The European projec GOAL-Robots aiming to build robots that can learn motor skills in an open-ended fashion driven by curiosity

GOAL Robots

Gianluca Baldassarre

Laboratory of Computational Embodied Neuroscience (LOCEN), Institute of Cognitive Sciences and Technologies (ISTC), Italian National Research Council (CNR),

Shangai Lecture 23 November 2016

Rome, Italy

Outline

- LOCEN: hint to research methods
- New project "GOAL-Robots" funding this research
- Our problem: "robots able to autonomously learn multiple goals/skills"
- Solution: "intrinsic motivations → goals → skill learning"
- Two robotic models examples
 - Learning parameterised skills
 - A whole architecture of open-ended learning

Senior collaborators of this research

CNR: Italian National Research Council

ISTC: Institute of Cognitive Sciences and Technologies

LOCEN: Laboratory of Computational Embodied Neuroscience

Francesco Mannella, Postdoc, BA/MA Cognitive Science, PhD: Modelling Embodied Intelligence

Daniele Caligiore, Researcher, BA/MA Robotics, PhD: Bioengineering

Valerio Sperati, PhD student, BA/MA Cognitive Science, PhD: Computer Science, Al

Vieri Santucci, Postdoc, BA/MA Philosophy, PhD: Computer Science, Al

Emilio Cartoni, PhD student, BA/MA Neuroscience, PhD: Bayesian Models

Simona Bosco, BA/MA Biology, Admin, projects, e-knowledge

Key elements of our research method

...and behaviour consequences affect brain learning

...produces behaviour in the world...

LOCEN: Laboratory Of Computational Embodied Neuroscience

Brain.

Hint to our bio-constrained models...

Baldassarre et al. (2013). Neural Networks

Key elements of our research method

rodayis!

...and behaviour consequences affect learning

Brain...

...produces behaviour in the world...

LOCEN: Laboratory Of Computational Embodied Neuroscience

A new EU project on the issues I will discuss

11/2016-10/2020 FET-OPEN project **GOAL-Robots**: "Goal-based Open-ended Autonomous Learning Robots"

- FET-OPEN call April 2016: 1st of 11 funded projects out of 800 :)
- 3.5 million euros
- Four Principal Investigators/Partners:
 - 1. Gianluca Baldassarre, Italian National Research Council, Rome, Italy
 - 2. Kevin O'Regan, Université Paris Descartes, Paris, France
 - 3. **Jochen Triesh**, Frankfurt Institute for Advanced Studies, Germany
 - 4. Jan Peters, Technische Universitaet Darmstadt, Darmstadt, Germany

Info: cordis.europa.eu/project/rcn/203543 en.html

Soon: www.goal-robots.eu

Understanding how humans and robots
 can cumulatively acquire multiple sensorimotor skills
 by autonomously interacting with the environment.

Understanding how humans and robots
 can cumulatively acquire multiple sensorimotor skills
 by autonomously interacting with the environment.

 Scientifically important to understand human behaviour and development: discovery of multiple goals and skills related to body, objects, multiple objects, and complex objects interactions

- Understanding how humans and robots can cumulatively acquire multiple sensorimotor skills by autonomously interacting with the environment.
- Technologically important to build future robots

Autonomous learning in unstructured environment

- Understanding how humans and robots can cumulatively acquire multiple sensorimotor skills by autonomously interacting with the environment.
- Technologically important to build future robots

Autonomous learning in unstructured environment

Unstructured environments pose challenges unexpected at design time

Therefore not possible to pre-program or pre-train them!

- Understanding how humans and robots can cumulatively acquire multiple sensorimotor skills by autonomously interacting with the environment.
- Technologically important to build future robots

Autonomous learning in unstructured environment

State-of-the-art of Developmental Robotics

For example:

- IM-CleVeR (old project)
- Schmidhuber
- Barto
- Oudeyer
- Merrick
- Baldassarre
- ...see ICDL proceedings...

Intrinsic motivations

Skills learning

State-of-the-art of Developmental Robotics

But:
developmental
robotics still fails to
produce truly
open-ended
learning

Insight from psychology/biology/models


```
Simon Newell (..., 1972, ...)
Castelfranchi Parisi (1976, ...)
Hommel (..., 2001, ...)
von Hofsten (..., 2004, ...)
Fuster (..., 1997, ...)
Dickinson Balleine (1998, ...)
Passingham Wise (..., 2012, ...)
Santucci, Mirolli, Baldassarre (2012, ...)
Rolf (2010, ...)
Oudeyer (2010, ...)
```

Intrinsic motivations

Paradigm shift of GoAL Robots

Interim zoom: different intrinsic motivations (mechanisms)

From Baldassarre & Mirolli (2013):

Surprise (e.g., Shmidhuber, 1990; Oudeyer, 2007)

Based on: violation of predictions

Maggired as: error/rate of improvement

Measured as: error/rate of improvement of predictions

Novelty detection (e.g., Nehmzow, 2000)

Based on: lack of information in memory

Measured as: quality/rate of improvement of memories

Competence acquisition (e.g., Barto, 2004; Schembri, 2007)
 Based on: performance to accomplish a task/goal
 Measured as: probability/probability-increase of success

Interim zoom: what is a goal?

Goal: desired state

Paradigm shift:

Vieri Santucci

Santucci et al. (2013) *Frontiers in Neurorobotics* Santucci et al. (2016) *IEEE TAMD*

Vieri Santucci

Santucci et al. (2013) Frontiers in Neurorobotics Santucci et al. (2016) IEEE TAMD

Vieri Santucci

Actor-critic reinforcement learning

Santucci et al. (2013) *Frontiers in Neurorobotics* Santucci et al. (2016) *IEEE TAMD*

Vieri Santucci

Vieri Santucci

Santucci et al. (2013) Frontiers in Neurorobotics Santucci et al. (2016) IEEE TAMD

Vieri Santucci

Santucci et al. (2013) Frontiers in Neurorobotics Santucci et al. (2016) IEEE TAMD

Model 3: Video of GRAIL learning and functioning

While learning

Model 3: GRAIL learning of four skills

Success in reaching different spheres

Vieri Santucci

Santucci et al. (2013) Frontiers in Neurorobotics Santucci et al. (2016) IEEE TAMD

Model 3: learning of goal-skill link

- Systems learns to associate the best expert to each goal:
 - Here: suitable arm (output)
 - In general: best expert for input/internal_resources/output

Dynamic Movement Primitives (DMPs)

 DMPs: Dynamic Movement Primitives
 (Ijspeert, Nakanishi, Shaal, 2002)

Dynamic Movement Primitives (DMPs)

- DMPs: Dynamic Movement Primitives
 (Ijspeert, Nakanishi, Shaal, 2002)
- RL Policy Search: Pl^{BB} (Stulp Sigaud, 2012)

S

DMPs and policy search RL

Directly learned on the real robot in 10x35 trials

Meola et al. Baldassarre (2016), IEEE Transact. Cognitive Developmental Syst.

Bruno Castro Andrew da Silva Barto

Model 5: transfer by generalisation

Policy parameters: control of 7 DOFs

Different goal parameters: x,y bottle position

Mapping (e.g., neural net 1)

Functioning:

goal params → **policy params**

DMP: Input → Output

Controller (e.g., neural net 2)

Castro da Silva et al. (2014) IEEE ICRA

Bruno Castro Andrew da Silva Barto

Model 5: transfer by generalisation

Policy parameters: control of 7 DOFs

Different goal parameters: x,y bottle position

Learning:

goal params → policy params

DMP: Input → Output

RL

Castro da Silva et al. (2014) IEEE ICRA

Model 5: transfer by generalisation

Castro da Silva et al. Baldassarre (2014) IEEE ICRA

Model 5, video: robot learns to hit bottle with balls, and generalises

Conclusions

- GOAL-Robots: a novel hypothesis for open-ended learning:
 IMs → goal self-generation → skill learning
- This solution needs sophisticated architectures (as brain!)
- Key principles to build such architectures:
 - Different IM mechanisms for different key functions
 - Goals as pivot of architectures: learn skills, recall skills, match,...
 - Self-generation of goals as engine of open-ended learning
 - Dynamic models are key for motor exploration, knowledge transfer, catastrophic forgetting avoidance