ЛАБОРАТОРНАЯ РАБОТА № 2

Решение системы линейных уравнений

Цель: освоить методы решения системы линейных уравнений и вычисления приближенного решения системы линейных уравнений.

1. Порядок выполнения

- 1) Напишите функцию transA(A) для вычисления транспонированной матрицы.
- 2) Напишите функцию sumAB(A, A) для вычисления суммы матриц. Подсчитайте количество арифметических операций.
- 3) Напишите функцию prodAB(A, B) для вычисления произведения матриц. Подсчитайте количество арифметических операций.
- 4) Напишите функции det_1(A), det_2(A), det_3(A) и det_4(A) для вычисления определителя квадратной матрицы прямым методом, методом разложения на определители меньшего порядка, методом LU-разложения и методом Гаусса соответственно. Подсчитайте количество арифметических операций для каждого метода.
- 5) Напишите функцию rankB(B) для вычисления ранга матрицы. Подсчитайте количество арифметических операций.
- 6) Напишите функцию invA(A) для вычисления обратной матрицы. Подсчитайте количество арифметических операций.
- 7) Напишите функцию eigA(A) для вычисления собственных значений и собственных векторов матрицы *A*. Подсчитайте количество арифметических операций.
- 8) Напишите функцию solvG(A, c) для решения системы линейных уравнений Ax = b методом Гауса. Подсчитайте количество арифметических операций.
- 9) Напишите функцию solvM(A, c) для решения системы линейных уравнений Ax = b матричным методом. Подсчитайте количество арифметических операций.
- 10) Напишите функцию solvFPI(A, c) для решения системы линейных уравнений Ax = b методом простых итераций с точностью $\varepsilon = 0.001$. Подсчитайте количество арифметических операций.
- 11) Напишите функцию solvGS(A, c) для решения системы линейных уравнений Ax = b методом Гаусса-Зейделя с точностью $\varepsilon = 0.001$. Подсчитайте количество арифметических операций.

2. Содержание отчета

- 1) Исходные данные.
- 2) Исходные тексты функций.
- 3) Результаты вычислительных экспериментов.
- 4) Сравнительный анализ методов решения системы линейных уравнений.
- 5) Выводы.

3. Варианты исходных данных

Вариант	A	В	С
1	21 0.5 1 0.3	1 2	0.1
	0.2 2.1 0.4 0.4	5 1	0.2
	0.4 0.3 1.2 0.6	4 2	0.5
	0.1 0.1 0.6 4	3 1	0.4

2	4.1 0.5 1 0.3	4 2	0.7
2	0.2 2.3 0.4 0.4		0.4
	0.1 0.3 1.2 0.6	4 3 4 2	0.6
		5 1	
3	0.1 0.1 0.6 3 7.6 0.5 1 0.7	5 1 2 2	0.4 0.8
	0.6 1.3 0.4 0.4	4 3	0.4
	0.1 0.3 3.2 0.2	4 3 4 7	0.9
		5 <u>1</u> 2 2	
4	3.2 0.5 1 0.7	5 1 2 2	0.4 0.1
	0.4 3.3 0.4 0.4	6 3	0.1
	0.1 0.6 2.2 0.2	4 2	0.3
	0.1 0.1 0.9 1.5 1.2 0.5 0.4 0.7	6 3 4 2 2 2 1 7	0.3 0.8
5			
	0.3 5.3 0.4 0.4	6 3 8 7	0.1
	0.1 0.6 3.2 0.2		0.6
	0.1 0.6 0.7 4.5	2 3 4 7	0.2
6	4.8 0.5 1 0.3		0.8
	0.2 2.1 0.4 0.4	6 3 8 7	0.5 0.9
	0.4 0.3 1.2 0.6	0 /	
7	0.1 0.1 0.6 5 3.4 0.5 1 0.3	2 7 6 7	0.4 0.9
'	0.2 2.3 0.4 0.4		0.1
	0.1 0.3 4.2 0.6	6 3 8 7	0.3
			0.3
8	0.1 0.1 0.6 5 7.4 0.5 1 0.7	2 8 5 7	0.8
	0.6 4.3 0.4 0.4		0.3
	0.1 0.3 5.2 0.2	6 3 8 5	0.8
	0.1 0.1 0.3 7	2 3 4 7	
9	0.1 0.1 0.3 7 4.6 0.5 1 0.7	2 3 4 7	0.2 0.5
	0.4 3.3 0.4 0.4	6 3	0.2 0.5
	0.1 0.6 4.2 0.2	8 4	
	0.1 0.1 0.9 4.5	6 3 8 4 2 3 3 7	0.4 0.3
10	5.2 0.5 0.4 0.7		
	0.3 5.3 0.4 0.4	6 3 4 7	0.4
	0.1 0.6 5.2 0.2		0.6
11	0.1 0.6 0.7 6.5 6.5 0.5 1 0.3	2 3 2 2	0.4 0.4
11	0.2 6.1 0.4 0.4		0.2
	0.4 0.3 4.2 0.6	5 1 4 2	0.5
			0.4
12	0.1 0.1 0.6 8 8.7 0.5 1 0.3	3 1 2 2	0.5
1-	0.2 6.3 0.4 0.4		0.4
	0.1 0.4 4.2 0.6	4 3 8 2	0.6
	0.1 0.1 0.6 6	5 1 5 2	0.4 0.8
13		5 2	
	0.6 7.3 0.4 0.4	4 3 4 7	0.9
	0.1 0.5 3.2 0.2		0.9
	0.1 0.1 0.3 4 3.8 0.5 1 0.7	5 1 8 2	0.4
14			0.1
	0.4 4.3 0.9 0.4	6 3 4 2	0.2
	0.1 0.6 5.2 0.2	4 2	0.3
15	0.1 0.1 0.9 4.5 4.4 0.5 0.4 0.7	2 <u>2</u> 2 7	0.3 0.4
13	0.3 4.3 0.4 0.4		0.1
	0.5 4.5 0.4 0.4 0.1 0.1 0.7 4.2 0.2	6 3 8 7	0.1
	0.1 0.7 4.2 0.2	2 3	0.0
L	0.0 0.7 4.3	<u> </u>	U.4

16	7.8 0.5 1 0.	3 8 7	0.8
10			
	0.2 7.1 0.8 0.		0.7
	0.4 0.3 5.2 0.	6 8 7	0.9
	0.1 0.1 0.6 3.		0.4
17	1.5 0.5 1 0.	3 4 7	0.2
	0.2 3.8 0.4 0.	6 3 6 8 7	0.1
	0.1 0.3 2.2 0.	6 8 7	0.5
	0.1 0.1 0.6 7.		0.3
18	9.5 0.5 1 0.	7 6 7	0.8
	0.6 4.3 0.8 0.	4 6 3 2 8 5	0.6
	0.1 0.6 1.2 0.	2 8 5	0.8
	0.1 0.1 0.3 1.		0.2 0.5
19	7.7 0.5 0.1 0.	7 4 7	0.5
	0.4 5.3 0.4 0.	8 4 3	0.4
	0.1 0.6 4.2 0.	2 8 4	0.5
	0.1 0.1 0.9 8.	5 <u>2 3</u> 7 3 7	0.4
20	3.1 0.5 0.4 0.		0.8
	0.3 9.3 0.2 0.	4 6 5 2 4 7	0.7
	0.1 0.6 5.2 0.	2 4 7	0.6
	0.1 0.4 0.7 9.	5 2 3	0.4