Want more revision exercises? Get MathsFit HSC Mathematics for \$2.95/topic

- **2016 15** The diagram shows two curves C_1 and C_2 .
 - The curve C_1 is the semicircle $x^2 + y^2 = 4$, $-2 \le x \le 2$.

The curve C_2 has equation $\frac{\chi^2}{9} + \frac{y^2}{4} = 1$,

$$0 \le x \le 3$$
.

An egg is modelled by rotating the curves about the x-axis to form a solid of revolution. Find the exact value of the volume of the solid of revolution.

Consider two volumes:

For C_1 , rotated around x-axis, use $y^2 = 4 - x^2$. The solid is a hemisphere with radius 2.

For C_2 , rotated around x-axis, use $\frac{y^2}{4} = 1 - \frac{x^2}{9}$, i.e. $y^2 = 4 - \frac{4x^2}{9}$.

Total volume =
$$\frac{1}{2} \times \frac{4}{3} \times \pi \times 2^3 + \pi \int_0^3 \left(4 - \frac{4x^2}{9}\right) dx$$

$$= \frac{16\pi}{3} + \pi \left[4x - \frac{4x^3}{27} \right]_0^3$$

$$= \frac{16\pi}{3} + \pi \left[4(3) - \frac{4(3)^3}{27} - (4(0) - \frac{4(0)^3}{27}) \right]$$

$$= \frac{16\pi}{3} + \pi [12 - 4]$$

$$=\frac{16\pi}{3}+8\pi$$

$$= \frac{40\pi}{3}$$

$$\therefore$$
 the volume is $\frac{40\pi}{3}$ units³.

State Mean: **2.30**

BOSTES: Notes from the Marking Centre

This information is released by BOSTES in late Term 1 2017.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.