笔记整理

赵丰

November 15, 2017

1 草稿

幂函数刻画的流场

针对 $w(z) = Az^n, A \in \mathbb{R}, n \geq \frac{1}{2}$ 。若采用平面极坐标系,则流函数 $\psi = Ar^n \sin n\alpha$ 射线 $\alpha = 0, \alpha = \frac{\pi}{n}$ 使得 $\psi = 0$,因此是两条流线,若将两射线换成壁面,则其内部流场不受影响。因此 Az^n 可以描述角域内的流动,共轭速度场为 $v = nAz^{n-1}$,因此可以分 n 是否大于 1 讨论速度场在角点和无穷远点的零极点特性,如图 1所示:

Figure 1: 四类基本解等 φ 线和等 ψ 线的形状

下面利用复势求解圆柱线流问题,考虑沿x 轴方向的均匀来流 $v_{\infty} = U$,原点处有一圆柱,在复平面内投影为一半径为a 的圆。复势可看成三类基本解的叠加:

$$w(z) = Uz + \frac{k}{z} + \frac{\Gamma}{2\pi i} \ln z \tag{1}$$

其中 Uz 为均匀流场,与无穷远的来流条件相匹配; $\frac{1}{z}$ 为偶极子产生的流场,系数 k 待定,与壁面不可穿透条件相适应; $\ln z$ 为点涡产生的流场, 与流场绕任意不可缩流线的环量为 Γ 相适应。

由不可穿透性条件可以确定 k 的值,(1)式中令 $z=ae^{i\alpha}$,并取虚部(流函数)为常数得:

$$Ua\sin\alpha - \frac{k}{a}\sin\alpha - \frac{\Gamma}{2\pi}\ln a = c \tag{2}$$

由 α 的任意性, 得 $k = Ua^2$, 因此求得复势为:

$$w(z) = Uz + \frac{Ua^2}{z} + \frac{\Gamma}{2\pi i} \ln z \tag{3}$$

取实部得速度势函数 φ 为:

$$\varphi = Ur\cos\alpha + \frac{Ua^2\cos\alpha}{r} + \frac{\Gamma\alpha}{2\pi} \tag{4}$$

在极坐标下得到速度场为:

$$v_r = \frac{\partial \varphi}{\partial r} = U(1 - \frac{a^2}{r^2})\cos\alpha$$

$$v_\alpha = \frac{1}{r}\frac{\partial \varphi}{\partial \alpha} = -U(1 + \frac{a^2}{r^2})\sin\alpha + \frac{\Gamma}{2\pi r}$$
(5)

若考虑壁面的速度场分布, r=a 因此 $v_r=0$ 。

当 $\Gamma=0$ 即流场速度环量为零时,类似??小节讨论的关于圆球绕流问题,在来流方向的前后驻点处 $(\alpha=0,\pi)$ 速度为零,压强最大。对于壁面 α 角位置的压强,由 Bernoulli 方程可求出 $p=p_\infty+\frac{1}{2}\rho U^2(1-4\sin^2\alpha)$

当 $\Gamma \neq 0$ 时(通常由圆柱自身转动引起周围流体的环量),壁面不一定有驻点。若驻点存在,则适合方程 $\frac{dw}{dz} = 0$,即为下面复二次方程的根:

$$2\pi i U z^2 + \Gamma z - 2\pi i U a^2 = 0 \tag{6}$$

其通解为:

$$z = \frac{-\Gamma \pm \sqrt{\Gamma^2 - 16\pi^2 U^2 a^2}}{4\pi i U} \tag{7}$$

若 $|\Gamma| > 4\pi Ua$,则方程的两根都在虚轴上,由于其乘积为 $-a^2$,所以有一根在壁面内,舍去。若 $\Gamma < 0$,则速度场有一个驻出现在虚轴的负半轴壁面外的地方。

若 $|\Gamma| = 4\pi Ua$, 两根重合,同样考虑 $\Gamma < 0$,这时驻点为 z = -ia

若 $|\Gamma| < 4\pi U a$, 计算两根的模均为 a,因此两驻点均在壁面上,当 $\Gamma < 0$ 时,两驻点虚部为负,关于虚轴对称。

同理可得 $\Gamma \neq 0$ 时壁面压力场为:

$$p = p_{\infty} + \frac{1}{2}\rho(U^2 - (-2U\sin\alpha + \frac{\Gamma}{2\pi a})^2)$$
 (8)

计算流体对壁面的合力为:

$$\overrightarrow{F} = -\int_0^{2\pi} p \, \overrightarrow{n} \, d\alpha \tag{9}$$

化为分量形式得 $F_x=0, F_y=-\int_0^{2\pi}pa\sin\alpha d\alpha=-\rho U\Gamma$,当 $\Gamma<0$ 时 $F_y>0$,即对于顺时针的环量可以产生升力。此即儒科夫斯基升力定理。

(10)

References

- [1] https://en.wikipedia.org/wiki/Triple_product
- [2] http://www.continuummechanics.org/velocitygradient.html
- [3] https://en.wikipedia.org/wiki/Angular_velocity#Angular_velocity_tensor
- [4] https://en.wikipedia.org/wiki/Divergence#Cylindrical_coordinates
- [5] https://en.wikipedia.org/wiki/Curl_(mathematics)
- [6] https://en.wikipedia.org/wiki/Fundamental_solution
- $[7] \ https://en.wikipedia.org/wiki/Green\%27s_function\#Green.27s_functions_for_the_Laplacian$
- $[8] \ https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates$
- [9] https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation