Discrete Math — Homework 4 Solutions

Yuquan Sun, SID 10234900421

March 22, 2025

$\mathbf{Q}\mathbf{1}$

Given three sets A, B, and C, please prove the following statements.

Let p be " $x \in A$ ", q be " $x \in B$ ", r be " $x \in C$ ".

(a) $(A \cap B) \subseteq A$

Proof: According to the definition, $\forall x \in A \cap B(x \in A)$, and thus we have $(A \cap B) \subseteq A$. \square

(b) $A \cap (B - A) = \emptyset$

Proof: For all $x \in A \cap (B - A)$, by definition, we have $(x \in A) \wedge (x \notin A)$, so there doesn't exists such x. Therefore, $A \cap (B - A) = \emptyset$. \square

(c) $A \cup (B - A) = A \cup B$

 $\textbf{Proof:}\ \ A \cup (B-A) = \{x \mid p \vee (q \wedge \neg p)\} = \{x \mid (p \vee q) \wedge (p \vee \neg p)\} = \{x \mid p \vee q\} = A \cup B. \ \ \Box$

(d) $A - B = A \cap \overline{B}$

Proof: $A - B = \{x \mid p \land \neg q\} = A \cap \overline{B}$. \square

(e) $(A \cap B) \cup (A \cap \overline{B}) = A$

Proof: $(A \cap B) \cup (A \cap \overline{B}) = \{x \mid (p \wedge q) \vee (p \wedge \neg q)\} = \{x \mid p \wedge (q \vee \neg q)\} = \{x \mid p\} = A. \square$

(f) $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$

 $\textbf{Proof:} \ \overline{A \cap B \cap C} = \{x \mid \neg (p \land q \land r)\} = \{x \mid \neg p \lor \neg q \lor \neg r\} = \overline{A} \cup \overline{B} \cup \overline{C}. \ \Box$

$\mathbf{Q2}$

Show the following Cartesian products are not the same.

- (a) $A \times B$ and $B \times A$, unless A = B. Let $A = \{1\}, B = \{2\}$. Then $A \times B = \{(1, 2)\} \neq \{(2, 1)\} = B \times A$.
- (b) $A \times B \times C$ and $(A \times B) \times C$. Let $A = \{1\}$, $B = \{2\}$, $C = \{3\}$. Then $A \times B \times C = \{(1, 2, 3)\} \neq \{((1, 2), 3)\} = (A \times B) \times C$.

$\mathbf{Q3}$

Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if

- (a) f(m,n) = m + n is onto.
- (b) $f(m, n) = m^2 + n^2$ is **not** onto.
- (c) f(m,n) = m is onto.
- (d) f(m,n) = |n| is **not** onto.
- (e) f(m,n) = m n is onto.

$\mathbf{Q4}$

If f and $f \circ g$ are onto, does it follow that g is onto?

No.

Proof: Let $f: V \to W$.

f is onto means $\operatorname{Im} f = f(V) = R$. $f \circ g$ is onto means $\operatorname{Im} f \mid \operatorname{Im} g = R$. (the vertival bar here means restrict the domain of f within the image of g)

Once $V \subseteq \operatorname{Im} g$, then we can ensure that $f \circ g$ is onto. So to construct a counterexample, we just need to set g as a function such that $V \subseteq \operatorname{Im} g \subset \operatorname{co-domain} \operatorname{of} g$. \square

Q_5

Let S be a subset of a universal set U. The characteristic function f_S of S is the function from U to $\{0,1\}$ such that $f_S(x) = 1$ if x belongs to S and $f_S(x) = 0$ if x does not belong to S. Let A and B be sets.

(a) $f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$

Proof:

LHS, $f_{A \cap B}(x) = 1$ iff. $x \in A \cap B \iff x \in A \land x \in B$.

RHS,
$$f_A(x) \cdot f_B(x) = 1$$
 iff. $f_A = 1 \land f_B = 1 \iff x \in A \land x \in B$.

