工務部AI執行現況:

工務部各公用廠自2019年開始推動AI技術應用,開發案件包括利用數據分析之製程操作優化、影像辨識技術應用之製程安全管理,及導入設備預警系統iEM與PRiSM,進行設備健康度預測監控等三大類,目前AI案件已立案共計30案,已完成18案上線中,進行中12案,其中自行開發27案,委外合作開發3案,預估年效益41,525千元,本部AI案件彙總如下:

幣別:新臺幣

類別	項次	題目		委外 合作 開發	實際(預定)完成日	預估年 效益 (千元)
	1	NB3機組汽發電機提高淨發電量操作 優化	\bigcirc		2020/06	3, 032
2~6		LT2、LT3、SK4、NB1、NB2 汽發電機提高淨發電量操作優化(平行展開)	\circ		1. 2022/03 完成非夏 月效益測試。 2. 預計 2022/07 完成 夏月效益測試。	10, 410
	7	龍德公用廠離峰時段機組負載優化	\circ		2021/07	4, 520
製程操作 優化	8	龍德公用廠 LT2 高壓加熱器操作優化	\bigcirc		2022/03	5, 751
	9~13	LT3、SK1~4 高壓加熱器操作優化	\bigcirc		(2022/09)	14, 856
	14	SK4 靜電集塵器操作優化		\circ	(2022/10)	364
	15	LT2 一次風車操作優化	\bigcirc		(2022/11)	275
	16	SK4 MGGH 熱能回收最佳化模組	\bigcirc		(2023/02)	1,067
	17	汽機離峰時段滑壓操作優化		\circ	(2023/02)	1, 250

AI 案件彙總(續):

類別	項次	題 目	自行開發	委外 合作 開發	實際(預定)完成日	預估年 效益 (千元)	
	18	FGD 加藥量操作優化	\bigcirc		(2023/03)	1, 350	
	19	新港公用廠飛灰洩漏偵測影像辨識	\bigcirc		2020/10		
	20~21	龍德公用廠、寧波熱電廠飛灰系統洩漏 影像辨識(平行展開)	\bigcirc		2021/06 \ 2021/02		
	22	寧波熱電廠 FGD 污泥聚合槽異常影像 辨識	\bigcirc		2021/03	避免環 保異常	
製程安全	23	龍德公用廠 FGD 污泥聚合槽異常影像 辨識(平行展開)	\circ		2022/08		
	24	SK4 爐前管線(粉煤、蒸汽及重油)洩漏 辨識	\circ		2021/08		
	25	新港燃料煤取樣智慧拍照管理	\circ		2021/12	安全操 作管理	
	26	NB2 底灰機灰渣量異常影像辨識	\bigcirc		2021/12		
	27	新港公用廠輸煤皮帶破損影像辨識	\circ		(2022/12)		
	28	設備性能監診模組(iEM)	\circ		2022/03	提升設 備安全	
設備預警 <u>29</u> 監控		設備性能監診模組(PRiSM)	\circ		2022/03	.,, .,	
	30	爐管初期洩漏預警		\circ	(2023/05)		
	合計						

-、龍德公用廠 LT2 高壓給水加熱器操作優化

(一)動機說明:

- 1. 公用廠鍋爐運轉為節省用煤量,都會在鍋爐給水段設置高壓給水加熱器(HPH, High Pressure Heater),然後利用汽機 18K 或 12K 抽汽來加熱 HPH,以提高給水溫度,但增加抽汽加熱 HPH 時,也會同時造成發電量降低。相對的,若要確保發電量,則須減少加熱 HPH 之汽機抽汽,此時因給水加熱不足,就需增加鍋爐用煤量以確保主汽量。
- 2. 過去因尖/離峰電價差異大,長期運轉模式設定為尖峰以 12K 抽汽(188℃)加熱以增加發電量,離峰則以 18K 抽汽(205℃)加熱以減少用煤量。但近年來煤價急遽上漲,原設定模式已不能確保 HPH 運轉在最有利操作點,因此擬開發 AI 模組,來提供最佳操作建議,以達到利益最大化。

