Examination Control Division 2079 Chaitra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	BEI	Pass Marks	32
Year / Part	III / II	Time	3 hrs.

Subject: - Communication Systems (EX 656)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

[3+5]

- 1. What are the reasons for modulation? Write the advantages of digital communication over analog communication. Sketch a generic block diagram of a digital communication for full-duplex mode.

 [2+3+5]
- Represent Unit step signal in terms of Signum function. Also, determine whether a Unit step signal is energy or power type or neither of the two.
- 3. Derive the expression for double tone Am. How DSB is different from SSB signal? [6+2]
- 4. What is the aim of source coding? Encode "Kun Mandir Ma Janchhau Yatri" using Huffman codes and finds its efficiency. [10]
- Compare Pulse Code Modulation (PCM), Differential Pulse Code Modulation (DPCM) and Delta Modulation. Find the Signal to Quantization Noise ratio (SQNR) of Pulse Code Modulation (PCM).
- 6. Given the binary sequence 1101010111 represent in Unipolar RZ, Bipolar NRZ, Polar NRZ and Manchester encoders. Explain communication impairments with examples. [6+2]
- 7. What do you mean by optimum detector? Show that the impulse response of the matched filter is reverse delayed version of the input signal. [2+6]
- 8. Compare TDM and FDM. Show that for voice application. Compare E1 and T1 hierarchies. [3+2+5]
- Differentiate error-detection and error-correction. Design a convolutional encoder having code-rate of ½. Also, draw the code-tree and trellis diagram for the same assuming any three-bit input.

Examination Control Division 2078 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BEI	Pass Marks	32
Year / Part	III / II	Time	3 hrs.

Subject: - Communication Systems (EX 656)

- ✓ Candidates are required to give their answers in their own words as far as practicable. Attempt All questions.
- The figures in the margin indicate Full Marks.

- [5]
- What is the relation between psdf and Autocorrelation function? Explain the Stereo FM encoder and decoder with spectral diagram. [3+7]
- Explain the aperture effect during flat-topped sampling. Illustrate, the DPCM scheme that overcomes the disadvantages of PCM. A delta modulator system is designed to operate at 5 times the Nyquist rate for a signal having a bandwidth equal to 3kHz bandwidth. Calculate the maximum amplitude of a 2kHz sinusoidal for which the delta modulator does not have slope overload. The given step size is 250 mv. [2+3+4]
- 7. Represent 100111010 using following encoders. [2+2+2+2]
 - b) Bipolar NRZ c) AMI d) Manchester a) Polar RZ
- What are the significances of multilevel modulation? Explain QPSK with its transformation as well as a receiver block diagram. [2+4]
- a) Explain BSPSK modulation technique with its relevant diagram and signal space 9. diagram. [5]
 - b) Differentiate between FDMA and TDMA. Draw T1 and E1 telephone hierarchy. [3+2]
- 10. Why convolution coder is better than block coder? Determine systematic and nonsystematic code vector for a (7,4) cyclic hamming code for message vector {1011} with generator matrix g(x)=1+X+X3. [2+5]

Examination Control Division 2080 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEI	Pass Marks	32
Year / Part	III / II	Time	3 hrs.

[3+5]

[10]

[4+6]

[4+4]

Subject: - Communication System (EX 656)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- Draw the generic block diagram of Analog communication system for half- duplex mode. Explain the need and disadvantages of modulation.
- 2. Define energy and power signals with example. Write the properties of LTI system. [4+4]
- Calculate the percentage of power saved in: (i) DSB-SC (ii) SSB-SC as compared to standard AM if the modulation depth is 60%. Describe QAM modulation and prepare constallation diagram of 16-QAM.
- Explain the aim of line coding. Encode "Ma Mare Pani Mero Desh Bachi Rahos" using Shannon-Fano codes and calculate its efficiency.
- Why is non-uniform quantization required? Show that for a voice transmission, the basic data rate using PCM is 64 kbps.
- State and explain Shannon-Hartley channel capacity theorem with its implications. Represent 100111010 using Unipolar RZ, Bipolar NRZ, Manchester and AMI encoding technique.
- 7. Explain Pre-amphasis and De-amphasis.
- 8. Briefly explain filter and oscillator requirement in Frequency Division Multiplexing [4+4]
- 9. Construct a (7, 4) binary CRC using a generator polynomial $g(x) = x^3 + x^2 + 1$ with data Vector (1011). Demonstrate how CRC-4 detects two burst errors. [5+5]

Examination Control Division 2079 Ashwin

b) Define T1 and E1 telephone hierarchy.

the convolution encoding process for that sequence.

Exam.		Back	
Level	BE	Full Marks	80
Programme	BEI	Pass Marks	32
Year / Part	111 / 11	Time	3 hrs.

[4]

[2+4]

Subject: - Communication Systems (EX 656)

Candidates are required to give their answers in their own words as far as practicable. Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. What is Harmonic Distortion? Differentiate linear and non-linear distortions. [2+3][4+4]Explain Hilbert transform. How is it different from Fourier transform? 3. a) What are causal and noncausal signals? Explain distortionless transmission channel with its frequency response. [2+3]b) Given $X(t) = A\sin(t)$ for $-\infty < t < \infty$, check power signal or energy signal or neither of [3] them. 4. Describe envelope detection method for the demodulation of DSB-FC AM. Consider a message signal m(t) = 10 cos ($2\pi t$) and carrier signal c(t) = 40 cos($100\pi t$) [3+5] a) Find AM wave for 75% modulation. b) Draw the spectrums of AM wave. 5. Why FM and PM are called angle modulation? Explain the direct method of demodulation of FM with its relevant diagrams. [3+6]6. Describe the sampling of bandpass signals. Explain how differential pulse code modulation is different from ordinary pulse code modulation with DPCM quantizer and receiver. [3+7]7. Define ISI in brief. Explain the ideal solution for ISI. Represent binary sequence [2+3+4]1001001101 in unipolar RZ, polar NRZ, Manchester and AMI codes. 8. Explain QPSK modulation and compare it with GMPSK. Find the symbol rate, entrophy and information rate if a source provides one of the five symbols per microsecond. If the symbol probabilities are 0.25, 0.25, 0.25, 0.125, 0.0625, 0.0625. [4+6]9. a) Explain QPSK with waveforms and constellation diagram. [3]

10. Define Hamming weight and Hamming distance. Assume any 4-bit sequence and explain