© I diritti d'autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Nello svolgere gli esercizi fornire passaggi e spiegazioni: non bastano i risultati finali.

Esercizio 1 Dobbiamo fare inferenza sui tempi di guasto di un sistema formato da 4 componenti connessi in serie, cosicché il sistema funziona se tutti i componenti funzionano. Sappiamo che i componenti funzionano in modo indipendente uno dall'altro, che sono tutti dello stesso tipo A e che i loro tempi di guasto Y_1, \ldots, Y_4 (espressi in ore) hanno densità esponenziale di parametro $\theta > 0$, cioè $f(y;\theta) = (1/\theta)e^{-y/\theta}\mathbf{1}_{(0,\infty)}(y)$ con θ incognito.

Abbiamo così acquistato 280 componenti di tipo A e abbiamo costruito 70 sistemi in serie, tenendo ciascuno attivo fino alla rottura. Per il campione casuale X_1, \ldots, X_{70} delle durate dei 70 sistemi abbiamo ottenuto $\sum_{j=1}^{70} X_j = 693.0$.

- 1. Verificate che la durata di un intero sistema ha densità esponenziale di parametro $\theta/4$, $\theta>0$.
- 2. Determinate uno stimatore $\hat{\theta}_{ML}$ del parametro θ e $\hat{\kappa}$ della probabilità κ che un sistema funzioni al più 12 ore, usando il metodo di massima verosimiglianza.
- 3. Verificate che la varianza di $\hat{\theta}_{ML}$ raggiunge il confine di Frechét-Cramer-Rao per la varianza di uno stimatore (non distorto) di θ ma che uno stimatore efficiente per κ non esiste (Giustificate rigorosamente la risposta).
- 4. Costruite un intervallo di confidenza bilatero di livello 90% per θ .
- 5. Verificate l'ipotesi nulla $H_0: \kappa = 0.75$ contro l'alternativa $H_1: \kappa \neq 0.75$, a una significatività $\alpha = 2.5\%$.

Soluzione

1. Il tempo di guasto X di un sistema ingegneristico ottenuto collegando in serie 4 componenti con tempi di guasto Y_1, \ldots, Y_4 i.i.d. $\sim Exp(\theta)$ è $X = \min\{Y_1, \ldots, Y_4\}$ e la sua f.d.r. F_X si ottiene nel seguente modo:

$$1 - F_X(x;\theta) = P(X > x;\theta) = P(\min\{Y_1, \dots, Y_4\} > x;\theta) = \prod_{j=1}^4 P(Y_j > x;\theta) = (1 - F_{Y_1}(x;\theta))^4 = [1 - (1 - e^{-x/\theta})]^4 = e^{-4x/\theta}$$

da cui deduciamo che la densità di $X \in f(x;\theta) = \frac{4}{\theta} e^{-4x/\theta} \mathbf{1}_{(0,\infty)}(x)$, cioè esponenziale di media $\theta/4$.

2-3. La funzione di verosimiglianza del campione casuale X_1,\ldots,X_{70} è data da

$$L_{\theta}(x_1, \dots, x_{70}) = \left(\frac{4}{\theta}\right)^n exp\left(-\frac{n4\overline{x}}{\theta}\right)$$

e quindi:

$$\frac{\partial \ln L_{\theta}(x_1, \dots, x_{70})}{\partial \theta} = \frac{n}{\theta^2} \left(4\overline{x} - \theta \right) \tag{1}$$

da cui deduciamo che a) $\hat{\theta}_{ML} = 4\overline{X}$ e, per la diseguaglianza di FCR, b) $4\overline{X}$ è stimatore efficiente di θ (effettivamente $E(4\overline{X}) = 4 \times (\theta/4) = \theta$ e abbiamo anche la non distorsione).

Per quanto riguarda la caratteristica κ definita come la probabilità che un sistema funzioni al più 12 ore, abbiamo che $\kappa = P(X \le 12; \theta) = 1 - \mathrm{e}^{-4 \times 12/\theta}$ e quindi $\widehat{\kappa}_{ML} = 1 - \mathrm{e}^{-4 \times 12/\widehat{\theta}_{ML}} = 1 - \mathrm{e}^{-12/\overline{x}}$.

Per la (1) non possiamo mai avere $\frac{\partial \ln L_{\theta}(x_1,\dots,x_{70})}{\partial \theta} = a(n,\theta)(\widehat{\kappa}_{ML} - \kappa)$ per nessuna scelta della funzione $a(n,\theta)$; inoltre se uno stimatore efficiente di κ esiste allora necessariamente è ML. Considerato tutto ciò, segue che non solo $\widehat{\kappa}_{ML}$ non è stimatore efficiente di κ , ma anche che nessun possibile stimatore di κ è efficiente. Infine, sul nostro campione abbiamo: $\overline{x} = 9.9, \widehat{\theta}_{ML} = 39.6$ e $\widehat{\kappa} = 1 - \mathrm{e}^{-1.\overline{21}} \simeq 0.7018$.

4. Segue dalle proprietà della famiglia di distribuzione gamma che $\hat{\theta}_{ML} \sim \Gamma(70, \theta/70)$ cosicché $8\sum_{j=1}^{70} X_j/\theta \sim$

 χ^2_{140} da cui abbiamo:

$$P\left(\chi_{140}^2(5\%) < \frac{8\sum_{j=1}^{70} X_j}{\theta} < \chi_{140}^2(95\%)\right) = 90\%$$

 \mathbf{e}

$$P\left(\frac{8\sum_{j=1}^{70} X_j}{\chi_{140}^2(95\%)} < \theta < \frac{8\sum_{j=1}^{70} X_j}{\chi_{140}^2(5\%)}\right) = 90\%$$

Poiché i gradi di libertà sono numerosi:

$$\chi^2_{140}(95\%) \simeq \sqrt{280} \times 1.645 + 140 \simeq 167.5261$$

 \mathbf{e}

$$\chi^2_{140}(5\%) \simeq \sqrt{280} \times (-1.645) + 140 \simeq 112.4739.$$

Infine l'IC bilatero cercato per θ è (33.0934, 49.2914).

5. Il problema di verifica dell'ipotesi $H_0: \kappa = 0.75$ contro l'alternativa $H_1: \kappa \neq 0.75$ è equivalente al problema di ipotesi su θ : $H_0: \theta = -48/\log(1-0.75)$ contro l'alternativa $H_1: \theta \neq -48/\log(1-0.75)$. Il valore $-48/\log(1-0.75)$ cade nell'IC precedentemente identificato $(-48/\log(1-0.75) \simeq 34.6247)$ e per la dualità fra IC e VI accettiamo H_0 non solo a livello 10% ma anche per ogni $\alpha \leq 10\%$ e quindi anche al livello $\alpha = 2.5\%$ richiesto.

Esercizio 2 ¹ È stato condotto uno studio su come le abitudini alimentari delle donne si modifichino tra l'inverno e l'estate. Si è tenuto sotto osservazione un campione aleatorio di 12 donne durante i mesi di gennaio e luglio 2009, misurando fra le altre cose quale percentuale delle calorie da loro assunte provenisse dai grassi. I risultati ottenuti sono i seguenti.

Assumiamo che il valori accoppiati formino un campione casuale da una distribuzione gaussiana bivariata.

- 1. Impostate un opportuno test per verificare, al livello del 5%, se la percentuale media di calorie ricavate dai grassi cambi nei mesi estivi rispetto a quelli invernali. L'errore di primo tipo è quello di ritenere che la percentuale media di calorie ricavate dai grassi sia strettamente minore nel mese di luglio rispetto a quella di gennaio, quando in realtà è vero il contrario. Abbiate cura di specificare a) le ipotesi nulla e alternativa, b) la regione critica e c) la decisione cui arrivate con la vostra procedura di verifica, calcolando anche il p-value del test.
- 2. Ricavate la stima di massima verosimiglianza della probabilità che, per una donna scelta a caso, la percentuale di calorie ricavate dai grassi nel mese di luglio sia minore della percentuale di calorie ricavate dai grassi nel mese di gennaio.

