Markowitz e CAPM: Analisi Empirica su Orizzonti Multipli

Valutazione empirica del modello di Markowitz su orizzonti temporali multipli con test dell'ipotesi del CAPM

Luca Falasca luca.falasca@students.uniroma2.eu

Università degli Studi di Roma Tor Vergata

Roadmap

- 1 Introduzione
 - Obiettivi
 - Dati e risorse tecniche
- - Tassi di rendimento
 - Tassi di rendimento
 - Stazionarietà
 - Autocorrelazione
 - Portafogli fattibili
 - Frontiera efficiente
 - Rendimento privo di rischio
 - Portafoglio Tangente

- - Capital Market Line

CAPM

- Test CAPM hypotesys
- 4 Conclusioni

CAPM

Obiettivi

- Valutazione su base empirica del modello di Markowitz
- Analisi su diversi orizzonti temporali
 - Giornaliero
 - Settimanale
 - Mensile
- Stazionarietà
- CAPM

Dati e risorse tecniche

000

Roadmap

- 1 Introduzione
 - Obiettivi
 - Dati e risorse tecniche
- 2 Markowitz Model
 - Tassi di rendimento
 - Tassi di rendimento
 - Stazionarietà
 - Autocorrelazione
 - Portafogli fattibili
 - Frontiera efficiente
 - Rendimento privo di rischio
 - Portafoglio Tangente

- 3 CAPM
 - Capital Market Line
 - Test CAPM hypotesys
- 4 Conclusioni

Tassi di rendimento

Per stimare la volatilità σ del tasso di rendimento r_T dello stock S, dobbiamo ricorrere ai dati storici sullo stock. Sfruttiamo i prezzi di chiusura dello stock per un ampio intervallo di tempo passato. Denotiamo con

$$S_1, S_2, \ldots, S_N, S_{N+1},$$

le variabili aleatorie la cui realizzazione ha dato luogo al prezzo di chiusura dello stock nell'n-simo giorno di contrattazione per $n=1,\ldots,N+1$, dove N+1 è il numero di giorni di mercato del trascorso anno di riferimento. Formalmente, il tasso di rendimento dello stock a termine dell'n+1-simo giorno di contrattazione, inteso come variabile aleatoria, è definito come

$$r_n \stackrel{\text{def}}{=} \frac{S_{n+1} - S_n}{S_n}, \quad \forall n = 1, \dots, N,$$

Tassi di rendimento

Nel caso giornaliero verrà utilizzato il tasso di rendimento logaritmico, perché approssima in maniera adeguata quello reale

$$\rho_n \stackrel{\text{def}}{=} \log \left(\frac{S_{n+1}}{S_n} \right), \quad \forall n = 1, \dots, N.$$

CAPM

Invece nei casi settimanali e mensili dovremmo usare il tasso di rendimento classico definito precedentemente

Stazionarietà

Possiamo osservare la stazionarietà del processo dei tassi di rendimento che cambia a seconda del periodo temporale considerato.

Autocorrelazione

Questo fenomeno è osservabile anche tramite l'autocorrelazione parziale

Portafogli fattibili

Vado ora a costruire empiricamente l'insieme dei portafogli fattibili andandoli a rappresentare come la coppia rendimento-rischio

$$\left(r(w_1, ..., w_M), \sigma^2(w_1, ..., w_M)\right) = \left(\sum_{m=1}^M w_m r_m, \sum_{l,m=1}^M w_l w_m \sigma_{l,m}\right)$$

dove σ è la matrice varianza covarianza tra i tassi di rendimenti dei vari titoli. I pesi w_m sono stati generati da una distribuzione normale di media nulla per poi normalizzarli adeguatamente

$$w_m = \frac{z_m}{\sum_{m=1}^{M} z_m}, \quad \forall m = 1, \dots, M,$$

Portafogli fattibili

Generando casualmente 1000000 di portafogli, è interessante osservare come si distribuiscono secondo quanto previsto dalla teoria di Markowitz

Frontiera efficiente

A questo punto risolvendo il problema di ottimizzazione vincolata in cui per ogni rendimento cerco la combinazione di pesi che minimizza il rischio, ottengo la frontiera efficiente

 $\begin{array}{ll} \text{Minimize:} & \sqrt{\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}} \\ \text{Subject to:} & \sum_{i=1}^n w_i = 1 \\ & \mathbf{w}^T \mathbf{r} = r_t \end{array}$

CAPM

Rendimento privo di rischio

L'inclusione di un rendimento privo di rischio consente di ottimizzare il rapporto rendimento-rischio, rivelando una relazione lineare tra volatilità e rendimento ottimali.

Come rendimento privo di rischio è stato considerato Real Interest Rate ad un mese messo a disposizone dalla **Federal Reserve Bank of St. Louis**.

- Media sul periodo di riferimento
- Conversione in tasso giornaliero e settimanale
 - $r_{Weekly} = (1 + r_{Monthly})^{\frac{1}{4}} 1$
 - $ightharpoonup r_{Daily} = (1 + r_{Monthly})^{\frac{1}{30}} 1$

Rendimento privo di rischio

è possibile tracciare una retta tangente con il portafoglio tangente, ovvero il portafoglio che massimizza il rapporto rendimento-rischio.

Portafoglio Tangente

A questo punto è interessante verificare empiricamente che i possibili portafogli composti da titoli azionari e un titolo privo di rischio si posizonino effettivamente al di sotto della retta tangente.

Roadmap

- - Obiettivi
 - Dati e risorse tecniche
- - Tassi di rendimento
 - Tassi di rendimento
 - Stazionarietà
 - Autocorrelazione
 - Portafogli fattibili
 - Frontiera efficiente
 - Rendimento privo di rischio
 - Portafoglio Tangente

- 3 CAPM
 - Capital Market Line
 - Test CAPM hypotesys
- 4 Conclusioni

Capital Market Line

La capital market line è una retta che collega il rendimento privo di rischio con il portafoglio tangente. I portafogli sulla capital market line sono una combinazione lineare tra il portafoglio tangente e il titolo privo di rischio. Dove il rendimento atteso del portafoglio è dato da

$$r_a = \alpha \overline{r}_T + (1 - \alpha)r_0$$

e il rischio assegnato del portafoglio è data da

$$\sigma_a^2 = \alpha^2 \sigma_T^2$$

Capital Market Line

Andando a variare α in è possibile notare come si dispongono i portafogli sulla retta.

Quando $\alpha > 1$, significa che bisogna vendere allo scoperto dei bond (prendere in prestito dei soldi) per investirli nel portafoglio tangente.

Test CAPM hypotesvs

Secondo il CAPM il portafoglio tangente coincide con il portafoglio di mercato, ossia con il portafoglio i cui pesi sono dati dalla capitalizzazione relativa dei titoli che compongono il mercato in rapporto alla capitalizzazione dell'intero mercato.

Ipotizzando un mercato composto solo dai 5 titoli considerati, possiamo verificare empiricamente che il portafoglio tangente coincida con il portafoglio di mercato scegliendo i pesi con

$$w_m = \frac{K_m}{K}$$

dove K_m è la capitalizzazione di mercato media del titolo m nel periodo considerato e $K = \sum_{m=1}^{M} K_m$

Test CAPM hypotesys

Ho inserito anche un ulteriore portafoglio, il portafoglio equamente pesato come benchmark aggiuntivo.

In questo caso i pesi sono dati da

$$w_m = \frac{1}{M}$$

 Introduzione
 Markowitz Model
 CAPM
 Conclusioni

 ○○○
 ○○○○○○○○
 ○○○
 ○○○

Test CAPM hypotesys

Nel caso giornaliero il portafoglio tangente coincide quasi perfettamente sia con il portafoglio di mercato che con quello equamente pesato

Test CAPM hypotesys

Nei casi settimanale e mensile invece c'è una leggera discrepanza tra il portafoglio tangente e il portafoglio di mercato.

Tuttavia il portafoglio equamente pesato si posiziona sempre un po' più vicino al portafoglio tangente

Roadmap

- 1 Introduzione
 - Obiettivi
 - Dati e risorse tecniche
- 2 Markowitz Mode
 - Tassi di rendimento
 - Tassi di rendimento
 - Stazionarietà
 - Autocorrelazione
 - Portafogli fattibili
 - Frontiera efficiente
 - Rendimento privo di rischio
 - Portafoglio Tangente

- 3 CAPM
 - Capital Market Line
 - Test CAPM hypotesys
- 4 Conclusioni

Conclusioni

- All'aumentare dell'orizzonte temporale, i tassi di rendimento sembrano diventare sempre più stazionari.
 - ► Servirebbero ulteriori test statistici per confermare questa ipotesi
- I risultati empirici sembrano confermare la validità del modello di Markowitz
- Uguaglianza tra portafoglio tangente e portafoglio di mercato
 - Sembra esserci una discrepanza possibilmente dovuta ai pochi titoli presi in considerazione
 - ▶ Il portafoglio equamente pesato come portafoglio di mercato sembra una ipotesi plausibile, ma da validare con ulteriori test e considerazioni teoriche.

Grazie per l'attenzione!

Domande?

Il codice è disponibile al seguente repository: https://github.com/LucaFalasca/FinancialMarketAnalysis

Grazie a tutti!

