

Quantum Generative Adversarial Network with Noise

Project Name: Quantum Generative Adversarial Network with Noise

Project member:

YmHuang WhRen ZlChen

Dodument Type: Report

Project Start Time: 3/01/2020

Sourcecode Version: 0.0.1

Keywords: Variational Quantum Circuit, Machine Learning

Modify May 10, 2020

Submitted by:

WH REN

Contents

1	Experiment	2
2	Results	2
3	Next Plan	2
4	Reference	2
	Appendix A Source Code	3

Data type	Generator	Discriminator	Variable type	Implementation	Theory	real implement	paj
Q	Q	Q			Seth Lloyd and hu	Dallaire	
Q	\mathbf{C}	Q			Seth Lloyd		
Q	Q	\mathbf{C}					
Q	\mathbf{C}	\mathbf{C}			Seth Lloyd		
\mathbf{C}	Q	Q	Any		Seth Lloyd and VQG		
\mathbf{C}	\mathbf{C}	Q			VQG		
\mathbf{C}	Q	\mathbf{C}	discrete		zeng and situ		
\mathbf{C}	Q	\mathbf{C}	continuous		VQG		
\mathbf{C}	\mathbf{C}	\mathbf{C}			GANs		

In this table,Q is quantum . C is classical

1 Experiment

In this week, I have read some papers about quantum GAN. I wanted to find some ideas from them but I didn't get it. I looked up some papers trying to find out which structures haven't been studied. Maybe QQC hasn't been studied. next week, I want to find some other ideas.

2 Results

3 Next Plan

- P: 1 finished quantum circuit code(finished)
 - 2 checking gate gradient descent(finished)
 - 3 the noisy channel don't work(why)
 - 4 find some ideas

4 Reference

References

- [1] Benedetti, M., Grant, E., Wossnig, L., and Severini, S. Adversarial quantum circuit learning for pure state approximation. *New Journal of Physics 21*, 4 (2019), 043023.
- [2] Shende, V. V., Markov, I. L., and Bullock, S. S. Minimal universal two-qubit controlled-not-based circuits. *Physical Review A* 69, 6 (2004), 062321.

5 Appendix

A Source Code

just add core codes