

COMP6661

COMBINATORIAL ALGORITHMS

Instructor:
Dr. Harutyunyan

GRAPH THEORY

UNDIRECTED & DIRECTED GRAPHS

A graph G is represented by G = (V, E) where

- ullet V is the set of vertices
- ullet *E* is the set of edges

Definition Graphs can be regrouped as follows:

- Undirected graphs: Edges of the graph are undirected
 - Simple graph: No multiple edges or loops are allowed
 - Multigraph: Multiple edges are allowed but loops are not allowed
 - Pseudograph: Multiple edges and loops are allowed
- Directed graphs: Every edge has a direction
 - Directed graph: Loops are allowed but multiple edges in the same direction are not allowed
 - Directed multigraph: Loops and multiple directed edges are allowed

Definition In undirected graphs, vertex u and vertex v are called **adjacent** iff $\{u, v\}$ is an edge in G. We say $\{u, v\}$ is **incident** on vertices u and v. The **degree** d(v) of a vertex v is the number of edges incident on v.

Theorem 1 (Handshaking) For an undirected graph G = (V, E) where |E| = e,

$$2e = \sum_{v \in V} d(v)$$

(true even for graphs with multiple edges and loops)

Proof It follows from the fact that each edge contributes 2 to the sum of degrees of vertices since it's incident to exactly 2 (possibly equal i.e. loop) vertices

Theorem 2 An undirected graph has an even number of vertices of odd degree

Proof $2e = \sum_{v \in V} d(v) = \sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v)$ where

 V_1 : set of odd degree vertices

 V_2 : set of even degree vertices

The second term of RHS is even, hence $\sum_{v \in V_1} d(v)$ must also be even. But for all vertex v in V_1 , d(v) is odd; hence for $\sum_{v \in V_1} d(v)$ to be even, $|V_1|$ must be even.

Definition In directed graphs, (u, v) is an edge, u is the **initial vertex** (adjacent to v), and v is the **terminal vertex** (adjacent from u). Also

 $d^-(v)$ is **in-degree** of vertex v (i.e. # of edges terminating at v)

 $d^+(v)$ is **out-degree** of vertex v (i.e. # of edges originating at v)

Theorem 3 Let G = (V, E) be a directed graph. Then

$$\sum_{v \in V} d^{-}(v) = \sum_{v \in V} d^{+}(v) = |E|$$

GRAPH TERMINOLOGIES

Complete Graphs on n vertices K_n : a simple graph with exactly one edge between any pair of distinct vertices

Cycles C_n , n > 3: simple graph with vertices $v_1, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}$

Wheels W_n , n > 3: add (n + 1)-st vertex to C_n and connect it to each of n vertices in C_n

n-Cubes Q_n , n > 3: simple graph with vertices representing 2^n bit strings of length n, $n \ge 1$ such that adjacent vertices have bit strings differing in exactly one bit position

- $Q_1 \quad \stackrel{0}{\bullet} \quad \qquad \stackrel{1}{\bullet}$
- $Q_1 \qquad Q_2 \qquad Q_1 \qquad 00 \qquad 00 \text{ and } 11 \text{ are second dimension neighbors} \\ Q_1 \qquad 01 \qquad 00 \text{ and } 01 \text{ are first dimension neighbors}$

Note:

<u>Problem 1:</u> How many binary numbers we can write with n numbers?

Answer: $2 \times 2 \times \cdots \times 2 = 2^n$

<u>Problem 2:</u> Find the number of subsets of a set of n elements Answer: Let $S = \{a_1, a_2, \dots, a_n\}$ be the set of n elements

A subset of *S* is $S_1 = \{a_1, ..., a_4\}$

 S_1 can also be presented as $S_1 = \{11110...0\}$ (put 1 if element is in subset 0 otherwise)

<u>Point:</u> Problem1 and Problem2 are equivalent and their answer represent the number of vertices in a hyper-

cube

Bipartite graphs: simple graphs such that V can be partitioned into 2 disjoint subsets V_1 and V_2 such that each edge connects a vertex in V_1 and a vertex in V_2 , and no edges connect 2 vertices that are both in V_1 or in V_2

Hypercube Q_n is a bipartite graph for all $n \geq 1$

Complete bipartite graphs $K_{m,n}$: Let V_1 and V_2 be two partitions of vertex set of $K_{m,n}$ such that $|V_1| = m$ and $|V_2| = n$. There is an edge between two vertices iff one vertex is in V_1 and the other in V_2

