Moje notatki na bazie skryptu topology without tears

Lukasz Kopyto

February 16, 2024

1 Przestrzenie topologiczne

1.1 Definicje, lematy, zadania i rozwiazania

1.1.1 Definicja: Topologia

Niech X bedzie niepustym zbiorem. Mowimy, ze zbior T zawierajacy podzbiory X jest topologia na X jesli:

- X oraz zbior pusty \emptyset , naleza do T,
- ullet suma skonczona badz nie zbiorow z T nalezy do T, inaczej T jest zamkniety na sume, i ta suma moze byc nieskonczona
- ullet przekroj dowolnych dwoch zbiorow z T nalezy do T, inaczej T jest zamkniety na przekroj, ale przekroj skonczony

Para (X,T) nazywamy **przestrzenia topologiczna.**

1.1.6 Definicja: Topologia dyskretna(discrete topology)

Niech X bedzie niepustym zbiorem oraz T kolekcja wszystkich podzbiorow X. Wtedy mowimy, ze T jest **topologia dyskretna** na zbiorze X. Przestrzen topologiczna (X,T) jest nazywana **przestrzenia dyskretna**

1.1.7 Definicja: Topologia niedyskretne(indiscrete topology)

Niech X bedzie niepustym zbiorem oraz $T=\{X,\emptyset\}$. Wtedy mowimy, ze T jest **topologia niedyskretna** oraz (X,T) jest **przestrzenia niedyskretna**

1.1.9 Lemat: Topologia dyskretna i singletony

Jezeli (X,T) jest przestrzenia topologiczna, taka ze, dla kazdego $x \in X$, singleton x, $\{x\}$ jest w X, to X jest topologia dyskretna.

Dowod:

Wystarcz sprawdzie prawdziwose trzech warunkow, z definicji 1.1.1.

- 1. Z definicji T jest topologia, wiec zawiera X oraz \emptyset .
- 2. Niech S bedzie suma skonczona lub nie dowolnej liczby zbiorow z T. Poniewaz mozemy zapisac S jako $S=\bigcup_{x\in S}\{x\}$, a kazdy singleton $\{x\}\in X$, wnioskujemy stad, ze $S\in T$
- 3. Analogicznie dowodzimy, ze przekroj dowolnych dwoch zbiorow z Tnalezy do T

Cwiczenia 1.1

1. Niech $X = \{a, b, c, d, e, f\}$. Ustal czy podane kolekcje podzbiorow Xsa topologia na X

(a)
$$T_1 = \{X, \emptyset, \{a\}, \{a, f\}, \{b, f\}, \{a, b, f\}\}$$

(b)
$$T_2 = \{X, \emptyset, \{a, b, f\}, \{a, b, d\}, \{a, b, d, f\}\}$$

(c)
$$T_3 = \{X, \emptyset, \{f\}, \{e, f\}, \{a, f\}\}$$

Odpowiedz:

- (a) Jest topologia.
- (b) Nie jest, bo $\{a, b, f\} \cap \{a, b, d\} = \{a, b\} \notin T_2$
- (c) Nie jest, bo $\{e, f\} \cup \{a, f\} = \{a, e, f\} \notin T_3$
- 2. Niech $X = \{a, b, c, d, e, f\}$. Wskaz i uzasadnij ktore kolekcje podzbiorow Xsa topologia na X

(a)
$$T_1 = \{X, \emptyset, \{c\}, \{b, d, e\}, \{b, c, d, e\}, \{b\}\}$$

(b)
$$T_2 = \{X, \emptyset, \{a\}, \{b, d, e\}, \{a, b, d\}, \{a, b, d, e\}\}$$

(c)
$$T_3 = \{X, \emptyset, \{b\}, \{a, b, c\}, \{d, e, f\}, \{b, d, e, f\}\}$$

Odpowiedz:

(a) Nie, bo
$$\{c\} \cup \{b\} = \{b, c\} \notin T_1$$

(b) Nie, bo
$$\{b, d, e\} \cap \{a, b, d\} = \{b, d\} \notin T_2$$

(c) Jest topologia.

- 3. Niech $X = \{a, b, c, d, e, f\}$ oraz T bedzie topologia dyskretna na X, ktore z ponizszych podpunktow sa prawdziwe?
 - (a) $X \in T$ Prawda
 - (b) $\{X\} \in T$ Falsz
 - (c) $\{\emptyset\} \in T$ Falsz
 - (d) $\emptyset \in T$ Prawda
 - (e) $\emptyset \in X$ Falsz
 - (f) $\{\emptyset\} \in X$ Falsz
 - (g) $\{a\} \in T$ Prawda
 - (h) $a \in T$ Falsz
 - (i) $\emptyset \subseteq X$ Prawda
 - (j) $\{a\} \in X$ Falsz
 - (k) $\{\emptyset\} \subseteq X$ Falsz
 - (l) $a \in X$ Prawda
 - (m) $X \subseteq T$ Falsz
 - (n) $\{a\} \subseteq T$ Falsz
 - (o) $\{X\} \subseteq T$ Prawda
 - (p) $a \subseteq T$ Falsz
- 4. Niech (X,T) bedzie dowolna przestrzenia topologiczna. Udowodnij, ze przekroj skonczonej liczby(dowolnej) elementow z T jest elementem T

Odpowiedz:

Udowodnimy to przez indukcje wzgledem liczby elementow przekroju.

Teza: Dla przestrzeni topologicznej (X,T) przekroj skonczonej liczby elementow z T jest elementem T.

Podstawa indukcji: dla n = 2, mamy $\bigcap_{i=1}^{2} A_i$, gdzie $A_i \in T$, A_i sa dowolnymi zbiorami nalezacymi do T. Poniewaz T jest topologia na X wiec z definicji, przekroj dowolnych dwoch zbiorow nalezacych do T, nalezy do T, zatem $\bigcap_{i=1}^{2} A_i \in T$.

Krok indukcyjny: Ustalmy teraz dowolne $n \in \mathbb{N}$ i zalozmy, ze $\bigcap_{i=1}^{n} A_i \in T$. Pokaze ze dla n+1 teza zachodzi. Oznaczmy sobie $B = \bigcap_{i=1}^{n} A_i$. Dla n+1 mamy:

$$\bigcap_{i=1}^{n+1}A_i=\bigcap_{i=1}^nA_i\cap A_{n+1}=\text{ zal. ind. }=B\cap A_{n+1}$$
Poniewa
z $B\in T$ oraz $A_{n+1}\in T$ wiec z definicji topologi,
 $B\cap A_{n+1}\in T$

Zatem na mocy zasady indukcji matematycznej, dla przestrzeni topologicznej (X,T) przekroj skonczonej liczby elementow z T jest elementem T.

- 5. Niech $\mathbb R$ bedzie zbiorem liczb rzeczywistych. Udowodnij ze kazdy z nastepujacych kolekcji podzbiorow $\mathbb R$ jest topologia.
 - (a) T_1 zawiera \mathbb{R}, \emptyset oraz kazdy przedzial (-n, n), dla dowolnego $n \in \mathbb{N}^+$, gdzie (-n, n) oznacza zbior $\{x \in \mathbb{R} : -n < x < n\}$
 - (b) T_2 zawiera \mathbb{R}, \emptyset oraz kazdy przedzial [-n, n], dla dowolnego $n \in \mathbb{N}^+$, gdzie [-n, n] oznacza zbior $\{x \in \mathbb{R} : -n \le x \le n\}$
 - (c) T_3 zawiera \mathbb{R}, \emptyset oraz kazdy przedzial $[n, \infty)$, dla dowolnego $n \in \mathbb{N}^+$, gdzie $[n, \infty)$ oznacza zbior $\{x \in \mathbb{R} : n \leq x\}$

Odpowiedz:

Trzeba kazdy podpunkt sprawdzic z definicji topologii, czyli w kazdym podpunkcie sprawdzic czy (a') X oraz \emptyset naleza do T, (b') zamknietosc na sume teoriomnogosciowa skonczona lub nie i (c') zamknietosc na przekroj(skonczony)

dla T_1 mamy:

- (a') Z opisu T_1 mamy, ze $\mathbb{R} \in T_1$ oraz $\emptyset \in T_1$
- (b') Niech $U=\bigcup_{\alpha\in A}U_{\alpha}$ gdzie $A_{\alpha}\in T_{1}$ oraz A jest pewnym zbiorem indeksowym, bedzie dowolna suma(skonczona badz nie) zbiorow. Rozwazmy przypadki:
 - $U_{\alpha} = \mathbb{R}$ dla pewnego $\alpha \in A$. Wtedy $\bigcup_{\alpha \in A} U_{\alpha} = \mathbb{R} \in T_1$
 - $U_{\alpha} \neq \mathbb{R}$ dla kazdego $\alpha \in A$. Wtedy mamy przypadki:
 - $U_{\alpha} = \emptyset \text{ dla kazdego } \alpha \in A.$ Wtedy $\bigcup_{\alpha \in A} U_{\alpha} = \emptyset \in T_{1}$
 - $-U_{\alpha} \neq \emptyset$ dla pewnego $\alpha \in A$ oraz zbior

$$B = \{n : U_{\alpha} = (-n, n) \land n \in \mathbb{N} \land \alpha \in A\}$$

jest ograniczony z gory.

Wtedy, z tego ze zbior B jest ograniczony z gory i zawiera liczby naturalne, wiemy ze istnieje najmniejsza liczba naturalna m, ktora ogranicza ten zbior z gory. Wezmy zatem liczbe m. Zauwazmy, ze m jest jednoczesnie maximum zbioru

B. Z definicji zbioru T_1 mamy, ze $(-m, m) \in T_1$ oraz z tego, ze B jest ograniczony z gory, wnioskujemy

$$\bigcup_{\alpha \in A} U_{\alpha} = (-m, m) \in T_1$$

 $-U_{\alpha} \neq \emptyset$ dla pewnego $\alpha \in A$ oraz zbior

$$B = \{n : U_{\alpha} = (-n, n) \land n \in \mathbb{N} \land \alpha \in A\}$$

jest nieograniczony z gory.

Wtedy, mam sprzecznosc, bo załozylismy, ze $\mathbb{R} \notin T_1$, z drugiej strony zbior B jest nieograniczony, a

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{n=1}^{\infty} (-n, n) = \mathbb{R}$$

Zatem ten podpunkt odpada.

Sprawdzilismy zatem wszystkie mozliwości i otrzymalismy, ze zbior T_1 jest zamkniety na sume(skonczona badz nie)

(c') Wezmy dwa dowolne zbiory $B\in T_1$ ora
z $C\in T_1.$ Pokazemy, ze $B\cap C\in T_1$

Rozwazmy przypadk:

- $B \lor C = \emptyset$ Wtedy: $B \cap C = \emptyset \in T_1$
- $B \wedge C \neq \emptyset$ Wtedy mamy przypadki:
 - $-B \wedge C = \mathbb{R}$ Wtedy $B \cap C = \mathbb{R} \in T_1$
 - $-B \lor C \neq \mathbb{R}$

Wtedy ktorys ze zbiorow(byc moze oba) jest postaci (-m,m) dla $m \in \mathbb{N}$. Jesli $B = \mathbb{R}$ i $C = (-m,m), m \in \mathbb{N}$ to $B \cap C = (-m,m) \in T_1$. Drugi przypadek to gdy oba sa postaci prostej, czyli B = (-m,m) oraz C = (-n,n) dla $m,n \in \mathbb{N}$. Wtedy niech k = min(m,n), mamy $B \cap C = (-k,k) \in T_1$

Zatem T_1 zamkniete na przekroj.

 T_1 jest zatem topologia. c.b.d.u.

dla T_2 mamy: TODO dla T_3 mamy: TODO

- (a') Z opisu T_3 mamy, ze $\mathbb{R} \in T_3$ oraz $\emptyset \in T_3$
- (b') cos dalej

1.2.1 Definicja: Zbior otwarty- open set

Niech (X,T) bedzie przestrzenia topologiczna. Wtedy elementy T nazywaja sie **zbiory otwarte.**

1.2.2 Lemat: Przestrzen topologiczna i zbiory otwarte

Niech (X,T) bedzie przestrzenia topologiczna. Wtedy

- X oraz \emptyset sa zbiorami otwartymi.
- suma(skonczona lub nie) zbiorow otwartych jest zbiorem otwartym
- przekroj skonczony zbiorow otwartych jest zbiorem otwartym

Dowod: Wynika to wprost z definicji. Podpunkt trzeci wynika z zadania 4.

1.2.3 Definicja: Zbior zamkniety- closed set

Niech (X,T) bedzie przestrzenia topologiczna. Podzbior S zbioru X jest **zbiorem zamknietym** w (X,T) jesli jego dopelnienie w $X, X \setminus S$, jest zbiorem otwartym w (X,T)

Komentarz

Czyli mowimy, ze S, bedace podzbiorem X, jest zbiorem zamknietym w (X,T) jesli jego dopelnienie w X, czyli $X\setminus S$ jest otwarte, czli jesli $X\setminus S\in T$ Zauwazmy, ze jesli (X,T) jest przestrzenia dyskretna, wtedy kazdy podzbior X jest zbiorem zamknietym. Jednakze w przestrzeni niedyskretnej, (X,T), jedynymi zbiorami zamknietymi sa X oraz \emptyset

1.2.5 Lemat: Przestrzen topologiczna i zbiory zamkniete

Niech (X,T) bedzie przestrzenia topologiczna. Wtedy

- \emptyset oraz X sa zbiorami zamknietymi
- przekroj skonczonej lub nieskonczonej liczby zbiorow zamknietych jest zbiorem zamknietym
- $\bullet\,$ suma skonczonej liczby zbiorow zamknietych jest zbiorem zamknietym

Komentarz:

Mozna tu dostrzec pewna analogie pomiedzy przestrzenia topologiczna i zbiorami otwartymi

Dowod:

TODO