Biçimsel Diller ve Otomata Teorisi

Sunu VI Kleene Kuramı

İZZET FATİH ŞENTÜRK

Kleene's Theorem

 Any language that can be defined by <u>regular</u> <u>expression</u>, or <u>finite automaton</u>, or <u>transition</u> <u>graph</u> can be defined by all three methods

 Proved in 1956. The most important and fundamental result in the theory of finite automata

Kleene's Theorem

- We wish to show that the set of ZAPS, the set of ZEPS, and the set of ZIPS are all the same
- We need three parts
 - Part I, we shall show that all ZAPS are ZEPS
 - Part II, we shall show that all ZEPS are ZIPS
 - Part III, we shall show that all ZIPS are ZAPS
- $[ZAPS \subset ZEPS \subset ZIPS \subset ZAPS] \equiv [ZAPS = ZEPS = ZIPS]$

Proof

- Part 1: Every language that can be defined by a FA can also be defined by a TG
- Part 2: Every language that can be defined by a TG can also be defined by a RE
- Part 3: Every language that can be defined by a RE can also be defined by a FA

- The easiest part
- Every FA is itself already a TG
 - Any language that has been defined by a FA has already been defined by a TG

- The proof will be by constructive algorithm
 - We present a procedure that starts out with a TG and ends up with a RE that defines the same language
- To be acceptable, any algorithm must satistfy two criteria
 - It must work for every TG
 - It must guarantee to finish its job in a finite time (number of steps)

- Let us start with an abstract transition graph T
 - T may have many start states. We first want to simplify T so that it has only one start state
 - Introduce a new state that we label with a minus sign and that we connect to all the previous start states by edges labeled Λ
 - Drop the minus signs from the previous start states

- Another simplification we can make is to have a <u>unique final</u> state without changing the language it accepts
 - If T had no final states then it accepts no strings and has no language.
 We need produce no RE other than the null (φ)
 - If T has several final states, let us un-final them and introduce a new unique final state labeled with a plus sign. We draw edges from all former final states to the new one each labeled with Λ

- We shall require that the unique final state be a different state from the unique start state
 - If an old state used to have ± then both signs are removed from it to newly created states
- It should be noted that the new states does not affect the language T accepts
 - Any word accepted by T is also accepted by the new machine
 - Any word rejected by T is also rejected by the new machine

- We are now going to build piece by piece the RE that defines the same language as T
 - We will change T into a GTG
- Suppose that T has some state x inside it (no or + state)
 - x has more than one loop
 - We can replace three loops by one loop labeled with a RE

- Similarly, suppose that two states are connected by more than one edge going in the same direction
 - We can replace this with a single edge labeled with a RE

- If we have three states in a row connected by edges lebeled with REs (or simple strings)
 - We can eliminate the middleman and go directly from one outer state to the other by a new edge labeled with a RE that is concatenation of the previous labels

- We do not keep old edges from state 1 to state 2 and state 2 to state 3
 - Unless they are used in paths other than the ones from state 1 to state 3

- We can do the bypass operation only as long as state 2 does not have a loop going back to itself
- If state 2 does have a loop, we must use this model

- If state 1 is connected to state 2 and state 2 is connected to more than one other state (e.g. states 3, 4, 5)
 - When we eliminate the edge from state 1 to state 2 we have to add edges that show how to go from state 1 to other states (e.g. states 3, 4, 5)

- Every state that leads into state 2 can be made to bypass state 2
 - If state 9 leads into state 2, we can eliminate the edge from state 9 to state 2 by adding edges from state 9 to states 3, 4, and 5 directly
 - We can repeat this operation until nothing leads into state 2
 - We can eliminate state 2 entirely because it will not be part of a path that accepts a language
- Without changing the set of words that T accepts, we have eliminated one of its states
 - We can repeat this process until we eliminate all the states from T except the unique start and final states

• Finally, we will have this

We can then combine this once more to produce

- We can bypass state 2 by introducing a path from
 - State 1 to state 4 labeled aba*ba
 - State 1 to state 5 labeled aba*b
 - State 3 to state 4 labeled bbba*ba
 - State 3 to state 5 labeled bbba*b

- A special case that we must examine more carefully
- We want to eliminate state 2
 - One of the source states to the prospective bypassed state is also a destination state from that state

 Whenever we remove an edge or state, we must be sure that we have not destroyed any paths through T or created new paths

- This algorithm terminates in a finite number of steps
 - T has only finitely many states and one state is eliminated with each iteration of the bypass procedure
- The other important observation is that the method works on all transition graphs
- Therefore, this algorithm provides a satisfactory proof that there is a RE for each TG

• The TG accepts all words that begin and end with double letters (having at least length 4)

- The algorithm does not tell us which state of the TG we must bypass next. The order of elimination is left up to us
- Let us choose state 2 for elimination

• Bypass state 1 next (before state 3)

 Now we must eliminate state 3 (this is the only bypassable state left)

- This machine defines the same language as the RE
 - (aa + bb)(a + b)*(aa) + (aa + bb)(a + b)*(bb)