TREES

Definition A **tree** is a connected undirected graph with no simple circuits

Theorem 4 An undirected graph is a tree iff there is a unique simple path between any two of its vertices

Definition A rooted tree is called m-ary tree if every vertex has no more than m children. The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m=2 is a binary tree

Theorem 5 A tree with n vertices has n-1 edges

Theorem 6 A full m-ary tree with

- 1. n vertices has $i=\frac{n-1}{m}$ internal vertices and $l=\frac{(m-1)n+1}{m}$ leaves
- 2. i internal vertices has n = mi + 1 vertices and l = (m 1)i + 1 leaves
- 3. l leaves has $n = \frac{ml-1}{m-1}$ vertices and $i = \frac{l-1}{m-1}$ internal vertices

GRAPH CONNECTIVITY

Definition A **path** of length n from u to v in an undirected graph is a sequence of edges e_1, e_2, \ldots, e_n which starts at u and ends at v. A path is **simple** if it does not contain the same edge twice

Definition If u = v, the path from u to u is a **circuit**

Definition (Connectedness) An undirected graph is connected if there exists a path between every pair of vertices

Theorem 7 There is a simple path between every pair of vertices in a connected undirected graph

CONNECTEDNESS IN DIRECTED GRAPHS

Definition A directed graph G = (V, E) is **strongly connected** if there exists a path from a to b and from b to a, whenever $a, b \in V$.

Definition A directed graph G = (V, E) is **weakly connected** if there exists a path between any 2 vertices in the underlying undirected graph

PLANAR GRAPHS

Definition A graph (or multigraph) G is **planar** if G can be drawn in the plane with its edges intersecting only at vertices of G. Such a drawing of G is called an **embedding** of G in the plane. An application of planar graphs is electrical circuit design with VLSI.

EXAMPLE

Following 3-regular graph G is planar because no edges intersect except at the vertices

EXAMPLE

Complete bipartite graph $K_{3,3}$ is non-planar. As show by the following figure the edge (b,y) will have to intersect one of the existing edges

EXAMPLE

In the family of complete graphs, K_2 , K_2 and K_3 are obviously planar. At first glance, K_4 seems to be non-planar. In the figure at left of K_4 , edges (x,z) and (w,y) overlap at a point other than a vertex. However K_4 can be redrawn as shown in the figure at right and it becomes clear that K_4 is planar

What about K_5 ? As shown by the following figure, any embedding of K_5 will contain a pentagon (here $\{a,b,c,d,e\}$). Interior region can contain only two edges, say (a,c) and (c,e). Obviously the edges (a,d) and (b,d) are in the exterior region. We need the edge (b,e) in order to have K_5 . But e is inside the region delimited by edges (a,d), (d,c), (c,a) and b is outside this region. So, the edge (b,e) must intersect one of the existing edges, therefore K_5 is non-planar

Theorem 8 (Euler's Formula) Let G = (V, E) be a connected planar graph or multigraph with |E| = e edges and |V| = v vertices. Let r be the number of regions in the plane determined by a planar embedding of G (one of these regions has infinite area called the infinite region). Then:

$$r = e - v + 2$$

Proof The proof is by induction on e

1. Basis: If e=0 or 1 then G becomes one of the following graphs and for all of them v-e+r=2

- 2. <u>Hypothesis</u>: Let $k \in N$ and assume that the result is true for every connected planar graph or multigraph with e edges, where $0 \le e \le k$
- 3. Proof of rank e=k+1: We want to prove the statement for e=k+1 (i.e v-(k+1)+r=2). Let G=(V,E) be a connected planar graph with v vertices, r regions and let $a,b\in V$ and $(a,b)\in E$. Consider graph H=G-(a,b). There are two cases to consider:

Case 1. H is a connected graph, then H has v vertices, k edges and r-1 regions because the edge (a,b) that is deleted from G was in fact separating two regions in it; this edge is not present in H so previous two regions form only one region in H

Note that even in the case where a=b, number of regions in H become one less than the number of regions in G

As H has less than or equal to k edges, induction hypothesis can be applied to it, resulting in the following equality:

$$v - k + (r - 1) = 2$$

$$2 = v - (k+1) + r$$

So Euler's theorem is true for G

Case 2. H is a disconnected graph, so it has v vertices, k edges and r regions. Also, H has 2 components H_1 and H_2 , where H_i has v_i vertices, e_i edges and r_i regions for i=1,2

