

Zero-shot Model-based Reinforcement Learning using Large Language Models

Abdelhakim Benechehab¹², <u>Youssef Attia El Hili</u>¹, Ambroise Odonnat¹³, Oussama Zekri⁴, Albert Thomas¹, Giuseppe Paolo¹, Maurizio Filippone⁵, Ievgen Redko¹, Balázs Kégl¹

¹ Huawei Noah's Ark Lab, Paris, France ² Department of Data Science, EURECOM ³ Inria, Univ. Rennes 2, CNRS, IRISA ⁴ ENS Paris-Saclay ⁵ Statistics Program, KAUST

TL;DR

 We propose DICL, a method to adapt LLMs for dynamics prediction in MBRL

Problem Setup

• Given a trajectory $\mathcal{T}=(s_0,a_0,r_1,s_1,\ldots,r_{T-1},s_{T-1},a_{T-1})$, with $s_t\in\mathbb{R}^{d_s}$, $a_t=\pi(s_t)\in\mathbb{R}^{d_a}$, and $r_t\in\mathbb{R}$, \to predict future states s_T

LLMs for numerical data:

Time series tokenization

$$\underbrace{[0.2513, 5.2387, 9.7889]}_{\text{time series}} \rightarrow \underbrace{[1.5, 5.16, 8.5]}_{\text{rescaled}} \rightarrow \underbrace{"150, 516, 850"}_{\text{prompt}}$$

In-Context Learning (ICL)

$$\underbrace{x_1, x_2, \ldots, x_{T-1}}_{\text{input}}, \underbrace{x_T}_{\text{targe}}$$

ullet Sampling the numbers sub-vocabulary $\mathcal{V}_{\mathsf{num}}$

 $\{P(X_{i+1}|x_i,\ldots,x_0)\}_{i\leq T}\leftarrow \text{softmax}(\text{logits}(\mathcal{V}_{\mathsf{num}}))$

Motivation: LLMs can perceive time patterns

Visualizing Llama 3-8B attention matrices.

Application: Data-augmented off-policy RL

 Augment off-policy RL (e.g. SAC) with DICL-generated transitions.

▶ DICL-SAC improves the convergence speed in the beginning of training

Method: Disentangled In-context learning (DICL)

We solve two main challenges:

- Multivariate state $d_s > 1$
- Including the control signal $(a_i)_{i \leq T}$

Feature-mixing transformation φ

In practice, We use **PCA** as the φ transformation

Dynamics learning using DICL

- DICL improves upon the MLP baseline in multi-step prediction error (MSE)
- lacktriangleright The prediction error gets smaller with T, the in-context trajectory length
- ▶ DICL runs in less time thanks to PCA-enabled dimensionality reduction

Return bound under DICL dynamics

Theorem.

▶ T context length, p branching proba, k branch length ▶ $\varepsilon_{\rm llm}$ LLM in-context prediction error

More findings from our paper

- → Ablation study on **LLaMA** LLMs.
- → DICL for Off-Policy Evaluation (OPE)!!
- → LLMs are well-calibrated in-context forecasters.

Take Home Message

LLMs are powerful foundation models trained on vast amounts of data

→ **DICL** is an effective way to adapt them to MBRL

Main References

- LLMTime, Gruver et al. Neurips 2023
- Large Language Models Are Zero-Shot Time Series Forecasters
- Liu et al. EMNLP 2024
- LLMs learn governing principles of dynamical systems, revealing an in-context neural scaling law
- Benechehab et al. SCOPE workshop @ ICLR 2025 (Follow-up work)

 AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time

 Series Forecasting

Want to Know More?

paper & code

Abdelhakim Benechehab

