

Integrated LO₂-Methane for Human Space Flight

An Integrated Strategy

To Enable the Human Exploration of Mars

JOURNEY TO MARS

EARTH RELIANT

PROVING GROUND

EARTH INDEPENDENT

JSC Energy Systems Exploration Technology Domains

NOW

Propulsion

In-Situ Resource Utilization (ISRU) and LO2-Methane for Mars

- The Human Mars mission architecture is enabled by ISRU and LO₂-Methane
- Ability to produce propellant on the Mars surface has substantial 'ripple' benefits to the mission architecture
 - Enables a lighter ascent vehicle (MAV)
 - Simplifies EDL and Aeroshell design
 - · Reduces launch requirements
- LO2-Methane has excellent attributes for a Mars lander
 - LO₂ and CH₄ (with H₂) can be produced at Mars
 - Improved performance over earth storables
 - Space storable and high density cryogens
 - Non-toxic, non-corrosive, self-

Vision for Future Human Spacecraft

Current human spacecraft have multiple fluids and little subsystem integration

 MMH, NTO, O2, N2, N2H4, Freon or NH3, water, etc.

Goal is to provide an integrated spacecraft fluid and thermal system that minimizes dry mass, complexity, and number of different fluids

- ECLSS: Oxygen storage for cabin air, suit loop, EMU recharge; thermally synergistic with high density cryogenic nitrogen storage.
- Power: Reactant storage for Solid Oxide Fuel Cell (SOFC) power generation.
- Thermally Efficient: No heaters, high temperature (800C) SOFC heat rejection, reduced radiator footprint and ATCS heat load

Integrated Vehicle Fluids and Thermal

- Supports a High Degree of Integration Across Spacecraft Subsystems
- Allows for cross strapping for redundancy with multiple common tanks and fluids

Integrated Fluids & Commodities For Spacecraft and Exploration Systems

Goal is to 'Close the Loops' Across Multiple Systems

- Identify where common fluids, pressures, quality, and standards are possible
 - Enables common storage, distribution, and interfaces
- Identify where common processes and technologies are possible
 - > Enables common hardware for flexibility and reduced DDT&E
 - Enables modularization of non-unique hardware for multiple systems

Morpheus VTB Propulsion Technical Accomplishments

System Level Operations

- Conducted 12 Hot-Fire Tests, 34 Tether Flights, 12 Free-Flights
- System Level Flight Operational Experience Gained
 - Prop System Turnaround measured in hours
 - No major issues working with LNG and Lox
 - le. No hardstarts/No purge run for RCS in-flight, no corrosion, little to no soot, safed quickly with GN2 post flight
- Low Cost of development, fabrication, and operations
 - Developed and Built 3 vehicles for ~500K per year procurement \$90K in FY2014, + 6-7 FTE

Parallel Tank Differential Draining – Prop Management

- Capacitance probe in each tank
- Demonstrated propellant balance during free flight
- Demonstrated self-correcting behavior (passive, no liquid control valves)

Four RCS jets x 20 lbf(max)

- Demonstrated GNC control using Lox/LNG RCS engines
- 40msec to 30+sec pulses
- Operated in blowdown from 350 psig to 160 psig
- Operated over range of Inlet Conditions in flight
 - Gas-gas , gas-liq ., liq.-liq.
- Reliable engine and ignition obtained after a few modifications
 - Spark extend, Pc tube locations, plug mods

Gimbaled, Throttled Main Engine

- ~5400 lbf engine
- >4:1 throttle capability with simple ball valve mechanism
- >2500 sec operations, > 120 starts
- Excellent stability during main stage
- Start is stable with cold Lox and warm methane gas.
 Possibly unstable if liquid methane

Propellant Slosh Control

 Demonstrated damping of Lo2/Methane propellants

All Hardware common between O2 and CH4

- Tanks
- Valves
- Plumbing

Integrated Main Engine and RCS, Tank & Feedsystem

- Blowdown Pressurization
- RCS feedsystem mounted to tanks and TVS operated in flight
- Cryo RCS worked even in Texas and Flordia summer environment
 - Venting seen in videos is the initial chill-in from gas to liquid temps
- Tanks used purged aerogel blankets (non-flammable)

https://www.youtube.com/watch?v=1M5qS 0Y3tDw

