

5種類の論理関数族の性質(2)

▶以下の性質が成り立つ

- 1. $\varphi \notin \mathcal{F}_0$ ならば $\bar{x} \in [\{\varphi\}]$ あるいは $1 \in [\{\varphi\}]$
- 2. $\varphi \notin \mathcal{F}_1$ ならば $\bar{x} \in [\{\varphi\}]$ あるいは $0 \in [\{\varphi\}]$
- 3. $\varphi \notin \mathcal{F}_2$ ならば $0,1 \in [\{\varphi, \bar{x}\}]$
- 4. $\varphi \notin \mathcal{F}_3$ ならば $\bar{x} \in [\{\varphi, 0, 1\}]$
- 5. $\varphi \notin \mathcal{F}_4$ ならば $x \cdot y \in [\{\varphi, \bar{x}, 0, 1\}]$ あるいは $x \vee y \in [\{\varphi, \bar{x}, 0, 1\}]$

E (0 (0003

6

5種類の論理関数族の性質(2)

1. $\varphi \notin \mathcal{F}_0$ ならば $\bar{x} \in [\{\varphi\}]$ あるいは $1 \in [\{\varphi\}]$

(証明) φ に現れる一つの変数を x とする. このとき, 閉包の定義より $x \in [\{\varphi\}]$ である. また, φ に現れる全ての変数に x を代入した $\varphi'(x,x,\cdots,x)$ も $\varphi'(x,x,\cdots,x) \in [\{\varphi\}]$ である.

ここで, $\varphi \notin \mathcal{F}_0$ より x = 0 のとき $\varphi'(0,0,\cdots,0) = 1$ x = 1 のとき $\varphi'(1,1,\cdots,1) = 0$ ならば $\varphi' = \bar{x} \in [\{\varphi\}]$ x = 1 のとき $\varphi'(1,1,\cdots,1) = 1$ ならば $\varphi' = 1 \in [\{\varphi\}]$

5種類の論理関数族の性質(2)

2. $\varphi \notin \mathcal{F}_1$ ならば $\bar{x} \in [\{\varphi\}]$ あるいは $0 \in [\{\varphi\}]$

(証明) $\varphi \notin \mathcal{F}_0$ ならば $\bar{x} \in [\{\varphi\}]$ あるいは $1 \in [\{\varphi\}]$ と同様に証明できる.

5/9/2023

8

5種類の論理関数族の性質(2)

3. $\varphi \notin \mathcal{F}_2$ ならば $0,1 \in [\{\varphi, \bar{x}\}]$

(証明) $\varphi \notin \mathcal{F}_2$ なので $\varphi(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = \varphi(\overline{\varepsilon_1}, \overline{\varepsilon_2}, \dots, \overline{\varepsilon_n})$ を満たす $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ が存在する.

 $\varepsilon_i = 1$ であれば x_i に x を代入し, $\varepsilon_i = 0$ であれば x_i に \bar{x} を代入した関数を φ' とする.つまり, $\varphi'(x) = \varphi(x^{\varepsilon_1}, x^{\varepsilon_2}, \cdots, x^{\varepsilon_n})$.(ただし $\varepsilon_i = 1$ のとき $x^{\varepsilon_i} = x$, $\varepsilon_i = 0$ のとき $x^{\varepsilon_i} = \bar{x}$) このとき $\varphi'(1) = \varphi(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) = \varphi(\bar{\varepsilon_1}, \bar{\varepsilon_2}, \cdots, \bar{\varepsilon_n}) = \varphi'(0)$

 $\varphi'(x)$ は1変数関数であり、x=1 のときと x=0 のときの値が同じなので、 $\varphi'(x)=\varphi(x^{\varepsilon_1},x^{\varepsilon_2},\cdots,x^{\varepsilon_n})=0$ または1 の定数関数となる.

5種類の論理関数族の性質(2)

3. $\varphi \notin \mathcal{F}_2$ ならば $0,1 \in [\{\varphi, \bar{x}\}]$

(証明) x と \bar{x} はともに $[\{\varphi, \bar{x}\}]$ に含まれるので、 $\varphi(x^{\varepsilon_1}, x^{\varepsilon_2}, \cdots, x^{\varepsilon_n}) \in [\{\varphi, \bar{x}\}]$

したがって 0または $1 \in [\{\varphi, \bar{x}\}]$

また, \bar{x} に上の0(または1)を代入すると,その否定である1(または0)が得られ,1または $0 \in [\{\varphi, \bar{x}\}]$ となる.

5/9/2023

10

5種類の論理関数族の性質(2)

4. $\varphi \notin \mathcal{F}_3$ ならば $\bar{x} \in [\{\varphi, 0, 1\}]$

(証明) $\varphi \notin \mathcal{F}_3$ なので、ある $(\varepsilon_1, \dots, \varepsilon_i, \dots, \varepsilon_n)$ について $\varphi(\varepsilon_1, \dots, 0, \dots, \varepsilon_n) = 1$, $\varphi(\varepsilon_1, \dots, 1, \dots, \varepsilon_n) = 0$

ここで x_i のみ変数を残した1変数関数 $\varphi(\varepsilon_1, \cdots, x_i, \cdots, \varepsilon_n)$ を考えると, $x_i \in [\{\varphi, 0, 1\}], \ 0 \in [\{\varphi, 0, 1\}], \ 1 \in [\{\varphi, 0, 1\}]$ より $\varphi(\varepsilon_1, \cdots, x_i, \cdots, \varepsilon_n) \in [\{\varphi, 0, 1\}]$ この関数は $x_i = 0$ のとき $\varphi = 1$, $x_i = 1$ のとき $\varphi = 0$ なので $\varphi(\varepsilon_1, \cdots, \varepsilon_n) = \bar{x} \in [\{\varphi, 0, 1\}]$

5種類の論理関数族の性質(2)

5. $\varphi \notin \mathcal{F}_4$ ならば $x \cdot y \in [\{\varphi, \bar{x}, 0, 1\}]$ あるいは $x \vee y \in [\{\varphi, \bar{x}, 0, 1\}]$

(証明) $\varphi \notin \mathcal{F}_4$ なので $\varphi(x_1, x_2, \cdots, x_n) = \cdots \oplus x_i x_j T \oplus \cdots$ とリードマラー標準形で表せる. 但し T=1 もしくは x_i , x_j 以外の変数の論理積(x_i , x_j を含む積項は複数考えられるが,そのうち最も変数が少ないものの一つに着目する)

ここで φ の変数のうち T に含まれるものに 1 を, T に含まれないものに 0 を代入すると, $\varphi' = \alpha_0 \oplus \alpha_i x_i \oplus \alpha_j x_j \oplus x_i x_j$ となる. 変数に 0, 1 を代入したものなので $\varphi' \in [\{\varphi, 0, 1\}]$

5/9/2023

12

5種類の論理関数族の性質(2)

5. $\varphi \notin \mathcal{F}_4$ ならば $x \cdot y \in [\{\varphi, \bar{x}, 0, 1\}]$ あるいは $x \lor y \in [\{\varphi, \bar{x}, 0, 1\}]$

(証明つづき) $\varphi' = \alpha_0 \oplus \alpha_i x_i \oplus \alpha_i x_i \oplus x_i x_i$ について,

	α_0	α_i	$\alpha_{m{j}}$	arphi'
/	0	0	0	$x_i x_j$
	0	0	1	$\overline{x_i}x_j$
	0	1	0	$x_i \overline{x_j}$
	0	1	1	$x_i \vee x_j$
	1	0	0	$\overline{x_i} \vee \overline{x_j}$
	1	0	1	$x_i \vee \overline{x_j}$
	1	1	0	$\overline{x_i} \vee x_j$
	1	1	1	$\overline{x_i}\overline{x_j}$

例)
$$\alpha_0 = 1$$
, $\alpha_i = \alpha_j = 0$ のとき $\varphi' = 1 \oplus x_i x_i = \overline{x_i x_i} = \overline{x_i} \vee \overline{x_i}$

例)
$$\alpha_0 = \alpha_i = 0$$
, $\alpha_j = 1$ のとき $\varphi' = x_j \oplus x_i x_j = x_j (1 \oplus x_i) = \overline{x_i} x_j$

5種類の論理関数族の性質(2)

5. $\varphi \notin \mathcal{F}_4$ ならば $x \cdot y \in [\{\varphi, \bar{x}, 0, 1\}]$ あるいは $x \lor y \in [\{\varphi, \bar{x}, 0, 1\}]$

(証明) いずれの場合にも x_i と x_j についての正リテラルも しくは負リテラルの論理和もしくは論理積となるので, $x_i \cdot x_j \in [\{\varphi, \bar{x_i}, \bar{x_j}, 0, 1\}]$ あるいは $x_i \vee x_j \in [\{\varphi, \bar{x_i}, \bar{x_j}, 0, 1\}]$

