

G. By Noam Bassat Gemstones

Can we find gemstones by a given location?

01/2021

Data Science project

GEMSTONES

A little background

Gemstones are naturally formed mineral crystals which when cut and polished reveal their beauty.

They are created inside the earth when the right physical conditions occur.

They are brought to the surface by various geological forces and can be carried away by rivers before they are deposited.

They are defined by their chemical formula and trace minerals as well as their crystal structure.

Of the more than 2,000 identified natural minerals, fewer than 100 are used as gemstones and only 16 have achieved importance.

The importamce of gemstones

Gemstones have been chosen for their beauty and durability, then cut and polished mainly for use as human adornment.

Jewelry and ornamental purposes

Status symbol and economical value

Health, religion and spiritual benefits

04

Scientific and industrial uses

Main Steps

Main process steps of the project

Obtaining	Scrubbing	Exploring	Modeling	interpreting
Data	Data	Data	Data	Data
Web crawling for collecting and obtaining the data	Cleaning, formatting, and filtering the data	Visualizing and understanding the data	Clustering the data into groups, modeling and the algorithm	Presentation of data, understanding and delivering the results + Final predict model

Web Crawling

Finding main gemstones to explore, and crawling their data

Gemstones list

From "Geology.com" I took the main gemstones list that I wanted to explore.

Gemstones and Locations

From "mindat.org" I took every relevant information about the gemstone. After I had their locations references, I took the relevant details of each location, and put it into a different dataframe.

Main tools:

BeautifulSoup and Selenium

Web Crawling But, not every thing was so easy...

After a number of pages visits, the "Midnat" Site wanted to check if I am a bot.

of course I am not, but my program is. So, I made my calculations and found out that this bot-checker appears every 23 minutes. (including the sleeping and searching time). So, I had to stay close, and pass the test every 23 minutes. Finally, after 5 and a half hours, I had a dataset that contains 2,621 locations records, and another dataset that contains information about 77 gemstones.

Location URL

4047.html

250161.html

56146.html

232658.html

o https://www.mindat.org//loc-

https://www.mindat.org//loc-

https://www.mindat.org//loc-

https://www.mindat.org//loc-

https://www.mindat.org//loc-

Stone Refernced

Amazonite Apatite

Smoky .

Quartz

Amethyst

Amethyst

Aquamarine Beryl Opal

Amazonite Aguamarine

Amethyst Apatite Spinel

Beryl Kyanite Smoky

Locations

['Argentina', '\xa0',

'Australia', '\xa0', 'Au.

['Bolivia '\xa0', 'Brazi

'Antarctica'.

'AmMin 3.

Image_url

Location Name

Preitenegg, Wolfsberg

District, Carinthia, A.,

Spruce Pine, Spruce

Pine Mining District, Mi..

Thanh Son District, Phú

Tho Province, Vietna..

Eggenburg, Waldviertel,

Lower Austria, Austr..

Krimml, Zell am See

District, Salzburg, Aust.

Locations Dataframe

-		

Decimal

Coordinates

46.96177,14.95181

35.91667.-82.06667

48.64833.15.82083

47.15161,12.13835

Name

Amethyst

Climate

climate

Dfb: Warm-summer

humid continental climate

Cfb : Temperate oceanic

Cfb: Temperate oceanic

Dfb: Warm-summer

humid continental climate

Cwa: Monsoon-

influenced humid

subtropical cli.

Formula

SiO2

Minerals

Species, Al.

C, Ca, Ce, F,

[Al, B, Be, C,

Ca, Cd, Ce

CI, Cu, F, Fe,

[Al, B, Be, F,

Fe, H, K, Mg

H, K...

O, Si, Ti]

Species, O.

Species, O.

[SiO4]O(OH)

[Valid

[Valid

Fe, H, K, La..

[Valid

Elements

Colours

NaN ['/imagecache/11/7a/04766080014946246016426.jp.

,	404020.1101111, 11	

['https://www.mindat.org//loc-

Locations_url

269722.html', 'h.

i', l',)',	['https://www.mindat.org//loc- 11804.html', 'ht	

8.html', 'https:.

['Andorra', Pink to red '\xa0'. https://www.mindat.org//loc-['/imagecache/ff/30/01398870014946330614953.jp. 'Antarctica', occasionally 31239.html', 'ht.. 'AmMin yellow, green, 36:36...

['Afghanistan', bright blue, sky-'Gübelin, E., ['https://www.mindat.org/locblue, pale green, ['/imagecache/6d/d1/05330790014956573955192.jp. Wolgensinger 14319.html', 'htt..