Soluzione Indichiamo con L la percentuale di calorie ricavate dai grassi nel mese di luglio e con G quella di gennaio, con μ_L , σ_L^2 media e varianza di L, con μ_G e μ_D rispettivamente le medie di L, G, con D la differenza D = L - G e con μ_D e σ_D^2 media e varianza di D. Infine, siano $(L_1, G_1), \ldots, (L_{12}, G_{12})$ il campione casuale di dati accoppiati estratti dalla popolazione (L, G) e D_1, \ldots, D_{12} quello delle differenze D.

1. Sotto ipotesi di normalità delle differenze: D_1, \ldots, D_{12} i.i.d. $\sim N(\mu_D, \sigma_D^2)$, impostiamo il seguente t-test di confronto fra medie per dati gaussiani accoppiati: $H_0: \mu_L \geq \mu_G$ versus $H_1: \mu_L < \mu_G$ o, equivalentemente, $H_0: \mu_D \geq 0$ versus $H_1: \mu_D < 0$. La statistica test è $\sqrt{12D}/\sqrt{S_D^2}$ che vale -2.338. Infatti, il campione delle differenze è:

$$(1.7, -1.0, -11.6, -5.2, 4.0, -12.6, -5.3, -3.7, 6.9, -6.9, -13.0, -5.0),$$

con media campionaria $\overline{D}=-4.308333$, varianza campionaria $S_D^2\simeq 40.77356$ e $\sqrt{S_D^2}\simeq 6.385418$. Inoltre il p-value $\overline{\alpha}$ è

$$\overline{\alpha} = P_{\{\mu_D = 0\}} \left(\sqrt{12} \frac{\overline{D}}{\sqrt{S_D^2}} \le -2.338 \right) = F_{11}(-2.338) = 1 - F_{11}(2.338) \in (1\%, 2.5\%)$$

(in questo punto F_{11} rappresenta la f.d.r. t di student con 11 gradi di libertà). Segue che a livello 5% rifiutiamo H_0 . Osservate che comunque non c'è una forte evidenza empirica contro H_0 ; per esempio, a livello 1% non la rifiutiamo.

2. Segue dall'ipotesi di dati gaussiani bivariati che la differenza D è gaussiana e la probabilità da stimare è:

$$P(L < G) = P(D < 0) = \Phi\left(\frac{0 - \mu_D}{\sqrt{\text{Var}(D)}}\right).$$

Poiché per un campione gaussiano lo stimatore ML della media è la media campionaria e quello della varianza (quando la media è incognita) è $(n-1)S^2/n \simeq 37.37576$, allora lo stimatore ML di P(D<0) è dato da $\Phi\left(\frac{4.308333}{\sqrt{37.37576}}\right) \simeq \Phi(0.7) \simeq 0.74$.

Esercizio 3^{-2} I valori che seguono rappresentano le lunghezze in millimetri di un campione di 10 granelli presi da una grossa pila di polvere metallica:

$$2.2 \quad 3.4 \quad 1.6 \quad 0.8 \quad 2.7 \quad 3.3 \quad 1.6 \quad 2.8 \quad 2.5 \quad 1.9$$

- 1. Stabilite con un opportuno test se una densità lognormale si adatti ai dati forniti.
- 2. Stimate la percentuale di granelli nella pila la cui lunghezza è compresa fra 1.5 e 2.5 mm.

(Vi ricordiamo che una variabile aleatoria X è detta lognormale di parametri μ, σ se il suo logaritmo naturale ln X è variabile aleatoria gaussiana di media μ e varianza σ^2 .)

