GENERAL TOPOLOGY HOMEWORK FOR WEEK 4

DEADLINE: MON 24.3, 23:59

Exercise 1. Prove Theorem 3.13 in detail: Let $A_i, i \in I$ be any collection of connected subsets of X, and $\bigcap_{i \in I} A_i \neq \emptyset$. Then $\bigcup_{i \in I} A_i$ is connected.

Another formulation for X being a **normal space** is that for every two open sets $U, V \subset X$ such that $U \cup V = X$, there exist closed sets $A \subset U$ and $B \subset V$ such that $A \cup B = X$.

(This is easy to prove with de Morgan's laws, you don't need to do it here but should check it for yourself.)

Exercise 2. Let $f: X \to Y$ be a continuous and closed surjection. Prove that if X is normal, then Y is normal.