NaN ['/imagecache/5a/7d/05648390015601981974323.ip.,

Sn-W-Pb-Ag- Pale to emerald-['Antigua and AIPO4 · 2H2OIMA Zn Huanuni green, bluish Barbuda', ['https://www.mindat.org//loc-75 Variscite Formula:Al(PO4) ['/imagecache/77/23/08123090014977192376273.jp. Deposit, Bolivia green, '\xa0', 147083.html', 'h. 2H2O Minera.. colourles.. 'Argentina', '. Zr(SiO4)May contain from a yellow, grey, '\xa0'. "https://www.mindat.org//loc-76 minor U. Th. Pb. Hf. ['/imagecache/40/37/05576060014946320573225.jp. Zircon Carbonatite reddish-brown, 'Algeria', 3.html', 'https:. Deposit: .. green.. "\xa0", 'An.. Colourless, ['Afghanistan' Ca2Al3[Si2O7] purple, greyish-"\xa0", https://www.mindat.org//loc-77 ['/imagecache/ce/e7/04096150014946273104080.jp. Zoisite

Gemstones Dataframe

white, grey,

yello.

Scrubbing Data

Dealing with missing values:

Dropping rows and columns with too many missing values.

 Sand and Gravel

, Palm Springs, Riverside Co., California, USA...

[]

Dealing with duplicates;

I have a tiny number of duplicates rows, which contained the exact same values, so I kept only the first ones.

, Lyon Co., Nevada, USA,i,Silver City Mining D

a, g []

Cleaning the noise:

Many strings contained unnecessary signs, duplicated words and so on, so I built some "cleaning" methods.

(i) Feldspar

Formatting:

Importing every non–numeric variable into a fitted categorical data. Also, splitting columns such as coordinates into two columns, one for the latitude value and one for the longitude.

Full - Locations Dataframe

	Location URL	Stone Refernced	Location Name	Climate	Minerals	Latitude	Longi	itude	Ag A	l As	Ti	TI U	V W Y	Yb Z	Zn Z	r Gro																		
(https://www.mindat.org/loc- 14762.html	Lapis Lazuli Unakite	,i,Israel,Country,	15	Ag Al B Ba C Ca Ce Cl Cr Cu F Fe Gd H K La Mg	31.261220	35.21	4581	1	1 0	1	0 1	1 0 1	0	1 1	ı																		
	https://www.mindat.org//loc- 145486.html	Lapis Lazuli Unakite	, Israel,i,Central District (HaMerkaz District	15	NaN	32.620121	35.01	4771	0	0 0	0	0 0	0 0 0	0	0 ()																		
:	https://www.mindat.org//loc- 145489.html	Lapis Lazuli Unakite	, Israel,i,Haifa District,District, Israel,Cou	15	AIBC CaCICr F Fe H K Mg N Na O P Si Sn Ti	31.795924	35.21	1981	0	1 0	1	0 0	1 0 0	0	0 1	Lo	ca	tio	ns	Da	ta	set												
	https://www.mindat.org//loc-	Lapis	, Israel,i,Jerusalem		AI C Ca			_	Cli	imate	Lat	tude	Longi	tude	Ag	ΑI	As	Au	В	Ва	Ве		Th	Ti	TI	U	۷ ۱	W	Y	Yb	Zn Zr			
'	145488.html	Lazuli Unakite	District, District, Israel	15	AI C Ca H O Si	32.60/559	2.607559 35.239	35.2	35.239	30.Z)		0	15	31.26	1220	35.21	4581	1	1	0	0	1	1	0		0	1	0	1	1	0	1	0	1 1
		Lapis	, Israel,i,Northern		AI C Ca CI Fe H				1	15	32.62	0121	35.01	4771	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0			
1	https://www.mindat.org//loc- 205351.html	Lazuli Unakite	District (HaZafon District	7	K Mg Mn Na Ni O	31.261220	35.21	4	2	15	31.79	5924	35.21	1981	0	1	0	0	1	0	0		0	1	0	0	1	0	0	0	0 1			
					Si Ti Zn				3	15	32.60	7559	35.28	9086	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0 0			
		Diopside			Valid				4	7	31.26	1220	35.21	4581	0	1	0	0	0	0	0		0	1	0	0	0	0	0	0	1 0			
160	https://www.mindat.org//loc- 193574.html	Lapis Lazuli	, Cochise Mining District, Little	13	Species Al Ca Cu Fe H K	32.065560	-109.95	9.																										
		Unakite Zoisite	Dragoon Moun		Mo O S Si Zn			160	3	13	32.06	5560	-109.95	9440	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	1 0			
		Diopside			AIBC			160	4	15	33.89	7470	-115.46	2220	0	1	0	0	1	0	0		0	1	0	0	0	0	0	0	0 0			
								160	5	12	39.26	3610	-118.35	9440	1	1	1	1	1	0	0		0	0	0	0	0	1	0	0	1 0			
								160	6	2	35.94	3050	-81.91	0000	0	1	0	0	0	0	0		0	1	0	1	0	0	0	0	0 0			
		-/						160	7	8	40.13	9200	-112.17	4950	0	1	0	1	0	0	0		0	0	0	0	0	1	0	0	0 0			

After seeing the correlations I dropped one of two stones that appeared to be the exact same stone. Stones and minerals such as: "Lapis" and "Lasuli", "Titanite" and "Sphene" and more..

Stone Groups instances in group number 1

Exploring & visualizing the Data

Splitting the Stones into correlated stone groups

Stones in Group

1	['Beryl', 'Aquamarine', 'Lepidolite', 'Spodume
2	['Andalusite', 'Kyanite', 'Cordierite']
3	['Wood', 'Opal', 'Opalize', 'Bloodstone']
4	['Chrysoberyl', 'Ruby', 'Sapphire', 'spinel']
5	['Diopside', 'Scapolite', 'Serpentine']
6	['Apatite', 'Titanite', 'Zircon']
7	['Turquoise', 'Variscite', 'Lapis', 'Lazuli',

['Opal', 'Opalize', 'Bloodstone', 'wood']

Stone Groups instances in group number 2

Visualizing locations with scatter plot

No significant separation can be seen in the group graph...

Gemstones project by Noam Bassat

"Gemstone deposits that are carried by rivers are called placers or alluvial deposits. Rivers can transport gem-bearing rock many hundreds of miles. When the force of the current diminishes, the denser gems, such as diamond, zircon, garnet, sapphire, chrysoberyl, topaz, peridot and tourmaline, are deposited before the lighter quartz sand. Thus the gems left behind by the river tend to be concentrated in certain places. This makes mining the deposit much easier and more productive."

https://www.gemselect.com/english/other-info/gemstone-deposits.php

Visualizing Countries

Modeling Data

Part 1 – Unsupervised Learning: Clustering by Kmeans

Unfortunately, my division into groups gave really poor results when it came to the machine learning phase.

I tried to apply many algorithm models based on my groups labels, but the best accuracy they gained was lower the 0.1

So, the Kmeans algorithm has created some new clustering for me...

And it did it much better than I did.

Now that I have 8 clusters I tried some supervised models again and the accuracy has increased multiple times.

```
X = dataset_df.copy() #feature matrix

dataset_df["clusters"] = KMeans(n_clusters=8, n_init=500, max_iter=1000).fit_predict(X)
y=dataset_df["clusters"]
full_df["clusters"]=dataset_df["clusters"]
```


Modeling Data

Part 2 – <u>Supervised Learning</u>: Comparison of the performance of 3 supervised algorithms: RandomForestClassifier, DecisionTreeClassifier, and KNN,

using Sklearn.

```
accuracy on train data 0.99555555555555555
     0 79 0 0 0 0
accuracy on train data 0.985777777777778
accuracy on test data 0.9606625258799172
     0780100
KNN
accuracy on train data 0.7217777777777777
accuracy on test data 0.5548654244306418
     28 36 0 15 0 0
   3 14 5 15 1 0 0
```


Decision Tree Classifier has the best results

Scatter plot by kmean's clusters

Attributes of Kmean's Clusters

	Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7
Number of locations	679	68	216	104	102	261	125	53
Average coordinates	-20.895355 , -56.725037	,48.719148 11.227510	39.069659, 112.783420 -	-29.315328 , 143.127625	39.803252 <i>,</i> 123.978676	30.223338, 82.134699	-19.690474 , 29.756632	42.901839 -75.451651
Min Coordinates	-74.700000, 110.666670 -	7.495260 -14.492780	16.883330, 166.854170 -	-75.283330 , 107.731640	16.262780, 101.270000	-4.650000, 45.083330	-72.000000 , 0.083330	19.639860, -94.661670
Max Coordinates	5.632360, -35.270000	79.799840, 51.061020	,67.061940 -93.736110	-2.330250, 179.958330	70.880000, 164.733330	,66.916670 107.200000	14.000000 72.500000	67.399170 <i>,</i> -44.152500
Most frequent Climate	6 Aw : Tropical savanna, wet	2 Cfb : Temperate oceanic climate	13 BSk : Cold semi- arid (steppe) climate	2 Cfb : Temperate oceanic climate	5 Cfa : Humid subtropical climate	3 Cwa: Monsoon- influenced humid subtropical climate	7 BSh : Hot semi- arid (steppe) climate	1 Dfb : Warm- summer humid continental climate
Most significant minerals	Ag Al As Au B Ba Be Bi	Ag Al As Au B Ba Be Bi Br C Ca Cd Ce	Ag Al As Au B Ba Be	Ag Al As Au B Ba Be Bi	Ag Al As Au B Ba Be	Ag Al As Au B	Ag Al As Au B Ba Be	Ag Al As Au B Ba

Stones in each of kmean's clusters, sorted by their appearance in the data

Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7
Total stones 319 Zircon 24 Diopside 20 Sphene 19 Quartz 17 Beryl 16 Opal 16 Azurite 15 Smoky Quartz 14 Spinel 10 Serpentine 10 Aquamarine 8 Sapphire 8 Topaz 8 Scapolite 7 Zoisite 6 Emerald 6 Variscite 5 Diamond 5 Lepidolite 4 Kyanite 4 Heliodor 4 Amethyst 4 Rhodochrosite 4 Andalusite 4 Ruby 3 Turquoise 3 Cordierite 3 Gaspeite 2 Goshenite 2 Rhodonite 2 Rose Quartz 2 Sodalite 2 Moonstone 2 Wood 2 Spodumene 2 Chrysoprase 1 Jade 1 Amazonite 1 Malachite 1 Sphalerite 1 Petrified 1 Opalized 1	Total stones 2348 Sphene 252 Zircon 186 Quartz 169 Smoky Quartz 154 Diopside 116 Azurite 103 Amethyst 86 Beryl 82 Serpentine 81 Spinel 64 Opal 55 Andalusite 49 Cordierite 47 Kyanite 46 Zoisite 46 Aquamarine 42 Rhodochrosite 38 Topaz 31 Scapolite 28 Sodalite 28 Labradorite 18 Rhodonite 16 Sapphire 14 Rose 12 Lepidolite 11 Diamond 11 Variscite 10 Chrysoberyl 9 Turquoise 9 Ruby 9 Citrine 8 Wood 7 Petrified 5 Spodumene 5 Heliodor 4 Emerald 4 Jadeite 3 Goshenite 2 Iolite 2 Gaspeite 2 Garnet 2 Opalized 2 Jade 2 Moonstone 2 Bloodstone 2 Nephrite 2 Sit 2 Amazonite 2 Fluorite 2 Chrysoprase 1 Maw 1 Fire 1 Malachite 1 Sunstone 1 Hematite 1 Moldavite 1 Agate 1	Total stones 766 Quartz 56 Azurite 51 Zircon 44 Smoky Quartz 40 Diopside 39 Opal 37 Sphene 36 Beryl 36 Amethyst 34 Serpentine 32 Rhodochrosite 31 Aquamarine 20 Rose 14 Rhodonite 14 Spinel 12 Wood 12 Morganite 12 Heliodor 12 Andalusite 12 Zoisite 10 Topaz 10 Petrified 10 Citrine 10 Spodumene 9 Lepidolite 9 Scapolite 8 Cordierite 8 Goshenite 6 Turquoise 6 Kyanite 6 Sodalite 4 Chrysoberyl 3 Variscite 3 Sapphire 3 Diamond 3 Nephrite 3 Jade 3 Labradorite 3 Emerald 2 Ruby 2 Moonstone 2 Opalized 2 Amazonite 1 Benitoite 1 Fluorite 1 Bloodstone 1 Agate 1 Opalite 1 Hematite 1 Tourmaline 1 Iris 1 Sunstone 1 Peridot 1	Total stones 504 Sphene 37 Diopside 35 Zircon 34 Spinel 25 Quartz 20 Serpentine 20 Beryl 20 Aquamarine 18 Smoky Quartz 16 Amethyst 16 Topaz 15 Azurite 15 Sapphire 12 Ruby 12 Cordierite 11 Andalusite 9 Scapolite 9 Lepidolite 7 Spodumene 7 Sodalite 7 Rhodochrosite 6 Heliodor 6 Emerald 6 Chrysoberyl 5 Moonstone 5 Rhodonite 4 Zoisite 4 Goshenite 4 Morganite 4 Labradorite 4 Rose 4 Kyanite 3 Opal 2 Citrine 2 Turquoise 2 Aventurine 2 Jadeite 2 Iolite 1 Fire 1 Agate 1 Petrified 1 Wood 1 Tourmaline 1 Sunstone 1 Peridot 1	Total stones 211 Zircon 22 Beryl 14 Quartz 12 Aquamarine 12 Sphene 11 Smoky Quartz 10 Emerald 8 Spinel 7 Diopside 7 Amethyst 6 Opal 6 Spodumene 5 Lepidolite 5 Kyanite 4 Cordierite 4 Serpentine 4 Chrysoberyl 3 Zoisite 3 Azurite 3 Wood 3 Rose 2 Sapphire 2 Goshenite 2 Citrine 2 Diamond 2 Topaz 2 Opalized 2 Andalusite 2 Jadeite 2 Morganite 2 Labradorite 1 Rhodochrosite 1 Petrified 1 Rhodonite 1 Sodalite 1	397 Zircon Total stones 27 Beryl 27 Quartz 26 Sphene 24 Aquamarine 22 Smoky Quartz 18 Diopside 15 Topaz 15 Spinel 15 Sapphire 11 Serpentine 11 Amethyst 10 Lepidolite 9 Ruby 9 Opal 8 Emerald 8 Rose 8 Goshenite 8 Azurite 7 Kyanite 7 Sodalite 7 Morganite 6 Diamond 6 Spodumene 6 Andalusite 5 Chrysoberyl 5 Cordierite 4 Zoisite 3 Scapolite 3 Citrine 2 Labradorite 1 Tourmaline 1 Garnet 1 Iolite 1 Amazonite 1 Variscite 1 Rhodonite 1 Chrysoprase 1 Rhodochrosite 1 Peridot 1	861 Total stones Quartz 92 Smoky Quartz 70 Sphene 68 Zircon 58 Beryl 44 Diopside 44 Amethyst 38 Serpentine 37 Aquamarine 26 Scapolite 25 Opal 23 Kyanite 22 Rose 18 Spinel 18 Spodumene 15 Azurite 14 Sodalite 9 Lepidolite 9 Andalusite 8 Morganite 8 Heliodor 8 Amazonite 7 Rhodochrosite 7 Topaz 7 Citrine 6 Cordierite 6 Zoisite 5 Sapphire 5 Labradorite 5 Sunstone 5 Variscite 4 Turquoise 4 Chrysoberyl 3 Rhodonite 3 Wood 3 Goshenite 2 Garnet 2 Jadeite 2 Petrified 2 Red 2 Tourmaline 2 Jade 1 Charoite 1 Hematite 1 Nephrite 1 Opalized 1 Ruby 1 Diamond 1	Total stones 191 Sphene 21 Zircon 17 Diopside 17 Serpentine 7 Spinel 5 Azurite 5 Chrysoberyl 5 Beryl 5 Rhodonite 5 Topaz 5 Zoisite 5 Sodalite 4 Amethyst 4 Opal 3 Quartz 3 Kyanite 3 Cordierite 3 Rhodochrosite 3 Scapolite 3 Ruby 2 Smoky Quartz 2 Andalusite 2 Emerald 2 Lepidolite 2 Sapphire 2 Jade 1 Spodumene 1 Nephrite 1 Labradorite 1 Diamond 1 Variscite 1

Stones in each of kmean's clusters, sorted by their appearance in the data

Accuracy change based on specific features

```
X_locations=X.loc[:,'Latitude':'Longitude']
=== Locations ===
DT
=====
accuracy on train data 0.9946666666666667
accuracy on test data 0.9834368530020704
RandForest
=====
accuracy on train data 0.999111111111111
accuracy on test data 0.99917184265010351
KNN
======
accuracy on train data 0.992
accuracy on test data 0.989648033126294
```

X_climate = pd.DataFrame(X['Climate'])

The rarest stones in the world

My final machine

- Add some quantitative data, for example how many gems were found in each location.
- Focus on specific gems with low correlation, which may be possible to define in different locations.
- Split the main dataframe by one stone for each location row.
- Develop the rare-stone dataframe, and build an algorithm that can predict the exact locations,
 by a given rare-stone name.
- Make a geology and geographical research, and add some relative features.

