

Lecture on Kalman Filter

ESP 3201 Dr Ng Gee Wah

Using Kalman Filter to estimate the position

The estimated position has to be with the smallest variance and best final position

of Singapore

$$x_{\scriptscriptstyle k} = \begin{bmatrix} velocity \\ position \end{bmatrix}$$

$$x_k = [position]$$
 $C = 1$

Car dynamics

State observer
$$\hat{x}_{k+1}=A\hat{x}_k+Bu_k+K(y_k-C\hat{x}_k)$$
 Kalman filter
$$\hat{x}_k=A\hat{x}_{k-1}+Bu_k+K_k(y_k-C(A\hat{x}_{k-1}+Bu_k))$$

Notice that the Kalman filter and the state observer equation (see earlier slides) are the same. Kalman filter is a type of state observer. The state observer is a deterministic system and Kalman filter is a stochastic system

Kalman filter
$$\hat{x}_k = \underbrace{A\hat{x}_{k-1} + Bu_k}_{\hat{x}_{k-1}} + K_k(y_k - C(A\hat{x}_{k-1} + Bu_k))$$

$$\hat{x}_k^- : \text{A Priori Estimate}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-})$$

Kalman filter

$$\widehat{\hat{x}_k} = \underbrace{\hat{x}_k^-}_{\text{Predict}} + \underbrace{K_k(y_k - C\hat{x}_k^-)}_{\text{Update}}$$

Prediction

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

$$\begin{split} K_k &= \frac{P_k^{^\intercal}C^T}{CP_k^{^\intercal}C^T + R} \\ \\ \hat{x}_k &= \hat{x}_k^{^\intercal} + K_k (y_k - C\hat{x}_k^{^\intercal}) \\ \\ P_k &= (I - K_k C)P_k^{^\intercal} \end{split}$$

$$\hat{x}_k = \hat{x}_k + K_k (y_k - C\hat{x}_k)$$

$$P_k = (I - K_k C)P_k$$

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

$$\hat{x}_{k} = A\hat{x}_{k-1} + Bu_{k}$$

$$P_{k} = AP_{k-1}A^{T} + Q$$

$$P_{k} = A P_{k-1} A^{T} + Q$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

Update

$$\begin{split} K_{\scriptscriptstyle k} &= \frac{P_{\scriptscriptstyle k}^{^{\!-}}\!C^{^T}}{CP_{\scriptscriptstyle k}^{^{\!-}}\!C^{^T} + R} \\ \\ \hat{x}_{\scriptscriptstyle k} &= \hat{x}_{\scriptscriptstyle k}^{^{\!-}} + K_{\scriptscriptstyle k}(y_{\scriptscriptstyle k} - C\hat{x}_{\scriptscriptstyle k}^{^{\!-}}) \end{split}$$

$$\hat{x}_{k} = \hat{x}_{k} + K_{k}(y_{k} - C\hat{x}_{k})$$

$$P_{k} = (I - K_{k}C)P_{k}^{-}$$

Probability density function

Optimal state estimate

$$\hat{x}_{k} = A\hat{x}_{k-1} + Bu_{k}$$

$$P_{k} = AP_{k-1}A^{T} + Q$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

$$K_k = \frac{P_k^{-}C^T}{CP_k^{-}C^T + R}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-})$$

$$P_{k} = (I - K_{k}C)P_{k}$$

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

$$K_k = \frac{P_k^{\mathsf{T}}C^T}{CP_k^{\mathsf{T}}C^T + R}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-})$$

$$P_k = (I - K_k C) P_k$$

$$\begin{split} K_k &= \frac{P_k^{\scriptscriptstyle -}C^{\scriptscriptstyle T}}{CP_k^{\scriptscriptstyle -}C^{\scriptscriptstyle T}+R} \\ \\ \hat{x}_k &= \hat{x}_k^{\scriptscriptstyle -} + K_k (y_k - C\hat{x}_k^{\scriptscriptstyle -}) \\ \\ P_k &= (I - K_k C)P_k^{\scriptscriptstyle -} \end{split}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-})$$

$$P_{k} = (I - K_{k}C)P_{k}^{-}$$

$$\begin{split} K_k &= \frac{P_k^{\mathsf{T}}C^T}{CP_k^{\mathsf{T}}C^T + R} \\ \\ \hat{x}_k &= \hat{x}_k^{\mathsf{T}} + K_k (y_k - C\hat{x}_k^{\mathsf{T}}) \\ \\ P_k &= (I - K_k C)P_k^{\mathsf{T}} \end{split}$$

$$\hat{x}_{k} = \hat{x}_{k} + K_{k}(y_{k} - C\hat{x}_{k})$$

$$P_k = (I - K_k C) \bar{P_k}$$

$$K_{k} = \frac{P_{k}^{\mathsf{T}}\boldsymbol{C}^{T}}{\boldsymbol{C}P_{k}^{\mathsf{T}}\boldsymbol{C}^{T} + \boldsymbol{R}}$$

