Quadrilaterals

Proof.

Problem 1 Adapted from Ohio's 2017 Geometry released item 13. Two pairs of parallel lines intersect to form a parallelogram as shown.

Complete the following proof that opposite angles of a parallelogram are congruent:

- (a) $\angle 1 \cong \angle 2$ as (opposite angles/ alternate interior angles \checkmark / corresponding angles) for parallel lines (m and n \checkmark / k and l).
- (b) $\angle 3 \cong \angle 2$ as (opposite angles / alternate interior angles / corresponding angles \checkmark) for parallel lines (m and n/k and l \checkmark).
- (c) Then $\angle 1 \cong \angle 3$ because they are both congruent to $\angle 2$.

Problem 2 Adapted from Ohio's 2018 Geometry released item 21. Given the parallelogram WXYZ, prove that $\overline{WX} \cong \overline{YZ}$.

Author(s): Brad Findell

Fix note: It really would help to have an online environment that allows students to mark diagrams.

Complete the proof below:

- (a) $\angle ZWY \cong \angle XYW$ as (alternate interior angles $\sqrt{/}$ corresponding angles/opposite angles) for parallel segments (\overline{WZ} and \overline{XY} $\sqrt{/}$ \overline{WX} and \overline{YZ}).
- (b) $\angle ZYW \cong \angle XWY$ for the same reason, this time for parallel segments (\overline{WZ} and $\overline{XY}/\overline{WX}$ and \overline{YZ} \checkmark).
- (c) $\overline{WY} \cong \overline{YW}$ because a segment is congruent to itself.
- (d) $\triangle WYZ \cong \triangle YWX$ by $(SAS/ASA \checkmark/SSS)$.
- (e) Then $\overline{YZ} \cong \overline{WX}$ as corresponding parts of congruent triangles.

Fix note: Maybe number the angles.

Problem 3 Use symmetry to prove properties of parallelograms.

- (a) Let M be the midpoint of \overline{AC} , and let R be a 180° rotation about M.
- (b) Then R(A) = C and R(C) = A because a rotation about a point on a line takes the line to itself and preserves lengths.

- (c) Now a 180° rotation about M takes lines not containing M to parallel lines. Thus, the uniqueness of parallels implies that the parallel sides of the parallelogram must swap.
- (d) Furthermore, the image of their intersections must be the intersection of their images, which means that R(B) = D and R(D) = B.
- (e) Therefore, R maps the parallelogram onto itself, which implies that
 - opposite sides are congruent, and
 - opposite angles are congruent.
- (f) Because R is a 180° rotation, \overrightarrow{MB} and \overrightarrow{MD} are opposite rays, so that B, M, and D are collinear.
- (g) Because R preserves lengths, MB = MD, so that M is also the midpoint of \overline{BD} , which means that the diagonals bisect each other.