Veštačka inteligencija Projekat 2

Sistemi za preporuku (Recommender sistemi)

Sadržaj

Sistemi za preporuku (Recommender sistemi)	1
Sadržaj	2
Uvod	3
Aktuelni projekti i tehnike	3
Filtriranje zasnovano na sadržaju	3
Saradničko filtriranje	3
Hibridni sistemi	3
Formulacija problema	3
Kosinusna sličnost	4
Dekompozicija matrice M na osnovu sopstvenih vrednosti	5
Kratak opis rešenja	5
Zahtevi kod pokretanja	5
Saradničko filtriranje	6
Koraci u implementaciji	6
Filtriranje zasnovano na sadržaju	6
Koraci u implementaciji	6
Reference	7

Uvod

Sistemi preporuka su kompjuterski programi koji korisnicima predlažu preporuke u zavisnosti od niza kriterijuma. Ovakvi sistemi poboljšavaju korisničko iskustvo krajnjim korisnicima, a osim toga omogućavaju lakšu prodaju usluga i proizvoda pružanjem preporuka korisnicima za koje su verovatno zainteresovani.

Sistemi preporuka obično rade sa velikom količinom informacija, a sa ciljem filtriranja preporuka. Osnovu podataka osim informacija o predmetima preporuka predstavljaju i informacije o korisničkim preferencama koje korisnici direktno saopštavaju sistemu i informacije koje sistem zaključuje o korisniku.

Konkretan problem koji pokušavamo da rešimo je koje pesme preporučiti na osnovu njihovih atributa i ocena koje je dao slušaoc pesmama.

Aktuelni projekti i tehnike

Israživanjem i razvojem sistema preporuka bave se velike kompanije, a osim njihovih rešenja dostupni su i brojni opensource projekti.

Osnovne tehnike na kojima se baziraju ovakvi sistemi:

Filtriranje zasnovano na sadržaju

Sistemi zasnovani na sadržaju generišu preporuke na osnovu prethodnog ponašanja i preferenca korisnika. Ovaj tip sistema se obično koristi za preporuku stavki koje su slične stavkama s kojima je korisnik ranije interagovao. Nivo sličnosti između stavki se generalno utvrđuje na osnovu atributa stavki.

Saradničko filtriranje

Ovaj tip sistema daje preporuke na osnovu ponašanja sličnih korisnika. Algoritmi za kolaborativno filtriranje rade tako što analiziraju prethodno ponašanje korisnika i identifikuju druge korisnike sa sličnim ponašanjem. Postoje dva glavna tipa saradničkog filtriranja: zasnovano na korisniku i zasnovano na stavkama. Logika iza kolaborativnog filtriranja je da ako korisnici A i B imaju sličan ukus u vezi jednog proizvoda, onda će A i B verovatno imaju sličan ukus i što se tiče drugih proizvoda.

Hibridni sistemi

Ovaj tip sistema kombinuje prednosti filtriranja zasnovanog na sadržaju i saradničkog filtriranja. Koriste prethodno ponašanje i preference korisnika kao i ponašanje sličnih korisnika da daju preporuke. Ovaj tip sistema obično je precizniji i efikasniji nego samonstalno saradničko ili filtriranje zasnovano na sadržaju.

Formulacija problema

Koristićemo primer recommender sistema za preporuku pesama korisnicima.

Sama formulacija problema obično uključuje korišćenje istorijskih podataka o interakcijama korisnika (slušaoca pesama) sa skupom stavki da bi se izgradio model koji može predvideti koje sa kojim stavkama će korisnik verovatno imati interakciju u budućnosti. Osnovni cilj je povećanje tačnosti ovih predviđanja, tako da sistem preporuka bude u mogućnosti da pruži personalizovane preporuke korisnicima koje će im najverovatnije biti od koristi.

