# Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Song Han, Huizi Man, William J. Dally

Presented by Glazkova Ekaterina

#### Deep Learning on Mobile. Tasks



#### Deep Learning on Mobile. Problems

- Memory Limit
  - Device memory limits
  - App markets limits
- Energy Consumption
- Execution Time



#### Deep Compression Pipeline



#### Deep Compression Pipeline. Pruning



#### Pruning. Reduce Number of Weights



Synapses and neurons before and after pruning [Image Source: <u>Han et al. Learning both Weights and Connections for Efficient Neural Networks</u>]

#### Pruning. Weights Representation



Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow

#### Deep Compression Pipeline. Quantization



## Trained Quantization and Weight Sharing



Within-cluster sum of squares (WCSS)

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{w \in c_i} |w - c_i|^2$$

#### Quantization. Initialization of Shared Weights

- Forgy (random)
- Density-based
- Linear



## Quantization. Feed-Forward and Back-Propagation

$$\frac{\partial \mathcal{L}}{\partial C_k} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial W_{ij}} \frac{\partial W_{ij}}{\partial C_k} = \sum_{i,j} \frac{\partial \mathcal{L}}{\partial W_{ij}} \mathbb{1}(I_{ij} = k)$$

L - Loss

W - weights

C - cluster centroids

I[i,j] - centroid index of element W[i,j]

## Quantization. Compression rate

$$r = \frac{nb}{nlog_2(k) + kb}$$

n - number of connections in network

b - one connection representation (in bits)

k - number of clusters

#### Quantization. Working Together with Pruning



## Deep Compression Pipeline. Pruning



## **Huffman Coding**

- Optimal Prefix Code
- Codewords instead of symbols
- More common symbols represented with fewer bits





[Image Source: Wikipedia]

#### Huffman Coding. Weights Distribution before HC



Figure 5: Distribution for weight (Left) and index (Right). The distribution is biased.

#### Experiments. Compression Statistics. LeNet

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

| Layer | #Weights | Weights% (P)    | Weight<br>bits<br>(P+Q) | Weight<br>bits<br>(P+Q+H) | Index<br>bits<br>(P+Q) | Index<br>bits<br>(P+Q+H) | Compress<br>rate<br>(P+Q) | Compress<br>rate<br>(P+Q+H) |
|-------|----------|-----------------|-------------------------|---------------------------|------------------------|--------------------------|---------------------------|-----------------------------|
| ip1   | 235K     | 8%              | 6                       | 4.4                       | 5                      | 3.7                      | 3.1%                      | 2.32%                       |
| ip2   | 30K      | 9%              | 6                       | 4.4                       | 5                      | 4.3                      | 3.8%                      | 3.04%                       |
| ip3   | 1K       | 26%             | 6                       | 4.3                       | 5                      | 3.2                      | 15.7%                     | 12.70%                      |
| Total | 266K     | $8\%(12\times)$ | 6                       | 5.1                       | 5                      | 3.7                      | $3.1\% (32 \times)$       | 2.49% (40×)                 |

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

| Layer | #Weights | Weights% (P)    | Weight<br>bits<br>(P+Q) | Weight<br>bits<br>(P+Q+H) | Index<br>bits<br>(P+Q) | Index<br>bits<br>(P+Q+H) | Compress<br>rate<br>(P+Q) | Compress<br>rate<br>(P+Q+H) |
|-------|----------|-----------------|-------------------------|---------------------------|------------------------|--------------------------|---------------------------|-----------------------------|
| conv1 | 0.5K     | 66%             | 8                       | 7.2                       | 5                      | 1.5                      | 78.5%                     | 67.45%                      |
| conv2 | 25K      | 12%             | 8                       | 7.2                       | 5                      | 3.9                      | 6.0%                      | 5.28%                       |
| ip1   | 400K     | 8%              | 5                       | 4.5                       | 5                      | 4.5                      | 2.7%                      | 2.45%                       |
| ip2   | 5K       | 19%             | 5                       | 5.2                       | 5                      | 3.7                      | 6.9%                      | 6.13%                       |
| Total | 431K     | $8\%(12\times)$ | 5.3                     | 4.1                       | 5                      | 4.4                      | 3.05% ( <b>33</b> ×)      | $2.55\% (39 \times)$        |

