Tarea-Examen 2: Relaciones y funciones.

Grupo: 4010

Luis Gonzalo Ochoa Rivera

Resuelve los siguientes ejercicios justificando tu respuesta.

1. (5 puntos) Diga si las siguientes afirmaciones son verdaderas o falsas, justificando su respuesta.

- (a) Si R y S son relaciones definidas sobre $A \neq \emptyset$ tales que $R \cup S$ es una relación de equivalencia sobre A, entonces tanto R y S son relaciones de equivalencia sobre A.
- (b) Si R y S son relaciones definidas sobre $A \neq \emptyset$ tales que $R \cap S$ es una relación de equivalencia sobre A, entonces tanto R y S son relaciones de equivalencia sobre A.

Ambas afirmaciones son falsas, veamos un contraejemplo.

```
Sean A = \{1, 2\}, R = \{(1, 1), (1, 2), (2, 2)\} y S = \{(1, 1), (2, 1), (2, 2)\}; entonces R \cup S = \{(1, 1), (1, 2), (2, 1), (2, 2)\}.
```

La cual, es una relación de equivalencia; ya que es reflexiva $(1 \sim 1 \text{ y } 2 \sim 2)$, simétrica $(1 \sim 2 \text{ y } 2 \sim 1)$ y transitiva $(1 \sim 2, 2 \sim 1 \text{ y } 1 \sim 1; 2 \sim 1, 1 \sim 2 \text{ y } 2 \sim 2)$. Pero R no es simétrica porque $(2,1) \notin R$ y análogamente S no es simétrica.

Por lo tanto R y S no son relaciones de equivalencia.

Similarmente, notemos que $R \cap S = \{(1,1),(2,2)\}$ es una relación de equivalencia. Y como ya vimos, R y S no son relaciones de equivalencia.

- 2. (5 puntos) Sean A,B,C,D conjuntos cualesquiera y sean $f:A\to B,\,g:B\to C\;$ y $h:C\to D$ funciones. Demuestre lo siguiente:
 - (a) Si fy gson biyectivas, entonces $g\circ f$ es biyectiva.

Supongamos f y g son biyectivas.

Entonces f^{-1} y g^{-1} son funciones, por el Corolario 3.53 y $f^{-1} \circ g^{-1}$ es una función por la Definición 3.40.

Entonces

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1}$$
 por el Lema 3.48.
 $= g \circ id_B \circ g^{-1}$ por la Proposición 3.52.
 $= g \circ g^{-1}$ por la Observación 3.43.
 $= id_C$ por la Proposición 3.52.

i.e. $(f^{-1} \circ g^{-1})$ es el inverso derecho de $g \circ f$ por la Definición 3.44.

Similarmente,

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f$$
$$= f^{-1} \circ id_B \circ f$$
$$= f^{-1} \circ f$$
$$= id_A$$

i.e. $(f^{-1} \circ g^{-1})$ es el inverso izquierdo de $g \circ f$.

Entonces por la Definición 3.50, $g \circ f$ es invertible. Y por el Corolario 3.53, $g \circ f$ es biyectiva.

Además, por la Proposición 3.52, $(g \circ f)^{-1}$ es función y es el inverso derecho e izquierdo de $g \circ f$.

Y por el Teorema 3.49, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

(b) Si $g \circ f$ y $h \circ g$ son biyectivas, entonces f, g y h son biyectivas. Sugerencia: demuestre primero que g y h son suprayectivas, luego que f y g son inyectivas, después que h es inyectiva y finalmente que f es sobre.

Supongamos $g \circ f$ y $h \circ g$ son biyectivas.

En particular, $g \circ f$ y $h \circ g$ son suprayectivas. Sea $c \in C$, entonces $\exists a \in A$ tal que $c = g \circ f(a) = g(f(a))$. Como f es función, entonces $\exists b \in B$ t.q. b = f(a) y c = g(b). i.e. g es suprayectiva (ya que $\forall c \in C$ $\exists b \in B$ t.q. c = g(b)).

Análogamente h es suprayectiva.

 $g \circ f$ y $h \circ g$ también son inyectivas.

Sean $b_1, b_2 \in B$ tales que $g(b_1) = g(b_2)$ entonces $h(g(b_1)) = h(g(b_2))$, porque h es función. entonces $b_1 = b_2$, ya que $h \circ g$ es inyectiva. Se sigue que g es inyectiva.

Análogamente f es invectiva.

Sean $c_1, c_2 \in C$ tales que $h(c_1) = h(c_2)$. Como g es suprayectiva, $\exists b_1, b_2 \in B$ tales que $c_1 = g(b_1)$ y $c_2 = g(b_2)$. Entonces $h(g(b_1)) = h(c_1) = h(c_2) = h(g(b_2))$, ya que h es función. Entonces $b_1 = b_2$, ya que $h \circ g$ es inyectiva. Como g es función, entonces $c_1 = g(b_1) = g(b_2) = c_2$ $i.e.\ h$ es inyectiva.

Sea $b \in B$, como g es función, entonces $\exists c \in C$ t.q. c = g(b). Como $g \circ f$ es suprayectiva, $\exists a \in A$ t.q. g(b) = c = g(f(a)). Como g es inyectiva, entonces b = f(a). Se sigue que f es suprayectiva.

Como f,gy hson suprayectivas e inyectivas, entonces son biyectivas por la Definición 3.25.