

Alojz Gomola 23rd November Sevilla, Spain **Obstacle Avoidance Framework Based on Reach Sets**

Introduction

Problem statement: Given a UAV equipped with a LiDAR sensor, capable of following a low altitude sequence of waypoints over a previously mapped terrain derive a control strategy that will enable the UAV to follow the sequence of waypoints while avoiding obstacles not present in the given map

Challenges:

- How to design modules?
- Any Control interface idea?
- How to make decisions?

Results:

Simple scenario simulation

Avoidance Framework

Movement Automaton - Control Interface

Decouple:

- Optimal control problem
- Navigation problem

Movement automaton:

- Open hybrid automaton
- Finite set of movements
- For Simulation/control

Discrete chain of commands: hover(20s), left(10s),fly(12s)

Avoidance Grid – Space Segmentation

Planar grid segmentation:

- Cone reflecting effective decision range
- Cell range defined by movement set
- Cells increasing size with distance

Reach Set Estimation

Representation:

- Tree of movement chains
- Bounded by FOV

Estimation process:

- Load full reach set by given state
- Prune Reach set according obstacle set

Issues:

- Global vs Local state disparity
 - Proportional state space distribution
 - Calculate many proto reach sets
- Approximation accuracy
 - Pick apropretiate movement set

Space Assessment – Avoidance Grid

1. Space segmentation:

- Determine Obstacle cells
- Select Uncertain cells
- Load proto-reach set:
 - state of vehicle x
 - dynamic constraints

2. Reach set pruning:

- Remove unfeasible trajectories from proto-reach set
 - Green feasible
 - Red unfeasible

Avoidance Phase – Avoidance Grid

3. Reachable Space assessment:

- For free cells assess:
- Reachable:
 - At least one passing trajectory exists
- Unreachable:
 - Otherwise

4. Trajectory selection

- Select trajectory based on distance to waypoint criterion
- Next decision point is planned

Simulation

European

Avoidance Grid State

© 2017 by Honeywell International Inc. All rights reserved.

Static Obstacles – Crash Distance Performance

Static Obstacles – Trajectory Tracking Performance

Conclusion

What we have:

- Framework concept proven on open space environment
- Movement automaton acts as interface to Control
- Reach set estimation method with finite calculation time
- Navigation algorithm considering static obstacles

Future research heading:

- Data fusion considering multiple information sources
- Map obstacles, from multiple sources
- Intruders, from ADS-B sensor

