Linear Regression

THEORY

- 1) It is a machine learning algorithm under supervised learning and regression tasks.
- 2) The hypothesis function is given by

$$h(x) = \sum_{i=0}^{d} \theta_i x_i = \theta^T x \tag{1}$$

3) Our aim is to minimize the cost function using the gradient descent algorithm, given as

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
(2)

4) We regularly update the parameters using the LMS update rule or Widrow-Hoff learning rule, α stands for learning rate.

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \tag{3}$$

$$\theta_j := \theta_j + \alpha(y^{(i)} - h_\theta(x^{(i)}))x_j^{(i)}$$
 (4)

Quiz

- 1) Linear regression is a ML algorithm based on:
 - a) Unsupervised Learning
 - b) Supervised Learning
 - c) Reinforcement Learning
- 2) Which algorithm is more time consuming:
 - a) Batch gradient descent
 - b) Stochastic gradient descent
- 3) Prove that $\frac{\partial}{\partial \theta_j}(\theta^T x) = x_j^{(i)}$