Introduction to Bayesian Data Analysis Tutorial 2

- (1) Assume $y_1, ..., y_n | \theta \stackrel{\text{iid}}{\sim} Pois(\theta)$. Assume a congugate prior for θ with parameters α and β . Let \tilde{y} be an unobserved value of y. Derive the posterior predictive distribution $p(\tilde{y}|y_1, ..., y_n)$. Show that $Var(\tilde{Y}|y_1, ..., y_n) = E[\theta|y_1, ..., y_n] \times \frac{\beta+n+1}{\beta+n}$ and interpret this result.
- (2) Problem 3.3 (Hoff).

Tumor counts: A cancer laboratory is estimating the rate of tumorigenesis in two strains of mice, A and B. They have tumor count data for 10 mice in strain A and 13 mice in strain B. Type A mice have been well studied, and information from other laboratories suggests that type A mice have tumor counts that are approximately Poisson-distributed with a mean of 12. Tumor count rates for type B mice are unknown, but type B mice are related to type A mice. The observed tumor counts are:

$$y_A = (12, 9, 12, 14, 13, 13, 15, 8, 15, 6)$$

 $y_B = (11, 11, 10, 9, 9, 8, 7, 10, 6, 8, 8, 9, 7)$

(a) Find the posterior distributions, means, variances and 95% quantile-based confidence intervals for θ_A and θ_B , assuming a Poisson sampling distribution for each group and the following prior distribution

$$\theta_A \sim Gamma(120, 10), \ \theta_B \sim Gamma(12, 1), \ p(\theta_A, \theta_B) = p(\theta_A) \times p(\theta_B)$$

- (b) Compute and plot the posterior expectation of θ_B under the prior distributions $\theta_B \sim \text{Gamma}(12 \times n_0, n_0)$ for each value of $n_0 \in \{1, 2, ..., 50\}$. Describe what sort of prior beliefs about θ_B would be necessary in order for the posterior expectation of θ_B to be close to that of θ_A .
- (c) A new mouse of type B is delivered to the lab. Predict the expected tumor counts for the new mouse assuming:
 - (i) Independent priors for θ_A and θ_B .
 - (ii) The data from mice A form a prior distribution for the posterior of θ_B .
- (d) Should knowledge about population A tell us anything about population B? Discuss whether or not it makes sense to have $p(\theta_A, \theta_B) = p(\theta_A) \times p(\theta_B)$.

- (3) Problem 3.4 (Hoff) Estimate the probability θ of teen recidivism based on a study in which there were n=43 individuals released from incarceration and y=15 re-offenders within 36 months.
 - (a) Using a beta(2,8) prior for θ , plot $p(\theta)$, $p(y|\theta)$ and $p(\theta|y)$ as functions of θ . Find the posterior mean, mode and standard deviation of θ . Find a 95% quantile-based confidence interval.
 - (b) Repeat (a), but using a beta(8,2) prior for θ .
 - (c) Consider the following prior distribution for θ :

$$p(\theta) = \frac{1}{4} \frac{\Gamma(10)}{\Gamma(2)\Gamma(8)} [3\theta(1-\theta)^7 + \theta^7(1-\theta)]$$

which is a 75-25% mixture of a beta(2,8) and a beta (8,2) prior distribution. Plot this prior distribution and compare it to the priors in (a) and (b). Describe what sort of prior opinion this may represent.

- (d) For the prior in (c):
 - (i) Write out mathematically $p(\theta) \times p(y|\theta)$ and simplify as much as possible.
 - (ii) The posterior distribution is a mixture of two distributions you know. Identify these distributions.
 - (iii) On a computer, calculate and plot $p(\theta) \times p(y|\theta)$ for a variety of θ values. Also find (approximately) the posterior mode, and discuss its relation to the modes in (a) and (b).
- (e) Find a general formula for the weights in the mixture distribution in (d)(ii), and provide an interpretation of their values.