

Appl. No.10/765,482
Amdt. Dated: July 19, 2005
Reply to Office Action of April 19, 2005

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (Original): A method for treating trabecular meshwork regions of a human eye, comprising the steps of:

- (a) localizing a volume of particles carrying a selected chromophore within spaces of the meshwork;
- (b) irradiating the particles with a beam of photonic energy having a wavelength, power, and pulse duration that is absorbed by the selected chromophore;
- (c) wherein the chromophore comprises gold within the surface layer of said particles thereby applying energy to the irradiated region of the meshwork.

Claim 2 (Original): The method of Claim 1 wherein the irradiating step causes a thermal effect within the irradiated region of the meshwork.

Claim 3 (Original): The method of Claim 1 wherein the irradiating step causes a cavitation effect within the irradiated region of the meshwork.

Claim 4 (Previously Presented): The method of Claim 3 wherein said cavitation delivers mechanical energy to a media within the meshwork.

Claim 5 (Original): The method of Claim 1 wherein the particles have an average diameter of less than about 500nm.

Claim 6 (Original): The method of Claim 1 wherein the particles have an average diameter less than about 200nm.

Claim 7 (Original): The method of Claim 1 wherein the irradiating step utilizes a wavelength domain ranging from about 380 nm to 820 nm.

Appl. No.10/765,482
Amdt. Dated: July 19, 2005
Reply to Office Action of April 19, 2005

Claims 8-12 (Cancelled).

Claim 13 (Original): A method for applying energy to a patient's trabecular meshwork, comprising the steps of:

- (a) non-invasively irradiating the meshwork region with coherent light pulses having a wavelength between 380 nm and 820 nm;
- (b) wherein the power level, pulse, and pulse interval are selected to cause microimplantables with a gold surface to absorb energy and thereby apply energy to surrounding media.

Claim 14 (Original): The method of Claim 13 wherein said irradiating step causes thermal effects in said media.

Claim 15 (Original): The method of Claim 13 wherein said irradiating step cause acoustic effects in said media.

Claim 16 (Previously Presented): The method according to Claim 13 wherein said irradiating step does not ablate cells of the meshwork.

Claim 17 (Cancelled).