Nội dung chính

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Nội dung chính

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Đặt vấn đề

Thách thức lớn: đặc trưng răng cưa (feature aliasing)

Giải quyết vấn đề

Sử dụng bao lồi làm biểu diễn bounding box.

Nội dung chính

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)

Giới hạn phạm vi đối tượng sử dụng chỉ số CloU. Phân chia tập bao lồi thành bao lồi âm và bao lồi dương.

Xây dựng tập bao lồi

Phương pháp CFA đã đề xuất biểu diễn phạm vi của đối tượng bằng bao lồi:

$$C_i = \{(x_i^k, y_i^k)\}_i^{k=1, 2, \dots, K}$$
 (1)

2 giai đoạn thực hiện:

- I. Tạo và ước lượng bố cục bao lồi.
- II. Chỉnh sửa bao lồi để phù hợp với các đối tượng dày đặc.

Giai đoạn I

Dư đoán đô lệch:

$$\widehat{C}_{l}(\theta) \leftarrow \{(x_{i}^{k} + \Delta x_{i}^{k}, y_{i}^{k} + \Delta y_{i}^{k})\}_{i}^{k=1,2,\dots,K}$$
(2)

Tích chập biến dạng

 $H\tilde{\delta}$ trợ lấy mẫu ở những vị trí đa dạng hơn => làm giàu dữ liệu.

Thuật toán tìm bao lồi

- Thuật toán tìm bao lồi xấp xỉ Convex Approximation.
- Thuật toán tìm bao lồi trực giao Orthogonal Quick Hull. Tìm một bao lồi tối thiểu cho 9 điểm feature point offset.

Định nghĩa công thức Convex Intersection over Union (CloU)

$$CloU_{(C_i(\theta),B_j)}(\theta) = \frac{|C_i(\theta) \cap B_j|}{|C_i(\theta) \cup B_j|} - \frac{|R_j \setminus (C_i(\theta) \cup B_j)|}{|R_i|}$$
(3)

Convex-Hull Localization Loss

$$\mathcal{L}_{i}^{loc}(\theta) = 1 - CloU(C_{i}(\theta), B_{j})$$
 (4)

Convex-hull Classification Loss

$$\mathcal{L}_{i}^{cls}(\theta) = FL(S_{i}(\theta), Y_{j})$$
 (5)

Convex-hull Loss

Hàm loss phân loại cho bao lồi dương:

$$\mathcal{L}^{+}(\theta) = \mathcal{L}_{i}^{cls}(S_{i}(\theta), Y_{j}) + \lambda \mathcal{L}_{i}^{loc}(C_{i}(\theta), B_{j})$$
 (6)

Hàm loss phân loại cho bao lồi âm:

$$\mathcal{L}^{-}(\theta) = \mathcal{L}_{i}^{cls}(S_{i}(\theta), Y_{j})$$
 (7)

Tối ưu quá trình huấn luyện

$$\mathcal{L}^{\det 1}(\theta) = \frac{1}{J} \sum_{i} \mathbb{I}_{(x_i, y_i)} \mathcal{L}_i^{loc}(\theta)$$
 (8)

Thích ứng bao lồi - Convex Hull Adaptation

Xử lý hiện tượng feature aliasing.

Convex-Hull Set Construction: Xây dựng một tập các bao lồi cho mỗi đối tượng.

Xây dựng tập các bao lồi

Tập các bao lồi dương (S_j) được xây dựng bằng cách chọn ra top-l bao lồi làm bao lồi dương, theo CloU giữa các bao lồi và các hộp thật của đối tượng (grouth-truth).

Các bao lồi khác mà không thuộc đối tượng nào sẽ được gộp vào tập các bao lồi âm $(S\).$

Chiến lược chia tập các bao lồi

Cách chia tập các bao lồi được hướng dẫn bởi nguyên tắc nhất quán đạo hàm. Lấy đạo hàm của phương trình(10), có đạo hàm của tập các bao lồi:

$$\frac{\partial \mathcal{L}_{S_{j}}^{+}(\theta)}{\partial(\theta)} = \frac{1}{|S_{j}|} \sum_{i \in S_{i}} \frac{\partial (f(\mathcal{L}_{i}^{+}(\theta))\mathcal{L}_{i}^{+}(\theta))}{\partial(\mathcal{L}_{i}^{+}(\theta))} \frac{\partial \mathcal{L}_{i}^{+}(\theta)}{\partial(\theta)}$$
(9)

ngược lại.

Nguyên tắc nhất quán đạo hàm yêu cầu: Đạo hàm $\frac{\partial \mathcal{L}_i^+(\theta)}{\partial \theta}$ của mỗi bao lồi dương phải có cùng hướng với tập bao lồi $\frac{\partial \mathcal{L}_{5_i}^+(\theta)}{\partial \theta}$. Những bao lồi nào mà không có cùng hướng đạo hàm sẽ gây ra hiện tượng đặc trưng răng cưa (feature aliasing). Nếu $\frac{\partial \left(f\left(\mathcal{L}_i^+(\theta)\right)\mathcal{L}_i^+(\theta)\right)}{\partial \left(\mathcal{L}_i^+(\theta)\right)}$ mang dấu dương, thì \mathcal{C}_i là bao lồi dương, và

Chiến lược phân đoạn tập các bao lồi

Hình: Chia tách tập convex-hull dựa trên nguyên tắc tính thống nhất gradient.

