

United International University

School of Science and Engineering

Quiz#05; Year 2021; Semester: Summer Course: PHY 105; Title: Physics Full Marks: 20; Section: A; Time: 30 minutes

Name: ID: Date:	Name:	ID:	Date:
---------------------	-------	-----	-------

1. The potential difference applied to the input terminals is V=14.5 V. Given, C_1 =10 μ F, C_2 =5 μ F, C_3 =2.5 μ F. Find out (i) the equivalent capacitance C_{123} and (ii) the charge on C_2 .

2. Capacitor C_1 =3.55 mF is charged to a potential difference V_0 =6.30 mV using a battery. The battery is removed and capacitor is connected as in following figure to an uncharged capacitor C_2 . When switch S is closed, charge flows between the capacitors until they have the same potential difference V=3.79 mV. Calculate the capacitance at C_2 .

3. An isolated conducting sphere has a capacitance $C=4\pi \in_0 R$ and of diameter D=15.85 cm with charge q=1.25 fC. (i) How much potential energy is stored in the electric field of the charged conductor? (ii) Find out the energy density at the surface of the sphere. [Given, $\in_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$]

4. Determine the equivalent capacitance C_{eq} of the below circuit. Given V=100V, C_1 =10 μ F, C_2 =15 μ F, C_3 =20 μ F, and C_4 =25 μ F.

5. Suppose you have a 6.0 V battery, a 5.00 μ F capacitor, and a 9.40 μ F capacitor. (i) Find the charge and (ii) energy stored, if the capacitors are connected to the battery in parallel.