目录

1	回量	t vector 的儿们意义	2
	1.1	向量, 就是箭头线段的"终点"坐标	2
	1.2	向量的"数乘":系数 k 的作用, 是把向量伸缩 k 倍	2
	1.3	单位向量: 基 basis	2
	1.4	张成 span	3
2	向量	\dot{v} 的叉积 (外积): $ec{v} imes ec{w}$	4
	2.1	叉积 (外积) 的几何意义: (1) 在二维空间中, 是由这两个向量围成的"平行四边	
		形"的面积, 即是一个数值. (2) 在三维空间中, 是一个垂直于这个"平行四边	
		形"平面的"新向量"	4
	2.2	右手螺旋法则	6
		$2.2.1 \vec{a} \times \vec{b} = \vec{c} \dots $	6
		$2.2.2 \vec{b} \times \vec{a} = \vec{c} \dots \dots \dots \dots \dots \dots \dots$	7
3	向量	性的点积 (内积): $x \cdot y = x_1 y_1 + x_2 y_2 +$	8
	3.1	点积的几何意义: $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{w'} \leftarrow $ 其中, $\vec{w'}$ 是 \vec{w} 在 \vec{v} 上的投影长度	8
	3.2	点积的做法公式 $1: x \cdot y = x_1y_1 + x_2y_2 + x_3y_3 \dots \dots$	9
	3.3	点积的做法公式 2: $x \cdot y = x$ 的模 · y 的模 · $cos\theta$	9
4	线性	组合 linear combination	10
	4.1	线性组合: $\beta = k_1\alpha_1 + k_2\alpha_2 + + k_n\alpha_n$	10
	4.2	线性组合的性质	11
		4.2.1 性质: 0 向量, 可由任意向量组来表示. 即: 0 向量 = $0\alpha_1 + 0\alpha_2 + + 0\alpha_n$	11
		4.2.2 性质: 向量组 A 中, 任取出其中的一个向量 $_i$ 出来, 它可以由这个向量	
		组 A 来表示. 如: $\alpha_3 = 0\alpha_1 + 0\alpha_2 + 1\alpha_3 \dots + 0\alpha_n$	11
		4.2.3 任意一个向量组, 都可由这些个向量 (即 "n 维单位向量") 来表示: ε_1 =	
		$(1,0,,0), \ \varepsilon_2 = (0,1,,0), \varepsilon_n = (0,0,,1) \ \ \$	11
5	线性	相关 and 线性无关	11
第	一部	分 向量组, 及其线性组合	12
第	二部	分 向量组的线性相关性	12
第	三部	分 向量组的秩	12
第	四部	分 线性方程组的解的结构	12
	_		
第	五部	分 向量空间	12

向量组的线性相关性

1 向量 vector 的几何意义

1.1 向量, 就是箭头线段的"终点"坐标

通常, 当你考虑"一个"向量时, 就把它看成是"箭头". 当你考虑"多个"向量时, 就把它看成是"箭头终点"的那个点 (point).

注意: 向量的值, 表示的是坐标轴的位置, 而不是该向量线段的长度 (即不是'模"的概念).

1.2 向量的"数乘": 系数 k 的作用, 是把向量伸缩 k 倍

text : k=0, 或要么 $\alpha=0$ 向量

1.3 单位向量: 基 basis

The **basis** of a vector space /is a set of linearly independent vectors /that span the full space.

$$\left. \begin{array}{c} \hat{i} = 1 \\ \hat{j} = 1 \end{array} \right\} \leftarrow$$
 称为"单位向量"或"基"

事实上,每当我们描述一个向量时,它都依赖于我们正在使用的"基".

$$\vec{v} = \begin{vmatrix} 3 \\ -2 \end{vmatrix} = 3\hat{i} + (-2)\hat{j}$$

向量的终点坐标, 其实就是系数倍的"基向量"的线性组合.

1.4 张成 span

the span of \vec{v} and \vec{w} /is the set of all their linear combinations.

the set of all possible vectors /than you can reach /is called the span of those two vectors. ← 相当于"势力范围", 就是张成.

