IN THE CLAIMS:

Please cancel claim 11.

Please amend the claims as follows.

-- 1 (amended). A substantially pure conopeptide or [pharaceutically] pharmaceutically acceptable salt thereof, said conopeptide having the general formula I [Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Cys-Xaa₆-Cys-Xaa₇ (SEQ ID NO:1), wherein Xaa₁ is des-Xaa₁ or a peptide having 1-6 amino acids; Xaa, is a peptide having 5-6 amino acids; Xaa, is a peptide having 4 amino acids; Xaa₄ is Glu, γ-carboxyglutamic acid (γ-Glu) or Gln; Xaa₅ is a peptide having 3-4 amino acids; Xaa₆ is a peptide having 3-6 amino acids; and Xaa₇ is des-Xaa₇ or a peptide having 2-9 amino acids, with the proviso that when Xaa₁ is des-Xaa₁, then Xaa₅ is not the tripeptide Ser-Asp-Asn] Xaa₁-Xaa₁-Xaa₁-Xaa₂-Xaa₄-Cys-Cys-Xaa₅-Xaa₅-Xaa₇-Xaa₈-Cys-Xaa₂-Xaa₂-Xaa₂-Xaa₃-Xaa₃-Xaa₃-Cys-Xaa₉-Xaa₉-Xaa₁₀-Xaa₁₀-Xaa₁₀-Xaa₁₀-Xaa₁₀-Xaa₁₀-Xaa₁₀ (SEQ ID NO:1), wherein Xaa₁ is des-Xaa₁ or any amino acid; Xaa, is any amino acid; Xaa, is des-Xaa, or any amino acid; Xaa, is Glu, γ-Glu (y-carboxyglutamic acid; also referred to as Gla) or Gln; Xaa, is any amino acid; Xaa, is any amino acid; Xaa₇ is any amino acid; Xaa₈ is des-Xaa₈ or any amino acid; Xaa₉ is des-Xaa₉ or any amino acid; and Xaa10 is des-Xaa10 or any amino acid, with the provisos that (a) when all Xaa10 are des-Xaa₁₀, then both Xaa₉ are des-Xaa₉ or any amino acid and (b) when all Xaa₁ are des-Xaa₁₃ then Xaa₅-Xaa₆-Xaa₇-Xaa₈- is not Ser-Asp-Asn.

In claim 3, line 1, before "Xaa₁", insert -- each --.

- -- 4 (amended). The conopeptide of claim 1, wherein at least one Xaa₁ is any amino acid [a peptide having 1-6 amino acids].
- -- 5 (amended). The conopertide of claim 1, wherein [Xaa₇ is des-Xaa₉] Xaa₉ is des-Xaa₉ and Xaa₁₀ is des-Xaa₁₀. --
- -- 6 (amended). The conopertide of claim 1, wherein [Xaa₇ is a peptide having 2-9 amino acids] Xaa₉ is any amino acid. --

3

Mayor County

a 7

Q 8

acout

-- 7 (amended). A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula II/[Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Cys-Xaa₇-Cys-Xaa₈ (SEQ ID NO:2), wherein Xaa₁ is des-Xaa₁ or a peptide having 1-6 amino acids; Xaa₂ is a peptide having 5-6 amino acids; Xaa₃ is a peptide having 4 amino acids; Xaa₄ is Glu, γ-carboxyglutamic acid (γ-Glu) or Gln; Xaa₅ is Ser or Thr; Xaa₆ is a peptide having 2-3 amino acids; Xaa, is a peptide having 3-6 amino acids; and Xaa, is des-Xaa, or a peptide having 2-9 amino acids, with the proviso that when Xaa₁ is des-Xaa₁ and Xaa₅ is Ser, then Xaa₆ is not the dipeptide Asp-Asn] Xaa₁-Xaa₁-Xaa₁-Xaa₁-Xaa₁-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₃-Xaa₄-Xaa₁-Xaa₁-Xaa₁-Xaa₁-Xaa₁-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₃-Xaa₄-Xa <u>Xaa₂-Xaa₂-Xaa₃-Cys-Xaa₂-Xaa₂-Xaa₂-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Xaa₇-Xaa₈-Cys-Xaa₂-Xaa₂-Xaa₂-</u> NO:2), wherein Xaa, is des-Xaa, or any amino acid; Xaa, is any amino acid; Xaa, is des-Xaa, or any amino acid; Xaa, is Glu, γ-Glu or Gln; Xaa, is Ser or Thr; Xaa, is any amino acid; Xaa, is any amino acid; Xaa, is des-Xaa, or any amino acid; Xaa, is des-Xaa, or any amino acid; and Xaa₁₀ is des-Xaa₁₀ or any amino acid, with the provisos that (a) when all Xaa₁₀ are des-Xaa₁₀, then both Xaa₉ are des-Xaa₉ or any amino acid and (b) when all Xaa₁ are des-Xaa₁ and Xaa₅ is Ser, then Xaa₆-Xaa₇-Xaa₈- is not Asp-Asn. --

