Математическая физика, практические занятия

Р. В. Бессонов

Содержание

1.	Занятие 1. Градиент, ротор и дивергенция	1
2.	Занятие 2. Операции в криволинейных координатах. Потенциал	
	электростатического поля равномерно заряженного шара	6
3.	Занятие 3. Обобщенные функции	10
4.	Занятие 4. Фундаментальные решения, волновое уравнение	13
5.	Занятие 5. Прямое произведение и свертка обобщенных функций	17
6.	Занятие 6. Метод бегущих волн для волнового уравнения	20
7.	Контрольная работа. Вариант 1	23
8.	Контрольная работа. Вариант 2	24
9.	Контрольная работа. Вариант 3	25
10.	Контрольная работа. Вариант 4	26

1. Занятие 1. Градиент, ротор и дивергенция

1.1. Бескоординатное определение и физический смысл градиента. Градиентом гладкого отображения $f: \mathbb{R}^n \to \mathbb{R}$ в точке $w \in \mathbb{R}^n$ называется вектор $\operatorname{grad} f(w) \in \mathbb{R}^n$ со свойством

$$f(w+h) = f(w) + (h, \operatorname{grad} f(w))_{\mathbb{R}^n} + o(h), \qquad h \to 0.$$

Из определения следует, что

$$f(w + \varepsilon \operatorname{grad} f(w)) \geqslant f(w + \varepsilon h)$$
 (1)

для любого вектора $h \in \mathbb{R}^n$ со свойством ||h|| = ||grad f(w)|| при достаточно малых $\varepsilon > 0$. Физический смысл неравенства выше означает, что физическая характеристива, описываемая фунцией f, растет быстрее всего в направлении вектора grad f. В качестве f можно представлять себе температуру в точке пространства (n=3) или высоту над уровнем моря (n=2).

Упражнение 1. Докажите неравенство (8).

Упражнение 2. Докажите, что если в пространстве \mathbb{R}^n выбрана декартова система координат и f_{x_i} обозначают производные по направлениям, отвечающим ее базисным векторам, то

$$grad f(w) = \begin{pmatrix} f'_{x_1}(w) \\ \dots \\ f'_{x_n}(w) \end{pmatrix}.$$

1.2. **Бескоординатное определение и физический смысл дивергенции.** Дивергенцией гладкого отображения $f: \mathbb{R}^n \to \mathbb{R}^n$ в точке $w_0 \in \mathbb{R}^n$ называется предел

$$div f(w_0) = \lim_{\varepsilon \to 0} \frac{1}{|B_{\varepsilon}(w_0)|} \int_{S_{\varepsilon}(w_0)} (f, n) dS$$

где $B_{\varepsilon}(w_0) = \{w : \|w - w_0\| \leqslant \varepsilon\}, S_{\varepsilon}(w_0) = \{w : \|w - w_0\| = \varepsilon\}, n$ – внешняя единичная нормаль к $S_{\varepsilon}(w_0)$. Интеграл

 $\int_{S_{\varepsilon}(w_0)} (f, n) \, dS$

для поля скоростей f течения жидкости отвечает объему жидкости, протекающему через $S_{\varepsilon}(w_0)$. Таким образом, $div f(w_0)$ – это показатель того, насколько мощным источником или стоком является точка w_0 .

Упражнение 3. Докажите, что $\int_{S_{\varepsilon}(0)} x_i x_j dS = 0$ при $i \neq j$. Здесь x_i – i-я координата точки x в стандартном базисе \mathbb{R}^n .

Упражнение 4. Прибавляя и вычитая $f(w_0)$ под знаком интеграла в определении дивергенции, докажите, что $div f(w_0) = \sum (\partial f_i/\partial x_i)(w_0)$, если f_i – координатные функции поля f в декартовой системе координат.

1.3. **Бескоординатное определение и физический смысл ротора.** Ротором гладкого отображения $f: \mathbb{R}^3 \to \mathbb{R}^3$ в точке $w_0 \in \mathbb{R}^3$ называется такой вектор $rot f(w_0)$ (существование не очевидно из определения!), что для любого единичного вектора $n \in \mathbb{R}^3$

$$(rot f(w_0), n) = \lim_{\varepsilon \to 0} \frac{1}{|D_{\varepsilon}(w_0)|} \int_{C_{\varepsilon}(w_0)} (f, \tau) ds,$$

где $D_{\varepsilon}(w_0)$ – круг радиуса ε с центром в точке w, ортогональный вектору n, $C_{\varepsilon}(w_0)$ – его граница, τ – единичный касательный вектор в направлении положительного относительно n обхода $C_{\varepsilon}(w_0)$. Физический смысл интеграла

$$\int_{C_{\varepsilon}(w_0)} (f,\tau) \, ds$$

для силового поля f состоит в том, что он отвечает количеству работы, необходимой для обхода вокруг точки w_0 вдоль $C_{\varepsilon}(w_0)$. Если w_0 – центр вихря, то эта работа будет большей или меньшей в зависимости от его мощности.

Упражнение 5. Выведите формулу для ротора в декартовых кооринатах. Это можно сделать по меньшей мере двумя способами. Элементарный способ состоит в использовании формулы Тейлора и явном вычислении. Более короткий - с помощью формулы Стокса. Ответ можно сверить с конспектом по математическому анализу.

1.4. Бескоординатное определение и физический смысл гармонических функций. Назовем функцию $f \in C(\Omega \to \mathbb{R})$ гармонической, если

$$f(w_0) = \frac{1}{|S_r(w_0)|} \int_{S_r(w_0)} f dS$$

для любой точки $w_0 \in \Omega$ и любой сферы $S_r(w_0) \subset \Omega$. Рассматривая в качестве f распределение температуры/давления в области Ω , видим, что она гармонична (при условии, что это распределение стационарно, т.е. f не меняется со временем и зависит лишь от точки). Действительно, физическая интуиция говорит нам, что если бы $f(w_0)$ была бы больше или меньше своего среднего

$$\frac{1}{|S_r(w_0)|} \int_{S_r(w_0)} f dS$$

то тогда с течением времени $f(w_0)$ должна была бы поменяться ("соседние точки нагрели или охладили бы точку w_0 ").

Упражнение 6. Докажите, что $f \in C^{\infty}(\Omega \to \mathbb{R})$ для любой гармонической функции f.

Упражнение 7. Докажите, что если функция $f \in C^2(\Omega \to \mathbb{R})$, то существует предел

$$(\Delta f)(w_0) = \lim_{r \to 0} \frac{2}{r^2 |S_r(w_0)|} \int_{S_r(w_0)} (f - f_r(w_0)) dS = f''_{x_1 x_1}(w_0) + \dots + f''_{x_n x_n}(w_0).$$

B частности, $\Delta f = 0$ всюду в Ω для любой гармонической функии f.

Верное и обратное: условие $\Delta f = 0$ всюду в Ω влечет гармоничность $f \in C^2(\Omega \to \mathbb{R})$.

1.5. **Алгебраические и дифференциальные формы.** Алгебраической формой в \mathbb{R}^n порядка 1 называется линейное отображение из \mathbb{R}^n в \mathbb{R} .

Пример 1. Скалярное произведение $p \mapsto (p, v)_{\mathbb{R}^n}$ с фиксированным вектором $v \in \mathbb{R}^n$ - форма порядка 1 в \mathbb{R}^n . Мы будем обозначать эту форму через ω_v .

Упражнение 8. Пример 1 описывает все возможные алгебраические формы первого порядка в \mathbb{R}^n .

Пример 2. Пусть в \mathbb{R}^n зафиксирован некоторый базис v_1, \ldots, v_n . Тогда отображение, сопоставляющее $p \in \mathbb{R}^n$ его координату c_i в разложении

$$p = c_1 v_1 + \ldots + c_n v_n$$

является формой пордка 1.

Форма из примера 2 называется i-й координатной формой и обозначается ω_{v_i} . Это форма порядка 1. Она зависит от выбора базиса v_1, \ldots, v_n .

Упражнение 9. Как найти вектор $v \in \mathbb{R}^n$ из Примера 1, определяющий форму ω_{v_i} из примера 2, если базис $v_1, \ldots v_n$ – ортогонален?

Если в пространстве \mathbb{R}^n зафиксирован некоторый ортогональный базис v_1, \ldots, v_n и назван стандартным, то его координатные формы ω_{v_i} мы будем обозначать dx_i (или dx, dy, dz, ...).

Дифференциальной формой порядка 1 в области $\Omega \subset \mathbb{R}^n$ называется отображение, каждой точке $w \in \Omega$ сопоставляющее алгебраическую форму порядка 1.

Пример 3. Если в пространстве \mathbb{R}^2 зафиксирован стандартный базис, форма $xdy-y^2dx$ в точке $w=\binom{2}{3}$ равна $2\,dy-9dx=2\pi_2-9\pi_1$. На векторе $p=\binom{-1}{0}$ она принимает значение $2\cdot 0-9\cdot (-1)=9$.

Упражнение 10. Считая, что в пространстве \mathbb{R}^3 зафиксирован стандартный базис, найдите значение формы $x^2 dx + y^2 dy + z^2 dz$ в точке $w = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ на векторе $p = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

Внешей алгебраической формой в \mathbb{R}^n порядка $k \geqslant 1$ называется отображение из $(\mathbb{R}^n)^k$ в \mathbb{R} , линейное по каждому аргументу, меняющее знак при перестановке соседних аргументов.

Пример 4. Отождествим вектора \mathbb{R}^n с их записью в стандартном базисе, а множество $(\mathbb{R}^n)^n$ — с множеством матриц размера $n \times n$. Тогда определитель — алгебраическая форма порядка n в \mathbb{R}^n . Матричные миноры порядка k – алгебраические формы порядка k в \mathbb{R}^n .

Этот пример можно развить.

Пример 5. Пусть в \mathbb{R}^n зафиксирован некоторый базис v_1, \ldots, v_n . Вспомним, что отображение, сопоставляющее $p \in \mathbb{R}^n$ его координату c_i в разложении

$$p = c_1 v_1 + \ldots + c_n v_n$$

называется i-й координатной формой и обозначается ω_{v_i} . Внешним произведением 1-форм $\omega_{v_{i_1}},\ldots,\omega_{v_{i_k}}$ называется форма порядка k, задаваемая формулой

$$\omega_{v_{i_1}} \wedge \omega_{v_{i_2}} \wedge \ldots \wedge \omega_{v_{i_k}} : (p_1, p_2, \ldots, p_n) \mapsto \det \begin{pmatrix} c_{1i_1} & c_{1i_2} & \ldots & c_{1i_k} \\ c_{2i_1} & c_{2i_2} & \ldots & c_{2i_k} \\ c_{ki_1} & c_{ki_2} & \ldots & c_{ki_k} \end{pmatrix},$$

где $p_s = c_{s1}v_1 + \ldots + c_{sn}v_n$. Такие формы будем называть простыми. При выборе различных базисов различные формы оказываются простыми.

Любая внешняя форма в \mathbb{R}^n порядка k может быть записана в виде линейной комбинации простых форм.

Дифференциальной формой порядка $k \geqslant 1$ в области $\Omega \subset \mathbb{R}^n$ называется отображение, каждой точке $w \in \Omega$ сопоставляющее алегбраическую форму порядка k в \mathbb{R}^n . Функции, действующие из Ω в \mathbb{R} удобно считать дифференциальными формами порядка 0.

Пример 6. Пусть в пространстве \mathbb{R}^3 зафиксирован стандартный базис. Дифференциальная форма $x_1^2x_2dx_2 \wedge dx_3$ в точке $\begin{pmatrix} 2\\3\\1 \end{pmatrix}$ на паре векторов $p_1 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\4\\1 \end{pmatrix}$ равна

$$12[dx_2 \wedge dx_3](p_1, p_2) = 12 \det \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = 48.$$

Упражнение 11. Пусть ω_2 , ω_3 – базисные дифференциальные формы цилиндрической системы координат в пространстве \mathbb{R}^3 . Вычислите значение дифференциальной формы $x_1^2 x_2 \omega_2 \wedge \omega_3$ в точке $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ на паре векторов $p_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}$.

Упражнение 12. Пусть в \mathbb{R}^n выбран стандартный базис и $f: \mathbb{R}^n \mapsto \mathbb{R}$ – гладкая функция. Докажите, что дифференциал df есть дифференциальная 1-форма и ее разложение на базисные форрмы dx_i имеет вид

$$df = f'_{x_1} dx_1 + \ldots + f'_{x_n} dx_n.$$

В обозначениях предыдущего упражнения, внешний дифференциал формы

$$\omega = f dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$$

определяется следующим образом:

$$d\omega = df \wedge dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k}$$

По линейности можно распространить внешний дифференциал на все гладкие формы. Позднее мы научимся вычислять внешний дифференциал в других базисах. Другой подход состоит в том, чтобы определить внешний дифференциал аксиоматически. Тогда определение будет бескоординатным, но будет больше похоже на теорему существования, чем на рецепт вычисления.

Упражнение 13. Докажите, что для любой C^2 -гладкой формы ω имеет место равенство $d^2\omega=0$.

На формах $0 \leqslant k \leqslant n$ в \mathbb{R}^n определена операция дополнения (так называемая "звездочка Ходжа"). Нам понадобится только случай n=3.

Упражнение 14. Обобщите факты, излагаемые ниже в этом пункте на случай $n \neq 3$. Проверьте себя по книге J. Jost, Riemannian Geometry and Geometric Analysis (2002), глава 2.1.

Пусть ω_1 , ω_2 , ω_3 – базисные дифференциальные формы некоторой ортогональной системы координат с базисными векторами v_1 , v_2 , v_3 (зависящими от точки и образующими положительный базис). Определим нормированные базисные дифференциальные формы

$$\hat{\omega}_1 = \|v_1\|\omega_1, \qquad \hat{\omega}_2 = \|v_2\|\omega_2, \quad \hat{\omega}_3 = \|v_3\|\omega_3.$$

Для любого вектора $p \in \mathbb{R}^n$ значение $\hat{\omega}_i(p)$ совпадает с i-м коэффициентом при разложении $p = c_{1w}\hat{v}_1 + c_{2w}\hat{v}_2 + c_{3w}\hat{v}_3$ в ортонормированном базисе $\hat{v}_i = v_i/\|v_i\|$. Звездочка Ходжа задается на простых формах следующим образом:

$$\star \hat{\omega}_1 = \hat{\omega}_2 \wedge \hat{\omega}_3, \quad \star \hat{\omega}_2 = \hat{\omega}_3 \wedge \hat{\omega}_1, \quad \star \hat{\omega}_3 = \hat{\omega}_1 \wedge \hat{\omega}_2, \quad \star 1 = \hat{\omega}_1 \wedge \hat{\omega}_2 \wedge \hat{\omega}_3, \quad \star \star \hat{\omega} = \hat{\omega},$$

и распространяется на произвольные формы по линейности. Замечательным свойством звездочки Ходжа является то, что ее действие не зависит от выбора базисных форм $\hat{\omega}_i$.

Пример 7. Пусть в \mathbb{R}^n зафиксирован стандартный базис. Тогда

$$\star (x^2 dx \wedge dy + y dx \wedge dz) = x^2 dz - y dy.$$

Упражнение 15. Пусть $v_1, v_2 \in \mathbb{R}^3$ – ненулевые неколлинеарные вектора. Докажите, ито $\star(\omega_{v_1} \wedge \omega_{v_2}) = (\cdot, v_1 \times v_2)$, где \times обозначает векторное произведение.

Упражнение 16. Пусть $q: \mathbb{R}^3 \mapsto \mathbb{R}^3$ – гладкая функция. Докажите, что

$$d(g_1dx + g_2dy + g_3dz) = (rot g)_1 dy \wedge dz + (rot g)_2 dz \wedge dx + (rot g)_3 dx \wedge dy, \tag{2}$$

где $(rot\ g)_i$ – координатные функции ротора отображения $g:\mathbb{R}^3\to\mathbb{R}^3$ в декартовой системе координат.

Упражнение 17. В условиях предыдущего упраженения,

$$\star d(g_1 dx + g_2 dy + g_3 dz) = (rot g)_1 dx + (rot g)_2 dy + (rot g)_3 dz.$$
 (3)

1.6. Операции бемоль и диез (b и #). Эти операции очень просты. Для любого вектора $v \in \mathbb{R}^n$ мы определяем

$$v^b = \omega_v$$

И

$$(\omega_v)_{\#} = v.$$

Так как по теореме Рисса (было что-то такое в курсе функционального анализа...) любая 1-форма имеет вид ω_v для некоторого v, это определяет (ω)_# для любой 1-формы. Определение очевидным образом распространяется на дифференциальные формы.

Пример 8. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ – гладкая функция. Тогда по определению градиента,

$$(d_{w_0}f)_{\sharp} = (f'_{x_1}(w_0) dx_1 + \ldots + \ldots f'_{x_n}(w_0) dx_n)_{\sharp} = \operatorname{grad} f(w_0),$$

 ∂ ля всех $w_0 \in \mathbb{R}^n$.

1.7. Упражнения на операции d и * в декартовых координатах.

Упражнение 18. Пусть $f: \mathbb{R}^n \to \mathbb{R}^n$ – гладкая функция. Тогда

$$div f(w_0) = (\star d \star f^b)(w_0),$$

для всех $w_0 \in \mathbb{R}^n$.

Упражнение 19. Пусть $f: \mathbb{R}^3 \to \mathbb{R}^3$ – гладкая функция. Тогда

$$rot f(w_0) = (\star df^b)_{\#}(w_0),$$

 ∂ ля $ecex w_0 \in \mathbb{R}^n$.

Упражнение 20. Пусть $f:\mathbb{R}^3 \to \mathbb{R}^3$ – гладкая функция. Тогда

$$div \, rot \, f(w_0) = 0,$$

 ∂ ля $bcex w_0 \in \mathbb{R}^n$.

Упражнение 21. Пусть $f: \mathbb{R}^n \to \mathbb{R}^n$ – гладкая функция. Тогда $rot\ grad\ f(w_0) = 0,$

 ∂ ля $всеx <math>w_0 \in \mathbb{R}^n$.

Упражнение 22. Пусть $f: \mathbb{R}^n \to \mathbb{R}^n$ – гладкая функция. Тогда

$$(\Delta f)(w_0) = (\operatorname{div} \operatorname{grad} f)(w_0) = (\star d \star df)(w_0),$$

для всех $w_0 \in \mathbb{R}^n$.

Эти упражнения показывают, что основные операторы векторного анализа могут быть явно выписаны в любой системе координат. В самом деле, операции b, #, \star явно определены для любых форм, и осталось лишь научиться считать $d\omega$ в других координатных системах.

- 2. Занятие 2. Операции в криволинейных координатах. Потенциал электростатического поля равномерно заряженного шара
- 2.1. **Координатные системы и базисные формы.** Пусть $F = F(w_1, w_2, w_3)$ система координат в области $\tilde{\Omega} \subset \mathbb{R}^3$, то есть гладкое биективное отображение из области $\Omega \subset \mathbb{R}^3$ в область $\tilde{\Omega}$. В каждой точке $w \in \Omega$ определены вектора

$$v_1 = (\partial F/\partial w_1)(w), \qquad v_2 = (\partial F/\partial w_2)(w), \qquad v_3 = (\partial F/\partial w_3)(w).$$
 (4)

Более того, эти вектора образуют базис в \mathbb{R}^3 .

Упражнение 23. Почему вектора v_1, v_2, v_3 образуют базис в \mathbb{R}^3 ?

Значит, в каждой точке $w \in \Omega$ определены алгебраические формы порядка 1:

$$\omega_{w,i}: p \mapsto c_{wi}, \qquad p = c_{w1}v_1 + c_{w2}v_2 + c_{w3}v_3, \qquad p \in \mathbb{R}^3.$$

Они порождают дифференциальные формы порядка 1 в области $\tilde{\Omega} = F(\Omega)$:

$$\omega_i: F(w) \mapsto \omega_{w,i}, \qquad w \in \Omega, \qquad i = 1, 2, 3.$$

Упражнение 24. Докажите, что формы ω_1 , ω_2 , ω_3 образуют базис в пространстве дифференциальных форм порядка 1 в области $\tilde{\Omega}$.

Формы ω_1 , ω_2 , ω_3 называются базисными дифференциальными формами в $\tilde{\Omega}$, отвечающими системе координат F. Система координат называется правильной, если $\det(v_1,v_2,v_3)>0$ в каждой точке $w\in\mathbb{R}^3$. Все обычные системы координат (цилиндрическая, сферическая, параболическая, . . .) – правильные. Система координат F называется ортогональной, если вектора v_1, v_2, v_3 – ортогональны.

Упражнение 25. Чему равны вектора v_1 , v_2 , v_3 для декартовой системы координат (то есть для тождественного отображения $F: w \mapsto w$ из \mathbb{R}^3 в \mathbb{R}^3)?

Упражнение 26. Докажите, что дифференциальные формы ω_i однозначно задаются соотношениями $\omega_i(v_j) = \delta_{ij}$.

Пример 9. Рассмотрим цилиндрическую систему координат. Здесь

$$\Omega = (0, +\infty) \times (0, 2\pi) \times \mathbb{R}, \qquad \tilde{\Omega} = F(\Omega),$$

$$F: (r, \varphi, z) \mapsto \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \\ z \end{pmatrix}, \qquad (r, \varphi, z) \in \Omega,$$

где справа написан вектор в стандартном базисе \mathbb{R}^3 . Эта система – ортогональная. Действительно,

$$v_1 = \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -r \sin \varphi \\ r \cos \varphi \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

и при любых значениях r, φ , z вектора v_1 , v_2 , v_3 – ортогональны. Вычислим базисные дифференциальные формы ω_1 , ω_2 , ω_3 , отвечающие этой системе координат. По определению, в каждой точке $F(w) \in \tilde{\Omega}$ форма ω_i действует следующим образом:

$$\omega_i : c_{w1}v_1 + c_{w2}v_2 + c_{w3}v_3 \mapsto c_{wi}.$$

 Π оскольку v_i – ортогональны,

$$[\omega_i(F(w))](p) = \left(p, \frac{v_i}{\|v_i\|^2}\right)_{\mathbb{R}^3}, \qquad p \in \mathbb{R}^3.$$

Eсли, например, i = 2, то в точке $w = F(r, \varphi, z)$ мы получаем

$$\omega_2(w): p \mapsto r^{-2}(p, v_2(r, \varphi, z))_{\mathbb{R}^n}, \qquad p \in \mathbb{R}^n.$$

При этом нормированная форма задается формулой

$$\hat{\omega}_2(w): p \mapsto r^{-1}(p, v_2(r, \varphi, z))_{\mathbb{R}^n}, \qquad p \in \mathbb{R}^n.$$

Упражнение 27. Докажите, что сферическая система координат (r, φ, ψ) является правильной и ортогональной.

Упражнение 28. Выпишите вид формы ω_2 , $\hat{\omega}_2$ для сферической системы координат.

Наша цель – научиться находить градиент, ротор и дивергенцию отображений, заданных в криволинейных координатах. Введение криволинейных координат бывает очень полезным, когда у изучаемых объектов есть симметрии. Ниже в качестве примера применения этой техники будет разобрано нахождение потенциала электростатического поля равномерно заряженного шара. На первом занятии мы научились выражать градиент, ротор и дивергенцию в терминах \star , d, \sharp , b. Осталось понять, как эти операции действуют в криволинейных координатах.

2.2. Внешний дифференциал в криволинейных координатах. При вычислении внешнего дифференциала гладкого отображения $\tilde{f}: \tilde{\Omega} \to \mathbb{R}$, заданного в криволинейной системе координат соотношением

$$\tilde{f}(F(w)) = f(w), \quad w \in \Omega,$$

используется следующий результат.

Упражнение 29.
$$(d\tilde{f})(F(w)) = (\frac{\partial}{\partial w_1}f)(w)\omega_1 + (\frac{\partial}{\partial w_2}f)(w)\omega_2 + (\frac{\partial}{\partial w_3}f)(w)\omega_3$$

Так как $d^2\omega=0$, для любой формы ω (в том числе - 0-формы) мы получаем

Упражнение 30. $d\omega_i = 0$ для любой координатной формы ω_i .

Замечая, что любая форма ω может быть разложена на базисные и что

$$d(\omega \wedge \tilde{\omega}) = (d\omega) \wedge \tilde{\omega} + (-1)^k \omega \wedge (d\tilde{\omega})$$
(5)

для любых форм ω , $\tilde{\omega}$ (здесь k – порядок формы ω), мы видим, что предыдущие два упражнения дают рецепт того, как найти дифференциал любой формы в криволинейных координатах.

Пример 10. Пусть $\omega = \cos \varphi \, \hat{\omega}_2$, где ω_2 – нормированная базисная форма цилиндрической системы координат. Тогда

$$d\omega = d(r\cos\varphi\,\omega_2) = (\cos\varphi\omega_1 - r\sin\varphi\omega_2) \wedge \omega_2 + r\cos\varphi\,d\omega_2 = \cos\varphi\omega_1 \wedge \omega_2.$$

Пример 11. Посчитаем градиент гладкого отображения:

$$grad \, \tilde{f}(F(w)) = (d\tilde{f}(F(w)))_{\sharp} = \left((\frac{\partial}{\partial w_1} f)(w)\omega_1 + (\frac{\partial}{\partial w_2} f)(w)\omega_2 + (\frac{\partial}{\partial w_3} f)(w)\omega_3 \right)_{\sharp}$$
$$= (\frac{\partial}{\partial w_1} f)(w)v_1 + (\frac{\partial}{\partial w_2} f)(w)v_2 + (\frac{\partial}{\partial w_3} f)(w)v_3.$$

Пример 12. Посчитаем div \tilde{f} гладкого отображения $\tilde{f}: \tilde{\Omega} \to \mathbb{R}^3$, считая, что нам известно его разложение в локальной системе координат:

$$\tilde{f}(F(w)) = f_1(w)\hat{v}_1 + f_2(w)\hat{v}_2 + f_3(w)\hat{v}_3, \qquad w \in \Omega.$$

Для этого запишем

$$div \ \tilde{f}(F(w)) = \star (d \star \tilde{f}^b)(F(w))$$

$$= \star (d \star [f_1(w)\hat{\omega}_1 + f_2(w)\hat{\omega}_2 + f_3(w)\hat{\omega}_3]$$

$$= \star (d[f_1(w)\hat{\omega}_2 \wedge \hat{\omega}_3 + f_2(w)\hat{\omega}_3 \wedge \hat{\omega}_1 + f_3(w)\hat{\omega}_1 \wedge \hat{\omega}_2]$$

$$= \star (d[||v_2|| ||v_3||f_1(w)\omega_2 \wedge \omega_3 + ||v_3|| ||v_1||f_2(w)\omega_3 \wedge \omega_1 + ||v_1|| ||v_2||f_3(w)\omega_1 \wedge \omega_2]$$

$$= \star \left[\frac{\partial}{\partial w_1} (||v_2|| ||v_3||f_1)(w) + \dots + \frac{\partial}{\partial w_3} (||v_1|| ||v_2||f_3)(w) \right] \omega_1 \wedge \omega_2 \wedge \omega_3$$

$$= \star \frac{\left[\frac{\partial}{\partial w_1} (||v_2|| ||v_3||f_1)(w) + \dots + \frac{\partial}{\partial w_3} (||v_1|| ||v_2||f_3)(w) \right]}{||v_1|| ||v_2|| ||v_3||} \hat{\omega}_1 \wedge \hat{\omega}_2 \wedge \hat{\omega}_3$$

$$= \frac{\partial}{\partial w_1} (||v_2|| ||v_3||f_1)(w) + \frac{\partial}{\partial w_2} (||v_3|| ||v_1||f_2)(w) + \frac{\partial}{\partial w_3} (||v_1|| ||v_2||f_3)(w)}{||v_1|| ||v_2|| ||v_3||}.$$

Заметим, что в случае декартовой системы координат $||v_i|| \equiv 1$, и мы получили привычное выражение для дивергенции.

Упражнение 31. Найдите выражение для $div\ ilde{f}$ в цилиндрических координатах.

Упражнение 32. Найдите выражение для $rot\ ilde f$ в общих криволинейных ортогональных координатах.

2.3. **Оператор Лапласа в сферических координатах.** Посчитаем оператор Лапласа в сферических координатах. Для этого заметим, что

$$\Delta \tilde{f} = div \, grad \, \tilde{f},$$

а операторы grad и div мы уже построили.

Упражнение 33. Докажите, что сферической системе координат r, φ, ψ оператор Лапласа записывается следующим образом:

$$\Delta \tilde{f} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \cos^2 \psi} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r^2 \cos \psi} \frac{\partial}{\partial \psi} \left(\cos \psi \frac{\partial}{\partial \psi} f \right)$$

На практике обычно не вводят специального обозначения \tilde{f} , а используют букву f в двух смыслах (как функцию одновременно от декартовых и сферических координат).

Упражнение 34. Найдите выражение для оператора Лапласа в цилиндрической системе координат r, φ, z .

2.4. Уравнение Пуассона. Потенциал поля равномерно заряженного шара. Пусть F – силовое поле в \mathbb{R}^n . Оно называется потенциальным, если существует функция u (потенциал поля), такая, что

$$F = grad u$$
.

Для потенциальных полей работа поля по перемещению частицы из точки $a \in \mathbb{R}^n$ в точку $b \in \mathbb{R}^n$ вдоль любой траектории равна разности потенциалов в этих точках:

$$\int_{[a,b]} (F(t), \tau(t)) \, ds = \int_{[a,b]} (\operatorname{grad} u(t), \tau(t)) \, ds = u(b) - u(a), \tag{6}$$

где τ – единичный касательный вектор кривой [a,b].

Упражнение 35. Докажите формулу (10).

Потенциальные поля часто встречаются в жизни — например, таковы электростатические поля (поля, создаваемые системой заряженных частиц и не меняющиеся со временем). Как мы обсуждали на первом занятии, для произвольного поля F характеристика div F в каждой точке $x \in \mathbb{R}^n$ отвечает мощности источника поля, находящегося в точке x. Если F — электростатическое поле, div F(x) можно отождествить с величиной заряда, находящегося в точке x. Предположим, что нам известно распределение заряда $f: \mathbb{R}^n \to \mathbb{R}$ некоторого электростатического поля. Тогда решение уравнения Пуассона

$$div \, qrad \, u = q$$

будет совпадать с потенциалом u, создающем электростатическое поле $F = \operatorname{grad} u$ с заданным распределением зарядов q. Оператор

$$\Delta = div \, grad$$

называется оператором Лапласа. Обычно от решения уравнения $\Delta u = q$ требуют, чтобы оно убывало на бесконечности со скростью $const/\|x\|^{n-2}$ (при $n \ge 3$) или было ограничено $const \log |x|$ при n = 2. Это связано с вопросами единственности, которые мы здесь не обсуждаем.

Пример 13. Найдем поле равномерно заряженного шара $B_R \subset \mathbb{R}^3$ радиуса R. B этом примере $q = \chi_{B_R}$ – характеристическая функция шара B_R . На лекциях доказывали общую формулу для решения уравнения Пуассона:

$$u(x) = \int_{\mathbb{R}^n} g_0(x - y) q(y) \, dy,$$

где g_0 – фундаментальное решение уравнения Пуассона оператора Лапласа. Если $T \in SO_3$ – ортогональное преобразование в \mathbb{R}^n , то

$$u(Tx) = \int_{\mathbb{R}^n} g_0(Tx - y)q(y) \, dy = u(x) \tag{7}$$

в силу свойств решения g_0 и того факта, что $|\det T|=1$. Следовательно, в сфериической системе координат u(x)=f(r), где функция f удовлетворяет уравнению

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) = \chi_{B_R}.$$

Решая уравнение при r > R, r < R, мы получаем соответсвенно

$$f_1(r) = \frac{c_1}{r} + c_2, \qquad r > R$$

$$f_2(r) = \frac{r^2}{6} + \frac{c_3}{r} + c_4, \qquad r < R.$$

Из условия на бесконечности получаем $c_2 = 0$. Так как решение должно быть непрерывно (см. явную формулу для него), $c_3 = 0$. Осталось подобрать c_1 , c_4 так, чтобы склейка f_1 , f_2 получилась непрерывно дифференцируемой:

$$\frac{c_1}{R} = \frac{R^2}{6} + c_4$$

$$-\frac{c_1}{R^2} = \frac{R}{3}$$

Итак, получаем формулу

$$u = \begin{cases} -R^3/3r, & r \geqslant R \\ r^2/6 - R^2/2, & r \leqslant R. \end{cases}$$

Упражнение 36. Почему в предыдущем примере функция и непрерывно дифференцируема?

Упражнение 37. Докажите формулу (7).

Упражнение 38. Докажите, что если определить внешний дифференциал на формах $\omega = f dx_{i_1} \wedge \ldots \wedge dx_{i_k}$ в \mathbb{R}^n по правилу

$$d\omega = \left(\frac{\partial f}{\partial x_1} + \ldots + \frac{\partial f}{\partial x_n}\right) \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k},$$

то он будет удовлетворять свойству (8).

Упражнение 39. Докажите, что внешний дифференциал можно определить аксиоматически, задав его следующими свойствами на гладких формах:

- (a) $df \partial u \phi \phi e p e \mu u u a n f, e c n u f н y n b \phi o p m a,$
- (b) d(df) = 0, если f нуль-форма,
- (c) выполняется свойство (8).

Это определение не зависит от выбранной системы координат.

3. Занятие 3. Обобщенные функции

3.1. Обобщенные функции. Пусть Ω – область в \mathbb{R}^n . Обозначим через $C^{\infty}(\Omega)$ пространство Фреше, состоящее из гладких функций с инвариантной метрикой, задаваемой следующим образом:

$$\rho(f,g) = \sum_{N=1}^{\infty} 2^{-N} \frac{\|f - g\|_{N}}{\|f - g\|_{N} + 1},$$

где

$$||f||_N = \sup_{\substack{x \in K_N \\ |\alpha| \le N}} \left| \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(x) \right|,$$

а K_N — последовательность вложенных компактов в \mathbb{R}^n , в объединении дающих область Ω .

Упражнение 40. Докажите, что ρ – это метрика, а $C^{\infty}(\Omega)$ – пространство Фреше (полное линейное метрическое пространство с инвариантной метрикой).

