1. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

Tantárgyi követelmények: http://numanal.inf.elte.hu/~weisz/oktanyagok/Kov_An.pdf

Folytonos függvények

Definíció: $f \in \mathbb{R} \to \mathbb{R}$ folytonos az $a \in D_f$ pontban, ha

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f, |x - a| < \delta : |f(x) - f(a)| < \varepsilon$

Pl:

$$f(x) = \begin{cases} x: & x \in \mathbb{Q} \Rightarrow f \in C(0) \\ -x: & x \notin \mathbb{Q} \Rightarrow f \notin C(0), a \neq 0 \end{cases}$$

<u>Jelölés:</u> $f \in C(a)$ folytonos az a pontban.

Tétel: Folytonosság és határérték kapcsolata

Ha $a \in D_f \cap D'_f$, akkor:

$$f \in C(a) \Leftrightarrow \exists \lim_{a} f \text{ és } \lim_{a} f = f(a)$$

Bizonyítás: Lásd az előző definíciót.

Definíció: $a \in D_f$ izolált pont, ha $\exists K(a)$, hogy $K(a) \cap D_f = \{a\}$

Állítás: Ha $a \in D_f$, akkor $a \in D'_f$ vagy izolált pont.

Bizonyítás: Triviális

<u>Tétel</u>: Ha $a \in D_f$ izolált, akkor $f \in C(a)$

Bizonyítás: Triviális

<u>Tétel</u>: Hatványsor összegfüggvénye folytonos a konvergenciahalmaz belsejében.

Bizonyítás: $\exists R \geq 0$: a hatványsor konvergens az (a - R, a + R) intervallumon.

Ezen kívül divergens, x = a - R, vagy x = a + R?

Hatványsor:

$$f(x) = \sum_{n=0}^{\infty} \alpha_n (x - a)^n$$

Valamint tanultuk korábban, hogy:

$$\exists \lim_{x} f = f(x), \text{ ha } x \in (a - R, a + R)$$

Következmény: Az exp, sin, cos, sh, ch függyvények folytonosak \mathbb{R} -en.

Tétel: Folytonosságra vonatkozó átviteli elv

Tfh. $a \in D_f$, ekkor:

$$f \in C(a) \Leftrightarrow \forall (x_n) : \mathbb{N} \to D_f, \lim(x_n) = a : \lim(f(x_n)) = f(a)$$

Bizonyítás: Ha $a \in D_f$, akkor előző + a tavalyi határértékre vonatkozó átviteli elv. Különben a izolált pont. Ekkor mindkét oldal igaz.

Tétel:

- Ha $f,g\in C(a)$, akkor $f+g\in C(a), \lambda f\in C(a), \lambda\in\mathbb{R}, f\cdot g\in C(a)$. Ha még $g(a)\neq 0$, akkor $\frac{f}{g}\in C(a)$.
- $-g \in C(a), f \in C(g(a)), R_g \subset D_f$, akkor $f \circ g \in C(a)$.

Bizonyítás: $(x_n): \mathbb{N} \to D_f, \lim(x_n) = a, \quad f, g \in C(a) \Rightarrow \lim(f(x_n)) = f(a), \lim(g(x_n)) = g(a)$ $\Rightarrow \lim(f(x_n) + g(x_n)) = f(a) + g(a) \Rightarrow f + g \in C(a)$

Definíció: f folytonos A-n, ha $f \in C(a)$ $(\forall a \in A)$

Korlátos és zárt intervallumon értelmezett függvények

Ezután $f:[a,b]\to\mathbb{R}$

Definíció: Az $f:[a,b] \to \mathbb{R}$ függvénynek létezik abszolút maximuma (minimuma), ha

 $\exists \alpha \in [a, b], \forall x \in [a, b] : f(x) \le f(\alpha) \quad (f(x) \ge f(\alpha))$

Ahol α az abszolút maximum (minimum) hely.

<u>**Tétel**</u>: Ha $f:[a,b] \to \mathbb{R}$ folytonos, akkor f korlátos.

Bizonyítás: f korlátos, ha $\exists K > 0$, $\forall x \in [a, b]$: $|f(x)| \leq K$

Indirekt: Tegyük fel, hogy ez nem igaz, azaz

 $\Rightarrow \forall K > 0, \exists x \in [a, b] : |f(x)| > K.$ Legyen a $K = n. \Rightarrow \forall n \in \mathbb{N}, \exists x_n \in [a, b] : |f(x_n)| > n$

 $\Rightarrow x_n \in [a, b] \Rightarrow (x_n)$ korlátos \Rightarrow Bolzano - Weierstrass tétel miatt

 $\exists (x_{n_k})$ konvergens részsorozat $\Rightarrow \lim (x_{n_k}) =: \alpha.$ Ekkor $\alpha \in [a,b]$

hiszen, ha $\alpha \notin [a,b]$, akkor $\exists \varepsilon > 0 : [a,b] \cap K_{\varepsilon}(\alpha) = \emptyset$

 $\Rightarrow \exists k_0, \forall k \geq k_0 : x_{n_k} \in K_{\varepsilon}(\alpha)$, viszont ez ellentmondás.

 $x_{n_k} \in [a, b] \Rightarrow \alpha \in [a, b] \Rightarrow f \in C(\alpha)$

Alkalmazzuk az átviteli elvet, $\lim(x_{n_k}) = \alpha \Rightarrow \lim f(x_{n_k}) = f(\alpha) \Rightarrow (f(x_{n_k}))$ konvergens.

 $\Rightarrow (f(x_{n_k}))$ korlátos. És így ellentmondásra juttotunk, hiszen:

 $|f(x_{n_k})| > n_k \Rightarrow (f(x_{n_k}))$ nem korlátos.

<u>Tétel</u>: (Weierstrass-tétel) Ha $f:[a,b]\to\mathbb{R}$ folytonos, akkor f-nek létezik abszolút maximuma és minimuma is.

Bizonyítás: Ha $f:[a,b]\to\mathbb{R}$ folytonos, akkor korlátos

- $\Rightarrow M := \sup\{f(x), \text{ha } x \in [a, b]\}, m := \inf\{f(x), \text{ha } x \in [a, b]\}, M, m \in \mathbb{R}$
- $\Rightarrow \forall n \geq 1$ -re, $\exists x \in [a,b]: M \frac{1}{n} < f(x) \leq M$
- $\Rightarrow \lim f(x_n) = M \Rightarrow (x_n)$ korlátos.
- $\Rightarrow \exists (x_{n_k}) \text{ konvergens részsorozat} \Rightarrow \lim x_{n_k} = \alpha, \alpha \in [a, b] \Rightarrow \text{átviteli elv}, f \in C(\alpha)$
- $\Rightarrow \lim f(x_{n_k}) = f(\alpha).$

De! $\lim f(x_n) = M \Rightarrow \lim f(x_{n_k}) = M \Rightarrow M = f(\alpha)$

m -re hasonló.

2. Előadás jegyzet

A jegyzetet BAUER BENCE készítette Dr. WEISZ FERENC előadása alapján.

<u>Tétel</u>: Bolzano: Tfh. $f:[a,b]\to\mathbb{R}$ folytonos. Ha $f(a)\cdot f(b)<0$ akkor $\exists x\in[a,b]:f(x)=0$

Bizonyítás: Legyen $[x_0, y_0] = [a, b]$ és tfh. f(a) < 0 és f(b) > 0

Legyen $z_0 := \frac{x_0 + y_0}{2}$, ekkor 3 eset lehetséges:

1.
$$f(z_0) = 0$$
 \checkmark

2.
$$f(z_0) < 0$$
, ekkor legyen $[x_1, y_1] := [z_0, y_0]$

3.
$$f(z_0) > 0$$
, ekkor legyen $[x_1, y_1] := [x_0, z_0]$

Ezt az eljárást folytatva véges sok lépésben kapunk ξ -t amelyre $f(\xi) = 0$, ha nem akkor kapunk egy $([x_n, y_n])$ intervallum sorozatot, amelyre a következők igazak:

1.
$$[x_{n+1}, y_{n+1}] \subset [x_n, y_n]$$

2.
$$f(x_n) < 0$$
, $f(y_n) > 0$

3.
$$y_n - x_n = \frac{y_0 - x_0}{2^n}$$

A Cantor-tétel miatt

$$\exists \xi \in \bigcap_{n=0}^{+\infty} [x_n,y_n] \text{ Mivel } y_n - x_n = \frac{y_0 - x_0}{2^n} \to 0 \quad (n \to \infty) \text{ ,ez\'ert } \exists ! \, \xi \in \bigcap_{n=0}^{+\infty} [x_n,y_n]$$

Továbbá
$$0 \le \xi - x_n \le y_n - x_n \to 0 \Rightarrow \lim(x_n) = \xi$$
, és $y_n - \xi \le y_n - x_n \to 0 \Rightarrow \lim(y_n) = \xi$

Tudjuk, hogy $f(x_n) < 0$ és $\lim_{x \to \infty} f(x_n) = \xi$ és $f \in C(\xi)$, ezért az átviteli elv miatt

$$\lim_{n \to \infty} f(x_n) = f(\xi) \Rightarrow f(\xi) \le 0$$

Hasonlóan
$$f(y_n) > 0$$
, $\lim(y_n) = \xi \Rightarrow \lim f(y_n) = f(\xi)$

itt:
$$f(y_n) > 0$$
 ezért $f(\xi) \ge 0 \Rightarrow f(\xi) = 0$

 $\underline{\text{K\"{o}vetkezm\'{e}ny:}} \text{ (Bolzano), Tfh. } f:[a,b] \to \mathbb{R} \text{ folytonos.}$

$$\overline{\text{Ha } f(a) < f(b)}$$
, akkor $\forall c \in (f(a), f(b)) : \exists \xi \in [a, b] : f(\xi) = c$

Bizonyítás: Legyen
$$g(x) = f(x) - c$$
, ekkor

$$g(a) = f(a) - c < 0$$
és $g(b) = f(b) - c > 0 \Rightarrow$ előző tétel alapja

$$\exists \xi \in [a,b]: g(\xi) = 0 \Rightarrow f(\xi) - c = 0 \quad \blacksquare$$

Definíció: $f:[a,b] \to \mathbb{R}$ függyvény Darboux tulajdonságú, ha

$$\forall x_1 < x_2, (x_1, x_2 \in [a, b]), f(x_1) \neq f(x_2), \forall c \in (f(x_2), f(x_1)) \exists \xi \in [x_1, x_2] : f(\xi) = c$$

<u>Tétel</u>: Ha $f:[a,b] \to \mathbb{R}$ függyvény folytonos, akkor Darboux tulajdonságú.

<u>**Tétel**</u>: Ha $I \subset \mathbb{R}$ intervallum, $f: I \to \mathbb{R}$ függyvény folytonos, ekkor R_f intervallum.

Bizonyítás: Legyen
$$M := \sup\{f(x)|x \in I\}$$
 és $m := \inf\{f(x)|x \in I\}$

Igazoljuk, hogy
$$(m, M) \subset R_F$$
 Legyen $y_0 \in (m, M)$ tetszőleges.

Igazoljuk, hogy
$$y_0 \in R_f \Rightarrow \exists x_1, x_2 \in I : f(x_1) < y_0 < f(x_2)$$

Tekintsük az $f:[x_2,x_1] \to \mathbb{R}$ folytonos függvényt. A Bolzano-következmény miatt

$$c = y_0$$
-ra is $\exists \xi \in [x_2, x_1] : f(\xi) = y_0 \Rightarrow y_0 \in R_f \Rightarrow (m, M) \subset R_f$

$$\Rightarrow R_f = [(m, M)]$$
 vagy nyitott vagy zárt.

Egyenletes folytonosság

$$f: A \to \mathbb{R}$$
 $(A \subset \mathbb{R})$ folytonos, azaz $f \in C(A) \Leftrightarrow \forall x \in A: f \in C(x)$
 $\Leftrightarrow \forall x \in A: \forall \varepsilon > 0, \exists \delta > 0: \forall y \in A: |y - x| < \delta, |f(y) - f(x)| < \varepsilon$

Megjegyzés: δ függ ε -tól és x-től.

Példa: 1,
$$f(x) = x$$
 $(x \in [0, +\infty])$ Legyen $\delta := \varepsilon$, ekkor

Ha $|x-y| < \delta$, akkor $|f(x) - f(y)| = |x-y| < \delta = \varepsilon$ δ itt nem függ x-től.

2,
$$f(x) = \frac{1}{x}$$
, $x \in (0,1]$ Tfh. $x < y$ $y - x < \delta \Rightarrow y < x + \delta$

Ekkor
$$f(x) - f(y) = \frac{1}{x} - \frac{1}{y} < \frac{1}{x} - \frac{1}{x+\delta} = \frac{x+\delta-x}{x(x+\delta)} = \frac{\delta}{x(x+\delta)} < \varepsilon$$

Itt δ függ az x-től, kül. bal oldal $\to \infty$

Ha δ nem függ x-től: egyenletesen folytonos.

Definíció: $f:A\to\mathbb{R}$ függyvény egyneletesen folytonos, ha

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in A : |x - y| < \delta : |f(x) - f(y)| < \varepsilon$$

<u>Tétel</u>: $f: A \to \mathbb{R}$

- 1. Ha f egyenletesen folytonos \Rightarrow folytonos.
- 2. Ha f folytonos \Rightarrow egyenletesen folytonos.

Bizonyítás:

- 1. Triviális.
- 2. $f(x) = \frac{1}{x}$ $x \in (0,1]$ folytonos, de nem egyenletesen folytonos, azaz:

Igazoljuk, hogy
$$\exists \varepsilon > 0, \forall \delta > 0, \exists x, y \in A: |x - y| < \delta: |f(x) - f(y)| \ge \varepsilon$$

Feltehető, hogy $\delta = \frac{1}{n}$ azaz:

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}_+, \exists x_n, y_n \in A : |x_n - y_n| < \frac{1}{n} : |f(x_n) - f(y_n)| \ge \varepsilon \quad (A = (0,1])$$

Legyen
$$\varepsilon = \frac{1}{2}, x_n = \frac{1}{n}, y_n = \frac{1}{n+1}$$

$$x_n - y_n = \frac{1}{n} - \frac{1}{n+1} < \frac{1}{n}$$
 és $|f(x_n) - f(y_n)| = |n - (n+1)| = 1 > \frac{1}{2}$

<u>Tétel</u>: (Heine): Ha $f:[a,b] \to \mathbb{R}$ folytonos, akkor f egyenletesen folytonos.

Bizonyítás: (Indirekt) Tfh. f nem egyenletesen folytonos.

$$\Rightarrow \exists \varepsilon > 0, \forall \delta > 0, \exists x, y \in [a, b] : |x - y| < \delta : |f(x) - f(y)| \ge \varepsilon$$

Legyen
$$\delta = \frac{1}{n}$$
 $n \in \mathbb{N}_+ \Rightarrow \exists \varepsilon > 0, \forall n \in \mathbb{N}_+ : \exists x_n, y_n \in [a, b] : |x_n - y_n| < \frac{1}{n} : |f(x_n) - f(y_n)| \ge \varepsilon$

Tekintsük az $(x_n): \mathbb{N} \to [a,b]$ sorozatot $\Rightarrow (x_n)$ korlátos.

Bolzano-Weierstrass kiv. tétel miatt $\exists (x_{n_k})$ konvergens részsorozat, azaz:

$$\lim(x_{n_k}) =: \alpha, \quad \alpha \in [a, b]$$

De!
$$|y_{n_k} - \alpha| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - \alpha| < \frac{1}{n_k} + |x_{n_k} - \alpha| \to 0$$
 azaz $\lim(y_{n_k}) = \alpha$

 $f \in C(\alpha)$ átviteli elv miatt

$$\lim(f(x_{n_k})) = f(\alpha) \text{ \'es } \lim(f(y_{n_k})) = f(\alpha) \Rightarrow \lim(f(x_{n_k}) - f(y_{n_k})) = 0$$

viszont ez ellentmondás, azzal, hogy $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$

3. Előadás jegyzet

A jegyzetet Bauer Bence készítette Dr. Weisz Ferenc előadása alapján.

Inverzfüggvény folytonossága

<u>Tétel</u>: Ha $f:[a,b]\to\mathbb{R}$ folytonos és injektív, akkor f^{-1} is folytonos.

