

AD-A101 553

WALKER (WILLIAM W) JR CONCORD MA
EMPIRICAL METHODS FOR PREDICTING EUTROPHICATION IN IMPOUNDMENTS—ETC(U)
MAY 81 W W WALKER

F/6 13/2

DACW39-78-C-0053

NL

UNCLASSIFIED

WES-TR-E-81-9-1

104
AD A101 553

AD A101153

LEVEL II

(12)

S
77A-2-77-9-1
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report E-81-9	2. GOVT ACCESSION NO. AD-A101553	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EMPIRICAL METHODS FOR PREDICTING EUTROPHICATION IN IMPOUNDMENTS, Report 1, PHASE I, DATA BASE DEVELOPMENT	5. TYPE OF REPORT & PERIOD COVERED Report 1 in a series	
7. AUTHOR(s) William W. Walker, Jr.	8. CONTRACT OR GRANT NUMBER(s) Contract DACW39-78-0053	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Dr. William W. Walker, Jr. Environmental Engineer 1127 Lowell Road Concord, Mass. 01742	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS EWQOS Work Unit IE	
11. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers, U. S. Army Washington, D. C. 20314	12. REPORT DATE May 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U. S. Army Engineer Waterways Experiment Station Environmental Laboratory P. O. Box 631, Vicksburg, Miss. 39180	13. NUMBER OF PAGES 208	
15. SECURITY CLASS. (of this report) Unclassified		
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Available from National Technical Information Service, Springfield, Va. 22161.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Data bases Models Eutrophication Predictions Impoundments		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Simple formulations relating nutrient loadings and certain morphologic characteristics to trophic state have provided lake managers one means for describing lake problems and predicting the potential impact of management decisions. While the general utility of such models has been demonstrated for natural lakes, the applicability of models for reservoirs has not received adequate evaluation. Evaluation and the possible modification of existing models		
(Continued)		

DD FORM 1 JAN 73 EDITION OF 1 NOV 85 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

7/16/87

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued).

for predicting water quality and eutrophication potential, is the objective of EWOOS Work Unit IE.

This report documents the establishment of a computerized data base containing water quality, hydrologic, and morphometric information for 299 reservoirs operated by the U.S. Army Corps of Engineers (CE). Sources of information included STORET (including the National Eutrophication Survey data), U.S. Department of Agriculture sedimentation survey data sheets, project design memoranda and CE District and Division data files. Supplemental sources included maps, project brochures, and reports. Programming for data manipulation and analysis is in the PL/I and FORTRAN IV languages. BMDP and SAS programs were employed during preliminary analysis. The data base presently contains over 2.5 million water quality observations taken at 4451 stations located in or around 271 CE reservoirs.

Methods for estimating volume and area variations with elevation, required for volume-averaging of water quality data and for calculating material loadings, have been developed. Preliminary analyses have also been performed to assess the importance of spatial and temporal variability to the computation of representative water quality values.

Appendix A contains data inventories for each project included in the data base.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

This report was prepared by Dr. William W. Walker, Jr., Environmental Engineer, Concord, Mass., for the U. S. Army Engineer Waterways Experiment Station (WES) under Contract DACW39-78-0053 dated 7 June 1978. The study forms part of the Environmental and Water Quality Operational Studies (EWQOS) Work Unit IE, Simplified Techniques for Predicting Reservoir Water Quality and Eutrophication Potential. The EWQOS Program is sponsored by the Office, Chief of Engineers, and is assigned to the WES under the purview of the Environmental Laboratory (EL).

The study was under the direct WES supervision of Dr. Robert H. Kennedy and the general supervision of Mr. Donald L. Robey, Chief, Water Quality Modeling Group; Dr. Rex L. Eley, Chief, Ecosystem Research and Simulation Division; Dr. Jerry Mahloch, Program Manager, EWQOS; and Dr. John Harrison, Chief, EL.

The Commanders and Directors of WES during this study were COL John L. Cannon, CE, and COL Nelson P. Conover, CE. The Technical Director was Mr. Fred R. Brown.

This report should be cited as follows:

- Walker, W. W., Jr. 1981. "Empirical Methods for Predicting Eutrophication in Impoundments; Phase I: Data Base Development," Technical Report E-81-9, prepared by William W. Walker, Jr., Environmental Engineer, Concord, Mass., for the U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Accession For	
NTIS GPA&T	
DTIC T&E	
Unannounced <input type="checkbox"/>	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

TABLE OF CONTENTS

	<u>Page</u>
PREFACE	1
LIST OF TABLES	4
LIST OF FIGURES	7
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)	
UNITS OF MEASUREMENT	8
PART I: INTRODUCTION	9
PART II: FACILITIES AND METHODS	12
PART III: DATA BASE STRUCTURE	14
PART IV: CODES - DATA BASE CODES	16
PART V: LISTS - PROJECT LISTS	25
PART VI: WATS - WATERSHED CHARACTERISTICS	40
PART VII: RESER - RESERVOIR CHARACTERISTICS	45
PART VIII: HYDRO - HYDROLOGY FILES	50
PART IX: WQ - WATER QUALITY FILES	59
Introduction	59
STORET Data Acquisition and Processing	59
INFONET Data Acquisition and Processing	63
Miscellaneous Data Acquisition and Processing	64
WQ File Structures	64
WQ Data Inventories	74
PART X: SED - SEDIMENTATION DATA	83
PART XI: NES - EPA NATIONAL EUTROPHICATION SURVEY DATA	87
PART XII: NUMERICAL CHARACTERIZATION OF RESERVOIR HYPSOGRAPHIC CURVES	96
Introduction	96
Approach	96
Curve-Fitting Schemes	98
Interpolation Schemes	102
Conclusions	104

	<u>Page</u>
PART XIII: VARIABILITY OF TROPHIC STATE INDICATORS IN RESERVOIRS	107
Introduction	107
Data Base	108
Case Studies of Spatial Relationships	110
Seasonal Relationships	115
Variance Component Estimation	117
Error Analysis	121
Monitoring Implications	122
Modelling Implications	124
Conclusions	127
Implications for Data Reduction Strategies	128
PART XIV: EVALUATION OF METHODS FOR ESTIMATING PHOSPHORUS LOADINGS	130
Introduction	130
Preliminary Analysis	130
Estimation Methods	136
Tests Based Upon Simulated Data	136
Tests Based Upon Real Data	141
Prior Error Estimation	143
Conclusions	143
PART XV: CONCLUSIONS	147
PART XVI: RECOMMENDATIONS	149
REFERENCES	151
APPENDIX A: DATA INVENTORIES BY PROJECT AND DIVISION	A1

LIST OF TABLES

<u>No.</u>		<u>Page</u>
1	District and Division Codes	18
2	Data Source Codes	19
3	Station Type Codes	19
4	Pool and Outlet Codes	20
5	Parameter Codes	21
6	Breakdown of Projects in the Central Project List by District and Division	28
7	Record Format of the LISTS.CPL and LISTS.DPL Files . . .	29
8	Listing of the LISTS.CPL File	30
9	Listing of the LISTS.DPL File	37
10	Record Format of the WATS.DAREAS File	42
11	Sources of Data for the WATS.DAREAS File by Component	43
12	Inventory of Data in the WATS.DAREAS File by CE Division	44
13	Record Format of the RESER.MORPHO File	46
14	Inventory of Morphometric Data by CE Division	48
15	Listing of the RESER.COM File	49
16	Record Format of the HYDRO.KEY File	53
17	Record Format of the HYDRO.DAILY File	54
18	Record Format of the HYDRO.MONTHLY File	55
19	Record Format of the HYDRO.YEARLY File	56
20	Record Format of the HYDRO.SUM File	57
21	Inventory of USGS Hydrologic Data by CE Division	58
22	Inventory of Water Quality Data by Source	60

<u>No.</u>		<u>Page</u>
23	Record Format of the WQ.KEY File	65
24	Record Format of the WQ.DESTAT File	66
25	Record Format of the WQ.OBS File	68
26	Record Format of the WQ.SUM File	69
27	Sample Microfiche Water Quality Data Summary	72
28	Inventory of Water Quality Data by Station Type and CE Division	75
29	Inventory of Water Quality Data by Component and Station Type	76
30	Inventory of Total Phosphorus, Chlorophyll-a, and Secchi Data at Pool Stations by CE Divisions	78
31	Inventory of Eutrophication-Related Water Quality Components by Station Type and Monitoring Agency	80
32	Sample Sedimentation Survey Sheet	84
33	Record Format of the SED.RATES File	86
34	Sample EPA/NES Compendium Printout	90
35	Record Format of the NES.SUM File	91
36	Summary of Impoundments in EPA National Eutrophication Survey Compendium by Region, Trophic State, and Impoundment Type	93
37	Summary of CE Impoundments in EPA National Eutrophication Survey Compendium by CE Division and Trophic State	94
38	Summary of Lake/Reservoir Comparisons Derived from EPA/NES Compendium	95
39	Evaluation of the Power Function Model	100
40	Evaluation of Polynominal Functions	103
41	Statistical Summary of EPA/NES Trophic Index Data from 108 CE Projects	109

<u>No.</u>		<u>Page</u>
42	Summary of ANOVA Results	118
43	Regression and Corresponding Error Analyses	125
44	Fundamental Equations and Symbols	131
45	Preliminary Analysis of Flow/Total P Concentration Relationships	132
46	Concentration/Flow Sensitivities by Component and Station Type	135
47	Estimation Methods	137
48	Algorithm for Generation of Flow/Concentration Time Series	138
49	Results of Method Testing Using Real Flow and Concentration Data	142
50	Formula for Estimating the Variance of Loadings Calculated Using Method 4	144
A1	Inventory of WATS.DAREAS File	A2
A2	Inventory of RESER.MORPHO File	A13
A3	Inventory of USGS Hydrologic Data	A24
A4	Inventory of Water Quality Data by Station Type	A34
A5	Inventory of Phosphorus, Chlorophyll-a, and Secchi Data at Pool Stations	A45

LIST OF FIGURES

<u>No.</u>		<u>Page</u>
1	Elements and Structure of the CE Reservoir Data Base	15
2	Regional Distribution of Reservoirs in Data Base	27
3	Sample Watershed Map	41
4	Sample Water Quality Station Map	73
5	Regional Distribution of Lakes and Reservoirs Contained in the EPA National Eutrophication Survey Compendium	92
6	Distributions of Volume and Area Slope Parameters	106
7	White River System	111
8	Sakakawea	112
9	Old Hickory	113
10	Barkley	113
11	Monthly Variations in Trophic State Indices	116
12	Variance and Covariance Components of Trophic State Indices	120
13	Variance Components of Trophic Index Means within Reservoirs	123
14	Distributions of R^2 Values at Tributary and Discharge Stations	133
15	Distributions of Regression Slopes at Tributary and Discharge Stations	133
16	Bias in Loading Estimates as a Function of Regression Slope and Estimation Method	140
17	Mean Squared Error in Loading Estimates as a Function of Regression Slope and Estimation Method	140
18	Observed and Estimated Mean Squared Error in Loading Estimates	145

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
acres	4046.873	square metres
acre-feet	1233.482	cubic metres
cubic feet per second	0.02831685	cubic metres per second
Fahrenheit degrees	5/9	Celsius degrees or Kelvins*
feet	0.3048	metres
inches	2.54	centimetres
miles (U. S. statute)	1.609344	kilometres
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
square miles	2.589988	square kilometres
tons (2000 lb, mass)	907.1847	kilograms

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: $C = (5/9)(F - 32)$. To obtain Kelvin (K) readings, use: $K = (5/9)(F - 32) + 273.15$.

EMPIRICAL METHODS FOR PREDICTING

EUTROPHICATION IN IMPOUNDMENTS

PHASE I: DATA BASE DEVELOPMENT

PART I: INTRODUCTION

1. This report documents the development of a data base describing certain water quality aspects of reservoirs operated by the U. S. Army Corps of Engineers (CE). The data base includes information on project location, morphometry, water quality, hydrology, and sedimentation. As part of the Environmental and Water Quality Operational Studies (EWQOS) Program being conducted by the Office, Chief of Engineers, U. S. Army, this work has been conducted to provide groundwork for assessing empirical approaches to describing and predicting reservoir trophic status.

2. One basic strategy employed in assembling this data base has been to utilize existing, centralized sources of information first. These have included nationwide data bases maintained by various federal agencies, as well as a few sources of data tabulated at a regional level. A framework has been designed and implemented for storing and accessing this information, with flexibility for updating and general access, so as to meet the specific objectives of this project. Having utilized centralized data sources to their fullest extent, data gaps have been identified and used to set priorities for locating and incorporating information from relatively diffuse sources, such as specific project design memoranda and other published or unpublished reports dealing with individual projects. This stage-wise data-gathering procedure has been designed with efficiency and cost-effectiveness in mind.

3. Another basic strategy which has been employed in compiling water quality and hydrologic data has been to assemble individual observations in space and time (i.e., "raw data"), rather than average values. This strategy accomplishes the following:

- a. It provides for the broadest possible range of future uses of the data base.
- b. It eliminates possible variations due to the use of different averaging procedures.
- c. It provides a basis for error analysis and assessment of data adequacy in future model testing.

These advantages must be weighed against the major disadvantage of the approach--it involves management of a large amount of information. The water quality file presently contains two million observations taken at 4451 stations located in or around 271* CE projects.

4. Management of these types and quantities of information entails use of a consistent framework. One basic strategy has been to tag each bit of information with district, project, and data source codes. While the validity of the information at its original source cannot be substantiated, use of a systematic approach in building the data base insures that the data are transferred and accessed properly. Keeping track of original data sources provides a means of checking any piece of information at its source and identifying discrepancies among multiple data sources for the same value. The latter provides one indication of data and source reliability. Another validity test involves checking for internal consistency in a given set of values. For example, the morphometric profiles have been tested by comparing reported volumes at any elevation with the integral of reported areas with respect to depth. The third validity test involves distribution of portions of the data base to district offices for verification and editing. This entails their cooperation and assumes that district-level sources of information for specific projects are the most accurate. This approach has been taken for upgrading the morphometric data file with reasonable success.

5. In its current state, the data base is a collection of information in a well-defined framework. It is not a user-oriented system designed for frequent interactive use. Such a system would require

* A total of 299 projects are included in the data base; no water quality data have been located for 28.

extensive software development geared to a specific computer system and to the intended uses of the information in various areas of reservoir management. The scope of this project has been limited to compiling the information, organizing it, and extracting portions that are directly relevant to analysis of eutrophication problems in reservoirs. With additional software development and systems programming, the data base could be made accessible for more generalized purposes.

6. The complete data base consists of a collection of computer files, reports, data forms, and maps. As discussed above, each piece of information is referenced by CE district, project, and data source codes. Part II of this report describes the facilities, methods, and agency contacts used in this work. Part III describes the general structure of the data base. Parts IV through XI document the sources and approaches used in compiling each element and present data inventories. Parts XII-XIV summarize results of specific analyses which lay the groundwork for use of the data base in Phase II of this project. These analyses cover the following topics: (XII) numerical characterization of reservoir hypsographic curves; (XIII) assessment of the variability of trophic state indicators in reservoirs; and (XIV) testing of methods for estimation of nutrient budgets. Conclusions and Recommendations are given in Part XV and XVI, respectively. Appendix A contains data inventories by project and district.

PART II: FACILITIES AND METHODS

7. Compilation and manipulation of the various data files documented in this report have been done on an IBM 370-168 computer maintained by the Information Processing Center of the Massachusetts Institute of Technology (MIT). This facility has been used in a batch processing mode (OS/VSI) and in an interactive mode through IBM's Conversational Monitoring System (CMS). Three media have been used for data storage where appropriate: (1) 9-track tapes (6250 bytes per inch); (2) 3350 disc packs (OS and CMS); and (3) cards. Copies of the current versions of all files have been transferred to tapes for secure storage and future access.

8. While most of the information used to assemble the data base has been read from tapes supplied by various agencies, some files (in particular, the project lists, morphometry, and sedimentation files) have been assembled from tabulated data. In these cases, cards have been used for data entry. Keypunching has been done and verified using contract services offered by MIT.

9. Programming for data manipulation and analysis is in the PL/I and FORTRAN IV languages. The Biomedical Computer Program package (BMDP)¹ and SAS² have also been used in preliminary data analyses. Plots have been produced with a Calcomp line plotter.

10. Access to the Environmental Protection Agency (EPA) STORET system³ has been acquired through the cooperation of the Water Quality Laboratory of the New England Division of the Corps of Engineers. The staff of the Systems Analysis Branch of the EPA Region I Office in Boston has been helpful in submitting STORET retrievals. The identification of water quality and quantity monitoring stations has been done partially using the services of the National Water Data Exchange of the U. S. Geological Survey in Reston, Virginia. The Corvallis Environmental Research Laboratory of the U. S. Environmental Protection Agency has provided reports and data files from the National Eutrophication Survey (NES)⁴. Sedimentation survey sheets have been obtained through the

Sedimentation Laboratory of the U. S. Department of Agriculture and the South Technical Service Center of the U. S. Soil Conservation Service in Fort Worth, Texas.

11. Staff members of the Environmental Laboratory of the U. S. Army Engineer Waterways Experiment Station (WES) have provided assistance in extracting and coding morphometric and drainage area data from project design memoranda and in coding water quality data compiled outside of STORET. The Ohio River Division (ORD) of the Corps of Engineers provided tapes containing water quality data gathered by district monitoring programs in that division.

PART III: DATA BASE STRUCTURE

12. Figure 1 depicts the organization of the data base into eight major file groups:

CODES	- Data Base Codes
LISTS	- Project Lists
WATS	- Watershed Characteristics
RESER	- Reservoir Characteristics
HYDRO	- Hydrology Data
WQ	- Water Quality Data
SED	- Sedimentation Data
NES	- EPA National Eutrophication Survey Data

Each group contains a number of computer files, data forms, and/or maps. File names are in two parts. The first refers to the major file group and the second, to the specific file within that group. For example, the water quality station key is given the name WQ.KEY. A lowercase second name indicates that the element is a map or data form (not a computer file).

13. U. S. customary units have been used most extensively in the files. This has facilitated the transfer and verification of information, since most of the original sources of morphometric, drainage area, hydrologic, and sedimentation data were also in U. S. customary units. One exception to this convention is the EPA National Eutrophication Survey Compendium⁴ file, which was supplied by the EPA in metric units.

14. The development, structure, and contents of each file group are discussed in the following sections. The sources and approaches used in compiling the information are described. Each file is characterized with respect to format and content. Since most files are too large for listing, data holdings are summarized in an inventory format, with categories defined by file, variable, and CE division. Data inventories by project and district are included in Appendix A. Record formats for the files described in this report are defined as PL/I data structures.

Figure 1
Elements and Structure of the CE Reservoir Data Base

PART IV: CODES - DATA BASE CODES

15. CODES consists of a group of files which define referencing systems used in various portions of the data base. These include the following:

CODES.DIS	CE District Codes
CODES.DIV	CE Division Codes
CODES.SOURCE	Data Source Codes
CODES.TYPE	Station Type Codes
CODES.POOL	Pool Codes
CODES.OUTLET	Outlet Codes
CODES.PARAM	Parameter Codes

Listings of these files are given in Tables 1 through 5.

16. District and division codes (Table 1) provide a numerical indexing system for each of 36 districts and 10 divisions, respectively. Districts are grouped within divisions. The New England Division is unique in that it is not comprised of districts. In order to permit referencing of all projects at the district level, district number one has been defined to represent the New England Division.

17. Data source codes (Table 2) provide a referencing system for nine data sources which are used frequently in the data base. Identifying each data entry by source provides a basis for validation and sorting out discrepancies among multiple data sources for a given project and characteristic.

18. A total of nine station type codes have been defined for use in the water quality and hydrology files (Table 3). These provide a frame of reference for locating monitoring stations within a given project. Broadly, these permit distinction among stations located on upstream tributaries, within reservoir pools, and in or below reservoir discharge streams. Within-pool stations are further classified as upper-pool, mid-pool, or near-dam. Mid-pool is used as a default for lake stations. The remaining two are used in cases where coordinates, maps, and/or station location descriptions provide an adequate basis for more refined classification. Secondary tributary codes (upstream and downstream from impoundments) have been used only for some EPA

National Eutrophication Survey stations to aid in hydrologic budget computations.

19. Pool and outlet codes (Table 4) are used in the morphometric file. These provide systems for referencing various elevations to pool allocations for specific uses, ranges of operating levels, and locations and types of principal outlets. The systems were initially designed at WES. Additional codes have been added as needed during subsequent morphometric data compilation.

20. The parameter codes file (Table 5)* is used to reference hydrologic and water quality data. The file contains 94 members, each identified by a water quality parameter code, STORET code³, measurement type, and units. The 5-digit STORET code is used in retrieving water quality and hydrologic data from the STORET system. It is also used to identify measurements in the hydrology files. In addition to the 89 basic water quality parameter codes included in the file, there are 11 redundant parameter codes, which have been used in retrieving water quality data from STORET. Redundant codes result from multiple means of expressing a given type of observation (e.g., temperature in degrees C or degrees F or total phosphorus as P or as PO₄). Redundancies have been eliminated in final data storage by applying appropriate conversion factors in each case.

* Table 5 contains U. S. customary units of measurement. A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 8.

Table 1
District and Division Codes

<u>Code</u>	<u>District</u>	<u>Div</u>	<u>Code</u>	<u>Division</u>
01	New England	01	01	New England
02	New York	02	02	North Atlantic
03	Philadelphia	02	03	South Atlantic
04	Baltimore	02	04	Ohio River
05	Norfolk	02	05	North Central
06	Wilmington	03	06	Lower Mississippi Valley
07	Charleston	03	07	South West
08	Savannah	03	08	Missouri River
09	Jacksonville	03	09	North Pacific
10	Mobile	03	10	South Pacific
11	Buffalo	05		
12	Detroit	05		
13	Chicago	05		
14	Rock Island	05		
15	St. Paul	05		
16	Pittsburgh	04		
17	Huntington	04		
18	Louisville	04		
19	Nashville	04		
20	St. Louis	06		
21	Memphis	06		
22	Vicksburg	06		
23	New Orleans	06		
24	Little Rock	07		
25	Tulsa	07		
26	Fort Worth	07		
27	Galveston	07		
28	Albuquerque	07		
29	Kansas City	08		
30	Omaha	08		
31	Walla Walla	09		
32	Seattle	09		
33	Portland	09		
34	Sacramento	10		
35	San Francisco	10		
36	Los Angeles	10		

Table 2
Data Source Codes

<u>Code</u>	<u>Data Source</u>
00	Leidy and Jenkins
01	EPA National Eutrophication Survey
02	District or Division
03	Sedimentation Survey Sheets
04	Design Memoranda
05	USGS State Water Resources Data Reports
06	USGS/WATSTORE File
07	EPA STORET
08	INFONET - Ohio River Division

Table 3
Station Type Codes

<u>Code</u>	<u>Station Type</u>
01	Tributary
02	Pool
03	Discharge
04	Pool (nr. dam)
05	Pool (headwaters)
06	Unused
07	Point source
08	Sec. trib. (downstr.)
09	Sec. trib. (upstr.)

Table 4
Pool and Outlet Codes

<u>Code</u>	<u>Pool Type</u>
01	Flood control
02	Conservation
03	Water quality
04	Minimum
05	Summer
06	Winter
07	Water supply
08	Power
09	Recreation
10	Dead storage
11	Multiple use
12	Stream bed
13	Top of dam
14	Period of record minimum
15	Period of record maximum
16	Normal
17	Maximum power
18	Minimum power
19	Sediment
20	Maximum regulated

<u>Code</u>	<u>Outlet Type</u>
01	Intake
02	Spillway crest
03	Surface outlet
04	Bottom of gated spillway

Table 5

Parameter Codes

<u>STORET HYDRO</u>		<u>WQ Component</u>	<u>Units</u>
00027		01 Code for agency collecting sample	
00028		02 Code for agency analyzing sample	
72025		03 Depth of pond or reservoir	feet
00068		04 Maximum sample depth	feet
72020	72020	05 Elevation	ft > msl
00062		06 Elevation, reservoir surface	ft
72030		07 Elevation of reservoir pool	ft > msl
00054	00054	08 Reservoir storage	acre-ft
72033		09 Flow, average daily, spillway	cfs
72034		10 Flow, instantaneous, spillway	cfs
00061		11 Stream flow, instantaneous	cfs
00060	00060	12 Stream flow, daily	cfs
00065	00065	13 Stream stage	feet
00010	00010	14 Temp	deg-C
00011		*14 Temp	deg-F
00300	00300	15 O2 Dissolved	mg/l
00299		16 O2 Dissolved, electrode	mg/l
00090		17 Oxidation reduction potential	mV
00094		18 Specific conductivity, field	umhos/cm
00095	00095	19 Specific conductivity, lab	umhos/cm
00400	00400	20 pH (field)	su
00403		21 pH (lab)	su
00410		22 Alkalinity, total as CaCO ₃	mg/l
00435		23 Acidity, total as CaCO ₃	mg/l
00900		24 Hardness, total as CaCO ₃	mg/l
00940	00940	25 Chloride	mg/l
00945	00945	26 Sulfate total	mg/l
01045		27 Iron, total as Fe	ug/l
71885		*27 Iron total as Fe	mmg/l
01046		28 Iron, dissolved	ug/l
01055		29 Manganese, total as Mn	ug/l
71883		*29 Manganese total as Mn	mmg/l
01056		30 Manganese, dissolved	ug/l

(Continued)

* Redundant water quality parameter code.

(Sheet 1 of 4)

Table 5 (Continued)

<u>STORET HYDRO</u>	<u>WQ Component</u>	<u>Units</u>
00916	31 Calcium, total	mg/l
00915	32 Calcium, dissolved	mg/l
00927	33 Magnesium, total	mg/l
00925	34 Magnesium, dissolved	mg/l
00929	35 Sodium, total	mg/l
00930	36 Sodium, dissolved	mg/l
00937	37 Potassium, total	mg/l
00935	38 Potassium, dissolved	mg/l
00070 00070	39 Turbidity	jtu
00074	40 Turbidity, transmissometer, percent transmission	percent
00076	41 Turbidity, Hach turbidometer	ftu
00078	42 Transparency, Secchi	m
00077	*42 Transparency, Secchi	in
00031	43 Light, percent remaining at given depth	percent
00034	44 Depth at which 1 percent of surface light rem	ft
00080	45 Color, true	pt-co units
00081	46 Color, apparent	pt-co units
00955	47 Silica, dissolved	mg/l
00956	48 Silica, total	mg/l
00310	49 BOD5	mg/l
00405	50 Carbon dioxide	mg/l
00680	51 Carbon total organic	mg/l
00681	52 Carbon dissolved organic	mg/l
00685	53 Carbon total inorganic	mg/l
00691	54 Carbon, dissolved inorganic	mg/l
00665	55 Phosphorus, total as P	mg/l
00650	*55 Phosphate, total as PO4	mg/l
71886	*55 Phosphorus total as PO4	mg/l
00666	56 Phosphorus, dissolved as P	mg/l
00669	57 Phosphorus total hydrolyzable as P	mg/l
00678	58 Phosphorus, hydrol + ortho, total, autoanal	mg/l
00671	59 Phosphorus, dissolved ortho as P	mg/l
00660	*59 Phosphate, ortho as PO4	mg/l
70507	60 Phosphorus, inorganic total ortho as P	mg/l

(Continued)

* Redundant water quality parameter code.

(Sheet 2 of 4)

Table 5 (Continued)

STORET HYDRO	WQ Component	Units
00600	61 Total N	mg/l
71887	*61 Nitrogen total as NO3	mg/l
00605	62 Organic N	mg/l
00610	63 Ammonia N	mg/l
71845	*63 Ammonia, total as NH4	mg/l
00625	64 Total Kjeldahl N	mg/l
00630	65 NO2 + NO3-N	mg/l
00615	66 NO2-N	mg/l
71855	*66 Nitrite total as NO2	mg/l
00613	67 Nitrite nitrogen dissolved as N	mg/l
71856	*67 Nitrite dissolved as NO2	mg/l
00620	68 NO3-N	mg/l
71850	*68 Nitrate N as NO3	mg/l
00618	69 Nitrate nitrogen dissolved as N	mg/l
71851	*69 Nitrate N dissolved as NO3	mg/l
00500	70 Residue, total	mg/l
00505	71 Residue, total volatile	mg/l
00515	72 Residue, total filtrable dried at 105 deg C	mg/l
00530	73 Residue total non-filtrable dried at 105 deg C	mg/l
80154	80154 74 Suspended sediment conc - evap at 110 deg C	mg/l
70300	70300 75 Residue total filtrable at 180 deg C	mg/l
32209	76 Chlorophyll-A fluorometric, corrected	ug/l
32217	77 Chlorophyll-A fluorometric, uncorrected	ug/l
32211	78 Chlorophyll-A trichromatic, corrected	ug/l
32210	79 Chlorophyll-A trichromatic, uncorrected	ug/l
32230	80 Chlorophyll-A	mg/l
60050	81 Algae, total	cells/ml
00570	82 Biomass, plankton	ml/l
85209	83 Algal growth potential	mg/l
60990	84 Zooplankton, other	no/liter
31616	85 Fecal coliform, memb filter, m-fc broth 44.5 deg	no/100 ml
31673	86 Fecal streptococci, memb filter, kf agar, 35 deg	no/100 ml
31679	87 Fecal strep mf m-ent	no/100 ml

(Continued)

* Redundant water quality parameter code.

(Sheet 3 of 4)

Table 5 (Concluded)

<u>STORET HYDRO</u>		<u>WQ Component</u>	<u>Units</u>
50051		88 Flow rate instantaneous	mgd
50053		89 Conduit flow - monthly	mgd
70301	70301	Dissolved solids - sum of constituents	mg/l
80155	80155	Sediment discharge	tons/day
70291	70291	Dissolved sulfate discharge	tons/day
70290	70290	Dissolved chloride discharge	tons/day
70302	70302	Dissolved solids discharge	tons/day

(Sheet 4 of 4)

PART V: LISTS - PROJECT LISTS

21. LISTS, the second major file group, defines the referencing system used for CE projects in the data base. It consists of the following files:

LISTS.CPL - Central Project List
LISTS.DPL - Deleted Project List

The development and contents of these files are discussed below.

22. The data base is built around a central list of 299 reservoirs which have been identified from various sources and placed in the LISTS.CPL file. The regional distribution of these projects is shown in Figure 2. Breakdowns by CE district and division are given in Table 6. The following have been used as criteria for inclusion:

- a. projects currently operated by the Corps of Engineers.
- b. projects having seasonal or permanent pools.

The second criterion has been applied to eliminate locks and small run-of-the-river impoundments with short hydraulic residence times and little opportunity for inducing water quality changes, at least with respect to eutrophication.

23. The two primary sources of information used to develop an initial project list include a tabulation of CE projects with surface areas greater than 500 acres compiled by Leidy and Jenkins⁵ and a map of CE water resource projects⁶. Based upon CE Water Resource Development Reports⁷ and information supplied by various CE district offices, the initial list has been screened to eliminate projects which are incomplete, not currently under CE control, and/or do not have appreciable pools. A separate list of impoundments which have been eliminated has been maintained for future reference (LISTS.DPL). Because it has not been feasible within the scope of this project to compile and incorporate data from detailed, project-specific reports, the current project list may contain some impoundments which do not conform to the above criteria. Similarly, some projects may have been missed. Inclusion and/or screening

of additional projects would be possible with more time devoted to compiling and examining detailed reports.

24. The record format used in the LISTS.CPL and LISTS.DPL files is given in Table 7. Files are listed in Tables 8 and 9, respectively. Each project has been assigned a unique, three-digit identification code to facilitate referencing in the data base. The location of each project is identified by CE division, district, state, county, latitude, longitude, and hydrologic unit. Hydrologic unit maps compiled by the U. S. Geological Survey (USGS)⁸ have been used to provide basic location data. Reservoirs lying on the boundaries of states, counties, and/or hydrologic units have been referenced based upon dam location. State and county codes refer to the standard federal coding system (FIPS) documented in the EPA's STORET³ user's manual. The latitudes and longitudes of projects in which surface elevation monitoring stations have been located refer to those stations, which occur most frequently at dam sites. In other situations, coordinates have been approximated from hydrologic unit maps and refer roughly to dam locations.

25. As shown in Table 1, the project list is cross-referenced to three independent data bases:

- a. the EPA National Eutrophication Survey Working Papers⁹.
- b. the U. S. Department of Agriculture (USDA) compilation of reservoir sedimentation data¹⁰.
- c. the CE project file compiled by Leidy and Jenkins⁵.

The cross-referencing system facilitates access to specific information on projects contained in these sources.

Figure 2
Regional Distribution of Reservoirs in Data Base

Table 6

Breakdown of Projects in the Central Project List by District and Division

<u>Code</u>	<u>District</u>	Number of <u>Projects</u>	<u>Code</u>	<u>Division</u>	Total Number of <u>Projects</u>
01	New England*	22	01	New England	22
02	New York	3			
03	Philadelphia	3			
04	Baltimore	9			
05	Norfolk	0	02	North Atlantic	15
06	Wilmington	3			
07	Charleston	1			
08	Savannah	2			
09	Jacksonville	1			
10	Mobile	17	03	South Atlantic	24
11	Buffalo	1			
12	Detroit	0			
13	Chicago	0			
14	Rock Island	2			
15	St. Paul	13	05	North Central	16
16	Pittsburg	14			
17	Huntington	28			
18	Louisville	15			
19	Nashville	7	04	Ohio River	64
20	St. Louis	3			
21	Memphis	1			
22	Vicksburg	7			
23	New Orleans	4	06	Lower Mississippi Valley	15
24	Little Rock	10			
25	Tulsa	35			
26	Fort Worth	17			
27	Galveston	0			
28	Albuquerque	4	07	South West	66
29	Kansas City	11			
30	Omaha	20	08	Missouri River	31
31	Walla Walla	4			
32	Seattle	6			
33	Portland	17	09	North Pacific	27
34	Sacramento	15			
35	San Francisco	2			
36	Los Angeles	2	10	South Pacific	19
	Total	299			299

Table 7 Record Format of the LISTS.CPL and LISTS.DPL Files

Table 8

Listing of the LISTS.CPL File

DIVISION	DISTRICT	RES NAME	ST	ST CTY	LAT	LONG	HYD UNI:T	NES	SCS	L&J	MAJOR TRIB
1 NED	1 NEW ENGLAND	142 BUFFINVILLE	MA	25027	42.116	71.908	01100001				LITTLE
1 NED	1 NEW ENGLAND	142 EAST BRIMFIELD	MA	25013	42.108	72.125	01100001				QUINEBAUG
1 NED	1 NEW ENGLAND	147 LITTLEVILLE	MA	25013	42.274	72.884	01080206				WESTFIELD
1 NED	1 NEW ENGLAND	148 TULLY	MA	25015	42.642	72.224	01080202				TULLY
1 NED	1 NEW ENGLAND	150 WESTVILLE	MA	25027	42.081	72.057	01100001				QUINEBAUG
1 NED	1 NEW ENGLAND	151 BLACK ROCK	CT	9005	41.057	73.103	01100005				BRANCH
1 NED	1 NEW ENGLAND	152 COLEBROOK RIVER	CT	9005	42.006	73.036	01080207				FARMINGTON/W BR
1 NED	1 NEW ENGLAND	155 HANCOCK BROOK	CT	9005	41.022	73.037	01100005				HANCOCK
1 NEG	1 NEW ENGLAND	156 HOP BROOK	CT	9009	41.513	73.067	01100005				HOP
1 NED	1 NEW ENGLAND	158 MANSFIELD HOLLOW	CT	9013	41.756	72.182	01100002				NATCHAUG
1 NED	1 NEW ENGLAND	159 NORTHFIELD BROOK	CT	9005	41.980	73.090	01100005				NORTHFIELD
1 NED	1 NEW ENGLAND	162 WEST THOMPSON	CT	9015	41.344	71.899	01100001				QUINEBAUG
1 NED	1 NEW ENGLAND	164 EDWARD McDONELL	NH	33005	42.893	71.987	01070003				NUBANUSIT
1 NED	1 NEW ENGLAND	165 EVERETT	NH	33011	43.092	71.660	01070001				PISCATAQUOG
1 NED	1 NEW ENGLAND	166 FRANKLIN FALLS	NH	33013	43.169	71.661	01070001				PERIGEWASET
1 NED	1 NEW ENGLAND	167 HOPKINTON	NH	33013	43.189	71.748	01070003				CONTODOCOK
1 NED	1 NEW ENGLAND	168 OTTER BROOK	NH	33005	42.945	72.237	01080201				OTTER
1 NED	1 NEW ENGLAND	169 SURRY MOUNTAIN	NH	33005	42.997	72.311	01080201				ASHUELLOT
1 NED	1 NEW ENGLAND	172 BALL MOUNTAIN	VT	50025	43.127	72.776	01080107				WEST
1 NED	1 NEW ENGLAND	172 NORTH HARTLAND	VT	50022	43.801	72.583	01080106				OTTAQUECHEE
1 NED	1 NEW ENGLAND	173 NORTH SPRINGFIELD	VT	50027	43.336	72.509	01080106				BLACK
1 NED	1 NEW ENGLAND	174 TOWNSEND	VT	50025	43.083	72.699	01080107				WEST
2 NAD	2 NEW YORK	171 EAST BARRY	VT	50023	44.154	72.444	02010003				WINDOSKIT/JATIC BR
2 NAD	2 NEW YORK	176 WATERBURY	VT	50023	44.381	72.770	02010003	018			LITTLE
2 NAD	2 NEW YORK	177 WRIGHTSVILLE	VT	50023	44.310	72.575	02010003				WINDOSKI/N BR
2 NAD	3 PHILADELPHIA	307 BELTZVILLE	PA	42025	40.848	75.638	02040106	414			POHOPOCO
2 NAD	3 PHILADELPHIA	313 FRANCIS E. WALTER	PA	42089	41.112	75.720	02040106				LEHIGH
2 NAD	3 PHILADELPHIA	316 FRCPMPTN	PA	42127	41.588	75.327	02040103				LACKAWAXEN/W BR
2 NAD	4 BALTIMORE	227 ALMOND	NY	36003	42.347	77.705	02050104				CANISTEED
2 NAD	4 BALTIMORE	229 WHITNEY POINT	NY	36007	42.342	75.965	02050102				OSELIC
2 NAD	4 BALTIMORE	306 ALVIN R. BUSH (KETTLE CREEK)	PA	42035	41.350	77.900	02050203				KETTLE
2 NAD	4 BALTIMORE	310 CURVEYSVILLE	PA	42033	40.953	78.527	02050201				ANDERSON CK
2 NAD	4 BALTIMORE	312 F J SAYERS (BLANCHARD)	PA	42027	41.048	77.604	02050204	415			BALD EAGLE
2 NAD	4 BALTIMORE	320 RAYSTOWN	PA	42061	40.296	78.188	02050303				JUNIATA/RAYSTOWN
2 NAD	4 BALTIMORE	325 STILLWATER	PA	42059	41.696	75.486	02050107				UPPER TUNKANOCK
2 NAD	4 BALTIMORE	398 BLOOMINGTON	WV	54057	39.350	79.000	02070002				NEW
2 NAD	4 BALTIMORE	401 SAVAGE	MD	24023	39.516	79.133	02070002	05010			SAVAGE
3 SAD	6 WILMINGTN	233 E. EVERETT JORDAN (NEW HOPE)	NC	3037	75.654	78.069	03030002				CAPE FEAR
3 SAD	6 WILMINGTN	372 JOHN H KERR	VA	51117	36.598	78.301	03010102	462	06011	+	RCHANKE
3 SAD	6 WILMINGTN	375 PHILPOTT	VA	51089	36.781	80.022	03010103		06012	+	SMITH
3 SAD	7 CHARLESTON	232 W KERR SCOTT	NC	37193	36.134	81.224	03040101	06014	+	YADKIN	
3 SAD	8 SAVANNAH	74 CLARK HILL	SC	45181	33.661	82.199	03060103	287	+		SAVANNAH

(Continued) (Sheet 1 of 7)

Table 8 (Continued)

DIVISION	DISTRICT	RES. NAME	ST	CITY	LAT	LONG	HYD UNIT	NES	SCS	L&J	MAJOR TRIB	
3 SAD	8	SAVANNAH	330	HARTWELL			GA 13007	34.356	82.822	03060103	432	
3 SAD	9	JACKSONVILLE	66	OCKLAWAHKA (ROCKMAN)	FL 12107	29.508	81.804	03080102		+	SAVANNAH	
3 SAD	10	MOBILE	1	CLAIBORNE	AL 1099	31.533	87.516	03150204		+	OCHIWAHA	
3 SAD	10	MOBILE	2	COFFEEVILLE (JACKSON)	AL 1023	31.750	88.116	03160201		+	ALABAMA	
3 SAD	10	MOBILE	3	HOLT	AL 1125	33.252	87.450	03160112	226		MOBILE	
3 SAD	10	MOBILE	4	JONES BLUFF	AL 1085	32.350	86.800	03150201		+	BLACK WARRIOR	
3 SAD	10	MOBILE	5	DENOFCIS	AL 1091	32.520	87.879	03160201		+	ALABAMA	
3 SAD	10	MOBILE	7	WARRIOR	AL 1065	32.719	87.667	03160113		+	MOBILE	
3 SAD	10	MOBILE	8	MILLERS FERRY	AL 1131	32.116	87.399	03150203		+	BLACK WARRIOR	
3 SAD	10	MOBILE	69	ALLATOONA	GA 13015	34.163	84.727	03150104	281		ALABAMA	
3 SAD	10	MOBILE	70	GEORGE W. ANDREWS	GA 13099	31.283	85.116	03130004		+	ELOWAH	
3 SAD	10	MOBILE	71	SEMINOLE (WOODRUFF)	GA 13253	30.708	84.865	03130004	999		CHATTAHOOCHEE	
3 SAD	10	MOBILE	72	WALTER F. GEORGE (EUFAULA)	GA 13061	31.600	85.050	03130003	999		APALACHICOLA	
3 SAD	10	MOBILE	73	WEST POINT	GA 13285	32.475	85.988	03130002		+	CHATTAHOOCHEE	
3 SAD	10	MOBILE	75	CARTERS	GA 13123	34.604	84.667	03150102		+	COOSAWATTEE	
3 SAD	10	MOBILE	76	SIDNEY LANIER	GA 13139	34.158	84.072	03150001	293		CHATTAHOOCHEE	
3 SAD	10	MOBILE	191	SHATARIREE	MS 28075	32.475	88.796	03170001		+	CHICHASWHAY	
3 SAD	10	MOBILE	405	GAINESVILLE L/D	AL 1063	32.816	88.149	03160106		+	TOMBIGBEE	
3 SAD	10	MOBILE	411	BANKHEAD	AL 1125	33.449	87.349	03160112	226		BLACK WARRIOR	
5 NCD	11	BUFFALO	228	MT. MORRIS	NY 36051	42.733	77.911	04130002	04018		GENESEE	
5 NCD	14	ROCK ISLAND	98	CORALVILLE	IA 19103	41.724	91.527	07080208	25019	+	IOWA	
5 NCD	14	ROCK ISLAND	99	RED ROCK	IA 19125	41.389	92.979	07100008	503	+	DES MOINES	
5 NCD	15	ST. PAUL	178	GULL	MN 27035	46.411	94.357	07010106	102		GULL	
5 NCD	15	ST. PAUL	179	LAC QUI PARLE	MN 27023	45.600	95.833	07020002		+	MINNESOTA	
5 NCD	15	ST. PAUL	180	TRVERSE	MN 27055	45.630	96.652	09020101		+	BOIS DE SIQUIX	
5 NCD	15	ST. PAUL	181	LEECH	MN 27111	46.206	94.308	07010102	105	+	LEECH	
5 NCD	15	ST. PAUL	182	ORWELL	MN 27021	46.215	96.177	09020103		+	OTTER TAIL	
5 NCD	15	ST. PAUL	183	CROSS	MN 27061	47.166	94.112	07010101		+	PINE	
5 NCD	15	ST. PAUL	184	POKEGAMA	MN 27024	46.788	93.355	07010101		+	MISSISSIPPI	
5 NCD	15	ST. PAUL	185	SANDY	MN 27024	46.788	93.319	07010103		+	TAMARACK	
5 NCD	15	ST. PAUL	186	WINNIPEGOSHISH	MN 27057	47.429	94.049	07010101		+	MISSISSIPPI	
5 NCD	15	ST. PAUL	187	PINE RIVER	MN 27021	46.669	94.112	07010105		+	PINE	
5 NCD	15	ST. PAUL	236	HORME	ND 38099	48.399	97.766	09020310	30017		PARK / S. BR.	
5 NCD	15	ST. PAUL	237	ASHTABULA (BALDHILL)	ND 36003	47.033	98.083	09020203	565	30018	SHYENNE	
5 NCD	15	ST. PAUL	399	EAU GALLE	WI 55093	44.856	92.244	07050003			EAU GALLE	
4 ORD	16	PITTSBURG	243	BERLIN	OH 39133	41.045	81.002	05030103	395	21038	+	MAHONING
4 ORD	16	PITTSBURG	252	MICHAEL J. KIRWAN	OH 29099	41.156	81.079	05030103			MAHONING/W BR	
4 ORD	16	PITTSBURG	254	MOSQUITO CREEK	OH 39155	41.299	80.758	05030102	406		MOSQUITO	
4 ORD	16	PITTSBURG	308	CONEMAUGH RIVER	PA 42063	40.459	79.368	05010007			CONEMAUGH	
4 ORD	16	PITTSBURG	309	CROOKED CREEK	PA 42005	40.114	79.508	05010006		21024	CROOKED	
4 ORD	16	PITTSBURG	311	EAST BRANCH CLARION R	PA 42047	41.559	78.594	05010005	04021		CLARION/E. BR.	
4 ORD	16	PITTSBURG	314	LOYALHANNA	PA 42129	40.456	79.451	05010008		21022	LOYALHANNA	

(Continued)

(Sheet 2 of 7)

Table 8 (Continued)

DIVISION	DISTRICT	RES.	NAME	ST	STCTY	LAT	LONG	HYD UNIT	NES	SCS	L&J MAJOR TRIB	
4 ORD	16 PITTSBURG	315	MAHONING CREEK	PA	42005	40.921	79.278	05010006	21023		MAHONING	
4 ORD	16 PITTSBURG	317	SHENANDO RIVER	PA	420085	41.264	80.463	05030102	426	+	SHENANDO	
-4 ORD	16 PITTSBURG	318	TIONESTA	PA	42053	41.473	79.438	05010003	21021	+	TIONESTA	
4 ORD	16 PITTSBURG	319	VOUGHTOGHENY RIVER	PA	42051	39.798	79.368	05020006	21026	+	VOUGHTOGHENY	
4 ORD	16 PITTSBURG	322	WOODCOCK	PA	42039	41.697	80.101	05040004			WOODCOCK	
-4 ORD	16 PITTSBURG	323	ALLEGHENY (KINZUA)	PA	42083	41.841	79.003	05010001	147	+	ALLEGHENY	
4 ORD	16 PITTSBURG	393	TYGART	WV	54091	39.313	80.033	05020001	470	21025	+	TYGART VALLEY
-4 ORD	17 HUNTINGTON	123	DEWEY	KY	21071	37.737	82.730	05070203			JOHNS/LEvisa FK	
4 ORD	17 HUNTINGTON	124	FISHTRAP	KY	21195	37.433	82.416	05070202	19058	+	BIG SANDY/LEVISA	
4 ORD	17 HUNTINGTON	125	GRAYSON	KY	21043	38.452	82.985	05090104	19060	+	LITTLE SANDY	
-4 ORD	17 HUNTINGTON	127	GREENUP L/D	KY	21069	38.647	82.861	05090103			OHIO	
4 ORD	17 HUNTINGTON	239	PAINT CREEK	OH	39071	39.251	83.349	05060003			PAINT	
4 ORD	17 HUNTINGTON	241	ATWOOD	OH	39019	40.526	81.285	05040001	393	21027	+	INDIAN
4 ORD	17 HUNTINGTON	242	BEACH CITY	OH	39151	40.634	81.558	05040001	394	21060	SUGAR	
4 ORD	17 HUNTINGTON	245	CHARLES MILL	OH	39005	40.740	82.363	05040002	397	21003	+	MOHICAN/BLACK FK
4 ORD	17 HUNTINGTON	246	CLENDENING	OH	39067	40.269	81.278	05040001			STILLWTR/BRUSHY	
4 ORD	17 HUNTINGTON	247	DEER CREEK	OH	39097	39.622	83.216	05060002	398		SCIOTO/DOER	
4 ORD	17 HUNTINGTON	248	DELAWARE	OH	39041	40.358	83.169	05060001	399	19046	OLETANGY	
4 ORD	17 HUNTINGTON	249	DILLON	OH	39119	39.992	82.082	05030206	400	21061	+	LICKING
4 ORD	17 HUNTINGTON	251	LEEVILLE	OH	39019	40.470	81.194	05040001			CONNONTON/T	
4 ORD	17 HUNTINGTON	255	PIEDMONT	OH	39013	40.191	81.215	05040001			STILLWATER	
4 ORD	17 HUNTINGTON	256	PLEASANT HILL	OH	39139	40.623	82.325	05040002	408	21001	+	MOHICAN/CLEAR FK
4 ORD	17 HUNTINGTON	257	SENCAVILLE	OH	39059	39.925	81.434	05040005	21002	+	WILLS	
4 ORD	17 HUNTINGTON	258	TAPAH	OH	39067	40.356	81.227	05040001	412		LITTLE STILLWTR	
4 ORD	17 HUNTINGTON	259	BURR OAK(TOM JENKINS)	OH	39127	39.541	82.057	05032024	21063	+	SUNDAY	
4 ORD	17 HUNTINGTON	261	WILLS CREEK	OH	39031	40.156	81.849	05040005			WILLS	
4 ORD	17 HUNTINGTON	373	JOHN W FLANNAGAN	VA	51051	37.233	82.348	05070202	463	+	POUND	
4 ORD	17 HUNTINGTON	374	NORTH FORK OF POUND	VA	51195	37.124	82.631	05070202			POUND/N FK	
4 ORD	17 HUNTINGTON	389	BLUESTONE	WV	54089	37.640	80.887	05050002	467	19056	NEW	
4 ORD	17 HUNTINGTON	390	EAST LYNN	WV	54099	38.145	82.382	05090102			TWELVEPOLE/E FK	
4 ORD	17 HUNTINGTON	391	SUMMERSVILLE	WV	54067	38.217	80.891	05050003	469		GAULEY	
4 ORD	17 HUNTINGTON	392	SUTTON	WV	54007	38.217	80.667	05050007	19062	+	ELK	
4 ORD	17 HUNTINGTON	394	WINFOLE	WV	54079	38.533	81.133	05050008			KANAWHA	
4 ORD	17 HUNTINGTON	406	MOHICANVILLE	OH	39005	40.724	82.152	05040002			MOHICAN/LAKE FK	
4 ORD	17 HUNTINGTON	416	ALUM CREEK	OH	39041	40.185	82.964	05060001			ALUM	
4 ORD	18 LOUISVILLE	90	CAGLES MILL	IN	18133	39.487	86.917	05120203	17023	+	MILL	
4 ORD	18 LOUISVILLE	91	HUNTINGTON	IN	18069	40.845	85.468	05120101			WABASH	
4 ORD	18 LOUISVILLE	92	MISSISSINewA	IN	18053	40.716	85.956	05120103	334	+	MISSISSINewA	
4 ORD	18 LOUISVILLE	93	MONROE	IN	18105	39.007	86.512	05120108	336	+	SALT	
4 ORD	18 LOUISVILLE	94	SALAMONIE	IN	18005	40.807	85.679	05120102			SALAMONIE	
4 ORD	18 LOUISVILLE	95	C M HARDEN (MANSFIELD)	IN	18121	39.717	87.072	05120108			BIG RACON	
4 ORD	18 LOUISVILLE	97	BRUCKVILLE	IN	18047	39.439	85.003	05080203			WHITEWATER	
4 ORD	18 LOUISVILLE	120	BAREEN RIVER	KY	21005	36.891	86.124	05110002	350		BARREN	
4 ORD	18 LOUISVILLE	121	BUCHORN	KY	21193	37.339	83.470	05100202			KENTUCKY	
4 ORD	18 LOUISVILLE	126	GREEN RIVER	KY	21217	37.247	85.339	05110001			GREEN	
4 ORD	18 LOUISVILLE	128	NOLIN RIVER	KY	21061	37.278	86.247	05110001			NOLIN	

(Continued)

(Sheet 3 of 7)

Table 8 (Continued)

DIVISION	DISTRICT	RES. NAME	ST	SCTY	LAT	LONG	HYD UNIT	NES	SCS	L&U	MAJOR TRIB	
4 ORD	18 LOUISVILLE	129 ROUGH RIVER	KY	21027	37.619	86.499	05110004	18012	+	ROUGH		
4 ORD	18 LOUISVILLE	134 CAVE RUN	KY	21205	38.119	83.563	05100101			LICKING		
4 ORD	18 LOUISVILLE	260 WEST TORK OF MILL CCR	CH	39017	39.559	84.494	05090203	19047	+	MILLIN FK		
4 ORD	18 LOUISVILLE	263 CLARENCE J BROWN	CH	39023	39.950	83.747	05080001			BUCK		
4 ORD	19 NASHVILLE	119 BARKLEY	KY	21143	37.021	69.221	05102005	442	+	CUMBERLAND		
4 ORD	19 NASHVILLE	122 CUMBERLAND (WOLF CREEK)	KY	21207	36.859	85.145	05130103	351	18011	+	CUMBERLAND	
4 ORD	19 NASHVILLE	337 CENTER HILL	TN	47041	36.097	85.828	05130108			CANEY FK		
4 ORD	19 NASHVILLE	338 CHEATHAM	TN	47037	36.324	87.226	05130202	444	+	CUMBERLAND		
4 ORD	19 NASHVILLE	340 J PFRY PRIEST	TN	47037	36.151	86.617	05130203	444	+	STONIES		
4 ORD	19 NASHVILLE	342 OLD HICKORY	TN	47165	36.297	86.655	05130201	444	18010	+	CUMBERLAND	
4 ORD	19 NASHVILLE	313 DALE HOLLOW	TN	47027	36.538	85.441	05130105	352	18009	+	CUMBERLAND	
6 LMVD	20 ST LOUIS	81 CARLYLE	IL	17027	38.618	89.351	07140202	297	24053	+	KASKASKIA	
6 LMVD	20 ST LOUIS	87 SHELBYSVILLE	IL	17173	39.406	86.783	07140201	315		KASKASKIA		
6 LMVD	20 ST LOUIS	88 RENO	IL	17055	38.037	88.956	07140106	313	+	BIG MUDDY		
6 LMVD	21 NEW JERSEY	196 WAPPAPALLOOCA	MO	29223	36.928	90.284	08020202	551	16013	+	ST FRANCIS	
6 LMVD	22 VICKSBURG	14 DE GRAY	AR	5019	34.214	93.113	08040102	485		CADDO		
6 LMVD	22 VICKSBURG	18 GREENSN (NARROWS)	AR	5109	34.148	93.715	08040103			LITTLE MISSOURI		
6 LMVD	22 VICKSBURG	19 OUACHITA (BLAKELY MTN)	AR	5051	34.572	93.197	08040101	483		OUCHITA		
6 LMVD	22 VICKSBURG	188 ARKABUTLA	MS	28137	34.757	90.124	08030204	359	15026	COLONATER		
6 LMVD	22 VICKSBURG	189 ENID	MS	28161	34.158	89.903	08030203	360	15031	YOCNA		
6 LMVD	22 VICKSBURG	190 GRENADA	MS	28043	33.808	89.572	08030203	361	15032	YATOBUSA		
6 LMVD	22 VICKSBURG	192 SARDIS	MS	28107	34.399	89.776	08030201	363	15030	+	TALLAHATCHIE	
6 LMVD	23 NEW ORLEANS	138 WALLACE	LA	22031	32.319	93.670	11140206		49008	+	CYPRESS BAYOU	
6 LMVD	23 NEW ORLEANS	352 LAKE O' THE PINES (FERRELLS)	TX	48315	32.751	94.499	11140305	648	49010	+	BIG CYPRESS	
6 LMVD	23 NEW ORLEANS	353 TEXARKATA (WRIGHT PATMAN)	TX	48307	33.304	94.160	11140302	669	49007	+	SULPHUR	
6 LMVD	23 NEW ORLEANS	413 CADDO	LA	22017	32.703	93.920	11140306	637		WILLOW PASS		
7 SWD	24 LITTLE ROCK	11 BEAVER	AR	5007	36.420	93.847	11010001	480		WHITE		
7 SWD	24 LITTLE ROCK	12 BLUE MOUNTAIN	AR	5149	35.101	93.650	11110204	482	+	PETIT JEAN		
7 SWD	24 LITTLE ROCK	13 BULL SHOALS	AR	5089	36.367	92.572	11010003	480	+	WHITE		
7 SWD	24 LITTLE ROCK	16 GREERS FERRY	AR	5023	35.517	91.997	1101004	487	+	LITTLE RED		
7 SWD	24 LITTLE ROCK	17 DARDANELLE	AR	5115	35.247	93.173	11110202	44013	+	ARKANSAS		
7 SWD	24 LITTLE ROCK	21 NIMROD	AR	5149	34.951	93.160	11110206	490	44006	FOURCHE LA FAVE		
7 SWD	24 LITTLE ROCK	22 NORFOLK	AR	5005	36.249	92.337	11010306	491	44007	WHITE/N FK		
7 SWD	24 LITTLE ROCK	23 OZARK	AR	5047	35.472	93.812	11110201	487	+	ARKANSAS		
7 SWD	24 LITTLE ROCK	193 CLEARWATER	MO	29179	37.133	90.775	11010007	547	+	BLACK		
7 SWD	24 LITTLE ROCK	200 TABLE ROCK	MO	29209	36.595	93.311	1101001	480	+	WHITE		
7 SWD	25 TULSA	20 MILLWOOD	AR	5081	33.691	93.965	11140109	489	+	LITTLE SALINE		
7 SWD	25 TULSA	102 COUNCIL GROVE	KS	20127	38.679	96.506	11070201	512		NEOSH		
7 SWD	25 TULSA	103 ELK CITY	KS	20125	37.277	95.776	11070104	513		ELK		
7 SWD	25 TULSA	104 FALL RIVER	KS	20073	37.646	96.077	11070102	514	+	FALL		
7 SWD	25 TULSA	105 JOHN REDMOND	KS	20031	38.237	95.768	11070201	515	45056	+	NEOSH	

