Лекция 5

Эквивалентность существования owf и PRG

(Конспект: К. Шмаков)

Напомним, что q(k)-PRG означает псевдослучайный генератор $\{0,1\}^k \to \{0,1\}^{q(k)}$, а \circ — конкатенацию строк.

Теорема 5.1. $\exists \ 2k\text{-}PRG \Rightarrow \exists \ owf.$

Теорема 5.2. \exists owp, сохраняющая длину $\Rightarrow \forall d \exists k^d$ -PRG, а именно,

$$G(x) = f^{k^d - k}(x) \circ B(x) \circ B(f(x)) \circ \dots \circ B(f^{k^d - k - 1}(x)),$$

 $ede\ B\ -\ mpydный\ бит\ dля\ owp\ f$, coxpanshueй dлину.

Замечание 5.1. Можно было бы воспользоваться и owf, но это сложно.

Доказательство теоремы 5.1. Пусть G - 2k-PRG. Возьмём $f(x \circ y) = G(x)$, где x и y — длины k. Покажем, что f — односторонняя.

Пусть нет, и есть взломщик, который её взламывает на доле $\geq \frac{1}{p(k)}$ для некоторого полинома p. Это означает, что существует противник, который находит элемент из $G^{-1}(G(x))$ с вероятностью $\geq \frac{1}{p(k)}$.

Тогда различающий выходы генератора алгоритм будет следущий: он берёт свой вход y, вычисляет $z=G^{-1}(y)$ и выдаёт единицу, если G(z)=y. Если y порождён G, то вероятность этого события $\geq \frac{1}{p(k)}$. Если же y взят в соответствии с равномерным распределением на $\{0,1\}^{2k}$, то вероятность, что он попал в $\mathrm{Im}\,G$, составляет $\frac{|\mathrm{Im}\,G|}{2^{2k}}\leq 2^{-k}$, т.е. вероятность выдать единицу на случайных входах экспоненциально мала и её разность с полиномиальной вероятностью на выходах генератора тоже хотя бы полиномиальна. Противоречие с тем, что $G-\mathrm{PRG}$.

Доказательство теоремы 5.2. Сначала докажем существование (k+1)-PRG, а потом — k^d -PRG.

Пусть $f\colon\{0,1\}^k\to\{0,1\}^k$ — (сильно) односторонняя перестановка, сохраняющая длину, а B— её трудный бит. Покажем, что $G(x)=f(x)\circ B(x)$ — это (k+1)-PRG.

Пусть нет, и G — не PRG, т.е. существует A, такой, что

$$|\Pr\{A(G(x)) = 1\} - \Pr\{A(y) = 1\}| \ge \frac{1}{q(k)}$$

для некоторого многочлена q. (Будем в дальнейшем эти вероятности называть "nepeaa" и "emopaa".)

Введём обозначения:

$$\alpha = \Pr\{A(f(x) \circ b) = 1 | b = \underline{B(x)}\} = \Pr\{A(f(x) \circ \underline{B(x)}) = 1\},\$$

$$\beta = \Pr\{A(f(x) \circ b) = 1 | b = \overline{B(x)}\} = \Pr\{A(f(x) \circ \overline{B(x)}) = 1\}.$$

Поскольку f — перестановка, сохраняющая длину, ϵ торую вероятность можно переписать следующим образом:

$$\begin{split} \Pr\{A(f(x)\circ b) &= 1\} = \\ \Pr\{b = B(x)\} \cdot \Pr\{A(f(x)\circ B(x)) = 1\} + \Pr\{b = \overline{B(x)}\} \cdot \Pr\{A(f(x)\circ \overline{B(x)}) = 1\} \\ &= \frac{\alpha + \beta}{2}. \end{split}$$

