Последовательности. Основные определения

Последовательность $\{x_n\}$ называется:		
- неубывающей, если " $n x_n \pounds x_{n+1}$;	$-$ невозрастающей , если " $n x_n^3 x_{n+1}$;	
- возрастающей, если " $n x_n < x_{n+1}$;	- убывающей, если " $n x_n > x_{n+1}$;	
- <i>монотонной</i> , если она является		
неубывающей, невозрастающей, убывающей или возрастающей.		
$-$ <i>ограниченной сверху</i> , если \$c " $n x_n £ c$;	— неограниченной сверху , если " $c \$ n x_n > c$;	
– <i>ограниченной снизу</i> , если $c " n x_n " c;$	$-$ неограниченной снизу , если " $c \$ n x_n < c$;	
$-$ <i>ограниченной</i> , если $c " n x_n \pounds c$;	$-$ неограниченной , если " $c \$n x_n > c$;	
- бесконечно большой (ББП) , если	 не является бесконечно большой, если 	
" $E > 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$$E > 0 \text{ " } n_0 $n 3 n_0 x_n £ E;$	
- бесконечно малой (БМП) , если	 не является бесконечно малой, если 	
" $e > 0 \ \$ n_0 \ " n^3 n_0 \ x_n < e;$	$\$e > 0$ " n_0 $\$n^3 n_0 x_n ^3 e$.	
'		
$-$ <i>сходящейся</i> (или <i>сходящейся</i> κ a), если $\lim_{n \otimes Y} x_n = a$;		
$-$ сходящейся $\kappa \neq $, если $\lim_{n \in \mathbb{Y}} x_n = \mathbb{Y}$;		
$- cxodящейся \kappa + + , если \lim_{n \in +} x_n = + + ;$		
$ cxodящейся \kappa - \forall , если \lim_{n \otimes \forall} x_n = - \forall .$		
- фундаментальной (или последовательностью Коши), если		
" e>0 \$ n_0 " n 3 n_0 " m 3 n_0 x_n - x_m < e или " e>0 \$ n_0 " n 3 n_0 " k Î $ x_{n+k}$ - x_n < e.		

Примечание: В таблице n, n_0, m, k – натуральные, а остальные величины вещественные.

$$\begin{split} &\lim_{n \otimes \mathbb{T}} x_n = a \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad |x_n - a| < e. \\ &\lim_{n \otimes \mathbb{T}} x_n = + \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n > E; \\ &\lim_{n \otimes \mathbb{T}} x_n = + \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n > E; \\ &\lim_{n \otimes \mathbb{T}} x_n = - \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n < - E; \\ &\lim_{n \otimes \mathbb{T}} x_n = - \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n < - E; \\ &\lim_{n \otimes \mathbb{T}} x_n = + \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n < - E; \\ &\lim_{n \otimes \mathbb{T}} x_n = - \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n < - E; \\ &\lim_{n \otimes \mathbb{T}} x_n = + \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n < - E; \\ &\lim_{n \otimes \mathbb{T}} x_n = - \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n > E; \\ &\lim_{n \otimes \mathbb{T}} x_n = + \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \$n_0 \quad \text{"n}^3 \quad n_0 \quad x_n > E; \\ &\lim_{n \otimes \mathbb{T}} x_n = - \mathsf{F} \quad \hat{\mathbb{U}} \quad \text{"e} > 0 \quad \text{"e} n_0 \quad \text{$$

Примечание: В таблице m, n, n_0 — натуральные, а остальные величины вещественные.

Свойства сходящихся последовательностей

- 1. Основное свойство последовательностей. Конечное число элементов (их добавление или удаление) не влияет на сходимость последовательности, причем значение предела сходящейся последовательности остается неизменным.
 - **2.** Сходящаяся последовательность имеет только *один* предел.
- 3. Необходимое условие сходимости. Сходящаяся последовательность ограничена, или, другими словами, всякая неограниченная последовательность расходится.
 - **4.** Если $\lim_{n \to \infty} x_n = l$ и $l^{-1}(0, x_n^{-1}(0, x_n^{-1}($
 - 5. Пусть $\lim_{n \circledast ¥} x_n = a \hat{\mathbf{l}}$; , $\lim_{n \circledast ¥} y_n = b \hat{\mathbf{l}}$; . Тогда
 - **6.** Пусть $\lim_{n \to \infty} x_n = a$. Тогда если
 - " $n x_{n} > c$ (или $x_{n}^{3} c$), то $a^{3} c$.
 - " $n x_n < c$ (или $x_n \pounds c$), то $a \pounds c$.

Замечание. Элементы сходящейся последовательности $\{x_n\}$ могут удовлетворять строгому неравенству $x_n > c \ (x_n < c \,),$ однако при этом предел a может оказаться равным $c \,.$

- **7.** Если " $n x_n \hat{\mathbf{i}} [a,b]$, то и $\lim_{n \to \infty} x_n \hat{\mathbf{i}} [a,b]$.
- **8.** Пусть $\lim_{n \in \mathbb{R}} x_n = a$, $\lim_{n \in \mathbb{R}} y_n = b$. Если, начиная с некоторого номера, элементы последовательностей $\{x_n\}$ и $\{y_n\}$, удовлетворяют неравенству $x_n < y_n$ (или $x_n \not\in y_n$), то $a \not\in b$.
- **9.** Пусть $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = a$, $a\hat{\mathbf{1}}$. Если, начиная с некоторого номера, элементы последовательности $\{z_n\}$ удовлетворяют неравенству $x_n \, \pounds \, z_n \, \pounds \, y_n$, то $\lim_{n \in \Psi} z_n = a$.
- 10. Теорема Вейерштрасса о пределе монотонной последовательности. Если последовательность монотонна и ограничена, то она имеет конечный предел.
- Больцано-Вейерштрасса. Каждая ограниченная последовательность действительных чисел содержит сходящуюся подпоследовательность. Всякая неограниченная последовательность имеет *частичный* предел, равный либо +¥, либо -¥.
- 12. Критерий Коши сходимости последовательности). Числовая последовательность сходится тогда и только тогда, когда она фундаментальна.
- 13. Критерий Коши расходимости последовательности). Для расходимости последовательности $\{x_n\}$ необходимо и достаточно, чтобы она не была фундаментальной, т.е.

$$e > 0$$
 " n_0 n_0

Свойства бесконечно малых последовательностей (БМП)

- 1. БМП ограничена.
- **2.** Если $\{x_n\}$ БМП, то $\{|x_n|\}$ БМП, и наоборот.
- **3.** Если $\{x_n\}$ и $\{y_n\}$ БМП, то а) $\{x_n \pm y_n\}$ БМП; б) " $c\hat{\mathbf{1}}$; $\{cx_n\}$ БМП. Следствие. Алгебраическая сумма любого конечного числа БМП есть БМП.
- **4.** Произведение БМП на ограниченную последовательность есть БМП. **Следствие.** Произведение любого числа БМП есть БМП.
- 5. Если все элементы БМП $\{x_n\}$ равны одному и тому же числу c , то c=0 .
- 6. Если $\{x_n\}$ БМП и " $n \mid y_n \mid \mathfrak{L} \mid x_n \mid$, то $\{y_n\}$ БМП.
- 7. Если $\{x_n\}$ ББП (БМП) и " $n x_n^{-1} 0$, то $\hat{i} \frac{1}{\hat{i}} \frac{\ddot{\mathbf{u}}}{x_n} \dot{\mathbf{p}}$ БМП (ББП).

