Stochastic process

II Itô Integrals

Seongho, Joo

SNU MILAB

• We will prove the existence, in a certain sense, of

$$\int_0^t f(s, w) \, \mathrm{d}B_s(w)$$

where $B_t(w)$ is 1-dimensional Brownian motion starting at the origin, for a wide class of functions $f:[0,\infty]\times\Omega\to r$. Let us first assume that f has the form

$$\phi(t,w) = \sum_{j\geq 0} e_j(w) \cdot \chi_{[j\cdot 2^{-n},(j+1)2^{-n})}(t),$$

where χ denotes the characteristic (indicator) function and n is a natural number. For such functions, it is reasonable to define

$$\int_{S}^{T} \phi(t, w) dB_{t}(w) = \sum_{j>0} e_{j}(w) [B_{t_{j+1}} - B_{j}](w)$$

However, without any further assumptions on the function $e_j(w)$ this leads to difficulties, as the next example shows.

• We will prove the existence, in a certain sense, of

$$\int_0^t f(s, w) \, \mathrm{d}B_s(w)$$

where $B_t(w)$ is 1-dimensional Brownian motion starting at the origin, for a wide class of functions $f:[0,\infty]\times\Omega\to r$. Let us first assume that f has the form

$$\phi(t, w) = \sum_{j \ge 0} e_j(w) \cdot \chi_{[j \cdot 2^{-n}, (j+1)2^{-n})}(t),$$

where χ denotes the characteristic (indicator) function and n is a natural number. For such functions, it is reasonable to define

$$\int_{S}^{T} \phi(t, w) dB_{t}(w) = \sum_{j>0} e_{j}(w) [B_{t_{j+1}} - B_{j}](w)$$

However, without any further assumptions on the function $e_j(w)$ this leads to difficulties, as the next example shows.

Example. Choose

$$\phi_1(t, w) = \sum_{j \ge 0} B_{j \cdot 2^{-n}}(w) \chi_{[j \cdot 2^{-n}, (j+1)2^{-n})}(t)$$

$$\phi_2(t, w) = \sum_{j \ge 0} B_{(j+1)2^{-n}}(w) \cdot \chi_{[j \cdot 2^{-n}, (j+1)\cdot 2^{-n})}(t)$$

Example. Choose

$$\begin{split} \phi_1(t,w) &= \sum_{j \geq 0} B_{j \cdot 2^{-n}}(w) \chi_{[j \cdot 2^{-n},(j+1)2^{-n})}(t) \\ \phi_2(t,w) &= \sum_{j \geq 0} B_{(j+1)2^{-n}}(w) \cdot \chi_{[j \cdot 2^{-n},(j+1)\cdot 2^{-n})}(t) \end{split}$$

Then

$$\mathbb{E} \int_0^T \phi_1(t, w) \, dB_t(w) = \sum_{j>0} \mathbb{E} B_{t_j} (B_{t_{j+1}} - B_{t_j}) = 0$$

since $\{B_t\}$ has independent increments. But

$$\mathbb{E} \int_0^T \phi_2(t, w) \, dB_t(w) = \sum_{j \ge 0} \mathbb{E} B_{t_{j+1}} \cdot (B_{t_{j+1}} - B_{t_j})$$
$$= \sum_{j \ge 0} \mathbb{E} (B_{t_{j+1}} - B_{t_j})^2 = T$$

In spite of the fact that both ϕ_1 and ϕ_2 appear to be very reasonable approximates to $B_t(w)$, the integrals do not match each other.

In general, it is natural to approximate a given function f(t,w) by

$$\sum_{j} f(t_j^*, w) \cdot \chi_{[t_j, t_{j+1})}(t)$$

where the points t_j^* belongs to the intervals $[t_j,t_{j+1}]$. Unlike the Riemann-Stieltjes integral, it does make a difference here what points t_j^* we choose. The following two choices have turned out to be the most useful ones:

