	Teste de Matemática A
	2022 / 2023
Teste N.º 3	
Matemática A	
12.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta az	ul ou preta.
Não é permitido o uso de corretor. Risque aquilo o	que pretende que não seja classificado.
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada item.	
As cotações dos itens encontram-se no final do e	nunciado.
Na resposta aos itens de escolha múltipla, seleci	one a opção correta. Escreva na folha de
respostas o número do item e a letra que identific	ca a opção escolhida.
Na resposta aos restantes itens, apresente todos	s os cálculos que tiver de efetuar e todas
as justificações necessárias. Quando para um	resultado não é pedida a aproximação,
apresente sempre o valor exato.	

Formulário

Geometria

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

 $\frac{\alpha r^2}{2}$ (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g$ (r – raio da base;

$$g - geratriz$$

Área de uma superfície esférica: $4 \pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base } \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n)

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n \, e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta+2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \text{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n . u^{n-1} . u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u'. \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^{u})' = u' \cdot a^{u} \cdot \ln a \ (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

1. Um saco contém seis bolas amarelas e oito bolas brancas, indistinguíveis ao tato. Cada bola tem uma única cor e só existem bolas amarelas e bolas brancas no saco.

Pretende-se colocar todas estas bolas em onze caixas numeradas de 1 a 11, de tal forma que:

- cada caixa com um número primo tenha, pelo menos, uma bola amarela;
- cada caixa com um número não primo tenha, pelo menos, uma bola branca.

Nestas condições, de quantas maneiras diferentes podem ser colocadas as quinze bolas nas onze caixas?

- **(A)** 616
- **(B)** 726
- **(C)** 1221

- **(D)** 40 656
- 2. A soma de todos os elementos de uma dada linha do triângulo de Pascal é igual a 32 768.

Qual é o valor do maior elemento da linha seguinte?

- **(A)** 6435
- **(B)** 11 440
- **(C)** 12 870
- **(D)** 24 310

- 3. De uma turma de 12.º ano, sabe-se que:
 - há alunos inscritos nas disciplinas de Aplicações Informáticas e de Biologia, entre outras disciplinas opcionais;
 - 20% dos alunos não está inscrito nem em Aplicações Informáticas nem em Biologia.
 - 3.1. Relativamente aos alunos dessa turma, sabe-se ainda que:
 - ¹/₁₃ dos alunos inscritos em Biologia também estão inscritos em Aplicações Informáticas;
 - em cada 4 alunos inscritos em Aplicações Informáticas, 1 está inscrito em Biologia.

Escolhe-se, ao acaso, um aluno da turma.

Determine a probabilidade de esse aluno estar matriculado nas duas disciplinas opcionais (Aplicações Informáticas e Biologia).

Apresente o resultado na forma de fração irredutível.

3.2. Considere agora que a turma tem 20 alunos.

Escolhem-se, ao acaso, quatro alunos dessa turma.

Determine a probabilidade de, entre esses alunos, haver no mínimo três que estão inscritos em Aplicações Informáticas ou Biologia.

Apresente o resultado com aproximação às milésimas.

4. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{2x^2 - 2x - 12}{x^2 - 3x} & \text{se } x > 3 \\ k & \text{se } x = 3, \text{ onde } k \in \mathbb{R} \\ \frac{5 - \sqrt{16 + x^2}}{3 - x} & \text{se } x < 3 \end{cases}$$

Resolva os itens seguintes, sem recorrer à calculadora.

4.1. Qual é a equação reduzida da reta tangente ao gráfico de f no ponto de abcissa 4?

(A)
$$y = -\frac{1}{4}x + 3$$

(B)
$$y = -\frac{1}{4}x + 4$$

(C)
$$y = \frac{14}{5}x + 3$$

(D)
$$y = \frac{14}{5}x - \frac{41}{5}$$

4.2. Mostre que não existe nenhum valor real k para o qual a função f seja contínua em x=3.

4.3. Estude a função f quanto à existência de assíntotas horizontais ao seu gráfico e, caso existam, escreva as respetivas equações.

