TEMA 1

Conjuntos, aplicaciones y relaciones

Ejercicio 1.

Dados los conjuntos:

$$A = \{a, b, c, d, e\}; B = \{e, f, g, h\}; C = \{a, e, i, o, u\}$$

Determina los siguientes conjuntos:

$$A \cup B \cup C$$
, $A \cap B \cap C$, $A \setminus B$, $A \setminus (B \cup C)$, $(A \cap B) \cup C$, $C \cap (A \setminus B)$, $B \times C$, $C \times B$, $A \times B \times C$

Ejercicio 2.

Dado el conjunto $X = \{a, b, c, d\}$, determina el conjunto $\mathcal{P}(X)$.

Ejercicio 3.

Demuestra que si $A \cup B \subseteq A \cup C$ y $A \cap B \subseteq A \cap C$ entonces $B \subseteq C$.

Ejercicio 4.

Da un ejemplo de conjuntos X_1, X_2, Y_1, Y_2 que verifiquen que

$$(X_1 \times Y_1) \cup (X_2 \times Y_2) \neq (X_1 \cup X_2) \times (Y_1 \cup Y_2).$$

Ejercicio 5.

Sean A y B dos conjuntos de cardinal finito tales que $|A| \le |B|$. Demuestra que el conjunto de aplicaciones inyectivas $f: A \to B$ tiene cardinal

$$|B| \cdot (|B| - 1) \cdot \cdot \cdot (|B| - |A| + 1) = \frac{|B|!}{(|B| - |A|)!}$$

Ejercicio 6.

Determina cuáles de las siguientes aplicaciones son inyectivas, sobreyectivas o biyectivas.

1.
$$\label{eq:f:N} \begin{split} f:\mathbb{N} &\to \mathbb{N} \\ f(n) &= n^2 \end{split}$$

2.
$$\begin{split} f:\mathbb{Q} \to \mathbb{R} \\ f(x) &= 2x \end{split}$$

3. $f: \mathbb{Z} \to \mathbb{Z} \\ f(n) = n+1$

4. $f: \mathbb{N} \to \mathbb{N}$ f(n) = n+1

5.

$$f: \mathbb{Q} \to \mathbb{Q}$$
$$f(x) = \frac{3x+2}{4}$$

6.

$$f: \mathbb{R}^+ \to \mathbb{R}$$
$$f(x) = +\sqrt{x}$$

Ejercicio 7.

Dada la aplicación $f : \mathbb{N} \to \mathbb{N}$ definida por $f(n) = n^2$, demuestra que tiene más de una inversa por la izquierda, pero que no tiene inversas por la derecha. Da dos inversas por la izquierda de f.

Ejercicio 8.

Dadas dos apliacaciones $f: X \to Y \ y \ g: Y \to Z$ demuestra que:

- 1. Si f y g son inyectivas entonces $g \circ f$ es inyectiva.
- 2. Si $g \circ f$ es inyectiva entonces f es inyectiva.
- 3. Si $g \circ f$ es inyectiva y f es sobreyectiva entonces g es inyectiva.
- 4. Si f y g son sobreyectivas entonces $g \circ f$ es sobreyectiva.
- 5. Si g o f es sobreyectiva entoces g también lo es.
- 6. Si $g \circ f$ es sobreyectiva y g es inyectiva entonces f es sobreyectiva.

Ejercicio 9.

Sean $X = \{1, 2, 3\}$, $Y = \{a, b\}$ y $f : X \to Y$ la aplicación definida por f(1) = f(3) = a; f(2) = b. Calcula los siguientes conjuntos:

$$f_*(\{1,3\});$$
 $f_*(\{1,2\});$ $f^*(\{\alpha\});$ $f^*(\{b\});$ $f^*(\{\alpha,b\})$

Ejercicio 10.

Sean X y Y dos conjuntos, A y B subconjuntos de X e Y respectivamente y $f: X \to Y$ una aplicación. Demuestra que:

- 1. $f_*(f^*(B)) \subseteq B$, y se da la igualdad si f es sobreyectiva.
- 2. $A \subseteq f^*(f_*(A))$, y se da la igualdad si f es inyectiva.
- 3. $f_*(A \cap f^*(B)) = f_*(A) \cap B$.

Da un ejemplo en donde las inclusiones de los dos primeros apartados sean estrictas.

Ejercicio 11.

En el conjunto $\mathbb R$ definimos la siguiente relación:

$$xRy \text{ si } x - y \in \mathbb{Z}$$

- 1. Prueba que R es una relación de equivalencia.
- 2. Describe el conjunto cociente.

Ejercicio 12.

En el conjunto Q definimos la siguiente relación:

xRy si existe
$$h \in \mathbb{Z}$$
 tal que $x = \frac{3y + h}{3}$

- 1. Demuestra que R es una relación de equivalencia.
- 2. ¿Están $\frac{2}{3}$ y $\frac{4}{5}$ en la misma clase?
- 3. Describe el conjunto cociente.

Ejercicio 13.

Sea el conjunto $X = \{0, 1, 2, 3\}$. En el conjunto $\mathcal{P}(X)$ definimos la siguiente relación: ARB si la suma de los elementos de A es igual a la suma de los elementos de B. Entendemos que la suma de los elementos del conjunto vacío vale 0.

- 1. Prueba que R es una relación de equivalencia.
- 2. Describe el conjunto cociente $\mathcal{P}(X)/R$.