

Facultad de Ingeniería y Ciencias Agropecuarias Carrera de Ingeniería Ambiental EIA945 / Manejo de Cuencas Hidrográficas Período 2017-2

1. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 120 h = 48 h presenciales + 72 h de trabajo

autónomo.

Créditos – malla actual: 4,5

Profesor: Ing. Santiago Piedra, MBA, MS.c.

Correo electrónico del docente (Udlanet): s.piedra@udlanet.ec

Coordinador: Ing. Paola Posligua MSc.

Campus: Queri

Pre-requisito: EIA801

Co-requisito: Paralelo: 1 y 2 Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

	Campo de formación							
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes				
	X							

2. Descripción del curso

Este módulo describe el estudio del manejo integral de una cuenca hidrográfica considerando los factores y los actores que inciden en la misma. Se analiza la transversalidad del recurso agua con respecto a otros recursos como: recursos forestales, suelo, viento, etc. Durante el curso, los estudiantes determinan un modelo matemático de la cuenca comenzando por el esquema de los sitios de demanda hasta el análisis de sensibilidad con el objetivo de llegar a errores menores al 0.5. El modelo matemático junto con métodos estadísticos mejora la compresión de la cuenca como un sistema. Este módulo requiere conocimientos avanzados de matemáticas, hidráulica y estadística.

3. Objetivo del curso

Evaluar a una cuenca hidrográfica como un operador con entradas y salidas mediante el uso de software libre para que el estudiante plantee proyectos tomando en cuenta el costo, alcance y tiempo de ejecución.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de api endizaje desi		Nivel de
Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	desarrollo (carrera)
Compara métodos y técnicas de ingeniería, análisis, interpretación y solución de problemas en la matriz agua.	Participa de manera consciente y dirige proyectos multidisciplinarios de la gestión integral de recursos (agua, suelo, aire y biota), de procesos de tratamiento de contaminantes generados por las actividades industriales y de centros urbanos, así como de conservación de entornos naturales.	Inicial () Medio () Final (X)
Evalúa procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento del agua superficial y subterránea.	Participa en equipos multidisciplinarios en la elaboración y aplicación de técnicas de gestión de proyectos ambientales mismos que concibe, diseña, desarrolla y dirige programas de manejo comunitario.	
Explica la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental-estadístico, resultados, rechazo de hipótesis del sistema de los cuerpos de agua de una cuenca hidrográfica	Aplica metodologías de investigación en la búsqueda, fundamentación y elaboración de soluciones que garanticen la conservación, sustentabilidad, sostenibilidad y gestión integral de los recursos.	
Determina las soluciones ingenieriles, técnicamente y económicamente factibles y viables para prevención y remediación de los cuerpos de agua que afectan a la cuenca.	Diseña y utiliza herramientas de planificación territorial y geo información para generar estrategias de mitigación y adaptación al Cambio Climático aplicada a la evaluación, investigación y conservación de recurso s naturales.	

5. Sistema de evaluación.

Progreso 1					
Examen	20%				
Presentación de la configuración de una cuenca en WEAP y	15%	35%			
QGIS o ArcMAP	13%				
Progreso 2					
Examen	20%				
Ejercicios de cálculo de la demanda de agua de un cultivo,		35%			
dimensionamiento de reservorios de agua y análisis de	15%	3370			
eventos extremos, modelo en Modflow					
Evaluación final					
Examen final	30%	30%			
Total (Progreso 1, progreso 2 y evaluación final)	·	100%			

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

La metodología consistirá en presentaciones del facilitador utilizando fórmulas, gráficos y figuras que muestren objetivamente el contenido de la materia. Una cuenca hidrográfica es un sistema complejo. Por esto, es necesario realizar un modelo para contabilizar la disponibilidad del recurso agua en los diferentes compartimentos. Para esto, se tiene que calcular la demanda de los recursos y hacer proyecciones para garantizar la disponibilidad del agua. Esto es, hacer cálculos estadísticos y racionales en función de la información disponible en el medio.

6.1. Escenario de aprendizaje presencial.

Talleres en clase.

Durante el curso se realizará talleres en clase. El estudiante deberá resolver problemas propuestos en los talleres que con la ayuda de las diapositivas y mediante preguntas al facilitador asimilará la magnitud de las variables analizadas.

6.2. Escenario de aprendizaje virtual

Lecturas de artículos científicos.

Durante el curso el estudiante deberá leer artículos en inglés y manuales de procedimientos estandarizados para el procesamiento espacial y temporal de datos.

