Diversidade da paisagem

A diversidade da paisagem é uma métrica composta pelas médias de Z-scores da variedade de landforms, amplitude altitudinal, índice de áreas úmidas e diversidade de solo. A métrica é composta por uma média hieráquica das variáveis (Figura). A seguir, descreveremos como cada variável que compõe a métrica é criada e como elas são combinadas para formar a diversidade da paisagem. As análises de diversidade da paisagem foram realizadas no Google Earth Engine (Gorelick et al. 2017) devido a demanda computacional, sua escalabilidade, a possibilidade de reprodução das análises.

Base de dados

Nós utilizamos o modelo digital de elevação (DEM) do Merit-DEM (Yamazaki et al. 2017), na escala de 90 m, como base para os cálculos de terreno como declividade, orientação do relevo e índice de posição topográfica (TPI). Esse DEM é um produto em escala global, permitindo a replicabilidade das análises em outras regiões, e possui correções de vários viéses derivados de imagens de satélite, principalmente em áreas com alta densidade de florestas como a floresta Amazônica. Além disso, o Merit-DEM já possui uma camada de acúmulo de fluxo, em escala global, disponível no Merit-Hydro (Yamazaki et al. 2019). Essa camada de acúmulo de fluxo possui correções para áreas planas e para o efeito da densidade de árvores no cálculo da rede hidrográfica (Yamazaki et al. 2019), que são importantes para a análise de florestas tropicais com alta densidade de árvores.

O acúmulo de fluxo não captura bem a distribuição e área de lagos e rios largos como o rio Amazonas. Desta forma, nós incluímos a **classe 33** do MapBiomas **Coleção 7** (MapBiomas Project 2020), que representa os rios e lagos para complementar as informações sobre as áreas úmidas. O MapBiomas é um projeto nacional de mapeamento e classificação de mudanças do uso do solo dos últimos 30 anos, a partir de dados de sensoriamento remoto.

Variedade de landforms

A variedade de landforms é a quantidade de formas de relevo dentro de uma vizinhança da célula focal. Primeiro classificamos as formas de relevo e em seguida contabilizamos a quantidade de formas no entorno de cada célula.

Classificação das landforms

As formas de relevo representam a variação na umidade, exposição à radiação solar, velocidade de ventos e deposição de sedimentos na paisagem (Dobrowski 2011, Anderson et al. 2016). Essa classificação é determinada pelas variáveis de **declividade do relevo** (slope), **orientação do relevo** (aspect), **índice de posição topográfica** (topographic position index), **índice de umidade** (moisture index) e a distribuição de rios e lagos. A combinação dessas variáveis determinam os topos de montanhas e vales, áreas íngremes ou planas, orientação do relevo com mais sombra ou incidência solar, áreas secas ou úmidas dado o acúmulo de fluxo, declividade do relevo e a presença de lagos e rios (Figura 1). A classificação foi baseada em estudos anteriores (Fels e Matson 1996, Anderson et al. 2012, 2014, 2016, 2023) para a América do Norte (https://crcs.tnc.org/pages/land).

Modificações foram feitas em relação aos estudos anteriores. O cálculo da posição topográfica foi substituído entre o landscape position index (LPI) (Anderson et al. 2012) por topographic position index (Weiss 2001). A orientação do relevo (faces quentes ou frias) foi ajustada para o Hemisférios Sul. A classificação das landforms foi ajustada para valores de TPI e índice de umidade que melhor classificavam as formas de relevo das paisagens analisadas.

Figura 1: Classificação de landforms de acordo com a declividade do relevo, índice de posição topográfica, orientação do relevo, índice de úmidade, rios e lagos. Baseado na classificação de Anderson et al. (2016).

* Declividade do relevo (slope)

A declividade do relevo foi calculada pela função ee.Terrain.slope, como um gradiente local das 4 células adjacentes. Os resultados são apresentado em graus de declividade (0º a 90º).

* Orientação do relevo (aspect)

A orientação do relevo foi calculada pela função ee.Terrain.aspect, como um gradiente local das 4 células adjacentes. Os resultados são apresentados em graus da direção do relevo (0° = Norte, 90° = Leste, 180° = Sul e 270° = Oeste). Nós dividimos a orientação do relevo em dois grupos, baseados na quantidade de incidência solar, sendo células com valores entre 90° e 270° classificados como faces frias e valores entre 0° a 90° e 270° a 360° , classificados como faces quentes.

