Solusi Ujian Tengah Semester 2021

EL 2007 Sinyal dan Sistem

22 Agustus 2022

- Ujian Tutup Buku dan bekerja sendiri.
- Soal ini bersifat benar-salah, pilihan ganda, mengisi, dan essay.
- Kecuali disebutkan khusus, setiap jawaban ber-skor 1.
- Anda tidak harus mengerjakan semua soal karena skor maksimal UTS ini 50 (lima puluh).
- Untuk benar-salah dan pilihan ganda, jawaban yang salah mendapat pengurangan skor.
- Untuk essay diperlukan logika penurunan.
- Jawaban dilakukan di tempat menjawab yang disediakan di Edunex. Atau sebagai alternatif, bisa ditulis pada secarik kertas dan difoto dengan jelas, dan di unggah pada tempat jawaban Edunex tersebut.
- Selamat bekerja

Bagian I Soal

- 1. (Skor 10) Benar Salah
 - a) Superposisi berbentuk umum, di mana ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Kasus $v_k = z(t - kT)$ dan a_k =konstan, apakah x(t) periodik?

BENAR

$$x(t) = c \sum_{k} z(t - kT)$$

periodik dengan periode T, karena ini mekanisme pembentukan sinyal periodik dari sinyal a periodik

b) Superposisi berbentuk umum, di mana ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Kasus $v_k = \sin(\frac{2\pi}{T}kt)$ apakah x(t) periodik?

BENAR

$$x(t) = \sum_k a_k \sin(\frac{2\pi}{T}kt)$$

periodik dengan periode T, karena ini STRUKTUR deret Fourier simetri ganjil

c) Superposisi berbentuk umum, di mana ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Kasus $v_k = \cos(\frac{2}{T}kt)$ apakah x(t) periodik?

SALAH

$$x(t) = \sum_k a_k \cos(\frac{2}{T}kt) \neq x(t+T_p) = \sum_k a_k \cos(\frac{2}{T}k(t+T_p))$$

tidak periodik karena tidak ada periode T_p .

d) Superposisi berbentuk umum, di mana ada skalar \boldsymbol{a}_k dan sinyal $\boldsymbol{v}_k(t)$ sehingga

$$x(t) = \sum_{k} a_k v_k(t)$$

e) Superposisi berbentuk umum, di mana ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Kasus $v_k = e^{j \frac{2\pi}{T} kt}$ apakah x(t) periodik?

BENAR

$$x(t) = \sum_{k} a_k e^{j\frac{2\pi}{T}kt}$$

periodik dengan periode T, karena ini STRUKTUR deret Fourier

f) Superposisi berbentuk umum, di mana ada skalar \boldsymbol{a}_k dan sinyal $\boldsymbol{v}_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Kasus $v_k = \delta(t - kT)$ apakah x(t)=0 pada $t \neq kT$?

BENAR

$$x(t) = \sum_k a_k \delta(t - kT)$$

adalah deretan impulse pada t=kT yang diboboti a k, sehingga bernilai 0 di luar impulse

g) Superposisi berbentuk umum, di mana ada skalar \boldsymbol{a}_k dan sinyal $\boldsymbol{v}_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Kasus $v_k = \delta(t-kT)$ apakah $x(t) = a_k$ pada t = kT?

BENAR

$$x(t) = \sum_k a_k \delta(t-kT)$$

adalah deretan impulse pada t=kT yang diboboti a_k , sehingga pada titik t=kT tersebut $x(kT)=a_k$

h) Diketahui tiga hal: Ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Dan ada sebuah sistem menghasilkan sinyal $w_k(t)$ bila dimasuki $v_k(t)$.

Ada skalar b_k dan sinyal $w_k(t)$ sehingga

$$y(t) = \sum_k b_k w_k(t)$$

Bila Sistem Linier dimasuki x(t) manapun, apakah output adalah y(t)?

BENAR

itu adalah implikasi utama sistem linier

i) Diketahui tiga hal: Ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Dan ada sebuah sistem menghasilkan sinyal $w_k(t)$ bila dimasuki $v_k(t)$.

Ada skalar b_k dan sinyal $w_k(t)$ sehingga

$$y(t) = \sum_k b_k w_k(t)$$

Bila Sistem Time Invartiant dimasuki x(t) manapun, apakah output adalah y(t)?

