MATERIALS AND DESIGN (ME2200)

Ansys Assignment

Instructors: Ratna Kumar Annabattula, Sundararajan Natarajan, Parag Ravindran

INSTRUCTIONS

- This assignment maybe done individually or in groups. If done as a group please mention names of group members. Members maybe across sections. Each member to submit an individual copy.
- Submission deadline: 23 April 2019.

•

1. Choose a case among those presented below. Plot K_t obtained using FE simulation and compare (on a graph) with values presented in one of the graphs below (choose any one). The graphs are taken from the book: Mechanical Engineering Design: Budyanas and Nisbett

Figure A-15-4

Notched rectangular bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, and t is the thickness.

Figure A-15-5

Rectangular filleted bar in tension or simple compression. $\sigma_0 = F/A$, where A = dt and t is the thickness.

Figure A-15-6

Rectangular filleted bar in bending. $\sigma_0 = Mc/I$, where c = d/2, $I = td^3/12$, t is the thickness.

(continued)

^{*}Factors from R. E. Peterson, "Design Factors for Stress Concentration," Machine Design, vol. 23, no. 2, February 1951, p. 169; no. 3, March 1951, p. 161, no. 5, May 1951, p. 159; no. 6, June 1951, p. 173; no. 7, July 1951, p. 155. Reprinted with permission from Machine Design, a Penton Media Inc. publication.

Charts of Theoretical Stress-Concentration Factors K_t^* (Continued) Figure A-15-7 2.6 Round shaft with shoulder fillet in tension. $\sigma_0 = F/A$, where $A = \pi d^2/4.$ 2.2 K, 1.8 1.4 1.0 0.05 0.10 0.15 0.20 0.25 0.30 rld Figure A-15-8 3.0 Round shaft with shoulder fillet in torsion. $\tau_0 = Tc/J$, where 2.6 c = d/2 and $J = \pi d^4/32$. 2.2 1.8 1.4 1.09 1.0 0.05 0.10 0.15 0.20 0.25 Figure A-15-9 3.0 Round shaft with shoulder fillet in bending. $\sigma_0 = Mc/I$, where 2.6 c = d/2 and $I = \pi d^4/64$. 2.2 1.4 1.05 1.0 0.10 0.15 0.20 0.25 0.30 r/d