 $\blacksquare \ t_j^* = t_j$ (the left end point), which leads to the Itô integral, from now on denoted by

$$\int_{S}^{T} f(t, w) \, \mathrm{d}B_{t}(w),$$

and

 $\ \, {\bf E} \,\, t_j^* = (t_j + t_{j+1})/2$ (the mid point), which leads to the Stratonovich integral, denoted by

$$\int_{S}^{T} f(t, w) \circ dB_{t}(w).$$

Itô vs Staratonovich

- Itô Integral
 - Does not follow classic the chain rule.
 - Itô integral is more popular in mathematics and finance, where the interpretation as the limit of a discrete game is somewhat appealing, and (more importantly) the martingale property is convenient.
- Stratonovich Integral
 - \blacksquare The advantage of this integral is that if f is smooth enough, you keep the standard chain rule for derivation for $f(X_t)$:

$$\mathrm{d}f(X_t) = f'(X_t)dX_t$$

• The approximation procedure indicated above will work out successfully given that f has the property that each of the functions $w \to f(t_j,w)$ only depends on the behaviour of $B_s(w)$ up to time t_j . This leads to the following important concepts:

Definition 1 (Filtration)

Let $B_t(w)$ be n-dimensional Brownian motion. Then we define $\mathcal{F}_t = \mathcal{F}_t^{(n)}$ to be the σ -algebra generated bt the random variables $B_s(\cdot)$; $s \leq t$. In other words, \mathcal{F}_t is the smallest σ -algebra containing all sets of the form

$$\left\{w\,|\,B_{t_1}(w)\in F_1,\cdots,B_{t_k}(w)\in F_k\right\},$$
 where $t_j\leq t$ and $F_j\subset\mathbb{R}^n$ are Borel sets, $j\leq k=1,2,\cdots$

- Intuitively, that h(w) is \mathcal{F}_t -measurable means that the value of h(w) can be decided from the values of $B_s(W)$ for $s \leq t$. For example, $h_1(w) = B_{t/2}(w)$ is \mathcal{F}_t -measurable, while $B_{2t}(w)$ is not.
- A function h(w) will be \mathcal{F}_t -measurable if and only if h can be written as the pointwise a.e. limit of sums of functions of the form $g_1(B_{t_1})g_2(B_{t_2})\dots g_k(B_{t_k})$, where g_1,\dots,g_k are bounded continuous functions and $t_j\leq t$ for $j\leq k=1,2,\dots$

• We now describe our class of functions for which the Itô integral will be defined:

Definition 2

Let $\nu=\nu(S,T)$ be the class of functions $f(t,w):[0,+\infty)\times\Omega\to\mathbb{R}$ such that

- $lackbox{ }(t,w)\mapsto f(t,w) \text{ is }\mathcal{B} imes\mathcal{F} ext{-measurable, where }\mathcal{B} \text{ denotes the Borel }\sigma ext{-algebra on }[0,\infty).$
- f(t,w) is \mathcal{F}_t -adapted (i.e. for each $t \geq 0$, $w \mapsto f(t,w)$ is \mathcal{F}_t -measurable).
- $\blacksquare \mathbb{E} \int_{S}^{T} f(t, w)^{2} dt < \infty.$

For functions $f \in \nu$ we will now show how to define the Itô integral

$$\mathcal{I}[f](w) = \int_{S}^{T} f(t, w) \, \mathrm{d}B_{t}(w),$$

where B_t is 1-dimensional Brownian motion. A function $\phi \in \nu$ is called elementary if it has the form

$$\phi(t,w) = \sum_j e_j(w) \cdot \chi_{[t_j,t_{j+1})}(t)$$

where $e_j(w)$ is $\mathcal{F}_{t_j}\text{-measurable}.$ For elementary functions $\phi(t,w)$ we define the integral by

$$\int_{S}^{T} \phi(t, w) \, \mathrm{d}B_{t}(w) = \sum_{j>0} e_{j}(w) [B_{t_{j+1}} - B_{t_{j}}](w).$$

Now we make the following important observation:

Lemma 1 (The Itô isometry)

If $\phi(t,w)$ is bounded and elementary then

$$\mathbb{E}\left(\int_{S}^{T} \phi(t, w) \, \mathrm{d}B_{t}(w)\right)^{2} = \mathbb{E}\int_{S}^{T} \phi(t, w)^{2} \, \mathrm{d}t. \tag{1.1}$$

