5.2 Ορθογώνια σύνολα και προβολές

Ορισμός

Ένα σύνολο $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_r\}$ διανυσμάτων του \mathbb{R}^n λέγεται **ορθογώνιο** αν τα στοιχεία του είναι κάθετα ανά δύο, δηλαδή $\mathbf{u}_i\cdot\mathbf{u}_j=0$ για κάθε $1\leqslant i,j\leqslant r$ με $i\neq j$

 Σ . Δημόπουλος MA Σ 029 1/18

$$\mathbf{u}_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \ \mathbf{u}_3 = \begin{pmatrix} -1/2 \\ -2 \\ 7/2 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 2 / 18

Αν το $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_r\}$ είναι ορθογώνιο σύνολο διανυσμάτων του \mathbb{R}^n , τότε είναι γραμμικά ανεξάρτητο.

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 3 / 18

Ορισμός

Μια βάση του \mathbb{R}^n λέγεται **ορθογώνια βάση** αν είναι ορθογώνιο σύνολο.

Θεώρημα

Έστω $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_r\}$ ορθογώνια βάση υποχώρου W του \mathbb{R}^n . Τότε κάθε $\mathbf{y}\in W$ μπορεί να γραφτεί ως $\mathbf{y}=\lambda_1\mathbf{u}_1+\lambda_2\mathbf{u}_2+\ldots+\lambda_r\mathbf{u}_r$ όπου

$$\lambda_i = \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \ (1 \leqslant i \leqslant r)$$

Απόδειξη:

Σ. Δημόπουλος $MA\Sigma029$ 4 / 18

Να δειχθεί ότι τα
$$\mathbf{u}_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{u}_2 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \begin{pmatrix} -1/2 \\ -2 \\ 7/2 \end{pmatrix}$ αποτελούν

ορθογώνια βάση για τον
$$\mathbb{R}^3$$
 και να εκφραστεί το $\mathbf{y}=\begin{pmatrix}6\\11\\-8\end{pmatrix}$ ως γραμμικός συνδυασμός τους.

Σ. Δημόπουλος MAΣ029 5 / 18

Ορισμός

Έστω $\mathbf{u},\mathbf{y} \in \mathbb{R}^n$. Η προβολή του \mathbf{y} πάνω στο \mathbf{u} είναι το διάνυσμα

$$\hat{y} = \mathrm{proj}_u y = \frac{y \cdot u}{u \cdot u} u.$$

Το $z = y - \hat{y}$ ονομάζεται **κάθετη συνιστώσα του y στο u**.

Σ. Δημόπουλος ΜΑΣ029 6 / 18

$$\mathbf{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$$

Σ. Δημόπουλος ΜΑΣ029 7 / 18

Ορισμός

- Ένα ορθογώνιο σύνολο διανυσμάτων του \mathbb{R}^n λέγεται **ορθοκανονικό** αν κάθε διάνυσμα που περιέχει είναι μοναδιαίο.
- Μια ορθογώνια βάση υποχώρου W του \mathbb{R}^n λέγεται **ορθοκανονική** αν κάθε διάνυσμα που περιέχει είναι μοναδιαίο.

Σ. Δημόπουλος ΜΑΣ029 8 / 18

Να δειχθεί ότι τα
$$\mathbf{u}_1=\begin{pmatrix} 3/\sqrt{11}\\1/\sqrt{11}\\1/\sqrt{11} \end{pmatrix}$$
, $\mathbf{u}_2=\begin{pmatrix} -1/\sqrt{6}\\2/\sqrt{6}\\1/\sqrt{6} \end{pmatrix}$, $\mathbf{u}_3=\begin{pmatrix} -1/\sqrt{66}\\-4/\sqrt{66}\\7/\sqrt{66} \end{pmatrix}$ αποτελούν ορθοκανονική βάση για τον \mathbb{R}^3 .

Σ. Δημόπουλος ΜΑΣ029 9 / 18

Για έναν $m \times n$ πίνακα U, $U^T U = I_n$ αν και μόνο αν οι στήλες του είναι ορθογώνιο σύνολο του \mathbb{R}^n .

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 10 / 18

Έστω $m \times n$ πίνακας U με $U^T U = I_n$ και $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

- ||Ux|| = ||x||
- $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$

Απόδειξη:

Σ. Δημόπουλος ΜΑΣ029 11 / 18

Έστω
$$U = \begin{pmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} \sqrt{2} \\ 3 \end{pmatrix}$. Να δειχθεί ότι $U^T U = I_2$ και ότι $\|U\mathbf{x}\| = \|\mathbf{x}\|$.

Σ. Δημόπουλος ΜΑΣ029 12 / 18

Θεώρημα (Θεώρημα Προβολής)

Έστω W υπόχωρος του \mathbb{R}^n . Κάθε $\mathbf{y} \in \mathbb{R}^n$ μπορεί να γραφτεί με μοναδικό τρόπο στην μορφή

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z},$$

όπου $\hat{\mathbf{y}} \in W$ και $\mathbf{z} \in W^{\perp}$.

 $Aν \{u_1, \ldots, u_r\}$ ορθογώνια βάση του W, τότε

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \ldots + \frac{\mathbf{y} \cdot \mathbf{u}_r}{\mathbf{u}_r \cdot \mathbf{u}_r} \mathbf{u}_r.$$

Το $\hat{\mathbf{y}}$ λέγεται **ορθογώνια προβολή** του \mathbf{y} στο W και συμβολίζεται με $\mathrm{proj}_W \mathbf{y}$.

Σ. Δημόπουλος ΜΑΣ029 13 / 18

Απόδειξη

Σ. Δημόπουλος ΜΑΣ029 15 / 18

 W^{\perp} .

Έστω
$$\mathbf{u}_1=\begin{pmatrix}2\\5\\-1\end{pmatrix}$$
, $\mathbf{u}_2=\begin{pmatrix}-2\\1\\1\end{pmatrix}$, $\mathbf{y}=\begin{pmatrix}1\\2\\3\end{pmatrix}$. Να γραφτεί το \mathbf{y} ως άθροισμα διανύσματος του $W=\mathrm{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$ και διανύσματος του

Σ. Δημόπουλος ΜΑΣ029 16 / 18

Παρατήρηση

Aν $\mathbf{y} \in W$ και $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ ορθογώνια βάση του W τότε $\hat{y} = \operatorname{proj}_W \mathbf{y} = \mathbf{y}$.

Σ. Δημόπουλος ΜΑΣ029 17 / 18

 $Aν \{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ ορθοκα νονική βάση του υποχώρου W του \mathbb{R}^n , τότε για κάθε $\mathbf{y} \in \mathbb{R}^n$,

$$\mathrm{proj}_{\mathcal{W}} \textbf{y} = (\textbf{y} \cdot \textbf{u}_1) \cdot \textbf{u}_1 + \ldots + (\textbf{y} \cdot \textbf{u}_r) \textbf{u}_r.$$

An
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_r \end{bmatrix}$$
, the $\operatorname{proj}_W \mathbf{y} = UU^T \mathbf{y}$.

Σ. Δημόπουλος ΜΑΣ029 18 / 18