiva

Isaac Cortés Olmos

Universidad de Atacama

27 de octubre de 2025

Esquema

- Rango.
- Desviación media.
- Varianza y desviación estándar poblacional.
- Varianza y desviación estándar muestral.

Medidas de dispersión

• Consideraremos diversas medidas de dispersión: el rango, la desviación media, la varianza y la desviación estándar.

Rango:

- La medida más simple de dispersión es el rango.
- Representa la diferencia entre los valores máximo y mínimo de un conjunto de datos.
- En forma de ecuación:

Rango = Valor máximo – Valor mínimo

Desviación Media:

- La desviación media mide la cantidad media respecto de la cual los valores de una población o muestra varían.
- Expresado esto en forma de fórmula:

$$DM = \sum_{i=1}^{n} \frac{|x_i - \overline{x}|}{n}$$

Comentarios:

- La varianza y la desviación estándar también se fundamentan en las desviaciones de la media.
- Sin embargo, en lugar de trabajar con el valor absoluto de las desviaciones, la varianza y la desviación estándar lo hacen con el cuadrado de las desviaciones.

Varianza poblacional:

- Las fórmulas de la varianza poblacional y la varianza de la muestra son ligeramente diferentes.
- La varianza de la población se determina de la siguiente manera:

$$\sigma^2 = \sum_{i=1}^N \frac{(x_i - \mu)^2}{N},$$

donde σ^2 es la varianza de la población; x_i es el valor de una observación de la población; μ es la media aritmética de la población; y N es el número de observaciones de la población.

Desviación estándar poblacional:

- Si extrae la raíz cuadrada de la varianza de la población, puede convertirla a las mismas unidades de medición empleadas en los datos originales.
- Esta medida de dispersión se calcula de la siguiente manera:

$$\sigma = \sqrt{\sum_{i=1}^{N} \frac{(x_i - \mu)^2}{N}}.$$

Varianza muestral

- La varianza muestral respecto a la poblacional requiere un cambio en el denominador.
- Se debe sustituir n por N , y el denominador es n-1.
- Así, la fórmula de la varianza muestral es:

$$S^2 = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n-1},$$

donde S^2 es la varianza de la muestra; x_i es el valor de una observación de la muestra; \overline{x} es la media aritmética de la muestra; y n es el número de observaciones de la muestra.

Desviación estándar muestral

• La desviación estándar de la muestra se calcula de la siguiente manera:

$$S = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n-1}},$$

Ejercicio

 Dos máquinas (A y B) se utilizan para producir el mismo componente. Se registra el tiempo (en minutos) que tarda cada máquina en producir 8 unidades.

Cuadro 1: Tiempos que tarda cada máquina en producir 8 unidades.

A	В
10.52	15.76
11.44	13.24
10.48	12.91
11.29	13.55
12.23	14.72
10.19	14.80
11.97	13.48
12.32	13.52

Calcule el rango, desviación media, varianza y desviación estándar muestral.
Compare los resultados.

Referencias

Freud, J. (2000). Estadística Matemática con Aplicaciones. Pearson.

Anderson, D. R., Sweeney, D. J., William, T. A., Camm, J. D., & Cochran, J. J. (2012). Estadística para negocios y economía.