

디지털논리회로 [Digital Logic Circuits]

13강.

레지스터와 카운터(2)

컴퓨터과학과 강지훈교수

제7장 | 레지스터와 카운터

카운터

- 동기식 카운터
- 시프트 카운터
- 카운터의 설계

C 제7장. 레지스터와 카운터

7.2 카운터

- 비동기식 카운터
 - 구조가 간단하고 동작이 단순
 - 동시에 트리거링 되지 않아 속도에 제약이 발생

- 앞 단 플립플롭의 출력이 다음 플립플롭의 클럭 입력으로 사용됨
- 이로 인해 전파 지연이 발생하고 모든 플립플롭이 동시에 상태가 바뀌지 않음

- 동기식 카운터
 - 모든 플립플롭에 클럭이 동시에 입력됨
 - 한번에 동작하여 속도가 향상됨
 - 2진 카운터
 - 모듈로-N 카운터

- 2진 카운터 2진 순서를 따르는 카운터
 - 4비트 동기식 2진 상향계수 카운터

• 4비트 동기식 2진 상향계수 카운터의 동작

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

- 2진 카운터의 현재 상태 $A_3A_2A_1A_0 = 0011$ 이라면, 다음 상태는 0100
 - ightharpoonup E = 1이면, A_0 는 클럭펄스가 입력될 때 마다 보수를 취하기 때문에 O이 됨
 - ▶ A₁은 A₀의 현재 상태가 1이기 때문에 보수를 취해 0이 됨
 - ▶ A₂는 A₁A₀ 의 현재 상태가 11 이므로 보수를 취해 1이 됨
 - ▶ A₃는A₂A₁A₀ 의 현재 상태가 011로 모두 1이 아니어서 0이 됨

- 모듈로-N 카운터
 - N개의 계수 순서(O, 1, 2, ..., N-1)를 반복하여 수를 세는 카운터
 - ・모드-N 카운터 라고도 함
 - 모듈로-16 카운터: 0~15까지 16개의 숫자를 순서대로 세는 카운터
 - 모듈로-10 카운터: 0~9까지 10개의 숫자를 순서대로 세는 카운터(BCD 카운터)

•모듈로-8카운터

• 0~7까지 순서대로 수를 세는 카운터

- ▶ 첫 번째 플립플롭 A₀는 매 클럭마다 보수
- ▶ 두 번째 플립플롭 A_1 는 A_0 가 1에서 O으로 바뀔 때 보수
- ▶ 세 번째 플립플롭 A₂ 는 A₀ 와 A₁ 가 1일 때만 보수

- 시프트 카운터
 - 시프트 레지스터의 동작을 응용한 카운터
 - 시프트 카운터의 예
 - 링 카운터
 - 존슨 카운터

• 링 카운터

• 출력 비트 중 한 비트만 1이 되고 입력 펄스에 의해 한쪽 방향으로 1의 위치가 순환

클럭인가수	Q_0	Q_1	Q_2	Q_3
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4(0)	1	0	0	0

• 링 카운터의 회로와 동작

- ▶ PR(Preset)과 클리어 신호로 첫 번째 플립플롭 Q₀를 1로, 나머지 플립플롭은 O으로 세팅
- ▶ 가장 첫 타이밍의 상태인 1000 신호가 시프트 동작에 의해 하강 클럭 때 마다 0100, 0010, 0001, 1000, ... 으로 자리 이동 수행
- ▶ 일반적으로 N 개의 플립플롭으로 구성된 링 카운터는 N 가지 출력 상태를 나타냄

- 링 카운터는 일반적으로 숫자 카운팅(0, 1, 2, 3...)을 수행하는 카운터가 아님
- 순차 제어를 위한 카운터이며, 일정한 순서에 맞춰 정해진 패턴을 생성하기 위해 사용됨
- 근데 왜 카운터라고 부를까?
 - 클럭이 들어올 때 마다 상태가 순차적으로 변하기 때문
 - 상태가 숫자 값을 직접 나타내지는 않지만 몇 번째 상태인지는 순서가 명확하게 카운터 됨

```
1000 → 0100 → 0010 → 0001 → 1000 ...
(1번째 → 2번째 → 3번째 → 4번째 → 1번째)
```


- 존슨 카운터
 - 링 카운터의 변형 방식
 - 다른 점은 첫 번째 플립플롭의 J, K 입력에 피드백 되는 네 번째 플립플롭의 Q와 \bar{Q} 가 반대로 연결

• 존슨 카운터의 회로와 동작

- ightharpoonup 클리어 신호에 의해 $Q_0Q_1Q_2Q_3=0000$
- ▶ 첫 번째 클럭에서 $\bar{Q} = 10$ 피드백 되어 첫 번째 플립플롭의 J = 10 되고 $Q_0Q_1Q_2Q_3 = 1000$
- ▶ 두 번째, 세 번째, 네 번째 클럭에서 $\bar{Q}=10$ 계속 피드백 되어 $Q_0Q_1Q_2Q_3$ 는 1100, 1110, 1111이 됨
- ▶ 다섯 번째 클럭에서 $\bar{Q} = 0$ 이 피드백 되어 J = 0이 되고 0111이 됨 이 후에는 계속 반복

