МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Машинное обучение»

ТЕМА: Кластеризация (DBSCAN, OPTICS)

Студент гр. 6307	 Мишанов А. А
Преподаватель	Жангиров Т. Р.

Санкт-Петербург 2020 **Цель работы:** ознакомиться с методами кластеризации (DBSCAN, OPTICS) библиотеки sklearn.

Ход работы

1. Датасет скачан и загружен в датафрейм.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	40.900749	0.818182	95.40	0.00	95.40	0.000000	0.166667	0.000000	0.083333	0.00	0.0	2.0	1000.0	201.802084	139.509787	0.000000	12.0
1	3202.467416	0.909091	0.00	0.00	0.00	6442.945483	0.000000	0.000000	0.000000	0.25	4.0	0.0	7000.0	4103.032597	1072.340217	0.222222	12.0
2	2495.148862	1.000000	773.17	773.17	0.00	0.000000	1.000000	1.000000	0.000000	0.00	0.0	12.0	7500.0	622.066742	627.284787	0.000000	12.0
3	817.714335	1.000000	16.00	16.00	0.00	0.000000	0.083333	0.083333	0.000000	0.00	0.0	1.0	1200.0	678.334763	244.791237	0.000000	12.0
4	1809.828751	1.000000	1333.28	0.00	1333.28	0.000000	0.666667	0.000000	0.583333	0.00	0.0	8.0	1800.0	1400.057770	2407.246035	0.000000	12.0

DBSCAN

1. Кластеризация методом К-средних.

```
k_means = KMeans(init='k-means++', n_clusters=3, n_init=15)
k_means.fit(no_labeled_data)

KMeans(n_clusters=3, n_init=15)
```

2. Стандартизация данных.

```
data = np.array(data, dtype='float')
min_max_scaler = StandardScaler()
scaled_data = min_max_scaler.fit_transform(data)
```

3. Кластеризация методом DBSCAN при параметрах по умолчанию. Получены метки кластеров, количество кластеров и оценочная часть наблюдений, которые не удалось кластеризировать.

```
clustering = DBSCAN().fit(scaled_data)
print(set(clustering.labels_))
print(len(set(clustering.labels_)) - 1)
print(list(clustering.labels_).count(-1) / len(list(clustering.labels_)))

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1}
36
arxivarizations.
```

4. Построен график зависимости количества кластеров от максимальной дистанции между наблюдениями и график зависимости процента некластеризованных данных от максимальной дистанции между наблюдениями.

5. Построен график зависимости количества кластеров от минимального значения количества точек и график зависимости процента некластеризованных данных от минимального значения точек

6. Определены значения параметров, при котором количество кластеров получается от 5 до 7, и процент не кластеризированных не превышает 12.

```
(3, 1.99999999999999) [6, 0.06287633163501621]
(3, 2.59999999999999) [5, 0.030917091245947197]
(3, 2.6999999999999) [5, 0.027095877721167207]
(3, 2.8999999999999) [5, 0.0222325150532654]
(4, 1.6999999999999) [5, 0.1024779990736452]
```

7. Понижение размерности до 2 с помощью метода главных компонент. Визуализация кластеризации.

OPTICS

1. При тех же параметрах, как и у DBSCAN, и cluster_method='dbscan' кластеризация получилась близкой к кластеризации DBSCAN.

2. Построен график достижимости.

3. Исследована работа метода OPTICS с использованием различных метрик, а также построены графики достижимости. Исследуемые метрики: cosine, euclidean, canberra, chebyshev, cityblock.

