This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 1 077 263 A1 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 21.02.2001 Patentblatt 2001/08
- (21) Anmeldenummer: 99114811.5
- (22) Anmeldetag: 29.07.1999

AL LT LV MK ROSI

- (51) Int Cl.7: C12N 15/58, C12N 15/62, C12N 15/31, C12N 9/72, C07K 14/245, C07K 1/113, C12N 1/20 C12N 15/70, C12P 21/02
- (84) Benannte Vertragsstaaten: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten:
- (71) Anmelder: F.HOFFMANN-LA ROCHE AG 4070 Basel (CH)
- (72) Erfinder: Die Erfindernennung liegt noch nicht
- (74) Vertreter: Schreiner, Siegfried, Dr. et al. Roche Diagnostics GmbH, Patent Department Pharma (TR-E), P.O. Box 1152 82372 Penzberg (DE)
- (54)Verfahren zur Herstellung von natürlich gefalteten und sekretierten Proteinen durch Co-Sekretion von Chaperonen
- (57)Ein Vorfahren zur Herstellung eines natürlich gefalteten eukaryontischen Polypeptids, enthaltend zwei oder mehrere über Disulfidbrücken verknüpfte Cysteine, durch a) Kultivierung prokaryontischer Zellen, wobei die genannten prokaryontischen Zellen einen Expressionsvektor enthalten, der für das genannte Polypeptid, das am N-Terminus eine prokaryontische Signalsequenz enthält, codiert, b) Sekretion des Polypep-

tids in das Periplasma oder das Medium, c) Abspaltung der Signalsequenz und Isolierung des Polypeptids aus dem Periplasma oder dem Medium, dadurch gekennzeichnet, daß in der genannten prokaryontischen Zelle zusätzlich eine für ein molekulares Chaperon codierende Nukleinsäure exprimiert und das Chaperon ins Perjplasma sekretiert wird, ist zur rekombinanten Herstellung von Polypeptiden in Prokaryonten mit hoher Ausbeute geeignet.

Fig. 2

Beschreibung

15

20

25

35

40

45

50

[0001] Die Erfindung betrifft ein Verfahren zur Herstellung von wasserlöslichen, natürlich gefalteten und sekretierten Polypeptiden nach Expression in prokaryontischen Zellen durch Co-Sekretion von molekularen Chaperonen.

[0002] In prokaryontischen Organismen findet die Proteinsynthese, auch Translation genannt, an den Ribosomen im Cytoplasma statt. Bei einer Expression rekombinanter DNA in prokaryontischen Wirtsorganismen ist es oft wünschenswert, daß das dabei erhaltene rekombinante Genprodukt bzw. Protein aus dem Cytoplasma durch die innere bakterielle Membran in den periplasmatischen Raum zwischen innerer und äußerer Membran sekretiert wird. Vom Periplasma können sekretierte Proteine dann z.B. durch einen osmotischen Schock in das Nährmedium freigesetzt werden. Ein Nachteil dieses Verfahrens ist, daß die sezernierten Polypeptide häufig nicht die native, biologisch aktive Konformation ausbilden (Hockney, TIBTECH 12 (1994) 456 - 463).

[0003] In jüngster Zeit wurden molekulare Chaperone und Faltungskatalysatoren, wie Peptidyl-Prolyl-cis/trans-Isomerasen oder Proteindisutfidisomerasen (Glockshuber et al., EP-A 0 510 658) eingesetzt, um die Ausbeute an nativem rekombinanten Protein bei der Faltung in vivo zu erhöhen (Thomas et al., Appl. Biochem. Biotechnol. 66 (1997) 197-238). Dies führte teilweise zu erheblichen Verbesserungen bei der Expression z.B. von Ribulosebisphosphat-Carboxylase (RUBISCO; Goloubinoff et al., Nature 337 (1989) 44-47), humaner Procollagenase (Lee & Olins, J. Biol. Chem. 267 (1992) 2849-2852) oder neuronaler Stickstoffoxidsynthase aus Ratten (Roman et al., Proc. Natl. Acad. Sci. USA 92 (1995) 8428-8432). In diesen Beispielen wurden GroEL/ES bzw. das DnaK-System aus E. coli im Cytosol co-überexprimiert.

[0004] Auch bei der Sekretion rekombinanter Proteine ins Periplasma von E. coli wurde die Co-Expression von Chaperone untersucht. Hier wurde jedoch nur eine cytosolische Überexpression von Chaperone erprobt, um die Sekretion ins Periplasma zu optimieren (Perez-Perez et al., Biochem. Biophys. Res. Commun. 210 (1995) 524-529; Sato et al., Biochem. Biophys. Res. Commun. 202 (1994) 258-264; Berges et al., Appl. Environ. Microbiol. 62 (1996) 55-60). Bisherige Versuche zur Co-Sekretion in E. coli betrafen nur Faltungshelfer-Proteine, wie z. B. Proteindisulfidisomerase (PDI; Glockshuber et al., EP-A 0 510 658) oder Peptidyl-Prolyl-cis/trans-Isomerasen oder Dsb-Proteine (Knappik et al., Bio/Technology 11 (1993) 77-83; Qiu et al., Appl. Environm. Microbiol. 64 (1998) 4891-4896 und Schmidt et al., Prot. Engin. 11 (1998) 601 - 607.

[0005] Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von wasserlöslichen, natürlich gefalteten eukaryontischen Polypeptiden nach Expression in Prokaryonten zur Verfügung zu stellen, welches auf einfache Weise durchführbar ist und bei dem eine aufwendige in vitro-Nachbehandlung, wie Auflösung von inclusion bodies, Reduktion und Naturierung, nicht erforderlich ist.

[0006] Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines natürlich gefalteten eukaryontischen Polypeptids, enthaltend zwei oder mehrere über Disulfidbrücken verknüpfte Cysteine, durch

- a) Kultivierung prokaryontischer Zellen, wobei die genannten prokaryontischen Zellen einen Expressionsvektor enthalten, der für das genannte Polypeptid, das am N-Terminus eine prokaryontische Signalsequenz enthält, codiert
- b) Sekretion des Polypeptids in das Periplasma oder das Medium,
- c) Abspaltung der Signalsequenz und Isolierung des Polypeptids aus dem Periplasma oder dem Medium,

dadurch gekennzeichnet, daß in der genannten prokaryontischen Zelle zusätzlich eine für ein molekulares Chaperon codierende Nukleinsäure exprimiert und das Chaperon ins Periplasma sekretiert wird. Dabei ist es bevorzugt, daß das Chaperon überexprimiert wird.

[0007] In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden dem zur Kultivierung der prokaryontischen Zellen verwendeten Nährmedium (Fermentationsmedium) zusätzlich reduzierende Thiolreagenzien, welche SH-Gruppen enthalten, zugesetzt, wobei die Ausbeute an rekombinant gewonnenem Protein weiter erhöht wird. Vorzugsweise werden 0,1-15 mmol/l Thiolreagenz zugesetzt. Erfindungsgemäß ist unter dem Begriff "Thiolreagenz" entweder ein reduzierendes (reduziertes) Thiolreagenz mit SH-Gruppen oder ein Gemisch von reduzierenden Thiolreagenzien mit SH-Gruppen und oxidierenden Thiolreagenzien mit Disulfidgruppen zu verstehen. Bevorzugte Substanzen sind reduziertes Glutathion (GSH), Cystein, N-Acetylcystein, Cysteamin, β-Mercaptoethanol und āhnliche Verbindungen. Die Thiolreagenzien können sowohl einzeln als auch in Gemischen verwendet werden. Besonders geeignet sind Thiolreagenzien wie beispielsweise Glutathion (GSH), die eine einzige SH-Gruppe pro Molekūl aufweisen. Thiolreagenzien wie Glutathion, sind für die Verbesserung der Ausbeute nativ gefalteter Proteine bei der Expression rekombinanter DNA in prokaryontischen Zellen bekannt (Glockshuber et al., EP-A 0 510 658).

[0008] Unter Chaperonen gemäß der Erfindung sind Proteine zu verstehen, die andere, nicht-native Proteine in vivo vor Aggregation schützen und die Ausbildung ihrer nativen Konformation fördern. Molekulare Chaperone werden im

Stand der Technik eingesetzt, um Proteine zu stabilisieren und damit vor Aggregation und Inaktivierung zu schützen (Buchner et al., EP-A 0 556 726 A1). Vorzugsweise werden erfindungsgemäß ATP-unabhängige Chaperone des HSP40-Typs (Molmasse ca. 40 kDa) oder ein kleines Hitzeschockprotein (sHSP) verwendet. DnaJ ist ein 40 kDa Hitzeschockprotein, das im Cytoplasma von E. coli vorkommt und Teil des sogenannten Hsp70-Chaperonsystems ist (Bukau, B. & Horwich, A., Cell 92 (1998) 351-366). Zu diesem System gehören außerdem DnaK (Hsp70) und GrpE. Bestimmte Proteine werden durch das DnaK-System in einem ATP-abhängigen Prozeß zur nativen Konformation gefaltet (Schröder et al., EMBO J. 12 (1993) 4137-4144; Langer et al., Nature 356 (1992) 683 - 689). Zur Rückfaltung denaturierter Proteine benötigt dieses System zusätzlich ATP. DnaJ schützt in Abwesenheit von DnaK und ATP nichtnative Proteine vor Aggregation und vermittelt einen Faltungs-kompetenten Zustand (Schröder et al., EMBO J. 12 (1993) 4137-4144). Weiterhin bevorzugt ist die Co-Sekretion eines N-terminalen Fragme Tes von DnaJ, das die Aminosäuren 1-108 umfaßt und im Folgenden als "J-Domäne" (Kelley, TIBS 23 (1998) 222-227) bezeichnet wird. In diesem Bereich befinden sich die J-Domäne und eine G/F-reiche Domäne, die Wechselwirkungen mit DnaK ausüben (Wall et al., J. Biol. Chem. 270 (1995) 2139-2144). Es wurde gezeigt, daß die Co-Expression von DnaJ im Cytosol zur Erhöhung der Ausbeute an löslichem Protein führen kann (Yokoyama et al., Microbiol. Ferment. Technol. 62 (1998) 1205-1210). [0009] Hsp25 (z.B. aus der Maus) ist ein Vertreter der kleinen Hitzeschockproteine (Gaestel et al., Eur. J. Biochem. 179 (1989) 209-213), einer Klasse von Chaperonen, die ubiquitär verbreitet ist. Die Molmasse dieser Proteine liegt zwischen 15 und 30 kDa. Bei Hitzeschock werden die sHsps in der Zelle stark angereichert (bis zu 1% des Gesamtzellproteins - Arrigo & Landry (1994), In Morimoto (Hrsg.): The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbour Press, 335-373). Wie DnaJ-Proteine besitzen sHsps die Eigenschaft, die Aggregation von nichtnativen Proteinen zu verhindern und diese in einem faltungskompetenten Zustand zu halten (Jakob et al., J. Biol. Chem. 268 (1993) 1517-1520; Ehrsperger et al., EMBO J. 16 (1997) 221-229).

[0010] Der Begriff "Überexpression" gemäß vorliegender Erfindung bedeutet eine Steigerung der Expression der sekretierten Chaperone wie z.B. DnaJ- und Hsp25 (vorzugsweise um mindestens 100%) im Vergleich zur Expression im Wildtyp des jeweils verwendeten prokaryontischen Wirtsorganismus. Eine solche Überexpression läßt sich z.B. dadurch erreichen, daß sich die Gene (für das Protein, Chaperon und/oder Signalpeptid) unter Kontrolle eines starken prokaryontischen, vorzugsweise induzierbaren Expressionssignals (z.B. eines lac- oder T7-Promotors oder eines Derivates davon) befinden.

[0011] Das Sekretionskonstrukt für die Überexpression der Polypeptide (Proteine) samt regulatorischer Regionen (Promotor und Terminator) auf der rekombinanten DNA ist vorzugsweise in einen Vektor, welcher zusätzlich die in Prokaryonten seltene Arginin-tRNA AGA/AGG codiert integriert oder wird mit einem Vektor, welcher diese tRNA codiert, co-exprimiert (Brinkmann et al., Gene 85 (1989) 109-114). Dies ermöglicht sowohl die Co-Überexpression der jeweiligen Proteine ins bakterielle Periplasma als auch die Transkription der seltenen tRNA^{Arg}AGA/AGG, was eine erhöhte Synthese des gewünschten Proteins im bakteriellen Wirtsorganismus zur Folge hat. Die für das Polypeptide und das Chaperon codierenden Nukleinsäuren können auf einem Vektor oder auf zwei getrennten Vektoren lokalisiert sein.

[0012] Unter einer prokaryontischen Signalsequenz im Sinne der Erfindung ist ein Nukleinsäurefragment zu verstehen, welches aus Prokaryonten, vorzugsweise aus gramnegativen Bakterien, abgeleitet ist und das Durchdringen von an das Signalpeptid gebundenen Proteinen durch die inneren bakteriellen Membranen gewährleistet. Dadurch werden die Proteine im Periplasma bzw. im Zellüberstand lokalisiert. Solche Signalsequenzen haben üblicherweise eine Länge von 18 - 30 Aminosäuren und sind beispielsweise beschrieben in Murphy & Beckwith: Export of Proteins to the Cell Envelope in Escherichia coli und in Neidhardt et al. (Hrsg.): Escherichia coli and Salmonella, Second Edition, Vol. 1, ASM Press, Washington, 1996, S. 967-978. Die Abspaltung von bakteriellen Signalsequenzen kann z.B. nach einer Sequenz Ala-X-Ala stattfinden (von Heijne et al., J. Mol. Biol. 184 (1985) 99-105). Die Struktur der bakteriellen Signalpeptidase ist beschrieben in Paetzel et al., Nature 396 (1998) 186-190. Vorzugweise werden Signalsequenzen verwendet, welche durch im Periplasma von prokaryontischen Zellen lokalisierten Proteasen vom gewünschten Protein wieder abgespalten werden. Alternativ kann durch Zugabe solcher Proteasen zum Zellüberstand oder zum isolierten Protein die Abspaltung der Signalsequenz erfolgen.

[0013] Mit dem erfindungsgemäßen Verfahren kann die heterologe Expression einer Vielzahl von eukaryontischen Proteinen wie z.B. Proteasen, Interferone, Proteinhormone, Antikörper oder Fragmenten davon verbessert werden. Besonders geeignet ist das Verfahren für die heterologe Herstellung von Proteinen, die im nativen Zustand mindestens zwei über eine Disulfidbrücke verknüpfte Cysteine enthalten und dann, wenn sie N-terminal keine fusionierte prokaryontische Signalsequenz besitzen, bei der prokaryontischen Expression als unlösliche inclusion bodies entstehen. Besonders geeignet ist das Verfahren für Proteine, die mehr als 5 Disulfidbrücken in nativem Zustand enthalten. Ein solches Protein ist beispielsweise ein rekombinanter Plasminogenaktivator (im folgenden rPA genannt, Martin et al., Cardiovasc. Drug Rev. 11 (1993) 299-311, US-Patent Nr. 5,223,256). rPA besitzt 9 Disulfidbrücken, die im reduzierenden Cytosol von E. coli nicht ausgebildet werden.

[0014] Dabei wird die periplasmatische Lokalisation des Proteins und des Chaperons durch "operative Verknüpfung" mit einem Signalpeptid zum Durchdringen innerer bakterieller Membranen gewährleistet.

[0015] Zur Gewinnung des sekretorischen rPA-Proteins in funktionaler Form in E. coli wurde das Gen für dieses

10

15

20

25

30

35

40

45

50

55

Protein aus dem Plasmid pA27fd7 (Kohnert et al., Protein Engineering 5 (1992) 93-100) mit gentechnologischen Mitteln an eine prokaryontische Signalsequenz gramnegativer Bakterien, beispielsweise an die Signalsequenz von Pectatlyase B (PelB) von Erwinia amylovora, fusioniert. Die Genfüsion wurde durch Klonierung in den Vektor pET20b(+) (Novagen Inc., Madison, USA) hergestellt. Damit unterliegt die Genexpression der Kontrolle des T7-Promotors. Die im Fusionsprotein vorhandene Signalsequenz bewirkt die Sekretion ins Periplasma. Während oder nach der Sekretion wird die Signalsequenz durch eine in der inneren Membran lokalisierte Peptidase abgespalten. Sezerniertes Protein kann dann im Periplasma falten. Die oxidierenden Bedingungen dieses Kompartiments ermöglichen die Ausbildung von Disulfidbrücken. Durch gleichzeitige Co-Überexpression von Chaperonen wie DnaJ, J-Domäne oder Hsp25 im Periplasma gelingt es, die Ausbeute an funktionalen Protein um mehr als das 100-fachee u steigem.

[0016] Weitere Beispiele von erfindungsgemäß herstellbaren Polypeptiden sind Antikörper oder Antikörperfragmente, beispielsweise ein Single-Chain Fv-Fragment (ScF_v, z.B. gegen das Schilddrüsen-stimulierende Hormon (thyroide stimulating hormone, TSH). ScF_vs sind verkürzte Antikörper, die nur aus den variablen Abschnitten (F_V) der schweren und leichten Kette eines Antikörpers bestehen, die über einen kurzen (meist Gly₄Ser₃) Linker künstlich fusioniert sind (Hudson, Curr. Opin Biotechnol. 9 (1998) 395-402). ScF_vs haben normalerweise die gleiche Affinität zum Antigen wie die paternalen F_v-Stränge, können jedoch in E. coli überexprimiert werden. Da sie stabilisierende Intradomänen-Disulfidbrücken besitzen, die essentiell für die Stabilität sind, führt eine Expression im Cytosol meist zur Bildung von Inclusion Bodies (Übersichtsartikel: Shibui et al., Appl. Microbiol. Biotechnol. 37 (1992) 352-357). ScF_vs können durch Zufallsmutationen und anschließende Phage-Display-Selektion auf Bindung gewünschter Antigene gezielt optimiert werden (Übersichtsartikel: Allen et al., TIBS 20 (1995) 511-516).

[0017] Die folgenden Beispiele, Publikationen, das Sequenzprotokoll und die Abbildungen erläutern die Erfindung, deren Schutzumfang sich aus den Patentansprüchen ergibt, weiter. Die beschriebenen Verfahren sind als Beispiele zu verstehen die auch noch nach Modifikationen den Gegenstand der Erfindung beschreiben.

Beschreibung des Sequenzprotokolls

10

15

20

25

40

45

50

55

[0018] SEQ ID NO: 1 und 2 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-pIN-dnaJ, der für das Fusionsprotein aus OmpA-Signalsequenz und DnaJ codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pIN III ompA3-dnaJ amplifiziert wurden.

[0019] SEQ ID NO: 3 und 4 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-pIN-J-Domain, der für das Fusionsprotein aus OmpA-Signalsequenz und J-Domäne codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pIN III ompA3-dnaJ amplifiziert wurden.

[0020] SEQ ID NO: 5 und 6 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-plN-hsp25, der für das Fusionsprotein aus OmpA-Signalsequenz und Hsp25 codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus plN III ompA3-hsp25 amplifiziert wurden.

[0021] SEQ ID NO: 7 und 8 zeigen die Sequenz des Teils des Expressionsplasmides pUBS520-ScFvOx, der für das Fusionsprotein aus PelB-Signalsequenz und ScFvOxazolon codiert, zusammen mit den regulatorischen Sequenzen (Promotor, Terminator), die aus pHEN-ScFv bzw. pIN III ompA3 amplifiziert wurden.

[0022] SEQ ID NO: 9 und 10 zeigen die Sequenz des Teils des Expressionsplasmides pET20b(+)-rPA, der für das Fusionsprotein aus PelB-Signalsequenz und rPA codiert.

Beschreibung der Figuren

[0023] Fig. 1 zeigt einen Western Blot der limitierten Proteolyse von periplasmatisch und cytosolisch exprimiertem DnaJ mit 50 μg/ml Trypsin zum Nachweis der zellulären Lokalisation und der nativen Faltung. Die Molgewichtsstandards wurden links und rechts aufgetragen. Zur Kontrolle wurde gereinigtes DnaJ (links) derselben Prozedur unterzogen, jedoch mit 6,25 μg/ml Trypsin.

[0024] Fig. 2 zeigt einen Vergleich der Expression von rPA im Periplasma von E. coli BL21(DE3) bei Co-Sekretion von DnaJ und bei Zusatz von GSH und verschiedenen niedermolekularen faltungsverbessernden Stoffen zum Medium.

[0025] Fig. 3 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-pIN-dnaJ.

[0026] Fig. 4 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-pIN-J-Domain.

[0027] Fig. 5 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-pIN-hsp25.

[0028] Fig. 6 zeigt eine schematische Darstellung des Expressionsplasmides pUBS520-ScFvOx.

[0029] Fig. 7 zeigt eine schematische Darstellung des Expressionsplasmides pET20b(+)-rPA.

Allgemeines:

[0030] Zur periplasmatischen Überexpression von DnaJ, der J-Domäne sowie Hsp25 in E. coli wurde die DNA, die für diese Proteine codiert, mit gentechnologischen Mitteln an die Signalsequenz des Outer Membrane Proteins A

(OmpA) von E. coli fusioniert und die Fusion auf einem rekombinanten Plasmid unter Kontrolle des lac-lpp-Promotors in E. coli exprimiert. Somit werden die Polypeptidkette von DnaJ und Hsp25 ins Periplasma des prokaryontischen Wirtsorganismus transportiert und dort nativ gefaltet. Die Lokalisation und native Faltung konnte dabei durch limitierte Proteolyse mit Trypsin und Western Blot nachgewiesen werden.

Beispiel 1:

Konstruktion des Expressionsplasmides plN III omp A3-dnaJ

10 [0031] Molekulargenetische Techniken beruhten auf Ausubel et al. (Hrsg.), J. Wiley sons, 1997, Curr. Protocols of Molecular Biology. Oligonucleotide wurden von den Firmen MWG Biotech, Ebersberg oder GIBCO Life Sciences, Eggenstein, DE bezogen.

[0032] Das Gen, das für DnaJ codiert, Gene Bank Accession No. M 12565, wurde über die Restriktionsschnittstellen EcoRI und BamHI in das Expressionsplasmid pIN III ompA3 (Ghayreb et al., EMBO J. 3 (1984) 2437-2442) kloniert. Die Sequenz des klonierten PCR-Fragments wurde durch Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg) überprüft. Das resultierende Plasmid wurde pIN III ompA3-dnaJ bezeichnet. Die Sequenz des periplasmatisch exprimierten DnaJ unterscheidet sich von dem Wildtyp-Protein dahingehend, daß die Polypeptidsequenz mit Gly-Ile-Pro beginnt statt mit Met, es fand somit eine Verlängerung des N-Terminus um 2 Aminosäuren statt. DnaJ befindet sich damit unter Kontrolle des lac-Ipp-Promotors, der mit IPTG (IsopropyI-β-D-Thiogalactosid) induziert wird.

Beispiel 2:

20

25

30

35

40

45

Konstruktion des Expressionsplasmides pUBS520-pIN-dnaJ

[0033] Mittels PCR wurde der Bereich aus dem Plasmid plN III ompA3-dnaJ amplifiziert, der für das lac-lpp Operon, die Signalsequenz, das dnaJ-Gen und die Terminator-Region des Operons codiert (SEQ ID NO: 1). Das PCR-Produkt wurde mit der Restriktionsendonuclease Bglll geschnitten und in den mit der Restriktionsendonuclease BamHl linearisierten Vektor pUBS520 kloniert. Das resultierende Plasmid wurde pUBS520-pIN-dnaJ bezeichnet (Fig. 3).

