Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы цифровых устройств

К ЗАЩИТЕ ДОПУСТИТЬ ———— Ю. А. Луцик

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 202ПЗ

Студент Н. Г. Альхимович

Руководитель Ю. А. Луцик

МИНСК 2022

Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы цифровых устройств

УTВE	РЖД	ĮAЮ
Завед	ующ	ий кафедрой ЭВМ
		_ Б. В. Никульшин
*	>>>	20 г.

ЗАДАНИЕ по курсовой работе студента Альхимович Нины Геннадьевны

- 1. Тема работы: «Проектирование и логический синтез сумматораумножителя двоично-четверичных чисел»
- 2. Срок сдачи студентом законченной работы: до 20 мая 2022 г.
- 3. Исходные данные к работе:
 - 3.1.исходные сомножители: MH = 15,79; MT = 48,33;
 - 3.2. алгоритм умножения: Б;
 - 3.3.метод умножения: умножение закодированного двоично-четверичного множимого на два разряда двоичного множителя одновременно в прямых кодах;
 - 3.4. коды четверичных цифр множимого для перехода к двоичночетверичной системе кодирования: $0_4 10$, $1_4 11$, $2_4 00$, $3_4 01$;
 - 3.5. тип синтезируемого умножителя: 2;
 - 3.6. логический базис для реализации ОЧС: ИЛИ, исключающее ИЛИ, генератор «1»; метод минимизации карты Карно Вейча;
 - 3.7. логический базис для реализации ОЧУ: И, ИЛИ, НЕ; метод минимизации алгоритм Рота.

4. Содержание пояснительной записки (перечень подлежащих разработке вопросов):

Введение. 1. Разработка алгоритма умножения. 2. Разработка структурной схемы сумматора-умножителя. 3. Разработка функциональных схем основных узлов сумматора-умножителя. 4. Синтез комбинационных схем устройств на основе мультиплексоров. 5. Оценка результатов разработки. Заключение. Список литературы.

- 5. Перечень графического материала:
 - 5.1.Сумматор-умножитель первого типа. Схема электрическая структурная.
 - 5.2.Одноразрядный четверичный сумматор. Схема электрическая функциональная.
 - 5.3.Одноразрядный четверичный умножитель. Схема электрическая функциональная.
 - 5.4. Регистр-аккумулятор. Схема электрическая функциональная.
 - 5.5.Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная.

КАЛЕНДАРНЫЙ ПЛАН

Наименование этапов курсовой	Объем	Срок	
работы	этапа,	выполнения	Примечания
	%	этапа	
Разработка алгоритма умножения	10	10.02-20.02	
Разработка структурной схемы	10	21.02-09.03	С выполнением
сумматора-умножителя			чертежа
Разработка функциональных	50	10.03-30.04	С выполнением
схем основных узлов сумматора-			чертежей
умножителя			
Синтез комбинационных схем	10	01.05-15.05	С выполнением
устройств на основе			чертежа
мультиплексоров			
Завершение оформления	20	15.05-20.05	
пояснительной записки			

Дата выдачи задания: 10 февраля 20)22 г.	
Руководитель		 Ю. А. Луцик
ЗАДАНИЕ ПРИНЯЛ К ИСПОЛНЕ	НИЮ	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ	6
1.1. Перевод сомножителей из десятичной системы счисления в четверичную.	6
2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА- УМНОЖИТЕЛЯ	9
3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ	10
3.1. ЛОГИЧЕСКИЙ СИНТЕЗ ОДНОРАЗРЯДНОГО ЧЕТВЕРИЧНОГО УМНОЖИТЕЛЯ- СУММАТОРА	10
4. ЛОГИЧЕСКИЙ СИНТЕЗ ОДНОРАЗРЯДНОГО ЧЕТВЕРИЧНОГО СУММАТОРА НА ОСНОВЕ МУЛЬТИПЛЕКСОРА	26
5. ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ	28
6. ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ	30
ЗАКЛЮЧЕНИЕ	.31
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	.32
ПРИЛОЖЕНИЕ А	33
ПРИЛОЖЕНИЕ Б	.34
ПРИЛОЖЕНИЕ В	35
ПРИЛОЖЕНИЕ Г	.36
ПРИЛОЖЕНИЕ Д	37

ВВЕДЕНИЕ

Данная курсовая работа по дисциплине «Арифметические и логические основы цифровых устройств» предусматривает проектирование и синтез цифровых схем арифметического устройства, выполняющего операции сложения и умножения над числами, представленными в форме с плавающей запятой в двоичной и двоично-четверичной системах счисления (c/c).

По исходным данным необходимо разработать: алгоритм выполнения операции умножения, алгоритм выполнения операции сложения, структурную схему вычислительного устройства, выполняющего сложение и умножение, функциональные схемы основных узлов проектируемого сумматораумножителя в заданном логическом базисе: комбинационного одноразрядного четверичного сумматора (ОЧС), в том числе и на мультиплексорах, одноразрядного комбинационного четверичного умножителя-сумматора преобразователя комбинационной схемы множителя Минимизации переключательных функций по каждому выходу схемы (выполняется с применением алгоритма Рота и карт Карно – Вейча). По результатам разработки необходимо построить схемы перечисленных устройств и оценить эффективность минимизации и время выполнения операций.

1. РАЗРАБОТКА АЛГОРИТМА УМНОЖЕНИЯ

1.1. Перевод сомножителей из десятичной системы счисления в четверичную.

Множимое

 $M_{H4} = 33,3022.$

В соответствии с заданной кодировкой множимого: $M_{H2/4} = 0101,01100000$.

Множитель

 $M_{T4} = 300,111.$

В соответствии с обычной весомозначной кодировкой множителя (для всех вариантов):

 $M_{T2/4} = 110000,010101.$

1.2. Запишем сомножители в форме с плавающей запятой в прямом коде:

 $M_{\rm H}=0.10101100000$ $P_{\rm MH}=0.1000+02_{10}$ — закодировано по заданию, $M_{\rm T}=0.110000010101$ $P_{\rm MT}=0.0011+03_{10}$ — закодировано традиционно.

1.3. Умножение двух чисел с плавающей запятой на два разряда множителя одновременно в прямых кодах. Это сводится к сложению порядков, формированию знака произведения, преобразованию

6

разрядов множителя согласно алгоритму и перемножению мантисс сомножителей.

Порядок произведения будет следующим:

 $\begin{array}{ll} P_{M\text{H}} = & 0.1000 \ 024 \\ P_{M\text{T}} = & \underline{0.0011} \ \underline{034} \\ P_{M\text{H} \cdot M\text{T}} = & 0.1111 \ 114 \end{array}$

Результат закодирован в соответствии с заданием на кодировку множимого.

Знак произведения определяется суммой по модулю два знаков сомножителей, т. е.:

зн Мн \bigoplus зн Мт = $0 \bigoplus 0 = 0$.

Для умножения мантисс необходимо предварительно преобразовать множитель. При умножении чисел в прямых кодах диада $11(3_4)$ заменяется на триаду $10\overline{1}$. Преобразованный множитель имеет вид: $M\tau_4^{\Pi} = 1\overline{1}00111$ или $M\tau_2^{\Pi} = 010\overline{1}0000010101$. Перемножение мантисс по алгоритму «Б» приведено в таблице 1.1.

Таблица 1.1 – Перемножение мантисс

Ч	етверичная с/с		Двоично-четверичная с/с	Комментарии
	1		2	3
0.	00000000000	0.	10 10 10 10 10 10 10 10 10 10 10 10 10	$\sum_{0}^{4} = 0$
<u>0.</u>	000000333022	<u>0.</u>	10 10 10 10 10 10 01 01 01 10 00 00	$\Pi_1^{\mathrm{u}} = \mathrm{M}_{\mathrm{H}} \cdot 2^0$
0.	000000333022	0.	10 10 10 10 10 10 01 01 01 10 00 00	\sum_1^{q}
<u>0.</u>	000003330220	<u>0.</u>	10 10 10 10 10 01 01 01 10 00 00 10	$\Pi_2^{\mathrm{u}} = \mathrm{M}_{\mathrm{H}} \cdot 2^1$
0.	000010323302	0.	10 10 10 10 11 10 01 00 01 01 10 00	\sum_{2}^{4}
<u>0.</u>	000033302200	<u>0.</u>	<u>10 10 10 10 01 01 01 10 00 00 10 10</u>	$\Pi_3^{\rm q} = \rm M_{\rm H} \cdot 2^2$
0.	000110232102	0.	10 10 10 11 11 10 00 01 00 11 10 00	$\sum_{3}^{4} = \sum_{4}^{4} =$
				\sum_{5}^{4}
<u>3.</u>	300031200000	<u>1.</u>	<u>01 10 10 10 01 11 00 10 10 10 10 10</u>	$\Pi_6^{\mathrm{q}} = \mathrm{MH} \cdot (-1)$
				· 2 ⁵
3.	300202032102	1.	01 10 10 00 10 00 10 01 00 11 10 00	\sum_{6}^{4}
<u>0.</u>	333022000000	<u>0.</u>	01 01 01 10 00 00 10 10 10 10 10 10	$\Pi_7^{\rm q} = \rm M_{\rm H} \cdot 2^6$
0.	233230032102	0.	00 01 01 00 01 10 10 01 00 11 10 00	\sum_{7}^{4}

После окончания умножения необходимо оценить погрешность вычислений. Для этого полученное произведение ($Mh \cdot Mt_4 = 0,233230032102$, $P_{Mh \cdot Mt} = 5$) приводится к нулевому порядку, а затем переводится в десятичную систему счисления:

$$M_{H} \cdot M_{T_{4}} = 23323,0032102 \quad P_{M_{H} \cdot M_{T}} = 0;$$

$$M_H \cdot M_{T_{10}} = 763,0558.$$

Результат прямого перемножения операндов даёт следующее значение:

$$M_{H_{10}} \cdot M_{T_{10}} = 15,79 \cdot 48,33 = 763,1307.$$

Абсолютная погрешность:

$$\Delta = 763,1307 - 763,0558 = 0,0749.$$

Относительная погрешность:

$$\delta = \frac{\Delta}{\text{MH} \cdot \text{MT}} = \frac{0,0749}{763,1307} = 0,00009815 (\delta = 0,00981483 \%).$$

Эта погрешность получена за счёт приближённого перевода из десятичной системы счисления в четверичную обоих сомножителей, а также за счёт округления полученного результата произведения.

2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ

Структурная схема сумматора-умножителя второго типа для алгоритма умножения «Б» приведена на рисунке приложения А.

Ecли устройство работает как сумматор, то оба слагаемых последовательно (за два такта) заносятся в регистр множимого, а на управляющий вход формирователя дополнительного кода F_2 поступает «1».

 $Ecли\ устройство\ работает\ как\ умножитель,\ то\ множимое\ и\ множитель помещаются в соответствующие регистры, а на управляющий вход <math>\Phi$ ДК F_2 поступает «0».

3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ

3.1. Логический синтез одноразрядного четверичного умножителясумматора

ОЧУС – это комбинационное устройство, имеющее шесть входов (два разряда из регистра множимого, два разряда из регистра множителя, вход переноса и управляющий вход h) и три выхода.

Принцип работы ОЧУС представлен с помощью таблицы истинности (таблица 3.1).

Разряды множителя закодированы: 0 - 00, 1 - 01, 2 - 10, 3 - 11.

Разряды множимого закодированы: 0 - 10, 1 - 11, 2 - 00, 3 - 01.

Управляющие вход h определяет тип операции:

«0» — умножение закодированных цифр, поступивших на информационные входы;

<1> — вывод на входы без изменения значения разрядов, поступивших из регистра множимого.

Таблица 3.1.1 – Таблица истинности ОЧУС

Пер.	M	[н	N	Īт	Упр.	Перенос	Результат		Результат операции
P_1	x_1	x_2	<i>y</i> 1	<i>y</i> ₂	h	P	Q_1	Q_2	в четверичной с/с
1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	2.0+0=00
0	0	0	0	0	1	0	0	0	Выход – код «00»
0	0	0	0	1	0	0	0	0	$2 \cdot 1 + 0 = 02$
0	0	0	0	1	1	0	0	0	Выход – код «00»
0	0	0	1	0	0	1	1	0	$2 \cdot 2 + 0 = 10$
0	0	0	1	0	1	0	0	0	Выход – код «00»
0	0	0	1	1	0	X	X	X	2·3+0=12
0	0	0	1	1	1	X	X	X	Выход – код «00»
0	0	1	0	0	0	0	1	0	3.0+0=00
0	0	1	0	0	1	0	0	1	Выход – код «01»
0	0	1	0	1	0	0	0	1	3.1+0=03
0	0	1	0	1	1	0	0	1	Выход – код «01»
0	0	1	1	0	0	1	0	0	$3 \cdot 2 + 0 = 12$
0	0	1	1	0	1	0	0	1	Выход – код «01»
0	0	1	1	1	0	X	X	X	3·3+0=21
0	0	1	1	1	1	X	X	X	Выход – код «01»
0	1	0	0	0	0	0	1	0	0.0+0=00
0	1	0	0	0	1	0	1	0	Выход – код «10»
0	1	0	0	1	0	0	1	0	0.1+0=00

