Calculate Orx

$$D = sqrt(L^2 + W^2)$$

$$R = 1/2D$$

$$Cos(\Theta) = L/D$$

$$\omega r = \omega * R = \omega * 1/2D$$

$$\omega_{rx} = Cos(\Theta) * \omega_{r}$$

$$\omega_{rx} = L/D * \omega * 1/2D$$

$$\omega rx = L/2 * \omega$$

Scale so that the maximum joystick position of 1 = maximum wheel motor speed of 1

Motor Speed = ωr

 Ω r = 1 when joystick X-axis = 1

 $\omega r = \omega * R$

 $\omega = X$ -axis

Add scaler of 1/R so that $\Omega r = 1$ when X-axis = 1

 $\omega r = \omega * R * 1/R$

 $\omega r = \omega / R * R$

If $\omega = X$ -axis and X-axis = 1 then ω r (motor speed) = 1

Add scalar to Orx calculation

 $\Omega rx = L/2 * \Omega$ scaled to Ω/R becomes

 $\omega rx = L/2 * \omega/R$

 $\omega rx = L/2R * \omega$

2R = D

 $\omega rx = L/D * \omega$

In the code, the symbol R is used when it should be D as R is defined as $sqrt(L^2+W^2)$, which is really D.