Applied Text Analytics & Natural Language Processing

with Dr. Mahdi Roozbahani & Wafa Louhichi

Neural Networks Forward Pass and Back Propagation

Learning Objectives

In this lesson, you will learn another linear text classifier

- Neural Network
- Activation Functions
- Forward Pass
- Backpropagation

Inspiration from Biological Neurons

The first drawing of brain cells by Santiago Ramón y Cajal in 1899 Public Domain, https://commons.wikimedia.org/w/index.php?curid=612581

Neurons: core components of the brain and the nervous system consisting of:

- 1. Dendrites that collect information from other neurons
- 2. An axon that generates outgoing spikes

Logistic Regression Block

Logistic Regression Block

Different Activation Function

 $output = activation(\chi \theta + b)$

Name of the neuron	Activation function: $activation(z)$
Linear unit	\boldsymbol{z}
Threshold/sign unit	sgn(z)
Sigmoid unit	$\frac{1}{1 + \exp\left(-z\right)}$
Rectified linear unit (ReLU)	$\max(0,z)$
Tanh unit	tanh (z)

Different Activation Function

 $output = activation(\chi\theta + b)$

Name of the neuron	Activation function: $activation(z)$
Linear unit	\boldsymbol{z}
Threshold/sign unit	sgn(z)
Sigmoid unit	$\frac{1}{1+\exp\left(-z\right)}$
Rectified linear unit (ReLU)	$\max(0,z)$
Tanh unit	tanh (z)

Different Activation Function

 $output = activation(\chi \theta + b)$

Name of the neuron	Activation function: $activation(z)$
Linear unit	\boldsymbol{z}
Threshold/sign unit	sgn(z)
Sigmoid unit	$\frac{1}{1+\exp\left(-z\right)}$
Rectified linear unit (ReLU)	$\max(0,z)$
Tanh unit	tanh (z)

Can We Connect a Bunch of These Blocks Together?

Neural Network Regression

Neural Network Regression

Neural Network Regression

Neural Network Classification

Increasing the Depth of Each Layer

Adding More Hidden Layer

Forward Pass

$$u_{11} = \sum_{i=0}^{d} x_i \theta_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

$$O_{11} = \frac{1}{1 + e^{-u_{11}}}$$

In forward pass, we calculate all u_{ij} and o_{ij} values from the left to the right of the network

Backpropagation

- In backpropagation, we update all θ_i parameters from the right to the left of the network.
- Optimization can be done using iterative techniques such as gradient descent

Backpropagation

- In backpropagation, we update all θ_i parameters from the right to the left of the network.
- Optimization can be done using iterative techniques such as gradient descent

Backpropagation

- In backpropagation, we update all θ_i parameters from the right to the left of the network.
- Optimization can be done using iterative techniques such as gradient descent

Summary

- We learned about Neural Network
- We quickly went over Forward Pass and Backpropagation to optimize the model parameters

