CHAPTER 4 CHEMICAL REACTIONS

Dr. Yuan Dan

Ionic theory of solutions

- Pure water is not conducting.
- Pure water has no conductivity.
- An aqueous solution of ions is a conductor.

- Electrolytes: a substance that dissolves in water to give an electrically conducting solution. *i.e.* ionic solids that dissolve in water, some molecular substances (*e.g.* HCl)
- Nonelectrolyte: a substance that dissolves in water to give a nonconducting or very poorly conducting solution. e.g. sugar

Observing the Electrical Conductivity of a Solution

- Requires a complete circuit;
- Tells whether the solution is a good or moderate conductor

- Strong and Weak Electrolytes
 - Strong electrolyte: an electrolyte that exists in solution almost entirely as ions. e.g. NaCl
 - Weak electrolyte: an electrolyte that dissolves in water to give a relatively small percentage of ions. Generally molecular substances.

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$

Exception: HCI

double arrow an reversible reaction

- Solubility Rules
 - Soluble *vs* insoluble

TAI	BLE 4.1 Solubility F	Rules for Ionic Compounds	
Rule	Applies to	Statement	Exceptions
1	Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	Group IA and ammonium compounds are soluble.	_
2	$C_2H_3O_2^-, NO_3^-$	Acetates and nitrates are soluble.	_
3	Cl ⁻ , Br ⁻ , I ⁻	Most chlorides, bromides, and iodides are soluble.	AgCl, Hg ₂ Cl ₂ , PbCl ₂ , AgBr, HgBr ₂ , Hg ₂ Br ₂ , PbBr ₂ , AgI, HgI ₂ , Hg ₂ I ₂ , PbI ₂
4	SO ₄ ²⁻	Most sulfates are soluble.	CaSO ₄ , SrSO ₄ , BaSO ₄ , Ag ₂ SO ₄ , Hg ₂ SO ₄ , PbSO ₄
5	CO_3^{2-}	Most carbonates are insoluble.	Group IA carbonates, (NH ₄) ₂ CO ₃
6	PO_4^{3-}	Most phosphates are insoluble.	Group IA phosphates, (NH ₄) ₃ PO ₄
7	S^{2-}	Most sulfides are insoluble.	Group IA sulfides, (NH ₄) ₂ S
8	OH ⁻	Most hydroxides are insoluble.	Group IA hydroxides, Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂

4.2 Molecular and Ionic Equations

Chemical Equations

Molecular equations

$$Ca(OH)_2(aq) + Na_2CO_3(aq) \longrightarrow CaCO_3(s) + 2NaOH(aq)$$
precipitate

Complete ionic equations (ions level)

$$\mathrm{Ca^{2^+}}(aq) + 2\mathrm{OH^-}(aq) + 2\mathrm{Na^+}(aq) + \mathrm{CO_3^{2^-}}(aq) \longrightarrow \\ \mathrm{CaCO_3}(s) + 2\mathrm{Na^+}(aq) + 2\mathrm{OH^-}(aq)$$

Net ionic equations (remove spectator ions)

$$Ca^{2+}(aq) + CO_3^{2-}(aq) \longrightarrow CaCO_3(s)$$

P132 Example 4.2

Write a net ionic equation for each of the following molecular equations.

- a. $2HClO_4(aq) + Ca(OH)_2(aq) \longrightarrow Ca(ClO_4)_2(aq) + 2H_2O(l)$ Perchloric acid, $HClO_4$, is a strong electrolyte, forming H^+ and ClO_4^- ions in solution. $Ca(ClO_4)_2$ is a soluble ionic compound.
- b. $HC_2H_3O_2(aq) + NaOH(aq) \longrightarrow NaC_2H_3O_2(aq) + H_2O(l)$ Acetic acid, $HC_2H_3O_2$, is a molecular substance and a weak electrolyte.

a.
$$H(aq) + OH(aq) \rightarrow H_2O(I)$$

b.

$$HC_2H_3O_2(aq) + OH(aq) \rightarrow C_2H_3O_2(aq) + H_2O(I)$$

4. Chemical Reactions

Types of Chemical Reactions

Precipitation reactions

Acid-base reactions (transfer of protons)

Oxidation-reduction reactions (transfer of electrons)

4.3 Precipitation Reactions

 An exchange (or metathesis) reaction is a reaction between compounds that, when written as a molecular equation, appears to involve the exchange of parts between the two reactants.

$$MgCl_2 + 2AgNO_3 \longrightarrow 2AgCl + Mg(NO_3)_2$$

- Net ionic equation?
- The reaction will not occur if AgCl is soluble.

