- 1. Перечислите основные принципы построения Сети Интернет
- Принцип уровневости, Принцип инкапсуляции данных, Принцип коммутации пакетов, Принцип доменного наименования, Принцип Адресации, Принцип е2е передачи е2е передачи? кажется было на какой-то фотке в табличке
- 2. Что такое Протокол?
- Правила и соглашения по устранению и поддержанию связи, обеспечивающий взаимодействие между одинаковыми уровнями
- Набор правил и действий (алгоритмов), позволяющий осуществить соединение и обмен данными между двумя и более включёнными в сеть устройствами
- 3. Сформулируйте модель взаимодействия приложений в сети Интернет
- Поток байт
- 4. Какие протоколы называются Одноимёнными
- Находящиеся на одном и том же уровне сетевой модели
- Работающие на одном уровне
- Протоколы, работающие по интерфейсу с аналогичным названием
- 5. Какой сервис обеспечивает ІР протокол?
- Ненадёжный / Datagram Индивидуально модифицируемый скачками пакет / Best effort (сброс только по необходимости) / Без соединения
- 6. Какой сервис обеспечивает ТСР протокол?
- Надёжный / Передача упорядоченного потока байтов / С установкой соединения / Управление перегрузкой / Сохранение последовательности передачи данных
- 7. Какой сервис обеспечивает UDP протокол?
- Ненадёжный / Без соединения / Datagram
- 8. Для чего и кто\что использует ICMP протокол?
- Используется для диагностики проблем со связностью в сети
- Для передачи данных на сетевом уровне. В основном, для передачи сведений об ошибках и других исключениях, возникших при передаче данных
- 9. Какие виды коммутации потоков данных вам известны?
- Коммутация каналов и Коммутация пакетов
- 10. Что позволяет узнать команда ping?
- Работоспособность и доступность заданного узла на уровне IP
- 11. Что позволяет узнать команда traceroute/tracert?
- Маршрут следования данных в сетях ТСР/ІР
- 12. Перечислите основные компоненты сквозной задержки в сети?
- Задержка пакетизации, задержка распространения, задержка буферизации (в буфере коммутатора)

- 13. С помощью какого механизма можно регулировать задержку буферизации в сети?
- Принцип коммутации пакетов
- 14. Что такое управление потоком?
- Способ, с помощью которого последовательное устройство контролирует объём поступающих на него данных
- Принятие решения о передаче потока данных на внутренних узлах сети(коммутаторы) далее по пути к пункту назначения
- 15. Что такое управление перегрузкой?
- Механизм, защищающий устройство от избыточных данных, поступающих на него
- Способ борьбы устройства с излишком поступающих на него данных
- Механизм, с помощью которого конечные точки в интернете замедляют отправку данных, чтобы не перегрузить доступный канал и буферы
- 16. Есть ли единая система адресации в Интернете?
- Да, ІР
- 17. Есть ли единая система именования в Интернете?
- Да, DNS
- 18. Укажите максимальный размер протокольной единицы данных (PDU) на транспортном уровне
- 64 Кб
- 19. Укажите максимальный размер протокольной единицы данных (PDU) на сетевом уровне
- 64 Кб
- 20. Укажите максимальный размер протокольной единицы данных (PDU) на канальном уровне
- 1.5 Кб
- 21. С помощью каких средств согласуют размер PDU на разных уровнях при передаче?
- Фрагментация и Инкапсуляция

-----Управление Задержкой

22.1. Свойства FIFO дисциплины

- FIFO-очередь Нет приоритетов, не гарантирована скорость
- 22.2. При использовании дисциплины FIFO можно ли гарантировать задержку для соединения:
- Нет, тк задержка буферизации случайная величина. Есть оценка сверху: Задержка <= ёмкость буфера / скорость на выходе буфера
- 23. Указать недостатки дисциплины с приоритетами
- Высокоприоритетный трафик "не видит" низкоприоритетного трафика в сети
- 24. При каких условиях дисциплина Waited Fair Queuing (WFQ) позволяет каждому потоку обеспечивать гарантированный сервис?
- При условии, что пакеты не теряются[и дисциплина обслуживания очереди FIFO <u>не противоречащие ли это вещи FIFO и WFQ. Она же по определению меняет порядок тк раздаёт приоритеты пакетам. Думаю, надо уточнять, что FIFO сохраняется для одинаковых приоритетов</u>
- 25. Какие методы позволяют избежать сброса пакетов?
- Метод "текущего ведра", буферизация
- Мы не можем управлять отправкой пакетов (т.к. это происходит на уровне приложений на абонентских машинах), но мы можем ограничить процесс поступления трафика. Это называется "шейпингом" трафика, реализует его, например, механизм "текущего ведра".

