Group Meeting

•••

December (2021)

Remember

Remember

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

Jason Wei^{1,2} Kai Zou³

¹Protago Labs Research, Tysons Corner, Virginia, USA

²Department of Computer Science, Dartmouth College
³Department of Mathematics and Statistics, Georgetown University

jason.20@dartmouth.edu kz56@georgetown.edu

Remember

- Create valid texts;
- Create texts maintaining the label;
- Create texts with varying sizes;
- Multilingual / language agnostic;
- Execution in devices with low computing power.

Artigo

Artigo

Autores: Lucas Z. Ladeira, Frances Santos, Lucas Cléopas, Pieter Buteneers, and Leandro Villas

Artigo

NEO-NDA: Neo Natural Language Data Augmentation

NEO-NDA: Neo Natural Language Data Augmentation

Data Augmentation + Downsampling

NEO-NDA: Neo Natural Language Data Augmentation

Data Augmentation

- Random Insertion: selects a random word and inserts its synonym in a random position of the sentence;
- Random Switch: selects randomly two words and switch their places;
- Random Deletion: delete a random word of the sentence;
- Synonyms Switch: selects randomly one word and switch it for a synonym;
- Translate Back: translate the sentence to another language and back.

NEO-NDA: Neo Natural Language Data Augmentation

Downsampling

- Uses LaBSE (Language-Agnostic BERT Sentence Embedding) to encode sentences to high dimensional vectors;
- Calculates the similarity using cosine similarity;
- Creates a graph with the similarity;
- Remove edges between two nodes if they are not too similar;
- Nodes are selected according to their degree.

NEO-NDA: Neo Natural Language Data Augmentation

Downsampling

Artigo - Related Work

TABLE I RELATED WORK SUMMARY.

Work	Rule-based	Model-based	Multilingual	Distinct Sentence Sizes	Multiple Transformations
Wei et al. [1]	/	×	×	/	✓
Wei et al. [9]	1	X	X	/	1
Li et al. [2]	X	/	/	/	×
Kobayashi et al. [4]	×	/	X	×	×
Yang et al. [10]	×	/	×	×	×
Ciolino et al. [12]	×	✓.	1	/	×
Giridhara et al. [11]	/	1	×	X	1
NEO-NDA	/	/	/	/	/

Artigo - Experiments

Embeddings

- Distilled Bert trained for multi-language;
- LaBSE;
- XLM.

Models

- Logistic Regression;
- Random Forest;
- Ada Boost.

TABLE IV
DATASETS USED IN OUR EVALUATION.

Name	Classes	Distribution	Language
		1286	English
Agnews [18]	4	1270	
Agnews [10]		1204	
		1240	
		801	English
AppleSentiment [19]	3	143	
		686	
		889	English
	5	1263	
CoronaNLPData [20]		1340	
		738	
		770	
		201	English
		272	
		33	
		93	
		22	
		67	
EmotionData [15]	13	106	
		981	
		178	
		93	
		1558	
		280	
		1116	
		1041	Portuguese
		296	
PtSentimentData [21]	5	586	
		1220	
		1857	

	TABLE V	
EMBEDDING AND	ML ALGORITHMS	COMPARISON

Embedding	ML Algorithm	F1-Score
	AdaBoost	0.475
Distil Bert	Logistic Regression	0.581
	Random Forest	0.688
	AdaBoost	0.463
Labse	Logistic Regression	0.586
	Random Forest	0.685
	AdaBoost	0.488
XLM	Logistic Regression	0.648
	Random Forest	0.718

Thank you!

