

Claims

1 1. A floating point accumulator, said accumulator comprising:

2 A first circuit network which is designed to convert floating point numbers expressed in base
3 format into floating point numbers expressed in a new base format represented by a whole
4 number;

5 A second circuit network which is designed to compare the exponents of two of the converted
6 numbers by comparing some number of most significant bits of the exponents of the two converted
7 numbers, said bits representing exponent values of the two converted numbers;

8 A third circuit network which is designed to shift mantissas, add shifted mantissas of the two
9 converted numbers using compressors, choose an accurate result mantissa, and partially normalize
10 feedback mantissas;

11 A fourth circuit network designed to convert back to base 2 format both the mantissa and
12 exponent of the final result.

1 2. The floating point accumulator of claim 1, wherein said floating point numbers are converted
2 into numbers expressed in a new base by shifting the mantissas of each floating point number by
3 a quantity equal to the K least significant bits of the exponents of the floating point numbers and by
4 removing the K least significant bits from the exponents, where K equals the logarithm to the base
5 2 of the new base.

1 3. The floating point accumulator of claim 2, wherein said accumulator includes at least two
2 registers, including an exponent register storing a first exponent value and a feedback exponent

1 register that initially stores a second exponent value and that is updated periodically with a feedback
2 exponent value.

1 4. The floating point accumulator of claim 3, wherein a comparator compares the exponent
2 values each stored in one of the exponent registers and transmits a control signal indicating the larger
3 of the two exponent values.

1 5. The floating point accumulator of claim 4, wherein a first multiplexer receives said control
2 signal and said exponent values and transmits the larger of the exponent values.

1 6. The floating point accumulator of claim 5, wherein a plurality of adding devices receive said
2 exponent values, calculate a plurality of augmented values each equal to the sum of one of the values
3 and one and transmit the augmented values.

1 7. The floating point accumulator of claim 6, wherein a second multiplexer receives said
2 augmented values and said control signal and transmits the larger of the augmented values.

1 8. The floating point accumulator of claim 7, wherein a third multiplexer receives the
2 augmented value transmitted by the second multiplexer, the value transmitted by the first
3 multiplexer, and an control signal which selects either the value transmitted by the first multiplexer
4 or augmented value transmitted by second multiplexer.

1 9. The floating point accumulator of claim 8, wherein a fourth multiplexer receives said

1 exponent values, another of said exponent values reduced the whole number amount by a subtracting
2 device, and an overflow control signal which causes the greater of the values received by the fourth
3 multiplexer to be transmitted if a sum of the shifted mantissas of the floating point numbers exceeds
4 the mantissa size supported by said accumulator, otherwise the fourth multiplexer transmits the
5 smaller value it receives.

1 10. The floating point accumulator of claim 9, wherein a fifth multiplexer receives the value
2 transmitted by the fourth multiplexer, the value transmitted by the third multiplexer, and a control
3 signal, and selects the value transmitted by the fourth multiplexer if the feedback exponent value is
4 greater than first exponent value by one or two and there are more than 31 leading zeros or ones in
5 the feedback mantissa, otherwise the fifth multiplexer transmits the value received from the third
multiplexer.

1 11. The floating point accumulator of claim 10, wherein a sixth multiplexer receives the value
2 transmitted by the fifth multiplexer, the first exponent value, and a control signal that causes the first
3 exponent value to be transmitted from the sixth multiplexer if all bits of a feedback mantissa are
4 zero, otherwise the sixth multiplexer transmits the value transmitted by the fifth multiplexer.

1 12. The floating point accumulator of claim 11, wherein the values transmitted from the sixth
2 multiplexer are transmitted to the feedback exponent register in a feedback loop and replace the
3 value previously stored in the feedback exponent register during the last execution of the second
4 circuit network.

1 13. The floating point accumulator of claim 12, wherein a first mantissa is received by and stored
2 in a mantissa register and a second mantissa is received by and stored in a feedback mantissa register
3 that are components of said third circuit network.

1 14. The floating point accumulator of claim 13, wherein the first mantissa is transmitted to a first
2 shifter and is shifted right by a number of bits equal to the base of the numbering system in which
3 the mantissas are added if the feedback exponent is greater than the first exponent.

1 15. The floating point accumulator of claim 14, wherein the second mantissa is transmitted to
2 a second shifter and is shifted right by a number of bits equal to the base of the numbering system
3 in which the mantissas are added if the first exponent is greater than the feedback exponent.

1 16. The floating point accumulator of claim 15, wherein said first mantissa is transmitted to a
2 third shifter and said second mantissa is transmitted to a fourth shifter and said first mantissa is
3 shifted right by the third shifter by a number of bits equal to the base of the numbering system in
4 which the mantissas are added if the first exponent is less than the feedback exponent by two, and
5 said second mantissa is shifted left by a number of bits equal to the base of the numbering system
6 in which the mantissas are added.

1 17. The floating point accumulator of claim 16, wherein said first and second mantissas are
2 added by a first adding device in the mantissa loop forming a mantissa sum that is shifted right by
3 a number of bits equal to the base of the numbering system in which the mantissas are added if the
4 mantissa sum contains more significant bits than are supported by the accumulator.

1 18. The floating point accumulator of claim 17, wherein the mantissa sum is transmitted by a
2 selecting multiplexer if the first and second exponents differ by one or if the exponents are equal,
3 and otherwise the mantissa associated with the larger exponent is transmitted by the selecting
4 multiplexer.

1 19. The floating point accumulator of claim 18, wherein a leading zero anticipator generates a
2 signal that indicates whether the number of leading zeroes or ones contained in the second mantissa
3 is equal or greater than the base of the numbering system in which accumulation is performed and
4 is a portion of the control signal used to control said fifth multiplexer in the second circuit network.

1 20. The floating point accumulator of claim 19, wherein a second adder in said third circuit adds
2 the shifted values generated by the third and fourth shifters and transmits the calculated sum to a
3 sixth shifter that shifts the sum to the right by the base of the number system in which mantissas are
4 added if a mantissa overflow condition occurs when the mantissa sum is calculated.

1 21. The floating point accumulator of claim 20, wherein a third multiplexer in the mantissa loop
2 receives the bit stream transmitted by the sixth shifter and the bit stream transmitted by second
3 multiplexer in the mantissa loop and transmits the bit stream received from the sixth shifter if the
4 feedback exponent value is greater than first exponent value by one or two and the number of leading
5 zeroes or ones in the feedback manitssa is equal or greater than the base of the numbering system
6 in which accumulation is performed.

1 22. The floating point accumulator of claim 21, wherein the base of the number system in which
2 the mantissas and exponents of the floating point numbers are added is at least 32 for single precision
3 format and at least 64 for double precision format.

1 23. The floating point accumulator of claim 22, further comprises a post normalization circuit
2 wherein components of a mantissa result are added, shifted to remove leading zeroes, and shifted to
3 convert the mantissas back into a number expressed in base 2 format, and the exponent result is
4 increased or decreased by an amount that converts it back to base 2 format.

2 24. A method of adding floating point numbers, said method comprising:
3 Converting the floating point numbers expressed in base 2 format into floating point numbers
4 expressed in a second base format represented by a whole number;
5 Comparing the exponents of two of the floating point numbers by comparing some number
6 of the most significant bits of the exponents of the two floating point numbers, said bits representing
7 exponent values of the two converted floating point numbers and choosing a correct result exponent;
8 Shifting and adding mantissas of two of the floating point numbers using one or more
9 compressors and choosing a correct result mantissa;
10 Repeating said comparing, shifting and adding multiple times using two of the floating point
11 numbers, wherein one of the floating point numbers consists of a result exponent and result mantissa
12 previously determined;
13 Converting the result mantissa and exponent back to base 2 format.

1 25. The method of claim 24 further comprises storing an exponent value of a first floating point

1 number in an exponent register and an exponent values of a second floating point number in an
2 exponent feedback register that is updated periodically with a feedback exponent value produced by
3 said comparison of exponent.

1 26. The method of claim 25, wherein a first mantissa is received by and stored in a mantissa
2 register and a second mantissa is received by and stored in a feedback mantissa register that is
3 updated periodically with a feedback mantissa value produced by said shifting and adding of
4 mantissas.

098123456789

27. The method claim 26 further comprises a zero detector that detects whether all bits of the
feedback mantissa stored in the feedback mantissa register are zero.

28. The method of claim 27 further comprises a post normalization circuit wherein components
of a mantissa result are added, shifted to remove leading zeroes, and shifted to convert the mantissas
back into numbers expressed in base 2 format, and the exponent result is increased or decreased by
an amount that converts it back to base 2 format.

1 29. A floating point accumulator, wherein the first mantissa is received by and stored in a
2 mantissa register and a second mantissa is received by and stored in a feedback mantissa register in
3 a mantissa circuit loop that is designed to partially normalize feedback mantissas, and a first
4 exponent is stored in an exponent register and a second exponent is stored in a feedback exponent
5 register in an exponent circuit loop.

1 30. The accumulator of claim 29, wherein constant shifters are used to shift mantissas in the
2 mantissa circuit loop, compressors are used to add mantissas in the mantissa circuit loop, and
3 comparators are used to compare exponents in the exponent loop.

4

THE CHURCH IN THE BIBLE