Appunti di Algebra Lineare

Contents

1	Sistemi Lineari	. 2
2	VETTORI E MATRICI	. 3
	2.1 DEFINIZIONI	. 3
	2.2 MATRICI	. 5

1 Sistemi Lineari

Definizione Teorema Fondamentale dell'algebra

Considerando un polinomio di grado n, a coefficienti complessi:

$$\bullet \ \ P(z)=a_nz^n+\ldots+a_1z+a_0 \qquad \text{ Dove } a_i\in\mathbb{C}, \ z_n\neq 0$$

Si dice che $z_0\in\mathbb{C}$ è una radice di P se:

$$P(z_0) = 0$$

In tal caso esiste un polinomio Q di grado n-1 tale che:

$$P(z)=(z-z_0)Q(z) \\$$

Definizione Molteplicità

La molteplcità di $z_0\in\mathbb{C}$ come radice di un polinomio P, è il massimo numero $m\geq 0$ per il quale esiste un polinomio Q tale che:

$$P(z) = \left(z - z_0\right)^m Q(z) \quad \text{con } Q(z_0) \neq 0$$

2 VETTORI E MATRICI

2.1 DEFINIZIONI

Definizione Spazio vettoriale

Uno spazio vettoriale \mathbb{V} su un campo \mathbb{F} è un insieme dotato di un'addizione e di una moltiplicazione per scalare che soddisfano le proprietà assiali (chiusura, associatività, elemento neutro, inverso additivo, distributività, compatibilità con scalari, moltiplicazione per 1).

Esempio:

 \mathbb{R}^n

Definizione Linearmente Indipendenti/dipendenti

l vettori $v_1,...,v_k\in\mathbb{R}^n$ si dicono <u>linearmente indipendenti</u> se vale l'implicazione:

$$\lambda_1 v_1 + \ldots + \lambda_k v_k = \underline{0} \quad \Rightarrow \quad \lambda_1 = \ldots = \lambda_k = 0$$

In caso contrario si dice che $v_1,...,v_k$ sono <u>linearmente dipendenti</u>.

Nota:

- Proprietà attribuibile ad una collezione di vettori, riga o colonna che siano.
- Le matrici sono una lista di vettori riga o vettori colonna, quindi si può stabilire la dipendenza lineare di righe e di colonne, vedere la definizione di Rango.

Esempio:

Confronto tra 1,2,3 vettori:

	lin. Ind.	lin. Dip.
$v_1 \in \mathbb{R}^n$	Se v_1 non nullo	nullo
$v_1,v_2\in\mathbb{R}^n$	Se non sono paralleli tra loro	paralleli
$v_1, v_2, v_3 \in \mathbb{R}^n$	Se non complanari	Complanari

Definizione Base

Una base di un spazio vettoriale è una collezione di vettori linearmente indipendenti che genera lo spazio.

Esempio:

$$e = \begin{pmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Definizione Span

È lo spazio vettoriale generato dalla combinazione lineare di unsieme di vettori

2.2 MATRICI

Proposizione Rango (o caratteristica)

Sia $A \in \mathrm{Mat}(m,n)$, si può dimostrare che il massimo numero di righe linearmente indipendenti coincide con il massimo numero di colonne linearmente indipendenti.

Esempio:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$ e $\begin{pmatrix} -1 & 1 & 0 \end{pmatrix}$ sono linearmente indipendenti (perchè non sono paralleli), per cui il numero massimo di colonne linearmente indipendenti sarà 2.