Conceitos Básicos de Sistemas e Modelos

Prof.: Marcos Portnoi

mportnoi@ieee.org

http://locksmith.surf.to

O que é "Desempenho"?

Webster's?

■ The manner in which a mechanism performs.

Aurélio:

Mil. Conjunto de características ou de possibilidades de atuação de uma aeronave, tais como velocidade de cruzeiro, velocidade de pouso, capacidade de carga, autonomia de vôo, etc.

Medidas de desempenho de um automóvel

- Velocidade máxima
- Aceleração (tempo para ir de 0 a 100 km/h)
- Espaço de frenagem a uma dada velocidade

Medidas de desempenho de sistemas computacionais

- Vazão/Taxa (Throughput)
 - Taxa na qual os pedidos são atendidos (servidos) pelo sistema.
- Utilização:
 - Fração do tempo em que o recurso permanece ocupado atendendo os pedidos dos usuários.
- Tempo de resposta:
 - tempo decorrido entre o pedido e o início/conclusão da realização do serviço.

Medidas de desempenho

- Velocidade
 - tempo de resposta, vazão e utilização
- Confiabilidade
 - Probabilidade de erro
 - Intervalo entre erros
- Disponibilidade
 - Duração da falha
 - Intervalo entre falhas

Objetivo:

- Conduzir processos de dimensionamento e/ou otimização de Sistemas, estudando seu desempenho.
- Exemplos de Sistemas:
 - Sistema de Distribuição de Serviço (Energia, Suprimentos, etc.);
 - Sistema de Central de Comutação (telefonia);
 - Sistema Computacional;
 - Sistema de Bancos;
 - Sistema de Transportes;
 - Sistema de Call-Center;
 - . . .

- O que se deseja:
 - Onde instalar o sistema: local de instalação (dimensionamento físico)
 - Como é a demanda para o sistema? Como ela se distribui no tempo?
 - Como dimensionar a quantidade de recursos disponíveis para os usuários do sistema?
 - Se o sistema estiver subdimensionado, qual será o nível de transtorno para os usuários?
- Obtidas as informações através da ADS, como redimensionar o sistema?

Engenharia: Solução de Problemas

Sistema

Problema

Máquina Circuito

Como aplicar as técnicas de ADS em um Sistema?

- Estudar / Conhecer o Sistema
- Modelar o Sistema conforme as Medidas de Desempenho Desejadas para obtenção
- Resolver o Modelo do Sistema
 - Métodos Analíticos
 - Medição
 - Simulação
- Obter os resultados da resolução do Modelo do Sistema (Medidas de Desempenho Desejadas)
- Analisar estes resultados
- Dimensionar / Otimizar o Sistema

Modelagem do Sistema

- Mapeia as características do sistema em um modelo tratável matematicamente
- Problema:
 - A modelagem perfeita de um sistema implica na Caracterização de um Sistema a partir de um número infinito de Variáveis

Modelagem do Sistema

Solução:

- Estabelece-se as **Medidas de Desempenho** desejadas
- Define-se um conjunto limitado de Variáveis de Caracterização do Sistema
- Ex.: para estudar desempenho de um caixa automático de banco, o valor do saldo bancário dos usuários não é necessariamente relevante

■ Tipos de Sistema:

- Sistemas Contínuos
- Sistemas Discretos Sistemas de Redes de Filas.

Técnicas de Avaliação

- Métodos Analíticos
 - Desenvolvimento algébrico
- Prototipação e Teste (medição)
- Métodos numéricos
 - Simulação

Técnicas de Avaliação

Técnica	Vantagens	Desvantagens
Método Analítico	Custo baixo	•Complexidade
	•Rápido	Pouca precisão
Prototipação	 Resultados reais 	Alto custo
		•Prazo longo
Simulação	 Bons resultados 	•Poder
	•Flexibilidade	computacional
	Custo baixo	Dependente da
		qualidade do
		modelo

Modelagem Analítica

- Teoria das Filas
- Filas associadas a recursos
- Caracterização:
 - Processo de chegada
 - Processo de atendimento
 - Número de servidores
 - Tamanho máximo da fila
 - Política de atendimento da fila

Modelagem Analítica

- É uma técnica aproximada
- Aproxima a realidade por um modelo
- Se o modelo for simples e a aproximação boa, é possível avaliar facilmente compromissos entre alternativas

Medição

- Para efetuarmos medições (como as Benchmarks) é preciso termos à disposição ao menos um protótipo do sistema
- Normalmente é difícil comparar alternativas
 - (há que se mudar o protótipo!)

Simulação

- Técnica útil para a análise de desempenho de sistemas computacionais e vários outros
- Especialmente:
 - se o sistema não estiver disponível
 - para prever o desempenho de diversas alternativas
 - facilidade de efetuar comparações para uma maior variedade de cargas e de ambientes

Simulação

- Simulação de eventos discretos
- Cada evento (ex.: chegada de usuário, término de serviço, etc.) é tratado quando do instante de sua ocorrência.
- Simula o comportamento de um sistema real
- Em geral, é possível construir um modelo muito mais próximo da realidade do que com a Teoria das Filas