Sintaxis de Lógica Proposicional

Laboratorio 1 Lógica para Computación

1 Introducción

El objetivo de este laboratorio es implementar en Haskell algunos conceptos sobre la sintaxis de las proposiciones en Lógica Proposicional.

Recordando como trabaja Haskell, debemos definir un módulo y su nombre debe ser el mismo que el archivo que se está creando:

Tendremos que definir un tipo inductivo L para representar las fórmulas de Lógica Proposicional. Es conveniente separar las conectivas binarias agrupándolas todas bajo un solo tipo, como es sugerido en las siguientes reglas de sintaxis:

$$\alpha, \beta ::= p \mid (\neg \alpha) \mid (\alpha \circ \beta)$$

$$\circ ::= \wedge \mid \vee \mid \supset \mid \leftrightarrow$$

Se recomienda también representar las variables como un alias del tipo String:

Ejercicios

- 1. Completar la definición del tipo de fórmulas (\mathbf{L}) , siguiendo las reglas de sintaxis precedentes.
- 2. Codificar y nombrar las siguientes fórmulas:

a.
$$p \land \neg \neg q$$

b. $p \land \neg q \land \neg r$

c.
$$\neg \neg p \lor \neg (q \land p)$$

d.
$$\neg(r \supset r) \land (\neg \neg p \lor \neg (q \land p))$$

3. Definir las siguientes funciones:

a. cantBin :: $L \rightarrow Int$

Cuenta la cantidad de conectivas binarias de una fórmula.

Ejemplo: cantBin $(\neg \neg p \lor \neg (q \land p)) = 2$

b. valores :: $L \rightarrow [(Var, Bool)]$

Dada una conjunción de *literales* (estos son variables sin negar o variables negadas), devuelve una lista con los nombres de las variables y un valor de verdad asociado. El valor debe ser **True** si la variable no se encuentra negada y **False** si se encuentra negada.

Ejemplo: valores $(p \land \neg q \land \neg r) = [(p, True), (q, False), (r, False)]$

c. dobleNeg :: $L \rightarrow L$

Simplifica una fórmula eliminando las negaciones dobles.

Ejemplo: dobleNeg $(\neg \neg p \lor \neg (q \land p)) = p \lor \neg (q \land p)$

d. cambiar :: $L \rightarrow L$

Sustituye la disyunción (\vee) por su equivalente lógico: $\alpha \vee \beta \approx \neg \alpha \supset \beta$ Ejemplo: cambiar ($\neg \neg p \vee \neg (q \wedge p)$) = $\neg \neg \neg p \supset \neg (q \wedge p)$

e. cantPropX :: L \rightarrow Var \rightarrow Int

Cuenta la cantidad de veces que aparece una letra proposicional en una fórmula.

Ejemplo: cantPropX $(\neg(r \supset r) \land (\neg \neg p \lor \neg (q \land p))) p = 2$

f. listarProp :: $L \rightarrow [Var]$

Devuelve una lista que contiene las letras proposicionales que aparecen en una fórmula, sin repetidos.

 $\underline{\mathrm{Ejemplo}} \colon \mathsf{\ listarProp\ } (\neg (r \supset r) \land (\neg \neg \ p \lor \neg \ (q \land p))) \ = \ [p,q,r]$

g. $sustCon :: L \rightarrow BC \rightarrow BC \rightarrow L$

Recibe dos conectivas binarias y sustituye la primera por la segunda en una fórmula.

Ejemplo: sustCon $(\neg \neg p \lor \neg (q \land p)) \land \lor = \neg \neg p \lor \neg (q \lor p)$

$\mathrm{h.}\ \mathsf{swapCon} :: \mathsf{L} \to \mathsf{BC} \to \mathsf{BC} \to \mathsf{L}$

Idem (g), pero intercambiando ambas conectivas.

Ejemplo: swapCon $(\neg \neg p \lor \neg (q \land p)) \land \lor = \neg \neg p \land \neg (q \lor p)$

i. invertir :: $L \rightarrow L$

Invierte los valores de las variables (ej. p por $\neg p$ y $\neg p$ por p) y los conectivos de conjunción/disyunción (\land por \lor y \lor por \land). Utilizar dobleNeg para eliminar las dobles negaciones y swapCon para invertir las conectivas binarias.

 $\underline{\mathrm{Ejemplo}} \text{: invertir } (\neg\neg\ p \lor \neg\ (q \land p))\ =\ \neg\ p \land \neg\ (\neg q \lor \neg p)$

2

j. $sustSimp :: Var \rightarrow L \rightarrow L \rightarrow L$

Recibe una variable p, dos fórmulas β y α , y devuelve la fórmula que se obtiene al sustituir p por β cada vez que p aparece en α (esta operación se nota $\alpha[p := \beta]$).

Ejemplo: sustSimp p $(r \lor s) (p \land \neg \neg q) = (r \lor s) \land \neg \neg q$

$\mathrm{k.} \ \, \mathsf{sustMult} :: [(\mathsf{Var},\mathsf{L})] \to \mathsf{L} \to \mathsf{L}$

Recibe una sustitución múltiple σ y una fórmula α , y devuelve la fórmula que se obtiene al efectuar la sustitución múltiple σ sobre α (esta operación se nota $\alpha[\sigma]$).

La sustitución múltiple σ es representada por una lista de parejas (p, β) donde p es una letra proposicional y β es una fórmula. La idea es que cada pareja (p, β) sirve para indicar que p debe sustituirse por β . Si una letra aparece en dicha lista más de una vez, se considerará solamente su primera aparición, ignorándose las otras.

Ejemplo: sustMult $[(p, r \lor s), (q, s \supset t)]$ $(p \land \neg \neg q) = (r \lor s) \land \neg \neg (s \supset t)$