Strutture

Una L-struttura \mathcal{A} consiste di

- Un insieme non vuoto |A| detto *universo* o *dominio* della struttura.
- Un'interpretazione in A di ogni simbolo di L; più precisamente:
 - se $R \in Rel$ è un simbolo relazionale n-ario, allora la sua interpretazione $R^{\mathcal{A}}$ è una relazione n-aria su $|\mathcal{A}|$, cioè

$$R^{\mathcal{A}} \subseteq |\mathcal{A}|^n = \underbrace{|\mathcal{A}| \times \cdots \times |\mathcal{A}|}_{n \text{ volte}}$$

 se f ∈ Funct è un simbolo funzionale n-ario, allora la sua interpretazione f^A è una funzione (o: operazione) n-aria su |A|, cioè

$$f^{\mathcal{A}}: |\mathcal{A}|^n \to |\mathcal{A}|$$

• se $c \in Const$ è un simbolo di costante, allora la sua interpretazione $c^{\mathcal{A}}$ è un elemento di $|\mathcal{A}|$:

$$c^{\mathcal{A}} \in |\mathcal{A}|$$

Notazione

Se

•
$$Rel = \{R_0, R_1, \ldots\}$$

•
$$Funct = \{f_0, f_1, \ldots\}$$

•
$$Const = \{c_0, c_1, \ldots\}$$

•
$$|\mathcal{A}| = A$$

si può denotare

$$\mathcal{A} = (A, R_0^{\mathcal{A}}, R_1^{\mathcal{A}}, \dots, f_0^{\mathcal{A}}, f_1^{\mathcal{A}}, \dots, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots)$$

Sia $L = \{P\}$, dove P è un simbolo relazionale binario. Una I-struttura è individuata da

- Un insieme non vuoto come dominio
- Una relazione binaria sul dominio, cioè un sottoinsieme del prodotto cartesiano del dominio per se stesso, per interpretare il simbolo *P*

Sono quindi esempi di *L*-strutture:

• $\mathcal{A} = (\mathbb{N}, \leq)$. Quindi

$$P^{\mathcal{A}} = \{(n, m) \in \mathbb{N}^2 \mid n \leq m\}$$

• $\mathcal{B} = (\mathbb{N}, P^{\mathcal{B}})$, dove $P^{\mathcal{B}}$ è la relazione d'equivalenza in \mathbb{N} di congruenza modulo 3, cioè

$$P^{\mathcal{B}} = \{(n, m) \in \mathbb{N}^2 \mid n \equiv m \pmod{3}\}$$

• $\mathcal{C} = (\mathbb{Z}, \leq)$. Quindi

$$P^{\mathcal{C}} = \{(n, m) \in \mathbb{Z}^2 \mid n \leq m\}$$

• $\mathcal{D} = (\mathbb{Z}, P^{\mathcal{D}})$, dove $P^{\mathcal{D}}$ è la relazione d'equivalenza in \mathbb{Z} di congruenza modulo 3, cioè

$$P^{\mathcal{D}} = \{(n, m) \in \mathbb{Z}^2 \mid n \equiv m \pmod{3}\}$$

- $\mathcal{E} = (E, P^{\mathcal{E}})$ dove
 - ullet E= insieme degli abitanti della Lapponia
 - $P^{\mathcal{E}} = \{(a, b) \in E^2 \mid a \text{ è figlio di } b\}$
- $\mathcal{F} = (\{a, b, c, d\}, \{(a, a), (a, b), (c, c), (d, a)\})$
- $G = (\{a, b, c\}, \emptyset)$

Nota

Se $L = \{P\}$, con P simbolo relazionale binario, ogni coppia

dove

- X è un insieme non vuoto
- R è una relazione binaria su X

è una L-struttura indipendentemente dalle eventuali proprietà particolari di X o di R, che uno può essere interessato a studiare.

Similmente per ogni altro linguaggio del prim'ordine.

Sia $L = \{Q\}$, dove Q è un simbolo relazionale unario. Una L-struttura è individuata da

- Un insieme non vuoto come dominio
- Una relazione unaria sul dominio, cioè un sottoinsieme del dominio, per interpretare il simbolo Q

Sono quindi esempi di *L*-strutture:

- $\mathcal{A} = (\mathbb{R}, \mathbb{N})$
- $\mathcal{B}=(\mathbb{N},Q^{\mathcal{B}})$, dove $Q^{\mathcal{B}}$ è il predicato di essere un numero primo, cioè

$$Q^{\mathcal{B}} = \{ n \in \mathbb{N} \mid n \text{ è un numero primo} \}$$

- $\mathcal{C} = (\mathbb{N}, \emptyset)$
- $\mathcal{D} = (\mathbb{Q}, \{-3, \frac{1}{2}, \frac{4}{5}\})$
- $\mathcal{E} = (\mathbb{C}, \{z \in \mathbb{C} \mid |z| = 1\})$
- $\mathcal{F} = (\{f : \mathbb{R} \to \mathbb{R}\}, \{f \mid f \text{ è ovunque derivabile}\})$
- ...

