Iun 1995

ZHANGYESHIZHUANXUEBAO (ZONGHEBAN)

编者按:

由国家教委与中国工业与应用数学学会 (CSIAM) 组织的全国大学生数学建模竞赛于 1994年10月28日至30日在北京等18个省(市、自治区)的16个赛区举行,甘肃赛区有10 所院校的35个队参赛,经过专家、教授组成的委员会认真评阅,张掖师专队获一等奖,为此,本刊特将这次参赛论文发表,以与众多的参赛者交流。此外,想对数学建模竞赛作更多了解的读者,请看本刊约请我校指导这次竞赛的李万同,费祥历教练的文章《大学生数学建模概述》。

一山区修建公路的线路设计方案。

俞光贤 张丽华 狄正成 指导教师 李万同

(张掖师专)

摘要:本文运用图与网络分析理论讨论了 A 题线路设计方案问题。首先根据题中给出的数据表,用计算机模拟了该山区的立体图 (图略);其次通过构造判断矩阵和设计程序估计了满足坡度要求的线路范围。根据路程与费用的权重比,给出了三种设计方案,并对这三种方案进行了误差估计,稳定性分析及优缺点的比较。同时还给出了居民点改为居民区后的两种方案。此外对计算机程序作了必要的说明。

一、问题提出

要在某一山区修建公路,首先测得一些地点的高程、数据见表 1(平面区域 $0 \le x \le 5600$, $0 \le y \le 4800$,表中数据为坐标点的高程,单位:米)。从数据显示可以看出,在 y = 3200 处有一东西走向的山峰;从坐标(2400,2400)到(4800、0)有一西北一东南走向的山谷;在 (2000,2800) 附近有一山口湖,其最高水位略高于 1350 米,雨季在山谷中形成一溪流。经调查知,雨量最大时溪流水面宽度 ω 与(溪流最深处的)x 坐标的关系可近似表示为 ω (x) = $(\frac{x-2400}{2})^{x}+5$ (2400 $\le x \le 4000$)。

① 除主教练李万同外,还有费祥历、赵柱二位教练。

^{- 100 -}

要求公路从山脚 (0,800) 处开始, 经居民点 (4000, 2000) 至矿区 (2000, 4000)。已 知路段工程成本及对路段坡度 α (上升高程与水平距离之比) 的限制如表 2。

- 1) 试给出一种线路设计方案,包括原理、方法及比较精确的线路位置(含桥梁、隧道), 并估算该方案的总成本。
- 2) 如果居民点改为 3600≤x≤4000, 2000≤y≤、2400 的居民区, 公路只须经过居民区即可, 那么方案有什么改变。

二、问题的分析

按照通常的理解,修造道路要根据具体的地理条件、施工技术、道路的要求(如道路等级、坡度等)、路程长度及建造成本等来确定设计方案。

- 一个好的方案应满足如下一些基本要求:
- 1) 符合坡度要求。
- 2) 施工量尽可能小。
- 3) 考虑到投入运行后的效率因素,路程应较短,道路较平缓。
- 4) 修路总成本最小。
- 5) 适应自然条件在一定范围内的变化(如河流随季节的涨落等)

基于以上分析,本文根据图与网络分析理论中的求赋权图最短路的 Dijkstra 方法给出了三种设计方案,这三种方案的路程及成本见表 3, 其特点见四(二)模型结果分析。

三、模型假设

- 1、该地区地势变化较平缓,如表 1。
- 2、对于 0.125≤α≤0.13,我们认为可以通过把垫使之符合坡度要求。
- 3、当高程介于两点 A、B的高程之间时,该高程点落在 A、B 两点的连线上。

四、模型建立及结果分析

(一) 模型建立

对于数据表 1, 首先选定一点为主点, 因为路线从(0, 800)处开始, 因此第一次选(0, 800)为主点, 构造判断矩阵:

$$C_{ij} = \frac{\Delta H_{ij}}{\Delta S_{ii}}$$

其中: x_i 、 y_j 表示数据表 1 中点的坐标, i=1, 2······15; j=1, 2······13。 ΔH_{ij} 表示点(x_i 、 y_j)与主点(0, 800)间的高程差, ΔS_{ij} 表示点(x_i , y_j)与主点(0, 800)间的水平距离, $\frac{\Delta H_{ij}}{\Delta S_{ij}}$ 表示(x_i , y_j)与主点(0, 800)间的坡度。

把符合坡度要求的点依次选为主点,继续构造判断矩阵,就可以找出符合坡度要求的线路范围,即: $0 \le x \le 3600 \ \$ $2000 \le x \le 4800 \ \$ $0 \le y \le 2000 \ \$ $0 \le y \le 2000 \ \$ $0 \le y \le 4400 \ \$ 。 这一过程的具体操作是用 passcal 语言设计程序由计算机完成。(见程序 I)

在满足坡度要求的条件下,又采用 4×3 阶矩阵给出了线路位置、高程及该路段的路程与成本。

路程与费用的求解公式如下:

$$R_{i} = \sqrt{(x_{i+1} - x_{i})^{2} + (y_{i+1} - y_{i})^{2} + (z_{i+1} - z_{i})^{2}}$$
 (i=1, 2,, n)

$$M_{i} = 300 \times R_{i}$$

其中: x_i 表示第 i 个点的横坐标, y_i 表示第 i 点的纵坐标, z_i 表示第 i 个点的高程, R_i 表示 (x_i, y_i, z_i) 与 $(x_{i+1}, y_{i+1}, z_{i+1})$ 两点之间的路程, M_i 表示经过 R_i 路程的成本。

$$R_{B} = \sqrt{(x_{B+1} - x_{B})^{2} + (y_{B+1} - y_{B})^{2}}$$

 $M_B = 2000 \times R_B$,其中(x_B , y_B)表示桥梁起点的坐标,(x_{B+1} , y_{B+1})表示桥梁终点的坐标, R_B 表示桥长, M_B 表示桥梁费用

$$R_c = \sqrt{(\mathbf{x}_{c+1} - \mathbf{x}_c)^2 + (\mathbf{y}_{c+1} - \mathbf{y}_c)^2 + (\mathbf{z}_{c+1} - \mathbf{z}_c)^2}$$
 $M_c = \begin{cases} 1500 \times R_c & R_c \leq 300 \text{ *}\\ 3000 \times R_c & R_c > 300 \text{ *} \end{cases}$
 \mathbf{z}_{c+1})表示隧道终点的坐标, R_c 表示隧道长度, M_c 表示隧道的费用。

这一过程的具体操作是用 passcal 语言设计程序由计算机完成,(见程序 I)

这样就得到了一个无向赋权图,总费用可用下式表示:

$$M_{\text{B}} = 300 \times \sum_{i=1}^{n} R_{i} + 2000 \times R_{\text{B}} + \begin{cases} 1500 \times R_{\text{C}} & R_{\text{C}} \leqslant 300 \text{ } \text{\#} \\ 3000 \times R_{\text{C}} & R_{\text{C}} > 300 \text{ } \text{\#} \end{cases}$$

下面在考虑费用的前提下,用 Dijkstra 方法(Dijkstra 方法见文献〔1〕265 页,此处略)解决最短路问题。首先,记起点(0,800)为 V_1 ,居民点(4000,2000)为 V_n ,用 Dijkstra 方法求得(0,800)到(4000,2000)的最短路并使费用 M_1 较小;其次,记居民点(4000,2000)为 V_1 ,矿区(2000,4000)为 V_n ,再用 Dijksrta 方法求得(4000,2000)到(2000,4000)的最短路,并使费用 M_2 较小。从而,求得从(0,800)开始,经居民点(4000,2000)到矿区(2000,4000)的 最短路(并使费用最小)。

