WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

51) International Patent Classification 6:		(11) International Publication Number:	WO 97/03960
C07D 207/34	A1	(43) International Publication Date:	6 February 1997 (06.02.97)
 21) International Application Number: PCT/US 22) International Filing Date: 16 July 1996 (30) Priority Data: 60/001,453 17 July 1995 (17.07.95) 71) Applicant (for all designated States except US): W LAMBERT COMPANY [US/US]; 201 Tabor Roa Plains, NJ 07950 (US). 72) Inventors; and 75) Inventors/Applicants (for US only): LIN, Min 1808 Pheasant Hollow Drive, Plainsboro, NJ 085 SCHWEISS, Dieter [DE/US]; 320 Blue Isle Drive, MI 49424 (US). 74) Agents: RYAN, M., Andrea; Warner-Lambert Comp Tabor Road, Morris Plains, NJ 07950 (US) et al. 	(16.07.96) (ARNEFAD, MORT [CN/US 536 (US , Holland	IL, IP, KR, LT, LV, MX, NO UA, US, UZ, VN, Eurasian pa MD, RU, TJ, TM), European p ES, FI, FR, GB, GR, IE, IT, I S Published With international search repo is	D, NZ, PL, RO, SG, SI, SK, tent (AM, AZ, BY, KG, KZ, atent (AT, BE, CH, DE, DK, JU, MC, NL, PT, SE).

(57) Abstract

Ų,

A novel process for the preparation of amorphous atorvastatin is described where crystalline Form I atorvastatin is dissolved in a non-hydroxylic solvent and after removal of the solvent affords amorphous atorvastatin.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia		
ΑU	Australia	GN	Guinea	MX	Mexico
BB	Barbados	GR		NE	Niger
BE	Belgium	HU	Greece	NL	Netherlands
BF	Buddina Faso		Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	lialy -	PL	Poland
BR		JP.	Japan	PT	Portugal
	Brazil	KE	Кепуа	RO	Romania
BY	Belarus	KC	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CIF	Central African Republic		of Korea	SE	Sweden
CC	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	П	Liechtenstein	SK	Slovekia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Litmania	TD	Chad
cz	Czech Republic	เบ	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ.	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	UG	
FI	Finland	ML	Mali	US	Uganda
FR	France	MN			United States of America
GA	Gabon		Mongolia	UZ	Uzbekistan
- OA	Calon	MR	Mauritania	VN	Vict Nam

WO 97/03960

5

15

20

25

30

35

-1-

NOVEL PROCESS FOR THE PRODUCTION OF AMORPHOUS

[R-(R*,R*)]-2-(4-FLUOROPHENYL)-β,δ-DIHYDROXY-5
(1-METHYLETHYL)-3-PHENYL-4-[(PHENYLAMINO)CARBONYL]
1H-PYRROLE-1-HEPTANOIC ACID CALCIUM SALT (2:1)

10 BACKGROUND OF THE INVENTION

The present invention relates to a novel process for amorphous atorvastatin which is known by the chemical name $[R-(R^+,R^+)]-2-(4-\text{fluorophenyl})-\beta,\delta$ -dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino) carbonyl]-1H-pyrrole-1-heptanoic acid hemi calcium salt which is useful as a pharmaceutical agent. Atorvastatin is useful as an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) and is thus useful as a hypolipidemic and hypocholesterolemic agent.

United States Patent Number 4,681,893, which is herein incorporated by reference, discloses certain trans-6-[2-(3- or 4-carboxamido substituted-pyrrol-1-yl)alkyl]-4-hydroxy-pyran-2-ones including trans (±)-5-(4-fluorophenyl)-2-(1-methylethyl)-N,4-diphenyl-1-[(2-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1H-pyrrole-3-carboxamide.

United States Patent Number 5,273,995, which is herein incorporated by reference, discloses the enantiomer having the R form of the ring-opened acid of trans-5-(4-fluorophenyl)-2-(1-methylethyl)-N,4-diphenyl-1-[(2-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1H-pyrrole-3-carboxamide, i.e., [R-(R*,R*)]-2-(4-fluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-

United States Patent Numbers 5,003,080; 5,097,045; 5,103,024; 5,124,482; 5,149,837; 5,155,251; 5,216,174;

pyrrole-1-heptanoic acid.

-2-

5,245,047; 5,248,793; 5,280,126; 5,397,792; and 5,342,952, which are herein incorporated by reference, disclose various processes and key intermediates for preparing atorvastatin.

Atorvastatin is prepared as its calcium salt, i.e., $[R-(R^*,R^*)]-2-(4-\text{fluorophenyl})-\beta,\delta-\text{dihydroxy-5-}(1-\text{methylethyl})-3-\text{phenyl-4-}(\text{phenylamino})\text{carbonyl}]-1H-pyrrole-1-heptanoic acid calcium salt (2:1). The calcium salt is desirable since it enables atorvastatin to be conveniently formulated in, for example, tablets, capsules, lozenges, powders, and the like for oral administration.$

5

10

30

35

Concurrently filed United States Patent Applications titled "Crystalline [R-(R*,R*)]-2-(4-15 fluorophenyl) $-\beta$, δ -dihydroxy-5-(1-methylethyl) -3-phenyl-4-[(phenylamino)carbonyl]-1H-pyrrole-1-heptanoic Acid Calcium Salt (2:1)" and "Form III Crystalline $[R-(R^*,R^*)]-2-(4-fluorophenyl)-\beta, \delta-dihydroxy-5-(1-fluorophenyl)$ methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1H-20 pyrrole-1-heptanoic Acid Calcium Salt (2:1) commonly owned, attorney's Case Numbers PD-5250-01-FJT, Serial _____, and PD-5333-01-FJT, Serial Number __, disclose atorvastatin in various new crystalline forms designated Form I, Form II, Form III, and 25 Form IV.

Atorvastatin disclosed in the above United States Patents is an amorphous solid. We have found that after the advent of crystalline atorvastatin, the production of amorphous atorvastatin by the previously disclosed processes was not consistently reproducible.

It has been disclosed that the amorphous forms in a number of drugs exhibit different dissolution characteristics and in some cases different bioavailability patterns compared to the crystalline form (Konno T., Chem. Pharm. Bull., 1990;38:2003-2007). For some therapeutic indications one bioavailability

-3-

pattern may be favored over another. Therefore, it is desirable to have a procedure for converting the crystalline form of a drug to the amorphous form.

The object of the present invention is a process which is amenable to large-scale production for converting crystalline Form I atorvastatin into amorphous atorvastatin.

We have surprisingly and unexpectedly found that solutions of atorvastatin in a non-hydroxylic solvent afford, after removal of the solvent, amorphous atorvastatin.

SUMMARY OF THE INVENTION

15

20

10

5

Accordingly, the present invention is a novel process for the preparation of amorphous atorvastatin and hydrates thereof which comprises:

- (a) dissolving crystalline Form I atorvastatin in a non-hydroxylic solvent; and
- (b) removing the solvent to afford amorphous atorvastatin.

In a preferred embodiment of the invention, the non-hydroxylic solvent is selected from the group consisting of: tetrahydrofuran, and mixtures of tetrahydrofuran and toluene.

In another preferred embodiment of the invention, the solvent is removed in a vacuum dryer.

30

35

25

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is further described by the following nonlimiting examples which refer to the accompanying Figures 1, 2, and 3, short particulars of which are given below.

-4-

Figure 1

Diffractogram of Form I atorvastatin ground for 2 minutes (Y-axis = 0 to maximum intensity of 3767.50 counts per second(cps))

5

Figure 2

Diffractogram of amorphous atorvastatin (Y-axis = 0 to maximum intensity of 1455.00 cps)

10 Figure 3

Solid-state ¹³C nuclear magnetic resonance spectrum with spinning side bands identified by an asterisk of Form I atorvastatin.

