Relatório - Experimento 06

Fausto Emrich Brenner - 17/0009777

I. INTRODUÇÃO

Neste experimento, trabalharemos com o efeito do ruído em sistemas analógicos. Analisaremos as relações de sinal/ruído (RSR) na entrada e na saída de demoduladores DSB e FM. Estudaremos também o comportamento do ruído branco gaussiano e suas propriedades.

II. ATIVIDADES

A. AR01

Figura 1: Configuração da AT para os primeiros procedimentos da AR01

Com a AT da Fig. 1, os blocos foram configurados de forma a disporem sua visualização conforme a Fig. 11.

[A1.a] Variou-se a amplitude do ruído gerado entre $0.2\,\mathrm{V}$ e $2.0\,\mathrm{V}$ em passos de $0.2\,\mathrm{V}$, totalizando 10 amostras. Para cada amplitude, o valor RMS foi registrado, e a potência do ruído calculada por

$$P = RMS^2 \tag{1}$$

A partir dos pontos obtidos, no Matlab, foi realizada uma regressão polinomial de 2ª ordem. A expressão para a regressão encontrada foi

$$y = 0 + 0 \cdot x + 1 \cdot x^2 \tag{2}$$

A regressão obteve $R^2=1.0000$, o que significa que se encaixou perfeitamente nos dados. A Fig. 2 apresenta os pontos medidos e a regressão. A partir dessa análise, é possível confirmar a validade da expressão

$$P = \sigma^2 \tag{3}$$

Onde σ é a amplitude do ruído na entrada.

Figura 2: Potência do ruído em função da amplitude σ

[A1.b] Segundo o roteiro, a potência de um ruído AWGN na saída de um filtro é

$$P_{out} = \sigma^2 \frac{2B}{f_s} \tag{4}$$

Onde σ é a amplitude do ruído na entrada, B é a banda passante do filtro e f_s é a frequência de amostragem. No caso do nosso experimento, como se trata de um filtro passa baixas, $B=f_{cut}$. Logo, podemos definir

$$f_{cut} = R \frac{f_s}{2}, \qquad R = \frac{2B}{f_s} \tag{5}$$

Será a partir dessa expressão que controlaremos a frequência de corte do filtro a partir de R. Utilizando uma taxa de amostragem de 200ksps e mantendo a amplitude do sinal gerado igual a $2.0\,\mathrm{V}$, variou-se o valor de R de 0.1 a 1.0, em passos de 0.1, totalizando 10 amostras. Para cada R, o valor RMS do ruído filtrado foi registrado, e sua potência calculada por (1). A partir desses dados, sua regressão linear foi calculada no Matlab. A expressão encontrada foi

$$y = 0.0057 + 4.0056 \cdot x \tag{6}$$

A regressão obteve $R^2 = 0.99987$, o que significa que ela conseguiu se encaixar quase perfeitamente nos dados. A Fig. 3 apresenta os pontos medidos e sua regressão. A expressão (4) com valores substituídos é

$$P_{out} = 4R \tag{7}$$

Ao comparar essa expressão com a regressão obtida, (6), pode-se confirmar a validade da equação (4). As pequenas diferenças entre as duas expressões podem ser explicadas pela incerteza das medições do valor RMS no GNU Radio.

[A1.c] Com $\sigma=2\,\mathrm{V}$ e R=0.25, obteve-se o painel da Fig. 12. Na figura, o valor de σ está destacado nos histogramas e nos gráficos dos osciloscópios. Pode-se verificar que o histograma de n(t) e $n_f(t)$ apresentam uma forma de sino, típica de distribuições gaussianas. No caso, o desvio padrão da distribuição do sinal gerado, n(t), é maior que aquele da distribuição do sinal filtrado, como pode ser verificado pela forma mais larga da primeira. Esse fato é refletido no osciloscópio por uma menor amplitude do sinal filtrado. Como os histogramas deixam evidente, a amplitude de ambos os sinais segue uma distribuição gaussiana, ou seja, são ambos gaussianos.

Figura 3: Potência do ruído filtrado em função de R

[A1.d] Na Fig. 12, voltando nossa atenção para as oscilografias, com a base de tempo ajustada para 1 ms, podemos ver que o sinal filtrado não possui componentes de altas frequências que estavam presentes no ruído original. A medida que aumentamos R e, consequentemente, aumentamos a banda passante do filtro, passamos a englobar frequências maiores. Dessa forma, componentes de altas frequências surgem no ruído filtrado. Ao diminuirmos R, o efeito contrário ocorre. A banda passante do filtro se encolhe e o ruído filtrado apresenta cada vez menos componentes de altas frequências, adotando uma forma com ondulações suaves.

[A1.e] Se nos voltarmos agora para os espectros da Fig. 12, podemos ver que o ruído n(t) apresenta um espectro plano. Ao ativarmos a opção Average - High, percebe-se que a média da DEP de n(t) se aproxima a um valor constante em todo o espectro. O mesmo ocorre para o sinal $n_f(t)$, porém, restrito à banda passante do filtro. Sabemos que a DEP [S(f)] e a autocorrelação $[\mathcal{R}(\tau)]$ formam um par de Fourier,

$$S(f) \iff \mathcal{R}(\tau) \tag{8}$$

Dessa forma, para uma DEP de valor constante,

$$S_n(f) = K (9)$$

, temos

$$\mathcal{R}_n(\tau) = K\delta(\tau) \tag{10}$$

Essa é a definição da autocorrelação de um ruído branco. Confirma-se assim que ambos os ruídos são ruídos brancos.

[E1] Com R = 0.25, a densidade espectral de potência média medida no espectro foi $-33 \, \mathrm{dB}$. Assim, temos

$$S_n(f) = \frac{N_o}{2} = -33 \,\mathrm{dB}$$
 (11)

$$N_o = 2 \cdot 10^{-33/10} \tag{12}$$

$$N_o = 1.0024 \cdot 10^{-3} \tag{13}$$

Figura 4: Geração do sinal mensagem, do ruído e das portadoras

A potência total do ruído n(t) pode ser definida por

$$P_n = \int_{-\infty}^{+\infty} S_n(f)df = N_o B \tag{14}$$

Para o ruído n(t), $B = f_s/2$, logo

$$P_n^f = 1.0024 \cdot 200/2 = 100.237 \,\mathrm{V}^2 \tag{15}$$

Para o ruído filtrado, como $B=f_{cut}=R\frac{f_s}{2}$, a partir de (14), temos

$$P_{n_f}^f = 1.0024 \cdot 0.25 \cdot 200/2 = 25.059 \,\mathrm{V}^2 \tag{16}$$

[A1.f] Os valores calculados no item anterior são muito diferentes dos medidos no domínio do tempo. Com as mesmas configurações, os valores no tempo encontrados foram

$$P_n^t = 4V^2 P_{n_f}^t = 1V^2 (17)$$

A razão entre as potências medidas no tempo e na frequência do ruído n(t) é

$$\frac{P_n^t}{P_n^f} = \frac{4}{100.237} = 0.0399\tag{18}$$

A razão entre as potências medidas no tempo e na frequência do ruído $n_f(t)$ é

$$\frac{P_{n_f}^t}{P_{n_f}^f} = \frac{1}{25.059} = 0.0399\tag{19}$$

[A1.g] Alterando a configuração do gerador de ruído de Gaussian para Uniform, obteve-se os histogramas da Fig. 13. Percebe-se que o histograma de n(t) não apresenta mais uma distribuição gaussiana. Agora, o ruído apresenta amplitudes entre +Amplitude e -Amplitude, distribuídas uniformemente no intervalo. Porém, o ruído filtrado ainda apresenta distribuição gaussiana. Isso se dá pela característica de filtros passa baixas de gerar respostas gaussianas. A redução de termos de altas frequências provoca uma redução gradual de amostras de maior valor absoluto, gerando o formato que pode ser visto no histograma do sinal filtrado. Mesmo apresentando magnitudes menores em seu espectro, o ruído uniforme gerado e seu correspondente filtrado ainda são ruídos brancos, com DEP (N_o) relativamente constante, que resulta em uma função de autocorrelação conforme (10). Neste caso temos

$$S_n(f) = -37.5 \,\mathrm{dB} = 1.778 \cdot 10^{-4}$$
 (20)

$$N_o = 3.556 \cdot 10^{-4} \tag{21}$$

Figura 5: Subsistemas de modulação e demodulação DSB e FM

Figura 6: Filtragem do ruído na banda de passagem do sinal modulado para medição da potência de ruído e RSR na entrada do receptor

Figura 7: Compensação de atraso no receptor e medida de RSR dos sinai recuperados e potência do ruído nesse ponto

Figura 8: Instrumentos de medição para a visualização dos efeitos do ruído nos subsistemas

