<u>Durée 2 heures</u> Tout document interdit

Exercice 1 (8, 4)

On se donne quatre formules α_1 , α_2 , α_3 et β telles que :

 $\alpha_1: \forall x \forall y (P(x) \land Q(y) \rightarrow R(x,y))$

 $\alpha_2 : \exists x \exists y \ P(x) \land Q(y)$

 $\alpha_3 : \exists x \exists y P(x) \lor Q(y)$

 β : $\exists x \exists y \ R(x,y)$

Question 1(2, 2, 2, 2)

Donner:

- 1. un modèle de l'ensemble $S : \{\alpha_1, \alpha_2, \alpha_3\}$
- 2. une interprétation qui falsifie S.
- 3. deux modèles de Herbrand de S. Ces modèles seront aussi petits que possible.
- 4. deux interprétations de Herbrand qui falsifient S

Question 2 (4)

Montrer sans utiliser la propriété de complétude de la résolution que : $S \models \beta$

Exercice 2 (2-4)

Question 1. Ecrire les énoncés suivants dans le langage des prédicats du premier ordre :

 E_1 : Il y'a un x tel que : tous ceux qui sont plus grands que x sont grands et tous ceux qui sont plus petits que x sont petits.

 E_2 : Si x est plus grand que y alors y est plus petit que x.

 E_3 : Si x est grand alors il n'est pas petit.

 E_4 : Il existe un x qui n'est pas plus grand que lui-même.

Question 2. Déduire E₄ à partir de E₁, E₂ et E₃. (Ne pas utiliser la propriété de complétude de la résolution).

Exercice 3 (2)

Trouver la plus générale instance commune aux expressions suivantes si elle existe :

 $E_1 : Q(x, y) \text{ et } E_2 : Q(f(y), g(x))$