CS/ECE 374 A (Spring 2022) Homework 4 Solutions

Problem 4.1: For each of the following languages, determine whether it is regular or not, and give a proof. To prove that a language is not regular, you should use the fooling set method. (To prove that a language is regular, you are allowed to use known facts about regular languages, e.g., closure properties, all finite languages are regular, ...)

- (a) $\{x(110)^n x^R : x \in \{0,1\}^*, n \ge 1\}$
- (b) $\{0^i1^j0^k: i+k \text{ is divisible by 3, and } k \text{ is divisible by } j, \text{ and } i,j,k\geq 1\}$
- (c) $\{yxx^Rz: x, y, z \in \{0, 1\}^*, |x| \ge 374\}$
- (d) $\{y0^n1^n0^nz: y, z \in \{0,1\}^*, n > 374\}$

Solution: In each of the parts below, let L be the language in question.

(a) We prove that L is **not regular** by the fooling set method.

Assignment Project Exam Help

Then $x = 0^i$ and $y = 0^j$ for some $i \neq j$.

Choose $z = 110 : 0^i$.

Then xz = https://tutores.com

On the other hand, $yz = 0^i \cdot 110 \cdot 0^j \notin L$, because $i \neq j$ (in more detail: yz has only one occurrence of a substring of the form $(110)^n$ with $n \ge 1$, and that substring has n = 1; the part before the substring is 0^i and the part after the substring is 0^j , but $0^i \neq (0^j)^R$ if $i \neq j$).

Thus, F is a fooling set.

Since F is infinite, L cannot be regular.

(b) We prove that L is **not regular** by the fooling set method.

Choose $F = \{01^{3n-1} : n \ge 1\}.$

Let x and y be two arbitrary distinct strings in F.

Then $x = 01^{3m-1}$ and $y = 01^{3n-1}$ for some $m, n \ge 1$ with $m \ne n$. Without loss of generality, assume m < n (the other case is symmetric).

Choose $z = 0^{3m-1}$.

Then $xz = 01^{3m-1}0^{3m-1} \in L$, since 1 + (3m-1) = 3m is divisible by 3 and 3m-1 is divisible by 3m-1.

On the other hand, $yz = 01^{3n-1}0^{3m-1} \notin L$, because 3m-1 is not divisible by 3n-1since m < n.

Thus, F is a fooling set.

Since F is infinite, L cannot be regular.

[Note: $F = \{0^n : n > 1\}$ won't work here.]

(c) We prove that L is **regular**.

By definition, L consists of all strings that contain xx^R as a substring for some string x of length at least 374, i.e., all strings that contain an even-length palindrome of length at least $2 \cdot 374 = 748$.

Observe that if a string w contains an even-length palindrome of length at least 748, i.e., a substring of the form $a_{\ell} \cdots a_1 \cdot a_1 \cdots a_{\ell}$ with $a_1, \dots, a_{\ell} \in \{0, 1\}$ and $\ell \geq 374$, then it must contain a palindrome of length exactly 748, namely, $a_{374} \cdots a_1 \cdot a_1 \cdots a_{374}$.

Let A be the set of all palindromes of length exactly 748. Since A is finite, A is regular. Since $L = (0+1)^*A(0+1)^*$, we conclude that L is also regular.

(d) We prove that L is **not regular** by the fooling set method.

Choose $F = \{0^i : i \ge 374\}.$

Let x and y be two arbitrary distinct strings in F.

Then $x = 0^i$ and $y = 0^j$ for some $i, j \ge 374$ with $i \ne j$. Without loss of generality, assume i > j (the other case is symmetric).

Choose $z = 1^i 0^i$.

Then $xz = 0^i 1^i 0^i \in L$, since xz trivially contains $0^i 1^i 0^i$ as a substring and i > 374.

be equal to 1^i , and so n=i; and the left block 0^n must be contained in 0^j , implying that $i = n \leq j$, which contradicts the i > j assumption.

Thus, F is frequency. //tutores.com Since F is infinite, L cannot be regular.

WeChat: cstutorcs

Problem 4.2: Give a context-free grammar (CFG) for each of the following languages. You must provide explanation for how your grammar works, by describing in English what is generated by each non-terminal. (Formal proofs of correctness are not required.)

- (a) (30 pts) $\{x(110)^n x^R : x \in \{0,1\}^*, n > 1\}$
- (b) (30 pts) $\{1^i 0^j 1^k : j = 2i + 3k, i, j, k > 0\}$
- (c) (40 pts) $\{1^i 0^j 1^k : i + k \text{ is divisible by 3 and } 0 \le j \le k\}$

Solution:

(a)

$$S \rightarrow 0S0 \mid 1S1 \mid A$$

$$A \rightarrow 110A \mid 110$$

Explanation:

- A generates $\{(110)^n : n \ge 1\}$.
- S generates $\{x(110)^n x^R : x \in \{0,1\}^*\}.$

(b)

$$\begin{array}{ccc} S & \rightarrow & AB \\ A & \rightarrow & 1A00 \mid \varepsilon \\ B & \rightarrow & 000B1 \mid \varepsilon \end{array}$$

Explanation:

- A generates all strings of the form 1^i0^{2i} $(i \ge 0)$.
- B generates all strings of the form $0^{3k}1^k$ $(k \ge 0)$.
- S generates all strings of the form $1^i 0^{2i} \cdot 0^{3k} 1^k = 1^i 0^j 1^k$ with j = 2i + 3k $(i, k \ge 0)$, as desired.

(c)

Assignment Project Exam Help

 $B_0 \rightarrow 000B_0111 \mid \varepsilon$

https://tutogres.com

Explanation: Observe that $L = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i} \cdot (0^{j}1^{j}) \cdot 1^{\ell} : i+j+\ell \equiv \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+j+\ell \equiv \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+j+\ell \equiv \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0 \mod 3, \ i \geq 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{j}1^{k} : i+k \equiv 0, \ k \geq j\} = \{1^{i}0^{$

- for each $p \in \{0, 1, 2\}$: A_p generates all strings of the form 1^i with $i \equiv p \mod 3$.
- for each $q \in \{0, 1, 2\}$: B_q generates all strings of the form $0^j 1^j$ with $j \equiv q \mod 3$.
- S generates $L = \{1^i \cdot (0^j 1^j) \cdot 1^\ell : i + j + \ell \equiv 0 \mod 3, i, \ell \geq 0\}$, since S goes to $A_p B_q A_r$ over all combinations of $p, q, r \in \{0, 1, 2\}$ with $p + q + r \equiv 0 \mod 3$.

[Note: There are other equivalent solutions. For example:

$$\begin{array}{lll} S & \to & AC \mid 1AC_2 \mid 11AC_1 \\ A & \to & 111A \mid \varepsilon \\ C_0 & \to & 000C_0111 \mid 00C_0111 \mid 0C_0111 \mid C_0111 \mid \varepsilon \\ C_1 & \to & 000C_1111 \mid 00C_1111 \mid 0C_1111 \mid C_1111 \mid 01 \mid 1 \\ C_2 & \to & 000C_2111 \mid 00C_2111 \mid 0C_2111 \mid C_2111 \mid 0011 \mid 011 \mid 11 \end{array}$$

Here, A generates all strings of the form 1^i with $i \equiv 0 \mod 3$, and C_p generates all strings of the form $0^j 1^k$ with $j \leq k$ and $k \equiv p \mod 3$.