A_m [V]	$P_{out,AM}$ [dBm]	$P_{out,FM}$ [dBm]
0.5	19.20	19.20
1.0	25.22	25.22

Tabela I: Medida das potências de saída dos demoduladores na ausência de ruído

B. AR02

1) P1: O sistema no GNU Radio Companion para a AR02 foi construído seguindo as direções do roteiro. Como o diagrama completo ficou grande demais, impossibilitando que fosse tirado apenas um print dele inteiro, nas Figuras de 4 a 8 estão apresentados os diagramas de cada uma das etapas. Caso seja necessária a verificação da montagem completa, o arquivo .grc foi enviado junto com este relatório. Primeiramente, o ajuste de ganho após o DC Block no demodulador AM [Fig. 5(a)] foi configurado experimentalmente, de forma a garantir que a amplitude do sinal recuperado seja igual à do sinal original. O valor encontrado para isso foi 2. Esse ajuste de escala também foi implementado na demodulação FM [Fig. 5(b)], e seu funcionamento foi verificado. Os sinais recuperados e a mensagem após o ajuste de ganho podem ser vistos na Figura 14. Então, o ajuste de fase entre os sinais demodulados e o sinal original também foi configurado experimentalmente, de forma a garantir que eles estejam o mais em fase possível. Os valores encontrados para isso foram $Delay_{FM} = 378$ e $Delay_{AM} = 393$. A Figura 15 mostra os resultado após os ajustes de ganho e fase. As potências desses sinais foram medidas de forma a completar a Tabela I com valores em dBm.

$$dBm = 10\log\left(\frac{P}{10^{-3}}\right) \tag{22}$$

2) P2: Os filtros passa banda da Figura 6 foram configurados de forma que suas frequências de corte sejam

$$f_{low} = f_c - B_{mod}/2$$
 e $f_{high} = f_c + B_{mod}/2$ (23)

Sendo B_{mod} a banda do sinal modulado. Lembrando que

$$B_{DSB} = 2B_m$$
 e $B_{FM} \approx 2(B_m + \Delta f)$ (24)

são as bandas dos sinais modulados em AM-DSB e FM (aproximação pela banda de Carson [1]), respectivamente.

Inicialmente, coma amplitude da mensagem $A_m=0$. Variou-se a amplitude de ruído de forma a completar a Tabela II. Então, a curva da Figura 9 foi construída mostrando a relação entre a potência de

$\sigma_{AM} = \sigma_{FM}$	Demod AM Demod FM $(B_{FM,0.5})$		Demod FM $(B_{FM,1.0})$	
	$P_{n,out}$ [dBm]	$P_{n,out}$ [dBm]	$P_{n,out}$ [dBm]	
0.01	-19.00 -17.00		-11.00	
0.05	-5.00	-15.40	-10.60	
0.08	-1.00	-13.60	-10.00	
0.10	1.00	-12.40	-9.40	
0.20	7.00	-7.80	-6.40	
0.30	10.60	-4.40	-4.00	
0.40	13.00	-2.00	-1.40	
0.50	15.00	0.00	0.40	
0.60	16.60	1.60	2.00	
0.70	18.00	3.00	3.40	
0.80	19.20	4.00	4.60	
0.90	20.00	5.40	5.80	
1.00	21.00	6.40	6.80	
1.20	22.40	8.60	9.60	

Tabela II: Curvas de desempenho na ausência de sinal modulante

Figura 9: $P_{n,in} \times P_{n,out}$

ruído incidente no demodulador e a potência de ruído em sua saída para as duas demodulações. Nesse procedimento, considerou-se apensar os valores para banda equivalente a

Agora, com a mensagem configurada com $A_m=0.5\,\mathrm{V_p}$, a Tabela III foi preenchida seguindo os direcionamentos do roteiro. A Figura 16 apresenta as forma de onda dos sinais demodulados, com as amplitudes dos ruídos $\sigma_{AM}=\sigma_{FM}=0.5\,\mathrm{V_p}$ para $A_m=0.5\,\mathrm{V_p}$ e $A_m=1.0\,\mathrm{V_p}$. Podemos ver que, com a mesma RSR_{in} , a demodulação FM produz em sua saída uma RSR menor que a AM. Também podemos ver que com o aumento na amplitude da mensagem e, consequentemente, o aumento da largura de banda de sinal modulado em FM, a RSR_{out} do demodulador FM aumentou.

A partir dos dados da Tabela III, as curvas de RSR_{in}^* **x** RSR_{out} das duas modulações foram construídas e podem ser vistas na Figura 10. Com base nos pontos obtidos, a regressão linear foi calculada para as duas modulações, as relações obtidas encontram-se no gráfico da Figura 10. As regressões obtiveram

$$R_{AM}^2 = 99.97\%$$
 e $R_{FM}^2 = 99.39\%$ (25)

σ_{AM} [V]	RSR_{in}^*	$RSR_{out,AM}$	$A_m = 0.5 \mathrm{V_p}$		$A_m = 1.0 \mathrm{V_p}$	
			$\sigma_{FM,0.5}$ [V]	$RSR_{out,FM}$	$\sigma_{FM,1.0}$ [V]	$RSR_{out,FM}$
0.1	27.40	18.40	0.08	32.80	0.06	35.60
0.2	21.40	12.20	0.16	28.60	0.13	33.60
0.3	17.80	8.60	0.24	25.40	0.19	32.00
0.4	15.40	6.20	0.32	23.00	0.26	30.00
0.5	13.20	4.20	0.41	21.00	0.32	28.40
0.6	11.80	2.60	0.49	19.40	0.39	27.00
0.7	10.40	1.40	0.57	18.00	0.45	25.80
0.8	9.20	0.00	0.65	17.00	0.52	24.60
0.9	8.20	-0.80	0.73	16.00	0.58	23.60
1.0	7.40	-1.80	0.81	15.00	0.65	22.60
1.2	5.80	-3.20	0.97	13.00	0.78	21.00