45.5

題目:台化工務部智能工廠 AI 執行報告

(二)模組開發應用成果:

本案 AI 模組已於 2022 年 3 月上線應用於龍德公用廠 LT2 機組,經實際測試比較,非離峰時段用煤量平均減少 1.12 噸/時,售電量平均減少 2,498 度/時,綜合用煤與售電損益計算,效益差是每小時 1,278 元,預估年效益約新臺幣 5,751 千元。

非離峰時段調整	HPH 出口 給水温度 (°C)	平均用煤量 (頓/時)	平均售電量 (度/時)
調整前(A)	188	44. 50	36, 751
調整後(B)	205	43. 38	34, 253
差異(B-A)	17	-1.12	-2, 498

(三)模組開發流程:

定義問題 與目標

資料盤點 與清理

資料探索 分析 模組開發 與評估

線上應用

1. 定義問題:

高壓給水加熱器(HPH)係利用汽機抽汽來加熱鍋爐給水,當給水溫度提高,可以節省鍋爐用煤量,但蒸汽耗用卻會降低發電量,以往在考慮設定 HPH 溫度控制點時,雖有針對燃料煤熱值、抽汽影響發電量、鍋爐效率、汽機效率等進行計算預估,但因各數值並非即時的,計算結果未必能符合實際工況。

高壓給水加熱器(HPH) 出口給水溫度	用煤量(成本)	毛發電量(收入)
升高 ↑	減少↓	減少 ↓
降低 ↓	増加↑	増加 ↑

2. 定義目標:

以利益最大化為目標,利益=收入-成本,利用數值分析及機器學習技術,開發毛發電量與飼煤量AI預測模組,依照當時的煤價、電價及用電需求,預測毛發電量(收入)及飼煤量(成本)間的最有利損益點,以提供最佳的 HPH 出口溫度操作建議,使利益達到最大化。

3. 資料盤點與清理:

> 定義問題 與目標 資料盤點 與清理

資料探索 分析

模組開發 與評估

線上應用

(1)資料盤點:

為取得模型訓練資料, 龍德公用廠於 2022/01/11~01/31 半尖峰及離峰時段進行 HPH 各種工況的測試調整。經收集與毛發電量相關共 20 個特徵變數(包含飼煤量、主汽量、各壓力送汽量、HPH 出口溫度等)數據, 收集頻率為每分鐘一筆, 總共 4,560 筆。

(2)資料清理:

為避免模組學習錯誤數據,利用數據視覺化繪出分佈圖(如下圖),進行數據清理。1/19~1/27 HPH 測試時間為17:00~23:00,廠內於22:30後為離峰時段,鍋爐操作人員會開始降載,因該時段在 升降載數據波動較為劇烈,故剔除22:30之後的數據,剩餘4,450筆數據。

毛發電量

升降載時數據波動大,非有效數據,予以剔除。

4. 資料探索分析:

定義問題 資料盤點 與清理

資料探索 分析 模組開發 與評估

線上應用

(1)將20個與毛發電量相關特徵變數,以統計分析方法(皮爾森相關係數)進行初步變數篩選,選取原則為:相關係數絕對值大於0.3(|r|>0.3),共選出8個變數,另根據製程專業篩選與毛發電量有關的變數計6個,取聯集後,共選出11個錶點,作為建模變數,其中HPH出口給水溫度為可控變數。

以統計分析方法篩選

皮爾森相關係數:

用於度量兩個變數之間的相關程度,其值介於-1與1之間。

- 0.3 以下為低相關
- 0.3~0.7 為中等相關
- 0.7以上為高度相關

 	相	銷	製程
	係事	專業	
① #2 LPH 出口水溫	0.97	0	
② 汽機入汽量	0.97	0	0
③ 總飼煤量	0.92		0
④ 復水量	0.91		
⑤ 風車開台數	0.81		
⑥ 送 PIA 129K 蒸汽量	0.10		0
7 6.5K 總送汽量	-0.04		
⑧ HPH 出口給水溫度	-0.21		0
⑨ 6.5K 蒸汽温度	-0.32	0	
① 送 PTA 129K 蒸汽量	-0.39	0	0
11)主蒸汽溫度	-0.47	0	

(2)依據製程專業提供意見,在主汽量不變的情況下,HPH出口給水溫度改變時,會先直接影響「總飼煤量」之變化,再間接影響毛發電量的改變,可見這兩項變數之間存在有較高線性相關性,會導致模型準確度下降,為解決此問題,本案決定以分模概念建置二個模組,先以 HPH 出口給水溫度、主汽量及 6.5K 送汽量建立「總飼煤量」模型,再將預測之總飼煤量與其他 10 個特徵變數作為「毛發電量」建模變數,模組架構及特徵變數如下圖示:

5. 模組開發與評估:

定義問題 與目標

資料盤點 資料探索 與清理 分析

模組開發 與評估

線上應用

- (1)將資料清理後的數據,選取80%作為訓練數據、20%作為驗證數據。
- (2)「總飼煤量」及「毛發電量」等模組預測目標為連續型數值,故選擇以下機器學習演算法進行建模,其模組評估指標須符合 R²>0.9 且 MAPE<5%。其中「總飼煤量」也可以用理論公式進行推估,但公式內有許多參數皆為假設,計算結果會有較大誤差,經與其他演算法比較後,以線性迴歸表現較佳。

	①總飼煤量		②毛發電量	
模組演算法	預測模組		預測模組	
	\mathbb{R}^2	MAPE(%)	\mathbf{R}^2	MAPE(%)
1. 線性迴歸(Linear Regression)	0. 922	2.833	0.998	0.939
2. 隨機森林(Random Forest)	0.905	3. 144	0.990	1.520
3. 極限梯度提升(Xgboost)	0.903	3. 130	0.993	1.317
4. 理論公式	0.913	3. 145	_	_

備註:

總飼煤量理論公式: (主蒸汽熱焓-HPH 出口給水溫度熱焓)×主汽量÷鍋爐效率÷煤碳熱值 決定係數(R²):代表模組預測值與實際值的趨勢相似程度,越趨近於1越準確。

平均絕對誤差率(MAPE):代表預測值與實際值的平均誤差率,單位為%。越趨近於 () 越準確。

6. 線上應用:

定義問題 與目標 資料盤點 與清理

資料探索 分析 模組開發 與評估

線上應用

- (1)依龍德公用廠 LT2 機組 HPH 運轉模式, HPH 操作區間為 188~205℃, 可由模組計算出各溫度 之淨發電量,並結合其他生管資訊計算利益,再選取利益最大之運轉溫度做為操作建議。
- (2)已開發操作建議畫面(如下圖),由 AI 模組提供最佳之操作建議,供盤控人員因應現場運轉狀況,即時調整 HPH 出口給水溫度,確保全廠利益最大化。

龍德公用廠LT2機組HPH優化操作畫面

E]時運轉數據	
主汽量	409.5	T/H
主汽温度	540.1	°C
主汽壓力	124.3	kg/cm2
售廠區電量	31.01	MW
129K送汽量	52.6	T/H
6.5K送汽量	31.6	T/H
售台電電價	2.3260	元/度
煤碳到廠價	6.155	元/kg

日期:2022-03-29 12:30 LT2HPH操作條件建議 項目 實際值 推薦值 HPH出口給水溫度 188.2 °C 205.0 °C 總飼煤量 44.5 T/H 43.5 T/H 36.3 售台電量 38.8 MW MW 元/時 實際/預估邊際利益 -191,770 元/時 -190,667 預估邊際利益差 1,193 元/時

2022 年 3 月 29 日 為例, HPH 出口給 水溫度建議提高 至 205℃。

模組依當時煤、電價估算可增加利益 1,193元/時。

目前HPH操作溫度 188.2℃,建議 提升至 205.0℃,將 減少 發電 2,433 kW、 節省 用煤 1.0 T/H、增加利益 1,193 元/時。

7. 模組操作優化效益:

- (1) 龍德公用廠過去會依不同時段,進行 HPH 給水溫度調整,在非離峰時段(尖峰、半尖峰及周六半 尖峰) 降低給水溫度(188℃),離峰時段提高給水溫度(205℃),運轉模式如下圖紅色曲線。
- (2)本案模組開發後,將過去(2/5~2/20)運行資料數據輸入模組,進行最佳利益的給水溫度推薦,結果顯示,在煤價偏高的條件下,模組建議全時段皆運轉在205℃的給水溫度(如下圖藍色曲線),效益可達到最大化。
- (3)經 03/29 測試,14:30 依照模組建議操作後,用煤量平均減少 1.12 噸/時,售電量平均減少 2,498 度/時。統計 2022 年非離峰時段共 4,500 小時,2022 年 1 月~4 月龍德公用廠平均煤碳到廠價 6.001 元/公斤,非離峰時段平均售電價 2.179 元/度。預估年效益(省煤成本-減少售電收入): (1.12 噸/時×4,500 時/年×6,001 元/噸)-(2,498 度/時×4,500 時/年×2.179 元/度)=5,751 千元/年

二、新港公用廠飛灰洩漏偵測影像辨識

(一)動機說明:

- 1. 燃煤機組煤灰收集後,係以空輸方式送至飛灰儲槽,因煤灰容易磨損管路,造成輸灰管線破漏。一旦飛灰管線發生洩漏,若未能在短時間內處理好,恐會衍生環保問題,損及公司形象。
- 2. 由於飛灰管線主要配設於管架頂層,且飛灰儲槽槽頂超過 20m 高,平日巡檢不易,洩漏時不易在第一時間被發現,因此擬利用影像辨識技術,來偵測飛灰洩漏,當洩漏發生時,能夠由 DCS 在第一時間動遮斷洩漏源,並立即通知現場人員進行異常排除。

(二)模組開發應用成果

模組開發完成後,已具備以下三種功能:

- 1. 發出聲光警報
- 2. 異常 line、微信即時推播
- 3. DCS 即時遮斷

當系統偵測到飛灰洩漏時,現場人員可在第一時間知道異常發生,即時處理。

6:33 4

4G

異常說明:2022/05/04 14:48 模型偵測到飛灰洩漏,於中控室及LINE 發出警報通知相關人員。

異常原因:#2-1 E/P 出灰管破漏,造成飛灰逸散。

處理方式:爐控收到警報後,即時通知輔機到現場確認,並停止輸送飛灰,避免異常擴大。

LINE 即時推播畫面

(三)模組開發流程:

定義問題 與目標

資料收集

資料 前處理 模組驗證 與修模

線上應用

1. 定義問題與目標:

(1)定義問題:

公用廠飛灰輸送管線、儲槽及頂部袋濾式集塵機等設備,因設置高處不易巡查,一旦「飛灰輸送管線破漏」或「集塵機故障」,造成飛灰逸散,若未能即時發現處理,將造成環保問題。

(2)定義目標:

藉由 AI 影像辨識技術結合既有攝影機,開發飛灰洩漏影像辨識模組,當飛灰輸送系統發生洩漏 異常,立即發出警報,通知現場人員及時處理,避免進一步衍生更嚴重環保問題。

新港公用廠飛灰輸送管線

新港公用廠飛灰儲槽

2. 資料收集:

定義問題 與目標

資料收集

資料 前處理

影

像

切

割

模組驗證 與修模

線上應用

影像辨識模組需要有圖像檔作為訓練資料,經收集新港公用廠既有攝影主機歷史影片檔案、寧波廠區飛灰洩漏異常照片以及槽車出灰異常照片,擷取漏灰相關相片,透過影像切割軟體,將相片切成約 400 張圖像檔。

新港廠歷史漏灰

寧波廠區飛灰洩漏

槽車卸料

多張圖像檔

影像檔

3. 資料前處理:

