C3889 – Capstone Project Smart Water Quality Monitoring System

PROJECT PRESENTATION

01-AUG-2018

Presented By:

Lim Hong Loon (CET116510) Lim Yuan Her (17060167)

Agenda

1. I	Business	Analy	ysis
------	----------	-------	-------------

- Problem/ Solution
- System Functional Requirements

2. Schedule

■ Tasks/ Milestones

3. System Design

- Overall Architecture
- Data Metrics
- Experimental Test Setup

4. Data Flow

☐ End-to-End Information Flow

5. Data Visualization

- Dashboard
- Notifications

6. Data Analytics

Exploratory Data Analysis

7. Machine Learning

- Clustering
- Multi-class Classification
- Anomaly Detection

8. Future Enhancement

■ Exploratory Data Analysis

Business Case

□ Problem

- Water quality at each stage in treatment process monitored through SCADA, with analytical equipment data verified with laboratory testing once every 8 hours (Expensive and time-consuming task with quality and effectiveness dependent on laboratory technicians' experience)
- Use of on-premise SCADA systems in traditional water treatment process requires significant upfront investments and ongoing maintenance costs with high risk of data loss from faulty equipment.

□ Solution Overview

- 4 major features to reduce inefficiencies in current process workflow/ infrastructue:
 - Pre-classify water quality into different grades before start of treatment process to identify treatment parameters required to optimize effectiveness and quality of treatment process
 - Employ messaging systems e.g. SMS, email etc. to notify abnormalities in water quality for pre-emptive actions to be taken
 - Use cloud-based system (Microsoft Azure) for data storage and processing
 - Use Microsoft PowerBI for dashboard visualization with multiple access modes (desktop/web/mobile)

Business Analysis

☐ System Functional Requirements / Implementation

- Provide real-time monitoring of water quality parameters with real-time visualization dashboard accessible via desktop, web and mobile devices
- Provide alert messaging via SMS and email notifications for abnormal water quality parameter detection and equipment malfunction
- Provide analytic capabilities e.g. using data analytics, machine learning etc. to provide the following metrics:
 - Grading classification of water quality e.g. Grade 1, Grade 2 etc.
 - Overall System Alert Status

Project Schedule

□ Project Implementation

- > 6 main phases
 - Proposal
 - Waspmote Programming/ Azure Setup & Configuration
 - Test Equipment Setup/ Data Collection
 - Data Analytics (Exploratory Data Analysis + Machine Learning)
 - System Testing (including functional checks)
 - Documentation (Report + Presentation)

									Ju	ne																		July											П	Aug
s/n	Task	9 1	0 11	12	13 1	4 15	16	17 18			1 22	23 2	4 25	26	27 2	8 29	30	1 2	3	4	5 6	7	8 9	10	11	12 1	3 14		7 18	19	20 2	1 22	23	24 2	25 26	27	28	29 30		
	Proposal						11															1-1																		_
1	Prepare Proposal								T		Т									Т		П							Т				\prod	\sqcap	\top	\Box		\top	П	_
2	Submit Project Proposal																																П	\Box					\Box	
	Setup/ Configuration																																							
1	Waspmote Plug&Sense unit Programming																			\Box														\Box						
2	Azure Configuration (IoT Platform)																			\perp													\perp	$oldsymbol{oldsymbol{oldsymbol{eta}}}$			Ш			
3	PowerBI Configuration (Visualization)	Ш		Ш			Ш				\perp									_		Ш			Ш					Ш			Ш	\sqcup	\perp	$oxed{oxed}$	\Box		Ш	
4	Logic App Configuration (Notification Services))																																Ш			Ш			
	Test Setup/ Data Collection																																							
1	Data Collection (Water Measurement)																																	Ш						
	Data Analysis																																							
1	Analytics																																							
2	Machine Learning																																	Ш						
	System Testing																																							
1	Test Data Generation/Functional Check																																							
	System Documentation																																							
1	Report Writing																																							
2	Powerpoint Slides Preparation																																							
3	Project Presentation Preparation																																							
4	Submit Project Report																																							
5	Project Presentation																																\coprod	\Box			Ш			

System Design - 1

☐ Overall System Architecture

- Data Ingestion
 - Libelium Smart Water Kit (Waspmote Plug&Sense) + Meshlium Gateway
- Data Processing/Analysis/Machine Learning/Notifications
 - Microsoft Azure Platform
- Data Visualization
 - Microsoft PowerBI

System Design - 2

Data Metrics

s/n	Data	Description
1	Temperature	Measures the hotness/coldness of the water (degC)
2	pH Level	Measure of the acidity/ alkalinity of the water (scale of 0-14 with neutral point of 7)
3	Dissolved Oxygen (DO)	Measures the amount of gaseous oxygen (O2) dissolved in the water (mg/L)
4	Oxygen Reduction Potential (ORP)	Measures the water's oxidizing power and it's potential ability to sanitize itself (mV)
5	Conductivity	Measures the ionic strength of the water and it's ability to conduct electricity (uS/cn)

□ Data Analysis Work Flow

- Clustering Analysis/ Multi-class Classification for Water Type Classification
- Anomaly Detection for Equipment Fault detection

Experimental Test Setup

☐ Media used

s/n	Material	Description	Remark
1	Tap Water	-	Grade 1
2	Soap	Protex	Grade 2
3	Flour	FLAIR	Grade 3
4	Shampoo		Grade 4
5	Sea Water		Grade 5

☐ Measurement Process

Data Flow - 1

- ☐ End-to-end sensor data flow
 - Data ingestion via Azure Event Hubs
 - Data processing via Azure Stream Analytics Jobs
 - Data Analytics via Azure Machine Learning Studio Experiments/ Notebooks
 - Data Notification via Azure Logic Apps (Twilio SMS + Google Mail built-in connectors)
 - Data Visualization via Microsoft PowerBI dashboards

