Chapitre 6: Angles, angles dans un triangles

Rappel sur les angles

Rappel

Si on a trois points A, B et C, l'angle que forme les droites (AB) et (BC) est appelé \widehat{ABC} .

Rappel

Si on a deux droite (d_1) et (d_2) qui s'intersectent en D, l'angle que forment ces deux droite est appelé d_1Dd_2 .

Rappel

Le nombre qui indique l'écartement d'un angle est appelé sa **mesure**.

1 Angles alternes-internes

Cours: Angles alternes-internes

Soit (d_1) et (d_2) des droites, et (s) une droite qui intersecte (d_1) et (d_2) en A et B. Alors, deux angles sont **alternes-internes** si :

- Ils ont pour sommet A et B.
- Ils sont chacun d'un côté différent de la droite (s).
- Ils sont entre les droites (d_1) et (d_2) .

Exemple

Sur cette figure, les angles

- \widehat{FEA} et \widehat{EFD} sont alternes-internes.
- \widehat{BEF} et \widehat{CFE} sont alternes-internes.

Cours

Si deux droites parallèles sont coupées par une sécante, les angles alternes-internes ont la même mesure.

Exemple

 $(d_1) // (d_2)$

Les droites (d_1) et (d_2) sont parallèles, donc les angles verts ont la même mesure.

2 Droites parallèles

Cours

Si deux droites (dont on ne sais pas encore si elles sont parallèles ou non) sont coupées par une sécante, et que les angles alternes-internes ont la même mesure, **alors** les droites sont parallèles.

Exemple

Sur la figure ci-contre, les angles $\widehat{d_1 As}$ et $\widehat{d_2 Bs}$ on la même mesure, et sont alternes-internes. Donc, les droites (d₁) et (d₂) sont parallèles.

3 Angles dans un triangle

Cours

La somme des mesures des angles d'un triangle est égale à 180°.

Exemple

Dans la figure ci-contre, on a

- $\widehat{ABC} = 45^{\circ}$
- $\widehat{BCA} = 90^{\circ}$
- $\widehat{CAB} = 45^{\circ}$

Et on retrouve bien $45 + 90 + 45 = 180^{\circ}$.