2 Sklop nalog 2: Transformator

2.1 Magnetilni tok in izgube prostega teka

Na primarno navitje neobremenjenega enofaznega transformatorja naj bo priključena izmenična napetost sinusne oblike efektivne vrednosti $U_1=10\,\mathrm{kV}$ in frekvence $f=50\,\mathrm{Hz}$. Magnetno jedro transformatorja ima efektivni presek $A_\mathrm{Fe}=1\,\mathrm{dm}^2$ ter srednjo dolžino $l_\mathrm{Fe}=1\,\mathrm{m}$. Prostorninska masa uporabljene transformatorske pločevine znaša $\rho_\mathrm{Fe}=7,55\cdot10^3\,\frac{\mathrm{kg}}{\mathrm{m}^3}$. Za pločevino poznamo še specifične izgube p_Fe , ki so podane v tabeli 1 in magnetilno krivuljo, ki je prikazana na sliki 5.

B _{ref} [T]	$p_{\mathrm{Fe,ref}}\left[\frac{\mathrm{W}}{\mathrm{kg}}\right]$						
1,0	1,08						
1,3	1,90						
1,5	2,54						

Tabela 1: Specifične izgube p_{Fe} pri različnih gostotah magnetnega pretoka.

Slika 5: Magnetilna krivulja uporabljene pločevine (krivulja I)

Pri izračunih lahko zanemarimo padca napetosti, ki jih povzroča primarni tok neobremenjenega transformatorja I_{10} na ohmski upornosti R_1 in induktivni upornosti $X_{\sigma 1}$ primarnega navitja⁵.

(A) Magnetilni tok: Na podlagi magnetilne krivulje na sliki 5 smo sklenili, da uporabljen magnetni material v jedru transformatorja doseže nasičenje pri $B_{\rm s}>1,4\,{\rm T}.$

⁵ Tok I_{10} je bistveno manjši v primerjavi z nazivnim tokom transformatorja I_{1N} ($I_{10} \ll I_{1N}$), zato je \underline{I}_{10} ($R_1 + \mathrm{j} X_{\sigma 1}$) ≈ 0 .

a) Narišite poenostavljeno nadomestno vezje, ki velja v prostem teku transformatorja.

b) Izračunajte največje število ovojev primarnega navitja ($N_1 = ?$), da jedro transformatorja ne bo v nasičenju.

c) Izračunajte inducirano napetost v enem ovoju navitja ($E_{ov} = ?$). R: $E_{ov} = 3,108 \text{ V}$

d) Izračunajte temensko ($\hat{I}_{1\mu}=?$) in efektivno vrednost ($I_{1\mu}=?$) magnetilnega toka. Magnetilna krivulja je podana na sliki.

R:
$$\hat{I}_{1\mu} = 0,143 \text{ A}, I_{1\mu} = 0,101 \text{ A}$$

(B) Izgube v prostem teku: Zaradi mehanske obdelave pločevine (štancanje, rezanje, ipd.) se lastnosti pločevine spremenijo, kar v splošnem vodi v povečanje histereznih izgub. Prav tako lahko zaradi poškodb izolacije pride do električno prevodnih stikov med lamelami, kar vodi v povečanje vrtinčnih izgub v jedru. Zato pri računanju izgub dodatno upoštevamo t.i. tehnološki faktor k, s čimer upoštevamo opisano povečanje izgub v izdelanem jedru. Za obravnavano jedro znaša tehnološki faktor k = 1, 15.

R:
$$P_0 = 192, 1 \text{ W}$$

b) Izračunajte modelno upornost, ki ponazarja izgube v jedru v nadomestnem vezju transformatorja ($R_{\rm Fe}=$?).

R:
$$R_{\text{Fe}} = 520, 56 \,\text{k}\Omega$$

c) Izračunajte delovno komponento toka prostega teka ($I_{1\mathrm{w}}=$?).

R:
$$I_{1w} = 19,2 \,\text{mA}$$

d) Izračunajte tok prostega teka ($I_{10} = ?$).

R:
$$I_{10} = 102,8 \,\mathrm{mA}$$

e) Izračunajte faktor moči prostega teka ($\cos \varphi_0 = ?$) ter fazni premik med napetostjo in tokom ($\varphi_0 = ?$).

R:
$$\cos \varphi_0 = 0,1868$$
 , $\varphi_0 = 79,23^\circ$

Transformator v prostem teku

Enofazni transformator ima naslednje nazivne in geometrijske podatke: nazivna napetost $\frac{U_1}{U_2}=\frac{231}{42}\frac{\rm V}{\rm V}$, nazivna frekvenca $f=50\,{\rm Hz}$, presek železnega jedra $A_{\rm Fe}=17,42\,{\rm cm}^2$, srednja dolžina železnega jedra $l_{\text{Fe}} = 0,36\,\text{m}$, gostota magnetnega pretoka $B = 1,37\,\text{T}$ ter prostorninska masa uporabljene pločevine $\rho_{\rm Fe}=7,55\cdot 10^3~{\rm kg\over m^3}.$ Specifične izgube so podane v tabeli 2, magnetilna krivulja uporabljene pločevine pa je prikazana na sliki 5. Pri izračunu upoštevajte tehnološki faktor izdelave jedra, ki znaša k = 1, 1.

Pri izračunih lahko zanemarimo padca napetosti, ki jih povzroča primarni tok neobremenjenega transformatorja I_{10} na ohmski upornosti R_1 in induktivni upornosti $X_{\sigma 1}$ primarnega navitja⁶.

