

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Course Name:	EEEE	Semester:	Ι
Date of Performance:	6/12/2022	Batch No:	C2-2
Faculty Name:	Jyoti Varavedkar	Roll No:	1601012210 9
Faculty Sign & Date:		Grade/Marks:	

Experiment No: 6

Title: Zener diode voltage regulator

Aim and Objective of the Experiment:

- To understand the working of Zener diode as voltage regulator
- To calculate line and load regulation of Zener diode based shunt regulator

Requirements:

Zener diode, resistor, potentiometer, voltmeter, ammeter, DC source and bread board.

Link for virtual lab:

https://portal.coepvlab.ac.in/vlab/auth/home?dept=2&lab=10

Theory:

A zener diode functions as an ordinary diode when it is forward biased. It is a specially designed device to operate in the reverse bias. When it is in the reverse breakdown region, the voltage (V_z) across Zener diode remains almost constant irrespective of the current (I_z) flowing through it. A series resistor A series resistor Rs is used to limit the zener current below its maximum current rating. The current through Rs is given by the expression is $I_S = I_Z + I_L$, where I_L is the current through the load resistor. The value of Rs must be properly selected to ensure break down of the Zener diode and also to keep Iz in limited in specified current limit.

$$Rs_{min} = (V_{in} - V_z)/Iz_{max}$$
 (1)

$$Rs_{max} = (V_{in} - V_z)/(Iz_{min} + I_L)$$
(2)

Design steps:

1. If for regulator

Desired output parameters Vo=5.6 V, I_{Lmax}= 5mA

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Input voltage in the range $V_{IN} = 8 \text{ V} - 14 \text{ V}$

- 2. Choose Zener diode (5.6 V, 45 mA)
- 3. Choose potentiometer of value 4.7 k Ω so that I_L can be varied from 5.6/4.7 k Ω ≈ 1.2 mA.
- 4. $I_{Zmax} = 45 \text{ mA}$ so $I_{Zmin} = 10\%$ of $I_{Zmax} = 4.5 \text{ mA}$
- 5. $R_{Smax} = (V_{INmin} V_Z) / (I_{Zmin} + I_{Lmax}) = (8-5.6) V/(4.5 + 5.0) mA \approx 253 \Omega$

$$R_{Smin} = (V_{INmax} - V_Z) / I_{Zmax} = (14-5.6)V/(45 \text{ mA}) \approx 186 \Omega$$

Choose $R_{Smin} < R_S < R_{Smax}$ so $R_S = 220 \Omega$ and Power rating $(I_{max})^2 \times R_S$

$$I_{max} = (V_{IN} - V_Z) / Rs = (14-5.6) / 220 = 38 \text{ mA}$$

Power rating = $(38 \text{ mA})^2 \times 220 = 0.32 \text{ watt} \approx 0.5 \text{ watts}$.

Circuit Diagram/ Block Diagram:

Note: Perform this experiment either on virtual Lab or Proteus simulator

Stepwise-Procedure:

- 1. Design circuit and connect it as shown in the circuit diagram using Proteus simulator.
- 2. Keep V_{IN} more than 8V and adjust Potentiometer R_L such that I_L = 5 mA. Vary V_{IN} and Note V_O for finding line regulation.
- 3. Keep V_{IN} = 10 V and vary Potentiometer R_L such that I_L changed from 0 to 5 mA and not V_O for finding load regulation.
- 4. Plot the graph V₀ Vs V_{IN} for line regulation and V₀ Vs I_L for load regulation.

