

® BUNDESREPUBLIK DEUTSCHLAND

① Offenlegungsschrift② DE 199 12 093 A 1

(5) Int. Cl.⁷: **F 41 G 3/26** F 41 G 3/30

DEUTSCHES
PATENT- UND
MARKENAMT

(2) Aktenzeichen: 199 12 093.5
 (2) Anmeldetag: 18. 3. 1999
 (3) Offenlegungstag: 28. 9. 2000

26. 9. 2000

(1) Anmelder:

STN ATLAS Elektronik GmbH, 28309 Bremen, DE

② Erfinder:

Jüttner, Hermann, 28215 Bremen, DE

(56) Entgegenhaltungen:

DE 37 20 595 C2

DE 36 31 421 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Verfahren zur Schußsimulation
- Die Erfindung betrifft ein Verfahren zur Schußsimulation mit ballistische Geschosse verschießenden Rohrwaffen, bei dem von der Rohrwaffe (11) beim Auslösen eines simulierten Schusses das Ziel (13) mit einem optischen Sender beleuchtet und zur Trefferfeststellung ein virtueller Geschoßeinschlag bestimmt wird. Zur Realisierung eines Verfahrens, mit dem die Gestehungskosten des Schußsimulators deutlich reduzierbar sind und das dabei eine für den Einsatz im Gefechtsübungsgelände ausreichende Genauigkeit sicherstellt, wird das Sendelicht optisch eng gebündelt und in einer Ebene sukzessiv geschwenkt. Dem Sendelicht werden Informationen bezüglich der momentanen Position und vertikalen Ausrichtung (Aufsatz ɛ) der Rohrwaffe (11) sowie der Waffen- und Geschoßart aufmoduliert. In dem mit einer optischen Empfangseinrichtung ausgestatteten Ziel (13) werden der virtuelle Geschoßeinschlag und die Entfernung zwischen Ziel (13) und Rohrwaffe (11) aus den zum Ziel (13) übertragenen Waffeninformationen und der bekannten Zielposition bestimmt und zur Trefferfeststellung miteinander verglichen. Bei Übereinstimmung wird ein Treffer angezeigt (Fig. 1).

Beschreibung

Die Erfindung betrifft ein Verfahren zur Schußsimulation mit ballistische Geschosse verschießenden Rohrwalfen der im Oberbegriff des Anspruchs 1 definierten Gattung.

Ein bekanntes Verfahren zur Schuß- oder Schießsimulation (DE 37 20 595 A1) basiert auf einer sog. Zwei-Wege-Simulation, wobei zunächst mit auf ein Ziel ausgerichtetem Visier die Entfernung zum Ziel gemessen wird, anschlie-Bend das mit einem Retroreflektor versehene Ziel mit einem Laser beleuchtet und das vom Retroreflektor zurückgeworfene Licht auf einer positionsauflösenden, elektrooptischen Einrichtung an der Rohrwaffe abgebildet wird. Der aus der Abbildung ermittelte Ort des Retroreflektors wird mit dem Trefferort des simulierten Schusses verglichen, der aufgrund 15 der gemessenen Entfernung, der verwendeten Waffen- und Munitionsart und des Aufsatzes, den die hypothetische Geschoßbahn mit der Visierlinie bildet, berechnet wird. Stimmt der Ort des Retroreflektors mit dem Trefferort überein, wird eine Treffermeldung von der Rohrwaffe ausgelöst, stimmen 20 beide nicht überein, wird eine Fehlermeldung generiert.

Bei einem ebenfalls bekannten, auf einer Zwei-Wege-Simulation beruhenden Verfahren zur Schießsimulation für Munition und bewegliche Ziele ballistische (DE 31 14 000 A1) wird vor Auslösung des simulierten 25 Schusses das Ziel durch waffenseitig ausgesendete Lasermeßimpulse ständig angemessen und werden die Zielentfernung und die Zielablage von einer Bezugslinie bestimmt und hieraus abgeleitete Daten abgespeichert. Mit Schußauslösung werden die gespeicherten Daten durch kodierte La- 30 sersignale zum Ziel übertragen, und die Anmessung des Ziels wird beendet. Nach der Schußauslösung wird während einer simulierten Geschoßflugzeit die Eigenbewegung des Ziels relativ zur Empfangsrichtung der Laserimpulse gemessen und eine Trefferanzeige durch Vergleich der von der 35 Rohrwasse übermittelten Daten und der Zielposition am Ende der Geschoßflugzeit gesteuert.

Bei solchen Zwei-Wege-Simulationsverfahren ist der technische Aufwand sehr hoch, der noch mit der Forderung nach einer wachsenden Zielentfernung überproportional zunimmt. Für die Zielvermessung muß eine hochempfindliche Meßelektronik verwendet werden, die den Schießsimulator zusätzlich verteuert. Der optische Pegel des Laserlichts nimmt dabei mit zunehmender Entfernung r mit 1/r⁴ ab, so daß die Meßergebnisse zunehmend unsicherer werden. Eine 45 Erhöhung der Laserlicistung ist dabei kaum möglich, da zum Schutze der Teilnehmer einer Schießübung die Leistungsklasse des Lasers vorgeschrieben und auf die Augenverträglichkeit beschränkt ist.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren 50 zur Schußsimulation der eingangs genannten Art anzugeben, das deutlich geringere Herstellungskosten für den dieses Verfahren realisierenden Schußsimulator ermöglicht und dabei eine für den Einsatz in Gefechtsübungsgelände ausreichende Genauigkeit gewährleistet.

Die Aufgabe ist durch die Merkmale des Anspruchs 1 ge-

Das erfindungsgemäße Verfahren hat den Vorteil, daß nur ein einziger optischer Übertragungsweg vom Schießenden zum Ziel erforderlich ist und damit der Simulator bei hoher 60 Empfindlichkeit mit geringer Laserleistung auskommt. Die Überprüfung, ob der Schießende seine Rohrwaffe so eingerichtet hat, daß ein Ziel, welches sich in einer geschätzten Entfernung befindet, getroffen worden ist oder nicht, wird im Ziel anhand der Daten der eingerichteten Rohrwaffe 65 durchgeführt, was ohne weiteres möglich ist, da Waffe und Ziel laufend ihre Position vermessen und dem Ziel die Position der Waffe mit Schußauslösung übertragen wird. Das

2

Verfahren erlaubt eine realistische Handhabung der Waffe, wobei die Verkantung der Waffe, die Munitionsart, die Waffenart, der eingestellte Azimut- und Elevationswinkel (Vorhalt und Aufsatz) bei der hypothetischen oder virtuellen Treffpunktbestimmung berücksichtigt werden.

Mit dem erfindungsgemäßen Verfahren werden auch Höhendifferenzen zwischen Ziel und Waffe korrigiert. Eine Trefferanzeige von mehreren Zielen, die alle auf der gleichen Schußlinie liegen, wird vermieden, da jedes Ziel aufgrund seiner Entfernung zur schießenden Waffe selbst feststellt, ob der hypothetische oder virtuelle Treffpunkt mit seiner Position übereinstimmt oder nicht.

Das erfindungsgemäße Verfahren kann sowohl bei Rohrwaffen, wie Panzerkanonen, bei denen die Einstellung des Aufsatzes der Waffe geübt werden soll, als auch bei Rohrwaffen, wie Panzerfäuste, bei denen es auf die Schätzung des Vorhalts ankommt, angewendet werden. Hierzu muß lediglich die Schwenkrichtung des Sendelichts aus der vertikalen in eine horizontale Ebene verlegt und der maximale Schwenkwinkel angepaßt werden.

Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird das Sendelicht als eine Folge von Laserimpulsen erzeugt, und die Waffeninformationen werden jedem Laserimpuls aufmoduliert. Laserimpulse haben den Vorteil, trotz hohem Impulspegel nur eine geringe Energiedichte zu besitzen und damit bei der geforderten Augensicherheit des Lasers eine für die Schießsimulation ausreichende Leistung zum Ziel zu übertragen. Außerdem lassen sich die Laserimpulse relativ störsicher modulieren, so daß die Waffeninformationen zuverlässig zum Ziel übertragen werden.

Gemäß einer vorteilhaften Ausführungsform der Erfindung werden die Laserimpulse mit konstanter Taktrate gesendet und wird jedem Laserimpuls zusätzlich eine Information über seinen Sendezeitpunkt aufmoduliert. Im Ziel wird mit dem Sendezeitpunkt-Informationen und den Waffeninformationen die Entfernung zur Rohrwaffe bestimmt und zur Kontrolle des aus Waffen- und Zielposition bestimmten Entfernungswertes oder bei gestörten Positionsinformationen zur Bestimmung des virtuellen Geschoßeinschlags herangezogen. Damit kann bei vorübergehendem Ausfall des einen oder anderen Positionsbestimmungssystems an Waffe und Ziel die Entfernung zwischen Waffe und Ziel bestimmt und die Schießübung auch in bezüglich des Satellitenempfangs problematischen Geländeabschnitten fortgesetzt werden.

Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen im folgenden näher beschrieben. Es zeigen jeweils in schematischer Darstellung:

Fig. 1 und 2 jeweils einen eine Rohrwaffe tragenden Kampfpanzer in einem Übungsgelände bei Schußabgabe auf
55 ein Ziel in Seitenansicht (Fig. 1) bzw. Draufsicht (Fig. 2),

Fig. 3 ein Blockschaltbild der waffenseitigen Komponente eines Schußsimulators,

Fig. 4 ein Blockschaltbild der zielseitigen Komponente des Schußsimulators,

Fig. 5 eine perspektivische Darstellung einer Panzerfaust in Schußstellung auf einen im Übungsgelände fahrenden Zielpanzer.

In Fig. 1 und 2 ist ein Übungsszenario in einem Gefechtsübungsgelände in Seitenansicht und Draufsicht dargestellt, bei dem ein mit einer Rohrwaffe (Panzerkanone) 11 ausgerüsteter Kampfpanzer 10 eines von mehreren im Gelände 12 vorhandenen Zielen 13, 14, 15 bekämpft. Das vom Kampfpanzer 10 dabei ausgewählte Ziel 13 ist schematisch darge3

stellt und kann beispielsweise ein gegnerischer Kampfpanzer sein, dessen Bewegungsrichtung in Fig. 2 mit Pfeil 16 angedeutet ist. Die Ziele 14 und 15 sind feststehend und beispielsweise Gebäude oder natürliche Hindernisse.

Zur Schießübung wird ein sogenannter Schußsimulator verwendet, der eine der Rohrwaffe 11 zugeordnete Komponente 17 und eine dem Ziel 13 zugeordnete Komponente 18 aufweist. Die in Fig. 3 im Blockschaltbild dargestellte waffenseitige Komponente 17 ist in einem Gehäuse 19 verpackt, das an der Rohrwaffe 11 fixiert ist und somit die Schwenkbewegung der Panzerkanone in Azimut und Elevation, sowie jegliche Verkantung der Panzerwanne und damit der Rohrwaffe 11 bei Fahrt im Gelände mitmacht. In dem Gehäuse 19 ist ein optischer Sender 20 in vertikaler Richtung schwenkbar angeordnet, der ein eng gebündeltes Laser- 15 licht als eine Folge von im konstanten Zeittakt gesendeten Laserimpulsen abstrahlt. Eine Schwenkbewegung des optischen Senders 20 wird mittels eines Schrittmotors 21 bewirkt, der ebenso wie der optische Sender 20 von einer zentralen Steuereinheit 22 gesteuert wird. Die zentrale Steuer- 20 einheit 22 ist eingangsseitig mit einem Verkantungssensor der die Verkantung der Wanne des Kampfpanzers 10 und damit die der Rohrwaffe 11 mißt, mit einem Neigungssensor 24, der den Elevationswinkel ε der Rohrwaffe 11, also den Aufsatz der Rohrwaffe 11 gegenüber der Horizontalen, mißt sowie mit einem Interface 25 verbunden, über das der zentralen Steuereinheit 22 Informationen über die Munitionsart, die Waffenart, die momentane Position des Kampfpanzers 10 im Gelände und die Auslösung des simulierten Schusses zugeführt werden. Hierzu ist das Interface 25 über einen 30 Eingang 27 mit einem am Kampfpanzer 10 angeordneten, satellitengestützten Positionsbestimmungssystem 26, z. B. einem GPS (Global Position System) oder mit einem DGPS (Differential Global Position System) verbunden und erhält über weitere Eingänge 28, 29 und 30 entsprechende Infor- 35 mationen über Waffen- und Munitionsart sowie einen Triggerimpuls bei Auslösung des simulierten Schusses durch den Richtschützen. Im optischen Sender 22 ist noch ein von der zentralen Steuereinheit 22 gesteuerter optischer Modulator enthalten, der die über das Interface 25 eingehenden Informationen über Waffen- und Munitionsart sowie die Meßwerte des Verkantungssensors 23 und des Neigungssensors 24 auf jeden vom optischen Sender 20 ausgesendeten Laserimpuls aufmoduliert.

Die in Fig. 4 im Blockschaltbild dargestellte zielseitige 45 Komponente 18 des Schußsimulators weist eine optische Empfangseinrichtung 31 mit einer Vielzahl von optischen Sensoren 32, z. B. Laserdioden, auf, die eintreffende Laserimpulse in elektrische Signale umsetzen. Ist das Ziel 13, wie angenommen, ebenfalls ein Kampfpanzer, so bilden die 50 Lichtdetektoren oder optischen Sensoren 32 - wie dies für den schießenden Kampfpanzer 10 in Fig. 1 dargestellt ist in ihrer Vielzahl einen an der Panzerwanne horizontal umlaufenden Gürtel. Alle optischen Sensoren 32 sind mit einer Signalverarbeitung 33 verbunden, die einen Demodulator 55 enthält und aus den empfangenen Laserimpulsen die mit diesen übertragenen Waffeninformationen (Waffenposition, Waffenart, Geschoßart, Aufsatz der Rohrwaffe) eliminiert und einem Mikroprozessor 34 zuführt. Der Mikroprozessor 34 empfängt von einem am Ziel 13 befestigten, satellitengestützten Positionsbestimmungssystem 35 (GPS oder GDPS) zusätzlich die momentane Position des Ziels 13. Anhand der Waffeninformationen und der Zielposition bestimmt der Mikroprozessor 34 einen virtuellen Einschlag des Geschosses nach Zurücklegen einer durch die Waffenausrichtung sich 65 ergebenden hypothetischen Geschoßflugbahn sowie die Entfernung zwischen Rohrwaffe 11 und Ziel 13. Der Mikroprozessor 34 führt einen Vergleich von Geschoßeinschlag und

4

Zielentfernung durch und steuert bei Übereinstimmung eine Trefferanzeige 36 an, die ein optisches, akustisches oder elektromagnetisches Treffersignal aussendet. Zur Bestimmung des virtuellen Geschoßeinschlags sind im Mikroprozessor 34 z. B. eine Vielzahl von Flugbahnen von Geschossen mit einer Parametrisierung von Aufsatz der Rohrwaffe (Elevationswinkel ε) sowie Waffen- und Geschoßart abgelegt. Mit den empfangenen und demodulierten Waffeninformationen wird die zutreffende Flugbahn aufgesucht und der virtuelle Geschoßeinschlag ausgelesen.

Mit einem solchen Schußsimulator wird eine Schußsimulation mit Rohrwaffen, die ballistische Geschosse verschießen, wie folgt durchgeführt:

Der Richtschütze richtet mittels eines üblicherweise mit der Rohrwaffe 11 verbundenen Visiers die Rohrwaffe 11 auf das Ziel 13 aus und stellt aufgrund der von ihm geschätzten Entfernung zum Ziel 13 einen bestimmten Aufsatz (Elevationswinkel E) für die Rohrwaffe 11 ein. Wenn es sich beim Ziel 13 um ein bewegtes Ziel handelt, wird er – wie in Fig. 2 angedeutet ist – bei der Rohrwaffe 11 noch einen Vorhalt berücksichtigen und die Rohrwaffe 11 um einen Azimutwinkel ϕ gegenüber der direkten Sichtlinie zum Ziel 13 einstellen.

Mit Schußauslösung durch den Richtschützen wird über den Eingang 30 ein Triggerimpuls an das Interface 25 gegeben, was die Steuereinheit 22 veranlaßt, den Lasersender 20 zu aktivieren. Der Lasersender 20 sendet eine Folge von Laserimpulsen aus, wobei er in der Vertikalebene nach unten sukzessive geschwenkt wird. Die ersten Laserimpulse werden dabei in einer Richtung ausgesendet, die parallel zur Rohrachse verläuft, Jedem Laserimpuls werden Informationen bezüglich der momentanen Position und Ausrichtung der Rohrwaffe, im vorliegenden Fall bezüglich des vom Neigungssensor 24 gelieferten Elevationswinkels ε und des vom Verkantungssensor 23 gelieferten Verkantungswinkels, sowie der verwendeten Waffen- und Geschoßart aufmoduliert. Zu irgendeinem Zeitpunkt der vertikalen Schwenkbewegung des Lasersenders 20 trifft mindestens ein Laserimpuls auf einen der Lichtdetektoren oder optischen Sensoren 32 am Ziel 13. Dieser Laserimpuls wird von der optischen Empfangseinrichtung 31 empfangen und in den beschriebenen Baueinheiten signaltechnisch verarbeitet. Im Ziel 13 wird nunmehr der virtuelle Geschoßeinschlag aus den mit dem Laserimpuls übertragenen Waffeninformationen (Elevationswinkel ε, Verkantungswinkel, Waffenart, Waffenmunition) bestimmt sowie aus der vom Laserimpuls übertragenen Position der Waffe 11 und der bekannten Zielposition die Entfernung zwischen Ziel 13 und Rohrwaffe 11 bestimmt. Stimmen Geschoßeinschlag und Zielentfernung überein, so wird ein Treffer angezeigt.

Bei dem in Fig. 1 und 2 dargestellten Szenario würde bei Auslösung des simulierten Schusses auch das Ziel 14 zu irgendeinem Zeitpunkt von Laserimpulsen getroffen werden. Das Ziel 14 ist, soweit es ein Übungsziel darstellt, ebenfalls mit der zielseitigen Komponente 18 des Schußsimulators gemäß Fig. 3 ausgerüstet. Im Ziel 14 wird die gleiche Berechnung wie im Ziel 13 durchgeführt. In diesem Fall ist aber die Entfernung des Ziels 14 zur Rohrwaffe 11 wesentlich kleiner als die Entfernung des virtuellen Geschoßeinschlags von der Rohrwaffe 11, sodaß keine Trefferanzeige erfolgt.

Um die Vielzahl der sendeseitig vorzusehenden optischen Sensoren 32 zu reduzieren, könnte das Laserlicht des optischen Senders 22 in Horizontalrichtung aufgespreizt werden, so daß die optischen Sensoren 32 am Ziel 13 in größeren Abständen voneinander angeordnet werden können. Um eine gleiche Empfindlichkeit der optischen Sensoren 32 sicherzustellen, müßte allerdings die Laserleistung erhöht werden, um die nunmehr größere Fläche am Ziel 13 mit der

5

gleichen Energiedichte zu beleuchten.

In einem größeren Übungsgelände kann in bestimmten Geländeabschnitten aufgrund der Geländestruktur oder der Bebauung und Beptlanzung der Satellitenempfang gestört oder unterbunden sein, sodaß die Position von Waffe und/ oder Ziel nicht als auswertbare Information bei der Trefferbestimmung zur Verfügung steht. Für solche Fälle werden den vom optischen Sender 20 ausgesendeten Laserimpulsen zusätzlich eine Information über den Sendezeitpunkt eines jeden einzelnen Laserimpulses aufmoduliert. Die den Sendezeitpunkt angebende Information ist dabei die Zeit zwischen der Auslösung des simulierten Schusses und dem Aussenden des jeweiligen Laserimpulses. Diese Information wird an einem in der zentralen Steuereinheit 22 integrierten Zähler abgenommen, der bei Schußauslösung ge- 15 startet und mit konstanter Frequenz getaktet wird. Im Ziel 13 kann nunmehr aus der mit dem empfangenen Laserimpuls übertragenen Information über dessen Sendezeitpunkt und den Waffeninformationen die Entfernung zwischen Ziel und Rohrwaffe bestimmt werden. Damit können auch bei 20 gestörtem GPS-Empfang Trefferpositionen ermittelt und die Schießübungen fortgesetzt werden. Im Falle eines intakten GPS-Empfangs kann die aufgrund der bekannten Positionen von Rohrwaffe 11 und Ziel 13 bestimmte Zielentfernung kontrolliert werden.

In Fig. 5 ist ein Übungsszenario dargestellt, in dem das Abfeuern einer Panzerfaust 37 auf einen fahrenden Zielpanzer 38 geübt werden soll. Die Panzerfaust 37 stellt die Rohrwaffe 11 und der Zielpanzer 38 das Ziel 13 dar, das sich in Richtung Pfeil 16 in Fig. 5 bewegt. Bei dieser Übung kommt es auf die richtige Einstellung eines Vorhaltes der Rohrwaffe 11 an, also eines geeigneten Azimutwinkels φ, damit das sich bewegende Ziel 13 (Zielpanzer 38) nach Abfeuern der Panzerfaust 37 zum richtigen Zeitpunkt getroffen wird; denn die mit der Panzerfaust 37 verschossene panzerbrechende Munition benötigt eine gewisse Flugzeit um die Entfernung zum Ziel 13 zu überbrücken, in der sich das Ziel 13 um eine seiner Geschwindigkeit entsprechende Wegstrecke von seiner bei Schuβauslösung eingenommen Position aus weiterbewegt hat.

Das vorstehend beschriebene Verfahren zur Schußsimulation ist nun dahingehend abgewandelt, daß das optisch eng gebündelte Sendelicht, also die Impulsfolge von Laserimpulsen, jetzt in einer horizontalen Ebene (Azimut) mit konstanter Geschwindigkeit geschwenkt und jedem Laserim- 45 puls zusätzlich in jeder Schwenkposition eine Information bezüglich des auf die Rohrwaffenachse bezogenen, monientanen Schwenkwinkels a aufmoduliert wird. Die Laserimpulse werden dabei mit konstanter Taktrate (Sendefrequenz) gesendet. Neben den wie vorstehend beschriebenen Infor- 50 mationen über die Waffe 11, wird zusätzlich jedem Laserimpuls in jeder Schwenkposition des optischen Senders 20 eine Information bezüglich des auf die Rohrwaffenachse 39 bezogenen, momentanen azimutalen Schwenkwinkels α_i aufmoduliert. Die Schwenkwinkel α_1 bis α_4 sind in Fig. 5 55 zur Erläuterung schematisch eingezeichnet. Der Sender 20 ist wiederum in der waffenseitigen Komponente 17 des Schießsimulators integriert, die fest mit der Rohrwaffe 11 verbunden, hier mit dem Visier der Panzerfaust 37 zu einer Baueinheit zusammengefaßt ist. Da die optische Achse des 60 Senders 20 durch die Befestigung der waffenseitigen Komponente 17 an der Rohrwasse 11 gegenüber der Rohrwassenachse 39 vertikal etwas versetzt ist, liegt die Bezugslinie 39' für die Schwenkwinkelangabe um den gleichen Betrag versetzt oberhalb der Rohrwalfenachse 39. Die Bezugslinie 39' 65 für die Schwenkwinkelangabe verläuft damit aber immer in Rohrwaffenmitte parallel zur Rohrwaffenachse 39. Der Schwenkwinkelbereich des optischen Senders 20 ist auf ei6

nen gleichen Azimutbereich rechts und links der Rohrwaffenmitte, also der Rohrwaffenachse 39, begrenzt, der mindestens so groß ist wie der zur Bekämpfung eines sich quer zur Rohrwaffenachse 39 bewegenden Ziels 13 erforderliche, die Flugdauer des auf das sich bewegende Ziel 13 abgefeuerten Geschosses der Rohrwaffe 11 berücksichtigende Vorhaltewinkel φ . Die Schwenkbewegung des optischen Senders 20 erfolgt mit Auslösen des simulierten Schusses immer von einer der Begrenzungskanten des Schwenkwinkelbereichs aus, in dem Beispiel der Fig. 5 von der linken, äußeren Begrenzungskante des Schwenkwinkelbereichs aus.

Das in Fig. 5 von dem in Pfeilrichtung 16 fahrenden Zielpanzer 38 gebildete, bewegliche Ziel 13 ist mit der gleichen zielseitigen Komponente 18 des Schußsimulators ausgerüstet, wie sie in Fig. 4 im Blockschaltbild dargestellt ist, wobei die Zahl der optischen Sensoren 32 der optischen Empfangseinrichtung 31 auf zwei bis drei pro Längsseite des Ziels 13 begrenzt ist, und die optischen Sensoren 32 im Turmbereich des Zielpanzers 38 angeordnet sind. Zur Sicherstellung eines zuverlässigen Empfangs der Lichtimpulse durch die optischen Sensoren 32 können die Laserimpulse in vertikaler Richtung aufgespreizt sein, sodaß mit jedem Laserimpuls der Zielpanzer 38 in seiner maximalen Höhe bis zur Turmoberkante beleuchtet wird. In der zielseitigen Komponente 18 des Schußsimulators wird nunmehr die gleiche Auswertung der in den Laserimpulsen übertragenen Informationen vorgenommen, wie bereits vorstehend beschrieben worden ist, mit dem einzigen Unterschied, daß die zur Trefferfeststellung herangezogene Zielentfernung zuvor mittels der Schwenkwinkelinformationen und der bekannten Eigenbewegung des Ziels 13 korrigiert wird. Diese Korrektur erfolgt dabei in der Weise, daß die Zielentfernung für eine Zielposition berechnet wird, die das mit Zielgeschwindigkeit sich bewegende Ziel 13 nach Durchlaufen einer sich aus der Schwenkwinkelinformation und der momentanen Zielentfernung ergebenden Wegstrecke innerhalb der Geschoßflugzeit einnehmen würde, die ihrerseits aus den Waffeninformationen errechnet wird. Diese Schwenkwinkelinformation entspricht dem mit der Rohrwaffe 11 eingestellten Vorhalt φ im Azimut, und bei richtiger Einstellung des Vorhalts \(\phi \) stimmt der aus den Waffeninformationen berechnete Geschoßeinschlag mit der korrigierten Zielentfernung überein und ein Treffer wird angezeigt.

Sind auf den vom optischen Sender 20 ausgesendeten Laserimpulse – wie vorstehend beschrieben – zusätzlich Informationen über ihren Sendezeitpunkt aufmoduliert, so kann bei dem zu Fig. 5 beschriebenen Schußsimulator auf die Übertragung einer zusätzlichen Winkelinformation α_i über die Senderichtung zum Ziel 13 verzichtet werden, da aus diesen Informationen über die jeweilige Sendezeit der Laserimpulse die Winkelinformation über die Senderichtung abgeleitet werden kann.

Patentansprüche

1. Verfahren zur Schußsimulation mit ballistische Geschosse verschießenden Rohrwaffen, bei dem von der Rohrwaffe (11) beim Auslösen eines simulierten Schusses das Ziel (13) mit einem optischen Sender (20) beleuchtet und zur Trefferfeststellung ein virtueller Geschoßeinschlag bestimmt wird, dadurch gekennzeichnet, daß das Sendelicht optisch eng gebündelt und in einer Ebene sukzessive geschwenkt wird, daß dem Sendelicht Informationen bezüglich der momentanen Position und vertikalen Ausrichtung (Aufsatz) der Rohrwaffe (11) sowie der Waffen- und Geschoßart aufmoduliert werden, daß das Ziel (13) mit einer optischen Empfangseinrichtung (31) ausgestattet wird und daß

8

im Ziel (13) der virtuelle Geschoßeinschlag und die Entfernung zwischen Ziel (13) und Rohrwaffe (11) aus den zum Ziel (13) übertragenen Waffeninformationen und der bekannten Zielposition bestimmt und zur Treffersetstellung miteinander verglichen werden und daß 5 bei Übereinstimmung ein Treffer angezeigt wird.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Verkannten der Rohrwaffe (11) gegenüber einer vertikalen und/oder horizontalen Bezugslinie gemessen und der Meßwert dem Sendelicht aufmoduliert wird und daß die Informationen bezüglich der Waffenverkantung im Ziel (13) bei der Bestimmung des virtuellen Geschoßeinschlags herangezogen werden.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Ziel (13) Flugbahnen von Geschossen ist einer Parameterisierung von Aufsatz (£) sowie Waffen- und Geschoßart abgelegt werden und daß mit den empfangenen und demodulierten Waffeninformationen die zutreffende Flugbahn aufgesucht und der virtuelle Geschoßeinschlag ausgelesen wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Sendelicht in einer vertikalen Ebene aus einer mit der Achse der Rohrwaffe (11) parallelen Richtung heraus abwärts geschwenkt wird.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Empfangseinrichtung (31) des vorzugsweise beweglichen Ziels (13) mit einem am Ziel (13) befestigten, horizontal umlaufenden Gürtel aus einer Vielzahl von beabstandeten Lichtdetektoren (32) versehen wird.
- 6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das Sendelicht in Horizontalrichtung optisch aufgespreizt wird.
- 7. Verfahren nach einem der Ansprüche 1 bis 3, da- 35 durch gekennzeichnet, daß das Sendelicht in einer horizontalen Ebene mit konstanter Geschwindigkeit geschwenkt wird und dem Sendelicht in jeder Schwenkposition Informationen bezüglich des auf die Achse der Rohrwaffe (11) bezogenen, momentanen Schwenkwin- 40 kels aufmoduliert werden und daß die zur Trefferfeststellung im Ziel herangezogene Zielentfernung zuvor mittels der Schwenkwinkelinformation und der bekannten Eigenbewegung des Ziels (13) korrigiert wird. 8. Verfahren nach Anspruch 7, dadurch gekennzeich- 45 net, daß die Korrektur in der Weise durchgeführt wird, daß die Zielentfernung für eine Zielposition berechnet wird, die das mit Zielgeschwindigkeit sich bewegende Ziel (13) nach Durchlaufen einer aus der Schwenkwinkelinformation und der momentanen Zielentfernung 50 sich ergebenden Wegstrecke während der aus den Waffeninformationen sich ergebenden Geschoßflugzeit
- 9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Schwenkbereich des Sendelichts auf einen gleichen Azimutwinkel rechts und links der Rohrwaffenmitte begrenzt ist, der mindestens einem die maximale Flugdauer des abgefeuerten Geschosses berücksichtigenden, maximalen Vorhaltewinkel der Rohrwaffe (11) im Azimut bei Bekämpfung eines mit 60 maximaler Geschwindigkeit quer zur Schußrichtung sich bewegenden Ziels entspricht, und daß beim Auslösen des simulierten Schusses die Schwenkung der Senderichtung von einer der Begrenzungskanten des Schwenkbereichs aus erfolgt.
- Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß das Sendelicht als eine Folge von Laserimpulsen erzeugt wird und die waffenseitigen In-

- formationen jedem Laserimpuls aufmoduliert werden. 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Laserimpulse mit konstanter Taktrate gesendet werden.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß jedem Laserimpuls zusätzlich eine Information über seinen Sendezeitpunkt aufmoduliert wird und im Ziel (13) aus den Informationen über die Sendezeitpunkte und den Waffeninformationen die Zielentfernung abgeleitet wird.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß als Informationen über den Sendezeitpunkt die Zeit zwischen der Auslösung des simulierten Schusses und dem Aussenden des jeweiligen Laserimpulses angegeben wird.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Informationen über den Sendezeitpunkt am Ausgang eines mit konstanter Frequenz getakteten Zählers abgenommen wird.
- 15. Verfahren nach einem der Ansprüche 7 bis 11 und einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß auf die Übertragung der Schwenkwinkelinformationen (α_i) verzichtet wird und die Schwenkwinkelinformationen im Ziel (13) aus den Sendezeitpunkt Informationen über die Sendezeitpunkte abgeleitet werden.
- 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Positionen von Rohrwaffe (11) und Ziel (13) jeweils mittels eines an diesem angeordneten, satellitengestützten Positionsbestimmungssystems (GPS; DGPS) erfaßt werden.

Hierzu 3 Seite(n) Zeichnungen

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 199 12 093 A1 F 41 G 3/26

28. September 2000

Nummer: Int. Cl.7:

DE 199 12 093 A1

F41G 3/26 28. September 2000 Offenlegungstag:

Fig. 3

Nummer: Int. Cl.⁷:

Offenlegungstag:

DE 199 12 093 A1 F 41 G 3/26

28. September 2000