Bizonyítás: 1. lépés: $f^{-1} \exists$ Indirekt.

Tfh. f^{-1} nem folytonos. $\Rightarrow \exists y_0 \in R_f, f^{-1} \notin C(y_0) \Rightarrow \text{ átviteli elv.}$

 $\exists y_n \in R_f, \lim(y_n) = y_0 \colon \lim(f^{-1}(y_n)) \neq f^{-1}(y_0)$

Legyen $x_n = f^{-1}(y_n), n \in \mathbb{N} \Rightarrow \lim(x_n) \neq x_0 \Rightarrow \exists \delta > 0 \colon \{n : |x_n - x_0| \geq \delta\}$ végtelen.

Legyen n_k indexsorozat, hogy: $|x_{n_k} - x_0| \ge \delta$

 $(x_{n_k}): \mathbb{N} \to [a, b] \Rightarrow (x_{n_k})$ korlátos. $\Rightarrow \exists$ konvergens részsorozat.

 $(x_{n_k})'$: $\lim (x_{n_k})' := \alpha$ De! $|(x_{n_k})' - x_0| \ge \delta \Rightarrow |\alpha - x_0| \ge \delta \Rightarrow \alpha \ne x_0$

2. lépés: $f \in C(\alpha)$ $\alpha \in [a, b]$

 $\overbrace{\text{átviteli elv}} \Rightarrow \lim \underbrace{f(x_{n_k})'}_{(y_{n_k})'} = f(\alpha) \Rightarrow \lim (y_{n_k})' = f(\alpha)$

De! $\lim (y_{n_k})' = y_0 = f(x_0) \Rightarrow f(\alpha) = f(x_0)$ f injektív. $\Rightarrow \alpha = x_0$ Ez ellentmondás.

Tétel: $I \in \mathbb{R}$ intervallum, $f: I \to \mathbb{R}$ folytonos és injektív $\Rightarrow f^{-1}$ folytonos.

Bizonyítás: Legyen $y_0 \in R_f$ tetszőleges, igazoljuk, hogy $f^{-1} \in C(y_0)$.

Legyen $x_0 = f^{-1}(y_0)$ és [a, b] olyan intervallum, hogy: $x_0 \in [a, b]$ és $[a, b] \in I$

Ekkor az előző tétel miatt: $(f|[a,b])^{-1}$ folytonos. **De!** $(f|[a,b])^{-1} = f^{-1}|_J$

ahol J := f[a, b] intervallummal. Ekkor $y_0 \in J$ belsejében $\Rightarrow f^{-1} \in C(y_0)$

<u>Tétel</u>: $f:[a,b]\to\mathbb{R}$ folytonos és injektív $\Rightarrow f$ szig. mon.

Bizonyítás: Ha f(a) < f(b), ekkor f szig. mon. nő

1. Igazoljuk, hogy $f(a)=\min\{f(x):x\in[a,b]\}$ és $f(b)=\max\{f(x):x\in[a,b]\}$

Csak az elsőt. Indirekten, Tfh:

 $f(a) > minf \ (< \text{nem lehet}) \ \text{Weierstrass-t\'etel} \Rightarrow \exists \alpha \in [a,b] : f(\alpha) = minf \quad \alpha \neq a,b$

Tekintsük az $f:[\alpha,b] \to \mathbb{R}$ függvényt. A Bolzano-tétel miatt $c=f(a) \in (f(\alpha),f(b))$ -hoz is

 $\exists \xi \in [\alpha,b]: f(a) = f(\xi) \quad f \text{ injektív} \Rightarrow a = \xi \quad \text{ Ellentmond\'as}.$

2. Igazoljuk, ha $x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \quad (x_1, x_2 \in [a, b])$

Indirekt, Tfh: $f(x_1) > f(x_2)$

Ekkor $f(x_1) \in (f(x_2), f(b))$ Tekintsük az $f : [x_2, b] \to \mathbb{R}$ függvényt.

 $c = f(x_1)$ -hez is $\exists \xi \in (x_2, b) : f(x_1) = f(\xi)$ f injektív $\Rightarrow x_1 = \xi$ Ellentmondás.

Szakadási helyek

Definíció: Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in D_f$ pontban:

- 1. Szakadási helye van, ha $f \notin C(a)$
- 2. Megszüntethető szakadása van, ha

$$\exists \lim_{a} f \quad \text{v\'eges, \'es} \quad \lim_{a} f \neq f(a)$$

3. Elsőfajú szakadása van, ha

$$\exists \lim_{a \to 0} f, \quad \exists \lim_{a \to 0} f \quad \text{v\'egesek, \'es} \quad \lim_{a \to 0} f \neq \lim_{a \to 0} f$$

1

4. Másodfajú szakadás az összes többi esetben.

Pl: 1.

$$f(x) = \begin{cases} \frac{\sin x}{x} : & x \neq 0 \\ 0 : & x = 0 \end{cases}$$

 $f\in C(a), a\neq 0$ – Tudjuk, hogy $\lim_{n\to +\infty}\frac{\sin x}{x}=1\neq 0\Rightarrow$ Megszüntethető szakadás

Legyen
$$\tilde{f}(x) = \begin{cases} \frac{\sin x}{x} : & x \neq 0 \\ 1 : & x = 0 \end{cases}$$

Ekkor $\tilde{f} \in C(0)$. Ezért megszüntethető szakadás.

2.

$$f(x) = signx \begin{cases} 1 : x > 0 \\ 0 : x = 0 \\ -1 : x < 0 \end{cases}$$

 $f \in C(a), a \neq 0$

$$1 = \lim_{a \to 0} f \neq \lim_{a \to 0} f = -1 \Rightarrow$$
 Elsőfajú szakadás.

3.

$$f(x) = \begin{cases} x : x \in \mathbb{Q} \\ -x : x \notin \mathbb{Q} \end{cases}$$

 $f \notin C(0)$ de $f \in C(a), a \neq 0$

$$\nexists \lim_{a \to 0} f, \lim_{a \to 0} f \Rightarrow \text{Másodfajú szakadás.}$$

<u>Tétel</u>: Ha $f:(a,b)\to\mathbb{R}$ monoton és $\alpha\in(a,b)$, akkor

1. $f \in C(\alpha)$

vagy

2. Elsőfajú szakadása van

 $\underline{\text{Bizonyı́tás:}} \qquad \text{Tudjuk, hogy } \exists \lim_{\alpha \to 0} f, \lim_{\alpha + 0} f \text{ \'es } \lim_{\alpha \to 0} f < f(\alpha) \leq \lim_{\alpha + 0} f$

Ha
$$\lim_{\alpha \to 0} f = \lim_{\alpha \to 0} f \Rightarrow f \in C(\alpha)$$

Ha $\lim_{\alpha \to 0} f \neq \lim_{\alpha \to 0} f \Rightarrow$ elsőfajú szakadása van. \blacksquare

Nevezetes függvények

1. Gyökfüggyvény

Legyen $f(x)=x^n$, $x\in[0,+\infty), n\in\mathbb{N}_+$, ekkor f szig. mon. nő és folytonos \Rightarrow az inverze is folytonos (az előző tételek alapján).

Definíció: $\sqrt[n]{} := f^{-1}$. Az n-edik gyökfüggvény.

2. Logaritmusfüggyvény

<u>Tétel</u>: Az $exp: \mathbb{R} \to \mathbb{R}^+$ szig. mon. nő folytonos és $\mathbb{R}_{exp} = \mathbb{R}_+$

Bizonyítás: Biz. nélkül

 $\Rightarrow ln := exp^{-1}$ fgv. is szig. mon. nő és folytonos.

Definíció: $ln := exp^{-1} : \mathbb{R}_+ \to \mathbb{R}$

3. a alapú exp. és logaritmikus függvények

Definíció: $exp_a(x) = exp(x \cdot ln(a)) = a^x$, ahol $x \in \mathbb{R}$ és a > 0

Az a alapú exp. fgv.

Megj:
$$a^x = exp(ln(a^x)) = exp(x \cdot ln(a))$$

Ekkor az exp. fgv. szig. mon. nő, ha a > 1

fogy, ha
$$0 < a < 1$$

konstans, ha
$$a=1$$

Definíció:
$$\log_a = (exp_a)^{-1} : \mathbb{R}_+ \to \mathbb{R} \quad (a > 0, a \neq 1)$$

4. α kitevőjű hatványfüggvény

Definíció:
$$x^{\alpha} := exp(\alpha \cdot ln(x)) \quad \alpha \in \mathbb{R}, x \in (0, +\infty)$$

Megj:
$$x^{\alpha} = exp(ln(x^{\alpha})) = exp(\alpha \cdot ln(x))$$

Differenciálszámítás

Definíció: $a \in A \subset \mathbb{R}$ az A belső pontja, ha $\exists K(a) \subset A$ Jelölés: int A

– határérték: $a \in D'_f$

- folytonosság: $a \in D_f$

- derivál: $a \in intD_f$

Definíció: Az $f \in \mathbb{R} \to \mathbb{R}$ deriválható (differenciálható) az $a \in intD_f$ pontban, ha \exists és véges a

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=f'(a) \text{ határérték.} \qquad \qquad f'(a) \text{ a derivált.} \qquad \text{Jelölés: } f\in D(a)$$

1. $f(x) = c \in \mathbb{R}$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \underbrace{\frac{c - c}{h}}_{0} = 0 \Rightarrow f'(a) = 0, \quad a \in \mathbb{R}$$

2. $f(x) = x^n \quad (x \in \mathbb{R}, n \in \mathbb{N}_+)$

$$n = 1: \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{a+h-a}{h} = 1 \Rightarrow f'(a) = 1, \quad a \in \mathbb{R}$$

$$n > 1: \quad a^n - b^n = (a-b)(a^{n-1} + a^{n-2} \cdot b + \dots + a \cdot b^{n-2} + b^{n-1})$$

$$n > 1$$
: $a^n - b^n = (a - b)(a^{n-1} + a^{n-2} \cdot b + \dots + a \cdot b^{n-2} + b^{n-1})$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{(a+h)^n - a^n}{h} \lim_{h \to 0} \frac{(a+h-a)((a+h)^{n-1} + (a+h)^{n-2} \cdot a + \dots + a^{n-1})}{h} = n \cdot a^{n-1}, \quad f'(a) = n \cdot a^{n-1}, \quad a \in \mathbb{R}$$

3. Abszolút érték függyvény. f(x) = |x|

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{|h|}{h} = \begin{cases} 1 & : & h > 0 \\ -1 & : & h < 0 \end{cases}$$

⇒ ∄ lim $f \notin D(0)$

4. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

 $\mathbf{Pl}: f(x) = \frac{1}{x}, \quad x \neq 0$ Legyen $a \neq 0$

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h \to 0} \frac{a - (a+h)}{(a+h) \cdot a \cdot h} = \lim_{h \to 0} \frac{-1}{a \cdot (a+h)} = \frac{-1}{a^2}$$

Tétel: (A deriválhatóság ekvivalens átfogalmazása)

 $f \in \mathbb{R} \to \mathbb{R}, \quad a \in int\mathcal{D}_f$ Ekkor

$$f \in \mathcal{D}(a) \Leftrightarrow \exists A \in \mathbb{R}, \exists \varepsilon : \mathcal{D}_f \to \mathbb{R}, \lim_a \varepsilon = 0 \text{ és } f(x) - f(a) = A(x-a) + \varepsilon(x)(x-a) \quad (x \in \mathcal{D}_f)$$

Ekkor A = f'(a)

$$\underline{\text{Megj:}} \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a) \quad \Leftrightarrow \quad \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a), \quad \text{hiszen } x = a + h$$

Bizonyítás: "⇒"

Tfh.
$$f \in \mathcal{D}(a) \Rightarrow \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) = A \Rightarrow \lim_{x \to a} \underbrace{\frac{f(x) - f(a)}{x - a} - A}_{s(x)} = 0$$

$$\Rightarrow f(x) - f(a) - A(x - a) = \varepsilon(x)(x - a)$$

"**⇐**" Tfh.

$$f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) = \frac{f(x) - f(a)}{x - a} - A = \varepsilon(x) \to 0 \quad x \to a$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} - A = 0 \Rightarrow f \in \mathcal{D}(a) \text{ és } f'(a) = A \quad \blacksquare$$

Definíció: Az $f \in \mathbb{R} \to \mathbb{R}$ függvény grafikonjának az (a, f(a)) pontban van érintője, ha $f \in \mathcal{D}(a)$. Az érintő meredeksége f'(a), egyenlete: $l(x) = f'(a) \cdot (x - a) + f(a)$

1

Tétel: Deriválhatóság és folytonosság kapcsolata

 $f \in \mathbb{R} \to \mathbb{R}, \quad a \in int\mathcal{D}_f$, ekkor

$$i, f \in \mathcal{D}(a) \Rightarrow f \in C(a)$$

Bizonyítás:

i,
$$\exists \varepsilon : \mathcal{D}_f \to \mathbb{R}$$
, $\lim_a \varepsilon = 0$ és $f(x) - f(a) = f'(a)(x - a) + \varepsilon(x)(x - a) \to 0$ $x \to a$

$$\Rightarrow \lim_{x \to a} (f(x) - f(a)) = 0 \Leftrightarrow f \in C(a), \text{ hiszen } a \in int \mathcal{D}_f \Rightarrow a \in \mathcal{D}_f \cap \mathcal{D}_f'$$

ii,
$$f(x) = |x|$$
 $f \in C(a)$ de $f \notin \mathcal{D}(a)$

Definíció: Legyen $A := \{a \in int\mathcal{D}_f, f \in \mathcal{D}(a)\}$ és $f' : A \to \mathbb{R}, \quad a \mapsto f'(a)$

Ekkor az f' függvényt az f derivált függvényének nevezzük.

$$\mathbf{Pl}: f(x) = x^3 \Rightarrow f'(x) = 3x^2 \quad (x \in \mathbb{R})$$

1.
$$f(x) = c \Rightarrow f'(x) = 0 \quad (x \in \mathbb{R}, c \in \mathbb{R})$$

2.
$$f(x) = x^n \Rightarrow f'(x) = n \cdot x^{n-1} \quad (x \in \mathbb{R})$$

3.
$$f(x) = |x| \Rightarrow f \notin \mathcal{D}(0)$$

4.
$$f(x) = \frac{1}{x}, x \neq 0 \Rightarrow f'(x) = -\frac{1}{x^2}$$

5.
$$f(x) = \sqrt{x}, x \ge 0 \Rightarrow f'(x) = \frac{1}{2 \cdot \sqrt{x}} \quad (x > 0)$$

6.
$$\sin'(x) = \cos(x)$$
, $\cos'(x) = -\sin(x)$ $(x \in \mathbb{R})$

<u>Tétel</u>: (Algebrai műveletek deriváltakkal)

Legyen $f, g \in \mathbb{R} \to \mathbb{R}, a \in int(\mathcal{D}_f \cap \mathcal{D}_g), \quad f, g \in \mathcal{D}(a)$ Ekkor:

i,
$$f + g \in \mathcal{D}(a)$$
 és $(f + g)'(a) = f'(a) + g'(a)$

ii,
$$\lambda f \in \mathcal{D}(a)$$
 és $(\lambda f)'(a) = \lambda \cdot f'(a)$ $(\lambda \in \mathbb{R})$

iii,
$$f \cdot g \in \mathcal{D}(a)$$
 és $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$

iv, Ha
$$g(a) \neq 0$$
, akkor $\frac{f}{g} \in \mathcal{D}(a)$ és $(\frac{f}{g})'(a) = \frac{(f'(a) \cdot g(a) - f(a) \cdot g'(a))}{g^2(a)}$

Bizonyítás:

$$\mathbf{i}, a \in int(\mathcal{D}_f \cap \mathcal{D}_g) = int\mathcal{D}_{f+g}$$

$$\lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(a) + g'(a)$$

$$\Rightarrow (f+g)'(a) = f'(a) + g'(a)$$

ii,
$$\lim_{x \to a} \frac{(\lambda f)(x) - (\lambda f)(a)}{x - a} = \lambda \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lambda \cdot f'(a)$$

iii,
$$\lim_{x\to a}\frac{(f\cdot g)(x)-(f\cdot g)(a)}{x-a}=\lim_{x\to a}\frac{f(x)\cdot g(x)-f(a)\cdot g(a)}{x-a}=$$

$$= \lim_{x \to a} \frac{f(x) \cdot g(x) - g(x) \cdot f(a) + g(x) \cdot f(a) - f(a) \cdot g(a)}{x - a} =$$

$$= \lim_{x \to a} g(x) \cdot \underbrace{\frac{f(x) - f(a)}{x - a}}_{\to f'(a)} + \lim_{x \to a} f(a) \cdot \underbrace{\frac{g(x) - g(a)}{x - a}}_{\to g'(a)} \longrightarrow f'(a) \cdot g(a) + f(a) \cdot g'(a) \quad (x \to a)$$

$$\Rightarrow (f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

iv, Először igazoljuk, hogy
$$(\frac{1}{g})'(a) = -\frac{g'(a)}{g^2(a)}$$

$$\lim_{x\to a}\frac{\frac{1}{g}(x)-\frac{1}{g}(a)}{x-a}=\lim_{x\to a}\frac{\frac{1}{g(x)}-\frac{1}{g(a)}}{x-a}=\lim_{x\to a}\frac{g(a)-g(x)}{g(x)\cdot g(a)\cdot (x-a)}=$$

$$= \lim_{x \to a} \underbrace{\left(-\frac{1}{g(x) \cdot g(a)}\right)}_{\xrightarrow{\frac{-1}{2(x)}}} \cdot \underbrace{\left(\frac{g(x) - g(a)}{x - a}\right)}_{\xrightarrow{g'(a)}} \longrightarrow -\frac{g'(a)}{g^2(a)} \quad (x \to a)$$

$$\Rightarrow (\frac{f}{g})'(a) = (f \cdot \frac{1}{g})'(a) = f'(a) \cdot \frac{1}{g(a)} + f(a) \cdot (\frac{1}{g})'(a) = \frac{f'(a)}{g(a)} - \frac{f(a) \cdot g'(a)}{g^2(a)} = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)} \quad \blacksquare$$

Megj: **i**,
$$P(x) = Q_n \cdot x^n + Q_{n-1} \cdot x^{n-1} + \dots + Q_1 \cdot x + Q_0$$

$$\Rightarrow P'(x) = n \cdot Q_n \cdot x^{n-1} + (n-1) \cdot Q_{n-1} \cdot x^{n-2} + \dots + Q_1$$

ii,
$$\frac{P(x)}{Q(x)}$$
 is deriválható, ha $Q(a) \neq 0$

iii,
$$(tg)'(x) = (\frac{\sin x}{\cos x})' = \frac{\cos^2(x) - \sin x \cdot (-\sin x)}{\cos^2(x)} = \frac{1}{\cos^2(x)}$$
, ha $\cos x \neq 0$

Tétel: Összetett függyvény deriváltja

$$f,g\in\mathbb{R}\to\mathbb{R}, R_g\subset D_f, g\in\mathcal{D}(a), f\in\mathcal{D}(g(a)),$$
ekkor

$$f \circ g \in \mathcal{D}(a)$$
 és $(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$

Bizonyítás:

$$g \in \mathcal{D}(a) \Rightarrow a \in int\mathcal{D}_{g} \Rightarrow int\mathcal{D}_{f \circ g}$$

$$g \in \mathcal{D}(a) \Rightarrow \exists \varepsilon_{1} \in \mathbb{R} \to \mathbb{R}, \lim_{a} \varepsilon_{1} = 0 \text{ és } g(x) - g(a) = g'(a)(x - a) + \varepsilon_{1}(x)(x - a) \quad (x \in D_{f})$$

$$f \in \mathcal{D}(g(a)) \Rightarrow \exists \varepsilon_{2} \in \mathbb{R} \to \mathbb{R}, \lim_{g(a)} \varepsilon_{2} = 0 \text{ és } f(y) - f(g(a)) = f'(g(a)) \cdot (y - g(a)) + \varepsilon_{2}(y) \cdot (y - g(a))$$

$$\text{Legyen } y = g(x)$$

$$f(g(x)) - f(g(a)) = f'(g(a)) \cdot (g(x) - g(a)) + \varepsilon_{2}(g(x)) \cdot (g(x) - g(a)) =$$

$$= f'(g(a)) \cdot (g'(a)(x - a) + \varepsilon_{1}(x)(x - a)) + \varepsilon_{2}(g(x)) \cdot (g'(a)(x - a) + \varepsilon_{1}(x)(x - a)) =$$

$$= f'(g(a)) \cdot g'(a) \cdot (x - a) + (x - a) \cdot \underbrace{(f'(g(a)) \cdot \varepsilon_{1}(x) + \varepsilon_{2}(g(x)) \cdot g'(a) + \varepsilon_{1}(x) \cdot \varepsilon_{2}(g(x)))}_{\varepsilon(x)}$$

$$\varepsilon_1 \to 0, \quad (x \to a)$$
 $g(x) \to g(a)$

$$\Rightarrow \lim_{x \to a} \varepsilon_2(g(x)) = \lim_{g(a)} \varepsilon_2 = 0 \Rightarrow \lim_a \varepsilon = 0$$

$$\Rightarrow (f \circ g)'(a) = f'(g(a)) \cdot g'(a) \quad \blacksquare$$

$$\begin{aligned} \mathbf{Pl:}h(x) &= (3x^2 + 2x + c)^{2017} \\ f(u) &= u^{2017}, \quad g(x) = 3x^2 + 2x + 6 \\ \Rightarrow h(x) &= f(g(x)) \Rightarrow h'(x) = (f \circ g)'(x) = f'(g(x)) \cdot g'(x) = 2017 \cdot (3x^2 + 2x + 6)^{2016} \cdot (6x + 2) \end{aligned}$$

Inverz függvény deriváltja

<u>Tétel</u>: Legyen $f:(a,b)\to\mathbb{R}$, szig. mon. növő és folytonos függvény.

Ha $\xi \in (a,b), f \in \mathcal{D}(\xi)$ és $f'(\xi) \neq 0$, akkor

$$(f^{-1})\in \mathcal{D}(\eta)$$
és $(f^{-1})'(\eta)=\frac{1}{f'(\xi)},$ ahol $\eta=f(\xi)$

Bizonyítás: $f:(a,b)\to\mathbb{R}$ folytonos $\Rightarrow R_f$ intervallum.

fszig. mon. növő $\Rightarrow R_f$ nyílt intervallum $\Rightarrow \eta \in int R_f \qquad f^{-1}: R_f \to D_f$

$$\lim_{y\to\eta}\frac{f^{-1}(y)-f^{-1}(\eta)}{y-\eta}=\lim_{x\to\xi}\frac{x-\xi}{f(x)-f(\xi)}=\lim_{x\to\xi}\frac{1}{\frac{f(x)-f(\xi)}{x-\xi}}\longrightarrow\frac{1}{f'(\xi)}\quad(x\to\xi)$$

Legyen $f(x) = y \Leftrightarrow x = f^{-1}(y)$ $\xi = f^{-1}(\eta)$

Ui. $x \to \xi$, mert $y \to \eta$: $f:(a,b) \to \mathbb{R}$ folytonos és injektív $\Rightarrow f^{-1}$ folytonos $\Rightarrow f^{-1}(y) \to f^{-1}(\eta)$ $\Rightarrow x \to \xi$

$$(f^{-1})'(\eta) = \lim_{y \to \eta} \frac{f^{-1}(y) - f^{-1}(\eta)}{y - \eta} = \lim_{x \to \xi} \frac{1}{\frac{f(x) - f(\xi)}{x - \xi}} = \frac{1}{f'(\xi)} \quad \blacksquare$$

${ m Anal}$ ízis 2.

5. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

Megj:
$$f(\xi) = \eta$$

meredeksége: $f'(\xi) = m$
egyenlete: $y = mx + b \Rightarrow x = \frac{y-b}{m} \rightarrow \text{meredeksége: } \frac{1}{m}$
 $(f^{-1})'(\eta) = \frac{1}{m} = \frac{1}{f'(\xi)}$

Hatványsor deriváltja

<u>**Tétel**</u>: Legyen $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor konvergenciasugara R>0 és legyen

$$f(x) := \sum_{n=0}^{\infty} \alpha_n (x-a)^n \quad x \in K_R(a). \text{ Ekkor } f \in \mathcal{D}(x_0) \quad \forall x_0 \in K_R(a) \text{ és}$$

$$f'(x) = \sum_{n=0}^{\infty} \alpha_n (x-a)^{n-1} \text{ whell } x \in K_R(a)$$

$$f'(x_0) = \sum_{n=1}^{\infty} n \cdot \alpha_n \cdot (x_0 - a)^{n-1}$$
, ahol $x_0 \in K_R(a)$

Bizonyítás: 1. lépés: Igazoljuk, hogy
$$\sum_{n=0} n \cdot \alpha_n \cdot r^n$$
 abszolút konvergens $\forall 0 < r < R$

Legyen
$$0 < r < r' < R$$
 és $x = a + r'$

x-ben konvergens a hatványsor $\Rightarrow \sum_{n=0}^{\infty} \alpha_n(r')^n$ konvergens $\Rightarrow \lim_{n\to +\infty} \alpha_n(r')^n = 0 \Rightarrow (\alpha_n(r')^n)$ korlátos

$$\Rightarrow \exists M > 0 : |\alpha_n(r')^n| \le M \Rightarrow |\alpha_n| \le \frac{M}{(r')^n} \Rightarrow \sum_{n=0} |n \cdot \alpha_n \cdot r^n| \le M \cdot \sum_{n=0} n \cdot (\frac{r}{r'})^n$$

ez konvergens, hiszen a gyökkritérium miatt
$$\sqrt[n]{n \cdot (\frac{r}{r'})^n} = \sqrt[n]{n \cdot (\frac{r}{r'})} \rightarrow (\frac{r}{r'}) < 1 \Rightarrow \sum_{n=0}^{n=0} n \cdot \alpha_n \cdot r^n \text{ abszolút konvergens}$$

$$\Rightarrow \sum_{n=1}^{\infty} n \cdot \alpha_n \cdot r^{n-1} \text{ is abszolút konvergens} \Rightarrow \forall \varepsilon > 0, \exists N : \sum_{n=N+1}^{\infty} |n \cdot \alpha_n \cdot r^{n-1}| < \frac{\varepsilon}{2}$$

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| = \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| \le \left| \frac{\sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n - \sum_{n=0}^{\infty} \alpha_n (x_0 - a)^n}{x - x_0} - \sum_{n=0}^{\infty} n \cdot \alpha_n (x_0 - a)^n - \sum_{n=$$

$$\leq \underbrace{\left|\sum_{n=1}^{N} \frac{\alpha_{n}(x-a)^{n} - \alpha_{n}(x_{0}-a)^{n}}{x - x_{0}} - \sum_{n=1}^{N} n \cdot \alpha_{n}(x_{0}-a)^{n-1}\right|}_{(I)} + \underbrace{\left|\sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n} - (x_{0}-a)^{n}}{x - x_{0}}\right|}_{(II)} + \underbrace{\left|\sum_{n=N+1}^{\infty} \alpha_{n} \frac{(x-a)^{n}}{x - x_{0}}\right|}_{(II)} + \underbrace{$$

$$+ \underbrace{\left|\sum_{n=N+1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1}\right|}_{(III)} = (I) + (II) + (III)$$

Tfh.
$$|x_0 - a| < r < R$$

Mivel
$$x \to x_0$$
 ezért feltehető, hogy $|x - a| < r \Rightarrow (III) \le \sum_{n=N+1}^{\infty} n \cdot |\alpha_n| \cdot r^{n-1} < \frac{\varepsilon}{2}$

$$(II) \le \sum_{n=N+1}^{\infty} |\alpha_n| \left| \frac{((x-a) - (x_0 - a))((x-a)^{n-1} + (x-a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1})}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a))((x_0 - a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1}}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a))((x_0 - a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1}}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a))((x_0 - a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1}}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a))((x_0 - a)^{n-1} + (x_0 - a)^{n-2}(x_0 - a) + \dots + (x_0 - a)^{n-1}}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) - (x_0 - a)}{x - x_0} \right| = \frac{1}{x - x_0} \left| \frac{(x_0 - a) -$$

$$= \sum_{n=N+1}^{\infty} |\alpha_n| \left| (x-a)^{n-1} + (x-a)^{n-2} (x_0-a) + \dots + (x_0-a)^{n-1} \right| = \sum_{n=N+1}^{\infty} |\alpha_n| \cdot n \cdot r^{n-1} < \frac{\varepsilon}{2}$$

$$(I) \le \sum_{n=1}^{N} |\alpha_n| \underbrace{\frac{(x-a)^n - (x_0 - a)^n}{x - x_0} - n \cdot (x_0 - a)^{n-1}}_{\to 0, \text{ ha } x \to x_0}$$

$$g(x) = (x - a)^n \Rightarrow$$
 a tört határértéke $g'(x_0) = n \cdot (x_0 - a)^{n-1}$ $(x \to x_0)$
 $\Rightarrow \exists \delta > 0, (I) < \varepsilon$, ha $|x - x_0| < \delta$

$$\Rightarrow \left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| < \varepsilon + \varepsilon = 2\varepsilon \quad (\text{ha } |x - x_0| < \delta)$$

$$\Rightarrow \lim \left| \frac{f(x) - f(x_0)}{x - x_0} - \sum_{n=1}^{\infty} n \cdot \alpha_n (x_0 - a)^{n-1} \right| = 0$$

$$f \in \mathcal{D}(x_0)$$
 és $f'(x_0) = \sum_{n=1}^{\infty} n \cdot \alpha_n \cdot (x_0 - a)^{n-1}$

Elemi függvények deriváltja

1.
$$\exp exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \Rightarrow exp'(x) = \sum_{n=1}^{\infty} \frac{n \cdot x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = exp(x) \quad (x \in \mathbb{R})$$

$$exp' = exp$$

2.
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \Rightarrow \sin'(x) = \sum_{n=1}^{\infty} (-1)^n \frac{(2n+1) \cdot x^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x$$

Hasonlóan $\cos' x = -\sin x$, ch'x = shx, sh'x = chx

3.
$$\ln = \exp^{-1}$$
, $\exp \xi = \eta \Rightarrow$
 $\ln'(\eta) = \frac{1}{\exp'\xi} = \frac{1}{\exp\xi} = \frac{1}{\eta} \quad (\eta > 0)$

4.
$$a^x = exp_a(x)$$
, $a > 0$
 $exp'_a(x) = (exp(x \cdot \ln a))' = exp(x \cdot \ln a) \cdot \ln a = a^x \cdot \ln a$

5.
$$\log_a = (exp_a)^{-1}$$
, $exp_a(\xi) = \eta$ $(a > 0, a \neq 1)$
 $\log'_a(\eta) = \frac{1}{exp'_a(\xi)} = \frac{1}{a^{\xi} \cdot \ln a} = \frac{1}{\eta \cdot \ln a}$ $(\eta > 0, a > 0, a \neq 1)$

6.
$$f(x) = x^{\alpha} \quad (\alpha \in \mathbb{R}, x > 0)$$

 $(x^{\alpha})' = (exp(\alpha \cdot \ln x))' = exp(\alpha \cdot \ln x) \cdot \alpha \cdot \frac{1}{x} = \alpha \cdot x^{\alpha} \cdot \frac{1}{x} = \alpha \cdot x^{\alpha-1}$

7.
$$F(x) = f(x)^{g(x)} = exp(\ln(f(x)^{g(x)})) = exp(g(x) \cdot \ln \cdot f(x)) =$$
$$= exp(g(x) \cdot \ln \cdot f(x)) \cdot (g'(x) \cdot \ln f(x) + g(x) \cdot \frac{1}{f(x)} \cdot f'(x))$$

Egyoldali derivált

$$f(x) = |x| \quad f \notin \mathcal{D}(0)$$

$$\lim_{x \to 0+0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+0} \frac{x}{x} = 1$$

$$\lim_{x \to 0-0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0-0} \frac{-x}{x} = -1$$

Definíció: $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és $\exists \delta > 0 : [a, a + \delta) \subset \mathcal{D}_f$

Ekkor: f jobbról deriválható a-ban, ha

$$f_{+}'(a) = \lim_{x \to a+0} \frac{f(x) - f(a)}{x - a}$$
 határérték létezik és véges.

Hasonló az $f_{-}'(a)$ definíciója.

<u>Tétel</u>: $f \in \mathbb{R} \to \mathbb{R}$, $a \in int\mathcal{D}_f$ Ekkor:

 $f \in \mathcal{D}(a) \Leftrightarrow f_{+}'(a)$ és $f_{-}'(a)$ léteznek és egyenlőek.

Többször deriválható függyvények

Definíció: f kétszer deriválható a-ban, ha $\exists K(a)$, hogy $f \in \mathcal{D}(K(a))$ és $f' \in \mathcal{D}(a)$

Jelölés: $f''(a) = (f')'(a), \quad (f \in \mathcal{D}^2(a))$

Definíció: Az f függvény (n+1)-szer differenciálható a-ban, ha

 $\exists K(a), \text{ hogy } f \in \mathcal{D}^n(K(a)) \text{ és } f^{(n)} \in \mathcal{D}(a)$

Jelölés: $f^{(n+1)}(a) = (f^{(n)})'(a), \quad (f \in \mathcal{D}^{n+1})(a)$

 $f^{(0)} = f$

Definíció: f végtelenszer deriválható a-ban, ha $\forall n \in \mathbb{N}: f \in \mathcal{D}^n(a)$

<u>Tétel</u>: (Leibniz)

$$f, g \in \mathcal{D}^n(a) \Rightarrow f \cdot g \in \mathcal{D}^n(a) \text{ és } (f \cdot g)^{(n)}(a) = \sum_{k=0}^n \binom{n}{k} \cdot f^{(k)}(a) \cdot g^{(n-k)}(a)$$

Bizonyítás: Teljes indukcióval

 $\underline{n=0}$: $(f \cdot g)(a) = f(a) \cdot g(a)$

 $\underline{n=1:} \quad (f \cdot g)'(a) = 1 \cdot f(a) \cdot g'(a) + 1 \cdot f'(a) \cdot g(a)$

Folytatás Hf.

Tétel: Tfh.
$$f(x) = \sum_{k=0}^{\infty} \alpha_k (x-a)^k$$
, $x \in K_R(a)$

Ekkor: $f \in \mathcal{D}^n(x_0)$ $n \in \mathbb{N}$ és

$$f^{(n)}(x_0) = \sum_{k=-n}^{\infty} \alpha_k \cdot k \cdot (k-1) \cdot \dots \cdot (k-n+1) \cdot (x_0 - a)^{k-n} \quad (x_0 \in K_R(a))$$

Továbbá: $f^{(n)}(a) = \alpha_n \cdot n!$

Bizonyítás: Hf. Teljes indukcióval.

6. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

Előző előadás vége: a hatványsor végtelenszer deriválható.

Következmény: exp, \cos , \sin , ch, $sh \in \mathcal{D}^{\infty}(\mathbb{R})$

Definíció: Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek a $c \in int\mathcal{D}_f$ pontban lokális maximuma (minimuma) van, ha

$$\exists K(c) \subset \mathcal{D}_f, \forall x \in K(c) : f(x) \le f(c) \quad (f(x) \ge f(c))$$

Tétel: (Elsőrendű szükséges feltétel)

 $f \in \mathbb{R} \to \mathbb{R}, f \in \mathcal{D}(c)$ és f-nek lokális szélső értéke van c-ben $\Rightarrow f'(c) = 0$

Bizonyítás: Tfh. f-nek lokális minimuma van c-ben

$$\Rightarrow \exists \delta > 0 : f(x) \ge f(c), \forall x \in (c - \delta, c + \delta) \subset D_f$$

$$\exists \lim_{x \to c+0} \underbrace{\frac{f(x) - f(c)}{x - c}}_{\geq 0} \geq 0 \text{ \'es } \exists \lim_{x \to c-0} \underbrace{\frac{f(x) - f(c)}{x - c}}_{\leq 0} \leq 0$$

$$\Rightarrow \exists \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \underbrace{\lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c}}_{\geq 0} = \underbrace{\lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c}}_{\leq 0} \Rightarrow f'(c) = 0 \quad \blacksquare$$

Megj: A feltétel nem elégséges, hiszen: $f(x) = x^3$, $f'(0) = 3x^2|_{x=0}$

<u>Jelölés:</u> $f \in C[a, b]$ f folytonos [a, b]-n, $f \in \mathcal{D}(a, b)$ f deriválható (a, b)-n

Középérték-tételek

1. Rolle-tétel

<u>Tétel</u>: Tfh. $f \in C[a, b]$ és $f \in \mathcal{D}(a, b)$

Ha
$$f(a) = f(b)$$
, ekkor $\exists \xi \in (a,b) : f'(\xi) = 0$

Bizonyítás: $f \in C[a, b] \Rightarrow$ Weierstrass-tétel miatt

$$\Rightarrow \exists \alpha \in [a,b]: f(\alpha) = \min_{[a,b]} f =: m \text{ \'es } \exists \beta \in [a,b]: f(\beta) = \max_{[a,b]} f =: M$$

<u>1. lépés:</u> Tfh. $m=M\Rightarrow f=m\quad ([a,b]$ -n), a függvény konstans $\Rightarrow f'=0\quad [a,b]$ -n

2. lépés:
$$m \neq M$$
 és $m \neq f(a) = f(b) \Rightarrow m = f(\alpha) \Rightarrow \alpha \neq a, b \Rightarrow \alpha \in (a,b)$

 $\Rightarrow \alpha\text{-ban lokális minimum van.} \Rightarrow f'(\alpha) = 0$

3. lépés: Tfh.
$$m \neq M$$
 és $m = f(a) = f(b)$

$$\Rightarrow M \neq f(a) = f(b) \Rightarrow \beta \neq a, b \Rightarrow \beta \in (a, b) \Rightarrow \beta$$
-ban lokális maximum van $\Rightarrow f'(\beta) = 0$

Megj: Ha c-ben abszolút szélső érték van és c belső pont, akkor c-ben lokális szélső érték is van.

2. Cauchy-tétel

<u>Tétel</u>: Tfh. $f, g \in C[a, b], f, g \in \mathcal{D}(a, b)$ és $g'(x) \neq 0$ $(x \in (a, b))$

Ekkor:
$$\exists \xi \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Bizonyítás:
$$g(b) \neq g(a)$$
, hiszen különben $\exists \xi \in (a,b) : g'(\xi) = 0$

Válasszuk meg λ -t úgy, hogy az $F := f - \lambda g$ függvényre alkalmazhassuk a Rolle-tételt

$$F \in C[a,b], F \in \mathcal{D}(a,b), F(a) = F(b) \Leftrightarrow f(a) - \lambda g(a) = f(b) - \lambda g(b) \Leftrightarrow \lambda = \frac{f(b) - f(a)}{g(b) - g(a)}$$

$$\Rightarrow$$
 Rolle-tétel miatt $\exists \xi \in (a,b) : F'(\xi) = 0 \Leftrightarrow F'(\xi) = f'(\xi) - \lambda g'(\xi) = 0 \Leftrightarrow \lambda = \frac{f'(\xi)}{g'(\xi)}$

Megj: Haf(a)=f(b),akkor visszakapjuk a Rolle tételt.

3. Lagrange-tétel

<u>Tétel</u>: Tfh. $f \in C[a,b], f \in \mathcal{D}(a,b)$

Ekkor
$$\exists \xi \in (a,b) : \frac{f(b)-f(a)}{b-a} = f'(\xi)$$

Bizonyítás: Legyen $g(x) = x \Rightarrow g'(x) = 1 \neq 0$ Így alkalmazható rá a Cauchy-tétel

Következmény:

i,
$$f \in \mathcal{D}(a,b)$$
 és $f' = 0$ (a,b) -n $\Rightarrow f = c$ (a,b) -n

ii,
$$f, g \in \mathcal{D}(a, b)$$
 és $f' = g'$ (a, b) -n $\Rightarrow f = g + c$ (a, b) -n $(c \in \mathbb{R})$

Bizonyítás: i, Legyen $[x_1, x_2] \subset (a, b)$ A Lagrange tétel miatt $\exists \xi \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0 \Rightarrow f(x_2) = f(x_1)$$

ii, Alkalmazzuk az i,-t az f - g függvényre.

Monotonitás

Tétel: Tfh. $f \in \mathcal{D}(a, b)$ Ekkor:

i,
$$f' \geq 0$$
 (a,b) -n $\Rightarrow f$ monoton nő (a,b) -n

ii,
$$f' \leq 0$$
 (a, b) -n $\Rightarrow f$ monoton fogy (a, b) -n

iii,
$$f' > 0$$
 (a, b) -n $\Rightarrow f$ szigorú monoton nő (a, b) -n

iv,
$$f' < 0$$
 (a, b) -n $\Rightarrow f$ szigorú monoton fogy (a, b) -n

Bizonyítás:

i, Legyen $[x_1, x_2] \subset (a, b)$ A Lagrange tétel miatt $\exists \xi \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \ge 0 \Rightarrow f \text{ monoton nő.}$$

ii, Ugyanígy

iii, A Lagrange tétel után $\Rightarrow \exists \xi \in (x_1, x_2)$:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) > 0 \Rightarrow f$$
 szigorú monoton nő

iv, Ugyanígy. ■

Megj:
$$\mathbf{i}, f(x) = \frac{1}{x} \quad (x \neq 0) \Rightarrow f'(x) = -\frac{1}{x^2} < 0 \quad (x \neq 0)$$

 $\Rightarrow f$ szigorú monoton fogy, hiszen a 0-ban nincs értelmezve.

⇒ Az előző tételben fontos az intervallum.

ii, Az előző tételben a iii, nem fordítható meg, azaz $f\uparrow \Rightarrow f'>0$ Pl: $f(x)=x^3$

 $\underline{\mathbf{T\acute{e}tel}} \colon (\mathbf{A} \text{ monotonit\'asra vonatkoz\'o sz\"{u}ks\'eges \'es elégs\'eges felt\'etel.})$

Tfh. $f \in \mathcal{D}(a, b)$ Ekkor:

i,
$$f' \geq 0$$
 (a,b) -n $\Leftrightarrow f$ monoton nő (a,b) -n

ii,
$$f' \leq 0$$
 (a, b) -n $\Leftrightarrow f$ monoton fogy (a, b) -n

iii,
$$f' \geq 0$$
 (a,b) -n, de $\nexists(c,d) \subset (a,b): f'=0$ (c,d) -n $\Leftrightarrow f$ szigorú monoton nő (a,b) -n

$$\mathbf{iv},\,f'\leq 0\quad (a,b)\text{-n, de }\not\equiv(c,d)\subset(a,b):f'=0\quad (c,d)\text{-n}\Leftrightarrow f\text{ szigor\'u monoton fogy }(a,b)\text{-n}$$

Bizonyítás: i, " \Rightarrow " < " < " Tfh. f monoton nő és legyen $\xi \in (a,b)$ tetszőleges

$$\frac{f(x) - f(\xi)}{x - \xi} = \begin{cases} \ge 0 & \text{, ha } x \ge \xi \\ \ge 0 & \text{, ha } x < \xi \end{cases}$$

$$\Rightarrow \exists f'(\xi) = \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi}$$

ii, Hasonló

iii, " \Rightarrow " $f' \ge 0 \Rightarrow f$ szigorú monoton nő

Indirekten Tfh. f nem szigorú monoton

 $\Rightarrow \exists c, d: f(c) = f(d) \Rightarrow f = f(c) \quad (c, d)$ -n $\Rightarrow f' = 0 \quad (c, d)$ -n, ez ellentmondás

 $\Rightarrow f$ szigorú monoton nő.

" \Leftarrow " f szigorú monoton nő \Rightarrow f monoton nő. \Rightarrow f' \geq 0 Indirekten:

Tfh. $\exists (c,d) \subset (a,b): f'=0 \quad (c,d)$ -n $\Rightarrow f$ konstans (c,d)-n $\Rightarrow f$ nem szigorú monoton nő

És így ellentmondásra jutottunk $\Rightarrow \nexists(c,d): f'=0$ (c,d)-n

iv, Hasonló ■

<u>Tétel</u>: (Elsőrendű elégséges feltétel)

Tfh. $f \in \mathcal{D}(a,b), c \in (a,b)$ és f'(c) = 0

Ha f' előjelet vált c-ben, akkor lokális szélső értéke van c-ben.

Ha f' negatívból pozitívba megy akkor lokális minimum.

Ha f' pozitívból negatívba megy akkor lokális maximum.

Bizonyítás: Tfh. f' negatívból pozitívba megy.

$$\Rightarrow \exists \delta > 0 : f' \leq 0 \quad (c - \delta, c) - n \quad \Rightarrow f \setminus (c - \delta, c) - n$$

$$f' \ge 0 \quad (c, c + \delta)$$
-n $\Rightarrow f \nearrow \quad (c, c + \delta)$ -n

 \Rightarrow f-nek lokális minimuma van c-ben.

Megj: A feltétel nem szükséges

Pl:

$$f(x) = \begin{cases} x^4(2 + \sin\frac{1}{x}) & , \text{ ha } x \neq 0 \\ 0 & , \text{ ha } x = 0 \end{cases}$$

Tétel: (Másodrendű elégséges feltétel)

Tfh.
$$f \in \mathcal{D}(a,b), c \in (a,b), f'(c) = 0, f \in \mathcal{D}^2(c)$$

Ha $f''(c) \neq 0$, ekkor c-ben lokális szélső értéke van.

Ha $f''(c) > 0 \implies \text{lokális minimum}$

Ha $f''(c) < 0 \quad \Rightarrow \quad \text{lokális maximum}$

$$\underline{\text{Bizonyitás:}} \qquad \text{Tfh. } f''(c) > 0 \Rightarrow f''(c) = \lim_{x \to c} \frac{f'(x) - f'(c)}{x - c} = \lim_{x \to c} \frac{f'(x)}{x - c} > 0$$

$$\Rightarrow \exists \delta > 0 : \frac{f'(x)}{x-c} > 0 \quad \forall x \in (c-\delta, c+\delta) \setminus \{c\}$$

$$\Rightarrow f'(x) < 0 \quad \forall x \in (c - \delta, c) \quad \text{és} \quad f'(x) > 0 \quad \forall x \in (c, c + \delta)$$

 $\Rightarrow f'$ előjelet vált c-ben (negatívból pozitívba) $\Rightarrow f$ -nek lokális minimuma van.

P1:
$$f(x) = x^2, f'(x) = 2x, f''(x) = 2$$

Megj: i, Ha f''(c) = 0, akkor lokális lehet.

ii, ∃ magasabb rendű feltétel is.

7. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

Határértékek

Kritikus esetek:
$$(\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, 0^0, 1^\infty, \infty - \infty)$$

Tétel: (L'Hospital szabály
$$\frac{0}{0}$$
 alakra)

Tfh.
$$\mathbf{i}, f, g \in \mathcal{D}(a, b), \quad (-\infty \le a < b < \infty)$$

ii,
$$g'(x) \neq 0$$
, $x \in (a, b)$

iii,
$$\lim_{a \to 0} f = \lim_{a \to 0} g = 0$$

iv,
$$\exists \lim_{a \to 0} \frac{f'}{g'}$$
 és $\lim_{a \to 0} \frac{f'}{g'} = A \in \overline{\mathbb{R}}$

Ekkor:
$$\exists \lim_{a + 0} \frac{f}{g}$$
 és $\lim_{a + 0} \frac{f}{g} = \lim_{a + 0} \frac{f'}{g'}$

Bizonyítás: i, Tfh.
$$a \neq -\infty$$

Tudjuk:
$$\lim_{a\to 0} \frac{f'}{g'} = A \Rightarrow \forall \varepsilon > 0, \exists x_0 \in (a,b), \forall \xi \in (a,x_0) : \frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A)$$

Legyen
$$f(a) = g(a) = 0$$
 és legyen $x \in (a, x_0)$ tetszőleges, ekkor $f, g \in C[a, x]$ és $f, g \in \mathcal{D}(a, x)$

$$\Rightarrow$$
a Cauchy-középértéktétel miatt: $\exists \xi \in (a,x): \frac{f(x)-f(a)}{g(x)-g(a)} = \frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A)$

$$\Rightarrow \forall \varepsilon > 0, \exists x_0 \in (a, b), \forall x \in (a, x_0) : \frac{f(x)}{g(x)} \in K_{\varepsilon}(A) \Rightarrow \lim_{a \to 0} \frac{f}{g} = A$$

ii, Tfh.
$$a=-\infty$$
 Visszavezetjük i,-re

Legyen
$$F(y) := f(b+1-\frac{1}{y}), y \in (0,1)$$
 és

$$G(y) := g(b+1-\frac{1}{y}), \quad y \in (0,1)$$

$$y < 1 \Rightarrow b + 1 - \frac{1}{y} < b \Rightarrow f$$
 és g értelmezve van a $(b + 1 - \frac{1}{y})$ pontban.

$$\lim_{0+0} F = \lim_{y \to 0+0} f(b+1-\frac{1}{y}) = \lim_{-\infty} f = 0$$

$$\lim_{0 \to 0} G = \lim_{-\infty} g = 0 \quad \text{Ha } \exists \lim_{0 \to 0} \frac{F}{G}, \text{ ekkor}$$

$$\lim_{0+0}\frac{F}{G}=\lim_{y\to 0+0}\frac{f}{g}(b+1-\frac{1}{y})=\lim_{-\infty}\frac{f}{g}$$

$$F'(y) = f'(b+1-\frac{1}{y}) \cdot \frac{1}{y^2}$$

$$G'(y) = g'(b+1-\frac{1}{y}) \cdot \frac{1}{y^2} \neq 0$$
 $y \in (0,1)$

$$\lim_{0 \to 0} \frac{F'}{G'} = \lim_{-\infty} \frac{f'}{g'}$$
 Alkalmazható **i**, F és G -re

$$\Rightarrow \lim_{0+0} \frac{F}{G} = \lim_{0+0} \frac{F'}{G'} \quad \Rightarrow \quad \lim_{-\infty} \frac{f}{g} = \lim_{0+0} \frac{F}{G} \text{ \'es } \lim_{-\infty} \frac{f'}{g'} = \lim_{0+0} \frac{F'}{G'} \quad \blacksquare$$

<u>**Tétel**</u>: (L'Hospital szabály $\frac{\infty}{\infty}$ alakra)

Tfh.
$$\mathbf{i}, f, g \in \mathcal{D}(a, b), \quad (-\infty \le a < b < \infty)$$

ii,
$$g'(x) \neq 0$$
, $x \in (a, b)$

iii,
$$\lim_{a\to 0} f = \lim_{a\to 0} g = \infty$$

iv,
$$\exists \lim_{a \to 0} \frac{f'}{g'}$$
 és $\lim_{a \to 0} \frac{f'}{g'} = A \in \overline{\mathbb{R}}$

Ekkor:
$$\exists \lim_{a+0} \frac{f}{g} \text{ és } \lim_{a+0} \frac{f}{g} = \lim_{a+0} \frac{f'}{g'}$$

Bizonyítás: **i,** Tfh. $a \neq -\infty, A \in \mathbb{R}$

Tudjuk:
$$\lim_{a\to 0} \frac{f'}{g'} = A \Rightarrow \forall \varepsilon > 0, \exists x_0 \in (a,b), \forall \xi \in (a,x_0) : \frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A)$$

Legyen $x \in (a, x_0)$ és alkalmazzuk a Cauchy középérték-tételt az $[x, x_0]$ intervallumra

$$\Rightarrow \exists \xi \in (x, x_0) : \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)}$$

Felthető, hogy $f>0 \quad (a,x_0)$ -n, hiszen $\lim_a f=\infty$

Hasonlóan g > 0 (a, x_0) -n.

$$\frac{f(x)}{g(x)} \cdot \frac{1 - \frac{f(x_0)}{f(x)}}{1 - \frac{g(x_0)}{g(x)}} = \frac{f'(\xi)}{g'(\xi)} \Rightarrow \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)} \cdot \underbrace{\frac{1 - \frac{g(x_0)}{g(x)}}{1 - \frac{f(x_0)}{f(x)}}}_{T(x)} = \frac{f'(\xi)}{g'(\xi)} \cdot T(x) = \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) + \frac{f'(\xi)}{g'(\xi)}$$

$$\lim_{a \to 0} T = 1 \Rightarrow \lim_{a \to 0} (T - 1) = 0$$

$$\frac{f'(\xi)}{g'(\xi)} \in K_{\varepsilon}(A) \quad \Rightarrow \quad A - \varepsilon < \frac{f'(\xi)}{g'(\xi)} < A + \varepsilon \quad \Rightarrow \quad \frac{f'(\xi)}{g'(\xi)} \text{ korlátos.}$$

$$\Rightarrow \lim_{a \to 0} \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) = 0 \Rightarrow \forall \varepsilon > 0, \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : \left| \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) \right| < \varepsilon$$

$$\frac{f(x)}{g(x)} - A = \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) + \frac{f'(\xi)}{g'(\xi)} - A$$

$$\Rightarrow \left| \frac{f(x)}{g(x)} - A \right| \le \underbrace{\left| \frac{f'(\xi)}{g'(\xi)} \cdot (T(x) - 1) \right|}_{\mathcal{G}(\xi)} + \underbrace{\left| \frac{f'(\xi)}{g'(\xi)} - A \right|}_{\mathcal{G}(\xi)} < 2\varepsilon$$

$$\Rightarrow \forall \varepsilon > 0, \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : \left| \frac{f(x)}{g(x)} - A \right| < 2\varepsilon \Rightarrow \lim_{a \to 0} \frac{f}{g} = A$$

ii, $a \neq -\infty, A = \infty$ Láttuk:

$$\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)} \cdot T(x)$$

$$\lim_{a \to 0} T = 1 \Rightarrow \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : T(x) > \frac{1}{2}$$

$$\frac{f'(x)}{g'(x)} \in K_{\varepsilon}(\infty) \Rightarrow \frac{f'(x)}{g'(x)} > \frac{1}{\varepsilon} \Rightarrow \frac{f(x)}{g(x)} > \frac{1}{2\varepsilon}$$

$$\forall \varepsilon > 0, \exists x_1 \in (a, x_0), \forall x \in (a, x_1) : \frac{f(x)}{g(x)} > \frac{1}{2\varepsilon} \quad \Rightarrow \quad \lim_{a \to 0} \frac{f}{g} = \infty = A$$

iii,
$$a \neq -\infty, A = -\infty$$
 Hasonló ii,-hez

iv, $a=-\infty$ Visszavezetjük az előzőre mint az előző tétel i
i, részében. \blacksquare

Megj: i, A tétel igaz baloldali és mindkét oldali határértékre is.

ii, Lehet, hogy többször kell alkalmazni.

iii, A többi kritikus eset visszavezethető erre a két esetre.

Pl:
$$0 \cdot \infty$$
, $f \cdot g = \frac{f}{\frac{1}{a}}$

Alkalmazásaikra példák

Pl: i,
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

ii,
$$\lim_{x\to 0} \frac{chx - \cos x}{x^2} = \lim_{x\to 0} \frac{shx + \sin x}{2x} = \lim_{x\to 0} \frac{chx + \cos x}{2} = 1$$

iii,
$$\lim_{x \to 0+0} x^n \cdot \ln x = \lim_{x \to 0+0} \frac{\ln x}{x^{-n}} = \lim_{x \to 0+0} \frac{x^{-1}}{-n \cdot x^{-n-1}} = \lim_{x \to 0+0} -\frac{x^n}{n} = 0$$

iv,
$$\lim_{x \to 0+0} x^x = \lim_{x \to 0+0} e^{\ln x^x} = \lim_{x \to 0+0} e^{x \cdot \ln x} = 1$$

Taylor-sorok

Eml: Tfh. a $\sum \alpha_n (x-a)^n$ hatványsor konvergenciasugara R>0 és legyen

$$f(x) := \sum_{n=0}^{\infty} \alpha_n (x-a)^n, \quad x \in K_R(a), \quad \text{Ekkor: } f \in \mathcal{D}^{\infty}(x) \text{ és}$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \alpha_n \cdot n \cdot (n-1) \cdot \dots \cdot (n-k+1) \cdot (x-a)^{n-k} \quad (x \in K_R(a)) \quad \text{és} \quad \alpha_k = \frac{f^{(k)}(a)}{k!}$$

Definíció: i, Ha $f \in \mathcal{D}^{\infty}(a)$, ekkor a $\sum \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n$ sort, az f függyvény Taylor sorának nevezzük.

ii, Ha
$$f \in \mathcal{D}^{(n)}(a)$$
, akkor $\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$ az f -nek n -edik Taylor polinomja Jel: $T_n f(x)$

Problémák:

i, Konvergens-e a Taylor sor?

Ha igen, az összeg = f-el?

Állítás: Ha f-nek \exists hatványsora, akkor ez a Taylor sor is.

Pl:i,
$$f(x) = \frac{1}{1+x}$$
, $x > -1$, $a = 0$

$$f(0) = 1$$
, $f'(x) = -(1+x)^{-2}$, $f'(0) = -1$

$$f''(x) = 2(1+x)^{-3}, \quad f''(0) = 2$$

$$f^{(n)}(x) = (-1)^n \cdot n! \cdot (1+x)^{-n-1}, \quad f^{(n)}(0) = (-1)^n \cdot n!$$

A Taylor sor:
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n = \sum_{n=0}^{\infty} (-1)^n \cdot x^n = \sum_{n=0}^{\infty} (-x)^n$$

ez konvergens
$$\Leftrightarrow |x| < 1$$
, ekkor $\sum_{n=0}^{\infty} (-x)^n = \frac{1}{1+x} |x| < 1$

8. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

Előző előadás utolsó részének folyatatása

$$f \leadsto \sum \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Pl: ii,

$$f(x) = \begin{cases} e^{\frac{-1}{x^2}} : & x \neq 0 \\ 0 : & x = 0 \end{cases}$$

$$a = 0$$
 $f^{(k)}(0) = 0$ $k = 0,1,...$

Taylor sora: 0 + 0 + ... + f(x) = f(x)

<u>Tétel</u>: (Taylor formula Lagrange maradéktaggal)

Ha $f \in \mathcal{D}^{(n+1)}(K(a))$, akkor $\forall x \in K(a), \exists \xi \in (a,x) \cup (x,a)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

Bizonyítás: Legyen
$$F(x) := f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$F(a) = f(a) - f(a) = 0$$

$$F'(x) = f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} \cdot k \cdot (x-a)^{k-1}$$

$$\Rightarrow F'(a) = f'(a) - f'(a) = 0$$

$$F''(x) = f''(x) - \sum_{k=2}^{n} \frac{f^{(k)}(a)}{k!} \cdot k \cdot (k-1)(x-a)^{k-2}$$

$$F''(a) = f''(a) - f''(a) = 0 \quad \Rightarrow \quad F^{(n)}(a) = 0, \quad F^{(n+1)}(x) = f^{(n+1)}(x)$$

Legyen
$$G(x) = (x - a)^{(n+1)} \Rightarrow G(a) = 0$$

$$G'(x) = (n+1)(x-a)^n \Rightarrow G'(a) = 0, ..., G''(a) = 0$$

$$\Rightarrow G^{(n)}(a) = 0, \quad G^{(n+1)}(a) = (n+1)!$$

Alkalmazzuk a Cauchy középértéktételt: \exists ilyen $\xi_1, \xi_2...\xi_{n+1}$

$$\frac{f(x) - \sum\limits_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}}{(x-a)^{(n+1)}} = \frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi_{1})}{G'(\xi_{1})} = \frac{F'(\xi_{1}) - F'(a)}{G'(\xi_{1}) - G'(a)} = \frac{F''(\xi_{2})}{G''(\xi_{2})} = \dots = \frac{F^{(n)}(\xi_{n})}{G^{(n)}(\xi_{n})} = \frac{F^{(n)}(\xi_{n}) - F^{(n)}(a)}{G^{(n)}(\xi_{n}) - G^{(n)}(a)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

Legyen $\xi = \xi_{n+1}$

Megj:
$$n = 0$$
: $\exists \xi : f(x) = f(a) + f'(\xi)(x - a)$

$$\Rightarrow \exists \xi \in (a,x): \frac{f(x)-f(a)}{x-a} = f'(\xi)$$
 Lagrange középérték tétel miatt.

$$\underline{\mathbf{T\acute{e}tel}} \colon \mathrm{Tfh.} \ f \in \mathcal{D}^{\infty}(K(a)) \ \text{\'es} \ \sup\{\left|f^{(n)}(x)\right| \quad n \in \mathbb{N}, x \in K(a)\} = M \ \text{\'es} \ M < \infty$$

Ekkor:
$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k \quad (x \in K(a))$$

Bizonyítás:
$$\exists \xi \in (a,x) : \left| f - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \right| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x-a)^{n+1} \right| \le$$

$$\leq M \cdot \frac{|x-a|^{n+1}}{(n+1)!} \to 0 \quad (n \to \infty) \quad \Rightarrow \quad f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \quad \blacksquare$$

$$\mathbf{Pl}: f(x) = \sin x$$

$$f'(x) = \cos x$$
, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, $f^{(4)} = \sin x$, ... $a = 0$

$$|f^{(n)}(x)| \le 1 \Rightarrow f(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Konvexitás, Konkávitás

Definíció: Az $f:(a,b)\to\mathbb{R}$ függvény:

i, konvex, ha
$$\forall x_1, x_2 \in (a, b), x_1 < x_2, \forall \lambda \in [0, 1]: f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

ii, szigorúan konvex, ha

iii, konkáv, ha \geq

iv, szigorúan konkáv, ha

Pl:Az $f(x) = \alpha x + \beta$ függvény konvex és konkáv is.

<u>Tétel</u>: $f:(a,b)\to\mathbb{R}$ konvex $\Leftrightarrow \forall x_1,x_2\in(a,b), x_1< x_2$ és $\forall x\in(x_1,x_2):$

$$f(x) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) + f(x_1)$$

Bizonyítás nélkül.

<u>Tétel</u>: (2. átfogalmazás)

$$f:(a,b) \rightarrow \mathbb{R} \text{ konvex} \Leftrightarrow \forall r,s,t \in (a,b), r < s < t: \frac{f(s)-f(r)}{s-r} \leq \frac{f(t)-f(r)}{t-r} \leq \frac{f(t)-f(s)}{t-s}$$

Az előző tételben behelyettesítjük az alábbi értékeket: $s = x, t = x_2, r = x_1$ Bizonyítás:

$$f(s) \le \frac{f(t) - f(r)}{t - r} \cdot (s - r) + f(r)$$

Tétel: $f:(a,b)\to\mathbb{R}$

i, Ha $f \in \mathcal{D}(a,b)$, akkor

 $\mathbf{a}, f \text{ konvex} \Leftrightarrow f' \nearrow (a, b)$ -n

b, f szigorúan konvex $\Leftrightarrow f' \uparrow (a, b)$ -n

ii, Ha $f \in \mathcal{D}^2(a,b)$, akkor

 $\mathbf{a}, f \text{ konvex} \Leftrightarrow f'' \geq 0 \quad (a, b)\text{-n}$

b, f szigorúan konvex $\Leftarrow f'' > 0$ (a, b)-n

$$\Rightarrow$$
 Pl: $f(x) = x^4$

Bizonyítás: Elég **i**,-t bizonyítani

a, "
$$\Rightarrow$$
" Tfh. f konvex

Legyen $x_1 < x_2$ tetszőleges és $x_1 < y_1 < y_2 < x_2$

$$\frac{f(y_1) - f(x_1)}{y_1 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(y_2) - f(x_2)}{y_2 - x_2}$$

$$\frac{f(y_1) - f(x_1)}{y_1 - x_1} \leq \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(y_2) - f(x_2)}{y_2 - x_2}$$

$$\lim_{y_1 \to x_1 + 0} \frac{f(y_1) - f(x_1)}{y_1 - x_1} = f'(x_1) \quad \text{és} \quad \lim_{y_2 \to x_2 - 0} \frac{f(y_2) - f(x_2)}{y_2 - x_2} = f'(x_2) \Rightarrow f'(x_1) \leq f'(x_2) \Rightarrow f' \nearrow$$

" \Leftarrow " Tfh. $f' \nearrow \text{Elég}$:

$$\forall x_1, x_2 \in (a, b), x_1 < x_2, x \in (x_1, x_2) : f(x) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) + f(x_1)$$

$$\forall x_1, x_2 \in (a, b), x_1 < x_2, x \in (x_1, x_2) : f(x) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) + f(x_1)$$

Azaz $r(x) := f(x) - (\frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) + f(x_1)) \le 0 \implies r(x_1) = 0, \quad r(x_2) = 0$

 \Rightarrow Rolle középértéktétel miatt: $\exists \xi \in (x_1, x_2) : r'(\xi) = 0$

$$r'(x) = f'(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\Rightarrow r' \leq 0 \quad (x_1, \xi)$$
-n $\Rightarrow r \searrow \quad (x_1, \xi)$ -n és

$$r' \ge 0 \quad (\xi, x_2)$$
-n $\Rightarrow r \nearrow \quad (\xi, x_2)$ -n

$$\Rightarrow r < 0 \quad (x_1, x_2)$$
-n

b, Hasonló ■

Definíció: $f:(a,b)\to\mathbb{R}, x_0\in(a,b), f\in\mathcal{D}(x_0)$

 x_0 infelxiós pontja f-nek, ha $l(x) := f(x) - (\underbrace{f'(x_0)(x - x_0) + f(x_0)}_{\text{érintő}})$ szigorúan előjelet vált

azaz $\exists \delta > 0, l(x) < 0, \forall x \in (x_0 - \delta, x_0)$ és $l(x) > 0, \forall x \in (x_0, x_0 + \delta)$ vagy fordítva

<u>**Tétel**</u>: $f \in \mathcal{D}(a,b), x_0 \in (a,b)$ Ha $\exists \delta > 0, f$ szigorúan konvex $(x_0 - \delta, x_0)$ -n és f szigorúan konkáv $(x_0, x_0 + \delta)$ -n, akkor x_0 inflexiós pont.

Bizonyítás: f szigorúan konvex $\Rightarrow f' \uparrow (x_0 - \delta, x_0)$ -n f szigorúan konkáv $\Rightarrow f' \downarrow (x_0, x_0 + \delta)$ -n

 $l'(x) = f'(x) - f'(x_0) \Rightarrow l'(x_0) = 0$

De! $l(x_0) = 0 \Rightarrow l > 0$ $(x_0 - \delta, x_0)$ és l < 0 $(x_0, x_0 + \delta)$

<u>Tétel</u>: $f:(a,b) \to \mathbb{R}, x_0 \in (a,b)$

i, Ha f kétszer folytonosan deriválható és x_0 inflexiós pont, ekkor $f''(x_0) = 0$

ii, Ha f háromszor folytonosan deriválható és $f''(x_0) = 0$ és $f'''(x_0) \neq 0$, ekkor x_0 inflexiós pont.

Bizonyítás: i, Indirekten Tfh. $f''(x_0) \neq 0$, pl: $f''(x_0) > 0$

f'' folytonos $\Rightarrow \exists K(x_0) : f'' > 0$ $K(x_0)$ -n

Taylor formula

$$n = 1 : \exists \xi : \underbrace{f(x) - (f(x_0) + f'(x_0)(x - x_0))}_{l(x)} = \underbrace{\frac{f''(\xi)}{2!}(x - x_0)^2}_{\geq 0}$$

 $\Rightarrow l$ nem vált előjelet $\Rightarrow x_0$ nem inflexiós pont.

ii, Tfh. $f'''(x_0) > 0 \Rightarrow \exists K(x_0) : f''' > 0 \quad K(x_0)$ -n

Taylor formula n=2:

$$\exists \xi : l(x) = f(x) - (f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2) = \underbrace{\frac{f'''(\xi)}{3!}}_{>0} \cdot (x - x_0)^3 \quad x \in K(x_0)$$

A jobb oldal szigorúan előjelet vált \Rightarrow x_0 inflexiós pont.

9. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

<u>Tétel</u>: Tfh. $f:(a,b) \to \mathbb{R}, f \in \mathcal{D}^{(n)}(c), c \in (a,b)$

$$f'(c) = 0 = f''(c) = \dots = f^{(n-1)}(c), \quad f^{(n)}(c) \neq 0$$
 Ekkor:

 $\mathbf{i},\,c\text{-ben lokális szélső értéke van}\Leftrightarrow n$ páros

ii, Hafn-szer folytonosan deriválható, akkor $c\text{-ben inflexiós pont van} \Leftrightarrow n$ páratlan.

Bizonyítás nélkül.

Integrált

2 féle integrált lehet:

- Határozatlan integrált (primitív függvény)
- Határozott integrált

Határozatlan integrált

Kérdés: $f: I \to \mathbb{R}, I \subset \mathbb{R}$ intervallum, ekkor \exists -e: $F: I \to \mathbb{R}, F' = f$

$$\mathbf{Pl:}f(x) = x^4 + x^2, \quad x \in \mathbb{R} \Rightarrow F(x) = \frac{x^5}{5} + \frac{x^3}{3} + c, \quad c \in \mathbb{R}$$

Megj: A függvények mindig intervallumon vannak értelmezve.

Definíció: $I \subset \mathbb{R}$ intervallum, $f: I \to \mathbb{R}$

Az $F:I\to\mathbb{R}$ függvény
 az f primitív függvénye, ha $F\in\mathcal{D}(I)$ és $F'(x)=f(x),\quad \forall x\in I$

<u>Kérdések:</u>

- ∃-e primitív függvény?
- Ha igen, akkor hány ∃?
- Primitív függvény meghatározása

<u>**Tétel**</u>: (Szükséges feltétel)

Ha I intervallum, és $f: I \to \mathbb{R}$ függvénynek \exists primitív függvénye, akkor f Darboux tulajdonságú, azaz $\forall a, b \in I, a < b, \forall c \in (f(a), f(b)), \exists \xi \in (a, b) : f(\xi) = c$

Bizonyítás: Tfh. f(a) < f(b), legyen $f_1 = f - c$, f_1 -nek is \exists primitív függvénye, mégpedig

$$F_1(x) = F(x) - cx$$
, ahol F az f primitív függvénye, hiszen $F_1'(x) = F'(x) - c = f(x) - c = f_1(x)$

Ekkor: $F_1'(a) = f_1(a) = f(a) - c < 0$

$$F_1'(b) = f_1(b) = f(b) - c > 0$$

$$\Rightarrow F_1'(a) = \lim_{x \to a+0} \frac{F_1(x) - F_1(a)}{x - a} = f_1(a) < 0 \quad \Rightarrow \quad \exists \delta > 0, \forall x \in (a, a + \delta) : \frac{F_1(x) - F_1(a)}{x - a} < 0$$

itt
$$x - a > 0 \Rightarrow \exists \delta > 0, \forall x \in (a, a + \delta) : F_1(x) < F_1(a)$$

$$F_1'(b) = \lim_{x \to b-0} \frac{F_1(x) - F_1(b)}{x - b} = f_1(b) > 0 \quad \Rightarrow \quad \exists \delta > 0, \forall x \in (b - \delta, b) : \frac{F_1(x) - F_1(b)}{x - b} > 0$$

$$x - b < 0 \Rightarrow \exists \delta > 0, \forall x \in (b - \delta, b) : F_1(x) < F_1(b) \Rightarrow F_1 \in \mathcal{D}(I) \Rightarrow F_1 \in C[a, b]$$

A Weierstrass-tétel miatt F_1 -nek \exists abszolút minimuma, azaz $\exists \xi \in [a,b] : F_1(\xi) = \min_{[a,b]} F_1$

$$\xi \neq a, \xi \neq b \Rightarrow \xi \in (a,b) \Rightarrow \xi$$
-ben lokális minimum $\Rightarrow F_1'(\xi) = 0 \Rightarrow f_1(\xi) = f(\xi) - c = 0$

 $\mathbf{Pl:}f(x) = signx \quad \nexists$ primitív függvény, mert nem Darboux tulajdonságú

Tétel: (Elégséges feltétel)

Ha $f: I \to \mathbb{R}$ folytonos, akkor \exists primitív függvény

Bizonyítás később

Tétel: (Primitív függvények száma) $f: I \to \mathbb{R}$

i, HaF primitív függvény, akkor F+c is az, ahol $c\in\mathbb{R}$

ii, Ha F_1 és F_2 is primitív függvény, akkor $\exists c \in \mathbb{R} : F_1 = F_2 + c$

Bizonyítás: **i,** (F+c)' = F' = f

ii,
$$(F_1 - F_2)' = F_1' - F_2' = f - f = 0$$
 I-n $\Rightarrow F_1 - F_2 = c$ $c \in \mathbb{R}$

Definíció: Ha az $f: I \to \mathbb{R}$ függvény primitív függvénye F, akkor legyen:

$$\int f := \{ F + c : c \in \mathbb{R} \}$$

Neve határozatlan integrál

Egyszerűsített jelölés: $\int f = F + c$ $c \in \mathbb{R}$ vagy $\int f(x)dx = F(x) + c$

Pl: i, $\int x^4 dx = \frac{x^5}{5} + c$ $x \in \mathbb{R}$

ii, $\int \frac{1}{1+x^2} dx = \arctan x + c$ $x \in \mathbb{R}$

iii,
$$\int \frac{1}{\cos^2 x} dx = tgx + c$$
, $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$

Definíció: $\int\limits_{x_0} f$ jelöli azt az egyetlen F primitív függvényt, amelyre $F(x_0)=0$

Neve: x_0 -ban eltűnő primitív függvény

$$\mathbf{P1:} \int_{\frac{\pi}{2}} \cos x dx = \sin x - 1$$

Primitív függvények meghatározása

Pl: i, $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1}$, $\alpha \neq -1, x > 0$

ii.

$$\int \frac{1}{x} dx = \begin{cases} \ln x + c : & x > 0\\ \ln|x| + c : & x < 0 \end{cases}$$

<u>Tétel</u>: (Műveletek) $f, g: I \to \mathbb{R}$

 $\exists \int f, \int g$ Ekkor

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$$

$$\int_{x_0} (\alpha f + \beta g) = \alpha \int_{x_0} f + \beta \int_{x_0} g \quad \alpha, \beta \in \mathbb{R}$$

Bizonyítás: elég a másodikat, legyen a jobb oldal H

Ekkor $H(x_0) = 0$, $H' = \alpha f + \beta g \Rightarrow H$ egyenlő a baloldallal is

Pl:polinom: $\int a_n x^n + ... + a_1 x + a_0 dx = a_n \frac{x^{n+1}}{n+1} + ... + a_1 \frac{x^2}{2} + a_0 x + c$

<u>Tétel</u>: (Hatványsor)

A $\sum \alpha_n(x-a)^n, x \in K_R(a), R > 0$, hatványsor primitív függvénye:

$$\sum_{n=0}^{\infty} \alpha_n \frac{(x-a)^{n+1}}{n+1} + c, \quad x \in K_R(a)$$

Bizonyítás nélkül (a hatványsor deriválhatóságából kijön)

<u>Tétel</u>: (Parciális integrálás) Tfh. $f, g: I \to \mathbb{R}, f, g \in \mathcal{D}(I)$

Ha $\exists f' \cdot g$ primitív függvénye, akkor $\exists f \cdot g'$ primitív függvénye, és

$$\int f \cdot g' = f \cdot g - \int f' \cdot g \text{ és } \int_{x_0} f \cdot g' = f \cdot g - f(x_0) \cdot g(x_0) - \int_{x_0} f' \cdot g$$

Bizonyítás: A jobb oldal legyen H

$$\Rightarrow H(x_0) = 0$$
 és $H' = (f \cdot g)' - (\int_{x_0} f' \cdot g)' = f' \cdot g + f \cdot g' - f' \cdot g = f \cdot g' \Rightarrow H$ a baloldal is

$$\underline{\text{Megj:}} \quad \int_{x_0} f(x) \cdot g'(x) dx = f(x) \cdot g(x) - f(x_0) \cdot g(x_0) - \int_{x_0} f'(x) \cdot g(x) dx$$

P1: i,
$$f = x$$
 $g' = e^x$ $g(x) = e^x$

$$\int x \cdot e^x dx = x \cdot e^x - \int 1 \cdot e^x dx = x \cdot e^x - e^x + c$$

ii,
$$\int \ln x dx = \int \ln 1 \cdot x dx = x \cdot \ln x - \int \frac{1}{x} \cdot x dx = x \cdot \ln x - x + c$$
 $x > 0$

Tétel: (1. helyettesítéses szabály)

$$g: I \to J, g \in \mathcal{D}(I), f: J \to \mathbb{R}, I, J \subset \mathbb{R}$$
 intervallum

Ha $\exists f$ -nek primitív függvénye, akkor

$$\int f \circ g \cdot g' = (\int f) \circ g \quad \text{és}$$

$$\int_{t_0} f \circ g \cdot g' = (\int_{g(t_0)} f) \circ g$$

Bizonyítás: A jobb oldal legyen H

$$\Rightarrow H(t_0) = (\int_{g(t_0)} f) \circ g(t_0) = 0$$
 és $H' = (\int_{g(t_0)} f)' \circ g \cdot g' = f \circ g \cdot g' \Rightarrow H$ a bal oldal is.

Pl: i,
$$\int x(1+x^2)^{2017}dx = \frac{1}{2}\int 2x(1+x^2)^{2017}dx = \frac{1}{2}\frac{(1+x^2)^{2018}}{2018} + c$$

$$g(x) = 1 + x^2$$
 $f(u) = u^{2017}$ $\int f = \frac{u^{2018}}{2018}$

ii,
$$\int \frac{g'}{g} = \ln g + c$$
, $g > 0$

$$f(u) = \frac{1}{u}, \quad f \circ g \cdot g' = \frac{1}{g} \cdot g'$$

iii,
$$\int g^{\alpha} \cdot g' dx = \frac{g^{\alpha+1}}{\alpha+1} + c, \quad \alpha \neq -1$$

$$f(u) = u^{\alpha}$$
 $f \circ g \cdot g' = g^{\alpha} \cdot g'$

Tétel: (2. helyettesítéses szabály)

Tfh.
$$g: I \to J$$
 bijekció, $g \in \mathcal{D}(I)$, $g'(x) \neq 0$, $x \in I$, $f: I \to J$

Ha $\exists f \circ g \cdot g'$ primitív függvény, ekkor:

$$\int f = (\int f \circ g \cdot g') \circ g^{-1} \quad \text{és} \qquad \int_{x_0} f = (\int_{x_0} f \circ g \cdot g') \circ g^{-1}$$

Bizonyítás: A jobb oldal legyen H, azaz:

$$\overline{H(x) = (\int_{x_0} f \circ g \cdot g') \circ (g^{-1}(x)) \Rightarrow H(x_0) = 0 \quad \text{és} \quad H'(x) = (\int_{x_0} f \circ g \cdot g')' \cdot (g^{-1}(x)) \cdot (g^{-1})'(x) = 0$$

$$= (f \circ g \cdot g') \cdot (g^{-1}(x)) \cdot \frac{1}{g'(g^{-1}(x))} = f \circ g(g^{-1}(x)) \cdot g'(g^{-1}(x)) \cdot \frac{1}{g'(g^{-1}(x))} = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) \cdot g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal oldal is } g'(g^{-1}(x)) = f(x) \Rightarrow H \text{ a bal olda$$

Megj:
$$\int f(x)dx = \int f(g(t)) \cdot g'(t)dt|_{t=g^{-1}(x)}$$

P1:
$$\int \sqrt{1-x^2} dx$$
 $x \in (-1,1)$ $x = \sin t$

$$\int \sqrt{1 - x^2} dx = \int \underbrace{\sqrt{1 - \sin^2 t}}_{\cos t} \cdot \cos t dt |_{t = \arcsin x}$$

10. Előadás jegyzet

A jegyzetet BAUER BENCE készítette DR. WEISZ FERENC előadása alapján.

Múlt heti példa folytatása:

P1:
$$\int \sqrt{1 - x^2} dx = \int \sqrt{1 - \sin^2 t} \cdot \cos t dt \mid_{t = arcsinx} = \int \cos^2 t dt \mid_{t = arcsinx} = \int \frac{1 + \cos 2t}{2} dt \mid_{t = arcsinx} = x = \sin t \quad t \in (-\frac{\pi}{2}, \frac{\pi}{2}) \quad x' = \frac{dx}{dt} = \cos t \quad (\cos t \ge 0)$$

$$= \frac{1}{2} (t + \frac{\sin 2t}{2}) \mid_{t = arcsinx} + c = \frac{1}{2} (arcsinx + x\sqrt{1 - x^2}) + c$$

$$\cos 2t = \cos^2 t - \underbrace{\sin^2 t}_{1 - \cos^2 t} = 2\cos^2 t - 1 \qquad \sin 2t = 2\sin t \cdot \cos t = 2\sin t \cdot \sqrt{1 - \sin^2 t}$$

$$\cos^2 t = \frac{1 + \cos 2t}{2}$$

Definíció: Legyen $f_1(x) = 1, f_2(x) = x, f_3(x) = e^x \quad (x \in \mathbb{R})$

$$f_4(x) = \ln x, (x > 0)$$
 $f_5(x) = \sin x, (x \in \mathbb{R})$ $f_6(x) = \arcsin x, x \in ([-1,1])$

felemi függvény, ha előáll az előző 6 függvény a 4 algebrai művelet, a leszűkítés, a kompozíció és az inverz véges sokszori alkalmazásával

Tétel: Elemi függvény deriváltja elemi

 $\underline{\mathbf{T\acute{e}tel}}$: (Elemi függvénynek \exists primitív függvénye)

Bizonyítás: Az elemi függvény folytonos

Megj: De nem biztos, hogy a primitív függvény elemi függvény is

Pl: Nem elemi függvények:

$$\int \frac{\sin x}{x} dx, \int \frac{\cos x}{x} dx, \int e^{-x^2} dx, \int \frac{e^x}{x} dx, \int \sin(x^2) dx, \int \cos(x^2) dx, \int \sqrt{1+x^3} dx$$

Pl:
$$(x > 0)$$
 $\int \frac{e^x}{x} dx = \int \frac{1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots}{x} dx = \int \frac{1}{x} + 1 + \frac{x}{2!} + \frac{x^2}{3!} + \dots dx = \ln x + x + \frac{x^2}{2 \cdot 2!} + \frac{x^3}{3 \cdot 3!} + \dots$

Határozott integrál

Motiváció: Síkidomok területe

Definíció: K[a,b] jelöli az [a,b] korlátos zárt intervallumon a korlátos függvényeket

Definíció: A $\tau = \{x_0, x_1, ... x_n\}$ halmaz felosztása az [a, b] intervallumnak, ha

$$a = x_0 < x_1 < \dots < x_n = b$$
 Jelölés: $F[a, b]$

Definíció: τ_2 finomabb felbontás mint τ_1 , ha $\tau_2 \supset \tau_1$

Definíció: $f \in K[a,b], \tau \in F[a,b]$

i,
$$s(f,\tau):=\sum_{i=1}^n\inf_{[x_{i-1},x_i]}f\cdot(x_i-x_{i-1})$$
 ez az alsó közelítő összeg

ii,
$$S(f,\tau) := \sum_{i=1}^n \sup_{[x_{i-1},x_i]} f \cdot (x_i - x_{i-1})$$
 ez a felső közelítő összeg

<u>Tétel</u>: $f \in K[a, b], \tau_1, \tau_2 \in F[a, b],$ Ekkor:

i, Ha
$$\tau_2\supset\tau_1,$$
akkor $s(f,\tau_1)\leq s(f,\tau_2)$ és $S(f,\tau_1)\geq S(f,\tau_2)$

ii,
$$s(f, \tau_1) \leq S(f, \tau_2)$$

Bizonyítás: i, Ha $\tau_2 \supset \tau_1$, ekkor feltehető, hogy $\tau_2 = \tau_1 \cup \{x'\}$ $x' \in [x_{k-1}, x_k]$

$$s(f, \tau_1) \leadsto \sum_{i=1}^n \inf_{[x_{k-1}, x_k]} f \cdot (x_k - x_{k-1}) = \inf_{[x_{k-1}, x_k]} f \cdot (x' - x_{k-1}) + \inf_{[x_{k-1}, x_k]} f \cdot (x_k - x') \le 1$$

$$\leq \inf_{[x_{k-1},x']} f \cdot (x'-x_{k-1}) + \inf_{[x',x_k]} f \cdot (x_k-x') \leadsto s(f,\tau_2) \qquad \text{(a többi összeadandó ugyanaz)}$$

$$\Rightarrow s(f, \tau_1) \le s(f, \tau_2)$$

Hasonló: $S(f, \tau_1) \ge S(f, \tau_2)$

ii, τ_1 és τ_2 tetszőleges, legyen $\tau = \tau_1 \cup \tau_2$

$$\Rightarrow s(f, \tau_1) \le s(f, \tau) \le S(f, \tau) \le S(f, \tau_2)$$

Következmény: Az alsó közelítő összegek felülről korlátosak.

A felső közelítő összegek alulról korlátosak.

Definíció: $f \in K[a, b]$

 $\mathbf{i},\,I_*f:=\sup_{\tau\in F[a,b]}s(f,\tau)\,\,$ a Darboux féle alsó integrál

ii, $I^*f := \inf_{\tau \in F[a,b]} S(f,\tau)$ a Darboux féle felső integrál

Következmény: $I_* f \leq I^* f$

Bizonyítás: $s(f, \tau_1) \leq S(f, \tau_2)$

Definíció: $f \in K[a,b]$ függvénynek \exists határozott integrálja, vagy Riemann integrálható, ha $I_*f = I^*f$ Jelölés: $f \in R[a,b]$

$$I_*f = I^*f = If = \int_a^b f = \int_a^b f(x)dx$$

Kérdés:

- Milyen függvény Riemann integrálható?
- Hogy számoljuk ki?

Pl: $x \in [0,1]$

$$f(x) := \begin{cases} 1 & : & x \in \mathbb{Q} \\ 0 & : & x \notin \mathbb{Q} \end{cases}$$

$$\Rightarrow f \notin R[0,1], \quad s(f,\tau) = 0, \quad S(f,\tau) = 1$$

<u>Tétel</u>: Ha $f \in C[a, b]$, akkor $f \in R[a, b]$

Bizonyítás: Lásd később

Definíció: $f \ge 0$, $f \in R[a,b]$ Legyen $A := \{(x,y) : a \le x \le b, 0 \le y \le f(x)\}$

A területe $t(A) = \int_{a}^{b} f$

Definíció: $\Omega(f,\tau) := S(f,\tau) - s(f,\tau)$ oszcillációs összeg

<u>Tétel</u>: (szükséges és elégséges feltétel)

$$f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0, \exists \tau \in F[a,b] : \Omega(f,\tau) < \varepsilon$$

Bizonyítás: "
$$\Leftarrow$$
" Tfh. ε -hoz $\exists \tau : \Omega(f,\tau) < \varepsilon$

$$I^*f - I_*f < \varepsilon$$
, ε tetszőleges

$$\Rightarrow I^*f = I_*f$$

"
$$\Rightarrow$$
" Tfh. $f \in R[a,b] \Rightarrow \forall \varepsilon > 0, \exists \tau_1 \in F[a,b] : If -\frac{\varepsilon}{2} < s(f,\tau_1) \leq If$

Hasonlóan: $\exists \tau_2 \in F[a,b] : If \leq S(f,\tau_2) < If + \frac{\varepsilon}{2}$

Legyen $\tau = \tau_1 \cup \tau_2 \Rightarrow$

$$If - \frac{\varepsilon}{2} < s(f, \tau_1) \le s(f, \tau) \le If \le S(f, \tau) \le S(f, \tau_2) < If + \frac{\varepsilon}{2}$$

$$\Rightarrow S(f,\tau) - s(f,\tau) < \varepsilon \quad \blacksquare$$

Tétel:

$$f \in R[a,b]$$
 és $\int_a^b f = I \Leftrightarrow \exists \tau_n : \lim s(f,\tau_n) = \lim S(f,\tau_n) = I$

Bizonyítás: " \Rightarrow " Tfh. $f \in R[a, b]$:

Előző bizonyítás vége: legyen $\frac{\varepsilon}{2} = \frac{1}{n}$, $\tau = \tau_n$

$$\underbrace{I - \frac{1}{n}}_{\to I} \le \underbrace{s(f, \tau_n)}_{\to I} \le \underbrace{S(f, \tau_n)}_{\to I} < \underbrace{I + \frac{1}{n}}_{\to I}$$

"
$$\Leftarrow$$
" Tfh. $\lim s(f, \tau_n) = \lim S(f, \tau_n) = I \Rightarrow I_*f = I^*f = I$

Pl:
$$f(x) = x^2$$
, $x \in [0,1]$ Legyen $x_0 = 0$, $x_i = \frac{i}{n}$

$$S(f, \tau_n) = \sum_{i=1}^n \sup_{\lceil \frac{i-1}{2}, \frac{i}{2} \rceil} x^2 \cdot \frac{1}{n} = \sum_{i=1}^n \frac{i^2}{n^3} = \frac{n(n+1)(2n+1)}{6n^3} \longrightarrow \frac{1}{3}$$

$$s(f, \tau_n) = \sum_{i=1}^n \inf_{\left[\frac{i-1}{n}, \frac{i}{n}\right]} x^2 \cdot \frac{1}{n} = \sum_{i=1}^n \frac{(i-1)^2}{n^3} = \frac{n(n-1)(2n-1)}{6n^3} \longrightarrow \frac{1}{3}$$

$$\Rightarrow \int_{0}^{1} x^{2} dx = \frac{1}{3}$$

Definíció:
$$\sigma(f, \tau, \xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$
, ahol

$$\tau \in F[a, b], \quad \xi = (\xi_1, \xi_2, ..., \xi_n)$$

$$\xi_1 \in [x_0, x_1], ..., \xi_n \in [x_{n-1}, x_n]$$
a Riemann féle közelítő összeg

Jelölés:
$$|\tau| = \max_{i=1,...n} |x_i - x_{i-1}|$$

Tétel:
$$f \in R[a,b] \Leftrightarrow \lim \sigma(f,\tau,\xi) = I$$
 és $\int_a^b f = I$

azaz
$$\forall \varepsilon>0, \exists \delta>0, \forall \tau, |\tau|<\delta, \forall \xi: |\sigma(f,\tau,\xi)-I|<\varepsilon$$

11. Előadás jegyzet

A jegyzetet BAUER BENCE készítette Dr. Weisz Ferenc előadása alapján.

<u>Tétel</u>: (Műveletek integrálokkal)

Tfh. $f, g \in R[a, b]$ Ekkor:

$$\mathbf{i}, f+g \in R[a,b] \text{ és } \int\limits_a^b f+g = \int\limits_a^b f + \int\limits_a^b g$$

ii,
$$\lambda \cdot f \in R[a,b]$$
 és $\int_a^b \lambda f = \lambda \cdot \int_a^b f \quad \lambda \in \mathbb{R}$

iii,
$$f \cdot g \in R[a, b]$$

iv, Ha
$$|g(x)| \ge m > 0 \quad \forall x \in [a, b]$$
, akkor $\frac{f}{g} \in R[a, b]$

Bizonyítás: Legyen
$$\tau = \{x_0, x_1, ..., x_n\} \in F[a, b],$$

$$F_i := \sup_{[x_{i-1},x_i]} f, \quad f_i := \inf_{[x_{i-1},x_i]} f \quad G_i := \sup_{[x_{i-1},x_i]} g \quad g_i := \inf_{[x_{i-1},x_i]} g$$

i,
$$f_i + g_i \le f(x) + g(x) \le F_i + G_i$$
, $x \in [x_{i-1}, x_i]$

$$\Rightarrow f_i + g_i \le \inf_{[x_{i-1}, x_i]} (f + g) \le \sup_{[x_{i-1}, x_i]} (f + g) \le F_i + G_i \qquad / \cdot (x_i - x_{i-1})$$

$$\Rightarrow s(f,\tau) + s(g,\tau) \le s(f+g,\tau) \le S(f+g,\tau) \le S(f,\tau) + S(g,\tau)$$

Legyen $\tau_1, \tau_2 \in F[a, b]$ tetszőleges és $\tau = \tau_1 \cup \tau_2$

$$\Rightarrow s(f,\tau_1) + s(g,\tau_2) \le s(f,\tau) + s(g,\tau) \le s(f+g,\tau) \le I_*(f+g) \le I^*(f+g) \le S(f+g,\tau) \le I_*(f+g) \le$$

$$\leq S(f,\tau) + S(g,\tau) \leq S(f,\tau_1) + S(g,\tau_2) / \sup_{\tau_1} \inf_{\tau_1} \sup_{\tau_2} \inf_{\tau_2}$$

$$\Rightarrow I_*(f) + I_*(g) \le I_*(f+g) \le I^*(f+g) \le I^*(f) + I^*(g), \text{ Mivel } I_*(f) = I^*(f) \text{ (ugyanez } g\text{-re)}$$

$$\Rightarrow I_*(f+g) = I^*(f+g) \text{ és } \int_a^b f + g = \int_a^b f + \int_a^b g$$

ii, Tfh.
$$\lambda \ge 0 \Rightarrow s(\lambda f, \tau) = \lambda \cdot s(f, \tau)$$
 $(\inf_{[x_{i-1}, x_i]} \lambda f = \lambda \cdot \inf_{[x_{i-1}, x_i]} f)$

$$\Rightarrow I_*(\lambda f) = \lambda \cdot I_*(f) \qquad \text{Hasonl\'oan: } S(\lambda f, \tau) = \lambda \cdot S(f, \tau) \Rightarrow I^*(\lambda f) = \lambda \cdot I^*(f)$$

$$\Rightarrow I_*(\lambda f) = I^*(\lambda f) \text{ és } \int_a^b \lambda f = \lambda \cdot \int_a^b f$$

Tfh. $\lambda < 0$

$$s(\lambda f,\tau) = \lambda \cdot S(f,\tau) \Rightarrow I_*(\lambda f) = \lambda \cdot I^*(f) \quad \text{\'es} \quad S(\lambda f,\tau) = \lambda \cdot s(f,\tau) \Rightarrow I^*(\lambda f) = \lambda \cdot I_*(f)$$

$$\Rightarrow I_*(\lambda f) = I^*(\lambda f) \text{ és } \int_a^b \lambda f = \lambda \cdot \int_a^b f$$

iii, Oszcillációs összeggel: Tfh. $f, g \ge 0$ [a, b]-n

$$f_i \cdot g_i \le f(x) \cdot g(x) \le F_i \cdot G_i \quad x \in [x_{i-1}, x_i]$$

$$\Rightarrow f_i \cdot g_i \le \inf_{[x_{i-1}, x_i]} (f \cdot g) \le \sup_{[x_{i-1}, x_i]} (f \cdot g) \le F_i \cdot G_i$$

$$\Omega(f \cdot g, \tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1}, x_i]} (f \cdot g) - \inf_{[x_{i-1}, x_i]} (f \cdot g) \right) \cdot (x_i - x_{i-1}) \le \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F_i \cdot G_i - f_i \cdot g_i \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(F$$

$$= \sum_{i=1}^{n} (F_i \cdot G_i - F_i \cdot g_i + F_i \cdot g_i - f_i \cdot g_i) \cdot (x_i - x_{i-1}) =$$

$$= \sum_{i=1}^{n} F_i(G_i - g_i) \cdot (x_i - x_{i-1}) + \sum_{i=1}^{n} g_i(F_i - f_i) \cdot (x_i - x_{i-1})$$

$$f \in R[a,b] \Rightarrow f$$
 korlátos $\Rightarrow F_i \leq M$ és $g_i \leq M$ $\forall i=1,...,n$

$$\Rightarrow \Omega(f \cdot g, \tau) \leq M \cdot \Omega(g, \tau) + M \cdot \Omega(f, \tau)$$

$$\Rightarrow \forall \varepsilon > 0, \exists \tau_1 : \Omega(g, \tau_1) < \varepsilon \quad \text{\'es} \quad \forall \varepsilon > 0, \exists \tau_2 : \Omega(f, \tau_2) < \varepsilon$$

Legyen
$$\tau = \tau_1 \cup \tau_2 \Rightarrow \Omega(g,\tau) \leq \Omega(g,\tau_1) < \varepsilon$$
 Hasonlóan: $\Omega(f,\tau) \leq \Omega(f,\tau_2) < \varepsilon$

$$\Rightarrow \Omega(f \cdot g, \tau) < 2\varepsilon M \Rightarrow f \cdot g \in R[a, b]$$

Ha
$$f$$
 és g tetszőleges, akkor legyen $m_f := \inf_{[a,b]} f, \quad m_g := \inf_{[a,b]} g \Rightarrow \underbrace{f - m_f}_{\in R[a,b]} \geq 0, \quad \underbrace{g - m_g}_{\in R[a,b]} \geq 0$

$$\Rightarrow \underbrace{(f-m_f)(g-m_g)}_{\in R[a,b]} = f \cdot g \underbrace{-g \cdot m_f - f \cdot m_g + m_f \cdot m_g}_{\in R[a,b]} \Rightarrow f \cdot g \in R[a,b]$$

iv, Elég: $\frac{1}{q} \in R[a,b]$

$$\frac{1}{g(x)} - \frac{1}{g(y)} = \frac{g(y) - g(x)}{g(x) \cdot g(y)} \le \frac{|g(y) - g(x)|}{|g(x) \cdot g(y)|} \le \frac{G_i - g_i}{m^2} \Rightarrow \sup_{[x_{i-1}, x_i]} \frac{1}{g} - \inf_{[x_{i-1}, x_i]} \frac{1}{g} \le \frac{G_i - g_i}{m^2}$$

$$\Rightarrow \Omega(\frac{1}{g}, \tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1}, x_i]} \frac{1}{g} - \inf_{[x_{i-1}, x_i]} \frac{1}{g} \right) \cdot (x_i - x_{i-1}) \le \frac{1}{m^2} \Omega(g, \tau)$$

$$\forall \varepsilon>0, \exists \tau, \Omega(g,\tau)<\varepsilon \Rightarrow \Omega(\tfrac{1}{g},\tau)\leq \tfrac{\varepsilon}{m^2} \quad \blacksquare$$

<u>Tétel</u>: Legyen $c \in [a, b]$, ekkor:

$$f \in R[a,b] \Leftrightarrow f \in R[a,c]$$
 és $f \in R[c,b]$ Ekkor:
$$\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f$$

Bizonyítás nélkül

Definíció:
$$\int_a^b f = 0$$
, $a > b$: $\int_a^b f = -\int_a^b f$

Tétel:
$$f \in R[A, B]$$
, $a, b, c \in [A, B]$ Ekkor: $\int_a^b f = \int_a^c f + \int_c^b f$

<u>Tétel</u>: Ha $f \in C[a, b]$, ekkor $f \in R[a, b]$

Bizonyítás: Ha $f \in C[a, b] \Rightarrow$ Heine tétel miatt f egyenletesen folytonos, azaz

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in [a, b], |x - y| < \delta : |f(x) - f(y)| < \varepsilon$$

Legyen $\tau \in F[a,b]$ olyan, hogy $|\tau| < \delta$

$$\Omega(f,\tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} f \right) (x_i - x_{i-1}) = \sum_{i=1}^{n} \sup_{\underline{x,y \in [x_{i-1},x_i]}} |f(x) - f(y)| \cdot (x_i - x_{i-1}) \le \varepsilon \cdot (b-a)$$

 $\Rightarrow f \in R[a,b]$

Bizonyítás: Hasonlóan Tfh. $f \nearrow$

$$\Omega(f,\tau) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} f \right) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} \left(f(x_i) - f(x_{i-1}) \right) \cdot (x_i - x_{i-1})$$

Tfh.
$$|\tau| < \delta \Rightarrow \Omega(f,\tau) \le \delta \cdot \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \delta \cdot (f(b) - f(a)) < \varepsilon$$

Ha a
$$\delta < \frac{\varepsilon}{f(b) - f(a)} \Rightarrow f \in R[a, b]$$

<u>**Tétel**</u>: f értékeit véges sok pontban megváltoztatom (\tilde{f}) ,

ha
$$f \in R[a,b]$$
, akkor $\tilde{f} \in R[a,b]$ és $\int_a^b \tilde{f} = \int_a^b f$

Definíció: $f:[a,b]\to\mathbb{R}$ szakaszonként folytonos, ha $\exists \tau=\{x_0,x_1,...,x_n\}\in F[a,b]$, hogy $f\in C(x_{i-1},x_i)$ és $\exists\lim_{x_i\to 0}f,\exists\lim_{x_i\to 0}f$ és végesek i=1,...,n

<u>Tétel</u>: Ha $f:[a,b]\to\mathbb{R}$ szakaszonként folytonos, akkor $f\in R[a,b]$ és $\int_a^b f=\sum_{i=1}^n \int_{x_{i-1}}^{x_i} f$

Bizonyítás: $f \in C(x_{i-1}, x_i) \Rightarrow f \in R[x_{i-1}, x_i]$

<u>Tétel</u>: $f, g \in R[a, b]$

i, Ha
$$f\geq 0,$$
akkor $\int\limits_a^b f\geq 0$

ii, Ha
$$f \geq g,$$
akkor $\int\limits_a^b f \geq \int\limits_a^b g$

Bizonyítás: i,
$$f \ge 0 \Rightarrow s(f,\tau) \ge 0 \Rightarrow I_*(f) = \int_a^b f \ge 0$$

ii,
$$f - g \ge 0 \Rightarrow \int_{a}^{b} (f - g) \ge 0$$

<u>Tétel</u>: Ha $f \in R[a,b]$, akkor $|f| \in R[a,b]$ és $-|\int f| \le |\int f| \le \int |f|$

Bizonyítás:
$$\Omega(|f|, \tau) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |f|) \cdot (x_i - x_{i-1}) = \sum_{i=1}^{n} (\sup_{[x_{i-1}, x_i]} |f| - \inf_{[x_{i-1}, x_i]} |$$

$$= \sum_{i=1}^{n} \sup_{x,y \in [x_{i-1},x_i]} ||f(y)| - |f(x)|| \cdot (x_i - x_{i-1}) \le \sup_{x,y \in [x_{i-1},x_i]} |f(y) - f(x)| \cdot (x_i - x_{i-1}) = \Omega(f,\tau) < \varepsilon$$

$$\Rightarrow |f| \in R[a,b] \quad \blacksquare$$

12. Előadás jegyzet

A jegyzetet Bauer Bence készítette Dr. Weisz Ferenc előadása alapján.

Megj előző előadás végéhez: $f \in R[a,b] \Rightarrow |f| \in R[a,b]$

#

Pl: $x \in [0,1]$

$$f(x) := \begin{cases} 1 & : x \in \mathbb{Q} \\ -1 & : x \notin \mathbb{Q} \end{cases}$$

$$\Rightarrow f \notin R[0,1], \text{ de } |f| = 1 \in R[0,1]$$

Tétel: (1. középértéktétel)

Tfh.
$$f, g \in R[a, b], g \ge 0, m := \inf f$$
 és $M := \sup f$, ekkor: $m \cdot \int_a^b g \le \int_a^b f \cdot g \le M \cdot \int_a^b g$

Bizonyítás: $m \le f \le M \Rightarrow m \cdot g \le f \cdot g \le M \cdot g$

$$\Rightarrow \int_{a}^{b} m \cdot g \leq \int_{a}^{b} f \cdot g \leq \int_{a}^{b} M \cdot g \Rightarrow m \cdot \int_{a}^{b} g \leq \int_{a}^{b} f \cdot g \leq M \cdot \int_{a}^{b} g \quad \blacksquare$$

<u>Tétel</u>: (2. középértéktétel)

Tfh.
$$g \in R[a,b], g \ge 0, f \in C[a,b],$$
 ekkor: $\exists \xi \in [a,b] : \int_a^b f \cdot g = f(\xi) \cdot \int_a^b g$

Bizonyítás: Előző tétel miatt:
$$m \cdot \int_a^b g \le \int_a^b f \cdot g \le M \cdot \int_a^b g$$

$$\Rightarrow \exists c \in [m, M] : \int_{a}^{b} f \cdot g = c \cdot \int_{a}^{b} g$$

 $f \in C[a,b] \Rightarrow m$ az abszolút minimum és M az abszolút maximum a Weierstrass-tétel miatt $\Rightarrow M$ -et és m-et is felveszi f értékként \Rightarrow Bolzano-tétel miatt minden közbülső értéket is felvesz, így c-t is $\Rightarrow \exists \xi \in [a,b] : c = f(\xi)$

<u>Tétel</u>: (Newton-Leibniz formula)

Ha
$$f \in R[a,b]$$
 és f -nek $\exists F$ primitív függvénye, akkor: $\int\limits_a^b f = F(b) - F(a)$

Jelölés: $[F]_a^b$

Bizonyítás: Legyen
$$\tau = \{a = x_0 < x_1 < ... < x_n = b\} \in F[a, b]$$

$$\Rightarrow F(b) - F(a) = F(x_n) - F(x_0) = F(x_n) - F(x_{n-1}) + F(x_{n-1}) - F(x_{n-2}) + \dots + F(x_1) - F(x_0) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n) - F(x_n) = F(x_n) - F(x_n) + \dots + F(x_n)$$

$$=\sum_{i=1}^{n}(F(x_i)-F(x_{i-1}))$$
 Alkalmazzuk a Lagrange középértéktételt az $[x_{i-1},x_i]$ intervallumon

$$\exists \xi_i \in [x_{i-1}, x_i] : F(x_i) - F(x_{i-1}) = F'(\xi_i)(x_i - x_{i-1}) = f(\xi_i)(x_i - x_{i-1})$$

$$\Rightarrow s(f,\tau) \le F(b) - F(a) = \sum_{i=1}^{n} (f(\xi_i) \cdot (x_i - x_{i-1})) \le S(f,\tau)$$
 /sup a bal oldalon és inf a jobb oldalon

$$\Rightarrow I_* f \leq F(b) - F(a) \leq I^* f$$
 Mivel $I_* f = I^* f = \int_a^b f \Rightarrow F(b) - F(a) = \int_a^b f$

Pl: i,
$$\int_{0}^{1} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{0}^{1} = \frac{1}{3}$$

ii, Félkör területe: $f(x) = \sqrt{1 - x^2}$, $x \in [-1, 1]$

$$T = \int_{-1}^{1} f = \int_{-1}^{1} \sqrt{1 - x^2} dx = \left[\frac{\arcsin x + x\sqrt{1 - x^2}}{2} \right]_{-1}^{1} = \frac{\frac{\pi}{2} - (\frac{\pi}{2})}{2} = \frac{\pi}{2}$$

Megj: Egyik feltétel sem hagyható el, pl:

i, $\exists f \in R[a,b]$, de \nexists primitív függvény

$$f(x) = sign(x) \quad x \in [-1,1]$$

f szakaszonként folytonos $\Rightarrow f \in R[-1,1]$, de \nexists primitív függvény, mert nem Darboux-tulajdonságú

ii, $\exists f: [a,b] \to \mathbb{R}, \exists F$ primitív függvény, de $f \notin R[a,b]$ (nehéz)

Definíció: Ha $f \in R[a,b]$ és $x_0 \in [a,b]$, akkor: $F(x) = \int_{x_0}^x f$ $(x \in [a,b])$ az f integrál függvénye

<u>Tétel</u>: (A differenciál- és integrálszámítás alaptétele)

Legyen $f \in R[a, b], x_0 \in [a, b], F(x) = \int_{x_0}^{x} f$ $(x \in [a, b]), \text{ ekkor}:$

 $i, F \in C[a, b]$

ii, Ha $f\in C(d),$ akkor $F\in D(d)$ és $F'(d)=f(d)\quad (d\in [a,b])$

Bizonyítás: i, $f \in R[a,b] \Rightarrow f$ korlátos $\Rightarrow \exists M : |f| \leq M$

$$|F(x_2) - F(x_1)| = \left| \int_{x_0}^{x_2} f - \int_{x_0}^{x_1} f \right| = \left| \int_{x_1}^{x_2} f \right| \le \left| \int_{x_1}^{x_2} |f| \right| \le M \cdot |x_2 - x_1| \Rightarrow x_2 \to x_1 \Rightarrow F(x_2) \to F(x_1)$$

 $\Rightarrow F \in C(x_1)$ x_1 tetszőleges

ii, Igazolni kell, hogy
$$f(d) = F'(d) = \lim_{h \to 0} \frac{F(d+h) - F(d)}{h}$$
, azaz $\lim_{h \to 0} \left| \frac{F(d+h) - F(d)}{h} - f(d) \right| = 0$

$$\left| \frac{F(d+h) - F(d)}{h} - f(d) \right| = \left| \frac{1}{h} \cdot \int_{d}^{d+h} f(t)dt - f(d) \right| = \left| \frac{1}{h} \cdot \int_{d}^{d+h} f(t) - f(d)dt \right| \le \frac{1}{h} \cdot \int_{d}^{d+h} |f(t) - f(d)|dt$$

 $f \in C(d) \Rightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall t \in [a,b], |t-d| < \delta: |f(t)-f(d)| < \varepsilon$

$$\text{Legyen } |h| < \delta \Rightarrow |t - d| \le |h| < \delta \Rightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall |h| < \delta : \left| \frac{F(d + h) - F(d)}{h} - f(d) \right| < \varepsilon$$

$$\Rightarrow \lim_{h \to 0} \left| \frac{F(d+h) - F(d)}{h} - f(d) \right| = 0 \quad \blacksquare$$

Megj: Ha d=a vagy d=b, akkor jobb vagy bal oldali deriváltról van szó

Következmény: Ha $f \in C[a, b]$, akkor $F \in \mathcal{D}[a, b]$ és F'(x) = f(x), $\forall x \in [a, b]$

Következmény: Ha $f \in C[a, b]$, akkor \exists primitív függvénye

Tétel: (Parciális integrálás)

Ha
$$f, g \in \mathcal{D}[a, b]$$
 és $f', g' \in R[a, b]$, akkor $\int_a^b f' \cdot g = f(b) \cdot g(b) - f(a) \cdot g(a) - \int_a^b f \cdot g'$

Bizonyítás: $f' \cdot g + f \cdot g'$ primitív függvénye $f \cdot g$

$$\Rightarrow \int_{a}^{b} f' \cdot g + f \cdot g' = \left[f \cdot g \right]_{a}^{b} = f(b) \cdot g(b) - f(a) \cdot g(a) \quad \blacksquare$$

<u>Tétel</u>: (Helyettesítés)

Tfh. $f \in R[a,b], g: [\alpha,\beta] \to [a,b]$ differenciálható bijekció és $g' \neq 0$, ekkor: $\int\limits_a^b f = \int\limits_\alpha^\beta f \circ g \cdot g'$

<u>Bizonyítás:</u> f-nek \exists primitív függvénye: $(\int\limits_{\alpha}f\circ g\cdot g')\circ g^{-1}$

$$\int_{a}^{b} f = \left[\left(\int_{\alpha} f \circ g \cdot g' \right) \circ g^{-1} \right]_{a}^{b} = \int_{\alpha}^{\beta} f \circ g \cdot g' \quad \blacksquare$$

Alkalmazás

1. Terület:
$$T(H) = \int_{a}^{b} f$$
, $f \ge 0$

2. Ívhossz:
$$f:[a,b]\to\mathbb{R}, \quad \gamma=\{(x,f(x)),x\in[a,b]\}$$
 az f grafikonja
$$\tau\in F[a,b]: l(\gamma,\tau)=\text{töröttvonal hossza}$$

$$l(\gamma)=\sup_{\tau\in F[a,b]}l(\gamma,\tau)\text{ a }\gamma\text{ ívhossza}$$

<u>Tétel</u>: Ha $f:[a,b]\to\mathbb{R}$ folytonos és differenciálható, ekkor $l(\gamma)=\int\limits_a^b\sqrt{1+(f'(x))^2}dx$

3. Térfogat
$$f \geq 0$$
 $H := \{(x, y, z) : a \leq x \leq b, y^2 + z^2 \leq f^2(x)\}$ forgástest
$$\underline{\mathbf{T\acute{e}tel}} \colon V(H) = \pi \cdot \int\limits_a^b f^2 \quad (f \in R[a, b])$$

4. Felszín:

Tétel: Ha
$$f$$
 folytonosan differenciálható, akkor: $F(H) = 2\pi \int_a^b f(x) \cdot \sqrt{1 + (f'(x))^2} dx$