

Animation Foundations

Introduction

Dr Joan Llobera – <u>joanllobera@enti.cat</u>

Outline

- 1. Basic Vocabulary
- 2. Physics Examples
- 3. Character Animation examples
- 4. Both combined

1. Basic Vocabulary

- 1. Direct Kinematics
- 2. Inverse Kinematics
- 3. Differential equation
- 4. Analytic Formula
- 5. Direct Dynamics
- 6. Inverse Dynamics
- 7. Constraints
- 8. Centre of mass
- 9. Inertia
- 10. Angular Momentum
- 11. Rigid Body
- 12. Particle

2. Physics Example: drop an object

Drop an object

- 1. analyse the system
- 2. write the equation of the system
- 3. find (or simulate) a solution

Should we consider?

Linear drag: $\vec{F}_d = C_d \vec{v}$, with C_d constant

Quadratic drag: $F_d = \frac{1}{2} \rho \ v^2 A \ C_d$ Terminal Velocity

$$v_t = \sqrt{\frac{2 m g}{c_d \rho A}}$$

ρ density of the fluidA projected area

2. Example: drop an object

Object	Weight (N)	Area (m2)	Terminal Velocity (km/h)
Skydiver in free fall	801	0.84	201
Skydiver with open parachute	801	21.02	40
Baseball	1.42	4.19e(-3)	121
Golf ball	0.5	1.4e(-3)	116
Raindrop	3.34e(-4)	1.29e(-5)	32

2. Example: drop an object

2. Example: drop an object

2. Other physics examples

2013

https://www.youtube.com/watch?v=p5uhnSw8 X

W

2018

https://www.youtube.com/watch?v=xvyGpBKevLM
https://www.youtube.com/watch?v=S-oXeHGare4

audio synthesis based on physics

https://www.youtube.com/watch?v=Gue12UjXd5U

DNN for character control

https://www.youtube.com/watch?v=oh2ExRftTIc&f
eature=youtu.be

3. What is character animation?

4. Character animation + Physics

https://twitter.com/i/status/854339707337093121

https://store.steampowered.com/app/508440/Totally_Accurat e_Battle_Simulator/

Questions?

Suplement: Inertia and Moment (of inertia)

1.3.1 Physical principles at play

- What is inertia (Newton's first (galileo))
- What is momentum (Newton's third)
- Conservation of momentum (elastic collisions)
- Conservation of energy (non-elastic collisions)

$$\vec{p} = m \vec{v}$$

See also

- Section 10-1 Feynmann
- Section 10-2 Feynmann
- Section 10-4 Feynmann

Suplement: Momentum and Torque

1.4.1 Physical Principles of Momentum and Torque

Momentum means Angular Momentum

$$\vec{\tau} = cross(r, \vec{F})$$

$$\vec{L} = cross(r, \vec{p})$$

intro of CROSS PRODUCT

See also:

section 18-1 Feynmann

ice skater

https://www.youtube.com/watch?v
=VmeM0BNnGR0

