

St Catherine's School

Year:

Subject: 3 Unit Mathematics

Time Allowed: 2 hours (plus 5 mins reading time)
Date: August 2000

- Rui	
-	
\sim	
=	
\Box	
Ħ	
-	
=	
\Box	
_	
\mathbf{c}	
Ã	
V.D	
-	

Directions to candidates:

- All questions are to be attempted
- All questions are of equal value.
- All necessary working must be shown in every question.
- Full marks may not be awarded for careless or badly arranged
- Each question attempted should be started on a new page.
- Approved calculators and geometrical instruments are
- Attach the question paper to the front of Section A.
- Write a cover page for Section B and C and include your
- Hand in your work in 3 bundles: Section A Questions 1, 2 and 3. Section C Questions, 6 and 7, Section B Questions, 4 and 5

TEACHER'S USE ONLY Total Marks
A
В
C
TOTAL

Section A

Question 1

- Differentiate e2x sin x
- Find the acute angle between the lines 2x + y = 4 and x y = 2

9

- C A committee of 3 men and 4 women is to be formed from a group of 8 men and 6 women. Write an expression for the number of ways this can be done.
- ڡ Evaluate $\int_{0}^{x} \frac{dx}{4+x^{2}}$
- Using the substitution u = 2x + 1 or otherwise, find $\int_0^1 \frac{4x}{2x+1} dx$

Question 2

- A particle is moving in simple harmonic motion. It's displacement, x, at time, t, is given by $x = 3\sin(4t + \frac{\pi}{4}).$
- find the period and amplitude of the motion
- Ë find the velocity of the particle when t = 0.
- \mathbf{E} find the maximum acceleration of the particle.
- 3 find the speed of the particle when x = 2
- 9 The polynomial $P(x) = x^3 + bx^2 + cx + d$ has roots at 0, 3 and -3.
- ۳ without using calculus, sketch the graph of y = P(x)
- Ë Hence or otherwise solve the inequality $\frac{x^2-9}{x} \ge 0$.

Question 3

- a) i) Find $\frac{dy}{dx}$ if $y = \tan^{-1}(\sin x)$
- ii) Evaluate $\int_{0}^{\infty} \frac{dx}{\sqrt{2-x^2}}$

9

- A cup of hot coffee at temperature T degrees Celsius loses heat when placed in a cooler environment. It cools according to the law $\frac{dT}{dt} = k(T T_0)$ where time, t is the time elapsed in ninutes and T_0 is the temperature of the environment in degrees Celsius.
- i) A cup of coffee at 100 ^{0}C is placed in an environment at -20 ^{0}C for 3 minutes and then cools to 70 ^{0}C . Find k.
- ii) The same cup of coffee at $70\,^0C$ is then placed in an environment at $20\,^0C$ assuming k stays the same, find the temperature of the coffee after a further 15 minutes.
- The function h(x) is given by $h(x) = \sin^{-1} x + \cos^{-1} x$ for $-1 \le x \le 1$.

c

- show that h'(x) = 0
- sketch the graph of y = h(x)

SECTION B (Start a new page)

Question 4

a

- A spherical balloon is expanding so that its volume is increasing at the constant rate of $10 \, mm^3$ per second. What is the rate of increase of the radius when the surface area is $500 \, mm^2$. $(V = \frac{4}{3}\pi r^3 \quad SA = 4\pi r^2)$
- b) Find the constant term in the expansion of $(3x^2 \frac{1}{2x})^9$.
- c) The points $P(2ap,ap^2)$ and $Q(2aq,aq^4)$ lie on the parabola $x^4 = 4ay$. The equation of chord PQ is given by $y ap^2 = \frac{p+q}{2}(x-2ap)$.
-) If PQ is a focal chord show that pq = -1
- Find M, the midpoint of PQ.
- iii) Find the equation of the locus of M

Question 5

A dangerous fire is burning in a low open tank on horizontal ground. Fire fighters are forced to stay 60m away from the fire. They are using a pump which is on the ground and can eject water at 30m/s at any angle to the horizontal, α .

(Assume that g = 10m/s/s and that all frictional forces, including air resistance, can be neglected.)

a) Show that the expression for the vertical motion is $y = -5t^2 + 30t\sin \alpha$

如如

- b) Show that the expression for horizontal motion is $x = 30t \cos \alpha$
- Show that the range of the projectile is given by $x = 90 \sin 2\alpha$
- d) Find the maximum horizontal distance the pump can reach.
- e) Find the angles of projection needed for the pumped water to reach the fire.
- f) Another other pump is on a vertical stand 5m high and can eject water at 40m/s but only horizontally. Can this pump reach the fire? Justify your answer. (You may use the formulas for the horizontal distance; $x = Vt\cos\alpha$ and vertical distance $y = -\frac{1}{2}gt^2 + Vt\sin\alpha$, where V is the initial velocity and α is the angle of projection and g=10m/s/s).

5

SECTION C (Start a new page)

Question 6

a) i) Show that
$$\int_{0}^{2} \cos^{2} x \, dx = \frac{\pi}{8} - \frac{1}{4}$$

- ii) The function g(x) is given by $g(x) = 2 + \cos x$. The graph y = g(x) for $\frac{\pi}{4} \le x \le \frac{\pi}{2}$ is rotated about the x axis. Find the volume of the solid generated. (You may use the result of a(i)). Give your answer in exact form.
- b) The velocity of a point moving along the x axis is given by $v^2 = 16x 4x^2 + 20$.

i) Show that
$$\ddot{x} = -4(x-2)$$

Question 7

If
$$(1+x)^n = \sum_{r=0}^{n} \sum_{r}^{n} x^r$$
 show that $\sum_{r=1}^{n} r \sum_{r}^{n} = n \ 2^{n-1}$

- b) Consider the function $f(x) = (x-2)^2 + 1$
- i) Sketch the parabola y = f(x), showing clearly any intercepts with the axes, and the coordinates of its vertex. Use the same scale on both axes. 1.5
- ii) What is the largest domain containing the value x = 3, for which the function has an inverse function $f^{-1}(x)$?
- iii) Sketch the function $y = f^{-1}(x)$ on the same set of axes as your graph in part(i). Label the two graphs clearly.
- (iv) What is the domain of the inverse function?
- (v) Let a be a real number not in the domain found in part (ii). Find $f^{-1}[f(a)].2$
- (vi) Find the x coordinate of any points of intersection of the two curves y = f(x) and $y = f^{-1}(x)$.

END OF EXAMINATION

Year 12 3 Unit Trail examination 2000

S 771

page 4

Table of Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\sin ax dx = -\frac{1}{a}\cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\frac{1}{+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a}, \quad a \neq 0$$

$$\frac{1}{a^2 - x^2} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int_{\sqrt{x^2 - a^2}}^{1} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

$$\ln x = \log_e x, \quad x > 0$$

@ Board of Studies NSW (Reprinted with permission.)