20160512我的关注参数调优

工具

被<u>章耿</u>添加,被<u>章耿</u>最后更新于五月 25, 2016

我的关注JSF参数调优压测报告

压测时间: 2016年5月12日星期四下午2点至7点

压测方法: 以一个 8 核廊坊 docker 作为压测硬件条件压测 follow.soa 应用,这个应用使用共享 16shard 的 Redis 和 8shard 的 Mysql 数据库等外部资源。先用 isFollow 方法,默认 JSF 参数压测出基础值,然后逐步按照 CPU 打满的参数调整进行压测,之后再调整参数将 CPU 利用率降低至 70% 左右进行压测,用于保护 CPU 通过拒绝服务的方式来保护硬件资源和应用。

场景 **1**: 压测 isFollow 方法, JSF 默认值, 并发数 **100**

	(V) 131 O1101	N 万位, JSI 然以且, 万 及数 100	
属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	false
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	0
threads	200	最大业务线程池大小	200
threadpool	cached	目前业务线程池支持固定(fixed)和伸缩的(cached)两种线程池类型。通过配置 threadpool 线程池类型,通过threads 配置最大线程数。	cached
queues	0	业务线程池队列大小。 0 表示无队列, -1 表示无限队列, 正整数表示有限队列	0
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列 priority	normal

CPU 负载:

场景 2: 压测 isFollow 方法, JSF 调优值(threads=50 , queues=100), 并发数 100

属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	50
threadpool	cached	目前业务线程池支持固定(fixed)和伸缩的(cached) 两种线程池类型。通过配置 threadpool 线程池类型,通过 threads 配置最大线程数。	fixed
queues	0	业务线程池队列大小。 0 表示无队列, -1 表示无限队列, 正整数表示有限队列	100
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列 priority	normal

CPU 利用率:

CPU 负载:

场景 3: 压测 isFollow 方法, JSF 调优值(threads=25, queues=100),并发数 100

属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	25
threadpool	cached	目前业务线程池支持固定(fixed)和伸缩的(cached) 两种线程池类型。通过配置 threadpool 线程池类型,通过	fixed
		threads 配置最大线程数。	
queues	0	业务线程池队列大小。0表示无队列, -1表示无限队列,	100
		正整数表示有限队列	
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列	normal
		priority	

调用量:

CPU 利用率:

CPU 负载:

场景 4: 压测 isFollow 方法, JSF 调优值(threads=15 , queues=100),并发数 100

属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	12
threadpool	cached	目前业务线程池支持固定(fixed)和伸缩的(cached)两种线程池类型。通过配置 threadpool 线程池类型,通过threads 配置最大线程数。	fixed
queues	0	业务线程池队列大小。 0 表示无队列, -1 表示无限队列, 正整数表示有限队列	100
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列 priority	normal

CPU 利用率:

CPU 负载:

场景 5: 压测 isFollow 方法, JSF 调优值(threads=8 , queues=0),并发数 100

属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	8
threadpool	cached	目前业务线程池支持固定 (fixed) 和伸缩的 (cached)	fixed
		两种线程池类型。通过配置 threadpool 线程池类型,通过	
		threads 配置最大线程数。	
queues	0	业务线程池队列大小。0表示无队列,-1表示无限队列,	0
		正整数表示有限队列	
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列	normal
		priority	

CPU 利用率:

CPU 负载:

场景 6: 压测 queryFollowList 方法, JSF 调优值(threads=25 , queues=100),并发数 100

7771	1013 A 21 21 1 1		,
属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	8
threadpool	cached	目前业务线程池支持固定 (fixed) 和伸缩的 (cached)	fixed
		两种线程池类型。通过配置 threadpool 线程池类型,通过	
		threads 配置最大线程数。	
queues	0	业务线程池队列大小。0表示无队列, -1表示无限队列,	0
		正整数表示有限队列	
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列	normal
		priority	

调用量:

CPU 利用率:

CPU 负载:

场景 7: 压测 follow/unfollow 方法, JSF 调优值(threads=8 , queues=0),并发数 50

属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	8
threadpool	cached	目前业务线程池支持固定(fixed)和伸缩的(cached) 两种线程池类型。通过配置 threadpool 线程池类型,通过	fixed
		threads 配置最大线程数。	
queues	0	业务线程池队列大小。 0 表示无队列, -1 表示无限队列, 正整数表示有限队列	0
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列	normal
		priority	

CPU 负载:

压测综述:

