

Hypothesis Test Flow Chart

How many variables?

One-Sample t-test for mean

To test whether there is a difference between a population mean and some hypothesized value.

Hypothesis Test:

 H_0 : $\mu = \mu_0$ H_a : $\mu \neq \mu_0$ or ><

$$t = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}}$$

Chi-Square

Used to test for a relationship in population between two categorical variables

Hypothesis Test:

 H_0 : There is no relationship in population between Var 1 & Var 2 H_a : There is a relationship in population between Var 1 & Var 2

$$X^2 = \sum \frac{(observed - expected)^2}{expected}$$

p-value = Fcdf(lower, upper, df₁, df₂)

ANOVA F-test

To test whether at least one

Hypothesis Test:

 H_a : at lease one μ_i different from

 $H_0: \mu_1 = \mu_2 = \mu_3 \dots \mu_i$

others

 $F = \frac{MSB}{MSE}$

group mean differs from the others

Simple Linear Regression

To test for a linear relationship in population between two quantitative variables

Population Regression Model:

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

Overall F-test:

$$F = \frac{MSB}{MSE}$$

p-value = Fcdf(lower, upper, df₁, df₂)