# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT.
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PAT-NO:

JP02001033643A

DOCUMENT-IDENTIFIER: JP 2001033643 A

TITLE:

WAVEGUIDE TYPE OPTICAL MODULE

PUBN-DATE:

February 9, 2001

INVENTOR-INFORMATION:

COUNTRY NAME N/ATAKASUGI, SATORU N/A KAJIYAMA, SHINICHI NAMISE, HIDEKI N/A

ASSIGNEE-INFORMATION:

COUNTRY NAME

N/A HITACHI CABLE LTD

APPL-NO:

JP11205608

APPL-DATE:

July 21, 1999

INT-CL (IPC): G02B006/122

#### ABSTRACT:

PROBLEM TO BE SOLVED: To prevent the heat generated in a heater from being transferred to the whole of a tray to raise the heat efficiency and attain the reduction in power consumption and shortening of temperature-raising time by providing an opening in the tray for setting and fixing a wavequide element.

SOLUTION: An array waveguide grating optical circuit is constituted in a waveguide element 1. A temperature sensor 9 is set on the

waveguide element 1.

The wavequide element 1 is fixed to a tray through a heat

04/17/2003, EAST Version: 1.03.0002

conductive adhesive. A heater 4 is fixed to the reverse side of the tray 2 through a heat conductive adhesive. The tray 2 is fixed to a package 6 by a base seat 5, and a heat insulating material 7 is filled in the space part between the tray 2 and the package 6. Opening parts 3 are provided in two positions around the part within the tray 2 where the heater 4 is adhered and the part within the

waveguide element 1 where the array waveguide grating optical

circuit (the part requiring temperature control) is adhered.

COPYRIGHT: (C) 2001, JPO

04/17/2003, EAST Version: 1.03.0002

### (19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-33643

(P2001-33643A)

(43)公開日 平成13年2月9日(2001.2.9)

(51) Int.Cl.<sup>7</sup>

識別記号

FΙ

テーマコート\*(参考)

G02B 6/122

G 0 2 B 6/12

A 2H047

#### 審査請求 未請求 請求項の数2 OL (全 3 頁)

(21)出願番号

特額平11-205608

(22)出顧日

平成11年7月21日(1999.7.21)

(71)出顧人 000005120

日立電線株式会社

東京都千代田区大手町一丁目6番1号

(72)発明者 高杉 哲

炭城県日立市日高町5丁目1番1号 日立

電線株式会社オプトロシステム研究所内

(72)発明者 梶山 真一

炭城県日立市日高町5丁目1番1号 日立

電線株式会社オプトロシステム研究所内

(72)発明者 南畝 秀樹

炭城県日立市日高町5丁目1番1号 日立

電線株式会社オプトロシステム研究所内

Fターム(参考) 2H047 KA12 LA01 LA19 NA05 TA00

#### (54) 【発明の名称】 導波路型光モジュール

#### (57)【要約】

【課題】ヒータで発熱した熱がトレイ全体に伝導するの を防ぐことにより熱効率を上げ、消費電力の低減と昇温 時間の短縮を図った導波路型光モジュールを提供するこ と。

【解決手段】導波路素子と該導波路素子を設置固定する トレイと前記導波路素子の温度を一定に保つヒータ及び 温度センサとを具備して成る薄波路型光モジュールにお いて、前記トレイに開口部を設けたことにある。



#### 【特許請求の範囲】

【請求項1】導波路素子と該導波路素子を設置固定する トレイと前記導波路素子の温度を一定に保つヒータ及び 温度センサとを具備して成る導波路型光モジュールにお いて、前記トレイに開口部を設けて成ることを特徴とす る導波路型光モジュール。

1

【請求項2】開口部は、前記導波路素子の光回路と前記 ヒータとの周囲に設けて成ることを特徴とする請求項1 記載の導波路型光モジュール。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は光モジュール、特に 光ファイバ通信に多用されている導波路型素子を搭載し た導波路型光モジュールに関するものである。

#### [0002]

【従来の技術】従来技術による導波路型光モジュールに ついて図を基に詳述する。

【0003】図4は、その断面構造図である。11は導 波路素子、12はトレイ、13はヒータ、14は台座、 15はパッケージ、16は断熱材、17は光ファイバ、 18は温度センサである。

【0004】薄波路素子11は、トレイ12に接着固定 されている。トレイ12の裏面にはヒータ13が取り付 けられており、導波路素子11の表面には温度センサ1 8が具備されている。これらにより導波路素子11、特 にその内の光回路の部分が一定温度に保たれるように構 成されている。また、トレイ12は台座14を介してパ ッケージ15に固定されている。そして、トレイ12と パッケージ15の空間部分には断熱材16が充填されて いる。

【0005】図5は、図4の導波路素子11の平面図で ある。アレイ導波路型グレーティング光回路が構築され ている。このアレイ導波路型グレーティング光回路は、 温度依存性を有するため、良好な特性を保持するために は一定の温度に維持する必要がある。 導波路素子11の 入射端及び出射端には光ファイバ17が接続されてい る。通常、導波路素子11と光ファイバ17との接続は 融着接続である。

