제 4 교시

과학탐구 영역(생명과학 II)

수험 번호 성명

제 [] 선택

1. 대장균과 사람의 신경 세포에 대한 설명으로 옳은 것만을 <보기> 에서 있는 대로 고른 것은?

- □. 대장균은 골지체를 갖는다.
- ㄴ. 사람의 신경 세포는 세포벽을 갖는다.
- ㄷ. 대장균과 사람의 신경 세포는 모두 유전 물질을 갖는다.

① ¬

2. 표는 식물의 구성 단계 일부와 예를 나타낸 것이다. (가)~(다)는 기관, 조직, 조직계를 순서 없이 나타낸 것이다.

-	구성 단계	예
,	(가)	줄기
,	(나)	?
	(다)	① 관다발 조직계

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- ㄱ. (가)는 기관이다.
- ㄴ. 표피 조직은 (나)의 예이다.
- ㄷ. ①을 통해 물질이 이동한다.

3. 그림 (가)는 효소 X에 의한 반응을, (나)는 이 반응에서 시간에 따른 반응액 내 물질 A, B, X의 농도를 나타낸 것이다. ①과 🔾은 기질과 효소·기질 복합체를 순서 없이 나타낸 것이고, A와 B는 □과 □을 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

------<보 기>---

- ㄱ. B는 ⓒ이다.
- L. X는 이성질화 효소이다.
- \Box . X에 의한 반응의 활성화 에너지는 t_1 일 때가 t_2 일 때보다 크다.

 \bigcirc

(2) L

3 = 4 7, = 5 7, =

- 4. 다음은 생명 과학자들의 주요 성과 (가)와 (나)의 내용이다. A와 B는 멘델과 플레밍을 순서 없이 나타낸 것이고, ①은 푸른곰팡이와 효모 중 하나이다.
 - (가) A는 완두 교배 실험을 통해 유전의 기본 원리를 발견하였다.
 - (나) B는 ①에서 페니실린을 발견하였다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>---

- 기. A는 플레밍이다.
- ㄴ. ①은 푸른곰팡이이다.
- ㄷ. (나)는 (가)보다 먼저 이룬 성과이다.

5. 그림은 고장액에 있던 식물 세포 X를 앏 저장액에 넣었을 때 세포의 부피에 따른 '기과 (나)을 나타낸 것이다. (기과 ①은 삼투압과 흡수력을 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>-

- ㄱ. ⑦은 삼투압이다.
- ∟. V₁일 때 X는 최대로 팽윤된 상태이다.
- Γ . X의 팽압은 V_2 일 때가 V_3 일 때보다 크다.

6. 그림은 캘빈 회로에서 물질 전환 과정의 일부를, 표는 물질 (r), (나), PGAL의 1분자당 탄소 수와 인산기 수를 나타낸 것이다. (가)와 (나)는 3PG와 RuBP를 순서 없이 나타낸 것이다.

물질	1 분자당 탄소 수	1 분자당 인산기 수
(가)	9	©.
(나)	Ē	2
PGAL	Œ	1

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. (가)는 RuBP이다.
- 다. 과정 I과 Ⅱ에서 모두 ATP가 사용된다.

2 (생명과학 Ⅱ)

7. 3역 6계로 분류되는 2종류의 생물 오징어와 우산이끼에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ㄱ. 오징어는 다세포 생물이다.
- ㄴ. 우산이끼는 식물계에 속한다.
- ㄷ. 3역 6계 분류 체계에 따르면 오징어와 우산이끼는 같은 역에 속한다.

 \bigcirc

② □

3 7, 4 4 4, 5 7, 4, 5

8. 그림은 항원 X에 대한 단일 클론 항체 @를 만드는 과정을 나타낸 것이다. ¬과 ○은 암세포와 B 림프구를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

一<보 기>-

- ¬. ○은 B 림프구이다.
- ㄴ. 잡종 세포는 □과 心이 융합된 세포이다.
- 다. (a)는 X에 결합한다.

① ¬

(2) L

- 37, 5 4 4, 5 5 7, 6, 5
- 9. 다음은 어떤 동물의 세포 $I \sim \coprod$ 에서 유전자 x의 전사 조절에 대한 자료이다.
 - x의 프로모터와 전사 인자 결합 예상 부위 ⑦~ㄹ은 그림과 같다. *x*의 전사 인자 결합 부위는 ⑦~링 중 세 부위이다.

□ □ □ □ □ □ □ □ = 로모터 유전자 x

- *x*의 전사에 관여하는 전사 인자는 A, B, C이다. A는 ⑦~② 중 어느 하나에만 결합하며, B는 나머지 세 부위 중 하나에만 결합하고, C는 그 나머지 부위 중 하나에만 결합한다.
- x의 전사는 전사 인자가 ⑦~② 중 적어도 두 부위에 결합 했을 때 촉진된다.
- I에서는 A와 B만 발현되고, Ⅲ에서는 A와 C만 발현된다.
- I~Ⅲ에서 ⑦~②의 제거 여부에 따른 x의 전사 결과는 표와 같다.

제거된	x의 전사		
부위	I	П	Ш
없음	0	?	0
7, 🗈	×	0	×
Ù, Œ	×	?	0
€, €	0	0	×
ℂ	?	?	(a)
(그 저지된 > . 저지 아 된)			

(○: 전사됨, ×: 전사 안 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

----<보 기>--

- ¬. A는 □에 결합한다.
- ㄴ. Ⅱ에서는 A, B, C가 모두 발현된다.
- 다. ⓐ는 '×'이다.
- \bigcirc (2) L
- 37, 5 4 4, 5 57, 4, 5

10. 그림은 광합성이 활발하게 일어나고 있는 어떤 식물의 엽록체 구조를 나타낸 것이다. (기~(디)은 스트로마, 틸라코이드 막, 틸라코이드 내부를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>-

- ㄱ. 광계 Ⅱ는 ⑦에 존재한다.
- ㄴ. 광합성에서 H₂O의 광분해는 ⓒ에서 일어난다.
- □ pH는 □에서가 □에서보다 높다.

 \bigcirc

(2) L

③ ⊏

47, 67, 6

- 11. 다음은 이중 가닥 DNA x와 제한 효소에 대한 자료이다.
 - o x는 35개의 염기쌍으로 이루어져 있고, x 중 한 가닥의 염기 서열은 다음과 같다. ①~②은 A, C, G, T를 순서 없이 나타낸 것이다.
 - $3'-\bigcirc 2\cap 1 = 0 -\bigcirc 1$
 - 그림은 제한 효소 BamH I, EcoR I, Kpn I, Xho I이 인식하는 염기 서열과 절단 위치를 나타낸 것이다.
 - 5'-GGATCC-3' 5'-GAATTC-3' 5'-GGTACC-3' 5'-CTCGAG-3' 3'-CCTAGG-5' 3'-CTTAAG-5' 3'-CCATGG-5' 3'-GAGCTC-5' BamH I EcoR I : 절단 위치
 - \circ x를 시험관 $I \sim V$ 에 넣고 제한 효소를 첨가하여 완전히 자른 결과 생성된 DNA 조각 수와 각 DNA 조각의 염기 수는 표와 같다. ⓐ~ⓓ는 BamH I, EcoR I, Kpn I, Xho I을 순서 없이 나타낸 것이고, V에 첨가한 제한 효소는 @~@ 중 2가지이다.

시험관	I	П	Ш	IV	V
첨가한 제한 효소	(a)	(b)	c	<u>d</u>	?
생성된 DNA 조각 수	2	3	2	2	4
생성된 각 DNA 조각의 염기 수	22, 48	?	10, 60	?	10, 14, 22, 24

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

--<보 기>-

- ㄱ. ⓒ는 Kpn I이다.
- ㄴ. Ⅱ에서 염기 개수가 38개인 DNA 조각이 생성된다.
- C. V에서 생성된 DNA 조각 중 염기 개수가 22개인 조각에서 아데닌(A)의 개수는 3개이다.

① ¬

과학탐구 영역

생명과학Ⅱ

12. 그림 (가)는 종 A가 2회의 종분화 과정을 통해 종 B와 종 C로 분화하는 과정을, (나)는 (가)를 토대로 작성한 A~C의 계통수를 나타낸 것이다. A~C는 서로 다른 생물학적 종이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 지리적 격리는 2회 일어났고, 이입과 이출은 없다.) [3점]

------<보 기>---

- □. A는 B와 생식적으로 격리되어 있다.
- L. B의 유전자풀은 C의 유전자풀과 같다.
- C. A와 C의 유연관계는 B와 C의 유연관계보다 가깝다.

① ¬

(2) L

37, 5 4 4, 5 5 7, 6, 5

(나)

13. 다음은 이중 가닥 DNA X와 mRNA Y에 대한 자료이다.

- X는 서로 상보적인 단일 가닥 X₁과 X₂로 구성되어 있다.
- \circ X₁과 X₂ 중 하나로부터 Y가 전사되었고, 염기 개수는 X가 Y의 2배이다.
- $\circ X_1$ 에서 $\frac{A}{C} = \frac{7}{5}$ 이다.
- $\circ X_2$ 에서 $\dfrac{$ 피리미딘 계열 염기의 개수 $= \dfrac{13}{7}$ 이고, 타이민(T)의 개수는 35개이다.
- Y에서 사이토신(C)의 개수는 유라실(U)의 개수보다 15개 많다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

------<보 기>---

- ¬. X₁에서 사이토신(C)의 개수는 25개이다.
- ∟. Y는 X₁로부터 전사되었다.
- C. X에서 염기 간 수소 결합의 총개수는 255개이다.

① ¬

② L

37, 57, 6, 57, 6, 6

14. 표는 동물 A~D에서 3가지 특징의 유무를 나타낸 것이다. A~D는 거머리, 지네, 창고기, 해파리를 순서 없이 나타낸 것이다.

동물	특징			
승호	척삭을 형성함	촉수담륜동물에 속함	외골격을 가짐	
A	0	?	?	
В	?	×	0	
С	×	a	?	
D	×	×	×	

(○: 있음, ×: 없음)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

ㄱ. A는 창고기이다.

ㄴ. @는 '×'이다.

C. B와 D는 모두 배엽을 형성한다.

 \bigcirc

② L

37, 54, 57, 6, 5

15. 다음은 미토콘드리아의 ATP 합성에 대한 실험이다.

○ 물질 X는 미토콘드리아 내막에 있는 인지질을 통해 H⁺을 새어 나가게 하고, 물질 Y는 전자 전달계를 통한 전자의 이동을 차단한다.

[실험 과정 및 결과]

- (가) 미토콘드리아가 들어 있는 시험관 A~C에 각각 4 탄소 화합물, ADP, P;를 충분히 넣고, 표와 같이 물질을 첨가한다. ①과 ①은 X와 Y를 순서 없이 나타낸 것이다.
- (나) 일정 시간이 지난 후 ATP 합성 여부와 시험관에 남아 있는 O₂의 총량을 측정한 결과는 표와 같다.

시험관	첨가한 물질	ATP 합성 여부	남아 있는 O ₂ 총량(상댓값)
A	없음	합성됨	10
В	9	합성 안 됨	a
С	Ū.	?	0

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단. 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

-----<보 기>-

ㄱ. ⑦은 X이다.

L. (a)는 10보다 크다.

С. A에서 H₂O가 생성된다.

 \bigcirc

(2) L

37. 57. 40 4. 57. 4. 5

16. 다음은 동물 종 P의 두 집단 I과 Ⅱ에 대한 자료이다.

- I과 II는 각각 하디·바인베르크 평형이 유지되는 집단이며, [과 Ⅱ 중 한 집단을 구성하는 개체 수는 다른 한 집단을 구성하는 개체 수의 2배이다.
- P의 몸 색은 상염색체에 있는 회색 몸 대립유전자 A와 검은색 몸 대립유전자 A*에 의해 결정되며, A는 A*에 대해 완전 우성 이다. ①과 ①은 각각 AA, AA*, A*A* 중 하나이다.
- \circ $\frac{I$ 에서 유전자형이 \bigcirc 인 개체 수 $=\frac{2}{3}$ 이다.
- I에서 유전자형이 ○인 개체들을 제외한 나머지 개체들을 합쳐서 구한 A^* 의 빈도는 $\frac{3}{7}$ 이다.
- $\frac{\text{I 에서 유전자형이 } \bigcirc \text{인 개체 } \dot{\Gamma}}{\text{II 에서 유전자형이 } \bigcirc \text{인 개체 } \dot{\Gamma}} = \frac{25}{48}$ 이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, Ⅰ과 Ⅱ에서 각각 암컷과 수컷의 개체 수는 같다.)

---<보 기>--

 \neg . I 에서 A의 빈도는 $\frac{1}{4}$ 이다.

- ㄴ. $\frac{\text{II에서 검은색 몸 개체 수}}{\text{I에서 검은색 몸 대립유전자 수}} = \frac{3}{25}$ 이다.
- 다. Ⅱ에서 유전자형이 AA*인 암컷이 임의의 수컷과 교배하여 자손 (F_1) 을 낳을 때, 이 F_1 이 회색 몸일 확률은 $\frac{7}{10}$ 이다.

1 _

4 (생명과학 Ⅱ)

과학탐구 영역

- 17. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA에 대한 자료이다.
 - Ⅰ과 Ⅱ는 각각 22개의 염기로 구성된 복제 주형 가닥이며. 서로 상보적이다. Ⅱ의 염기 서열은 다음과 같다. ⓐ와 ⓑ는 각각 5' 말단과 3' 말단 중 하나이다.

@-TAATCCGATTGCGTTAGCCCTT-b

- ᄀ, □, □은 새로 합성된 가닥이며, ᄀ은 22개의 염기로 구성 되고, 으과 ©은 각각 11개의 염기로 구성된다.
- 프라이머 X는 ③에, 프라이머 Y는 ⓒ과 ⓒ 중 하나에, 프라이머 Z는 그 나머지 하나에 존재한다. X, Y, Z는 각각 4개의 염기로 구성되고, G+C 함량은 Y>Z>X이다.
- □에서 프라이머를 제외한 나머지 부분과 Ⅱ 사이의 염기 간 수소 결합의 총개수는 18개이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

-----<보 기>--

- ㄱ. ⓐ는 3′ 말단이다.
- ㄴ. Y는 ⓒ에 존재한다.
- C. Z에 있는 퓨린 계열 염기의 개수는 4개이다.

① ¬

- (2) L
- ③ ⊏
- 47, 65 4, 5
- 18. 그림은 세포 호흡과 알코올 발효에서 물질 전환 과정 $I \sim IV$ 를, 표는 Ⅰ~Ⅳ에서 생성되는 물질 ①~②의 분자 수를 나타낸 것이다. A~E는 과당 2인산, 아세트알데하이드, 아세틸 CoA, 에탄올, 피루브산을 순서 없이 나타낸 것이고, ①~②은 ATP, CO₂, NAD⁺, NADH를 순서 없이 나타낸 것이다.

A	<u>I</u> 2(В
В	<u>II</u> → (С
В	——— (D
D	$\xrightarrow{\text{IV}}$	E

과정	분자 수			
	9	Ĺ)	Œ	2
I	a	?	0	2
П	0	0	?	1
Ш	0	?	1	0
IV	0	(b)	?	0

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, CoA의 탄소 수는 고려하지 않는다.) [3점]

- ¬. ⓐ+ⓑ=4이다.
- ㄴ. 1분자당 $\frac{B의 탄소 수}{E의 탄소 수} = \frac{3}{2}$ 이다.
- ㄷ. Ⅱ에서 탈수소 반응이 일어난다.

- 19. 다음은 어떤 진핵생물의 유전자 x와 돌연변이 유전자 y, z의 발현에 대한 자료이다.
 - x, y, z로부터 각각 폴리펩타이드 X, Y, Z가 합성된다.
 - x의 DNA 이중 가닥 중 한 가닥의 염기 서열은 다음과 같다. ①~②은 A, C, G, T를 순서 없이 나타낸 것이고, ©은 퓨린 계열 염기이다. ⓐ와 ⓑ는 각각 5' 말단과 3' 말단 중 하나이다.

 - X의 세 번째 아미노산과 네 번째 아미노산은 같다.
 - y는 x의 전사 주형 가닥에서 ⑦ 연속된 6개의 염기가 1회 결실된 것이며, X와 Y의 아미노산 서열은 동일하다.
 - o z는 y의 전사 주형 가닥에서 피리미딘 계열에 속하는 연속된 3개의 동일한 염기가 1회 결실된 것이고, Z는 7개의 아미노산 으로 구성된다.
 - X, Y, Z의 합성은 개시 코돈 AUG에서 시작 하여 종결 코돈에서 끝나며, 표는 유전부호를 나타낸 것이다.

UUU UUC 페닐알라닌	UCU UCC 세린	UAU UAC 타이로신	UGU UGC 시스테인
UUA UUG ^{류신}	UCA ALE	UAA 종결 코돈 UAG 종결 코돈	UGA 종결 코돈 UGG 트립토판
CUU CUC 라스	CCU CCC 프롤린	CAU CAC 히스티딘	CGU CGC 아르지닌
CUA TO	CCA ^{프롤턴} CCG	CAA CAG 글루타민	CGA OF A CONTROL CGG
AUU AUC 아이소류신	ACU ACC 트레오닌	AAU AAC ^{아스파라진}	AGU AGC 세린
AUA AUG 메싸이오닌	ACG	AAA AAG 라이신	AGA AGG 아르지닌
GUU GUC 발린		GAU _{아스파트산} GAC	GGU GGC 글리신
GUA BUG	GCA GCG	GAA GAG 글루탐산	GGA GGG

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려 하지 않는다.) [3점]

−<보 기>·

- ㄱ. ②은 구아닌(G)이다.
- ∟. ઋ에는 타이민(T)이 2개 있다.
- ㄷ. Z는 글루탐산을 가진다.
- ① ¬
- ② L
- 3 = 4 7, = 5 7, =
- 20. 그림은 세포내 공생설을 나타낸 것이다. ¬~□은 엽록체, 광합성 세균, 산소 호흡 세균을 순서 없이 나타낸 것이다. 미토콘드리아의 기원은 つ이고, 🗀의 기원은 🗅이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. ⑦은 산소 호흡 세균이다.
- ㄴ. ⓒ은 빛에너지를 화학 에너지로 전환한다.
- □ □과 □은 모두 핵막을 갖는다.
- ① ¬
- 2 = 3 7, 4 4 -, = 5 7, -, =

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인