Programmation Impérative

Structures de contrôle

Notions acquises à l'issue du TP:

— Savoir choisir la « bonne » structure de contrôle dans un algorithme.

Exercice 1 : Structures de contrôle

L'objectif de cet exercice est de manipuler les structures de contrôle de notre pseudo-langage algorithmique et leur pendant en Ada. Les programmes listés ci-après sont à compléter dans l'ordre. Chaque programme commence par une description de son objectif et des exemples d'utilisation qui vous permettront de tester vos programmes. Il faudra faire attention à bien utiliser la bonne structure de contrôle.

On ne traitera pas la robustesse de ces programmes : on considère que l'utilisateur saisira toujours une donnée valide.

- permuter_caracteres.adb
- 2. tarif_place.adb
- classer_caractere.adb
- 4. compte_jules_objectif.adb
- chiffre_significatif.adb
- 6. table_7.adb
- 7. table_pythagore.adb
- 8. score_21.adb
- 9. somme_serie_double.adb

Pour aller plus loin, pour les plus rapides ou ceux qui ont envie de s'entrainer voici quelques exercices supplémentaires et optionnels.

Exercice 2 : Racine carrée d'un nombre (Méthode de Newton)

La k^{ieme} approximation de la racine carrée de x est donnée par $a_{k+1} = (a_k + x/a_k)/2$ et $a_0 = 1$. On arrête le calcul quand la distance entre a_{k+1} et a_k est inférieure à une précision donnée.

- 1. Écrire un programme (fichier newton.adb) qui affiche une valeur approchée de la racine carrée d'un nombre en utilisant la méthode précédente. Nombre et précision seront lus au clavier.
- **2.** On peut aussi arrêter le calcul des a_k quand a_k^2 est proche de x à la précision près. Ajouter cette nouvelle approche dans le programme précédent.

1/2 TP 2

Exercice 3: Puissance

Afficher la puissance entière d'un réel en utilisant somme et multiplication (puissance.adb). On traiter d'abord le cas où l'exposant est positif avant de généraliser aux entiers relatifs.

Exercice 4 : Amélioration du calcul de la puissance entière

Améliorer l'algorithme de calcul de la puissance(puissance_mieux.adb) en remarquant que :

$$x^{n} = \begin{cases} (x^{2})^{p} & \text{si } n = 2p \\ (x^{2})^{p} \times x & \text{si } n = 2p + 1 \end{cases}$$

Ainsi, pour calculer 3^5 , on peut faire 3 * 9 * 9 avec bien sûr $9 = 3^2$.

TP 2 2/2