- 존슨 카운터의 계수 동작
 - 존슨 카운터의 계수 동작은 링 카운터의 2배
 - 즉, N개의 플립플롭을 사용하면 2N개의 출력 상태를 표현할 수 있음

클럭인가수	Q_0	Q_1	Q_2	Q_3
0	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1
8(0)	0	0	0	0

- •동기식 카운터 설계는 순서논리회로의 설계와 동일
 - 동기식 설계 카운터의 예
 - 2진 카운터
 - BCD 카운터
 - 임의의 순서를 가진 카운터

• 2진 카운터의 설계(1)

• 주어진 상태도에서 상태표 작성

	현재	상태			다음	상태		플립플롭 입력							
A_3	A_2	A_1	A_0	A_3	A_2	A_1	A_0	J_{A_3}	K_{A_3}	J_{A_2}	K_{A_2}	J_{A_1}	K_{A_1}	J_{A_0}	K_{A_0}
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	×	0	×	1	×	×	1
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1
0	1	0	0	0	1	0	1	0	×	×	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	×
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	×
1	0	0	1	1	0	1	0	×	0	0	×	1	×	×	1
1	0	1	0	1	0	1	1	×	0	0	×	×	0	1	×
1	0	1	1	1	1	0	0	×	0	1	×	×	1	×	1
1	1	0	0	1	1	0	1	×	0	×	0	0	×	1	×
1	1	0	1	1	1	1	0	×	0	×	0	1	×	×	1
1	1	1	0	1	1	1	1	×	0	×	0	×	0	1	×
1	1	1	1	0	0	0	0	×	1	×	1	×	1	×	1

• 2진 카운터의 설계(2)

• 상태표에서 카르노 도표를 이용해 입력 방정식 유도(1)

	현재	상태			다음	상태				플	립플	롭 입	력		
A_3	A_2	A_1	A_0	A_3	A_2	A_1	A_0	J_{A_3}	K_{A_3}	J_{A_2}	K_{A_2}	J_{A_1}	K_{A_1}	J_{A_0}	K_{A_0}
0	0	0	0	0	0	0	1	0	×	0	×	0	×	1	×
0	0	0	1	0	0	1	0	0	×	0	×	1	×	×	1
0	0	1	0	0	0	1	1	0	×	0	×	×	0	1	×
0	0	1	1	0	1	0	0	0	×	1	×	×	1	×	1
0	1	0	0	0	1	0	1	0	×	×	0	0	×	1	×
0	1	0	1	0	1	1	0	0	×	×	0	1	×	×	1
0	1	1	0	0	1	1	1	0	×	×	0	×	0	1	×
0	1	1	1	1	0	0	0	1	×	×	1	×	1	×	1
1	0	0	0	1	0	0	1	×	0	0	×	0	×	1	×
1	0	0	1	1	0	1	0	×	0	0	×	1	×	×	1
1	0	1	0	1	0	1	1	×	0	0	×	×	0	1	×
1	0	1	1	1	1	0	0	×	0	1	×	×	1	×	1
1	1	0	0	1	1	0	1	×	0	×	0	0	×	1	×
1	1	0	1	1	1	1	0	×	0	×	0	1	×	×	1
1	1	1	0	1	1	1	1	×	0	×	0	×	0	1	×
1	1	1	1	0	0	0	0	×	1	×	1	×	1	×	1

A_3A_2	00	01	11	10						
00	1	×	×	1						
01	1	×	×	1						
11	1	×	×	1						
10	1	×	×	1						
$I_{\star} = 1$										

$$J_{A_0} = 1$$

A_3A_2	00	01	11	10
00	×	1	1	X
01	×	1	1	×
11	×	1	1	×
10	×	1	1	×

$$K_{A_0}=1$$

• 2진 카운터의 설계(3)

• 상태표에서 카르노 도표를 이용해 입력 방정식 유도(2)

$$J_{A_0}=1$$

$$K_{A_0} = 1$$

A_3A_2	00	01	11	10						
00	×	×	1							
01	×	×	1							
11	×	×	1							
10	×	×	1							
$K_{A_1} = A_0$										

A_3A_2	00	01	11	10					
00			1						
01	×	×	×	×					
11	×	×	×	×					
10			1						
I A A									

$$J_{A_2} = A_0 A_1$$

A_3A_2	00	01	11	10
00				
01			1	
11	×	×	×	×
10	×	×	×	×

$$J_{A_3} = A_0 A_1 A_2$$

A_3A_2 A_1A_0	00	01	11	10	
00	×	×	×	×	
01	×	×	×	×	
11			1		
10					
		_	<u>л</u>	1	

$$K_{A_3} = A_0 A_1 A_2$$

- 2진 카운터의 설계(4)
 - 입력 방정식을 이용해 논리회로도 작성

• BCD 카운터의 설계(1)

• 주어진 상태도에서 상태표 작성

	현재	상태			다음 상태				립플	롭 입	력	출력
A_3	A_2	A_1	A_0	A_3	A_2	A_1	A_0	T_{A_3}	T_{A_2}	T_{A_1}	T_{A_0}	Y
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	1	0	0	0	1	1	0
0	0	1	0	0	0	1	1	0	0	0	1	0
0	0	1	1	0	1	0	0	0	1	1	1	0
0	1	0	0	0	1	0	1	0	0	0	1	0
0	1	0	1	0	1	1	0	0	0	1	1	0
0	1	1	0	0	1	1	1	0	0	0	1	0
0	1	1	1	1	0	0	0	1	1	1	1	0
1	0	0	0	1	0	0	1	0	0	0	1	0
1	0	0	1	0	0	0	0	1	0	0	1	1

• BCD 카운터의 설계(2)

・상태표에서 카르노 도표를 이용해 입력 방정식 유도(9 이후의 입력은 무관조건)

	현재	상태			다음	상태		플	출력			
A_3	A_2	A_1	A_0	A_3	A_2	A_1	A_0	T_{A_3}	T_{A_2}	T_{A_1}	T_{A_0}	Y
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	1	0	0	0	1	1	0
0	0	1	0	0	0	1	1	0	0	0	1	0
0	0	1	1	0	1	0	0	0	1	1	1	0
0	1	0	0	0	1	0	1	0	0	0	1	0
0	1	0	1	0	1	1	0	0	0	1	1	0
0	1	1	0	0	1	1	1	0	0	0	1	0
0	1	1	1	1	0	0	0	1	1	1	1	0
1	0	0	0	1	0	0	1	0	0	0	1	0
1	0	0	1	0	0	0	0	1	0	0	1	1

$$T_{A_3} = A_0 A_3 + A_0 A_1 A_2$$

• BCD 카운터의 설계(3)

• 입력 방정식을 이용해 논리도 작성

$$T_{A_0} = 1$$
 $T_{A_1} = A_0 \overline{A_3}$ $T_{A_2} = A_0 A_1$ $T_{A_3} = A_0 A_3 + A_0 A_1 A_2$ $Y = A_0 A_3$

• BCD 카운터의 설계(4)

	현재	상태			다음	상태		i	출력			
A_3	A_2	A_1	A_0	A_3	A_2	A_1	A_0	T_{A_3}	T_{A_2}	T_{A_1}	T_{A_0}	Y
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	1	0	0	0	1	1	0
0	0	1	0	0	0	1	1	0	0	0	1	0
0	0	1	1	0	1	0	0	0	1	1	1	0
0	1	0	0	0	1	0	1	0	0	0	1	0
0	1	0	1	0	1	1	0	0	0	1	1	0
0	1	1	0	0	1	1	1	0	0	0	1	0
0	1	1	1	1	0	0	0	1	1	1	1	0
1	0	n	0	1	n	0	1	n	n	0	1	n
1	0	0	1	0	0	0	0	1	0	0	1	1

• 임의의 순서를 가진 카운터의 설계(1)

• 주어진 상태도에서 상태표 작성

현	재 싱	tell .	다음 상태			플립플롭 입력						
A	В	С	A	В	С	J_A	K_A	J_B	K_B	J_C	K_C	
0	0	0	0	0	1	0	×	0	×	1	×	
0	0	1	0	1	1	0	×	1	×	×	0	
0	1	0	-	-	-	#	#	#	#	#	#	
0	1	1	1	0	1	1	×	1	×	×	0	
1	0	0	-	-	-	#	#	#	#	#	#	
1	0	1	1	1	1	×	0	1	×	×	0	
1	1	0	-	_	-	#	#	#	#	#	#	
1	1	1	0	0	0	×	1	×	1	×	1	

계수 순서에서 빠진 최소항

• 임의의 순서를 가진 카운터의 설계(2)

• 상태표에서 카르노 도표를 이용해 입력 방정식 유도

현재 상태 다음 상태					EH	플립플롭 입력							
A	В	С	A	В	С	J_A	K_A	J_B	K_B	J _C	K_C		
0	0	0	0	0	1	0	×	0	×	1	×		
0	0	1	0	1	1	0	×	1	×	×	0		
0	1	0	-	-	-	#	#	#	#	#	#		
0	1	1	1	0	1	1	×	1	×	×	0		
1	0	0	-	-	-	#	#	#	#	#	#		
1	0	1	1	1	1	×	0	1	×	×	0		
1	1	0	-	-	-	#	#	#	#	#	#		
1	1	1	0	0	0	×	1	×	1	×	1		

• 임의의 순서를 가진 카운터의 설계(3)

• 입력 방정식을 이용해 논리회로도 작성

Summary Contents

13강 | 레지스터와 카운터(2)

01 동기식 카운터

- 동기식 2진 카운터
- 모듈로-N카운터

02 시프트카운터

- 링카운터
- 존슨카운터

03 카운터의 설계

디지털 + 논리회로

디지털논리회로 [Digital Logic Circuits]

14강 기억장치와 PLD(1)

