Informatica A

Ingegneria Matematica M - Z

Informazioni

- Sito Web: https://andreadalcin.github.io/informaticaA
- Organizzazione
 - Esercizi online <u>prima</u> della lezione
 - Soluzioni online dopo la lezione
- Orario
 - 2 ore = 1 ora 30 min (no break)

Esercitazione 1 Codifica Binaria e Logica

Informatica A - Ingegneria Matematica (sez. M-Z)

Convertire in base 10 il numero (10010110)₂ codificato in binario.

Riportare la codifica in binario (senza segno) dei numeri 134 e 87 in base 10, utilizzando il numero minimo di bit.

Sommare in binario (senza segno) 134 e 87 in base 10.

Dire quali dei seguenti numeri in base 10 sono rappresentabili in base p = 13 con m = 3 cifre.

- 1. $(168)_{10}$
- 2. (2220)₁₀
- 3. (2182)₁₀

Convertire in base 10 il numero (A3C)₁₃ in base 13.

Eseguire le seguenti conversioni di base tra numeri positivi.

- 1. (27376)₈ in binario
- 2. (110111)₂ in base 16
- 3. (5ABF)₁₆ in base 8
- 4. $(1274)_{10}$ in base 16
- 5. (FE2A)₁₆ in binario

Indicare quanti bit sono necessari per rappresentare in CP2 i numeri 129 e -271 in base 10.

Convertire i due numeri in CP2 usando lo stesso numero di bit (scegliere il numero minimo di bit necessari).

Si consideri una rappresentazione in CP2 su m = 4 bit, date le seguenti somme, dire in quali casi si verifica overflow e se il risultato delle somme è corretto.

1.
$$(+2)_{10} + (+5)_{10}$$

$$2. (+2)_{10} + (+6)_{10}$$

3.
$$(-2)_{10} + (-4)_{10}$$

4.
$$(-5)_{10} + (-4)_{10}$$

5.
$$(-5)_{10} + (+7)_{10}$$

Scrivere il seguente programma in C:

Dato un numero intero positivo, visualizza il suo numero di cifre.

Introdurre un numero intero positivo 45

cifre: 2

Scrivere il seguente programma in C:

Dati 3 numeri interi, visualizza il massimo.

```
Introdurre tre numeri interi:
4
1
8
massimo: 8
```