PANDAS DATAFRAME

Analysis and Visualization of large datasets represented in a PANDAS DataFrame

A Pandas DataFrame is a type of a 2 dimensional data structure which can be used to store large datasets in a matrix (tabular) format comprising of rows and columns

Figure below shows a Pandas DataFrame comprising of following details of five students arranged in 5 ROWs x 5 COLUMNs

- Every ROW represents a Data Record
- Every COLUMN represents an ATTRIBUTE or PARAMETER related to STUDENT

Report of STUDENT A

1A. Creating a Pandas DataFrame: pd.DataFrame() Constructor

- Creating a Pandas DataFrame using pd.DataFrame() command
- Inserting Data Elements using Python Dictionary

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95
2	Anshu	AC-103	85	85	100
3	Shruti	AC-104	96	90	90
4	Rahul	AC-105	56	62	78

```
Student Name Roll No. Physics Chemistry Maths
                                                      1
0
          Aman
                  AC-101
                               78
                                         80
                                                88
1
          Vishal
                  AC-102
                               67
                                         77
                                                95
2
                  AC-103
                               85
                                               100
          Anshu
                                         85
          Shruti
                  AC-104
                                         90
3
                               96
                                                90
          Rahul
                  AC-105
                               56
                                         62
                                                78
pandas.core.frame.DataFrame
```

1B. Saving Pandas DataFrame in an External File

```
STUDENT_DF.to_excel('STUDENT_DF.xlsx') # saving data in excel format

STUDENT_DF.to_csv('STUDENT_DF.csv') # saving data in csv format

STUDENT_DF.to_json('STUDENT_DF.json') # saving data in csv format
```

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95
2	Anshu	AC-103	85	85	100
3	Shruti	AC-104	96	90	90
4	Rahul	AC-105	56	62	78

1C. Renaming Row Index

	Student Name	Roll No.	Physics	Chemistry	Maths
Student1	Aman	AC-101	78	80	88
Student2	Vishal	AC-102	67	77	95
Student3	Anshu	AC-103	85	85	100
Student4	Shruti	AC-104	96	90	90
Student5	Rahul	AC-105	56	62	78

1D. Setting a particular column as INDEX column using .set_index() function

Roll No. Physics Chemistry Maths Student Name Aman AC-101 78 80 88 Vishal AC-102 67 77 95 Anshu AC-103 85 85 100 Shruti AC-104 96 90 90 62 Rahul AC-105 56 78

DATA FILTERING

1E. Accessing Details of a Particular student by specifying Roll Number

```
\# METHOD 1 using loc() function
print("Using Method 1\n")
display(STUDENT_DF.loc[STUDENT_DF['Roll No']=='AC-101'])
# METHOD 2
print("Using Method 2\n")
display(STUDENT_DF[STUDENT_DF['Roll No']=='AC-101'])
# METHOD 3
print("Using Method 3\n")
display(STUDENT_DF.iloc[0])
# METHOD 4
print('Details of Anshu')
display(STUDENT_DF.loc[['Anshu']])
    Using Method 1
                  Roll No Physics Chemistry Maths
     Student Name
                  AC-101
                               78
                                        80
                                               88
        Aman
    Using Method 2
                 Roll No Physics Chemistry Maths
     Student Name
        Aman
                 AC-101 78 80
                                             88
    Using Method 3
    Roll No
                AC-101
    Physics
    Chemistry
    Maths
                    88
    Name: Aman, dtype: object
    Details of Anshu
                 Roll No Physics Chemistry Maths
     Student Name
```

1F. List the names of students scoring marks >= 80 in Physics

85

85 100

AC-103

Anshu

STUDENT_DF=STUDENT_DF.set_index('Student Name')

	RollNo	Physics	Chemistry	Maths	1
Student Name					
Anshu	AC-103	85	85	100	
Shruti	AC-104	96	90	90	
Number of stud	dents hav	ing MARKS	>80 in Phy	/sics	

