Session: Machine Learning in Spark

ML Overview
Utilities
Transformers
Pipelines

Lesson Objectives 2019-03-12

- Understand some of the basics of Machine Learning (ML)
- Learn how Spark MLlib supports ML
- Become familiar with some of the algorithms in MLlib

Introduction

→ ML Overview

Utilities

Transformers

Pipelines

Spark Illustrated 2019-03-12 Spark Illustrated 2019-03-12

History of Machine Learning & Scale

Hadoop

- Hadoop is the first popular distributed platform
- MapReduce is the execution engine
- Did great at batch computes
- 'Mahout' is a machine learning library built on top of Hadoop's MapReduce
- Not so great for iterative algorithms (machine learning)

Spark

- Native Machine Learning component
- Execution engine is faster than MapReduce (less overhead)
- Iterative algorithms work well
- Support in-memory computations (very fast and great for iterative computes)

Spark ML Features 2019-03-12 Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Wide variety of algorithms (classifications, clustering, regressions, collaborative filtering)
 - All parallelized out of the box!
- Featurization: feature extraction / transformation / dimensionality reduction / selection
- Pipelines: create, evaluate and tune Pipeline
- Persistence: saving and loading of algorithms/models/pipelines
- Utilities: Linear algebra, statistics, data handling
- Multi Language support: Python / Java / Scala / R
 - Equal coverage!

- Spark.mllib contains the original API built on top of RDDs
- MLLib has been migrating to a new API called Spark.ML
- Spark.ml provides higher-level API built on top of Dataframes for constructing ML pipelines
 - Dataframes provide faster data access, better caching ..etc
- As of Spark v2.0, RDD based spark.mllib package is in maintenance mode (no new features, bug fixes only)
 - Removed in Spark v3.0

Streamlining Prototyping - deploy

- Extra work
- Different code path
 - Possible bugs!
- Updating models is slow!

Streamlining Prototyping - deploy

- Language neutral
- Same model no need to re-implement
- Fast deploy!

ML Algorithm overview

ML Data Types And Utilities

ML Overview

→ Utilities

Transformers Pipelines

- One dimensional array of Numerics / Doubles
- DenseVector
 When most positions in the vector have value
- SparseVector
 When most elements have no value

DenseVector vs. Spark Vector

- DenseVector = simply an array[1, 2, 3, 4, 5]
- SparseVector
 - We specify size
 - Index array
 - and value array
- Vectors.sparse (length, index array, value array)
 Vectors.sparse(10, (0,9), (100,200))
 - Size is 10
 - -0th (first) element = 100
 - -9th (last) element = 200
 - **-**[100. 0. 0. 0. 0. 0. 0. 0. 200.]

Creating Vectors (Seal2a) Licensed for personal use only for Fernando K < fernando K ruse @dell.com> from Machine Learning at Dell Brazil (QE) @

We use Vectors class to create dense or sparse vectors

```
import org.apache.spark.ml.linalg.{Vector, Vectors}
// Create a dense vector (1.0, 0.0, 3.0).
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its
indices and values corresponding to nonzero entries.
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0,
3.0))
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its
nonzero entries.
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))
```

Creating Vectors (Pytonian) Machine Learning at Dell Brazil (QE) @ Pytonian (QE)

We use Vectors class to create dense or sparse vectors

```
from pyspark.ml.linalg import Vectors
v1 = Vectors.dense(3,2,1)
print(v1)
#[3.0, 2.0, 1.0]
## sparse (size of array, indexe array, value array)
v2 = Vectors.sparse(10, (0, 9), (100, 200))
print(v2)
# (10,[0,9],[100.0,200.0])
print(v2.toArray())
#[100. 0. 0. 0. 0. 0. 0. 0. 0. 200.]
```

ML Utilities

ML Overview

→ ML Utilities

Transformers Pipelines

Splitting Data Into Poly a Ining / Test Subsets

- Dataframe.randomSplit (weights)
- Dataframe.randomSplit(weights, seed)
 - Use the 'seed' to consistent split
- Weights should add up to 1.0

```
(train, test) = df.randomSplit( [0.7, 0.3])
```

Training / Test Split 19-03 Code (Python)

```
df = spark.range(1,100)
df.show()
(train, test) = df.randomSplit([0.7, 0.3])
print("----training data set-----")
print("count: ", train.count())
train.show()
print("----testing data set-----")
print("count: ", test.count())
test.show()
common = train.intersect(test)
print("----common data set-----")
print("count: ", common.count())
common.show()
```

```
# df
Count= 100
  101
```

```
# train
Count = 69
  12 I
  131
  17 I
```

```
# test
Count = 31
  15
  18
  21
  23
  26
```

```
# common
Count= 0
+---+
| id|
```

ML Transformers

ML Overview Utilities

→ Transformers
Pipelines

- A Transformer is an algorithm which can transform one DataFrame into another DataFrame.
- E.g., an ML model is a Transformer which transforms a DataFrame with features into a DataFrame with predictions.

- Transforms a Dataframe To Another Dataframe
 - By adding (or appending) to a "features" column

Car name	mpg	cyl	hp
Mazda RX	21	6	110
Merc 240D	24	4	62
Lincoln Continental	10.4	8	215
Toyota Corolla	33.9	4	65

Car name	mpg	cyl	hp	Features
Mazda RX	21	6	110	[21, 6]
Merc 240D	24	4	62	[24, 4]
Lincoln Continental	10	8	215	[10, 8]
Toyota Corolla	34	4	65	[34, 4]

VectorAssembler Example Code (Python)

```
from pyspark.ml.feature import VectorAssembler

data = spark.read.csv("mtcars_header.csv", header=True,
    inferSchema=True)
mpg_cyl = data.select("model", "mpg", "cyl")
mpg_cyl.show()

assembler = VectorAssembler(inputCols=["mpg", "cyl"],
    outputCol="features")
feature_vector = assembler.transform(mpg_cyl)
feature_vector.show(40)
```

```
## feature_vector

+------

| model| mpg|cyl| features|
+------+

| Mazda RX4|21.0| 6|[21.0,6.0]|
| Mazda RX4 Wag|21.0| 6|[21.0,6.0]|
| Datsun 710|22.8| 4|[22.8,4.0]|
| Hornet 4 Drive|21.4| 6|[21.4,6.0]|
| Hornet Sportabout|18.7| 8|[18.7,8.0]|
```

- Converts string based values into numeric values
- Numeric values are in [0, Number of Labels-1]
- Most frequently used label gets 0 and so on

id	color
1	red
2	white
3	blue
4	blue
5	white
6	yellow
7	blue

id	color	Color index
1	red	3.0
2	white	1.0
3	blue	0.0
4	blue	0.0
5	white	1.0
6	yellow	2.0
7	blue	0.0

String Indexer Example Code (Python)

Reverse String Indexer Example Code (Python)

converter = IndexToString(inputCol="colorIndex", outputCol="originalColor") converted = converter.transform(indexed) converted.show()

++	+
color	id
++	+
red	1
white	2
blue	3
blue	4
white	5
yellow	6
blue	7
++	+

++	+	+
color	id colorInd	.ex
++	+	+
red	1 3	.0
white	2 1	.0
blue	3 0	.0
blue	4 0	.0
white	5 1	.0
yellow	6 2	.0
blue	7 0	.0
++	+	+

++	+		+
color	id co	olorIndex <mark>ori</mark>	ginalColor
++	+	+	+
red	1	3.0	red
white	2	1.0	white
blue	3	0.0	blue
blue	4	0.0	blue
white	5	1.0	white
yellow	6	2.0	yellow
blue	7	0.0	blue
++	+	+	+

One Hot Encoding 2019-03-12 Cicensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Most ML algorithms need numeric data
- So we need to convert categorical / string data into numerical data before training the model
- Below we see two approaches of encoding 'marital status' data
- The one in middle has various indexes
- The one in right creates 'dummy variables' and assigns true / false to each.
 - Note, only one bit is on
 - This is called ONE-HOT-Encoding

id	status
1	married
2	single
3	married
4	Divorced
5	single

id	Status idx
1	0
2	1
3	0
4	2
5	1

id	is married	is single	is divorced
1	1	0	0
2	0	1	0
3	1	0	0
4	0	0	1
5	0	1	0

Hot Encoder Code (Machine Learning at Dell Brazil (QE) @

```
import pandas as pd
from pyspark.ml.feature import StringIndexer, OneHotEncoder
df2_pd = pd.DataFrame({"id":[1,2,3,4,5,6,7]},
              "status":['married', 'single', 'single', 'divorced', 'married'
             ,'single', 'married' ]})
df2_spark = spark.createDataFrame(df2_pd)
# first String Indexer
string indexer = StringIndexer(inputCol="status", outputCol="statusIndex")
model = string_indexer.fit(df2_spark)
indexed = model.transform(df2_spark)
encoder = OneHotEncoder(inputCol="statusIndex", outputCol="statusVector",
dropLast=False)
encoded = encoder.transform(indexed)
encoded.show()
print(encoded.toPandas()) # print pandas df
```

Hot Encoder Code (Physical Components) The Code (Physical Code (Physical Components) The Code (Physical Code (Physical Components) The Code (Physical Code

```
+---+
| id| status|
+---+
| 1| married|
| 2| single|
| 3| single|
| 4|divorced|
| 5| married|
| 6| single|
| 7| married|
+---+
```

String Indexer

Hot Encoder

Understanding Hot Emcoded Sparse Vectors

We are converting Spark DF → Pandas DF.
 So the spare vector array is displayed.

id	status	statusIndex	status'	Vector
1	married	0.0	(1.0, 0.	0, 0.0)
2	single	1.0	(0.0, 1.	0, 0.0)
3	single	1.0	(0.0, 1.	0, 0.0)
4	divorced	2.0	(0.0, 0.	0, 1.0)
5	married	0.0	(1.0, 0.	0, 0.0)
6	single	1.0	(0.0, 1.	0, 0.0)
7	married	0.0	(1.0, 0.	0, 0.0)

- Sometimes we want to scale input data, so the algorithms produce better results
- Scaling prevents against features with very large variances exerting an overly large influence during model training.
- Consider the following data
 Salary with its larger range, might influence the outcome more
- Scaling can improve the convergence rate during the optimization process
- Spark ML has
 - Standard Scaler
 - MinMax Scaler

Age	Salary
20	50,000
23	65,000
40	100,000
35	86,000
30	75,000

Scaling: Standard Sealar

- StandardScaler standardizes features by scaling to unit variance and around mean (can be zeroed optionally)
- Uses column summary statistics on the samples in the training set
- This is a very common pre-processing step

Standard Scaler Code 1/2 - Python

```
import pandas as pd
from pyspark.ml.feature import VectorAssembler

df_pd = pd.DataFrame({
    "home_runs": [ 30, 22, 17, 12, 44, 38, 40],
        "salary_in_k":[ 700, 450,340, 250, 1200, 800, 950 ]})

df_spark = spark.createDataFrame(df_pd)

assembler = VectorAssembler(inputCols=["home_runs", "salary_in_k"],
outputCol="features")
feature_vector = assembler.transform(df_spark)
feature_vector.show()
```

Standard Scaler Code 2/2/2- Python

```
|home runs|salary in k|features | |scaled features
130
          1700
                     [30.0,700.0] [2.435993828823451,2.03376119068933]
122
         1450
                     | [22.0,450.0] | [1.7863954744705306,1.3074179083002835] |
117
         1340
                     [17.0,340.0] [1.3803965029999554,0.987826864049103]
                     | [12.0,250.0] | [0.9743975315293804,0.7263432823890463] |
112
         1250
144
         11200
                     [44.0,1200.0][3.572790948941061,3.4864477554674225]
138
                     [38.0,800.0] [3.085592183176371,2.324298503644948]
          1800
140
          1950
                      [40.0,950.0] [3.2479917717646014,2.760104473078376]
```

MinMax Scaler allows you to scale data at arbitrary range –
 0.0 to 1.0 is default or 0 to 100)

```
home_runs|salary_in_k|features |scaled features2
        | 700 | | [30.0,700.0] | [56.6875,47.89473684210526]
130
122
        | 450 | | [22.0,450.0] | [31.9375,21.842105263157894]
                    |[17.0,340.0] |[16.46875,10.378947368421054]|
117
      1340
112
     1250
                   |[12.0,250.0] |[1.0,1.0]
    | 1200 | [44.0,1200.0] | [100.0,100.0]
144
               [38.0,800.0] [81.4375,58.31578947368421]
138
       1800
                   |[40.0,950.0] |[87.625,73.94736842105263]
140
        1950
```

Creating Vectors From Machine Learning at Dell Brazil (QE) @

- TF/IDF: Term Frequency/Inverse Document Frequency
 - This essentially means the frequency of a term divided by its frequency in the larger group of documents (the "corpus")
 - Each word in the corpus is then a "dimension" you would have thousands of dimensions.

- Word2Vec
 - Created at Google

Spark ML Workflow 2019-03-12 Spark ML Workflow 2019-03-12

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Overview:

Get familiar with ML APIs in Spark

Approximate time:

10 - 15 mins

Instructions:

5.1 : 'basics/spark-ml-basics' lab for Scala / Python

Pipelines

ML Overview
Utilities
Transformers

- Spark ML Pipelines is a powerful concept combining multiple steps to be carried out as a single unit
 - Reusable, repeatable
 - Makes very modular code
- This feature is modelled after the Python 'Scikit.Learn' pipeline feature
- Also allows tuning various parameters of the pipeline.
 'Hyper Tuning'

Pipeline Example 2019-03-12

- Imagine a text processing task.
- On left are individual steps
- On right we create a pipeline encompassing multiple steps
- This pipeline is re-useable by other programs too!

```
# text processing
df1 = spark.read(...)
# step1 - lower case the text
df2 = df1.lowercase()
# step2 - remove numbers /
punctuations
df3 = df2.removeNumbersPunct()
# step3 - break into words
df4 = df3.splitIntoWords()
# step4 - create word vectors
df5 = df4.word2Vec()
# process df5
```

input

Text-prep-pipeline

1-lower

2- removePunct

3-break into words

4-create vectors

Text vector

Further Processing

Pipeline Concepts 2019-03-12 Licensed for personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Concepts

- Dataframe: Contains data
- Transformer: Converts one dataframe into another

- Estimator: fits the data in Dataframe to create a transformer.
 - E.g. a learning model is an estimator

- Pipeline: Contains multiple Transformers and Estimators
- Parameter: Parameters can be passed uniformly to all components within a pipeline

Pipeline Example Couse (Python)

- Here we are creating a pipeline consisting of 3 stages
 - Tokenizer: breaks text into words
 - HashingTF: converts words into Vector
 - And finally, a LogisticRegression model
- Also note, we train the model on the entire pipeline in one go!

```
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
training data = spark.read(....)
# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and Ir.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol="words", outputCol="features")
Ir = LogisticRegression(maxIter=10, regParam=0.001)
pipeline = Pipeline(stages=[tokenizer, hashingTF, Ir])
# Fit the pipeline to training documents.
model = pipeline.fit(training data)
test data = spark.read(...)
predicted data = model.predict(test data)
```

Pipeline Explained 2019-03-12 Pipeline Explained 2019-03-12

- 3 stage pipeline shown
- First two (Tokenizer, hashingTF) are transformers (blue), third LogisticRegression is estimator (red)
- Pipeline executes 'transform' on first two and 'fit' on Logistic Regression

Further Reading Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- http://spark.apache.org/docs/latest/ml-guide.html
- https://www.slideshare.net/julesdamji/apache-spark-mllib-2x-h ow-to-productionize-your-machine-learning-models

Backup Slides

