ALU/ULA

Arithmetic and logic unit/Unidade Lógica e aritmética

Registradores – Funcionam como "variáveis" para o uso da CPU Unidade Lógica e aritmética (ALU/ULA) – efetua contas matemáticas e expressões lógicas

Sistema de interconexão – liga os partes os elementos da CPU

Funcionamento básico

A unidade de controle solicita o tipo de operação a ser efetuada Ex: AND,OR,SUB,ADD etc...(operação) e também são passados os registradores para a mesma (operandos).

O mesmo faz a operação e devolve:

A resposta em um/uns registrador(res) e a resposta do que aconteceu com a operação no registrador de flags(ex: carry(vai um da matemática),operação gerou zero,etc...)

Para entenderemos melhor o funcionamento da ULA/ALU devemos saber como os números são processados dentro do computador.

Isso por vários motivos entre os quais:

- a) Ajuda compreender como os circuitos da ALU/ULA fazem as operações
- b) A representação de números pode ser implementada de forma diferente entre os computadores, se for necessária a conversa entre computadores que representam esses números de forma diferente é necessário conversão

Revisão dos Sistemas Numéricos

Decimal

baseado em 10 dígitos (0,1,2,3,4,5,6,7,8.9)

Exemplo:

$$5264 = (5x1000) + (2x100) + (6x10) + 4x1$$
$$5264 = (5x10^{3}) + (2x10^{2}) + (6x10^{1}) + (4x10^{0})$$

Base ou raíz

Valores fracionários:

$$75,32 = (7x10^{1}) + (5x10^{0}) + (3x10^{-1}) + (2x10^{-2})$$

De uma forma geral:

$$X = \sum_{i} x_i 10^i$$

onde: $x_i \in (0,1,2,3,4,5,6,7,8,9)$ e i corresponde a posição do dígito.

Sistema Binário

baseado em dois dígitos: 0 e 1 (base 2)

Exemplos:

$$11 = (1x2^{1}) + (1x2^{0}) = 3$$
$$110 = (1x2^{2}) + (1x2^{1}) + (0x2^{0}) = 6$$
$$100.101 = 2^{2} + 2^{-1} + 2^{-3} = 4.625$$

Exemplo: conversão de decimal para binário

11001

Exemplo:conversão de decimal para binário

$$0.56 x 2 = 1.12$$
 $0.12 x 2 = 0.24$
 $0.24 x 2 = 0.48$
 $0.48 x 2 = 0.96$
 $0.96 x 2 = 1.92$

$$0.56 = 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5} \dots$$

.10001 (aproximadamente)

Representação de Inteiros

Na representação binária podem ser representados com 0 e 1, o sinal de negativo e ponto:

-101.01010

Ao se trabalhar com números binários no computador não é possível usar o sinal de negativo e o ponto. Com números positivos e inteiros a representação é direta:

00110001 = 49

00010101 = 21

usando-se 8 bits

Representação de sinal

O bit de maior significância (mais a esquerda) é tratado com o bit de sinal. Se o bit de sinal for 0, o número é positivo, se for 1 é negativo.

Representação Sinal-Magnitude

A forma mais simples é tal que os n-1 bits representam a magnitude do número. Assim:

$$A = \begin{cases} \sum_{i=0}^{n-2} a_i 2^i & \text{se } a_{n-1} = 0\\ -\sum_{i=0}^{n-2} a_i 2^i & \text{se } a_{n-1} = 1 \end{cases}$$

Exemplo:

$$+18 = 00010010$$

$$-18 = 10010010$$

Desvantagens

- As operações aritméticas se tornam mais complicadas;
- Existem duas representações para o zero:

$$+0 = 00000000$$

$$-0 = 10000000$$

Representação de Complemento de Dois

• Números inteiros:

$$A = \sum_{i=0}^{n-2} a_i 2^i \tag{1}$$

• Números negativos:

$$A = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$
 (2)

Note que (1) está contido em (2) uma vez que para números positivos, $a_{n-1} = 0$

O zero é identificado como sendo positivo assim em sua representação o bit de sinal é 0.

7	6	5	4	3	2	1	0
- 27	26	25	24	23	2^2	21	2^0
-128	64	32	16	8	4	2	1

1	0	0	1	0	1	0	1	
---	---	---	---	---	---	---	---	--

-128

16

4

1 = -107

-128 64

32

8

= -24

Conversão do número de bits de representação

representação sinal-magnitude:

 representação de complemento de 2, forma correta de aumentar o número de bits:

completa-se com o mesmo valor do bit de sinal

Aritmética de Inteiros (Representação de Complemento de Dois)

- Negação
 - 1. Tome o complemento booleano de cada bit (inclusive o bit de sinal).
- 2. Tratando o resultado como um binário inteiro não sinalizado, acrescente 1

Exemplo

Portanto para 8 bits temos:

7	6	5	4	3	2	1	0
- 27	2^6	25	24	2^3	2^2	2^1	2^0
-128	64	32	16	8	4	2	1

O menor número –128 passado por zero e até 127

1	0	0	0	0	0	0	0
---	---	---	---	---	---	---	---

-128 = -128

0 1	1	1	1	1	1	1
-----	---	---	---	---	---	---

 $0 \quad 64 \quad 32 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1 \quad = 127$

Tipo da ling. C	Número bits	Constant	Valores Faixa
		SCHAR_MIN	-128
signed char	8	SCHAR_MAX	127
			0
unsigned char	8	UCHAR_MAX	255
		SHRT_MIN	-32768
signed short	16	SHRT_MAX	32767
			0
unsigned short	16	USHRT_MAX	65535
		INT_MIN	-32768
signed int	16	INT_MAX	32767
			0
unsigned int	16	UNIT_MAX	65535
		LONG_MIN	-2147483647
signed long	32	LONG_MAX	2147483647
			0
unsigned long	32	ULONG_MAX	4294967295
		LLONG_MIN	-9,22337E+18
signed long long	64	LLONG_MAX	9223372036854775807
			0
unsigned long long	64	ULLONG_MAX	1,84467E+19

Considere um número inteiro de 8 bits

- a) Faixa do número para inteiro não sinalizado $2^8 = 256$.: Faixa de número é de 0 .. 255
- b) Faixa do número para inteiro sinalizado (perco bit para sinal)
 - $2^7 = 128$.: Faixa de número é de -128 .. 127

Adição

1001 1100

$$+0101$$
 $+0100$ $+0100$
1110 = -2 10000 = 0
(a) (-7) + (+5) (b) (-4) + (+4)

$$0011$$
 $+0100$ $+1111$ -5 $(c) (+3) + (+4)$ 1100 $+1111$ -5 $(d) (-4) + (-1)$

0101 1001

$$+0100$$
 $+1010$
1001 = Overflow 10011 = Overflow
(e) (+5) + (+4) (f) (-7) + (-6)

ure 8.4 Addition of Numbers in Twos Comp Representation

Quando ocorre um overflow a ALU deve sinalizar para que este resultado não seja usado.

Um overflow pode ocorrer mesmo que não exista um carry.

Regra: se dois números são somados, e têm o mesmo sinal, ocorre um overflow se o resultado tiver sinal oposto.1

Subtração

Para subtrair um número (subtraendo) de outro (minuendo), deve-se tomar o complemento de dois (negação) do subtraendo e soma-lo ao minuendo.

Exemplo:

$$\begin{array}{c} 0010 \\ +\frac{1001}{1011} = -5 \\ \end{array} \qquad \begin{array}{c} 0101 \\ +\frac{1110}{10011} = 3 \\ \end{array} \\ \begin{array}{c} \text{(a)} \quad \text{M} = 2 = 0010 \\ \text{S} = 7 = 0111 \\ -\text{S} = 1001 \\ \end{array} \qquad \begin{array}{c} \text{(b)} \quad \text{M} = 5 = 0101 \\ \text{S} = 2 = 0010 \\ -\text{S} = 1110 \\ \end{array} \\ \begin{array}{c} 1011 \\ +\frac{1110}{1001} = -7 \\ \end{array} \qquad \begin{array}{c} 0101 \\ +\frac{0010}{0111} = 7 \\ \end{array} \\ \text{(c)} \quad \text{M} = -5 = 1011 \\ \text{S} = 2 = 0010 \\ -\text{S} = 1110 \\ \end{array} \qquad \begin{array}{c} \text{(d)} \quad \text{M} = 5 = 0101 \\ \text{S} = -2 = 1110 \\ -\text{S} = 0010 \\ \end{array} \\ \begin{array}{c} \text{O111} \\ +\frac{0111}{1110} = \text{Overflow} \\ \end{array} \\ \begin{array}{c} \text{(e)} \quad \text{M} = 7 = 0111 \\ \text{S} = -7 = 1001 \\ -\text{S} = 0111 \\ \end{array} \qquad \begin{array}{c} \text{(f)} \quad \text{M} = -6 = 1010 \\ \text{S} = 4 = 0100 \\ -\text{S} = 1100 \\ \end{array} \\ \begin{array}{c} \text{S} = 4 = 0100 \\ -\text{S} = 1100 \\ \end{array}$$

Exemplos de subtração em completo de dois (m-s)

Diagrama de blocos de um Hardware para Adição e Subtração

Representação de em Ponto Flutuante

Exemplos:

$$\pi = 3.141592654$$
 massa do Sol: 1.99 x 10^{30} Kg carga elementar do elétron: 1.60217738 x 10^{-19} C número de Avogrado: 6.0221367 x 10^{23}

$$2^{102} = 5.076 \times 10^{30}$$
palavra com 102 bits !!!!

palavra com 79 bits (no mínimo)!!!!

.: representar númerosSobre uma base neste exemploBase 10 tem vantagens

Notação Científica

0.00000000000000000160217738

 $=1.60217738 \times 10^{-19}$

Representação em binário

Forma normalizada: 0.1 bbbbb...
onde b é 0 ou 1.
O primeiro 1 pode ser considerado implícito.

Representação com peso (biased).

Exemplo:

Um expoente de 8 bits iria de 0 à 255.

Usando-se uma notação com peso de 127, o expoente vai de -127 à 128

Base 2, considerada implícita.

Exemplo de formato:

Para uma palavra de tamanho fixo:

- quanto maior o número de bits do expoente, maior (menor) o número a ser representado
- quanto maior o número de bits da mantissa, maior a precisão do número

Exemplo:

1 bit 8 bits (peso: 127) 23 bits
-------------------------	-----------

0 10010100 101110000000000000000000

$$0.110111x \ 2^{10101} = \left(2^{-1} + 2^{-2} + 2^{-4} + 2^{-5} + 2^{-6}\right)x \ 2^{21}$$

$$= 0.859375 \times 2^{21} = 1802240$$

1 bit	8 bits (peso: 127)	23 bits
-------	--------------------	---------

- total de números que podem ser representados: 2^{32}
- menor número positivo que pode ser representado:

$$0.1 \times 2^{10000001} = 0.5 \times 2^{-127} = 2.938735877 \times 10^{-39}$$

- maior número positivo que pode ser representado:

$$(1-2^{-24})$$
x $2^{128} \cong 3.402823668 \times 10^{38}$

1 bit 8 bits (peso: 127) 23 bits

- menor número negativo que pode ser representado:

$$-(1-2^{-24})x \ 2^{128} \cong -3.402823668 \ x \ 10^{38}$$

$$-0.5 \times 2^{-127} = -2.938735877 \times 10^{-39}$$

Note que esta representação não acomoda o zero.

1 bit 8 bits (peso: 127) 23 bits

- espaçamento entre dois número positivo próximos de zero:

$$0.5 \text{x} \ 2^{-127}$$

$$(0.5 + 2^{-24}) \times 2^{-127}$$

$$\Delta = (0.5 + 2^{-24} - 0.5)x \ 2^{-127} = 2^{-151}$$
$$= 3.503246x \ 10^{-127}$$

8 bits (peso: 127) 1 bit

23 bits

- espaçamento entre dois número positivo próximos do overflow:

$$(1-2^{-24})x 2^{128}$$

1000000 11111111111

$$(1-2^{-23})$$
x 2^{128}

$$\Delta = \left(1 - 2^{-24} - \left(1 - 2^{-23}\right)\right) \times 2^{128}$$

$$\Delta = \left(1 - 2^{-24} - 1 + 2^{-23}\right) \times 2^{128}$$

$$(1-2^{-23})x \ 2^{128}$$

$$\Delta = (1-2^{-24} - (1-2^{-23}))x \ 2^{128}$$

$$\Delta = (1-2^{-24} - 1+2^{-23})x \ 2^{128}$$

$$\Delta = (-0.1x2^{-23} + 2^{-23})x \ 2^{128} = (0.9x2^{-23})x \ 2^{128}$$

$$\Delta = 0.9 \times 2^{105} = 3.6508337 \times 10^{31}$$

- espaçamento entre dois número positivo próximos de zero:

$$\Delta = 3.503246 \times 10^{-127}$$

- espaçamento entre dois número positivo próximos do overflow:

$$\Delta = 3.6508337 \times 10^{31}$$

Os números não são igualmente espaçados, ficando mais próximos quanto mais próximos a origem

