Elaborati estesi OMNeT++

Giuseppe Testa Luigi Fontana

Variante 1

Eseguire simulazioni al variare della priorità assegnata ad ogni flusso da 0 a 7.

Priorità statica scelta casualmente per ogni flusso a inizio simulazione.

Stessa priorità per tutta la simulazione

Più simulazioni possibili con seed diversi (minimo 5000 simulazioni.)

Durata simulazione = 2 x mcm(periodi_flussi).

File csv risultante per ogni flusso:

NomeFlusso; Src; Dst; periodo; deadline relativa; payload; burst; sw1; sw2; priorità; DMR; Max(e2eDelay); Avg(e2eDelay); numRxFrames;

<u>Implementazione</u>

- La priorità viene scelta casualmente all'inizio di ogni simulazione tramite la funzione intuniform() nel campo priority del file omnetpp.ini, che assegna una probabilità con una distribuzione discreta uniforme, dai valori che variano da 0 a 7. Sono stati settati nel file omnetpp.ini diversi campi:
 - Num-rngs → indica il numero di generatori di numeri casuali;
 - Rng-class = omnetpp::cMersenneTwister → indica la classe di default per la generazione di numeri casuali;
 - Repeat → indica il numero di ripetizioni di una simulazione;
 - Seed-set → Seleziona il k-esimo set automatic random number seeds for the simulation. Valore del seme necessario alla generazione dei numeri casuali. Questo valore cambia al variare del numero della simulazione;
 - Sim-time-limit \rightarrow indica il tempo limite di simulazione.

<u>Implementazione</u>

```
4 #Source
5 num-rngs = 10
6 rng-class = omnetpp::cMersenneTwister
7 repeat = 500
8 seed-set = ${runnumber}
9 sim-time-limit = 5s
```

- Sono state effettuate 5000 simulazioni, 500 per volta, generando un totale di 10 file CSV.
- Per ottimizzare tempistiche e spazio in memoria fisica ogni simulazione dura 5 secondi.
- È stata tentata una analisi dei dati tramite script python, tuttavia il processo veniva terminato dal sistema operativo. Per ovviare è stato scelto di analizzare i dati su di un file più piccolo con all'interno 100 simulazioni.