		l -				_		_	
0	1	0	0	1	1	0	1	0	Выход – код «10»
0	1	0	1	0	0	0	1	0	0.2+0=00
0	1	0	1	0	1	0	1	0	Выход – код «10»
0	1	0	1	1	0	X	X	X	0.3+0=00
0	1	0	1	1	1	X	X	X	Выход – код «10»
0	1	1	0	0	0	0	1	0	$1 \cdot 0 + 0 = 00$
0	1	1	0	0	1	0	1	1	Выход – код «11»
0	1	1	0	1	0	0	1	1	1.1+0=01
0	1	1	0	1	1	0	1	1	Выход – код «11»
0	1	1	1	0	0	0	0	0	$1 \cdot 2 + 0 = 02$
0	1	1	1	0	1	0	1	1	Выход – код «11»
0	1	1	1	1	0	X	X	X	$1 \cdot 3 + 0 = 03$
0	1	1	1	1	1	X	X	X	Выход – код «11»
1	0	0	0	0	0	X	X	X	2.0+1=01
1	0	0	0	0	1	X	X	X	Выход – код «00»
1	0	0	0	1	0	X	X	X	2·1+1=03
1	0	0	0	1	1	X	X	X	Выход – код «00»
1	0	0	1	0	0	1	1	1	2·2+1=11
1	0	0	1	0	1	X	X	X	Выход – код «00»
1	0	0	1	1	0	X	X	X	2·3+1=13
1	0	0	1	1	1	X	X	X	Выход – код «00»
1	0	1	0	0	0	X	X	X	3.0+1=01
1	0	1	0	0	1	X	X	X	Выход – код «01»
1	0	1	0	1	0	X	X	X	3.1+1=10
1	0	1	0	1	1	X	X	X	Выход – код «01»
1	0	1	1	0	0	1	0	1	3.2+1=13
1	0	1	1	0	1	X	X	X	Выход – код «01»
1	0	1	1	1	0	X	X	X	3·3+1=22
1	0	1	1	1	1	X	X	X	Выход – код «01»
1	1	0	0	0	0	X	X	X	0.0+1=01
1	1	0	0	0	1	X	X	X	Выход – код «10»
1	1	0	0	1	0	X	X	X	0.1+1=01
1	1	0	0	1	1	X	X	X	Выход – код «10»
1	1	0	1	0	0	0	1	1	0.2+1=01
1	1	0	1	0	1	X	X	X	Выход – код «10»
1	1	0	1	1	0	X	X	X	0·3+1=01
1	1	0	1	1	1	X	X	X	Выход – код «10»
1	1	1	0	0	0	X	X	X	1·0+1=01
1	1	1	0	0	1	X	X	X	Выход – код «11»
1	1	1	0	1	0	X	X	X	1·1+1=02
1	1	1	0	1	1	X	X	X	Выход – код «11»
1	1	1	1	0	0	0	0	1	1·2+1=03
1	1		1	U	U	U	U	1	1 2 1 1 03

1	1	1	1	0	1	X	X	X	Выход – код «11»
1	1	1	1	1	0	X	X	X	$1 \cdot 3 + 1 = 10$
1	1	1	1	1	1	X	X	X	Выход – код «11»

В таблице 3.1 выделено 36 безразличных наборов, т. к. на входы ОЧУС из разрядов множителя не может поступить код «11», при работе ОЧУС как сумматора на вход переноса не может поступить единица, а при умножении на ноль или единицу на вход переноса также не может поступить единица.

Минимизацию переключательных функций проведём с помощью карт Вейча, функцию Q_2 также минимизируем с помощью алгоритма Рота. На рисунках 3.1.1-3.1.3 символом "х" отмечены наборы, на которых функция может принимать произвольное значение (безразличные наборы).

Рисунок 3.1.1 – Минимизация функции Р при помощи карты Вейча

$$P_{MДH\Phi} = \overline{x_1}y_1\bar{h}$$

Функция для реализации в заданном базисе (А1) будет иметь вид:

$$P_{MДH\Phi} = \overline{x_1}y_1\overline{h}$$

Для функции Q_1 :

	_		X	L 1							
		1	1	1					1	<u> </u>	
\mathbf{y}_1		1	X	X			X	X	1		\mathbf{P}_1
<i>y</i> 1		X	X	X	X	X	X	X	X		. 1
		X	X	X	X	X	X	X	X		
,		1	1	1	1					y ₂	
		X	X	X	X	X	X	X	X		\mathbf{P}_1
		X		X	X	X	X	X	X		- 1
		1	1	1	1	1					
				<u> </u>	_ 2	K ₂		h			

Рисунок 3.1.2 — Минимизация функции Q_1 при помощи карты Вейча

$$\mathbf{Q}_{1\mathrm{MДH\Phi}} = x_1 h + x_1 \overline{x_2} + x_1 \overline{y_1} + \overline{x_2} y_1 \overline{h} + x_2 \overline{y_1 y_2} \overline{h}$$

Функция для реализации в заданном базисе (А1) будет иметь вид:

$$\mathbf{Q}_{1\mathrm{MДH\Phi}} = x_1 h + x_1 \overline{x_2} + x_1 \overline{y_1} + \overline{x_2} y_1 \overline{h} + x_2 \overline{y_1 y_2} \overline{h}$$

Рисунок 3.1.3 – Минимизация функции Q₂ при помощи карты Вейча

$$Q_{2MДH\Phi} = p_1 + x_2y_2 + x_2h$$

Минимизацию переключательной функции Q_2 проведём также с помощью алгоритма Рота.

Определим множество единичных кубов:

 $L = \{001001, 001010, 001011, 001101, 011001, 011010, 011011, 011101, 100100, 101100, 110100, 111100\}$

Далее определим множество безразличных кубов:

 $N = \{000110, 000111, 001110, 001111, 010110, 010111, 011110, 011111, 100000, 100001, 100010, 100011, 100101, 100110, 100111, 101000, 101001, 101010, 101011, 101101, 1011110, 1011111, 110000, 110001, 110010, 110011, 110101, 110110, 110111, 111000, 111011, 111101, 1111110, 111111\}$

Склеим всевозможные кубы во множествах L и N:

$$L = \{0x1010, 0x1101, 0x10x1, 1xx100\}$$

$$N = \{1xx110, 0xx11x, 1xx1x1, 1xx0xx\}$$

Сформируем множество C_0 = L ∪ N:

 $C_0 = \{0x1010, 0x1101, 0x10x1, 1xx100, 1xx110, 0xx11x, 1xx1x1, 1xx0xx\}$

Первым этапом алгоритма Рота является нахождение множества простых импликант.

Первый шаг умножения (C_0*C_0) приведён в таблице 3.1.2.

Таблица $3.1.2 - Поиск простых импликант (<math>C_0 * C_0$)

C_0*C_0	0x1010	0x1101	0x10x1	1xx100	1xx110	0xx11x	1xx1x1	1xx0xx
0x1010	_							
0x1101								
0x10x1	0x101y	0x1y01						
1xx100								
1xx110				1xx1y0				
0xx11x	0x1y10	0x11y1	0x1y11		yxx110			
1xx1x1		yx1101		1xx10y	1xx11y	yxx111		
1xx0xx	yx1010		yx10x1	1xxy00	1xxy10		1xxyx1	
	0x101x	0x1x01	0x1x11	1xx1x0	xxx110			
A_1	0x1x10	0x11x1	xx10x11	1xx10x	1xx11x	xxx111	1xxxx1	Ø
	xx1010	xx1101	XXIUXI	1xxx00	1xxx10			

В результате этой операции сформируется новое множество кубов:

 $A_1 = \{0x101x, 0x1x10, xx1010, 0x1x01, 0x11x1, xx1101, 0x1x11, xx10x1, 1xx1x0, 1xx10x, 1xxx00, xxx110, 1xx11x, 1xxx10, xxx111, 1xxxx1\}$

Множество Z_0 кубов, не участвовавших в образовании новых кубов, пустое:

$$Z_0 = \{\emptyset\}$$

 $B_1 = \{0x1010, 0x1101, 0x10x1, 1xx100, 1xx110, 0xx11x, 1xx1x1, 1xx0xx\}$

Далее формируется множество $C_1 = A_1 \cup B_1$. Для уменьшения мощности множества кубов C_1 выполним операцию поглощения кубов. Ее результат:

 $C_1 = \{0x101x, 0x1x10, xx1010, 0x1x01, 0x11x1, xx1101, 0x1x11, xx10x1, 1xx1x0, 1xx10x, 1xxx00, xxx110, 1xx11x, 1xxx10, xxx111, 1xxxx1, 0xx11x, 1xx0xx\}$

В таблице 3.1.3 приведён следующий шаг поиска простых импликант с помощью операции C_1*C_1 .

 $A2 = \{0x1x1x, xx101x, xx1x10, 0x1xx1, xx1x01, xx11x1, xx1x11, 1xx1xx, 1xxxx0, 1xxx0x, xxx11x, 1xxx1x\}$

 $Z_1 = \{\emptyset\}$

 $B_2 = \{0x101x, 0x1x10, xx1010, 0x1x01, 0x11x1, xx1101, 0x1x11, xx10x1, 1xx1x0, 1xx10x, 1xxx00, xxx110, 1xx11x, 1xxx10, xxx111, 1xxxx1, 0xx11x, 1xx0xx\}$

 $C_2 = \{0x1x1x, xx101x, xx1x10, 0x1xx1, xx1x01, xx11x1, xx1x11, 1xx1xx, 1xxxx0, 1xxx0x, xxx11x, 1xxx1x, xx10x1, 1xxxx1, 1xx0xx\}$

В таблице 3.1.4 приведён следующий шаг поиска простых импликант с помощью операции C_2*C_2 .

Таблица $3.1.3 - Поиск простых импликант (<math>C^1*C^1$)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					_												_		
OKINI OKINI OKINI OKINI XXI 0 OKINI XXI 0 OKINI XXI 0 OKINI XXI 0 OKINI O	1xxxx1																	yxx111		xxx111
OKIOLIX OKINIO	xxx1111																		1xxy11	1xxx11
OKINI	1xxx10															1xx11y	1xxx1y	yxx110		100
OKINI	1xx11x																	yxx11x	1xxy1x	1xxx1x
0x101x 0x1x10 xx1010 0x1x11 xx10x1 0x1x1y 0x1xy1 0x1x1y 0x1xy1 0x1yx1 xx1y10 xx1y10 xx101x xx1x1x1 xx1x1x1 xx1x1x1 0x1x1x xx1x1x1 xx1x1x1 0x1xx1 xx101x xx1x1x1 0x1xx1 0x1x1x1	xxx110															xxx11y	1xx11y		1xxy10	xxx11x 1xx11x 1xxx10
0x101x 0x1x10 xx1010 0x1x11 xx10x1 0x1x1y 0x1xy1 0x1x1y 0x1xy1 0x1yx1 xx1y10 xx1y10 xx101x xx1x1x1 xx1x1x1 xx1x1x1 0x1x1x xx1x1x1 xx1x1x1 0x1xx1 xx101x xx1x1x1 0x1xx1 0x1x1x1	1xxx00												1xx1y0				1xxx0y			
0x101x 0x1x10 xx1010 0x1x11 xx10x1 0x1x1y 0x1xy1 0x1x1y 0x1xy1 0x1yx1 xx1y10 xx1y10 xx101x xx1x1x1 xx1x1x1 xx1x1x1 0x1x1x xx1x1x1 xx1x1x1 0x1xx1 xx101x xx1x1x1 0x1xx1 0x1x1x1	1xx10x												1xx1y0	1xx1yx		1xx1y1			1xxy0x	1xx1x0 1xxx0x
0x101x 0x1x10 xx1010 0x1x11 xx10x1 0x1x1y 0x1xy1 0x1x1y 0x1xy1 0x1yx1 xx1y10 xx1y10 xx101x xx1x1x1 xx1x1x1 xx1x1x1 0x1x1x xx1x1x1 xx1x1x1 0x1xx1 xx101x xx1x1x1 0x1xx1 0x1x1x1	1xx1x0															1xx11y	1xx1xy	yxx110	1xxyx0	1xx1xx xxx110 1xxxx0
0x101x 0x1x10 0x1x11 xx1101 0x1x11	xx10x1															xx1y11				Ø
0x101x 0x1x10 0x1x01 0x11x1 xx1101 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — </td <td>0x1x11</td> <td></td> <td>yx1x11</td> <td></td> <td></td> <td>xx1x11</td>	0x1x11																yx1x11			xx1x11
0x101x 0x1x10 0x1x01 — — — — — — — — — — — — — — — — — — —							1		xx1y01							xx11y1				100
0x101x 0x1x10 0x1x01 — — — — — — — — — — — — — — — — — — —	0x11x1								0x1yx1								yx11x1			xx11x1
0x101x	0x1x01							0x1xy1									yx1x01			0x1xx1 xx1x01
0x101x	xx1010								xx101y				xx1y10							xx101x
C1*C1 0x101x 0x101x — 0x1x10 xx1010 0x1x01 0x11x1 xx1101 0x1x11 xx10x1 1xx1x0 1xxx00 xxx1101 1xx1x0 1xxx10 1xxx10 1xxx11 1xxxx1 1xxxxx 1xxxx 1xxxx 1xxxx 1xxxx 1xxx 1xxx 1xxxx 1xxx 1xx 1xxx 1xx 1xxx 1xx 1xxx 1xx 1								0x1x1y							yx1x10					xx1x10
C1*C1 0x101x 0x1x10 xx1010 0x1x10 0x11x1 xx1101 0x1x11 xx10x1 1xxx00 1xxx00 1xxx00 1xxx10 1xxx10 1xxx10 1xxx10 1xxx11 1xxx11 1xxx11 1xxx11 1xxx11 1xxx11 1xxx11 1xxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxx1 1xxxxxxxx	0x101x																	0x1y1x	yx101x	0x1x1x xx101x
	$C_1 * C_1$	0x101x	0x1x10	xx1010	0x1x01	0x11x1	xx1101	0x1x11	xx10x1	1xx1x0	1xx10x	1xxx00	xxx110	1xx11x	1xxx10	xxx111	1xxxx1	0xx11x	1xx0xx	A_2

Таблица 3.1.4 – Поиск простых импликант (C2*C2)

	1xxx1x																Ø
	xx1 xx1x01 xx11x1 xx1x11 1xx1xx 1xxxx0 1xxx0x xxx11x 1xxx1x															1xxy1x	Ø
	1xxx0x											1xx1yx	1xxxyx				Ø
	1xxxx0														1xxxxy		Ø
	1xx1xx															1xxyxx	1xxxxx
	xx1x11																Ø
	xx11x1													xx1yx1			Ø
	xx1x01							xx1xy1									Ø
	0x1xx1														yx1xx1		xx1xx1
	xx1x10							xx1x1y									Ø
Т	xx101x											xx1y1x					Ø
	$C_2*C_2 \mid 0x1x1x \mid xx101x \mid xx1x10 \mid 0x1$												1xxx1x yx1x1x				xx1x1x
	C_2*C_2	0x1x1x	xx101x	xx1x10	0x1xx1	xx1x01	xx11x1	xx1x11	1xx1xx	1xxxx0	1xxx0x	xxx11x	1xxx1x	xx10x1	1xxxx1	1xx0xx	A ₃

$$A_3 = \{xx1x1x, xx1xx1, 1xxxxx\}$$

$$Z_2 = \{\emptyset\}$$

 $B_3 = \{0x1x1x, xx101x, xx1x10, 0x1xx1, xx1x01, xx11x1, xx1x11, 1xx1xx, 1xxxx0, 1xxx0x, xxx11x, 1xxx1x, xx10x1, 1xxxx1, 1xx0xx\}$

$$C_3 = \{xx1x1x, xx1xx1, 1xxxxx, xxx11x\}$$

В таблице 3.1.5 приведён следующий шаг поиска простых импликант с помощью операции C_3*C_3 .

Таблица 3.1.5 – Поиск простых импликант (C_3*C_3)

C ₃ *C ₃	xx1x1x	xx1xx1	1xxxxx
xx1x1x			
xx1xx1			
1xxxxx			_
xxx11x			
A ₄	Ø	Ø	Ø

Из таблицы следует, что $A_4 = \emptyset$. Таким образом, новых кубов при выполнении операции C_3*C_3 не было получено.

$$B_4 = C_3 \setminus Z_3 = \emptyset$$

$$C_4 = A_4 U B_4 = \emptyset$$

На этом процесс выявления простых импликант окончен. Таким образом сформировано множество простых импликант:

$$Z = \{xx1x1x, xx1xx1, 1xxxxx, xxx11x\}$$

Следующий этап — поиск L-экстремалей на множестве простых импликант (таблица 3.1.6). Для этого из каждой простой импликанты поочередно вычитаются все остальные простые импликанты $Z\#(Z\z)$.

Таблица 3.1.6 - Поиск L-экстремалей

z#(Z-z)	xx1x1x	xx1xx1	1xxxxx	xxx11x
xx1x1x	_	zzzz0z xx1x01	zz0z0z 1x0xxx 1xxx0x	zz0zzz xx011x

xx1xx1	zzzzz0 xx1x10		zzyzz0 1x0xxx zz0zz0 1x0x0x 1xxx00	zzyzz0 xx011x
1xxxxx	0zzzzz 0x1x10	0zzzzz 0x1x01		0zzzzz 0x011x
xxx11x	zzz0zz 0x1010	zzz0yz 0x1x01	zzz00z 1x00xx 1x0x0x zzz0yz 1x0x0x zzz0yz 1xxx00	
Остаток	0x1010	0x1x01	1x00xx 1x0x0x 1xxx00	0x011x

Результат операции (последняя строка таблицы) указывает на то, что L-экстремалями стали следующие простые импликанты:

 $E = \{xx1x1x, xx1xx1, 1xxxxx, xxx11x\}$

Необходимо проверить, нет ли среди полученных L-экстремалей таких, которые стали L-экстремалями за счёт безразличных кубов. Для этого в таблице 3.1.7 из кубов множества L вычитаются остатки простых импликант, полученные в таблице 3.1.6.

