

AD-A142 501

TECHNICAL
LIBRARY

AD A-142 501

MEMORANDUM REPORT ARBRL-MR-03356

HASTINGS IGLOO HAZARDS TESTS FOR
SMALL EXPLOSIVE CHARGES

Harry Reeves
Walton T. Robinson

May 1984

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.*

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-03356	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) HASTINGS IGLOO HAZARDS TESTS FOR SMALL EXPLOSIVE CHARGES		5. TYPE OF REPORT & PERIOD COVERED Final
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Harry Reeves W.T. Robinson		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory, ARDC ATTN: DRSMC-BLV(A) Aberdeen Proving Ground, Maryland 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 4A665805M857
11. CONTROLLING OFFICE NAME AND ADDRESS US Army AMCCOM, ARDC Ballistic Research Laboratory, ATTN: DRSMC-BLA-S(A) Aberdeen Proving Ground, MD 21005		12. REPORT DATE May 1984
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 70
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release: distribution is unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES This work was performed for and funded by the Department of Defense Explosives Safety Board, 2461 Eisenhower Avenue, Alexandria, VA 22331.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Igloo magazines Explosive safety Fragment hazards Hazardous distances		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Full-scale field tests have been conducted to characterize the hazards to an exposed site when limited quantities of bulk explosives, positioned inside igloo magazines, are statically detonated. Specific test objectives were to (1) determine the explosive quantity which, when detonated inside a standard-size, earth-covered magazine, produces no significant external effect and (2) evaluate the dispersal of structure debris and measure external airblast for the range of explosive quantities from that marginally contained up to 68 Kg (150 lb).		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

Test results in the form of overall structural response, airblast measurements and hazardous fragment distributions are provided for selected explosive charge weights from 5.4 Kg (12 lb) to 68 Kg (150 lb).

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

TABLE OF CONTENTS

	<u>Page</u>
LIST OF ILLUSTRATIONS	5
LIST OF TABLES	7
I. INTRODUCTION	9
II. DESCRIPTION OF TESTS	10
III. RESULTS AND OBSERVATIONS	10
IV. DISCUSSION	32
V. CONCLUSIONS AND RECOMMENDATIONS	40
APPENDIX A	41
APPENDIX B	57
DISTRIBUTION LIST	67

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Oblique View of Igloo Magazine with Blast Shield.	11
2	Side View of Igloo Magazine Headwall, Blast Shield and Access Road.	12
3	Schematic Drawing of Igloo Magazine and Blast Shield.	13
4	Test Layout Showing Location of Igloo, Blast Shield, Roads and Instrumentation	14
5	Rear View of Blast Shield Showing Cleared Path for Pressure Transducers	15
6	Instrumentation System.	16
7	Test Results-Test No., 1, 18 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	20
8	Test Results-Test No., 2, 11 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	21
9	Test Results-Test No., 3, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	22
10	Test Results-Test No., 4, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	23
11	Test Results-Test No., 5, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	24
12	Test Results-Test No., 6, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	25
13	Test Results-Test No., 7, 7.3 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall	26
14	Test Results-Test No., 8, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Rearwall	27
15	Test Results-Test No., 8, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Rearwall	28
16	Hazardous Fragment Densities (600 ft^2) Versus Distance in Front of an Igloo Magazine-27Kg TNT Charge Positioned in the Center of the Igloo Statically Detonated.	34
17	Hazardous Fragment (600 ft^2) Versus Distance in Front of an Igloo Magazine-36Kg TNT Charge Positioned in the Center of the Igloo Statically Detonated.	35
18	Hazardous Fragment Densities (600 ft^2) Versus Distance in Front of an Igloo Magazine-45Kg TNT Charge Positioned in the Center of the Igloo Statically Detonated.	36

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Page</u>
19 Hazardous Fragment Densities (600 ft^2) Versus Distance in Front of an Igloo Magazine-68Kg TNT Charge Positioned in the Center of Igloo Statically Detonated.	37
A-1 Pressure Time Histories, Test No. 2, 12.9Kg TNT Charge Positioned 4 Metres from Headwall.	43
A-2 Pressure Time History, Test No. 4, 5.4Kg TNT Charge Positioned 4 Metres from Headwall.	44
A-3 Pressure Time Histories, Test No. 5, 5.4Kg TNT Charge Positioned 4 Metres from Headwall.	45
A-4 Pressure Time Histories, Test No. 5, 5.4Kg TNT Charge Positioned 4 Metres from Headwall.	46
A-5 Pressure Time Histories, Test No. 6, 5.4Kg TNT Charge Positioned 20.4 Metres from Headwall	47
A-6 Pressure Time Histories, Test No. 5, 5.4Kg TNT Charge Positioned 20.4 Metres from Headwall	48
A-7 Pressure Time Histories, Test No. 7, 7.3Kg TNT Charge Positioned 4 Metres from Headwall.	49
A-8 Pressure Time Histories, Test No. 7, 7.3Kg TNT Charge Positioned 4 Metres from Headwall.	50
A-9 Pressure Time Histories, Test No. 8, 5.4Kg TNT Charge Positioned 20.4 Metres from Headwall	51
A-10 Pressure Time Histories, Test No. 8, 5.4Kg TNT Charge Positioned 20.4 Metres from Headwall	52
A-11 Pressure Time Histories, Test No. 9, 45.4Kg TNT Charge Positioned 12 Metres from Headwall	53
A-12 Pressure Time Histories, Test No. 9, 45.4Kg TNT Charge Positioned 12 Metres from Headwall	54
A-13 Pressure Time Histories, Test No. 10, 68Kg TNT Charge Positioned 12 Metres from Headwall	55
A-14 Pressure Time Histories, Test No. 10, 68Kg TNT Charge Positioned 12 Metres from Headwall	56

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1 Test Results - Explosive Charges Positioned Inside Earth-Covered Igloo Magazines.	17
2 Peak Overpressure, Impulse and Time of Arrival from TNT Charges Statickally Detonated Inside Igloo Magazines.	30
3 Test Results - Hazardous Fragment Densities per 600 ft ² for Discrete Angular and Distance Increments.	33
4 Estimates of Initial Door Velocities and Times of Arrival of the Reflected Shock Waves.	38
B-1 Individual Fragment Recovery Data.	60

I. INTRODUCTION

In 1979 the Ballistic Research Laboratories (BRL) conducted a series of full-scale field tests* designed to characterize the hazards to an exposed site when either 68 Kg (150 lb) or 206 Kg (450 lb) TNT charges, positioned inside earth-covered reinforced concrete igloos, were statically detonated. Test results took the form of airblast profiles and concrete fragment distributions in terms of densities, weights, and their locations relative to igloo orientation. These tests were conducted at the NAVAJO Depot Activity near Flagstaff, Arizona, where excess igloos, constructed in 1942 according to U.S. Army specifications, were made available for destructive tests.

While the Flagstaff tests were conducted to support a hazards analysis at a particular site, they have also been used to support changes in the "Manual on NATO Safety Principles for the Storage of Ammunition and Explosives" that requires a minimum distance of 400 metres between inhabited buildings and igloos containing Hazard Division 1.1 ammunition or explosives. No minimum net explosive quantity is associated with this 400-metre restriction.

