直流电桥测电阻实验报告

双 33A 组 2号

水工 7- 班 ----

20070102- -

2008年11月19日

一. 实验目的

- 1. 了解单电桥测电阻的原理,初步掌握直流单电桥的使用方法;
- 2. 单电桥测量铜丝的电阻温度系数,学习用作图法和直线拟合法处理数据;
- 3. 了解双电桥测量低电阻的原理,初步掌握双电桥的使用方法。
- 4. 了解数字电表的原理和线性化设计的方法

二. 实验原理

2.1 惠斯通电桥测电阻

惠斯通电桥是最常用的直流电桥。其中 R_1 , R_2 和R是已知阻值的标准电阻,他们和被测电阻 R_x 构成四个"臂",对角 B和 D之间接有检流计 G,它像桥一样。若调节 R 使测流计中电流为 0,则桥两端 B和 D点的电位相等,电桥达到平衡,这时可得:

$$I_1R = I_2R_x$$
, $I_1R_1 = I_2R_2$

两式相除可得: $R_x = \frac{R_2}{R_1}R$

只要检流计足够灵敏,上式就能相当好地成立, R_x 就能用三个标准电阻的值来求得,而与电源电压无关。从而测量的准确度较高。

单电桥的实际电路如右图所示。将 R_2 和 R_1 做成比值为C的比率臂,则被测电阻为

$$R_r = CR$$

其中 $C = R_2/R_1$, 共分 7 个档: 0.001 \sim 1000, R为测量臂,由4个十进位的电阻盘组成。图中电阻单位为 Ω 。

图 1 电桥原理简图

图 2 单电桥电路图

2.2 铜丝的电阻温度系数

任何物体的电阻都与温度有关。多数金属的电阻随温度升高而增大,有如下关系式

$$R_t = R_0(1 + \alpha_R t)$$

式中 R_t , R_0 分别是t、0°C时金属的电阻值; α_R 是电阻温度系数,单位是(°C⁻¹)。严格地

说, α_R 一般与温度有关,但对本实验所用的纯铜材料来说,在-50℃~100℃的范围内 α_R 的变化很小,可当作常数,**即R_*与** t **呈线性关系**。于是

$$\alpha_R = \frac{R_t - R_0}{R_0 t}$$

利用金属电阻随温度变化的性质,可制成电阻温度计来测温。例如铂电阻温度计不仅准确度高、稳定性好,而且从-263℃~1100℃都能使用。铜电阻温度计在-50℃~100℃范围内因其线性性好,应用也较广泛。

2.3 双电桥测低电阻

用图 2 的电路测电阻时,被测臂上引线 l_1 、 l_2 和接点 X_1 、 X_2 等处都有一定的电阻,约为 $10^{-2}\Omega\sim10^{-4}\Omega$ 量级。这些引线电阻和接触电阻与待测电阻 R_x 串联在一起,对低值电阻的测量影响很大。为减小他们

的影响,在双电桥中做了两处明显的改进:

图 3 低电阻的四端接法

(1) 被测电阻 R_x 和测量盘电阻R均采用四端

接法。

(2) 如图 4 所示的双电桥中增设了两个臂 $R_1^{'}$ 和 $R_2^{'}$,其阻值较高。流过检测流计G的电

流为0时, 电桥达到平衡, 于是可以得到以下三个方程

图 4 双电桥原理图

$$I_{3}R_{x} + I_{2}R_{2}^{'} = I_{1}R_{2}$$

 $I_{3}R + I_{2}R_{1}^{'} = I_{1}R_{1}$
 $I_{2}(R_{2}^{'} + R_{1}^{'}) = (I_{3} - I_{2})r$

上式中各量的意义见图 4。解上列方程可得

$$R_{x} = \frac{R_{2}}{R_{1}}R + \frac{R_{1}'r}{R_{1}' + R_{2}' + r} \cdot \left(\frac{R_{2}}{R_{1}} - \frac{R_{2}'}{R_{1}'}\right)$$

双电桥在结构设计上尽量做到使 $R_2/R_1=R_2'/R_1'$,并尽量减小电阻r,因此可得:

$$R_{x}=\frac{R_{2}}{R_{1}}R_{\circ}$$

同样,在仪器中将 $R_2/R_1 = C$ 做成比率臂,则

$$R_x = CR$$

这样,电阻R和 R_x 的电压端附加电阻(即两端的引线电阻和接触电阻)由于和高电阻串联,其影响减小了;两个外侧电流端的附加电阻串联在电源回路中,其影响可以忽略;两个内测电流端的附加电阻和小电阻r相传连,相当于增大了上式