【0006】図6は、図1のトレイ12の斜視図であ る。ヒータ13からの熱を導波路素子11に良好に伝え 40 るために、また導波路素子11の温度を一定に保つよう に、トレイ12の熱伝導率や材質及び形状は十分に設計 されている。

#### [0007]

【発明が解決しようとする課題】従来の導波路型光モジ ュールには以下に示す問題点があった。

【0008】ヒータ13で発熱した熱がトレイ12全体 に伝導し、トレイ12の全表面から断熱材16を介して パッケージ15に伝わる。このため、導波路素子11を

レイ12及び断熱材16を伝わってパッケージ15の表 面へ伝達し、パッケージ15表面から放散されてしま う。従って、ヒータ13の熱効率が悪く、消費電力の増 大や昇温時間の増大の原因となっていた。

【0009】従って本発明の目的は、前記した従来技術 の欠点を解消し、ヒータで発熱した熱がトレイ全体に伝 導するのを防ぐことにより熱効率を上げ、消費電力の低 減と昇温時間の短縮を図った導波路型光モジュールを提 供することにある。

#### 10 [0010]

【課題を解決するための手段】本発明は上記の目的を実 現するため、導波路素子と該導波路素子を設置固定する トレイと前記導波路素子の温度を一定に保つヒータ及び 温度センサとを具備して成る導波路型光モジュールにお いて、前記トレイに開口部を設けた。

【0011】また、開口部は前記導波路素子の光回路と 前記ヒータとの周囲に設けた。

#### [0012]

【発明の実施の形態】図1は、本発明の薄波路型光モジ 20 ュールの一実施例を示す断面構造図である。1は導波路 素子、2はトレイ、3は開口部、4はヒータ、5は台 座、6はパッケージ、7は断熱材、8は光ファイバ、9 は温度センサである。

【0013】導波路素子1にはアレイ導波路型グレーテ ィング光回路が構成されている。そして導波路素子1の 上に、厳密にはアレイ導波路型グレーティング光回路上 のクラッド表面に、温度センサ(白金抵抗測温体)9が 設置されている。

【0014】また、導波路素子1はトレイ2に熱伝導性 30 接着剤により固定されており、トレイ2の裏面には、ヒ ータ4が同じく熱伝導性接着剤により固定されている。 【0015】図2は、図1のトレイ2の斜視図である。 トレイ2の内、ヒータ4が接着されている部分及び、導 波路素子1内のアレイ導波路型グレーティング光回路 (つまり温度調節が必要な部分) が接着固定されている 部分の周囲2箇所に、開口部3が設けられており、ヒー タ4で発熱した熱がトレイ2全体に伝わるのを防いでい る.

【0016】なお、トレイ2は台座5によりパッケージ 6に固定されており、トレイ2とパッケージ6の空間部 分には断熱材7が充填されている。

【0017】図3は、図1の導波路型光モジュールの昇 温特性説明図である。従来の導波路型光モジュールと比 較して示している。グラフの横軸は時間、縦軸は導波路 素子温度 (℃) であり、ヒータ4のスイッチを入れてか ら導波路素子1が設定温度の80℃に昇温するまでの時 間と測定温度をプロットしたものである。

【0018】トレイ2に開口部3を設けたことから、開 口部を持たない従来の導波路型光モジュールに比べて短 加熱するためにヒータ13で発熱した熱の大部分が、ト 50 時間で設定温度に到達しているのがわかる。すなわち、

3

昇温特性が大幅に改善され、消費電力の低減を図ることができた。

【0019】なお、本導波路型光モジュールは波長多重 伝送方式光ネットワーク内に設置され、伝送されてきた 光信号を波長に依存して分波するのに用いる光デバイス である。波長多重伝送方式は通常WDM (Wavelength Division Multi/Demultiplexer )と称される。

#### [0020]

【発明の効果】本発明の導波路型光モジュールは、導波路素子を設置固定するトレイに開口部を設けたことから、導波路素子の昇温時間を大幅に短縮し、さらに消費電力の低減を図ることができる。

#### 【図面の簡単な説明】

【図1】本発明の導波路型光モジュールの一実施例を示す断面構造図である。

【図2】図1内のトレイの斜視図である。

【図3】図1の導波路型光モジュールの昇温特性説明図である。

【図4】従来の導波路型光モジュールの断面構造図である。

【図5】図4内の導波路案子の平面図である。

【図6】図4内のトレイの斜視図である。

#### 【符号の説明】

- 1、11 導波路素子
- 2、12 トレイ
- 10 3 開口部
  - 4、13 ヒータ
  - 5、14 台座
  - 6、15 パッケージ
  - 7、16 断熱材
  - 8、17 光ファイバ
  - 9、18 温度センサ

【図1】 【図2】 【図5】 11等波路接子 8光ファイバ 3 関爪部 5 台座 21-61 【図3】 【図4】 18混席センザ 等效路兼十倍联 (C) 促来構造 - 第口部有り 17光ファイベ 135-9 14台座 12111 時間 (分)

【図6】

