Lab M4 Projectile Motion

Harrison Hutton

Contents

1	VI-1	2
2	VI-2	3
3	VI-3	3
	3.1 Linest	3
	3.2 Calculating θ_e	3
	3.3 Calculating θ_m	4
	3.4 Compare the θ Values	4
4	VI-4	4
	4.1 Calculating v_0	4
	4.2 Calculating σ_{v_0}	
	4.3 $v_0 \pm \sigma_{v_0}$	5
5	VI-5	5
6	VI-6	5

1 VI-1

Table 1: h and d value

-2.4 -0.08856 -1.5 -0.05535 -1.6 27.1 -0.05904 -1.8 -0.06642 -1.9 -0.07011 3.2 0.094118 3.4 0.1 3.7 34 0.108824 4.5 0.132353 5.1 0.15 10.5 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.8 0.905455 50.5 0.918182 64.5 1.040323 <	h (cm)	D (cm)	h/D
-1.5 -0.05535 -1.6 27.1 -0.05904 -1.8 -0.06642 -0.07011 3.2 0.094118 0.1 3.4 0.1 0.108824 4.5 0.132353 0.15 10.5 0.256098 0.265854 11 41 0.268293 11.1 0.270732 0.21 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.080645			· ·
-1.6 27.1 -0.05904 -1.8 -0.06642 -1.9 -0.07011 3.2 0.094118 3.4 0.1 3.7 34 0.108824 4.5 0.132353 5.1 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548	II		
-1.8 -0.06642 -1.9 -0.07011 3.2 0.094118 3.4 0.1 3.7 34 0.108824 4.5 0.132353 5.1 0.15 10.5 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.080645 67.7 1.091935 85.9 1.244928 86	II	27.1	
-1.9 -0.07011 3.2 0.094118 3.4 0.1 3.7 34 0.108824 4.5 0.132353 5.1 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 1.091935	[]		
3.2 0.094118 3.4 0.1 3.7 34 0.108824 4.5 0.132353 5.1 0.15 10.5 0.26698 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 <	II.		
3.4 0.1 3.7 34 0.108824 4.5 0.132353 5.1 0.15 10.5 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1	ll .		
3.7 34 0.108824 4.5 0.132353 5.1 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 0.295122 19.8 0.430435 0.443478 20.4 0.469565 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	II.		
4.5 0.132353 5.1 0.15 10.5 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 0.295122 19.8 0.430435 0.443478 20.8 46 0.452174 21.6 0.469565 0.21 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	3.7	34	0.108824
10.5 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 0.443478 20.4 0.443478 0.469565 22.1 0.480435 31.3 31.3 0.652083 31.7 32.2 48 0.670833 32.4 0.675 32.9 49.2 0.894545 49.4 49.2 0.894545 49.8 49.7 55 0.903636 49.8 0.905455 50.5 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	4.5		0.132353
10.5 0.256098 10.9 0.265854 11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 0.443478 20.4 0.443478 0.469565 22.1 0.480435 31.3 31.3 0.652083 31.7 32.2 48 0.670833 32.4 0.675 32.9 49.2 0.894545 49.4 49.2 0.894545 49.8 49.7 55 0.903636 49.8 0.905455 50.5 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	5.1		0.15
11 41 0.268293 11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	<u> </u>		0.256098
11.1 0.270732 12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	10.9		
12.1 0.295122 19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 0.894545 49.2 0.894545 0.903636 49.8 0.905455 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	11	41	0.268293
19.8 0.430435 20.4 0.443478 20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	11.1		0.270732
20.4 0.443478 20.8 46 0.452174 21.6 0.469565 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	12.1		0.295122
20.8 46 0.452174 21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	19.8		0.430435
21.6 0.469565 22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	20.4		0.443478
22.1 0.480435 31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	20.8	46	0.452174
31.3 0.652083 31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	21.6		0.469565
31.7 0.660417 32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	22.1		0.480435
32.2 48 0.670833 32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	31.3		0.652083
32.4 0.675 32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	31.7		0.660417
32.9 0.685417 49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	32.2	48	0.670833
49.2 0.894545 49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	32.4		0.675
49.4 0.898182 49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	32.9		0.685417
49.7 55 0.903636 49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	49.2		0.894545
49.8 0.905455 50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	49.4		0.898182
50.5 0.918182 64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	49.7	55	0.903636
64.5 1.040323 64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	49.8		0.905455
64.7 1.043548 64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	50.5		0.918182
64.9 62 1.046774 67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	ll .		1.040323
67 1.080645 67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	II		
67.7 1.091935 85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	II .	62	
85.9 1.244928 86 1.246377 87.5 69 1.268116 88.8 1.286957	II .		
86 1.246377 87.5 69 1.268116 88.8 1.286957	<u> </u>		
87.5 69 1.268116 88.8 1.286957			
88.8 1.286957	II.		
	II.	69	
80 4 1 205652	ll .		
1.230002	89.4		1.295652

2 VI-2

3 VI-3

3.1 Linest

Using Linest, Excel returns the slope, y-intercept, and the uncertainties in both of these values for the above graph.

$$s = 0.033467305$$

$$\sigma_s = 0.000742608$$

$$b = -1.013807177$$

$$\sigma_b = 0.036777313$$

3.2 Calculating θ_e

From the equation in the book,

$$b = -\tan(\theta_e)$$

we can rearrange to solve for θ_e .

$$\tan^{-1}(-b) = \theta_e$$
, $\tan^{-1}(-\sigma_b) = \sigma_{\theta_e}$

$$\tan^{-1}(-(-1.013807177)) = 45^{\circ}, \quad \tan^{-1}(-(0.036777313)) = 2^{\circ}$$

Finally,

$$\theta_e \pm \sigma_{\theta_e} = \mathbf{45} \pm \mathbf{2}^{\circ}$$

3.3 Calculating θ_m

To calculate θ_m , I can take the average of all 3 measured values.

$$\theta_m = \frac{\theta_1 + \theta_2 + \theta_3}{3} = \frac{37^\circ + 35^\circ + 35^\circ}{3}$$

$$\theta_m = 36^\circ$$

To calculate σ_{θ_m} , I'll take one half of the difference between the largest measured θ value and the smallest.

$$\sigma_{\theta_m} = \frac{|\theta_{larger} - \theta_{smaller}|}{2} = \frac{|37^\circ - 35^\circ|}{2}$$
$$\sigma_{\theta_m} = 1^\circ$$

Finally,

$$\theta_m \pm \sigma_{\theta_m} = \mathbf{36} \pm \mathbf{1}^{\circ}$$

3.4 Compare the θ Values

Unfortunately, the values that were returned for each θ do not agree with each other, even when accounting for their uncertainties.

I do believe that the measured value of θ is actually a more reliable number because even though the other one was calculated, it depended on 48 other measured values that can be seen in the table in section: VI-1. So while measuring θ flat out may not be perfectly accurate, each data point in the table can hold it's own uncertainty, contributing to an even more uncertain calculation for θ_e .

4 VI-4

4.1 Calculating v_0

Using the slope returned by Excel, $g = 980 \text{cm/s}^2$, and both of the calculated θ values, v_0 can be calculated by using,

$$s = \frac{g}{2v_0^2 \cos^2(\theta)}$$

Rearranging for v_0 ,

$$v_0 = \sqrt{\frac{g}{2s\cos^2(\theta)}}$$

Since we have two different θ values, we'll end up with two different initial velocities: v_{0_e} and v_{0_m} .

$$v_{0_e} = \sqrt{\frac{980cm/s^2}{2(0.033467305)\cos^2(45^\circ)}} = 170 \text{cm/s}$$

$$v_{0_m} = \sqrt{\frac{980cm/s^2}{2(0.033467305)\cos^2(36)}} = 150cm/s$$

4.2 Calculating σ_{v_0}

To calculate the uncertainties in the above initial velocities, we can use the formula found in the lab manual. The partial derivatives are already solved for us.

$$\sigma_{v_0} = v_0 \sqrt{\left(\frac{b\sigma_b}{1+b^2}\right)^2 + \left(\frac{\sigma_s}{2s}\right)^2}$$

For $\sigma_{v_{0_e}}$,

$$\sigma_{v_{0e}} = (170cm/s)\sqrt{\left(\frac{(-1.013807177)(0.036777313)}{1 + (-1.013807177)^2}\right)^2 + \left(\frac{(0.000742608)}{2(0.033467305)}\right)^2}$$

$$\sigma_{v_{0e}} = 4\text{cm/s}$$

For $\sigma_{v_{0_m}}$,

$$\sigma_{v_{0_m}} = (170cm/s)\sqrt{\left(\frac{(-1.013807177)(0.036777313)}{1 + (-1.013807177)^2}\right)^2 + \left(\frac{(0.000742608)}{2(0.033467305)}\right)^2}$$

$$\sigma_{v_{0_m}} = 3\text{cm/s}$$

4.3 $v_0 \pm \sigma_{v_0}$

For both velocities:

$$v_{0_e} \pm \sigma_{v_{0_e}} = 170 \pm 4 \mathrm{cm/s}$$
 $v_{0_m} \pm \sigma_{v_{0_m}} = 150 \pm 3 \mathrm{cm/s}$

5 VI-5

From the book, the initial velocity can be found using the following formula:

$$v_0 = \sqrt{\frac{10gs}{9}}$$

Plugging in the values this becomes:

$$v_0 = \sqrt{\frac{10(980cm/s)(30.3)}{9}} =$$
180cm/s

6 VI-6

Unfortunately, my result from Section VI-5 does not fall into the ranges determined in Section VI-4. The reason for this discrepancy is most likely due to sloppy measurements averaging out to a value to far off from what it should be.