Physical Quantities

	Quantity	Definition	Formula	Units	Dimensions
	Length or Distance	fundamental	d	m (meter)	L (Length)
Basic Mechanical	Time	fundamental	t	s (second)	T (Time)
	Mass	fundamental	m	kg (kilogram)	M (Mass)
	Area	distance ²	$A = d^2$	m ²	L^2
	Volume	distance ³	$V = q_3$	m ³	L ³
	Density	mass / volume	d = m/V	kg/m ³	M/L ³
	Velocity	distance / time	v = d/t	m/s	L/T
				c (speed of light)	
	Acceleration	velocity / time	a = v/t	m/s ²	L/T ²
	Momentum	mass × velocity	p = m·v	kg·m/s	ML/T
	Force	mass × acceleration	F = m·a	N (newton) = $kg \cdot m/s^2$	ML/T ²
	Weight	mass × acceleration of gravity	W = m·g		
	Pressure or Stress	force / area	p = F/A	Pa (pascal) = $N/m^2 = kg/(m \cdot s^2)$	M/LT ²
	Energy or Work	force × distance	E = F·d	$J (joule) = N \cdot m = kg \cdot m^2/s^2$	ML^2/T^2
	Kinetic Energy	mass × velocity ² / 2	$KE = m \cdot v^2/2$		
	Potential Energy	mass × acceleration of gravity	PE = m·g·h		
	33	× height	J		
	Power	energy / time	P = E/t	W (watt) = J/s = $kg \cdot m^2/s^3$	ML^2/T^3
	Impulse	force × time	I = F·t	N·s = kg·m/s	ML/T
	Action	energy × time	S = E·t	$J \cdot s = kg \cdot m^2 / s$	ML^2/T
		momentum × distance	S = p·d	h (quantum of action)	
	Angle	fundamental	θ	° (degree), rad (radian), rev	dimensionless
Rotational Mechanical	J			$360^{\circ} = 2\pi \text{ rad} = 1 \text{ rev}$	
	Cycles	fundamental	n	cyc (cycles)	dimensionless
	Frequency	cycles / time	f = n/t	Hz (hertz) = cyc/s = 1/s	1/T
	Angular Velocity	angle / time	$\omega = \theta/t$	rad/s = 1/s	1/T
	Angular Acceleration	angular velocity / time	α = ω/t	$rad/s^2 = 1/s^2$	1/T ²
	Moment of Inertia	mass × radius ²	I = m·r²	kg·m²	ML^2
	Angular Momentum	radius × momentum	L = r·p	$J \cdot s = kg \cdot m^2 / s$	ML^2/T
	J	moment of inertia	L = Ι·ω	ћ (quantum of angular momentum)	
		× angular velocity		, , ,	
	Torque or Moment	radius × force	τ = r·F	$N \cdot m = kg \cdot m^2/s^2$	ML^2/T^2
	·	moment of inertia	τ = Ι·α	3	
		× angular acceleration			
Thermal	Temperature	fundamental	T	°C (celsius), K (kelvin)	K (Temp.)
	Heat	heat energy	Q	$J (joule) = kg \cdot m^2/s^2$	ML^2/T^2
	Entropy	heat / temperature	S = Q/T	J/K	ML^2/T^2K
È					
A	Electric Charge +/-	fundamental	q	C (coulomb)	Q (Charge)
Electromagnetic				e (elementary charge)	
	Current	charge / time	i = q/t	A (amp) = C/s	Q/T
	Voltage or Potential	energy / charge	V = E/q	V (volt) = J/C	ML^2/QT^2
	Resistance	voltage / current	R = V/i	Ω (ohm) = V/A	ML^2/Q^2T
	Capacitance	charge / voltage	C = q/V	F (farad) = C/V	Q^2T^2/ML^2
	Inductance	voltage / (current / time)	L = V/(i/t)	H (henry) = V·s/A	ML^2/Q^2
	Electric Field	voltage / distance	E = V/d	V/m = N/C	ML/QT ²
		force / charge	E = F/q		
	Electric Flux	electric field × area	Φ _F = E·A	V·m = N·m ² /C	ML3/QT2
	Magnetic Field	force / (charge × velocity)	B = F/(q·v)	T (tesla) = $Wb/m^2 = N \cdot s/(C \cdot m)$	M/QT
	Magnetic Flux	magnetic field × area	$\Phi_{M} = B \cdot A$	Wb (weber) = $V \cdot s = J \cdot s/C$	ML2/QT
		Note: Other sequentions define		•	