

SEQUENCE LISTING

<110> ZENECA Limited

5 <120> HUMAN RECEPTOR TYROSINE KINASE

<130> 70332/US.Substantive

<150> US 60/088,958

<151> 1998-06-11

<160> 6

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2607

<212> DNA

<213> Homo sapiens

<400> 1

gaggaggggac	acggaattac	tcacagctgt	gtctgtgtca	tccctctgtgg	gccttagcgg	120
gaaggggaca	gccctgtggc	aatgggcatg	acacggatgc	tcctggaatg	cagtctcagt	180
gacaagtgt	gtgtcatcca	ggagaagcag	tatgaagtga	ttatcgcccc	aacttggtt	240
gttactatct	tcctcatctt	tcttgggtc	atccctggc	tttttatcag	agaacaaaga	300
actcaacacg	agcggttcgg	acctcaaggc	atggcccctg	ttcccttacc	tagggaccta	360
agctgggaag	caggacatgg	aggaaatgtg	gtttgcac	ttaaggagac	atccgtggaa	420
aactttctgg	gagctaccac	acctgcctg	gctaagctgc	aggtgcccg	ggagcaactc	480
tctgaagttc	tggagcagat	ttgcagtgg	agctgtgggc	ccatcttcg	agccaatatg	540
aacactgggg	acccttctaa	gcccaagagt	gttattctca	aggcttaaa	agaaccagct	600
gggctccatg	aggtaacaaga	tttcttaggg	cgaatccaat	tccatcaata	cctggggaaa	660
cacaaaaacc	tggtgcaagct	ggaaggctgc	tgcaactgaa	agctgccact	ctatatggtg	720
ttggaggatg	tggcccaggg	ggacctgctc	ggcttctct	ggacctgtcg	gcgggatgtg	780
atgactatgg	atggctttct	ctatgatctc	acagaaaaac	aagtataatca	catcgaaag	840
caggtcctt	tggcgtgg	attcctgcag	gagaagcatt	tgttccatgg	ggatgtggca	900
gccaggaata	ttctgtatgca	aagtgtatctc	actgctaagc	tctgtggat	aggcctggct	960
tatgaagttt	acaccccgagg	ggccatctcc	tctactcaaa	ccatactct	caagtggctt	1020
gccccagaac	ggcttctct	gagacctgtc	agcatcagag	cagatgtctg	gtcttttggg	1080
atcctgtct	atgagatgg	gactcttagga	gcaccaccgt	atcctgaagt	ccctcctacc	1140
agcatcttag	agcatctcca	aagaaggaaa	atcatgaaga	gaccoagtag	ctgcacacat	1200
accatgtaca	gtatgtatgaa	gtcctgtctgg	cgctggcgt	aggctgaccg	cccttcacct	1260
agagactgtc	gcttgcgcct	agaagctgccc	attaaaactg	cagatgacga	ggctgtgtta	1320
caagtaccag	agttgggtgt	acctgaactg	tatgcagctg	tggccggcat	cagagtggag	1380
agcctttct	acaactatag	catgcttga	agagtctcgg	gcaagaaaaca	ttcatgcatt	1440
agtataatgtt	cttggaatca	attcctctaa	gaacagagaaa	tggttttcc	cagggacaca	1500
aagggagaaa	tgggacatgg	attcttgatc	ttcctttaca	catttctcgg	gaaatctgaa	1560
atgatgttgg	atgggactct	acacatctc	agctaagaca	tactgtcagt	ctcacttctg	1620
ctgtcccaagt	cctagaaaatc	ctgggtgaa	gtgggtggacc	tgtccaaagg	aggttttaga	1680
actctgcagt	atttgttggg	gcatggcaca	aataagctca	tccctccctg	ccgaggctag	1740
tttcctctgg	aaccacattt	ttatcttagat	gaaaattttgg	aatgaaatgaa	aggaatagaa	1800
atccaataaaa	agagttgaag	ggaaaagaaaa	ttaagggtc	ttctgtctca	ggattacaga	1860
tatggaccaa	cacctcttc	aagaaaagg	gttaggacac	aaagtcttc	agtccgtac	1920
cctacatgt	gggctggagg	agaactataa	cgaaaaaaac	tctgagttc	acctttaggt	1980
tagataaaaag	aaagatggtc	cccttttac	tgattctgag	acaggtaaat	tctgtttgtt	2040
actacgttta	attagaaggt	ggaggagtca	tttcatgatt	aagaacattc	aacatgtatt	2100
gttcatcaag	ctagttctt	agttccgatt	agactaagga	gactaagcct	agagagtcaa	2160
tgttagaaca	gtgaaaagaaa	ttctgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgcacaata	2220
aataggaat	gtagaaaacca	agcaagaagg	cttagtagct	cagttttaa	caagggctag	2280
aaaagaatgt	aatctgtat	ggaaggatag	cagttctaa	tttcaatca	tctgttgata	2340
tactgtaaaa	cttattttat	taaattaata	tttattaaat	ggaatatgc	tttctgggtt	2400
tataactact	aaaaatataca	tagggaggat	aaaagtaaat	aagtgaaagt	taatgccaat	

agaaaaattc aagagataat gtacaatgtc agaaaaggga ttctttatgt gtaaatgggg
ataataccta tttcacaagg ttgtttag tagtgcatacg ttttgactat gtatttgtac
actatctggc acatatgcgc tcaataaaacg tgtttcct taaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2460
2520
2580
2607

5

<210> 2
<211> 1269
<212> DNA
<213> Homo Sapiens

10

<400> 2
atgggcatga cacggatgct cctggaatgc agtctcagtg acaagttgtg tgcacatccag 60
gagaagcagt atgaagtgtat ttcgtccca actttgttgg ttactatctt cctcatcctt 120
cttgggggtca tcctgtggct ttttatcaga gaacaaagaa ctcaacagca gcgttctgga 180
15 cctcaaggca ttgcccctgt tcctccacctt agggacctaa gctgggaagc aggacatgga 240
ggaaaatgtgg ctggccact taaggagaca tccgtggaaa actttctggg agctaccaca 300
cctgcccctgg ctaagctgca ggtgccgcgg gagcaactct ctgaagttct ggagcagatt 360
tgcaagtggta gctgtggcc catcttcga gccaatatga acactgggg cccttctaag 420
cccaagagtg ttattctcaa ggctttaaaa gaaccagctg ggctccatga ggtacaagat 480
20 ttcttagggc gaatccaatt ccatcaatac ctggggaaac aaaaaaacct ggtgcagctg 540
gaaggcgtgct gcactgaaaaa gctgccactc tatatgtgt tggaggatgt ggcccagggg 600
gacctgctcg gctttctctg gacctgtcg cggtatgtga tgactatgga tggcttctc 660
tatgatctca cagaaaaaca agtataatcac atcggaaagc aggtcctttt ggcgctggaa 720
ttcctgcagg agaaggcattt gtccatggg gatgtggcag ccaggaatatt tctgatgcaa 780
25 agtgatctca ctgctaaact ctgtggatta ggcctggctt atagaatttta caccggaggg 840
gccccatctctt ctaactaaac catacctctc aagtggctt ccccaagaac gcttctctg 900
agacctgcta gcatcagagc agatgtctgg tctttggga tcctgctcta tgagatggtg 960
actctaggag caccaccgta tcctgaagtc ctccttacca gcatacttgcata gcatctccaa 1020
30 agaaggaaaaa tcatgaagag acccagtagc tgacacacata ccatgtacag tatcatgaag 1080
tcctgctggc gctggcgtga ggctgaccgc ccctcaccta gagagctgcg cttgcgccta 1140
gaagctgcca taaaactgc agatgacgag gctgtgttac aagtaccaga gttgggttga 1200
cctgaactgt atgcagctgtt ggccggcattt agagtggaga gcctcttcta caactatagc 1260
atgctttga 1269

35

<210> 3
<211> 422
<212> PRT
<213> Homo Sapiens

40

<400> 3

Met Gly Met Thr Arg Met Leu Leu Glu Cys Ser Leu Ser Asp Lys Leu
1 5 10 15
Cys Val Ile Gln Glu Lys Gln Tyr Glu Val Ile Ile Val Pro Thr Leu
20 25 30
45 Leu Val Thr Ile Phe Leu Ile Leu Gly Val Ile Leu Trp Leu Phe
35 40 45
Ile Arg Glu Gln Arg Thr Gln Gln Gln Arg Ser Gly Pro Gln Gly Ile
50 55 60
50 Ala Pro Val Pro Pro Arg Asp Leu Ser Trp Glu Ala Gly His Gly
65 70 75 80
Gly Asn Val Ala Leu Pro Leu Lys Glu Thr Ser Val Glu Asn Phe Leu
85 90 95
Gly Ala Thr Thr Pro Ala Leu Ala Lys Leu Gln Val Pro Arg Glu Gln
100 105 110
55 Leu Ser Glu Val Leu Glu Gln Ile Cys Ser Gly Ser Cys Gly Pro Ile
115 120 125
Phe Arg Ala Asn Met Asn Thr Gly Asp Pro Ser Lys Pro Lys Ser Val
130 135 140
60 Ile Leu Lys Ala Leu Lys Glu Pro Ala Gly Leu His Glu Val Gln Asp
145 150 155 160
Phe Leu Gly Arg Ile Gln Phe His Gln Tyr Leu Gly Lys His Lys Asn
165 170 175
Leu Val Gln Leu Glu Gly Cys Cys Thr Glu Lys Leu Pro Leu Tyr Met

	180	185	190
	Val Leu Glu Asp Val Ala Gln Gly Asp Leu Leu Gly Phe Leu Trp Thr		
	195	200	205
5	Cys Arg Arg Asp Val Met Thr Met Asp Gly Leu Leu Tyr Asp Leu Thr		
	210	215	220
	Glu Lys Gln Val Tyr His Ile Gly Lys Gln Val Leu Leu Ala Leu Glu		
	225	230	235
	Phe Leu Gln Glu Lys His Leu Phe His Gly Asp Val Ala Ala Arg Asn		
10	245	250	255
	Ile Leu Met Gln Ser Asp Leu Thr Ala Lys Leu Cys Gly Leu Gly Leu		
	260	265	270
	Ala Tyr Glu Val Tyr Thr Arg Gly Ala Ile Ser Ser Thr Gln Thr Ile		
	275	280	285
15	Pro Leu Lys Trp Leu Ala Pro Glu Arg Leu Leu Leu Arg Pro Ala Ser		
	290	295	300
	Ile Arg Ala Asp Val Trp Ser Phe Gly Ile Leu Leu Tyr Glu Met Val		
	305	310	315
	Thr Leu Gly Ala Pro Pro Tyr Pro Glu Val Pro Pro Thr Ser Ile Leu		
20	325	330	335
	Glu His Leu Gln Arg Arg Lys Ile Met Lys Arg Pro Ser Ser Cys Thr		
	340	345	350
	His Thr Met Tyr Ser Ile Met Lys Ser Cys Trp Arg Trp Arg Glu Ala		
	355	360	365
25	Asp Arg Pro Ser Pro Arg Glu Leu Arg Leu Arg Leu Glu Ala Ala Ile		
	370	375	380
	Lys Thr Ala Asp Asp Glu Ala Val Leu Gln Val Pro Glu Leu Val Val		
	385	390	395
	Pro Glu Leu Tyr Ala Ala Val Ala Gly Ile Arg Val Glu Ser Leu Phe		
30	405	410	415
	Tyr Asn Tyr Ser Met Leu		
	420		
35	<210> 4		
	<211> 15		
	<212> PRT		
	<213> Homo Sapiens		
40	<400> 4		
	Glu Ala Asp Arg Pro Ser Pro Arg Glu Leu Arg Leu Arg Leu Glu		
	1	5	10
	15		
	<210> 5		
	<211> 27		
	<212> DNA		
45	<213> Artificial Sequence		
	<220>		
	<223> PCR Primer		
50	<400> 5		
	gccgtcgact gtgggcctag caggaa		27
	<210> 6		
	<211> 27		
	<212> DNA		
55	<213> Artificial Sequence		
	<220>		
	<223> PCR Primer		
60	<400> 6		
	gccccggccg ctcaaagcat gctatag		27

-58-

* * *

-- END --

5

10