1	100	Mary	N. Caller
			-
		The same	Andread State of the last

Code: 15AT31T

[Turn over

n		-				-				
Register	1 .1		- 1	2						
_	1		1,1	1	1.71			· .		r' '
Number	1 1		- 1				Ty. 1			
			- Alexandra					No. of the last of	to be constructed from	

III Semester Diploma Examination, Nov./Dec. 2018

HEAT POWER ENGINEERING

HEAT TOWER ENGINEERING				
Time: 3 Hours]		[Max. Marks : 100		
Instructions: (1)	Answer any six questions from Part – A and five marks.	each question carries		
(2)	Answer any seven questions from Part – I carries ten marks.	B and each question		
(3)	Any missing data may be suitably assumed.			
	PART – A	F0)/// 0P0		
1. Define a thermo	odynamic system and mention different types.	FOXY ORO		
2. State Boyle's la	w and Charle's law.	5		
BET	A CONSOLE			
3. List any 5 differ	rent thermodynamic processes on gases.	# 15 (15 to 15		
4. Represent Dual	combustion cycle on P-V and T-S diagram.	5		
5. Define fuel and	state chief combustible elements of fuel.	5		
6. Define ignition	lag. Mention the variables affecting ignition lag.	30 M		
7. Derive an expre	ession for characteristic equation of a perfect gas.	5 .		
8. What are the ef	fects of knocking in CI engine?	5		
		ar din da diaka k		

Explain the conversion of volumetric analysis into mass analysis.

1 of 4

PART - B

- 10. Explain Zeroth and First law of thermodynamics.
- 11. Derive an expression for work done during an Isothermal process and show the process on P-V and P-T diagram.
- 12. (a) Prove that heat is a path function.
 - (b) Explain with P-V and T-S diagram the working of Carnot cycle.
- 13. A vessel of capacity 3 m³ contains air at a pressure of 2.0 bar and a temperature of 28 °C. Additional air is now pumped into the system until the pressure rises to 32 bar and temperature rises to 65 °C. Determine the mass of air pumped in and express the quantity as a volume at a pressure of 1.02 bar and temperature of 20 °C.

If the vessel is allowed to cool until the temperature is again 28 °C, calculate the pressure in the vessel.

FOXY ORO

- 14. The values of C_p and C_v for an ideal gas are 984 J/kg.K and 728 J/kg.K. Find the values of characteristic gas constant and ratio of specific heats for the gas. If one kg of this gas is heated at constant pressure from 298 K to 473 K, estimate the heat added ideal work done and change in internal energy. Also calculate the pressure and final volume, if the initial volume was 2 m³.
- 15. The initial volume of 0.20 kg of a certain gas was 0.2 m³ at a temperature of 280 K and a pressure of 1 bar. After adiabatic compression to 0.060 m³, the pressure was found to be 4 bar. Find, gas constant, molecular mass of the gas, ratio of specific heats, two specific heats and change in internal energy.
- 16. (a) An engine working on Otto cycle, has a cylinder diameter of 150 mm and stroke 200 mm. The clearance volume is assumed to be 8% of swept volume. Find the air standard efficiency. Take r = 1.4.
 - (b) Show that for the same compression ratio of 8, the air standard efficiency of diesel cycle is less than the Otto cycle. The r = 1.4 and $\rho = 2.5$.

17. An engine working on the dual combustion cycle, has a compression ratio 11 and cutoff takes place at 08% of stroke. If the pressure at the beginning of compression is
1.2 bar and maximum pressure is 42 bar, determine the air standard efficiency of the
cycle. Take r = 1.4.

18. Sketch and explain the flue gas analysis using Orsat apparatus.

10

19. With help of P-0 diagram, explain the stages of combustion in SI engine.

10

Published By:

