Сколько групп Григорчука можно нетривиально вложить в $\operatorname{Aut}(T_m)$

Иван Чиченков, Илья Амехин

Май 2024

Сириус, IV Майская проектная смена по математике и теоретической информатие

нетривиальные вложения

Группа григорчука и

Определение группы григорчука

Определим четыре автоморфизма бинарного дерева, что задают группу по композиции:

$$a(0w) = 1w$$
, $b(0w) = 0a(w)$, $c(0w) = 0a(w)$, $d(0w) = 0w$
 $a(1w) = 0w$, $b(1w) = 1c(w)$, $c(1w) = 1d(w)$, $d(1w) = 1b(w)$

Такая группа называется группой Григорчука

Самоподобные группы

Определение

Группа G действующая на X^* называется самоподобной, если $\forall g \in G \ \forall x \in X \ \exists h \in G \ \exists y \in X$:

$$g(xw) = yh(w)$$

Определения, примеры, блоки

Определим те вложения, что будут нам интересны

Определение

Назовем вложение $f:G^n o \operatorname{Aut}(T_m)$ группы тривиальным, если

$$\exists N>1\in\mathbb{N}:\forall m\leq N$$

$$\psi_m(f(G^n))=\{\mathrm{id}\}$$

Первый пример нетривиального вложения

$$a_{kq+r}(\underbrace{(m-1)...(m-1)(2r)w)}_{q} = \underbrace{(m-1)...(m-1)}_{q}(2r+1)w, \text{ при } 0 \leq r \leq k-2$$

$$a_{kq+r}(\underbrace{(m-1)...(m-1)(2r+1)w)}_{q} = \underbrace{(m-1)...(m-1)(2r)w}_{q}, \text{ при } 0 \leq r \leq k-2$$

$$a_{kq+(k-1)}(\underbrace{(m-1)...(m-1)(m-2)i}_{q} = \underbrace{(m-1)...(m-1)(m-2)(k+i)}_{q}, \text{ при } 0 \leq i \leq k-1$$

$$a_{kq+(k-1)}(\underbrace{(m-1)...(m-1)(m-2)(k+i)}_{q}) = \underbrace{(m-1)...(m-1)(m-2)i}_{q}, \text{ при } 0 \leq i \leq k-1$$

$$b_{kq+r}(\underbrace{(m-1)...(m-1)(2r)w}_{q}) = \underbrace{(m-1)...(m-1)(2r)a_{r}(w)}_{q}$$

$$b_{kq+r}(\underbrace{(m-1)...(m-1)(2r+1)w}_{q}) = \underbrace{(m-1)...(m-1)(m-2)ia_{r}(w)}_{q}$$

$$b_{kq+(k-1)}(\underbrace{(m-1)...(m-1)(m-2)iw}_{q}) = \underbrace{(m-1)...(m-1)(m-2)ia_{r}(w)}_{q}$$

$$b_{kq+(k-1)}(\underbrace{(m-1)...(m-1)(m-2)(k+i)w}_{q}) = \underbrace{(m-1)...(m-1)(m-2)(k+i)a_{r}(w)}_{q}$$

$$c_{kq+r}(\underbrace{(m-1)...(m-1)(2r+1)w}_{q}) = \underbrace{(m-1)...(m-1)(2r+1)d_{r}(w)}_{q}$$

$$c_{kq+r}(\underbrace{(m-1)...(m-1)(2r+1)w}_{q}) = \underbrace{(m-1)...(m-1)(m-2)(k+i)d_{k-1}(w)}_{q}$$

$$c_{kq+(k-1)}(\underbrace{(m-1)...(m-1)(m-2)iw}_{q}) = \underbrace{(m-1)...(m-1)(m-2)ia_{r}(w)}_{q}$$

$$c_{kq+(k-1)}(\underbrace{(m-1)...(m-1)(m-2)(k+i)w}_{q}) = \underbrace{(m-1)...(m-1)(m-2)(k+i)d_{k-1}(w)}_{q}$$

Рекуррентный вид

Попробуем сделать формулу менее пугающей

$$\begin{split} w &= \underbrace{(m-1)...(m-1)}_{q-2} w'; w' = (2r)w'' \\ a_{kq+r}((m-1)w) &= (m-1)a'_{kq+r}(w) \\ a'_{kq+r}((m-1)w) &= (m-1)a''_{kq+r}(w) \\ &\vdots \\ a^{(q-1)}_{kq+r}((m-1)w') &= (m-1)a^{(q)}_{kq+r}(w') \\ a^{(q)}_{kq+r}((2r)w'') &= (2r+1)w'' \end{split}$$

Рис. 1: Прим. $(a_0, a_1, a_2, id, id, ...)$

Некоторые свойства такой группы

Немного пояснения того что было написано выше

Утверждение 1

Данное вложение самоподобно

Утверждение 2

Из построения видно, что всего таких вложений несчетно много

Спасибо за внимание

Спасибо за внимание!