Basic Data Manipulation

Bui Dinh Ngoc June 30, 2016

Read an NIfTI file

This is example to read some NIfTI files and execute some basic data manipulation, by using this example code you must be install package oro.nifti,fslr,AnalyzeFMRI first.

Download a NIfTI file from Neurohacking_data repository

```
library(oro.nifti)

url <- "https://raw.githubusercontent.com/muschellij2/Neurohacking/master/Basic_Data_Manipulations/Kirb
destfile <- "SUBJ0001-01-MPRAGE.nii.gz"
fname <- file.path(getwd(), destfile)
download.file(url, destfile,mode="wb") # NIfTI is binaryfile format

maskurl <- "https://raw.githubusercontent.com/muschellij2/Neurohacking/master/Basic_Data_Manipulations/maskdestfile <- "SUBJ0001_mask.nii.gz"
maskfname <- file.path(getwd(), maskdestfile)
download.file(maskurl, maskdestfile,mode="wb") # NIfTI is binaryfile format

T1 <- readNIfTI(fname,reorient=FALSE)
mask <- readNIfTI(maskfname, reorient=FALSE)</pre>
```

Show meta data from MPRAGE file

```
print (T1)
```

```
## NIfTI-1 format
##
     Type
                     : nifti
##
     Data Type
                     : 16 (FLOAT32)
##
     Bits per Pixel : 32
    Slice Code
                    : 0 (Unknown)
##
                    : 0 (None)
##
     Intent Code
     Qform Code
                    : 1 (Scanner_Anat)
##
##
    Sform Code
                    : 0 (Unknown)
##
    Dimension
                    : 170 x 256 x 256
    Pixel Dimension: 1.2 x 1 x 1
##
##
    Voxel Units
                   : mm
##
    Time Units
                     : sec
```

As you see the Dimension is: 170 x 256 x 256

Show meta data from MPRAGE file

print (mask)

```
## NIfTI-1 format
##
      Туре
                            : nifti
      Data Type : 4 (INT16)
##
      Bits per Pixel : 16
##
      Slice Code : 0 (Unknown)
Intent Code : 0 (None)
Qform Code : 1 (Scanner_Anat)
Sform Code : 1 (Scanner_Anat)
Dimension : 170 x 256 x 256
##
##
##
##
##
##
      Pixel Dimension : 1.2 x 1 x 1
##
       Voxel Units : mm
##
       Time Units : sec
```

As you see the of mask is same dimension (170 x 256 x 256).

Visualizing orthographic T1

orthographic(T1)

Visualizing orthographic mask

orthographic(mask)

Visualizing orthographic T1*mask

```
library(fslr) # you may need install fslr
masked.T1 <- niftiarr(T1, T1*mask)
orthographic(masked.T1)</pre>
```


Visualizing orthographic subtract

```
library(fslr) # you may need install fslr

followurl <- "https://raw.githubusercontent.com/muschellij2/Neurohacking/master/Basic_Data_Manipulation
followdestfile <- "SUBJ0001-02-MPRAGE.nii.gz"
followfname <- file.path(getwd(), followdestfile)
download.file(followurl, followdestfile,mode="wb")

T1.follow <- readNIfTI(followfname, reorient=FALSE)
subtract.T1 <- niftiarr(T1, T1.follow - T1)
orthographic(subtract.T1)</pre>
```


Visualizing orthographic subtract process

```
library(fslr) # you may need install fslr

baseurl <- "https://raw.githubusercontent.com/muschellij2/Neurohacking/master/Basic_Data_Manipulations/
basefile <- "SUBJ0001-01-MPRAGE_N3.nii.gz"
basefname <- file.path(getwd(), basefile)
download.file(baseurl, basefile,mode="wb")

followurl <- "https://raw.githubusercontent.com/muschellij2/Neurohacking/master/Basic_Data_Manipulation
followfile <- "SUBJ0001-02-MPRAGE_N3_REG.nii.gz"
followfname <- file.path(getwd(), followfile)
download.file(followurl, followfile,mode="wb")

T1.base.process <- readNIfTI(basefname, reorient=FALSE)
T1.follow.process <- niftiarr(T1, T1.follow.process - T1.base.process)
orthographic(subtract.T1.process)</pre>
```


 $Full \ generated \ page \ can \ be \ found \ here \ http://rpubs.com/ngocbd/Basic-Data-Manipulation$