1. Introduction to Machine Learning

Machine Learning definitions:

- Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.
- From the book "An Introduction to Statistical Learning": Statistical learning refers to a vast set of tools for understanding data.
- From the book "Machine Learning in action":
 - Machine learning is turning data into information.
 - Machine learning lies at the intersection of computer science, engineering, and statistics and often appears in other disciplines.
 - o It's a tool that can be applied to many problems. Any field that needs to interpret and act on data can benefit from machine learning techniques.
 - o Machine learning uses statistics.
- From the book "Introduction to Machine Learning" by Ethem Alpaydin:
 - o Machine learning is not just a database problem; it is also a part of artificial intelligence.
 - Machine learning also helps us find solutions to many problems in vision, speech recognition, and robotics.
 - Machine learning is programming computers to optimize a performance criterion using example data or experience.

https://youtu.be/1igh1B1OZAg

1.1 Machine Learning Applications

- Face recognition
- Emotion recognition
- Identifying spam emails
- Weather forecasting
- Object recognition
- Recommendation systems
- Medical data analysis

In addition, computer prorams have been able to beat the best humans in:

- Chess
- <u>Go</u>

1.2 Why is Machine Learning now capturing much attention?

Because there are:

- A massive amount of data. <u>See the images</u>
- Computer resources (hardware) are cheaper, faster, and more powerful
- Better understanding of algorithms
- We have platforms to share code (for example, GitHub)

1.3 Some concepts: AI, Data Science, Machine Learning and Deep Learning

- **Artificial Intelligence** is a subfield of computer science. It is the ability of a digital computer to perform tasks commonly associated with intelligent beings.
- Machine learning is a branch of Artificial Intelligence. The goal is to turn data into information.
- **Deep learning** is one kind of machine learning (neural networks) that's very popular now. It has been given very impressive results. It needs many data and computational resources to work.
- Data science deals with unstructured and structured data. It is a field that comprises everything related to
 data cleaning, preparation, and analysis. It combines statistics, mathematics, programming, problemsolving, and capturing data in ingenious ways.

1.4 Recent amazing applications with the use of Deep Learning

ImageNet is a challenge that consists of recognizing a target of **1,000 different categories**. The dataset is composed of more than **1.2 million images**. It had been a difficult problem for computers until 2015, where Al algorithms' results improve human results. The following image shows the error of the challenge over the years.

Other applications are:

- Multiple object recognition
- Image segmentation
- Image description
- Face Aging
- Interpolation of faces
- Art style transfer
- Self driving cars

1.5 Programming languages

Python

- Expressive
- General purpose computer programming language
- Interpreted
- Free and open source
- There are a lot scientific libraries. For example: Machine Learning (numpy, scipy, scikit-learn) and Computer vision (OpenCV)

- It is focus on statistics.
- Free
- There are Machine Learning libraries.

Matlab

- It is focus on mathematics.
- Programming language: M
- It is not free

GNU Octave is an open source version of Matlab

Java/Weka

- Java: General purpose computer programming
- Weka: Collection of algorithms of Machine Learning for Java.

1.6 Public data sources for Machine Learning

1.7 Types of algorithms in Machine Learning

- **Exploratory data analysis** is an approach to analyzing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods. It is recommended to perform an EDA before fitting learning models.
- **Supervised Learning** (labeled data): It creates models where a variable (or several variables) guides the learning process.
 - o **Regression**. Labels are continuous. Examples: weather forecasting, and grades predictions.

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	density	рН	sulphates	alcohol	quality
7.4	0.7	0	1.9	0.076	0.9978	3.51	0.56	9.4	5
7.8	0.88	0	2.6	0.098	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	0.998	3.16	0.58	9.8	6
7.4	0.7	0	1.9	0.076	0.9978	3.51	0.56	9.4	5
7.4	0.66	0	1.8	0.075	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	0.9964	3.3	0.46	9.4	5
7.3	0.65	0	1.2	0.065	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	0.9968	3.36	0.57	9.5	7

o **Classification**. Labels are discrete. Examples: image classification, disease dignossis, digit recognition, and spam detection.

sepal_length	sepal_width	petal_length	petal_width	Iris_class
5	2	3.5	1	versicolor
6	2.2	4	1	versicolor
6.2	2.2	4.5	1.5	versicolor
6	2.2	5	1.5	virginica
4.5	2.3	1.3	0.3	setosa
5.5	2.3	4	1.3	versicolor

- Unsupervised learning (unlabeled data)
 - o **Clustering**. Focus on grouping the data. Examples: recommendation systems, customers segmentation.

o **Dimensionality reduction**. Focus on reducing the number of features of variables.

