For 7/10/2017 bi-weekly meeting

- What does t-SNE actually do?

Our goal is to take a set of points in a high-dimensional space and find a faithful representation of those points in a lower-dimensional space, typically the 2D space. Essentially it is mainly a *data exploration* and *visualization* technique.

Instead of trying to preserve

t-SNE can be used in the process of classification and clustering by using its output as the input feature for other classification algorithms (similar to PCA).

Where and when to use t-SNE?

Use it for exploratory data analysis. It will give you a good sense of patterns hidden inside the data. It can also be used as an input parameter for other classification& clustering algorithms.

- Distances between well-separated clusters in a t-SNE plot might **not mean anything** (You cannot see relative sizes of clusters in a t-SNE plot)

What's going on?

The t-SNE algorithm adapts its notion of "distance" to regional density variations in the data set. As a result, it naturally expands dense clusters and contracts sparse ones.

- The cloud of points was generated randomly: those "clumps" aren't meaningful.
 Recognizing these clumps as random noise is an important part of reading t-SNE plots.
- For topology, we may need more than one plot.
- Its flexibility makes it tricky to interpret.
- You can sometimes see some shapes. T-SNE tends to expand denser regions of data.

Variables used for speed:

```
['traffic den',
 'avg speed',
'road_typeBusiness_District',
'road_typeFreeway',
'road typeResidential Road',
'stop_ind',
'stop_grp_cnt',
'latG',
 'lonG',
'speed',
'ang_speed_gyro',
'lon_delta',
'inc_mileage',
 'avg_latG',
 'avg latG mag',
'algorithmCurve in the road',
'algorithmLane Change',
'algorithmNormal Driving',
'algorithmNormal Turn']
```

Ideal result:

Digits are very clearly clustered in their own little group. If we would now use a **clustering algorithm** to pick out the separate clusters, we could probably quite accurately assign new points to a label.

['latG', 'lonG', 'ang_speed_gyro', 'avg_latG', 'avg_latG_mag']

latG: G-Force on the car in the left-right directions at this second lonG: G-Force in the forward-backward directions at this second Ang_speed_gyro: the change in orientation of the car in that second, measured in degrees/second, angular speed for gyroscope Avg_latG: rolling latG in 10 second (created in last semester)

Avg_latG_mag: rolling absolute value of latG in 5 second (created in last semester)