

15____ березня _____ 20_24__ р

Вчитель: Родіна А.О.

[дата]

Тема: Геометричне місце точок

Мета:

- *Навчальна*: засвоїти поняття геометричного місця точок, довести вже відомі означення за допомогою та методу геометричних місць точок;
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: засвоєння нових знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Вивчення нового матеріалу

// Геометричне місце точок

Геометричним місцем точок площини (ГМТ) називають фігуру, що складається з усіх точок площини, які мають певну властивість.

Наприклад:

Коло – це геометричне місце точок, віддалених від даної точки площини на однакову відстань.

ightharpoonup Чи буде геометричним місцем точок площини частина кола з центром у точці O_1 ? (Hi)

Фігура F_1 — частина кола. Усі точки частини кола розміщені на однаковій відстані від точки O_1 , але **не всі** точки площини, розміщені на однаковій відстані від точки O_1 , належать цій частині кола. Наприклад, точка M не належить зображеній частині кола фігури F_1 , розміщена на тій же відстані від точки O_1 . Отже частина кола не є геометричним

місцем точок, рівновіддалених від точки O_1 .

Доведення того, що деяка фігура F ϵ геометричним місцем точок, які задовольняють умову P, складається з доведення двох тверджень — прямого і оберненого:

- 1) Якщо певна точка належить фігурі F, то вона задовольняє умову P;
- 2) Якщо певна точка задовольняє умову Р, то вона належить фігурі F;
- Спробуйте самостійно сформулювати означення круга, як означення ГМТ (Учні висловлюють власну думку)

Круг – це геометричне місце точок, відстань від яких до даної точки (центра круга) не більша від заданої відстані.

▶ Спробуйте самостійно сформулювати означення бісектриси, як означення ГМТ

(Учні висловлюють власну думку)

Бісектриса кута — це геометричне місце точок внутрішньої області кута, що рівновіддалені від сторін цього кута.

- 1) Доведемо, що будь-яка точка бісектриси рівновіддалена від сторін кута.
 - ightharpoonup Поясніть, чому $\Delta BAM = \Delta BCM$? (Учні висловлюють власну думку)

Розглянемо прямокутні ΔBAM і ΔBCM :

$$BM$$
 – спільна гіпотенуза $\angle ABM = \angle CBM$ (за умовою) $\rightarrow \Delta BAM = \Delta BCM$ (за гіпотенузою і гострим кутом)

 $\Delta BAM = \Delta BCM \rightarrow MA = MC$. Отже точка M рівновіддалена від сторін кута

2) До ведемо, що будь-яка точка, рівновіддалена від сторін кута, належить його бісектрисі.

$$ho$$
 Поя сніть, чому $\Delta BAK = \Delta BCK$? (Учні висловлюють власну думку)

Розглянемо прямокутні ΔBAK і ΔBCK :

 $\Delta BAK = \Delta BCK \rightarrow \angle ABK = \angle CBK$. Отже точка BK – бісектриса $\angle ABC$

Доведено

Серединний перпендикуляр до даного відрізка — це геометричне місце точок, які рівновіддалені від кінців даного відрізка.

1) Доведемо, якщо точка належить серединному перпендикуляру до відрізка, то вона рівновіддалена від кінців цього відрізка

Нехай:

$$k \perp MN$$

$$k \in K$$

$$MO = ON$$

Розглянемо ΔMKN :

ightharpoonup Поясніть, чому ΔMKN - рівнобедрений? (Учні висловлюють власну думку)

$$KO-\frac{\textit{медіана i}}{\textit{висота}} o \Delta MKN-\frac{\textit{рівнобедрений 3}}{\textit{основою MN}} o KM=KN$$

2) Доведемо, якщо точка рівновіддалена від кінців відрізка, то вона належить серединному перпендикуляру до цього відрізка

Розглянемо рівнобедрений $\Delta MLN \ (ML = LN)$:

ightharpoonup Поясніть, чому в $\Delta MLN\ LO$ — серединний перпендикуляр до відрізка MN?

(Учні висловлюють власну думку)

Нехай:

$$k \perp MN$$

$$ML = LN$$

$$MO = ON$$

Доведено

Геометричне місце точок, які рівновіддалені від даної прямої на задану відстань, - дві прямі, паралельні даній прямій, кожна точка яких знаходиться на заданій відстані від прямої.