Soluzione

1. Considerato che X è lognormale di parametri μ, σ se $Y = \ln X \sim \mathcal{N}(\mu, \sigma^2)$, usiamo un test di Lilliefors per la normalità dei dati logaritmici Y_1, \ldots, Y_{10} , con $Y_j = \ln X_j$, per $j = 1, \ldots, 10$. Infatti i dati sono continui e in numero esiguo e i parametri della distribuzione $\mathcal{N}(\mu, \sigma^2)$ non sono assegnati. I dati in scala logaritmica e ordinati dal più piccolo al più grande sono:

$$y_i: -0.2231 \quad 0.4700 \quad 0.4700 \quad 0.6419 \quad 0.7885 \quad 0.9163 \quad 0.9933 \quad 1.0296 \quad 1.1939 \quad 1.2238$$

La media campionaria delle y_i vale $\overline{y} \simeq 0.7504$ e la deviazione standard campionaria $\sqrt{s_Y^2} \simeq 0.4351$ da cui otteniamo per $z_i := (y_i - \overline{y})/\sqrt{s_Y^2}$ i seguenti valori (ordinati e distinti) e la corrispondente funzione di ripartizione empirica (indicata con \widehat{F}_{10}):

z_i	-2.24	-0.64	-0.25	0.09	0.38	0.56	0.64	1.02	1.09
$\widehat{F}_{10}(z_i)$	0.1	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\Phi(z_i)$	0.0125	0.2611	0.4013	0.5359	0.6480	0.7123	0.7389	0.8461	0.8621
$ \widehat{F}_{10}(z_i) - \Phi(z_i) $	0.0875	0.0389	0.0013	0.0359	0.0480	0.0123	0.0611	0.0539	0.1379
$\overline{ \widehat{F}_{10}(z_{i-1}) - \Phi(z_i) }$	0.0125	0.1611	0.1013	0.1359	0.1480	0.1123	0.0389	0.0461	0.0379

Deduciamo dalla precedente tabella che la statistica test $D_{10} = \sup_{z \in \mathbb{R}} |\widehat{F}_{10}(z) - \Phi(z)|$ ha valore approssimativamente pari a 0.1611. Dalle tavole di Lilliefors abbiamo che il quantile di ordine 1-0.2 della statistica di Lilliefors (sotto l'ipotesi H_0 che i dati in scala logaritmica siano gaussiani) è q(1-0.2) = 0.2171. Poiché 0.1611 < 0.2171 allora accettiamo l'ipotesi di dati Y_i normali per ogni $\alpha \le 20\%$: altrimenti detto, non c'è alcuna evidenza empirica contro la log-normalità dei dati X_i .

(Usando il pacchetto R, "con meno approssimazioni nei conti" otteniamo $D_{10}=0.1596$ con p-value= 0.6668

2. Avendo accettato l'ipotesi di log-normalità dei dati X_i la percentuale di granelli nella pila la cui lunghezza è compresa fra 1.5 e 2.5 mm è:

$$\begin{split} P(1.5 < X < 2.5) &= P(\ln 1.5 < Y < \ln 2.5) = \Phi\left(\frac{\ln 1.5 - \mu}{\sigma} < \frac{Y - \mu}{\sigma} < \frac{\ln 2.5 - \mu}{\sigma}\right) = \\ &= \Phi(\frac{\ln 2.5 - \mu}{\sigma}) - \Phi(\frac{\ln 1.5 - \mu}{\sigma}) \end{split}$$

e una sua stima è data da

$$\Phi(\frac{\ln 2.5 - \overline{y}}{s}) - \Phi(\frac{\ln 1.5 - \overline{y}}{s}) \simeq \Phi(0.38) - \Phi(-0.79) \simeq 0.6485 - 0.214 = 43.45\% \quad \blacksquare$$

 $^{^2\}mathrm{Dati}$ tratti da Ross S.M., Probabilità e statistica per l'ingegneria e le scienze, Apogeo 2008.