Таблица 3.1.7 – Проверка L-экстремалей

z#(Z-z) ∩ L	001 001	001 010	001 011	001 101	011 001	011 010	011 011	011 101	100 100	101 100	110 100	111 100
0x1 010	Ø	001 010	Ø	Ø	Ø	011 010	Ø	Ø	Ø	Ø	Ø	Ø
0x1 x01	001 001	Ø	Ø	001 101	011 001	Ø	Ø	011 101	Ø	Ø	Ø	Ø
1x0 0xx	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
1x0 x0x	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	100 100	Ø	110 100	Ø
1xx x00	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	100 100	101 100	110 100	111 100
0x0 11x	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

По результатам таблицы 3.1.7 L-экстремалью, не связанной с единичными наборами, стал куб ххх11х. Этот куб не будет входить в минимальное покрытие.

$$E = \{xx1x1x, xx1xx1, 1xxxxx\}$$

Необходимо проанализировать, какие из вершин комплекса L не покрываются L-экстремалями. Для этого из каждого куба комплекса L вычитаем элементы множества E (таблица 3.1.8). B результате вычитания получим $L_1 = L\#E$.

Таблица 3.1.8 – Поиск непокрытых исходных наборов

L#E	001001	001010	001011	001101	011001	011010	011011	011101	100100	101100	110100	111100
xx1x1x	zzzzyz 001001	zzzzzz Ø	zzzzzz Ø	zzzzyz 001101	zzzzyz 011001	zzzzzz Ø	zzzzzz Ø	zzzzyz 011101	zzyzyz 100100	zzzzyz 101100	zzyzyz 110100	zzzzyz 111100
xx1xx1	zzzzzz Ø	Ø	Ø	zzzzzz Ø	Ø	Ø	Ø	zzzzzz Ø	zzyzzy 100100	zzzzzy 101100	zzyzzy 110100	zzzzzy 111100
1xxxxx	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	zzzzzz Ø	zzzzzz Ø	zzzzzz Ø	zzzzzz Ø
Остаток	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Из таблицы 3.1.8 видно, что все единичные кубы покрыты.

Следовательно, существует одна тупиковая (минимальная) форма:

$$F_{min} = \{xx1x1x, xx1xx1, 1xxxxx\}$$

$$Q_{2MДH\Phi} = p_1 + x_2y_2 + x_2h$$

Функция для реализации в заданном базисе (А1) будет иметь вид:

$$Q_{2MДH\Phi} = p_1 + x_2 y_2 + x_2 h$$

Эффективность минимизации можно оценить отношением числа входов схем, реализующих переключательную функцию до и после минимизации:

$$K_P = \frac{4*6+4+6}{3+2} = 6.8$$

$$K_{Q1} = \frac{15*6+15+6}{3*2+3+4+5+4} = 5,1$$

$$K_{Q2} = \frac{12*6+12+6}{2*2+3} = 12,9$$

Функциональная схема ОЧУС в заданном базисе представлена в приложении Б.

3.2. Логический синтез одноразрядного четверичного сумматора

Одноразрядный четверичный сумматор — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда одного слагаемого, 2 разряда второго слагаемого и вход переноса) и 3 двоичных выхода.

Принцип работы ОЧС представлен с помощью таблицы истинности (таблица 3.2.1).

Разряды обоих слагаемых закодированы: 0 - 10, 1 - 11, 2 - 00, 3 - 01.

Поскольку ОЧС синтезируется для схемы второго типа, то безразличные наборы в таблице истинности отсутствуют.

Таблица 3.2.1 – Таблица истинности ОЧС

a_1	<i>a</i> ₂	b ₁	b ₂	p	П	S_{I}	S_2	Результат операции в четверичной с/с
1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	0	2+2+0=10
0	0	0	0	1	1	1	1	2+2+1=11
0	0	0	1	0	1	1	1	2+3+0=11
0	0	0	1	1	1	0	0	2+3+1=12
0	0	1	0	0	0	0	0	2+0+0=02
0	0	1	0	1	0	0	1	2+0+1=03
0	0	1	1	0	0	0	1	2+1+0=03
0	0	1	1	1	1	1	0	2+1+1=10
0	1	0	0	0	1	1	1	3+2+0=11
0	1	0	0	1	1	0	0	3+2+1=12
0	1	0	1	0	1	0	0	3+3+0=12
0	1	0	1	1	1	0	1	3+3+1=13
0	1	1	0	0	0	0	1	3+0+0=03
0	1	1	0	1	1	1	0	3+0+1=10
0	1	1	1	0	1	1	0	3+1+0=10
0	1	1	1	1	1	1	1	3+1+1=11
1	0	0	0	0	0	0	0	0+2+0=02
1	0	0	0	1	0	0	1	0+2+1=03
1	0	0	1	0	0	0	1	0+3+0=03
1	0	0	1	1	1	1	0	0+3+1=10
1	0	1	0	0	0	1	0	0+0+0=00
1	0	1	0	1	0	1	1	0+0+1=01
1	0	1	1	0	0	1	1	0+1+0=01
1	0	1	1	1	0	0	0	0+1+1=02

1	1	0	0	0	0	0	1	1+2+0=03
1	1	0	0	1	1	1	0	1+2+1=10
1	1	0	1	0	1	1	0	1+3+0=10
1	1	0	1	1	1	1	1	1+3+1=11
1	1	1	0	0	0	1	1	1+0+0=01
1	1	1	0	1	0	0	0	1+0+1=02
1	1	1	1	0	0	0	0	1+1+0=02
1	1	1	1	1	0	0	1	1+1+1=03

Минимизацию переключательных функций проведём с помощью карт Карно. Заполненные карты приведены на рисунках 3.2.1 – 3.2.3.

Для функции П:

Рисунок 3.2.1 – Минимизация функции П при помощи карты Карно

$$\Pi_{\text{МДН}\Phi} = \overline{a_1}\overline{b_1} + \overline{b_1}b_2(p + a_2) + \overline{a_1}a_2(b_2 + p) + \overline{a_1}b_2p + a_2\overline{b_1}p$$

Функция для реализации в заданном базисе (А3) будет иметь вид:

$$\begin{split} &\Pi_{\text{МДНФ}} = (a_1 + b_1) \oplus 1 + \left(b_1 + (b_2 \oplus 1) + (p \oplus 1)\right) \oplus 1 + \left(b_1 + (b_2 \oplus 1) + (a_2 \oplus 1)\right) \oplus 1 + \left(a_1 + (a_2 \oplus 1) + (b_2 \oplus 1)\right) \oplus 1 + \left(a_1 + (a_2 \oplus 1) + (p \oplus 1)\right) \oplus 1 + \left(a_1 + (b_2 \oplus 1) + (p \oplus 1)\right) \oplus 1 + \left(a_2 \oplus 1\right) + b_1 + (p \oplus 1)) \oplus 1 \end{split}$$

Для функции S1:

Рисунок 3.2.2 – Минимизация функции S₁ при помощи карты Карно

$$\begin{split} \mathbf{S}_{\mathrm{1MДH\Phi}} &= a_1b_1\overline{b_2}\bar{p} + a_1\overline{a_2}b_1\overline{b_2} + \overline{a_1}a_2b_1\overline{p} + \overline{a_1}b_1b_2\overline{p} + a_1\overline{a_2}b_1\bar{p} + \overline{a_1}a_2b_1b_2 + a_1\overline{b_1}b_2\overline{p} + a_1\overline{a_2}b_1\overline{b_2} + \overline{a_1}a_2\overline{b_1}\overline{b_2} + \overline{a_1}a_2\overline{b_1}\overline{b_2} + \overline{a_1}a_2\overline{b_1}\overline{b_2} + \overline{a_1}a_2\overline{b_1}\overline{b_2} + \overline{a_1}a_2\overline{b_1}\overline{b_2} - \overline{a_1}\overline{a_2}\overline{b_1}\overline{b_2} - \overline{a_1}\overline{a_2}\overline{b_1}\overline$$

Функция для реализации в заданном базисе (А3) будет иметь вид:

$$\begin{split} &\mathrm{S}_{\mathrm{1MДH}\Phi} = \left((a_1 \oplus 1) + (b_1 \oplus 1) + b_2 + p \right) \oplus 1 + \left((a_1 \oplus 1) + a_2 + (b_1 \oplus 1) + b_2 \right) \oplus 1 + \left(a_1 + (a_2 \oplus 1) + (b_1 \oplus 1) + (p \oplus 1) \right) \oplus 1 + \left(a_1 + (b_1 \oplus 1) + (b_2 \oplus 1) + (p \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + a_2 + (b_1 \oplus 1) + p \right) \oplus 1 + \left((a_1 \oplus 1) + (b_2 \oplus 1) + (b_2 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (b_2 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) + (a_1 \oplus 1) + (a_2 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus 1) \right) \oplus 1 + \left((a_1 \oplus 1) + (a_1 \oplus$$

Для функции S2:

b_1	p_2p								
a_1a_2	000	001	011	010	110	111	101	100	1
00	0 \	1	0	1	1	0	1	0	
01	1	0	1	0	0	1	0	1	
1 <u>1</u>	1	0	1	0	0	1	0	1	
10	0 /	1	0	1	1	0	1	0	

Рисунок 3.2.3 – Минимизация функции S2 при помощи карты Карно

$$\mathbf{S}_{2\mathrm{MДH\Phi}} = \overline{a_2}b_2ar{p} + a_2b_2p + \overline{a_2}\overline{b_2}p + a_2\overline{b_2}ar{p}$$

Функция для реализации в заданном базисе (А3) будет иметь вид:

$$\begin{split} \mathbf{S}_{2\mathrm{MДH\Phi}} &= (a_2 + (b_2 \oplus 1) + p) \oplus 1 + \left((a_2 \oplus 1) + (b_2 \oplus 1) + (p \oplus 1) \right) \oplus 1 + \\ \left(a_2 + b_2 + (p \oplus 1) \right) \oplus 1 + ((a_2 \oplus 1) + b_2 + p) \oplus 1 \end{split}$$

Эффективность минимизации можно оценить отношением числа входов схем, реализующих переключательную функцию до и после минимизации:

$$K_{\Pi} = \frac{16*5+16+5}{2+4*3+2*2+5+2} = 4,04$$

$$K_{S1} = \frac{16*5+16+5}{12*4+12+5} = 1,6$$

$$K_{S2} = \frac{16*5+16+5}{4*3+4+3} = 5.3$$

Функциональная схема ОЧС в заданном базисе представлена в приложении В.

4. ЛОГИЧЕСКИЙ СИНТЕЗ ОДНОРАЗРЯДНОГО ЧЕТВЕРИЧНОГО СУММАТОРА НА ОСНОВЕ МУЛЬТИПЛЕКСОРА

Мультиплексор — это логическая схема, имеющая n информационных входов, m управляющих входов и один выход. При этом будет выполняться условие n = 2m.

Принцип работы мультиплексора состоит в следующем. На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, поданным на управляющие входы.

Функции ОЧС зависят от пяти переменных. Удобно взять мультиплексор с тремя адресными входами, это позволит упростить одну большую функцию от пяти аргументов до восьми функций от двух переменных.

Синтез дополнительных логических схем для $\Pi\Phi$ ОЧС приведён в таблице 4.1.

Таблица 4.1. – Таблица истинности для ОЧС на мультиплексорах

a_1	a_2	\boldsymbol{b}_1	\boldsymbol{b}_2	p	П	П	S_1	S_I	S_2	S_2
1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	1		1		0	
0	0	0	0	1	1	1	1	 , _ _	1	h On
0	0	0	1	0	1	1	1	$\overline{b_2} + \bar{p}$	1	$b_2 \oplus p$
0	0	0	1	1	1		0		0	
0	0	1	0	0	0		0		0	
0	0	1	0	1	0	<i>l</i>	0	<i>l</i>	1	h
0	0	1	1	0	0	b_2p	0	b_2p	1	$b_2 \oplus p$
0	0	1	1	1	1		1		0	
0	1	0	0	0	1		1		1	
0	1	0	0	1	1	1	0	<u></u>	0	
0	1	0	1	0	1	1	0	$\overline{b_2} ar{p}$	0	$\overline{b_2}\bar{p} + b_2p$
0	1	0	1	1	1		0		1	
0	1	1	0	0	0		0		1	
0	1	1	0	1	1	a l b	1	22 h	0	<u></u>
0	1	1	1	0	1	$p + b_2$	1	$p+b_2$	0	$\overline{b_2}\bar{p} + b_2p$
0	1	1	1	1	1		1		1	
1	0	0	0	0	0	<i>h</i>	0		0	h On
1	0	0	0	1	0	b_2p	0	b_2p	1	$b_2 \oplus p$

1	0	0	1	0	0		0		1	
1	0	0	1	1	1		1		0	
1	0	1	0	0	0		1		0	
1	0	1	0	1	0	0	1	$\frac{1}{b}$ $+ a\overline{a}$	1	h On
1	0	1	1	0	0	U	1	$\overline{b_2} + \bar{p}$	1	$b_2 \oplus p$
1	0	1	1	1	0		0		0	
1	1	0	0	0	0		0		1	
1	1	0	0	1	1	$n \perp h$	1	n + h	0	$\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{a}$
1	1	0	1	0	1	$p+b_2$	1	$p + b_2$	0	$\overline{b_2}\bar{p} + b_2p$
1	1	0	1	1	1		1		1	
1	1	1	0	0	0		1		1	
1	1	1	0	1	0	0	0	$\overline{a} + b$	0	$\bar{a} + b$
1	1	1	1	0	0	U	1	$\bar{p} + b_2$	1	$\bar{p} + b_2$
1	1	1	1	1	0		1		1	

Функциональная схема реализации ОЧС на мультиплексорах приведена в приложении Γ .

5. ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ

Преобразователь множителя (ПМ) для исключения из множителя диад 11, заменяя их на триады $10\overline{1}$.

Таблица 5.1 – Таблица истинности ПМ

Bx. d	иада	Мл. бит	Пер.	Знак	B _b lx.	диада
Q_n	Q_{n-1}	Q_{n-2}	P	S	S_1	S_2
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	1	1	0	1
1	1	1	1	0	0	0

Минимизацию переключательных функций проведём с помощью карт Карно. Заполненные карты приведены на рисунках 5.1.1 – 5.1.4.

Для функции Р:

Рисунок 5.1.1 – Минимизация функции Р при помощи карты Карно

$$P_{MДH\Phi} = Q_n(Q_{n-2} + Q_{n-1})$$

Для функции S:

Рисунок 5.1.2 – Минимизация функции S при помощи карты Карно

$$\mathbf{S}_{\mathrm{MДH}\Phi} = Q_n(\overline{Q_{n-1}}Q_{n-2} + Q_{n-1}\overline{Q_{n-2}})$$

Для функции S₁:

Q_{n-1}	Q_{n-2}	01	_11_	10
0			1	
1	1			

Рисунок 5.1.3 – Минимизация функции S₁ при помощи карты Карно

$$\mathbf{S}_{1\mathrm{MДH\Phi}} = Q_n \overline{Q_{n-1}} \ \overline{Q_{n-2}} + \overline{Q_n} Q_{n-1} Q_{n-2}$$

Для функции S₂:

Рисунок 5.1.4 – Минимизация функции S₂ при помощи карты Карно

$$S_{2MДH\Phi} = \overline{Q_{n-1}}Q_{n-2} + Q_{n-1}\overline{Q_{n-2}}$$

Эффективность минимизации можно оценить отношением числа входов схем, реализующих переключательную функцию до и после минимизации:

$$K_P = \frac{3*3+3+3}{2+2} = 3.4$$

$$K_S = \frac{2*3+2+3}{2+2+2} = 1,2$$

$$K_{S1} = \frac{2*3+2+3}{2*3+2+3} = 1$$

$$K_{S2} = \frac{4*3+4+3}{2*2+2+2} = 2,4$$

Функциональная схема ПМ приведена в приложении Д.

6. ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ

Формула расчёта временных затрат на умножение:

 $T_{\text{УМН}} = n * (t_{\text{ПМ}} + t_{\Phi \text{ЛК}} + t_{\text{ОЧУС}} + (m+1) * t_{\text{ОЧС}} + t_{\text{СЛВИГа}}),$ где

 $t_{\mathsf{\Pi}\mathsf{M}}$ – время преобразования множителя;

 $t_{\Phi \rm ДK}$ – время формирования дополнительного кода множимого;

 $t_{\text{ОЧУС}}$ – время умножения на ОЧУС;

 $t_{
m OUC}$ – время формирования единицы переноса в ОЧС;

 $t_{\text{сдвига}}$ – время сдвига частичной суммы;

n – количество разрядов множителя;

т – количество разрядов множимого.

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы была разработана структурная схема сумматора-умножителя, функциональные схемы основных узлов сумматора-умножителя в заданном логическом базисе, что помогло сформировать навыки практической реализации устройств посредством логического синтеза. В целях уменьшения стоимости логических схем была выполнена минимизация переключательных функций по каждому выходу схем при помощи алгоритма извлечения Рота, а также карт Карно – Вейча.

Главным достоинством алгоритма Рота является полная формализация действий на всех этапах минимизации функции. Однако необходимо отметить, что в случае, если функция зависит от большого числа переменных, процесс минимизации может занять длительный промежуток времени.

Применение карт Карно — Вейча является крайне эффективным при небольшом количестве переменных, предоставляя простой, эффективный и быстрый способ решения поставленной задачи минимизации. Тем не менее, как и в случае с алгоритмом извлечения, необходимость работы с большим количеством переменных фактически лишает метод указанных достоинств.

Построение функциональных схем основных узлов спроектированного устройства в различных базисах позволило закрепить знания основных правил и законов булевой алгебры.

Синтез комбинационной схемы устройстве на основе мультиплексоров потребовало для каждой переключательной функции отдельного мультиплексора, однако значительно помогло упростить функциональную схему.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) Луцик Ю.А., Лукьянова И.В. Учебное пособие по курсу "Арифметические и логические основы вычислительной техники". Минск: БГУИР, 2014 г.
- 2) Искра, Н. А. Арифметические и логические основы вычислительной техники: пособие / Н. А. Искра, И. В. Лукьянова, Ю. А. Луцик. Минск: БГУИР, 2016. 75 с.
- 3) Лысиков, Б. Г. Цифровая вычислительная техника / Б. Г. Лысиков. Минск : Выш. шк., 2003. 242 с.
- 4) Единая система конструкторской документации (ЕСКД) : справ. пособие / С. С. Борушек [и др.]. М. : Изд-во стандартов, 1989. 352 с.
- 5) Основные требования к текстовым документам (ГОСТ 2.105–95) [Электронный ресурс]. 2014 Режим доступа: http://graph.power.nstu.ru/ wolchin/umm/eskd/eskd/GOST/2 105.htm.

ПРИЛОЖЕНИЕ А

(обязательное)

Сумматор-умножитель второго типа. Схема электрическая структурная

приложение б

(обязательное)

Одноразрядный четверичный умножитель-сумматор. Схема электрическая функциональная

приложение в

(обязательное)

Одноразрядный четверичный сумматор. Схема электрическая функциональная

приложение г

(обязательное)

Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная

ПРИЛОЖЕНИЕ Д (обязательное)

Преобразователь множителя. Схема электрическая функциональная