ADC_CTRL

REVISION HISTORY

Revision Number	Date	Description of Change	Author
V0.0	20/09/2022	Draft version	Taoli

Table of Contents

DC	2
Introduction	2
Functional Description	2
Block Diagram	2
ADC Clock	3
ADC Sequence Setting	4
ADC Mode	4
Conversion Mode	4
ADC Start	5
ADC Data Filtering	5
ADC Freezing	6
Functional Detail	6
ADC Calibration	9
ADC Sequence Timing	11
ADC Single Conversion Timing	12
ADC Continuous Conversion Timing	13
ADC Counter Timing	13

ADC

Introduction

A 16-bit high accuracy ADC is applied inside BM20A to do the data acquisition. ADC supports 18 CELLs single conversion and continuous conversion. Besides ADC also supports 12 GPIO channels and 3 other(VPTAT,VBG and VBG2) channels single conversion.

BM20A's full scale range for CELL ADC is -6.5536V to +6.5536V, LSB is 200uv, but the recommended sampling range for each cell is -5V to +5V. The negative range is mostly for bus bar monitoring, which can be +/-0.7V at most. This sampling result will be used to calculate the total voltage of the whole battery pack.

The ADC measurement result will use 2's complement code.

Main Features

- Configurable ADC conversion modes (four modes)
- Configurable sample clock from 250KHz to 1.5MHz(four speed)
- Programmable ADC Analog dead time and settling time
- Optional chopper conversion to reduce system offset
- Supports single conversion and continuous conversion
- Supports 18 CELLs conversion, 12 GPIOs conversion and 3 others conversion
- Controllable data freezing function
- Configurable data low-pass filter

Functional Description

Block Diagram

As show in the Fig 1, High-voltage measurement objects are first converted to low-voltage objects by the path of HV-MUXn and level-shift blocks, and then all measurement objects are fed to ADCs through LV-MUX and level-shift blocks. HV-MUXn are powered by VDC, and LV-MUXn is powered by VAA1.

Fig 1 ADC Block Diagram

ADC Clock

ADC clock frequency is controlled by ADC_CLK_SET bits to generate frequency of 250KHz, 500KHz, 1MHz and 1.5MHz clock. ADC_CLK_SET shall be updated by ADC_CLK_SET_REG in ADC_SETTING_REG when ADC_GO_DLY is detected high[HWR006_CH_SEL_GEN], and ADC_CLK_SET need to output to CLKGEN to generate ADC_CLK and ADC_CLK_H.

Besides ADC clock setting, ADC_SETTING_REG also include ADC mode setting(ADC_MODE_REG), chopper conversion control(ADC_CHP_EN_REG), channel dead time setting(CH_DT_REG), channel set up time setting(CH_STL_REG, CH_TOP_STL_REG), data low-pass filtering setting(DLPF_FC_REG) and GPIO reference selection setting(GPIO_REF_SEL_REG). ADC_SETTING_REG can only be refreshed when ADC_GO_DLY is high[HWR006_CH_SEL_GEN]].

ADC Sequence Setting

ADC sequence setting mainly includes dead time and settling time setting. ADC dead time is configured by CH_DT_REG to control the blank time for channel switching, settling time controls the duration between the conversion channel enable asserts and ADC reset active, the settling time of CELL18 is configured by CH_TOP_STL_REG, and the settling time of CELL1 is configured by CH_BOT_STL_REG, the others channel is configured by CH_STL_REG.

ADC Mode

The ADC has four work modes which can be configured by ADC_MODE_REG. For different mode, ADC has different effective bits of SDM data and ALG data from analog to digital, and the conversion time is different. As shown in table1.

ADC MODE and Conversion Time Calculation					
ADC_MODE	00	01 (Default)	10	11	
ADC_CHP_EN	1				
ADC Clock Frequency(Mhz)		1			
Resolution_Final(Bits)	15 15 15			15	
Resolution_Original(Bits)	16	17	17	17	
Effective bits of SDM+ALG	4+12	6+11	7+10	9+8	
First integration(2 ^N +1)	17	65	129	513	
First Algorithmic		11	10	8	
2nd integration(2 ^N +1)		65	129	513	
2nd Algorithmic		11	10	8	
Actual Conversion time(cycle) (ADC only)	58	152	278	1042	
Actual Conversion time(uS) (ADC only)	58.00	152.00	278.00	1,042.00	

Besides the output data format of SDM and ALG are also affected by ADC mode as shown in table1.

