AMENDMENTS TO THE CLAIMS

1.	An ionic liquid comprising:
	at least one anion represented by [BF3(CnF2n+1)] wherein n represents 1, 2, 3 or 4; and
at lea	st one organic ammonium ion represented by general formula (I):
-	$-[NR^{4}R^{2}R^{3}R^{4}]^{+} - (I)$
	wherein R ¹ to R ⁴ are the same or different, each representing an alkyl, fluoroalkyl,
alkox	y, polyether, or alkoxyalkyl group, or R ¹ and R ² taken together with the nitrogen atom may
form	a pyrrolidine, piperidine, or morpholine ring; provided that R ⁴ to R ⁴ satisfy the conditions
(i) the	rough (iii) shown below:
-	(i) when R ¹ and R ² taken together with the nitrogen atom form a pyrrolidine, piperidine,
or mc	orpholine ring, either R ³ or R ⁴ is an alkyl group with 3 or more carbon atoms or alkoxyalkyl
group);
	(ii) when R ⁴ and R ² do not form a pyrrolidine, piperidine or morpholine ring, at least one
of R ¹	to R ⁴ is an alkoxy, polyether or alkoxyalkyl group; and
-	(iii) when R ¹ to R ³ are the same or different, each being methyl or ethyl, R ⁴ is a
C ₃₋₁₀ -	linear or branched alkyl group member selected from the group consisting of

 $N102.122 [n-C_4F_9BF_3]$

$$P_{\text{N}}^{+}$$
 P_{N}^{-} P_{\text

$$-$$
N $+$ D $-$ CF₂CF₂CF₃

N1O2.111 [n-C₃F₇BF₃]

Py1O2.1 [$n-C_3F_7BF_3$]

Pi1O2.1 [n-C₃F₇BF₃]

$$P_{N}^{+}$$
 P_{N}^{+}
 P_{N}^{-}
 P_{N

N1O2.112 [n-C₄F₉BF₃]

Py1O2.1 [n-C₄F₉BF₃]

Pi1O2.1 [n-C₄F₉BF₃]

Mor1.1O2 [n-C₄F₉BF₃]

- 2-6. (Cancelled)
- 7. (Original) An electric double-layer capacitor comprising the ionic liquid according to claim 1.
- 8. (Original) A lithium battery comprising the ionic liquid according to claim 1.
- 9. (Currently Amended) A method of producing anthe ionic liquid according to claim 1 comprising mixing a compound containing as an anionic component at least one anion represented by $[BF_3(C_nF_{2n+1})]^-$ wherein n represents 1, 2, 3 or 4 with a compound containing as a cationic component at least one organic ammonium ion selected from the group consisting of

Serial No. 10/596,831 Attorney Docket No. 2008_0999 June 7, 2010

-represented by general formula (1):
$\frac{[NR^{4}R^{2}R^{3}R^{4}]^{+}}{(I)}$
wherein R ⁴ -to R ⁴ are the same or different, each representing an alkyl, fluoroalkyl, alkoxy,
polyether, or alkoxyalkyl group, or R ¹ and R ² taken together with the nitrogen atom may form a
pyrrolidine, piperidine, or morpholine ring; provided that R ¹ to R ⁴ satisfy the conditions (i)
through (iii) shown below:
(i) when R1 and R2 taken together with the nitrogen atom form a pyrrolidine, piperidine,
or morpholine ring, either R3 or R4 is an alkyl group with 3 or more carbon atoms or
alkoxyalkyl group;
(ii) when R ¹ and R ² do not form a pyrrolidine, piperidine or morpholine ring, at least one
of R ⁺ to R ⁴ is an alkoxy, polyether or alkoxyalkyl group; and
(iii) when R ⁴ to R ³ are the same or different, each being methyl or ethyl, R ⁴ is a C ₃₋₁₀
linear or branched alkyl group.