The conclusions reached in the Flagstaff tests were:

1. The 400-metre minimum distance requirement between inhabited buildings and igloos containing Hazard Division 1.1 ammunition or explosives is excessive for small explosive weights. This is true for both fragment and peak overpressure hazards.
2. The use of a barricade in front of the headwall and a re-design of the vent stack at the rear of the igloo would have reduced the density of hazardous fragments to an insignificant level.
3. The peak overpressure and fragment hazards to the sides and rear of earth-covered igloos are significantly less than those to the front for relatively small explosive weights. These directional effects should be considered when establishing minimum distance requirements.

The Flagstaff tests have been supplemented with additional full-scale tests designed to (1) determine the explosive quantity which, when detonated inside a standard-size, earth-covered igloo, produces no significant external effect and (2) evaluate the concrete fragment and external airblast hazards for a range of explosive quantities from that marginally contained, up to 68 Kg (150 lb).

All tests were sponsored by the Department of Defense Explosives Safety Board.

A description of these tests, test results and analysis are presented in the following sections.

*P. Howe, H. Reeves, and O. Lyman, "An Approach to Munitions Storage Applicable to the McNair Compound of the Berlin Brigade," ARBRL-SP-00013, Ballistic Research Laboratory, September 1979 (AD C019277L).

II. DESCRIPTION OF TESTS

All tests were conducted at the Nebraska State National Guard Weekend Training Site near Hastings, Nebraska, where a total of twelve excess igloo magazines were made available for destructive tests in support of this effort. This site is part of an abandoned Navy Ammunition Depot that was constructed during WW II. All of the igloos exhibited structural failures in the form of hairline cracks in the sidewalls, arch crest, backwall, and headwall. The igloos were constructed according to US Navy specifications and were designed to be earth-covered to a depth of at least 0.6 m (2 ft). Erosion of the earth-cover was observed in many cases due to a lack of maintenance. All of the magazines were weed-covered up to a height of 0.9 m (3 ft). The magazine headwalls faced an earth-backed concrete blast shield. The distance between the vertical headwalls and the blast shields varied between 3.7 m (12 ft) at the base to 3.7 m (15 ft) at the top. See Figures 1 through 3.

Pre-test site preparation included cutting the grass in front of the magazines out to a distance of 150 m (500 ft). The width of this cleared recovery area varied due to the presence of an elevated access road on the right side of the igloos. See Figure 4. The grass was cut out to the road on the right side. The cleared area on the left side of the igloos was essentially infinite. These recovery areas were searched after each test, and concrete fragments weighing at least 0.18 Kg (0.4 lb) were catalogued in terms of numbers per discrete weight groups and their location relative to the front of the igloo. A postage scale was used to establish fragment weights up to 0.9 Kg (2 lb). The weights of heavier fragments were estimated.

Two high-speed (500 fps) 16 mm cameras were positioned to the side of the headwalls to monitor initial headwall fragment velocities. Air blast parameters were monitored by pressure transducers, flush mounted, via teflon collars, to lead blocks positioned to the sides and fronts of the igloos. A cleared path from the headwall to the pressure transducers was prepared using a front-end loader to remove vegetation and level the ground. See Figure 5. The data-gathering instrumentation system is shown in Figure 6.

Standard 3.36 Kg (8 lb) blocks of TNT, with a small C4 booster charge, were positioned inside the igloos and statically detonated using long lengths of mild detonating fuze activated with electrically sensitive detonators. The position of the TNT charge was deliberately varied, in those tests involving 5.44 Kg (12 lb) charges, to determine the influence of charge location on incipient headwall failure.

III. RESULTS AND OBSERVATIONS

The test results are presented in three categories: structural response, external airblast, and hazardous fragment distributions; and each are discussed in the following sections.

A. Structural Response

The test results in terms of structural response are presented in Table 1 and Figures 7 through 15.

Figure 1. Oblique View of Igloo Magazine with Blast Shield

Figure 2. Side View of Igloo Magazine Headwall,
Blast Shield and Access Road

Figure 3. Schematic Drawing of Igloo Magazine
and Blast Shield

FIGURE 4. TEST LAYOUT SHOWING LOCATION OF IGLOO, BLAST SHIELD, ROADS AND INSTRUMENTATION

Figure 5. Rear View of Blast Shield Showing Cleared Path for Pressure Transducers

FIGURE 6. INSTRUMENTATION SYSTEM

Table 1. Test Results - Explosive Charges Positioned Inside Earth-Covered Igloo Magazines

Test No.	Charge Wgt.	Charge Position	Remarks
1	18 Kg (40 lb)	4 m (13 ft) from headwall	Headwall failed. Approximately 50% of the arch crest and 35% of the sidewalls in the front and rear of the igloo destroyed. All debris from arch crest and sidewall recovered on the floor of the igloo. Large center section of the igloo remained standing. Some debris from headwall scattered along entrance roadway after bouncing off blast shield. One large piece (5.4 Kg) of concrete from headwall cleared blast shield and recovered 40 metres in front of the headwall. Parts of terra cotta vent stack scattered up to 10 metres from the rear of the magazine. The wood core and metal sheathed doors were destroyed and recovered between headwall and blast shield. See Figure 7.
2	11 Kg (24 lb)	4 m (13 ft) from headwall	Headwall failed. Arch crest cracked and displaced. Forward section of left sidewall failed. See Figure 8. A total of nine concrete fragments weighed in excess of 4 Kg. The remainder of the fragments weighed between 0.5 Kg and 2.0 Kg. A large piece of the door (9Kg) recovered 30 metres to the right and 7 metres behind the headwall.
3	5.4 Kg (12 lb)	4 m (13 ft) from headwall	There was a large crack in the face of the headwall. The headwall was still in one piece and standing in place. See Figure 9. The right side door recovered 15 metres from the center of the headwall on the right side. The left side door recovered 30 metres from the center of the headwall on the left side.

Table 1. Test Results - Explosive Charges Positioned Inside Earth-Covered Igloo Magazines (Continued)

Test No.	Charge Wgt.	Charge Position	Remarks
4	5.4 Kg (12 lb)	4 m (13 ft) from headwall	The headwall separated from the sidewall and exhibited several large cracks. The headwall was still standing and held together by rebar. See Figure 10. The right door recovered 24 metres from the center of the headwall. The left door recovered 49 metres from the center of the headwall on the left side.
5	5.4 Kg (12 lb)	4 m (13 ft) from headwall	The headwall failed and separated into several large pieces, however, the headwall held in place by rebar. See Figure 11. The left door, almost intact, recovered 40 metres from the center of the headwall on the left side. The right door recovered in one piece 56 metres on the right side.
6	5.4 Kg (12 lb)	4 m (13 ft) from rear wall	The headwall failed completely, separated from the sidewall, and fractured into several large pieces. The left door recovered 31 metres to the side and 15 metres to the rear of the headwall. The right door recovered 27 metres to the side and 1.8 metres to the rear of the headwall. See Figure 12.
7	7.3 Kg (16 lb)	4 m (13 ft) from headwall	A 6 metre (20 ft) long section of the right rear sidewall remained standing. The remainder of sidewall and headwall was destroyed. A large piece of the left door recovered 37 metres to the left side of the igloo. A large section of the right door recovered 12 metres to the right side. Four large pieces of concrete, all approximately 9 Kg, recovered on the rear side of the blast shield earth fill. See Figure 13.

