HCI Credit Scoring

Timothy E. Ledwinardi

Background

Customer defaults often result from inaccurate predictions due to excessive data. This is a common challenge for credit institutions. Credit scoring models emerge as a solution to mitigate credit risks and enhance revenue efficiency through strategic approaches

Problem Statement

How to **decrease the default rate of 10 %** on next period?

Objectives

- Creating model to predict loan status
- Determining strategies based on the predictions of the model

DATASET DESCRIPTION

A dataset is provided by **Home Credit Indonesia**, consisting of **several tables**. The primary datasets to be utilized are "application_train" with **300 thousand** rows and "application_test" containing **48 thousand** rows, both containing **numerous features**.

For more detailed information, please refer here

Workflow

Data Preprocessing

- Joining Dataset
 - Merging dataset according to table schema
- Cleaning Data
 - Treating missing value
 - o Treating unknown value
 - Dropping irrelevant value
- Feature Engineering
 - Create new columns
 - Encoding categorical column

Workflow

Data Preprocessing

Feature Selection

- Using Correlation and dropping strong-correlated value
- Using KBest and Feature Importance using tree-based model

Modeling

- TrainTest Split
- Evaluating model based on classification report and AUC Score
- Parameter setting

Fitting Dataset

Using the model to predict test dataset and define default chance

Machine Learning Evaluation

- Due to highly imbalanced data we evaluated the model using recall score and ROC score
- Due to the large datasets and limited time, we should explore further to try best feature to get best score
- The best model to be selected are
 GradientBoostingClassifier with average
 recall and ROC score of 69 % after
 Tuning the Parameter using
 GridSearchCV and 5-fold
 Cross Validation

Classification	Report:			
į.	recision	recall	f1-score	support
	0.96	0.68	0.80	84841
	0.16	0.67	0.25	7413
accuracy			0.68	92254
macro avg	0.56	0.68	0.52	92254
weighted avg	0.90	0.68	0.75	92254

Insight Found

- After fitting to the test dataset, most of the customer are predicted to be defaulted (56% data test, increase of 270% in data train). Most defaulted customers exhibit low external scores, indicative of poor financial habits.
 - External scores serve as a reference, establishing an internal scoring is essential for prevention of future defaults
 - It is essential to clearly define maternity leaves as either temporary or permanent, as this distinction significantly on default risk
- Unmarried customer are also prone to be default looking deeper, probably married customers having a higher total income, combining the financial resources of both partners
 - Customers with higher education levels are less likely to default due to their typically enhanced employment
 - Developing programs that support education financing likely leads to customers with improved financial habits, resulting in a lower risk of default

Thanks!

Links & References:

- 1. Repository
- 2. Reference Code
- 3. HCI: Final Task Tips & Trick
- 4. ChatGPT

Any Comments or Feedback are highly appreciated

timothyevanno@gmail.com

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik, and illustrations by Storyset

