Day-ahead electricity consumption forecasting in Quebec

Jérôme Emery

July 11 update

Day-ahead consumption forecasting

- Electricity production planning.
- Distribution.
- Exportations, importations.

Data analysis – hourly consumption patterns

Electricity consumption differs depending on the hour.

Data analysis – hourly consumption patterns

Boxplot of hourly energy consumption in Quebec winter

Data analysis – temperature effect

- In Quebec, electricity consumption is highly correlated with temperature
 - Winter: Electric heating
 - Summer: Air conditioning

Data analysis – temperature effect

		temp	demand
date_time			
2019-01-03	00:00:00	-13.4	28844.38
2019-01-03	01:00:00	-13.6	28388.10
2019-01-03	02:00:00	-13.7	28173.16
2019-01-03	03:00:00	-14.1	28392.68
2019-01-03	04:00:00	-14.0	28613.17
2022-12-31	19:00:00	6.2	23381.99
2022-12-31	20:00:00	6.3	22627.35
2022-12-31	21:00:00	6.0	22004.14
2022-12-31	22:00:00	5.3	21469.17
2022-12-31	23:00:00	4.3	21021.14

		temp	demand
date_time			
2019-01-03	02:00:00	-13.7	28173.16
2019-01-04	02:00:00	-1.3	25532.46
2019-01-05	02:00:00	0.7	21656.77
2019-01-06	02:00:00	1.2	21274.81
2019-01-07	02:00:00	-13.4	26848.81
2022-12-26	02:00:00	-7.5	26154.11
2022-12-27	02:00:00	-4.8	25840.09
2022-12-28	02:00:00	-3.2	26494.32
2022-12-29	02:00:00	-1.2	24098.08
2022-12-30	02:00:00	5.8	21523.90

One model for every hour.
(24 different models)

:

		temp	demand
date_time			
2019-01-03	23:00:00	-3.8	27767.21
2019-01-04	23:00:00	2.0	23436.87
2019-01-05	23:00:00	1.5	22503.15
2019-01-06	23:00:00	-11.2	27381.07
2019-01-07	23:00:00	-11.2	29786.04
2022-12-26	23:00:00	-4.5	27166.05
2022-12-27	23:00:00	-4.7	27987.84
2022-12-28	23:00:00	-0.1	25664.46
2022-12-29	23:00:00	5.9	23097.65
2022-12-30	23:00:00	7.6	21418.83

 Simplified the problem to forecasting a time series one step ahead instead of 24 steps ahead.

 Energy consumption is strongly correlated to current temperature.

Address change in concavity –
Regression splines.

Model - predictors

- Lagged temperatures
- Type of day
- Cloud cover

 We suspect electricity demand at time t is correlated with previous temperatures.

• Calculate correlation between current electricity and temperature lag T_{t-i} for i=0,1,...,23.

scaled_temp	-0.891469
temp_1	-0.903481
temp_2	-0.914695
temp_3	-0.924125
temp_4	-0.933414
temp_5	-0.935920
temp_6	-0.938199
temp_7	-0.939478
temp_8	-0.938004
temp_9	-0.933994
temp_10	-0.931269
temp_11	-0.928791
temp_12	-0.924372
temp_13	-0.920191
temp_14	-0.910985
temp_15	-0.904521
temp_16	-0.895179
temp_17	-0.878886
temp_18	-0.858411
temp_19	-0.834624
temp_20	-0.816761
temp_21	-0.807875
temp_22	-0.807362
temp_23	-0.809053

Correlation coefficient between current electricity consumption and previous temperatures for hour 2.

• Plot correlation between current consumption and temperature lag

• Hours 14 - 21

• Hours 22 - 6

• Hours 7 - 13

Plot highest correlated hourly temperature for every hour of the day.

• Include this T_{t-i} , T_t and $T_{t-i} * T_t$ in model.

Type of day

 Binary encoding weekday (0) and weekend day (1).

Cloud cover

• Binary encoding if sky is clear (1) or not (0).

Model – Least squares regression

• For one hour:

$$y_t = \beta_0 + \beta_1 X_t + \eta_t + \epsilon$$

• Fit on data from 2019 – 2021.

Model – Correction with ARMA process

- For one hour: $y_t = \beta_0 + \beta_1 X + \boxed{\eta_t + \epsilon}$
- Fit on the residuals of the regression model for 30 days prior.

Model – Correction with ARIMA process

• For one hour:

$$y_t = \beta_0 + \beta_1 X + \boxed{\eta_t + \epsilon}$$

ARMA(1, 1)

$$\eta_t = \psi X_{t-1} + \theta \epsilon_{t-1} + \epsilon_t$$

• Update regression forecast with short term residual forecast.

Model – Correction with ARIMA process

• MAPE: 2.26%

• RMSE: 734 MWh

• Forecasts within 1500 MWh: 97.4%

• Forecasts within 1000 MWh: 88.9%

• Forecasts within 500 MWh: 72.3%

• Some large errors...