Cálculos que produzem resultados que não podem ser representados devem ser aproximados para o valor mais próximo que a notação possa representar

Arquitetura de computadores Padrão IEEE 754

- Define formatos de 32 bits (simples) e 64 bits (duplo).
- A base implícita usada é 2.
- O expoente usa uma notação com peso, indo de -126 à +127 no formato simples e -1022 à 1023 no formato duplo.
- Um número normalizado requer um bit 1 a esquerda do ponto binário, tomado com implícito.
- Algumas sequências de bits são usadas para se representar valores especiais.

1 bit	8 bits	23 bits
-------	--------	---------

formato simples / float da linguagem C

bit 11 bits 52 bits

formato duplo / double da linguagem C

Exemplo

$$(-1)^{s} \times (1 + \text{mantissa}) \times 2^{(\text{expoente}-127)}$$

$$(-1)^{1} \times (1 + 0.01) \times 2^{(129-127)}$$

$$(-1.01) \times 2^{2} = -(2^{0} + 2^{-2}) \times 2^{2}$$

$$-(2^{0} + 2^{-2}) \times 2^{2} = -1.25 \times 4 = -5$$

Interpretação dos números conforme padrão IEEE 754

	3800	Precisão simple		Precisão dupla (64 bits)				
	Sinal	Expoente polarizado	Fração	Valor	Sinal	Expoente polarizado	Fração	Valor
Zero positivo	0	0	0	0	0	0	0	0
Zero negativo	1	0	0	-0	1	0	0	-0
Infinito positivo	0	255 (todos 1s)	0	- 00	0	2047 (todos 1s)	0	00
Infinito negativo	1	255 (todos 1s)	0		1	2047 (todos 1s)	0	-00
NaN silencioso	0 ou 1	255 (todos 1s)	≠0	NaN	0 ou 1	2047 (todos 1s)	≠0	NaN
NaN sinalizador	0 ou 1	255 (todos 1s)	≠0	NaN	0 ou 1	2047 (todos 1s)	≠0	NaN
Diferente de zero, normalizado positivo	0	0 < e < 255	f	2 ^{e-127} (1,f)	0	0 < e < 2047	f	2 ^{e-1023} (1,f)
Diferente de zero, normalizado negativo	1	0 < e < 255	f	-2 ^{e-127} (1,f)	1	0 < e < 2047	f	-2 ^{e-1023} (1,f
Não-normalizado positivo	0	0	f ≠ 0	2 ^{e-126} (0,f)	0	0	f ≠ 0	2 ^{e-1022} (0,f)
Não-normalizado negativo	1	0	f ≠ 0	-2 ^{e-126} (0,f)	1	0	f ≠ 0	-2 ^{e-1022} (0,f

Exercícios

- 1) Converta os números de binário para decimal:
 - a)10011 b)111011.101 c)111.11001
- 2) Qual é a melhor forma de representação números inteiros: sinal de magnitude ou complemento de dois.
- 3) Demonstre a faixa de funcionamento dos números inteiros sendo sinalizado e não sinalizado com:
 - a) 12 bits b)20 bits c)24 bits
- 4) Demonstre os complemento de dois dos números:
 - a) 23 (para 8 bits)
 - b) 127 (para 8 bits)
 - c) 0 (para 8 bits)
 - d) 128 (para 8 bits)
 - e) 3000(para 16 bits)

Exercícios

- 5) Faça contas com os números inteiros (converte em binário) e indique se ocorreu ou não overflow
 - a) 4 + 2 (8 bits)
 - b) 120 + 8 (8 bits)
 - c) 120 5 (8 bits)
 - d) 50 50 (8 bits)
 - d) 50 51 (8 bits)
 - f) 1000 500 (12 bits)
- 6) Converta os números binários em ponto flutuante conforme o padrão IEEE 754