15

20

DETAILED DESCRIPTION OF THE INVENTION

Crystalline Form I atorvastatin may be characterized by its X-ray powder diffraction pattern and/or by its solid state nuclear magnetic resonance spectrum (NMR).

X-RAY POWDER DIFFRACTION

25

30

Amorphous and Form I Atorvastatin

Amorphous and Form I atorvastatin were characterized by their X-ray powder diffraction patterns. Thus, the X-ray diffraction patterns of amorphous and Form I atorvastatin were measured on a Siemens D-500 diffractometer with CuKa radiation.

Equipment

Siemens D-500 Diffractometer-Kristalloflex with an

IBM-compatible interface, software = DIFFRAC AT

(SOCABIM 1986, 1992).

-5-

CuK_a radiation (20 mA, 40 kV, λ = 1.5406 Å) Slits I and II at 1°) electronically filtered by the Kevex Psi Peltier Cooled Silicon [Si(Li)]Detector (Slits: III at 1° and IV at 0.15°).

5

10

15

30

35

Methodology

The silicon standard is run each day to check the X-ray tube alignment.

Continuous $\theta/2\theta$ coupled scan: 4.00° to 40.00° in 2θ , scan rate of $6^{\circ}/\text{min}$: $0.4 \text{ sec}/0.04^{\circ}$ step (scan rate of $3^{\circ}/\text{min}$: $0.8 \text{ sec}/0.04^{\circ}$ step for amorphous atorvastatin).

Sample tapped out of vial and pressed onto zerobackground quartz in aluminum holder. Sample width 13-15 mm (sample width ~16 mm for amorphous atorvastatin).

Samples are stored and run at room temperature.

Grinding

Grinding is used to minimize intensity variations for the diffractogram of Form I atorvastatin disclosed herein. However, if grinding significantly altered the diffractogram or increased the amorphous content of the sample, then the diffractogram of the unground sample was used.

Table 1 lists the 20, d-spacings, and relative intensities of all lines in the unground sample with a relative intensity of >20% for crystalline Form I atorvastatin. Table 1 also lists the relative intensities of the same lines in a diffractogram measured after 2 minutes of grinding. The intensities of the sample ground for 2 minutes are more representative of the diffraction pattern without preferred orientation. It should also be noted that

the computer-generated, unrounded numbers are listed in this table.

TABLE 1. Intensities and Peak Locations of all Diffraction Lines With Relative Intensity Greater Than 20% for Form I Atorvastatin

	GIGACCI	THAN ZOU TOT FOIL	I WCOLAGETIN
2θ	đ	(>20%)	Relative Intensity (>20%)* Ground 2 Minutes
9.150	9.6565	37.42	42.60
9.470	9.3311	46.81	41.94
10.266	8.6098	75.61	55.67
10.560	8.3705	24.03	29.33
11.853	7.4601	55.16	41.74
12.195	7.2518	20.03	24.62
17.075	5.1887	25.95	60.12
19.485	4.5520	89.93	73.59
21.626	4.1059	100.00	100.00
21.960	4.0442	58.64	49.44
22.748	3.9059	36.95	45.85
23.335	3.8088	31.76	44.72
23.734	3.7457	87.55	63.04
24.438	3.6394	23.14	21.10
28.915	3.0853	21.59	23.42
29.234	3.0524	20.45	23.36
	9.150 9.470 10.266 10.560 11.853 12.195 17.075 19.485 21.626 21.960 22.748 23.335 23.734 24.438 28.915	9.150 9.6565 9.470 9.3311 10.266 8.6098 10.560 8.3705 11.853 7.4601 12.195 7.2518 17.075 5.1887 19.485 4.5520 21.626 4.1059 21.960 4.0442 22.748 3.9059 23.335 3.8088 23.734 3.7457 24.438 3.6394 28.915 3.0853	20 d (>20%) No Grinding 9.150 9.6565 37.42 9.470 9.3311 46.81 10.266 8.6098 75.61 10.560 8.3705 24.03 11.853 7.4601 55.16 12.195 7.2518 20.03 17.075 5.1887 25.95 19.485 4.5520 89.93 21.626 4.1059 100.00 21.960 4.0442 58.64 22.748 3.9059 36.95 23.335 3.8088 31.76 23.734 3.7457 87.55 24.438 3.6394 23.14 28.915 3.0853 21.59

^{*} The second relative intensity column gives the relative intensities of the diffraction lines on the original diffractogram after 2 minutes of grinding.

