Curso 2007-2008

3 de septiembre de 2008

EXAMEN EXTRAORDINARIO

Apellidos y Nombre _			
D.N.I	Grupo	Firma	

- 1. Se considera la siguiente proposición $P: Si\ n, m\ y\ p\ son\ tres\ números\ enteros\ tales\ que\ n^2+m^2+p^2\ es\ múltiplo\ de\ 5,\ entonces\ alguno\ de\ los\ tres\ números\ n, m\ o\ p\ es\ múltiplo\ de\ 5.$ Se pide:
 - a) Escribir P usando los símbolos lógicos de implicación y disyunción.
 - b) Escribir, también con símbolos, el contrarrecíproco Q de P.
 - c) Probar **Q** usando clases de restos módulo 5. ¿Qué nos dice ésto sobre la verdad o falsedad de **P**? Dar una explicación convincente.
- 2. a) Investigar si existe una función biyectiva $f: \mathbb{Q} \to \mathbb{Z}$ tal que f(m) = 2m y $f(m + \frac{1}{2}) = 2m + 1$ para todo $m \in \mathbb{Z}$, |m| > 1000.
 - b) Investigar si existe una función biyectiva $g:\mathbb{Q}\to\mathbb{Z}$ tal que g(m)=3m y $g(m+\frac{1}{2})=3m+1$ para todo $m\in\mathbb{Z}$.
- 3. Se consideran los números complejos $z = 1 + i\sqrt{3}$ y w = 1 i. Se pide
 - a) Calcular el módulo y el argumento de z y w y expresar z y w en la forma módulo-argumental de Euler, es decir, como el producto de un número positivo por la exponencial de un número imaginario.
 - b) Encontrar dos números enteros positivos m y n lo más pequeños posible, que cumplan $z^m = w^n$.
- 4. a) Probar que la relación \mathcal{R}_1 definida en $\mathbb{Z}^+ = \{n \in \mathbb{Z}; n \geq 0\}$ como

$$m\mathcal{R}_1 n \iff \exists k \in \mathbb{Z}^+ \ tal \ que \ m = 2^k n,$$

es de orden. Justificar si la relación es de orden total o no. Hallar los elementos maximales y minimales si los hay.

b) Probar que la relación \mathcal{R}_2 definida en \mathbb{R} como

$$x\mathcal{R}_2y \iff \exists k \in \mathbb{Z} \ tal \ que \ x = 2^k y,$$

es de equivalencia.

c) Para cada $x \in \mathbb{R}$ hallar el cardinal de la clase de equivalencia (respecto de \mathcal{R}_2) que contiene a x. Hallar también el cardinal del espacio cociente. Justificar completamente las respuestas.