TR-110-01-104

基於集成學習方法之電力輔助市場 調頻備轉交易量預測建模

B10701008 洪 瑋

B10801007 簡加雯

B10801019 黃湘宜

B10801020 李 諾

日爺 CONTENTS

Part O1 動機與目的

研究動機

2021 四大公投

包含兩項能源相關議題

- 核四是否重啟
- 第三天然氣接收站是否遷址

詿

台電電力交易平台

- 微電網輔助服務
- 電力競標補足供電的缺口
- 提升供電穩定度

- 停電是因為供電不穩而非不足
- 區域智慧型電網可減少長程輸配電的風險及耗損

調頻備轉 (regulation reserve)

- 目前最多人參與的項目
- 修正電力系統頻率偏差
- 減緩系統頻率的變動幅度
- 因應再生能源高變動性

研究目的

提高電力供給, 以實現平穩供電的目標

透過預測市場的電力供給量,探討供給不足的時段

吸引供電能力相對有限的民營廠商, 針對電力較緊缺的時段進行投標

研究貢獻

考量陽光與風力等氣候 因子,以及季節變化、 工作日等時間因子

以交易量多寡分為低中高 三個區間,提供民間業者 價格參考指標,可以靈活 調整進入輔助市場的時機 與電力容量

透過整合時間序列與類神 經網路之模型預測電力輔 助市場的交易與供給量

建議台電公司以交易量與 價格成正相關的原則來做 動態定價,以利供電廠商 決定最佳投標價格與時間, 促成更高的社會效益。

Part 02 資料處理

模型決定

2018

根據李宜馨、陳彥銘與李明峯研究台灣地區之短期區域電力負載,影響負載的主要因素包括氣候、個別小時的變化以及特殊日或事件

2008

Makridakis et al. 在舉辦了許多預測模型的競賽後,發現最精準的預測方法多結合不同的模式,且混合統計與機器學習模型往往最精確,指出集成學習的優勢

2009

葉怡成、楊耀華與張萬鈞提出結合ARIMA與倒傳遞網路優點的ARIMA-BPN網路,較其他複合模式簡單,也避免了過度適配的問題

根據盧展南與許元禹針對電力系統短期負載預測之研究,台灣電力系統在不同季節亦會有不同的用電習慣及負載特性,因此我們加入了季節變數,使用結合SARIMAX與BPN的混合模型,以預測市場電力交易量

研究架構

收集資料

初步數據整理

資料來源:

- 台電電力交易平台、
- 農業氣象觀測網監測系統

收集期間:

- 2021/11/1-2022/2/28
- 共 2880 筆資料

	count	mean	std	25%	50%	75%
國營交易量	2880	193.332569	138.063247	80	134	285
民營交易量	2880	14.433507	1.059340	14	14	15
總交易量	2880	207.766076	138.348636	94	150.6	300.8
價格	2880	594.712847	12.446056	595	596	600
風速	2880	2.711875	1.762875	1.3	2.5	3.9
太陽日照時數	2880	0.338299	0.453103	0	0	1
魚溫	2880	18.35257	3.837404	15.6	17.8	20.8
特殊日	2880	0.14965	0.356793	0	0	1

圖表化呈現資料 - 交易量

● 民間企業供給量波動

● 國營企業交易量

圖表化呈現資料 - 平日與假日

圖表化呈現資料 - 月份趨勢

圖 12 2021年11月資料趨勢

圖 14 2022 年 1 月資料趨勢

圖 15 2022 年 2 月資料趨勢

資料預處理

- 填補遺漏值:填補中位數
- 分類數據之轉換:使用獨熱編碼 (one-hot encoding)技術,將名目特徵中的值轉換為新的虛擬特徵
- · 特徵處理: 採用標準化的模式,將變數壓縮在[0,1]之間

Part 03 方法與結果

研究方法與程序

使用SARIMAX 模型 建立時間序列模型

BPN

將誤差作為變數 加入BPN模型

SARIMAX -BPN模型

結合 SARIMAX 模型與 BPN 模型的預測模型

建立SARIMAX模型:挑選顯著變數

● 刪除表8中P值 > 0.05的變數(太陽日照時數)後再次運算之P值

	coef	P> z
小時	-5.9831	0.000
平假日	-43.8785	0.000
特殊日	44.8830	0.000

建立 SARIMAX 模型

One-step-ahead forecast預測結果與原始數據之比對圖

分類預測項目

● 基於第一四分位數和第三四分位數分割之總交易量資料

交易總量₽	編號↩
100 以下(第一四分位數)。	0.43
100 到 300~	1.0
300 以上(第三四分位數)。	2.

訓練數據 - BPN

● 訓練參數篩選

n_hidden.	12 0	eta₽	accuracy- train.	accuracy- valid₄	accuracy.
30₽	0.01	0.001₽	70.4₽	68.12₽	60.97₽
30₽	0.01	0.0005	67.2₽	65.62₽	61.94₽
30₽	0.1	0.0005	65.85₽	64.38₽	62.78₽
30₽	0.01	0.0001	61.95₽	63.75₽	62.36₽
20 0	0.01	0.0001	61.6₽	63.75₽	62.22

建立 BPN 模型:將交易量以100、300為分界,分割成三區塊

集成學習:建立 SARIMAX-BPN 模型

● SARIMAX-BPN模型的準確率圖

Part 04 結論

管理意涵

聚集經濟

- 以通過台電電力交易平台 合格交易者的用戶群代表, 集結更多零散業者
- 集合上述的發電機組和儲 能設備,形成新電力生態, 提供電力輔助服務
- 將現階段電力輔助市場擴展成為上中下游、一對多的合作關係,讓更多業者進入輔助市場,更有效利用閒置電力

0

將交易量劃分三種競標價格上限

- 在需求少時降低競標價格上限
- 需求高時反之
- 彈性選擇時段,降低進入門檻
- 提供更合理的誘因機制

可挑時段參與市場

- 中小企業或未來想要參與市場的家庭可以參考此預測模型
- 在缺電時以較佳的價格賣給台電,而其他時候自用

研究限制與建議

雖以日前輔助市場之數 據進行預測,但該數據 僅為預測數值,傳輸當 天會再做調整

特殊日的定義等具主觀性,容易出現差異

作為變數的天氣因子僅以 大致範圍取得,建議未來 研究可根據發電廠所在地 設定權重以計算更合宜的 天氣因素變數 若能提高價格誘因,鼓勵
更多民間業者投入此新興市場,將更能達到最終穩定供電之目的

Thank You For Listening