

Portas lógicas

As **portas lógicas** são pequenos circuitos digitais, que realizam uma determinada função lógica.

No capítulo da **álgebra de Boole** foram introduzidas três funções lógicas elementares:

- Negação ou Inversão NOT
- Intersecção ou Produto Lógico AND
- Reunião ou Soma Lógica OR

Para além destas, existem outras funções básicas importantes que se apresentam em seguida.

Componentes TTL:

- Designação:
 - 54 / 74 Série 74 = standard
 Série 54 = aplicações militares

- L / LS / S / " " / H tipos diferentes de transístores e compromissos diferentes de velocidade vs. potência dissipada.
- A família LS é actualmente a mais popular.

		Atraso	Potência Dissipada	Produto Pot.*Atr.
74	Standard	10 ns	10 mW	100 pJ
74LS	Low-Power Schottky	9,5 ns	2 mW	19 pJ
74 S	Schottky	3 ns	19 mW	57 pJ
74L	Low-Power	33 ns	1 mW	33 pJ
74H	High-Power	6 ns	22 mW	132 pJ

Componentes TTL:

► Exemplos:

Exemplo de Componentes Disponíveis		
Dispositivo	Função	
'00	4 NAND2	
'02	4 NOR2	
'04	6 NOT	
'08	4 AND2	
'20	2 NAND4	
'21	2 AND4	
'27	3 NOR3	
'30	1 NAND8	
'32	4 OR2	
'126	4 Buffers Tri-State	
'136	4 XOR2	

Níveis lógicos:

- V_{OH} Tensão mínima de saída fornecida pela porta lógica, quando a saída se encontra no nível lógico alto (HIGH)
- V_{OL} Tensão máxima de saída fornecida pela porta lógica, quando a saída se encontra no nível lógico baixo (LOW)
- V_{IH} Tensão mínima de entrada interpretada pela porta lógica como nível lógico alto (HIGH)
- V_{IL} Tensão máxima de entrada interpretada pela porta lógica como nível lógico baixo (LOW)

Níveis lógicos:

ΔH e ΔL - Correspondem às margens de ruído, i.e., à diferença máxima entre os níveis de tensão fornecidos pelas saídas e os níveis de tensão admitidos nas entradas para uma interpretação correcta dos sinais.

Portas Lógicas

6

Famílias lógicas diferentes consideram, em geral, limites de tensão diferentes para a interpretação dos níveis lógicos

Função AND negada - NAND

$$F(A,B) = \overline{A.B}$$

Α	В	A .B
0	0	1
0	1	1
1	0	1
1	1	0

Função OR negada - NOR

$$F(A,B) = \overline{A+B}$$

Α	В	A + B
0	0	1
0	1	0
1	0	0
1	1	0

Função Exclusive OR – EX-OR

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

1 quando A e B diferentes

$$F(A,B) = A.\overline{B} + \overline{A}.B$$
$$= A \oplus B$$

 Função Exclusive NOR – EX-NOR (Circuito Equivalência)

Α	В	$A \oplus B$
0	0	1
0	1	0
1	0	0
1	1	(1)

1 quando A e B iguais

$$F(A,B) = A.B + \overline{A}.\overline{B}$$
$$= \overline{A \oplus B}$$

Principais portas lógicas

Função	Símbolo (DeMorgan)	Símbolo Alternativo Lógica	Expressão
E AND			A.B
ou <i>o</i> r			A + B
NE <i>NAND</i>			$\overline{\mathrm{A.B}}$
NOU NOR			$\overline{A+B}$
inversor NOT	>	→	\overline{A}
OU-EX EX-OR			$A.\overline{B} + \overline{A}.B$
NOU-EX EX-NOR			$A.B + \overline{A.B}$

Universalidade das portas NAND e NOR

Todas as funções lógicas se podem construir usando somente portas **NAND** ou **NOR**, razão pela qual são designadas por **portas universais**.

Implementação das funções NOT, AND e OR com portas NAND

024

Implementação das funções NOT, OR e AND com portas NOR