Table 1. Test Results - Explosive Charges Positioned Inside Earth-Covered Igloo Magazines (Continued)

Test No.	Charge Wgt.	Charge Position	Remarks
8	5.4 Kg (12 lb)	4 m (13 ft) from rear wall	Headwall failed and fractured into several large pieces. A large crack in arch crest entire length of the igloo. Several large cracks in the sidewall on each side. Further examination was not possible as igloo was in imminent danger of collapsing. Large pieces of right door recovered 30 metres to the side and 18 metres and 24 metres to the rear of the headwall. Large pieces of left door recovered 24 metres and 40 metres to the side and 24 metres to the rear of the headwall. One other piece of left door recovered 61 metres from the headwall on the left side. See Figures 14 and 15.
9	45.4 Kg (100 lb)	Center of the igloo	The igloo was completely destroyed. Concrete fragments recovered out to a distance of 149 metres.
10	68 Kg (150 lb)	Center of the igloo	The igloo was completely destroyed. Concrete fragments recovered out to a distance of 244 metres.
11	36 Kg (80 lb)	Center of the Igloo	The igloo was completely destroyed. Concrete fragments recovered out to a distance of 143 metres.
12	27 Kg (60 lb)	Center of the igloo	The igloo was completely destroyed. Concrete fragments recovered out to a distance of 110 metres.

Figure 7. Test Results - Test No. 1, 18 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall

Figure 8. Test Results - Test No. 2, 11 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall

Figure 9. Test Results - Test No. 3, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall

Figure 10. Test Results - Test No. 4, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall

Figure 11. Test Results - Test No. 5, 5.4 Kg TNT Charge
Positioned Inside Magazine 4 Metres from Headwall

Figure 12. Test Results - Test No. 6, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Headwall

Figure 13. Test Results - Test No. 7, 7.3 Kg TNT Charge
Positioned Inside Magazine 4 Metres from Headwall

Figure 14. Test Results - Test No. 8, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Rearwall

Figure 15. Test Results - Test No. 8, 5.4 Kg TNT Charge Positioned Inside Magazine 4 Metres from Rearwall

While the results of Tests 3, 4, and 5 (5.4 Kg charge positioned 4 metres from the headwall) are observably different, the differences in terms of structural response are not significant and could be explained in terms of variations in the structural integrity of these 40-year old magazines.

The complete headwall failures observed in Tests 6 and 8, where the 5.4 Kg charge was positioned 4 metres from the rearwall, were different in terms of structural response from the results of Tests 3, 4, and 5. However, these differences had little or no effect in defining hazardous distances. When the headwalls failed in Tests 6 and 8, they fractured into large pieces that were recovered in front of the blast shield. (See Figures 12 and 15.) The real hazards in the 5.4 Kg test series were the doors that were thrown clear of the area between the headwall and the blast shield after bouncing off the blast shield.

The inconsistency observed between the results of Tests 1, 2, and 7, where a 7.3 Kg charge produced more severe structural damage than either an 11 Kg or 18 Kg charge, can only be explained in terms of unobservable differences in the condition of the magazines before testing.

As expected, charge weights in excess of 27 Kg completely destroyed the magazines.

B. External Airblast Measurements

Peak overpressure, impulse, and time-of-arrival measurements are presented in tabular form in Table 2. The individual pressure-time history records are presented in Appendix A. Instrumentation was not available for Tests 1, 9, and 10. Data for Test 3 was lost due to equipment malfunction.

There were no hazardous overpressures measured in any of these tests. While some of the pressure-time history records were difficult to read due to low pressure levels and non-classical shapes, they are mutually supporting.

It is of interest to note that the pressure-time histories recorded for explosive charge weights up to 10.9 Kg were apparently reflected shock pressure-time histories; i.e., the incident shock removed the doors allowing the shock wave that was reflected off the rear wall to escape unimpeded. The presence of the reflected shock wave was verified photographically and explains the apparent anomaly in the time-of-arrival measurements recorded in those tests where the 5.4 Kg charge was positioned near the rear wall. No reflected shock wave was observed in the 45.4 Kg and 68 Kg charge weight tests where the entire igloo was destroyed rapidly, allowing pressure to vent upward. The pressure-time histories recorded for these tests were from the incident wave.

C. Hazardous Fragment Distributions

The results of the fragment collection effort for those tests with charge weights between 27 and 68 Kg, positioned in the center of the magazines, are presented in Table 3 in terms of hazardous fragment densities per 600 ft.²

Table 2. Peak Overpressure, Impulse and Time of Arrival from TNT Charges
Statically Detonated Inside Igloo Magazines

Weight Kg	TNT Charge Position ^a	Gage Position ^b		Pressure		Impulse		TOA msec
		m	ft	psi	kPa	psi-msec	kPa-msec	
10.9	24 4 13	24.3F	80	0.5	3.4	Lost	16.1	161 168 160 167
		27.4F	90	0.4	2.8			
		18.3S	60	0.76	5.2	3.75	25.9	
		27.4S	90	0.55	3.8	2.59	17.9	
45.4	100 12 40	18.3F	60	1.0	6.9	9.85	67.9	69 95 62 92
		27.4F	90	0.7	4.8	7.78	53.7	
		15.2S	50	1.2	8.3	8.55	59.0	
		27.4F	90	0.74	5.1	4.11	28.3	
68.0	150 12 40	18.3F	60	1.41	9.7	13.46	92.8	66 92 60 86
		27.4F	90	1.23	8.5	9.94	68.6	
		15.2S	50	1.53	10.6	8.83	60.9	
		27.4F	90	1.07	7.4	7.21	49.7	

a. Distance measured from the headwall to where the TNT charge was positioned inside the igloo.

b. Distance measured from the center of the headwall to where the gage was positioned. F= in front of the headwall. S= to the side of the headwall.