5/9/2023

14

完全論理関数族である必要十分条件

(定理2.19) 論理関数族 Φ が完全であるための必要十分条件は Φ⊈F_i (i = 0,1,2,3,4)

(証明) (\Leftarrow) $\Phi \not\subseteq \mathcal{F}_0$, $\Phi \not\subseteq \mathcal{F}_1$ より次のいずれかが成り立つ. (1) $\bar{x} \in [\Phi]$, (2) \bar{x} , $0 \in [\Phi]$, (3) \bar{x} , $1 \in [\Phi]$, (4) 0, $1 \in [\Phi]$

(1)~(3)のとき $\Phi \not\subseteq \mathcal{F}_2$ より $0,1 \in [\Phi]$ (4)のとき $\Phi \not\subseteq \mathcal{F}_3$ より $\bar{x} \in [\Phi]$ $\Phi \not\subseteq \mathcal{F}_4$ より $x \cdot y \in [\Phi]$ または $x \vee y \in [\Phi]$ 以上より $\bar{x}, x \cdot y \in [\Phi]$ または $\bar{x}, x \vee y \in [\Phi]$ となるので Φ は完全

完全論理関数族である必要十分条件

(定理2.19) 論理関数族 Φ が完全であるための必要十分条件は $Φ \not ⊆ \mathcal{F}_i$ (i=0,1,2,3,4)

(証明) (\Rightarrow) 「 Φ が完全ならば $\Phi \not\subseteq \mathcal{F}_i$ 」の対偶 \mathbb{Z} ある \mathcal{F}_i について $\Phi \subseteq \mathcal{F}_i$ ならば Φ は完全でない」を示す.

 $\Phi \subseteq \mathcal{F}_i$ なので $[\Phi] \subseteq [\mathcal{F}_i] = \mathcal{F}_i$ ここで \overline{xy} を考えると, \overline{xy} はどの \mathcal{F}_i にも含まれないので $\overline{xy} \notin [\Phi]$ よって Φ は完全ではない

E (0 (2022

16

極小完全

■ 論理関数族 ϕ が完全であり, ϕ からいかなる元を除いても完全でなくなるとき, ϕ は極小完全であるという.

2変数以下の論理関数	\mathcal{F}_{0}	\mathcal{F}_{1}	\mathcal{F}_2	\mathcal{F}_3	\mathcal{F}_{4}
$\varphi_0 = 0$	0	×	×	0	0
$\varphi_1 = 1$	×	0	×	0	0
$\varphi_2 = \bar{x}$	×	×	0	×	0
$\varphi_3 = xy$	0	0	×	0	×
$\varphi_4 = x \vee y$	0	0	×	0	×
$\varphi_5 = x \to y$	×	0	×	×	×
$\varphi_6 = x \mid y$	×	×	×	×	×
$\varphi_7 = x \downarrow y$	×	×	×	×	×
$\varphi_8 = x \oplus y$	0	×	×	×	0
$\varphi_9 = x \leftrightarrow y$	×	0	×	×	0

極小完全

- 論理関数族 Φ が完全であり, Φ からいかなる元を除いて も完全でなくなるとき, Φ は極小完全であるという.
- 一元の二変数極小完全論理関数族:

 $\{x \mid y\}, \{x \downarrow y\}$

二元の二変数極小完全論理関数族:

 $\{0, x \to y\}, \{\bar{x}, xy\}, \{\bar{x}, x \lor y\}, \{\bar{x}, x \to y\}, \{x \to y, x \oplus y\}$

三元の二変数極小完全論理関数族:

 $\{0, xy, x \leftrightarrow y\}, \{0, x \lor y, x \leftrightarrow y\}, \{1, xy, x \oplus y\},$

 $\{1, x \lor y, x \oplus y\}, \{xy, x \oplus y, x \leftrightarrow y\}, \{x \lor y, x \oplus y, x \leftrightarrow y\}$

5/9/202

論理関数族が完全でないことの証明 (例)

 $\Phi = \{x \lor y, x \oplus y\}$ が完全でないことを示せ

 $\varphi(x,y) = x \lor y$, $\psi(x,y) = x \oplus y$ とおくと, x = y = 0 のとき $\varphi(x,y) = 0$, $\psi(x,y) = 0$ となるので $\Phi \subseteq \mathcal{F}_0$

したがって Φ は完全ではない