中的r,其影响通常也可以忽略。于是只要将被测低电阻按四端接法接入双电桥进行测量,就可以像单电桥那样用 $R_x = CR$ 来计算了。

2.4 组装数字温度计

2.3.1 非平衡桥

非平衡桥是指把单电桥中的检流计 G 去掉,通过测量其两端电压 U_t 来测量电阻,与平衡桥相比,非平衡桥的优点是,可以在直接观测量与间接观测量之间建立函数关系,(而不是惠斯通电桥法里面,检流计仅仅作为"检验工具"),于是可以很方便快速地测得连续变化的电阻值。输出电压 U_t 的公式为:

$$U_t = U_t(R_t) = E\left(\frac{R_1}{R_1 + R_2} - \frac{R}{R + R_t}\right)$$

由 2.2 节知,铜丝电阻 R_t 与其温度t满足 $R_t = R_0(1 + \alpha_R t)$,则 $t = t(R_t) =$

 $\frac{1}{\alpha_R} \left(\frac{R_t}{R_0} - 1 \right)$ 即可以通过测量铜丝电阻从而知道铜丝的温度;如用非平衡桥连续测得铜丝电阻的变化,那么就可以通过测量毫伏表实数 U_t 从而测得温度。这就是数字温度计的原理。

一般来说, U_t 与t的关系不是线性的,为了组装数字温度计,适当地选择电桥参数 $(R_1, R_2, R n E)$,使其非线性项误差很小,在一定温度范围内近似呈线性关系。这就是线性化设计。

2.3.2 互易桥

把惠斯通电桥中电源和检流计位置互换,则 R_1 与R同数量级, R_2 与 R_t 同数量级,则这样的设计下 U_t 误差较小。

2.3.3 线性化设计

欲组装一个温度范围在 $0\sim100^\circ$ C的铜电阻数字温度计,必须将 $U_t\sim t$ 的关系线性化,当采用量程为19.000mV的 $4\frac{1}{2}$ 数字电压表来显示温度值时,要求显示值:

$$U_t = \frac{1}{10}t \text{ (mV)}$$

当温度t = 0℃时, $U_0 = 0$ mV,此时互易桥为平衡桥有:

$$\frac{R_2}{R_1} = C, \quad \frac{R_0}{R} = C \vec{\boxtimes} R = \frac{R_0}{C}$$

式中 R_0 是 0°C时铜丝电阻值,R为测量臂电阻,对铜电阻来说,在0~100°C范围内 R_t 和t是线性关系: $R_t = R_0(1 + \alpha_R t)$,那么, $U_t = E\left(\frac{R_1}{R_1 + R_2} - \frac{R}{R + R_1}\right)$ 可以改写为:

$$U_t = E\left(\frac{1}{1+C} - \frac{1}{1+C(1+\alpha_R t)}\right)$$

考虑到本实验中选C = 0.01 ≪ 1,铜丝电阻温度系数 $\alpha \sim 10^{-3}/^{\circ}$ C,则上式可以进一步简化为:

$$U_t = \frac{EC\alpha_R}{(1+C)^2}t + \Delta U$$

其中 ΔU 为非线性误差项,忽略 ΔU 后,把上式与 $U_t = \frac{1}{10} t$ 比较得: $E = \frac{(1+C)^2}{10C\alpha_R}$ 即:

选择电桥参数C=0.01, $R=\frac{R_0}{C}$, $E=\frac{(1+C)^2}{10C\alpha_R}$,就可以使得数字电压表的示数与铜丝温度满足线性关系: $U_t=\frac{1}{10}\,t+\Delta U$ (mV)。

三. 实验任务及步骤

1. 惠斯通电桥测电阻

- (1) 熟悉电桥结构,预调检流计零位。
- (2) 测不同量级的待测电阻值(其中有一个感生电阻),根据被测电阻的标称值(即大约值),首先选定比率C并预置测量盘;接着调节电桥平衡而得到读数C和R的值,并注意总结操作规律;然后测出偏离平衡 Δd 分格所需的测量盘示值变化 ΔR ,以便计算灵敏阈。
- (3) 根据记录的数据计算测量值CR,分析误差,最后给出各电阻的测量结果。

2. 单电桥测铜丝的电阻温度系数

- (1) 测量加热前的水温及铜丝的电阻值
- (2) 从起始温度升温,每隔5°C \sim 6°C左右测一次温度t及相应的阻值 R_t 。
- (3) 注意摸索控制待测铜丝温度的方法。要求在<u>大致热平衡</u>(温度计示值基本不变)时进行测量。
- (4) 测量后用计算机进行直线拟合来检验数据。如果每次都在大致热平衡时测量,则 $\{t\}$ 和 $\{R\}$ 直线拟合的相关系数应该在r=0.999以上。