Esempio file CSV

- 1	NomeFlusso	Src	Dst	periodo	deadlineRelativa	payload	burst	sw1	sw2	priorità	DMR	Maxe2eD	Avge2eD	numRxFrames	numeroSimulazione
2	MES1	ME	S1	0.00025	0.00025	80	1	SI	SI	3		0.000002544	0.000002544	1	0
3	US2CU	US2	ÇŲ	0.1	0.1	188	1	SI	NO	7		0.000003424	0.000003424	1	0
4	US4CU	US4	ÇŲ	0.1	0.1	188	1	SI	SI	7		0.000005232	0.000005232	1	0
5	US1CU	US1	ÇŲ	0.1	0.1	188	1	SI	NO	3		0.00000704	0.00000704	1	0
6	US3CU	US3	ÇŲ	0.1	0.1	188	1	SI	SI	1		0.000008848	0.000008848	1	0
7	TLMHU	TLM	HŲ	0.000625	0.000625	600	1	SI	SI	0		0.000015424	0.000015424	1	0
8	LD2CU	LD2	ÇŲ	0.0014	0.0014	1300	1	SI	NO	5		0.000021216	0.000021216	1	0
9	LD1CU	LD1	ÇŲ	0.0014	0.0014	1300	1	SI	NO	0		0.00003192	0.00003192	1	0
10	TLMCU	TLM	ÇŲ	0.000625	0.000625	600	1	SI	SI	0		0.000037024	0.000037024	1	0
11	MES1	ME	S1	0.00025	0.00025	80	1	SI	SI	5		0.000002544	0.000002544	1	18
12	MES3	ME	S3	0.00025	0.00025	80	1	NO	SI	7		0.00000264	0.00000264	1	18
13	US2CU	US2	ÇŲ	0.1	0.1	188	1	SI	NO	6		0.000003424	0.000003424	1	18
14	US4CU	US4	ÇŲ	0.1	0.1	188	1	SI	SI	6		0.000005232	0.000005232	1	18
15	US1CU	US1	ÇŲ	0.1	0.1	188	1	SI	NO	5		0.00000704	0.00000704	1	18
16	US3CU	US3	ÇŲ	0.1	0.1	188	1	SI	SI	1		0.000008848	0.000008848	1	18
17	TLMHU	TLM	HŲ	0.000625	0.000625	600	1	SI	SI	4		0.000015424	0.000015424	1	18
18	LD2CU	LD2	ÇŲ	0.0014	0.0014	1300	1	SI	NO	3		0.000021216	0.000021216	1	18
19	TLMCU	TLM	ÇŲ	0.000625	0.000625	600	1	SI	SI	6		0.00002632	0.00002632	1	18
20	LD1CU	LD1	ÇŲ	0.0014	0.0014	1300	1	SI	NO	5		0.000037024	0.000037024	1	18
21	MES1	ME	S1	0.00025	0.00025	80	1	SI	SI	6		0.000002544	0.000002544	1	30
22	US2CU	US2	ÇŲ	0.1	0.1	188	1	SI	NO	1		0.000003424	0.000003424	1	30
23	US3CU	US3	ÇŲ	0.1	0.1	188	1	SI	SI	7		0.000005232	0.000005232	1	30
24	US4CU	US4	ÇŲ	0.1	0.1	188	1	SI	SI	3		0.00000704	0.00000704	1	30
25	US1CU	US1	ÇŲ	0.1	0.1	188	1	SI	NO	2		0.000008848	0.000008848	1	30
26	TLMHU	TLM	HŲ	0.000625	0.000625	600	1	SI	SI	6		0.000015424	0.000015424	1	30
27	LD2CU	LD2	ÇŲ	0.0014	0.0014	1300	1	SI	NO	5		0.000021216	0.000021216	1	30
28	TLMCU	TLM	ÇŲ	0.000625	0.000625	600	1	SI	SI	4		0.00002632	0.00002632	1	30
29	LD1CU	LD1	ÇŲ	0.0014	0.0014	1300	1	SI	NO	2		0.000037024	0.000037024	1	30
30	LD2CU	LD2	ÇŲ	0.0014	0.0014	1300	1	SI	NO	5		0.000021216	0.000021216	2	0
31	LD1CU	LD1	ÇŲ	0.0014	0.0014	1300	1	SI	NO	0		0.00003192	0.00003192	2	0
32	MERS1	ME	RS1	0.03333	0.03333	1500	119	NO	SI	7		0 0.001477232	0.000751296	119	0
33	CM1HU	CM1	ΗŲ	0.01666	0.01666	1500	119	SI	NO	4		0.0014796	0.000753664	119	0
34	TLMCU	TLM	ÇŲ	0.000625	0.000625	600	1	SI	SI	0	0.333333	0.000869912	0.000453468	2	0
35	TLMCU	TLM	ÇŲ	0.000625	0.000625	600	1	SI	SI	0	0.2	0.000869912	0.000387352	3	0
36	CUHU	ÇŲ	HŲ	0.01	2	1500	7	SI	NO	3		0 0.001627248	0.001555181714	7	0
37	LD2CU	LD2	ÇŲ	0.0014	0.0014	1300	1	SI	NO	3		0 0.000021216	0.000021216	2	18
38	LD1CU	LD1	ÇŲ	0.0014	0.0014	1300	1	SI	NO	5		0.000037024	0.000034472	2	18

- I file .csv sono stati memorizzati tramite algoritmo scritto in c++ dentro il metodo handleMessage() della classe BurstApp.cc.
- Il numero delle simulazioni viene inserito in tabella talvolta non in ordine, poiché è stato sfruttato un processore multithread.

<u>Implementazione</u>

- In alto lo screen della configurazione per le prime 500 simulazioni.
- Codesta configurazione è stata modificata più volte fino a raggiungere un numero di simulazioni pari a 5000.

<u>Analisi dei Dati</u>

- È stata fatta una analisi relativa al numero massimo di frame ricevute suddivise per NomeFlusso considerando 100 simulazioni.
- I dati sono stati trattati grazie ad uno script in python e I risultati sono stati memorizzati all'interno di un file csv.
- In seguito da questo file è stato preso in considerazione il flusso di nome CM1HU ed è stato plottato in matlab tramite la funzione stem().

Analisi dei Dati

• Si nota che per il flusso selezionato no vi sono vistosi cambiameni nel quantitativo di frame ricevute.