(Continued)

(Sheet 4 of 7)

Table 8 (Continued)

DIVISION	DISTRICT	RES	NAME	ST	ST CTY	LAT	LONG	HYD UNIT	NES	SCS	L&J	MAJOR TRIB
7 SWD	25	TULSA	107 MARION	KS	20115	38.372	97.081	11070202	517	+	COTTONWOOD	
7 SWD	25	TULSA	112 BROKEN BOW	KS	20203	37.741	95.933	11070101	523	45040	+	VERDGRIS
7 SWD	25	TULSA	264 CANTON	OK	40089	34.143	94.683	11140103	+	LITTLE MATTN FK		
7 SWD	25	TULSA	265 CHOUTEAU	OK	40111	36.084	98.601	11100301	46013	+	CANADIAN/N	
7 SWD	25	TULSA	266 EUFALIA	OK	40145	35.900	95.500	11070105	46013	+	VERDGRIS	
7 SWD	25	TULSA	267 FORT GIBSON	OK	40061	35.305	95.362	11080204	564	45041	+	CANADIAN/S
7 SWD	25	TULSA	268 FORT SUPPLY	OK	40145	35.871	95.228	11070209	46001	+	NEOSH	
7 SWD	25	TULSA	269 GREAT SALT PLAINS	OK	40045	36.553	99.571	11100203	586	46001	+	ARKANSAS/SALT FK
7 SWD	25	TULSA	270 HETBURN	OK	40037	36.744	98.135	11060004	46002	45039	+	POLECAT
7 SWD	25	TULSA	271 HULAH	OK	40113	36.028	96.298	1110101	45039	+	CANEY	
7 SWD	25	TULSA	273 KEYSTONE	OK	40037	36.151	95.068	11070106	45035	+	ARKANSAS	
7 SWD	25	TULSA	274 NEWT GRAHAM	OK	40145	36.050	95.600	11070105	591	45057	+	VERDGRIS
7 SWD	25	TULSA	275 COLOGAH	OK	40131	36.421	95.678	11070103	592	45039	+	VERDGRIS
7 SWD	25	TULSA	276 PINE CREEK	OK	40089	34.111	95.079	11040107	45039	+	LITTLE	
7 SWD	25	TULSA	277 ROBERT S KERR	OK	40135	35.350	94.850	1110104	45039	+	ARKANSAS	
7 SWD	25	TULSA	278 TEKKILLER FERRY	OK	40021	35.596	95.049	1110102	593	45039	+	ILLINOIS
7 SWD	25	TULSA	279 W D MAID	OK	40079	35.300	94.600	1110104	45039	+	ARKANSAS	
7 SWD	25	TULSA	280 WEBERS FALLS	OK	40101	35.650	95.250	1110102	45039	+	ARKANSAS	
7 SWD	25	TULSA	281 WISTER	OK	40079	34.936	94.719	1110105	595	49012	+	POTEAU
7 SWD	25	TULSA	282 CLAYTON	OK	40127	34.600	95.000	11040005	45039	+	JACKR	
7 SWD	25	TULSA	283 KAW	OK	40071	36.659	96.921	11050001	45039	+	ARKANSAS	
7 SWD	25	TULSA	284 COPAN	OK	40147	36.894	95.966	11070106	45039	+	LITTLE CANEY	
7 SWD	25	TULSA	285 HUGO	OK	40123	34.601	95.380	11040105	45039	+	KAMICHI	
7 SWD	25	TULSA	286 OPTIMA	OK	40139	36.659	98.100	1100102	45039	+	CANADIAN/N	
7 SWD	25	TULSA	287 WAURKA	OK	40067	34.250	98.100	11130208	45039	+	BEAVER	
7 SWD	25	TULSA	348 TEARDAM (DENNYSON)	TX	48181	35.818	96.572	11030101	663	50012	+	RED
7 SWD	25	TULSA	357 PAT MAYSE	TX	48147	33.852	95.543	1110101	45039	+	SANDERS	
7 SWD	25	TULSA	370 KEMP	TX	48023	33.758	99.150	11130206	646	50023	+	WICHITA
7 SWD	25	TULSA	402 GILLHAM	AR	5061	34.200	94.200	11140109	45039	+	COSATOT	
7 SWD	26	FORT WORTH	344 BARDWELL	TX	48139	32.250	96.646	12030109	45039	+	WAHACHIE	
7 SWD	26	FORT WORTH	345 BELTON (BELL)	TX	48027	32.106	97.474	12030108	45039	+	LEON	
7 SWD	26	FORT WORTH	346 BENBROOK	TX	48439	32.650	97.448	12030102	633	53047	+	TRINITY/CLEAR FK
7 SWD	26	FORT WORTH	347 CANYON	TX	48091	29.868	98.198	12100201	639	45039	+	GUADALUPE
7 SWD	26	FORT WORTH	349 GRAPEVINE	TX	48439	32.972	97.056	12030104	45039	+	DENTON	
7 SWD	26	FORT WORTH	351 HOROS CREEK	TX	48083	31.832	99.560	12030108	53049	45039	+	HOROS
7 SWD	26	FORT WORTH	354 LAVON	TX	48085	33.031	96.482	12030106	649	51030	+	TRINITY/E FK
7 SWD	26	FORT WORTH	355 LEWIS/LIL'GARZA LITTLE ELM	TX	48121	33.069	96.958	12030103	650	51032	+	TRINITY
7 SWD	26	FORT WORTH	356 NAVARRO MILLS	TX	48349	31.957	96.689	12030108	45039	+	RICHLAND	
7 SWD	26	FORT WORTH	358 PROCTOR	TX	48093	31.968	98.485	12070201	45039	+	LEON	
7 SWD	26	FORT WORTH	359 SAM RAYBURN (MC GEE BEND)	TX	48405	31.060	94.105	12030105	657	45039	+	ANGELINA
7 SWD	26	FORT WORTH	360 Q C FISHER (SAN ANGELLO)	TX	48451	31.484	90.481	12030104	656	45039	+	CONCHO
7 SWD	26	FORT WORTH	362 STILLHOUSE HOLLOW (LAPASAS)	TX	48477	30.322	96.525	12070102	659	45039	+	YEGUA
7 SWD	26	FORT WORTH	363 WACO	TX	48309	31.022	97.532	12070203	661	45039	+	LAMPASAS
7 SWD	26	FORT WORTH	364 WHITNEY	TX	48217	31.865	97.197	12030203	53031	45039	+	BOSQUE
7 SWD	26	FORT WORTH	371 B STEINHAGEN (TOWNBLUFF)	TX	48241	30.795	94.179	12020003	51033	45039	+	BRAZOS

(Continued)

(Sheet 5 of 7)

Table 8 (Continued)

DIVISION	DISTRICT	RES. NAME	ST. CITY	LAT.	LONG.	HND	UNIT	NEA	SCS	LEG. MAJOR	TRIB.
- 7 SWD	28 A-B-C-E	JOE	65 JOHN MARTIN (HASTY)	CO 8011 38.068	101° 33' 36"	11020009		48001		ARKANSAS	
- 7 SWD	28 A-B-C-E	JOE	218 ABIGAIL	NW 35°39'	36.240	106.423	13020102		48008	RIO CHAMA	
- 7 SWD	28 A-B-C-E	JOE	219 CHERYL	NW 35°47'	35.402	104.150	11080005	819	47001	CANADIAN'S	PURGATORIUM
- 7 SWD	28 A-B-C-E	JOE	467 TRITIUM	CO 8071 37.160	104.600	115.620010					
- 8 MRD	29 KANSAS CITY	106 RATHBURN	IA 1907 40.824	92.892	10280201	502				CHARITON	
- 8 MRD	29 KANSAS CITY	106 RATHBURN	KS 20033 38.606	91.957	10260006	51.6	32003	♦		SMOKY HILL	
- 8 MRD	29 KANSAS CITY	108 NELFRED	KS 2061 39.077	90.591	10250017	51.9				REPUBLICAN	
- 8 MRD	29 KANSAS CITY	109 MC LEVYN	KS 2039 38.509	95.709	10290101	51.8				MARIS DE CYGNES	
- 8 MRD	29 KANSAS CITY	110 FLOYD	KS 2087 39.114	95.425	102270103	52.1				DELAWARE	
- 8 MRD	29 KANSAS CITY	111 EKERA	KS 2039 38.647	95.563	10230101	52.2				110-MILE Ck	
- 8 MRD	29 KANSAS CITY	113 TURTLE CREEK	KS 2049 39.254	96.602	10270205	52.4				BIG BLUE	
- 8 MRD	29 KANSAS CITY	114 WILSON	KS 2067 38.956	98.493	10260009	52.5				SALINE	
- 8 MRD	29 KANSAS CITY	194 COMME DE TERRE	KO 2965 37.901	93.316	10290107	54.8				POMME DE TERRE	
- 8 MRD	29 KANSAS CITY	195 STOCKTON	KO 2939 37.695	93.765	10290106	54.9				SAC	
- 9 MRD	29 KANSAS CITY	207 HARLAN COUNTY	NE 31083 40.069	99.208	10250015	55.5	32029	♦		REPUBLICAN	
- 8 MRD	30 OMAHA	64 CHERRY CREEK	CO 3005 39.655	104.854	10190003	768				CHERRY	
- 8 MRD	30 OMAHA	203 FORT PECK	MT 30033 48.007	106.396	10040104	40002	♦			MISSOURI	
- 8 MRD	30 OMAHA	208 OLIVE CREEK	NE 31109 40.591	96.849	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	209 BLUES EM	NE 31109 40.648	96.851	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	210 WASH TRAIN	NE 31109 40.620	96.581	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	211 STAGECOACH	NE 31109 40.609	96.629	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	212 YANKEE HILL	NE 31109 40.780	96.780	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	213 CONESTOGA	NE 31109 40.764	96.847	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	214 TWIN	NE 31109 40.824	96.944	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	215 PAMELA	NE 31109 40.838	96.865	10200203	560				MIDDLE Ck	
- 8 MRD	30 OMAHA	216 HOLMES PARK	NE 31109 40.793	96.638	10200203					SALT Ck/T	
- 8 MRD	30 OMAHA	217 BRANCHED OAK	NE 31109 40.970	96.850	10200203	554				OAK Ck	
- 8 MRD	30 OMAHA	234 BOCA-NA-HALEY	ND 38011 45.983	103.247	10130301					GRAND/N Fk	
- 8 MRD	30 OMAHA	235 SAKAWAKEA GARRISON	ND 38015 47.503	101.431	10110101	575	♦			MISSOURI	
- 8 MRD	30 OMAHA	331 SHARPE (BIG BEND)	SD 46665 44.038	99.446	10140101					MISSOURI	
- 8 MRD	30 OMAHA	332 COLD BROOK	SD 46633 43.453	98.487	10120109					FALL/T	
- 8 MRD	30 OMAHA	334 FRANCIS CASE (ETI RANDALL)	SD 46553 43.068	98.554	10140101					MISSOURI	
- 8 MRD	30 OMAHA	335 LEWIS AND CLARKE (GAVINS PTI)	SD 46135 42.819	97.482	10170101					MISSOURI	
- 8 MRD	30 OMAHA	336 DAHE	SD 46119 44.352	100.559	10130105					MISSOURI	
- 8 MRD	30 OMAHA	415 CHATFIELD	CO 3835 39.557	105.057	10190002					PLATE CANYON	
- 9 NPD	31 WALLA WALLA	77 DWORSHAK	ID 16035 46.516	116.299	17060308	779	♦			CLEARWATER/N Fk	
- 9 NPD	31 WALLA WALLA	78 LUCKY PEAK	ID 16027 43.550	116.000	17050112					BOISE	
- 9 NPD	31 WALLA WALLA	79 RIEE	ID 16019 43.580	111.741	17040205					WILLOW	
- 9 NPD	31 WALLA WALLA	379 ICE HARBOR	WA 53071 46.248	118.873	17060110					SNAKE	
- 9 NPD	32 SEATTLE	BO ALBEN FALLS (END ORIELLE)	ID 16017 46.476	116.346	17010214					PEND OREILLE	
- 9 NPD	32 SEATTLE	204 KICKANUSA LIBBY	MT 30053 48.410	115.313	17010101	795	♦			KOOTENAI	
- 9 NPD	32 SEATTLE	377 RUFUSWOODS (CHEEF JOSEPH)	WA 53057 47.986	119.625	17020005					COLUMBIA	
- 9 NPD	32 SEATTLE	384 W.D MOUNTAIN	WA 53553 47.150	121.870	17110014					WHITE	

(Continued)

(Sheet 6 of 7)

Table 8 (Concluded)

DIVISION	DISTRICT	RES. NAME	ST. STCTY	LAT.	LONG	HYD UNIT	NES	SCS	L&J	MAJOR TRIB
9 NPD	32 SEATTLE	385 WYNOOCHEE	WA 53027	47.384	123.605	17100104				WYNOOCHEE
9 NPD	32 SEATTLE	386 HOWARD A HANSON	WA 53033	47.277	121.784	17110013				GREEN
9 NPD	33 PORTLAND	288 BLUE RIVER	OR 41039	44.172	122.327	17090004			+	BLUE
9 NPD	33 PORTLAND	289 BONNEVILLE	OR 41027	45.643	121.939	17070105			+	COLUMBIA
9 NPD	33 PORTLAND	290 COTTAGE GROVE	OR 41016	43.716	123.048	17090002			+	WILLAMETTE/COAST
9 NPD	33 PORTLAND	291 COUGAR	OR 41039	44.127	122.240	17090004			+	MCKENZIE/S
9 NPD	33 PORTLAND	292 CELICO (DALES)	OR 41027	45.709	120.723	17070105			+	COLUMBIA
9 NPD	33 PORTLAND	293 DETROIT	OR 41017	44.222	122.248	17090003			+	SANTIAM/N
9 NPD	33 PORTLAND	294 DEXTER	OR 41039	43.916	122.816	17090001			+	WILLAMETTE/MDL
9 NPD	33 PORTLAND	295 DORENA	OR 41039	43.786	122.954	17090002			+	WILLAMETTE/T
9 NPD	33 PORTLAND	296 FALL CREEK	OR 41039	43.944	122.755	17090001			+	FALL
9 NPD	33 PORTLAND	297 FERN RIDGE	OR 41039	44.120	123.299	17090003			+	LONG TOM
9 NPD	33 PORTLAND	298 FOSTER	OR 41043	44.416	122.673	17090006			+	SANTIAM/MDL
9 NPD	33 PORTLAND	299 GREEN PETER	OR 41043	44.452	122.594	17090006			+	SANTIAM/MIDDLE
9 NPD	33 PORTLAND	300 HILLS CREEK	OR 41039	43.708	122.423	17090001	830		+	WILLAMETTE/MDL
9 NPD	33 PORTLAND	301 JOHN DAY (UMATILLA)	OR 41021	45.722	120.203	17070101			+	COLUMBIA
9 NPD	33 PORTLAND	302 LOOKOUT POINT	OR 41039	43.913	122.750	17090001			+	WILLAMETTE/MDL
9 NPD	33 PORTLAND	304 LOST CREEK	OR 41029	42.750	122.550	17100307			+	ROGUE/T
9 NPD	33 PORTLAND	305 BIG CLIFF	OR 41047	44.733	122.283	17090005			+	SANTIAM/N
10 SPD	34 SACRAMENTO	24 BLACK BUTTE	CA 6103	39.813	122.336	18020009			+	STONY
10 SPD	34 SACRAMENTO	26 ENGLEBRIGHT	CA 6115	39.239	121.268	18020016			+	YUBA
10 SPD	34 SACRAMENTO	28 ISABELLE	CA 6209	35.647	118.480	18030001			+	KERN
10 SPD	34 SACRAMENTO	30 MARTIS CREEK	CA 6017	39.300	120.150	16050102			+	KOOTENAI
10 SPD	34 SACRAMENTO	32 NEW HOGAN	CA 6009	38.149	120.812	18040008			+	CALAVERAS
10 SPD	34 SACRAMENTO	33 PINE FLAT	CA 6019	36.833	119.393	18030010			+	KINGS
10 SPD	34 SACRAMENTO	36 SUCCESS	CA 6107	36.061	118.321	18030016			+	TULE
10 SPD	34 SACRAMENTO	37 KANEAH (TERMINUS)	CA 6107	36.414	119.001	18030005			+	KANEAH
10 SPD	34 SACRAMENTO	41 FOLSOM	CA 6017	38.699	121.19	18030022			+	AMERICAN
10 SPD	34 SACRAMENTO	43 NEW BULLARDS BAR	CA 6031	39.409	121.143	18020016			+	YUBA/N
10 SPD	34 SACRAMENTO	44 CAMANCHE	CA 6009	38.224	121.021	18040009			+	MOULINNE
10 SPD	34 SACRAMENTO	47 CHERRY VALLEY	CA 6109	38.000	119.300	18040005			+	CHERRY
10 SPD	34 SACRAMENTO	48 NEW DON PEDRO	CA 6109	37.702	120.421	18040005	744	71008		TUOLUMNE
10 SPD	34 SACRAMENTO	51 MCCLURE (NEW EXCHEQUER)	CA 6043	37.583	120.269	18040004			+	MERCED
10 SPD	34 SACRAMENTO	54 MILLERTON (FRIANT)	CA 6019	37.002	119.70	18040001			+	SAN JOAQUIN
10 SPD	35 SAN FRANCISCO	29 MENDOCINO	CA 6045	39.198	123.181	18010110	752		+	RUSSIAN
10 SPD	35 SAN FRANCISCO	39 SANTA MARGARITA (SALTINAS)	CA 6079	35.337	120.502	18060005	756	71004	+	SALTINAS
10 SPD	36 LOS ANGELES	9 ALAMO	AZ 4015	34.232	113.600	15030104			+	WILLIAMS
10 SPD	36 LOS ANGELES	27 HANSEN	CA 6037	34.260	118.384	18070004	70018		???	

(Sheet 7 of 7)

Table 9

Listing of the LISTS.DBF File

DIVISION	DISTRICT	RES	NAME	ST	SITY	LAT	LONG	HYD UNIT	NES	SCS	L&J MAJOR TRIB
1 NED	1 NEW ENGLAND	140	BARRE FALLS	MA	250.27	42.350	72.100	01080204			
1 NED	1 NEW ENGLAND	141	BIRCH HILL	MA	250.27	42.670	72.170	01080202			
1 NED	1 NEW ENGLAND	143	CORANT BROOK	MA	250.15	42.050	72.300	01CB0204			
1 NED	1 NEW ENGLAND	145	HOCIES VILLAGE	MA	250.27	42.150	72.970	011CC001			
1 NED	1 NEW ENGLAND	146	KNIGHTVILLE	VA	250.13	42.300	72.850	01060206			
1 NED	1 NEW ENGLAND	149	WEST HILL	VA	250.27	42.150	71.500	01090003			
1 NED	1 NEW ENGLAND	153	EAST BRANCH	CT	90.05	41.850	73.150	01100005			
1 NED	1 NEW ENGLAND	154	HALL MEADOW	CT	90.05	41.900	73.200	01000005			
1 NED	1 NEW ENGLAND	157	MAD RIVER	CT	90.05	41.950	73.150	01080207			
1 NED	1 NEW ENGLAND	160	SUCKER BROOK	CT	90.05	41.930	73.150	01082027			
1 NED	1 NEW ENGLAND	161	THISTLETON	CT	90.05	41.700	73.100	01100005			
1 NED	1 NEW ENGLAND	163	BLACK WATER	NH	330.13	43.350	71.750	01070003			
1 NED	1 NEW ENGLAND	175	UNION VILLAGE	VT	520.17	43.800	72.250	01080103			
2 NAD	3 PHILADELPHIA	327	DISPERV (JADWIN)	PA	421.27	41.650	75.250	02046103			
2 NAD	4 BALTIMORE	230	AIRPORT	NY	361.01	42.400	77.700	02050104			
2 NAD	4 BALTIMORE	231	SOUTH PLUMOUTH	NY	360.25	42.350	75.100	02050101			
2 NAD	4 BALTIMORE	323	INDIAN ROCK	PA	421.33	39.850	76.900	02050306			
2 NAD	4 BALTIMORE	324	HAMMOND	PA	421.17	41.950	77.250	02050104			
2 NAD	4 BALTIMORE	325	TILOGA	PA	421.17	41.800	77.050	02050104			
2 NAD	4 BALTIMORE	326	CONANEQUE	PA	421.17	41.950	77.300	02050104			
2 NAD	5 NORFOLK	376	GATHRIGHT	VA	510.17	38.050	79.900	02080201			
5 NCD	13 CHICAGO	82	FARWELL	IL	117	0.0	0.0		24059		
5 NCD	13 CHICAGO	83	THOMAS J. O'BRIEN LTD	IL	117	0.0	0.0				
5 NCD	13 CHICAGO	84	DRESDEN ISLAND LTD	IL	170.63	41.400	88.250	07120005			
5 NCD	13 CHICAGO	85	PEORIA LTD	IL	171.43	40.800	89.550	07130001			
5 NCD	13 CHICAGO	86	LAGRANCE LTD	IL	170.17	40.000	90.500	07130003			
5 NCD	13 CHICAGO	89	FORNULAC	IL	117	0.0	0.0		24055		
5 NCD	14 ROCK ISLAND	101	SAYLORVILLE	IA	191.53	41.750	93.700	07100004			
5 NCD	15 ST. PAUL	400	LA FARGE	WI	551.23	43.650	90.550	07070006			
4 ORD	16 PITTSBURG	397	STONEWALL JACKSON	WV	540.41	38.900	80.500	05020002			
4 ORD	16 PITTSBURG	412	PIMMUTING	PA	420.39	41.600	81.500	05030102	425		
4 ORD	17 HUNTINGTON	136	YATESVILLE	KY	211.27	38.150	82.800	05070204			
4 ORD	17 HUNTINGTON	137	PAINTSVILLE	KY	211.15	37.850	82.850	05070203			
4 ORD	17 HUNTINGTON	244	ECILIVAR	OH	391.51	40.700	81.550	05040001			
4 ORD	17 HUNTINGTON	250	DOVE	OH	391.57	40.550	81.400	05040001			
4 ORD	17 HUNTINGTON	253	MOHAWK	CH	330.05	40.800	82.200	05040002			
4 ORD	17 HUNTINGTON	335	BURNSVILLE	WV	540.07	38.850	80.600	05030203			
4 ORD	17 HUNTINGTON	396	R D BAILEY	WV	541.09	37.600	81.700	05070101			
4 ORD	18 LOUISVILLE	96	PATOKA	IN	181.17	38.460	86.600	05120209			

(Continued)

(Sheet 1 of 3)

Table 9 (Continued)

DIVISION	DISTRICT	RES NAME	ST STCTY	LAT	LONG HYD UNIT NES SCS L&J MAJOR TRIBS
4 ORD	18 LOUISVILLE	130 TAYLORSVILLE	KY 21211	38.100	85.200 05140102
4 ORD	18 LOUISVILLE	131 CARR FORK	KY 21119	37.250	83.000 05100201
4 ORD	18 LOUISVILLE	135 RFD RIVER	KY 21237	37.800	83.500 05100204
4 ORD	18 LOUISVILLE	240 EAST FORK	OH 39025	39.150	84.150 05090202
4 ORD	18 LOUISVILLE	262 CAESAR GREEK	OH 39165	39.500	84.050 05090202
4 ORD	19 NASHVILLE	132 MARTINS FORK	KY 21095	36.800	83.300 05130101
4 ORD	19 NASHVILLE	133 LAUREL RIVER	KY 21125	36.950	84.250 05130101
4 ORD	19 NASHVILLE	339 CORDELL HULL	TN 47087	36.300	85.850 05130105
6 LMVD	20 ST LOUIS	201 MEANEAC PARK	MO 29055	38.200	91.100 07140102
6 LMVD	20 ST LOUIS	202 CLARENCE CANNON	MO 29173	38.500	91.750 07170007
6 LMVD	23 NEW ORLEANS	139 BAYOU BODCAU	LA 22015	32.800	93.500 11140205
6 LMVD	23 NEW ORLEANS	369 COOPER	TX 48115	33.350	95.750 11140301
6 LMVD	23 NEW ORLEANS	414 BLACK BAYOU	LA 22017	32.880	93.900 11140304
7 SWD	25 TULSA	15 DIERKS	AR 5133	34.750	94.050 11140109
7 SWD	25 TULSA	115 BIG HILL	KS 20099	37.500	95.500 11070103
7 SWD	25 TULSA	116 EL OQUADO	KS 20015	37.800	96.850 11030017
7 SWD	25 TULSA	403 DEQUEEN	AR 5133	34.100	94.300 11140109
7 SWD	26 FORT WORTH	365 NORTH FORK (SAN GABRIEL)	TX 48491	30.750	97.900 12070205
7 SWD	26 FORT WORTH	366 LANE PORT	TX 48491	30.750	97.300 12070205
7 SWD	27 GALVESTON	350 ADDICKS	TX 48201	29.830	95.600 12040104
7 SWD	27 GALVESTON	367 WALLISVILLE	TX 48071	29.850	95.800 12030203
7 SWD	27 GALVESTON	368 BARKER	TX 48201	29.750	95.720 12040104
7 SWD	28 ALBUQUERQUE	220 GALISTEO	NM 35048	35.400	106.700 13070201
7 SWD	28 ALBUQUERQUE	221 JENEZ CANYON	NM 35043	35.450	106.200 13070202
7 SWD	28 ALBUQUERQUE	222 TWO RIVERS	NM 35005	33.250	104.850 13060008
7 SWD	28 ALBUQUERQUE	223 LOS ESTEROS	NM 35019	35.200	104.900 12060001
7 SWD	28 ALBUQUERQUE	224 COCHITI	NW 30043	35.400	106.300 13070201
7 SWD	28 ALBUQUERQUE	225 ALAMOGORDO (SUMNER)	NM 35019	34.650	104.500 13060001
7 SWD	28 ALBUQUERQUE	226 LAS CRUCES	NM 35013	32.250	106.800 13030102
7 SWD	28 ALBUQUERQUE	408 PINON CANYON	CO 8071	37.185	104.520 11020101
B MRD	29 KANSAS CITY	117 TORAHAWK	KS 20121	38.650	94.850 10290102
B MRD	29 KANSAS CITY	118 CLINTON	KS 20045	38.300	95.500 10270104
B MRD	29 KANSAS CITY	197 HARRY S. TRUMAN	MO 29083	38.250	93.700 10290108
B MRD	29 KANSAS CITY	198 SMITHVILLE	MO 29165	39.150	94.550 10240112
B MRD	29 KANSAS CITY	199 LONG BRANCH	MO 29121	39.750	92.550 10280203
B MRD	30 OMAHA	238 PIPESTEM	NO 38093	47.250	99.000 10160002
B MRD	30 OMAHA	333 COTTONWOOD SPRINGS	SD 46033	43.437	103.563 10120109
B MRD	30 OMAHA	404 BEAR CREEK	CO 80559	39.650	105.300 10190002
9 NPD	31 WALLA WALLA	380 LITTLE GOOSE	WA 53013	46.600	118.000 17080107

(Continued)

(Sheet 2 of 3)

Table 9 (Concluded)

DIVISION	DISTRICT	RES. NAME	ST. STCITY	LAT.	LONG.	HYD UNIT	NES	SCS	L&J	MAJOR TRIB
9 NPD	31	WALLA WALLA	381	LOWER GRANITE	WA	53023	46.600	117.350	17060107	876
9 NPD	31	WALLA WALLA	382	LOWER MONUMENTAL	WA	53071	46.580	118.500	17060110	
9 NPD	31	WALLA WALLA	383	WILL CREEK	WA	53071	46.050	118.200	17070102	
9 NPD	31	WALLA WALLA	387	WALLUA (MCNARY)	WA	53005	46.000	119.000	17070101	76014
9 NPD	31	WALLA WALLA	388	PRIEST RAPIDS	WA	53025	46.700	119.950	17020016	
9 NPD	33	PORTLAND	303	ELK CREEK	OR	41029	42.750	122.700	17100307	
TD SPD	34	SACREMENTO	70	NORTH YORK (CLEMENTINE)	CA	6061	38.950	121.000	18020621	
10 SPD	34	SACREMENTO	42	OROVILLE	CA	6007	39.550	121.450	18020015	
10 SPD	34	SACREMENTO	45	FARMINGTON	CA	6099	37.950	119.900	18040007	
TD SPD	34	SACREMENTO	46	NEW MELONES	CA	6105	38.000	120.500	18040005	
10 SPD	34	SACREMENTO	49	BURNS	CA	6047	37.400	120.350	18040003	
10 SPD	34	SACREMENTO	50	BEAR	CA	6043	37.400	120.220	18040003	
10 SPD	34	SACREMENTO	52	MARIPOSA	CA	6045	37.300	120.150	18040003	
10 SPD	34	SACREMENTO	53	BUCHANAN	CA	6039	37.200	119.950	18040003	
10 SPD	34	SACREMENTO	55	BIG DRY CREEK	CA	6019	36.900	119.700	18040002	
10 SPD	34	SACREMENTO	56	HIDDEN	CA	6039	37.100	119.900	18040003	
10 SPD	34	SACREMENTO	205	PINE CANYON	NV	32017	37.450	114.350	15010013	
10 SPD	34	SACREMENTO	206	MATTHEWS CANYON	NV	32017	37.450	114.200	15010013	
10 SPD	35	SAN FRANCISCO	57	DRY CREEK	CA	6097	38.700	123.000	18010110	
10 SPD	35	SAN FRANCISCO	58	DEL VALLE	CA	6001	37.600	121.800	18050004	
10 SPD	36	LOS ANGELES	10	PAINTED ROCK	AZ	4013	33.000	112.800	15070101	
10 SPD	36	LOS ANGELES	25	BREA	CA	6059	33.900	117.900	18070005	70019
TD SPD	36	LOS ANGELES	31	MOJAVE RIVER PARKS	CA	6071	34.300	117.300	18090008	
10 SPD	36	LOS ANGELES	34	PRADO	CA	6065	33.950	117.650	18070007	70016
10 SPD	36	LOS ANGELES	35	SEPULVEDA	CZ	6037	34.150	118.500	18070004	70086
10 SPD	36	LOS ANGELES	38	WHITTIER NARROWS	CA	6037	34.050	118.050	18070007	
10 SPD	36	LOS ANGELES	59	SAN ANTONIO	CA	6071	34.150	117.700	18070007	
10 SPD	36	LOS ANGELES	60	SANTA FE	CA	6037	34.120	117.950	18070005	
10 SPD	36	LOS ANGELES	61	LOPEZ	CA	6037	34.220	118.500	18070004	
10 SPD	36	LOS ANGELES	62	CARBON CANYON	CA	6059	33.900	117.800	18070005	
10 SPD	36	LOS ANGELES	63	FULLERTON	CA	6059	33.870	117.850	18070005	
TD SPD	36	LOS ANGELES	409	MC W. SKEN	AZ	4013	33.700	112.450	15070102	
10 SPD	36	LOS ANGELES	410	WHITLOW RANCH	AZ	4021	33.300	111.300	15050100	

(Sheet 3 of 3)

PART VI: WATS - WATERSHED CHARACTERISTICS

26. WATS, the third major file group, contains information on project watersheds. It consists of the following three elements:

WATS.maps - Watershed Maps
WATS.POLYS - Watershed Polygon Coordinates
WATS.DAREAS - Drainage Area Characteristics

This information supplements the location descriptors contained in the LISTS files. Each element is described below.

27. A set of watershed maps has been compiled from the USGS hydrologic unit maps⁸, EPA National Eutrophication Survey Working Papers⁹, and a report on CE projects in the New England Division¹¹. The maps are labeled with descriptive data contained in the LISTS.CPL file and stored in a loose-leaf notebook. Hydrologic unit maps, used most extensively, are on a scale of 1:500,000. An example is given in Figure 3. In some cases, projects have been built after map publication and only the watersheds are shown.

28. WATS.POLYS contains the latitude/longitude coordinates of polygons which contain projects and their watersheds. These coordinates have been used to identify water quality monitoring stations in STORET (see Part IX). Each record contains up to five coordinate pairs and is referenced by district and project codes. Coordinates have been estimated from watershed maps contained in EPA National Eutrophication Survey reports⁹. The 108 projects which were sampled under that program are represented in WATS.POLYS file.

29. WATS.DAREAS contains additional descriptive information on project watersheds in the format given in Table 10. Each record is referenced by district, project, and data source codes. Table 11 lists the elements of the file along with corresponding data sources. Some discrepancies among multiple data sources for the same project and characteristic remain in the file, particularly in drainage areas and mean flows. These could be resolved through verification of the file at the district level. An inventory of the file contents by division is given in Table 12. Inventories by project and district are given in Appendix A.

Figure 3

Sample Watershed Map

* RES: 194 POMME DE TERRE *
* DISTRICT: 29 KANSAS CITY MO *
* DIVISION: 6 MISSOURI RIVER *
* STATE: MO HYDROLOGIC UNIT: 10290107 *
* LATITUDE: 37.901 LONGITUDE: 93.318 *
* MAJOR TRIBUTARY: POMME DE TERRE *
* SCALE: |-----10 MILES-----| *

Table 10
Record Format of the WATS.DAREAS File

```

***** *****
/* WATS.DAREA FILE STRUCTURE (LENGTH=80) */
***** *****
DECLARE 1 DAREA RECORD
  2 DIS      PIC'99'
  2 RIES     PIC'999'
  2 STATE    PIC'BZZ'
  2 YFIRST   PIC'zzzz'
  2 ANET    PIC'zzzzzzv.9'
  2 ATOT    PIC'zzzzzzv.9'
  2 DISCH   PIC'(11)ZV.'
  2 YDISCH  PIC'zzz'
  2 INFLOW  PIC'(11)ZV.'
  2 YINFLW  PIC'zzz'
  2 PNEC    PIC'zzzz.99'
  2 YPREC   PIC'zzz'
  2 TYPE    PIC'B9B'
  2 GSSTATION CHAR(8)
  2 SOURCE   PIC'B9'
***** *****
/* RESERVOIR NUMBER
/* FIPS STATE CODE
/* DATE NORMAL OPERATION BEGAN
/* UNIMPOUNDED DRAINAGE AREA (M12)
/* TOTAL DRAINAGE AREA (M12)
/* MEAN DISCHARGE (ACRE-FT/YR)
/* PD OF RECORD FOR DISCHARGE (YRS)
/* TOTAL INFLOW (ACRE-FT/YEAR)
/* PD OF RECORD FOR INFLOW (YRS)
/* BASIN PRECIPITATION (IN)
/* PD OF RECORD FOR PRECIP. (YRS)
/* STATION TYPE CODE
/* STATION CODE (USGS1)
/* DATA SOURCE CODE

```

Table 11
Sources of Data for the WATS.DAREAS File by Component

Component	S O U R C E S					USGS ¹³
	Leidy & Jenkins ⁵	EPA/ NES ⁴	District	Sed. Survey ¹²	Design Memos	
Year Impounded	x		x	x	x	
Direct Drainage Area			x	x	x	x
Total Drainage Area	x	x	x	x	x	x
Mean Annual Discharge	x	x			x	
Mean Annual Total Inflow				x		
Mean Annual Precipitation				x		
USGS Station Code					x	

Table 1.2

Inventory of Data in the WATS.DAREAS File by CE Division

Division	Total Proj.	Numbr Entries	Year Impd.	Division Totals			
				Net DAREA	Total DAREA	Mean Disch	Mean Inflow
1 NED	22	75	23	14	62	18	0
2 NAD	15	48	14	13	36	22	1
3 SAD	24	78	19	17	72	40	3
4 ORD	64	232	84	34	224	134	26
5 NCD	16	51	20	7	49	29	5
6 LMVD	15	64	23	11	62	38	9
7 SWD	66	251	82	46	230	143	24
8 MRD	31	93	23	21	77	52	3
9 NPD	27	85	24	15	73	42	2
10 SPD	19	56	27	10	53	28	7
Totals	299	1033	339	188	938	546	80

Division	Total Proj.	Numbr Entries	Year Impd.	Number of Projects With One or More Entry by Division			
				Net DAREA	Total DAREA	Mean Disch	Mean Inflow
1 NED	22	22	22	14	22	18	0
2 NAD	15	15	14	12	14	14	1
3 SAD	24	24	16	16	23	22	3
4 ORD	64	64	63	34	64	62	26
5 NCD	16	15	15	7	15	15	5
6 LMVD	15	15	14	10	15	14	9
7 SWD	66	63	59	45	62	61	24
8 MRD	31	31	20	21	22	22	3
9 NPD	27	27	22	15	26	23	2
10 SPD	19	19	19	10	19	18	7
Totals	299	295	264	184	282	269	80

PART VII: RESER - RESERVOIR CHARACTERISTICS

30. The fourth major file grouping, RESER, contains detailed information on reservoir characteristics. It consists of the following four elements:

RESER.MORPHO - Project Morphometry
RESER.desc - Verbal Project Descriptions
RESER.broch - CE Recreational Brochures
RESER.COM - Comments

Each of these elements is described below.

31. The fluctuating pool levels characteristic of many reservoirs necessitates the compilation of morphometric data which are referenced to pool elevations. Volume and surface area variations with elevation are required for estimation of volume-averaged water quality conditions, given measurements made at specific depths. Seasonal variations in reservoir volume and discharge induce variations in mean depth and hydraulic residence time which may, in turn, influence the response of trophic state indicators to nutrient loading. Thus, detailed morphometric information is an essential component of the data base for eutrophication modelling and for other general uses.

32. The record format and contents of the RESER.MORPHO file are described in Table 13. Each record is referenced by district, project, elevation, and data source code. In addition to area, volume, length, width, and shoreline length data, the file contains a series of pool and outlet codes, as listed in Table 4. These codes provide supplementary descriptive information on pool allocations for various uses, ranges of operating levels, and locations and types of principal outlets.

33. The RESER.MORPHO file was initially based upon data extracted from project design memoranda. The other principal data sources include: (1) a report by Leidy and Jenkins⁵; (2) USGS water resources data reports, by state and year¹³; (3) sedimentation survey sheets¹²; and (4) district and division offices. Information compiled from these sources has been coded and sorted by project and elevation. Initial screening was done to identify and correct, where possible, any

Table 13
Record Format of the RESER.MORPHO File

```

DECLARE 1 MORPHO RECORD
  2 DIS          PIC'99'
  2 RES          PIC'999'
  2 ELEV         PIC'Zzzzzv.zz'
  2 AREA         PIC'zzzzzzz.
  2 VOL          PIC'110)z.
  2 PCODE        PIC'zz'
  2 LENGTH       CHAR(4)
  2 WIDTH        CHAR(3)
  2 SHORE        CHAR(4)
  2 OCODE        PIC'zz'
  2 SCODE        PIC'BBBBBZ'

***** /* RESER.MORPHO FILE STRUCTURE (LENGTH=50) */
  /* DISTRICT NUMBER
  /* RESERVOIR NUMBER
  /* ELEVATION (FT.MSL)
  /* SURFACE AREA (ACRES)
  /* VOLUME (ACRE-FEET)
  /* POOL CODE
  /* POOL LENGTH (MI)
  /* POOL WIDTH (MI)
  /* SHORELINE LENGTH (MI)
  /* OUTLET CODE
  /* DATA SOURCE CODE

```

obvious errors, such as decreasing area or volume with increasing elevation within a given project. There were sufficient inconsistencies among the various data sources for many projects to warrant independent verification of the file. Accordingly, the file was distributed to the districts through WES and additions and corrections were made based upon district responses. Final editing was done to eliminate most of the redundancies in the file due to multiple data sources for the same project and elevation. A current data inventory by division is given in Table 14. Inventories by district and project are given in Appendix A.

34. RESER.desc consists of a collection of verbal project descriptions copied from USGS water resources data reports published annually by state¹³. The descriptions are referenced by district and project codes and assembled in a loose-leaf notebook. These descriptions summarize hydrologic monitoring activities by the USGS, along with important project characteristics and purposes. The file currently contains entries for 260 out of 299 projects in the central project list.

35. RESER.broch is a collection of brochures published by CE district and division offices as guides to recreation in specific projects. These usually contain detailed project maps which are useful for locating monitoring stations. Project purposes and characteristics are also summarized. Each folder is referenced by district and project number and stored in a hanging file. Currently, the file contains information from eight districts: Pittsburg, Huntington, Louisville, Nashville, Vicksburg, Tulsa, Forth Worth, and Sacramento.

36. The RESER.COM file contains miscellaneous descriptive information on various projects. This file has been designed to hold data or comments which do not conform to other file formats. Each record is 80 characters long and is referenced by district and project codes. A listing of the current version of this file is given Table 15.

Table 14
Inventory of Morphometric Data by CE Division

Division	Total Proj.	Division Totals									N	Width	N Shore
		N	Min Elev	Max Elev	N	Area	N	Vol	Pool Codes	Outlt Codes			
1 NED	22	221	195	1017	220	220	48	21	21	22	22	22	22
2 NAD	15	168	500	1621	110	145	73	21	21	4	4	9	9
3 SAD	24	336	0	1108	305	319	80	23	70	49	22	22	22
4 ORD	64	743	280	1711	543	621	332	75	66	26	58	58	58
5 NCD	16	126	577	1303	86	98	52	5	11	7	14	14	14
6 LMWD	15	249	130	626	215	217	93	25	58	73	23	23	23
7 SWD	66	934	50	6362	706	767	352	95	38	37	65	65	65
8 MRD	31	502	750	5640	427	445	118	41	30	11	23	23	23
9 NPD	27	286	24	5119	184	232	102	31	32	23	20	20	20
10 SPD	19	263	104	5853	143	226	74	21	15	14	8	8	8
Totals	299	3828	0	6362	2939	3290	1324	358	363	266	264	264	264

Division	Total Proj.	Number of Projects With One or More Entry by Division									N	Width	N Shore
		N	Min Elev	Max Elev	N	Area	N	Vol	Pool Codes	Outlt Codes			
1 NED	22	22	22	22	22	22	22	22	21	22	22	22	22
2 NAD	15	15	15	15	15	15	15	15	14	14	4	4	7
3 SAD	24	24	23	24	24	24	24	21	15	18	7	7	21
4 ORD	64	62	62	62	60	61	62	55	41	26	50	50	50
5 NCD	16	15	15	15	15	15	14	14	5	7	6	12	12
6 LMWD	15	15	15	15	15	15	15	14	14	12	12	13	13
7 SWD	66	66	66	65	66	66	62	58	37	36	57	57	57
8 MRD	31	31	31	31	31	31	31	29	26	8	19	19	19
9 NPD	27	27	27	27	27	27	25	26	20	25	16	18	18
10 SPD	19	19	19	19	14	19	18	15	10	9	8	8	8
Totals	299	296	295	296	288	293	285	246	212	146	227		

Table 15
Listing of the RESER.COM File

01157	Mad River dam now under control of State of Connecticut
01165	Connected to Hopkinton (01167) at high water
01167	Connected to Everett (01165) at high water
07232	Project transferred to Wilmington District (06)
26363	Sediment survey refers to Old Waco
28408	No permanent pool
30214	2 Separate lakes (W. twin/E. twin) below elevation 1342
30333	Project never reached full pool
33298	Re-regulating dam for Green Peter (33299)
33305	Re-regulating dam for Detroit (33293)
34048	Sediment survey refers to Old Don Pedro
34051	Sediment survey refers to Old Exchequer

PART VIII: HYDRO - HYDROLOGY FILES

37. The fifth file group, HYDRO, contains detailed hydrologic data, organized in the following files:

HYDRO.KEY	- Station Key
HYDRO.DAILY	- Daily Values
HYDRO.MONTHLY	- Monthly Summaries
HYDRO.YEARLY	- Yearly Summaries
HYDRO.SUM	- Grand Summaries

This information has been compiled to provide bases for nutrient budget calculations, estimating pool hydraulic residence times (as influenced by reservoir elevation and discharge), and depth-averaging of water quality observations (as influenced by reservoir morphometry and pool level). Because of the stringent water quality sampling requirements for estimation of nutrient budgets, streamflow data required for such calculations have been compiled only for those projects and years sampled by the EPA National Eutrophication Survey. Attempts have been made, however, to compile reservoir discharge and elevation/contents data from all projects for 1965 to date using three data sources: USGS/WATSTORE¹⁴, the EPA National Eutrophication Survey¹⁵, and sedimentation survey sheets¹². The HYDRO.KEY file describes 1307 stations from all three data sources in the format depicted in Table 16.

38. The first data source includes USGS stations monitoring reservoir elevation/contents or streamflow at or below reservoir discharge points. These stations have been identified using the Master Water Data Index of the USGS National Water Data Exchange¹⁶ and USGS water resources data reports by state and year¹³. Daily values have been retrieved through STORET³ for the period from 1965 to the most recent available as of February, 1980. Only those stations with daily values entered in WATSTORE are included.

39. The EPA National Eutrophication Survey⁴, which sampled 108 CE projects, assembled a hydrologic data base compatible with its water quality sampling network for use in nutrient budget computations. It includes streamflow estimates for upstream and downstream tributaries.

For each station, flows are estimated on three time scales: daily (only for the days on which water quality samples were taken), monthly (only for the months in which water quality samples were taken), and normalized monthly (normal flow for each month). This information has been retrieved from a tape provided by the EPA Corvallis laboratory¹⁵. Monthly and normalized monthly flows have been stored in the HYDRO.MONTHLY file. Because they only refer to water quality sampling dates, daily flows have been stored along with the water quality data in the WQ.OBS file.

40. The third source of hydrologic data, sedimentation survey sheets¹², has provided annual estimates of reservoir total inflow, minimum elevation, and maximum elevation, typically for 10 water years in most of the 84 projects for which sedimentation survey sheets have been located. This information has been stored in the HYDRO.YEARLY file.

41. The formats of the DAILY, MONTHLY, YEARLY, and SUM hydrology files are listed in Tables 17 through 20, respectively. HYDRO.DAILY, which contains data from USGS/WATSTORE stations only, is in the WATSTORE format. It is linked to the project list through the sequence number stored in the HYDRO.KEY file. The other hydrology files contain direct references to districts and projects. In retrieving daily values, all parameter codes recorded at each station were included. Thus, the daily file, and the monthly, yearly, and grand summaries generated from it, contain some water quality information monitored by the USGS on a daily basis (e.g., temperature, conductivity, suspended solids). Parameter codes and coverage are indicated in Table 5.

42. Monthly variations in reservoir discharge and elevation are needed in order to provide bases for calculating pool hydraulic residence times and volume-averaged water quality conditions on a seasonal basis. Table 21 presents an inventory of reservoir discharge, elevation, and contents data monitored at USGS stations and contained in the HYDRO.MONTHLY file. Table 21 is organized by division. Corresponding inventories by reservoir and district are contained in Appendix A. Since the monthly hydrologic summary has been generated from the daily values file, these inventories also reflect daily data holdings.

43. The files contain reservoir discharge data for 245 out of the 299 projects in the central project list. Elevation and contents data are included for 44 and 108 projects, respectively. Regional deficiencies in elevation or contents data are particularly evident for the New England, North Atlantic, South Atlantic, Ohio River, and Missouri River Divisions. These deficiencies need to be corrected, probably using district-level information sources, in order to provide a basis for model evaluations under Phase II of this project.

Table 16
Record Format of the HYDRO.KEY File

```

DECLARE 1 HYDROKEY_REC.
  2 DIS      PIC'99'          /* DISTRICT NUMBER
  2 RES      PIC'999'         /* RESERVOIR NUMBER
  2 TYPE     PIC'B9'          /* STATION TYPE CODE
  2 SOURCE   PIC'B9B'         /* DATA SOURCE CODE
  2 STATION  CHAR(8)        /* STATION CODE
  2 LATITUDE DEGREES         /* DEGREES LATITUDE
  3 DEGREES  PIC'B99'        /* MINUTES LATITUDE
  3 MINUTES  PIC'99'         /* SECONDS LATITUDE
  3 SECONDS  PIC'99'         /* DEGREES LONGITUDE
  2 LONGITUDE DEGREES        /* MINUTES LONGITUDE
  3 DEGREES  PIC'B999'        /* SECONDS LONGITUDE
  3 MINUTES  PIC'99'         /* DRAINAGE AREA (W12)
  3 SECONDS  PIC'99'         /* SEQUENCE IN DAILY FILE (USGS ST.)
  2 DAREA    PIC'-(9)ZV.99'   /* OR WQ STATION CODE (EPA/NES ST.)
  2 SEQ      PIC'zzzz'        /* FIPS STATE CODE
  2 STATE    PIC'B99B'        /* LOCATION DESCRIPTION
  2 LOCATION CHAR(39)        /* EDIT INDICATOR
  2 EDIT     CHAR(7)          /*

***** HYDRO.KEY FILE STRUCTURE LENGTH=1005 *****
/* DISTRICT NUMBER
/* RESERVOIR NUMBER
/* STATION TYPE CODE
/* DATA SOURCE CODE
/* STATION CODE
/* DEGREES LATITUDE
/* MINUTES LATITUDE
/* SECONDS LATITUDE
/* DEGREES LONGITUDE
/* MINUTES LONGITUDE
/* SECONDS LONGITUDE
/* DRAINAGE AREA (W12)
/* SEQUENCE IN DAILY FILE (USGS ST.)
/* OR WQ STATION CODE (EPA/NES ST.)
/* FIPS STATE CODE
/* LOCATION DESCRIPTION
/* EDIT INDICATOR

```

Table 1.7
Record Format of the HYDRO.DAILY File

```
*****  

/* HYDRO.DAILY FILE STRUCTURE ( LENGTH=1656 ) */  

/* NOTE RECORD FORMAT IDENTICAL TO STORET */  

/* RETRIEVAL FORMAT: DOCUMENTED IN PART F. */  

/* OF THE STORET USER'S MANUAL */  

*****  

2 UNUSED1 CHAR(2) /* STATE CODE */  

2 STATE CHAR(2) /* AGENCY CODE */  

2 AGENCY CHAR(5) /* STATION CODE */  

2 STATION CHAR(15) /* CROSS-SECTION LOCATOR */  

2 XSEC FLOAT(6) /* STATION DEPTH */  

2 DEPTH FLOAT(6) /* PARAMETER CODE */  

2 PARAM FIXED BIN(31)  

2 HYEAR FIXED BIN(15) /* WATER YEAR */  

2 DSTATIC FIXED BIN(15) /* DAILY VALUE STATISTIC CODE */  

2 NOVAL FLOAT(6) /* MISSING VALUE INDICATOR */  

2 DATA(12, 31) FLOAT(6) /* DAILY VALUE MATRIX(MONTH X DAY) */  

2 UNUSED2 CHAR(3) /* UNUSED */  

2 DIST CHAR(2) /* USGS DISTRICT */  

2 COUNTY CHAR(3) /* STATION CODE */  

2 LOC CHAR(42) /* STATION LOCATION DESCRIPTION */  

2 DAREA ELAT(6) /* DRAINAGE AREA (M12) */  

2 CDAREA FLOAT(6) /* CONTRIBUTING DRAINAGE AREA */  

2 WELLD FLOAT(6) /* WELL DEPTH */  

2 DATUM FIXED DEC(7,2) /* DATUM OF GAUGE */  

2 HYDUNIT FIXED BIN(31) /* HYDROLOGIC UNIT CODE */  

2 SEQ FIXED BIN(15) /* RETRIEVAL SEQUENCE NUMBER */  

2 FMONTH FIXED BIN(15) /* FIRST MONTH IN DATA MATRIX */  

2 TYPE CHAR(2) /* USGS TYPE CODE (LK OR SW) */  

2 LAT CHAR(6) /* LATITUDE (DEGMIN/SEC) */  

2 LONG CHAR(7) /* LONGITUDE (DEC/MIN/SEC) */  

2 CSEQ CHAR(2) /* WITHIN QUADRAT SEQUENCE NUMBER */  

2 GEOUNIT CHAR(8) /* GEOLOGIC UNIT CODE */  

2 UNUSED3 CHAR(19) /* UNUSED */  

*****
```

Table 18
Record Format of the HYDRO-MONTHLY File

```

DECLARE 1 HYDROMO_REC
      2 DIS      PIC'99'
      2 RES      PIC'999'
      2 SOURCE   PIC'9'
      2 STATION  CHAR(8)
      2 PARAM    PIC'99999'
      2 DSTATC   PIC'9'
      2 CYEAR   PIC'99'
      2 WYEAR    PIC'99'
      2 MONTH   PIC'99'
      2 N        FIXED BIN(15)
      2 DATUM   FLOAT(6)
      2 MIN     FLOAT(6)
      2 MEAN   FLOAT(6)
      2 MAX     FLOAT(6)
      2 END     FLOAT(6)
      2 UNUSED  CHAR(2)

      /* HYDRO-MONTHLY FILE STRUCTURE (LENGTH=50) */
      /* ***** */
      /* DISTRICT NUMBER */
      /* RESERVOIR NUMBER */
      /* DATA SOURCE CODE */
      /* STATION CODE */
      /* DAILY VALUE STATISTIC CODE */
      /* (1=MAX, 2=MIN, 3=MEAN, 4=INSTANTANEOUS) */
      /* CALENDAR YEAR */
      /* WATER YEAR */
      /* MONTH */
      /* NUMBER OF DAYS */
      /* DATUM OF GAUGE */
      /* MONTHLY MINIMUM */
      /* MONTHLY MEAN */
      /* MONTHLY MAXIMUM */
      /* MONTH-END VALUE */
      /* BLANK */

```

Record Format of the HYDRO.YEARLY File

```

DECLARE 1 HYDROTAN_REC
      2 DIS          PIC'99'
      2 RES          PIC'999'
      2 SOURCE       PIC'9'
      2 STATION      CHAR(8)
      2 PARAM        PIC'99999'
      2 DSTATC       PIC'9'
      2 WYEAR        PIC'BB999B'
      2 NDAYS        FIXED BIN(15)
      2 DATUM        FLOAT(6)
      2 MIN          FLOAT(6)
      2 MEAN         FLOAT(6)
      2 MAX          FLOAT(6)
      2 END          CHAR(2)
      2 UNUSED       CHAR(2)

      /* HYDRO-YEARLY FILE STRUCTURE (LENGTH=50) */
      /* DISTRICT NUMBER */
      /* RESERVOIR NUMBER */
      /* DATA SOURCE CODE */
      /* STATION CODE */
      /* PARAMETER CODE (USGS) */
      /* DAILY VALUE STATISTIC CODE */
      /* WATER YEAR */
      /* NUMBER OF OBSERVATIONS */
      /* DATUM OF GAUGE */
      /* ANNUAL MINIMUM */
      /* ANNUAL MEAN */
      /* ANNUAL MAXIMUM */
      /* YEAR-END VALUE */
      /* BLANK */

```

Table 20
Record Format of the HYDRO.SUM File

```

DECLARE 1 HYDROSUM_REC
      /* HYDRO.SUM FILE STRUCTURE ( LENGTH=90 ) */
      /* DISTRICT NUMBER
      /* RESERVOIR NUMBER
      /* DATA SOURCE CODE
      /* STATION CODE
      /* PARAMETER CODE (USGS)
      /* DAILY VALUE STATISTIC CODE
      /* MONTHLY VALUE STATISTIC CODE
      /* (1=MIN, 2=MEAN, 3=MAX, 4=MONTH-END)
      /* DATUM OF GAUGE
      /* TOTAL NUMBER OF DAYS
      /* TOTAL NUMBER OF MONTHS
      /* FIRST DATE
      /* YEAR
      /* MONTH
      /* LAST DATE
      /* YEAR
      /* MONTH
      /* MEAN VALUE
      /* STANDARD DEVIATION
      /* MINIMUM VALUE
      /* MAXIMUM VALUE
      */

      2 DIS      PIC'99'
      2 RES      PIC'999'
      2 SOURCE   PIC'9'
      2 STATION  CHAR(8)
      2 PARAM    PIC'9999'
      2 DSTATC   PIC'9'
      2 NSITAC   PIC'9'
      2 DATUM   PIC'--V 9999E59'
      2 NDAY    PIC'zzzz'
      2 NMONTHS PIC'zzzz'
      2 DFIRST  PIC'zzzz'
      3 YEAR    PIC'99'
      3 MONTH   PIC'99'
      2 DLAST   PIC'99'
      3 YEAR    PIC'99'
      3 MONTH   PIC'99'
      2 MEAN    PIC'--V.(5)9E59'
      2 STD_DEV PIC'--V.(5)9E59'
      2 MINIMUM PIC'--V.(5)9E59'
      2 MAXIMUM PIC'--V.(5)9E59'

```

Table 21

Inventory of USGS Hydrologic Data by CE Division

*** DIVISION TOTALS ***

		TOTAL	FLOW	ELEVATION	CONTENTS				
DIVISION	PROJ	STNS	MONTHS	DFIRST	BLAST	STNS	MONTHS	DFIRST	BLAST
1 NED	22	17	2465	6410	7901	0	0	0	0
2 NAD	15	12	1920	6410	7902	3	466	6410	7709
3 SAD	24	20	2298	6410	7902	4	423	6410	7709
4 ORD	64	61	9062	6410	7902	3	15	7509	7612
5 NCD	16	14	2368	6410	7901	2	169	6410	7709
6 LMVD	15	13	1700	6410	7902	0	0	0	0
7 SWD	66	64	9174	6410	7901	6	879	6410	7709
8 MRD	31	19	2786	6410	7901	9	929	6410	7709
9 NPD	27	23	3348	2001	7902	17	724	6410	7709
10 SPD	19	19	2524	6410	7902	0	0	0	0
TOTALS	299	262	37645	2001	7902	44	3605	6410	7709
								13157	6410
									7709

*** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DIVISION ***

		TOTAL	FLOW	ELEVATION	CONTENTS				
DIVISION	PROJ	STNS	MONTHS	DFIRST	BLAST	STNS	MONTHS	DFIRST	BLAST
1 NED	22	17	17	0	0	0	0	0	0
2 NAD	15	12	12	12	3	3	3	0	0
3 SAD	24	18	18	18	4	4	4	0	0
4 ORD	64	57	57	57	3	3	3	1	1
5 NCD	16	14	14	14	2	2	2	9	9
6 LMVD	15	12	12	12	0	0	0	10	10
7 SWD	66	59	59	59	6	6	6	51	51
8 MRD	31	18	18	18	9	9	4	4	4
9 NPD	27	22	22	22	17	17	17	16	16
10 SPD	19	16	16	16	0	0	0	17	17
TOTALS	299	245	245	44	44	44	108	108	108

PART IX: WQ - WATER QUALITY FILES

Introduction

44. The sixth group of files, WQ, contains water quality information for CE projects. It is organized as follows:

WQ.KEY	- Station Key
WQ.DESTAT	- Detailed Station Descriptions
WQ.OBS	- Observations
WQ.SUM	- Data Summary by Station and Parameter
WQ.maps	- Station Maps

Three sources of water quality data have been used: (1) EPA's STORET system³; (2) the INFONET¹⁷ system used by the Ohio River Division of the Corps of Engineers; and (3) miscellaneous survey data for specific projects. The numbers of stations and observations obtained from each source are listed in Table 22. The use of these sources and resulting file structures and contents are described in the following sections.

STORET Data Acquisition and Processing

45. As in Table 22, STORET is the primary source of water quality information. The following sources have been used to identify station codes and to associate them with specific CE projects:

- a. the Master Water Data Index (MWDI) maintained by the National Water Data Exchange of the USGS¹⁶.
- b. the USGS Catalogue of Information on Water Data^{18,19}.
- c. a list of stations included in the National Stream Quality Accounting Network (NASQAN) maintained by the USGS²⁰.
- d. the EPA National Eutrophication Survey Working Papers⁹. and
- e. direct station identification retrievals from STORET using a latitude/longitude search technique.

These sources are described below in the order used.

Table 22
Inventory of Water Quality Data by Source

<u>Agency</u>	<u>Stations</u>	<u>Sample Dates</u>	<u>Observations</u>
STORET - EPA/NES	1,637	16,119	181,173
STORET - USGS	655	35,326	592,853
STORET - CE	470	34,890	322,337
STORET - States	541	18,243	235,894
STORET - Other	357	8,078	154,266
INFONET - ORD	763	16,995	534,412
Miscellaneous	28	170	2,259
TOTAL	4,451	129,821	2,023,194

46. The Master Water Data Index (MWDI) documents water quality and quantity monitoring activities by various local, state, and federal agencies throughout the U. S. and contains information on site location, agency, dates, types of measurements, and data storage media. It does not contain measurements, but serves as a means of locating them. The MWDI registers all stations in the EPA STORET and USGS WATSTORE systems, in addition to information on monitoring activities by agencies which do not participate in other federal data banks. Thus, this file represents the most comprehensive one available for identifying monitoring sites and locating data. An initial list of monitoring stations associated with specific projects was derived by applying a latitude/longitude search technique to two large station files acquired on tape from the National Water Data Exchange. One contained all stations in the U. S. monitored by the Corps of Engineers, and the other contained all lake or reservoir stations monitored by any agency in the U. S. The station/project matching derived from this search was verified manually by checking station location descriptions and consulting maps, when needed.

47. The station listings derived from the MWDI did not contain stations monitored by non-CE agencies on tributary streams. The second and third sources listed above provided additional tributary stations operated primarily by the USGS. NASQAN²⁰ stations are particularly data-rich, having been operated by monthly frequencies since 1975 with a broad water quality parameter coverage. Forty-nine such stations have been located in or directly below the watersheds of projects in the central project list.

48. The STORET station list also includes all stations operated by the EPA National Eutrophication Survey in 108 CE projects. These stations include upstream tributaries, point sources, reservoir stations, and reservoir discharge stations. Nutrient loading calculations for these projects will provide a basis for the testing loading models in Phase II.

49. Finally, a series of station identification retrievals were done directly in STORET using a search technique based upon the latitude/longitude polygons contained in the WATS.POLYS file. Because of cost and time considerations, this technique was applied only to projects which were in one of two categories: (1) sampled by the EPA National Eutrophication Survey (since these will be the primary focus of Phase II modelling efforts); or (2) without water quality data derived from other station searching techniques. An extracting option available in STORET was also used to identify only stations for which total phosphorus measurements were available.

50. Experience with these alternative station searching techniques indicates that no one method is completely satisfactory. Each relies upon the accuracy of the station characteristics and coordinates entered in the STORET file. Polygon search techniques often retrieve extraneous stations or miss relevant stations because of inaccurate latitude/longitude entries in the STORET station file. Similarly, retrievals which depend upon station types (e.g., "stream" vs. "lake") will miss stations which have been inaccurately classified. For example, many stations located in reservoir pools (based upon location descriptions and/or coordinates) were classified as "stream" stations in STORET and MWDI. The variety of methods employed to identify stations has helped to provide reasonable project coverage. All station/project matchings in the final STORET station list have been checked manually with reference to verbal station location descriptions and maps.

51. Preliminary STORET retrievals have been used to screen out sites with little or no relevant information and to verify station codes. Results have been obtained in the STORET Inventory format, which lists station descriptions and statistical summaries of water quality components monitored. Based upon these inventories, most stations with only one sampling date have been eliminated from the station list.

52. Following the screening procedure, a second series of STORET retrievals has been used to obtain copies of the data on tape for all observations made after 1964. The most comprehensive retrieval format

available from STORET has been used. This format, termed "MORE=5", provides complete station descriptions along with observations of up to 50 different water quality variables at each station.

53. A total of 100 variables have been selected for inclusion in the data base, as listed in Table 5. This necessitated two retrievals for each station. The selection of variables is based upon the objectives of the project and upon the results of the preliminary station inventories, which gave initial indications of data availability as a function of parameter code. The list contains some redundancies due to multiple ways of expressing various types of measurements (e.g., temperature as degrees F or degrees C or phosphorus as P or PO₄). Conversion routines have been used to eliminate these redundancies in tape processing.

54. In a final step, the STORET tapes have been processed to generate one file containing station descriptions (WQ.DESTAT) and another containing water quality observations (WQ.OBS). This involved several sort/merge steps to combine data from the individual STORET tapes in a sequenced form. Overall, STORET has provided 1,486,523 observations at 3,660 stations.

INFONET Data Acquisition and Processing

55. The INFONET¹⁷ system used by the Ohio River Division to manage water quality data has been accessed as a second source of information. Five tapes have been obtained from ORD, one containing station descriptions and the other four containing water quality observations for each of the four ORD districts (Pittsburgh, Huntington, Nashville, and Louisville). Because the organization and formats of the INFONET tapes are different from those obtained from STORET, a different set of programs has been written and employed to extract the data and process it into a form suitable for merging with output from the STORET tape processing.

56. A systematic procedure has been used in extracting data from the ORD tapes. In the first step, stations of interest have been selected

from the ORD station tape based upon ORD project identification codes and used to generate a station description file keyed to members of the central project list. A list of primary and secondary ORD station codes has been extracted from the station description tape. In the final step, the station code and parameter code files have been used to extract relevant observations from the ORD data tapes. This process has been repeated for each district and the resulting files have been merged. A total of 763 stations and 534,412 observations have been derived from this data source.

Miscellaneous Data Acquisition and Processing

57. Water quality data acquired from STORET and INFONET have been supplemented with miscellaneous data which has been manually coded and entered directly into the water quality files. This has been done to improve the regional coverage of the water quality data base. This relatively time-consuming approach has been limited to two sources: (1) survey data obtained from Baltimore District²¹ for Almond, Whitney Point, and Alvin R. Bush Reservoirs; and (2) survey data obtained from the North Central Division²² for Eau Galle Reservoir and Lac Qui Parle.

58. Water quality data and station descriptions from these sources have been coded at WES. Keypunching and verification have been done at MIT. The resulting files containing 28 stations and 2259 observations have been merged with data from STORET and INFONET in the formats described below.

WQ File Structures

59. The water quality data base consists of four files (WQ.KEY, WQ.DESTAT, WQ.OBS, WQ.SUM) and a set of station maps (WQ.maps). The formats of the four files are given in Tables 23 through 26, respectively. The structure and contents of each are discussed below.

Table 23
Record Format of the WQ.KEY File

DECLARE 1 WQKEY_RECORD		/* WQ.KEY FILE STRUCTURE (LENGTH=120)	
2 DIS	PIC'99'	/* DISTRICT NUMBER	*/
2 RES	PIC'999'	/* RESERVOIR NUMBER	*/
2 STATION	PIC'999'	/* STATION NUMBER	*/
2 TYPE	PIC'898'	/* TYPE CODE	*/
2 AGENCY	CHAR(8)	/* AGENCY CODE	*/
2 UNUSED	CHAR(1)	/* BLANK	*/
2 AGSTA	CHAR(15)	/* AGENCY STATION CODE	*/
2 NOBS	PIC'ZZZZZ9'	/* NUMBER OF OBSERVATIONS	*/
2 NDATES	PIC'ZZZZZ9'	/* NUMBER OF SAMPLE DATES	*/
2 DFIRST	PIC'89999999'	/* FIRST SAMPLE DATE	*/
2 DLAST	PIC'89999999'	/* LAST SAMPLE DATE	*/
2 ZMIN	PIC'ZZ98'	/* MINIMUM SAMPLE DEPTH (FT)	*/
2 ZMAX	PIC'ZZ9B'	/* MAXIMUM SAMPLE DEPTH (FT)	*/
2 LATITUDE		/* LATITUDE	*/
3 DEGREES	PIC'BBBBBB'	/* DEGREES LATITUDE	*/
3 MINUTES	PIC'ZZ.	/* MINUTES LATITUDE	*/
3 SECONDS	PIC'ZZZB'	/* SECONDS LATITUDE	*/
2 LONGITUDE		/* LONGITUDE	*/
3 DEGREES	PIC'ZZZ'	/* DEGREES LONGITUDE	*/
3 MINUTES	PIC'ZZ.	/* MINUTES LONGITUDE	*/
3 SECONDS	PIC'ZZZB'	/* SECONDS LONGITUDE	*/
2 DESCRIPT	CHAR(30)	/* STATION LOCATION DESCRIPTION	*/

Table 24

Record Format of the WQ.DESTAT File

```

1 OF 2
***** WQ.DESTAT RECORD TYPE 1 (LENGTH=85) *****
DECLARE 1 DESTAT_REC1
  2 DIS      PIC'99'
  2 RES      PIC'999'
  2 STATION   PIC'999'
  2 SEQ      PIC'99
  2 UNUSED1   CHAR(1)
  2 AGENCY    CHAR(6)
  2 UNUSED2   CHAR(11)
  2 PRIMCODE  CHAR(15)
  2 UNUSED3   CHAR(1)
  2 SECODE    CHAR(14)
  2 TYPE      PIC'BBBB'
  2 DESC      CHAR(20)
  2 MAXDEPTH  PIC'BZZZB'
  2 UNIT      CHAR(1)
  2 UNUSED4   CHAR(5)
                                /* BLANK

***** WQ.DESTAT RECORD TYPE 2 (LENGTH=85) *****
DECLARE 1 DESTAT_REC2
  2 DIS      PIC'99'
  2 RES      PIC'999'
  2 STATION   PIC'999'
  2 SEQ      PIC'99
  2 UNUSED1   CHAR(1)
  2 STATE     CHAR(2)
  2 COUNTY    CHAR(3)
  2 UNUSED2   CHAR(1)
  2 Surname   CHAR(12)
  2 UNUSED3   CHAR(1)
  2 LATITUDE  PIC'99'
  3 DEGREES   PIC'99'
  3 MINUTES   PIC'99'
  3 SECONDS   PIC'99V9B'
                                /* BLANK

  2 LONGITUDE
  3 DEGREES   PIC'999'
  3 MINUTE S  PIC'99'
  3 SECONDS   PIC'99V9B'
                                /* BLANK

  2 LOCATION  CHAR(32)
  2 UNUSEDS   CHAR(6)
                                /* BLANK

```

(continued)

Table 24 (Concluded)

		2 of 2	
DECLARE 1 DÉSTAT_REC3		/* WQ.DESTAT RECORD TYPE 3 (LENGTH=85) */	
2	DIS	PIC'99'	/* DISTRICT NUMBER */
2	RES	PIC'999'	/* RESERVOIR NUMBER */
2	STATION	PIC'99'	/* STATION CODE */
2	SEQ	PIC'99'	/* RECORD NUMBER (1..03) */
2	UNUSED1	CHAR(1)	/* BLANK */
2	BSNCODE	CHAR(6)	/* BASIN CODE */
2	UNUSED2	CHAR(1)	/* BLANK */
2	MAJBASIN	CHAR(24)	/* MAJOR BASIN NAME */
2	UNUSED3	CHAR(1)	/* BLANK */
2	MINBASIN	CHAR(42)	/* MINOR BASIN NAME */

		/* WQ.DESTAT RECORD TYPE 4 (LENGTH=85) */	
DECLARE 1 DÉSTAT_REC4		/* WQ.DESTAT RECORD TYPE 4 (LENGTH=85) */	
2	DIS	PIC'99'	/* DISTRICT NUMBER */
2	RES	PIC'999'	/* RESERVOIR NUMBER */
2	STATION	PIC'999'	/* STATION CODE */
2	SEQ	PIC'99'	/* RECORD NUMBER */
2	UNUSED1	CHAR(1)	/* BLANK */
2	COMMENTS	CHAR(7)	/* DESCRIPTIVE TEXT */
2	UNUSED2	CHAR(3)	/* BLANK */

Table 25
Record Format of the WQ.OBS File

```

DECLARE 1 OBS_RECORD
      /* WQ.OBS FILE STRUCTURE (LENGTH=50) */
      /* DISTRICT NUMBER */
      /* RESERVOIR NUMBER */
      /* STATION NUMBER */
      /* CALENDAR YEAR */
      /* MONTH */
      /* DAY OF MONTH */
      /* TIME OF DAY */
      /* SAMPLE DEPTH (FEET) */
      /* PARAMETER CODE */
      /* QUALIFIER CODE */
      /* MEASURED VALUE */
      /* CODES BELOW DOCUMENTED IN STORET MANUAL */
      /* MORE=5 RETRIEVAL FORMAT */
      /* SPACE-TIME CODE */
      /* AVERAGING CODE */
      /* FINAL DATE-TIME */
      /* NUMBER OF SAMPLES IN COMPOSITE */
      /* UNUSED */

2 DIS          PIC'99'
              CHAR(1)
              PIC'-V.9999E99'

2 COMPOSITE_DATA
              CHAR(1)
              CHAR(1)
              CHAR(10)
              PIC'22'
              CHAR(1)

3 SPCODE
            3 ACODE
            3 DLAST
            3 NSAMP
            2 UNUSED

```

Table 26 Record Format of the WQ.SUM File

```

DECLARE 1 WQSUM_RECORD
      2 DIS      PIC'99'          /* WQ-SUM FILE STRUCTURE (LENGTH=80)
      2 RES      PIC'999'         /*
      2 STATION   PIC'999'         /*
      2 PARAM    PIC'B999'        /*
      2 NOBS     PIC'ZzzzzzZ'      /*
      2 NDATES   PIC'ZzzzzzZ'      /*
      2 DFIRST   PIC'B(6)9'       /*
      2 DLAST    PIC'B(6)9'       /*
      2 ZMIN     PIC'Z9'          /*
      2 ZMAX     PIC'Z9'          /*
      2 MEAN     FLOAT(6)         /*
      2 STD      FLOAT(6)         /*
      2 XMIN     FLOAT(6)         /*
      2 X25      FLOAT(6)         /*
      2 X50      FLOAT(6)         /*
      2 X75      FLOAT(6)         /*
      2 XMAX     FLOAT(6)         /*
      2 UNUSED   CHAR(8);        /* BLANK

      1 DISTRICT  NUMBER        /* DISTRICT NUMBER
      1 RESERVOIR NUMBER        /* RESERVOIR NUMBER
      1 STATION NUMBER          /* STATION NUMBER
      1 PARAMETER CODE          /* PARAMETER CODE
      1 OBSERVATIONS           /* NUMBER OF OBSERVATIONS
      1 SAMPLING DATES          /* NUMBER OF SAMPLING DATES
      1 FIRST_DATE              /* FIRST SAMPLING DATE
      1 LAST_DATE               /* LAST SAMPLING DATE
      1 MIN_DEPTH              /* MINIMUM SAMPLE DEPTH
      1 MAX_DEPTH              /* MAXIMUM SAMPLE DEPTH
      1 MEAN_VALUE              /* MEAN VALUE
      1 STD_DEV                /* STANDARD DEVIATION
      1 MIN_VALUE               /* MINIMUM VALUE
      1 X25_PERCENTILE          /* 25TH PERCENTILE
      1 X50_PERCENTILE          /* 50TH PERCENTILE (MEDIAN)
      1 X75_PERCENTILE          /* 75TH PERCENTILE
      1 MAX_VALUE               /* MAXIMUM VALUE

```

60. WQ.KEY (Table 23) contains station source and location descriptors and accounting information on the amount of data in the WQ.OBS file, including the number of observations, number of sampling dates, date range, and depth range. Station descriptors have been derived from the WQ.DESTAT file, and accounting information from the WQ.OBS file. Each station has been given a unique, 8-digit identifying code. The first two digits represent CE district (Table 1) and the next three represent CE project (Table 8). The last three contain a code which is unique within each project. The following conventions have been used in assigning the last three digits of the station code:

001 - 100	STORET stations retrieved in March of 1979
101 - 200	STORET stations retrieved in March of 1980
301 - 400	EPA National Eutrophication Survey stations
501 - 600	INFONET stations (Ohio River Division)
801 - 900	stations entered manually

Station numbers have been assigned sequentially within each category and project, after sorting the stations by STORET agency and STORET station codes. The station coding scheme permits sorting and analysis by station, district, project, station, and/or data source. The WQ.KEY file contains 4451 records (one per station), sorted by the 8-digit station code.

61. WQ.DESTAT contains detailed information on station location and data source. As shown in Table 24, it contains four record types. The fourth type is repetitive and contains up to 15 lines of detailed descriptive text on each station. WQ.DESTAT contains about 31,000 records, sorted by the first ten digits of each record (station code/record sequence number).

62. WQ.OBS (Table 25) contains water quality observations. Each record is identified by station, date, time, depth, and parameter code. Standard STORET remark codes identify measurements which are less than or greater than indicated values or duplicate values. The last part of each record contains composite sample information. WQ.OBS, which contains 2,023,194 records, sorted by the first 24 columns (station/date/time/depth/parameter), is stored on tape (sequential access only).

63. WQ.SUM (Table 26) contains a water quality data summary by station and parameter, derived from analysis of the WQ.OBS file. Statistics include date range, depth range, value range, mean, standard deviation, and value percentiles (25%, 50%, and 75%). Summary statistics are derived from the first 1000 observations for each station/parameter combination. Each record represents one station/parameter combination and the file contains about 75,000 records sorted by station and parameter codes.

64. To provide direct access to water quality station descriptions and data summaries, the contents of the WQ.DESTAT and WQ.SUM file have been produced in microfiche form. Frame format is illustrated in Table 27. The heading of each frame contains the district, project, station, and station type codes and names. Station descriptions are entered from the WQ.DESTAT file. The data summary by parameter follows. Frames are sorted by district, project, and station codes. A new fiche card is begun with each district. Card labels indicate the district and project described in the first frame. The last frame of each card contains an index which lists the project, station, and associated frame coordinates.

65. WQ.maps is a collection of station maps (one per project) which have been produced on a Calcomp line plotter using information in the WQ.KEY file. An example is given in Figure 4 which can be compared with the watershed map in Figure 3. Stations are located based upon latitude/longitude coordinates. Different plot symbols are used to identify station types. Only stations with more than 10 observations are plotted. Adjustments in horizontal and vertical scales are made for each map so that a linear distance scale is preserved and the map fits within an 8.5 x 11 inch area. A scale factor in miles per inch is derived from the LISTS.CPL file and plotted with a triangle. These maps are useful for identifying station locations and for refining the station type codes. They are subject, however, to errors in the station coordinates derived from STORET or INFONET. Based upon the maps and station

Table 27

Sample Microfiche Water Quality Data Summary

DISTRICT: 0 NEW ENGLAND PROJECT: 142 BUFFINVILLE		STATION: 004		TYPE: 1 TRIBUTARY								
COMPONENT	UNITS	FACTOR	N OBS	DATES	DATE-RANGE	DEPTH-RANGE	MEAN	STD DEV	MINIMUM	25%	MEDIAN	75% MAXIMUM
14 WATER TEMP	CENT		166	166 710525 781226	0	0	14.520	6.902	1.169	8.939	16.449	20.000 28.099
15 DO	MG/L		166	166 710525 781226	0	0	9.312	2.215	4.699	7.699	8.699	10.524 15.000
18 CONDUCTV FIELD	MICROMHO		165	165 710525 781226	0	0	66.133	22.066	33.000	57.000	60.000	67.000 180.000
20 PH	SU		166	166 710525 781226	0	0	6.595	0.545	5.199	6.199	6.399	6.799 8.500
24 TOT HARD	CACO3	MG/L	102	102 710525 780720	0	0	20.271	17.309	3.000	11.074	14.899	22.449 134.000
25 CHLORIDE	CL	MG/L	75	75 730517 780619	0	0	22.669	22.372	5.399	10.299	17.000	26.000 140.000
26 SULFATE	SO4-TOT	MG/L	24	24 730321 780727	0	0	8.987	4.580	1.189	6.199	8.000	10.375 26.000
27 IRON FE-TOT	UG/L	X 1000	100	100 730530 780720	0	0	0.223	0.168	0.019	0.142	0.199	0.247 1.099
29 MANGANESE MN	UG/L		92	92 730321 780720	0	0	32.282	91.832	20.000	20.000	20.000	20.000 900.000
31 CALCIUM CA-TOT	MG/L		98	98 710525 780720	0	0	6.466	6.408	1.199	3.199	4.299	7.324 47.500
33 MGSN1MM WG.TOT	MG/L		98	98 710525 780720	0	0	0.845	0.179	0.019	0.750	0.834	0.932 1.649
35 SODIUM NA-TOT	MG/L		97	97 731004 780720	0	0	4.923	2.671	1.199	3.799	4.299	5.049 21.599
37 POTSSIUM K.TOT	MG/L		58	58 730321 780709	0	0	1.198	0.742	0.199	0.574	1.279	1.504 4.399
39 TURB JWSN	JTU		162	162 710525 781226	0	0	1.084	0.863	0.399	0.699	0.899	1.199 7.500
46 AP COLOR PI-CO UNITS			35	35 730321 780824	0	0	37.114	15.758	15.000	38.000	38.000	40.000 85.000
47 SILICA DISOLVED	MG/L		1	1 750204 750204	0	0	0.929	0.000	0.929	0.929	0.929	0.929 0.929
49 BOD 5 DAY	MG/L		1	1 730530 730530	0	0	0.339	0.000	0.339	0.339	0.339	0.339 0.339
55 TOTAL P	MG/L P		33	33 730615 780824	0	0	0.061	0.128	0.006	0.009	0.013	0.029 0.623
59 PHOS-D15	ORTHO	MG/L P	8	8 730321 770414	0	0	0.019	0.020	0.000	0.007	0.011	0.024 0.066
63 NH3-N	TOTAL	MG/L	8	8 730321 750825	0	0	0.411	0.155	0.099	0.324	0.439	0.497 0.619
66 NO2-N	TOTAL	MG/L	12	12 730321 780720	0	0	0.005	0.004	0.001	0.001	0.003	0.007 0.014
68 NO3-N	TOTAL	MG/L	79	79 730517 780817	0	0	0.954	3.909	0.041	0.269	0.479	0.599 35.000

Figure 4
Sample Water Quality Station Map

descriptions, some editing of obvious coding errors in station coordinates has been possible.

WQ Data Inventories

66. Table 28 presents an inventory of water quality data by station type and division. Corresponding inventories by project and district are given in Appendix A. Overall, 271 out of 299 projects are represented in the water quality files. Remaining regional deficiencies include St. Paul District (6 out of 13 projects), Portland District (9 out of 17 projects), and Los Angeles District (0 out of 2 projects).

67. An inventory by station type and parameter code is given in Table 29. As expected, temperature, pH, and oxygen are the most frequently represented parameter codes in the file. No data were located for one code (09 -- average daily spillway flow).

68. Phosphorus, chlorophyll-a, and Secchi depth data are particularly relevant to assessing eutrophication problems and therefore to Phase II modelling efforts. Table 30 presents an inventory of these measurements made at pool stations (type codes 2, 4, or 5) by division. Corresponding inventories by project and district are given in Appendix A. Out of 299 projects in the central project list, total phosphorus data have been located for 211, chlorophyll-a data for 132, and Secchi depth data for 171. Some regional deficiencies in total phosphorus data are evident particularly in the New England Division (12 out of 22 projects), North Atlantic Division (6 out of 15 projects), North Central Division (6 out of 16 projects), and North Pacific Division (6 out of 27 projects). These are also reflected in the chlorophyll-a and Secchi depth inventories. These inventories indicate that the data base will not be sufficient to assess the trophic state of all CE projects with appreciable pools. The complete coverage for roughly 130 projects indicates, however, that the data base should be generally sufficient for model testing purposes, the primary objective of Phase II. Regional testing of models should also be possible, with a few exceptions (e.g.,

Table 28

Inventory of Water Quality Data by Station Type and CE Division

INVENTORY OF WATER QUALITY DATA BY STATION TYPE

*** DIVISION TOTALS ***

DIVISION	PROJ	TOTAL		TRIBUTARY		POOL		NEAR DAM		DISCHARGE		OTHER		TOTAL	
		NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS
1 NED	22	51	65968	53	18871	40	15479	26	44515	0	0	0	170	144833	
2 NAD	15	40	6192	25	2291	11	1416	20	4321	4	438	100	14658		
3 SAD	24	420	127007	159	50181	34	20605	80	51451	41	3025	734	252269		
4 ORD	64	534	115185	423	255705	115	181239	137	69368	91	12659	1300	634156		
5 NCD	16	30	10009	27	7985	8	1953	8	711	2	90	75	20748		
6 LMVD	15	168	73729	61	24301	24	28579	30	20091	21	1620	304	148320		
7 SWD	66	399	190063	249	74982	80	52201	115	102886	57	3942	900	424054		
8 MRD	31	172	73811	193	43504	61	23453	64	6221	40	3389	530	206878		
9 NPD	27	96	36150	22	22545	11	12167	34	28957	1	93	164	99912		
10 SPD	19	77	29473	35	9155	18	12815	40	25708	4	215	174	77366		
TOTALS	299	1987	727587	1247	509520	402	349907	554	410709	261	25471	44512023194			

INVENTORY OF WATER QUALITY DATA BY STATION TYPE

*** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DIVISION ***

DIVISION	PROJ	TOTAL		TRIBUTARY		POOL		NEAR DAM		DISCHARGE		OTHER		TOTAL	
		NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS
1 NED	22	22	22	15	15	11	11	22	22	0	0	0	22	22	22
2 NAD	15	9	9	10	10	8	8	9	9	1	1	1	12	12	12
3 SAD	24	19	19	16	16	14	14	20	20	6	6	6	22	22	22
4 ORD	64	61	61	58	58	60	60	64	64	22	22	22	64	64	64
5 NCD	16	7	7	7	5	5	7	7	7	1	1	1	9	9	9
6 LMVD	15	15	15	14	14	15	15	15	15	11	11	11	15	15	15
7 SWD	66	51	51	37	37	48	48	50	50	21	21	21	61	61	61
8 MRD	31	26	26	29	29	31	31	22	22	13	13	13	31	31	31
9 NPD	27	16	16	5	5	7	7	17	17	-1	-1	-1	18	18	18
10 SPD	19	16	16	10	10	11	11	16	16	1	1	1	17	17	17
TOTALS	299	242	242	201	201	210	210	242	242	77	77	77	271	271	271

Table 29

Inventory of Water Quality Data by Component and Station Type

COMPONENT	INVENTORY OF WQ. DATA BY PARAMETER AND STATION TYPE		--TRIBUTARY--		--POOL--		--NEAR DAM--		--DISCHARGE--		--OTHER--		TOTAL		
	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	
1 00027	COLLECT	AGENCY	CODE	152	5390	76	4362	21	5236	93	2875	0	0	342	17833
2 00028	ANALYZE	AGENCY	CODE	156	2956	107	3923	28	4397	92	1975	0	0	283	13251
3 72025	DEPTH OF POND	FEET	69	284	467	2117	125	573	6	245	0	0	667	3003	
4 00068	MAX SAND DEPTH	FEET	20	720	6	95	3	95	7	245	0	0	36	1155	
5 72020	ELEV FEET AB MSL	MSL	29	125	155	2904	30	1118	9	215	0	0	223	4362	
6 00062	WATER SURF ELE. IN FEET	FT. ABOV MSL	12	175	28	632	10	309	7	204	0	0	57	1320	
7 72030	FOREBAY ELEV. FT.	ABOV MSL	6	25	21	215	22	277	6	41	0	0	63	558	
8 00054	RESVOR STORAGE	AC-FT	0	0	12	416	22	293	0	0	0	0	34	709	
9 72033	Avg DAY TEMP	0	0	0	0	0	0	0	0	0	0	0	0	0	
10 72034	INSTANT SPILLWAY FLOW,	CFS	2	110	0	0	0	0	0	0	0	0	0	0	
11 00061	STREAM FLOW, INST-CFS	INST-CFS	407	13927	13	153	13	238	204	7334	9	106	20	1830	
12 00060	STREAM FLOW, CFS	CFS	875	18874	56	681	25	616	260	8146	6	646	21758		
13 00065	STREAM STAGE	FEET	119	279	15	171	11	214	58	1793	1	1	204	4937	
14 00010	WATER TEMP	CENT	1149	54660	1194	92820	393	56811	434	37962	21	429	3191	24462	
15 00300	DO DO PROBE	MG/L	701	28427	765	21774	263	20680	306	15178	3	222	2038	86281	
16 00299	REDO X ORP	MV	394	1379	418	48877	116	2819	118	14056	18	116	1064	105565	
17 00090	CNDUCTY FIELD	MICROMHO	460	1386	166	10512	47	8143	53	681	0	0	442	20702	
18 00094	CNDUCTY AT 25C	MICROMHO	663	27853	827	35255	237	21324	151	9289	20	268	1542	86962	
19 00095	PH	SU	1110	47259	1107	49313	247	20825	314	25725	7	291	2058	98763	
20 00400	LAB PH	SU	273	4573	180	4070	54	1234	114	5124	15	295	272	3032	
21 00403	TALK CAC03	MG/L	921	23458	901	16693	913	7956	383	15224	23	359	2541	63700	
22 00410	T ACIDITY CAC03	MG/L	201	2107	111	3485	36	1154	73	3165	18	299	439	10210	
23 00435	MANGANESE MN DISS	UG/L	802	25428	490	11181	192	7065	360	18055	23	351	1867	62080	
24 00900	TOT HARD CHLORIDE	CL	744	25246	358	6083	172	5069	344	14995	9	290	1627	51666	
25 00940	SULFATE SO4-TOT	MG/L	677	19653	358	5865	174	4985	328	12163	19	302	1555	42668	
26 00945	IRON FE, TOT	UG/L	720	12905	351	5444	161	5130	311	7956	21	204	1564	31619	
27 01045	IRON FE-DISS	UG/L	437	5620	211	4253	96	4253	172	2681	7	19	923	15784	
28 01046	MANGANESE MN	UG/L	700	12049	351	5294	156	5215	285	7429	21	186	1513	3073	
29 01055	SODIUM NA,DISS	UG/L	408	45588	206	3090	92	4208	163	2440	7	21	876	14347	
30 21056	CALCIUM CA-TOT	MG/L	335	6551	133	1556	64	2085	145	4271	0	0	677	14453	
31 00916	KALIUM K-TOT	MG/L	340	10086	161	2180	97	1455	201	6978	1	3	800	20702	
32 00915	MGSNIIUM MG, TOT	MG/L	330	6297	131	1616	66	1827	150	4132	0	0	677	13812	
33 00927	MGSNIIUM MG, DISS	MG/L	337	10188	164	2221	96	1464	198	6947	0	0	795	20820	
34 00925	MGSNIIUM MG, TOT	MG/L	295	6651	115	1446	59	1680	119	3989	2	90	590	13895	
35 00929	SODIUM NA,DISS	MG/L	269	11198	79	1148	74	1175	164	2683	3	59	589	21263	
36 00930	PTSIUM PT,DISS	MG/L	298	5092	131	1374	57	1578	123	3187	2	89	611	11320	
37 00937	PTSIUM PT, TOT	MG/L	250	8353	89	1001	70	1001	159	5749	2	54	570	16158	
38 00935	TURB JKSN UNITS	JTU	468	17340	197	4979	97	2624	217	8971	4	512	983	34426	
39 0070	TURB TRANS %	X	19	45	449	6683	128	2654	10	36	0	0	606	9418	
40 0074	TURB TRBDOMT MACH FTU	FTU	523	7100	413	9454	122	5201	191	5737	13	62	1262	27554	
41 00076	TRANSP SECHL METERS	METERS	173	11184	749	4616	122	1962	37	426	0	0	1187	8188	
42 00078	INCOT LT RENNING PERCENT	%	16	66	315	2684	89	1269	12	60	0	0	432	4079	
43 00031	DEPTH-FT 1% LIGHT REMAINS	FT	69	180	43	2616	17	163	4	11	0	0	133	516	
44 00034	COLOR PI-CO UNITS	PI-CO	457	2406	228	3118	89	1265	148	4890	13	285	935	16568	
45 00080	AP COLOR PT-CO UNITS	PT-CO	49	1087	18	384	10	90	27	743	0	0	104	2304	

(Continued)

Table 29 (Concluded)

COMPONENT	INVENTORY OF NO _x DATA BY PARAMETER AND STATION TYPE			TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
	NSTA	N OBS	INSTA	N OBS	INSTA	N OBS	NSTA	N OBS	INSTA	N OBS	INSTA	N OBS	NSTA	N OBS	INSTA	N OBS	NSTA	N OBS			
47 00955	SILICA	DISOLVED	MG/L	242	7159	89	1131	66	790	153	5135	1	11	551	14226						
48 00956	SILICA	TOTAL	MG/L	25	126	19	287	6	156	20	190	0	0	70	1759						
49 00310	BOD	5 DAY	MG/L	518	10033	200	2274	90	2002	227	4111	3	219	1038	18639						
50 00405	COD	C	MG/L	245	6432	121	1195	64	792	115	3992	0	0	545	12411						
51 00680	T ORG	C	MG/L	404	5375	124	1808	71	1027	148	2560	2	140	749	10910						
52 00681	D ORG	C	MG/L	132	1399	34	299	9	126	45	404	0	0	220	2228						
53 00685	T. INORG	C	MG/L	23	745	6	56	3	89	12	263	0	0	44	1153						
54 00691	D INORG	C	MG/L	0	0	4	96	1	22	2	20	0	0	7	138						
55 00695	TOTAL P	MG/L P	1803	33290	892	13000	324	8834	532	13925	250	2991	3801	71540							
56 00666	PHOS-DIS	HYDRO	MG/L P	280	3624	177	2988	93	4555	126	1657	9	23	685	12847						
57 00669	PHOS-TOT	HYDRO	MG/L P	5	21	1	2	0	0	3	30	0	0	9	53						
58 00678	PHOS-TOT	HYDRO	MG/L P	17	58	14	67	19	120	5	23	0	0	55	268						
59 00671	PHOS-DIS	ORTHO	MG/L P	1190	16221	561	7326	177	3130	286	4095	232	2273	2446	33045						
60 70507	PHOS-T	ORTHO	MG/L P	236	2231	111	107	51	513	94	1137	2	90	494	4978						
61 00600	TOTAL N	N	MG/L	321	6049	120	1996	48	1152	98	3275	0	0	587	12572						
62 00605	ORG N	N	MG/L	314	4245	143	2375	53	1119	105	2020	2	13	617	9772						
63 00610	NH3-N	TOTAL	MG/L	1637	24012	825	11174	293	7792	459	7857	240	2408	3454	53243						
64 00625	TOT KJEL	N	MG/L	1581	21524	722	9879	273	7158	392	6786	233	2463	3211	47808						
65 00630	NOD2N03	N-TOTAL	MG/L	1548	22424	747	10611	247	7456	392	7464	245	2439	3179	50394						
66 00615	NOD2-N	TOTAL	MG/L	994	9592	73	1730	47	502	237	2765	160	1315	1511	14904						
67 00613	NOD2-N	DISS	MG/L	114	1972	58	1179	25	465	64	1014	0	0	261	4630						
68 00620	NOD3-N	TOTAL	MG/L	1180	15722	212	2467	127	1654	305	5986	168	1451	1992	27280						
69 00618	NOD3-N	DISS	MG/L	210	7335	63	1691	42	751	142	5427	0	0	457	15204						
70 00500	RESIDUE	TOTAL	MG/L	332	6750	188	4648	63	4045	137	2317	7	215	747	17976						
71 00505	RESIDUE	TOT VOL	MG/L	214	2451	139	3308	51	2785	75	1065	3	3	482	9612						
72 00515	RESIDUE	DISS-105 C	MG/L	261	4643	133	1612	56	783	112	1745	7	152	569	8935						
73 00530	RESIDUE	TOT NFLT	MG/L	619	9261	301	6981	120	4501	237	4407	9	249	1286	24499						
74 80154	SUSP SED	CONC	MG/L	99	2793	6	39	2	48	44	1359	0	0	151	4239						
75 70300	RESIDUE	DISS-180 C	MG/L	395	10970	84	1383	72	985	182	6937	2	127	735	20402						
76 32209	CHL-A	FLU-COR	UG/L	11	169	0	0	0	0	0	0	0	0	11	169						
77 32217	CHL-A	FLU-UNC	UG/L	1	3	374	1151	110	350	2	6	0	0	487	1510						
78 32211	CHL-A	TRIC-COR	UG/L	54	277	20	89	8	431	7	58	0	0	89	855						
79 32210	CHL-A	TRIC-INC	UG/L	59	406	96	955	29	379	22	128	0	0	206	1868						
80 32230	CHL-A	UNSPEC	MG/L	15	337	19	538	3	162	9	190	0	0	46	1227						
81 60050	ALGAE	TOTAL	#/ML	48	1058	67	613	56	463	32	875	0	0	203	3009						
82 00570	BIMASS	PLANKTON	ML/L	1	7	27	239	13	205	0	0	0	0	0	451	451					
83 85209	ALGAL	GROWNT	MG/L	5	41	22	123	5	64	2	14	0	0	34	242						
84 60990	ZOOPLANK	OTHER	LITER	56	159	12	101	6	36	4	15	0	0	78	311						
85 31616	FEC COLI	MFM-CBR	/100ML	503	10487	271	5713	93	1565	194	4466	4	463	1065	22690						
86 31673	FESTREP	MFKAGAR	/100ML	165	1983	58	1356	13	423	64	1418	2	267	302	5447						
87 31679	FESTREP	MF-MENT	/100ML	135	2141	45	326	22	144	55	931	2	100	259	3642						
88 50051	FLW	RATE	INST MGD	0	0	0	0	0	0	0	0	0	0	185	1547	1547					
89 50053	CONDUT	FLOW-MGD	MONTHLY	0	0	0	0	0	0	0	0	0	0	187	1555	1555					

Table 30

Inventory of Total Phosphorus, Chlorophyll-a, and Secchi Data at Pool Stations by CE Division

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA (POOL STATIONS)
*** DIVISION TOTALS ***

TOTAL		TOTAL P		CHLOROPHYLL-A		SECCHI DEPTH			
DIVISION	PROJ	NSTA	NOBS	DFIRST	DLAST	NSTA	NOBS	DFIRST	DLAST
1 NED	22	29	382	710607	780831	0	0	0	0
2 NAD	15	21	222	720510	790501	16	68	720510	760721
3 SAD	24	141	2549	650104	800110	81	266	730407	790730
4 ORD	64	348	8120	660105	791101	190	1341	711024	781012
5 NCD	16	30	605	670713	791001	28	177	720702	790806
6 LMWD	15	73	936	691204	790815	56	184	720505	741111
7 SWD	66	279	4627	650301	791204	154	629	720202	790723
8 MRD	31	214	2257	650104	790802	76	256	740408	780731
9 NPD	27	28	1321	650104	781025	19	584	740611	780509
10 SPD	19	53	815	710412	791018	11	30	750310	751113
TOTALS	299	1216	21834	650104	800110	631	3535	711024	790806
							977	6578	680709
								791105	

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA (POOL STATIONS)
*** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DIVISION ***

TOTAL		TOTAL P		CHLOROPHYLL-A		SECCHI DEPTH			
DIVISION	PROJ	NSTA	NOBS	DFIRST	DLAST	NSTA	NOBS	DFIRST	DLAST
1 NED	22	12	12	12	12	0	0	0	0
2 NAD	15	6	6	6	6	5	5	5	6
3 SAD	24	17	17	17	17	13	13	13	17
4 ORD	64	61	61	61	61	39	39	39	53
5 NCD	16	6	6	6	6	6	6	6	53
6 LMWD	15	13	13	13	13	13	13	13	13
7 SWD	66	46	46	46	46	34	34	34	34
8 MRD	31	31	31	31	31	15	15	15	31
9 NPD	27	6	6	6	4	4	4	4	4
10 SPD	19	13	13	13	3	3	3	7	7
TOTALS	299	211	211	132	132	132	171	171	171

the lack of chlorophyll-a or Secchi depth data for projects in New England).

69. The EPA National Eutrophication Survey is a primary source of data for testing nutrient loading models and relationships among within-pool measures of trophic state. An inventory of data holdings by agency, station type, and parameter code is given in Table 31. Two agency groupings are used: "EPA", representing the National Eutrophication Survey; and "OTHER", representing all other agencies and monitoring programs. Station types include tributary (type code 1), discharges (type code 3), and pool (type codes 2, 4, and 5). The parameter list includes a variety of nutrient, biological, chemical, and optical characteristics pertinent to eutrophication analysis. Within each category, the numbers of observations, sampling dates, stations, projects, and districts are indicated, along with the total period of record in station-months. Including data from agencies other than the EPA/NES has more than doubled the total numbers of observations of most parameters and provided additional useful measurements for some projects, such as algal cell numbers and volumes, turbidity, and suspended solids. At pool stations, non-EPA agencies provide more chlorophyll-a observations (2036 vs. 1499) concentrated in fewer projects (43 vs. 108). These and other statistics in Table 31 reflect the relative intensities of agency monitoring efforts--many of the non-EPA programs are more intensive and extensive temporally than the three-date, one-growing-season program employed by the EPA/NES.

70. Based upon data inventories in Appendix A, some projects for which non-EPA data monitoring of trophic state indicators has been partic ly intense include the following:

06-372	John H. Kerr
15-399	Eau Galle
16-311	East Branch Clarion River
18-093	Monroe
18-120	Barren River
19-340	J. Percy Priest
26-359	Sam Rayburn
29-111	Pomona
32-204	Kookanusa

Table 31

Inventory of Eutrophication-Related Water Quality Components
by Station Type and Monitoring Agency

TYPE:	TRIB	DSCH			POOL					
		EPA	OTHR	ALL	EPA	OTHR	ALL	EPA	OTHR	ALL
TOTAL P	NOBS	9794	23496	33290	1450	12475	13925	6689	15145	21834
TOTAL P	NDAT	9771	22370	32141	1428	11895	13323	1418	7869	9307
TOTAL P	NSTA	806	997	1803	116	416	532	479	737	1216
TOTAL P	NPRJ	109	214	236	108	211	237	108	186	211
TOTAL P	NDIS	27	30	31	27	29	30	27	28	29
TOTAL P	MTHS	8469	35292	43761	1230	21050	22280	2628	18388	21016
ORTHO-P	NOBS	9878	12198	22076	1456	5433	6889	6668	12851	19519
ORTHO-P	NDAT	9855	10886	20741	1434	5063	6497	1418	5931	7349
ORTHO-P	NSTA	808	726	1534	116	311	427	479	576	1055
ORTHO-P	NPRJ	109	186	223	108	193	225	108	167	205
ORTHO-P	NDIS	27	29	31	27	28	30	27	26	29
ORTHO-P	MTHS	8459	15628	24087	1218	8670	9888	2628	11554	14182
NH3-N	NOBS	10002	14010	24012	1464	6393	7857	5682	12284	18966
NH3-N	NDAT	9979	13380	23359	1442	5264	7706	1418	5978	7296
NH3-N	NSTA	808	829	1637	116	343	459	479	639	1118
NH3-N	NPRJ	109	197	221	108	198	226	108	169	202
NH3-N	NDIS	27	29	30	27	28	30	27	25	29
NH3-N	MTHS	8508	21659	30167	1231	11633	12864	2628	14074	16702
TKN	NOBS	9970	11554	21524	1461	5325	6786	5576	10459	17035
TKN	NDAT	9953	11032	20985	1439	5211	6650	1391	4754	6145
TKN	NSTA	804	777	1581	116	276	392	470	525	995
TKN	NPRJ	109	175	206	108	173	211	105	152	192
TKN	NDIS	27	29	31	27	26	30	26	24	28
TKN	MTHS	8505	18057	26562	1230	8830	10060	2599	10869	13468
NO2+3-N	NOBS	9999	12425	22424	1464	6000	7464	6682	11385	18067
NO2+3-N	NDAT	9975	11907	21883	1442	5906	7348	1418	5302	6720
NO2+3-N	NSTA	807	741	1548	116	276	392	472	515	934
NO2+3-N	NPRJ	109	165	194	108	154	188	108	128	167
NO2+3-N	NDIS	27	28	29	27	23	29	27	24	28
NO2+3-N	MTHS	8510	17667	26177	1231	9362	10591	2628	12146	14724
NO3-N	NOBS	5978	17079	23057	784	10629	11413	0	6563	6563
NO3-N	NDAT	5963	16133	22101	781	9987	10763	0	4722	4722
NO3-N	NSTA	773	526	1299	111	274	385	0	409	409
NO3-N	NPRJ	106	173	208	107	168	211	0	153	153
NO3-N	NDIS	25	28	30	25	26	29	0	26	26
NO3-N	MTHS	4904	20780	25684	617	13582	14199	0	7588	7588
CHL-A	NOBS	3	743	746	6	318	321	1499	2036	3535
CHL-A	NDAT	3	728	731	6	313	319	1490	1129	2619
CHL-A	NSTA	1	74	75	2	30	32	482	147	629
CHL-A	NPRJ	1	29	30	1	19	19	108	43	132
CHL-A	NDIS	1	14	15	1	12	12	27	13	28
CHL-A	MTHS	5	1189	1194	8	377	385	2660	3145	5805
ALGAE(#)	NOBS	0	1058	1058	0	875	875	0	1076	1076
ALGAE(#)	NDAT	0	1053	1053	0	875	875	0	907	907
ALGAE(#)	NSTA	0	48	48	0	32	32	0	123	123
ALGAE(#)	NPRJ	0	26	26	0	29	29	0	59	59
ALGAE(#)	NDIS	0	12	12	0	14	14	0	12	12
ALGAE(#)	MTHS	0	1272	1272	0	1122	1122	0	1437	1437

(Continued)

Table 31 (Concluded)

TYPE: AGENCY:		TRIB			DSCH			POOL		
		EPA	OTHR	ALL	EPA	OTHR	ALL	EPA	OTHR	ALL
ALGAE(V)	NOBS	0	7	7	0	0	0	0	444	444
ALGAE(V)	NDAT	0	7	7	0	0	0	0	430	430
ALGAE(V)	NSTA	0	1	1	0	0	0	0	40	40
ALGAE(V)	NPRJ	0	1	1	0	0	0	0	14	14
ALGAE(V)	NDIS	0	1	1	0	0	0	0	1	1
ALGAE(V)	MTHS	0	6	6	0	0	0	0	832	832
SECCHI	NOBS	3	1181	1184	6	420	426	1487	5091	6578
SECCHI	NDAT	3	1152	1155	6	349	355	1478	4969	6447
SECCHI	NSTA	1	172	173	2	35	37	481	496	977
SECCHI	NPRJ	1	42	43	1	28	29	108	121	171
SECCHI	NDIS	1	14	14	1	12	12	27	20	28
SECCHI	MTHS	5	2137	2142	8	597	605	2629	12314	14943
TRANS(%)	NOBS	5	40	45	24	12	36	6781	2556	9337
TRANS(%)	NDAT	2	23	25	6	9	15	1319	368	1787
TRANS(%)	NSTA	1	18	19	2	8	10	481	96	577
TRANS(%)	NPRJ	1	11	12	1	8	9	108	21	121
TRANS(%)	NDIS	1	2	3	1	1	2	27	4	27
TRANS(%)	MTHS	3	6	9	8	10	18	2484	816	3300
LIGHT(%)	NOBS	0	66	66	0	60	60	486	3467	3953
LIGHT(%)	NDAT	0	21	21	0	24	24	329	531	860
LIGHT(%)	NSTA	0	16	16	0	12	12	203	201	404
LIGHT(%)	NPRJ	0	10	10	0	12	12	52	42	91
LIGHT(%)	NDIS	0	1	1	0	3	3	12	7	18
LIGHT(%)	MTHS	0	7	7	0	17	17	335	494	829
TURBIDIT	NOBS	0	24440	24440	0	14708	14708	0	22258	22258
TURBIDIT	NDAT	0	23815	23815	0	14555	14555	0	10580	10580
TURBIDIT	NSTA	0	904	904	0	350	350	0	762	762
TURBIDIT	NPRJ	0	201	201	0	199	199	0	171	171
TURBIDIT	NDIS	0	30	30	0	28	28	0	25	25
TURBIDIT	MTHS	0	24945	24945	0	12907	12907	0	19675	19675
SUSP SOL	NOBS	0	12054	12054	0	5766	5766	0	10669	10669
SUSP SOL	NDAT	0	11470	11470	0	5672	5672	0	4234	4234
SUSP SOL	NSTA	0	686	686	0	264	264	0	429	429
SUSP SOL	NPRJ	0	168	168	0	169	169	0	116	116
SUSP SOL	NDIS	0	29	29	0	26	26	0	21	21
SUSP SOL	MTHS	0	18422	18422	0	8277	8277	0	8401	8401
OXYGEN	NOBS	8	42216	42224	18	29216	29234	6202113948170050		
OXYGEN	NDAT	3	33919	33922	5	26106	26112	1494	17465	18959
OXYGEN	NSTA	1	1062	1063	2	412	414	482	1051	1533
OXYGEN	NPRJ	1	212	212	1	217	217	108	191	216
OXYGEN	NDIS	1	30	30	1	29	29	27	29	29
OXYGEN	MTHS	5	40323	40328	8	22191	22199	2668	31533	34201
FLOW	NOBS	7934	24977	32911	1447	15753	17200	0	1468	1468
FLOW	NDAT	7933	23692	31625	1447	15173	16620	0	1373	1373
FLOW	NSTA	590	533	1123	108	268	376	0	93	93
FLOW	NPRJ	106	156	185	106	175	210	0	35	35
FLOW	NDIS	27	30	31	27	25	30	0	17	17
FLOW	MTHS	6454	22028	28482	1174	14345	15519	0	1975	1975

Thus, it will not be necessary in Phase II to rely exclusively upon data from the EPA/NES for assessing relationships among within-pool measures of trophic state. The stringent water quality and flow sampling program requirements required for estimation of nutrient budgets and time limitations of this project suggest, however, that EPA/NES data be used exclusively for evaluating nutrient loading models.

PART X: SED - SEDIMENTATION DATA

71. The seventh major file group describes sedimentation characteristics of CE reservoirs. It contains the following elements:

SED.sheets - Sedimentation Survey Sheets
SED.RATES - Sedimentation Rate File

This information has been derived from a collection of sediment survey data for U. S. reservoirs compiled in 1975 by the Agricultural Research Service of the U. S. Department of Agriculture^{10,12}. A total of 84 CE projects in the central project list were included in that compilation. These are identified by the sedimentation survey key in the LISTS.CPL file (Table 8).

72. SED.sheets consists of a collection of the most recent sedimentation survey sheets contained in the appendix to the U. S. Department of Agriculture (USDA) compilation¹². These sheets contain detailed information on project location, morphometry, hydrology, as well as sedimentation. An example is given in Table 32. Sheets have been assembled in a loose-leaf notebook, identified, and arranged by district and project code.

73. SED.RATES is a file containing the most recent estimates of sedimentation rates for each of the 84 projects located in the USDA compilation¹⁰. The format of this file is given in Table 33. Many of the sedimentation rate measurements antedate the water quality file. For 45 projects, the most recent survey data available were taken during or before 1965. Rate estimates for some projects, however, will be useful for testing relationships between sedimentation rate and nutrient trapping efficiency during Phase II of this study.

