Linear Regression with Multiple Variables

TOTAL POINTS 5

Suppose *m*=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

1 point

midterm exam	(midterm exam) 2	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)². Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_1^{(3)}$? (Hint: midterm = 94, final = 87 is training example 3.) Please round off your answer to two decimal places and enter in the text box below.

0.52

Linear Regression with Multiple Variables

TOTAL POINTS 5

Suppose *m*=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

1 point

midterm exam	(midterm exam) 2	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)². Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(2)}$? (Hint: midterm = 72, final = 74 is training example 2.) Please round off your answer to two decimal places and enter in the text box below.

-0.37

You run gradie	nt descent for	[·] 15 iterations
----------------	----------------	----------------------------

1 point

with lpha=0.3 and compute

J(heta) after each iteration. You find that the

value of $J(\theta)$ decreases slowly and is still

decreasing after 15 iterations. Based on this, which of the

following conclusions seems most plausible?

- Rather than use the current value of lpha, it'd be more promising to try a smaller value of lpha (say lpha=0.1).
- lpha=0.3 is an effective choice of learning rate.
- Rather than use the current value of lpha, it'd be more promising to try a larger value of lpha (say lpha=1.0).

Suppose you have m=14 training examples with n=3 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

1 point

- igcap X is 14 imes3, y is 14 imes1, heta is 3 imes1
- igcap X is 14 imes 4, y is 14 imes 4, heta is 4 imes 4
- igcap X is 14 imes3, y is 14 imes1, heta is 3 imes3
- leftonum X is 14 imes 4, y is 14 imes 1, heta is 4 imes 1

You run gradient descent for 15 iterations

1 point

with lpha=0.3 and compute J(heta) after each

iteration. You find that the value of $J(\boldsymbol{\theta})$ increases over

time. Based on this, which of the following conclusions seems

most plausible?

- Rather than use the current value of lpha, it'd be more promising to try a smaller value of lpha (say lpha=0.1).
- Rather than use the current value of lpha, it'd be more promising to try a larger value of lpha (say lpha=1.0).
- \bigcirc $\alpha=0.3$ is an effective choice of learning rate.

Suppose you have a dataset with $m=1000000$ examples and $n=200000$ features for each example. You want to use multivariate linear regression to fit the parameters $ heta$ to our data. Should you prefer gradient descent or the normal equation?	1 point
The normal equation, since it provides an efficient way to directly find the solution.	
igcup Gradient descent, since it will always converge to the optimal $ heta.$	
$igotimes$ Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.	
\bigcirc The normal equation, since gradient descent might be unable to find the optimal $ heta.$	
Which of the following are reasons for using feature scaling? It is necessary to prevent the normal equation from getting stuck in local optima.	1 point
It prevents the matrix X^TX (used in the normal equation) from being non-invertable (singular/degenerate).	
✓ It speeds up gradient descent by making it require fewer iterations to get to a good solution.	