

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТ	ЕТ Специальное машиностроение
КАФЕДРА	CM1 «Космические аппараты и ракеты носители»
	Домашнее задание
	по курсу «Механика деформируемого твердого тела»
	Вариант №13
Гт	руппа: СМ1-81
	гудент: Новиков А.Р.
	(Подпись, дата)
П	реподаватель: Муравьев В.В.
	(Подпись, дата)

1 Задача 1

Для линейно упругого материала, представленного на рисунке 1х записать общий вид матрицы жёсткости в двух декартовых ортогональных системах координат. Общий вид должен показывать априори равные друг-другу значения и нулевые значения коэффициентов матриц жёсткости. Охарактеризовать тип материала.

Рисунок 1.1 — Условие задачи

Исходные данные:

• CK 1: $X_1X_2X_3$

• CK 2: $\tilde{X}_2\tilde{X}_1\tilde{X}_3$

Материал является трансверсально изотропным, он имеет ось симметрии. Количество независимых характеристик упругости равно 5.

$$C = \begin{bmatrix} A & B & B & 0 & 0 & 0 \\ B & C & D & 0 & 0 & 0 \\ B & D & C & 0 & 0 & 0 \\ 0 & 0 & 0 & E & 0 & 0 \\ 0 & 0 & 0 & 0 & E & 0 \\ 0 & 0 & 0 & 0 & 0 & F \end{bmatrix}$$

$$C' = \begin{bmatrix} C & B & D & 0 & 0 & 0 \\ B & A & B & 0 & 0 & 0 \\ D & B & C & 0 & 0 & 0 \\ 0 & 0 & 0 & E & 0 & 0 \\ 0 & 0 & 0 & 0 & F & 0 \\ 0 & 0 & 0 & 0 & 0 & E \end{bmatrix}$$

где:

$$C = D + 2F$$

откуда:

$$F = \frac{C - D}{2}$$

2 Задача 2

Построить область допустимых состояний многослойного композиционного материала в системе координат $\sigma_{11} - \sigma_{22} - \tau_{12}$ многослойного композиционного материала, работающего в условиях плоского напряжённого состояния. Указать характерные значения напряжений.

Схема армирования $[\varphi_1\delta_1/\varphi_2\delta_2]$. Материал монослоёв ортотропный, технические характеристики упругости которого заданы в осях ортотропии. Модули упругости 1-го рода E_1 Па и E_2 Па, сдвиговой модуль G_{12} Па, коэффициент Пуассона ν_{12} ед. Гипотеза прочности материала монослоя согласно теории максимальных нормальных напряжений. В системе координат монослоя предел прочности на растяжение в направлении 1 F_{+1} Па, предел прочности на сжатие в направлении 1 F_{-1} Па, предел прочности на растяжение в направлении 2 F_{+2} Па, предел прочности на сжатие в направлении 2 F_{-2} Па. Предел прочности на сдвиг каждого монослоя $F_{12}=1$ Па.

Допускается изображение области допустимого состояния многослойного композиционного материала в проекции только на одну плоскость $\sigma_{11}-\sigma_{22}$ и по наступлению предельного состояния каждого из монослоёв отдельно.

Исходные данные:

- $\varphi_1 = -70^{\circ}$
- $\varphi_2 = 70^{\circ}$
- $E_1 = 10 \; \Pi a$
- $E_2 = 4 \; \Pi a$
- $\nu_{12} = 0.1$
- $G_{12} = 4 \; \Pi a$
- $F_{+1} = 10 \; \Pi a$
- $F_{-1} = -6 \, \Pi a$
- $F_{+2} = 4 \Pi a$
- $F_{-2} = -6 \, \Pi a$
- $\delta_1 = 0.5$
- $\delta_2 = 0.5$

Решение

Запишем матрицу жесткости і-го монослоя в локальной системе координат:

$$C_{i} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{22} & 0 \\ 0 & 0 & C_{33} \end{bmatrix}$$
 (2.1)

где:

$$C_{11} = \frac{E_1}{1 - \nu_{12}\nu_{21}} \tag{2.2}$$

$$C_{22} = \frac{E_2}{1 - \nu_{12}\nu_{21}} \tag{2.3}$$

$$C_{12} = \frac{\nu_{21} E_1}{1 - \nu_{12} \nu_{21}} \tag{2.4}$$

$$C_{33} = G_1 (2.5)$$

$$\nu_{21} = \nu_{12} \frac{E_2}{E_1} \tag{2.6}$$

Тогда в глобальной системе координат матрица жесткости будет иметь вид:

$$C_{\Sigma i} = T_{1i} \cdot C_i \cdot T_{1i}^T \tag{2.7}$$

где матрица перехода в глобальную систему координат T_{1i} имеет вид:

$$T_{1i} = \begin{bmatrix} \cos^2 \varphi_i & \sin^2 \varphi_i & 2\cos \varphi_i \sin \varphi_i \\ \sin^2 \varphi_i & \cos^2 \varphi_i & -2\cos \varphi_i \sin \varphi_i \\ -\cos \varphi_i \sin \varphi_i & \cos \varphi_i \sin \varphi_i & \cos^2 \varphi - \sin^2 \varphi \end{bmatrix}$$
(2.8)

Матрицы жесткости монослоев в локальной системе координат совпадают:

$$C_2 = C_1 = \begin{bmatrix} 10.04 & 0.402 & 0 \\ 0.402 & 4.016 & 0 \\ 0 & 0 & 4 \end{bmatrix} \Pi \mathbf{a}$$
 (2.9)

Получим матрицы жестости монослоев в глобальной системе координат:

$$C_{1\Sigma} = \begin{bmatrix} 5.004 & 0.118 & 1.306 \\ 0.118 & 9.619 & 0.63 \\ 1.306 & 0.63 & 3.716 \end{bmatrix} \Pi \mathbf{a}$$
 (2.10)

$$C_{2\Sigma} = \begin{bmatrix} 5.004 & 0.118 & -1.306 \\ 0.118 & 9.619 & -0.63 \\ -1.306 & -0.63 & 3.716 \end{bmatrix} \Pi \mathbf{a}$$
 (2.11)

Запишем матрицы упругих податливостей монослоев для глобальной системы координат:

$$S_{i\Sigma} = C_{i\Sigma}^{-1} \tag{2.12}$$

$$S_{1\Sigma} = \begin{bmatrix} 0.22 & 0.002 & -0.078 \\ 0.002 & 0.105 & -0.019 \\ -0.078 & -0.019 & 0.3 \end{bmatrix} \frac{1}{\Pi a}$$
 (2.13)

$$S_{2\Sigma} = \begin{bmatrix} 0.22 & 0.002 & 0.078 \\ 0.002 & 0105 & 0.019 \\ 0.078 & 0.019 & 0.3 \end{bmatrix} \frac{1}{\Pi \mathbf{a}}$$
 (2.14)

Получим матрицу жесткости для всего композиционного материала:

$$C_{\Sigma} = C_{1\Sigma}\delta_1 + C_{2\Sigma}\delta_2 = \begin{bmatrix} 5.004 & 0.118 & 0\\ 0.118 & 9.619 & 0\\ 0 & 0 & 3.716 \end{bmatrix} \Pi a$$
 (2.15)

и матрицу упругих податливостей:

$$S_{\Sigma} = C_{\Sigma}^{-1} = \begin{bmatrix} 0.2 & -0.002 & 0\\ 0 & 0.104 & 0\\ 0 & 0 & 0.269 \end{bmatrix} \frac{1}{\Pi \mathbf{a}}$$
 (2.16)

Запишем соотношение для вектора напряжений в глобальной системе координат:

$$\{\sigma_{\Sigma}\} = [C_{\Sigma}] \cdot [T_{2i}] \cdot [S_i] \cdot \{\sigma_i\} = [K_i] \cdot \{\sigma_i\}$$
(2.17)

