NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

Faglig kontakt under eksamen:

Navn: Bojana Gajić Tlf.: 92490623

EKSAMEN I EMNE TTT4110 INFORMASJONS- OG SIGNALTEORI

Dato: lørdag 4. juni 2005 Tid: kl. 09.00 - 13.00

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

INFORMASJON

- Eksamen består av 4 oppgaver:
 - Oppgave 1 omhandler digitale filtre.
 - Oppgave 2 omhandler punktprøving og rekonstruksjon.
 - Oppgave 3 omhandler kvantisering og koding.
 - Oppgave 4 omhandler overføring av informasjon.
- Maksimalt antall poeng for hver deloppgave er angitt i parentes. Det er 61 poeng til sammen.
- Noen viktige formler finnes i vedlegget.
- Faglærer vil gå rundt to ganger, første gang ca. kl. 10 og andre gang ca. kl. 12.
- Sensurfrist er 3 uker etter eksamensdato.

Lykke til!

Oppgave 1 (6+7+4=17)

Et digitalt filter er gitt ved sin frekvensrespons

$$H(\omega) = e^{-j\omega}(0, 8\cos\omega + 0, 9).$$

1a) Hvilken filtertype er dette (lavpass, høypass, båndpass eller båndstopp)? Begrunn svaret.

Finn gruppeforsinkelsen til filteret.

Finn filterets forsterkning og faseforsinkelse for digital frekvens $f = \frac{1}{8}$.

1b) Finn enhetspulsresponsen h(n) til filteret.

Finn en differensligning som beskriver sammenhengen mellom filterets inngangs- og utgangssignal i tidsdomenet.

Er dette et IIR- eller FIR-filter? Begrunn svaret.

Tegn en filterstruktur for filteret.

1c) Et sammensatt system med inngangssignal x(n) og utgangssignal y(n) er vist i figur 1.

Figur 1:

Uttrykk frekvensresponsen til det sammensatte systemet som en funksjon av frekvensresponsene til delsystemene, $H_1(\omega)$ og $H_2(\omega)$.

Uttrykk enhetspulsresponsen til det sammensatte systemet som en funksjon av enhetspulsresponsene til delsystemene, $h_1(n)$ og $h_2(n)$.

Oppgave 2 (3+4+6=13)

Et system for punktprøving og rekonstruksjon er vist i figur 2. Vi antar at alle komponentene i systemet er ideelle, og at punktprøvingssperioden er $T_s = 0$, 125 ms.

Figur 2:

Spekteret til det analoge signalet s(t) er vist i figur 3.

Figur 3:

- **2a)** Skisser spekteret til det punktprøvde signalet x(n) som funksjon av digital frekvens $f \in [-1, 1]$ gitt at antialiasing-filteret ikke benyttes.
- **2b)** Vi ønsker nå å designe et antialiasing-filter for å unngå aliasing-effekter etter punktprøving når spekteret til inngangssignalet s(t) er gitt ved figur 3. Filteret skal designes slik at det innfører minst mulig forvrengning i signalet.
 - Angi nødvendige spesifikasjoner for filteret. Begrunn svaret.
 - Skisser amplituderesponsen til et ideelt filter som tilfredstiller spesifikasjonene.
 - Skisser også amplitudespekteret til x(n) for $f \in [-1, 1]$ når filteret benyttes.
- **2c)** Vi ønsker nå å rekonstruere signalet $x_c(t)$ ved hjelp av en ideell pulstoggenerator, dvs.

$$x_s(t) = \sum_{n=-\infty}^{\infty} x(n)\delta(t - nT_s),$$

og et ideelt rekonstruksjonsfilter (se figur 2). Anta at antialiasing-filteret fra 2b) ble brukt før punktprøving.