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - C\hat{x}_k^-)$$

$$P_k = (I - K_k C)P_k^-$$

$$P_{k} = (I - K_{k}C)P_{k}^{-}$$

Calculation of \hat{x}_{k}

$$\lim_{R \to 0} K_k = \lim_{R \to 0} \frac{P_k^{^\intercal} C^T}{C P_k^{^\intercal} C^T + R} = \lim_{R \to 0} \frac{P_k^{^\intercal} C^T}{C P_k^{^\intercal} C^T + 0}$$

Update

$$\begin{split} K_k &= \frac{P_k^{\scriptscriptstyle \top} C^{\scriptscriptstyle T}}{C P_k^{\scriptscriptstyle \top} C^{\scriptscriptstyle T} + R} \\ \hat{x}_k &= \hat{x}_k^{\scriptscriptstyle \top} + K_k (y_k - C \hat{x}_k^{\scriptscriptstyle \top}) \\ \\ P_k &= (I - K_k C) P_k^{\scriptscriptstyle \top} \end{split}$$

$$\hat{x}_{k} = \hat{x}_{k} + K_{k}(y_{k} - C\hat{x}_{k})$$

$$P_k = (I - K_k C)P_k^{-}$$

Calculation of \hat{x}_{k}

$$\lim_{R \to 0} K_k = \lim_{R \to 0} \frac{P_k^{\text{-}} C^T}{C P_k^{\text{-}} C^T + R} = \lim_{R \to 0} \frac{P_k^{\text{-}} C^T}{C P_k^{\text{-}} C^T + 0} = C^{-1} \qquad C^{-1} = 1$$

$$\begin{split} \hat{x}_k &= \hat{x}_k^- + K_k (y_k - C\hat{x}_k^-) = \hat{x}_k^- + C^{-1} (y_k + C\hat{x}_k^-) \\ &= \hat{y}_k^\prime + C^{-1} y_k + C^{-1} C\hat{x}_k^- \end{split}$$

$$C^{-1} = 1$$

$$K_k = \frac{P_k^{\mathsf{T}}C^T}{CP_k^{\mathsf{T}}C^T + R}$$

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - C\hat{x}_k^-)$$

$$P_k = (I - K_k C)P_k^-$$

$$P_k = (I - K_k C)P_k$$

Calculation of \hat{x}_{k}

$$\lim_{R \to 0} K_k = \lim_{R \to 0} \frac{P_k^- C^T}{C P_k^- C^T + R} = \lim_{R \to 0} \frac{P_k^- C^T}{C P_k^- C^T + 0} = C^{-1} \qquad C^{-1} = 1$$

of Singapore

$$\begin{split} \hat{x}_k &= \hat{x}_k^- + K_k (y_k - C\hat{x}_k^-) = \hat{x}_k^- + C^{-1} (y_k + C\hat{x}_k^-) \\ &= \hat{x}_k' + C^{-1} y_k + C^{-1} C\hat{x}_k^- \\ \hat{x}_k &= y_k \end{split}$$

Initial state estimate

$$\begin{split} K_k &= \frac{P_k^{\scriptscriptstyle \top} C^{\scriptscriptstyle T}}{C P_k^{\scriptscriptstyle \top} C^{\scriptscriptstyle T} + R} \\ \\ \hat{x}_k &= \hat{x}_k^{\scriptscriptstyle \top} + K_k (y_k - C \hat{x}_k^{\scriptscriptstyle \top}) \\ \\ P_k &= (I - K_k C) P_k^{\scriptscriptstyle \top} \end{split}$$

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - C\hat{x}_k^-)$$

$$P_{k} = (I - K_{k}C)P_{k}^{-}$$

$$\lim_{P_{k}^{-} \to 0} K_{k} = \lim_{P_{k}^{-} \to 0} \frac{P_{k}^{-}C^{T}}{CP_{k}^{-}C^{T} + R} = \lim_{P_{k}^{-} \to 0} \frac{0}{0 + R} = 0$$

$$\hat{x}_k = \hat{x}_k^- + K_k(y_k - C\hat{x}_k^-) = \hat{x}_k^- + 0(y_k + C\hat{x}_k^-)$$

Initial state estimate

of Singapore

$$K_{k} = \frac{P_{k}^{\mathsf{T}}\boldsymbol{C}^{T}}{\boldsymbol{C}P_{k}^{\mathsf{T}}\boldsymbol{C}^{T} + \boldsymbol{R}}$$

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - C\hat{x}_k^-)$$

$$P_k = (I - K_k C)P_k^-$$

$$P_k = (I - K_k C) P_k^{-}$$

Calculation of \hat{x}_{k}

$$\lim_{P_k^{\scriptscriptstyle \text{\tiny r}} \to 0} K_k = \lim_{P_k^{\scriptscriptstyle \text{\tiny r}} \to 0} \frac{P_k^{\scriptscriptstyle \text{\tiny r}} C^T}{C P_k^{\scriptscriptstyle \text{\tiny r}} C^T + R} = \lim_{P_k^{\scriptscriptstyle \text{\tiny r}} \to 0} \frac{0}{0 + R} = 0$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-}) = \hat{x}_{k}^{-} + 0(y_{k} + C\hat{x}_{k}^{-})$$

$$\hat{x}_k = \hat{x}_k$$

Car's position x

of Singapore

Initial state estimate

$$K_{k} = \frac{P_{k}^{\mathsf{T}}\boldsymbol{C}^{T}}{\boldsymbol{C}P_{k}^{\mathsf{T}}\boldsymbol{C}^{T} + \boldsymbol{R}}$$

$$\hat{x}_{\scriptscriptstyle k} = \hat{x}_{\scriptscriptstyle k}^{\scriptscriptstyle -} + K_{\scriptscriptstyle k} (y_{\scriptscriptstyle k} - C \hat{x}_{\scriptscriptstyle k}^{\scriptscriptstyle -})$$

Initial state estimate

$$P_{\mathbf{k}} = (I - K_{\mathbf{k}}C)P_{\mathbf{k}}^{-}$$

Calculation of \hat{x}_{k}

$$\lim_{P_{k}^{r} \to 0} K_{k} = \lim_{P_{k}^{r} \to 0} \frac{P_{k}^{r} C^{T}}{C P_{k}^{r} C^{T} + R} = \lim_{P_{k}^{r} \to 0} \frac{0}{0 + R} = 0$$

of Singapore

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-}) = \hat{x}_{k}^{-} + 0(y_{k} + C\hat{x}_{k}^{-})$$

$$\hat{x}_{\scriptscriptstyle k} = \hat{x}_{\scriptscriptstyle k}^{\scriptscriptstyle -}$$

$$\hat{x}_{k}^{-} = A\hat{x}_{k-1} + Bu_{k}$$

$$P_{k}^{-} = AP_{k-1}A^{T} + Q$$

$$P_{k}^{-} = A P_{k-1} A^{T} + Q$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

$$\begin{split} K_{k} &= \frac{P_{k}^{\text{-}}C^{T}}{CP_{k}^{\text{-}}C^{T} + R} \\ \\ \hat{x}_{k} &= \hat{x}_{k}^{\text{-}} + K_{k}(y_{k} - C\hat{x}_{k}^{\text{-}}) \end{split}$$

$$\hat{x}_{k} = \hat{x}_{k}^{-} + K_{k}(y_{k} - C\hat{x}_{k}^{-})$$

$$P_{\mathbf{k}} = (I - K_{\mathbf{k}}C)P_{\mathbf{k}}^{^{-}}$$

How Kalman filter can be used as for sensor fusion?

What is sensor fusion?

Kalman Filter Algorithm for Sensor Fusion

Sensor fusion

$$\hat{x}_{_{k_{[1x1]}}} = \hat{x}_{_{k_{[1x1]}}}^{-} + K_{_{k_{[1x2]}}} (y_{_{k_{[2x1]}}} - C_{_{[2x1]}} \hat{x}_{_{k_{[1x1]}}}^{-})$$

Optimal Kalman Filter estimator

However, most real world problems are nonlinear i.e. how can we use Kalman filter in non-linear systems?

Kalman Filter Algorithm for Nonlinear System

Kalman filters are defined for linear systems.

$$x_k = Ax_{k-1} + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$

$$x_k = f(x_{k-1}, u_k) + w_k$$
$$y_k = g(x_k) + v_k$$

Nonlinear functions

Kalman Filter Algorithm for Nonlinear System

Kalman filter algorithm may not converge in nonlinear function

Kalman Filter Algorithm for Nonlinear System

Extended Kalman Filters

Nonlinear transformation

Nonlinear transformation

System:

$$x_k = f(x_{k-1}, u_k) + w_k$$
$$y_k = g(x_k) + v_k$$

Jacobians:

$$\begin{split} F &= \frac{\partial f}{\partial x} \Big|_{\hat{x}_{k-1}, u_k} \\ G &= \frac{\partial g}{\partial x} \Big|_{\hat{x}_k} \end{split}$$

Linearized system:

$$\Delta x_{\scriptscriptstyle k} \approx F \Delta x_{\scriptscriptstyle k-1} + w_{\scriptscriptstyle k}$$

$$\Delta y_{\scriptscriptstyle k} \approx G \Delta x_{\scriptscriptstyle k} + v_{\scriptscriptstyle k}$$

Drawbacks to Using Extended Kalman Filters (EKFs):

- It is difficult to calculate the Jacobians (if they need to be found analytically)
- There is a high computational cost (if the Jacobians can be found numerically)
- EKF only works on systems that have a differentiable model
- EKF is not optimal if the system is highly nonlinear

Figure 8.1: The Kalman Filter algorithm (8.35) – (8.38) represented by a block diagram

K = Kalman Gain
(capital K)
k = time step
(sometime t is used)
U(k) = control input at
step k.
X(k) is the state at time
step k.

Kalman filter consists of two stage process

- 1. Prediction stage
- 2. Update stage (also known as correction stage)

Kalman filter is a recusive least square estimator + a motion model (or state matrix or Process model)

Designing a Kalman Filter

INITIAL STATE

PREVIOUS STATE

NEW PREDICTED STATE

 X_0, P_0

$$X_{t-1}, P_{t-1}$$

X represents the State Matrix P is the Process Covariance Matrix

t is the iteration index or time step

$$X_t = X_{t-1}$$

$$P_t = P_{t-1}$$

CURRENT STATE BECOMES PREVIOUS STATE

$$P_t^p = AP_{t-1}A^T + Q_t$$

small p represents the matrix has been updated with a new prediction

> **Prediction** stage

CALCULATE KALMAN GAIN (K) AND MEASURED DATA (Y)

$$K = \frac{P_t^p H^T}{H P_t^p H^T + R}$$

H matrix helps transform the matrix format of P into the format desired for the K matrix

 $Y_t = CY_t^m + Z^m$

Y is a matrix containing measurement data (m) C is a matrix transform to allow it be summed with Z Z is the error term of the measurement

UPDATE PROCESS AND STATE MATRIX

$$P_t = (I - KH)P_t^p$$

$$X_t = X_t^p + K[Y - HX_t^p]$$

Update/correction stage

How to tune the Kalman filter?

- Q Process noise (process auto covariance)
- R Measurement noise (or measurement noise auto-covariance).

However, adjusting Q is the more importance parameter than adjusting R (as R can be calculated). How do you adjust Q? The larger Q the larger Kalman Gain K and the stronger updating of the estimates.

If you do not have any idea about numerical values, you can start by setting all the diagonal elements to one in the [matrix] and the rest of the [matrix] is 0.

Hence Q is Q = Q_o [Matrix] where Q_o is the only tuning parameter.

And can start of trying Q_o = 0.01.

The time step t is replaced by k in this diagram

Kalman Filter (KF)

Prediction stage

Update/Correction stage

Given $\hat{x}(k-1)$, z(k) and heir errors, to estimate

and its error

Meas. Space (measurement model)

$$\hat{\mathbf{z}}(k|k-1) \qquad \qquad \mathbf{v}(k) = \\
\mathbf{z}(k) - \hat{\mathbf{z}}(k|k-1)$$

Thank you for your attention

Please refer to the following link for more examples and explanation:

1. https://www.coursera.org/lecture/state-estimation-localization-self-driving-cars/lesson-1-the-linear-kalman-filter-7DFmY

- 2. https://www.mathworks.com/videos/understanding-kalman-filters-part-1-why-use-kalman-filters--1485813028675.html
- 3. https://www.youtube.com/watch?v=s_9InuQAx-g