5. Seja f a função definida, em \mathbb{R}^+ , por $f(x) = \ln(x)$.

Seja (u_n) a sucessão de termo geral $u_n = \frac{a}{n} + \left(\frac{n+a}{n}\right)^n$, onde a é um número natural.

A que é igual $\lim f(u_n)$?

(B)
$$a + 1$$

(C)
$$e^a$$

6. Seja a um número real positivo.

Na figura está representada, num referencial o.n. Oxy, parte do gráfico da função f definida, em $\left]-\infty, \frac{2}{a}\right[$, por $f(x)=a+\ln(2-ax)$. Sabe-se que:

- o ponto A pertence ao gráfico de f e ao eixo Oy;
- o ponto B pertence ao gráfico de f e ao eixo Ox;
- o ponto *0* é a origem do referencial.

Mostre, por processos exclusivamente analíticos, que existe, pelo menos, um número real a, pertencente ao intervalo $\left[\frac{1}{2},1\right[$, para o qual o triângulo $\left[AOB\right]$ é isósceles.

Se utilizar a calculadora, em eventuais cálculos numéricos, sempre que proceder a arredondamentos, conserve três casas decimais.

7. Ao largo da costa portuguesa, um petroleiro encalhou e começou a derramar crude.

Admita que a área S, em quilómetros quadrados, da mancha de crude no oceano, t horas após o instante em que o derrame foi detetado, é dada por:

$$S(t) = \frac{20t^3 + t\sqrt{t} + 1}{0.2t^3 + 10\sqrt{t} + 1}$$
, com $0 \le t \le 24$

- **7.1.** Qual é, com aproximação às unidades, a percentagem de aumento da área da mancha de crude no oceano, na primeira hora após o derrame ter sido detetado?
 - (A) 96%
- **(B)** 196%
- **(C)** 49%
- **(D)** 149%
- **7.2.** Existe um instante t_1 , a partir do qual, passadas duas horas, a área da mancha de crude triplicou.

Determine, recorrendo à calculadora, o valor desse instante t_1 , sabendo-se que existe e é único. Apresente o resultado em horas e minutos (com os minutos arredondados às unidades). Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente a(s) coordenada(s) do(s) ponto(s) relevante(s) arredondada(s) às milésimas.
- **8.** Seja g a função, de domínio $\mathbb{R} \setminus \{0\}$, definida por:

$$g(x) = \begin{cases} 2023x - 2\cos^2 x + 2 & \text{se } x < 0\\ \frac{5e^{2x}}{2} - 11e^x + x - \ln 2 & \text{se } x > 0 \end{cases}$$

Resolva os itens seguintes sem recorrer à calculadora.

8.1. Estude a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão no intervalo $]-\pi,0[$.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem a concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem a concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de g, caso exista(m).
- **8.2.** Considere, em referencial o.n. 0xy, o gráfico da função g.

Considere, no intervalo $]0,+\infty[$, o ponto A, ponto do gráfico da função g em que a reta tangente ao gráfico da função é paralela à bissetriz dos quadrantes pares.

Mostre que a ordenada do ponto $A \in -12$.

9. Seja k um número real não nulo, e seja f a função definida, em R⁺, por f(x) = kx². Considere dois pontos A e B do gráfico de f, sendo A o ponto de menor abcissa. Considere, também, o ponto desse gráfico em que a reta tangente ao gráfico é paralela à reta AB. Mostre que, para qualquer valor de k, as abcissas dos três pontos são termos consecutivos de uma progressão aritmética.

FIM COTAÇÕES

Item														
Cotação (em pontos)														
1.	2.	3.1	3.2	4.1	4.2	4.3	5.	6.	7.1	7.2	8.1	8.2	9.	Total
10	10	16	16	10	16	16	10	16	10	18	16	18	18	200