STAT 206B

Topic: Exchangeability & de Fenetti's Theorem

Winter 2022

† Exchangeability

- PH Section 2.7 (CR 3.8.2 or JB 3.5.7)
- So far we have been taking the notion of the model $y_i \stackrel{iid}{\sim} p(y \mid \theta)$ for observations y_1, \ldots, y_n .
- For this topic, let's focus on the actual distribution of the outcomes (y_1, \ldots, y_n) .
- Conditional Independence and Exchangeability.
- de Fenetti's Theorem.

PH Example p27 Participants in the 1998 General Social Survey were asked whether or not they were generally happy. Let Y_i be the random variable associated with this questions, so that

$$Y_i = \begin{cases} 1 & \text{if participant } i \text{ says that they are generally happy,} \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ Suppose someone told you the numerical value of θ , the rate of happiness among the 1272 respondents to the question.
- We assume 10 participants are sampled randomly (10 \ll 1271) and build a probability model for $p(y_1, \ldots, y_n)$ with n = 10.

PH Example p27 (contd) We may build a model as follow;

- There is some common numerical value of θ , the rate of happiness among the respondents to the question.
- It is reasonable to assume the Y_i 's as conditionally independent and identically distributed given θ (or at least approximately so due to the finite population).

$$Pr(Y_i = y_i \mid \theta, Y_j = y_j, i \neq j) = \theta^{y_i} (1 - \theta)^{1 - y_i}$$

$$Pr(Y_1 = y_1, \dots, Y_{10} = y_{10} \mid \theta) = \prod_{i=1}^{10} \theta^{y_i} (1 - \theta)^{1 - y_i}$$

$$= \theta^{\sum_{i=1}^{10} y_i} (1 - \theta)^{\sum_{i=1}^{10} (1 - y_i)}$$

• Let's think about a distribution $p(y_1, ..., y_n)$ describing the actual observables.

† PH Def 3 (or Def 3.8.2): Finite Exchangeability

Let $p(y_1, \ldots, y_n)$ be the joint density of Y_1, \ldots, Y_n . If

$$p(y_1,\ldots,y_n)=p(y_{\pi_1},\ldots,y_{\pi_n})$$

for all permutations π of $\{1, \ldots, n\}$, then Y_1, \ldots, Y_n are exchangeable.

- Exchangeable if reordering of (Y_1, \ldots, Y_n) does not change the joint distribution of (Y_1, \ldots, Y_n) .
 - \Leftrightarrow Roughly speaking, Y_1, \ldots, Y_n are exchangeable if the subscripts (the "labels" identifying the individual random quantities) are **uninformative**
- Exchangeable random variables are not necessarily independent.

† Conditional Independence (continue PH Example)

• If θ is uncertain, we describe our belief about it with $\pi(\theta)$. The marginal joint distribution of Y_1, \ldots, Y_n is then

$$p(y_1, ..., y_{10}) = \int_0^1 p(y_1, ..., y_{10} \mid \theta) \pi(\theta) d\theta$$
$$= \int_0^1 \theta^{\sum_{i=1}^{10} y_i} (1 - \theta)^{\sum_{i=1}^{10} (1 - y_i)} \pi(\theta) d\theta$$

For example, we have

$$p(1,0,0,1,0,1,1,0,1,1) = \int_0^1 \theta^6 (1-\theta)^4 \pi(\theta) d\theta$$

$$p(1,1,0,0,1,1,0,0,1,1) = \int_0^1 \theta^6 (1-\theta)^4 \pi(\theta) d\theta$$

 $\Leftrightarrow Y_1, \dots, Y_n$ are exchangeable under this model of beliefs!

† Summary!

• Claim If $\theta \sim \pi(\theta)$ and Y_1, \ldots, Y_n are conditionally i.i.d given θ , then marginally (unconditionally on θ), Y_1, \ldots, Y_n are exchangeable.

Proof Suppose Y_1, \ldots, Y_n are conditionally iid given some unknown parameter θ . Then for any permutation π of $\{1, \ldots, n\}$ and any set of values $(y_1, \ldots, y_n) \in \mathcal{Y}^n$,

$$p(y_1, ..., y_n) = \int p(y_1, ..., y_n \mid \theta) \pi(\theta) d\theta$$

$$= \int \prod_{i=1}^n p(y_i \mid \theta) \pi(\theta) d\theta$$

$$= \int \prod_{i=1}^n p(y_{\pi_i} \mid \theta) \pi(\theta) d\theta$$

$$= p(y_{\pi_1}, ..., y_{\pi_n})$$

† So far we have

Then how about the opposite direction?

† **Infinite Exchangeability** The infinite sequence of random quantities y_1, y_2, \ldots is said to be judged (infinitely) exchangeable if every finite subsequence is judged exchangeable in the sense of Def 1 Finite exchangeability.

† PH Thorem 1: de Finetti's Theorem

Let $Y_i \in \mathcal{Y}$ for all $i \in \{1, 2, ...\}$. Suppose that for any n, our belief model for $Y_1, ..., Y_n$ is exchangeable:

$$p(y_1,\ldots,y_n)=p(y_{\pi_1},\ldots,y_{\pi_n})$$

for all permutations π of $\{1, \ldots, n\}$. Then our model can be written as

$$p(y_1,\ldots,y_n) = \int p(y_1,\ldots,y_n \mid \theta) \pi(\theta) d\theta$$

for some parameter θ , some prior distribution on θ and some sampling model $p(y \mid \theta)$. The prior and sampling model depend on the form of the belief model $p(y_1, \ldots, y_n)$.

† Continue PH example de Finetti's Theorem says that

• There exists a probability distribution $\pi(\theta)$ such that, for every n, the joint distribution of (Y_1, \ldots, Y_n) writes down as

$$p(y_1,\ldots,y_n) = \int_0^1 \prod_{i=1}^n \theta^{y_i} (1-\theta)^{(1-y_i)} \pi(\theta) d\theta,$$

that is, conditional on θ , the y_i 's iid Beroulli $\text{Ber}(\theta)$ random variables where $\pi(\theta)$ represents our beliefs about $\lim_{n\to n} \sum Y_i/n$.

 \dagger For more general cases where the y_i 's are real valued and infinitely exchangeable, **de Finetti's Theorem** says that there exists an interesting representation, under the form

$$p(y_1,\ldots,y_n)=\int p(y_1,\ldots,y_n\mid\theta)\pi(\theta)d\theta.$$

This implies

• The assumption of exchangeability for every n

- There exists a likelihood $p(y_1, ..., y_n \mid \theta) = \prod_{i=1}^n p(y_i \mid \theta)$ for $y_1, ..., y_n$ (that is, conditionally independent).
- There exist a prior distribution on θ , $\pi(\theta)$ that represents our beliefs about the outcomes of $\{Y_1, Y_2, \ldots\}$ induced by our belief model $p(y_1, y_2, \ldots)$.

- Is infinite exchangeability reasonable?
 Possibly good approximation in many cases, but sometimes too restrictive. To be less restrictive, may consider partial exchangeability...
- Exchangeability will hold if the labels convey no information.
- When is the condition " Y_1, \ldots, Y_n are exchangeable for all n" reasonable?
 - For this condition to hold, we must have exchangeability and repeatability.