2. Reading data from an External file

```
#2A Reading data from a spreadsheet (.xlsx/.xls) file
import pandas as pd
import openpyxl  # required when using Python IDLE

STUDENT_DF = pd.read_excel('StudentData_LAB4.xlsx')
display(STUDENT_DF)
```

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95
2	A nahii	A	0.5	0.5	100
Read	ding data from	a JSON for	rmat file	(.json)	
rt r	oandas as pd				

import pa

#2B

STUDENT_DF = pd.read_json('StudentData_LAB4.json')

display(STUDENT_DF)

	Student Name	Roll No.	Physics	Chemistry	Maths
Student1	Aman	AC-101	78	80	88
Student2	Vishal	AC-102	67	77	95
Student3	Anshu	AC-103	85	85	100
Student4	Shruti	AC-104	96	90	90
Student5	Rahul	AC-105	56	60	78

#2C Reading data from a file (.csv)

import pandas as pd

STUDENT_DF = pd.read_csv('StudentData_LAB4.csv')

display(STUDENT_DF)

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95
2	Anshu	AC-103	85	85	100
3	Shruti	AC-104	96	90	90
4	Rahul	AC-105	56	70	78

3. Basic Analysis of Pandas DataFrame

- .shape
- .size
- .ndim
- .head()
- .tail() • .info
- Adding new column
- Adding new row
- · Concatenation of two dataframes

```
\mbox{\tt\#} 3A To determine the shape ( no.of ROWs x no. of COLUMNS) in a given data frame
\label{eq:print("(ROWS, COLUMNS) in the given data set is", STUDENT\_DF.shape)} \\
```

(ROWS, COLUMNS) in the given data set is (5, 5)

 $\mbox{\tt\#}$ 3B To determine the size (no.of data elements) in a given data frame print("No. of elements in the given data set are", STUDENT_DF.size)

No. of elements in the given data set are 25

3C To determine the dimension of a given data frame print(STUDENT_DF.ndim)

#3D Displaying first few rows of a dataframe

display(STUDENT_DF.head(2))

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95

3E Displaying last few rows of a dataframe

display(STUDENT_DF.tail(2))

```
Student Name Roll No. Physics Chemistry Maths
                                    96
                                               90
      3
               Shruti AC-104
                                                        90
                                                70
               Rahul AC-105
                                    56
                                                      78
      4
# 3F Displaying information about the data
import pandas as pd
STUDENT_DF = pd.read_csv('StudentData_LAB4.csv')
print(STUDENT_DF.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 5 entries, 0 to 4
     Data columns (total 5 columns):
                      Non-Null Count Dtype
      # Column
      0 Student Name 5 non-null
                                         object
         Roll No. 5 non-null
                                         object
     2 Physics 5 non-null
3 Chemistry 5 non-null
4 Maths 5 non-null
                                         int64
                                       int64
     dtypes: int64(3), object(2)
memory usage: 328.0+ bytes
```

3G To display column names (Method 1)

display(STUDENT_DF.columns)

Index(['Student Name', 'Roll No.', 'Physics', 'Chemistry', 'Maths'], dtype='object')

3H To display column names (Method 2)

 $\label{eq:col_column} \mbox{COL} = \mbox{STUDENT_DF.columns \# 'COL' will store a list of column names} \\ \mbox{for X in COL:} \\ \mbox{print}(X)$

Student Name Roll No. Physics Chemistry Maths

#3I To add a new column using insert function

import pandas as pd

STUDENT_DF = pd.read_csv('StudentData_LAB4.csv')

STUDENT_DF.insert(5, 'English',[96, 75, 88, 80, 75]) # to insert marks in English for all the five students in a separate column display(STUDENT_DF)

