目录

第	一章	解析函数	1
	1.1	解析函数的概念	1
	1.2	函数解析的充要条件	3
	1.3	初等函数	6
	作业	೬	13
	练え	7 参考答案	16

第一章 解析函数

§1.1 解析函数的概念

§1.1.1 可导的函数

由于 C 和 ℝ 一样是域, 因此我们可以像一元实变函数一样去定义复变函数的导数和微分.

定义 1.1 (导数)

设w = f(z)的定义域是区域 $D, z_0 \in D$.如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数, 记作

$$f'(z_0) = \frac{\mathrm{d}w}{\mathrm{d}z}\Big|_{z=z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

如果 f(z) 在区域 D 内处处可导, 称 f(z) 在 D 内可导.

例题 1.1 函数 f(z) = x + 2yi 在哪些点处可导?

解答:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

当 $\Delta x = 0, \Delta y \to 0$ 时, 上式 $\to 2$; 当 $\Delta y = 0, \Delta x \to 0$ 时, 上式 $\to 1$. 因此该极限不存在, f(z) 处处不可 루.

△ 练习 1.1.1 函数 $f(z) = \overline{z} = x - yi$ 在哪些点处可导?

例题 1.2 求 $f(z) = z^2$ 的导数.

解答:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z.$$

和一元实变函数情形类似, 我们有如下求导法则:

定理 1.2 (导函数的运算法则)

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g'$, (cf)' = cf';

•
$$(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2};$$

• $[f(g(z))]' = f'[g(z)] \cdot g'(z);$
• $g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$

•
$$g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$$

定理 1.3 (可导蕴含连续)

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

该定理的证明和实变量情形完全相同.

证明:设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \lim_{\Delta z \to 0} \Delta z = f'(z_0) \cdot 0 = 0.$$

§1.1.2 可微的函数

复变函数的微分也和一元实变函数情形类似.

定义 1.4 (微分)

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

和一元实变函数情形一样, 复变函数的可微和可导是等价的, 且 $\mathrm{d} w = f'(z_0) \Delta z$, $\mathrm{d} z = \Delta z$. 故

$$dw = f'(z_0) dz, f'(z_0) = \frac{dw}{dz}.$$

§1.1.3 解析的函数

定义 1.5 (解析和奇点)

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.

无定义、不连续、不可导、可导但不解析,都会导致奇点的产生.

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域. 所以 f(z) 在 D 内解析和在 D 内可导是等价的.

如果 f(z) 在 z_0 解析,则 f(z) 在 z_0 的一个邻域内处处可导,从而在该邻域内解析. 因此 f(z) 解析点全体是一个开集.

- △ 练习 1.1.2 单选题: 函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的 ().
 - (A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

例题 1.3 研究函数 $f(z) = |z|^2$ 的解析性.

解答: 由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z} = \overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

- (1) 若 z = 0, 则当 $\Delta z \rightarrow 0$ 时该极限为 0.
- (2) 若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \to 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \to 0$ 时该极限为 $\overline{z} z$. 因此此时极限不存在.

故 f(z) 仅在 z=0 处可导, 从而处处不解析.

§1.2 函数解析的充要条件

§1.2.1 柯西-黎曼方程

通过对一些简单函数的分析, 我们发现可导的函数往往可以直接表达为 z 的函数的形式, 而不解析的往往包含 x,y,\overline{z} 等内容. 这种现象并不是孤立的. 我们来研究二元实变量函数的可微性与复变函数可导的关系.

为了简便我们用 u_x, u_y, v_x, v_y 等记号表示偏导数.

设f在z处可导,f'(z) = a + bi,则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

由于 $o(\Delta z) = o(|\Delta z|) = o(\sqrt{x^2 + y^2})$, 因此 u, v 可微且 $u_x = v_y = a, v_x = -u_y = b$.

