

A REVIEW OF TWO FACE DETECTORS

AJAY BALASUBRAMANIAN (2015008) SANIDHYA SINGAL (2015085)

Introduction

- Viola-Jones Rapid Face Detection
- Hu-Ramanan Finding Tiny Faces
 - Discuss methods
 - Analyse results

RAPID OBJECT DETECTION USING A BOOSTED CASCADE OF SIMPLE FEATURES

Paul Viola and Michael Jones
CVPR 2001

Introduction

• One of the 1st object detection frameworks

• Competitive object detection rates in real time

Detects faces rapidly

• Requires full frontal upright faces

Image Source: Viola-Jones Original Paper

Viola-Jones Algorithm

- 1. Haar Feature Selection
- 2. Creating Integral Image
- 3. AdaBoost Training
- 4. Cascading Classifiers

Image Source: https://www.bobology.com/public/What-is-an-Algorithm.cfm

Haar Features

- All human faces share some similar properties. These regularities may be matched using Haar Features.
- 4 types of Haar Features:

Image Source: https://en.wikipedia.org/wiki/Viola%E2% 80%93Jones_object_detection_framework

Value =
$$\sum$$
 (pixels in black area) - \sum (pixels in white area)

Haar Features Conti...

- Viola-Jones used Haar features with 2 or 3 rectangles.
- Viola-Jones algorithm uses 24x24 window as the base size window.
- Place the features at every position with every shape possible.
 - Exhaustive set of 160,000+ features
 - Very expensive to calculate

Images Source: https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework

Integral Image

- A new image representation that allows fast feature evaluation.
- Constant time computation
 - Only a few operations per pixel.
- Value at location (x, y) equals the sum of the pixels above and to the left of (x, y) inclusive.

Image Source: https://computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/

Learning Algorithm: AdaBoost

- Machine Learning Algorithm that selects only best features from 160,000+ features.
- Builds a strong classifier using a weighted combination of weak classifiers (the best features).

$$F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \cdots$$
 where $f_i \in \{0,1\} \ \forall i \ \text{and} \ \alpha_i \text{s} \ \text{are the weights.}$

• If face is detected, F = 1, otherwise, 0.

Image Source: http://vivekmishra1991.github.io/blog/2015/0 9/28/adaboost-why-it-is-robust-to-overfitting/

Cascade Classifiers

- A single strong linear classifier not efficient
 - Computation Time
 - Lots of false negatives
- Replace it by cascade classifiers
 - Multiple stages each having a strong classifier
 - Stages are of increasing complexity
- Boosts up speed
 - Boosted Cascade Classifier

Image Source: Viola-Jones Original Paper

Convolutional Neural Networks – an Overview

- Effective in areas such as image recognition and classification.
- Use convolutional layers for learning features.

Feature Map having depth of 3 (since 3 filters have been used)

Convolution Operation

Image Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Image Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Context – Does it help?

Considering a small region around the face increases accuracy by 18.9% for small faces and 1.5% for large faces.

Image Source: Finding Tiny Faces - Peiyun Hu, Deva Ramanan, Robotics Institute, Carnegie Mellon University

The Role of Resolution

Enlarging a small face and shrinking a large face on a medium template can improve accuracy!

Image Source: Finding Tiny Faces - Peiyun Hu, Deva Ramanan, Robotics Institute, Carnegie Mellon University

The Model

Image Source: Finding Tiny Faces - Peiyun Hu, Deva Ramanan, Robotics Institute, Carnegie Mellon University

- Multi-task learning
- 3 Convolutional neural networks
- ResNet101

Results

Image Source: Finding Tiny Faces - Peiyun Hu, Deva Ramanan, Robotics Institute, CMU

Tiny Faces detector results on FDDB

Image Source: www.slideshare.net/GeeksLab/datascience-lab-2017-76649083

Viola-Jones detector results on FDDB

Results Conti...

- Tiny faces detector provides much better accuracy in detecting faces than does the Viola-Jones detector.
- Tiny faces is also faster and can be used in real-life scenarios.

REFERENCES

- P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, 2001
 - http://wearables.cc.gatech.edu/paper_of_week/viola01rapid.pdf
- P. Hu and D. Ramanan, Finding tiny faces, CoRR, 2017
 - https://arxiv.org/pdf/1612.04402.pdf

ANY QUESTIONS ?