где матрица перехода $[T_{2i}]$ имеет вид:

$$T_{2i} = \begin{bmatrix} \cos^2 \varphi_i & \sin^2 \varphi_i & \cos \varphi_i \sin \varphi_i \\ \sin^2 \varphi_i & \cos^2 \varphi_i & -\cos \varphi_i \sin \varphi_i \\ -2\cos \varphi_i \sin \varphi_i & 2\cos \varphi_i \sin \varphi_i & \cos^2 \varphi_i - \sin^2 \varphi_i \end{bmatrix}$$
(2.18)

Изобразим область допустимых состояний для монослоя в локальной системе координат:

Рисунок 2.1 — Область допустимых состояний монослоя

Найдем поверхность предельного состояния для всего композиционного материала:

1. Первый монослой:

$$[K_1] = [C_{\Sigma}] \cdot [T_{21}] \cdot [S_1] = \begin{bmatrix} 0.025 & 1.101 & -0.393 \\ 0.838 & 0.222 & 0.763 \\ 0.263 & -0.621 & -0.712 \end{bmatrix}$$
(2.19)

• Точка A_1 :

$$\{\sigma_{1A1}\} = \begin{pmatrix} F_{+1} \\ F_{+2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \\ 1 \end{pmatrix} \Pi a$$
 (2.20)

$$\{\sigma_{\Sigma A1}\} = \begin{pmatrix} 4.259\\ 10.037\\ -0.568 \end{pmatrix} \Pi \mathbf{a} \tag{2.21}$$

Точка A₂:

$$\{\sigma_{1A2}\} = \begin{pmatrix} F_{+1} \\ F_{+2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \\ -1 \end{pmatrix} \Pi a$$
 (2.22)

$$\{\sigma_{\Sigma A2}\} = \begin{pmatrix} 5.044 \\ 8.51 \\ 0.855 \end{pmatrix} \Pi \mathbf{a} \tag{2.23}$$

Точка B₁:

$$\{\sigma_{1B1}\} = \begin{pmatrix} F_{+1} \\ F_{-2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \\ 1 \end{pmatrix} \Pi \mathbf{a}$$
 (2.24)

$$\{\sigma_{\Sigma B1}\} = \begin{pmatrix} -6.754\\ 7.815\\ 5.642 \end{pmatrix} \Pi a \tag{2.25}$$

Точка B₂:

$$\{\sigma_{1B2}\} = \begin{pmatrix} F_{+1} \\ F_{-2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \\ -1 \end{pmatrix} \Pi \mathbf{a}$$
 (2.26)

$$\{\sigma_{\Sigma B2}\} = \begin{pmatrix} -5.969\\ 6.288\\ 7.066 \end{pmatrix} \Pi a \tag{2.27}$$

Точка C₁:

$$\{\sigma_{1C1}\} = \begin{pmatrix} F_{-1} \\ F_{+2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ 4 \\ 1 \end{pmatrix} \Pi a$$
 (2.28)

$$\{\sigma_{\Sigma C1}\} = \begin{pmatrix} 3.865 \\ -3.378 \\ -4.773 \end{pmatrix} \Pi a \tag{2.29}$$

Точка C₂:

$$\{\sigma_{1C2}\} = \begin{pmatrix} F_{-1} \\ F_{+2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} \Pi a$$
 (2.30)

$$\{\sigma_{\Sigma C2}\} = \begin{pmatrix} 4.65 \\ -4.905 \\ -3.349 \end{pmatrix} \Pi a \tag{2.31}$$

Точка D₁:

$$\{\sigma_{1D1}\} = \begin{pmatrix} F_{-1} \\ F_{-2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 1 \end{pmatrix} \Pi a$$
 (2.32)

$$\{\sigma_{\Sigma D1}\} = \begin{pmatrix} -7.148 \\ -5.601 \\ 1.438 \end{pmatrix} \Pi \mathbf{a} \tag{2.33}$$

• Точка D_2 :

$$\{\sigma_{1D2}\} = \begin{pmatrix} F_{-1} \\ F_{-2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ -1 \end{pmatrix} \Pi a$$
 (2.34)

$$\{\sigma_{\Sigma D2}\} = \begin{pmatrix} -6.363 \\ -7.128 \\ 2.862 \end{pmatrix} \Pi a \tag{2.35}$$