下面给出从(0,800)出发经居民点到矿区的三种线路设计方案。

方案「

650 (0, 800)
$$\frac{R_1 = 877.5977}{M_1 = 263279.360}$$
 750 (800, 453.333) $\frac{R_2 = 807.9879}{M_2 = 242396.3700}$ 850 (1600, 400)

$$\frac{R_3 = 839.8591}{M_3 = 251957.73} 950 \quad (2400, 635.294) \quad \frac{R_4 = 642.5672}{M_4 = 192770.1600} 925 \quad (2800, 1137.5566)$$

$$\frac{R_5 = 405.6150}{M_5 = 121684.5000} 900 \quad (3200, 1200) \quad \frac{R_B = 565.68}{M_B = 1131360} 900 \quad (3600, 1600) \quad \frac{R_6 = 567.8908}{M_6 = 170367.24}$$

$$950 \quad (4000, 2000) \quad \frac{R_7 = 546.6549}{M_7 = 125149.9804} 1000 \quad (4369.2308, 2400) \quad \frac{R_8 = 516.0376}{M_8 = 154811.2677} 1050$$

$$(4047.0588, 2800) \quad \frac{R_9 = 474.7894}{M_9 = 142439.5092} 1100 \quad (4500, 2933, 3333) \quad \frac{R_C = 500.8435}{M_C = 1502530.6080} 1140$$

$$(4400, 3421.5385) \quad \frac{R_{10} = 404.3103}{M_{10} = 121293.0964} 1190 \quad (4000, 3452.6316) \quad \frac{R_{11} = 417.1666}{M_{11} = 125149.9804}$$

$$1240 \quad (3600, 3560) \quad \frac{R_{12} = 407.29}{M_{12} = 122186.9926} 1290 \quad (3200, 3618.1818) \quad \frac{R_{13} = 426.19}{M_{13} = 127857.008} 1340$$

$$(2800, 3756.5217) \quad \frac{R_{14} = 836.4698}{M_{14} = 250940.9322} 1320 \quad (2000.4000)$$

$$\vec{\pi} \mathbf{X} \mathbf{I} \quad (\mathbf{B})$$

• 102 •

1

方案Ⅱ(略)

如果居民点改为 $3600 \le x \le 4000$, $2000 \le y \le 2400$ 的居民区,公路只须经过居民区即可,采用同样的办法给出两种线路设计方案

方案N

650 (0, 800)
$$\frac{R_1 = 877.5977}{M_1 = 263279.31}$$
750 (800, 453.333) $\frac{R_2 = 807.9879}{M_2 = 242396.37}$ 850 (1600, 400) $\frac{R_3 = 839.8591}{M_3 = 251957.73}$

950 (2400, 635. 294)
$$\frac{R_4 = 642.5672}{M_4 = 192770.16}$$
925 (2800. 1137. 5566) $\frac{R_5 = 405.615}{M_5 = 121684.5}$ 900 (3200, 1200) $\frac{R_6 = 839.3152}{M_6 = 251794.56}$

. 965 (2800, 1935)
$$\frac{R_B = 145.3444}{M_B = 290688.6}$$
 965 (2930, 2000) $\frac{R_7 = 290.0431}{M_7 = 87012.9301}$ 1000 (3200, $R_8 = 410.0305$

1900)
$$\frac{R_8 = 410.0305}{M_8 = 123009.146}$$

1050 (3600, 1975)
$$\frac{R_9 = 440.098}{M_9 = 132029.4}$$
 1110 (37.4.2857, 2400) $\frac{R_{10} = 434.4642}{M_{10} = 130339.26}$ 1160 (3883.8710, 2800) $\frac{R_{11} = 949.5807}{M_{11} = 284874.2}$ 1290 (4800, 3013.333) $\frac{R_C = 288}{M_C = 432000}$

3301.333)
$$\frac{R_{12} = 1627.6676}{M_{12} = 488300.26}$$
1300 (3200, 3600)

$$\frac{R_{13} = 1265.0692}{M_{13} = 379520.76}1320 (2000, 4000)$$

方案 V (略)

在方案Ⅰ、Ⅱ、Ⅱ、Ⅳ、Ⅴ中: ——表示一般路段

表示桥梁:

表示隧道

在方案Ⅰ、Ⅱ、Ⅱ、Ⅳ、Ⅴ中,总的线路长度、总费用、一般路段长度、费用、桥梁长度及费用、隧道长度及费用见表三。

由于架桥时必须考虑雨量最大时溪流水面宽度 ω , ω 与 x 坐标的关系可近似表示为 ω (x) = $(\frac{x-2400}{2})^{\frac{x}{4}}+5$ (2400 \leq x \leq 4000) 表四给出了雨量最大时溪流在山谷中几个特殊位置的水面宽度。在架桥时可以依据下面的不等式组确定架桥的位置、高程、桥长及水面宽度。

设桥起点的坐标为 (x_b, y_b) , 桥终点的坐标为 (x_{b+1}, y_{b+1}) 起点的高程为 h_b , 终点的高程为 h_{b+1} , (x_i, y_i) 表示桥起点,前面一个点的坐标, h_i 为高程 (x_{i+1}, y_{i+1}) 表示桥终点后面一个点的坐标, h_{i+1} 为高程。

$$\begin{cases} \sqrt{(\mathbf{x_{b+1}} - \mathbf{x_b})^2 + (\mathbf{y_{b+1}} - \mathbf{y_b})^2} > (\frac{\mathbf{x} - 2400}{2})^{\frac{3}{4}} + 5 \\ 2400 \leqslant \mathbf{x} \leqslant 4000 \\ \frac{|\mathbf{h_b} - \mathbf{h_i}|}{\sqrt{(\mathbf{x_b} - \mathbf{x_i})^2 + (\mathbf{y_b} - \mathbf{y_i})^2}} < 0.125 \\ \frac{|\mathbf{h_{b+1}} - \mathbf{h_{i+1}}|}{\sqrt{(\mathbf{x_{b+1}} - \mathbf{x_{i+1}})^2 + (\mathbf{y_{b+1}} - \mathbf{y_{i+1}})^2}} < 0.125 \\ \mathbf{h_b} = \mathbf{h_{b+1}} \end{cases}$$

各方案中桥长与溪流水面宽度ω(x)(雨量最大时)的比较,见表五。

- (二) 模型的结果分析
- 1、居民点为定点(4000, 2000)

在居民点为定点(4000,2000)时,给出了三种线路设计方案:方案I、方案I、方案II,它们之间的总路程差见表六,它们之间的总费用差见表七,从表三、表六、表七可以看出:

方案 I 是赋权图中的最短路,它的路程比方案 I 短 1172.3082 米,比方案 II 短 460.047 米,但费用较高,是三者之间最大的。如果所需公路的流量大,矿区有很大的发展潜力,则认为方案 I 是较优方案。方案 II 的优点在于费用比方案 I 少 495924.74 元,坡度较小,道路较平缓,可以提高公路运行车辆的速度,增大流量,减少运行费用,缺点在于路程较长。方案 II 的费用最低,路程介于方案 I 与方案 II 之间,只比方案 I 多 460.047 米,节约了大量的费用(包括人力、物力、财力),如果矿区的发展潜力不是巨大的,节约资金的增值大于公路开通后取得的效益,方案 II 应优于方案 I 和方案 II ,方案 II 的总费用是 4567852.748 元。

2、居民点(4000,2000)改为居民区3600≪x≪4000,2000≪y≪2400

居民点改为居民区后,给出了两种线路设计方案,方案 N 和方案 N 它们之间的总路程差见表六,总费用差见表七。

方案 Ⅳ 的优点是费用较低,节省了大量的人力、物力、财力,缺点是路线较长,方案 Ⅴ 路程较短,路线的弯度小。

从表三可以看出, 当居民点改为居民区, 方案的总费用大大减少, 而路程并没有增加多少。

五、模型的误差分析

- 1、表一中所给出的测量点的坐标和高程会带入测量误差,这是影响结果正确的一个重要因素。
- 2、在选点过程中,对所选点坐标的计算、路程的计算、费用的计算,由于对数字进行四 舍五入处理,也会导致最终的结果产生误差。
 - 3、假设"该地区地势变化较平缓"对最后的结果也产生较大的误差影响。
- 4、"当高程介于两点 A、B的高程之间时,该高程点落在 A、B 两点的连线上",这一假设,也会对结果产生误差。

六、模型的稳定性分析

我们建立的模型具有较好的稳定性, 当起点变动较小时, 如起点在 0≤x≤400, 800≤y≤ • 104 •

1200 变动,从上述方案可以看出,其线路基本没有变化,因此线路设计方案在起点的变动不太大时,具有较好的稳定性。在居民点改为居民区后,线路设计方案除桥梁与隧道做了较小的变动,其它线路基本没有变化,也具有较好的稳定性。

七、模型的优缺点及改进方向

(一) 模型的优点:

模型最大的优点在于适用性广。模型所采用的方法给山区修路提供了理论依据,而且运算简单,并且具有较好的稳定性,这种方法对于起点、中间点、终点的变动仍然有效。例如,把居民点(4000,2000)改为居民区3600≤x≤4000,2000≤y≤2400,同样得到了较优的方案。

(二) 模型的缺点:

- 1、我们模型的缺点,在于用假设语言的论断,在个别地点可能不符合,因而造成估算错误。
- 2、模型只考虑了最短路与最小费用,而对其它的因素(如社会效益、环境效益、公路的质量)则忽略不计,在选择路线上可能出现微小的变动。
 - 3、在桥梁选择的地点,只运用不等式进行了粗略的计算,这样就会增大费用或增长路程。 (三)模型的改进方向:

模型的改进余地是很大的,它只考虑了最短路与最小费用问题,也可以把如社会效益、环境效益、公路流量、节约资金的增值、公路修成后获得的效益、矿区的发展潜力等因素考虑进去,获得较好的线路设计方案。甚至还可以考虑发展旅游业,使线路通过山口湖,或许能获得较多的效益。如果能把点与点之间的水平距离 400 米改成 200 米或 100 米,多测出一些点的高程,我们相信其路线设计方案将会更好。

八、计算机程序说明

用计算机模拟该山区的立体图采用 FOXGRAPH 图形系统。

程序 [说明:

程序 Ⅰ说明:

在满足坡度 α 的限制条件下,采用了 4×3 阶矩阵模拟了满足条件的点(称作主点),并求出了主点的位置及横纵坐标(x,y),与前一次模拟出点之间的总路程的费用。模拟后一个主点时,前一个主点在后一个模拟矩阵中的行列位置分别用 a,b表示,前一个主点与后一个主点之间的高程差用 q表示,f $\{i,j\}$ 表示模拟矩阵的第 i 行第 j 列的元素。后一个主点的高程用 b表示等于前一个主点的高程士a。求横纵坐标时,用了三角形相似公式即:(b-f(a) (a) (a)

说明:本文出现的费用全部指工程成本。

参考文献

- (1) 钱颂迪等编,运筹学、清华大学出版社,北京,1990。
- [2] 叶其孝等编,大学生数学建模辅导教材,湖南教育出版社,1993。

表一

4800	1350	1370	1390	1400	1410	960	940	880	800	690	570	430	• 290	210	150
4400	1370	1390	1410	1430	1440	1140	1110	1050	950	820	690	540	380-	300	210
4000	1380	1410	1430	1450	1470	1320	1280	1200	1030	940	780	620	460	370	350
3600	1420	1430	1450	1480	1500	1550	1510	1430	1300	1200	980	850	750	550	500
3200	1430	1450	1460	1500	1550	1600	1550	1600	1600	1600	1550	1500	1500	1550	1550
2800	950	1190	1370	1500	1200	1100	1550	1600	1550	1380	1070	900	1050	1150	1200
2400	910	1090	1270	1500	1200	1100	1350	1450	1200	1150	1010	880	1000	1050	1100
2000	880	1060	1230	1390	1500	1500	1400	900	1100	1060	950	870	900	930	950
1600	830	980	1180	1320	1450	1420	1400	1300	· 700	900	850	840	380	780	750
1200	740	880	1080	1130	1250	1280	1230	1040	900	500	700	780	750	650	550
800	650	760	880	970	1020	1050	1020	830	800	700	300	500	550	480	350
400	510	620	730	800	850	870	850	780	720	650	500	200	300	3 50	320
0	370	470	550	600	670	690	670	620	580	450	400	300	100	150	250
Y/X	0	400	800	1200	1600	2000	2400	2800	3200	3600	4000	4400	4800	5200	5600

