Notes from Tuesday

Week 11: Best Approximation and Least Squares

Dr Niall Madden

15 and 18 November, 2022

These slides are adapted (slightly) from ones by Tobias Rossmann.

Outline

- 1 Part 1: Preview and Review
 - Assignments
 - Preview
 - Review
- 2 Part 2: Orthogonal Matrices
 - Orthonormal

- Orthonormal Basis
- Orthogonal Matrix
- 3 Part 3: Best Approximation
- 4 Part 4: Least Squares Problems
 - Normal equations
 - Example
- 5 Exercises

For more details,

- Section 6.3 (Best Approximation) and 6.6 (Least Squares) in Lay et al: https://nuigalway-primo.hosted.exlibrisgroup.com/permalink/f/ 1pmb9lf/353GAL_ALMA_DS5192067630003626
- Chapters 10 and 11 of Linear Algebra for Data Science https://shainarace.github.io/LinearAlgebra/leastsquares.html

Part 1: Preview and Review

MA313

Week 11: Best Approximation and Least Squares

Start of ...

PART 1: Announcements and Preview of Week 11

Assignment 5

Assignment 5 opened on Thursday 10 Nov). Deadline is 5pm, Friday, 25th of November.

Communication Skills: Next steps...

- ► Instructions at https://www.niallmadden.ie/ 2223-MA313/22_23_Communication_Skills.pdf have been updated.
- ▶ Deadline is 5pm Friday, 18 November.
- ▶ Presentations will be during the week 21–25 November:
 - ▶ Monday at 12.00 in AC204 (i.e., MA335 class time)
 - ► Tuesday at 13.00 in AC202 (i.e., MA313 class time)
 - ► Thursday at 12.00 in IT206 (i.e., MA313 tutorial time)

Next week

- Tuesday's and Thursdays classes will be used for presentations.
- ► Friday's class will be used to review the module and preview the exam.
- ▶ I'll also provide some sample exam-type questions, with solutions, and video.

The big ideas from this week will be solving Least Squares Problems.

- ▶ Why it is that the orthogonal projection is the best solution.
- ► How to find it.

These are the essential ideas from recent lectures that you need for this week.

► The **INNER PRODUCT** of vectors u and v in \mathbb{R}^n is the real number given by

$$u \cdot v = u^T v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

- ▶ The **LENGTH** (or "Euclidian norm") of a vector $v \in \mathbb{R}^n$ is $\|v\| := \sqrt{v \cdot v} = \sqrt{v_1^2 + \dots + v_n^2}$. If $\|u\| = 0$ that means all the entries in u are zero.
- ▶ The **distance** between vectors $u, v \in \mathbb{R}^n$ is $||u v|| = u \cdot v = u^\top v$
- ▶ $u, v \in \mathbb{R}^n$ are orthogonal if $u \cdot v = 0$. We may write this as $u \perp v$.
- **Pythagorean Theorem:** If $u \perp v$, then $||u + v||^2 = ||u||^2 + ||v||^2$.

- ▶ Given a subspace, W, of \mathbb{R}^n , the vector $z \in \mathbb{R}^n$ is **orthogonal** to W if $z \perp w$ for all $w \in W$.
- ▶ In particular, given a matrix A, if z is orthogonal to Col A, then $a_j \perp z$ for a_j is column j of A. That is $a_j^\top z = 0$. Since this is true of any j, in fact $A^\top z = 0$.
- ► Every vector $v \in \mathbb{R}^n$ has a unique representation

$$v = \hat{v} + z$$
 for $\hat{v} \in W$, and $z \perp W$.

Part 2: Orthogonal Matrices

MA313

Week 11: Best Approximation and Least Squares

Start of ...

PART 2: Orthogonal Matrices

This is actually left over from last week... I'll skim through it.

Definition: ORTHONORMAL

The vectors $u_1, \ldots, u_p \in \mathbb{R}^n$ are **orthonormal** if they are orthogonal unit vectors. That is:

- $ightharpoonup u_i \perp u_j$ for all $i \neq j$. Equivalently, $u_i \cdot u_j = 0$ for all $i \neq j$.
- $\|u_i\|=1$ for all i.

Note: If u_1,\ldots,u_p are orthogonal and all non-zero, then $\frac{1}{\|u_1\|}u_1,\ldots,\frac{1}{\|u_p\|}u_p$ are orthonormal.

Definition: ORTHONORMAL BASIS

An **orthonormal basis** of a subspace W of \mathbb{R}^n is a basis of W that consists of orthonormal vectors.

Example: The standard basis of \mathbb{R}^n is orthonormal.

Theorem

Let A be an $n \times n$ matrix. Then the following are equivalent:

- (a) The columns of A form an orthonormal basis of \mathbb{R}^n .
- (b) $A^{\top}A = I_n = AA^{\top}$. (That is, A is invertible and $A^{-1} = A^{\top}$.)
- (c) $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^n$.
- (d) ||Ax|| = ||x|| for all $x \in \mathbb{R}^n$

Definition: ORTHOGONAL MATRIX

An $n \times n$ matrix A is **orthogonal** if $A^{T}A = I_n$ (in which case also $AA^{T} = I_n$).

