Topics: Data Types

- Primitive Data Types
- Character String Types
- Enumeration Types
- Array Types
- Associative Arrays

Note: Today's office hours changed to 12:00-1:00pm

Terms

- A data type defines a collection of data values and a set of predefined operations on those values
- A descriptor is the collection of the attributes of a variable
- An object represents an instance of a user-defined (abstract data) type
- One design issue for all data types: What operations are defined and how are they specified?

Primitive Data Types

- Almost all programming languages provide a set of *primitive data types*
- Primitive data types: Those not defined in terms of other data types
- Some primitive data types are merely reflections of the hardware
- Others require only a little non-hardware support for their implementation

Primitive Data Types: Integer

- Almost always an exact reflection of the hardware so the mapping is trivial
- There may be as many as eight different integer types in a language
- Java's signed integer sizes: byte, short, int, long

Primitive Data Types: Floating Point

- Model real numbers, but only as approximations
- Languages for scientific use support at least two floating-point types (e.g., float and double); sometimes more

Usually exactly like the hardware, but not

always

IEEE Floating-Point
 Standard 754

Primitive Data Types: Complex

- Some languages support a complex type, e.g., C99, Fortran, and Python
- Each value consists of two floats, the real part and the imaginary part
- Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is the imaginary part

Primitive Data Types: Decimal

- For business applications (money)
 - Essential to COBOL
 - C# offers a decimal data type
- Store a fixed number of decimal digits, in coded form (BCD)
- Advantage: accuracy
- Disadvantages: limited range, wastes memory

Primitive Data Types: Boolean

- Simplest of all
- Range of values: two elements, one for "true" and one for "false"
- Could be implemented as bits, but often as bytes
 - Advantage: readability

Primitive Data Types: Character

- Stored as numeric codings
- Most commonly used coding: ASCII
- An alternative, 16-bit coding: Unicode (UCS-2)
 - Includes characters from most natural languages
 - Originally used in Java
 - Now supported by many languages
- 32-bit Unicode (UCS-4)
 - Supported by Fortran, starting with 2003

Character String Types

- Values are sequences of characters
- Design issues:
 - Is it a primitive type or just a special kind of array?
 - Should the length of strings be static or dynamic?

Character String Types - Operations

- Typical operations:
 - Assignment/copying
 - Comparison (=, >, etc.)
 - Catenation
 - Substring reference
 - Pattern matching

Character String Type in Certain Languages

- C and C++
 - Not primitive
 - Use char arrays and a library of functions that provide operations
- SNOBOL4 (a string manipulation language)
 - Primitive
 - Many operations, including elaborate pattern matching
- Fortran and Python
 - Primitive type with assignment and several operations
- Java (and C#, Ruby, and Swift)
 - Primitive via the String class
- Perl, JavaScript, Ruby, and PHP
 - Provide built-in pattern matching, using regular expressions

Character String Length Options

- Static Length: COBOL, Java's String class
- Limited Dynamic Length: C and C++
 - In these languages, a special character is used to indicate the end of a string's characters, rather than maintaining the length
- Dynamic Length (no maximum): SNOBOL4, Perl, JavaScript

Character String Type Evaluation

- Aid to writability
- As a primitive type with static length, they are inexpensive to provide—why not have them?
- Dynamic length is nice, but is it worth the expense?

Character String Implementation

- Static length: compile-time descriptor
- Limited dynamic length: may need a runtime descriptor for length (but not in C and C++)
- Dynamic length: need run-time descriptor; allocation/deallocation is the biggest implementation problem

Compile- and Run-Time Descriptors

Static string

Length

Address

Compile-time descriptor for static strings

Limited dynamic string

Maximum length

Current length

Address

Run-time descriptor for limited dynamic strings

Enumeration Types

- All possible values, which are named constants, are provided in the definition
- C# example

```
enum days {mon, tue, wed, thu, fri, sat, sun};
```

- Design issues
 - Is an enumeration constant allowed to appear in more than one type definition, and if so, how is the type of an occurrence of that constant checked?
 - Are enumeration values coerced to integer?
 - Any other type coerced to an enumeration type?

Evaluation of Enumerated Type

- Aid to readability, e.g., no need to code a color as a number
- Aid to reliability, e.g., compiler can check:
 - operations (don't allow colors to be added)
 - No enumeration variable can be assigned a value outside its defined range
 - C#, F#, Swift, and Java 5.0 provide better support for enumeration than C++ because enumeration type variables in these languages are not coerced into integer types

Array Types

 An array is a homogeneous aggregate of data elements in which an individual element is identified by its position in the aggregate, relative to the first element.

Array Design Issues

- What types are legal for subscripts?
- Are subscripting expressions in element references range checked?
- When are subscript ranges bound?
- When does allocation take place?
- Are ragged or rectangular multidimensional arrays allowed, or both?
- What is the maximum number of subscripts?
- Can array objects be initialized?
- Are any kind of slices supported?

Array Indexing

 Indexing (or subscripting) is a mapping from indices to elements

array_name (index_value_list) → an element

- Index Syntax
 - Fortran and Ada use parentheses
 - Ada explicitly uses parentheses to show uniformity between array references and function calls because both are *mappings*
 - Most other languages use brackets

Arrays Index (Subscript) Types

- FORTRAN, C: integer only
- Java: integer types only
- Index range checking
 - C, C++, Perl, and Fortran do not specify range checking
 - Java, ML, C# specify range checking

Subscript Binding and Array Categories

- Static: subscript ranges are statically bound and storage allocation is static (before runtime)
 - Advantage: efficiency (no dynamic allocation)
- Fixed stack-dynamic. subscript ranges are statically bound, but the allocation is done at declaration elaboration time
 - Advantage: space efficiency

Subscript Binding and Array Categories (continued)

• Fixed heap-dynamic: similar to fixed stack-dynamic: storage binding is dynamic but fixed after allocation (i.e., binding is done when requested and storage is allocated from heap, not stack)

Subscript Binding and Array Categories (continued)

- Heap-dynamic: binding of subscript ranges and storage allocation is dynamic and can change any number of times
 - Advantage: flexibility (arrays can grow or shrink during program execution)

Subscript Binding and Array Categories (continued)

- C and C++ arrays that include static modifier are static
- C and C++ arrays without static modifier are fixed stack-dynamic
- C and C++ provide fixed heap-dynamic arrays
- Perl, JavaScript, Python, and Ruby support heap-dynamic arrays

Array Initialization

 Some language allow initialization at the time of storage allocation

```
- C, C++, Java, Swift, and C#
- C# example:
int list [] = \{4, 5, 7, 83\}

    Character strings in C and C++

char name [] = "freddie";

    Arrays of strings in C and C++

char *names [] = {"Bob", "Jake", "Joe"];
- Java initialization of String objects
String[] names = {"Bob", "Jake", "Joe"};
```

Rectangular and Jagged Arrays

- A rectangular array is a multi-dimensioned array in which all of the rows have the same number of elements and all columns have the same number of elements
- A jagged matrix has rows with varying number of elements
 - Possible when multi-dimensioned arrays actually appear as arrays of arrays

Slices

- A slice is some substructure of an array; nothing more than a referencing mechanism
- Slices are only useful in languages that have array operations

Slice Examples

Python

```
vector = [2, 4, 6, 8, 10, 12, 14, 16]
mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```

vector (3:6) is a three-element array
mat[0][0:2] is the first and second element of the
 first row of mat

Ruby supports slices with the slice method
 list.slice(2, 2) returns the third and fourth
 elements of list

Implementation of Arrays

- Access function maps subscript expressions to an address in the array
- Access function for single-dimensioned arrays:

```
address(list[k]) = address (list[lower_bound])
     + ((k-lower_bound) * element_size)
address(list[k]) = address (list[0])
     + k * element_size
```

Accessing Multi-dimensioned Arrays

- Two common ways:
 - Row major order (by rows) used in most languages
 - Column major order (by columns) used in Fortran
 - A compile-time descriptor for a multidimensional array

Multidimensioned array
Element type
Index type
Number of dimensions
Index range 0
:
Index range n – 1
Address

Locating an Element in a Multidimensioned Array

General format

Location (a[I,j]) = address of a [row_lb,col_lb] + (((I - row_lb) * n) + (j - col_lb)) * element_size

	1	2	 <i>j</i> −1	j	 n
1					
2					
:					
<i>i</i> −1					
i				\otimes	
:					
m					

Compile-Time Descriptors

Array

Element type

Index type

Index lower bound

Index upper bound

Address

Multidimensioned array
Element type
Index type
Number of dimensions
Index range 1
Index range <i>n</i>
Address

Single-dimensioned array

Multidimensional array

Associative Arrays

- An associative array is an unordered collection of data elements that are indexed by an equal number of values called keys
 - User-defined keys must be stored
- Design issues:
 - What is the form of references to elements?
 - Is the size static or dynamic?
- Built-in type in Perl, Python, Ruby, and Swift

Associative Arrays in Perl

 Names begin with %; literals are delimited by parentheses

```
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed" => 65, ...);
```

Subscripting is done using braces and keys

```
hi_temps{"Wed"} = 83;
```

- Elements can be removed with delete

```
delete $hi_temps{"Tue"};
```