123-I Ioflupane SPECT Measures of Parkinson Disease Progression in the Parkinson Progression

Marker Initiative (PPMI) Trial

Seibyl, John¹; Jennings, Danna¹; Grachev, Igor D.³; Coffey, Christopher²; and Marek, Kenneth¹ on behalf of the PPMI Investigators

- 1. Instit for Neurodegenerative Disorders, New Haven, CT, United States.
- 2. Univ of Iowa, Iowa City, IA, United States.
- 3. GE HEalthcare, Princeton, NJ, United States.

Disclosure

- Equity interest in Molecular Neuroimaging, LLC
- Consultant: Bayer Healthcare, GE
 Healthcare, Navidea Biopharmaceuticals,
 Piramal Imaging

PPMI Overview

- Observational, five-year, multi-center study to assess progression of clinical features, imaging and biologic biomarkers in *de novo* Parkinson's patients and healthy controls
- Subjects are assessed at baseline and every 3-6 months thereafter
 - -Clinical assessments: motor, neuropsychiatric and cognitive
 - -Imaging assessments
 - Biologics collected: blood, CSF, urine and DNA
- Clinical, imaging and biological data and samples collected under standardized protocols and analyzed and stored at core facilities and made available to investigators

Study synopsis

Study population	400 de novo PD subjects (newly diagnosed and unmedicated) 200 age- and gender-matched healthy controls Subjects will be followed for a minimum of 3 years and a maximum of 5 years
Assessments/ Clinical data collection	 Motor assessments Neuropsychiatric/cognitive testing Olfaction DaTSCAN imaging, AV-133 PET, DTI, and resting state MRI
Biologic collection/ Verification studies	 DNA collected at baseline Blood collected at each visit; CSF collected at 6mo and then annually Samples aliquoted and stored in central biorepository Lead biologic candidates potential to be tested: alpha-synuclein, DJ-1, urate
PD treatment	 De novo for 6 months Can participate in clinical trials after 12 months

PPMI Study Sites

Northwestern

IND- New Haven

Johns Hopkins

Federico II - Naples

Parkinson's Institute- Sunnyvale

Univ Pennsylvania

Univ Rochester

APDC- Sun City, Az

Baylor Univ

Univ Alabama-Birmingham

Boston University

Boca Raton, FL

London

UC San Diego

Cleveland Clinic

Univ Cincinnati

Portland, Oregon

Innsbruck

Marburg

Tübingen

Univ Washington

USF, Tampa

Emory Univ

Macquarie Univ, Sydney

Customized 57-Co Striatal Phantom Acquired Each Day a Subject is Scanned to Provide On-going Camera Calibration

Central Core Lab Reconstructions of Raw Projection Data Improves Quality and Consistency of Quantitative SPECT Data

DAT SPECT Quantitative Analysis

- Core lab reconstruction from raw projection data, including attenuation correction based on phantoms from site visit
- 2. Spatial normalization of image creates consistent orientation
- 3. Apply standard volume of interest template on caudate, putamen, occipital, frontal regions
- 4. Extract count densities and calculate Striatal Binding Ratios (SBR)

Volume of Interest Sampling

		Enrolled Subjects			
	PD	Healthy	SWEDD		
	Subjects	Controls	Subjects	p-value	p-value
Variable	(N =422)	(N = 195)	(N = 63)	(PD vs. HC)	(PD vs.
3 12.53	N (%)	N (%)	N (%)		SWEDD)
Gender	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18. 38	W	0.79	0.58
Male	276 (65%)	125 (64%)	39 (62%)		
Female	146 (35%)	70 (36%)	24 (38%)		
Missing	0 (0%)	0 (0%)	0 (0%)		
Age			100	0.53	0.22
<56 Years	114 (27%)	55 (28%)	22 (35%)		
56-65 Years	135 (32%)	69 (35%)	14 (22%)		
>65 Years	173 (41%)	71 (36%)	27 (43%)		
Missing	0 (0%)	0 (0%)	0 (0%)		
Age				0.27	0.59
Mean	61.7	60.7	60.9		
(Min, Max)	(33, 85)	(31, 84)	(38, 79)		
Missing	0	0	0		
Education				0.55	0.03
<13 Years	77 (18%)	29 (15%)	18 (29%)		
13-23 Years	341 (81%)	165 (85%)	43 (68%)		
>23 Years	4 (1%)	1 (1%)	2 (3%)		
Missing	0 (0%)	0 (0%)	0 (0%)		
Ethnicity				0.76	0.64
Hispanic/Latino	9 (2%)	3 (2%)	2 (3%)		
Not Hispanic/Latino	413 (98%)	192 (98%)	61 (97%)		
Missing	0 (0%)	0 (0%)	0 (0%)		
Race				0.87	1.00
White	389 (92%)	181 (93%)	59 (94%)		
Black/African-American	6 (1%)	9 (5%)	1 (2%)		
Asian	8 (2%)	1 (1%)	1 (2%)		
Other	16 (4%)	4 (2%)	1 (2%)		
Missing	3 (1%)	0 (0%)	1 (2%)		

