In the specification:

Replace the paragraph running from line 5 through line 13 of page 2 with the amended paragraph below:

The 5-HT Receptors

The various effects of 5-HT may be related to the fact that serotoninergic neurons stimulate the secretion of several hormones, e.g. cortisol, prolactin, \(\mathcal{B}\$-endorphin, vasopressin and others. The secretion of each of these other hormones appears to be regulated on a specific basis by several different 5-HT (serotonin) receptor subtypes. With the aid of molecular biology techniques, to date these receptors have been classified as 5-HT₁, 5-HT₂, 5HT₃, 5HT₄, 5HT₅, 5HT₆, and 5HT₇ with the 5HT₁ receptor further divided into the 5HT_{1A}, 5-HT_{1B}, 5-HT_{1D}, 5-HT_{1E} and 5-HT_{1F} subtypes. Each receptor subtype is involved in a different serotonin function and has different properties.

Replace line 8 on page 11 with the amended line below:

X is N, Y is NR_2CO , R_1 is H, CH_3 , C_2H_5 or C_3H_7 , R_2 is H, R_3 is phenyl, R_9 is R_9 —is OCH_3 ;

Replace the paragraph running from the last two lines of page 21 through line 5 of page 22 with the amended paragraph below:

(iv) Conversion of a compound of formula V to a compound of formula VI, where Y is CONR2, R2 and R3 are as in formula I above, may be carried out by hydrogenation using a catalyst containing palladium, platina platinum, nickel or rhodium in a suitable solvent such as ethanol, methanol or acetic acid at a reaction temperature between +20 °C and +120 °C; or by reduction with a suitable reductive reagent such as sodium dithionite in a suitable solvent such as N, N-dimethylformamide at a reaction temperature between +20 °C and +120 °C.

Replace the paragraph running from line 6 through line 13 of page 25 with the amended paragraph below:

Example 4

4-(4-Methylpiperazin-1-yl)-N-(4-morpholinophenyl)indan-2-carboxamide

A mixture of 4-amino-N-(4-morpholinophenyl)indan-2-carboxamide (1.1 g, 3mmol), N-methyl-bis-(2-chloroethyl)amine hydrochloride (2.0 g, 10 mmol) and sodium hydrogen carbonate (8.0 g, 95 mmol) in 1-butanol (100 mL) was stirred over night overnight at

120 °C. The mixture was filtered and the solvent was evaporated in vacuo. The crude residue (oil) was purified on a silica gel column using methylene chloride as the eluent to afford 100 mg of the title compound: mp 248-249 °C; EIMS (70eV) m/z (relative intensity) 420 (47, M^+).

Replace the paragraph running from line 4 through line 12 of page 26 with the amended paragraph below:

Preparation of occipital cortical slices

Guinea pigs (200-250 g) were decapitated and the whole brains was were removed. The occipital eertex was cortices were dissected and cut into slices 0.4x4 mm with a McIlwain chopper machine. The white part of the tissue should be removed carefully with a tweezer before slicing. The slices were incubated in 5 ml buffer in the presence of 5 mM pargyline chloride. After incubation with 0.1 mM [3H]-5-HT for another 30 min the slices were transferred to a test tube and washed three times with same volume buffer. The slices were transferred to the superfusion chambers with a plastic pipette and were washed for 40 min with the buffer in the presence of the uptake inhibitor citalopram at 2.5 µM with a flow rate of 0.5 ml/min.

Replace the **Results** section on page 26, lines 20 through 28 with the amended section below:

Results

A first electrical (or K^+) stimulation results in a standard amount of $[^3H]$ -5-HT released (S_1). Before Between the first and the second stimulation the h5-HT_{1B} antagonist is added to the media, which results in a dose depending dose-dependent increase of the release (S_2) after the second stimulation. See Fig. 1.

The S_2/S_1 ratio, which is the per cent of released [3H]-5-HT at the second stimulation (S_2) divided by that of the first stimulation (S_1), was used to estimate drug effects on transmitter release.