# Capabilities for Better ML Engineering

Chenyang Yang, Rachel Brower-Sinning, Grace A. Lewis, Christian Kästner, Tongshuang Wu



TL;DR: fine-grained specifications for ML models

#### Motivation

Coarse-grained metrics like test accuracy often can not reveal potential (safety) issues in production.

Existing work focuses on various model qualities and evaluation strategies but are largely scattered and unconnected.

### **Capabilities**

A unifying framework for scattered work on ML specifications

A useful abstraction to reason about in ML engineering,
especially in safety-critical systems

### **Example: Pedestrian Detection**

Capabilities unite existing efforts on model qualities and data augmentation.



### **Broad Usage Scenarios**

### **Model Debugging**

**Use capabilities** to generalize from individual mistakes to systematic problems.

Stakeholders: Data scientists

Stages: Model design, development

### **Model Maintenance**

**Use capabilities** to characterize data shift and build regression tests.

Stakeholders: Data scientists, end users....

Stages: Model deployment

### Collaboration

**Use capabilities** as a communication interface between different stakeholders.

Stakeholders: Data scientists, software engineers...

Stages: Model requirements, documentation

### **External Quality Assurance**

**Use capabilities** to provide a holistic view of how models perform in different scenarios.

Stakeholders: External evaluators, regulators...

Stages: Model evaluation

### **Data Documentation**

Use capabilities to provide abstractions for concrete data points.

Stakeholders: Data scientists, data collectors, data annotators....

Stages: Data curation, documentation

# **Experiment Findings**

**Experiment setup:** We collected 8 capability test suites for sentiment analysis and measured models' performance on capability test suites and out-of-distribution data.

Finding 1: Model performance on capability tests is a strong signal for model's generalizability.

Finding 2: Capability tests especially helps predict how well models generalize to further distributions.

Finding 3: Different capabilities add different amount of information.

**Finding 4**: Different capabilities add **different kinds of information** (from complementary, similar, to conflicting).

### **Research Opportunities**

# 1 Identification

### How to identify capabilities?

- How to support more effective discovery and reuse of domain knowledge? When and how can we automate discovery?
- How to support more efficient human-AI interaction in error analysis?
- How to design a better process to help both experts and non-experts identify capabilities?

### 2 Assessment

### How to assess capabilities' importance?

- What is a good **granularity** for a capability?
- How to evaluate or rank capabilities by context?

# 3 Communication

### How to communicate capabilities?

- How to develop a shared language or interface to facilitate capability communication?
- How can capabilities support conflict resolution between different stakeholders?

# 4 Instantiation

### How to instantiate capabilities to concrete examples?

- How to select instantiation strategies in different scenarios? How to measure and trade off costs and benefits?
- How do different instantiation strategies complement each other?

Checkout our paper!



