VLMs can supervise **offline RL**, but their **feedback** must consider **sub-trajectories**, be **non-Markovian**, and be interpreted as a component in a **simple** algorithm—such as a weight in weighted regression—**rather than** as a **reward**.

OfflineRLAIF

Jacob Beck

Piloting VLM Feedback for RL via SFO

Motivation

Vision Language Model (VLM) feedback

The absence of large-scale control data prevents training a general RL foundation model. Still, we can leverage existing VLMs for supervision.

Offline RL from AI Feedback (Offline RLAIF)

VLMs struggle to differentiate random trajectories at initialization. Offline RL can include trajectories that are easier for VLMs to differentiate.

Challenges with Offline RLAIF

- 1) Full-trajectory evaluation exacerbates stitching issues
- 2) VLMs are not trained to understand continuous control data
- 3) Feedback propagation is unstable even with ground truth rewards

Conclusions

1) Sub-Trajectories Matter

Full-trajectory preferences decrease VLM calls, but are uninformative and worsen stitching issues, so sub-sampling trajectories is critical

VLMs do not natively understand control data, so visual cues over time are needed to assess progress

A filtered and weighted behavior cloning approach (SFBC) surpasses complex RL-based methods

Sub-Trajectory Filtered Behavioral Cloning (SFBC)

Existing work, such as **RL-VLM-F** (Wang et al., 2024) and **Clip-based rewards** (Baumli et al., 2023, Rocamonde et al., 2024), evaluates **online RL**, uses a **Markovian** reward, and investigates how to **elicit reward** from VLMs.

In contrast, this study evaluates offline, leverages non-Markovian feedback, and investigates how best to use the feedback (not just as reward).

- 1) We divide trajectories into disjoint and equal length sub-trajectories: $au_i = (s_{i \cdot k}, a_{i \cdot k}, s_{i \cdot k+1}, a_{i \cdot k+1}, \ldots, s_{(i+1) \cdot k})$ with segment length k
- 2) We prompt an LLM to evaluate each sub-trajectory with a Markov and non-Markov prompt, and define the feedback as a combination: $P_{\text{Markov}}(\tau_i) = 1 P(\text{"no"}|\text{Markov Prompt})$

 $P_{\text{Markov}}(\tau_i) = 1 - P(\text{``no''}|\text{Markov Prompt}) \\ P_{\text{Non-Markov}}(\tau_i) = 1 - P(\text{``no''}|\text{Non-Markov Prompt})$ \rightarrow P_{VLM}(\tau_i) = \text{min} (1, P_{\text{Markov}}(\tau_i) + P_{\text{Non-Markov}}(\tau_i))

3) We behaviorally clone weighted sub-trajectories, and introduce retrospective filtering, assuming a failed sub-trajectory may result from preceding failure:

 $\mathcal{D}_{SFBC} = \{(s_t, a_t, \tau_i) \mid \tau_i \in \mathcal{D}, \ (s_t, a_t) \in \tau_i, \ PVLM(\tau_i) \geq \alpha, \ P_{VLM}(\tau_{i+1}) \geq \alpha\} \quad \mathcal{L}_{SFBC} = -\mathbb{E}_{(s_t, a_t, \tau_i) \sim \mathcal{D}_{SFBC}} \left[P_{VLM}(\tau_i) \log \pi_{\theta}(a_t | s_t)\right]$

Results

We evaluate on Pendulum-v1 across 15 seeds using GPT-4o. The dataset consists of 500 trajectories, with 300 steps from an expert policy and 300 from a failure policy, stitched in a random order. Sub-trajectory length (k) = 100. We subsample frames by 20x. Threshold (α) = 0.1.

e (%) Std. Error (%) Mean Return Std. Error	Success Rate (%)	Method
12 -4716 790	33	BC Naive
-5131 814	27	TD3+BC (GT)
9 -5234 578	ory) 13	VLM BC (Full-Trajectory)
0 -7840 308	0	AWAC (GT)
11 -1585 518	73	SF-BC (Ours)
-5013 649	27	VLM+TD3+BC
0 -6859 181	0	S-DPO
13 -4164 883	40	No Filtering
13 -4229 869	40	Markov Prompt Only
12 -3459 604	33	No Weighting
9 -5562 525	ing 13	No Retrospective Filtering
11 -1585 11 -5013 0 -6859 13 -4164 13 -4229 12 -3459	73 27 0 40 40 40 33	SF-BC (Ours) VLM+TD3+BC S-DPO No Filtering Markov Prompt Only No Weighting

Outperforms behavioral cloning, both naively (BC Naive) and filtering by whole trajectories (VLM BC)

Outperforms offline RL with ground truth (GT) reward

Outperforms offline RL with VLM as reward (VLM+TD3+BC)
Outperforms method with VLM as preferences (S-DPO)

Removing weighting of trajectories decreases performance

Removing filtering or retrospective filtering decreases performance Removing non-Markov prompt decreases performance

Ablations

Sub-Trajectory

Filtered Optimization

(SFO)

