Niveau : Master 1 - Maths Année : 2020-2021, Semestre 1 Matière : Intro. au traitement d'images

Série d'exercices 2

Traitement spatial

Janvier 2020

Exercice 1

Les fonctions exponentielles sont utilisées souvent pour transformer les intensités d'une image. Déterminer des fonctions simples pouvant être associées aux graphes suivants :

Exercice 2

Soit I une image de taille 4×4 , codée sur 4 bits/pixel image

$$I = \begin{array}{|c|c|c|c|c|} \hline 7 & 3 & 4 & 1 \\ \hline 1 & 2 & 0 & 3 \\ \hline 4 & 2 & 2 & 1 \\ \hline 0 & 3 & 5 & 1 \\ \hline \end{array}$$

1. Calculer le résultat de l'application des deux transformations suivantes :

$$s = T_1(r) = 5\sqrt{r}, \quad s = T_2(r) = 15 - 2r$$

2. Calculer les critères suivants : MAE, MSE et PSNR.

Exercice 3

Une image a un histogramme normalisé pour lequel on est arrivé à trouver la forme analytique suivante :

$$h(r) = 6(r - r^2), r \in [0, 1]$$

On suppose donc ici que r correspond à un niveau de gris (1 correspond au blanc et 0 au noir).

— Tracer grossièrement cet histogramme et préciser quelle est la moyenne des niveaux de gris de cette image qualitativement et par calcul.

- Pourquoi $\frac{1}{2}h(r)$ ne pourrait pas être une courbe d'histogramme normalisé?
- Déterminer la transformation s = T(r) qui permettrait d'égaliser h(r).
- Perd t-on de l'information quand on fait une égalisation d'histogramme sur une image numérique?

Exercice 4

- 1. Il existe trois classes de transformations d'intensité en fonction de leur support. Lesquelles ? Citer un exemple de chaque classe.
- 2. Un nombre important de techniques de transformation d'intensités reposent sur l'histogramme.
 - (a) Donner un algorithme simple permettant de calculer l'histogramme d'une image
 - (b) Exprimer en termes de probabilités les notions d'histogramme, histogramme normalisé et histogramme cumulé.
 - (c) Comment calculer la moyenne, la variance et l'entropie à partir de l'histogramme? On rappelle que l'entropie est définie par :

$$b = -\sum_{i=0}^{255} p_i log_2(p_i)$$

où p_i est la probabilité de présence du niveau de gris i.

Exercice 5 Transformation d'intensité

1. Appliquer une égalisation de l'histogramme à l'image suivante (donner tous les détails nécessaires).

	10	12	11	9	12
	15	11	9	10	6
I =	13	15	8	12	6
	9	6	7	11	8
	7	2	1	1	0

- 2. Tracer les histogrammes de l'image originale et de l'image égalisée.
- 3. Calculer la norme de l'image de différence entre l'image originale et l'image égalisée.

Exercice 6

Appliquer le filtre de moyenne à l'image suivante (en précisant la stratégie de gestion du bord) :

10	12	2	1
10	14	5	2
13	12	13	4
10	12	14	3

Exercice 7

On applique différents filtres spatiaux à une image A de taille 4×4 codée sur 4 bits.

- 1. Calculer l'image 1 en utilisant le zéro padding, et sans arrondir le résultat en entiers.
- 2. Calculer l'image 2 en utilisant le zéro padding, et sans arrondir le résultat en entiers.
- 3. En utilisant les résultats 1 et 2, calculer l'image 3 en utilisant le zéro padding, et sans arrondir le résultat en entiers.
- 4. Calculer le résultat de l'application du filtre de moyenne à l'image A, en utilisant le zéro padding pour traiter les pixels du bord.
- 5. Calculer le résultat de l'application du filtre du maximum et le filtre médian à l'image A, en utilisant le zéro padding.

Exercice 8

On dispose d'une image I représentée par le tableau suivant :

I = 0	175	150	114	86	79
	156	119	91	80	113
	132	93	80	96	174
	96	85	87	165	193
	87	82	153	192	194

- 1. Appliquer le filtre du maximum (3×3) à l'image I (la stratégie de gestion des bords doit être expliquée).
- 2. Calculer le Laplacien de l'image $I: \Delta I$.
- 3. Appliquer le filtre suivant à l'image I (la stratégie de gestion des bords doit être expliquée).

 $\begin{array}{c|cccc}
0 & -1 & 0 \\
-1 & 5 & -1 \\
\hline
0 & -1 & 0
\end{array}$

- 4. Quelle est la quantité approchée par ce filtre?
- 5. Donner, **en le démontrant**, des filtres permettant de calculer le Gradient et le Laplacien d'une image.

Exercice 9 Soit une image 8×8 dont les niveau de gris vérifient :

$$f(i,j) = |i - j|.$$

Donner le contenu de l'image sortie lorsqu'on applique les filtres suivants.

- Filtre médian 3×3
- Filtre max 5×5
- Filtre max 3×3 .
- Filtre gaussien d'écart-type $\sigma = 0.5$ et de taille 3×3 .
- Filtre gaussien d'écart-type $\sigma = 2$ et de taille 5×5 .
- Filtre d'érosion, de dilatation, d'ouverture et de fermeture, d'élément structurant sous forme d'un L.