5

15

25

30

CLAIMS				
--------	--	--	--	--

- 1. A composition comprising (i) FCC catalyst particles and (ii) additive particles suitable for the reduction of NO_x emissions from an FCC regenerator, said additive particles comprising:
 - a) a Mg and Al-containing anionic clay or solid solution,
 - b) a rare earth metal oxide,
 - c) alumina and/or silica-alumina, and
 - d) Y-type zeolite.

10

- 2. A composition according to claim 1 wherein the additive particles, calculated as oxides and based on the total weight of the additive particles, comprise:
 - a) Mg and Al-containing anionic clay in an amount of about 50-65 wt%,
- b) CeO₂ in an amount of about 2.5-20 wt%,
 - c) alumina in an amount of about 20-45 wt%,
 - d) a REY zeolite in an amount of about 2-10 wt%.
- 3. A composition according to claim 2 wherein the additive particles, calculated as oxides and based on the total weight of the additive particles, comprise:
 - a) Mg and Al-containing anionic clay or solid solution in an amount of about 50-65 wt.%,
 - b) CeO₂ in an amount of about 6-12 wt.%,
 - c) alumina in an amount of about 25-35 wt.%,
 - d) a REY zeolite in an amount of about 3-8 wt.%.
 - 4. A composition according to any one of the preceding claims wherein the additive particles additionally contain 2–8 wt% of silica.
 - 5. A composition according to any one of the preceding claims wherein the additive particles additionally comprise Cu.

25

	6. A pro	ocess for preparing a composition according to any one of the
	•	eding claims, comprising the steps of
	. (1)	combining an aluminium source and a magnesium source in water
5	• •	to form an aqueous slurry;
	(2)	optionally milling the slurry,
	(3)	aging the slurry,
:	(4)	combining a rare earth metal oxide or a precursor thereof with the
	• •	product of step (3),
10	(5)	spray-drying the product of step (4),
	(6)	calcining the spray-dried material,
•	(7)	optionally slurrying the product of step (6) in water,
	(8)	milling the product of step (6) or (7),
٠,	. (9)	combining the product of step (6), (7), or (8) with the alumina
15		and/or silica-alumina and the Y-type zeolite,
	(10)	shaping the product of step (9) to form additive particles, and
	(11)	physically mixing said additive particles with FCC catalyst
	, ,	particles.

- 7. A process according to claim 6 wherein the aluminium source of step (1) is aluminium trihydrate and the magnesium source is magnesium oxide.
 - 8. A process according to claim 6 or 7 wherein the alumina of step (9) is peptised pseudoboehmite.
 - 9. Use of the composition according to any one of claims 1-5 in an FCC unit.