Investigacion de rotacion y cuaternios

Gutiérrez Muñoz José de Jesús 7 - A Ing. Mecatrónica

16 - Septiembre - 2019

Rotación.

De los recursos de geometría analítica recordamos que al rotar un vector $(x,y) \in \mathbb{R}^2$ del origen por un ángulo θ obtenemos otro vector $(x',y') \in \mathbb{R}^2$ cuyas coordenadas son:

$$x' = cos(0)xsen(0)y, y' = sen(0)x + cos(0)y$$

Lo cual expresamos por:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} R = \theta \begin{bmatrix} x \\ y \end{bmatrix} \tag{1}$$

Donde:

$$R(\theta) = \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix}$$
 (2)

Observemos que:

$$R(\theta) \cdot R^{T}(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (3)

por lo que $R \in SO(2)$.

La froma de mitad de ángulo. Podemos obterner la matriz de rotación para un vector en el plano como sigue. Consideremos:

$$A = \left[a^2 - b^2 \right], B = \left[2ab \right] \tag{4}$$

Si $A = cos \frac{0}{2}$ y $B = sen \frac{0}{2}$ tenemos que

$$A = \left[\cos^2(\frac{0}{2}) - \sin^2(\frac{0}{2}) \right] \tag{5}$$

$$= \left[1 - 2sen^2(\frac{0}{2}) \right] \tag{6}$$

$$= [\cos 0] \tag{7}$$

$$B = \left[2\cos(\frac{0}{2})\operatorname{sen}(\frac{0}{2}) \right] \tag{8}$$

$$= [sen 0]$$
 (9)

de modo que la matriz de rotación no cambia

$$R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}, \tag{10}$$

$$R_{y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}, \tag{11}$$

$$R_z(\theta) = \begin{bmatrix} \cos \theta - \sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}, \tag{12}$$

En este caso se tiene:

 $R_x(\alpha)$ rota el plano yz alrededor del origen por un ángulo α $R_y(\phi)$ rota el plano xz alrededor del origen por un ángulo ϕ $R_z(\theta)$ rota el plano xy alrededor del origen por un ángulo θ Cuaternios.

Para enetebnder la relación entre rotaciones \mathbb{R}^3 y los cuaternios, es conveniente utilizar la notación $q = [\lambda, a]$ para el cuaternios $q = \lambda + xi + ji + zk$, donde a = xi + yj + zk. La separación del cuaternio q en dos partes nos permite distinguir su parte real λ y su "Parte imaginaria" a; además, identificamos el cuaternio puro a = xi + yj + zk con el vector $a = (x, y, z) \in \mathbb{R}^3$. De manera recíproca, dado un vector $b = (u, v, w) \in \mathbb{R}^3$, le hacemos corresponder el cuaternio $q_b = [0, b]$, con $b = ui + vj + wk \in \mathbb{H}_p$.

De esta manera, dados los cuaternio $q = [\lambda, a]$ y $r = [\mu, b]$ definimos do operaciones entre las partes imaginarias de q y r: El producto punto y el producto cruz de los vectores $a, b \in \mathbb{R}^3$.

Notemos que con esta definición, $a,b \in \mathbb{R}$ y a x b es otro cuaternio con parte real igual a cero y su "parte imaginaria" está dada por los componentes del vector a

x b. Usando esta notación se tiene que el producto de los cuaternio $q=[\lambda,a]$ y $r=[\mu,b]$ se expresa como:

$$q.r = [\lambda, a].[\mu, b] = [\lambda \mu - a, b, \lambda b + \mu a + axb, \qquad (13)$$

Y esta fórmula nos será muy útil para describir la relación entre los cuaternios unitarios y las rotaciones en \mathbb{R}^3 .