Relaciones y funciones

Myrian Sadith González Pedro José Molina Morales

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Departamento de Matemática Aplicada

- Producto cartesiano
- 2 Relaciones
- S Funciones
 - Funciones inyectivas
 - Funciones sobreyectivas
- Número de Stirling

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a, b) | a \in A, b \in B\}$.

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son pares ordenados

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son **pares ordenados**. Además, para $(a,b),(c,d) \in A \times B$ tenemos que (a,b)=(c,d) si, y sólo si a=c y b=d

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son **pares ordenados**. Además, para $(a,b),(c,d) \in A \times B$ tenemos que (a,b)=(c,d) si, y sólo si a=c y b=d.

Si A, B son finitos, se sigue de la regla del producto que $|A \times B| = |A| \cdot |B|$.

Ejemplo

a)
$$A \times B = \{(3,5), (3,6), (4,5), (4,6), (5,5), (5,6)\}$$

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son **pares ordenados**. Además, para $(a,b),(c,d) \in A \times B$ tenemos que (a,b)=(c,d) si, y sólo si a=c y b=d.

Si A, B son finitos, se sigue de la regla del producto que $|A \times B| = |A| \cdot |B|$.

Ejemplo

- a) $A \times B = \{(3,5), (3,6), (4,5), (4,6), (5,5), (5,6)\}$
- b) $B \times A = \{(5,3), (5,4), (5,5), (6,3), (6,4), (6,5)\}$

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son **pares ordenados**. Además, para $(a,b),(c,d) \in A \times B$ tenemos que (a,b)=(c,d) si, y sólo si a=c y b=d.

Si *A*, *B* son finitos, se sigue de la regla del producto que $|A \times B| = |A| \cdot |B|$.

Ejemplo

- a) $A \times B = \{(3,5), (3,6), (4,5), (4,6), (5,5), (5,6)\}$
- b) $B \times A = \{(5,3), (5,4), (5,5), (6,3), (6,4), (6,5)\}$
- c) $B^2 = B \times B = \{(5,5), (5,6), (6,5), (6,6)\}$

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son **pares ordenados**. Además, para $(a,b),(c,d) \in A \times B$ tenemos que (a,b)=(c,d) si, y sólo si a=c y b=d.

Si A, B son finitos, se sigue de la regla del producto que $|A \times B| = |A| \cdot |B|$.

Ejemplo

- a) $A \times B = \{(3,5), (3,6), (4,5), (4,6), (5,5), (5,6)\}$
- b) $B \times A = \{(5,3), (5,4), (5,5), (6,3), (6,4), (6,5)\}$
- c) $B^2 = B \times B = \{(5,5), (5,6), (6,5), (6,6)\}$
- d) $B^3 = B \times B \times B = \{(a, b, c) | a, b, c \in B\}$, por ejemplo, $(5, 6, 6) \in B^3$

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, el **producto cartesiano**, de A y B se denota con $A \times B = \{(a,b) | a \in A, b \in B\}$.

Decimos que los elementos de $A \times B$ son **pares ordenados**. Además, para $(a,b),(c,d) \in A \times B$ tenemos que (a,b)=(c,d) si, y sólo si a=c y b=d.

Si A, B son finitos, se sigue de la regla del producto que $|A \times B| = |A| \cdot |B|$.

Ejemplo

Sean $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{3, 4, 5\}$, $B = \{5, 6\}$. Entonces

- a) $A \times B = \{(3,5), (3,6), (4,5), (4,6), (5,5), (5,6)\}$
- b) $B \times A = \{(5,3), (5,4), (5,5), (6,3), (6,4), (6,5)\}$
- c) $B^2 = B \times B = \{(5,5), (5,6), (6,5), (6,6)\}$
- d) $B^3 = B \times B \times B = \{(a, b, c) | a, b, c \in B\}$, por ejemplo, $(5, 6, 6) \in B^3$

Observación: del inciso b. podemos decir que generalmente no ocurre que $A \times B = B \times A$.

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, cualquier subconjunto $A \times B$ es una **relación** de A en B, usualmente se denota por \mathcal{R} .

Cualquier subconjunto $A \times A$ es una **relación binaria** en A.

En general, para conjuntos finitos A, B, existen $2^{|A \times B|} = 2^{|A| \cdot |B|}$ relaciones de A en B, incluyendo la relación vacía y la propia relación $A \times B$.

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, cualquier subconjunto $A \times B$ es una **relación** de A en B, usualmente se denota por \mathcal{R} .

Cualquier subconjunto $A \times A$ es una **relación binaria** en A.

En general, para conjuntos finitos A, B, existen $2^{|A \times B|} = 2^{|A| \cdot |B|}$ relaciones de A en B, incluyendo la relación vacía y la propia relación $A \times B$.

Ejemplo

Sean $\mathscr{U}=\{1,2,3,4,5,6,7\}$, $A=\{2,3,4\}$, $B=\{4,5\}$. Tenemos que $A\times B=\{(2,4),(2,5),(3,4),(3,5),(4,4),(4,5)\}$. Las siguientes son relaciones de A en B

a)
$$\emptyset$$
 b) $\{(3,4)\}$ c) $\{(2,4),(4,5)\}$ d) $\{(2,5),(3,4),(3,5)\}$ e) $\{(2,5)\}$ f) $A \times B$

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, cualquier subconjunto $A \times B$ es una **relación** de A en B, usualmente se denota por \mathcal{R} .

Cualquier subconjunto $A \times A$ es una **relación binaria** en A.

En general, para conjuntos finitos A, B, existen $2^{|A \times B|} = 2^{|A| \cdot |B|}$ relaciones de A en B, incluyendo la relación vacía y la propia relación $A \times B$.

Ejemplo

Sean $\mathscr{U}=\{1,2,3,4,5,6,7\}$, $A=\{2,3,4\}$, $B=\{4,5\}$. Tenemos que $A\times B=\{(2,4),(2,5),(3,4),(3,5),(4,4),(4,5)\}$. Las siguientes son relaciones de A en B

a)
$$\emptyset$$
 b) $\{(3,4)\}$ c) $\{(2,4),(4,5)\}$ d) $\{(2,5),(3,4),(3,5)\}$ e) $\{(2,5)\}$ f) $A \times B$

Como $|A \times B| = 6$, de la definición se sigue que existen 2^6 posibles relaciones de A en B

Definición

Para los conjuntos $A, B \subseteq \mathcal{U}$, cualquier subconjunto $A \times B$ es una **relación** de A en B, usualmente se denota por \mathcal{R} .

Cualquier subconjunto $A \times A$ es una **relación binaria** en A.

En general, para conjuntos finitos A, B, existen $2^{|A \times B|} = 2^{|A| \cdot |B|}$ relaciones de A en B, incluyendo la relación vacía y la propia relación $A \times B$.

Ejemplo

Sean $\mathscr{U}=\{1,2,3,4,5,6,7\}$, $A=\{2,3,4\}$, $B=\{4,5\}$. Tenemos que $A\times B=\{(2,4),(2,5),(3,4),(3,5),(4,4),(4,5)\}$. Las siguientes son relaciones de A en B

a)
$$\emptyset$$
 b) $\{(3,4)\}$ c) $\{(2,4),(4,5)\}$ d) $\{(2,5),(3,4),(3,5)\}$ e) $\{(2,5)\}$ f) $A \times B$

Como $|A \times B| = 6$, de la definición se sigue que existen 2^6 posibles relaciones de A en B. Es decir, que para cada $\mathscr{R} \in \mathscr{P}(A \times B)$, es una relación.

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Demostración:

a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C)$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Demostración:

a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \vee b \in B \cap C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Demostración:

a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \vee b \in B \cap C \Leftrightarrow a \in A \vee b \in B$, C

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Demostración:

a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A y b \in B \cap C \Leftrightarrow a \in A y b \in B$, $C \Leftrightarrow a \in A, b \in B y a \in A, b \in C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Demostración:

a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \text{ y } b \in B \cap C \Leftrightarrow a \in A \text{ y } b \in B, C \Leftrightarrow a \in A, b \in B \text{ y } a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \text{ y } (a, b) \in A \times C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Demostración:

a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \text{ y } b \in B \cap C \Leftrightarrow a \in A \text{ y}$ $b \in B, C \Leftrightarrow a \in A, b \in B \text{ y } a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \text{ y}$ $(a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

- a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \ y \ b \in B, C \Leftrightarrow a \in A, b \in B \ y \ a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \ y$ $(a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$
- d) Para $a, b \in \mathcal{U}$, $(a, b) \in (A \cup B) \times C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$

- a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \ y \ b \in B, C \Leftrightarrow a \in A, b \in B \ y \ a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \ y$ $(a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$
- d) Para $a, b \in \mathcal{U}$, $(a, b) \in (A \cup B) \times C \Leftrightarrow a \in A \cup B$ y $b \in C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$

- a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \text{ y } b \in B \cap C \Leftrightarrow a \in A \text{ y } b \in B, C \Leftrightarrow a \in A, b \in B \text{ y } a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \text{ y } (a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$
- d) Para $a, b \in \mathcal{U}$, $(a, b) \in (A \cup B) \times C \Leftrightarrow a \in A \cup B$ y $b \in C \Leftrightarrow a \in A$ o $a \in B$, y $b \in C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$

