

Report No.: EED32I00147501 Page 1 of 42

TEST REPORT

Product: Peak Flow Meter

Trade mark : N/A

Model/Type reference : MSA100BT

Serial Number : N/A

Report Number : EED32I00147501

FCC ID : 2AIV3-MB-MSA100BT

Date of Issue : Jun. 28, 2016

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Beijing M&B Electronic Instruments Co., LTD
No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry
Base, Huangcun Town, Daxing district, Beijing, CHINA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Compiled by:

You're Ion (Project Engines

Reviewed by:

Date:

Emen-Li

Emen Li (Reviewer)

Jun. 28, 2016

Kevin lan (Project Engineer)

Shlek.

Sheek Luo (Lab supervisor)

Check No.: 2447612696

Report Seal

Report No.: EED32I00147501

Page 2 of 42

2 Version

Version No.	Date	Description			
00	Jun. 28, 2016		Original		
	22	· >	(*)	(2)	
((G,5)	(67)	(6,1)	

Report No. : EED32l00147501 Page 3 of 42

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp meansTemperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

Report No.: EED32I00147501 Page 4 of 42

4 Content

1 COVER PAGE	••••••	••••••		1
2 VERSION	•••••		•••••	2
TEST SUMMARY			•••••	3
4 CONTENT				4
5 TEST REQUIREMENT				5
5.1.2 For Radiated Emiss	setupsions test setupsions test setup			5 5 6
5.3 TEST CONDITION				6
6 GENERAL INFORMATION			•••••	7
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION COMMON COMMO	OF EUT SUBJECTIVE TO THIS STAN RT UNITS ARDS TANDARD CONDITIONS QUESTED BY THE CUSTOM	NDARD		
7 EQUIPMENT LIST		•••••		11
B RADIO TECHNICAL REQUI		TION		
Appendix B): Conducted Appendix C): Band-edge Appendix D): RF Conduct Appendix E): Power Spect Appendix F): Antenna Res Appendix G): Restricted I	Peak Output Power for RF Conducted Emiss sted Spurious Emissions. ctral Density equirement bands around fundament	sionstal frequency (Radiated)		16 19 22 24
PHOTOGRAPHS OF TEST SI	ETUP	***************************************		35
PHOTOGRAPHS OF EUT CO	NSTRUCTIONAL DETA	AILS		36

Report No. : EED32I00147501 Page 5 of 42

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	25°C			
Humidity:	50% RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
0501	0.4001411 0.4001411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT transmitted the cochannel(s).	ntinuous modulation	on test signal a	t the specific	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32I00147501 Page 7 of 42

6 General Information

6.1 Client Information

Applicant:	Beijing M&B Electronic Instruments Co., LTD
Address of Applicant:	No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry Base, Huangcun Town, Daxing district, Beijing, CHINA
Manufacturer:	Beijing M&B Electronic Instruments Co., LTD
Address of Manufacturer:	No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry Base, Huangcun Town, Daxing district, Beijing, CHINA
Factory:	Beijing M&B Electronic Instruments Co., LTD
Address of Factory:	No. 27, Yongwang Road, Beijing Bioengineering and Medicine Industry Base, Huangcun Town, Daxing district, Beijing, CHINA

6.2 General Description of EUT

Product Name:	Peak Flow Meter		
Model No.(EUT):	MSA100BT	-0-	
Trade mark:	N/A	(27)	
EUT Supports Radios application:	2402MHz~2480MHz		
Power Supply:	2xAAA alkaline battery=3.0V		
Sample Received Date:	Jun. 13, 2016		
Sample tested Date:	Jun. 13, 2016 to Jun. 16, 2016		(67)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	-15		_0_
Bluetooth Version:	4.0			
Modulation Type:	GFSK			6
Number of Channel:	40			
Sample Type:	Portable production			
Test Power Grade:	N/A(manufacturer declare)			
Test Software of EUT:	N/A(manufacturer declare)		6	
Hardware Version:	BLE MSA100 V3(manufacturer declare)			
Software Version:	1.21(manufacturer declare)	0.0020		
Antenna Type:	PCB(inverted F antenna)			
Antenna Gain:	4.5dBi	(0,)		(0.)
Test Voltage:	2xAAA alkaline battery=3.0V			

