Московский государственный университет им. Ломоносова Факультет Вычислительной математики и кибернетики Кафедра Математических Методов Прогнозирования

Соболева Дарья Михайловна

Применение тематической модели классификации в информационном анализе электрокардиосигналов

Научный руководитель:

д. ф.-м. н. Воронцов Константин Вячеславович

Содержание

1	Экс	сперимент №1	3
	1.1	Описание эксперимента	3
	1.2	Цель	4
	1.3	Проведение эксперимента	5
		1.3.1 Поиск оптимального числа тем (T)	5

1 Эксперимент №1

1.1 Описание эксперимента

Введем обозначения:

 W^c – словарь терминов «метки классов».

 $C = |W^c|$ – число различных классов документов.

 W^{gram3} - словарь терминов «триграммы».

 $W=W^c\cup W^{gram3}$ - общий словарь терминов.

D – коллекция текстовых документов (кардиограмм).

Тематическая модель классификации:

$$p(c|d) = \sum_{t \in T} p(c|t)p(t|d) = \sum_{t \in T} \varphi_{ct}\theta_{td}, \quad c \in W^c.$$

Используемые метрики качества (на LOOCV):

1. Мера AUC - площадь под рок-кривой в координатах чувствительностьспецифичность

$$AUC = \frac{1}{C} \sum_{c \in C} \frac{1}{|D_c||D'_c|} \sum_{d \in D_c} \sum_{d' \in D'_c} [p(c|d) > p(c|d')]$$

2. Mepa LogLoss. Оценка уверенности классификатора

$$-\ln p(y_{true}|y_{pred}) = -(y_{true} \ln y_{pred} + (1 - y_{true}) \ln(1 - y_{pred}))$$

3. Перплексия по каждой отдельной модальности

$$L(\varphi, \theta) = \sum_{d \in D} \sum_{w \in W^{c,gram3}} n_{dw} \ln \sum_{t \in T} \varphi_{wt} \theta_{td}$$
$$P = exp(-\frac{1}{n}L)$$

n - длина коллекции в словах.

4. Разреженность матрицы φ по каждой отдельной модальности $\varphi = p(w|t), \quad w \in W^c, W^{gram3}$

5. Разреженность матрицы p(t|c)

$$p(t|c) = \frac{p(c|t)p(t)}{p(c)}$$

$$p(t) = \sum_{d \in D} p(t|d)p(d)$$
 $p(d) = \frac{1}{n_d}$ $p(c) = \frac{1}{n_c}$

Эксперименты проводятся на эталонной болезни «Хронический холецистит» (XXЭ).

$$X$$
 — кардиограммы ($|X|=372$)

$$X_m$$
 — кардиограммы больных $(|X_m|=224)$

Во множество исследуемых параметров классификатора входят:

- Число тем |T|
- ullet Вес модальности «метки классов» au

Рассматриваемые диапазоны изменения параметров:

$$|T| \in range(C, 6C, 1)$$

 $\tau \in range(1, 1e5, 10).$

1.2 Цель

Построение конкурентноспособной тематической модели классификации, подбор её параметров и стратегии регуляризации для достижения максимально возможной разреженности распределений p(w|t), p(c|t), p(t|d).

1.3 Проведение эксперимента

1.3.1 Поиск оптимального числа тем (|T|)

1. |T| = 2

Рис. 1: AUC

Рис. 2: Перплексия, триграммы

Рис. 3: Перплексия, метки классов

Рис. 4: Разреженность p(w|t)

Рис. 5: p(t|c)