P135 Example 4.3

For each of the following, decide whether a precipitation reaction occurs. If it does, write the balanced molecular equation and then the net ionic equation. If no reaction occurs, write the compounds followed by an arrow and then *NR* (no reaction).

- a. Aqueous solutions of sodium chloride and iron(II) nitrate are mixed. NaCl(aq) + Fe(NO₃)₂(aq) \rightarrow NR
- b. Aqueous solutions of aluminum sulfate and sodium hydroxide are mixed.

$$Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$$

- Acid-base indicators:
- litmus (red in acid; blue in base)
- Phenolphthalein (colorless in acid; pink in base)

TABLE 4.2	Common Acids and Bases	
Name	Formula	Remarks
Acids		
Acetic acid	$HC_2H_3O_2$	Found in vinegar
Acetylsalicylic acid	$HC_9H_7O_4$	Aspirin
Ascorbic acid	$H_2C_6H_6O_6$	Vitamin C
Citric acid	$H_3C_6H_5O_7$	Found in lemon juice
Hydrochloric acid	HC1	Found in gastric juice (digestive fluid in stomach)
Sulfuric acid	H_2SO_4	Battery acid
Bases		
Ammonia	NH_3	Aqueous solution used as a household cleaner
Calcium hydroxide	Ca(OH) ₂	Slaked lime (used in mortar for building construction)
Magnesium hydroxid	de Mg(OH) ₂	Milk of magnesia (antacid and laxative)
Sodium hydroxide	NaOH	Drain cleaners, oven cleaners

Definitions of Acid and Base

According to Arrhenius

 An acid is a substance that produces H⁺ when it dissolves in water

$$HNO_3(aq) \xrightarrow{H_2O} H^+(aq) + NO_3^-(aq)$$

• A base is a substance that produces OH⁻ when it dissolves in water

NaOH(s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺(aq) + OH⁻(aq)

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

- Definitions of Acid and Base
 - According to Bronsted and Lowry
 - An acid is the species (molecule or ion) that donates a proton to another species in a protontransfer reaction
 - A base is the species (molecule or ion) that accepts a proton in a proton-transfer reaction

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$
base acid

 Definitions of Acid and Base According to Brφnsted and Lowry

$$H^+$$
 $HNO_3(aq) + H_2O(l) \longrightarrow NO_3^-(aq) + H_3O^+(aq)$
acid base hydronium ion

Strong and Weak Acids and Bases

TABLE 4.3		
Common Strong Acids and Bases		
Strong Acids	Strong Bases	
HClO ₄	LiOH	
H_2SO_4	NaOH	
HI	KOH	
HBr	$Ca(OH)_2$	
HC1	$Sr(OH)_2$	
HNO ₃	$Ba(OH)_2$	

- A strong acid is an acid that ionizes completely in water; it is a strong electrolyte.
- A weak acid is an acid that partly ionizes in water; it is a weak electrolyte.

Strong and Weak Acids and Bases

TABLE 4.3		
Common Strong Acids and Bases		
Strong Acids	Strong Bases	
HClO ₄	LiOH	
H_2SO_4	NaOH	
HI	KOH	
HBr	$Ca(OH)_2$	
HC1	$Sr(OH)_2$	
HNO_3	$Ba(OH)_2$	

- A strong base is a base that is present in aqueous solution entirely as ions, one of which is OH⁻; it is a strong electrolyte.
- A weak base is a base that partly ionizes in water; it is a weak electrolyte.

- Neutralization Reactions
 - A reaction of an acid and a base that results in an ionic compound and possibly water

$$2HCl(aq) + Ca(OH)_2(aq) \longrightarrow CaCl_2(aq) + 2H_2O(l)$$
 acid base salt

$$HCN(aq) + KOH(aq) \longrightarrow KCN(aq) + H_2O(l)$$
acid base salt driving force

Net ionic equations?

Neutralization Reactions

$$H_2SO_4(aq) + 2NH_3(aq) \longrightarrow (NH_4)_2SO_4(aq)$$
acid base salt

Without formation of H₂O

$$H^{+}(aq) + NH_{3}(aq) \longrightarrow NH_{4}^{+}(aq)$$

P141 Example 4.5

Write the molecular equation and then the net ionic equation for the neutralization of nitrous acid, HNO₂, by sodium hydroxide, NaOH, both in aqueous solution. Use an arrow with H⁺ over it to show the proton transfer.

net ionic equation

$$HNO_{2}(aq) + OH^{-}(aq) \longrightarrow NO_{2}^{-}(aq) + H_{2}O(l)$$

Acid-Base Reactions with Gas Formation

$$Na_2CO_3(aq) + 2HCl(aq) \longrightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$$
 $H_2CO_3(aq)$
Carbonic acid

$$CO_3^{2-}(aq) + 2H^+(aq) \longrightarrow H_2O(l) + CO_2(g)$$

P144 Example 4.6

Write the molecular equation and the net ionic equation for the reaction of zinc sulfide with hydrochloric acid.

$$ZnS(s) + 2HCI(aq) \rightarrow ZnCI_2(aq) + H_2S(g)$$

$$ZnS(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2S(g)$$

 involving a transfer of electrons from one species to another

$$Fe(s) + CuSO_4(aq) \longrightarrow FeSO_4(aq) + Cu(s)$$

$$Fe(s) + Cu^{2+}(aq) \longrightarrow Fe^{2+}(aq) + Cu(s)$$

Electron transfer

- Redox reaction
- A reaction in which electrons are transferred between species or in which atoms change oxidation numbers.

- Oxidation Number (or Oxidation State)
 - The actual charge of the atom if it exists as a monoatomic ion
 - or a hypothetical charge assigned to the atom in the substance by simple rules.
 - The oxidation number of an atom that exists in a substance as a monoatomic ion equals the charge on that ion.

$$0 0 +2 -2$$

$$2Ca(s) + O_2(g) \longrightarrow 2CaO(s)$$
oxidized reduced

Oxidation Number (or Oxidation State)

$$0 0 +2 -1$$

$$Ca(s) + Cl2(g) \longrightarrow CaCl2(s)$$

- An oxidation-reduction reaction always involves both oxidation and reduction.
- A redox reaction does NOT always involve oxygen.

Oxidation-Number Rules

TAE	BLE 4.5 Rules	Rules for Assigning Oxidation Numbers	
Rule	Applies to	Statement	
1	Elements	The oxidation number of an atom in an element is zero.	
2	Monatomic ions	The oxidation number of an atom in a monatomic ion equals the charge on the ion.	
3	Oxygen	The oxidation number of oxygen is -2 in most of its compounds. (An exception is O in H_2O_2 and other peroxides, where the oxidation number is -1 .)	
4	Hydrogen	The oxidation number of hydrogen is $+1$ in most of its compounds. (The oxidation number of hydrogen is -1 in binary compounds with a metal, such as CaH_2 .)	
5	Halogens	The oxidation number of fluorine is −1 in all of its compounds. Each of the other halogens (Cl, Br, I) has an oxidation number of −1 in binary compounds, except when the other element is another halogen above it in the periodic table or the other element is oxygen.	
6	Compounds and ion	The sum of the oxidation numbers of the atoms in a compound is zero. The sum of the oxidation numbers of the atoms in a polyatomic ion equals the charge on the ion.	

P147 Example 4.7

To obtain the oxidation number of the chlorine atom in each of the following:

(a) HClO₄ (perchloric acid),

(b) ClO₃⁻ (chlorate ion).

Describing Oxidation-Reduction Reactions
 Half-reaction:

$$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$$
 (electrons lost by Fe)

 $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$ (electrons gained by $Fe(s)$)

 $Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$ (electrons gained by $Fe(s)$)

Describing Oxidation-Reduction Reactions

Some Common Oxidation-Reduction Reactions

Combination reaction

$$2Na(s) + Cl_2(g) \longrightarrow 2NaCl(s)$$

Decomposition reaction

$$2 \text{HgO}(s) \xrightarrow{\Delta} 2 \text{Hg}(l) + O_2(g)$$

Displacement reaction

$$Cu(s) + 2AgNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + 2Ag(s)$$

Combustion reaction

$$2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2O(g)$$

Some Common Oxidation-Reduction Reactions

Displacement reaction

$$Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$$

$$2K(s) + 2H^{+}(aq) \longrightarrow 2K^{+}(aq) + H_{2}(g)$$

4.6 Balancing Simple Oxidation– Reduction Equations

Half-Reaction Method

$$Zn(s) + Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + Ag(s)$$
 $Zn \longrightarrow Zn^{2+} + 2e^{-}$ (oxidation half-reaction)

