MAT 135 – Geometria Analítica e Álgebra Linear

 $4^{\frac{\Lambda}{2}}$ Lista (Transformação Linear) – 2021/1

profa. Lana Mara Rodrigues dos Santos

Atualizada em: 1 de abril de 2021

1) Dentre as transformações $T: \mathbb{R}^2 \to \mathbb{R}^2$, verifique quais são lineares.

(a)
$$T(x,y) = (x - 3y, 2x + 5y)$$

(b)
$$T(x,y) = (x+1,y)$$

(c)
$$T(x,y) = (xy,y)$$

2) Verifique quais das transformações $T: V \to W$ são lineares:

(a)
$$V = P_1(\mathbb{R}), W = M_2(\mathbb{R}), T(x+yt) = \begin{pmatrix} 2y & 3x \\ -y & x+2y \end{pmatrix}$$

(b)
$$V = M_2(\mathbb{R}), W = P_2(\mathbb{R}), T \begin{pmatrix} x & y \\ z & t \end{pmatrix} = a - x + (b+d)t + 2ct^2$$

(c)
$$V = M_2(\mathbb{R}), W = \mathbb{R}, T \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{vmatrix} x & y \\ z & t \end{vmatrix}$$

3) Encontre a matriz A que define a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^m$ dada por:

(a)
$$T(x,y) = (2x - y, x + y)$$

(b)
$$T(x, y, z) = (4x, 7y - 8z)$$

4) Dada a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x,y) = (2x-y,x+y), determine:

(a)
$$T(1,1) \in T(2,-1)$$

(b) o conjunto de vetores do \mathbb{R}^2 cuja imagem é o vetor nulo.

5) Esboce a imagem do quadrado de vértices $P_1(0,0), P_1(1,0), P_1(0,1), P_1(1,1)$, usando o operador linear do \mathbb{R}^2 definido por T(x,y)=(-x+2y,2x-y). Faça o desenho.

6) Encontre a matriz A do operador linear T definido pela fórmula:

(a)
$$T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$$

(b)
$$T(x_1, x_2, x_3) = (4x_1, 7x_2, -8x_3)$$

7) Sejam
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -3 \end{bmatrix}$$
 e $u = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$

(a) Determine a transformação linear T tal que T(X) = AX.

(b) Encontre a imagem do vetor u por T.

8) Sejam u = (1,5) e v = (3,1) e o operador linear do \mathbb{R}^2 tal que T(u) = (2,0) e T(v) = (1,-4). Determine T(2u), T(3v) e T(2u+3v).

- 9) Encontre a matriz do operador linear do operador linear do \mathbb{R}^2 que leva um ponto (x,y) em:
 - (a) sua reflexão em torno da reta y = -x.
 - (b) sua reflexão em torno da origem.
 - (c) sua reflexão em torno do eixo y.
 - (d) sua rotação de 60° (no sentido anti-horário).
- 10) Na fabricação dos produtos P e Q são produzidos dióxido de enxofre, óxido nítrico e partículas de outros materiais poluentes. As quantidades de poluentes na produção de 1 ton. de P e de Q são dadas (em kg) na tabela:

Produto/Poluentes	dióxido de enxofre	óxido nítrico	partículas
P	1300	100	150
Q	200	250	400

- (a) Qual a quantidade produzida de cada poluente com a produção de 2 ton. de P e 3 ton. de Q.
- (b) Encontre uma transformação linear que descreve a quantidade de cada poluente produzido (em kg.) com a produção de x ton. do produto P e y ton. do produto Q.
- (c) Leis estaduais e federais exigem a remoção desses poluentes. Encontre a transformação linear que representa o custo total de remoção dos poluentes com a fabricação de de x ton. do produto P e y ton. do produto Q sabendo-se que o custo diário para remover cada quilo de cada poluente é dado (em reais) na tabela:

Poluentes	dióxido de enxofre	óxido nítrico	partículas
preço	8	5	10

11) Um fabricante de móveis faz cadeiras e mesas, cada uma das quais passa por um processo de montagem e outro de acabamento. O tempo necessário para esses processos é dado (em horas) pela matriz:

	Montagem	Acabamento
Cadeira	2	2
Mesa	3	4

- (a) Encontre a transformação linear que descreve o tempo necessário em cada processo para a produção de x cadeiras e y mesas.
- (b) Qual o tempo necessário em cada processo para a produção de 80 cadeiras e 20 mesas?

