Introduction

A database management system (DBMS) is a system software for creating and managing databases. The DBMS provides users and programmers with a systematic way to create, retrieve, update and manage data.

Our project pastry shop management system was created by using the concept of DBMS. A pastry shop is a confectionery shop that specializes in baking pastries for its clients. Foods that are served here are not meant to satisfy the greater hunger but to satisfy the tastebuds of the foodies with a sweet tooth. A pastry shop which combines dazzling environment with wonderful cuisine, is the ideal venue for frequent hangouts and personal meetups.

The project "Pastry Shop Management System" is designed to record the information of the manager, employees, customers and products. It is built to facilitate and to make the best use of data by keeping records in database. Through this project, we can easily deal with the daily management system of a pastry shop. For this project we created some tables. We drew an ER diagram showing the tables and their work as an overview. The basic aim of the project is to record, search, delete and insert data using SQL statements. Normalization and schema diagram are also the key elements of this project. Basically, the purpose of the project is to handle all the managements of a pastry shop.

Scenario Description

Baker Boys, a pastry shop located near Brooklyn Nine-Nine uses an integrated pasty shop management system which holds records of products made by the pastry shop. The management system of pastry shop stores owner's name, address and multiple

phone numbers. The owner of pastry shop hires one manager who manages the employees. Manager can hire many employees. The manager is identified by Unique id, name, address, salary. Multiple phone number of manager is also stored. Every employee has unique id, name, phone number, salary, address. One Employee assigned to many products. To identify a product the system also stores product unique id, name, price, category, quantity. One Customer can place many orders. Customer has unique id, name, address, phone number. The Order have different id, quantity, price. Also order dates and delivery dates are stored. Many orders contain many products. One Employee can take many orders and give a receipt to the customers. Receipt has unique id, amount, date. Customers get the receipts and pay the manager. That's all the information that pastry shop management system uses on a daily basis.

ER Diagram

Normalization

Hires UNF

hires(o_id,o_name,o_address,o_phone_no,m_name,m_id,m_salary,m_address,m_p hone no) 1NF o phone no,m phone no are multiple valued attributes.

1.o_name,o_address,o_phoneno,m_name,<u>m_id</u>,m_salary,m_address,m_phone_no 2NF

1. o id,o name,o address,o phone no

2.m_name,m_id,m_salary,m_address,m_phone_no

3NF

There is no transitive dependency. Relation already in 3NF form.

1. o id,o name,o address,o phone no

2.m name,m id,m salary,m address,m phoneno.

Table creation

1. o id,o name,o address,o phone no, m id

2.m_name,<u>m_id</u>,m_salary,m_address,m_phoneno.

Manages

UNF

Manages(m_name,m_id,m_salary,m_address,m_phone_no,e_name,e_id,e_salary,e_address,e_phone_no)

1NF m_phone_no is a multiple valued attribute.

1.m_name,m_id,m_salary,m_address,m_phone_no,e_name,e_id,e_salary,e_address,e_phone_no

2NF

1.m name,m id,m salary,m address,m phone no.

2.e_name,e_id,e_salary,e_address,e_phoneno

3NF

There is no transitive dependency. Relation already in 3NF form.

1.m_name,m_id,m_salary,m_address,m_phone_no.

2.e name,e id,e salary,e address,e phone no

Table creation

1.m_name,m_id,m_salary,m_address,m_phoneno.

2.e name, e id, e salary, e address, e phoneno, m id

Assigned to

UNF

Assigned to(e_name,e_id,e_salary,e_address,e_phone_no,p_id,p_name,p_price ,p category, p quantity)

1NF

There is no multivalued attribute.

1.e_name,e_id,e_salary,e_address,e_phone_no,p_id,p_name,p_price,p_category, p_quantity

2NF

1.e name, e id, e salary, e address, e phone no

2.p id,p name,p price,p category,p quantity

3NF

There is no transitive dependency. Relation already in 3NF form.

1.e_name,e_id,e_salary,e_address,e_phone_no

2.p_id,p_name,p_price,p_category,p_quantity

Table creation

1.e name, e id, e salary, e address, e phoneno

2.p id,p name,p price,p category,p quantity, e id

Contain

UNF

Contains(<u>p_id</u>,p_name,p_price,p_category,p_quantity,<u>od_id</u>, od quantity,od price,od date,delivery date)

1NF

There is no multivalued attribute.