In claim 9, line 1, hefore "Xaa,", insert -- each

a

-- 10 (amended). The conopertide of claim 7, wherein at least one Xaa₁ is any amino acid [a peptide having 1-6 amino acids]. --

-- 12 (amended). The conopeptide of claim 7, wherein [Xaa₈ is des-Xaa₈] Xaa₉ is des-Xaa₁₀. --

-- 13 (amended). The conopeptide of claim 7, wherein [Xaa₈ is a peptide having 2-9 amino acids] Xaa₉ is any amino acid. --

-- 14 (amended. A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula III: [Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₅-Cys-Xaa₆ (SHQ ID NO:3), wherein Xaa₁ is a peptide having 1-6

ant

amino acids; Xaa₂ is a hexapeptide; Xaa₃ is a peptide having 4 amino acids; Xaa₄ is Glu or γ-carboxyglutamic acid (γ-Glu); Xaa₁ is a tripeptide; and Xaa₆ is a peptide having 7-9 amino acids] Xaa₁-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₁-Xaa₂-Xaa₂ (SEQ ID NO:3) wherein Xaa₁ is any amino acid; Xaa₂ is des-Xaa₂ or any amino acid and Xaa₃ is Glu or γ-Glu.

In claim 15, line 1, please change "Xaa₄" to read -- Xaa₃ --.

A ii

-- 16 (amended). A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula IV: [Xaa₁-Cys-Xaa₂-Cys-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Xaa₆-Cys-Xaa₇ (SEQ ID NO:4), wherein Xaa₁ is a peptide having 1-6 amino acids; Xaa₂ is a hexareptide, Xaa₃ is Ser or Thr; Xaa₄ is a tripeptide; Xaa₅ is Glu or γ-carboxyglutamic acid (γ-Glu); Xaa₆ is a tripeptide; and Xaa₇ is a peptide having 7-9 amino acids] Xaa₁-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₂-Xaa₁

In claim 17, line 1, please change "Xaa₅" to read -- Xaa₄ --.

012

-- 18 (amended). A substantially pure conopeptide or pharmaceutically acceptable salt thereof, said conopeptide having the general formula V: [Xaa₁-Xaa₂-Cys-Xaa₃-Xaa₄-Phe-Xaa₅-Cys-Thr-Xaa₆-Ser-Xaa₇-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys-Xaa₈-Leu-Xaa₉ (SEQ ID NO:5), wherein Xaa₁ is des-Xaa₁ or a dipeptide; Xaa₂ is Asp, Glu or γ-carboxyglutamic acid (γ-Glu); Xaa₃ is a dipeptide; Xaa₄ is Trp or 6-bromo-Trp; Xaa₅ is a dipeptide; Xaa₆ is a dipeptide; Xaa₇ is Glu or γ-Glu; Xaa₈ is any amino acid; and, Xaa₉ is a pentapeptide] Xaa₁-Xaa₁-Xaa₂-Cys-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Xaa₃-Ser-Xaa₃-Cys-Cys-Ser-Asn-Ser-Cys-Asp-Gln-Thr-Tyr-Cys-Xaa₃-Leu-Xaa₃-