

AMENDMENTS

In the Claims:

These claims replace all prior versions and listings of claims in the above-referenced application.

1 1– 27 (Cancelled)

1 28. (Currently Amended) The system of claim 27 32, wherein the routing
2 logic decrements a current hop count.

1 29. (Currently Amended) The system of claim 27 32, wherein the routing
2 logic directs the transmission of a packet via a select port responsive to the current hop
3 count.

1 30. (Currently Amended) The system of claim 27 32, wherein the return
2 routing logic records a return route in the data packet as the data packet traverses the
3 route to its respective destination.

1 31. (Currently Amended) The system of claim 27 32, wherein the return
2 routing logic inserts an ingress port indicator into the data packet header, the indicator
3 responsive to the port where the data packet was received.

1 32. (Currently Amended) A multiprocessor system, comprising:
2 a plurality of processors that operate in parallel;
3 a plurality of agents each comprising a routing table and agent data ports coupled
4 to respective processors;
5 a plurality of memory controllers coupled to each of the plurality of agents via the
6 agent data ports;
7 a plurality of memory units coupled to respective memory controllers; and
8 at least one crossbar comprising crossbar data ports coupled to a plurality of
9 agents via respective crossbar data ports and agent data ports, wherein the agents and the

10 at least one crossbar comprise routing logic and return routing logic ~~The system of claim~~
11 27, wherein the agents further comprise a routing table.

1 33. (Previously Presented) The system of claim 32, wherein the routing table
2 comprises at least one route from the source device to the destination device.

1 34. (Currently Amended) The system of claim 27 32, wherein the agents
2 further comprise source logic.

1 35. (Previously Presented) The system of claim 34, wherein the source logic
2 identifies a route communicated via a data packet header comprising an egress data port
3 of a next subsequent device along the route, a current hop count, and a total number of
4 hops in the route.

1 36. (Currently Amended) The system of claim 27 32, wherein the agents
2 further comprise destination logic.

1 37. (Previously Presented) The system of claim 36, wherein the destination
2 logic examines a data packet to determine if the packet has reached a designated
3 destination.

1 38. (Previously Presented) The system of claim 36, wherein the destination
2 logic swaps an ingress port indicator with an egress port indicator in a data packet header
3 when the current hop count exceeds a threshold value.

1 39. (Currently Amended) The system of claim 27 32, wherein the agents
2 further comprise return route reconstitution logic.

1 40. (Previously Presented) The system of claim 39, wherein the return route
2 reconstitution logic identifies a source data port of a received data packet and writes the
3 source port over a destination port.

1 41. (Previously Presented) The system of claim 39, wherein the return route
2 reconstitution logic generates an acknowledgement packet.

1 42. (Previously Presented) The system of claim 41, wherein the
2 acknowledgement packet reverses the order of destination ports along the route and
3 resets a current hop count.

1 43. (Currently Amended) The system of claim ~~26~~ 32, wherein the at least one
2 crossbar routes a data packet from a first agent to a second agent pursuant to routing
3 logic.

1 44. (Currently Amended) The system of claim ~~26~~ 32, wherein the agents
2 route a data packet from a first memory controller to a second memory controller
3 pursuant to routing logic.

1 45. (Currently Amended) The system of claim ~~26~~ 32, wherein the agents and
2 the memory controllers comprise source logic, destination logic, return route
3 reconstitution logic and a routing table.

1 46. (Previously Presented) The system of claim 45, wherein the routing table
2 comprises at least one of a destination identifier, a crossbar identifier, destination ports,
3 and a total hops value.

1 47. (Canceled)

1 48. (Currently Amended) The method of claim ~~47~~ 49, further comprising:
2 recording an ingress port indicator responsive to the port where the data packet
3 was received along the data route.

1 49. (Currently Amended) A method for communicating data between devices
2 in a parallel processing system, comprising:
3 providing a plurality of processors and memory units;
4 coupling an agent and a memory controller between each of the plurality of
5 processors and memory units;
6 coupling at least one crossbar between each of the agents;
7 using source logic within the agents to generate a data packet to transmit data
8 from a source device to a destination device via the at least one crossbar, wherein the
9 source device comprises one of a memory unit and a processor and a destination device
10 comprises one of a processor and a memory unit, respectively;
11 identifying a particular data route from the source device to the destination device
12 through the at least one crossbar, the data route being communicated via a header
13 associated with the data packet, the header comprising an egress port, a current hop
14 count, and a total number of hops in the data route;
15 routing the data packet along the data route in response to the egress port; and
16 detecting the arrival of the data packet at the destination node. The method of
17 claim 47, wherein identifying a particular data route from the source device to the
18 destination device through the at least one crossbar comprises examining a routing table
19 containing at least one of a destination identifier, a crossbar identifier, destination ports,
20 and a total hops value.

1 50. (Currently Amended) The method of claim 47 49, wherein routing the
2 data packet along the data route comprises decrementing the current hop count.

1 51. (Currently Amended) The method of claim 47 49, wherein routing the
2 data packet along the data route comprises replacing an ingress port indicator with an
3 egress port indicator the header when the current hop count falls below a threshold value.

1 52. (Currently Amended) The method of claim 47 49, further comprising:
2 acknowledging receipt of the data packet at the destination node by resetting the
3 current hop count to the total hop count and swapping an ingress port indicator with an
4 egress port indicator.

1 53. (Previously Presented) The method of claim 52, wherein acknowledging
2 receipt is accomplished independent of the state of a routing table in the destination
3 device.

1 54. (Previously Presented) The method of claim 52, wherein acknowledging
2 receipt further comprises checking for a timeout.

1 55. (Previously Presented) The method of claim 54, further comprising:
2 using source logic within an agent to identify a next best data route for
3 transferring data from the source device to the destination device in response to the
4 timeout; and
5 generating a replacement data packet having an egress port indicator, a current
6 hop count, and a total hop count, the data packet responsive to the next best data route.