Đồ án tốt nghiệp - Trần Xuân Độ

 $\begin{array}{l} f\left(\mathcal{L}_{i}^{+}(\theta)\right)\mathcal{L}_{i}^{+}(\theta) \text{ dịnh nghĩa 1 đường cong lồi lên phía trên với 1} \\ \text{điểm cực tiểu. (Hình 1)} \\ \text{Hàm } \frac{\partial \left(f\left(\mathcal{L}_{i}^{+}(\theta)\right)\mathcal{L}_{i}^{+}(\theta)\right)}{\partial \left(\mathcal{L}_{i}^{+}(\theta)\right)} \text{ có một điểm 0} => \text{các bao lồi được chia} \\ \text{thành bao lồi âm và bao lồi dương nhờ điểm này.} \end{array}$

Xử lý hiện tượng đặc trưng răng cưa

Đưa ra công thức tính hệ số khử đặc trưng răng cưa:

$$p_i = \gamma \frac{CloU(\mathcal{C}_i, \mathcal{B}_j)}{\sum_{m=1}^{M} CloU(\mathcal{C}_i, \mathcal{B}_m)}$$
(10)

Trong đó γ là hệ số chống hiện tượng "feature aliasing". Nhân hệ số này với công thức 10 sẽ được phương trình:

$$\mathcal{L}_{S_j}^+(\theta) = \frac{1}{|S_j|} \sum_{i \in S_j} p_i f(\mathcal{L}_i^+(\theta)) \mathcal{L}_i^+(\theta)$$
 (11)

Tối ưu hàm loss giai đoạn 2

Việc tối ưu của giai đoạn 2 được điều khiển bởi sự kết hợp cả hàm loss classification và localization định nghĩa trên tập các bao lồi:

$$\mathcal{L}^{det2}(\theta) = \frac{1}{J} \sum_{j=1}^{J} \frac{1}{|S_j|} \sum_{i \in S_j} \rho_i f(\mathcal{L}_i^+(\theta)) \mathcal{L}_i^+(\theta) + \frac{1}{|S_-|} \sum_{i \in S} \mathcal{L}_i^-(\theta)$$
(12)

Hàm loss của bộ phát hiện CFA

Là tổng hàm loss của cả hai giai đoạn:

$$\mathcal{L}_{CFA} = \mathcal{L}^{\det 1}(\theta) + \mathcal{L}^{\det 2}(\theta)$$
 (13)

Nội dung chính

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Nội dung chính

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Thuật toán 1

Dinh nghĩa:

Cho tập điểm x bất kỳ (các điểm không thẳng hàng với nhau) và một giá trị ngưỡng δ ,

cần tìm một bao lồi xấp xỉ của X sao cho $dist_H(conv, \mathcal{P}^{outer}) \leq \delta$.

Định nghĩa \mathcal{P}^{outer} : là tập các điểm x sao cho tích ma trận chuyển vị của x nhân với hướng d nhỏ hơn hoặc bằng ngưỡng β_d tương ứng của d:

$$\mathcal{P}^{\text{outer}} := \left\{ x \in \mathbb{R}^2 \mid dx^T \le \beta_d \text{ for all } d \in D \right\}$$
 (14)

Ký hiệu P sẽ là tập đỉnh của $\mathcal{P}^{\text{outer}}$.

Bắt đầu thuật toán:

Ta bắt đầu quy trình tìm kiếm với hình chữ nhật nhỏ nhất bao gồm các cạnh song song với các trục của đồ thị Oxy, có tập D là:

$$D := \{(1,0), (0,1), (-1,0), (0,-1)\}$$
 (15)

Ngưỡng tương ứng của tập D:

$$\begin{array}{lll} \beta_{(1,0)} & := & \max\{x^1 \mid (x^1, x^2) \in X\}, \\ \beta_{(0,1)} & := & \max\{x^2 \mid (x^1, x^2) \in X\}, \\ \beta_{(-1,0)} & := & \max\{-x^1 \mid (x^1, x^2) \in X\}, \\ \beta_{(0,-1)} & := & \max\{-x^2 \mid (x^1, x^2) \in X\}. \end{array} \tag{16}$$

Hình chữ nhật \mathcal{P}^{outer} cấu tạo gồm 4 đỉnh như sau:

$$r_{1} := (\beta_{(1,0)}, \beta_{(0,1)}),$$

$$r_{2} := (\beta_{(-1,0)}, \beta_{(0,1)}),$$

$$r_{3} := (\beta_{(-1,0)}, \beta_{(0,-1)}),$$

$$r_{4} := (\beta_{(1,0)}, \beta_{(0,-1)}).$$

$$(17)$$

Tập P ban đầu chứa 4 đỉnh này:

$$P := \{r_1, r_2, r_3, r_4\} \tag{18}$$

Lấy 1 đỉnh $p \in P$, có được p^- là điểm liền trước (ngược chiều kim đồng hồ) của p, p^+ là điểm liền sau của p, ta tính được hướng d_p của p và ngưỡng β_{dp} :

$$d_{p}^{T} := \|p^{+} - p^{-}\|^{-1} R (p^{+} - p^{-})^{T}, \beta_{d_{p}} := \max\{d_{p} x^{T} \mid x \in X\},$$
(19)

trong đó:

$$R := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \tag{20}$$

Vì R là ma trân xoay, thay vào công thức ngưỡng d_p bên trên:

$$\|d_{p}\| = \|p^{+} - p^{-}\|^{-1} \|(p^{+} - p^{-})R^{T}\| = \|p^{+} - p^{-}\|^{-1} \|p^{+} - p^{-}\| = 1.$$
(21)

Xét biểu thức định nghĩa \mathcal{P}^{outer} :

$$d_p x^T \le \beta_{d_p}. \tag{22}$$

Trường hợp 1, nếu:

$$\beta_{d_p} = d_p \, p^+ \tag{23}$$

Thì ràng buộc (24) sẽ không tạo đỉnh mới mà tạo thêm cạnh mới $[p^-, p^+]$ của \mathcal{P}^{outer} .

Cho $d_{[p^-,p]}$ và $d_{[p,p^+]}$ là hai hướng cực đại từ D định nghĩa hai cạnh $[p^-,p]$ và $[p,p^+]$ của đa giác \mathcal{P}^{outer} . Tuy nhiên hai cạnh này mặc định có sẵn => hai hướng trên trở nên thừa thãi.

Chính vì thế nên khi thêm d_p vào tập D ta cần loại bỏ hai hướng $d_{[p^-,p]}$ và $d_{[p,p^+]}$ khỏi tập D và đỉnh p từ P:

$$D := (D \cup \{d_{p}\}) \setminus \{d_{[p^{-},p]}, d_{[p,p^{+}]}\}, P := P \setminus \{p\}.$$
 (24)

Xét trường hợp 2, nếu:

$$\beta_{d_p} > d_p \, p^+ \tag{25}$$

và:

$$d_p \, p^T - \beta_{d_p} > \delta \tag{26}$$

thì ràng buộc (24) tạo thêm 2 đỉnh mới cho đa giác là \hat{p}^- và \hat{p}^+ và được tính toán bởi:

$$\lambda_{p} := (\beta_{d_{p}} - d_{p} p^{-T})/(d_{p} p^{T} - d_{p} p^{-T}) \in (0, 1),
\hat{p}^{-} := (1 - \lambda_{p}) p^{-T} + \lambda_{p} p^{T},
\hat{p}^{+} := (1 - \lambda_{p}) p^{+T} + \lambda_{p} p^{T}.$$
(27)

Tiếp theo ta thêm d_p vào D và thay thế $p \in P$ bởi \hat{p}^+ và \hat{p}^+ :

$$D := D \cup \{d_p\}, P := (P \setminus \{p\}) \cup \{\hat{p}^-, \hat{p}^+\}.$$
 (28)

Lặp lại các bước tương tự, ta sẽ tìm được một bao lồi xấp xỉ của tập hợp các điểm.

Một vài kết quả của Outer Convex Approximation

Hình: Với n = 100, delta = 0.

Đồ án tốt nghiệp - Trần Xuân Độ

Một vài kết quả của Outer Convex Approximation

Hình: Với n = 100, delta = 20.

Một vài kết quả của Outer Convex Approximation

Hình: Với n = 100, delta = 50.

Đồ án tốt nghiệp - Trần Xuân Độ

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quấ
 - Môi trường

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Thuật toán tính bao lồi trực giao — 3-43

Bao lồi trực giao liên thông

Tính chất của bao lồi trực giao liên thông

Thuật toán tính bao lồi trực giao — 3-45

Đường trực giao bên phải

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Thuật toán tính bao lồi trực giao — 3-47

Thuật toán Quickhull

Tính đúng đắn và phức tạp của Quickhull

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

- 1 Giới thiệu bài toán
 - Đặt vấn đề
 - Phương pháp thích ứng bao lồi (convex-hull feature adaptation-CFA)
- 2 Thuật toán tính bao lồi xấp xỉ
 - Outer convex approximation
- 3 Thuật toán tính bao lồi trực giao
 - Các khái niệm liên quan
 - Thuật toán tìm bao lồi Quickhull
- 4 Thực nghiệm và kết quả
 - Môi trường

Thay thế bằng thuật toán Outer Convex Approximation

Thay cả 2 hàm Jarvis() và Jarvis_and_index(), sử dụng full dataset