- a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \text{ y } b \in B \cap C \Leftrightarrow a \in A \text{ y } b \in B, C \Leftrightarrow a \in A, b \in B \text{ y } a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \text{ y } (a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$
- d) Para $a, b \in \mathcal{U}$, $(a, b) \in (A \cup B) \times C \Leftrightarrow a \in A \cup B$ y $b \in C \Leftrightarrow a \in A$ o $a \in B$, y $b \in C \Leftrightarrow a \in A$, $b \in C$ o $a \in B$, $b \in C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$

- a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \ y \ b \in B, C \Leftrightarrow a \in A, b \in B \ y \ a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \ y$ $(a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$
- d) Para $a, b \in \mathcal{U}$, $(a, b) \in (A \cup B) \times C \Leftrightarrow a \in A \cup B$ y $b \in C \Leftrightarrow a \in A$ o $a \in B$, y $b \in C \Leftrightarrow a \in A$, $b \in C$ o $a \in B$, $b \in C \Leftrightarrow (a, b) \in A \times C$ o $(a, b) \in B \times C$

Teorema

Para cualesquiera conjuntos $A, B, C \subseteq \mathcal{U}$

- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$

- a) Para $a, b \in \mathcal{U}$, $(a, b) \in A \times (B \cap C) \Leftrightarrow a \in A \ y \ b \in B, C \Leftrightarrow a \in A, b \in B \ y \ a \in A, b \in C \Leftrightarrow (a, b) \in A \times B \ y$ $(a, b) \in A \times C \Leftrightarrow (a, b) \in (A \times B) \cap (A \times C)$
- d) Para $a, b \in \mathcal{U}$, $(a, b) \in (A \cup B) \times C \Leftrightarrow a \in A \cup B \text{ y } b \in C \Leftrightarrow a \in A \text{ o}$ $a \in B$, $\text{y } b \in C \Leftrightarrow a \in A$, $b \in C \text{ o } a \in B$, $b \in C \Leftrightarrow (a, b) \in A \times C \text{ o}$ $(a, b) \in B \times C \Leftrightarrow (a, b) \in (A \times C) \cup (B \times C)$

Definición

Para los conjuntos no vacíos A, B, una **función, o aplicación**, f de A en B, que se denota con $f:A\to B$, es una relación de A en B en la que cada elemento de A aparece exactamente una vez como la primera componente de un par ordenado en la relación.

Generalmente escribimos f(a) = b cuando (a, b) es un par ordenado en la función f, b se conoce como la **imagen** de a mediante f, mientras que a es la **preimagen** de b.

En consecuencia, si f(a) = b y f(a) = c, entonces b = c, dado que f es una función.

Definición

Para los conjuntos no vacíos A, B, una **función, o aplicación**, f de A en B, que se denota con $f:A\to B$, es una relación de A en B en la que cada elemento de A aparece exactamente una vez como la primera componente de un par ordenado en la relación.

Generalmente escribimos f(a) = b cuando (a, b) es un par ordenado en la función f, b se conoce como la **imagen** de a mediante f, mientras que a es la **preimagen** de b.

En consecuencia, si f(a) = b y f(a) = c, entonces b = c, dado que f es una función.

Ejemplo:

Sean $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{2, 3, 4\}$, $B = \{4, 5\}$. Tenemos que $A \times B = \{(2, 4), (2, 5), (3, 4), (3, 5), (4, 4), (4, 5)\}$. Las siguientes son ejemplos de funciones

- $f = \{(2,4), (3,5), (4,4)\}$
- $g = \{(2,5), (3,4), (4,5)\}$

Definición

Para la función $f:A \to B$, A es el **dominio** (conjunto de partida) de f y B es el **codominio** (conjunto de llegada) de f. El subconjunto de B formado por aquellos elementos que aparecen como segundas componentes segundas componentes de los pares ordenados de f se conoce como la **imagen o rango** de f y se denota también f(A) ya que es el conjunto de imágenes mediante f.

- 1. Si $A = \{4, 6, 8, 10\}$, $B = \{a, b, c, d\}$.
 - $f = \{(4, a), (6, b), (8, b), (10, c)\}$ es una función , el dominio de f es $\{4, 6, 8, 10\}$, el codominio es $\{a, b, c, d\}$ y la imagen de f es $f(A) = \{a, b, c\}$.