Beispiel 3:

Konstruktion des Expressionsplasmides pUBS 520-pIN-J-Domain

[0034] Mittels des QuikChange-Mutagenese-Systems (Promega, Mannheim, DE) wurden im Plasmid pUBS 520-pIN-dnaJ nach dem Nucleotid 324 zwei Stop-Codone eingefügt, so daß nur noch die ersten 108 Aminosäuren exprimiert werden. Die Sequenz des mutagenisierten Bereiches wurde durch Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg) und die Expression des verkürzten Proteinfragments durch Western Blotting und Detektion mit einem Anti-DnaJ-Antikörper nachgewiesen. Das entstandene Plasmid wurde mit pUBS 520-pIN-J-Domain (Fig. 4) bezeichnet.

Beispiel 4:

Konstruktion des Expressionsplasmides plN III ompA3-hsp25

[0035] Das Gen, das für Hsp25 codiert, Gene Bank Accession No.: L 07577, wurde über die Restriktionsschnittstellen EcoRI und BamHI in das Expressionsplasmid plN III ompA3 (Ghayreb et al., EMBO J. 3 (1984) 2437-2442) kloniert. Die Sequenz des klonierten PCR-Fragments wurde durch Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg) überprüft. Das resultierende Plasmid wurde plN III ompA3-hsp25 bezeichnet. Die Sequenz des periplasmatisch exprimierten Hsp25 unterscheidet sich von dem Wildtyp-Protein dahingehend, daß die Polypeptidsequenz mit Gly-IIe-Leu beginnt statt mit Met, es fand somit eine Verlängerung des N-Terminus um 2 Aminosäuren statt. Hsp25 befindet sich damit unter Kontrolle des lac-lpp-Promotors, der mit IPTG (IsopropyI-β-D-Thiogalactosid) induziert wird.

55

50

Beispiel 5:

Konstruktion des Expressionsplasmides pUBS520-pIN-hsp25

[0036] Mittels PCR wurde der Bereich aus dem Plasmid pIN III ompA3-hsp25 amplifiziert, der für das lac-lpp Operon, die Signalsequenz, das hsp25-Gen und die Terminator-Region des Operons codiert (SEQ ID NO: 5). Das PCR-Produkt wurde mit der Restriktionsendonuclease BgIII geschnitten und in den mit der Restriktionsendonuclease BamHI linearisierten Vektor pUBS520 kloniert. Das resultierende Plasmid wurde pUBS520-pIN-hsp25 bezeichnet (Fig. 5).

10 Beispiel 6:

15

20

25

30

40

50

Konstruktion des Expressionsplasmides pUBS520-ScFvOx

[0037] Als negativ-Kontrolle wurde die Co-Expression eines Single-Chain-Fv-Fragmentes, das gegen das Hapten Oxazolon gerichtet ist (ScFvOxazolon; Fiedler und Conrad, Bio/Technology 13 (1995) 1090-1093 untersucht, das keine Chaperon-Eigenschaften besitzt.

[0038] Mittels PCR wurde der Bereich aus dem Plasmid pHEN-ScFvOx amplifiziert, der für den lac-Promotor, die Signalsequenz pelB und das scfvox-Gen codiert. In einer zweiten PCR wurde der Bereich aus dem Plasmid pIN III ompA3 amplifiziert, der für den lpp-Terminator codiert. In einer anschließenden PCR wurden die beiden Fragmente fusioniert. Das so entstandene PCR-Produkt (SEQ ID NO: 7) wurde mit der Restriktionsendonuclease BgIII geschnitten und in den mit der Restriktionsendonuclease BarnHI linearisierten Vektor pUBS520 kloniert. Das resultierende Plasmid wurde pUBS520-ScFvOx bezeichnet (Fig. 6).

Beispiel 7:

Konstruktion des Expressionsplasmides pET20b(+)-rPA

[0039] Mit Hilfe der PCR-Methode wurde das Gen eines Plasminogenaktivators (rPA) aus dem Plasmidvektor pA27fd7 (Kohnert et al., Protein Engineering 5 (1992) 93-100) amplifiziert. Das PCR-Produkt wurde mit den Restriktionsendonucleasen Ncol und BamHI gespalten und in den Plasmidvektor pET20b(+) (Novagen Inc., Madison, USA) kloniert. Das Plasmid codiert für ein Fusionsprotein, welches aus der Signalsequenz von PelB (Pectatlyase aus Erwinia amylovora) und rPA besteht und die Sekretion von rPA ins Periplasma Didesoxy-Sequenzierung (LiCor DNA-Sequencer 4000, MWG Biotech, Ebersberg, DE) überprüft. Das Konstrukt wurde als pET20b(+)-rPA bezeichnet (Fig. 7). In dem Plasmid wird rPA unter Kontrolle des T7-Promotors exprimiert, wobei die T7-RNA-Polymerase im Stamm E. coli BL21(DE3) der Kontrolle des lacUV5-Promotors unterliegt. Die Induktion erfolgt durch Zugabe von IPTG. Das periplasmatisch exprimierte rPA unterscheidet sich von dem bei Kohnert et al beschriebenen Plasminogenaktivator durch Austausch der zweiten Aminosäure (Ser) gegen Ala.

Beispiel 8:

Funktionale Expression von rPA im Periplasma von E. coli

[0040] Eine stationäre Übernachtkultur von E. coli BL21(DE3) (Studier & Moffat, J. Mol. Biol. 189 (1986) 113-130), die mit pET20b(+)-rPA und pUBS520-pIN-dnaJ transformiert wurde (Co-Expression von DnaJ), eine Übemachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und pUBS520-pIN-J-Domain transformiert wurde (Co-Expression der J-Domäne), eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und pUBS520-pIN-hsp25 transformiert wurde (Co-Expression von Hsp25), eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b(+)-rPA und pUBS520-ScFvOx transformiert wurde (Co-Expression von ScFvOx), eine Übernachtkultur von E. coli BL21 (DE3), die mit pET20b(+)-rPA und pUBS520 transformiert wurde bzw. eine Übernachtkultur von E. coli BL21(DE3), die mit pET20b (+) und pUBS520 transformiert wurde (Kontrollkultur), wurde im Verhältnis 1:50 in 100 ml LB-Medium mit Ampicillin (100 μg/ml) und Kanamycin (50 μg/ml, Fluka Chemica, Neu-Ulm, DE) verdünnt und bei 24°C und 170 rpm geschüttelt. Nach 3 h Wachstum wurden je 5ml der Kultur zu je 10 ml LB-Medium mit o.g. Mengen an Ampicillin und Kanamycin und verschiedenen Konzentrationen von GSH (0-10 mM, Fluka, DE) gegeben und mit jeweils 1mM IPTG (Isopropylβ-D-Thiogalactosid, AppliChem, Darmstadt, DE) induziert. Die Zellen wurden weitere 21 h bei 24 °C und 170 rpm geschüttelt und nach Bestimmung der OD₆₀₀ eine 1 ml-Probe genommen. Diese 1ml-Zellproben wurden nach einer modifizierten Vorschrift nach Jacobi et al. (J. Biol. Chem. 272 (1997) 21692-21699) in 2 ml-Eppendorf-Reaktionsgefäßen fraktioniert. Im Detail wurde das Zellpellet mit 500 µl Fraktionierungspuffer (150 mM NaCl (Roth GmbH), 50 mM Tris/HCI (Roth GmbH, 5mM EDTA (Biomol) und 1 mg/ml Polymyxin-B-Sulfat (Sigma), pH 7,5) versetzt, 1 h bei 10 °C

auf einem Eppendorf-Thermoschüttler bei 1400 rpm geschüttelt und dann 15 min bei 14 000 rpm in einer auf 10°C gekühlten Eppendorf-Mikrozentrifuge zentrifugiert, so daß eine Fraktion mit den löslichen periplasmatischen Proteinen (Überstand) und eine Restfraktion (Pellet) entstand.

[0041] Die Bestimmung von der Aktivität von rPA erfolgte im wesentlichen nach der Methode von Verheijen et al. Thromb. Haemostasis 48 (1982) 266-269).

[0042] Alle ermittelten rPA-Konzentrationen in den Zellextrakten wurden auf Zellsuspensionen von OD₆₀₀=1 normiert, um den Fehler, der bei der Messung in verschiedenen Puffern auftritt, zu korrigieren. Die Ergebnisse zeigt Tabelle

Tabelle 1:

Effekt von L-Arginin im Fermentations	medium auf die Ausbildung von	nativem rPA im Periplasma
Co-sekretiertes Protein	rPA in ng/ml*OD ₆₀₀	Stimulationsfaktor
-	0,030 ± 0,001	29
DnaJ	0,197 ± 0,019	29
J-Domäne	0,339 ± 0,007	16
Hsp25	0,053 ± 0,002	27
ScFvOxazolon (Kontrolle)	0,041 ± 0,003	13

[0043] Die Kultivierung erfolgte in Gegenwart von 5 mM GSH.

Beispiel 9:

10

15

20

25

30

40

45

50

55

Nachweis der periplasmatischen Lokalisation von DnaJ, das mittels plN III ompA3 exprimiert wurde

[0044] Um die periplasmatische Lokalisierung und korrekte Faltung von DnaJ, das mittels plN III ompA3-dnaJ ins Periplasma sekretiert wurde, zu überprüfen, wurden Sphäroplasten präpariert. Dazu wurden E. coli XLI-Blue-Zellen, die mit plN III ompA3-dnaJ transformiert waren, 1:50 aus einer stationären Vorkultur in LB-Medium (11 LB-Medium enthält 10 g Bacto-Trypton (Difco Factories, Detroit, Michigan, USA), 5 g Yeast-Extract (Difco Factories) und 5 g NaCl (Roth GmbH, Karlsruhe) mit 100 μg/ml Ampicilin (Sigma, Deisenhofen) verdünnt, bei 37°C und 200 rpm angezogen und nach 2,75 h (OD₆₀₀ ca.0,5) mit 1 mM IPTG induziert. Nach 3 h Wachstum in Anwesenheit des Induktors wurden die Zellen mittels Zentrifugation (Eppendorf-Mikrozentrifuge, 5000 rpm, 5 min) geerntet. Als Kontrolle wurde ein E. coli-Stamm, der ein Plasmid zur intrazellulären Überexpression von DnaJ enthält, kultiviert und 3 h induziert. Aus den nach Zentrifugation erhaltenen Zellpellets wurden Sphäroplasten folgendermaßen präpariert:

[0045] Das Aquivalent von 2 ml Bakterien, die einer OD₆₀₀ von 1 entsprachen, wurde in einer 0,5 M Sucrose (ICN, Biomedicals, Eschwege)/0,2 M Tris/HCl/0,5 mM EDTA-(Biomol Feinchemikalien, Hamburg) Lösung (pH 8), mit 2 μg/ ml Lysozym (Sigma, Deisenhofen) resuspendiert und 30 min auf Eis inkubiert. Danach wurden die Proben 5 min bei 15000 rpm in einer Eppendorf-Mikrozentrifuge pelletiert und mit 100 μl TE-Puffer (10 mM Tris/HCI (Roth GmbH), 1 mM EDTA, pH 8) gewaschen. Die als Pellet anfallenden Sphäroplasten wurden in 30 μl 50 mM Tris/HCl, pH 8,0 mit 100 mM NaCl aufgenommen. Als Kontrolle wurden Sphäroplasten in demselben Puffer, jedoch mit zusätzlich 0,1 % Triton®-X-100 (Amresco, Solon, Ohio, USA), aufgenommen. Für eine anschließende limitierte Proteolyse mit Trypsin wurden 15 μl der jeweiligen Sphäroplastenpräparation (mit bzw. ohne Triton®-X-100) mit 2 μl 1mg/ml Trypsin (Roche Diagnostics GmbH, DE) und 23 µl 50 mM Tris/HCl, pH 8,0 mit 100 mM NaCl gemischt und bei 20°C inkubiert. Nach 0, 5 und 30 Minuten wurden je 8 µl Proben genommen, mit 2 µl 4 mg/ml Soybean-Trypsin-Inhibitor und 3 µl SDS-PAGE -Auftragspuffer (4% Glycerin (Sigma, Deisenhofen), 0,5 % SDS (ICN), 2% Mercaptoethanol (Sigma), 0,0625 M Tris/ HCl, pH 6,8 und Bromphenolblau (Sigma)) versetzt und 5 min gekocht. In einem Kontrollversuch wurden 2 µg gereinigtes DnaJ (2 μg/μl) mit 1 μl 100μg/ml Trypsin und 14 μl 50 mM Tris/HCl, pH 8,0 mit 100 mM NaCl gemischt, bei 20°C inkubiert und die Proteolyse zu den angegebenen Zeitpunkten beendet. Die Proteolyseprodukte wurden durch SDS-PAGE nach Lämmli et al., Nature 227 (1970) 680-685) aufgetrennt. Die aufgetrennten Proteine wurden auf Nitrocellulosemembranen (BioRad Laboratories, München) übertragen (Khyse-Anderson, J. Biochem. Biophys. Methods 10 (1984) 203-207; Towbin et al., Proc. Natl. Acad. Sci. USA 79 (1979) 267-271). Die Membranen wurden mit TBS-5% Milchpulver (Glücksklee, Nestlé Frankfurt) über Nacht geblockt und im Folgenden 2h mit Anti-DnaJ-Antikörper in TBS-5% Milchpulver für 2 h dekoriert. Nach 3 Waschschritten für jeweils 5 min in TBS wurde mit einem weiteren Antikörper (Anti-Rabbit-IgG-Peroxidase, Amersham Life Sciences, Braunschweig) in TBS-5% Milchpulver für 1,5 h inkubiert und wiederum 5x mit TBS-Puffer gewaschen. Zur Detektion wurde das ECL-Western-Blotting-Detection-Kit der Firma

Amersham verwendet. Das Ergebnis ist in Fig. 1 gezeigt. Da das sekretierte Chaperon nach Sphäroplastenpräparation – Protease-sensitiv ist, wurde nachgewiesen, daß es auf der periplasmatischen Seite der inneren Membran lokalisiert ist. Im Gegensatz dazu ist intrazelluläres DnaJ auch nach der Sphäroplastierung proteasegeschützt. Wurden die Sphäroplasten durch Triton-X-100 permeabilisiert, wird intrazelluläres DnaJ durch Trypsin verdaut. Das Spaltmuster des periplasmatisch exprimierten DnaJ ist identisch zu dem von gereinigtem, nativem DnaJ. Damit war nachgewiesen, daß das periplasmatische Expressionsprodukt in diesem Kompartiment nativ vorliegt.

Referenzliste

10 [0046]

Allen et al., TIBS 20 (1995) 511-516

Arrigo & Landry (1994) In Morimoto (Hrsg.): The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbour Press; 335-373

Ausubel et al. (Hrsg.) Current Protocols in Molecular Biology, J. Wiley & Sons, 1997 Berges et al., Appl. Environ. Microbiol. 62 (1996) 55-60

Brinkmann et al., Gene 85 (1989) 109-114

Bukau, B. & Horwich, A., Cell 92 (1998) 351-366

Ehrsperger et al., EMBO J. 16 (1997) 221-229

20 EP-A 0 510 658

EP-A 0 556 726

Fiedler und Conrad, Bio/Technology 13 (1995) 1090-1093

Gaestel et al., Eur. J. Biochem. 179 (1989) 209-213

Ghayreb et al., EMBO J. 3 (1984) 2437-2442

25 Goloubinoff et al., Nature 337 (1989) 44-47

Hockney, TIBTECH 12 (1994) 456 - 463

Hudson, Curr. Opin Biotechnol. 9 (1998) 395-402

Jacobi et al. (J. Biol. Chem. 272 (1997) 21692-21699

Jakob et al., J. Biol. Chem. 268 (1993) 1517-1520

30 Kelley, TIBS 23 (1998) 222-227

Khyse-Anderson, J. Biochem. Biophys. Methods 10 (1984) 203-207

Knappik et al., Bio/Technology 11 (1993) 77-83

Kohnert et al., Protein Engineering 5 (1992) 93-100

Lämmli et al., Nature 227 (1970) 680-685

35 Langer et al., Nature 356 (1992) 683 - 689

Lee & Olins, J. Biol. Chem. 267 (1992) 2849-2852

Martin et al., Cardiovasc. Drug Rev. 11 (1993) 299-311

Murphy & Beckwith: Export of Proteins to the Cell Envelope in Escherichia coli

Neidhardt et al. (Hrsg.): Escherichia coli and Salmonella, Second Edition, Vol. 1, ASM Press, Washington, 1996, S. 967-978

Paetzel et al., Nature 396 (1998) 186 - 190

Perez-Perez et al., Biochem. Biophys. Res. Commun. 210 (1995) 524-529

Qiu et al., Appl. Environm. Microbiol. 64 (1998) 4891 - 4896

Roman et al., Proc. Natl. Acad. Sci. USA 92 (1995) 8428-8432

Sato et al., Biochem. Biophys. Res. Commun. 202 (1994) 258-264

Schmidt et al., Prot. Engin. 11 (1998) 601-607

Schröder et al., EMBO J. 12 (1993) 4137-4144

Shibui et al., Appl. Microbiol. Biotechnol. 37 (1992) 352 - 357

Studier & Moffat, J. Mol. Biol. 189 (1986) 113-130

50 Thomas et al., Appl. Biochem. Biotechnol. 66 (1997) 197-238

Towbin et al., Proc. Natl. Acad. Sci. USA 79 (1979) 267-271

US-Patent Nr. 5,223,256

Verheijen et al. Thromb. Haemostasis 48 (1982) 266-269

Wall et al., J. Biol. Chem. 270 (1995) 2139-2144

55 Yokoyama et al., Microbiol. Ferment. Technol. 62 (1998) 1205-1210

40

45

SEQUENZPROTOKOLL

5	<110>	F. Hoffmann-La Roche AG	
	<120>	Verfahren zur Herstellung von natuerlich gefalteten und sekretierten Proteinen durch Co-Sekretion molekularen Chaperonen	von
10	<130>	Case 20381	
	<160>	10	
15	<210>	1	
	<211>	1881	
	<212>	DNA	
	<213>	E. coli	
20	<220>		
	<221>	CDS	
	<222>	(392)(1591)	
	<400>	1	
25	TAGGCGTATC .	ACGAGGCCCT TIGGATAACC AGAAGCAATA AAAAATCAAA TCGGATTTCA	60
	CTATATAATC	TCACTITATC TAAGATGAAT CCGATGGAAG CATCCTGTTT TCTCTCAATT	120
30	TTTTTATCTA	AAACCCAGCG TTCGATGCTT CTTTGAGCGA ACGATCAAAA ATAAGTGCCT	180
		AAAATATTCT CAACATAAAA AACTTTGTGT AATACTTGTA ACGCTACATG	240
	GAGATTAACT	CAATCTAGCT ÄGAGAGGCTT TACACTTTAT GCTTCCGGCT CGTATAATGT	300
35	GTGGAATTGT	GAGCGGATAA CAATTTCACA CAGGAAACAG CTATGACCAT GATTACGGAT	360
	TCACTGGAAC '	TCTAGATAAC GAGGGCAAAA A ATG AAA AAG ACA GCT ATC GCG Met Lys Lys Thr Ala Ile Ala	412
40		1 5	
	ATT GCA GTG	GCA CTG GCT GGT TTC GCT ACC GTA GCG CAG GCC GGA ATT	460
		Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Gly Ile	400
	10		
45	CCA CCT AAC	CAA GAT TAT TAC GAG ATT TTA GGC GTT TCC AAA ACA GCG	508
		Gln Asp Tyr Tyr Glu Ile Leu Gly Val Ser Lys Thr Ala	500
	25	30 35	
	GAA GAG CGT	GAA ATC AGA AAG GCC TAC AAA CGC CTG GCC ATG AAA TAC	556
50	Glu Glu Arg 40	Glu Ile Arg Lys Ala Tyr Lys Arg Leu Ala Met Lys Tyr 45 50 55	
		CGT AAC CAG GGT GAC AAA GAG GCC GAG GCG AAA TTT AAA	604
5 <i>5</i>	His Pro Asp	Arg Asn Gln Gly Asp Lys Glu Ala Glu Ala Lys Phe Lys	
		60 65 70	

		ATC Ile															652
5		TAC Tyr															700
10		GGC Gly 105															748
15	Val 120	TTC Phe	Gly	Asp	Ile	Phe 125	Gly	Gly	Gly	Arg	Gly 130	Arg	Gln	Arg	Ala	Ala 135	796
20	Arg	Gly	Ala	Asp	Leu 140	Arg	Tyr	Asn	Met	Glu 145	Leu	Thr	Leu	Glu	Glu 150	Ala	844
25	Val	CGT Arg	Gly	Val 155	Thr	Lys	Glu	Ile	Arg 160	Ile	Pro	Thr	Leu	Glu 165	Glu	Cys	892
		GTT Val															940
30	Сув	CCG Pro 185	Thr	Cys	His	Gly	Ser 190	Gly	Gln	Val	Gln	Met 195	Arg	Gln	Gly	Phe	988
35	Phe 200	Ala	Val	Gln	Gln	Thr 205	Cys	Pro	His	Cys	Gln 210	Gly	Arg	Gly	Thr	Leu 215	1036
40	Ile	AAA Lys	Asp	Pro	Cys 220	Asn	Lys	Суѕ	His	Gly 225	His	Gly	Arg	Val.	Glu 230	Arg	1084
45	Ser	AAA Lys	Thr	Leu 235	Ser	Val	Lys	Ile	Pro 240	Ala	Gly	Val	Asp	Thr 245	Gly	Asp	1132
43	Arg	ATC Ile	Arg 250	Leu	Ala	Gly	Glu	Gly 255	Glu	Ala	Gly	Glu	His 260	Gly	Ala	Pro	1180
50	Ala	GGC Gly 265	Asp	Leu	Tyr	Val	Gln 270	Val	Gln	Val	Lys	Gln 275	His	Pro	Ile	Phe	1228
55		CGT Arg															1276