SALAH

Sistem time invariant tidak memiliki sifat terkait superposisi

j) Diketahui tiga hal: Ada skalar a_k dan sinyal $v_k(t)$ sehingga

$$x(t) = \sum_k a_k v_k(t)$$

Dan ada sebuah sistem menghasilkan sinyal $w_k(t)$ bila dimasuki $v_k(t)$.

Ada skalar b_k dan sinyal $w_k(t)$ sehingga

$$y(t) = \sum_k b_k w_k(t)$$

Bila sistem LCCDE rileks dimasuki x(t) manapun, apakah output adalah y(t)?

BENAR

itu adalah implikasi utama sistem linier dan LCCDE rileks linier

- 2. (Skor 13)Sinyal
 - a) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Nyatakan sinyal ini dalam bentuk penjumlahan kompleks eksponensial $e^{j\omega_k t}$

$$x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right) = \frac{A}{2}e^{j(\frac{\pi}{2}t + \theta)} + \frac{A}{2}e^{-j(\frac{\pi}{2}t + \theta)} = \frac{A}{2}e^{j\theta}e^{j\frac{\pi}{2}t} + \frac{A}{2}e^{-j\theta}e^{-j\frac{\pi}{2}t}$$

b) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Pada θ berapa sinyal ini simetri genap?

$$\theta = k\pi$$

c) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Pada θ berapa sinyal ini simetri ganjil?

$$\theta = k\pi \pm \frac{\pi}{2}$$

d) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Bila diketahui Energi = 0.5, berapa A?

Salah soal. Energi sinusoidal tak hingga.

| Asumsi, bukan E

nergi tapi Daya=0.5, sedangkan untuk sinusoidal $x(t)=A\cos\left(\frac{2\pi}{T}t+\theta\right)$ memiliki daya $P=A^2/2$, maA=1.

e) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Berapa frekuensi f?

Sinusoidal umum $x(t) = A\cos\left(\frac{2\pi}{T}t + \theta\right)$ memiliki frekuensi f = 1/T, maka $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki T = 4, sehingga f = 1/4.

f) Sebuah sinyal $x(t)=A\cos\left(\frac{\pi}{2}t+\theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Berapa frekuensi ω ?

Sinusoidal umum $x(t) = A\cos(\omega t + \theta)$ memiliki frekuensi ω , maka $x(t) = A\cos(\frac{\pi}{2}t + \theta)$ memiliki $\omega = \pi/2$.

g) Sebuah sinyal $x(t)=A\cos\left(\frac{\pi}{2}t+\theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Berapa periode T?

Sinusoidal umum $x(t) = A\cos\left(\frac{2\pi}{T}t + \theta\right)$ memiliki Periode T, maka $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliT = 4.

h) (Skor 2) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Sinyal yang memenuhi simetri genap dan Energi = 0.5 memiliki Deret Fourier a_k . Berapa a_k .

Secara umum sinyal periodik dengan periode T memilki Deret Fourier a_k , sehingga x(t) $\sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}. \quad \text{Maka } x(t) = A\cos\left(\frac{\pi}{2}t+\theta\right) = \frac{A}{2}e^{j(\frac{\pi}{2}t+\theta)} + \frac{A}{2}e^{-j(\frac{\pi}{2}t+\theta)} = \frac{A}{2}e^{j\theta}e^{j(\frac{2\pi}{4}t)}$ $\frac{A}{2}e^{-j\theta}e^{-j(\frac{2\pi}{4}t)}. \quad \text{Karena } T=4, \text{ maka } a_k=0 \text{ kecuali } a_1=\frac{A}{2}e^{j\theta} \text{ dan } a_{-1}=\frac{A}{2}e^{-j\theta}$

i) (Skor 2)Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Sinyal yang memenuhi simetri ganjil dan energi 0.5 memiliki DF b_k , apa hubungan a_k dan b_k .