- 1. Si $A = \{4, 6, 8, 10\}, B = \{a, b, c, d\}.$
 - $f = \{(4, a), (6, b), (8, b), (10, c)\}$ es una función , el dominio de f es $\{4, 6, 8, 10\}$, el codominio es $\{a, b, c, d\}$ y la imagen de f es $f(A) = \{a, b, c\}$.
- 2. Sea $f : \mathbb{R} \to \mathbb{R}$ donde $f(x) = x^2$. El dominio de f es \mathbb{R} , el codominio es \mathbb{R} y la imagen de f es $f(\mathbb{R}) = \mathbb{R}^+$.

- 1. Si $A = \{4, 6, 8, 10\}, B = \{a, b, c, d\}.$
 - $f = \{(4, a), (6, b), (8, b), (10, c)\}$ es una función , el dominio de f es $\{4, 6, 8, 10\}$, el codominio es $\{a, b, c, d\}$ y la imagen de f es $f(A) = \{a, b, c\}$.
- 2. Sea $f : \mathbb{R} \to \mathbb{R}$ donde $f(x) = x^2$. El dominio de f es \mathbb{R} , el codominio es \mathbb{R} y la imagen de f es $f(\mathbb{R}) = \mathbb{R}^+$.
- 3. La función suelo $f: \mathbb{R} \to \mathbb{Z}$ está dada por

$$f(x) = \lfloor x \rfloor$$
 =el mayor entero menor o igual que x .

En consecuencia, f(x)=x si $x\in\mathbb{Z}$, y si $x\in\mathbb{R}-\mathbb{Z}$, f(x) es el entero inmediato a la izquierda de x. Por ejemplo, $\lfloor 4\rfloor=4$, $\lfloor 4.8\rfloor=4$, $\lfloor -4.8\rfloor=-5$, $\lfloor -4\rfloor=-4$

- 1. Si $A = \{4, 6, 8, 10\}, B = \{a, b, c, d\}.$
 - $f = \{(4, a), (6, b), (8, b), (10, c)\}$ es una función , el dominio de f es $\{4, 6, 8, 10\}$, el codominio es $\{a, b, c, d\}$ y la imagen de f es $f(A) = \{a, b, c\}$.
- 2. Sea $f : \mathbb{R} \to \mathbb{R}$ donde $f(x) = x^2$. El dominio de f es \mathbb{R} , el codominio es \mathbb{R} y la imagen de f es $f(\mathbb{R}) = \mathbb{R}^+$.
- 3. La función suelo $f: \mathbb{R} \to \mathbb{Z}$ está dada por

$$f(x) = \lfloor x \rfloor$$
 =el mayor entero menor o igual que x .

En consecuencia, f(x)=x si $x\in\mathbb{Z}$, y si $x\in\mathbb{R}-\mathbb{Z}$, f(x) es el entero inmediato a la izquierda de x. Por ejemplo, $\lfloor 4\rfloor=4$, $\lfloor 4.8\rfloor=4$, $\lfloor -4.8\rfloor=-5$, $\lfloor -4\rfloor=-4$

4. La función techo $f : \mathbb{R} \to \mathbb{Z}$ está dada por

$$g(x) = \lceil x \rceil$$
 =el menor entero mayor o igual que x .

En consecuencia, g(x)=x si $x\in\mathbb{Z}$, y si $x\in\mathbb{R}-\mathbb{Z}$, g(x) es el entero inmediato a la derecha de x. Por ejemplo, $\lceil 4\rceil=4$, $\lceil 4.8\rceil=5$, $\lceil -4.8\rceil=-4$, $\lceil -4\rceil=-4$

Proposición

Sean $A, B \subseteq \mathcal{U}$ conjuntos finitos no vacíos, entonces existen $|B|^{|A|}$ funciones de A en B.

Proposición

Sean $A,B\subseteq \mathcal{U}$ conjuntos finitos no vacíos, entonces existen $|B|^{|A|}$ funciones de A en B.

Ejemplo:

Si
$$A = \{a, b, c\}, B = \{w, x, y, z\}$$

- entonces existen $|B|^{|A|} = 4^3 = 64$ funciones $f : A \to B$.
- entonces existen $|A|^{|B|} = 3^4 = 81$ funciones $g: B \to A$.
- entonces existen $|A|^{|A|} = 3^3 = 27$ funciones $h: A \to A$.

Funciones inyectivas

Definición

Una función $f: A \to B$ se denomina **uno** a **uno** o **inyectiva**, si cada elemento de B aparece como máximo una vez como la imagen de un elemento de A.

Una función $f: A \to B$ es inyectiva si, y solo si para cada $a_1, a_2 \in A$, si $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

Si $f: A \to B$ es inyectiva con A, B finitos, debemos tener que $|A| \le |B|$.

Funciones inyectivas

Definición

Una función $f: A \to B$ se denomina **uno** a **uno** o **inyectiva**, si cada elemento de B aparece como máximo una vez como la imagen de un elemento de A.

Una función $f: A \to B$ es inyectiva si, y solo si para cada $a_1, a_2 \in A$, si $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

Si $f: A \to B$ es inyectiva con A, B finitos, debemos tener que $|A| \le |B|$.

Ejemplos

1. Sean $A = \{1, 3, 5\}$ y $B = \{2, 4, 6, 8, 10\}$. La función

$$f = \{(1,2), (3,6), (5,4)\}$$

es una función uno a uno de A en B. Por otro lado, la función

$$g = \{(1,2), (3,10), (5,10)\}$$

es una función de A en B, pero no es uno a uno, ya que g(3)=g(5), pero $3 \neq 5$.

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno.

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

$$f(x_1)=f(x_2)$$

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1-5}} = e^{\sqrt{3x_2-5}}$$

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5}$$

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5} \Rightarrow x_1 = x_2$$

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5} \Rightarrow x_1 = x_2$$

por lo que f es una función uno a uno.

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

Sean $x_1, x_2 \in \mathbb{R}$, tenemos que

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5} \Rightarrow x_1 = x_2$$

por lo que f es una función uno a uno.

3. Demuestre o refute que la función $h : \mathbb{R} \to \mathbb{R}$ tal que $h(x) = x^2 - 1$ es uno a uno.

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

Sean $x_1, x_2 \in \mathbb{R}$, tenemos que

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5} \Rightarrow x_1 = x_2$$

por lo que f es una función uno a uno.

3. Demuestre o refute que la función $h: \mathbb{R} \to \mathbb{R}$ tal que $h(x) = x^2 - 1$ es uno a uno.

Solución:

Observemos que

$$h(1) = (1)^2 - 1 = 0$$

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

Sean $x_1, x_2 \in \mathbb{R}$, tenemos que

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5} \Rightarrow x_1 = x_2$$

por lo que f es una función uno a uno.

3. Demuestre o refute que la función $h: \mathbb{R} \to \mathbb{R}$ tal que $h(x) = x^2 - 1$ es uno a uno.

Solución:

Observemos que

$$h(1) = (1)^2 - 1 = 0$$

У

$$h(-1) = (-1)^2 - 1 = 0$$

2. Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = e^{\sqrt{3x-5}}$ es uno a uno. **Demostración:**

Sean $x_1, x_2 \in \mathbb{R}$, tenemos que

$$f(x_1) = f(x_2) \Rightarrow e^{\sqrt{3x_1 - 5}} = e^{\sqrt{3x_2 - 5}} \Rightarrow \sqrt{3x_1 - 5} = \sqrt{3x_2 - 5} \Rightarrow x_1 = x_2$$

por lo que f es una función uno a uno.

3. Demuestre o refute que la función $h: \mathbb{R} \to \mathbb{R}$ tal que $h(x) = x^2 - 1$ es uno a uno.

Solución:

Observemos que

$$h(1) = (1)^2 - 1 = 0$$

У

$$h(-1) = (-1)^2 - 1 = 0$$

En consecuencia, h no es uno a uno.

Funciones inyectivas

Proposición

Sean A, B finitos tal que |A| = m y |B| = n con $m \le n$, entonces existen P(n, m) funciones inyectivas de A en B.

Funciones inyectivas

Proposición

Sean A, B finitos tal que |A| = m y |B| = n con $m \le n$, entonces existen P(n, m) funciones inyectivas de A en B.

Ejemplo

Sean $A = \{1, 2, 3\}$ y $B = \{1, 2, 3, 4, 5\}$, entonces existen $P(5, 3) = 5 \cdot 4 \cdot 3 = 60$ funciones inyectivas de A en B.

Definición

Si $f: A \rightarrow B$ y $A_1 \subseteq A$, entonces

$$f(A_1) = \{b \in B | b = f(a), a \in A_1\}$$

y $f(A_1)$ se conoce como la imagen de A_1 mediante f.

Definición

Si $f: A \rightarrow B$ y $A_1 \subseteq A$, entonces

$$f(A_1) = \{b \in B | b = f(a), a \in A_1\}$$

y $f(A_1)$ se conoce como la imagen de A_1 mediante f.

Ejemplo

•
$$f(A_1) = \{f(a) | a \in A_1\} = \{f(2)\} = \{-9\}$$

Si $f: A \to B$ y $A_1 \subseteq A$, entonces

$$f(A_1) = \{b \in B | b = f(a), a \in A_1\}$$

y $f(A_1)$ se conoce como la imagen de A_1 mediante f.

