基于深度学习的颌面骨龄分 类软件

使用手册

目录

1
2
3
4
5
8
춫.
_ 12
13

文件修订记录

版本号	生成日期	作者	修订内容
V1.0	2024-3-25	黄家曦	初始版本

1. 总体功能描述

系统采用三层网络结构,分别是 SSD, U-net, ResNet,采用深度学习常用的 Python 语言和 Django 开发框架进行开发。

向网页输入图片后,后端接受并处理数据 卷积神经网络定位目标,裁剪,输出图片 卷积神经网络训练后,对裁剪后的图片进行分类 医生/使用者可在后台数据库中调出患者信息

2. 运行环境

硬件要求

类 别	基本要求		
服务器端	CPU 2G 内存 2G 以上;		
	GPU NVIDIA RTX 2050 内存 8G 以上;		
	硬盘剩余空间不低于 100G;		
客户端	CPU 4G 内存 8G 及以上; 硬盘空间 10G 及以上		

软件要求:

类别	名 称	基本环境
服务器端	操作系统	支持 Windows11 64 位中文企业版;
		Linux Ubuntu22.04 LTS 发行版
	数据库软件	支持 SQLite3
客户端	操作系统	Windows; Android;
	其它软件	浏览器

3. 软件编译环境

本软件使用 Visual Studio Code 以及 Jupyter Notebook 进行开发,需要使用相同软件进行开发

运行成功画面

```
+ 代码 + Markdown | ▶ 全部运行 り 車启 言 消除所有輸出 | 団 交量 | 巨 大物 | ▷ |
                                                                                                                                                                                                                                               』.conda (Python 3
 code

pycache

atalogs

HELLO
  img_crop
logs
model_data
 > nets
> PredictOutcome
> RESNET50_DATASET
                                                                                                                             logs/best_epoch_weights.pth|
model_data/classes.txt|
[300, 300]|
                                                      model_path |
classes_path |
input_shape |
backbone |
confidence |
                                            confidence |
| confidence |
| nms_iou |
| anchors_size |
| letterbox_image |
                                                                                                           0.45|
[30, 60, 111, 162, 213, 264, 315]|
 > WaitPredictPic

= 2007_train.txt

= 2007_val.txt
                                                         cuda |
常见问题汇总.md常 get_map.py常 LICENSE
merge.ipynb
                                            b'roi 0.67' 433 686 591 788
<u>_/datalogs/data/A/</u>冯诗桐_A/冯诗桐5岁女1.jpg
1
F requirements.txt

ssd.py

summary.py

train.ipynb

user_input_predict.py

voc_annotation.ipynb
                                            b'roi 0.66' 399 691 553 786
<u>./datalogs/data/A/</u>冯诗桐_A/冯诗桐5岁女2.jpg
1
 logs
PredictOutcome
                                             b'roi 0.60' 297 771 397 851
Accuracy: 963/1280=75.234375%
```


4. 软件使用说明

本软件将发布至 Web 端,可以在浏览器中输入相关网址或名称,然后点击使用。

第一次打开将会进入登录界面,效果如图。

登录后进入管理页面,效果如下:

患者可通过以下接口上传图片并等待分析结果:

5. 图像分析

待图片上传成功,后台模型接受图片数据并储存至数据库,调用训练好的神 经网络模型进行识别裁切以及分类:

输入到对应分类文件夹并且保存分类信息到对应模型:

6. 数据库软件

数据库使用的是轻量级数据库 SQLite3, 表如下

7. 规范文件

详见提交材料中的"项目注意事项"文档