Agrégation Interne

Décomposition de Dunford (ou Jordan-Chevalley)

Ce problème est l'occasion de revoir quelques résultats de base d'algèbre linéaire.

Les notions qu'il peut être utile de réviser sont les suivantes :

- polynômes d'endomorphismes;
- valeurs et vecteurs propres, polynôme caractéristique, trigonalisation des matrices;
- le théorème de décomposition des noyaux;
- polynôme minimal;
- extensions de corps;
- endomorphismes nilpotents;
- l'exponentielle d'endomorphisme;
- normes matricielles, rayon spectral.

Sur ces questions d'analyse matricielle, on peut consulter les ouvrages suivants :

- P. G. Ciarlet Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1982).
 - F. R. Gantmacher Théorie des matrices (Vol. 1 et 2). Dunod (1966).
 - X. GOURDON Les maths en tête. Algèbre. Ellipses. (1994).
 - R. A. Horn, C. A. Johnson *Matrix analysis*. Cambridge University Press (1985).
 - J. E. ROMBALDI Analyse matricielle. EDP Sciences (2000).
 - P. Tauvel Mathématiques générales pour l'agrégation. Masson (1993).

Pour ce problème, E est un espace vectoriel de dimension $n \geq 1$ sur un corps commutatif \mathbb{K} et $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E.

On se donne $u \in \mathcal{L}(E)$ et $P_u(X) = \det(u - XId)$ désigne le polynôme caractéristique de u.

On rappelle que pour tout polynôme $P(X) = \sum_{k=0}^{p} a_k X^k$, P(u) est l'endomorphisme de E défini par :

$$P(u) = a_0 Id + a_1 u + \dots + a_p u^p$$

où $u^k = u \circ \cdots \circ u$, cette composition étant effectuée k fois pour $k \geq 1$ et $u^0 = Id$. On vérifie alors que $\mathbb{K}[u] = \{P(u) \mid P \in \mathbb{K}[X]\}$ est une algèbre unitaire commutative.

 $\mathcal{M}_n(\mathbb{K})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients dans \mathbb{K} .

- I - Généralités

1. Soient p un entier supérieur ou égal à 2, P_1, \dots, P_p des polynômes non nuls dans $\mathbb{K}[X]$ et Q_1, \dots, Q_p les polynômes définis par $Q_k = \prod_{\substack{j=1 \ j \neq k}}^p P_j$ pour tout k compris entre 1 et p. Montrer que

si les polynômes P_k sont deux à deux premiers entre eux dans $\mathbb{K}[X]$, alors les polynômes Q_k sont premiers entre eux dans leur ensemble et pour tout k compris entre 1 et p, les polynômes P_k et Q_k sont premiers entre eux.

2. Soient p un entier supérieur ou égal à $2, P_1, \dots, P_p$ des polynômes non nuls dans $\mathbb{K}[X]$ deux à deux premiers entre eux et $P = \prod_{k=1}^{p} P_k$.

Montrer que:

$$\ker (P(u)) = \bigoplus_{k=1}^{p} \ker (P_k(u))$$

les projecteurs π_k : ker $(P(u)) \to \ker(P_k(u))$, pour k compris entre 1 et p, étant des éléments de $\mathbb{K}[u]$ (théorème de décomposition des noyaux).

3. Soient p un entier supérieur ou égal à 2 et :

$$P(X) = \prod_{k=1}^{p} (X - \lambda_k)^{\alpha_k}$$

un polynôme scindé sur \mathbb{K} , où les α_k sont des entiers naturels non nuls et les λ_k des scalaires deux à deux distincts. En utilisant la décomposition en éléments simples de la fraction rationnelle $\frac{1}{P}$, donner une expression des projecteurs π_k de ker (P(u)) sur ker $(P_k(u))$ pour tout k compris entre 1 et p.

- 4. Justifier l'existence et l'unicité d'un polynôme unitaire de plus petit degré qui annule u. Ce polynôme est noté π_u et on dit que c'est le polynôme minimal de u. On définit de manière analogue le polynôme minimal π_A d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ et on vérifie que si A est la matrice de u dans une base de E, alors $\pi_u = \pi_A$.
- 5. Montrer que si F est un sous espace vectoriel de E stable par u, alors le polynôme caractéristique de la restriction de u à F divise celui de u.
- 6. On propose ici une démonstration du théorème de Cayley-Hamilton qui nous dit que $P_u(u) = 0$, ce qui est encore équivalent à dire que π_u divise P_u .

En désignant par A la matrice de u, dans une base de E, il est équivalent de montrer que $P_A(A) = 0$.

On considère la matrice $A - XI_n$ comme un élément de $\mathcal{M}_n(\mathbb{K}(X))$ où $\mathbb{K}(X)$ est le corps des fractions rationnelles à coefficients dans \mathbb{K} .

(a) Justifier le fait que la transposée C(X) de la matrice des cofacteurs de $A-XI_n$ s'écrit :

$$C\left(X\right) = \sum_{k=0}^{n-1} C_k X^k$$

où les C_k sont des éléments de $\mathcal{M}_n(\mathbb{K})$.

(b) En notant $P_u(X) = \sum_{k=0}^n a_k X^k$, montrer que :

$$\begin{cases}
AC_0 = a_0 I_n \\
AC_k - C_{k-1} = a_k I_n & (1 \le k \le n - 1) \\
-C_{n-1} = a_n I_n
\end{cases}$$

- (c) En déduire que $P_A(A) = \sum_{k=0}^n a_k A^k = 0$ et $P_u(u) = 0$.
- 7. On propose ici une deuxième démonstration du théorème de Cayley-Hamilton pour u non nul (pour u = 0 c'est clair).

On se donne un vecteur non nul $x \in E$ et on désigne par E_x le sous espace vectoriel de E engendré par $\{u^k(x) \mid k \in \mathbb{N}\}$ (sous espace cyclique engendré par x).

(a) Soit p_x le plus petit entier strictement positif tel que le système :

$$\mathcal{B}_{x} = \left\{ u^{k}\left(x\right) \mid 0 \le k \le p_{x} - 1 \right\}$$

soit libre. Montrer que \mathcal{B}_x est une base de E_x .

(b) Justifier l'existence d'un polynôme :

$$\pi_x(X) = X^{p_x} - \sum_{k=0}^{p_x-1} a_k X^k$$

tel que $u^{p_x}(x) = \sum_{k=0}^{p_x-1} a_k u^k(x)$, puis montrer que π_x est le polynôme minimal et $(-1)^{p_x} \pi_x$ le polynôme caractéristique de la restriction de u à E_x .

- (c) En déduire que $P_u(u) = 0$.
- 8. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice réelle. Cette matrice est aussi une matrice complexe. En désignant respectivement par $\pi_{A,\mathbb{R}}$ et $\pi_{A,\mathbb{C}}$ le polynôme minimal de A dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$, montrer que $\pi_{A,\mathbb{R}} = \pi_{A,\mathbb{C}}$
- 9. Montrer que si \mathbb{L} est une extension du corps \mathbb{K} , A une matrice dans $\mathcal{M}_n(\mathbb{K})$, $\pi_{A,\mathbb{K}}$ et $\pi_{A,\mathbb{L}}$ le polynôme minimal de A dans $\mathbb{K}[X]$ et $\mathbb{L}[X]$ respectivement, alors $\pi_{A,\mathbb{K}} = \pi_{A,\mathbb{L}}$.
- 10. Montrer que les valeurs propres de u sont les racines de π_u .
- 11. Montrer que si P_u est scindé sur \mathbb{K} avec :

$$P_u(X) = (-1)^n \prod_{k=1}^p (X - \lambda_k)^{\alpha_k}$$

où les α_k sont des entiers naturels non nuls et les λ_k des scalaires deux à deux distincts, alors :

$$\pi_u(X) = \prod_{k=1}^p (X - \lambda_k)^{\beta_k}$$

avec $1 \le \beta_k \le \alpha_k$.

12. Montrer que si F est un sous-espace vectoriel de E stable par u, alors le polynôme minimal de la restriction de u à F divise celui de u.

13.

- (a) Montrer que u est diagonalisable si, et seulement si, il est annulé par un polynôme scindé à racine simple.
- (b) En déduire que si que si u est diagonalisable et F un sous-espace vectoriel de E stable par u, alors la restriction de u à F est un endomorphisme de F diagonalisable.
- 14. Montrer que si u, v sont deux endomorphismes de E qui sont diagonalisables et qui commutent, il existe alors une base commune de diagonalisation.

- II - Endomorphismes nilpotents

On dit qu'un endomorphisme v est nilpotent s'il existe un entier q strictement positif tel que $v^{q-1} \neq 0$ et $v^q = 0$. On dit que q est l'indice de nilpotence de v.