Ejemplo

- $f(A_1) = \{f(a) | a \in A_1\} = \{f(2)\} = \{-9\}$
- $f(A_2) = \{f(a) | a \in A_2\} = \{f(2), f(4)\} = \{-9, -7\}$

Si $f: A \rightarrow B$ y $A_1 \subseteq A$, entonces

$$f(A_1) = \{b \in B | b = f(a), a \in A_1\}$$

y $f(A_1)$ se conoce como la imagen de A_1 mediante f.

Ejemplo

- $f(A_1) = \{f(a) | a \in A_1\} = \{f(2)\} = \{-9\}$
- $f(A_2) = \{f(a) | a \in A_2\} = \{f(2), f(4)\} = \{-9, -7\}$
- $f(A_3) = \{f(a) | a \in A_3\} = \{f(2), f(4), f(6)\} = \{-9, -7, -7\} = \{-9, -7\}$

Si $f: A \rightarrow B$ y $A_1 \subseteq A$, entonces

$$f(A_1) = \{b \in B | b = f(a), a \in A_1\}$$

y $f(A_1)$ se conoce como la imagen de A_1 mediante f.

Ejemplo

- $f(A_1) = \{f(a) | a \in A_1\} = \{f(2)\} = \{-9\}$
- $f(A_2) = \{f(a) | a \in A_2\} = \{f(2), f(4)\} = \{-9, -7\}$
- $f(A_3) = \{f(a) | a \in A_3\} = \{f(2), f(4), f(6)\} = \{-9, -7, -7\} = \{-9, -7\}$
- $f(A_4) = \{f(a) | a \in A_4\} = \{f(4), f(6)\} = \{-7, -7\} = \{-7\}$

Si $f: A \to B$ y $A_1 \subseteq A$, entonces

$$f(A_1) = \{b \in B | b = f(a), a \in A_1\}$$

y $f(A_1)$ se conoce como la imagen de A_1 mediante f.

Ejemplo

- $f(A_1) = \{f(a) | a \in A_1\} = \{f(2)\} = \{-9\}$
- $f(A_2) = \{f(a) | a \in A_2\} = \{f(2), f(4)\} = \{-9, -7\}$
- $f(A_3) = \{f(a) | a \in A_3\} = \{f(2), f(4), f(6)\} = \{-9, -7, -7\} = \{-9, -7\}$
- $f(A_4) = \{f(a) | a \in A_4\} = \{f(4), f(6)\} = \{-7, -7\} = \{-7\}$
- $f(A_5) = \{f(a) | a \in A_5\} = \{f(4), f(6), f(8), f(10)\} = \{-7, -7, -5, -5\} = \{-7, -5\}$

Teorema

Sea $f: A \to B$ con $A_1, A_2 \subseteq A$. Entonces

a)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

b)
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

c)
$$f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$$
 cuando f es inyectiva.

Definición

Si $f: A \to B$ y $A_1 \subseteq A$, entonces $f|_{A_1}: A_1 \to B$ es la **restricción** de f a A_1 , donde $f|_{A_1}(a) = f(a)$ para todo $a \in A_1$.

Definición

Sea $A_1 \subseteq A$ y $f: A_1 \to B$. Si $g: A \to B$ y g(a) = f(a) para todo $a \in A_1$, entonces g es una **extensión** de f a A.

Definición

Si $f: A \to B$ y $A_1 \subseteq A$, entonces $f|_{A_1}: A_1 \to B$ es la **restricción** de f a A_1 , donde $f|_{A_1}(a) = f(a)$ para todo $a \in A_1$.

Definición

Sea $A_1 \subseteq A$ y $f: A_1 \to B$. Si $g: A \to B$ y g(a) = f(a) para todo $a \in A_1$, entonces g es una **extensión** de f a A.

Ejemplo

Para $A = \{2, 4, 6, 8, 10\}$, sea $f : A \to \mathbb{R}$ definida como $f = \{(2, 3), (4, 15), (6, 35), (8, 63), (10, 99)\}$. Sea $g : \mathbb{Q} \to \mathbb{R}$ tal que $g(x) = x^2 - 1$ para todo $x \in \mathbb{Q}$. Por último, sea $h : \mathbb{R} \to \mathbb{R}$ tal que $h(t) = t^2 - 1$ para todo $t \in \mathbb{R}$. Entonces

- q es una extensión de f de A a O
- f es una restricción de g de \mathbb{Q} a A.
- h es una extensión de g de \mathbb{Q} a \mathbb{R} .

Definición

Una función $f: A \to B$ es **sobreyectiva**, o **sobre**, si f(A) = B, es decir, si para todo $b \in B$ existe al menos un $a \in A$ con f(a) = b.

Definición

Una función $f: A \to B$ es **sobreyectiva**, o **sobre**, si f(A) = B, es decir, si para todo $b \in B$ existe al menos un $a \in A$ con f(a) = b.

