Билет 3. Производная и дифференциал функции одной переменной. Геометрический смысл производной и дифференциала. Теорема Лагранжа. Формула Тейлора.

Маткурбанов Алишер

20 апреля 2018 г.

- 1. Производная и дифференциал функции одной переменной.
- 2. Геометрический смысл производной и дифференциала.
- 3. Правила дифференцирования суммы, произведения, частного. Производная обратной функции, производная сложной функции.
- 4. Теорема Ролля, теорема Лагранжа.
- 5. Формула Тейлора.

1 Производная и дифференциал функции одной переменной

Пусть функция y = f(x) определена на интервале (a,b). Зафиксируем какую-нибудь точку x из (a,b) и рассмотрим другую точку $x + \Delta x$ из этого интервала. Величину Δx назовем приращением аргумента функции в точке x. Составим разность

$$\Delta y = f(x + \Delta x) - f(x)$$

. При фиксированной точке x эта разность является функцией аргумента Δx . Она называется приращением функции y = f(x) в точке x.

Рассмотрим отношение:

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Она также является функцией аргумента Δx .

Определение. Если существует конечный предел

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

, то он называется *производной* функции y = f(x) в точке x. Также если существует конечный предел слева (справа) данного отношения, то этот предел называется производной слева (справа). Функция f(x) может иметь в какой-то точке не равные односторонние производные. **Пример.** Рассмотрим функция y = |x|. В точке x = 0 имеем:

$$\Delta y = y(0 + \Delta x) - y(0) = \begin{cases} \Delta x, if \Delta x > 0 \\ -\Delta x, if \Delta x < 0 \end{cases}$$
 (1)

поэтому

$$\frac{\Delta y}{\Delta x} = \begin{cases} +1, if \Delta x > 0, \\ -1, if \Delta x < 0 \end{cases}$$
 (2)

Следовательно, правая производная функции y = |x| в точке 0 равна 1, а левая производная равна -1. Производной в этой точке функция y = |x| не имеет.

Пусть функция y = f(x) имеет производную в точке x, то есть

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$$

. Введем функцию

$$\alpha(\Delta x) = \frac{\Delta y}{\Delta x} - f'(x) \tag{3}$$

Функция $\alpha(\Delta x)$ определена при $\Delta x \neq 0$ и является бесконечно малой при $\Delta x \to 0$. Из 3 получаем:

$$\Delta y = f'(x) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$
, при $\Delta x \neq 0$.

Эту функцию можно доопределить в нуле положив $\alpha(0)=0$, то есть при $\Delta x=0$ по непрерывности.

Определение. Если приращение функции y = f(x) в точке x можно представить в виде

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

, где - некоторое число, $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$, $\alpha(0) = 0$, то функция у называется $\partial u\phi$ - ференцируемоей в точке x.

Из приведенного рассуждения следует, что для дифференцируемости функции в точке х необходимо и достаточно, чтобы она имела производную в этой точке.

Определение. $\mathcal{A}u\phi\phi$ еренциалом функции y=f(x) в точке x называется линейная функция аргумента Δx :

$$dy = f'(x) \cdot \Delta x$$

Теорема. Если функция дифференцируема в некоторой точке, то она и непрерывна в этой точке.

Обратное в общем случае не верно. (Контрпример - функция y = |x|. Непрерывна в точке x = 0, но не имеет производной в этой точке.)

2 Геометрический смысл производной и дифференциала

Производная в точке x_0 равна тангенсу угла наклона касательной к графику функции y = f(x) в точке x_0 .

А в общем виде уравнение касательной в точке x_0 записывается так:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Дифференциал dy равен тому изменению функции y = f(x) при изменении аргумента на Δx , которое имела бы функция, если бы на отрезке $[x, x + \Delta x]$ она была линейной с угловым коэффициентом прямой (ее графика), равным f'(x).

3 Производная суммы, произведения, частного, обратной и сложной функции

Теорема. Если функции u(x) и v(x) дифференцируемы в точке x, то функции $u(x) \pm v(x), u(x) \cdot v(x), u(x)/v(x)$ (где $v(x) \neq 0$) также дифференцируемы в точке x, причем:

1.
$$[u(x) \pm v(x)]' = u(x)' \pm v(x)'$$

2.
$$[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

3.
$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)\cdot v(x) - u(x)\cdot v'(x)}{v^2(x)}$$

Доказательство:

Докажем формулу 2. Положим y(x) = u(x)v(x). Тогда

$$\Delta y = y(x + \Delta x) - y(x) = u(x + \Delta x)v(x + \Delta x) - u(x)v(x) =$$

$$= u(x + \Delta x)v(x + \Delta x) - u(x)v(x) + u(x)v(x + \Delta x) - u(x)v(x + \Delta x) =$$

$$= [u(x + \Delta x) - u(x)]v(x + \Delta x) + u(x)[v(x + \Delta x) - v(x)] =$$

$$= \Delta u \cdot v(x + \Delta x) + \Delta v \cdot u(x).$$

Разделив это выражение справа и слева на Δx и перейдя к пределу этого выражения при $\Delta x \to 0$ получим правую часть второй формулы.

Остальные формулы доказываются аналогично.

Производная обратной функции. Пусть y = f(x) — функции от аргумента x в некотором интервале (a,b). Если в уравнении y = f(x) y считать аргументом, а x — функцией, то возникает новая функция $x = \varphi(y)$, где $f[\varphi(y)] \equiv y$, — функция, обратная данной.

Теорема (о дифференцировании обратной функции). Для дифференцируемой функции с производной, отличной от нуля, производная обратной функции равна обратной величине производной данной функции, то есть

$$y_x' = \frac{1}{x_y'}$$

Пусть y = f(x) — дифференцируемая функция, $y'_x = f'(x) \neq 0$. Пусть $\Delta y \neq 0$ — приращение независимой переменной y и Δx — соответствующее приращение обратной функции $x = \phi(y)$. Напишем тождество

$$\frac{\Delta x}{\Delta y} = 1 : \frac{\Delta y}{\Delta x}$$

Переходя в этом равенстве к пределу при $\Delta y \to 0$, которое влечет за собой стремление Δx к нулю ($\Delta x \to 0$), получим:

$$\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = 1 : \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \Leftrightarrow x'_y = \frac{1}{y'_x}$$

— производная обратной функции.

Производная сложной функции.

Рассмотрим сложную функцию y = f(x), где $t = \varphi(x)$, то есть $y = f(\varphi(x)) : F(x)$.

Теорема (о дифференцировании сложной функции.)

Пусть функция $t = \varphi(x)$ дифференцируема в точке $x_0, \varphi(x_0) = t_0$, и функция y = f(t) дифференцируема в точке t_0 . Тогда сложная функция $F(x) = f(\varphi(x))$ дифференцируема в точке x_0 и выполняется равенство:

$$F'(x_0) = f'(t_0) \cdot \varphi'(x_0) = f'(\varphi(x_0)) \cdot \varphi'(x_0)$$

Доказательство. Согласно определению дифференцируемости функции нужно доказать, что приращение функции y = F(x) в точке x_0 можно представить в виде:

$$\Delta y = f'(\varphi(x_0)) \cdot \varphi'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x, \tag{4}$$

где $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$ и $\alpha(0) = 0$.

Дадим аргументу x приращение Δx в точке x_0 . Функция $t = \varphi(x)$ получит приращение $\Delta t = \varphi(x_0 + \Delta x) - \varphi(x_0)$, которое можно представить в виде (в силе дифференцируемости функции $t = \varphi(x)$ в точке x_0):

$$\Delta t = \varphi'(x_0) \cdot \Delta x + \beta(\Delta x) \cdot \Delta x, \tag{5}$$

где $\beta(\Delta x)$ - бесконечно малая порядка Δx и в нуле равна нулю.

Этому приращению Δt соответствует приращение $\Delta y = f(t_0 + \Delta t) - f(t_0)$ функции y = f(t). Поскольку функция y = f(t) дифференцируема в точке t_0 , то Δy можно представить в виде

$$\Delta y = f'(t_0) \cdot \Delta t + \gamma(\Delta t) \cdot \Delta t \tag{6}$$

Подставив выражение 5 для Δt в равенство 6 получим:

$$\Delta y = f'(t_0) \cdot \varphi'(x_0) \cdot \Delta x + [\beta \cdot f'(t_0) + \gamma \cdot \varphi'(x_0) + \gamma \beta] \Delta x =$$

$$= f'(\varphi(x_0)) \cdot (x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x,$$

т.е. мы получим равенство 4, причем $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$ и $\alpha(0) = 0$. Теорема доказана.

4 Теорема Ролля и теорема Лагранжа

Теорема (Ролля)

Пусть выполнены условия:

- 1. функция f(x) определена и непрерывна на сегменте [a, b];
- 2. f(x) дифференцируема в интервале (a, b);
- 3. f(a) = f(b)

Тогда $\exists c \in (a, b) : f'(c) = 0$

Доказательство. Поскольку функция f(x) непрерывна на [a,b], то она имеет на [a,b] максимум и минимум (из второй теоремы Вейерштрасса). Положим

$$M = \max_{[a,b]} f(x), m = \max_{[a,b]} f(x).$$

Возможны 2 случая:

- 1. М = m. Тогда f(x) = M = m = const и $\forall c \in (a, b) : f'(c) = 0$.
- 2. М > m. Тогда по крайней мере одно из значений M и m функция принимает во внутренней точке c сегмента [a,b]. Рассмотрим возможные подслучаи.
 - (a) Значение M принимается во внутренней точке c, а m = f(a) = f(b)
 - (b) Значение m принимается во внутренней точке c, а M = f(a) = f(b)
 - (c) Оба значения M и m принимаются во внутренних точках [a,b] (пусть, например, значение M принимаются во внутренней точке c).

В любом случае по теореме Ферма f'(c) = 0, что и требовалос-*ь доказать.

Теорема (Лагранжа). Пусть выполнены условия:

- 1. функция f(x) определена и непрерывна на сегменте [a,b];
- 2. f(x) дифференцируема в интервале (a, b). Тогда $\exists \in (a, b)$, такая, что:

$$f(b) - f(a) = f'(c)(b - a).$$

Эта формула называется формулой Лагранжа. Доказательство. Введем функцию:

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$$

Она удовлетворяет всем условиям теоремы Ролля:

- 1. F(x) определена и непрерывна на [a,b]
- 2. F(x) дифференцируема в интервале (a,b)
- 3. F(a) = F(b) = f(a)

По теореме Ролля $\exists \in (a,b) : F'(c) = 0$, то есть:

$$f'(c) - \frac{f(b) - f(a)}{b - a} = 0,$$

отсюда следует равенство f(b) - f(a) = f'(c)(b-a), что и требовалось доказать.

5 Формула Тейлора

Вывод формулы Тейлора. Рассмотрим следующую задачу. Пусть функция y = f(x) имеет в точке x_0 производные до порядка n включительно. Требуется найти многочлен $P_n(x)$ степени не выше, чем n, что

$$P_n^{(k)}(x_0) = f^{(k)}(x_0), k = 0, 1 \dots, n,$$
(7)

$$r_n(x) \stackrel{\text{def}}{=} f(x) - P_n(x) = o((x - x_0)^n), x \to x_0$$
 (8)

Будем искать многочлен $P_n(x)$, удовлетворяющий условиям 7 и 8, в виде

$$P_n(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n \tag{9}$$

Положив $x=x_0$, в силу условия 9 при k=0 получим

$$a_0 = f(x_0) \tag{10}$$

Дифференцируя равенство 9, будем иметь

$$P'_n(x) = a_1 + 2a_2(x - x_0) + \dots + na_n(x - x_0)^{n-1}$$

Положив здесь $x = x_0$, в силу условия 7 при k = 1 получим:

$$a_1 = f'(x_0) \tag{11}$$

Вообще продифференцировав равенство 9 k раз:

$$P_n^{(k)}(x) = k! a_k + (k+1) \dots 2a_{k+1}(x-x_0) + \dots$$
$$\dots + n(n-1) \dots (n-k+1) a_n (x-x_0)^{n-k}$$

и положив $x = x_0$, в силу условия 7 получим:

$$a_k = \frac{f^{(k)}(x_0)}{k!}, k = 0, 1, \dots, n$$
 (12)

Таким образом, если коэфициенты многочлена 9 выбраны согласно формулам 12, то этот многочлен удовлетворяет условия 7. Покажем, что он удовлетворяет и условию 8. Для этого прежде всего отметим, что в силу условий 7 для функции

$$r_n(x) \stackrel{\text{def}}{=} f(x) - P_n(x) \tag{13}$$

имеет место

$$r_n(x_0) = r'_n(x_0) = \dots = r_n^{(n)} = 0$$
 (14)

Из того, что функция f(x) имеет в точке x_0 производную порядка n, вытекает, что у нее в некоторой окрестности той точки существуют производные до порядка n-1 включительно и все производные функции f(x), а следовательно, в силу равенства 13 и производные функции $r_n(x)$, до порядка n-1 включительно непрерывны в указанной точке x_0 и

$$\lim_{x \to x_0} r_n^{(k)}(x) = r^{(k)}(x_0) = 0, k = 0, 1, \dots, n - 1.$$

Для вычисления предела $\lim_{x\to x_0} \frac{r_n(x)}{(x-x_0)^n}$ применим сначала n-1 раз правило Лопиталя, а затем оттуда же теорему о том, что $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}$, если $f(x_0) = g(x_0) = 0$ (раскрытие неопределенности вида $\frac{0}{0}$):

$$\lim_{x \to x_0} r_n^{(k)}(x) = \lim_{x \to x_0} \frac{r_n'(x)}{n(x - x_0)^{n-1}} = \dots = \lim_{x \to x_0} \frac{r^{(n-1)}(x)}{n!(x - x_0)} = \frac{r^{(n)}(x_0)}{n!} = 0.$$

Это и означает выполнение условия 8. Итак, даказана следующая теорема: **Теорема.** Если функция f n раз дифференцируема в точке x_0 , то в некоторой окрестнос

Теорема. Если функция f n раз дифференцируема в точке x_0 , то в некоторой окрестности в этой точки

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n), x \to x_0,$$

то есть f(x) разлагается в формулу Тейлора. Многочлен

$$P_n(x) = \sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

называется многочленом Тейлора (порядка n). Функция

$$r_n(x) = f(x) - P_n(x)$$

- остаточным членом (порядка n) формулы Тейлора, а его представление в виде

$$r_n(x) = o((x - x_0)^n), x \to x_0,$$

— записью остаточного члена в виде Пеано. В частном случае при $x_0=0$ формула Тейлора называется формулой Маклорена:

$$f(x) = \sum_{k=0}^{n} \frac{f^{k}(0)}{k!} x^{k} + o(x^{n}), x \to 0$$