	Student Name	Roll No.	Physics	Chemistry	Maths	English
0	Aman	AC-101	78	80	88	96
1	Vishal	AC-102	67	77	95	75
2	Anshu	AC-103	85	85	100	88
3	Shruti	AC-104	96	90	90	80
4	Rahul	AC-105	56	70	78	75

#3J To add a new column without using insert function

import pandas as pd

STUDENT_DF = pd.read_csv('StudentData_LAB4.csv')

English = [96, 75, 88, 80,75]

STUDENT_DF['English']=English # to insert marks in English for all the four students in a separate column display(STUDENT_DF)

	Student Name	Roll No.	Physics	Chemistry	Maths	English
0	Aman	AC-101	78	80	88	96
1	Vishal	AC-102	67	77	95	75
2	Anshu	AC-103	85	85	100	88
3	Shruti	AC-104	96	90	90	80
4	Rahul	AC-105	56	70	78	75

#3K To add a new row using loc function

 ${\tt import\ pandas\ as\ pd}$

STUDENT_DF = pd.read_csv('StudentData_LAB4.csv')

print('Original Dataset')
display(STUDENT_DF)

Original Dataset

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95
2	Anshu	AC-103	85	85	100
3	Shruti	AC-104	96	90	90
4	Rahul	AC-105	56	70	78
Mod	lified Dataset				
	Student Name	Poll No	Dhysics	Chemistry	Maths
	Student Name	KUII NU.	Filysics	CHEMITS CI Y	riaciis
0	Aman	AC-101	78	80	88
0					
	Aman	AC-101	78	80	88
1	Aman Vishal	AC-101 AC-102	78 67	80 77	88 95
1 2	Aman Vishal Anshu	AC-101 AC-102 AC-103	78 67 85	80 77 85	88 95 100
1 2 3	Aman Vishal Anshu Shruti	AC-101 AC-102 AC-103 AC-104	78 67 85 96	80 77 85 90	88 95 100 90

```
#3L To concatenate two dataframes (Method 1)
import pandas as pd
StudentData1 = {
                'Student Name':['Aman', 'Vishal', 'Anshu'], 'Roll No':['AC-101', 'AC-102', 'AC-103'],
                'Physics':[78,67,85],
                 'Chemistry': [80,77,85],
                'Maths':[88,95,100]
StudentData2 = {
                'Student Name':['Shruti', 'Rahul'],
                'Roll No':['AC-104', 'AC-105'],
                'Physics':[96,56],
                'Chemistry': [90,62],
                'Maths':[90,78]
STUDENT_DF1=pd.DataFrame(StudentData1)
STUDENT_DF2=pd.DataFrame(StudentData2)
STUDENT_DF = pd.concat([STUDENT_DF1,STUDENT_DF2]) # to combine two dataframes STUDENT_DATA1 and STUDENT_DATA2
{\tt display}({\tt STUDENT\_DF})
```

Student Name Roll No Physics Chemistry Maths 78 0 Aman AC-101 80 88 Vishal AC-102 67 77 1 95 2 Anshu AC-103 85 85 100 96 Shruti AC-104 90 90

56

62

78

Rahul AC-105

```
STUDENT_DF1=pd.DataFrame(StudentData1)
STUDENT_DF2=pd.DataFrame(StudentData2)
```

'Maths':[90,78]

STUDENT_DF=STUDENT_DF1.append(STUDENT_DF2) # to combine two dataframes STUDENT_DATA1 and STUDENT_DATA2 STUDENT_DF=STUDENT_DF.reset_index() display(STUDENT_DF)

<ipython-input-37-76ae1bfe44d6>:24: FutureWarning: The frame.append method is deprecated and will be removed from pandas in STUDENT_DF=STUDENT_DF1.append(STUDENT_DF2) # to combine two dataframes STUDENT_DATA1 and STUDENT_DATA2

	index	Student Name	Roll No	Physics	Chemistry	Maths
0	0	Aman	AC-101	78	80	88
1	1	Vishal	AC-102	67	77	95
2	2	Anshu	AC-103	85	85	100
3	0	Shruti	AC-104	96	90	90
4	1	Rahul	AC-105	56	62	78

- Activity 1

Analyze the given dataset to calculate Total Marks, Percentage and Cumulative Grade of every student as per the following criteria

- Grade O: Percentage >90
- Grade A+:Percentage >80
- Grade A: Percentage >70
- Grade B: Percentage >60
- Grade C: Percentage >50
- Grade D: Percentage >40
- FAIL: Percentage< 40

Specify Total Marks, Percentage and Grade of every student in a separate column

	Student Name	Roll No.	Physics	Chemistry	Maths
0	Aman	AC-101	78	80	88
1	Vishal	AC-102	67	77	95
2	Anshu	AC-103	85	85	100
3	Shruti	AC-104	96	90	90
4	Rahul	AC-105	56	62	78

```
import pandas as pd
STUDENT_DF = pd.read_csv('StudentData_LAB4.csv')
TotalMarks = (STUDENT_DF['Physics']+STUDENT_DF['Chemistry']+STUDENT_DF['Maths'])
STUDENT_DF['Total Marks']=TotalMarks
STUDENT_DF['Percentage']=TotalMarks/3
Grade=[]
for X in STUDENT_DF['Percentage']:
  if X>90:
    Grade.append('0')
  elif X>80:
    Grade.append('A+')
  elif X>70:
    Grade.append('A')
  elif X>60:
    Grade.append('B')
  elif X>50:
    Grade.append('C')
  elif X>=40:
    Grade.append('D')
  else:
    Grade.append('Fail')
STUDENT_DF['Grade']=Grade
STUDENT_DF=STUDENT_DF.set_index('Student Name')
display(STUDENT_DF)
```

To evaluate Total Marks, Percentage and Grade and display it in a separate column

	Roll No.	Physics	Chemistry	Maths	Total Marks	Percentage	Grade	1
Student Name								
Aman	AC-101	78	80	88	246	82.000000	A+	
Vishal	AC-102	67	77	95	239	79.666667	Α	
Anshu	AC-103	85	85	100	270	90.000000	A+	
Shruti	AC-104	96	90	90	276	92.000000	0	
Rahul	AC-105	56	70	78	204	68.000000	В	

→ 4. GRAPHICAL VISUALIZATION OF DATAFRAMES

	Roll No.	Physics	Chemistry	Maths	Total Marks	Percentage	Grade	7
Student Name								
Aman	AC-101	78	80	88	246	82.000000	A+	
Vishal	AC-102	67	77	95	239	79.666667	Α	
Anshu	AC-103	85	85	100	270	90.000000	A+	
Shruti	AC-104	96	90	90	276	92.000000	0	
Rahul	AC-105	56	70	78	204	68.000000	В	
90 -		†]					

4B. BAR PLOT

```
import matplotlib.pyplot as plt  # importing matplotlib library

display(STUDENT_DF)
STUDENT_DF['Percentage'].plot.bar(x='Student Name',figsize=(2,2))

plt.xlabel='Student Name',
  plt.ylabel='Percentage'
  plt.title='Student Performance'
  plt.legend(loc='lower left')

plt.savefig('Student_DF-BAR.png')

plt.show()
```

Roll No. Physics Chemistry Maths Total Marks Percentage Grade Student Name AC-101 82.000000 Aman 78 80 88 246 A+ Vishal AC-102 67 77 95 239 79.666667 Α AC-103 90.000000 Anshu 85 85 100 270 Α+ Shruti AC-104 276 92.000000 96 90 90 0 Rahul AC-105 56 70 78 204 68.000000 В

4C BOX PLOT

1

```
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')

plt.show()
plt.savefig('Student_DF-BOX.png')
```

