Exercise 6. Answer Sheet

Student's Name: Tsuyoshi Kumamoto Student's ID: s1250050

Problem 1. Given the graph below

a) (10 points) Fill the following matrix by putting 1 if there is an edge between nodes. Put 0 otherwise.

	a	ь	c	d	e	f	g	h
a	0	1	0	0	1	1	0	1
ь	0	0	1	0	0	0	1	0
c	0	0	0	1	0	0	1	0
d	0	0	0	0	0	1	0	0
e	0	0	1	0	0	1	0	0
f	0	0	0	0	0	0	1	0
g	0	0	0	0	0	0	0	1
h	0	0	0	0	0	1	1	0

b) (40 points) Write a program implementing Warshal's algorithm. Upload your code. Use your program to create a transitive closure G* of the graph above and show it in the space below.

Transitive closure defined by adjacency table

	a	ь	С	d	e	f	g	h
a								
b								
С								
d								
e								
f								
g								
h								

```
#include <stdio.h>
#include <stdlib.h>
#include imits.h>
#define min(a, b) ((a < b) ? a : b)
int G[8][8];
int b_num=0;
int v;
void init(){
 int i, j;
 for(i=0; i<v; i++){
  for(j=0; j<v; j++){
   G[i][j]=0;
void warshal_floid(int n){
 int i,j,k;
 for(k=0; k<n; k++){
  for(i=0; i< n; i++){
   for(j=0; j< n; j++)
   G[i][j]=min(G[i][j], G[i][k] + G[k][j]);
int main(){
 int i,j;
 char from,to;
 init();
```

```
printf("Input vaertex number.\n");
scanf("%d",&v);
printf("Input branch number.\n");
scanf("%d",&b_num);

for(i=0; i<b_num; i++){
    printf("Inupt From(char) and To(char).\n");
    scanf(" %c %c",&from,&to);
    printf("From:%d\n",(int)from);
    G[from-10][to-10]=1;
}

warshal_floid(v);

for(i=0;i<v;i++){
    for(j=0; j<v; j++){
        if(G[i][j]!=0){
            printf("From %d to %d\n",(char)i+'a',(char)j+'a');
        }
    }
    return 0;
}</pre>
```

Problem 2. (50 points) Consider the following weight adjacency matrix.

	a	ь	c	d	e	f	g	h
a	0	48	∞	8	20	∞	20	∞
b	∞	0	24	∞	9	∞	76	29
c	97	∞	0	∞	∞	∞	18	1
d	∞	52	34	0	29	∞	∞	∞
e	∞	∞	∞	∞	0	10	∞	∞
f	∞	10	85	43	∞	0	41	29
g	∞	∞	∞	76	38	∞	0	∞
h	28	42	∞	77	21	∞	11	0

Write a program implementing Floyd's algorithm. Upload your code. Given the matrix above, calculate all pairs shortest paths using your program and fill the table below:

All pairs shortest path table

	a	ь	С	d	e	f	g	h
a								
b								
c								

d				
e				
f				
g				
h				