ESPACIOS MUESTRALES Y EVENTOS

Nexus-Probability

CURSO 1 (PROBABILIDAD I)

PARTE 1 / LECCIÓN 1

Definición 1 (Espacio Muestral) El espacio muestral, denotado por S, es el conjunto de todos los posibles resultados de un experimento aleatorio. Dependiendo del tipo de experimento, el espacio muestral puede ser finito o infinito.

Ejemplo 1 Si lanzamos un dado, el espacio muestral es

$$S = \{1, 2, 3, 4, 5, 6\}$$

Para un experimento donde elegimos un número real al azar entre 0 y 1, el espacio muestral es el intervalo S = [0, 1].

Definición 2 (Evento) Un evento es cualquier subconjunto del espacio muestral. Dependiendo de la cantidad de elementos que contenga el evento, puede ser un evento simple o evento compuesto.

- Un evento simple contiene un solo resultado.
- Un evento compuesto puede contener varios resultados.

Ejemplo 2 Por ejemplo, el evento A de obtener un número par en el lanzamiento de un dado es $A = \{2, 4, 6\}$ y es un evento compuesto.

El evento seguro es el espacio muestral completo S, ya que siempre ocurrirá algo, y el evento imposible es el conjunto vacío \emptyset , ya que nunca ocurrirá.

1. Teoremas Básicos de Probabilidad

Teorema 1 (Teorema de la Probabilidad Total) Si el espacio muestral se divide en eventos disjuntos A_1, A_2, \ldots, A_n , entonces la probabilidad de un evento A es:

$$P(A) = P(A_1) + P(A_2) + \dots + P(A_n)$$

si los eventos A_1, A_2, \ldots, A_n son disjuntos (no pueden ocurrir al mismo tiempo).

Teorema 2 (Teorema de Bayes) El Teorema de Bayes nos permite calcular la probabilidad de un evento A dado que ha ocurrido otro evento B. Se expresa como:

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

donde P(A|B) es la probabilidad de A dado que ha ocurrido B, P(B|A) es la probabilidad de B dado que ha ocurrido A, y P(A) y P(B) son las probabilidades de A y B, respectivamente.

Ejercicio 1 (Lanzamiento de un Dado) Simulamos el lanzamiento de un dado y calculamos la probabilidad de que ocurra un número par. El espacio muestral es $S = \{1, 2, 3, 4, 5, 6\}$ y el evento de obtener un número par es $A = \{2, 4, 6\}$.

Código en Python

```
import random

# Simulaciones

n_simulaciones = 10000

resultados = [random.randint(1, 6) for _ in range(n_simulaciones
        )]

# Evento: N mero par

eventos_par = [x for x in resultados if x in [2, 4, 6]]

probabilidad_par = len(eventos_par) / n_simulaciones

print(f'Probabilidad de obtener un n mero par: {
    probabilidad_par}')
```

Solución

La probabilidad de obtener un número par es aproximadamente $\frac{3}{6}=0.5.$

Ejercicio 2 (Selección Aleatoria de un Número Real) Seleccionamos un número real aleatorio en el intervalo [0,1]. Calculamos la probabilidad de que el número sea menor que 0.5.

Código en Python

```
# Simular la selecci n de un n mero real
2 n_simulaciones = 10000
```

```
resultados = [random.uniform(0, 1) for _ in range(n_simulaciones
    )]

# Evento: N mero menor que 0.5
eventos_menor_que_0_5 = [x for x in resultados if x < 0.5]
probabilidad_menor_que_0_5 = len(eventos_menor_que_0_5) /
    n_simulaciones

print(f'Probabilidad de que el n mero sea menor que 0.5: {
    probabilidad_menor_que_0_5}')</pre>
```

Solución

La probabilidad de que el número seleccionado sea menor que 0.5 es aproximadamente 0.5, ya que el intervalo es simétrico.