7.2	Maximum Likelihood Estimators		
	- Let X;'s be independent exponential random variables each having the same unknown mean θ ,		
	Then the joint probability distrisbution function of Xi's is		
	$f(x_1, x_2, \dots, x_n) = f_{x_1}(x_1) f_{x_2}(x_2) \cdots f_{x_n}(x_n) = \frac{1}{\theta} e^{-\frac{x_1}{\theta}} \cdot \frac{1}{\theta} e^{-\frac{x_2}{\theta}} \cdots \frac{1}{\theta} e^{-\frac{x_n}{\theta}}$		
	$f(x_1, x_2,, x_n) = f_{x_1}(x_1) f_{x_2}(x_2) \cdots f_{x_n}(x_n) = \frac{1}{\theta} e^{-\frac{x_1}{\theta}} \cdot \frac{1}{\theta} e^{-\frac{x_2}{\theta}} \cdots \frac{1}{\theta} e^{-\frac{x_n}{\theta}}$ $= \frac{1}{\theta} e^{-\frac{x_n}{\theta}}, \text{ is the function of } \theta \cdot f(x_1,, x_n \theta)$		
	\Rightarrow the maximum likelihood estimate $\hat{\theta}$ is defined to be that value of θ maximizing $f(x_1,,x_n \theta)$.		
	=> In determining the maximizing value of 0, it is often useful to use the fact that $f(x_1,,x_n \theta)$ and $\log[f(x_1,,x_n \theta)]$		
	have their maximum at the same value of 0. Hence, we may also obtain 0 by maximizing		
	$log[f(X_1,,X_n \mid \theta)]$		
7.3	3 Interval Estimates		
	- Although $\bar{\chi}$ is the maximum likelihood estimator for M , we can only expect $\bar{\chi}$ to be close to M . So, rather than a point		
	estimate, it is sometimes more valuable to be able to specify an interval.		
	- Since the point estimator \overline{X} is normal with mean A and variance $\frac{\overline{\Gamma}^2}{n}$,		
	$P\left\{\overline{X}-\overline{\mathcal{E}}_{1-K/2}\overline{\int_{\overline{\Omega}}} < \mathcal{H} < \overline{X}+\overline{\mathcal{E}}_{1-K/2}\overline{\int_{\overline{\Omega}}}\right\} = 1-\kappa$		
7.3.1	Confidence Interval For A Normal Mean When The Variance Is Unknown		
	- it still follows that $\sqrt{N} = \frac{(x-\mu)}{S}$ is a t-random variable with n-1 degrees of freedom		
	$P\{\bar{\chi} - t_{\alpha/2, n-1}, \frac{s}{m} < \mathcal{M} < \bar{\chi} + t_{\alpha/2, n-1}, \frac{s}{m}\} = 1 - \alpha$		
7,3.2	Prediction Intervals		
	- Suppose \overline{X} is normal with mean M and variance \overline{n} , and X_{n+1} is normal with mean M and		
	Variance T^2 , then it follows that $X_{n+1} - \overline{X}_n$ is normal with mean 0 and variance $\frac{T^2}{n} + T^2$. $= > \frac{X_{n+1} - \overline{X}_n}{\sqrt{J_1 + J/n}}$ is a standard normal random variable.		
	$=>\frac{\chi_{n+1}-\chi_{n}}{\sqrt{\sqrt{1+1/n}}}$ is a standard normal random variable.		
	- Replacing T by its estimator Sn will yield a t-random variable with n-1 degrees of freedom.		
	=> $\frac{x_{n+1}-x_n}{S_nJ_1+1/n}$ is a t-random variable with n-1 degrees of freedom		
7.3.3	Confidence Intervals For The Variance of a Normal Distribution		
	- If the samples are from a normal distribution, the confidence interval for T^2 is found by using		
	$(n-1)\frac{S^2}{T^2} \sim \chi^2_{n-1} \implies \rho \left\{ \chi^2_{1-\alpha/2, n-1} \le (n-1)\frac{S^2}{T^2} \le \chi^2_{\alpha/\alpha, n-1} \right\} = -\alpha $		
	$\Rightarrow P\left\{\frac{(n-1)S^2}{\chi^2_{\alpha/2, n-1}} \leq \nabla^2 \leq \frac{(n-1)S^2}{\chi^2_{1-\alpha/2, n-1}}\right\} = 1-\alpha$		

7.4	Estimating the Difference	in Means of Two Normal Populations
		ole of size n from a normal population having mean M, and variance t,2, and
		of size m from a different normal population having mean Ms and variance T2,
		ndent, and Mi-Mi is of interest,
	⇒ X-Y~N(M,-M2,	
	⇒ X-Y-(M1-M2)	~ N(0,1)
	$\Rightarrow \overline{X-Y-(M_1-M_2)}$ $\sqrt{\frac{T_1^2}{n}+\frac{T_2^2}{m}}$	
	$\Rightarrow \int \left\{ \overline{X} - \overline{Y} - \mathcal{E}_{\kappa/2} \sqrt{\frac{\overline{V_1}^2}{n} + \frac{\overline{V_2}^2}{M}} \right\}$	$\langle \mathcal{M}_1 - \mathcal{M}_2 \langle \overline{X} - \overline{Y} + Z_{\alpha/2} \sqrt{\frac{\overline{Y}_1^2}{n} + \frac{\overline{Y}_2^2}{M}} \rangle = - \rangle$
	- However, to utilize the fo	pregoing to obtain a confidence interval, we need its distribution and
	if must not depend on a	my of the unknown parameters T_1^2 and T_2^2 . So, suppose that there is
	a Common Variance Γ^2 .	
