Contact informations

Victor Trappler

PhD in applied mathematics (2021)

Title: Parameter control in the presence of uncertainties with É. Arnaud, L. Debreu, A. Vidard

Keywords:

- Uncertainty Quantification
- Optimization under uncertainties
- Robust calibration of numerical models

Contact:

- @ victor.trappler@gmail.com
- ☆ vtrappler.github.io

Research topics

- 1. Optimisation under Uncertainties
 - Notions of robustness in a calibration context
 - Regret-based family of estimators
- 2. Adaptive Strategies using GP to improve the estimations
 - GP formulation of the regret
 - SUR (Stepwise Uncertainty Reduction) strategies of design enrichment
 - AK-MCS (Adaptive Kriging Monte Carlo Sampling) for batch selection of points
- 3. Application: robust calibration of CROCO

Computer code and inverse problem

Input

- θ : Control parameter
- u: Environmental variables, realisations of r.v. U
- Output $\mathcal{M}(\theta, u)$: Quantity to be compared to observations

Regret-based formulations

- $(\theta, u) \longmapsto J(\theta, u)$ objective function, *strictly positive*
- Best performance given $u: J^*: u \mapsto \min_{\theta \in \Theta} J(\theta, u)$
- \rightarrow Find $\hat{\theta}$ such that $J(\hat{\theta}, U)$ "close to" $J^*(U) = J(\theta^*(U), U)$ with high enough probability

Regret-based formulations

- $(\theta, u) \longmapsto J(\theta, u)$ objective function, *strictly positive*
- Best performance given $u: J^*: u \mapsto \min_{\theta \in \Theta} J(\theta, u)$
- \rightarrow Find $\hat{\theta}$ such that $J(\hat{\theta}, U)$ "close to" $J^*(U) = J(\theta^*(U), U)$ with high enough probability
 - Regret: $r(\theta, u) = J(\theta, u) J^*(u)$ or $r(\theta, u) = \frac{J(\theta, u)}{J^*(u)}$
 - $\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}[r(\theta, U) \leq \alpha]$: Probability that the regret is below a level α , set by the user

Regret-based family of estimators (Trappler et al., 2020)

$$\left\{\hat{ heta} \mid \hat{ heta} = rg\max_{ heta \in \Theta} \mathsf{\Gamma}_{lpha}(heta), lpha > 1
ight\}$$

Adaptive strategies for the estimation of Γ_{α}

Let $Z \sim \mathrm{GP}(m_Z, C_Z)$ be a GP constructed on $\Theta \times \mathbb{U}$ based on J. We use Z to estimate Γ_{α} .

Several (myopic) strategies can be implemented:

- Reduction of the *augmented* IMSE of $\Delta = Z \alpha Z^*$
- Improve estimation of the set $\{\Delta \leq 0\}$, using probability of coverage

Batch enrichment:

• Sampling in the margin of uncertainty of $\{\Delta \leq 0\}$, and transformations to get a batch of points (AK-MCS (Dubourg et al., 2011; Razaaly and Congedo, 2020))

Adaptive strategies for the quantile of the regret

Alternatively: what if α not fixed, but we are looking to reach a specific probability instead?

Under certain conditions, the ratio Z/Z^* is approximately log-normally distributed. Let us define $\Xi = \log Z/Z^*$

- Reduction of the augmented IMSE of Ξ
- Sampling in regions of interest, and subsequent transformations (QeAK-MCS (Razaaly, 2019))

Summary

Research topics (so far)

- Formulation of a notion of robustness using the regret
- ullet Adaptive methods using GP for the estimation of Γ_{lpha}
- Application to the numerical model CROCO: robust estimation of the bottom friction

In progress

- Adaptive strategies for the optimisation (2-stage methods)
- Development of python package(s) for adaptive methods (based on scikit-learn)
- How to deal with realistic models?
 - Expensive in terms of time and resources required
 - Dimension reduction

References i

- Dubourg, V., Sudret, B., and Bourinet, J.-M. (2011).
 Reliability-based design optimization using kriging surrogates and subset simulation. Structural and Multidisciplinary Optimization, 44(5):673–690.
- Razaaly, N. (2019). Rare Event Estimation and Robust
 Optimization Methods with Application to ORC Turbine
 Cascade. These de doctorat, Université Paris-Saclay (ComUE).
- Razaaly, N. and Congedo, P. M. (2020). Extension of AK-MCS for the efficient computation of very small failure probabilities. *Reliability Engineering & System Safety*, 203:107084.

References ii

Trappler, V., Arnaud, É., Vidard, A., and Debreu, L. (2020).

Robust calibration of numerical models based on relative regret. *Journal of Computational Physics*, page 109952.

