

Recommending Music and the Audioscrobbler Data Set

Projet BDA | 19.06.2020 Ayrton Dumas, Marco Mattei, Samuel Torche

Introduction

Recommandation de musique

Utilisation de ALS: "Collaborative filtering"

Données

Artistes

```
10584546 Nislije
10584550 ONEYA BASSIVITYMIXTAPE
10584556 Grant Green / Osunlade
10584564 Jae Kwon
6953654 Gwen vs. Britney
```

Ecoutes utilisateurs

```
1000002 1000007 8
1000002 1000009 144
1000002 1000010 314
1000002 1000013 8
1000002 1000014 42
```

Alias des artistes

10000034	1042317
1195917	1042317
1112006	1000557
1187350	1294511
1116694	1327092

10000054 1042217

Questions d'analyse

- 1. Peut-on obtenir des résultats intéressants en utilisant des techniques de Market Basket Analysis telles que les règles d'association ?
- 2. Peut-on déduire les genres des musiques à l'aide d'un clustering des utilisateurs et leurs écoutes ?
- 3. Est-il possible de recommander non pas des artistes mais d'autres utilisateurs qui partagent les même goût avec ALS ?
 - => Est-il possible de recommander des utilisateurs qui ont des goûts similaires à un certain utilisateur en utilisant du clustering ?

MBA: Algorithme et optimisations

Preprocessing

FPGrowth: spark.ml.fpm.FPGrowth vs spark.mllib.fpm.FPGrowth

Tuning
$$Support = \frac{frq(X,Y)}{N}$$
 $Confidence = \frac{frq(X,Y)}{frq(X)}$

MBA - Evaluation

Trop de données -> subset arbitraire

"However, mining association rules often results in a very large number of found rules, leaving the analyst with the task to go through all the rules and discover interesting ones."

1277 règles

```
[1275996,4267,979,0.7412831241283124]
R.E.M., Green Day, -> Radiohead
[1275996,1274,976,0.737450462351387]
R.E.M., Red Hot Chili Peppers, -> Nirvana
[1275996,1177,1205,0.7180659915060438]
R.E.M., Coldplay, -> U2
[1275996,976,1274,0.7150176112712135]
R.E.M., Nirvana, -> Red Hot Chili Peppers
```

Clustering des Genres - KMeans

Top 3 des artistes de chaque utilisateur

(1005235, 1004983, 1239653)

the constantine, the dismemberment plan et

Q and Not U (rock / post-hardcore)

Méthode du coude

 $K = 2, 3, 4, \dots 10$

pour chaque K : Fit + MSE

6 clusters -> 6 genres de musique

Clustering des genres - Evaluation

Assigner les centroids aux utilisateurs

Vérifier que les utilisateurs du même cluster écoute le même genre de musique

6 Genres à vérifier

Recommandation d'utilisateurs - ALS

Suggérer à un utilisateur A des utilisateurs qui écoutent des artistes similaires

ALS pas adapté à ce genre de problème

ALS fonctionne sur le principe "user-item" lci => "user-user"

Recommandation d'utilisateurs - Clustering

Clustering de toutes les données:

X: Utilisateur

Y: Artiste

Z : Nb d'écoutes

Résultat -> Clusters d'utilisateurs ayant des goûts similaires

Recommandation d'utilisateurs - Evaluation

5 groupes d'utilisateurs

Parcourir les données et assigner un centroïde à chacun

Pertinence à vérifier

Améliorations futures

Nettoyage du dataset

MBA: plus de règles, plus de données

Evaluation des résultats de clustering, prendre plus d'artistes

Evaluation des résultats de clustering d'utilisateurs

Recommandation d'utilisateurs plus précise

Conclusion

Proof of concept

Zeppelin n'était pas la bonne approche, trop lent pour du ML

Lien GitHub: https://github.com/samueltorche/bda-grpB-audio-recommender