RNA-Seq workflow

Phase 1: developing a workflow and preprocessing raw reads

Andrew Ndhlovu

Project SeaStore
Department of Botany and Zoology
Stellenbosch University
https://github.com/PiscatorX/RNA-Seq-devs

Overview

- 1. overview
- 2. Background: why RNA?
- 3. Ecological transcriptomics
- 4. RNA-seq workflow
- 5. Reference and denovo RNA-seq studies

Why RNA?

Why should I do RNA-seq, I have a genome?

- Insights into functional responses
- Genome = potential gene function
- RNA is better proxy for proteins than genome
- Genomes overemphasise mutations
 - Alternative splicing of isoforms, fusion transcripts
 - RNA interference genes may be silenced
 - Same genome in all cells and tissue types e.g brain cells and liver cells
 - ▶ Gene models for the identification of transcripts remains a challenge
- changes in experimental conditions = changes in gene expression
- Expression profile is a fingerprint of cell or tissue type
- Some genes are driven by gene-gene interations e.g epistasis

DNA makes RNA, and RNA makes protein

- We want to study proteins but they are hard to identify
- So we study RNA as a proxy for proteins

Abbreviations:

D=donor splice site;

A=acceptor splice site;

poly (A)=polyadenylation;

UTR= untranslated region;

SS=splice site;

ESE=exonic splicing enhancer;

ESS=exonic splicing silencer;

ISE=intronic splicing enhancer

ISS=intronic splicing silencer

10.1371/journal.pcbi.1004393

There are many RNA types

Ecological transcriptomics

Transcriptome

"The transcriptome is the complete set of transcripts in a cell, and their quantity, for a specific developmental stage or physiological condition"

wang'rna-seq: 2009

Ecological transcriptomics?

- Integration of transcriptomic analysis with ecological studies.
- Elucidation the genomic basis of phenotypic variation of individuals in response to environmental changes under natural or laboratory conditions

doi:https://doi.org/10.1002/9781444312249.ch12; alvarez ten 2015

Omics layers:

RNA-Seg workflow

Overview of RNA-seq workflow

10.1371/journal.pcbi.1004393

Reference and denovo RNA-seq studies

haas advancing 2010

Overview of plan of workflow development

Check original (raw) data quality

Pre-process reads

- Trim adapter remnants
- Trim low quality bases (Phred score ≤ 25)
- Remove reads ≤ 20nt

Recheck data quality

Phase II

Phase I

Generate gene/transcript level counts

- Alian reads to reference genome, or
- Generate estimated counts using pseudo-alignment approaches

Tabulate overall summary statistics (depends on method used above)

Phase III

Perform quality checks on count data

- · Check for outliers among replicates from same set
- Filter out any genes with counts below selected threshold

Perform statistical analysis to find differentially expressed genes

https://h3abionet.github.io/H3ABionet-SOPs/RNA-Seq-1-2.html

DNIA Sog workflow

Ion torrent (Ion semiconductor sequencing)

https://apollo-institute.org/ion-torrent-sequencing/

Comparison of specifications of Illumina and Ion Torrent platforms.

Sequence vield per run	7.5-8.5 Gb on reagents v.2	1.2-2 Gb on 520 chip
		1,6 2 00 011 320 CHIP
	12.5–15 Gb on reagents v.3	6-8 Gb on 530 chip
Accuracy	70% > Q30 at 600 cycles, 85% > Q30 at 500 cycles	85% > Q20
Systematic error	substitutions in GGC and GGT context	indels in homopolymer regions
Read length	500 (250 + 250) bp for reagents v.2	~400 bp for double chip
	600 (300 + 300) bp for reagents v.3	up to ~600 bp for single chip
Run Time	39 h for 500 cycles	19,5 h for 400 bp (includes presequencing chip processing, initialization a
	56 h for 600 cycles	sequencing)
	(includes cluster generation, sequencing and base	
	calling)	
Paired reads	Yes	No
Insert size	up to 550 bp	400 bp (up to 600 bp)

Step 1.1: Quality check

Example fastq file

```
@EAS139:136:FC706VJ:2:2104:15343:197393 1:N:18:1
CCCTTCTTGTCTTCAGCGTTTCTCC
;;3;;;;;;;;;;;7;;;;;88
TGGCAGGCCAAGGCCGATGGATCA
;;;;;;;;;;7;;;;;-;<mark>;;</mark>3;83
@EAS54 6 R1 2 1 443 348
GTTGCTTCTGGCGTGGGTGGGGGG
+EAS54 6 R1 2 1 443 348
;;;;;;;;;9;7;;.7;393333
```

Sequence reads: FASTQ Format Specification

- First line is the sequence header which starts with an '@' (not a '>')
- Everything from the leading '@' to the first whitespace character is considered the sequence identifier
- Everything after the first space is considered the sequence description
- Second line is the sequence
- Third line starts with '+' and can have the same sequence identifier appended (but usually doesn't anymore)
- Fourth line are the quality scores

https://en.wikipedia.org/wiki/FASTQ_format https://learn.gencore.bio.nyu.edu/ngs-file-formats/fastq-format/

Phred quality scores

A quality value Q is an integer representation of the probability p that the corresponding base call is incorrect.

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

RNA-Seq workflow

FASTQC: A quality control tool for high throughput sequence data

https://h3abionet.github.io/H3ABionet-SOPs/RNA-Seq-2-1.html

Before we start: an brief interlude on installing your tools

I highly recommend learning how to use conda

https://conda.io/projects/conda/en/latest/index.html

Running FastQC

```
fastqc \ seqfile1 \ seqfile2 \ \dots \ seqfileN
```

```
fastqc [-o output dir] [--(no) extract] [-f fastq |bam |sam] [-c contaminant file] seqfile1 .. seqfileN
```

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

MultiQC

Aggregate results from bioinformatics analyses across many samples into a single report

https://multiqc.info/modules/fastqc/