O fabricante tem uma fábrica em Belo Horizonte e outra em Ubá. O custo, por hora, para cada um dos processos são dadas (em reais) pela tabela:

	Belo Horizonte	Ubá
Montagem	9	10
Acabamento	10	12

- (c) Construa uma matriz de custo unitário cujas linhas descrevem o custo de produção de cada produto em cada cidade.
- (d) Encontre a transformação linear que representa o custo de produção dos produtos, por cidade.
- (e) Qual o custo de produção na fabricação de 80 cadeiras e 20 mesas?

12) Um fabricante de farinha produz três tipos de farinha: de mandioca, de milho e de trigo. Para produzir cada um dos tipos de farinha o produto bruto passa por três processos: seleção, processamento e embalagem. O tempo necessário (em horas), para cada processo, para produzir uma saca de farinha, é dado na tabela.

Farinha/Processo	Seleção	Processamento	Embalagem
Mandioca	1	3	1
Milho	2	5	1
Trigo	1,5	4	1

- (a) Encontre uma transformação linear que descreve o tempo necessário para a produção de x Kg de mandioca, y Kg de milho e z Kg de trigo.
- (b) Encontre uma transformação linear que descreve o custo de produção de x Kg de mandioca, y Kg de milho e z Kg de trigo, de acordo com a tabela.

Seleção	Processamento	Embalagem
3	2	1

- 13) Em uma região, cerca de 10% da população urbana se mudam para os subúrbios vizinhos a cada ano e cerca de 20% da população suburbana se mudam para a cidade. Em 2020, existiam 100.000 residentes na cidade e 200.000 nos subúrbios.
 - (a) Monte uma equação de diferenças $(x_{k+1} = Mx_k, k \ge 0)$ que descreve essa situação, em que x_0 é a população inicial em 2020.
 - (b) Obtenha uma estimativa da população na cidade e nos subúrbios dois anos mais tarde, em 2022.
- 14) Determine $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1) = (1,0,0) e T(1,-1) = (2,1,2).
- 15) Determine $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,1,1) = (1,0), T(1,-1,0) = (2,1) e T(0,1,1) = (0,1).
- 16) Seja o operador linear do \mathbb{R}^3 definido pela matriz $A=\begin{bmatrix}1&2&1\\0&1&2\\2&-1&0\end{bmatrix}$, determine:
 - (a) A imagem dos vetores (1, 1, 1), (1, 0, 1), (-1, 2, 1) por T.
 - (b) O núcleo do operador linear.
 - (c) O operador inverso T^{-1} .
 - (d) A imagem dos vetores (0,0,1),(1,0,0),(2,-1,1) por T^{-1} .
- 17) Seja o operador linear do \mathbb{R}^2 definido por T(x,y)=(2x-y,x-y).
 - (a) Encontre a matriz A de T tal que T(X) = AX.
 - (b) Justifique por que T é um inversível e encontre a transformação inversa de T.
 - (c) Encontre um vetor X cuja imagem, por T, seja o vetor $Y=\begin{pmatrix} 0\\ -1 \end{pmatrix}$.
 - (d) Represente, geometricamente, a imagem por T do triângulo de vértices O=(0,0), A=(1,2) e B=(2,1). Represente o triângulo OAB e a imagem do triângulo por T.

- 18) Sejam as transformações lineares $T: \mathbb{R}^n \to \mathbb{R}^m$ definidas por:
 - (a) T(x,y) = (x + y, x, 2y)
 - (b) T(x, y, z) = (x 2z, 2y, -x)
 - (c) T(x, y, z) = (x 3y 2z, y 4z)

Determine:

- (i) o núcleo de T, uma base para este subespaço e a sua dimensão. T é injetora?
- (ii) o espaço imagem de T, uma base para este subespaço e a sua dimensão. T é sobrejetora?
- (iii) caso exista, o isomorfismo inverso.
- 19) Dada as transformações lineares $T: U \to V$, determine:
 - (i) a expressão genérica de T;
 - (ii) $N(T) \in Im(T)$;
 - (iii) bases para N(T) e Im(T);
 - (iv) T é injetora? É sobrejetora?

Em que:

(a)
$$U = \mathbb{R}^2$$
, $V = \mathbb{R}^3$, $T(-2,3) = (-1,0,1)$, $T(1,-2) = (0,-1,0)$

(b)
$$U = \mathbb{R}^3, V = \mathbb{R}^2, [T]_C^B = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$
, em que $B = \{(0, 1, 1), (1, 0, 0), (1, 0, 1)\}$ e $C = \{(-1, 0), (0, -1)\}$

(c)
$$U = V = M_2(\mathbb{R}), T(X) = MX - XM$$
, em que $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

- 20) Determine um operador linear T do \mathbb{R}^3 cujo o núcleo seja gerado por (1,2,-1) e (1,-1,0).
- 21) Determine uma transformação linear $T:\mathbb{R}^3 \to \mathbb{R}^4$ cuja a imagem seja gerada por (1,3,-1,2) e (2,0,1,-1).
- 22) Em cada item, determine uma transformação linear $T:\mathbb{R}^n \to \mathbb{R}^2$ tal que:
 - (a) O núcleo tenha dimensão 1.
 - (b) A imagem tenha dimensão 2.
 - (c) É injetora mas não sobrejetora.
 - (d) É sobrejetora mas não é injetora.
- 23) Sejam $u_1 = (1, 2, -1), u_2 = (-1, a, 1)$ e $u_3 = (1, b, 0)$, e T um operador linear do \mathbb{R}^n tal que $ImT = [u_1, u_2, u_3]$.
 - (a) Para que valores de a, b o operador T será um isomorfismo?
 - (b) Quais os possíveis valores para a dimensão do núcleo de T.
- 24) Seja $T:U\to V$ uma transformação linear. Mostre que:
 - (a) Se $\{T(v_1), T(v_2), ..., T(v_r)\}$ é linearmente independente (LI) então $\{v_1, v_2, ..., v_r\}$ é LI.
 - (b) Se $\{v_1, v_2, ..., v_r\}$ é LI, então $\{T(v_1), T(v_2), ..., T(v_r)\}$ pode não ser LI.
 - (c) Se T é injetora e $\{v_1, v_2, ..., v_r\}$ é LI, então $\{T(v_1), T(v_2), ..., T(v_r)\}$ é LI.

- 25) Sejam a base $B = \{u_1 = (1,1), u_2 = (-1,0)\}$ do \mathbb{R}^2 e $T : \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear definida por $T(u_1) = (1,-1,0)$ e $T(u_2) = (1,0,2)$. Determine:
 - (a) $[T]_D^B$, em que $D = \{(1, -1, 0), (1, 0, 2), (0, 0, 1))\}.$
 - (b) T(v), sabendo-se que $[v]_B = (1, 2)^T$.
 - (c) $[T(u)]_D$, sabendo-se que u = (1, 2).
 - (d) $[T]_C^B$, em que C é a base canônica do \mathbb{R}^3 .
 - (e) A expressão de T.
 - (f) A expressão de um operador linear G do \mathbb{R}^2 , caso exista, tal que a dim $N(T \circ G) = 1$.
- 26) Seja $T:U\to V$ uma transformação linear entre espaços vetoriais U e V. Mostre que:
 - (a) $T((0)_U) = (0)_V$, em que $(0)_U$ e $(0)_V$ são os vetores nulos de U e V, respectivamente.
 - (b) $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$, para todo $u, v \in U$ e para todo $\alpha, \beta \in \mathbb{R}$.
- 27) Determine um operador do \mathbb{R}^3 que leva o ponto (x, y, z) em sua reflexão em relação ao plano xy.
- 28) Seja $T:U\to V$ uma transformação linear entre espaços vetoriais U e V. Mostre que N(T) e ImT são subespaços respectivamente de U e de V.
- 29) Seja $T:U\to\mathbb{R}^5$ uma transformação linear entre os espaços U e $\mathbb{R}^5.$
 - (a) Se T é sobrejetora e $\dim N(T) = 2$, qual a $\dim U$?
 - (b) Se T é bijetora, qual a dimU?
- 30) Sejam S o operador do \mathbb{R}^2 que leva um ponto (a,b) em sua reflexão em relação à reta y=x, e T o operador do \mathbb{R}^2 que leva um ponto (a,b) em sua reflexão em relação à reta x=0. Determine:
 - (a) $S^{-1}(x,y)$
 - (b) $T^{-1}(x,y)$
 - (c) $(S \circ T)(x, y)$ e interprete geometricamente.
 - (d) $(T \circ S)(x, y)$ e interprete geometricamente.
- 31) Seja T o operador do \mathbb{R}^2 que leva um ponto (a,b) em sua reflexão em relação à reta y=3x. Determine uma base B de \mathbb{R}^2 tal que $[T]_B=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- 32) Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear tal que $[T]_B^C = \begin{pmatrix} 0 & 2 \\ -1 & 0 \\ -1 & 3 \end{pmatrix}$, em que $B = \{(1,1), (0,1)\}$ e $C = \{(0,3,0) \, (-1,0,0), (0,1,1)\}.$
- 33) Sejam $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ e $T_1: \mathbb{R}^2 \to \mathbb{R}^3$ transformações lineares, tais que $T_1(x,y) = (3x y, -3x + y)$ e $T_2(x,y) = (x+y,x,2y)$.
 - (a) Determine $T_1 \circ T_2$
 - (b) Mostre que $T_1 \circ T_2$ é uma transformação linear.
 - (c) Mostre que $[T_1\circ T_2]_B^C=[T_2]_B^C[T_1]_B^B$, em que B e C são bases de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente.

- 1) (a) sim
 - (b) não
 - (c) não
- 2) (a) $[T] = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$
 - (b) $[T] = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 7 & -8 \end{bmatrix}$
- 3) (a) sim
 - (b) sim
 - (c) não
- 4) (a) T(1,1) = (1,2)eT(2,-1) = (5,1)
 - (b) $V = \{(x, y) \in \mathbb{R}^2; (2x y, x + y) = (0, 0)\} = \{(0, 0)\}.$ Logo, $V = \{(0, 0)\}$
- 5) A imagem é o losango de vértices (0,0), (-1,2), (2,-1)e(1,1).

- 6) (a) $A = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$
 - (b) $A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -8 \end{pmatrix}$
- 7) (a) T(x, y, z) = (x y 2z, 2x + y 3z)
 - (b) T(1,2,-1) = (1,7)
- 8) T(2u) = (4,0), T(3v) = (3,-12).T(2u+3v) = (7,-12)
- 9) (a) T(x,y) = (-y, -x)
 - (b) T(x,y) = (-x, -y)
 - (c) T(x,y) = (0,y)
 - (d) $T(x,y) = \frac{1}{2}(x \sqrt{3}y, \sqrt{3}x + y)$
- 10) (a) São produzidos 3200kg, 950kg e 1500kg, respectivamente, de dióxido de enxofre, óxido nítrico e partículas.
 - (b) T(x, y, z) = (1300x + 200y, 100x + 250y, 150x + 400y).
 - (c) C(x, y, z) = 8(1300x + 200y) + 5(100x + 250y) + 10(150x + 400y) = 50(248x + 137y).
- 11) (a) T(x,y) = (2x + 3y, 2x + 4y), em que x é o número de cadeiras e y de mesas a serem fabricadas.

- (b) T(80,20)=(220,240), isto é, serão necessárias 220 horas de montagem e 240 horas de acabamento na fabricação de 80 cadeiras e 20 mesas.
- (c) $\begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$. $\begin{bmatrix} 9 & 10 \\ 10 & 12 \end{bmatrix} = \begin{bmatrix} 38 & 44 \\ 67 & 78 \end{bmatrix}$. Cada linha indica o custo de produção de cada produto em Belo Horizonte e em Ubá.
- (d) T(x,y) = (38x + 67y, 44x + 78y)
- (e) T(80,20)=(4380,5080), ou seja, na fabricação de 80 cadeiras e 20 mesas, em BH serão gastos R\$ 4380,00 e, em Ubá, R\$ 5080,00.
- 12) (a) Dada a matriz com os dados $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 5 & 1 \\ 1, 5 & 4 & 1 \end{bmatrix}$, a matriz A. $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 6.5 \end{bmatrix}$ indica em cada linha o tempo necessário para a produção de cada farinha. Portanto, T(x, y, z) = (5x, 8y, 6.5z).
 - (b) A matriz A. $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 17 \\ 13.5 \end{bmatrix}$ indica em cada linha o custo de produção de cada farinha. Logo, T(x,y,z) = (10x,17y,13.5z).
- 13) (a) $x_{k+1} = \begin{pmatrix} 0.9 & 0.2 \\ 0.1 & 0.8 \end{pmatrix} x_k, \ k \ge 0 \ e \ x_k = \begin{pmatrix} x \\ y \end{pmatrix}$
 - (b) $x_2 = \begin{pmatrix} 151.000 \\ 149.000 \end{pmatrix}$. Em 2022: 151.000 residentes na cidade e 149.000 residentes nos subúrbios.
- 14) $T(x,y) = (\frac{3x-y}{2}, \frac{x-y}{2}, x-y)$
- 15) T(x, y, z) = (x y + z, -x 2y + 3z)
- 16) (a) T(1,1,1) = (4,3,1); T(1,0,1) = (2,2,2) e T(1,2,1) = (4,4,4).
 - (b) $N(T) = \{(0,0,0)\}$
 - (c) $T^{-1}(x, y, z) = \frac{1}{8}(2x y + 3z, 4x 2y 2z, -2x + 5y + z)$
 - (d) $T^{-1}(0,0,1) = \frac{1}{8}(3,-2,1), T^{-1}(1,0,0) = \frac{1}{4}(1,2,-1), T^{-1}(2,-1,1) = (1,1,-1)$
- 17) (a) $A = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix}$
 - (b) $det(A) = -1 \neq 0$. Logo T é inversível e $T^{-1}(x, y) = (x y, x 2y)$.
 - (c) $X = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$
 - (d) É o triângulo de vértices (0,0), (0,-1), (3,1).
- 18) (a) (i) $N(T) = \{(0,0)\}, \, \beta_{N(T)} = \emptyset, \, \mathrm{dim} N(T) = 0. \, T$ é injetora.
 - (ii) $Im(T) = \{(x+y,x,2y); x,y \in I\!\!R\} = [(1,1,0),(1,0,2)], \beta_{Im(T)} = \{(1,1,0),(1,0,2)\}, \dim Im(T) = 2.$ T não é sobrejetora.
 - (iii) O operador não é invertível.
 - (iv) Não é possível compor as funções.
 - (b) (i) $N(T) = \{(0,0,0)\}, \ B_{N(T)} = \emptyset, \ \mathrm{dim}N(T) = 0.$ Portanto, T é injetora.
 - (ii) Pelo Teorema do Núcleo e da Imagem, $\dim ImT = 3 = \dim \mathbb{R}^3$. Portanto, T é sobrejetora. Uma base de ImT pode ser a base canônica \mathbb{R}^3 .

- (iii) T é bijetora. O operador inverso de T é operador do \mathbb{R}^3 tal que $T^{-1}(x,y,z)=-\frac{1}{2}(2z,-y,x+z)$.
- (c) (i) $N(T) = \{(x, y, z) \in \mathbb{R}^3 / x = 14y, y = 4z\}, \ \beta_{N(T)} = \{(14, 4, 1)\}, \ \dim N(T) = 1. \ T$ não é injetora.
 - (ii) dimN(T) = 0, $ImT = \mathbb{R}^3$. T. T é bijetora. $T^{-1}(x, y, z) = -\frac{1}{2}(z, -y, x + z)$.
 - (iii) $Im(T) = \{(x-3y-2z,y-4z); x,y \in I\!\!R\} = [(1,0),(-3,1),(-2,-4)] = [(1,0),(-3,1)], \ \beta_{Im(T)} = \{(1,0),(-3,1)\}, \ \dim Im(T) = 2. \ T \ \text{\'e} \ \text{sobrejetora mas n\~ao sobrejetora}.$
- 19) (a) $T(x,y) = (2x + y, 3x + 2y, -2x y), N(T) = \{(0,0)\}, \beta_{N(T)} = \emptyset, \dim N(T) = 0. T$ é injetora. $Im(T) = \{(2x+y, 3x+2y, -2x-y); x, y \in I\!\!R\} = [(2,3,-2), (1,2,-1)], \beta_{Im(T)} = \{(2,3,-2), (1,2,-1)\}, \dim Im(T) = 2. T$ não é sobrejetora.
 - (b) $T(x,y,z)=(-2y+z,-x+y), N(T)=\{(x,y,z)\in \mathbb{R}^3/x=y,z=2y\}, \ \beta_{N(T)}=\{(1,1,2)\}, \ \dim N(T)=1.$ T não é injetora. $Im(T)=\{(-2y+z,-x+y);x,y\in \mathbb{R}\}=[(0,-1),(-2,1),(1,0)], \ \beta_{Im(T)}=\{(0,-1),(1,0)\}, \ \dim Im(T)=2.$ T é sobrejetora.
 - (c) $T \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 2z & 2t 2x \\ 0 & -2z \end{pmatrix}$, $N(T) = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in M_2(I\!\!R) : x = t, z = 0 \right\}$, $\beta_{N(T)} = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$, dimN(T) = 2. T não é injetora.
- 20) T(x,y) = (x+y+3z,0,0).
- 21) T(x, y, z) = (x + 2y, 3x, -x + y, 2x y).
- 22)
- 23) (a) $a \neq -2, b \in \mathbb{R}$
 - (b) Pelo Teorema do núcleo e da imagem, $\dim N(T) = 0$ (se $a \neq -2$) ou $\dim N(T) = 1$ (se a = -2).
- 24)
- 25) (a) $[T]_D^B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$
 - (b) T(v) = (3, -1, 4)
 - (c) $[T(u)]_D = (2,1)^T$
 - (d) $[T]_D^B = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 2 \end{pmatrix}$
 - (e) T(x,y) = (-x+2y, -y, -2x+2y)
 - (f) Por exemplo, tome G tal que G(x, y) = (x, 0).
- (a)
 - (b)
- 27) T(x, y, z) = (x, y, -z)
- 28)
- 29) (a) $\dim V = 7$
 - (b) $\dim V = 5$
- 30) (a) $S^{-1}(x,y) = S(x,y) = (y,x)$

- (b) $T^{-1}(x,y) = T(x,y) = (-x,y)$
- (c) $(S \circ T)(x,y) = (y,-x)$ (rotação de 90^o no sentido horário)
- (d) $(T\circ S)(x,y)=(-y,x)$ (rotação de 90^o no sentido anti-horário)
- 31) $B = \{(1,3), (-3,1)\}$
- 32) T(x,y) = (x, -10x + 9y, -4x + 3y)
- 33) (a) $(T2 \circ T1)(x, y) = (0, 3x y, -6x + 2y)$