Table 32
Sample Sedimentation Survey Sheet

RESERVOIR SEDIMENT DATA SUMMARY		CANTON LAKE		U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE				
SCS-34 Rev. 8-66		NAME OF RESERVOIR		46-13b				
				DATA SHEET NO.				
DAM	1. OWNER Corps of Engineers	2. STREAM North Canadian	3. STATE Oklahoma					
	4. SEC 27 Twp. 19N Range 13W	5. NEAREST P.O. Canton 2 N	6. COUNTY Blaine					
RESERVOIR	7. LAT 36° 05' LONG 98° 36'	8. TOP OF DAM ELEVATION 1648.0	9. SPILLWAY CREST ELEV. 1/1638.0					
	10. STORAGE ALLOCATION	11. ELEVATION TOP OF POOL	12. ORIGINAL SURFACE AREA, ACRES	13. ORIGINAL CAPACITY, ACRE-FEET	14. GROSS STORAGE, ACRE-FEET			
	FLOOD CONTROL	1638.0	15,750	272,300	401,500			
	MULTIPLE USE							
	POWER							
	WATER SUPPLY	3/ 1615.2	8,360	106,450	129,300			
	IRRIGATION							
	CONSERVATION	3/ 1396.3	3,340	22,750	22,750			
INACTIVE								
WATERSHED	17. LENGTH OF RESERVOIR	13.1 MILES	AV. WIDTH OF RESERVOIR	1.3 MILES				
	18. TOTAL DRAINAGE AREA	4/ 12,483 SQ. MI.	22. MEAN ANNUAL PRECIPITATION	19.30 INCHES				
	19. NET SEDIMENT CONTRIBUTING AREA	5/ 5,081 SQ. MI.	23. MEAN ANNUAL RUNOFF	0.38 (28.58 yrs) INCHES				
	20. LENGTH	300 MILES	24. MEAN ANNUAL RUNOFF	136,400 AC. FT				
	21. MAX ELEV.	6300 MIN. ELEV. 1575	25. ANNUAL TEMP. MEAN 58.3 RANGE 106 TO -2.5					
SURVEY DATA	26. DATE OF SURVEY	27. PERIOD YEARS	28. ACCL. YEARS	29. TYPE OF SURVEY	30. NO. OF RANGES OR CONTOUR INT.	31. SURFACE AREA, ACRES	32. CAPACITY, ACRE-FEET	33. CI. RATIO, AC. FT PER AC. FT
	July 1947	-	-	Range (D)	44	15,750	401,500	2.15
	6/May 1953	5.83	5.83	Range (D)	22	15,750	390,800	2.10
	2/Oct 1959	6.42	12.25	Range (D)	22	15,750	385,900	2.07
	Sept 1966	6.92	19.17	Range (D)	25	15,700	383,300	2.06
WATER INFL.	34. DATE OF SURVEY	35. PERIOD ANNUAL PRECIPITATION	36. PERIOD WATER INFLOW, ACRE-FEET	37. WATER INFLOW TO DATE, AC. FT				
	May 1953	20.05	288,890	540,420	1,684,200	288,890	1,684,200	
	Oct 1959	19.31	162,760	422,930	1,044,900	222,780	1,729,100	
	Sept 1966	18.69	99,170	159,390	586,260	178,160	3,415,360	
SEDIMENT LOSS	38. DATE OF SURVEY	39. PERIOD CAPACITY LOSS, ACRE-FEET	40. TOTAL SED. DEPOSITS TO DATE, ACRE-FEET					
	May 1953	40. PERIOD TOTAL	41. AV. ANNUAL	42. PERIOD TOTAL	43. AV. ANNUAL	44. PERIOD TOTAL	45. AV. ANNUAL	46. PERIOD TOTAL
	Oct 1959	10,690	1,834	10,690	1,834	10,690	1,834	10,690
	Sept 1966	4,880	760	0.125	0.125	13,570	1,271	0.209
STORAGE LOSS	47. DATE OF SURVEY	48. AV. DRY WT. LBL PER CU. FT	49. SED. DEP. TONS PER SQ. MI.-YR	50. PERIOD	51. TOTAL TO DATE	52. AV. ANNUAL	53. TOT. TO DATE	54. PERIOD
	May 1953	70.9	466.4	466.4	0.457	2.66	7,224	7.212
	Oct 1959	56.2	65.3	255.8	0.317	3.88	1,795	5.138
	Sept 1966	56.1	76.4	190.6	0.237	4.54	3,447	4.799

(Continued)

Table 32 (Concluded)

28. DATE OF SURVEY	43. DEPTH DESIGNATION RANGE IN FEET BELOW, AND ABOVE, CREST ELEVATION														
	63-55	55-45	45-40	40-35	35-30	30-25	25-20	20-15	15-8	8-cr	cr +5	+5-+10			
May 1953	4.3	12.1	11.9	15.7	17.1	15.2	12.0	7.4	4.3	0.0	0.0	0.0			
Oct 1959	3.2	7.7	5.6	12.0	16.4	22.2	14.7	9.9	6.7	1.6	0.0	0.0			
Sept. 1966	3.5	13.2	9.1	13.1	16.3	15.4	11.5	7.4	6.2	2.8	1.4	0.1			
28. DATE OF SURVEY	44. REACH DESIGNATION PERCENT OF TOTAL ORIGINAL LENGTH OF RESERVOIR														
	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	-105	-110	-115	-120	-125
May 1953	2.5	6.4	10.7	19.3	21.3	17.9	15.6	4.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0
Oct 1959	2.3	2.2	4.7	17.0	27.3	19.1	17.1	6.1	3.1	1.2	0.0	0.0	0.0	0.0	0.0
Sept. 1966	4.3	5.7	7.7	18.0	22.3	16.2	14.1	5.3	3.3	1.8	1.3	0.0	0.0	0.0	0.0
45. RANGE IN RESERVOIR OPERATION															
WATER YEAR	MAX ELEV.	MIN ELEV.	INFLOW, AC. FT	WATER YEAR	MAX ELEV.	MIN ELEV.	INFLOW, AC. FT	WATER YEAR	MAX ELEV.	MIN ELEV.	INFLOW, AC. FT	WATER YEAR	MAX ELEV.	MIN ELEV.	INFLOW, AC. FT
1947 (2 mo)	-	-	248	1957	1625.51	1596.32	422,930	1958	1616.12	1613.58	185,310	1959	1615.40	1613.12	104,130
1948	1599.30	-	90,800	1960	1615.56	1613.79	145,230	1951	1628.05	1602.36	540,420	1961	1614.55	1613.79	135,330
1949	1614.27	1595.91	437,640	1962	1615.16	1613.12	106,920	1952	1605.30	1598.65	81,170	1963	1614.21	1610.21	61,326
1950	1623.84	1602.85	532,180	1964	1611.93	1600.86	20,513	1953	1598.75	1588.66	39,530	1965	1616.18	1600.41	159,390
1954	1596.75	1588.30	52,346	1966	1615.52	1609.32	74,720	1955	1615.50	1585.66	223,790				
1956	1613.27	1604.33	10,953												
46. ELEVATION-AREA-CAPACITY DATA															
ELEVATION	AREA	CAPACITY	ELEVATION	AREA	CAPACITY	ELEVATION	AREA	ELEVATION	AREA	CAPACITY					
1580	0	0	1610	6,323	79,150										
1585	242	256	1614	7,535	106,700										
1590	1,489	3,987	1615	7,879	114,400										
1595	2,678	14,160	1620	9,497	157,800										
1596.5	3,018	18,430	1625	11,258	209,300										
1600	3,652	29,950	1630	12,756	269,800										
1603	4,411	42,100	1635	14,510	338,100										
1605	4,873	51,390	1638	15,700	383,300										
47. REMARKS AND REFERENCES															
1/	Top of spillway gates closed. Spillway crest is at elevation 1613.0.														
2/	Date of diversion.														
3/	Reservoir is being operated at "designated" pool elevation 1615.2 which temporarily provides municipal water supply for Oklahoma City.														
4/	Area as determined by AWR committee for April 1954 drainage area data publication.														
5/	Excludes 4,642 sq. mi. of watershed not contributing to sediment; 1735 sq. mi. above Fort Supply Dam and 25 sq. mi. surface area of Canton Lake.														
6/	To provide a uniform presentation of data from all sedimentation surveys of Canton Lake, data summaries for the 1953 and 1959 surveys have been revised to conform with present instructions.														
7/	Includes above crest deposits.														
48. AGENCY MAKING SURVEY	U. S. Army Engineer District, Tulsa														
49. AGENCY SUPPLYING DATA	U. S. Army Engineer District, Tulsa														

Table 33
Record Format of the SED.RATES File

DECLARE T RATES_RECORD		/ SED.RATES FILE STRUCTURE (LENGTH=80)	
2	DIS	PIC'99'	/ DISTRICT CODE
2	RÉS	PIC'999'	/ RESERVOIR CODE
2	SEDREF	PIC'899999'	/ USDA RESER CODE FOR SED. DATA
2	DATOT	PIC'22222222'	/ TOTAL DRAINAGE AREA (M12)
2	DANET	PIC'22222222'	/ NET DRAINAGE AREA (M12)
2	YEAR	PIC'8ZZZ'	/ YEAR OF LAST SEDIM. SURVEY
2	PERIOD	P1B'ZZZV.99'	/ YEARS FROM PREVIOUS SURVEY
2	VOL	PIC'ZZZZZZZZZZ'	/ VOLUME (ACRE-FEET)
2	T	PIC'ZZZV.999'	/ HYDRAULIC RES TIME (YEARS)
2	SEDA	PIC'ZZV.999'	/ SED. ACC. (AC-FT/M12-YR)
2	SEDIN	PIC'ZZZZV.9'	/ SED. ACC. (TONS/M12-YR)
2	COM	CHAR(17)	/ COMMENTS

PART XI: NES - EPA NATIONAL EUTROPHICATION SURVEY DATA

74. The eighth file group consists of data and reports obtained from the EPA National Eutrophication Survey^{4,9}, exclusive of the water quality, hydrologic, and drainage area data described in previous sections. It consists of the following elements:

NES.reports - EPA/NES Working Papers
NES.COMP - Compendium of Lake and Reservoir Data
NES.SUM - Compendium Summary

This file group contains information on 108 CE projects as well as the other 704 lakes and reservoirs which were sampled by the EPA/NES throughout the U. S. Besides providing detailed information on point-source nutrient loadings to CE projects needed for nutrient budget estimation in Phase II, it provides a basis for comparisons of lakes and reservoirs with respect to morphometric, hydrologic, and nutrient loading response characteristics. Such comparisons, in turn, can provide means of interpreting the performance of lake nutrient loading models in reservoirs.

75. During 1972-75, the EPA conducted a systematic survey of 812 lakes and reservoirs in the U. S. The original objective of the National Eutrophication Survey was to develop a data base for assessing the impacts of point-source nutrient discharges on the trophic conditions of lakes and reservoirs. The NES produced a series of working papers⁹ summarizing and interpreting the results for each impoundment or lake monitored. Results have also been summarized in a compendium format and published in four volumes²³.

76. NES.reports consists of the collection of working papers describing NES surveys and results in each of 108 CE projects. Each report has been referenced to the data base by district and reservoir code. Maps extracted from the reports have been included in the WATS.maps file.

77. NES.COMP is a computer file containing a nationwide summary of NES data for 775 lakes and reservoirs, obtained from the Corvallis laboratory of the EPA⁴. A sample printout of data from the file is given in Table 34. Similar printouts have been produced for all CE

projects in the compendium file and arranged in a notebook by district and project code. The compendium contains data for 106 out of 108 CE projects sampled by the EPA/NES.

78. NES.SUM is a summary of the NES.COMP file, with a few modifications. The format of the summary file (Table 35) is more convenient for input to statistical analysis programs, since one record is used for each lake or reservoir. A number of missing latitude and longitude coordinates have been added, based upon estimates derived from USGS Hydrologic Unit Maps⁶. Each lake or reservoir has also been referenced by CE division to provide a basis for regional contrasts of lake and reservoir characteristics.

79. A few simple analyses have been done to provide descriptions of types and amounts of data contained in the NES.SUM file. The regional distribution of lakes and reservoirs described in the file is depicted in Figure 5. A breakdown of impoundment numbers as a function of trophic state, impoundment type, and CE division is given in Table 36. The numbers of CE projects are listed as a function of division and trophic state in Table 37.

80. The results of preliminary lake/reservoir comparisons which have been made using data from the NES compendium tape are summarized in Table 38. Three groups of impoundments have been compared: natural lakes (N=310); non-CE reservoirs (N=359); and CE reservoirs (N=106). The stratification of thirty-six original and composite variables across these groups has been studied using the BMDP-77 computer program¹. Within-group means and Analysis of Variance (ANOVA) statistics are listed in Table 38. Detailed results with histograms are presented in a previous report²⁴.

81. While the scope of this report precludes detailed interpretations of the data, a few comments on these results seem appropriate:

- a. At the 95% significance level, differences across groups are evident in all cases except longitude, conductivity, phosphorus retention coefficient, nitrogen retention coefficient, and the second Vollenweider phosphorus loading statistic²⁵.

- b. Strongest differences across groups are apparent for drainage area ($F=77.5$), drainage area/surface area ($F=73.6$), outflow rate ($F=60.7$), and drainage area/maximum depth ($F=53.4$).
- c. Reservoirs have higher potential phosphorus concentrations, based upon phosphorus loading and the Vollenweider statistics, but lower observed phosphorus and chlorophyll-a concentrations than natural lakes. This is an indication that the Vollenweider statistics may give biased predictions in reservoirs (i.e., over-predict loading impact).
- d. Reservoirs have less transparency, despite less chlorophyll-a. This is probably an effect of mineral turbidity in reservoirs.
- e. N/P loading ratios are somewhat lower for reservoirs than for natural lakes; the reverse is true, however, for inorganic N/dissolved P ratios measured during the summer within the impoundments.
- f. The composite statistic (Secchi depth/mean depth) is strongly stratified across groups ($F=44.8$). Assuming that the depth of the photic zone is roughly twice the Secchi depth, the means in Table 38 indicate that typically 62% of the volume of lakes is available for photosynthesis, compared with 30% in the case of CE reservoirs. Reservoirs probably have greater shoreline development, however, and may be more influenced by photosynthetic processes occurring in littoral zones.
- g. While a 4-degree difference is evident in the average latitude of CE reservoirs as compared with lakes, a detailed look at Figure 5 reveals that the distribution of NES lakes is bimodal, with clusters in the North (primarily Minnesota, Wisconsin, Michigan, and Maine) and in the extreme South (Florida). The maximum reservoir density occurs between these extremes.

Because of the strong regionality of the lake vs. reservoir distributions evident in Figure 5, it is difficult to separate the effects of impoundment type from those of region with analyses of the type described above. Thus, in future, more complete analyses, it will be important to control for regional differences by comparing subsets of lakes and reservoirs within defined regions.

Table 34
Sample EPA/NES Compendium Printout

COMPENDIUM OF NATIONAL EUTROPHICATION SURVEY LAKES IN WEST VIRGINIA (INSTITUTIONAL)									
NAME	- TYGART RIVER	LAKE TYPE	DRAINAGE AREA (SQ KM)	SURFACE AREA (SQ KM)	MEAN DEPTH (METERS)	TOTAL IMPLO. (CAS)	RETENTION TIME (DAYS)		
COUNTY	- BARBOUR, TAYLOR	STORER NO.	5404	470, MTS ACCESSION NO.	PB-251 118/AB				
I. MORPHOMETRY		LAKE TYPE	DRAINAGE AREA (SQ KM)	SURFACE AREA (SQ KM)	MEAN DEPTH (METERS)	TOTAL IMPLO. (CAS)	RETENTION TIME (DAYS)		
		IMPOUNDMENT	3531.0	7.08	17.4	73,200	20.0		
II. PHYSICAL AND CHEMICAL CHARACTERISTICS		MEDIAN ALKALINITY (MG/L)	10.	MEAN SECCHI DISC DEPTH (METERS)	3.1	MEAN P (MG/L)	0.005	MEDIAN TURBIDITY (NTU)	0.430
		CONDUCTIVITY (UHNOS)	82.	IMPROV. %	0.1	IMPROV. % (MG/L)	0.680	MEDIAN TOTAL N (UG/L)	0.680
III. BIOLOGICAL CHARACTERISTICS (LAKE)		MEAN CHLOROPHYLL A (UG/L)	0.2	ALGAL ASSAY CONTROL YIELD (UG/L--BY 4%)	0.1	LIMITING NUTRIENT AT SAMPLING TIME	(7/23/73) P	(10/ 5/73) P	
		4/23/73	COUNT	17/28/73	10/ 5/73	COUNT	GENERA	10/ 5/73	COUNT
		GENERAL	104	GLENWOODIA	69	ABACISIS (MACROCYSTIS)	287		
		FLAGELLATES	57	CENTRIC DIATOM	69	SCBEDRUSH	202		
		DENOATON	17	ARISTOPODES	35	PHORIDIUM	164		
		PRIVATE DIATOMS	17	FLAGELLATES	35	PLAELILLATES	119		
		MITZ SCHIA	13			MITSCHIA	67		
		NAVICULA	10			OTHER	135		
		OTHERS	11						
		TOTAL	212	TOTAL	208	TOTAL	978		
IV. NUTRIENT LOADING CHARACTERISTICS (LAKE)		POINT SOURCE MUNICIPAL (KG/TH)	POINT SOURCE INDUSTRIAL (KG/TH)	POINT SOURCE SEPTIC SYSTEMS (KG/TH)	POINT SOURCE WANTS (KG/TH)	POINT SOURCE NON-POINT SOURCE (KG/TH)	POINT SOURCE (KG/TH)	POINT SOURCE (KG/TH)	POINT SOURCE (KG/TH)
A. INPUT		PHOSPHORUS 5,310.	5,310.	15,555.	15,	1,030.	8,750.	1,030.	2,750.
		NITROGEN 15,965.	15,965.	65,000.	65,	10,020.	14,765.	10,020.	14,765.
B. OUTPUT		OUTLET(S) (KG/TH)	OUTLET(S) (KG/TH)	PERCENT RETENTION	LAKE SURFACE AREA LOADING RATE (μ /SQ KM/H)				
		PHOSPHORUS 4,393.5.	4,393.5.	9.	6.79				
		NITROGEN 15,075.15.	15,075.15.	LOSS	200.2				
V. NON-POINT-SOURCE NUTRIENT EXPORT		STREAM NAME	STREAM FLOW (CFS)	DRAINAGE AREA (SQ KM)	MEAN TOTAL P (KG/L)	MEAN TOTAL N (KG/L)	TOTAL P EXPORT (KG/SQ KM/TH)	TOTAL N EXPORT (KG/SQ KM/TH)	
		TYGART VALLEY RIVER	50,100	2447.5	0.020	0.574	11.	367.	
		SCAB RUN	0,100	4.3	0.159	2.490	115.	883.	
		PROG RIV	0,100	3.4	0.056	1.003	41.	769.	
		SWAMP RUN	0,200	9.7	0.077	1.211	30.	638.	
		SANDY CREEK	4,500	207.2	0.010	0.568	7.	353.	
		TECH CREEK	3,100	138.6	0.015	0.568	10.	804.	
		LAUREL CREEK	3,100	140.1	0.011	0.527	6.	372.	
		PLEASANT CREEK	0,700	32.6	0.027	0.774	19.	556.	

CL RESERVOIR NUMBER: 393

Table 35

Record Format of the NES.SUM File

```

DECLARE 1  NESSUM_REC
      /* NES.SUM FILE STRUCTURE (LENGTH=225)
      /* ****
      /* CE DIVISION          PIC'29'
      /* CE DISTRICT (CE PROJ. ONLY)   PIC'29'
      /* CE PROJECT NUMBER        PIC'29'
      /* SEQUENCE NUMBER IN NES FILE  CHAR(4)
      /* STORET CODE USED IN STORET  PIC'22'
      /* NES WORKING PARPER NUMBER  CHAR(24)
      /* LAKE NAME               PIC'22V.VZZ'
      /* LATITUDE (DEGREES/HUNDREDTHS) PIC'22V.VZZ'
      /* LONGITUDE (DEGREES/HUNDREDTHS) PIC'9'
      /* TYPE CODE (1=RES, 2=NAT. LAKE) CHAR(2)
      /* TROPHIC STATE CODE        PIC'(7)-V.ZZ'
      /* SURFACE AREA (KM2)         PIC'(7)-V.ZZ'
      /* DRAINAGE AREA (KM2)        PIC'---V.ZZ'
      /* MEAN DEPTH (M)             PIC'---V.ZZ'
      /* MAXIMUM DEPTH (M)          PIC'---V.ZZZZ'
      /* HYD. RESIDENCE TIME (YRS.) PIC'(4)-V.ZZZ'
      /* MEDIAN PH                  PIC'(4)-V.ZZZ'
      /* MEDIAN ALKALINITY (MG/L)    PIC'(4)-V.ZZZ'
      /* MEDIAN CONDUCTIVITY (MMHOES) PIC'(4)-V.ZZZ'
      /* MEDIAN TOTAL P (MG/L)       PIC'(4)-V.ZZZ'
      /* MEDIAN DISSOLVED P (MG/L)   PIC'(4)-V.ZZZ'
      /* MEDIAN TOTAL N (MG/L)       PIC'(4)-V.ZZZ'
      /* MEDIAN INORGANIC N (MG/L)   PIC'(4)-V.ZZZ'
      /* MEAN SECCHI DEPTH (M)       PIC'(4)-V.ZZZ'
      /* MEAN CHLOROPHYLL-A (MMG/L)  PIC'(4)-V.ZZZ'
      /* ALGAL ASSAY CONTROL YIELD(MG/L) PIC'(4)-V.ZZZ'
      /* TOTAL P LOAD (G/M2-YR)      PIC'(4)-V.ZZZ'
      /* TOTAL P RETENTION COEF     PIC'(4)-V.ZZZ'
      /* FRACTION PLOAD NON-POINT  PIC'(4)-V.ZZZ'
      /* TOTAL N LOAD (G/M2-YR)      PIC'(4)-V.ZZZ'
      /* TOTAL N RETENT.2N COEF     PIC'(4)-V.ZZZ'
      /* FRACTION NLOAD NON-POINT  PIC'(4)-V.ZZZ'
      /* LIMITING NUTRIENT CODES    CHAR(3)
      /* FIRST THREE SAMPLING DATES CHAR(3)
      /* BLANK                      */

      /* ****
      /* CE DIVISION          PIC'29'
      /* CE DISTRICT (CE PROJ. ONLY)   PIC'29'
      /* CE PROJECT NUMBER        PIC'29'
      /* SEQUENCE NUMBER IN NES FILE  CHAR(4)
      /* STORET CODE USED IN STORET  PIC'22'
      /* NES WORKING PARPER NUMBER  CHAR(24)
      /* LAKE NAME               PIC'22V.VZZ'
      /* LATITUDE (DEGREES/HUNDREDTHS) PIC'22V.VZZ'
      /* LONGITUDE (DEGREES/HUNDREDTHS) PIC'9'
      /* TYPE CODE (1=RES, 2=NAT. LAKE) CHAR(2)
      /* TROPHIC STATE CODE        PIC'(7)-V.ZZ'
      /* SURFACE AREA (KM2)         PIC'(7)-V.ZZ'
      /* DRAINAGE AREA (KM2)        PIC'---V.ZZ'
      /* MEAN DEPTH (M)             PIC'---V.ZZ'
      /* MAXIMUM DEPTH (M)          PIC'---V.ZZZZ'
      /* HYD. RESIDENCE TIME (YRS.) PIC'(4)-V.ZZZ'
      /* MEDIAN PH                  PIC'(4)-V.ZZZ'
      /* MEDIAN ALKALINITY (MG/L)    PIC'(4)-V.ZZZ'
      /* MEDIAN CONDUCTIVITY (MMHOES) PIC'(4)-V.ZZZ'
      /* MEDIAN TOTAL P (MG/L)       PIC'(4)-V.ZZZ'
      /* MEDIAN DISSOLVED P (MG/L)   PIC'(4)-V.ZZZ'
      /* MEDIAN TOTAL N (MG/L)       PIC'(4)-V.ZZZ'
      /* MEDIAN INORGANIC N (MG/L)   PIC'(4)-V.ZZZ'
      /* MEAN SECCHI DEPTH (M)       PIC'(4)-V.ZZZ'
      /* MEAN CHLOROPHYLL-A (MMG/L)  PIC'(4)-V.ZZZ'
      /* ALGAL ASSAY CONTROL YIELD(MG/L) PIC'(4)-V.ZZZ'
      /* TOTAL P LOAD (G/M2-YR)      PIC'(4)-V.ZZZ'
      /* TOTAL P RETENTION COEF     PIC'(4)-V.ZZZ'
      /* FRACTION PLOAD NON-POINT  PIC'(4)-V.ZZZ'
      /* TOTAL N LOAD (G/M2-YR)      PIC'(4)-V.ZZZ'
      /* TOTAL N RETENT.2N COEF     PIC'(4)-V.ZZZ'
      /* FRACTION NLOAD NON-POINT  PIC'(4)-V.ZZZ'
      /* LIMITING NUTRIENT CODES    CHAR(3)
      /* FIRST THREE SAMPLING DATES CHAR(3)
      /* BLANK                      */

```

Figure 5
Regional Distribution of Lakes and Reservoirs
Contained in the EPA National Eutrophication Survey Compendium

AD-A101 553

WALKER (WILLIAM W) JR CONCORD MA
EMPIRICAL METHODS FOR PREDICTING EUTROPHICATION IN IMPOUNDMENTS--ETC(U)
MAY 81 W W WALKER

F/G 13/2

DACW39-78-C-0053

NL

UNCLASSIFIED

WES-TR-E-81-9-1

2 of 4
AD-A101553

Table 36

**Summary of Impoundments in EPA National Eutrophication Survey
Compendium by Region, Trophic State, and Impoundment Type**

CE DIVISION	OLIGO-TROPHIC	MESO-TROPHIC	EU-TROPHIC	HYPEREU-TROPHIC	OTHER ^a	TOTAL
New England	5/0 ^b	3/1	2/18	0/4	0/0	10/23
North Atlantic	1/0	4/8	8/31	0/0	0/0	13/39
South Atlantic	0/0	4/3	24/30	7/0	3/10	38/43
Ohio River	0/0	2/13	11/49	0/0	0/5	13/67
North Central	6/1	22/1	118/43	7/1	6/0	159/46
Lower Mississippi Valley	0/0	0/2	10/29	2/0	0/2	12/33
South West	0/0	0/16	0/54	0/0	0/9	0/79
Missouri River	0/1	0/5	18/41	1/1	0/7	19/55
North Pacific	5/2	5/5	4/17	1/0	8/0	23/24
South Pacific	9/3	4/12	9/34	2/0	1/5	25/54
TOTAL	26/7	44/66	204/346	20/6	18/38	312/463

^a OTHER = combination of two or more trophic states

^b Number of natural lakes/Number of reservoirs

Table 37

Summary of CE Impoundments in EPA National Eutrophication
Survey Compendium by CE Division and Trophic State

CE DIVISION	OLIGO-TROPHIC	MESO-TROPHIC	EU-TROPHIC	HYPERTROPHIC	OTHER ^a	TOTAL NES	GRAND TOTAL ^b
New England	0	0	0	0	0	0	22
North Atlantic	0	2	1	0	0	3	15
South Atlantic	0	1	4	0	2	7	24
Ohio River	0	4	19	0	2	25	64
North Central	0	1	3	0	0	4	16
Lower Mississippi Valley	0	2	11	0	0	13	17
South West	0	8	23	0	2	33	66
Missouri River	0	1	12	1	1	15	31
North Pacific	1	1	1	0	0	3	27
South Pacific	0	1	1	0	1	3	19
TOTAL	1	21	75	1	8	106	299

a OTHER = combination of two or more trophic states

b GRAND TOTAL = number of impoundments in LISTS.CPL file

Table 38

Summary of Lake/Reservoir Comparisons Derived from EPA/NES Compendium

C*	Variable	WITHIN-GROUP MEANS			ANOVA RESULTS	
		(N=309) (N=360) (N=106)			F	Prob (greater F)
		Nat. Lakes	Non-CE Reserv.	CE Reserv.		
A	Latitude (degrees N)	41.6	39.0	37.6	34.8	< .0001
A	Longitude (degrees W)	91.7	93.6	92.3	1.9	.16
G	Drainage Area (km ²)	222.	1358.	3228.	77.5	< .0001
G	Surface Area (km ²)	5.6	8.6	34.5	44.4	"
G	Volume (km ² m)	27.3	50.8	239.	36.4	"
G	Mean Depth (m)	4.5	5.7	6.9	10.4	"
G	Maximum Depth (m)	10.7	15.8	19.8	18.8	"
G	Hydraulic Res. Time (yr)	.74	.23	.37	23.5	"
G	Overflow Rate (m/yr)	6.5	25.	19.	40.9	"
G	Outflow Rate (km ² m/yr)	47.9	236.	650.	60.7	"
G	Dr. Area/ Surf. Area	33.	156.	93.	73.6	"
G	Dr. Area/Volume(l/m)	6.6	26.	13.	39.5	"
G	Maximum Depth/Mean Depth	2.5	2.8	2.9	7.3	.0008
G	Relative Depth	.40	.47	.30	8.6	.0002
G	Surf A/ Max Depth	.53	.56	1.7	24.6	< .0001
G	Dr. Area/Max Depth	20.	86.	162.	53.4	
A	pH	8.06	7.74	7.63	24.1	< .0001
G	Alkalinity (mg/l)	87.	63.	65.	8.6	.0002
G	Conductivity (UMhos/cm)	253.	214.	208.	2.4	.0950
G	Total Phosphorus (mg/l)	.054	.053	.039	3.6	.0268
G	Dissolved P (mg/l)	.021	.018	.011	9.5	< .0001
G	Inorganic Nitrogen (mg/l)	.20	.26	.30	9.7	< .0001
G	Secchi Depth (m)	1.4	1.2	1.1	7.7	.0005
G	Chlorophyll-a (mg/l)	14.	10.	8.9	11.4	< .0001
G	Algal Assay Yld (mg/l)	2.5	2.2	1.3	4.0	.0194
G	P Loading (g/m ² -yr)	.87	2.9	1.7	29.1	< .0001
A	P Retention Coef.	.36	.35	.40	0.7	.51
A	NPS Load Fraction - P	.72	.80	.81	8.4	.0002
G	N Loading (g/m ² -yr)	18.	45.	28.	22.6	< .0001
A	N Retention Coef.	.24	.20	.17	2.5	.081
A	NPS Load Fraction - N	.87	.93	.96	18.7	< .0001
G	N Load/P Load	20.	16.	16.	8.0	.0004
G	Inorg N/ Diss. P	9.1	14.	26.	29.4	< .0001
G	+Vollenweider Stat. 1	.31	.56	.42	15.2	"
G	+Vollenweider Stat. 2	.056	.067	.057	1.9	.1586
G	Secchi D/ Mean Depth	.31	.20	.15	44.8	< .0001

* C = Code for Type of Mean (A = Arithmetic, G = Geometric)

+ Statistics for Assessing Phosphorus Loading Impacts on Lake Eutrophication;
Stat. 1 = $L_p/Q_s \cdot 5$ - (ref.25); Stat.2 = $(L_p/Q_s)/(1 + \sqrt{t})$ - (ref.26)

PART XII: NUMERICAL CHARACTERIZATION OF RESERVOIR HYPSOGRAPHIC CURVES

Introduction

82. Estimates of reservoir volume and area variations with elevation are required for computing volume-averaged concentrations and pool hydraulic residence times. This information is generally available in the form of a table which lists area at and volume below specific elevations. Morphometry tables have been compiled for most of the 303 CE projects in the data base. This paper describes numerical investigations of these tables, specifically covering the relative accuracies of various curve-fitting and interpolation techniques. Results will be used to design methods for summarizing, storing, and applying morphometric information in other phases of the project. Results are also relevant to other aspects of reservoir management, specifically including the estimation of reservoir volumes and sedimentation rates from range survey or contour area data.

83. This study has been performed prior to completion of the project morphometry file. A subset of data has been selected which covers 147 projects, each with at least five listed elevations and without obvious errors (such as decreasing areas or volumes with increasing elevation). A total of 1285 elevation/area/volume data points have been compiled for these 147 projects from various sources. Results of this study are summarized below. Details can be found in a working paper submitted as a progress report under this contract²⁶.

Approach

84. The objective is to design and evaluate methods for estimating area and volume at any elevation, given information available for specific elevations. Methods can generally be classified as curve-fitting or interpolating. Accuracies of these methods can be assessed by comparing observations and predictions of the following:

- a. $\hat{V}(V)$ = volume estimated from volume/elevation points
- b. $\hat{A}(V)$ = area estimated from volume/elevation points
- c. $\hat{A}(A)$ = area estimated from area/elevation points
- d. $\hat{\Delta V}(A)$ = incremental volume estimated from area/elevation points

Statistics a and c are simple curve-fitting or interpolating problems.

Statistic b involves differentiation of the volume curve to estimate area:

$$\hat{A}(V) = \frac{\partial V}{\partial Z} \quad (1)$$

where

Z is the total depth, ft

Statistic d involves integration of the area curve between specific depth limits (Z_1 and Z_2) to estimate incremental volume:

$$\hat{\Delta V}(A) = \int_{Z_1}^{Z_2} AdZ \quad (2)$$

85. In testing each method, a jackknife procedure²⁷ has been used to estimate the above statistics for internal elevation points (i.e., tests are not made for the top and bottom listed elevations in each project, although these elevations are used in the fitting or interpolating process). In applying the jackknife, information from the point being tested is not used in estimating the parameters of the predictive function. For instance, estimates of area or volume at the second listed elevation are derived exclusively from information in the first and third through last listed elevations.

86. Reported values and predictions are compared using the following error statistic:

$$D = \log_e \left[\frac{2Y}{Y + \hat{Y}} \right] \quad (3)$$

where

Y = reported value (V , A , or ΔV)

\hat{Y} = estimated value

D = error statistic

For errors of the magnitude studied here, the value of D approaches the difference between the reported and predicted values, expressed as a fraction of their average. In most cases, the D statistic seems to have reasonably symmetric error distributions. For each of the four types of area/volume comparisons, estimates of bias and standard error in D have been derived for a variety of predictive methods, as described below.

Curve-Fitting Schemes

87. A single-term power function has some useful properties for fitting these types of curves and is the simplest of the methods evaluated:

$$\hat{V} = c_v Z^{b_v} \quad (4)$$

$$\hat{A} = c_a Z^{b_a} \quad (5)$$

$$Z = E - E_o \quad (6)$$

where

c_v , c_a , b_v , b_a = empirical parameters

Z = total depth (ft)

E = elevation (ft, msl)

E_o = elevation at $V=A=0$ (ft, msl)

Model parameters can be estimated using linear regression by transforming V, A, and Z values to logarithms. The following equalities should hold if the model is valid for a particular reservoir:

$$\frac{\partial V}{\partial Z} = b_v c_v Z^{b_v - 1} = A \quad (7)$$

$$\therefore c_a = b_v c_v \quad (8)$$

$$b_a = b_v - 1 \quad (9)$$

Equations (8) and (9) can be used to test the consistency of the volume and area curves. The slopes of volume and area vs. total depth on a

log/log plot should differ by 1.0. Dividing equation (4) by equation (5) yields the following:

$$\left(\frac{\hat{V}}{A}\right) = \frac{c_v}{c_a} z^{b_v - b_a} = b_v z \quad (10)$$

If the basic model holds, the ratio of volume to area (or mean depth) should be proportional to the total depth. Thus, the model can be tested through regression analysis of the following equation:

$$\left(\frac{\hat{V}}{A}\right) = c_z z^{b_z} \quad (11)$$

A t-test can be applied to the mean and standard error b_z within each project to determine whether the estimate is significantly different from 1.0.

88. In testing the power function model, the parameters in equations (4), (5), and (11) have been estimated for each of 147 reservoirs. The statistical distributions of the optimal slope parameters (b_v , b_a , b_z) are shown in Figure 6 on log-normal probability scales. Median values are 2.97, 1.97, and 0.97, respectively. Thus, in the "typical" reservoir, volume and area increase approximately as the cube and square of total depth, respectively. This corresponds to the solid geometry of an inverted cone or pyramid. About 10% of the projects have b_v values exceeding 4 and 4% have b_v values less than 2. The parameters b_a and b_v contain roughly the same information as the statistically-defined "lake form" proposed by Hakanson²⁸.

89. Based upon t-tests, the b_z parameter differs significantly ($p=.05$) from 1.0 in about 35% of the projects. This means that the single-term power function model fits about two thirds of the projects. In the remaining one third, the slope parameters b_v and b_a are inconsistent and/or variable with depth.

90. Table 39 lists error statistics for this model. Estimates of the first ($\hat{V}(V)$) and third ($\hat{A}(A)$) statistics are derived directly from equations (4) and (5), respectively. Areas are estimated from volume

Table 39
Evaluation of the Power Function Model

Statistic	Gross* Standard Error	Median** Standard Error
$\hat{V}(V)$.097	.062
$\hat{A}(V)$.115	.081
$\hat{A}(A)$.097	.062
$\Delta\hat{V}(A)$.177	.081

* estimated from mean-squared D value (equation (3))

** median of within-project mean-squared D values

curves according to equation (7). Changes in volume within various strata are estimated from area curves according to:

$$\Delta \hat{V}(A) = \int_{z_1}^{z_2} A dz = \int_{z_1}^{z_2} c_a z^{b_a} dz \quad (12)$$

$$= \frac{\hat{A}_2 z_2 - \hat{A}_1 z_1}{b_a + 1} \quad (13)$$

Standard errors of D range from .097 ($\hat{V}(V)$) to .177 ($\Delta \hat{V}(A)$). The higher standard error of $\Delta V(A)$ could be related to the fact that it is an incremental value which is more subject to measurement error on a percentage basis than is total volume or area. A D standard error of .097 corresponds roughly to a standard error of 10%, or to 95% confidence limits of $\pm 20\%$ in an estimated area or volume. The differences between the gross standard error and the median, within-project standard error reflects the skewness of the error distribution across projects, i.e., the model seems to fit some projects considerably better than others, as indicated by the b_z distribution.

91. In order to improve upon the above model, variations in the slope parameters b_v and b_a with depth must be accounted for. The simplest way of doing this is to include higher-order terms in the regression equations:

$$\hat{V}^* = \sum_{i=0}^m c_i z^{*i} \quad (14)$$

$$\hat{A}^* = \sum_{i=0}^m d_i z^{*i} \quad (15)$$

where

c_i, d_i = empirical coefficients ($i=0, m$)

* = superscript denoting \log_{10} transformation

m = maximum degree of polynomial

The error distributions of these functions have been evaluated for maximum degrees ranging from 1 to 5. For $m=1$, the scheme is equivalent

to the single-term power function model discussed above. For comparative purposes, linear polynomial functions have also been tested:

$$\hat{V} = \sum_{i=0}^m c_i z^i \quad (16)$$

$$\hat{A} = \sum_{i=0}^m d_i z^i \quad (17)$$

For each reservoir, the maximum degree of the polynomial has been limited to the minimum of m and the number of elevations in the table minus two.

92. The error statistics in Table 40 indicate that logarithmic polynomials are preferable to linear ones according to most criteria. Log transformation tends to linearize the relationships and renders them easier to fit with low-order polynomial terms. Some reduction in error is achieved by including quadratic and cubic terms in depth. Addition of fourth- and fifth-order terms, however, tends to increase estimation error, presumably because higher-order polynomials can have local minima and/or maxima between the fitted points. These are artifacts of the fitting process which can cause large estimation errors between the fitted points. Cubic polynomials apparently have about the best combination of flexibility and smoothness for these purposes and data densities.

Interpolation Schemes

93. Interpolation methods can be used as alternatives to the curve-fitting techniques described above. Interpolation essentially involves fitting different curves to different sections of each volume/area/elevation table. A variety of interpolation methods have been tested on the same data set used above²⁶. These involve different transformations of the volume and area points, including inverse power functions (first through fifth order) and logarithmic. Of the methods tested, one involving logarithmic transformations of volume, area, and total depth points has been shown to have the lowest error statistics²⁶. The errors, however, are essentially equivalent to the error

Table 40
Evaluation of Polynomial Functions

Transformation	Maximum Degree	Gross Standard Error			
		$\hat{V}(V)$	$\hat{A}(V)$	$\hat{A}(A)$	$\Delta\hat{V}(A)$
logarithmic	1	.097	.115	.101	.182
	2	.069	.083	.081	.166
	3	.062	.067	.081	.164
	4	.216	.292	.129	.173
	5	1.198	1.280	.534	.491
linear	1	.371	.615	.200	.281
	2	.249	.170	.134	.212
	3	.134	.088	.106	.196
	4	.150	.085	.111	.193
	5	.221	.136	.147	.265

characteristics of the best curve-fitting scheme (log/log cubic polynomials). Results suggest that either of these methods probably approaches the limits of data accuracy.

Conclusions

94. In one sense, numerical interpolation methods are preferable to fitted curves because the former are more flexible and do not rely strongly upon particular forms or curve shapes. Interpolation requires storage of and access to the entire table, however, as opposed to a few parameters in the case of a fitted function. Fitted curves also provide some smoothing of the entries in the table which may serve to filter errors.

95. Based upon relative errors, storage requirements, and computational considerations, log/log cubic polynomials seem to be the best alternative for summarizing hypsographic curves, given data of the type examined here. The approximate equivalence of the $\hat{V}(V)$ and $\hat{A}(V)$ error statistics indicates that storage of the parameters of the volume curve alone would be adequate as a basis for estimating both area and volume. Algebraic differentiation of the volume polynomial can be used to estimate area at any given depth. Thus, both the area and volume curves can be summarized by a total of four polynomial parameters according to the following scheme:

$$Z^* = \log_{10} (E - E_o) \quad (18)$$

$$V^* = \log_{10} (V) \quad (19)$$

$$A^* = \log_{10} (A) \quad (20)$$

$$V^* = c_o + c_1 Z^* + c_2 Z^{*2} + c_3 Z^{*3} \quad (21)$$

$$A = (c_1 + 2c_2 Z^* + 3c_3 Z^{*2}) V / (E - E_o) \quad (22)$$

For cases in which data from only a few elevations are available and/or the quadratic or cubic terms do not add appreciably to accuracy (as assessed via stepwise polynomial regression), first- or second-order polynomials may be used.

96. Use of the method requires knowledge of the base elevation, E_0 . If not available, it can be estimated approximately by extrapolating a plot of $V^{1/3}$ vs. E to the horizontal axis. Any error in E_0 estimated in this way would be offset in subsequent estimation of the polynomial coefficients.

97. The same functions can be used in very data-limited situations in which only estimates of mean depth, maximum depth, and surface area are available. Approximate parameter estimates in this case are given by:

$$c_2 = c_3 = 0 \quad (23)$$

$$c_1 = z_{\text{max}} / z_{\text{mean}} \quad (24)$$

$$c_0 = \log_{10}(A z_{\text{mean}}) - c_1 \log_{10}(z_{\text{max}}) \quad (25)$$

98. To insure that the fitted polynomial is not used outside of the range of data availability, maximum and minimum elevations should also be stored with the fitted coefficients. It will be necessary to test the fitted coefficients to insure that the areas estimated through differentiation (equation (22)) are positive and increasing with elevation throughout the application range.

Figure 6
Distributions of Volume and Area Slope Parameters

PART XIII: VARIABILITY OF TROPHIC STATE INDICATORS IN RESERVOIRS

Introduction

99. The development and testing of empirical eutrophication models for reservoirs requires averaging of water quality measurements over spatial and temporal scales. If within-pool water quality variations are not random with respect to date, station, or depth, then summary statistics for a given reservoir will depend to some extent upon the particular data-reduction method employed. The choice of reduction method may, in turn, influence conclusions regarding the adequacy of existing models as well as the parameter estimates of any new models which may be developed.

100. There is no standard data reduction procedure which can be used prior to model development, testing, or application. Methods have included, for example: (1) taking the median or mean of all within-pool observations²³; (2) sequential averaging over depths, stations, and dates²⁹; (3) seasonal averaging within specific depth ranges³⁰; and (4) various weighted-averaging schemes which reflect morphometric characteristics. As compared with natural lakes, many reservoirs pose special data reduction problems due to extreme spatial and/or temporal variations in conditions.

101. In this section, a subset of the current CE water quality data base is analyzed in order to describe spatial and temporal variations in trophic state indicators within a group of reservoirs. The analysis covers spatial relationships, seasonal relationships, variance components, and error estimation. Implications of the results are discussed with respect to the design of monitoring programs and use of the data in model development and evaluation. Details on many of the procedures used and results discussed below can be found elsewhere^{31,32}

Data Base

102. EPA National Eutrophication Survey (NES)⁹ data from 484 stations located within 108 CE projects have been used as a basis for this analysis. The relatively uniform sampling program designs used by the NES provide data which are suitable for statistical treatment. One drawback, however, is that under this program, reservoirs were typically sampled only three times during one growing season. In Phase II of this project, there are plans to examine data from other agencies, which, in many cases, are more intensive and/or cover longer periods.

103. Surface total phosphorus, Secchi depth, and chlorophyll-a values have been expressed in terms of Carlson's Trophic State Indices (I_p , I_T and I_B , respectively)³⁰:

$$I_p = 4.2 + 33.2 \log_{10} P \quad (26)$$

$$I_T = 60 - 33.2 \log_{10} Z_s \quad (27)$$

$$I_B = 30.6 + 22.6 \log_{10} B \quad (28)$$

where

P = total phosphorus concentration (mg/m^3)

Z_s = Secchi depth (m)

B = chlorophyll-a concentration (mg/m^3)

The indices are calibrated such that the three versions are equivalent, on the average, when applied to midsummer, epilimnetic data from northern, natural lakes. Expression of measurements on the above scales tends to reduce the skewness in the distributions of the variables and provides benchmarks for assessing reservoir trophic state relationships in comparison to those typical of natural lakes. A statistical data summary is given in Table 41.

Table 41

Statistical Summary of EPA/NES Trophic Index
Data from 108 CE Projects

Variable	n	mean	standard deviation	minimum	maximum
I _P	1421	55.8	13.1	24.1	99.0
I _T	1493	58.9	12.7	25.4	112.9
I _B	1505	48.2	10.3	8.0	81.6

Case Studies of Spatial Relationships

104. Spatial variations typical of a few reservoirs are depicted in Figures 7-10. Mainstem stations are displayed in downstream order within each reservoir (not to scale) and mean values are plotted for each version of the Trophic State Index. These plots provide initial perspectives on the types of spatial trends and relationships which can be found in reservoirs and are important supplements to the more formal statistical treatment of the data presented in subsequent sections. The plots seem to illustrate a number of important controlling processes, which are discussed below in relation to each reservoir.

105. Figure 7 contains data from the White River system on the Arkansas/Missouri border. Four reservoirs are connected in series: Beaver, Table Rock, Taneycomo, and Bull Shoals. With the exception of Taneycomo, they are all deep reservoirs with hydraulic residence times in excess of 250 days. Trophic State Index behavior in the first reservoir, Beaver, is considerably different from that typical of the downstream impoundments. Concurrent reductions in I_p and I_T most likely reflect sedimentation and the three index curves do not converge until the dam. Once most of the sediment load has been removed in Beaver, agreement among the index curves is good at most downstream stations. Increases in Table Rock probably reflect the influence of a major point source which accounts for more than 70% of the total phosphorus loading to that reservoir. The relatively low values of I_B in Taneycomo can be explained by the direct influence of subsurface discharge from upstream Table Rock Dam. Taneycomo has a short hydraulic residence time (7 days) and surface water temperatures at the times when summer chlorophyll-a samples were taken roughly matched temperatures at the 100-foot level just above Table Rock Dam ($\sim 15^{\circ}\text{C}$). Taneycomo's short hydraulic residence time is apparently insufficient to permit recovery of temperatures and algal populations from those typical of the Table Rock hypolimnion. Decreases in all versions of the index are evident moving downstream in Bull Shoals, and relatively stable conditions are reached over the last four stations.

Figure 7 White River System

Figure 8 Sakakawea

Figure 9 Old Hickory

Figure 10 Barkley

106. Lake Sakakawea (Figure 8), on the Missouri River in Montana, shows TSI variations over 40 units, or sixteenfold differences in transparency and total phosphorus. Upstream portions were classified by the EPA/NES as "hyper-eutrophic" and stations near the dam as "oligotrophic". Below the second station, the chlorophyll-a index follows but remains roughly 5-10 index units below the phosphorus and transparency indices.

107. Old Hickory (Figure 9), on the Cumberland River in Tennessee, shows relatively small downstream reductions in phosphorus and transparency and a steady increase in chlorophyll-a. With a mean residence time of 11 days and sediment removal by upstream reservoirs on the Cumberland River, longitudinal variations in I_p and I_T are not as evident as in above panels. The gradual increase in I_B might be a hydraulic residence time effect, i.e., the time scale required for algal populations to "equilibrate" with available nutrient and light levels may be appreciable in relation to time-of-travel within the pool.

108. Similar behavior is evident in Lake Barkley (Figure 10), which is located further downstream on the Cumberland River and has a residence time of 16 days. One important difference is that the phosphorus index remains consistently higher than the other versions. Both ambient available nutrient concentrations and bioassays indicate, however, that algal populations in Lake Barkley were nitrogen-limited at the times of sampling. Use of I_p alone as a measure of nutrient availability may not be appropriate in this case.

109. The above case studies illustrate a number of factors which can be important in assessing reservoir trophic state relationships: sedimentation, upstream impoundment effects, hydraulic residence time effects, and nitrogen limitation. Reservoir hydrodynamics partially determine the transformations of these and other factors into spatial variations in the trophic state indicators. Upstream/downstream variations contain information on rates and directions of controlling processes. Graphing of spatial relationships and expression/analysis in terms of distance (river mile) and/or time (time-of-travel) will aid in quantitative data analysis and interpretation. Use of station means rather

than reservoir means seems to make more sense for model testing purposes.

Seasonal Relationships

110. Average seasonal variations in the index components are depicted in Figure 11. Station means have been computed and their effects removed from the data prior to calculating the mean and standard error for each month (March-November) and index component. Analyses of variance indicate that monthly effects are significant ($p < .0001$) for each component and strongest in the case of chlorophyll-a. The seasonal variations depicted in Figure 11 are characteristic of this collection of reservoirs but not necessarily of each reservoir individually.

111. Average seasonal effects on phosphorus and transparency are similar: both tend to be lowest during March and midsummer and highest during April and November, possibly reflecting seasonal flow and turbidity variations and influences of turnover periods. Monthly effects on chlorophyll-a suggest a spring maximum (April-May), followed by a June depression, a midsummer maximum, and lower values in November. Temperature and light effects may be responsible for the relatively low chlorophyll-a levels during March and November. The June depression may be due to seasonal succession of algal species. A more detailed examination of the data indicates that lower June chlorophyll-a levels are characteristic of about half of the stations sampled in June, while the rest have June levels more typical of May or July values. In testing seasonal aspects of TSI behavior, Carlson³⁰ also noted a June depression in chlorophyll-a index relative to the phosphorus index in three natural lakes.

112. Differences among various versions of the index provide a measure of "lake-like" behavior, since the index system is calibrated so that I_B , I_T , and I_p values are equivalent, on the average, when applied to midsummer, epilimnetic data from northern, natural lakes. Figure 11 indicates that the range of index means is generally lowest during midsummer (approaching 5 during August) and highest during March, June, and November (approaching 15). Minor recalibration of the phosphorus and/or

Figure 11
Monthly Variations in Trophic State Indices

* mean \pm 2 standard errors

transparency index would bring I_p and I_T into agreement for all seasons, since the monthly effect curves in Figure 12 are roughly parallel. Since seasonal chlorophyll-a behavior is fundamentally different, however, recalibration alone would not eliminate biases (i.e., significant differences between I_B and I_p or between I_B and I_T) for all seasons.

113. Thus, seasonal factors must be considered in reducing the data and in recalibrating/redesigning the index system for use in reservoirs. One approach would be to restrict averaging period to midsummer. An alternative would be to include explicit seasonal effect terms in the model or index system. These approaches will be investigated in future model development work.

Variance Component Estimation

114. Two-way Analyses of Variance have been applied to each reservoir and index component to test for the significance of variations associated with station and sampling date. Results are summarized in Table 42. Significant ($p < .1$) differences among station means in I_p , I_B , and I_T were found in 46, 37, and 52 out of 105 projects, respectively. Significant differences among date means were found in 62, 67, and 64 projects, respectively.

115. The following ANOVA model has been employed to derive pooled estimates of the variance components of each version of the index:

$$y_{hij} = \mu + r_h + s_{hi} + t_{hj} + e_{hij} \quad (29)$$

where

y_{hij} = index measurement in reservoir h at station i on date j

μ = grand mean

r_h = average effect of reservoir h on grand mean

s_{hi} = effect of station i in reservoir h

t_{hj} = effect of date j in reservoir h

e_{hij} = random effect

Table 42
Summary of ANOVA Results

Station Effects		
Date Effects	Not Significant	Significant**
Phosphorus Index -----		
Not Significant	32*	11
Significant	27	35
Chlorophyll-a Index -----		
Not Significant	33	5
Significant	35	32
Transparency Index -----		
Not Significant	27	14
Significant	26	38

* number of projects in category (total = 105)

** significance defined at $p < .10$

The relative magnitudes of the within- and between-reservoir components are of special significance to monitoring and modelling efforts. With relatively large within-reservoir components, it would be difficult to obtain much accuracy in reservoir summary statistics (e.g., reservoir mean) with limited data. This would reduce the explainable variance (R^2) of any model calibrated to the reduced data set, make it more difficult to distinguish among alternative model formulations, and increase the error associated with model parameter estimates.

116. SAS procedures² have been used to estimate the above variance components for each index separately and to estimate analogous covariance components for each pair of indices (I_B/I_T , I_B/I_P , I_T/I_P). Results are shown in Figure 12. The phosphorus and transparency index components exhibit similar patterns: between-reservoir differences account for 60-66% of the total index variance, as compared with 29% in the case of chlorophyll-a index. Between-reservoir variances indicate that differences in chlorophyll-a are considerably less marked than would be predicted based upon differences in the phosphorus or transparency indices. Conversely, there is greater temporal and random variance in chlorophyll-a than in phosphorus or in transparency.

117. The covariance components on the right-hand side of Figure 12 provide some insights into relationships among the indices at different averaging levels. The between-reservoir and between-station covariance components are positive in all cases. Thus, the various versions of the index correlate positively both among reservoirs and among stations within reservoirs. Temporal components indicate a positive covariance for phosphorus/transparency but slightly negative covariances for the pairs involving chlorophyll-a. Thus, when temporal variations at a given station are analyzed, one would expect, on the average, to find a positive correlation only between the phosphorus and transparency indices. This correlation might be attributed, for example, to turbidity variations following seasonal or short-term (storm-event) flow variations. Despite its positive covariance between reservoirs and between stations, chlorophyll-a does not covary temporally with the other indices.

Figure 12
Variance and Covariance Components of Trophic State Indices

118. The EPA/NES data base includes measurements from one growing season within any reservoir and does not permit testing for between-year variance or covariance components. Thus, it is not possible with this data set to test for year-to-year covariance between chlorophyll-a and phosphorus or transparency. Distinguishing between seasonal and year-to-year variance components will be possible with an expanded data base including data from other agencies and monitoring programs.

Error Analysis

119. The above analyses demonstrate that within-reservoir variations cannot be considered random with respect to dates or stations, the primary parameters used in monitoring program design. This has implications for estimating the accuracy of reservoir or station mean values calculated from the data set. If variations were random and serially independent with respect to station and date, the following statistic would be appropriate for estimating the variance of a reservoir mean:

$$\text{Var}(\bar{y}) = \frac{\text{Var}(y)}{N} \quad (30)$$

where

N = total number of observations within a reservoir for a given index

Using two-stage sampling theory³³, the following formula is more appropriate:

$$\text{Var}(\bar{y}) = \frac{\sigma^2_s}{n_s} + \frac{\sigma^2_t}{n_t} + \frac{\sigma^2_e}{N} \quad (31)$$

where

σ^2 = mean squared deviation

n_s = number of stations sampled

n_t = number of dates sampled

The first term accounts for the influence of between-station variations, the second for between-date variations, and the third for random

variations. Note that equation (31) reduces to equation (30) when spatial and temporal variations are insignificant ($\sigma_s^2 = \sigma_t^2 = 0$ and $\text{Var}(y) = \sigma_e^2$). Because both spatial and temporal variations often exhibit patterns or trends (see Figures 7-11), they cannot be considered serially independent. Thus, equation (31) provides error variance estimates which are approximate but useful for assessing the relative contributions of spatial and temporal variance to the variance of reservoir means.

120. Based upon the total number of observations, stations, and reservoirs in the NES data set, the "typical" reservoir survey program covers 5 stations (n_s) on 3 dates (n_t), for a total of 15 observations (N). Using these values and the pooled variance components depicted in Figure 5, equations (30) and (31) have been applied to each version of the index and results are displayed in Figure 13.

121. Considering the effects of spatial and temporal variance components (equation (31)) increases mean error by about a factor of three over estimates derived from equation (30). Most of the error variance is due to the temporal component, especially in the case of the chlorophyll-a index. The error variances indicate that the EPA/NES sampling strategy has provided estimates of reservoir geometric means which are typically accurate ($p < .05$) to within factors of 1.6, 2.2, and 1.7 for surface phosphorus concentration, chlorophyll-a concentration, and Secchi depth, respectively.

Monitoring Implications

122. Error analyses can be used to improve upon monitoring program designs. For example, given the objective of collecting data to be used in estimating a reservoir mean with minimum variance, the above results suggest that an increase in sampling dates would be more effective than an increase in sampling stations, because the date effect term dominates the error equation. Since the variance component estimates have been pooled, these results apply to this collection of reservoirs as a whole and not necessarily to each reservoir. The same approach could be

Figure 13
Variance Components of Trophic Index Means within Reservoirs

applied using parameters estimated for each reservoir individually (n_s , n_t , N , σ_s^2 , σ_t^2 , σ_e^2). "Optimal" designs could be formulated based upon the error analysis framework and upon functions which relate n_s , n_t , and N to monitoring cost. Given variance components estimated from prior monitoring data, improvements in program design (changes in n_s , n_t , and N) for a given reservoir could be formulated to yield minimum error for a fixed total cost or minimum cost for a fixed total error. The approach could be expanded to include depth as a third sampling dimension. This represents a logical application for the error analysis framework in a monitoring context.

Modelling Implications

123. In evaluating models, differences between observations and predictions can be attributed to three types of error: parameter error, data error, and model error. The first reflects uncertainty in the model coefficients, the second, errors in the predicted and/or predictor variables, and the third, influences of factors which are not considered in the model structure. Analyses of the type conducted above can be used to quantify potential data errors and separate them from the other components. This provides insights into the adequacy of a data base for use in model testing. If, for example, the data error component dominates, it would be difficult to distinguish among alternative models or to improve upon them without first improving the data base.

124. Table 43 summarizes results of regression analyses which have been done to summarize relationships among the three versions of the index using station mean and reservoir mean values. Results further demonstrate the need for recalibration of Carlson's index system in applications to reservoirs. The sensitivity of the chlorophyll-a component to phosphorus or transparency ranges from .30 to .37 and is in all cases significantly different from 1.0, the value obtained when the index system is calibrated to natural lakes. In contrast, the sensitivity of I_p to I_T is .88 for stations means and .91 for reservoir means.

