## Zarovnání sekvencí

Bioinformatika

Tomáš Martínek martinto@fit.vutbr.cz

### Osnova

- Úvod
  - Dot Plot
  - Jednoduché zarovnání
  - Skórovací matice
- Dynamické programování
  - Needleman-Wunch
  - Smith-Waterman
- Heuristické algoritmy
  - BLAST
  - FASTA
- Shrnutí

### Motivace

- Hledání zarovnání řetězců je jednou ze základních úloh bionformatiky - dává informaci např. o tom, jak se organizmy od sebe liší a napomáhají určit i funkci jednotlivých elementů
- Příklady základních otázek a úloh:
  - Jak se liší genom člověka od genomu šimpanze? [porovnání]
  - Jak se liší protein Myosin u různých organizmů? [porovnání]
  - Vyskytuje se daný element (gen, protein, promotor, reg. faktor, ...) i u jiných organizmů? [vyhledávání]
- Nejčastější změny v rámci evolučního procesu
  - mutace = záměna znaku poměrně časté
  - vložení/odstranění znaku menší pravděpodobnost

### **Dot Plot**

- Jedna z nejjednodušších metod
- Základem je matice, kde:
  - sloupce reprezentují jeden řetězec
  - řádky reprezentují druhý řetězec
  - na příslušné pozici průsečíku řádku a sloupce se vloží bod, pouze pokud jsou znaky shodné
- Nevýhody:
  - pouze orientační grafická reprezentace, nevíme, jak je výsledná sekvence zarovnána
  - vede na vznik šumu

Příklad:



### Dot Plot

- Vylepšení: posouvající se okénko
  - okénko o velikosti např. 10 znaků se postupně jednom nukleotidu posouvá jak ve směru sloupců, tak ve směru řádků
  - v okénku se porovnává celých 10 znaků a pokud je alespoň 8 z nich shodných, potom se vloží na pozici začátku okénka bod
  - je potřeba vhodně zvolit velikost okénka a míru shody
- Výhody:
  - odstraní šum
- Nevýhody:
  - pouze grafická reprezentace
  - vysoká časová složitost algoritmu - O(n<sup>2</sup>)

Příklad:

Window Size = 1

Window Size = 7



### Jednoduchá metoda zarovnání

- Uvažujeme pouze mutace, nikoliv vložení/odstranění znaku
- Předpokládáme, že kratší řetězec vznikne z delšího vložením mezer, u delšího řetězce mezery neuvažujeme
- Postup:
  - začátek kratšího řetězce se postupně posunuje vzhledem k delšímu řetězci a pro každý posun se vyhodnocuje počet shodujících/neshodujících se znaků
- Vzorec pro výpočet skóre:

$$\sum_{i=1}^{n} \begin{cases} 1: & if (s_1[i] = s_2[i]) \\ 0: & if (s_1[i] \neq s_2[i]) \end{cases}$$

- Příklad:
  - zarovnání sekvencí AATCTATA a AAGATA

### Vložení mezer

- Pro analýzu reálných sekvencí je nezbytné uvažovat vložení a odstranění znaků
- Vede na vznik mezer a hledání takového zarovnání výrazně komplikuje výpočet
- Zatímco u příkladu jednoduchého zarovnání byly pouze 3 možnosti, s mezerami je to celkem 28 možností
- Vzorec pro výpočet skóre:

$$\sum_{i=1}^{n} \begin{cases} 1 & if (s_1[i] = s_2[i]) \\ 0 & if (s_1[i] \neq s_2[i]) \\ -1 & if (s_1[i] = '-' || s_2[i] = '-') \end{cases}$$

 Poznámka: Je běžné, že dvě nebo více zarovnání obsahují stejné skóre

#### Příklad:

 zarovnání sekvencí AATCTATA a AAGATA - pouze 3 z 28 kombinací

Skóre

### Vložení mezer

- Z pohledu evoluce je však potřeba rozlišovat mezi různými typy mezer
- Je daleko pravděpodobnější vznik menšího počtu delších mezer, než velkého počtu krátkých mezer



### Vložení mezer

- Zavedení dvojí penalizace za vložení mezery:
  - ρ za započetí mezery
  - σ za rozšíření mezery
- Výpočet skóre pro mezeru délky x je ve tvaru:

$$-(\rho + \sigma x)$$

Příklad modifikace vzorce:

$$\sum_{i=1}^{n} \begin{cases}
1 & shoda \\
0 & neshoda \\
-1 & pokracujic i mezera \\
-2 & pocatecni mezera
\end{cases}$$

 Poznámka: Všimněte si, že kvalita výsledku závisí na vybrané skórovací funkci

#### Příklad:

 zarovnání sekvencí AATCTATA a AAGATA - pouze 3 z 28 kombinací

Skóre

- Prozatím jsme rozlišovali různé typy mezer
- Ve skutečnosti je ale potřeba rozlišovat i záměny mezi různými znaky
- Příklady:
  - záměna mezi A/G (puríny) a C/T (pyrimidýny) jsou daleko pravděpodobnější, než změny mezi purínem a pyrymidýnem
  - na úrovni kodonů (trojice nukleotidů tvořící aminokyselinu): jsou pravděpodobnější jednobodové mutace než dvoubodové nebo tříbodové
  - podobně u aminokyselin: změny mezi hydrofobními aminokyselinami mají daleko menší důsledky na změnu funkce než změny z hydrofobní na aminokyselinu s nábojem

- Vznik skórovacích matic pro ohodnocení záměny mezi všemi kombinacemi znaků
- Příklady matic pro nukleotidy:

|   | Α | _ | С | G |
|---|---|---|---|---|
| Α | ~ | 0 | 0 | 0 |
| Т | 0 | 1 | 0 | 0 |
| C | 0 | 0 | 1 | 0 |
| G | 0 | 0 | 0 | 1 |

|   | Α  | $\vdash$ | O  | G  |
|---|----|----------|----|----|
| Α | 5  | -4       | -4 | -4 |
| H | -4 | 5        | -4 | -4 |
| C | -4 | -4       | 5  | -4 |
| G | -4 | -4       | -4 | 5  |

|          | A  | $\vdash$   | O          | G  |
|----------|----|------------|------------|----|
| Α        | ~  | <b>-</b> 5 | <b>-</b> 5 | -1 |
| $\vdash$ | -5 | ~          | 1          | -5 |
| C        | -5 | -1         | 1          | -5 |
| G        | -1 | -5         | -5         | 1  |

Matice identity

Matice BLAST

Matice s transverzí

 Při sestavování skórovací matice pro aminokyseliny je nezbytné uvažovat podobnost z pohledu chemické struktury: hydrofonicitu, náboj, elektronegativitu a velikost

Diagram chemické podobnosti aminokyselin [Margaret Dayhoff,

70-tá léta]: zakroužkovány jsou

aminokyseliny jež mají

podobné vlastnosti

 Změny mezi aminokyselinami s podobnou chemickou strukturou jsou více pravděpodobné



- Obecné odvození je velmi komplikované. Proto se velmi často používá přístup, kdy se hodnoty v maticích určí experimentálně na základě rychlosti substituce mezi sekvencemi, u kterých je znám směr vývoje (fylogenetický strom)
- Příkladem jsou tzv. PAM (Point Accepted Mutation) matice
  - jsou sestaveny a normalizovány tak, že jejich vzájemným vynásobením získáme matice pro různě odlišné sekvence
  - PAM-1 pro velmi blízké sekvence
  - PAM-1000 pro sekvence, které značně liší
  - PAM-250 obvyklý kompromis
- Podobně jsou konstruovány i matice BLOSUM-XX, kde XX označuje procentuelní míru podobnosti sekvencí (např. BLOSUM-62 pro porovnání sekvencí s 62% podobností)