Data Flow - 2

Data Information Flow

Data Visualization (Dashboard/ Notifications)

- Real-time Visualization Dashboard
 - Displays sensor data and analytics prediction output (water type classification/ equipment anomaly detection)
 - Accessible from web browser and from mobile devices (using PowerBI App)
 - Notification via SMS/ email

Web Browser View

Mobile Device View

Data Analytics

- ☐ Feature Distribution/ Correlation
 - Clear distinguishing features among different water types
 - Strong correlation between pH/ORP, pH/WT features
 - Conductivity displays strongest correlation with class attribute

Top Absolute Correlations

sensor	sensor	
PH	ORP	0.973068
WT	PH	0.877850
	ORP	0.873558
	COND	0.490239
DO-	ORP	0.488710
PH	DO	0.425376
ORP	COND	0.201313
WT	DO	0.195034
DO:	COND	0.158004
PH	COND	0.147031
dtype:	float64	

Machine Learning - Clustering

- Selection of optimal K
 - Uses Elbow Method
 - Number of Clusters = 6

Clustering labelling vs class information

- Algorithm Evaluation
 - 8 algorithms tested
 - K-Means, Gaussian Mixture Modelling, Spectral Clustering, Ward Hierarchical Clustering, Mean Shift, Birch, MiiniBatch K-Means, Agglomerative Clustering
 - Criteria used (closer to 1 -> better clustering result)
 - Adjusted Rand Score
 - Adjusted Mutual Information Score
 - Homogenity/Completeness/V-Measure scores

Ward Hierarchical Clustering selected

Machine Learning – Multiclass Classification (1)

Feature Selection

- Used to select features that contribute most to the prediction variable to improve accuracy and reduce overfitting
- 3 selection methods used Reduced Feature Elimination (RFE), Model Feature Importance (MFI), Factor Analysis (FA)
- RFE shows 3 most importance features are DO (Dissolved Oxygen), ORP (Oxidation Reduction Potential) and Conductivity (COND)
- MFI shows all 5 features collectively contribute to >95% importance with top 3 features identified as DO, ORP and COND
- Factor Analysis shows all 5 features account for the variability in the dataset

	WT	PH	DO	ORP	COND
0	-0.8498	0.2151	8.3927	-5.6838	-1995.6224
1	-0.4055	0.7676	51.8879	-16.3169	0.2669
2	1.4047	-1.1852	7.2845	22.2898	-0.0383
3	0.1875	-0.1530	-0.0159	-0.1494	-0.0003
4	0.0000	0.0000	-0.0000	0.0000	-0.0000

Number of important features: 5

Number of features for 95% importance: 5

Machine Learning - Multiclass Classification (2)

- Multi-Class Classification
 - 11 classifier algorithms
 - 6 ensemble (Extrra Trees, Random Forest, Gradient Boosting, Bagging, Votting, Adaboost)
 - 5 Azure (Neural Network, Decision Jungle, Decision Forest, SVM (One Vs All), Logistic Regression)
 - > Decision Forest / Random Forest classifiers found suitable for performing water type classification.

Name	Accuracy	Logloss	Precision	Recal:
ExtraTrees	100.0000	-0.0014	1.0000	1.0000
RandomForest	100.0000	-0.0004	1.0000	1.0000
GradientBoosting	100.0000	-0.0007	1.0000	1.000
Votting	100.0000	-0.0201	1.0000	1.000
DecisionForest	100.0000	0.0125	0.9988	0.998
DecisionJungle	100.0000	0.0061	0.9966	0.996
LogisticRegression	100.0000	0.0515	1.0000	1.000
NeuralNetwork	100.0000	0.0361	1.0000	1.000
OneVsAll	98.9659	0.1447	0.9826	0.973
Bagging	98.4515	-0.0879	0.9891	0.976
AdaBoost	88.4882	-0.3575	0.7693	0.833

Classifier Algorithm Cross-Validation Evaluation Results

Accuracy Estimation of RandomForest on validation dataset

Standardized: 0.90206185567

Normalized: 1.0

Rescaled: 1.0

Binarized: 0.536082474227

RandomForest Classifier
Performance on
Transformed dataset

RandomForest Algorithm Hyperparameter tuning results

Machine Learning – Anomaly Detection

- Anomaly Detection
 - > 5 algorithms evaluated
 - 3 Scikit-Learn (OneClassSVM, Isolation Forest, Robust Covariance)
 - 2 Azure machine learning specific (One Class Support Vector Machine, PCA Based Anomaly Detection)
 - One Class SVM found suitable for performing equipment fault detection

Further Enhancement

☐ Use Azure IoT Hub Connector to connect Meshlium Gateway to Microsoft Azure to support cloud-to-device messaging and per device connection authentication ■ Extend visualization capabilities using chatbots to provide a natural language interface for auerying sensor data information on mobile devices/ social media platforms ☐ Install sensors to measure rainfall in each reservoir to design an integrated system to channel water to different parts of Singapore based on min holding capacity based on the amount of rainwater collected ☐ Customize automatic trigger Alert for individual Water Catchment(Reservoir) e.g. Heavy Rainfall, monitor Algae and Bacteria Growth activity in reservoir Use solar panel installed on Reservoir water surface to power the Libelium Sensor and use remote CCTV to detect illegal fishing and water sports activities around reservoirs and facial recognition to trigger alert on illegal activities Implement Libelium Water Sensor System for HDB Rooftop Water Tanks to monitor water quality and trigger alert to town council Ops rooms to send cleaners to wash the water tank should the condition of drinking water falls

below an unacceptable standards

Q&A