Table 43
Regression and Corresponding Error Analyses

Model	r	s_b	*** Total** Error	Sampling* Error	<u>Sampling Error</u> <u>Total Error</u>
Station Means (n=484)-----					
$I_B = 28.7 + .35 I_P$.55	.024	42.3	23.1	.55
$I_B = 30.0 + .31 I_T$.46	.027	47.6	22.7	.48
$I_P = 4.0 + .88 I_T$.83	.027	47.6	25.9	.54
Reservoir Means (n=108)-----					
$I_B = 28.0 + .37 I_P$.59	.048	32.5	16.3	.50
$I_B = 31.0 + .30 I_T$.44	.059	41.0	16.0	.39
$I_P = 2.0 + .91 I_T$.83	.059	41.0	22.1	.54

* Sampling Error due to error in estimating mean index values within each station or reservoir; sampling errors for station mean phosphorus, chlorophyll-a , and transparency indices are estimated at 14.3, 21.3, and 15.0, respectively;corresponding sampling errors for reservoir-means are 11.2, 14.8, and 13.1.

** Total Error = mean squared residual

*** s_b = standard error of regression slope

While the correlation coefficients (and explained variance) are considerably lower for predicting chlorophyll-a (.44-.59) than for predicting phosphorus from transparency (.83), the mean squared prediction errors are similar.

125. Part of the mean squared error for each regression model can be attributed to sampling error in estimating the reservoir and station mean values. The sampling error component of the mean squared error for each model is estimated from:

$$\text{Var}(\bar{y} - b\bar{x}) \approx \text{Var}(\bar{y}) + b^2 \text{Var}(\bar{x}) \quad (32)$$

where,

y = predicted index

x = predictor index

b = slope of regression model

Results of error analyses have been used to estimate sampling errors in station mean and reservoir mean values. Results indicate that roughly half (39-54%) of the residual standard error can be attributed to sampling error in the data values. The remaining variance presumably reflects model error, or the effects of factors (e.g., season, sediment) which are not accounted for in the model. The choice of averaging method (stations vs. reservoirs) does not influence the model coefficient values significantly. Mean squared errors are reduced when reservoir mean values are used, partially resulting from a reduction in the sampling error component. The standard errors of the regression slopes, however, increase roughly twofold when reservoir mean values are used in place of station means. Thus, using station means permits better definition of model coefficients.

126. The intent of the regression analyses presented in Table 43 is to demonstrate the error analysis approach and identify influences of data reduction method. The models suggest that chlorophyll/phosphorus and chlorophyll/transparency relationships in these reservoirs are significantly different from those which are typical of natural lakes.

The models are inadequate for predictive use, however, because a number of important factors have not been considered, including season, nitrogen limitation, hydraulic residence time, region, and external sediment loading. These and other factors will be considered in developing a Trophic State Index system applicable to reservoirs under Phase II of this project.

Conclusions

127. Statistical models of index (or water quality) variations within reservoirs have been shown to be complicated by the effects of spatial and temporal variations and by non-randomness or serial dependence in these variations. The above analyses have demonstrated how some of these influences can be approximately treated and applied to assess data adequacy for computing reservoir means and to improve upon monitoring program designs. A more thorough statistical treatment would require more intensive data sets and involve the construction of more complex statistical models applied separately to each reservoir using simulation techniques. This level of detail is not justified or feasible within the context of this study.

128. The following general conclusions can be drawn from the analyses of EPA/NES data in previous sections:

- a. Spatial relationships among trophic state indicators are important in some reservoirs, especially when stations are viewed in downstream order.
- b. Analyses of Variance indicate that within-reservoir variations are often non-random with respect to stations and/or sampling dates within a given year. Variations with respect to date are typically stronger than variations between stations, particularly in the case of chlorophyll-a.
- c. Some of the temporal variance within reservoirs and stations is fixed with respect to month or season. Seasonal effects on phosphorus are qualitatively similar to seasonal effects on transparency but differ from seasonal effects on chlorophyll-a.

- d. Between-reservoir variance in Carlson's chlorophyll-a index is roughly one third of the between-reservoir variances in the phosphorus and transparency indices.
- e. For this data set, chlorophyll-a variance between sampling dates within reservoirs is greater than its variance between reservoir means. The reverse is true for phosphorus and transparency.
- f. Covariance components indicate significant positive correlations among the three versions of the index system when variations between reservoirs and between stations within reservoirs are considered. The chlorophyll-a index does not correlate with either of the other indices, however, when temporal variations (at a given station or within a given reservoir) are considered.
- g. Because of non-randomness with respect to stations and dates, the error variance of reservoir mean values for each index are typically three times those estimated from the familiar formula for mean variance (σ^2/n).
- h. Given the objective of estimating reservoir means with minimum variance, error analyses indicate that increases in the number of sampling dates would be generally more effective than increases in the number of stations per reservoir for improvement in the EPA/NES sampling design.
- i. Regression analyses indicate that chlorophyll-a levels are significantly less sensitive to phosphorus or transparency, as compared with the natural lakes used in developing Carlson's index system. Future development of an index system for reservoirs should consider the effects of season, region, nitrogen limitation, residence time, and sediment loading.
- j. Use of station means, as opposed to reservoir means, in recalibrating the index system causes small increases in standard error of estimate but substantially reduces the standard errors of model parameters.

Implications for Data Reduction Strategies

129. The conclusions in the previous section suggest that the following data-reduction/analytical strategies be used in testing and developing models under Phase II of this project:

- a. Since spatial variations and trends have been shown to be often statistically identifiable and useful for interpretation purposes, use of station means would seem to be more

desirable than use of reservoir means for model testing. Use of station means would also permit better definition of model parameters.

- b. It would be useful to develop a scheme for spatial orientation of stations within each reservoir with respect to major tributary (arm) and distance (river mile). Some aggregation of stations based upon proximity may be feasible within this framework.
- c. Seasonal factors should be considered in averaging data within each station or station group. This would involve, for example, estimation of "spring", "summer", "fall", as well as "growing season" and "annual" averages.
- d. For non-NES stations which are sampled during more than one year, tests for significant year-to-year differences should be made and used to decide whether aggregation of data from different years is justifiable.
- e. While the above analyses have been based exclusively upon surface sampled for phosphorus, averaging with depth should be considered, at least within the photic zone, for testing of relationships among phosphorus, chlorophyll-a, and transparency.
- f. To permit testing of loading response models, seasonal estimates of reservoir means could be derived by averaging across stations. Due to longitudinal variations in many reservoirs, however, near-dam or discharge conditions should also be used as bases for loading model evaluations.

PART XIV: EVALUATION OF METHODS FOR ESTIMATING PHOSPHORUS LOADINGS

Introduction

130. The estimation of reservoir nutrient budgets entails estimation of the total mass of nutrients passing given sampling points over a given period of time, typically at least one year. While continuous, flow-weighted composite sampling for concentrations would provide the best basis for deriving such estimates, usually only periodic grab-samples are available for stream concentrations. These concentrations must be integrated with flow records (typically continuous) in order to estimate the desired loadings. The purpose of this section is to test and compare alternative methods in order to provide some guidance for future nutrient budget calculations on CE reservoirs.

Preliminary Analysis

131. The relationship between concentration and flow influences the appropriateness of a given loading calculation method at a given station. A subset of flow and phosphorus concentration data from the current CE data base has been analyzed in order to provide some perspective on this relationship³⁴. The subset includes 86 tributary and 33 discharge stations, each with at least 25 total phosphorus/streamflow pairs obtained from STORET. Table 44 describes the symbols and fundamental equations used to characterize flow and concentration variations.

132. Results of the preliminary analysis are given in Table 45, with data grouped by station type. The regression model relating the logarithm of concentration to the logarithm of flow explains, on the average, 12.3% of the variance in concentration at tributary stations and 6.6% of the variance in concentration at discharge stations. Figure 14 shows that the upper percentiles of the R^2 distribution at tributary sites are roughly twice those found at discharge sites.

Table 44
Fundamental Equations and Symbols

Loading Definition: $L = Q C$
 $W = X + Y$

Flow/Concentration Model: $C = a Q^b$
 $Y = \log_{10} a + b X$

Distributions: $Y: (\text{mean} = \mu_y, \text{std.dev.} = \sigma_y)$
 $X: (\text{mean} = \mu_x, \text{std.dev.} = \sigma_x)$

Symbols: $L = \text{Loading (mass/time)}$
 $Q = \text{Flow (volume/time)}$
 $C = \text{Concentration (mass/volume)}$
 $W = \log_{10}(L)$
 $X = \log_{10}(Q)$
 $Y = \log_{10}(C)$
 $a, b = \text{Regression model parameters}$

Table 45

Preliminary Analysis of Flow/Total P Concentration Relationships

Statistic	Station Type	
	Tributary	Discharge
number of stations	86	33
fraction of variance explained by regression model	.123 ± .151*	.066 ± .078
residual variance	.101 ± .075	.090 ± .050
serial correlation of residuals	.228 ± .205	.300 ± .276
conc/flow sensitivity (b)	.124 ± .250	.097 ± .138
standard dev. of \log_{10} (flow)	.573 ± .246	.600 ± .303
standard dev. of \log_{10} (conc)	.323 ± .133	.297 ± .088

* mean ± one standard deviation

Figure 14
Distributions of R^2 Values at Tributary and Discharge Stations

Figure 15
Distributions of Regression Slopes at Tributary and Discharge Stations

133. Both the mean and the standard deviation of the regression slope (b) are larger in the case of tributary stations. The distributions of b are compared on a normal probability scale in Figure 15. While the medians are nearly equal, the upper percentiles are higher and the lower percentiles are lower in the case of tributary stations. The wide distribution of b values across stations suggests that loading calculation methods must be capable of accounting for alternative flow/concentration relationships.

134. These results indicate that concentration tends to be more flow-dependent at upstream tributary stations than at discharge stations. Reservoir pools may buffer variations associated with runoff events (which would tend to produce high b values) or point source discharges (which would tend to produce low b values). The fact that streamflow is highly regulated at reservoir discharge points may also contribute to weaker flow/concentration relationships. The serial correlation of residuals (i.e., concentration, after the effect of flow is removed) tends to be higher in the case of discharge stations (.30 vs. .23 on the average). This suggests that seasonal factors or long-term trends may have greater influences at discharge points.

135. Table 46 lists means regression slopes by station type and component (dissolved P, total P-dissolved P, and total P, respectively). This breakdown is based upon measurements of total P and dissolved P at 52 tributary and 17 discharge stations. For both station types, the mean slopes of dissolved phosphorus with respect to flow are not significantly different from zero. In the case of total P-dissolved P, however, the mean slope is $.34 \pm .05$ at tributary stations and $.11 \pm .09$ at discharge stations, although the latter is not significantly different from zero. The influence of streamflow on the transport of particulate phosphorus probably accounts for these results. The dissolved component tends to be more independent of flow than the particulate component. The relative weakness of the dissolved phosphorus/flow relationship may reflect a buffering effect of adsorption chemistry on stream phosphorus levels and/or the fact that transport efficiency for dissolved phosphorus

Table 46

Concentration/Flow Sensitivities by Component and Station Type

<u>Component</u>				
Station Type	Number of Stations	Total P - Dissolved P	Dissolved P	Total P
Tributary	52	.341 ± .050*	.019 ± .034	.239 ± .044
Discharge	17	.109 ± .087	.036 ± .101	.082 ± .038

* mean ± one standard error of mean

is not velocity-dependent, as in the case of the particulate fraction.

Estimation Methods

136. Four algorithms for estimating loadings have been tested:

- a. average loading.
- b. average concentration x average flow.
- c. flow-weighted average concentration x average flow.
- d. regression estimate based upon log (concentration) vs. log(flow) relationship.

These schemes are described in Table 47. A few other types of regression models have also been evaluated, but none proved better than the model used in Method 4 (see Table 47). Two approaches to evaluating these methods have been taken: one involves subsampling from simulated flow and concentration data and the other, subsampling from real flow and concentration data. These methods and results are described below.

Tests Based Upon Simulated Data

137. Table 48 describes an algorithm used to generate flow and concentration time series using Monte-Carlo techniques. This method has been used to produce five years of simulated daily-average flow and concentration data. Mean loadings have been calculated directly for each year and compared with estimates based upon subsampled taken at monthly intervals and employing the calculation methods listed in Table 47. For each year, a total of thirty trials (sets of subsamples) have been made, representing regular sampling on day 1 to day 30 of each month, respectively. Thus, error statistics are based upon a total of 150 trials for each method. Results have been found to be insensitive to the number of trials. The simulation algorithm is not adequate for evaluation of interpolation methods (in which the sequence of samples is considered), since no serial correlation or seasonal factors are included. The parameters of the simulation model are typical of the

Table 47

Estimation Methods

Method 1 : Average Loading

$$\hat{L}_1 = \frac{\sum q_i c_i}{n}$$

Method 2 : Average Concentration x Average Flow

$$\hat{L}_2 = \bar{Q} \frac{\sum c_i}{n}$$

Method 3 : Flow-weighted Average Concentration x Average Flow

$$\hat{L}_3 = \bar{Q} \frac{\sum q_i c_i}{\sum q_i}$$

Method 4 : Regression Estimate

$$\hat{L}_4 = \frac{\sum q_i c_i}{n} \left[\frac{n \bar{Q}}{\sum q_i} \right]^{b+1}$$

where,

q_i = flow on sample date i

c_i = concentration on sample date i

n = number of sample dates

b = slope of $\log(c)$ vs. $\log(q)$ regression

\bar{Q} = average flow over entire period, based upon continuous flow record

Σ = sum over all sample dates (i=1 to n)

Table 48

Algorithm for Generation of Flow/Concentration Time Series

Input Values:

μ_x = mean of logarithm of flow = 0.
 μ_y = mean of logarithm of concentration = 0.
 d_x = standard deviation of logarithm of flow = .52
 d_y = standard deviation of logarithm of conc = .26
(random component)
 b = slope of flow/concentration model = (-.8 + .8)

Algorithm:

$$x_i = \mu_x + N(0,1)d_x$$
$$y_i = \mu_y + N(0,1)d_y + (x_i - \mu_x)b$$

Symbol:

$N(0,1)$ = normal random deviate with mean zero and standard deviation one

data distributions depicted in Figure 15 and Table 45. A range of flow/concentration sensitivities (b in Table 47) have been used (-.8 to +.8).

138. The following error statistics have been used to compare "observed" and estimated loadings for method and trial:

$$\text{Bias}_j = \frac{1}{M} \sum_{k=1}^M \left(L_k - \hat{L}_{jk} \right) / L_k \quad (33)$$

$$\text{MSE}_j = \frac{1}{M} \sum_{k=1}^M \left(L_k - \hat{L}_{jk} \right)^2 / L_k^2 \quad (34)$$

where,

Bias_j = bias associated with method j

MSE_j = mean squared error associated with method j

M = total number of trials = 150

L_k = actual loading for trial k (mass/time)

\hat{L}_{jk} = estimated loading for method j and trial k (mass/time)

For each method, these error statistics are plotted vs. the flow/concentration sensitivity statistic in Figures 16 and 17, respectively.

139. Only Method 1 is unbiased for all values of b . The MSE of this method, however, is significantly higher than that of the other methods at values of b greater than -.2. This method is best under conditions where loading is relatively independent of flow ($b > -1$). This might be the case, for instance, at a station which is located below a major point source of nutrients, but not where storm-event or non-point loads are significant.

140. The performance of Method 2, in which concentration and flow are averaged independently, is a strong function of b , both with respect to bias and variance. This method is unbiased only at $b=0$, but has biases of +35% and -23% at b values of -.2 and +.2, respectively. Trends in bias continue moving toward more negative or more positive b values. The method has a sharp minimum in MSE at $b=0$. This scheme is apparently best only when concentration and flow are truly independent, but gives

Figure 16
Bias in Loading Estimates as a Function
of Regression Slope and Estimation Method

Figure 17
Mean Squared Error in Loading Estimates as a
Function of Regression Slope and Estimation Method

substantial biases and MSE's for even weak flow/concentration relationships.

141. Method 3, which employs the flow-weighted average concentration, behaves qualitatively similar to Method 2, but is not as sensitive to b values. Zero bias and minimum variance are evident at b=0. This method is analogous to a "ratio estimate" used in classical sampling theory.³⁵.

142. Method 4 has less bias and variance than Method 3 for most b values. Unlike the other methods, the regression model can adjust to different types of flow/concentration relationships and estimation errors are less sensitive to b values. Bias becomes more significant at high values of b. At b=.6, for example, Method 4 underpredicts loading by an average of 15%. The MSE at this b value is .13, which corresponds to a standard error of $\pm 36\%$. Thus, bias is less than one half of one standard error and accounts for 17% of the MSE ($.15^2/.13$) at b=.6. Additional tests indicate that applying the regression model separately to each daily flow in the year, a more tedious calculation, does not reduce the bias or variance of Method 4 at any b value.

Tests Based Upon Real Data

143. Calculation methods have also been tested using the flow and concentration data from the 119 stations analyzed above. Subsamples of 12 flow/concentration pairs have been taken at regular intervals from each station. Loadings estimated for each subsample and method have been compared with loadings estimated by applying Method 1 to all flow/concentration pairs available for each station. A total of 508 subsamples have been taken from 86 tributary stations and 190 subsamples from 33 discharge stations. Bias and MSE estimates are given in Table 49 for each method and station type. These results are approximate because of errors involved in estimating actual loading.

144. Generally, Methods 3 and 4 appear to perform better than Methods 1 or 2 for both station types. The MSE of Method 3 equals that

Table 49

Results of Method Testing Using Real Flow and Concentration Data

Statistic	Estimation Method**			
	Method 1	Method 2	Method 3	Method 4
Tributary Stations (N=86, M=508)				
Bias	-.002	-.027	-.029	-.023
MSE	.530	.297	.176	.176
Discharge Stations (N=33, M=190)				
Bias	.001	.068	-.017	-.000
MSE	.272	.585	.108	.156

* N = number of stations, M = number of trials

** see Table 47

of Method 4 in tributary stations (.176), but is lower in discharge stations (.108 vs. .156). When averaged over the range of b values in the data set, none of the methods is appreciably biased.

Prior Error Estimation

145. To provide bases error analysis and assessment of data adequacy, a means for estimating the variance of loading estimates derived from a given set of flow/concentration data is needed. Table 50 presents a formula appropriate for use with Method 4 (or with Method 3 when $b=0$). This approximate formula, derived from expected value theory, has two terms: one reflecting variance around the flow/concentration regression model, and one reflecting variance in the estimate of the slope parameter b.

146. Figure 18 compares the observed mean squared estimation errors for Method 4 with error variances estimated from the formula in Table 50 using simulated data. Reasonable agreement between observed and estimated variances is apparent over the range of b values typically encountered. Similar tests have been done using real flow and concentration data. The formula in Table 50 overestimates the error mean square by an average of 18% for tributary stations and underestimates the error mean square by an average of less than 1% at discharge stations.

Conclusions

147. Preliminary data analysis has characterized the distributions of flow/concentration relationships in tributary and discharge streams. Methods 3 and 4 are generally better than Methods 1 or 2 for estimating loadings, given the distribution of concentration/flow sensitivities encountered at various stations (see Figure 15). Method 3, which employs the flow-weighted average concentration, is actually a special case of Method 4, with $b=0$. In calculating loadings, it seems reasonable to use a regression analysis to estimate the slope parameter b and to use

Table 50

**Formula for Estimating the Variance of Loadings Calculated
Using Method 4**

Loading Estimate:

$$\hat{L}_4 = \frac{\sum q_i c_i}{n} - \left(\frac{n \bar{Q}}{\sum q_i} \right)^{b+1}$$

Variance:

$$V(\hat{L}_4) = \frac{\left[\sum (q_i c_i - a q_i)^{b+1} \right]^2}{n(n-2)} + \left[\frac{\sum q_i c_i}{n} - \ln \left(\frac{\bar{Q} n}{\sum q_i} \right) \right]^2 \sigma_b^2 \cdot \left(\frac{\bar{Q} n}{\sum q_i} \right)^{2b}$$

* where σ_b^2 = variance of b estimate

* other symbols defined in Tables 46 and 47

Figure 18

Observed and Estimated Mean Squared Error in Loading Estimates

Method 4 unless the slope estimate is not significantly different from zero, in which case Method 3 would be used. The formula in Table 50 can be used to derive approximate estimates of error associated with a given mean loading calculated using Methods 3 or 4. Error variances can be used, in turn, to characterize the accuracies of reservoir nutrient loading and discharge estimates.

PART XV: CONCLUSIONS

148. The compilation, description, and preliminary analyses of the data base described in previous sections lead to the following conclusions:

- a. Using primarily centralized sources of information, it has been possible to compile sufficient data on water quality, hydrology, sedimentation, and other project characteristics to permit testing of empirical eutrophication models under Phase II of this study.
- b. The hydrology files need to be augmented with monthly elevation/contents data from several districts and projects.
- c. Information in the water quality files will not be adequate for assessing the trophic states of all 299 reservoirs in the central project list. It should be adequate, however, for characterizing about 130 reservoirs and for testing empirical models relating within-pool measures of trophic state.
- d. Use of data sources outside of the EPA/National Eutrophication Survey has generally more than doubled the total numbers of observations of various within-pool trophic state indicators. Non-NES data are generally more extensive temporally.
- e. Comparisons derived from the EPA National Eutrophication Survey compendium reveal significant differences between lakes and reservoirs in the means of most morphometric, hydrologic, and trophic state indicator variables. Compared with natural lakes, reservoirs have greater potential nutrient enrichment problems, as gauged by Vollenweider phosphorus loading models, but lower observed levels of chlorophyll-a, on the average. The validity of existing loading models in reservoirs is in question due to lake/reservoir differences in morphometry, hydrodynamics, sedimentation, and region. Because of the relative geographical distributions of lakes and reservoirs in the U. S., it is difficult to distinguish the effects of region from those of impoundment type.
- f. For the purposes of this project reservoir hypsographic curves can be conveniently summarized using low-order polynomial equations relating the logarithm of total volume to the logarithm of total depth. Errors characteristic of this curve-fitting scheme are similar to those characteristic of direct interpolation methods.

- g. Within-reservoir variations of trophic state indicators generally cannot be considered random with respect to station and date, the primary parameters used in monitoring program design. Spatial variations contain information on rates and directions of processes controlling eutrophication within reservoirs. Variance component analyses indicate that phosphorus and transparency have variance structures which are similar to each other, but fundamentally different from the variance structure of chlorophyll-a. Implications of these variance structures for monitoring and modelling efforts have been discussed.
- h. A method for estimating the mean and error variance of nutrient loadings derived from continuous-flow and grab-sample-concentration measurements has been developed and tested using real and simulated flow/concentration time series. The method employs a regression model relating concentration to flow and has been shown to compare favorably with alternative calculation methods with respect to bias and variance of loading estimates under a range of conditions.

PART XVI: RECOMMENDATIONS

149. The following additional data base development work is required in order to permit testing of empirical eutrophication models and should therefore be included in the scope of Phase II of this study:

- a. compilation of monthly elevation/contents data from many districts and projects, as indicated by the inventories in Appendix A.
- b. development of a scheme for sorting of water quality stations in downstream order within reservoirs.

150. While compiled for the specific purposes of this project, the data base described in this report could be adapted for other, more generalized uses. As discussed in the introduction to this report, the current data base consists of a number of computer files, reports, maps, and data forms organized in a consistent framework. It is not a system designed for frequent interactive use. Given the current data base, the development of such a system would involve the following:

- a. definition of objectives (desired scope of data base uses).
- b. definition of operating environment (direct users, maintenance personnel, and computer system).
- c. development of appropriate software for various purposes (e.g., accessing, updating, editing, summarizing, displaying, analyzing).
- d. compilation of any additional data required for intended uses of the data base (e.g., inclusion of priority pollutants, development of a digital reservoir mapping capability).
- e. appropriate modifications in file designs.
- f. establishment of channels and procedures for updating and verification of information.
- g. testing of the system in an operational environment.
- h. documentation of the system.
- i. orientation of potential users.

It is recommended that the Corps of Engineers consider expanding upon the existing data base, as outlined above, in order to permit more generalized use of the information which has been compiled under this project. The

final product would represent a valuable resource for reservoir design, operation, and research at various organizational levels within the Corps of Engineers.

REFERENCES

1. Dixon, W. J. and M. B. Brown, ed., BMDP-77, Biomedical Computer Programs - P Series, University of California Press, Berkeley, 1977.
2. Statistical Analyses Institute, SAS User's Guide, 1979 Edition. SAS Institute Inc., Raleigh, North Carolina.
3. U. S. Environmental Protection Survey, Water Quality Control Information System STORET, User Handbook, Office of Water and Hazardous Materials, Washington, D.C., 1979.
4. U. S. Environmental Protection Agency, National Eutrophication Survey, Computer Tape Containing NES Data Summary, obtained from the Corvallis Environmental Research Laboratory, Oreg., 1978.
5. Leidy, G. R. and R. M. Jenkins, The Development of Fishery Compartments and Population Rate Coefficients for Use in Reservoir Ecosystem Modeling, prepared for Office, Chief of Engineers, U. S. Army, WES-76-2, June 1977.
6. U. S. Army Corps of Engineers, "Corps of Engineers Civil Works Activities" (map), Office of the Chief, June 1974.
7. U. S. Army Corps of Engineers, Water Resources Development for (state), miscellaneous states, published by Division offices, 1977.
8. U. S. Geological Survey, "Hydrologic Unit Maps", issued by state, prepared in cooperation with U. S. Water Resources Council, 1974.
9. U. S. Environmental Protection Agency, National Eutrophication Survey, Working Papers, Corvallis Environmental Research Laboratory, Oreg., 1972-76.
10. Dendy, F. E. and W. A. Champion, "Sediment Deposition in U. S. Reservoirs: Summary of Data Reported through 1975", U. S. Department of Agriculture, Agricultural Research Service, Miscellaneous Publication No. 1362, 1977.
11. U. S. Army Corps of Engineers, New England Division, Project Maps, Flood Control Projects, revised to 30 September 1976, Waltham, Mass., 1976.
12. U. S. Department of Agriculture, "Reservoir Sedimentation Data Summary Sheets through 1975:", supplement to reference (10), 1977.
13. U. S. Geological Survey, Water Resources Data (by state and year), Water Resources Division, 1977-79.

14. U. S. Geological Survey, WATSTORE User's Guide, National Water Data Storage and Retrieval System, Open File Report 75-426, Reston, Va., 1979.
15. U. S. Environmental Protection Agency, Data Tape Containing Flow Data Compiled by the National Eutrophication Survey, Corvallis Environmental Research Laboratory, Oreg., 1979.
16. Perry, R. A. and C. J. Lewis, Definitions of Components of the Master Water Data Index Maintained by the National Water Data Exchange, U. S. Geological Survey, Open File Report 78-183, 1978.
17. U. S. Army Engineer Division, Ohio River, INFONET - Laboratory Master File System User's Manual, 1977.
18. U. S. Geological Survey, Catalog of Information on Water Data, 21 volumes, Office of Water Data Coordination, 1974.
19. U. S. Geological Survey, Maps Showing Locations of Water Quality Stations, supplement to reference (18), 1972.
20. Ficke, J. F. and R. O. Hawkinson, "The National Stream Quality Accounting Network (NASQAN) - Some Questions and Answers", Geological Survey Circular 79, Reston, Va., 1975.
21. U. S. Army Engineer District, Baltimore, Water Quality Data for Almond, Whitney Point, and A. R. Bush Reservoirs, 1979.
22. U. S. Army Engineer Division, North Central, Water Quality Data for Eau Gaulle Reservoir and Lac Qui Parle, 1979.
23. U. S. Environmental Protection Agency, National Eutrophication Survey, Compendium of Lake and Reservoir Data, Working Papers 474 to 477, Corvallis Environmental Research Laboratory, Oreg., 1975-78.
24. Walker, W. W., "Empirical Methods for Predicting Eutrophication in Impoundments Phase I: Data Base Development", Interim Report submitted to the U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., June 1979.
25. Vollenweider, R. A., "Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication", Mem. Inst. Ital. Idrobiol., Vol 33, pp 53-83, 1976.
26. Walker, W. W., "Numerical Characterization of Reservoir Hypsographic Curves", Working Paper No. 1, submitted to the U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., December 1979.

27. Mosteller, R. and J. M. Tukey, Data Analysis and Regression, Addison-Wesley, N.Y., 1977.
28. Hakanson, L., "On Lake Form, Lake Volume, and Lake Hypsiographic Survey", Geografiska Annaler, Vol 59 (a), 1977, pp 1-29.
29. Lambou, V. W., L. R. Williams, S. C. Hern, R. W. Thomas, and J. D. Bliss, "Prediction of Phytoplankton Productivity in Lakes" in Ott, W. R., ed., Environmental Modelling and Simulation, U. S. Environmental Protection Agency, Office of Research and Development and Office of Planning and Management, 1976.
30. Carlson, R. E., "A Trophic State Index for Lakes", Limnology and Oceanography, Vol 22, No. 2, pp 361-369, March 1977.
31. Walker, W. W., "Analysis of Water Quality Variations in Reservoirs - Implications for Design of Data Reduction Procedures", Working Paper No. 3, submitted to the U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., March 1980.
32. Walker, W. W., "Analysis of Water Quality Variations in Reservoirs - Implications for Monitoring and Modelling Efforts", presented at the American Society of Civil Engineers Symposium on Surface Water Impoundments, Minneapolis, Minn., June 1980.
33. Cochran, W. G., Sampling Techniques, 3rd ed., John Wiley & Sons, N.Y., 1977.
34. Walker, W. W., "Evaluation of Methods for Estimating Phosphorus Loadings from Grab-Sample Concentrations and Continuous-Flow Measurements", Working Paper No. 4, submitted to U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., May 1980.
35. Snedecor, G. and W. Cochran, Statistical Methods, Iowa State University Press, 6th ed., 1972.

APPENDIX A

DATA INVENTORIES BY PROJECT AND DIVISION

Table A1

Inventory of WATS.DAREAS File

INVENTORY OF DATA IN DAQ FILE

DIVISION	DISTRICT	PROJECT	NUMBER	YEAR	NET	TOTAL	MEAN	MEAN	USGS	USGS	DISCH				
												ENTRIES	IMPO	DAREA	DISCH
1 NED	1 NEW ENGL	142 BUFFVILLE	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	144 EAST BRIMFIELD	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	147 LITTLEVILLE	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	148 TULLY	3	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	150 WESTVILLE	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	151 BLACK ROCK	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	152 COLEROCK RIVER	2	-	-	-	2	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	155 HANCOCK BROOK	3	-	-	-	2	0	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	156 HOP BROOK	6	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	158 MANFIELD HOLLOW	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	159 NORTHFIELD BROOK	3	-	-	-	2	0	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	162 WEST THOMPSON	4	-	-	-	4	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	164 EDWARD MCCORMELL	3	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	165 EVERETT	2	-	-	-	2	0	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	166 FRANKLIN FALLS	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	167 HOPKINTON	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	168 OTTER BROOK	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	169 SURRY MOUNTAIN	3	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	170 BALL MOUNTAIN	3	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	172 NORTH HARTLAND	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	173 NORTH SPRINGFIELD	4	-	-	-	3	1	0	0	0	-	-	-	-
1 NED	1 NEW ENGL	174 TOWNSHEAD	3	-	-	-	3	1	0	0	0	-	-	-	-
2 NAD	2 NEW YORK	171 EAST BARRE	3	-	-	-	1	2	1	0	0	-	-	-	-
2 NAD	2 NEW YORK	176 WATERBURY	5	-	-	-	1	4	3	0	0	-	-	-	-
2 NAD	2 NEW YORK	177 WIGHTSVILLE	3	-	-	-	2	1	0	0	0	-	-	-	-
2 NAD	3 PHILADEL	207 BELTVILLE	6	-	-	-	2	4	3	0	0	-	-	-	-
2 NAD	3 PHILADEL	213 FRANCIS E. WALTER	3	-	-	-	1	2	1	0	0	-	-	-	-
2 NAD	3 PHILADEL	216 PROPTON	3	-	-	-	1	2	1	0	0	-	-	-	-
2 NAD	4 BALTIMOR	227 ALMORD	2	-	-	-	0	2	1	0	0	-	-	-	-
2 NAD	4 BALTIMOR	229 WHITNEY POINT	3	-	-	-	0	2	1	0	0	-	-	-	-
2 NAD	4 BALTIMOR	306 ALVIN R. BUSH KETTLE	2	-	-	-	0	2	1	0	0	-	-	-	-
2 NAD	4 BALTIMOR	310 CURRIVILLE	4	-	-	-	0	3	2	0	0	-	-	-	-
2 NAD	3 BALTIMOR	312 F. J. SKYERS (BLANCHARD)	5	-	-	-	1	4	3	0	0	-	-	-	-
2 NAD	4 BALTIMOR	320 RAYSTON	4	-	-	-	0	3	2	0	0	-	-	-	-
2 NAD	4 BALTIMOR	329 STILLWATER	2	-	-	-	0	2	1	0	0	-	-	-	-
2 NAD	4 BALTIMOR	398 BLOOMINGTON	1	-	-	-	0	0	0	0	0	-	-	-	-
2 NAD	4 BALTIMOR	401 SAVAGE	2	-	-	-	1	2	1	0	0	-	-	-	-
3 SAD	6 WILMINGTON	233 EVERETT JORDAN (RE)	1	-	-	-	0	0	0	0	0	-	-	-	-
3 SAD	6 WILMINGTON	312 JOHN H. KERR	5	-	-	-	2	1	5	2	0	-	-	-	-
3 SAD	6 WILMINGTON	375 PHILPOTT	4	-	-	-	2	1	4	2	0	-	-	-	-
3 SAD	7 CHARLEST	232 W. KERR SCOTT	4	-	-	-	1	4	2	1	0	-	-	-	-

INVENTORY OF DATA IN DAQ FILE

DIVISION	DISTRICT	PROJECT	NUMBER	YEAR	NET ENTRIES	TOTAL IMPD	YEAR	NET AREA	TOTAL DAREA	MEAN DISCH	MEAN INFLOW	MEAN PREC	USGS E/C	USGS DISCH
3 SAD	8	SAVANNAH 74 CLARK HILL	5	1	1	5	1	5	3	0	0	1	1	1
3 SAD	8	SAVANNAH 330 MARTIN	5	1	1	5	1	5	3	0	0	1	1	1
3 SAD	9	JACKSON 66 OKLAHOMA (RODRIGUEZ)	3	1	0	3	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 1 CLAIBORNE	3	1	0	3	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 2 COFFEEVILLE (JACKSON	3	1	0	3	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 3 HOLI	3	1	0	3	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 4 JONES BLUFF	3	1	0	3	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 5 DEMOPOLIS	2	0	0	2	1	0	0	0	0	0	1	1
3 SAD	10	MOBILE 7 WARRIOR	2	0	0	2	1	0	0	0	0	0	1	1
3 SAD	10	MOBILE 8 MILLERS FERRY	2	0	0	2	1	0	0	0	0	0	1	1
3 SAD	10	MOBILE 69 ALLATOONA	5	1	0	3	4	0	0	0	0	0	1	1
3 SAD	10	MOBILE 70 GEORGE W ANDREWS	5	1	0	3	4	0	0	0	0	0	1	1
3 SAD	10	MOBILE 71 SEMINOLE (WOODRUFF)	4	1	0	4	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 72 WALTER F GEORGE (LEUF	3	1	0	3	1	0	0	0	0	0	1	1
3 SAD	10	MOBILE 73 WEST POINT	4	1	0	2	3	1	0	0	0	0	1	1
3 SAD	10	MOBILE 75 CARTERS	3	1	0	2	2	1	0	0	0	0	1	1
3 SAD	10	MOBILE 76 TOMEY LANIER	5	1	0	4	3	0	0	0	0	0	1	1
3 SAD	10	MOBILE 191 OATIBEE	3	1	0	3	2	0	0	0	0	0	1	1
3 SAD	10	MOBILE 405 GAINESVILLE L/D	2	0	0	1	1	0	0	0	0	0	1	1
3 SAD	10	MOBILE 411 BARNHEAD	3	0	0	3	2	0	0	0	0	0	1	1
5 NCD	11	BUFFALO 228 MT. MORRIS	3	2	1	3	1	0	0	0	0	0	1	1
5 NCD	14	ROCK ISL 98 CORALVILLE	4	2	1	4	2	0	0	0	0	0	1	1
5 NCD	14	ROCK ISL 99 RED ROCK	5	1	0	5	3	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 178 GRILL	4	1	0	4	3	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 179 LAC QUI PARLE	3	1	0	3	2	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 180 TRAVERSE	2	0	0	4	3	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 181 LEACH	4	1	0	4	3	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 182 ORWELL	3	2	1	3	1	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 183 CROS	0	0	0	0	0	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 184 POKEGAMA	3	1	0	3	2	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 185 SANDY	3	0	0	3	2	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 186 WINNIBICOUSH	3	0	0	3	2	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 187 PIN-RIVER	3	1	0	3	2	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 226 HORSE	3	2	1	3	1	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 237 ASHALOLA (BALDHILL)	5	1	1	5	3	0	0	0	0	0	1	1
5 NCD	15	ST PAUL 399 EEU GALLE	3	1	0	2	1	0	0	0	0	0	1	1
4 ORD	16	ITTSBUR 243 BERLIN	5	2	1	6	3	0	0	0	0	0	1	1
4 ORD	16	PITTSEUR 252 MICHAEL J KIRKAN	3	1	0	4	3	0	0	0	0	0	1	1
4 ORD	16	PITTSEUR 254 MOSQUITO CREEK	5	1	0	4	3	0	0	0	0	0	1	1

INVENTORY OF DATA IN DAQ FILE

DIVISION	DISTRICT	PROJECT	ENTRIES	YEAR	NET	TOTAL	MEAN	MEAN	USGS	USGS
				INPO	DAREA	DAREA	DISCH	INFLOW	E/C	DISCH
4 ORO	16	PITTSBUR 308 COHENUGH RIVER	3	1	1	2	1	1	0	0
4 ORO	16	PITT SEUR 309 CHOKE CREEK	3	1	1	3	1	1	0	0
4 ORO	16	PITT SEUR 311 EAST BRANCH CLARION	4	2	1	4	2	1	0	0
4 ORO	16	PITT SEUR 314 LOYALHANNA	3	1	1	3	1	1	0	0
4 GCD	16	PITT SEUR 315 MACHING CREEK	3	1	1	3	1	1	0	0
4 ORO	16	PITTSBUR 317 SHEENGO RIVER	4	1	0	4	3	0	0	0
4 ORO	16	PITT SEUR 318 TIDONIA	4	2	1	4	2	1	0	0
4 ORO	16	PITT SEUR 319 YOUGO/HENRY RIVER	4	2	1	4	2	1	0	0
4 ORO	16	PITT SEUR 322 WOODLOCK	3	1	0	2	1	0	0	0
-4 ORO	16	PITT SEUR 328 ALLEGHENY (KINZUA)	4	1	0	4	3	0	0	0
4 ORO	16	PITT SEUR 393 TIGART	5	2	1	5	3	0	0	0
4 ORO	17	HUNT INGT 123 DEKEY	3	0	0	3	2	0	0	0
4 ORO	17	HUNTINGT 124 FISHTRAP	4	2	1	4	2	1	0	0
4 ORO	17	HUNT INGT 125 GRAYSON	5	2	1	4	2	1	0	0
4 ORO	17	HUNT INGT 127 GREENUP L/D	3	1	0	3	2	1	0	0
4 ORO	17	HUNT INGT 239 PARTI CREEK	2	1	0	2	1	0	0	0
4 ORO	17	HUNT INGT 311 ATWOOD	5	2	1	5	3	0	0	0
4 ORO	17	HUNT INGT 242 BEACH CITY	4	1	0	4	3	0	0	0
4 ORO	17	HUNT INGT 245 CHARLES MILL	5	2	1	5	3	0	0	0
4 ORO	17	HUNTINGT 246 CLENDENING	2	1	0	2	1	0	0	0
4 ORO	17	HUNTINGT 247 DEER CREEK	5	2	1	5	3	0	0	0
4 ORO	17	HUNTINGT 248 DELAWARE	5	2	1	5	3	0	0	0
4 ORO	17	HUNT INGT 249 ELLISON	5	2	1	5	3	0	0	0
4 ORO	17	HUNTINGT 251 LEESVILLE	3	1	0	3	2	0	0	0
4 ORO	17	HUNT INGT 255 PIEDMONT	3	1	0	3	2	0	0	0
4 ORO	17	HUNTINGT 256 PLEASANT HILL	5	2	1	5	3	0	0	0
4 ORO	17	HUNT INGT 257 SERENAVILLE	4	2	1	4	3	0	0	0
4 GCD	17	HUNTINGT 258 TAPPAN	4	2	1	4	3	0	0	0
4 ORO	17	HUNT INGT 259 DOR OAK/TOM JERKINS	4	2	1	4	3	0	0	0
4 ORO	17	HUNTINGT 261 WILLS CREEK	3	1	0	3	2	0	0	0
4 ORO	17	HUNTINGT 373 JOHN W FLANNAGAN	4	1	0	4	3	0	0	0
-4 ORO	17	HUNTINGT 374 NORTH FORK OF POUND	5	2	1	5	3	0	0	0
4 ORO	17	HUNTINGT 363 BLUESTONE	5	2	1	5	3	0	0	0
4 ORO	17	HUNTINGT 390 EAST LYNN	3	1	0	3	2	0	0	0
4 ORO	17	HUNTINGT 392 SUMMERSVILLE	4	2	1	4	3	0	0	0
4 ORO	17	HUNTINGT 392 SUTTON	4	2	1	4	3	0	0	0
4 ORO	17	HUNTINGT 394 WINFIELD	1	0	0	1	0	0	0	0
4 GRO	17	HUNTINGT 406 MICHIGANVILLE	2	1	0	2	1	0	0	0
4 ORO	17	HUNTINGT 416 ALUM CREEK	2	1	0	2	1	0	0	0
4 ORO	18	LOUISVIL 90 CALES MILL	4	2	1	4	3	0	0	0
4 ORO	18	LOUISVIL 91 HUNTINGTON	3	1	0	3	2	0	0	0
4 ORO	18	LOUISVIL 92 MISSISSINEMA	4	1	0	4	3	0	0	0
4 ORO	18	LOUISVIL 93 MONROE	4	1	0	4	3	0	0	0
4 ORO	18	LOUISVIL 94 SALARONIE	3	1	0	3	2	0	0	0

INVENTORY OF DATA IN DAO FILE

DIVISION	DISTRICT	PROJECT	NUMBER	YEAR	NET	TOTAL	MEAN	MEAN	USGS	USGS
			ENTRIES	IMPD	DAREA	DAREA	DISCH	PREC	E/C	DISCH
4 ORD	18 LOUISVIL	95 C M HARDEN (MANSFIELD)	4		1	1	3	2	0	0
4 ORD	18 LOUISVIL	97 BROWNVILLE	3		1	2	1	0	0	0
3 CRO	18 LOUISVIL	120 BARREN RIVER	4		0	4	3	0	0	0
4 ORD	18 LOUISVIL	121 BUCKNAN	3		0	3	2	0	0	0
4 ORD	18 LOUISVIL	126 GREEN RIVER	3		0	3	2	0	0	0
4 ORD	18 LOUISVIL	126 NOLIN RIVER	3		0	3	2	0	0	0
4 ORD	18 LOUISVIL	129 ROUGH RIVER	4		2	0	2	2	0	0
4 ORD	18 LOUISVIL	134 CAVE RUN	2		0	2	1	0	0	0
4 ORD	18 LOUISVIL	260 WEST ORK	2		0	3	1	0	0	0
4 ORD	18 LOUISVIL	263 CLARENCE J BROWN	1		0	1	0	0	0	0
4 ORD	19 NASHVILL	119 BARKLEY	5		1	5	5	3	0	0
4 ORD	19 NASHVILL	122 CUMBERLAND (WOLF CREE	5		2	1	5	3	0	0
4 ORD	19 NASHVILL	227 CENTER HILL	3		0	3	2	0	0	0
3 CRO	19 NASHVILL	327 CHEATHAM	4		0	4	3	0	0	0
4 ORD	19 NASHVILL	338 J PERRY PRIEST	5		1	4	3	0	0	0
4 ORD	19 NASHVILL	342 OLD HICKORY	5		2	1	5	3	0	0
4 ORD	19 NASHVILL	343 DALE MOTT QW	5		2	1	5	3	0	0
6 LMND	20 ST LOUIS	81 CARLIE	5		2	1	5	3	1	0
6 LMND	20 ST LOUIS	87 SHE BYVILLE E	4		1	0	4	3	0	0
6 LMND	20 ST LOUIS	88 REED	4		0	4	3	0	0	0
6 LMVD	21 MEMPHIS	196 MAPAPELLO	5		2	1	5	3	1	0
6 LMND	22 VICKSBUR	14 DE GRAY	5		1	4	3	0	0	0
6 LMND	22 VICKSBUR	16 GREESON (MARRON)	5		0	3	2	0	0	0
6 LMND	22 VICKSBUR	19 DUACHITA (BLAKELY MT	4		1	0	4	3	0	0
6 LMND	22 VICKSBUR	188 ARKADULIA	5		2	1	5	3	0	0
6 LMND	22 VICKSBUR	189 ENID	5		2	1	5	3	0	0
6 LMND	22 VICKSBUR	190 GREICA	5		2	1	5	3	0	0
6 LMND	22 VICKSBUR	192 SARDIS	5		2	1	5	3	0	0
6 LMND	23 NEW ORL	138 WALLACE	2		2	1	2	0	0	0
6 LMND	23 NEW ORL	352 LAKE O' THE PINES(FE	6		2	5	3	1	0	0
6 LMND	23 NEW ORL	313 TEXARKANA (WRIGHT PAT	4		2	1	4	3	0	0
6 LMND	23 NEW ORL	413 CADDO	2		0	2	2	0	0	0
7 SWD	24 LITTLE R	11 BEAVER	5		1	4	3	0	0	0
7 SWD	24 LITTLE R	12 BLUE MOUNTAIN	4		0	4	3	0	0	0
7 SWD	24 LITTLE R	13 BULL JNOALS	4		1	0	4	3	0	0
7 SWD	24 LITTLE R	14 GREEN'S FERRY	4		1	0	4	3	0	0
7 SWD	24 LITTLE R	15 DARDENILLE	4		2	1	4	3	0	0
7 SWD	24 LITTLE R	21 HINEDO	5		2	1	5	3	0	0
7 SWD	24 LITTLE R	22 NORFOLK	5		2	1	5	3	0	0
7 SWD	24 LITTLE R	23 OZARK	3		1	0	3	2	0	0

INVENTORY OF DATA IN DAQ FILE

DIVISION	DISTRICT	PROJECT	ENTRIES	NUMBER	YEAR	NET	TOTAL	MEAN	MEAN	USGS
				IMD	DAREA	DAREA	DISCH	INFLOW	PREC	E/C
				5	5	5	5	5	5	DISCH
7 Snd	24 LITTLE R 193	CLEARWATER		5	1	1	1	4	3	1
7 Snd	24 LITTLE R 200	TABLE ROCK		5	1	1	1	4	3	1
7 Snd	25 TULSA	20 MILLCOOD		5	1	1	1	4	3	1
7 Snd	25 TULSA	102 COUNCIL GROVE		5	1	1	1	4	3	1
7 Snd	25 TULSA	103 ELK CITY		4	1	1	1	3	2	1
7 Snd	25 TULSA	104 FALL RIVER		5	1	1	1	4	3	1
7 Snd	25 TULSA	105 JOHN REDMOND		5	2	1	1	5	3	1
7 Snd	25 TULSA	107 MARION		5	1	1	1	4	3	1
7 Snd	25 TULSA	112 TORONTO		5	2	1	1	5	3	1
7 Snd	25 TULSA	264 BROKEN BOW		4	1	1	1	3	2	1
7 Snd	25 TULSA	265 CANYON		4	1	1	1	4	2	1
7 Snd	25 TULSA	266 CHOUTEAU		0	0	0	0	0	0	0
7 Snd	25 TULSA	267 EURAULA		5	2	1	1	5	3	1
7 Snd	25 TULSA	268 FORT GIBSON		4	1	1	1	3	2	1
7 Snd	25 TULSA	269 FORT SUPPLY		5	1	1	1	5	3	1
7 Snd	25 TULSA	270 GREAT SALT PLAINS		4	2	1	1	4	2	1
7 Snd	25 TULSA	271 HEBURN		4	2	1	1	4	2	1
7 Snd	25 TULSA	272 HUMAH		4	2	1	1	4	2	1
7 Snd	25 TULSA	273 KEYSTONE		6	2	2	2	6	3	1
7 Snd	25 TULSA	274 NEW GRAHAM		0	0	0	0	0	0	0
7 Snd	25 TULSA	275 Oologah		5	1	1	1	4	3	1
7 Snd	25 TULSA	276 PINE CREEK		4	1	1	1	3	2	1
7 Snd	25 TULSA	277 ROBERT S KERR		2	1	0	0	2	1	0
7 Snd	25 TULSA	278 TECUMSEH FERRY		5	1	0	0	4	3	1
7 Snd	25 TULSA	279 W D MAUD		0	0	0	0	0	0	0
7 Snd	25 TULSA	280 WEBERS FALLS		2	1	1	1	2	1	0
7 Snd	25 TULSA	281 WISTER		5	2	1	1	5	3	1
7 Snd	25 TULSA	282 CLAYTON		1	0	0	0	0	0	0
7 Snd	25 TULSA	283 KAN		2	1	0	0	1	0	0
7 Snd	25 TULSA	284 CGAN		2	0	0	0	1	0	0
7 Snd	25 TULSA	285 HUGO		3	1	0	0	2	1	0
7 Snd	25 TULSA	286 OPTIMA		3	0	0	0	1	0	0
7 Snd	25 TULSA	287 MARICA		3	0	0	0	2	1	0
7 Snd	25 TULSA	348 TEOMA (DENNISON)		5	2	1	1	5	3	1
7 Snd	25 TULSA	357 PAT MAYSE		4	1	1	1	3	2	1
7 Snd	25 TULSA	370 KEMP		4	1	1	1	2	1	0
7 Snd	25 TULSA	402 GILLEHAM		3	1	1	1	2	1	0
7 Snd	26 FORT	WCR 344 BIRD ELL		4	1	1	1	3	2	0
7 Snd	26 FORT	WCR 345 BETON BELL		5	2	1	1	5	3	1
7 Snd	26 FORT	WCR 346 BEPROOF		3	1	0	0	2	1	0
7 Snd	26 FORT	WCR 347 CEDRON		4	1	0	0	4	3	1
7 Snd	26 FORT	WCR 349 CRAF VINE		3	1	0	0	3	2	0
7 Snd	26 FORT	WCR 351 HORSES CREEK		4	2	1	1	4	2	0
7 Snd	26 FORT	WCR 354 LAVON		5	2	1	1	5	3	1

INVENTORY OF DATA IN DAQ FILE

NUMBER	YEAR	NET	TOTAL	MEAN	MEAN	MEAN	USGS	USGS
ENTRIES	IMD	DAREA	DAREA	DISCH	INFLW	PREC	E/C	DISCH
7 SMD	26	FORT WOR	355	LEWISVILLE/GARZA (LIT)	5	2	5	3
7 SMD	26	FORT WOR	356	NAVARRO MILLS	3	1	0	0
7 SMD	26	FORT WOR	358	PROCTOR	3	0	3	2
7 SMD	26	FORT WOR	359	SAM RAYBURN INC (GEE)	4	0	4	3
7 SMD	26	FORT WOR	360	O.C. FISHER (SAN ANGE	4	1	0	0
7 SMD	26	FORT WOR	361	SOMERVILLE	4	0	4	3
7 SMD	26	FORT WOR	362	STILLHOUSE HOLLOW (LA)	4	0	4	3
7 SMD	26	FORT WOR	363	WACO	4	2	1	2
7 SMD	26	FORT WOR	364	WHITENEY	5	2	1	5
7 SMD	26	FORT WOR	371	B.A. STEINHAGEN (TOWN	3	2	0	3
7 SMD	28	ALBUQUER	65	JOHN MARTIN (HASTY)	3	2	1	1
7 SMD	28	ALBUQUER	218	ABIQUIU	3	1	3	1
7 SMD	28	ALBUQUER	219	CONCHAS	5	2	1	5
7 SMD	28	ALBUQUER	407	TRINIDAD	3	1	0	3
8 MRD	29	KANSAS C	100	RATHBUN	5	1	1	4
8 MRD	29	KANSAS C	106	KAHOKOLIS	5	2	1	3
8 MRD	29	KANSAS C	108	MILFORD	4	1	0	4
8 MRD	29	KANSAS C	109	MELVERN	4	1	0	3
8 MRD	29	KANSAS C	119	PERRY	4	0	0	3
8 MRD	29	KANSAS C	121	MONONA	4	0	0	4
8 MRD	29	KANSAS C	113	TUTLE CREEK	5	1	0	5
8 MRD	29	KANSAS C	114	WILSON	4	1	0	4
8 MRD	29	KANSAS C	194	POURIE DE TERRE	4	0	0	3
8 MRD	29	KANSAS C	195	STOCKTON	4	0	0	4
8 MRD	29	KANSAS C	207	HARLAN COUNTY	5	1	0	5
8 MRD	30	OMAHA	64	CHERY CREEK	4	1	0	4
8 MRD	30	OMAHA	203	FOR A PECK	4	0	0	2
8 MRD	30	OMAHA	208	OLIVE CREEK	1	0	0	0
8 MRD	30	OMAHA	209	LUESTER	1	0	0	0
8 MRD	30	OMAHA	210	WAGON TRAIN	1	0	0	0
8 MRD	30	OMAHA	211	STAGEDCOACH	1	0	0	0
8 MRD	30	OMAHA	212	YANKEE HILL	1	0	0	0
8 MRD	30	OMAHA	213	CONESTOGA	1	0	0	0
8 MRD	30	OMAHA	214	TWIN	0	0	0	0
8 MRD	30	OMAHA	215	YANKEE	2	0	0	0
8 MRD	30	OMAHA	216	HOLMES PARK	0	0	0	0
8 MRD	30	OMAHA	217	BRANCHED OAK	2	0	0	0
8 MRD	30	OMAHA	224	DOMINHALEY	3	0	1	3
8 MRD	30	OMAHA	235	SAN ANAKA (GARRISON)	5	1	0	5
8 MRD	30	OMAHA	331	SHARPE (BIG BEND)	3	1	0	2
8 MRD	30	OMAHA	332	COLD BROOK	1	0	0	0
8 MRD	30	OMAHA	334	FRANCIS CASE (FT. RAN	4	1	0	3
8 MRD	335	LEWIS AND CLARK (GA	4	1	0	0	3	2

INVENTORY OF DATA IN DAQ FILE

DIVISION	DISTRICT	PROJECT	ENTRIES	YEAR		NET	TOTAL	MEAN	USGS	USCS
				INFO	DAREA					
6 MRD	30 OMAHA	336 DAHE	3	1	0	3	2	0	0	1
6 MRD	30 OMAHA	415 CHATFIELD	2	1	0	2	1	0	0	1
9 NPD	31 WALLA WA	77 DODRSKAK	5	1	1	4	2	0	0	1
9 NPD	31 WALLA WA	78 LUCKY PEAK	4	1	0	4	2	0	0	1
9 NPD	31 WALLA WA	79 RIRIE	3	0	1	3	1	0	0	1
9 NPD	31 WALLA WA	379 ICE HARBOR	3	1	6	3	2	0	0	1
9 NPD	32 SEATTLE	80 ALBENI FALLS (PEND OREILLE)	0	1	0	3	2	0	0	1
9 NPD	32 SEATTLE	304 KOO-ANUSA (LIBBY)	4	1	0	3	2	0	0	1
9 NPD	32 SEATTLE	377 RUFUS WOODS (CHIEF J)	3	1	0	3	2	0	0	1
9 NPD	32 SEATTLE	384 MUD MOUNTAIN	3	1	0	2	1	0	0	1
9 NPD	32 SEATTLE	385 WINGCHEE	3	1	0	2	1	0	0	1
9 NPD	32 SEATTLE	386 HOWARD A HANSON	3	1	1	2	1	0	0	1
9 NPD	33 PORTLAND	288 BLUE RIVER	3	1	0	3	2	0	0	1
9 NPD	33 PORTLAND	289 BONKLEVILLE	2	0	1	2	0	0	0	1
9 NPD	33 PORTLAND	290 COTTAGE GROVE	4	2	1	4	2	1	0	1
9 NPD	33 PORTLAND	291 COUGAR	3	1	0	3	2	0	0	1
9 NPD	33 PORTLAND	292 CELULLO (DALLES)	2	0	1	2	1	0	0	1
9 NPD	33 PORTLAND	293 DEPORT	4	1	1	3	2	1	0	1
9 NPD	33 PORTLAND	294 DEXTER	3	1	1	2	1	0	0	1
9 NPD	33 PORTLAND	295 DORENA	4	2	1	4	2	1	0	1
9 NPD	33 PORTLAND	296 FALL CREEK	4	1	1	3	2	0	0	1
9 NPD	33 PORTLAND	297 FERN RIDGE	4	1	1	3	2	0	0	1
9 NPD	33 PORTLAND	298 FOSTER	4	1	1	3	2	0	0	1
9 NPD	33 PORTLAND	299 GREEN PETER	4	1	1	3	2	0	0	1
9 NPD	33 PORTLAND	300 HILLS CREEK	4	1	1	3	2	0	0	1
9 NPD	33 PORTLAND	301 JOHN DAY (UMATILLA)	1	0	0	1	0	0	0	1
9 NPD	33 PORTLAND	302 LOOKOUT POINT	3	1	0	3	2	0	0	1
9 NPD	33 PORTLAND	304 LOST CREEK	1	1	0	2	1	0	0	1
9 NPD	33 PORTLAND	305 BIG CLIFF	1	0	1	0	0	0	0	1
10 SEP	34 SACRAMEN	24 BLACK BUTTE	4	2	1	4	2	1	0	1
10 SEP	34 SACRAMEN	26 ENGLEBRIGHT	3	1	0	2	0	0	0	1
10 SPD	34 SACRAMEN	23 ISABELLA	4	2	1	4	2	1	0	1
10 SPD	34 SACRAMEN	30 MARTIS CREEK	2	1	0	2	1	0	0	1
10 SPD	34 SACRAMEN	32 RIM HOGGS	3	1	0	3	2	0	0	1
10 SPD	34 SACRAMEN	33 PINE FLAT	4	2	1	4	2	1	0	1
10 SPD	34 SACRAMEN	36 SUCCESS	3	2	1	3	2	1	0	1
10 SPD	34 SACRAMEN	37 CREAM (TERMINUS)	3	2	1	3	2	1	0	1
10 SPD	34 SACRAMEN	41 FOLSOM	2	1	0	2	1	0	0	1
10 SPD	34 SACRAMEN	43 NEW BULLARDS BAR	3	2	1	3	2	1	0	1
10 SPD	34 SACRAMEN	44 CANACHE	2	1	0	2	1	0	0	1
10 SPD	34 SACRAMEN	47 CHERRY VALLEY	3	1	0	2	1	0	0	1
10 SPD	34 SACRAMEN	48 NEW DUN PEDRO	3	1	0	3	2	0	0	1

INVENTORY OF DATA IN DAQ FILE

DIVISION	DISTRICT	PROJECT	NUMBER ENTRIES	YEAR		TOTAL DARLA	MEAN DARLA	MEAN DISCH	MEAN INFLON	MEAN PREC	USGS E/C	USGS DISCH
				IMPD	DARLA							
10 SPD	34 SACRAMEN	51 MCCLURE (NEW EXCHEQU	3	2	1	3	1	0	0	0	0	1
10 SPD	34 SACRAMEN	54 MILLERTON (FRIANT)	2	1	0	2	1	0	0	0	0	1
10 SPD	35 SAN FRAN	29 MENOCINO	5	1	1	4	3	0	0	0	0	1
10 SPD	35 SAN FRAN	39 SANTA MARGARITA (SAL	5	2	1	5	3	1	1	0	0	1
10 SPD	36 LOS ANGE	9 ALARD	2	1	1	1	0	0	0	0	0	1
10 SFD	36 LOS ANGE	27 HANSEN	1	1	1	0	1	0	1	0	0	0

INVENTORY OF DATA IN DAO FILE
*** DISTRICT TOTALS ***

DISTRICT	TOTAL PROJ ENTRIES	YEAR	NET DATA	TOTAL DAREA	MEAN DISCH	MEAN INFLOW	MEAN PREC	USGS E/C	USGS DISCH
1 NEW ENGLAND	22	75	23	14	62	18	0	0	21 17
2 NEW YORK	3	11	3	3	8	5	0	0	3 3
3 PHILADELPHIA	3	12	3	4	8	5	0	0	3 3
4 BALTIMORE	9	25	8	6	20	12	1	1	7 7
5 NORFOLK	0	0	0	0	0	0	0	0	0 0
6 WILMINGTON	3	10	4	3	9	4	2	2	2 2
7 CHARLESTON	1	4	2	1	4	2	1	1	1 1
8 SAVANNAH	2	16	2	1	10	6	0	0	2 2
9 JACKSONVILLE	1	3	1	0	3	2	0	0	1 1
10 MOBILE	17	51	10	11	46	26	0	0	13 14
11 BUFFALO	1	3	2	1	3	1	0	0	0 0
12 DETROIT	0	0	0	0	0	0	0	0	0 0
13 CHICAGO	0	0	0	0	0	0	0	0	0 0
14 ROC ISLAND	2	9	3	1	9	5	0	0	0 0
15 ST PAUL	13	39	15	5	37	23	3	3	11 11
16 PITTSBURG	14	53	19	11	50	28	8	8	14 14
17 HARRINGTON	28	99	37	13	97	58	12	12	27 25
18 LOUISVILLE	15	48	18	5	46	29	3	3	15 14
19 NASHVILLE	7	32	10	5	31	20	3	3	7 7
20 ST LOUIS	3	13	4	1	13	9	1	1	3 3
21 MEMPHIS	1	5	2	1	5	3	1	1	1 1
22 LICKSBURG	7	32	11	5	31	20	4	4	7 7
23 NEW ORLEANS	4	14	6	4	13	6	3	3	2 2
24 LITTLE ROCK	10	44	13	6	41	28	3	2	10 10
25 TULSA	35	126	38	20	109	66	12	9	28 28
26 FGRI NORTH	17	67	24	7	66	42	6	6	17 17
27 GALVESTON	0	0	0	0	0	0	0	0	0 0
28 ALBUQUERQUE	4	14	7	3	14	7	3	2	4 5
29 PHOENIX CITY	11	48	13	5	46	32	2	0	11 11
30 GRAND CAY	20	45	10	16	31	20	1	0	9 8
31 WALLA WALLA	4	15	3	2	14	7	0	0	3 4
32 SEATTLE	6	19	6	4	15	9	0	0	5 6
33 PORTLAND	17	51	15	9	44	26	2	2	12 14
34 SACRAMENTO	15	43	22	6	42	21	5	1	15 15
35 SAN FRANCISC	2	10	3	2	9	6	1	1	2 2
36 LOS ANGELES	2	3	2	2	2	1	0	0	0 0
*** TOTALS ***	299	1033	339	108	938	546	88	67	259 258

INVENTORY OF DATA IN DAO FILE
*** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DISTRICT ***

DISTRICT	TOTAL PROJ ENTRIES	YEAR	NET INPD	TOTAL DAREA	MEAN DAREA	MEAN DISCH	USGS PREC	USGS INFLOW	USGS E/C	USGS DISCH
1 NEW ENGLAND	22	22	14	22	1.0	18	0	0	21	17
-- 2 NEW YORK	3	3	3	3	1.0	3	0	0	3	3
-- 3 PHILADELPHIA	3	3	3	3	1.0	3	0	0	3	3
-- 4 BALTIMORE	6	9	6	8	1.0	8	1	1	7	7
-- 5 NORFOLK	0	0	0	0	0	0	0	0	0	0
-- 6 WILMINGTON	3	3	2	3	2	2	2	2	2	2
-- 7 CHARLESTON	1	1	1	1	1	1	1	1	1	1
-- 8 SAVANNAH	2	2	2	2	1	2	0	0	2	2
-- 9 JACKSONVILLE	1	1	1	0	1	0	0	0	1	1
-- 10 MOBILE	17	17	10	10	1.0	15	0	0	13	14
-- 11 BUFFALO	1	1	1	1	1	0	0	0	1	1
-- 12 DETROIT	0	0	0	0	0	0	0	0	0	0
-- 13 CHICAGO	0	0	0	0	0	0	0	0	0	0
-- 14 ROCK ISLAND	2	2	1	2	1	2	1	1	2	2
-- 15 ST PAUL	13	12	5	12	1.2	3	3	3	11	11
-- 16 PITTSBURG	14	14	14	11	1.4	14	8	8	14	14
-- 17 HUNTINGTON	28	28	27	13	2.8	27	12	12	27	25
-- 18 LOUISVILLE	15	15	15	5	15	14	3	3	15	14
-- 19 NASHVILLE	7	7	7	5	1.0	7	3	3	7	7
-- 20 ST LOUIS	3	3	1	3	1	3	1	1	3	3
-- 21 MEMPHIS	1	1	1	1	1	1	1	1	1	1
-- 22 VICKSBURG	7	7	5	7	1.0	7	4	4	7	7
-- 23 NEW ORLEANS	4	4	3	3	1.0	3	3	3	2	2
-- 24 LITTLE ROCK	10	10	6	10	1.0	10	3	3	10	10
-- 25 TULSA	35	32	28	29	3.2	31	20	12	28	28
-- 26 FORT WORTH	17	17	7	7	1.7	17	6	7	17	17
-- 27 GALVESTON	0	0	0	3	0	0	0	0	0	0
-- 28 ALBUQUERQUE	4	4	3	4	1.0	4	3	2	4	4
-- 29 KANSAS CITY	11	11	5	11	1.1	2	0	1	11	11
-- 30 ORIHA	20	9	16	11	1.1	1	0	9	8	8
-- 31 WALLA WALLA	4	4	3	4	1.0	4	0	0	3	4
-- 32 SEATTLE	6	6	6	4	6	6	0	0	5	6
-- 33 PORTLAND	17	17	13	9	1.6	13	2	2	12	14
-- 34 SACRAMENTO	15	15	6	15	1.5	5	1	1	15	15
-- 35 SAN FRANCISC	2	2	2	2	1	2	1	1	2	2
-- 36 LOS ANGELES	2	2	2	2	1	1	1	1	0	0
-- TOTALS	299	295	264	184	282	269	80	67	259	257

Table A2

Inventory of RESTER.MORPHO File

TALLY OF DATA IN MORPHO FILE

DIVISION	DISTRICT	PROJECT	N	MIN ELEV	MAX ELEV	N	PODCODES	DUTY CODES	N	LENGTH	N	WIDTH	N	SHORE
			ELEV	ELEV	AREA VOL	CODES	CODES	CODES	CODES	CODES	CODES	CODES	CODES	CODES
1 NED	1 NEW ENGL	142 BUFFAVILLE	2	493	524	2	2	2	1	1	1	1	1	1
1 NED	1 NEW ENGL	143 EAST BRINFIELD	4	619	653	4	4	2	1	1	1	1	1	1
1 NED	1 NEW ENGL	147 LITTLEVILLE	10	432	576	10	10	10	10	10	10	10	10	10
1 NED	1 NEW ENGL	148 TULLY	15	625	668	15	15	15	15	15	15	15	15	15
1 NED	1 NEW ENGL	150 WESTVILLE	8	515	572	8	8	8	8	8	8	8	8	8
1 NED	1 NEW ENGL	151 BLACK ROCK	8	410	520	8	8	8	8	8	8	8	8	8
1 NED	1 NEW ENGL	152 COLEBROOK RIVER	12	567	761	12	12	12	12	12	12	12	12	12
1 NED	1 NEW ENGL	155 HANCOCK BROOK	14	454	484	14	14	14	14	14	14	14	14	14
1 NED	1 NEW ENGL	156 HOP BROOK	9	292	364	9	9	9	9	9	9	9	9	9
1 NED	1 NEW ENGL	158 MANSFIELD HOLLOW	16	195	257	16	16	16	16	16	16	16	16	16
1 NED	1 NEW ENGL	159 NORTHFIELD BROOK	8	480	576	8	8	8	8	8	8	8	8	8
1 NED	1 NEW ENGL	162 WEST THOMPSON	8	292	342	8	8	8	8	8	8	8	8	8
1 NED	1 NEW ENGL	164 EDWARD McDOWELL	15	904	967	14	14	14	14	14	14	14	14	14
1 NED	1 NEW ENGL	165 EVERETT	16	325	418	16	16	16	16	16	16	16	16	16
1 NED	1 NEW ENGL	166 FRANKLIN FALLS	15	300	389	15	15	15	15	15	15	15	15	15
1 NED	1 NEW ENGL	167 HOPKINTON	6	370	416	6	6	6	6	6	6	6	6	6
1 NED	1 NEW ENGL	168 OTTER BROOK	13	670	791	13	13	13	13	13	13	13	13	13
1 NED	1 NEW ENGL	169 SUR MOUNTAIN	8	485	550	8	8	8	8	8	8	8	8	8
1 NED	1 NEW ENGL	170 BALL MOUNTAIN	10	806	1017	10	10	10	10	10	10	10	10	10
1 NED	1 NEW ENGL	172 NORTH HARTLAND	9	390	545	9	9	9	9	9	9	9	9	9
1 NED	1 NEW ENGL	173 NORTH SPRINGFIELD	7	450	546	7	7	7	7	7	7	7	7	7
1 NED	1 NEW ENGL	174 TOWNSEND	8	457	553	8	8	8	8	8	8	8	8	8
2 NAD	2 NEW YORK	171 EAST BARRE	5	1125	1185	2	2	2	2	2	2	2	2	2
2 NAD	2 NEW YORK	176 WATERBURY	24	500	692	4	4	4	4	4	4	4	4	4
2 NAD	2 NEW YORK	177 WRIGHTSVILLE	8	612	715	3	4	4	4	4	4	4	4	4
2 NAD	3 PHILADEL	307 BELTYVILLE	18	501	672	16	16	16	16	16	16	16	16	16
2 NAD	3 PHILADEL	313 FRANCIS E. WALTER	23	1250	1476	23	23	23	23	23	23	23	23	23
2 NAD	3 PHILADEL	316 PROMPTON	13	1090	1205	10	12	12	12	12	12	12	12	12
2 NAD	4 BALTIMOR	227 ALMOND	6	1229	1300	4	5	5	5	5	5	5	5	5
2 NAD	4 BALTIMOR	229 WHITNEY POINT	8	950	1025	5	6	6	6	6	6	6	6	6
2 NAD	4 BALTIMOR	306 ALVIN R BUSH (KETTLE	5	810	937	3	4	4	4	4	4	4	4	4
2 NAD	4 BALTIMOR	310 CURNEWSVILLE	13	1126	1226	10	13	13	13	13	13	13	13	13
2 NAD	4 BALTIMOR	312 F. SAYERS (BLANCHARD	10	580	658	8	8	8	8	8	8	8	8	8
2 NAD	4 BALTIMOR	320 RAYSTOWN	14	600	826	12	12	12	12	12	12	12	12	12
2 NAD	4 BALTIMOR	329 STILLWATER	5	1568	1621	3	5	5	5	5	5	5	5	5
2 NAD	4 BALTIMOR	398 BLOOMINGTON	12	1240	1509	12	12	12	12	12	12	12	12	12
2 NAD	4 BALTIMOR	401 SAVAGE	4	1313	1489	2	2	2	2	2	2	2	2	2
3 SAO	6 WILMINGTON	233 EVERETT JORDAN (NE	18	154	260	18	18	18	18	18	18	18	18	18
3 SAO	6 WILMINGTON	372 JOHN H KERR	24	193	332	21	23	23	23	23	23	23	23	23
3 SAO	6 WILMINGTON	375 PHIL POTT	28	805	916	26	26	26	26	26	26	26	26	26
3 SAO	7 CHARLES	232 W KERR SCOTT	11	970	1108	10	10	10	10	10	10	10	10	10

TALLY OF DATA IN NORPHO FILE

DIVISION	DISTRICT	PROJECT	N ELEV	MIN ELEV	MAX ELEV	N AREA	N VOL	POOL CODES	OUTLET N	N LENGTH	N WIDTH	N SHORE
3 SAD	8 SAVANNAH	74 CLASH MILL	21	190	346	19	20	5	4	5	1	1
3 SAD	8 SAVANNAH	330 HARWELL	21	475	674	19	20	5	3	4	1	1
3 SAD	9 JACKSON	66 OCKAWWA (RODANI)	14	0	23	12	12	4	0	-	-	-
3 SAD	10 MOBILE	1 CLATBURN	15	2	50	15	15	1	2	1	0	1
3 SAD	10 MOBILE	2 COFFEEVILLE (JACKSON	6	6	34	2	2	1	2	0	0	0
3 SAD	10 MOBILE	3 HOLT	9	115	202	9	9	2	0	0	0	0
3 SAD	10 MOBILE	4 JONES BLUFF	15	64	140	15	15	1	2	0	0	0
3 SAD	10 MOBILE	5 DEPOLLIS	1	73	73	1	1	0	0	0	0	0
3 SAD	10 MCSCILLE	7 WARRIOR	2	75	95	2	1	0	0	0	0	0
3 SAD	10 MOBILE	6 MILLERS FERRY	15	17	100	15	15	1	2	0	0	0
3 SAD	10 MOBILE	69 ALLATOONA	13	700	961	11	12	5	0	0	0	0
3 SAD	10 MOBILE	70 GEORGE W ANDREWS	15	62	108	15	15	1	1	0	0	0
3 SAD	10 MOBILE	71 SLAPPOLE (WOODRUFF)	17	44	79	15	17	3	0	0	0	0
3 SAD	10 MOBILE	72 WALTER F GEORGE (EFU)	16	100	200	14	16	5	0	0	0	0
3 SAD	10 MOBILE	73 WEST POINT	30	560	645	28	29	0	0	0	0	0
3 SAD	10 MOBILE	75 CARTERS	10	660	1099	8	10	6	0	0	0	0
3 SAD	10 MOBILE	76 SIDNEY LANIER	18	920	1086	15	18	5	0	0	0	0
3 SAD	10 MOBILE	191 OMAHIBEE	2	342	342	1	1	0	0	0	0	0
3 SAD	10 MOBILE	405 GAHESVILLE L/D	2	75	109	1	1	0	0	0	0	0
3 SAD	10 MOBILE	411 BANHEAD	13	200	270	13	13	0	0	0	0	0
5 NCD	11 BUFFALO	226 MT MORRIS	14	577	790	3	12	7	1	1	0	0
5 NCD	14 ROCK ISL	98 CORALVILLE	11	652	743	10	10	5	0	3	1	2
5 NCD	14 ROCK ISL	99 RED ROCK	12	690	780	12	12	4	0	3	2	2
5 NCD	15 ST PAUL	178 GULL	3	1190	1196	1	1	0	0	0	0	0
5 NCD	15 ST PAUL	179 LAC GUL PARLE	15	923	948	14	15	1	2	0	0	0
5 NCD	15 ST PAUL	180 TRAVERSE	1	982	982	1	1	0	0	0	0	0
5 NCD	15 ST PAUL	181 LEECH	19	1145	1297	17	17	2	0	0	0	0
5 NCD	15 ST PAUL	182 ORWELL	7	1046	1080	2	2	0	0	0	0	0
5 NCD	15 ST PAUL	183 CROS	0	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	184 POKGAMA	3	1268	1277	1	1	2	0	0	0	0
5 NCD	15 ST PAUL	185 SANDY	13	132	1224	10	10	2	0	0	0	0
5 NCD	15 ST PAUL	186 MINNIGOSHISH	3	1288	1303	1	1	2	0	0	0	0
5 NCD	15 ST PAUL	187 PINE RIVER	3	117	1234	1	1	2	0	0	0	0
5 NCD	15 ST PAUL	236 HORNE	7	1048	1099	3	3	0	0	0	0	0
5 NCD	15 ST PAUL	237 ASHTABULA (BALDHILL)	8	1238	1279	3	5	7	1	1	0	0
5 NCD	15 ST PAUL	399 EAU CALLE	7	925	938	7	7	2	0	1	0	0
4 ORD	16 PITTSBUR	243 BERLIN	13	949	1045	11	11	5	2	3	1	1
4 ORD	16 PITTSBUR	252 MICHAEL J KIRIAN	9	930	993	9	9	4	1	2	0	0
4 ORD	16 PITTSBUR	254 MUQUILIO CREEK	18	869	907	15	16	3	1	2	0	0

TALLY OF DATA IN MORPHO FILE

DIVISION	DISTRICT	PROJECT	N	MOUNTAIN	MAX	N	POOL	DUTTY	N	N
			ELEV	ELEV	AREA	VOL	CODES	LENGTH	WIDTH	SHORE
-4 ORD	16	PITTSBUR 308 DONNAUGH RIVER	13	848	966	10	13	4	2	0
4 ORD	16	PITTSBUR 309 CROOKED CREEK	16	803	946	11	14	6	1	0
4 ORD	16	PITTSBUR 311 EAST BRANCH CLARION	24	1523	1707	21	9	1	3	1
-4 ORD	16	PITTSBUR 314 LOYALHANNA	13	869	983	10	11	5	1	0
4 ORD	16	PITTSBUR 315 MANHADING GREEK	15	1008	1170	11	13	6	2	0
4 ORD	16	PITTSBUR 316 SHENANDOAH RIVER	7	881	919	5	7	6	0	0
-4 ORD	16	PITTSBUR 318 TIDEISTA RIVER	15	1043	1197	12	14	5	1	2
4 GRD	16	PITTSBUR 319 YUGIIGGENY RIVER	17	1313	1497	14	16	6	0	0
4 ORD	16	PITTSBUR 322 WOODCOCK	14	1138	1227	10	11	7	0	3
-4 ORD	16	PITTSBUR 323 ALLEGHENY (KINZUA)	16	1195	1365	13	16	5	1	3
4 ORD	16	PITTSBUR 393 TYGERT	16	960	1190	13	15	7	1	3
-4 ORD	17	HUNTINGT 123 DEWEY	7	600	666	7	7	5	0	1
4 ORD	17	HUNTINGT 124 FISHTRAP	16	670	845	9	11	9	3	1
4 ORD	17	HUNTINGT 125 GRAYSON	16	585	710	11	11	8	1	1
-4 ORD	17	HUNTINGT 127 GREEFUP LTD	0	0	0	0	0	0	0	0
4 GRD	17	HUNTINGT 233 PAINT CREEK	14	748	860	12	12	4	1	2
4 ORD	17	HUNTINGT 241 ATWOOD	7	890	955	2	4	6	1	1
-4 CPS	17	HUNTINGT 242 BEACH CITY	8	931	998	3	6	5	1	1
4 ORD	17	HUNTINGT 245 CHARLES MILL	6	862	1025	3	5	5	6	1
-4 ORD	17	HUNTINGT 246 CLENDENING	5	862	911	1	1	4	2	0
4 ORD	17	HUNTINGT 247 DEER CREEK	12	785	845	10	10	4	1	0
4 ORD	17	HUNTINGT 248 DELAWARE	10	880	957	7	7	6	1	1
4 ORD	17	HUNTINGT 249 DILLON	12	700	818	7	7	7	1	1
-4 ORD	17	HUNTINGT 251 LEECHVILLE	5	528	978	1	4	4	2	0
4 ORD	17	HUNTINGT 255 PIEDMONT	5	882	925	1	4	4	2	0
4 ORD	17	HUNTINGT 256 PLEASANT HILL	7	972	1055	2	4	4	1	1
-4 ORD	17	HUNTINGT 257 SENECIALLE	7	10	857	7	6	5	6	1
4 CRD	17	HUNTINGT 258 TAPAN	6	870	909	1	4	4	2	0
4 GRD	17	HUNTINGT 259 BIRR DAK JENNINGS	9	689	765	5	6	7	1	0
-4 ORD	17	HUNTINGT 261 MILLS CREEK	5	733	779	1	4	3	1	0
4 ORD	17	HUNTINGT 373 JOHN W FLANNAGAN	12	1210	1420	10	12	2	1	1
4 ORD	17	HUNTINGT 374 NORTH FORK OF POUND	12	1550	1667	10	10	4	2	1
-4 ORD	17	HUNTINGT 395 ILUSTONE	11	1368	1535	8	10	7	1	1
4 GRD	17	HUNTINGT 390 EAST LYNN	4	653	701	1	3	2	0	0
-4 GRD	17	HUNTINGT 391 SUR'ERVILLE	8	1375	1711	6	8	2	0	0
4 ORD	17	HUNTINGT 392 SUTTON	12	816	1017	8	8	3	1	1
4 ORD	17	HUNTINGT 393 WINFIELD	0	0	0	0	0	0	0	0
4 ORD	17	HUNTINGT 403 WILCANVILLE	4	932	963	0	4	3	1	0
-4 ORD	17	HUNTINGT 416 ALICE CREEK	2	649	838	0	2	0	0	0
4 ORD	18	LOUISVIL 90 CAGLES MILL	7	563	730	2	4	6	1	1
-4 ORD	18	LOUISVIL 91 HUNTINGTON	12	775	798	10	11	5	2	0
4 ORD	18	LOUISVIL 92 MISSISSINNEA	13	665	779	11	11	5	2	1
4 ORD	18	LOUISVIL 93 MONONGAHELA	10	490	556	8	8	4	1	1
-4 ORD	18	LOUISVIL 94 SALANGHIE	14	684	793	12	12	5	1	1

TALLY OF DATA IN MORPHO FILE

DIVISION	DISTRICT	PROJECT	N	MIN	MAX	N	POOL	OUTLT	N	N
			ELEV	ELEV	AREA	VOL	CODES	LENGTH	WIDTH	SHORE
-1	ORD	18 LOUISVILL 95 C. M. HADDEN (MANSFIELD)	20	597	712	18	19	5	1	0
-4	ORD	18 LOUISVILL 97 BROOKVILLE	13	628	775	11	11	6	1	0
-4	ORD	18 LOUISVILL 120 BARREN RIVER	20	479	618	15	19	6	2	0
-3	ORD	18 LOUISVILL 121 BUCHHORN	12	715	840	9	6	0	0	0
-4	ORD	18 LOUISVILL 126 GREEN RIVER	14	590	713	12	12	5	0	1
-4	CRC	18 LOUISVILL 128 NOLIN RIVER	17	415	560	12	13	5	2	0
-1	ORD	18 LOUISVILL 129 FOULKH RIVER	12	430	554	8	8	6	1	1
-4	ORD	18 LOUISVILL 134 CAVE RUN	12	656	705	10	10	6	1	0
-4	ORD	18 LOUISVILL 260 WEST FORK OF MILL CK	7	636	736	2	5	0	0	1
-4	ORD	18 LOUISVILL 263 CLARENCE J BROWN	15	965	1023	13	13	6	1	0
-4	GRO	19 NASHVILLE 119 BARKLEY	17	280	375	16	16	6	2	0
-4	GRO	19 NASHVILLE 122 CURRERLAND (WOLF CREE)	19	540	773	16	16	8	2	1
-4	GRO	19 NASHVILLE 327 CENTER HILL	15	500	685	14	14	6	2	3
-4	GRO	19 NASHVILLE 328 CHEATHAM	19	345	400	17	17	4	2	0
-4	GRO	19 NASHVILLE 340 J PERCY PRIEST	15	405	504	15	11	5	2	0
-4	GRO	19 NASHVILLE 342 OLD HICKORY	15	385	455	12	11	7	3	1
-4	GRO	19 NASHVILLE 343 DALE HOLLOW	15	500	678	11	11	8	3	1
-6	LWD	20 ST LOUIS 81 CARLYLE	15	405	472	10	10	7	1	1
-6	LWD	20 ST LOUIS 87 SHELBVILLE	11	546	626	9	9	4	1	0
-6	LWD	20 ST LOUIS 85 RENO	10	379	411	8	9	4	1	0
-6	LWD	21 MEMPHIS 196 WAPPAPALLO	13	311	420	8	9	7	2	1
-6	LWD	22 VICKSBUR 14 DE GRAY	35	210	453	34	34	8	4	10
-6	LWD	22 VICKSBUR 19 GRESON (NARROWS)	23	396	586	23	23	8	2	11
-6	LWD	22 VICKSBUR 19 QUACHITA (BLAKELY MT)	26	380	616	24	24	8	2	12
-6	LWD	22 VICKSBUR 188 ARKBUTLA	18	189	264	16	16	9	7	9
-1	LWD	22 VICKSBUR 189 ENID	17	194	233	15	15	6	1	5
-6	LWD	22 VICKSBUR 190 GRENADA	15	160	236	13	13	8	2	4
-6	LWD	22 VICKSBUR 192 SARDIS	17	204	311	15	15	8	2	6
-6	LWD	23 NEW ORL 19 WALLACE	10	130	176	10	10	3	1	1
-6	LWD	23 NEW ORL 1 THE PINES FIE	15	185	277	10	10	7	2	1
-6	LWD	23 NEW ORL 1 KARKANA (WRIGHT PAT.)	11	180	296	7	7	2	1	1
-6	LWD	23 NEW ORL 11	13	160	184	13	13	0	0	0
-7	SWD	24 LITTLE R 11 BEAVER UNTAIN	13	913	1130	4	11	6	0	2
-7	SWD	24 LITTLE R 12 " OALS	12	354	422	8	10	5	2	3
-7	SWD	24 LITTLE R 13 " OALS	18	452	695	15	16	6	0	3
-7	SWD	24 LITTLE R 14 " FERRY	16	272	496	13	14	6	1	0
-7	SWD	24 LITTLE R 15 " LILLE	14	270	355	9	10	7	1	1
-7	SWD	24 LITTLE R 2 AIRROD	15	300	400	9	11	7	2	1
-7	SWD	24 LITTLE R 22 NORFOLK	16	372	520	10	12	7	2	1
-7	SWD	24 LITTLE R 23 OZARK	9	312	373	1	7	4	3	0

TALLY OF DATA IN MORPHO FILE

DIVISION	DISTRICT	PROJECT	N	MIN ELEV	MAX ELEV	N AREA	N VOL CODES	N POOL CODES	N DUTY LENGTH	N WIDTH	N SHORE
7 SMD	24 LITTLE R	193 CLEARMATER	13	460	666	10	10	4	1	0	0
7 SWD	24 LITTLE R	200 TABLE ROCK	16	695	932	11	12	6	2	0	0
7 SWD	25 TULSA	20 MILLWOOD	12	213	287	9	10	5	2	0	0
7 SWD	25 TULSA	102 COUNCIL GROVE	12	1224	1289	10	10	4	0	0	0
7 SWD	25 TULSA	103 ELK CITY	12	760	826	9	10	5	2	0	0
7 SWD	25 TULSA	104 FALL RIVER	10	917	988	6	8	5	1	0	0
7 SWD	25 TULSA	105 JOHN REDMOND	14	109	1082	11	11	6	2	0	0
7 SWD	25 TULSA	107 MARION	13	1308	1363	9	10	5	0	0	0
7 SWD	25 TULSA	112 TORONTO	12	862	946	9	9	6	1	0	0
7 SWD	25 TULSA	112 BROKEN BOW	14	424	628	12	12	6	1	0	0
7 SWD	25 TULSA	112 CANTON	12	1580	1648	8	9	5	2	0	0
7 SWD	25 TULSA	126 CHOUTEAU	14	480	530	14	14	0	0	0	0
7 SWD	25 TULSA	137 EUAULA	13	495	612	10	10	6	2	0	0
7 SWD	25 TULSA	168 FOR GIBSON	7	547	582	2	4	5	1	0	0
7 SWD	25 TULSA	269 FORT SUPPLY	12	1987	2060	6	8	5	1	0	0
7 SWD	25 TULSA	270 GREAT SALT PLAINS	11	1115	1169	7	7	5	1	0	0
7 SWD	25 TULSA	271 HEYBURN	13	730	807	9	9	5	2	0	0
7 SWD	25 TULSA	272 HULAH	13	686	780	8	8	6	2	0	0
7 SWD	25 TULSA	273 KEYSTONE	25	648	771	20	20	7	2	0	0
7 SWD	25 TULSA	274 NEWT GRAHAM	15	490	550	15	15	0	0	0	0
7 SWD	25 TULSA	275 OLOCWAH	8	592	661	2	6	5	1	0	0
7 SWD	25 TULSA	276 PINE CREEK	14	284	480	11	11	5	1	0	0
7 SWD	25 TULSA	277 ROBERT S KERR	8	412	472	7	7	2	0	0	0
7 SWD	25 TULSA	278 TENKILLER FERRY	8	594	667	4	6	6	0	0	0
7 SWD	25 TULSA	279 W D MAYO	13	390	414	13	12	0	0	0	0
7 SWD	25 TULSA	280 WEBBERS FALLS	16	520	616	16	16	0	0	0	0
7 SWD	25 TULSA	281 WILSTERS	14	438	524	11	10	5	2	0	0
7 SWD	25 TULSA	282 CLAYTON	10	530	611	10	10	3	1	0	0
7 SWD	25 TULSA	283 KAN	16	931	1070	14	14	3	1	0	0
7 SWD	25 TULSA	284 COPAN	12	670	732	12	12	3	1	0	0
7 SWD	25 TULSA	285 MUGO	13	360	438	11	11	5	0	0	0
7 SWD	25 TULSA	286 OPTIMA	7	2703	2773	7	7	4	0	0	0
7 SWD	25 TULSA	287 KAURIKA	9	890	970	9	9	3	0	0	0
7 SWD	25 TULSA	318 TEXMA (DENNISON)	15	510	670	10	12	7	1	0	0
7 SWD	25 TULSA	357 PAT HAGSE	10	993	477	0	10	3	0	0	0
7 SWD	25 TULSA	370 KEMP	13	1068	1183	0	10	7	2	0	0
7 SWD	25 TULSA	402 GILLHAM	15	430	586	10	13	7	1	0	0
7 SWD	26 FORT WOR	334 BARDWELL	11	380	460	8	8	6	2	0	0
7 SWD	26 FORT WOR	335 BELTON (BELL)	14	480	662	11	11	7	1	0	0
7 SWD	26 FORT WOR	346 BENPOOR	27	620	747	21	23	6	2	2	2
7 SWD	26 FORT WOR	347 CANYON	21	750	974	17	17	6	2	2	2
7 SWD	26 FORT WOR	349 GRAPEVINE	23	470	589	19	19	6	2	2	2
7 SWD	26 FORT WOR	351 HORSES CREEK	12	1854	1939	9	9	6	2	2	2
7 SWD	26 FORT WOR	354 LAVON	12	443	514	8	10	7	1	0	0

TALLY OF DATA IN MORPHU FILE

DIVISION	DISTRICT	PROJECT	MIN		MAX		N	POOL	OUTLT	N	N	N
			ELEV	ELEV	ELEV	ELEV						
- 7 SWD	- 26 FORT WDN	362 LEWISVILLE(CARZA LIT	17	465	560	14	15	6	2	1	1	1
- 7 SWD	- 26 FORT WDN	356 NAVARO MILLS	17	390	457	14	14	6	3	1	1	1
- 7 SWD	- 26 FORT WDN	358 PROCTOR MILLS	14	1120	131	10	10	5	2	1	1	1
- 7 SWD	- 26 FORT WDN	359 SAM RAYBURN (MC GEE	20	80	190	15	17	7	1	1	1	1
- 7 SWD	- 26 FORT WDN	360 O C FISHER ISAN ANGE	24	1840	1964	21	6	3	1	1	1	1
- 7 SWD	- 26 FORT WDN	361 SOUTHLVILLE	20	200	280	14	16	6	2	1	1	1
- 7 SWD	- 26 FORT WDN	362 STILLHOUSE HOLLOW(LA	16	498	698	15	15	7	1	1	1	1
- 7 SWD	- 26 FORT WDN	363 MACO	13	400	510	9	10	7	2	1	1	1
- 7 SWD	- 26 FORT WDN	364 WHITNEY	17	425	594	11	12	8	1	1	1	1
- 7 SWD	- 26 FORT WDN	371 B A STEINHAGEN (TOWN	11	50	95	6	6	7	1	1	1	0
- 7 SWD	- 28 ALBUQUERQUE	65 JOHN MARTIN (HASTY)	15	3165	3880	12	13	6	2	2	2	2
- 7 SWD	- 28 ALBUQUERQUE	218 ABQUIU	13	6060	6362	13	13	6	2	2	2	2
- 7 SWD	- 28 ALBUQUERQUE	219 CONCHAS	19	4071	4335	18	18	8	3	1	1	1
- 7 SWD	- 28 ALBUQUERQUE	407 TRINIDAD	19	6091	6291	18	18	7	2	1	1	1
- 8 MRD	- 29 KANSAS C	100 RATHBURN	20	855	946	15	16	7	2	1	1	1
- 8 MRD	- 29 KANSAS C	106 KANPOLIS	13	1430	1537	11	11	4	0	0	0	0
- 8 MRD	- 29 KANSAS C	106 MILLFORD	9	114	1176	6	8	3	1	2	2	2
- 8 MRD	- 29 KANSAS C	109 MELLERN	15	956	103	14	14	5	2	2	2	2
- 8 MRD	- 29 KANSAS C	110 PERRY	16	820	922	12	13	5	2	1	0	0
- 8 MRD	- 29 KANSAS C	111 POHOMA	16	942	1006	13	14	5	2	1	0	0
- 8 MRD	- 29 KANSAS C	113 TUTLE GREEK	23	1010	1140	21	22	5	1	2	2	2
- 8 MRD	- 29 KANSAS C	114 WILLSON	13	1430	1582	11	11	4	1	1	1	1
- 8 MRD	- 25 KANSAS C	134 POURTE DE TERRE	19	756	874	16	17	4	1	1	1	1
- 8 MRD	- 29 KANSAS C	135 STOCKTON	14	700	89	13	13	5	0	0	0	0
- 8 MRD	- 29 KANSAS C	207 HARLEN COUNTY	14	1890	1982	12	12	5	0	0	0	0
- 8 MRD	- 30 OMAHA	64 CHERY CREEK	21	5223	5640	17	18	3	1	1	0	0
- 8 MRD	- 30 OMAHA	203 FORT PECK	18	2030	2281	12	13	1	1	1	1	1
- 8 MRD	- 30 OMAHA	205 DILVE CREEK	14	1310	1367	14	12	3	1	0	0	0
- 8 MRD	- 30 OMAHA	209 BLUESTEM	17	1271	1332	16	16	3	1	0	0	0
- 8 MRD	- 30 OMAHA	210 WAGON TRAIN	15	1256	1309	15	15	3	0	0	0	0
- 8 MRD	- 30 OMAHA	211 STAGGROCK	16	1248	1291	15	15	3	0	0	0	0
- 8 MRD	- 30 OMAHA	212 YANKEE HILL	15	1219	1267	15	15	3	0	0	0	0
- 8 MRD	- 30 OMAHA	213 CONESTOGA	17	1197	1258	16	16	3	0	0	0	0
- 8 MRD	- 30 OMAHA	214 TAIN	17	1106	1361	16	16	3	0	0	0	0
- 8 MRD	- 30 OMAHA	215 PAWNEE	16	1206	1269	15	15	3	1	0	0	0
- 8 MRD	- 30 OMAHA	216 HOLMES PARK	17	1216	1269	16	16	3	1	0	0	0
- 8 MRD	- 30 OMAHA	217 BRANCHED OAK	17	1250	1317	16	16	3	1	0	0	0
- 8 MRD	- 30 OMAHA	234 BOWMAN-HALLEY	13	2715	2781	9	10	5	2	0	0	0
- 8 MRD	- 30 OMAHA	235 SAKAWAKA(GARRISCH)	24	1668	1860	16	18	4	3	1	2	2
- 8 MRD	- 30 OMAHA	331 SHAMPO BIG BEND	18	1340	1430	15	17	2	2	1	0	0
- 8 MRD	- 30 OMAHA	332 COLD BROOK	4	3778	3666	4	4	2	2	0	0	0
- 8 MRD	- 30 OMAHA	334 FRANCIS CASE (EL RAN	21	1227	1390	15	18	3	2	0	0	0
- 8 MRD	- 30 OMAHA	335 LEWIS AND CLARKE (GA	18	1160	1230	15	15	3	1	0	0	0

TALLY OF DATA IN NORPHO FILE

DIVISION	DISTRICT	PROJECT	N	MIN	MAX	N	POOL	QUILT	N	WIDTH	SHORE
			ELEV	ELEV	AREA	VOL	CODES	CODES	LENGTH	WIDTH	
B MHD	30 OMAHA	226 CAME	14	1420	1620	10	11	5	3	0	0
B MHD	30 OMAHA	415 CHAFFIELD	18	5350	5530	16	18	2	1	0	0
9 NPD	31 WALLA WA	77 DWORSHAK	10	970	1640	10	10	1	2	8	1
9 NPD	31 WALLA WA	78 LUCKY PEAK	20	2822	3080	12	18	5	2	6	1
9 NPD	31 WALLA WA	79 RIRIE	6	5023	5119	6	6	2	0	1	2
9 NPD	31 WALLA WA	79 ICE HARBOR	3	375	440	3	3	1	0	0	0
9 NPD	32 SEATTLE	80 ALBENI FALLS (PEID 0)	6	2046	2071	2	1	4	0	0	2
9 NPD	32 SEATTLE	204 KCO-KRUSA (LIBBY)	14	2110	2459	14	14	5	2	0	0
9 NPD	32 SEATTLE	377 RUFUS WOODS (CHIEF J)	20	785	926	16	20	2	2	4	1
9 NPD	32 SEATTLE	384 MUD MOUNTAIN	14	835	1241	2	12	4	2	0	0
9 NPD	32 SEATTLE	385 WYOCHEE	12	640	800	1	6	2	0	0	0
9 NPD	32 SEATTLE	386 HOWARD A HANSON	15	1032	1222	1	15	5	3	0	0
9 NPD	33 PORTLAND	288 BLUE RIVER	11	1102	1357	9	9	4	0	0	0
9 NPD	33 PORTLAND	289 BONNEVILLE	4	24	76	3	0	2	0	0	0
9 NPD	33 PORTLAND	290 COTTAGE GROVE	14	719	808	10	11	1	6	1	0
9 NPD	33 PORTLAND	291 COUGAR	10	1274	1699	7	9	5	1	0	0
9 NPD	33 PORTLAND	292 CELLO (DALLES)	3	121	160	2	0	0	0	0	0
9 NPD	33 PORTLAND	293 DETROIT	11	1200	1569	8	7	7	2	0	0
9 NPD	33 PORTLAND	294 DEXTER	2	690	695	2	1	1	0	0	0
9 NPD	33 PORTLAND	295 DORENA	12	735	896	9	9	6	1	0	0
9 NPD	33 PORTLAND	296 FALL CREEK	12	670	919	10	10	9	6	1	0
9 NPD	33 PORTLAND	297 FERN RIDGE	9	339	375	7	7	6	1	0	0
9 NPD	33 PORTLAND	298 FOSTER	14	525	641	11	11	5	0	0	0
9 NPD	33 PORTLAND	299 GREEN PETER	10	700	1015	7	7	6	1	0	0
9 NPD	33 PORTLAND	300 MILLIS CREEK	13	1245	1544	7	7	6	1	0	0
9 NPD	33 PORTLAND	301 JIGH DAY (UMATILLA)	2	210	265	1	0	1	0	0	0
9 NPD	33 PORTLAND	302 JOON-OUT POINT	23	888	934	6	9	4	3	0	0
9 NPD	33 PORTLAND	303 LOST CREEK	12	1550	1872	10	10	4	0	0	0
9 NPD	33 PORTLAND	305 BIG CLIFF	4	1162	1210	2	2	2	0	0	0
10 SPD	34 SACREMENT	24 BLACK BUTTE	13	381	515	9	9	5	1	0	0
10 SPD	34 SACREMENT	25 ENGINEERIGHT	17	295	550	17	17	0	0	0	0
10 SPD	34 SACREMENT	28 ISABELLA	14	2455	2634	11	11	5	1	0	0
10 SPD	34 SACREMENT	30 MARIS CREEK	9	5745	5803	2	9	4	2	0	0
10 SPD	34 SACREMENT	32 NEW HODAN	19	516	720	3	16	5	3	0	0
10 SPD	34 SACREMENT	33 PINE FLAT	19	560	910	14	14	6	1	0	0
10 SPD	34 SACREMENT	35 SUCCESS	13	538	692	10	10	6	1	0	0
10 SPD	34 SACREMENT	37 KAWAH (TERMINUS)	16	507	750	13	13	6	1	0	0
10 SPD	34 SACREMENT	41 FOLSOM	12	240	492	10	11	4	0	0	0
10 SPD	34 SACREMENT	43 NEW BULLARDS BAR	14	1600	1960	0	12	4	0	0	0
10 SPD	34 SACREMENT	44 CARACHE	10	104	216	0	8	3	0	0	0
10 SPD	34 SACREMENT	47 CHERRY VALLEY	15	4330	4700	13	14	2	0	0	0
10 SPD	34 SACREMENT	48 NEW DOM PEDRO	14	550	830	0	12	3	0	0	0

A2-8

TALLY OF DATA IN NORPHO FILE		N	MIN	MAX	N	N	POOL	OUTLT	N	N	N	N
DIVISION	PROJECT	ELEV	ELEV	ELEV	AREA	VOL	CODES	CODES	LENGTH	WIDTH	SHORE	
10 SPD	34 SACRAMEN	51 MCCLURE (NEW EXCHEQU	15	410	670	0	13	3	2	0	0	0
10 SPD	34 SACRAMEN	51 MILLERTON (FRIANT)	14	375	560	0	12	3	2	0	0	0
10 SPD	35 SAN FRAN	29 MENDOCINO	21	637	800	14	18	4	2	6	1	
10 SPD	35 SAN FRAN	39 SANTA MARGARITA (SAL	11	1190	1320	11	11	5	1	1	1	
10 SPD	36 LOS ANGE	9 ALAND	9	1040	1259	9	9	3	1	0	0	
10 SPD	36 LOS ANGE	27 HANSEN	8	990	1087	7	7	3	1	1	0	

A21

TABLE OF DATA IN NUMBER FILE
... DISTRICT TOTALS ...

DISTRICT	TOTAL	N	MIN	MAX	N	POOL	OUTLT	N	WDT	N	SURE
	PROJ	ELEV	ELEV	ELEV	AREA	VOL	CODES	LENGTH	WDT	N	
1 NEW ENGLAND	22	221	195	107	220	220	48	21	22	22	22
2 NEW YORK	3	37	500	1185	9	23	16	6	2	2	0
3 PHILADELPHIA	3	54	501	1474	42	53	15	3	3	1	2
4 BALTIMORE	9	77	580	1621	59	69	42	12	16	1	7
5 NORFOLK	0	0	0	0	0	0	0	0	0	0	0
6 WASHINGTON	3	70	154	1016	65	67	18	3	48	45	3
7 CHARLESTON	1	11	970	1108	10	10	4	-	-	1	1
8 SAVANNAH	2	42	150	674	38	40	10	7	9	2	1
9 JACKSONVILLE	1	14	0	23	12	12	4	0	1	1	1
10 MOBILE	17	199	2	1099	80	190	44	12	11	0	15
11 BUFFALO	14	577	14	790	3	12	7	1	1	1	1
12 DETROIT	0	0	0	0	3	0	0	0	0	0	0
13 CHICAGO	0	0	0	0	0	0	0	0	0	0	0
14 ROCK ISLAND	2	23	652	780	22	22	9	1	6	3	4
15 ST PAUL	13	89	923	1303	61	64	36	3	4	3	10
16 PITTSBURG	14	206	803	1707	165	189	79	13	32	8	9
17 HUNTINGTON	28	224	585	1711	121	121	125	28	19	12	20
18 LOUISVILLE	15	198	415	1023	153	165	64	17	3	3	16
19 NASHVILLE	7	115	280	773	101	96	44	16	12	3	13
20 ST LOUIS	3	36	379	626	27	28	15	3	1	1	2
21 MEMPHIS	1	13	311	420	6	9	7	2	1	1	1
22 VICKSBURG	7	151	160	616	140	140	55	15	53	68	17
23 NEW ORLEANS	4	49	1130	286	46	46	16	5	3	3	3
24 LITTLE ROCK	10	142	270	1130	90	113	58	21	3	3	17
25 TULSA	35	435	213	2779	335	359	156	35	13	12	27
26 FORT WORTH	17	292	50	1964	220	233	111	30	17	17	17
27 CAVESTON	0	0	0	0	0	0	0	0	0	0	0
28 ALBUQUERQUE	4	65	3765	6362	61	62	21	9	5	5	4
29 KANSAS CITY	11	172	750	1982	144	151	52	12	14	9	1
30 OMAHA	20	330	1160	5640	283	294	66	29	16	2	12
31 WALLA WALLA	4	39	376	5119	31	37	9	4	11	11	4
32 SEATTLE	6	81	640	2459	42	72	26	11	6	0	3
33 PORTLAND	17	166	24	1872	111	123	67	16	15	12	13
34 SACRAMENTO	15	214	104	5853	102	181	59	16	7	6	6
35 SAN FRANCISC	2	32	637	1320	25	27	9	3	7	2	2
36 LOS ANGELES	2	17	990	1259	16	16	6	2	1	1	0
TOTALS	299	3628	0	6362	2939	3290	1324	358	363	266	264

TALLY OF DATA IN NORPHO FILE
 *** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DISTRICT ***

DISTRICT	TOTAL	PROJ	N	MIN ELEV	MAX ELEV	AREA	VOL COUES	CODES LENGTH	POOL OUTLT N	WIDTH N	SHORE N
1 NEW ENGLAND	22		22	-22	22		22	21	22	22	22
2 NEW YORK	3		3	-3	3		3	3	2	2	0
3 PHILADELPHIA	3		3	-3	3		3	3	1	2	0
4 BALTIMORE	9		9	-9	9		9	9	9	1	5
5 NICKOLI	6		6	-6	6		6	6	6	0	0
6 WILMINGTON	3		3	-3	3		3	3	2	3	3
7 CHARLESTON	1		1	-1	1		1	1	1	1	1
8 SAVANNAH	2		2	-2	2		2	2	2	2	2
9 JACKSONVILLE	1		1	-1	1		1	1	1	1	1
10 MOBILE	17		17	-17	17		17	14	16	11	14
11 BUFFALO	1		1	-1	1		1	1	1	1	0
12 DETROIT	0		0	-0	0		0	0	0	0	0
13 CHICAGO	0		0	-0	0		0	0	0	0	0
14 ROCK ISLAND	2		2	-2	2		2	2	1	2	2
15 ST. PAUL	13		12	-12	12		12	11	3	4	10
16 PLTT. BORG	14		14	-14	14		14	14	11	14	8
17 MURKIN JCN	28		26	-26	24		25	23	17	12	26
18 LOUISVILLE	15		15	-15	15		15	15	14	3	14
19 NASHVILLE	7		7	-7	7		7	7	7	7	3
20 ST. LOUIS	3		3	-3	3		3	3	1	1	2
21 MEMPHIS	1		1	-1	1		1	1	1	1	1
22 VICKSBURG	7		7	-7	7		7	7	7	7	7
23 NEW ORLEANS	4		4	-4	4		4	3	3	3	3
24 LITTLE ROCK	10		10	-10	10		10	10	10	3	10
25 TULSA	35		35	-35	34		35	31	27	12	27
26 FORT WORTH	17		17	-17	17		17	17	17	17	16
27 GALVESTON	0		0	-0	0		0	0	0	0	0
28 ALBUQUERQUE	4		4	-4	4		4	4	4	4	4
29 KANSAS CITY	11		11	-11	11		11	11	9	10	6
30 OMAHA	20		20	-20	20		20	20	16	2	6
31 WALLA WALLA	4		4	-4	4		4	4	2	4	3
32 SEATTLE	6		6	-6	6		6	6	5	6	0
33 PORTLAND	17		17	-17	17		15	16	13	12	13
34 SACRAMENTO	15		15	-15	15		15	14	1	6	6
35 SAN FRANCISC	2		2	-2	2		2	2	2	2	2
36 LOS ANGELES	2		2	-2	2		2	2	1	1	0
TOTALS	299		296	-295	296		288	293	285	246	212
										146	227

Table A3
Inventory of USGS Hydrologic Data

DIVISION	DISTRICT	PROJECT	ELEVATION			ELEVATION			ELEVATION		
			STNS	MONTHS	DFIRST	STNS	MONTHS	DFIRST	STNS	MONTHS	DFIRST
1 NED	1 NEW	ENG 142 BUFFAVILLE	1	169	6410	7810	0	0	0	0	0
1 NED	1 NEW	ENG 143 EAST BRINFIELD	1	62	7210	7810	0	0	0	0	0
1 NED	1 NEW	ENG 147 LITTLEVILLE	1	160	6410	7901	0	0	0	0	0
1 NED	1 NEW ENGL	ENG 148 TULLY	1	157	6410	7810	0	0	0	0	0
1 NED	1 NEW ENGL	ENG 150 WESTVILLE	1	157	6410	7810	0	0	0	0	0
1 NED	1 NEW	ENG 151 BLACK ROCK	1	47	7410	7812	0	0	0	0	0
1 NED	1 NEW	ENG 152 COLEBROOK RIVER	0	0	0	0	0	0	0	0	0
1 NED	1 NEW	ENG 155 HANCOCK BROOK	0	0	0	0	0	0	0	0	0
1 NED	1 NEW	ENG 156 HOP BROOK	0	110	6910	7811	0	0	0	0	0
1 NED	1 NEW	ENG 158 MANSFIELD HOLLOW	1	172	6410	7901	0	0	0	0	0
1 NED	1 NEW	ENG 159 NORTHFIELD BROOK	0	0	0	0	0	0	0	0	0
1 NED	1 NEW	ENG 162 WEST THOMPSON	1	138	6606	7811	0	0	0	0	0
1 NED	1 NEW	ENG 164 EDWARD McDOWELL	1	159	6410	7812	0	0	0	0	0
1 NED	1 NEW	ENG 165 EVERETT	0	0	0	0	0	0	0	0	0
1 NED	1 NEW	ENG 166 FRANKLIN FALLS	0	0	0	0	0	0	0	0	0
1 NED	1 NEW	ENG 167 HOPKINTON	1	169	6410	7810	0	0	0	0	0
1 NED	1 NEW	ENG 168 OTTER BROOK	1	157	6410	7810	0	0	0	0	0
1 NED	1 NEW	ENG 169 SURRY MOUNTAIN	1	170	6410	7811	0	0	0	0	0
1 NED	1 NEW	ENG 170 BALL MOUNTAIN	1	159	6410	7901	0	0	0	0	0
1 NED	1 NEW	ENCL 172 NORTH HARTRIDGE	1	160	6410	7801	0	0	0	0	0
1 NED	1 NEW	ENCL 173 NORTH SPRINGFIELD	1	160	6410	7901	0	0	0	0	0
1 NED	1 NEW	ENCL 174 TOWNSHEND	1	159	6410	7812	0	0	0	0	0
2 NAD	2 NEW	NEW YORK 171 EAST BARRE	1	160	6410	7901	0	0	0	0	0
2 NAD	2 NEW	NEW YORK 176 WATERBURY	0	0	0	0	0	0	0	0	0
2 NAD	2 NEW	NEW YORK 177 WATKINSVILLE	1	160	6410	7901	0	0	0	0	0
2 NAD	3 PHILADEL	307 BELTZVILLE	1	138	6708	7901	0	0	0	0	0
2 NAD	3 PHILADEL	313 FRANCIS E. WALTER	1	171	6410	7901	0	0	0	0	0
2 NAD	3 PHILADEL	316 PHOMPTON	1	156	6410	7709	0	0	0	0	0
2 NAD	4 BALTIMOR	227 ALMOND	1	172	6410	7901	1	154	6612	7709	0
2 NAD	4 BALTIMOR	229 WHITNEY POINT	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	306 ALVIN R. BUSH (KETTLE	0	170	6410	7811	0	1	156	6610	7703
2 NAD	4 BALTIMOR	310 CURVINSVILLE	1	170	6410	7811	0	0	0	0	0
2 NAD	4 BALTIMOR	312 F. J. SAYERS (BLANCHARD	1	170	6410	7811	0	0	0	0	0
2 NAD	4 BALTIMOR	320 RAYSTOWN	1	111	6910	7901	0	0	0	0	0
2 NAD	4 BALTIMOR	325 STILLWATER	1	170	6410	7811	0	0	0	0	0
2 NAD	4 BALTIMOR	329 BLODINGTON	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	401 SAVAGE	1	172	6410	7902	0	0	0	0	0
3 SAD	6 WILMINGT	233 B. EVERETT JORDAN (NE	0	0	0	0	0	0	0	0	0
3 SAD	6 WILMINGT	372 JOHN H. KERR	1	169	6410	7810	0	0	0	0	0
3 SAD	6 WILMINGT	375 PHILPOTT	0	0	0	0	0	0	0	0	0
3 SAD	7 CHARLEST	232 W. KERR SCOTT	1	172	6410	7901	0	0	0	0	0
3 SAD	8 SAVANNAH	74 CLARK HILL	2	173	6410	7812	1	84	7110	7709	0
3 SAD	8 SAVANNAH	330 HARTWELL	2	175	6410	7812	1	84	7110	7709	0
3 SAD	9 JACKSON	66 OCKLAHOMA RODMAN	1	120	6810	7809	1	99	6607	7709	0

