Sterowan	ie procesami dyskretnymi	
Temat Laboratorium		Zajęcia
Symi	ulowane wyżarzanie	2
Skład grupy laboratoryjnej		•
	Filip Dyba, Agata Smolag	
Prowadzący		Data
Mgr inż. Teo	dor Niżyński	25 kwietnia 2019

1 Opis problemu

Zadaniem programu jest rozwiązanie problemu przepływowego. Mamy dany zbiór zadań n które wykonując się na m maszynach pod warunkiem, że wykonują się nieprzerwanie, w takiej samej kolejności. Rozwiązanie jest optymalne jeżeli czas zakończenia zadań jest najmniejszy.

2 Metoda rozwiązania

2.1 Symulowane wyżarzanie

Symulowane wyżarzanie jest metaheurystyką, czyli schematem budowania algorytmu, który pozawala rozwiązać postawiony problem. Schemat ten składa się z 5 kroków:

- inicjalizacja ustanawiamy temperaturę początkową oraz rozwiązanie początkowe będące wynikiem algorytmu Neh
- generowanie ruchu generowanie strategii za pomocą losowego ruchu swap lub insert
- wykonanie lub niewykonanie ruchu akceptacja z prawdopodobieństwem
- schładzanie funckja zależna od współczynnika schładzania lub stosunku iteracji do maksymalnej iteracji.
- kryterium stopu liczba iteracji lub temperatura graniczna

3 Eksperymenty obliczeniowe

W celu doboru odpowiednich parametrów wykonano badania.

3.1 Porównanie ruchu typu insert ze ruchem typu swap

Wykonano po 5 pomiarów każdego z przypadków dla 11 instancji. Następnie wyciągnięto średnie z każdych instancji i wyniki umieszczono p

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
Swap	1419	1517	2474	2850	3247	4271	5364	5926	7183	11642	12725
Insert	1412	1524	2440	2808	3260	4231	5422	5954	7221	11616	12769

Tablica 1: Porównanie sposobów generowania ruchu

Minimalnie lepsze wynik dał ruch typu swap z wynikiem 6:5 co oznacza, że oba ruchy dają podobne rezultaty.

3.2 Zmiany współczynnika wychładzania

Wykonano po 5 pomiarów dla 4 różnych wartości współczynnika dla 11 instancji, a następnie wyliczono średnie i porównano je. Wyniki zostały umieszczone w tabeli 2.

współczynnik	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
0.99	1419	1517	2474	2850	3247	4271	5364	5926	7183	11642	12725
0.95	1481	1639	2582	2915	3374	4337	5534	5947	7231	11578	12584
0.9	1489	1684	2591	2923	3405	4410	5421	5887	7190	11475	12381
0.8	1483	1663	2633	2864	3268	4257	5405	5712	6900	11284	12109

Tablica 2: Porównanie różnych wartości współczynnika wychładzania

Wyniki wskazują że najlepsze rezultaty uzyskano dla współczynnika wynoszącego 0.99 oraz współczynnika 0.8 dla wyższych instancji.

3.3 Zmiany temperatury początkowej i końcowej

Wykonano 5 pomiarów dla 7 różnych temperatur początkowych i 5 różnych temperatur końcowych. Wyliczono średnie następnie wybrano najlepsze pomiary. Porównanie pomiarów dla temperatury początkowej znajduje się w tabeli 3, a dla temperatury końcowej w tabeli 4.

