++++++Checking for Missing Values and Null Values

All the below visualization plots are performed without scaling the data ---

Boxplots of Full time and Part Time Undergraduates

From the boxplots of part time and fulltime under graduate students versus whether they are enrolled in Private or Public schools its obvious that mostly the students whether parttime or full time are enrolled for public schools and also majority of them are Full time students

Pairs plot of College Data:

The pairs plot does not seem to infer any useful information except the high positive correlation between Enrolled students and Full time graduate students, Out State Tuition fees and Room Board Costs. Also the same information is retrieved from the below correlation plot.

After scaling all the continuous variables to the same scale:

The left plot indicates the unscaled College data and right plot indicates the scaled college data(Log Transformation).So the only change that is getting reflected from the scaled version of college data as

highlighted in yellow is that the Student Faculty Ratio and Instructional expenditure per student has become more negatively correlated, in other words as no. of student increases (faculty assumed to be fixed) or the faculty number reduced(keeping the number of students fixed), the Instructional expenditure per student is getting reduced and vice versa.

Ordering by decreasing value of Apps -

a)Public College Data -

> Public_College_Data[1:5,]

	Private	Apps	Accept	Enroll	Top10perc
Rutgers at New Brunswick	No	48094	26330	4520	36
Purdue University at West Lafayette	No	21804	18744	5874	29
University of California at Berkeley	No	19873	8252	3215	95
Pennsylvania State Univ. Main Campus	No	19315	10344	3450	48
University of Michigan at Ann Arbor	No	19152	12940	4893	66
	Top25per	rc F.U	ndergrad	P.Unde	ergrad
Rutgers at New Brunswick		79	21401		3712
Purdue University at West Lafayette	(50	26213		4065
University of California at Berkeley	10	00	19532		2061
Pennsylvania State Univ. Main Campus	9	93	28938		2025

b)Private College Data

> Private_College_Data[1:5,]

	Private	Apps	Accept	Enroll	Top10)perc	Top25p	perc
Boston University	Yes	20192	13007	3810		45		80
University of Delaware	Yes	14446	10516	3252		22		57
Harvard University	Yes	13865	2165	1606		90		100
Duke University	Yes	13789	3893	1583		90		98
New York University	Yes	13594	7244	2505		70		86
-	F. Underg	rad P	. Under gr	ad Out	state	Room.	Board	Books
Boston University	14	971	31	L13 :	18420		6810	475
University of Delaware	14	130	4.5	522	10220		4230	530
Harvard University	6	862	3	320	18485		6410	500
Duke University	6	188		53	18590		5950	625
New York University	12	408	28	314	17748		7262	450
	Personal	PhD	Terminal	l s.f.R	atio p	perc.a	alumni	Expend
Boston University	1025	80	81	L :	11.9		16	16836
University of Delaware	1300	82	87	7	18.3		15	10650
Harvard University	1920	97	97	7	9.9		52	37219
Duke University	1162	95	96	5	5.0		44	27206
New York University	1000	87	98	3	7.8		16	21227

After partitioning and eliminating the universities having less than the median number of HS students admitted from the top 25% of class, we have the reduced the total number of observations for both private and public datasets as shown below –

```
> dim(College)
[1] 777 18
> dim(Public_College_Data)
[1] 105 18
> dim(Private_College_Data)
[1] 281 18
> I
```

Histogram Plot of Graduation Rate -

Based on the above histogram plots of Graduation Rate the cuts for Public and Private College Data are made on the following ways:

Public_College_Data[["GradRateMod"]]=ordered(cut(Public_College_Data[["Grad.Rate"]],c(0,30,50,80,1 00),labels=c("Low","Medium","High","Low")))

 $\label{lem:college_Data} Private_College_Data[["GradRateMod"]]= ordered(cut(Private_College_Data[["Grad.Rate"]], c(0,60,85,100), labels=c("Low", "High", "Medium")))$

<u>Task 2 - Visualizing and Exploring the market dataset</u>

> summary(market	ing)		
Income	Sex	Marital	Age
Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:2.000	1st Qu.:1.000	1st Qu.:1.000	1st Qu.:2.000
Median :5.000	Median :2.000	Median :3.000	Median :3.000
Mean :4.895	Mean :1.547	Mean :3.031	Mean :3.415
3rd Qu.:7.000	3rd Qu.:2.000	3rd Qu.:5.000	3rd Qu.:4.000
Max. :9.000	Max. :2.000	Max. :5.000	Max. :7.000
		NA's :160	
Edu	Occupation	Lived	Dual_Income
Min. :1.000	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:3.000	1st Qu.:1.000	1st Qu.:4.000	1st Qu.:1.000
Median :4.000	Median :4.000	Median :5.000	Median :1.000
Mean :3.835	Mean :3.788	Mean :4.198	Mean :1.545
3rd Qu.:5.000	3rd Qu.:6.000	3rd Qu.:5.000	3rd Qu.:2.000
Max. :6.000	Max. :9.000	Max. :5.000	Max. :3.000
NA'S :86	NA's :136	NA's :913	
Household	Householdu18	Status	Home_Type
Min. :1.000	Min. :0.0000	Min. :1.000	Min. :1.000
1st Qu.:2.000	1st Qu.:0.0000	1st Qu.:1.000	1st Qu.:1.000
Median :3.000	Median :0.0000	Median :2.000	Median :1.000
Mean :2.852	Mean :0.6669	Mean :1.837	Mean :1.856
3rd Qu.:4.000	3rd Qu.:1.0000	3rd Qu.:2.000	3rd Qu.:3.000
Max. :9.000	Max. :9.0000	Max. :3.000	Max. :5.000
NA's :375		NA's :240	NA's :357
Ethnic	Language		
Min. :1.000	Min. :1.000		

It's a transaction data and highlighted regions shows quite a lot of missing values for each of column values, it's quite natural be it in online marketing or in a physical shop, it's not always possible to capture all the details of a customer due to several reasons.

Histogram plots of all the variables -

Recoded the marketing data as per the ESL textbook.

"https://hastie.su.domains/ElemStatLearn/datasets/marketing.info.txt (blackboardcdn.com)"

The cp table there is a significant decrease in the modelling error with just four variables ,so we should stick to these four models rather then making it more and complex.

Classification Tree for unsupervised learning - Marketing Data After Pruning

We have pruned the original tree to a smaller tree using lesser number of variables were crucial in terms of importance and generalized the model at the same time thus keeping the model simple.

<u>Dual Income has got three categories Yes, No and Not Married ,so for people who are under Dual</u> Income has got three categories =[Yes, No] and might be married or living together represent the

```
cover
0.00 when Household is Nine or more or One or Seven or Six or Three & Marital is Divorced or separated or Single, never married or Widowed & Dual_Income is No or Yes
                                                                                                                                                                                      5%
0.00 when Household is Five or Four or Two & Marital is Divorced or separated or Single, never married or Widowed & Dual_Income is No or Yes
                                                                                                                                                                                       6%
                                                                                                                                                                                      2%
0.07 when Household is One & Marital is Living together, not married or Married & Dual_Income is No or Yes
0.08 when Household is Nine or more or One or Seven or Six or Three & Marital is Living together, not married or Married & Dual_Income is Not Married
                                                                                                                                                                                      6%
                                                                                                                                                                                      10%
0.25 when Household is Five or Four or Two & Marital is Living together, not married or Married & Dual_Income is Not Married
                                                                                                                                                                                      12%
0.43 when Household is Five or Four or Two & Marital is Divorced or separated or Single, never married or Widowed & Dual_Income is Not Married & Status is Own or Rent
0.67 when Household is Nine or more or Seven or Six or Three & Marital is Living together, not married or Married & Dual_Income is No or Yes
                                                                                                                                                                                       7%
0.68 when Household is Nine or more or One or Seven or Six or Three & Marital is Divorced or separated or Single, never married or Widowed & Dual_Income is Not Married
                                                                                                                                                                                      24%
0.73 when Household is Five or Four or Two & Marital is Divorced or separated or Single, never married or Widowed & Dual_Income is Not Married & Status is Live with Parents/Family
0.74 when Household is Five or Four or Two & Marital is Living together, not married or Married & Dual_Income is No or Yes
```

maximum probability of belonging to the actual marketing dataset. Again, this conclusion is based on the pruned tree version of the original dataset.

Support Calculated for Y=1 that is for the original dataset:

Dual_Income=No,Yes Status=Own,Rent

```
)"
 > probability_mat
[1,] 2 437 905 0.3256334 0.6743666 0.07461359
 [2,] 2 1386 2996 0.3162939 0.6837061 0.24363394
                                                                                       or")
x[3,] 2 148 880 0.1439689 0.8560311 0.05715557
_{\rm n}^{\rm n}[4,] 2 243 372 0.3951220 0.6048780 0.03419326
[5,] 2 754 2584 0.2258838 0.7741162 0.18558879
p> x11()
s> rpart.plot(fit.overall_mar, main="Classification Tree for unsupervised learning - M
 arketing Data Before Pruning")
 > probability_mat[,5]
 [1] 0.6743666 0.6837061 0.8560311 0.6048780 0.7741162
 > probability<-as.vector(probability_mat[,5])</pre>
 > support<-(probability*n)/size
 > support
 [1] 0.10063383 0.33314800 0.09785389 0.04136551 0.28733459
```

After calculating support for terminal nodes where Y=1 we would be tracing back to the rpart.fit summary to calculate the lift and confidence for the above observations:Below are the plots of parents of the root nodes for which Y=1,these plots would help us to get the information of lift and confidence

```
> path.rpart(fit.overall_mar, 11)
> path.rpart(fit.overall_mar, 19)
 node number: 19
                                                        node number: 11
   Household=Nine or more,One,Seven,Six,Three
                                                          Household=Nine or more,One,Seven,Six,Three
   Marital=Living together, not married, Married
                                                          Marital=Divorced or separated, Single, never married, Widowed
   Dual_Income=No,Yes
                                                          Dual_Income=Not Married
   Household=Nine or more, Seven, Six, Three
                                                       >
                                                             > path.rpart(fit.overall_mar, 29)
> path.rpart(fit.overall_mar, 55)
                                                              node number: 29
node number: 55
                                                                root
  root
                                                                Household=Five,Four,Two
  Household=Five, Four, Two
                                                                Marital=Living together, not married, Married
  Marital=Divorced or separated, Single, never married, Widowed
                                                                Dual_Income=Not Married
  Dual_Income=Not Married
  Status=Live with Parents/Family
                                                                Marital=Living together, not married
  Age=14 thru 17,18 thru 24
                                                            >
                    > path.rpart(fit.overall_mar, 31)
                     node number: 31
                       Household=Five,Four,Two
                       Marital=Living together, not married, Married
```

```
n wt dev yval complexity ncompete nsurrogate
                                                          yval2.v1
19 <leaf> 1342 1342 437 2 0.008284221 0
                                                     0 2.000000e+00
l1 <leaf> 4382 4382 1386 2 0.003335928
                                           0
                                                     0 2.000000e+00
55 <leaf> 1028 1028 148 2 0.000000000
                                                     0 2.000000e+00
0 2.000000e+00
31 <leaf> 3338 3338 754
                      2 0.003224730
                                                     0 2.000000e+00
      vval2.v2
                yval2.v3
                             vval2.v4
                                        yval2.v5 yval2.nodeprob
L9 4.370000e+02 9.050000e+02 3.256334e-01 6.743666e-01 7.461359e-02
l1 1.386000e+03 2.996000e+03 3.162939e-01 6.837061e-01 2.436339e-01
55 1.480000e+02 8.800000e+02 1.439689e-01 8.560311e-01 5.715557e-02
?9 2.430000e+02 3.720000e+02 3.951220e-01 6.048780e-01 3.419326e-02
31 7.540000e+02 2.584000e+03 2.258838e-01 7.741162e-01 1.855888e-01
  support_percent
19
      10.063383
       33.314800
11
55
        9.785389
29
        4.136551
31
       28.733459
```

It appears that the support for terminal node 11 and 31 are very high .So for terminal nodes 11 and 31 if we get the following association rule:

Association Rule 1 - Support 33.31%

No. of persons in house -One, Three, Six, Seven, Nine or more

Marital Status -Single, Never Married, Widowed, "Divorced or Separated"

Dual Income - "Not married"

Association Rule 2 - Support 28.74%

No. of persons in house -Two, Four, Five

Marital Status -Living Together, Married, Not Married

Dual Income -No, Yes

Status = Own , Rent