PyCity Schools Analysis

- As a whole, schools with higher budgets, did not yield better test results. By contrast, schools with higher spending per student actually (\$645 - 675) underperformed compared to schools with smaller budgets (\$585 per student).
- As a whole, smaller and medium sized schools dramatically out-performed large sized schools on passing math performances (89-91% passing vs 67%).
- As a whole, charter schools out-performed the public district schools across all metrics.
 However, more analysis will be required to glean if the effect is due to school practices or the fact that charter schools tend to serve smaller student populations per school.

Note: Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

In [44]: # Dependencies and Setup import pandas as pd import numpy as np # File to Load (Remember to Change These) school_data_to_load = "schools_complete-Copy1.csv" student_data_to_load = "students_complete-Copy1.csv" # Read School and Student Data File and store into Pandas Data Frames school_data = pd.read_csv(school_data_to_load) student_data = pd.read_csv(student_data_to_load) # Combine the data into a single dataset school_merge = pd.merge(student_data, school_data, how="left", on=["sc school_merge.head() # school_data_complete.count()

Out [44]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	
1	1	Victor Smith	М	12th	Huang High School	94	61	0	С
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	С
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	С
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	Γ

District Summary

- Calculate the total number of schools
- Calculate the total number of students
- · Calculate the total budget
- Calculate the average math score
- Calculate the average reading score
- Calculate the overall passing rate (overall average score), i.e. (avg. math score + avg. reading score)/2
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Create a dataframe to hold the above results
- Optional: give the displayed data cleaner formatting

Out[48]:

District_Summary

	Total Number School	Total Students	Total Budget	Average Math Score	Average Reading Score	Overall Passing Rate	% Passing Math	% Passing Reading
0	15	39170	24649428	78.985371	81.87784	80.431606	72.392137	82.971662

```
In [39]: # Total number of schools
    total_schools = school_merge.school_name.nunique()
    total_schools
```

Out[39]: 15

```
In [10]: # Total number of students
         student total = school merge['Student ID'].count()
         student_total
Out[10]: 39170
In [47]: # Total budget
         total_budget = school_data["budget"].sum()
         total_budget
Out[47]: 24649428
In [14]: # Average math score
         avg_math_score = school_merge['math_score'].mean()
         avg_math_score
Out[14]: 78,98537145774827
In [15]: # Average reading score
         avg_read_score= school_merge['reading_score'].mean()
         avg_read_score
Out[15]: 81.87784018381414
In [25]: # Overall average score
         overall_score = avg_read_score + avg_math_score
         overall score
         Overall_Passing_Rate = overall_score/2
         print(Overall_Passing_Rate)
         80.43160582078121
```

72.39213683941792 82.97166198621395

Out [49]:

	Total Number School	Total Students	Total Budget	Average Math Score	Average Reading Score	Overall Passing Rate	% Passing Math	% Passing Reading	
0	15	39170	24649428	78 985371	81 87784	80 431606	72 392137	82 971662	

School Summary

Input In [50]

* Create an overview table that summarizes key metrics about each school, including:

SyntaxError: invalid syntax

In [236]: school_types = school_data.set_index(['school_name'])['type'] students_per_sch = school_merge['school_name'].value_counts() budget_per_sch = school_merge.groupby(['school_name'])['budget'].mean(per_stu_budg = budget_per_sch/ students_per_sch avg_math_stu = school_merge.groupby(['school_name'])['math_score'].mea avg_read_stu = school_merge.loc[school_merge['math_score']>=70] group_math_score = school_merge.loc[school_name'].value_counts() math_percent = group_math_score/ students_per_sch*100 pas_read_score = school_merge.loc[school_merge['reading_score']>=70] group_read_score = pas_read_score['school_name'].value_counts() read_percent = group_read_score/ students_per_sch*100 overall_pas_percent = math_percent + read_percent / students_per_sch school_merge.head()

Out[236]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	[
1	1	Victor Smith	М	12th	Huang High School	94	61	0	Е
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	С
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	Е
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	[

In [85]:

Out[85]:

	School Type	Total Students	Budget for School	Budget Per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Bailey High School	District	4976	3124928.0	628.0	77.048432	81.87784	66.680064	81.933280
Cabrera High School	Charter	1858	1081356.0	582.0	83.061895	81.87784	94.133477	97.039828
Figueroa High School	District	2949	1884411.0	639.0	76.711767	81.87784	65.988471	80.739234
Ford High School	District	2739	1763916.0	644.0	77.102592	81.87784	68.309602	79.299014
Griffin High School	Charter	1468	917500.0	625.0	83.351499	81.87784	93.392371	97.138965
Hernandez High School	District	4635	3022020.0	652.0	77.289752	81.87784	66.752967	80.862999
Holden High School	Charter	427	248087.0	581.0	83.803279	81.87784	92.505855	96.252927
Huang High School	District	2917	1910635.0	655.0	76.629414	81.87784	65.683922	81.316421
Johnson High School	District	4761	3094650.0	650.0	77.072464	81.87784	66.057551	81.222432
Pena High School	Charter	962	585858.0	609.0	83.839917	81.87784	94.594595	95.945946
Rodriguez High School	District	3999	2547363.0	637.0	76.842711	81.87784	66.366592	80.220055

Shelton High School	Charter	1761	1056600.0	600.0	83.359455	81.87784	93.867121	95.854628
Thomas High School	Charter	1635	1043130.0	638.0	83.418349	81.87784	93.272171	97.308869
Wilson High School	Charter	2283	1319574.0	578.0	83.274201	81.87784	93.867718	96.539641
Wright High School	Charter	1800	1049400.0	583.0	83.682222	81.87784	93.333333	96.611111

Top Performing Schools (By Passing Rate)

• Sort and display the top five schools in overall passing rate

In [92]: # Sort and display the top five schools in overall passing rat
Top_Five_Passing = Key_Metric_Per_School.sort_values(['% Passing Math'
Top_Five_Passing.head(5)

Out[92]:

	School Type	Total Students	Budget for School	Budget Per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	F
Pena High School	Charter	962	585858.0	609.0	83.839917	81.87784	94.594595	95.945946	94.
Cabrera High School	Charter	1858	1081356.0	582.0	83.061895	81.87784	94.133477	97.039828	94.
Wilson High School	Charter	2283	1319574.0	578.0	83.274201	81.87784	93.867718	96.539641	93.
Shelton High School	Charter	1761	1056600.0	600.0	83.359455	81.87784	93.867121	95.854628	93.
Griffin High School	Charter	1468	917500.0	625.0	83.351499	81.87784	93.392371	97.138965	93.

```
In [96]: # Calculate total school budget
         budget_per_sch = school_merge.groupby(['school_name'])['budget'].mean(
         budget_per_sch
Out[96]: school_name
         Bailey High School
                                   3124928.0
         Cabrera High School
                                   1081356.0
         Figueroa High School
                                   1884411.0
         Ford High School
                                   1763916.0
         Griffin High School
                                    917500.0
         Hernandez High School
                                   3022020.0
         Holden High School
                                    248087.0
         Huang High School
                                   1910635.0
         Johnson High School
                                   3094650.0
         Pena High School
                                    585858.0
         Rodriguez High School
                                   2547363.0
         Shelton High School
                                   1056600.0
         Thomas High School
                                   1043130.0
         Wilson High School
                                   1319574.0
         Wright High School
                                   1049400.0
         Name: budget, dtype: float64
In [97]: # Calculate per student budget
         per stu budg = budget per sch/ students per sch
         per stu budg
```

```
Out[97]: Bailey High School
                                   628.0
         Cabrera High School
                                   582.0
         Figueroa High School
                                   639.0
         Ford High School
                                   644.0
         Griffin High School
                                   625.0
         Hernandez High School
                                   652.0
         Holden High School
                                   581.0
         Huang High School
                                   655.0
         Johnson High School
                                   650.0
         Pena High School
                                   609.0
         Rodriguez High School
                                   637.0
         Shelton High School
                                   600.0
         Thomas High School
                                   638.0
         Wilson High School
                                   578.0
         Wright High School
                                   583.0
         dtype: float64
```

