MA2 Přehled - dodatek

January 15, 2024

1 Asymptotika

Asymptotické horní meze o a $\mathcal O$

$$a_n = \mathcal{O}(b_n) \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad (\exists c > 0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})(n > N \Rightarrow |a_n| \le c|b_n|),$$

$$a_n = o(b_n) \qquad \stackrel{\text{def}}{\Leftrightarrow} \qquad (\forall c > 0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})(n > N \Rightarrow |a_n| < c|b_n|).$$

Dolní asymptotická mez Ω

Mějme dvě posloupnosti $(a_n)_{n=1}^{\infty}$ a $(b_n)_{n=1}^{\infty}$. Řekneme, že **posloupnost** $(a_n)_{n=1}^{\infty}$ je asymptoticky zdola omezená posloupností $(b_n)_{n=1}^{\infty}$, symbolicky $a_n = \Omega(b_n)$ pro $n \to \infty$, právě když existuje kladná konstanta $c \in \mathbb{R}$ a přirozené $N \in \mathbb{N}$ tak, že pro všechna $n \geq N$ platí

$$|a_n| \ge c \cdot |b_n|.$$

Vlastnosti:

- $a_n = \Omega(b_n)$, právě když $b_n = \mathcal{O}(a_n)$.
- $a_n = \Omega(a_n)$.
- Vztah Ω je tranzitivní.

Dolní striktní asymptotická mez ω

Mějme dvě posloupnosti $(a_n)_{n=1}^{\infty}$ a $(b_n)_{n=1}^{\infty}$. Řekneme, že **posloupnost** $(a_n)_{n=1}^{\infty}$ je asymptoticky zdola striktně omezená posloupností $(b_n)_{n=1}^{\infty}$, symbolicky $a_n = \omega(b_n)$ pro $n \to \infty$, právě když pro každé kladné $c \in \mathbb{R}$ existuje $N \in \mathbb{N}$ tak, že pro všechna $n \geq N$ platí

$$|a_n| > c \cdot |b_n|$$
.

Vlastnosti:

- $a_n = \omega(b_n)$, právě když $b_n = o(a_n)$.
- Pokud $a_n = \omega(b_n)$, pak $a_n = \Omega(b_n)$.
- $\bullet \ \omega$ je tranzitivní.

Asymptotická těsná mez Θ

Mějme dvě posloupnosti $(a_n)_{n=1}^{\infty}$ a $(b_n)_{n=1}^{\infty}$. Řekneme, že **posloupnost** $(a_n)_{n=1}^{\infty}$ je téhož řádu jako posloupnost $(b_n)_{n=1}^{\infty}$, symbolicky $a_n = \Theta(b_n)$ pro $n \to \infty$, právě když existují kladné konstanty $c_1, c_2 \in \mathbb{R}$ a $N \in \mathbb{N}$ tak, že pro všechna $n \geq N$ platí

$$c_1|b_n| \le |a_n| \le c_2|b_n|.$$

Vlastnosti:

• $a_n = \Theta(b_n)$, právě když $b_n = \Theta(a_n)$.

- Vztah Θ kombinuje \mathcal{O} a Ω v následujícím smyslu: $a_n = \Theta(b_n)$, právě když $a_n = \Omega(b_n)$ a $a_n = \mathcal{O}(b_n)$.
- Θ je tranzitivní.

Limity a asymptotické vztahy (\sim , o, O, Ω , Θ a ω)

- Pokud limita $\lim_{x\to a} \left| \frac{f(x)}{g(x)} \right| \in \mathbb{R}$, pak $f(x) = \mathcal{O}(g(x))$ pro $x\to a$.
- Platí $\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = 0$, právě když f(x) = o(g(x)) pro $x \to a$.
- Platí $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$, právě když $f(x) \sim g(x)$ pro $x \to a$.
- Pokud $\lim_{n\to\infty} \left| \frac{a_n}{b_n} \right| > 0$, potom $a_n = \Omega(b_n)$.
- Pokud $\lim_{n\to\infty} \left| \frac{a_n}{b_n} \right| = +\infty$, potom $a_n = \omega(b_n)$.
- Pokud $\lim_{n\to\infty} \left| \frac{a_n}{b_n} \right| \in (0,+\infty)$, potom $a_n = \Theta(b_n)$.