Ejemplos

1. Consideremos la función $f: \mathbb{Z} \to \mathbb{Z}$ tal que f(x) = -2x + 4 para cualquier $x \in \mathbb{Z}$. En este caso la imagen de f es $\{..., -4, -2, 0, 2, 4, ...\} \subseteq \mathbb{Z}$, y podemos ver que f no es una función sobreyectiva, por ejemplo, el entero 7 no está en la imagen de f, dado que no existe $x \in \mathbb{Z}$ tal que

$$-2x + 4 = 7$$

La ecuación tiene solución para $x=-\frac{3}{2}$, pero este valor no es parte del dominio.

Definición

Una función $f: A \to B$ es **sobreyectiva**, o **sobre**, si f(A) = B, es decir, si para todo $b \in B$ existe al menos un $a \in A$ con f(a) = b.

Ejemplos

1. Consideremos la función $f: \mathbb{Z} \to \mathbb{Z}$ tal que f(x) = -2x + 4 para cualquier $x \in \mathbb{Z}$. En este caso la imagen de f es $\{..., -4, -2, 0, 2, 4, ...\} \subseteq \mathbb{Z}$, y podemos ver que f no es una función sobreyectiva, por ejemplo, el entero 7 no está en la imagen de f, dado que no existe $x \in \mathbb{Z}$ tal que

$$-2x + 4 = 7$$

La ecuación tiene solución para $x=-\frac{3}{2}$, pero este valor no es parte del dominio.

Por otro lado, sea $g : \mathbb{Q} \to \mathbb{Q}$ tal que g(x) = -2x + 4 si es sobre, y lo mostramos de la siguiente manera.

Sea $b \in \mathbb{Q}$, entonces necesitamos encontrar $x \in \mathbb{Q}$ tal que

$$-2x + 4 = b$$

teniendo una solución $x = -\frac{b-4}{2} \in \mathbb{Q}$.

2. La función $f:(-2,\infty)\to\mathbb{R}$ definida como $f(x)=\ln(x+2)$ es una función sobre, ya que en este caso, sea $r\in\mathbb{R}$, entonces tomamos $x=e^r-2\in(-2,\infty)$ y vemos que $f(e^r-2)=\ln(e^r-2+2)=\ln(e^r)=r$.

$$f((-2,\infty))=\mathbb{R}$$

2. La función $f:(-2,\infty)\to\mathbb{R}$ definida como $f(x)=\ln(x+2)$ es una función sobre, ya que en este caso, sea $r\in\mathbb{R}$, entonces tomamos $x=e^r-2\in(-2,\infty)$ y vemos que $f(e^r-2)=\ln(e^r-2+2)=\ln(e^r)=r$.

$$\therefore f((-2,\infty)) = \mathbb{R}$$

3. La función $g: \mathbb{R} \to \mathbb{R}$ definida como $g(x) = x^2 - 5$, no es sobre, pues no existe $x \in \mathbb{R}$ tal que $x^2 - 5 = -6$. Así, tenemos que la imagen de g es $g(\mathbb{R}) = [-5, \infty)$. Sin embargo, si tomamos $h: \mathbb{R} \to [-5, \infty)$ definida como $h(x) = x^2 - 5$ es sobre.

2. La función $f:(-2,\infty)\to\mathbb{R}$ definida como $f(x)=\ln(x+2)$ es una función sobre, ya que en este caso, sea $r\in\mathbb{R}$, entonces tomamos $x=e^r-2\in(-2,\infty)$ y vemos que $f(e^r-2)=\ln(e^r-2+2)=\ln(e^r)=r$.

$$\therefore f((-2,\infty)) = \mathbb{R}$$

- 3. La función $g: \mathbb{R} \to \mathbb{R}$ definida como $g(x) = x^2 5$, no es sobre, pues no existe $x \in \mathbb{R}$ tal que $x^2 5 = -6$. Así, tenemos que la imagen de g es $g(\mathbb{R}) = [-5, \infty)$. Sin embargo, si tomamos $h: \mathbb{R} \to [-5, \infty)$ definida como $h(x) = x^2 5$ es sobre.
- 4. Si $A = \{2, 4, 6, 8\}$ y $B = \{-6, -4, -2\}$ entonces

$$f_1 = \{(2, -2), (4, -4), (6, -6), (8, -4)\}$$
 $f_2 = \{(2, -2), (4, -6), (6, -4)\}$ son ambas funciones de A sobre B . Sin embargo, la función $g = \{(2, -6), (4, -6), (6, -4), (8, -4)\}$ no es sobre, ya que $g(A) = \{-6, -4\} \neq B$.

