- \blacksquare 1. Функция f(x) задана на интервале (-1,1) и g(x)=xf(x). Какие из утверждений I, II, III являются истинными?
 - I. Если функция f(x) ограничена, то функция g(x) непрерывна в точке x=0.
 - II. Если функция f(x) непрерывна в точке x=0, то функция g(x) дифференцируема в точке x=0.
 - III. Если функция f(x) дифференцируема в точке x=0, то функция g(x) дважды дифференцируема в точке x=0.
 - А только І
 - О только і и іі
 - С только і и ІІІ
 - D 1, 11, 111
 - E ни один из вариантов A, B, C, D не дает правильного набора ответов

Саминии дра по математике 23:94:2023

- op 2. Пусть $f{:}\left[0,1
 ight] oo R$ функция, интегрируемая на отрезке $\left[0,1
 ight]$, такая, что $\int_0^1 f(x)dx=1$. Тогда
 - $egin{array}{c} {\mathsf A} & f(y) = 1$ для некоторого $y \in [0,1]$
 - $oxed{\mathbb{B}}$ если f(0)=0, то f(y)>1 для некоторого $y\in [0,1]$
 - ${ ilde{ ilde{C}}}$ если f(x) неубывающая функция, то f(y)>1 для некоторого $y\in [0,1]$

 - Е все четыре утверждения А, В, С, D ложные

 \blacksquare 3. Последовательность $\{x_n\}_{n=1}^\infty$ задается рекуррентной формулой $x_{n+1}=x_n(2-x_n)$. Тогда множество значений x_1 , при которых последовательность $\{x_n\}$ сходится, равно

3

- A [0,1]
- B [0, 2]
- c (0,1]
- $\boxed{ \texttt{D} \quad [0,1] \cup \{2\} }$
- E множеству, отличному от A, B, C, D

Предел

$$\lim_{x \to +\infty} \frac{1}{x^{2021}} \Big(\big(1 - \sqrt{1 + x^2}\big)^{2021} - \big(1 + \sqrt{1 + x^2}\big)^{2021} \Big)$$

равен

- (A) 1
- B) -1
- C 2
- D -2
- Е числу, отличному от перечисленных в А. В. С. D. или не существует

0

- - А достигает наибольшего значения в единственной точке
 - В достигает наибольшего значения ровно в двух точках
 - С достигает наибольшего значения ровно в трех точках
 - достигает наибольшего значения более чем в трех точках
 - Е не достигает наибольшего значения

Функция f(x), определенная и дифференцируемая при всех вещественных значениях аргумента x>1, обладает следующим свойством:

$$\int_1^x f(e^t)dt = 1 + x(\ln x - 1)$$
 при $x > 0$.

Выберите ложное утверждение:

- A график функции f(x) имеет асимптоту
- $ext{в}$ функция $f(x) \cdot ext{tg}igg(rac{x^*}{1+x^2}igg)$ не ограничена при x>2
- $igotimes_{igotime$
- D) функция $f(x)/\ln(1+x^2)$ не ограничена при 1 < x < 2
- Е среди утверждений А. В. С. D есть ложное

7.
 Дана матрица

$$A=egin{pmatrix} |lpha|+|1-lpha|&0&1\ 0&lpha&0\ 1&0&1 \end{pmatrix}.$$

Тогда множество тех lpha, для которых квадратичная форма $f(x)=x^TAx$ положительно полуопределена, есть

- $(1,+\infty)$
- $[1,+\infty)$
- (c) (0, +∞)
- $[0,+\infty)$
 - ни одно из множеств, перечисленных в A, B, C, D, не является множеством lpha, для которых форма положительно полуопределена 1:08:53

Опимпиода по математике 23.04.2022

- \blacksquare 8. Множество $M \subset R$ не содержит предельных точек. Тогда
 - A множество M конечное
 - в множество M ограниченное
 - с множество М неограниченное
 - ${ t D}$ все точки множества ${ t M}$ изолированные
 - E все четыре утверждения A, B, C, D ложные

Олимпиада по математике 23.04.2022

- = 9. Функция f(x) задана на отрезке [a,b] и точка $x_0 \in (a,b)$. Тогда

 - $\,$ в $\,$ если существует $f'(x_0)$, то существует окрестность точки x_0 , в которой f(x) непрерывна
 - \mathbb{C}^- если $f'(x_0)
 eq 0$, то существует окрестность точки x_0 , в которой f(x) имеет обратную
 - D) если $f''(x_0)>0$, то существует окрестность точки x_0 , в которой функция f(x) является выпуклой
 - Е все четыре утверждения А, В, С, D ложные

- (a,b) и не ограничена на нем. Какие из следующих утверждений (I, II, III) истинны?
 - I. Функция f(x) не является равномерно непрерывной на (a,b).
 - II. Производная f'(x) не ограничена на (a,b).
 - III. На любом отрезке $[c,d]\subset (a,b)$ функция f(x) равномерно непрерывна.
 - А только І
 - В только і и ІІ
 - С только ІІ и ІІІ
 - D LII MIII
 - Е ни один из вариантов, перечисленных в А, В, С, О, не дает правильного набора ответов