Les vrais-faux récupéré des séries de la section de GM de l'EPFL. Il y a des risques d'erreurs comme partout donc resteajour.ch décline toutes responsabilités (mais normalement il y a aucune erreur).

1 Exercices

Exercice 7

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Toutes les opérations élémentaires sur les lignes sont réversibles.
- b) Une matrice de taille 5×6 a 6 lignes.
- c) L'ensemble des solutions d'un système linéaire en les variables x_1, x_2, \ldots, x_n est une liste de nombres (s_1, s_2, \ldots, s_n) qui, substitués à x_1, x_2, \ldots, x_n respectivement, rendent correcte chaque équation du système.
- d) L'existence et l'unicité d'une solution sont deux questions fondamentales pour un système linéaire.

Exercice 8

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Des opérations élémentaires sur les lignes d'une matrice augmentée ne changent jamais l'ensemble des solutions du système linéaire associé.
- b) Deux matrices sont équivalentes par rapport aux lignes si elles ont le même nombre de lignes.
- c) Un système incompatible a plus d'une solution.
- d) Si les matrices augmentées de deux systèmes linéaires sont équivalentes par rapport aux lignes, alors les deux systèmes ont le même ensemble de solutions.

FIGURE 1 – Série 1

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) En appliquant différentes opérations sur les lignes d'une matrice, on obtient des formes échelonnées réduites différentes.
- b) Une variable de base d'un système linéaire est une variable qui correspond à un pivot dans une colonne.
- c) La dernière colonne d'une matrice augmentée peut faire office de colonne pivot.
- d) Un système est consistant que lorsque chaque colonne contient un pivot.

Exercice 8

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si une forme échelonnée d'une matrice augmentée possède [00005] comme ligne, alors le système est inconsistant.
- b) Il existe plusieurs formes échelonnées d'une matrice augmentée.
- c) A chaque fois que l'on a une variable libre dans un système linéaire, le système possède une infinité de solutions.
- d) Une solution générale d'un système est une description explicite de toutes les solutions du système.

Exercice 7

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Les colonnes d'une matrice A sont linéairement indépendantes si l'équation Ax=0 admet la solution triviale.
- b) Toute relation de dépendance linéaire entre les colonnes de A correspond à une solution non triviale de Ax=0.
- c) Les colonnes de toute matrice de taille 4 × 5 sont linéairement dépendantes.
- d) Si le vecteur nul est l'un des vecteurs d'un ensemble $S=(v_1,v_2,\ldots,v_p)$, alors l'ensemble est linéairement indépendant.

Exercice 8

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Deux vecteurs sont linéairement dépendants si et seulement s'ils se trouvent sur une droite qui passe par l'origine.
- b) Si un ensemble comporte moins de vecteurs que le nombre de composantes de ceux-ci, alors il est linéairement indépendant.
- c) Une équation homogène est toujours compatible.
- d) Si x est une solution non triviale de Ax = 0, alors aucune composante de x est nulle.

Figure 3 – Série 3

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si une matrice A est de taille $n \times m$ alors l'image de la transformation $x \mapsto Ax$ est contenu dans \mathbb{R}^m .
- b) Chaque transformation linéaire est une transformation matricielle.
- c) La transformation linéaire $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = mx^2 + b$ est linéaire pour b = 0.
- d) Une transformation linéaire préserve les opérations d'addition vectorielle et de multiplication scalaire.

Exercice 11

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Une matrice A de taille $m \times n$ ne peut être multipliée par la gauche que par des matrices B de taille $p \times m$.
- b) Le produit matriciel est commutatif.
- c) Si le produit de deux matrices A, B est AB = 0, alors A = 0 ou B = 0.
- d) $(ABC)^T = C^T B^T A^T$.

Figure 4 – Série 4

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Si A et B sont deux matrices de taille 2×2 dont les colonnes sont désignées par a_1, a_2 et b_1, b_2 , alors $AB = \begin{pmatrix} a_1b_1 & a_2b_2 \end{pmatrix}$.
- (b) Soient A, B et C trois matrices de taille 3×3 . Alors AB + AC = (B + C)A.
- (c) Soient A et B deux matrices de taille $n \times n$. Alors $A^T + B^T = (A + B)^T$.
- (d) La transposée d'un produit de matrices est égale au produit de leurs transposées dans le même ordre.