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

The minimizer can be seen as a random variable:

$$\theta^*(U) = \operatorname*{arg\,min}_{\theta \in \Theta} J(\theta, U)$$

 \longrightarrow estimate its density (how often is the value θ a minimizer)

$$p_{\theta^*}(\theta) = \mathbb{T}_U [J(\theta, U) = J^*(U)]$$

"Most Probable Estimate", and relaxation

Given $u \sim U$, the optimal value is $J^*(u)$, attained at $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$.

The minimizer can be seen as a random variable:

$$\theta^*(U) = \operatorname*{arg\,min}_{\theta \in \Theta} J(\theta, U)$$

 \longrightarrow estimate its density (how often is the value θ a minimizer)

$$p_{\theta^*}(\theta) = "\mathbb{P}_U [J(\theta, U) = J^*(U)]"$$

How to take into account values not optimal, but not too far either \longrightarrow relaxation of the equality with $\alpha>1$:

$$\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}\left[J(\theta, U) \leq \alpha J^{*}(U)\right]$$

• Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$

- Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$
- Set of conditional minimisers: $\{(\theta^*(u), u) \mid u \in \mathbb{U}\}$

- Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$
- Set of conditional minimisers: $\{(\theta^*(u), u) \mid u \in \mathbb{U}\}$
- Set $\alpha > 1$

- Sample $u \sim U$, and solve $\theta^*(u) = \arg\min_{\theta \in \Theta} J(\theta, u)$
- Set of conditional minimisers: $\{(\theta^*(u), u) \mid u \in \mathbb{U}\}$
- Set $\alpha \geq 1$
- $R_{\alpha}(\theta) = \{u \mid J(\theta, u) \leq \alpha J^*(u)\}$
- $\Gamma_{\alpha}(\theta) = \mathbb{P}_{U}[U \in R_{\alpha}(\theta)]$

Getting an estimator

 $\Gamma_{\alpha}(\theta)$: probability that the cost (thus θ) is α -acceptable

• If α known, maximize the probability that θ gives acceptable values:

$$\max_{\theta \in \Theta} \Gamma_{\alpha}(\theta) = \max_{\theta \in \Theta} \mathbb{P}_{U} \left[J(\theta, U) \le \alpha J^{*}(U) \right] \tag{1}$$

• Set a target probability $1 - \eta$, and find the smallest α .

$$\inf\{\alpha \mid \max_{\theta \in \Theta} \Gamma_{\alpha}(\theta) \ge 1 - \eta\} \tag{2}$$

Relative-regret family of estimators (Trappler et al., 2020)

$$\left\{\hat{\theta} \mid \hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \, \Gamma_{\alpha}(\theta), \alpha > 1\right\} \tag{3}$$

Why the relative regret ?

- Relative regret
 - α -acceptability regions large for flat and bad situations ($J^*(u)$ large)
 - Conversely, puts high confidence when $J^*(u)$ is small
 - No units → ratio of costs

Notions of regret

Let $J^*(u) = \min_{\theta \in \Theta} J(\theta, u)$ and $\theta^*(u) = \arg \min_{\theta \in \Theta} J(\theta, u)$. The regret r:

$$r(\theta, u) = J(\theta, u) - J^*(u) = -\log\left(\frac{e^{-J(\theta, u)}}{\max_{\theta} \{e^{-J(\theta, u)}\}}\right)$$

$$= -\log\left(\frac{\mathcal{L}(\theta, u)}{\max_{\theta \in \Theta} \mathcal{L}(\theta, u)}\right)$$
(5)

 \rightarrow linked to misspecified LRT: maximize the probability of keeping \mathcal{H}_0 : θ valid instead of arg max \mathcal{L} .

PEI criterion

$$Z \sim \mathsf{GP}(m_Z, C_Z)$$
 on $\Theta \times \mathbb{U}$

$$PEI(\theta, u) = \mathbb{E}_{Z(\theta, u)} \left[\left[f_{min}(u) - Z(\theta, u) \right]_{+} \right]$$
 (6)

where $f_{\min}(u) = \max \{ \min_i J(\theta_i, u_i), \min_{\theta \in \Theta} m_Z(\theta, u) \}$

Illustration of the PEI

Principle of AK-MCS

0.8

1.0

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (0.0, 0.0)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (0.0, 0.5)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (0.0, 1.0)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (0.5, 0.0)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (0.5, 0.5)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (0.5, 1.0)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (1.0, 0.0)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (1.0, 0.5)

Minimization of $\theta \mapsto J(\theta, u)$, for different u, which parametrizes some boundary conditions: u = (1.0, 1.0)

Conservative or optimistic estimate