(1) The ADC data in all modes should be 17Bit format, from mode 00 to 11. In mode "00" the LSB bit D0 is empty, can be set to a random number.

(2) DATA[17] only use to judge "overflow" of input range, not use for data calculation.

ADC_MODE	DATA[17:0]
0	{SDM[4:0], ALG[11:0], 1'b0}
1	{SDM[6:0], ALG[10:0]}
2	{SDM[7:0], ALG[11:1]}
3	{SDM[9:0], ALG[11:4]}

Conversion Mode

Single Conversion

In single conversion mode, the ADC performs a big round-robin conversion of CELL conversion(from CELL18 to CELL1), GPIO conversion(fromGPIO12-GPIO1) and 3 others(VPTAT,VBG and VBG2)conversion.

Continuous Conversion

In continuous conversion mode, ADC performs a little round-robin of 18 CELLs periodically, ADC will not stop converting by itself until been interrupted by single conversion start(ADC_SGLE_GO or MON_ADC_GO or C_OW_ADC_GO).

ADC Start

ADC has four kinds start control signals include ADC_SGLE_GO, ADC_CNTI_GO, MON_ADC_GO and C_OW_ADC_GO, when any of the four ADC_GO is detected high, ADC clock gating signal will be asserted to generate ADC measurement clocks, then ADC start to convert[HWR001_ADC_CTRL]. After all channels of single round-robin are finished, the clock gating signal will be invalid to stop ADC clock.

ADC_CNTI_GO is used to initiate CELLS continuous round-robin conversion, the other start control signals are used to start a single round-robin conversion. When ADC_CNTI_GO and ADC_SGLE_GO asserts at the same time, ADC only goes into continuous conversion and the ADC_SGLE_GO will be ignored[HWR003 ADC CTRL].

ADC also generates a clear signal to prepare for the next start and the clr_ADC_GO shall be kept high at least for 8us allow for clock domain crossing[HWR005 CH SEL GEN].

ADC Data Filtering

Besides the RC filter added to the Cn pin to reduce aliasing effects, an additional single pole digital low pass filter(DLPF) is supplied to avoid that too big external RC filter will affect accuracy.

Shift Register+Adder

So,

$$y(i)=2^{-n}*x(i)+(1-2^{-n})*y(i-1)$$

So, the corner frequency is:

$$f_c = \frac{f_s}{2\pi(2^n - 1)}$$
, fs is the sample frequency from the ADC(f_{IN}).

The corner frequency of DLPF can be adjust by ADC_CONF[DLPF_FC<2:0>].

Since there is a obvious step response of DLPF, it is highly recommended that DLPF is enabled with ADC_CTRL[MODE<1:0>]=CONTI, and a waiting delay is necessary before first reading the ADC results after DLPF is enabled.

CELLs conversion results are calculated by calibration algorithm and then output to ADC_DATA_LFP registers through the low-pass filter. The filtering frequency ranges from 10Hz to 1KHz, which is divided

into 8 steps. User can set the filtering frequency according to the needs, or turn off the filter by configuring the DLPF_FC_REG[HWR001_DLPF].

ADC Freezing

CONTROL1[FREEZE] bit is asserted to freeze all ADC measurement results and round-robin numbers(RR_COUNTER) instead of stopping ADC measurement and RR_COUNTER counting. Write CONTROL1[FREEZE] to 0 to allow ADC measurement results and round-robin numbers updating.

Normally ADC measurement result registers are not be refreshed until new converted data is available[HWR004_ADC_CTRL]. When FREEZE_DLY(the delay of CONTROL1[FREEZE]) is detected high, all ADC measurement result registers will be temporarily locked, even if there is a new converted data, it will not be loaded into the result register[HWR005_ADC_CTRL].

Functional Detail

ADC_CTRL block diagram shows in Fig2. RECLK_COMP controls the delay of FREEZE and ADC_GO from CONTROL2[FREEZE], CONTROL2[ADC_SGLE_GO] and CONTROL2[ADC_CNTI_GO], the delay length is decided by device number and CB_SETTLE_REG[4:0].

Fig 2 ADC_CTRL block diagram

The ADC CTRL consists of the following units:

- ADC sequence generation
- ADC analog data combination logic
- ADC data calibration calculation
- ADC CELL DATA low-pass filtering

When CLK_32M_OK is low, it means the source clock 32MHz will stop soon. Before ADC clock disappears, all the counters and temporary registers in ADC_CTRL need to be reset to initial state (except result registers CELL_ADC_DATA, OTH_ADC_DATA and ADC_DATA_LPF) to make prepare for the new conversion later[HWR002_ADC_CTRL].

CH_SEL_GEN refreshes values of ADC_SETTING_REG to ADC_SETTING register when ADC_GO_DLY is detected high, it uses several counters to generate ADC sequence control signals. At end of each channel(except last channel), CH_COUNTER(the number of converted channels) will be incremented by one[hwroo2_ch_sel_gen]. At end of each round-robin, RR_COUNTER is added by 1, while CH_COUNTER is cleared to zero for next cycle, and a RR_END flag will be set to 1 to announce that all the converted data are available, allow for the latency of clock domain crossing process, RR_END need to keep high at least 8us[hwroo1_ch_sel_gen].

ADC_LOGIC convert analog bit stream to parallel data according to the ADC_MODE setting. Besides ADC_LOGIC use counters to generate channel end flag (CH_END) to CH_SEL_GEN[HWR001_ADC_LOGIC].

ADC I/O signals description shows in the following table.

Signal	Width (bits)	I/O	Default value	Duration	DESCRIPTION
ADC_POLAR	1	output	0	N/A	Polarity control of ADC, "H" polarity is positive, "L" polarity is negative
ADC_RST_INT	1	output	0	2 CLK_ADC_ SC	Reset signal of ADC, when "RST_INT" is "high", integrator is in reset mode, the integration capacitor will be reset in every cycle.
ADC_EN_SH_VIN	1	output	0	N/A	Enable signal of input sample of integrator. The integrator will sample Vshunt or Vbus only if EN_SH_VIN is "high"
ADC_EN_SH_VRFEF	1	output	0	N/A	Enable signal of reference feedback in ADC. The integrator will feedback reference voltage only if EN_SH_VREF is "high"
ADC_EN_ALG	1	output	0	N/A	Enable signal of ADC gain2 function. EN_ALG is "high", the integrator is in GAIN2 mode, the redundant signal in INT_CAP will amplified by 2X.
ADC_CMP_OUT_POS	1	input	0	N/A	Output data of positive comparator
ADC_CMP_OUT_NEG	1	input	0	N/A	Output data of negative comparator
ADC_CELL_CH_SEL	18	output	18'h0	N/A	ADC CELL18-CELL1 channel enable
ADC_GPIO_CH_SEL	12	output	12'h0	N/A	ADC GPIO12-GPIO1 channel enable
ADC_VPTAT_SEL	1	output	0	N/A	ADC VPTAT channel enable
ADC_VBG_SEL	1	output	0	N/A	ADC VBG channel enable
ADC_VBG2_SEL	1	output	0	N/A	ADC VBG2 channel enable
D2A_CELL_ADC_EN	1	output	0	N/A	ADC clock gating enable
D2A_ADC_DONE	1	output	0	N/A	ADC_DONE is high when 1st round-robin ends.

