VARIATIONAL QUANTUM LINEAR SOLVER

Introduction to Quantum Computing

Kalamarakis Theodoros: 2018030022 February 8, 2023

GitHub Repository https://github.com/kthod/VQLS algorithm.git

Introduction

Ax = b where $A \in \mathbb{R}^{N \times N}$ and $x, b \in \mathbb{R}^N$

Existing classical algorithms solves the problem with polynomial scaling in N

Introduction

Ax = b where $A \in C^{N \times N}$ and $x, b \in C^N$

Exponential speedup can be achieved using the quantum algorithm **HHL** which:

- Determines a quantum state $|x\rangle$ that is proportional to $x:|x\rangle \sim x$
- Achieves polylogarithmic scaling in *N*

However

Demanding implementation

Instead a Variational Hybrid Quantum Classical Algorithm can be used

The Variational Quantum Linear Solves (VQLS)

• Can be performed in NISQ quantum computers

Complexity of the VQLS algorithm

• Complexity analysis on heuristic algorithms like the VHQCA is difficult

Complexity of the VQLS algorithm

- Complexity analysis on heuristic algorithms like the VHQCA is difficult
- However complexity can be determined by performing numerical simulation

Complexity of the VQLS algorithm

- Complexity analysis on heuristic algorithms like the VHQCA is difficult
- However complexity can be determined by performing numerical simulation
- The obtained relation for running time scaling with *n* is :

$$y \sim n^{8.5}$$

Since
$$N = 2^n \Leftrightarrow n = \log N$$

$$y \sim (log N)^{8.5}$$

Which is polylogarithmical in N

Time to solution scaling with n. Figure taken from original paper

Time to solution scaling with n. Measurements taken using our implementation of VQLS

Input

• A matrix **A** that, must be given as a linear combination of L unitaries A_1 , A_2 ,..., A_L such that

$$A = \sum_{l=1}^{L} c_l A_l$$

where c_l is a complex number

• An operator U that prepares a quantum state $|b\rangle$ that is proportional to the vector \mathbf{b} , such that

$$U|0\rangle = |b\rangle$$

Input

• A matrix **A** that, must be given as a linear combination of L unitaries A_1 , A_2 ,..., A_L such that

$$A = \sum_{l=1}^{L} c_l A_l$$

where c_l is a complex number

• An operator U that prepares a quantum state $|b\rangle$ that is proportional to the vector \mathbf{b} , such that

$$U|0\rangle = |b\rangle$$

Goal

Determine a state $|x\rangle$ such that $A|x\rangle$ is proportional to $|b\rangle$, or equivalently:

$$|\psi\rangle:=\frac{A|x\rangle}{\langle x|A^{\dagger}A|x\rangle}\approx|b\rangle$$

• $|x\rangle$ is approximated using a set of parameters $\alpha = (\alpha_1, \alpha_2, ...)$ such that

•
$$|x(\alpha)\rangle = V(\alpha)|0\rangle$$

The operator $V(\alpha)$ is called **Ansatz** and is capable of generating any arbitrary state in Hilbert space

- The configuration of the parameters α is happening through a classical optimizer that aims to minimize a **cost function** $C(\alpha)$
- A quantum circuit evaluates the cost function $C(\alpha)$

Interaction between the Quantum circuit and the classical optimizer

Interaction between the Quantum circuit and the classical optimizer

• The quantum circuit receives as input the parameters α and evaluates the cost function on this point $C(\alpha)$

Interaction between the Quantum circuit and the classical optimizer

- The quantum circuit receives as input the parameters α and evaluates the cost function on this point $C(\alpha)$
- The classical optimizer, uses the output value $C(\alpha)$, to determine a new set of parameters α' such that, $C(\alpha') < C(\alpha)$

<u>Interaction between the Quantum circuit and the classical optimizer</u>

- The quantum circuit receives as input the parameters α and evaluates the cost function on this point $C(\alpha)$
- The classical optimizer, uses the output value $C(\alpha)$, to determine a new set of parameters α' such that, $C(\alpha') < C(\alpha)$
- The quantum circuit is fed with the new set of parameters α' and the process repeats itself until the cost function reaches its global minimum : $C(\alpha_{opt}) = 0 \rightarrow |x(\alpha_{opt})\rangle = |x\rangle$

Capable of generating any arbitrary state on Hilbert space, including the entangled ones

Capable of generating any arbitrary state on Hilbert space, including the entangled ones

Consists of:

- Rotation single-qubit gates R_X , R_Y , R_Z for "exploring" the space. Each one of the rotation gates should correspond to one of the parameters $\alpha = (\alpha_1, \alpha_2, ...)$
- Entanglement two-qubit gates *CNOT*, *CZ* to provide entanglement

Capable of generating any arbitrary state on Hilbert space, including the entangled ones

Consists of:

- Rotation single-qubit gates R_X , R_Y , R_Z for "exploring" the space. Each one of the rotation gates should correspond to one of the parameters $\alpha = (\alpha_1, \alpha_2, ...)$
- Entanglement two-qubit gates *CNOT*, *CZ* to provide entanglement

Distinguishing two types of Ansatzes:

- The Fixed-Structure Anstatz
- The Variable-Structure Ansatz

We are only concerned with Fixed-Structure Anstatz

Fixed-Structure Anstaz

Placement of the gates remains the same throughout the execution of the algorithm

Two examples are the following:

Ansatz with alternating entanglement is more efficient in terms of effective parameters per two-qubit gate

Define $|\psi\rangle = |\psi(\alpha)\rangle := A|x(\alpha)\rangle$

We construct a cost function which takes its minimum value C=0 when $|\psi\rangle$ and $|b\rangle$ have the maximum overlap

The general form of a cost function in VQA is $C_G = \langle \psi | H_G | \psi \rangle$

Define $|\psi\rangle = |\psi(\alpha)\rangle := A|x(\alpha)\rangle$

We construct a cost function which takes its minimum value C=0 when $|\psi\rangle$ and $|b\rangle$ have the maximum overlap

The general form of a cost function in VQA is $C_G = \langle \psi | H_G | \psi \rangle$

A suitable Hamiltonian H_G to take advantage of the overlap is

$$H_G = I - |b\rangle\langle b|$$
.

Hence the cost function is

$$\hat{C}_G = \langle \psi | (\mathbb{I} - |b\rangle \langle b|) | \psi \rangle = \langle \psi | \psi \rangle - |\langle b | \psi \rangle|^2 \quad \text{with } 0 \le \hat{C}_G \le \langle \psi | \psi \rangle$$

Define $|\psi\rangle = |\psi(\alpha)\rangle := A|x(\alpha)\rangle$

We construct a cost function which takes its minimum value C=0 when $|\psi\rangle$ and $|b\rangle$ have the maximum overlap

The general form of a cost function in VQA is $C_G = \langle \psi | H_G | \psi \rangle$

A suitable Hamiltonian H_G to take advantage of the overlap is

$$H_G = I - |b\rangle\langle b|$$
.

Hence the cost function is

$$\hat{C}_G = \langle \psi | (\mathbb{I} - |b\rangle \langle b|) | \psi \rangle = \langle \psi | \psi \rangle - |\langle b | \psi \rangle|^2 \quad \text{with } 0 \le \hat{C}_G \le \langle \psi | \psi \rangle$$

A potential small $\langle \psi | \psi \rangle$ would be problematic, so we use instead a normalized version of the cost function

$$C_G = \frac{\hat{C}_G}{\langle \psi | \psi \rangle} = 1 - \frac{|\langle b | \psi \rangle|^2}{\langle \psi | \psi \rangle}$$

Using that $|b\rangle = U|0\rangle$ and $|\psi\rangle = A|x(\alpha)\rangle = \sum_{l=1}^{L} c_l A_l V(\alpha)|0\rangle$

$$C_{G} = 1 - \frac{\langle \psi | b \rangle \langle b | \psi \rangle}{\langle \psi | \psi \rangle} = 1 - \frac{\left(\sum_{l=1}^{L} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger} U | \mathbf{0} \rangle\right) \left(\sum_{l=1}^{L} c_{l} \langle \mathbf{0} | U^{\dagger} A_{l} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle\right)}{\left(\sum_{l=1}^{L} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger}\right) \left(\sum_{l=1}^{L} c_{l} A_{l} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle\right)} = 0$$

$$=1-\frac{\sum_{l=1}^{L}\sum_{l'=1}^{L}c_{l'}c_{l}^{*}\left\langle \mathbf{0}\right|V^{\dagger}(\boldsymbol{\alpha})A_{l}^{\dagger}U\left|\mathbf{0}\right\rangle\left\langle \mathbf{0}\right|U^{\dagger}A_{l'}V(\boldsymbol{\alpha})\left|\mathbf{0}\right\rangle}{\sum_{l=1}^{L}\sum_{l'=1}^{L}c_{l'}c_{l}^{*}\left\langle \mathbf{0}\right|V^{\dagger}(\boldsymbol{\alpha})A_{l}^{\dagger}A_{l'}V(\boldsymbol{\alpha})\left|\mathbf{0}\right\rangle}$$

Using that
$$|b\rangle = U|0\rangle$$
 and $|\psi\rangle = A|x(\alpha)\rangle = \sum_{l=1}^{L} c_l A_l V(\alpha)|0\rangle$

$$C_{G} = 1 - \frac{\langle \psi | b \rangle \langle b | \psi \rangle}{\langle \psi | \psi \rangle} = 1 - \frac{\left(\sum_{l=1}^{L} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger} U | \mathbf{0} \rangle\right) \left(\sum_{l=1}^{L} c_{l} \langle \mathbf{0} | U^{\dagger} A_{l} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle\right)}{\left(\sum_{l=1}^{L} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger}\right) \left(\sum_{l=1}^{L} c_{l} A_{l} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle\right)} = 0$$

$$= 1 - \frac{\sum_{l=1}^{L} \sum_{l'=1}^{L} c_{l'} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger} U | \mathbf{0} \rangle \langle \mathbf{0} | U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle}{\sum_{l=1}^{L} \sum_{l'=1}^{L} c_{l'} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle}$$

The above is called **Global Cost Function**

• Can exhibit barren plateaus for a large number of qubits

To tackle this problem we divide the problem up into multiple single-qubit terms by replacing the term $|\mathbf{0}\rangle\langle\mathbf{0}|$ with $\frac{1}{n}\sum_{j=0}^{n-1}(|0_j\rangle\langle0_j|\otimes\mathbb{I}_{\overline{j}})$.

The produced cost is function is called **Local Cost Function** $H_L = \mathbb{I} - \frac{1}{n} \sum_{j=1}^n \ket{0_j} \bra{0_j} \otimes \mathbb{I}_{\bar{j}}$

$$C_{L} = 1 - \frac{\sum_{l=1}^{L} \sum_{l'=1}^{L} c_{l'} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger} U\left(\frac{1}{n} \sum_{j=0}^{n-1} (|0_{j}\rangle \langle 0_{j}| \otimes \mathbb{I}_{\overline{j}})\right) U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) |\mathbf{0}\rangle}{\sum_{l=1}^{L} \sum_{l'=1}^{L} c_{l'} c_{l}^{*} \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_{l}^{\dagger} A_{l'} V(\boldsymbol{\alpha}) |\mathbf{0}\rangle} =$$

$$=1-\frac{1}{n}\frac{\sum_{l=1}^{L}\sum_{l'=1}^{L}\sum_{j=0}^{L}c_{l'}c_{l}^{*}\left\langle\mathbf{0}\right|V^{\dagger}(\boldsymbol{\alpha})A_{l}^{\dagger}U(\left|0_{j}\right\rangle\left\langle0_{j}\right|\otimes\mathbb{I}_{\overline{j}}\right)U^{\dagger}A_{l'}V(\boldsymbol{\alpha})\left|\mathbf{0}\right\rangle}{\sum_{l=1}^{L}\sum_{l'=1}^{L}c_{l'}c_{l}^{*}\left\langle\mathbf{0}\right|V^{\dagger}(\boldsymbol{\alpha})A_{l}^{\dagger}A_{l'}V(\boldsymbol{\alpha})\left|\mathbf{0}\right\rangle}$$

To prove that the local cost function suits our problem we use that

$$C_L \le C_G \le nC_L$$

Which implies that $C_G \to 0 \Leftrightarrow C_L \to 0$

Evaluation of the cost function using quantum circuit

• For Global Cost Function we have to evaluate the terms:

$$\beta_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$$

and

$$\gamma_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U | \mathbf{0} \rangle \langle \mathbf{0} | U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$$

• For Local Cost Function we have to evaluate the terms:

$$\beta_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$$

and

$$\delta_{ll'}^{(j)} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U(|0_j\rangle \langle 0_j| \otimes \mathbb{I}_{\overline{j}}) U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) |\mathbf{0}\rangle$$

Using that $|0_j\rangle\langle 0_j|=\frac{1}{2}(I_j+Z_j)$, the last one can be rewritten as

$$\delta_{ll'}^{(j)} = \beta_{ll'} + \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U(Z_j \otimes \mathbb{I}_{\overline{j}}) U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$$

How can we evaluate the previous terms?

We employ a quantum circuit called **The Hadamard Test**

The circuit above can calculate the term $Re\left[\langle \psi | U_H | \psi \rangle\right]$

- The probability of measuring the first qubit (**ancilla**) to be 0 is $P(0) = \frac{1}{2}(1 + Re[\langle \psi | U_H | \psi \rangle])$
- The probability of measuring the ancilla qubit to be 1 is $P(1) = \frac{1}{2} (1 Re [\langle \psi | U_H | \psi \rangle])$

Hence
$$P(0) - P(1) = Re \left[\langle \psi | U_H | \psi \rangle \right]$$

For the Imaginary part we simple add a S^{\dagger} gate after the first Hadamard on the ancilla qubit

The circuit above can calculate the term $Im\left[\langle \psi | U_H | \psi \rangle\right]$

- The probability of measuring the ancilla qubit to be 0 is $P(0) = \frac{1}{2}(1 + Im[\langle \psi | U_H | \psi \rangle])$
- The probability of measuring the ancilla qubit to be 1 is $P(1) = \frac{1}{2} (1 Im [\langle \psi | U_H | \psi \rangle])$

Hence
$$P(0) - P(1) = Im [\langle \psi | U_H | \psi \rangle]$$

How can we apply the hadamard test for our purpose?

