

Two Way ANOVA

Dr. A. Ramesh DEPARTMENT OF MANAGEMENT IIT ROORKEE

Learning objectives

- Design and conduct engineering experiments involving several factors using the factorial design approach
- Understand how the ANOVA is used to analyze the data from these experiments
- Know how to use the two-level series of factorial designs

Factorial Experiment

- A **factorial experiment** is an experimental design that allows simultaneous conclusions about two or more factors.
- The term factorial is used because the experimental conditions include all possible combinations of the factors.
- The effect of a factor is defined as the change in response produced by a change in the level of the factor. It is called a main effect because it refers to the primary factors in the study
- For example, for a levels of factor A and b levels of factor B, the experiment will involve collecting data on ab treatment combinations.
- Factorial experiments are the only way to discover interactions between variables.

Factorial Experiment

Factorial Experiment, no interaction

Factorial Experiment, with interaction

Two-factor Factorial Experiments

- The simplest type of factorial experiment involves only two factors, say, A and B.
- There are a levels of factor A and b levels of factor B.
- This two-factor factorial is shown in next table.
- The experiment has n replicates, and each replicate contains all ab treatment combinations.

Two-factor Factorial Experiments

Data Arrangement for a Two-Factor Factorial Design

			Factor B				
		1	2		b	Totals	Averages
	1	$y_{111}, y_{112}, \dots, y_{11n}$	$y_{121}, y_{122}, \dots, y_{12n}$		$y_{1b1}, y_{1b2}, \ldots, y_{1bn}$	<i>y</i> ₁	\bar{y}_{1}
Factor A	2	$y_{211}, y_{212}, \dots, y_{21n}$	$y_{221}, y_{222}, \dots, y_{22n}$		$y_{2b1}, y_{2b2}, \dots, y_{2bn}$	<i>y</i> ₂	\bar{y}_2
	:						
	а	$y_{a11}, y_{a12}, \dots, y_{a1n}$	$y_{a21}, y_{a22}, \ldots, y_{a2n}$		$y_{ab1}, y_{ab2}, \dots, y_{abn}$	<i>y</i> _a	\bar{y}_{a}
Totals Averages		$\overline{y}_{\cdot 1}$. $\overline{y}_{\cdot 1}$.	<i>y</i> ⋅ ₂ ⋅ \bar{y} ⋅ ₂ ⋅		$\frac{y_{\cdot b}}{\overline{y}_{\cdot b}}$	<i>y</i>	<i>y</i>

Two-factor Factorial Experiments

- The observation in the ijth cell for the kth replicate is denoted by yijk
- In performing the experiment, the abn observations would be run in random order.
- Thus, like the single factor experiment, the two-factor factorial is a completely randomized design.

Example

- As an illustration of a two-factor factorial experiment, we will consider a study involving the Common Admission test (CAT), a standardized test used by graduate schools of business to evaluate an applicant's ability to pursue a graduate program in that field.
- Scores on the CAT range from 200 to 800, with higher scores implying higher aptitude.

Three CAT preparation programs.

- In an attempt to improve students' performance on the CAT, a major university is considering offering the following three CAT preparation programs.
- 1. A three-hour review session covering the types of questions generally asked on the CAT.
- 2. A one-day program covering relevant exam material, along with the taking and grading of a sample exam.
- 3. An intensive 10-week course involving the identification of each student's weaknesses and the setting up of individualized programs for improvement.

Factor - 1, 3 treatment

- One factor in this study is the CAT preparation program, which has three treatments:
 - Three-hour review,
 - One-day program, and
 - 10-week course.
- Before selecting the preparation program to adopt, further study will be conducted to determine how the proposed programs affect CAT scores.

Factor 2:3 Treatment

- The CAT is usually taken by students from three colleges:
- the College of Business,
- the College of Engineering, and
- the College of Arts and Sciences.
- Therefore, a second factor of interest in the experiment is whether a student's undergraduate college affects the CAT score.
- This second factor, undergraduate college, also has three treatments:
 - Business,
 - Engineering, and
 - Arts and sciences.

Nine Treatment Combinations for The Two-factor **CAT**Experiment

Factor A:	Factor B: College				
Preparation Program	Business	Engineering	Arts and sciences		
Three-hour review	1	2	3		
One-day program	4	5	6		
10-Week course	7	8	9		

Replication

In experimental design terminology, the sample size of two for each treatment combination indicates that we have two replications.

CAT SCORES FOR THE TWO-FACTOR EXPERIMENT

Factor A:	Factor B: College				
Preparation Program	Business	Engineering	Arts and sciences		
Three-hour review	500	540	480		
	580	460	400		
One-day program	460	560	420		
	540	620	480		
10-Week course	560	600	480		
	600	580	410		

The analysis of variance computations answers the following questions.

- Main effect (factor A): Do the preparation programs differ in terms of effect on CAT scores?
- Main effect (factor B): Do the undergraduate colleges differ in terms of effect on CAT scores?
- Interaction effect (factors A and B): Do students in some colleges do better on one type of preparation program whereas others do better on a different type of preparation program?

Interaction

- The term interaction refers to a new effect that we can now study because we used a factorial experiment.
- If the interaction effect has a significant impact on the CAT scores, we can conclude that the effect of the type of preparation program depends on the undergraduate college.

ANOVA Table for the Two-factor Factorial Experiment with *r* Replications

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
Factor A	SSA	(a -1)	SSA/a-1	MSA / MSE	
Factor B	SSB	(b-1)	SSB/b-1	MSB/ MSE	
Interaction	SSAB	(a-1)(b-1)	MSAB = SSAB/(a-1)(b-1)	MSAB / MSE	
Error	SSE	ab(r-1)	MSE= SSE/(ab)(r-1)		
Total	SST	n _T -1			

Abbreviation

a = number of levels of factor A

b = number of levels of factor B

r = number of replications

 n_T = total number of observations taken in the experiment; $n_T = abr$

ANOVA Procedure

- The ANOVA procedure for the two-factor factorial experiment requires us to partition the sum of squares total (SST) into four groups:
 - sum of squares for factor A (SSA),
 - sum of squares for factor B (SSB),
 - sum of squares for interaction (SSAB), and
 - sum of squares due to error (SSE).
- The formula for this partitioning follows.

$$SST = SSA + SSB + SSAB + SSE$$

Computations and Conclusions

```
x_{ijk} = observation corresponding to the kth replicate taken from treatment i of factor A and treatment j of factor B
```

 \bar{x}_i = sample mean for the observations in treatment i (factor A)

 \bar{x}_{i} = sample mean for the observations in treatment j (factor B)

 \bar{x}_{ij} = sample mean for the observations corresponding to the combination of treatment i (factor A) and treatment j (factor B)

 \bar{x} = overall sample mean of all n_T observations

CAT Summary Data for The Two-factor Experiment

Factor A:		Row totals		
Preparation Program	Business	Engineering	Arts and sciences	
Three-hour review	500 $\overline{x_{11}}$ =540 580	540 $\overline{x_{12}}$ = 500 460	480 $\overline{x_{13}}$ = 440 400	2960
One-day program	460 $\overline{x_{21}}$ = 500 540	560 $\overline{x_{22}}$ = 590 620	420 $\overline{x_{23}}$ = 450 480	3080
10-Week course	560 $\overline{x_{31}}$ = 580 600	600 $\overline{x_{32}}$ = 590 580	480 $\overline{x_{33}}$ = 445 410	3230
Column totals	3240	3360	2670	Overall $=$ x $=$ 515 $=$ 9270

CAT Summary Data for The Two-factor Experiment

Factor A means

$$\overline{x_1} = 493.33$$
 $\overline{x_2} = 513.33$

 $\overline{x_{3.}} = 538.33$

Factor B means

$$\frac{\overline{x_{.1}}}{\overline{x_{.2}}} = 540$$

$$\frac{\overline{x_{.2}}}{\overline{x_{.3}}} = 560$$

Step 1. Compute the total sum of squares.

SST =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (x_{ijk} - \bar{x})^2$$

Step 1. SST =
$$(500 - 515)^2 + (580 - 515)^2 + (540 - 515)^2 + \cdots + (410 - 515)^2 = 82,450$$

Step 2. Compute the sum of squares for factor A.

$$SSA = br \sum_{i=1}^{a} (\bar{x}_{i} - \bar{x})^{2}$$

Step 2. SSA =
$$(3)(2)[(493.33 - 515)^2 + (513.33 - 515)^2 + (538.33 - 515)^2] = 6100$$

Step 3. Compute the sum of squares for factor B.

$$SSB = ar \sum_{j=1}^{b} (\bar{x}_{\cdot j} - \bar{\bar{x}})^2$$

Step 3. SSB = $(3)(2)[(540 - 515)^2 + (560 - 515)^2 + (445 - 515)^2] = 45,300$

Step 4. Compute the sum of squares for interaction.

SSAB =
$$r \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{x}_{ij} - \bar{x}_{i} - \bar{x}_{.j} + \bar{x})^{2}$$

Step 4. SSAB =
$$2[(540 - 493.33 - 540 + 515)^2 + (500 - 493.33 - 560 + 515)^2 + \cdots + (445 - 538.33 - 445 + 515)^2] = 11,200$$

Step 5. Compute the sum of squares due to error.

$$SSE = SST - SSA - SSB - SSAB$$

Step 5. SSE =
$$82,450 - 6100 - 45,300 - 11,200 = 19,850$$

ANOVA Table for the **CAT** two-factor design

Sources of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P- value
Factor A	6100	2	3050	1.38	0.299
Factor B	45300	2	22650	10.27	0.005
Interaction	11200	4	2800	1.27	0.350
Error	19850	9	2206		
Total	82450	17			

Jupyter Code

```
In [15]: df2 = pd.read_excel('2way.xlsx')
In [16]: df2
```


Jupyter code

Out[16]:

	Value	prep_pro	college
0	500	three_hr	Business
1	580	three_hr	Business
2	540	three_hr	Engineering
3	460	three_hr	Engineering
4	480	three_hr	Artsandscience
5	400	three_hr	Artsandscience
6	460	One-day	Business
7	540	One-day	Business
8	560	One-day	Engineering
9	620	One-day	Engineering
10	420	One-day	Artsandscience
11	480	One-day	Artsandscience
12	560	10-Week	Business
13	600	10-Week	Business
14	600	10-Week	Engineering
15	580	10-Week	Engineering
16	480	10-Week	Artsandscience
17	410	10-Week	Artsandscience

Jupyter Code

```
In [20]:
        formula = 'Value ~C(college)+C(prep_pro)+C(college):C(prep_pro)'
         model = ols(formula, df2).fit()
         aov table = anova lm(model, typ=2)
         print(aov_table)
                                         df
                                                          PR(>F)
                                 sum sq
         C(college)
                                45300.0
                                         2.0
                                              10.269521 0.004757
         C(prep_pro)
                                6100.0 2.0
                                              1.382872 0.299436
         C(college):C(prep_pro)
                                11200.0 4.0
                                              1.269521 0.350328
         Residual
                                19850.0 9.0
                                                             NaN
                                                   NaN
```


Thank You

