Weaknesses of blockchain applications

How to shoot yourself in the foot playing with the blockchain

Simone Bronzini CTO @ Chainside

Summary

- Blockchain recap:
 - a. Immutability
 - b. Consensus
 - c. Smart contracts
 - i. Turing completeness
 - ii. Turing completeness consequences
- 2. A bunch of horror stories

Blockchain Recap

- The blockchain was created with the aim of deploying an electronic cash system without trusted third parties
- Using the Proof of Work, consensus on the state of the database is achieved, modifying past history is impractical
- Due to the large number of network participants, the possibility of modifying the rules is extremely limited and in some cases it could cause a consensus failure and a split of the network

Consensus rules

In any consensus-based system, nodes follow the same set of rules

What happens if nodes follow different rules?

As soon as a blue block appears, there is no way to recover the split

Smart contracts accepted by yellow nodes

Smart contracts accepted by yellow nodes

Smart contracts

- Code which defines the conditions to spend a transaction
- Are executed by all nodes in the network when validating transactions
- Can express pretty complex redeem conditions
- Examples:
 - Only the owner of private key matching public key K₁ can redeem
 - Only the owners of private keys matching public keys K₁ and K₂ can redeem
 - \circ Either the owners of private keys matching public keys K_1 and K_2 can redeem right away, or the owner of the private key matching public key K_3 can redeem after 2 months from now
 - \circ Providing the solution to the equation 3*x + 2 = 38 anyone can redeem

Turing completeness - General concept

Turing completeness - In real life

```
2a = int(input())
 4 if a > 10:
 5
 6
      while a < 100:
           a = a + 1
 8
           print(a)
 9
10 else:
      print(a + 10)
11
12
```

Turing completeness - Bitcoin formalisation

Turing completeness - Bitcoin in real life

```
1 TF
     HASH160 <hashed data> EQUAL
     6 ELSE
     <timestamp> CHECKLOCKTIMEVERIFY
8
9
     2 <pubk2> <pubk3> <pubk4> 3 CHECKMULTISIG
10
11
12 FNDTF
```

```
sorted currencies = sorted(currencies)
    for gateway in [g.replace('/','-') for g in Account.known users]:
                                                                                                         find the bug!
        for field in ('from users','from gateways'):
            with open('trust by gateway/%s/%s' % (field,gateway), 'w') as outfile:
                outfile.write('time ')
                for curr in sorted currencies:
                    outfile.write('{0} amount {0} volume '.format(curr))
                outfile.write('overall amount overall volume\n')
    for ledg in ledger gen(START, LAST+1, STEP, True):
        time = ledg.close time(True)
        output = {user:{'\( \overline{\text{r}}\) rom users':{c:0.0 \( \overline{\text{for c in currencies}}\) currencies+['overall']}}, 'from gateways':{c:0.0 \( \overline{\text{for c in currencies}}\) currencies+['overall']}}
for user in Account.known users}
        received = {user: { 'from users': {c:set() for c in currencies+['overall']}, 'from gateways': {c:set() for c in currencies
+['overall']}} for user in Account.known users}
        for edge in ledg.trustlines(lambda x: x.dest.known and converter.convertible in time(x.amount.currency)):
            name = edge.dest.get name().replace('/','-')
            currency = edge.amount.currency
            if edge.orig.known:
                field = 'from gateways'
            else:
                field = 'from users'
            converted value = converter.convert in time(edge.amount.value,currency,conversion,time)
            if currency in currencies:
                output[name][field][currency] += converted value
                received[name][field][currency].add(edge.orig.get name())
            output[name][field]['overall'] += converted value
            received[name][field]['overall'].add(edge.orig.get name())
        for gateway in output:
            for field in ('from gateways', 'from users'):
                with open('trust by gateway/%s/%s' % (field, gateway), 'a') as outfile:
                    outfile.write("%s " % (time.strftime("%Y%m%d%H%M%S"),))
                    outfile.write(' '.join(["%s %d" % (str(output[gateway][field][sorted currencies[i]]), len(received[gateway][field]
[sorted currencies[i]])) for i in xrange(len(sorted currencies))]))
                    outfile.write(" %s %d\n" % (str(output[gateway][field]['overall']), len(received[gateway][field]['overall'])))
```


Weakness surfaces

Now, a collection of horror stories...

Mt Gox

- In Bitcoin transactions are identified by their TXID, but unfortunately it was
 possible for third parties to change the TXID of a transaction without making it
 invalid
- MtGox used the TXID to track deposits and withdrawals of its users
- Attacker could request a withdraw, malleate the withdrawing transaction and contact MtGox support claiming that the transaction didn't occur
- MtGox would then send a second withdraw transaction to the user.

Bitcoin - Value overflow incident

- On August 15 2010, it was discovered that block 74638 contained a transaction that created 184,467,440,737.09551616 bitcoins
- This happened because the code used for checking transactions before including them in a block didn't account for the case of outputs so large that they overflowed when summed
- A new version of the client was published, containing a soft forking change to the consensus rules that rejected output value overflow transactions
- The blockchain forked until the "good" chain eventually became the longest

Bitcoin - Multisig evaluation

• In its first version, bitcoin operation OP_CHECKMULTISIG expected N+1 values as an input to validate N signatures:

```
2 <pubkeyA> <pubkeyB> <pubkeyC> 3 CHECKMULTISIG
```

Should be spent with:

- This meant: providing the correct number of signatures had the interpreter crash
- The solution was actually easy (just provide one more dummy parameter):

 To this day we still add a dummy parameter to multisig scripts

Bitcoin - 24 blocks long fork

- When version 0.8 was released, it used a new database engine: Level DB
- The previously used database was unable to process blocks that required more than 10.000 locks on DB rows
- As soon as such block was released, clients still using version < 0.8 saw that block as invalid, new clients saw it as valid
- A 24 blocks long fork resulted which was resolved when all nodes downgraded their software

Ethereum - Parity 1

- Parity provided a multisig wallet smart contract which was probably overcomplicated (hundreds of lines of code vs. 2 <pubkey1> <pubkey2> 2 CHECKMULTISIG)
- In the contract there was a bug that allowed third parties to change the ownership of the contract, stealing the funds inside
- \$31M dollars were stolen, and other \$100M were taken by white hat hackers and later given back to the owners

Ethereum - Parity 1

```
contract WalletLibrary {
     address owner;
    // called by constructor
     function initWallet(address _owner) {
        owner = _owner;
        // ... more setup ...
     function changeOwner(address new owner) external {
        if (msg.sender == owner) {
            owner = new owner;
     function () payable {
        // ... receive money, log events, ...
     function withdraw(uint amount) external returns (bool success) {
        if (msg.sender == owner) {
            return owner.send(amount);
        } else {
            return false;
```

```
contract Wallet {
   address walletLibrary;
   address owner;
    function Wallet(address owner) {
       // replace the following line with " walletLibrary = new WalletLibrary();"
       // if you want to try to exploit this contract in Remix.
       _walletLibrary = <address of pre-deployed WalletLibrary>;
        walletLibrary.delegatecall(bytes4(sha3("initWallet(address)")), owner);
    function withdraw(uint amount) returns (bool success) {
        return _walletLibrary.delegatecall(bytes4(sha3("withdraw(uint)")), amount);
   // fallback function gets called if no other function matches call
    function () payable {
        walletLibrary.delegatecall(msg.data);
```


NETWORK

Ethereum - Parity 2

- Parity multisig wallet contract refers to a library contract in the wallet logic
- The library contract however was actually an unutilized wallet contract, and it could be initialized by anyone
- Somebody did it, and as the new owner of the contract was able to kill it, freezing the funds of all the other wallets depending on it

表	devops199 @devops199 will i get arrested for this? 😥	07:49
	0x642483b7936b505dbe2e735cc140f29ddfddb3f3e39efa549707d9 a30da4872869e36322c9dfcdd06d9aa389e746dc6b92fdc0414e0b1	
	0xae7168deb525862f4fee37d987a971b385b96952	
Ø.	Tienus @Tienus @devops199 you are the one that called the kill tx?	07:51
あ	devops199 @devops199 yes i'm eth newbiejust learning	07:51
86	qx133 @qx133 you are famous now haha	07:52
あ	devops199 @devops199 sending kill() destroy() to random contracts	07:52
	you can see my history (((((((((((((((((((((((((((((((((((
7.5	Xavier @n3xco can't make an omelet without breaking some eggs	07:52
	i guess	
0	Tienus @Tienus Let me know next time you decide to kill some contracts so I can s	ell my EMI UNREAD

Ethereum - DAO 1

- The DAO was a complex Ethereum-based smart contract that was supposed to act as a decentralised investment fund and collected over \$150M
- Due to a bug in its code, it was possible for an attacker to withdraw more money than deposited, draining funds out of the DAO
- The attacker stole \$50M

Ethereum - DAO 2

- To fix the issue, miners agreed to operate a hard fork and give the money back to the DAO investors
- As a result of the hard fork, the Ethereum network split and still today there
 are two incompatible versions of the chain

Bitcoin - Single transaction double spending

- September 2018, a bug was found that was introduced in PR #9049 (merged in November 2016)
- The bug allowed two attacks:
 - A miner could DoS a large part of the network (nodes would crash) (November 2016)
 - A miner could generate new BTCs out of thin air by spending the same output multiple times inside the same transaction (0.15.0, September 2017)
- It was fixed before anyone exploited it, apart from testnet

Conclusions

- Blockchains are a very powerful tool, but:
 - Using them is very complex
 - Mistakes can cost millions
 - There is a huge need for experts
 - There is a huge lack of experts

If you feel like experimenting

We released an open source Python3 library to create complex Bitcoin scripts:

https://github.com/chainside/btcpy

OR

pip3 install chainside-btcpy

QUESTIONS?