定義問題 與目標 資料收集 前處理 模組驗證 與修模 線上應用

因為飛灰洩漏並無固定外型及固定位置,評估以深度學習的物件偵測技術 YOLO(You only look once) 演算法來建模。

在圖像資料收集後,需針對所收集之相片標記屬於飛灰物件之區域,讓 AI 模組能夠透過學習來偵測匡列影像中的物件。實際作法是透過圖像標記程式(LabelImg)框選漏灰區域為物件及定義物件類別,如左圖,程式取得該物件中心座標、寬度及高度,並存成物件偵測建模可讀取之格式(如右圖),做為物件偵測模組訓練資料。

圖像標記程式(LabelImg)

物件偵測建模所能讀取之格式

備註:YOLO 為物件偵測的演算法,用來在圖像中找到某些特定的物體,辨識這些物體的種類,並同時標出物體所在位置。

4. 模組驗證與修模:

定義問題與目標

資料收集

資料 前處理 模組驗證 與修模

線上應用

- (1)本案初步建模完成後,因歷史漏灰影像數量少,上線偵測結果有誤報情形發生,如右上圖所示, 且因無規則可循,模組未能有效學習到飛灰逸散特徵,致無法準確辨識,須再進行修模。
- (2)經參考深度學習常用修模技巧,可採用遷移式學習來改善模型準確度,此做法是將其他已訓練好的模組權重參數,轉移至另一個相似的模組來幫助訓練學習,可不需從新建模,如左圖所示。
- (3)因先前本部在其他案已有建立偵測煙霧模組,能確實有效偵測,加上兩者目標物件雷同,經沿用該模組權重套入本案重新訓練,已能準確偵測飛灰洩漏(如右下圖)。

模組改善前,將雲朵誤判為洩漏

模組改善後,可正確偵測洩漏位置

5. 線上應用:

定義問題 與目標

資料收集 >>

資料 前處理

模組驗證 與修模

線上應用

(1)新港公用廠飛灰洩漏影像辨識模組建模完成後,依實際需求進行辨識系統及輸灰控制系統整合設計,同時將飛灰儲槽及飛灰管線之攝影機畫面納入影像辨識模組,系統架構如下圖所示。

定義問題 與目標

資料收集

資料 前處理 模組驗證 與修模

線上應用

(2)新港公用廠飛灰洩漏偵測辨識系統,於 2020/10/20 完成正式上線使用,目前也已同時平行展開 至龍德及寧波廠區,各廠完成建模上線後,都有成功偵測到飛灰洩漏異常,並即時處理完成, 如下表所示:

廠區	新港廠	龍德廠	寧波廠
時間	2021年9月17日	2021年6月10日	2022年3月6日
竹间	偵測到飛灰逸散異常	偵測到漏灰異常	偵測到漏灰異常
偵測 相片	2021-03-17 13:40:16	2021-06-10	0.7.2年6月75日 星形上 08:15:18
推播訊息	UNE Notify [SK 飛灰 AI 警示] 新港公用廠 飛灰儲槽已偵測到洩漏 下午1:38	LINE Notify LINE Notify LINE Notify 18:45	微信推播畫面: 3月6日上午08:15 pix熟電廠飛灰餅槽已傾測>>https://wework.qpic.cn/wwpic/524009_NSIZt9 VGTSm7llw_1646525427/0

三、結論:

1. 工務部自導入 AI 技術應用後,已自行開發完成汽發電機提高淨發電量、離峰時段負載優化、HPH 操作優化等製程操作優化模組,並獲得良好成效,目前 HPH 操作優化也已陸續平行展開應用至 LT3、新港公用廠 SK1、SK2、SK3 及 SK4 等五部機組,預定 2022/09/30 前全數上線,預估年效益共計20,607千元。

144 400	1.772		3	P 行展開機約	且		٨ ٢٠
機組	LT2	LT3	SK1	SK2	SK3	SK4	合計
預定上線日	已上線	9/30	6/30	6/30	7/31	8/31	_
預估年效益	5, 751	479	2, 300	2, 300	4, 026	5, 751	20, 607