Table 2. Peak Overpressure, Impulse and Time of Arrival from TNT Charges
Statically Detonated Inside Igloo Magazines (Continued)

TNT Charge Weight Kg	TNT Charge Position ^a 1b	Gage Position ^b		Pressure		Impulse		TOA msec
		m	ft	psi	kPa	psi-msec	kPa-msec	
5.4 12	4 13	18.3F		0.62	4.3	4.83	33.3	147
		27.4F	90	0.46	3.2	3.27	22.6	172
		15.2S	50	0.67	4.6	5.52	38.1	132
		27.4S	90	0.34	2.3	3.06	21.0	168
5.4 12	20.4 67	18.3F		0.16	1.1	0.53	3.7	110
		27.4F	90	0.25	1.7	1.73	13.2	135
		15.2S	50	0.39	2.7	1.91	9.7	97
		27.4S	90	0.23	1.6	1.10	7.6	134
5.4z 12z	20.4 67	18.3F		0.36	2.5	2.87	19.6	114
		27.4F	90	0.33	2.3	1.05	7.2	139
		15.2F	50	0.69	4.8	2.37	16.3	100
		27.4S	90	0.27	1.9	1.05	7.2	135
7.3 16	4 13	18.3F		0.49	3.4	4.03	27.8	138
		27.4F	90	0.34	2.3	2.50	17.2	163
		15.2S	50	0.51	3.5	3.24	22.3	138
		27.4S	90	0.35	2.4	2.36	16.3	166

a. Distance measured from the headwall to where the TNT charge was positioned inside the igloo.

b. Distance measured from the center of the headwall to where the gage was positioned. F= in front of the headwall. S= to the side of the headwall.

for the discrete angular and distance increments.* These distributions were generated by averaging all the fragment data for a given test when fragment data from both the right and left side recovery areas was available. When fragment data from only one side was available, symmetry was assumed. These distributions do not reflect the uneven distribution observed in some of these tests where the number of fragments recovered on the left side of the recovery area was greater than that recovered on the right. These skewed distributions are assumed to be an anomaly.

Exponential density functions for these tests were generated using the density distributions in Table 3 to compare predicted and observed densities, per 600 ft.², independent of angle; i.e., the highest density value for a given distance increment was used in the calculation. See Figures 16 through 19. Fragment density distributions at distances less than 53 metres were not used due to the masking effect of the blast shield.

The raw field recovery data is provided in Appendix B for each fragment in terms of its position and weight group. Only those fragments weighing at least 0.18 Kg (0.4 lb) were considered hazardous. While all of the fragments, weighing in excess of 0.18 Kg, for a given test were combined in arriving at hazardous density distributions, their segregation into weight groups, in Appendix B, has been preserved for future reference.

Attempts to measure initial headwall fragment velocities photographically were unsuccessful. The field of view between the headwalls and blast shields was obscured by combustion products and other debris before the headwalls failed and before the doors hit the blast shields. However, estimates of initial door velocities and the times of arrival of the reflected shock waves, between the headwalls and blast shields, were taken from the high speed films and are provided in Table 4. The door velocity estimates are crude. The exact time that the doors hit the blast shield can only be estimated, and it is not known if the doors were accelerating when they impacted the blast shield.

There is good agreement between the time-of-arrival measurements of the reflected shock wave obtained photographically and those obtained from the pressure transducers.

IV. DISCUSSION

The maximum explosive quantity which, when detonated inside the standard-size, earth-covered magazines used in this series of tests, produces no significant external effect was not determined due to door separation. These large wood core doors were attached to the headwalls by three hinges that failed rapidly under all test conditions. The doors were observed impacting the blast shields and were recovered in areas off the side of the magazines. It is

*The origin of the coordinate system used in generating these distributions was the front of the igloo.

Table 3. Test Results - Hazardous Fragment Densities per 600 ft² for Discrete Angular and Distance Increments

Distance M	Ft.	27 Kg (60 lb) Test			36 Kg (80 lb) Test			45 Kg (100 lb) Test			68 Kg (150) Test		
		0-5°	5-10°	10-45°	0-5°	5-10°	10-45°	0-5°	5-10°	10-45°	0-5°	5-10°	10-45°
31	100	6.3	4.7	9.0	0	0	2.8	0	0	3.5	3.1	2.4	3.8
38	125	24.3	21.9	26.8	0	0.6	2.1	0	2.4	3.1	0	3.0	6.1
46	150	19.9	10.0	7.1	10.0	10.5	3.8	23.8	18.8	9.3	21.9	12.5	9.5
53	175	40.4	25.0	23.2	28.6	16.8	4.6	16.8	15.8	8.5	10.2	5.9	3.2
61	200	19.4	12.7	6.3	20.4	13.2	4.2	3.0	8.0	6.9	19.1	12.5	6.4
69	225	18.0	9.7	4.7	15.5	10.7	7.0	0	5.8	1.4	3.9	3.8	2.6
76	250	20.7	15.3	3.1	18.4	10.9	2.9	20.8	15.0	4.1	1.2	1.2	1.1
84	275	10.4	6.3	1.8	4.1	3.1	1.2	2.0	4.1	2.1	7.2	6.2	1.6
91	300	2.0	1.5	0.3	11.4	6.6	2.4	3.8	3.6	1.1	5.8	4.8	1.8
99	325	1.8	2.2	1.1	0.9	1.3	1.9	3.6	3.1	0.9	4.5	2.9	0.8
107	350	1.6	0.8	0.6	2.4	1.6	3.2	0	0.4	0.7	4.8	4.6	2.3
114	375	1.5	0.8	0.2	3.0	1.5	0.8	0	1.1	2.5	9.9	5.5	1.3
122	400	0	0	0.8	5.6	3.2	1.5	0	0.7	0.6	4.2	3.0	1.0
130	425	1.4	0.7	0.1	0.7	0.7	0.1	0	0.7	1.2	4.7	2.7	0.7
137	450										3.2	1.8	0.6
145	475										2.4	2.0	0.4
152	500										2.3	1.7	1.1
160	525										3.2	2.0	0.8
168	550										5.0	2.6	0.7
175	575										0	0.1	0.2
183	600										1.0	0.7	0.7
191	625										2.2	1.3	0.7
198	650										2.2	1.4	0.3
206	675										0.4	0.3	0.4
213	700										0.4	0.2	0.1
221	725										0	0	0.2

NOTE: Explosive charges were positioned in the center of the magazines. Angular deviations are half angles.

Figure 16. Hazardous Fragment Densities (600 ft^2) Versus Distance in Front of an Igloo Magazine-27Kg TNT Charge Positioned in the Center of Igloo Statistically Detonated

Figure 17. Hazardous Fragment (600 ft^2) Versus Distance in Front of an Igloo Magazine-36Kg TNT Charge Positioned in the Center of the Igloo Static detonated

Figure 18. Hazardous Fragment Densities (600 ft^2) Versus Distance in Front of an Igloo Magazine-45 Kg TNT Charge Positioned in the Center of Igloo Static Detonated

150 LB. CHARGE

Figure 19. Hazardous Fragment Densities (600 ft^2) Versus Distance in Front of an Igloo Magazine-68 Kg TNT Charge Positioned in the Center of Igloo Static detonated

Table 4. Estimates of Initial Door Velocities and
Times of Arrival of the Reflected Shock Waves

Charge	Initial Door Velocity (mps)	Times of Arrival (m sec)
5.4 Kg - 4 metres from the headwall	28	145
5.4 Kg - 20.4 metres from the headwall	41	81
7.5 Kg - 4 metres from the headwall	29	132
10.9 Kg - 4 metres from the headwall	50	131
45.4 Kg - 12 metres from the headwall	91	Not observed

assumed that the doors could have traveled up to 150 metres in front of the magazines, at explosive charge weights of only 5.4 Kg, if the blast shields were not in place. The hazards associated with door separation, at low explosive charge weights, could be eliminated by employing fully vented doors, e.g., stretch chain link fencing fabric over metal door frames.