- 1. <u>p_id</u>,p_name,p_price,p_category,p_quantity,<u>od_id</u>, od quantity,od price,od date,delivery date 2NF
 - 1. <u>p_id</u>,p_name,p_price,p_category,p_quantity
 - 2. od id, od quantity, od price, od date, delivery date

3NF

- 1. <u>p_id</u>,p_name,p_price,p_category,p_quantity
- 2. od id, od date, delivery date
- 3. od quantity, od price

Table Creation

- 1. <u>p_id</u>,p_name,p_price,p_category,p_quantity,
- 2. od id, od date, delivery date, uo id
- 3. od_quantity,od_price,uo_id
- 4. od id, p id

Place

UNF

Place(<u>od_id</u>, od_quantity,od_price,od_date,delivery_date,<u>cus_id</u>, cus_name.cus_address,cus_phone_no)

1NF

There is no multivalued attribute.

1. <u>od_id</u>, od_quantity,od_price,od_date,delivery_date,<u>cus_id</u>, cus_name.cus_address,cus_phone_no

2NF

- 1. od id, od quantity, od price, od date, delivery date
- 2. cus id, cus name.cus address,cus phone no

3NF

- 1. cus id, cus name.cus address,cus phone no
- 2. od id, od date, delivery date
- 3. od quantity, od price

Table Creation

- 1. <u>cus_id</u>, cus_name.cus_address,cus_phone_no
- 2. od_id_,od_date,delivery_date, uo id, cus id
- 3. od_quantity,od_price,uo_id

Take

UNF

Take(e_name,e_id,e_salary,e_address,e_phone_no, od_id, od_quantity,od_price,od_date,delivery_date)

1NF

There is no multivalued attribute.

1. e_name,e_id,e_salary,e_address,e_phone_no, <u>od_id</u>, od_quantity,od_price,od_date,delivery_date

2NF

- 1. e_name,e_id,e_salary,e_address,e_phone_no
- 2. od id, od quantity, od price, od date, delivery date

3NF

- 1. e name, e id, e salary, e address, e phone no
- 2. od_id_,od_date,delivery_date

3. od_quantity,od_price

Table Creation

- 1. e name, e id, e salary, e address, e phone no
- 2. od id, od date, delivery date, uo id, e id
- 3. od_quantity,od_price,uo_id

Give

UNF

Give(amount,<u>r_id</u>, r_date, e_name,<u>e_id</u>,e_salary,e_address,e_phone_no) 1NF There is no multivalued attribute.

1. amount,<u>r_id</u>, r_date, e_name,<u>e_id</u>,e_salary,e_address,e_phone_no

2NF

- 1. amount, r id, r date
- 2. e name, e id, e salary, e address, e phone no

3NF

There is no transitive dependency. Relation already in 3NF form.

- 1. amount, r_id, r_date
- 2. e name, e id, e salary, e address, e phone no

Table Creation

- 1. amount,<u>r_id</u>, r_date
- 2. e_name,e_id,e_salary,e_address,e_phone_no
- 3. <u>r id</u>, <u>e id</u>

Get

UNF

Get(amount,<u>r_id</u>, r_date, <u>cus_id</u>, cus_name.cus_address,cus_phone_no) 1NF
There is no multivalued attribute

1. amount, r_id, r_date, cus_id, cus_name.cus_address, cus_phone_no

2NF

- 1. amount, r_id, r_date
- 2. cus id, cus name.cus address,cus phone no

3NF

There is no transitive dependency. Relation already in 3NF form.

- 1. amount,<u>r id</u>, r date
- 2. <u>cus id</u>, cus name.cus address,cus phone no Table

Creation

- 1. amount, r id, r date
- 2. cus id, cus name.cus address,cus phone no
- 3. <u>cus id</u>, <u>r id</u>

Pay

UNF

Pay(m_name,m_id,m_salary,m_address,m_phone_no, cus_id, cus_name.cus_address,cus_phone_no)

1NF

m phone no is a multivalued attribute.

1. m_name,m_id,m_salary,m_address,m_phone_no, <u>cus_id</u>, cus_name.cus_address,cus_phone_no

2NF

- 1. m_name,m_id,m_salary,m_address,m_phone_no
- 2. cus id, cus name.cus address,cus phone no

3NF

There is no transitive dependency. Relation already in 3NF form.

- 1. m_name,m_id,m_salary,m_address,m_phone_no
- 2. <u>cus id</u>, cus name.cus address,cus phone no

Table Creation

- 1. m_name,m_id,m_salary,m_address,m_phone_no 2. cus_id, cus_name.cus_address,cus_phone_no
- 3. <u>m id</u>, <u>cus id</u> Temporary Table:
- 1. o id,o name,o address,o phone no, m id
- 2.m name,m id,m salary,m address,m phoneno.
- 3.m_name,m_id,m_salary,m_address,m_phoneno.
- 4.e name, e id, e salary, e address, e phoneno, m id
- 5.e name, e id, e salary, e address, e phoneno
- 6.p id,p name,p price,p category,p quantity, e id
- 7. <u>p_id</u>,p_name,p_price,p_category,p_quantity
- 8. od_id_,od_date,delivery_date,uo_id_, e_id
- 9.od_quantity,od_price,uo_id
- 10.cus id, cus name.cus address,cus phone no
- 11.od id, od date, delivery date, uo id, cus id
- 12.od quantity,od price,uo id
- 13.e name,e id,e salary,e address,e phone no
- 14.<u>od_id</u>,od_date,delivery_date,<u>uo_id</u>
- 15.od_quantity,od_price,uo_id
- 17.amount,r_id, r_date
- 18.e_name,e_id,e_salary,e_address,e_phone_no
- 19.<u>r id</u>, <u>e id</u>
- 20. amount, r_id, r_date
- 21. cus id, cus name.cus address, cus phone no

- 22.<u>cus id</u>, <u>r id</u>
- 23.m name,m id,m salary,m address,m phone no
- 24. cus id, cus name.cus address, cus phone no
- 25. m id, cus id
- 26.<u>od id</u>, <u>p id</u>

Final Table

- 1. o id,o name,o address,o phone no, m id
- 2.m_name,m_id,m_salary,m_address,m_phoneno.
- 3.e name, e id, e salary, e address, e phoneno, m id
- 4.<u>p_id</u>,p_name,p_price,p_category,p_quantity,<u>e_id</u>
- 5.cus_id, cus_name.cus_address,cus_phone_no
- 6.od id, od date, delivery date, uo id, cus id, e id
- 7.od_quantity,od_price,<u>uo_id</u>
- 8.<u>r_id</u>, <u>e_id</u>
- 9. amount, r id, r date
- 10.cus id, r id
- 11. m id, cus id
- 12.<u>od id</u>, <u>p id</u>

Schema Diagram

Table Creation

Create table:

```
1.create table owner(o_id number primary key, o_name varchar2(30), o_address varchar2(30), o_phone_no number(11), m_id number);
```

2.create table manager(m_id number primary key, m_name varchar2(30), m_salary number, m_address varchar2(30), m_phone_no number(11));

3.create table employee(e_id number primary key, e_name varchar2(30), e_salary number, e_address varchar2(30), e_phone_no number(11), m_id number, constraint chk_salary check(e_salary > 1000));

4.create table product(p_id number primary key, p_name varchar2(30), p_price number, p_category varchar2(30), p_quantity number, e_id number);

5.create table customer(cus_id number primary key, cus_name varchar2(30), cus_address varchar2(30), cus_phone_no number(11));

6.create table orders(od_id number primary key, od_date date, delivery_date date, uo_id number,cus_id number, e_id number);

7.create table order_details(uo_id number primary key, od_quantity number, od_price number);

8.create table give(r_id number, e_id number);

9.create table receipt(r_id number primary key, amount number, r_date date);

10.create table get(cus_id number, r_id number);

11.create table pay(m_id number, cus_id number);

create table ordered_product(p_id number, od_id number);

Altering tables:

alter table owner add foreign key(m_id) references manager(m_id);

alter table employee add foreign key(m id) references manager(m id);

alter table product add foreign key(e_id) references employee(e_id);

alter table orders add foreign key(uo_id) references order_details(uo_id); alter table orders add foreign key(cus_id) references customer(cus_id); alter table orders add foreign key(e_id) references employee(e_id);

alter table give add foreign key(r_id) references receipt(r_id); alter table give add foreign key(e_id) references employee(e_id);

alter table get add foreign key(cus_id) references customer(cus_id); alter table get add foreign key(r_id) references receipt(r_id);

alter table pay add foreign key(m_id) references manager(m_id); alter table pay add foreign key(cus_id) references customer(cus_id);

alter table ordered_product add foreign key(p_id) references product(p_id); alter table ordered_product add foreign key(od_id) references orders(od_id); screenshots of the created table using describe command:

OWNER Table:

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
OWNER	O ID	Number	12	12	-	1	12	2	<u> </u>
	O NAME	Varchar2	30	·	-	-	/	÷	+
	O ADDRESS	Varchar2	30		-	-	/	×	*:
	O PHONE NO	Number	*	11	0	8	/	-	•
	M ID	Number	-	7.00	-	-	/	-	

MANAGER Table:

Object Type TABLE Object MANAGER

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
MANAGER	M ID	Number	÷		12	1		<u>.</u>	2.
	M NAME	Varchar2	30	*	3÷	Ģ.	/	+	•
	M SALARY	Number	-	**	÷	-	/	+	+:
	M ADDRESS	Varchar2	30	18	æ		/	7.	. * .
	M PHONE NO	Number		11	0	-	/		

EMPLOYEE Table:

Object Type	TABLE Object	EMPLOYEE							
Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
EMPLOYEE	<u>E ID</u>	Number	8	+	*	1			(*)
	E_NAME	Varchar2	30	131	ē.		~	(45)	
	E SALARY	Number	-	157	8	74	/	174	57.6
	E ADDRESS	Varchar2	30	2	ূ	24	/	929	127
	E PHONE NO	Number	-	11	0	2	/	1523	(2)
	M ID	Number	2:	4	2	2:	/	143	
								1	- 6

PRODUCT Table:

Object Type TABLE Object PRODUCT

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
PRODUCT	P ID	Number	8	120	8	1		-	1872
	P NAME	Varchar2	30	4	2	9	/	-	-2
	P PRICE	Number	2	2	2		/	2	-
	P CATEGORY	Varchar2	30		-	-	/	¥)	
	P QUANTITY	Number	-	. • :	-	-	/	-	
	E ID	Number	*	-	-		/	-	
								1	- 6

CUSTOMER Table:

Object Type TABLE Object CUSTOMER

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
CUSTOMER	CUS ID	Number	124	22	2	1	25	120	2
	CUS NAME	Varchar2	30	S .	<u> 20</u>	2.	/	-	Si .
	CUS ADDRESS	Varchar2	30		*	2,	/		-
	CUS PHONE NO	Number		11	0		/		14

ORDERS Table:

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Commen
ORDERS	OD ID	Number	52		-	1	-		
	OD DATE	Date	7	150	7.	5	/	172	-
	DELIVERY DATE	Date	7	727	2	2:	/	125	
	UO ID	Number	2	121	-	\$	/	-24	-
	CUS ID	Number	41	4	-	25	/	-25	-
	E ID	Number	-	(+)	-	#	/	:	
	<u>E ID</u>	Number	-:		-	*	•		1 - 6

ORDER_DETAILS Table:

Object Type TABLE Object ORDER_DETAILS

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
ORDER DETAILS	UO ID	Number	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	9	12	1			0
	OD QUANTITY	Number			-	1941	/		
	OD PRICE	Number	*	19			/	·- :	
								9	- 3

RECEIPT Table:

Object Type TABLE Object RECEIPT

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
RECEIPT	R ID	Number	15	5	-	1	8	151	-
	AMOUNT	Number	4	2	-	2	/	-2-	12
	R DATE	Date	7	S.	20	20	/		12
								- 1	- 3

GIVE Table:

Object Type TABLE Object GIVE

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
GIVE	R ID	Number	12	12	22	9.23	~	828	1.
	E ID	Number	12	2	2	92	/	(23)	12
									1-2

GET Table:

Object Type TABLE Object GET

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
GET	CUS ID	Number	5	151	8	5	~	5	
	R ID	Number	2	123	2	9	/	¥.	823
								1	- 2

PAY Table:

Object Type TABLE Object PAY

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
PAY	M ID	Number	12	12	23	0.23	~	128	1.
	CUS ID	Number	12	2	2	12	/	(2)	1
									1-2

ORDERED PRODUCT Table:

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
ORDERED PRODUCT	P ID	Number			594.5		/		
	OD ID	Number				-	/		-

Create Sequence:

create sequence seq increment by 1 start with 1 nocache nocycle;

User creation:

create user Safin identified by s1a2f3i4n; grant

unlimited tablespace to Safin; assign

roles:

create role manager; grant create table, create view, create sequence, create user, create role to manager; grant manager to Safin;

