Draft Revised Claims

- 1. (Currently Amended) A process for the production of paper which comprises;
- (i) providing a suspension containing cellulosic fibers, and optional fillers,
- (ii) adding to said suspension a drainage and retention aid comprising at least 0.001% by weight of a cationic organic polymer based on dry stock substance, the cationic organic polymer having an aromatic group represented by the general formula (I):

wherein R₁ is H or CH₃, R₂ and R₃ are each an alkyl group having from 1 to 3 carbon atoms. A₁ is O or NH, B₁ is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group. O is benzyl, and X is an anionic counterion; and

- (iii) forming and dewatering the obtained suspension on a wire, wherein the suspension that is dewatered on the wire has a conductivity of at least 3.5 between 2.4 and 10 mS/cm.
- 2. (Currently Amended) The process of claim 1, wherein the suspension that is dewatered on the wire has a conductivity of at least 5.0 mS/cm.
- 3. (Original) The process of claim 1, wherein the cationic organic polymer is a vinyl addition polymer comprising in polymerized form one or more monomers comprising at least one monomer having an aromatic group.
- 4. (Original) The process of claim 1, wherein the cationic organic polymer is an acrylamide-based polymer.
 - 5. Cancelled.

1

6. (Original) The process of claim 1, wherein the cationic organic polymer has a weight average molecular weight of at least 1,000,000.

Fax:914-693-4236

- 7. (Original) The process of claim 1, wherein the cationic organic polymer is prepared from a monomer mixture comprising from 5 to 20 mole% of cationic monomer having an aromatic group and from 95 to 80 mole% of other copolymerizable monomers.
- 8. (Original) The process of claim 1, wherein the drainage and retention aid further comprises anionic inorganic particles.
- 9. (Original) The process of claim 8, wherein the anionic inorganic particles are silica-based particles or bentonite.
- 10. (Original) The process of claim 8, wherein the anionic inorganic particles are aluminium-modified silica-based particles.
- 11. (Original) The process of claim 1, wherein the drainage and retention aid further comprises a low molecular weight cationic organic polymer.
- 12. (Original) The process of claim 8, wherein the drainage and retention aid further comprises a low molecular weight cationic organic polymer.
- 13. (Original) The process of claim 1, wherein the drainage and retention aid further comprises an aluminium compound.

14. Cancelled.

15. (Original) The process of claim 1, wherein the suspension comprises recycled fibers.

16 -20. Cancelled.

- 21. (Previously Presented) The process of claim 1, wherein the suspension that is dewatered on the wire has a content of di- and multivalent cations of at least 300 ppm.
- 22. (Currently Amended) A process for the production of paper which comprises:
- (i) providing a suspension containing cellulosic fibres, and optional fillers,
- (ii) adding to said suspension a drainage and retention aids comprising a cationic organic polymer having an aromatic group represented by the general formula (I):

wherein R₁ is H or CH₃, R₂ and R₃ are each an alkyl group having from 1 to 3 carbon atoms, A₁ is O or NH, B₁ is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group, Q is benzyl, and X is an anionic counterion and anionic microparticulate material;

- (iii) forming and dewatering the obtained suspension on a wire, wherein the suspension that is dewatered on the wire has a conductivity of at least 2.0 between 2.4 and 10 mS/cm and obtaining a wet web of paper and white water, recirculating white water and introducing fresh water to form a suspension containing cellulosic fibres, and optional fillers, to be dewatered, wherein the amount of fresh water introduced is less than 20 tons per ton of dry paper produced.
- 23. (Previously Presented) The process of claim 22, wherein less than 10 tons of fresh water is introduced per ton of dry paper produced.

- 24. (**Previously Presented**). The process of claim 22, wherein the anionic microparticulate material is anionic organic particles.
- 25. (Previously Presented) The process of claim 22, wherein the anionic microparticulate material is anionic inorganic particles.
- 26. (Previously Presented) The process of claim 25, wherein the anionic inorganic particles are silica-based particles.
- 27. (Currently Amended) A process for the production of paper which comprises;
- (i) providing a suspension containing cellulosic fibres, and optional fillers,
- (ii) adding to said suspension drainage and retention aids comprising a cationic organic polymer having an aromatic group represented by the general formula (I):

wherein R₁ is H or CH₃, R₂ and R₃ are each an alkyl group having from 1 to 3 carbon atoms, A₁ is O or NH, B₁ is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group, Q is benzyl, and X is an anionic counterion and anionic organic particles; and

(iii) forming and dewatering the obtained suspension on a wire, wherein the suspension that is dewatered on the wire has a conductivity of at least 2.0 between 5.5 and 10 mS/cm.

28. Cancelled.

ricinamOlamOSG75\ANOSG75P1US1.draftdalmaforExaminor.05.28.2005.dog

29. (Currently Amended) The process of claim 27, 1 wherein the suspension that is dewatered on the wire has a conductivity of at least 7.5 mS/cm

- 30. (Currently Amended) The process of claim 27, 8 wherein the anionic organic particles are cross-linked anionic vinyl addition polymers.
- 31. (Currently Amended) The process of claim 27, 11 wherein the cationic organic polymer is an acrylamide-based polymer.

32-48. Cancelled.