제 4장 블록 암호 모드

박 종 혁

Tel: 970-6702

Email: jhpark1@snut.ac.kr

4.0 주요 내용

- 블록 암호의 모드(Mode)
 - ECB
 - CBC
 - CFB
 - OFB
 - CTR

4.1 블록 암호 모드

- 평문의 길이가 블록 암호의 블록 크기보다 클 경우에는 어떻게 블록 암호를 적용할 것인가?
- 이런 문제점을 해결하고 다양한 응용 환경하에 적절한 암호화 도구로 사용할 수 있는 여러유형의 효율적인 운영 방식들을 제시하고 있다.
- 이러한 방식들을 블록 암호 모드라고 한다.

블록 암호의 주요 모드

- ECB 모드:
 - Electric CodeBook mode
- CBC 모드:
 - Cipher Block Chaining mode
- CFB 모드:
 - Cipher-FeedBack mode
- OFB 모드:
 - Output-FeedBack mode
- CTR 모드:
 - CounTeR mode

4.1.3 평문 블록과 암호문 블록

■ 평문 블록

- 블록 암호 알고리즘에서 암호화의 대상이 되는 평문
- 평문 블록의 길이는 블록 암호 알고리즘의 블 록 길이임

■ 암호문 블록

■ 블록 암호 알고리즘을 써서 평문 블록을 암호 화한 암호문

평문 블록과 암호문 블록

4.2 ECB 모드

- 평문 블록을 그대로 암호화함
- 간단하지만 약점이 있어서 별로 사용되지 않음

ECB 모드와 다른 모드의 차이

원자료

ECB 모드를 이용한 암호화

다른 모드를 이용한 암호화

그림 4-2 ECB 모드와 다른 모드의 차이

4.2.1 ECB 모드란

■ ECB 모드에서는 평문 블록을 암호화한 것이 그대로 암호문 블록이 됨

■ 동일한 내용을 갖는 평문 블록은 이에 대응되는 동일한 암호문 블록으로 변환됨

ECB 모드의 특징

- 가장 간단한 모드
- 가장 기밀성이 낮은 모드
- ECB 모드에서는 평문 블록과 암호문 블록이 일대일의 관계를 유지하게 됨
- 암호문을 살펴보는 것만으로도 평문 속에 패 턴의 반복이 있다는 것을 알게 됨
 - 이것을 실마리로 암호 해독을 할 수 있음

ECB 모드(전자 부호표 모드)

ECB 모드(전자 부호표 모드)

ECB 모드에 대한 공격

■ ECB 모드에서는 모든 평문 블록이 각각 개별 적으로 암호화되고, 복호화 때에는 개별적으 로 복호화 됨

적극적 공격자인 맬로리가 악의를 가지고 암호문 블록을 서로 바꾸었다면, 수신자가 그 암호문을 복호화하면 바뀐 암호문 블록에 대응하는 평문 블록도 바뀌게 됨

4.3 CBC 모드

- Cipher Block Chaining
 - 암호문 블록을 마치 체인처럼 연결시키기 때문 에 붙여진 이름
- CBC 모드에서는 1개 앞의 암호문 블록과 평 문 블록의 내용을 뒤섞은 다음 암호화를 수행
- 이것으로 ECB 모드의 약점을 회피할 수 있음

4.3.1 CBC 모드란

■ CBC 모드에서는 1 단계 앞에서 수행되어 결과로 출력된 암호문 블록에 평문 블록을 XOR하고 나서 암호화를 수행

■ 생성되는 각각의 암호문 블록은 단지 현재 평 문블록 뿐만 아니라 그 이전의 평문 블록들의 영향도 받게 됨

초기화 벡터

- 최초의 평문 블록을 암호화할 때
 - ■「1 단계 앞의 암호문 블록」이 존재하지 않으므로 「1단계 앞의 암호문 블록」을 대신할 비트열 블록 준비
 - → 초기화 벡터(initialization vector): IV
- - 비밀키와 마찬가지로 송신자와 수신자간에 미리 약속되어 있어야 하지만 공개된 값을 사용해도 무방
 - 암호화 때마다 다른 랜덤 비트열을 이용하는 것이 보통