To calculate the terms $\beta_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$ we set:

$$|\psi\rangle = V(\alpha)|0\rangle$$
 and $U_H = A_l^{\dagger}A_{l'}$

To calculate the terms $\gamma_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U | \mathbf{0} \rangle \langle \mathbf{0} | U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$:

$$\langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U | \mathbf{0} \rangle = (\langle \mathbf{0} | U^{\dagger} A_l V(\boldsymbol{\alpha}) | \mathbf{0} \rangle)^{\dagger} = (\langle \mathbf{0} | U^{\dagger} A_l V(\boldsymbol{\alpha}) | \mathbf{0} \rangle)^*$$

Thus by setting $|\psi\rangle = |\mathbf{0}\rangle$ and $U_H = U^\dagger A_l V(\alpha)$ we can calculate γ_{ll} , by using the following circuit twice

To calculate the terms $\gamma_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U | \mathbf{0} \rangle \langle \mathbf{0} | U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$:

$$\langle \mathbf{0}|V^{\dagger}(\boldsymbol{\alpha})A_{l}^{\dagger}U|\mathbf{0}\rangle = (\langle \mathbf{0}|U^{\dagger}A_{l}V(\boldsymbol{\alpha})|\mathbf{0}\rangle)^{\dagger} = (\langle \mathbf{0}|U^{\dagger}A_{l}V(\boldsymbol{\alpha})|\mathbf{0}\rangle)^{*}$$

Thus by setting $|\psi\rangle = |\mathbf{0}\rangle$ and $U_H = U^\dagger A_l V(\alpha)$ we can calculate γ_{ll} , by using the following circuit twice

 An alternative way to calculate these term is by using an different subroutine called The Hadamard-Overlap Test

To calculate the terms $\delta_{ll'}^{(j)} = \beta_{ll'} + \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U(Z_j \otimes \mathbb{I}_{\overline{j}}) U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$

We set $|\psi\rangle = V(\alpha)|0\rangle$ and $U_H = A_l^{\dagger}U(Z_j \otimes \mathbb{I}_{\overline{j}})U^{\dagger}A_{l'}$

Using Qiskit we attempt to implement the VQLS algorithm and solve an example of a 3-qubits linear equations system Ax = b with

$$\mathbf{A} = 0.4H_2 + 0.3Z_1 + 0.3X_3$$
 and $|b\rangle = H_1 \otimes H_2 \otimes H_3 |\mathbf{0}\rangle$

Linear entanglement ansatz was used with 9 rotation gates R_Y (therefore 9 parameters) and 4 *CNOTs gates*

Since *A* and $|b\rangle$ are real, only rotation around the *y*-axis is required

Global cost function was used:

The Hadamard Test for evaluatind the terms $\beta_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$

With
$$A_l = Z_1$$
 and $A_{l'} = X_3$

... and for the terms $\gamma_{ll'} = \langle \mathbf{0} | V^{\dagger}(\boldsymbol{\alpha}) A_l^{\dagger} U | \mathbf{0} \rangle \langle \mathbf{0} | U^{\dagger} A_{l'} V(\boldsymbol{\alpha}) | \mathbf{0} \rangle$

With
$$A_l = Z_1$$

Our cost function is:

$$C_G = 1 - \frac{\sum_{l=1}^{L} \sum_{l'=1}^{L} c_{l'} c_l^* \gamma_{ll'}}{\sum_{l=1}^{L} \sum_{l'=1}^{L} c_{l'} c_l^* \beta_{ll'}}$$

We minize it using preferably a gradient free optimizer, like COBYLA, that is less vulnerable to barren plateaus

The output of the algorithm is:

- *fun* is the final value of the cost function which is close to 0, as desired
- x is optimal point α_{opt} which corresponds to the solution $|x\rangle = V(\alpha_{opt})|0\rangle$

To confirm that the obtained solution is correct we calculate the inner product

 $\langle xA|b\rangle$

with the expectation of being close to 1. The output is:

To confirm that the obtained solution is correct we calculate the inner product

$$\langle xA|b\rangle$$

with the expectation of being close to 1. The output is:

$$\langle xA|b \rangle = (0.9998736206641057-0j)$$

... It works !!!

Referances

VQLS ALgorithm

https://arxiv.org/pdf/1909.05820.pdf

https://qiskit.org/textbook/ch-paper-implementations/vqls.html

https://pennylane.ai/qml/demos/tutorial_vqls.html

Anstaz

https://arxiv.org/pdf/2111.13730.pdf

Cost Function

https://qiskit.org/textbook/ch-paper-implementations/vqls.html