V-Lab/Proteus Screen shots

(A Constituent College of Somaiya Vidyavihar University) **Department of Electronics Engineering**

Line Regulation:

DC volt = variable

Zener diode = 5.6v

Resistance (Rs) = 200 ohm

Resistance (RI) = 1100 ohm

Serial No.	Unregulated supply voltage(Vs) V	Load Current(I _L) mAmp	Zener Current(Iz) mAmp	Regulated Output Voltage(Vo) V	% Voltage Regulation
1	2	5.09	0	2	100
2	3	5.09	0	3	100
3	4	5.09	0	4	100
4	5	5.09	0	5	100
5	5.6	5.09	0	5.6	100
6	6	5.09	-3.091	5.60	83.3
7	6.6	5.09	-0.091	5.60	83.3
8	7	5.09	1.909	5.60	71.4
9	7.6	5.09	4.909	5.60	71.4
10	8	5.09	6.909	5.60	62.5
11	8.6	5.09	9.909	5.60	62.5
12	9	5.09	11.909	5.60	55.6
13	9.6	5.09	14.909	5.60	55.6
14	10	5.09	16.909	5.60	50.0

Load Regulation:

(A Constituent College of Somaiya Vidyavihar University) **Department of Electronics Engineering**

DC volt = 10v (Fixed)

Zener diode = 5.6v

Resistance (Rs) = 200 ohm Resistance (Rl) = variable

Serial No.	Load Resistance(R _L) Ohm	Load Current(I _L) mAmp	Zener Current(Iz) mAmp	Regulated Output Voltage(Vo) V	% Voltage Regulation
1	1250	4.48	17.5	5.60	13.8
2	1121	5.00	17.0	5.60	15.1
3	1000	5.60	16.4	5.60	16.7
4	934	6.00	16.0	5.60	17.6
5	700	8.00	14.0	5.60	22.2
6	560	10.0	12.0	5.60	26.3
7	468	12.0	10.0	5.60	29.9
8	400	14.0	8.00	5.60	33.3
9	350	16.0	6.00	5.60	36.4
10	311	18.0	3.99	5.60	39.1
11	280	20.0	2.00	5.60	41.7
12	233	24.0	0	10	46.2
13	215	26.0	0	10	48.2
14	200	28.0	0	10	50.0
15	186	30.1	0	10	51.8

Observation Table:

(A Constituent College of Somaiya Vidyavihar University) **Department of Electronics Engineering**

Line Regulation: Set $I_L = 5 \text{ mA}$	oad Regulations: Set V_{IN} = 10) V
---	------------------------------------	-----

ne Regulation: Set IL-2 mil		Doud Regulati	regulations: Det 1 IN-	
V _{IN} (V)	Vo (V)	I _L (mA	(A) Vo (V)	
2	2	4.48	5.6	
3	3	5	5.6	
4	4	5.6	5.6	
5	5	6	5.6	
5.6	5.6	8	5.6	
6	5.6	10	5.6	
6.6	5.6	12	5.6	
7	5.6	14	5.6	
7.6	5.6	16	5.6	
8	5.6	18	5.6	
8.6	5.6	20	5.6	
9	5.6	24	10	
			1	

 $(A\ Constituent\ College\ of\ Somaiya\ Vidyavihar\ University)$

Department of Electronics Engineering

10	5.6	28	10
		30	10

Post Lab Subjective/Objective type Questions:

- 1. Draw and explain I-V characteristics of Zener diode.
- 2. What is difference between PN junction diode and Zener diode?
- 1] Zener diode is p-n junction diode which is manufactured to operate in breakdown region. Its forward bias characteristic is same as that of ordinary junction diode. This means current does not flow until bias is less than barrier potential. Current increases rapidly beyond it with increase in forward voltage. In reverse bias, initially a small reverse saturated current flows and at particular value of reverse voltage, increases suddenly. This voltage is zener breakdown voltage (Vz).

(A Constituent College of Somaiya Vidyavihar University)

2] The differences between pn junction and zener diode are:

sr. no.	PN Junction	Zener Diode	
1	The electricity flows in one direction.	The electricity flows in both direction.	
2	The reverse bias permanently damages the depletion layer.	The reverse bias makes the electricity flow in both direction.	
3	Used for rectification.	Used for regulation.	
4	The width of depletion layer is larger because the p and n junction region is lightly doped.	The width of depletion layer is narrow because the p and n junction region is heavily doped.	
5	Symbol: (+) Anode Cathode	Symbol: Anode Cathode	

Conclusion:

Thus, we learnt the working of Zener diode as voltage regulator and how to calculate line and load regulation of Zener diode .

Signature of faculty in-charge with Date: