Planaridad

Algoritmos y Estructuras de Datos III

Grafos planares

Definiciones:

- ► Todo representación planar de un grafo tiene exactamente una región de área infinita, la región exterior.
- La frontera de una región es el circuito que rodea a la región (puede tener nodos y aristas repetidos).
- ► El grado o tamaño de la región es el número de aristas que tiene su frontera.

Grafos planares

Definiciones:

- ▶ Una **representación planar** de un grafo *G* es un conjunto de puntos en el plano que se corresponden con los nodos de *G* unidos por curvas que se corresponden con las aristas de *G*, sin que estas se crucen entre sí.
- ▶ Un grafo es **planar** si admite una representación planar.
- ▶ Dada una representación planar de un grafo *G*, una región es el conjunto de todos los puntos alcanzables desde un punto (que no sea un nodo ni parte de una arista) sin atravesar nodos ni aristas.

Grafos planares

Propiedad: K_5 y K_{33} son grafos no planares. K_5 es el grafo no planar con el menor número de nodos y K_{33} es el que tiene el menor número de aristas.

Propiedad: Si un grafo contiene un subgrafo no-planar es no-planar.

Grafos planares - Subdivisión y homeomorfismo

Definiciones:

- ▶ Subdividir una arista e = (v, w) de un grafo G, consiste en agregar $u \notin V$ un nodo a G y reemplazar la arista e por dos aristas e' = (v, u) y e'' = (u, w).
- ▶ Un grafo G' es una subdivisión de otro grafo G si G' se puede obtener de G por sucesivas operaciones de subdivisión.
- ▶ Dos grafos *G* y *G'* se dicen homeomorfos si hay un isomorfismo entre una subdivisión de *G* y una de *G'*.

Grafos planares - Subdivisión

Grafos planares - Homeomorfismo

Grafos planares - Teorema de Kuratowski

Propiedad: Si G' es una subdivisión G, entonces G es planar si y sólo si G' es planar.

Propiedad: La planaridad es invariante bajo homeomorfismo.

Corolario: Si un grafo G tiene un subgrafo que es homeomorfo a un grafo no planar entonces G es no-planar.

Teorema (Kuratowski, 1930): Un grafo es planar si y sólo si no contiene ningún subgrafo homeomorfo a K_{33} o K_5 .

Grafos planares - Teorema de Wagner

Definiciones:

- ▶ La operación de contracción de una arista e = (v, w) consiste en eliminar la arista del grafo y considerar sus extremos como un solo nodo $u \notin V$, quedando como aristas incidentes a u todos las aristas que eran incidentes a v o a w.
- ▶ Un grafo *G'* es una contracción de otro grafo *G* si se puede obtener a partir de *G* por sucesivas operaciones de contracción. En este caso se dice ue *G* es contraible a *G'*.

Teorema (Wagner, 1937): G es planar si y sólo si no contiene ningún subgrafo contraíble a K_{33} o K_5 .

¿Se podrían usar estos dos teoremas en la práctica para decidir si un grafo es planar?

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

Esquema:

- ► Comienza con una representación planar R de un subgrafo S de G y la expande iterativamente hasta obtener una representación planar de todo el grafo G o concluir que no es posible representarlo en forma planar.
- ▶ Si el grafo es planar, cada componente c (componente conexa) de $G \setminus R$ tiene que estar completamente contenida dentro de una región de R.
- ▶ Si el grafo es planar, las aristas que *conectan* a *c* con el conjunto *W* de nodos de *R* no pueden cruzarse con otras, entonces todos los nodos de *W* deben estar en la frontera de una misma región de *R* (pueden estar en la frontera de más de una región).

Grafos planares - Teorema de Euler

Teorema (Euler, 1752): Si G es un grafo conexo planar entonces cualquier representación planar de G determina r=m-n+2 regiones en el plano (ecuación poliedral de Euler).

Corolario: Si G es conexo y planar con $n \ge 3$, entonces m < 3n - 6.

Corolario: K_5 es no planar.

Corolario: Si G es conexo, bipartito y planar con $n \ge 3$, entonces

 $m \leq 2n - 4$.

Corolario: K_{33} es no planar.

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

Notación y definicones:

- ▶ Llamamos parte p de G relativa a R a:
 - 1. Una componente conexa de $G \setminus R$ junto con las aristas que la conectan a nodos de R (aristas colgantes).
 - 2. Una arista e = (u, v) de $G \setminus R$ con $u, v \in R$.
- ▶ Dada una parte *p* de *G* relativa a *R*, un **nodo de contacto** es un nodo de *R* incidente a una arista colgante de *p*.
- ▶ *R* es extensible a una representación planar de *G* si se puede obtener una representación planar de *G* a partir de *R*.
- ▶ Una parte p es **dibujable** en una región f de R si existe una extensión planar de R en la que p queda en f.
- ▶ Una parte *p* es **potencialmente dibujable** en *f* si todo nodo de contacto de *p* pertenece a la frontera de *f*.
- ▶ Llamamos F(p) al conjunto de regiones de R donde p es potencialmente dibujable.

