Definição de Computação e Linguagem Regular

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

06 de novembro de 2017

Plano de Aula

- Revisão
 - Notações e Exemplos de autômatos

Definição de Computação e Linguagem Regular

Sumário

- Revisão
 - Notações e Exemplos de autômatos

Definição de Computação e Linguagem Regular

Definição formal

Descrição formal de M_1

- $Q = \{q_1, q_2, q_3\};$
- $\Sigma = \{0, 1\};$

	Q	0	1
$ullet$ δ é descrita como	q_1	q_1	q_2
	q_2	q ₃	q_2
	q_3	q ₂	q_2

Definição formal

Descrição formal de M_1

- q_1 é o estado inicial, e
- $F = \{q_2\}.$

Notações importantes

Linguagem da máquina M

- Se A é o conjunto de todas as cadeias que a máquina M aceita, dizemos que A é a linguagem da máquina M;
- $\bullet \ L(M) = A;$
- M reconhece A.

Para evitar mal-entendidos...

O termo aceita será utilizado para cadeias.

E o termo reconhece será utilizado para linguagens.

Notações importantes

Algo importante...

- Uma máquina pode aceitar várias cadeias, mas ela sempre reconhece uma única linguagem;
- Mesmo se a máquina não aceitar nenhuma cadeia, ela reconhece ainda uma linguagem: 0.

Em relação a $M_1...$

- $A = \{\omega \mid \omega \text{ contém pelo menos um 1 e um número par de 0s} \}$ segue o último 1 };
- $L(M_1) = A$;
- M₁ reconhece A.

FIGURA 1.8

Diagrama de estados do autômato finito de dois-estados M_2

Linguagem da máquina

$$L(M_2) = \{ \omega \mid \omega \text{ termina com um 1 } \}$$

FIGURA 1.10

Diagrama de estados do autômato finito de dois-estados M_3

Linguagem da máquina

 $L(M_3) = \{\omega \mid \omega \text{ \'e a cadeia vazia } \epsilon \text{ ou termina em um 0 } \}$

1.12 FIGURA Autômato finito M_4

Linguagem da máquina

 $L(M_4) = \{ \omega \mid \omega \text{ começa e termina com o mesmo símbolo } \}$

FIGURA 1.14 Autômato finito M_5

Linguagem da máquina (Versão 1)

 $L(M_5)=\{\omega\mid {\sf a \ soma \ dos \ símbolos \ em \ }\omega$ é 0 módulo 3, exceto que $\langle {\sf RESET} \rangle$ retorna o contador para 0 $\}$

Linguagem da máquina (Versão Alternativa)

$$L(\textit{M}_5) = \{\omega \mid \begin{cases} \left(\sum\limits_{i=1}^n \omega_i\right) \equiv_3 0, & \text{em que } \langle \textit{RESET} \rangle \neq \omega_j \\ & \text{para } 1 \leq j \leq n, \\ \left(\sum\limits_{i=j+1}^n \omega_i\right) \equiv_3 0, & \text{em que } \omega_j \text{ \'e o \'ultimo} \\ \langle \textit{RESET} \rangle \text{ em } \omega \end{cases} \}$$

Sumário

- Revisão
 - Notações e Exemplos de autômatos

Definição de Computação e Linguagem Regular

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $\omega=\omega_1\omega_2\ldots\omega_n$ seja uma cadeia

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $\omega=\omega_1\omega_2\ldots\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ $(1\leq i\leq n)$.

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um autômato finito e

Computação em um AFD

Definição

suponha que $\omega=\omega_1\omega_2\ldots\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ $(1\leq i\leq n)$. Então M aceita ω se uma sequência de estados r_0,r_1,\ldots,r_n em Q existe satisfazendo três condições:

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $\omega=\omega_1\omega_2\ldots\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ $(1\leq i\leq n)$.

Então M aceita ω se uma sequência de estados r_0, r_1, \ldots, r_n em Q existe satisfazendo três condições:

- $0 r_0 = q_0;$
- $\delta(r_i, \omega_{i+1}) = r_{i+1};$
- \circ $r_n \in F$.

Definição

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autômato finito e suponha que $\omega=\omega_1\omega_2\ldots\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ $(1\leq i\leq n)$.

Então M aceita ω se uma sequência de estados r_0, r_1, \ldots, r_n em Q existe satisfazendo três condições:

- $0 r_0 = q_0;$
- \circ $r_n \in F$.

Corolário

M reconhece a linguagem A, se $A = \{\omega \mid M \text{ aceita } \omega\}$.

Linguagem regular

Definição 1.16

Uma linguagem é chamada de uma **linguagem regular** se algum autômato finito a reconhece.

Linguagem regular

Definição 1.16

Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Exemplos de computação

Máquina M_5 e a cadeia $\omega = 10\langle \text{RESET} \rangle 22\langle \text{RESET} \rangle 012$:

 \bullet $q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0$

Linguagem regular

Definição 1.16

Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Exemplos de computação

Máquina M_5 e a cadeia $\omega = 10\langle \text{RESET} \rangle 22\langle \text{RESET} \rangle 012$:

- \bullet $q_0, q_1, q_1, q_0, q_2, q_1, q_0, q_0, q_1, q_0$
- $L(M_5) = \{ \omega \mid \text{a soma dos símbolos em } \omega \text{ \'e 0 m\'odulo 3, exceto}$ que $\langle \text{RESET} \rangle$ retorna o contador para 0 $\}$

Sugestões...

• Ponha-se no lugar da máquina a ser projetada;

Sugestões...

- Ponha-se no lugar da máquina a ser projetada;
- Perceba que você, como máquina, não sabe quando a cadeia acaba;

Sugestões...

- Ponha-se no lugar da máquina a ser projetada;
- Perceba que você, como máquina, não sabe quando a cadeia acaba;
- Lembre-se de que a sua memória é finita.

Sugestões...

- Ponha-se no lugar da máquina a ser projetada;
- Perceba que você, como máquina, não sabe quando a cadeia acaba;
- Lembre-se de que a sua memória é finita.

Exemplos

• Suponha que o alfabeto seja $\{0,1\}$ e que a linguagem consista de todas as cadeias com um número ímpar de 1s;

Sugestões...

- Ponha-se no lugar da máquina a ser projetada;
- Perceba que você, como máquina, não sabe quando a cadeia acaba;
- Lembre-se de que a sua memória é finita.

Exemplos

- Suponha que o alfabeto seja {0,1} e que a linguagem consista de todas as cadeias com um número ímpar de 1s;
- Suponha que o alfabeto seja $\{0,1\}$ e que a linguagem consista de todas as cadeias que contêm 001 como subcadeia.

Definição de Computação e Linguagem Regular

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

06 de novembro de 2017