패딩

- 실제 CBC 모드를 적용할 경우에 암호화될 평 문의 길이는 가변적이기 때문
 - 마지막 블록이 블록의 길이와 항상 딱 맞아 떨어지지 않게 됨
 - → 부족한 길이만큼을 '0'으로 채우거나 임의 의 비트들로 채워 넣음

마지막 블록 채우기

그림 4-4 마지막 블록 채우기

CBC 모드(암호 블록 연쇄 모드)

CBC 모드(암호 블록 연쇄 모드)

ECB 모드와 CBC 모드의 비교

CBC 모드의 특징

- 평문 블록은 반드시 「1 단계 앞의 암호문 블록」과 XOR을 취하고 나서 암호화됨
 - 만약 평문 블록1과 2의 값이 같은 경우라도 암호문 블록1과2의 값이 같아진다고는 할 수 없음
 - → ECB 모드가 갖고 있는 결점이 CBC 모드에는 없음
- CBC 모드에서는 도중의 평문 블록만을 뽑아내서 암호화할 수는 없음
 - 암호문 블록3을 만들고 싶다면 적어도 평문 블록의 1, 2, 3까 지가 갖추어져 있어야만 함
- CBC 모드의 암호문 블록이 1개 파손되었다면,
 - 암호문 블록의 길이가 바뀌지 않는다면 복호화 했을 때에 평 문 블록에 미치는 영향은 2블록에 한정됨

Q: CBC 모드에서 암호문 블록이 파손되면 몇 개의 블록에 영향을 미칠까?

A: 2개의 평문 블록에 영향을 미침

CBC 모드에 대한 공격

- 적극적 공격자 맬로리가 암호문을 고쳐 써서 수신자 가 암호문을 복호화했을 때의 평문을 조작하고 싶어 한다고 해보자.
- 만약 맬로리가 초기화 벡터의 임의의 비트를 반전(1 이라면 0, 0이라면 1로)시킬 수 있다면, 암호 블록1에 대응하는 평문 블록1(복호화되어 얻어지는 평문 블 록)의 비트를 반전시킬 수 있다.

❖ CBC 모드에서 암호문 블록에서 비트 누락이 생기면 그 이후의 평문 블록 전체에 영향을 미친다

CBC 모드에 대한 공격(초기화 벡터의 비트 반전)

■ 초기화 벡터의 비트를 반전시켜 평문 블록의 비트를 반전시키는 공격(CBC 모드)

❖ CBC 모드에서 초기벡터의 비트반전에 대한 영향

CBC 모드 활용의 예

- IPsec에는 통신의 기밀성을 지키기 위해 CBC 모드를 사용함
 - 예를 들면 트리플 DES를 CBC 모드로 사용한 3DES-CBC나, AES를 CBC 모드로 사용한 AES-CBC 등이 여기에 해당됨

■ 인증을 수행하는 대칭암호 시스템의 하나인 Kerberos version 5에서도 사용하고 있음

4.4 CFB 모드

■ 절대로 해독할 수 없는 암호인 일회용 패드라는 암호를 XOR의 연습을 겸해서 소개하도록한다.

4.4.1 CFB 모드란

- Cipher FeedBack 모드(암호 피드백 모드)
- 1 단계 앞의 암호문 블록을 암호 알고리즘의 입력으로 사용
- 피드백
 - 여기서는 암호화의 입력으로 사용한다는 것을 의미

CFB 모드(암호 피드백 모드)

■ CFB 모드에 의한 암호화

CFB 모드(암호 피드백 모드)

■ CFB 모드에 의한 복호화

유의사항: 초기벡터를 복호화 하는 것이 아니라 암호화라는 점

CBC 모드와 CFB 모드의 비교

초기화 벡터

■ 최초의 암호문 블록을 만들어낼 때는 1 단계 앞의 출력이 존재하지 않으므로 대신에 초기 화 벡터(IV)를 사용

■ CBC 모드 때와 동일

■ IV는 보통 암호화 때마다 다른 랜덤 비트열을 사용

CFB 모드와 스트림 암호

- CFB 모드의 구조는 일회용 패드와 비슷
 - 일회용 패드에서는「평문」과「랜덤한 비트 열」을 XOR해서「암호문」을 만듦
 - CFB 모드에서는「평문 블록」과「암호 알고 리즘의 출력」을 XOR해서「암호문 블록」을 만듦
 - XOR에 의해 암호화하는 것이 비슷

