TAREA 1

SEGUNDO PARCIAL

ARQUITECTURA DE COMPUTADORAS

3CM2

TABLA 1.- OPERACIONES, MNEMÓNICOS Y SUS RESPECTIVOS CODIGOC

#	NOMBRE DE LA OPERACIÓN	MNEMÓNICO	CÓDIGO BINARIO (OPCODE)
1	AND (LÓGICA)	ANDD	00000000
2	OR (LÓGICA)	ORD	0000001
3	XOR (LÓGICA)	XORD	0000010
4	NOT (LÓGICA)	NOTD	0000011
5	NAND (LÓGICA)	NANDD	00000100
6	NOR (LÓGICA)	NORD	00000101
7	XNOR (LÓGICA)	XNORD	00000110
8	SUMA (ENTEROS)	ADDD	00000111
9	RESTA(ENTEROS)	SUBSTD	00001000
10	MULTIPLICACIÓN (ENTEROS)	MULTD	00001001
11	SHIFTRL	SHIFTRLD	00001010
12	SHIFTLR	SHIFTLRD	00001011
13	ROTRL	ROTRLD	00001100
14	ROTLR	ROTLRD	00001101
15	BSHIFTSRL X POSICIONES	BSHIFTSRLD	00001110
16	BSHIFTSLR X POSICIONES	BSHIFTSLRD	00001111
17	BSHIFTRRL X POSICIONES	BSHIFTRRLD	00010000
18	BSHIFTRLR X POSICIONES	BSHIFTRLRD	00010001
19	CARGA EN BUFFER UN DATO	LOAD	00010010
20	STORE GUARDA EN MEM DE DATOS	STORE	00010011
21	SUBSTITUYE EL BIT MAS	SUBSTMSB	00010100
22	SUBSTITUYE EL BIT X	SUBSTLSB	00010101
23	CONCATENA REGISTROS A Y B	CONCATAB	00010110
24	SELECCIONA EL BIT INDICADO	BITX	00010111
25	COMPARA DOS REGISTROS	COMPARA	00011000
26	COMPLEMENTA A 2	COMP2	00011001
27	IR A LA POSICIÓN X	GOTOX	00011010

TABLA II.- MEMORIA DE PROGRAMA (INSTRUCCIONES)

REGISTRO INDICE	OPCODE	Rs	Rt	Rd
00000000				
00000010				
00000011				
00000100				
00000101				
00000110				
00000111				

CONSIDERE DIRECCIONAMIENTO DIRECTO

EJERCICIO A

1A.- RELLENE LA MEMORIA DE PROGRAMA CON LAS INSTRUCIONES COMP2, CONCAT, COMPARA, BSHIFTLR(1) ADDD, GOTOX, STORE

2A.- LOS OPERANDOS RS, Rt Y Rd, EN LA MEMORIA DE PROGRAMA, SON DE 4 BIT. RECUERDA QUE REPRESENTAN DIRECCIONES, EN EL CASO DE DIRECCIONAMIENTO DIRECTO.

3A.- DECLARA TRES SECCIONES DE MEMORIA, RAMRS, RAMRT Y RAMRD, PARA UBICAR LOS OPERANDOS. RS Y RT SON DE 8 BITS. RD ES DE 16 BITS.

EJERCICIO B

1B.-EJECUTAR LA OPERACIÓN DE MULTIPLICACÍÓN

EJERCICIO C

1C.- EJECUTAR LA OPERACIÓN "BSHIFTLR(3)". USAR LA FUNCIÓN SHIFTMOUNT DEL MODELO MIPS PARA INDICAR EL NÚMERO 3 DE DESPLAZAMIENTOS.

EJERCICIO D

1D.- SUBSTLSB(LSB). SUBSTITUYE EL BIT MENOS SIGNIFICATIVO DEL RESITRO RS POR EL BIT MÁS SIGNIFICATIVO DE RT.

ENTREGAR EL LUNES 16 DE ABRIL DEL 2018