AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-19 (canceled)

Claim 20 (currently amended): A hexylcarboxanilide of formula (I)

in which

L represents R^2 R^2 ,

- represents hydrogen, C₁-C₈-alkyl, C₄-C₆-alkylsulphinyl, C₄-C₆-alkylsulphonyl, C₄-C₄-alkoxy-C₄-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₄-C₄-haloalkylthio, C₄-C₄-haloalkylsulphinyl, C₄-C₄-haloalkylsulphonyl, halo-C₄-C₄-alkoxy-C₄-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₄-C₃-alkyl, (C₄-C₃-alkyl)carbonyl-C₄-C₃-alkyl, or (C₄-C₃-alkoxy)carbonyl-C₄-C₃-alkyl; represents halo-(C₄-C₃-alkyl)carbonyl-C₄-C₃-alkyl, halo-(C₄-C₃-alkoxy)-carbonyl-C₄-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₄-C₈-alkyl)carbonyl, (C₄-C₈-alkoxy)carbonyl; represents (C₄-C₄-alkoxy-C₄-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₄-C₆-haloalkyl)carbonyl, (halo-C₄-C₄-alkoxy-C₄-C₄-alkoxy-C₄-C₄-alkoxy-C₄-C₈-haloalkoxy)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁴, -CONR⁵R⁶, or -CH₂NR⁷R⁸,
- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,
- R³ represents halogen, C₁-C₈-alkyl [[,]] or C₁-C₈-haloalkyl, and

CS8774 - 2 -

P⁴ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

 R^5 -and R^6 -independently of one another each represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^5 -and R^6 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^9 ,

 R^7 and R^8 independently of one another represent hydrogen, C_4 - C_8 -alkyl, or C_3 - C_8 -eycloalkyl; or represents C_4 - C_8 -haloalkyl, C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^7 -and R^8 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^9 ,

R⁹ represents hydrogen or C₁-C₆-alkyl, and
A represents a radical of formula (A1)

$$R^{10}$$
 R^{10}
 R^{11}
 R^{11}
(A1)

in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, or C_1 - C_4 -haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl- C_1 - C_4 -alkyl,

CS8774 - 3 -

R¹¹ represents hydrogen, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms, and represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-or alkoxy-C₁-C₄-alkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio-C₁-C₄-alkyl or C₁-C₄-haloalkoxy-C₁-C₄-alkyl having in each case 1 to 5 halogen atoms; or represents phenyl.

Claim 21 (currently amended): A hexylcarboxanilide of formula (I) according to Claim 20 in which

L represents
$$\mathbb{R}^2$$
,

 $R^{1} \quad \text{represents hydrogen, C_{1}-C_{6}-alkyl, G_{4}-G_{4}-alkylsulphinyl, C_{4}-G_{4}-alkylsulphonyl, C_{4}-G_{3}-alkoxy-C_{4}-G_{3}-alkyl, or C_{3}-G_{6}-cycloalkyl; represents C_{1}-C_{4}-haloalkyl, C_{4}-G_{3}-alkoxy-C_{4}-G_{3}-alkyl, or C_{3}-G_{8}-halocycloalkyl having in each case 1 to 9 fluorine, ehlorine, and/or bromine atoms; represents formyl, formyl-C_{4}-G_{3}-alkyl, $(C_{4}$-G_{3}-alkyl)carbonyl-C_{4}-C_{3}-alkyl, or $(C_{4}$-G_{3}-alkoxy)carbonyl-C_{4}-G_{3}-alkyl)carbonyl-C_{4}-C_{3}-alkyl, halo-$(C_{4}$-G_{3}-alkoxy)carbonyl-C_{4}-G_{3}-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_{4}$-G_{6}-alkyl)carbonyl, $(C_{4}$-G_{4}-alkoxy)carbonyl, $(C_{4}$-G_{3}-alkoxy-C_{4}-G_{3}-alkyl)carbonyl, or $(C_{3}$-G_{6}-cycloalkyl)carbonyl; represents $(C_{4}$-G_{3}-alkyl)carbonyl, $(C_{4}$-G_{4}-haloalkoxy)carbonyl, $(halo-$C_{4}$-$G_{3}$-alkoxy-$C_{4}$-$G_{3}$-alkyl)carbonyl, or $(C_{3}$-G_{6}-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or represents $-$C(=O)C(=O)R^{4}$, $-$CONR^{5}R^{6}$, or $-$CH_{2}NR^{7}R^{8}$,}$

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,

R³ represents fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl [[,]] or C₁-C₆-halo-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms, and

CS8774 - 4 -

P⁴ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

 R^5 and R^6 independently of one another each represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkoxy-}\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-cycloalkyl}$; or represents $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-haloalkyl}$, halo- $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkoxy-}\mathsf{C}_1\text{-}\mathsf{C}_3\text{-alkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_6\text{-halocycloalkyl}$ having in each case having 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^5 and R^6 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^9 ,

 R^7 -and R^8 -independently of one another each represent hydrogen, C_4 - C_6 -alkyl, or C_3 - C_6 -cycloalkyl; or represent C_4 - C_4 -haloalkyl, C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^7 -and R^8 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^9 .

 R^9 represents hydrogen or C_4 - C_4 -alkyl, and

A represents a radical of formula (A1)

$$R^{10}$$
 R^{10}
 R^{11}
 R^{12}
(A1)

in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, or cyclopropyl; represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each 1 to 5 fluorine, chlorine, and/or bromine atoms; or

CS8774 - 5 -

represents trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl, or aminocarbonylethyl,

R¹¹ represents hydrogen, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R¹² represents hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl.

Claims 22-23 (canceled)

Claim 24 (currently amended): A hexylcarboxanilide of formula (I) according to Claim 20 in which R^1 represents hydrogen [[,]] formyl, or $-C(=O)C(=O)R^4$, where R^4 is as defined for formula (I) in Claim 20.

Claims 25-26 (canceled)

Claim 27 (previously presented): A hexylcarboxanilide of formula (I) according to Claim 20 in which R^3 represents C_1 - C_8 -alkyl.

Claim 28 (previously presented): A hexylcarboxanilide of formula (I) according to Claim 20 in which R^3 represents C_1 - C_8 -haloalkyl.

Claim 29 (canceled)

Claim 30 (previously presented): A composition comprising one or more hexylcarboxanilides of formula (I) according to Claim 20 and one or more extenders and/or surfactants.

Claim 31 (withdrawn): A method of controlling unwanted microorganisms comprising applying an effective amount of one or more hexylcarboxanilides of formula (I) according to Claim 20 to the microorganisms and/or their habitats.

CS8774 - 6 -

Claims 32-37 (canceled)

CS8774 - 7 -