Skup podataka u sistemu za preporuku pesama mogu biti ocena pesme, godina izdavanja, izdavač, žanr, itd. Dok informacije o korisniku (slušaocu) mogu biti izvedene iz prethodno slušanih pesama, odabranih žanrova, broj godina. U svakoj vrsti csv fajla se nalaze jedinstvena kombinacija korisnika (slušaoca), pesme, njegova ocena i atributi pesme.

x	podaci.csv									
	Id_pesme ▼	Id_izvodjaca [™]	Zanr_pesme [▼]	ld_slusaoca ▼	Trajanje_pesme	Ocena_pesme ▼	Godina_izda v ar	Jezik [▼]		
	329	61	7	2106	6	2	2002	5		
	33	26	4	1996	1	8	2001	6		
	262	41	10	552	3	3	2022	1		
	435	166	8	2659	6	1	2022	6		
	295	266	9	2197	3	3	2013	4		
	435	282	9	279	5	9	2021	5		
	371	21	2	1264	2	7	2012	6		

Kosinusna sličnost

U analizi podataka, kosinusna sličnost je mera sličnosti između dva niza brojeva. Kosinus dva vektora različita od nule može se izračunati korišćenjem formule Euklidskog skalarnog proizvoda:

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta$$

Za dva n-dimenzionalna vektora atributa, A i B, kosinusna sličnost, cos(th), predstavljena je korišćenjem skalarnog proizvoda i intenziteta kao:

$$S_C(A,B) := \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

Korišćenjem ove formule mogu se naći slični vektori koji sadrže vrednosti atributa pesama.

Dekompozicija matrice M na osnovu sopstvenih vrednosti

U linearnoj algebri, dekompozicija sopstvenih vrednosti (SVD) je faktorizacija realne ili kompleksne matrice. Konkretno, dekompozicija sopstvenih vrednosti kompleksne matrice M dimenzija m × n je faktorizacija oblika M = U Σ V*, gde je U kompleksna unitarna matrica dimenzija m × m, sigma je pravougaona dijagonalna matrica dimenzija m × n sa nenegativnim realnim brojevima na dijagonali, V je n × n kompleksna unitarna matrica, a V* je konjugovana transpozicija od V.

Primer matrice ocena za korisnike i filmove i njene faktorizacije

Kratak opis rešenja

Zahtevi kod pokretanja

Potrebni Python paketi: pandas, numpy, scikit-learn Instalirati komandom pip install <paket>

Saradničko filtriranje

Koraci u implementaciji

- 1. Podaci se uvoze u pandas DataFrame iz priloženog csv fajla
- 2. Generiše se pivot tabela u kojoj su čitaoci indeks, kolona su pesme, a vrednosti su ocene
- 3. Ocene pesama iz pivot tabele se konvertuju u retko posednutu matricu
- 4. Matrica sa ocenama pesama se faktorizuje
- 5. Predviđene ocene se dobijaju skalarnim proizvodom dobijenih matrica iz faktorizacije
- 6. Vektor s predviđenim ocenama se konvertuje u pandas DataFrame i pogodan je za prikaz

Filtriranje zasnovano na sadržaju

Koraci u implementaciji

- 1. Podaci se uvoze u pandas DataFrame iz priloženog csv fajla
- 2. Vrednosti u kolonama koje su atributi pesme se normalizuju
- 3. Nad kolonama se vrši one-hot kodiranje
- 4. Izračunavanje sličnosti vektora sa id-jevima pesma u odnosu na sve ostale vektore
- 5. U koloni za predikciju se upisuju vrednosti koje su rezultat kosinusne sličnosti

Reference

- 1. How Recommender Systems Work (Netflix/Amazon)
- 2. Korišćena open source Python biblioteka <u>GitHub NicolasHug/Surprise: A Python scikit for building and analyzing recommender systems</u>
- 3. Book-Crossing: User review ratings | Kaggle
- 4. MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
- 5. https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
- 6. https://developers.google.com/machine-learning/recommendation
- 7. https://www.nvidia.com/en-us/glossary/data-science/recommendation-system/