Sorgenti coerenti e incoerenti

Consideriamo due onde piane con $\omega_1 = \omega_2 = \omega$ che si propagano nello stesso mezzo $(k_1 = k_2)$

$$E_{1} = E_{o1} e^{i(\omega t - \mathbf{k} \cdot \mathbf{r}_{1} - \varphi_{1})} = E_{o1} e^{i\omega t} e^{-i\phi_{1}}$$

$$E_{2} = E_{o2} e^{i(\omega t - \mathbf{k} \cdot \mathbf{r}_{2} - \varphi_{2})} = E_{o2} e^{i\omega t} e^{-i\phi_{2}}$$
dove: $\phi = \mathbf{k} \cdot \mathbf{r} + \varphi$

Il campo totale risulta:

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2$$

e l'intensità:

$$I \propto \left| \mathbf{E}_1 + \mathbf{E}_2 \right|^2 = E_{o1}^2 + E_{o2}^2 + 2E_{o1}E_{o2}\cos(\phi_2 - \phi_1)$$

- Se $(\phi_2 \phi_1) = cost$ nel tempo in ogni punto, le sorgenti sono coerenti:
 - l'intensità è modulata dalla fase (Interferenza), che varia con la posizione.
 - l'intensità totale è proporzionale al modulo quadro della somma dei campi.

$$I \propto \left| \mathbf{E}_1 + \mathbf{E}_2 \right|^2$$

- Se $(\phi_2 \phi_1) \neq cost$, le sorgenti sono incoerenti:
 - l'intensità totale è uguale alla somma delle intensità ed indipendente dalla posizione.

$$\overline{\cos(\phi_2 - \phi_1)} = 0$$

$$I \propto E_{o1}^2 + E_{o2}^2 \implies I = I_1 + I_2$$

Interferenza

L'interferenza si osserva per tutte le grandezze che si propagano per onde (con trattazione matematica indipendente dal tipo di onda).

⇒ Prova della natura ondulatoria di una grandezza.

Con esperimenti di interferenza è stato dimostrato:

- Esistenza delle onde e.m. (Hertz, 1888)
- La luce si propaga per onde (Young, 1801).

Consideriamo due sorgenti coerenti (ad es., sorgenti puntiformi di onde sferiche):

$$\xi_1 = \xi_{01} \sin(\omega t - k r_1)$$
 $\phi_1 = k r_1 + \phi_1$
 $\xi_2 = \xi_{02} \sin(\omega t - k r_2)$ $\phi_2 = k r_2 + \phi_2$

$$\phi_1 = k r_1 + \varphi_1$$

$$\xi_2 = \xi_{02} \sin(\omega t - k r_2)$$

$$\phi_2 = k \, r_2 + \varphi_2$$

Condizioni di interferenza:

- sorgenti coerenti
- uguale frequenza
- uguale stato di polarizzazione: interferiscono tra loro solo le componenti di \mathbf{E} secondo lo stesso asse (es. E_{1x} con E_{2x})

Differenza di fase:
$$\delta = \phi_2 - \phi_1 = (k_2 r_2 - k_1 r_1) = \frac{2\pi}{\lambda_o} (n_2 r_2 - n_1 r_1)$$

Cammino ottico: Prodotto del cammino geometrico per l'indice di rifrazione (= nr).

$$\xi = \xi_1 + \xi_2 = \xi_0 \sin(\omega t + \alpha)$$

$$con: \ \xi_0 = \sqrt{\xi_{01}^2 + \xi_{02}^2 + 2\xi_{01}\xi_{02}\cos\delta}$$

$$\xi_{max} = |\xi_{01} + \xi_{02}| \qquad \cos\delta = 1$$

$$\xi_{min} = |\xi_{01} - \xi_{02}| \qquad \cos\delta = -1$$

Consideriamo propagazione nel vuoto o nello stesso mezzo $(n_1 = n_2)$:

$$\delta = 2n\pi$$

Interferenza costruttiva

$$\frac{2\pi}{\lambda}(\mathbf{r}_{2}-\mathbf{r}_{1})=2n\pi \quad \Rightarrow \quad (\mathbf{r}_{2}-\mathbf{r}_{1})=n\lambda$$

La differenza dei cammini ottici è multiplo intero di λ

$$\delta = (2n + 1)\pi$$
 Interferenza distruttiva

$$\frac{2\pi}{\lambda}(r_2 - r_1) = (2n+1)\pi$$
 \Rightarrow $(r_2 - r_1) = (2n+1)\frac{\lambda}{2}$

La differenza dei cammini ottici è multiplo dispari di λ / 2

$$\delta = \cos t \implies \xi = \xi_0 \sin(\omega t + \alpha) \qquad (\alpha = \cos t)$$
 (*)

⇒ No propagazione ⇒ Onda stazionaria

Luogo dei punti con: $(\mathbf{r_2}-\mathbf{r_1}) = \mathbf{cost}$

 \Rightarrow Iperboli con fuochi in S_1 e S_2

Ventri:

$$\mathbf{r}_2 - \mathbf{r}_1 = \mathbf{n}\lambda$$

Nodi:

$$r_2 - r_1 = (2n+1)\lambda/2$$

(*)
$$tg\alpha = \frac{\xi_{o1}\sin\phi_1 + \xi_{o2}\sin\phi_2}{\xi_{o1}\cos\phi_1 + \xi_{o2}\cos\phi_2}$$

Interferenza di due sorgenti luminose: Esperimento di Young (1801)

Principio di Huygens

A grande distanza dalle sorgenti:

$$a << r_1, r_2$$
 $r_1 \cong r_2$ $\xi_{01} \cong \xi_{02}$

$$r_1 \cong r_2$$

$$\xi_{01} \cong \xi_{02}$$

$$\xi_{o} = \sqrt{\xi_{o1}^{2} + \xi_{o2}^{2} + 2\xi_{o1}\xi_{o2}\cos\delta} = \xi_{o1}\sqrt{2(1+\cos\delta)} =$$

$$= \xi_{o1}\sqrt{2(1+2\cos^{2}(\delta/2)-1)} = 2\xi_{o1}\cos\frac{\delta}{2}$$

L'intensità è proporzionale al quadrato del campo:

$$I = I_o \cos^2 \frac{\delta}{2}$$

$$I = I_o \cos^2 \frac{\delta}{2}$$
 dove: $I_o = I_{max} = 4I_1$

dove:
$$r_2 - r_1 = a \sin \theta$$
 e $\sin \theta \cong tg \theta \cong x/D$

$$\Rightarrow \delta = \frac{2\pi}{\lambda} (r_2 - r_1) = \frac{2\pi a \sin \theta}{\lambda} \cong \frac{2\pi a}{\lambda} \frac{x}{D}$$

 $I = I_{max}$ quando:

$$\frac{\delta}{2} = n\pi$$
 \Rightarrow $\frac{\pi ax}{\lambda D} = n\pi$ \Rightarrow $x = \frac{n\lambda D}{a}$

Interferenza di N sorgenti

Consideriamo *N* sorgenti sferiche puntiformi coerenti, spaziate di *a* una dall'altra.

Utilizziamo il metodo dei vettori rotanti.

A grande distanza:

$$r_1 \cong r_2 \cong r_3 \cong \dots \cong r_N$$
 $\xi_{o1} \cong \xi_{o2} \cong \xi_{o3} \cong \dots \cong \xi_{oN}$ P $\delta/2$ δ

Ogni sorgente è sfasata rispetto alla precedente della stessa quantità δ :

$$\delta = \frac{2\pi a \sin \theta}{\lambda}$$

Dalla composizione dei vettori rotanti, l'ampiezza totale OP è:

$$OP = \xi_o = 2OQ = 2\rho \sin \frac{N\delta}{2}$$

dove:

$$\xi_{o1} = 2\rho \sin \frac{\delta}{2}$$
 \Rightarrow $\rho = \frac{\xi_{o1}}{2\sin(\delta/2)}$

$$\xi_{o} = \xi_{o1} \frac{\sin \frac{N\delta}{2}}{\sin \frac{\delta}{2}} = \xi_{o1} \frac{\sin \left(\frac{N\pi a \sin \theta}{\lambda}\right)}{\sin \left(\frac{\pi a \sin \theta}{\lambda}\right)}$$

$$I = I_1 \frac{\sin^2\left(\frac{N\delta}{2}\right)}{\sin^2\left(\frac{\delta}{2}\right)} = I_1 \frac{\sin^2\left(\frac{N\pi a \sin\theta}{\lambda}\right)}{\sin^2\left(\frac{\pi a \sin\theta}{\lambda}\right)}$$

dove I₁ è l'intensità della singola sorgente.

Per $\underline{N} = \underline{2}$:

$$\xi_{o} = \xi_{o1} \frac{\sin \delta}{\sin(\delta/2)} = \xi_{o1} \frac{2\sin(\delta/2)\cos(\delta/2)}{\sin(\delta/2)} = 2\xi_{o1} \cos \frac{\delta}{2}$$

$$I = I_o \cos^2 \frac{\delta}{2}$$

P.Taroni_FSII – 17

L'intensità è massima quando tutti i campi sono in fase:

$$\delta = \frac{2\pi a \sin \theta}{\lambda} = 2n\pi \qquad (n = intero)$$

$$\Rightarrow \frac{\sin N \frac{\delta}{2}}{\sin \frac{\delta}{2}} = \pm N$$

$$\Rightarrow I = I_{\text{max}} = N^2 I_1 \quad \text{per:} \quad \boxed{a \sin \theta = n\lambda} \quad \text{Massimi}$$
principali

$$I = I_{\min} = 0$$
 si ha per:

$$\frac{N\delta}{2} = \frac{N\pi a \sin \theta}{\lambda} = m\pi \qquad (m = intero)$$

$$\frac{\pi a \sin \theta}{\lambda} = \frac{m}{N} \pi \qquad \Rightarrow \qquad \boxed{a \sin \theta = \frac{m}{N} \lambda}$$

m assume tutti i valori eccetto 0, N, 2N, ..., perchè in corrispondenza di questi valori ci sono i massimi principali.

Tra due zeri c'è un massimo (**massimo secondario**). ⇒ Tra due massimi principali, ci sono (N-2) massimi secondari.

Per N grande, l'intensità delle N sorgenti si concentra prevalentemente nei massimi principali.

 \Rightarrow L'interferenza comporta una forte dipendenza dell'intensità dalla direzione, cioè dall'angolo θ .

Esempio: antenna costituita da N = 4 sorgenti spaziate di

$$\underline{I = I_{max}}: \quad a \sin\theta = n\lambda \qquad \sin\theta = 2n \qquad \text{Max per } n = 0$$

$$\theta = 0 \qquad \qquad \theta = \pi$$

$$\underline{I=0} \colon \text{ a } \sin\theta = (m/N)\lambda \quad \sin\theta = m/2 \quad m=\pm 1; \ m=\pm 2$$

$$\theta = \pm \pi/6 \quad \theta = \pm \pi/2$$

P.Taroni FSII – 17