```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Perform the data wrangling/Data analysis for the given dataset housing.csv

```
In [3]:
           df = pd.read csv('housing.csv')
           df.drop(['Unnamed: 0'],axis=1,inplace=True)
           df.head()
Out[3]:
                crim
                       zn indus chas
                                                              dis rad
                                                                                      black Istat medv
                                                      age
                                                                        tax ptratio
                                         nox
                                                 rm
            0.00632
                                                      65.2 4.0900
                      18.0
                             2.31
                                        0.538 6.575
                                                                        296
                                                                                     396.90
                                                                                              4.98
                                                                                                     24.0
                                                                     1
                                                                                15.3
            0.02731
                       0.0
                             7.07
                                        0.469
                                               6.421
                                                      78.9
                                                           4.9671
                                                                     2
                                                                        242
                                                                                17.8
                                                                                     396.90
                                                                                              9.14
                                                                                                     21.6
            0.02729
                                              7.185
                       0.0
                            7.07
                                        0.469
                                                      61.1
                                                           4.9671
                                                                     2
                                                                        242
                                                                                17.8 392.83
                                                                                              4.03
                                                                                                     34.7
             0.03237
                       0.0
                             2.18
                                        0.458
                                              6.998
                                                      45.8 6.0622
                                                                     3
                                                                        222
                                                                                18.7
                                                                                     394.63
                                                                                              2.94
                                                                                                     33.4
                                                                                              5.33
             0.06905
                       0.0
                             2.18
                                        0.458 7.147 54.2 6.0622
                                                                     3 222
                                                                                18.7 396.90
                                                                                                     36.2
           df.isnull().any()
```

```
In [20]: df.isnull().any()
Out[20]: crim False
```

False zn indus False chas False nox False False rmFalse age dis False rad False False tax ptratio False black False lstat False medv False dtype: bool

This dataframe does not contains any null vlue

Apply basic statistics such as central value, variability and distribution. Visualize them using Box plots

```
In [21]:
            df.describe()
Out[21]:
                         crim
                                       zn
                                                indus
                                                              chas
                                                                           nox
                                                                                        rm
                                                                                                   age
                                                                                                                dis
                   506.000000
                               506.000000
                                           506.000000
                                                        506.000000
                                                                    506.000000
                                                                                506.000000
                                                                                             506.000000
                                                                                                         506.000000
                     3.613524
                                11.363636
                                            11.136779
                                                          0.069170
                                                                      0.554695
                                                                                  6.284634
                                                                                             68.574901
                                                                                                           3.795043
           mean
```

		crim	zn	indus	chas	nox	rm	age	dis			
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710			
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600			
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175			
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450			
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425			
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500			
	4											
	Mean of each columns											
In [4]:	df.mean()											
Out[4]:	: crim 3.613524 zn 11.363636 indus 11.136779 chas 0.069170 nox 0.554695 rm 6.284634 age 68.574901 dis 3.795043 rad 9.549407 tax 408.237154 ptratio 18.455534 black 356.674032 lstat 12.653063 medv 22.532806 dtype: float64 Median for each columns											
In [5]:	df.med	df.median()										
Out[5]:		0.0 9.6 0.5 6.2 77.5 3.2 5.0 330.0 0 19.0 391.4 11.3 21.2 float64	5000	umn								
In [7]:	df.st	df.std()										
Out[7]:	crim	8.6	01545									

```
23.322453
zn
indus
             6.860353
             0.253994
chas
nox
             0.115878
             0.702617
rm
            28.148861
age
             2.105710
dis
rad
             8.707259
           168.537116
tax
             2.164946
ptratio
            91.294864
black
lstat
             7.141062
medv
             9.197104
dtype: float64
```

```
In [9]:
    sns.boxplot(x=df['crim'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('Crime',fontsize=20)
```

Out[9]: Text(0.5, 0, 'Crime')


```
In [10]:
    sns.boxplot(x=df['zn'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('Zone',fontsize=20)
```

Out[10]: Text(0.5, 0, 'Zone')