	$= \rangle (n-1) \frac{S_1^2}{\sigma^2} \sim \chi_{n-1}^2$	$\frac{S_{2}^{2}}{T^{2}} \sim \chi_{n+m-2}^{2}$ $\frac{S_{2}^{2}}{T^{2}} \sim \chi_{n+m-2}^{2}$
	$\Rightarrow (n-1)\frac{S_i^2}{T^2} + (m-1)$	$\frac{S_2^2}{T^2} \sim \chi^2_{n+m-2}$
	$\Rightarrow S_{pooled}^2 = (n-1)S_1^2 + (n-1)S_2^2 + (n-1)S_1^2 + (n-1)S_1^2$	n-1) S ₂
	=> P{x-y-toxa,n+m-;	$\left\{ S_{\rho} \sqrt{\frac{1}{n} + \frac{1}{m}} \leq \mathcal{M}_{1} - \mathcal{M}_{2} \leq \overline{X} - \overline{Y} + t_{\alpha / 2, n + m - 2} \cdot S_{\rho} \sqrt{\frac{1}{n} + \frac{1}{m}} \right\} = 1 - \alpha$
7.5	Approximate Confidence Inter	val for the Mean of a Bernoulli Random Variable
	$\frac{\cancel{\times} - \cancel{N} \cancel{p}}{\sqrt{n \widehat{p}(1-\widehat{p})}} \sim \mathcal{N}(0,1) \implies \widehat{p} \left\{ \widehat{p} - \cancel{z}_{\alpha/2} \right\}$	$\widehat{\rho}(I-\widehat{\mathfrak{f}})/n$ $< P < \widehat{\rho} + \mathbb{Z}_{\alpha/2} \widehat{\rho}(I-\widehat{\mathfrak{f}})/n $ $> \alpha I - \alpha$
	- If we were to specify an	approximate 10011-0)% CI for P no greater than some given length b. Note
		roximate $100(1-\alpha)\%$ CI for P is $2\cdot Z_{\alpha/a}\sqrt{\hat{p}(1-\hat{p})/n} \approx b$.
	$= > (2 \times 10^{2} \text{ p(1-p)/r}$	$1 = b^2$
	$= \rangle \qquad N = \frac{(2 \xi_{w/a})^2 p^* (1 - p^*)}{b^2}$. That is, if K items were initially sampled to obtain the preliminary estimate of p, then an
		additional n-k items should be sampled.
	Type of Interval	Confidence Interval
	Two-sided	$\hat{p} \pm z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$
	One-sided lower	$\left(-\infty,\ \hat{p}+z_{lpha}\sqrt{\hat{p}(1-\hat{p})/n} ight) \ \left(\hat{p}-z_{lpha}\sqrt{\hat{p}(1-\hat{p})/n},\ \infty ight)$
	One-sided upper	$\left(\hat{p}-z_{\alpha}\sqrt{\hat{p}(1-\hat{p})/n}, \infty\right)$

7.6	Confidence Interval of the Mean of the Exponential Distribution
	Confidence Interval of the Mean of the Exponential Distribution $\frac{2}{\theta} \sum_{i=1}^{n} X_{i} \sim \chi_{2n}^{2} \Rightarrow P\left\{\chi_{1-\alpha \lambda_{2}, \alpha n}^{2} < \frac{2}{\theta} \sum_{i=1}^{n} X_{i} < \chi_{2n}^{2} \chi_{2n}^{2} \right\} = 1-\alpha$ $\Rightarrow P\left\{\chi_{1-\alpha \lambda_{2}, \alpha n}^{2} < \theta < \chi_{2n}^{2} \chi_{2n}^{2} \right\} = 1-\alpha$
	$\Rightarrow \oint \left\{ \frac{\lambda \sum_{i=1}^{n} \chi_{i}}{\chi_{i,\lambda,\lambda,1}^{2}} < \theta < \frac{\lambda \sum_{i=1}^{n} \chi_{i}}{\chi_{i,\lambda,2,\lambda,1}^{2}} \right\} = 1 - \alpha$
7.7	Evaluating a Point Estimator
	Definition of Bias