SOLID STATE NUCLEAR MAGNETIC RESONANCE (NMR)

Methodology

5

25

30

35

All solid-state ¹³C NMR measurements were made with a Bruker AX-250, 250 MHz NMR spectrometer. High resolution spectra were obtained using high-power proton decoupling and cross-polarization (CP) with magic-angle spinning (MAS) at approximately 5 kHz. The

5

10

magic-angle was adjusted using the Br signal of KBr by detecting the side bands as described by Frye and Maciel (Frye J.S. and Maciel G.E., J. Mag. Res., 1982;48:125). Approximately 300 to 450 mg of sample packed into a canister-design rotor was used for each experiment. Chemical shifts were referenced to external tetrakis (trimethylsilyl)silane (methyl signal at 3.50 ppm) (Muntean J.V. and Stock L.M., J. Mag. Res., 1988;76:54).

Table 2 shows the solid-state spectrum for crystalline Form I atorvastatin.

TABLE 2. Carbon Atom Assignment and Chemical Shift for Form I Atorvastatin

for Form I Atorvastatin	
Assignment (7 kHz)	Chemical Shift
C12 or C25	182.8
C12 or C25	178.4
C16	166.7 (broad)
	and 159.3
Aromatic Carbons	· · · · · · · · · · · · · · · · · · ·
C2-C5, C13-C18, C19-C24, C27-C32	137.0
	134.9
	131.1
	129.5
	127.6
	123.5
	120.9
	118.2
	113.8
C8,C10	73.1
	70.5
	68.1
	64.9
Methylene Carbons	
C6, C7, C9, C11	47.4
	41.9
	40.2
C33	26.4
	25.2
C34	21.3

30

Amorphous atorvastatin of the present invention can exist in anhydrous forms as well as hydrated forms. In general, the hydrated forms, are equivalent to

-9-

anhydrous forms and are intended to be encompassed within the scope of the present invention.

As previously described, amorphous atorvastatin is useful as an inhibitor of the enzyme, HMG-CoA reductase and is thus useful as a hypolipidemic and hypocholesterolemic agent.

5

10

15

20

25

30

The present invention provides a process for the commercial preparation of amorphous atorvastatin.

Thus, crystalline Form I atorvastatin is dissolved in a non-hydroxylic solvent such as, for example, tetrahydrofuran, mixtures of tetrahydrofuran and toluene and the like at a concentration of about 25% to about 40%. Preferably, crystalline Form I atorvastatin is dissolved in tetrahydrofuran at a concentration of about 25% to about 40% containing up to about 50% toluene as a co-solvent. The solvent is removed using, for example, drying technology such as, for example, vacuum drying, spray drying, and the like. Preferably, the drying procedure uses an agitated pan dryer such as, for example, Comber Turbodry Vertical Pan Dryer and the like. Drying initially is carried out at about 20°C to about 40°C and subsequently at about 70°C to about 90°C under vacuum at about 5 mm Hg to about 25 mm Hg for about 3 to about 5 days. Preferably, initial drying is carried out at about 35°C and subsequently at about 85°C at about 5 mm Hg to about 25 mm Hg for about 5 days. The initial solution dries to a brittle foam that is broken up by mechanical agitation to afford amorphous atorvastatin.

The following nonlimiting examples illustrate the inventors' preferred methods for preparing the compounds of the invention.

