MLADS 4주차

ML/DS 지식 따라까기

Perceptron, MLP, Loss Function

Neuron을 모방하여 만들어진 인공신경망

이항 분류를 위한 알고리즘

- 뉴런의 돌기들은 각각 input과 output이 됨
- 뉴런에서 각 synapse의 강도는 가중치가 됨

Perceptron에서의 2가지 묘소

(1) Y=WX+B

(2) Activation function

$$(1) Y=WX+B$$

(1) Linear Regression

Y=WX+B

X	Υ
20	30
30	40
45	555

$$(1) Y=WX+B$$

(2) Multivariate Regression

 $Y=W_1X_1+W_2X_2+...+B$

X ₁	X_2	Y
20	30	56
30	40	50
19	25	55

(1)
$$Y=WX+B$$

(3) Regression in ML

$$\mathbf{B} = \begin{bmatrix} [-4.97379915e-14] \\ [-2.13162821e-14] \end{bmatrix}$$

(2) Activation Function

(2) Activation Function

• 앞선 입력들을 합쳐서 출력할 수 있도록 변환함

Sigmoid의 특성

- Logisitic이라고도 함
- 5자형 구조임
- x값에 따라 0~1의 값을 가짐

1. Sigmoid

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid의 한계점

• Vanishing Gradient 문제

(2) Activation Function

• 앞선 입력들을 합쳐서 출력할 수 있도록 변환함

2. Tanh

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Tanh의 특성

- '쌈곡선'과 관련 있는 개념임.
- 5자형 구조임
- 함수의 중심점이 원점임

Tanh의 한계점

• Vanishing Gradient 문제

(2) Activation Function

• 앞선 입력들을 합쳐서 출력할 수 있도록 변환함

3. ReLU (Rectified Linear Unit)

$$f(x) = max(0, x)$$

ReLU의 특성

- Vanishing Gradient를 해결함
- 이보다 작으면 값이 이임
- 학습이 비교적 빠르고, 연산 비용이 적음

ReLU의 한계점

• Dying ReLU 문제

(2) Activation Function

• 앞선 입력들을 합쳐서 출력할 수 있도록 변환함

4. Leaky ReLU

f(x) = max(0.01x, x)

Leaky ReLU의 특성

- Dying ReLU 문제를 해결함
- 이보다 작아도 기울기가 존재함
- 학습이 비교적 빠르고 연산 비용이 적음

Leaky ReLU의 한계점

• 음수 파트가 중요할 때 쓰기 어려움

MLP

(1) MLP란? Multi-Layer Perceptron

단층

다층

MLP

(1) MLP란?

MLP

(1) MLP란?

ANN DNN

COST FUNCTION

(1) Cost Function 이란?

'실제 답'과 '학습이 결과'이 차이를 수치화한 것

COST FUNCTION IN MACHINE LEARNING

COST FUNCTION

(1) Cost Function의 종류

3주차의 Evaluation Technique을 참고

EVALUATION

Thank you