		Roll No.	Physics	Chemistry	Maths	Total Marks	Percentage	Grade	10.
S	tudent Name								
	Aman	AC-101	78	80	88	246	82.000000	A+	
	Vishal	AC-102	67	77	95	239	79.666667	Α	
	Anshu	AC-103	85	85	100	270	90.000000	A+	
	Shruti	AC-104	96	90	90	276	92.000000	0	
	Rahul	AC-105	56	70	78	204	68.000000	В	

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an under

<Figure size 640x480 with 0 Axes>

4D PIE CHART

		Roll No.	Physics	Chemistry	Maths	Total Marks	Percentage	Grade	•	
S	Student Name									
	Aman	AC-101	78	80	88	246	82.000000	A+		
	Vishal	AC-102	67	77	95	239	79.666667	Α		
	Anshu	AC-103	85	85	100	270	90.000000	A+		
	Shruti	AC-104	96	90	90	276	92.000000	0		
	Rahul	AC-105	56	70	78	204	68.000000	В		

- 4E HISTOGRAM

```
import matplotlib.pyplot as plt # importing matplotlib library

display(STUDENT_DF)
STUDENT_DF['Percentage'].plot.hist(bins=12,figsize=(3,3))

plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')

plt.show()
plt.savefig('Student_DF-HIST.png')
```

10.

Student Name								
Aman	AC-101	78	80	88	246	82.000000	A+	
Vishal	AC-102	67	77	95	239	79.666667	Α	
Anshu	AC-103	85	85	100	270	90.000000	A+	
Shruti	AC-104	96	90	90	276	92.000000	0	
Rahul	AC-105	56	70	78	204	68.000000	В	

5. SUBPLOT function to display multiple plots

```
import matplotlib.pyplot as plt #importing matplotlib library
display(STUDENT_DF)
plt.figure(figsize= (10,15)) # To set PLOT AREA size
''' Setting Plot size to 15" WIDE X 10" LENGTH
    To accomodate 6 PLOTS arranged in 2 ROWS X 3 COLUMNS
    Each plot of size 5" WIDE X 5" LENGTH'''
plt.subplot(3,2,1) # SUBPLOT 1
STUDENT_DF['Percentage'].plot.line(ylabel='Percentage')
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')
plt.subplot(3,2,2) # SUBPLOT 2
STUDENT_DF['Percentage'].plot.bar()
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')
plt.subplot(3,2,3) # SUBPLOT 3
STUDENT_DF['Percentage'].plot.hist(bins=12)
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')
plt.subplot(3,2,4) # SUBPLOT 4
STUDENT_DF['Percentage'].plot.area( )
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')
plt.subplot(3,2,5) # SUBPLOT 5
STUDENT_DF['Percentage'].plot.pie(autopct='%1.2f%%')
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')
plt.subplot(3,2,6) # SUBPLOT 6
STUDENT_DF['Percentage'].plot.box( )
plt.xlabel='Student Name',
plt.ylabel='Percentage'
plt.title='Student Performance'
plt.legend(title='Student Performance',loc='lower right')
```

Roll No. Physics Chemistry Maths Total Marks Percentage Grade Student Name Aman AC-101 78 80 88 246 82.000000 A+ Vishal AC-102 67 77 95 239 79.666667 Α 270 Anshu AC-103 85 85 100 90.000000 A+ Shruti AC-104 90 276 92.000000 96 90 0 Rahul AC-105 70 78 204 68.000000 В 56

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose <matplotlib.legend.Legend at 0x7efd59315700>

ACTIVITY 2

Analysis of Time-Series Data

Double-click (or enter) to edit

	Product1	Product2
2023-04-10	100	100
2023-04-11	70	70
2023-04-12	82	82
2023-04-13	125	125
2023-04-14	65	65
2023-04-15	30	30
2023-04-16	50	50

The above table shows sales record of two products, Product 1 and Product 2, monitored across one week from 10-04-2023 to 16-04-2023

