

						Pri	ntec	l Pa	ge: 1	of 2
				S	ubje	ect (Code	: K	AS2	01T
Roll No:										

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10 X2=20)		
Q1(a)	What is fr	rame of reference in motion?		1	
Q1(b)	Show that	massless particles can exist only if the they move w	ith the speed of light	1	
	and their	energy E and momentum p must have the relation E=	pc.		
Q1(c)	In an elec	tromagnetic wave, the electric and magnetic fields an	re 100V/m and	2	
	0.265A/m. What is the maximum energy flow				
Q1(d)	(d) Define the concept of Skin depth for high and low frequency waveforms.				
Q1(e)	What is Compton effect and Compton shift?				
Q1(f)	Why is bl	ack the best emitter?		3	
Q1(g)	Why the c	center of Newton's ring in reflected system is dark?		4	
Q1(h)	Explain R	ayleigh's criterion of resolution.		4	
Q1(i)	What do y	you mean by acceptance angle and cone for an optical	l fiber?	5	
Q1(j)	Differenti	ate spontaneous emission and stimulated emission.		5	

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)			
Q2(a)	What is sp	pecial theory of relativity? Derive Lorentz transforma	tion equation.	1		
Q2(b)	Assuming	that all the energy from a 1000 watt lamp is radiated	l uniformly; calculate	2		
	the averag	ge values of the intensities of electric and magnetic fie	elds of radiation at a			
	distance of 2m from lamp.					
Q2(c)	Calculate	the energy difference between the ground state and the	he first excited state	3		
	for an electron in a one-dimensional rigid box of length 25Å.					
Q2(d)	Newton's	rings are observed in reflected light of wavelength 5	900A ⁰ . The diameter	4		
	of 10 th dar	rk ring is 0.50cm. Find the radius of curvature of the	lens.			
Q2(e)	A step ind	lex fibre has $\mu_1 = 1.466$ and $\mu_2 = 1.46$ where μ_1 and μ_2	are refractive indices	5		
	of core an	d cladding respectively. If the operating wavelength	of the rays is 0.85 μm			
	and the di	ameter of the core = $50 \mu m$, calculate the cut-off para	ameter and the number			
	of modes	which the fibre will support.				

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
		the object of conducting Michelson-Morley expet with proper diagram and necessary mathematical nes.		
Q3(b)	Deduce Eivalidity.	Instein's mass – energy relation $E = mc^2$. Give some ϵ	evidence showing its	1

SECT	ION-C	Attempt ANY	ONE following Question	Marks (1X10=10)	
Q4(a)	Deduce th	ne Maxwell's	equations for free space and prove	e that electromagnetic	2
	waves are	transverse in	nature.		
			re and momentum of electromagnetic v	vave. Also determine	2
	an express	sion for radiat	on pressure and momentum.		

						Pri	intec	l Pa	ge: 2	of 2
				S	ubje	ect (Code	: K	AS2	01T
Roll No:										

BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	
Q5(a)	What is the physical significance of a wave function? Derive Schrodinger time	3
	independent wave equation.	
Q5(b)	What is Compton effect? Deduce an expression for Compton shift.	3

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)			
	What is Rayleigh criterion of resolution how one can increase ta diffraction grating? Using Rayleigh criterion for just reso	O I	4		
	resolving power of grating is equal to nN, where n is the order of the spectrum, and N is total no of lines on the grating.				
Q6(b)	Discuss the phenomena of Fraunhofer diffraction at a single relative intensities of the successive maximum are nearly 1:		4		
	••••				

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)			
Q7(a)	A silicon optical fibre with a core diameter large enough has a cor	e refractive index of 1.50	5		
	and a cladding refractive index 1.47. Determine				
	(i) the critical angle at the core cladding interface,				
	(ii) the numerical aperture for the fibre				
	(iii) the acceptance angle in air for the fibre.				
Q7(b)	What do you mean by population inversion? Describe the princ	iple and working of Ruby	5		
	laser system with the help of neat diagram.				