Automated Theorem Proving II

Time Limit: 1 Second Memory Limit: 256 MB

This is what you were asked to do in Automated Theorem Proving problem:

Automated Theorem Proving (ATP) is the process of proving theorems with computer programs. You are given n terms and a list of theorems in the form $t_i \to t_j$, where t_i and t_j are in the given set of terms. For each pair of terms (t_i, t_j) , find out if we can prove $t_i \to t_j$ with the given theorems.

Now, you want to write a program to verify the correctness of the program you previously wrote. In specific, the input to your new program will be a list of theorems in the form $p \to q$, where p and q statements in the form x = k, where x is a boolean variable and $k \in \{true, false\}$. Your goal is to find out if it is possible to assign each variable with a boolean value such that all theorems hold.

Input

The first line of input contains two integers n and m $(1 \le n, m \le 10^5)$ - number of variables and number of theorems

The next m lines describe the theorem. Each line is in the following format:

```
xp = v_1 \implies xq = v_2
where 1 \le p, q \le n, v_1, v_2 \in \{true, false\}.
```

Output

Output YES if it is possible to assign each variable with a boolean value such that all theorems hold, and NO otherwise.

Sample Inputs

Sample Outputs

3 4		
x1	=	true -> x2 = false
x1	=	false -> x3 = true
x2	=	false -> x1 = false
хЗ	=	true -> x1 = true

NO