```
import numpy as np
import pandas as pd
df = pd.read csv('/content/Churn Modelling.csv')
#univariate analysis-1)summary statistics
df['Balance'].mean()
76485.889288
df['Age'].median()
37.0
df['CreditScore'].std()
96.65329873613035
#2)Create frequency table
df['Age'].value_counts()
37
      478
38
      477
35
      474
36
      456
34
      447
92
        2
82
        1
        1
88
85
        1
83
        1
Name: Age, Length: 70, dtype: int64
#3)create charts
import matplotlib.pyplot as plt
df.boxplot(column=['CreditScore'],grid=False, color='black')
<matplotlib.axes._subplots.AxesSubplot at 0x7f89bc881250>
```



```
#Bivariate analysis-
#1)Scatterplots
import matplotlib.pyplot as plt
plt.scatter(df.Age,df.CreditScore)
plt.title('Age vs CreditScore')
plt.xlabel('Age')
plt.ylabel('CreditScore')
Text(0, 0.5, 'CreditScore')
```


#2)Correlation Coefficients
df.corr()

	RowNumber	CustomerId	CreditScore	Age
Tenure \				_
RowNumber	1.000000	0.004202	0.005840	0.000783 -
0.006495 CustomerId 0.014883	0.004202	1.000000	0.005308	0.009497 -
CreditScore 0.000842	0.005840	0.005308	1.000000	-0.003965
Age 0.009997	0.000783	0.009497	-0.003965	1.000000 -
Tenure 1.000000	-0.006495	-0.014883	0.000842	-0.009997
Balance	-0.009067	-0.012419	0.006268	0.028308 -
0.012254 NumOfProducts	0.007246	0.016972	0.012238	-0.030680
0.013444 HasCrCard	0.000599	-0.014025	-0.005458	-0.011721
0.022583 IsActiveMember	0.012044	0.001665	0.025651	0.085472 -
0.028362 EstimatedSalary	-0.005988	0.015271	-0.001384	-0.007201
0.007784 Exited 0.014001	-0.016571	-0.006248	-0.027094	0.285323 -

```
NumOfProducts
                                           HasCrCard
                   Balance
                                                       IsActiveMember
RowNumber
                 -0.009067
                                 0.007246
                                             0.000599
                                                              0.012044
CustomerId
                -0.012419
                                 0.016972
                                            -0.014025
                                                              0.001665
CreditScore
                 0.006268
                                 0.012238
                                            -0.005458
                                                             0.025651
Aae
                 0.028308
                                -0.030680
                                            -0.011721
                                                              0.085472
Tenure
                 -0.012254
                                 0.013444
                                             0.022583
                                                             -0.028362
Balance
                                            -0.014858
                 1.000000
                                -0.304180
                                                             -0.010084
NumOfProducts
                -0.304180
                                 1.000000
                                             0.003183
                                                             0.009612
HasCrCard
                 -0.014858
                                 0.003183
                                             1.000000
                                                            -0.011866
IsActiveMember
                -0.010084
                                 0.009612
                                          -0.011866
                                                             1.000000
EstimatedSalary
                 0.012797
                                 0.014204
                                           -0.009933
                                                            -0.011421
Exited
                 0.118533
                                -0.047820
                                           -0.007138
                                                            -0.156128
                 EstimatedSalary
                                     Exited
RowNumber
                        -0.005988 -0.016571
CustomerId
                         0.015271 -0.006248
CreditScore
                        -0.001384 -0.027094
Age
                        -0.007201
                                   0.285323
                         0.007784 -0.014001
Tenure
Balance
                         0.012797
                                   0.118533
NumOfProducts
                         0.014204 - 0.047820
HasCrCard
                        -0.009933 -0.007138
IsActiveMember
                        -0.011421 -0.156128
EstimatedSalary
                         1.000000
                                   0.012097
Exited
                         0.012097
                                   1.000000
#3) Simple Linear Regressiion
import statsmodels.api as sm
v=df['CreditScore']
x=df[['Age']]
x=sm.add constant(x)
model=sm.OLS(y,x).fit()
print(model.summary())
                             OLS Regression Results
Dep. Variable:
                           CreditScore
                                         R-squared:
0.000
Model:
                                   0LS
                                         Adj. R-squared:
-0.000
Method:
                         Least Squares
                                         F-statistic:
0.1572
                     Mon, 03 Oct 2022
Date:
                                         Prob (F-statistic):
0.692
Time:
                              06:05:58
                                         Log-Likelihood:
-59900.
```

10000

AIC:

No. Observations:

1.198e+05

Df Residuals: 9998 BIC:

1.198e+05

Df Model: 1

Covariance Type: nonrobust

0.975]	coef	std err	t	P> t	[0.025
const 659.234 Age 0.144	651.9510 -0.0365	3.715 0.092	175.481 -0.396	0.000	644.668
Omnibus: 2.014 Prob(Omnibus4.280 Skew: 5.00e-19 Kurtosis: 155.	us):	-0.6	000 Jarque	•	

Notes:

=======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/ tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keywordonly

x = pd.concat(x[::order], 1)

#Descriptive Analysis

df.describe()

RowNum	ber Custom	erId CreditSc	ore Age
Tenure \			
count 10000.00	0000 1.0000000	e+04 10000.000	000 10000.000000
10000.000000			
mean 5000.50	0000 1.569094	e+07 650.528	800 38.921800
5.012800			
std 2886.89	568 7.193619	e+04 96.653	299 10.487806
2.892174			

min	1.00000	1.556570e+07	350.000000	18.000000
0.00000	0			
25%	2500.75000	1.562853e+07	584.000000	32.000000
3.00000	0			
50%	5000.50000	1.569074e+07	652.000000	37.000000
5.00000	0			
75%	7500.25000	1.575323e+07	718.000000	44.000000
7.00000	0			
max	10000.00000	1.581569e+07	850.000000	92.000000
10.0000	000			

	Balance	NumOfProducts	HasCrCard	IsActiveMember
count	10000.000000	10000.000000	10000.00000	10000.000000
mean	76485.889288	1.530200	0.70550	0.515100
std	62397.405202	0.581654	0.45584	0.499797
min	0.000000	1.000000	0.00000	0.000000
25%	0.000000	1.000000	0.00000	0.000000
50%	97198.540000	1.000000	1.00000	1.000000
75%	127644.240000	2.000000	1.00000	1.000000
max	250898.090000	4.000000	1.00000	1.000000

\

	EstimatedSalary	Exited
count	10000.000000	10000.000000
mean	100090.239881	0.203700
std	57510.492818	0.402769
min	11.580000	0.000000
25%	51002.110000	0.000000
50%	100193.915000	0.000000
75%	149388.247500	0.00000
max	199992.480000	1.000000

df.describe(include=['object'])

	Surname	Geography	Gender
count	10000	10000	10000
unique	2932	3	2
top	Smith	France	Male
freq	32	5014	5457

df.std()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

RowNumber 2886.895680 CustomerId 71936.186123 CreditScore 96.653299

Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dtype: float64	10.487806 2.892174 62397.405202 0.581654 0.455840 0.499797 57510.492818 0.402769
df.sum()	
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dtype: object	50005000 156909405694 HargraveHillOnioBoniMitchellChuBartlettObinnaH 6505288 FranceSpainFranceFranceSpainSpainFranceGermany FemaleFemaleFemaleFemaleMaleMaleFemaleMa 389218 50128 764858892.88 15302 7055 5151 1000902398.81 2037
<pre>df.count()</pre>	
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dtype: int64	10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
<pre>#Handle the Missin df.isnull().sum()</pre>	g values.

RowNumber CustomerId

0 0

```
Surname
                   0
CreditScore
                   0
Geography
                   0
Gender
                   0
Aae
                   0
Tenure
                   0
                   0
Balance
NumOfProducts
                   0
HasCrCard
                   0
IsActiveMember
                   0
EstimatedSalary
                   0
Exited
                   0
dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
#
                      Non-Null Count
     Column
                                      Dtype
- - -
     -----
 0
     RowNumber
                      10000 non-null
                                      int64
 1
     CustomerId
                      10000 non-null
                                      int64
 2
     Surname
                      10000 non-null
                                      obiect
 3
                      10000 non-null
     CreditScore
                                      int64
 4
                      10000 non-null
    Geography
                                      obiect
 5
                      10000 non-null
    Gender
                                      object
                                      int64
 6
                      10000 non-null
    Age
 7
    Tenure
                      10000 non-null int64
 8
    Balance
                      10000 non-null float64
 9
    NumOfProducts
                      10000 non-null int64
 10 HasCrCard
                      10000 non-null int64
 11
    IsActiveMember
                      10000 non-null
                                      int64
 12
    EstimatedSalary
                      10000 non-null
                                      float64
 13
    Exited
                      10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
#there are no missing values in the given dataset
import seaborn as sns
sns.boxplot(df['CreditScore'])
/usr/local/lib/python3.7/dist-packages/seaborn/ decorators.py:43:
FutureWarning: Pass the following variable as a keyword arg: x. From
version 0.12, the only valid positional argument will be `data`, and
passing other arguments without an explicit keyword will result in an
error or misinterpretation.
  FutureWarning
<matplotlib.axes. subplots.AxesSubplot at 0x7f89bc1b3350>
```


np.where(df['CreditScore']<400)</pre>

(array([7, 942, 1193, 1201, 1405, 1631, 1838, 1962, 2473, 2579, 5285, 5494, 6253, 8154, 8723, 8762, 9210, 9356, 9624]),)

df['CreditScore'].mean()

-

650.5288

df['CreditScore']=np.where(df['CreditScore']<400,650.5288,df['CreditScore'])
df.head(10)</pre>

`	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619.0000	France	Female	42
1	2	15647311	Hill	608.0000	Spain	Female	41
2	3	15619304	Onio	502.0000	France	Female	42
3	4	15701354	Boni	699.0000	France	Female	39
4	5	15737888	Mitchell	850.0000	Spain	Female	43
5	6	15574012	Chu	645.0000	Spain	Male	44
6	7	15592531	Bartlett	822.0000	France	Male	50

7		8	15656	148	Obinna	650	.5288	Germany	Femal	e 29
8		9	15792	365	Не	501	.0000	France	Mal	e 44
9		10	15592	389	Н?	684	.0000	France	Mal	e 27
0 1 2 3 4 5 6 7 8 9	Tenure 2 1 8 1 2 8 7 4 4 2	838 1596 1255 1137 1150 1420	lance 0.00 07.86 60.80 0.00 10.82 55.78 0.00 46.74 51.07 03.88	NumOf	Products 1 1 3 2 1 2 4 2 1	HasCr	Card 1 0 1 0 1 1 1 1 0	IsActiveM	ember 1 0 0 1 0 1 0 1	\
0 1 2 3 4 5 6 7 8 9	1 1 1	edSal .01348 .12542 .13931 93826 79084 .49756 10062 .19346 74940 71725	.88 .58 .57 .63 .10 .71 .80 .88	xited 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0						

#boxplot after identifying and replacing the outliers with the mean value of the column

sns.boxplot(df['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f89bc2d5610>


```
#Check for Categorical columns and perform encoding.
df categorical=df[['Geography','Gender']]
df['Gender'].unique()
#two unique values
array(['Female', 'Male'], dtype=object)
df['Geography'].unique()
#three unique values
array(['France', 'Spain', 'Germany'], dtype=object)
#encoding categorical values with two distinct values
from sklearn.preprocessing import LabelEncoder
en gen = LabelEncoder()
en_gen.fit(df_categorical['Gender'])
LabelEncoder()
values gen=en gen.transform(df categorical['Gender'])
"After encoding", values gen
('After encoding', array([0, 0, 0, ..., 0, 1, 0]))
#encoding categorical values with more than two distinct values
from sklearn.preprocessing import OneHotEncoder
import numpy as np
geo encoder = OneHotEncoder()
geo reshaped = np.array(df categorical['Geography']).reshape(-1, 1)
geo values = geo_encoder.fit_transform(geo_reshaped)
print(geo values.toarray())
```

```
print()
print(geo encoder.inverse transform(geo values))
[[1. 0. 0.]
 [0. 0. 1.]
 [1. 0. 0.]
 . . .
 [1. 0. 0.]
 [0. 1. 0.]
 [1. 0. 0.]]
[['France']
 ['Spain']
 ['France']
 ['France']
 ['Germany']
 ['France']]
#independent variable
X = df.iloc[:, :-1].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
 [2 15647311 'Hill' ... 0 1 112542.58]
 [3 15619304 'Onio' ... 1 0 113931.57]
 [9998 15584532 'Liu' ... 0 1 42085.58]
 [9999 15682355 'Sabbatini' ... 1 0 92888.52]
 [10000 15628319 'Walker' ... 1 0 38190.78]]
#dependent variable
Y = df.iloc[:,-1].values
print(Y)
[1 \ 0 \ 1 \ \dots \ 1 \ 1 \ 0]
#Scale the independent variables
X = df[["CreditScore", "Age", "Tenure", "EstimatedSalary"]].values
y=df[["Exited"]]
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X)
Χ
array([[6.1900000e+02, 4.2000000e+01, 2.0000000e+00, 1.0134888e+05],
       [6.0800000e+02, 4.1000000e+01, 1.0000000e+00, 1.1254258e+05],
       [5.0200000e+02, 4.2000000e+01, 8.0000000e+00, 1.1393157e+05],
```

```
[7.0900000e+02, 3.6000000e+01, 7.0000000e+00, 4.2085580e+04],
[7.7200000e+02, 4.2000000e+01, 3.0000000e+00, 9.2888520e+04],
[7.9200000e+02, 2.8000000e+01, 4.0000000e+00, 3.8190780e+04]])

#Split the data into training and testing
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest =
train_test_split(X,Y,test_size=0.3,random_state=10)

xtrain.shape,xtest.shape
((7000, 4), (3000, 4))
ytrain.shape,ytest.shape
((7000,), (3000,))
```