Quadratic Equations and Inequations (Inequalities)

ai24btech11024 PRAHLADHA

- I. D.MCQs with One or More than One Correct
- 1) Number of integral divisors of the form 4n + $2(n \ge 0)$ of the integer 240 is (1984-2 Marks)
 - a) a positive integer
 - b) divisible by n
 - c) equal to $n+\frac{1}{n}$
 - d) never equal to n
- 2) If $3^{x} = 4^{x} 1$, then x =(JEE Adv. 2013)
- 3) Let S be the set of all non-zero real numbers α such that quadratic equation $\alpha x^2 - x + \alpha = 0$ has two distinct real roots x_1 and x_2 satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals is(are) α subset of S? 2015)

II. E.Subjective Problems

- 4) solve for $x: 4^x 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} 2^{2x-1}$
- 4) Solve for x: 4-3=3=2-25) If $(m,n) = \frac{(1-x^m)(1-x^{m-1})......(1-x^{m-n+1})}{(1-x)(1-x^2)......(1-x^n)}$ Where m and n are positive integers $(n \le m)$, Show that $(m, n+1) = (m-1, n+1) + x^{m-n-1}(m-1, n).(1978)$
- 6) Solve for x: $\sqrt{x+1} \sqrt{x-1} = 1$. (1978)
- 7) Solve the following equation for x: $2\log_x a + \log_{ax} a + 3\log_{a^2x} a = 0, a > 0 \quad (1978)$
- 8) Show that the square of $\frac{\sqrt{26-15\sqrt{3}}}{5\sqrt{2}-\sqrt{38+5\sqrt{3}}}$ rational number. (1978)
- 9) Sketch the solution set of the following system of inequalities: $x^2 + y^2 - 2x \ge 0$; $3x - y - 12 \le 0$; $y - x \le 0$; $y \ge 0$. (1978)
- 10) Find all integers x for which $(5x-1) < (x+1)^2 < (7x-3).$ (1978)

11) If α, β are the roots of $x^2 + px + q = 0$ and γ, δ are the roots of $x^2 + rx + s = 0$, evaluate $(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta)$ in terms of p,q,r,and s. Deduce the condition that the equations have a common root.

1

12) Given $n^4 < 10^n$ for a fixed positive integer $n \ge 10^n$

- prove that $(n+1)^4 < 10^{n+1}$. (1980) 13) Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$ Find all the real values of x for which y takes real values. (1980)
- 14) For what values of m,does the system of equa-(1980)

3x + my = m2x - 5y = 20

has solution satisfying the condition $x_{\xi}0,y_{\xi}0$. (1980)

15) find the solution set of the system

$$x + 2y + z = 1;2x - 3y - w = 2;x \ge 0; y \ge 0; z \ge 0; w \ge 0.$$
 (1980)