Political Ads and Social Media Response

Jason Becker, Nalini Chandhi and Brian Schneider

School of Information, University of California, Berkeley December 7, 2016

jason.becker@ischool.berkeley.edu nalini.chandhi@ischool.berkeley.edu brian.schneider@ischool.berkeley.edu

Introduction

Social media and Political Ads are playing more important role in Presidential campaigns than ever before. The type of Ad has a significant impact on how people receive, respond and share it. The objective of this project is to collect Political Ads data and Social Media response about both Presidential candidates and to investigate any correlation between the Ads and sentiment of social media responses.

Some questions we wanted find answers to:

- Does TV advertising meaningfully impact online Twitter sentiment? If so, how much?
- Should political candidates continue to buy ad spots (to motivate Twitter comments)?
- Are some ads more effective at spurring Twitter comments than others?

Data sources

There are two major sources of data

- Political Ad data from http://politicaladarchive.org
- Twitter stream data using Tweepy API

Architecture

Considerations

- We chose S3 because it is scalable and cheap. It is easy to scale as we collect more tweets data
- We chose Hive because of familiarity and easy connectivity to Tableau
- We chose Tableau because of familiarity and ease of report creation. It was a good fit for this use case because of custom geographies feature to draw DMAs.

Scale of the system

- S3 will scale as we stream more data, but it could become expensive. So we can come up with data aging scripts to clean up the old data that may not be needed for analysis
- We can add more EC2 nodes to the cluster to handle bigger data loads. The queries may take longer as the data size grows if we choose not to scale out.

Data Volume

Dataset	Size Number of Records		Frequency	
Political Ad	246KB	2300 ads per day	Daily	
data		Total - 114,099		
Twitter data	400 files (60 MB each) per day = 24	4 million tweets per	Stream (but	
	GB per day	day	loading to Hive	
		Total - 40 million	once a day)	
	8440 files(60MB each) ~ 400 GB	tweets		
	in total			
DMA	247 MB reduced to	4.8 million rows -	One time process	
shapes data	10 MB	reduced to 186,000	only to be loaded	
for Tableau		rows using Alteryx	to laptop where	
		Generalization	Tableau is	
		algorithm	running	
Cities and	1.5 KB	29,000 rows	One time load	
DMA				
mapping				

Development Objects

The development objects can be divided into three below sections:

• Twitter Streaming

- ➤ New application registered at https://apps.twitter.com
- ➤ A Python script using twitter API consumer key and secret and tweepy python library to stream the data and create batches of 10000 tweets in JSON format as files to S3
- ➤ Used 'Hillary Clinton' and 'Donald Trump' as filter key words to the API
- ➤ Used boto.s3.connection library to connect to S3 from EC2 instance

All Buckets / twitterstorencbsjb

Name	Storage Class	Size	Last Modified
20161020012559.tweets	Standard	36.7 MB	Fri Oct 28 12:01:29 GMT-500 2016
20161020012911.tweets	Standard	36.4 MB	Fri Oct 28 12:01:37 GMT-500 2016
20161020013223.tweets	Standard	36.1 MB	Fri Oct 28 11:52:30 GMT-500 2016
20161020013535.tweets	Standard	41.2 MB	Fri Oct 28 11:55:24 GMT-500 2016

• Ad data

- A daily cron job (pretest.sh) is created to repeatedly pull in TV ad data via CSV and store it in EBS.
- A daily cron job (test.sh) is created to update the tables once data was successfully stored.

Data Load and Transformation

- ➤ A python script is created to load twitter data JSON files from S3 and apply following transformations:
 - o Parse JSON to get nested data elements
 - o Get location attributes from tweet data and map to DMA (Designated Market Areas)
 - o Cast Date Time columns to correct format
 - Get Sentiment of tweet text. Text is split into sentences and scored for both polarity and subjectivity. Then the maximum polarity and subjectivity are retrieved for each tweet.
 - Create the tweet time 5, 10, 15 minute intervals (used for time attribution during data modeling)
- ➤ A SQL script is created to perform following transformations during Ad Data load:
 - o Cast Date Time columns to correct format
 - o Refactor Candidate fields to be join-friendly
 - o Remove all non-presidential ads
 - Create the Ad time 5, 10, 15 minute intervals (used for time attribution during data modeling)
- A Jupyter python notebook using difflib.SequenceMatcher library to match all DMAs from Ad data to DMA master data file to handle small mismatches in text. Some examples of matches are shown below:

Las Vegas, NV	Las Vegas NV
Raleigh-Durham-Fayetteville, NC	Raleigh-Durham (Fayetteville) NC
Tampa-St. Petersburg, FL	Tampa-St. Petersburg (Sarasota) FL
Cleveland, Ohio	Cleveland-Akron (Canton) OH

Cedar Rapids-Waterloo-Iowa City-Dublin,	Cedar Rapids-Waterloo-Iowa City &	
Iowa	Dubuque IA	
Philadelphia, PA	Philadelphia PA	

- ➤ A shell script to get all twitter screen names who have greater than 500 tweets to feed to Bot Scoring python notebook.
- ➤ A python notebook to run all the twitter screen names using Butternut python API and get Bot Scores.
- A SQL script to create aggregate tables on Ad Data and Tweets Data for input to Tableau dashboards.

• Important objects and descriptions

Description	Object Name		
Twitter stream python script	/Twitter_Stream/streamTwitterDataS3.py		
Ad data table creation script	/Addata/hive_base_ddl.sql		
DMA Match python notebook	/DMA/Match/DMA_Match.ipynb		
Twitter data processing python	/Twitter_Processing/S3_Parser.py		
script,	/Twitter_Processing/hive_loader.sh		
Table load shell script,	/Twitter_Processing/hive_finalTable.sql		
Hive table creation SQL script	_		
Twitter bot user creation shell script,	/TwitterBots/script_to_get_top_users.sh		
iPython notebook for Bot scoring,	/TwitterBots/TwitterBots_Notebook.ipynb		
Hive table creation SQL script	/ TwitterBots/twitter_bot_score_table_sql.sql		
Hive Analysis table creation SQL	/Data_Analysis/hive_analysis_tables_queries -		
script	v3.sql		
Tableau Visualization DMA shape	/Tableau_Visualization/DMA_Shapefile.csv		
coordinates for polygon drawing			

Data Visualization

Tableau is used to connect to Hive using HiveServer. A custom polygon shape file is loaded to Tableau to draw the DMA polygons for visualization. A sample data set for custom polygon is shown below:

Polygon	NAME	ID	SubPoly	PointID	Longitude	Latitude
ID			gonID			
1	Portland-Auburn ME	500	1	1	-70.722602	43.07981
1	Portland-Auburn ME	500	1	2	-70.730029	43.074801
1	Portland-Auburn ME	500	1	3	-70.736067	43.074445
1	Portland-Auburn ME	500	1	4	-70.73855	43.076843
1	Portland-Auburn ME	500	1	5	-70.736944	43.081081
1	Portland-Auburn ME	500	1	6	-70.739073	43.078955
1	Portland-Auburn ME	500	1	7	-70.742816	43.081488
1	Portland-Auburn ME	500	1	8	-70.747211	43.080936

• Political Ads vs Twitter sentiment

The chart below shows a good correlation between positive ads and positive tweet sentiment and negative ads and negative tweet sentiment:

• Bots by Candidate

The chart below shows that, in the days leading up to the election, Hillary Clinton was far more of a target for negative tweets than Donald Trump. It also shows that bots, in particular, provided negative sentiment towards Clinton, and considerably positive sentiment towards Trump.

Bots by DMA

Bot polarity was especially strong in favor of Trump in the Boston, Denver and Phoenix DMAs. Pro-Clinton bot polarity spiked in Washington DC and Philadelphia.

Findings

Based on data analysis shown above, we are able to draw following results:

- Showing ads DOES correlate with Twitter sentiment.
- DMAs do not all respond to ads in the same way.
- We believe that bots did make impact on overall sentiment -- favorably for Trump.

Next Steps

The next steps would be extend this solution to collect other social media data. Currently, the scripts and tables were all created for Hillary Clinton vs Donald Trump election but they can be easily generalized to build a configurable application for any future election. We also expect to build more intelligence and rules into Bot detection and Sentiment Analysis.