Variations in the structural response of the magazines, at HE charge weights up to 18 Kg, were not significant in terms of establishing hazardous fragment* distances, i.e., the maximum distance at which the hazardous fragment density is at least one per 600 ft^2 . The sidewalls and arch crest of the magazine either remained standing or fell to the floor, at these low charge weights. The sidewalls were blown out and recovered in large pieces off the sides of the magazines. The headwalls tended to break up into smaller pieces as the charge weight increased with more and more of them being projected over the blast shield and to the sides of the magazines. An apparent reversal in this trend can be found in Table 3, where the hazardous fragment densities for the 36 Kg test were greater than those for the 45 Kg test. However, an examination of the individual fragment recovery data for these two tests show that more fragments were recovered outside the 45 degree recovery zone in the 45 Kg test than in the 36 Kg test.

The maximum distance at which the hazardous fragment density exceeded one per 600 ft^2 , in these tests, was greater than that observed in the Navajo tests at identical explosive charge weights (68 Kg). These differences are assumed to be real and the result of a different door and headwall design. The presence of the blast shield did not affect maximum hazardous fragment distances. Those fragments that travelled the farthest came from the top of the headwall and were projected over the top of the blast shield. However, the blast shield did stop many fragments; and had it not been in place the density close in would have been much greater. Fragment hazards to the front of the magazines could have been eliminated in this series of tests if the blast shields had been higher. Unfortunately, employing higher blast shields to control fragment hazards in front of the magazines, at small HE charge weights, would increase hazardous fragment densities to the sides of the magazines.

If the headwalls and doors were replaced with chain link fencing fabric, full venting would occur; and fragments would not be produced by these currently used structures. In this case, thousands of pounds of explosives would be required to produce overpressures to the front or fragment hazards to the sides and rear of the magazine, which are unacceptable. Primary fragments from any ordnance items stored in the magazines could be controlled via sandbag barrier walls.

The non-hazardous overpressures measured off the side of the headwall in this series of tests, with an HE charge weight of 68 Kg, were slightly higher than those observed in the Navajo tests (8.5kPa at 27.4 metres versus 3.4kPa at 24.4 metres) at the same charge weight. The increase can be attributed to the presence of the blast shield in the Hastings test, the relatively heavy

*Any fragment weighing at least 0.18 Kg (0.4 lb) is assumed to be hazardous.

steel doors on the Navajo magazines, and variations in the design of the headwalls.

V. CONCLUSIONS AND RECOMMENDATIONS

The maximum distance requirement between inhabited buildings and standard-size, earth-covered igloo magazines containing small explosive charge weights will be determined by door displacement and not by concrete fragments from the headwall. Blast shields will reduce this distance and change the direction of the hazard from the front to the sides, at small charge weights.

Blast shields are effective in controlling concrete fragment hazards from the headwalls at explosive charge weights up to 18 Kg. At higher explosive charge weights, significant numbers of fragments will be projected over the blast shield.

Igloo magazines will suffer severe structural damage when explosive charges as small as 5.4 Kg TNT detonate inside a magazine. Explosive charge weights of 7.3 Kg can completely destroy a magazine.

There are no significant overpressure hazards, outside of a magazine, associated with the detonation of up to 68 Kg TNT inside a magazine.

Tests should be conducted to determine overpressure and fragment hazards when explosive charges are detonated inside igloo magazines with fully vented non-fragment producing headwalls and doors.

APPENDIX A

**External Pressure Time Histories From
Explosive Charges Positioned Inside
Earth Covered Igloo Magazines**

Figure A-1. Pressure Time Histories, Test No. 2, 12.9 Kg TNT Charge Positioned 4 Metres from Headwall

Gage positioned 18.3 m in front of the headwall

Figure A-2. Pressure Time History, Test No. 4, 5.4 Kg TNT Charge Positioned 4 Metres from Headwall

Figure A-3. Pressure Time Histories, Test No. 5, 5.4 Kg TNT Charge Positioned 4 Metres from Headwall

NO. 5 12#/13.5F@60F

Gage positioned 18.3 m in front of the headwall

NO. 5 12#/13.5F@90F

Gage positioned 27.4 m in front of the headwall

Figure A-4. Pressure Time Histories, Test No. 5, 5.4 Kg TNT Charge Positioned 4 Metres from Headwall

Gage positioned 15.2 m off the side of the headwall

Gage positioned 27.4 m off the side of the headwall

Figure A-5. Pressure Time Histories, Test No. 6, 5.4 Kg TNT Charge Positioned 20.4 Metres from Headwall

Gage positioned 18.3 m in front of the headwall

Gage positioned 27.4 m in front of the headwall

Figure A-6. Pressure Time Histories, Test No. 5, 5.4 Kg TNT Charge Positioned 20.4 Metres from Headwall

Gage positioned 15.2 m off the side of the headwall
 NO. 7 16#/13.5F@90S

Gage positioned 27.4 m off the side of the headwall

Figure A-7. Pressure Time Histories, Test No. 7, 7.3 Kg TNT Charge Positioned 4 Metres from Headwall

Gage positioned 18.3 m in front of the headwall

Gage positioned 27.4 m in front of the headwall

Figure A-8. Pressure Time Histories, Test No. 7, 7.3 Kg TNT Charge Positioned 4 Metres from Headwall

Gage positioned 15.2 m off the side of the headwall

Gage positioned 27.4 m off the side of the headwall

Figure A-9. Pressure Time Histories, Test No. 8, 5.4 Kg TNT Charge Positioned 20.4 Metres from Headwall

Gage positioned 18.3 m in front of the headwall

Gage positioned 27.4 m in front of the headwall

Figure A-10. Pressure Time Histories, Test No. 8, 5.4 Kg TNT Charge Positioned 20.4 Metres from Headwall

2

Gage positioned 15.2 m off the side of the headwall

NO. 9 100#/CTR@90S

Gage positioned 27.4 m off the side of the headwall

Figure A-11. Pressure Time Histories, Test No. 9, 45.4 Kg TNT Charge Positioned 12 Metres from Headwall

Gage positioned 18.3 m in front of the headwall

Gage positioned 27.4 m in front of the headwall

Figure A-12. Pressure Time Histories, Test No. 9, 45.4 Kg TNT Charge Positioned 12 Metres from Headwall

Gage positioned 15.2 m off the side of the headwall
NO. 10 150#/CTR@90S

Gage positioned 27.4 m off the side of the headwall

Figure A-13. Pressure Time Histories, Test No. 10, 68 Kg TNT Charge Positioned 12 Metres from Headwall

Gage positioned 18.3 m in front of the headwall

NO. 10 150#/CTR@90F

Gage positioned 27.4 m in front of the headwall

Figure A-14. Pressure Time Histories, Test No. 10, 68 Kg TNT Charge Positioned 12 Metres from Headwall

APPENDIX B
Individual Fragment Recovery Data

APPENDIX B
Individual Fragment Recovery Data

Coded Data Format Instructions

First entry in the three letter code is the HE charge weight:

A = 27 Kg, B = 36 Kg, C = 45 Kg, D = 68 Kg

Second entry is the weight group in pounds:

E = 0.4-1.0, F = 1-5, G = 5-10, H = 10-50, I = 50+

Third entry denotes recovery area:

L = Left side recovery area, R = Right side recovery area

First column entry is the distance (ft.) to the front or behind the head-wall, if preceded by a - sign, where the fragment came to rest.

Second column entry is the deviation (ft.) to either the right side or the left side, from the centerline, where the fragment came to rest.

A E L	AEL		AFL		AFL		AHL			
	0	180	120	130	125	25	230	90	135	5
0 55					125	25	175	75	320	20
30 65			A F L		125	25	160	55	175	65
30 65					125	25	140	60	135	25
30 65	-10	70			130	5	120	90	170	45
30 65		0	60		135	35	10	150	170	15
10 50		10	75		135	15	20	125	105	65
40 70		10	60		140	5	20	140	100	55
65 20		20	75		135	30	30	180	130	15
65 20	15	100			130	25	30	130	185	35
65 20	25	65			130	25	55	140	205	25
70 20	20	75			145	40	60	125	255	40
70 20	20	75			140	10	75	160	0	180
70 20	10	50			140	25	75	190	10	250
80 5	40	65			150	20	90	140	-80	275
80 5	50	70			150	15	140	140		
80 5	50	60			155	20	150	150	A I L	
80 25	50	95			150	30	150	150		
95 5	50	80			170	5	160	150	-10	70
110 20	60	0			170	15	280	195	-5	90
110 25	70	70			180	20			60	95
115 10	70	65			180	25	A G L			
130 5	55	5			180	25			A E R	
130 5	65	15			190	25	20	65		
125 30	65	20			190	20	60	15	15	100
135 5	70	20			190	25	60	20	15	50
135 30	70	20			190	35	70	35	15	70
140 5	70	15			195	35	85	15	200	10
140 10	70	20			200	25	70	15	30	65
145 15	70	25			205	5	70	15	55	50
195 10	80	20			205	10	95	5	65	20
200 5	75	25			210	10	80	20	220	15
200 5	75	25			230	5			70	10
205 5	75	20			250	25	A H L		90	5
215 35	90	10			260	15			110	15
220 10	100	30			260	25	60	65	235	25
250 40	95	0			275	50	65	60	185	5
260 5	105	0			275	45	65	20	195	10
275 5	110	5			310	5	95	35	205	20
270 60	115	10			350	15	250	100	250	25
200 60	125	30			340	90	230	90		
200 60	120	25			340	100	95	25	A F R	
140 75	125	10			300	75	135	10		
100 60	130	5			275	55	135	5	0	60

Table B-1 Individual Fragment Recovery Data

AFL		AGR		BFL		BFL		BGL	
0	90	150	5	70	35	330	25	250	0
20	55	300	5	70	30	340	20	295	5
40	70			80	20	365	40	300	0
20	60	A H R		90	20	450	90	430	100
25	70			95	15	450	90	300	80
35	50	230	0	100	5	350	90	35	60
50	70	340	90	115	20	340	55	35	60
40	100			120	20	290	100	15	60
240	40	B E L		130	5	280	100	350	125
45	50			135	35	225	55	20	240
55	50	60	40	140	5	230	50		
65	75	70	35	140	5	240	100	B H L	
65	75	70	40	145	20	190	65		
60	10	100	5	150	0	140	90	140	20
60	20	120	5	150	0	80	75	190	25
65	10	120	20	145	30	50	50	340	25
70	30	135	5	150	20	50	60	345	20
70	5	135	5	150	25	50	70	285	100
250	100	175	25	150	15	40	80	70	160
70	10	175	25	155	25	35	60	10	250
75	5	190	40	160	0	45	55		
80	5	375	25	170	30	45	70	B E R	
100	20	425	25	175	25	40	70		
105	5	310	100	175	30	45	55	10	70
105	10	300	100	175	25	80	160	20	65
125	15	295	55	180	25	210	165	65	75
120	55	285	60	180	5	205	145	50	95
135	5	285	60	180	20	300	125	100	30
250	20	280	100	180	20	290	110	100	30
130	10	50	90	190	20	300	170	130	0
135	0	40	70	190	0	300	110	130	0
150	5	250	145	190	40	340	125	130	5
160	0	250	175	190	5	400	150	160	40
170	50	250	150	205	20	400	150	160	5
170	60	325	125	205	10	275	260	170	10
190	15	400	150	205	10			180	0
190	5	270	260	210	15	B G L		175	20
240	40	200	200	215	20			210	15
255	25	70	240	250	25	135	5	220	25
360	85			255	30	140	5	220	25
		B F L		255	25	140	5	235	5
		A G R		260	5	145	15	245	5
				65	35	280	30	245	5
50	70			70	60	175	0	260	70
125	25			65	40	200	0	290	60
				290	20	240	25		

Table B-1 Individual Fragment Recovery Data (continued)

BER		BFR		BFR		CEL		CRL	
295	75	140	100	375	80	90	10	30	100
300	75	140	50	390	25	90	15	25	90
330	15	140	30	390	15	95	5	25	90
330	100	145	5	390	85	95	110	25	90
360	75	150	10	415	20	60	110	35	40
440	75	160	30	450	40	20	100	45	60
440	20	160	30	440	20	15	100	45	60
440	20	170	10	445	20	145	15	60	75
		170	10	470	30	165	205	70	40
B	F	R	170	10		300	195	75	45
			180	40	B G R	200	230	80	85
5	65	180	5			300	195	95	80
10	100	190	5	10	95	300	75	90	15
30	65	200	30	110	5	295	65	85	20
55	70	200	20	110	10	385	60	85	20
55	65	210	15	140	30	380	55	95	5
60	70	220	25	180	10	230	25	85	110
60	75	210	15	185	5	220	30	70	130
55	60	210	0	250	20	210	20	65	115
65	75	225	15	280	60	215	50	105	100
100	15	230	35	360	20	210	25	20	100
100	15	230	20	360	70	210	40	15	100
100	15	240	5	390	70	210	30	15	100
120	15	240	5	445	60	210	25	0	115
100	20	245	10	470	40	210	35	10	140
100	0	250	30			190	15	50	280
110	20	250	20	B H R		190	0	90	235
110	20	250	5			180	30	100	375
110	20	260	30	190	0	180	30	150	210
110	20	260	5	195	25	150	50	140	315
120	0	270	45	200	10	130	30	250	250
120	20	270	50	210	25	130	25	260	260
120	20	275	45	240	50	130	25	300	230
120	20	290	30	270	70	125	30	240	205
120	5	300	30	335	95	110	30	280	170
125	0	295	70					300	190
125	5	300	70	C E L		C F L		325	190
130	10	300	75					350	150
130	10	300	90	45	60	10	95	320	140
135	0	330	30	45	60	15	95	340	125
135	0	330	15	80	90	10	95	325	75
130	5	330	5	80	80	20	95	270	75
140	5	340	30	90	15	25	90	360	60
140	5	360	20	90	15	25	85	310	60
140	30	360	20	90	10	25	80	320	50

Table B-1 Individual Fragment Recovery Data (continued)

CFL		CFL		CHL		CGR		
C	F	C	F	R	C	H	R	
320	40	140	30	90	20			
360	40	130	10	90	20	15	95	105 0
320	40	130	50	95	120	20	90	165 5
300	30	130	35	200	10	20	55	200 10
390	0	130	0	65	125	30	60	375 90
270	45	125	5	15	105	30	60	-100 5
250	20	120	40	300	195	30	70	
250	20	120	25	115	25	35	80	C H R
275	40	120	40	300	180	30	95	30 55
240	25	125	40	280	20	35	80	30 70
230	5	125	40	270	20	35	75	30 80
240	40	115	10	100	30	50	65	85 20
240	40	105	35			60	50	180 30
230	30	105	5	C I L		65	5	380 40
230	45					75	0	-90 0
225	40	C G L		90	100	80	5	-100 5
210	10			95	110	80	15	
225	40	25	80	0	160	30	20	C I R
210	35	25	80	295	60	100	20	
205	20	75	95	140	40	105	0	90 10
200	40	60	100			115	10	240 10
200	20	90	235	C E R		160	30	-125 10
200	10	230	230			170	0	-95 10
200	5	400	30	20	90	180	0	
190	10	370	30	60	70	190	5	D E L
190	30	440	40	65	5	200	30	
175	35	400	35	70	10	240	20	220 25
175	30	205	25	80	0	270	5	220 25
175	35	190	10	85	75	280	5	220 40
175	30	180	45	90	90	280	5	220 40
170	30	150	30	105	0	300	20	220 40
165	30	135	25	125	20	300	15	220 40
165	30	120	10	125	50	375	60	230 15
150	20	120	25	125	75	385	5	240 10
150	20	120	25	140	30	400	15	240 15
150	20	120	25	150	0	450	30	230 35
155	25	110	10	150	10	450	70	230 35
160	40			150	20	490	90	245 15
150	40	C H L		165	5			245 20
145	25			200	10	C G R		250 20
145	30	20	80	200	40			250 25
145	30	25	80	200	50	5	55	
150	45	25	95	450	75	35	100	240 60
140	35	215	25			80	40	240 60
145	40	105	30			85	110	260 20
								250 60

Table B-1 Individual Fragment Recovery Data (continued)

DEL	DEL	DFL	DFL	DFL
270 20	65 120	-5 100	140 360	145 10
270 20	75 115	-5 90	140 350	150 5
300 5	105 30	-5 75	150 290	150 5
320 15	5 160	85 15	160 190	140 5
320 25	30 135	85 15	180 180	150 0
320 25	105 30	90 20	150 30	160 0
320 25	65 145	95 20	160 135	165 0
350 10	95 160	85 25	110 140	200 75
360 20	120 30	85 30	150 95	220 20
350 30	5 210	90 30	200 100	220 50
375 10	0 250	75 30	140 60	230 20
380 10	140 35	75 30	110 70	230 35
385 5	60 445	100 25	190 150	240 35
390 5	140 480	100 25	150 50	240 35
415 35	130 450	90 35	150 45	250 35
425 60	150 375	90 40	175 50	250 35
440 30	115 50	70 20	175 150	250 35
460 50	150 100	60 95	175 50	250 35
480 30	105 105	60 90	180 35	250 50
475 50	115 50	70 90	150 30	265 20
425 300	105 105	15 110	165 35	250 50
495 20	105 105	10 120	115 30	275 45
500 5	110 45	50 100	120 30	275 25
510 40	105 95	50 125	135 25	630 90
565 40	140 60	65 115	105 10	185 250
555 40	160 65	55 120	160 25	150 325
560 80	120 60	5 160	160 25	290 40
530 230	130 50	5 150	610 15	300 25
-5 100	150 30	50 145	450 300	305 35
90 0	105 10	15 190	325 150	320 35
95 5	105 10	40 170	160 25	320 35
90 30	200 30	605 20	160 25	320 35
90 35	200 50	800 20	160 25	325 25
100 60	215 30	520 240	110 10	325 25
50 90		40 165	105 10	340 50
20 120	D F L	50 140	105 10	355 45
130 10		55 170	120 10	360 50
40 125	675 75	90 200	105 10	360 75
40 125	660 140	85 170	105 10	380 85
40 125	-150 0	100 150	135 10	385 10
40 110	-125 15	25 360	140 10	390 35
40 110	-120 30	0 390	140 10	410 35
130 10	-85 55	130 425	140 10	410 85
60 105	-10 120	175 400	160 10	420 15
65 110	-10 105	180 390	160 10	430 25

Table B-1 Individual Fragment Recovery Data (continued)

DFL		DGL		DIL		DFR		DGR	
435	35	355	85	50	95	50	50	140	5
435	50	355	60	40	110	50	0	300	20
450	50	370	45	45	105	50	0	425	55
450	30	375	55	0	150	50	40	430	55
445	30	450	10	0	150	60	20	430	55
450	75	490	20	0	150	60	15	430	55
475	50	550	125	0	160	75	45	250	250
475	35	560	35	0	160	85	40	D I R	
460	55	575	90	15	440	85	85	50	0
465	45	610	50	185	100	120	0	325	5
485	10	610	75	330	30	140	80	425	0
500	50	630	60	395	5	140	0	595	50
510	30	630	230			280	40	600	50
510	40			D E R		295	5		
540	50	D H L				300	5		
575	20			55	50	305	40		
590	65	-5	80	60	40	330	15		
580	20	40	90	70	15	325	100		
590	80	40	95	75	15	400	50		
650	45	55	90	75	20	380	15		
		30	120	90	25	380	15		
D G L		0	160	95	20	400	15		
		10	165	120	10	450	120		
-150	0	0	200	150	40	510	10		
-130	10	15	445	175	10	510	15		
-70	60	125	35	185	5	480	30		
-5	110	275	50	165	20	480	40		
90	10	355	20	165	20	490	30		
10	90	390	50	165	20	550	90		
50	100	490	75	195	40	575	50		
55	90	490	30	195	0	630	70		
65	95	550	270	225	0	630	50		
45	105	450	350	270	20	110	120		
50	130			320	15				
70	130	D I L		320	15	D G R			
75	110			340	40				
15	150	-90	40	330	20	80	40		
45	145	-90	40	330	20	260	15		
60	120	-85	50	340	10	290	10		
140	60	-70	60	430	50	510	0		
175	30	-40	110	525	65	300	250		
120	20	80	75	D F R		140	120		
230	10	85	75			D H R			
330	20	25	95			50	80		
340	20	40	95	60	80				

Table B-1 Individual Fragment Recovery Data (continued)