Baseline DAT Data

Baseline SBR PPMI

PD n= 378 HC n= 182 SWEDD = 48

Play a Part in Parkinson's Rese

Baseline DAT data

	Enrolled Subjects		
	PD	Healthy	
	Subjects	Controls	p-value
Variable	(N = 378)	(N =182)	(PD vs. HC)
Lowest Caudate	1.21	1.89	<0.001
Lowest Putamen	0.57	1.27	<0.001
Mean Caudate	1.32	1.94	<0.001
Mean Putamen	0.65	1.33	<0.001
Mean Striatum	0.98	1.63	<0.001
Ipsilateral Caudate	1.41	1.89	<0.001
Ipsilateral Putamen	0.73	1.27	<0.001
Contralateral Caudate	1.22	1.99	<0.001
Contralateral Putamen	0.58	1.40	<0.001
Caudate Asymmetry Index	15.96	5.27	<0.001
Putamen Asymmetry Index	26.48	10.20	<0.001
Striatum Asymmetry Index	36.86	8.72	<0.001
Ipsilateral CDR	2.05	1.56	<0.001
PARKINSON'S Contralateral CDR	2.23	1.47	<0.001

SBR signal loss is 6.2% per Decade in Healthy Volunteers

SBR signal in PD is not correlated with age

Play a Part in Parkinson's Research

Longitudinal Data DAT

Longitudinal DAT

Rate of SBR Signal Change

- Identical to % signal loss in the PROUD* study with DatScan
 - mean change was -15.5% for early
 (n=57) and -14.2% for delayed (n=58)
 pramipexole cohorts over 15 months
- Faster than PRECEPT cohort (n=800) using123-I β-CIT

Longitudinal PD SBR

Conclusions

In this ongoing multicenter PPMI study:

- Baseline cohorts are now fully recruited
- DAT SPECT suggests de novo PD subjects have average SBR reduction about 50% of age matched controls
- Normal aging is associated with about 6% signal loss per decade (0.6%/y) based on cross-sectional data
- First longitudinal data in 117 PD subject suggests SBR reductions over one year is 13.3%, approximately 20 times the rate of signal loss seen in normal aging

Conclusions (cont)

- This rate of change is identical to % signal loss in the PROUD study with 123-I loflupane mean change about 15% over 15 months
- Similar to other biomarkers, there is significant between subject variability in %SBR reduction over one year, consistent with both prior PD longitudinal imaging and differences in clinical course between patients
- Correlation of signal loss with medication status, clinical features and other biomarkers are pending

Acknowledgements

Research Support: The Michael J. Fox Foundation for Parkinson's Research and funding partners, including Abbott, AVID, Biogen Idec, Covance, Eli Lilly, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech, GSK, Merck, Pfizer Inc, UCB

Extra

Play a Part in Parkinson's Research

FA Of Substantia Nigra (Manual ROI)

PD=100, Control= 52 100Analysis:

By diagnosis and side of symptom onset.

Statistics:

Using permutations to approximate a t-distribution

Markings

Caudal Middle Rostral

FA Of Substantia Niagra vs UPDRS.III

Play a Part in Parkinson's Research

New Analysis: Tractography Of Striato-Nigral Tract

Tracing the nigro-striatal fibers

Seeding in post Putamen Automated fiber tracking ends in SN pars compacta

Play a Part in Parkinson's Research

Sagittal View

coronal

FA Profile Along Striato-Nigral Tract

27 control 51 PD)

	Control	PD	<i>p</i> value
Fractional Anisotropy	0.45 ± 0.04	0.42 ± 0.04	0.002
Axial Diffusivity [10 ⁻³ mm ² /s]	1.21 ± 0.09	1.26 ± 0.10	0.05
Radial Diffusivity [10 ⁻³ mm ² /s]	0.58 ± 0.08	0.63 ±0.10	0.02
Mean diffusivity [10 ⁻³ mm ² /s]	0.79 ± 0.08	0.84 ± 0.09	0.02

MARKERS INITIATIVE

Relation Between Radial Diffusivity Along The Tract And DAT/UPDRS

$$r = -0.42$$
, $p = 0.0001$

$$r = -0.29$$
, $p = 0.04$

18F-AV-133: Targets VMAT2

Parkinson's Subject

Mean putamen binding ratio = 1.36

18F-AV133 PET: possible to image the substantia nigra directly

Healthy Subject

PD Subject

Substantia nigra SN ratio = 1.59

Enrollment

Active PD	Active	Active	Total Active
	Healthy	SWEDD	Subjects
390	184	58	632

As of 8 April 2013

SBR phantom correction

Approach #1 (Scaling) Normalize each DAT study (mean SBR) to the phantom (mean SBR) acquired on the imaging day, e.g., set the 57Co SBR at 100% and multiply through the subject scan using the phantom normalizing factor then calculate percent change on the phantom-normalized subject SBRs

Approach #2 For longitudinal change, calculate the % change for 57Co mean SBR and subtract this change as the "technical" component of the change from baseline to follow-up

-					
		Baseline mean SBR	Y1 mean SBR	% change	
	Mean	1.02	0.90	-13.26	
	SD	0.29	0.27	15.96	
No Correction	%COV	28.0	29.8	-120.3	
		Baseline mean SBR	Y1 mean SBR	% change	
	Mean	22.33	19.50	-14.90	
Scaling Correction	SD	6.71	6.13	20.04	
	%COV	30.1	31.5	-134.5	
		Baseline mean SBR	Y1 mean SBR	% change	
Subtractive Correction Mean SD %COV		1.03	0.90	-15.78	
		0.29	0.28	22.35	
		27.9	31.4	-141.7	