BILLBOARD HOT 100 ANALYSIS

WHAT MAKES A SONG POPULAR?

INTRODUCTION

- Context
- The Dataset
- Data Prep
- Data Model
- Conclusion
- Appendix

CONTEXT

THE QUESTION

Can characteristics of a song be used to determine when the song appeared on the Billboard Hot 100 Chart?

THE BILLBOARD HOT 100

billboard HOT100							
	SONG	ARTIST					
1 F	Permission To Dance	BTS					
2 (good 4 u	Olivia Rodrigo					
3 \$	Stay	The Kid LAROI & Justin Bieber					
4 L	Levitating	Dua Lipa ft. DaBaby					
5 k	Kiss Me More	Doja Cat ft. SZA					
6 E	Bad Habits	Ed Sheeran					
7 E	Butter	BTS					
8	Montero (Call Me By Your Name)	Lil Nas X					
9 5	Save Your Tears	The Weeknd & Ariana Grande					
10 6	deja vu	Olivia Rodrigo					

SONG CHARACTERISTICS FROM SPOTIFY

INTRODUCING, THE DATASET

DATASET ORIGIN

Characteristics of how the public received it

Characteristics of it's sound

MUSIC CHARACTERISTICS OVER TIME

DATA PREP

CLEANING THE DATA

Removed

- Highly correlated columns
- Empty Rows (no metadata)
- Columns where all the values were the same

Added

- Season (Fall, Spring, etc.)
- Isolated Year from Week value

Modified

- Min Max scaling rows
- Dummy Variables

THE MODEL

LGBM REGRESSOR

FINAL MODEL STATS

INPUTS	OUTPUTS		
Learning Rate	0.1	RMSE	9.0
Max_Depth	- I	MAE	6.4
N_Estimators	300	r2	77.7
Num_Leaves	56		

IMPORTANT VARIABLES

The song's duration, speechiness, and loudness were among the most important characteristics along with how long it charted and how high.

RESIDUAL PLOT

The linear pattern may be due to a missing variable

CONCLUSION

SO CAN I PREDICT IT?

- To a certain extent, if the song doesn't resemble songs from previous decades
 - Lots of music is derivative and sound is cyclical

NEXT STEPS...

 Include genre once reducing cardinality, see if that addresses the residual plot

Tag and remove song covers

 Look at it from a derivation standpoint – who sounds like who?

THANK YOU!

Laurie Cagney
Regis University
LCagney@regis.edu

APPENDIX

ALL THE EXTRA STUFF, ANNOTATED

LINKS

- Data.World Datasets: https://data.world/kcmillersean/billboard-hot-100-1958-2017
- GitHub: https://github.com/lcagney/MSDS-Practicum-2
- YouTube: https://youtu.be/Q3zYRNRokrc

SPOTIFY DEFINITIONS

Term	Definition	
Acousticness	A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic.	
Instrumentalness	Predicts whether a track contains no vocals.	
Key	The key the track is in.	
Liveness	Detects the presence of an audience in the recording.	
Loudness	The overall loudness of a track in decibels (dB).	
Mode	Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived.	
Speechiness	Speechiness detects the presence of spoken words in a track.	
Tempo	The overall estimated tempo of a track in beats per minute (BPM).	
Valence	A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track.	

Obtained from https://developer.spotify.com/documentation/web-api/reference

FINAL DATASET VALUES

TARGET VARIABLE

• Year

PREDICTOR VARIABLES

- weeks_on_chart
- peak_position
- spotify_track_duration_ms
- acousticness
- loudness
- tempo
- time_signature
- key
- speechiness
- instrumentalness

- liveness
- valence
- mode_False
- mode_True
- season_fall
- season_spring
- season_summer
- season_winter

FULL IMPORTANT VARIABLES

The variables I created for the dataset added virtually no predictive value

COMPARING ACTUAL VS. PREDICTED

Comparing the differences between actual and predicted. More than half of the test dataset got the year correctly within a small variance; however, when the prediction was off – it was *really* off. My hypothesis is because of either covers of songs or because of throwback sounds.

INVERSE RELATIONSHIP BETWEEN LENGTH ON CHART AND NUMBER OF SONGS

Average length on chart on line chart and number of songs by year on bar plot

SIMILAR PATTERN WITH LENGTH OF SONG AND YEAR

Length of song on line chart and count of year on bar plot

LAZY PREDICT REGRESSION RESULTS

	Adjusted R-Squared	R-Squared	RMSE \
Model			
LGBMRegressor	0.77	0.77	9.09
HistGradientBoostingRegressor	0.77	0.77	9.10
XGBRegressor	0.77	0.77	9.14
ExtraTreesRegressor	0.75	0.75	9.49
RandomForestRegressor	0.75	0.75	9.55
GradientBoostingRegressor	0.74	0.74	9.72
BaggingRegressor	0.73	0.73	9.97
SVR	0.65	0.65	11.22
NuSVR	0.65	0.65	11.23
KNeighborsRegressor	0.62	0.62	11.73
LinearRegression	0.56	0.56	12.65
TransformedTargetRegressor	0.56	0.56	12.65
PoissonRegressor	0.56	0.56	12.66
LassoLarsIC	0.56	0.56	12.66
LassoCV	0.56	0.56	12.66
ElasticNetCV	0.56	0.56	12.66
BayesianRidge	0.56	0.56	12.66
RidgeCV	0.56	0.56	12.66
Ridge	0.56	0.56	12.66
LarsCV	0.56	0.56	12.66
LassoLarsCV	0.56	0.56	12.66
Lars	0.56	0.56	12.66
SGDRegressor	0.56	0.56	12.66
HuberRegressor	0.55	0.56	12.71
Lasso	0.53	0.53	13.06
LinearSVR	0.53	0.53	13.09
OrthogonalMatchingPursuitCV	0.51	0.51	13.35
ElasticNet	0.50	0.50	13.54

Could have really gone with any of the top 3

WORD CLOUD- TOP ARTISTS SINCE 1960

Glee ruled the charts when it was releasing their covers in the early 2010s

```
Maroon 5<sub>Eric Church Miley Cyrus</sub>
 Billie Eilish Gene Pitney
Al Martino
The Miracles
Otic Podding
                                                      B.B. King Katy Perry Phil Collins Roy Orbison Demi Lovato
                               Johnny Cash
Carpenters Anne Murray Johnny Rivers
      Eminem Kelly Clarkson Diana Ross Bobby Darin
                                                                                            Jerry Butler Dierks Bentley Styx
     Johnny Mathis Toby Keith YoungBoy Never Broke Again Carrie Underwood Andy Williams Joe TexJackie Wilson Blake Shelton
                                                                                             Bobby Bland
      Mariah Carey
The 5th Dimension Rod Stewart Olivia Newton-John Kool & The Gang
                                                                                                                  The Supremes Kanye West
                        Electric Light Orchestra Michael Jackson U2 Justin Bieber The Who The Everly Brothers Madonna Marvin Gaye
James Brown Stevie Wonder Plnk The Temptations Aerosmith Connie Francis
                                                                                         Tim McGraw Earth, Wind & Fire The Beatles
Taylor Swift The Beach BoysBobby Vee Glee Cast James Brown And The Famous Flames Gladys Knight And The Pips Wilson Pickett Aretha Franklin Luke Bryan Daryl Hall John Oates Brook Benton The Isley Brothers KISS The Doobie Brothers Lady Gaga
Fats Domino Drake Dionne Warwick Kenny Chesney George Strait Glen Campbell Donna Summer The Impressions Brad Paisley
                       Barbra StreisandFuture Elton John Rascal Flatts
                                                                                  Jason Aldean The Pointer Sisters Linda Ronstadt Chicago
   Bobby Vinton
       Ariana Grande

Kenny Rogers

Chubby Checker

Cher Brooks & Dunn Billy Joel

Fleetwood Mac Tom Jones Ed Sheeran
                     Kenny Rogers Chubby Checker
The Wooked Lill Baby John Denver
                   The Drifters The Weeknd
                                             Ray Stevens Chris Brown Janet Jackson David Bowie Brenda Lee The 4 Seasons
                                                    Bon Jovi Van Halen Joe Simon<sub>Neil</sub> Sedaka
```

SONG COUNT DISTRIBUTION BY YEAR

MEDIAN IS AROUND 360 SONGS

Slightly right skewed, with some years charting an abnormally large amount of songs.

SQL STATEMENT TO COMBINE DATASET FROM DATA.WORLD