INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4541B MSI Programmable timer

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4541B MSI

DESCRIPTION

The HEF4541B is a programmable timer which consists of a 16-stage binary counter, an integrated oscillator to be used with external timing components, an automatic power-on reset and output control logic. The frequency of the oscillator is determined by the external components R_t and C_t within the frequency range 1 Hz to 100 kHz. This oscillator may be replaced by an external clock signal at input RS, the timer advances on the positive-going transition of RS. A LOW on the auto reset input (\overline{AR}) and a LOW on the master reset input (MR) enables the internal power-on reset. A HIGH level at input MR resets the counter independent on all other inputs. Resetting

disables the oscillator to provide no active power dissipation.

A HIGH at input \overline{AR} turns off the power-on reset to provide a low quiescent power dissipation of the timer. The 16-stage counter divides the oscillator frequency by 2^8 , 2^{10} , 2^{13} or 2^{16} depending on the state of the address inputs (A_0, A_1) . The divided oscillator frequency is available at output O. The phase input (PH) features a complementary output signal. If the mode select input (MODE) is LOW or HIGH the timer can be used respectively as a single transition timer or 2^n frequency divider.

HEF4541BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4541BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4541BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

HEF4541B MSI

HEF4541B MSI

PINNING

A_0, A_1	address inputs
MODE	mode select input
\overline{AR}	auto reset input
MR	master reset input
PH	phase input
R_{TC}	external resistor connection (R _t)
C_{TC}	external capacitor connection (Ct)
RS	external resistor connection (R _S) or external clock input

FREQUENCY SELECTION TABLE

A ₀	A ₁	NUMBER OF COUNTER STAGES n	$\frac{f_{osc}}{f_{out}} = 2^n$
L	L	13	8 192
L	Н	10	1 024
Н	L	8	256
Н	Н	16	65 536

RC oscillator

Typical formula for oscillator frequency:

$$f_{osc} = \frac{1}{2, 3 \times R_t \times C_t}$$

Fig.4 External component connection for RC oscillator; $R_S \approx 2 R_t$.

FUNCTION TABLE

	IN	IPUTS		- MODE			
ĀR	MR	PH	MODE				
Н	L	Х	Х	auto reset disabled			
L	L	Х	X	auto reset enabled (1)			
X	Н	Х	X	master reset active			
X	L	Х	Н	normal operation selected			
				division to output			
X	L	Х	L	single-cycle mode (2)			
X	L	L	X	output initially LOW,			
				after reset			
X	L	Н	X	output initially HIGH,			
				after reset			

Notes

- 1. For correct power-on reset, the supply voltage should be above 8.5 $\frac{V}{AR}$ for V_{DD} < 8.5 $\frac{V}{DD}$, disable the autoreset and connect $\frac{V}{AR}$ to $\frac{V}{DD}$.
- The timer is initialized on a reset pulse and the output changes state after 2ⁿ⁻¹ counts and remains in that state (latched). Reset of this latch is obtained by master reset or by a LOW to HIGH transition on the MODE input.

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Timing component limitations

The oscillator frequency is mainly determined by $R_tC_t,$ provided $R_t << R_S$ and $R_SC2 << R_tC_t.$ The function of R_S is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the LOCMOS 'ON' resistance in series with it, which typically is 500 Ω at V_{DD} = 5 V, 300 Ω at V_{DD} = 10 V and 200 Ω at V_{DD} = 15 V.

The recommended values for these components to maintain agreement with the typical oscillation formula are:

 $C_t \ge 100 \ pF$, up to any typical value,

10 $k\Omega \le R_t \le 1 M\Omega$.

HEF4541B MSI

HEF4541B MSI

Fig.6 Frequency deviation (Δf) as a function of ambient temperature; referenced at : f_{osc} at T_{amb} = 25 °C and V_{DD} = 10 V.