* Índice de posição topográfica (TPI)

O cálculo do TPI foi feito em três escalas com uma janela circular com 7, 11 e 15 células de raio, calculando a soma da diferença da elevação da célula focal para as suas vizinhas (i), divididos pelo número de células vizinhas (n).

$$TPI = \frac{\sum_{i}^{n} (vizinhana_{i} - focal)}{n}$$

O índice é composto pela média de TPI das três escalas, o que permite a consideração de níveis locais e regional de resolução da paisagem (Theobald et al. 2015). Essa abordagem foi implementada para permitir a classificação de formas de relevo que emergem tanto em escalas locais (ex. vales, topos de montanhas) quanto regionais (ex. topos planos de Chapadas) (Fels e Matson 1996). Os tamanhos das janelas foram ajustados visualmente para que representassem as formas de relevo.

* Índice de umidade (moisture index)

O índice de umidade (*moisture index*) foi calculado com base no **acúmulo de fluxo** do Merit-Hydro e a **declividade do relevo** que calculamos anteriormente.

$$moisture.index = \frac{\log{(fluxo+1)}}{(slope+1)} \times 1000$$

Após o cálculo do índice de umidade para cada célula, suavizamos o padrão de distribuição da rede de drenagem como a média do índice dentro de uma janela circular com uma célula de raio.

* Transformando os índices em classes

Cada índice (TPI, declividade, orientação e índice de úmidade) foi transformado em classes (Tabela 1) para formarem os tipos de landforms. Os ajustes dos limiares de TPI e índice de umidade foram definidos visualmente. Classificamos como áreas úmidas somente células com índice de umidade acima de 3000, uma vez que valores menores superestimavam a distribuição de corpos d'água em áreas planas. Depois combinamos o mapa de áreas úmidas com o dado de água e lagos do MapBiomas. A declividade e orientação do relevo seguiram a classificação em Anderson et al. (2016), mas a orietanção do relevo foi ajustada para o Hemisfério Sul.

Tabela 1: Classes dos índices usados para a classificação de landforms

Variáveis	Classes	Limiar inferior	Limiar superior
Declividade do relevo	1	-1	2
Declividade do relevo	2	2	6
Declividade do relevo	3	6	24
Declividade do relevo	4	24	35
Declividade do relevo	5	35	90
TPI	1	-Inf	-15
TPI	2	-15	-1
TPI	3	-1	30
TPI	4	30	975
Orientação	2	0	90
Orientação	1	90	270
Orientação	2	270	360
Índice de Umidade	0	-Inf	30000
Índice de Umidade	1	3000	Inf

* Combinando as variáveis e classificando as landforms

As classes de cada variável foram combinadas para representar as landforms como um código numérico. A classe do índices de umidade foi multiplicado por 1000, orientação do relevo por 100, TPI por 10 e declividade do relevo por 1. Por exemplo, o código 11 (0011) representa a primeira classe de declividade (áreas de baixa declividade) e a primeira classe de TPI (posição do relevo mais alta que o entorno), sendo portanto um topo de montanha (summit). No entanto, alguns códigos tiveram que ser inspecionados visualmente para classificar apropriadamente alguns tipos de landforms, como sideslopes, valleys e toeslopes (Tabela 2).

Tabela 2: Combinações entre as variáveis para classificar as formas de relevo

Código para Landform	Valores da Combinação
	10

Valores da Combinação	Código para Landforms
11	11
12	11
13	13
14	11
15	5
20	21
21	21
22	22
23	24
24	24
25	5
31	30
32	32
33	24
34	24
35	5
40	32
41	32
42	32
43	43
44	3
45	5
51	51
111	11
112	11
113	13
114	3
115	5
121	21
122	22
123	23
124 125	$\frac{3}{5}$
131	30
132	30
133	$\frac{32}{23}$
134	3
135	5 5
141	$\frac{3}{32}$
141 142	$\frac{32}{32}$
142	$\frac{32}{43}$
140	40

Valores da Combinação	Código para Landforms
144	3
145	5
151	51
211	11
212	11
213	13
214	4
215	5
221	21
222	22
223	24
224	4
225	5
231	30
232	32
233	24
234	4
235	5
241	32
242	32
243	44
244	4
245	5
251	51
1000	39

 ${\bf A}$ classificação final de landforms se encontra na Tabela 3.

