

PRINCIPLES OF COMMUNICATION ENGG. SEMESTER - 4

Time: 3 Hours				[Posti	Marks :	70
	- 1 · 1	*		[rum	MISTINE :	70

GROUP - A

	(Multiple Choice Type Questions)	
Che	Choose the correct alternatives for any ten of the following: 10 ×	1 = 10
1)	A signal $g(t)$ is said to be periodic if for some positive constant T_0 .	
	a) $g(t) = g(t + T_0)$ b) $g(t) = g(t - T_0)$	
	c) $g(t) = g(t+T)$ d) $g(t) = g(T_0-t)$.	
ii)	The modulation index of an AM wave is changed from 0 to 1. The trans	mitted
	power is	
	a) unchanged b) halved	
	c) doubled d) increased by 50 per cent.	
iii)	i) The most commonly used filters in SSB generation are	
	a) mechanical b) RC	
	c) LC d) Band-Pass.	
iv)	An FM signal with a deviation δ is passed through a mixer and has its free	quency
	reduced fivefold. The deviation in the output of the mixer is	
	a) 58 b) indeterminate	
	c) δ/5	
v)	A pre-emphasis circuit provides extra noise immunity by	1
	a) boosting the bass frequencies	
	b) amplifying the higher audio frequencies	
	c) preamplifying the whole audio band	
	d) converting the phase modulation to FM.	

4

	Ulaca	
1	3	

vi)		uperheterodyne receiver with	an IF	of 450 kHz	is tuned to a	signal at			
	120	0 kHz. The image frequency is	Terrer in the second						
	a)	750 kHz	b)	900 kHz					
	c)	1650 kHz	d)	2100 kHz.					
vii)	DSE	3-SC signal can be demodulated	using						
	a)	a high pass filter	b)	a phase disc	riminator				
	(C)	a PLL	d)	an envelop	detector.				
viii)	Arm	strong F.M. transmitter perform	ns frequ	ency multipli	cation in stages				
	a)	to increase overall S/N ratio							
	b)	to reduce BW							
	c)	to find desire value of carrier							
	d)	for convenience.	, i						
ix)	In a	commercial FM broadcast the n	nodula	ting frequency	is limited abou	t			
	a)	3.4 kHz	b)	5 kHz					
	c)	15 kHz	d)	25 kHz.					
x)	The	The length of antenna to transmit a signal must be at least							
	a)	1/3 wavelength		· ·					
	b)	2/3 wavelength							
	c)	1/4 wavelength.							
xi)	SSB	system is not used for braodca	asting b	ecause					
	a)	there will be poor fidelity as o	nly one	side band is	transmitted				
	b)	there is more power in side b	ands						
	c)	transmitters and receivers are	e compl	licated		•			
,	d)	all of these.							

5

xii)	If r	maximum frequency present in one TDM signal is f_m , th	en f	or proper
		etection the message signal's sampling rate f_s should follow the r		
	a)	$f_s = f_m$ b) $f_s > f_m$		e an
	c)	$f_s \ge 2f_m$ d) $f_s = 2f_m$.	· · · · · · · · · · · · · · · · · · ·	
xiii)	If th	the SNR of the signal is increased, then the channel capacity		
	a)	is increased b) is decreased		•
	c)	remains constant d) cannot be determined	•	
xiv)	The	ne difference between PM and FM		
	a)	is purely theoretical as they are same in practice		
	b)	is too great to make the two systems compatible	•	
• 4 . • 1	c)	lies in the different definition of modulation index		
	d)	lies in the poorer audio response of phase modulation.		
xv)	Wh	hich of the following gives maximum probability of error ?		; ;
	a)	ASK b) FSK		
a y .	c)	PSK d) DPSK.		
Tagasa		GROUP - B		
		(Short Answer Type Questions)		t e
		Answer any three of the following.	3	$3 \times 5 = 15$
a)	Exp	plain low-level and high-level AM modulation with block diagram	ıs.	
b)	Wha	hat are the frequency components in an AM wave ?		3 + 2
a) _	Stat	ate Sampling theorem. What is aliasing?		

b) Draw the corresponding PAM, PWM and PPM signal waveforms with reference to

an arbitrary message signal waveform.

4581 (12/06)

2.

3.

2 + 3

- 4. Define the following terms:
 - i) Code word
 - ii) Code rate
 - iii) Code vectors
 - iv) Hamming distance
 - v) Minimum distance in context to error control coding.
- 5. a) Explain briefly a general structure of satellite communication system.
 - b) State the importance of 6/4 GHz system.

3 + 2

6. How does PLL work as FM demodulation?

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. What is Satellite? Explain Kepler's law. What is passive satellite? Write down the advantages and disadvantages of Geostationary satellite. What is ISL? Define Prograde and Retrograde.

 2 + 3 + 2 + 4 + 2 + 2
- 8. Explain satellite uplink model. What are the basic difference between FDM and TDM?

 Define deviation ratio in FM.

A radio (AM) station transmits at 10 KW when percentage of modulation is 60%. Calculate the carrier power. Find the power saving if SSB_SC is transmitted instead of AM signal. 5 + 4 + 2 + 4

- 9. What is coding? Classify different kinds of coding. Explain what is the function Modern. Explain the generation of binary PSK signal. Prove that, Mutual information I(x, y) = H(x) H(x/y). 2 + 2 + 4 + 3 + 4
- 10. a) Which is the fastest ADC and why?
 - b) What is the function of MODEM? Explain.
 - c) What are the elements of a satellite communication system?
 - d) What is encoding?
 - e) Consider the binary sequence 101011001. Draw the waveform of the following signaling format:
 - 1) Unipolar RZ signaling.
 - ii) Bipolar RZ signaling.

2 + 3 + 5 + 1 + 4

- 11. a) What is multiplexing?
 - b) How is multiplexing done by sharing the time?
 - c) Distinguish between source coding and channel coding.
 - d) The parity check matrix of a (6, 3) block code is given by

$$H = \left\{ \begin{array}{ccccc} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right\}$$

Find the generator matrix (G) and construct all possible code words.

2 + 5 + 3 + 5

END