- 1. Montrer que si $v \in \mathcal{L}(E)$ est nilpotent, alors 0 est valeur propre de v et $\mathrm{Tr}(v) = 0$.
- 2. Montrer que, pour \mathbb{K} algébriquement clos, v est nilpotent si, et seulement si, 0 est la seule valeur propre de v. Que se passe-t-il pour \mathbb{K} non algébriquement clos?
- 3. On suppose le corps \mathbb{K} de caractéristique nulle (ce qui signifie que le morphisme d'anneaux $k \mapsto k \cdot 1$ de \mathbb{Z} dans \mathbb{K} est injectif, ce qui est encore équivalent à dire que l'égalité $k\lambda = 0$ dans \mathbb{K} avec $k \in \mathbb{Z}$ et $\lambda \in \mathbb{K}^*$ équivaut à k = 0). Montrer qu'un endomorphisme v est nilpotent si, et seulement si, $\operatorname{Tr}(v^k) = 0$ pour tout k compris entre 1 et n.
- 4. On suppose le corps \mathbb{K} de caractéristique nulle et algébriquement clos. Montrer que si v est tel que $\operatorname{Tr}(v^k) = 0$ pour tout k compris entre 1 et n-1, il est alors nilpotent ou diagonalisable inversible.
- 5. Montrer que si $(v_i)_{1 \le i \le n}$ est une famille d'endomorphismes nilpotents qui commutent deux à deux $(n = \dim(E))$, alors $\prod_{i=1}^{n} v_i = 0$.
- 6. Montrer que si v, w sont deux endomorphismes nilpotents qui commutent, alors v + w est nilpotent.

- III - Décomposition de Dunford (ou Jordan-Chevalley)

En utilisant les notations de **I.11** les sous espaces vectoriels $N_k = \ker (u - \lambda_k Id)^{\alpha_k}$ sont les sousespaces caractéristiques de u (comme N_k contient l'espace propre $\ker (u - \lambda_k Id)$, il n'est pas réduit à $\{0\}$).

- 1. En supposant que P_u est scindé sur \mathbb{K} , montrer que :
 - (a) $E = \bigoplus_{k=1}^{p} N_k$.
 - (b) $N_k = \ker (u \lambda_k Id)^{\beta_k}$, pour tout $k \in \{1, 2, \dots, p\}$.
 - (c) λ_k est la seule valeur propre de la restriction de u à N_k .
 - (d) dim $(N_k) = \alpha_k$.
 - (e) La restriction de $u \lambda_k Id$ à N_k est nilpotente d'indice β_k .

- 2. On suppose que le polynôme caractéristique de u est scindé sur \mathbb{K} . Montrer qu'il existe un unique couple (d,v) d'endomorphismes de E tel que d soit diagonalisable, v soit nilpotent, d et v commutent et u=d+v (théorème de Dunford). On vérifiera que d et v sont des polynômes en u et que les valeurs propres de d sont celles de u.
- 3. Soit u l'endomorphisme de \mathbb{K}^4 de matrice :

$$A = \left(\begin{array}{cccc} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

dans la base canonique.

- (a) Ecrire la décomposition de Dunford de u.
- (b) En déduire un calcul de u^r pour tout entier r strictement positif.
- 4. On suppose que $\mathbb{K} = \mathbb{C}$ et $\lambda_1, \dots, \lambda_p$ sont les valeurs propres deux à deux distinctes de u dans \mathbb{C} .

On note $\rho(u) = \max_{1 \le k \le p} |\lambda_k|$ le rayon spectral de u.

Dans un premier temps, on se donne une norme $x \mapsto ||x||$ sur E et on lui associe la norme sur $\mathcal{L}(E)$ définie par :

$$\forall v \in \mathcal{L}(E), \|v\| = \sup_{x \in E \setminus \{0\}} \frac{\|v(x)\|}{\|x\|}$$

On rappelle qu'une telle norme est sous-multiplicative dans le sens où $||v \circ w|| \le ||v|| ||w||$ pour tous v, w dans $\mathcal{L}(E)$.

(a) Montrer que:

$$\forall k \ge 1, \ \rho\left(u\right) \le \left\|u^k\right\|^{\frac{1}{k}}$$

(b) On suppose que u est diagonalisable. Montrer qu'il existe une constante réelle $\alpha>0$ telle que :

$$\forall k \ge 1, \ \left\| u^k \right\|^{\frac{1}{k}} \le \alpha^{\frac{1}{k}} \rho\left(u\right)$$

et en déduire que :

$$\rho\left(u\right) = \lim_{k \to +\infty} \left(\left\| u^k \right\|^{\frac{1}{k}} \right).$$

(c) En utilisant la décomposition de Dunford u=d+v, montrer qu'il existe une constante réelle $\beta>0$ telle que :

$$\forall k \ge n, \ \|u^k\| \le \beta k^n \|d^{k-n}\|$$

et en déduire que :

$$\rho\left(u\right) = \lim_{k \to +\infty} \left(\left\| u^k \right\|^{\frac{1}{k}} \right).$$

- (d) Montrer que $\rho(u) = \lim_{k \to +\infty} \left(\left\| u^k \right\|^{\frac{1}{k}} \right)$ où $v \mapsto \|v\|$ est une norme quelconque sur $\mathcal{L}(E)$.
- 5. Montrer que la série $\sum u^k$ est convergente dans $\mathcal{L}(E)$ si, et seulement si, $\rho(u) < 1$. En cas de convergence de $\sum u^k$, montrer que Id u est inversible d'inverse $\sum_{k=0}^{+\infty} u^k$.

– IV – Exponentielle d'un endomorphisme (pour $\mathbb{K}=\mathbb{C})$

On suppose que $\mathbb{K} = \mathbb{C}$ et $v \mapsto \|v\|$ est une norme sur $\mathcal{L}(E)$.

1. Justifier, pour tout $v \in \mathcal{L}(E)$, la définition de l'endomorphisme e^v par :

$$e^v = \sum_{k=0}^{+\infty} \frac{1}{k!} v^k.$$

On définit de manière analogue l'exponentielle d'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ par :

$$e^A = \sum_{k=0}^{+\infty} \frac{1}{k!} A^k$$

et on vérifie facilement que si A est la matrice de v dans une base \mathcal{B} de E, alors e^A est la matrice de e^v dans cette base.

- 2. Montrer que, pour tout $v \in \mathcal{L}(E)$, on $\det(e^v) = e^{\operatorname{Tr}(v)}$ et e^v est inversible.
- 3. Calculer, pour tout réel θ l'exponentielle de la matrice $A_{\theta} = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}$.
- 4. Montrer que si v est diagonalisable, il en est alors de même de e^v et exprimer les valeurs propres de e^v en fonctions de celles de v.
- 5. Montrer que, pour tout $v \in \mathcal{L}(E)$, la fonction $\varphi : t \mapsto e^{tv}$ est de classe \mathcal{C}^1 de \mathbb{R} dans $\mathcal{L}(E)$ et calculer sa dérivée.
- 6. Montrer que, pour tout $v \in \mathcal{L}(E)$, e^v est inversible d'inverse e^{-v} .
- 7. Soient v, w dans $\mathcal{L}(E)$. Montrer que $e^{t(v+w)} = e^{tv}e^{tw}$ pour tout réel t si, et seulement si v et w commutent.
- 8. En utilisant la décomposition de Dunford u = d + v, montrer que :

$$e^{u} = e^{d}e^{v} = e^{d}\sum_{k=0}^{q-1} \frac{1}{k!}v^{k}$$

où $q \ge 1$ est l'indice de nilpotence de v.

9. Montrer que si u=d+v est la décomposition de Dunford de u, alors celle de e^u est donnée par :

$$e^u = e^d + e^d \left(e^v - Id \right),\,$$

avec e^d diagonalisable et $e^d (e^v - I_n)$ nilpotente.

- 10. Montrer que u est diagonalisable si, et seulement si, e^u est diagonalisable.
- 11. Déterminer toutes les solutions dans $\mathcal{L}(E)$ de l'équation $e^u = Id$.

- V - Endomorphismes semi-simples

On dit que $u \in \mathcal{L}(E)$ est semi-simple si tout sous-espace vectoriel de E stable par u admet un supplémentaire stable par u.

- 1. On suppose que le corps \mathbb{K} est algébriquement clos. Montrer que $u \in \mathcal{L}(E)$ est semi-simple si, et seulement si, il est diagonalisable.
- 2. Montrer que si u est semi-simple, son polynôme minimal est alors sans facteurs carrés dans sa décomposition en facteurs irréductibles dans $\mathbb{K}[x]$ (i. e. $\pi_u = \prod_{k=1}^p P_k$, où les P_k sont des polynômes irréductibles deux à deux distincts dans $\mathbb{K}[x]$).

- 3. On suppose que π_u est irréductible dans $\mathbb{K}[x]$. On sait alors que $\mathbb{L} = \frac{\mathbb{K}[x]}{(\pi_u)}$ est un corps.
 - (a) Montrer que l'espace vectoriel E peut être muni d'une structure de \mathbb{L} -espace vectoriel avec la multiplication externe définie par :

$$\overline{P} \cdot x = P(u)(x)$$

pour tout $\overline{P} \in \mathbb{L}$ et tout $x \in u$.

- (b) Montrer que F est un \mathbb{K} -sous-espace vectoriel de E stable par u si, et seulement si, F est un \mathbb{L} -sous-espace vectoriel de E.
- (c) En déduire que u est semi-simple.
- 4. Montrer que si le polynôme minimal de u est sans facteurs carrés dans sa décomposition en facteurs irréductibles dans $\mathbb{K}[x]$, alors u est semi-simple.
- 5. Montrer que si u est semi-simple, alors pour tout sous-espace F de E stable par u, la restriction de u à F est semi-simple.
- 6. Quels sont les endomorphismes nilpotents de u qui sont semi-simples?
- 7. On suppose que $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Montrer qu'il existe un unique couple (s, v) d'endomorphismes de E tel que s soit semi-simple, v soit nilpotent, d et s commutent et u = s + v (théorème de Dunford).