Név:

Hallgatói azonosító:

A 3 feladatsor kitöltésére háromszor 15, összesen 45 perc áll rendelkezésre. Összesen 82 pont érhető el. Az elégségeshez kb. 30% (24 pont) elérése szükséges. A vizsga során segédeszköz nem használható. Jó munkát!

Figyelem! A tesztfeladatok kitöltése során a rossz válasz -1 pontot ér.

1. feladatsor (34 pont)

1. feladat. (24 pont) Jelölje be, hogy Igaz, vagy Hamis-e az állítás (helyes válasz: 2 pont, hiányzó válasz: 0 poválasz: -1 pont) A színes jelek a javítást segítik, kérem ne használják!	ont, rossz válasz	r, vagy egyszerre 2
1) Egy nemnegatív valószínűségi változó négyzetgyökének feltételes várható értéke (fekisebb, mint a feltételes várható érték négyzetgyöke.	eltéve a Z valós	zínűségi változót)
2) A volászánősási változák konyláis megheténegze eszüttes elegzlásuket	⊠ Igaz	Hamis
2) A valószínűségi változók kopulája meghatározza együttes eloszlásukat.	⊠√□ <u>Igaz</u>	Hamis
3) Nemnegatív valószínűségi változók korrelációja meghatározza kopulájukat.		
4) A regresszióban a magyarázó változók által megmagyarázott variancia arányát a deter-	☑ ☑ Igaz Igaz Igaz Igaz Igaz Igaz	
	▼ Igaz	Hamis
5) A faktoranalízisben az első néhány faktor szórásnégyzetének összege az ezen faktoro arányát adja meg.	k által megmag	gyarázott variancia
6) A főkomponens analízisben az első néhány főkomponens szórásnégyzetének ös megmagyarázott variancia arányát adja meg.	⊠☑□ <i>Igaz</i> sszge ezen fők	
7) A lineáris regresszió a magyarázó változók exponensei (e ^{Xi}) és a válasz közti additív nem képes feltárni.	⊠	
	⊠ Igaz	Hamis
8 A regresszióban a legkisebb négyzetes becslés a predikciós hibát minimalizálja.		
	⊠√□ Igaz	Hamis
9) A regresszióban legkisebb négyzetes becslés a reziduálisok négyzetösszegét minimaliz	zálja.	
	⊠√□ Igaz	Hamis
10) A tolerancia azt méri, hogy az egyes magyarázó változóink tartalmaznak-e a többiekt	ől eltérő inform	nációt.
	⊠⊡ <i>Igaz</i>	Hamis
11) Cross validation-nal felmérhetjük, hogy a magyarázó változók információtartalma me	ennyire releván	s a válaszra nézve.
	⊠ Igaz	Hamis

12) A logisztikus regresszió jóságát a ROC görbe alatti terület nagyságával tudjuk jelényegesebb a feltárt kapcsolat.	llemezni; miné	él nagyobb, annál
	⊠ □ Igaz	Hamis
13) Az elsőrendű autoregressziós folyamat oksági stacionárius megoldása pontosan a abszolút értéke 1–nél kisebb.	ikkor létezik, l	ha paraméterének
	⊠ Igaz	Hamis
14) Diszkrét eloszlású zajból generálva diszkrét eloszlású az autoregressziós folyamat stac	cionárius mego	ldása is.
	⊠ Igaz	Hamis
	pont	
2. feladat (10 pont) Melyik teszttel vagy eljárással döntene a következő problémákról?		
Adja meg a helyes választ! (Egyetlen teszt vagy eljárás megnevezését fogadom csak el, mi 2 pont)	inden más 0 po	nt. Helyes válasz:
a) 100 tesztalany közül 50 férfi, 50 nő, a férfiak és a nők közül is 25-25 dohányzik. Mega vérnyomása. Eltérő módon hat-e a nők, ill. a férfiak magas vérnyomás kockázatára a dohá Válasz: Khi négyzet próba.	•	kinek van magas
	XVI	
b) Egy kísérletben 100-100-100-100 növénynek külön-külön bórt, magnéziumot, cinket, vasa egyféle kiegészítő tápanyagot kap), illetve egy ugyancsak 100-as kontrol csoport nem kap körülmények közt nevelik őket. Feljegyzik mennyit nőttek egy hét alatt. Hogyan állapítaná anyag?	kiegészítőt, és	egyébként azonos
Válasz: Két mintás t-próba		
Autógumi gyártmányfejlesztése során a gumi fékutjának hosszát mérik adott sebesség arányának függvényében. Egy-egy rögzített arány mellett 100 gumi fékhosszát jegyzik fel szeretnék meghatározni, a fékút, mint a komponensarány egy polinomiális függvénye min Hogyan illesszék az adott fokszámú polinomot az adatokra.	l. Az optimális	komponensarányt
Válasz: F-próba	XV	
d) Az előző példában milyen eljárással választaná ki a legjobb fokszámot.		
e) A városban 200 helyen mintát vesznek a csapvízből és elemzik azt nitritre, nitrátra, kemé és kloridtartalomra. Milyen eljárással próbálná besorolni a mintavételi helyeket a vízjelle pl. ezzel szennyeződést lokalizáljon)? Válaga: Wilka Lambda (MANOVA)		
Válasz: Wilks-Lambda (MANOVA)	XV 🗆	
	pont	
Összpontszám: pont		

Név:

Hallgatói azonosító:

2. feladatsor (30 pont)

1. felac	lat (14 pont)							
a) b)	sstípusok: chinégyzet c) gamma exponenciális d) normális elműen jelölje, hogy a <i>tanultak alapján</i> tipikusan melyik eloszlás	típus	s lép	o fel		f) alál	bb a	Wishart
•	Esemény első bekövetkezésének ideje: Esemény negyedik bekövetkezésének ideje: A Wilks λ eloszlása ennek segítségével számítható Sok, független, elemi véletlen hatás összegződéseként áll elő: Véletlen standard normális vektor hossznégyzete: Normális vektor kovariancia mátrixa becslésének eloszlása: Hotelling féle T² eloszlás határeloszlása:	a a a a a	b b b b b	c c	d	e	f f f f f	XV XV XV XV XV XV XV XV
2. felac	lat (6 pont)							
Próbák a)	: Kolmogorov-Szmirnov b) Cramér-von Mises						c)	Anderson-Darling
Egyérte	elműen jelölje, hogy a tanultak alapján melyik próba teszteli az e	losz	lás					
•	extrém értékeinek illeszkedését? szokásos/gyakori értékeinek illeszkedését? értékeinek tendenciózus eltérését?			a <mark>a</mark> a	b b b	c	;	
2 foloa	let (10 ment)							pont
S. Ieiac	lat (10 pont)							
Válass	za ki a helyes választ! (helyes válasz: 2 pont, hiányzó válasz: 0 po	ont, i	ross	z ve	ilas	z: -	1 po	ont)
Mi a te	sztek helyes erősorrendje kollineáris alternatíva mellett a MAN	OV.	A e	seté	n?			
b) c)	Wilks-Lambda ≤ Pillai ≤ Lawley-Hotelling ≤ Roy. Pillai ≤ Wilks-Lambda ≤ Lawley-Hotelling ≤ Roy. Roy ≤ Lawley-Hotelling ≤ Wilks-Lambda ≤ Pillai. Pillai < Lawley-Hotelling < Wilks-Lambda < Roy.							

Melyik a likelihood hányados teszt a MANOVA esetén

- a) Roy
- b) Pillai
- c) Wilks-Lambda
 d) Lawley-Hotelling

XV

 \times

A MANOVA esetén melyik teszt eloszlása áll elő, mint nem azonos, de független béta eloszlású valváltozók szorzatán eloszlása.
a) Roy b) Pillai c) Wilks-Lambda d) Lawley-Hotelling
Az egydimenziós szóráselemzés ANOVA esetén milyen próbával döntünk a nullhipotézisről
a) t-próba b) F-próba c) chi-négyzet próba d) U-próba INDESTRUCTION OF THE PROPERTY OF THE
Hogyan kapja meg a főkomponenseket?
 a) Az adatmátrix spektrálfelbontásából. b) Az adatok variancia-kovariancia mátrixának normált sajátvektoraiként. c) Az adatmátrix normált sajátvektoraiként. d) Az adatok variancia-kovariancia mátrixának QR felbontásában szereplő Q ortogonális mátrix oszlopvektoraiké (Gram-Schmidt ortogonalizáció).

pont

Összpontszám: pont

Név:

Hallgatói azonosító:

3. feladatsor (28 pont)

6. feladat (14 pont)

Válassza ki a helyes választ! (helyes válasz: 2 pont, hiányzó válasz: 0 pont, rossz válasz: -1 pont) 1 Hol lép fel a Wishart eloszlás?

- a) Normális vektor hosszára vonatkozó próbában
- b) Normális vektor várható értékére vonatkozó próbában
- c) Normális vektor likelihood becslésének eloszlásaként
- d) A főkomponensek meghatározásában

- 2 Honnan következik, hogy ha normális együttes eloszlású valváltozók korrelálatlanok, akkor függetlenek is?
 - a) Abból, hogy normális vektor lineáris leképezése normális vektor marad
 - b) A normális vektor sűrűségfüggvényének formulájából
 - c) Abból, hogy minden normális vektor független koordinátájúba forgatható
 - d) A normális vektor feltételes várható értékének linearitásából

- 3 Honnan következik, hogy szóráselemzésben (az alapfeltevések igaz volta mellett) jogos az F próba, mert a két szórásbecslés független "mintából" történik?
 - a) A Fisher-Cochran tételből
 - b) A Wishart eloszlás tulajdonságából
 - c) Normális vektor sűrűségfüggvényének formulájából
 - d) A variancia kovariancia mátrix spektrálfelbontásából

XV

- 4 Honnan következik, hogy együttesen normálisak feltételes várható értéke a feltétel lineáris függvénye
 - a) Abból, hogy normális vektor lineáris leképezése normális vektor marad
 - b) A normális vektor sűrűségfüggvényének formulájából
 - c) Abból, hogy minden normális vektor független koordinátájúba forgatható
 - d) Abból, hogy ha normális együttes eloszlású valváltozók korrelálatlanok, akkor függetlenek is

 $\mathbf{X}\mathbf{V}$

- 5 Mi a feltételes várható érték geometriai jelentése?
 - a) forgatás
 - b) projekció
 - c) skalárszorzat
 - d) eltolás

XV

- 6 Melyik mennyiség használható változó szelekcióra a regresszióban?
 - a) korreláció
 - b) kommunalitás
 - c) Akaike információs kritérium
 - d) Cook távolság

7 Melyik mennyiség használható outlier detektálására a regresszióban?

- a) korreláció
- b) kommunalitás
- c) Akaike információs kritérium
- d) Cook távolság

pont

Röviden válaszolja meg az alábbi kérdéseket.

Csak rövid, néhány mondatos, vagy egyszerű formulás válaszokat kérek/fogadok el.

7. feladat (4 pont)

Definiálja a Wishart eloszlást.

Legyen $S = ZZ^{T}$ egy p x p dimenziós pozitív-definit szimmetrikus véletlen mátrix. Ekkor S Wishart eloszlású, n szabadsági fokkal. $S \sim W_p(Szigma, n)$.

pont

8. feladat (4 pont)

Mi alapján választja meg a faktorok/ megtartott főkomponensek számát?

- a megtartottak magyarázzák a szórás egy adott százalékát
- nagyobb főkomponens szignifikancia tesztelésével
- kivesszük azokat melyek az átlagnál kisebb sajátértékekhez tartoznak
- kőomlás-diagrammon az első vagy második törésvonal utániakat hagyjuk el (nagyság szerint a sajátértékek csökkenő sorrend)

pont

9. feladat (6 pont)

Többváltozós problémákban mi a koordinátánként végzett tesztelés 3 fő problémája

pont

Összpontszám: pont