- Angi <u>nødvendige</u> spesifikasjoner for rekonstruksjonsfilteret for å oppnå perfekt rekonstruksjon. Begrunn svaret.
- Skisser amplituderesponsen til et ideelt filter som tilfredstiller spesifikasjonene.
- Skisser også amplitudespekteret til det rekonstruerte signalet $x_r(t)$.
- La $h_r(t)$ være impulsresponsen til rekonstruksjonsfilteret. Utled et uttrykk for $x_r(t)$ som funksjon av x(n) og $h_r(t)$.

Oppgave 3 (3+5+2+3+3+4=20)

Et tidsdiskret signal x(n) med amplitudefordeling $f_X(x)$ som vist i figur 4 ønskes kvantisert med en uniform kvantiserer med 6 kvantiseringsintervaller hvor kvantiseringsområdet sammenfaller med det dynamiske området til signalet.

Figur 4:

3a) Hvilke krav må desisjonsverdiene $\{x_i\}$ og representasjonsverdiene $\{y_i\}$ til en uniform kvantiserer tilfredsstille?

Finn desisjonsverdiene og representasjonsverdiene til kvantisereren i denne oppgaven.

3b) Uttrykk kvantiseringsstøyvariansen som funksjon av $\{x_i\}$, $\{y_i\}$ og $f_X(x)$. Anta at middelverdien til kvantiseringsstøyen er lik null.

Finn den eksakte verdien til kvantiseringsstøyvariansen i denne oppgaven.

3c) Er det mulig å designe en kvantiserer med samme antall nivå som gir lavere kvantiseringsstøyvarians ved kvantisering av signalet x(n)?

Hvis det er mulig, forklar prinsippet. Hvis ikke, forklar hvorfor ikke.

Vi ønsker å representere det kvantiserte signalet $x_q(n)$ med en binær kode ved å tilordne et kodeord til hver representasjonsverdi. Anta at signalet har uavhengige punktprøver.

3d) Finn det laveste antall bit per punktprøve som må brukes hvis alle kodeordene skal være like lange. Begrunn svaret.

Foreslå en slik kode.

3e) Forklar prinsippet for entropikoding.

Foreslå en entydig dekodbar kode for $x_q(n)$ som er designet etter dette prinsippet. Koden skal være mer effektiv enn koden i 3d).

3f) Finn gjennomsnittlig kodeordslengde når koden i 3e) benyttes.

Finn nedre grense for gjennomsnittlig kodeordslengde som er nødvendig for å representere signalet $x_q(n)$. Begrunn svaret.

Oppgave 4 (4+2+3+2=11)

En modell av en digital overføringskanal er vist i figur 5, der

$$x(t) = \sum_{n} x_n h_s(t - nT),$$

T er avstanden mellom sendte pulser, Δt er den totale forsinkelsen på kanalen, og w(t) er støy på kanalen.

Figur 5:

4a) I to ulike tilfeller er den totale impulsresponsen $g(t) = h_s(t) * h(t) * h_m(t)$ som vist i figurene 6a og 6b.

Figur 6:

For hvert tilfelle vurder om overføring uten intersymbolinterferens (ISI) er mulig. Finn i så fall det $\underline{nødvendige}$ kravet for T for å unngå ISI, samt den maksimale signaleringshastigheten, dvs. maksimalt antall kanalsymboler per sekund for ISI-fri transmisjon.

4b) En viktig sammenheng for gaussiske kanaler er gitt ved

$$C = \frac{1}{2}\log_2(1 + \frac{P}{\sigma_N^2}).$$

Forklar betydningen av C, P og σ_N^2 i dette uttrykket.

- 4c) Anta gaussisk støy på kanalen og total kanalimpulsrespons som vist i figur 6a. Finn nedre grense for signal-støy-forholdet på mottakeren (før desisjon) som gjør det mulig å overføre 4000 bit/s over kanalen med en vilkårlig liten feilsannsynlighet.
- **4d)** Hvorfor bruker vi kanalkoding i et digitalt overføringssystem? Forklar kort prinsippet bak det.