Sia $L = \{f\}$, con f simbolo funzionale binario.

Una L-struttura è individuata da

- Un insieme non vuoto A come dominio
- Una funzione binaria $A \times A \to A$, cioè un'operazione a due argomenti, per interpretare il simbolo f

Sono quindi esempi di *L*-strutture:

- I monoidi
- A = (A, m), dove A è una retta e m : A × A → A è la funzione che a ogni coppia di punti associa il loro punto medio
- $\mathcal{B} = (I, F)$ dove I è un insieme non vuoto e $F: I^2 \to I$ associa a ogni coppia ordinata $(x, y) \in I^2$ la sua prima componente x.

Non è un esempio di *L*-struttura $(\mathbb{N}, -)$, perché la sottrazione non è un'operazione binaria su \mathbb{N} , non essendo definita per tutte le coppie di naturali.

Sia $L = \{P, f, c\}$, con:

- P simbolo relazionale binario
- f simbolo funzionale binario
- c simbolo di costante

Una L-struttura è individuata da

- Un insieme non vuoto A come dominio
- Una relazione binaria su A, cioè un sottoinsieme di A × A, per interpretare il simbolo P
- Una funzione binaria $A \times A \rightarrow A$, cioè un'operazione a due argomenti, per interpretare il simbolo f
- Un elemento di A, per interpretare il simbolo c

Sono quindi esempi di *L*-strutture:

•
$$A = (\mathbb{Z}, \leq, +, 0)$$

•
$$\mathcal{B} = (\mathbb{Z}, <, \cdot, 100)$$

•
$$C = (\mathbb{R}, \geq, \cdot, -\sqrt{2})$$

• ...

Osservazioni

 Diversi simboli di costante/relazionali/funzionali (purché abbiano la medesima arità) possono essere interpretati con lo stesso elemento/relazione/funzione.

Esempio. Se $L = \{P, Q, a, b\}$, dove P, Q sono simboli relazionali binari, e a, b sono simboli di costante, una legittima L-struttura è

$$\mathcal{A} = (\mathbb{N}, \leq, \leq, 0, 0)$$

cioè

$$P^{\mathcal{A}} = \leq$$

$$Q^{\mathcal{A}} = \leq$$

$$a^{\mathcal{A}} = 0$$

$$b^{\mathcal{A}} = 0$$

Osservazioni

 Per evitare confusioni, è opportuno elencare le interpretazioni dei simboli in una L-struttura nello stesso ordine in cui i simboli del linguaggio L sono presentati.

Esempio. Se $L = \{P, f, g, c\}$, dove P è simbolo relazionale binario, f e g sono simboli funzionali binari, c è simbolo di costante, e si considera la L-struttura

$$(\mathbb{R},<,+,\cdot,3)$$

si intende che l'operazione di somma interpreta il simbolo f, e l'operazione di moltiplicazione interpreta il simbolo g (per i simboli P e c l'interpretazione è comunque chiara, perché sono gli unici simboli di quel tipo).

Interpretazioni

Le $\it L$ -strutture forniscono un contesto in cui interpretare gli enunciati del linguaggio $\it L$

Come illustrazione, sia

$$L = \{P\}$$

con P simbolo relazionale binario. Si consideri l'enunciato

$$\varphi: \exists x \forall y P(x,y)$$

L'enunciato φ asserisce che c'è un elemento che è in relazione con tutti gli elementi.

Non ha senso chiedersi se φ è vero o falso: la verità o falsità dipende da qual è l'universo di elementi di cui ci si occupa e da qual è la relazione (che interpreta il simbolo) P.

Per esempio, φ è vero in (\mathbb{N}, \leq) , ed è falso in (\mathbb{Z}, \leq) e in (\mathbb{N}, \geq) .

Strutture e interpretazioni

Le strutture forniscono la semantica della logica del prim'ordine, così come le valutazioni di verità costituiscono la semantica della logica proposizionale.

Si definisce cosa vuol dire interpretare una L-formula φ in una L-struttura $\mathcal A$ e, nel caso in cui φ sia un enunciato, cosa significa che φ è vero in $\mathcal A$, denotato

$$\mathcal{A} \models \varphi$$

Sia

$$L = \{f, g, c\}$$

dove

- f, g sono simboli funzionali binari
- c s simbolo di costante

Sono *L*-strutture:

- $\mathcal{A} = (\mathbb{R}, +, \cdot, 1)$
- $\mathcal{B} = (\mathbb{Q}, +, \cdot, 1)$

Si considerino i termini

$$t_1: g(x,x), t_2: f(c,c)$$

Esempio (cont.)

In entrambe le strutture:

- il termine t_1 rappresenta il polinomio x^2
- il termine t₂ rappresenta il numero 2

La formula atomica $t_1 = t_2$ rappresenta l'equazione

$$x^{2} = 2$$

Si osservi che questa equazione non è nè vera nè falsa in \mathcal{A} , ma dipende dal valore di x.

È vera per gli elementi $-\sqrt{2}$ e $\sqrt{2}$; è falsa per tutti gli altri elementi.

Esempio (cont.)

Si consideri ora la formula $\exists x \ t_1 = t_2$, cioè

$$\exists x \ g(x,x) = f(c,c)$$

Sia in A sia in B, questo enunciato asserisce che:

L'equazione $x^2 = 2$ ha soluzioni

Si tratta di un enunciato vero in $\mathcal{A}=(\mathbb{R},+,\cdot,1)$ —perché l'equazione ha le soluzioni $\pm\sqrt{2}$ — e falso in $\mathcal{B}=(\mathbb{Q},+,\cdot,1)$.

Formule vs. enunciati

Il diverso ruolo delle formule

$$g(x,x) = f(c,c)$$
 e $\exists x \ g(x,x) = f(c,c)$

quando si cerca di valutare se siano vere o false nelle strutture $\mathcal A$ o $\mathcal B$ è dovuto al fatto che la prima ha una variabile libera, la seconda no (è un enunciato).

- La verità di $\exists x \ g(x,x) = f(c,c)$ (e, più in generale, degli enunciati) dipende solo dalla struttura in cui si valuta l'enunciato
- La verità di g(x,x) = f(c,c) (e, più in generale, delle formule con variabili libere) dipende sia dalla struttura in cui si valuta la formula, sia dal valore assegnato alle variabili libere

Interpretazione dei termini

Per definire rigorosamente cosa vuol dire interpretare una formula in una struttura, si deve prima definire l'interpretazione dei termini nella struttura.

- L'interpretazione dei simboli funzionali e di costante è definita dalla struttura stessa
- Alle variabili si devono assegnare dei valori, cioè degli elementi della struttura

Si introduce pertanto il concetto di assegnazione.

Assegnazioni

Definizione

Data una L-struttura \mathcal{A} , un'assegnazione (di valori) a un insieme di variabili $\{x_1,\ldots,x_n\}$ è una funzione che assegna a ogni variabile dell'insieme un elemento dell'universo della struttura, cioè è una funzione

$$\{x_1,\ldots,x_n\}\to |\mathcal{A}|$$

Una tale assegnazione si denota spesso

$$x_1/a_1, x_2/a_2, \ldots, x_n/a_n$$

dove a_i è il valore assegnato alla variabile x_i

Se $|\mathcal{A}| = \mathbb{N}$, un'assegnazione sull'insieme di variabili $\{x,y,z\}$ è una qualunque funzione $\{x,y,z\} \to \mathbb{N}$.

Per esempio:

$$x \mapsto 24$$
, $y \mapsto 2$, $z \mapsto 9$

cioè

Le assegnazioni permettono di definire le interpretazioni dei termini in una struttura.

Interpretazione dei termini

Siano A una L-struttura e t un termine le cui variabili sono tra x_1, \ldots, x_n . Sia

$$x_1/a_1, x_2/a_2, \ldots, x_n/a_n$$

un'assegnazione di valori alle variabili x_1, \ldots, x_n .

L'interpretazione $t^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n]$ del termine t mediante tale assegnazione è un elemento di $|\mathcal{A}|$ e si definisce per induzione sulla costruzione del termine:

- Se t è la variabile x_i (per qualche i con $1 \le i \le n$), allora $t^A[x_1/a_1, \ldots, x_n/a_n]$ è l'elemento a_i
- Se t è il simbolo di costante c, allora $t^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n]$ è l'elemento $c^{\mathcal{A}}$
- Se t è della forma $f(t_1, t_2, \ldots, t_k)$, allora $t^{\mathcal{A}}[x_1/a_1, \ldots, x_n/a_n]$ è l'elemento

$$f^{\mathcal{A}}(t_1^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n],\ldots,t_k^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n])$$