Data Insertion

OWNER DATA:

insert into owner(o_id, o_name, o_address, o_phone_no, m_id) values(101, 'Mr. O', 'Kuratoli, Dhaka', 01633043297, 102);

MANAGER DATA:

insert into manager(m_id, m_name, m_salary, m_address, m_phone_no) values(102, 'Mr. M', 30000, 'Banani, Dhaka', 01521754978);

EMPLOYEE DATA:

insert into employee(e_id, e_name, e_salary, e_address, e_phone_no, m_id) values(201, 'Abul', 7000, 'Azimpur, Dhaka', 01602700367, 102);

insert into employee(e_id, e_name, e_salary, e_address, e_phone_no, m_id) values(202, 'Babul', 9000, 'Kamlapur, Dhaka', 01802300467, 102);

insert into employee(e_id, e_name, e_salary, e_address, e_phone_no, m_id) values(203, 'Cabul', 8000, 'Shahbag, Dhaka', 01302000357, 102);

insert into employee(e_id, e_name, e_salary, e_address, e_phone_no, m_id) values(204, 'Dabul', 5000, 'Farmagate, Dhaka', 01712790367, 102);

insert into employee(e_id, e_name, e_salary, e_address, e_phone_no, m_id) values(205, 'Ebul', 6000, 'Mohammadpur, Dhaka', 01902800367, 102);

E_ID	E_NAME	E_SALARY	E_ADDRESS	E_PHONE_NO	M_IE
201	Abul	7000	Azimpur, Dhaka	1302700367	102
202	Babul	9000	Kamlapur, Dhaka	1802300467	102
203	Cabul	8000	Shahbag, Dhaka	1302000357	102
204	Dabul	5000	Farmagate, Dhaka	1712790367	102
205	Ebul	6000	Mohammadpur, Dhaka	1902800367	102

CUSTOMER DATA:

insert into customer(cus_id, cus_name, cus_address, cus_phone_no) values(301, 'Shaad', 'Mirpur, Dhaka', 01935728398);

insert into customer(cus_id, cus_name, cus_address, cus_phone_no) values(302, 'Asif', 'Rampura, Dhaka', 01843311815);

insert into customer(cus id, cus name, cus address, cus phone no) values(303, 'Safin', 'kuratoli, Dhaka',

01876266962);

insert into customer(cus_id, cus_name, cus_address, cus_phone_no) values(304, 'Maria', 'Bashundhara, Dhaka', 01835538098);

insert into customer(cus_id, cus_name, cus_address, cus_phone_no) values(305, 'Sakib', 'Gulshan, Dhaka', 01625347735);

CUS_ID	CUS_NAME	CUS_ADDRESS	CUS_PHONE_NO
301	Shaad	Mirpur, Dhaka	1935728398
302	Asif	Rampura, Dhaka	1843311815
303	Safin	kuratoli, Dhaka	1876266962
304	Maria	Bashundhara, Dhaka	1835538098
305	Sakib	Gulshan, Dhaka	1625347735

ORDERS DATA:

insert into orders(od_id, od_date, delivery_date, uo_id, cus_id, e_id) values(601, '1-JAN-2022', '1-JAN-2022', 701, 301, 201);

insert into orders(od_id, od_date, delivery_date, uo_id, cus_id, e_id) values(602, '10-JAN-2022', '10-JAN-2022', 702, 302, 202);

insert into orders(od_id, od_date, delivery_date, uo_id, cus_id, e_id) values(603, '3-NOV-2022', '3-NOV-2022', 703, 303, 202);

insert into orders(od_id, od_date, delivery_date, uo_id, cus_id, e_id) values(604, '5-MAR-2022', '5-MAR-2022', 704, 304, 203);

insert into orders(od_id, od_date, delivery_date, uo_id, cus_id, e_id) values(605, '6-AUG-2022', '6AUG2022', 705, 305, 205);

OD_ID	OD_DATE	DELIVERY_DATE	UO_ID	CUS_ID	E_ID
601	01-JAN-22	01-JAN-22	701	301	201
602	10-JAN-22	10-JAN-22	702	302	202
603	03-NOV-22	03-NOV-22	703	303	202
604	05-MAR-22	05-MAR-22	704	304	203
605	06-AUG-22	06-AUG-22	705	305	205