Example

- ► Reflections: e.g. $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- ▶ Rotations: $\begin{bmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{bmatrix}$ for $\vartheta \in \mathbb{R}$, e.g. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

MA313

Week 11: Best Approximation and Least Squares

Start of ...

PART 3: Best Approximation

What are orthogonal projections used for?

Let W by a subspace of \mathbb{R}^n .

The **orthogonal projection** of a vector $v \in \mathbb{R}^n$ is denoted $\hat{v} = \operatorname{proj}_W v$. It has the property that $(v - \hat{v}) \perp W$.

Question

What are orthogonal projections good for?

Hint: take W to be a one-dimensional subspace of \mathbb{R}^2 .

Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n . Let

$$\operatorname{proj}_W \colon \mathbb{R}^n \to W, \quad v \mapsto \hat{v}$$

be the orthogonal projection onto W. Then for any $v \in \mathbb{R}^n$,

$$||v - \hat{v}|| \le ||v - w||$$
 for any $w \in W$,

with equality if and only if $w = \hat{v}$.

Hence: \hat{v} is the unique vector in W which minimises the distance from v.

Proof

- ▶ We want to show that $||v \hat{v}|| \le ||v w||$. for any $w \in W$.
- ▶ Since \hat{v} is the orthogonal projection of v onto W, we know that $(v \hat{v}) \perp W$.
- ▶ Also, both \hat{v} and w are in W, so $\hat{v} w \in W$.
- ▶ It follows that $(v \hat{v}) \perp (\hat{v} w)$.
- ► So we can apply Pythagoras' Theorem:

$$\|(v-\hat{v})+(\hat{v}-w)\|^2 = \|v-\hat{v}\|^2 + \|\hat{v}-w\|^2.$$

- ► That gives $||v w||^2 = ||v \hat{v}||^2 + ||\hat{v} w||^2$.
- ▶ But $\|\hat{v} w\| \ge 0$, so we can conclude $\|v w\|^2 \ge \|v \hat{v}\|^2$.

(Note: see diagram on next slide).

MA313

Week 11: Best Approximation and Least Squares

Start of ...

PART 4: Least Squares Problems

Motivation

Suppose that some *mathematical model* of a phenomenon predicts that it can be described by the equation of a line: $y = u_1 + u_2x$ for some unknown coefficients $u_1, u_2 \in \mathbb{R}$.

By taking **measurements**, we find points $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_N \\ y_N \end{bmatrix}$ that the line should fit. Due to measurement errors, there might not be any pair u_1, u_2 with $u_1 + u_2x_i = y_i$ for all $i = 1, \dots, N$. The system is usually **over determined**, meaning there are too many equations to be satisfied at the same time.

There is no solution for works for all equations, so we try to find the *best approximation*.

Example

Suppose we wanted to find the line, $y = u_1 + u_2x$ that best fits the data (1,2), (2,2), and (3,4). Write down a matrix-vector equation for this problem.

Equation is

$$u_1 + u_2 x = y$$
 $u_1 + u_2(i) = 2$
 $u_1 + u_2(2) = 2$
 $u_1 + u_2(3) = 4$

We would like to solve a problem Ax = b, meaning that we try to find x. If we could, then ||b - Ax|| = 0.

But there is no solution. So we try to find the \hat{x} that makes $A\hat{x} - b$ as small as possible.

Defn: LINEAR LEAST-SQUARES PROBLEM

Given an $m \times n$ matrix A and a vector $b \in \mathbb{R}^m$, the associated **linear least-squares problem** is to minimise the length of the **residual** (also called "approximation error"), $\|A\hat{x} - b\|$, to an exact solution "Ax = b" among all vectors $x \in \mathbb{R}^n$.

More formally: A **least-squares solution** of the system "Ax = b" is any $\hat{x} \in \mathbb{R}^n$ such that $||A\hat{x} - b|| \le ||Ax - b||$ for all $x \in \mathbb{R}^n$.

Questions

- 1. Is there always a choice of \hat{x} which minimises $||A\hat{x} b||$?
- 2. If so, how can we find it? [Normal Equation (s)]
- 3. Why is this called "least-squares"?

13. We we trying to minimize
$$||Ax-b||$$

If $z = Ax-b$, this is

$$\sqrt{z_1^2 + z_2^2 + \dots + z_n^2}$$

Let's explain this problem in terms of the terminology we've developed recently:

- 1. Solving Ax = b means we are trying to find the coefficients in x that allow us to express b as a linear combination of the columns of A.
- 2. If $b \notin Col A$, then there is no solution.
- 3. But Col A is a subspace of \mathbb{R}^n , so we can look at the orthogonal projection of b onto Col A. That is...

We wish to find $\hat{x} \in \mathbb{R}^n$ such that $A\hat{x}$ is the closest point to b within all of $\operatorname{Col} A$. By the Best Approximation Theorem, this means that

$$A\hat{x} = \operatorname{proj}_{\operatorname{Col} A}(b).$$

It follows that such an \hat{x} exists. But how can we find it?