I) Найти неопределенные интегралы:

6)
$$\int (4x-7)e^{x+1}dx$$

$$B) \int \frac{(x+3)dx}{(x-3)^2(x+2)}.$$

II)

а) В двойном интеграле $\iint f(x,y) dx dy$ перейти к полярным координатам и

расставить пределы интегрирования по новым переменным, если:

- $D = \{ x^2 + y^2 \le 4x \}$. Сделать чертёж области интегрирования.
- б) Исследовать на сходимость несобственный интеграл и вычислить его, если он сходится: $\int_{-\infty}^{\infty} \frac{\ln x dx}{x^2}.$
- **в)** Вычислить определенный интеграл: $\int_{0}^{0} \frac{(x+1)dx}{\sqrt{x^2+6x+10}}$.

III)

- а) Криволинейный интеграл 2-го рода: определение, свойства. Теорема Грина.
- б) Вычислить криволинейный интеграл 2-го рода по замкнутому контуру по формуле Грина:

$$\oint_L y^2 dx + (y-x)dy$$
, если L - контур треугольника с вершинами $O(0,0)$, $A(2,0)$, $B(0,2)$.

в) Проверить результат непосредственным вычислением.

IV)

- а) Пространственный контур Γ задан системой $\{x^2 + y^2 = 4; z = y\}$. Сделать чертеж. Вычислить rot **a**, где $\mathbf{a} = 2y\mathbf{i} + z^2\mathbf{j} - x\mathbf{k}$.
- **б)** Теорема Стокса. Найти циркуляцию векторного поля **a** по контуру Г, применяя эту теорему, если $\mathbf{a} = 2y\mathbf{i} + z^2\mathbf{j} - x\mathbf{k}$, $\Gamma = \{x^2 + y^2 = 4, z = y\}$
- в) Проверить результат непосредственным вычислением линейного интеграла векторного поля по замкнутому контуру Γ .