

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Réf: DE-EX-01

Indice: 4

Date: 02/12/2019

Année Universitaire : 2023/2024.	Date de l'Examen : 10/01/2024			
Nature: □ DC ☑ Examen □ DR	Durée: ☐ 1h ☐ 1h30min ☑ 2h ☐ 3h			
Diplôme : ☐ Mastère ☐ Ingénieur	Nombre de pages : 2			
Section: ☑ GCP ☐ GCV ☐ GEA ☑ GCR ☐ GM	Enseignant (e): Ferid BELDI			
Niveau d'étude : ☑ 1 ère ☐ 2 ème ☐ 3 ème année	Documents Autorisés: Les Tables Statistiques sont autorisées.			
	Calculatrice autorisée: 🗹 Oui 🔲 Non			
Matière: Probabilités & Statistiques	Remarque: Veuillez écrire de façon lisible. Les réponses illisibles ne seront ni corrigées ni évaluées.			

Exercice 1:

(05points)

Soit Y une variable aléatoire discrète dont la loi de probabilité est donnée par le tableau suivant :

Valeurs de Y	-2	-1	0	1	2
Probabilités	0,1	2a	0,2	0,1	a^2

- 1) Déterminer a puis calculer E(Y) et V(Y).
- 2) Calculer la fonction de répartition G de la variable aléatoire Y et tracer son graphe.
- 3) Calculer la loi et l'espérance mathématique de la variable aléatoire $Z = Y^2 1$.

Exercice 2:

(08 points)

Soit X une variable aléatoire admettant une densité de la forme

$$f(x) = \begin{cases} -ax, & \text{si } x \in [-1, 0], \\ 1 - ax, & \text{si } x \in [0, 1], \\ 0 & \text{sinon.} \end{cases}$$

où a est un paramètre de valeur inconnue, 0 < a < 1.

1. Montrer que f est bien une densité de probabilité. Calculer E(X) et V(X).

- 2. On considère un échantillon $(X_1, X_2, ..., X_n)$ de la variable aléatoire X.

 Déterminer un estimateur T du paramètre a par la méthode des moments, puis étudier ses propriétés (biais, convergence). Calculer sa variance en fonction de a.
- 3. On désigne par K le nombre des variables aléatoires X_i prenant une valeur comprise entre -1 et 0. Indiquer la loi de K, en justifiant votre réponse. Montrer que la variable aléatoire W = 2K/n est un estimateur sans biais de a. Calculer sa variance et montrer qu'il est convergent en moyenne quadratique vers a, lorsque la taille n de l'échantillon tend vers l'infini.
- 4. Comparer les estimateurs T et W. Préciser si le résultat de cette comparaison dépend de la valeur du paramètre a.

Exercice 3: (07 points)

On admet que la distribution d'un certain caractère quantitatif dans une population est normale, d'espérance mathématique m inconnue. On désire estimer ce paramètre au moyen d'un intervalle de confiance.

- 1. On suppose d'abord que σ est connu et égal à 4. Dans un échantillon de taille n=16, prélevé au hasard dans la population, on a observé que $\sum x_i = 204$. Construire un intervalle de confiance pour m au seuil de risque 10 %.
- 2. Dans cette question on suppose σ inconnu. Cependant, on suppose que haldans l'échantillon précédent, on a observé $\sum x_i^2 = 2841$. Déterminer un nouvel intervalle de confiance pour le paramètre m, au même seuil de risque, et le comparer à l'intervalle obtenu au question 1.
- 3. On suppose à nouveau que σ est connu et égal à 4. Quelle devrait être la taille minimale de l'échantillon à prélever pour que l'erreur absolue sur m soit inférieure à 1, à un niveau de confiance de 90%.

Bon Courage.