Tabela 3: Códigos das formas de relevo obtidas após classificação das variáveis

Códigos	Nomes
3	Cool Steep Slope
4	Warms Steep Slope
5	Cliff
11	Summit/Ridgetop
13	Slope Crest
21	Flat Hilltop
22	Gentle Slope Hilltop
23	Cool Sideslope
24	Warm Sideslope

os Nor	nes
0 Dry Fl	ats
2 Valley/Toesle	ope
9 Moist Fl	ats
3 Cool Footsle	ope
4 Warm Sidesle	ope

* Gerando a variedade de landforms

A variedade de landforms foi calculada como a quantidade de tipos de landforms dentro de uma janela circular da célula focal. O tamanho do raio dda janela foi definido calculando a variedade em diferentes raios (2, 5, 7, 10, 15, 20 células) e calculando a diferença na média de variedade do Brasil a cada aumento de raio. O raio escolhido foi aquele em que o seu subsequente não adicionou variedade. Desta forma, o raio representa o nível de resolução da paisagem que captura o máximo de variedade de landforms. O raio escolhido foi de 5 células de raio (450 m) para todo o Brasil.

Amplitude altitudinal

A amplitude altitudinal representa a variação da elevação em uma região, independente da variedade de landforms. A amplitude altitudinal foi calculada como a diferença entre os valores máximos e mínimos de elevação, dentro de uma janela circular de 450 m (5 células de raio), a partir do MERIT-DEM (Yamazaki et al. 2017). Em seguida, fizemos uma Regressão Linear Simples (Ordinary Linear Regression) entre os valores de amplitude altitudinal e a variedade landforms e obtivemos os valores dos resíduos dessa análise como a amplitude altitudinal independente da variedade de landforms.

Diversidade de solo

A diversidade de solo foi calculada como a quantidade de tipos de solos dominantes e sub-dominantes nos polígonos de solo do Instituto Brasileiro de Geografica e Estatística (IBGE)(https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html). Depois essa informação foi rasterizada e projetada na mesma resolução espacial das variáves anteriores.

Índice de áreas úmidas

O índice de áreas úmidas foi calculado a partir dos dados da *Global Wetlands Database* (Gumbricht et al. 2017). Essa base de dados fornece informação e inventário de áreas úmidas no

mundo. Os dados são obtidos através de imagens de satélite, amostragens aéreas e relatórios publicados. Nós projetamos o mapa de áreas úmidas para a mesma resolução das outras variáveis. Depois, calculamos o índice de áreas úmidas considerando a densidade de áreas úmidas na escala local (450 metros) e na escala regional (1170 metros). Também foi incluído no índice a **quantidade de áreas úmidas** regional (Anderson et al. 2016).

Primeiro, calculamos a quantidade de áreas úmidas como o número de *células* de áreas úmidas dentro de uma *janela* regional (1170 m) e local (450 m). A divisão da quantidade de áreas úmidas pelo número de células na janela produz a **densidade de áreas úmidas**. Em seguida, as densidades de áreas úmidas local e regional e a quantidade de áreas úmidas regional foram transformados em *Z-scores*. Cada célula focal (X_{clula}) foi subtraída pela média da vizinhança (μ) e dividida pelo desvio padrão (σ) da vizinhança. A média e desvio padrão foram calculados dentro de uma vizinhança circular de 200 células de raio de cada célula focal.

$$Z_{clula} = \frac{X_{clula} - \mu_{vizinhana}}{\sigma_{vizinhana}}$$

O índice de áreas úmidas foi calculado como a média ponderada da densidade local e regional, atribuindo peso 2 para a densidade local:

$$Z_{ndice \; de \; reas \; midas} = \frac{(Z_{local} \times 2) + Z_{regional}}{3}$$

Nos locais onde a quantidade de áreas úmidas regionais (Z-score) eram maiores que o índice de áreas úmidas, o índice foi calculado como a média ponderada das densidades e da quantidade de áreas úmidas:

$$Z_{ndice \ de \ reas \ midas} = \frac{(Z_{local} \times 2) + Z_{regional} + Z_{quantidade}}{4}$$

A tranformação de *Z-score* foi aplicada também para a **variedade de** *landforms*, **amplitude de elevação** e **diversidade de solos** para compormos a diversidade da paisagem.

Diversidade da paisagem

A diversidade da paisagem foi calculada seguindo uma hierarquia nas variáveis. A diversidade da paisagem é definida como o *Z-score* da variedade de *landforms*. Em locais com maior *Z-score* para amplitude altitudinal que variedade de *landforms*, a diversidade da paisagem foi calculada como a média ponderada das duas variáveis, com peso 2 para variedade de *landforms*.

$$Z_{diversidade\ da\ paisagem} = \frac{\left(Z_{variedade\ de\ landforms} \times 2\right) + Z_{amplitude\ altitudinal}}{3}$$

Nos locais onde o índice áreas úmida é maior que a diversidade da paisagem calculada anteriormente, calculamos a média ponderada da diversidade da paisagem e índice de áreas úmidas, atribuindo peso dois para as áreas úmidas. O peso dobrado das áreas úmidas é justificado por esses locais estarem em áreas planas com baixa variabilidade topográfica, sendo as áreas úmidas a variável mais importante para determinar a variabilidade microclimática.

$$Z_{diversidade\ da\ paisagem} = \frac{Z_{variedade\ de\ landforms} + Z_{amplitude\ altitudinal} + (Z_{ndice\ de\ reas\ midas} \times 2)}{4}$$

Se a amplitude altitudinal não foi importante para a célula, calculamos assim:

$$Z_{diversidade\ da\ paisagem} = \frac{Z_{variedade\ de\ landforms} + (Z_{ndice\ de\ reas\ midas} \times 2)}{3}$$

Nas localidades onde o *Z-score* da diversidade de solo foi maior que a diversidade da paisagem anterior, os valores foram substituídos pela média ponderada das variáveis naquela localidade, com peso 2 para variedade de *landforms*.

$$Z_{diversidade\ da\ paisagem} = \frac{(Z_{variedade\ de\ landforms}\times 2) + Z_{amplitude\ altitudinal} + Z_{ndice\ de\ reas\ midas} + Z_{diversidade\ de\ semiliary}}{5}$$

Nas células onde o índice de áreas úmidas não foi importante:

$$Z_{diversidade\;da\;paisagem} = \frac{(Z_{variedade\;de\;landforms} \times 2) + Z_{amplitude\;altitudinal} + Z_{diversidade\;de\;solos}}{4}$$

Onde a amplitude altitudinal não foi importante:

$$Z_{diversidade\; da\; paisagem} = \frac{(Z_{variedade\; de\; land forms} \times 2) + Z_{ndice\; de\; reas\; midas} + Z_{diversidade\; de\; solos}}{4}$$

Localidades o somente a variedade de landforms havia sido importante:

$$Z_{diversidade\ da\ paisagem} = \frac{(Z_{variedade\ de\ landforms} \times 2) + Z_{diversidade\ de\ solos}}{3}$$

Anderson, M. G., M. Clark, A. P. Olivero, A. R. Barnett, K. R. Hall, M. W. Cornett, M. Ahlering, M. Schindel, B. Unnasch, C. Schloss, e D. R. Cameron. 2023. A resilient and

- connected network of sites to sustain biodiversity under a changing climate. Proceedings of the National Academy of Sciences of the United States of America 120:109.
- Anderson, M. G., M. Clark, e A. O. Sheldon. 2012. Resilient Sites for Terrestrial Conservation in the Northeast and Mid-Atlantic Region. Página 168. The Nature Conservancy, Eastern Conservation Science.
- Anderson, M. G., M. Clark, e A. O. Sheldon. 2014. Estimating climate resilience for conservation across geophysical settings. Conservation Biology 28:959–970.
- Anderson, M. G., M. Clark, e A. O. Sheldon. 2016. Resilient Sites for Terrestrial Conservation in Eastern North America. Conservation Biology 28:959–970.
- Dobrowski, S. Z. 2011. A climatic basis for microrefugia: The influence of terrain on climate. Global Change Biology 17:1022–1035.
- Fels, J. E., e K. C. Matson. 1996. A cognitively-based approach for hydrogeomorphic land classification using digital terrain models. National Center for Geographic Information; Analysis, Santa Fe, New Mexico, USA.
- Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, e R. Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.
- Gumbricht, T., R. M. Román-Cuesta, L. V. Verchot, M. Herold, F. Wittmann, E. Householder, N. Herold, e D. Murdiyarso. 2017. Tropical and subtropical wetlands distribution version 2.
- MapBiomas Project. 2020. Collection 7 of the Annual Series of Land Use and Land Cover Maps of Brazil.
- Theobald, D. M., D. Harrison-Atlas, W. B. Monahan, e C. M. Albano. 2015. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLOS ONE 10:e0143619.
- Weiss, A. C. 2001. Topographic position and landforms analysis. San Diego, CA, USA.
- Yamazaki, D., D. Ikeshima, J. Sosa, P. D. Bates, G. H. Allen, e T. M. Pavelsky. 2019. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resources Research 55:5053–5073.
- Yamazaki, D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O'Loughlin, J. C. Neal, C. C. Sampson, S. Kanae, e P. D. Bates. 2017. A high-accuracy map of global terrain elevations: Accurate Global Terrain Elevation map. Geophysical Research Letters 44:5844–5853.