Exercice 12

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Soient A, B et C trois matrices. Alors (AB)C = (AC)B.
- (b) Si A est une matrice inversible, alors A^{-1} l'est aussi.
- (c) Le produit de plusieurs matrices inversibles de taille $n \times n$ n'est pas inversible.
- (d) Si A est une matrice inversible de taille $n \times n$, alors l'équation Ax = b est compatible quel que soit $b \in \mathbb{R}^n$.

Figure 5 – Série 5

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Le déterminant d'un produit de plusieurs matrices carrées $n \times n$ est égal au produit des déterminants de chaque matrice.
- b) Le déterminant d'une matrice $m \times n, m > n$ s'obtient par la somme de n termes de la forme $\sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$.
- c) Si une matrice A peut s'écrire comme LU, avec L et U obtenues par la factorisation LU. Alors il est généralement plus simple de calculer le déterminant de A par det L det U que par det A.
- d) Lors de la factorisation LU d'une matrice A de taille 3×3 , les colonnes l_i de la matrice L s'obtiennent avec $l_{ij} = \frac{a_{ji}}{a_{1j}}$ pour tout i, j = 1, 2, 3.

Exercice 13

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si une matrice A est triangulaire inférieure, alors son déterminant s'obtient comme le produit des éléments de sa diagonale.
- b) $\det A^{\top} = -\det A$ pour toute matrice carrée A.
- c) Dans certain cas, il se peut que l'inverse d'une matrice A existe même si det A=0.
- d) Soient A une matrice $n \times n$ et $k \in \mathbb{R}^*$. Alors $\det(kA) = k^n \det(A)$.

Figure 6 – Série 6

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Si B est obtenue en intervertissant deux lignes de A, alors det $B = \det A$.
- (b) Si les colonnes de A sont linéairement dépendantes, alors det A = 0.
- (c) Le déterminant de A est le produit des éléments diagonaux de A.
- (d) Soit A une matrice carrée telle que $det(A^{13}) = 0$. Alors A est inversible.

Exercice 14

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Si deux lignes d'une matrice de taille 7×7 sont les mêmes, alors det A = 0.
- (b) Si A est une matrice carrée dont le déterminant vaut 2, alors $\det(A^3) = 6$.
- (c) Si A et B sont des matrices de taille $n \times n$ telles que det A = 2 et det B = 5, alors $\det(A + B) = 7$.
- (d) Si A est une matrice carrée triangulaire inférieure, alors A est inversible.

Exercice 13

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Soient V un espace vectoriel et H un sous-espace de V. Alors on a aussi que V est un sous-espace de lui-même (ou d'un espace vectoriel plus grand) et H est un espace vectoriel.
- (b) Si H est un sous-ensemble d'un espace vectoriel V, alors il suffit que 0 soit dans H pour que H soit un sous-espace de V.
- (c) Une matrice carrée A est inversible si et seulement si $Ker(A) = \{0\}$.
- (d) Le noyau d'une matrice A n'est pas nécessairement un espace vectoriel.

Exercice 14

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- (a) Le plan définit dans \mathbb{R}^3 par z=2 est un sous-espace de \mathbb{R}^3 .
- (b) $Ker(A) = \{0\}$ si et seulement si l'application $x \mapsto Ax$ est surjective.
- (c) Soit V un espace vectoriel et $u \in V$. Alors $(-1)u \in V$ est l'inverse de u et est unique.
- (d) Soit A une matrice de taille $m \times n$, alors Ker(A) est un sous-espace de \mathbb{R}^n .

Figure 8 – Série 8

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) La matrice A n'est pas inversible si et seulement si 0 est une valeur propre de A.
- b) Une matrice A carrée est inversible si et seulement si elle est diagonalisable.
- c) Les valeurs propres d'une matrice carrée sont sur sa diagonale.
- d) On trouve les valeurs propres de A en réduisant la matrice à sa forme échelonnée.

Exercice 11

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Si A et B sont deux matrices semblables, alors elles ont les mêmes valeurs propres.
- b) Pour qu'une matrice $n \times n$ soit diagonalisable il faut qu'elle ait au moins n valeurs propres distinctes.
- c) Si v_1 et v_2 sont deux vecteurs propres linéairement indépendants, alors leur valeurs propres associées sont différentes.
- d) Soient A, B et C trois matrices. Si A est équivalente à B, et B est équivalente à C, alors A est équivalente à C.

Exercice 2

Soit $A \in \mathbb{R}^{n \times n}$. Indiquer si les affirmations suivantes sont vraies ou fausses (justifier)?

- i) A est diagonalisable si et seulement si elle possède n valeurs propres distinctes.
- ii) A est diagonalisable si A possède n vecteurs propres.
- iii) Si A est diagonalisable, alors A est inversible.
- iv) Si A est inversible, alors A est diagonalisable.
- v) Si 0 est valeur propre, alors rg(A) < n.
- vi) Pour tout matrice inversible P de taille $n \times n$, λ est une valeur propre de A si et seulement si λ est une valeur propre de $P^{-1}AP$.

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Un espace propre d'une matrice carrée A est l'espace nul d'une certaine matrice.
- b) Soit A une matrice carrée. Si A^2 est la matrice nulle, alors la seule valeur propre de A est 0.
- c) Les valeurs propres d'une matrice triangulaire sont les éléments de sa diagonale principale.
- d) L'ensemble $\{v_1, v_2, \dots, v_r\}$ des vecteurs propres associés aux valeurs propres distinctes $\lambda_1, \lambda_2, \dots, \lambda_r$ d'une matrice carrée A est linéairement dépendant.

Exercice 5

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Soit $\|.\|$ la norme euclidienne. Alors pour un vecteur v, $\|cv\| = c \|v\|$ quel que soit le scalaire c.
- b) Deux vecteurs u et v sont orthogonaux si et seulement si

$$||u + v||^2 = ||u||^2 + 2 ||u|| ||v|| + ||v||^2$$
.

- c) Si un vecteur v est orthogonal à tous les vecteurs sauf un d'un sous-espace W, alors v appartient à W^{\perp} .
- d) Soit W un sous-ensemble d'un espace vectoriel V. Si la dimension de l'espace W^{\perp} est égale à 1, alors on peut trouver une base de V formée par des vecteurs de W.

Exercice 14

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Tout ensemble orthonormal composé de vecteurs non-nuls de \mathbb{R}^n est linéairement dépendant.
- b) Soit W un sous-espace de \mathbb{R}^n . Si v est dans W et dans W^{\perp} alors v=0.
- c) Si U est une matrice $m \times n$ avec des colonnes orthonormales alors $U^{\top}Ux = x, \forall x \in \mathbb{R}^n$.
- d) Si W est un sous-ensemble de \mathbb{R}^n , de dimension p $(0 , alors l'algorithme de Gram-Schmidt produit, à partir d'une base <math>\{x_1, \ldots, x_p\}$, une base $\{v_1, \ldots, v_p\}$ avec $||v_i|| = 1, \forall i \in \{1, \ldots, p\}$.

Exercice 15

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Soit A une matrice $n \times n$ qui peut se factoriser selon la QR factorisation comme A = QR. Alors $Q^{\top}A = R$.
- b) Soit W un sous-ensemble de \mathbb{R}^n . Soit \hat{y} la projection de y sur W. Alors \hat{y} dépend du choix de la base.
- c) Soit W un sous-ensemble de \mathbb{R}^n tel que $W=\operatorname{span}\{w_1,w_2\}$. Si z, un vecteur de \mathbb{R}^n , satisfait $z\perp w_1$ et $z\perp w_2$ alors $z\in W^\perp$.
- d) Soit W un sous-ensemble de \mathbb{R}^n . Si $y \in W$, alors sa projection sur W est $\operatorname{proj}_W y = y$.

