# **Boundary value problems**

Is there a similar setup for BVPs? Let's consider 3 different BVPs:

**P1:** 
$$y'' + \lambda y = 0$$
, for  $x \in [0, L]$ , with  $y(0) = 0 = y(L)$ 

**P2:** 
$$y'' + \lambda y = 0$$
, for  $x \in [0, L]$ , with  $y'(0) = 0 = y'(L)$ 

**P3:** 
$$y'' + \lambda y = 0$$
, for  $x \in [0, L]$ , with  $y(0) = y(L)$  and  $y'(0) = y'(L)$ 

Any value of  $\lambda$  for which P1 (P2 or P3) has a non-zero solution is called an **eigenvalue** of P1 (P2 or P3) and the corresponding solution is called and **eigenfunction** of P1 (P2 or P3).

Exercise: find the eigenvalues and eigenfunctions of problems P1, P2 and P3

### **Fourier Series**

**Fourier series** arise in 3 different situations of relevance to this course:

- 1. Simple boundary value problems, e.g. P1-P3
- 2. **Partial differential equations** that describe heat flow, waves and diffusion (more later).
- 3. Some **initial value problems** with less simple periodic forcing, e.g. we are very unlikely to have exactly:  $f(t) = F_0 \cos \omega t$ , in any real system, but might have a periodic forcing function

For what follows, let the interval in P1-P3 be the interval [a, b] = [-L, L]. The key idea is that an arbitrary function, f(t), defined on [-L, L] can be represented in the following form:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$
 (1)

Note that these are the eigenfunctions of problem P3. Outside of the interval, because each function above has period 2L, the above series must converge to a periodic extension of f(t) of period 2L

Two immediate questions:

- 1. Can all functions f(t) be represented in this way, i.e. which functions?
- 2. How do we find the coefficients  $a_n$  and  $b_n$ ?

**Definition:** If the series on the right-hand side of (1) converges to a function f(t), then this is called the **Fourier series** of f(t).

#### **Comments:**

Firstly, in order for f(t) to have **Fourier series representation** (1), that is valid <u>for all t</u>, it is **necessary** that f(t) be periodic, with period 2L, i.e.

$$f(t+2L) = f(t) \qquad \forall t$$

Secondly, suppose that f(t) has a Fourier series representation (1). The  $a_n \& b_n$  are then determined straightforwardly, (see below for  $a_n$ ).

- 1. Multiply (1) by:  $\cos \frac{m\pi t}{L}$
- 2. Integrate both sides of the equation between [-L, L]:

$$\int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} dt = \int_{-L}^{L} \left( \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} \right) \cos \frac{m\pi t}{L} dt$$

Note that:

$$\int_{-L}^{L} \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} dt = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases}$$

$$\int_{-L}^{L} \cos \frac{n\pi t}{L} \sin \frac{m\pi t}{L} dt = 0$$

$$\int_{-L}^{L} \sin \frac{n\pi t}{L} \sin \frac{m\pi t}{L} dt = \begin{cases} 0 & m \neq n \\ L & m = n \end{cases}$$

Trig identity: 
$$\omega(A)$$
  $\omega(B) = \frac{1}{2} \left( \omega_S(A+B) + \omega_S(A-B) \right)$ 

So for  $m \neq n$ :
$$\int_{-L}^{L} \omega_S(\frac{nnt}{L}) \omega_S(\frac{m\pi t}{L}) dt$$

$$= \int_{-L}^{L} \frac{1}{2} \left[ \omega_S\left(\frac{(n+m)nt}{L}\right) + \omega_S\left(\frac{(n-m)nt}{L}\right) \right] dt$$

$$= \frac{L}{2\pi (n+m)} \left( \frac{\sin\left(\frac{(n+m)nt}{L}\right)}{L} \right) + \frac{\sin\left(\frac{(n-m)\pi t}{L}\right)}{L} = 0$$

$$G_{S}^{2}(A) = \frac{1}{2} \left( 1 + \omega_{S}(2A) \right)$$

$$56 \quad \text{for } m = n : \int_{-L}^{L} \omega_{S}^{2} \left( \frac{n\pi t}{L} \right) dt = \frac{1}{2} \int_{-L}^{L} \left( 1 + \omega_{S} \left( \frac{n\pi t}{L} \right) \right) dt$$

$$=\frac{1}{2}\left(t\left|t\right|+\frac{L}{2n\pi}\frac{\sin\left(2n\pi t\right)}{L}\right)=L$$

