Bayes Net

Conditional Independence

Joint Probability

- To represent the joint probability of n Booleans, I need a table with 2ⁿ rows filled.
- Need 2ⁿ 1 parameters.
- What if we don't have enough data or resources to estimate that many parameters?
- Variable Independence to the rescue.

A	В	C	P(A,B,C)
false	false	false	0.1
false	false	true	0.2
false	true	false	0.05
false	true	true	0.05
true	false	false	0.3
true	false	true	0.1
true	true	false	0.05
true	true	true	0.15
5			1

Independence

Variables A and B are independent if any of the following hold:

•
$$P(A,B) = P(A) \times P(B)$$

•
$$P(A \mid B) = P(A)$$

•
$$P(B \mid A) = P(B)$$

This says that knowing the outcome of *A* does not tell me anything new about the outcome of *B*.

Independence

- How does independence help us?
- Suppose you flip n coins. If they were dependent, you would need a
 joint distribution. Example: If A = head, B = head, to find probability of
 C = heads, you would need to look up the table.

If you assume that all the coin throws are independent, it makes it very easy.

P(A=H, B=H, C=H) = P(A=H) P(B=H) P(C=H)

Joint probability is simply product of individual probabilities.

Independence

 Suppose I have n Boolean events (C₁, C₂, ..., C_n) that are independent, their joint probability can be expressed as:

$$P(C_1, C_2, \dots, C_n) = \prod_i P(C_i)$$

• Each C_i has its own table :

C ₁	P(C ₁)	C ₂	P(C ₂)	
0	0.4	0	0.7	•••
1	0.6	1	0.3	

 C_n
 P(C_n)

 0
 0.2

 1
 0.8

• Total of n tables, 2n entries, and n parameters.

Conditional Independence

Variables A and B are conditionally independent given C, if any of the following hold:

•
$$P(A, B \mid C) = P(A \mid C) \times P(B \mid C)$$

•
$$P(A \mid B, C) = P(A \mid C)$$

•
$$P(B \mid A, C) = P(B \mid C)$$

Notation: $A \perp\!\!\!\perp B \mid C$

Knowing *C* tells me everything about *B*. I don't gain anything by knowing *A* (either because *A* doesn't influence *B* or because knowing *C* provides all the information knowing *A* would give)

Conditional Independence

- In real life, the scenario is somewhere in between total dependence and total independence.
- Some variables may be dependent, while others may not be.
- We need a way to represent these relationships.
- This is where Bayesian networks come in.

Bayesian Network

- A Bayes Net is made up of:
- 1. A Directed Acyclic Graph (DAG) representing dependencies
- 2. A set of tables for each node

A	P(A)	A	В	P(B A)
false	0.6	false	false	0.01
true	0.4	false	true	0.99
		true	false	0.7
		true	true	0.3

В	D	P(D B)
false	false	0.02
false	true	0.98
true	false	0.05
true	true	0.95

В	C	P(C B)
false	false	0.4
false	true	0.6
true	false	0.9
true	true	0.1

DAG

Informally, an arrow from node *X* to node *Y* means *X* has a direct influence on *Y*

A Set of Tables for Each Node

Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node

The parameters are the probabilities in these conditional probability tables (CPTs)

В	D	P(D B)
false	false	0.02
false	true	0.98
true	false	0.05
true	true	0.95

A Set of Tables for Each Node

Conditional Probability
Distribution for C given B

В	C	P(C B)
false	false	0.4
false	true	0.6
true	false	0.9
true	true	0.1

For a given combination of values of the parents (B in this example), the entries for P(C=true | B) and P(C=false | B) must add up to 1 eg. P(C=true | B=false) + P(C=false | B=false)=1

If you have a Boolean variable with k Boolean parents, this table has 2^{k+1} probabilities (but only 2^k need to be stored)

Conditional Independence using Bayes Net

The Markov condition: given its parents (P_1, P_2) , a node (X) is conditionally independent of its non-descendants (ND_1, ND_2)

Technically, this is first order Markov property – each node only depends on one previous level.

Joint Probability Distribution

• Using a Bayes Net and Markov condition, we can compute the joint probability distribution over all the variables $X_1, X_2, ..., X_n$

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i | Parents(X_i))$$

Where $Parents(X_i)$ means the values of the Parents of the node X_i with respect to the graph

Example

Compute the following joint probability:

= 0.0114

A	P(A)	A	В	P(B A)
false	0.6	false	false	0.01
true	0.4	false	true	0.99
	3	true	false	0.7
		true	true	0.3

1	В	D	P(D B)	В
	false	false	0.02	fals
	false	true	0.98	false
	true	false	0.05	true
	true	true	0.95	true

This knowledge

structure

comes from graph

В	C	P(C B)
false	false	0.4
false	true	0.6
true	false	0.9
true	true	0.1

Example

- Consider the Bayes Net:
- How many parameters?10
- Without CI assumption, we would require 2⁵ -1 parameters.

Example

- Consider the Bayes Net:
- What's the joint probability of P(J, M, A, ¬B, ¬E)
 - = P(-B) * P(-E) * P(A|-B, -E) * P(J|A) * P(M|A)

Example:

Consider the BN:

Use it to evaluate:

 $P(cough=t \land fever=f \land flu=f \land smoke=f)$

Example:

$$P(cough = t \land fever = f \land flu = f \land smoke = f)$$

$$= \prod_{i=1}^{n} P(X_i = x_i \mid parents(X_i))$$
$$= P(cough = t \mid flu = f \land smo)$$

$$= P(cough = t \mid flu = f \land smoke = f)$$

$$\times P(fever = f \mid flu = f)$$

$$\times P(flu = f)$$

$$\times P(smoke = f)$$

$$= .05 \times .8 \times .99 \times .8$$

$$= .032$$

Inference Queries using BN

- The previous 2 were examples of inference queries using BN.
- In general, we can have queries like: P(X | E)
 where X = query variable, E = evidence variable.

Another Bayesian Belief Network (BBN)

What's the probability that A is late?
 What's the probability that B is late?

 true
 0.1

 false
 0.9

Train Strike

true/false

This is called unconditional or marginal probability

A could be late with a train strike or without a train strike

Student A late

true/false

	Train 9	Strike
Student_B late	true	false
true	0.6	0.5
false	0.4	0.5

Student_B late

true/false

Marginal Probability

P(StudentALate) = P(StudentALate | TrainStrike)P(TrainStrike)

 $+P(StudentALate \mid \neg TrainStrike)P(\neg TrainStrike)$

$$= 0.8 \times 0.1 + 0.8 \times 0.9 = 0.17$$

P(StudentBLate) = P(StudentBLate | TrainStrike)P(TrainStrike)

 $+P(StudentBLate \mid \neg TrainStrike)P(\neg TrainStrike)$

 $=0.6 \times 0.1 + 0.5 \times 0.9 = 0.51$

Train Strike	
true	0.1
false	0.9

	Train S	itrike
Student_A late	true	false
true	0.8	0.1
false	0.2	0.9

	Train Strike		
Student_B late	true	false	
true	0.6	0.5	
false	0.4	0.5	

Evidence About Parent Given

Given that there is a train strike, what's the probability that A is late.
 P(Student_A late | Train Strike)

Simple – just look up the table

Evidence: There is a train strike.

P(StudentALate) = 0.8

P(StudentBLate) = 0.6

Evidence About Child Node Given

• Suppose we know that student A was late, how does it revise probability of train being late, and student B being late?

 true
 0.1

 false
 0.9

• This is idea behind belief propagation.

Information Variable

Train Strike true/false

Hypothesis Variables

Student_A late true/false

true/false

• Evidence: Student A late

Query: Train Strike

	Train Strike	
Student_A late	true	false
true	0.8	0.1
false	0.2	0.9

	Train Strike		
Student_B late	true	false	
true	0.6	0.5	
false	0.4	0.5	

$$P(TrainStrike \mid StudentALate) = \frac{P(StudentALate \mid TrainStrike)P(TrainStrike)}{P(StudentALate)}$$

by Bayes Theorem

$$=\frac{0.8\times0.1}{0.17}=0.47$$

Evidence About Child Node Given

How does it affect probability of B being late?

We need to use updated probability of train strike

• Evidence: Student A late

Query: Student B late

We saw that updated P(TrainStrike) = 0.47

P(TrainStrike) = 0.47

false

0.1

0.9

0.8

0.2

Student B

false

0.5

0.5

0.4

Student A

late

P(StudentBLate) = P(StudentBLate | TrainStrike)P(TrainStrike)

 $+P(StudentBLate \mid \neg TrainStrike)P(\neg TrainStrike)$

 $=0.6 \times 0.47 + 0.5 \times 0.53 = 0.55$

Practice Question

- Consider the Bayes Net shown
- Evaluate:

P(Cough | Smoking = T)

How do you proceed?
 You need to marginalize over pneumonia.

	temperature		
pneumonia	yes	no	
yes	0.9	0.1	
no	0.2	0.8	

		cough	
pneumonia smoking		true	false
true	yes	0.95	0.05
true	no	8.0	0.2
false	yes	0.6	0.4
false	no	0.05	0.95

$$P(Cough \mid Smoking) = \sum_{p \in Pneumonia} P(Cough, p \mid Smoking)$$

Practice Question

• $P(Cough \mid Smoking)$

$$= \sum_{p \in Pneumonia} P(Cough, p \mid Smoking)$$

$$= \sum_{p \in Pneumonia} P(Cough \mid Smoking, p) P(Pneumonia = p)$$

```
= P(Cough \mid Smoking, Pneumonia) P(Pneumonia) + P(Cough \mid Smoking, Pneumonia) P(Pneumonia) = 0.95 * 0.1 + 0.6 * 0.9
```

= 0.635

Practice Question

- Consider the Bayes Net shown
- Evaluate:

P(Cough | Pneumonia = F)

smoking		
yes 0.2		
no 0.8		

	temperature	
pneumonia	yes	no
yes	0.9	0.1
no	0.2	0.8

		cough	
pneumonia smoking		true	false
true	yes	0.95	0.05
true	no	0.8	0.2
false	yes	0.6	0.4
false	no	0.05	0.95

P(Cough | Smoking = T, Pneumonia = F)

P(Cough)

More Exercises:

• Consider the famous sprinkler example:

Evaluate:

P(C, R, ¬S, W) = P(C) P(R|C) P(¬S|C) P(W|¬S, R) = (0.50)(0.80)(0.90)(0.90) = 0.324

More Exercises:

Now, some complex queries:

What is P(*Cloudy* | *Sprinkler*)?

What is $P(Cloudy \mid Rain)$?

What is P(Cloudy | Wet Grass)?

Inference Queries on a Bayes Net

We can run 3 types of queries on a Bayes Net

- Diagnostic: Use evidence of an effect to infer probability of a cause.
- − E.g., **Evidence:** *cough=true*. What is *P(pneumonia | cough)*?
- Causal inference: Use evidence of a cause to infer probability of an effect
- − E.g., Evidence: pneumonia=true. What is P(cough | pneumonia)?
- Inter-causal inference: "Explain away" potentially competing causes of a shared effect.
- E.g., Evidence: smoking=true. What is P(pneumonia | cough and smoking)?

Diagnostic Queries

Diagnostic: Evidence: cough=true. What is P(pneumonia | cough)?

Diagnostic Queries

• **Diagnostic: Evidence:** *cough=true.* What is *P(pneumonia | cough)?*

$$P(pneumonia | cough) = \frac{P(cough | pneumonia)P(pneumonia)}{P(cough)}$$

$$[P(cough | pneumonia, smoking)P(smoking)$$

$$= \frac{+P(cough | pneumonia, \neg smoking)P(\neg smoking)]P(pneumonia)]}{P(cough)}$$

$$= \frac{[(.95)(.2) + (.8)(.8)](.1)}{P(cough)} = \frac{.083}{P(cough)}$$

$$= \frac{.083}{P(cough)} = \frac{.083}{.227} = .366$$

We are marginalizing over or "summing out" the smoking variable

Causal Queries

• Causal: Evidence: pneumonia=true. What is $P(cough \mid pneumonia)$?

Causal Queries

• Causal: Evidence: pneumonia=true. What is $P(cough \mid pneumonia)$?

 $P(cough \mid pneumonia) = P(cough \mid pneumonia, smoking)P(smoking)$ + $P(cough \mid pneumonia, \neg smoking)P(\neg smoking)$ =[(.95)(.2) + (.8)(.8)] = .83 We are marginalizing over or "summing out" the smoking variable

Inter-Causal Queries

• **Inter-causal:** Evidence: *smoking=true*. What is *P(pneumonia | cough and smoking)*?

Inter-Causal Queries

$$P(pneumonia \mid cough \land smoking) = \frac{P(cough \land smoking \mid pneumonia)P(pneumonia)}{P(cough \land smoking)}$$

$$= \frac{P(cough \land smoking \land pneumonia)}{P(pneumonia)} \frac{P(pneumonia)}{P(cough \land smoking)}$$

$$= \frac{P(cough \land smoking \land pneumonia)}{P(cough \land smoking)} = \frac{P(cough \mid pneumonia, smoking)P(smoking)P(pneumonia)}{P(cough \mid smoking)P(smoking)}$$

$$=\frac{(.95)(.2)(.1)}{(.95)(.2)(.1)}$$

 $[P(cough \mid smoking, pneumonia)P(pneumonia)]$

 $+P(cough \mid smoking, \neg pneumonia)P(\neg pneumonia)]P(smoking)$

$$=\frac{.019}{[(.95)(.1)+(.6)(.9)](.2)}=.15$$

Dependencies and Conditional Independence in a BN

Markov Assumption

Remember our Markov Assumption:
 A variable X is independent of its non- descendants given (only) its parents

	parents	non-desc	assumption		
S	F,A	-	_	Flu	Allergy
Н	S	F,A,N	$H \perp \{F,A,N\} \mid S$		
Ν	S	F,A,H	$N \perp \{F,A,H\} S$		<
F	-	Α	$F \perp A$	(Sin	us)
Α	-	F	$A \perp F$		
F⊥∕	A, H⊥{	[F,A} S,	N	Headache	Nose

Markov Assumption

• How does it help us run inference queries?

P(F, A, S, H, N)

= P(F) P(F|A) P(S|F,A) P(H|S,F,A) P(N|S,F,A,H)

Chain rule

= P(F) P(A) P(S|F,A) P(H|S) P(N|S)

Markov Assumption

 $F \perp A$, $H \perp \{F,A\} \mid S$, $N \perp \{F,A,H\} \mid S$

Inferring CI from Factored Joint Distribution

- For the BN on the right, how would you factor the joint distribution?
- p(a, b, c) = p(a|c) p(b|c) p(c)
- Can you infer that a and b are CI given c?

Show that $a \perp \!\!\!\perp b \mid c$

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)}$$

$$= \frac{p(a|c)p(b|c)p(c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

$$= p(a|c)p(b|c)$$

Inferring CI from Factored Joint Distribution

• Note that we used the Markov property and BN structure.

Do we have $a \perp \!\!\! \perp b$? In general, no.

$$p(a,b) = \sum_{c} p(a,b,c)$$
$$= \sum_{c} p(a|c)p(b|c)p(c)$$

Cannot be written into two separate terms of a and b

