Fairness Monitoring

SWP AIML

FU Berlin: SWP 2022 Examiner: Eirini Ntoutsi

Presented by: Jonas Schäfer, Marius Wawerek, Tolga Yurtseven

Outline

Intro

Key methods

Datasets

Results

Conclusions

Demonstration

Intro

Why fairness monitoring is important?

- Al and ML are widely used today
- + ability to analyze large amount of data with high accuracy
- discriminative impact on individuals and groups
- handling bias and fairness brings technical challenges

Example

Does fairness impact real lifes?

- (COMPAS) software used by US courts to value recidivism risk
- black defendants recidivism risk was higher predicted than their actual risk compared to white defendants

How can this happen?

- protected attributes don't guarantee that sensitive information is used
- proxy attributes (zip code/race, credit rating/safe driving)
- methods for handling proxy attributes -> reduce utility of data

Main functionality

What is fairness?

-> Measure of "Discrimination" against certain individuals or groups of ppl

How to make a model fair?

- -> Make it aware of possible bias (Fairness Awareness)
- -> Actively work against this bias

Main functionality - Our Focus

Evaluate the different impact of the **context** that a model is trained on

- -> Spatial -> "From where is the data?"
- -> Temporal -> "From when is the data?"

→We want to test different settings of context to help make a model fair

Functionality

- an training framework
- an plotting function for our datasets
- an visualization framework for evaluating different fairness metrics
- Training Dashboard
- Visualization Dashboard

Functionality

- an training framework
- an plotting function for our datasets

- Interactive Controls

 [] 1 interactive_accordion = Interactive_Accordion()

 Threshold

 Years

 Datasets

 Model

 Preliminary Metric
- an visualization framework for evaluating different fairness metrics
- Training Dashboard
- Visualization Dashboard

Functionality

- an training framework
- an plotting function for our datasets
- an visualization framework for evaluating different fairness metrics
- Training Dashboard
- Visualization Dashboard

Algorithms for developing fair models

Preprocessing

- Reweighing
- Disparate Impact Removing
- "Learning fair representations"
- "Optimized preprocessing"

Inprocessing

- Adversarial Debiasing
- "Meta Fair Classifier"
- Prejudice Removing
- "Gerry Fair Classifier"

Postprocessing

- Equalized OddsPostprocessing
- Reject Option
 Classification

Metrics for evaluating fairness

Three types of fairness:

Group

- (Conditional)Demographic Parity
- Error Parity
 - Equal Accuracy
 - ABROCA
 - Equality of Odds
 - Disparate Impact
 - Predictive Parity

Individual

- FTU/Blindness
- Fairness Through
 Awareness

Causality-based

Observational

In total, we collected around **70 different metrics** for assessing classification performance and fairness.

General Dataset

ACI Income (also known as New "Adult Dataset")

-> Based on US Census (≈1-2% of USA Pop.)

Time scale: 2014 -2018

Features: 10 (e.g. Occupation, Worktime per Week, Race, ...)

Prediction goal: earn more than 50k? -> Yes / No

General Dataset

ACI Income (also known as "Adult Dataset")

-> Based on US Census (≈1-2% of US/ We can choose any subset

Time scale: 2014 -2018

Features: 10 (e.g. Occupation, Worktime per Week, Race, ...)

Prediction goal: earn more than 50k? -> Yes / No

General Dataset

ACI Income (also known as "Adult Dataset")

-> Based on US Census (≈1-2% of US4

We can choose any subset

Time scale: 2014 -2018

We can adjust this threshold

Features: 10 (e.g. Occupation, Worktims per Week, Race, ...)

Prediction goal: earn more than 50k? -> Yes / No

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 1.6 Mio (2016) mean class: 34%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 676k (2016) mean class: 35%

-Northern States

- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 676k (2016)

mean class: 35%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 915k (2016) mean class: 33%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 915k (2016) mean class: 33%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 526k (2016) mean class: 37%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 526k (2016)

mean class: 37%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 260k (2016) mean class: 38%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 260k (2016)

mean class: 38%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 831k (2016) mean class: 31%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 831k (2016)

mean class: 31%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 898k (2016) mean class: 37%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

mean class: 37%

Sample Size: 898k (2016)

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 719k (2016) mean class: 31%

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

mean class: 31%

Sample Size: 719k (2016)

29

Data Overview:

Datasets	Size (in k)	Mean Label (in %)
All	1600	34
Northern	676	35
Southern	915	33
East Coast	526	37
West Coast	260	38
None Coast	831	31
Urban States	898	37
Rural States	719	31

Experiments

Main metrics:

Classification Performance: Accuracy, F1-Score,

Classification Fairness: ABROCA, Disparate Impact

- Impact of temporal context shifts
- Impact of spatial context shifts
- Impact of both temporal and spatial context shifts
- Impact of the method of data binarization (threshold choice)

Results - How to interpret

Results - Temporal Context

Results - Spatial Context

Results - Temporal and Spatial Context

Results - Threshold - ABROCA

Results - Threshold - Disparate Impact

Conclusions:

Most experiments show that the fairness of models **decreases** after both spatial and temporal **distribution shifts**.

If the spatial and/or temporal context **does not change**, the models **mostly** retain their fairness.

The **method of data labelling** can have **strong effects** on model fairness.

Limits

- Not every model could run on every data set
- Regional Context limited -> Only US States, not international
- Only limited comparisons with non-fairness aware models
- Only group fairness metrics, no individual fairness metric
- no/ few data set metrics

Possible Extensions

- Include more models
- Calculate more metrics (e.g. individual fairness)
- Use more data -> More datasets
- Use more data sources -> e.g. international data
- Run more experiments -> threshold, temporal/spatial context etc.

Sources

- E. Ntoutsi et al., "Bias in data-driven artificial intelligence systems—An introductory survey," WIREs Data Mining and Knowledge Discovery, vol. 10, no. 3, p. e1356, 2020, doi: 10.1002/widm.1356.
- S. Ghodsi, H. Alani, and E. Ntoutsi, "Context matters for fairness a case study on the effect of spatial distribution shifts." arXiv, 2022. doi: 10.48550/ARXIV.2206.11436.
- T. L. Quy, A. Roy, V. Iosifidis, W. Zhang, and E. Ntoutsi, "A survey on datasets for fairness-aware machine learning," WIREs Data Mining and Knowledge Discovery, vol. 12, no. 3, Mar. 2022, doi: 10.1002/widm.1452.
- F. Ding, M. Hardt, J. Miller, and L. Schmidt, "Retiring Adult: New Datasets for Fair Machine Learning," in Advances in Neural Information Processing Systems, 2021, vol. 34, pp. 6478–6490.
- A. Castelnovo, R. Crupi, G. Greco, and D. Regoli, "The zoo of Fairness metrics in Machine Learning," CoRR, vol. abs/2106.00467, 2021, [Online]. Available: https://arxiv.org/abs/2106.00467
- A. Fabris, S. Messina, G. Silvello, and G. A. Susto, "Algorithmic Fairness Datasets: the Story so Far," ArXiv, vol. abs/2202.01711, 2022.
- J. Gardner, C. Brooks, and R. Baker, "Evaluating the Fairness of Predictive Student Models Through Slicing Analysis," Feb. 2019. doi: 10.1145/3303772.3303791.

Thank you for listening!

But wait... there's more! 4

Demonstration

Interactive Notebooks

- -> Interactive Gridtraining
- -> Plots/Outputs
- -> Interactive Metric Visualization