Λ(1830) 5/2⁻⁷

$$I(J^P) = 0(\frac{5}{2}^-)$$
 Status: ***

For results published before 1973 (they are now obsolete), see our 1982 edition Physics Letters **111B** 1 (1982).

The best evidence for this resonance is in the $\Sigma\pi$ channel.

	Л(1830) POLE P	OSITI	ON	
REAL PART VALUE (MeV)	DOCUMENT II)	TECN	COMMENT
1899+35	1 KAMANO	15		Multichannel
0.	e following data for averag			
1766^{+37}_{-34}	² KAMANO	15		Multichannel
1809	ZHANG			Multichannel
The preferred solution A.	on A in KAMANO 15 re	ports tv	vo poles.	This entry is from the
	olution A in KAMANO 15	. Not s	een in so	lution B.
-2×IMAGINARY PA	ART			
VALUE (MeV)	DOCUMENT II)	TECN	COMMENT
80 ⁺¹⁰⁰ - 34	¹ KAMANO	15	DPWA	Multichannel
=	e following data for averag	ges, fits,	limits, e	tc. • • •
212 ⁺ 94 - 62	² KAMANO	15	DPWA	Multichannel
- 62 109	ZHANG	13A	DPWA	Multichannel
preferred solution A. ² From the preferred s	olution A in KAMANO 15			lution B.
The normalized	residue is the residue divi			
Normalized residue in	$n \ N\overline{K} \rightarrow \Lambda(1830) \rightarrow$	Ν Κ		
MODULUS PHASE (°			TECN	COMMENT
• • • We do not use the	e following data for averag	ges, fits,	limits, e	tc. • • •
0.00502 -80	¹ KAMANO	15	DPWA	A Multichannel
¹ From the preferred s	olution A in KAMANO 15	j.		
Normalized residue in	$n N\overline{K} \rightarrow \Lambda(1830) \rightarrow$	$\Sigma \pi$		
	DOCUMENT		TECN	COMMENT
	e following data for averag			· · ·
0.00581 179	$^{ m 1}$ KAMANO	15	DPWA	A Multichannel
$^{ m 1}$ From the preferred s	olution A in KAMANO 15	j.		
HTTP://PDG.LBL.C	GOV Page 1		Creat	ed: 5/30/2017 17:20

Normalized	residue in $N\overline{K} \rightarrow$	$\Lambda(1830) \rightarrow \Lambda\eta$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
• • • We do	not use the following	data for averages, fits		
0.00941	-65	¹ KAMANO 15	5 DPWA	Multichannel
$^{ m 1}$ From the	preferred solution A	in KAMANO 15.		
		$\Lambda(1830) \rightarrow \Xi K$		
		DOCUMENT ID		
		data for averages, fits		
0.0477	94	¹ KAMANO 15	5 DPWA	Multichannel
¹ From the	preferred solution A	in KAMANO 15.		
		$\Lambda(1830) \rightarrow \Sigma(1$	•	
		DOCUMENT ID		
		data for averages, fits		
-	113		5 DPWA	Multichannel
¹ From the	preferred solution A	in KAMANO 15.		
		$\Lambda(1830) \rightarrow \Sigma(1$	•	
		DOCUMENT ID		
		data for averages, fits		
0.000726	127) DPWA	Multichannel
¹ From the	preferred solution A	in KAMANO 15.		
Normalized	residue in $N\overline{K} \rightarrow$	$\Lambda(1830) \rightarrow N\overline{K}$	*(892), <i>S</i>	$\ge 1/2$, D -wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
 ● ● We do 				
	not use the following	data for averages, fits	s, limits, et	C. ● ● ●
0.0278				
		¹ KAMANO 15		
$^{ m 1}$ From the	-177 preferred solution A	¹ KAMANO 15 in KAMANO 15.	5 DPWA	Multichannel
¹ From the Normalized	-177 preferred solution A residue in $N\overline{K} \rightarrow$	1 KAMANO 15. in KAMANO 15. 1	5 DPWA **(892), <i>5</i>	Multichannel 5=3/2 , <i>D</i> -wave
¹ From the Normalized	-177 preferred solution A residue in $N\overline{K}$ → PHASE (°)	1 KAMANO 15. in KAMANO 15. 1	5 DPWA *(892), 5 <u>TECN</u>	Multichannel =3/2 , <i>D</i> -wave COMMENT
1 From the Normalized MODULUS • • • We do	-177 preferred solution A residue in $N\overline{K}$ → PHASE (°)	1 KAMANO 15. in KAMANO 15. 1	*(892), S TECN s, limits, etc	Multichannel =3/2 , <i>D</i> -wave COMMENT
1 From the Normalized MODULUS • • • We do 0.0255	-177 preferred solution A residue in NK → PHASE (°) not use the following	1 KAMANO 15. in KAMANO 15. $^{\prime}$	*(892), S TECN s, limits, etc	Multichannel 5=3/2 , <i>D</i> -wave COMMENT C. • • •
1 From the Normalized MODULUS • • • We do 0.0255 1 From the	-177 preferred solution A residue in NK → PHASE (°) not use the following 3 preferred solution A	1 KAMANO 15. in KAMANO 15. $^{\prime}$	*(892), \$	Multichannel 5=3/2 , <i>D</i> -wave COMMENT c. • • • Multichannel
1 From the Normalized MODULUS • • • We do 0.0255 1 From the	-177 preferred solution A residue in NK → PHASE (°) not use the following 3 preferred solution A	¹ KAMANO 15 in KAMANO 15. • Λ (1830) → $N\overline{K}$ • $DOCUMENT\ ID$ g data for averages, fits ¹ KAMANO 15 in KAMANO 15.	5 DPWA 5*(892), 5 TECN 5, limits, etc 6 DPWA 5*(892), 5	Multichannel 5=3/2 , <i>D</i> -wave COMMENT c. • • • Multichannel
1 From the Normalized MODULUS • • • We do 0.0255 1 From the Normalized MODULUS	-177 preferred solution A residue in NK → PHASE (°) not use the following 3 preferred solution A residue in NK → PHASE (°)	¹ KAMANO 15 in KAMANO 15. Λ (1830) → $N\overline{K}$ DOCUMENT ID g data for averages, fits ¹ KAMANO 15 in KAMANO 15. Λ (1830) → $N\overline{K}$	*(892), S **(892), S *** ** ** ** ** ** ** ** ** ** ** ** *	Multichannel 5=3/2 , D-wave COMMENT c. • • • Multichannel 5=3/2 , G-wave COMMENT
1 From the Normalized MODULUS • • • We do 0.0255 1 From the Normalized MODULUS	-177 preferred solution A residue in NK → PHASE (°) not use the following 3 preferred solution A residue in NK → PHASE (°)	¹ KAMANO 15 in KAMANO 15. • Λ (1830) → $N\overline{K}$ • $DOCUMENT ID$ g data for averages, fits ¹ KAMANO 15 in KAMANO 15. • Λ (1830) → $N\overline{K}$ • $DOCUMENT ID$ g data for averages, fits	*(892), S TECN TECN *(892), S TECN *(892), S TECN s, limits, etc.	Multichannel 5=3/2 , D-wave COMMENT c. • • • Multichannel 5=3/2 , G-wave COMMENT