Свойства бесконечно больших последовательностей (ББП)

- 1. $\lim_{n \circledast Y} x_n = Y$ тогда и только тогда, когда $\lim_{n \circledast Y} |x_n| = +Y$.
- 2. Пусть c > 0. Если, начиная с некоторого номера,

а)
$$\lim_{n \otimes \mathbf{Y}} y_n = +\mathbf{Y}$$
 и $\mathbf{S} n_0$ " n 3 n_0 x_n 3 cy_n , то $\lim_{n \otimes \mathbf{Y}} x_n = +\mathbf{Y}$;

б)
$$\lim_{n \in \mathbb{Y}} y_n = - \mathbb{Y}$$
 и $n_0 \mathbb{Y} n_0 \mathbb{Y} n_0$

в)
$$\lim_{n \circledast \mathsf{Y}} y_n = \mathsf{Y}$$
 и $n \mathfrak{S}_0$ и $n_0 |x_n| \mathfrak{S}_n$ и $n_0 |x_n| \mathfrak{S}_n$ но $\lim_{n \circledast \mathsf{Y}} x_n = \mathsf{Y}_n$.

3. Пусть
$$\lim_{n \in \mathbb{Y}} x_n = s$$
, $s \hat{\mathbf{I}} \{+\mathbf{Y}, -\mathbf{Y}\}$. Если

a)
$$n_0 n_0 n_0 n_0 y_n c > 0$$
, to $\lim_{n \in \mathbb{Y}} x_n y_n = s$;

б)
$$\$n_0$$
 " $n^3 n_0 y_n £ c < 0$, то $\lim_{n \in Y} x_n y_n = -s$.

4. Если
$$\lim_{n \circledast \, \neq} x_n = \, \neq \,$$
 и $\, \$ n_0 \, \, " \, \, n \, \, ³ \, \, n_0 \, \, \big| \, y_n \big| \, ^{\, 3} \, \, \, c > 0 \, ,$ то $\lim_{n \circledast \, \neq} x_n \, y_n = \, \neq \, .$

5. Если $\{y_n\}$ ограничена

а) снизу и
$$\lim_{n \circledast Y} x_n = + Y$$
 , то $\lim_{n \circledast Y} (x_n + y_n) = + Y$.

б) свеху и
$$\lim_{n \otimes Y} x_n = -Y$$
, то $\lim_{n \otimes Y} (x_n + y_n) = -Y$.

Теорема Штольца. Пусть

- а) последовательность $\{x_n\}$ строго монотонна;
- б) последовательности $\{x_n\}$ и $\{y_n\}$ являются одновременно либо бесконечно малыми, либо бесконечно большими;
 - в) существует конечный или бесконечный предел $\lim_{n \to \infty} \frac{y_n y_{n-1}}{x_n x_{n-1}}$.

Тогда существует предел $\lim_{n \in \mathbb{R}} \frac{y_n}{x_n} = \lim_{n \in \mathbb{R}} \frac{y_n - y_{n-1}}{x_n - x_{n-1}}$.

Замечание. Теорема остается справедливой, если последовательность $\{x_n\}$ строго монотонна, начиная с некоторого номера.

Супремум и инфимум

Для ограниченного множества X

 $s = \sup X = \sup x \ \hat{\mathbf{U}} \ 1$) " $x \hat{\mathbf{I}} \ X \ x \notin s ; 2$) " $e > 0 \ \$x \notin X \ x \notin s - e$ или " $s \notin s \ \$x \notin X \ x \notin S$ $i = \inf X = \inf_{A \in \mathcal{A}} x \ \hat{U} \ 1)$ " $x \hat{I} \ X \ i \ \pounds x ; \ 2)$ " $e > 0 \ \$ x \not \in X \ x \not \leftarrow x + e$ или " $i \not \leftarrow x i \ \xi x \not \in X \ x \not \leftarrow x \not \leftarrow x \not \leftarrow x \not \in X$

Для *ограниченной* последовательности $\{x_n\}$

Для ограниченной на множестве X функции f(x)

 $s = \sup_{x \in \mathcal{X}} f(x)$ Û 1)" xÎ X f(x)£ s; 2)" e>0 \$xÎ X f(x)>s-е или " sЕ s \$xÎ X sЕ f(x)0. $i = \inf_{\hat{x} \in X} f(x)$ Û 1)" \hat{x} Î X $i \, \pounds f(x); 2$ " e>0 \hat{x} Ê X f(x)0</br>

Свойства

- **1.** a) $\sup \{-x | x \hat{1} | X\} = -\inf X$,
- **6**) inf $\{-x | x \hat{1} \mid X\} = -\sup X$.
- **2** a) $\sup\{x+y|x\hat{1} \mid X,y\hat{1} \mid Y\} = \sup X + \sup Y$, **6**) $\inf\{x+y|x\hat{1} \mid X,y\hat{1} \mid Y\} = \inf X + \inf Y$.
- **3** a) $\sup\{x-y|x\hat{1} \ X,y\hat{1} \ Y\} = \sup X \inf Y$. 6) $\inf\{x-y|x\hat{1} \ X,y\hat{1} \ Y\} = \inf X \sup Y$.
- **4 a**) $\sup\{|x|x^{\hat{1}}|X\} = \hat{|} \sup X, | > 0,$ **6**) $\inf\{|x|x^{\hat{1}}|X\} = \hat{|} \inf X, | > 0.$

 - **5.** Если $X \mid \{x \mid x \mid 0\}, Y \mid \{y \mid y \mid 0\}, \text{ то}$
 - a) $\sup\{xy|x \hat{\mathbf{1}} X, y \hat{\mathbf{1}} Y\} = \sup X \sup Y$,
- **6**) inf $\{xy | x \hat{1} \mid X, y \hat{1} \mid Y\} = \inf X \inf Y$.

Наиболее важные пределы

Последовательности $\lim_{n \in \mathbb{R}} na^n = 0, \ |a| < 1$ $\lim_{n \in \mathbb{R}} \frac{a^n}{n} = 0, \ a > 1$ $\lim_{n \otimes Y} \sqrt[n]{n} = 1$ $\lim_{n \in \mathbb{Y}} \frac{\log_a n}{n} = 0, \ a > 1$ $\lim_{n \in \mathbb{Y}} \sqrt[n]{a} = 1, \ a > 0$ $\lim_{n \in \mathbb{Y}} \frac{a^n}{n!} = 0$ Если $\lim_{n \otimes \mathbf{Y}} k_n = +\mathbf{Y}$, $k_n \hat{\mathbf{I}}$ **¥**, то $\lim_{n \otimes \mathbf{Y}} \mathbf{c} \hat{\mathbf{I}} + \frac{1}{k} \overset{\ddot{\mathbf{O}}^n}{\div} = e$ $\lim_{n \in \mathbb{R}} \frac{1}{\sqrt[n]{n!}} = 0$ $\lim_{n \in \mathbb{Y}} \frac{n^k}{a^n} = 0, \ a > 1, k \hat{\mathbf{1}} \quad \mathbf{Y}$ Если x_n ³ - 1, $\lim_{n \in \mathbb{Y}} x_n = 0$, $k \hat{\mathbf{l}}$ **¥**, то $\lim_{n \in \mathbb{Y}} \sqrt[k]{1 + x_n} = 1$

Функции

Первый замечательный предел $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Второй замечательный предел $\lim_{x \to \infty} \mathbf{z} + \frac{1}{x} \ddot{\mathbf{z}} = e$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^{2}} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)^{1/x}}{x} = e$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)^{1/x}}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)^{1/x}}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)^{1/x}}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)^{1/x}}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1 + x)}{x} = 1$$

Свойства нижних и верхних пределов

1. Для любых последовательностей $\{x_k\}$ и $\{y_k\}$:

$$\underline{\lim_{k \circledast \neq} x_k + \lim_{k \circledast \neq} y_k} \, \, \mathfrak{L} \, \underline{\lim_{k \circledast \neq}} \left(x_k + y_k \right) \, \mathfrak{L} \, \underline{\lim_{k \circledast \neq}} \left(x_k + y_k \right) \, \mathfrak{L} \, \underline{\lim_{k \circledast \neq}} \, x_k + \underline{\lim_{k \circledast \neq}} \, y_k \, .$$

2. Для любых последовательностей $\{x_k\}$ и $\{y_k\}$ с неотрицательными членами:

$$\varliminf_{k \circledast \, \neq} x_k \times \varliminf_{k \circledast \, \neq} y_k \, \, \pounds \, \varliminf_{k \circledast \, \neq} \left(x_k \times y_k \, \right) \, \pounds \, \varlimsup_{k \circledast \, \neq} \left(x_k \times y_k \, \right) \, \pounds \, \varlimsup_{k \circledast \, \neq} x_k \times \varlimsup_{k \circledast \, \neq} y_k \, .$$

- **3.** Если " $n \ x_n > 0$, то $\lim_{k \to \infty} \frac{x_{k+1}}{x_k} \ \mathfrak{L} \lim_{k \to \infty} \sqrt[k]{x_k} \ \mathfrak{L} \lim_{k \to \infty} \sqrt[k]{x_k} \ \mathfrak{L} \lim_{k \to \infty} \sqrt[k]{x_k} \ \mathfrak{L} \lim_{k \to \infty} \frac{x_{k+1}}{x_k} \dots$
- **4.** Для любой последовательности $\{x_k\}$ inf x_k £ $\lim_{k \to \infty} x_k$ £ $\lim_{k \to \infty} x_k$ £ $\sup_{k \to \infty} x_k$.
- 5. Для любой последовательности $\{x_k\}$ $\lim_{k \in \mathbb{R}} x_k = \inf L$, $\lim_{k \in \mathbb{R}} x_k = \sup L$, где Lì ; $\mathbf{U}\{+\mathbf{Y}, -\mathbf{Y}\}$ множество всех частичных пределов последовательности.

Свойства левых и правых пределов

Пусть $A\hat{\mathbf{I}}$; $\mathbf{U}\{+\mathbf{Y},-\mathbf{Y}\}$, $B\hat{\mathbf{I}}\{+\mathbf{Y},-\mathbf{Y}\}$, $C=\{+\mathbf{Y},-\mathbf{Y},\mathbf{Y}\}$, тогда

- **1.** $\lim_{x \in \mathbb{R}} f(x) = \lim_{x \in \mathbb{R}} f(x) = A$ тогда и только тогда, когда $\lim_{x \in \mathbb{R}} f(x) = A$.
- 2. $\lim_{x \oplus + \mathbf{Y}} f(x) = \lim_{x \oplus \mathbf{Y}} f(x) = A$ тогда и только тогда, когда $\lim_{x \oplus \mathbf{Y}} f(x) = A$.
- **3.** Если $\lim_{x \otimes x_0 +} f(x) = -\lim_{x \otimes x_0 -} f(x) = B$, то $\lim_{x \otimes x_0} f(x) = ¥$.
- **4.** Если $\lim_{x \otimes + \mathbf{Y}} f(x) = -\lim_{x \otimes \mathbf{Y}} f(x) = B$, то $\lim_{x \otimes \mathbf{Y}} f(x) = \mathbf{Y}$. **5.** Если $\lim_{x \otimes x_0} f(x) = \mathbf{Y}$, то $\lim_{x \otimes x_0 + \mathbf{Y}} f(x) \hat{\mathbf{I}}$ C и $\lim_{x \otimes x_0} f(x) \hat{\mathbf{I}}$ C.
- **4.** Если $\lim_{x \to x} f(x) = Y$, то $\lim_{x \to x} f(x) \hat{I}$ C и $\lim_{x \to x} f(x) \hat{I}$ C.
- Все эти свойства сразу следуют из определений соответствующих пределов.