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint Call: 0755-33681700 \\ Call: 0755-336817$

Report No. : EED32I00147501 Page 8 of 42

			\		\ \ \	(3)	
Operation F	requency eac	h of channe) 	(6,7))	(67))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International (Shenzhen) Corporation. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

Report No.: EED32I00147501 Page 9 of 42

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Corporation. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Corporation., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of

Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32I00147501 Page 10 of 42

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem (Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nouver conducted	0.31dB (30MHz-1GHz)
2	2 RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadieted Churique emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Page 11 of 42

7 Equipment List

Report No.: EED32I00147501

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017	
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017	
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017	
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017	
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017	
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(0)	01-12-2016	01-11-2017	
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017	
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017	
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017	
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017	
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017	
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017	
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017	
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017	

Report No.: EED32I00147501 Page 12 of 42

0	705		705	200	
	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-01-2016	05-31-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-29-2016
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711 112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017
High-pass filter(6- 18GHz)	MICRO- TRONICS	SPA-F-63029-4	(C))	01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-12-2016	01-11-2017
J-0 %	20%	I			1

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10/KDB 558074	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10/KDB 558074	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10/KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32I00147501

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6767	1.0839	PASS	CDA.
BLE	MCH	0.6877	1.0886	PASS	Peak
BLE	HCH	0.6664	1.0974	PASS	detector

Test Graphs

Report No.: EED32I00147501

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-5.270	PASS
BLE	MCH	-5.980	PASS
BLE	НСН	-6.747	PASS

Report No.: EED32I00147501 Page 18 of 42

Appendix C): Band-edge for RF Conducted Emissions

Result Table

0 7	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
5	BLE	LCH	-5.725	-52.711	-25.73	PASS	
_	BLE	HCH	-7.643	-47.938	-27.64	PASS	

Report No. : EED32I00147501 Page 19 of 42

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-6.235	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-6.519	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-7.779	<limit< td=""><td>PASS</td></limit<>	PASS

Report No.: EED32I00147501 Page 20 of 42

Report No. : EED32I00147501 Page 21 of 42

Report No.: EED32I00147501

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-18.644	8	PASS
BLE	MCH	-18.714	8	PASS
BLE	HCH	-19.511	8	PASS

Report No. : EED32I00147501 Page 24 of 42

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentiona radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is inverted F on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.5dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

(Radiated)		(6)	(6)	/	\	C) /	
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	k
	-	AL 4011	Peak	1MHz	3MHz	Peak	-07
	(65)	Above 1GHz	Peak	1MHz	10Hz	Average	(2)
Test Procedure:	b. c. d. e. f.	at a 3 meter semi-aned determine the position. The EUT was set 3 me was mounted on the to The antenna height is determine the maximum polarizations of the antenna was turned was turned from 0 degrate test-receiver systems Bandwidth with Maximum Place a marker at the effrequency to show combands. Save the spectral	re as below: In the top of a rechoic camber. The top of the highest raters away from p of a variable-haried from one m value of the fienna are set to hission, the EUT to heights from rees to 360 degm was set to Peum Hold Mode. The proposed of the restricular pliance. Also more analyzer plotes a compliance of the second of the restricular pliance.	otating table the table was adiation. The interfer to food the control of the con	e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurement aged to its way 4 meters a the maxing Function a	rs above the 360 degrees ving antenn above the grizontal and ent. worst case a and the rota num reading and Specified the transmit is in the resti	grour to a, whi round vertica and the table
	Al g. h. i.	for lowest and highest bove 1GHz test procedured Different between above to fully Anechoic Cham 18GHz the distance is . Test the EUT in the lowest test of the radiation measure Transmitting mode, and Repeat above procedure.	re as below: re is the test site aber change form meter and tab bwest channel, ments are perfo d found the X ax	n table 0.8 le is 1.5 me the Highest rmed in X, kis position	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Ab positioning for t is worse ca	oove or ase.
_imit:		Frequency	Limit (dBµV	/m @3m)	Rei	mark	
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value	
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	-0-	216MHz-960MHz	46.0	0	Quasi-pe	eak Value	
	6	960MHz-1GHz	54.0) (4	Quasi-pe	eak Value	
	100	AL 1011	54.0) (Averag	je Value	
		Above 1GHz	74.0)		Value	
		40%				- 10.00	

