Deep Learning - Homework 1

99222 - Frederico Silva, 99326 - Sebastião Carvalho

December 9, 2023

Contents

1	Que	tion 1	1
	1.1	Question 1.1	. 1
		1.1.1 Question 1.1 a)	. 1
		1.1.2 Question 1.1 b)	. 2
	1.2	Question 1.2	. 3
		1.2.1 Question 1.2 a)	. 3
		1.2.2 Question 1.2 b)	. 3
2	Que	tion 2	3
	2.1	Question 2.1	. 3
	2.2	Question 2.2	
		2.2.1 Question 2.2 a)	
		2.2.2 Question 2.2 b)	
		2.2.3 Question 2.2 c)	
3	Que	tion 3	3
	3.1	Question 3.1	. 3
		3.1.1 Question 3.1 a)	. 3
		3.1.2 Question 3.1 b)	
		3.1.3 Question 3.1 c)	

1 Question 1

Medical image classification with linear classifiers and neural networks.

1.1 Question 1.1

1.1.1 Question 1.1 a)

Answer After running the code, the following plot was generated:

Figure 1: Perceptron Training and Validation Accuracy

The final test accuracy was 0.3422.

1.1.2 Question 1.1 b)

Answer After running the code, the following plots were generated for learning rates $\eta = 0.01$ and $\eta = 0.001$, respectively:

Figure 2: Logistic Regression Accuracy with Learning Rate $\eta = 0.01$

Figure 3: Logistic Regression Accuracy with Learning Rate $\eta = 0.001$

The final test accuracies were 0.5784 and 0.5936 for $\eta = 0.01$ and $\eta = 0.001$, respectively.

1.2 Question 1.2

- 1.2.1 Question 1.2 a)
- 1.2.2 Question 1.2 b)

2 Question 2

Medical image classification with an autodiff toolkit.

- 2.1 Question 2.1
- 2.2 Question 2.2
- 2.2.1 Question 2.2 a)
- 2.2.2 Question 2.2 b)
- 2.2.3 Question 2.2 c)

3 Question 3

3.1 Question 3.1

3.1.1 Question 3.1 a)

Answer To demonstrate that the specified Boolean function cannot be computed by a single perceptron, let's consider a simple case where D=2, A=-1, and B=1. The function f is defined as:

$$f(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^{D} x_i \in [-1, 1], \\ -1 & \text{otherwise} \end{cases}$$

In this setup:

- For x = (+1, +1), the sum $\sum x_i = 2$. Since 2 is not in the range [-1, 1], f(x) = -1.
- For x = (-1, -1), the sum $\sum x_i = -2$. Since -2 is also not in the range [-1, 1], f(x) = -1.
- For x = (-1, +1) or x = (+1, -1), the sum $\sum x_i = 0$. This falls within the range [-1, 1], so f(x) = 1 for these inputs.

The visual representation of the points can be seen in Figure 4. The red points represent the inputs that should be classified as +1 and the blue points represent the inputs that should be classified as -1.

The critical point here is that a single perceptron is fundamentally a linear classifier, which means it can only separate data points using a straight line in the feature space. However, in this example, there is no straight line that can separate these points accordingly in a 2D space, to satisfy the function f.

This example thus serves as a counter-example proving that the given function cannot generally be computed with a single perceptron, as it requires a non-linear decision boundary which a single perceptron cannot provide.

Figure 4: Classification of points using the function f

3.1.2 Question 3.1 b)

3.1.3 Question 3.1 c)