Control Systems

G V V Sharma*

CONTENTS

1	Mason's Gain Formula	1
2	Bode Plot 2.1 Introduction	1 1
3	Second order System	3
4	Routh Hurwitz Criterion	3
5	State-Space Model	3
6	Nyquist Plot	3
7	Compensators	3

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

1 Mason's Gain Formula

2 Bode Plot

- 2.1 Introduction
- 2.1. For an LTI system, the Bode plot for its gain defined as

$$G(s) = 20 \log |H(s)|$$
 (2.1.1)

is as illustrated in the Fig. 2.1. Express G(f) in terms of f.

Fig. 2.1

Solution:

$$G(f) = \begin{cases} 100 & 0 < f < 10^{1} \\ 120 - 20log(f) & 10 < f < 10^{2} \\ 200 - 60log(f) & 10^{2} < f < 10^{3} \\ 140 - 40log(f) & 10^{3} < f < 10^{4} \\ -20 & 10^{4} < f < 10^{5} \\ 180 - 40log(f) & 10^{5} < f < 10^{6} \\ 300 - 60log(f) & 10^{6} < f < 10^{7} \end{cases}$$

$$(2.1.2)$$

2.2. Express the slope of G(f) in terms of f. Solution:

$$Slope = \nabla G(f) = \frac{d(G(f))}{d(log(f))}$$
 (2.2.1)

$$\nabla G(f) = \begin{cases} 0 & 0 < f < 10^{1} \\ -20 & 10 < f < 10^{2} \\ -60 & 10^{2} < f < 10^{3} \\ -40 & 10^{3} < f < 10^{4} \\ 0 & 10^{4} < f < 10^{5} \\ -40 & 10^{5} < f < 10^{6} \\ -60 & 10^{6} < f < 10^{7} \end{cases}$$
 (2.2.2)

2.3. Express the change of slope of G(f) in terms

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

of f.

Solution:

 $\Delta(\nabla G(f))$ = Change of slope G(f) at f

$$\Delta(\nabla G(f)) = \begin{cases} -20 & f = 10^{1} \\ -40 & f = 10^{2} \\ +20 & f = 10^{3} \\ +40 & f = 10^{4} \\ -40 & f = 10^{5} \\ -20 & f = 10^{6} \end{cases}$$
 (2.3.1)

2.4. Find the number of poles and zeros of H(s). Solution:

When a zero is encountered the slope always increases by 20 dB/decade

When a pole is encountered the slope always decreases by 20 dB/decade

$$N_p = 6 \tag{2.4.1}$$

$$N_z = 3 \tag{2.4.2}$$

2.5. Find the location of the poles and zeros of H(s). The number of system poles N_p and number of system zeros N_z in the frequency range $1 \text{ Hz} \le \text{f} \le 10^7 \text{ Hz}$ is.

Solution:

When a zero is encountered the slope always increases by 20 dB/decade

When a pole is encountered the slope always decreases by 20 dB/decade

So, Poles are encountered at $f = 10, 10^2, 10^5, 10^6$

Similarly Zeros are encountered at $f = 0, 10^3, 10^4$

2.6. Obtain the transfer function of H(s).

Solution: Let us consider a generalized transfer gain

$$H(s) = k \frac{(s - z_1)(s - z_2)...(s - z_{m-1})(s - z_m)}{(s - p_1)(s - p_2)....(s - p_{n-1})(s - p_n)}$$
(2.6.1)

$$Gain = 20 \log |H(s)| = 20 \log |k| + 20 \log |s - z_1|$$

+20 \log |s - z_2| + \cdots + 20 \log |s - z_m| - 20 \log |s - p_1|
- 20 \log |s - p_2| - \cdots - 20 \log |s - z_n| (2.6.2)

Let us consider the term $20 \log |s - z_1|$ and let $s = j\omega$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right| \quad (2.6.3)$$

Based on log scale plot approximations, to the left of z_1 $\omega << z_1$ and towards right $\omega >> z_1$ For $\omega < z_1$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right| = 20\log|z_1|$$
(2.6.4)
$$= constant$$
(2.6.5)

i.e. Slope = 0

For $\omega > z_1$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right| = 20\log|\omega|$$
(2.6.6)

i.e Slope = 20

When a zero is encountered the slope always increases by 20 dB/decade

By performing similar analysis for $-20 \log |s - p_1|$, we conclude that

When a pole is encountered the slope always decreases by 20 dB/decade

So, Poles are encountered at $f = 10, 10^2, 10^5, 10^6$

Similarly Zeros are encountered at $f = 0, 10^3, 10^4$

Final Transfer function is

$$H(f) = \frac{K(f+10^3)(f+10^4)^2}{(f+10^1)(f+10^2)^2(f+10^5)^2(f+10^6)}$$
(2.6.7)

$$G(f) = 20 \log \frac{K(f+10^3)(f+10^4)^2}{(f+10^1)(f+10^2)^2(f+10^5)^2(f+10^6)}$$
(2.6.8)

$$\begin{split} s &= j\omega = j2\pi f \\ H(s) &= \frac{K(s+j2\pi10^3)(s+j2\pi10^4)^2}{(s+j2\pi10^1)(s+j2\pi10^2)^2(s+j2\pi10^5)^2(s+j2\pi10^6)} \\ &\qquad (2.6.9) \end{split}$$

2.7. Obtain the Bode plot and the slope plot for H(s) and verify with Fig. 2.1

Solution: Bode Plot of obtained Transfer Function is

Fig. 2.7

- 3 Second order System
- 4 ROUTH HURWITZ CRITERION
 - 5 STATE-SPACE MODEL
 - 6 Nyquist Plot
 - 7 Compensators