ORDER DETAILS DATA:

insert into order_details(uo_id, od_quantity, od_price) values(701, 2, 260); insert into order_details(uo_id, od_quantity, od_price) values(702, 1, 2400); insert into order_details(uo_id, od_quantity, od_price) values(703, 3, 1080); insert into order_details(uo_id, od_quantity, od_price) values(704, 1, 2700); insert into order_details(uo_id, od_quantity, od_price) values(705, 3, 2040);

UO_ID	OD_QUANTITY	OD_PRICE
701	2	260
702	1	2400
703	3	1080
704	1	2700
705	3	2040

PRODUCT DATA:

insert into product(p_id, p_name, p_price, p_category, p_quantity, e_id) values(401, 'French toast', 130, 'Bakery item', 44, 201);

insert into product(p_id, p_name, p_price, p_category, p_quantity, e_id) values(402, 'Tiamaria cake', 2400, 'Cakes', 13, 202);

insert into product(p_id, p_name, p_price, p_category, p_quantity, e_id) values(403, 'Fudge cake', 2700, 'Cakes', 9, 203);

insert into product(p_id, p_name, p_price, p_category, p_quantity, e_id) values(404, 'Box of bon bons', 680, 'Chocolates', 17, 204);

insert into product(p_id, p_name, p_price, p_category, p_quantity, e_id) values(405, 'Savoury', 360, 'Deserts', 23, 205);

P_ID	P_NAME	P_PRICE	P_CATEGORY	P_QUANTITY	E_ID
401	French toast	130	Bakery item	44	201
402	Tiamaria cake	2400	Cakes	13	202
403	Fudge cake	2700	Cakes	9	203
404	Box of bon bons	680	Chocolates	17	204
405	Savoury	360	Deserts	23	205

RECEIPT DATA:

insert into receipt(r_id, amount, r_date) values(501, 260, '1-JAN-2022'); insert into receipt(r_id, amount, r_date) values(502, 2400, '10-JAN-2022'); insert into receipt(r_id, amount, r_date) values(503, 1080, '3-NOV-2022'); insert into receipt(r_id, amount, r_date) values(504, 2700, '5-MAR-2022'); insert into receipt(r_id, amount, r_date) values(505, 2040, '6-AUG-2022');

R_ID	AMOUNT	R_DATE
501	260	01-JAN-22
502	2400	10-JAN-22
503	1080	03-NOV-22
504	2700	05-MAR-22
505	2040	06-AUG-22

GIVE Table DATA:

insert into give(r_id, e_id) values(501, 201); insert into give(r_id, e_id) values(502, 202); insert into give(r_id, e_id) values(503, 202); insert into give(r_id, e_id) values(504, 203); insert into give(r_id, e_id) values(505, 205);

R_ID	E_ID
501	201
502	202
503	202
504	203
505	205

GET Table DATA:

insert into get(cus_id, r_id) values(301, 501); insert into get(cus_id, r_id) values(302, 502); insert into get(cus_id, r_id) values(303, 503); insert into

get(cus_id, r_id) values(304, 504); insert into
get(cus_id, r_id) values(305, 505);

CUS_ID	R_ID
301	501
302	502
303	503
304	504
305	505

PAY Table DATA:

insert into pay(m_id, cus_id) values(102, 301); insert into pay(m_id, cus_id) values(102, 302); insert into pay(m_id, cus_id) values(102, 303); insert into pay(m_id, cus_id) values(102, 304); insert into pay(m_id, cus_id) values(102, 305);

M_ID	CUS_ID
102	301
102	302
102	303
102	304
102	305

ORDERED PRODUCT Table DATA:

insert into ordered_product(p_id, od_id) values(401, 601); insert into ordered_product(p_id, od_id) values(402, 602); insert into ordered_product(p_id, od_id) values(403, 603); insert into ordered_product(p_id, od_id) values(404, 604); insert into ordered_product(p_id, od_id) values(405, 605);

P_ID	OD_ID	
401	601	
402	602	
403	603	
404	604	
405	605	

Query Writing

Single row function: Single row functions are the one who work on single row and return one output per row. For example, length and case conversion functions are single row functions.

Display the E_NAME and E_SALARY number by joining the columns using concatenation function.
 Ans: select concat(E_NAME, E_SALARY) as Employee_info from employee;

2. Display Today's date and time.

Ans: select sysdate from dual;

- **Group function:** Group functions are built-in SQL functions that operate on groups of rows and return one value for the entire group. These functions are: COUNT, MAX, MIN, AVG, SUM, DISTINCT
- Display maximum salary from all employees using MAX function.
 Ans: select MAX(E_SALARY) from employee;

2. Display the sum of products price using the SUM function. Ans: select SUM(p_price) from product;

Subquery: A subquery is a query that is nested inside a SELECT, INSERT, UPDATE, or DELETE statement, or inside another subquery. A subquery can be used anywhere an expression is allowed. In this example, a subquery is used as a column expression named MaxUnitPrice in a SELECT statement.

1. Display the products name and price where price is greater than Box of bon bons.

Ans: select p_name, p_price from product where p_price > (select p_price from product where p_name='Box of bon bons');

2. Display the name and salary of employees where salary is higher than the salary of Dabul.

Ans: select e_name, e_salary from employee where e_salary > (select e_salary from employee where e_name = 'Dabul');

E_NAME	E_SALARY
Abul	7000
Babul	9000
Cabul	8000
Ebul	6000
	THE TOTAL STATE

Joining: A SQL Join is a special form of generating a meaningful data by combining multiple tables relate to each other using a "Key". Typically, relational tables must be designed with a unique column and this column is used to create relationships with one or more other tables. When need a result-set that includes related rows from multiple tables, need to use SQL join on this column

1. Join the table orders and order details where uo_id of both table are same.

Ans: select orders.od_date, orders.delivery_date, order_details.od_quantity, order_details.od_price, orders.uo_id, order_details.uo_id from orders, order_details where orders.uo_id = order_details.uo_id;

OD_DATE	DELIVERY_DATE	OD_QUANTITY	OD_PRICE	UO_ID	UO_ID
01-JAN-22	01-JAN-22	2	260	701	701
10-JAN-22	10-JAN-22	1	2400	702	702
03-NOV-22	03-NOV-22	3	1080	703	703
05-MAR-22	05-MAR-22	1	2700	704	704
06-AUG-22	06-AUG-22	3	2040	705	705

2. Join the table orders and employee where e_id of both table are same

Ans: select employee.e_name, employee.e_id, employee.e_address, orders.od_id from employee, orders where orders.e_id = employee.e_id;

E_NAME	E_ID	E_ADDRESS	OD_ID
Abul	201	Azimpur, Dhaka	601
Babul	202	Kamlapur, Dhaka	602
Babul	202	Kamlapur, Dhaka	603
Cabul	203	Shahbag, Dhaka	604
Ebul	205	Mohammadpur, Dhaka	605

View: In SQL, a view is a virtual table based on the result-set of an SQL statement. A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real tables in the database. Add SQL statements and functions to a view and present the data as if the data were coming from one single table.

A view is created with the CREATE VIEW statement.

Create a view of product where price is more than 1500 tk.
 Ans: create view price_view as select p_name, p_price from product where p_price > 1500;

2. Create a view of employee salary where salary is greater than 5000 tk;

Ans: create view emp_salary as select e_name, e_salary from employee where e_salary > 5000;

Relational Algebra

1. 1Find the name of the customer where customer id is 302

```
Ans: \pi Cus name(\sigmacus_id = '302' (customer))
```

2. Find the customer address were customer phone number is 1843311815

Ans:
$$\pi$$
 Cus address(σ cus_phone_no = '1843311815' (customer))

3. Find the receipt id where receipt date is '10-JAN-2022'

Ans:
$$\pi_{r}$$
 id(σ_{r}) r id(σ_{r}) r id(σ_{r})

4. Find the names of the employees who earn more than 6000

Ans:
$$\pi_{e_name}(\sigma_{e_salary} > 6000 \text{ (employee)})$$

5. Find order id where delivery date is '5-MAR-2022'

Ans:
$$\pi$$
 o_id(σ delivery_date = '5-MAR-2022' (employee))

Conclusion

The pastry shop management system project's scenario Gives off a brief overview of the whole project. IT gives a generic idea of what the entities are and about their attributes. The main essence of the project Is found in the ER diagram and before table creation, normalization was done to

avoid redundancy. A schema diagram was created to identify the related data sets, the predesigned tables were then created based on related data sets and finally, on the insertion part data was being stored. Some Queries and relational algebra were applied on the implemented data base to test the Management system's data integrity, which proved to be successful. By this effective database project, the organizational data accessibility will be lot quicker and efficient. Both the customers and the shop will be able to save their time and effort by using this complete pasty shop management system. The project is planned to improve by ensuring more security to protect the data. Moreover, the project is made in such a way that further customization can be added effortlessly in the already existing database.