装

订

湖南商学院课程考核试卷 (A) 卷

课程名称: 计量经济学 A 学分:

考核形式: 闭卷 **考核学期**: 2008—2009 学年度

年级、专业、层次: 临班 0236、0239(经济学、国际贸易) 时 量: 120 分钟

	题号			三	四	Ŧi.	六	七	八	总分	合分人
	应得分	20	12	16	16	16	20			100	
-	实得分										复查人
	评卷人										

得分	评卷人

一、单选题 (每小题 1 分, 共 20 分)

1、如果在含截距的线性回归模型中,随机干扰项不服从正态分布, 则 OLS 估计量是()

A.线性有偏的; B.线性无偏的; C.非线性有偏的; D.非线性无偏的;

- 2、在经典线性回归分析中,定义的是()
- A.解释变量和被解释变量都是随机的; B.解释变量和被解释变量都是非随机的;
- C.解释变量为非随机的,被解释变量为随机; D.解释变量是随机而被解释变量非随机;
- 3、较容易产生异方差的数据是()
- A.时间序列数据; B.年度数据; C.横截面数据; D.季度数据;

- 4、在多元线性回归中,检验某一解释变量对被解释变量影响是否显著时,所用的统计 量是(), 其中n表示样本容量, k表示解释变量个数。

- A. t(n-k) B. t(n-k-1) C. t(n-k-2) D. t(n-k+1)
- 5、在一元线性回归分析中,X 和 Y 之间的样本相关系数r 与回归模型拟合优度 R^2 的 关系是(

- 6、若线性回归模型中随机干扰项存在一阶自回归形式的自相关,则估计该模型时应采) 法来估计 用(
 - A. OLS 估计; B. WLS 估计; C. 广义差分法; D. 辅助回归法;

- 7、当模型存在多重共线性时,可用()来估计该模型参数

	A. WLS 估计;	B. 逐步回	归法; C.)	一义差分法;	D. OLS 估计	;
8, 1	以下 ()	情况不满足回归	日模型的基本假	定		
	A.X 为确定性	变量,即非随机	几变量;	B.干扫	尤项无自相关存	在;
	C.干扰项为正	态分布;		D.T.	扰项具有异方差	i ;
9、1	在一个多元线性	:回归模型中,村	羊本容量为 n, [可归参数个数为	k,则在回归核	模型的矩
1	阵表示式中,矩	阵X的阶数是	()		977	3
	A, $n \times (k-1)$	B, $n \times (k+1)$	C, n×k	D、(n+1)>	学提起	93
10、		i = n	- X)的值是(710	
	的样本均值。					
	A, 0	B, 1	C、-1	D、不能确定		
11,	计量经济模型是	是指()				
	A.投入产出模	型		B.数学规划模	型	
C.	包含随机误差环	页的经济数学模	型 D.	塻糊数学模型		
12、	在多元线性回归	扫模型中,关于	拟合优度系数R	2说法不正确的	J是()	
	A.衡量了变量	量 Y 与某一 X 变	医量之间的样本构	目关系数		
	B.拟合优度是	是回归平方和除	以总体平方和的	值		
	C.拟合优度的	的值一定在 0-1	之间			
	D.衡量了解和	译变量对被解释	变量的解释程度			
13、	设 k 为回归模型	型中的回归参数	个数, n 为样本	容量,则对总	体回归模型进行	显著性
			量为(), R			
3	平方和。					
	A. $F = \frac{ESS}{RSS}$	$\frac{S/(k-1)}{S/(n-k)}$ B.	$F = 1 - \frac{ESS /(k - RSS)}{RSS /(n - RSS)}$	$\frac{1}{k}$ C. $F =$	$\frac{RSS}{ESS}$ D. $F =$	$\frac{ESS}{TSS}$
14、	同一经济指标打	安时间顺序记录	的数据列称为()		
	A、横截面数	据B、时间	序列数据 C	、转换数据	D、面板数据	
15、	设有一元样本国	回归线 $\hat{Y} = \hat{\beta}_0$ +	$-\hat{\beta}_1 X$, \overline{X} , \overline{Y}	为样本均值,	则点($\overline{X},\overline{Y}$)	()
	A、一定在样	本回归线上;	F	3、一定不在样	本回归线上;	
	C、不一定在	样本回归线上;	Γ)、一定在样本	回归线下方;	
16、	己知 D.W 统计	量的值接近于 2	2,则样本残差的	力一阶自相关系	数ρ̂ 近似等于(()
	A, 0	B、1	C、-1	j	D、 0.5	
						1/

第2页 共8页

17、假设回归模型为: $Y_{\mu} = \alpha + \beta X_{\mu} + \mu_{\mu}$, 其中 $Var(\mu_{\mu}) = \sigma^2 X_{\mu}^2$, 则使用加权最小二 乘法估计模型时,应将模型变换为(

A.
$$\frac{Y_i}{\sqrt{X_i}} = \frac{\alpha}{\sqrt{X_i}} + \beta \sqrt{X_i} + \frac{\mu_i}{\sqrt{X_i}}$$
B. $\frac{Y_i}{\sqrt{X_i}} = \frac{\alpha}{\sqrt{X_i}} + \beta + \frac{\mu_i}{\sqrt{X_i}}$

B.
$$\frac{Y_i}{\sqrt{X_i}} = \frac{\alpha}{\sqrt{X_i}} + \beta + \frac{\mu_i}{\sqrt{X_i}}$$

C.
$$\frac{Y_i}{X_i} = \frac{\alpha}{X_i} + \beta + \frac{\mu_i}{X_i}$$

C.
$$\frac{Y_i}{X_i} = \frac{\alpha}{X_i} + \beta + \frac{\mu_i}{X_i}$$
 D. $\frac{Y_i}{X_i^2} = \frac{\alpha}{X_i^2} + \frac{\beta}{X_i} + \frac{\mu_i}{X_i^2}$

- 18、在线性回归模型中,如果由于模型忽略了一些解释变量,则此时的随机误差项存在 自相关,这种自相关被称为(
 - A、纯自相关
- B、非纯自相关
- C、高阶自相关 D、一阶自相关
- 19、如果多元线性回归模型存在不完全的多重共线性,则模型()
 - A.已经违背了基本假定:

B.仍然没有违背基本假定:

C.高斯-马尔可夫定理不成立; D.OLS 估计量是有偏的;

- 20、任意两个线性回归模型的拟合优度系数 R2(
 - A. 可以比较, R²高的说明解释能力强
 - B. 可以比较, R²低的说明解释能力强
 - C. 不可以比较,除非解释变量都一样
 - D. 不可以比较,除非被解释变量都一样

二、名词解释 (每小题 4分, 共 12 分)

- 1、高斯一马尔可夫定理 满足经典假设的线性回归模型, 它的 0LS 估计量一定是在所 有线性估计量当中,具有最小的方差,即 OLS 估计量是最佳线性无偏估计量
- $Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{o} + \cdots + \beta_{k}X_{k} + \mu$ 如果解释变量之间不再是 2、多重共线性 相互独立的, 而是存在某种相关性, 则认为该模型具有多重共线性
- 3、广义最小二乘估计 当不符合经典假设的线性回归模型,通过一定的变换得到一个 新的符合经典假设的模型,然后再对新的符合经典假设的模型进行 OLS 估计

三、简答题 (每小题 8 分, 共 16 分)

- 1、回归参数的显著性检验和回归模型的显著性检验有何区别和联系?
- 回归系数的显著性检验是对回归系数进行是否等于 0 或等于某个常数的假设检验;而 回归方程的显著性检验是指方程是否显著存在的假设检验: 在一元线性回归中, 回归 系数的显著性检验和回归方程的显著性检验是等价的; 而在多元线性回归中两者不 可。
- 2、应用 D.W 统计量进行自相关检验时, D.W 检验的适用条件是有

第 3 页 共8 奥 模型应包含截距项;模型中的解释变量是非随机的;随机误差项必须是一阶自回归的 生成机制;模型的解释变量中不应包含有被解释变量的滞后值。模型具有足够的样本 容量

1、假设某国外贸进口函数模型估计的回归方程如下,括号中的数字为 t 统计量:

$$\hat{m}_t = 10 + 0.8P_t + 0.6Y_t$$
 $R^2 = 0.8 \text{ D.W} = 1.9 \text{ n} = 23$

其中 m_r 为第 t 期该国实际外贸进口额, P_r 为第 t 期该国价格与国外价格之比, Y_r 为第 t 期该国实际 GDP。(1)写出进口的价格弹性,它的符号是正还是负?

