Dealing with NAN values

7 ways to handle missing values in the dataset:

```
1.Deleting Rows with missing values
```

2.Impute missing values for continuous variable

3.mpute missing values for categorical variable

4.Other Imputation Methods

5. Using Algorithms that support missing values

6.Prediction of missing values

7.Imputation using Deep Learning Library — Datawig

```
In [2]:
import pandas as pd, numpy as np, os
import matplotlib.pyplot as plt
import seaborn as sns
```

In [5]: os.chdir('D:\machine learning\Raw data')

In [10]:

os.listdir() ['a SQL', Out[10]: 'Advertising.csv', 'automobile_data.sas7bdat', 'Automobile_data.xlsx', 'Automobile_data2.csv', 'Automobile_data2.xlsx', 'bank_data.sas7bdat', 'bigmart_data.csv', 'Book1.xlsx', 'carsnew2.xlsx', 'casnew.csv', 'churn.csv', 'churn.xlsx', 'churn2.csv', 'churn_data.pickle', 'churn_data.xlsx', 'chur_12.xlsx', 'cleaned data', 'concrete_data.csv', 'Covid_data.xlsx', 'CREDIT_DISCOVERY_FOR_DS.csv', 'data.csv', 'dubai_refreshments_final.sas7bdat', 'employees.csv', 'employee_detail.sas7bdat', 'german.data.txt', 'german_credit_data.csv', 'Gold.xlsx', 'House Price.csv', 'House_Price_Scoring.csv', 'machine learning', 'MANJU.csv', 'marks', 'merging', 'nortel.csv', 'payroll2.csv', 'Problem Statement.docx', 'state gdp', 'test.csv', 'Titanic_data.csv', 'train.csv', 'user devise'

df_credit=pd.read_csv('german_credit_data.csv')

In [13]: df_credit.head()

Out[13]

'user_usage.xlsx']

]:		Unnamed: 0	Age	Sex	Job	Housing	Saving accounts	Checking_account	Credit_amount	Duration	Purpose	Risk
	0	0	67	male	2	own	NaN	little	1169	6	radio/TV	good
	1	1	22	female	2	own	little	moderate	5951	48	radio/TV	bad
	2	2	49	male	1	own	little	NaN	2096	12	education	good
	3	3	45	male	2	free	little	little	7882	42	furniture/equipment	good
	4	4	53	male	2	free	little	little	4870	24	car	bad

df_credit.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 11 columns): Non-Null Count Dtype Column 0 Unnamed: 0 1000 non-null int64 1000 non-null 1 Age int64 2 Sex 1000 non-null object 3 Job 1000 non-null int64 1000 non-null Housing object Saving accounts 817 non-null object Checking_account 606 non-null object Credit_amount 1000 non-null Duration 1000 non-null 9 Purpose 1000 non-null object 10 Risk 1000 non-null object dtypes: int64(5), object(6) memory usage: 86.1+ KB

In [15]: df_credit['Checking_account'].value_counts().plot.bar(color='hotpink')

Out[15]: <AxesSubplot:>

In [16]: df_credit['Saving accounts'].value_counts().plot.bar(color='r')

Out[16]: <AxesSubplot:> 600 500 400 -300 200 100

```
In [17]:
 def impute_nan(df, variable):
     most_frequent_category=df[variable].mode()[0]
     df[variable].fillna(most_frequent_category,inplace=True)
```

In [18]: for feature in ['Checking_account', 'Saving accounts']: impute_nan(df_credit, feature)

In [19]: df_credit.isnull().sum()

Out[19]: Unnamed: 0 0 Age 0 0 Sex Job Housing Saving accounts Checking_account Credit_amount Duration 0 Purpose 0 Risk dtype: int64