Temperatura	Ta004	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
początkowa	20/5	18010 20/10	18023 20/20	18031 30/3	18043 30/10	18034 30/20	18003 100/3	18072 100/10	18081 100/20	18093 200/10	18103
1000	1419	1517	2474	2850	3247	4271	5364	5926	7183	11642	12725
1200	1430	1544	2452	2830	3233	4240	5358	5936	7122	11595	12776
2000	1413	1516	2493	2802	3266	4218	5401	5928	7105	11755	12738
800	1441	1521	2456	2817	3288	4249	5359	5886	7131	11560	12847
500	1424	1534	2459	2788	3250	4258	5360	5895	7113	11587	12699
200	1411	1543	2477	2803	3285	4223	5384	5816	7201	11538	12579
100	1409	1549	2482	2826	3266	4222	5382	5851	7070	11474	12442

Tablica 3: Porównanie doboru temperatury początkowej

Najlepsze wyniki uzyskano dla temperatury początkowej 100, oraz temperatury końcowej 3. Oznacza to, że im więcej iteracji tym lepsze wyniki.

3.4 Porównanie funkcji doboru temperatury z alternatywną funkcją schładzania

Wykonano po 5 pomiarów dla 5 różnych ilości iteracji dla 11 instancji, wyliczono średnie i wybrano najlepszą opcje. Pomiary dla różnych kmax znajdują się w tabeli 5, a porównanie funkcji w tabeli 6.

Temperatura	Ta004	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
końcowa	20/5	18016 20/10	1a025 20/20	18031 30/3	18043 30/10	18054 50/20	18003 100/3	18072 100/10	18081 100/20	18093 200/10	18105
5	1419	1517	2474	2850	3247	4271	5364	5926	7183	11642	12725
3	1394	1505	2453	2835	3255	4194	5337	5834	7108	11542	12690
8	1452	1580	2479	2831	3332	4275	5412	5889	7158	11711	12854
15	1494	1621	2529	2909	3404	4402	5465	6093	7323	11847	12954
40	1542	1720	2621	3044	3475	4478	5636	6264	7554	11883	13236

Tablica 4: Porównanie doboru temperatury końcowej

Kmax	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
528	1317	1447	2382	2739	3011	4002	5228	5472	6570	11045	11699
842	1319	1434	2373	2729	2999	3972	5229	5458	6586	11025	11723
100	1361	1495	2412	2737	3001	4001	5235	5466	6589	11051	11723
50	1356	1477	2433	2733	3034	4010	5239	5502	6616	11084	11711
10	1373	1575	2433	2764	3081	4033	5289	5535	6658	11057	11745

Tablica 5: Porównanie wartości parametru dla alternatynwej funkcji schładzania

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
temperatura	1413	1514	2430	2834	3241	4268	5382	5892	7049	11552	12744
kmax	1319	1434	2373	2729	2999	3972	5229	5458	6586	11025	11723

Tablica 6: Porównanie funkcji schładzania

Najlepszy wyniki otrzymujemy dla największej ilości iteracji. Oznacza to, że funkcja alternatywna daje lepsze rezultaty.

3.5 Odrzucenie prawdopodobieństwa równego 1

Wykonano po 5 pomiarów dla 11 instancji, wyliczono średnie i porównano wyniki dla wersji podstawowej i bez rozpatrywania prawdopodobieństwa równego 1. Wyniki umieszczono w tabeli 7.

Wersja druga daje lepsze wyniki w stosunku 8:3.

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
podstawowa	1485	1622	2569	2968	3377	4430	5521	6038	7283	11583	12617
bez 1	1453	1635	2558	2899	3398	4413	5499	6016	7261	11614	12489

Tablica 7: Porównanie wartości przy odrzuceniu prawdopodobieństwa równego 1

3.6 Rozwiązania, których Cmax jest różne od wartości Cmax obecnego rozwiązania

Wykonano po 5 pomiarów dla 11 instancji, wyliczono średnie i porównano wyniki dla wersji podstawowej i rozpatrującej rozwiązania, których Cmax jest różne od wartości Cmax obecnego rozwiązania. Wyniki umieszczono w tabeli 8. Lepsze wyniki uzyskano dla wersji drugiej w stosunku 9:2.

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
podstawowa	1485	1622	2569	2968	3377	4430	5521	6038	7283	11583	12617
zmiana	1452	1609	2545	2948	3371	4422	5471	6041	7256	11543	12625

Tablica 8: Porównanie przy nieprzyjmowaniu takiego samego Cmax

3.7 Losowa kolejność początkowa

Wykonano po 5 pomiarów dla 11 instancji, wyliczono średnie i porównano wyniki dla wersji podstawowej i oraz z losową kolejnością początkową. Wyniki umieszczono w tabeli 9. Tym razem lepsze wyniki uzyskano dla wersji podstawowej czyli tej, która posiada kolejność początkową wygenerowaną

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
podstawowa	1485	1622	2569	2968	3377	4430	5521	6038	7283	11583	12617
losowa kolejność	1487	1603	2592	3001	3418	4420	5621	6122	7467	12023	13162

Tablica 9: Porównanie z generowaniem losowej kolejności

przez algorytm Neh.

3.8 Porównanie z algorytmem Neh

Porównano najlepsze wyniki z wyżarzania(dla największej ilości iteracji, przy wykorzystaniu swap) z wynikami algorytmu Neh. Pomiary umieszczono w tabeli 10.

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
Neh	1325	1453	2397	2733	2986	3969	5219	5453	6541	11025	11685
wyżarzanie	1319	1434	2373	2729	2999	3972	5229	5458	6586	11025	13162
zmiana cmax	1357	1433	2386	2752	2969	3955	5221	5475	6532	11045	11699
bez 1	1308	1406	2384	2724	2986	3966	5219	5467	6583	11065	11699

Tablica 10: Porównanie algorytmu NEH z symulowanym wyżarzaniem

3.9 Dodatkowa modyfikacja- IMSAA

Dodatkowo została wykonana modyfikacja opisana w artykule *Improved Modified Simulated Annealing Algorithm for Global Optimization* autorów Jesús Suarez, Carlos Millan i Euriel Millan. Dodano również warunek z epsilon opisany w artykule *A modified simulated annealing algorithm for estimating solute transport parameters in streams from tracer experiment data* autorów J.Q. Guoa oraz L. Zheng. Wykonano po 5 pomiarów każdej z instancji, policzono średnią. Następnie porównano wyniki, które zostały umieszczone w tabeli 11.

	Ta004 20/5	Ta016 20/10	Ta025 20/20	Ta031 50/5	Ta043 50/10	Ta054 50/20	Ta063 100/5	Ta072 100/10	Ta081 100/20	Ta093 200/10	Ta105
Neh	1325	1453	2397	2733	2986	3969	5219	5453	6541	11025	11685
IMSAA	1306	1418	2326	2735	2942	3855	5218	5433	6496	11089	11689
IMSAA z epsilon	1303	1418	2321	2740	2935	3860	5218	5443	6506	11126	11678

Tablica 11: Porównanie IMSAA

Wyniki pokazują, że algorytm IMSAA daje zdecydowanie lepsze rezultaty niż algorytm NEH. Pierwsza modyfikacja wygrywa w stosunku 8:3, a dodanie warunku epsilon daje wyniki 9:2.

4 Wnioski

Najlepsze wyniki wyżarzania otrzymano dla alternatywy z wykorzystaniem ustawiania dużej ilości iteracji. Wprowadzane modyfikacje zazwyczaj przynosiły poprawę. Jedynie funkcja generowania ruchu nie miała znaczenia dla uzyskiwanych rezultatów. Ponadto, wstępne uszeregowanie zadań za pomocą algorytmu NEH daje znacznie lepsze rezultaty niż losowa kolejność początkowa.

Porównanie algorytmu NEH z dodaniem symulowanego wyżarzania pokazuje, że często symulowane wyżarzanie poprawia rezultaty uzyskane przez algorytm NEH. Sprawdza się to zwłaszcza dla mniejszych rozmiarów instancji. Dla większych uzykane rezultaty nie wprowadzają poprawy, a często są nieznacznie gorsze od wyników uzyskanych dzięki algorytmowi NEH.