Thus, the 2 expressions are equivalent. \square

(b) $f_{A \cup B(x)} = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$

Proof: Proving $f_{A\cup B(x)}=f_A(x)+f_B(x)-f_A(x)\cdot f_B(x)$ is proving $f_{A\cup B(x)}+f_{A\cap B}(x)=f_A(x)+f_B(x)$. We prove by cases:

- I. $x \notin A \land x \notin B$. LHS=0=RHS.
- II. x in either set. LHS=1=RHS.

III. x in both set. LHS=2=RHS.

Thus, the equation was verified. \square

(c) $f_{\overline{A}}(x) = 1 - f_A(x)$

Proof: We prove by cases:

I.
$$x \in A$$
. LHS=0=RHS.

II.
$$x \notin A$$
. LHS=1=RHS.

Thus, the equation was verified. \Box

Q6

Show that the function f(x) = ax + b from \mathbb{R} to \mathbb{R} is invertible, where a and b are constants, with $a \neq 0$, and find the inverse of f.

Solution:

First show f is injection. $\forall m, n \in \mathbb{R}, f(m) = f(n) \implies am + b = an + b \implies m = n$. Then show f is surjection. $\forall y_0 \in \mathbb{R}, \exists x_0 = \frac{1}{a}(y_0 - b) \text{ s.t. } f(x_0) = y_0$. So, f is bijection, and thus, f is invertible. $f^{-1} = \frac{1}{a}(x - b)$.

Q7

Prove or disprove each of these statements about the floor and ceiling functions.

- (a) $\forall x \in \mathbb{R}, \lceil \lfloor x \rfloor \rceil = \lfloor x \rfloor$ **Proof**: Write $x = n + \epsilon, n \in \mathbb{Z}, \epsilon \in [0, 1)$. $\lceil |x| \rceil = \lceil n \rceil = n = |x|$. \square
- (b) $\forall x \in \mathbb{R}, \lfloor 2x \rfloor = 2 \lfloor x \rfloor$ **False**. x = 2.5 is an counterexample.
- (c) $\forall x, y \in \mathbb{R}, \lceil xy \rceil = \lceil x \rceil \lceil y \rceil$ **False**. x = y = 9.9 is an counterexample.
- (d) $\forall x \in \mathbb{R}, \lceil \frac{x}{2} \rceil = \lfloor \frac{x+1}{2} \rfloor$ **False**. x = 6.2 is an counterexample.

$\mathbf{Q8}$

Please formulate the following problem as a formal mathematical problem via using indicator functions:

Input: Universal set $U = \{u_1, u_2, \dots, u_n\}$. Subsets $S_1, S_2, \dots, S_m \subseteq U$.

Goal: Find k subsets that maximizes their total coverage, i.e., set $\bigcup_{i \in k} S_i$ contains the most elements of U.

Solution: Let
$$\lambda \subseteq \{1, 2, \dots, n\}$$
, $\delta_i = \begin{cases} 0, & i \notin \lambda \\ 1, & i \in \lambda \end{cases}$, $S = \bigcup_{i \in \lambda} S_i$, $I_S(u_i) = \begin{cases} 0, & u_i \notin S \\ 1, & u_i \in S \end{cases}$
Objective: $\max \sum_{i=1}^n I_S(u_i)$ s.t. $\sum_{i=1}^n \delta_i = 9$.

$\mathbf{Q}\mathbf{9}$

Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.

- (a) all bit strings not containing the bit 0. Countably infinite. f: bit strings $\to \mathbb{Z}^+$, $str \mapsto \text{length of } str$.
- (b) the integers that are multiples of 7. Countably infinite. Let $f: \mathbb{Z} \to \mathbb{Z}, x \mapsto \frac{x}{7}, g: \mathbb{Z} \to \mathbb{Z}^+, x \mapsto \begin{cases} 2x, & x \geq 0 \\ 2|x| - 1, & x < 0 \end{cases}$. And $g \circ f$
- (c) the irrational numbers between 0 and 1. **Uncountable**.
- (d) the real numbers between 0 and $\frac{1}{2}$. Uncountable.

is what we want.