-10-

EXAMPLE 1

[R-(R*,R*)]-2-(4-Fluorophenyl)-β,δ-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]-1Hpyrrole-1-heptanoic acid hemi calcium salt (Form I Atorvastatin)

5

35

A mixture of (2R-trans)-5-(4-fluorophenyl)-2-(1methylethyl)-N,4-diphenyl-1-[2-(tetrahydro-4-hydroxy-6oxo-2H-pyran-2-yl)ethyl]-1H-pyrrole-3-carboxamide (atorvastatin lactone) (United States Patent 10 Number 5,273,995) (75 kg), methyl tertiary-butyl ether (MTBE) (308 kg), methanol (190 L) is reacted with an aqueous solution of sodium hydroxide (5.72 kg in 950 L) at 48-58°C for 40 to 60 minutes to form the ring-opened sodium salt. After cooling to 25-35°C, the organic **15**. layer is discarded, and the aqueous layer is again extracted with MTBE (230 kg). The organic layer is discarded, and the MTBE saturated aqueous solution of the sodium salt is heated to 47-52°C. To this solution is added a solution of calcium acetate hemihydrate 20 (11.94 kg) dissolved in water (410 L), over at least 30 minutes. The mixture is seeded with a slurry of crystalline Form I atorvastatin (1.1 kg in 11 L water and 5 L methanol) shortly after addition of the calcium acetate solution. The mixture is then heated to 25 51-57°C for at least 10 minutes and then cooled to 15-40°C. The mixture is filtered, washed with a solution of water (300 L) and methanol (150 L) followed by water (450 L). The solid is dried at 60-70°C under vacuum for 3 to 4 days to give crystalline Form I 30 atorvastatin (72.2 kg).

EXAMPLE 2

[R-(R*,R*)]-2-(4-fluorophenyl)-\(\beta\), \(\delta\)-dihydroxy-5(1-methylethyl)-3-phenyl-4-[(phenylamino)carbonyl]1H-pyrrole-1-heptanoic acid hemi calcium salt
(Amorphous Atoryastatin)

5

10

15

20

-11-

Crystalline Form I atorvastatin (Example 1) (30 kg) is dissolved with agitation in tetrahydrofuran (75 L) at ambient temperature under a nitrogen atmosphere. Toluene (49.4 L) is added slowly once solution is achieved. The solution is then transferred through a 0.45 micron Pall filter to a 200 L Comber Turbodry Vertical Pan Dryer. The transfer system is rinsed to the dryer with additional tetrahydrofuran $(4.5 \ L)$. Full vacuum is applied, and the solution is concentrated at 35°C with mild agitation. Near the end of the concentration process, the agitator is lifted. The product turns into a brittle glassy foam. agitator is gradually lowered, breaking the brittle foam into a free flowing powder. The powder is agitated and the temperature is raised to 85°C under vacuum (6 to 8 mm Hg) to lessen the residual solvent levels. After 4 days of drying, the desired residual solvent levels of 0.01% tetrahydrofuran and 0.29% toluene are achieved. The free flowing white powder (27.2 kg) is unloaded from the dryer. The product is amorphous by X-ray powder diffraction.

-12-

CLAIMS

- 1. A process for the preparation of amorphous atorvastatin and hydrates thereof which comprises:
 - (a) dissolving crystalline Form I atorvastatin in a non-hydroxylic solvent; and
 - (b) removing the solvent to afford amorphous atorvastatin.
- 2. A process according to Claim 1 wherein the nonhydroxylic solvent in Step (a) is selected from the group consisting of: tetrahydrofuran, and mixtures of tetrahydrofuran and toluene.

5

5

- 3. A process according to Claim 2 wherein the solvent is a mixture of tetrahydrofuran and toluene.
- 4. A process according to Claim 1 wherein the solvent in Step (b) is removed by vacuum drying or spray drying.
- 5. A process according to Claim 4 wherein the solvent in Step (b) is removed by vacuum drying.
- 6. A process according to Claim 5 wherein vacuum drying is initially carried out at about 20°C to about 40°C and subsequently at about 70°C to about 90°C under vacuum at about 5 mm Hg to about 25 mm Hg.
- 7. A process according to Claim 6 wherein vacuum drying is initially carried out at about 35°C and subsequently at about 85°C under vacuum at about 5 mm Hg to about 25 mm Hg.