- (2)对两个回归参数进行显著性检验,已知显著性水平是 5%, $t_{0.025}$ (20) = 2.09; (4分)
- (3)计算 F 统计量, 并对模型的显著性进行检验, 已知显著性水平为 5%,

$$F_{0.05}(2,20) = 3.49 \, (6 \, \%)$$

(1)
$$e = \frac{\Delta m / m}{\Delta P / P} = \frac{dm}{dP} \cdot \frac{P}{m} = 0.8 \frac{P}{m}$$
 通过理论分析得符号为正。

(2) 3.7>2.09 所以第一个参数显著; 2.8>2.09 所以第二个系数显著;

(3)
$$F = \frac{R^2}{1 - R^2} \cdot \frac{20}{2} = 40$$
 40>3.49 所以模型总体显著成立。(2分)

1、某公司想决定在何处建造一个新的百货店,对已有的 36 个百货店的销售额作为其所处地理位置特征的函数进行回归分析,并且用该回归方程预测新百货店的不同位置的可能销售额。已知 $t_{0.025}$ (31) = 2.0395, Se 表示标准

 $\hat{Y}_i = 30 + 0.1 \times X_{1i} + 0.01 \times X_{2i} + 10.0 \times X_{3i} - 3.0 \times X_{4i}$ Se (0.02) (0.01) (1.0) (1.0) 其中 $Y_i = \hat{y}_i$ 个百货店的日均销售额(百美元);

 X_{ii} =第i个百货店前每小时通过的汽车数量;

 $X_{2i} = \hat{\mathbf{g}}_{i} \wedge \mathbf{h}$ 有货店所处区域内的平均收入;

 X_{3i} =第i个百货店内所有的桌子数量

 X_{4i} =第i个百货店所处地区竞争店面的数量

- (1) 各个变量前参数估计的符号是否与期望的符号一致? 简述你的理由。(4分)
- (2) 计算每个变量参数估计值的 t 统计量值(原假设为各偏斜率系数分别等于 0): (4分)
- (3) 在α =0.05 的显著性水平下,检验各偏斜率系数是否等于 0 的原假设。(4分)
- (4) 你将如何运用已估计的计量模型帮助公司进行决策? (4分)
- (1) 所有参数的估计符号符合理论预期。 因为汽车数量、平均收入和桌子数量都与百货店销售额具有正相关,前面系数符号也都大于 0; 而店面数量与销售额存在负相关作用,前面系数符号为负号。 (2)四个 t 统计量分别为: 0.1/0.02=5; 0.01/0.01=1;

10.0/1.0=10; -3.0/1.0=-3 (3) 四个参数当中,只有第二个参数不显著,其他都显著; (4)

把 36 个待选位置的解释变量值代入模型,店面销售额最大者将作为公司建造新百货店的地点

六、实验分析题 (共计 20分)

1、 利用回归参数的显著性检验(t 检验)简述 P-值的含义。

在回归系数的 t 检验中, 如果第 i 个偏斜率系数的 t 统计量是 t_{α} ,则 P-值可以表示为:

 $P-value = \Pr(|t| > t_{\vec{b}})$ 即 P-值是在 t 分布中, 绝对值大于统计量的概率。

- 2、下面是有关某地区 1978-1998 年国内生产总值与出口总额的 Eviews 分析结果, X 表示国内生产总值, Y 表示出口总额。
- (1) 先根据原始数据进行 OLS 估计, 得到如下的回归模型:

 $\hat{Y} = -1147.76 + 0.17 X$ D.W=0.6887 n=21 $R^2 = 0.921$ 已知在 5%的显著性水平下, $d_L = 1.22$ 和 $d_U = 1.42$,你认为模型存在一阶自相关吗?如果有,是正自相关还是负自相关?说明你的检验过程。(5分)

 $D.W < d_L$ 说明模型的随机干扰项存在一阶正自相关。需要适当的论述。

(2) 利用科克伦-奥克特迭代法估计得到如下的回归模型:

 $\hat{Y} = -1876.86 + 0.1986 X + [AR(1) = 0.7408]$ D.W=1.452 n=20 $R^2 = 0.952$ 已知在 5%的显著性水平下, $d_L = 1.2$ 和 $d_U = 1.41$,你认为模型此时存在一阶自相关吗?如果有,是正自相关还是负自相关?说明你的检验过程。

 $d_{v} < D.W < 4 - d_{v}$ 说明模型已经不存在一阶自相关; 需要适当的论述。

(3) 对数据进行双对数模型拟合,得到的双对数回归模型:

 $Ln\hat{Y} = -7.084 + 1.466 LnX$ D.W=1.14 n=21 $R^2 = 0.989$ 并对模型进行如下的检验 (滞后阶为 1),检验结果如下:

Obs*R-squared 3.471433 Prob. Chi-Square(1) 0.062437

请回答:从上述结果你能得到什么结论?已知显著性水平为5%。(5分)对 BG 检验结果我们看到:在5%的显著性水平下,双对数模型不存在一阶自相关。

湖南商学院课程考核试卷参考答案与评分标准

3田 ゼロ <i>大</i> フ ギケ	江里以汶兴 A	337	/\	2	
课程名称:	计量经济学 A	-	71:	3	

考核班级: 临班 0236、0239 班 考核学期: 2008-2009 第一学

期

一、单选题(每小题1分)

1、B2、C3、C4、B5、C6、C7、B8、D9、C10、A11、C12、A13、A14、B15、A16、A17、C18、B19、B20、D

- 二、名称解释 (每小题 4 分, 共计 12 分)
- 1、满足经典假设的线性回归模型,它的 OLS 估计量一定是在所有线性估计量当中,具有最小的方差,即 OLS 估计量是最佳线性无偏估计量(BLUE 估计量);(4分)
- 2、在如下的多元线性回归模型中:

$$Y_t = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \mu_t$$

如果解释变量之间不再是相互独立的,而是存在某种相关性,则认为该模型具有多重共线性;(2分)

如果存在

$$c_1X_{1i}+c_2X_{2i}+...+c_kX_{ki}=0$$
 $i=1,2,...,n$

其中: c_i 不全为 0,则称为解释变量间存在完全共线性 (perfect multicollinearity)。 (1 分) 如果存在

$$c_1X_{1i}+c_2X_{2i}+...+c_kX_{ki}+v_i=0$$
 $i=1,2,...,n$

其中 ci 不全为 0, vi 为随机误差项,则称为 近似共线性(approximate multicollinearity) 或交互相关(intercorrelated)。(1分)

- 3、GLS 估计是: 当不符合经典假设的线性回归模型,通过一定的变换得到一个新的符合经典假设的模型,然后再对新的符合经典假设的模型进行 OLS 估计,这就叫 GLS 估计法; (4分)
- 三、简答题(每小题 8 分, 共计 16 分)

第6页 共8页

1、回归系数的显著性检验是对回归系数进行是否等于 0 或等于某个常数的假设检验;
 (3分)而回归方程的显著性检验是指方程是否显著存在的假设检验;
 (3分)

在一元线性回归中,回归系数的显著性检验和回归方程的显著性检验是等价的;而 在多元线性回归中两者不同。(2分)

- 2、(1)模型应包含截距项: (1分)
 - (2) 模型中的解释变量是非随机的; (2分)
 - (3) 随机误差项必须是一阶自回归的生成机制; (2分)
 - (4) 模型的解释变量中不应包含有被解释变量的滞后值。(2分)
 - (5) 模型具有足够的样本容量; (1分)

四、计算题(本题满分 16 分)

(1)
$$e = \frac{\Delta m / m}{\Delta P / P} = \frac{dm}{dP} \cdot \frac{P}{m} = 0.8 \frac{P}{m}$$
 (4 分); 通过理论分析得符号为正。(2 分)

(2) 3.7>2.09 所以第一个参数显著; (2分) 2.8>2.09 所以第二个系数显著(2分);

(3)
$$F = \frac{R^2}{1 - R^2} \cdot \frac{20}{2} = 40$$
 (4 %);

40>3.49 所以模型总体显著成立。(2分)

五、计算与应用题(本题满分 16 分)

(1) 所有参数的估计符号符合理论预期。 (2分)

因为汽车数量、平均收入和桌子数量都与百货店销售额具有正相关,前面系数符号也都大于0;而店面数量与销售额存在负相关作用,前面系数符号为负号。 (2分)

- (2) 四个t 统计量分别为: 0.1/0.02=5; 0.01/0.01=1; 10.0/1.0=10; -3.0/1.0=-3
- (3) 四个参数当中,只有第二个参数不显著,其他都显著;(4分)
- (3) 把 36 个待选位置的解释变量值代入模型,店面销售额最大者将作为公司建造新百货店的地点。 (4分)

六、实验分析题(本题满分 20 分)

1、在回归系数的 t 检验中,如果第 i 个偏斜率系数的 t 统计量是 $t_{\hat{B}}$,则 P-值可以表

第7页 共8页

示为:

$$P-value = \Pr(|t| > t_{\hat{\beta}_i})$$

即 P-值是在 t 分布中, 绝对值大于统计量的概率。如果用显著性水平来说明 P-值也给满分。

- 2、(1) $D.W < d_L$ 说明模型的随机干扰项存在一阶正自相关。需要适当的论述。 (5分)
- (3) 对 BG 检验结果我们看到: 在 5%的显著性水平下, 双对数模型不存在一阶自相关。

需要适当的论述。(5分)