		•	1	
1	output	0	8us	Round-robin end flag
2	output	0	N/A	ADC CLK frequency setting
1	output	0	8us	Output to clear 4 kinds of ADC_GO
16	output	0	N/A	Round-robin number, RR_COUNTER is frozen when FREEZE_DLY is detected, is cleared by ADC_GO_DLY is high.
12	output	0	N/A	GPIO reference voltage selection
16	output	0	N/A	CELL18-CELL1 battery convert result
16	output	0	N/A	CELL18-CELL1 convert result with filter
16	output	0	N/A	GPIO12-GPIO1 convert result
16	output	0	N/A	VPAT,VBG,VBG2 convert result
1	input	0	8MHz	Frequency is 8MHz, is divided from CLK_32M
1	input	0	ADC CLK HIGH	generated from CLK_32M divided by ADC_CLK_SET
1	input	0	ADC CLK	generated from CLK_32M divided by ADC_CLK_SET, half the frequency of CLK_ADC_SC
1	input	1	N/A	Asynchronous power on reset
1	input	1	N/A	Power reset and CLK_32M_OK reset CLK_32M_OK is low, ADC_CTRL shall be reset to initial state
1	input	1	N/A	Soft reset, release synchronously in CLK_32M domain.
1	input	0	N/A	ADC single conversion go to work
1	input	0	N/A	ADC single conversion go to work
1	input	0	N/A	ADC single conversion go to work
1	input	0	N/A	ADC continuous conversion go to work
1	input	0	N/A	ADC single conversion go with delay
1	input	0	N/A	ADC continuous conversion go with delay
1	input	0	N/A	ADC FREEZE flag with delay
92	input		N/A	
	2 1 16 12 16 16 16 16 1 1 1 1 1 1 1 1 1	2 output 1 output 16 output 16 output 16 output 16 output 16 output 16 output 1 input	2 output 0 1 output 0 16 output 0 12 output 0 16 output 0 16 output 0 16 output 0 1 input 0 1 input 0 1 input 1 1 input 1 1 input 0 1 input 0	1 output 0 N/A 2 output 0 N/A 1 output 0 N/A 16 output 0 N/A 1 input 0 ADC CLK 1 input 0 ADC CLK 1 input 1 N/A 1 input 1 N/A 1 input 1 N/A 1 input 0 N/A

ADC sequence signals contain ADC_POLAR, ADC_RST_INT, ADC_EN_SH_VIN, AC_EN_SH_VREF and ADC_EN_ALG.

ADC Calibration

ADC calibrates the converted results from analog ADC with TRIM_ADC[NVR001_CALIBRATION]. As shown in Fig3, ADC_CHP_EN bit is set to 1, conversion process contains POLAR high and low stage. Each stage includes SDM phase and ALG phase. In SDM phase, total data length is 2^N, ADC_LOGIC needs to count number of all '1' of the serial compared result and save data to SDM_POS/SDM_NEG register. In ALG phase, total data length is M, the first data is MSB and the last data is LSB. All data are shift into ALG_POS/ALG_NEG register.

ADC_POS is the 18bits data combined by SDM_POS and ALG_POS which is controlled by ADC_MODE_REG, ADC_NEG is the 18bits data combined by SDM_NEG and ALG_NEG. ADC_OUT1/ADC_OUT0 is the difference between ADC_POS and ADC_NEG of POLAR high/low stage. ADC_OUT_F is the mean of the difference between ADC_OUT1 and ADC_OUT0. ADC_OUT_ORG is the product of ADC_OUT_F and scale factors. ADC_OUT_FL is the result of ADC_OUT_ORG calibrated with gain and offset coefficients. The final results ADC_OUT_FL_ED is 16 bits signed binary complement data(CELL_ADC_DATA[15:0] and OTH_ADC_DATA[15:0]) will be saved into registers, and the CELL_ADC_DATA need to output to DLPF separately to do filtering[HWR002_CALIBRATION].

Fig 3 ADC Calibration algorithm (ADC_CHP_EN=1)

Different from the situation of ADC_CHP_EN bit is set to 1, ADC_OUT is always zero, as ADC only converts when POLAR is high. As a result, ADC_OUT_F is equal to ADC_OUT1.

ADC data calibrations totally takes 8 ADC_CLK periods(16 CLK_ADC_SC periods) after the last serial data is available, analog ADC outputs results at the rising edge of ADC_CLK, ADC_CTRL captures data at the opposite edge of ADC_CLK. The implementation of ADC_CTRL calibration is shown in Fig4.

Fig 4 ADC Calibration flow

As shown in Fig4, all result registers are equivalent to be driven by the falling edge of ADC_CLK, each step result is locked into D Flip-Flop only when the control signal(neg_ALG_EN/time_for_org/.../sample_end_flag) is valid. The ADC_CTRL calibration timing is shown in Fig5.

ADC Timing for Digtal

Fig 5 ADC Calibration timing

ADC DLPF

According to the simplified filter formula:

$$y(i)=2^{-n}*x(i)+(1-2^{-n})*y(i-1)$$

It can be seen that

$$\begin{array}{c} 2^n*Y_i=X_i+2^n*Y_{i-1}-Y_{i-1} \text{, that is} \\ 2^n*Y_0=X_0 \\ 2^n*Y_1=X_1+2^n*Y_0-Y_0 \\ 2^n*Y_2=X_2+2^n*Y_1-Y_1 \end{array}$$

 $2^n * Y_i$ is the sum data, and the Y_i is the average of sum. Data low-pass filter circuit implemented as shown in Fig6. DLPF circuits only need a 16bits register to save the average data in real time, as the converted data is achieved by sequence, so that it can reuse the adder and subtractor resource.

Fig 6 ADC DLPF implementation

ADC Sequence Timing

ADC Sequence timing shows in the Fig7.

CH_DT[4:0] controls dead time between different channel enable signal, time unit is ADC_CLK period. CH_TOP_STL[4:0] controls settling time for ADC after top channel enable is high, time unit is 4*ADC CLK period.

CH_STL[4:0] controls settling time for ADC after channel enable is high, time unit is 2*ADC_CLK period. CH_BOT_STL[4:0] controls settling time for ADC after bottle channel enable is high, time unit is 4*ADC CLK period.

As shown in Fig5, ADC sequence signals include CH_SEL, POLAR, RST_INT, EN_SH_VIN, EN_SH_VREF and EN_GAIN2. All sequence signals are generated by CLK_ADC_H. CLK_ADC is half of the CLK_ADC_H. Both POLAR and compared results(CMP_OUT_POS/CMP_OUT_NEG) are aligned with rising edge of CLK_ADC. RST_INT keeps asserting one CLK_ADC period to reset the integration capacitor. ADC CHP_EN also affects the ADC conversion time.

Fig 7 ADC Sequence timing(ADC_CHP_EN=1)

ADC Timing for Digtal

ADC_CHP_EN=0

1 complete conversion of CH2

Conversion Polar=1

ADC Sequence timing without chopper enable shows in the Fig8.

Fig 8 ADC Sequence timing (ADC_CHP_EN=0)

ADC Single Conversion Timing

As shown in Fig9, When ADC_SGLE_GO or MON_ADC_GO or C_OW_ADC_GO asserts high after ADC is enabled, ADC goes into the single conversion mode, after all channels conversion done, RR_END is set to 1, RR_COUNTER is increased by 1, without new start signals, ADC will stop.

 $Fig \ 9 \ ADC \ \ single \ \ conversion \ \ without \ ADC_CNTI_GO$

As shown in Fig10, during ADC single conversion, even that ADC_CNTI_GO asserts high, it can not terminate single conversion immediately, ADC starts to continuous conversion after single round-robin conversion is finished, and RR_COUNTER is reset at same time[HWR000_RR_CNT].

 ${
m Fig}\ 10\ {
m ADC}\ {
m single}\ {
m conversion}\ {
m with}\ {
m ADC_CNTI_GO}$

ADC Continuous Conversion Timing

As shown in Fig11, when ADC_CNTI_GO asserts high, ADC goes into continuous conversion mode, each time the last channel conversion is done, RR_COUNTER is automatically increased by 1. ADC can not stop automatically.

Fig 11 ADC continuous conversion without ADC_SGLE_GO

As shown in Fig12, during ADC continuous conversion, even that ADC_SGLE_GO asserts high, it can not terminate continuous conversion immediately, ADC starts to single conversion after current round-robin finished, RR_COUNTER is reset to zero at same time. After single conversion round-robin is finished, ADC will stop.

Fig 12 ADC continuous conversion with ADC_SGLE_GO

ADC Counter Timing

As shown in Fig13, cnt_STL counts for settling time controlled by CH_STL_TOP or CH_STL_REG, COUNTER counts the conversion time firstly and counts the dead time later, CH_COUNTER mainly counts the number of converted channel except for the end of round-robin, RR_COUNTER counts the number of round-robin and cleared by ADC_GO_DLY. All counters increment one by the CLK_ADC_H and be cleared to 0 when CLK_32M_OK is low.

Fig 13 ADC counter timing