Tabela III: Verificação da RSR à entrada e saída dos demoduladores

Figura 10: RSR_{in}^* x RSR_{out}

Pelo gráfico, podemos ver que, para uma mesma relação de sinal-ruído na entrada da demodulação, a demodulação FM é capaz de produzir uma estimativa com menos RSR que a demodulação AM. Isso significa que a demodulação FM conseguiu eliminar parte do ruído de sua entrada. Com esse gráfico fica claro que a modulação FM é menos sensível a ruido, sendo esse um de seus grandes pontos fortes.

[E2.a] A partir das regressões lineares da Figura 10, temos que

$$RSR_{out,FM} = 8.3986 + 0.9244 \cdot RSR_{in}^* \tag{26}$$

$$20 = 8.3986 + 0.9244 \cdot RSR_{in}^* \tag{27}$$

$$RSR_{in}^* = 12.55 \,\mathrm{dB}$$
 (28)

, da mesma forma

$$RSR_{out,AM} = -9.0950 + 0.9990 \cdot RSR_{in}^*$$
(29)

$$20 = -9.0950 + 0.9990 \cdot RSR_{in}^* \tag{30}$$

$$RSR_{in}^* = 29.12 \, dB$$
 (31)

Assim, a diferença entre eles será, em dB,

$$12.55 \, \mathrm{dB} - 29.12 \, \mathrm{dB} = -16.57 \, \mathrm{dB} \tag{32}$$

[A2.a] A demodulação FM se mostrou mais robusta, pois, para a mesma relação de sinal/ruído em sua entrada, produziu uma saída com maior RSR que a demodulação AM. Isso também pode ser visualizado na Figura 16, onde fica evidente que o sinal recuperado pelo demodulador AM contém mais ruído.

[A2.b] O preço a pagar por isso foi uma maior complexidade do receptor e uma maior largura de banda ocupada pelo sinal modulado.

[E2.b] Para $A_m = 0.5 \, \text{V}_{\text{p}}$, temos

$$\Delta f = k_f m_p \implies \Delta f_{0.5} = 4 \,\text{kHz} \quad \text{e} \quad \Delta f_{1.0} = 8 \,\text{kHz}$$
 (33)

Como sabemos que

$$B_m = 10 \,\mathrm{kHz} \tag{34}$$

Temos que

$$\beta = \frac{\Delta f}{B_m} \tag{35}$$

$$\beta_{0.5} = \frac{4}{10} = 0.4 \tag{36}$$

$$\beta_{1.0} = \frac{8}{10} = 0.8 \tag{37}$$

[A2.c] Para uma mesma DEP de ruído na entrada, a modulação AM teve melhor RSR_{in}^* . Isso está explicito na Tabela III, onde, para garantir a mesma RSR na entrada, foi preciso diminuir σ para a demodulação FM.

[A2.d] Como mostra o gráfico da Figura 10, para o mesmo RSR_{in} , a demodulação FM apresentou melhor RSR_{out} .

[A2.e] O preço a pagar por um melhor desempenho da demodulação FM foi seu receptor de maior complexidade e sua maior largura de banda.

III. IMAGENS

As imagens de oscilografia e espectrais se encontram ao final do documento, em uma página reservada.

IV. CONCLUSÃO

É possível concluir que a demodulação FM apresentou vantagens em sua reação ao ruído quando comparada à demodulação DSB. O preço a pagar por isso foi uma maior complexidade no receptor e uma largura de banda maior. Essa é uma grande vantagem da modulação FM e uma das razões para disseminação.

REFERÊNCIAS

[1] B. P Lathi and Z. Ding, Sistemas de Comunicações Analógicos e Digitais Modernos, 4th ed. Rio de Janeiro: LTC, 2019.

Figura 11: Disposição da GUI para as medições de ruído gaussiano

Figura 12: Resultado para $\sigma=2V$ e R=0.25, com o valor de σ destacado nos histogramas e gráficos dos osciloscópios

Figura 13: Histogramas quando o ruído é configurado como Uniforme

Figura 14: Sinais recuperados e mensagem com ajuste de ganho configurado e sem ruído

Figura 15: Sinais recuperados e mensagem com ajustes de ganho e fase configurados e sem ruído

Figura 16: Formas de onda dos sinais demodulados para os dois valores de A_m , com $\sigma=0.5\,\mathrm{V}$