Koreksi: energi -> daya

Secara umum sinyal $x(t)=A\cos\left(\frac{\pi}{2}t+\theta\right)=\frac{A}{2}e^{j(\frac{\pi}{2}t+\theta)}+\frac{A}{2}e^{-j(\frac{\pi}{2}t+\theta)}=\frac{A}{2}e^{j\theta}e^{j(\frac{2\pi}{4}t)}+\frac{A}{2}e^{-j\theta}e^{-j(\frac{2\pi}{4}t)}$ memiliki T=4, dan $a_k=0$ kecuali $a_1=\frac{A}{2}e^{j\theta}$ dan $a_{-1}=\frac{A}{2}e^{-j\theta}$. Khusus $x(t)=\cos\left(\frac{\pi}{2}t\pm\frac{\pi}{2}t\right)$ bersimetri ganjil dan daya 0.5. Jadi $b_k=a_k$ dimana $\theta=\pm\frac{\pi}{2}$

j) (Skor 2) Sebuah sinyal $x(t) = A\cos\left(\frac{\pi}{2}t + \theta\right)$ memiliki amplituda A, frekuensi = f Hz atau ω (rad/second) dan fasa θ (radian). Berapa besar waktu tunda antara sinyal di simetri genap dan simetri ganjil.

Secara umum sinyal $x(t)=A\cos\left(\frac{\pi}{2}t+\theta\right)=\frac{A}{2}e^{j\left(\frac{\pi}{2}t+\theta\right)}+\frac{A}{2}e^{-j\left(\frac{\pi}{2}t+\theta\right)}=\frac{A}{2}e^{j\theta}e^{j\left(\frac{2\pi}{4}t\right)}+\frac{A}{2}e^{-j\theta}e^{-j\left(\frac{2\pi}{4}t\right)}$ memiliki T=4, dan $a_k=0$ kecuali $a_1=\frac{A}{2}e^{j\theta}$ dan $a_{-1}=\frac{A}{2}e^{-j\theta}$.

Khusus $x(t)=\cos\left(\frac{\pi}{2}t\pm\frac{\pi}{2}\right)=\cos\left(\frac{\pi}{2}(t\pm1)\right)$ bersimetri ganjil, sedangkan $x(t)=\cos\left(\frac{\pi}{2}t\right)$ bersimetri genap. Jadi terjadi perrbedaan fasa $\Delta\theta=\pm\frac{\pi}{2}$, ekivalen dengan waktu tunda $\Delta t=\pm1$.

3. (SKOR 12) LCCDE

sebuah sistem LCCDE CT orde satu

$$\tau \frac{d}{dt}y(t) + y(t) = x(t) \tag{1}$$

mmiliki response magnituda

$$|H\left(\omega\right)| = \frac{1}{\sqrt{\left(\omega\tau\right)^2 + 1}}$$

respons fasa

$$\angle H(\omega) = -\arctan(\omega \tau)$$

respons impuls dan respons step, masing-masing sebagai

$$h\left(t\right) = \frac{1}{\tau}e^{-\frac{t}{\tau}}u\left(t\right) \tag{2}$$

$$s(t) = h(t) \otimes u(t) = \left[1 - e^{\frac{t}{\tau}}\right] u(t) \tag{3}$$

a) Sebuah sistem LCCDE yang memiliki persamaan diferensial

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

Asumsi sistem rileks. Cari magnitude respons:

untuk $\tau = 2$

$$|H\left(\omega\right)| = \frac{1}{\sqrt{4\omega^2 + 1}}$$

b) Sebuah sistem LCCDE yang memiliki persamaan diferensial

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

Asumsi sistem rileks. Cari respons fasa:

untuk $\tau = 2$

$$\angle H(\omega) = -\arctan(2\omega)$$

c) Sebuah sistem LCCDE yang memiliki persamaan diferensial

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

Asumsi sistem rileks. Apa respons sistem ini bila diberikan input $\delta(t)$?

untuk $\tau=2$

$$h\left(t\right) = \frac{1}{2}e^{-\frac{t}{2}}u\left(t\right)$$

d) Sebuah sistem LCCDE yang memiliki persamaan diferensial

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

Asumsi sistem rileks. Apa respons sistem ini bila diberikan input u(t)

untuk $\tau = 2$

$$s(t) = h(t) \otimes u\left(t\right) = \left[1 - e^{\frac{t}{2}}\right] u\left(t\right)$$

e) (skor 4) Sebuah sistem LCCDE yang memiliki persamaan diferensial

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

Asumsi sistem rileks. Apa respons sistem ini bila diberikan input $x(t) = 2\cos(3t)$