6.3. Escenario de aprendizaje autónomo.

Análisis de material bibliográfico.

Como complemento del aprendizaje, el estudiante deberá revisar mapas para evidenciar las magnitudes de las variables de estudio del curso.

7. Temas y subtemas del curso.

RDA	Temas	Sub temas
Compara métodos y técnicas de ingeniería, análisis, interpretación y solución de problemas en la matriz agua.	1 La complejidad de una cuenca	Parámetros de cuencas SIG Parámetros de cuencas G.Maps Parámetros de cuencas CAD
Evalúa procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento del agua superficial y subterránea.	2 Uso de recursos	2.1 Riego2.2 Reservorios2.3 Análisis de información hidrológica.2.4 Modelos Hidrogeología (MODFLOW)
Explica la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimentalestadístico, resultados, rechazo de	3 Consecuencias del equivocado uso de recursos	3.1 Inundaciones3.2 Sequías3.3 Erosión

Sílabo 2017-2 (Pre-grado)

hipótesis del sistema de los cuerpos de agua de una cuenca hidrográfica Determina las		4.1 Series de datos (Precipitación,
soluciones ingenieriles, técnicamente y económicamente factibles y viables para prevención y remediación de los cuerpos de agua que afectan a la cuenca.	4. Sistemas de soporte para decisiones (Software - WEAP)	evapotranspiración, temperatura, DBO, etc) 4.2 Construcción de un modelo 4.3 Calibración del modelo 4.4 Análisis de sensibilidad

8. Planificación secuencial del curso

RDA	Temas	Sub temas		ea / trabajo nomo	Tarea / trabajo autonomo	Mde
Compara métodos y técnicas de ingeniería, análisis, interpreta ción y	Parámetros de cuencas SIG	(1)	Presentación del sílabo Presentacion sobre la complejidad de una cuenca I		Examen y entrega	
solución de problemas en la matriz	1 La complejidad de una	Parámetros de cuencas G.Maps	(1)	Presentacion sobre la complejidad de una cuenca II	Configuraci ón del modelo matemátic o. Lectura	de la configura ción del modelo en WEAP
agua.	cuenca		(1)	Presentacion sobre la complejidad de una cuenca III	de manual de weap. (3)	(fecha de entrega 16 de abril 2017)
	Parámetros de cuencas CAD	(1)	Presentacion sobre la complejidad de una cuenca IV			

		T		T	T	
				Análisis de		
			(1)	precios		
				unitarios I		
				Análisis de		
			(1)	precios		
				unitarios II		
				Análisis de		
			(1)	precios		
				unitarios III		
				Análisis de		
			(1)	precios		
			(-)	unitarios IV		
				Presentación		
			(1)	de software		
			(1)	libre (WEAP)		
					-	
				Ejemplo sobre		
			(1)	la		
			(1)	configuración		
				de una cuenca		
				en WEAP I		
				Ejemplo sobre		
				la		
			(1)	configuración		
				de una cuenca		
				en WEAP II		
Evalúa				Ejercicio de		
procesos		2.1 Diago	(1)	demanda de		
naturales		2.1 Riego	(1)	agua de un		
y				cultivo I		
antropogé				Ejercicio de		
nicos:			(1)	demanda de		
transporte			(1)	agua de un		
				cultivo II		
monitoreo,				Ejercicio de		
control y				reservorios		
tratamient			(1)	para		
o del agua			(1)	inundaciones	Resolución	
superficial				I	de	
у	2 Uso de			Ejercicio de	ejercicios	
subterráne	recursos			reservorios	enviados	
a.	recursos	2.2 Reservorios	(1)		por el	
a.		2.2 Reservoiros	(1)	para	facilitador	
				inundaciones	(3)	
				II		
				Ejercicio de		
			(4)	reservorios		
			(1)	para		
				inundaciones		
				III		
			(1)	Examen hasta		
			(1)	subtema 1.6		
		2.3 Análisis de		Retroalimenta		
		información	(1)	ción		
		hidrológica.		CIUII		

			(1) (1) (1) (1) (1)	Ejercicio de reservorios de agua I Ejercicio de reservorios de agua II Ejercicio de reservorios de agua III Presentación de estadísticas de eventos extremos Ejercicio de eventos extremos I Ejercicio de eventos extremos II	
Explica la cadena de investigaci ón		3.1 Inundaciones	(1)	eventos extremos III Presentación de toma de decisiones multicriterio	Examen,
científica: problemáti ca, motivo, objetivo,			(1)	Presentación de programación lineal	entrega de ejercicios (fecha de
hipótesis, diseño experimen tal- estadístico	3 Consecuencia		(1)	Presentación de programación lineal (método simplex)	entrega 28 de mayo 2017)
resultados, rechazo de hipótesis del	s del equivocado uso de recursos		(1)	Ejercicio de toma de decisiones multicriterio I	
sistema de los cuerpos de agua de	10001505	3.2 Sequías	(1)	Ejercicio de toma de decisiones multicriterio II	
una cuenca hidrográfic a			(1)	Ejercicio de toma de decisiones multicriterio III	
			(1) (1)	Ejercicio de inundaciones I Ejercicio de inundaciones	

Sílabo 2017-2 (Pre-grado)

		1	ı	T	T	1
				II		
		3.3 Erosión	(1)	Ejercicio de inundaciones		
				III		
Determina las		4.1 Series de datos		Presentación		
soluciones		(Precipitación,		de		
ingenierile		evapotranspirac	(1)	introducción		
s,		ión,	(-)	de datos en		
técnicame		temperatura,		WEAP I		
nte y		DBO, etc)				
económica		-		Presentación		
mente				de		
factibles y			(1)	introducción		
viables				de datos en		
para				WEAP II		
prevenció		4.2	643	Examen hasta		
n y remediaci		Construcción de	(1)	subtema 3.3		
ón de los		un modelo		Presentación		
cuerpos de				de		
agua que			(1)	introducción		
afectan a			(1)	de datos en		
la cuenca.				WEAP III		
		4.3 Calibración	(4)	Retroalimenta		
	4. Sistemas	del modelo	(1)	ción		
	de soporte			Presentación	Pre -	
	para			de datos	modelo de	
	decisiones		(1)	obtenidos con	una cuenca	
	(Software -			el modelo	(3)	
	WEAP)			matemático I Presentación		
				de datos		
		4.4 Análisis de	(1)			
		sensibilidad	(1)	el modelo		
				matemático II		
				Presentación		Examen
				de correlación		final Examen
			(1)	entre el		(fecha de
			(1)	modelo		entrega
				matemático e		25 de
				información I		junio de
				Presentación		2017)
				de correlación entre el		
			(1)	modelo		
				matemático e		
				información II		
				Presentación		
			(1)	análisis de		
				sensibilidad I		
			(1)	Presentación		

Sílabo 2017-2 (Pre-grado)

	análisis de sensibilidad II	
(1)	Presentación de calibración del modelo	
(1)	Examen final	

9. Normas y procedimientos para el aula.

El uso de celulares está permitido en el aula. No existe ninguna restricción de la hora de llegada del estudiante. Sin embargo, si el estudiante no asiste a clases no habrá ninguna justificación para ponerlo en lista.

A pesar del libre uso de tecnologías de comunicación en clases, el facilitador recordará las personas que alteren el ambiente en el aula y se tomará en cuenta al momento de la exigencia en la calificación de los progresos.

Cualquier persona que haga caso omiso de dos llamadas de atención del facilitador tendrá que abandonar el aula previo aviso del facilitador.

10. Referencias bibliográficas

Brooks, Kenneth N. (2013), *Hydrology and the Management of Watersheds (4th Edition)*, WILEY-BLACKWELL

11. Perfil del docente

Experiencia con estándares nacionales e internacionales en calidad, medio ambiente y seguridad industrial. El conocimiento ganado en el MBA en calidad y operaciones generó un criterio sobre la importancia de manejar procedimientos estandarizados para planificar y ejecutar proyectos efectivos y eficientes con el uso de normas como el PMbok, ISO, etc. El MSc en ciencias del agua e ingeniería sirvió para mejorar el conocimiento en procesos relacionados con el recurso agua con el estudio de Hidrogeología, Climatología, Hidrodinámica, Gestión de Inundaciones, etc.

- MSc en ciencias del agua e ingeniería Alemania / Oct 2011 Sep 2013 UNIVERSIDAD TÉCNICA DE DRESDEN
- MBA en operaciones y calidad Ecuador / Feb 2008 Feb 2014
 ESCUELA POLITÉCNICA NACIONAL
- Ingeniería civil Ecuador / Oct 2001 Nov 2007
 ESCUELA POLITÉCNICA DEL EJÉRCITO
- Secundaria Ecuador / Oct 1998 Jul 2001

COLEGIO INTISANA

Primaria – Estados Unidos de América / Nov 1996 - Jun 1998
 SHORELESS LAKE SCHOOL