In [98]: # Cacluate the avg math and reading score pas_math_score = school_merge.loc[school_merge['math_score']>=70] group_math_score = pas_math_score['school_name'].value_counts() math_percent = group_math_score/ students_per_sch*100 pas_read_score = school_merge.loc[school_merge['reading_score']>=70] group_read_score = pas_read_score['school_name'].value_counts() read_percent = group_read_score/ students_per_sch*100 print(read_percent) print(math_percent)

```
Bailey High School
                          81.933280
Cabrera High School
                          97.039828
Figueroa High School
                          80.739234
Ford High School
                          79.299014
Griffin High School
                          97.138965
Hernandez High School
                          80.862999
Holden High School
                          96.252927
Huang High School
                          81.316421
Johnson High School
                          81.222432
Pena High School
                          95.945946
Rodriauez Hiah School
                          80.220055
Shelton High School
                          95.854628
Thomas High School
                          97.308869
                          96.539641
Wilson High School
Wright High School
                          96.611111
Name: school_name, dtype: float64
Bailey High School
                          66.680064
Cabrera High School
                          94.133477
Figueroa High School
                          65.988471
Ford High School
                          68.309602
Griffin High School
                          93.392371
Hernandez High School
                          66.752967
Holden High School
                          92.505855
Huang High School
                          65,683922
                          66.057551
Johnson High School
Pena High School
                          94.594595
Rodriguez High School
                          66.366592
Shelton High School
                          93.867121
Thomas High School
                          93.272171
Wilson High School
                         93.867718
Wright High School
                          93.333333
Name: school_name, dtype: float64
```

Find the passing rate for math and reading (above 70 points)

```
In [100]: # Find the total counts of math result
          group_math_score = pas_math_score['school_name'].value_counts()
          # Find the counts for math result in each school that pass 70 or highe
          pas math score = school merge.loc[school merge['math score']>=70]
          # Calculate the math passing rate
          math_percent = group_math_score/ students_per_sch*100
In [101]: # Find the total counts of read result
          group_read_score = pas_read_score['school_name'].value_counts()
          # Find the counts for read result in each school that pass 70 or highe
          pas read score = school merge.loc[school merge['reading score']>=70]
          # Calculate the read passing rate
          read_percent = group_read_score/ students_per_sch*100
In [102]: # Calculate the overall passing rate (average of the math and reading
          overall_pas_percent = math_percent + read_percent / students_per_sch
  In [ ]:
  In [ ]:
  In [ ]:
```

Bottom Performing Schools (By Passing Rate)

Sort and display the five worst-performing schools

In [111]: # Sort and display the worst five schools in overall passing rate
Worst_5_Passing_Rate = Key_Metric_Per_School.sort_values(['% Passing Morst_5_Passing_Rate.head(5)

Out[111]:

	School Type	Total Students	Budget for School	Budget Per Student	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	
Huang High School	District	2917	1910635.0	655.0	76.629414	81.87784	65.683922	81.316421	ť
Figueroa High School	District	2949	1884411.0	639.0	76.711767	81.87784	65.988471	80.739234	ť
Johnson High School	District	4761	3094650.0	650.0	77.072464	81.87784	66.057551	81.222432	ť
Rodriguez High School	District	3999	2547363.0	637.0	76.842711	81.87784	66.366592	80.220055	ť
Bailey High School	District	4976	3124928.0	628.0	77.048432	81.87784	66.680064	81.933280	ť

Math Scores by Grade

- Create a table that lists the average Reading Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

```
# Create table that lists the average math score for each school of ea
In [144]:
            math_by_grade = pd.DataFrame({'9th': math_9,
                                            '10th': math_10,
                                            '11th': math_11,
                                            '12th': math_12})
            math_by_grade
Out[144]:
                                      9th
                                              10th
                                                        11th
                                                                 12th
                     school_name
                Bailey High School 77.083676 76.996772 76.996772 76.492218
               Cabrera High School 83.094697 83.154506 83.154506 83.277487
              Figueroa High School 76.403037
                                          76.539974 76.539974 77.151369
                 Ford High School 77.361345 77.672316 77.672316 76.179963
                Griffin High School 82.044010 84.229064 84.229064 83.356164
            Hernandez High School 77.438495 77.337408 77.337408 77.186567
               Holden High School 83.787402 83.429825 83.429825 82.855422
                Huang High School 77.027251 75.908735 75.908735 77.225641
              Johnson High School 77.187857 76.691117 76.691117 76.863248
                 Pena High School 83.625455 83.372000 83.372000 84.121547
             Rodriguez High School 76.859966 76.612500 76.612500 77.690748
               Shelton High School 83.420755 82.917411 82.917411 83.778976
               Thomas High School 83.590022 83.087886 83.087886 83.497041
                Wilson High School 83.085578 83.724422 83.724422 83.035794
                Wright High School 83.264706 84.010288 84.010288 83.644986
In [138]: # Calculate the average math score for 9th grade in each school
            math 9 = student data.loc[student data['grade'] == '9th'].groupby(['sd
In [139]: # Calculate the average math score for 10th grade in each school
            math 10 = student data.loc[student data['grade'] == '10th'].groupby(['s
In [140]: # Calculate the average math score for 11th grade in each school
            math 11 = student data.loc[student data['grade']== '10th'].groupby(['s
```

```
In [143]: # Calculate the average math score for 12th grade in each school
    math_12 = student_data.loc[student_data['grade']== '12th'].groupby(['s
```

Reading Score by Grade

• Perform the same operations as above for reading scores

10th

11th

12th

Out[154]:

• • • • • • • • • • • • • • • • • • • •			
81.303155	80.907183	81.303155	80.912451
83.676136	84.253219	83.676136	84.287958
81.198598	81.408912	81.198598	81.384863
80.632653	81.262712	80.632653	80.662338
83.369193	83.706897	83.369193	84.013699
80.866860	80.660147	80.866860	80.857143
83.677165	83.324561	83.677165	84.698795
81.290284	81.512386	81.290284	80.305983
81.260714	80.773431	81.260714	81.227564
83.807273	83.612000	83.807273	84.591160
80.993127	80.629808	80.993127	80.376426
84.122642	83.441964	84.122642	82.781671
83.728850	84.254157	83.728850	83.831361
83.939778	84.021452	83.939778	84.317673
83.833333	83.812757	83.833333	84.073171
	83.676136 81.198598 80.632653 83.369193 80.866860 83.677165 81.290284 81.260714 83.807273 80.993127 84.122642 83.728850 83.939778	83.676136 84.253219 81.198598 81.408912 80.632653 81.262712 83.369193 83.706897 80.866860 80.660147 83.677165 83.324561 81.290284 81.512386 81.260714 80.773431 83.807273 83.612000 80.993127 80.629808 84.122642 83.441964 83.728850 84.254157 83.939778 84.021452	83.67613684.25321983.67613681.19859881.40891281.19859880.63265381.26271280.63265383.36919383.70689783.36919380.86686080.66014780.86686083.67716583.32456183.67716581.29028481.51238681.29028481.26071480.77343181.26071483.80727383.61200083.80727380.99312780.62980880.99312784.12264283.44196484.12264283.72885084.25415783.72885083.93977884.02145283.939778

9th

```
In [148]: # Calculate the average reading score for 9th grade in each school
    read_9 = student_data.loc[student_data['grade'] == '9th'].groupby(['score for 9th grade'] == '9th'].groupby(['sc
```

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

```
In [169]: # Sample bins. Feel free to create your own bins.
bins = [0, 585, 615, 645, 675]
group_values = ["<$585", "$585-615", "$615-645", "$645-675"]

In [178]: # Create a new column to show budget per student in each row

Key_Metric_Per_School["Spending Ranges Per Student"]=pd.cut(Key_Metric_, bins , labels=group_names scoresvia_sch = Key_Metric_Per_School.drop(columns = ['School Type', '</pre>
```