Příklad BLOSUM62

|   | С  | S  | Т  | Р  | Α  | G  | N  | D  | Е  | Q  | Н  | R  | K  | M  | 1  | L  | V  | F  | Υ  | W  |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| C | 9  | -1 | -1 | ფ  | 0  | -3 | -3 | ფ  | -4 | -3 | -3 | -3 | -3 | -1 | -1 | -1 | -1 | -2 | -2 | -2 |
| S | -1 | 4  | 1  | 7  | 1  | 0  | 1  | 0  | 0  | 0  | -1 | -1 | 0  | -1 | -2 | -2 | -2 | -2 | -2 | -3 |
| Т | -1 | 1  | 4  | 1  | -1 | 1  | 0  | 1  | 0  | 0  | 0  | -1 | 0  | -1 | -2 | -2 | -2 | -2 | -2 | -3 |
| P | -ვ | -1 | 1  | 7  | -1 | -2 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -2 | -3 | ကု | -2 | -4 | ဂှ | -4 |
| Α | 0  | 1  | ٦- | ٦- | 4  | 0  | -1 | -2 | -1 | -1 | -2 | -1 | -1 | -1 | -1 | -1 | -2 | -2 | -2 | -3 |
| G | -3 | 0  | 1  | -2 | 0  | 6  | -2 | -1 | -2 | -2 | -2 | -2 | -2 | -ვ | -4 | -4 | 0  | ကု | -3 | -2 |
| N | ფ  | 1  | 0  | -2 | -2 | 0  | 6  | 1  | 0  | 0  | -1 | 0  | 0  | -2 | -3 | ကု | -3 | ကု | -2 | -4 |
| D | ფ  | 0  | 1  | ٦- | -2 | -1 | 1  | 6  | 2  | 0  | -1 | -2 | -1 | ფ  | -3 | -4 | -3 | ကု | ფ  | -4 |
| Ε | -4 | 0  | 0  | -1 | -1 | -2 | 0  | 2  | 5  | 2  | 0  | 0  | 1  | -2 | -3 | -3 | -3 | ကု | -2 | -3 |
| Q | -3 | 0  | 0  | -1 | -1 | -2 | 0  | 0  | 2  | 5  | 0  | 1  | 1  | 0  | -3 | -2 | -2 | -3 | -1 | -2 |
| Н | -3 | -1 | 0  | -2 | -2 | -2 | 1  | 1  | 0  | 0  | 8  | 0  | -1 | -2 | -3 | -3 | -2 | -1 | 2  | -2 |
| R | -3 | -1 | -1 | -2 | -1 | -2 | 0  | -2 | 0  | 1  | 0  | 5  | 2  | -1 | -3 | -2 | -3 | -3 | -2 | -3 |
| K | -3 | 0  | 0  | -1 | -1 | -2 | 0  | -1 | 1  | 1  | -1 | 2  | 5  | -1 | -3 | -2 | -3 | -3 | -2 | -3 |
| M | -1 | -1 | -1 | -2 | -1 | -3 | -2 | -3 | -2 | 0  | -2 | -1 | -1 | 5  | 1  | 2  | -2 | 0  | -1 | -1 |
| 1 | -1 | -2 | -2 | -3 | -1 | -4 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | 1  | 4  | 2  | 1  | 0  | -1 | -3 |
| L | -1 | -2 | -2 | -3 | -1 | -4 | -3 | -4 | -3 | -2 | -3 | -2 | -2 | 2  | 2  | 4  | 3  | 0  | -1 | -2 |
| V | -1 | -2 | -2 | -2 | 0  | -3 | -3 | -3 | -2 | -2 | -3 | -3 | -2 | 1  | 3  | 1  | 4  | -1 | -1 | -3 |
| F | -2 | -2 | -2 | -4 | -2 | -3 | -3 | -3 | -3 | -3 | -1 | -3 | -3 | 0  | 0  | 0  | -1 | 6  | 3  | 1  |
| Υ | -2 | -2 | -2 | -3 | -2 | -3 | -2 | -3 | -2 | -1 | 2  | -2 | -2 | -1 | -1 | -1 | -1 | 3  | 7  | 2  |
| W | -2 | -3 | -3 | -4 | -3 | -2 | -4 | -4 | -3 | -2 | -2 | -3 | -3 | -1 | -3 | -2 | -3 | 1  | 2  | 11 |

- Pokud máme k dispozici vhodnou skórovací matici, můžeme jednoduše aplikovat výpočet skóre na všechny možné kombinace zarovnání a vybrat z nich to nejlepší (s nejvyšším skóre)
- Bohužel počet všech kombinací bývá zpravidla velmi vysoký
- Příklad: porovnání sekvencí o délce 100 a 95 znaků vede cca na 55 miliónů možných zarovnání => pro delší sekvence se tento přístup stává nepoužitelný
- Řešení spočívá v aplikaci tzv. dynamického programování tj. rozdělení problému na menší podproblémy (poprvé aplikovali na zarovnání sekvencí autoři Needleman-Wunch 1970)
- Tento přístup se stal základním kamenem algoritmů v bioinformatice