B _{ref} [T]	$p_{\mathrm{Fe,ref}}\left[\frac{\mathrm{W}}{\mathrm{kg}}\right]$						
1,0	1,30						
1,5	3,10						

Tabela 2: Specifične izgube p_{Fe} pri različnih gostotah magnetnega pretoka.

 $^6\,\mathrm{Tok}\ I_{10}$ je bistveno manjši v primerjavi z nazivnim tokom transformatorja I_{1N} ($I_{10} \ll I_{1N}$), zato je $\underline{I}_{10}\left(R_1+\mathsf{j}X_{\sigma 1}\right)\approx 0.$

a) Narišite poenostavljeno nadomestno vezje, ki velja v prostem teku transformatorja.

b) Izračunajte število ovojev primarnega in sekundarnega navitja $(N_1 = ? \text{ in } N_2 = ?).$

d) Izračunajte sprejeto moč ($S_0 = ?$).

R: $S_0 = 55,6 \text{ VA}$

e) Izračunajte faktor moči prostega teka ($\cos \varphi_0 = ?$) ter fazni premik med napetostjo in tokom ($\varphi_0 = ?$).

R: $\cos \varphi_0 = 0,2419$, $\varphi_0 = 76^\circ$

2.3 Komponente toka in moči v prostem teku

Na primarno navitje neobremenjenega enofaznega transformatorja je priključena napetost:

$$u_1(\omega t) = \hat{U}_1 \sin(\omega t) = \sqrt{2} \cdot 231 \sin(\omega t) V.$$

Z uporabo Fourierjeve analize lahko tok prostega teka v primarnem navitju transformatorja opišemo z:

$$i_{10}(\omega t) = \sqrt{2} [1, 3\sin(\omega t) - 7, 0\cos(\omega t) - 3, 5\cos(3\omega t)] A.$$

a) Zakaj vsebuje tok protega teka i_{10} višjeharmonske komponente?

b) Izračunajte magnetilno komponento toka prostega teka

$$(I_{\mu 0} = ?).$$

R:
$$I_{\mu 0} = 7,826 \text{ A}$$

c) Izračunajte delovno komponento toka prostega teka ($I_{w0} = ?$).

R:
$$I_{w0} = 1.3 \text{ A}$$

e) Narišite ustrezni kazalčni diagram.

R:
$$S_0 = 1832,5 \text{ VA}$$

R:
$$P_0 = 300, 3 \text{ W}$$

h) Izračunajte sprejeto jalovo moč (
$$Q_0 = ?$$
).

R:
$$Q_0 = 1807, 8 \text{ VAr}$$

i) Izračunajte faktor moči prostega teka ($\cos \varphi_0 = ?$) ter fazni premik med napetostjo in tokom ($\varphi_0 = ?$).

R:
$$\cos \varphi_0 = 0,1639$$
, $\varphi_0 = 80,57^\circ$

2.4 Komponente toka in moči v prostem teku II

Na primarno navitje neobremenjenega enofaznega transformatorja je priključena napetost efektivne vrednosti $U_1=220\,\mathrm{V}$. S pomočjo merilnege tuljave na jedru transformatorja in osciloskopa smo določili časovni potek magnetnega pretoka v jedru, ki ga lahko zapišemo z:

$$\Phi_{\rm g}\left(\omega t\right) = 3 \cdot 10^{-3} \sin\left(\omega t\right) \text{Vs.}$$

Sočasno smo z osciloskopom izmerili tudi tok prostega teka v primarnem navitju transformatorja. Z uporabo Fourierjeve analize lahko ta tok opišemo z:

$$i_{10}(\omega t) = 0,129\sin(\omega t) + 0,056\sin(3\omega t) + 0,018\cos(\omega t)$$
 A.

a) Izračunajte magnetilno komponento toka prostega teka

b) Izračunajte delovno komponento toka prostega teka ($I_{w0}=?$).

d) Narišite ustrezni kazalčni diagram.

R:
$$S_0 = 22,8 \text{ VA}$$

f) Izračunajte sprejeto delovno moč ($P_0 = ?$).

R:
$$P_0 = 2,79 \,\mathrm{W}$$

R:
$$Q_0 = 21,87 \text{ VAr}$$

h) Izračunajte faktor moči prostega teka ($\cos \varphi_0 = ?$) ter fazni premik med napetostjo in tokom ($\varphi_0 = ?$).

R:
$$\cos \varphi_0 = 0$$
, 127 , $\varphi_0 = 82$, 7°

i) Zakaj je fazni premik med napetostjo in tokom $\phi_0 < 90^{\circ}$?

2.5 Nazivna napetost in frekvenca transformatorja

V državah EU se uporablja efektivna vrednost fazne napetosti $U_{\rm EU}=231\,{\rm V}$ frekvence $f_{\rm EU}=50\,{\rm Hz}$, medtem ko se v ZDA uporablja efektivna vrednost fazne napetosti $U_{\rm ZDA}=110\,{\rm V}$ frekvence $f_{\rm ZDA}=60\,{\rm Hz}$.

a) Kakšna je gostota magnetnega pretoka v prostem teku $B_{\rm EU}$ glede na $B_{\rm ZDA}$ ($\frac{B_{\rm EU}}{B_{\rm ZDA}}=$?), če vzamemo enofazni transformator grajen za uporabo v ZDA in ga priključimo na EU omrežje⁷.

 $^{7}\,\mathrm{presek}$ jedra in število ovojev se ohrani.

R:
$$\frac{B_{\text{EU}}}{B_{\text{ZDA}}} = 2,52$$

b) Ali lahko takšen transformator uporabljamo v EU? Zakaj da oz. ne?

