CANOpen 系列教程 02

理解 CAN 总线协议

作者: strongerHuang

申明:该文档仅供个人学习使用

归类	CANOpen 系列教程		
标签	CAN、 CANOpen、 CanFestival		
网站	http://www.strongerhuang.com		

版权所有:禁止商用

Copyright @2018 strongerHuang

目 录

_`	写在前面	3
二、	CAN 网络	3
	2. 1 MCU 应用程序	4
三、	ISO 标准化的 CAN 协议	4
	3. 1 ISO/OSI 基本参照模型 3. 2 CAN 在 OSI 模型中的定义	
四、	概述 CAN 总线协议	6
五、	4.1 总线信号	7 8 8
六、	最后	9

一、写在前面

上一篇文章讲述了 CAN 和 CANOpen,相信大家 CAN 和 CANOpen 有一定理解了。本文说的 CAN 即是一种总线,也是一种协议。因此,我们常听见 CAN 总线,也常听见 CAN 协议。

CAN 协议和 CANOpen 协议是两套不同的协议。从软硬件层次来划分,CAN 协议属于硬件协议,而 CANOpen 属于软件协议。

本篇文章先概述一下 CAN 网络, 让大家对 CAN 总线协议有一个全局的概念, 再到底层的 CAN 总线协议知识。

本文章收录于【 $\underline{CANOpen \, \underline{s} \, \underline{N} \, \underline{\delta} \, \underline{M}}$ 】,在我的博客分类 " $\underline{CANOpen \, \underline{s} \, \underline{N}}$ 我 也能查找到。

为了方便大家平时公交、地铁、外出办事也能用手机随时随地查看该教程,该系列教程也同步更新于微信公众号【EmbeddedDevelop】,关注微信公众号回复【CANOpen 系列教程】即可查看。

二、CAN 网络

CAN 网络可以理解为多台 CAN 设备连接在**同一条 CAN 总线**上组合成的网络, **其中的 CAN 设备我们称之为节点**。CAN 网络拓扑结构如下图:

如上图,一个 CAN 节点主要包含三类: MCU 应用程序、CAN 控制器、CAN 收发器。

2.1 MCU 应用程序

MCU 应用程序我将其分为三块: 业务逻辑代码、协议层代码、底层驱动代码。

A. 业务逻辑代码: 是根据项目需求而定,也很好理解。比如我读取一个传感器数据,并对其做出相应逻辑处理。

- B. 协议层代码: 比如后续要讲述的 CANOpen。
- C. 底层驱动代码: 配置 CAN 总线相应参数、控制收发的代码。

2.2 **CAN** 控制器

CAN 控制器内部结构还是挺复杂的,一般现在 CAN 控制器都是与处理器集成在一起。

其实对于编程的人来说,无非也就是包含一些控制、状态、配置等寄存器。

比如我们看到有些 STM32 芯片带有 CAN, 也就是说 CAN 控制器已经集成在 STM32 芯片中了, 我们只需要编程操作其中的寄存器即可。

2.3 CAN 收发器

CAN 收发器:将 CAN 收发引脚(CAN_TX 和 CAN_RX)的 **TTL 信号转换成 CAN 总线的电平信号**。

PS: 你可以把 CAN 总线通信认为是 UART 通过 485 进行通信: CAN 控制器就如 UART 的控制器,而 CAN 收发器就如 485 转换芯片。

三、ISO 标准化的 CAN 协议

写这一章节的主要目的就是想让大家了解 CAN 总线位于 OSI 所在层次。

3.1 **ISO/OSI** 基本参照模型

	100/00 甘土名叨井町	各层定义的主要项目					
ISO/OSI 基本参照模型		日法定入的工安项目					
	7层:应用层	由实际应用程序提供可利用的服务。					
	6 层:表示层	进行数据表现形式的转换。					
		如:文字设定、数据压缩、加密等的控制					
软件控制	5层:会话层	为建立会话式的通信,控制数据正确地接收和发送。					
	4层:传输层	控制数据传输的顺序、传送错误的恢复等,保证通信的品质。					
		如:错误修正、再传输控制。					
	3层: 网络层	进行数据传送的路由选择或中继。					
		如: 单元间的数据交换、地址管理。					
	2层:数据链路层	将物理层收到的信号(位序列)组成有意义的数据,提供传输错误控制					
		等数据传输控制流程。					
		如:访问的方法、数据的形式。					
噩		通信方式、连接控制方式、同步方式、检错方式。					
硬件控制		应答方式、通信方式、包(帧)的构成。					
		位的调制方式(包括位时序条件)。					
	1层:物理层	规定了通信时使用的电缆、连接器等的媒体、电气信号规格等,以实现					
		设备间的信号传送。					
		如:信号电平、收发器、电缆、连接器等的形态。					

【注】

ISO: International Standardization Organization 国际标准化组织;

OSI: Open Systems Interconnection 开放式系统间互联;

3.2 **CAN** 在 **OSI** 模型中的定义

OSI基本参照模型		在各层中CAN定义事项			
7.应用层	层	定义事项	功能		
6.表示层	4层	再发送控制	永久再尝试		
5.会话层 4.传	2层 (LLC)	接收消息的选择 (可接收消息的过滤)	可点到点连接、广播、组播。		
<u>输层</u> 3.网络层		过载通知	通知接收准备尚未完成		
2.数据 LLC*1 链路层 MAC*2		错误恢复功能	再次发送		
1.物 理层	2层 (MAC)	消息的帧化	有数据帧、遥控帧、错误帧、 过载帧4种帧类型。		
//\		连接控制方式	竞争方式(支持多点传送)		
//		数据冲突时的仲裁	根据仲裁,优先级高的ID可继续 被发送		
//		故障扩散抑制功能	自动判别暂时错误和持续错误 ,排除故障节点。		
//		错误通知	CRC错误、填充位错误、位错 误、ACK错误、格式错误。		
//		错误检测	所有单元都可随时检测错误		
//		应答方式	ACK、NACK两种		
	V	通信方式	半双工通信		
\	1层	位编码方式	NRZ方式编码,6个位的插入 填充位。		
		位时序	位时序、位的采样数 (用户选择)		
		同步方式	根据同步段(SS)实现同步(并 具有再同步功能)		

【注】

LLC: Logical Link Control 逻辑链路控制; MAC: Medium Access Control 媒介访问控制;

从上图可以知道 CAN 总线底层硬件的内容(CAN 控制器、收发器)主要位于 OSI 的第 1 层和第 2 层。

四、概述 CAN 总线协议

CAN 总线协议: 就是为了保证通信(收发)数据在 CAN 总线上能稳定传输而制订的一套协议。

CAN 总线协议的内容很多,为方便初学者理解,本文先大概描述一下 CAN 总线协议,后续文章详细讲述 CAN 总线协议的内容。

个人网站:<u>http://www.strongerhuang.com</u>

4.1 总线信号

CAN 总线为「**两线**」「**差分」信号**,用隐形代表逻辑 1,显性代表逻辑 0。如下图:

4.2 优先级

假如某一时刻,一个设备(节点)往总线发 0,一个设备往总线发 1。那么总线会呈现什么现象?

答案:最后总线呈现为显性,也就是0。

4.3 位时序

位时序逻辑将监视串行总线,执行采样并调整采样点,在调整采样点时,需要在起始位边沿进行同步并后续的边沿进行再同步。

简单的说就是对一个bit 位分几段进行采样,目的就是提高数据传输稳定性。在 STM32 中底层驱动代码就需要进行位时序编程,在 STM32 参考手册中也会发现如下位时序图:

4.4 帧的种类和格式

帧的种类有多种:

数据帧:用于发送单元向接收单元传送数据的帧。

遥控帧:用于接收单元向具有相同 ID 的发送单元请求数据的帧。

错误帧:用于当检测出错误时向其它单元通知错误的帧。 **过载帧**:用于接收单元通知其尚未做好接收准备的帧。

帧间隔:用于将数据帧及遥控帧与前面的帧分离开来的帧。

数据帧和遥控帧有标准格式和扩展格式两种格式。标准格式有 11 个位的标识符 ID,扩展格式有 29 个位的 ID。

4.5 位填充

位填充是为防止突发错误而设定的功能。**当同样的电平持续 5 位时则添加**一个位的反型数据。如下图:

4.6 错误的种类

错误的种类	错误的内容	错误的检测帧(段)	检测单元
位错误	比较输出电平和总线电平(不含填充	• 数据帧(SOF~EOF)	发送单元
	位),当两电平不一样时所检测到的	● 遥控帧(SOF~EOF)	接收单元
	错误。	错误帧	
		过载帧	
填充错误	在需要位填充的段内,连续检测到 6	• 数据帧(SOF~CRC 顺序)	发送单元
	位相同的电平时所检测到的错误。	遥控帧(SOF~CRC 顺序)	接收单元
CRC 错误	从接收到的数据计算出的 CRC 结果	• 数据帧(CRC 顺序)	接收单元
	与接收到的 CRC 顺序不同时所检测	• 遥控帧(CRC 顺序)	
	到的错误。		
格式错误	检测出与固定格式的位段相反的格式	• 数据帧	接收单元
	时所检测到的错误。	(CRC 界定符、ACK 界定符、	
		EOF)	
		• 遥控帧	
		(CRC 界定符、ACK 界定符、	
		EOF)	
		• 错误界定符	
	(0)	• 过载界定符	
ACK 错误	发送单元在ACK槽(ACK Slot)中检测	 数据帧(ACK 槽) 	发送单元
	出隐性电平时所检测到的错误(ACK	遥控帧(ACK 槽)	
	没被传送过来时所检测到的错误)。	0	

CAN 总线协议内容很多,初学者先了解这些,后面文章具体到每一个点上,相信大家就会更明白其中的含义。

五、说明

- 1.该文档部分文字来自网络,仅供个人学习使用,版权所有,禁止商用。
- 2. 本文由我一个人编辑并整理, 难免存在一些错误。
- 3.本教程收录于微信公众号「嵌入式专栏」,关注微信公众号回复【CANOpen 系列教程】即可查看全系列教程。

六、最后

我的博客: http://www.strongerhuang.com

我的 GitHub: https://github.com/EmbeddedDevelop

我的微信公众号(ID: strongerHuang)还在分享 STM8、STM32、Keil、IAR、FreeRTOS、UCOS、RT-Thread、CANOpen、Modbus...等更多精彩内容,如果想查看更多内容,可以关注我的微信公众号。

