

Data Visualisation CSE2002

- Vector data is a three-dimensional representation of direction and magnitude.
- a vector is a tuple of n scalar components $v=(v_1,v_2, v_3,...v_n), v_i \in \mathbb{R}$
- Vector data often results from the study of fluid flow, or when examining derivatives, \rightarrow rate of change, of some quantity, a position, force in \mathbb{R}^n .
- visualization techniques for vector data sets
 - Vector glyphs or Hedgehogs and oriented glyphs
 - Vector color coding
 - Warping
 - Displacement plots
 - Time animation
 - Streamlines or Streaming objects
 - texture-based vector visualization

Main applications of Vector field Visualization

- Motion of Fluids (gas, liquid)
- Geometric boundary conditions
- Velocity (flow) field v(x,t)
- Pressure p
- Temperature T
- Vorticity
- Density
- Conservation of mass, energy, and momentum
- Navier-Stokes equations
- CFD (Computational Fluid Dynamics)

- One important application domain of vector visualization is computational fluid dynamics(CFD).
- The solution of a CFD simulation consists of several datasets, each for a different time step
- For each time step, several attributes are computed and stored into the solution dataset → velocity, pressure, density, flow divergence, and vorticity.
- Divergence and vorticity are important quantities for vector field visualization.

Divergence:

- Given a vector field v: $\mathbb{R}^3 \to \mathbb{R}^3$, the divergence of $\mathbf{v} = (\mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z)$ is a scalar quantity div $\mathbf{v} = \frac{\partial \mathbf{v}_x}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_y}{\partial \mathbf{v}} + \frac{\partial \mathbf{v}_z}{\partial \mathbf{z}}$
- if v is a flow field that transports mass, div v characterize the increase or loss of mass at a given point - p in the vector field in unit time.
- A positive divergence at p → mass would spread from p outward. → positive divergence points are called sources
- A negative divergence at p → mass get sucked into p. → negative divergence points are called sinks
- A zero divergence at p \rightarrow mass is transported without getting spread or sucked \rightarrow without compression or expansion

Divergence

Figure 6.1. Divergence and curl in 2D. (a) Divergence construction. (b) Source point. (c) Sink point. (d) Rotor construction. (e) High-vorticity field.

Vector Visualization Technique

Divergence

- Divergence of 2D flow field using blue-to-red colormap
- The vector fields are visualized with arrow glyphs
- Red Area \rightarrow High Positive Divergence or Sources
- Blue Area \rightarrow High Negative Divergence or Sinks
- if we correlate the divergence and vector glyphs, we get the image of a flow field that emerges from the sources and

end up in the sinks

Vorticity

• Given a vector field $v : \mathbb{R}^3 \to \mathbb{R}^3$, the vorticity of v, also called curl or rotor of v^2 , is the quantity vector rot $v = (\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z},$

$$\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}, \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}$$

- The vorticity vector characterizes the speed and direction of rotation of a given vector field at every point.
- An informal definition of a vortex is a region where the vector field locally circles around a point called the vortex center.

Vorticity

- The absolute value of the vorticity of a velocity field from a magnetohydrodynamic (MHD) simulation using blue-to-red colormap
- The field itself is visualized with arrow-capped stream tubes.
- Blue areas indicate low-vorticity, laminar regions.
 - Red areas indicate high-vorticity regions

Vorticity

- The following image visualizes the vorticity of a more complex turbulent 2D flow
- Blue and red indicates counter-clockwise and clockwise spinning vortices respectively
- Green indicates low-vorticity, laminar regions.
- The image clearly conveys the high complexity of the flow.

Vector Glyphs

- These are simplest, fastest and more popular techniques for visualizing vector fields
- it associates a mapping between a vector glyph or vector icon with every simple point of the vector dataset
- Various properties of the icon, such as location, direction, orientation, size, and color, are adjusted to reflect the value of the vector attribute it represents.

