

- 1. Plot v_a and v_b (versus time) on the same plot.
- 2. Plot i_R in a separate plot.
- 3. Plot v_a, v_b, i_R on the same plot.
- 4. Change R to 0.1 K, and see its effect on the results.

Solve sections

transient simulation
back_euler=yes
t_start=0
t_end=10m
delt_const=0.05m
output block:
filename=rc1 dat

variables: v_a v_b i_R

- 1. Plot v a and v b (versus time) on the same plot.
- 2. Plot i_R in a separate plot.
- 3. Plot v_a, v_b, i_R on the same plot.
- 4. Change R to 0.1 K, and see its effect on the results.

Solve sections

transient simulation back_euler=yes t_start=0 t_end=10m delt_const=0.001m

output block: filename=rc1.dat

variables: v_a v_b i_R

- 1. Plot v a and v b (versus time) on the same plot.
- 2. Plot i_R in a separate plot.
- 3. Derive a general expression for the lower and upper limits between which v_b varies in the steady state.

Solve sections

SSW analysis
back_euler=yes
t_start=0
ssw_period=2m
delt_const=0.001m
output block:
filename=rc1.dat

variables: v_a v_b i_R

- 1. Plot |i| as a function of frequency (semi-log).
- 2. Plot angle(i) as a function of frequency (semi-log).
- 3. Decrease R by a factor of 2 and repeat. (Plot the two cases together.)

Solve sections

AC simulation
vary_frequency
100 to 100k
type=log
n_points=500
output block:

filename=rlc1.dat variables:

phase_of_i_R_ac mag_of_i_R_ac

- 1. Plot v a and v b versus time.
- 2. Plot v_b versus v_a. Explain the plot.
- 3. Plot i D1 and i D2 versus v a.
- 4. Change v_on from 0 to 0.7 and repeat.
- 5. Replace diode r.ece with diode spice 1.ece and repeat.

Output variables

i_D1=i1_of_D1 v_ab=v1_of_vm_ab i_L1=i1_of_L1 v_out=v1_of_vm1 (etc) Solve sections

SSW analysis back_euler=yes t start=0

ssw_period=20m delt_const=0.02m output block 1 variables: v out v ab

chk_rhs2=no chk_delx_volt=yes delxmax volt=0.1

ssw_norm=1e-12

Elements

vsrcac3.ece l.ece, r.ece diode_r.ece voltmeter.ece vdiff.ece Global parameters

- 1. For Vs, v a=v b=v c=v0=560
- 2. For diodes, ron=r_on=0.1m
- 3. For diodes, roff=r_off=1M
- 4. For diodes, v_on=v_on=0
- 5. L1=L2=L3=L0=1u

- 1. Plot v_out and v_ab versus time.
- 2. Plot i_D1 versus time.
- 3. Make L0=0.5m and repeat.

Output variables Solve sections

v_a=nodev_of_a transient simulation
v_b=nodev_of_b back_euler=yes
v_c=nodev_of_c t_start=0
v_o=nodev_of_out t_end=5m
delt_const=1u
output block:
variables: v_a v_b v_c v_o

- 1. Note the use of ground_dummy.ece.
- 2. opamp2.ece is a linear Op Amp model.
- 3. Plot v_a, v_b, v_c, v_o versus time