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333
24	Chairman Department of Defense Explosives Safety Board 2461 Eisenhower Avenue Alexandria, VA 22331	1	Commander US Army Materiel Development & Readiness Command ATTN: DRCSF 5001 Eisenhower Avenue Alexandria, VA 22333
1	Under Secretary of Defense for Research and Engineering Department of Defense Washington, DC 20301	1	Director DARCOM Field Safety Office Charlestown, IN 47111
1	Assistant Secretary of Defense (MRA&L) ATTN: EO&SP Washington, DC 20301	1	HQDA (DAPE-HRS) Washington, DC 20310
1	Director Defense Nuclear Agency ATTN: SPTD, Mr. T.E. Kennedy Washington, DC 20305	1	Commander Armament R&D Center US Army AMCCOM ATTN: DRSMC-TDC(D) Dover, NJ 07801
1	Director Defense Nuclear Agency ATTN: DDST(E), Dr. E. Sevin Washington, DC 20305	2	Commander Armament R&D Center US Army AMCCOM ATTN: DRSMC-TSS(D) Dover, NJ 07801
1	Director Defense Nuclear Agency ATTN: LEEE, Mr. J. Eddy Washington, DC 20305	1	Commander US Army Armament, Munitions and Chemical Command ATTN: DRSMC-LEP-L(R) Rock Island, IL 61299
1	HQDA ATTN: DAMA-CSM-CA, Mr. Lippi Washington, DC 20310	1	Commander Armament R&D Center US Army AMCCOM ATTN: DRSMC-LCM-SP Dover, NJ 07801
1	HQDA (DAMO-NC) ATTN: COL R.D. Orton Washington, DC 20310		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army AMCCOM ATTN: DRSMC-SA Rock Island, IL 61299	1	Commander US Army Tank Automotive Command ATTN: DRSTA-TSL Warren, MI 48090
1	Director Benet Weapons Laboratory Armament R&D Center US Army AMCCOM ATTN: DRSMC-LCB-TL(D) Watervliet, NY 12189	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL White Sands Missile Range, NM 88002
1	Commander US Army Aviation Research and Development Command ATTN: DRDAV-E 4300 Goodfellow Blvd St. Louis, MO 63120	2	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Commander US Army Mobility Research & Development Command ATTN: DRDME-ND, Mr. R.L. Brooke Fort Belvoir, VA 22060
1	Commander US Army Communications Research and Development Command ATTN: DRSEL-ATDD Fort Monmouth, NJ 07703	1	Chief of Engineers Department of the Army ATTN: DAEN-RDL, Mr. A.E. Simonini Washington, DC 20314
1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703	1	Chief of Engineers Department of the Army ATTN: DAEN-RDZ-A, Dr. J. Choromokos Washington, DC 20314
1	Commander US Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35898	1	Chief of Engineers Department of the Army ATTN: DAEN-ECE-T, Mr. R.L. Wight Washington, DC 20314
1	Commander US Army Missile Command ATTN: DRSMI-YDL Redstone Arsenal, AL 35898		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Engineer Waterways Experiment Station ATTN: WESNP P.O. Box 631 Vicksburg, MS 39180	1	Commander Naval Weapons Center ATTN: Code 0632, Mr. G. Ostermann China Lake, CA 93555
1	Commander Naval Facilities Engineering Command ATTN: Code 04T5 200 Stoval Street Alexandria, VA 22332	1	Commander Naval Surface Weapons Center Dahlgren Laboratory ATTN: E-23, Mr. J.J. Walsh Dahlgren, VA 22448
1	Chief of Naval Operations Department of the Navy ATTN: OP-411, CAPT V.E. Strickland Washington, DC 20350	1	Commander Naval Surface Weapons Center White Oak Laboratory ATTN: R-15, Mr. M.M. Swisdak Silver Spring, MD 20910
1	Chief of Naval Operations Department of the Navy ATTN: OP-411, Mr. C. Ferraro, Jr. Washington, DC 20350	1	Commanding Officer Naval Weapons Support Center Crane, IN 47522
1	Commander Naval Sea Systems Command ATTN: SEA-06H, Mr. E.A. Daugherty Washington, DC 20360	1	Commander Naval EOD Facility ATTN: Code D, Mr. L. Dickinson Indian Head, MD 20640
1	Commander Naval Sea Systems Command ATTN: SEA-0333 Washington, DC 20360	1	Commanding Officer Naval Civil Engineering Laboratory ATTN: Code L51, Mr. W.A. Keenan Port Hueneme, CA 93041
1		1	AFWL/SUL Kirtland AFB, NM 87117
1		1	AFISC/SEW ATTN: COL W.F. Gavitt, Jr. Norton AFB, CA 92409
1		1	AFISC/SEV ATTN: Mr. K.R. Shopher Norton AFB, CA 92409

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	AFSC/IGFG/SDOA Andrews AFB Washington, DC 20334	1	Agbabian Associates ATTN: Dr. D.P. Reddy 250 N. Nash Street El Segundo, CA 90245
1	AFAL/DLYV ATTN: Mr. R.L. McGuire Eglin AFB, FL 32542	1	Ammann & Whitney ATTN: Mr. N. Dobbs Suite 1700 Two World Trade Center New York, NY 10048
1	AFESC/RDC ATTN: Mr. W.C. Buchholz Tyndall AFB, FL 32403	1	Black & Veatch Consulting Engineers ATTN: Mr. H.L. Callahan 1500 Meadow Lake Parkway Kansas City, MO 64114
1	Director Office of Operational and Environmental Safety US Department of Energy Washington, DC 20545	1	Lovelace Research Institute ATTN: Dr. E.R. Fletcher P.O. Box 5890 Albuquerque, NM 87115
1	Albuquerque Operations Office US Department of Energy ATTN: Division of Operational Safety P.O. Box 5400 Albuquerque, NM 87115	1	Southwest Research Institute ATTN: Dr. W.E. Baker 6220 Culebra Road San Antonio, TX 78228
1	Mason & Hanger-Silas Mason Co., Inc. Pantex Plant ATTN: Director of Development P.O. Box 647 Amarillo, TX 79177	1	IIT Research Institute ATTN: Mrs. H. Napadensky 10 West 35 Street Chicago, IL 60616
1	Director U.S. Bureau of Mines Pittsburgh Mining & Safety Research Center ATTN: Mr. Richard W. Watson 4800 Forbes Avenue Pittsburgh, PA 15213	5	Applied Research Associates, Inc. ATTN: Mr. J.L. Drake 1204 Openwood Street Vicksburg, MS 39180
1	President Institute of Makers of Explosives ATTN: Mr. F.P. Smith, Jr., Executive Director 1575 Eye Street, N.W. Washington, DC 20005		Aberdeen Proving Ground Dir, USAMSAA ATTN: DRXSY-D DRXSY-MP, H. Cohen Cdr, USATECOM ATTN: DRSTE-TO-F Cdr, CRDC, AMCCOM ATTN: DRSMC-CLB-PA DRSMC-CLN DRSMC-CLJ-L Cdr, USATHAMA ATTN: DRXTH-TE

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address: _____

