

Zerando apenas o termo DC (ponto central da TF)

A tonalidade é comprometida!

Filtros passa baixa

- Retira as componentes de alta frequência da imagem (que estão acima da frequência de corte D₀ definida na construção do filtro);
- Não há realce de nenhum componente espectral da imagem;
- Os mais comuns são: Ideal,
 Gaussiano e Butterworth.

Filtro passa baixa ideal

$$H(u,v) = \begin{cases} 1 & se \ D(u,v) \le D_0 \\ 0 & se \ D(u,v) > D_0 \end{cases}$$

- Todas as frequências acima da frequência de corte (D_0) são removidas da imagem;
- As frequências mais baixas que D_0 não são alteradas.

Filtro passa baixa ideal

Filtro passa baixa ideal
 (aumentando a frequência de corte)

Filtro passa baixa ideal

Função de Bessel

Filtro passa baixa gaussiano

$$H(u,v) = e^{\frac{-[D(u,v)^2]}{2D_0^2}}$$

- A frequência de corte (D_0) define o valor onde a amplitude do espectro é reduzida em 60,7%;
- Altas frequências são mais atenuadas quanto maior for seu valor comparado com D_0 , ou seja, o filtro possui transição mais suave que o filtro ideal;

 Filtro passa baixa gaussiano (aumentando a frequência de corte)

Filtro passa baixa Butterworth

$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)}{D_0}\right]^{2n}}$$

- A frequência de corte (D_0) define o valor onde a amplitude do espectro é reduzida em 50%;
- O valor de n (ordem do filtro) determina a "suavidade" do filtro;

Filtro passa baixa Butterworth (representação espacial, $D_0=5$)

 Filtro passa baixa Butterworth (aumentando a frequência de corte)

Filtro passa baixa

Gaussiano

Sutterworth (n = 2,25)

Filtros passa alta

- Retira as componentes de baixa frequência da imagem (que estão abaixo da frequência de corte D₀ definida na construção do filtro);
- Não há realce de nenhum componente espectral da imagem;
- Os mais comuns são: Ideal,
 Gaussiano e Butterworth.

Filtro passa alta

$$H(u,v) = \begin{cases} 0 & se \ D(u,v) \le D_0 \\ 1 & se \ D(u,v) > D_0 \end{cases} \quad \stackrel{\Box}{=} \quad$$

$$H(u,v) = 1 - e^{\frac{-[D(u,v)^2]}{2D_0^2}}$$

$$H(u, v) = \frac{1}{1 + \left[\frac{D_0}{D(u, v)}\right]^{2n}}$$

Filtro passa alta

Filtro passa/rejeita banda

Filtro passa/rejeita banda

Filtro seletivo (notch)

Filtro seletivo (notch)

Filtro seletivo (notch)

