Databases

O Introduction

Database systems 2

Instructor: Sara Comai

sara.comai@polimi.it

"Data bases 2" Academic Year 2018/2019

Teacher: Prof. Sara Comai

• E-mail: sara.comai@polimi.it

Tel. 02-2399-3611

@Dipartimento di Elettronica Informazione e Bioingegneria, 1st floor

Exercise sessions:
 Prof. Daniele Braga, Pietro Pinoli, Arif Çanakoğlu

Time:

Monday 8:30-10:00

Tuesday 8:30-10:00

Textbooks

IN ITALIAN:

- P. Atzeni, S. Ceri, P. Fraternali, S. Paraboschi, R. Torlone "Basi di dati: Architetture e linee di evoluzione" (2003)
- P. Atzeni, S. Ceri, P. Fraternali, S. Paraboschi, R. Torlone "Basi di dati" (2018)

IN ENGLISH:

P. Atzeni, S. Ceri, S. Paraboschi, R. Torlone "Database systems" - McGraw-Hill (1999)

NOW DOWNLOADABLE (http://dbbook.dia.uniroma3.it/)

Compared to the last Italian version some chapters are missing

Teaching material

Material is available on the Beep portal

http://beep.metid.polimi.it

under "Data bases 2"

- Materials include slides of the lectures, exercise sessions, forum, etc.
- If your study plan has not been approved yet, you can subscribe to the course. Please specify the motivation!

App for iOS

- App to solve/check the classification of the schedules (VSR, CSR, 2PL etc.).
- Available on the App Store

"DBSA" (Data Base Schedule Analyzer)

https://itunes.apple.com/us/app/data-base-schedule-analyzer/id619821068?l=it&ls=1&mt=8

 Of course you cannot use it during the exams: mobile devices will be forbidden also to check the time.

Prerequisites

- Basics of Database systems
 - Relational model
 - SQL (SQL-92)
 - Relational algebra
 - BOOK: http://dbbook.dia.uniroma3.it/

Program

Two main streams:

- (Relational) Database architectures
- Advanced database systems

Study of "inside" DB technology: why?

- DBMSs provide "transparent" services:
 - So transparent that it is perfectly normal to use them ignoring many implementation details
 - So far, we have seen DBMSs as a "black box"
- So... why should we open the box?
 - Knowing how it works may help to use it better
 - Some services are provided separately

DataBase Management System — DBMS

A system (software product) capable of managing data collections that are:

- large ((much) larger than the central memory available on the computers that run the software)
- persistent (with a lifetime which is independent of single executions of the programs that access them)
- **shared** (in use by several applications at a time) guaranteeing **reliability** (i.e. tolerance to hardware and software failures) and **privacy** (by disciplining and controlling all accesses).

Technology of DBMSs - topics

- Concurrency control
- Buffer and secondary memory management
- Reliability control
- Physical data structures and access structures
- Query management ("optimization")
- Distributed architectures

DB Evolution

Since the 70's: relational databases + SQL

Some revolutions in the 90's:

- SQL'92
- SQL'99 (triggers, object-oriented features)

And more recently:

- SQL:2003 (XML-related features)
- SQL:2006 (XQuery)
- SQL:2011 (Temporal DB)
- SQL:2016 (row pattern matching, JSON)
- Since 2005: NoSQL DBMS (no standard!)
- A single application may involve different kinds of data
 → diverse data models and query languages for a single application

Popularity of the models

343 systems in ranking, August 2018

	o to eyeteme in running, riaguet Let						
Aug 2018	Rank Jul 2018	Aug 2017	DBMS	Database Model	S Aug 2018	core Jul 2018	Aug 2017
1.	1.	1.	Oracle 🛨	Relational DBMS	1312.02	+34.24	-55.85
2.	2.	2.	MySQL 🚹	Relational DBMS	1206.81	+10.74	-133.49
3.	3.	3.	Microsoft SQL Server 🞛	Relational DBMS	1072.65	+19.24	-152.82
4.	4.	4.	PostgreSQL 🚻	Relational DBMS	417.50	+11.69	+47.74
5.	5.	5.	MongoDB 🚹	Document store	350.98	+0.65	+20.48
6.	6.	6.	DB2 🛨	Relational DBMS	181.84	-4.36	-15.62
7.	7.	1 9.	Redis 🗄	Key-value store	138.58	-1.34	+16.68
8.	8.	1 0.	Elasticsearch 🖽	Search engine	138.12	+1.90	+20.47
9.	9.	4 7.	Microsoft Access	Relational DBMS	129.10	-3.48	+2.07
10.	10.	4 8.	Cassandra 🚹	Wide column store	119.58	-1.48	-7.14
11.	11.	11.	SQLite 🚻	Relational DBMS	113.73	-1.55	+2.88
12.	12.	12.	Teradata 😷	Relational DBMS	77.41	-0.82	-1.83

Ranking from http://db-engines.com/en/ranking

Popularity of the models

Ranking scores per category in percent, August 2018

o zoro, bb ziigiiiesiesiii

http://db-engines.com/en/ranking

Exam

- The exam consists in a written verification covering all the topics of the course
 - Exercises on the whole program, possibly with related theoretical questions.

Exam rules

- During the exam:
 - No books, notes, electronic devices are allowed
 - Cheating policies: it is forbidden to communicate with other students. Who is surprised to talk, is asked to leave the classroom. This applies to both "extremes" of communication: both speaker and listener.
- After the exam
 - No oral exams will be done

Exam rules

- Positive marks can be rejected
 - This can be done through the online system; usually there are 5 days after the insertion of the mark into the system to reject it
 - REMARK: when the exam is repeated (it is sufficient to sit down and see the text of the exam), the previous mark is lost!

Academic calendar and DB2 exams

1st semester: ends before Christmas

1st examination session: 2 DB2 exams

January 9, 2019 – February 22, 2019

2nd examination session: 2 DB2 exams

• June 13, 2017 – July 31, 2017

3rd examination session: 1 DB2 exam

- Last week of August first two weeks of September (calendar not available yet)
- Do not leave during the examination sessions!!
 - Requests for extra-exams will be rejected