Unit #5

Malware Analysis

Malware		
Virus	 Malicious code that replicates itself on the computer. It has to be activated before it can spread. 	
Worms	 Malicious code that affects the computer. It is self-replicating and can email itself to others. 	
Trojan horse	Malware is concealed within a seemingly useful program. The malware is executed once the program is run.	
Ransomware	 Blocks access to assets until a sum is paid. It mainly targets government, education, banks, manufacturing, energy & utilities. 	

• **Blended threat -** combines multiple threats into one package. *Eg. using a trojan horse to sneak in a virus*.

Antivirus software - a type of program that prevents, detects, and eradicates malware. Malware signature Disables software with sequences of code typical to a specific piece of malware. It can only protect against known threats. 00011ef0: 8e3e c6d0 d1c4 d1c7 8e3d c6c1 c221 c4c8 00011f00: dac6 d6c2 8e91 9191 918e 4a8c 8b1b aa19 00011f10: 994a 2baa 1b1b c8ce d5ce dcc5 0000 0000 00011f20: 807c 393c 32ba bb80 f3b9 b434 b834 3980 00011f30: fcbf 34ba 7cba 3436 b9bc ba3c 807c 393c 00011f40: 32ba bb76 ba34 3cb9 bfb7 8f30 b3b9 3c32 ..4.|.46...<.|9< 2..v.4<....0. 00011f50: 2012 9751 1556 11a3 5495 55aa b39d a587 00011f60: 91a7 ba85 b393 8d9d bd00 0000 0000 0000 00011f70: 9c85 8927 8b9c 8589 278b 9c85 8927 8b9c 00011f80: 8589 278b 9c85 8927 8b9c 8589 270d fd3c strings: \$a1 = { 80 7C 39 3C 32 BA BB 80 F3 B9 B4 34 B8 34 39 80 \$a2 = { FC BF 34 BA 7C BA 34 36 B9 BC BA 3C 80 7C 39 3C \$a3 = { 32 BA BB 76 BA 34 3C B9 BF B7 8F 30 B3 B9 3C 32 \$b1 = { 9C 85 89 27 8B 9C 85 89 27 8B 9C 85 89 27 8B 9C condition: Macho and filesize < 200KB and all of them

 The software can monitor a system's be Atypical behavior is flagged. Eg. unusua data usage, and attempts to access a la Provides real-time protection. 	lly large increase in
--	-----------------------

Malware analysis		
Process isolation	 Process address spaces are separated to ensure other processes can't tamper with each other. 	
Virtual machine	 Simulates all aspects of a hardware device. Allows users to test how malware interacts with file systems, registry, etc. However, some malware can detect VMs and behave differently inside them. There is some risk of an escape attack. 	
Docker containers	 A package of software that includes everything needed to run an application. It provides isolation from host systems but there can still be a risk of an escape attack because the OS kernel is shared between containers and host. 	
Sandboxes	 Opens up files in a carefully isolated environment and observes the effects of the file. Threat actors can evade sandboxing by delaying malware execution because sandboxes typically run malware for a short time. Delaying it prevents the malware from exhibiting malicious behavior that the sandbox analyzes. 	

- Forensic analysis analysis of digital evidence and investigation of security incidents.
 - Common artifacts include windows event logs, file metadata, deleted files, browser history, cookies, cache, download history, firewall logs, etc.

Network forensic analysis

- PCAP a file that contains packet data.
 - Applications such as Wireshark are crucial to analyze pcaps.
- Forensic analysts have to ask questions such as:
 - What damage has been done?
 - Who was the perpetrator? How were the security measures passed?
 - o Did the perpetrator leave anything behind such as a new account or malware?
 - Is there enough data to reproduce the attack and test it against a new control(s)?
- In order to properly identify suspicious network activities, there are reference files for standard network behaviors. *Eg. https://wiki.wireshark.org/samplecaptures*
- Suspicious activities include:

- Unusual communication pairs (nodes that don't typically communicate suddenly are)
- Unusual protocols and ports (understand what ports are open and active in the network. Unfamiliar open ports are suspicious)
- Excessive failed connections
- Suspicious inbound connections
- Universal Plug and Play (UPnP) a set of protocols that allows devices such as gaming consoles, printers, and IoTs on a LAN to detect and connect automatically.
 - UDP 1900 is a popular port used for connection by these devices.

Project

Creating a single payload

```
codepath@lab000000:~$ msfvenom -a x86 --platform windows -p windows/messagebox TEXT="Virus Executed" -f exe -o messageVirus.exe

No encoder specified, outputting raw payload
Payload size: 267 bytes
Final size of exe file: 73802 bytes
Saved as: messageVirus.exe
```

Syntax: msfvenom -a ARCHITECTURE --platform PLATFORM -p PAYLOAD [ARGS] -f FORMAT -o OUTPUTFILE

- -a specifies the computer architecture for the payload.
- --platform specifies the OS/programming language the payload will run on.
- -p details the functions of the virus (this is the payload).
- -f the format of the file.
- -o the name of the virus file.

Creating a multi-payload

```
codepath@lab000000:~$ msfvenom -a x86 --platform windows \
> -p windows/messagebox TEXT="Virus Executed" \
[> -f raw > messageBox
No encoder specified, outputting raw payload
Payload size: 267 bytes

codepath@lab000000:~$ msfvenom -c messageBox -a x86 --platform windows \
[> -p windows/speak_pwned -f exe -o pwnedVirus.exe
Adding shellcode from messageBox to the payload
No encoder specified, outputting raw payload
Payload size: 833 bytes
Final size of exe file: 73802 bytes
Saved as: pwnedVirus.exe
```

• Create the first payload to create a multi-payload. The -c flag allows you to add more payloads. This virus causes the computer to say, "You've been pwned!" aloud.

Creating an encrypted payload

```
codepath@lab000000:~$ msfvenom -a x86 --platform Windows \
   -p windows/messagebox TEXT="Encrypted Virus" \
   -e x86/shikata_ga_nai -i 3 -f python -o messageEncrypted
Found 1 compatible encoders
Attempting to encode payload with 3 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 294 (iteration=0)
x86/shikata_ga_nai succeeded with size 321 (iteration=1)
x86/shikata_ga_nai succeeded with size 348 (iteration=2)
x86/shikata_ga_nai chosen with final size 348
Payload size: 348 bytes
Final size of python file: 1722 bytes
Saved as: messageEncrypted
--platform windows -p windows/speak_pwned -f exe -o pyVirus.exe
Adding shellcode from messageEncrypted to the payload
No encoder specified, outputting raw payload
Payload size: 2273 bytes
Final size of exe file: 73802 bytes
Saved as: pyVirus.exe
codepath@lab000000:~$
```

• x86/shikata_ga_nai is a polymorphic XOR additive feedback encoder.