Sinyal $x(t)=2\cos{(3t)}$ memilki $\omega=3$ sebuah sistem LCCDE CT orde satu

$$2\frac{d}{dt}y\left(t\right) + y\left(t\right) = x\left(t\right)$$

miliki response magnituda pada $\omega=3$

$$|H(3)| = \frac{1}{\sqrt{(3 \times 2)^2 + 1}} = 0.164399$$

respons fasa pada $\omega=3$

$$\angle H(\omega) = -\arctan(3 \times 2) = -1.40565$$

Maka respons sisstem

$$y(t) = 0.328797975\cos(3t - 1.40565)$$

f) (skor 4) Sebuah sistem LCCDE yang memiliki persamaan diferensial

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

Asumsi sistem rileks. Apa respons sistem ini bila diberikan input $x(t) = 2\cos(3t)u(t)$

Untuk LCCDE

$$2\frac{dy(t)}{dt} + y(t) = x(t)$$

solusi homogen nya adalah

$$y_h(t) = ce^{-\frac{1}{2}t}$$

dan input

$$x(t) = 2\cos(3t)\,u(t)$$

Menghasilkan solusi partikular

$$y_p(t) = a_1 \cos(3t) + a_2 \sin(3t)$$

dan

$$\frac{dy_p(t)}{dt} = -3a_1\sin(3t) + 3a_2\cos(3t)$$

yang bila disubstitusi ke dalam LCCDE, didapat untu t>0

$$2(-3a_1\sin(3t)+3a_2\cos(3t))+a_1\cos(3t)+a_2\sin(3t)=2\cos{(3t)}$$

yang dipenuhi bila

$$-6a_1 + a_2 = 0$$
$$a1 + 6a_2 = 2$$

\sehingga $a_1=2/37$ dan $a_2=12/37$, sehingga pada $t\geq 0$

$$y(t) = ce^{-\frac{1}{2}t} + \frac{2}{37}\cos(3t) + \frac{12}{37}\sin(3t)$$

dalam keadaan rileks, y(0)=0, sehingga

$$0 = C + \frac{2}{37} \Rightarrow C = -\frac{2}{37}$$

dan pada $t \ge 0$

$$y(t) = -\frac{2}{37}e^{-\frac{1}{2}t} + \frac{2}{37}\cos(3t) + \frac{12}{37}\sin(3t)$$

4. (SKOR 15)Fourier Transform

Secara umum

$$x(t) = \begin{cases} 1; & |t| \le a \\ 0; & |t| > a \end{cases}$$

memilki

$$X\left(\omega\right) = 2a \frac{\sin \omega a}{\omega a}$$

sehingga

$$x_1(t) = Ax(t-\tau)$$

memiliki

$$X_{1}\left(\omega\right)=AX\left(\omega\right)e^{-j\omega\tau}=2Aa\frac{\sin\omega a}{\omega a}e^{-j\omega\tau}$$

a) (skor 1) Sebuah sinyal x(t) seperti diperlihatkan pada gambar di bawah ini memiliki Fourier Transform $X(\omega)$.

 $\begin{array}{l} \text{Hitung } X\left(0\right) = \underline{\hspace{2cm}} \\ \hline \left(\text{Untuk } A = 2, \, a = 2, \, \text{dan } \tau = 1 \right. \end{array}$

$$X_{1}\left(\omega\right)=2Aa\frac{\sin\omega a}{\omega a}e^{-j\omega\tau}$$

$$X(0) = 8$$

atau cara aalternatif

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

maka X(0) adalah luas daerah di bawaah kurva x(t) yaitu

$$X(0) = 8$$

b) (skor 1) Sebuah sinyal x(t) seperti diperlihatkan pada gambar di bawah ini memiliki Fourier Transform $X(\omega)$.

9

Cari
$$\angle X(\omega) =$$

Untuk $A=2, a=2, \operatorname{dan} \tau=1$

$$X_{1}\left(\omega\right)=2Aa\frac{\sin\omega a}{\omega a}e^{-j\omega\tau}$$

$$\angle X(\omega) = -2\omega$$

c) (skor 2) Sebuah sinyal x(t) seperti diperlihatkan pada gambar di bawah ini memiliki Fourier Transform $X\left(\omega\right)$.

Hitung
$$\int_{-\infty}^{\infty} X(\omega) d\omega =$$

Dari inversi

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X\left(\omega\right) e^{j\omega t} d\omega$$

diperoleh

$$x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) d\omega$$

sehingga

$$\int_{-\infty}^{\infty} X(\omega) d\omega = 2\pi x(0) = 4\pi$$

d) (skor 5) Sebuah sinyal x(t) seperti diperlihatkan pada gambar di bawah ini memiliki Fourier Transform $X(\omega)$.