- 2. 本部各公用廠除了須確保穩定供電、供汽外,在環保與污染防治方面,也要避免異常以確保企業形象,因此本部也運用影像辨識技術自行開發了飛灰洩漏偵測、重油、粉煤管線洩漏檢測等 AI 模組,檢出正確率均有不錯的表現,後續已再針對污泥聚合、鍋爐結渣等易發生異常設備,同樣利用影像辨識技術來進行開發檢測,可有利於及早偵測出異常與處理。
- 3. 本部近年來受到碳排壓力與燃煤價格飆漲等諸多不利因素影響,在經營上面臨極大挑戰,面對日趨 嚴峻的外在環境,本部仍將持續開發 AI 新題目,並精進 AI 技術來輔助優化製程操作與設備性能監 控,以提升運轉效益及確保安全生產。

附件一:公用廠數位工廠優化應用說明

公用廠發電流程如下圖,包括冷卻水、給水、通風、燃料、環保、蒸汽等六大系統,主要運轉成本以燃料煤及所內用電影響最大,規劃冷卻水塔省電運轉優化、高壓給水節煤操作優化等 3 個 AI 模型,環保減漏優化規劃 5 個 AI 模型,製程優化規劃 4 個 AI 模型,各系統共立案 12 個改善項目。

附件二: LT2 高壓給水加熱器操作優化之模型預測與推薦

以 2/5~2/20 的運轉工況數據、煤價及電價用模型進行測試,得到以下結論:

煤價	模組建議 HPH 出口給水溫度	說明
>4.732 元/kg (高煤價)	所有時段皆運行在 205℃	因煤價高,模組建議多抽汽加熱 HPH 出口 給水,減少用煤量。
<2.208 元/kg (低煤價)	所有時段皆運行在 188℃	因煤價低,模組建議少抽汽加熱 HPH 出口給水,增加發電量。
2.208~4.732 元/kg (煤價介於中間)	離峰連行在 205 € ,其餘時	煤價介於中間,建議尖峰降低 HPH 出口給水溫度,離峰提高 HPH 出口給水溫度,減少用煤量。

英文名詞	英文全名	中文名稱	説 明
iEM	-	_	AI 預知保養系統,中瑞泰公司研發
PRiSM	-	_	AI 預知保養系統, AVEVA 公司研發
MGGH	Media Gas Gas Heater	水媒式煙氣加熱器	利用水作為媒介,通過水循環方式將脫硫前高溫煙氣 的熱量吸收,用於加熱脫硫後的淨煙氣,提升淨煙氣 的溫度,消除煙囪白煙。
FGD	Flue-Gas Desulfurisation	排煙脫硫	去除燃煤電廠煙氣中的硫氧化物(SOx)設備。
НРН	High Pressure Heater	高壓加熱器	利用蒸汽對鍋爐給水進行加熱的裝置
Linear Regression	Linear Regression	線性迴歸	為線性建模演算法。
RandomForest	RandomForest	隨機森林	為非線性建模演算法。
XGBoost	XGBoost	極限梯度提升	為非線性建模演算法。

英文名詞	英文全名	中文名稱	説 明
\mathbb{R}^2	R-Square	決定係數	模型評估準確度的方法之一。代表模組預測值與實際值的趨勢相似程度。越趨近於1越準確。
MAPE	Mean-absolute percentage error	平均絕對誤差率	模型評估準確度的方法之一。代表預測值與實際值的平均誤差率,單位為%。越趨近於①越準確。
DCS	Distributed Control System	分散式控制系統	當正常機制發生異常,無法在短期間內排除,繞過這些機制,使系統繼續運行。
YOLO	You only look once	_	物件偵測的類神經網路演算法。
RTPMS	Real-time Production Management System	即時生產管理系統	將廠內的即時生產操作數據儲存於資料庫,並可將數 據顯示於電腦。
SOP	Standard Operating Procedures	標準作業程序	把事件的操作步驟用標準化方式寫下來,用在企業指 導或是規範員工的工作內容。