反过来, 假设 u,v 可微且 $u_x = v_y, v_x = -u_y$. 由全微分公式

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$= (u_x + iv_x) dz = (v_y - iu_y) dz.$$

故 f(z) 在 z 处可导, 且 $f'(z) = u_x + iv_x = v_y - iu_y$. 由此得到

定理 1.6 (柯西-黎曼方程)

f(z) 在 z 可导当且仅当在 z 点 u,v 可微且满足柯西-黎曼方程 (简称为 C-R 方程):

$$u_x = v_y, \quad v_x = -u_y.$$

此时

$$f'(z) = u_x + iv_x = v_y - iu_y.$$

注意到 $x = \frac{1}{2}z + \frac{1}{2}\overline{z}, y = -\frac{i}{2}z + \frac{i}{2}\overline{z}$. 仿照着二元实函数偏导数在变量替换下的变换规则, 我们定

图 1.1: 柯西

图 1.2: 黎曼

义 f 对 z 和 z 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

如果把 z, \overline{z} 看成独立变量, 那么当 f 在 z 处可导时, $\mathrm{d}f = f' \, \mathrm{d}z$. 当 f 关于 z, \overline{z} 可微时 (即 u, v 可微),

$$\mathrm{d}f = \frac{\partial f}{\partial z}\,\mathrm{d}z + \frac{\partial f}{\partial \overline{z}}\,\mathrm{d}\overline{z}.$$

所以 f 在 z 处可导当且仅当 u,v 可微且 $\frac{\partial f}{\partial \overline{z}}=0$,此时 $f'(z)=\frac{\partial f}{\partial z}$.

由于二元函数的偏导数均连续蕴含可微, 因此我们有:

定理 1.7

- 如果 u_x, u_y, v_x, v_y 在 z 处连续, 且满足 C-R 方程, 则 f(z) 在 z 可导.
- 如果 u_x, u_y, v_x, v_y 在区域 D 上处处连续, 且满足 C-R 方程, 则 f(z) 在 D 上可导 (从而解析).

§1.2.2 柯西-黎曼方程的应用

例题 1.4

- (1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?
- (2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?
- (3) 函数 $f(z) = e^x(\cos y + i \sin y)$ 在何处可导, 在何处解析?

解答:

(1) 由 u = x, v = -y 可知

$$u_x = 1,$$
 $u_y = 0,$ $v_x = 0,$ $v_y = -1.$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析. ¹

(2) 由 $f(z) = x^2 + ixy, u = x^2, v = xy$ 可知

$$u_x = 2x,$$
 $u_y = 0,$ $v_x = y,$ $v_y = x.$

由 2x = x, 0 = -y 可知只有 x = y = 0, z = 0 满足 C-R 方程. 因此该函数只在 0 可导, 处处不解析

 $[\]frac{1}{2}$ 也可由 $\frac{\partial f}{\partial \overline{z}} = 1 \neq 0$ 看出.

$$\mathbb{E} f'(0) = u_x(0) + iv_x(0) = 0.$$

(3) 由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$ $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

因此该函数处处可导,处处解析,且

$$f'(z) = u_x + iv_x = e^x(\cos y + i\sin y) = f(z).$$

实际上, (3) 中的函数就是复变量的指数函数 e^z .

△ 练习 1.2.1 单选题: 函数 () 在 z = 0 处不可导.

(A)
$$2x + 3yi$$
 (B) $2x^2 + 3y^2i$ (C) $e^x \cos y + ie^x \sin y$ (D) $x^2 - xyi$

例题 1.5 设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a, b, c, d 以及 f'(z).

解答: 由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$ $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$, $a = d = 2$, $b = c = -1$, $f'(z) = u_x + iv_x = 2x + 2y + i(-2x + 2y) = (2 - 2i)z$.

例题 1.6 证明: 如果 f'(z) 在区域 D 内处处为零, 则 f(z) 在 D 内是一常数.

证明: 由于

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x = v_x = u_y = v_y = 0, u, v$ 均为常数, 从而 f(z) = u + iv 是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

- f(z) 是一常数,
- f'(z) = 0,
- $\arg f(z)$ 是一常数,
- |f(z)| 是一常数,
- Re f(z) 是一常数,
- Im f(z) 是一常数,
- $v = u^2$,
- $u = v^2$.

例题 1.7 证明: 如果 f(z) 解析且 f'(z) 处处非零,则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

2
也可由 $f = \frac{1}{2}z(z+\overline{z}), \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}z$ 看出, $f'(0) = \frac{\partial f}{\partial z}\Big|_{z=0} = z|_{z=0} = 0.$

证明: 由于 $f'(z) = u_x - iu_y$, 因此 u_x, u_y 不全为零. 对 $u(x,y) = c_1$ 使用隐函数求导法则得 $u_x dx + u_y dx + u_y dx dx$ $u_y dy = 0$, 从而 $(u_y, -u_x)$ 是该曲线在 z 处的非零切向量.

同理 $(v_y, -v_x)$ 是 $v(x, y) = c_2$ 在 z 处的非零切向量. 由于

$$u_y v_y + u_x v_x = u_y u_x - u_x u_y = 0,$$

因此二者正交.

当 $f'(z_0) \neq 0$ 时, 经过 z_0 的两条曲线 C_1, C_2 的夹角和它们的像 $f(C_1), f(C_2)$ 在 $f(z_0)$ 处的夹角总 是相同的. 这种性质被称为保角性. 这是因为 $\mathrm{d}f = f'(z_0)\,\mathrm{d}z$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放 缩 $f'(z_0)$ 倍并逆时针旋转 $\arg f'(z_0)$. 由 w 复平面上曲线族 $u=c_1, v=c_2$ 正交可知上述例题成立.

最后我们来看复数在求导中的一个应用.

例题 1.8 设 $f(z) = \frac{1}{1+z^2}$, 则它在除 $z = \pm i$ 外处处解析. 当 z = x 为实数时,

$$\left(\frac{1}{1+x^2}\right)^{(n)} = f^{(n)}(x) = \frac{i}{2} \left(\frac{1}{x+i} - \frac{1}{x-i}\right)^{(n)}$$

$$= \frac{i}{2} \cdot (-1)^n n! \left(\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}}\right)$$

$$= (-1)^{n+1} n! \operatorname{Im} \frac{1}{(x+i)^{n+1}}$$

$$= (-1)^n n! (x^2+1)^{-\frac{n+1}{2}} \sin((n+1) \operatorname{arccot} x).$$

任意有理函数的高阶导数均可使用此法计算.

§1.3 初等函数

我们将实变函数中的初等函数推广到复变函数, 多项式函数和有理函数的解析性质已经介绍过, 这 里不再重复.

§1.3.1 指数函数

我们来定义指数函数. 指数函数有多种等价的定义方式:

- (1) $\exp z = e^x(\cos y + i\sin y)$ (欧拉恒等式);
- (2) $\exp z = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n (\text{极限定义});$ (3) $\exp z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \lim_{n \to \infty} \sum_{k=0}^n \frac{z^k}{k!} (\text{级数定义});$
- (4) $\exp z$ 是唯一的一个处处解析的函数, 使得当 $z = x \in \mathbb{R}$ 时, $\exp z = e^x$ (e^x 的解析延拓).

有些人会从 e^x , $\cos x$, $\sin x$ 的泰勒展开

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$

形式地带入得到欧拉恒等式 $e^{ix} = \cos x + i \sin x$. 事实上我们可以把它当做复指数函数的定义, 而不是 欧拉恒等式的证明. 我们将在第四章说明(1)、(3)和(4)是等价的.

我们来证明(1)和(2)等价.

$$\begin{split} \lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n &= \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^\infty \, \text{型不定式}) \\ &= \exp \left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x. \end{split}$$

不妨设 n > |z|, 这样 $1 + \frac{z}{n}$ 落在右半平面,

$$\lim_{n \to \infty} n \arg\left(1 + \frac{z}{n}\right) = \lim_{n \to \infty} n \arctan\frac{y}{n+x} = \lim_{n \to \infty} \frac{ny}{n+x} = y.$$

故

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^x (\cos y + i \sin y).$$

定义 1.8 (指数函数)

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

为了方便, 我们也记 $e^z = \exp z$. 指数函数有如下性质:

- $\exp z$ 处处解析,且 $(\exp z)' = \exp z$.
- $\exp z \neq 0$.
- $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$.
- $\exp(z + 2k\pi i) = \exp z$, 即 $\exp z$ 周期为 $2\pi i$.
- $\exp z$ 将直线族 $\operatorname{Re} z = c$ 映为圆周族 $|w| = e^c$, 将直线族 $\operatorname{Im} z = c$ 映为射线族 $\operatorname{Arg} w = c$.

例题 1.9 计算函数 $f(z) = \exp(z/6)$ 的周期.

解答: 设 $f(z_1) = f(z_2)$, 则 $\exp(z_1/6) = \exp(z_2/6)$. 因此存在 $k \in \mathbb{Z}$ 使得

$$\frac{z_1}{6} = \frac{z_2}{6} + 2k\pi i,$$

从而 $z_1 - z_2 = 12k\pi i$. 所以 f(z) 的周期是 $12\pi i$.

一般地, $\exp(az+b)$ 的周期是 $\frac{2\pi i}{a}$ (或写成 $-\frac{2\pi i}{a}$), $a \neq 0$.

§1.3.2 对数函数

对数函数 $\operatorname{Ln} z$ 定义为指数函数 $\exp z$ 的反函数. 为什么我们用大写的 Ln 呢? 在复变函数中, 很多函数是多值函数. 为了便于研究, 我们会固定它的一个单值分支. 我们将多值的这个开头字母大写, 而对应的单值的则是开头字母小写. 例如 $\operatorname{Arg} z$ 和 $\operatorname{arg} z$.

设
$$z \neq 0$$
, $e^w = z = re^{i\theta} = e^{\ln r + i\theta}$, 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

定义 1.9 (对数函数)

(1) 定义对数函数

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z.$$

它是一个多值函数.

(2) 定义对数函数主值

$$\ln z = \ln|z| + i\arg z.$$

对于每一个整数 k, $\ln z + 2k\pi i$ 都给出了 $\ln z$ 的一个单值分支. 特别地, 当 z = x > 0 是正实数时, $\ln z$ 就是实变的对数函数.

例题 1.10 求 Ln 2, Ln(-1) 以及它们的主值.

解答:

$$\operatorname{Ln} 2 = \operatorname{ln} 2 + 2k\pi i, \quad k \in \mathbb{Z},$$

主值为 ln 2.

$$Ln(-1) = ln 1 + i Arg(-1) = (2k+1)\pi i, \quad k \in \mathbb{Z},$$

主值为 πi .

例题 1.11 求 Ln(-2+3i), $Ln(3-\sqrt{3}i)$.

解答:

$$\begin{split} & \operatorname{Ln}(-2+3i) = \ln|-2+3i| + i\operatorname{Arg}(-2+3i) = \frac{1}{2}\ln 13 + \left(-\arctan\frac{3}{2} + \pi + 2k\pi\right)i, \quad k \in \mathbb{Z}. \\ & \operatorname{Ln}(3-\sqrt{3}i) = \ln\left|3+\sqrt{3}i\right| + i\operatorname{Arg}(3-\sqrt{3}i) = \ln 2\sqrt{3} + \left(-\frac{\pi}{6} + 2k\pi\right)i = \ln 2\sqrt{3} + \left(2k - \frac{1}{6}\right)\pi i, \quad k \in \mathbb{Z}. \end{split}$$

例题 1.12 解方程 $e^z - 1 - \sqrt{3}i = 0$.

解答: 由于 $1+\sqrt{3}i=2e^{\frac{\pi i}{3}}$. 因此

$$z = \text{Ln}(1 + \sqrt{3}i) = \ln 2 + \left(2k + \frac{1}{3}\right)\pi i, \quad k \in \mathbb{Z}.$$

练习 **1.3.1** 求 $\ln(-1 - \sqrt{3}i) =$.

对数函数与其主值的关系是

$$\operatorname{Ln} z = \operatorname{ln} z + \operatorname{Ln} 1 = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

根据辐角以及主辐角的相应等式, 我们有

$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2,$$

$$\operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z.$$

而当 $|n| \ge 2$ 时, $\operatorname{Ln} z^n = n \operatorname{Ln} z$ **不成立**. 以上等式换成 $\operatorname{ln} z$ 均不一定成立.

设 x 是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

因此 $\ln z$ 在负实轴和零处不连续. 而在其它地方, $-\pi < \arg z < \pi$, $\ln z$ 是 e^z 在区域 $-\pi < \operatorname{Im} z < \pi$ 上的单值反函数, 从而 $(\ln z)' = \frac{1}{z}$, $\ln z$ **在除负实轴和零处的区域解析**. ³

 $^{^{3}}$ 任取一条从 0 到 $^{\infty}$ 的简单曲线, 在去掉这条曲线后, 若固定一复数 2 的辐角, 则多值函数 2 可以在该区域内连续单值化, 简单来说就是沿着 2 0 到 2 的曲线让辐角连续变化. 同理, 2 Ln 2 也可以在该区域内单值化, 只需固定一复数 2 的值.

也可以通过 C-R 方程来得到 $\ln z$ 的解析性和导数: 当 x > 0 时,

$$\ln z = \frac{1}{2} \ln(x^2 + y^2) + i \arctan \frac{y}{x},$$

$$u_x = v_y = \frac{x}{x^2 + y^2}, \qquad v_x = -u_y = -\frac{y}{x^2 + y^2},$$

$$(\ln z)' = \frac{x - yi}{x^2 + y^2} = \frac{1}{z}.$$

其它情形可取虚部为 $\operatorname{arccot} \frac{x}{y}$ 或 $\operatorname{arccot} \frac{x}{y} - \pi$ 类似证明.

§1.3.3 幂函数

定义 1.10 (幂函数)

(1) 设 $a \neq 0, z \neq 0$, 定义幂函数

$$w = z^a = e^{a \operatorname{Ln} z} = \exp(a \ln|z| + ia(\arg z + 2k\pi)), \quad k \in \mathbb{Z}.$$

(2) 幂函数的主值为

$$w = e^{a \ln z} = \exp(a \ln |z| + ia \arg z).$$

根据 a 的不同, 这个函数有着不同的性质.

- (1) 当 a 为整数时, 因为 $e^{2ak\pi i} = 1$, 所以 $w = z^a$ 是单值的. 此时 z^a 就是我们之前定义的乘幂. 当 a 是 非负整数时, z^a 在复平面上解析; 当 a 是负整数时, z^a 在 $\mathbb{C} \{0\}$ 上解析.
- (2) 当 $a = \frac{p}{q}$ 为分数, p, q 为互质的整数且 q > 1 时,

$$z^{\frac{p}{q}} = |z|^{\frac{p}{q}} \exp\left(\frac{ip(\arg z + 2k\pi)}{q}\right), \quad k = 0, 1, \dots, q - 1$$

具有 q 个值. 去掉负实轴和 0 之后, 它的主值 $w=\exp(a\ln z)$ 是处处解析的. 事实上它就是 $\sqrt[q]{z^p}=(\sqrt[q]{z})^p$.

图 1.3: 映照 $w = z^{2/9}$

(3) 对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍. 从而不同的 k 得到的是不同的值. 去掉负实轴和 0 之后, 它的主值 $w = \exp(a \ln z)$ 也是处处解析的. 4

⁴对于 $\operatorname{Ln} \frac{z-a}{z-b}, \sqrt{(z-a)(z-b)}$ 等类型的多值函数, 我们需要将它的"奇点"连接起来形成"割线". 复平面上去掉这些割线得到的区域内, 这些函数也可以如同 $\operatorname{Arg} z, \operatorname{Ln} z$ 那样单值化.

\overline{a}	z^a 的值	z^a 的解析区域
整数 n	单值	$n \ge 0$ 时处处解析 $n < 0$ 时除零点外解析
分数 p/q	q 值	除负实轴和零点外解析
无理数或虚数	无穷多值	除负实轴和零点外解析

例题 1.13 求 $1^{\sqrt{2}}$ 和 i^i .

解答:

$$1^{\sqrt{2}} = e^{\sqrt{2}\operatorname{Ln} 1} = e^{\sqrt{2}\cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), \quad k \in \mathbb{Z}.$$
$$i^{i} = e^{i\operatorname{Ln} i} = \exp\left(i\cdot\left(2k + \frac{1}{2}\right)\pi i\right) = \exp\left(-2k\pi - \frac{1}{2}\pi\right), \quad k \in \mathbb{Z}.$$

▲ 练习 1.3.2 3ⁱ 的主辐角是 .

幂函数与其主值有如下关系:

$$z^{a} = e^{a \ln z} \cdot 1^{a} = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的. ⁵

最后, 注意 e^a 作为指数函数 $f(z) = e^z$ 在 a 处的值和作为 $g(z) = z^a$ 在 e 处的值是<mark>不同</mark>的. 因为后者在 $a \notin \mathbb{Z}$ 时总是多值的. 前者实际上是后者的主值. 为避免混淆, 以后我们总<mark>默认 e^a 表示指数函数 $\exp a$.</mark>

§1.3.4 三角函数和反三角函数

我们知道

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

对于任意实数 x 成立, 我们将其推广到复数情形.

定义 1.11 (余弦和正弦函数)

定义余弦和正弦函数

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

那么欧拉恒等式 $e^{iz} = \cos z + i \sin z$ 对任意复数 z 均成立.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \quad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$. 因此 $\sin z$ 和 $\cos z$ 并不有界. 这和实变情形不同.

$$\overline{z^a \cdot z^b} = z^{a+b}$$
 成立当且仅当 $\frac{a}{a+b} \in \mathbb{Z}$. $(z^a)^b = z^{ab}$ 成立当且仅当 $\frac{1}{a} \in \mathbb{Z}$.

容易看出 $\cos z$ 和 $\sin z$ 的零点都是实数. 于是可类似定义其它三角函数

$$\tan z = \frac{\sin z}{\cos z}, z \neq \left(k + \frac{1}{2}\right)\pi, \qquad \cot z = \frac{\cos z}{\sin z}, z \neq k\pi,$$
$$\sec z = \frac{1}{\cos z}, z \neq \left(k + \frac{1}{2}\right)\pi, \qquad \csc z = \frac{1}{\sin z}, z \neq k\pi.$$

这些三角函数的奇偶性,周期性和导数与实变情形类似.

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的. 三角函数的各种恒等式在复数情形也仍然成立, 例如

- $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$,
- $\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$,
- $\sin^2 z + \cos^2 z = 1.$

类似的,我们可以定义双曲函数:

$$\begin{split} \operatorname{ch} z &= \frac{e^z + e^{-z}}{2} = \cos iz, \\ \operatorname{sh} z &= \frac{e^z - e^{-z}}{2} = -i \sin iz, \\ \operatorname{th} z &= \frac{e^z - e^{-z}}{e^z + e^{-z}} = -i \tan iz, \quad z \neq \left(k + \frac{1}{2}\right) \pi i. \end{split}$$

它们的奇偶性和导数与实变情形类似, 在定义域范围内是处处解析的. $\operatorname{ch} z, \operatorname{sh} z$ 的周期是 $2\pi i, \operatorname{th} z$ 的周 期是 πi .

设
$$z=\cos w=rac{e^{iw}+e^{-iw}}{2}$$
,则
$$e^{2iw}-2ze^{iw}+1=0,\quad e^{iw}=z+\sqrt{z^2-1}^6.$$

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

显然它是多值的. 同理, 我们有:

- 反正弦函数 $Arcsin z = -i \operatorname{Ln}(iz + \sqrt{1-z^2});$ 反正切函数 $Arctan z = -\frac{i}{2} \operatorname{Ln} \frac{1+iz}{1-iz}, z \neq \pm i;$
- 反双曲余弦函数 Arch $z = \text{Ln}(z + \sqrt{z^2 1})$;
- 反双曲正弦函数 $\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1});$ 反双曲正切函数 $\operatorname{Arth} z = \frac{1}{2}\operatorname{Ln} \frac{1+z}{1-z}, z \neq \pm 1.$

例题 1.14 解方程 $\sin z = 2$.

解答: 由于

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2,$$

我们有

$$e^{2iz} - 4ie^{iz} - 1 = 0.$$

于是 $e^{iz} = (2 \pm \sqrt{3})i$,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = \left(2k + \frac{1}{2}\right)\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

另解: 由 $\sin z = 2$ 可知

$$\cos z = \sqrt{1 - \sin^2 z} = \pm \sqrt{3}i.$$

于是 $e^{iz} = \cos z + i \sin z = (2 \pm \sqrt{3})i$,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = \left(2k + \frac{1}{2}\right)\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

我们总有形式

$$Arcsin z = (2k + \frac{1}{2})\pi \pm \theta,$$

$$Arccos z = 2k\pi \pm \theta,$$

$$Arctan z = k\pi + \theta, \quad k \in \mathbb{Z}.$$

作业

一、判断题.

- 1. 如果 $f'(z_0)$ 存在, 那么 f(z) 在 z_0 解析.()
- 2. 如果 z_0 是 f(z) 的奇点, 那么 f(z) 在 z_0 不可导.()
- 3. 如果 z_0 是 f(z) 和 g(z) 的奇点, 那么 z_0 也是 f(z) + g(z) 和 f(z)/g(z) 的奇点.()
- 4. 如果 u(x,y) 和 v(x,y) 偏导数均存在, 那么 f(z) = u + iv 亦可导.()
- 5. 如果 f(z) 在区域 D 内处处可导,则 f(z) 在区域 D 解析.()
- 6. 对任意复数 z, 有 $\overline{e^z} = e^{\overline{z}}$.()
- 7. 对任意复数 z, 有 $\overline{\cos z} = \cos \overline{z}$.()
- 8. 对任意复数 z, 有 $\overline{\sin z} = \sin \overline{z}$.()
- 9. 对任意复数 z, 有 $ch^2 z sh^2 z = 1$.()

二、选择题.

- 1. 函数 f(z) 在点 z_0 的邻域内可导是 f(z) 在该邻域内解析的().
 - (A) 充分条件

(B) 必要条件

(C) 充要条件

- (D) 既非充分也非必要条件
- 2. 设 f(z) = u(x,y) + iv(x,y). 将下述选项不重复地填入括号内:

$$(\quad) \Rightarrow (\quad) \Rightarrow (\quad) \Rightarrow (\quad) \Rightarrow (\quad) \Rightarrow (\quad)$$

(A) f(z) 在点 z_0 有定义

(B) f(z) 在点 z_0 连续

(C) f(z) 在点 z₀ 可导

- (D) f(z) 在点 z_0 解析
- (E) f(z) 在点 z_0 的一个邻域内解析
- (F) u, v 均在点 (x_0, y_0) 处有偏导数
- 3. 下列函数中, 为解析函数的是().

(A)
$$x^2 - y^2 - 2xyi$$

(B)
$$x^2 + xyi$$

(C)
$$2(x-1)y+i(y^2-x^2+2x)$$

(D)
$$x^3 + iy^3$$

4. 设 n 是正整数, $z_1, z_2 \neq 0$. 下列式子一定正确的是().

(A)
$$\operatorname{Arg}(\sqrt{z}) = \frac{1}{2} \operatorname{Arg} z$$

(B)
$$\operatorname{Arg}(z^n) = n \operatorname{Arg} z$$

(C)
$$Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$$

(D)
$$\arg(\sqrt{z}) = \frac{1}{2} \arg z$$

(E)
$$\arg(z^{-n}) = -n \arg z$$

(F)
$$\arg(z_1/z_2) = \arg(z_1) - \arg(z_2)$$

(G)
$$\operatorname{Ln}\sqrt[3]{z} = \frac{1}{3}\operatorname{Ln}z$$

$$(\mathbf{H}) \operatorname{Ln}(z^{-n}) = -n \operatorname{Ln} z$$

(I)
$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln}(z_1) + \operatorname{Ln}(z_2)$$

(J)
$$\ln \sqrt{z} = \frac{1}{2} \ln z$$

(K)
$$\ln(z^n) = n \ln z$$

(L)
$$\ln(z_1/z_2) = \ln(z_1) - \ln(z_2)$$

三、填空题.

1. 函数
$$\frac{z+1}{z(z^2+1)}$$
 的奇点为_____.

- 2. 函数 $\frac{z-2}{(z+1)^2(z^2+1)}$ 的奇点为_____.
- 3. 函数 $\frac{1}{\sin z}$ 的奇点为_____. 4. 如果函数 $f(z) = x^2 2xy y^2 + i(ax^2 + bxy + cy^2)$ 在复平面上处处解析,则 a + b + c =_____.
- 5. 计算 ln *i* = _____.
- 6. 设 $z = 1^{\sqrt{3}}$, 则 |z| = .
- 7. i^{-i} 的主值是 .

四、计算题.

