Ausgabe: 20. Mai 2022

Bearbeitung: 23. – 27. Mai 2022

Einführung in die angewandte Stochastik

7. Präsenzübung

Aufgabe P 24

Es sei X eine mit Parametern $n \in \mathbb{N}$ und $p \in (0,1)$ binomialverteilte Zufallsvariable auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ (kurz: $X \sim \text{bin}(n, p)$). Gemäß B 2.4 ist damit die Zähldichte p^X der (diskreten) Zufallsvariablen X gegeben durch:

$$p^{X}(k) = \binom{n}{k} p^{k} (1-p)^{n-k} \text{ für } k \in \{0, \dots, n\}.$$

- (a) Bestimmen und skizzieren Sie die Verteilungsfunktion F^X der Zufallsvariablen X für n = 8 und p = 0.5.
- (b) Berechnen Sie für n = 8 und p = 0.5 die folgenden Wahrscheinlichkeiten:
 - (i) $P(X \le 3)$,
- (ii) P(X > 5), (iii) $P(2 < X \le 4)$, (iv) $P(2 \le X \le 4)$.

Aufgabe P 25

Die auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$ gegebene Zufallsvariable X sei gleichverteilt auf dem Intervall [-7,5] (kurz: $X \sim R(-7,5)$, vgl. B 3.7). Berechnen Sie die folgenden Wahrscheinlichkeiten:

- (i) $P(X \leq 3)$,
- (ii) P(X > 2),
- (iii) P(-8 < X < 3.8),
- (iv) P(X < 1 | X < 2).

Hinweis zu (iv): Beachten Sie, dass $P(X \le 1 \mid X \le 2)$ eine Kurzschreibweise ist für

$$P(\{\omega \in \Omega \mid X(\omega) \le 1\} \mid \{\omega \in \Omega \mid X(\omega) \le 2\})$$
.

Aufgabe P 26

Es seien X und Y zwei stochastisch unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, P)$, die jeweils gleichverteilt auf dem Intervall [0, 2] sind (kurz: $X \sim R(0, 2)$ und $Y \sim R(0, 2)$).

Zeigen Sie, dass durch

$$f^{Z}(z) = \begin{cases} 0 & , z < 0, \\ \frac{1}{4}z & , 0 \le z < 2, \\ \frac{1}{4}(4-z) & , 2 \le z \le 4, \\ 0 & , z > 4, \end{cases}$$

eine Riemann-Dichte der (stetigen) Zufallsvariablen Z=X+Y gegeben ist.

Aufgabe P 27

- (a) Seien $(\Omega, \mathfrak{A}, P)$ ein Wahrscheinlichkeitsraum und $\{A_n\}_{n\in\mathbb{N}}\subset\mathfrak{A}$. Zeigen Sie:
 - (i) $\limsup_{n \to \infty} A_n = \{ \omega \in \Omega \mid |\{n \in \mathbb{N} : \omega \in A_n\}| = \infty \}.$
 - (ii) $\liminf_{n \to \infty} A_n = \{ \omega \in \Omega \mid |\{n \in \mathbb{N} : \omega \notin A_n\}| < \infty \}.$
- (b) Ein Roulette-Spiel besteht aus einem grünen Feld, 18 roten Feldern und 18 schwarzen Feldern. Bei einem Spielzug landet eine Kugel in einem der Felder. Das Roulette-Spiel wird unendlich oft gespielt. Berechnen Sie die Wahrscheinlichkeiten der Ereignisse
 - (i) $K_{\infty} =$ es fällt unendlich oft Rot,
 - (ii) $K_{\star} =$ es fällt nur endlich oft Rot.

Hinweis: Ohne Nachweis kann verwendet werden, dass die Ereignisse $B_n = \text{im } n$ -ten Spiel fällt Rot, $n \in \mathbb{N}$, stochastisch unabhängig sind.