Первая вероятность — это как раз α . Не умаляя общности, будем считать, что на гарантированной нам бесконечной последовательности длин входов, где A взламывает G, выполняется $\alpha \geq \beta$ (в противном случае будем рассматривать другую машину: $\widetilde{A}(f(x) \circ b) = A(f(x) \circ \overline{b})$). Тогда

$$\frac{1}{g(k)} \le \Pr\{A(G(x)) = 1\} - \Pr\{A(y) = 1\} = \alpha - \frac{\alpha + \beta}{2} = \frac{\alpha - \beta}{2},$$

и мы получаем алгоритм A', который по f(x) будет находить B(x):

- выбрать $b \in \{0, 1\}$ случайным образом;
- если $A(f(x) \circ b) = 1$, то выдать b, иначе выдать \overline{b} .

Тогда

$$\Pr\{A'(f(x)) = B(x)\} = \\ \Pr\{b = B(x)\} \cdot \Pr\{A(f(x) \circ B(x)) = 1\} + \\ \Pr\{b = \overline{B(x)}\} \cdot \Pr\{A(f(x) \circ \overline{B(x)}) \neq 1\} = \\ \frac{1}{2}\alpha + \frac{1}{2}(1 - \beta) = \frac{1}{2} + \frac{\alpha - \beta}{2} \ge \frac{1}{2} + \frac{1}{g(k)},$$

что противоречит тому, что B(x) — трудный бит.

Теперь, когда мы умеем строить (k+1)-PRG, докажем, что

$$f^{k^d}(x) \circ B(x) \circ \dots \circ B(f^{k^d-1}(x))$$
 (∇)

является k^d -PRG.

Если вдруг случилось, что его умеют неплохо отличать от случайных битов, это означает, что есть противник A, который хорошо (с разностью вероятностей хотя бы $\varepsilon = \frac{1}{q(k)}$) отличает выходы генератора от случайных строк, каковые можно представить в виде

$$f^{k^d}(x) \circ b_1 \circ \dots \circ b_{k^d} \tag{\triangle}$$

 $(b_i$ — случайные биты) в силу того, что f — перестановка, сохраняющая длину.

Рассмотрим следущую цепочку распределений, в которой (∇) постепенно превращается в (Δ) :

Пусть $p_i = \Pr\{A(D_i(x)) = 1\}$. Тогда

$$\varepsilon \le |p_{k^d} - p_0| \le \sum_{i=0}^{k^d - 1} |p_{i+1} - p_i|.$$

Поэтому существует такое i_* , что

$$|p_{i_*+1} - p_{i_*}| \ge \frac{\varepsilon}{g(k)} = \varepsilon'.$$

Отсюда получаем алгоритм, который который будет отличать построенный нами (k+1)-PRG от случайных чисел с разностью вероятностей $\varepsilon'' = \frac{\varepsilon'}{q(k)}$. С вероятностью $\frac{1}{q(k)}$ угадываем $i=i_*$. Далее по входным f(x) и b строим строчку:

$$f^{k^d-i}(x) \circ b_1 \circ \cdots \circ b_i \circ b \circ B(f(x)) \circ \cdots \circ B(f^{k^d-i-1}(x)).$$

Пусть z = f(x); то, что A отличает D_{i+1} от D_i , означает, что он отличает с вероятностями, разнящимися на ε' , строку

$$f^{k^d-i}(x) \circ b_1 \circ \cdots \circ b_i \circ B(x) \circ B(f(x)) \circ \cdots \circ B(f^{k^d-i-1}(x)),$$

которую мы построили в случае, если нам дали b=B(x), от от строчки вида

$$f^{k^d-i-1}(z) \circ b_1 \circ \cdots \circ b_i \circ b_{i+1} \circ B(z) \circ \cdots \circ B(f^{k^d-i-2}(z)),$$

которая получается при том же построении, если нам дали случайный бит b.

Таким образом, мы построили алгоритм, который взламывает построенный нами в первой части доказательства (k+1)-PRG с вероятностью ε'' . Противоречие.