ASSIGNED: Apr. 11, 2013. **READ:** Sects. 11.1-11.4 if you haven't already. **DUE DATE:** UNGRADED. **TOPICS:** Multirate filtering, DSP noise filtering.

NOTE: This problem set will not be collected or graded.

- [10] 1. Using multirate filtering to alter the pitch of musical notes:

 You have a snippet of music at note E. You want to change note E to note A.

 Note A has frequency 2/3 that of note E. Design a multirate system to do this.
- [30] 2. Drill on multirate filtering and aliasing:
 A 400 Hertz sinusoid is input to the DSP systems below at 1000 SAMPLE SECOND.
 The output of each one is one or more sinusoids. Compute their frequencies.

[10] a. 400 Hz
$$\rightarrow$$
 $\mathbf{A/D}$ \rightarrow \uparrow $\mathbf{2}$ \rightarrow \downarrow $\mathbf{3}$ \rightarrow $\mathbf{D/A}$ \rightarrow ?
[10] b. 400 Hz \rightarrow $\mathbf{A/D}$ \rightarrow \downarrow $\mathbf{3}$ \rightarrow \uparrow $\mathbf{2}$ \rightarrow $\mathbf{D/A}$ \rightarrow ?
[10] c. 400 Hz \rightarrow $\mathbf{A/D}$ \rightarrow \downarrow $\mathbf{4}$ \rightarrow \uparrow $\mathbf{2}$ \rightarrow $\mathbf{D/A}$ \rightarrow ?

Try checking your answers using Matlab (see my lecture notes for Matlab commands).

Download p0.mat from the web site. >>load p0.mat to get sampled signals X1, X2, X3.

- [20] 3. X1 is a periodic signal, with noise added, sampled at 1000 SAMPLE SECOND
 - [5] a. Plot X1 as a continuous-time signal (use plot, not stem).
 - [5] b. Compute its spectrum using FX=fft(X1)/length(X1). Plot its magnitude for $0 \le f \le 20$ Hz. Note f=(K-1) $\frac{1000}{1000}$ =K-1, so plot abs(FX(1:20)) vs. [0:19].
 - [5] c. Threshold its spectrum using FX(abs(FX)<0.9)=0. Plot it for $0 \le f \le 20$ Hz.
 - [5] d. Plot length(X1)*real(ifft(FX)) for the thresholded FX. The noise is gone, even though we didn't know anything about the signal except that it was periodic. That told us its spectrum was a line spectrum, so we could eliminate the noise by setting everything that wasn't a large line to 0. Thresholding was an easy way.
- [20] 4. X2 is a trumpet, with noise added, sampled at $44100\frac{\text{SAMPLE}}{\text{SECOND}}$ (standard CD rate). Repeat #3. Use a threshold of 0.0015, and plot the spectrum for $0 \le f \le 4000$ Hz. Listen to the noisy and filtered trumpets. The noise is eliminated again!
- [20] 5. X3 is 2 trumpets playing simultaneously notes A and B, sampled at $44100 \frac{\text{SAMPLE}}{\text{SECOND}}$.
 - [5] a. Plot X3(1000:1199) as a continuous-time signal (use plot, not stem).
 - [5] b. Plot the spectrum for $0 \le f \le 4000$ Hz. Note the pairs of harmonics.
 - [5] c. Knowing *only* that note B has a higher frequency than note A, eliminate the trumpet playing note A by setting its harmonics to 0.
 - [5] d. Listen to the result in the time domain. Only one trumpet is left!

"The value of an idea lies in the using of it"—Thomas Edison. DSP applications.