1) Доведемо, що коли пряма *b* паралельна прямій *a*, то дві довільні точки прямої *b* рівновіддалені від прямої *a*

Нехай:

$$M_1$$
 і N_1 - довільні точки прямої b

Побудуємо $M_1M\perp a$ і $N_1N\perp a$

$$\angle M_1 MN = \angle N_1 NM = 90^{\circ} \Big| \rightarrow \angle MM_1 N_1 = \angle NN_1 M_1 = 90^{\circ}$$

 $\Delta M M_1 N_1 = \Delta N_1 N M \to M_1 M = N_1 N$, отже точки M_1 і N_1 прямої b рівновіддалені від прямої a

2) Доведемо, що коли дві довільні точки M_1 і N_1 прямої b лежать на однаковій відстані від прямої a і по один бік від неї, то $b \parallel a$

Нехай:

$$M_1 M$$
 і $N_1 N$ — перпендикуляри до прямої a ; $M_1 M = N_1 N$

$$\angle M_1 MN = \angle N_1 NK \rightarrow MM_1 \parallel NN_1$$

ightharpoonup Поясніть, чому $\angle MM_1N = \angle N_1NM_1$? (Учні висловлюють власну думку)

$$\angle MM_1N = \angle N_1NM_1$$
 (як внутрішні різносторонні при паралельних прямих)

ightharpoonup Поясніть, чому $\Delta M M_1 N = \Delta N_1 N M_1$? (Учні висловлюють власну думку)

$$\Delta M M_1 N = \Delta N_1 N M_1$$
 (за першою ознакою)

$$\Delta M M_1 N = \Delta N_1 N M_1 \rightarrow \angle M_1 N_1 N = \angle M_1 M N = 90^{\circ}$$

$$\begin{array}{c|c} \angle M_1N_1N = 90^\circ \\ \angle N_1NK = 90^\circ \end{array} \right| \rightarrow a \parallel b \begin{array}{c} (\kappa ymu \ M_1N_1N \ \mathrm{i} \ N_1NK - \\ \varepsilon Hympiuhi \ piзностороннi) \end{array}$$

Доведено

III. Закріплення нових знань та вмінь учнів

№1

Побудуйте тупий кут і геометричне місце точок, що належать внутрішній області кута, рівновіддалених від сторін цього кута.

Розв'язання:

ОК – бісектриса кута *МОN*

№2

Побудуйте трикутник зі сторонами a = 3 см, b = 5 см, c = 7 см

Розв'язання:

За теоремою про нерівність трикутника – трикутник з такими сторонами існує.

$$7 \text{ cm} < 5 \text{ cm} + 3 \text{ cm}$$

1. Будуємо довільну пряму, обираємо на ній довільну точку A та відкладаємо за допомогою циркуля відрізок AB = 3 см

точки центром у т.А будуємо дугу радіусом 5 см

2.3

3. З точки центром у т.B будуємо дугу радіусом 7 см

очка C — точка перетину побудованих дуг, ця точка ϵ вершиною шуканого трикутника. ΔABC — шуканий.

№3

Накресліть трикутник ABC і побудуйте трикутник ABD такий, що дорівнює трикутнику ABC.

Розв'язання:

Будуємо довільний трикутник. Необхідно подувати такий трикутник, що дорівнює даному і має з побудованим трикутником спільну сторону AB, отже вершини C і D мають лежати по різні боки від прямої AB.

Будуємо з вершини A будуємо дугу r = AC

3 вершини C будуємо дугу r = BC до перетину з першою дугою

Точка перетину дуг — третя вершина D шуканого трикутника ABD

Доведення:

$$AC = AD$$
 (за $nобудовою$) $BC = BD$ (за $nобудовою$) $AB - спільна сторона (за $nобудовою$)$

Доведено

№4

Побудуйте ΔMNV , якщо MN=5 см, $\angle M=44^{\circ}$, $\angle N=77^{\circ}$

Розв'язання:

htts M N

Будуємо відрізок MN = 5 см

Будуємо $\angle M = 44^{\circ}$

Будуємо $\angle N = 77^{\circ}$

Точка перетину сторін кутів A і B — третя вершина шуканого трикутника.

 ΔMNV — шуканий.

 $^{ullet}_{A}$

Два населених пункти A і B розташовані по різні боки від річки a. У якому місці необхідно побудувати міст через річку, щоб він був рівновіддалений від пунктів A і B

a • n

Розв'язання:

Так як усі точки, що рівновіддалені від відрізка AB, знаходяться на серединному перпендикулярі до цього відрізка, то:

- 1. Будуємо $MN \perp AB$, AN = BN
- 2. Точка перетину серединного перпендикуляра до відрізка *AB* і прямої *a* місце побудови моста

Побудуйте прямокутний трикутник за катетом і гіпотенузою

Розв'язання:

______а Буду **b**

Будуємо довільний катет a і гіпотенузу b

Будуємо дві перпендикулярні прямі і відкладаємо від точки їх перетину відрізок AB, що дорівнює катету a

Через точку B будуємо дугу з радіусом, що дорівнює гіпотенузі b. Точка перетину цієї дуги з перпендикуляром C — третя вершина шуканого трикутника ABC

IV. Підсумок уроку

- Що таке геометричне місце точок?
- Що ϵ геометричним місцем точок, віддалених від даної точки на 4 см?
- Що є геометричним місцем точок, віддалених від даної точки на відстань, не більшу за 4 см
- Що ϵ геометричним місцем точок, рівновіддалених від кінців відрізка?
- Що ϵ геометричним місцем точок внутрішньої області кута, що рівновіддалені від сторін цього кута?
- Як побудувати трикутник за трьома сторонами?

V. Домашнє завдання

Опрацювати §18 Виконати №653,654