```
In [11]:
    sns.boxplot(x=df['indus'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('indus(Proportion of non-retail business acres per town)',fontsize=20)
```

Out[11]: Text(0.5, 0, 'indus(Proportion of non-retail business acres per town)')


```
In [12]:
    sns.boxplot(x=df['chas'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('ZN(proportion of residential land zoned for lots over 25,000 sq.ft)',fontsi
```

Out[12]: Text(0.5, 0, 'ZN(proportion of residential land zoned for lots over 25,000 sq.ft)')

```
ZN(proportion of residential land zoned for lots over 25,000 sq.ft)
```

```
In [14]:
    sns.boxplot(x=df['chas'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('chas(Charles River dummy variable (1 if tract bounds river; 0 otherwise))',
```

Out[14]: Text(0.5, 0, 'chas(Charles River dummy variable (1 if tract bounds river; 0 otherwis e))')

```
chas(Charles River dummy variable (1 if tract bounds river; 0 otherwise))
```

```
In [15]:
    sns.boxplot(x=df['nox'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('nox(nitric oxides concentration)',fontsize=20)
```

```
Out[15]: Text(0.5, 0, 'nox(nitric oxides concentration)')
```



```
sns.boxplot(x=df['rm'])
sns.set(rc = {'figure.figsize':(15,8)})
plt.xlabel('rm(average number of rooms per dwelling)',fontsize=20)
```

Out[49]: Text(0.5, 0, 'rm(average number of rooms per dwelling)')


```
In [50]:
    sns.boxplot(x=df['age'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('age(proportion of owner-occupied units built prior to 1940)',fontsize=20)
```

Out[50]: Text(0.5, 0, 'age(proportion of owner-occupied units built prior to 1940)')


```
In [51]:
    sns.boxplot(x=df['dis'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('dis(weighted distances to five Boston employment centres)',fontsize=20)
```

Out[51]: Text(0.5, 0, 'dis(weighted distances to five Boston employment centres)')

In [52]:
 sns.boxplot(x=df['rad'])
 sns.set(rc = {'figure.figsize':(15,8)})
 plt.xlabel('rad(index of accessibility to radial highways)',fontsize=20)

Out[52]: Text(0.5, 0, 'rad(index of accessibility to radial highways)')


```
sns.boxplot(x=df['tax'])
sns.set(rc = {'figure.figsize':(15,8)})
plt.xlabel('tax(full-value property-tax rate per $10,000)',fontsize=20)
```

Out[53]: Text(0.5, 0, 'tax(full-value property-tax rate per \$10,000)')


```
In [54]:
    sns.boxplot(x=df['ptratio'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('dis(pupil-teacher ratio by town)',fontsize=20)
```

Out[54]: Text(0.5, 0, 'dis(pupil-teacher ratio by town)')


```
In [56]:
    sns.boxplot(x=df['dis'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('blck(B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town',fo
```

Out[56]: Text(0.5, 0, 'blck(B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town')

blck(B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

```
In [57]:
    sns.boxplot(x=df['lstat'])
    sns.set(rc = {'figure.figsize':(15,8)})
    plt.xlabel('lstat(% lower status of the population)',fontsize=20)
```

Out[57]: Text(0.5, 0, 'lstat(% lower status of the population)')


```
sns.boxplot(x=df['dis'])
sns.set(rc = {'figure.figsize':(15,8)})
plt.xlabel('mdev(Median value of owner-occupied homes in $1000)',fontsize=20)
```

Out[60]: Text(0.5, 0, 'mdev(Median value of owner-occupied homes in \$1000)')

Check for relationships between variables and visualize them using Heatmap

```
In [61]: df.corr()
```

	crim	zn	indus	chas	nox	rm	age	dis	rad
crim	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505
zn	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948
indus	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129
chas	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368
nox	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441
rm	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847
age	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022
dis	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588
rad	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000
tax	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228
ptratio	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741
black	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413
Istat	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676
medv	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626

Out[62]: <AxesSubplot:>

Out[61]:

In []: