Matemática Discreta

Relações binárias

Universidade de Aveiro 2018/2019

http://moodle.ua.pt

Relações binárias

Pares ordenados e produto cartesiano

Definição (de par ordenado)

Dados x e y, designa-se por par ordenado e denota-se por (x, y) o conjunto $\{\{x\}, \{x, y\}\}$, ou seja, $(x, y) = \{\{x\}, \{x, y\}\}\}$. Adicionalmente, dizemos que x é o primeiro elemento e y o segundo.

• Mais geralmente, temos o n-uplo ordenado: $(x_1, x_2, x_3, \dots, x_n) = (x_1, \underbrace{(x_2, x_3, \dots, x_n)}), \quad n \geq 3$

$$= \{\{x_1\}, \{x_1, (x_2, x_3, \dots, x_n)\}\}\$$

$$= \{\{x_1\}, \{x_1, \{\{x_2\}, \{x_2, (x_3, \dots, x_n)\}\}\}\}.$$

Produto cartesiano

Definição (produto cartesiano)

Sejam $A \in B$ dois conjuntos. Designa-se por produto cartesiano de A e B e denota-se por $A \times B$, o conjunto

$$A \times B = \{(x, y) : x \in A \land y \in B\}.$$

• Se A = B, então $A^2 = A \times A = \{(x, y) : x \in A \land y \in A\}$.

Relações binárias oo●ooooo

Relações binárias

Definição de relação binária (relação)

Uma relação binária (ou relação) \mathcal{R} entre os conjuntos \mathbf{A} e \mathbf{B} é um subconjunto do produto cartesiano $\mathbf{A} \times \mathbf{B}$.

- Notação: escreve-se xRy para indicar $(x, y) \in R$.
- Exemplo 1: Sendo $A = \{1, 2\}$ e $B = \{a, b, c\}$, então $2 \times 3 = 6$

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\},\$$

$$e$$

 $\mathcal{R} = \{ (1,a), (1,c), (2,a) \} \subseteq A \times B$

é uma relação entre A e B.

$$dom R = \{1, 2\}$$
 img $R = \{a, c\}$ A
 $R(n) = \{a, c\}$ $R'(a) = \{1, 2\}$ $R'(c) = \{i\}$ $R'(b) = \{1, 2\}$

Casos particulares

- Se A = B, designamos R ⊆ A² por relação binária definida em A (ou sobre A).
- Exemplo 2: a relação ≤ definida em A = {1,2,3} é o subconjunto de A²:

$$\leq = \{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}.$$

- Nota: usualmente, $(x, y) \in \leq$ denota-se por $x \leq y$.
- Exemplo 3: igualmente se conclui que sendo ≤ uma relação binária definida em N,

$$\leq = \{(x,y) \in \mathbb{N}^2 : x \leq y\} \subseteq \mathbb{N}^2.$$

• A relação $I = \{(x, x) : x \in A\}$ designa-se por relação identidade de A ou definida em A.

Relações binárias oooo●oooo

Domínio e imagem

Definição (de domínio e imagem)

Sejam A e B dois conjuntos e R uma relação binária entre A e B.

 Designa-se por domínio de R e denota-se por dom(R), o conjunto

$$dom(\mathcal{R}) = \{x \in A : (x, y) \in \mathcal{R} \text{ para algum } y \in B\}.$$

• Designa-se por imagem (ou contradomínio) de \mathcal{R} e denota-se por img(\mathcal{R}), o conjunto

$$img(\mathcal{R}) = \{ y \in B : (x, y) \in \mathcal{R} \text{ para algum } x \in A \}.$$

Imagem e imagem recíproca

Definição (de imagem e imagem recíproca de um elemento)

Considere a relação binária $\mathcal{R} \subseteq A \times B$.

• Designa-se por imagem de $x \in A$ por \mathcal{R} e denota-se por $\mathcal{R}(x)$, o conjunto

$$\mathcal{R}(x) = \{ y \in B : (x, y) \in \mathcal{R} \}.$$

Designa-se por imagem recíproca de $y \in B$ por \mathcal{R} e denota-se por $\mathcal{R}^{-1}(y)$, o conjunto

$$\mathcal{R}^{-1}(y) = \{x \in A : (x,y) \in \mathcal{R}\}.$$

Relação inversa de $\mathcal{R}: \mathcal{R}^{-1} = \{(y, x) \in B \times A : (x, y) \in \mathcal{R}\}.$ Se \mathcal{R} e ema funcac enter \mathcal{R} (x) e em e enjunto sinjular.

Relações binárias 00000000

Exercício 2 da Folha 2

- 2. Considere a relação $\mathcal{R} = \{(a,b) \in \mathbb{N}_0^2 : a+b=4\}$
 - (a) Determine \mathcal{R} e \mathcal{R}^{-1} .
 - (b) Determine as imagens de 1 e 3 por \mathcal{R} .
 - (c) Determine as imagens recíprocas por \mathcal{R} de 0, 2 e 4.