3. 双电桥测低电阻

测量一根金属丝的电阻或一根铜棒的电阻率。注意低电阻的四端接法。实验中要记下待测低 阻的编号、双电桥的编号、测量范围和准确等级。

4. 组装数字温度计

- (1) 将 QJ-23 型惠斯通电桥改装成互易桥(必须关掉电源后再操作)。电源 *E* 接到原电桥 *G* 的外接端(此时金属片必须将"内接"两端短路并拧紧),将数字电压表接到元电桥的 B 端。
- (2) 按所选的电桥参数组装数字温度计,即C = 0.01, $R = \frac{R_0}{c}$, $E = \frac{(1+C)^2}{10C\alpha_R}$,其中 α_R 和 R_0 在前面的实验中已测得。分析 α_R 、 R_0 不准确对实验结果的影响。
- (3) 用实验检验组装的数字温度计

在前面测铜丝电阻温度系数的实验的水桶中继续进行,在余温度上每增加4~5°C测5~6个实验点,记录温度计示数t和毫伏表读数 U_t 。测温范围大于20°C,注意热平衡,t < 80°C。

四. 误差计算原理

1. QJ-23 型单电桥不确定度计算

使用 QJ-23 型单电桥在一定参考条件下(20° C附近、电源电压偏离额定值不大于10%、绝缘电阻符合一定要求、相对湿度 $40\%\sim60\%$ 等),电桥的基本误差极限 E_{lim} 可表示为

$$E_{\text{lim}} = \pm (\alpha\%) \left(\frac{CR_N}{10}\right)$$

在上式中C是比率值,R是测量盘示值。第一项正比于被测电阻值;第二项是常数项, R_N 是基准值,暂取 R_N 为 5000 Ω 。等级指数 α 主要反映了电桥中各标准电阻(比率臂C和测量臂R)的准确度。

若测量范围或电源、检流计条件不符合登记指数对应的要求时,我们会发现电桥测量不够"灵敏",即平衡后再改变 R_x (实际上等效地改变R),而检流计却未见偏转。我们可将检流计灵敏阈(0.2 分格)所对应的被测电阻的变化量 Δ_s 叫做电桥的灵敏阈。 R_x 的变化量可以这样测得:平衡后,将测量盘电阻R人为地调偏 ΔR 分格,使检流计偏转 Δd 分格(如 2 或者 1 分格),则按比例关系再求出 0.2 分格对应的 Δ_s ,即:

$$\Delta_s = 0.2C \cdot \frac{\Delta R}{\Delta d}$$

电桥的灵敏阈 Δ_s 反映了平衡判断中可能包含的误差,其值既和电源及检流计的参量有关,也和比率臂 C以及 R_x 的大小有关。 Δ_s 越大,电桥越不灵敏。要减小 Δ_s ,可适当提高电源电压或外界更灵敏的检流计。当测量范围及条件符合仪表说明书所规定的要求时, Δ_s 不大于 E_{lim} 的几分之一,可不计 Δ_s 的影响,否则应该从下式得出测量结果的不确定度:

$$\Delta_{R_x} = \sqrt{E_{\rm lim}^2 + \Delta_s^2}$$

2. QJ44型双电桥不确定度计算(略)

五. 实验数据及误差分析

1. 惠斯通电桥测电阻

仪器组号<u>31#</u>;电桥型号<u>QJ-23</u>;编号<u>2</u>。

电阻标称值/Ω	1k	11k	360k	1M	120	25	200
比率臂读数C	1	10	100	1000	0.1	0.01	0.1
准确度等级指数α	0.2	0.5	0.5	2	0.2	0.2	0.2
平衡时测量盘读数 R/Ω	1002	1093	3530	1014	1198	2401	1958
平衡后将检流计 调偏Ad/分格	5	2	1	3	5	3	5
与 Δd 对应的测量盘 的示值变化 $\Delta R/\Omega$	1	2	100	230	1	2	1
测量值CR/Ω	1002	10930	353k	1014k	119.8	24.01	195.8
$[E_{lim} = (\alpha\%)(CR + 500C)/\Omega$	3.004	79.65	2015	30280	0.3396	0.05802	0.4916
$(\Delta_s = 0.2C \cdot \Delta R/\Delta d)/\Omega$	0.04	2	2000	15333	0.0040	0.00133	0.0040
$ \left(\Delta_{R_x} = \sqrt{E_{\lim}^2 + \Delta_s^2}\right) / \Omega $	3.004	79.68	2839	33941	0.3396	0.05804	0.4916
$(R_x = CR \pm \Delta_{R_x})/\Omega$	1002 ± 3	10930±80	(353±3)k	(1014±34)k	119.8±0.3	24.01 ± 0.06	195.8 ± 0.5

