Lycée Qualifiant Zitoun

Année scolaire : 2024-2025

Niveau: Tronc commun scientifique

Durée totale : 5h

Contenus du programme :

• Egalité de deux vecteurs; somme de deux vecteurs; relation de Chasles.

• Multiplication d'un vecteur par un nombre réel.

• Colinéarité de deux vecteurs, alignement de trois points.

• Définition vectorielle du milieu d'un segment. premiers

Les capacités attendues :

- Construire un vecteur de la forme $a\overrightarrow{u} + b\overrightarrow{v}$;
- Exprimer les notions et les propriétés de la géométrie affine en utilisant l'outil vectoriel et réciprequement;
- Résoudre des problèmes géométriques en utilisant l'outil vectoriel.

Recommandations pédagogiques :

- On rappellera les définitions de la somme de deux vecteurs et de la multiplication d'un vecteur par un nombre réel, on introduira ensuite, à travers des activités simples, les propriétés : $(a+b)\overrightarrow{u} = a\overrightarrow{u} + b\overrightarrow{u}$ et $a(\overrightarrow{u} + \overrightarrow{v}) = a\overrightarrow{u} + b\overrightarrow{u}$ et $a(b\overrightarrow{u}) = (ab).\overrightarrow{u}$.
- La multiplication d'un vecteur par un nombre réel doit être liée d'une part, au point M de la droite (AB) qui a pour abscisse x dans le répere (A,B) c'est-à-dire $\overrightarrow{AM} = x\overrightarrow{AB}$, et d'autre part à l'interprétation vectorielle de l'alignement de trois points.

1. Egalité de deux vecteurs :

Définition 1

Soient A, B, C et D quatre points du plan \mathcal{P} tels que $A \neq B$ et $C \neq D$.

On dit que les deux vecteurs \overrightarrow{AB} et \overrightarrow{DC} sont égaux et on écrit $\overrightarrow{AB} = \overrightarrow{CD}$ lorsque ces deux vecteurs ont :

- la même direction, c'est-à-dire (AB)//(DC)
- le même sens
- la même norme, c'est-à-dire AB = DC.

Exemple 1

On a $\overrightarrow{AB} = \overrightarrow{CD}$ et $\overrightarrow{AB} \neq \overrightarrow{DC}$.

Proposition 1

Soient A, B, C et D quatre points du plan \mathcal{P} .

 $\overrightarrow{AB} = \overrightarrow{DC}$ si et seulement si ABCD est un parallélogramme.

Exemple 2

Soient A, B, C et D quatre points tels que : $\overrightarrow{AB} = \overrightarrow{DC}$.

 $\overrightarrow{AB} = \overrightarrow{DC}$ signifie que ABCD est un parallélogramme.

Donc BADC et ADCB et DCBA sont des parallélogrammes.

D'où $\overrightarrow{BA} = \overrightarrow{CD}$ et $\overrightarrow{AD} = \overrightarrow{BC}$ et $\overrightarrow{DC} = \overrightarrow{AB}$

Proposition 2

Pour tout vecteur \overrightarrow{u} et tout point A du plan \mathcal{P} , il existe un point B tel que : $\overrightarrow{u} = \overrightarrow{AB}$.

Remarque:

Il existe une infinité de vecteurs égaux à un vecteur donné \overrightarrow{u} .

Conséquences : Quels que soient les points A, M et N du plan, on a :

- $\overrightarrow{AM} = \overrightarrow{AN}$ signifie que M = N.
- $\overrightarrow{AM} = -\overrightarrow{MA}$.
- $\overrightarrow{AM} = \overrightarrow{0}$ signifie que M = A.

Le vecteur $\overrightarrow{\mathbf{0}}$ est dit vecteur nul.

2. Somme de deux vecteurs:

Définition 2

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs tels que : $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

La somme des deux vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur noté $\overrightarrow{u} + \overrightarrow{v}$ et définie par $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AD}$ tel que \overrightarrow{ABCD} est un parallélogramme.

Proposition 3

Relation de Chasles

Soient A, B et C trois points du plan P. On a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Exemple 3

Soient A, B, C, D et O cinq points du plan \mathcal{P} .

- Montrons que $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$.
- Montrons que $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$.

3. Multiplication d'un vecteur par un nombre réel :

Définition 3

Soit \overrightarrow{u} un vecteur et k un nombre réel.

Le produit du vecteur \overrightarrow{u} par le nombre réel k, que l'on note $\overrightarrow{w}=k\overrightarrow{u}$, est défini par :

- - Si k=0, alors $\overrightarrow{w}=\overrightarrow{0}$ (c'est-à-dire $\overrightarrow{0}$. $\overrightarrow{u}=\overrightarrow{0}$).
 - Si k>0, alors \overrightarrow{w} et \overrightarrow{u} ont la même direction, le même sens et $\|\overrightarrow{w}\|=k\|\overrightarrow{u}\|$.
 - Si k < 0, alors \overrightarrow{w} et \overrightarrow{u} ont la même direction, des sens contraires, et $\|\overrightarrow{w}\| = -k\|\overrightarrow{u}\|$.
- Si $\overrightarrow{u} = \overrightarrow{0}$, alors $\overrightarrow{w} = \overrightarrow{0}$ (c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$).

Exemple 4

On considére la figure suivante :

- Les vecteurs \overrightarrow{CA} et \overrightarrow{CB} ont la même direction, des sens opposés et CA = 2.5CB, donc $\overrightarrow{CA} = -2.5\overrightarrow{CB}$
- Les vecteurs \overrightarrow{DA} et \overrightarrow{DB} ont la même direction, le même sens et $DA = \frac{12}{5}DB$, donc $\overrightarrow{DA} = \frac{12}{5}\overrightarrow{DB}$.

3

Application 1

Soient A, B, C et D quatre points.

Construire les points $\boldsymbol{M},\,\boldsymbol{N},\,\boldsymbol{P}$ définie par :

1.
$$\overrightarrow{AB} = 2\overrightarrow{AM}$$

2.
$$\overrightarrow{BC} = -3\overrightarrow{BM}$$

3.
$$\overrightarrow{CD} = 2.5\overrightarrow{CP}$$

Activité 1

On considère un vecteur non nul \overrightarrow{u} et on pose $||\overrightarrow{u}|| = k$.

Soient a et b deux nombres réels tels que a > 0, b < 0 et a + b < 0.

A, B et C sont des points tels que $\overrightarrow{AB} = a \overrightarrow{u}$ et $\overrightarrow{BC} = b \overrightarrow{u}$.

1. Calculer la norme $\|\overrightarrow{AC}\|$ en fonction de a, b et k.

2. Montrer que : $(a+b)\overrightarrow{u} = a\overrightarrow{u} + b\overrightarrow{u}$.

Proposition 4

Quels que soient les vecteurs \overrightarrow{u} et \overrightarrow{v} et les réels a, b et k, on a :

•
$$a(\overrightarrow{u} + \overrightarrow{v}) = a\overrightarrow{u} + a\overrightarrow{v}$$

•
$$(a+b)\overrightarrow{u} = a\overrightarrow{u} + b\overrightarrow{u}$$

•
$$a(b\overrightarrow{u}) = (ab)\overrightarrow{u}$$

• Si
$$k \overrightarrow{u} = \overrightarrow{0}$$
, alors $k = 0$ ou $\overrightarrow{u} = \overrightarrow{0}$.

Exemple 5

$$\overrightarrow{V_1} = 4(\overrightarrow{u'} + \overrightarrow{v'}) - 2\overrightarrow{u'}$$

$$= 4\overrightarrow{u'} + 4\overrightarrow{v'} - 2\overrightarrow{u'}$$

$$= 4\overrightarrow{u'} - 2\overrightarrow{u'} + 4\overrightarrow{v'}$$

$$= 2\overrightarrow{u'} + 4\overrightarrow{v'}$$

$$= 2(\overrightarrow{u'} + 2\overrightarrow{v'})$$

Application 2

Simplifier l'écriture des vecteurs suivants :

1.
$$\vec{V}_1 = 2(\vec{u} + \vec{v}) - 2(\vec{u} - \vec{v})$$

2.
$$\vec{V}_2 = \vec{u} + 2(\vec{u} - \vec{v}) - 3(\vec{u} - \vec{v})$$

3.
$$\vec{V}_3 = 3(\vec{u} - 2\vec{v}) + 5(\vec{v} - \vec{u})$$

4.
$$\vec{V}_4 = \frac{1}{2}(4\vec{u} + 5\vec{v}) - 3\left(\frac{1}{3}\vec{u} + \frac{1}{2}\vec{v}\right)$$

4. Colinéarité de deux vecteurs : :

Définition 4

On dit que deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires s'il existe un nombre réel k tel que $\overrightarrow{u} = k \overrightarrow{v}$ ou $\overrightarrow{v} = k \overrightarrow{u}$.

4

Proposition 5

Soient A, B, C et D quatre points du plan \mathcal{P} .

- Les points A, B et C sont alignés si et seleument si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- Les droites (AB)//(CD) sont paralléles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exemple 6

Déterminer tous les vecteurs qui sont colinéaires.

Application 3

Soient ABCD un parallélogramme, E et F les points définis par :

$$\overrightarrow{CE} = \frac{1}{3}\overrightarrow{CD}$$
 et $\overrightarrow{BF} = \frac{3}{4}\overrightarrow{BE}$

- 1. Construire la figure.
- 2. Montrer que les points A, C et F sont alignés.

5. Milieu d'un segment : :

Proposition 6

Pour qu'un point I soie le milieu du segment [AB], il faut et il suffit que l'une des relations suivantes soit réalisée :

1.
$$\overrightarrow{AI} = \overrightarrow{IA}$$

$$2. \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$

3.
$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$$

Exemple 7

Soit \boldsymbol{ABC} un triangle.

Construisons les points E et F définis par : $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$ et $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$

Montrons que C est le milieu de [EF].