- 2. Compare Sales of Product 1 and Product 2 through:
 - Line plot (scatter plot)
 - o Bar plot
 - o Area plot
- 3. Analyze sales of Product 1 across one week through a Pie Chart

```
import pandas as pd
Sales_Product1=[100, 70,82,125,65,30,50]
Sales_Product2=[20, 78,65,100,50,80,55]
DATE_SERIES= pd.date_range(start='2023/04/10',
                        end='2023/04/16',
                       freq='D')
display(DATE_SERIES)
DATE_SERIES=pd.Series(DATE_SERIES)
display(DATE_SERIES)
    2023-04-10
        2023-04-11
        2023-04-12
       2023-04-13
       2023-04-14
       2023-04-15
       2023-04-16
    dtype: datetime64[ns]
import pandas as pd
Sales_Product1=[100, 70,82,125,65,30,50]
Sales_Product2=[20, 78,65,100,50,80,55]
DATE_SERIES= pd.date_range(start='2023/04/10',
                        end='2023/04/16',
                        freq='D')
SALES ={'Product1':Sales_Product1, 'Product2':Sales_Product2}
SALES_RECORD = pd.DataFrame(SALES, index=DATE_SERIES)
SALES_RECORD.index.name='Date'
display(SALES_RECORD)
```

Product1 Product2

```
Date
             100
2023-04-10
                         20
2023-04-11
               70
                         78
2023-04-12
                82
                         65
2023-04-13
             125
                        100
2023-04-14
               65
                         50
2023-04-15
                30
                         80
2023-04-16
                50
                         55
```

SALES_RECORD.to_csv('SALES_RECORD.csv')

Product1 Product2

Date		
2023-04-10	100	20
2023-04-11	70	78
2023-04-12	82	65
2023-04-13	125	100
2023-04-14	65	50
2023-04-15	30	80
2023-04-16	50	55

 ${\tt import\ matplotlib.pyplot\ as\ plt}$ # importing matplotlib library

display(SALES_RECORD)

```
plt.legend(loc='upper left')
plt.savefig('SALES_RECORD-BAR.png')
```

plt.show()

plt.savefig('SALES_RECORD-BAR.png')

Product1 Product2

Date		
2023-04-10	100	20
2023-04-11	70	78
2023-04-12	82	65
2023-04-13	125	100
2023-04-14	65	50
2023-04-15	30	80
2023-04-16	50	55

<Figure size 640x480 with 0 Axes>

```
import matplotlib.pyplot as plt  # importing matplotlib library
display(SALES_RECORD)
plt.legend(loc='upper left')
plt.savefig('SALES_RECORD-AREA.png')
plt.show()
```

Product1 Product2

Date		
2023-04-10	100	20
2023-04-11	70	78
2023-04-12	82	65
2023-04-13	125	100
2023-04-14	65	50
2023-04-15	30	80
2023-04-16	50	55

Product1 Product2

Date		
2023-04-10	100	20
2023-04-11	70	78
2023-04-12	82	65
2023-04-13	125	100
2023-04-14	65	50
2023-04-15	30	80
2023-04-16	50	55

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an under


```
import matplotlib.pyplot as plt  # importing matplotlib library

display(SALES_RECORD)

plt.figure(figsize= (10,5)) # To set PLOT AREA size

plt.subplot(1,2,1)
SALES_RECORD['Product1'].plot.pie(xlabel='Date', ylabel='Product 1',title='SALES')
plt.legend(title='SALES',loc='upper left')

plt.subplot(1,2,2)
SALES_RECORD['Product2'].plot.pie(xlabel='Date', ylabel='Product 2',title='SALES')
plt.legend(title='SALES',loc='upper left')
```

Product1 Product2 2023-04-10 100 20 2023-04-11 70 78 2023-04-12 82 65 2023-04-13 125 100 2023-04-14 65 50 2023-04-15 30 80 2023-04-16 50 55

 \checkmark 3s completed at 12:54 AM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.