CFB 모드와 스트림 암호

- CFB 모드와 일회용 패드를 비교해서 살펴보면 일회용 패드의「랜덤한 비트열」에 대응되는 것을 CFB 모드에서 찾는다면 그것은「암호 알고리즘의 출력」
- 암호 알고리즘의 출력은 계산으로 만들어내고 있는 것이므로 실제 난수는 아님
 - CFB 모드가 일회용 패드처럼 이론적으로 해독 불가능한 것은 아님

CFB 모드의 복호화

- ■주의
 - CFB 모드에서 복호화를 수행할 경우, 블록 암호 알고리즘 자체는 암호화를 수행하 고 있다는 것
- 키 스트림은 암호화에 의해 생성되는 것임

CFB 모드에 대한 공격

■ 재전송 공격(replay attack)이 가능

CFB 모드에 대한 재전송 공격

4.5 OFB 모드

4.5.1 OFB 모드란

- Output-FeedBack 모드(출력 피드백 모드)
- 암호 알고리즘의 출력을 암호 알고리즘의 입력으로 피드백
- 평문 블록은 암호 알고리즘에 의해 직접 암호화되고 있는 것은 아님
- 평문 블록과 암호 알고리즘의 출력을 XOR해서 암호 문 블록을 만들어냄
- OFB 모드는 이 점에서 CFB 모드와 비슷

초기화 벡터

■ 초기화 벡터(IV)를 사용

■ 초기화 벡터는 암호화 때마다 다른 랜덤 비트 열을 이용하는 것이 보통

OFB 모드(출력 피드백 모드)

■ OFB 모드에 의한 암호화

OFB 모드(출력 피드백 모드)

■ OFB 모드에 의한 복호화

CFB 모드와 OFB 모드의 비교

- OFB 모드와 CFB 모드에서는 <u>암호 알고리즘으로의</u> <u>입력만이 다름</u>
- CFB 모드
 - 1개 앞의 암호문 블록이 암호 알고리즘으로의 입력
 - 암호문(사이퍼) 블록을 암호 알고리즘으로 피드백
 - Cipher feedback mode
- OFB 모드
 - 암호 알고리즘의 입력으로 사용되는 것은 암호 알고리 증의 한 단계 앞의 출력
 - 출력(아웃풋)을 암호 알고리즘으로 피드백
 - → 「Output feedback mode」

CFB 모드와 OFB 모드의 비교

4.6 CTR 모드

- CounTeR 모드
- 1씩 증가해 가는 카운터를 암호화해서 키 스트 림을 만들어 내는 스트림 암호
- CTR 모드에서는 블록을 암호화할 때마다 1씩 증가해 가는 카운터를 암호화해서 키 스트림 을 만듬
 - 즉, 카운터를 암호화한 비트열과 평문 블록과 의 XOR을 취한 결과가 암호문 블록이됨

CTR 모드(카운터 모드)

■ CTR 모드에 의한 암호화

CTR 모드(카운터 모드)

■ CTR 모드에 의한 복호화

4.6.1 카운터 만드는 법

- 카운터의 초기값은 암호화 때마다 다른 값 (nonce, 비표)을 기초로 해서 만든다.
- 블록 길이가 128비트(16바이트)인 경우 카운 터의 초기값 예

카운터 만드는 법

■ 앞부분의 8바이트는 비표로 암호화 때마다 다른 값으로 하지 않으면 안 됨

■ 후반 8바이트는 블록 번호로 이 부분을 카운 트해서 하나씩 증가

■ 암호화가 진행됨에 따라 카운터의 값은 다음 과 같이 변환함

카운터 값

- 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 01 평문 블록 1용의 카운터(초기값)
- 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 02 평문 블록 2용의 카운터
- 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 03 평문 블록 3용의 카운터
- 66 1F 98 CD 37 A3 8B 4B 00 00 00 00 00 00 00 04 평문 블록 4용의 카운터

:

4.6.2 OFB 모드와 CTR 모드의 비교

■ CTR 모드는 OFB 모드와 같은 스트림 암호의 일종

- ■차이
 - OFB 모드: 암호화의 출력을 입력으로 피드백
 - CTR 모드: 카운터의 값이 암호화의 입력

OFB 모드와 CTR 모드의 비교

4.6.3 CTR 모드의 특징

- CTR 모드의 암호화와 복호화는 완전히 같은 구조, 프로그램으로 구현하는 것이 매우 간단
 - OFB 모드와 같은 스트림 암호의 특징
- 블록을 임의의 순서로 암호화 · 복화화 할 수 있음
 - 암호화 · 복호화 때에 사용하는 「카운터」는 비표와 블록 번호로부터 금방 구할 수 있기 때 문임 → OFB 모드에는 없는 성질

4.6.4 오류와 기밀성

- CTR 모드는 통신 오류와 기밀성에 관해서 OFB 모드와 거의 같은 성질을 가지고 있음
- CTR 모드의 암호문 블록에서 1비트의 반전
 - 복호화를 수행하면, 반전된 비트에 대응하는 평문 블록의 1비트만이 반전 되고, 오류는 확 대되지 않음

오류와 기밀성

- CTR 모드의 뛰어난 성질 (vs OFB 모드)
 - OFB 모드: 키 스트림의 1블록을 암호화한 결과가 암호화 전의 결과와 우연히 같아졌다고하면
 - → 그 이후 키 스트림은 완전히 같은 값의 반복
 - CTR 모드: 그런 걱정은 없음

4.6.5 모드 선택

	모드	이름	장점	단점	비고
	ECB	Electric CodeBook 전자 부호표 모드	간단고속병렬 처리 가능(암호화.복호화 양쪽)	 평문 속의 반복이 암호문에 반영된다. 암호문 블록의 삭제나 교체에의한 평문의 조작이 가능 비트 단위의 에러가 있는 암호문을 복호화하면, 대응하는 블록이 에러가 됨 재생 공격이 가능 	미사용 권장
(D BC	Cipher Block Chaining 암호 블록 연쇄 모드	 평문의 반복은 암호문에 반영되지 않음 병렬 처리 가능 (복호화만) 임의의 암호문 블록을 복호화할 수 있음 	 비트 단위의 에러가 있는 암호문을 복호화하면, 1블록 전체와 다음 블록의 대응하는 비트가 에러가 됨 암호화에서는 병렬 처리를 할 수없음 	권장

모드 선택

도	<u></u>	이름	장점	단점	비고
С	:FB	Cipher- FeedBack 암호 피드백 모드	 패딩이 필요 없음 병렬 처리 가능 (복호화만) 임의의 암호문 블록을 복호화할 수 있음 	 암호화에서는 병렬 처리를 할 수 없음 비트 단위의 에러가 있는 암호문을 복호화하면, 1블록 전체와 다음 블록의 대응하는 비트가에러가 됨 재생 공격이 가능 	●현재는 사용 안 함 ●CTR 모드를 사용하는 편이 나음.
	⊭ FB	Output- FeedBack 출력 피드백 모드	 패딩이 필요 없음 암호화.복호화의 사전준비 가능 암호화와 복호화가 같은 구조를 하고 있음 비트 단위의 에러가 있는 암호문을 복호화하면, 평문의 대응하는 비트만에러가 됨 	 병렬 처리를 할 수 없음 능동적 공격자가 암호문 블록을 비트 반전시키면, 대응하는 평문 블록이 비트 반전 	•CTR 모드를 사용하는 편이 나음.

모드 선택

모드	이름	장점	단점	비고
CTF	CounTeR 카운터 모드	 패딩이 필요 없음 암호화.복호화의 사전 준비 가능 암호화와 복호화가 같은 구조를 하고 있음 비트 단위의 에러가 있는 암호문을 복호화하면, 평문의 대응하는 비트만 에러가 됨 병렬 처리 가능 (암호화.복호화 양쪽) 	• 능동적 공격자가 암 호문 블록을 비트 반전시키면, 대응하 는 평문 블록이 비 트 반전	권장

질의 및 응답

- 끝-