场景	压测方法	调用量	CPU 利用率	CPU 负载
场景 1	isFollow	238w/min	96%	46
(JSF 默认值)				
场景 2	isFollow	254w/min	88%	21
(
threads=50/queues=100				
)				
场景 3	isFollow	300w/min	96%	24
(
threads=25/queues=100				
)				
场景 4	isFollow	281w/min	91%	12
(
threads=15/queues=100				
· · · · · · · · · · · · · · · · · · ·	isFollow	100/min	720/	12.00
ッ京 5 (threads=8/queues=0	ISFOIIOW	190w/min	72%	12.66
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	queryFollowList	160w/min	54%	12.61
(threads=8/queues=0	queryronowist	100W/IIIII	34/0	12.01
)				
场景 7	follow/unfollow	6w/min	18%	3.14
(threads=8/queues=0				
)				
<i>★</i>		ころはエロ目して	田田炉粉揃夕 日久	

针对 isFollow 方法进行 JSF 性能参数调优后系统吞吐量上升,调用次数增多,同等情况 CPU 利用率相对下降,在业务线程数 threads 为 25 ,队列容量为 100 时出错最少,调用次数最高,利用率也相对最高。之后开始降低 CPU 利用率,因此将业务线程数 threads 为 15 和 8 并且将队列容量设置为 0 时, CPU 利用率达到 70% 左右,可以起到保护 CPU 的作用,此时的调用次数符合预期值,达到每分钟 190w/min 。

由于 isFollow 是一个高效的方法,响应时间非常快,因此再基于 threads=8/queues=0 的配置对关注列表 queryFollowList 方法和加关注 / 取消关注 follow/unfollow 方法进行压测,检查 CPU 利用率情况,压测结果表明,响应时间较慢的方法在这个配置不能得到有效利用, CPU 利用率过低,尤其是 follow/unfollow 响应时间较慢的方法 CPU 利用率才 18%。

2015 年双 11 各方法调用峰值情况加下.

2013 中水 11 17 /14 例/19	EIE IN OUSE 1 •		
方法	去年双 11 峰值	单个 docker 压测峰值	单个 docker 压测峰值时
		(threads=8/queues=0)	CPU 利用率
			(threads=8/queues=0)
是否关注商品(isFollow	220w/min	190w/min	72%
)			
关 注 列 表 (20w/min	160w/min	54%
queryFollowList 等)			
加关注/取消关注(2w/min	6w/min	18%
follow/unfollow)			

综上判定以及与赵辉、周恩等架构师沟通建议优化后配置如下:

属性名	默认值	属性描述	当前值
epoll	false	Linux 下是否启动 epoll 特性	true
iothreads	0	IO 线程池大小,程序中默认 max(8,cpu+1)	1
threads	200	最大业务线程池大小	16
threadpool	cached	目前业务线程池支持固定(fixed)和伸缩的(cached)	fixed
		两种线程池类型。通过配置 threadpool 线程池类型,通过	
		threads 配置最大线程数。	
queues	0		50

		业务线程池队列大小。 0 表示无队列, -1 表示无限队列, 正整数表示有限队列	
queuetype	normal	业务线程池队列类型。普通队列 normal 、优先级队列	normal
		priority	

这样既能达到一定调用量满足调用方合理调用需求,又能一定程度保护 CPU ,提高容器生命周期和整体利用率。

JSF 性能调优线上执行方式:

- 1、 按照调优设置到当前有调用量的 docker 上,仅上线一台,观察 1-3 天看是否有故障出现
- 2、 如果第一步无故障出现,则将剩下 docker 上线新的 JSF 配置

附: JSF 线程池参考

-	threadpool 线 程池类型	<u>初始线程</u> <u>数</u>	threads 最大线程数	queues 队列大小	<u>说明</u>	<u>优点</u>	<u>缺点</u>
<u>伸缩有队列</u> <u>线程池</u>	cached	20	100	<u>256</u>	任务来了先丢到队 列中,队列满了才 会增加线程,直到 线程满, 得不到执行线程抛 异常	节约线程资源, 空闲一分钟自动 回收,需要时重 建: 队列带来一定的 并发缓冲功能	队列带来一 定的执行延 迟
伸缩无队列 线程池(默 认)	cached	20	200	<u>0</u>	任务来了直接分配 线程,直到线程池 满,得不到执行线 程抛异常	节约线程资源, 空闲一分钟自动 回收,需要时重 建:	并发突然变 大无缓冲
固定有队列 线程池	fixed	100	100	256	线程数量固定,没 有拿到线程丢到队 列里,得不到执行 线程抛异常	没有线程伸缩带 来的性能问题; 队列带来一定的 并发缓冲功能	<u>队列带来一</u> 定的执行延 <u>迟</u>
固定无队列 线程池	fixed	200	200	<u>0</u>	线程数量固定,得 不到执行线程抛异 當	没有线程伸缩带 来的性能问题	并发突然变 大无缓冲

参考文档:

1、 http://ipcloud.id.com/pages/viewpage.action?pageId=10671257#JSF 客户端用户手册 - 线程池类型

无