SLATE: A Combined Architecture for LDPC and Turbo Decoding

Stevo Bailey, Ben Keller, and Paul Rigge
EE290C Final Project
May 6, 2014

Outline

- LDPC Overview
- Turbo Overview
- Common Elements
- Combined Architecture
- Results
- Conclusions

LDPC Decoding

1. Load LLR values into variable nodes, send to check nodes

2. Repeat:

- Variable nodes marginalize, accumulate
- Check nodes compute offset-min
- Compute hard variable node result, use to compute syndrome, loop if desired metric not met

Source: Matt Weiner

LDPC Decoding

Turbo Decoding

SISO Block

$$\gamma_1 = y_a$$

$$\gamma_2 = c_c$$

$$\gamma_3 = y_a + c_c$$

$$\alpha_k = \max^* (\alpha_{k-1,0} + \lambda_{k,0}, \alpha_{k-1,1} + \lambda_{k,1})$$

Calculate alphas, betas, and "dummy betas" in parallel for each window.

 γ_k = [max* reduction of 1 transitions] – [max* reduction of 0 transitions]

Uncommon Elements

- Routing
 - LDPC: Cyclic shifts of 27, 54, 81
 - Turbo: Permutation depends on block size
- Memories for intermediate results
 - LDPC: many small memories for v2c and c2v marginalization
 - Turbo: a few small memories as scratchpads within each window

Common Elements

LDPC: Offset-min

[min1,min2] = min(a,b,c) + offset

Turbo: max*

 $max^* = max(a,b) + offset$

Combine these and share the check nodes!

System Block Diagram

Sharing the Check Nodes

LDPC

— 81 3-input min-offset blocks

Turbo

- 8 2-input max* for alpha/beta calculations (3x)
- 14 2-input max* per window for LLR calculations
- Total: 38 2-input max* per window
- 81 4-input min/max* => 4 parallel windows

Results: Throughput

- Clock period = 1.8ns (unpipelined)
 - Critical path: VN -> shifter -> CN
 - Should be much improved with pipelining
- LDPC throughput: 960 Mb/s
 - Block length: 1944, 10 iterations, 6 bits per LLR
- Turbo throughput (estimated): 384 Mb/s
 - Block length: 6144, 10 iterations, 2Ghz clock

LDPC Results: Area

LDPC Component	Synthesized Area (um²)
Back Shifters	16,800
Check Nodes	18,800
Front Shifters	18,600
Schedule	9,500
Variable Nodes	570,000
Combinational	228,000
Registers	342,000
	Total : 0.64 mm ²

LDPC Results: Energy

- Clock period = 1.8ns (unpipelined)
- Energy = 0.28 nJ/b post-synthesis
 - Block length: 1944, 10 iterations, 6 bits per LLR

Project Progress

Completed:

- Tested MATLAB implementations
- Built and tested most functional blocks
- Synthesized full LDPC design

• Still to do:

- Improve pipelining and variable node design
- Integrate and test top-level design
- Place-and-route design for realistic area numbers

Future Work

- Increase throughput
 - More VNGs: do part or all of a row at once
 - More parallel turbo decoding windows
 - Higher radix turbo decoding
- Reduce memory footprint of LDPC
- Fuller LDPC/turbo resource sharing
 - Share variable node arithmetic blocks
 - Share scratch memory

References

- Y. Sun and J. Cavallaro. "Unified Decoder Architecture for LDPC/Turbo Codes."
- M. Valenti and J. Sun. Handbook of RF and Wireless Technologies, Chapter 12.
- Y. Sun, J. Cavallaro, et al. "Configurable and Scalable Turbo Decoder for 4G Wireless Receivers."
- M. Weiner. "A High-Throughput, Flexible LDPC Decoder for Multi-Gb/s Wireless Personal Area Networks."

Thanks to Bora, Matt, and Sriram for fruitful discussions.