

LUCID: Supervised Multidimensional Optimization of Compounds Using Matched Molecular Pairs

Grégori Gerebtzoff

History of Matched Molecular Pairs at Roche

2006: ComPair-pC; 2009: ComPair in Dragon

Computationally efficient algorithm to identify MMPs^[1]

Usage and limitations of Hussain's method

Problem:

- → the Hussain's algorithm identifies many MMPs and generates "too many" transformations
- →in the original publication, 5.3 million MMPs identified (2.5 million transformations) for a dataset of 330'000 compounds generating 21.7 million fragmentations

Usage:

- → mainly identification and prediction of activity cliffs
- → Readily available at Roche:

 SAR Map and SAR Tree (Lisa Sach-Peltason)

 http://www.youtube.com/watch?v=gFlfyrBtvPo

Some thoughts on what we want to achieve

- The ComPair approach allows us to answer the question:
 "What is the effect of the replacement of side chain X to side chain Y on various properties (hepatic clearance, hERG, LogD)"
- What people expect to get in the future:
 Easy guidelines = a catalog of transformations to solve MedChem issues
- New paradigm: LUCID
 Instead of searching for the effect of specific replacements, LUCID helps the chemists optimizing various properties by suggesting potentially beneficial replacements

LUCID is based on the Hussain's method, but uses a lower number of relevant MMPs

Can we use Hussain's method to extend the ComPair approach? How to reduce the number of MMPs and select relevant MMPs

Reduction of the number of MMPs:

- \rightarrow Side chains must be smaller than x (17) atoms
- \rightarrow Core part of the molecules must be greater than x (5) atoms

Selection of relevant MMPs:

- → Define the size of the replacement
- → Define the local similarity of the core
- → Select required features in the replacement
- → Filter out transformations with less than n (2) examples $(n=1 \rightarrow \sim 90\%)$ of the transformations)
- → List of properties (physchem, safety, ...) to optimize
- → User-defined site(s) of transformation

Roche

Chemical similarity at the environment of the attachment point

25-22

P carinii plC50 = 7.76T gondii plC50 = 8.20 P carinii plC50 = ?? T gondii plC50 = ??

$$H_2N$$
 N
 N
 N
 N
 N
 N
 N
 N
 N

15-11

P carinii plC50 = 7.06T gondii plC50 = 7.52

T gondii pIC50 = 7.39

 $\Delta = 0.71$ $\Delta = 0.15$

15-15 P carinii plC50 = 7.77

T gondii pIC50 = 7.68

T gondii pIC50 = 5.68

 $\Delta = -1.71$

H₂N N

AllChem.GetMorganFingerprint(Chem.MoLFromSmiles('[*]CN(C)c1cnccc1'), 4, fromAtoms=[0], useFeatures=True)
AllChem.GetMorganFingerprint(Chem.MoLFromSmiles('[*]N(C)c1cnccc1'), 4, fromAtoms=[0], useFeatures=True)
DataStructs.DiceSimilarity(fp1, fp2)

- → The chemical environment around the attachment point is stored (FCFP_X)
- → The similarity is calculated between the environment of the parent molecule and the requested MMPs

Similarity	n	Δ (P carinii)	Δ (T gondii)
Low (all pairs)	17	0.48 (SD=0.89)	0.19 (SD=0.73)
Medium	5	0.71 (SD=0.67)	0.15 (SD=0.5)
High	1	0.71	0.15

LUCID: towards an interactive visualization of Chemical Space and MMPs

Structure of the LUCID database

Data table

Identifier	Rat_Liver_pIC50	P_carinii_pIC50	T_gondii_pIC50	rdkit_smiles
10-2B	5.40894	5.2636	5.72125	Nc1nc(N)c2cc(COC(=O)c3ccccc3)cnc2n1
10-2C	6.63827	6.60206	7.25181	Cc1c(COC(=O)c2cccc2)cnc2nc(N)nc(N)c
10-2D	5.1549	5.00877	5.23657	Nc1nc(N)c2nc(COC(=O)c3ccccc3)cnc2n1
10-3A	7.58503	6.25181	7.30103	COc1cc(C(=0)OCc2ccc3nc(N)nc(N)c3c2)c
10-4A	6.37675	5.61979	6.65758	COc1ccc(OC)c(C(=O)OCc2ccc3nc(N)nc(N
10-5A	6.30103	5.85387	6.85387	COc1ccc(C(=O)OCc2ccc3nc(N)nc(N)c3c2
10-6A	6.45593	6.33724	6.82391	COc1cc(OC)cc(C(=O)OCc2ccc3nc(N)nc(N
11-AH2503	5.65758	6.20761	6	CCc1nc2nc(N)nc(N)c2nc1CC
11-AH2504	6.38722	5.69897	7.74473	CCc1nc2nc(N)nc(N)c2nc1-c1ccccc1OC
11-GR92754	6.49485	7.08619	7.55284	CC(C)Cc1nc2nc(N)nc(N)c2nc1CC(C)C