 $Ag^{+} + e^{-} \longrightarrow Ag$ (reduction half-reaction)

 $1 \times (Zn \longrightarrow Zn^{2+} + 2e^{-})$
 $\frac{2 \times (Ag^{+} + e^{-} \longrightarrow Ag)}{Zn + 2Ag^{+} + 2e^{-} \longrightarrow Zn^{2+} + 2Ag + 2e^{-}}$

P153 Example 4.8

The combination (oxidation-reduction) reaction of magnesium metal and nitrogen gas:

$$Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$$

Apply the half-reaction method to balance this equation.

$$3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$$

4.7 Molar Concentration

Molar Concentration (Molarity, M)

- Concentration: the quantity of solute in a standard quantity of solution. dilute vs. concentrated.
- Molar concentration (molarity, M): the moles of solute dissolved in one liter of solution

Molarity
$$(M) = \frac{\text{moles of solute}}{\text{liters of solution}}$$

4.7 Molar Concentration

Molar Concentration (Molarity, M)

FIGURE 4.18

Preparing a 0.200 M CuSO₄ solution

Left: $0.0500 \text{ mol CuSO}_4 \cdot 5H_2O$ (12.48 g) is weighed on a platform balance. Center: The copper(II) sulfate pentahydrate is transferred carefully to the volumetric flask. Right: Water is added to bring the solution level to the mark on the neck of the 250-mL volumetric flask. The molarity is 0.0500 mol/0.250 L = 0.200 M.

P154 Example 4.9

A sample of NaNO₃ weighing 0.38 g is placed in a 50.0 mL volumetric flask. The flask is then filled with water to the mark on the neck, dissolving the solid. What is the molarity of the resulting solution?

Molarity =
$$\frac{4.47 \times 10^{-3} \text{ mol NaNO}_3}{50.0 \times 10^{-3} \text{ L soln}} = \mathbf{0.089} \, M \, \text{NaNO}_3$$

4.8 Diluting Solutions

• the moles of solute has not changed

during the dilution

$$M_i \times V_i = M_f \times V_f$$

P157 Example 4.11

You are given a solution of 14.8 M NH₃. How many milliliters of this solution do you require to give 100.0 mL of 1.00 M NH₃ when diluted?

$$M_i V_i = M_f V_f$$

$$V_i = \frac{M_f V_f}{M_i}$$

$$V_i = \frac{1.00 \, \mathcal{M} \times 100.0 \, \text{mL}}{14.8 \, \mathcal{M}} = 6.76 \, \text{mL}$$

4.9 Gravimetric Analysis

Analytical Qualitative analysis
Chemistry Quantitative analysis

- Gravimetric analysis: a type of quantitative analysis in which the amount of a species in a material is determined by converting the species to a product that can be isolated completely and weighed.
- Precipitation reactions are frequently used.

4.9 Gravimetric Analysis

$$Na_2SO_4(aq) + Pb(NO_3)_2(aq) \longrightarrow 2NaNO_3(aq) + PbSO_4(s)$$

P159 Example 4.12

A 1.000-L sample of polluted water was analyzed for lead(II) ion, Pb2+, by adding an excess of sodium sulfate to it. The mass of lead(II) sulfate that precipitated was 229.8 mg. What is the mass of lead in a liter of the water? Give the answer as milligrams of lead per liter of solution.

P159 Example 4.12

% Pb =
$$\frac{207.2 \text{ g/mol}}{303.3 \text{ g/mol}} \times 100\% = 68.32\%$$

Amount Pb in sample = 229.8 mg PbSO₄ \times 0.6832 = 157.0 mg Pb

4.10 Volumetric Analysis

- Titration: a procedure for determining the amount of substance A by adding a carefully measured volume of a solution with known concentration of B until the reaction of A and B is just complete.
- Volumetric analysis is a method based on titration.

4.10 Volumetric Analysis

 $NaOH(aq) + HCl(aq) \longrightarrow NaCl(aq) + H_2O(l)$

P161 Example 4.14

A flask contains a solution with an unknown amount of HCl. This solution is titrated with 0.207 M NaOH. It takes 4.47 mL NaOH to complete the reaction. What is the mass of the HCl? 0.0338 g HCl