Learning-based multi-modal indoor localization

Midterm Presentation

Pedro Torres Da Cunha

Master Semester Project

Supervised by

- Frederike Dümbgen
- Sepand Kashani

Outline

- Indoor localization task
- Data generation
- Multilayer perceptron
- Autoencoder
 - Encoding into lower dimensions
 - Guide the encoding through constraints
- What's next

Indoor Localization using machine learning

Goal: predict user's indoor position using commonly available signals

Challenges:

- Handle noisy and non-linear signals
- Capture complex dependencies

How: neural networks

Data generation: Walk Simulation

Anchor features: RSSI, std(RSSI), RTT

Multilayer perceptron

First approach: just feed it into a MLP

Problem: Need real positions to train

Autoencoder

Autoencoder: Encoding into lower dimensions

2D embedding

Adding constraints: Small steps

Assumption: two successive points are close together.

→ Penalize big successive distances

Adding constraints: Align the prediction shape

Correct the simulation shape with some known positions

Performance in specific configurations

What's next

- Experiment on real data
 - Adapt solution to take multiple modalities
- Experiment with more complex autoencoder architectures
 - Might embed more information
 - Add more constraints

Experiment with time-dependent architectures