- Příklad: předpokládejme dvě sekvence ACAGTAG a ACTCG,
- Jako skórovací funkci zvolme pro jednoduchost:
  - 1 shoda,
  - 0 neshoda,
  - -1 vložení mezery
- V první kroku máme tři možnosti:
  - nevložíme mezeru zarovnáme první dva znaky
  - 2. vložíme mezeru do první sekvence
  - 3. vložíme mezeru do druhé sekvence

| První  | Skóre | Zbytek  |
|--------|-------|---------|
| pozice |       |         |
| Α      | +1    | CAGTAG  |
| Α      |       | CTCG    |
| -      | -1    | ACAGTAG |
| Α      |       | CTCG    |
| Α      | -1    | CAGTAG  |
| -      |       | ACTCG   |

- Po prvním kroku máme tři rozpracované stavy. Celkové skóre ale závisí na tom, jak dopadne zarovnání zbývající části!
- Při dalším zpracování se opět každá z možností rozpadne na tři varianty atd.

Příklad stromu všech možností po dvou krocích:



- Určité kombinace se ve stromu opakují a není potřeba je dále počítat opakovaně ve všech větvích
- Lze dokázat, že všechny možné kombinace zarovnání lze reprezentovat pomocí 2D matice

- Reprezentace algoritmu pomocí 2D tabulky, kde:
  - řádky reprezentují jeden řetězec
  - sloupce reprezentují druhý řetězec
- Vnitřní buňka se vypočte jako maximum ze tří možností:
  - převzetí hodnoty v nalevo s přičtením penalizace za vložení mezery
  - převzetí hodnoty ze shora s přičtením penalizace za vložení mezery
  - převzetí hodnoty z levého horního rohu s přičtením skóre za shodu, nebo s penalizací za záměnu znaku
- Hodnota v pravém spodním rohu reprezentuje skóre optimálního zarovnání





|    | Α                          | С                                                | Т                                                                         | С                                                                                                                                                                                               | G                                                                                                                                                                                                                                                                                                               |
|----|----------------------------|--------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | -1                         | -2                                               | -3                                                                        | -4                                                                                                                                                                                              | -5                                                                                                                                                                                                                                                                                                              |
| -1 | 1                          | 0                                                | -1                                                                        | -2                                                                                                                                                                                              | -3                                                                                                                                                                                                                                                                                                              |
| -2 | 0                          | 2                                                | 1                                                                         | 0                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                              |
| -3 | -1                         | 1                                                | 2                                                                         | 1                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                               |
| -4 | -2                         | 0                                                | 1                                                                         | 2                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                               |
| -5 | -3                         | -1                                               | 1                                                                         | 1                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                               |
| -6 | -4                         | -2                                               | 0                                                                         | 1                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                               |
| -7 | -5                         | -3                                               | -1                                                                        | 0                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                               |
|    | -1<br>-2<br>-3<br>-4<br>-5 | -1 1<br>-2 0<br>-3 -1<br>-4 -2<br>-5 -3<br>-6 -4 | 0 -1 -2<br>-1 1 0<br>-2 0 2<br>-3 -1 1<br>-4 -2 0<br>-5 -3 -1<br>-6 -4 -2 | 0     -1     -2     -3       -1     1     0     -1       -2     0     2     1       -3     -1     1     2       -4     -2     0     1       -5     -3     -1     1       -6     -4     -2     0 | 0       -1       -2       -3       -4         -1       1       0       -1       -2         -2       0       2       1       0         -3       -1       1       2       1         -4       -2       0       1       2         -5       -3       -1       1       1         -6       -4       -2       0       1 |

#### Poznámky:

- První řádek a sloupec se nastaví na postupně se zvyšující penalizační skóre za vložení mezery
- Maximum vybere pouze nejperspektivnější cestu ze tří možných variant

- Průchodem tabulky z pravého Příklad: spodního rohu směrem k levému hornímu rohu můžeme zpětně získat tvar optimálního zarovnání
- Při zpětném průchodu se zvažují tři možnosti:
  - 1. posun zpět ve směru diagonály
  - 2. posun nahoru (vložení mezery do horizontálního řetězce)
  - 3. posun doleva (vložení mezery do vertikálního řetězce)
- Vybere se ten, ze kterého byla vypočtena hodnota skóre dané buňky
- Ve skutečnosti může být více ekvivalentních možností

