PHYSICS **Chapter 4**

2th **SECONDARY**

DIMENSIONES

¿Para qué nos sirve el análisis dimensional?

Mediante las dimensiones o análisis dimensional podemos reconocer la naturaleza física de las cantidades físicas.

Por ejemplo:

¿como se mide el tamaño de un televisor?

Estos artefactos vienen especificados solo por la medida de su diagonal de la pantalla y lo miden en unidades de **PULGADAS.**

[50 pulgadas]

Mide la **longitud** de la diagonal.

Por lo tanto tiene la naturaleza física de Longitud.

[Longitud] = L

1 pulgada = 2.54 cm = 0.0254 m

50 pulgadas = 1.27 m

DIMENSIONES DE LAS CANTIDADES FUNDAMENTALES EN EL SI.

Cantidad física fundamental en el SI	Símbolo de la unidad	Dimensión
Longitud	m	L
Masa	kg	M
Tiempo	S	Т
Temperatura	K	θ
Intensidad de corriente eléctrica	A	Ι
Intensidad luminosa	cd	J
Cantidad de sustancia	mol	N

DIMENSIONES DE UNA CANTIDAD DERIVADA

Llamadas también fórmulas dimensionales.

Sea X una cantidad física:

[X] se lee: Dimensión de X o formula dimensional de X

$$[altura] = L$$
, $[recorrido] = L$

$$[\text{área}] = L^2$$
, $[\text{periodo}] = T$

[velocidad] =
$$LT^{-1}$$
, [aceleración] = LT^{-2}

CANTIDADES ADIMENSIONALES

- No presentan unidades, por lo tanto:
- Todo número es adimensional
- Sea el número 20 → **[20] = 1**
- Sea la constante $\pi \rightarrow [\pi] = 1$

En General:

[adimensional] = 1

Determine las dimensiones del volumen (V) si $V = A \cdot h$ donde:

A: tiene unidades de m²,

h: tiene unidades de longitud

RESOLUCIÓN:

$$[\mathbf{V}] = [\mathbf{A}][\mathbf{h}]$$

$$[\mathbf{V}] = L^2 \cdot L$$

$$\lceil \mathbf{V} \rceil = \mathbf{L}^3$$

Determine las dimensiones de la velocidad si tiene por unidad el metro por segundo (m/s).

Resolución:

$$[Velocidad] = \left[\frac{m}{s}\right]$$
$$[Velocidad] = \frac{L}{T}$$

$$[Velocidad] = LT^{-1}$$

Determine las dimensiones de la cantidad física R si, R = S·A·C·O donde:

S: es longitud

A: tiene unidades de masa

C: se mide en metros;

O: tiene unidades de tiempo

RESOLUCIÓN:

$$A:[masa] = M$$

$$C:[longitud] = L$$

$$O:[tiempo] = T$$

$$R = S \cdot A \cdot C \cdot O$$

$$[R] = [S][A][C][O]$$

$$[R] = L M L T$$

$$[R] = L^2 M T$$

Determine las dimensiones de la aceleración si su unidad en SI es metro por segundo cuadrado (m/s²).

RESOLUCIÓN:

[Aceleracion] =
$$\left[\frac{m}{s^2}\right]$$

[Aceleracion] = $\frac{L}{T^2}$

$$[Aceleracion] = LT^{-2}$$

Determine las dimensiones de la cantidad física de Q si

$$Q = \frac{A^2}{2B}$$
, donde:

A tiene unidades de longitud

B tiene unidades de tiempo

Resolución:

$$[Q] = \left[\frac{A^2}{2B}\right]$$
$$[Q] = \frac{L^2}{T}$$

$$[Q] = L^2 T^{-1}$$

Wendy se encuentra en un cerro y se acuerda que la roca porosa a través de la cual se mueve el agua subterránea es llamada manto acuífero.

Si el volumen V de agua que en un tiempo t se mueve por el caudal(Q) el cual se determina como $Q = \frac{V}{L}$ calcule las dimensiones del caudal.

Resolución

$$[Q] = \left[\frac{V}{t}\right] \qquad [Q] = \frac{L^3}{T}$$

$$[Q] = \frac{L^3}{T}$$

$$[Q] = L^3 T^{-1}$$

En física, la aceleración es una magnitud derivada vectorial que nos indica la variación de velocidad por unidad de tiempo. Si 'v' es velocidad y 't' es tiempo hallar las dimensiones de la aceleración si:

$$a=v/t$$

Resolución:

$$[a] = \left[\frac{V}{t}\right]$$
$$[a] = \frac{LT^{-1}}{T}$$

$$[a] = LT^{-2}$$