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA

DIVISION	DISTRICT	PROJECT	ELEVATION	FLOW	STNS	MONTHS	FIRST	LAST	STNS	MONTHS	FIRST	LAST	CONTENTS
3 SAD	10 MOBILE	1 CLABORNE	72	7510	7809	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	2 COFFEEVILLE (JACKSON)	156	6410	7809	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	3 HOLT	24	7610	7809	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	4 JONES BLUFF	0	0	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	5 DEMOPOLIS	169	6410	7810	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	7 WARRIOR	24	7610	7809	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	8 MILLERS FERRY	0	0	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	69 ALLATONA	165	6410	7901	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	70 GEORGE W ANDREWS	0	0	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	71 SENINOLE (WOODRUFF)	170	6410	7901	1	156	6410	7709	0	0	0	0
3 SAD	10 MOBILE	72 WALTER F GEORGE (IEUF	0	0	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	73 WEST POINT	173	6410	7902	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	75 CARRIERS	132	6410	7709	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	76 SIDNEY LANIER	88	7110	7901	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	191 OKATIBEE	123	6810	7901	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	405 GAINESVILLE L/O	169	6410	7810	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	411 BANKHEAD	24	7610	7809	0	0	0	0	0	0	0	0
5 NCD	11 BUFFALO	228 MT MORRIS	172	6410	7901	1	156	6410	7709	0	0	0	0
5 NCD	14 ROCK ISL	98 CORALVILLE	168	6410	7809	0	0	0	0	0	0	0	0
5 NCD	14 ROCK ISL	99 RED ROCK	172	6410	7901	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	178 GULL	168	6410	7809	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	179 LAC QUI PARLE	171	6410	7812	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	180 TRAVERSE	0	0	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	181 LEITCH	168	6410	7809	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	182 ORELL	171	6410	7812	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	183 CROSS	0	0	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	184 POKEMANA	172	6410	7901	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	185 SANDY	168	6410	7809	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	186 WINNIBOGOSHISH	168	6410	7809	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	187 PINE RIVER	168	6410	7809	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	188 HOME	172	6410	7812	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	237 ASHLBULA (BALDHILL)	172	6410	7901	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	399 EAU GALLE	168	6410	7901	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	243 BERLIN	171	6410	7812	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	252 MICHAEL J KIRMAN	122	6810	7811	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	254 MOSQUITO CREEK	170	6410	7811	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	308 CORNAUGH RIVER	0	0	0	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	309 CROOKED CREEK	0	0	0	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	311 EAST BRANCH CLARION	173	6410	7902	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	314 LOYAHANNA	172	6410	7901	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	315 MAHONING CREEK	172	6410	7901	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	317 SHENANDO RIVER	171	6410	7812	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	318 TIONESTA	172	6410	7901	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	319 YOUGHIOGHENY RIVER	171	6410	7901	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	322 WOODCOCK	50	7410	7812	0	0	0	0	0	0	0	0
4 ORD	16 PITTSBUR	328 ALLEGHENY (KINZUA)	75	7210	7812	0	0	0	0	0	0	0	0

DIVISION	DISTRICT	PROJECT	ELEVATION							
			STNS	MONTHS	DFIRST	DLAST	STNS	MONTHS	DFIRST	DLAST
4 ORD	16 PITTSBUR	393 TYGART	1	156	6410	7709	0	0	0	0
-4 ORD	-17 HUNTINGT	123 DEWEY	2	178	6410	7812	0	0	0	0
-4 ORD	-17 HUNTINGT	124 FISHBACK	2	155	6610	7812	0	0	0	0
4 ORD	17 HUNTINGT	125 GRAYSON	2	242	6604	7809	1	6	7610	7612
4 ORD	17 HUNTINGT	127 GREENUP L/D	1	136	6710	7901	0	0	0	0
4 ORD	17 HUNTINGT	129 PAINT CREEK	1	132	6410	7509	0	0	0	0
4 ORD	17 HUNTINGT	241 THOUD	1	171	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	242 BEACH CITY	1	170	6410	7811	0	0	0	0
4 ORD	17 HUNTINGT	245 CHARLES MILL	1	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	246 CLENDENING	1	151	6607	7901	0	0	0	0
4 ORD	17 HUNTINGT	247 DEER CREEK	1	171	6410	7812	0	0	0	0
-4 ORD	-17 HUNTINGT	148 DELWARE	1	171	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	249 DILLON	1	171	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	251 LEESVILLE	1	171	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	255 PIEDMONT	1	169	6410	7811	0	0	0	0
4 ORD	17 HUNTINGT	256 PLEASANT HILL	1	169	6410	7810	0	0	0	0
4 ORD	17 HUNTINGT	257 SENECAVILLE	1	171	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	258 TAPPAN	1	171	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	259 BURR OAK/TOM JENNINGS	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	261 WILLS CREEK	1	172	6410	7901	0	0	0	0
4 ORD	17 HUNTINGT	373 JOHN W FLANNAGAN	1	172	6410	7901	0	0	0	0
4 ORD	17 HUNTINGT	374 NORTH FORK OF POUND	1	172	6410	7901	0	0	0	0
4 ORD	17 HUNTINGT	389 BLUESTONE	1	83	6410	7901	0	0	0	0
4 ORD	17 HUNTINGT	390 EAST LYNN	2	131	6710	7901	1	6	7509	7512
4 ORD	17 HUNTINGT	391 SUMMERSVILLE	1	142	6603	7901	0	0	0	0
4 ORD	17 HUNTINGT	392 SUTTON	1	159	6410	7812	0	0	0	0
4 ORD	17 HUNTINGT	394 MAFIELD	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	406 NOLICANVILLE	1	172	6410	7901	0	0	0	0
4 ORD	17 HUNTINGT	416 ALUA CREEK	1	171	6410	7812	0	0	0	0
4 ORD	18 LOUISVIL	90 CAGLES MILL	1	156	6410	7709	0	0	0	0
4 ORD	18 LOUISVIL	91 MUNTINGTON	1	156	6410	7709	0	0	0	0
4 ORD	18 LOUISVIL	92 MISSISSINEMA	1	156	6410	7709	0	0	0	0
4 ORD	18 LOUISVIL	93 MONROE	1	156	6410	7709	0	0	0	0
4 ORD	18 LOUISVIL	94 SALOMONE	1	156	6410	7709	0	0	0	0
4 ORD	18 LOUISVIL	95 C M HARDE N (MANSFIEL	1	156	6410	7709	0	0	0	0
4 ORD	18 LOUISVIL	97 BROOKVILLE	1	172	6410	7901	0	0	0	0
4 ORD	18 LOUISVIL	120 BARREN RIVER	1	172	6410	7901	0	0	0	0
4 ORD	18 LOUISVIL	121 BUCKHORN	1	171	6410	7812	0	0	0	0
4 ORD	18 LOUISVIL	126 GREEN RIVER	1	168	6410	7809	0	0	0	0
4 ORD	18 LOUISVIL	128 NOLIN RIVER	1	172	6410	7901	0	0	0	0
4 ORD	18 LOUISVIL	129 ROUGH RIVER	1	172	6410	7901	0	0	0	0
4 ORD	18 LOUISVIL	134 CAVE RUN	1	171	6410	7812	0	0	0	0
4 ORD	18 LOUISVIL	260 FEST FORK OF MILL CR	1	173	6410	7902	1	3	7610	7612
4 ORD	18 LOUISVIL	263 CLARENCE J BROWN	0	0	0	0	0	0	0	0
4 ORD	19 NASHVILL	119 BARKLEY	1	172	6410	7901	1	3	7610	7612
4 ORD	19 NASHVILL	122 CUMBERLAND (WOLF CREE	1	173	6410	7902	0	0	0	0
4 ORD	19 NASHVILL	337 CENTER HILL	0	0	0	0	0	0	0	0
4 ORD	19 NASHVILL	338 CHEATHAM	1	171	6410	7812	0	0	0	0

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA			ELEVATION																			
DIVISION	DISTRICT	PROJECT	STNS	MONTHS	DFIRST	DLAST	STNS	MONTHS	DFIRST	DLAST	STNS	MONTHS	DFIRST	DLAST	STNS	MONTHS	DFIRST	DLAST	STNS	MONTHS	DFIRST	DLAST
4	ORD	19 NASHVILLE 340 J PERCY PRIEST	1	36	6410	6709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	ORD	19 NASHVILLE 342 OLD HICKORY	1	171	6410	7812	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	ORD	19 NASHVILLE 343 DALE HOLLOW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	20 ST LOUIS 81 CARLYLE	1	161	6410	7902	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	20 ST LOUIS 87 SHELBYVILLE	1	161	6410	7902	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	20 ST LOUIS 88 REND	1	72	6410	7009	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	21 MEMPHIS 196 MAPARELLO	1	156	6410	7709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 14 DE GRAY	1	117	6701	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 18 GREENIN (NARROWS)	1	144	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 19 DOACHITA (BLAKELY MT)	2	145	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 189 ARKABUTLA	1	144	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 183 ENID	1	144	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 190 GRENAIDA	1	144	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	22 VICKSBUR 192 SARDIS	1	144	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	23 NEW ORLNE 138 MALLACE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	23 NEW ORLNE 352 LAKE OF THE PINES (FE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	23 NEW ORLNE 353 TEXARANA (WRIGHT PAT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	LWVD	23 NEW ORLNE 413 CADDO	1	168	6410	7609	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 11 BEAVER	2	160	6506	7709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 12 BLUE MOUNTAIN	1	171	6410	7812	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 13 BULL SHOALS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 16 GRIER'S FERRY	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 17 DORDANELLE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 21 NIAROO	2	184	6410	7901	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 22 NORFOLK	1	156	6410	7709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 23 DZARK	1	172	6410	7509	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 193 CLEARWATER	1	156	6410	7901	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	24 LITTLE R 200 TABLE ROCK	1	156	6410	7709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 102 COUNCIL GROVE	2	136	6610	7709	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 103 ELM CITY	1	157	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 104 FALL RIVER	1	157	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 105 JOHN REDMOND	1	157	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 107 MARION	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 112 TORONTO	1	157	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 264 BROKEN BOW	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 265 CANTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 266 CHOUTEAU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 267 EUWAUA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 268 ORT GIBSON	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 269 FORT SUPPLY	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 270 GREAT SALT PLAINS	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 271 HE'BURN	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 272 MULAH	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	SND	25 TULSA 273 KETSTONE	1	169	6410	7810	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA

DIVISION	DISTRICT	PROJECT	FLOW			ELEVATION			CONTENTS		
			SIMS	MONTHS	DFIRST	DLAST	SIMS	MONTHS	DFIRST	DLAST	SIMS
- 7 SMD	- 25 TULSA	- 274 NEWT GRAHAM	0	0	0	0	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 275 OOLOGAH	2	17.0	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 276 PINE CREEK	1	16.8	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 277 ROBERT S KERR	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 278 TENKILLER FERRY	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 279 W D MAYO	0	0	0	0	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 280 WEBBERS FALLS	0	0	0	0	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 281 WISTER	1	16.7	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 282 CLAYTON	0	0	0	0	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 283 KW	0	0	0	0	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 284 COPAN	0	18	6410	7709	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 285 HUGO	2	17.0	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 286 OBTIMA	0	24	7010	7109	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 287 MAURICA	0	0	0	0	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 348 TEXOMA (OENNISON)	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 357 PAT MAYSE	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 370 KEMP	0	12.0	6710	7709	0	0	0	0	0
- 7 SMD	- 25 TULSA	- 402 GILLHAM	0	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 344 BARDWELL	1	16.8	6410	7809	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 345 BELTON(BELL)	1	17.0	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 346 BENROOK	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 347 CANYON	1	17.2	6410	7901	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 349 GRAPEVINE	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 351 HORDS CREEK	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 354 LAVON	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 355 LEWISVILLE(GARZA,LT)	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 356 NAVARRO MILLS	1	17.2	6410	7901	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 358 PROCTOR	1	17.2	6410	7901	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 359 SAM RAYBURN (MC GEE	1	16.9	6510	7309	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 360 O C FISHER (SAN ANGE	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 361 SOMERVILLE	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 362 STILLHOUSE HOLLOW(LA)	1	11.0	6410	7810	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 363 MACD	1	16.8	6410	7809	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 364 WHITNEY	1	17.2	6410	7901	0	0	0	0	0
- 7 SMD	- 26 FORT WOR	- 371 B A STEINHAGEN (TOWN	1	17.0	6410	7811	0	0	0	0	0
- 7 SMD	- 28 ALBUQUER	- 65 JOHN MARTIN (HASTY)	1	16.9	6410	7810	0	0	0	0	0
- 7 SMD	- 28 ALBUQUER	- 218 ABOLIU	1	17.2	6410	7901	0	0	0	0	0
- 7 SMD	- 28 ALBUQUER	- 219 CONCHAS	1	16.8	6410	7209	0	0	0	0	0
- 7 SMD	- 28 ALBUQUER	- 407 TRINIDAD	2	18.0	6410	7811	0	0	0	0	0
- 8 MRD	- 29 KANSAS	C 100 RATHBUN	1	18.4	6410	7901	0	0	0	0	0
- 8 MRD	- 29 KANSAS	C 106 KANPOLIS	1	16.0	6410	7901	1	15.6	6410	7709	0
- 8 MRD	- 29 KANSAS	C 108 MALLORD	1	15.7	6410	7810	1	13.0	6512	7709	0
- 8 MRD	- 29 KANSAS	C 109 MELVERN	0	0	0	0	1	59	7211	7709	0
- 8 MRD	- 29 KANSAS	C 110 PERRY	1	11.5	6903	7809	1	103	6803	7709	0
- 8 MRD	- 29 KANSAS	C 111 POMONA	1	15.7	6410	7810	1	156	6410	7709	0
- 8 MRD	- 29 KANSAS	C 113 TUTTLE CREEK	1	15.7	6410	7810	1	156	6410	7709	0
- 8 MRD	- 29 KANSAS	C 114 WILSON	1	15.7	6410	7810	1	144	6510	7709	0
- 8 MRD	- 29 KANSAS	C 194 POMME DE TERRE	2	18.4	6410	7901	0	0	0	0	0

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA

DIVISION	DISTRICT	PROJECT	FLOW			ELEVATION			CONTENTS				
			STNS	MONTHS	DFIRST	DLAST	STNS	MONTHS	DFIRST	DLAST	STNS		
8 MRD	29 KANSAS C	195 STOCKTON	1	170	6410	7901	0	0	0	0	1	96	
8 MRD	29 KANSAS C	207 MARION COUNTY	1	160	6410	7801	1	12	710	7309	1	144	
8 MRD	30 OMAHA	64 CHERRY CREEK	1	168	6410	7809	0	0	0	0	0	0	
8 MRD	30 OMAHA	203 FORT PECK	1	170	6410	7812	1	13	7309	7409	0	0	
8 MRD	30 OMAHA	208 OLIVE CREEK	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	209 BLUESTEM	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	210 WAGON TRAIN	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	211 STAGECOACH	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	212 YANKEE HILL	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	213 CONSTIGA	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	214 TWIN	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	215 PANTEE	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	216 HOLMES PARK	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	217 BRANCHED OAK	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	234 BOHANNON LEY	171	6410	7812	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	235 SAKAKIWA (GARRISON)	96	6910	7709	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	331 SHARPE (BIG BEND)	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	332 COLD BROOK	0	0	0	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	334 FRANCIS CASE (FT RAN	168	6410	7809	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	335 LEWIS AND CLARKE (GA	172	6410	7901	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	336 DAHE	72	6410	7803	0	0	0	0	0	0	0	
8 MRD	30 OMAHA	415 CHAFFIELD	168	6410	7805	0	0	0	0	0	0	0	
9 NPD	31 WALLA WA	77 DWORSKIK	34	6410	6806	0	0	0	0	0	0	0	
9 NPD	31 WALLA WA	78 LUCAY PEAK	156	6410	7709	1	48	6410	6809	1	72	7110	
9 NPD	31 WALLA WA	79 RIRIE	169	6410	7810	0	0	0	0	0	144	6510	
9 NPD	31 WALLA WA	379 ICE HARBOR	168	6410	7809	0	0	0	0	0	13	7601	
9 NPD	32 SEATTLE	80 ALBEN FALLS (PEND O	40	7510	7901	1	72	6410	7009	0	0	0	
9 NPD	32 SEATTLE	204 KODIANUSA (LIBBY)	136	6710	7901	1	86	7202	7709	0	0	0	
9 NPD	32 SEATTLE	377 RUFUS WOODS (CHIEF J	169	6410	7812	1	36	7410	7709	0	0	0	
9 NPD	32 SEATTLE	384 MUDD MOUNTAIN	173	6410	7902	1	12	7510	7609	0	0	0	
9 NPD	32 SEATTLE	385 WYNDOCHEE	159	6510	7812	0	0	0	0	0	144	6510	
9 NPD	32 SEATTLE	386 HOWARD A HANSON	175	6410	7902	0	0	0	0	0	144	6510	
9 NPD	33 PORTLAND	288 BLUE RIVER	2	155	6610	7901	1	36	7410	7709	1	72	6810
9 NPD	33 PORTLAND	289 BONNEVILLE	0	0	0	0	0	0	0	0	0	0	
9 NPD	33 PORTLAND	290 COITAGE GROVE	1	172	6410	7901	1	36	7410	7709	0	0	0
9 NPD	33 PORTLAND	291 COUGAR	171	6410	7812	0	0	0	0	0	96	6510	
9 NPD	33 PORTLAND	292 CELLO (DALLES)	185	6001	7711	0	0	0	0	0	96	6510	
9 NPD	33 PORTLAND	293 CELLO	185	6410	7812	0	0	0	0	0	0	0	
9 NPD	33 PORTLAND	294 DAXTER	344	6410	7901	0	0	0	0	0	0	0	
9 NPD	33 PORTLAND	295 DORENA	173	6410	7902	1	36	7410	7709	0	0	0	
9 NPD	33 PORTLAND	296 FALL CREEK	172	6410	7901	1	36	7410	7709	0	0	0	
9 NPD	33 PORTLAND	297 FERN RIDGE	148	6410	7901	1	36	7410	7709	0	0	0	
9 NPD	33 PORTLAND	298 FOSTER	92	6610	7307	1	36	7410	7709	0	0	0	
9 NPD	33 PORTLAND	299 GREEN PETER	24	6410	6609	0	0	0	0	0	94	6612	
9 NPD	33 PORTLAND	300 HILLS CREEK	172	6410	7901	0	0	0	0	0	96	6610	
9 NPD	33 PORTLAND	301 JOHN DAY (UMATILLA)	0	0	0	0	0	0	0	0	0	0	
9 NPD	33 PORTLAND	302 LODOUT POINT	0	0	0	0	0	0	0	0	96	6510	
9 NPD	33 PORTLAND	303 LODOUT POINT	0	0	0	0	0	0	0	0	0	0	

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA

DIVISION	DISTRICT	PROJECT	FLOW			ELEVATION			CONTENTS		
			SNS	MONTHS	DFIRST	SNS	MONTHS	DLAST	SNS	MONTHS	DFIRST
9 NPD	33 PORTLAND	304 LOST CREEK	0	0	0	1	0	7702	0	0	0
9 NPD	33 PORTLAND	305 BIG CLIFF	0	0	0	0	0	0	0	0	0
10 SPD	34 SACRAMEN	24 BLACK BUTTE	2	197	6410	7902	0	0	1	144	6410
10 SPD	34 SACRAMEN	26 ENGLERIGHT	1	173	6410	7902	0	0	1	48	7310
10 SPD	34 SACRAMEN	28 ISABELLA	1	168	6410	7809	0	0	0	156	6410
10 SPD	34 SACRAMEN	30 MARTIS CREEK	1	172	6410	7901	0	0	1	67	7203
10 SPD	34 SACRAMEN	32 NEW HOGAN	1	173	6410	7902	0	0	2	158	6410
10 SPD	34 SACRAMEN	33 PINE PLAT	1	168	6410	7809	0	0	1	68	6410
10 SPD	34 SACRAMEN	36 SUCCESS	1	168	6410	7809	0	0	1	156	6410
10 SPD	34 SACRAMEN	37 KAWeah (TERMINUS)	1	168	6410	7809	0	0	0	0	0
10 SPD	34 SACRAMEN	41 FOLSOM	2	185	6410	7902	0	0	0	156	6410
10 SPD	34 SACRAMEN	43 NEW BULLARDS BAR	1	151	6508	7902	0	0	0	105	6501
10 SPD	34 SACRAMEN	44 CAMANCHE	1	173	6410	7902	0	0	0	156	6410
10 SPD	34 SACRAMEN	47 CHERY VALLEY	2	162	6410	7801	0	0	0	156	6410
10 SPD	34 SACRAMEN	48 NEW DON PEDRO	1	88	7010	7801	0	0	0	156	6410
10 SPD	34 SACRAMEN	51 MCCLURE (NEW EXCHEQU	0	0	0	0	0	0	0	156	6410
10 SPD	34 SACRAMEN	54 MILLERTON (FRIANT)	1	160	6410	7801	0	0	0	1	156
10 SPD	35 SAN FRAN	29 MENDOCINO	-	-	-	-	-	-	-	-	6410
10 SPD	35 SAN FRAN	39 SANTA MARGARITA (SAL	1	170	6410	7811	0	0	0	1	144
10 SPD	36 LOS ANGE	9 ALAMO	1	49	7310	7799	0	0	0	156	6410
10 SPD	36 LOS ANGE	27 HANSEN	0	0	0	0	0	0	0	0	0

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA
•• DISTRICT TOTALS ••

DISTRICT	PROJ	TOTAL		FLOOD		ELEVATION		CONTENTS		STNS	MONTHS	DFIRST	DLAST	BLAS1
		STNS	MONTHS	STNS	MONTHS	STNS	MONTHS	STNS	MONTHS					
1 NEW ENGLAND	22	17	2465	6410	7901	0	0	0	0	0	0	0	0	0
2 NEW YORK	2	320	6410	7901	0	156	6410	7703	0	0	0	0	0	0
3 PHILADELPHIA	3	465	6410	7901	0	0	0	0	0	0	0	0	0	0
4 BALTIMORE	9	1135	6410	7902	2	310	6410	7703	0	0	0	0	0	0
5 NORFOLK	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 WILMINGTON	3	169	6410	7810	0	0	0	0	0	0	0	0	0	0
7 CHARLESTON	1	172	6410	7901	0	0	0	0	0	0	0	0	0	0
8 SAVANNAH	1	348	6410	7812	2	168	7110	7703	0	0	0	0	0	0
9 JACKSONVILLE	1	120	6810	7809	1	99	6807	7703	0	0	0	0	0	0
10 MOBILE	17	13	1489	6410	7902	1	156	6410	7703	0	0	0	0	0
11 BUFFALO	1	172	6410	7901	1	156	6410	7703	0	0	0	0	0	0
12 DETROIT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13 CHICAGO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14 ROCK ISLAND	2	340	6410	7901	0	0	0	0	0	0	0	0	0	0
15 ST. PAUL	13	11	1855	6410	7901	1	13	6809	6809	0	0	0	0	0
16 PITTSBURG	13	13	1948	6410	7902	0	0	0	0	0	0	0	0	0
17 HUNTINGTON	26	29	4086	6410	7901	2	12	7509	7612	1	0	0	0	0
18 LOUISVILLE	15	14	2307	6410	7902	0	0	0	0	0	0	0	0	0
19 NASHVILLE	7	5	723	6410	7902	1	3	7810	7612	0	0	0	0	0
20 ST. LOUIS	3	394	6410	7802	0	0	0	0	0	0	0	0	0	0
21 MEMPHIS	1	1	155	6410	7709	0	0	0	0	0	1	156	6410	7709
22 VICKSBURG	7	8	982	6410	7609	0	0	0	0	0	2	974	6410	7709
23 NEW ORLEANS	4	1	168	6410	7809	0	0	0	0	0	2	312	6410	7709
24 LITTLE ROCK	10	11	1349	6410	7901	0	0	0	0	0	0	1414	6410	7709
25 TULSA	35	31	4396	6410	7901	6	879	6410	7709	21	0	0	0	0
26 FORT WORTH	17	17	2813	6410	7901	0	0	0	0	0	17	2597	6410	7709
27 CALVESTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28 ALBUQUERQUE	4	5	617	6410	7901	0	0	0	0	0	3	289	6510	7709
29 KANSAS CITY	11	11	1601	6410	7901	8	916	6410	7709	4	503	6410	7709	0
30 OMAHA	20	8	1185	6410	7810	1	13	7309	7409	0	0	0	0	0
31 WALLA WALLA	4	4	527	6410	7810	1	48	6410	6809	3	229	6510	7709	0
32 SEATTLE	6	6	852	6410	7902	4	176	6410	7709	2	286	6510	7709	0
33 PORTLAND	17	13	1989	2001	7902	12	500	6410	7709	11	1071	6510	7509	0
34 SACRAMENTO	15	17	2306	6410	7902	0	0	0	0	0	16	2094	6410	7709
35 SAN FRANCISC	2	2	218	6410	7811	0	0	0	0	0	2	300	6410	7709
36 LOS ANGELES	2	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTALS	299	262	37645	2001	7902	44	3605	6410	7709	109	13157	6410	7709	

INVENTORY OF USGS MONTHLY HYDROLOGIC DATA
*** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DISTRICT ***

DISTRICT	TOTAL		FLOW		ELEVATION		CONTENTS	
	PROJ	STNS	MONTHS FIRST	BLAST	STNS	MONTHS FIRST	BLAST	STNS
1 NEW ENGLAND	22	17	17	17	0	0	0	0
2 NEW YORK	3	2	2	2	1	0	1	0
3 PHILADELPHIA	3	3	3	3	0	0	0	0
4 BALTIMORE	9	7	7	7	2	2	2	2
5 NORFOLK	6	0	0	0	0	0	0	0
6 WILMINGTON	3	1	1	1	0	0	0	0
7 CHARLESTON	1	1	1	1	0	0	0	0
8 SAVANNAH	2	2	2	2	2	2	2	2
9 JACKSONVILLE	1	1	1	1	1	1	1	1
10 MOBILE	17	13	13	13	1	1	1	1
11 BUFFALO	1	1	1	1	0	0	0	0
12 DETROIT	0	0	0	0	0	0	0	0
13 CHICAGO	0	0	0	0	0	0	0	0
14 ROCK ISLAND	2	2	2	2	0	0	0	0
15 ST PAUL	13	11	11	11	7	7	7	7
16 PITTSBURG	14	13	13	13	0	0	0	0
17 HUNTINGTON	28	25	25	25	2	2	2	2
18 LOUISVILLE	15	14	14	14	0	0	0	0
19 NASHVILLE	7	5	5	5	0	0	0	0
20 ST LOUIS	3	3	3	3	0	0	0	0
21 MEMPHIS	1	1	1	1	0	0	0	0
22 VICKSBURG	7	7	7	7	0	0	0	0
23 NEW ORLEANS	4	1	1	1	0	0	0	0
24 LITTLE ROCK	10	9	9	9	0	0	0	0
25 TULSA	35	29	29	29	6	6	6	6
26 FORT WORTH	17	17	17	17	0	0	0	0
27 GALVESTON	0	0	0	0	0	0	0	0
28 ALBUQUERQUE	4	4	4	4	0	0	0	0
29 KANSAS CITY	11	10	10	10	0	0	0	0
30 OMAHA	20	9	8	8	0	0	0	0
31 WALLA WALLA	4	4	4	4	1	1	1	1
32 SEATTLE	6	6	6	6	4	4	4	4
33 PORTLAND	17	12	12	12	12	12	12	12
34 SACRAMENTO	15	14	14	14	0	0	0	0
35 SAN FRANCISC	2	2	2	2	0	0	0	0
36 LOS ANGELES	2	0	0	0	0	0	0	0
TOTALS	299	245	245	245	44	44	44	44

Table A4

Inventory of Water Quality Data by Station Type

INVENTORY OF WATER QUALITY DATA BY STATION TYPE

DIVISION	DISTRICT	PROJECT	TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
			NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS		
1 NED	1 NEW ENGL	142 BUFFALOVILLE	2	3437	6	209	2	56	1	2048	0	0	11	5750	0	0	0	0		
1 NED	1 NEW ENGL	144 EAST BRIMFIELD	1	1244	1	92	0	0	1	1720	0	0	3	3056	0	0	0	0		
1 NED	1 NEW ENGL	147 LITTLEVILLE	2	1425	7	1701	4	2166	0	1129	0	0	13	6425	0	0	0	0		
1 NED	1 NEW ENGL	148 TULLY	2	2176	1	1219	0	0	2	2144	0	0	5	5589	0	0	0	0		
1 NED	1 NEW ENGL	150 WESTVILLE	2	2915	1	1194	0	0	1	1819	0	0	4	5837	0	0	0	0		
1 NED	1 NEW ENGL	151 BLACK ROCK	2	3532	0	0	0	0	1	101	1	2270	0	0	4	5903	0	0		
1 NED	1 NEW ENGL	152 COLEBROOK RIVER	2	2137	1	237	0	0	0	1049	0	0	2	3186	0	0	0	0		
1 NED	1 NEW ENGL	155 MANCOCK BROOK	2	1991	0	0	0	0	0	1	2256	0	0	3	4247	0	0	0	0	
1 NED	1 NEW ENGL	156 HOP BROOK	2	7823	3	1311	0	0	2	2643	0	0	15	14233	0	0	0	0		
1 NED	1 NEW ENGL	158 MANSFIELD HOLLOW	2	2858	0	0	0	0	0	1	2456	0	0	3	4503	0	0	0	0	
1 NED	1 NEW ENGL	159 NORTHFIELD BROOK	1	1913	4	1972	4	780	0	1	1645	0	0	0	0	0	0	0	0	
1 NED	1 NEW ENGL	162 WEST THOMPSON	3	2973	1	1936	7	4162	3	2483	0	0	10	6854	0	0	0	0		
1 NED	1 NEW ENGL	164 EDWARD McDOWELL	2	3126	0	0	0	0	0	1	1997	0	0	3	5153	0	0	0	0	
1 NED	1 NEW ENGL	165 EVERETT	2	1407	0	0	0	0	0	1	2111	0	0	3	3516	0	0	0	0	
1 NED	1 NEW ENGL	166 FRANKLIN FALLS	2	3280	0	0	0	0	0	0	1984	0	0	3	5164	0	0	0	0	
1 NED	1 NEW ENGL	167 HOPKINTON	1	2119	3	1867	0	0	6	1421	0	0	11	7550	0	0	0	0		
1 NED	1 NEW ENGL	168 OTTER BROOK	2	2897	3	1752	3	1456	0	0	1	2135	0	0	9	8240	0	0		
1 NED	1 NEW ENGL	169 SURRY MOUNTAIN	3	4851	1	1321	6	2010	0	1	2289	0	0	11	10471	0	0	0	0	
1 NED	1 NEW ENGL	170 BALL MOUNTAIN	3	3417	7	2130	3	669	0	0	1	2232	0	0	14	6448	0	0		
1 NED	1 NEW ENGL	172 NORTH HARLAND	4	3378	4	33	2	15	0	0	1	2221	0	0	11	5647	0	0		
1 NED	1 NEW ENGL	173 NORTH SPRINGFIELD	2	4447	4	596	0	0	0	0	0	1	2200	0	0	8	7243	0	0	
1 NED	1 NEW ENGL	174 TURNSHEND	2	2619	7	1568	0	0	0	0	0	1	2085	0	0	10	6272	0	0	
2 NAD	2 NEW YORK	171 EAST BARRE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 NAD	2 NEW YORK	176 WATERBURY	14	1284	3	145	2	217	4	196	0	0	0	0	0	0	0	0	0	
2 NAD	2 NEW YORK	177 WRIGHTSVILLE	0	0	1	9	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 NAD	3 PHILADEL	307 BELTZVILLE	4	385	3	377	1	250	0	213	0	0	0	0	0	0	10	1225	0	0
2 NAD	3 PHILADEL	313 FRANCIS E. WALTER	1	201	0	0	0	0	0	0	0	0	0	0	0	0	1	201	0	0
2 NAD	3 PHILADEL	316 PROMPTON	2	288	5	386	0	0	0	1	292	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	227 ALMOND	1	13	1	53	1	84	1	57	0	0	4	207	0	0	0	0	0	0
2 NAD	4 BALTIMOR	229 WHITNEY POINT	0	0	2	96	0	0	5	53	0	0	4	154	0	0	0	0	0	0
2 NAD	4 BALTIMOR	306 ALVIN R. KETTLE	0	0	3	102	1	108	2	33	0	0	6	243	0	0	0	0	0	0
2 NAD	4 BALTIMOR	310 CURWENSVILLE	1	39	1	28	0	0	1	185	0	0	0	0	0	0	3	252	0	0
2 NAD	4 BALTIMOR	312 F. J. SAYERS (BLANCHARD)	0	143	2	150	3	385	3	1064	0	0	4	3480	0	0	0	0	0	0
2 NAD	4 BALTIMOR	320 RAYSTON	0	2468	4	945	0	0	1	182	4	1161	0	0	17	4156	0	0	0	0
2 NAD	4 BALTIMOR	329 STILLWATER	1	61	0	0	0	0	0	2	1252	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	398 BLOOMINGTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	401 SAVAGE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3 SAD	6 WILMING	233 B. EVERETT JORDAN (NE	21	20921	0	0	5	3994	0	0	0	0	0	0	0	0	0	24915	0	0
3 SAD	6 WILMING	372 JOHN H. KERR	35	20835	28	12841	7	5504	0	0	8	3197	0	0	547	95	42924	0	0	
3 SAD	6 WILMING	375 PHILPOTT	0	0	0	0	0	0	0	0	1	1168	0	0	1	1168	0	0	0	0
3 SAD	7 CHARLES	232 W. KERR SCOTT	7	976	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																	2182			

AD-A101 553

WALKER (WILLIAM W) JR CONCORD MA
EMPIRICAL METHODS FOR PREDICTING EUTROPHICATION IN IMPOUNDMENTS—ETC(U)
MAY 81 W W WALKER

F/6 13/2

DACW39-78-C-0053

NL

UNCLASSIFIED

WES-TR-E-81-9-1

3 of 4
AD-A101 553

END
DRAFT
B&G
DMC

CONT

INVENTORY OF WATER QUALITY DATA BY STATION TYPE

INVENTORY OF WATER QUALITY DATA BY STATION TYPE

DIVISION	DISTRICT	PROJECT	TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
			NSTA	NSTB	NSTC	NSTA	NSTB	NSTC	NOBS	NSTA	NSTB	NOBS	NSTA	NSTB	NSTC	NOBS	NSTA	NSTB	NSTC	
-4 ORD	16 PITTSBUR	308 CONEMAUGH RIVER	2	1165	3	203	1	197	2	1403	0	0	0	0	0	0	8	2968		
-4 ORD	16 PITTSBUR	309 CROOKED CREEK	5	122	2	199	1	328	1	1161	0	0	0	0	0	0	10	1810		
-4 ORD	16 PITTSBUR	311 EAST BRANCH CLARION	12	3176	5	525	1	2279	2	1866	0	0	0	0	0	0	20	1246		
-4 ORD	16 PITTSBUR	314 LOYALHANNA	2	1311	2	99	1	210	3	1307	0	0	0	0	0	0	8	3017		
-4 ORD	16 PITTSBUR	315 MAHONING CREEK	7	204	1	147	1	235	2	135	0	0	0	0	0	0	11	1837		
-4 ORD	16 PITTSBUR	317 SHEHANCO RIVER	21	2205	11	7267	2	1674	3	1859	0	0	0	0	0	0	557	94	13972	
-4 ORD	16 PITTSBUR	318 YOUNGSTOWN RIVER	14	78	3	416	1	1653	1	135	0	0	0	0	0	0	7	2087		
-4 ORD	16 PITTSBUR	319 YOUNGWOOD HENRY RIVER	14	727	5	6144	1	1653	1	145	0	0	0	0	0	0	7	20515		
-4 ORD	16 PITTSBUR	320 WOODOCK	9	1865	3	3445	1	2207	2	2123	0	0	0	0	0	0	15	9640		
-4 ORD	16 PITTSBUR	326 ALLEGHENY (KINZUA)	26	4097	14	17560	7	5530	2	1957	19	1551	68	0	0	0	0	0	30695	
-4 ORD	16 PITTSBUR	393 TYGART	21	1996	11	13423	2	2232	4	2131	4	117	42	18999	0	0	0	0	18999	
-4 ORD	17 HUNTINGT	123 DEWEY	3	1637	8	9171	1	4926	2	1181	0	0	0	0	0	0	14	16915		
-4 ORD	17 HUNTINGT	124 FISHTRAP	1	567	14	4097	2	5246	2	1050	0	0	0	0	0	0	19	10960		
-4 ORD	17 HUNTINGT	125 GRAYSON	9	1793	20	7374	1	4840	1	708	0	0	0	0	0	0	31	14715		
-4 ORD	17 HUNTINGT	127 GREENUP L/D	0	0	0	0	0	0	0	1	1317	0	0	0	0	0	0	1	1317	
-4 ORD	17 HUNTINGT	129 PRINT CREEK	5	1546	7	1628	2	4299	2	1055	0	0	0	0	0	0	16	8528		
-4 ORD	17 HUNTINGT	241 ATWOOD	6	821	8	1619	3	2228	2	564	0	0	0	0	0	0	19	5322		
-4 ORD	17 HUNTINGT	242 BEACH CITY	14	1950	0	0	2	423	3	749	0	0	0	0	0	0	19	3122		
-4 ORD	17 HUNTINGT	245 CHARLES MILL	7	637	2	186	3	566	3	613	0	0	0	0	0	0	15	2202		
-4 ORD	17 HUNTINGT	246 CLENDENING	1	327	0	0	2	2644	2	684	0	0	0	0	0	0	5	2655		
-4 ORD	17 HUNTINGT	247 DEER CREEK	7	427	6	1383	3	3268	3	1055	0	0	0	0	0	0	13	1123		
-4 ORD	17 HUNTINGT	248 DELAWARE	8	1630	7	1599	2	1893	3	949	2	187	0	0	0	0	13	6258		
-4 ORD	17 HUNTINGT	249 DILLON	13	3687	3	239	3	1822	3	680	1	115	0	0	0	0	23	6711		
-4 ORD	17 HUNTINGT	251 LEESVILLE	2	401	0	0	2	1176	2	660	0	0	0	0	0	0	6	2237		
-4 ORD	17 HUNTINGT	255 PIEDMONT	1	449	3	133	2	2151	2	875	0	0	0	0	0	0	8	2608		
-4 ORD	17 HUNTINGT	256 PLEASANT HILL	8	1123	1	82	1	128	3	740	1	113	14	0	0	0	0	14	2186	
-4 ORD	17 HUNTINGT	257 SENECAVILLE	2	185	5	70	2	427	2	560	0	0	0	0	0	0	11	1242		
-4 ORD	17 HUNTINGT	258 TAPPAN	6	1065	8	1510	3	1645	4	217	0	0	0	0	0	0	21	5235		
-4 ORD	17 HUNTINGT	259 BURR DAKTION JENKINS	1	167	3	452	2	918	3	667	1	428	0	0	0	0	3	1814		
-4 ORD	17 HUNTINGT	261 WILLIS CREEK	2	583	4	277	2	667	1	932	0	0	0	0	0	0	9	1955		
-4 ORD	17 HUNTINGT	273 JOHN W FLANNAGAN	11	3046	17	6091	2	5627	3	600	0	0	0	0	0	0	33	15698		
-4 ORD	17 HUNTINGT	374 NORTH FORK OF FOUNDRY	3	1038	4	1831	1	3752	1	600	0	0	0	0	0	0	9	1217		
-4 ORD	17 HUNTINGT	389 BLUESTONE	20	10397	4	1071	2	3101	2	539	12	848	40	0	0	0	0	21556		
-4 ORD	17 HUNTINGT	390 EAST LYNN	9	1112	14	7539	1	7948	1	946	0	0	0	0	0	0	25	17545		
-4 ORD	17 HUNTINGT	391 SUMMERSVILLE	8	1152	6	976	2	4037	2	412	2	180	0	0	0	0	20	6762		
-4 ORD	17 HUNTINGT	392 SUMTER	5	349	23	4248	3	4102	1	201	0	0	0	0	0	0	32	8900		
-4 ORD	17 HUNTINGT	394 INTL FIELD	0	0	0	0	0	0	0	1	3155	0	0	0	0	0	1	3755		
-4 ORD	17 HUNTINGT	406 MOHICANVILLE	2	351	0	0	0	0	0	0	538	0	0	0	0	0	2	538		
-4 ORD	17 HUNTINGT	416 ALUM CREEK	1	351	7	3232	2	3596	1	394	0	0	0	0	0	0	11	7573		
-4 ORD	18 LOUISVIL	90 CAGLES MILL	2	1114	2	2617	1	4670	1	801	0	0	0	0	0	0	6	9202		
-4 ORD	18 LOUISVIL	91 MUNTINGTON	3	862	1	1133	1	2582	1	756	0	0	0	0	0	0	6	5333		
-4 ORD	18 LOUISVIL	92 MISSISSINNEA	12	4423	4	3875	2	4019	3	1021	7	683	28	14021	0	0	0	28	18248	
-4 ORD	18 LOUISVIL	93 MONROE	18	3872	2	6138	2	5165	2	654	3	214	32	0	0	0	0	32	9302	
-4 ORD	18 LOUISVIL	94 SALAMONIE	2	1279	2	3500	1	3796	1	727	0	0	0	0	0	0	6	9302		

DIVISION	DISTRICT	PROJECT	INVENTORY OF WATER QUALITY DATA BY STATION TYPE																	
			TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
			NSIA	NBBS	NSTA	NSIA	NBBS	NSTA	NSIA	NBBS	NSTA	NSIA	NBBS	NSTA	NSIA	NBBS	NSTA	NSIA	NBBS	NSTA
4	ORD	18 LOUISVILLE 95 C M HARDEN (MANSFIELD)	1	812	2	4239	1	4123	1	798	0	0	0	0	5	9970				
4	ORD	18 LOUISVILLE 97 BROOKVILLE	2	4913	2	4119	1	4096	1	956	0	0	0	0	6	11094				
4	ORD	18 LOUISVILLE 120 BARREN RIVER	17	20396	2	6333	2	1110	2	44	0	0	0	0	41	34700				
4	ORD	18 LOUISVILLE 121 BUCKHORN	14	1484	5	8758	1	6998	1	891	0	0	0	0	21	14231				
4	ORD	18 LOUISVILLE 126 GREEN RIVER	3	1746	5	9404	1	7812	1	888	0	0	0	0	10	19850				
4	ORD	18 LOUISVILLE 128 NOLIN RIVER	7	2994	4	18516	1	11964	2	1990	0	0	0	0	14	34964				
4	ORD	18 LOUISVILLE 129 ROUGH RIVER	2	1648	6	11188	1	6173	2	937	4	372	15	20318						
4	ORD	18 LOUISVILLE 134 CAVE RUN	5	3587	2	3164	1	3448	1	737	0	0	0	0	9	10969				
4	ORD	18 LOUISVILLE 260 WEST FORK OF MILL Ck	1	567	1	2716	0	0	2	897	3	134	0	0	7	4314				
4	ORD	18 LOUISVILLE 263 CLARENCE J BROWN	2	1819	1	1347	2	3510	1	672	0	0	0	0	6	7548				
4	ORD	19 NASHVILLE 119 BARKLEY	22	3268	14	2755	2	452	4	2528	3	174	0	0	45	9177				
4	ORD	19 NASHVILLE 122 CUMBERLAND (WOLF CREEK)	34	4859	11	2871	2	1615	3	875	1	107	51	10527						
4	ORD	19 NASHVILLE 337 CENTER HILL	3	1406	5	5202	1	2176	2	305	0	0	0	0	11	9089				
4	ORD	19 NASHVILLE 338 CHEATHAM	18	1831	24	330	2	479	3	1672	6	368	53	7693						
4	ORD	19 NASHVILLE 330 J ERICK PRIEST	35	7222	16	17442	2	6150	2	1092	3	281	58	32187						
4	ORD	19 NASHVILLE 342 OLD HICKORY	20	3495	13	2478	2	1259	5	1179	2	206	42	8577						
4	ORD	19 NASHVILLE 343 DALE HOLLOW	15	2633	14	4481	2	1692	2	597	1	194	34	9437						
6	LWVD	20 ST LOUIS 81 CARLIE	17	4691	2	271	1	137	3	1750	1	92	24	6941						
6	LWVD	20 ST LOUIS 87 SHELBYVILLE	10	1555	6	759	1	164	4	1594	2	132	23	4174						
6	LWVD	20 ST LOUIS 88 REND	10	2399	4	392	1	108	2	1563	2	112	19	4564						
6	LWVD	21 MEMPHIS 196 MAPPAELLO	6	439	5	462	1	125	1	90	0	0	0	0	13	1116				
6	LWVD	22 VICKSBUR 14 DE GRAY	9	3149	6	4925	1	309	1	89	0	0	0	0	17	8472				
6	LWVD	22 VICKSBUR 18 GRESON (MARRODS)	4	308	0	1	1	5181	1	405	0	0	0	0	6	8654				
6	LWVD	22 VICKSBUR 19 QUACHITA (BLAKELY MT)	15	4629	6	1142	2	6264	2	180	1	90	28	13305						
6	LWVD	22 VICKSBUR 188 ARKABITLA	6	385	2	211	1	150	2	214	3	274	14	1234						
6	LWVD	22 VICKSBUR 189 ENID	7	1931	2	256	1	150	1	31	4	375	15	1843						
6	LWVD	22 VICKSBUR 190 GRENADA	7	655	2	284	1	171	3	61	1	78	14	1997						
6	LWVD	22 VICKSBUR 192 SARDIS	6	411	3	456	1	164	1	62	1	95	14	1248						
6	LWVD	23 NEW ORLLE 138 WALLACE	2	1845	1	586	1	640	1	965	0	0	0	0	5	4036				
6	LWVD	23 NEW ORLLE 352 LAKE O' THE PINES (FE	23	15078	9	12596	4	5598	2	2476	3	176	41	35924						
6	LWVD	23 NEW ORLLE 353 TEXARKANA (WRIGHT PAT)	29	25185	8	1593	1	4335	4	7475	2	115	46	38603						
6	LWVD	23 NEW ORLLE 13 CADDO	15	9189	5	468	4	5083	2	1386	1	83	27	16269						
7	SND	24 LITTLE R 11 BEAVER	12	6240	10	2758	3	9039	3	1422	1	51	29	18510						
7	SND	24 LITTLE R 12 BLUE MOUNTAIN	6	2892	6	1044	3	730	2	411	1	70	20	5147						
7	SND	24 LITTLE R 13 BULL SHOALS	19	1510	20	1248	1	472	3	3219	0	0	0	0	43	17639				
7	SND	24 LITTLE R 16 CREEKS FERRY	2	3073	11	5345	2	13135	3	5718	1	86	28	26492						
7	SND	24 LITTLE R 17 DARDENILLE	1	215	0	160	1	189	3	752	2	412	0	0	4	2545				
7	SND	24 LITTLE R 21 NIARODOO	6	3010	10	1635	3	368	4	3608	0	0	0	0	23	5809				
7	SND	24 LITTLE R 22 NORFOLK	18	1982	14	3984	1	249	2	2391	0	0	0	0	37	15932				
7	SND	24 LITTLE R 23 OZARK	9	5186	3	747	1	249	2	2391	0	0	0	0	16	8573				

DIVISION	DISTRICT	PROJECT	STATION TYPE			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL			
			MSTA	NSTA	NOBS	MSTA	NSTA	NOBS	MSTA	NSTA	NOBS	MSTA	NSTA	NOBS	MSTA	NSTA	NOBS	MSTA	NSTA	NOBS	
-7 SMD	24 LITTLE R	193 CLEARWATER	5	1400	5	450	2	340	2	162	1	73	15	225							
-7 SMD	24 LITTLE R	200 TABLE ROCK	19	10799	14	4418	2	7315	4	1229	2	43	41	23804							
-7 SMD	25 TULSA	20 MILLWOOD	24	10997	9	634	2	204	5	517	5	315	45	12667							
-7 SMD	25 TULSA	102 COUNCIL GROVE	9	749	3	730	1	147	3	1952	1	66	17	3644							
-7 SMD	25 TULSA	103 ELK CITY	5	607	2	293	2	152	2	1404	2	72	12	2628							
-7 SMD	25 TULSA	104 FALL RIVER	4	1466	2	426	1	134	3	2956	1	59	11	5041							
-7 SMD	25 TULSA	105 JOHN REDMOND	9	6322	2	554	1	62	4	3948	6	338	22	11224							
-7 SMD	25 TULSA	107 MARION	4	245	1	106	1	166	3	2976	2	346	11	3439							
-7 SMD	25 TULSA	112 TORONTO	5	1355	1	92	2	433	2	2982	1	59	12	6931							
-7 SMD	25 TULSA	114 BROKEN BOY	9	1434	5	306	1	72	4	284	0	19	19	4196							
-7 SMD	25 TULSA	126 CANTON	1	1924	0	0	1	2319	1	992	0	0	3	5165							
-7 SMD	25 TULSA	266 CHOUTEAU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	267 EUAULA	19	16525	16	4177	1	290	2	5225	6	325	44	27242							
-7 SMD	25 TULSA	268 FORT GIBSON	2	2657	5	809	1	190	1	337	0	0	9	7027							
-7 SMD	25 TULSA	269 FORT SUPPLY	7	522	1	72	1	124	1	98	0	0	10	809							
-7 SMD	25 TULSA	270 GREAT SALT PLAINS	4	7985	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	271 HEYBURN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	272 HULAH	1	650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	273 KEYSTONE	17	14241	11	3652	1	188	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	274 NEW GRAHAM	3	3931	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	275 DOLOCAN	13	9314	8	94	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	276 PINE CREEK	2	1795	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	277 ROBERT S KERR	2	405	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	278 TENKILLER FERRY	20	6166	7	1353	2	440	0	3978	1	6071	2	127	35	22779					
-7 SMD	25 TULSA	279 W D MAYO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
-7 SMD	25 TULSA	280 WEBBERS FALLS	3	12204	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	281 WISTER	15	1907	4	319	2	259	4	1442	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	282 CLAYTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	283 KAM	1	5032	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	284 COPAN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	285 HUGO	2	2038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	286 OPTIMA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	287 WAURICA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	348 TEXOMA (DENNISON)	19	11578	6	1145	1	265	4	5207	5	373	35	10568							
-7 SMD	25 TULSA	357 PAT MAYSE	0	0	1	136	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	370 KEMP	2	2292	3	289	2	219	2	1621	0	0	0	0	0	0	0	0	0		
-7 SMD	25 TULSA	402 GILLHAM	1	775	0	0	0	0	1	33	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	344 BARDWELL	0	0	0	0	0	0	134	0	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	345 BELTON BELL	3	230	6	1619	3	965	2	120	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	346 BENBROOK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	347 CANTON	2	180	4	1211	1	302	0	90	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	349 GRAPEVINE	1	204	0	0	1	122	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	351 HORSES CREEK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-7 SMD	26 FORT MOR	354 LAVON	9	653	5	1478	3	1233	1	89	6	471	24	3944							

INVENTION OF WATER QUALITY DATA BY STATION TYPE

--TRIBUTARY--!----POOL---!----NEAR DAM--!----DISCHARGE--!----OTHER--!----TOTAL--!										
DIVISION	DISTRICT	PROJECT	NSTA	NOBS	NSTA	NOBS	NSTA	NOBS	NSTA	MOTS
7 SUD	26 FORT	WOR 355 LEONISVILLE GARZA LIT	12	2999	10	2092	1	454	1	89
7 SUD	26 FORT	WOR 356 NAVARRO MILLS	0	0	0	0	1	198	0	0
7 SUD	26 FORT	WOR 358 PROCTOR	0	0	0	0	1	175	0	0
7 SUD	26 FORT	WOR 359 SAM HAYBURN (INC GEE)	22	15846	14	8867	2	1829	4	5127
7 SUD	26 FORT	WOR 360 C FISHER (SAM ANGE)	1	83	0	0	1	21	0	0
7 SUD	26 FORT	WOR 361 SOMERVILLE	5	349	6	1903	3	793	1	93
7 SUD	26 FORT	WOR 362 STILLHOUSE MOLLOWILIA	4	316	2	465	5	56	0	15
7 SUD	26 FORT	WOR 363 WACO	2	1368	0	0	1	112	0	9
7 SUD	26 FORT	WOR 364 WHITNEY	9	2307	8	2481	0	21	0	3
7 SUD	26 FORT	WOR 370 B A STEINHAGEN (TOWN)	0	0	0	0	0	1	3054	0
7 SUD	28 ALBUQUERQUE	65 JOHN MARTIN (HASITY)	1	552	0	0	2	459	3	2873
7 SUD	28 ALBUQUERQUE	218 ABQUIU	5	600	3	428	2	815	1	316
7 SUD	28 ALBUQUERQUE	219 CONCHAS	6	3580	10	2335	4	1561	3	2462
7 SUD	28 ALBUQUERQUE	497 TRINIDAD	0	0	0	0	0	0	0	0
8 MDR	29 KANSAS	C 100 RATHBURN	9	708	10	1273	2	921	3	296
8 MDR	29 KANSAS	C 106 KANPOLIS	8	3846	11	963	2	183	3	3488
8 MDR	29 KANSAS	C 108 MELVERN	9	3422	10	2584	10	117	4	4255
8 MDR	29 KANSAS	C 109 MELVERN	4	299	9	1596	2	850	1	3189
8 MDR	29 KANSAS	C 110 PERRY	1	1168	12	1817	2	1358	5	2359
8 MDR	29 KANSAS	C 111 PONDINA	6	607	15	4349	2	226	4	349
8 MDR	29 KANSAS	C 113 TUTLE CREEK	23	6697	8	5277	4	1684	6	5943
8 MDR	29 KANSAS	C 114 WILSON	5	3903	8	4874	3	357	4	598
8 MDR	29 KANSAS	C 194 POME DE TERRE	10	882	17	1286	3	1887	2	190
8 MDR	29 KANSAS	C 194 STOCKTON	11	1000	27	5002	6	3233	4	2503
8 MDR	29 KANSAS	C 207 HARLAN COUNTY	9	6814	5	4201	3	1090	6	1072
8 MDR	30 OMAHA	64 CHERRY GREEN	6	263	6	597	2	195	2	116
8 MDR	30 OMAHA	203 FORT PECK	3	2830	2	973	1	473	3	2035
8 MDR	30 OMAHA	208 OLIVE CREEK	2	40	1	144	1	165	0	0
8 MDR	30 OMAHA	209 BLUESTEM	1	19	2	250	1	263	0	0
8 MDR	30 OMAHA	210 WAGON TRAIN	0	0	2	220	1	224	0	0
8 MDR	30 OMAHA	211 STAGECOACH	0	0	2	206	1	337	0	0
8 MDR	30 OMAHA	212 YANKEE HILL	0	0	3	138	1	168	0	0
8 MDR	30 OMAHA	213 CONESTOGA	1	71	1	197	1	303	0	0
8 MDR	30 OMAHA	214 TWIN M	1	38	1	310	1	136	0	0
8 MDR	30 OMAHA	215 PANNE	2	154	3	281	2	423	1	72
8 MDR	30 OMAHA	216 HOLIES PARK	0	0	3	302	1	184	0	0
8 MDR	30 OMAHA	217 BRANCHED OAK	6	349	5	542	2	437	1	77
8 MDR	30 OMAHA	234 BOHANN-HALEY	3	3171	2	126	3	1608	2	1070
8 MDR	30 OMAHA	235 SAKAMAKEA GARDISON	26	18264	14	3134	3	787	2	738
8 MDR	30 OMAHA	331 SHARPE (BIG BEND)	1	515	1	100	1	408	1	4263
8 MDR	30 OMAHA	332 COLD BROOK	0	0	0	0	0	0	0	0
8 MDR	30 OMAHA	334 FRANCIS CASE (EL BAN	2	2772	1	518	0	763	0	9231
8 MDR	30 OMAHA	335 LEWIS AND CLARKE (GA	1	1030	0	0	1	495	0	1476
8 MDR	30 OMAHA	335 LEWIS AND CLARKE (GA	1	1030	0	0	0	489	2	93

