Les transformations liée à des réactions acides et bases

Exercice 1:

On prépare dans un laboratoire de chimie, une solution aqueuse d'acide butanoïque $C_3H_7COOH_{(aq)}$ de volume V et de concentration molaire $C=10^{-2}mol/L$. Le pH de cette solution est : pH=3,41. On modélise la transformation produite par l'équation chimique suivante:

 $C_3H_7COOH_{(aq)} + H_2O_{(l)} \Longrightarrow C_3H_7COO_{(aq)}^- + H_3O_{(aq)}^+$

- 1. Déterminer le taux d'avancement final de la réaction.
- 2. Trouver, en fonction de C et du pH, l'expression du quotient de réaction $Q_{r,eq}$ à l'équilibre ,puis calculer sa valeur
- 3. En déduire la valeur du pK_A du couple $C_3H_7COOH/C_3H_7COO^-$

Exercice 2:

Soit une solution aqueuse (S_a) d'acide méthanoique de volume V et de concentration $C_a = 10^{-2} mol/L$. La mesure du pH de cette solution donne pH = 2, 9.

On modélise la transformation chimique qui a lieu entre l'acide méthanoique et l'eau par l'équation chimique suivante :

 $HCOOH_{(aq)} + H_2O_{(l)} \rightleftharpoons HCOO_{(aq)}^- + H_3O_{(aq)}^+$

- 1. Dresser le tableau d'avancement de la réaction
- 2. Montrer que le taux d'avancement final τ de cette transformation s'écrit sous la forme suivante : $\tau = \frac{10^{-pH}}{C_0}$ calculer τ et conclure.
- 3. Déterminer la valeur de la constante pK_A du couple $HCOOH/HCOO^-$
- 4. On considère une seconde solution aqueuse (S') d'acide propanoïque $C_2H5COOH$ de concentration molaire $C_A = 0,010mol/L$. La valeur du taux d'avancement final de la réaction de l'acide propanoïque avec l'eau est $\tau' = 1,16.10^{-1}$
- **4.1.** En comparant t'avec le taux d'avancement final de la réaction d'acide méthanoïque avec l'eau, indiquer lequel des deux acides est le plus dissocié en solution.
- **4.2.**Comparer les constantes d'acidité $K_A(HCOOH/HCOO^-)$ et $K(C_2H5COOH/C_2H5COO^-)$

Exercice 3:

On dispose d'une solution aqueuse d'acide propanoïque $C_2H5COOH$ de concentration molaire C et de volume V. La mesure du pH de la solution donne la valeur pH = 2, 9.

- 1. Ecrire l'équation modélisant la réaction de l'acide propanoïque avec l'eau.
- 2. Exprimer le pH de la solution en fonction du pK_A du couple $C_2H5COOH/C_2H5COO^-$ et de la concentration des deux espèces chimiques C_2H5COO^- et $C_2H5COOH$ en solution.
- 3. Montrer que le taux d'avancement final de la réaction s'écrit sous la forme : $\tau = \frac{1}{1+10^{pK_A-pH}}$

Exercice 4:

On considère une solution aqueuse (S_B) d'ammoniaque de volume V et de concentration $C_B=2.10^{-2}mol/L$. La mesure de pH de cette solution donne la valeur pH=10,75. On donne à $25^{\circ}C$ $pK_e=14$.

On modélise la transformation chimique qui a lieu entre l'ammoniaque et l'eau par l'équation chimique suivante :

 $NH_{3(aq)} + H_2O_{(l)} \rightleftharpoons NH_{(aq)}^{4+} + HO_{(aq)}^{-}$

- 1. Déterminer le taux d'avancement final de cette réaction. Que peut-on conclure?
- 2. Exprimer le quotient de la réaction $Q_{r,eq}$; à l'équilibre du système chimique en fonction de C_B et
- τ . Calculer sa valeur
- 3. Vérifier la valeur de pK_A du couple (NH_4^+/NH_3)

Exercices Supplémentaires

Exercice 5:

Une solution S de méthylamine CH_3-NH_2 de concentration molaire $C_B=0,2mol/L$ a un pH=12. On donne à $25^{\circ}C$ $pK_e=14$.

- 1. Ecrire l'équation de la réaction de l'éthylamine avec l'eau.
- 2. Calculer les concentrations de toutes les espèces chimiques en solution.
- 3. Calculer la constante d'acidité K_A du couple $CH_3NH_3^+/CH_3NH_2$ et son pK_A .
- 4. Tracer le diagramme de prédominance du couple $CH_3NH_3^+/CH_3NH_2$ En déduire l'espèce prédominante dans la solution S.

Exercice 6:

L'acide hypochloreux a pour formule $HClO_{(aq)}$. Sa base conjuguée $ClO_{(aq)}^-$ est appelée ion hypochlorite. Le document cicontre représente les pourcentages des espèces chimiques acide et base du couple $HClO_{aq}/ClO_{(aq)}^-$ en fonction du pH pour une solution

- 1. Déterminer graphiquement la valeur numérique de la constante pK_A du couple $HClO_{aq}/ClO_{(aq)}^-$
- 2. Laquelle des deux courbes (a) ou (b) correspond à l'hypochlorite? Montre que $\%HClO = \frac{[HClO]}{[HClO] + [ClO^-]} = \frac{1}{1 + 10^{pH-pK_A}}$ et $\%ClO^- = \frac{[ClO^-]}{[HClO] + [ClO^-]} = \frac{1}{1 + 10^{pK_A pH}}$
- 3. Écrire l'équation de la réaction de $HClO_{(aq)}$ avec de l'eau.
- 4. On considère une solution d'acide hypochloreux de pH=5 . Déterminer le taux d'avancement de la réaction dans la solution .

Exercice 7:

Nous mélangeons $V_1=20mL$ de solution aqueuse (S_1) d'acide hypochloreux $HClO_{(aq)}$ de concentration $C_1=10^{-2}mol/L$ avec le volume $V_2=10mL$ de solution aqueuse (S_2) d'hydroxyde de sodium de concentration $C_1=C_2$. On mesure le pH de la solution et on trouve pH=7,2 donnée à 25 °C: $pK_e=14$

- 1. Ecrire l'équation de la réaction de l'acide hypochloreux avec les ions hydroxyde.
- 2. montrer que le taux d'avancement de la réaction s'ecrit sous la forme suivante : $\tau = 1 \frac{10^{14-pH}}{C_2} \cdot \frac{V_1 + V_2}{V_2}$ et calcule sa valeur
- 3. Exprimer la constante d'équilibre K associée à de la réaction d'acide hypochloreux et les ions hydroxyde en fonction de pK_e et pK_A constante d'acidité de $HClO_{(aq)}/ClO_{(aq)}^-$, puis calculer leur valeur numérique.

Exercice 8:

On mélange dans un volume V_1 de la solution aqueuse S_1 d'ammoniac $NH_{3(aq)}$ de concentration Molaire C_1 avec un volume $V_1 = V$ d'une solution aqueuse de chlorure de méthyl ammonium $(CH_3NH_{3(aq)^+};Cl^-)$ de concentration molaire $C=C_1$

- 1. Ecrire l'équation chimique modélisant la réaction de l'ammoniac avec l'ion méthyl ammonium
- 2. exprime la constante d'équilibre K associée à l'équation de cette réaction en fonction de pK_{A_1} et pK_{A_2}
- 3. Montrer que l'expression de la concentration de et celle de dans le mélange réactionnel à l'équilibre, s'écrit $[CH_3NH_{2(aq)}]=[NH^+_{(aq)}]=\frac{C}{2}\cdot\frac{\sqrt{K}}{1+\sqrt{K}}$
- 4. montre que pH du mélange réactionnel à l'équilibre s'écrit $pH = \frac{1}{2}.(pK_{A_1} + pK_{A_2})$ et calcule sa valeur

$$pK_{A1}(NH_4^+/NH_3) = 9, 2$$

 $pK_{A2}(CH_3NH_3^+/CH_3NH_2) = 10, 7$