CS 254: Computability and Complexity

Anonymous submission

Problem Set #04

October 8, 2019

3. Show that CFLs are closed under union, concatenation, and star:

CFLs are closed under union as \forall L₁ and L₂ \in a CFL, L₁ \cup L₂

If we take and combine these two languages we can create a new CFG such that S \to S_1 \mid S_2

This will create a string from S_1 , S_2 , or both S_1 and S_2 which is the definition of union

CFLs are closed under concatenation as \forall L₁ and L₂ \in a CFL, $\{s_1s_2 \mid s_1 \in L_1 \text{ and } s_2 \in L_2\}$ S \rightarrow S₁ S₂

which will create a string from L_1 and then L_2 which is the definition of concatenation

CFLs are closed under star as \forall L \in a CFL, L* \in a CFL:

 $S \rightarrow S_1S \mid \epsilon$

This will generate any string from L but also can create no string which is the definition of start.