两个斜率不同的向量 (a,b), 自由伸缩, 它们的和 (即 a+b=c), 即新向量 c 的终点, 能遍及二维平面上的任何点处.

但如果两个向量都是"零向量"的话, 它们的系数倍的和, 也永远被束缚在原点 (0,0) 了. $k_1\vec{0}+k_2\vec{0}=0$

三维空间中,两个斜率同的向量,能"张成"出"过原点"的一个平面.

三维空间中, 三个斜率不同的向量, 它们的和, 能张成出三维空间中所有的地方.

2 向量的叉积 (外积): $\vec{v} \times \vec{w}$

向量的叉积 (外积) exterior product 或 cross product

2.1 叉积 (外积) 的几何意义: (1) 在二维空间中,是由这两个向量围成的"平行四边形"的面积,即是一个数值. (2) 在三维空间中,是一个垂直于这个"平行四边形"平面的"新向量".

【在二维空间中】:

几何意义上, 叉积, $\vec{v} \times \vec{w}$, 就是由这两个向量围成的"平行四边形"的面积.

注意: 顺序会对 "叉积" 有影响: 如果 $\vec{v} \times \vec{w}$ 是正数, 则 $\vec{w} \times \vec{v}$ 就是负数. 即: 交换叉乘时的 顺序, 值要变号.

之前说过, 行列式的值, 就是表示的是: 将基 $i \times j$ 的面积, 缩放多少倍.

面积的概念, 也就证明了: $3(\vec{v} \times \vec{w}) = 3\vec{v} \times \vec{w}$

把平行四边形其中的任一一条边, 延长 3 倍, 变成 $3\vec{v}$ 或 $3\vec{w}$, 面积也就是 = $3(\vec{v} \times \vec{w})$

【在三维空间中】:

其实,真正的"叉积",是通过两个三维向量,来生成一个新的三维向量. **注意: 在三维空间中, 叉积的结果不是一个数**,而是一个向量!

例

如下面的图中所示, A,B 两个箭头的向量的"叉积", 就是第三个向量 C. 这个 C 向量, 始终与两个原点箭头 (即 A,B) 正好为 90 度. C 向量箭头的长度, 就表示 A,B 向量的 叉积, 它总是完全等于 A,B 所构成的平行四边形的面积.

例

又如: 假设 $\vec{v} \times \vec{w} = 2.5$, 在三维空间中, 这两个向量构成一个平面 (平行四边形). 它们的 "叉积"构成一个新向量 $\vec{p} = 2.5$, 它与 "平行四边形"所在的面 "垂直".

即: 三维叉积, 得到一个三维矢量.

 $\vec{v} \times \vec{w}$ 得到新的向量 \vec{p} ,新向量 \vec{p} 的长度,等于向 \vec{v} 与向量 \vec{w} 组成的平行四边形的面积,并且向量 \vec{p} ,与向量 \vec{v} 和向量 \vec{w} 所在平面垂直.

所以"三维叉积"很容易拿来算平面的"法向量".

但垂直于一个平面的向量,可以有正反两个方向, \vec{p} 到底是朝哪个方向呢?这就要用到"右手螺旋法则".

2.2 右手螺旋法则

注意顺序: $\vec{a} \times \vec{b} = \vec{c}$, 和 $\vec{b} \times \vec{a} = \vec{c}$, $\leftarrow \vec{c}$ 的方向朝向是不同的.

2.2.1 $\vec{a} \times \vec{b} = \vec{c}$

1. 用右手, 伸展手指, 朝向 ā

2. 然后, 握拳, 手指收回, 朝向 \vec{b} 的方向.

3. 则, 大拇指朝向的方向, 就是 $\vec{a} \times \vec{b} = \vec{c}$ 中, \vec{c} 的朝向.

(a) 右手定则

图 1.1.8 右手定则和右手螺旋法则

2.2.2 $\vec{b} \times \vec{a} = \vec{c}$

1. 食指朝 \vec{b} 的方向.

2. 握拳, 食指等收回. 此时大拇指的方向, 就是 $\vec{b} \times \vec{a} = \vec{c}$ 中 \vec{c} 的朝向.

左手坐标系

右手坐标系

所以, 在 3D 图像学中, 叉乘的概念非常有用, 可以通过两个向量的 "叉乘", 生成第三个垂直于 a, b 的 "法向量", 从而构建 $X \times Y \times Z$ 坐标系.

- **3** 向量的点积 (内积): $x \cdot y = x_1y_1 + x_2y_2 + ...$
- 3.1 点积的几何意义: $\vec{v}\cdot\vec{w}=\vec{v}\cdot\vec{w'}$ \leftarrow 其中, $\vec{w'}$ 是 \vec{w} 在 \vec{v} 上的投影长度.
- \rightarrow 如果 $\vec{w'}$ 是 \vec{v} 在 \vec{v} 上的投影长度.

则:
$$\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{w'}$$

 \rightarrow 如果 \vec{w} 的投影, 是在 \vec{v} 的反方向延长线上, 则此时:

 $\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{w'} = \mathbb{E} \Omega \hat{d}$

 \rightarrow 如果这两个向量, 本身就互相垂直, 则一个向量在另一个向量上的投影长度, 就为 0. 这时它们的"点积"就等于 0.

所以,注意: "点积"(inner product) 运算的结果,是一个"数"(投影的长度,就是一个数呀). 这和向量的其他操作是有区别的. 比如:

- → 两个向量做"加法",结果依然是个"向量".
- → 向量的"数乘", 结果也依然是个"向量".

若两个向量 \vec{x} , \vec{y} 间的夹角 $< 90^\circ$	$\vec{x} \cdot \vec{y} > 0$
若 \vec{x} , \vec{y} 间的夹角 $> 90^{\circ}$	$\vec{x} \cdot \vec{y} < 0$, 即是个负值.
若 \vec{x} , \vec{y} 间的夹角 = 90°	$\vec{x} \cdot \vec{y} = 0$

3.2 点积的做法公式 1: $x \cdot y = x_1y_1 + x_2y_2 + x_3y_3$

两个向量的"点积" (inner product 或 dot product 或 scalar product) : $\vec{x} \cdot \vec{y}$, 也有写作 $\langle x,y \rangle$ 的形式.

点积的做法公式就是:

$$x = \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix}, y = \begin{vmatrix} y_1 \\ y_2 \\ y_3 \end{vmatrix},$$
则:
$$x \cdot y = x_1 y_1 + x_2 y_2 + x_3 y_3$$

即: $x \cdot y = x^T \cdot y \leftarrow$ 即把 \vec{x} 横过来, 变成一行, 再和 \vec{y} 的一列相乘. 规则和矩阵的乘法完全一样.

其实: $x \cdot y = x^T \cdot y = y^T \cdot x$

3.3 点积的做法公式 2: $x \cdot y = \mathbf{x}$ 的模 $\cdot \mathbf{y}$ 的模 $\cdot \cos\theta$

两个向量的点积 = 每个向量"模长"的乘积, 再乘以它们的夹角的 cos 值.

根据" 余弦定理", 有: $a^2 = b^2 + c^2 - 2(bc \cdot \cos A)$ 或: $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

那么对于由两个向量组成的三角形, 如下图, 就有:

证明过程:

余弦定理: $|\mathbf{x} - \mathbf{y}|^2 = \mathbf{x}^2 + \mathbf{y}^2 - 2|\mathbf{x}||\mathbf{y}|\cos\theta$

经过变换...,就有: $x \cdot y = |x| |y| \cos \theta$

若向量x和y 都不是零向量的话,则有:

$$\theta = \arccos \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}$$
 ←这就是 $\vec{\mathbf{x}}$ 和 $\vec{\mathbf{y}}$ 的夹角公式.

根据这个公式,就可以计算向量 a 和向量 b 之间的夹角。从而就可以判断这两个向量是否是同一方向,是否正交 (也就是垂直),等方向关系.具体对应关系为:

4 线性组合 linear combination

4.1 线性组合: $\beta = k_1\alpha_1 + k_2\alpha_2 + ... + k_n\alpha_n$

【线性组合】:

有 β , α_1 , α_2 , α_n , 它们都是 n 维向量. 若存在 k_1 , k_2 , ..., k_n 这些系数 (即权重), 能使得 $\beta=k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n$, 则就称 β 是向量组 α_1 , α_2 , α_n 的一个 "线性组合", 或称 β 可由向量组 α_1 , α_2 , α_n 来 "线性表示".

那么这组系数 k, 可不可以全取 0? 可以. 这样的话, $\beta = 0$ 了.

例

有
$$\beta = \begin{vmatrix} -3 \\ 2 \\ -4 \end{vmatrix}$$
,问 β 能否用 $\alpha_1 = \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$, $\alpha_2 = \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix}$, $\alpha_3 = \begin{vmatrix} -1 \\ 1 \\ -2 \end{vmatrix}$ 来线性表示?

解: 设 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3$

即 $\begin{vmatrix} -3 \\ 2 \\ -4 \end{vmatrix} = k_1 \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} + k_2 \begin{vmatrix} 2 \\ 1 \\ 0 \end{vmatrix} + k_3 \begin{vmatrix} -1 \\ 1 \\ -2 \end{vmatrix}$
 $\begin{cases} k_1 + 2k_2 - k_3 = -3 \\ k_2 + k_3 = 2 \\ -2k_3 = -4 \end{cases}$
 $\begin{cases} k_1 = 2 \\ k_2 = -1 \\ k_3 = 3 \end{cases}$

所以 $\beta = 2\alpha_1 + -\alpha_2 + 3\alpha_3$

4.2 线性组合的性质

- **4.2.1** 性质: 0 向量, 可由任意向量组来表示. 即: 0向量 = $0\alpha_1 + 0\alpha_2 + ... + 0\alpha_n$
- 4.2.2 性质: 向量组 A 中,任取出其中的一个向量 $_i$ 出来,它可以由这个向量组 A 来表示. 如: $\alpha_3=0\alpha_1+0\alpha_2+1\alpha_3...+0\alpha_n$
- **4.2.3** 任意一个向量组,都可由这些个向量 (即 "n 维单位向量") 来表示: $\varepsilon_1 = (1,0,...,0)$, $\varepsilon_2 = (0,1,...,0)$, ... , $\varepsilon_n = (0,0,...,1)$

例如:
$$\begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = 1 \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + 2 \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix} + 3 \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$$

5 线性相关 and 线性无关

【线性相关】:

对于 n 个 m 维的向量 $\vec{v_1}$, $\vec{v_2}$, ... $\vec{v_n}$, 若存在一组 k (系数, 倍数) 不全为 0, 使得 $k_1\vec{v_1} + k_2\vec{v_2} + ... + k_n\vec{v_n} = 0$, 则称 $\vec{v_1}$, $\vec{v_2}$, ... $\vec{v_n}$ 是 "线性相关" 的.

例

例如:下面这三个向量,是否线性相关?

$$\left|\begin{array}{c|c}1\\0\end{array}\right|, \left|\begin{array}{c}0\\1\end{array}\right|, \left|\begin{array}{c}2\\3\end{array}\right| \tag{1}$$

那么就看下面这个式子, 是否能存在非零的系数 (只要有一个 k 是不为零的, 就满足了我们的条件)

$$k_1 \begin{vmatrix} 1 \\ 0 \end{vmatrix} + k_2 \begin{vmatrix} 0 \\ 1 \end{vmatrix} + k_3 \begin{vmatrix} 2 \\ 3 \end{vmatrix} = 0 \tag{2}$$

那么显然, 当 k_1 取 2, k_2 取 3, k_3 取 1 时, 该式子能成立. 即, 的确存在一组非零的 k. 这就说明, 这三个向量, 是"线性相关"的.

若只能是 k 全为 0 时, 该等式才成立, 那么这些向量 $\vec{v_1}, \vec{v_2}, ... \vec{v_n}$ 就是 "线性无关" 的 (linearly independent).

"线性无关"就表示,这组向量中的任何一个,都无法表示成其他向量的"线性组合".即,它们中每一个向量,都是"独当一面"的,无法被其他向量所替代.

第一部分 向量组,及其线性组合 第二部分 向量组的线性相关性 第三部分 向量组的秩 第四部分 线性方程组的解的结构 第五部分 向量空间