Flatiron Data Science Mod 2 Final Project

Regression Model Predicting Home Sale Prices

John J. Cho February 24, 2020

Dataset: 21,597 Properties, 21 Features

- Location: King's County, WA (Seattle)
- Sell dates: May 2014 May 2015
- Age: Built in 1900 2015
- Price range: 78k 7.7M
- Square Footage:
 - o Living: 370 13,540 sq ft
 - Lot: 520 1.6M sq ft

Price Prediction Modeling: Getting Started

- □ DATA: the more, the merrier!
- ☐ Homogenous property datasets yield higher prediction accuracy: urban, rural, waterfront
- ☐ 2 methods:
 - Individual mapping housing price changes over time
 - Market Snapshot single reference point comparing property prices with differing features (this project!)

Exploring Our Data

Significant average selling price differences between waterfront, urban and rural property types

Exploring Our Data

Newer (built/renovated since 2000) sells for ~\$125k more, homes with basements go for ~\$95k more

Exploring Our Data

- Notable Findings:
- ★ Waterfront properties: +\$1.1M higher sales price
- ★ Urban (vs Rural): \$135k higher price and ~14 years younger

- ★ Is **newer** better? +\$125k higher sales price*
- ★ Basement included? +\$95k higher.. but ¾ did not have one
- ★ Hot housing market? (May 2014 May 2015)
 - o 176 properties were sold twice, 1 sold 3 times!
 - Average profit: \$135k
 - Most common renovation year: 2014 (hello house flippers!)

^{*}Built/renovated in the last 15 years (since 2000)

Final Regression Model Results

How did our model fare predicting prices based on a given set of features?

Original Model: Homes up to \$1.6M

Average error of \$170k with accuracy of 89.5%

Updated Model: Homes up to \$1M

Average error of \$130k with 91.6% accuracy

Recommendations:

More Data + Features = More Accuracy!