Mukesh Kumar, P. C.

Authors	Title	Year	Source title
	Regression analysis for thermal		
Mukesh Kumar	properties of Al2O3/H2O nanofluid		
P.C., Kavitha R.	using machine learning techniques	2020	Heliyon
,	Prediction of nanofluid viscosity		
Mukesh Kumar	using multilayer perceptron and		Journal of Thermal
P.C., Kavitha R.	Gaussian process regression	2020	Analysis and Calorimetry
,	A review on prediction of thermo		,
	physical properties of heat transfer		
Mukesh Kumar	nanofluids using intelligent		Materials Today:
P.C., Rajappa B.	techniques	2020	Proceedings
Mukesh Kumar	1		3
P.C., Chandrasekar	A review on helically coiled tube		Materials Today:
M.	heat exchanger using nanofluids	2020	Proceedings
	Regression analysis and behavioral		8
	study of predictor factors on thermal		
Mukesh Kumar	conductivity of nanofluids using soft		Materials Today:
P.C., Kavitha R.	computing tool	2020	Proceedings
Mukesh Kumar	- Company tool		Trocoungs
P.C., Hariprasath	A review on triple tube heat		Materials Today:
V.	exchangers	2020	Proceedings
	Heat transfer and friction factor		Trocodings
Mukesh Kumar	analysis of MWCNT nanofluids in		
P.C., Chandrasekar	double helically coiled tube heat		Journal of Thermal
M.	exchanger	2020	Analysis and Calorimetry
171	Numerical study on heat transfer	2020	Timary sis and Carotimeary
Mukesh Kumar	performance using Al2O3/water		
P.C., Arun Kumar	nanofluids in six circular channel		Materials Today:
C.M.	heat sink for electronic chip	2020	Proceedings
Mukesh Kumar	land since for the control on p		Trocodings
P.C., Palanisamy	Stability analysis of heat transfer		Materials Today:
K., Vijayan V.	hybrid/water nanofluids	2020	1
Mukesh Kumar	Numerical evaluation of cooling	2323	
P.C., Arun Kumar	performances of semiconductor		
C.M.	using CuO/water nanofluids	2019	Heliyon
C.171.	CFD analysis on heat and flow	2017	Tieny on
Mukesh Kumar	characteristics of double helically		
P.C., Chandrasekar	coiled tube heat exchanger handling		
M.	MWCNT/water nanofluids	2019	Heliyon
1121	Experimental investigation on	2017	1101111011
	convective heat transfer and pressure		
Palanisamy K.,	drop of cone helically coiled tube		
Mukesh Kumar	heat exchanger using carbon		
P.C.	nanotubes/water nanofluids	2019	Heliyon
Vijayakumar M.,	Performance and emission	2019	Heliyon

Mukesh Kumar	characteristics of compression-		
P.C.	ignition engine handling biodiesel		
	blends with electronic fumigation		
	Experimental investigation on heat		
Chandrasekar M.,	transfer and pressure drop in double		
Mukesh Kumar	helically coiled tube heat exchanger		Journal of Applied Fluid
P.C.	with MWCNT/water nanofluid	2018	Mechanics
Mukesh Kumar	Influence of aspect ratio on thermal		
P.C., Arun Kumar	performance of heat sink using		Journal of Applied Fluid
C.M.	ANSYS	2018	Mechanics
	A comparison between MLP and		
Kavitha R., Mukesh	SVR models in prediction of thermal		Journal of Applied Fluid
Kumar P.C.	properties of nano fluids	2018	Mechanics
	Performance evaluation of internal		
Muruganandam M.,	combustion engine by using		
Mukesh Kumar	MWCNT/water based nanofluid as a		Journal of Applied Fluid
P.C.	coolant	2018	Mechanics
	Exhaust temperature analysis of four		
Muruganandam M.,	stroke diesel engine by using		
Mukesh Kumar	MWCNT/Water nanofluids as		Materials Research
P.C.	coolant	2017	Express
Mukesh Kumar			
P.C., Palanisamy	CFD analysis of heat transfer and		
K., Kumar J.,	pressure drop in helically coiled heat		
Tamilarasan R.,	exchangers using Al2O3 / water		Russian Journal of
Sendhilnathan S.	nanofluid	2015	Pacific Geology
	Experimental investigation on		
Mukesh Kumar	convective heat transfer and friction		
P.C., Kumar J.,	factor in a helically coiled tube with		Journal of Mechanical
Suresh S.	Al2O3/water nanofluid	2013	Science and Technology
Mukesh Kumar	Heat transfer and friction factor		
P.C., Kumar J.,	studies in helically coiled tube using		European Journal of
Suresh S.	Al2O3/water nanofluid	2012	Scientific Research