ADITHYA BHASKAR

Princeton University, NJ, USA | Computer Science

1 +91 9869195425*

github.com/testzer0

@ adithyabcse@gmail.com @ ab4197@princeton.edu

2E Malayagiri, Anushaktinagar, Mumbai, India*

★ adithyabh.github.io

*Liable to change soon.

EDUCATION

_	Ph.D. in Computer Science, Princeton University, USA	_
	Advised by Prof. Danqi Chen (Area of focus : Natural Language Processing)	
2023	Bachelor of Technology in Computer Science and Engineering (Honors), IIT Bombay, India	9.67/10.00
2019	High School Central Board of Secondary Education India	97 2/100 0

2017 Senior Secondary School, Central Board of Secondary Education, India 98.0/100.0

SCHOLASTIC ACHIEVEMENTS

- 2020 Was awarded an AP grade for exemplary performance in the course Data Structures and Algorithms.
- Secured All India Rank 18 in JEE Advanced 2019 out of 240 thousand candidates. 2019
- 2019 Achieved All India Rank 114 in JEE Mains 2019 out of 1.1 million candidates.
- 2018 Secured a position in the top 39 ranks in the Indian National Physics Olympiad and was invited to the Orientation-cum-Selection-Camp in Physics held in May-June 2018.
- Secured a position in the top 49 ranks in the Indian National Chemistry Olympiad and was invited to the 2018 Orientation-cum-Selection-Camp in Chemistry held in May-June 2018.
- Among the 39 students to clear the Indian National Mathematical Olympiad, becoming one of the 2016 youngest to ever be invited to the Orientation-cum-Selection-Camp in Mathematics aged 14.

Publications

Benchmarking and Improving Text-to-SQL Generation under Ambiguity, [REDACTED] 2023

Conference name redacted due to double-blind review

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe and Sunita Sarawagi

2023 Prompted Opinion Summarization with GPT-3.5, ACL 2023 (Findings)

Adithya Bhaskar, Alexander R. Fabbri, and Greg Durrett

Performance Bounds for LASSO under Multiplicative Noise: Applications to Pooled RT-PCR Testing, arXiv 2023 preprint, arXiv:2305.17429

Richeek Das, Aaron Jerry Ninan, Adithya Bhaskar, and Ajit Rajwade

UT Austin Summer 2022

Research Intern, NATURAL LANGUAGE PROCESSING, USA

Guide: Prof. Greg Durrett

Very Large Language Models for Multi-Document Summarization

- > Developed metrics to measure factuality, faithfulness and specificity (whether it is correct, prefers major viewpoints, and is not too generic) for a summary of multi-document text such as hotel reviews.
- > Utilized the above along with an n-gram abstractiveness metric to benchmark GPT-3.5, and showed that simple hierarchical summarization of large text performs poorly on faithfulness and specificity.
- > Investigated various pre-clustering and pre-summarization methods and illustrated that presummarization with a pretrained keyword-based extractive model improves correctness, faithfulness and specificity, while only marginally affecting abstractiveness.

Uppsala University Summer 2021

Research Intern, FORMAL VERIFICATION,

Guide: Prof. Parosh Abdulla

Model Checking for Programs Running under the ARMv8 Memory Model

- > Developed a model and simulator for programs running under the ARMv8 memory model, and demonstrated the equivalence of the model to the ARM specification using 7500+ litmus tests.
- > Used Context Bounded Model Checking to perform State Reachability Analysis for programs under the ARMv8 memory model, achieving up to an order of magnitude of speedup over existing checkers.

Robust Models Spring 2023

Bachelor's Project, NATURAL LANGUAGE PROCESSING, Guide: Prof. Sunita Sarawagi

Automated data augmentation for robustness.

- > Demonstrated that training a Text-to-SQL model on partially masked (underspecified) inputs leads to diversity in the model outputs, including in columns/tables, string literals, integers, and aggregates.
- > Filtered the outputs by model probabilities relative to the output with the unmasked question.
- > Furnished questions for the generated queries via an SQL-to-Text model. Data augmentation with the pairs led to increases in accuracy on the SPIDER dataset and the robustness benchmark, Dr. SPIDER.
- > The increases exceeded those obtained by augmenting with Dr. SPIDER style perturbations.

Text-to-SQL Fall 2022

Bachelor's Project, NATURAL LANGUAGE PROCESSING, Guide: Prof. Sunita Sarawagi

The "did you mean?" functionality in Text-to-SQL conversion.

Objective: Presenting alternatives diverse in meaning but structurally similar to the user's question.

- > Illustrated the inadequacy of plain Beam Search to elicit diversity from Text-to-SQL models.
- > Trained an alignment model to align words of the prompt with the SQL in an online fashion, which were used to drive a split beam search on the Text-to-SQL model, extracting meaningful alternatives.
- > Trained a **faithfulness classifier** using **contrastive learning** to identify and mask spans of the text incompatible with the SQL alternatives, which were filled in by a **masked reconstruction model**.
- > Demonstrated the utility of the approach on the SPIDER and WikiSQL datasets.

