Anomaly Detection Using AutoEncoders

Problem Description

- Detecting anomalies using autoencoders
- Key Concept:
 - Reconstruction vector of anomalies is different from the original vector
 - Reconstruction vector of non anomalies is close to the original vector
- Hyperparameters:
 - Memory Size
 - Optimizer
 - Comparator threshold

Related Work

- Normal AutoEncoders
- Variational AutoEncoders
- DevNet (deviation loss function)
- Memory Augmented AutoEncoders (MemAE)

- Selection:
 - MemAE + DevNet loss function

Timeline

Tasks:

- Simple AE Model Building
- Data Preprocessing
- Building Memory Layer
- Training + Tuning Memory to minimize MSE
- Investigate Deviation Loss function
- Freezing weights and building Deviation Loss Model
- Training on Deviation Loss
- Running on test data and submit on Kaggle

Progress

Task	Progress
Simple AE Model Building	100%
Data Preprocessing	100%
Building Memory Layer	100%
Training + Tuning Memory to minimize MSE	50%
Investigate Deviation Loss function	0%
Freezing weights and building Deviation Loss Model	0%
Training on Deviation Loss	0%
Running on test data and submit on Kaggle	0%

Results

Best Losses

Memory size = 40

Memory size = 10

Memory size = 20

Best Losses cont.

Memory size = 50

Memory size = 200

Memory size = 100

Best Accuracy

loss: 1.7190896940270444

accuracy: 0.8933344466087662

precision: 0.0623989937730674

f1: 0.02700780472890824

Using Adadelta and Memory size 100

```
1 - (y_test.sum()/len(y_test))
0.892170727507084
```

Actual ratio of non-anomaly

Conclusion: Model is NOT doing a good job