Created: 5/30/2017 17:20

Λ(1830) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1810 to 1830 (≈ 1830) OUR EST	IMATE			
1820± 4	ZHANG	13A	DPWA	Multichannel
1831 ± 10	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
1825 ± 10	GOPAL	77	DPWA	$\overline{K}N$ multichannel
1825 ± 1	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
1817 or 1818	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel
$^{ m 1}$ The two MARTIN 77 values a	re from a T-matri	ix pole	and from	m a Breit-Wigner fit.

Λ(1830) WIDTH

VALUE (MeV) 60 to 110 (≈ 95) OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
114±10	ZHANG	13a	DPWA	Multichannel
100 ± 10	GOPAL	_		$\overline{K}N \rightarrow \overline{K}N$
94 ± 10	GOPAL	77	DPWA	$\overline{K}N$ multichannel
119± 3	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
56 or 56	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel
$^{ m 1}$ The two MARTIN 77 values are	from a T-matrix	k pole	and from	n a Breit-Wigner fit.

Λ(1830) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	3–10 %
Γ_2	$\Sigma \pi$	35–75 %
Γ_3	$\equiv K$	
Γ_4	$\Sigma(1385)\pi$	>15 %
Γ_5	$arSigma(1385)\pi$, $ extit{D} ext{-}$ wave	(52±6) %
Γ_6	$\Sigma(1385)\pi$, $ extit{G}$ -wave	
Γ_7	$\Lambda\eta$	
Γ ₈	$N\overline{K}^*(892)$, $S=1/2$, D -wave	
Γ_9	$N\overline{K}^*(892)$, S=3/2, D-wave	
Γ ₁₀	$N\overline{K}^*(892)$, $S=3/2$, G -wave	

Λ(1830) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(NK)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.03 to 0.10 OUR ESTIMATE					
0.041 ± 0.005	ZHANG	13A	DPWA	Multichannel	
0.08 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.02 ± 0.02	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
HTTP://PDG.LBL.GOV	Page 3		Creat	ed: 5/30/2017	17:20

0.006 0.04 ± 0.03 0.04 or 0.04 1 From the preferred solution A in KAMANO 15. 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigne Γ(Σπ)/Γtotal MALUE DOCUMENT ID 1 From the preferred solution A in KAMANO 15. Γ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(Σ(
2 MARTIN 77 DPWA \overline{K} N multichannel 1 From the preferred solution A in KAMANO 15. 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigne \[\begin{align*} \begin{align*} \begin{align*} \begin{align*} \limits, \text{ Manth Mano 15}. \\ \begin{align*} \begin{align*} \begin{align*} \limits, \text{ etc.} \cdot \cdo \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdo \cdot \cdo \cdot \cdot \cdo \cdot	
1 From the preferred solution A in KAMANO 15. 2 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigne Γ(Σπ)/Γtotal DOCUMENT ID TECN COMMENT	
The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigne Γ(Σπ)/Γtotal	el
DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN DPWA Multichannel TECN TECN COMMENT DPWA Multichannel TECN TECN COMMENT DPWA Multichannel TECN TECN COMMENT DPWA Multichannel TECN TECN TECN COMMENT DPWA Multichannel TECN	fit.
* • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	Γ_2/Γ
1 From the preferred solution A in KAMANO 15. Term T	
Term the preferred solution A in KAMANO 15. T(ΞΚ)/Γtotal VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 0.562 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. T(Σ(1385)π, D-wave)/Γtotal VALUE DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT DOCUMENT ID TECN COMMENT DOCUMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT	
Γ(ΞΚ)/Γ _{total} VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 0.562 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. Γ(Σ(1385)π, D-wave)/Γ _{total} VALUE 0.52 ±0.06 2 HANG 13A 2 DPWA Multichannel • • • We do not use the following data for averages, fits, limits, etc. • • • 0.134 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. Γ(Λη)/Γ _{total} VALUE DOCUMENT ID 1 FECN COMMENT DOWNENT DOWNENT ID 1 FECN COMMENT FOM Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel	
DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID DOCUMENT ID DOCUMENT ID TECN COMMENT DOCUMENT ID DOCUMENT ID DOCUMENT ID TECN COMMENT DOCUMENT ID DOCUMENT ID TECN COMMENT TECN COMMENT TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT	
** • • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	Γ_3/Γ
1 From the preferred solution A in KAMANO 15. $\Gamma(\Sigma(1385)\pi, D\text{-wave})/\Gamma_{\text{total}}$ DOCUMENT ID 2HANG 2HANG 3A DPWA Multichannel 2HANG 3B DPWA Multichannel 2HANG 3B DPWA Multichannel 3B TECN COMMENT DOCUMENT ID TECN	
Trom the preferred solution A in KAMANO 15. $\Gamma(\Sigma(1385)\pi, D\text{-wave})/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT THE COMMENT DOCUMENT ID TECN THE COMMENT DOCUMENT ID TECN TECN COMMENT DOCUMENT ID TECN TECN COMMENT TECN TECN COMMENT TECN TE	
$\Gamma(\Sigma(1385)\pi, D\text{-wave})/\Gamma_{\text{total}}$ $VALUE$ $O.52 \pm 0.06$ $O.134$	
VALUE DOCUMENT ID TECN COMMENT 0.52 ±0.06 ZHANG 13A DPWA Multichannel • • • We do not use the following data for averages, fits, limits, etc. • • • 0.134 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. DPWA Multichannel VALUE DOCUMENT ID TECN COMMENT 0.024 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. DPWA Multichannel 1 From the preferred solution A in KAMANO 15. TECN COMMENT 0.134 DOCUMENT ID TECN COMMENT 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15 <td></td>	
DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT	Γ ₅ /Γ
• • • We do not use the following data for averages, fits, limits, etc. • • • 0.134 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. \[\begin{align*} \begin{align*} \begin{align*} \begin{align*} \left \text{KAMANO} \\ \ \end{align*} \begin{align*} \left \text{COMMENT} \\ \ \ \end{align*} \begin{align*} \left \text{COMMENT} \\ \ \ \ \ \end{align*} \begin{align*} \left \text{COMMENT} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$ $VALUE$ $\bullet \bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc.} \bullet \bullet \bullet$ 0.024 1 KAMANO $15 \text{ DPWA Multichannel}$ $1 \text{ From the preferred solution A in KAMANO 15}$ $\Gamma(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{\text{total}}$ $VALUE$ $DOCUMENT ID$ $DOCUMENT ID$ $TECN COMMENT$ 0.134 1 KAMANO $15 \text{ DPWA Multichannel}$ $1 \text{ From the preferred solution A in KAMANO 15}$ $DPWA \text{ Multichannel}$ $1 \text{ From the preferred solution A in KAMANO 15}$ $DPWA \text{ Multichannel}$ $1 \text{ From the preferred solution A in KAMANO 15}$ $\Gamma(N\overline{K}^*(892), S=3/2, D\text{-wave})/\Gamma_{\text{total}}$ $VALUE$ $DOCUMENT ID$ $TECN COMMENT$	
Trom the preferred solution A in KAMANO 15. T(Λη)/Γ _{total} VALUE DOCUMENT ID TECN COMMENT	
$\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$ NALUE DOCUMENT ID TECN COMMENT 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{\text{total}}$ NALUE DOCUMENT ID TECN COMMENT	
$DOCUMENT\ ID$ TECN COMMENT • • • • We do not use the following data for averages, fits, limits, etc. • • • 0.024 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $T(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{total}$ VALUE DOCUMENT ID TECN COMMENT	
$DOCUMENT\ ID$ TECN COMMENT • • • • We do not use the following data for averages, fits, limits, etc. • • • 0.024 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{\text{total}}$ VALUE DOCUMENT ID TECN COMMENT	Γ_7/Γ
1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{\text{total}}$ $VALUE \qquad DOCUMENT ID \qquad TECN COMMENT$ • • • We do not use the following data for averages, fits, limits, etc. • • • 0.134	
¹ From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{\text{total}}$ NALUE DOCUMENT ID TECN COMMENT DOCUMENT ID 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=3/2, D\text{-wave})/\Gamma_{\text{total}}$ NALUE DOCUMENT ID TECN COMMENT	
$\Gamma(N\overline{K}^*(892), S=1/2, D\text{-wave})/\Gamma_{total}$ $VALUE$ $DOCUMENT\ ID$ $TECN$ $COMMENT$ $OCCUMENT\ ID$ O	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Г ₈ /Г
0.134 1 KAMANO 15 DPWA Multichannel 1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=3/2, D\text{-wave})/\Gamma_{\text{total}}$ VALUE DOCUMENT ID TECN COMMENT	
1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=3/2, D\text{-wave})/\Gamma_{\text{total}}$ VALUE $DOCUMENT\ ID$ $TECN$ $COMMENT$	
1 From the preferred solution A in KAMANO 15. $\Gamma(N\overline{K}^*(892), S=3/2, D\text{-wave})/\Gamma_{\text{total}}$ VALUE $DOCUMENT\ ID$ $TECN$ $COMMENT$	
VALUE DOCUMENT ID TECN COMMENT	
	٦/و٦
• • • We do not use the following data for averages, fits, limits, etc. • •	
0.115	
$^{ m 1}$ From the preferred solution A in KAMANO 15.	

Created: 5/30/2017 17:20

$\Gamma(N\overline{K}^*(892), S=3/2, G-wave$	e)/Γ _{total}				Γ_{10}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	g data for averages	s, fits,	limits, e	etc. • • •	
0.009	$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A	in KAMANO 15.				

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda(18)$	830) → Σπ			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.13 ± 0.01	ZHANG	13A	DPWA	Multichannel
-0.17 ± 0.03	GOPAL	77	DPWA	$\overline{K}N$ multichannel
-0.15 ± 0.01	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for average	s, fits,	limits, e	tc. • • •
-0.17 or -0.17	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel

 $^{^{1}}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to M$	$I(1830) \rightarrow \Sigma(138)$	$5)\pi$			$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
$+0.141\pm0.014$	$^{ m 1}$ CAMERON	78	DPWA	$K^-p \rightarrow$	$\Sigma(1385)\pi$
$+0.13 \pm 0.03$	PREVOST	74	DPWA	$K^- N \rightarrow$	Σ (1385) π

 $^{^{1}}$ The CAMERON 78 upper limit on \emph{G} -wave decay is 0.03. The published sign has been changed to be in accord with the baryon-first convention.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to M$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}/\Gamma$			
VALUE	DOCUMENT ID		TECN	
-0.044 ± 0.020	RADER	73	MPWA	

∧(1830) REFERENCES

KAMANO ZHANG PDG GOPAL ALSTON Also CAMERON GOPAL MARTIN Also Also KANE PREVOST	15 13A 82 80 78 77 77	PR C92 025205 PR C88 035205 PL 111B 1 Toronto Conf. 159 PR D18 182 PRL 38 1007 NP B143 189 NP B119 362 NP B127 349 NP B126 266 NP B126 285 LBL-2452 NP B69 246	H. Kamano et al. H. Zhang et al. M. Roos et al. G.P. Gopal M. Alston-Garnjost et al. M. Cameron et al. G.P. Gopal et al. B.R. Martin, M.K. Pidcock, R.G. B.R. Martin, M.K. Pidcock B.R. Martin, M.K. Pidcock D.F. Kane J. Prevost et al.	(LOUC) (LOUC) IJP (LBL) IJP (SACL, CERN, HEID)
PREVOST	74	NP B69 246	J. Prevost <i>et al.</i>	(SACL, CERN, HEID)
RADER	73	NC 16A 178	R.K. Rader <i>et al.</i>	(SACL, HEID, CERN+)

Created: 5/30/2017 17:20