2. Второй монослой:

$$[K_2] = [C_{\Sigma}] \cdot [T_{22}] \cdot [S_2] = \begin{bmatrix} 0.025 & 1.101 & 0.393 \\ 0.838 & 0.222 & -0.763 \\ -0.263 & 0.621 & -0.712 \end{bmatrix}$$
(2.36)

Точка A₁:

$$\{\sigma_{2A1}\} = \begin{pmatrix} F_{+1} \\ F_{+2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \\ 1 \end{pmatrix} \Pi a$$
 (2.37)

$$\{\sigma_{\Sigma A1}\} = \begin{pmatrix} 5.044\\ 8.51\\ -0.855 \end{pmatrix} \Pi a$$
 (2.38)

Точка A₂:

$$\{\sigma_{2A2}\} = \begin{pmatrix} F_{+1} \\ F_{+2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \\ -1 \end{pmatrix} \Pi a$$
 (2.39)

$$\{\sigma_{\Sigma A2}\} = \begin{pmatrix} 4.259\\ 10.037\\ 0.568 \end{pmatrix} \Pi a \tag{2.40}$$

Точка B₁:

$$\{\sigma_{2B1}\} = \begin{pmatrix} F_{+1} \\ F_{-2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \\ 1 \end{pmatrix} \Pi a$$
 (2.41)

$$\{\sigma_{\Sigma B1}\} = \begin{pmatrix} -5.969 \\ 6.288 \\ -7.066 \end{pmatrix} \Pi \mathbf{a} \tag{2.42}$$

Точка B₂:

$$\{\sigma_{2B2}\} = \begin{pmatrix} F_{+1} \\ F_{-2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} 10 \\ -6 \\ -1 \end{pmatrix} \Pi \mathbf{a}$$
 (2.43)

$$\{\sigma_{\Sigma B2}\} = \begin{pmatrix} -6.754\\ 7.815\\ -5.642 \end{pmatrix} \Pi a \tag{2.44}$$

Точка C₁:

$$\{\sigma_{2C1}\} = \begin{pmatrix} F_{-1} \\ F_{+2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ 4 \\ 1 \end{pmatrix} \Pi a$$
 (2.45)

$$\{\sigma_{\Sigma C1}\} = \begin{pmatrix} 4.65 \\ -4.905 \\ 3.349 \end{pmatrix} \Pi \mathbf{a}$$
 (2.46)

Точка C₂:

$$\{\sigma_{1C2}\} = \begin{pmatrix} F_{-1} \\ F_{+2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ 4 \\ -1 \end{pmatrix} \Pi a$$
 (2.47)

$$\{\sigma_{\Sigma C2}\} = \begin{pmatrix} 3.865 \\ -3.378 \\ 4.773 \end{pmatrix} \Pi a \tag{2.48}$$

Точка D₁:

$$\{\sigma_{2D1}\} = \begin{pmatrix} F_{-1} \\ F_{-2} \\ F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 1 \end{pmatrix} \Pi a$$
 (2.49)

$$\{\sigma_{\Sigma D1}\} = \begin{pmatrix} -6.363 \\ -7.128 \\ -2.862 \end{pmatrix} \Pi a \tag{2.50}$$

• Точка D_2 :

$$\{\sigma_{2D2}\} = \begin{pmatrix} F_{-1} \\ F_{-2} \\ -F_{12} \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ -1 \end{pmatrix} \Pi a$$
 (2.51)

$$\{\sigma_{\Sigma D2}\} = \begin{pmatrix} -7.148 \\ -5.601 \\ -1.438 \end{pmatrix} \Pi a \tag{2.52}$$

Для каждого монослоя можно построить параллелепипед, означающий их области допустимых значений напряжений. Пересечение этих областей даст искомую область для всего композиционного материала:

Рисунок 2.2 — Область предельного состояния композиционного материала

Рисунок 2.3 — Проекция области на плоскость $\sigma_{11} - \sigma_{22}$