

Quick intro to magnetic confinement... waiting for next lectures during the week

Piero Martin

Department of Physics and Astronomy, University of Padova, Italy

Consorzio RFX, Padova, Italy

1

Modeling magnetic fusion plasmas

Fusion plasma

- A fusion plasma is a fully ionized gas
- Behavior dominated by long-range electric and magnetic fields
- Very good conductor of electricity
 - n_e (plasma) ≈ $10^{-8} \times n_e$ (Cu)
 - $-\sigma$ (plasma) $\approx 40 \times \sigma$ (Cu)
 - Very little collisions at high temperature and low density
- Plasma shielded from DC electric fields
- DC magnetic fields can penetrate

Self-consistency in magnetized plasma

Sources $(\rho, \mathbf{J}) \leftarrow \rightarrow$ fields (\mathbf{E}, \mathbf{B})

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

Models for plasma description

How magnetic fields confine charged particles?

Single-particle model

$$m\frac{d^2\vec{r}}{dt^2} = q(\vec{E} + \vec{v} \times \vec{B})$$

o Kinetic theory

$$f_{\alpha}(\vec{r}, \vec{v}, t) = \frac{dN_{\alpha}(\vec{r}, \vec{v}, t)}{d^{3}r \ d^{3}v}$$

Fluid model

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{v}) = 0$$

$$\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = \nabla P - \underline{J} \times \underline{B}$$

$$\frac{\partial P}{\partial t} + \underline{v} \cdot \nabla P = \gamma P \nabla \cdot \underline{v}$$

$$\frac{\partial B}{\partial t} = \nabla \times (\underline{v} \times \underline{B})$$

2

Single-particle motion

Single-particle motion

Motion in prescribed magnetic and electric fields

$$m\frac{d^2\vec{r}}{dt^2} = q(\vec{E} + \vec{v} \times \vec{B})$$

Single-particle motion

Motion in prescribed magnetic and electric fields

$$m\frac{d^2\vec{r}}{dt^2} = q(\vec{E} + \vec{v} \times \vec{B})$$

Particle motion in Earth magnetic field

Single-particle model describes a variety of physics phenomena

3

Need for self-consistency: the fluid model

Need for self-consistency: an example

- Equilibrium: plasma confined by background B
- This magnetic field is partly produced by the plasma itself

Figure 5.6. Schematic diagram of a linear Z-pinch experiment.

Magnetic Confinement Fusion

The goal: energy production

a toroidal magnetic container, with helical magnetic field The tool:

$$\nabla p = \vec{J} \times \vec{B}$$

 $\nabla p = \vec{J} \times \vec{B}$ force balance between magnetic and pressure forces

Fluid equations

 Neutral gases and liquids: fluid equations derived treating the fluid as a continuous medium and considering the dynamics of a small volume of the plasma.

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \rho \vec{V} = 0$$

$$\rho \frac{d\vec{V}}{dt} = \rho \vec{g} - \vec{\nabla}p + \mu \nabla^2 \vec{V} + \frac{2}{3}\mu \vec{\nabla}(\vec{\nabla} \cdot \vec{V})$$

Fluid equations in plasmas

 Subdivide the plasma in a large number of small and moving fluid elements

 The behavior of each fluid element is described by average macroscopic properties of the particles

contained th

Macroscopic averages

 Fluid description -> developing a model describing the evolution of important macroscopic plasma properties

- $n_{\rm e}(\mathbf{r},t), n_{\rm i}(\mathbf{r},t)$
- $\mathbf{U}_{e}(\mathbf{r},\dagger)$, $\mathbf{U}_{i}(\mathbf{r},\dagger)$
- $-T_{\rm e}(\mathbf{r},t), T_{\rm i}(\mathbf{r},t)$
- $p_e(\mathbf{r},t), p_i(\mathbf{r},t)$

- E.g.: macroscopic velocity u_e
 - Average velocity of all the electrons contained in the fluid element

Size of a fluid element

- It has to be possible to define a range of sizes for each element that satisfies two conflicting requirements:
 - The element can not be to small, otherwise too few particles inside and averaging makes little sense
 - Not too big, otherwise spatial accuracy lost

Fusion plasma

- $-N_{\rm e}=10^{20}~{\rm m}^{-3}$
- L=1 m
- $-\Delta x=10^{-5}$ good resolution
- $-\Delta V = 10^{-15} \,\mathrm{m}^{-3}$
- $N_e = 10^5 >> 1$

Is a fluid model useful for a plasma?

- Example: air at atmospheric pressure
 - Molecules within each fluid element are collision dominated
 - Collisions keep molecules closely confined together
 - A molecule can not move over long distances with respect to its neighbors. It is confined in a region of the size of its mean free path
 - Molecules in each element form a well-defined cluster of particles, whose identity is maintained as the system evolves in time.
- Coherence due to high collisionality

 fluid model useful for air

Each fluid element correspond to a super-particle with mass $mn\Delta V$ and velocity u

Is a fluid model useful for a plasma?

Fusion plasma are nearly collisionless....

- ...but magnetic field acts to keep them together in the perpendicular direction.
 - The small size of the gyro-radius keep particles close to one another

The magnetic field replaces collisions in providing perpendicular coherence to the particles in a fluid element

- ...but particles move freely along B...
 - Need kinetic treatment
 - But fluid model often incorrect when unimportant..
 - ..not a huge problem

Two-fluid model

Conservation of mass

$$\frac{\partial n_{e}}{\partial t} + \nabla \cdot (n_{e}\mathbf{u}_{e}) = 0,
\frac{\partial n_{i}}{\partial t} + \nabla \cdot (n_{i}\mathbf{u}_{i}) = 0.$$
(10.50)

Conservation of momentum

$$m_{e}n_{e}\left(\frac{\partial}{\partial t} + \mathbf{u}_{e} \cdot \nabla\right)\mathbf{u}_{e} = -en_{e}(\mathbf{E} + \mathbf{u}_{e} \times \mathbf{B}) - \nabla p_{e} - m_{e}n_{e}\overline{\nu}_{ei}(\mathbf{u}_{e} - \mathbf{u}_{i}),$$

$$m_{i}n_{i}\left(\frac{\partial}{\partial t} + \mathbf{u}_{i} \cdot \nabla\right)\mathbf{u}_{i} = en_{i}(\mathbf{E} + \mathbf{u}_{i} \times \mathbf{B}) - \nabla p_{i} - m_{e}n_{e}\overline{\nu}_{ei}(\mathbf{u}_{i} - \mathbf{u}_{e}).$$
(10.51)

Conservation of energy

$$\frac{3}{2}n_{e}\left(\frac{\partial}{\partial t} + \mathbf{u}_{e} \cdot \nabla\right) T_{e} + p_{e}\nabla \cdot \mathbf{u}_{e} + \nabla \cdot \mathbf{q}_{e} = S_{e},$$

$$\frac{3}{2}n_{i}\left(\frac{\partial}{\partial t} + \mathbf{u}_{i} \cdot \nabla\right) T_{i} + p_{i}\nabla \cdot \mathbf{u}_{i} + \nabla \cdot \mathbf{q}_{i} = S_{i},$$
(10.52)

with

$$S_{e} = \frac{F_{e}^{(\alpha)}}{4} E_{\alpha} n_{e}^{2} \langle \sigma v \rangle + F_{e}^{(a)} S_{a} + \eta J^{2} - C_{B} n_{e}^{2} T_{e}^{1/2} - \frac{3}{2} n_{e} \overline{v}_{eq} (T_{e} - T_{i}),$$

$$S_{i} = \frac{1 - F_{e}^{(\alpha)}}{4} E_{\alpha} n_{e}^{2} \langle \sigma v \rangle + \left(1 - F_{e}^{(a)}\right) S_{a} - \frac{3}{2} n_{e} \overline{v}_{eq} (T_{i} - T_{e}).$$
(10.53)

Two-fluid model

Collisional friction force: result of momentum exchange collisions

Two-fluid model

- Rate of change of internal energy
- Compression work
- Thermal conduction

Conservation of energy
$$\frac{3}{2}n_{e}\left(\frac{\partial}{\partial t} + \mathbf{u}_{e} \cdot \nabla\right) T_{e} + p_{e}\nabla \cdot \mathbf{u}_{e} + \nabla \cdot \mathbf{q}_{e} = S_{e},$$

$$\frac{3}{2}n_{i}\left(\frac{\partial}{\partial t} + \mathbf{u}_{i} \cdot \nabla\right) T_{i} + p_{i}\nabla \cdot \mathbf{u}_{i} + \nabla \cdot \mathbf{q}_{i} = S_{i},$$
(10.52)

with

$$S_{e} = \frac{F_{e}^{(\alpha)}}{4} E_{\alpha} n_{e}^{2} \langle \sigma v \rangle + F_{e}^{(a)} S_{a} + \eta J^{2} - C_{B} n_{e}^{2} T_{e}^{1/2} - \frac{3}{2} n_{e} \overline{v}_{eq} (T_{e} - T_{i}),$$

$$S_{i} = \frac{1 - F_{e}^{(\alpha)}}{4} E_{\alpha} n_{e}^{2} \langle \sigma v \rangle + \left(1 - F_{e}^{(a)}\right) S_{a} - \frac{3}{2} n_{e} \overline{v}_{eq} (T_{i} - T_{e}).$$
(10.53)

From two-fluid to single fluid assumptions of ideal MHD

Length scales >> Larmor radius

$$a >> r_{Li} >> r_{Le} \approx \lambda_{de}$$

- Frequencies << gyrofrequency
- Fluid velocity << thermal velocity
- No electron inertia
- Quasi-neutrality
- No Hall term in Ohm's law

The single fluid model

O

mass:
$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} = 0;$$
momentum:
$$\rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{J} \times \mathbf{B} - \nabla p;$$
Ohm's law:
$$\mathbf{E} + \mathbf{v} \times \mathbf{B} = 0 \quad \text{ideal MHD},$$

$$\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta_{\parallel} \mathbf{J} \quad \text{resistive MHD};$$
energy:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{p}{\rho^{\gamma}} \right) = 0;$$
Maxwell:
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J},$$

$$\nabla \cdot \mathbf{B} = 0.$$

Plasma can be described as a single magnetized fluid

4

MHD equilibrium

The problem of MHD equilibrium

The MHD equilibrium

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{v}) = 0 \tag{1}$$

$$\rho \left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v} \right) = \nabla P - \underline{J} \times \underline{B}$$
 (2)

$$\frac{\partial P}{\partial t} + \underline{v} \cdot \nabla P = \gamma P \nabla \cdot \underline{v}$$

$$\frac{\partial B}{\partial t} = \nabla \times (\underline{v} \times \underline{B})$$
(3)

$$\frac{\partial B}{\partial t} = \nabla \times (\underline{v} \times \underline{B}) \tag{4}$$

Plasma equilibrium (v=0 if flow << sound speed):

$$\frac{\partial}{\partial t} = 0 \qquad \qquad \vec{v} = 0$$

The MHD equilibrium

- MHD equilibrium in toroidal geometry has two parts
 - RADIAL PRESSURE BALANCE
 - TOROIDAL FORCE BALANCE

Radial pressure balance

 The plasma is a hot core of gas that tends to expand uniformly along the minor radius r

Toroidal force balance

 Because of the toroidal geometry, unavoidable forces are generated by both the toroidal and poloidal B

 They tend to push the plasma outward.

Need to be balanced

Linear vs. toroidal configurations

Magnetic flux surfaces

Magnetic field perpendicular to pressure gradient

Pressure is constant on magnetic flux surfaces

Important for experimental measurements

Current, magnetic and pressure surfaces

The angle between **J** and **B** is in general arbitrary

$$\vec{J} \cdot \nabla p = 0$$

Current density perpendicular to pressure gradient

$$|\vec{J} \times \vec{B} = \nabla p|$$

$$\vec{J} \times \vec{B} = \nabla p$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\frac{1}{\mu_0}(\nabla \times \vec{B}) \times \vec{B} = \nabla p$$

$$\vec{J} \times \vec{B} = \nabla p$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\frac{1}{\mu_0}(\nabla \times \vec{B}) \times \vec{B} = \nabla p$$