-13-

8. A process according to Claim 5 wherein the material obtained after drying is a brittle foam which is broken up by mechanical agitation.

Inten and Application No
PCT/US 96/11807

			101/05 50	7,11007
A. CLASS	IFICATION OF SUBJECT MATTER C07D207/34			
According t	to International Patent Classification (IPC) or to both national class	sification and IPC		
B. FIELDS	SEARCHED			
Minimum d 1PC 6	ocumentation searched (classification system followed by classific CO7D	ation symbols)		
	tion searched other than minimum documentation to the extent tha			earchöd
	lata base consulted during the international search (name of data b	ase and, where practical,	search terms used)	
	MENTS CONSIDERED TO BE RELEVANT	 		·
Category *	Citation of document, with indication, where appropriate, of the	relevant passages		Relevant to claim No.
A	WO,A,94 20492 (WARNER LAMBERT CO September 1994 cited in the application see the whole document) 15		1-8
A	EP,A,0 409 281 (WARNER LAMBERT CO) 23 January 1991 cited in the application see the whole document		1-8	
A	EP,A,O 330 172 (WARNER LAMBERT Of August 1989) cited in the application see the whole document			1-8
-		-/		
X Furt	ther documents are listed in the continuation of box C.	X Patent family	members are listed	ín annex.
"A" docum consid "E" sartier	tegories of cited documents: ent defining the general state of the art which is not tered to be of particular relevance document but published on or after the international	cited to understand invention	d not in conflict wi d the principle or th	th the application but secry underlying the
"L" docum which citatio "O" docum other r	date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	involve an inventi- "Y" document of partic cannot be consider document is comb ments, such combi	red novel or cannot we step when the do sular relevance; the red to involve an in ined with one or m	be considered to current is taken alone
later ti	cut published prior to the international filing date but han the priority date claimed	in the art.		
_	actual completion of the international search 3 October 1996	Date of mailing of	1 5. 11. 96	arch report
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Faze (+ 31-70) 340-3016	Stellma	ch, J	

Inten mail Application No PCT/US 96/11897

C (C'+'-	DOCUMENT COMMENTS	PCT/US 96/11807		
ategory *	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	WO,A,89 07598 (WARNER LAMBERT CO) 24 August 1989 cited in the application see the whole document	1-8		
A	EP,A,0 247 633 (WARNER LAMBERT CO) 2 December 1987 cited in the application see the whole document	1-8		
A	TETRAHEDRON LETT., vol. 33, no. 17, 1992, OXFORD, pages 2283-2284, XP002016558 BAUMANN,K.L. ET AL.: "The convergent Synthesis of CI-981, an Optically Active, Highly Potent Tissue Selective Inhibitor of HMG-CoA Reductase" see the whole document	1-8		
A .	CHEM.PHARM.BULL., vol. 38, no. 7, 1990, TOKYO, pages 2003-2007, XP002016659 KONNO,T.: "Physical and Chemical Changes of Medicinals in Mixtures with Adsorbents in the Solid State. IV. Study on Reduced- Pressure Mixing for Practical Use of Amorphous Mixtures of Flufenamic Acid" cited in the application see the whole document	1-8		

1

Information on patent family members

Inte. mail Application No PCT/US 96/11807

		PCT/L	JS 96/11807
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9420492	15-09-94	US-A- 5298627 AU-A- 6274294 CA-A- 2155952 CZ-A- 9502206 EP-A- 0687263 FI-A- 954073 JP-T- 8507521 NO-A- 953438 SK-A- 109095 US-A- 5342952 US-A- 5397792 US-A- 5446054	29-03-94 26-09-94 15-09-94 13-12-95 20-12-95 30-08-95 13-08-96 01-11-95 06-12-95 30-08-94 14-03-95 29-08-95
EP-A-0409281	23-01-91	US-A- 5470981 US-A- 5510488 US-A- 5489691 US-A- 5489690 	28-11-95 23-04-96 06-02-96 06-02-96
		AU-A- 5972490 CA-A- 2021546 FI-B- 94339 JP-A- 3058967 NO-B- 174709 NO-B- 176096 US-A- 5273995	24-01-91 22-01 - 91
EP-A-0330172	30 - 08-89	US-A- 5003080 AT-T- 109777 AU-B- 634689 AU-A- 1601792 AU-B- 635171 AU-A- 1601892 AU-A- 3349689 CA-A- 1330441 DE-D- 68917336 DE-T- 68917336 EP-A- 0448552 ES-T- 2058356 FI-B- 94958 FI-A,B,C 941550	26-03-91 15-08-94 25-02-93 09-07-92 11-03-93 09-07-92 06-09-89 28-06-94 15-09-94 01-12-94 02-10-91 01-11-94 15-08-95 05-04-94
	·		·

Information on patent family members

Inte mai Application No PCT/US 96/11807

JP-T- 3582 NO-B- 177 NO-A,B,C 941 NO-A,B,C 943 NO-A- 9510 NO-A- 963 PT-B- 89 US-A- 52450 US-A- 5280 WO-A- 8907 US-A- 5124 US-A- 51490 US-A- 5216 US-A- 5216 US-A- 50970 AU-B- 6340 AU-B- 6351 AU-B- 6351 AU-A- 16018 AU-A- 33496 CA-A- 13304	CT/US 96/11807
JP-T- 3582 NO-B- 1777 NO-A,B,C 941 NO-A,B,C 943 NO-A- 9510 NO-A- 9633 PT-B- 89 US-A- 52450 US-A- 52860 WO-A- 89079 US-A- 51244 US-A- 51496 US-A- 52166 US-A- 50976 WO-A-8907598 24-08-89 US-A- 50036 AT-T- 1093 AU-B- 6346 AU-A- 16016 AU-B- 6355 AU-A- 16016 AU-A- 33496 CA-A- 13304	Publication date
AT-T- 1092 AU-B- 6346 AU-A- 16012 AU-B- 6352 AU-A- 16018 AU-A- 33496 CA-A- 13304	566 03-07-95 725 27-09-98 957 27-09-98 975 27-09-98 245 27-09-98 774 31-03-94 947 14-09-93 126 18-01-94 598 24-08-89 182 23-06-92 1837 22-09-92 174 01-06-93
DE-D- 68917: DE-T- 68917: EP-A- 0330: EP-A- 0448: ES-T- 2058: FI-B- 949: FI-A,B,C 941: IE-B- 639: JP-T- 35002: NO-B- 1779: NO-A,B,C 9417: NO-A,B,C 9430: NO-A- 9516: NO-A- 9632: PT-B- 897: US-A- 52456	777 15-08-94 689 25-02-93 792 09-07-92 171 11-03-93 689 06-09-89 141 28-06-94 636 15-09-94 636 01-12-94 672 30-08-89 652 02-10-91 655 01-11-94 655 05-04-94 656 03-07-95 679 27-09-90 675 27-09-90 675 27-09-90 674 31-03-94

information on patent family members

Inter anal Application No PCT/US 96/11897

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-8907598		US-A-	5280126	18-01-94
	•	US-A-	5124482	23-66-92
		US-A-	5149837	22-69-92
		US-A-	5216174	01-06-93
		US-A-	5097045	17-03-92
EP-A-0247633	02-12-87	US-A-	4681893	21-07-87
	•	AU-B-	601981	27-09-90
••	,	AU-A-	7315987	03-12-87
		CA-A-	1268768	08-05-90
		FI-C-	88617	10-06-93
		HK-A-	119493	12-11-93
		IE-B-	60014	18-05-94
		JP-B-	7057751	21-06-95
		JP-A-	62289577	16-12-87
		KR-B-	9401006	08-02-94