Q10

Give an example of two uncountable sets A and B such that $A \cap B$ is

- (a) finite. Let A = (0, 1], B = [1, 2].
- (b) countably infinite. Let $A = \mathbb{Z} \cup (0,1), B = \mathbb{Z} \cup (1,2)$.
- (c) uncountable. Let A = B = (0, 1).

Q11

Explain why the set A is countable if and only if $|A| \leq |\mathbb{Z}^+|$.

Solution:

If A is countable, it is trivial that there exists an injection from A to \mathbb{Z}^+ , so $|A| \leq |\mathbb{Z}^+|$.

Then for the other case $|A| \leq |\mathbb{Z}^+|$. If $|A| < |\mathbb{Z}^+| = \aleph_0$, then A is finite, so it is countable. If $|A| = |\mathbb{Z}^+| \iff (|A| \leq |\mathbb{Z}^+|) \wedge (|A| \geq |\mathbb{Z}^+|)$, and each term ensure a injection. So according to Schröder–Bernstein theorem, there exist a bijection from A to \mathbb{Z}^+ , and thus A is countable.

Q12

Show that if A and B are sets, A is uncountable, and $A \subseteq B$, then B is uncountable.

Proof:

Use contradiction. Assume B is countable, then $|B| \leq |\mathbb{Z}^+|$, there we ensure an injection f from B to \mathbb{Z}^+ . And $A \subseteq B$, thus we ensure an injection g from A to B. Then $f \circ g$ is an injection from A to \mathbb{Z}^+ . Therefore, $|A| \leq |\mathbb{Z}^+|$, which means A is countable. This contradicts with "A is uncountable". So, B is uncountable. \square

Q13

Show that if A, B, and C are sets such that $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$.

Proof:

Since, $|A| \leq |B|$, we ensure an injection $f: A \to B$. Similarly, we ensure an injection $g: B \to C$. Then, $g \circ f$ is an injection from A to C. Therefore, $|A| \leq |C|$. \square

Q14

Let
$$A = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$$
,

(a) Find A^T, A^{-1} , and A^3 .

$$A^{T} = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}, A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 \\ 1 & 1 \end{pmatrix}, A^{3} = \begin{pmatrix} 1 & 18 \\ 9 & 37 \end{pmatrix}.$$

(b) Find $(A^{-1})^3$ and $(A^3)^{-1}$.

$$(A^{-1})^3 = (A^3)^{-1} = \frac{1}{125} \begin{pmatrix} -37 & 18\\ 9 & -1 \end{pmatrix}.$$

Q15

Suppose that $A \in \mathbb{R}^{n \times n}$ where n is a positive integer. Show that $A + A^T$ is symmetric.

Proof:
$$(A + A^T)^T = A^T + (A^T)^T = A + A^T$$
. \Box

Q16

Solution:

Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Find $A \wedge B$, $A \vee B$, and $A \odot B$.

$$A \wedge B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ A \vee B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \ A \odot B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Q17

Let A be a zero-one matrix. Show that

(a) $A \lor A = A$

For every entry a_{ij} of matrix A, $a_{ij} \vee a_{ij} = a_{ij}$. Thus, $A \vee A = A$.

(b) $A \wedge A = A$

For every entry a_{ij} of matrix A, $a_{ij} \wedge a_{ij} = a_{ij}$. Thus, $A \wedge A = A$.

Q18

Let A be an $n \times n$ zero-one matrix. Let I be the $n \times n$ identity matrix. Show that $A \odot I = I \odot A = A$. **Proof**:

Denote A[i, j] as the entry of matrix A at ith row and jth column.

 $(A \odot I)[i,j] = \bigvee_{k=1}^{n} (A[i,k] \wedge I[k,j]) = A[i,j]$ since $I[i,j] = 1 \iff i=j$. So, we have $A \odot I = A$.

Similarly, $(I \odot A)[i,j] = \bigvee_{k=1}^{n} (I[i,k] \wedge A[k,j]) = A[i,j]$. Thus, $I \odot A = A$.

To sum up, we have $A \odot I = I \odot A = A$. \square