Свойства	Очередей

- 26. Основные компоненты простой модели детерминированной очереди?
- Число поступивших байт, число отправленных байт и пропускная способность
- A(t) общее число пакетов, прибывших к моменту t.
 - D(t) общее число пакетов, покинувших очередь.
 - Q(t) длина очереди к моменту времени t. [равна A(t) D(t)]
 - R(t) Скорость на выходе также фиксированная величина.
- 27. Что такое статическое мультиплексирование?
- Метод мультиплексирования, при котором полоса пропускания выходного канала предоставляется входным каналам по мере необходимости
- 28.1. Основные свойства очередей и их влияние на задержку.
 - 1) равномерность потока сохраняет задержку постоянной

- 2) нерегулярность(нерегуляность) увеличивает задержку
- 3) случайность увеличивает задержку
- 28.2. Формула Литтла что она описывает?
- Формула Литтла связывает среднее число заявок в системе (в очереди + в обслуживании), среднее число заявок, поступивших в секунду и среднее время пребывания заявки в системе (в очереди + в обслуживании, т.е. задержку) (Это свойство верно если ни одна заявка не теряется/сбрасывается)
- 28.3. Вид формулы Литтла для случая, когда поступление заявок распределено по закону Пуассона со средним h, а обработка заявок со средним u
 L = h/|u h|

Пакетный	Коммутатор

- 29. Перечислите основные операции пакетного коммутатора
- Поиск адресов в таблице коммутации, непосредственно коммутация
- 30. Достоинства и недостатки буферизации на входе
- Низкая пропускная способность из-за блокировки на входе, НО не требовательная к скорости работы и емкости очереди
- 31. Достоинства и недостатки буферизации на выходе
- Максимальная пропускная способность, минимальная задержка пакета, НО требует высокой скорости работы и емкости буфера
- 32. Достоинства и недостатки буферизации на входе с очередями виртуальных выходов?
- Работают с минимальными потерями, пропускная способность максимальна, а ожидаемая задержка минимальна, НО очень большие требования по памяти для буферизации.

-----Маршрутизация По Соединяющему Дереву

31. STP протокол: для чего он нужен? На каком уровне он работает?

- Канальный протокол. Основной задачей STP является устранение петель в топологии произвольной сети Ethernet, в которой есть один или более сетевых мостов, связанных избыточными соединениями.

STP решает эту задачу, автоматически блокируя соединения, которые в данный момент для полной связности коммутаторов являются избыточными.

- 32. Как и кто определяет корень STP дерева при использовании настроек по умолчанию?
- Корневым коммутатором выбирается коммутатор с самым низким приоритетом, если приоритеты равны, то сравниваются МАС-адреса (посимвольно, выбирается наименьший)
- Выбор корня происходит при включении протокола на устройстве и инициализируется каждый раз при изменении топологии сети. Строится граф; коммутатор считает себя корнем и начинает обмениваться с соседями данными со своим BDPU в поисках лучшего, в процессе чего определяется корневой. Канальный уровень.

33. Что такое root port?

- Порт для передачи трафика корневому коммутатору
- Порт, который ведет к корневому коммутатору кратчайшим (в рамках заданной метрики) путём
- порт коммутатора, который расположен ближе всего (имеет минимальную стоимость) к корневому коммутатору.

34. Что такое designated port?

- порт, который имеет кратчайшее расстояние от назначенного коммутатора до корневого коммутатора
- Порт, через который BPDU, приходящие от корневого коммутатора, попадают в сегмент, в котором определен designated port

Беспроводные Системь	 ı Передачи Данных

- 35. Основные отличия проводной передачи с множественным доступ от беспроводной передачи с множественным доступ
- Беспроводная передача с множественным доступом имеет много больше помех, и ограниченную зону действия, из-за чего происходит много коллизий и необходимо обрабатывать ситуации, не возникающие в проводной сети, например случаи мнимой и скрытой станции
- В случае беспроводной передачи с множественным доступом преимущество: хорошее распространение во всех направлениях. Но из-за ограниченности диапазона

