Term 2 Week 3

- 1. Suppose r, s, and t are non-zero real numbers such that the polynomial $x^2 + rx + s$ has s and t as roots, and the polynomial $x^2 + tx + r$ has t as a root. Compute t.
- 2. Suppose a and b are positive integers. Isabella and Vidur both fill up an $a \times b$ table. Isabella fills it up with numbers 1, 2, 3...ab, putting the numbers 1, 2...b in the first row, b+1, b+2...2b in the second row, and so on. Vidur fills it up like a multiplication table, putting ij in the cell in row i and column j.

Examples are shown for a 3 x 4 table below:

1	2	3	4	1	2	3	4
5	6	7	8	2	4	6	8
9	10	11	12	3	6	9	12
Isab	ella's	Vidur's grid					

Isabella sums up the numbers in her grid, and Vidur sums up the numbers in his grid. The difference between the sums is 1200. Compute a + b.

3. Given
$$f(x) = x + \frac{1}{2x + \frac{1}{2x + \frac{1}{2x + \dots}}}$$

Determine the value of f(99).f'(99).

4. Inside an equilateral triangle of side length 6, three congruent equilateral triangles of side length x with sides parallel to the original equilateral triangle are arranged so that each has a vertex on a side of the larger triangle, and a vertex on another one of the smaller triangles, as shown below:

A smaller equilateral triangle formed between the three congruent equilateral triangles has side length 1. Find the length of x.

5. Compute the sum of all integers n such that $n^2 - 3000$ is a perfect square.

1