Line glyphs

- Lines essentially show the position, direction, and magnitude of a set of vectors.
- Given a vector dataset defined on a sampled domain D, we associate a line I = (x, x+kv(x)) with every sample point $x \in D$ that has a vector attribute v(x).
- The parameter k represents the scaling factor used to map the vector magnitudes to the geometric domain.
- Oriented line glyphs are sometimes also called hedgehogs
 the particularly spiky appearance of the visualization.

line glyph

- line glyph, or hedgehog, visualization of a 2D vector field MHD dataset
- The images show the hedgehog visualization of the vector field uniformly subsampled in both x and y dimensions at a rate of 2 (a), a rate of 4 (b), a rate of 8 (c) and a rate of 8 but line glyphs all are scaled to the same length.

Line Glyphs

- The high-resolution vector datasets must be subsampled in order to be visualized with hedgehogs.
- The clarity of hedgehog visualizations depends strongly on the glyph scaling factor.
- Glyph should be as large as possible, since larger glyphs have an easier perceivable direction, but not too large
- If we scale all glyphs to the same size → removes clutter, but eliminates the use of the glyph size (length) as a visual cue for the vector field magnitude.
- linear scaling factor
- non-liner scaling factor kv → has constrained minimal and maximal values or has a logarithmic, instead of linear → prevent clutter and guarantee glyph visibility → but drops the one-to-one relationship between vector magnitude and glyph length

cone and arrow glyphs

- For the same 2D vector field, visualized with 3D cone and arrow glyphs
- These glyphs are have an advantage to convey a signed direction
- line glyphs are able to convey unsigned direction
- \bullet These glyphs also take more space to draw \to they increase the clutter or require lower-resolution datasets.
- An interesting compromise between arrows and lines is to use Gouraud shaded lines.
- By using even more complex glyph shapes, we can encode more attributes than the vector field itself.
- These are used to provide correlations between several scalar and vector fields.

cone and arrow glyphs

Figure 6.5. Different glyph types. (a) Cones. (b) Arrows.

Glyphs

- the power of expression of glyphs, number of attributes they can encode and minimal screen size needed by a glyph is an important characteristic of glyph-based visualizations.
- Since a glyph takes more space than just a pixel, we cannot draw one glyph at every pixel of a given dataset → every pixel represents an data value.
- All glyph visualizations share this inherent discreteness.
- This affects the inverse image-to-data mapping.

- Vector glyphs in 2D
- Problems in Vector glyphs in 2D

Vector glyphs in 2D

Figure 6.6. Visual interpolation of vector glyphs. (a) Small data variations are easily interpolated. (b) Large data variations create more problems.

Vector glyphs in 2D

- In the first case Fig-6.6(a)
- we can easily interpolate mentally the displayed arrow glyphs and make the conclusion
- 1. The vector field has an upper-right direction and orientation
- 2. Increases in magnitude in this direction
- In the second case Fig-6.6(b)
- The vector field varies greatly between the vertices of the considered cell → it is harder to mentally interpolate between these four vector glyphs and get an idea of how the field actually behaves over the considered surface.
- 1. More difficult to interpolate between directions and orientations
- Glyph techniques produce a purely discrete visualization
- ullet we do not have to mentally interpolate between drawn pixels ullet the graphics hardware has done this task

Vector glyphs in 2D

 The regular pattern of the sample points present in uniform and rectilinear grids.

- The problem is visible in the central area of the above figure
- In these regions, the perception of the diagonal orientation of the vector glyphs is weakened by the regular vertical pattern of the uniformly distributed sampling points.

Vector glyphs in 2D

- The above problem affects the dense visualizations to a much lesser degree.
- Solution 1: Subsampled on a rectilinear grid rotated approximately 30 degrees with respect to the original dataset grid.
- The undesired visual interference between the grid lines and glyph directions is clearly visible.
- Subsampling the dataset using a randomly distributed set of points, the problem can be alleviated

Vector glyphs in 3D

- Vector glyphs can be used to visualize 3D vector fields
- The beside figure shows an arrow glyph visualization of a 3D vector dataset sampled on a uniform grid containing 128 X 85 X 42 data points
- It describes the flow of water in a box-shaped basin
- It has inlet → located upper-right
- $\begin{array}{c} \textbf{Older} & \textbf{It has outlet} \rightarrow \textbf{In outlet} \\ \textbf{Older} & \textbf{Older} & \textbf{Older} \\ \textbf{Older} \\ \textbf{Older} & \textbf{Older} \\ \textbf{Older} & \textbf{Older} \\ \textbf{Older} & \textbf{$

- Two obstacles that cause the sinuous behavior of the flow.
- Randomly subsampling the dataset to 100,000 points

Vector Color Coding

- Dense visualization (color mapped surfaces) has more advantages compared to sparse visualization (vector glyphs)
- Can we develop a dense visualization for vector fields?
- Vector Color Coding
- It associates a color with every point of a given surface, on which we have defined a vector dataset
- The color is used to encode the vector orientation and direction attributes.
- The simple way to understand vector color coding is to use HSV (Hue, Saturation and Value) to represent color
- Colors in HSV can be represented using Color Wheel

Vector Color Coding

- Every distinct **hue** corresponds to a different angle of the color wheel \rightarrow red is 0^0 , magenta is 60^0 , blue is 120^0 , cyan is 180^0 , green is 240^0 and yellow is 300^0 .
- Saturation is represented as the distance from the wheel center to a given color point
- Value is usually represented as a separate one-dimensional "luminance" parameter.
- \bullet the vector magnitude can be encoded as the luminance \to long vectors result in full color whereas shorter vectors tend to be represented as black.

Vector Color Coding on 2D surfaces

- Assume we have a color wheel of unit radius.
- All vectors in the 2D dataset are scaled so that the longest one has unit length.
- Under this assumption, every vector is represented by the color it points to if it is placed at the center of the color wheel.
- The vector orientation is encoded in the hue.
- The vector length in the value.
- The saturation parameter is set to one. \rightarrow we use only fully saturated colors

Vector Color Coding on 2D surfaces

Figure 6.10. Vector color coding. (a) Orientation and magnitude. (b) Orientation only.

Vector Color Coding on 2D surfaces

- This image does not suffer from the sampling problems
- Low-vector-magnitude regions can be easily detected as dark (low value) areas.
- High-vector-magnitude regions show up as brightly colored areas.
- This visualization is highly abstract.
- The inverse mapping from hue to vector orientation takes more time. → users have to be trained extensively to interpret such images.
- If we are interested only in the vector orientation and not the magnitude, we can set the value component to one, and we obtain the visualization shown in Figure 6.10(b).
- The orientation patterns of the vector field are easier to distinguish → image is brighter

Displacement Plots

- Vector glyphs has been understood in terms of displaying trajectories.
- The vector glyph with the origin at some point p can be seen as the trajectory p would follow in v(p) over a short time interval Δt.
- The vector glyph shows both the start and end points of the trajectory \to p and p+v(p) Δt .
- Displacement plots take a different approach by showing only the end points of such trajectories.
- Given a surface $S \in D$ inside the domain D of a vector field, where S is discretized as a set of sample points p_i , a displacement plot of S is a new surface S' given by the set of sample points $p'_i = p_i + kv'(p_i)$
- v' is a vector field that controls the displacement of the surface
 S and k is the displacement factor

Displacement Plots

 A natural interpretation of a displacement plot is to think of it as being the effect of displacing, or warping, a given surface in the vector field.

Figure 6.12. Displacement plots of planar surfaces in a 3D vector field.

Displacement Plots

- Both examples uses k=20
- The displacement plots are colored by the vector field component on which the input surface is perpendicular.
- Blue shows the minimal (negative) displacement
- Red is the maximal (positive) displacement
- Green indicates a non-displaced point with vector value close to zero.
- The red areas, warped forward in the direction of the x-axis, indicate regions where the fluid flow strongly follows the inlet-to-outlet direction → figure-a
- Blue regions are also interesting, as these indicate a backward flow that goes against the main stream

Displacement Plots

- displacement plots are sometimes also called warped plots
- Advantages of Displacement Plots:
- 1. they produce a visually continuous result
- 2. these plots produce a more abstract, less intuitive visualization
- Red is the maximal (positive) displacement
- Green indicates a non-displaced point with vector value close to zero.
- A displacement plot shows the motion of an object in the direction perpendicular to its surface.