Thema des Seminars

Vorname Nachname

Zusammenfassung—Die Ausarbeitung beginnt mit einer kurzen Zusammenfassung.

I. Introduction

Hier beginnt der Text...

II. EIN PAAR HINWEISE

Vor eine Subsection gehören immer noch ein paar einleitende Worte!

A. Absätze, etc.

Ein neuer Absatz sollte nicht durch einen Zeilenumbruchs-Befehl, sondern durch eine Leerzeile im Code erzeugt werden. Das hier ist richtig.

Das hier nicht.

B. Formeln

So können Formeln gesetzt und referenziert werden:

$$a = b + c. (1)$$

Laut (1) ist a=b+c. Formeln sind Teil des Fließtextes und sollten deshalb korrekt mit Punkten und Kommata interpunktiert werden. Das \setminus , fügt dabei einen kleinen Abstand zwischen Formel und Interpunktion ein.

Mehrzeiliger Formelsatz mit der *split* Umgebung innerhalb der *equation* Umgebung:

$$a = b + c,$$

$$a_{ij} = b_{ij} + c_{ij}.$$

Funktionen sollen in Formeln *nicht* mit mathematischer Schrift gesetzt werden. Dazu gibt es in LaTeX für fast alle Funktionen schon Makros, z.B.

$$y = \sin(x) \,,$$

nicht

$$y = sin(x)$$

benutzen. Für nicht vorhandene Funktionen kann *operatorname* eingesetzt werden:

$$y = \operatorname{spur}(X)$$
.

C. Bilder

So werden Bilder eingebunden (als pdf, jpg oder png): Auf diese Abbildung wird dann mit Abb. 1 verwiesen.

D. Zitate

Immer korrekt zitieren [?]!

Abbildung 1: Hier kommen weitere Erklärungen zum Bild.

E. LaTeX Hilfe

Diese Website ist sehr nützlich: http://en.wikibooks.org/wiki/LaTeX

III. ZUSAMMENFASSUNG UND AUSBLICK

- 1) State estimation in dynamic systems (e.g in robotic)
 - a) context about what estimation is wrt. to a system
 - b) state is not directly observable and we need measurement in order to estimate the state
 - c) noisy measurements
 - d) linear and non-linear systems (e.g. Kalman Filter in linear case and Unscented Kalman Filter in nonlinear)
- 2) prediction and filtering steps in the estimation
- 3) problems in estimation
 - a) closed form representation of the desired density function are most often not possible (in non-linear case) → approximation of probability density
 - b) storing all information and propagate it every time step is computational expensive → progressive
- 4) Short overview of different methods that focuses on nonlinear dynamic systems (state of the art)
 - a) Methods using ODE (track true density via ODE)
 - b) Other methods
- 5) Give an outlook on the seminar objective (not quite sure). Either one ODE method and one other non-linear filter method or a different ODE methods

Sources: [3] [4] [1] [2]

LITERATUR

- [1] F. Daum. Nonlinear filters: Beyond the Kalman filter. *IEEE Aerospace and Electronic Systems Magazine*, 20(8):57–69, August 2005. Conference Name: IEEE Aerospace and Electronic Systems Magazine.
- [2] Jonas Hagmar, Mats Jirstrand, Lennart Svensson, and Mark Morelande. Optimal parameterization of posterior densities using homotopy. In 14th International Conference on Information Fusion, pages 1–8, July 2011.
- [3] Uwe D. Hanebeck, Kai Briechle, and Andreas Rauh. Progressive Bayes: A new framework for nonlinear state estimation. In Belur V. Dasarathy, editor, AeroSense 2003, page 256, Orlando, FL, April 2003.
- [4] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deterministic Sampling for High Quality Nonlinear Estimation. *IFAC Proceedings Volumes*, 41(2):13527–13532, 2008.