Handwrite part

7.5 Determine the z-transform and its ROC for

$$x[n] = 2\left(\frac{2}{3}\right)^n u[n] - \left(\frac{2}{5}\right)^n u[n]$$

- **7.6** Find the z-transform of the following signals:
 - (a) u[n m]
 - (b) $na^nu[n]$
 - (c) $a^n \cos \pi n \ u[n]$

7.19 The z-transform of a discrete-time signal x[n] is

$$X(z) = \frac{z-2}{z(z-1)}$$

Calculate x[0], x[1], and $x[10^5]$.

7.21 Using the z-transform, determine the convolution of these sequences:

$$x[n] = [1, -1, 3, 2], h[n] = [1, 0, 2, 1, -3].$$

7.25 Obtain the inverse z-transform of

$$X(z) = \frac{z^2 + 2z - 10}{(z-1)(z+2)(z+3)}$$

7.27 Invert each of the following z-transform:

(a)
$$X_1(z) = \frac{1-z^{-1}}{1-z^{-1}+0.75z^{-2}}$$

(b)
$$X_2(z) = \frac{1+z^{-1}}{1-0.8z^{-1}+0.64z^{-2}}$$

7.30 The difference equation for a system is

$$y[n] + 6y[n-1] + 15y[n-2] = 0$$
, $y[-2] = 0$, $y[-1] = 1$.

Find y[n].

7.36 The transfer function of a discrete-time system is

$$H(z) = \frac{1 + 2z^{-1}}{1 - z^{-1} + z^{-2}}$$

Find the system response y[n] when the input is a unit step function u[n].

7.38 Determine the transfer function of the feedback system represented in Figure 7.14.

FIGURE 7.14 For Problem 7.38.

7.41 Find the response of a system with a transfer function

$$H(z) = \frac{z - 0.6}{(z + 0.2)(z - 0.8)}$$

and an input x[n] given by

- (a) x[n] = u[n]
- (b) $x[n] = 2^n u[n]$

Simulation part

7.45 Use MATLAB to find the inverse z-transform of

$$X(z) = \frac{z}{z - 0.6}$$

7.46 A linear discrete-time system is represented by the transfer function

$$H(z) = \frac{z+1}{z^3 + 2z^2 + z + 3}$$

Use MATLAB to plot the step response of the system.

7.47 Determine the poles and zeros of the transfer function

$$H(z) = \frac{z^2 + 6z + 1}{z^4 + 3z^3 + 4z + 10}$$

7.49 Determine the stability of the systems represented by the following transfer function:

$$H(z) = \frac{z^3 + 3z^2 + z - 1}{z^4 + 1.25z^3 + 0.5z^2 - 0.375z - 0.2}$$