Cryo-EMParticleCluster

A repo for cryo-EM particle clustering

Report for Cryo-EM particle cluster project

Introduction

Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is a powerful technology to determine three-dimensional structures of biological macromolecular complexes in their native states. Recent advances in the detector and high-performance computing makes researchers capable of reconstruction an nearly atomic resolution 3D model. The process of reconstruction can be divided to two stages: first, enhancing the signal noise ratio(SNR) of collected cryo-EM particle images; second, reconstruct 3D model and make refinement using the SNR enhanced images. In this report, we will report an experiment finished the first part, which is the image SNR enhancing part.

This is complex problem under several all-known facts: a) a kind of proteins under physical has dynamic conformation, which means it may favor a few conformations. b) the 2D projected images is the result of projection direction and in-plane rotation. There are two popular approaches for initialize classification of 2D projection images: multi-reference alignment(MRA) and reference-free alignment(RFA). In MRA, in 2D image alignment step, the algorithm rotate and translate each image according to its reference, and that is why it is called multi-reference. The distance between each image and its reference can be measured in a way, therefore, it is easily to use these distance to cluster images like K-means. Software using this strategy is SPARX, which use a algorithm called iterative stable alignment and cluster(ISAC). Another strategy is RFA. This approach attempts to find a way applying rotations and translations on images that minimize their deviations. Another famous software in this field using this approach is SPIDER.

Some other approach are introduced to speed the cluster and increase accuracy. One is called multivariate statistical analysis(MSA), which first project the images into a smaller subspace. EMAN2 combines MSA with MRA. Another approach is the use of rotationally invariant transformation(RIT), which transformed the same invariant map if they only differ in in-plane rotation. This stragegy is quite like the thoughts in minimal representation in a cycle string. For example, two cycle string '-eat-', '-ate-' has the same minimal represent 'ate' with the minimal lexicographic order.

In this project, our strategy favors MRA, and make some modifications. As well known, K-means algorithm is a classic way in multi-reference based clustering. And the obvious properties of K-means algorithm are that it works well when K is guessed correctly and the data is separable, converge to local minimum, and clusters tend to be hyper spherical shaped. And also, K-means does not monitor the class size, which may result void class. To solve this problem, SPARX use EQK-means(equal size), which force equal size of class in every cluster. However, the projection direction and in-plane rotation may not be uniformly distributed. Therefore, we tried another modified K-means algorithm called AC(adaptively constrained)K-means, which balance the class size adaptively with classification accuracy.

Input

The input to our project is k(3710 X 3710) images, each with 100~200 particle images(180 X 180) in it.

Algorithm

CTF correction

Mask(not finished fourier low pass filter):

This figure is masked by bit wise image:

An example:

Rotation:

Rotation is based on masked image.

An example:

ACK-means

Let $\mathbf{X} = \{\mathbf{x_1}, \mathbf{x_2}, \dots \mathbf{x_n}\}$ represent a series of images to be clustered. Each class with a reference of μ_j , $for\ j=1,2,\ldots k$, the traditional goal of K-means is to minimize the cost function \mathbf{J} ,

$$\mathbf{J} = \sum_{j=1}^k \sum_{p_i=j} \mathbf{dissim}(\mathbf{x}_i, \mu_j)$$

where partition vector $\vec{\mathbf{p}} = (\mathbf{p_1}, \mathbf{p_2}, \dots, \mathbf{p_n})$.

To take the size of cluster and balance the classify accuracy, we add an adaptive constraints to the cost function:

$$\mathbf{J} = \sum_{i=1}^k \sum_{p_i=j} \mathbf{dissim}(\mathbf{x}_i, \mu_j) + \lambda \mathbf{s} \mathbf{s}^T$$

and $\mathbf{s} = (\#images\ belong\ to\ 1, \#images\ belong\ to\ 2, \ldots, \#images\ belong\ to\ n)$

 λ is a non-negative parameter that reflect adaptive constraint of class accuracy.

Here we give some denotes and conclusions:

and 2λ was rewrite as :

$$2\lambda = eta rac{d_c}{\lfloor n/k
floor}$$

where d_c describes the change of pixel intensity scaling, whereas the second parameter β decides the weight on the class size whose value is independent of data scaling. The constant $\lfloor n/k \rfloor$ is the class size if all images are partitioned equally. β is set by experience as 0.5.

Pseudo-code of ACK-means

```
#ACKMEANS#
sigma_zero: minimum fraction of data change criteria
beta: the weight on the adaptive constraint term
k: number of class
# Initial assignment
    Update class
        for each datapoint
            find closest centroids index i
            compare new class to previous ones
                if not equal
                    flag = true
            assign/update this number to its class
    Update centroids
        for each centroids
            cent = average(all class member)
# Update cycle
while sigma > sigma_0
    calculate the change of pixel intensity d_c
    by randome select images
    t_m = max dist(image_m, centroid) -
                         min dist(image_m, centroid)
    d_c = average(t_m)
    lambda = d_c * beta / (2 * [n/k])
    class_Assignment_old = class_Assignment
    for each datapoint
        s_prime = # other datapoint whose class is the same as
                    this one
        update classAssignment
    update centroid
        for each centroids
            cent = average(all class member)
```

Results

	Class 1 Class 11		Class 3 Class 13	Class 4 Class 14	Class 5 Class 15		Class 7 Class 17	Class 8	Class 9
Class 20	Class 21	Class 22	Class 23	Class 24	Class 25	Class 26	Class 27	Class 28	Class 29
Class 30	Class 31	Class 32	Class 33	Class 34	Class 35	Class 36	Class 37	Class 38	Class 39
Class 40	Class 41	Class 42	Class 43	Class 44	Class 45	Class 46	Class 47	Class 48	Class 49
Class 50	Class 51	Class 52	Class 53	Class 54	Class 55	Class 56	Class 57	Class 58	Class 59
Class 60	Class 61	Class 62	Class 63	Class 64	Class 65	Class 66	Class 67	Class 68	Class 69
Class 70	Class 71	Class 72	Class 73	Class 74	Class 75	Class 76	Class 77	Class 78	Class 79
Class 80	Class 81	Class 82	Class 83	Class 84	Class 85	Class 86	Class 87	Class 88	Class 89
Class 90	Class 91	Class 92	Class 93	Class 94	Class 95	Class 96	Class 97	Class 98	Class 99
			***	3	C.		.533		\$30

Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9
	=	10%	32		824	(35)		10	
Class 10	Class 11	Class 12	Class 13	Class 14	Class 15	Class 16	Class 17	Class 18	Class 19
		Cl 22					Cl 27	Cl 2.0	Cl 20
Class 20	Class 21	Class 22	Class 23	Class 24	Class 25	Class 26	Class 27	Class 28	Class 29
Class 30	Class 31	Class 32	Class 33	Class 34	Class 35	Class 36	Class 37	Class 38	Class 39
0.000			RU		7 4 3 2	A Property		200	
Class 40	Class 41	Class 42	Class 43	Class 44	Class 45	Class 46	Class 47	Class 48	Class 49
10		(5)	(6) E	mi.				1,000	C31
Class 50	Class 51	Class 52	Class 53	Class 54	Class 55	Class 56	Class 57	Class 58	Class 59
		F3		124	151		377		2633
Class 60	Class 61	Class 62	Class 63	Class 64	Class 65	Class 66	Class 67	Class 68	Class 69
	(3)		15	300	(0)	596			333
Class 70	Class 71	Class 72	Class 73	Class 74	Class 75	Class 76	Class 77	Class 78	Class 79
1		6	(13)			(60)			17 1
Class 80	Class 81	Class 82	Class 83	Class 84	Class 85	Class 86	Class 87	Class 88	Class 89
Class 90	class 91	Class 92	Class 93	Class 94	Class 95	Class 96	Class 97	Class 98	Class 99
2000		HAR		544			5,435 57	2,435 50	
					17.5		1		

Rotation amplified ACKmeans result (CTF processed, only using 1000 input samples, while rotated using \sim 60000)

Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8	Class 9
Class 10	Class 11	Class 12	Class 13	Class 14	Class 15	Class 16	Class 17	Class 18	Class 19
1	(3)		(6)	0	Ç.		24	(3)	()
Class 20	Class 21	Class 22	Class 23	Class 24	Class 25	Class 26	Class 27	Class 28	Class 29
Class 30	Class 31	Class 32	Class 33	Class 34	Class 35	Class 36	Class 37	Class 38	Class 39
	any.		13					0	
Class 40	Class 41	Class 42	Class 43	Class 44	Class 45	Class 46	Class 47	Class 48	Class 49
Class 50	Class 51	Class 52	Class 53	Class 54	Class 55	Class 56	Class 57	Class 58	Class 59
Class 60	Class 61	Class 62	Class 63	Class 64	Class 65	Class 66	Class 67	Class 68	Class 69
Class 70	Class 71	Class 72	Class 73	Class 74	Class 75	Class 76	Class 77	Class 78	Class 79
Class 80	Class 81	Class 82	Class 83	Class 84	Class 85		Class 87	Class 88	Class 89
Class 90	Class 91	Class 92	Class 93	Class 94	Class 95	Class 96	Class 97	Class 98	Class 99
					0			(dr)	

Discussion