Subsection 5

Functions of a continuous random variable

Why functions?

- We may model one quantity as a random variable X. We may have to work with another closely related quantity
- Example 1
 - Length of a square: X
 - Area of the square: $Y = X^2$
- Example 2
 - Volume of a liquid: X
 - Density: ρ

 - Volume occupied: $Y = \rho X$
- Given the distribution of X, it is useful to have a method for finding the distribution of a function of X

Suppose $X \sim \mathsf{Uniform}[0,1]$

- $Y = 2X \in [0, 2]$ is clearly a random variable
- What is the distribution of Y?

Suppose $X \sim \mathsf{Uniform}[0,1]$

- $Y = 2X \in [0,2]$ is clearly a random variable
- What is the distribution of Y?

For
$$y \in [0,2]$$
, $F_{Y}(y) = P(Y \le y) = P(2X \le y)$
$$= P(X \le y/2) = \int_{0}^{\frac{y}{2}} f_{X}(x) dx = \frac{y}{2}.$$

Suppose $X \sim \mathsf{Uniform}[0,1]$

- $Y = 2X \in [0,2]$ is clearly a random variable
- What is the distribution of Y?

For $y \in [0, 2]$,

$$F_Y(y) = P(Y \le y) = P(2X \le y)$$

$$=P(X \leq y/2)=\int_0^{\frac{y}{2}}f_X(x)dx=\frac{y}{2}.$$

PDF of Y,
$$f_Y(y) = \frac{dF_Y(Y)}{dy} = \frac{1}{2}$$
.

$$Y \sim \text{Uniform}[0, 2]$$

Y=ax+6~ Uniform[b,b+]

Suppose $X \sim \text{Uniform}[0,1]$

- $Y = 2X \in [0, 2]$ is clearly a random variable
- What is the distribution of Y?

For $y \in [0, 2]$,

$$F_Y(y) = P(Y \le y) = P(2X \le y)$$

= $P(X \le y/2) = \int_0^{\frac{y}{2}} f_X(x) dx = \frac{y}{2}.$

PDF of Y,
$$f_Y(y) = \frac{dF_Y(Y)}{dy} = \frac{1}{2}$$
.

 $Y \sim \text{Uniform}[0, 2]$

ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function

- Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g: \mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

- Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

►
$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$$

• How to evaluate the above probability?

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line
 - ▶ Find the probability that *X* falls in those intervals

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line
 - Find the probability that X falls in those intervals
 - $F_Y(y) = P(X \in A_y) = \int_{A_y} f_X(x) dx$

- Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g: \mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line
 - Find the probability that X falls in those intervals
 - $F_Y(y) = P(X \in A_y) = \int_{A_y} f_X(x) dx$
- ullet If F_Y has no jumps, you may be able to differentiate and find a PDF

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in supp(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in supp(x)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y)).$$

• Translation:
$$Y = X + a$$

$$\begin{cases} f_{Y}(y) = f_{X}(y - a) \end{cases}$$

$$\begin{cases} f_{Y}(y) = f_{X}(y - a) \end{cases}$$

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in supp(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y)).$$

• Translation: Y = X + a

$$f_Y(y) = f_X(y - a)$$

• Scaling:
$$Y = aX$$

$$f_Y(y) = \frac{1}{|a|} f_X(\mathbf{z}/a)$$

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in \text{supp}(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y)).$$

• Translation: Y = X + a

$$f_Y(y) = f_X(y - a)$$

• Scaling: Y = aX

$$f_Y(y) = \frac{1}{|a|} f_X(\mathbf{z}/a)$$

• Affine: Y = aX + b

$$f_Y(y) = \frac{1}{|a|} f_X((y-b)/a)$$

Affine transformation of normal distributions

•
$$X \sim \text{Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$
• $Y = \sigma X + \mu$ "Adjive"
$$f_Y(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x^2-\mu)^2/2\sigma^2) \cdot \Pr(x,\sigma^2)$$
• $Y \sim \text{Normal}(\mu,\sigma^2)$

Affine transformation of normal distributions

• $X \sim \text{Normal}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

 $Y = \sigma X + \mu$

$$f_Y(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(z^2 - \mu)^2/2\sigma^2)$$

$$Y \sim \text{Normal}(\mu, \sigma^2)$$

- $X \sim \text{Normal}(\mu, \sigma^2)$
 - $Y = (X \mu)/\sigma \sim \text{Normal}(0, 1)$

Result

Affine transformation of a normal random variable is normal.

Let $X \sim \text{Uniform}[-3,1]$. Find the PDF of $\max(X,0)$.

Subsection 6

Continuous random variables: Expected value

Expected value: Function of a continuous random variable

Theorem

Let X be a continuous random variable with density $f_X(x)$. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. The expected value of g(X), denoted E[g(X)], is given by

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$

whenever the above integral exists.

Expected value: Function of a continuous random variable

Theorem

Let X be a continuous random variable with density $f_X(x)$. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. The expected value of g(X), denoted E[g(X)], is given by

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$
supplies

Fig. 1. Like

PRF

whenever the above integral exists.

• If X is discrete with range T_X and PMF p_X ,

$$E[g(X)] = \sum_{x \in T_X} g(x) p_X(x)$$

- Summation in discrete case is replaced by integration in coninuous case
- The integral may diverge to $\pm \infty$ or may not exist in some cases

Mean and Variance

X: continuous random variable

• Mean, denoted E[X] or μ_X or simply μ

$$\mathcal{F}[X] = \int_{-\infty}^{\infty} x \, f_X(x) dx$$

- Mean is the average or expected value of X
- \bullet Variance, denoted $\mathrm{Var}(X)$ or σ_X^2 or simply σ^2

$$\operatorname{Var}(X) = E[\underbrace{(X - \mu_X)^2}_{\text{All resolved}}] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

- ▶ Variance is a measure of spread of *X* about its mean
- ▶ $Var(X) = E[X^2] E[X]^2$
- Evaluating expected value needs good knowledge of integration
 - ► Formulae are available in numerous webpages and books

Examples of mean and variance

•
$$X \sim \text{Uniform}[a, b], \ f_X(x) = \frac{1}{b-a}, \ a < x < b$$

•
$$E[X] = \frac{a+b}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$

- $X \sim \operatorname{Exp}(\lambda)$, $f_X(x) = \lambda \exp(-\lambda x)$, x > 0
 - $E[X] = 1/\lambda$, $Var(X) = 1/\lambda^2$
- $X \sim \text{Normal}(\mu, \sigma^2)$, $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x-\mu)^2/2\sigma^2)$

$$E[X] = \mu, \, \operatorname{Var}(X) = \sigma^{2}$$

$$\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \mu$$

$$\int_{-\infty}^{\infty} (x-\mu)^{L} \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \sigma^{2}$$

$$\int_{-\infty}^{\infty} (x-\mu)^{L} \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \sigma^{2}$$

$$\int_{-\infty}^{\infty} (x-\mu)^{L} \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \sigma^{2}$$

Uniform distribution with different variances

Exponential distribution with different λ

Normal distribution with different σ

Markov and Chebyshev inequalities

- Markov inequality
 - ightharpoonup X: continuous random variable with mean μ
 - supp(X): non-negative, i.e. P(X < 0) = 0

$$P(X > c) \le \frac{\mu}{c}$$

- Chebyshev inequality
 - X: continuous random variable with mean μ and variance σ^2

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Probability space and its axioms

- Discrete case
 - ▶ Sample space: finite or countable set
 - ▶ Events: power set of sample space
 - ▶ Probability function: PMF
- Continuous case
 - Sample space: interval of real line
 - Events: intervals in the sample space along with their complements and countable unions
 - ★ This avoids some 'bizarre' subsets that defy our sense of measure
 - ▶ Probability function: function from intervals inside sample space to [0,1] satisfying the axioms
 - ★ Possible only if P(X = x) = 0
- Unified description of probability spaces: Measure-theoretic
 - ► NPTEL course: https://nptel.ac.in/courses/108/106/108106083/

A continuous random variable X has PDF

$$f_X(x) = egin{cases} 1 - |x|, & -1 \leq x \leq 1 \ 0, & ext{otherwise}. \end{cases}$$

Find the CDF of X, E[X], Var(X).

$$\begin{array}{lll}
-1 & = 1 & = 1 \\
F_{X}(x) & = \int_{1}^{1} (1 - |x|) dx & = \int_{1}^{1} (1 + |x|) dx & = u \Big|_{1}^{1} + u \Big|_{1}^{1} & = (x - (-1)) + \left(\frac{x^{L}}{L} - \frac{(-1)^{L}}{L}\right) \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{2} = \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} \\
& = x + 1 + \frac{x^{L}}{L} - \frac{1}{L} + x + \frac{x^{L}}{L} - \frac{1}{L} + \frac{x^{L}}{L} - \frac{1}{L} + \frac{x^{L}}{L} - \frac{x^{L}}{L}$$

$$E[x] = \int x f_{x}(x) dx = \int x (1+x) dx + \int x (1-x) dx$$

$$= \frac{x^{2}}{3} \Big|_{1}^{3} + \frac{x^{3}}{3} \Big|_{0}^{3} + \frac{x^{4}}{3} \Big|_{0}^{3} - \frac{x^{3}}{3} \Big|_{0}^{3} = -\frac{1}{2} + \frac{1}{3} + \frac{1}{2} - \frac{1}{3} = 0$$

$$|b_{1}(x) = E[x^{2}] = \int x^{2} (1+x) dx + \int x^{2} (1-x) dx$$

$$= \frac{x^{3}}{3} \Big|_{1}^{3} + \frac{x^{4}}{4} \Big|_{0}^{3} + \frac{x^{3}}{3} \Big|_{0}^{3} - \frac{x^{4}}{4} \Big|_{0}^{3} = \frac{1}{3} - \frac{1}{4} + \frac{1}{3} - \frac{1}{4} = \frac{1}{6}$$

 $\left(\int \chi^n dx = \frac{\chi^{n+1}}{n+1}\right)$

|x|= |-x, if x <0 |x, if x >0

A continuous random variable X has PDF

$$f_X(x) = egin{cases} rac{1}{2}\cos x, & -\pi/2 \leq x \leq \pi/2 \\ 0, & ext{otherwise}. \end{cases}$$

Find the CDF of X, E[X], Var(X).

$$F_{x}(n) = \int_{-\pi/L}^{x} f_{x}(n) du = \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}$$

$$\int x \cos x \, dx = \cos x + x \sin x$$

$$\int x^{\perp} \cos x \, dx = x^{\perp} \sin x + 2x \cos x - 2 \sin x$$

$$E[X] = \int_{X} \frac{1}{2} \cos x \, dx = \frac{1}{2} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} = \frac{1}{2} \left(\cos x + x \cos x - 2 \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \cos x \, dx = \frac{1}{2} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}} \left(\cos x + x \sin x \right) \int_{A_{1}}^{A_{1}} \int_{A_{1}}^{A_{1}}$$

Multiple discrete/continuous random variables

Andrew Thangaraj

IIT Madras

Subsection 1

Motivation

Iris data set

- First used by R. A. Fisher
 - Wikipedia: https://en.wikipedia.org/wiki/Ronald_Fisher
 - * "a genius who almost single-handedly created the foundations for modern statistical science"
 - ★ "the single most important figure in 20th century statistics"

Iris data set

- First used by R. A. Fisher
 - Wikipedia: https://en.wikipedia.org/wiki/Ronald_Fisher
 - "a genius who almost single-handedly created the foundations for modern statistical science"
 - * "the single most important figure in 20th century statistics"
- Iris flower
 - ▶ 3 classes of irises: 0, 1 and 2
 - ★ 50 instances in each class
 - Data (cm)
 - sepal length (SL), sepal width (SW), petal length (PL), petal width (PW)
 - Classification
 - ★ Given data, find class

(image source: fs.fed.us)

Iris data set

- First used by R. A. Fisher
 - Wikipedia: https://en.wikipedia.org/wiki/Ronald_Fisher
 - "a genius who almost single-handedly created the foundations for modern statistical science"
 - * "the single most important figure in 20th century statistics"
- Iris flower
 - ▶ 3 classes of irises: 0, 1 and 2
 - ★ 50 instances in each class
 - Data (cm)
 - ★ sepal length (SL), sepal width (SW), petal length (PL), petal width (PW)
 - Classification
 - ★ Given data, find class

(image source: fs.fed.us)

How to statistically describe (class, SL, SW, PL, PW)?

Iris data

Class 0					Class 1					Class 2			
SL	SW	PL	PW	9	SL	SW	PL	PW	- !	SL	SW	PL	PW
5.1	3.5	1.4	0.2	7	'.0	3.2	4.7	1.4		6.3	3.3	6.0	2.5
4.9	3.0	1.4	0.2	6	5.4	3.2	4.5	1.5		5.8	2.7	5.1	1.9
4.7	3.2	1.3	0.2	6	5.9	3.1	4.9	1.5		7.1	3.0	5.9	2.1
4.6	3.1	1.5	0.2	5	5.5	2.3	4.0	1.3		6.3	2.9	5.6	1.8
5.0	3.6	1.4	0.2	6	5.5	2.8	4.6	1.5		6.5	3.0	5.8	2.2
÷	:	÷	:		:	:	:	:		:	÷	:	:

Iris data

Class 0					Class 1				Class 2				
SL	SW	PL	PW	SL	SW	PL	PW		SL	SW	PL	PW	
5.1	3.5	1.4	0.2	7.0	3.2	4.7	1.4		6.3	3.3	6.0	2.5	
4.9	3.0	1.4	0.2	6.4	3.2	4.5	1.5		5.8	2.7	5.1	1.9	
4.7	3.2	1.3	0.2	6.9	3.1	4.9	1.5		7.1	3.0	5.9	2.1	
4.6	3.1	1.5	0.2	5.5	2.3	4.0	1.3		6.3	2.9	5.6	1.8	
5.0	3.6	1.4	0.2	6.5	2.8	4.6	1.5		6.5	3.0	5.8	2.2	
:	:	:	:	:	:	:	:		:	:	:	:	

Summary: min-max, avg, stdev

	SL summary	SW summary	PL summary	PW summary
0	4.3-5.8,5.0,0.4	2.3-4.4,3.4,0.4	1.0-1.9, 1.5, 0.2	0.1-0.6, 0.3, 0.1
1	4.9-7.0,5.9,0.5	2.0-3.4,2.8,0.3	3.0-5.1,4.3,0.5	1.0-1.8, 1.3, 0.2
2	4.9-7.9,6.6,0.6	2.2-3.8,3.0,0.3	4.5-6.9, 5.6, 0.6	1.4-2.5, 2.0, 0.3

Histograms

How to model sepal length and class of iris?

- density histograms of sepal length for three classes
- continuous approximations shown as dotted lines

How to model sepal length and class of iris?

- density histograms of sepal length for three classes
- continuous approximations shown as dotted lines

- Clearly, both are jointly distributed
- Class: discrete $\in \{0, 1, 2\}$
- Sepal length: continuous
 - distribution depends on class

Subsection 2

Joint distributions: Discrete and Continuous

• (X, Y): jointly distributed

- (X, Y): jointly distributed
- X: discrete with range T_X and PMF $p_X(x)$

- (X, Y): jointly distributed
- X: discrete with range T_X and PMF $p_X(x)$
- For each $x \in T_X$, we have a continuous random variable Y_x with density $f_{Y_x}(y)$

- (X, Y): jointly distributed
- X: discrete with range T_X and PMF $p_X(x)$
- For each $x \in T_X$, we have a continuous random variable Y_x with density $f_{Y_x}(y)$
- Y_x : Y given X = x, denoted (Y|X = x)

- (X, Y): jointly distributed
- X: discrete with range T_X and PMF $p_X(x)$
- For each $x \in T_X$, we have a continuous random variable Y_x with density $f_{Y_x}(y)$
- Y_x : Y given X = x, denoted (Y|X = x)
- $f_{Y_x}(y)$: conditional density of Y given X = x, denoted $f_{Y|X=x}(y)$

- (X, Y): jointly distributed
- X: discrete with range T_X and PMF $p_X(x)$
- For each $x \in T_X$, we have a continuous random variable Y_x with density $f_{Y_x}(y)$
- Y_x : Y given X = x, denoted (Y|X = x)
- $f_{Y_x}(y)$: conditional density of Y given X = x, denoted $f_{Y|X=x}(y)$
- Marginal density of Y $f_Y(y) = \sum_{x \in T_X} p_X(x) \overbrace{f_{Y|X=x}(y)}^{f_{Y|X=x}(y)}$

 $Y|X=1 \sim \text{Normal}(6,0.5) \text{ and } Y|X=2 \sim \text{Normal}(7,0.6).$ • What is the marginal of Y?