Singlecut, Doublecut, and fragments tables

mmp_singlecut_id	ckey_id	ckey_size	cvalue_id	cvalue_size	Identifier
2959487	2777833	1	2779296	24	25-22
2959488	2777833	1	2779299	24	25-22
2959486	2777833	1	2779301	24	25-22
2959496	2777834	1	2779295	24	25-22
2959497	2777834	1	2779300	24	25-22
2959483	2777869	2	2779297	23	25-22
2959484	2777869	2	2779298	23	25-22
2959480	2777949	10	2778561	15	25-22
2959482	2778312	13	2778557	12	25-22
2959485	2778316	11	2778560	14	25-22
2959495	2778557	12	2778312	13	25-22
2959489	2778560	14	2778316	11	25-22
2959492	2778561	15	2777949	10	25-22
2959490	2779295	24	2777834	1	25-22
2959493	2779296	24	2777833	1	25-22
2959500	2779297	23	2777869	2	25-22
2959481	2779298	23	2777869	2	25-22
2959499	2779299	24	2777833	1	25-22
2959491	2779300	24	2777834	1	25-22
2959494	2779301	24	2777833	1	25-22

mmp_doublecut_id	ckey_id	ckey_size	cvalue1_id	cvalue1_size	cvalue2_id	cvalue2_size	Identifier
3620	2780337	1	2777949	10	2778560	14	25-22
3628	2780356	3	2777949	10	2778557	12	25-22
3615	2780395	2	2778316	11	2778557	12	25-22
3613	2780409	1	2777833	1	2779297	23	25-22
3612	2780409	1	2779298	23	2777833	1	25-22
3616	2780522	9	2777833	1	2778561	15	25-22
3629	2780527	8	2777869	2	2778561	15	25-22
3626	2780890	10	2777833	1	2778560	14	25-22
3610	2780892	12	2777833	1	2778557	12	25-22
3630	2780896	11	2777869	2	2778557	12	25-22
3614	2780899	9	2777869	2	2778560	14	25-22
3621	2781142	13	2778316	11	2777833	1	25-22
3618	2781145	14	2777949	10	2777833	1	25-22
3625	2781148	13	2778316	11	2777834	1	25-22
3624	2781149	11	2778312	13	2777834	1	25-22
3619	2781152	14	2777949	10	2777834	1	25-22
3609	2781986	23	2777833	1	2777834	1	25-22
3611	2781987	21	2777869	2	2777869	2	25-22
3617	2781988	23	2777834	1	2777834	1	25-22
3622	2781989	22	2777869	2	2777834	1	25-22
3623	2781990	22	2777833	1	2777869	2	25-22
3627	2781991	23	2777833	1	2777833	1	25-22

frag_id	frag	frag_size	frag_fp1	frag_fp2	frag_fp3	frag_fp4	frag_fp5
2777949	[*:1]c1cc(OC)ccc1OC	10	ÿÿÿÿÁü¿	ÿÿÿÿ«¦ÊÁü¿	ÿÿÿÿ\$Pe«¦ÊÁü¿	ÿÿÿÿ\$Pez'g`«¦ÊÁü	ÿÿÿÿ\$PeoØè/z'g`«¦
2778557	[*:1]c1cnc2nc(N)nc(N)c2c1	12	ÿÿÿÿÁü¿	ÿÿÿÿ«¦ÊÁü¿	ÿÿÿÿ«¦ÊÁü¿Mãsç	ÿÿÿÿ«¦Ê Áü¿R¸4æMã	ÿÿÿÿ¨¡û«¦ÊÁü¿R¸
2778561	[*:1]CN(C)c1cnc2nc(N)nc(N)c2c1	15	ўўўў=ü¿	ÿÿÿÿ=ü¿J«=ì	ÿÿÿÿ=ü¿J«=ìô‹%ð		ÿÿÿÿ"%bF £C÷~=ü¿J«
2780356	[*:1]CN([*:2])C	3	ÿÿÿÿ=ü¿Ãü¿	ÿÿÿÿšæÒµ=ü¿Ãü¿J«	ÿÿÿÿaó ¥ŸšæÒµ=ü¿Ãü	ÿÿÿÿaó ¥ŸšæÒµ=ü¿Ãü	ÿÿÿÿaó ¥ŸšæÒµ=ü¿Ãü

fp.ToBinary()
DataStructs.UIntSparseIntVect()

Singlecut_pairs table

id	cvalue1_id	cvalue1_size	cvalue2_id	cvalue2_size	n	₹	mmp_singlecut_ids
351	2777949	10	2778139	12		25	2956302 2956699 16,2959492 2957696 15,2958654 2958
309	2777949	10	2778076	10		17	2959358 2957637 16,2960705 2958435 15,2957478 2961
315	2777949	10	2778859	8		13	2959358 2960629 16,2960705 2959855 15,2957478 2959
425	2777949	10	2778066	6		11	2960365 2958279 15,2957478 2958449 15,2959492 2957
349	2777949	10	2778107	10		10	2956302 2959400 16,2960705 2960725 15,2957105 2957
307	2777949	10	2777972	10		9	2959358 2957914 16,2960705 2960637 15,2957478 2959
246	2777949	10	2777908	8		8	2959358 2956202 16,2957478 2957672 15,2959150 2957
280	2777949	10	2777921	7		8	2959358 2956236 16,2960705 2956255 15,2957478 2959
311	2777949	10	2778331	10		8	2959358 2959334 16,2960705 2960745 15,2957478 2957
294	2777949	10	2777941	8		5	2959358 2956285 16,2960705 2956960 15,2957478 2956
317	2777949	10	2779256	12		5	2959358 2959395 16,2960705 2960660 15,2959717 2959
353	2777949	10	2778605	12		5	2956302 2958513 16,2957105 2961974 15,2959492 2957
423	2777949	10	2778052	18		5	2960365 2960053 15,2960967 2962194 14,2961356 2960
711	2777949	10	2777964	8		5	2960705 2956946 15,2957478 2956723 15,2959150 2956
995	2777949	10	2778928	8		5	2957478 2959301 15,2959150 2959197 14,2958312 2960
1179	2777949	10	2778166	13		5	2960581 2958901 15,2962010 2956774 13,2960104 2956
264	2777949	10	2777911	7		4	2959358 2956212 16,2960705 2956928 15,2957478 2957
658	2777949	10	2777932	7		4	2960705 2956239 15,2957478 2959069 15,2959150 2957
10381	2777949	10	2778558	13		4	2962010 2958223 13,2957067 2961737 13,2961277 2957

$$\bigvee_{x} \rightarrow \bigvee_{x}$$

2959358|2957637|16,2960705|2958435|15, 2957478|2961128|15,2957105|2957172|15, 2958876|2958887|15,2959717|2960608|15, 2959150|2961101|14,2960362|2956552|14, 2961779|2961754|14,2959903|2957124|14, 2959509|2959472|14,2960967|2960918|14, 2959739|2961748|14,2960082|2960067|14, 2961199|2962103|14,2958404|2961043|13, 2961689|2961675|13

Roche

Interactive selection of the site of transformation

Chemical space around one constant fragment, colored by the selected property

Transformations at the selected site, colored by the number of properties within the selected range

Rat_Liver_plC50: 6.05 P_carinii_plC50: 4.85

Pairs of compounds (MMPs) corresponding to the selected transformation

Excel export

Transformations (left) and MMPs of one particular transformation (right)

1	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R
1			Local Similar	ity	user_Rat_	Liver pICS	50					user P ca	arinii_pIC50	0				
2	Transformation	Transform		rength		Median		StdDev	Increase	Decrease	Neutral		Median		StdDev	Increase	Decrease	Neutral
	$ \longrightarrow $							0.4	2									
3		44-7	5	0	8	-0.3	0.14	0.4	2	5	1	L 8	0.021	0.15	0.43	3	3	2
4		Nc1nc2[nl	5	0	6	0.6	0.2	0.49	5	1	() 6	0.69	0.2	0.5	5	1	. 0
5		44-9	5	0	5	0.77	0.51	1.1	4	1	(5	0.25	0.16	0.36	3	0	2
6	$\bigcap_{x} X \to \bigcap_{x} X$	44.11	5	0	5	0.00	0.53	1.2	2	2		. 5	0.51	0.22	0.40		1	
Ь		44-11	5	0	5	0.02	0.52	1.2	2	2	1	. 5	0.51	0.22	0.49	3	1	. 1
7		44-8	5	0	5	0.15	0.37	0.83	3	1	1	1 5	0.3	0.19	0.42	4	0	1

A	Α	В	С	D	Е	F	G	Н	I
	×	→ *							
1				user_Rat_	Liver_pIC5	0	user_P_ca	rinii_pIC50)
2	Compound1	Compound2	Local Simi	Value1	Value2	Delta	Value1	Value2	Delta
3	44-10	Nc1nc2[nH]c(-c3cccc	1	6.04576	n.a.	n.a.	4.85387	n.a.	n.a.
4	24-3C	9-14M	0.17	7.35655	6.85387	-0.50268	6.49485	6.82391	0.32906
5	24-2C	24-5A	0.17	6.66959	7.52871	0.85912	6.50031	6.24185	-0.25846
6	21-16	21-38	0.17	7.79588	8.13668	0.3408	6.79588	7.39794	0.60206
7	15-13	15-15	0.17	7.36653	7.76955	0.40302	7	7.76955	0.76955
8	21-15	21-36	0.17	6.49485	7.39794	0.90309	5.25964	6.63827	1.37863
9	15-5	15-10	0.17	5.92082	6.72125	0.80043	5.35655	6.14267	0.78612

Doing now what patients need next