Teoría de Rankine (Teoría del esfuerzo normal máximo) ENM	
$n = \frac{Sut}{\sigma_A}$	$\sigma_A \geq \sigma_B \geq 0$ Ambos positivos $\sigma_A \geq 0 \geq \sigma_B$ Valor positivo y otro negativo Y cumpla con $\left \frac{\sigma_B}{\sigma_A}\right \leq \frac{Suc}{Sut}$
$n = \frac{-Suc}{\sigma_B}$	$\sigma_A \geq 0 \geq \sigma_B$ Valor positivo y otro negativo Y cumpla con $\left \frac{\sigma_B}{\sigma_A}\right > \frac{Suc}{Sut}$ $0 \geq \sigma_A \geq \sigma_B$ Ambos Negativos
Teoría de Coulomb Mohr- Fragile CMF	
$f. s = \frac{Sut}{\sigma_A}$	$\sigma_A \geq \sigma_B \geq 0$ Ambos positivos
$f.s = \frac{-Suc}{\sigma_B}$	$0 \geq \sigma_{\!A} \geq \sigma_{\!B}$ Ambos Negativos
$\frac{\sigma_A}{Sut} - \frac{\sigma_B}{Suc} = \frac{1}{f.s}$	$\sigma_A \geq 0 \geq \sigma_B$ Ambos Negativos
Teoría de Mohr- Modificada MM	
$\sigma_{\!A} = \frac{Sut}{n}$	Ambos positivos $0 \geq \sigma_A \geq \sigma_B \\ \text{Ambos Negativos} \\ \sigma_A \geq 0 \geq \sigma_B \\ \text{Ambos Negativos} \\ \hline \textbf{Modificada MM} \\ \hline \sigma_A \geq \sigma_B \geq 0 \\ \text{Ambos positivos} \\ \sigma_A \geq 0 \geq \sigma_B \\ \text{Valor positivo y otro negativo} \\ \text{Y cumpla con } \left \frac{\sigma_B}{\sigma_A} \right \leq 1$
$\sigma_{B} = \frac{-Suc}{n}$	$0 \ge \sigma_A \ge \sigma_B$ Ambos Negativos
$\frac{(Suc - Sut)\sigma_A}{Suc Sut} - \frac{\sigma_B}{Suc} = \frac{1}{n}$	$\sigma_{\!A} \geq 0 \geq \sigma_{\!B}$ Valor positivo y otro negativo Y cumpla con $\left rac{\sigma_{\!B}}{\sigma_{\!A}} ight \geq 1$