# Regression for Microbiome Data: Multinomial Mixture Models

**是 EPID 674 是** 

Brendan J. Kelly, MD, MS

Updated: 23 June 2020

**Dirichlet Multinomial Mixtures** 

Implementating DMM in R

**ICU Community Types** 

**DMM & Regression** 





# **High Dimensional Microbiome Data**

| ## |              | 700013549 | 700014386 | 700014403 | 700014409 | 700014412 | 700014415 |
|----|--------------|-----------|-----------|-----------|-----------|-----------|-----------|
| ## | OTU_97.1     | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10    | 0         | 0         | 6         | 4         | 1         | 5         |
| ## | OTU_97.100   | 0         | 0         | 133       | 7         | 1         | 4         |
| ## | OTU_97.1000  | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10000 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10001 | 0         | 0         | 0         | 0         | 0         | 1         |
| ## | OTU_97.10002 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10003 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10004 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10005 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10006 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10007 | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10008 | 0         | 1         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10009 | 0         | 0         | 1         | 0         | 0         | 0         |
| ## | OTU_97.1001  | 0         | 0         | 0         | 0         | 0         | 0         |
| ## | OTU_97.10010 | 0         | 0         | 0         | 0         | 0         | 0         |

# **High Dimensional Microbiome Data**

- How to deal with high-dimensional microbiome data?
- Descriptive (e.g., heatmaps and stacked barplots)
- Test a priori hypotheses regarding specific OTUs/taxa
- Reduce dimensions:
  - single summary statistic (alpha diversity)
  - pairwise distances (beta diversity) with PCoA or PERMANOVA
  - community types (mixture modeling)

#### Anterior Nares vs Stool





#### **Dirichlet-Multinomial Mixtures**

- Dirichlet-multinomial distribution:
  - compound probability distribution
  - o probability vector drawn from Dirichlet distribution (generalized beta)
  - observation drawn from multinomial distribution (generalized binomial)
- D-M mixture modelling:
  - each sample ~ multinomial from one Dirichlet vector
  - vector number: minimize -log(model evidence, Laplace approx)
  - Dirichlet probability vectors = "community types"







Ding & Schloss Nature 2014





# **Preparation for DMM**

```
# install tidyverse ...
# install.packages("tidyverse")
library(tidyverse)
# new package for heatmap color schemes...
# install.packages("viridis")
library(viridis)
# install package from Bioconductor...
# install.packages("BiocManager")
# BiocManager::install("DirichletMultinomial")
library(DirichletMultinomial)
set.seed(16) # for consistent DMM results
icu_matrix_et <- read_rds(</pre>
 path = "./data/icu_ET_specimen_otu_table.rds"
icu_matrix_et[1:16,1:2]
```

| ## |             | VAP.001.ET.20130726 | VAP.001.ET.20130729 |
|----|-------------|---------------------|---------------------|
| ## | denovo1     | 0                   | 0                   |
| ## | denovo10004 | 0                   | 0                   |
| ## | denovo10011 | 0                   | 0                   |
| ## | denovo10015 | 0                   | 0                   |
| ## | denovo10018 | 0                   | 0                   |
| ## | denovo10022 | 0                   | 0                   |
| ## | denovo10039 | 0                   | 0                   |
| ## | denovo1004  | 0                   | 0                   |
| ## | denovo10042 | 0                   | 0                   |
| ## | denovo10049 | 0                   | 0                   |
| ## | denovo10065 | 0                   | 0                   |
| ## | denovo10078 | 3                   | 2                   |
| ## | denovo10080 | 0                   | 0                   |
| ## | denovo10089 | 0                   | 3                   |
| ## | denovo10091 | 0                   | 0                   |
| ## | denovo10092 | 2                   | 0                   |
|    |             |                     |                     |

### DirichletMultinomial





# **DMM Assignments**

```
specimen
                           m1_prob m2_prob
                                              m3_prob m4_prob assignme
      <chr>
                             <dbl>
                                      <dbl>
                                                <dbl>
                                                        <dbl>
                                                                    <i
   1 VAP.001.ET.20130726 3.46e-13 1.00e+ 0 0.
   2 VAP.001.ET.20130729 2.70e-24 1.00e+ 0 0.
   3 VAP.001.ET.20130731 1.37e-15 1.00e+ 0 0.
   4 VAP.002.ET.20130729 1.00e+ 0 2.32e-31 0.
   5 VAP.002.ET.20130731 1.00e+ 0 4.47e-36 0.
   6 VAP.002.ET.20130802 1.00e+ 0 3.47e-31 0.
   7 VAP.002.ET.20130805 3.05e-19 1.00e+ 0 0.
   8 VAP.003.ET.20130730 1.52e-22 1.00e+ 0 5.33e-310
   9 VAP.004.ET.20130808 1.00e+ 0 1.73e-69 0.
## 10 VAP.005.ET.20130814 9.91e-28 4.02e-12 1.00e+ 0
## # ... with 32 more rows
```

## # A tibble: 42 x 6

#### **DMM Mixture Fits**



# Difference From Single-Mixture

```
abs(fitted(best_dmm, scale=TRUE) -
      as.vector(fitted(dmm[[1]].
                       scale=TRUE))) %>%
# scale indicates whether fits scaled by the...
# ... variability of mixturewt parameter theta
 as_tibble(rownames = "otu_id") %>%
 rename_at(.vars = vars(contains("V")),
            .funs = function(x)
              paste0(gsub("V","m",x),"_diff_single")) ->
 icu_et_dmm_otu_diff_single
icu_et_dmm_otu_diff_single %>%
 gather(key = which_mix,
        value = diff,
        -otu_id) %>%
 ggplot(data = .) +
 geom_tile(mapping = aes(x = which_mix,
                          y = otu_id,
                          fill = diff)) +
 scale_fill_viridis()
```





# **DMM & Regression?**

DMM community types as exposure variable:

```
\circ easy \rightarrow lm() or glm()
```

- $\circ$  (like  $\alpha$ -diversity or  $\beta$ -diversity PC1)
- DMM community types as outcome variables:
  - e.g., categorical logistic regression
- Biological validity of DMM community types? Reproducibility?



# Thank you!

Slides available: github.com/bjklab

brendank@pennmedicine.upenn.edu