Homework 2

ECE2504 CRN:82729

Jacob Abel

September 9, 2017

Question 1: (4 pts) Represent the decimal number 5293 in BCD, excess-3 code, ASCII, and hex.

Hex: $5293 = (1 \times 16^3) + (4 \times 16^2) + (10 \times 16^1) + (13 \times 16^0) = 14AD$

BCD: 5293 = (5)0101 (2)0010 (9)1001 (3)0011 = 0101 0010 1001 0011

Excess-3: $5293 = 1000\ 0101\ 1100\ 0110$

$$5293 = (5+3) (2+3) (9+3) (3+3)$$

= $(8)1000 (5)0101 (12)1100 (6)0110$
= $1000 0101 1100 0110$

ASCII: $5293 = 0110101\ 0110010\ 0111001\ 0110011$

$$5293 = (5)011\ 0101\ (2)011\ 0010\ (9)011\ 1001\ (3)011\ 0011$$

= $0110101\ 0110010\ 0111001\ 0110011$

Question 2: (8 pts) Write your name in ASCII using an 8-bit code. Use uppercase and lowercase letters appropriately. Include a space between names. Give your final answers in hex.

a) With the leftmost bit always 0.

$$Jacob \ Abel = (J)(a)(c)(o)(b)(\)(A)(b)(e)(l)$$

$$= (10_{10} + 40_{16})(1_{10} + 60_{16})(3_{10} + 60_{16})(15_{10} + 60_{16})(2_{10} + 60_{16})$$

$$(20_{16})(1_{10} + 40_{16})(2_{10} + 60_{16})(1_{10} + 60_{16})(12_{10} + 60_{16})$$

$$= 4A \ 61 \ 63 \ 6F \ 62 \ 20 \ 41 \ 62 \ 65 \ 6C$$

b) With the leftmost bit assigned to produce odd parity

$$Jacob\ Abel = (J)(a)(c)(o)(b)(\)(A)(b)(e)(l) \\ = (4A)01001010\ (61)01100001\ (63)01100011\ (6F)01101111\ (62)01100010\ (20)00100000\ (41)01000001\ (62)01100010\ (65)01100101\ (6C)01101100 \\ = (03)01001010\ (03)01100001\ (04)01100011\ (06)01101111\ (03)01100010\ (01)00100000\ (02)01000001\ (03)01100010\ (04)01100101\ (04)01100101\ (04)01101100 \\ = (03)01001010\ (03)01100001\ (04)11100011\ (06)11101111\ (03)01100010\ (01)00100000\ (02)11000001\ (03)01100010\ (04)11100101\ (04)11101100 \\ = (4A)01001010\ (61)01100001\ (73)11100011\ (7F)11101111\ (62)01100010\ (20)00100000\ (51)11000001\ (62)01100010\ (75)11100101\ (7C)11101100 \\ = 4A\ 61\ 73\ 7F\ 62\ 20\ 51\ 62\ 75\ 7C$$

Question 3: (6 pts) Internally in the computer, with few exceptions, all numerical computation is done using binary numbers. Input, however, often uses ASCII, which is formed by appending 011 to the left of a BCD code. Thus, an algorithm that directly converts a BCD integer to a binary integer is very useful. Here is one such algorithm:

- 1. Draw lines between the 4-bit decades in the BCD number.
- 2. Move the BCD number one bit to the right.
- 3. Subtract 011 from each BCD decade containing a binary value > 0111.
- 4. Repeat Steps 2-3 until the leftmost 1 in the BCD number has been moved out of the least significant decade position.
- 5. Read the binary result to the right of the least significant decade position.
- a) Execute the algorithm for the BCD number 0111 0101.

Start	0111	0101	
» 1	0011	1010	1
		-011	
	0011	0111	1
» 1	0001	1011	11
		-011	
	0001	1000	11
» 1	0000	1100	011
		-011	
	0000	1001	011
» 1	0000	0100	1011
» 3	0000	0000	1001011

b) Execute the algorithm for the BCD number 0011 0110 1000.

Start	0011	0110	1000	
» 1	0001	1011	0100	0
		-011		
	0001	1000	0100	0
» 1	0000	1100	0010	00
		-011		
	0000	1001	0010	00
» 1	0000	0100	1001	000
			-011	
	0000	0100	0110	000
» 1	0000	0010	0011	0000
» 2	0000	0000	1000	110000
			-011	
	0000	0000	0101	110000
» 3	0000	0000	0000	101110000

Question 4: (8 pts) Encode the following Unicode code points in UTF-8. Show both the binary and hex value for each encoding. Hint: Table 1-6 in the textbook will be useful.

- a) U+0042
 - =0xxxxxxx
 - = 01000010
 - = 0x42

b) U+00C6

= 110xxxxx 10xxxxxx

= 11000011 10000110

= 0xC286

c) U+429B

= 1110xxxx 10xxxxxx 10xxxxxx

 $= 11100100\ 10001010\ 10011011$

= 0xE48A9B

d) U+1C5F3

= 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

 $= 11110000\ 10011100\ 10010111\ 10110011$

= 0xF09C97B3

Question 5: Textbook Problem 1-30: What is the percentage of power consumed for continuous counting (either up or down but not both) at the outputs of a binary Gray code counter (with all 2^n code words used) compared to a binary counter as a function of the number of bits, n, in the two counters?

$$efficiency(n) = \frac{\Delta gray(n)}{\Delta binary(n)} \times 100\%$$

$$efficiency(3) = \frac{8}{14} \times 100\% = 57\%$$

$$efficiency(3) = \frac{8}{14} \times 100\% = 57\%$$

GRADING SCALE

Total: 31 pts

Pts	0	4	8	11	15	19	23	27
Letter Grade	D-	D	C-	С	B-	В	A-	A