CS772: Research Project Zero Shot Unlearning

Ashutosh Kumar - 210221 Krish Sharma - 210530 Labajyoti Das - 210552 Shubham Patel - 210709 Siddharth Kalra - 211032

April 24, 2024

Problem Statement

- Survey Paper
- Machine Unlearning
 - Model M, Data D
 - Request:
 - Forget Data $D_f \subset D$
 - Retain Data $D_r = D D_f$

Problem Statement

- Survey Paper
- Machine Unlearning
 - Model M, Data D
 - Request:
 - Forget Data $D_f \subset D$
 - Retain Data $D_r = D D_f$
 - \bullet Gold / Retrained Model: M^*
 - Unlearned Model: M_u
 - Aim: $M_u(x) \approx M^*(x)$

Problem Statement

- Survey Paper
- Machine Unlearning
 - Model M, Data D
 - Request:
 - Forget Data $D_f \subset D$
 - Retain Data $D_r = D D_f$
 - \bullet Gold / Retrained Model: M^*
 - Unlearned Model: M_u
 - Aim: $M_u(x) \approx M^*(x)$
- Zero-Shot Machine Unlearning
 - No Access to D_f and D_r

Seed Paper

- Zero-Shot Machine Unlearning
- Introduces the novel problem
- Introduces a new metric Anamnesis Index

Seed Paper

- Zero-Shot Machine Unlearning
- Introduces the novel problem
- Introduces a new metric Anamnesis Index
- Proposes two approaches restricted setting of classification
- Setting
 - Set of Forget C_f and Retain Classes C_r

Seed Paper

- Zero-Shot Machine Unlearning
- Introduces the novel problem
- Introduces a new metric Anamnesis Index
- Proposes two approaches restricted setting of classification
- Setting
 - Set of Forget C_f and Retain Classes C_r
- Approach
 - Error Minimization-Maximization Noise
 - ② Gated Knowledge Transfer

Error Minimization-Maximization Noise

- Inspiration: Fast Yet Effective Machine Unlearning
- Anti-Samples N_f learnt by maximising loss
- Data representatives N_r learnt by minimising loss
- Updates the original model using noise

Gated Knowledge Transfer

- Inspiration: Zero-shot KT via Adversarial Belief Matching
- Knowledge Distillation to train the student from teacher

Gated Knowledge Transfer

- Inspiration: Zero-shot KT via Adversarial Belief Matching
- Knowledge Distillation to train the student from teacher
- Generator: Max $D_{KL}(T(x_g)||S(x_g)) = \sum_{i=1}^{|C|} t_p^{(i)} \log(t_p^{(i)}/s_p^{(i)})$
- Filter images belonging to C_f
- Student Immitate Teacher's predictions
- Attention Mimic Inner Layers Minimise KL

Improvements and Extensions

- Ideas
 - Extending to Regression
 - Positive Samples instead of Anti-Samples
 - Entropy criteria on the filter
 - Better Alternatives for generators

Improvements and Extensions

- Ideas
 - Extending to Regression
 - Positive Samples instead of Anti-Samples
 - Entropy criteria on the filter
 - Better Alternatives for generators
- Entropy of predictions
 - Reject if $S(t_p) > \epsilon$
 - Poorer Retain Accuracy
 - Faster Retain Accuracy Restoration
 - Carrying out experimentations

Deep Inversion

- Difference in M^* and M_u
 - Non-zero probability for C_f
 - ullet Due to Attention implicitly learn for C_f
 - Removing Attention: Impacts Performance
 - Reason: Poor Generated Images

Deep Inversion

- Difference in M^* and M_u
 - Non-zero probability for C_f
 - Due to Attention implicitly learn for C_f
 - Removing Attention: Impacts Performance
 - Reason: Poor Generated Images
- Inspiration: Deep Inversion
 - Idea: To minimise loss on x along with regularisation and matching lower-layer features
 - To determine when to halt in GKT
 - Much Better Images

MNIST Numbers Dataset Images of Digits from 0-9

MNIST Numbers Dataset Images of Digits from 0-9

• GKT*

MNIST Numbers Dataset Images of Digits from 0-9

• GKT*

• GKT (with entropy criterion)*

MNIST Numbers Dataset Images of Digits from 0-9

• GKT*

• GKT (with entropy criterion)*

• Deep Inversion

^{*} Images not in order from 0-9. Images generated by the generator before forget accuracy begin to rise

Experimental Results

MNIST Numbers Dataset - AllCNN Model

Train: 60,000, Test: 10,000 Retain Accuracy on Test Set:

• Retrain Model: 99.25 %

• GKT: 97.12 %

• M-M: 10.57 %

Experimental Results

MNIST Numbers Dataset - AllCNN Model

Train: 60,000, Test: 10,000 Retain Accuracy on Test Set:

 \bullet Retrain Model: 99.25 %

 \bullet GKT: 97.12 %

• M-M: 10.57 %

• GKT (no attention): <50 %

 \bullet Deep Inversion (100 sample/class): 40 - 50 %

 \bullet Deep Inversion (6000 sample/class): 80 - 85 %

Experimental Results

MNIST Numbers Dataset - AllCNN Model

Train: 60,000, Test: 10,000 Retain Accuracy on Test Set:

• Retrain Model: 99.25 %

• GKT: 97.12 %

• M-M: 10.57 %

• GKT (no attention): <50%

• Deep Inversion (100 sample/class): 40 - 50 %

• Deep Inversion (6000 sample/class): 80 - 85 %

If time permits will try to outperform the base paper on some dataset.

Conclusion

- Understand the internals of tackling zero-shot setting
- Determine the source of non-zero forget class accuracy and address it up to certain extent
- Improve upon the quality of images generated
- Decent Results

Learnings

- One of the first research experience
- Ability to read papers
- Exposure to tweaking complex machine learning code
- Repeatedly improving on strategies

Thank You