действия передатчика возникают случаи, требующие дополнительной обработки: "мнимая" станция (станция считает, что канал занят, хотя он свободен), и "скрытая" станция (возникают коллизии, так как одна из станций не видит, что другая уже передает данные)

36. Метод прямого расширения спектра

- Суть метода прямого расширения спектра заключается в повышении тактовой частоты модуляции, при этом каждому символу передаваемого сообщения ставится в соответствие некоторая достаточно длинная псевдослучайная последовательность (ПСП). Метод используется в таких системах как CDMA и системах стандарта IEEE 802.11 (Wi-Fi)
- Любая точка доступа использует всю ширину полосы с помощью представления бита информации (0 или 1) в виде набора «чипов», то есть 0 и 1 представляются в виде комбинации 11 чипов. Скалярное произведение этих кодов дает 0. Длина этих кодов выбирается так, чтобы могли обнаруживать ошибки и исправлять их (с помощью расстояния Хемминга).

37. Принцип разделения сот по частотам

- Повторное использование частот в несмежных сотах
- Весь диапазон работы WiFi-системы разбивается на каналы (соты). В каждой соте выделяется некоторый набор полос частот (зачастую, полосы по 5 МГц), которые не пересекаются с диапазоном смежных областей.

38. Почему в кадре IEEE 802.11 используется четыре поля адреса?

- Первый адрес mac адрес отправителя, второй mac адрес точки доступа отправителя, третий mac адрес точки доступа получателя, четвертый mac адрес получателя
- Необходимо именно 4 адреса (Мас-адресы): первые 3 адреса нужны если абоненты взаимодействуют через одну точку доступа. Это адреса отправителя, точки доступа и получателя соответственно. 4-й адрес требуется, если взаимодействие идет через несколько точек доступа это будет адрес "второй" точки доступа.

39. Почему длина поля данных оценивается во времени, а не в битах?

- В беспроводной сети скорость передачи постоянна, а биты при передачи могут быть потеряны
- В беспроводной сети постоянна лишь номинальная скорость, но с увеличением расстояния от абонента до точки доступа, и с увеличением числа абонентов уменьшается скорость и увеличивается время передачи. Поэтому в поле duration указывается число "временных слотов", которое займет передача.

-----Маршрутизация В Интернете

40. Основные подходы к построению маршрутов

- От источника, лавина, таблицы коммутации, spanning tree
- 41. Приведите не менее 3-х примеров метрик, используемых при выборе маршруты
- Мин. расстояние, мин. скачки, мин. задержка, макс. пропускная способность, мин. загруженный, макс. надежный, с мин. стоимостью, макс. безопасный
- 42. Понятие соединяющего дерева и его назначение
- Соединяющее дерево это структура с выделенной вершиной (один из хостов), листьями которой являются все остальные хосты и в которой нет циклов.
- Назначение: маршрутизация [от выделенной вершины до остальных хостов и обратно]
- 43. Понятие Автономной Системы (АС) в Интернете
- Система IP-сетей и маршрутизаторов, управляемых одним или несколькими операторами, имеющими единую политику маршрутизации с Интернетом
- Автономная система (AC) это сеть, в рамках которой применяется единая политика маршрутизации. У этой сети есть единый владелец(юр.лицо), который отвечает за функционирование этой сети. АС единица иерархии в Интернет.
- 44. Протокол BGP для чего он нужен?
- Протокол BGP предназначен для обмена информацией о достижимости подсетей между автономными системами, {то есть группами маршрутизаторов под единым техническим и административным управлением, использующими протокол внутридоменной маршрутизации для определения маршрутов внутри себя и протокол междоменной маршрутизации для определения маршрутов доставки пакетов в другие AC}
- 45. Как обнаруживают циклы в маршрутах AS PATH?
- Если номер одной и той же AC встречается в AS_PATH дважды, то это цикл
- 46.1 Приведите не менее 3-х примеров параметров выбора маршрута в протоколе ВGР
- Расстояние, цена, скорость, длина маршрута в хопах, выбор ближайшего шлюза на выход, владелец АС, "уровень доверия" к АС
- 46.2 Как взаимодействуют протоколы BGP и OSPF?
- BGP протокол для взаимодействия между AC, а OSPF протокол для маршрутизации внутри AC

(Связи во взаимодействии этих протоколов нет, потому что один предназначен для "междоменного взаимодействия", а другой для "внутридоменного")

- EBGP используется для взаимодействия шлюзов одной AC с другой, IBGP для взаимодействия шлюзов внутри одной AC, а OSPF для взаимодействия уже внутри AC
- 47. Групповая маршрутизация: для чего предназначены протокол PIM и протокол IGMP?
- PIM протокол маршрутизации для независимых групп, IGMP управление группой
- PIM протокол маршрутизации для независимых групп Internet Group Management Protocol протокол управления группой IGMP действует между хостами и маршрутизаторами: [маршрутизаторы периодически опрашивают хосты, с каким группам они хотели бы быть подключены, и подключают к ним. (если ответа нет, то членство в группе прекращается)]
- 48. Маршрутизация по вектору расстояния
 - 48.1 Время работы алгоритма?
 - Максимальное время работы это длина максимальной простой цепи в графе 48.2 Всегда ли алгоритм будет сходиться?
- Алгоритм всегда сходится, условие окончания прекращение изменения данных в пересылаемом векторе
- 48.3 Что будет если изменится стоимость линии или когда маршрутизатор/линия выходят из строя?
 - При изменении сети все маршрутизаторы пересчитывают все заново
- 49. Проблемы маршрутизации по вектору расстояния:
- При выходе из строя участка сети может появиться зацикливание (Проблема счётчика до бесконечности) / Медленная реакция на изменение топологии
- 50. Маршрутизация по состоянию канала
- 50.1 Время работы этого алгоритм?
- Время будет пропорционально квадрату числа вершин.
- 50.2 Что происходит когда изменяется стоимость линии или когда маршрутизатор/линия выходят из строя?
- Информация об этом рассылается соседям. После происходит пересчет деревьев. (другая версия: сложность алгоритма зависит от того, насыщенный или разреженный граф. Об изменениях в сети нужно оповестить все маршрутизаторы, они начнут инициализацию заново)

основы Передачи Данных

51. Основные характеристики физического канала передачи ЭМС:

- Полоса пропускания, скорость передачи для цифровых данных, уровень шума, уровень ошибок при передаче
- 52. Что такое данные, виды данных, их отличие от ЭМС?:
- Данные это описание фактов/явлений. Данные бывают аналоговыми или цифровыми. А ЭМС это способ передачи данных
- 53. В чем различие влияния шума на аналоговую передачу и цифровую передачу?
- При передаче на большие расстояния передаваемый сигнал надо периодически усиливать. Но при этом будет усиливаться и шум, примешанный к сигналу при передаче. После нескольких таких усилений форма сигнала может измениться до неузнаваемости. В случае цифровых сигналов этоприведет к ошибке передачи, а в случае аналоговых сигналов к искажению или просто потере сигнала
- В цифровом случае при ретрансляции сигнала на репиторах сигнал можно восстановить, а это значит, что нарушение формы сигнала будет не слишком сильным. При ретрансляции же аналогового сигнала будет накапливаться и шум, и усиливается ошибка.
- 54. Что такое сигнальная и битовая скорости? В чем разница?
- Сигнальная скорость скорость изменения значения сигнала в проводнике, битовая скорость фактическая скорость передачи данных бит/с
- 55. В чем смысл теоремы Найквиста-Котельникова и основное следствие из нее?
- Теорема Найквиста-Котельникова определяет взаимосвязь максимально возможной пропускной способности канала и ширины его полосы пропускания.
- R_<max_data_rate>. = 2*D * log_2(L) bps (bit per second)
- D ширина полосы пропускания канала, L количество уровней сигнала.
- Теорема Найквиста-Котельникова: максимальная скорость передачи данных не может выше чем 2D log_2(L),
- D ширина полосы пропускания канала, L количество уровней сигнала.
 Следствие: (теорема Котельникова) для полного определения аналогового сигнала
 U(t) нужно сканировать линию с удвоенной частотой старшей гармоники.
- 56. Что утверждает теорема Шеннона?
- Максимальная скорость передачи данных по каналу с шумом рассчитывается: R_max = D log_2(1+S/N) bps, где S/N соотношение сигнал-шум в канале
- 57. Приведите примеры Потенциального, Биполярного и импульсного кода?
- Потенциальные (или полярные) коды не связаны с "переходом" через 0. (длинные последовательности, например, единиц будут иметь одинаковый потенциал мы вынуждены его держать некоторое время).

Пример - код NRZ I (и еще AMI, 2B1Q)

Импульсные коды - передаются "фронтом" сигнала (то есть на единичном интервале смотрится в какую сторону идет переход, если в сторону бОльшего потенциала, то у нас единичка, это коды "самосинхронизации"). Пример - Манчестерское кодирование.

Кратко: Потенциальные (полярные) коды - не "переходят" через 0. Пример - код NRZ I Импульсные коды - передаются "фронтом" сигнала. Пример: Манчестерский код.

- 58. Основные виды аналоговой модуляции и цифровой манипуляции?
- Аналоговая модуляция амплитудная/частотная/фазовая/квадратурно-амплитудная, цифровая манипуляция импульсно-кодовая/дельта
- 59. Основные характеристики сред для фиксированной связи? Приведите примеры наиболее часто используемых видов сред:
- Характеристики: пропускная способность, задержка, помехоустойчивость, стоимость, достоверность передачи и т. д.

Примеры: витая пара, коаксиальный кабель, оптоволокно

Среды Передачи С Множественным Доступом

60. Виды системы Aloha?

- Чистая и синхронная. Идея чистой ALOHA заключается в том, что любой пользователь желающий передать сообщение сразу его передает благодаря тому, что в вещательной среде всегда имеет обратную связь, он видит возникновение конфликта. Синхронная: Все время разделяют наинтервалы слоты (1 кадр 1 слот). Пользователям начинать передачу можно только в начале каждого интервала времени. Это требует синхронизации, и одна из станций должна выдавать сигнал очередного слота.
- Чистая Алоха (если надо передать новый пакет передаем, не задумываемся, если по out of band пришел сигнал, что была коллизия ждем какой-то случайный интервал времени и передаем снова и т.д., при таком подходе максимальная пропускная способность ~18%)

Слотированная Алоха (теперь разрешена передача данных не в любом момент времени, а только по сигналу от центральной станции (Хаба) удваивает пропускную способность до ~37%) CSMA (теперь перед передачей данных станция смотрит на состояние канала, т.е. если линия свободна, то на ней висит "несущая", о которой знают все станции. Есть разделение на настойчивые и ненастойчивые протоколы)

Кратко: Чистая Алоха (непрерывное время) - на задумываемся о состоянии канала, Слотированная Алоха (дискретное время) - начинаем передачу только по спец. сигналу от Хаба и CSMA (вводится понятие несущей) (источник: лекции Смела)

61. CSMA настойчивые протоколы - что это такое?

- Протоколы уровня р, упорно проверяющие канал на занятость
- Такие протоколы постоянно "пробируют" канал на занятость, если они обнаружили, что канал свободен, они захватывают его с вероятностью = p уровнем настойчивости.

62. CSMA/CD протоколы и их отличие от CSMA протоколов?

- CSMA - это протокол, согласно которому станция с информацией для передачи сначала прослушивает среду, чтобы убедиться, что она свободна. Если это так, он передает информацию; в противном случае он ждет.

CSMA / CD - это вариант, который можно использовать в ситуациях, когда среда может прослушиваться во время передачи. Это позволяет станциям обнаруживать возникновение помех и немедленно прекращать передачу, сначала отправляя сигнал перегрузки, чтобы уведомить другие станции, совместно использующие среду передачи, о конфликте, так что, если у них есть что передать, они ждут перед передачей. После ожидания передача возобновляется, если среда свободна, что обеспечивает равное распределение среды между станциями и предотвращает монополизацию связи какой-либо одной станцией.

63. IEEE 802.3 коммутаторы - что такое домен коллизий?

- Домен коллизий - это группа клиентов, при возникновении коллизий в которой, коллизия не выходит за границы этой группы

- Домен коллизий физический сегмент, где есть множество устройств, и если любые два из них будут передавать данные одновременно, то возникнет коллизия.
- 64. Протокол IEEE 802.1Q для чего он используется и где?
- Протокол используется для тегирования данных между VLAN сетями. Используется при взаимодействии VLAN сетей
- Это протокол, который использует модификацию заголовка кадра Ethernet II. Используется для создания виртуальных сетей Vlan'ов. (нужно, в основном, для того, чтобы уменьшить число коллизий). Внутри этого заголовка выделяется 2 байта, которые используются для выделения уровня приоритета Vlan'a и для Vlan ID (VID), для VID используется 12 бит (всего возможно 4096 Vlan виртуальных сетей).

Теперь вкратце: Это протокол, использующийся для поддержания механизма виртуальных сетей (Vlan'oв), в настоящее время поддерживается почти всеми коммутаторами. По сети идет тегированный трафик, это нужно для борьбы с коллизиями.