Proof. Put
$$\Delta B_j = B_{t_{j+1}} - B_{t_j}$$
. Then
$$\mathbb{E}\,e_i e_j \Delta B_i \Delta B_j = \begin{cases} 0 & \text{if } i \neq j \\ \mathbb{E}\,e_j^2 \cdot (t_{j+1} - t_j) & \text{if } i = j \end{cases}$$
 using that $e_i e_j \Delta B_i$ and ΔB_j are independent if $i < j$
$$\mathbb{E}\left(\int_S^T \phi \,\mathrm{d}B\right)^2 = \sum_{i,j} \mathbb{E}\,e_i e_j \Delta B_i \Delta B_j = \sum_j \mathbb{E}\,e_j^2(t_{j+1} - t_j)$$

$$= \mathbb{E}\int_S^T \phi^2 \,\mathrm{d}t.$$

ullet The idea is now to use the isometry to extend the definition from elementary functions to functions in u. We do this in several steps:

Step 1. Let $g \in \nu$ be bounded and $g(\cdot, w)$ continuous for each w. Then there exist elementary functions ϕ_n such that

$$\mathbb{E} \int_{S}^{T} (g - \phi_n)^2 dt \to 0 \quad \text{ as } n \to \infty.$$

Step 2. Let $h\in \nu$ be bounded. Then there exist bounded functions $g_n\in \nu$ such that $g_n(\cdot,w)$ is continuous for all w and n, and

$$\mathbb{E} \int_{S}^{T} (h - g_n)^2 \, \mathrm{d}t \to 0.$$

Step 3. Let $f \in \nu$. Then there exists a sequence $\{h_n\} \in \nu$ such that h_n is bounded for each n and

$$\mathbb{E} \int_{S}^{T} (f - h_n)^2 dt \to \text{ as } n \to \infty.$$

Step 1. Let $g\in \nu$ be bounded and $g(\cdot,w)$ continuous for each w. Then there exist elementary functions ϕ_n such that

$$\mathbb{E} \int_{S}^{T} (g - \phi_n)^2 dt \to 0 \quad \text{as } n \to \infty.$$

Proof. Define $\phi_n(t,w)=\sum_j g(t_j,w)\cdot\chi_{[t_j,t_{j+1})}(t)$. Then ϕ_n is elementary since $g\in\nu$, and

$$\int_{S}^{T} (g - \phi_n)^2 dt \to 0 \quad \text{ as } n \to \infty, \text{ for each } w$$

since $g(\cdot, w)$ is continuous for each w. Then, by the bounded converge theorem $\lim_{n\to\infty} \mathbb{E} \int_{\mathbb{S}}^T (g-\phi_n)^2 dt \to 0$.

Step 2. Let $h \in \nu$ be bounded. Then there exist bounded functions $g_n \in \nu$ such that $g_n(\cdot,w)$ is continuous for all w and n, and

$$\mathbb{E} \int_{S}^{T} (h - g_n)^2 \, \mathrm{d}t \to 0.$$

Proof. Suppose $|h(t,w)| \leq M$ for all (t,w). For each n let ψ_n be non-negative, continuous function on $\mathbb R$ such that

$$\psi_n(x) = 0 \text{ for } x \le -\frac{1}{n} \text{ and } x \ge 0$$

$$2 \int_{-\infty}^{\infty} \psi_n(x) \, \mathrm{d}x = 1$$

Define

$$g_n(t, w) = \int_0^t \psi_n(s - t)h(s, w) \,\mathrm{d}s.$$

Then $g_n(\cdot,w)$ is continuous for each w and $g_n(t,w) \geq M$ and, $g_n(t,\cdot)$ is \mathcal{F}_t -measurable for all t. Moreover,

$$\int_S^T (g_n(s,w) - h(s,w))^2 ds \to 0 \text{ as } n \to \infty, \text{ for each } w.$$

So by bounded convergence theorem

$$\lim_{n \to \infty} \mathbb{E} \int_{S}^{T} (h(t, w) - g_n(t, w))^2 dt = 0$$

Step 3. Let $f \in \nu$. Then there exists a sequence $\{h_n\} \in \nu$ such that h_n is bounded for each n and

$$\mathbb{E} \int_{S}^{T} (f - h_n)^2 dt \to \text{ as } n \to \infty.$$

Proof. Let

$$h_n(t,w) = \begin{cases} -n & \text{if } f(t,w) < -n \\ f(t,w) & \text{if } -n \le f(t,w) \le n \\ n & \text{if } f(t,w) > n \end{cases}$$

Then, $\int_S^T (f(t,w) - h_n(t,w))^2 dt$ converges to 0 for each w. The conclusion follows by dominated convergence theorem.

ullet Conclusion: Define the integral for general f by

$$\mathcal{I}[f](w) := \int_S^T f(t, w) dB_t(w) := \lim_{n \to \infty} \int_S^T \phi_n(t, w) dB_t(w).$$

The limit exists since $\left\{\int_S^T \phi_n(t,w) \, \mathrm{d}B_t(w)\right\}$ forms a Cauchy sequence in $L^2(P)$, by the Itô isometry.

Definition 3 (The Itô integral)

Let $f \in \nu(S,T)$. Then the Itô integral of f (from S to T) is defined by

$$\int_{S}^{T} f(t, w) dB_{t}(w) = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t, w) dB_{t}(w) \quad \text{limit in } L^{2}(P)$$
 (1.2)

where $\{\phi_n\}$ is a sequence of elementary functions such that

$$\mathbb{E} \int_{S}^{t} (f(t, w) - \phi_n(t, w))^2 dt \to 0 \quad \text{as } n \to \infty.$$
 (1.3)

Note that such a sequence $\{\phi_n\}$ satisfying equation 1.3 exists and the limit does not depend on the actual choice of $\{\phi_n\}$.

Corollary 1 (The Itô isometry)

$$\mathbb{E}\left(\int_{S}^{T} f(t, w) \, \mathrm{d}B_{t}\right)^{2} = \mathbb{E}\int_{S}^{T} f^{2}(t, w) \, \mathrm{d}t \text{ for all } f \in \nu(S, T).$$
 (1.4)

Corollary 2

If
$$f(t,w) \in \nu(S,T)$$
 and $f_n(t,w) \in \nu(S,T)$ for $n=1,2,\ldots$ and $\mathbb{E}\int_S^T (f_n(t,w)-f(t,w))^2 \,\mathrm{d}t \to 0$ as $n\to\infty$, then
$$\int_S^T f_n(t,w) \,\mathrm{d}B_t(w) \to \int_S^T f(t,w) \,\mathrm{d}B_t(w) \quad \text{in } L^2(P) \text{ as } n\to\infty.$$

Example. Assume $B_0 = 0$. Then

$$\int_0^t B_s \, \mathrm{d}B_s = \frac{1}{2} B_t^2 - \frac{1}{2} t.$$

The extra them $-\frac{1}{2}t$ shows that the Itô stochastic integral does not behave like ordinary integrals.

$$\int_0^t B_s \, \mathrm{d}B_s = \frac{1}{2} B_t^2 - \frac{1}{2} t.$$

Proof. Put $\phi_n(s, w) = \sum B_j(w) \cdot \chi_{[t_i, t_{i+1})}(s)$, where $B_j = B_{t_j}$. Then

$$\begin{split} \mathbb{E} \int_{S}^{T} (\phi_{n} - B_{s})^{2} \, \mathrm{d}s &= \mathbb{E} \sum_{j} \int_{t_{j}}^{t_{j+1}} (B_{j} - B_{s})^{2} \, \mathrm{d}s \\ &= \sum_{j} \int_{t_{j}}^{t_{j+1}} (s - t_{j}) \, \mathrm{d}s = \sum_{j} \frac{1}{2} (t_{j+1} - t_{j})^{2} \to 0 \ \text{ as } \Delta t_{j} \to 0. \end{split}$$

So by Corollary 2

$$\int_0^t B_s \, \mathrm{d}B_s = \lim_{\Delta t_j \to 0} \int_0^t \phi_n \, \mathrm{d}B_s = \lim_{\Delta t_j \to 0} \sum_j B_j \Delta B_j$$

Note that for $\Delta(B_i^2)$

$$\Delta(B_j^2) = B_{j+1}^2 - B_j^2 = (\Delta B_j)^2 + 2B_j \Delta B_j,$$

Cont.

Therefore, since
$$B_0=0$$

$$B_t^2=\sum_j\Delta(B_j^2)=\sum_j(\Delta B_j)^2+2\sum_jB_j\Delta B_j$$

$$\Longrightarrow \sum_jB_j\Delta B_j=\frac{1}{2}B_t^2-\frac{1}{2}\sum_j(\Delta B_j)^2.$$

Since $\sum_j (\Delta B_j)^2 \to t$ in $L^2(P)$ as $\delta t_j \to 0$, the results follows.

First we observe the following:

Theorem 1

Let $f,g \in \nu(0,T)$ and let $0 \leq S < U < T.$ Then

$$\int_S^T (cf_+g) dB_t = c \int_S^T f dB_t + \int_S^T g dB_t$$
 for a.e. w .

$$\mathbb{E} \int_{S}^{T} f \, \mathrm{d}B_{T} = 0$$

$$\int_{S}^{T} f \, \mathrm{d}B_{t}$$
 is \mathcal{F}_{T} -measurable.

Definition 4 (Martingale)

An n-dimensional stochastic process $\{M_t\}_{t\geq 0}$ on $(\Omega,\mathcal{F},\mathbb{P})$ is called a \mathcal{F}_t -martingale if

- $\blacksquare M_t$ is \mathcal{F}_t -measurable for all t
- $\mathbb{E}|M_t|<\infty$ for all t
- $\mathbb{E} M_s | M_t = M_t \text{ for all } s \geq t.$

Example. Brownian motion B_t in \mathbb{R}^n is a martingale w.r.t the σ -algebras generated by $\{B_s; s \leq t\}$.

For continuous martingales, we have the following important inequality due to Doob

Theorem 2 (Doob's martingale inequality)

If M_t is a martingale such that $t \to M_t(w)$ is continuous a.s., then for all $p \ge 1, T \ge 0$ and all $\lambda > 0$

$$\mathbb{P}[\sup_{0 \le t \le T} |M_t| \ge \lambda] \le \frac{1}{\lambda^p} \, \mathbb{E} \, |M_T|^p.$$

We now use this inequality to prove that the Itô integral $\int_0^t f(s,w)\,\mathrm{d}B_s$ can be chosen to depend continuously on t.

For continuous martingales, we have the following important inequality due to Doob

Theorem 2 (Doob's martingale inequality)

If M_t is a martingale such that $t \to M_t(w)$ is continuous a.s., then for all $p \ge 1, T \ge 0$ and all $\lambda > 0$

$$\mathbb{P}\left[\sup_{0 \le t \le T} |M_t| \ge \lambda\right] \le \frac{1}{\lambda^p} \, \mathbb{E} \, |M_T|^p.$$

We now use this inequality to prove that the Itô integral $\int_0^t f(s,w)\,\mathrm{d}B_s$ can be chosen to depend continuously on t.

Theorem 3

Let $f \in \nu(0,T)$. Then there exists a t-continuous version of

$$\int_0^t f(s, w) \, \mathrm{d}B_s(w); \quad 0 \le t \le,$$

i.e. there exist a t-continuous stochastic process J_t on $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$\mathbb{P}[J_t = \int_0^t f \, \mathrm{d}B] = 1 \quad \text{ for all } 0 \le t \le T.$$
 (2.1)

Extension of the Itô integral

Extension of the Itô integral

This allows us to define the multi-dimensional Itô integral as follows:

Definition 5

Let $B=(B_1,B_2,\ldots,B_n)$ be n-diemnsional Brownian motion. Then $\nu_{\mathcal{H}^{n\times n}}$ denotes the set of $m\times n$ matrices $v=[v_{ij}(t,w)]$ with respect some filtration $\mathcal{H}=\{\mathcal{H}_t\}_{t\geq 0}.$ If $v\in \nu_{\mathcal{H}}^{m\times n}$ we define, using matrix notation

$$\int_{S}^{T} v \, dB = \int_{S}^{T} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & & \vdots \\ v_{m1} & \dots & v_{mn} \end{pmatrix} \begin{pmatrix} dB_{1} \\ \vdots \\ dB_{n} \end{pmatrix}$$

to be the $m \times 1$ matrix (column vector) whose i'th component is the following sum of 1-dimensional Ito integral:

$$\sum_{j=1}^{n} \int_{S}^{T} v_{ij}(s, w) \, \mathrm{d}B_{j}(s, w)$$