REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

FORM TO THE ABOVE ADDRESS.				
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
May 2012	Viewgraph	May 2012- July 2012		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER			
Coherent Rayleigh-Brillouin Scattering	In-House			
Charts)				
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
		65502F		
6. AUTHOR(S)	5d. PROJECT NUMBER			
Barry Cornella, Sergey Gimelshein, Ta	5e. TASK NUMBER			
	.,	5f. WORK UNIT NUMBER		
		50260542		
7. PERFORMING ORGANIZATION NAME	8. PERFORMING ORGANIZATION			
Air Force Research Laboratory (AFM)	\sim	REPORT NO.		
AFRL/RQRC	<i>C)</i>			
10 E. Saturn Blvd.				
Edwards AFB CA 93524-7680				
9. SPONSORING / MONITORING AGENC	` ,	10. SPONSOR/MONITOR'S ACRONYM(S)		
Air Force Research Laboratory (AFM)	C)			
AFRL/RQR				
5 Pollux Drive		11. SPONSOR/MONITOR'S REPORT		
Edwards AFB CA 93524-7048	NUMBER(S)			
		AFRL-RZ-ED-VG-2012-218		

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for Public Release; Distribution Unlimited. PA#12507

13. SUPPLEMENTARY NOTES

Conference paper for the 2012 American Physical Society Meeting of the Division of Atomic, Molecular and Optical Physics, Orange County, California in 4-8 July 2012.

14. ABSTRACT

We have performed coherent Rayleigh-Brillouin scattering (CRBS) experiments on collisional gasses subject to laser intensities beyond those considered perturbative to the gasses' thermodynamic parameters. CRBS is a four wave mixing scheme traditionally used for gas diagnostic applications when utilizing low intensity laser pulses. In these experiments high intensity laser pulses are used which yield signal lineshapes inconsistent with perturbative theory. Gas heating, weak ionization, and three dimensional effects are discussed as possible nonlinear optical effects which would have to be accounted for in order to model the high intensity regime. The cause of this altered lineshape may furthermore be used to diagnose the full effect of the laser pulses on the gas.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Marcus Young	
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	0	19b. TELEPHONE NO (include area code)
Unclassified	Unclassified	Unclassified	SAK	9	661-275-6264

Coherent Rayleigh-Brillouin Scattering in High Intensity Laser Fields: Optical Lattice Gas Heating

Barry Cornella and Sergey Gimelshein, ERC Inc., Edwards AFB, CA 93524, USA,

University of Colorado Colorado Springs

Taylor Lilly University of Colorado, Colorado Springs, CO 80918, USA

Andrew Ketsdever Air Force Research Laboratory, Edwards AFB, CA 93524, USA

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

Coherent Rayleigh-Brillouin Scattering

- Pulsed four-wave mixing scheme used for gas diagnostics
- Low intensity
 - Perturbative regime (small perturbations)
 - Scattering spectra predicted by simplified gas dynamic model
- High intensity
 - Complex collision and forcing term
 - Cannot be predicted by simplified model (must be statistically simulated)
- Experimentally prove gas heating via optical lattices

Experimental/Numerical Setup

Experimental

- Narrowband pump beams (~45 μm dia.)
- Frequency difference between pumps swept to vary lattice velocity
- Low speed gas jet placed at interaction region
- Signal magnitude measured on high speed oscilloscope

Numerical

- Modified version of a DSMC code SMILE used to simulate particles within optical lattice
- Parameters chosen for direct comparison with experiment
- Density perturbation found through nonlinear least squares fit
 - Domain represents centerline of laser pulse

CRBS Results

Low Intensity

High Intensity

- Experiment and DSMC show good agreement with six-moment model (s6) for low intensity
 - (X. Pan, "Coherent Rayleigh-Brillouin scattering," Princeton University (Ph.D. Thesis, 2003))
- Possible causes of narrowing at higher intensities include:
 - Partial ionization (not lattice velocity dependent)
 - Gas dissociation (not lattice velocity dependent)
 - Gas heating (lattice velocity dependent)

DSMC Heating Prediction

- Peak centerline temperature increase of 51 K at lattice velocity = 450 m/s
- Temperature varies radially with I²
- Average volume temperature (laser FWHM ~45 μm dia.) of 330 K

Experimental Energy Deposition

- Detects IR probe beam deflection due to refractive index change caused by pressure wave expansion
- Magnitude of photodiode signal proportional to strength of pressure wave
- Measurements taken vs. probe beam offset and lattice velocity

IR Probe Results

- Temperature profile normalized by maximum (trend only)
- Peak locations vary by ~40 m/s (~9%)
 - DSMC assumes max intensity
 - Laser beam alignment
 - Pump timing

Summary

- High Intensity CRBS effects:
 - Partial ionization (Not lattice velocity dependent)
 - Gas dissociation (Not lattice velocity dependent)
 - Gas heating (Lattice velocity dependent)
- Local gas heating shown in high intensity CRBS due to lattice interaction
 - Numerically predicted
 - Experimentally verified by pressure wave detection with IR probe
 - Experiment and numerical simulations show good agreement

