Sistemas Operacionais I

Bem-vindos à disciplina de Sistemas Operacionais I! Durante este semestre, mergulharemos no fascinante mundo dos sistemas que dão vida aos nossos computadores, desde os princípios fundamentais até estudos de casos práticos.

Prepare-se para uma jornada que transformará completamente sua visão sobre como funciona a tecnologia que utilizamos diariamente.

Agenda do Curso

Durante o semestre, cobriremos os seguintes tópicos fundamentais:

Carga horária total: 80 aulas

O que é um Sistema Operacional?

Um Sistema Operacional (SO) é o software fundamental que gerencia recursos de hardware e fornece serviços para programas de aplicativos. É a camada intermediária entre o hardware e os aplicativos.

O SO é responsável por:

- Gerenciar recursos como CPU, memória e dispositivos
- Fornecer uma interface entre usuários e o computador
- Permitir que múltiplos programas funcionem simultaneamente
- Garantir a segurança e integridade do sistema

Por que estudar Sistemas Operacionais?

Base para qualquer desenvolvedor

Compreender como o SO funciona permite desenvolver software mais eficiente e otimizado.

Mercado de trabalho

Profissionais com conhecimento sólido em SO são altamente valorizados no mercado.

Fundamento para outras disciplinas

Redes, segurança, computação distribuída e desenvolvimento web dependem de conceitos de SO.

Resolução de problemas

Entender o funcionamento do SO ajuda a diagnosticar e resolver problemas de desempenho.

Este conhecimento será um diferencial na sua carreira como desenvolvedor de sistemas!

História dos Sistemas Operacionais

A evolução dos sistemas operacionais acompanha o desenvolvimento do hardware e as necessidades crescentes dos usuários.

Tipos de Sistemas Operacionais

Por dispositivo

- Desktop (Windows, macOS, Linux)
- Móveis (Android, iOS)
- Embarcados (RTOS, FreeRTOS)
- Servidores (Windows Server, Linux)
- Mainframes (z/OS)

Por arquitetura

- Monolíticos (Unix tradicional)
- Em camadas (THE)
- Microkernel (Minix, QNX)
- Híbridos (Windows, macOS)
- Exokernels (MIT)

Cada tipo de SO foi projetado para atender necessidades específicas, equilibrando fatores como desempenho, segurança, usabilidade e consumo de recursos.

Módulo 1

Estrutura dos Sistemas Operacionais

Vamos começar nossa jornada entendendo como os SOs são organizados internamente.

Componentes de um Sistema Operacional

Estes componentes trabalham juntos para fornecer um ambiente estável e eficiente para a execução de aplicações.

Processos e Threads

Processo

Um programa em execução com:

- Código (texto)
- Dados
- Pilha
- Heap
- Contador de programa
- Recursos alocados

Thread

Unidade de execução dentro de um processo:

- Compartilha recursos do processo
- Tem sua própria pilha e registradores
- Execução independente
- Criação e comunicação mais eficientes

A compreensão de processos e threads é fundamental para entender como programas são executados e como o SO gerencia múltiplas tarefas.

Estados de um Processo

O SO constantemente muda os processos entre esses estados para realizar multitarefa e otimizar o uso dos recursos do sistema.

Módulo 2 Gerenciamento de Memória

A memória é um recurso precioso. Vamos entender como o SO a administra.

Hierarquia de Memória

À medida que descemos na hierarquia, aumenta a capacidade de armazenamento e diminui a velocidade de acesso. O SO precisa balancear o uso de diferentes níveis para otimizar o desempenho.

Essa hierarquia influencia diretamente o desempenho das aplicações e como o SO toma decisões sobre alocação de recursos.

Estratégias de Gerenciamento de Memória

Particionamento

- Fixo: memória dividida em blocos de tamanho fixo
- Dinâmico: tamanho de partições varia conforme necessidade

Paginação

Divide memória física e lógica em páginas de tamanho fixo

Segmentação

Divide memória em segmentos lógicos de tamanho variável (código, dados, pilha)

Memória Virtual

Usa disco para estender capacidade da RAM, com técnicas de paginação e swapping

Estas estratégias evoluíram para lidar com problemas como fragmentação, proteção e compartilhamento de memória entre processos.

Memória Virtual

Conceito

Técnica que cria ilusão de memória maior que a RAM física disponível, utilizando espaço em disco para complementar.

Vantagens

- Execução de programas maiores que a RAM física
- Simplifica programação (endereçamento virtual)
- Permite isolamento e proteção entre processos

Mecanismos

- Tabelas de páginas
- TLB (Translation Lookaside Buffer)
- Algoritmos de substituição de páginas

A memória virtual é um dos conceitos mais importantes e revolucionários na história dos sistemas operacionais.

Módulo 3 Sistemas de Arquivos

Como o SO organiza e gerencia os dados armazenados.

Conceitos de Sistemas de Arquivos

Arquivo

Unidade lógica de informação com:

- Nome
- Tipo
- Tamanho
- Atributos (data, permissões)
- Conteúdo

Diretório

Estrutura para organizar arquivos:

- Hierarquia em árvore
- Nível único
- Caminhos absolutos e relativos
- Metadados

O sistema de arquivos fornece abstração que permite aos usuários armazenar e recuperar dados sem preocupação com detalhes físicos do armazenamento.

Tipos de Sistemas de Arquivos

Windows

FAT32, NTFS, ReFS

- NTFS: Journaling, compressão, criptografia, permissões
- ReFS: Maior confiabilidade para servidores

Linux

Ext2/3/4, XFS, Btrfs, ZFS

- Ext4: Sistema padrão em muitas distribuições
- ZFS: Foco em integridade de dados e RAID

macOS

HFS+, APFS

- APFS: Otimizado para SSDs e criptografia
- Suporte a snapshots e clones

Cada sistema de arquivos foi projetado com foco em diferentes necessidades: desempenho, confiabilidade, compatibilidade ou recursos específicos.

Módulo 4 Gerenciamento de Dispositivos

Como o SO interage com o hardware para entrada e saída de dados.

Subsistema de E/S (Input/Output)

Controladores de dispositivos

Hardware que conecta dispositivos periféricos ao barramento do computador

Drivers de dispositivos

Software que permite ao SO se comunicar com controladores de hardware

Buffers

Áreas de memória para armazenar temporariamente dados de E/S

Spooling

Técnica para gerenciar dispositivos de uso exclusivo como impressoras

O gerenciamento eficiente de E/S é crucial para o desempenho do sistema, já que operações de E/S são tipicamente muito mais lentas que operações de CPU.

O que esperar desta disciplina?

Metodologia

- Aulas teóricas e práticas
- Laboratórios e experimentos
- Projetos em grupo
- Estudos de caso de SOs reais

Bibliografia principal:

- OLIVEIRA, R S; CARISSIMI, A S; TOSCANI, S S. **Sistemas Operacionais**. Livros Didáticos 11. Bookman, 2008.
- TANENBAUM, A. S. Sistemas
 Operacionais Modernos. Prentice Hall (Pearson), 2007.

Habilidades desenvolvidas

- Compreensão dos fundamentos de SOs
- Capacidade de análise de desempenho
- Pensamento crítico sobre design de sistemas
- Conhecimento para otimização de aplicações
- Base para disciplinas avançadas

Esta disciplina será fundamental para sua formação como desenvolvedor de sistemas, fornecendo bases teóricas e práticas essenciais para sua carreira.