Intégrales à paramètres

 \mathbb{K} désigne les corps \mathbb{R} ou \mathbb{C} .

1 Passage à la limite

Théorème 1.1 Convergence dominée

Soit (f_n) une suite de fonctions définies sur un intervalle I à valeurs dans \mathbb{K} . On suppose que

- pour tout $n \in \mathbb{N}$, f_n est continue par morceaux sur I;
- (f_n) converge simplement sur I vers une fonction f;
- f est continue par morceaux sur I;
- il existe une fonction positive φ intégrable sur I telle que

$$\forall n \in \mathbb{N}, |f_n| \leq \varphi$$

Alors

$$\lim_{n \to +\infty} \int_{\mathbf{I}} f_n(t) \, dt = \int_{\mathbf{I}} f(t) \, dt$$

Théorème 1.2 Interversion limite/intégrale

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} et $x_0 \in J$. On suppose que :

- pour tout $x \in J$, $t \mapsto f(x, t)$ est continue par morceaux sur I;
- pour tout $t \in I$, $\lim_{x \to x_0} f(x, t) = g(t)$ où g est continue par morceaux sur I;
- il existe une fonction positive ϕ intégrable sur I telle que

$$\forall (x, t) \in J \times I, |f(x, t)| \le \varphi(t)$$

Alors

$$\lim_{x \to x_0} \int_{\mathbf{I}} f(x, t) \, dt = \int_{\mathbf{I}} g(t) \, dt$$

1

Théorème 1.3 Intégration terme à terme

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I à valeurs dans K. On suppose que

- pour tout $n \in \mathbb{N}$, f_n est continue par morceaux sur I;
- pour tout $n \in \mathbb{N}$, f_n est **intégrable** sur I;
- $\sum f_n$ converge simplement sur I vers une fonction f;
- f est continue par morceaux sur I;
- la série $\sum \int_{\Gamma} |f_n(t)| dt$ converge.

Alors f est intégrable sur I et

$$\sum_{n=0}^{+\infty} \int_{\mathbf{I}} f_n(t) \, dt = \int_{\mathbf{I}} f(t) \, dt$$

2 Continuité

Théorème 2.1

Soient $f: A \times I \to \mathbb{K}$ où I est un intervalle de \mathbb{R} et A une partie d'un espace vectoriel normé de dimension finie. On suppose que :

- pour tout $x \in J$, $t \mapsto f(x, t)$ est continue par morceaux sur I;
- pour tout $t \in I$, $x \mapsto g(x, t)$ est continue sur A;
- il existe une fonction positive φ intégrable sur I telle que

$$\forall (x,t) \in A \times I, |f(x,t)| \le \varphi(t)$$

Alors F: $x \in A \mapsto \int_{I} f(x, t) dt$ est continue sur A.

REMARQUE. La dernière condition est une condition dite de ddomination.

Remarque. La continuité étant une notion locale, on peut remplacer la condition de domination sur A par la domination au voisinage de tout point de A. En particulier, il suffit de montrer la domination sur tout compact de A. Si A est un intervalle de \mathbb{R} , il suffit de montrer la domination sur tout segment de A.

3 Dérivabilité

Théorème 3.1

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} . On suppose que :

- pour tout $x \in J$, $t \mapsto f(x, t)$ est continue par morceaux sur I et intégrable sur I;
- pour tout $t \in I$, $x \mapsto f(x, t)$ est de classe \mathcal{C}^1 sur J;
- pour tout $x \in J$, $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur I;
- il existe une fonction positive φ intégrable sur I telle que

$$\forall (x,t) \in J \times I, \ \left| \frac{\partial f}{\partial x}(x,t) \right| \le \varphi(t)$$

Alors F: $x \in J \mapsto \int_{I} f(x,t) dt$ est de classe C^1 sur J et

$$\forall x \in J, \ F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) \ dt$$

Remarque. La dérivabilité étant une notion locale, on peut remplacer la domination sur J par la domination sur tout segment de J.

Corollaire 3.1

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} . On suppose que :

- pour tout $t \in I$, $x \mapsto f(x, t)$ est de classe C^k sur J;
- pour tout $x \in J$ et pour tout $j \in [0, k-1]$, $t \mapsto \frac{\partial^j f}{\partial x^j}(x, t)$ est continue par morceaux sur I et intégrable sur I;
- il existe une fonction positive φ intégrable sur I telle que

$$\forall (x,t) \in J \times I, \ \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \le \varphi(t)$$

Alors F: $x \in J \mapsto \int_{I} f(x,t) dt$ est de classe C^{k} sur J et

$$\forall j \in [0, k], \ \forall x \in J, \ F^{(j)}(x) = \int_{I} \frac{\partial^{j} f}{\partial x^{j}}(x, t) \ dt$$

Remarque. A nouveau, la domination sur tout segment de J suffit.

Corollaire 3.2

Soient $f: J \times I \to \mathbb{K}$ où I et J sont deux intervalles de \mathbb{R} . On suppose que :

- pour tout $t \in I$, $x \mapsto f(x, t)$ est de classe C^{∞} sur J;
- pour tout $x \in J$ et pour tout $k \in \mathbb{N}$, $t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux sur I;
- pour tout $k \in \mathbb{N}$, il existe une fonction positive φ_k **intégrable** sur I telle que

$$\forall (x,t) \in J \times I, \ \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \le \varphi_k(t)$$

Alors F: $x \in J \mapsto \int_{I} f(x,t) dt$ est de classe C^{∞} sur J et

$$\forall k \in \mathbb{N}, \ \forall x \in J, \ F^{(k)}(x) = \int_{I} \frac{\partial^{k} f}{\partial x^{k}}(x, t) \ dt$$

REMARQUE. A nouveau, la domination sur tout segment de J suffit.

Exercice 3.1

Montrer que la fonction Γ : $x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$ est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* .