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Une base d'un sous-espace W de \mathbb{R}^n qui est un ensemble orthogonal est appelée une base orthonormale.
- b) Un ensemble $S = \{v_1, v_2, \dots, v_p\}$ orthogonal de vecteurs non nuls de \mathbb{R}^n est linéairement indépendant et de ce fait est une base du sous-espace qu'il engendre.
- c) Une base orthonormale est une base orthogonale mais la réciproque est fausse en général.
- d) Si x n'appartient pas au sous-espace W, alors $x-\operatorname{proj}_W x$ n'est pas nul.

Exercice 11

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) L'ensemble des solutions au sens des moindres carrés de Ax = b coïncide avec l'ensemble non vide des solutions des équations normales $A^TAx = A^Tb$.
- b) Soit A une matrice $m \times n$ and $b \in \mathbb{R}^m$. Le problème général des moindres carrés consiste à trouver un $x \in \mathbb{R}^n$ qui rend Ax aussi proche que possible de b.
- c) Soit V un espace euclidien et soit (u, v) le produit scalaire de deux vecteurs $u, v \in V$. Alors $(uv, w) = (u, w) \cdot (v, w)$ pour tout $u, v, w \in V$.
- d) L'espace \mathbb{R}^n muni du produit scalaire classique est un espace euclidien.

FIGURE 12 – Série 12

Seulement pour la section de GM:

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) La matrice d'une forme quadratique est symétrique.
- b) Les axes principaux d'une forme quadratique sont les vecteurs propres de A.
- c) Une forme quadratique strictement positive satisfait $Q(x) > 0, \forall x \in \mathbb{R}^n$.
- d) Si les valeurs propres d'une matrice symétrique A sont toutes strictement positives, alors la forme quadratique $x^T A x$ est définie positive.
- e) L'expression $||x||^2$ est une forme quadratique.

Exercice 7

Indiquer pour chaque énoncé s'il est vrai ou faux et justifier brièvement votre réponse.

- a) Une matrice symétrique de taille $n \times n$ possède n valeurs propres réelles distinctes.
- b) Toute matrice symétrique est orthogonalement diagonalisable mais la réciproque est fausse.
- c) $Q(x) = 3x_1^2 7x_2^2$ est une forme quadratique.
- d) La forme quadratique $Q(x) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$ est définie positive.

FIGURE 13 – Série 13

2 Solutions

17 janvier 2015 11 www.resteajour.ch

Sol.:
$$Vrai: a)$$
. $Faux: b), c), d)$. Sol.: $Vrai: a), d)$. $Faux: b), c)$.

Figure 22 – Série 9

Exercice 2

Soit $A \in \mathbb{R}^{n \times n}$. Indiquer si les affirmations suivantes sont vraies ou fausses (justifier)?

- A est diagonalisable si et seulement si elle possède n valeurs propres distinctes.
 Sol.: Faux. En effet la matrice identité est diagonale donc diagonalisable, et pourtant sa seule valeur propre est 1.
- ii) A est diagonalisable si A possède n vecteurs propres. Sol.: Faux. A doit posséder n vecteurs propres linéairement indépendants.
- iii) Si A est diagonalisable, alors A est inversible.

 Sol.: Faux. Méthode 1: La matrice nulle est diagonalisable mais non inversible.

 Méthode 2: On peut aussi proposer la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ diagonale donc diagonalisable mais non inversible.
- iv) Si A est inversible, alors A est diagonalisable. Sol.: Faux (pour $n \geq 2$). En effet, la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ est inversible, mais non diagonalisable, car l'espace propre associé à la valeur propre 1 (de multiplicité 2) est de dimension seulement 1.
- v) Si 0 est valeur propre, alors rg (A) < n.
 Sol.: Vrai. Si 0 est valeur propre, la dimension du noyau est non nul, et donc rg (A) = n dim Ker A < n.
- vi) Pour tout matrice inversible P de taille $n \times n$, λ est une valeur propre de A si et seulement si λ est une valeur propre de $P^{-1}AP$.

 Sol.: Vrai. A et $B = P^{-1}AP$ sont semblables, donc elles ont les mêmes valeurs propres (avec les mêmes multiplicités).

 Remarque: En plus, si on note v_1, v_2, \ldots les vecteurs propres de B, alors les vecteurs propres de A sont Pv_1, Pv_2, \ldots