|    | Α              | С                                | Т                                                                                                                                                                                           | С                                                                                                                                                                                                                                                     | G                                                                                                                                                                                                                                                                                                               |
|----|----------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | -1             | -2                               | -3                                                                                                                                                                                          | -4                                                                                                                                                                                                                                                    | -5                                                                                                                                                                                                                                                                                                              |
| -1 | 1              | 0                                | -1                                                                                                                                                                                          | -2                                                                                                                                                                                                                                                    | -3                                                                                                                                                                                                                                                                                                              |
| -2 | 0              | <sup>2</sup>                     | 1                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                     | -1                                                                                                                                                                                                                                                                                                              |
| -3 | -1             | 1                                | 2                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                               |
| -4 | -2             | 0 🗷                              | 1                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                               |
| -5 | -3             | -1                               | 1                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                               |
| -6 | -4             | -2                               | 0                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                               |
| -7 | -5             | -3                               | -1                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                               |
|    | -3<br>-4<br>-5 | -3 -1<br>-4 -2<br>-5 -3<br>-6 -4 | 0       -1       -2         -1       1       0         -2       0       2         -3       -1       1         -4       -2       0         -5       -3       -1         -6       -4       -2 | 0       -1       -2       -3         -1       1       0       -1         -2       0       2       1         -3       -1       1       2         -4       -2       0       1         -5       -3       -1       1         -6       -4       -2       0 | 0       -1       -2       -3       -4         -1       1       0       -1       -2         -2       0       2       1       0         -3       -1       1       2       1         -4       -2       0       1       2         -5       -3       -1       1       1         -6       -4       -2       0       1 |

Výsledné zarovnání

| ~ | × | <b>†</b> | <b>†</b> | K | K | * |
|---|---|----------|----------|---|---|---|
| Α | С | -        | -        | Т | С | G |
| Α | С | Α        | G        | Т | Α | G |

### Globální vs. lokální zarovnání

- Předchozí případ popisoval tzv. globální zarovnání, t.j. porovnání dvou sekvencí jako celek, kdy jakýkoliv výskyt mezery je penalizován
- V reálných případech ale potřebuje např. vyhledat výskyt krátké sekvence uvnitř dlouhého řetězce nebo dokonce celého genomu
- Potencionálně dlouhé mezery na začátku a konci kratšího řetězce nechceme penalizovat
- Tento způsob se nazývá semiglobální zarovnání

## Semiglobální zarovnání

- Úpravy původního algoritmu globálního zarovnání
  - první řádek a sloupec jsou inicializovány na nuly (tímto ignoruje mezery na začátku řetězce)
  - v posledním řádku a sloupci se nepřičítá penalizace za vložení mezery
- Příklad:
  - hledání podřetězce ACGT v řetězci AACACGTGTCT

|   |   | Α | Α | С  | Α  | С  | G  | T  | G   | Т            | С   | <u>T</u> |
|---|---|---|---|----|----|----|----|----|-----|--------------|-----|----------|
|   | Ŷ | Ŷ | Ò | 0, | 0  | 0  | 0  | 0  | 0   | 0            | 0   | 0        |
| Α | 0 | 1 | 1 | 0  | 1, | 0  | 0  | 0  | 0   | 0            | 0   | 0        |
| C | 0 | 0 | 1 | 1  | 0  | 2, | 1  | 0  | 0   | 0            | 1   | 0        |
| G | 0 | 0 | 0 | 1  | 1  | 0  | 3, | 2  | 1   | 0            | 0   | 1        |
| Т | 0 | 0 | 0 | 0  | 1  | 1  | 1  | 4+ | -4← | - <b>4</b> ← | -4← | - 4      |

### Lokální zarovnání

- Velmi často ale potřebujeme hledat všechny výskyty daného podřetězce v celém genomu – všechna tzv. lokální zarovnání
- V tomto případě nebudou předchozí přístupy pracovat správně
- Úpravy původního algoritmu globálního zarovnání:
  - Výpočet matice:
    - první řádek a sloupec jsou inicializovány na nuly
    - i neshoda je penalizována (např. -1), aby při neshodě skóre klesalo
    - pokud je skóre v lib. pozici menší než nule, potom se nastaví na nulu
  - Zpětný průchod:
    - v celé tabulce se hledají maximální výskyty skóre a od těchto výskytu se spouští zpětný průchod (nikoliv pouze od pravého-spodního rohu)
- Tento algoritmus tvoří jeden ze základních kamenů bioinformatiky a byl poprvé publikování v roce 1981 autory Smith-em a Waterman-em

### Lokální zarovnání

#### Příklad:

 hledání lokálního zarovnání řetězce GCGATATA v řetězci AACCTATAGCT



|   |   | Α | Α | С | С  | Т | Α | Т  | Α | G | С | Т |
|---|---|---|---|---|----|---|---|----|---|---|---|---|
|   | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0 | 0 | 0 | 0 |
| G | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0 | ~ | 0 | 0 |
| C | 0 | 0 | 0 | ~ | 1  | 0 | 0 | 0  | 0 | 0 | 2 | 1 |
| G | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0  | 0 | ~ | 0 | 1 |
| Α | 0 | 1 | ~ | 0 | 0_ | 0 | ~ | 0  | ~ | 0 | 0 | 0 |
| Т | 0 | 0 | 0 | 0 | 0  | 1 | 0 | 2  | ~ | 0 | 0 | 1 |
| Α | 0 | ~ | ~ | 0 | 0  | 0 | 2 | 0  | თ | 2 | ~ | 0 |
| Т | 0 | 0 | 0 | 0 | 0  | 1 | ~ | 3, | 2 | 2 | ~ | 2 |
| Α | 0 | 1 | 1 | 0 | 0  | 0 | 2 | 2  | 4 | 3 | 2 | 1 |

 Poznámka: Všimněte si, že při výpočtu se ignorují nejen mezery na začátku a konci řetězce, ale i neshody.

## Statistická významnost zarovnání

- Základní otázka:
  - Uvažujme lokální zarovnání vstupní sekvence délky m se skórem S, jaká
    je pravděpodobnost, že nalezneme lokální výskyt náhodně
    vygenerované sekvence délky m se skórem ≥ S?
- Odpověď dává Karin-Altschulova rovnice

$$E = kmNe^{-\lambda S}$$

- E počet výskytů zarovnání náhodné sekvence délky m v sekvenci délky N se skórem ≥ S
- k, λ konstanty (obvykle závisí na skórovací matici)
- Statisticky významný výsledek:
  - nukleotidy: E < 10<sup>-6</sup> s alespoň 70% identitou a výše
  - proteiny: E < 10<sup>-3</sup> s alespoň 25% identitou a výše

## Prohledávání rozsáhlých databází

- V současných databázích je ohromné množství biologických dat
- Obvykle, pokud biologové potřebují např. ověřit zda našli nový gen, potom se snaží tuto sekvenci najít i v jiných genomech => prohledávání velkého množství dat
- Nevýhody metod NW a SW pro výpočet zarovnání:
  - kvadratická časová složitost
  - potřeba vymyslet rychlejší přístup založený na heuristice
  - NW a SW jsou použity pouze pro detailní analýzu vybraných kandidátních řešení

#### Příklad:

Xeon 3GHz je schopen vypočítat
 50M položek tabulky za sekundu

| N             | Xeon 3 GHz |
|---------------|------------|
| 100           | 0,2 ms     |
| 1.000         | 0,02 s     |
| 10.000        | 2 s        |
| 100.000       | 3 minuty   |
| 1.000.000     | 5 hodin    |
| 10.000.000    | 23 dnů     |
| 100.000.000   | 6,5 roků   |
| 1.000.000.000 | 650 roků   |

### **BLAST**

- S. Altschul (1990)
- Cílem algoritmu je:
  - nalézt všechna lokální zarovnání vstupní sekvence v rámci prohledávané sekvence
  - aniž by prohledával prostor všech možných zarovnání
- Algoritmus je rozdělen do tří hlavních fází:
  - 1. Osévání (Seeding)
  - 2. Rozšiřování (Extension)
  - 3. Ohodnocení (Evaluation)



Sequence 1

 Prostor všech zarovnání lze reprezentovat jako matici algoritmu Smith-Waterman, kde zarovnané úseky sekvencí se vyskytují na diagonálách

### BLAST - Osívání

- Hledaná sekvence je rozdělena do slov o velikosti W (např. W=3)
- Rozdělení probíhá skrze okénko, které se posouvá po jednom znaku zleva doprava
- 3. Ke každému slovu se hledá množina alternativních slov (skrze substituce jednotlivých znaků slova). Ke každému alternativnímu slovu je vypočteno skóre podobnosti vzhledem k původnímu slovu (např. pomocí matice BLOSUM62) a pouze slova se skóre vyšším než je zadaný práh (threshold, např. T=11), jsou ponechány v tzv. tabulce sousednosti
- 4. Jednotlivé slova z tabulky sousednosti se hledají v sekvenci (v databázi)



| RDQ 16        | QDQ 12 | <b>EDQ 11</b> | <b>RDN 11</b> | RDB 11 |
|---------------|--------|---------------|---------------|--------|
| RBQ 14        | REQ 12 | <b>HDQ 11</b> | RDD 11        | ADQ 10 |
| RDA 14        | RDR 12 | <b>ZDQ 11</b> | RDH 11        | MDQ 10 |
| <b>KDQ 13</b> | RDK 12 | RNQ 11        | <b>RDM 11</b> | SDQ 10 |
| RDE 13        | NDQ 11 | RZQ 11        | <b>RDS 11</b> | TDQ 10 |



### BLAST - Osívání

 Volba parametru T a W ovlivňuje citlivost algoritmu vs. rychlost výpočtu

#### Parametr T

 čím vyšší hodnota, tím hledá algoritmus přesnější shody, klesá počet výskytů, výpočet se zrychluje

#### Parametr W

 menší hodnota vede na vyšší počet výskytů, zvyšuje citlivost výpočtu a zvyšuje dobu běhu

|            | Τ   | W    |
|------------|-----|------|
| Nukleotidy | -   | ≥7   |
| Proteiny   | ≥10 | 2, 3 |



### BLAST - Rozšiřování

- Pokud je některé slovo z tabulky nalezeno, snaží se algoritmus rozšiřovat nalezený úsek na obě strany
- Jakmile skóre vzroste nad minimální požadovanou hodnotu S bude sekvence reportována na výstupu algoritmu
- Pokud dále skóre klesne pod zadaný práh X, rozšiřování se ukončí a uloží se pozice maxima, než došlo ke klesání
- Výsledkem je seznam úseků s nejvyšším skóre (High Scoring Segments)





### BLAST - Ohodnocení

- Ze seznamu všech nalezených segmentů se odstraní ty, které maní nízkou statistickou významnost (parametr E)
- Hledá se skupina konzistentních úseků, které na sebe navazují a spojují se ve větší celky
- Přístupy pro ohodnocení se liší např. při hledání genů složených z exonů a intronů (zatímco v genomu jsou exony i introny, v exprimovaném genu introny chybí)



# **BLAST** - Varianty

| Program | Databáze                               | Dotaz                                  | Použití                                                                                                                               |  |  |  |  |
|---------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| BLASTN  | Nukleotidy                             | Nukleotidy                             | Mapování oligonucleotidů, cDNAs a PCR produktů na genom; hledání opakujících se elementů; hledání společných sekvencí mezi organizmy; |  |  |  |  |
| BLASTP  | Proteiny                               | Proteiny                               | Identifikace společných úseků mezi<br>proteiny; analýza vzdáleností proteinů pro<br>účely fylogenetiky                                |  |  |  |  |
| BLASTX  | Proteiny                               | Nukleotidy<br>přeložené do<br>proteinů | Hledání genů kódující proteiny; určování,<br>zda cDNA odpovídá známému proteinu                                                       |  |  |  |  |
| TBLASTN | Nukleotidy<br>přeložené do<br>proteinů | Proteiny                               | Identifikace transkriptů, pocházejících s<br>více organizmů, podobných danému<br>proteinu; mapování proteinu na<br>genomickou DNA     |  |  |  |  |
| TBLASTX | Nukleotidy<br>přeložené do<br>proteinů | Nukleotidy<br>přeložené do<br>proteinů | Predikce genů v genomu nebo na úrovni<br>transkripce; hledání netradičních genů<br>nebo genů, které ještě nejsou v databázi           |  |  |  |  |

### **FASTA**

- David J. Lipman a William R. Pearson, 1988
- Algoritmus rozdělen do čtyřech kroků
  - 1. Nalezení identických segmentů
  - 2. Přepočet skóre skrze matici PAM nebo BLOSUM
  - 3. Spojování segmentů do delších úseků
  - 4. Výpočet optimálního skóre skrze SW algoritmus
- Existují varianty jak pro nukleotidy FAST-N tak i proteiny FAST-P

- Nalezení identických segmentů mezi dotazem a databází s využitím vyhledávacích tabulek
  - Vstupní řetězec je rozsekán na slova (o délce 4-6 znaků pro nukleotidy, 1-2 znaků pro proteiny)
  - Z těchto slov je sestavena vyhledávácí tabulka (hash) obsahující všechny pozice těchto slov v původní sekvenci
- Příklad:
  - Dotazovací sekvence FAMLGFIKYLPGCM

| Α | С  | D | Е | F | G  | Н | I | K | L  | М  | Ν | Р  | Q | R | S | Т | V | W | Υ |
|---|----|---|---|---|----|---|---|---|----|----|---|----|---|---|---|---|---|---|---|
| 2 | 13 |   |   | 1 | 5  |   | 7 | 8 | 4  | 3  |   | 11 |   |   |   |   |   |   | 9 |
|   |    |   |   | 6 | 12 |   |   |   | 10 | 14 |   |    |   |   |   |   |   |   |   |

Tabulka1: Vyhledávací tabulka pro dotazovací sekvenci

- Je sestavena druhá tabulka ze slov sekvence v databázi, kde:
  - každé slovo x z databáze se vyhledá v tabulce 1
  - pro všechny offsety slova x v tabulce 1 se vypočítají nové ofsety v tabulce 2 podle vztahu:
    - Offset = Seq1 Location Seq2 Location
- Položky tabulky 2, které často vedle sebe obsahují stejný offset, ukazují na výskyt hledané sekvence nebo její části
- Příklad:
  - Sekvence v databázi TGFIKYLPGACT vzhledem k dotazovací sekvenci z předchozího snímku

| 1 | 2  | 3  | 4 | 5 | 6 | 7  | 8 | 9  | 10 | 11 | 12 |
|---|----|----|---|---|---|----|---|----|----|----|----|
| Т | G  | H  | I | K | Υ | L  | Р | G  | Α  | С  | Т  |
|   | 3  | -2 | 3 | 3 | 3 | -3 | 3 | -4 | -8 | 2  |    |
|   | 10 | 3  |   |   |   | 3  |   | 3  |    |    |    |



Tabulka2: Přepočet offsetu v rámci sekvence v databázi

Nalezen výsky na offsetu 3

- Přepočítaní skóre nejdelších segmentů s použitím PAM nebo BLOSUM matice
  - Výběr těch, které mají nejvyšší skóre
  - Vypočtené skóre se označuje jako init1



- Spojování několika segmentů dohromady
  - Překrývající-se segmenty jsou eliminovány na základě skóre
  - Skóre spojení několika segmentů je vypočteno jako suma skóre jednotlivých segmentů mínus penalizace za spojování (vypočtené skóre se označuje jako initn)
  - Spojené segmenty jsou ohodnoceny a pouze ty s nejvyšším skóre jsou brány v úvahu pro další krok



- Vybrané segmenty z kroku 3 jsou přepočítány pomocí algoritmu Smith-Waterman
  - vypočtené skóre se oznamuje jako opt (optimized)
  - aplikace SW pouze na perspektivní úseky je mnohem rychlejší, než pro celou matici vstupní sekvence a databázi



### Porovnání BLAST a FASTA

- Zatímco FASTA zpočátku toleruje pouze identické segmenty, BLAST uvažuje i segmenty obsahující záměny znaků
- Zatímco BLAST se snaží rozšiřovat nalezené výskyty slov, FASTA se snaží propojovat identické úseky
- Každá z metod má své výhody/nevýhody
- FASTA:
  - má větší citlivost prohledávání, výsledné zarovnání je přesnější
  - vyžaduje více výpočetního času než BLAST
  - volba krátkého slova vede na vyšší paměťovou složitost při konstrukci vyhledávacích tabulek

### Shrnutí

- Při porovnávání biologických sekvencí je nezbytné brát v úvahu chyby v podobě vložení, odstranění nebo záměny znaku
- Kvalita výsledného zarovnání závisí z velké části na vybrané skórovací funkci
- Optimální výpočet zarovnání nabízí algoritmy:
  - Needleman-Wunch globální zarovnání
  - Smith-Waterman lokální zarovnání
- Optimální algoritmy mají kvadratickou časovou složitost – nepoužitelné pro prohledávání rozsáhlých databází
- Nutnost použití heuristik
  - BLAST rozšiřování nalezených výsledků
  - FASTA využití tabulky indexů

39

### Literatura

- Dan K. Krane, Michael L. Raymer: Fundamental Concepts of Bioinformatics, ISBN: 0-8053-4633-3, Benjamin Cummings 2003.
- Andreas D. Baxevanis, B. F. Francis Ouellette:
   Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, ISBN: 0-471-47878-4, Wiley-Interscience, 2005.





## Konec

# Děkuji za pozornost