Class Specifications

Class Specific				
Class	Abstract	Implements Abstract	Methods	Method Description
HashTable	Yes	No	HashTable Input – int N Size to initialize array to	Constructor, for the child classes. Takes in a number to create the hash table size
			Size Input: None Output: Size of hash table Get Input K: Key is to	Returns the current size (number of elements) in the hash table Abstract method for other child
			be searched for in hash table Output: MapElement object if a matching key is found. Null otherwise	classes to inherit. Given a key it will attempt to look for the element
			Get Input K: Key is to be inputted for in hash table Output: MapElement object if a matching key is found. Null otherwise	Abstract method for other child classes to inherit. Will attempt to place an element given a key

			Remove Input K: Key to be searched for in the table Output: String Value of element that is be removed	Abstract Method for other child classes to inherit. Will attempt to remove an element
HashLinear	No	Yes	HashLinear Input – int N Size to initialize array to	Constructor, HashLinear class. Calls the super constructer of HashTable
			Size Input: None Output: Size of hash table	Returns the current size (number of elements) in the hash table. Called from HashTable
			Get Input K: Key is to be searched for in hash table Output: MapElement object if a matching key is found. Null otherwise	Given a key it will attempt to look for the element. Implements linear probing
			Get Input K: Key is to be inputted for in hash table Output: MapElement object if a matching key is found. Null otherwise Remove	Will attempt to place an element given a key Implements linear probing Will attempt to
			Input K: Key to be	remove an

HashQuadratic	No	Yes	searched for in the table Output: String Value of element that is be removed HashQuadratic Input – int N Size to initialize array to	Element. Implements linear probing Constructor, HashLinear class. Calls the super constructer of HashTable
			Size Input: None Output: Size of hash table Get Input K: Key is to	Returns the current size (number of elements) in the hash table. Called from HashTable Given a key it will attempt to look
			be searched for in hash table Output: MapElement object if a matching key is found. Null otherwise	for the element. Implements Quadratic Probing
			Get Input K: Key is to be inputted for in hash table Output: MapElement object if a matching key is found. Null otherwise	Will attempt to place an element given a key Implements Quadratic Probing
			Remove Input K: Key to be searched for in the table	Will attempt to remove an Element.

HashChaining	No	Yes	Output: String Value of element that is be removed HashQuadratic	Implements Quadratic Probing Constructor,
Tiusiiciiuiii,		res	Input – int N Size to initialize array to	HashLinear class. Calls the super constructer of HashTable
			Size Input: None Output: Size of hash table	Returns the current size (number of elements) in the hash table. Called from HashTable
			Get Input K: Key is to be searched for in hash table Output: MapElement	Given a key it will attempt to look for the element. Implements Hash Chaining
			object if a matching key is found. Null otherwise	
			Get Input K: Key is to be inputted for in hash table	Will attempt to place an element given a key Implements Hash
			Output: MapElement object if a matching key is found. Null otherwise	Chaining
			Remove Input K: Key to be searched for in the table Output: String	Will attempt to remove an Element. Implements Hash Chaining

			Value of element that is be removed	
MapElement	No	No	MapElement	Constructor. Randomly generates a key. And sets its value to a string involving the key
MapElement	No	No	HashCode	Overrides HashCode. Using Horners rule to implement a hash code based on its key

Design Decisions

I tried to make my best to make the classes abstract. At first my design isn't the most modular unfortunately, and given the chance, I should've made methods to look for the index in another method, and just reused more methods. Nonetheless, common functionality such as Size and Contructor were kept in the Abstract class as well as the class variables. There were quite a bit of duplicate code between the classes due to lack of time, and not as much foresight into the assignment. I decided to give the linear/quadratic probing and searches approximately the size of N x 5 times before it doesn't have enough time.

Report Times:

Analysis

The graphs all appear to increase in size with each insert. This is because of more and more collisions happening. The linear probing takes the longest, quadratic second longest and the one with buckets is a decent speed.

The reason why some of these methods take an excessive time is due to the hash table running out of room and having to probe. It happens because the quadratic probing might take a long time to look for a location once it ran out of room.

Rerunning the experiment for quadratic probing reveals less time. This is because 101 is a prime number therefore the chances of collisions is reduced.

Benchmarking the cost of dynamic resizing., the cost of a put and a get is at least 2-3x more expensive when we are dynamically resizing the table. I got a lot more exceptions when I was trying to probe with quadratic probing as well.