- 1. $\[\mathcal{G} f(z) = \frac{1}{5}z^5 (1+i)z, \]$ 解方程 f'(z) = 0.
- 2. 下列函数何处可导? 何处解析'
 - (1) $f(z) = 1/\overline{z}$;
- (2) $f(z) = x^3 3xy^2 + i(3x^2y y^3);$
- (3) $f(z) = 2x^3 + 3y^3i;$ (4) $f(z) = xy^2 + ix^2y;$ (5) $f(z) = e^{x^2 + y^2};$

- (6) $f(z) = z \operatorname{Im} z;$ (7) $f(z) = \sin x \operatorname{ch} y + i \cos x \operatorname{sh} y.$
- 3. 指出下列函数 f(z) 的解析区域, 并求出其导数.
 - (1) $(z-1)^5$:

(2) $z^3 + 2iz$:

(3) $\frac{1}{x^2-1}$;

- (4) $\frac{az+b}{cz+d}$ (c,d 不全为零).
- 4. 设 $my^3 + nx^2y + i(x^3 + lxy^2)$ 为解析函数, 试确定实数 l, m, n 的值.
- 5. 计算
 - (1) Ln 4;
- (2) 2 Ln 2;
- (3) $\ln(-i)$; (4) $\ln(-3+4i)$;
- (5) Im $\sin(1+i)$; (6) arg e^{1-4i} ;
- (7) $\exp\left(1-\frac{\pi i}{2}\right);$ (8) $\exp\left(\frac{1+\pi i}{4}\right);$

- (9) 3^{i} ;
- $(10)(1+i)^{i}$.
- 6. 解方程
 - (1) $\sin z = 0$;
- (2) $\cos z = 0$;
- (3) $1 + e^z = 0$:
- (4) $\sin z + \cos z = 0$; (5) $\sin z = 2\cos z$.
- 7. 复变函数 $f(z) = \sin z$ 和实变量函数 $g(x) = \sin x$ 的性质有什么相似和不同之处? 试说出 3
- 五、扩展阅读. 该部分作业不需要交, 有兴趣的同学可以做完后交到任课教师邮箱.

仿照复数的指数函数, 我们可以尝试在矩阵上定义指数函数. 设 $\mathbf{A} \in M_m(\mathbb{C})$ 是一个 $m \times m$ 的复 矩阵,我们想说明极限

$$e^{\mathbf{A}} := \lim_{n \to \infty} \left(1 + \frac{1}{n} \mathbf{A} \right)^n$$

存在.

(1) 当 $\mathbf{A} = \operatorname{diag}\{a_1, a_2, \dots, a_m\}$ 是一个对角矩阵时, 证明 $e^{\mathbf{A}}$ 存在且

$$e^{\mathbf{A}} = \text{diag}\{e^{a_1}, e^{a_2}, \dots, e^{a_m}\}.$$

(2) 当

$$\mathbf{A} = \mathbf{J}_m(a) = \begin{pmatrix} a & 1 & & \\ & a & 1 & \\ & & \ddots & 1 \\ & & & a \end{pmatrix}$$

是约当块时,证明 $e^{\mathbf{A}}$ 存在.

(3) 每个方阵都可以相似于一些约当块构成的分块对角阵, 由此证明 $e^{\mathbf{A}}$ 总存在.

(4) 当
$$\mathbf{A} = x\mathbf{E} + y\mathbf{J} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}$$
 时, 证明 $e^{\mathbf{A}} = \begin{pmatrix} e^x \cos y & e^x \sin y \\ -e^x \sin y & e^x \cos y \end{pmatrix} = e^x (\cos y\mathbf{E} + \sin y\mathbf{J}).$

(5) 证明
$$e^{\mathbf{A}} = \mathbf{E} + \mathbf{A} + \frac{\mathbf{A}^2}{2!} + \frac{\mathbf{A}^3}{3!} + \cdots$$
.

(6) 证明
$$e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}} \cdot e^{\mathbf{B}}$$
.

练习 参考答案

- 1.1.1 处处不可导.
- 1.1.2 A. 因为解析要求在 z_0 的一个邻域内都可导才行.
- 1.2.1 A. 根据 C-R 方程可知对于 A, $u_x(0) = 2 \neq v_y(0) = 3$. 对于 BD, 各个偏导数在 0 处取值都是 0. C则是处处都可导.
- 则是处处都可导. 1.3.1 $\ln 2 \frac{2\pi i}{3}$.
- $1.3.2 \ln 3.$