Philips Semiconductors Product specification

Programmable timer

HEF4541B MSI

DC CHARACTERISTICS

 $V_{SS} = 0 V$

					T _{amb} (°C)							
	V _{DD}	V _{OL} V	V _{OH} V	SYMBOL	-40		+ 25		+		85	
					MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
Supply current	5				_	80	_	20	80	_	230	μΑ
power-on reset	10			I _D	_	750	_	250	600	_	700	μΑ
enabled (note)	15				_	1600	_	500	1300	-	1500	μΑ
Supply voltage for automatic												
reset initialization (note)				V _{DD}	_	_	8,5	5	_	-	-	V
Output current	5		4,6		0,5	_	0,4	_	_	0,3	_	mΑ
HIGH; C _{TC} , R _{TC}	10		9,5	-l _{OH}	1,4	_	1,2	_	_	0,95	-	mΑ
	15		13,5		4,8	_	4,0	_	_	3,2	-	mΑ
	5		2,5	-l _{OH}	1,4	_	1,2	_	_	0,95	_	mΑ
Output current	5	0,4			0,33	-	0,27	_	_	0,20	-	mΑ
LOW; C _{TC} , R _{TC}	10	0,5		I _{OL}	1,00	-	0,85	_	_	0,68	-	mΑ
	15	1,5			3,20	-	2,70	-	_	2,30	-	mA

Note

1. All inputs at 0 V or V_{DD} ; except input \overline{AR} = input MR = 0 V (power-on reset active).

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW) ⁽¹⁾				
Dynamic power dissipation	5	$1300 f_i+ f_oC_LV_{DD}^2$				
per package	10	$5300 f_i + f_o C_L V_{DD}^2$				
(P)	15	12 000 $f_i + f_o C_L V_{DD}^2$				
Total power dissipation	5	$1\ 300\ f_{osc}\ +\ f_oC_LV_{DD}^2\ +\ 2C_tV_{DD}^2f_{osc}\ +\ 10\ V_{DD}$				
when using the	10	$5300f_{\rm osc}+f_{\rm o}C_{\rm L}V_{\rm DD}^2+2C_{\rm t}V_{\rm DD}^2f_{\rm osc}+100V_{\rm DD}$				
on-chip oscillator (P)	15	$12\ 000\ f_{osc}\ +\ f_oC_LV_{DD}^2\ +\ 2C_tV_{DD}^2\ f_{osc}\ +\ 400\ V_{DD}$				

Notes

1. where:

 f_i = input frequency (MHz)

 f_o = output frequency (MHz)

C_L = load capacitance (pF)

V_{DD} = supply voltage (V)

C_t = timing capacitance (pF)

f_{osc} = oscillator frequency (MHz)

Philips Semiconductors Product specification

Programmable timer

HEF4541B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$RS \rightarrow O$							
28 selected	5			375	750	ns	348 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL} ; t _{PLH}		150	300	ns	139 ns + (0,23 ns/pF) C _L
LOW to HIGH	15	I IPLH		110	220	ns	102 ns + (0,16 ns/pF) C _L
$RS \rightarrow O$							
2 ¹⁰ selected	5			425	850	ns	398 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL} ; t _{PLH}		165	330	ns	154 ns + (0,23 ns/pF) C _L
LOW to HIGH	15	PLH		120	240	ns	112 ns + (0,16 ns/pF) C _L
$RS \rightarrow O$							
2 ¹³ selected	5			510	1020	ns	483 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL} ;		190	380	ns	179 ns + (0,23 ns/pF) C _L
LOW to HIGH	15	t _{PLH}		135	270	ns	127 ns + (0,16 ns/pF) C _L
$RS \rightarrow O$							
2 ¹⁶ selected	5			575	1150	ns	548 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL} ; t _{PLH}		210	420	ns	199 ns + (0,23 ns/pF) C _L
LOW to HIGH	15	PLH		150	300	ns	142 ns + (0,16 ns/pF) C _L
Minimum clock	5		60	30		ns	
pulse width; LOW	10	t _{WRSL}	30	15		ns	
	15		24	12		ns	
Minimum reset	5		60	30		ns	
pulse width; HIGH	10	t _{WMRH}	30	15		ns	
	15		24	12		ns	
Maximum clock	5		8	16		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
	15		18	36		MHz	
Oscillator frequency	5			90		kHz	$R_t = 5 \text{ k}\Omega$
	10	f _{osc}		90		kHz	C _t = 1 nF
	15			90		kHz	$R_S = 10 \text{ k}\Omega$
Oscillator frequency	5			8		kHz	$R_t = 56 \text{ k}\Omega$
	10	f _{osc}		8		kHz	C _t = 1 nF
	15			8		kHz	$R_S = 120 \text{ k}\Omega$

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.