$$\vec{B} \times (\nabla \times \vec{B}) = \frac{1}{2} \nabla B^2 - (\vec{B} \cdot \nabla) \vec{B}$$

$$\vec{J} \times \vec{B} = \nabla p$$

$$\nabla \times \vec{B} = \mu_0 \vec{J}$$

$$\frac{1}{\mu_0}(\nabla \times \vec{B}) \times \vec{B} = \nabla p$$

$$\vec{B} \times (\nabla \times \vec{B}) = \frac{1}{2} \nabla B^2 - (\vec{B} \cdot \nabla) \vec{B}$$

$$\nabla \left(p + \frac{B^2}{2\mu_0}\right) - (\vec{B} \cdot \nabla)\vec{B} = 0$$

Radial pressure balance

$$\nabla_{\perp} \left(p + \frac{B^2}{2\mu_0} \right) - \frac{B^2}{\mu_0} (\hat{b} \cdot \nabla) \hat{b} = 0$$

$$\hat{b} = \frac{B}{B}$$

$$\nabla_{\perp} = \nabla - \hat{b}(\hat{b} \cdot \nabla)$$

Curvature

$$\vec{\kappa} = \hat{b}(\hat{b} \cdot \nabla) = -\frac{\vec{R}_C}{R_C^2}$$

Radial pressure balance

Magnetic field provide two radial force terms:

$$\nabla_{\perp} \left(p + \frac{B^2}{2\mu_0} \right) - \frac{B^2}{\mu_0} (\hat{b} \cdot \nabla) \hat{b} = 0$$

PRESSURE

TENSION

Magnetic pressure: ⊕-pinch

Configuration with pure toroidal field

Figure 5.1. Linear θ -pinch geometry.

A simple example: ⊕-pinch

- MAGNETIC + KINETIC pressure = CONSTANT in the plasma
- Plasma confined by the pressure of the applied magnetic field

Figure 5.2. Equilibrium profiles for a θ pinch.

Experimental ⊕-pinch

- Θ-pinch devices among the first experiments to be realized
- End-losses severe problem
- O A Θ-pinch can not be bent into a toroidal equilbrium

Z-pinch

- Purely poloidal field
- All quantities are only functions of r

Figure 5.4. Linear Z-pinch geometry.

Z-pinch

o In contrast to the Θ-pinch, for a Z-pinch it is the tension force and not the magnetic pressure gradient that provides radial confinement of the plasma

$$\frac{d}{dr}\left(p + \frac{B_{\theta}^{2}}{2\mu_{0}}\right) + \frac{B_{\theta}^{2}}{\mu_{0}r} = 0 \tag{5.15}$$

The Bennet pinch satisfies the Z-pinch equilibrium

Willard Harrison Bennett (far right) with colleagues at the U.S. Naval Research Laboratory, working on the Störmertron tube

$$B_{\theta} = \frac{\mu_0 I_0}{2\pi} \frac{r}{r^2 + r_0^2}$$

$$J_z = \frac{I_0}{\pi} \frac{r_0^2}{(r^2 + r_0^2)^2}$$

$$p = \frac{\mu_0 I_0^2}{8\pi^2} \frac{r_0^2}{(r^2 + r_0^2)^2}$$

Z-pinch

Tension force acts inwards at the edge providing radial pressure balance.

Experimental Z-pinch

Figure 5.6. Schematic diagram of a linear Z-pinch experiment.

Z- and Theta-pinches are at the basis of many toroidal confinement concepts

General screw pinch

Though the momentum equation is non-linear, the Θ -pinch and Z-pinch forces add as a linear superposition

$$\frac{d}{dr}\left(p + \frac{B_p^2}{2\mu_0} + \frac{B_t^2}{2\mu_0}\right) + \frac{B_p^2}{\mu_0 r} = 0$$

One is free to specify two functions, e.g. $B_p(r)$ and $B_t(r)$

Figure 5.7. General screw-pinch geometry.

The tokamak

Reversed Field Pinch: the low field approach

The RFP configuration is similar to a tokamak:

- it is toroidal
- a toroidal electrical current is driven in a plasma embedded in a toroidal magnetic field: pinch effect.
-but the applied toroidal field is 10x weaker than in a tokamak

