1. Spectrum

Y-axis= $E^2 \frac{\mathrm{d}J}{\mathrm{d}E}$, means per **area** per **time** per **solid angle** per **energy**.

2. Cross Section

One paritcle interaction,

• $\sigma_{AB}n_BL\ll 1$: very likely to pass through(optically thin)

• $\sigma_{AB}n_BL\gg 1$: very likely to interact(**optically thick**) Probability:

$$P = 1 - e^{-n\sigma L} \tag{1}$$

where $\tau=n\sigma L$ is called **Optical Depth**. Unit: Barn $1barn=10^{-28}m^2$.

3. Diffusion Model

Diffusion-loss equation,

$$\frac{\partial n}{\partial t} = \nabla \cdot \left(D \vec{\nabla} n \right) - \frac{\partial}{\partial E} (n \dot{E}) + Q \tag{2}$$

Diffusion-Convection equation,

$$\frac{\partial}{\partial t}n = \nabla \cdot \left(D\vec{\nabla}n - \vec{V}n\right) - \frac{\partial}{\partial E}(n\dot{E}) + Q \tag{3}$$

with momentum loss term $\dot{p} = -\frac{1}{3}(\nabla \cdot V)p$. Rigity: $R = \frac{p}{2}$. Motivation: Lamor Radius is proportion

Rigity: $R=\frac{p}{q}$. Motivation: Lamor Radius is propotional to the rigity $r_g=\frac{p_\perp}{q}$.

Number of particles per phase space: $f=\frac{\mathrm{d}N}{\mathrm{d}^3p\mathrm{d}^3x}$. Differential number density of particles, $n=\frac{\mathrm{d}N}{\mathrm{d}p\mathrm{d}^3x}=4\pi p^2f$. From diffusion-loss equations, we can imply

$$D\frac{\partial f}{\partial r} + \frac{V_p}{3}\frac{\partial f}{\partial p} = 0 \implies df(r, p) = 0 \implies f(r_1, p_1) = f(r_1, p_1)$$

with definition of flux $I=vn/(4\pi)=vp^2f$, we have relation

$$\frac{I(p)}{vp^2} = \frac{I(p_{ILS})}{v_{LIS}p_{LIS}^2} \tag{4}$$

combining with solar modulation potential ϕ , we have

$$\frac{I(p)}{vp^2} = \frac{I(p+\phi)}{v_{lis}(p+\phi)^2} \tag{5}$$

4. CR Secondaries

The full propagation euqation,

$$\frac{\partial \psi(r,p,t)}{\partial t} = q(r,p,t) + \nabla \cdot (D_{xx} \nabla \psi - V \psi)$$

$$+ \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left[\dot{p} \psi - \frac{p}{3} (\nabla \cdot V) \psi \right]$$
Re-acceleration Continuous Energy Loss
$$- \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$
 (6)

Fragmentation Radi. decay Loss

For Fragmentation Loss, for the i-th species, it's loss by \rightarrow j-th species

$$\frac{\partial n_i}{\partial t} = -n_i (\frac{\rho}{m})_{ism} \sigma_{i \to j} v \tag{7}$$

For radioactive decay loss,

$$\frac{\partial n_i}{\partial t} = -n_i \frac{1}{\tau_i}, \tau_i$$
 is the lifetime (8)

For simple case: Leaky box approx, one species dominates the production, ${\cal Q}=0.$ We have relation,

$$\frac{n_i}{T_e} = -\frac{n_i}{T_f} - \frac{n_i}{T_{dec}} + C_i \tag{9}$$

where C_i is the production of "i" due to other species, then we can get expression of n_i ,

$$n_i = \frac{C_i}{1/T_e + 1/T_f + 1/T_{dec}} \tag{10}$$