Subs. Into 
$$f$$
:
$$f(t) \left( \omega_{n} \left( \frac{mnt}{L} \right) \right) dt = a_{n} \frac{L}{mn} \sin \left( \frac{mnt}{L} \right) dt + a_{m} L + o_{m} L + o_$$

$$\Rightarrow a_{m} = \frac{1}{L} \int_{L}^{L} f(t) \cos \left( \frac{mnt}{L} \right) dt$$

Trig identity: 
$$8in A. 8in B = \frac{1}{2} \left( \cos \left( A - B \right) - \cos \left( A + B \right) \right)$$

if  $m \neq n$ : 
$$\int_{-L}^{L} \frac{\sin \left( \frac{n \pi t}{L} \right)}{\sin \left( \frac{n \pi t}{L} \right)} \frac{\sin \left( \frac{m \pi t}{L} \right)}{\sin \left( \frac{m \pi t}{L} \right)} dt$$

$$= \int_{-L}^{L} \frac{1}{2} \left( \omega_{1} \left( \frac{(n-m)\pi t}{L} \right) - \omega_{2} \left( \frac{(n+m)\pi t}{L} \right) \right) dt$$

$$= \frac{1}{2} \left[ \frac{L}{(n-m)\pi} \frac{\sin \left( \frac{\pi t (n-m)}{L} \right)}{L} \right] - \frac{L}{(n+m)\pi} \frac{\sin \left( \frac{(n+m)\pi t}{L} \right)}{L} \right]$$

$$= 0$$

$$\frac{\sin^{2} A}{\sin^{2} A} = \frac{1}{2} \left( 1 - \cos^{2} A \right)$$

if  $m = n$ : 
$$\int_{-L}^{L} \frac{\sin^{2} \left( \frac{n \pi t}{L} \right)}{2n \pi} dt = \frac{1}{2} \int_{-L}^{L} \left( 1 - \cos^{2} \frac{2n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) \left( \frac{n \pi t}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L} \right) dt = \frac{1}{2} \left( \frac{1}{L}$$

if you multiply eq (1) by  $\sin\left(\frac{m\pi t}{L}\right)$  and integrate  $\int_{L}^{L}$ :  $\int_{L}^{L} f(t) \sin\left(\frac{m\pi t}{L}\right) dt = \int_{L}^{L} \left(\frac{a_{0}}{2} + \sum_{n \neq 1}^{\infty} a_{n} \omega \frac{n\pi t}{L} + \sum_{n \neq 1}^{\infty} b_{n} \sin\frac{n\pi t}{L}\right) \sin\frac{m\pi t}{L} dt$  $\Rightarrow \int_{-L}^{L} \int_{-L}^{\infty} \frac{1}{Sin} \left(\frac{m\pi t}{L}\right) dt = 0 + 6 + bm \int_{-L}^{L} \frac{Sin^{2} \left(\frac{m\pi t}{L}\right) dt}{L} + 0 + 0 + - c}$ only the mth terms are nonzero 

Therefore, interchanging summation and integration:

$$\int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} dt = a_m \int_{-L}^{L} \cos \frac{m\pi t}{L} \cos \frac{m\pi t}{L} dt = a_m L$$

$$a_m = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} dt$$

For the coefficients  $b_n$  a similar procedure is possible (exercise).

Thus, we finally have:

$$a_{0} = \frac{1}{L} \int_{-L}^{L} f(t) dt$$

$$a_{m} = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} dt \qquad m = 1,2,3,...$$

$$b_{m} = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{m\pi t}{L} dt \qquad m = 1,2,3,...$$

which are known as the **Euler-Fourier** formulas.

**Example 1:** Assume that the function f(t), defined by

$$f(t) = \begin{cases} t & -L \le t < 0 \\ 0 & 0 \le t < L \end{cases}$$

with f(t + 2L) = f(t), has a Fourier series. Sketch the function and find the Fourier series.

### Why are we doing this?

Lets fix L = 1 in the above example and plot the partial sums:

$$f(t) \sim -\frac{1}{4} + \sum_{n=1}^{k} \frac{1 - (-1)^n}{(n\pi)^2} \cos n \, \pi t + \sum_{n=1}^{k} \frac{(-1)^{n+1}}{n\pi} \sin n \, \pi t$$

### k=0 Constant term only



### k=2 First 2 trignometric terms



### k=10 First 10 terms



### k=100 First 100 terms



What's happening over longer interval of t?







