Measured Launch

A review of the changes coming in Stable-6.

OpenXT Summit
June 7, 2016
Daniel P. Smith

Setting the Pace

Presenter:

Daniel P. Smith, Co-Owner of Apertus Solutions

Roadmap:

Basics → Goals → Implementation → Future

Format:

~15 minute talk, feel free to ask clarifying questions Remainder reserved for discussion questions

Some Basics

What is Measured Launch

- Consists of two main components
 - Intel TXT (Authenticated Code Module ACM)
 - Tboot (Measured Launch Environment)
- Establishes a Dynamic Root of Trust Measurement (DRTM)
 - Measures
 - TXT launch itself
 - Policy
 - MLE
 - All multiboot modules in the boot config (tboot default)
 - TPM NVRAM (with recent versions of tboot)

Measured Launch Policy

- There are two types of policies
 - TXT's Launch Control Policy (LCP)
 - Tboot's Verified Launch Policy (VL)
- The LCP is used by ACM to compare against predetermined/known-good measurements of the platform and MLE
- The VL is used by thoot to control what additional components gets measured and/or validates the measurements against predetermined/known-good measurements
 - different policy enforcements (nonfatal, continue, halt)

How did OpenXT use ML

- Measurement Configuration
 - Does not use a LCP
 - Extends thoot's policy capabilities
 - Relies on thoot's default compiled in VL
 - Early init extends PCR15 with hash of root logical volume
- Measurement Usage
 - Used to seal/unseal LUKS key for the config logical volume

Motivation & Goals

What is success

- Three main motivations
 - Reduce maintenance burden
 - Provide consistency
 - Provide flexibility
- Goals
 - Centralize logic into one place and expose an API
 - Make the contained logic a separate OE recipe that an implementer can override in their layer

Reference Implementation

Focus of the Work

- There are three areas that were worked
 - Key Management the platform relies on different keys that are for specific functions (new*)
 - TPM Management the platform has some standard ways it interacts with the TPM
 - Measured Launch Management the platform requires setup, seal, and reseal procedures (new*)

^{*} new just means existing logic was separated into a new OE recipe

Key Management Interface

- Based on existing key usage patterns
 - Three core types of keys,
 - Recovery, Platform, Encrypted(config)
 - Ancillary keys,
 - Cores, Log, Own, Device
 - Initial API
 - Gen_*, Set_*, *_Unlock, *_Clear
 - seed_entropy, finalize_keys
- Compromised a little consistency for clarity

TPM Management

- Prior implementation
 - was already fairly well abstracted
 - had a mix of Key and Measured Launch functionality
- Did not have to change much,
 - pulled any Key and ML functionality out
 - added TPM forward seal function

Measured Launch Management

- Prior implementation only had a configure and success check
- For the initial implementation,
 - pulled the configure and success check away from TPM functions
 - mainly focused on adding the forward seal predictions
 - didn't really focus on refining an API

Looking Forward

Key Management

- The first go was a bottoms up, aligning an API to the current implementation
- Another round of refactoring is needed based more on a top down approach that is driven by an architectural view
- Reference implementation is a shell script library.
 One consideration is to migrate toward a key service. For instance, extend blktap2 to uses the Linux kernel's Trusted/Encrypted Key combination

TPM Management

- A lot to consider
 - Trousers code base hasn't been touched in 1.5 yrs
 - Intel is working on a TPM 2.0 stack
 - Google ditched TSS in Android and ChromiumOS
 - TPM over DBus (tpm_manager)
 - The introduction of vTPMs
 - Serious discussion needs to occur on where the project wants to go with regard to accessing TPM functionality

Measured Launch Management

- The initial implementation achieved centralizing the logic, but did not really provide an API
- For forward seal on a TPM1.2, PCR-17 was reused since DOM0 access to TXT heap is blocked by Xen. Xen will need to be modified to allow read-only access
- Need to develop a design that better accommodates both LCP and VL policies as well as allow implementers to override policy generation
- Explore how TPM2.0 Authorization Policies might allow a better mechanism for resealing after update

Discussion Time

Any Questions?

