

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ 2022-2023 BAHAR DÖNEMİ FİZİK-II LABORATUVARI DENEY RAPORU

Ad-Soyad :

DENEYIN NUMARASI: 3

DENEYİN ADI: RC ZAMAN SABİTİNİN TAYİNİ

DENEYIN AMACI (5 puan): Bir

DENEYIN TEORISI (15 puan):

1. Şekildeki devrede B anahtarı kapatılıp kondansatörün tam olarak dolması beklenmiş ve B anahtarı açılıp A anahtarı kapatılmıştır. Buna göre;

Numara:

devresinde Jaman sabitinin tayin edilmesi

a. A anahtarı kapatıldıktan sonra devreden geçen ilk akım kaç Amper'dir?

b. A anahtarı kapatıldıktan sonra devreden geçen akımın 0,01 Amper değerine düşmesi için geçecek süre ne kadardır?

$$I_{4}$$
 = I_0 . $e^{\frac{t}{Rc}}$
 $0.01 = 0.1 \cdot e^{\frac{t}{100.4.10^5}}$
 $0.01 = 0.1 \cdot e^{\frac{t}{100.4.10^5}}$
 $0.1 = e^{\frac{t}{100.4.10^5}}$
 $t = 9.2103.10^{\frac{3}{4}}$

Cizilif sonuçlar elde edilir.

DENEYE AİT ÖLÇÜM VE HESAPLAMALAR:

TABLO 1

V= 10 Vale C		
V= I . Q Volt, $C = \delta Q \mu F$, $R = \cdots 1 M \Omega$		
I(A)	t(s)	- ln(I)
10,0 × 10 ⁻⁶	0,0	11,51
9,5 × 10 ⁻⁶	5, 37	
9.0×10^{-6}	8,41	
8,5 × 10 ⁻⁶	11772	11,61
8.0×10^{-6}	14	11,73
7.5×10^{-6}		11,80
1 10 × 10 °	17,41	11,86
012 × 10 -	20,18	11,94
11 0,0 × 10 "	24,85	
5,5 × 10 ⁻⁶	27.18	12,1
5.0×10^{-6}	20,74	12,2
4.5×10^{-6}	33,00	12,3
4.0×10^{-6}	46,03	12,42
3.5×10^{-6}	20,54	12,55
3.0×10^{-6}	(7, 35)	12,72
$2,5 \times 10^{-6}$	19 1	12,89
2.0×10^{-6}	78,56	13,11
1,5 × 10 ⁻⁶	19,4	13,4
1,0 × 10 ⁻⁶	06,4	13,51
05 × 10=6	26,66 1	

1) Deneyden elde ettiğiniz verileri kullanarak **Tablo 1**'i doldurunuz. (10 puan) $\int_{\Omega} (I(t)) = \int_{\Omega} (I_0)$

2) Tablodaki verileri kullanarak -ln(I) - t grafiğini milimetrik kağıda çiziniz. (15 puan)

3) Çizmiş olduğunuz grafiğin eğiminden RC zaman sabitini bulunuz. (15 puan)

R.C(deneysel) =
$$56.11$$

4) R.C zaman sabitinin teorik değerini hesaplayınız. (10 puan)

5) Teorik ve deneysel RC değerlerini kullanarak hata oranını % olarak hesaplayınız. (10 puan)

14,5 / Hata = 12. Cdeneysel - 2C teorit X 100

2C teorite

(e) | 56,1 | Rc +00 | Rc +00 | Co | 6,5 |

6) Deneyde elde ettiğiniz sonucu açıklayarak yorumlayınız. (10 puan)

Deneyte Kullanılan aletle yeterince hassas olmayabilir Va den kullanıcı deferleri doğru ölçmemiş olabilir.