#### **Observations:**

- 1. Take more terms in the series it appears to converge to f(t), (even if f(t) has discontinuities!)
- 2. The coefficients  $a_n \& b_n$  that we calculated decrease as  $n \to \infty$ .
- 3. Initial coefficient  $a_0/2$  is the mean value of f(t)
- 4. Appears to be a slight overshoot at the points of discontinuity of the function f(t)

The above are common observations for Fourier series expansions with arbitrary functions f(t).

### **Fourier Sine and Cosine Series**

Our main usage for Fourier series will be in representing a function f(x), over a finite interval [0, L], e.g. the initial temperature in a heat conduction problem. It turns out that there are many possible ways to do this, depending on the particular function.

#### **Odd and even functions:**

Suppose that f(x) is defined at -x whenever it is defined at x

- The function f(x) is an **even** function if f(x) = f(-x). Examples:  $1, x^2, x^{2n}, |x|, \cos x$
- The function f(x) is an **odd** function if f(x) = -f(-x). Examples:  $x, x^3, x^{2n+1}$ ,  $\sin x$

**Note:** Most functions are neither odd nor even

### **Simple properties:**

- 1. The sum (difference) and product (quotient) of 2 even functions is an even function
- 2. The sum (difference) of 2 odd functions is an odd function
- 3. The product (quotient) of 2 odd functions is an even function
- 4. The product (quotient) of an odd and an even function is an odd function
- 5. The sum (difference) of an odd and an even function is neither odd nor even

# **Integral properties:**

- 1. If f(x) is an even function then:  $\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$
- 2. If f(x) is an odd function then:  $\int_{-L}^{L} f(x) dx = 0$

The form of the Fourier series for f(x) is different, if f(x) is an odd or an even function.

Fourier Cosine series: Assume that f(x) is piecewise differentiable on [-L, L] and f(x) is an even function. Then f(x) has Fourier series:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

called the **Fourier cosine series**, with coefficients  $a_n$  given by:

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$
  $n = 0,1,2,3,...$ 

Fourier Sine series: Assume that f(x) is piecewise differentiable on [-L, L] and f(x) is an odd function. Then f(x) has Fourier series:

$$f(x) = \sum_{n=1}^{\infty} b_n \cos \frac{n\pi x}{L}$$

called the **Fourier sine series**, with coefficients  $b_n$  given by:

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$
  $n = 1,2,3,...$ 

**Example 2:** Sketch the following functions f(t) & find the Fourier series:

(a) 
$$f(t) = \begin{cases} -1 & -1 < t < 0 \\ 1 & 0 < t < 1 \end{cases}$$
  $f(t+2) = f(t)$ 

(a) 
$$f(t) = \begin{cases} -1 & -1 < t < 0 \\ 1 & 0 \le t \le 1 \end{cases} \quad f(t+2) = f(t)$$
(b) 
$$f(t) = \begin{cases} -t & -2 < t < 0 \\ t & 0 \le t \le 2 \end{cases} \quad f(t+4) = f(t)$$

**Example 3**: Consider the function  $f(t) = 1 - t^2$  for  $-1 \le t \le 1$  with f(t+2) = f(t). Find the Fourier series expansion and plot the k -th partial sums of the Fourier series for k = 1,3,10,100









## Example 4:

Find the Fourier series for f(x) = x:  $-L \le x \le L$ ; f(x + 2L) = f(x)

# Example 5:

Find the Fourier series for f(x) = |x|:  $-L \le x \le L$ ; f(x + 2L) = f(x)

Suppose we wish to represent f(x) on [0, L], but don't care what form it has outside [0, L]. Many alternatives exist:

1. Use the Fourier cosine series. This series will converge to the function g(x):

$$g(x) = \begin{cases} f(x) & 0 \le x \le L \\ f(-x) & -L < x < 0 \end{cases}$$
$$g(x + 2L) = g(x)$$

which is the even periodic extension of f(x).

2. Use the Fourier sine series. This function will converge to the function h(x):

$$h(x) = \begin{cases} f(x) & 0 < x < L \\ 0 & x = 0, L \\ -f(-x) & -L < x < 0 \end{cases}$$
$$h(x + 2L) = h(x)$$

which is the odd periodic extension of f(x).

3. Define any function k(x) that is piecewise differentiable on [-L, L] and for which: k(x) = f(x):  $0 \le x \le L$ . Find the Fourier series for k(x). Note that there are infinitely many choices for k(x)!

Factors affecting your choice of Fourier series representation:

- Speed of convergence. Generally, slow convergence results from discontinuities; the smoother the function, the faster the convergence.
- Sometimes the problem at hand dictates directly the choice