(注 1: 最后一个 $(195.8 \pm 0.5)\Omega$ 是感生电阻)

(注2:加阴影的数据不是原始测量量,是实验后计算得出的,下同。)

2. 单电桥测铜丝的电阻温度系数 α_R

起始温度 $t = _19.0$ _℃; 比率臂 $C = _0.01$; 测量盘读数 $R = _1337$ Ω; 起始电阻为 13.37 Ω。

	温度t/℃	比率臂C	测量盘读数R/Ω	$R_t = CR/\Omega$
1	26.0	0.01	1369	13.69
2	31.0	0.01	1394	13.94
3	36.0	0.01	1421	14.21
4	41.6	0.01	1449	14.49
5	46.0	0.01	1474	14.74
6	51.0	0.01	1501	15.01
7	55.9	0.01	1527	15.27
8	61.0	0.01	1552	15.52

计算机直线拟合结果: a = 12.30989; b = 0.05277; r = 0.99989。 $\alpha_R = 3.82876 \times 10^{-3}$ °C⁻¹。

(注:图中的细实直线即为拟合线,阴影的背景粗线各个数据连成的折线,下同)

3. 非平衡桥及组装数字温度计

加热前水温: <u>52.0℃</u>, 加热前毫伏表示数: <u>1.68mV</u>。

$$C = 0.01, R = \frac{R_0}{C} = 1337\Omega, E = \frac{(1+C)^2}{10C\alpha} = 2664.309 \text{mV}$$

温度t/°C	53.9	54.7	55.3	56.0	56.8	57.5	58.1	59.9	61.0
毫伏表示 数 <i>U/</i> mV	1.73	1.76	1.79	1.83	1.89	1.92	1.97	2.05	2.10

(续1)

t/°C	61.8	62.7	64.0	65.0	65.9	67.0	68.2	69.2	70.1
U/mV	2.15	2.20	2.25	2.31	2.35	2.40	2.48	2.53	2.58

(续2)

t/°C	71.1	72.1	73.1	74.0	75.2		
U/mV	2.63	2.68	2.73	2.77	2.83		

(注:表格中加框处 65.9,原始表格中为 66.9,经过与前后数据比照发现是记录错误,已改正)

六. 实验总结

1. 惠斯通电桥的相对误差

单电桥法虽然从原理上说,只要检流计足够灵敏那么就能做到足够精确,但由于测量盘不是连续可调的,所以在测高电阻的时候会有较大的相对误差。见下表:

电阻标称值 /Ω	1k	11k	360k	1M	120	25	200
测量值 CR / Ω	1002	10930	353k	1014k	119.8	24.01	195.8
不确定度 Δ_{R_x}/Ω	3.004	79.68	2839	33941	0.3396	0.05804	0.4916
相对误差 $\frac{CR}{\Delta_{R_x}}$	0.30%	0.73%	0.80%	3.35%	0.28%	0.24%	0.25%

可以看出,被测电阻值越大,相对误差越大。这是因为当待测电阻大的时候,应该把比率臂放在大比率(如1000)上,则测量盘改变的最小电阻就是1000Ω。有时经常找不到能"真正"电桥平衡的点,在测量盘某个示数时,检流计在0的左边几格,而改变最小的电阻值就发现指针在0的右方几格。

2. 两次直线拟合

第一次直线拟合的相关系数r=0.999897,第二次是r=0.999130。第二次比较低。可能原因是:第二次拟合的时候测温时间间隔较密,不好把握,而且第二次刚开始升温记录数据的时候(前几个点),不知道怎么判断热平衡。所以前几个点误差比较大,从第二个图表也可以看出来,如果去掉前几个线性相关度不好的点,r还能够更高。

3. 总结由平衡桥——非平衡桥——数字温度计演变的物理思想

平衡桥是一种精确测电阻的方法,理论意义很重要,但是实际操作中,还是需要调整电源电压等以得到更大精度。非平衡桥与平衡桥测电阻的本质原理一致,都可用基尔霍夫方程推出,但是非平衡桥的读数方便,可以快速、连续测量。有了这一电阻值"监控"工具后,就可以"实时"地把该值转化为其他间接测量的物理量。