(A卷)

一、单选题 (每题5分)

1.	若复数z	满足 z(1+i)	=2i-1	(i为虚数单位),	则下列说法正确的是	()
----	------	-----------	-------	-----------	-----------	---	---

A.
$$z$$
的虚部为 $\frac{3}{2}$ i

B.
$$|z| = \frac{\sqrt{10}}{2}$$

C. $z + \overline{z} = 3$

D. z在复平面内对应的点在第二象限

2. $\triangle ABC$ 的内角 A, B, C所对边分别为 a, b, c, 若 b=3, c=2, $\triangle ABC$ 的面积为 $2\sin B$,

$$\mathbb{Q} \cos A = \frac{2}{2} + \frac{2}{3} + \frac{2}{3} + \frac{3}{4}$$

$$\mathbb{Q} \cos A = \frac{2}{3} + \frac{2}{3} + \frac{3}{4}$$

$$\mathbb{Q} \cos A = \frac{3}{4} + \frac$$

3. 已知点A, B, C, D在同一平面内,且 $\overrightarrow{AB}+2\overrightarrow{AC}=3\overrightarrow{AD}$,则 $\overrightarrow{DB}\cdot\overrightarrow{DC}=($

C.
$$\frac{2}{9}$$

D.
$$-\frac{2}{9}$$

4. 如图, 主表是中国古代通过测量日影长度来确定节令的仪器, 是作为指导汉族劳动人民农事活动的重要依据,它由"圭"和"表"。 个部件组成, 主是南北方向水平放置测定表影长度的刻板, 表 与圭垂直的杆,正午时太阳照在表上。通过测量此时表在圭上 影长来确定节令.已知冬至和夏至正午时,太阳光线与圭所在平

所成角分别为 α , β , 测得表影长之差为l, 那么表高为()

A.
$$\frac{l \tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$$

B.
$$\frac{l(\tan \beta - \tan \alpha)}{\tan \beta \tan \alpha}$$

C.
$$\frac{l \tan \beta \tan \alpha}{\tan \beta - \tan \alpha}$$

A.
$$\frac{l\tan\alpha\tan\beta}{\tan\alpha-\tan\beta} \quad \text{B.} \quad \frac{l\left(\tan\beta-\tan\alpha\right)}{\tan\beta\tan\alpha} \quad \text{C.} \quad \frac{l\tan\beta\tan\alpha}{\tan\beta-\tan\alpha} \quad \text{D.} \quad \frac{l\left(\tan\alpha-\tan\beta\right)}{\tan\alpha\tan\beta}$$

5. 在 $\triangle ABC$ 中, $A=\frac{\pi}{3}$,O为 $\triangle ABC$ 的重心,若 $\overline{AO} \cdot \overline{AB} = \overline{AO} \cdot \overline{AC} = 2$,则 $\triangle ABC$ 外接圆的 半径为()

A.
$$\frac{\sqrt{3}}{3}$$

A.
$$\frac{\sqrt{3}}{3}$$
 B. $\frac{2\sqrt{3}}{3}$ C. $\sqrt{3}$ D. $\frac{4\sqrt{3}}{3}$

D.
$$\frac{4\sqrt{3}}{3}$$

6. 在
$$\triangle ABC$$
 中, $\angle B=120^\circ$, $|AB|=\sqrt{2}$, $\angle A$ 的角平分线 AD 的长为 $\sqrt{3}$,则 $|AC|=($

D.
$$2\sqrt{3}$$

7. 在锐角 $\triangle ABC$ 中,角A, B, C所对的边为a, b, c, 若 $\frac{\sin B \sin C}{3 \sin A} = \frac{\cos A}{a} + \frac{\cos C}{c}$, 且

$$S_{ABC} = \frac{\sqrt{3}}{4} (a^2 + b^2 - c^2), \quad M = \frac{c^2}{a+b}$$
 的取值范围是 (

8. 已如平面向量 \vec{a} 、 \vec{b} 、 \vec{c} , 满足 $|\vec{a}|=3\sqrt{3}$, $|\vec{b}|=2$, $|\vec{c}|=2$, $|\vec{b}\cdot\vec{c}|=2$, 则

 $(\vec{a}-\vec{b})^2 \cdot (\vec{a}-\vec{c})^2 - [(\vec{a}-\vec{b}) \cdot (\vec{a}-\vec{c})]^2$ 的最大值为 ()

A. $192\sqrt{3}$

B. 192

C. 48

D. $4\sqrt{3}$

二、多选题(每题5分)

9. $\triangle ABC$ 中, $a=\sqrt{10},b=4$,解 $\triangle ABC$ 的结果有两个,则 $\angle A$ 可取下列那些值 (

A. $\frac{\pi}{6}$

B. $\frac{\pi}{4}$

 $C = \frac{\pi}{3}$

10. 为了测量 B, C之间的距离, 在河的南岸 A, C处测量(测量工具: 量角器、卷尺), 如图所示.下面是四位同学所测得的数据记录,你认为不合理的有(

A. c与α

B. c与b

 $C. b, c与 \beta$ $D. b, \alpha与 \gamma$

11. $\triangle ABC$ 中,存在一点 P 使得 $\frac{\overline{PA}}{|\overline{PA}|} + \frac{\overline{PB}}{|\overline{PB}|} + \frac{\overline{PC}}{|\overline{PC}|} = \vec{0}$,则以下结论正确的是()

A. ∠APB=120°

B. ∠BPC=60°

C. ZAPB=60°

D. ∠BPC=120°

12. 在锐角 $\triangle ABC$ 中,角A,B,C所对的边分别为a,b,c,且 $c-b=2b\cos A$,则下列结论正确 的有(

A. A=2B

B. B的取值范围为 $\left(0,\frac{\pi}{4}\right)$

C. $\frac{a}{b}$ 的取值范围为 $\left(\sqrt{2},2\right)$ D. $\frac{1}{\tan B} - \frac{1}{\tan A} + 2\sin A$ 的取值范围为 $\left(\frac{5\sqrt{3}}{3},3\right)$

三、填空题 (每题 5 分)

- 13. 已知 e_1 , e_2 是两个单位向量,设 $a = \lambda e_1 + \mu e_2$, 且满足 $\lambda + \mu = 4$, 若 $|e_1 e_2| = |e_2 a| = |a e_1|$, 则 |a| =______.
- 14. $\triangle ABC$ 的内角 A, B, C所对的边分别是 a , b , c , 已知 $\frac{\cos C}{c} + \frac{\cos B}{b} = \frac{1}{a}$, 则 A 的取值范围是
- 15. 在 $\triangle ABC$ 中,若 $3(\overrightarrow{CA} \cdot \overrightarrow{AB} + \overrightarrow{CB} \cdot \overrightarrow{AB}) = 2|\overrightarrow{AB}|^2$,则 $\left(\tan A + \frac{1}{\tan B}\right)_{\min} = \underline{}$
- 16. 在 $\triangle ABC$ 中,AB=2BC, $B=\frac{\pi}{3}$,其外接圆圆心是 O,若 $\triangle ABC$ 的内角 A,B,C的角平 分线分别交圆 O 于点 A',B',C',则 $\frac{S_{\triangle ABC}}{S_{\triangle ABC}}=$ ______.

四、解答题

- 17. (10 分) 已知平面上三点 A, B, C. $\overline{BC} = (2-k,3)$, $\overline{AC} = (2,-4)$.
- (1) 若三点 A, B, C 不能构成三角形, 求实数 k 应满足的条件;
- (2) 若 ΔABC 中角 C 为钝角, 求 k 的取值范围.
- 18. (12 分) 已知平行四边形 *ABCD* 中, *AB* = 2, *BC* = 4, ∠*DAB* = 60°, 点 *E* 是线段 *BC* 的中点.

(II) 若 $\overrightarrow{AF} = \overrightarrow{AE} + \lambda \overrightarrow{AD}$, 且 $\overrightarrow{BD} \perp \overrightarrow{AF}$, 求 λ 的值.

- 19. (12 分在锐角 $\triangle ABC$ 中,角A、B、C的对边分别为a、b、c,若 $\cos B + \sqrt{3} \sin B = 2$, $\frac{\cos B}{b} + \frac{\cos C}{c} = \frac{2 \sin A}{\sqrt{3} \sin C}.$
- (1) 求角 8 的大小和边长 b 的值;
- (2) 求 △ABC 面积的最大值.

- 20.(12 分在 $\triangle ABC$ 中,三个内角 A、B、C 所对的边分别为 a、b、c,请在
- ① $(2c-a)\cos B = b\cos A$; ② $a^2 + c^2 b^2 = \frac{4\sqrt{3}}{3}S_{ABC}$; ③ $2b\sin(A + \frac{\pi}{6}) = a + c$, 这三个条件中任意选择一个,完成下列问题:
- (1)若3a+b=2c,求 $\cos C$;
- (2) 若 b = 2 , 且 $\frac{1}{\sin A} + \frac{1}{\sin C} = \frac{4\sqrt{3}}{3}$, 求 $\triangle ABC$ 的面积.
- 21. (12 分杭州市为迎接 2022 年亚运会,规划修建公路自行车比赛赛道,该赛道的平面示意图为如图的五边形 *ABCDE*,运动员的公路自行车比赛中如出现故障,可以从本队的器材车、公共器材车上或收容车上获得帮助. 比赛期间,修理或更换车轮或赛车等,也可在固定修车点上进行. 还需要运送一些补给物品,例如食物、饮料,工具和配件. 所以项目设计需要预留出 *BD*, *BE* 为赛道内的两条服务通道 (不考虑宽度),*ED*, *DC*, *CB*, *BA*, *AE* 为赛道,

$$\angle BCD = \angle BAE = \frac{2\pi}{3}, \angle CBD = \frac{\pi}{4}, CD = 2\sqrt{6} \text{km}, DE = 8 \text{km}.$$

- (1) 从以下两个条件中任选一个条件, 求服务通道 BE 的长度;
- ① $\angle CDE = \frac{7\pi}{12}$; ② $\cos \angle DBE = \frac{3}{5}$
- (2) 在 (1) 条件下,应该如何设计,才能使折线段赛道 BAE 最长 (即 BA+AE 最大),最长值为多少?
- 22. (12 分在锐角 $\triangle ABC$ 中,角 A, B, C 所对的边分别为 a, b, c. 已知 $a(a-\sin A)=b(c-\sin C)$.
- (1)证明: $a^2 \ge 4\sin B \cdot (c \sin C)$;
- (2)若 $a^2 = 4\sin B \cdot (c \sin C)$, $b = \sqrt{3}$, 求 $\triangle ABC$ 的面积.