

Enunciado

Una planta procesadora de alimentos fabrica embutidos y pan para panchos.

Muelen la harina a una tasa máxima de 200Kg por semana y cada pan requiere 0.1Kg.

Tienen un contrato de entrega de 800Kg de cerdo a la semana y cada embutido requiere 1/9Kg de cerdo.

Se cuenta con suficiente cantidad del resto de los ingredientes de ambos productos.

Por último, la mano de obra son 5 empleados trabajando 40hr/semana.

Cada embutido requiere 3min. de trabajo y cada pan 2min.

Cada embutido da una ganancia de 0,80 USD y cada pan 0,30 USD. Se desea saber cuántos embutidos y cuántos panes debe producir cada semana para maximizar ganancias.

Realizar:

- Un modelo de programación lineal para este problema.
- 2. Use el método gráfico para resolver el modelo.

Datos

Muelen la harina a una tasa máxima de 200 Kg por semana y cada pan requiere 0.1 Kg.

$$0.1 \text{ x} 1 \leq 200$$

x1:

Tienen un contrato con otra empresa que le entrega 800 Kg de carne de cerdo a la semana y cada embutido requiere 1/9 Kg de cerdo.

$$1/9 x2 \le 800$$

x2:

Por último, la mano de obra son 5 empleados trabajando 40hr/semana. Cada embutido requiere 3min. de trabajo y cada pan 2min.

$$2/60 x1 + 3/60 x2 \le 5*40$$

$$2 x1 + 3x2 \le 12000$$

Cada embutido da una ganancia de 0,80 USD y cada pan 0,30 USD

$$Z = 0.3 \times 1 + 0.8 \times 2$$

Modelo LP

$$\max o \min \sum_{j} c_{j} x_{j}$$

$$\sum_{j} a_{ij} x_{j} \begin{cases} \leq \\ = \\ \geq \end{cases} b_{i} \ \forall i$$

$$max Z = 0.3 x1 + 0.8 x2$$

s. t

$$0.1 x_1 + x_3 = 200$$

$$1/9 \times 2 + \times 4 = 800$$

$$2x_1 + 3x_2 + x_5 = 12000$$

$$X1, X2, X3, X4, X5 \ge 0$$

 $0.1 \times 1 \le 200$ $1/9 \times 2 \le 800$ $2 \times 1 + 3 \times 2 \le 12000$

max Z =
$$0.3 \times 1 + 0.8 \times 2$$

$0.1 \times 1 + \times 3 = 200$
1/9 x2 + x4 = 800
2 x1 + 3 x2 + x5 = 12000

T =0			0.3	0.8	0	0	0	
Coef. en Z de var. básica	Variable Básica	Вк	x1	x2	x 3	х4	x5	Bk /Aij
0	х3	200	0.1	0	1	0	0	
0	х4	800	0	0.111	0	1	0	
0	x5	12000	2	3	0	0	1	
Z =0	Zj - Cj		-0.3	-0.8	0	0	0	

Tengo que encontrar la fila y columna pivot:

T =0			0.3	0.8	0	0	0	
Coef. en Z de var. básica	Variable Básica	Bk	x1	x2	x 3	x4	x 5	Bk /Aij
0	х3	200	0.1	0	1	0	0	Infinito
0	х4	800	0	0.111	0	1	0	7054
0	x5	12000	2	3	0	0	1	4000 -
Z =0	Zj - Cj		-0.3	-0.8	0	0	0	

min(Bk /Aij)

Z = Cij * Aij

Z1 = 0*0.1 + 0*0 + 0*2 = 0

C1 = 0.3

Z1 - C1 = -0.3

Es el más negativo, entra x2 a la base y sale x5

¡Hay valores negativos, puede mejorar!

Actualizamos la tabla: fila pivote

T =1			0.3	0.8	0	0	0	
Coef. en Z de var. básica	Variable Básica	Bk	x1	x2	x 3	х4	x5	Bk /Aij
0	х3							
0	х4							
0.8	x2	4000	2/3	1	0	0	1/3	
Z =	Zj - Cj							

Aij1 (pivote)=
$$\frac{2}{3}$$

Aij2 (pivote)=
$$3/3$$

Aij3 (pivote)=
$$0/3$$

Aij4 (pivote)=
$$0/3$$

Actualizar valores de la fila pivote: $B'_{k_p} = B_{k_p} / A_{i_p j_p}$

$$B'_{k_p} = B_{k_p} / A_{i_p j_p}$$

$$A'_{i_p j} = A_{i_p j} / A_{i_p j_p}$$

Valores de la fila pivote

Valor pivote

Actualizamos el resto de filas: Valor T= 0

T = 1			0.3	0.8	0	0	0	
Coef. en Z de var. básica	Variable Básica	Bk	x 1	x2	x 3	x4	x5	Bk /Aij
0	х3	200 ²⁰⁰	0.1 <mark>0.1</mark>	0 0	1 ¹	0 0	0 0	
0	х4	356 <mark>800</mark>	-0.0756 ⁰	o <mark>0.111</mark>	0 0	1 1	-0.0378 ⁰	
0.8	x2	4000	2/3	1	0	0	1/3	
Z =	Zj - Cj				_			

Actualizar valores del resto de las filas:

 $B'_{k} = B_{k} - \frac{B_{k_{p}} * A_{ij_{p}}}{A_{i_{p}j_{p}}} \longrightarrow \text{Valor de la columna pivote}$ Valor pivote

Valor a actualizar

Ej: Bkx4 = 800- (4000 * 0.111) = 356

Calculamos el Z:

T = 1			0.3	0.8	0	0	0	
Coef. en Z de var. básica	Variable Básica	Bk	x1	x2	х3	x4	x 5	Bk /Aij
0	х3	200	0.1	0	1	0	0	
0	х4	356	-0.0756	0	0	1	-0.0378	
0.8	x2	4000	2/3	1	0	0	1/3	
Z = 3200	Zj - Cj		7/30	0	0	0	8/30	

Recalculamos Zj - Cj

$$Zj1 = 0*0.1 + 0*(-0.0756) + 0.8*(2/3) = 8/15$$

$$Cj1 = 0.3$$

$$Zj 1 - Cj1 = 8/15 - 0.3 = 7/30$$

No hay más valores negativos, no puede mejorar