Algoritmo de Demoucron, Malgrange y Pertuiset

```
R:= una representación planar de cualquier ciclo de G mientras R no sea una representación planar de G hacer para cada parte p de G relativa a R calcular F(p) si para algún p, F(p) es vacío entonces retornar FALSO si para algún p, F(p) = \{f\} entonces elegir p y f sino elegir cualquier p y f \in F(p) buscar camino q en p entre dos nodos de contacto de p R:=R \cup q retornar VERDADERO y R representación planar de G
```

Testeo de planaridad

Algoritmo de Demoucron , Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

Testeo de planaridad

Algoritmo de Demoucron , Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

Partes de G relativas a R:

p	C(p)	F(p)
azul	{4,7}	$\{R_1, R_2\}$
verde	$\{1, 2, 4, 9\}$	$\{R_1,R_2\}$
negra	$\{3, 4\}$	$\{R_1,R_2\}$

Algoritmo de Demoucron , Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

 $\cup 3 - 4$

Testeo de planaridad

Algoritmo de Demoucron , Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

Partes de *G* relativas a *R*:

$$egin{array}{cccc} p & C(p) & F(p) \\ azul & \{4,7\} & \{R_1,R_2\} \\ verde & \{1,2,4,9\} & \{R_1\} \\ \end{array}$$

Debemos elegimos la parte verde, un camino entre dos vértices de contacto, y una región de F(verde)

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

$$\cup 3 - 4$$

$$\cup 1 - 5 - 6 - 9$$

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

$$\cup 3 - 4$$

$$\cup 1 - 5 - 6 - 9$$

Partes de G relativas a R:

p	C(p)	F(p)
azul	$\{4,7\}$	$\{R_2\}$
verde	$\{4, 5, 6\}$	$\{R_4\}$
negra	$\{4, 5\}$	$\{R_4\}$
lila	$\{2, 6\}$	$\{R_1\}$

Algoritmo de Demoucron, Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

$$\cup 3 - 4$$

$$\cup 1 - 5 - 6 - 9$$

$$\cup 7 - 8 - 4$$

Testeo de planaridad

Algoritmo de Demoucron , Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

$$\cup 3 - 4$$

$$\cup 1 - 5 - 6 - 9$$

$$\cup 7 - 8 - 4$$

Partes de G relativas a R:

p	C(p)	F(p)
verde	{4,5,6}	$\{R_4\}$
negra	$\{4, 5\}$	$\{R_4\}$
lila	{2,6}	$\{R_1\}$

Elegimos cualquier parte p, un camino entre dos vértices de contacto, y una región de F(p)

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

$$R = 1 - 2 - 3 - 7 - 9 - 4 - 1$$

$$\cup 3 - 4$$

$$\cup 1 - 5 - 6 - 9$$

$$\cup 7 - 8 - 4$$

$$\cup 4 - 5$$

Partes de G relativas a R:

$$\begin{array}{c|cccc} p & C(p) & F(p) \\ \hline \text{verde} & \{4,5,6\} & \{R_6\} \\ \text{lila} & \{2,6\} & \{R_1\} \\ \end{array}$$

Algoritmo de Demoucron , Malgrange y Pertuiset

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

Testeo de planaridad

Algoritmo de Demoucron , Malgrange y Pertuiset

Partes de G relativas a R:

$$\begin{array}{cccc} p & C(p) & F(p) \\ \hline \text{negra} & \{6, 10\} & \{R_6\} \\ \hline \text{lila} & \{2, 6\} & \{R_1\} \\ \end{array}$$

Elegimos cualquier parte p, un camino entre dos vértices de contacto, y una región de F(p)

Testeo de planaridad

Algoritmo de Demoucron, Malgrange y Pertuiset

Partes de G relativas a R:

$$\frac{p}{\text{lila}} \quad \frac{C(p)}{\{2,6\}} \quad \frac{F(p)}{\{R_1\}}$$

Algoritmo de Demoucron , Malgrange y Pertuiset

Testeo de planaridad

Algoritmo de Demoucron , Malgrange y Pertuiset

Lema: Si G es planar, la representación planar R de cada iteración del ciclo del algoritmo es extensible a una representación planar de G.

Teorema: El algoritmo de Demoucron es correcto, es decir encuentra una representación planar de G si existe, o si G es no planar lo reconoce correctamente.

Complejidad: La complejidad de este algoritmo es $O(n^2)$

Existen algoritmos para detectar planaridad de complejidad menor. Hopcroft y Tarjan propusieron un algoritmo de complejidad O(n), más complicado de describir que este.