Also we know that:

$$v_1 + v_2 = v$$

$$e_1 + e_2 = k (= e - 1)$$

 $r_1 + r_2 = r + 1$ (the infinite region is counted twice in $r_1 + r_2$)

By inductive hypothesis the theorem is true for H_1 and H_2 , so

$$\begin{vmatrix} v_1 - e_1 + r_1 = 2 \\ v_2 - e_2 + r_2 = 2 \end{vmatrix} 4 = (v_1 + v_2) - (e_1 + e_2) + (r_1 + r_2) = v - k + r + 1$$

So,

$$4 = v - (k+1) + r + 2 \Rightarrow v - (k+1) + r = 2$$

Hence the theorem is proved

Corollary If a connected planar simple graph has e edges and v vertices and no circuits of length 3, then

$$e \le 2v - 4$$

QUESTION

Show that $K_{3,3}$ is nonplanar using the previous corollary

Definition For each region R in planar embedding of a (planar) graph, the **degree of** R, denoted deg(R) is the number of boundary edges

$$\sum_{i=1}^{r} deg(R_i) = 2|E|$$

Corollary Let G=(V,E) be a loop-free connected planar graph with |V|=v, |E|=e>2 and r regions. Then

and

$$e \le 3v - 6$$

Proof

Since G is loop-free, not a multigraph and e > 2, boundary of each region contains at least 3 edges.

$$2e = 2|E| = \sum_{i=1}^{r} deg(R_i) \ge 3r$$

From Euler's Theorem:

$$2 = v - e + r \le v - e + \frac{2}{3}e = v - \frac{1}{3}e$$

So,

$$6 \le 3v - e$$
 or $e \le 3v - 6$

EXAMPLE

 K_5 is a loop-free and connected graph. If K_5 was planar, we would have $3v-6 \ge e$. But 3.5-6=9>10=e is false so K_5 is nonplanar

GRAPH COLOURING AND CHROMATIC NUMBER

Definition If G = (V, E) is an undirected graph, a **proper colouring** of G occurs when we colour vertices of G in a way that if $(a, b) \in E$, then a and b are coloured with different colours. The minimum number of colors needed to properly colour G is called the **chromatic number** of G and is written $\chi(G)$

EXAMPLE

Chromatic number of Q_2 is $\chi(Q_2) = 2$

EXAMPLE

For complete graph K_n , $\chi(K_n) = n$ since every vertex of K_n is connected to all others and so each vertex should have a different color

For the complete bipartite graph $K_{m,n}$, as for any graph graph with |E| > 0, $\chi(K_{m,n}) > 1$. Let V_1 and V_2 be the two partitions of $K_{m,n}$, then we can color all vertices of V_1 in red and of V_2 in green and obtain a proper colouring of $K_{m,n}$. So $\chi(K_{m,n}) = 2$

EXAMPLE

Chromatic number of following graph G is at least 3: a,b,c must be coloured by different colours, so one need at least 3 colors to colour the graph. Lets try to colour G with three colors: assign red to a, blue to b and green to c; then d can be coloured red, e green, f blue and g red

Theorem 9 Let G = (V, E) be a connected simple graph, and let $\Delta = \max_{v \in V} \{d(v)\}$ (Δ is called **maxdegree** of graph G). Then

$$\chi(G) \le \Delta + 1$$

Proof Pick a random vertex $u \in V$ and color u and all its k neighbours in a different color. For that $\Delta + 1$ colors will be enough as by definition $k \leq \Delta$. Next continue this same operation by picking a non-coloured vertex of

the graph, namely x. Let x_1, \ldots, x_m be adjacent vertices of x such that x_1, \ldots, x_p are already coloured and x and x_{p+1}, \ldots, x_m are not coloured. Since $m \leq \Delta$, $m+1 \leq \Delta+1$, so there are enough remaining colors to color x and x_{p+1}, \ldots, x_m . If we apply this operations till there is no more uncoloured vertex in G, then we will color G with less than $\Delta+1$ colors.

10

COLOURING PLANAR GRAPHS

Theorem 10 Every planar graph is 5-colorable

Proof Proof by induction on number of vertices n

- 1. Basis: For n = 1, 2, 3, 4, 5, G on n vertices is 5-colorable
- 2. Hypothesis: We assume that for all $n \leq k$, G on n vertices is 5-colorable

3. Proof of rank k+1: Let G be a graph on v=k+1 vertices and e edges. By Euler's corollary, $e \le 3v-6$.

$$\sum_{u \in V} d(u) = 2e \le 6v - 12 < 6v$$

By Pigeonhole Principle, there exist a vertex $x \in V$ such that $d(x) < \frac{6v}{v} = 6$. So $d(x) \le 5$. Consider graph H = G - x (graph obtained by removing x and all of its incident edges from graph G). H has k vertices and by induction hypothesis it is 5-colorable. Assume that x is adjacent in G to vertices x_1, x_2, \ldots, x_k with $k \le 5$. If in H, less than 5 colors are used to color vertices x_1, x_2, \ldots, x_k , then in G the G0 can be used to color G1 and G2 will be 5-colorable, we will be done. So lets assume that G3 and that all vertices G4, G5 have different colors in a 5-colouring of G6. So lets assume that G7 are in a cyclic order around G8 and that the color of G9 is G9 definition G9. Let G9 denote the subgraph of G9 spanned by vertices of color G9 and G9. By definition G9 and G9 such that G9 denote the subgraph of G9 spanned by vertices of color G9 and G9 definition G9 and G9 definition G9 definition G9 definition G9 denote the subgraph of G9 spanned by vertices of color G9 and G9 definition G9 definition G9 definition G9 definition G9 definition G9 denote the subgraph of G9 spanned by vertices of color G9 and G9 definition G9 definition G9 denote the subgraph of G9 denote the subgraph of

• If x_1 and x_3 belong to distinct components of H(1,3)

Then interchanging the colors 1 and 3 in the component containing x_1 won't affect the colouring of the component containing x_3 . So if we interchange the colors 1 and 3 in the component containing x_1 , x_1 will have color 3 (as x_3). So x can now be coloured 1 and we will obtain a 5-colouring of G

• If x_1 and x_3 belong to the same component of H(1,3)

Then there exists an x_1 - x_3 path P_{13} in H whose vertices are coloured 1 and 3. Any path between x_2 and x_4 formed only by vertices coloured by 2 and 4 must go through P_{13} , which is impossible. So x_2 and x_4 belong to distinct components of H(2,4) and interchanging the colors 2 and 4 in the component containing x_2 won't affect the colouring of the component containing x_4 . So if we interchange the colors 2 and 4 in the component containing x_2 , x_2 will have color 4 (as x_4). So x_4 can now be coloured 2 and we will obtain a 5-colouring of x_4

It is clear that for any planar graph $G, \chi(G) \leq 4$ because $\chi(K_4) = 4$.

Theorem 11 Every planar graph is 4-colorable

EULER PATHS AND EULER CIRCUITS

Definition (Euler circuit) An Euler circuit in G is a simple circuit (that does not cross the same edge twice) containing every edge of G. It traverses each edge exactly once and each vertex at least once. If G contains an Euler circuit, it is called Eulerian

Definition (Euler path) An Euler path in G is a simple path containing every edge of G. It traverses every vertex and edge of G exactly once

QUESTION Do those graphs contain any Euler circuit and-or path?

Theorem 12 A connected graph G has an Euler circuit iff every vertex has even degree

Theorem 13 A connected graph has an Euler path but not an Euler circuit iff it has exactly two vertices of odd degree

Proof \Rightarrow Let suppose that G contains an Euler path P_E . We want to prove that G has 2 vertices of odd degree. Assume that u is the first vertex and v is the last one on P_E . By definition P_E must contain all edges of the graph G exactly once. Let x be a vertex between u and v. As P_E doesn't finish at x, every time x is visited using an edge it should be exited right away using another one. So number of incident edges to x should be even. As for u and v: u should be exited once at the beginning and for all other visits to u number of edges that will be used will be even; v should be entered once at the end and for all other visits to v number of edges that will be used will be even. Hence both u and v have odd degree

 \Leftarrow Let suppose that G has exactly 2 vertices of odd degree u and v. We want to prove that G contains an Euler path. Let G' be the graph built by copying G and adding an extra edge e between u and v. Then in G' every vertex has even degree and by theorem 12, G' contains an Euler circuit v, \ldots, u, v . If we delete the extra edge e between u and v we will obtain the euler path v, \ldots, u in G

HAMILTON PATHS AND CIRCUITS

Definition (Hamilton circuit) Let G = (V, E) be a graph or multigraph with $|V| \ge 3$. A Hamilton circuit in G is a simple circuit passing through all vertices of G only once. If G contains a Hamilton circuit, it is called Hamiltonian

Definition (Hamilton path) Let G = (V, E) be a graph or multigraph with $|V| \ge 3$. A Hamilton path in G is a simple path passing through all vertices of G only once

Proof Proof by induction on number of dimension n

- 1. Basis: For $n = 2, 3, Q_n$ has a Hamilton cycle
- 2. Hypothesis: We assume that for all $n \leq k$, Q_k has a Hamilton cycle
- 3. Proof of rank k+1: Using previous hypothesis we will prove that Q_{k+1} has a Hamilton cycle. Q_{k+1} is represented as 2 copies of Q_k ($Q_{0,k}$ & $Q_{1,k}$) and edges of type $\{x,y\}$, where $x \in Q_{0,k}$, $y \in Q_{1,k}$ and binary labels for x,y differ only in the first position.

If the Hamilton cycle in Q_k ($Q_{0,k}$ & $Q_{1,k}$) is

$$x_1 \to x_2 \to x_3 \to \cdots \to x_{2^k} \to x_1$$

then the Hamilton cycle in Q_{k+1} is the following

$$x_1 \to x_2 \to \cdots \to x_{2^k-1} \to x_{2^k} \to y_{2^k} \to y_{2^k-1} \to y_2 \to y_1 \to x_1$$

П

where $x_i \in Q_{0,k}$ is connected with $y_i \in Q_{1,k}$, for all $i = 1, 2, \dots, 2^k$

Preliminary discussion about Hamilton circuits

The existence of Hamilton cycle (path) and the existence of an Euler circuit (trail) for a graph are similar problems.

In Hamilton cycle (path) \rightarrow visit each vertex only once

In Euler circuit (trail) \rightarrow travel each edge only once

Unfortunately, there is no helpful connection between the two ideas

QUESTION

Design a graph with a Hamilton circuit but no Euler circuit and vice versa

There are no necessary and sufficient conditions for the existence of Hamilton paths and circuits. For sufficient conditions there are many. That is, we know many conditions under which a graph can contain a Hamilton cycle but when a graph contains a Hamilton cycle we cannot say much about what should be its characteristics (If G has a Hamilton cycle then G must be/contain/have???). Note that in the case of Eulerian circuits necessary condition is well known (If G has an Eulerian circuit then all vertices of G is of even degree (see theorem 12))

Is number of edges a necessary condition for Hamilton circuits?

$$G_n$$
Complete graph of $n-1$ vertices K_{n-1}

 G_n is a critical graph (i.e. Any edge that will be added to G_n , will make it to have a Hamilton cycle)

Sufficient conditions for Hamilton path and Hamilton circuit

Theorem 14 (Hamilton path) Let K_n^* be a complete directed graph (i.e. tournament) - that is, K_n^* has n vertices and for each distinct pair x,y of vertices, eaxctly one of the edges (x,y) or (y,x) is in K_n^* . Such a graph always contains a (directed) Hamilton path

Proof Let $P_m = (v_1, v_2), (v_2, v_3), \dots, (v_{m-1}, v_m)$ be a longest path in K_n^* and $m \geq 2$. If m = n we are done. If not, let v be a vertex that doesn't appear in P_m . Either $(v, v_1) \in K_n^*$ or $(v_1, v) \in K_n^*$. First one is impossible, since if $(v, v_1) \in K_n^*$ then the path $P' = (v, v_1)P_m$ would have been longer than P_m - contradiction. Therefore $(v_1, v) \in K_n^*$.

$$v_1, \ldots, v_{i-1}, v, v_i, \ldots, v_m$$
 is longer than P_m

Now, again $(v, v_2) \notin K_n^*$, otherwise $(v_1, v), (v, v_2), (v_2, v_3), \ldots, (v_{m-1}, v_m)$ would have been longer than P_m . Therefore $(v_2, v) \in K_n^*$. If we continue this process then we get that $(v_3, v) \in K_n^*, \ldots, (v_m, v) \in K_n^*$. But this situation is impossible since the path $P' = P_m v$ would be longer than P_m . Contradiction. So, there is no such vertex v which is not on path P_m . Therefore P_m is a Hamilton path

Theorem 15 (Hamilton path) Let G = (V, E) be a loop-free graph with $|V| = n \ge 2$. If

$$deg(x) + deg(y) \geq n - 1 \ \ \textit{for all} \ \ x,y \in V \ \ \textit{with} \ \ x \neq y$$

then G has a Hamilton path

Proof The proof is similar to that of theorem 14

Corollary (Hamilton path) Let G = (V, E) be a loop-free graph with $n \geq 2$ vertices. If

$$deg(v) \ge \frac{n-1}{2} \text{ for all } v \in V$$

then G has a Hamilton path

Proof If $deg(v) \ge \frac{n-1}{2}$ for $\forall v \in V$, then $deg(x) + deg(v) \ge 2 \times \frac{n-1}{2} = n-1$ for all $x \in V$ such that $x \ne v$. Hence by theorem 15 G contains a Hamilton path

Theorem 16 (Hamilton cycle - Ore 1960) Let G = (V, E) be a loop-free undirected graph with $|V| = n \ge 2$. If

$$deg(x) + deg(y) \ge n$$
 for all nonadjacent $x, y \in V$

then G has a Hamilton cycle

Proof Following is a proof by contradiction. Assume that G does not contain a Hamilton cycle. Add edges to G until we arrive at a graph H (which is a subgraph of K_n) such that H does not have a Hamilton cycle but for any edge e (of K_n) not in H, graph H + e does have a Hamilton cycle. Since $H \neq K_n$, there are vertices $a, b \in V$ where (a, b) is not in H but H + (a, b) has a Hamilton cycle C. Lets label vertices of H such that $v_1, v_2, \ldots, v_i, \ldots, v_{n-1}, v_n$ represents the Hamilton cycle C in H + (a, b) where a will be v_1 and b will be v_2 . Such labelling is presented in the following figure. As there is no Hamilton cycle in H, for each $1 \leq i \leq n$, if

the edge (b, v_i) is in H, then (a, v_{i-1}) is not in H otherwise $b, v_i, v_{i+1}, \ldots, v_n, a, v_{i-1}, v_{i-2}, \ldots, v_4, v_3$ would have been a Hamilton cycle for graph H. Therefore for each $3 \le i \le n$ at most one of $(b, v_i), (a, v_{i-1})$ is in H. Consequently,

$$deg_H(a) + deg_H(b) < n$$

where $deg_H(a)$ represents the degree of a in H and $deg_H(b)$ the degree of b in H. It is clear that for $\forall v \in V$,

$$deg_H(v) \ge deg_G(v) = deg(v)$$

so,

$$deg(a) + deg(b) < n$$

This contradicts the hypothesis that

$$deg(x) + deg(y) \ge n \ \ \text{for all nonadjacent} \ \ x,y \in V$$

Thus G contains a Hamilton path.

An immediate corollary of this theorem is the following

Corollary (Hamilton cycle) If G = (V, E) is a loop-free undirected graph with $|V| = n \ge 3$, and if

$$deg(v) \geq \frac{n}{2} \ \textit{ for all } v \in V$$

then G has a Hamilton cycle

Corollary (Hamilton cycle) If G = (V, E) is a loop-free undirected graph with $|V| = n \ge 3$, and if

$$|E| \ge \binom{n-1}{2} + 2$$

then G has a Hamilton cycle

Proof Let $a, b \in V$ such that $(a, b) \notin E$. We want to show that

$$deg(a) + deg(b) \geq n$$

Remove the followings from G

- (i) all edges of the form (a, x) where $x \in V$
- (ii) all edges of the form (y, b) where $y \in V$
- (iii) the vertices a & b

Let H = (V', E') denote the resulting subgraph. Then

$$|E| = |E'| + deg(a) + deg(b)$$

because $(a,b) \notin E$. Since |V'| = |V| - 2 = n - 2, H is a subgraph of K_{n-2} , so $|E'| \leq {n-2 \choose 2}$. Hence

$$\binom{n-1}{2}+2\leq |E|=|E'|+\deg(a)+\deg(b)\leq \binom{n-2}{2}+\deg(a)+\deg(b)$$

Therefore

$$deg(a) + deg(b) \ge \binom{n-1}{2} + 2 - \binom{n-2}{2}$$

$$= \frac{1}{2}(n-1)(n-2) + 2 - \frac{1}{2}(n-2)(n-3)$$

$$= \frac{1}{2}(n-2)((n-1) - (n-3)) + 2$$

$$= \frac{1}{2}(n-2) \cdot 2 + 2$$

$$= n$$

Therefore it follows from theorem 16 that ${\cal G}$ has a Hamilton cycle