## Experiments. Compression Statistics. AlexNet

| 3101  | 2000-1200-1200 | Weights%        | Weight | Weight  | Index | Index   | Compress            | Compress             |
|-------|----------------|-----------------|--------|---------|-------|---------|---------------------|----------------------|
| Layer | #Weights       |                 | bits   | bits    | bits  | bits    | rate                | rate                 |
|       | 195,300,0      | (P)             | (P+Q)  | (P+Q+H) | (P+Q) | (P+Q+H) | (P+Q)               | (P+Q+H)              |
| conv1 | 35K            | 84%             | 8      | 6.3     | 4     | 1.2     | 32.6%               | 20.53%               |
| conv2 | 307K           | 38%             | 8      | 5.5     | 4     | 2.3     | 14.5%               | 9.43%                |
| conv3 | 885K           | 35%             | 8      | 5.1     | 4     | 2.6     | 13.1%               | 8.44%                |
| conv4 | 663K           | 37%             | 8      | 5.2     | 4     | 2.5     | 14.1%               | 9.11%                |
| conv5 | 442K           | 37%             | 8      | 5.6     | 4     | 2.5     | 14.0%               | 9.43%                |
| fc6   | 38M            | 9%              | 5      | 3.9     | 4     | 3.2     | 3.0%                | 2.39%                |
| fc7   | 17M            | 9%              | 5      | 3.6     | 4     | 3.7     | 3.0%                | 2.46%                |
| fc8   | 4 <b>M</b>     | 25%             | 5      | 4       | 4     | 3.2     | 7.3%                | 5.85%                |
| Total | 61M            | $11\%(9\times)$ | 5.4    | 4       | 4     | 3.2     | $3.7\% (27 \times)$ | 2.88% ( <b>35</b> ×) |

# Experiments. Accuracy

| Network                  | Top-1 Error | Top-5 Error | Parameters | Compress<br>Rate |
|--------------------------|-------------|-------------|------------|------------------|
| LeNet-300-100 Ref        | 1.64%       | -           | 1070 KB    |                  |
| LeNet-300-100 Compressed | 1.58%       | -           | 27 KB      | <b>40</b> ×      |
| LeNet-5 Ref              | 0.80%       | -           | 1720 KB    |                  |
| LeNet-5 Compressed       | 0.74%       | -           | 44 KB      | <b>39</b> ×      |
| AlexNet Ref              | 42.78%      | 19.73%      | 240 MB     |                  |
| AlexNet Compressed       | 42.78%      | 19.70%      | 6.9 MB     | $35 \times$      |
| VGG-16 Ref               | 31.50%      | 11.32%      | 552 MB     |                  |
| VGG-16 Compressed        | 31.17%      | 10.91%      | 11.3 MB    | <b>49</b> ×      |

## Experiments. Speedup and Energy Efficiency



[Source:

20

#### Experiments. Other methods on AlexNet

| Network                                 | Top-1 Error | Top-5 Error | Parameters   | Compress<br>Rate |
|-----------------------------------------|-------------|-------------|--------------|------------------|
| Baseline Caffemodel (BVLC)              | 42.78%      | 19.73%      | 240MB        | 1×               |
| Fastfood-32-AD (Yang et al., 2014)      | 41.93%      | -           | 131MB        | $2\times$        |
| Fastfood-16-AD (Yang et al., 2014)      | 42.90%      | -           | 64MB         | $3.7 \times$     |
| Collins & Kohli (Collins & Kohli, 2014) | 44.40%      | -           | 61MB         | $4\times$        |
| SVD (Denton et al., 2014)               | 44.02%      | 20.56%      | 47.6MB       | $5 \times$       |
| Pruning (Han et al., 2015)              | 42.77%      | 19.67%      | 27MB         | $9\times$        |
| Pruning+Quantization                    | 42.78%      | 19.70%      | 8.9MB        | $27\times$       |
| Pruning+Quantization+Huffman            | 42.78%      | 19.70%      | <b>6.9MB</b> | $35 \times$      |

#### Conclusion

- Deep Compression 3 stage approach
- The same or better accuracy
- Weights are compressed in 35-49 times
- Model works faster and uses less energy

#### References

- 1. S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding, 2016. <u>arXiv: 1510.00149</u>
- 2. S.Han, J.Pool, J.Tran, W.Dally. Learning both Weights and Connections for Efficient Neural Networks, 2015. <a href="https://example.com/arXiv:1506.02626">arXiv: 1506.02626</a>
- 3. A. Howard, M. Zhu, Bo Chen, D.Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017 <a href="https://arxiv:1704.04861">arXiv: 1704.04861</a>
- 4. Deep compression on ICLR 2016 (Video lecture)
- 5. Wikipedia Huffman coding (<u>link</u>)