	ATG (1324	
	Met i	Ala	Ala	Leu	Gly 300	Gly	Glu	Ile	Glu	Val 305	Pro	Thr	Leu	Asp	Gly 310	Arg		
5	OTO 1		oma		ama	COM	000	<i>~</i>				000		~~~				
	GTC /																1372	
				315					320					325				
10	ATG (_		1420	
	riec i	nr 9	330	Буз	Gry	vai	D _j S	335	vai	λιg	Giy	Gly	340	0111	Cry	пор		
	TTG (CTG	TGC	CGC	GTT	GTC	GTC	GAA	ACA	CCG	GTA	GGC	CTG	AAC	GAA	AGG	1468	
15	Leu !	Leu 345	Суѕ	Arg	Val	Val	Val 350	Glu	Thr	Pro	Val	Gly 355	Leu	Asn	Glu	Arg		
	CAG A	א א א	CAC	CTC	CTC	מ גם	CAC	CHC	CDD	ממים	እሮሮ	TYPO	CCT	ccc	CCA	n.c.c	1516	
	Gln 1																1210	
20	360	•				365					370		•	-		375		
	GGC (GAG	CAC	AAC	AGC	CCG	CGC	TCA	AAG	AGC	TTC	TTT	GAT	GGT	GTG	AAG	1564	
	Gly	Glu	His	Asn	Ser 380	Pro	Arg	Ser	Lys	Ser 385	Phe	Phe	Asp	Gly	Val 390	Lys		
25					300					303					370			
	AAG '									GGAT	rccgo	GCT (SAGCA	AACGA	AC.		1611	•
	Lys 1	Pne	Pne	395	Asp	Leu	inr	arg	400									
30	GTGA	ACGC	AA 1	GCG1	TCCC	GA CC	TTC	AGGCT	GCT	ГАААО	SATG	ACGC	CAGCT	rcg 1	rgcta	AACCAG	1671	
	CGTC"	TGGA	CA A	CATO	GCTA	AC TA	TAA	ACCG	C AAC	TAAT	AGT	ACCI	rgtg <i>i</i>	AAG 1	rgaa <i>i</i>	AAATGG	1731	
	CGCA	CATI	GT G	CGAC	CATTI	רד דין	TTGT	CTGC	CG1	OATE	CCGC	TACT	rgcgi	CA C	:GCG1	TAACAT	1791	
35	ATTC	CCTI	GC 1	CTGC	TTCA	C C	TTC	recec	TGA	ACTC1	ACT	GAAC	GCGC	CAT 1	rccro	GCTGC	1851	
	GGGA	GTTG	CT C	CACI	GCTC	CA CC	GAA.	CCGC	;						•-		1881	
40														•	•			
	<210	>		2														
	<211			400												•		
	<212:			PRT E. c	oli													
45	-215				.011													
	<400	>		2														
	Met 1	Lys	Lys	Thr	Ala 5	Ile	Ala	Ile	Ala	Val 10	Ala	Leu	Ala	Gly	Phe 15	Ala		
50																		
	Thr '	Val	Ala	Gln 20	Ala	Gly	Ile	Pro	Ala 25	Lys	Gln	Asp	Tyr	Tyr 30	Glu	Ile		
<i>EE</i>	Leu (Gly	Val	Ser	Lys	Thr	Ala	Glu	Glu	Arg	Glu	Ile	Arg	Lys	Ala	Tyr		
55			35					40					45					

	Lys	Arg 50	Leu	Ala	Met	Lys	Tyr 55	His	Pro	Asp	Arg	Asn 60	Gln	Gly	Asp	Lys
5	Glu 65	Ala	Glu	Ala	Lys	Phe 70	Lys	Glu	Ile	Lys	Glu 75	Ala	Tyr	Glu	Val	Leu 80
10	Thr	Asp	Ser	Gln	Lys 85	Arg	Ala	Ala	Tyr	Asp 90	Gln	Tyr	Gly	His	Ala 95	Ala
,,	Phe	Glu	Gln	Gly 100	Gly	Met	Gly	Gly	Gly 105	Gly	Phe	Gly	Gly	Gly 110	Ala	Asp
15	Phe	Ser	Asp 115	Ile	Phe	Gly	Asp	Val 120	Phe	Gly	Asp	Ile	Phe 125	Gly	Gly	Gly
	Arg	Gly 130	Arg	Gln	Arg	Ala	Ala 135	Arg	Gly	Ala	Asp	Leu 140	Arg	Tyr	Asn	Met
20	145	Leu				150					155					160
25		Pro			165					170					175	
		Gly		180		,			185					190	•	
30		Gln	195					200					205			
		Gln 210					215					220				
35	225	His				230					235			_		240
40		Gly			245					250		,		•	255	
		Gly		260					265					270		
45	•	Lys Val	275					280			•		285		•	-
	•	290					295					300	_			
50	305	Pro				310					315					320
55		Thr			325					330					335	
-	wid	Gly	GIĄ	340	GIU	чγ	АБР	ьeu	Leu 345	cys	arg	vai	val	Val 350	Glu	Inr

5	Pro Val Gly Leu Asn Glu Arg Gln Lys Gln Leu Leu Gln Glu Leu Gln 355 360 365	
5	Glu Ser Phe Gly Gly Pro Thr Gly Glu His Asn Ser Pro Arg Ser Lys 370 375 380	
10 .	Ser Phe Phe Asp Gly Val Lys Lys Phe Phe Asp Asp Leu Thr Arg * 385 390 395 00	
15	<210> 3 <211> 1881 <212> DNA	
	<212> DNA <213> E. coli <220>	
20	<221> CDS <222> (392)(790)	
25	<400> 3 TAGGCGTATC ACGAGGCCCT TTGGATAACC AGAAGCAATA AAAAATCAAA TCGGATTTCA	60
	CTATATAATC TCACTTTATC TAAGATGAAT CCGATGGAAG CATCCTGTTT TCTCTCAATT	120
	TTTTTATCTA AAACCCAGCG TTCGATGCTT CTTTGAGCGA ACGATCAAAA ATAAGTGCCT	180
30	TCCCATCAAA AAAATATTCT CAACATAAAA AACTTTGTGT AATACTTGTA ACGCTACATG	240
		300
35		360
	TCACTGGAAC TCTAGATAAC GAGGGCAAAA A ATG AAA AAG ACA GCT ATC GCG Met Lys Lys Thr Ala Ile Ala 1 5	412
40	ATT GCA GTG GCA CTG GCT GGT TTC GCT ACC GTA GCG CAG GCC GGA ATT Ile Ala Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Gly Ile 10 15 20	460
45	CCA GCT AAG CAA GAT TAT TAC GAG ATT TTA GGC GTT TCC AAA ACA GCG Pro Ala Lys Gln Asp Tyr Tyr Glu Ile Leu Gly Val Ser Lys Thr Ala 25 30 35	508
50	GAA GAG CGT GAA ATC AGA AAG GCC TAC AAA CGC CTG GCC ATG AAA TAC Glu Glu Arg Glu Ile Arg Lys Ala Tyr Lys Arg Leu Ala Met Lys Tyr 40 45 50 55	556
55	CAC CCG GAC CGT AAC CAG GGT GAC AAA GAG GCC GAG GCG AAA TTT AAA His Pro Asp Arg Asn Gln Gly Asp Lys Glu Ala Glu Ala Lys Phe Lys 60 65 70	604

			Glu Val L		TCG CAA AAA CGT Ser Gln Lys Arg 85	
5		Gln Tyr Gly			CAA GGT GGC ATG Gln Gly Gly Met 100	
10					GAT ATT TTT GGT Asp Ile Phe Gly 115	
15		GAT ATT TTT Asp Ile Phe 125				790
	GCGGCGCGCG	GTGCTGATTT A	CGCTATAAC .	ATGGAGCTCA	CCCTCGAAGA AGCTC	STACGT 850
20	GGCGTGACCA	AAGAGATCCG C	ATTCCGACT	CTGGAAGAGT	GTGACGTTTG CCACC	GGTAGC 910
	GGTGCAAAAC	CAGGTACACA G	CCGCAGACT	TGTCCGACCT	GTCATGGTTC TGGT	CAGGTG 970
	CAGATGCGCC	AGGGATTCTT CO	GCTGTACAG	CAGACCTGTC	CACACTGTCA GGGC	CGCGGT 1030
25	ACGCTGATCA	AAGATCCGTG C	AACAAATGT	CATGGTCATG	GTCGTGTTGA GCGCA	AGCAAA 1090
	ACGCTGTCCG	TTAAAATCCC GC	GCAGGGGTG	GACACTGGAG	ACCGCATCCG TCTTC	SCGGGC 1150
3 <i>0</i>	GAAGGTGAAG	CGGGCGAGCA TO	GGCGCACCG (GCAGGCGATC	TGTACGTTCA GGTTC	CAGGTT 1210
	AAACAGCACC	CGATTTTCGA G	CGTGAAGGC	AACAACCTGT	ATTGCGAAGT CCCGA	ATCAAC 1270
	TTCGCTATGG	CGGCGCTGGG TO	GCGAAATC (GAAGTACCGA	CCCTTGATGG TCGCG	TCAAA 1330
35	CTGAAAGTGC	CTGGCGAAAC CO	CAGACCGGT	AAGCTATTCC	GTATGCGCGG TAAAG	GCGTC 1390
	AAGTCTGTCC	GCGGTGGCGC AC	CAGGGTGAT '	TTGCTGTGCC	GCGTTGTCGT CGAAA	CACCG 1450
	GTAGGCCTGA	ACGAAAGGCA GA	AAACAGCTG (CTGCAAGAGC	TGCAAGAAAG CTTCG	GTGGC 1510
40	CCAACCGGCG	AGCACAACAG CO	CCCCCCTCA Z	AAGAGCTTCT	TTGATGGTGT GAAGA	AGTTT 1570
					CGTGAACGCA ATGCG	
45					GCGTCTGGAC AACAT	
					GCGCACATTG TGCGA	
50				•	TATTCCCTTG CTCTG	
			BAAGGCGCA 1	TTGCTGGCTG	CGGGAGTTGC TCCAC	TGCTC 1870
	ACCGAAACCG	G				1881

55

5	<210> <211> <212> <213>	4 133 PRT E. coli		-	
	<400>	4			
10	Met Lys Lys 1	Thr Ala Ile Ala 5	a Ile Ala Val Ala 10	Leu Ala Gly Phe Ala	
	Thr Val Ala	Gln Ala Gly Ile	Pro Ala Lys Gln 25	Asp Tyr Tyr Glu Ile 30	
15	Leu Gly Val	Ser Lys Thr Ala	a Glu Glu Arg Glu 40	Ile Arg Lys Ala Tyr 45	
	Lys Arg Leu 50	Ala Met Lys Tyr		Asn Gln Gly Asp Lys 60	
20	Glu Alá Glu 65	Ala Lys Phe Lys	s Glu Ile Lys Glu 75	Ala Tyr Glu Val Leu 80	
25	Thr Asp Ser	Gln Lys Arg Ala	a Ala Tyr Asp Gln 90	Tyr Gly His Ala Ala 95	
	Phe Glu Gln	Gly Gly Met Gly	Gly Gly Gly Phe	Gly Gly Gly Ala Asp 110	
30	Phe Ser Asp 115	Ile Phe Gly Asp	Val Phe Gly Asp 120	Ile Phe Gly Gly Gly 125	
	Arg Gly Arg	* *			
35					
	<210> <211> <212>	5 1379 DNA		÷	
40	<213>	E. coli			
45	<220> <221> <222>	CDS (392)(1090)			
43	<400>	5			
	TAGGCGTATC A	ACGAGGCCCT TTGGA	TAACC AGAAGCAATA	AAAAATCAAA TCGGATTTCA	60
50	CTATATAATC T	CACTTTATC TAAGA	ATGAAT CCGATGGAAG	CATCCTGTTT TCTCTCAATT	120
	TTTTTATCTA A	AAACCCAGCG TTCGA	NTGCTT CTTTGAGCGA	ACGATCAAAA ATAAGTGCCT	180
5 5				AATACTTGTA ACGCTACATG	240
	GAGATTAACT (CAATCTAGCT AGAGA	GGCTT TACACTTTAT	GCTTCCGGCT CGTATAATGT	300

	GTGGAATTGT GAGCGGATAA CAATTTCACA CAGGAAACAG CTATGACCAT GATTACGGAT	360
5	TCACTGGAAC TCTAGATAAC GAGGGCAAAA A ATG AAA AAG ACA GCT ATC GCG Met Lys Lys Thr Ala Ile Ala 1 5	412
10	ATT GCA GTG GCA CTG GCT GGT TTC GCT ACC GTA GCG CAG GCC GGA ATT Ile Ala Val Ala Leu Ala Gly Phe Ala Thr Val Ala Gln Ala Gly le 10 15 20	460
15	CTC ACC GAG CGC CGC GTG CCC TTC TCG CTG CTG CGG AGC CCG AGC TGG Leu Thr Glu Arg Arg Val Pro Phe Ser Leu Leu Arg Ser Pro Ser Trp 25 30 35	508
	GAA CCA TTC CGG GAC TGG TAC CCT GCA CAC AGC CGC CTC TTC GAT CAA Glu Pro Phe Arg Asp Trp Tyr Pro Ala His Ser Arg Leu Phe Asp Gln 40 45 50 55	556
20	GCT TTC GGG GTG CCC CGG TTG CCC GAT GAG TGG TCG CAG TGG TTC AGC Ala Phe Gly Val Pro Arg Leu Pro Asp Glu Trp Ser Gln Trp Phe Ser 60 65 70	604
25	GCC GCT GGG TGG CCC GGA TAC GTG CGC CCG CTG CCC GCC GCC GCC ACC GCC Ala Ala Gly Trp Pro Gly Tyr Val Arg Pro Leu Pro Ala Ala Thr Ala 75 80 85	652
30	GAG GGC CCC GCG GCG GTG ACC CTG GCC GCA CCA GCC TTC AGC CGA GCG Glu Gly Pro Ala Ala Val Thr Leu Ala Ala Pro Ala Phe Ser Arg Ala 90 95 100	700
<i>35</i>	CTC AAC CGA CAG CTC AGC AGC GGG GTC TCG GAG ATC CGA CAG ACG GCT Leu Asn Arg Gln Leu Ser Ser Gly Val Ser Glu Ile Arg Gln Thr Ala 105 110 115	748
	GAT CGC TGG CGC GTG TCC CTG GAC GTC AAC CAC TTC GCT CCG GAG GAG Asp Arg Trp Arg Val Ser Leu Asp Val Asn His Phe Ala Pro Glu Glu 120 125 130 135	796
40	CTC ACA GTG AAG ACC AAG GAA GGC GTG GTG GAG ATC ACT GGC AAG CAC Leu Thr Val Lys Thr Lys Glu Gly Val Val Glu Ile Thr Gly Lys His 140 145 150	844
45	GAA GAA AGG CAG GAC GAA CAT GGC TAC ATC TCT CGG TGC TTC ACC CGG Glu Glu Arg Gln Asp Glu His Gly Tyr Ile Ser Arg Cys Phe Thr Arg 155 160 165	892
50	AAA TAC ACG CTC CCT CCA GGT GTG GAC CCC ACC CTA GTG TCC TCT TCC Lys Tyr Thr Leu Pro Pro Gly Val Asp Pro Thr Leu Val Ser Ser Ser 170 175 180	940
5 5	CTA TCC CCT GAG GGC ACA CTT ACC GTG GAG GCT CCG TTG CCC AAA GCA Leu Ser Pro Glu Gly Thr Leu Thr Val Glu Ala Pro Leu Pro Lys Ala 185 190 195	988

	GTC ACG Val Thr 200	CAG Gln	TCA Ser	GCG Ala	GAG Glu 205	ATC Ile	ACC Thr	ATT	CCG Pro	GTT Val 210	ACT Thr	TTC Phe	GAG Glu	GCC Ala	CGC Arg 215	1036	
5	GCC CAA Ala Gln															1084	
10	AAG TAG Lys *	GATO	CCGGC	TG A	AGCAJ	ACGA	CG TY	GAAC	GCAA'	r GC	GTTC	CGAC	GTT	CAGG	7	1140	
15	CTAAAGAT	rga (CGCAG	CTCC	T G	CTAA	CCAG	C GT	CTGG	ACAA	CAT	GGCT	ACT	AAAT	ACCGCA	1200	
,,,	AGTAATAG														٠	1260	
	GTTTACCO															1320	
20	GACTCTAC	JIG A	AAGGC	.GCAI	T GC	_TTGG(_TGC(شاخات قد	AGTT	<i>s</i> CrC	CAC.	rger	CAC	ĽGAA	ACCGG	1379	
25	<210><211><211><212><213>		6 233 PRT E. C	ol i													
	<400>		6														
30	Met Lys l	Lys	Thr	Ala 5	Ile	Ala	Ile	Ala	Val 10	Ala	Leu	Ala	Gly	Phe 15	Ala		
35	Thr Val	Ala	Gln 20	Ala	Gly	Ile	Leu	Thr 25	Glu	Arg	Arg	Val	Pro 30	Phe	Ser		
	Leu Leu	Arg 35	Ser	Pro	Ser	Trp	Glu 40	Pro	Phe	Arg	qaA	Trp 45	Tyr	Pro	Ala		
40	His Ser 50	Arg	Leu	Phe	Asp	Gln 55	Ala	Phe	Gly	Val	Pro 60	Arg	Leu*	Pro	Asp		
	Glu Trp 65	Ser	Gln	Trp	Phe 70	Ser	Ala	Ala	Gly	Trp 75	Pro	Gly	Tyr	Val	Arg 80		
45	Pro Leu	Pro	Ala	Ala 85	Thr	Ala	Glu	Gly	Pro 90	Ala	Ala	Val	Thr	Leu 95	Ala		
50 ·	Ala Pro	Ala	Phe 100	Ser	Arg	Ala	Leu	Asn 105	Arg	Gln	Leu	Ser	Ser 110	Gly	Val		
	Ser Glu	Ile 115	Arg	Gln	Thr	Ala	Asp 120	Arg	Trp	Arg	Val	Ser 125	Leu	Asp	Val		
55	Asn His 130	Phe	Ala	Pro	Glu	Glu 135	Leu	Thr	Val	Lys	Thr 140	Lys	Glu	Gly	Val		

	Val G 145	lu Ile	e Thr	Gly	Lys 150	His	Glu	Glu	Arg	Gln 155		Glu	His	Gly	Tyr 160	
5	Ile S	er Arg	g Cys	Phe 165	Thr	Arg	Lys	Tyr	Thr 170	Leu	Pro	Pro	Gly	Val 175		
	Pro T	nr Lei	1 Val 180	Ser	Ser	Ser	Leu	Ser 185	Pro	Glu	Gly	Thr	Leu 19 <u>,0</u>	Thr	Val	
10	Glu A	la Pro 195		Pro	Lys	Ala	Val 200	Thr	Gln	Ser	Ala	Glu 205	Ile	Thr	Ile	
15	Pro Va		Phe	Glu	Ala	Arg 215	Ala	Gln	Ile	Gly	Gly 220	Pro	Glu	Ala	Gly	
	Lys Se 225	er Glu	Gln	Ser	Gly 230	Ala	Lys	*								
20	<210><211><211>		7 1256 DNA													
25	<213> 220 221 222		E. 6	coli 9)	. (969	9)										
30	<400>		7	•		•										
															GATAA	60
35															TTCTAT	120
	CTCGCC														CCA	180
40											Gln					231
	GGC TI Gly Le															279
	GGA TT Gly Ph		Phe													327
	GAG AA Glu Ly 4															375
55	ATC TA	C TAT	GCA Ala	GAC Asp	ACA Thr	GTG Val	AAG Lys	GGC Gly	CGA Arq	TTC Phe	ACC	ATC Ile	TCC	AGA Ara	GAC Asp	423

	AAI	CCC	AAG	AAC	ACC	CIG	TTC	CTG	CAA	ATG	ACC	AGT	CTA	AGG	TCT	GAG		471
	Asn	Pro	Lys	Asn	Thr 80	Leu	Phe	Leu	Gln	Met 85	Thr	Ser	Leu	Arg	Ser 90	Glu		
5	GAC	۸۲۵	GCC	ATG	יימיד	ፐስር	TCC	CCN	אכיא	יייאני	ጥአር	ccc	ССТ	יי.	TYCC	ccc		
				Met 95														519
10				ACG Thr											_	= 0		567
15				GGC Gly														615
20				TCT Ser														663
				AGT Ser														711
25	_			AAA Lys 175														759
30				CGC Arg														807
35				AGC Ser														855
40				AGT Ser														903
				GCG Ala														951.
45		GGG Gly		GCA Ala 255	TAG *	TAA *	CTGA	(GCAA	AÇG A	CGTG	AACC	SC AF	TGCG	TTCC	!			999
50	GACC	STTC	AGG (CTGCT	AAAC	A TO	ACGC	AGCT	CGI	GCTA	ACC	AGCG	TCTG	GA C	'AACA	TGGCT	1	059
-	ACTA	AATA	ACC (CAAC	raat:	A GT	'ACC'I	GTGA	AGT	GAAA	AAT	GGCG	CACA	TT G	TGCG	ACATT	1	119
	TTTT	TTGT	CT (CCGI	TTAC	c GC	TACT	GCGT	CAC	GCGT	'AAC	TATA	TCCC	TT G	CTCT	GGTTC	1	179
55	ACC	TTC	rgc (GCTGA	CTCI	A CI	GAAG	GCGC	TTA	GCTG	GCT	GCGG	GAGT	TG C	TCCA	CTGCT	1:	239

1256

CACCGAAACC GGAGATC

	CAC	-(3/4)-4	300 (JOHO	110												123
5	<210)>		8													
	<211 <212	2 >		257 PRT													
10	<213	3>		E. (coli											1	
70	<400)>		8													
	Met 1	Ala	Glu	Val	Lys 5	Leu	Gln	Glu	Ser	Gly 10	Gly	Gly	Leu	Val	Gln 15	Pro	
15	Gly	Gly	Ser	Arg 20	Lys	Leu	Ser	Cys	Ala 25	Ala	Ser	Gly	Phe	Thr 30	Phe	Ser	
20	Ser	Phe	Gly 35	Met	His	Trp	Val	Arg 40	Gln	Ala	Pro	Glu	Lys 45	Gly	Leu	Glu	
	Trp	Val 50	Ala	Tyr	Ile	Ser	Ser 55	Gly	Ser	Ser	Thr	Ile 60	Tyr	Tyr	Ala	Asp	
25	Thr 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Pro	Lys	Asn	Thr 80	
	Leu	Phe	Leu	Gln	Met 85	Thr	Ser	Leu	Arg	Ser 90	Glu	Asp	Thr	Ala	Met 95	Tyr	
30	Tyr	Cys	Ala	Arg 100	Asp	Tyr	Gly	Ala	Tyr 105	Trp	Gly	Gln	Gly	Thr 110	Thr	Val	
35	Thr	Val	Ser 115	Ser	Gly	Gly	Gly	Gly 120	Ser	Gly	Gly	Gly	Gly 125	Ser	Gly	Gly	
·	Gly	Gly 130	Ser	Àsp	Ile	Glu	Leu 135	Thr	Gln	Ser	Pro	Ala 140	Ile	Met	Ser	Ala	
40	Ser 145	Pro	Gly	Glu	Lys	Val 150	Thr	Met	Thr	Cys	Ser 155	Ala	Ser	Ser	Ser	Val 160	
	Arg	Tyr	Met	Asn	Trp 165	Phe	Gln	Gln	Lys	Ser 170	Gly	Thr	Ser	Pro	Lys 175	Arg	
45	Trp	Ile	Tyr	Asp 180	Thr	Ser	Lys	Leu	Ser 185	Ser	Gly	Val	Pro	Ala 190	Arg	Phe	
50	Ser	Gly	Ser 195	Gly	Ser	Gly	Thr	Ser 200	Tyr	Ser	Leu	Thr	Ile 205	Ser	Ser	Met	
	Glu	Ala 210	Glu	Asp	Ala	Ala	Thr 215	Tyr	Tyr	Cys	Gln	Gln 220	Trp	Ser	Ser	Asn	
55	Pro 225	Leu	Thr	Phe	Gly	Ala 230	Gly	Thr	Lys	Leu	Glu 235	Leu	Lys	Arg	Ala	Ala 240	

Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala 245 250 255

		<21	0>		9													
10		<21			113	7									,_	_	•	
70	,	<21			DNA	-											4	
		<21				coli												
					`													
	_	<22 <22			CDS													
15	•	<22				(1	1127	١										
	-	122	-		(1)	(113,	,										
		<40	0>		9													
20		ATG	AAA	TAC	CTG	CTG	CCG	ACC	GCT	GCT	GCT	GGT	CTG	CTG	CTC	CTC	GCT	48
		Met	Lys	Tyr	Leu	Leu	Pro	Thr	Ala	Ala	Ala	Gly	Leu	Leu	Leu	Leu	Ala	
		1				5					10					15		
													AAC					96
25		Ala	Gln	Pro		Met	Ala	Met	Ala	Tyr	Gln	Gly	Asn	Ser	Asp	Cys	Tyr	
					20					25					30			
													AGC					144
		Phe	Gly	Asn	Gly	Ser	Ala	Tyr	Arg	Gly	Thr	His	Ser	Leu	Thr	Glu	Ser	
30				35					40					45				
		GGT	GCC	TCC	TGC	CTC	CCG	TGG	AAT	TCC	ATG	ATC	CTG	ATA	GGC	AAG	GTT	192
		Gly	Ala	ser	Cys	Leu	Pro	Trp	Asn	Ser	Met	Ile	Leu	Ile	Gly	Lys	Val	
			50					55					60					
35		TAC	ACA	GCA	CAG	AAC	CCC	AGT	GCC	CAG	GCA	CTIC	GGC	CTYG	GGC	ΔΔΔ	СУТ	240
													Gly					240
		65					70					75	,	200	-	_, _	80	
40		AAT	TAC	TGC	CGG	AAT	CCT	GAT	GGG	GAT	GCC	AAG	CCC	TGG	TGC	CAC	GTG	288
,,,		Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Gly	Asp	Ala	Lys	Pro	${\tt Trp}$	Cys	His	Val	
						85					90					95		
	٠	CTG	ACG	AAC	CGC	AGG	CTG	ACG	TGG	GAG	TAC	TGT	GAT	GTG	CCC	TCC	TGC	336
45		Leu	Thr	Asn	Arg	Arg	Leu	Thr	Trp	Glu	Tyr	Cys	Asp	Val	Pro	Ser	Cys	
45					100					105					110			
		TCC	ACC	TGC	GGC	CTG	AGA	CAG	TAC	AGC	CAG	ССТ	CAG	TTT	CGC	ATC	AAA	384
													Gln					
50	•			115	_		_		120					125			-	
50																		
													TGG					432
		Gly		Leu	Phe	Ala	Asp		Ala	Ser	His	Pro	Trp	Gln	Ala	Ala	Ile	
			130					135					140					
55																		

	TTT	GCC	AAG	CAC	AGG	AGG	TCG	CCC	GGA	GAG	CGG	TTC	CTG	TGC	GGG	GGC	480
	Phe	Ala	Lys	His	Arg	Arg	Ser	Pro	Gly	Glu	Arg	Phe	Leu	Cys	Gly	Gly	
	145					150					155					160	
5																	
		CTC															528
	Ile	Leu	Ile	Ser		Cys	Trp	Ile	Leu		Ala	Ala	His	Cys		Gln	
					165		•			170					175		
														'-	- - -	1	
10		AGG														_	576
	GIU	Arg	Pne		Pro	HIS	HIS	Leu		vaı	11e	ьeu	GTÀ	_	Int	ıyı	
				180					185					190			
	ccc	GTG	GTC	CCT	CCC	CAC	GNG	GNG	CNG	מממ	ماسلمان	GNN	CTC	C A A	אאת	TAC	624
		Val															024
15	9	•	195	110	Ory	Olu	Oru	200	0111	Dy 3	rnc	Olu	205	O, u	Lys	+ 7 +	
													203			•	
	ATT	GTC	CAT	AAG	GAA	TTC	GAT	GAT	GAC	ACT	TAC	GAC	AAT	GAC	ATT	GCG	672
		Val															
20		210		-			215	-	-		•	220		•			-
20																	
	CTG	CTG	CAG	CTG	AAA	TCG	GAT	TCG	TCC	CGC	TGT	GCC	CAG	GAG	AGC	AGC	720
	Leu	Leu	Gln	Leu	Lys	Ser	Asp	Ser	Ser	Arg	Cys	Ala	Gln	Glu	Ser	Ser	
	225					230					235					240	
25																•	
		GTC															768
	Val	Val	Arg	Thr		Cys	Leu	Pro	Pro		Asp	Leu	Gln	Leu		Asp	
				•	245					250					255		
	TCC	200	CNC	T-C-T	CAC	CTC.	TOO	222	ma c	co.c	220	C N TO	C D C	000	mma	mom	216
30		ACG															816
	пр	Thr	GIU	260	GIU	reu	ser	GIY	265	GIY	гÀг	HIS	GIU	270	Leu	ser	
				200					203					270			
	CCT	TTC	TAT	TCG	GAG	CGG	CTG	AAG	GAG	GCT	CAT	GTC	AGA	СТС	TAC	CCA	864
		Phe			_				5								502
35			275			5		280					285		-1-		
	TCC	AGC	CGC	TGC	ACA	TCA	CAA	CAT	TTA	CTT	AAC	AGA	ACA	GTC	ACC	GAC	912
	Ser	Ser	Arg	Cys	Thr	Ser	Gln	His	Leu	Leu	Asn	Arg	Thr	Val_	Thr	Asp	
40		290					295					300					
40																	
		ATG															960
		Met	Leu	Cys	Ala		Asp	Thr	Arg	Ser	Gly	Gly	Pro	Gln	Ala	Asn	
	305					310					315					320	
45	THE PERSON	C7.C	07.0	000	maa	ar a	000	a » ~	moo	003	000	~~~	CTC C	OTT-C	m~~	CTDC	2000
		CAC															1008
	neu	His	Asp	ALA		GIII	GIY	ASP	Ser		GIÀ	PIO	Leu	vaı		Leu	
					325					330					335		
	AAC	GAT	GGC	CGC	ATY	АСТ	Lake	GTG	GGC	ATC	ATC	AGC	TGG	GGC	CALC	GGC	1056
50		Asp															1000
			- 1	340	-		-		345					350		2	
	TGT	GGA	CAG	AAG	GAT	GTC	CCG	GGT	GTG	TAC	ACC	AAG	GTT	ACC	AAC	TAC	1104
	Cys	Gly	Gln	Lys	Asp	Val	Pro	Gly	Val	Tyr	Thr	Lys	Val	Thr	Asn	Tyr	
55			355					360					365				

	CTA	GAC	TGG	ATT	CGT	GAC	AAC	ATG	CGA	CCG	TGA	•					1137
	Leu	Asp	Trp	Ile	Arg	Asp	Asn	Met	Arg	Pro	*						
		370					375		_								
5																	
J																	
	<21	0>		10													
	<21			379													
	<21			PRT											_		
10	<21				coli				•						-	₹	
		-															
	<40	n -		10													
4.5	Met	Lys	Tyr	Len	I.eu	Pro	Thr	Αla	Δla	Δla	Glv	Len	Len	Len	Len	Δla	
15	1	-,-	-1-		5					10	U -1	200		204	15		
	_				•												
	Ala	Gln	Pro	Ala	Met	Ala	Met	Ala	Tvr	Gln	Glv	Asn	Ser	Asn	Cve	Tur	
				20					25		1		001	30	0,0	-1-	
20																	
20	Phe	Gly	Asn	Gly	Ser	Ala	Tvr	Arq	Glv	Thr	His	Ser	Leu	Thr	Glu	Ser	
		•	35	•			- 2	40					45				
	Gly	Ala	Ser	Cys	Leu	Pro	Trp	Asn	Ser	Met	Ile	Leu	Ile	Gly	Lys	Val	
25	_	50		_			55					60		-	•		
23																	
	Tyr	Thr	Ala	${\tt Gln}$	Asn	Pro	Ser	Ala	Gln	Ala	Leu	Gly	Leu	Gly	Lys	His	
	. 65					70					75					80	
30	Asn	Tyr	Суѕ	Arg	Asn	Pro	Asp	Gly	Asp	Ala	Lys	Pro	Trp	Cys	His	Val	
					85					90					95		
	Leu	Thr	Asn		Arg	Leu	Thr	Trp	Glu	Tyr	Cys	Asp	Val	Pro	Ser	Cys	
				100					105					110			
35	_				_					_							
	Ser	Thr		GIA	Leu	Arg	Gln		Ser	Gln	Pro	Gln		Arg	Ile	Lys	
			115					120					125				
	21	07		- 1.					_		_	_				_	
	GIY	Gly	Leu	Pne	АТА	Asp		Ата	ser	HIS	Pro		Gin	Ala	Ala	He	
40		130					135					140			_		
	Dha	21-	T	***	N	3	C	D	a1	~1		5 1	•	_			
		Ala	гÀг	HIS	Arg		ser	Pro	GIY	GIU		Pne	ьец	Cys	GIY		
	145					150					155					160	
	Tle	Leu	Tle	Ser	Ser	Cve	Tra	T10	T.em	Sar	7 1 a	בות	Wic	٥	Dho	C1-	
45	110	Deu	110	JCL	165	Cys.	пр	110	пси	170	AIA	Αтα	1113	cys	175	GIII	
					103				•	1,0					1/5		
	Glu	Arg	Phe	Pro	Pro	His	His	ĭ.en	Thr	Val	Tle	Leu	Glv	Ara	Thr	Tur	
		9		180					185			LCu	01,	190	1111	- 7 -	
														170			
50	Arq	Val	Val	Pro	Glv	Glu	Glu	Glu	Gln	Lvs	Phe	Glu	Val	Glu	Lvs	የ	
-	- 3	_	195	. –	- 1			200		- <u>,</u>			205		_, _	-1-	
			_														
	Ile	Val	His	Lys	Glu	Phe	Asp	Asp	Asp	Thr	Tyr	qaA	Asn	Asp	Ile	Ala	
		210		-			215	•	. •		-	220		F			
55																	

	Leu 225	Leu	Gln	Leu	Lys	Ser 230	Asp	Ser	Ser	Arg	Cys 235	Ala	Gln	Glu	Ser	Ser 240
5	Val	Val	Arg	Thr	Val 245	Cys	Leu	Pro	Pro	Ala 250	Asp	Leu	Gln	Leu	Pro 255	Asp
10	Trp	Thr	Glu	Cys 260	Glu	Leu	Ser	Gly	Tyr 265	Gly	Lys	His	Glu	Ala 27 <u>0</u>		Ser
	Pro	Phe	Tyr 275	Ser	Glu	Arg	Leu	Lys 280	Glu	Ala	His	Val	Arg 285	Leu	Tyr	Pro
15	Ser	Ser 290	Arg	Cys	Thr	Ser	Gln 295	His	Leu	Leu	Asn	Arg 300	Thr	Val	Thr	Asp
	Asn 305	Met	Leu	Суѕ	Ala	Gly 310	Asp	Thr	Arg	Ser	Gly 315	Gly	Pro	Gln	Ala	Asn 320
20	Leu	His	Asp	Ala	Cys 325	Gln	Gly	Asp	Ser	Gly 330	Gly	Pro	Leu	Val	Cys 335	Leu
25	Asn	Asp	Gly	Arg 340	Met	Thr	Leu	Val	Gly 345	Ile	Ile	Ser	Trp	Gly 350	Leu	Gly
	Cys	Gly	Gln 355	Lys	Asp	Val	Pro	Gly 360	Val	Tyr	Thr	Lys	Val 365	Thr	Asn	Tyr
30	Leu	Asp 370	Trp	Ile	Arg	Asp	Asn 375	Met	Arg	Pro	*					

Patentansprüche

35

45

50

55

- Verfahren zur Herstellung eines natürlich gefalteten eukaryontischen Polypeptids, enthaltend zwei oder mehrere über Disulfidbrücken verknüpfte Cysteine, durch
 - a) Kultivierung prokaryontischer Zellen, wobei die genannten prokaryontischen Zellen einen Expressionsvektor enthalten, der für das genannte Polypeptid, das am N-Terminus eine prokaryontische Signalsequenz enthält, codiert,
 - b) Sekretion des Polypeptids in das Periplasma oder das Medium,
 - c) Abspaltung der Signalsequenz und Isolierung des Polypeptids aus dem Periplasma oder dem Medium,

dadurch gekennzeichnet, daß in der genannten prokaryontischen Zelle zusätzlich eine für ein molekulares Chaperon codierende Nukleinsäure exprimiert und das Chaperon ins Periplasma sekretiert wird.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Chaperon DNAJ oder HSP25 verwendet wird.
- Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß dem Nährmedium ein reduzierendes Thiolreagenz zugesetzt wird.

- Verlahren nach Anspruch 3, dadurch gekennzeichnet, daß als reduzierendes Thiolreagenz Glutathion (GSH) verwendet wird.
- Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Signalsequenz aus gramnegativen Bakterien stammt.
 - 6. Verlahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die für das molekulare Chaperon codierende Nukleinsäure und die für das Polypeptid codierende Nukleinsäure auf zwei getrennten Vektoren lokalisiert sind.
 - 7. Verlahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die für das molekulare Chaperon codierende Nukleinsäure auf dem Expressionsvektor, welcher auch die für das Polypeptide codierende Nukleinsäure enthält, lokalisiert ist.
- 8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß die für das molekulare Chaperon codierende rekombinante DNA in operativer Verknüpfung mit einem DNA-Fragment steht, das ein Signalpeptid zum Durchdringen der inneren bakteriellen Membran codiert.
- Verlahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß sich die für das sekretierte molekulare
 Chaperon und/oder für das sekretierte Protein codierende DNA unter Kontrolle eines induzierbaren Expressionssignals belindet.
 - 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Polypeptid ein Antikörper, Antikörperfragment, Interferon, Proteinhormon oder eine Protease ist.

25

5

10

25

30

35

40

45

50

55

Fig. 1

	<u>~</u>	gereinigtes DnaJ	DnaJ				Sph	Sphäroplasten	sten				
				intraz DnaJ	intrazelluläres DnaJ	ည	intraz DnaJ	intrazelluläres DnaJ	sa	peripl DnaJ	periplasmatisches DnaJ	isches	
	<u> </u>	٠		_	+								Triton
		•	5 30	·	S	30	0	5	30	0	5	30	Dauer der Trypsinbehandlung in min
		-											
50 KDa F0 KDa		1	1			•		Ì	I	1	•	ŀ	— 50 KDa — 40 KDa
80 kDa		•			ţ					**	Ť		— 30 кDа
20 kDa		1	1								1	H	— 20 кDа
													4
.0 kDa		1	*									'	— 10 kDa

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 99 11 4811

	EINSCHLÄGIGE	DUKUMENTE	 -	
Kategorie	Kennzeichnung des Dokur der maßgeblich	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLAS FIKATION DER ANMEEDUNG (Int.Cl.7)
χ	WO 98 18946 A (GENE	INTECH INC)	1,5-10	C12N15/58
	7. Mai 1998 (1998-0	05 - 07)		C12N15/62
Y	* das ganze Dokumer	ıt *	2-4	C12N15/31
				C12N9/72
X	WO 96 14422 A (GENE		1,5-10	C07K14/245
Y	17. Mai 1996 (1996- * das ganze Dokumen	•	2-4	C07K1/113 C12N1/20
'	+ das ganze Dokumer		2-4	C12N1/20
Υ	EP 0 219 874 A (BOE	HRINGER MANNHEIM GMBH)	2,4	C12P21/02
	29. April 1987 (198		-,	
	* das ganze Dokumen	t *		
Y	KICHI YOKOYAMA EI	AL.: "Overproduction his coli improves in	2	
	vivo solubility of			
	Fish-derived transg	lutaminase"		
	BIOSCIENCE BIOTECHN	OLOGY BIOCHEMISTRY.		
		1998 (1998-06), Seiten	1	
	1205-1210, XP002114	992	1	
	TOKYO JP	.	1	250,050,050
	* das ganze Dokumen	L +		RECHERCHIERTE SACHGEBIETE (Int.CI.7)
Υ	EP 0 885 967 A (HSP	RESEARCH INST INC)	2	C12N
	23. Dezember 1998 (C07K
i	* das ganze Dokumen	t *		C12P
,	HC 4 757 012 A (TNO	UVE MACAYORI ET AL.		
A	12. Juli 1988 (1988	UYE MASAYORI ET AL)	1-10	
		7 - Spalte 62, Zeile 64	1	
	*			
_				
A	WO 89 06283 A (INGE		1-10	•
	GENETIC E) 13. Juli * das ganze Dokumen			
	+ das ganze Dokumen]	
A	EP 0 774 512 A (IMA	NAKA TADAYUKI)	1-10	
	21. Mai 1997 (1997-		İ	
	* das ganze Dokumen	t *		
		-/		
		-/		
Der vo	rtiegende Recherchenbericht wur	de lür alle Patentansprüche erstellt		
	Recherchenori	Abschlußdatum der Recherche	<u> </u>	Prüfer
	DEN HAAG	12. Januar 2000	Horr	nig, H
К	TEGORIE DER GENANNTEN DOKL			heorien oder Grundsätze
	pesonderer Bedeutung allein betracht	E : älteres Patentdol	ument, das jedoc dedatum veröffent	h erst am oder
Y: von	besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg	mit einer D : in der Anmeldung	angeführtes Dok	ument
A : tech	nologischer Hintergrund Ischnittiche Ottenbarung			
	chentiteratur	& : Mitglied der gleic Dokument	ren ratentiamilie,	upereinstimmendes

PO FORM 1503 03 82 (

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 99 11 4811

Kategorie	Kennzeichnung des Doku	ments mit Angabe, soweit erforderlich,	Betrifft -	ASSIFIKATION DER
Kategorie	der maßgeblic		Anspruch	
D,A	EP 0 510 658 A (B0 28. Oktober 1992 (* das ganze Dokume		1-10	
Α	M. EHRNSPERGER ET A HSP25 quaternary s J. BIOL. CHEM., Bd. 274, Nr. 21, 21. Mai 1999 (1999- 14867-14874, XP002 AM. SOC. BIOCHEM. MOL.BIOL.,INC.,BAL * das ganze Dokumer	-05-21), Seiten 127323 FIMORE,US	1-10	
D,A	M. EHRNSPERGER ET A non-native protein shock creates a res intermediates for a EMBO J., Bd. 16, Nr. 2, 15. Januar 1997 (19 221-229, XP00212732 OXFORD UNIVERSITY A * das ganze Dokumer	to HSP-25 during heat servoir of folding reactivation" 297-01-15), Seiten 24 PRESS,GB;	1-10	RECHERCHIERTE SACHGEBIETE (Int.Ci.7)
			_	-
Der vo		rde für alle Patentansprüche ' t	!	
	Recherchenort DEN HAAG	Abschlußdatum der Her 2000	Ност	Proder nig, H
X : von I Y : von I ande A : techi O : nichi	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kate- nologischer Hintergrund tschriftliche Offenbarung cherillieratung	UMENTE T: der Erlimaung zu E: åtteres Palentide nach dem Anme g mit einer D: in der Anmeldur gorie L: aus anderen Grü	grunde liegende T kument, das jedoc kledatum veröffen ig angeführtes Dok inden angeführtes	heorien oder Grundsätze th erst am oder Ilicht worden ist tument

34

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 11 4811

In diesem Anhang sind die Mitglieder der Patentlamilien der im obengenannten europäischen Recherchenbericht angetührten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewahr.

12-01-2000

	Recherchenben hrtes Patentdok		Datum der Veröffentlichung	l	Mitglied(er) der Patentlamilie	Datum der
				l		Veröffentlichung
l wo	9818946	Α	07-05-1998	US	5789199 A	04-08-1998
		~		AU	4816397 A	22-05-1998
wo	9614422	Α	17-05-1996	US	5639635 A	17-06-1997
				CA	2203373 A	17-05-1996
				EP	0786009 A	30-07-1997
		•		JP	10508203 T	18-08-1998
				US	5789199 A	04-08-1998
EP	0219874	Α	29-04-1987	DE	3537708 A	23-04-1987
,				AT	98648 T	15-01-1994
				AT	131489 T	15-12-1995
				AU	607083 B	21-02-1991
				AU	4132189 A	04-01-1990
				AU	590029 B	26-10-1989
				AU	6599386 A	19-05-1987
				CA	1329157 A	03-05-1994
				CZ	8607526 A	17-01-1996
				DE	3650449 D	25-01-1996
				DE	3689404 D	27-01-1994
				DK	320387 A	23-06-1987
				MO	8702673 A	07-05-1987
				EP	0253823 A	27-01-1988
				EP	0393725 A	24 - 10-1990
			•	ES	2061434 T	16-12-1994
				ES	2020498 T	01-04-1996
				FI	872753 A,B,	22-06-1987
			•	F1	933868 A,B,	03-09-1993
				GR	92300062 %	31-08-1992
				GR	3018410 T	31-03-1996
				HK	153496 A	16-08-1996
				HK	153596 A	16-08-1996
				HR HU	921075 A 43643 A	30-06-1995
				IE	43643 A 62634 B	30-11-1987
				IL	80325 A	22-02-1995
			•	JP	2117325 C	21-06-1992
				JP	4218387 A	06-12-1996 07-08-1992
				JP	8024594 B	13-03-1996
				JP	7028745 B	05-04-1995
				JP	62502895 T	19-11-1987
				KR	9009139 B	22-12-1990
				ĹŸ	5289 A	10-10-1993
				PT	83609 A,B	01-11-1986
				SĪ	8611796 A.B	31-10-1996
				SK	752686 A	01-10-1996
					. 52000 /1	01 10 1590

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM POSE1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 99 11 4811

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentarmts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

12-01-2000

	Recherchenberi hrtes Patentdok		Datum der Veröffentlichung		Mitglied(er) der Patentlamilie	Datum der Veröffentlichu
EP	0219874	Α		US	5453363 A	26-09-19
				US	5593865 A	14-01-199
				YÜ	179686 A	30-06-19
EP	0885967	Α	23-12-1998	JP	11009274 A	19-01-19
				CA	2235468 A	20-12-199
US	4757013	Α	12-07-1988	US	4643969 A	17-02-19
WO	8906283	Α	13-07-1989	AT	140731 T	15-08-19
				AU	2937789 A	01-08-19
				CA	1338807 A	24-12-19
				DE	68926882 D	29-08-19
				DE	68926882 T	13-02-19
				EP	0396612 A	14-11-19
				JP	4503151 T	11-06-19
				US	5618920 A	08-04-19
				US	5595898 A	21-01-19
				US	5576195 A	19-11-19
				US	5693493 A	02-12-19
				US	5698417 A	16-12-19
				US	5698435 A	16-12-19
				US	5846818 A	08-12-19
EP	0774512	Α	21-05-1997	JP	9173078 A	08-07-19
EΡ	0510658	Α	28-10-1992	DE	4113750 A	29-10-19
				AT	109205 <u>T</u>	15-08-19
				ΑU	636537 B	29-04-19
				AU	1515992 A	19-11-19
				CA	2066370 A,C	27-10-19
	`			DE	59200312 D	01-09-19
				DK	510658 T	28-11-19
				ES	2057944 T	16-10-19
				FI	921838 A	27-10-19
				ΙE	65792 B	29-11-19
				JP	2033750 C	19-03-19
				JP	5268983 A	19-10-19
				JP	7053118 B	07-06-19
				KR	9602869 B	27-02-19
				NO	921574 A	27-10-19
				NZ	242492 A	27-09-19
		3				•
		 }				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82