REPREZENTACJA WIEDZY

REALIZACJE SCENARIUSZY DZIAŁAŃ

PROJEKT NR 5

Autorzy:
Robert Jakubowski
Hanna Dziegciar
Paweł Bielicki
Karol Bocian
Karol Dzitkowski
Mateusz Jankowski
Wiktor Ryciuk
Mariusz Ambroziak

Spis treści

1. Opis zadania								
2.	Opis języka akcji 2.1. Sygnatura języka	5 6 6 6 7						
3.	. Opis języka kwerend							
4.	Algorytm wnioskowania	11						
5.	Przykłady	12						
	5.1. Pytanie czy scenariusz może wystąpić	12						
	5.1.1. Historia	12						
	5.1.2. Opis akcji	12						
	5.1.3. Scenariusz	12						
	5.1.4. Kwerendy	12						
	5.1.5. Analiza	12						
	5.2. Pytanie czy dany warunek zachodzi w danym czasie	12						
	5.2.1. Historia	12						
	5.2.2. Opis akcji	12						
	5.2.3. Scenariusz	12						
	5.2.4. Kwerendy	12						
	5.2.5. Analiza	12						
	5.3. Pytanie czy dana akcja jest wykonywana w danym czasie	12						
	5.3.1. Historia	12						
	5.3.2. Opis akcji	12						
	5.3.3. Scenariusz	13						
	5.3.4. Kwerendy	13 13						
	5.3.5. Analiza	13 13						
	5.4. Pytanie czy cel jest osiągalny	13 13						
	5.4.1. Historia	13 13						
	1 9	13 13						
	5.4.3. Scenariusz	13 13						
	5.4.5. Analiza	13 13						
	5.4.5. Analiza	13 13						
	5.5.1 Historia	10						

SPIS TREŚCI 3

5.5.2.	Opis akcji	13
5.5.3.	Scenariusz	13
5.5.4.	Kwerendy	14
5.5.5.	Analiza	14

Opis zadania

Zadaniem projektu jest opracowanie i zaimplementowanie:

- języka akcji pewnej klasy systemów dynamicznych,
- język kwerend zapewniającego uzyskanie odpowiedzi na określone pytania.

Szczegółowy opis klasy systemów dynamicznych oraz języka akcji jest opisany w rozdziale 'Opis języka akcji', natomiast język kwerend oraz zadawane pytania znajdują się w rozdziale 'Opis języka kwerend'. W tym dokumencie znajduje się również rozdział 'Algorytmy wnioskowania', w którym zostały opisane algorytmy, które zostaną zaimplementowane. W ostatnim rozdziale znajdują się przykłady. Pokazują ona konkretne przypadki użycia oraz oczekiwane wyniki działania programu.

Opis języka akcji

Język akcji zaprojektowany na potrzeby zadania, musi spełniać następujące warunki:

- 1. Prawo inercji.
- 2. Sekwencyjność działań.
- 3. Możliwe akcje niedeterministyczne.
- 4. Liniowy model czasu czas dyskretny.
- 5. Pełna informacja o wszystkich:
 - (a) akcjach,
 - (b) skutkach bezpośrednich.
- 6. Akcja posiada:
 - (a) warunek początkowy,
 - (b) czas trwania $t \ge 1, t \in \mathbb{N}$,
 - (c) efekt akcji.
- 7. Podczas trwania akcji, wartości zmiennych, na które ona wpływa, nie są znane.
- 8. Występujące rodzaje efektów:
 - (a) środowiskowe,
 - (b) dynamiczne.
- 9. Akcje mogą być niewykonalne.
- 10. Stany opisywane częściowo (obserwacje). (TODO wyjaśnić)
- 11. Pewne stany mogą rozpocząć wykonywanie pewnych akcji.

Językiem odpowiadającym powyższym założeniom jest język AL opisujący domeny akcji z czasem liniowym.

2.1. Sygnatura języka

```
\psi=(F,Ac,\mathbb{N})gdzie:

F-zbiór zmiennych inercji (fluentów)

Ac-zbiór akcji

\mathbb{N}-zbiór liczb naturalnych (czas trwania akcji)
```

2.2. Opis domeny

Rodzaje zdań występujących w projektowanym języku (domena języka): Oznaczenia:

```
f – fluent

Ac_i, Ac_j \in Ac

\pi \in Forms(F)

d_i, d \in \mathbb{N}
```

- initially α Określa stan początkowy fluentów w formule α .
- (Ac_i, d_i) causes α if π Akcja Ac_i trwająca d_i chwil powoduje stan α , jeśli zachodzi warunek π .
- (Ac_i, d_i) invokes (Ac_j, d_j) after d if π Akcja Ac_i trwająca d_i chwil powoduje wykonanie akcji Ac_j trwającej d_j chwil po d chwilach od zakończenia akcji Ac_i , jeśli zachodzi warunek π .
- (Ac_i, d_i) releases f if π Akcja Ac_i trwająca d_i chwil powoduje uwolnienie f po zakończeniu akcji Ac_i , jeśli zachodzi warunek π .
- π triggers (Ac_i, d_i) Akcja Ac_i trwająca d_i chwil jest wykonywana, jeśli zajdzie warunek π .

2.3. Scenariusze działań

Scenariusze działań opisane są w następujący sposób:

- Sc = (OBS, ACS)
- $OBS = \{(\gamma_1, t_1), ..., (\gamma_m, t_m)\}$, gdzie: $m \ge 0$ – obserwacje, gdzie każda obserwacja jest stanem częściowym (stanem spełniającym warunek γ w pewnym punkcie czasu t). γ – zbiór (np. $x_1 = True, x_2 = True, x_3 = False$).
- $ACS = \{((Ac_1, d_1), t_1), ..., ((Ac_n, d_n), t_n)\}$, gdzie: $n \ge 1$, $Ac_i \text{akcja}$, $d_i \text{czas trwania akcji}$, $t_i \text{punkt w czasie (rozpoczęcie akcji)}$.

2.4. Semantyka 7

2.4. Semantyka

Definicja 2.1. Semantyczną strukturą języka AL nazywamy system S = (H, O, E) taki, że:

- $H: F \times \mathbb{N} \longrightarrow \{0,1\}$ jest funkcją historii, pozwala ona stwierdzić, jaki stan ma pewny fluent w danej chwili czasu.
- $O: Ac \times \mathbb{N} \longrightarrow 2^F$ jest funkcją okluzji. Dla pewnej ustalonej akcji A i chwili czasu $t \in \mathbb{N}$ funkcja O(A,t) zwraca zbiór fluentów, na który akcja A ma wpływ, jeśli zostanie wykonana od czasu t-1 do t.
- E ⊆ Ac × N jest relacją wykonań akcji. Para (A,t) należy do relacji E jeśli akcja
 A jest wykonana w czasie t. W naszym modelu zakładamy warunek sekwencyjności
 działań. Oznacza on, że tylko jedną akcje możemy wykonać w danym czasie tak, więc
 jeśli (A,t) ∈ E oraz (B,t) ∈ E, to A = B.

Niech: A,B będą akcjami, f - fluentem, α,π - literałami, d - liczbą naturalną oraz $fl(\alpha)$ będzie zbiorem fluentów występujących w α . Wtedy dla zdań języka AL muszą być spełnione następujące warunki:

- Dla każdego wyrażenia $(A \ causes \ \alpha \ if \ \pi) \in D$ i dla każdego momentu w czasie $t \in \mathbb{N}$, jęzeli $H(\pi,t)=1$ oraz $(A,t) \in E$, wtedy $H(\alpha,t+1)=1$ i $fl(\alpha) \subseteq O(A,t+1)$.
- Dla każdego wyrażenia (A release f if π) \in D i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t)\in E$, wtedy $f\in O(A,t+1)$.
- Dla każdego wyrażenia (π triggers A) $\in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$, wtedy $(A,t) \in E$.
- Dla każdego wyrażenia (A invokes B after d if π) \in D i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi, t) = 1$ oraz $(A, t) \in E$, wtedy $(B, t + d + 1) \in E$.

Definicja 2.2. Niech S=(H,O,E) będzie strukturą języka AL, Sc=(OBS,ACS) będzie scenariuszem, oraz D domeną. Powiem, że S jest strukturą dla Sc zgodnym z opisem domeny D jeśli:

- Dla każdej obserwacji $(\alpha, t) \in OBS$, $H(\alpha, t) = 1$
- $ACS \subseteq E$

Definicja 2.3. Niech $O_1,O_2: X \longrightarrow 2^Y$, mówimy, że $O_1 \prec O_2$ jeżeli $\forall x \in X \ O_1(x) \subseteq O_2(x)$ oraz $O_1 \neq O_2$.

Definicja 2.4. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. Mowimy, że S jest O-minimalną strukturą, jeżeli nie istnieje struktura S' = (H', O', E') dla tego samego scenariusza i domeny taka, że $O' \prec O$.

Definicja 2.5. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. S będziemy nazywać modelem Sc zgodnym z opisem D jeżeli:

- \bullet S jest O-minimalny
- Dla każdego momentu w czasie $t \in \mathbb{N}$, $f \in F : H(f,t) \neq H(f,t+1) \subseteq O(A,t+1)$ dla pewnej akcji $A \in Ac$.

• Nie istnieje, żadna struktura S' = (H', O', E') dla Sc zgodna z opisem D która spełnia poprzednie warunki oraz taka, że $E' \subset E$.

Uwaga 2.1. Nie dla każdego scenariusza można ułożyć model. Mówimy, że scenariuszScjest zgodnyjeśli istnieje do niego model zgodny z domeną D.

Opis języka kwerend

Zdefiniowany język akcji może być odpytywany przez poniżej zaprezentowany język kwerend, który zapewnia uzyskanie odpowiedzi TRUE/FALSE na następujące pytania:

- Q1. Czy podany scenariusz jest możliwy do realizacji zawsze/kiedykolwiek?
 - always/ever executable Sc
 Oznacza, że scenariusz Sc zawsze/kiedykolwiek jest możliwy do realizacji.
- Q2. Czy w chwili $t \geq 0$ realizacji podanego scenariusza warunek γ zachodzi zawsze/kiedykolwiek?
 - $always/ever\ \gamma\ at\ t\ when\ Sc$ Oznacza, że zawsze/kiedykolwiek w chwili t realizacji scenariusza Sc zachodzi warunek $\gamma.$
- Q3. Czy w chwili t realizacji scenariusza wykonywana jest akcja A?
 - performing A at t when Sc
 Oznacza, że zawsze w chwili t realizacji scenariusza Sc zachodzi akcja A.
- Q4. Czy podany cel γ jest osiągalny zawsze/kiedykolwiek przy zadanym zbiorze obserwacji OBS?
 - always/ever accesible γ when ScOznacza, że cel γ jest osiągalny zawsze/kiedykolwiek przy zadanym zbiorze obserwacji OBS przy realizacji scenariusza Sc.

Semantyka kwerend w języku

Niech Sc będzie scenariuszem, D niech będzie opisem domeny języka, wtedy powiemy, że kwerenda Q jest konsekwencją Sc zgodnie z D (ozn. Sc, $D \mid \approx Q$)

- zapytanie kwerendą Q postaci γ at t when Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $H(\gamma,t)=1$
- zapytanie kwerendą Q postaci performing~A~at~t~when~Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $(A,t)\in E$

• zapytanie kwerendą Q postaci $accesible~\gamma~when~Sc$ zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $\exists_{t\in NN}\exists_{A\in Ac}~\gamma\in O(A,t)$

jeśli warunek nie zajdzie program zwróci wartość FALSE.

Algorytm wnioskowania

TODO

Przykłady

– 1	D ,		•	•	, • ,
5.1.	Pytanie	$\mathbf{C}\mathbf{Z}\mathbf{V}$	scenariusz	moze	wystanic
J. I.	i j carrie	$c_{L_{J}}$	Scenar rasz	111020	"J Staple

- 5.1.1. Historia
- 5.1.2. Opis akcji
- 5.1.3. Scenariusz
- 5.1.4. Kwerendy
- 5.1.5. Analiza

5.2. Pytanie czy dany warunek zachodzi w danym czasie

- 5.2.1. Historia
- 5.2.2. Opis akcji
- 5.2.3. Scenariusz
- 5.2.4. Kwerendy
- 5.2.5. Analiza
- 5.3. Pytanie czy dana akcja jest wykonywana w danym czasie
- 5.3.1. Historia
- 5.3.2. Opis akcji

.

- 5.3.3. Scenariusz
- 5.3.4. Kwerendy
- 5.3.5. Analiza
- 5.4. Pytanie czy cel jest osiągalny
- 5.4.1. Historia
- 5.4.2. Opis akcji
- 5.4.3. Scenariusz
- 5.4.4. Kwerendy
- 5.4.5. Analiza

5.5. Brak integralnośći

Przykład *Brak integralnośći* pokazuje scenariusz, który mimo zgodności z warunkami zadania, jest sprzeczny z logiką *common sense* (z powodu braku warunków integralności).

5.5.1. Historia

Mamy Billa oraz kompute. Bill może nacisnąć przycisk Wlqcz lub odłączyć komputer od zasilania. Komputer jest wyłączony i podłączony do zasilania. Jeżeli zostanie naciśnięty jego przycisk Wlqcz, to komputer włącza się.

5.5.2. Opis akcji

 $initially\ of\ f_computer\ and\ \neg on_computer\ and\ connects_power_computer\ and\ \neg swithing_on_computer\ click_button_on\ causes\ switching_on_computer\ after\ 1$ $switch_on_computer\ causes\ on_computer\ disconnect_power\ causes\ \neg of\ f_computer\ and\ \neg swithing_on_computer$

5.5.3. Scenariusz

```
Sc = (OBS, ACS)

OBS = \emptyset

ACS = (click\_button\_on, 0 + 1), (disconnect\_power, ), 2 + 1), (click\_button\_on, 3 + 1)
```

5. Przykłady

5.5.4. Kwerendy

- $1. \ swithing_on_computer \ at \ 4+1 \ when \ Sc$
- 2. $swithing_on_computer$ and $off_computer$ at 4+1 when Sc

5.5.5. Analiza

Powyższy scenariusz jest prawidłowy, lecz zawiera pewną niezgodność. W chwili t=2+1 komputer zostaje odcięty od zasilania. Powinien więc wyłączyć się. Bill chwili t=3+1 naciska przycisk Wlącz. Komputer zacznie włączać się mimo iż jest odcięty od zasilania. Zachodzą dwa sprzeczne ze sobą stany, tj. $swithing_on_computer = T$ i $off_computer = F$. Odpowiedzi na powyższe kwerendy będą odpowiednio: 1.True i 2.False. Należy zaznaczyć, że odpowiedzi zgodnie z logiką commonsense powinny być sobie równe.