

PANIMALAR ENGINEERING COLLEGE

An Autonomous Institution

[JAISAKTHI EDUCATIONAL TRUST]

Approved by AICTE | Affiliated to Anna University | Recognized by UGC All Eligible UG Programs are Accredited by NBA

Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai- 600 123

TECHDIVATHON

Empower, Innovate, Elevate: Code the Future Together

Domain: MEDICAL ROBOTICS

Problem Statements:

S.No	Title	Problem Statement	Description	
1	Precision Robotic	Design robotic arms with	Robotic arms offering unmatched	
	Surgery Tools	enhanced dexterity and precision	precision for delicate surgeries,	
		for minimally invasive surgical	reducing human error and patient	
		procedures.	recovery times.	
2	2 Wearable Develop lightweight rob		Robotic exoskeletons aiding mobility-	
	Exoskeletons for	exoskeletons for physical	impaired individuals with improved	
	Rehabilitation	rehabilitation after strokes or	muscle support and recovery	
		spinal cord injuries.	efficiency.	
3	Autonomous Patient	Create robots that autonomously	Smart robots navigate hospital	
	Transport Robots	transport patients within	corridors, reducing strain on staff	
		hospitals, ensuring safety and	while ensuring patient safety during	
		reducing staff workload.	transport.	
4	Robotic Systems for	Build rugged, portable robotic	Mobile robotic units equipped to save	
	Emergency Care	units that provide first aid and	lives in disaster areas by	
		monitor vitals in disaster zones or	administering first aid and monitoring	
		remote locations.	critical vitals.	
5	Endoscopy Robot	Develop a robotic system for	Advanced endoscopy robots deliver	
	with Improved	endoscopic procedures with	accurate diagnostics with minimal	
	Navigation	enhanced navigation capabilities.	patient discomfort through precise	
	Dalastia Darathatia	Design and the Bush a sold	navigation.	
6	Robotic Prosthetics	Design prosthetic limbs with	Smart prosthetics enable amputees to	
	with Sensory Feedback	integrated sensors for real-time	regain a sense of touch and seamless	
	reedback	feedback mimicking natural	movement through integrated	
7	Micro-Robots for	movement and touch.	feedback systems.	
/		Create micro-scale robots capable	Microscopic robots precisely deliver	
	Targeted Drug	of delivering medications to specific locations within the	drugs to targeted areas, minimizing	
	Delivery	-	side effects and maximizing effectiveness.	
8	body. Robotic Assistance Develop robotic assistants		Robotic aides monitor ICU patients	
0		Develop robotic assistants	<u> </u>	
	for ICU Monitoring	equipped with sensors and AI for	continuously, providing real-time alerts for critical care interventions.	
		real-time ICU patient monitoring.	alerts for critical care interventions.	

9	Robotic Triage Units	Design robots for emergency departments to quickly assess patient conditions.	Robots perform rapid triage in emergencies, supporting healthcare staff by prioritizing urgent cases efficiently.	
10	Haptic Feedback Systems for Robotic Surgery	Build robotic surgical systems with advanced haptic feedback for surgeons.	Haptic-enabled robots improve surgical precision by providing tactile feedback, enhancing decision-making during procedures.	
11	AI-Powered Robot Navigation in Healthcare	Develop navigation algorithms for medical robots in crowded hospital environments.	AI algorithms enable robots to navigate dynamic hospital corridors, avoiding obstacles and ensuring timely task execution.	
12	Surgical Workflow Optimization Software	Create software to integrate with robotic surgery systems for workflow optimization.	Workflow software streamlines surgical processes by identifying bottlenecks and offering actionable insights for time efficiency.	
13	Machine Learning for Prosthetics Adaptation	Build adaptive learning software that personalizes robotic prosthetic behavior.	Machine learning algorithms personalize robotic prosthetics, improving user comfort and functionality through continuous adaptation.	
14	Patient Monitoring Robots with Predictive Analytics	Develop AI models for robots to predict patient deterioration.	Predictive analytics empower robots to foresee health deteriorations, enabling early interventions and reducing emergency risks.	
15	Voice-Controlled Robots for Elderly Care	Design software enabling robots to respond to voice commands from elderly patients.	Voice-responsive robots provide personalized care for the elderly, assisting with daily tasks and fostering independence.	
16	Real-Time Data Analysis for Surgical Robots	Create analytics software for robotic systems to provide surgeons with real-time data insights.	Real-time data tools enhance decision-making in surgeries by delivering actionable insights instantly to the surgeon.	
17	Telemedicine Robot Interface	Develop intuitive interfaces for telepresence robots used in remote consultations.	User-friendly telepresence systems enhance doctor-patient interactions, making remote healthcare more accessible.	
18	Autonomous Task Scheduling for Medical Robots Build algorithms that allow robots to autonomously schedule tasks in hospitals.		Scheduling algorithms enable medical robots to handle multiple tasks efficiently without human intervention.	
19	Robotic Diagnosis Assistant with NLP	Create software for robots to interact with patients using natural language processing (NLP).	NLP-driven diagnosis tools allow robots to analyze patient symptoms and suggest initial care steps, improving healthcare efficiency.	
20	Data Encryption Software for Medical Robots	Develop secure encryption systems for protecting sensitive patient data.	Encryption solutions safeguard patient information, ensuring compliance with healthcare data privacy regulations.	
21	AI-Driven Robotic Surgery Assistants	Combine robotics hardware with AI software to provide surgeons with decision-support tools.	Intelligent surgical robots assist in decision-making, combining precision hardware with AI insights for improved outcomes.	

22	Robots for Post-	Design robots integrating motion-	AI-powered rehabilitation robots	
	Surgery	capture hardware and AI-driven	enable tailored recovery programs,	
	Rehabilitation	feedback systems.	improving patient engagement and	
			results.	
23	Telepresence Robots	Develop robotic mobility and	Telepresence robots bridge specialists	
	for Critical Care	software interfaces for remote	and ICU teams, providing mobility	
		ICU interactions.	and secure interaction tools.	
24	4 Robotic Systems for Create robots equipped with		Personalized medicine robots improve	
	Personalized medication handling hardware		adherence to treatment plans through	
	Medicine Delivery	and AI for personalized treatment	precise medication handling and	
		plans.	intelligent scheduling.	
25	Mobile Robotic Units	Design robots with integrated	Infection-control robots enhance	
	for Infection Control	disinfection hardware and AI-	hospital hygiene by autonomously	
		driven path planning.	disinfecting spaces using advanced	
			path-planning algorithms.	

Reviewer's Digital Signature

Rev	iew	er's	Name:

Position:

Organization:

Date:

Digital Signature: