B1B02FY2 a B3B02FY2 varianta 414

Otázka 1 (2 body)

Objem plynu se zvětšil o 2 m³ při stálém tlaku 100000 Pa. Vypočítejte práci vykonanou plynem.

Otázka 2 (2 body)

Ideálnímu plynu bylo dodáno teplo 10 J za stálého objemu. Určete změnu jeho vnitřní energie.

Otázka 3 (2 body)

Určete vnitřní energii dvou molů kyslíku O_2 při teplotě 300 K

Otázka 4 (2 body)

Anténa k výkonem P = 100 kW vysílá vlny na frekvenci f = 2 MHz. Kolik fotonů vyšle za jednu sekundu?

Otázka 5 (2 body)

Výpočtem rozhodněte, jestli je vlnová funkce $\psi(x) = \frac{\sqrt{22}}{7}(x+1)$ normovaná na intervalu $\langle 0; 1 \rangle$.

Otázka 6 (2 body)

Na kov o výstupní práci $3,14\cdot 10^{-19}$ J dopadá světlo s vlnovou délkou 500 nm. Rozhodněte, zda může proběhnout vnější fotoefekt.

Otázka 7 (2 body)

Po proběhnutí Comptonova jevu se foton odkloní o 60°. Změna jeho vlnové délky je rovna dvojnásobku původní vlnové délky. Určete tuto původní vlnovou délku.

Otázka 8 (1 bod)

Napište základní předpoklady Bohrova modelu atomu.

Otázka 9 (2 body)

Černé těleso má teplotu povrchu T = 2000 K. S jakou intenzitou vyzařuje?

Příklad 1 (3 body)

Máme 60 litrů vzduchu o tlaku p=1 MPa. Kolik tepla je třeba dodat, aby vzduch při stálém tlaku zdvojnásobil objem? Poissonova konstanta pro vzduch $\varkappa=1,4$.

Konstanty

Wienova konstanta je $b=2,898\cdot 10^{-3}~{\rm m\cdot K}$, rychlost světla ve vakuu je $c=3\cdot 10^8~{\rm m\cdot s^{-1}}$, Planckova konstanta je $h=6,62607\cdot 10^{-34}~{\rm J\cdot s}$, Boltzmannova konstanta je $k=1,38\cdot 10^{-23}~{\rm J\cdot K^{-1}}$, univerzální plynová konstanta je rovna $R=8,3~{\rm J\cdot mol^{-1}\cdot K^{-1}}$, Stefan-Boltzmanova konstanta je rovna $\sigma=5,67\cdot 10^{-8}~{\rm W\cdot m^{-2}\cdot K^{-4}}$

celkem bodů: 20