Report No. : EED32I00147501 Page 26 of 42

Test plot as follows:

Worse case mode:	GFSK	(67)	(67)	$(C_{\mathcal{F}_{\mathcal{F}}})$	
Frequency: 2390.0MHz		Test channel: Lowest	Polarization: Horizontal	Remark: PK	

Report No. : EED32I00147501 Page 27 of 42

Worse case mode:	GFSK	(25)	(27)	(25)
Frequency: 2390.0MHz		Test channel: Lowest	Polarization: Vertical	Remark: PK

	Freq			Preamp Factor					Pol/Phase	Remark
	MHz	dB/m	dB	dB	dBu V	dBuV/m	dBuV/m	dB		-
1 2 nr	2390.000									

Report No.: EED32I00147501

		200	200	200	
Worse case mode:	GFSK				
Frequency: 2483.5MHz		Test channel: Highest	Polarization: Horizontal	Remark: PK	

	Cable Preamp Loss Factor			Over Limit Pol/Phase	Remark
MHz dB/m	dB dB	dBuV dBuV/	m dBuV/m	dB	

1 pp 2479.841 32.71 4.50 34.41 78.53 81.33 74.00 7.33 Horizontal 2483.500 32.71 4.51 34.41 45.06 47.87 74.00 -26.13 Horizontal

		200			
Worse case mode:	GFSK				
Frequency: 2483.5M	Hz	Test channel: Highest	Polarization: Vertical	Remark: PK	

Freq			Preamp Factor					Pol/Phase	Remark
MHz	dB/m	dB	dB	dBuV	dBuV/m	dBu V /m	dB		
 2479.819 2483.500									

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4CU-	Peak	1MHz	3MHz	Peak	
(0,)	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

			٠.	
	- 11	ന	ıιt	•
_	-!!		Hι	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/15	30
1.705MHz-30MHz	30	-	(5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

			Cable						
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	45.535	14.72	1.04	6.38	22.14	40.00	-17.86	Horizontal	
2	105.272	12.76	1.57	5.15	19.48	43.50	-24.02	Horizontal	
3	287.990	13.25	2.37	8.20	23.82	46.00	-22.18	Horizontal	
4	447.982	17.07	2.98	11.78	31.83	46.00	-14.17	Horizontal	
5	663.473	19.90	3.66	5.73	29.29	46.00	-16.71	Horizontal	
6 рр	848.056	21.89	4.17	5.82	31.88	46.00	-14.12	${\it Horizontal}$	

Report No. : EED32I00147501 Page 32 of 42

	Freq					Limit Line		Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp 2 3 4 5	58.203 99.528 215.268 414.722	14.02 13.11 11.86 16.55	1.42 1.57 2.26 2.86	6.42 6.96 5.41 5.26	21.86 21.64 19.53 24.67	40.00 43.50 43.50 46.00	-18.14 -21.86 -23.97 -21.33	Vertical Vertical Vertical Vertical Vertical Vertical	

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test chann	nel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	48.62	46.01	74	-27.99	Pass	Н
1668.044	31.18	2.98	34.54	50.69	50.31	74	-23.69	Pass	ЭН
4804.000	34.69	5.11	34.35	47.70	53.15	74	-20.85	Pass	Н
4804.000	34.69	5.11	34.35	43.40	48.85	54	-5.15	Pass	H-AV
5925.863	35.85	7.27	34.30	41.01	49.83	74	-24.17	Pass	Н
7206.000	36.42	6.66	34.90	39.41	47.59	74	-26.41	Pass	Н
9608.000	37.88	7.73	35.08	36.05	46.58	74	-27.42	Pass	Н
1118.517	30.02	2.42	35.05	49.24	46.63	74	-27.37	Pass	V
1668.044	31.18	2.98	34.54	47.63	47.25	74	-26.75	Pass	V
4804.000	34.69	5.11	34.35	45.50	50.95	74	-23.05	Pass	V
6187.929	36.00	7.24	34.42	41.82	50.64	74	-23.36	Pass	V
7206.000	36.42	6.66	34.90	40.50	48.68	74	-25.32	Pass	V
9608.000	37.88	7.73	35.08	39.16	49.69	74	-24.31	Pass	V

Worse case	mode:	GFSK		Test chann	nel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1257.465	30.36	2.58	34.90	47.82	45.86	74	-28.14	Pass	H
1668.044	31.18	2.98	34.54	49.47	49.09	74	-24.91	Pass	H
4880.000	34.85	5.08	34.33	47.56	53.16	74	-20.84	Pass	Н
4880.000	34.85	5.08	34.33	43.40	49.00	54	-5.00	Pass	H-AV
6109.670	35.96	7.32	34.37	41.46	50.37	74	-23.63	Pass	Н
7320.000	36.43	6.77	34.90	39.77	48.07	74	-25.93	Pass	Н
9760.000	38.05	7.60	35.05	39.14	49.74	74	-24.26	Pass	Н
1118.517	30.02	2.42	35.05	48.51	45.90	74	-28.10	Pass	V
1668.044	31.18	2.98	34.54	47.47	47.09	74	-26.91	Pass	V
4880.000	34.85	5.08	34.33	48.87	54.47	74	-19.53	Pass	V
4880.000	34.85	5.08	34.33	44.10	49.70	54	-4.30	Pass	V-AV
5910.798	35.83	7.23	34.30	41.07	49.83	74	-24.17	Pass	V
7320.000	36.43	6.77	34.90	39.18	47.48	74	-26.52	Pass	V
9760.000	38.05	7.60	35.05	37.00	47.60	74	-26.40	Pass	V

Report No.: EED32I00147501 Page 34 of 42

200			100		20%		203		
Worse case	mode:	GFSK		Test chani	nel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1188.980	30.20	2.50	34.98	47.24	44.96	74	-29.04	Pass	• Н
1668.044	31.18	2.98	34.54	48.76	48.38	74	-25.62	Pass	H
4960.000	35.02	5.05	34.31	44.07	49.83	74	-24.17	Pass	Н
7440.000	36.45	6.88	34.90	39.08	47.51	74	-26.49	Pass	Н
9920.000	38.22	7.47	35.02	36.92	47.59	74	-26.41	Pass	Н
11872.880	39.56	8.40	34.36	37.26	50.86	74	-23.14	Pass	Н
1276.818	30.41	2.60	34.88	47.60	45.73	74	-28.27	Pass	V
1668.044	31.18	2.98	34.54	50.18	49.80	74	-24.20	Pass	V
4960.000	35.02	5.05	34.31	45.15	50.91	74	-23.09	Pass	V
7440.000	36.45	6.88	34.90	38.85	47.28	74	-26.72	Pass	V
9920.000	38.22	7.47	35.02	35.76	46.43	74	-27.57	Pass	V
11872.880	39.56	8.40	34.36	35.26	48.86	74	-25.14	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32I00147501 Page 35 of 42

PHOTOGRAPHS OF TEST SETUP

Test mode No.: MSA100BT

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32I00147501 Page 36 of 42

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: MSA100BT

View of Product-1

Report No.: EED32I00147501 Page 37 of 42

View of Product-3

View of Product-4

Report No. : EED32I00147501 Page 38 of 42

View of Product-5

View of Product-6

Report No.: EED32I00147501 Page 39 of 42

View of Product-7

View of Product-8

Report No. : EED32I00147501 Page 40 of 42

View of Product-9

View of Product-10

Page 41 of 42 Report No.: EED32I00147501

View of Product-11

View of Product-12

Report No. : EED32I00147501 Page 42 of 42

View of Product-13

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.