Hitung $\int_{-\infty}^{\infty}\left|X\left(\omega\right)\right|^{2}\frac{2\sin\omega}{\omega}e^{j2\omega}d\omega$ =_____

Salah soal. seharusnya

$$\int_{-\infty}^{\infty}X\left(\omega\right)\frac{2\sin\omega}{\omega}e^{j2\omega}d\omega=?$$

Bila $\tau=-2$,a=1, dan A=1

$$X_{1}\left(\omega\right)=\frac{2\sin\omega}{\omega}e^{j2\omega}=2Aa\frac{\sin\omega a}{\omega a}e^{-j\omega\tau}$$

makaa

$$x_1(t) = x_2(t+2)$$

dimana

$$x_2(t) = \begin{cases} 1; & |t| \leq 1 \\ 0; & |t| > 1 \end{cases}$$

Konvolusi $x(t) \otimes x_1(t)$

sehingga

$$\int_{-\infty}^{\infty}X\left(\omega\right)\frac{2\sin\omega}{\omega}e^{j2\omega}d\omega=\int_{-\infty}^{\infty}x(t)\otimes x_{1}(t)dt=16$$

e) (skor 2) Sebuah sinyal x(t) seperti diperlihatkan pada gambar di bawah ini memiliki Fourier Transform $X(\omega)$.

Hitung $\int_{-\infty}^{\infty} \left| X\left(\omega \right) \right|^2 d\omega =$ Daeri Relasi Parseval

$$\int_{-\infty}^{\infty}|x(t)|^{2}dt=E=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left|X\left(\omega\right)\right|^{2}d\omega$$

maka

$$\int_{-\infty}^{\infty} \left| X\left(\omega\right) \right|^2 d\omega = 2\pi \int_{-\infty}^{\infty} |x(t)|^2 dt = 2\pi (16) = 32\pi$$

f) (skor 4) Sebuah sinyal x(t) seperti diperlihatkan pada gambar di bawah ini memiliki Fourier Transform $X(\omega)$.

Tentukan dan sketsa sinyal y(t) di mana $Y(\omega) = \Re e\{X(\omega)\}$

Dari sisfat TF

$$x_e(t) \longleftrightarrow Re\left\{X(\omega)\right\}$$

sehingga

$$y(t)=x_e(t)=\frac{1}{2}\left[x(t)+x(-t)\right]$$

- 5. (Skor 23) Sebuah LCCDE hendak difungsikan sebagai filter *high pass* memiliki Bode plot respons magnituda sebagai berikut, dengan
 - peredaman sekurangnya 20 dB di daerah stopband pada frekuensi sekitar < 100 Hz
 - peredaman 0 dB di daerah pass band pada frekuensi >300Hz
 - penguatan transisi -3 dB boleh terjadi pada suatu titik dalam rentang antar 100-300 zHx
 - Dari konteksnya Soal ini mengasumsikan FILTER Butterwotrth orde N. Dalam brntuk orde N, filter Ll Butterworth memiliki Bode plot dengan penguatan 0 dB pada daerah pass band, -3dB di w_c dan -20 dB/dekade di daerah stopban

titik-titk kkritis

THE THE THEFT				
	passban edge	w_c	stopband edge	1 dekade
f hz	300		100	30
ω Rad/s	1884,9556		628,31853	
$10 * \log \omega$				
dB	0		-20	

Altdernatif menggunakan desain filter, khususnys trnasformaai frekunsi dipereoleh

$$H(s) = \frac{s^2}{s^2 + 1351,4057s + 1826297, 3} \cdot \frac{s}{S + 1351,4057}$$

Soal

- a) (Skor 5) Cari respons frekuensi $H(\omega)$ adri LCCDE yang memenuhi permintaan ini dengan orde terkecil
- b) (Skor 5) Cari persamaan LCCDE sistem yang memenuhi permintaan ini
- c) (Skor 5) Cari rangkaian pasif RLC sederhana yang memenuhi sifat ini
- d) (Skor 4) Gambar Bode plot respons fasa
- e) (Skor 4) Cari respons impuls h(t)