УДК 691.3

В

единице.

mnac@comch.ru

mnac@comch.ru

этой

сети

следующая система

профессор, e-mail: mnac@comch.ru

(t) – плотность вероятности перемещения из

К ВОПРОСУ МОДЕЛИРОВАНИЯ ПРОЦЕССА РЕАЛИЗАЦИИ АТАК ПОСРЕДСТВОМ КОМПЬЮТЕРНЫХ ЧЕРВЕЙ

Ю.Г. Пастернак, Н.Н. Корнеева, К.В. Дегтярева

Приведем

 S_{i} – позиции, t_{i} – переходы:

 S_1 - создание списка жертв;

t₂ - проникновение в систему;

 S_5 - инфицирование системы;

t₅ - подготовка к рассылке;

 S_3 - готов к внедрению;

 t_1 - подготовка к атаке;

t₃ - активация;

 S_7

t4 - поиск жертв;

распространение копий.

 S_2 - подготовка червя в сообщении;

S₄ - сообщение прочитано/передано;

 S_6 - создание списка для рассылки;

рассылка

необходимые

сообщений

ДЛЯ

Предлагается модель реализации атаки сетевым вредоносным обеспечением типа ІМ-Worm с помощью сети Петри – Маркова Ключевые слова: IM-Worm, сети Петри – Маркова

IM черви (IM-Worm) - черви, которые

червя.

интернет-пейджеры моделирования обозначения: (так

используют называемых «червей, передающихся по сетям

мгновенного обмена сообщениями»). Такие

черви используют компьютерные единственный способ распространения

рассылку пользователям из контакт-листа жертвы сообщений, содержащих ссылку на файл, расположенный на стороннем веб-

сервере [1]. Смоделируем с помощью сети Петри – атаку информационно-Маркова на

телекоммуникационную систему сетевым вредоносным обеспечением типа IM-Worm. моделирования выбран данный

математический аппарат, так как ОН наибольшей степени отражает процесс

инцидентные дуги, поэтому вероятности из них в переходы перемещения

не

позиции

Для данной сети Петри – Маркова имеет интегральнодифференциальных уравнений, в которой $f_{
m S1t2}$

имеют

Пастернак Юрий Геннадьевич – ВГТУ, д-р техн. наук, Корнеева Наталья Николаевна – ВГТУ, студент, e-mail:

Дегтярева Ксения Викторовна – ВГТУ, студент, e-mail:

рассчитывается по формуле $\pi_{\text{pe}_3} = \prod_{\mathbf{d}_{ii}} \pi_{ij},$ где d_{ii} - все полушаги сети. Полагаем, что плотности распределения вероятностей являются экспоненциальными

 $f_{\text{Sitj}} = \lambda_{\text{ij}} e^{-\lambda ijt}$.

зависимостями и имеют вид:

состояния S_i к переходу t_i , $\Phi_{S1t2}(t)$ -

соответствующий закон распределения, π_{ii} -

вероятность срабатывания перехода, причем

вероятности срабатывания всех переходов на

данной траектории не зависят от времени.

Вероятность перемещения по всей сети

$$P(t)=1-e^{-\frac{t-\tau_a}{\tau}}.$$
Таким образом, с помощью сети Петри — алгоритмы оценки и управления / Г.А. Маркова было проведено моделирование процесса распространения сетевых червей класса «ІМ-Worm».

Питература

 $P(t)=1-e^{-\frac{t-\tau_a}{\tau}}.$

алгоритмы оценки и управления / Г.А. Остапенко, Д.О. Карпеев, Д.Г. Плотников, Р.В. Батищев, И.В. Гончаров, П.А. Маслихов, Е.А. Мешкова, Н.М. Морозова, С.А. Рязанов, Е.В. Субботина, В.А. Транин // Информация

 $\Phi_{\rm S1t2}(t) = \pi_{12} \int_{0}^{t} f_{\rm S1t2}(\tau) d\tau;$

 $\Phi_{\rm S2t1}(t) = \pi_{21} \int_{0}^{t} f_{\rm S2t1}(\tau) d\tau;$

 $\Phi_{\text{S3t2}}(t) = \pi_{32} \int_{0}^{t} f_{\text{S1t2}}(\tau) \Phi_{\text{S2t1}}(t-\tau) d\tau;$

 $\Phi_{1}(t) = \int_{0}^{t} f_{S1t2}(\tau) \Phi_{S3t2}(\tau) + f_{S3t2}(\tau) \Phi_{S2t1}(\tau) d\tau;$

 $\Phi_{\text{S4t3}}(t) = \pi_{43} \int_{0}^{t} f_{\text{S4t3}}(\tau) \Phi_{1}(t-\tau) d\tau;$

 $\Phi_{\text{S5t4}}(t) = \pi_{54} \int_{0}^{t} f_{\text{S5t4}}(\tau) \Phi_{\text{S4t3}}(t-\tau) d\tau;$

 $\Phi_{S6t5}(t) = \pi_{65} \int_0^t f_{S6t5}(\tau) \Phi_{S5t4}(t-\tau) d\tau.$

ординарного переходы

К

 $\tau_1 = \tau_{21} + \tau_{32},$ $\tau_2 = \frac{\tau_{12}^2 + \tau_{12} \times \tau_1 + \tau_1^2}{\tau_{12} + \tau_1},$

 $\tau_{3} = \tau_{2} + \tau_{43} + \tau_{54} + \tau_{65},$ $\tau = \frac{\tau_{12}^{2} + \tau_{12} \times (\tau_{21} + \tau_{32}) + (\tau_{21} + \tau_{32})^{2}}{\tau_{12} + \tau_{21} + \tau_{32}} + \tau_{43} + \tau_{54} + \tau_{65}.$

образом,

теореме, для

приближается

Согласно

разрежении

простейшему.

предельной

решающих событий при последовательном

потока результирующий поток с увеличением

результирующий поток и есть простейший.

Формула вероятности принимает вид:

Таким

стационарного

разрежений

Остапенко

Для расчета

вероятностей

целесообразно

плотностей

применить

приближение. Тогда получим среднее время т

перемещения по Петри – Маркова из

начальной позиции до конечного перехода:

и безопасность. 2010. Т. 13. №4. С. 485–530.

Петри

времени

сети

распределения

пуассоновское

Маркова

перемещения

распределенных систем: методики и .

Воронежский государственный технический университет

Voronezh State Technical University

Риски

CONSTRUCTION OF MATHEMATICAL MODELS OF REALIZATION OF ATTACKS BY MALICIOUS SOFTWARE TYPE IM-WORM

Yu.G. Pasternak, N.N. Korneeva, C.V. Degtyareva

A model of the implementation of network attacks by malicious software type IM-Worm using Petri net - Markova

Key words: IM-Worm, Petri net - Markova

Г.А.,