In [182]: # Calculate the average math score within each spending range
 scores_spent = scoresvia_sch.groupby(['Spending Ranges Per Student'])
 scores_spent.mean()

Out[182]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
Spending Ranges Per Student					
	83.455399	81.87784	93.460096	96.610877	93.553497
\$585-615	83.599686	81.87784	94.230858	95.900287	94.307942
\$615-645	79.079225	81.87784	75.668212	86.106569	75.704636
\$645-675	76.997210	81.87784	66.164813	81.133951	66.185607

In [183]: # Calculate the percentage passing rate for math in each spending rang

In [184]: # Calculate the percentage passing rate for reading in each spending r

In [185]: # Calculate the percentage overall passing rate in each spending range

Scores by School Size

• Perform the same operations as above, based on school size.

```
In [208]: # Sample bins. Feel free to create your own bins.
size_bins = [0, 1000, 2000, 5000]
group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-500)</pre>
```

Look for the total count of test scores that pass 70% or higher

In [229]: # math_pass_size school_merge['size_bins']=pd.cut(school_merge['size'], size_bins, labe by_spent = school_merge.groupby('size_bins') pass_math = school_merge[school_merge['math_score'] >= 70].groupby('si pass_math.head()

Out[229]: size_bins

Small (<1000) 1305 Medium (1000-2000) 7978 Large (2000-5000) 20087 Name: Student ID, dtype: int64

In [232]: # read_pass_size

pass_reading = school_merge[school_merge['reading_score'] >= 70].group
pass_reading

Out[232]: size_bins

Small (<1000) 1334 Medium (1000-2000) 8247 Large (2000-5000) 24029 Name: Student ID, dtype: int64

In [226]: # Calculate the overall passing rate for different school size avg_bysize.mean()

Out [226]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
School Size					
Small (<1000)	83.821598	81.87784	93.550225	96.099437	93.712801
Medium (1000- 2000)	83.374684	81.87784	93.599695	96.790680	93.656899
Large (2000- 5000)	77.746417	81.87784	69.963361	82.766634	69.988051

Scores by School Type

Perform the same operations as above, based on school type.

```
In [235]: # Create bins and groups, school type {'Charter', 'District'}
          pass_reading = school_merge[school_merge['reading_score'] >= 70].group
          Find counts of the passing 70 or higher score for the both test
In [240]: # math pass size
          pass_math = school_merge[school_merge['math_score'] >= 70].groupby('ty
          pass_math
Out[240]: type
          Charter
                       11426
                       17944
          District
          Name: Student ID, dtype: int64
In [238]: # reading pass size
          pass_reading = school_merge[school_merge['reading_score'] >= 70].group
          pass_reading
Out[238]: type
          Charter
                       11785
                       21825
          District
          Name: Student ID, dtype: int64
```

In [200]: # Calculate the overall passing rate

type_score = Key_Metric_Per_School.drop(columns=['Total Students', 'Bu type_score.head()

Out[200]:

	School Type	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate	Spending Ranges Per Student)	Spending Ranges Per Student
Bailey High School	District	77.048432	81.87784	66.680064	81.933280	66.696530	\$615-645	\$615-645
Cabrera High School	Charter	83.061895	81.87784	94.133477	97.039828	94.185705	<\$585	<\$585
Figueroa High School	District	76.711767	81.87784	65.988471	80.739234	66.015849	\$615-645	\$615-645
Ford High School	District	77.102592	81.87784	68.309602	79.299014	68.338554	\$615-645	\$615-645
Griffin High School	Charter	83.351499	81.87784	93.392371	97.138965	93.458542	\$615-645	\$615-645

In [202]: school_typescore = type_score.groupby(['School Type']) school_typescore.mean()

Out [202]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
School Type					
Charter	83.473852	81.87784	93.620830	96.586489	93.702512
District	76.956733	81.87784	66.548453	80.799062	66.570630

In []: