11^a Lista de Exercícios

Ygor Tavela Alves 10687642

5.3.15)

- a) Sendo A uma matriz diagonal, os seus autovalores serão iguais aos elementos da sua diagonal principal, ou seja, $\lambda_1=2.99,\,\lambda_2=1.99$ e $\lambda_3=1.00$. Para encontrar os seus autovetores basta resolver a equação $(A-\lambda I)v=0$ para cada um dos autovalores encontrados, portanto:
 - v_1 associado à λ_1 :

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1.00 & 0 \\ 0 & 0 & -1.99 \end{bmatrix} \cdot v_1 = 0 \Rightarrow v_1 = \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix}, \forall x \in \mathbb{R}$$

• v_2 associado à λ_2 :

$$\begin{bmatrix} 1.00 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -0.99 \end{bmatrix} \cdot v_2 = 0 \Rightarrow v_2 = \begin{bmatrix} 0 \\ y \\ 0 \end{bmatrix}, \forall y \in \mathbb{R}$$

• v_3 associado à λ_3 :

$$\begin{bmatrix} 1.99 & 0 & 0 \\ 0 & 0.99 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot v_3 = 0 \Rightarrow v_3 = \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix}, \forall z \in \mathbb{R}$$

b)

• iteração direta: Sendo $A-\rho I=\begin{bmatrix}2.00&0&0\\0&1.00&0\\0&0&0.01\end{bmatrix}$, iterando alguns passos do algoritmo, temos:

j	σ_j	q_j^T
1	2	[1 0.5 0.005]
2	2	[1 0.25 0.000025]
3	2	[1 0.125 0.000000125]
:	:	÷:
n	2	[1 0 0]

Como pode ser observado na tabela acima o autovalor converge logo na segunda iteração para 2, no entanto, a convergência do autovetor para $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ só será atingida quando n for grande. Calculando a taxa de convergência prática entre iterações consecutivas obtemos um valor em torno de 0.5.

• iteração inversa: Sendo
$$(A-\rho I)^{-1}=\begin{bmatrix}0.50&0&0\\0&1.00&0\\0&0&100.00\end{bmatrix}$$
, iterando alguns passos do algoritmo, temos:

j	σ_j	q_j^T
1	100	$[0.005 \ 0.01 \ 1]$
2	100	[0.000025 0.0001 1]
3	100	[0.000000125 0.000001 1]
:	:	i:
n	100	[0 0 1]

Como pode ser observado na tabela acima o autovalor converge logo na segunda iteração para 100, no entanto, a convergência do autovetor para $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ só será atingida quando n for grande. Calculando a taxa de convergência prática entre iterações consecutivas obtemos um valor em torno de 0.00964.

Como observado nas médias das taxas de convergências práticas calculadas, pode-se claramente apontar que o método da iteração inversa irá convergir mais rápido que o método de iteração direta.

c)

• $\rho = 2.00$: Sendo $(A - \rho I)^{-1} = \begin{bmatrix} 1.010101 & 0 & 0 \\ 0 & -100.00 & 0 \\ 0 & 0 & -1.00 \end{bmatrix}$, iterando alguns passos do algoritmo, temos:

j	σ_j	q_j^T
1	-100	[-0.01010 1 0.01]
2	-100	[0.00010 1 0.00010]
3	-100	[0 1 0]

Após alguns passos, pode-se notar que utilizando a iteração inversa fazendo um deslocamento de $\rho=2.00$, obtemos uma sequência que irá convergir para o autovetor $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$.

•
$$\rho=3.00$$
: Sendo $(A-\rho I)^{-1}=\begin{bmatrix} -100.00&0&0\\0&-0.9901&0\\0&0&-0.50 \end{bmatrix}$, iterando alguns passos do algoritmo, temos:

j	σ_j	q_j^T
1	-100	[1 0.0099 0.005]
2	-100	[1 0.0001 0.00002]
3	-100	[1 0 0]

Após alguns passos, pode-se notar que utilizando a iteração inversa fazendo um deslocamento de $\rho=3.00$, obtemos uma sequência que irá convergir para o autovetor $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$.

5.3.17)

a) Seja
$$B = (A - 8I)^{-1} = \begin{bmatrix} -3.5 & -0.5 \\ 1 & 0 \end{bmatrix}$$
, iterando o algoritmo temos:

j	σ_{j}	q_j^T
1	-4	[1 -0.25]
2	-3.375	[1 -0.2963]
3	-3.35185	[1 -0.29834]
4	-3.35083	[1 -0.29843]
5	-3.35078	[1 -0.29844]
6	-3.35078	[1 -0.29844]

b) As taxas de convergências observadas para o autovetor calculado é dado pela tabela abaixo.

j	$ q_{j+1} - v / q_j - v $
0	0.80372
1	1.24421
2	0.96342
3	1.03797
4	0.99835
5	1

Utilizando o Octave para calcular a taxa de convergência teórica, obtemos o valor

$$|(\lambda_1 - 8)/(\lambda_2 - 8)| = 0.044533$$

Desta forma, como o erro relativo entre as taxas observadas e a taxa teórica é grande, é indicado que há pouca coesão entre o que é dito na teoria com o que ocorre na prática utilizando o método de iteração inversa.

4