K-means

Introducción

Clustering es una técnica que tiene como objetivo **organizar patrones en grupos**, de modo que los patrones que pertenecen al mismo grupo son lo suficientemente similares como para inferir que son del mismo tipo y los patrones que pertenecen a diferentes grupos son lo suficientemente diferentes como para inferir que son de otra clase.

Retail/ Marketing:

- Identificar patrones de compra de los consumidores.
- Recomendar nuevos libros o películas a nuevos clientes.

Banca:

Identificar grupos de tipo de consumidores.

Seguros:

- Detección de fraude en reclamos
- Riesgo de seguro de los clientes

Publicaciones científicas:

Categorizar nuevos artículos basado en su contenido.

Medicina:

Caracterizar pacientes a través de su comportamiento

Biología:

Agrupación de marcadores genéticos para identificar familias.

K-Means

El algoritmo K-means se basa en particiones, lo que significa que cada cluster se encuentra representado por un centroide.

Introducción

Dentro de los inconvenientes de este algoritmo es que tenemos que seleccionar el número de clusters (k). Por lo tanto una selección inadecuada K puede llevarnos malos resultados.

Para evaluar el rendimiento del K-means tenemos el método **elbow.**

Algoritmo K-means

- 1. Elegir k centroides, y posicionarlos en el conjunto de datos en un lugar aleatorio.
- 2. Calcular la distancia entre cada patrón desde los centroides.
- 3. Asignar a cada patrón al centroide más cercano, la clase del centroide.
- 4. Una vez que todos los puntos o patrones fueron asignados, recalcular la posición de los centroides a partir del centroide de los patrones asignados a cada centroide.
- 5. Repetir los pasos 2 al 4 hasta que los centroides se mantengan en la misma posición, llegar a un número máx. de interacciones o aceptar una tolerancia definida.

1. Elegir k centroides y posicionarlos en el conjunto de datos en un lugar aleatorio.

Algoritmo K-means

- Elegir k centroides, y posicionarlos en el conjunto de datos en un lugar aleatorio.
- 2. Calcular la distancia entre cada patrón desde los centroides.
- 3. Asignar a cada patrón al centroide más cercano, la clase del centroide.
- 4. Una vez que todos los puntos o patrones fueron asignados, recalcular la posición de los centroides a partir del centroide de los patrones asignados a cada centroide.
- 5. Repetir los pasos 2 al 4 hasta que los centroides se mantengan en la misma posición, llegar a un número máx. de interacciones o aceptar una tolerancia definida.

2-3. Calcular la distancia entre cada patrón y los centroides y asignar a cada patrón la clase del centroide más cercano

Algoritmo K-means

- 1. Elegir k centroides, y posicionarlos en el conjunto de datos en un lugar aleatorio.
- 2. Calcular la distancia entre cada patrón desde los centroides.
- 3. Asignar a cada patrón al centroide más cercano, la clase del centroide.
- 4. Una vez que todos los puntos o patrones fueron asignados, recalcular la posición de los centroides a partir del centroide de los patrones asignados a cada centroide.
- 5. Repetir los pasos 2 al 4 hasta que los centroides se mantengan en la misma posición, llegar a un número máx. de interacciones o aceptar una tolerancia definida.

4. Una vez que todos los puntos o patrones fueron asignados, recalcular la posición de los centroides a partir del centroide de los patrones asignados a cada centroide.

Introducción

 Cuando aplicamos k-means a datos reales es importante transformar los atributos del dataset a una escala min-max u otra, para que todos los atributos se encuentren en la misma escala

En el caso de K-means los clusters nunca se van a traslapar (mezclar)

Inercia del cluster

La inercia del cluster está dada por la siguiente ecuación:

$$SSE = \sum_{i=1}^{n} \sum_{i=1}^{k} w^{(i,j)} \|\mathbf{x}^{i} - \mu^{j}\|^{2}$$

Donde μ es el centroide para el grupo \mathbf{j} y \mathbf{w} es igual a 1 si la muestra \mathbf{x} está en el grupo \mathbf{j} ; sino es igual a 0.

 A través de la inercia podemos medir la semejanza entre patrones de un cluster.

Elección de la K

Dentro de los inconvenientes de este algoritmo es que tenemos que seleccionar el número de clusters (k). Por lo tanto una selección inadecuada K puede llevarnos malos resultados.

Para evaluar el rendimiento del K-means tenemos el método **elbow.**