Group Testing Fall 2022

R&D Project, Compressive Sensing, Guide: Prof. Ajit Rajwade

Applying compressive sensing to improve COVID-19 Group Testing.

- > Proved the theoretical applicability of Compressive Sensing with Weighted LASSO for any general noise model with an asymptotically well-defined Moment-Generating-Function.
- > Derived values of the optimal weights for the case of **Multiplicative Gaussian Noise** as in RT-PCR tests.
- > Demonstrated improvements in **sensitivity**, **specificity**, **MCC** and **RMSE** by **Monte Carlo Simulations**.

Text-to-Speech Summer 2022

Passion Project, NLP & ASR, Reference: Grad-TTS (ICML 2021)

Text-to-Speech Conversion Using Guassian Diffusion Models

- > Wrote a transformer with learned and windowed self-attention layers along with feedforward layers to encode input text, and a simple CNN to expand each frame to a predicted duration.
- > Used **Probabilistic Diffusion Models** to gradually enhance pure noise into target audio given input text, by solving a **Time-Reversed Stochaistic Differential Equation**.
- > Utilized a UNet-style network to predict terms of the differential equation using the encoded text.

Reverse Dictionary Spring 2022

Course Project, NATURAL LANGUAGE PROCESSING, Guide: Prof. Pushpak Bhattacharya

Identifying Words From Their Meanings

- > Built a BERT + Multi-BiLSTM model to map a given statement to the word closest in meaning to it.
- > Wrote a crawler to curate a high-quality dataset of 89930 word-meaning pairs from online sources.
- > Utilized the distance between GloVE word vectors as a loss function to partially reward synonyms.
- > Obtained a top-1 accuracy of 48.71% and a top-100 accuracy of 65.62%, exceeding the State of The Art by 5.4x and 1.13x, respectively.

Speech Denoising Spring 2022

Course Project, Automatic Speech Recognition, Guide: Prof. Preethi Jyothi

Speech Denoising Using GANs [Reference: MetricGAN (ICML 2019)]

- > Modified and utilizied the Microsoft Noisy Speech Dataset to generate over 30 hours of noisy speech and corresponding clean speech with noises from over 100 sources.
- > Utilized the Discriminator in the GAN framework to differentiably approximate a non-differentiable loss function such as Short-Term-Objective-Intelligibility, and the Generator to produce clean speech.
- > Identified **novel failure modes** and demonstrated that **data augmentation** is an effective remedy.
- > Demonstrated generalization to background music removal despite it not being in the training pool.

Sparse Recovery Spring 2021

Course Project, Advanced Image Processing, Guide: Prof. Ajit Rajwade

Presented performance bounds on \it{l}_{1} -minimization based compressive sensing that are simultaneously

- > easily verifiable,
- > upto an order of magnitude tighter than bounds based on the Restricted Isometry Property, and
- > applicable to wider range of matrices than both RIP and Mutual Coherence based bounds.

C Decompiler Fall 2020

Course Project, Software Systems, Guide: Prof. Amitabha Sanyal

Recovering Code From Compiled RTL

- > Built a decompiler to convert Register Transfer Language to C for portability across architectures.
- > Utilized lex and bison to parse source code in RTL and identify program elements like assignments, basic arithmetic operations, conditional/looping constructs, function calls and memory accesses.
- > Performed local & global data flow analysis and control flow analysis to contextualize parsed code.

Distributed DL Summer 2020

Institute Technical Summer Project, DEEP LEARNING & DISTRIBUTED SYSTEMS,

- > Developed a Hierarchically Distributed Deep Convolutional Neural Network in order to parallelize the workload across all computation nodes in a system.
- > Trained the system on Super High Resolution Datasets via spatial segmentation of samples, using state-of-the-art nets such as VGG16, ResNet, DenseNet, and LeNet as the underlying Neural Network.
- > Verified the approach by using the CINIC-10 and Retinal OCT datasets.

</> TECHNICAL SKILLS

C, C++, Python, Golang, BASH, SQL, Programming

MATLAB, Java, Haskell

Javascript, Angular, React, HTML, CSS Web Dev Software & Tools ŁTĘX, Git, FastAPI, Cypher, Spark

CERTIFICATIONS

Deep Learning Specialization (Coursera) > 5 Courses By Prof. Andrew Ng

2019 Codechef Advanced Certification

EXTRA CURRICULARS

2022 Rated 2040 on Codeforces.

2022 A chess and badminton hobbyist.

Selected for and enrolled in the National Sports Organisation program of Football at IIT Bombay.

Studied Sanskrit for 3 years in school and secured a grade of A1 in all three years. 2013-15