INVENTORY OF WATER QUALITY DATA BY STATION TYPE

DIVISION	DISTRICT	PROJECT	TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
			INSTA	NBNS	NSTA	INSTA	NBNS	NSTA	INSTA	NBNS	NSTA	INSTA	NBNS	NSTA	INSTA	NBNS	NSTA	INSTA		
6 NRD	30 C	336 DAME	12	14990	11	1112	3	2993	1	6341	1	104	28	35	10	0	4	42		
6 NRD	30 OMAHA	415 CHAFFIELD	1	55	1	339	1	135	1	63	0	0	0	0	0	0	0	0		
9 NPD	31 MALLA WA	77 DOWNSHAK	23	1360	4	1068	1	265	5	3820	0	0	33	6453	0	0	0	0		
9 NPD	31 MALLA WA	78 LUCKY PEAK	13	2436	0	0	0	0	0	3	1321	0	0	16	3757	0	0	0		
9 NPD	31 MALLA WA	79 RIRIE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	31 MALLA WA	319 ICE HARBOR	1	70	4	194	2	1950	3	4308	0	0	10	6523	0	0	0	0		
9 NPD	32 SEATTLE	80 ALBENI FALLS (PEND OREILLE)	5	4065	4	2069	0	0	2	700	0	0	11	6834	0	0	0	0		
9 NPD	32 SEATTLE	204 KODANUSA (LIBBY)	11	2356	3	19057	2	6949	1	7903	1	93	25	36358	0	0	0	0		
9 NPD	32 SEATTLE	317 RUFUS WOODS (CHIEF J)	4	3275	0	0	0	0	1	443	0	0	5	37118	0	0	0	0		
9 NPD	32 SEATTLE	364 MUD MOUNTAIN	2	586	0	0	0	0	2	583	0	0	4	1169	0	0	0	0		
9 NPD	32 SEATTLE	385 WYNOOCHEE	0	0	0	0	0	0	2	245	0	0	2	245	0	0	0	0		
9 NPD	32 SEATTLE	386 HOWARD A HANSON	5	284	0	0	0	0	3	895	0	0	8	1178	0	0	0	0		
9 NPD	33 PORTLAND	268 BLUE RIVER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	269 BONNEVILLE	15	13322	0	0	0	0	3	2621	2	2155	0	0	20	18998	0	0		
9 NPD	33 PORTLAND	290 COTTAGE GROVE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	291 COUGAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	292 CELIO (DALES)	2	3506	0	0	0	0	1	85	2	3268	0	0	5	6859	0	0		
9 NPD	33 PORTLAND	293 DETROIT	4	770	0	0	0	0	0	0	0	0	0	0	6	770	0	0		
9 NPD	33 PORTLAND	294 DEAKER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	295 DORENA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	296 FALL CREEK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	297 FERN RIDGE	1	214	0	0	0	0	0	0	0	2	145	0	0	3	359	0		
9 NPD	33 PORTLAND	298 FOSTER	2	261	0	0	0	0	0	0	1	103	0	0	3	364	0	0		
9 NPD	33 PORTLAND	299 GREEN PETER	1	320	0	0	0	0	0	1	95	0	0	2	415	0	0	0		
9 NPD	33 PORTLAND	300 HILLS CREEK	4	292	0	0	0	0	0	0	0	1	60	0	0	7	798	0		
9 NPD	33 PORTLAND	301 JOHN DAY (UMATILLA)	3	3033	0	0	0	0	1	68	0	0	60	0	0	5	3761	0		
9 NPD	33 PORTLAND	302 LOOKOUT POINT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	304 LOST CREEK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
9 NPD	33 PORTLAND	305 BIG CLIFF	0	0	0	0	0	0	0	1	52	0	0	1	52	0	0	0		
10 SPD	34 SACRAMEN	24 BLACK BUTTE	1	1986	0	0	0	0	1	407	1	1488	0	0	3	3879	0	0		
10 SPD	34 SACRAMEN	26 ENGLEBRIGHT	0	0	0	0	0	0	0	0	0	0	0	0	1	260	0	0		
10 SPD	34 SACRAMEN	28 ISABELLA	6	3251	3	158	2	291	2	801	1	313	0	0	13	4501	0	0		
10 SPD	34 SACRAMEN	30 MARTIS CREEK	3	349	2	237	0	0	0	0	0	0	0	0	5	899	0	0		
10 SPD	34 SACRAMEN	32 NEW HOGAN	1	394	2	32	0	39	1	528	0	0	6	993	0	0	0	0		
10 SPD	34 SACRAMEN	33 PINE FLAT	7	4201	0	0	1	20	3	1456	0	0	11	5637	0	0	0	0		
10 SPD	34 SACRAMEN	36 SUCCESS	5	1328	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
10 SPD	34 SACRAMEN	37 KANEAH (TERMINUS)	11	4656	0	0	0	0	20	4	2681	0	0	16	7357	0	0	0		
10 SPD	34 SACRAMEN	41 FOL SOM	10	4349	2	4891	3	9199	4	7105	0	0	24	2594	0	0	0	0		
10 SPD	34 SACRAMEN	43 NEW BULLARDS BAR	1	206	0	0	0	0	0	0	0	0	0	0	1	206	0	0		
10 SPD	34 SACRAMEN	44 CAMANCHE	2	591	0	0	0	0	0	0	0	0	0	0	4	2523	0	0		
10 SPD	34 SACRAMEN	47 CHERYL VALLEY	1	15	2	41	0	0	0	0	0	0	0	0	0	0	0	0		
10 SPD	34 SACRAMEN	48 NEW DOM PERIOD	9	459	6	1035	2	335	3	983	4	215	24	3007	0	0	0	0		

		INVENTORY OF WATER QUALITY DATA BY STATION TYPE																													
		TRIBUTARY					POO					MEAN DAM					DISCHARGE					OTHER					TOTAL				
DIVISION	DISTRICT	PROJECT	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS	NSIA	NHOIS											
-10 SPD	34 SACRAMEN	51 MCCLURE (NEW EACHEOU)	9	3822	6	1020	1	61	5	1072	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5975		
-10 SPD	34 SACRAMEN	54 MILLERON (FRIANT)	3	1376	4	1215	2	916	3	1846	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6353		
-10 SPD	35 SAN FRAN	29 MENDOCINO	3	1937	2	182	2	1339	2	2056	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6614		
-10 SPD	35 SAN FRAN	39 SANTA MARGARITA (SAM)	5	552	2	344	1	238	4	377	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1511		
-10 SPD	36 LOS ANGE	9 ALAMO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-10 SPD	36 LOS ANGE	27 HANSEN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

INVENTORY OF WATER QUALITY DATA BY STATION TYPE
See District Totals ***

DISTRICT	PROJ	TOTAL			TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
		NSIA NOBS																				
1 NEW ENGLAND	22	51	65968	53	18971	40	15379	26	4415	0	0	0	0	0	0	0	0	0	0	170	144833	
2 NEW YORK	3	14	1284	4	154	2	217	4	196	0	0	0	0	0	0	0	0	0	0	24	1851	
3 PHILADELPHIA	3	7	874	6	250	3	505	0	0	0	0	0	0	0	0	0	0	0	0	19	2392	
4 BALTIMORE	9	19	4034	13	1374	6	949	13	3620	4	438	57	10415	0	0	0	0	0	0	0	0	
5 NORFOLK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6 WILMINGTON	3	56	41756	28	12841	7	6304	14	6359	7	542	112	69001	0	0	0	0	0	0	0	0	
7 CHARLESTON	1	7	976	0	0	0	0	0	6	1056	0	0	0	0	0	0	0	0	0	13	2192	
8 SAVANNAH	2	90	11786	24	6434	3	1549	6	3117	29	2227	152	25413	0	0	0	0	0	0	0	0	
9 JACKSONVILLE	1	7	4737	7	2793	2	1744	10	5626	0	0	0	0	0	0	0	0	0	0	26	14900	
10 MOBILE	17	260	67752	100	28113	22	11808	44	32443	5	251	431	140767	0	0	0	0	0	0	0	0	
11 BUFFALO	1	0	323	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	323	
12 DETROIT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13 CHICAGO	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14 ROCK ISLAND	2	11	2940	6	2953	1	143	2	195	0	0	0	0	0	0	0	0	0	0	22	6327	
15 ST PAUL	13	18	6746	21	5026	7	1610	6	516	0	0	0	0	0	0	0	0	0	52	14098		
16 PITTSBURGH	14	143	20025	50	63318	33	20589	36	23887	38	2929	340	130848	0	0	0	0	0	0	0	0	
17 WASHINGTON	28	153	37441	114	54808	51	71190	58	23775	18	7043	454	19557	0	0	0	0	0	0	0	0	
18 LOUISVILLE	15	91	33052	62	99010	18	75187	22	1368	19	1447	212	222064	0	0	0	0	0	0	0	0	
19 NASHVILLE	7	147	24667	97	38563	13	13973	21	8338	16	1240	294	86687	0	0	0	0	0	0	0	0	
20 ST LOUIS	3	37	8605	12	1422	3	409	9	4907	5	336	66	15679	0	0	0	0	0	0	0	0	
21 MEMPHIS	1	6	439	5	462	1	125	1	90	0	0	0	0	0	0	0	0	0	13	1116		
22 VICKSBURG	7	58	13388	21	7214	8	12892	11	2392	10	910	108	36753	0	0	0	0	0	0	0	0	
23 NEW ORLEANS	4	63	51297	23	15143	12	15056	9	1202	6	374	119	94772	0	0	0	0	0	0	0	0	
24 LITTLE ROCK	10	108	36368	93	38939	19	31653	29	19553	6	323	255	126866	0	0	0	0	0	0	0	0	
25 TULSA	35	209	124422	68	16074	26	9337	64	6709	33	2191	420	220033	0	0	0	0	0	0	0	0	
26 FORT WORTH	17	70	24536	55	17216	27	7936	15	1033	18	1428	185	61149	0	0	0	0	0	0	0	0	
27 GALVESTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
28 ALBUQUERQUE	4	12	4737	13	2783	8	2825	7	571	0	0	0	0	0	0	0	0	0	40	16006		
29 KANSAS CITY	11	108	29250	131	23882	30	12570	46	2544	34	2797	347	93923	0	0	0	0	0	0	0	0	
30 OMAHA	20	68	44561	62	19642	31	10883	18	3727	6	592	183	112955	0	0	0	0	0	0	0	0	
31 OMALIA MALLA	4	37	38665	8	1202	3	2215	11	9550	0	0	59	16733	0	0	0	0	0	0	0	0	
32 SEATTLE	6	27	10565	13	2116	2	6939	12	1266	1	93	55	51703	0	0	0	0	0	0	0	0	
33 PORTLAND	17	32	21718	1	217	6	3003	11	6338	0	0	50	31476	0	0	0	0	0	0	0	0	
34 SACRAMENTO	15	61	26984	31	8659	15	11238	34	2275	4	215	153	89441	0	0	0	0	0	0	0	0	
35 SAN FRANCISC	2	8	2489	4	526	3	1977	6	3333	0	0	0	0	0	0	0	0	0	21	7925		
36 LOS ANGELES	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
TOTALS	299	1987	721587	1247	509520	402	349907	554	410109	261	28471	44512023194										

INVENTORY OF WATER QUALITY DATA BY STATION TYPE
***** NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DISTRICT *****

DISTRICT	PROJ	TOTAL			TRIBUTARY			POOL			NEAR DAM			DISCHARGE			OTHER			TOTAL		
		NSIA	NSTA	NOBS	NSIA	NSTA	NOBS	NSIA	NSTA	NOBS	NSIA	NSTA	NOBS	NSIA	NSTA	NOBS	NSIA	NSTA	NOBS			
1 NEW ENGLAND	22	22	22	15	15	11	11	22	22	0	0	0	0	32	22	22	22	22	22			
2 NEW YORK	3	1	1	2	2	1	1	1	1	1	1	1	1	0	0	0	0	0	0			
3 PHILADELPHIA	3	3	3	2	2	2	2	2	2	2	2	2	2	0	0	0	0	0	0			
4 BALTIMORE	9	5	5	6	6	6	6	6	6	6	6	6	6	0	0	0	0	0	0			
5 NORFOLK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
6 WILMINGTON	3	2	2	1	1	1	1	3	3	3	1	1	1	0	0	0	0	0	0			
7 CHARLESTON	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
8 SAVANNAH	2	1	2	2	2	2	2	2	2	2	2	2	2	0	0	0	0	0	0			
9 JACKSONVILLE	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0			
10 MOBILE	17	13	13	12	12	10	10	13	13	13	13	13	13	3	3	3	15	15	15			
11 BUFFALO	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
12 DETROIT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
13 CHICAGO	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0			
14 ROCK ISLAND	2	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0			
15 ST PAUL	13	5	6	6	6	6	6	4	4	4	5	5	5	0	0	0	0	0	0			
16 PITTSBURG	14	14	14	14	14	14	14	14	14	14	14	14	14	6	6	6	6	6	6			
17 HUNTINGTON	28	25	25	22	22	22	22	25	25	25	25	25	25	28	28	28	28	28	28			
18 LOUISVILLE	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15			
19 NASHVILLE	7	7	7	7	7	7	7	7	7	7	7	7	7	0	0	0	0	0	0			
20 ST LOUIS	3	3	3	3	3	3	3	3	3	3	3	3	3	0	0	0	0	0	0			
21 MEMPHIS	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0			
22 VICKSBURG	7	7	7	6	6	6	6	2	2	2	2	2	2	0	0	0	0	0	0			
23 NEW ORLEANS	4	4	4	4	4	4	4	4	4	4	4	4	4	0	0	0	0	0	0			
24 LITTLE ROCK	10	10	10	9	9	9	9	10	10	10	10	10	10	5	5	5	5	5	5			
25 TULSA	35	27	27	18	18	18	18	19	19	19	19	19	19	27	27	27	27	27	27			
26 FORT WORTH	17	11	11	8	8	8	8	16	16	16	16	16	16	10	10	10	10	10	10			
27 GALVESTON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
28 ALBUQUERQUE	4	3	3	2	2	2	2	3	3	3	3	3	3	0	0	0	0	0	0			
29 KANSAS CITY	11	11	11	11	11	11	11	11	11	11	11	11	11	10	10	10	11	11	11			
30 OMAHA	20	15	15	18	18	18	18	20	20	20	20	20	20	11	11	11	20	20	20			
31 WALLA WALLA	4	3	3	2	2	2	2	2	2	2	2	2	2	0	0	0	0	0	0			
32 SEATTLE	6	5	5	2	2	2	2	1	1	1	1	1	1	6	6	6	1	1	6			
33 PORTLAND	17	8	8	1	1	1	1	4	4	4	4	4	4	0	0	0	0	0	0			
34 SACRAMENTO	15	14	14	8	8	8	8	9	9	9	9	9	9	14	14	14	15	15	15			
35 SAN FRANCISC	2	2	2	2	2	2	2	2	2	2	2	2	2	0	0	0	0	0	0			
36 LOS ANGELES	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
TOTALS	299	242	242	201	201	210	210	242	242	77	77	77	77	271	271	271	271	271	271			

Table A5

Inventory of Phosphorus, Chlorophyll-a, and
Secchi Data at Pool Stations

INVENTORY OF TOTAL-P. CHL-A. & SECCHI DATA (POOL STATIONS)

DIVISION	DISTRICT	PROJECT	TOTAL P-----			CHLOROPHYLL A-----			SECCHI DEPTH-----			
			NSTA	NODS DFIRST	DLAST	NSTA	NODS DFIRST	DLAST	NSTA	NODS DFIRST	DLAST	
1 MED	1 NEW	ENGL 42 BUFFUNVILLE	1	710607	710607	0	0	0	0	0	0	
1 MED	1 NEW	ENGL 44 EAST BRIMFIELD	0	0	0	0	0	0	0	0	0	
1 MED	1 NEW	ENGL 47 LITTLEVILLE	0	0	0	0	0	0	0	0	0	
1 MED	1 NEW	ENGL 48 TULLY	22	710628	780821	0	0	0	0	0	0	
1 MED	1 NEW	ENGL 150 WESTVILLE	0	16	710705	780811	0	0	0	0	0	0
1 MED	1 NEW	ENGL 151 BLACK ROCK	0	1	730731	730731	0	0	0	0	0	0
1 MED	1 NEW	ENGL 152 COLEBROOK RIVER	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 155 HANCOCK BROOK	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 156 HOP BROOK	4	35	730830	780831	0	0	0	0	0	0
1 MED	1 NEW	ENGL 158 MANSFIELD HOLLOW	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 159 NORTHFIELD BROOK	0	35	710708	780831	0	0	0	0	0	0
1 MED	1 NEW	ENGL 162 WEST THOMPSON	0	107	730825	780821	0	0	0	0	0	0
1 MED	1 NEW	ENGL 164 EDWARD McDOWELL	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 165 EVERETT	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 166 FRANKLIN FALLS	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 187 HOPKINTON	0	64	760622	780825	0	0	0	0	0	0
1 MED	1 NEW	ENGL 188 OTTER BROOK	0	23	780715	780825	0	0	0	0	0	0
1 MED	1 NEW	ENGL 189 SURRY MOUNTAIN	0	28	710628	780831	0	0	0	0	0	0
1 MED	1 NEW	ENGL 170 BALL MOUNTAIN	1	12	710727	780829	0	0	0	0	0	0
1 MED	1 NEW	ENGL 172 NORTH HARLAND	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 173 NORTH SPRINGFIELD	0	0	0	0	0	0	0	0	0	0
1 MED	1 NEW	ENGL 174 TOWNSHEND	1	20	750826	780829	0	0	0	0	0	0
2 NAD	2 NEW	NEW YORK 171 EAST BARRE	0	0	0	0	0	0	0	0	0	0
2 NAD	2 NEW	NEW YORK 176 WATERBURY	3	24	720602	790501	2	5	720602	721005	4	8 680711 790501
2 NAD	2 NEW	NEW YORK 177 WRIGHTSVILLE	0	0	0	0	0	0	0	0	1	1 690822 890822
2 NAD	3 PHILADEL	307 BELLEVILLE	4	53	720824	731004	4	10	720824	731004	3	9 730417 731004
2 NAD	3 PHILADEL	313 FRANCIS E. WALTER	0	0	0	0	0	0	0	0	0	0
2 NAD	3 PHILADEL	316 PROMPTON	5	43	720510	731205	2	6	720510	720823	0	0
2 NAD	4 BALTIMOR	227 ALBOND	0	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	229 WHITNEY POINT	0	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	306 ALVIN R. BUSH (KEYTLE	0	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	310 CURMENVILLE	1	1740717	740717	0	0	0	0	1	1 740717 740717	
2 NAD	4 BALTIMOR	312 F. J. SAYERS (BLANCHARD	4	25	720831	731002	4	9	720831	731002	3	7 730413 731002
2 NAD	4 BALTIMOR	320 RAYSTOWN	4	76	740514	760721	4	38	740514	760721	4	12 740514 740514
2 NAD	4 BALTIMOR	229 STILLWATER	0	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	398 BLOOMINGTON	0	0	0	0	0	0	0	0	0	0
2 NAD	4 BALTIMOR	401 SAVAGE	0	0	0	0	0	0	0	0	0	0
3 SAD	6 WILMINGT	235 B EVERETT JORDAN (NE	0	0	0	0	0	0	0	0	0	0
3 SAD	6 WILMINGT	372 JOHN H. KERR	25	597	650104	700925	15	52	730407	790730	24	258 730407 790803
3 SAD	6 WILMINGT	375 PHILPOTT	0	0	0	0	0	0	0	0	0	0
3 SAD	7 CHARLES	232 W KERR SCOTT	0	0	0	0	0	0	0	0	0	0

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA (POOL STATIONS)

DIVISION	DISTRICT	PROJECT	TOTAL P			CHLOROPHYLL-A			SECCHI DEPTH		
			NSTA	NBDS	DFIRST	NSTA	NBDS	DFIRST	DLAST	NSTA	NBDS
3 SAD	8 SAVANNAH	74 CLARK HILL	14	288	730623	800110	11	33	730623	731112	12
3 SAD	8 SAVANNAH	330 MARTIN	9	153	700507	770719	2	4	750513	750812	4
3 SAD	9 JACKSON	66 OCKAWAH (RODMAN)	13	252	710826	791211	12	36	730626	731113	12
3 SAD	10 MOBILE	1 CLADBINE	3	33	770924	780298	3	18	770824	771208	3
3 SAD	10 MOBILE	2 COFFEEVILLE (JACKSON	0	34	730607	731031	2	6	730607	731031	0
3 SAD	10 MOBILE	3 MOLT	2	11	770816	780915	1	8	770816	771129	1
3 SAD	10 MOBILE	4 JONES BLUFF	0	2	781005	781005	0	0	0	0	0
3 SAD	10 MOBILE	5 DEMOPOLIS	1	1	780801	780801	0	0	0	0	0
3 SAD	10 MOBILE	6 WARRIOR	1	33	770922	780222	3	17	770822	771207	3
3 SAD	10 MOBILE	7 MILLERS FERRY	3	206	730630	771206	6	18	730630	731114	14
3 SAD	10 MOBILE	8 ALLATOONA	14	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	9 GEORGE W ANDREWS	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	10 SEMINOLE (WOODRUFF)	6	55	730620	741031	6	16	730620	741031	5
3 SAD	10 MOBILE	11 WALTER F GEORGE (EUF	9	67	730619	780327	4	12	730619	731103	9
3 SAD	10 MOBILE	12 WEST POINT	7	269	740716	791016	0	0	0	0	0
3 SAD	10 MOBILE	13 CARTERS	7	126	760914	771213	0	0	0	0	4
3 SAD	10 MOBILE	14 SIDNEY LANIER	18	303	730629	780443	12	36	730629	731110	12
3 SAD	10 MOBILE	15 OTIBBEE	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	16 OTIBBEE L/O	0	0	0	0	0	0	0	0	0
3 SAD	10 MOBILE	17 GAINESVILLE L/O	6	119	721025	731030	4	12	730608	731030	4
3 SAD	10 MOBILE	18 BANKHEAD	0	0	0	0	0	0	0	0	0
5 NCD	11 BUFFALO	228 MT MORRIS	0	0	0	0	0	0	0	0	0
5 NCD	12 ROCK ISL	98 CORALVILLE	0	0	0	0	0	0	0	0	0
5 NCD	12 ROCK ISL	99 RED ROCK	4	129	680412	161130	6	10	740418	740924	6
5 NCD	15 ST PAUL	178 GULL	5	74	720702	780817	3	9	720702	721024	5
5 NCD	15 ST PAUL	179 LAC QUI PARLE	6	179	670713	791001	5	36	780926	790806	5
5 NCD	15 ST PAUL	180 TRAVERSE	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	181 LEECH	5	103	710728	780615	4	12	720711	721021	4
5 NCD	15 ST PAUL	182 DRINELL	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	183 CROSS	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	184 POMEGRAMA	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	185 SANDY	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	186 MINNIBOGISH	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	187 PINE RIVER	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	188 HOMME	0	0	0	0	0	0	0	0	0
5 NCD	15 ST PAUL	189 ASHTABULA (BALDHILL)	5	35	740430	740917	5	12	740430	740917	5
5 NCD	15 ST PAUL	190 EAU GALLE	5	85	780922	790718	5	98	780922	790718	5
4 ORD	16 PITTSBUR	243 BERLIN	12	100	730424	750927	7	23	730424	731008	10
4 ORD	16 PITTSBUR	252 MICHAEL J KIRMAN	4	31	730524	770829	0	0	0	0	5
4 ORD	16 PITTSBUR	254 MOSQUITO CREEK	11	88	730421	760924	2	6	730421	731009	10

DIVISION	DISTRICT	PROJECT	POOL STATIONS			TOTAL P.			CHLOROPHYLL-A			SECCHI DEPTH		
			NSTA	NBDS	DFIRST	DLAST	NSTA	NBDS	DFIRST	DLAST	NSTA	NBDS	DFIRST	DLAST
-4 ORD	16 PITTSBUR	308 CONEMAUGH RIVER	2	5	730702	730702	0	0	0	0	1	4	730702	750505
4 ORD	16 PITTSBUR	309 CRODED CREEK	2	16	730717	740612	0	0	0	0	3	8	730717	740612
-4 ORD	16 PITTSBUR	311 EAST BRANCH CLARION	2	40	730820	760922	3	128	740603	741023	6	8	730820	760716
-4 ORD	16 PITTSBUR	314 LOY ALHANNA	1	3	730703	730703	0	0	0	0	2	4	730703	750506
4 ORD	16 PITTSBUR	315 MAHONING CREEK	1	9	730719	740613	0	0	0	0	2	2	740613	740613
-4 ORD	16 PITTSBUR	317 SHENANGO RIVER	10	217	720523	770816	3	9	730420	731008	13	39	730420	770609
-4 ORD	16 PITTSBUR	318 TIONESTA	3	19	730621	750714	0	0	0	0	3	5	740702	770714
4 ORD	16 PITTSBUR	319 YOUNGHEM RIVER	5	111	730508	750618	0	0	0	0	6	57	730815	770618
-4 ORD	16 PITTSBUR	322 WOODCOCK	4	305	740528	771019	0	0	0	0	4	12	750814	770614
-4 ORD	16 PITTSBUR	328 ALL ENGLAND (MINZUA)	15	393	660105	780726	4	12	730420	731005	16	15	730820	770604
4 ORD	16 PITTSBUR	393 TYGART	9	255	730423	780718	3	9	730423	731005	12	85	730423	770925
-4 ORD	17 HUNTINGT	123 DEMEY	4	196	740529	780721	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	124 FISHRAP	6	120	750312	780522	0	0	0	0	0	0	0	0
-4 ORD	17 HUNTINGT	125 GRISON L/O	5	130	740705	780522	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	127 GREENUP L/O	0	0	0	0	0	0	0	0	0	0	0	0
-4 ORD	17 HUNTINGT	239 PAINT CREEK	5	120	741112	780726	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	241 ATWOOD	9	93	730420	771005	4	12	730420	731008	5	4	730420	750905
-4 ORD	17 HUNTINGT	242 BEACH CITY	2	18	730420	760932	1	1	730420	731006	3	3	730420	741006
4 ORD	17 HUNTINGT	243 CHARLES MILL	5	36	730420	780808	3	9	730420	731006	4	11	730420	780808
-4 ORD	17 HUNTINGT	246 CLENDENING	2	9	740820	780817	0	0	0	0	0	2	760427	780903
4 ORD	17 HUNTINGT	247 DEER CREEK	7	118	730428	780724	3	9	730428	731010	4	10	730428	750912
-4 ORD	17 HUNTINGT	248 DELAWARE	6	85	730426	780819	3	9	730426	731010	3	10	730426	751010
4 ORD	17 HUNTINGT	249 DILLON	6	93	730426	770912	3	9	730426	731008	4	10	730426	770812
-4 ORD	17 HUNTINGT	251 LEESVILLE	2	32	740918	760931	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	255 PRIDMONT	2	78	730730	771005	0	0	0	0	0	0	0	0
-4 ORD	17 HUNTINGT	256 PLEASANT HILL	2	18	730420	741006	2	6	730420	731006	2	6	730420	741006
4 ORD	17 HUNTINGT	257 SENECAVILLE	2	16	740820	760817	0	0	0	0	0	0	0	0
-4 ORD	17 HUNTINGT	258 TAPPAN	7	81	730421	780921	3	9	730421	731006	4	11	730421	750902
4 ORD	17 HUNTINGT	259 BURR OAK TOM JENKINS	1	21	740823	751111	0	0	0	0	0	0	0	0
-4 ORD	17 HUNTINGT	261 WILLIS CREEK	2	26	740521	771006	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	313 JOHN W FL ANNAGAN	10	195	730405	791101	5	1	730405	730927	5	10	730405	750927
-4 ORD	17 HUNTINGT	317 NORTH ORK OF PEGNO	5	54	750614	780614	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	319 BLUESTONE	6	140	730403	780711	4	10	730403	730926	4	10	730403	750926
-4 ORD	17 HUNTINGT	319 EAST LYNN	5	211	730213	780804	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	319 SUMMERSVILLE	6	134	730403	780109	4	12	730403	730928	5	11	730403	750928
-4 ORD	17 HUNTINGT	319 SUTTON	6	123	740320	780712	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	319 WINEFIELD	6	0	0	0	0	0	0	0	0	0	0	0
-4 ORD	17 HUNTINGT	405 MOWICANVILLE	4	108	750615	780802	0	0	0	0	0	0	0	0
4 ORD	17 HUNTINGT	416 ALUM CREEK	4	0	0	0	0	0	0	0	0	0	0	0
-4 ORD	18 LOUISVIL	90 CAGLES MILL	3	152	710722	780505	3	39	730620	771121	3	117	710722	771121
4 ORD	18 LOUISVIL	91 MINTINGTON	2	102	711110	771108	2	15	730510	770720	2	56	710713	771108
-4 ORD	18 LOUISVIL	92 MISSISSIMA	6	159	710630	780412	6	31	730503	770721	6	75	730503	771109
-4 ORD	18 LOUISVIL	93 MORUE	3	254	710721	780418	3	57	730510	770822	3	135	710603	771122
-4 ORD	18 LOUISVIL	94 SALAMONIE	3	127	711005	780411	3	16	740625	770512	3	95	710712	771108

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA (POOL STATIONS)

DIVISION	DISTRICT	PROJECT	TOTAL P			CHLOROPHYLL-A			SECCHI DEPTH							
			NSTA	NODES	DLAST	NSTA	NODES	DLAST	NSTA	NODES	DLAST					
- 4 ORD	18 LOUISVIL	95 C M HARDEN (MANSTIEL	3	120	711027	760404	3	17	760427	770802	3	109	710707	771122		
- 4 ORD	18 LOUISVIL	97 BROOKVILLE	2	190	710328	711116	3	32	740605	770921	3	77	740328	771116		
- 4 ORD	18 LOUISVIL	120 BARREN RIVER	14	917	710326	760329	14	71	730518	770907	20	—	284	710615	771101	
- 4 ORD	18 LOUISVIL	121 BUCKHORN	2	125	720816	711027	4	18	731030	770901	5	146	710608	771027		
- 4 ORD	18 LOUISVIL	126 GREEN RIVER	4	160	701012	780420	3	40	730918	770913	5	179	710602	771115		
- 4 ORD	18 LOUISVIL	128 NOLIN RIVER	1	165	730319	780405	3	34	740418	770927	5	173	710617	771108		
- 4 ORD	18 LOUISVIL	139 ROUGH RIVER	1	158	730316	780316	4	43	710234	770920	6	194	710720	771028		
- 4 ORD	18 LOUISVIL	134 CAVE RUN	1	112	740510	780410	2	23	740710	770921	3	55	740328	771020		
- 4 ORD	18 LOUISVIL	260 WEST FORK OF MILL CRK	1	103	740429	780405	1	6	740906	770918	1	27	740710	771121		
- 4 ORD	18 LOUISVIL	263 CLARENCE J BROWN	3	185	740326	771117	2	—	16	740504	770927	3	51	740424	771117	
- 4 ORD	19 MASHVILL	119 BARKLEY	16	182	711014	780726	15	—	34	730516	780726	15	—	35	711014	780726
- 4 ORD	19 MASHVILL	122 CUMBERLAND (WOLF CREE	11	191	710714	770803	9	27	730529	780603	11	—	60	710427	780803	
- 4 ORD	19 MASHVILL	337 CENTER HILL	6	152	710728	780406	4	20	760406	760406	6	91	710527	760406		
- 4 ORD	19 MASHVILL	338 CHEATHAM	14	139	710708	790821	9	31	730521	780119	12	—	38	710708	780719	
- 4 ORD	19 MASHVILL	340 J PERRY PRIEST	17	706	710722	780929	16	407	730521	780112	17	391	710225	780112		
- 4 ORD	19 MASHVILL	342 OLD HICKORY	12	163	710707	790716	8	53	730522	780111	12	57	710707	780711		
- 4 ORD	19 MASHVILL	343 DALE MULLON	15	222	710712	770802	10	29	730518	770802	16	106	710429	770802		
6 LNDV	20 ST LOUIS	81 CARLYLE	3	33	730509	731018	3	9	730508	731018	3	—	—	—	—	
6 LNDV	20 ST LOUIS	87 SHELBYVILLE	7	29	711020	731018	6	18	730508	731018	6	18	730508	731018		
6 LNDV	20 ST LOUIS	88 REND	5	41	730508	730626	4	12	730508	731019	4	12	730508	731019		
6 LNDV	21 MEMPHIS	196 WAPPAPOLLO	4	45	740409	741008	4	—	12	740409	.741008	4	—	12	740409	.741008
6 LNDV	22 VICKSBUR	14 DE GRAY	6	87	740325	741017	6	20	720505	741017	6	20	720505	741017		
6 LNDV	22 VICKSBUR	18 GRESHON (NARROWS)	0	0	0	0	0	0	0	0	0	0	0	0	0	
6 LNDV	22 VICKSBUR	19 QUACHITA (BLAKELY M	7	114	740378	760602	0	18	740325	741018	6	18	740325	741018		
6 LNDV	22 VICKSBUR	188 ARKAUTLA	3	31	730613	731101	3	9	730613	731101	3	9	730613	731101		
6 LNDV	22 VICKSBUR	189 ENID	3	40	730613	731102	2	—	9	730613	731102	3	9	730613	731102	
6 LNDV	22 VICKSBUR	190 GRENADA	3	40	730613	731102	3	9	730613	731102	3	9	730613	731102		
6 LNDV	22 VICKSBUR	192 SARDIS	4	53	730613	731101	4	12	730613	731101	4	12	730613	731101		
6 LNDV	23 NEW ORL	38 WALLACE	0	0	0	0	0	0	0	0	0	0	0	0		
6 LNDV	23 NEW ORL	352 LAKE O THE PINES/FAT	10	178	691204	790803	4	16	740322	741108	9	42	740322	790815		
6 LNDV	23 NEW ORL	353 TEXARKANA/WRIGHT PAT	11	160	691204	790803	4	16	740322	741108	2	44	740322	790809		
6 LNDV	23 NEW ORL	413 CADDO	7	40	740323	750728	6	24	740323	741111	6	24	740323	741111		
7 SWD	24 LITTLE R	11 J BEAVER	10	231	721003	780928	6	24	740403	741010	13	113	740403	781205		
7 SWD	24 LITTLE R	12 BLUE MOUNTAIN	6	63	720817	780926	2	6	740328	741018	7	42	740328	780926		
7 SWD	24 LITTLE R	13 BULL SHOALS	13	316	670507	781003	8	32	740406	741015	20	141	740406	781206		
7 SWD	24 LITTLE R	16 GREERS FERRY	10	309	740321	791204	4	16	740322	741017	12	180	740322	791105		
7 SWD	24 LITTLE R	17 DARDENILLE	1	9	720918	721002	0	0	0	0	0	0	0	0		
7 SWD	24 LITTLE R	21 NIROD	11	86	710004	780926	2	6	740327	741018	6	53	740327	780926		
7 SWD	24 LITTLE R	22 MOREOLA	10	242	610305	780928	1	28	740305	.741010	14	114	740405	.781206		
7 SWD	24 LITTLE R	23 OZARK	4	49	720830	720913	0	0	0	0	0	0	0	0		

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA (POOL STATIONS)

DIVISION	DISTRICT	PROJECT	TOTAL P			CHLOROPHYLL-A			SECCHI DEPTH			
			NOBS	OF FIRST	OLAST	NOBS	OF FIRST	OLAST	NOBS	OF FIRST	OLAST	
7 SND	24	LITTLE R 193 CLEARTWATER	5	41	740409	781005	3	9	740409	741008	7	19
7 SND	24	LITTLE R 200 TABLE ROCK	12	311	740405	781004	9	36	740405	741011	16	16
7 SND	25	TUSA 20 MILLWOOD	11	57	740904	741017	3	9	740355	741017	3	9
7 SND	25	TUSA 102 COUNCIL GROVE	3	18	740411	741002	3	9	740411	741002	3	9
7 SND	25	TUSA 103 EK CITY	2	10	740410	751003	2	4	740410	741003	2	5
7 SND	25	TUSA 104 FALL RIVER	2	13	740410	741002	2	6	740410	741002	2	6
7 SND	25	TUSA 105 JOHN REDMOND	2	11	740411	741001	2	6	740411	741001	2	6
7 SND	25	TUSA 107 MARION	2	21	740412	741002	2	6	740412	741002	2	6
7 SND	25	TUSA 112 TORONTO	2	12	740410	741002	2	6	740410	741002	2	6
7 SND	25	TUSA 264 BROKEN BOW	6	30	770614	770808	0	0	0	0	0	0
7 SND	25	TUSA 265 BROKEN CANYON	42	621002	751015	0	0	0	0	0	0	
7 SND	25	TUSA 266 CHOUTEAU	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 267 EUAULA	17	249	740401	760830	9	36	740401	741032	10	38
7 SND	25	TUSA 268 FOR T GIBSON	6	55	750301	750519	0	0	0	0	0	0
7 SND	25	TUSA 269 FORT SUPPLY	2	14	740329	741024	2	6	740359	741024	2	6
7 SND	25	TUSA 270 GREAT SALT PLAINS	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 271 HE BURN	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 272 HUIAH	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 273 KEYSTONE	12	219	650301	741023	11	33	740402	741023	11	33
7 SND	25	TUSA 274 NEW GRAHAM	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 275 OLOGAH	10	97	740402	741021	10	24	740402	741021	10	24
7 SND	25	TUSA 276 PINE CREEK	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 277 ROBERT S MERR	3	151	730231	781204	0	0	0	0	0	0
7 SND	25	TUSA 278 TENKILLE FERRY	9	114	740403	750808	0	16	740403	741021	4	16
7 SND	25	TUSA 279 WO MATO	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 280 WEBBERS FALLS	2	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 281 WISTER	6	47	740328	770803	2	8	740328	741021	2	8
7 SND	25	TUSA 282 CLAYTON	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 283 KAM	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 284 COPIN	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 285 HUGO	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 286 OPTIMA	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 287 MAURITA	0	0	0	0	0	0	0	0	0	
7 SND	25	TUSA 348 TEOMA (DENNISON)	7	95	740309	741031	7	27	740309	741031	7	28
7 SND	25	TUSA 357 PAT MAYSE	1	1831203	651203	0	0	0	0	0	0	
7 SND	25	TUSA 370 KEMP	4	39	740304	741028	4	12	740304	741028	4	12
7 SND	25	TUSA 402 GILLHAM	0	0	0	0	0	0	0	0	0	
7 SND	26	FORT MOR 344 BARDWELL	1	651202	651202	0	0	0	0	0	0	
7 SND	26	FORT MOR 345 BELTON(BELL)	9	189	740313	750803	4	18	740313	741010	9	43
7 SND	26	FORT MOR 346 BENBROOK	1	200114	700114	0	0	0	0	0	0	
7 SND	26	FORT MOR 347 CANTON	5	80	740313	760909	4	16	740313	741105	5	19
7 SND	26	FORT MOR 349 GRAPEVINE	1	1	651201	651201	0	0	0	0	0	0
7 SND	26	FORT MOR 351 HOODS CREEK	0	0	0	0	0	0	0	0	0	
7 SND	26	FORT MOR 354 LAVON	8	149	700112	750723	7	66	720511	790723	7	47

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA (POOL STATIONS)

DIVISION	DISTRICT	PROJECT	TOTAL			CHLOROPHYLL A			SECCHI DEPTH		
			NSTA	NBDS	DFIRST	OLAST	NSTA	NBDS	DFIRST	OLAST	NSTA
7 SMD	56 FORT NOR 355 LÉVISVILLE (GARZA LIT)	12	201	691201	790807	6	23	740311	741031	12	52
7 SMD	26 FORT NOR 356 NAVARRO MILLS	1	1	691202	691202	0	0	0	0	0	0
7 SMD	26 FORT NOR 358 PROCTOR	0	0	0	0	0	0	0	0	0	0
7 SMD	26 FORT NOR 359 SAM RAYBURN (MC GEE)	16	486	651101	790819	6	74	720202	790606	15	63
7 SMD	26 FORT NOR 360 O.C. FISHER (SAN ANGE)	1	10	740304	741029	1	4	740304	741029	1	4
7 SMD	26 FORT NOR 361 SOMERVILLE	9	129	70303	790803	3	11	740314	741106	9	37
7 SMD	26 FORT NOR 362 STILLHOUSE HOLLOW (LA)	3	50	740313	741104	3	12	740313	741104	3	12
7 SMD	26 FORT NOR 363 WACO	0	0	0	0	0	0	0	0	0	0
7 SMD	26 FORT NOR 364 WHITNEY	10	210	740308	790810	4	16	740308	741104	10	48
7 SMD	26 FORT NOR 371 A STEINHAGEN (TOWN)	0	0	0	0	0	0	0	0	0	0
7 SMD	28 ALBUQUERQUE 65 JOHN MARTIN (HASTY)	2	38	750722	790301	2	6	760505	780438	5	5
7 SMD	28 ALBUQUERQUE 218 ABIGUOU CONCHAS	3	32	750501	790814	2	6	760505	780438	5	51
7 SMD	28 ALBUQUERQUE 219 CONCHAS	7	97	750422	790627	6	20	750501	780627	10	65
7 SMD	28 ALBUQUERQUE 407 TRINIDAD	0	0	0	0	0	0	0	0	0	0
8 MRD	29 KANSAS C 100 RAYBURN	12	72	710512	790817	6	18	740419	740924	10	31
8 MRD	29 KANSAS C 106 KANPOLIS	9	54	690321	790809	8	17	740412	770899	3	13
8 MRD	29 KANSAS C 108 MILFORD	10	89	690325	790913	4	12	740411	741003	6	22
8 MRD	29 KANSAS C 109 MELVERN	10	89	730604	790909	3	9	740412	741001	3	9
8 MRD	29 KANSAS C 110 PERRY	13	143	670110	790711	5	14	740412	741004	13	40
8 MRD	29 KANSAS C 111 PONOMA	17	10	690223	790731	13	76	740411	780731	6	20
8 MRD	29 KANSAS C 113 TUTTLE CREEK	9	62	690422	790914	3	9	740411	741002	5	20
8 MRD	29 KANSAS C 114 WILSON	10	162	680217	770901	3	9	740412	741001	4	31
8 MRD	29 KANSAS C 194 PORRME DE TERRE	16	140	680429	790802	5	14	740408	741008	15	31
8 MRD	29 KANSAS C 195 STOCKTON	19	203	710407	790624	5	15	740408	741008	8	25
8 MRD	29 KANSAS C 207 HARLAN COUNTY	8	75	690402	790731	3	9	740416	740930	4	18
8 MRD	30 OMAHA 64 CHEYRE CREEK	7	49	750507	790809	3	9	750507	751009	7	23
8 MRD	30 OMAHA 203 FORT PECK	3	90	680508	790821	0	0	0	0	2	27
8 MRD	30 OMAHA 208 OLIVE CREEK	2	1	740408	770720	0	0	0	0	1	9
8 MRD	30 OMAHA 209 BLUESTEM	3	30	730624	790830	0	0	0	0	2	19
8 MRD	30 OMAHA 210 BAGG TRAIL	3	24	740523	790418	0	0	0	0	2	16
8 MRD	30 OMAHA 211 STAGECOACH	3	15	740925	790720	0	0	0	0	2	17
8 MRD	30 OMAHA 212 YANKEE HILL	4	16	730425	770707	0	0	0	0	3	11
8 MRD	30 OMAHA 213 CONESTOGA	2	21	740916	790830	0	0	0	0	1	13
8 MRD	30 OMAHA 214 TWIN	2	16	740916	790830	0	0	0	0	1	13
8 MRD	30 OMAHA 215 PAMEE	5	36	720412	770831	2	6	740411	740926	4	21
8 MRD	30 OMAHA 216 HOLMES PARK	4	21	740917	770707	0	0	0	0	1	16
8 MRD	30 OMAHA 217 BRANCHED OAK	7	46	740417	770831	3	9	740417	740526	6	28
8 MRD	30 OMAHA 234 BOOMAN-HALEY	4	86	710517	770811	0	0	0	0	3	12
8 MRD	30 OMAHA 235 SAKAKANE (GARRISON)	16	252	680104	790119	10	30	740430	740917	13	54
8 MRD	30 OMAHA 331 SHARP (BIG BEND)	2	31	680502	790816	0	0	0	0	1	15
8 MRD	30 OMAHA 332 COLD BROOK	1	45	710619	770706	0	0	0	0	1	26
8 MRD	30 OMAHA 334 FRANCIS CASE (FT. RAN)	4	58	680508	790817	0	0	0	0	2	26
8 MRD	30 OMAHA 335 LEWIS AND CLARKE (GA)	2	25	680501	790819	0	0	0	0	1	16

INVENTORY OF TOTAL-P. CHL-A. & SECCHI DATA (POOL STATIONS)

DIVISION	DISTRICT	PROJECT	TOTAL			CHLOROPHYLL A			SECCHI DEPTH		
			NSIA	NOBS OF 1ST	LAST	NSIA	NOBS OF 1ST	LAST	NSIA	NOBS OF 1ST	LAST
6 NPD	30	OMAHA	336 DANE	5	181	680515	781109	0	0	0	3
6 NPD	30	OMAHA	415 CHAFFIELD	2	18	710901	780809	0	0	2	1
9 NPD	31	MALLA MA	77 MORSNA	5	113	750407	750911	5	15	750607	750911
9 NPD	31	MALLA MA	78 LUCKY PEAK	0	0	0	0	0	0	0	0
9 NPD	31	MALLA MA	79 RIELE	0	0	0	0	0	0	0	0
9 NPD	31	MALLA MA	379 ICE HARBOR	6	110	680104	750730	0	0	0	5
9 NPD	32	SEATTLE	80 ALBERT FALLS (PENQ A)	2	68	240619	280516	2	58	240619	280518
9 NPD	32	SEATTLE	204 KOKANUSA LIBBY	11	878	671011	781025	10	497	740611	780509
9 NPD	32	SEATTLE	377 RUFUS WOODS (CHIEF J)	0	0	0	0	0	0	0	0
9 NPD	32	SEATTLE	384 MUD MOUNTAIN	0	0	0	0	0	0	0	0
9 NPD	3-	E 385 MYODOCHEE	0	0	0	0	0	0	0	0	0
9 NPD	-	E 386 HOWARD A MANSON	0	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	288 BLUE RIVER	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	289 BONNEVILLE	2	113	680407	780927	0	0	0	0
9 NPD	33	PORT LAND	290 COTTAGE GROVE	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	291 COUGAR	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	292 CELLO (OALLES)	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	293 DETROIT	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	294 DEETER	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	295 DORENA	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	296 FALL CREEK	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	297 FEIN RIDGE	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	298 FOSTER	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	299 GREEN PETER	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	300 HILLS CREEK	2	39	750379	751030	2	6	750328	751030
9 NPD	33	PORT LAND	301 JOHN DAY (UMATILLA)	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	302 LOOKOUT POINT	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	304 LOST CREEK	0	0	0	0	0	0	0	0
9 NPD	33	PORT LAND	305 BIG CLIFF	0	0	0	0	0	0	0	0
10 SPD	34	SACRAMEN	24 BLACK BUTTE	1	28	780524	791018	0	0	0	0
10 SPD	34	SACRAMEN	26 ENGLEBRIGHT	0	0	0	0	0	0	0	0
10 SPD	34	SACRAMEN	28 ISABELLA	0	14	210603	380710	0	0	1	190310 290710
10 SPD	34	SACRAMEN	30 MARTIS CREEK	0	15	730816	790523	0	0	0	0
10 SPD	34	SACRAMEN	32 NEW MOGAN	4	711102	770421	0	0	0	0	0
10 SPD	34	SACRAMEN	33 PINE FLAT	1	1	221018	221108	0	0	0	0
10 SPD	34	SACRAMEN	36 SUCCESS	0	0	0	0	0	0	0	0
10 SPD	34	SACRAMEN	37 KAREAH (TERMINUS)	0	1	770920	770920	0	0	0	0
10 SPD	34	SACRAMEN	41 FOLSOM	10	44	210413	380808	0	0	12	880708 291012
10 SPD	34	SACRAMEN	43 NEW BULLARDS BAR	0	0	0	0	0	0	0	0
10 SPD	34	SACRAMEN	44 CANACHE	0	0	0	0	0	0	0	0
10 SPD	34	SACRAMEN	42 CHERRY VALLEY	2	4	261046	270224	0	0	0	0
10 SPD	34	SACRAMEN	48 NEW DON PEDRO	0	117	780311	780814	5	14	750311	751113

INVENTORY OF TOTAL-P, CHL-A, & SECCHI DATA [POOL STATIONS]

DIVISION	DISTRICT	PROJECT	TOTAL P			CHLOROPHYLL-A			SECCHI DEPTH			
			NSTA	NOBS	DFIRST	NSTA	NOBS	DLAST	NSTA	NOBS	DFIRST	
10 SPD	34	SACRAMEN	51	MCCLURE (NEW EXCHEQU	7	26	750710	770913	0	0	0	8 781109 770809
10 SPD	34	SACRAMEN	54	MILLERTON (FRIANT)	6	58	770616	790821	3	0	0	3 780622 790821
10 SPD	35	SAN FRAN	29	MEDOCINO	4	55	750312	780606	3	7 750312 751111	2	4 750312 750626
10 SPD	35	SAN FRAN	39	SANTA MARGARITA (SAL	3	51	750310	751112	3	9 750310 751112	3	3 750625 750625
10 SPD	36	LOS ANGE	9	ALAMO	0	0	0	0	0	0	0	
10 SPD	36	LOS ANGE	27	HANSEN	0	0	0	0	0	0	0	

INVENTORY OF TOTAL P. CHL-A. & SECCHI DATA (POOL STATIONS)

DISTRICT	TOTAL		P.		CHLOROPHYLL A		SECCI		DEPTH	
	PROJ	NSSTA	NOBS DFIRST	DLAST	NSSTA	NOBS DFIRST	DLAST	NSSTA	NOBS DFIRST	
1 NEW ENGLAND	22	29	382	710607	780831	0	0	0	0	790501
2 NEW YORK	3	3	24	720602	790501	2	5	720602	721005	3
3 PHILADELPHIA	3	9	96	720510	731205	6	16	720510	731004	3
4 BALTIMORE	9	9	102	720331	760721	8	47	720331	760721	8
5 NORFOLK	0	0	0	0	0	0	0	0	0	0
6 WASHINGTON	2	25	587	650104	790925	15	52	730407	790730	24
7 CHARLESTON	0	0	0	0	0	0	0	0	0	0
8 SAVANNAH	2	27	506	710826	800110	23	69	730653	731113	24
9 JACKSONVILLE	1	9	153	700507	770719	2	4	750513	750812	4
10 MOBILE	17	60	1299	721025	791016	41	141	730307	771208	84
11 BUFFALO	1	0	0	0	0	0	0	0	0	0
12 DETROIT	0	0	0	0	0	0	0	0	0	0
13 CHICAGO	0	0	0	0	0	0	0	0	0	0
14 ROCK ISLAND	2	4	159	680412	761130	6	16	740418	740924	6
15 ST PAUL	14	26	476	670713	791001	22	167	720102	790006	24
16 PITTSBURGH	14	83	1586	660105	780726	22	183	730420	741024	91
17 HUNTINGTON	28	115	2344	730213	791101	35	97	730303	731010	46
18 LOUISVILLE	15	55	2448	701012	780420	62	460	711014	770927	77
19 NASHVILLE	7	91	1760	710707	790821	71	691	730516	781012	89
20 ST LOUIS	3	15	153	710326	790624	13	39	730306	731019	13
21 MEMPHIS	1	4	45	740409	741009	4	12	740409	741008	4
22 VICKSBURG	7	26	360	730612	760602	25	27	720505	741018	25
23 NEW ORLEANS	4	28	318	661264	790685	14	56	740322	741111	24
24 LITTLE ROCK	10	62	1657	620306	791200	41	157	740327	741018	97
25 TULSA	35	108	1295	650301	791204	65	208	740304	741031	66
26 PORT WOOD	17	77	1566	651107	780815	40	238	720302	790723	71
27 GALVESTON	0	0	0	0	0	0	0	0	0	0
28 ALBUQUERQUE	0	12	167	750422	780814	0	0	750501	780327	15
29 KANSAS CITY	11	133	1166	610306	760603	58	26	740406	780331	77
30 OMAHA	20	61	1067	651004	761109	18	54	740417	751009	61
31 MALLA MALLA	4	11	223	650104	780911	5	15	750407	750911	10
32 SEATTLE	8	13	946	671011	761025	12	563	740611	780509	6
33 PORTLAND	17	4	152	650407	780927	2	6	750308	751030	2
34 SACRAMENTO	15	46	709	710412	791018	5	14	750311	751113	16
35 SAN FRANCISC	2	7	106	730310	780606	6	16	750310	751112	5
36 LOS ANGELES	2	0	0	0	0	0	0	0	0	0
TOTALS	299	1218	21834	650104	800110	631	3535	711024	790808	977

INVENTORY OF TOTAL P-CHI-A- & SECCHI DATA (POD STATIONS)
(# NUMBER OF PROJECTS WITH ONE OR MORE ENTRY BY DISTRICT ***

DISTRICT	TOTAL P- PROJ		TOTAL NSTA		NSTA NOBS OF FIRST		PHOTOPHYLL-A NSTA		SECCHI DEPTH NSTA NOBS OF FIRST		OLAS!	
	PROJ	NSTA	NSTA	NSTA	DIASST	NSTA	DIASST	NSTA	DIASST	NSTA	DIASST	OLAS!
1 NEW ENGLAND	22	12	12	12	12	0	0	0	0	0	0	0
2 NEW YORK	3	1	1	1	1	0	0	0	0	0	0	0
3 PHILADELPHIA	3	2	2	2	2	0	0	0	0	0	0	0
4 BALTIMORE	3	3	3	3	3	0	0	0	0	0	0	0
5 NORFOLK	0	0	0	0	0	0	0	0	0	0	0	0
6 WILMINGTON	3	1	0	0	0	0	0	0	0	0	0	0
7 CHARLESTON	1	0	0	0	0	0	0	0	0	0	0	0
8 SAVANNAH	2	2	2	2	2	0	0	0	0	0	0	0
9 JACKSONVILLE	1	1	1	1	1	0	0	0	0	0	0	0
10 MOBILE	7	13	13	13	13	0	0	0	0	0	0	0
11 BUFFALO	1	0	0	0	0	0	0	0	0	0	0	0
12 DETROIT	0	0	0	0	0	0	0	0	0	0	0	0
13 CHICAGO	0	0	0	0	0	0	0	0	0	0	0	0
14 ROCK ISLAND	2	1	1	1	1	0	0	0	0	0	0	0
15 ST PAUL	13	5	5	5	5	0	0	0	0	0	0	0
16 PITTSBURGH	14	14	14	14	14	0	0	0	0	0	0	0
17 HUNTINGTON	26	25	25	25	25	0	0	0	0	0	0	0
18 MUSKOGEE	15	15	15	15	15	0	0	0	0	0	0	0
19 NASHVILLE	15	7	7	7	7	0	0	0	0	0	0	0
20 ST LOUIS	3	3	3	3	3	0	0	0	0	0	0	0
21 MEMPHIS	1	1	1	1	1	0	0	0	0	0	0	0
22 VICKSBURG	7	6	6	6	6	0	0	0	0	0	0	0
23 NEW ORLEANS	4	3	3	3	3	0	0	0	0	0	0	0
24 LITTLE ROCK	10	10	10	10	10	0	0	0	0	0	0	0
25 TULSA	35	20	20	20	20	0	0	0	0	0	0	0
26 FORT WORTH	17	13	13	13	13	0	0	0	0	0	0	0
27 GALVESTON	0	0	0	0	0	0	0	0	0	0	0	0
28 ALBUQUERQUE	4	3	3	3	3	0	0	0	0	0	0	0
29 KANSAS CITY	11	11	11	11	11	0	0	0	0	0	0	0
30 OMAHA	20	20	20	20	20	0	0	0	0	0	0	0
31 WALLA WALLA	2	2	2	2	2	0	0	0	0	0	0	0
32 SEATTLE	6	2	2	2	2	0	0	0	0	0	0	0
33 PORTLAND	17	2	2	2	2	0	0	0	0	0	0	0
34 SACRAMENTO	15	11	11	11	11	0	0	0	0	0	0	0
35 SAN FRANCISC	2	2	2	2	2	0	0	0	0	0	0	0
36 LOS ANGELES	2	0	0	0	0	0	0	0	0	0	0	0
TOTALS	299	211	211	211	211	0	0	0	0	0	0	0
						132	132	132	132	132	132	132
						171	171	171	171	171	171	171

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Walker, William W.

Empirical methods for predicting eutrophication in impoundments : Report 1 : Phase I, data base development / by William W. Walker, Jr. (Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station). -- Vicksburg, Miss. : The Station ; Springfield, Va. : available from NTIS, [1981].

153, 55 p. : ill. ; 27 cm. -- (Technical report / U.S. Army Engineer Waterways Experiment Station ; E-81-9).

Cover title.

"May 1981."

"Prepared for Office, Chief of Engineers, U.S. Army, under Contract DACW 39-78-0053, EQWOS Work Unit IE."

"Monitored by Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station."

Bibliography: p. 151-153.

1. Computer programs. 2. Eutrophication. 3. Mathematical models. 4. Prediction theory. 5. Reservoirs.

Walker, William W.

Empirical methods for predicting eutrophication : ... 1981.
(Card 2)

I. United States. Army. Corps of Engineers. Office of the Chief of Engineers. II. U.S. Army Engineer Waterways Experiment Station. Environmental Laboratory. III. Title IV. Series: Technical report (U.S. Army Engineer Waterways Experiment Station) ; E-81-9.
TA7.W34 no.E-81-9

AD-A101 553

EMPIRICAL METHODS FOR PREDICTING EUTROPHICATION IN
IMPOUNDMENTS REPORT 1. (U) WALKER (WILLIAM W) JR
CONCORD MA W W WALKER MAY 81 WES-TR-E-81-9-1

44

UNCLASSIFIED

DACW39-78-C-0053

F/G 13/2

NL

END

FILED

016

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE ARMY
WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS
P.O. BOX 631
VICKSBURG, MISSISSIPPI 39180

REPLY TO
ATTENTION OF
WESEV-I

11 March 1985

Errata Sheet

No. 2

EMPIRICAL METHODS FOR PREDICTING
EUTROPHICATION IN IMPOUNDMENTS

Report 1

PHASE I: DATA BASE DEVELOPMENT

Technical Report E-81-9

May 1981

Page 139, Equations 33 and 34: change $(L_k - \hat{L}_{jk})$ to $(\hat{L}_{jk} - L_k)$.

END

FILMED

4-85

DTIC