log_reg.R

Saiprasad Laxmeshwar

2019-11-15

```
#### Logistic Regression #####
#install.packages("cowplot",
lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/Library")
library(cowplot)
## *******************
## Note: As of version 1.0.0, cowplot does not change the
##
    default ggplot2 theme anymore. To recover the previous
    behavior, execute:
##
##
    theme_set(theme_cowplot())
## ****************
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
library(ggplot2)
data <- read.csv("C:/Users/saiprasad/Desktop/Fall 2019/Multi</pre>
analysis/MVA/Project/Dataset/HCV-EGY-Data.csv")
attach(data)
Survivorship = data$Survivorship <- if_else( RNA.EOT>= 400000 , 'NC','C')
cbind(data.frame(Survivorship),data)
##
       Survivorship Age Gender BMI Fever Nausea. Vomting Headache Diarrhea
## 1
                    56
                              35
                  C
                            1
                                      2
                                                    1
                                                             1
                  C
                               29
                                                    2
                                                             2
                                                                      1
## 2
                   46
                            1
                                      1
                            1 33
                 NC 57
                                      2
                                                    2
                                                             2
                                                                      2
## 3
## 4
                 NC
                   49
                            2 33
                                      1
                                                    2
                                                             1
                                                                      2
                  C 59
                            1 32
                                      1
                                                             2
                                                                      1
## 5
                                                    1
                   58
                            2 22
## 6
```

	_	_		•	~ -	_	-	_	•
##		C	42	2	26	1	1	2	2
##	8	C	48	2	30	1	1	2	2
##	9	С	44	1	23	1	1	2	2
##		С	45	1	30	2	1	2	2
##		NC	37	2	24	2	1	2	1
##		C	36	1	22	2	2	1	1
##		С	45	2	25	2	1	1	1
##	14	C	34	1	22	1	2	1	1
##	15	NC	40	2	32	2	2	2	1
##	16	NC	58	1	34	2	1	1	1
##		С	61	1	35	1	2	2	2
##		C	55	2	24	2	1	2	2
##		NC	56	1	27	1	2	2	2
##		NC	35	2	23	2	2	1	1
##	21	NC	57	2	23	1	1	2	2
##	22	C	33	1	25	2	1	2	2
##	23	С	41	1	23	1	2	2	2
##		С	39	2	29	1	2	1	2
	25	Č	33	2	24	1	2	2	2
##		C	43	2	34	2	2	2	
									1
##		NC	51	1	34	2	1	2	2
	28	NC	39	2	33	2	1	2	1
##	29	C	57	2	26	1	2	2	1
##	30	C	47	2	29	1	1	2	1
##	31	С	55	2	33	1	2	2	1
##	32	С	58	2	35	2	2	2	2
##		NC	47	2	25	2	1	2	2
##		C	61	1	33	1	2	2	2
##		NC	37	1	27	2	2	1	
									2
##		NC	41	1	29	1	2	1	1
	37	С	60	2	32	2	2	1	2
	38	С	54	1	29	1	1	1	2
##	39	C	40	2	28	2	1	2	1
##	40	С	32	1	31	1	2	1	1
##		NC	58	2	33	1	2	2	2
##		C	37	2	23	2	2	1	1
##		C		1	23	1	1	1	2
			58						
##		NC	36	1	23	2	2	1	2
	45	C	47	2	35	1	2	2	1
	46	С	50	1	33	2	2	1	1
##	47	C	44	1	31	1	1	1	1
##	48	NC	43	1	33	1	1	2	2
##	49	NC	54	1	33	2	1	1	2
##		NC	59	2	26	2	1	1	1
##		C	33	2	31	1	1	1	2
	52	C	56	2	23	1	1	1	2
##		NC	41	1	33	2	1	1	1
	54	NC	59	1	32	2	1	1	1
	55	C	47	1	27	2	2	1	1
##	56	C	50	2	34	1	1	1	2

##		Fatiguegeneralized.bone.ache	laundice	Enigastric nain	WBC
##	1	2	2	2	7425
##		2	2		12101
##		1	1	1	4178
##		1	2	1	6490
##		2		2	3661
##		2	2		
			2		11785
##		2	2		11620
##		1	1	2	7335
##		2	1		10480
##		1	1	2	6681
##		2	2	1	4437
##		1	1	1	6052
##		2	1	2	9279
##		2	2	1	5638
##		2	1		11507
##		2	1	1	8035
##		1	1		10843
##		2	2	2	8476
##		2	2	2	6599
##	20	1	1	2	4845
##	21	1	1	1	5925
##	22	2	2	2	9952
##	23	2	1	2	7961
##	24	1	1	2	7136
##	25	2	1	2	6057
##	26	1	1	1	6648
##	27	1	1	2	11032
##	28	1	1	2	5234
##	29	1	1	2	6038
##	30	2	1	2	5846
##	31	2	1	2	5383
##	32	1	1	1	7378
##		2	1	2	7486
##		1	1		11770
##		2	2	2	6441
##		2	1		10304
##		2	2	1	7365
##		2	1		10704
##		1	1	1	3009
##		1	1	2	9956
##		1	2	2	6627
##		2	2		10393
##		1	1		10236
##		2	2	2	4387
##		2	2		11924
##		2	1		10140
##		2	1	2	3470
		2 2	1	2	
##	40	2	1	2	5420

##	49					1		2		1	6963	
##	50					1		1		2	6249	
##	51					1		2		1	5094	
##	52					2	<u>.</u>	2		2	4797	
##	53					2	<u>)</u>	2		2	5041	
##	54					1	_	2		2	6901	
##						1		1		1	7256	
##						2		1		1	8219	
	57					1		1		1	4418	
	58					1		1		2	6358	
##						2		1		2	8669	
	60					1		1		2	9435	
##						2		2		2	11144	
##						1		2		2	5060	
##						1		1		1	7766	
	64					2		1		2	10879	
##						1		2		2	11490	
	66					1		1		1	4082	
##						2		2		1	5078	
##						1		2		2	4580	
##						2		1		2	7983	
##	70					2	2	2		2	5500	
##		RBC	HGB	Plat	AST.1	ALT.1	ALT4	ALT.12	ALT.24	ALT.36	ALT.48	
##	1	4248807	14	112132	99	84	52	109	81	5	5	
##	2	4429425	10	129367	91	123	95	75	113	57	123	
##	3	4621191	12	151522	113	49	95	107	116	5	5	
##	4	4794631	10	146457	43	64	109	80	88	48	77	
##	5	4606375	11	187684	99	104	67	48	120	94	90	
##	6	3882456	15	131228	66	104	121	96	65	73	114	
	7	4747333		177261	78	57	113	118	107	84	80	
	8	4405941		216176	119	112	80	127	45	96	53	
##		4608464		148889	93	83	55	102	97	122	39	
	10	4455329	12	98200	55	68	72	127	81	125	43	
##		4265042		166027	103	124	111	74	53	123	101	
	12	4130219		144266	75	49	93	52	46	46	59	
	13	4116937		203003	97	101	66	53	95	55	104	
	14	4321603		141110	120	61	64	51	78	90	113	
	15	4165603		222874	120	122	106	105	88	111	111	
	16											
		4896464		149506	117	53	50	80	120	66	86	
	17	4165219		197640	86	105	70	86	83	87	47	
	18	4466885		163276	53	101	50	95	112	97	68	
	19	4448466		190642	53	124	62	76	57	46	93	
	20	4436025		111819	115	121	63	127	95	124	93	
	21	4031637		116558	86	109	118	119	55	103	84	
	22	4994729		109023	84	77	67	81	117	68	42	
	23	4595487	14	94733	45	92	103	104	40	115	93	
##	24	4625248		211363	70	102	76	58	111	95	58	
##	25	4300774	11	222135	62	91	116	128	41	70	106	
##	26	4529290	15	109871	48	112	99	85	59	87	78	
##	27	4052583	15	94503	41	54	128	64	71	89	87	

##	28	4906158	12	190	314 6:	1 120	113	75	88 1	14	99
##	29	4763261	13	126	721 5	1 118	98	42	93	53	83
##	30	4753531	15	104	729 120	ð 72	117	126	45	95	49
##	31	3999388	15	182	262 9	6 49	59	88	62	58	81
##	32	3998925	10	201	114 5	7 110	128	96	69 1	05	72
##	33	4599496				4 64		122	64	64	96
##	34	4581099	13	125	642 4	2 47	82	102	48	76	53
##		ALT.afte	r.24	1.W							
	1			5				5			
	2				40620			336804			
	3				571148						
##				33				744463			
##					660410						
##				29				5			
##				28				214566			
##				39		72050			506296		
##				45		757361			203042		
	10			30		230488		275295			
	11			33				448466			
##				45		1122999		63145			
##				26		536969			5		
	14			23		884322		182775			
	15			36				437544			
	16			34	614951	314296	83690	671490	135145		
	17				900099						
	18			27				318363			
	19			26	506756				162983		
	20			42	1080499			404314			
	21			32	169624				282524		
	22			32	1135200			_	107241		
	23			33 25	293380			18292 334897			
##	24			43	993940 243433			360015			
	26			35				500013			
##				34	766355	531269			372837		
##				43	486467		45578				
##				45	285374		43378		5		
##				38	426136		767015		315150		
##				41	1194301		29778		244049		
##				26	557708		623587		35044		
##				24	604063		323352		678548		
##				34	1159877		463260		282914		
##				45	272600		404523		242552		
##				40	1165166		367178		746328		
##				35	112401		461641		287261		
##				43	47190		789780		118971		
##				31	961292		28241				
##				39	855099		407306		405497		
##				33	1047535	320353	349454		643942		

```
## 42
                     33
                           271349 206329 151217 307729 174523
## 43
                     39
                           272507 1061189 230947
                                                     201997 293804
## 44
                     43
                           594248 1156859 436512
                                                     728279 685286
## 45
                     26
                           651671 422729
                                            412086
                                                     91529 376394
## 46
                     35
                           57911
                                   867787
                                            758773
                                                     319688 159764
## 47
                     32
                           751073 825583
                                            355919
                                                     100948 634168
## 48
                     28
                           740502 1197447
                                            180453
                                                     524563 291808
        Baseline.histological.Grading Baselinehistological.staging
##
## 1
                                      13
                                                                       2
                                                                       2
## 2
                                       4
                                       4
## 3
                                                                       4
                                                                       3
## 4
                                      10
                                                                       1
## 5
                                      11
                                                                       4
## 6
                                       4
                                      12
                                                                      4
## 7
## 8
                                      12
                                                                       3
                                                                       2
                                       5
## 9
## 10
                                       4
                                                                       2
                                                                       2
## 11
                                      15
## 12
                                      16
                                                                       1
                                       8
                                                                      1
## 13
                                       9
                                                                       2
## 14
                                       8
                                                                       2
## 15
                                      15
                                                                      1
## 16
## 17
                                       3
                                                                      4
                                                                       3
## 18
                                       4
## 19
                                       6
                                                                       4
## 20
                                      16
                                                                      4
                                       6
                                                                       2
## 21
## 22
                                       4
                                                                       1
## 23
                                      10
                                                                       3
## 24
                                      15
                                                                       4
## 25
                                       6
                                                                       3
## 26
                                       9
                                                                      4
                                       5
## 27
                                                                       1
## 28
                                      15
