- **1.** а) Физический маятник установили так, что его центр тяжести оказался над точкой подвеса. Из этого положения маятник начал двигаться к положению устойчивого равновесия, которое он прошел с угловой скоростью ω . Пренебрегая трением, найти период T малых колебаний этого маятника.
- б) В однородной среде с плотностью ρ установилась продольная стоячая волна $A\cos(kx)\cos(\omega t)$. Найти выражение для объемной плотности потенциальной энергии w_U и объемной плотности кинетической энергии w_K .
- **2.** а) Найти приращение энтропии ΔS одного моля углекислого газа в изобарическом процессе, если его температура возросла в n раз.
- б) Система состоит из N частиц, которые могут находиться в двух состояниях с энергиями E_1 и E_2 . Известно, что $E_1 < E_2$. Найти зависимость средней энергии системы $\langle E \rangle$ и числа частиц N_2 в состоянии с энергией от температуры T. Изобразить качественный вид этих зависимостей.
- **3.** а) Электрический заряд равномерно распределен с поверхностной плотностью σ по поверхности плоской бесконечно длинной полосы шириной a. Найдите напряженность электрического поля \vec{E} на расстоянии z от средней линии полосы в направлении, перпендикулярном ее плоскости. Рассмотрите случаи $z\gg a$ и $z\ll a$.
- б) Имеется круговой виток с током І. Найдите интеграл

$$\int \vec{B} \cdot d\vec{l}$$

вдоль оси витка в пределах от $-\infty$ до $-\infty$. Объясните полученный результат.

- **4.** а) Плоская спираль с очень большим числом витков N, плотно прилегающих друг к другу, находится в однородном магнитном поле, перпендикулярном к плоскости спирали. Наружный радиус витков спирали равен R. Индукция поля изменяется во времени по закону $B=B_0\cdot\sin(\omega\cdot t)$, где B_0 и ω постоянные. Найдите амплитудное значение \mathscr{E}_{max} э.д.с. индукции в спирали.
- б) Используя формулы для электромагнитного поля осциллирующего диполя (в волновой зоне)

$$B(r,t) = (\mu_0/4\pi cr)\sin(\theta)p''(t-r/c); E = Bc$$

найти мощность дипольного излучения. Дипольный момент изменяется со временем по гармоническому закону $p=p_0\cdot cos(\omega\cdot t)$.

Указание. Найти вектор Пойнтинга $\vec{\Pi}$ и рассчитать поток вектора $\vec{\Pi}$ через сферу окружающую диполь.

- **1.** а) Частицу сместили из положения устойчивого равновесия на расстояние l и предоставили самой себе. Какой путь пройдет эта частица до полной остановки, если логарифмический декремент затухания $\delta \ll 1$?
- б) На струне длины l образовалась стоячая волна, причем все точки струны с амплитудой смещения ξ_0 отстоят друг от друга на одинаковое расстоянии Δx . Найти максимальную амплитуду смещения.
- **2.** а) Один моль идеального газа сначала изохорически охладили, а затем изобарически расширили так, что его температура стала равной начальной. Найти приращение энтропии ΔS , если давление в этом процессе изменилось в n раз.
- б) Найти среднее значение обратной скорости $\langle 1/v \rangle$ для молекул идеального газа при температуре T, если масса одной молекулы m.
- **3.** а) Электрический заряд равномерно распределен с поверхностной плотностью σ по поверхности плоской бесконечно длинной полосы шириной a. Найдите напряженность электрического поля \vec{E} на расстоянии z от края полосы в направлении, лежащем в плоскости полосы и перпендикулярном ее краю. Рассмотрите случаи $z\gg a$ и $z\ll a$.
- б) Найдите плотность тока как функцию расстояния r от оси аксиально симметричного параллельного потока электронов, если индукция магнитного поля внутри потока зависит от r как $B=b\cdot r^{\alpha}$ где b и α известные положительные постоянные.
- **4.** а) Квадратная рамка со стороной l и длинный прямой провод с током I находятся в одной плоскости, так что две стороны рамки параллельны проводу. Рамку поступательно перемещают, удаляя ее от провода в перпендикулярном к нему направлении со скоростью v. Найдите э.д.с. индукции $\mathscr E$ в рамке как функцию расстояния x от ближней стороны рамки до провода.
- б) В вакууме во взаимно перпендикулярных направлениях распространяются две плоские электромагнитные волны с одинаковой поляризацией: $\vec{E}_1(x,t) = \vec{E}_0 \cdot \cos(\omega t kx)$ и $\vec{E}_2(y,t) = \vec{E}_0 \cdot \cos(\omega t ky)$. Определить среднее значение модуля вектора Пойнтинга $\langle |\vec{\Pi}| \rangle$ результирующей волны для точек лежащих на прямой y=x.

- **1.** а) Тонкий обруч, повешенный на гвоздь, вбитый горизонтально в стену, совершает малые колебания в плоскости, параллельной стене. Найти период T колебаний обруча.
- б) По трубе с площадью сечения S бежит плоская затухающая волна, амплитуда которой убывает по закону $e^{-\gamma x}$. В сечении с координатой x_1 среднее по времени значение модуля вектора Умова равно J_1 . Какая энергия W поглощается за время τ , много большее периода волны T, в объеме, заключенном между сечениями с координатами x_1 и x_2 ?
- **2.** а) При очень низких температурах теплоемкость кристаллов $C=aT^3$, где a постоянная. Найти энтропию кристалла S(T) как функцию температуры.
- б) Найти с помощью распределения Максвелла долю молекул, падающих на поверхность стенки под углами $(\theta, \theta + d\theta)$ к ее нормали.
- **3.** а) Заряд q распределен равномерно по объему шара радиуса R Полагая диэлектрическую проницаемость всюду равной единице, найдите потенциал φ :
 - в центре шара;
 - внутри шара как функцию расстояния r от его центра.
- б) По проводнику, имеющему форму кольца с внешним радиусом b и с внутренним радиусом a, течет ток I. Найдите величину этого тока I если индукция магнитного поля, создаваемого им в центре кольца (в точке O) равна B_O . Толщина кольца много меньше его радиуса a.
- **4.** а) Квадратная проволочная рамка со стороной a и прямой проводник с постоянным током I лежат в одной плоскости, так что две стороны рамки параллельны проводу, а дальняя из них находится на расстоянии b от провода. Сопротивление рамки R. Рамку поворачивают на 180° вокруг оси, проходящей через дальнюю сторону. Найдите величину заряда q, протекшего в рамке.
- б) Дипольный момент изменяется со временем по гармоническому закону $p=p_0\cdot cos(\omega t)$. Используя формулы для электромагнитного поля осциллирующего диполя (в волновой зоне)

$$B(r,t) = (\mu_0/4\pi cr)\sin(\theta)p''(t-r/c); E = B \cdot c,$$

рассчитать и построить (в полярных координатах) для дипольного излучения зависимость среднего значения модуля вектора Пойнтинга $\langle |\vec{\Pi}| \rangle$ от угла θ .

- 1. а) Показать, что для слабо затухающего осциллятора ($\delta \ll 1$) отношение резонансного значения амплитуды вынужденных колебаний A_{max} к A(0), т.е. к смещению системы из положения равновесия под действием постоянной силы той же величины, что и амплитуда вынуждающей силы, равно π/δ .
- б) Точечный изотропный источник испускает звуковые колебания с частотой ω . На расстоянии r_0 от источника амплитуда смещения частиц среды равна A_0 , а на расстоянии r от источника амплитуда смещения в η раз меньше A_0 . Найти коэффициент затухания волны γ .
- **2.** а) Один моль идеального газа с известной теплоемкость C_V при постоянном объеме совершает процесс, при котором энтропия зависит от температуры как $S(T)=\alpha/T$, где α постоянная. Найти молярную теплоемкость газа C(T) в этом процессе.
- б) Потенциальная энергия молекул газа зависит от расстояния до центра поля как $U(r)=ar^2$, где a положительная постоянная. Температура газа T, концентрация в центре поля n_0 . Найти расстояние $r_{\rm вер}$, на котором вероятность обнаружить молекулу газа максимальна.
- **3.** а) Найдите напряженность \vec{E} и потенциал φ электрического поля в центре полусферы радиуса R, заряженной равномерно с поверхностной плотностью σ .
- б) По тонкой прямоугольной рамке размером $a \times b$ течет ток I. Найти магнитное поле B в центре рамки.
- **4.** а) По двум гладким медным шинам, установленным под углом α к горизонту, скользит под действием силы тяжести медная перемычка массы m. Шины замкнуты на конденсатор емкости C расстояние между шинами l. Система находится в однородном магнитном поле с индукцией B, перпендикулярном к плоскости, в которой движется перемычка. Сопротивления шин, перемычки и скользящих контактов, а также самоиндукция контура пренебрежимо малы. Найдите ускорение перемычки a(t).
- б) В вакууме во взаимно противоположных направлениях распространяются две плоские электромагнитные волны $\vec{E}_1(x,t) = \vec{E}_0 \cdot \cos(\omega t kx)$ и $\vec{E}_1(x,t) = 3\vec{E}_0 \cdot \cos(\omega t + kx)$ с одинаковой поляризацией. Найти зависимость среднего значения модуля вектора Пойнтинга $\langle |\vec{\Pi}| \rangle$ результирующей волны от x.

- **1.** а) К невесомой пружине подвесили грузик, и она растянулась на Δx . С каким периодом будет колебаться грузик, если ему дать небольшой толчок в вертикальном направлении? Логарифмический декремент затухания равен δ .
- б) Определить скорость v распространения волны в упругой среде, если разность фаз колебаний двух точек среды, отстоящих друг от друга на расстояние Δx , равна $\Delta \varphi$. Частота колебаний равна ω .
- **2.** а) Твердое тело с теплоемкостью C_1 и температурой T_1 помещают в термостат с жидкостью с теплоемкостью C_2 и температурой T_2 . Найти приращение энтропии системы ΔS_{Σ} к моменту достижения термодинамического равновесия. Температура твердого тела $T_{\text{плав}} < T_1 < T_{\text{кип}}$, теплоемкость термостата пренебрежимо мала.
- б) Газ находится в очень высоком цилиндрическом сосуде при температуре T. Считая поле тяжести однородным, найти среднее значение потенциальной энергии $\langle U \rangle$ молекул газа. Масса одной молекулы m.
- **3.** а) Тонкая бесконечно длинная нить имеет заряд λ на единицу длины и расположена параллельно проводящей плоскости. Расстояние между нитью и плоскостью равно l. Найдите:
 - модуль силы, действующей на единицу длины нити;
 - распределение поверхностной плотности заряда $\sigma(x)$ на плоскости (здесь x расстояние от прямой на плоскости, где $\sigma = \sigma_{max}$).
- б) Прямоугольная рамка размером $a \times b$ с током I_1 , находится в одной плоскости с длинным проводом, несущим ток I_2 . Сторона рамки а параллельна проводу и находится на расстоянии r от него. Найти результирующую силу \vec{F} действующую на рамку. Получить приближенную формулу для случая $r \gg a$.
- **4.** а) Внутри бесконечной плоскопараллельной пластины толщиной 2d параллельно оси X текут токи плотностью j. Зависимость плотности тока от координаты z (ось Z перпендикулярна пластине) описывается формулой

$$j(z) = J, 0 < z < d;$$

 $j(z) = -J, -d < z < 0;$

Величина J уменьшается со временем с постоянной скоростью $dJ/dt=\alpha.$ Найти электрическое поле E(z,t) внутри пластины.

б) Два точечных диполя находятся на расстоянии l и колеблются в одном направлении с одинаковыми частотой ω и амплитудой E_0 и фазой. Найти среднее значение модуля вектора Пойнтинга $\langle |\vec{\Pi}| \rangle$ в точке, находящейся на расстоянии l от каждого диполя, и лежащей в плоскости перпендикулярной направлению колебаний. Формулы для электромагнитного поля осциллирующего диполя (в волновой зоне):

$$B(r,t) = (\mu_0/4\pi cr)\sin(\theta)p''(t-r/c); E = B \cdot c$$

- **1.** а) Тонкий однородный стержень длины l качается около оси, проходящей через конец стержня перпендикулярно к нему. Есть ли такое место на стержне, прикрепив к которому небольшое по размерам тело значительной массы, мы не изменим период колебаний стержня?
- б) На расстоянии l от источника плоской волны частотой ω перпендикулярно направлению ее распространения расположена стена. Найти расстояние от источника волн до точек, в которых будут первые три узла и три пучности стоячей волны, возникшей в результате сложения бегущей и отраженной от стены волн. Скорость волны равна V.
- **2.** а) Найти приращение энтропии ΔS одного моля углекислого газа в изобарическом процессе, если его температура возросла в n раз.
- б) Система состоит из N частиц, которые могут находиться в двух состояниях с энергиями E_1 и E_2 . Известно, что $E_1 < E_2$. Найти зависимость средней энергии системы $\langle E \rangle$ и числа частиц N_2 в состоянии с энергией от температуры T. Изобразить качественный вид этих зависимостей.
- **3.** а) Очень длинная нить ориентирована перпендикулярно к проводящей плоскости и не доходит до нее на расстояние l Нить заряжена равномерно с линейной плотностью λ . Пусть точка O след нити на плоскости. Найдите поверхностную плотность индуцированного заряда на плоскости:
 - в точке O;
 - в зависимости от расстояния r до точки O.
- б) Тонкий диск радиуса R равномерно заряжен с поверхностной плотностью σ и вращается с угловой скоростью ω вокруг своей оси ($OZ \perp$ плоскости диска). Определить магнитное поле \vec{B} на оси диска на расстоянии h от его плоскости.
- **4.** а) Два контура имеют вид окружностей с радиусами a и b, центры этих контуров находятся в одной точке и плоскости контуров составляют друг с другом угол α . Найдите э.д.с. в контуре радиуса b, если в другом контуре ток нарастает с постоянной скоростью $dI/dt = \beta$.
- б) В вакууме в одном направлении распространяются две плоские электромагнитные волны со взаимно перпендикулярными поляризациями:

$$E_{1,y}(x,t) = 3E_0 \cdot \cos(\omega t - kx),$$

$$E_{2,z}(x,t) = 4E_0 \cdot \cos(\omega t - kx).$$

Найти среднее значение модуля вектора Пойнтинга $\langle |\vec{\Pi}| \rangle$ результирующей волны.

- **1.** а) В астероиде радиуса R, сложенном из горных пород плотности ρ , сделана сквозная шахта, проходящая через его центр. Найти период колебаний камня, брошенного без начальной скорости в шахту.
- б) Найти минимальную частоту стоячих акустических волн в полости, представляющей собой цилиндрическую трубу длиной l, открытую с одного торца. Скорость звука V_s в воздухе считать известной.
- **2.** а) Один моль идеального газа сначала изохорически охладили, а затем изобарически расширили так, что его температура стала равной начальной. Найти приращение энтропии ΔS , если давление в этом процессе изменилось в n раз.
- б) Найти среднее значение обратной скорости $\langle 1/v \rangle$ для молекул идеального газа при температуре T, если масса одной молекулы m.
- **3.** а) Тонкий диск радиуса R равномерно заряжен с поверхностной плотностью σ . Найти потенциал φ на краю диска.
- б) Два контура с токами I_1 и I_2 имеют вид окружностей с радиусами b и a ($a \ll b$), центры этих контуров находятся в одной точке и плоскости контуров составляют друг с другом угол θ . Найдите результирующий момент сил, действующих на первый контур.
- **4.** а) В центре длинного соленоида находится кольцо прямоугольного сечения. Высота кольца h, его внутренний и внешний радиусы a и b, удельное сопротивление металла ρ . Магнитное поле B линейно возрастает от нуля до B_0 за время τ . Найти количество тепла Q выделившееся в кольце в процессе увеличения магнитного поля. Самоиндукцией кольца пренебречь.
- б) Найти закон убывания кинетической энергии (за счет излучения) для нерелятивистского электрона, движущегося в поперечном магнитном поле \vec{B} .

- **1.** а) Система состоит из двух цилиндров массы m, соединенных пружинкой жесткости k. Цилиндры катятся без проскальзывания. Найти частоту собственных колебаний системы.
- б) Найти мощность точечного источника акустических волн, если на расстоянии r от него среднее значение плотности потока энергии равно j, а коэффициент затухания волны (по амплитуде) γ .
- **2.** а) При очень низких температурах теплоемкость кристаллов $C=aT^3$, где a постоянная. Найти энтропию кристалла S(T) как функцию температуры.
- б) Найти с помощью распределения Mаксвелла долю молекул, падающих на поверхность стенки под углами $(\theta, \theta + d\theta)$ к ее нормали.
- **3.** а) Найдите напряженность \vec{F} электрического поля на оси полуцилиндра радиуса R заряженного равномерно с поверхностной плотностью σ .
- б) Тонкий диск радиуса b имеет в центре отверстие радиуса a. Диск равномерно заряжен с поверхностной плотностью σ и вращается с угловой скоростью ω вокруг своей оси ($OZ \perp$ плоскости диска). Определить магнитное поле \vec{B} в центре диска.
- **4.** а) В кольце радиуса R, сделанном из тонкого провода, поддерживается постоянный ток I. Вдоль оси кольца перемещают с постоянной скоростью \vec{V} маленькое кольцо радиуса a. Найти э.д.с. \mathscr{E}_i индукции в малом кольце в момент, когда расстояние между плоскостями колец равно R.
- б) Дипольный момент изменяется со временем по гармоническому закону $\vec{p}(t) = \vec{p_0} \cdot \cos(\omega t)$. Используя формулы для электромагнитного поля осциллирующего диполя (в волновой зоне)

$$B(r,t) = (\mu_0/4\pi cr)\sin(\theta)p''(t-r/c); E = B \cdot c,$$

рассчитать и построить (в полярных координатах) зависимость среднего модуля вектора Пойнтинга $\langle |\vec{\Pi}| \rangle$ от угла θ .