Сьогодні 17.04.2025

Уроκ №52

Амфотерні оксиди і гідроксиди та їхні хімічні властивості

Повідомлення мети уроку

Ви зможете:

- характеризувати поняття амфотерності й амфотерний оксид та гідроксид;
- порівнювати за хімічними властивостями основні, кислотні й амфотерні оксиди;
- порівнювати за хімічними властивостями основи, кислоти й амфотерні гідроксиди;
- характеризувати хімічні властивості амфотерних оксидів та амфотерних гідроксидів.

Мотивація навчальної діяльності

Світ, що нас оточує, наповнений хімією. І чим більше ви занурюєтесь у цей дивовижний світ, тим дивовижні факти ви пізнаєте. Хімія служила і служить людині, тісно пов'язана з іншими науками, знаходить порядок у хаосі, що нас оточує. Ви повинні засвоїти не тільки основи знань хімії, а й уміти застосовувати набуті знання на практиці.

Пригадайте

Що таке амфотерність?

Амфоте́рність — здатність сполук проявляти кислотні й основні властивості. Амфотерними сполуками (їх ще називають амфолітами) є вода, амінокислоти, гідроксиди алюмінію, цинку, хрому тощо. При дисоціації амфотерні сполуки дають іони Н⁺ і ОН⁻. Амфотерність багатьох сполук використовується в хімічному аналізі для розділення елементів.

Поняття про амфотерність

Амфотерність (від грец. Амфотеро – «подвійний», «обопільний») – здатність деяких сполук проявляти в залежності від умов як кислотні, так і основні властивості.

Поняття амфотерность було введено в 1814 р Ж. Гей-Люссаком і Л.Тенаром.

Амфотерні сполуки

Здатність сполуки виявляти основні та кислотні властивості називають амфотерністю, а саму сполуку — амфотерною.

ZnO

PbO

SnO

 Al_2O_3

Cr₂O₃

Fe₂O₃

Гідроксиди

 $Zn(OH)_2$

Pb(OH)₂

 $Sn(OH)_2$

AI(OH)₃

Cr(OH)₃

Fe(OH)₃

Амфотерні оксиди, гідроксиди і солі, що ними утворені

Оксид	Гідроксид	Гідроксид у вигляді кислоти	Кислотні залишки (валент- ність)	Сіль	Назва солі
BeO	Be(OH) ₂	H ₂ BeO ₂	BeO ₂ (II)	K ₂ BeO ₂	метаберилат (бериллат)
ZnO	Zn(OH) ₂	H ₂ ZnO ₂	ZnO ₂ (II)	K ₂ ZnO ₂	метацинкат (цинкат)
SnO	Sn(OH) ₂	H ₂ SnO ₂	SnO ₂ (II)	K ₂ SnO ₂	станіт
PbO	Sn(OH) ₂	H ₂ PbO ₂	PbO ₂ (II)	K ₂ PbO ₂	плюмбіт

Амфотерні оксиди, гідроксиди і солі, що ними утворені

Оксид	Гідроксид	Гідроксид у вигляді кислоти	Кислотні залишки (валент- ність)	Сіль	Назва солі
Al ₂ O ₃	Al(OH) ₃	HAIO ₂	AlO ₂ (I)	KAIO ₂	метаалюмінат (алюмінат)
Fe ₂ O ₃	Fe(OH) ₃	HFeO ₂	FeO ₂ (I)	KFeO ₂	метаферат (АЛЕ НЕ ФЕРРАТ)
Cr ₂ O ₃	Cr(OH) ₃	HCrO ₂	CrO ₂ (I)	KCrO ₂	метахромат (АЛЕ НЕ ХРОМАТ
SnO2	Sn(OH) ₄	H2SnO3	SnO3 (II)	K ₂ SnO ₃	метастанат (станнат)
PbO ₂	Pb(OH) ₄	H ₂ PbO ₃	SnO ₃ (II)	K2PbO3	метаплюмбат (плюмбат)

Чим пояснити явище амфотерності?

Розглянемо будову цинк гідроксиду.

3 графічної формули видно, що хімічні зв'язки утворюються між атомами Цинку й атомами Оксигену та між атомами Оксигену й Гідрогену. Ученими доведено, що сила цих зв'язків приблизно однакова. Тому під час взаємодії з кислотами розрив зв'язку відбувається по лінії а, з лугами — по лінії б. Це підтвердження того, що властивості речовин залежать не тільки від їх складу, а й від будови.

Кислотні властивості амфотерних гідроксидів (при спалюванні)

Амфотерні сполуки, взаємодіючи з основами, поводяться як кислоти. Ось і запишемо цинк гідроксід $Zn(OH)_2$ як кислоту: H_2ZnO_2 . І реакція лугу з гідроксидом буде протікати як ніби він - кислота. «Кислотний залишок» ZnO_2 двовалентний:

2KOH(тв.) + H₂ZnO₂(тв.)(сплавл.) = K₂ZnO₂ + <math>2H₂O

Реакція відбувається й між твердими речовинами за високих температур (при сплавленні).

Кислотні властивості амфотерних гідроксидів

Амфотерні сполуки, взаємодіючи з основами, поводяться як кислоти і утворюють комплексні сполуки $Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]$

Калій тетрагідроксоалюминат

 $AI(OH)_3 + 3KOH \rightarrow K_3[AI(OH)_6]$

Калій гексагидроксоалюминат

Реакція відбувається в розчині.

Як скласти формулу продукту реакції

Al(OH)₃ число після дужок множимо на 2 2×3=6 заряд ОН-множимо на число після дужок (-1)×6= - 6 Al(OH)₆

до суммарного заряду додаємо заряд Al³⁺ - 6+3= - 3 $[Al(OH)_6]$ Дописуємо попереду стільки йонів Na+, щоб заряд дорівнював 0 $-3+3=0 \text{ Na}_3[Al(OH)_6]$

Перегляд відео

Джерело: youtu.be/xm6rkV7CT7s

BCIM

Фізичні властивості амфотерних гідроксидів

Амфотерні гідроксиди це тверді речовини немолекулярної будови. Нерозчинні у воді. Мають різне забарвлення: цинк та алюміній гідроксиди — білого кольору, ферум(III) гідроксид бурого.

Основні властивості

Основні властивості амфотерних оксидів:

$$Al_2O_3 + 6HCl = 2AlCl_3 + 3H_2O;$$

 $ZnO + H_2SO_4 = ZnSO_4 + H_2O;$
 $BeO + HNO_3 = Be(NO_3)_2 + H_2O$

Основні властивості амфотерних гідроксидів:

Із переліку формул оксидів: CaO, PbO, CO — виберіть формулу амфотерного оксиду. Обчисліть масову частку Оксигену в ньому.

Mr(PbO) = Ar(Pb)+Ar(O) = 207+16=223
W(O)=
$$\frac{Ar(O)}{Mr(PbO)}=\frac{16}{223}=0,072$$
 a6o 7,2%

Берилій гідроксид належить до амфотерних гідроксидів. За аналогією із цинк гідроксидом запишіть рівняння реакцій, що підтверджують його амфотерні властивості.

Ве(ОН)₂ + 2HNO₃ \rightarrow Be(NO₃)₂+2H₂O Ве(ОН)₂ + 2NaOH \rightarrow Na₂[Be(OH)₄] – натрій тетрагідроксоберилат

Зазначте рядок із формулами лише амфотерних сполук.

A. BaO, Al₂O₃;

Б. MnO, Zn(OH)₂;

B. SO₃, Pb(OH)₂;

Γ. ZnO, Al(OH)₃.

Аргументуйте свій вибір.

Відповідь:

Взаємодіють як з кислотами так і з основами

Яку масу цинк гідроксиду можна добути із цинк хлориду масою 27, 2 г? Обчисліть масу розчину натрій гідроксиду з масовою часткою розчиненої речовини 32 %, що знадобиться для повного розчинення добутого амфотерного цинк гідроксиду.

Дано:

 $m(ZnCl_2)=27,2$ $m(Zn(OH)_2)-?$

Розвязання:

1. Обчислюємо кількість речовини заданої маси за формулою: $n=\frac{m}{M}$, де M=Mr;

 $Mr(ZnCl_2)$ =Ar(Zn)+2·35,5=136, тому M ($ZnCl_2$)=136 г/моль

n (
$$ZnCl_2$$
)= $\frac{m(ZnCl_2)}{M(ZnCl_2)}$ = $\frac{27,2}{136 \ \Gamma/\text{МОЛЬ}}$ =0,2 моль.

2.Напишемо рівняння реакції: $ZnCl_2$ +2NaOH=2NaCl+ $Zn(OH)_2 \downarrow$ n ($Zn(OH)_2$)=n ($ZnCl_2$)=0,2 моль.

n(NaOH):

Яку масу цинк гідроксиду можна добути із цинк хлориду масою 27, 2 г? Обчисліть масу розчину натрій гідроксиду з масовою часткою розчиненої речовини 32 %, що знадобиться для повного розчинення добутого амфотерного цинк гідроксиду.

Дано: | 3. Обчислюємо масу заданої кількості речовини за $m(ZnCl_2)$ =27,2 формулою: m=n·M $m(Zn(OH)_2)$ -? $Mr(Zn(OH)_2)=Ar(Zn)+2\cdot Ar(O)+2\cdot Ar(H)=65+2\cdot 16+2\cdot 1=99$, tomy M $(Zn(OH)_2)=99$ г/моль m (Zn(OH)₂) =n·M=0,2 моль·99 г/моль=19,8 г 4. Напишемо рівняння 5.Обчислюємо масу заданої кількості речовини реакції: $Zn(OH)_2+$ за формулою: m=n·M, де M=Mr

2NaOH $\rightarrow Na_2$ [Zn(OH)₄] \downarrow Mr(NaOH)=Ar(Na)+Ar(O)+Ar(H)=23+16+1=40

m(NaOH)=0,4 моль· 40 г/моль=16 г n(Zn(OH)₂)=2:1=0,4 моль. m(розчину)= $\frac{\text{m(NaOH)}}{\text{W(NaOH)}} \cdot 100\% = \frac{16 \, \Gamma}{32} \cdot 100\% = 50 \, \Gamma$ Відповідь:19,8 г цинк гідроксиду, 50 г розчину. BCIM pptx

Домашнє завдання

1. Творче завдання: підготувати повідомлення про використання сполук Алюмінію для очищення води.