                                                                       2
                                       9
                                                                       3
## 29
                                       9
                                                                       1
## 30
                                       7
## 31
                                                                       1
                                       5
                                                                       2
## 32
## 33
                                       8
                                                                       1
## 34
                                      10
                                                                       1
## 35
                                      11
                                                                       3
                                                                       3
## 36
                                      16
                                       5
                                                                       2
## 37
                                      15
                                                                       1
## 38
                                       9
                                                                       2
## 39
## 40
                                       7
                                                                       4
## 41
                                      13
                                                                       1
```

## 42 ## 43 ## 44 ## 45 ## 46 ## 47 ## 50 ## 51 ## 52 ## 55 ## 55 ## 56 ## 57 ## 59 ## 60 ## 61		6 14 5 12 13 11 15 9 15 8 13 8 5 13 11 14 13 13 13 3 8	1 3 4 3 2 4 2 3 1 4 2 1 2 1 2 3 4 1 1 4 1
## 62		12	3
## ## ## ## ## ## ## 1 2 3 4 4 5 6 7 8 9 10 11 2 13 4 4 5 16 7 8 9 10 11 2 12 2 3 4 4 5 2 6 7 8 9 10 11 2 12 2 3 4 4 5 4 5 4 5 6 7 8 9 10 11 2 12 2 3 4 5 6 7 8 9 10 11 2 12 2 3 4 5 6 7 8 9 10 11 2 12 2 3 4 5 6 7 8 9 10 11 2 12 2 3 4 5 6 7 8 9 10 11 2 12 2 3 4 5 6 7 8 9 10 11 2 12 2 3 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Survivorship C C NC NC C C C C C C C NC NC C C C C		

##	28	NC
##	29	C
##	30	C
##	31	С
##	32	С
##	33	NC
	34	С
	35	NC
	36	NC
	37	C
	38	C
	39	C
	40	C
	41	NC NC
	42	C
	43	C
	44	NC
	44	
		C
	46	C
	47	C
	48	NC NC
	49	NC
	50	NC
	51	C
	52	C
	53	NC
	54	NC
	55	С
	56	C
	57	C
##	58	C
##	59	С
##	60	NC
	61	С
	62	C
	63	NC
	64	NC
	65	NC
	66	C
	67	C
	68	C
	69	NC
	70 71	NC
	71	C
	72	C
	73	C
	74	NC
##	75	NC

```
data$Survivorship <- as.factor(data$Survivorship)</pre>
##
## Reformat the data so that it is
## 1) Easy to use (add nice column names)
## 2) Interpreted correctly by glm()...
##
head(data) # you see data, but no column names
     Age Gender BMI Fever Nausea. Vomting Headache Diarrhea
## 1 56
              1
                 35
                        2
                                       1
                                                1
                                                         1
## 2
     46
                 29
                        1
                                       2
                                                2
                                                         1
              1
                                       2
                                                2
                                                         2
## 3
     57
              1
                 33
                        2
## 4 49
              2
               33
                                       2
                                                1
                                                         2
                        1
## 5 59
              1
                32
                        1
                                       1
                                                2
                                                         1
## 6 58
                                                2
              2 22
                        2
                                       2
                                                         1
                                                                WBC
                                                                        RBC
##
     Fatigue...generalized.bone.ache Jaundice Epigastric.pain
## 1
                                   2
                                            2
                                                               7425 4248807
## 2
                                   2
                                            2
                                                            1 12101 4429425
## 3
                                   1
                                            1
                                                               4178 4621191
## 4
                                   1
                                            2
                                                               6490 4794631
                                                            1
                                   2
                                            2
## 5
                                                               3661 4606375
## 6
                                   2
                                            2
                                                            1 11785 3882456
           Plat AST.1 ALT.1 ALT4 ALT.12 ALT.24 ALT.36 ALT.48 ALT.after.24.w
##
     HGB
                   99
                              52
                                    109
                                            81
                                                    5
                                                           5
                                                                          5
## 1
      14 112132
                         84
      10 129367
## 2
                   91
                        123
                              95
                                     75
                                           113
                                                   57
                                                         123
                                                                         44
## 3
      12 151522
                  113
                         49
                              95
                                    107
                                           116
                                                    5
                                                           5
                                                                          5
                                                          77
## 4
     10 146457
                   43
                         64
                             109
                                     80
                                            88
                                                   48
                                                                         33
## 5
     11 187684
                   99
                        104
                              67
                                     48
                                           120
                                                   94
                                                          90
                                                                         30
## 6
    15 131228
                   66
                        104
                            121
                                     96
                                            65
                                                   73
                                                         114
                                                                         29
##
     RNA.Base
               RNA.4
                       RNA.12 RNA.EOT RNA.EF Baseline.histological.Grading
## 1
       655330 634536
                       288194
                                    5
                                                                        13
                               336804 31085
                                                                         4
## 2
        40620 538635
                       637056
## 3
       571148 661346
                            5
                               735945 558829
                                                                         4
## 4
     1041941 449939
                       585688
                               744463 582301
                                                                        10
## 5
       660410 738756 3731527
                               338946 242861
                                                                        11
    1157452 1086852
                            5
                                    5
                                                                         4
                                           5
##
     Baselinehistological.staging Survivorship
## 1
                                             C
## 2
                                2
                                             C
## 3
                                4
                                            NC
                                            NC
## 4
                                3
## 5
                                1
                                             C
## 6
                                4
                                             C
str(data)
## 'data.frame':
                    1385 obs. of 30 variables:
## $ Age
                                     : int 56 46 57 49 59 58 42 48 44 45 ...
```

```
## $ Gender
                                    : int 111212211...
                                    : int 35 29 33 33 32 22 26 30 23 30 ...
## $ BMI
## $ Fever
                                    : int 2 1 2 1 1 2 1 1 1 2 ...
## $ Nausea.Vomting
                                   : int 1222121111...
## $ Headache
                                   : int 1 2 2 1 2 2 2 2 2 2 ...
## $ Diarrhea
                                    : int 1122112222...
## $ Fatigue...generalized.bone.ache: int 2 2 1 1 2 2 2 1 2 1 ...
## $ Jaundice
                                   : int 2 2 1 2 2 2 2 1 1 1 ...
## $ Epigastric.pain
                                   : int 2111212222...
## $ WBC
                                   : int 7425 12101 4178 6490 3661 11785
11620 7335 10480 6681 ...
## $ RBC
                                    : num 4248807 4429425 4621191 4794631
4606375 ...
## $ HGB
                                    : int 14 10 12 10 11 15 12 11 12 12 ...
## $ Plat
                                    : num 112132 129367 151522 146457
187684 ...
## $ AST.1
                                    : int 99 91 113 43 99 66 78 119 93 55
                                    : int 84 123 49 64 104 104 57 112 83 68
## $ ALT.1
                                    : num 52 95 95 109 67 121 113 80 55 72
## $ ALT4
                                    : int 109 75 107 80 48 96 118 127 102
## $ ALT.12
127 ...
                                    : int 81 113 116 88 120 65 107 45 97 81
## $ ALT.24
. . .
## $ ALT.36
                                   : int 5 57 5 48 94 73 84 96 122 125 ...
## $ ALT.48
                                    : int 5 123 5 77 90 114 80 53 39 43 ...
## $ ALT.after.24.w
                                    : int 5 44 5 33 30 29 28 39 45 30 ...
                                    : int 655330 40620 571148 1041941
## $ RNA.Base
660410 1157452 325694 641129 591441 1151206 ...
                                    : int 634536 538635 661346 449939
738756 1086852 1034008 72050 757361 230488 ...
## $ RNA.12
                                   : int 288194 637056 5 585688 3731527 5
275095 787295 5 267320 ...
                                    : int 5 336804 735945 744463 338946 5
## $ RNA.EOT
214566 370605 371090 275295 ...
## $ RNA.EF
                                    : int 5 31085 558829 582301 242861 5
635157 506296 203042 555516 ...
## $ Baseline.histological.Grading : int 13 4 4 10 11 4 12 12 5 4 ...
## $ Baselinehistological.staging : int 2 2 4 3 1 4 4 3 2 2 ...
                                    : Factor w/ 2 levels "C", "NC": 1 1 2 2 1
## $ Survivorship
1 1 1 1 1 ...
# this shows that we need to tell R which columns contain factors it also
shows us that there are some missing values. There are "?"s
## in the dataset. These are in the "ca" and "thal" columns. First, convert
"?"s to NAs...
data[data == "?"] <- NA</pre>
## Now add factors for variables that are factors and clean up the factors
```

```
that had missing data...
data[data$Gender == 1,]$Gender <- "M"</pre>
data[data$Gender == 2,]$Gender <- "F"</pre>
data$Gender <- as.factor(data$Gender)</pre>
data[data$Fever == 1,]$Fever <- "No"</pre>
data[data$Fever == 2,]$Fever <- "Yes"</pre>
data$Fever <- as.factor(data$Fever)</pre>
data[data$Nausea.Vomting == 1,]$Nausea.Vomting <- "No"</pre>
data[data$Nausea.Vomting == 2,]$Nausea.Vomting <- "Yes"</pre>
data$Nausea.Vomting <- as.factor(data$Nausea.Vomting)</pre>
data[data$Headache == 1,]$Headache <- "No"</pre>
data[data$Headache == 2,]$Headache <- "Yes"</pre>
data$Headache <- as.factor(data$Headache)</pre>
data[data$Diarrhea == 1,]$Diarrhea <- "No"</pre>
data[data$Diarrhea == 2,]$Diarrhea <- "Yes"</pre>
data$Diarrhea <- as.factor(data$Diarrhea)</pre>
data[data$Fatigue...generalized.bone.ache ==
1, | $Fatigue...generalized.bone.ache <- "No"
data[data$Fatigue...generalized.bone.ache ==
2,]$Fatigue...generalized.bone.ache <- "Yes"</pre>
data$Fatigue...generalized.bone.ache <-</pre>
as.factor(data$Fatigue...generalized.bone.ache)
data[data$Jaundice == 1,]$Jaundice <- "No"</pre>
data[data$Jaundice == 2,]$Jaundice <- "Yes"</pre>
data$Jaundice <- as.factor(data$Jaundice)</pre>
data[data$Epigastric.pain == 1,]$Epigastric.pain <- "No"</pre>
data[data$Epigastric.pain == 2,]$Epigastric.pain <- "Yes"</pre>
data$Epigastric.pain <- as.factor(data$Epigastric.pain)</pre>
data[data$Baselinehistological.staging == 1,]$Baselinehistological.staging <-</pre>
"Portal Fibrosis"
data[data$Baselinehistological.staging == 2,]$Baselinehistological.staging<-</pre>
"Few Septa"
data[data$Baselinehistological.staging == 3,]$Baselinehistological.staging <-</pre>
data[data$Baselinehistological.staging == 4,]$Baselinehistological.staging <-</pre>
"Cirrhosis"
data$Baseline.histological.Grading <-</pre>
as.factor(data$Baseline.histological.Grading)
data$Baselinehistological.staging <-</pre>
as.factor(data$Baselinehistological.staging)
str(data)
                     1385 obs. of 30 variables:
## 'data.frame':
## $ Age
                                        : int 56 46 57 49 59 58 42 48 44 45 ...
## $ Gender
                                        : Factor w/ 2 levels "F", "M": 2 2 2 1 2
1 1 1 2 2 ...
                                        : int 35 29 33 33 32 22 26 30 23 30 ...
## $ BMI
## $ Fever
                                        : Factor w/ 2 levels "No", "Yes": 2 1 2 1
1 2 1 1 1 2 ...
                                        : Factor w/ 2 levels "No", "Yes": 1 2 2 2
## $ Nausea.Vomting
```

```
1 2 1 1 1 1 ...
                                    : Factor w/ 2 levels "No", "Yes": 1 2 2 1
## $ Headache
2 2 2 2 2 2 ...
                                    : Factor w/ 2 levels "No", "Yes": 1 1 2 2
## $ Diarrhea
1 1 2 2 2 2 ...
## $ Fatigue...generalized.bone.ache: Factor w/ 2 levels "No","Yes": 2 2 1 1
2 2 2 1 2 1 ...
## $ Jaundice
                                    : Factor w/ 2 levels "No", "Yes": 2 2 1 2
2 2 2 1 1 1 ...
## $ Epigastric.pain
                                   : Factor w/ 2 levels "No", "Yes": 2 1 1 1
2 1 2 2 2 2 ...
                                    : int 7425 12101 4178 6490 3661 11785
## $ WBC
11620 7335 10480 6681 ...
## $ RBC
                                    : num 4248807 4429425 4621191 4794631
4606375 ...
## $ HGB
                                    : int 14 10 12 10 11 15 12 11 12 12 ...
## $ Plat
                                    : num 112132 129367 151522 146457
187684 ...
## $ AST.1
                                    : int 99 91 113 43 99 66 78 119 93 55
                                    : int 84 123 49 64 104 104 57 112 83 68
## $ ALT.1
## $ ALT4
                                    : num 52 95 95 109 67 121 113 80 55 72
. . .
                                    : int 109 75 107 80 48 96 118 127 102
## $ ALT.12
127 ...
                                    : int 81 113 116 88 120 65 107 45 97 81
## $ ALT.24
## $ ALT.36
                                   : int 5 57 5 48 94 73 84 96 122 125 ...
                                   : int 5 123 5 77 90 114 80 53 39 43 ...
## $ ALT.48
## $ ALT.after.24.w
                                   : int 5 44 5 33 30 29 28 39 45 30 ...
## $ RNA.Base
                                   : int 655330 40620 571148 1041941
660410 1157452 325694 641129 591441 1151206 ...
## $ RNA.4
                                    : int 634536 538635 661346 449939
738756 1086852 1034008 72050 757361 230488 ...
                                   : int 288194 637056 5 585688 3731527 5
## $ RNA.12
275095 787295 5 267320 ...
## $ RNA.EOT
                                    : int 5 336804 735945 744463 338946 5
214566 370605 371090 275295 ...
## $ RNA.EF
                                    : int 5 31085 558829 582301 242861 5
635157 506296 203042 555516 ...
## $ Baseline.histological.Grading : Factor w/ 14 levels
"3", "4", "5", "6", ...: 11 2 2 8 9 2 10 10 3 2 ....
## $ Baselinehistological.staging : Factor w/ 4 levels "Cirrhosis", "Few
Septa",..: 2 2 1 3 4 1 1 3 2 2 ...
                                    : Factor w/ 2 levels "C", "NC": 1 1 2 2 1
## $ Survivorship
1 1 1 1 1 ...
xtabs(~ Survivorship + Gender, data=data)
```

```
##
              Gender
## Survivorship F M
            C 425 478
##
            NC 253 229
##
xtabs(~ Survivorship + Fever, data=data)
               Fever
## Survivorship No Yes
            C 440 463
##
##
            NC 231 251
xtabs(~ Survivorship + Nausea.Vomting, data=data)
              Nausea.Vomting
## Survivorship No Yes
##
            C 451 452
            NC 238 244
##
xtabs(~ Survivorship + Headache, data=data)
              Headache
## Survivorship No Yes
            C 450 453
##
##
            NC 248 234
xtabs(~ Survivorship + Diarrhea, data=data)
              Diarrhea
## Survivorship No Yes
##
            C 452 451
##
            NC 237 245
xtabs(~ Survivorship + Fatigue...generalized.bone.ache, data=data)
               Fatigue...generalized.bone.ache
## Survivorship No Yes
##
            C 463 440
##
            NC 231 251
xtabs(~ Survivorship + Jaundice, data=data)
               Jaundice
## Survivorship No Yes
##
            C 462 441
##
            NC 229 253
xtabs(~ Survivorship + Epigastric.pain, data=data)
               Epigastric.pain
## Survivorship No Yes
            C 458 445
##
##
            NC 229 253
```

```
xtabs(~ Survivorship + Baselinehistological.staging, data=data)
##
               Baselinehistological.staging
## Survivorship Cirrhosis Few Septa Many Septa Portal Fibrosis
##
             C
                      235
                                221
                                            234
                                                             213
##
             NC
                      127
                                111
                                            121
                                                             123
## Now we are ready for some logistic regression. First we'll create a very
## simple model that uses sex to predict heart disease
xtabs(~ Survivorship + Gender, data=data)
               Gender
## Survivorship
                  F M
##
             C 425 478
##
             NC 253 229
## Most of the females are healthy and most of the males are unhealthy.
## Being female is likely to decrease the odds in being unhealthy.
##
      In other words, if a sample is female, the odds are against it that it
##
      will be unhealthy
## Being male is likely to increase the odds in being unhealthy...
      In other words, if a sample is male, the odds are for it being
unhealthy
logistic simple <- glm(Survivorship ~ Gender, data=data, family="binomial")</pre>
summary(logistic simple)
##
## Call:
## glm(formula = Survivorship ~ Gender, family = "binomial", data = data)
##
## Deviance Residuals:
       Min
##
                 10
                      Median
                                   3Q
                                           Max
## -0.9665 -0.9665 -0.8848
                               1.4041
                                        1.5015
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                           0.07941 -6.532 6.48e-11 ***
## (Intercept) -0.51870
                           0.11298 -1.922
## GenderM
               -0.21719
                                             0.0546 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1790.0 on 1384
                                       degrees of freedom
## Residual deviance: 1786.3 on 1383
                                       degrees of freedom
## AIC: 1790.3
##
## Number of Fisher Scoring iterations: 4
```

```
## The intercept is the log(odds) a female will be unhealthy. This is because
## female is the first factor in "sex" (the factors are ordered,
## alphabetically by default, "female", "male")
## Now Let's Look at the second coefficient...
                 1,2737
                            0.2725 4.674 2.95e-06 ***
## SexM
##
## sexM is the log(odds ratio) that tells us that if a sample has sex=M, the
## odds of being unhealthy are, on a log scale, 1.27 times greater than if
## a sample has sex=F.
female.log.odds \leftarrow log(253 /425)
female.log.odds
## [1] -0.5186997
# Now you know how these are calculated
male.log.odds.ratio \leftarrow \log((229 / 478) / (253/425))
