

Floating Point Arithmetic

In this lecture

- a) Floating Point Representation
- b) Addition
- c) Subtraction
- d) Division
- e) Multiplication

_2

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 0000001
 ⇒ actual exponent = 1 127 = -126
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 01111111111_2$
- Single: 1011111101000...00
- Double: 1011111111101000...00

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Floating Point Addition

Example 1 (5.75 + 14)

$$5.75 + 14 = 19.75$$

IEEE representation of '5.75':

0 10000001 011100000000000000000000

[0-129-0.437500]

IEEE representation of '14':

0 10000010 11000000000000000000000

[0-130-0.750000]

Preliminary exponent: MAX(129, 130) = 130

Example 1 Continue...

STAMAR AD

Mantissa:

- Shift 1.01110... by 130-129=1 bit
- the signs are identical → ADD
- add 0.10111 and 1.11000:

0.10111

+1.11000

10.01111

Normalize exponent and mantissa:

 $1.001111 \times 2(131-127)$

Example 1 Continue...

SLAMABAD STANDARD

IEEE representation of result:

0 10000011 001111000000000000000000

[0-131-0.234375]

Example 2 (5.75 - 14)

5.75 - 14 = -8.25

IEEE representation of '5.75':

0 10000001 011100000000000000000000

[0-129-0.437500]

IEEE representation of '14':

0 10000010 110000000000000000000000

[0-130-0.750000]

Preliminary exponent: MAX(129, 130) = 130

Example 2 Continue...

Mantissa:

- Shift 1.01110... by 130-129=1 bit
- the signs are different \rightarrow SUB

Example 2 Continue...

From 0.10111 subtract 1.11000:

00.10111

2's-complement \rightarrow +1 0. 0 1 0 0

10.11111

sign of difference is negative

2's-complement of result: 0 1. 0 0 0 1

- positive S_a, thus result negative
- no normalization required

Example 2 (5.75 - 14)

SATS UNIVERSITY OF STAMARAD

IEEE representation of result:

[1-130-0.031250]

Example 3 (2.375 ÷ 8.25)

 $2.375 \div 8.25 = 0.287$

IEEE representation of '2.375':

0 1000000 0011000000000000000000

[0-128-0.187500]

IEEE representation of '8.25':

[0-130-0.031250]

Preliminary exponent: 128 - 130 + 127 = 125

Example 3 Continue...

Mantissa:

IEEE representation of result:

0 01111101 00100110110010011011001

[0-125-0.151515]

Let's try multiplying the numbers 0.5_{ten} and -0.4375_{ten}

In binary, the task is multiplying $1.000_{\rm two} \times 2^{-1}$ by $-1.110_{\rm two} \times 2^{-2}$.

Step 1. Adding the exponents without bias:

$$-1 + (-2) = -3$$

or, using the biased representation:

$$(-1 + 127) + (-2 + 127) - 127 = (-1 - 2) + (127 + 127 - 127)$$

= $-3 + 127 = 124$

Step 2. Multiplying the significands:

$$\begin{array}{r}
1.000_{\text{two}} \\
\times & 1.110_{\text{two}} \\
\hline
0000 \\
1000 \\
1000 \\
1110000 \\
\text{two}
\end{array}$$

The product is $1.110000_{two} \times 2^{-3}$, but we need to keep it to 4 bits, so it is $1.110_{two} \times 2^{-3}$.

- Step 3. Now we check the product to make sure it is normalized, and then check the exponent for overflow or underflow. The product is already normalized and, since $127 \ge -3 \ge -126$, there is no overflow or underflow. (Using the biased representation, $254 \ge 124 \ge 1$, so the exponent fits.)
- Step 4. Rounding the product makes no change:

$$1.110_{\text{two}} \times 2^{-3}$$

Step 5. Since the signs of the original operands differ, make the sign of the product negative. Hence, the product is

$$-1.110_{\text{two}} \times 2^{-3}$$

Converting to decimal to check our results:

$$-1.110_{\text{two}} \times 2^{-3} = -0.001110_{\text{two}} = -0.00111_{\text{two}} = -0.00111_{\text{two}} = -7/25_{\text{ten}} = -7/32_{\text{ten}} = -0.21875_{\text{ten}}$$

The product of 0.5_{ten} and -0.4375_{ten} is indeed -0.21875_{ten} .

Block diagram of an arithmetic unit dedicated to Floating-point addition