Пусть $K \subset \Omega$ — компакт (в топологии \mathbb{R}^n). Положим

$$\mathcal{D}_K(\Omega) := \{ f \in C^{\infty}(\Omega) : \operatorname{supp} f \subset K \},$$

с метрикой, индуцированной с $C^{\infty}(\Omega)$. Определим пространство основных функций $\mathcal{D}(\Omega)$ как множество гладких функций с компактным носителем в Ω и топологией \mathcal{T} индуктивного предела:

$$\mathcal{D}(\Omega) = (\cup_{K \subset \Omega} \mathcal{D}_K(\Omega), \mathcal{T}).$$

Топология \mathcal{T} определяется базой в нуле, состоящей из выпуклых уравновешенных (если $u \in U$, то $cu \in U$ для любого $c \in \mathbb{C}: |c| = 1$) множеств $U \subset C_0^{\infty}(\Omega)$, таких что $U \cap \mathcal{D}_K(\Omega)$ открыто в $\mathcal{D}_K(\Omega)$ для любого компакта $K \subset \Omega$. Упражнения 2-5 ниже достаточно сложны, однако те, кто их сделает, хорошо разберется в смысле происходящего.

Упражнение 41. Сходимость $f_n \to f$ в $\mathcal{D}(\Omega)$ имеет место тогда и только тогда, когда существует такой компакт K, что $\operatorname{supp} f_n \subset K$ для всех $n \in \mathbb{N}$ и $f_n \to f$ в \mathcal{D}_K .

Топологическое линейное пространство (X,τ) назовем полным, если для любой последовательности $x_n \in X$ такой, что для любой окрестности нуля $U \in \tau$ при больших номерах n,m имеет место включение $x_n-x_m \in U$, существует элемент $x \in X$ такой, что $x_n \to x$ в топологии τ .

Упражнение 42. $\mathcal{D}(\Omega)$ — локально выпуклое полное топологическое пространство.

Упражнение 43. $C_0^{\infty}(\Omega)$ с метрикой ρ – неполное метрическое пространство (обратите внимание на носители).

Упражнение 44. В пространстве $\mathcal{D}(\Omega)$ нет счётной базы, а потому секвенциальная замкнутость не равносильна замкнутости.

Распределением или обобщённой функцией называется линейный непрерывный функционал на топологическом пространстве $\mathcal{D}(\Omega)$. Пространство обобщённых функций со слабой топологией, порожденной тотальным семейством функционалов $\mathcal{D}(\Omega)$, обозначается через $\mathcal{D}'(\Omega)$. Вспоминая функциональный анализ, понимаем, что база окрестностей нуля в $\mathcal{D}'(\Omega)$ состоит из множеств вида

$$V_{A,\varepsilon} = \{ f \in \mathcal{D}'(\Omega) : |f(\varphi)| < \varepsilon, \ \varphi \in A \},$$

где $\varepsilon > 0$, а A пробегает все конечные подмножества $\mathcal{D}(\Omega)$. Есть простой тест, позволяющий проверить непрерывность линейного функционала в топологии $\mathcal{D}(\Omega)$.

Упражнение 45. Линейный функционал f на $\mathcal{D}(\Omega)$ лежит в $\mathcal{D}'(\Omega)$ тогда и только тогда, когда для любого компакта $K \subset \Omega$ существуют такие числа N = N(K) и c = c(K), что

$$|f(\varphi)| \le c \sup_{x \in K, |\alpha| \le N} \left| \frac{\partial^{|\alpha|} \varphi}{\partial x^{\alpha}}(x) \right|, \quad f \in \mathcal{D}_K.$$

Минимальное число $N_0 \in \mathbb{N} \cup \{+\infty\}$, такое, что $N(K) \leqslant N_0$ для всех компактов $K \subset \Omega$ в предыдущем упражнении, называется порядком распределения f.

3.2. Распределения медленного роста. Распределение (обощенная функция) медленного роста — линейный непрерывный функционал на $\mathcal{S}(\mathbb{R}^n)$. Пространство распределений медленного роста обозначается через $\mathcal{S}'(\mathbb{R}^n)$. Топология на $\mathcal{S}'(\mathbb{R}^n)$ вводится слабым образом: базу окрестностей нуля составляют множества вида

$$V_{A,\varepsilon} = \{ f \in \mathcal{S}'(\mathbb{R}^n) : |f(\varphi)| < \varepsilon, \ \varphi \in \mathcal{S}(\mathbb{R}^n) \},$$

где $\varepsilon > 0$, а A пробегает все конечные подмножества $\mathcal{S}(\mathbb{R}^n)$.

Упражнение 46. Имеет место включение $\mathcal{S}'(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$. Его нужно понимать следующим образом: если $f \in \mathcal{S}'(\mathbb{R}^n)$, то сужение $f|_{\mathcal{D}(\mathbb{R}^n)} \in \mathcal{D}'(\mathbb{R}^n)$. Указание: предположите противное и рассмотрите функции φ_N со свойством $|f(\varphi_N)| \geqslant N \|\varphi_N\|_N$.

3.3. **Примеры распределений.** Вместо $f(\varphi)$ далее будем писать (f,φ) . Если $f\in L^1_{loc}(\Omega)$, то через φ_f будем обозначать функционал

$$\varphi_f: g \mapsto \int_{\Omega} fg \, dx$$

заданный на $\mathcal{D}(\Omega)$.

Упражнение 47. Для любой функции $f \in L^1_{loc}(\Omega)$ имеем $\varphi_f \in \mathcal{D}'(\Omega)$.

Упражнение 48. Для любых элементов $f, g \in L^1_{loc}(\Omega)$ из равенства $\varphi_f = \varphi_g$ в $\mathcal{D}'(\Omega)$ следует равенство f = g в $L^1_{loc}(\Omega)$.

Это два упражнения позволяют не делать разницы между f и φ_f . Так и будем поступать в дальнейшем.

Следующее упражнение показывает, что в случае непрерывности в топологии $S(\mathbb{R}^n)$ линейного функционала, заданного на $\mathcal{D}(\mathbb{R}^n)$, он продолжается на все пространство $\mathcal{S}(\mathbb{R}^n)$ единственным образом.

Упражнение 49. *Множество* $C_0^{\infty}(\mathbb{R}^n)$ плотно в $S(\mathbb{R}^n)$.

Упражнение 50. Если $f \in L^p(\mathbb{R}^n)$, $\epsilon de \ 1 \leqslant p \leqslant +\infty$, то $\varphi_f \in \mathcal{S}'(\mathbb{R}^n)$.

Упражнение 51. $e^x \in \mathcal{D}'(\mathbb{R}) \setminus \mathcal{S}'(\mathbb{R})$.

Упражнение 52. $e^x \sin e^x \in \mathcal{S}'(\mathbb{R}) \setminus L^p(\mathbb{R})$ для любого $1 \leqslant p \leqslant +\infty$.

Упражнение 53. $\delta_0': \varphi \mapsto \varphi'(0)$ – распределение медленного роста на \mathbb{R}^n порядка 1.

Упражнение 54. Пусть S_R – сфера радиуса R. Функционал $\delta_{S_R}: \varphi \mapsto \int_{S_R} \varphi \, dS$ – распределение медленного роста на \mathbb{R}^n порядка 0.

Упражнение 55. Придумайте обощенную функцию порядка $k \in \mathbb{N}$ в Ω .

Упражнение 56. Придумайте обощенную функцию бесконечного порядка в Ω .

Упражнение 57. Существуют ли распределения медленного роста бесконечного порядка?

Упражнение 58. Пусть $x_0, x_1 \in \mathbb{R}^n$ и мультииндекс α фиксированы. Определим

$$f: \varphi \mapsto 2\varphi(x_0) + 3\left(\frac{\partial^{|\alpha|}\varphi}{\partial x^{\alpha}}\right)(x_1), \qquad \varphi \in \mathcal{S}(\mathbb{R}^n).$$

Тогда $f \in \mathcal{S}'(\mathbb{R}^n)$. Каков порядок f?

Упражнение 59. Определим функционал f по правилу

$$f \colon \varphi \mapsto p.v. \int_{\mathbb{R}} \frac{\varphi(x)}{x} dx, \qquad \varphi \in \mathcal{S}(\mathbb{R}).$$

Докажите, что определение корректно (интеграл в смысле главного значения существует) и $f \in \mathcal{S}'(\mathbb{R})$.

3.4. Дифференцирование обощенных функций. Если $f \in \mathcal{D}'(\Omega)$, а α – мультииндекс, определим функционал $\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f$ по следующему правилу:

$$\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f,\varphi\right) = (-1)^{|\alpha|}\left(f,\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}\varphi\right), \qquad \varphi \in \mathcal{D}(\Omega).$$

Упражнение 60. $\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \in \mathcal{D}'(\Omega)$ для любого мультииндекса α .

Упражнение 61. Если $f \in C^{|\alpha|}(\Omega)$, то определения $\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f$ в старом и новом смысле совпадают (производные определяют одинаковый функционал).

Упражнение 62. Пусть θ – функция Хевисайда:

$$\theta(x) = \begin{cases} 1, & x \geqslant 0 \\ 0, & x < 0. \end{cases}$$

Докажите, что $\theta' = \delta_0$.

Упражнение 63. Пусть $Z \in C^1(\mathbb{R})$. Докажите, что $(Z\theta)' = Z'\theta + Z(0)\delta_0$.

Упражнение 64. Пусть $P=\frac{d^n}{dx^n}+a_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}+\ldots+a_1(x)\frac{d}{dx}+a_0(x)$ — дифференциальный оператор с непрерывными коэффициентами. Предположим, что существует решение $Z\in C^n(\mathbb{R})$ уравнения P(Z)=0, такое, что $Z^{(k)}(0)=0$, $k=0,\ldots n-2$, $Z^{(n-1)}(0)=1$. Тогда θZ — фундаментальное решение для P, то есть $P(\theta Z)=\delta_0$.

3.5. Преобразование Фурье на классе Шварца. Преобразованием Фурье функции $f \in \mathcal{S}(\mathbb{R}^n)$ называется интеграл

$$(\mathcal{F}f)(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{-i\langle x,t\rangle} dx, \qquad t \in \mathbb{R}^n.$$

Здесь $\langle x,t\rangle$ — стандартное скалярное произведение в \mathbb{R}^n . Обратным преобразованием Фурье функции $f\in\mathcal{S}(\mathbb{R}^n)$ называется интеграл

$$(\mathcal{F}^{-1}f)(t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x)e^{i\langle x,t\rangle} dx, \qquad t \in \mathbb{R}^n.$$

Преобразование Фурье – гомеоморфизм класса Шварца на себя. Оно продолжатеся до унитарного оператора в пространстве $L^2(\mathbb{R})$. Операторы \mathcal{F} , \mathcal{F}^{-1} взаимно обратны. Более того, \mathcal{F}^4 – тождественный оператор.

Упражнение 65. Проверьте, что $\mathcal{F}(\mathcal{S}(\mathbb{R}^n)) \subset \mathcal{S}(\mathbb{R}^n)$.

3.6. Преобразование Фурье на классе распределений медленного роста. Пусть $f \in \mathcal{S}'(\mathbb{R}^n)$. Тогда преобразованием Фурье распределения f называется такой линейный функционал $\mathcal{F}f$, что

$$(\mathcal{F}f,\varphi) = (f,\mathcal{F}\varphi) \qquad \forall \varphi \in \mathcal{S}(\Omega).$$

Здесь в левой части равенства преобразование Фурье в новом смысле, а справа — в старом. Преобразование Фурье – гомеоморфизм $\mathcal{S}'(\mathbb{R}^n)$ на себя.

Упражнение 66. Проверьте, что $\mathcal{F}(\mathcal{S}'(\mathbb{R}^n)) \subset \mathcal{S}'(\mathbb{R}^n)$.

Упражнение 67. Вычислите $\mathcal{F}(\delta_{S_R})$, где S_R – сфера в \mathbb{R}^3 , распределение δ_{S_R} определено в упражнении (54).

Упражнение 68. Вычислите $\mathcal{F}(f)$, где f – распределение из упражнения (59).

- 4. Занятие 4. Фундаментальные решения, волновое уравнение
- 4.1. **Фундаментальные решения.** Пусть P(D) дифференциальный оператор с гладкими коэффициентами, действующий на гладкие функции в \mathbb{R}^n . Тогда $P(D)f \in \mathcal{D}'(\mathbb{R}^n)$ для любой обощенной функции $f \in \mathcal{D}'(\mathbb{R}^n)$. Рассмотрим уравнение

$$P(D) f = \delta_0.$$

Любое решение этого уравнения называется фундаментальным. Известно, что каждый ненулевой дифференциальный оператор с постоянными коэффициентами имеет фундаментальное решение (этот глубокий факт называется теоремой Мальгранжа-Эренпрайса). В одномерной ситуации все вытекает из следующих двух упражнений.

Упражнение 69. Пусть $Z \in C^1(\mathbb{R})$, θ – функция Хевисайда. Докажите, что $(Z\theta)' = Z'\theta + Z(0)\delta_0$.

Упражнение 70. Пусть $P = \frac{d^n}{dx^n} + a_{n-1}(x) \frac{d^{n-1}}{dx^{n-1}} + \ldots + a_1(x) \frac{d}{dx} + a_0(x)$ — дифференциальный оператор с непрерывными коэффициентами. Предположим, что существует решение $Z \in C^n(\mathbb{R})$ уравнения P(Z) = 0, такое, что $Z^{(k)}(0) = 0$, $k = 0, \ldots n-2$, $Z^{(n-1)}(0) = 1$. Тогда θZ — фундаментальное решение для P, то есть $P(\theta Z) = \delta_0$.

Будем говорить, что K – это носитель распределения $f \in \mathcal{D}'(\Omega)$, если $K \subset \Omega$ – наименьшее по включению замкнутое множество, такое, что $(f,\varphi)=0$ для любой функции $\varphi \in \mathcal{D}(\Omega)$ такой, что $\sup \varphi \subset \Omega \setminus K$.

Рис. 1. Колебания струны. Рисунок взят из книги В.С. Владимирова, С.В. Жаринова "Уравнения математической физики".

Пример 14. Носитель δ_0 совпадает с точкой $\{0\}$. Действительно, $(\varphi, \delta_0) = \varphi(0) = 0$ если $0 \notin \text{supp } \varphi$. Ясно также, что $0 \in \text{supp } \delta_0$, так как $\varphi(0) \neq 0$ для некоторых функций $\varphi \in \mathcal{D}(\mathbb{R}^n)$.

Пример 15. Носитель функции $\theta Z \in \mathcal{D}'(\mathbb{R})$ из упражнения 88 лежит на полуоси $\mathbb{R}_+ = [0, +\infty)$. Действительно, $\theta(x) = 0$ при $x \leq 0$, поэтому при интегрировании любой φ : $\mathrm{supp}\, \varphi \subset (-\infty, 0)$ мы получим 0.

Пример 16. Найдем фундаментальное рещение оператора $L = \frac{d^2}{dx^2} + 3\frac{d}{dx} + 2$. В соответствии с упражнением 88, для этого найдем решение уравнения

$$Z'' + 3Z' + 2Z = 0,$$
 $Z'(0) = 1,$ $Z(0) = 0.$

Решение ищем в виде $Z = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$. Подставляя в уравнение, получаем следующие условия:

$$\lambda_k^2 + 3\lambda_k + 2 = 0,$$
 $c_1\lambda_1 + c_2\lambda_2 = 1,$ $c_1 + c_2 = 0.$

Получаем два корня $\lambda_1 = -2, \ \lambda_2 = -1, \ omky$ да $c_1 = -1, \ c_2 = 1.$ Итак,

$$\mathcal{E}_0 = \theta(e^{-x} - e^{-2x})$$

- фундаментальное решение для оператора L.

Упражнение 71. Найдите фундаментальное решение для оператора $L = \frac{d^2}{dt^2} + a^2$. Ответ: $\mathcal{E}_0 = \theta \frac{\sin at}{a}$

Упражнение 72. Найдите фундаментальное решение для оператора $L=(\frac{d}{dx}+a)^2$. Ответ: $\mathcal{E}_0=-\frac{x}{a}e^{-ax}\theta$

4.2. **Уравнение колебаний струны.** Рассмотрим бесконечную струну, совершающую колебания в плоскости XY под действием внешней силы с плотностью f, направленной в каждой точке $x \in \mathbb{R}$ вдоль оси OY. Силу натяжения струны будем считать постоянной в любой момент времени t и равной T_0 по норме. Плотность струны в точке x обозначим

через $\rho(x)$. Отклонение струны от оси абсцисс в точке x в момент времени t назовем u(x,t). Сумма сил, действующая на участок струны $[x,x+\Delta x]$ равна

$$-T(x,t) + T(x + \Delta x, t) + \int_{[x,x+\Delta x]} f(s,t) ds,$$

где T(x,t) – сила натяжения в точке x. Проекция этой силы на ось OY равна

$$-T_0 \sin \alpha(x,t) + T_0 \sin \alpha(x+\Delta x,t) + \int_{[x,x+\Delta x]} f(s,t) \, ds,$$

где α – угол между T(x,t) и осью абсцисс. По второму закону Ньютона, эта сила должна равняться произведению массы участка на его ускорение вдоль оси OY, то есть

$$ma = \int_{[x,x+\Delta x]} \rho(s) \, ds \cdot u_{tt}''(x,t).$$

Следовательно.

$$T_0\left(\frac{\sin\alpha(x+\Delta x,t)-\sin\alpha(x,t)}{\Delta x}\right) + \frac{1}{\Delta x} \int_{[x,x+\Delta x]} f(s,t) \, ds = \frac{1}{\Delta x} \int_{[x,x+\Delta x]} \rho(s) \, ds \cdot u_{tt}''(x,t).$$

После перехода к пределу получаем

$$T_0 \cos \alpha(x,t) \cdot \alpha'_r(x,t) + f(x,t) = \rho(x) u''_{tt}(x,t)$$

С точностью до члена второго порядка $\alpha^2(x,t)$ имеют место соотношения $\cos\alpha(x,t)=1$,

$$\alpha(x,t) = \tan \alpha(x,t) = u'_x(x,t), \qquad \alpha'_x(x,t) = u''_{xx}(x,t).$$

Таким образом, получаем уравнение

$$\rho(x)u_{tt}(x,t) - T_0u_{xx}(x,t) = f(x,t), \qquad u(x,0) = u_0(x), \quad u'_t(x,0) = u_1(x)$$

где u_0 – положение струны в начальный момент времени, u_1 – сила, действующая на струну в момент времени t=0. Если струна сделана из однородного материала и натянута с единичной силой, то данное уравнение сводится к уравнению

$$u_{tt} - a^2 u_{xx} = f(x, t),$$
 $u(x, 0) = u_0(x),$ $u'_t(x, 0) = u_1(x),$

где a > 0 — некоторая постоянная.

Пример 17. Найдем фундаментальное решение для оператора $L = u_{tt} - a^2 u_{xx}$. Для этого применим преобразование Фурье относительно x к обеим частям уравнения

$$u_{tt} - a^2 u_{xx} = \delta_0(x, t)$$

Для $\tilde{u} = \mathcal{F}_x u$ получим

$$\tilde{u}_{tt}(\xi, t) + a^2 \xi^2 \tilde{u}(\xi, t) = \frac{1}{\sqrt{2\pi}} \delta_0(t).$$

 Φ иксируя ξ , применим результат упражнения 98. Получим

$$\tilde{u}(\xi,t) = \frac{1}{\sqrt{2\pi}} \frac{\sin(a|\xi|t)}{a|\xi|} \theta(a|\xi|t) = \frac{1}{\sqrt{2\pi}} \frac{\sin(a\xi t)}{a\xi} \theta(t).$$

Вспомним, что

$$\mathcal{F}\chi_{[-r,r]} = \frac{1}{\sqrt{2\pi}} \int_{-r}^{r} e^{isx} \, ds = \frac{1}{\sqrt{2\pi}} \frac{e^{isx}}{ix} \Big|_{-r}^{r} = \frac{2}{\sqrt{2\pi}} \frac{\sin rx}{x}$$

Выполняя обратное преобразование Φ урье по ξ , получим

$$\mathcal{E}_0(\xi, t) = \frac{1}{2a} \chi_{[-at, at]}(x) \theta(t) = \frac{1}{2a} \theta(at - |x|).$$

Для того, чтобы превратить аргументы, использованные в предыдущем примере, в доказательство, требуется некоторая работа. Мы поступим иначе и сделаем следующее упражнение.

Упражнение 73. Проверьте по определению, что $\mathcal{E}_0 = \frac{1}{2a}\theta(at-|x|)$ – фундаментальное решение для оператора струны $L = u_{tt} - a^2u_{xx}$.

Упражнение 74. С помощью преобразования Фурье постройте фундаментальное решение для оператора Даламбера $L = u_{tt} - a^2(u_{xx} + u_{yy} + u_{zz})$. Ответ: $\mathcal{E}_0 = \frac{\theta(t)}{4\pi a^2 t} \delta_{Sat}(x)$, где S_R – сфера радиуса R.

4.3. Обощенная задача Коши. Начнем с простого примера.

Пример 18. Пусть u – непрервно дифференцируемая функция на на \mathbb{R}_+ , u(x)=0 при x<0. Тогда

$$u'(x) = u(0)\delta_0 + u'_c(x)$$

где классическая производная u'_c считается равной нулю в точках, где она не существует (то есть в точке x=0), а в остальных точках вычисляется по обычному правилу. Действительно,

$$(u',\varphi) = -(u,\varphi') = -\int_{\mathbb{R}_+} u\varphi' = u(0)\varphi(0) + \int_{\mathbb{R}_+} u_c'\varphi = u(0)\varphi(0) + \int_{\mathbb{R}} u_c'\varphi,$$

что доказывает утверждение.

Посмотрим, как модифицировать волновое уравнение, чтобы оно учитывало начальные условия.

Упражнение 75. Пусть $u - \kappa$ лассическое решение волнового уравнения $u_{tt} - a^2 u_{xx} = f(x,t), \ u(0,x) = u_0(x), \ u'_t(0,x) = u_1(x).$ Положим $\tilde{u}(x,t) = u(x,t)$ при $t \geqslant 0$ и u(t,x) = 0 при t < 0. Тогда \tilde{u} удовлетворяет уравнению

$$\tilde{u}_{tt}''(x,t) - a^2 \tilde{u}_{xx}''(x,t) = f(x,t) + u_0(x)\delta_0'(t) + u_1(x)\delta_0(t).$$

Упражнение 76. Пусть $f \in C$, $u_0 \in C^2$, $u_1 \in C^1$, u пусть

$$u = \mathcal{E}_0 * f(x,t) + u_0(x)\delta'_0(t) + u_1(x)\delta_0(t).$$

Tог ∂a

$$u = \frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+(t-\tau)} f(\xi,\tau) \, d\xi \, d\tau + \frac{1}{2a} \int_{x-at}^{x+at} u_1(\xi) \, d\xi \, d\tau + \frac{1}{2} (u_0(x+at) + u_0(x-at)),$$

то есть функция и удовлетворяет классической формуле Даламбера решения волнового уравнения.

4.4. Упражнения для лучшего понимания теории распределений.

Упражнение 77. Если f – распределение конечного порядка с компактным носителем, то f – конечная сумма производных мер с компактным носителем. Указание: рассмотрите случай, когда порядок f равен нулю. Воспользуйтесь теоремой Рисса-Маркова.

Упражнение 78. Докажите, что любая функция $\varphi \in \mathcal{D}(\mathbb{R}^2)$ есть предел в $\mathcal{D}(\mathbb{R}^2)$ последовательности функций вида $\varphi_1(x)\varphi_2(y)$, где $\varphi_{1,2} \in \mathcal{D}(\mathbb{R})$.

Упражнение 79. Пусть $v \in C^1[0,\infty)$, и пусть v_{odd} , v_{even} – продолжения этой функции на всю ось четным и нечетным образом. Найдите v'_{odd} , v'_{even} в терминах теории распределений.

- 5. Занятие 5. Прямое произведение и свертка обобщенных функций
- 5.1. Прямое произведение распределений. Прямое произведение распределений $f \in \mathcal{D}'(\mathbb{R}^n), g \in \mathcal{D}'(\mathbb{R}^m)$ определяется по формуле

$$(f(x) \times g(y), \varphi(x,y)) = (f, (g(y), \varphi(x,y)), \qquad \varphi \in \mathcal{D}(\mathbb{R}^{n+m}).$$

Можно показать, что формула задает линейный непрерывный функционал на $\mathcal{D}(\mathbb{R}^{n+m})$, то есть распределение $f \times g \in \mathcal{D}'(\mathbb{R}^{n+m})$.

Упражнение 80. Множество функций вида $(x,y) \mapsto \varphi(x)\psi(y), x \in \mathbb{R}^n, y \in \mathbb{R}^m, \epsilon de$ $\varphi \in \mathcal{D}(\mathbb{R}^n), \psi \in \mathcal{D}(\mathbb{R}^m), n$ лотно в пространстве $\mathcal{D}(\mathbb{R}^{n+m})$. Указание: рассмотрите функции вида $P(x,y)\eta_n(x)\eta_m(y)$ – где P – многочлен, $\eta_{n,m}$ – гладкий спуск с единицы.

Заметим, что для любых $f\in \mathcal{D}'(\mathbb{R}^n),\ g\in \mathcal{D}'(\mathbb{R}^m)$ имеет место равенство

$$(f \times g, \varphi(x)\psi(y)) = (f, \varphi)(g, \psi) = (g \times f, \varphi(x)\psi(y)), \qquad \varphi \in \mathcal{D}(\mathbb{R}^n), \quad \psi \in \mathcal{D}(\mathbb{R}^m).$$

Упражнение 81. *Lля любых распределений* $f \in \mathcal{D}'(\mathbb{R}^n)$, $g \in \mathcal{D}'(\mathbb{R}^m)$ имеет место равенство $f \times g = g \times f$.

5.2. Свертка распределений. Формула для свертки функций подсказывает нам такое определение свертки распределений $f, g \in \mathcal{D}'(\mathbb{R}^n)$:

$$(f * g, \varphi) = ((f \times g)(x, y), \varphi(x + y)).$$

Проблема в том, что в общем случае функция $(x,y) \mapsto \varphi(x+y)$ не лежит в $\mathcal{D}'(\mathbb{R}^{2n})$. Естественно гладко срезать $\varphi(x+y)$ на большой компакт, применить $f \times g$ и перейти к пределу. Будем говорить, что $\eta_k \in \mathcal{D}(\mathbb{R}^n)$ – последовательность, сходящаяся к единице в \mathbb{R}^n , если функции η_k со всеми своими производными равномерно ограничены и для любого компакта K существует N, такое, что выполняется равенство $\eta_k(x) = 1, x \in K$, $k \geqslant N$. Сверка распределений определяется как предел

$$\lim_{k \to \infty} ((f \times g)(x, y), \eta_k(x, y)\varphi(x + y))$$

в случае, если этот предел существует для любой функции $\varphi \in \mathcal{D}(\mathbb{R}^n)$ и любой последовательности η_k , сходящейся к единице в \mathbb{R}^{2n} (можно показать, что в этом случае предел определяет линейный непрерывный функционал на $\mathcal{D}(\mathbb{R}^n)$, то есть является распределением).

Упражнение 82. Свертка распределений f * g существует тогда и только тогда, когда существует свертка g * f, причем f * g = g * f.

Вспомним, что K – это носитель распределения $f \in \mathcal{D}'(\Omega)$, если $K \subset \Omega$ – наименьшее по включению замкнутое множество, такое, что $(f,\varphi)=0$ для любой функции $\varphi \in \mathcal{D}(\Omega)$ такой, что $\operatorname{supp} \varphi \subset \Omega \setminus K$.

Пример 19. Носитель распределения δ_{S_R} , от которого мы считали преобразование Фурье, равен S_R . Действительно, $\int_{S_R} \varphi = 0$ для любой функции $\varphi \in C_0(\mathbb{R}^3 \setminus K)$ тогда и только тогда, когда $K = S_R$.

Пример 20. Производные обобщенных функций не увеличивают их носители. Действительно, (supp $D^{\alpha}f, \varphi$) = 0 для любой для любой $f \in \mathcal{D}'(\Omega)$ и для любой $\varphi \in \mathcal{D}(\Omega)$: supp $\varphi \subset \Omega \setminus \text{supp } f$. Таким образом, supp $D^{\alpha}f \subset \text{supp } f$.

Упражнение 83. Если $f \in \mathcal{D}'(\Omega)$ и функция $\psi \in C^{\infty}(\Omega)$ равна единице в окрестности $\operatorname{supp} f$, то $\psi f = f$.

Пример 21. Если носитель $f \in \mathcal{D}'(\mathbb{R}^n)$ – компактен, то f * g существует для любой обобщенной функции $g \in \mathcal{D}'(\mathbb{R}^n)$. Чтобы убедится в этом, возъмем $\varphi \in \mathbb{D}(\mathbb{R}^n)$, обозначим через K_f , K_{φ} компакты, содержащие некоторые окрестности носителей $\sup f$, $\sup \varphi$, соответственно, и рассмотрим множество

$$K = \{(x, y) : x \in K_f\} \cap \{(x, y) : x + y \in \text{supp } K_{\varphi}\} = \{(x, y) : x \in K_f, y \in K_{\varphi} - K_f\}.$$

Ясно, что K – компакт. C другой стороны, если η – гладкий спуск c K, $\eta_{\text{supp }f}$ – гладкий спуск c единицы c supp f c носителем e K_f , e g g – последовательность из $\mathcal{D}(\mathbb{R}^n)$, сходящаяся e единице, то

 $(f \times g, \eta_k(x, y)\varphi(x + y)) = (f \times g, \eta_{\text{supp}\,f}(x)\eta_k(x, y)\varphi(x + y)) = (f \times g, \eta_K(x, y)\varphi(x + y))$ при больших k (столь больших, что $\eta_k = 1$ на носителе η_K). Следовательно, свертка f * g существует.

Упражнение 84. Если supp $f_{1,2} \subset [0,+\infty)$, то существует $f_1 * f_2$. Как обобщить это условие для \mathbb{R}^n ?

Упражнение 85. Равенство $f * \delta_0 = f$ справедливо для любого $f \in \mathcal{D}'(\Omega)$.

Упражнение 86. Если существует свертка f * g, то для любого мультииндекса α существуют свертки $D^{\alpha}f * g$, $f * D^{\alpha}g$, причем

$$D^{\alpha}(f * g) = D^{\alpha}f * g = f * D^{\alpha}g.$$

Указание: если η_k сходится к единице, то $\eta_k(x,y) + \eta'_{x_i}(x,y)$ также сходится к единице. В частности, последовательность $\eta'_{x_i}(x,y)$ сходится к нулю в подходящем смысле.

Упражнение 87. Если \mathcal{E}_0 – фундаментальное решение для оператора L и существует свертка $f * \mathcal{E}_0$, то $L(f * \mathcal{E}_0) = f$.

Вспомним, как находить фундаментальные решения для одномерных дифференциальных операторов:

Упражнение 88. Пусть $P = \frac{d^n}{dx^n} + a_{n-1}(x) \frac{d^{n-1}}{dx^{n-1}} + \ldots + a_1(x) \frac{d}{dx} + a_0(x)$ – дифференциальный оператор с непрерывными коэффициентами. Предположим, что существует решение $Z \in C^n(\mathbb{R})$ уравнения P(Z) = 0, такое, что $Z^{(k)}(0) = 0$, $k = 0, \ldots n-2$, $Z^{(n-1)}(0) = 1$. Тогда $\mathcal{E}_0 = \theta Z$ – фундаментальное решение для P, то есть $P(\mathcal{E}_0) = \delta_0$.

Оказывается, что найденное фундаментальное решение – единственное, обладающее свойством $\sup \mathcal{E}_0 \subset \mathbb{R}_+$.

Упражнение 89. В упражнении 88 распределение \mathcal{E}_0 – единственное фундаментальное решение с носителем на \mathbb{R}_+ для оператора L. Указание: $\mathcal{E}_0 = \delta_0 * \mathcal{E}_0$.

Пример 22. Пусть $f \in L^1(\mathbb{R}^2)$, $u_1 \in L^1(\mathbb{R})$, $u_0 \in C(\mathbb{R})$ – функции с компактным носителем, и пусть

$$u = \mathcal{E}_0 * (f(x,t) + u_0(x)\delta_0'(t) + u_1(x)\delta_0(t)),$$

где \mathcal{E}_0 – фундаментальное решение для волнового уравнения (здесь $u_0(x)\delta_0'(t) = u_0(x) \times \delta_0'(t)$, $u_1(x)\delta_0(t) = u_1(x) \times \delta_0(t)$, кроме того, мы продолжили f нулем при t < 0). Тогда

$$u = \frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,t) d\xi d\tau + \frac{1}{2a} \int_{x-at}^{x+at} u_1(\xi) d\xi + \frac{1}{2} (u_0(x+at) + u_0(x-at)),$$

то есть функция и удовлетворяет классической формуле Даламбера решения волнового уравнения. Проверим этот факт в случае, когда $u_0 = u_1 = 0$. По определению, мы должны взять $\varphi \in \mathcal{D}(\mathbb{R}^2)$ и посчитать

$$(\mathcal{E}_0 * f, \varphi) = \lim_{k \to \infty} (\mathcal{E}_0(t, x) \times f(s, y), \eta_k((x, t), (y, s)) \varphi(x + y, s + t)),$$

то есть

$$\lim_{k\to\infty} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{E}_0(x,t) f(y,s) \eta_k((x,t),(y,s)) \varphi(x+y,s+t) \, dx dt dy ds$$

Вспоминая, что $\mathcal{E}_0 = \frac{1}{2a}\theta(at-|x|)$ обращается в ноль $npu\ |x|>at,\ a\ f,\ \varphi$ имеют компактный носитель, получаем, что последний предел существует и равен

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{E}_0(x,t) f(y,t) \varphi(x+y,s+t) \, dx dt dy ds,$$

где подынтегральное выражение обнуляется вне компакта в \mathbb{R}^4 . Мы хотим записать это выражение в виде

$$(G,\varphi) = \int_{\mathbb{R}} \int_{\mathbb{R}} G(\xi,\tau) \varphi(\xi,\tau) \, d\xi d\tau$$

для некоторой функции G. Для этого сделаем замену переменных $x = \xi - y, \ t = \tau - s$:

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{E}_0(\xi - y, \tau - s) f(y, s) \varphi(\xi, \tau) \, dy ds d\xi d\tau.$$

Иными словами,

$$G(\xi,\tau) = \int_{\mathbb{R}} \int_{\mathbb{R}} \mathcal{E}_0(\xi - y, \tau - s) f(y,s) \, dy ds,$$

$$= \frac{1}{2a} \int_0^{\tau} \int_{\mathbb{R}} \theta(a(\tau - s) - |\xi - y|) f(y,s) \, dy ds,$$

$$= \frac{1}{2a} \int_0^{\tau} \int_{\xi - a(\tau - s)}^{\xi + a(\tau - s)} f(y,s) \, dy ds$$

— так же, как и в формуле Даламбера. Подставляя вместо f распределение $u_0(x)\delta_0'(t)+u_1(x)\delta_0(t)$, легко эвристически проверить формулу для оставшихся двух членов. Затем можно строго доказать ее.

Упражнение 90. Рассмотрите случай, в котором f = 0, $u_1 = 0$.

Упражнение 91. Рассмотрите случай, в котором f = 0, $u_0 = 0$.

Упражнение 92. Найдите решение (в виде явной формулы) уравнения волнового уравнения на \mathbb{R} для $u_1 = \delta_{-1}(x) + \delta_1(x)$, $u_0 = 0$. Каков физический смысл этого решения? (при каких физических условиях струна поведет себя таким образом?)

Упражнение 93. Для волнового уравнения $(t \in \mathbb{R}_+, one pamop Лапласа по переменной <math>x \in \mathbb{R}^3)$

$$u_{tt} - a^2 \Delta u(x, t) = f(x, t), \qquad u(x, 0) = u_0(x), \qquad u'_t(x, 0) = u_1(x)$$

обобщенная задача Коши ставится в виде

$$u_{tt} - a^2 \Delta u(x, t) = f(x, t) + u_0(x)\delta_0'(t) + u_1(x)\delta_0(t),$$

где f(x,t) продолжено нулем при t < 0. Докажите, что классическое решение волнового уравнения решает обобщенную задачу в смысле распределений.

Упражнение 94. Докажите формулу Кирхгофа

$$u(x,t) = \frac{1}{4\pi^2 a^2 t} \int_{|\xi - x| = at} u_1 \, dS$$

для классической задачи Коши волнового уравнения в \mathbb{R}^3 в случае $f=u_0=0$, отталкиваясь от формулы для фундаментального решения:

$$\mathcal{E}_0(x,t) = \frac{\theta(t)}{4\pi a^2 t} \delta_{S_{at}}(x), \qquad S_R = \{x \in \mathbb{R}^3 : ||x|| = 1\}.$$

Упражнение 95. Выведите формулу Кирхгофа для классической задачи Коши волнового уравнения в \mathbb{R}^3 в случае $f=u_1=0$ и в случае $u_0=u_1=0$.

- 6. Занятие 6. Метод бегущих волн для волнового уравнения
- 6.1. Метод отражений/метод бегущих волн. Формула Даламбера,

$$u = \frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi d\tau + \frac{1}{2a} \int_{x-at}^{x+at} u_1(\xi) d\xi + \frac{1}{2} (u_0(x+at) + u_0(x-at)),$$

которую мы уже вывели с вомощью обобщенных функций, показывает, что решение волнового уравнения на всей оси всегда можно представить в виде

$$u(x,t) = f(x+at) + g(x-at)$$
(8)

для некоторых функций f, g на \mathbb{R} . Они интерпретируются как уходящая (влево) и приходящая (слева) бегущие волны. В классическом случае (когда все производные существуют и понимаются в обычном смысле) формулу Даламбера можно вывести из представления (8) и начальных условий $u(x,0) = u_0(x)$, $u'_t(x,0) = u_1(x)$:

Упражнение 96. Пусть $\Omega \subset \mathbb{R}^2$ – выпуклая область, и пусть $u_{tt} - a^2 u_{xx} = 0$ для некоторой функции $u \in C^2(\Omega)$. Тогда если $\xi = x + at$, $\eta = x - at$, то функция $\tilde{u}(\xi, \eta) = u(x(\xi, \eta), t(\xi, \eta))$ в соответствующей области удовлетворяет уравнению $\tilde{u}_{\xi\eta} = 0$, то есть имеет вид $\tilde{u} = f(\xi) + g(\eta)$ для некоторых функций f, g.

Упражнение 97. Выведите из предыдущего упражнения представление Даламбера для решения одномерного волнового уравнения на \mathbb{R} ,

$$u_{tt} - a^2 u_{xx} = 0, \quad u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \qquad x \in \mathbb{R}$$
 при условиях $u \in C^2(\mathbb{R}), \ u_1 \in C^1(\mathbb{R}).$

Представление (8) оказывается очень полезным, когда волновое уравнение решается на полуоси или на интервале. В первом случае к начальным условиям добавляются одно краевое, описывающее поведение левого конца струны:

Упражнение 98. Решить уравнение

$$u_{tt} - 4u_{xx} = 16t^2$$
, $u(x,0) = x^4/6$, $u_t(x,0) = 2\sin x$, $u(0,t) = 4t^4$, $x \ge 0$, $t \ge 0$.
Omeem: $u(x,t) = 4t^4 + 4t^2x^2 + \frac{x^4}{6} + \sin 2t \sin x$.

Упражнение 99. Решить уравнение

$$u_{tt} - 4u_{xx} = 6xt$$
, $u(x,0) = x^3$, $u_t(x,0) = 0$, $u(0,t) = t^3$, $x \ge 0$, $t \ge 0$.
Omeem: $u(x,t) = \frac{1}{2}(x+2t)^3 + \frac{1}{2}(x-2t)^3 + xt^3$ npu $x \ge 2t$, $u(x,t) = \frac{1}{2}(x+2t)^3 + \frac{3}{8}(x-2t)^3 + xt^3$ npu $x < 2t$.

Метод бегущих волн можно "алгоритмизировать" следующим образом.

Пример 23. Найдем решение волнового уравнения для полубесконечной струны с закрепленным левым концом:

$$u_{tt} - a^2 u_{xx} = 0$$
, $u(x,0) = u_0(x)$, $u_t(x,0) = u_1(x)$, $u(0,t) = 0$, $x,t \in \mathbb{R}_+$,
при условиях $u \in C^2(\mathbb{R}_+)$, $u_1 \in C^1(\mathbb{R}^+)$, $u_0(0) = u_0''(0) = u_1(0) = 0$. Рассмотрим область $\Omega = (0, +\infty) \times (0, +\infty)$. Как мы выяснили, решение волнового уравнения в этой области должно иметь вид (8). Попытаемся найти функции f , g исходя из начально-краевых условий. Из условия $u(0,t) = 0$ следует, что

$$f(at) + g(-at) = 0,$$

то есть

$$u(x,t) = f(x+at) - f(-(x-at)), \qquad x \geqslant 0.$$

для некоторой функции f на \mathbb{R} . B частности, если решение существует, то u(x,0)=f(x)-f(-x) продолжается на \mathbb{R}_- как нечетная функция по x. Аналогично, производная $u_t(x,0)=af'(x)-af'(-x)$ продолжается на \mathbb{R}_- как нечетная функция по x. Это мотивирует нас продолжить u_0 , u_1 нечетным образом на \mathbb{R}_- (начальные условия позволяют нам это сделать с сохранением гладкости!). Обозначим продолжение через $\tilde{u}(x,t)$, $\tilde{u}_0(x)$, $\tilde{u}_1(x)$. Заметим, что

$$\tilde{u}(x,t) = f(x+at) - f(-(x-at)), \quad u(x,0) = \tilde{u}_0(x), \quad \tilde{u}_t(0,x) = u_1(x), \quad x \in \mathbb{R}, \ t \in \mathbb{R}_+.$$

Эту задачу мы уже умеем решать (см. упражнение 96), ответ дается формулой Даламбера:

$$\tilde{u}(x,t) = \frac{1}{2}(\tilde{u}_0(x+at) + \tilde{u}_0(x-at) + \frac{1}{2a} \int_{x-at}^{x+at} \tilde{u}_1(s) \, ds. \tag{9}$$

Легко проверить, что сужение $\tilde{u}(x,t)$ обратно на \mathbb{R}_+ (по x) решает исходную задачу.

Стоит отметить, что несмотря на конкретику процедуры, описанной выше, при решении задач с явными функциями проще действовать так же, как мы действовали при решении упражнений 98 и 99 (записывать решение в виде бегущих волн и находить неизвестные функции f, g). Вот еще задача и пример на ту же тему.

Упражнение 100. Доказать, что задача

$$u_{tt} - a^2 u_{xx} = 0$$
, $u(x,0) = 0$, $u_t(0,x) = 0$, $u(0,t) = \psi(t)$, $x, t \in \mathbb{R}_+$

имеет единственное решение $u = \theta(at - x)\psi(t - x/a)$ если $\psi \in C^2(\mathbb{R}_+)$ и выполняются условия $\psi(0) = \psi'(0) = \psi''(0) = 0$.

Пример 24. Докажем, что задача колебания струны с двумя закрепленными концами $u_{tt}-a^2u_{xx}=0, \quad u(x,0)=u_0(x), \quad u_t(x,0)=u_1(x), \quad u(0,t)=u(\ell,t)=0, \quad 0\leqslant x\leqslant \ell, \ t\in \mathbb{R}_+,$ имеет единственное решение вида (9) (при этом на функции $u_0, \ u_1$ накладываются следующие условия: $u_0(0)=u_0(\ell)=u_1(0)=u_1(\ell)=u_0''(0)=u_0''(\ell)=0, \ u_0\in C^2[0,\ell],$ $u_1\in C^1[0,\ell]$). Для этого запишем общий вид решения волнового уравнения

$$u(x,t) = f(x+at) + g(x-at)$$

Из ограничений на переменные $x \in [0,\ell]$, $t \in \mathbb{R}_+$ видно, что функция f определена на \mathbb{R}_+ , а функция g – на множестве $(-\infty,\ell]$. Если решение, удовлетворяющее краевым условиям, существует, то

$$f(\xi) = -g(-\xi),$$
 $f(\ell + \xi) = -g(\ell - \xi),$ $\xi \geqslant 0.$

 Φ ункции $f,\,g,\,$ входящие в эти два уравнения допускают единственное продолжение $ilde f,\,$ ilde g на всю вещественную ось с выполнением условий

$$\tilde{f}(\xi) = -\tilde{g}(-\xi), \qquad \tilde{f}(\ell+\xi) = -\tilde{g}(\ell-\xi), \qquad \xi \in \mathbb{R}.$$
 (10)

В самом деле, первое уравнение продолжает f на множество $[-\ell,0]$, затем второе уравнение продолжает g на $[\ell,3\ell]$, затем первое уравнение продолжает f на множество $[-3\ell,-\ell]$, затем второе уравнение продолжает g на множество $[3\ell,5\ell]$ – u m.d. Так как каждый раз при продолжении не возникает свободы выбора, это гарантирует единственность. B то же время, процедура продолжения доопределяет функции f,g каждый раз на новых множествах, u доопределение функций не приводит k нарушению k0 на старых множествах изменения параметров. k1 частности, условия k2 будут выполнятся на всей вещественной оси. Рассмотрим теперь функцию

$$\tilde{u}(x,t) = \tilde{f}(x+at) + \tilde{g}(x-at) = \tilde{f}(x+at) - \tilde{f}(-(x-at)), \qquad x \in \mathbb{R}, \quad t \in \mathbb{R}_+.$$

Заметим, что

$$\tilde{u}(x,0) = \tilde{f}(x) - \tilde{f}(-x), \quad x \in \mathbb{R},$$

u umo

$$\tilde{f}(\ell+\xi) = -\tilde{g}(\ell-\xi) = -\tilde{g}(-(\xi-\ell)) = \tilde{f}(\xi-\ell),$$

откуда следует, что

$$\tilde{u}(x+\ell,0) = \tilde{f}(x+\ell) - \tilde{f}(-(x-\ell)) = \tilde{f}(x-\ell) - \tilde{f}(-(x+\ell)) = u(x-\ell,0).$$

Значит, функция $\tilde{u}(x,0)$ — нечетна и 2ℓ -периодична. Продолжим u_0 нечетным и 2ℓ -периодическим образом на \mathbb{R} . Обозначим продолжение через \tilde{u}_0 . Тогда

$$\tilde{u}(x,0) = \tilde{u}_0(x), \qquad x \in \mathbb{R}.$$

Аналогично,

$$\tilde{f}'(\xi) = -\tilde{g}'(-\xi), \qquad \tilde{f}'(\ell+\xi) = -\tilde{g}'(\ell-\xi), \qquad \xi \in \mathbb{R}.$$

Значит, функция

$$\tilde{u}_t(x,0) = a\tilde{f}'(x) - a\tilde{f}'(-x)$$

является нечетной и 2ℓ -периодической. В частности, если мы продолжим u_1 нечетным и 2ℓ -периодическим образом, то для продолжения \tilde{u}_1 будет выполнятся

$$\tilde{u}_t(x,0) = \tilde{u}_1(x), \qquad x \in \mathbb{R}.$$

Итак, для продолжения й выполняются следующие условия:

$$\tilde{u}_{tt} - a^2 \tilde{u}_{xx} = 0, \quad \tilde{u}(x,0) = \tilde{u}_0(x), \quad \tilde{u}_t(x,0) = \tilde{u}_1(x).$$

Значит, $\tilde{u}(x,t)$ имеет вид (9), где начальные данные \tilde{u}_0 , \tilde{u}_1 определены на всей оси и полученны следующим образом: \tilde{u}_0 , $\tilde{u}_1 - 2\ell$ -периодические нечетные функции совпадающие с u_0 , u_1 на $[0,\ell]$. На функции u_0 , u_1 накладываются следующие условия: $u_0(0) = u_0(\ell) = u_1(0) = u_1(\ell) = u_0''(0) = u_0''(\ell) = 0$, $u_0 \in C^2[0,\ell]$, $u_1 \in C^1[0,\ell]$. Сужая и обратно на $[0,\ell] \times \mathbb{R}_+$, мы получаем решение исходной задачи в виде (9) с u(x,t) в левой части.

Упражнение 101. Доказать, что задача колебания струны с двумя свободно скользящими концами,

 $u_{tt}-a^2u_{xx}=0, \quad u(x,0)=u_0(x), \quad u_t(0,x)=u_1(x), \quad u_x'(0,t)=u_x'(\ell,t)=0, \quad 0\leqslant x\leqslant \ell, \ t\in \mathbb{R}_+,$ имеет единственное решение вида (9). При этом оно отвечает начальным данным $\tilde{u}_0, \ \tilde{u}_1$ на всей оси, полученным следующим образом: $\tilde{u}_0, \ \tilde{u}_1-2\ell$ -периодические четные функции совпадающие с $u_0, \ u_1$ на $[0,\ell]$. На функции $u_0, \ u_1$ накладываются следующие условия: $u_0'(0)=u_1'(0)=u_0'(\ell)=u_1'(\ell)=0, \ u_0\in C^2[0,\ell], \ u_1\in C^1[0,\ell].$

Вот задача для тренировки дома:

Упражнение 102. Решить задачу

$$u_{tt} = u_{xx} + 2$$
, $u(x,0) = x + \cos x$, $u'_t(x,0) = 1$, $u'_x(0,t) = 1$, $t \ge 0$, $x \ge 0$.
Omeem: $x + t + t^2 + \cos x \cos t$.

Больше про метод отражения и его физическую интерпретацию можно прочитать в книге Владимиров В.С., Жаринов В. В. Уравнения математической физики: Учебник для вузов (страница 189 и далее). Задачи можно брать из параграфа 21 задачника Сборник задач по уравнениям математической физики. Под ред. В. С. Владимирова. Физматлит, 2001.

Задача 1. Найдите $(\star(df))(e_1,e_2)$ в точке p для функции $f(x,y,z)=z\sin x+y^2$ на векторах e_i , заданных в стандартном базисе,

$$p = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \qquad e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}.$$

Задача 2. Найдите выражение для оператора div \tilde{f} в координатной системе F,

на 2. Найдите выражение для оператора div
$$f$$
 в координатной системе F ,
$$\begin{cases} x = \cosh \tau \cos \theta \cos \varphi, \\ y = \cosh \tau \cos \theta \sin \varphi, \\ z = \sinh \tau \sin \theta, \end{cases} \qquad \tau \in (0, +\infty), \quad \theta \in (-\pi/2, \pi/2), \quad \varphi \in (-\pi, \pi).$$

Поле \tilde{f} считается заданным в локальном нормированном базисе $(\hat{v}_1,\hat{v}_2,\hat{v}_3)$ системы координат F, то есть известно разложение $f(w) = \tilde{f}(F(w)) = f_1(w)\hat{v}_1 + f_2(w)\hat{v}_2 + f_3(w)\hat{v}_3$ в каждой точке $w \in (0, +\infty) \times (-\pi/2, \pi/2) \times (-\pi, \pi)$.

Задача 3. Найдите любое фундаментальное решение для оператора $f \mapsto \frac{d^2 f}{dx^2} - 16f$. Проверьте по определению, что найденная функция – действительно фундаментальное решение.

Задача 4. Докажите, что для любых двух распределений $f,g\in\mathcal{D}'(\mathbb{R}^2)$ с носителем в квадранте $\mathbb{R}_+ \times \mathbb{R}_+$ определена свертка f * g.

Задача 5. Докажите, что задача

$$u_{tt} - a^2 u_{xx} = 0$$
, $u(x,0) = 0$, $u_t(0,x) = 0$, $u(0,t) = \psi(t)$, $x, t \in \mathbb{R}_+$,

имеет единственное решение $u=\theta(at-x)\psi(t-x/a)$ если $\psi\in C^2(\mathbb{R}_+)$ и выполняются условия $\psi(0) = \psi'(0) = \psi''(0) = 0$.

Задача 6. Найдите решение следующей смешанной задачи:

$$u_{tt} = u_{xx} - 4u \ (0 < x < 1); \quad u(0,t) = u(1,t) = u_t(x,0) = 0, \quad u(x,0) = x^2 - x.$$

Задача 1. Докажите, что для гладкого отображения $f=(f_1,f_2,f_3):\mathbb{R}^3\to\mathbb{R}^3$ имеет место равенство

$$\operatorname{rot} f = \begin{pmatrix} \frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z} \\ \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x} \\ \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} \end{pmatrix} = (\star (df^b))_{\#}.$$

Задача 2. Найдите выражение для оператора rot \tilde{f} в произвольной правильной ортогональной системе координат $F:\Omega\to\mathbb{R}^3$. Поле \tilde{f} считается заданным в локальном нормированном базисе $(\hat{v}_1,\hat{v}_2,\hat{v}_3)$ системы координат F, то есть известно разложение $f(w)=\tilde{f}(F(w))=f_1(w)\hat{v}_1+f_2(w)\hat{v}_2+f_3(w)\hat{v}_3$ в каждой точке $w\in\Omega$.

Задача 3. Найдите любое фундаментальное решение для оператора $f \mapsto \frac{d^2 f}{dx^2} + 16f$. Проверьте по определению, что найденная функция – действительно фундаментальное решение.

Задача 4. Докажите, что для любого распределения $f \in \mathcal{D}'(\mathbb{R})$ порядка 1 с компактным носителем существует комплекснозначная мера с μ компактным носителем и конечной вариацией, такая, что $f = \mu'$ (производная берется в смысле распределений). Указание: используйте теорему об общем виде линейных непрерывных функционалов на C(K).

Задача 5. Найдите решение следующей задачи:

$$u_{tt} = u_{xx} + 2$$
, $u(x,0) = x + \cos x$, $u'_t(x,0) = 1$, $u'_x(0,t) = 1$, $t \ge 0$, $x \ge 0$.

Задача 6. Найдите решение следующей смешанной задачи:

$$u_{tt} + u_t = u_{xx}$$
 (0 < x < 1); $u(0,t) = t$, $u(1,t) = u(x,0) = 0$, $u_t(x,0) = 1 - x$.

Указание: рассмотрите функцию u - t(1 - x).

Задача 1. Докажите, что для любого гладкого отображения $f = (f_1, f_2, f_3) : \mathbb{R}^3 \to \mathbb{R}^3$ имеет место равенство div rot f = 0. Можно использовать выражения для div, rot в терминах дифференциальных форм.

Задача 2. Найдите выражение для оператора Лапласа $\Delta \tilde{f}$ в цилиндрической системе координат

$$F(r,\varphi,z) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi\\z \end{pmatrix}$$

Задача 3. Докажите, что распредение $f = (x^2 + 1) \cdot (|x - 1|)''$ лежит в классе $\mathcal{S}'(\mathbb{R})$ и найдите его значение на тестовой функции e^{-x^2} .

Задача 4. Определим функционал f по правилу

$$f: \varphi \mapsto p.v. \int_{\mathbb{R}} \frac{\varphi(x)}{x} dx, \qquad \varphi \in \mathcal{S}(\mathbb{R}).$$

Докажите, что определение корректно (интеграл в смысле главного значения существует) и $f \in \mathcal{S}'(\mathbb{R})$.

Задача 5. Докажите, что задача колебания струны с двумя свободно скользящими концами,

 $u_{tt}-a^2u_{xx}=0, \quad u(x,0)=u_0(x), \quad u_t(0,x)=u_1(x), \quad u_x'(0,t)=u_x'(\ell,t)=0, \quad 0\leqslant x\leqslant \ell, \ t\in\mathbb{R}_+,$ имеет единственное решение вида

$$\tilde{u}(x,t) = \frac{1}{2}(\tilde{u}_0(x+at) + \tilde{u}_0(x-at) + \frac{1}{2a} \int_{x-at}^{x+at} \tilde{u}_1(s) \, ds.$$

При этом оно отвечает начальным данным \tilde{u}_0 , \tilde{u}_1 на всей оси, полученным следующим образом: \tilde{u}_0 , $\tilde{u}_1 - 2\ell$ -периодические четные функции совпадающие с u_0 , u_1 на $[0,\ell]$. На функции u_0 , u_1 накладываются следующие условия: $u_0'(0) = u_1'(0) = u_0'(\ell) = u_1'(\ell) = 0$, $u_0 \in C^2[0,\ell]$, $u_1 \in C^1[0,\ell]$.

Задача 6. Найдите решение следующей смешанной задачи:

$$u_{tt} = u_{xx} + x$$
 $(0 < x < \pi)$; $u(0,t) = u(\pi,t) = 0$, $u(x,0) = \sin 2x$, $u_t(x,0) = 0$.

Задача 1. Докажите, что для любого гладкого отображения $f = (f_1, f_2, f_3) : \mathbb{R}^3 \to \mathbb{R}^3$ имеет место равенство rot grad f = 0. Можно использовать выражения для grad, rot в терминах дифференциальных форм.

Задача 2. Найдите $\star d\omega$ в цилиндрической системе координат

$$F(r,\varphi,z) = \begin{pmatrix} r\cos\varphi\\r\sin\varphi\\z \end{pmatrix}$$

для формы $\omega = \varphi z \, d\hat{\omega}_1 + rz \, d\hat{\omega}_2 + r\varphi \, d\hat{\omega}_3$.

Задача 3. Докажите, что распредение $f = (x^2 + 1) \cdot (|x - 1|)''$ лежит в классе $\mathcal{S}'(\mathbb{R})$ и найдите его значение на тестовой функции e^{-x^2} .

Задача 4. Определим функционал f по правилу

$$f \colon \varphi \mapsto p.v. \int_{\mathbb{R}} \frac{\varphi(x) - x\varphi'(x)}{x^3} dx, \qquad \varphi \in \mathcal{S}(\mathbb{R}).$$

Докажите, что определение корректно (интеграл в смысле главного значения существует) и $f \in \mathcal{S}'(\mathbb{R})$.

Задача 5. Решите задачу

$$u_{tt} = u_{xx}, \quad t > 0, \quad x > 0, \quad u(x,0) = x, \quad u_t(x,0) = 1, \quad u_x(x,0) = \cos t.$$

Задача 6. Найдите решение следующей смешанной задачи:

$$u_{tt} = u_{xx} + x \ (0 < x < \pi); \quad u(0,t) = u(\pi,t) = 0, \quad u(x,0) = \sin 2x, \quad u_t(x,0) = 0.$$