male.log.odds.ratio
## [1] -0.217189
## Now calculate the overall "Pseudo R-squared" and its p-value
## NOTE: Since we are doing Logistic regression...
## Null devaiance = 2*(0 - LogLikelihood(null model))
##
                 = -2*LogLikihood(null model)
## Residual deviance = 2*(0 - LogLikelihood(proposed model))
                     = -2*LogLikelihood(proposed model)
11.null <- logistic simple$null.deviance/-2</pre>
11.proposed <- logistic simple$deviance/-2</pre>
ll.null
## [1] -894.9992
11.proposed
## [1] -893.1488
## McFadden's Pseudo R^2 = [ LL(Null) - LL(Proposed) ] / LL(Null)
(ll.null - ll.proposed) / ll.null
## [1] 0.002067477
## chi-square value = 2*(LL(Proposed) - LL(Null))
## p-value = 1 - pchisq(chi-square value, df = 2-1)
1 - pchisq(2*(ll.proposed - ll.null), df=1)
## [1] 0.05438701
1 - pchisq((logistic_simple$null.deviance - logistic_simple$deviance), df=1)
## [1] 0.05438701
## Lastly, let's see what this logistic regression predicts, given
## that a patient is either female or male (and no other data about them).
```

```
predicted.data <-
data.frame(probability.of.Survivorship=logistic_simple$fitted.values,Gender=d
ata$Gender)
predicted.data
        probability.of.Survivorship Gender
##
## 1
                            0.3239038
                                            Μ
## 2
                                            Μ
                            0.3239038
## 3
                                            Μ
                            0.3239038
## 4
                                            F
                            0.3731563
## 5
                                            Μ
                            0.3239038
## 6
                            0.3731563
                                            F
## 7
                                            F
                            0.3731563
                                            F
## 8
                            0.3731563
## 9
                            0.3239038
                                            Μ
## 10
                            0.3239038
                                            Μ
                                            F
## 11
                            0.3731563
## 12
                                            Μ
                            0.3239038
## 13
                                            F
                            0.3731563
## 14
                            0.3239038
                                            Μ
## 15
                            0.3731563
                                            F
## 16
                                            Μ
                            0.3239038
## 17
                            0.3239038
                                            Μ
                                            F
## 18
                            0.3731563
## 19
                            0.3239038
                                            Μ
## 20
                                            F
                            0.3731563
                                            F
## 21
                            0.3731563
## 22
                            0.3239038
                                            Μ
## 23
                            0.3239038
                                            Μ
## 24
                            0.3731563
                                            F
                                            F
## 25
                            0.3731563
                                            F
## 26
                            0.3731563
## 27
                            0.3239038
                                            Μ
                                            F
## 28
                            0.3731563
## 29
                                            F
                            0.3731563
                                            F
## 30
                            0.3731563
                                            F
## 31
                            0.3731563
## 32
                                            F
                            0.3731563
                            0.3731563
## 33
                                            F
## 34
                            0.3239038
                                            Μ
## 35
                            0.3239038
                                            Μ
## 36
                                            Μ
                            0.3239038
                                            F
## 37
                            0.3731563
## 38
                            0.3239038
                                            Μ
## 39
                                            F
                            0.3731563
## 40
                            0.3239038
                                            Μ
## 41
                            0.3731563
                                            F
## 42
                            0.3731563
                                            F
## 43
                                            Μ
                            0.3239038
## 44
                            0.3239038
                                            Μ
```

##	45	0.3731563	F
##	46	0.3239038	M
##	47	0.3239038	M
##		0.3239038	M
##		0.3239038	M
##	50	0.3731563	F
##		0.3731563	F
##		0.3731563	F
##		0.3239038	M
##		0.3239038	M
##		0.3239038	M
##		0.3731563	F
##		0.3731563	F
##		0.3239038	M
##		0.3731563	F
##		0.3239038	M
##		0.3239038	M
##		0.3731563	F
##		0.3731563	F
##		0.3731563	F
##		0.3239038	M
##		0.3239038	<u>M</u>
##		0.3731563	F
##		0.3731563	F
##		0.3239038	M
##		0.3731563	F
##		0.3239038	<u>M</u>
##		0.3731563	F
##		0.3239038	M
##		0.3731563	F
##		0.3239038	M
##		0.3731563	F
##		0.3731563	F M
##		0.3239038	M
##		0.3239038	M
##		0.3731563	F
##		0.3731563	F
##		0.3731563	F M
##	74	0.3239038	М

```
## We can plot the data...
ggplot(data=predicted.data, aes(x=Gender, y=probability.of.Survivorship)) +
   geom_point(aes(color=Gender), size=5) +
   xlab("Gender") +
   ylab("Predicted probability of getting HCV Disease")
```



```
## Since there are only two probabilities (one for females and one for
males),
## we can use a table to summarize the predicted probabilities.
xtabs(~ probability.of.Survivorship + Gender, data=predicted.data)
##
                           Gender
## probability.of.Survivorship
##
           0.323903818953405
                              0 707
           0.373156342182894 678
##
## Now we will use all of the data available to predict heart disease. This
is not the best way to do this
logistic <- glm(Survivorship ~ ., data=data, family="binomial")</pre>
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
summary(logistic)
##
## Call:
## glm(formula = Survivorship ~ ., family = "binomial", data = data)
## Deviance Residuals:
##
          Min
                        10
                                Median
                                                 3Q
                                                             Max
   -2.001e-04
                            -2.100e-08
##
               -2.100e-08
                                          2.100e-08
                                                       2.034e-04
##
## Coefficients:
##
                                                   Estimate Std. Error z value
## (Intercept)
                                                 -6.147e+02
                                                              6.931e+04
                                                                          -0.009
## Age
                                                 -4.518e-01
                                                              4.139e+02
                                                                          -0.001
## GenderM
                                                 -3.424e+00
                                                              1.281e+04
                                                                           0.000
## BMI
                                                 -2.747e-01
                                                              6.578e+02
                                                                           0.000
## FeverYes
                                                  8.441e+00
                                                              7.660e+03
                                                                           0.001
## Nausea.VomtingYes
                                                 -1.017e+01
                                                              7.678e+03
                                                                          -0.001
## HeadacheYes
                                                 -2.229e+00
                                                              6.399e+03
                                                                           0.000
## DiarrheaYes
                                                  2.269e+00
                                                              6.636e+03
                                                                           0.000
## Fatigue...generalized.bone.acheYes
                                                  4.740e+00
                                                              9.352e+03
                                                                           0.001
## JaundiceYes
                                                  1.829e+01
                                                              5.086e+03
                                                                           0.004
## Epigastric.painYes
                                                 -4.547e+00
                                                              1.172e+04
                                                                           0.000
## WBC
                                                  7.295e-04
                                                              1.239e+00
                                                                           0.001
## RBC
                                                  8.384e-06
                                                              1.097e-02
                                                                           0.001
## HGB
                                                  5.689e+00
                                                              1.694e+03
                                                                           0.003
## Plat
                                                  3.605e-05
                                                              7.103e-02
                                                                           0.001
## AST.1
                                                  1.728e-02
                                                              9.804e+01
                                                                           0.000
## ALT.1
                                                 -1.263e-01
                                                              2.944e+02
                                                                           0.000
## ALT4
                                                  2.783e-01
                                                              1.365e+02
                                                                           0.002
## ALT.12
                                                  5.809e-02
                                                              9.432e+01
                                                                           0.001
## ALT.24
                                                  1.513e-01
                                                              1.629e+02
                                                                           0.001
## ALT.36
                                                  1.265e-01
                                                              1.200e+02
                                                                           0.001
## ALT.48
                                                  1.336e-01
                                                              1.011e+02
                                                                           0.001
## ALT.after.24.w
                                                 -1.292e+00
                                                              8.390e+02
                                                                          -0.002
## RNA.Base
                                                  2.232e-05
                                                              1.296e-02
                                                                           0.002
## RNA.4
                                                 -7.059e-06
                                                              6.352e-03
                                                                          -0.001
## RNA.12
                                                  1.689e-06
                                                              1.613e-02
                                                                           0.000
## RNA.EOT
                                                  1.236e-03
                                                              7.123e-02
                                                                           0.017
## RNA.EF
                                                 -2.340e-05
                                                              1.077e-02
                                                                          -0.002
## Baseline.histological.Grading4
                                                  1.320e+01
                                                              1.614e+04
                                                                           0.001
## Baseline.histological.Grading5
                                                 -3.246e+00
                                                              1.755e+04
                                                                           0.000
## Baseline.histological.Grading6
                                                  3.274e+01
                                                              3.118e+04
                                                                           0.001
## Baseline.histological.Grading7
                                                  4.915e+00
                                                              1.318e+05
                                                                           0.000
## Baseline.histological.Grading8
                                                 -5.185e-01
                                                              1.415e+04
                                                                           0.000
## Baseline.histological.Grading9
                                                  1.295e+01
                                                              6.432e+04
                                                                           0.000
## Baseline.histological.Grading10
                                                  1.530e+01
                                                              1.485e+04
                                                                           0.001
## Baseline.histological.Grading11
                                                  1.852e+01
                                                              2.826e+04
                                                                           0.001
## Baseline.histological.Grading12
                                                  2.538e+01
                                                              1.779e+04
                                                                           0.001
## Baseline.histological.Grading13
                                                 -1.473e+01
                                                              2.040e+04
                                                                          -0.001
```

```
## Baseline.histological.Grading14
                                                              1.784e+04
                                                                          0.001
                                                  1.434e+01
## Baseline.histological.Grading15
                                                  1.279e+01
                                                              1.579e+04
                                                                          0.001
## Baseline.histological.Grading16
                                                  4.808e+01
                                                              2.328e+04
                                                                          0.002
## Baselinehistological.stagingFew Septa
                                                             9.410e+03
                                                 -1.186e+01
                                                                         -0.001
## Baselinehistological.stagingMany Septa
                                                 -5.362e+00
                                                              7.264e+03
                                                                         -0.001
## Baselinehistological.stagingPortal Fibrosis -9.128e+00
                                                              1.078e+04
                                                                         -0.001
##
                                                 Pr(>|z|)
## (Intercept)
                                                    0.993
                                                    0.999
## Age
## GenderM
                                                    1.000
## BMI
                                                    1.000
## FeverYes
                                                    0.999
## Nausea.VomtingYes
                                                    0.999
## HeadacheYes
                                                    1.000
## DiarrheaYes
                                                    1.000
## Fatigue...generalized.bone.acheYes
                                                    1.000
## JaundiceYes
                                                    0.997
## Epigastric.painYes
                                                    1.000
## WBC
                                                    1.000
## RBC
                                                    0.999
## HGB
                                                    0.997
## Plat
                                                    1.000
## AST.1
                                                    1.000
## ALT.1
                                                    1.000
## ALT4
                                                    0.998
## ALT.12
                                                    1.000
## ALT.24
                                                    0.999
## ALT.36
                                                    0.999
## ALT.48
                                                    0.999
## ALT.after.24.w
                                                    0.999
## RNA.Base
                                                    0.999
## RNA.4
                                                    0.999
## RNA.12
                                                    1.000
## RNA.EOT
                                                    0.986
## RNA.EF
                                                    0.998
## Baseline.histological.Grading4
                                                    0.999
## Baseline.histological.Grading5
                                                    1.000
## Baseline.histological.Grading6
                                                    0.999
## Baseline.histological.Grading7
                                                    1.000
## Baseline.histological.Grading8
                                                    1.000
