# IBM<sub>2</sub>

## Алгоритм Гровера

Выполнили: Фадеев Артём, Елизбарашвили Серго, М32021

#### Цель работы:

- Изучить применение алгоритма Гровера
- Изучить принцип работы алгоритма
- Проанализировать полученные результаты

#### Суть алгоритма

Представим классическую задачу поиска элемента в массиве. Классическими алгоритмами задача разрешима в среднем за O(N/2) операций и за O(N) в худшем.

Алгоритм Гровера позволяет сократить количество операций до  $\sqrt{N}.$ 

### Принцип работы

Алгоритм строится на методе *усиления амплитуды.* На каждой итерации алгоритма амплитуда искомого элемента увеличивается и, проделав определённое количество итераций, становится максимальной, что и позволяет найти искомый элемент.

Поскольку заранее ничего не известно о элементах массива данных, в котором производится поиск элемента, то единственное, что известно о нём — это суперпозиция всех его элементов  $|s\rangle$ . Поскольку изначально вероятность угадать искомый элемент ровно такая же, как угадать любой другой, то в худшем случае необходимо будет попробовать N раз.

Метод усиления амплитуды имеет наглядную геометрическую интерпретацию:

в проекции на плоскость рассмотрим наш искомый элемент w и изначальную суперпозицию всех элементов  $|s\rangle$ . Весь алгоритм основан на двух отражениях, переводящих через T итераций вектор  $|s\rangle$  в вектор w.



Первое отражение — отражение вектора суперпозиции относительно вектора  $|s'\rangle$ , перпендикулярного w. Пусть исходный угол между  $|s\rangle=\Psi_0$  и  $|s'\rangle$  составляет  $\theta$ . Тогда после отражения угол между  $\Psi_1$  и  $|s\rangle$  будет  $2\theta$ , где  $\Psi_1$  — образ вектора  $\Psi_0$  после отражения.

Второе отражение — отражение  $U_s|\Psi_1\rangle$  получившегося вектора  $\Psi_1$  относительно вектора |s>. После двух отражений получаем, что исходный вектор  $\Psi_0$  перешёл в вектор  $U_s|\Psi_1\rangle$ , который составляет с вектором  $|s'\rangle$  теперь уже угол, равный  $3\theta$ .

На следующей итерации угол между  $U_s|\Psi_2\rangle$  и  $|s\rangle$  будет  $7\theta$ , и с каждой итерацией будет увеличиваться на  $2\theta^*+1$ , где  $\theta^*$  - текущий угол между  $\Psi_i$  и  $|s'\rangle$  Итого получим уравнение на количество итераций, через которое исходный вектор  $|s\rangle$  перейдёт в w:

 $heta+2 heta*T=\pi/2$ , откуда  $T=rac{(\pi\sqrt{N})}{4}-rac{1}{2\sqrt{N}}$ , что доказывает факт о том, что элемент будет найден приблизительно за  $\sqrt{N}$  операций

Наглядно описывает принцип работы и другая интерпретация в виде гистограммы:

Изначальная амплитуда всех состояний равна  $\frac{1}{\sqrt{N}}$ . Вышеприведенные отражения сначала изменяют амплитуду искомого элемента на противоположную, вследствие чего средняя амплитуда уменьшается, и модуль амплитуды отраженного элемента увеличивается. После чего искомый элемент вновь отражается и имеет более выраженную амплитуду, по сравнению с другими элементами.



## Пример с помощью квантового компьютера

Для простоты и наглядности возьмём всего 2 кубита. Для передачи их состояний будем использовать *оракулы*:

IBM2 1

В общем виде оракул выглядит следующим образом:

$$U_w|x
angle = \left\{egin{array}{ll} |x
angle & ext{if } x
eq w \ -|x
angle & ext{if } x=w \end{array}
ight.$$

где w — искомый элемент.

Не умаляя общности положим |w
angle=|11
angle

Тогда исходный оракул можно представить в виде матрицы:

$$U_w = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{bmatrix}$$

В схеме квантового компьютера оракул  $U_w$  представляется в следующем виде:



Оракул  $U_s$  представляется следующим образом:

$$U_0rac{1}{2}(\ket{00}+\ket{01}+\ket{10}+\ket{11})=rac{1}{2}(\ket{00}-\ket{01}-\ket{10}-\ket{11})$$

В схеме квантового компьютера оракул  $U_s$  представляется в следующем виде:



И общая схема:



#### Вывод

Мы изучили принцип работы алгоритма Гровера и его применение, а также на практике реализовали его с помощью квантового компьютера и убедились в его преимуществе, по сравнению с обычными алгоритмами поиска.

IBM2 2