Теорема о пределе композиции функций. Если $\lim_{x \otimes x_0} f(x) = a \hat{\mathbf{1}}$; и $\lim_{y \otimes a} g(y) = b \hat{\mathbf{1}}$; , причем $f(x)^{1}$ а при x^{1} x_{0} , то

$$\lim_{x \otimes x_0} g(f(x)) = b = \lim_{y \otimes a} g(y).$$

Таким образом, если g(y) определена в точке y = a, то

$$\lim_{x \otimes x_0} g(f(x)) = \lim_{y \otimes a} g(y) = g \mathop{\text{lim}}_{\mathbf{c}} f(x) \mathop{\text{o}}_{\mathbf{c}}.$$

Теорема Коши о существовании предела функции в точке. Пусть $x_0 \, \hat{\mathbf{l}}_{-\mathbf{l}}$ — предельная точка множества A и f:A $\mathbb R$ \sharp . Предел функции f в точке x_0 существует тогда и только тогда, когда " e>0 \$d>0 " x_1, x_2 Î $\stackrel{\circ}{B}(x_0, d)$ **I** $A \mid f(x_2) - f(x_1) \mid <$ e.

Связь между односторонними пределами и точными гранями для монотонных **функций.** Пусть функция $f: X \otimes \mathbf{i}$ возрастает (убывает) на ограниченном множестве Xтаком, что $a = \inf X$, $b = \sup X$, причем $a \ddot{l} X$, $b \ddot{l} X$, тогда

$$\lim_{x \otimes a+} f(x) = \inf_{x \hat{1}} f(x) \text{ M} \lim_{x \otimes b-} f(x) = \sup_{x \hat{1}} f(x)$$

$$(\lim_{x \otimes a+} f(x) = \sup_{x \hat{1}} f(x) \text{ M} \lim_{x \otimes b-} f(x) = \inf_{x \hat{1}} f(x)).$$

Предел показательно-степенной функции

$$\lim_{x \in S} \mathbf{\acute{e}} u(x) \mathbf{\grave{e}}^{v(x)} = \exp \left\{ \lim_{x \in S} \mathbf{\acute{e}} v(x) \times \ln u(x) \mathbf{\grave{e}} \right\}.$$

$\lim_{x \otimes S} u(x)$	$\lim_{x \otimes S} v(x)$	$\lim_{x \otimes S} \mathbf{\acute{e}} \iota(x) \dot{\mathbf{\acute{e}}}^{\nu(x)}$
b > 0	c	b^c
0	c > 0 (или +¥)	0
	c < 0 (или -¥)	+¥
	0	неопределенность 0^0
0 < b < 1	+¥	0
	- ¥	+¥
1	C	1
	+¥ , -¥ ,¥	неопределенность 1 [¥]
b>1	+¥	+¥
	- ¥	0
+¥	c > 0 (или +¥)	+¥
	c < 0 (или -¥)	0
	0	неопределенность \mathbf{Y}^0

Примечание: $b, c\hat{1}$; для всех рассматриваемых значений u(x) > 0.

Неопределенные выражения
$$\frac{0}{0}$$
, $\frac{4}{4}$, 0×4 , $4 - 4$, 1^{4} , 0^{0} , 4^{0}

Основные асимптотические разложения

$$e^{x} = \overset{\cancel{a}}{\overset{x}{o}} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o\left(x^{n}\right)$$

$$\sin x = \overset{\cancel{a}}{\overset{x}{o}} \left(-1\right)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{\left(-1\right)^{n} x^{2n+1}}{(2n+1)!} + o\left(x^{2n+2}\right)$$

$$\cos x = \overset{\cancel{a}}{\overset{x}{o}} \left(-1\right)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{\left(-1\right)^{n} x^{2n}}{(2n)!} + o\left(x^{2n+1}\right)$$

$$\ln\left(1+x\right) = \overset{\cancel{a}}{\overset{x}{o}} \left(-1\right)^{n+1} \frac{x^{n}}{n} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + \left(-1\right)^{n+1} \frac{x^{n}}{n} + o\left(x^{n}\right)$$

$$\left(1+x\right)^{a} = 1 + \overset{\cancel{a}}{\overset{x}{o}} \frac{a\left(a-1\right)\mathbf{L}\left(a-\left(n-1\right)\right)}{n!} x^{n} =$$

$$= 1 + ax + \frac{a\left(a-1\right)}{2} x^{2} + \dots + \frac{a\left(a-1\right)\mathbf{L}\left(a-\left(n-1\right)\right)}{n!} x^{n} + o\left(x^{n}\right)$$