Supplement B: converting heterogeneity between Pearson's r and Fisher's z

The table below shows the results of our procedure to convert between studies variance expressed in Pearson's r to between-studies variance expressed in Fisher's z through the use of I^2 as described in the main text.

Table B1.

ρ	N	$ au_r$	I^2	$ au_z$
0	50	0.10	0.3332653	0.1031263
0	50	0.15	0.5354492	0.1566007
0	50	0.20	0.6794232	0.2123514
0	100	0.10	0.5024616	0.1020357
0	100	0.15	0.6995876	0.1549445
0	100	0.20	0.8106780	0.2101057
0	150	0.10	0.6031656	0.1016845
0	150	0.15	0.7780194	0.1544113
0	150	0.20	0.8656751	0.2093826
0	200	0.10	0.6699660	0.1015112
0	200	0.15	0.8239758	0.1541480
0	200	0.20	0.8959121	0.2090256

Note. $\rho=$ average effect size, N = (fixed) within-study sample size, $\tau_r=$ between-studies standard deviation in Pearson's $r,\,\tau_z$ between-studies standard deviation in Fisher's z. The I^2 statistic is here expressed as a proportion. Code to reproduce table: osf.io/tvrby.