IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Lecture 28: Flash-based Solid State Drives

Agenda

- Recap
- Flash-based Solid State Drives (SSDs)
 - Internals
 - Flash Memory
 - Flash Translation Layer (FTL)

Recap

HDD Internals

Recap

- HDD I/O Time & I/O Rate
 - I/O time $(T_{I/O})$ includes three parts
 - Seek
 - Waiting for the rotational delay
 - Transfer

$$T_{I/O} = T_{seek} + T_{rotation} + T_{transfer}$$

• I/O rate
$$(R_{I/O})$$
:
$$R_{I/O} = \frac{Size_{Transfer}}{T_{I/O}}$$

Favor sequential workloads

Recap

- On-drive Cache
 - "Track Buffer"
 - Writeback (Immediate reporting)
 - Acknowledge a write has completed when it has placed the data in on-drive memory
 - Write through
 - Acknowledge a write has completed after the write has actually been written to surface.
- I/O Scheduling
 - OS uses heuristics to re-order/merge I/O requests and (hopefully) minimize I/O time

Agenda

- Recap
- Flash-based Solid State Drives (SSDs)
 - Internals
 - Flash Memory
 - Flash Translation Layer (FTL)

a "truly revolutionary and disruptive" technology

TOSHIBA

Internals

Internals

- Flash Memory Cell
 - floating-gate transistor
 - electrical charges can be injected (ejected) into (out of) the floating gate
 - charge level represents data (0/1)

- How is a cell programmed?
 - through multiple rounds of charge injection

Single-level cell (SLC): two levels -> one bit

Multi-level cell (MLC): N levels -> log, N bits

MLC is used in most consumer-grade SSDs

- NOR flash vs NAND flash
 - different ways to connect cells

NAND is used in most SSDs

- Blocks and Pages of NAND Flash
 - flash cell array is arranged as independent blocks
 - each block consist of a set of pages
 - e.g., a block contains 128 pages, each page is 4KB

- Basic Operations of NAND
 - Erase: set all bits of a block to '1'
 - a block is the smallest erasable unit
 - Program (Write): clear some bit(s) of a page to '0'
 - a page is the smallest programmable unit;
 - must erase a block before updating any pages inside
 - Read: get bit(s) out of a page
- each cell can only stand a limited number of program/erasure cycles (P/E cycles)
 - need to even out the usage of cells

Internals

- Logic block mapping
- Garbage Collection
- Wear Leveling

Flash Memory (Non-Volatile)

- SLC/MLC
- NAND
- Read/Write/Erase

- Logical Block Mapping
 - maps logical addresses to physical addresses
 - maintains a mapping table

Host's View

0 1 2 3 4

logical addresses

Flash Controller's View

- How to map?
 - borrow idea from a classic paper (LFS)
 - "The Design and Implementation of a Log-Structured File System", SOSP'92
 - alleviate the "erase-before-write" constraint
 - out-of-space update:
 - maintain free (erased) pages, always append updates, and invalidate old copies
 - the same logical address is re-mapped to a different physical address

Example: update pages A and B

Garbage Collection

- re-use pages that contains invalid (obsolete) data
- happen as background work or on demand
- source of unpredictable latency in I/O operations

Wear leveling

- each cell can only stand a limited number of program/erasure cycles
- let the pages be erased/programmed about the same number of times

Agenda

Recap

Questions?

- Flash-based Solid State Drives (SSDs)
 - Internals

- Flash Memory
- Flash Translation Layer (FTL)

*acknowledgement: slides include content from "Modern Operating Systems" by A. Tanenbaum, "Operating Systems Concepts" by A. Silberschatz etc., "Operating Systems: Three Easy Pieces" by R. Arpaci-Dusseau etc., and anonymous pictures from internet.