# 7 Graphen

# 7.1 Gerichtete Graphen und Teilgraphen

## 7.1.1 Graphen:

- zur Motivation:
  - Einbahnstraßensystem, .....
  - wie würde man Zweibahnstraßen modellieren? die Fahrspuren für beide Richtungen separat
  - **Achtung:** analoge Idee für Autobahmodellierung (mehrere Spuren in die gleiche Richtung zwischen zwei Knoten) geht nicht:  $E \subseteq V \times V$  erlaubt nur: es gibt *keine* Kante von x nach y oder es gibt *eine* Kante. sogenannte Mehrfachkanten sind bei uns nicht möglich.

#### • Beispiele malen:

- einschließlich Extremfälle mit 0 Kanten bzw. maximal vielen Kanten; mit Schlingen und ohne Schlingen.
- Sonderfälle wie Bäume (siehe weiter unten) und Zyklen
- Beim Malen darauf hinweisen, dass man den gleichen Graphen unterschiedlich hinmalen kann, z. B. den  $K_4$  mit sich kreuzenden Kanten oder ohne.
- Eigenschaften von Graphen an Beispielen diskutieren
  - beim Straßensystem: Man möchte von jedem Knoten zu jedem kommen.
  - Wenn die Knoten Rechner sind und die Kanten Kabel: Man möchte von x nach y nur über möglichst "wenige" Kanten laufen müssen (egal wo x und y)
  - Wenn die Knoten Rechner sind und die Kanten Kabel: es sollen viele gleichzeitig Daten austauschen können: von einer Hälfte in die andere möglichst viele Kanten (egal welche Knoten in der einen Hälfte sind und welche in der anderen)
- Wenn ein Graph n Knoten hat:
  - Wieviele Kanten kann er maximal haben, wenn Schlingen erlaubt sind?  $n^2$

Begründung: klar

– Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? n(n-1)Begründung:  $n^2 - n$ 

### 7.1.2 Definition Teilgraph:

- Beachte: zu jeder Kante, die man in E' haben will, müssen auch Anfangsund Endknoten in V' vorhanden sein!
- hinreichend großes Beispiel machen, bei dem sowohl  $(\{0,1,2\},\{(0,1),(0,2)\})$  als auch  $(\{3,4,5\},\{(3,4),(3,5))\}$ ) Teilgraph ist:
  - Achtung: formal sind das verschiedene (Teil-)Graphen
  - aha: aber sie sehen gleich aus: so was nennt man isomorphe Graphen

### 7.2 Pfade und Erreichbarkeit

#### 7.2.1 Definition Pfade:

- $\bullet$  Beispiel machen, in dem zwar ein Pfad von x nach y existiert, aber nicht umgekehrt.
- beachte: für aufeinanderfolgende Knoten im Pfad muss die Kante in die richtige Richtung weisen!
- Beachte: Knoten dürfen in Pfad mehrfach vorkommen
- $\bullet$  Beispiel machen, in dem von x nach y unterschiedlich lange Pfade vorkommen.

# 7.3 Isomorphie von Graphen

- Da hatten wir z.B. letztes Jahr eine Aufgabe auf dem Übungsblatt 8 zum Erkennen von isomorphen Graphen. Das macht das ganze vielleicht klar:
  - Für welche der folgenden sechs Graphen gibt es einen Isomorphismus zu einem der anderen fünf Graphen? Geben Sie jeweils den zugehörigen Isomorphismus an.



#### 7.4 Ein Blick zurück auf Relationen

#### 7.4.1 Pfade, $E^*$

- $\bullet$   $E^2$  ist wieder Relation auf V: kann man also als Graph malen: Beispiel machen
- analog für  $E^3, \ldots$
- und  $E^*$  ist auch wieder eine Relation auf V: kann man also als Graph malen: Beispiel: aus Zyklus der Länge 5 wird der sogenannte vollständige Graph  $K_5$

## 7.5 Ungerichtete Graphen

- Achtung: man reite noch mal auf der Formalisierung von Kanten herum:
  - für  $x \neq y$  ist  $\{x,y\}$  eine zweielementige Menge, *ohne* eine Festlegung von Reihenfolge
  - für x = y ist die Menge  $\{x, y\} = \{x\}$  eine einelementige Menge
- Wie ist das mit der Anzahl Kanten eines ungerichteten Graphen mit n Knoten:
  - Wieviele Kanten kann er maximal haben, wenn er schlingenfrei ist? n(n-1)/2 Begründung: von jedem Knoten zu jedem anderen; durch zwei weil sonst jede Kante zweimal gezählt.
  - Wieviele Kanten kann er maximal haben, wenn er Schlingen haben darf ist? n(n+1)/2

Begründung: n + n(n-1)/2 = n(n+1)/2

# 7.6 Anmerkung zu Relationen

# 7.6.1 Äquivalenzrelationen:

Falls schon Fragen kommen: mit dem Bild einer Nicht-Äquivalenzrelation anfangen und so lange Pfeile dazu malen, bis alle Forderungen erfüllt sind:

- Schlingen an allen Knoten
- zu jedem Pfeil hin auch der zurück
- wenn ein Pfad von x nach y existiert, dann auch eine direkte Kante

Ergebnis: einige Klumpen, äh, Cliquen (die den Äquivalenzklassen entsprechen)

# 7.7 Graphen mit Knoten- oder Kantenmarkierungen

### 7.7.1 kantenmarkierte Graphen:

- Noch mal einen Huffman-Baum hinmalen und diskutieren
- für Zahlen als Kantenmarkierungen siehe gleich

## 7.7.2 Graphen mit gewichteten Kanten

- Beispielgraphen hinmalen und die Studenten kurze und lange Wege suchen lassen
- Beispielgraphen hinmalen und die Studenten große Flüsse suchen lassen.

# 7.8 alte (Klausur-)Aufgaben

- Aufgabe aus ÜB7 (WS08/09): Gegeben sei der Graph G = (V, E) mit  $V = \{0, 1\}^3$  und  $E = \{(xw, wy) \mid x, y \in \{0, 1\} \land w \in \{0, 1\}^2\}$ .
  - a) Graphen zeichnen lassen.
  - b) Geben Sie einen Zyklus in G an, der außer dem Anfangs- und Endknoten jeden Knoten von G genau einmal enthält.
  - c) Geben Sie einen geschlossenen Pfad in G an, der jede Kante von G genau einmal enthält.
- So ziemlich in jeder der letztjährigen Klausuren kam was zu Graphen dran z.B. http://gbi.ira.uka.de/archiv/2010/k-mar11.pdf oder http://gbi.ira.uka.de/archiv/2010/k-sep11.pdf.
  - Adjazenz-/Wegematrizen sind allerdings noch nicht bekannt.