Theory of Elasticity

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering 9 November, 2021

1

upcoming schedule

- Nov 9 Polar Coordinates
- Nov 11 Micromechanics Project Presentation
- Nov 12 Homework 7 Due
- Nov 16 Airy Stress Review
- Nov 18 Complex Methods

outline

- polar coordinates
- examples

polar coordinates

• Reduced strain-displacement:

$$\begin{split} \epsilon_r &= \frac{\partial u_r}{\partial r}, \epsilon_\theta = \frac{1}{r} \left(u_r + \frac{\partial u_\theta}{\partial \theta} \right), \epsilon_z = \frac{\partial u_z}{\partial z} \\ \epsilon_{r\theta} &= \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r} \right) \\ \epsilon_{\theta z} &= \frac{1}{2} \left(\frac{\partial u_\theta}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta} \right) \\ \epsilon_{zr} &= \frac{1}{2} \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right) \end{split}$$

4

strain-displacement

Which becomes

$$\begin{split} \epsilon_r &= \frac{\partial u_r}{\partial r} \\ \epsilon_\theta &= \frac{1}{r} \left(u_r + \frac{\partial u_\theta}{\partial \theta} \right) \\ \epsilon_{r\theta} &= \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r} \right) \end{split}$$

5

integration

 When we change variables in integration, we also need to account for the proper change in dV

$$dV = dxdydz \neq drd\theta dz$$

- We can find the correct dV by calculating the Jacobian

6

jacobian

$$dV = dxdydz = \left| \frac{\partial (x, y, z)}{\partial (r, \theta, z)} \right| drd\theta dz$$

$$dV = \begin{vmatrix} \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} dr d\theta dz = r dr d\theta dz$$

7

- The tensor equation for Hooke's Law is valid in polar/cylindrical/spherical coordinates too
- We only need special equations when differentiating or integrating

$$\begin{split} \sigma_{ij} &= \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij} - (3\lambda + 2\mu) \alpha \Delta T \delta_{ij} \\ \epsilon_{ij} &= \frac{1+\nu}{E} \sigma_{ij} - \frac{\nu}{E} \sigma_{kk} \delta_{ij} + \alpha \Delta T \delta_{ij} \end{split}$$

equilibrium

 We have already found the equilibrium equations in polar coordinates, they are

$$\begin{split} \frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{1}{r} (\sigma_r - \sigma_\theta) + F_r &= 0 \\ \frac{\partial \tau_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_\theta}{\partial \theta} + \frac{2}{r} \tau_{r\theta} + F_\theta &= 0 \end{split}$$

- The equilibrium equations can be written in terms of displacement (Navier equations)
- These are only useful when using a displacement formulation, but we are using stress functions
- Instead we need the Beltrami-Mitchell compatibility equations

compatibility

Substituting stress-strain relations into the compatibility equations gives

$$\begin{split} \nabla^2(\sigma_r + \sigma_\theta) &= -\frac{1}{1-\nu} \left(\frac{\partial F_r}{\partial r} + \frac{F_r}{r} + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} \right) \quad \text{(Plane Strain)} \\ \nabla^2(\sigma_r + \sigma_\theta) &= -(1+\nu) \left(\frac{\partial F_r}{\partial r} + \frac{F_r}{r} + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} \right) \quad \text{(Plane Stress)} \end{split}$$

airy stress functions

• When the body forces are zero, we find

$$\begin{split} \sigma_r &= \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} \\ \sigma_\theta &= \frac{\partial^2 \phi}{\partial r^2} \\ \tau_{r\theta} &= -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial \theta} \right) \end{split}$$

. .

airy stress functions

 When body forces are zero, we find the following biharmonic equation for the Beltrami-Mitchell equations

$$\nabla^4 \phi = 0$$

• Where the Laplacian is

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

polar coordinates

 Recall that an Airy Stress function must satisfy the Beltrami-Mitchell compatibility equations

$$\nabla^4 \phi = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}\right)^2 \phi = 0$$

• One method which gives several useful solutions assumes that the Airy Stress function has the form $\phi(r,\theta)=f(r)e^{b\theta}$

14

polar coordinates

• Substituting this into the compatibility equations (and canceling the common $e^{b\theta}$) term gives

$$f'''' + \frac{2}{r}f''' - \frac{1 - 2b^2}{r^2}f'' + \frac{1 - 2b^2}{r^3}f' + \frac{b^2(4 + b^2)}{r^4}f = 0$$

polar coordinates

To solve this, we perform a change of variables, letting r
 e ^\xi\$, which gives

$$f'''' - 4f''' + (4 + 2b^2)f'' - 4b^2f' + b^2(4 + b^2)f = 0$$

• We now consider f to have the form $f = e^{a\xi}$ which generates the characteristic equation

$$(a^2 + b^2)(a^2 - 4a + 4 + b^2) = 0$$

16

polar coordinates

This has solutions

$$a = \pm ib, \pm 2ib$$
OR
 $b = \pm ia, \pm i(a-2)$

polar coordinates

 If we consider only solutions which are periodic in θ, we find

$$\begin{split} \phi &= a_0 + a_1 \log r + a_2 r^2 + a_3 r^2 \log r \\ &+ \left(a_4 + a_5 \log r + a_6 r^2 + a_7 r^2 \log r\right) \theta \\ &+ \left(a_{11} r + a_{12} r \log r + \frac{a_{13}}{r} + a_{14} r^3 + a_{15} r \theta + a_{16} r \theta \log r\right) \cos \theta \\ &+ \left(b_{11} r + b_{12} r \log r + \frac{b_{13}}{r} + b_{14} r^3 + b_{15} r \theta + b_{16} r \theta \log r\right) \sin \theta \\ &+ \sum_{n=2}^{\infty} \left(a_{n1} r^n + a_{n2} r^{2+n} + a_{n3} r^{-n} + a_{n4} r^{2-n}\right) \cos n\theta \\ &+ \sum_{n=2}^{\infty} \left(b_{n1} r^n + b_{n2} r^{2+n} + a_{n3} r^{-n} + b_{n4} r^{2-n}\right) \sin n\theta \end{split}$$

polar coordinates

- \blacksquare For axisymmetric problems, all field quantities are independent of θ
- This reduces the general solution to

$$\phi = a_0 + a_1 \log r + a_2 r^2 + a_3 r^2 \log r$$

φ	σ_{rr}	$\sigma_{r\theta}$	$\sigma_{\theta\theta}$
r^2	2	0	2
$\log r$	$1/r^2$	0	$-1/r^{2}$
θ	0	$1/r^2$	0
$r^2 \log r$	$2 \log r + 1$	0	$2 \log r + 3$
$r^2\theta$	2θ	-1	2θ
$r^3 \cos \theta$	$2r\cos\theta$	$2r \sin \theta$	$6r\cos\theta$
$r^3 \sin \theta$	$2r \sin \theta$	$-2r\cos\theta$	$6r \sin \theta$
$r\theta \sin \theta$	$2\cos\theta/r$	0	0
$r\theta\cos\theta$	$-2\sin\theta/r$	0	0
$r \log r \cos \theta$	$\cos \theta / r$	$\sin \theta / r$	$\cos \theta/r$
$r \log r \sin \theta$	$\sin \theta / r$	$-\cos\theta/r$	$\sin \theta / r$
$\cos \theta/r$	$-2\cos\theta/r^3$	$-2\sin\theta/r^3$	$2\cos\theta/r^3$
$\sin \theta/r$	$-2\sin\theta/r^3$	$2\cos\theta/r^3$	$2\sin\theta/r^3$

Figure 1: table with pre-calculated airy stress terms in polar coordinates

polar coordinates

$r^4 \cos 2\theta$	0	$6r^2 \sin 2\theta$	$12r^2\cos 2\theta$
$r^4 \sin 2\theta$	0	$-6r^2\cos 2\theta$	$12r^2 \sin 2\theta$
$r^2 \cos 2\theta$	$-2\cos 2\theta$	$2 \sin 2\theta$	$2\cos 2\theta$
$r^2 \sin 2\theta$	$-2\sin 2\theta$	$-2\cos 2\theta$	$2 \sin 2\theta$
$\cos 2\theta$	$-4\cos 2\theta/r^2$	$-2\sin 2\theta/r^2$	0
$\sin 2\theta$	$-4 \sin 2\theta / r^2$	$2\cos 2\theta/r^2$	0
$\cos 2\theta/r^2$	$-6\cos 2\theta/r^4$	$-6 \sin 2\theta / r^4$	$6\cos 2\theta/r^4$
$\sin 2\theta/r^2$	$-6 \sin 2\theta / r^4$	$6\cos 2\theta/r^4$	$6 \sin 2\theta / r^4$
$r^n \cos n\theta$	$-n(n-1)r^{n-2}\cos n\theta$	$n(n-1)r^{n-2}\sin n\theta$	$n(n-1)r^{n-2}\cos n\theta$
$r^n \sin n\theta$	$-n(n-1)r^{n-2}\sin n\theta$	$-n(n-1)r^{n-2}\cos n\theta$	$n(n-1)r^{n-2}\sin n\theta$
$r^{n+2}\cos n\theta$	$-(n+1)(n-2)r^n \cos n\theta$	$(n+1)nr^n \sin n\theta$	$(n+2)(n+1)r^n \cos n\theta$
$r^{n+2} \sin n\theta$	$-(n+1)(n-2)r^n \sin n\theta$	$-(n+1)nr^n \cos n\theta$	$(n+2)(n+1)r^n \sin n\theta$
$\cos n\theta/r^n$	$-(n+1)n\cos n\theta/r^{n+2}$	$-(n+1)n\sin n\theta/r^{n+2}$	$(n+1)n\cos n\theta/r^{n+2}$
$\sin n\theta/r^n$	$-(n+1)n\sin n\theta/r^{n+2}$	$(n+1)n\cos n\theta/r^{n+2}$	$(n + 1)n \sin n\theta/r^{n+2}$
$\cos n\theta/r^{n-2}$	$-(n+2)(n-1)\cos n\theta/r^n$	$-n(n-1)\sin n\theta/r^n$	$(n-1)(n-2)\cos n\theta/r^n$
$\sin n\theta/r^{n-2}$	$-(n+2)(n-1)\sin n\theta/r^n$	$n(n-1)\cos n\theta/r^n$	$(n-1)(n-2)\sin n\theta/r^n$

Figure 2: continued table of polar coordinate airy stress terms

examples

tube under uniform pressure

pressurized hole

23

stress-free hole in tension

stress-free hole in tension

25

concentrated force

concentrated force

27

concentrated force

wedge

29

notch/crack

Figure 3: solution for a curved beam

rotating disk

Figure 4: rotating disk problem