## Quick Review of Case-cohort Design

Boyi Guo

Department of Biostatistics University of Alabama at Birmingham

August 5th, 2021

TL;DR

#### TL;DR

- Case-cohort, a special case of case-control, is designed for flexibility when studying multiple endpoints or staggered entry studeis
  - Only use random sub-cohort part of data for accurate odds ratio estimation (Prentice 1986)
- Case-cohort study consists three parts:
  - Random Sub-cohort: sub-cohort cases and sub-cohort non-cases
  - Non sub-cohort cases
- Use sampling weight when doing analysis
  - Denominator Weights need to be calculated for cases
- ▶ When the case definition changes, your analytic dataset changes
  - ▶ REGARDS used stratification when random sampling the sub-cohort part. Hence, there are multiple case-cohort studies where the *survey weights* are different
  - Do not change your sub-cohort sample

### Motivation

#### Motivation

- ► The purpose for customized study designs is mostly for accurate estimation of a statistics (mean or measure of association)
  - ► Golden standard: cohort study
- ► The cohort design is not efficient for studying outcomes that are rear or has long follow-up
  - Case-control design
- Many types of case-control designs, depending on how controls are sampled
  - Case-cohort is a special case of case-control
- ▶ A big part of data collected in the case-cohort design, the random sub-cohort, can be repeatedly used when studying other definitions of cases.

## Study Design

### Study Design



#### Logistics

- At baseline
  - ► Collect blood sample for all participants and store in a freezer
  - Create random sub-cohort<sup>1</sup>
- At the time of case-cohort study
  - Define cases and assemble the analytic dataset
  - Analyze the blood sample for the analytic dataset
  - Run analysis

<sup>&</sup>lt;sup>1</sup>This step can be also done retrospectively

## Analysis

#### Survival Analysis

▶ Define *Denominator Weights* following Barlow et al. (1999)

TABLE 2. Denominator weights in the pseudolikelihood for cases ad controls by method

| Prentice [2] | Self and Prentice [7] | Barlow [8]                                                             |
|--------------|-----------------------|------------------------------------------------------------------------|
| 0            | 0                     | 0                                                                      |
| 1            | 0                     | 1                                                                      |
| 1            | 1                     | $1/\alpha$                                                             |
| 1            | 1                     | 1                                                                      |
| 1            | 1                     | $1/\alpha$                                                             |
|              | 0<br>1<br>1<br>1<br>1 | Prentice [2] Self and Prentice [7]   0 0   1 0   1 1   1 1   1 1   1 1 |

- Robust variance estimations are recommended
- Software implementation are documented Barlow et al. (1999) with a dated Macro provided

## Cautious

#### Cautious

- ▶ Different from nested case-control design
  - ► Risk set for controls sampling are different
- Define your cohort clearly
  - Sampling the random subcohort before/after exclusion of sample makes different to the estimation
  - ▶ Most often, REGARDS have pre-defined random sub-cohort. Don't do it on your own.

# Methodology Development

### Methodology Development

- Linear regression in a case-cohort study: interpretation and statistical inference
- Bootstraping strategies in a case-cohort study and its implications on mediation analysis

### Reference

#### Reference

- Barlow, William E., Laura Ichikawa, Dan Rosner, and Shizue Izumi. 1999. "Analysis of case-cohort designs." *Journal of Clinical Epidemiology* 52 (12): 1165–72. https://doi.org/10.1016/S0895-4356(99)00102-X.
- Prentice, R. L. 1986. "A Case-Cohort Design for Epidemiologic Cohort Studies and Disease Prevention Trials." *Biometrika* 73 (1): 1. https://doi.org/10.2307/2336266.