UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

ESTUDO DA CACHE ATRAVÉS DE SIMULAÇÕES

Relatório do primeiro laboratório de MC723

Aluno: Tiago Chedraoui Silva

Resumo

O princípio de funcionamento da memória cache é duplicar parte dos dados contidos na memória principal (a memória lenta, neste caso) em um módulo menor (o cache) composto por dispositivos de memória mais rápidos. Quando o processador solicita um item de dado (gerando uma referência para seu endereço, que pode ser físico ou virtual), o gerenciador de memória requisita este item do cache. Duas situações podem ocorrer: cache hit: item está presente no cache, é retornado para o processador praticamente sem período de latência; cache miss: item não está presente no cache, processador deve aguardar item ser buscado da memó- ria principal. Nesse laboratório, estudaremos a melhor organização de uma memória cache para a execução de um determinado programa.

Sumário

1	Dine	ero]
2	Simulação		
	2.1	Tamanho do bloco, associatividade, tamanho da cache	
	2.2	Uma Cache: dados/instrução	
	2.3	Duas caches: dados e instrução	
	2.4	Políticas de substituição	
	2.5	Políticas de escrita se ocorrer um hit	
	2.6	Políticas de escrita se ocorrer um miss	

1 Dinero

O Software Dinero é um silmulador de cache para traces de memória (registro de execução de um programa).

Dentre as opções de configuração da memória cache, o dinero nos fornece as seguintes possibilidades: tamanho da memória chace, tamanho do bloco da memória cache, tamanho do sub-bloco, associatividade, política de substituição (LRU¹, FIFO² ou aletório), política de escrita se occorer um hit (write-back³, write-through⁴), política de escrita se occorer um miss (write-allocate, no-write-allocate, fetch on write⁵, no fetch on write⁶).

2 Simulação

2.1 Tamanho do bloco, associatividade, tamanho da cache

2.2 Uma Cache: dados/instrução

2.3 Duas caches: dados e instrução

A memória cache pode ser separada em cache de instruções e para cache de dados, de forma que dados e instruções poderiam ser acessados em paralelo.

2.4 Políticas de substituição

Simulou-se a utilização das três políticas de substituição fornecida pelo Dinero. Para uma mesma configuração a política LRU foi a que apresentou um melhor resultado.

2.5 Políticas de escrita se ocorrer um hit

Simulou-se a utilização das duas políticas de escrita se ocorrer um hit fornecida pelo Dinero. Para uma mesma configuração a política write-back foi a que apresentou um melhor resultado.

2.6 Políticas de escrita se ocorrer um miss

Simulou-se a utilização das duas políticas de escrita se ocorrer um miss fornecida pelo Dinero. Para uma mesma configuração a política no fetch on write foi a que apresentou um melhor resultado.

¹Least recently used: substitui a página na memória cuja última referência é a mais antiga.

²First-in, first-out: substitui a página mais antiga na memória

³Quando um ciclo de escrita ocorre para uma palavra, ela é atualizada apenas no cache.

⁴Quando um ciclo de escrita ocorre para uma palavra, ela é escrita no cache e na memória principal simultaneamente.

⁵Com alocação em escrita: no caso de um miss para escrita, item é trazido para o cache após atualizado;

⁶Sem alocação em escrita: no caso de um miss para a escrita, item é atualizado apenas na memória principal, não sendo trazido para o cache.