表二

工程种类	一般路段 桥梁		隧道					
工程成本(元/米)	300	2000	1500 (长度≤300米); 3000 (长度≥300米)					
对坡度α的限制	α<0.125	$\alpha = 0$	α<0.100					

模型结果

项	总的路线	一般	路段路线	桥梁		隧	道
内容	长度(米) 费用(5	元) 长度(米) 费用(元)	长度(米)	费用(元)	长度(米)	费用(元)
<u></u> 方案 1	9236, 9658 5085023	. 2988170. 44	232451132.69	565. 6854	1131360	500. 8435	1502530.6
方案 2	10409, 272 4589098	. 5589841. 34	65 2952403 942	67.0820	134164	500.8435	1502530.6
方案 3	9697.0108 4567852	.7489015.88	982704766.94	180. 2776	360555. 2	500. 8434	
方案 4	10263. 24683671659	9. 529829. 90	242948970.72	145.3444	290688.6	288	
方案 5	9516. 456 3981807	.0199045.26	54 2713579.619	145. 3444	290688. 6	325.8462	977578.6

表四 溪流在山谷中各个位置的水面宽度 $ω(x) = (\frac{x-2400}{2})^{\frac{x}{2}} + 5 * (表略)$

表五 各方案中桥长与溪流水面宽度 ω (x) 的比较 (表略)

表六 各方案间总路程差表 (单位:米) (表略)

表七 各方案间总费用差表 (单位:元) (表略)

注:限于篇幅,计算机模拟图及程序这里略去。

责任编辑: 李万同

我国大学生于 1989 年开始在叶其孝教授倡导下参加美国的 MCM,以后参赛队逐年增加,历次都取得了好成绩,近几年在我国一些地区,如上海、西安等地组织了区域性的大学生数学建模竞赛,1994 年 10 月 28 日——31 日在全国范围内的大学生数学建模竞赛在全国各大赛区同时举行,甘肃赛区首次参加,我校以李万同老师为主教练,数学专业、计算机专业和物理专业各一名同学组成一个队首次参加了这次竞赛,虽然训练时间短,缺乏参赛经验,学生的基础知识尚不完善,经费十分紧张,由于教练认真组织训练,队员团结一致,奋力拼搏,在有本专科院校参赛的甘肃赛区 35 个队中获得了一等奖,取得了好成绩。

通过这次组队参赛,为了搞好大学生数学建模竞赛,应注意以下几个方面的问题:

- 1、由于这项竞赛以后每年都将在固定时间在全国范围内举行一次,影响将越来越大,应 在全校理科学生中广泛开设"数学建模"选修课,以推动数学建模教学活动,多发现些选手, 为参赛组队打下较好的基础,应该有更多的学生参加竞赛。
- 2、学校应有一定资金资助,一是加强对教练员的培训,提供外出参加学术交流、搜集资料的机会,二是由于建模必须使用计算机进行大量计算,应有较好的软件包,一定的打印材料,三是需购置一定的数学参考资料,四是教练员的额外工作补贴、参赛经费及参赛期间由于参赛队员的身体消耗过大一定的营养,伙食补贴。
 - 3、参赛期间要有图书馆、计算机室及后勤保障。

参考文献

- [1] 叶其孝,大学生数学建模竞赛辅导教材,湖南教育出版社,1993,8 (第一版)。
- [2]《运筹学》教材编写组,运筹学,清华大学出版社,1990,第二版。
- 〔3〕杨启帆,边馥萍,数学模型,浙江大学出版社,1990。
- [4] 中国科学报, 1995, 1, 2。

帝仟编辑: 李万同: