A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EI Bookmark

rk Sh

Show all steps: ON

ON

Problem

Let H and K be normal subgroups of a group G, with $H \subseteq k$ Define ϕ : $G/H \to G/K$ by $\phi(Ha) = Ka$. Prove part:

 $\ker \phi K/H$

Step-by-step solution

Step 1 of 3

Suppose that G is any group and let H, K are normal subgroups of G with $H \subseteq K$.

Consider a mapping $\phi: G/H \to G/K$ defined by

$$\phi(Ha) = Ka$$
, for all $a \in G$.

Objective is to prove that $\ker \phi = K/H$.

Comment

Step 2 of 3

Let $Ha \in G/H$, for some $a \in G$. If $Ha \in Ker\phi$ then by the define function,

$$\phi(Ha) = K$$

$$Ka = K$$
.

By the coset property, the last step implies that $a \in K$. The condition $a \in K$ corresponds that $Ha \in K/H$. Thus,

 $\ker \phi \subseteq K/H$

Now let $Ha \in K/H$. Then $a \in K$. Also it implies that

$$Ka = K$$

$$\phi(Ha) = K$$

And thus

Commont			
Comment			
		Step 3 of 3	
Honor Ivan	= K/H as required		