Intervals, Transformations, and Slope Solution (version 145)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-3,0) \cup (5,9)$
Negative	$(-8, -3) \cup (0, 5)$
Increasing	$(-5, -2) \cup (2, 9)$
Decreasing	$(-8, -5) \cup (-2, 2)$
Domain	(-8,9)
Range	(-6,4)

Intervals, Transformations, and Slope Solution (version 145)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=25$ and $x_2=67$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 25 & 88 \\ 40 & 25 \\ 67 & 40 \\ 88 & 67 \\ \hline \end{array}$$

$$\frac{f(67) - f(25)}{67 - 25} = \frac{40 - 88}{67 - 25} = \frac{-48}{42}$$

The greatest common factor of -48 and 42 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-8}{7}$$

2