Atividade 2: Dinâmica de Robôs

Bernardo Bresolini*

* Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis - MG (e-mails: berbresolini14@gmail.com.)

1. EXERCÍCIOS

Obtenha a matriz de cinemática direta para o robô RPR da FIG. 1.

Figura 1. Diagrama de arames de um robô RPR

Inicialmente deve ser atribuídos os eixos z_i nos eixos de atuação, para i=0,1,2. O último eixo é atribuído ao final. Então

Figura 2. Atribuindo os frames \boldsymbol{z}

Os eixos x_i podem ser atribuídos, segundo SPONG (p.74)

Se z_{i-1} **intercepta** z_i , x_i é escolhido no plano normal ao formado por z_i e z_{i-1} . A escolha natural da origem o_i neste caso é no ponto de interseção de z_i e z_{i-1} , o qe fará com que $a_i=0$.

Deste modo, os eixos x_i são atribuídos conforme a FIG. 3. O último frame poderia ser atribuído de duas formas. Primeiramente aplicando o mesma configuração de frame anterior, caso não houvesse uma garra na ponto. Para a garra, deve-se atribuir a convenção de garra a=z, s=y, n=x.

Contudo, como se pode observar na FIG. 3, a convenção de garra não cumpre com DH1 e DH2. Deste modo, pode-se aplicar a matriz de transformação com base nas

técnicas estudadas no Cap. 2 do livro do SPONG ou atribuir um frame anterior de forma com que o sistema cumpra com estas regras.

Figura 3. Atribuição do eixo x

Escolhendo a segunda opção, tem-se a atribuição de frames mostrada na FIG. 4. Com os frames, é possível montar a tabela de Denavit-Hartenberg.

Figura 4. Atribuição de frames final

Tabela 1. Parâmetros DH para o robô RPR da FIG. 4

i	a_i	$lpha_i$	d_i	$ heta_i$
1	0	$-\pi/2$	ℓ_1	θ_1^*
2	0	$\pi/2$	$\ell_2 + \ell_3 + d_2^*$	$-\pi/2$
3	ℓ_4	$\pi/2$	0	$\theta_3^* + \pi/2$
4	0	$-\pi/2$	0	$-\pi/2$

Usando os parâmetros de cada linha obtidos na TAB. 1 é determinada a matriz de transformação homogênea A_i do $link\ i$ para o i-1, fazendo

$$A_i = \text{Rot}_{z,\,\theta_i} \, \text{Trans}_{z,\,d_i} \, \text{Trans}_{x,\,a_i} \, \text{Rot}_{x,\,\alpha}$$

$$= \begin{bmatrix} c_{\theta_i} - s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} \mid a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} - c_{\theta_i} s_{\alpha_i} \mid a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} \mid d_i \\ \hline 0 & 0 & 1 \end{bmatrix}$$

Aplicando os valores da TAB. 1, segue

$$A_{1} = \begin{bmatrix} c_{\theta_{1}} & 0 & -s_{\theta_{1}} & 0 \\ s_{\theta_{1}} & 0 & c_{\theta_{1}} & 0 \\ 0 & -1 & 0 & |\ell_{1} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & |\ell_{2} + \ell_{3} + d_{2} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -s_{\theta_{3}} & 0 & c_{\theta_{3}} & |-\ell_{4}s_{\theta_{3}} \\ c_{\theta_{3}} & 0 & s_{\theta_{3}} & |-\ell_{4}s_{\theta_{3}} \\ c_{\theta_{3}} & 0 & s_{\theta_{3}} & |\ell_{4}c_{\theta_{3}} \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

A matriz de transformação T de 4 para 0 é então determinada por

$$T_4^0 = \begin{bmatrix} c_{\theta_1} & s_{\theta_1}s_{\theta_3} & -s_{\theta_1}c_{\theta_3} & r_{41} \\ s_{\theta_1} & -c_{\theta_1}s_{\theta_3} & c_{\theta_1}c_{\theta_3} & r_{42} \\ 0 & -c_{\theta_3} & -s_{\theta_3} & \ell_1 - \ell_4s_{\theta_3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

no qual

$$r_{41} = -(d_2 + \ell_2 + \ell_3)s_{\theta_1} - \ell_4 s_{\theta_1} c_{\theta_3}$$

$$r_{42} = +(d_2 + \ell_2 + \ell_3)c_{\theta_1} + \ell_4 c_{\theta_1} c_{\theta_3}$$

Se $\theta_1 = \theta_3 = 0$, segue

$$T_{\text{home}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \ell_2 + \ell_3 + \ell_4 + d_2 \\ 0 & -1 & 0 & \ell_1 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

A matriz de rotação corresponde a uma rotação em $x_0=-\pi/2$, enquanto que a translação em $y_0=\ell_2+\ell_3+\ell_4+d_2$ e em $z_0=\ell_1$. Fisicamente, é a resposta esperada.

Para $\theta_1 = 0$ e $\theta_3 = \pi/2$, segue

$$T\Big|_{\theta_1=0,\;\theta_3=\pi/2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & \ell_2 + \ell_3 + d_2 \\ 0 & 0 & -1 & \ell_1 - \ell_4 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$