Формальные языки HW03

Дедлайн: 23:59 15 ноября 2021

Задача 1. Привести однозначную контекстно-свободную грамматику для языка арифметических выражений над положительными целыми числами с операциями +, -, *, /, ^, ==,<>, <, <=, >, >= со следующими приоритетами и ассоциативностью:

Наибольший приоритет	Ассоциативность
^	Правоассоциативна
*,/	Левоассоциативна
+,-	Левоассоциативна
==,<>, <,<=, >,>=	Неассоциативна
Наименьший приоритет	Ассоциативность

Heaccouuamuвные операции встречаются только один раз: 1 == 2 - корректная строка, 1 == 2 == 3, (1 == 2) == 3, 1 < 2 > 3 - некорректные строки

Peшение. Отметим, что логические операции сравнения встречаются только один раз. Это означает, что они должны присутствовать в единственном экземпляре, и слова без них считаются невалидными.

$$\begin{split} S \to ABA \\ B \to &== |<> |<| <= |>| >= \\ A \to (A) \mid AOA \mid N \\ O \to &+ |-|*|/|^{\wedge} \\ N \to 0 \mid 1N_f \mid 2N_f \mid 3N_f \mid 4N_f \mid 5N_f \mid 6N_f \mid 7N_f \mid 8N_f \mid 9N_f \\ N_f \to N \mid 0N_f \mid \varepsilon \end{split}$$

Задача 2. Привести грамматику из 1 задания в нормальную форму Хомского.

Решение.

$$V_{N} = S, A, B, O, N_{f}, D_{*}, C_{*}$$

$$V_{T} = 0 \dots 9, =, <, >, +, -, *, /, ^{\wedge}, (,)$$

$$S = S$$

$$S \to AD_{1}$$

$$D_{1} \to BA$$

$$B \to C_{=}C_{=} \mid C_{<}C_{>} \mid < \mid C_{<}C_{=} \mid > \mid C_{>}C_{=}$$

$$A \to C_{(}D_{2} \mid AD_{3}$$

$$D_{2} \to AC_{(})$$

$$D_{3} \to OA$$

$$O \to + \mid -\mid *\mid /\mid ^{\wedge}$$

$$A \to 0 \mid C_{1}N_{f} \mid C_{2}N_{f} \mid \cdots \mid C_{9}N_{f} \mid C_{1}N_{f} \mid C_{1}N_{$$

Задача 3. Промоделировать работу алгоритма CYK на грамматике из 2 задания на трех корректных строках не короче 7 символов и на трех некорректных строках. (Привести таблицы и деревья вывода)

1.
$$1 + 12 > 3^{\hat{}}10 - exodum$$

1	2	3	4	5	6	7	8	9
1	+	1	2	>	3	^	1	0

	1	2	3	4	5	6	7	8	9
1	$C_1 A$	Ø	A	A	Ø	S	Ø	S	S
2		O	D_3	D_3	Ø	Ø	Ø	Ø	Ø
3			$C_1 A$	$A N_f$	Ø	S	Ø	S	S
4				$C_2 A$	Ø	S	Ø	S	S
5					$C_{>} B$	D_1	Ø	D_1	D_1
$\overline{}$						$C_3 A$	Ø	A	A
$\overline{\gamma}$							0	D_3	D_3
8								$C_1 A$	A
9									$C_0 A$

...аналогичное дерево для этого примера, аналогичные таблицы для неверных примеров вроде " $1+2*3^4$ ", за исключением того, что верхний левый элемент таблицы мы не сможем вывести из какой-либо пары предыдущих, поэтому слово не подойдет языку.