TRƯỜNG TRUNG HOC PHỔ THÔNG NGUYỄN HỮU TIẾN

ĐỀ KHẢO SÁT CHẤT LƯỢNG HẾT KỲ II NĂM HOC 2017 – 2018 Môn: Toán khối 10

(Đề thi có 03 trang)

Thời gian làm bài:90 phút, không kể thời gian phát đề

Mã đề 101

Phần 1. Trắc nghiệm (5,0 điểm)

Câu 1. Nhị thức f(x) = 2x - 4 luôn âm trong khoảng nào sau đây:

$$\mathbf{A}.\ \left(-\infty;0\right)$$

$$\mathbf{B}.(-2;+\infty)$$
 $\mathbf{C}.(-\infty;2)$

$$\mathbf{C}.(-\infty;2)$$

$$\mathbf{D}.(0;+\infty)$$

Câu 2. Tập nghiệm của bất phương trình $\frac{x+1}{2-x} > 0$

A.
$$[-1;2]$$

B.
$$(-1;2)$$

$$\mathbf{C} \cdot \left(-\infty; -1\right) \cup \left(2; +\infty\right) \qquad \mathbf{D} \cdot \left[-1; 2\right)$$

$$\mathbf{D} \cdot [-1;2)$$

Câu 3. Biểu thức f(x) = (x-3)(1-2x) âm khi x thuộc ?

$$\mathbf{A.}\left(\frac{1}{2};3\right)$$

B.
$$\left[\frac{1}{2};3\right)$$

B.
$$\left[\frac{1}{2};3\right)$$
 C. $\left(-\infty;\frac{1}{2}\right)\cup\left(3;+\infty\right)$

D.
$$(3;+\infty)$$

Câu 4. Trong các công thức sau, công thức nào đúng?

 $A. \sin 2a = 2\sin a$

B. $\sin 2a = \sin a + \cos a$

C. $\sin 2a = \cos^2 a - \sin^2 a$

 \mathbf{D} . $\sin 2a = 2\sin a\cos a$

Câu 5. Cho $\pi < \alpha < \frac{3\pi}{2}$. Trong các khẳng định sau khẳng định nào đúng?

$$\mathbf{A.} \sin(-\alpha) < 0$$

$$\mathbf{B.} \sin(\pi - \alpha) < 0$$

C.
$$\sin(\frac{\pi}{2} - \alpha) > 0$$
 D. $\sin(\pi + \alpha) < 0$

D.
$$\sin(\pi + \alpha) < 0$$

Câu 6. Cho tam giác ABC có $C = 30^{\circ}$ và $BC = \sqrt{3}$; AC = 2. Tính canh AB bằng?

A.
$$\sqrt{3}$$

C.
$$\sqrt{10}$$

Câu 7. Cho \triangle ABC có 3 cạnh a = 3, b = 4, c = 5. Diện tích \triangle ABC bằng:

Câu 8. Phương trình tham số của đường thẳng (d) đi qua M(-2;3) và có VTCP \vec{u} =(1;-4) là: **A.** $\begin{cases} x = -2 + 3t \\ y = 1 + 4t \end{cases}$ **B.** $\begin{cases} x = -2 + t \\ y = 3 - 4t \end{cases}$ **C.** $\begin{cases} x = -2 + t \\ y = 3 + 4t \end{cases}$ **D.** $\begin{cases} x = 3 - 2t \\ y = -4 + t \end{cases}$

A.
$$\begin{cases} x = -2 + 3t \\ y = 1 + 4t \end{cases}$$

B.
$$\begin{cases} x = -2 + t \\ y = 3 - 4t \end{cases}$$

C.
$$\begin{cases} x = -2 + t \\ y = 3 + 4t \end{cases}$$

D.
$$\begin{cases} x = 3 - 2t \\ y = -4 + t \end{cases}$$

Câu 9. Trong tam giác ABC có BC = 10, $\hat{A} = 30^{\circ}$. Bán kính đường tròn ngoại tiếp tam giác ABC bằng

B.
$$\frac{10}{\sqrt{2}}$$
. **C.** 10.

D.
$$\frac{10}{\sqrt{3}}$$
.

Câu 10. Tìm khoảng cách từ điểm O(0; 0) tới đường thẳng $\triangle : \frac{x}{6} + \frac{y}{8} = 1$

B.
$$\frac{1}{10}$$

C.
$$\frac{1}{14}$$

D.
$$\frac{48}{\sqrt{14}}$$

Câu11. Đường tròn $x^2 + y^2 - 5y = 0$ có bán kính bằng bao nhiều?

A.
$$\sqrt{5}$$

D.
$$\frac{25}{2}$$
.

Câu 12. Cho hai điểm A(1; 1); B(3; 5). Phương trình đường tròn đường kính AB là:

A.
$$x^2 + y^2 + 4x + 6y - 8 = 0$$

B.
$$x^2 + y^2 + 4x + 6y - 12 = 0$$

C.
$$x^2 + y^2 - 4x - 6y - 8 = 0$$

D.
$$x^2 + y^2 - 4x - 6y + 8 = 0$$

Câu 13. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;0), B(2;-1), C(3;0). Viết phương trình tham số của đường cao kẻ từ A trong tam giác ABC

$$\mathbf{A.} \begin{cases} x = 1 + t \\ y = -t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 1 + t \\ y = 6 \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 1 + t \\ y = t \end{cases}$$

A.
$$\begin{cases} x = 1+t \\ y = -t \end{cases}$$
 B.
$$\begin{cases} x = 1+t \\ y = 6 \end{cases}$$
 C.
$$\begin{cases} x = 1+t \\ y = t \end{cases}$$
 D.
$$\begin{cases} x = 1+t \\ y = -1 \end{cases}$$

Câu 14. Biểu thức $\sin\left(a + \frac{\pi}{6}\right)$ được viết lại

A.
$$\sin\left(a + \frac{\pi}{6}\right) = \sin a + \frac{1}{2}$$

B.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin a + \frac{1}{2}\cos a$$

C.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin a - \frac{1}{2}\cos a$$

C.
$$\sin\left(a + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\sin a - \frac{1}{2}\cos a$$
 D. $\sin\left(a + \frac{\pi}{6}\right) = \frac{1}{2}\sin a - \frac{\sqrt{3}}{2}\cos a$

Câu 15. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): $x^2 + y^2 - 2x + 4y - 20 = 0$. Viết phương trình tiếp tuyến của đường tròn (C) tại điểm A(-2;2).

A.
$$3x - 4y + 14 = 0$$
.

B.
$$3x + 4y - 2 = 0$$
.

C.
$$4x-3y+14=0$$
.

A.
$$3x-4y+14=0$$
. **B.** $3x+4y-2=0$. **C.** $4x-3y+14=0$. **D.** $3x-4y-14=0$.

Câu 16. Phương trình: $x^2 + 2(m+1)x + m^2 - 5m + 6 = 0$ có hai nghiệm trái dấu khi:

$$\mathbf{A.} \begin{bmatrix} m > 2 \\ m < 3 \end{bmatrix}$$

C.
$$2 \le m \le 3$$

$$\mathbf{D.} \begin{bmatrix} m \ge 2 \\ m \le 3 \end{bmatrix}$$

Câu 17. Tập giá trị của m để $f(x) = x^2 - (m+2)x + 8m + 1$ luôn luôn dương là

$$\mathbf{B} \cdot \left(-\infty; 0\right) \cup \left(28; +\infty\right)$$

B.
$$\left(-\infty;0\right)\cup\left(28;+\infty\right)$$
 C. $\left(-\infty;0\right]\cup\left[28;+\infty\right)$ **D.** $\left[0;28\right]$

Câu 18. Tập nghiệm của bất phương trình $|4-3x| \le 8$ là

$$\mathbf{A.} \left[-\frac{4}{3}; +\infty \right] \qquad \qquad \mathbf{B.} \left[-\frac{4}{3}; 4 \right]$$

B.
$$\left[-\frac{4}{3}; 4 \right]$$

C.
$$\left(-\infty;4\right]$$

C.
$$\left(-\infty;4\right]$$
 D. $\left(-\infty;-\frac{4}{3}\right] \cup \left[4;+\infty\right)$

Câu 19. Bảng xét dấu sau là của biểu thức nào?

7. Dung A	et aaa baa	ia caa c	nea mae ma	ю.		
x	-8	1	2	3	$+\infty$	
f(x)	_	0	+ 0	- 0	+	

A.
$$f(x) = (x-2)(x^2+4x+3)$$

A.
$$f(x) = (x-2)(x^2+4x+3)$$
 B. $f(x) = (x-1)(-x^2+5x-6)$

C.
$$f(x) = (x-1)(3-x)(2-x)$$

D.
$$f(x) = (3-x)(x^2-3x+2)$$

Câu20. Tìm m để $x^2 - 2mx + m^2 - 16 \le 0$ nghiệm đúng với mọi $x \in [0;1]$

$$\mathbf{A.} \left[-3; 4 \right]$$

$$\mathbf{B} \cdot \left(-\infty; -3\right)$$

B.
$$\left(-\infty;-3\right)$$
 C. $\left[4;+\infty\right)$

Phần 2. Tự luận(5,0 diễm)

Câu 1(2,0 điểm). Giải các bất phương trình sau

$$a) \frac{2x-1}{x+2} \ge 1$$

b)
$$\frac{\sqrt{x-1}}{x^2-x-6} > 0$$

Câu 2 (1,75 điểm). Cho 2 điểm A(1;1), B(3;6) . Viết phương trình tổng quát của đường thẳng đi d biết

- a) d đi qua A, B
- b) d đi qua A và vuông góc với đường thẳng $\Delta: 2x-3y+5=0$

Câu 3(0,75) điểm). chứng minh biểu thức sau không phụ thuộc vào x

$$A = \sin^6 x + 2\sin^2 x \cos^4 x + 3\sin^4 x \cos^2 x + \cos^4 x$$

Câu 4.(0,5 điểm). Cho 2 điểm A(0;-4), B(-5;6). Tìm phương trình quỹ tích của điểm M thỏa mãn $|\overrightarrow{MA} + \overrightarrow{MB}| = |\overrightarrow{MA} - \overrightarrow{MB}|$

Mã đề 101 Phần 1. Trắc nghiệm

Câu	ÐA	Câu	ÐA	Câu	ÐA	Câu	ÐA
1	C	6	В	11	C	16	В
2	В	7	A	12	D	17	A
3	С	8	В	13	A	18	В
4	D	9	C	14	В	19	С
5	В	10	C	15	A	20	A

Phần 2. Tự luận

Câu	Nội dung	Điểm		
Câu 1(2,0)				
a	BPT $\Leftrightarrow \frac{x-3}{x+2} \ge 0$	0,5		
	HS lập BXD, kết luận tập nghiệm của BPT là $S = (-\infty; -2) \cup [3; +\infty)$	0,5		
b	$BPT \Leftrightarrow \begin{cases} x-1>0\\ x^2-x-6>0 \end{cases}$	0,5		
	$\Leftrightarrow \begin{cases} x > 1 \\ x < -2Vx > 3 \end{cases}$	0,25		
	$\Leftrightarrow x > 3$ Vậy BPT có tập nghiệm là $S = (3; +\infty)$	0,25		
Câu 2(1,5đ)				
a	Ta có $\overrightarrow{u_d} = \overrightarrow{AB} = (2;5)$ $\Rightarrow \overrightarrow{n_d} = (5;-2)$	0,25 0,25		
	Phương trình tổng quát của d là $5x-2y-3=0$	0,25		
b.	$\overrightarrow{u_d} = \overrightarrow{n_{\Delta}} = (2; -3)$ Từ gt ta có	0,25		
	$\Rightarrow n_d = (3;2)$	0,25		
~	Phương trình tổng quát của d là $3x + 2y - 5 = 0$	0,25		
Câu 3(0,75đ)				
	$A = \sin^6 x + 2\sin^2 x \cos^4 x + 3\sin^4 x \cos^2 x + \cos^4 x$			
	$A = \sin^6 x + 2(1 - \cos^2 x)\cos^4 x + 3\sin^4 x(1 - \sin^2 x) + \cos^4 x$	0,25		
	$A = \sin^6 x + 2\cos^4 x - 2\cos^6 x + 3\sin^4 x - 3\sin^6 x + \cos^4 x$	0,25		
	$A = -2(\sin^6 x + \cos^6 x) + 3\sin^4 x + 3\cos^4 x$			
	A= -1	0,25		
Câu 4(0,5đ)	Gọi I là trung điểm của AB từ gt ta có $MI = \frac{1}{2}BA$			

Vậy quỹ tích điểm M là đường tròn tâm I(-5/2;1) bán kính $R = \frac{1}{2}BA = \frac{5\sqrt{5}}{2}$ Phương trình quỹ tích điểm M là $(x + \frac{5}{2})^2 + (y - 1)^2 = \frac{125}{4}$	0,25