Ml_Pract_3

October 31, 2023

Aim: Given a bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months. Dataset Description: The case study is from an opensource dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as CustomerId, CreditScore, Geography, Gender, Age, Tenure, Balance, etc.

Name: Yash Ghorpade

Div: BE-A

Roll No: B211046

```
[1]: import numpy as np
     import matplotlib.pyplot as plt
     import pandas as pd
     import seaborn as sns
     sns.set()
```

- [2]: df = pd.read_csv("Churn_Modelling.csv")
- [3]: df.describe()

[3]:		RowNumber	CustomerId	CreditScore	Age	Tenure \
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000

	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
count	t 10000.000000	10000.000000	10000.00000	10000.000000	
mean	76485.889288	1.530200	0.70550	0.515100	
std	62397.405202	0.581654	0.45584	0.499797	
min	0.000000	1.000000	0.00000	0.000000	
25%	0.000000	1.000000	0.00000	0.000000	
50%	97198.540000	1.000000	1.00000	1.000000	
75%	127644.240000	2.000000	1.00000	1.000000	
max	250898.090000	4.000000	1.00000	1.000000	

	EstimatedSalary	Exited
count	10000.000000	10000.000000
mean	100090.239881	0.203700
std	57510.492818	0.402769
min	11.580000	0.000000
25%	51002.110000	0.000000
50%	100193.915000	0.000000
75%	149388.247500	0.000000

max 199992.480000 1.000000

```
[4]: df.head()
[4]:
        RowNumber Customerld Surname CreditScore Geography Gender Age
                     15634602 Hargrave
                                                         France Female
     0
                                                  619
                                                                           42
                1
                2
                                                          Spain Female
     1
                     15647311
                                    Hill
                                                  608
                                                                          41
     2
                3
                     15619304
                                                         France Female
                                   Onio
                                                  502
                                                                           42
     3
                4
                     15701354
                                                  699
                                                         France Female
                                                                           39
                                    Boni
     4
                5
                     15737888 Mitchell
                                                  850
                                                          Spain Female
                                                                          43
        Tenure
                  Balance NumOfProducts HasCrCard IsActiveMember \
     0
             2
                     0.00
     1
                 83807.86
                                        1
                                                   0
                                                                   1
             1
     2
                                        3
                                                                   0
                159660.80
                                                   1
     3
                                        2
                                                   0
             1
                     0.00
                                                                   0
     4
             2
                125510.82
                                        1
                                                   1
        EstimatedSalary Exited
     0
              101348.88
     1
              112542.58
                               0
     2
              113931.57
                               1
     3
               93826.63
                               0
               79084.10
                               0
     4
[5]: x = df.drop(["Surname", "Geography", "RowNumber", "Gender", "Exited"], axis = 1)
[6]: y = df["Exited"]
[7]: sns_countplot(x=y)
[7]: <Axes: xlabel='Exited', ylabel='count'>
```


1 Scaling

```
[8]: from sklearn.preprocessing import StandardScaler scalar = StandardScaler() x_scaled = scalar.fit_transform(x)

[9]: x_scaled

[9]: array([[-0.78321342, -0.32622142, 0.29351742, ..., 0.64609167, 0.97024255, 0.02188649], [-0.60653412, -0.44003595, 0.19816383, ..., -1.54776799, 0.97024255, 0.21653375], [-0.99588476, -1.53679418, 0.29351742, ..., 0.64609167, -1.03067011, 0.2406869], ..., [-1.47928179, 0.60498839, -0.27860412, ..., -1.54776799, 0.97024255, -1.00864308], [-0.11935577, 1.25683526, 0.29351742, ..., 0.64609167, -1.03067011, -0.12523071], [-0.87055909, 1.46377078, -1.04143285, ..., 0.64609167,
```

2 Cross validation

```
[10]: from sklearn.model_selection import train_test_split
      x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,random_state =_
       46,test_size = 0.46)
[11]: x_train.shape
[11]: (5400, 9)
[12]: x_test.shape
[12]: (4600, 9)
[13]: from sklearn.neural network import MLPClassifier
       -MLPClassifier(hidden_layer_sizes=(100,100,100),random_state=2,max_iter=100,activation_
       ←= "relu")
[14]: ann.fit(x_train,y_train)
     C:\ProgramData\anaconda3\lib\site-
     packages\sklearn\neural_network\_multilayer_perceptron.py:684:
     ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and
     the optimization hasn't converged yet.
       warnings.warn(
[14]: MLPClassifier(hidden_layer_sizes=(100, 100, 100), max_iter=100, random_state=2)
[15]: y_pred = ann.predict(x_test)
[16]: y_pred
[16]: array([0, 1, 0, ..., 0, 1, 0], dtype=int64)
[17]: from sklearn.metrics import
       ConfusionMatrixDisplay,accuracy_score,classification_report
      ConfusionMatrixDisplay.from_predictions(y_test,y_pred)
```

[17]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1f68f02ec20>

[18]: accuracy_score(y_test,y_pred)

[18]: 0.803695652173913

[19]: print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.87	0.88	0.88	3639
1	0.53	0.51	0.52	961
accuracy			0.80	4600
macro avg	0.70	0.70	0.70	4600
weighted avg	0.80	0.80	0.80	4600

[]: