Méthodes numériques

Thomas MILCENT

Systèmes Linéaires

Enoncé du problème

On se propose de résoudre un système linéaire Ax = b

- $A=(a_{ij})\in \mathcal{M}_n(\mathbb{R})$ est la matrice (carrée) du système
- ullet $b=(b_1,b_2,\ldots,b_n)^T\in\mathbb{R}^n$ est le vecteur second membre
- $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n$ est le vecteur des n inconnues

$$\left[\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{array}\right] \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right] = \left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array}\right]$$

Théorème de Cramer

Il existe une unique solution $\Leftrightarrow \det(A) \neq 0$

Systèmes Linéaires

Algorithme de résolution numérique

Fournit la solution du système linéaire en un nombre fini d'opérations élémentaires (*,/,+,-)

- Stabilité : sensibilité de l'algorithme aux perturbations numériques
- Complexité : nombre (ordre de grandeur) d'opérations élémentaires (*,/,+,-)

2 types d'algorithmes

Méthodes directes : LU, Choleski

- Donnent une solution en un nombre fini d'opérations
- Pas très stables
- Utilisées pour les "petits" systèmes linéaires

Méthodes itératives : Jacobi, Gauss-Seidel

- Ne convergent pas toujours
- Meilleure stabilité
- Utilisées pour les "grands" systèmes linéaires

Equations non-linéaires

But : Résoudre f(x) = 0 où $f : \mathbb{R} \longrightarrow \mathbb{R}$ est une fonction non linéaire.

- On peut avoir 0, 1, ... n ou une infinité de solutions ...
- Les algorithmes généraux sont itératifs : on construit une suite de réels (x_n) qui converge vers une solution \bar{x} de f(x) = 0

$$\lim_{n\to\infty}|\bar{x}-x_n|=0$$

• On appelle **ordre** de la convergence le nombre p > 0 tel que :

$$|x_{n+1} - \bar{x}| \le c|x_n - \bar{x}|^p$$

- Exemple d'algorithmes généraux :
 - méthode par dichotomie
 - méthode de Newton
 - méthode de la sécante
- Pour utiliser les algorithmes généraux itératifs, il faut au préalable localiser un intervalle [a,b] contenant une solution \bar{x} . De plus ces algorithmes convergent lorsque la condition initiale est assez proche de \bar{x}

Méthode par dichotomie

- Soit f continue et monotone sur [a,b] tel que $f(\bar{x})=0$ avec $\bar{x}\in]a,b[$ et f(a)f(b)<0
- Construction itérative :
 - initialisation : $(x_0, y_0) = (a, b)$
 - on pose $c_0 = (x_0 + y_0)/2$:
 - si $f(x_0)f(c_0) < 0 : x_1 = x_0$ et $y_1 = c_0$
 - si $f(c_0)f(y_0) < 0 : x_1 = c_0$ et $y_1 = y_0$
 - on itère le processus, $c_1 = (x_1 + y_1)/2$
- La convergence est d'ordre 1 (linéaire)

Méthode de Newton

• x_{n+1} est le point d'intersection entre la tangente au point $(x_n, f(x_n))$ et l'axe x:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• La convergence est d'ordre 2 (quadratique)

4□ ▶ 4□ ▶ 4 = ▶ 4 = ▶ 9 Q €

Méthode de la sécante

• x_{n+1} est le point d'intersection de la droite reliant $(x_{n-1}, f(x_{n-1}))$ et $(x_n, f(x_n))$ avec l'axe x:

 $x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$

 \bullet La convergence est d'ordre $\frac{1+\sqrt{5}}{2}\approx 1.618$

Méthode de Newton en dimension supérieure

Soit $f: \mathbb{R}^p \longrightarrow \mathbb{R}^p$. On cherche $x \in \mathbb{R}^p$ tel que f(x) = 0

• On construit la suite (x_n) avec la relation de récurrence :

$$x_{n+1} = x_n - [Df(x_n)]^{-1}f(x_n)$$

où [Df] est la matrice jacobienne de f

$$[Df] = \left[\frac{\partial f_i}{\partial x_j} \right]$$

- Il faut inverser une matrice à chaque itération
- La convergence est **d'ordre** 2

Equations différentielles

Exemple d'équation différentielle avec conditions initiales

Equation différentielle régissant l'angle d'un pendule

$$\begin{cases} \theta''(t) + \alpha \theta'(t) + (\omega_0)^2 \sin(\theta(t)) = f(t) \\ \theta(\mathbf{0}) = \theta_0 \\ \theta'(\mathbf{0}) = \mathbf{v_0} \end{cases}$$

 $oldsymbol{ heta}(t)$: angle avec la verticale du pendule

ullet $\omega_0=\sqrt{g/I}$: pulsation

• f(t): terme de forçage

ullet α : terme d'amortissement

ullet θ_0 : angle initial

 $v_0 : vitesse initiale$

Propriétés de cette EDO (Equation Différentielle Ordinaire)

• Ordre 2 $\longrightarrow \theta^{\prime\prime}$

• Non linéaire $\longrightarrow \sin(\theta)$

• Conditions initiales sur l'angle et la vitesse

Equations différentielles

Exemple d'équation différentielle avec conditions limites

Equation différentielle du moment fléchissant d'une poutre

$$\begin{cases} -y''(x) + \frac{F}{\mathcal{I}(x)E}y(x) = f(x) \\ y(0) = 0 \\ y(L) = 0 \end{cases}$$

- y(x): moment fléchissant
- L : longueur de la poutre
- F : force suivant l'axe (Ox)
- E : module d'Young
- $\mathcal{I}(x)$: moment principal d'inertie
- f(x): terme de forçage
- Encastrement de la poutre aux bords

Propriétés de cette EDO (Equation Différentielle Ordinaire)

- Ordre 2 $\longrightarrow y''$
- Linéaire \longrightarrow même si $\mathcal{I}(x)$ est non linéaire
- Conditions limites sur y

Equations différentielles

Quelles sont les équations que l'on sait résoudre

Equation différentielle linéaire d'ordre 1

$$y'(x) + a(x)y(x) = b(x)$$

Equation homogène + variation de la constante \longrightarrow expression analytique avec des intégrales

Equation différentielle linéaire d'ordre 2 à coefficients constants

$$y''(x) + ay'(x) + by(x) = c(x)$$

Equation homogène $(r^2 + ar + b = 0)$ + solution particulière

Lorsque a et b sont des fonctions de x, il n'y a pas de solution analytique

⇒ Besoin de méthodes numériques pour résoudre les équations différentielles

4□ → 4□ → 4 = → 4 = → 4 = → 21/40

Cadre théorique

Equation différentielle non linéaire d'ordre 1

$$\begin{cases} y'(t) = f(t, y(t)) \\ \mathbf{y(0)} = \mathbf{y_0} \end{cases}$$

On impose une condition initiale \Longrightarrow Problème de Cauchy

Dans le cas général $y(t) \in \mathbb{R}^p \Longrightarrow \mathsf{Syst}$ ème différentiel d'ordre 1

Propriété:

Toute équation différentielle d'ordre p se ramène à un système différentiel d'ordre 1

Théorème de Cauchy-Lipschitz

Si f est continue et localement lipschitzienne par rapport à sa deuxième variable alors le problème de Cauchy admet une unique solution

Pas toujours unicité dans le cas général

$$\begin{cases} y'(t) = \sqrt{y(t)} \\ y(0) = 0 \end{cases}$$

 $t\mapsto 0$ et $t\mapsto t^2/4$ sont deux solutions

Idée générale de la discrétisation

On cherche une solution y sur l'intervalle [0, T] de

$$\begin{cases} y'(t) = f(t, y(t)) \\ \mathbf{y}(\mathbf{0}) = \mathbf{y}_{\mathbf{0}} \end{cases}$$

On découpe l'intervalle de temps [0, T] en N intervalles de taille Δt

$$\Delta t = \frac{T}{N}$$
 $t_n = n\Delta t$

On cherche une approximation de $y(t_n)$ que l'on note y_n pour n = 1, ..., N

Comment calculer les y_n à partir de l'équation et de la condition initiale?

Méthode d'Euler explicite

$$y_{n+1} = y_n + \Delta t \ f(t_n, \mathbf{y_n})$$

Très simple à implémenter car $y_{n+1} = g(y_n)$

Méthode d'Euler implicite

$$y_{n+1} = y_n + \Delta t \ f(t_{n+1}, \mathbf{y_{n+1}})$$

si f non linéaire \longrightarrow résolution à chaque pas de temps d'un système non linéaire

si f linéaire \longrightarrow résolution à chaque pas de temps d'un système linéaire \longrightarrow résolution à chaque pas de temps d'un système linéaire \longrightarrow 25 / 40

Problème test pour la stabilité

On cherche une solution de $(\lambda > 0)$

$$y'(t) = -\lambda y(t)$$
 avec $y(0) = y_0$

La solution générale est donnée par $y(t) = y_0 e^{-\lambda t}$

Schéma numérique d'Euler explicite

$$y_{n+1} = y_n - \lambda \Delta t \ y_n$$
 $y_n = (1 - \lambda \Delta t)^n y_0$

Pour que y_n converge il suffit que $|1-\lambda \Delta t|<1$ ce qui impose la condition

$$\Delta t < rac{2}{\lambda}$$

Schéma numérique d'Euler implicite

$$y_{n+1} = y_n - \lambda \Delta t \ y_{n+1}$$
 $y_n = \frac{y_0}{(1 + \lambda \Delta t)^n}$

Pour que y_n converge, il n'y a pas de restriction sur le pas de temps

Cette propriété est générale

- les schémas explicites sont simples mais restrictions sur le pas de temps
- les schémas implicites demandent généralement de résoudre un système non linéaire mais pas de restriction sur le pas de temps

Les schémas d'Euler explicite et implicite sont d'ordre 1

Comment améliorer l'ordre de convergence?

Schéma Euler modifié

On approxime $y_{n+1/2}$ par Euler explicite puis on utilise la pente au point milieu

$$y_{n+1} = y_n + \Delta t f\left(t_n + \frac{\Delta t}{2}, y_n + \frac{\Delta t}{2} f(t_n, y_n)\right)$$

Ce schéma est explicite d'ordre 2

Schéma de Crank-Nicholson

$$y_{n+1} = y_n + \frac{\Delta t}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1}))$$

Ce schéma est implicite d'ordre 2

Schéma de Runge et Kutta

Schéma à un pas

$$y_{n+1} = y_n + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

avec

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{\Delta t}{2} k_{1}\right)$$

$$k_{3} = f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{\Delta t}{2} k_{2}\right)$$

$$k_{4} = f\left(t_{n+1}, y_{n} + \Delta t k_{3}\right)$$

Schéma explicite d'ordre 4

--- Très utilisé dans les applications

Autres schémas

Les schémas précédents sont à un pas \longrightarrow on calcule y_{n+1} à l'aide de y_n Il existe de nombreux schémas à pas liés \longrightarrow on calcule y_{n+1} à l'aide de y_n , y_{n-1} , y_{n-2} , ...

• Adams-Bashforth, Adams-Moulton, Gear ...

Développement de Taylor

Lorsque $h \longrightarrow 0$

$$f(a + h) = f(a) + f'(a)h + \frac{f''(a)}{2}h^2 + o(h^2)$$

On en déduit les approximations suivantes

$$f'(a)pprox rac{f(a+h)-f(a)}{h}$$
 décentrée à l'ordre 1 $f'(a)pprox rac{f(a+h)-f(a-h)}{2h}$ centrée à l'ordre 2 $f'(a)pprox rac{-f(a+2h)+4f(a+h)-3f(a)}{2h}$ décentrée à l'ordre 2 $f''(a)pprox rac{f(a+h)-2f(a)+f(a-h)}{h^2}$ centrée à l'ordre 2

On fait de même pour les dérivées d'ordre plus élevés

Méthode des différences finies sur un exemple

On cherche une solution y sur l'intervalle [0, L] de l'équation

$$\begin{cases} y''(x) + a(x)y'(x) + b(x)y(x) = f(x) \\ \mathbf{y}(\mathbf{0}) = \alpha & \mathbf{y}(\mathbf{L}) = \beta \end{cases}$$

On découpe l'intervalle d'espace [0, L] en P intervalles de taille Δx

$$\Delta x = \frac{L}{P}$$
 $x_i = i\Delta x$

On cherche une approximation de $y(x_i)$ que l'on note y_i pour i = 1, ..., P-1

Comment calculer les y_i à partir de l'équation et des conditions limites?

Approximation des dérivées avec des développement de Taylor

$$\begin{cases} y_0 = \alpha \\ \frac{y_{i+1} - 2y_i + y_{i-1}}{(\Delta x)^2} + a(x_i) \frac{y_{i+1} - y_{i-1}}{2\Delta x} + b(x_i) y_i = f(x_i) & i = 1, ..., P - 1 \\ y_L = \beta \end{cases}$$

---- Système linéaire à résoudre

Equations aux dérivées partielles (EDP)

Exemple de l'équation de la chaleur 1D

$$\begin{split} &\frac{\partial T}{\partial t}(x,t) = D\frac{\partial^2 T}{\partial x^2}(x,t)\\ &T(x,0) = T_0(x) &\longrightarrow \text{condition initiale}\\ &T(0,t) = T_1 \quad T(L,t) = T_2 \longrightarrow \text{conditions limites} \end{split}$$

On discrétise en temps et en espace $T(x_i, t_n) \approx T_i^n$

Euler explicite en temps + différences finies en espace

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} - D \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{(\Delta x)^2} = 0 + \text{CI et CL}$$

Euler implicite en temps + différences finies en espace

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} - D \frac{T_{i+1}^{n+1} - 2T_i^{n+1} + T_{i-1}^{n+1}}{(\Delta x)^2} = 0 + \text{CI et CL}$$

Equations aux dérivées partielles (EDP)

Exemple de l'équation de la chaleur 3D sur un domaine Ω

$$rac{\partial T}{\partial t} = D\Delta T \quad \text{sur } \Omega$$
 $T(x,0) = T_0(x) \longrightarrow \text{condition initiale}$
 $T_{|\partial\Omega} = T_b \longrightarrow \text{conditions limites}$

- $\bullet \ \mathsf{Discr\acute{e}tisation} \ \mathsf{espace} \longrightarrow \mathsf{Diff\acute{e}rences} \ \mathsf{finies}, \ \mathsf{El\acute{e}ments} \ \mathsf{finis}, \ \mathsf{Volumes} \ \mathsf{finis}...$
- ullet Discrétisation temps \longrightarrow Schémas Euler explicite, implicite , Runge Kutta...

Autres équations

- Solides --> Elasticité non linéaire
- ullet Fluides \longrightarrow Navier Stokes
- ullet Electromagnétisme \longrightarrow Maxwell
- ...