• Suppose we observe Y to be around y_0 . What can you say about X?

Conditional probability of discrete given continuous

Definition

Suppose X and Y are jointly distributed with $X \in \mathcal{T}_X$ being discrete with PMF $p_X(x)$ and conditional densities $f_{Y|X=x}(y)$ for $x \in \mathcal{T}_X$. The conditional probability of X given $Y = y_0 \in \text{supp}(Y)$ is defined as

$$P(X=x|Y=y_0) = \frac{p_X(x)f_{Y|X=x}(y_0)}{\underbrace{f_Y(y_0)}_{\text{Act}}},$$
arginal density of Y .

where f_Y is the marginal density of Y.

Conditional probability of discrete given continuous

Definition

Suppose X and Y are jointly distributed with $X \in T_X$ being discrete with PMF $p_X(x)$ and conditional densities $f_{Y|X=x}(y)$ for $x \in T_X$. The conditional probability of X given $Y = y_0 \in \text{supp}(Y)$ is defined as

$$P(X=x|Y=y_0) = \frac{p_X(x)f_{Y|X=x}(y_0)}{f_Y(y_0)},$$

where f_Y is the marginal density of Y.

- Similar to Bayes' rule: $P(X=x|Y=y_0)f_Y(y_0) = f_{Y|X=x}(y_0)p_X(x)$
- $X|Y=y_0$: "conditioned" discrete random variable
- When are X and Y independent? $f_{Y|X=x}$ is independent of x.
 - $f_Y = f_{Y|X=x}$ and $P(X=x|Y=y_0) = p_X(x)$

Let $X \sim \text{Uniform}\{-1,1\}$. Let $Y|X=-1 \sim \text{Uniform}[-2,2]$,

 $Y|X=1 \sim \text{Exp}(5)$. Find the distribution of X given Y=-1, Y=1, Y=3.

$$\frac{x|y=-1}{f_{1}(-1)} = \frac{f_{x}(-1) \cdot f_{y|x=-1}}{f_{y}(-1)} = \frac{\frac{1}{2} \cdot \frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{4}} = 1$$

$$P(x=+1|y=-1) = \frac{f_{x}(-1) \cdot f_{y|x=-1}}{f_{y}(-1)} = \frac{\frac{1}{2} \cdot \frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{4}} = 0$$

$$\frac{\chi \mid y=1}{1} : P(x=-1 \mid y=1) = \frac{1}{2} \cdot \frac{1}{4}$$

$$\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3} = 1$$

$$\chi \mid y=1 : P(x=-1 \mid y=1) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3} = 1$$

$$\chi \mid y=1 : P(x=-1 \mid y=1) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3} = 1$$

$$\chi \mid y=1 : P(x=-1 \mid y=1) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3} = 1$$

$$\chi \mid y=1 : P(x=-1 \mid y=1) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3} = 1$$

$$\chi \mid y=1 : P(x=-1 \mid y=1) = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3} = 1$$

Suppose 60% of adults in the age group of 45-50 in a country are male and 40% are female. Suppose the height (in cm) of adult males in that age group in the country is Normal(160, 10), and that of females is Normal(150, 5). A random person is found to have a height of 155 cm. Is that person more likely to be male or female?

Variance

Let Y = X + Z, where $X \sim \text{Uniform}\{-3, -1, 1, 3\}$ and $Z \sim \text{Normal}(0, \overset{\bullet}{\sigma}^2)$ are independent. What is the distribution of Y? Find the distribution of (X|Y=0.5).

- rest is same as before.