## Baseline.histological.Grading9
                                                    1.000
## Baseline.histological.Grading10
                                                    0.999
## Baseline.histological.Grading11
                                                    0.999
## Baseline.histological.Grading12
                                                    0.999
## Baseline.histological.Grading13
                                                    0.999
## Baseline.histological.Grading14
                                                    0.999
## Baseline.histological.Grading15
                                                    0.999
## Baseline.histological.Grading16
                                                    0.998
## Baselinehistological.stagingFew Septa
                                                    0.999
## Baselinehistological.stagingMany Septa
                                                    0.999
```

```
## Baselinehistological.stagingPortal Fibrosis
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1.790e+03 on 1384 degrees of freedom
##
## Residual deviance: 6.632e-07 on 1341 degrees of freedom
## AIC: 88
## Number of Fisher Scoring iterations: 25
## Now calculate the overall "Pseudo R-squared" and its p-value
11.null <- logistic$null.deviance/-2</pre>
11.proposed <- logistic$deviance/-2</pre>
## McFadden's Pseudo R^2 = [ LL(Null) - LL(Proposed) ] / LL(Null)
(ll.null - ll.proposed) / ll.null
## [1] 1
## The p-value for the R^2
1 - pchisq(2*(11.proposed - 11.null), df=(length(logistic$coefficients)-1))
## [1] 0
## now we can plot the data
predicted.data <-</pre>
data.frame(probability.of.Survivorship=logistic\frame(probability.of.Survivorship=da
ta$Survivorship)
predicted.data <-</pre>
predicted.data[order(predicted.datasprobability.of.Survivorship,
decreasing=FALSE), ]
predicted.data$rank <- 1:nrow(predicted.data)</pre>
## Lastly, we can plot the predicted probabilities for each sample having
## heart disease and color by whether or not they actually had heart disease
ggplot(data=predicted.data, aes(x=rank, y=probability.of.Survivorship)) +
  geom_point(aes(color=Survivorship), alpha=1, shape=4, stroke=2) +
  xlab("Index") +
 ylab("Predicted probability of getting HCV disease")
```



```
# Few packages for confusion matrix. Lets look at them one by one
#install.packages("regclass",
lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/Library")
library(regclass)
## Loading required package: bestglm
## Loading required package: leaps
## Loading required package: VGAM
## Loading required package: stats4
## Loading required package: splines
## Loading required package: rpart
## Loading required package: randomForest
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
```

```
## The following object is masked from 'package:dplyr':
##
##
       combine
## Important regclass change from 1.3:
## All functions that had a . in the name now have an
## all.correlations -> all_correlations, cor.demo -> cor_demo, etc.
confusion_matrix(logistic)
##
             Predicted C Predicted NC Total
                     903
                                         903
## Actual C
## Actual NC
                       0
                                   482
                                         482
## Total
                     903
                                   482
                                        1385
#install.packages("caret",
lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/Library")
library(caret)
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:regclass':
##
##
       qq
##
## Attaching package: 'caret'
## The following object is masked from 'package:VGAM':
##
##
       predictors
pdata <- predict(logistic,newdata=data,type="response" )</pre>
pdata
              1
                            2
                                         3
                                                       4
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
                            7
                                         8
                                                       9
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
##
             11
                           12
                                        13
                                                      14
                                                                   15
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
##
             16
                           17
                                        18
                                                      19
                                                                   20
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
##
                           22
                                                      24
                                                                   25
             21
                                        23
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                           27
                                        28
                                                      29
             26
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
                           32
                                        33
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
```

```
## 36 37 38 39
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
    41 42 43 44
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
  46 47 48 49
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
       51 52 53 54
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
   56 57 58 59
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
       61 62 63 64
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
       66 67 68 69
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
         71
                   72
                               74
                            73
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
         76 77 78 79
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
   81
            82 83 84
##
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
   86 87 88 89
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16
        91 92 93 94
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
         96 97 98 99
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
                           103
        101 102
                                    104
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                            108
        106
                 107
                                     109
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
        111
                            113 114
                  112
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                  117
                            118
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                 122
                            123
                                    124
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
        126
                  127 128
                                     129
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
        131 132 133 134
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                 137
                            138
## 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16
                  142
                            143
                                     144
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                 147
                            148
                                    149
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                            153
        151
                  152
                                     154
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
        156
                  157
                            158
                                     159
                                               160
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
```

```
## 161 162 163 164
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                                     169
          166
                    167
                          168
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
         171
                    172
                               173
                                          174
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          176 177
                                178
                                          179
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    182
                                183
                                          184
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
          186
                     187
                                188
                                          189
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          191
                    192
                                193
                                          194
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                                198
          196
                     197
                                           199
## 1.000000e+00 4.624073e-09 2.220446e-16 2.220446e-16 1.000000e+00
                    202
                                203
                                           204
## 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                     207
          206
                                208
                                           209
##
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
          211
                                213 214
                     212
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
         216 217
                                218
                                           219
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                    222
                                223
                                           224
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
                    227
                               228
                                          229
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          231
                     232
                                233
                                           234
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
          236
                     237
                                238
                                          239
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     242
                                243
                                           244
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     247
          246
                                248
                                           249
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                     252
##
          251
                                253
                                           254
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    257
          256
                                258
                                          259
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
                     262
                                263
                                           264
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
          266
                     267
                                268
                                           269
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          271
                     272
                                273
                                          274
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
          276
                     277
                                278
                                           279
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
          281
                     282
                                283
                                           284
## 1.226682e-12 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
```

```
## 286 287 288 289
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
                    292 293
         291
                                           294
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
         296
                    297
                                298
                                           299
## 1.400537e-08 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
                                 303
          301
                     302
                                           304
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     307
                                308
                                           309
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
                     312
          311
                                313
                                            314
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
                                           319
          316
                     317
                                318
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
          321
                     322
                                 323
                                            324
                                                       325
## 1.000000e+00 2.220446e-16 2.220446e-16 1.062546e-13 2.220446e-16
          326
                     327
                                 328
                                            329
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
                     332
                                333
                                           334
##
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     337
          336
                                338
                                           339
## 1.000000e+00 1.000000e+00 2.144440e-11 1.000000e+00 2.220446e-16
                    342
                                 343
                                           344
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                     347
                                348
                                            349
## 1.096984e-10 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                     352
                                353
                                           354
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
          356
                     357
                                358
                                            359
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
          361
                     362
                                 363
                                            364
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
                                 368
                                            369
                     367
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                     372
                                373
                                            374
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    377
##
          376
                                378
                                            379
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                     382
                                 383
         381
                                            384
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
                     387
                                 388
                                           389
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          391
                     392
                                 393
                                            394
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
                                           399
                     397
                                398
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
          401
                     402
                                403
                                            404
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          406
                     407
                                 408
                                            409
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
```

```
## 411 412 413 414 415
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
              417 418 419
        416
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
         421
                   422
                              423
                                         424
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
                    427
                              428
                                         429
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                   432
         431
                              433
                                         434
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    437
         436
                               438
                                          439
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                               443
         441
                    442
                                          444
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                               448
                    447
                                          449
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                    452
                               453
                                         454
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
         456 457
                              458
                                         459
##
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
        461 462 463
                                         464
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
         466
                    467
                               468
                                         469
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
                    472
                               473
                                          474
## 2.220446e-16 2.553865e-10 1.000000e+00 1.000000e+00 2.220446e-16
                   477
         476
                              478
                                         479
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                    482
                               483
         481
                                          484
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
         486
                    487
                               488
                                          489
## 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16
         491
                    492
                               493
                                          494
## 2.220446e-16 1.000000e+00 2.220446e-16 6.696274e-09 2.220446e-16
         496 497
                               498
                                         499
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
                    502
##
          501
                               503
                                          504
## 1.000000e+00 1.000000e+00 1.422738e-08 2.220446e-16 1.000000e+00
          506
                    507
                               508
                                          509
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
                    512
                               513
                                          514
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          516
                    517
                               518
                                          519
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
                    522
                              523
         521
                                         524
## 2.858549e-09 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16
          526
                    527
                              528
                                          529
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          531
                    532
                               533
                                          534
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
```

```
## 536 537 538 539
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
               542
          541
                                543
                                             544
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
          546
                     547
                                 548
                                            549
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
                      552
                                 553
                                             554
          551
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                     557
                                558
                                       559
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          561
                      562
                                 563
                                             564
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          566
                      567
                                 568
                                             569
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          571
                      572
                                 573
                                             574
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
          576
                      577
                                 578
                                             579
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                      582
                                 583
                                             584
##
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                      587
                                 588
        586
                                             589
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                      592
                                 593
                                             594
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                      597
                                 598
                                             599
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                      602
                                 603
                                            604
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
          606
                                 608
                                             609
                      607
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          611
                      612
                                 613
                                            614
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
          616
                      617
                                 618
                                             619
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                      622
                                 623
                                            624
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 5.933679e-09
                      627
                                628
##
          626
                                             629
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                      632
    631
                                 633
                                            634
## 3.887578e-09 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                      637
                                 638
          636
                                            639
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                      642
                                 643
                                             644
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          646
                      647
                                 648
                                            649
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
                                 653
          651
                      652
                                             654
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
          656
                      657
                                 658
                                             659
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
```

```
## 661 662 663 664
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
                          668
                                      669
               667
         666
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          671
                     672
                                673
                                           674
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                     677
                                678
          676
                                            679
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
                     682 683
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
          686
                     687
                                688
                                            689
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
                     692
                                693
                                          694
          691
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
                     697
                                698
                                            699
          696
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     702
                                703
                                           704
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                     707
          706
                                708
                                           709
##
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                                713 714
   711
                    712
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
         716 717
                               718
                                           719
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    722
                                723
                                           724
## 2.220446e-16 2.220446e-16 1.000000e+00 1.350791e-08 1.000000e+00
                    727
                               728
                                          729
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          731
                    732
                                733
                                           734
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          736
                    737
                                738
                                           739
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                     742
                                743
                                            744
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
                    747
          746
                                748
                                           749
## 2.220446e-16 1.124887e-08 2.220446e-16 2.220446e-16 2.220446e-16
                    752
##
          751
                                753
                                            754
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
                    757 758
          756
                                           759
## 1.000000e+00 3.704052e-09 1.000000e+00 2.220446e-16 1.000000e+00
                     762
                                763
                                           764
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          766
                     767
                                768
                                           769
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
         771
                    772
                                773
                                           774
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          776
                     777
                                778
                                            779
## 5.595202e-10 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
          781
                     782
                                783
                                            784
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
```

```
## 786 787 788 789
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                                     794
               792 793
    791
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
                    797
                               798
                                          799
## 2.220446e-16 1.000000e+00 1.034868e-10 1.000000e+00 1.000000e+00
          801 802
                                803 804
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                   807
                               808
                                          809
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          811
                     812
                                813
                                           814
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          816
                    817
                                818
                                          819
## 1.000000e+00 7.154129e-09 1.000000e+00 2.220446e-16 2.220446e-16
          821
                     822
                                823
                                           824
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          826
                    827
                                828
                                          829
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                     832
                                833
                                          834
##
         831
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
              837 838 839
         836
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.001750e-08
         841
                     842
                                843
                                          844
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
          846
                     847
                                848
                                           849
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                     852
                                853
                                          854
         851
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
                     857
                                858
          856
                                           859
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          861
                     862
                                863
                                          864
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
          866
                     867
                                868
                                           869
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                    872
                                873
                                          874
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16
                     877
                                878
##
         876
                                           879
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    882
         881
                                883
                                          884
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
                     887
                                888
                                          889
          886
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          891
                     892
                                893
                                           894
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                                          899
                     897
                                898
          896
## 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
          901
                     902
                                903
                                           904
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
          906
                     907
                                908
                                           909
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
```

```
## 911 912 913 914
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
         916 917 918
                                     919
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    922
          921
                                923
                                           924
## 1.000000e+00 1.239056e-08 1.000000e+00 1.466301e-09 2.220446e-16
                     927
                                928
                                           929
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
                     932 933
         931
                                          934
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          936
                     937
                                938
                                            939
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                     942
                                943
          941
                                           944
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     947
                                948
                                            949
          946
                                                       950
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          951
                     952
                                953
                                           954
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                     957
          956
                                958
                                           959
##
## 2.220446e-16 2.220446e-16 2.220446e-16 8.654866e-09 1.000000e+00
          961
                     962
                                963
                                           964
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
          966
                     967
                                968
                                            969
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
                     972
                                973
                                           974
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          976
                     977
                                978
                                           979
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          981
                     982
                                983
                                            984
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
          986
                     987
                                988
                                           989
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
          991
                     992
                                993
                                            994
                                                       995
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                     997
         996
                                998
                                           999
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                               1003
##
         1001
                    1002
                                           1004
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
         1006
                    1007
                               1008
                                           1009
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
                               1013
         1011
                   1012
                                           1014
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
         1016
                    1017
                               1018
                                           1019
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                    1022
         1021
                               1023
                                          1024
## 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                    1027
                               1028
         1026
                                           1029
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
         1031
                    1032
                               1033
                                           1034
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
```

```
1036 1037 1038 1039
##
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          1041
                      1042
                                   1043
                                                1044
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                       1047
                                    1048
          1046
                                                1049
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          1051
                       1052
                                    1053
                                                1054
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
                       1057
                                    1058
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          1061
                       1062
                                    1063
                                                1064
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16
          1066
                       1067
                                    1068
                                                1069
## 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
##
          1071
                       1072
                                    1073
                                                1074
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 3.639874e-09
          1076
                       1077
                                    1078
                                                1079
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
          1081
                       1082
                                    1083
##
                                                1084
## 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
          1086
                       1087
                                   1088
                                                1089
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          1091
                       1092
                                    1093
                                                1094
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                       1097
                                    1098
                                                1099
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
                       1102
                                   1103
          1101
                                                1104
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
                       1107
          1106
                                    1108
                                                1109
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
          1111
                       1112
                                    1113
                                                1114
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
          1116
                       1117
                                    1118
                                                1119
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
          1121
                       1122
                                   1123
                                                1124
## 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                       1127
##
          1126
                                    1128
                                                1129
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
                       1132
                                   1133
                                                1134
          1131
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
                       1137
                                    1138
          1136
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00
          1141
                       1142
                                    1143
                                                1144
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          1146
                       1147
                                   1148
                                                1149
## 2.220446e-16 2.220446e-16 1.000000e+00 1.237843e-08 1.000000e+00
                                    1153
##
          1151
                       1152
                                                1154
                                                             1155
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          1156
                       1157
                                    1158
                                                1159
                                                             1160
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
```

```
## 1161 1162 1163 1164
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
          1166
                      1167
                                   1168
                                                1169
## 1.000000e+00 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                       1172
                                   1173
          1171
                                                1174
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
          1176
                       1177
                                   1178
                                                1179
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                       1182
                                   1183
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
          1186
                       1187
                                   1188
                                                1189
## 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                                   1193
          1191
                      1192
                                                1194
## 1.000000e+00 2.220446e-16 2.220446e-16 2.356545e-13 2.220446e-16
                                   1198
##
          1196
                       1197
                                                1199
                                                             1200
## 2.220446e-16 1.000000e+00 2.220446e-16 4.090227e-10 2.220446e-16
          1201
                       1202
                                   1203
                                                1204
## 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
                       1207
                                   1208
                                                1209
##
          1206
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
                       1212
          1211
                                   1213
                                                1214
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 3.378042e-13
                       1217
                                   1218
                                                1219
          1216
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
          1221
                       1222
                                   1223
                                                1224
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          1226
                       1227
                                   1228
                                                1229
## 1.000000e+00 1.000000e+00 1.000000e+00 9.498026e-09 2.220446e-16
                       1232
          1231
                                   1233
                                                1234
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
          1236
                       1237
                                   1238
                                                1239
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
          1241
                       1242
                                   1243
                                                1244
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
          1246
                       1247
                                   1248
                                                1249
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                       1252
                                   1253
##
          1251
                                                1254
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16
                       1257
                                   1258
                                                1259
          1256
## 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16
                                   1263
          1261
                       1262
                                                1264
## 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
          1266
                       1267
                                   1268
                                                1269
## 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00
          1271
                       1272
                                   1273
                                                1274
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
          1276
                       1277
                                   1278
                                                1279
## 1.000000e+00 1.000000e+00 1.000000e+00 2.220446e-16 2.220446e-16
##
          1281
                       1282
                                   1283
                                                1284
## 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
```

```
1286 1287 1288 1289
## 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00
         1291
                    1292
                               1293
                                           1294
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                                           1299
         1296
                    1297
                                1298
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00
                    1302
                                1303
                                           1304
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
                    1307
                                1308
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
         1311
                    1312
                                1313
                                           1314
## 1.000000e+00 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    1317
                                1318
         1316
                                           1319
                                                      1320
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
##
         1321
                    1322
                                1323
                                           1324
## 1.000000e+00 2.220446e-16 1.000000e+00 2.220446e-16 2.220446e-16
         1326
                    1327
                                1328
                                           1329
## 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
##
         1331
                    1332
                                1333
                                           1334
## 2.220446e-16 2.220446e-16 2.220446e-16 5.198558e-12 2.220446e-16
                    1337
         1336
                                1338
                                           1339
## 2.220446e-16 1.135848e-08 2.220446e-16 1.000000e+00 2.220446e-16
                    1342
                                1343
                                           1344
## 1.000000e+00 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00
                    1347
                                1348
                                           1349
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    1352
                                1353
         1351
                                           1354
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 2.220446e-16
         1356
                    1357
                                1358
                                           1359
## 2.220446e-16 2.220446e-16 2.220446e-16 1.000000e+00 2.220446e-16
         1361
                    1362
                                1363
                                           1364
## 2.220446e-16 1.000000e+00 2.220446e-16 1.000000e+00 1.000000e+00
                    1367
                                1368
                                           1369
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
         1371
                    1372
                                1373
                                           1374
## 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16
                    1377
##
         1376
                                1378
                                           1379
## 2.220446e-16 2.220446e-16 1.000000e+00 1.000000e+00 1.000000e+00
                    1382
                                1383
                                           1384
## 2.220446e-16 2.220446e-16 1.932294e-10 2.220446e-16 2.220446e-16
data$Survivorship
##
     ##
    [24] C C C NC NC C C C NC C NC C C C NC C C NC C
    ##
NC
##
    [70] NCC C C NCNCC C NCNCC C C NCC NC NCNCNCC C
NC
    ##
```

```
NC
 NC
 [139] NCC C C NCC C C C C C C NCC C NCNC C NCC C
##
 [162] C C NC C NC NC C C C C C C C C C C C NC
##
NC
 [185] C C NC C C C C NC C NC C C C
                          NC NC C NC C
##
                                  \mathsf{C}
 [208] C NC NC C NC NC C C C NC C C
##
                           NC NC C C
NC
##
 ##
NC
##
 [277] NC C C
         NC C C NC C C NC NC NC C C NC NC C C
##
 [300] NC C C C C NC NC NC NC NC NC NC NC C NC C
                                 C
                                  NC NC C
 [323] C C C
         NC NC NC C C C C C NC NC C C
##
                                 C
                                  NC C
 NC
 ##
                                  \mathsf{C}
 C
                                    \mathsf{C}
 C
 [461] C C C NC NC C NC NC C C NC NC C NC C
##
                             C NC C
NC
##
 NC
##
 [553] C NC C C C C C C C C C C C C C
##
                             \mathsf{C}
                                    NC C
 ##
NC
 ##
                                  C
                                    NC C
 [622] NC NC C C NC C C NC NC C C C NC NC NC C C C
                                 C
 [645] C C NC NC C NC NC NC NC C
                      C C C NC NC NC NC C
                   C
##
 [668] C C NC C C NC C C C NC C NC NC NC C NC C
NC
 [691] C NC C C C C C C C C C NC NC NC C
                               NC C
                                  C
                            NC C
 [714] NC C NC C C
            C
             \mathsf{C}
                C NC C
                     NC C
                       СС
                           C
                                 C
##
                               C
                                  C
                                    \mathsf{C}
 [737] C NC C C C
            C NC C
                NC C C
                     C C
                        C
                         C
                           C
                            NC C
                               NC NC C
##
 [760] NC NC C C C C C C C C C C C
##
                            \mathsf{C} \mathsf{C} \mathsf{C} \mathsf{C}
                                 NC C
NC
 ##
 [806] C C C C C C C C C NC C NC C C NC C C
NC
 ##
 [852] NC C C C NC C C C C C C C C C C C
                               NC C
##
NC
##
  [875] C C C C C C C NC NC C C C
                         C
                           NC C
                             C
                               C
                                 NC NC NC C
 [898] NC C C NC NC C C NC NC C C
                          C C
                             \mathsf{C}
                                 C
                                  C
##
 [921] NC C NC C NC C NC NC NC C C C
                           C
                            C
                             \mathsf{C} \mathsf{C}
                                 NC NC C C
 [944] C C C C C C C C C C C C C NC NC NC C C NC
```

```
NC
  ##
NC
## [990] C C C NC C C C NC NC NC NC NC C C NC C C NC C C
## [1013] NC C NC C C NC NC NC C NC C
                            \mathsf{C} \ \mathsf{NC} \ \mathsf{C} \ \mathsf{C} \ \mathsf{C}
                                     NC C NC C NC C
## [1036] C NC C C C C C C C C C C NC NC C
                                     NC NC C
                                           NC C C
## [1059] C C C NC NC NC C NC C
                          \mathsf{C} \ \mathsf{NC} \ \mathsf{C} \ \mathsf{C} \ \mathsf{C} \ \mathsf{C}
                                     C NC C
NC C
NC
NC
## [1151] C NC C C C C C C NC NC C C NC NC NC C C C
NC
## [1197] NC C C C NC NC NC NC C C C C C C C C
NC
NC
## [1266] C C NC C NC C C
                  NC NC C NC NC NC C C NC NC NC NC NC C
NC
## [1335] C C C C NC C NC C C NC NC C C C C
                                   C
                                     C NC NC C C
NC
## [1381] C C C C C
## Levels: C NC
#pdataF <- as.factor(ifelse(test=as.numeric(pdata>0.5) == 0, yes="Healthy",
no="Unhealthy"))
#install.packages("e1071",
lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/Library")
library(e1071)
#confusionMatrix(pdataF, data$Survivorship)
#install.packages("pROC")
lib="/Library/Frameworks/R.framework/Versions/3.5/Resources/Library")
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
    cov, smooth, var
roc(data$Survivorship,logistic$fitted.values,plot=TRUE)
```

```
## Setting levels: control = C, case = NC

## Setting direction: controls < cases

##
## Call:
## roc.default(response = data$Survivorship, predictor =
logistic$fitted.values, plot = TRUE)

##
## Data: logistic$fitted.values in 903 controls (data$Survivorship C) < 482
cases (data$Survivorship NC).
## Area under the curve: 1

par(pty = "s")
roc(data$Survivorship,logistic$fitted.values,plot=TRUE)

## Setting levels: control = C, case = NC
## Setting direction: controls < cases</pre>
```



```
## NOTE: By default, roc() uses specificity on the x-axis and the values
range
## from 1 to 0. This makes the graph look like what we would expect, but the
## x-axis itself might induce a headache. To use 1-specificity (i.e. the
## False Positive Rate) on the x-axis, set "legacy.axes" to TRUE.
roc(data$Survivorship,logistic$fitted.values,plot=TRUE, legacy.axes=TRUE)
## Setting levels: control = C, case = NC
## Setting direction: controls < cases</pre>
```



```
##
## Call:
## roc.default(response = data$Survivorship, predictor =
                          plot = TRUE, legacy.axes = TRUE, xlab = "False
logistic$fitted.values,
                        ylab = "True Postive Percentage", col = "#377eb8",
Positive Percentage",
lwd = 4)
##
## Data: logistic$fitted.values in 903 controls (data$Survivorship C) < 482</pre>
cases (data$Survivorship NC).
## Area under the curve: 1
roc(data$Survivorship,logistic$fitted.values,plot=TRUE, legacy.axes=TRUE,
xlab="False Positive Percentage", ylab="True Postive Percentage",
col="#377eb8", lwd=4)
## Setting levels: control = C, case = NC
## Setting direction: controls < cases
##
## Call:
## roc.default(response = data$Survivorship, predictor =
Positive Percentage", ylab = "True Postive Percentage", col = "#377eb8",
lwd = 4)
##
## Data: logistic$fitted.values in 903 controls (data$Survivorship C) < 482</pre>
```

```
cases (data$Survivorship NC).
## Area under the curve: 1
## If we want to find out the optimal threshold we can store the
## data used to make the ROC graph in a variable...
roc.info <- roc(data$Survivorship, logistic$fitted.values, legacy.axes=TRUE)</pre>
## Setting levels: control = C, case = NC
## Setting direction: controls < cases
str(roc.info)
## List of 15
## $ direction
                     : chr "<"
                      : Named num [1:482] 1 1 1 1 1 ...
## $ cases
## ... attr(*, "names")= chr [1:482] "3" "4" "11" "15" ...
## $ controls : Named num [1:903] 2.22e-16 2.22e-16 2.22e-16 2.22e-
16 2.22e-16 ...
## ..- attr(*, "names")= chr [1:903] "1" "2" "5" "6" ...
## $ fun.sesp
                      :function (thresholds, controls, cases, direction)
## $ auc
                      : 'auc' num 1
    ..- attr(*, "partial.auc")= logi FALSE
..- attr(*, "percent")= logi FALSE
##
    ..- attr(*, "roc")=List of 15
##
                       : logi FALSE
##
    .. ..$ percent
    ##
##
7.82e-13 ...
    .. ..$ direction
                          : chr "<"
                           : Named num [1:482] 1 1 1 1 1 ...
##
     .. ..$ cases
    ..... attr(*, "names")= chr [1:482] "3" "4" "11" "15" ...
     .. ..$ controls
                           : Named num [1:903] 2.22e-16 2.22e-16 2.22e-16
2.22e-16 2.22e-16 ...
    .. .. - attr(*, "names")= chr [1:903] "1" "2" "5" "6" ...
##
   .. ..$ fun.sesp
                          :function (thresholds, controls, cases,
direction)
##
     .. ..$ auc
                            : 'auc' num 1
    .. .. - attr(*, "partial.auc")= logi FALSE
.. .. - attr(*, "percent")= logi FALSE
##
##
    .... attr(*, "roc")=List of 8
##
    .. .. .. ..$ percent
                            : logi FALSE
##
    .. .. .. $ sensitivities: num [1:71] 1 1 1 1 1 1 1 1 1 ...
     .. .. ..$ specificities: num [1:71] 0 0.966 0.967 0.968 0.969 ...
##
     ..... thresholds : num [1:71] -Inf 5.32e-14 1.71e-13 2.87e-13
7.82e-13 ...
```

```
## .....$ direction : chr "<"
## .....$ cases : Named num [1:482] 1 1 1 1 1 ...
    ..... attr(*, "names")= chr [1:482] "3" "4" "11" "15" ...
##
    .....$ controls : Named num [1:903] 2.22e-16 2.22e-16
2.22e-16 2.22e-16 ...
     ..... attr(*, "names")= chr [1:903] "1" "2" "5" "6" ...
     ..... fun.sesp :function (thresholds, controls, cases,
direction)
    .. .. .. - attr(*, "class")= chr "roc"
     .. ..$ call
                            : language roc.default(response =
data$Survivorship, predictor = logistic$fitted.values, legacy.axes =
TRUE)
   ....$ original.predictor: Named num [1:1385] 2.22e-16 2.22e-16 1.00
1.00 2.22e-16 ...
    .... attr(*, "names")= chr [1:1385] "1" "2" "3" "4" ...
    .. ..$ original.response : Factor w/ 2 levels "C", "NC": 1 1 2 2 1 1 1 1
1 1 ...
## ....$ predictor : Named num [1:1385] 2.22e-16 2.22e-16 1.00
1.00 2.22e-16 ...
    .... attr(*, "names")= chr [1:1385] "1" "2" "3" "4" ...
                           : Factor w/ 2 levels "C", "NC": 1 1 2 2 1 1 1 1
##
    .. ..$ response
1 1 ...
                    : chr [1:2] "C" "NC"
## .. ..$ levels
## ....- attr(*, "class")= chr "roc"
## $ call
                      : language roc.default(response = data$Survivorship,
predictor = logistic$fitted.values, legacy.axes = TRUE)
## $ original.predictor: Named num [1:1385] 2.22e-16 2.22e-16 1.00 1.00
2.22e-16 ...
## ..- attr(*, "names")= chr [1:1385] "1" "2" "3" "4"
## $ original.response : Factor w/ 2 levels "C", "NC": 1 1 2 2 1 1 1 1 1 1
. . .
## $ predictor
                 : Named num [1:1385] 2.22e-16 2.22e-16 1.00 1.00
2.22e-16 ...
## ..- attr(*, "names")= chr [1:1385] "1" "2" "3" "4" ...
## $ response
                     : Factor w/ 2 levels "C", "NC": 1 1 2 2 1 1 1 1 1 1
. . .
                      : chr [1:2] "C" "NC"
## $ levels
## - attr(*, "class")= chr "roc"
roc.df <- data.frame(tpp=roc.info$sensitivities*100, ## tpp = true positive
percentage
                   fpp=(1 - roc.info$specificities)*100, ## fpp = false
positive precentage
                   thresholds=roc.info$thresholds)
roc.df
                      fpp thresholds
##
           tpp
## 1 100.00000 100.0000000
## 2 100.00000 3.4330011 5.323833e-14
## 3 100.00000 3.3222591 1.709546e-13
```

```
## 4
                  3.2115172 2.867293e-13
     100.00000
## 5
      100.00000
                   3.1007752 7.822429e-13
## 6
      100.00000
                   2.9900332 3.212620e-12
##
  7
                  2.8792913 1.332148e-11
      100.00000
## 8
      100.00000
                  2.7685493 6.246558e-11
## 9
      100.00000
                   2.6578073 1.065926e-10
## 10 100.00000
                   2.5470653 1.514639e-10
## 11 100.00000
                   2.4363234 2.243080e-10
## 12 100.00000
                   2.3255814 3.322046e-10
## 13 100.00000
                   2.2148394 4.842714e-10
## 14 100.00000
                   2.1040975 1.012910e-09
## 15 100.00000
                   1.9933555 2.162425e-09
                  1.8826135 3.249212e-09
## 16 100.00000
## 17 100.00000
                  1.7718715 3.671963e-09
                  1.6611296 3.795815e-09
## 18 100.00000
## 19 100.00000
                  1.5503876 4.255825e-09
## 20 100.00000
                   1.4396456 5.278876e-09
## 21 100.00000
                  1.3289037 6.314976e-09
## 22 100.00000
                  1.2181617 6.925201e-09
## 23 100.00000
                  1.1074197 7.904498e-09
                  0.9966777 9.076446e-09
## 24 100.00000
## 25 100.00000
                  0.8859358 1.037345e-08
## 26 100.00000
                  0.7751938 1.130368e-08
## 27 100.00000
                  0.6644518 1.186846e-08
## 28 100.00000
                   0.5537099 1.238450e-08
## 29 100.00000
                  0.4429679 1.294924e-08
## 30 100.00000
                  0.3322259 1.375664e-08
## 31 100.00000
                  0.2214839 1.411637e-08
## 32 100.00000
                  0.1107420 1.712244e-08
## 33 100.00000
                  0.0000000 5.000000e-01
## 34
       99.79253
                   0.0000000 1.000000e+00
## 35
       99.58506
                  0.0000000 1.000000e+00
## 36
       99.37759
                  0.0000000 1.000000e+00
## 37
       99.17012
                   0.0000000 1.000000e+00
##
  38
       98.96266
                  0.0000000 1.000000e+00
## 39
       98.75519
                  0.0000000 1.000000e+00
                  0.0000000 1.000000e+00
## 40
       98.54772
## 41
       98.34025
                  0.0000000 1.000000e+00
## 42
       98.13278
                  0.0000000 1.000000e+00
## 43
       97.92531
                  0.0000000 1.000000e+00
## 44
       97.71784
                  0.0000000 1.000000e+00
## 45
       97.51037
                  0.0000000 1.000000e+00
                  0.0000000 1.000000e+00
## 46
       97.30290
## 47
       97.09544
                  0.0000000 1.000000e+00
## 48
       96.88797
                  0.0000000 1.000000e+00
## 49
       96.68050
                  0.0000000 1.000000e+00
## 50
       96.47303
                  0.0000000 1.000000e+00
## 51
       96.26556
                  0.0000000 1.000000e+00
## 52
       96.05809
                  0.0000000 1.000000e+00
## 53
       95.85062
                  0.0000000 1.000000e+00
```

```
## 54 95.64315
                  0.0000000 1.000000e+00
## 55
      95.43568
                  0.0000000 1.000000e+00
## 56
      95.22822
                  0.0000000 1.000000e+00
## 57
      95.02075
                  0.0000000 1.000000e+00
## 58
      94.81328
                  0.0000000 1.000000e+00
## 59
       94.60581
                  0.0000000 1.000000e+00
## 60
      94.39834
                  0.0000000 1.000000e+00
## 61
       94.19087
                  0.0000000 1.000000e+00
## 62
      93.98340
                  0.0000000 1.000000e+00
## 63
       93.77593
                  0.0000000 1.000000e+00
## 64
      93.56846
                  0.0000000 1.000000e+00
                  0.0000000 1.000000e+00
## 65
      93.36100
## 66
                  0.0000000 1.000000e+00
      93.15353
## 67
      92.94606
                  0.0000000 1.000000e+00
## 68
      92.73859
                  0.0000000 1.000000e+00
## 69
      92.53112
                  0.0000000 1.000000e+00
## 70
      92.32365
                  0.0000000 1.000000e+00
## 71
        0.00000
                  0.0000000
                                     Inf
head(roc.df) ## head() will show us the values for the upper right-hand
corner of the ROC graph, when the threshold is so low
     tpp
                fpp
                      thresholds
## 1 100 100.000000
                            -Inf
## 2 100
          3.433001 5.323833e-14
## 3 100
          3.322259 1.709546e-13
## 4 100
          3.211517 2.867293e-13
## 5 100
           3.100775 7.822429e-13
## 6 100
           2.990033 3.212620e-12
## (negative infinity) that every single sample is called "obese".
## Thus TPP = 100% and FPP = 100%
tail(roc.df) ## tail() will show us the values for the lower left-hand corner
           tpp fpp thresholds
##
## 66 93.15353
                 0
                            1
## 67 92.94606
                            1
                 0
## 68 92.73859
                            1
                 0
## 69 92.53112
                 0
                            1
## 70 92.32365
                            1
                 0
## 71 0.00000
                          Inf
                 0
## of the ROC graph, when the threshold is so high (infinity)
## that every single sample is called "not obese".
## Thus, TPP = 0\% and FPP = 0\%
## now let's look at the thresholds between TPP 60% and 80%
roc.df[roc.df$tpp > 60 & roc.df$tpp < 80,]</pre>
## [1] tpp
                  fpp
                             thresholds
## <0 rows> (or 0-length row.names)
```

```
roc(data$Survivorship,logistic$fitted.values,plot=TRUE, legacy.axes=TRUE,
xlab="False Positive Percentage", ylab="True Postive Percentage",
col="#377eb8", lwd=4, percent=TRUE)

## Setting levels: control = C, case = NC
## Setting direction: controls < cases</pre>
```



```
##
## Call:
## roc.default(response = data$Survivorship, predictor =
                            percent = TRUE, plot = TRUE, legacy.axes = TRUE,
logistic$fitted.values,
xlab = "False Positive Percentage",
                                        ylab = "True Postive Percentage", col
= "#377eb8", 1wd = 4)
##
## Data: logistic$fitted.values in 903 controls (data$Survivorship C) < 482</pre>
cases (data$Survivorship NC).
## Area under the curve: 100%
roc(data$Survivorship,logistic$fitted.values,plot=TRUE, legacy.axes=TRUE,
xlab="False Positive Percentage", ylab="True Postive Percentage",
col="#377eb8", lwd=4, percent=TRUE, print.auc=TRUE)
## Setting levels: control = C, case = NC
## Setting direction: controls < cases
```



```
##
## Call:
## roc.default(response = data$Survivorship, predictor =
                            percent = TRUE, plot = TRUE, legacy.axes = TRUE,
logistic$fitted.values,
xlab = "False Positive Percentage",
                                        ylab = "True Postive Percentage", col
= "#377eb8", 1wd = 4,
                          print.auc = TRUE)
##
## Data: logistic$fitted.values in 903 controls (data$Survivorship C) < 482</pre>
cases (data$Survivorship NC).
## Area under the curve: 100%
roc(data$Survivorship,logistic$fitted.values,plot=TRUE, legacy.axes=TRUE,
xlab="False Positive Percentage", ylab="True Postive Percentage",
col="#377eb8", lwd=4, percent=TRUE, print.auc=TRUE, partial.auc=c(100, 90),
auc.polygon = TRUE, auc.polygon.col = "#377eb822", print.auc.x=45)
## Setting levels: control = C, case = NC
## Setting direction: controls < cases
```



```
##
## Call:
## roc.default(response = data$Survivorship, predictor =
                          percent = TRUE, plot = TRUE, legacy.axes = TRUE,
logistic$fitted.values,
xlab = "False Positive Percentage",
                                     ylab = "True Postive Percentage", col
= "#377eb8", lwd = 4,
                        print.auc = TRUE, partial.auc = c(100, 90),
                     auc.polygon.col = "#377eb822", print.auc.x = 45)
auc.polygon = TRUE,
##
## Data: logistic$fitted.values in 903 controls (data$Survivorship C) < 482</pre>
cases (data$Survivorship NC).
## Partial area under the curve (specificity 100%-90%): 10%
# Lets do two roc plots to understand which model is better
roc(data$Survivorship, logistic_simple$fitted.values, plot=TRUE,
legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True
Postive Percentage", col="#377eb8", lwd=4, print.auc=TRUE)
## Setting levels: control = C, case = NC
## Setting direction: controls < cases
##
## Call:
## roc.default(response = data$Survivorship, predictor =
logistic simple$fitted.values,
                                 percent = TRUE, plot = TRUE, legacy.axes =
TRUE, xlab = "False Positive Percentage", ylab = "True Postive
```

```
## Data: logistic_simple$fitted.values in 903 controls (data$Survivorship C)
< 482 cases (data$Survivorship NC).
## Area under the curve: 52.71%

# Lets add the other graph
plot.roc(data$Survivorship, logistic$fitted.values, percent=TRUE,
col="#4daf4a", lwd=4, print.auc=TRUE, add=TRUE, print.auc.y=40)

## Setting levels: control = C, case = NC
## Setting direction: controls < cases

legend("bottomright", legend=c("Simple", "Non Simple"), col=c("#377eb8",
"#4daf4a"), lwd=4) # Make it user friendly</pre>
```