Proposición

Para los conjuntos finitos A, B tales que |A| = m y |B| = n con $m \ge n$, existen

$$\sum_{k=0}^{n-1} (-1)^k \binom{n}{n-k} (n-k)^m$$

funciones sobre de A en B.

Proposición

Para los conjuntos finitos A, B tales que |A| = m y |B| = n con $m \ge n$, existen

$$\sum_{k=0}^{n-1} (-1)^k \binom{n}{n-k} (n-k)^m$$

funciones sobre de A en B.

Ejemplos

1. Si $A = \{-6, -4, -2, 0, 2, 4, 6\}$ y $B = \{a, b, c, d, e\}$. Si aplicamos la fórmula con m = 7 y n = 5, vemos que existen

$$\sum_{k=0}^{4} (-1)^k {5 \choose 5-k} (5-k)^7 = {5 \choose 5} 5^7 - {5 \choose 4} 4^7 + {5 \choose 3} 3^7 - {5 \choose 2} 2^7 + {5 \choose 1} 1^7 = 16800$$

funciones de A sobre B.

Número de Stirling

Proposición

Para $m \ge n$, existen $\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$ formas de distribuir m objetos distintos en n recipientes numerados, sin que quede ningún recipiente vacío. Si eliminamos los números de los recipientes, de modo que ahora tengan una apariencia idéntica, vemos que una distribución de estos n recipientes idénticos corresponde con n! de estas distribuciones en los recipientes numerados.

Así, el número de formas que se pueden distribuir los m objetos en n recipientes idénticos, sin que quede ninguno vacío, es

$$S(m,n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

Este número se le conoce como el número de Stirling de segundo tipo.

Número de Stirling

Proposición

Para $m \ge n$, existen $\sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$ formas de distribuir m objetos distintos en n recipientes numerados, sin que quede ningún recipiente vacío. Si eliminamos los números de los recipientes, de modo que ahora tengan una apariencia idéntica, vemos que una distribución de estos n recipientes idénticos corresponde con n! de estas distribuciones en los recipientes numerados.

Así, el número de formas que se pueden distribuir los m objetos en n recipientes idénticos, sin que quede ninguno vacío, es

$$S(m,n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^k \binom{n}{n-k} (n-k)^m$$

Este número se le conoce como el número de Stirling de segundo tipo.

1. Hay S(6,3) = 90 formas posibles de distribuir 6 objetos en 3 recipientes idénticos de forma que ninguno de estos recipientes queden vacíos.

- 1. Hay S(6,3)=90 formas posibles de distribuir 6 objetos en 3 recipientes idénticos de forma que ninguno de estos recipientes queden vacíos.
- ¿Cuántas formas posibles existen de distribuir 6 objetos en 3 recipientes idénticos?

Solución

Observemos que el problema no nos dice que ningún recipiente no debe quedar vacío, es decir que podemos considerar que algunos queden vacíos

- 1. Hay S(6,3) = 90 formas posibles de distribuir 6 objetos en 3 recipientes idénticos de forma que ninguno de estos recipientes queden vacíos.
- ¿Cuántas formas posibles existen de distribuir 6 objetos en 3 recipientes idénticos?

Solución

Observemos que el problema no nos dice que ningún recipiente no debe quedar vacío, es decir que podemos considerar que algunos queden vacíos, entonces existen

$$\sum_{i=1}^{3} S(6,i) = S(6,1) + S(6,2) + S(6,3) = 1 + 31 + 90 = 122$$

formas posibles.

- 1. Hay S(6,3) = 90 formas posibles de distribuir 6 objetos en 3 recipientes idénticos de forma que ninguno de estos recipientes queden vacíos.
- ¿Cuántas formas posibles existen de distribuir 6 objetos en 3 recipientes idénticos?

Solución

Observemos que el problema no nos dice que ningún recipiente no debe quedar vacío, es decir que podemos considerar que algunos queden vacíos, entonces existen

$$\sum_{i=1}^{3} S(6,i) = S(6,1) + S(6,2) + S(6,3) = 1 + 31 + 90 = 122$$

formas posibles.

Observación: Para $m \ge n$, existen

$$\sum_{i=1}^n S(m,i)$$

formas posibles de distribuir *m* objetos diferentes en *n* recipientes idénticos

Ejercicios de práctica

- 1. Determine $A \times B$, donde $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{2, 4, 6, 8, 10\}$
- 2. Sean $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}, B = \{a, b, c, d\}, E = \{0\}.$
 - a) ¿Cuántas funciones de A en B existen?
 - b) ¿Cuántas funciones inyectivas de E en A existen?
 - c) ¿Cuántas funciones sobreyectivas de A en B existen?