

Scientific Computing I

Module 10: Case Study – Computational Fluid Dynamics

Michael Bader Winter 2012/2013

Fluid mechanics as a Discipline

Prominent discipline of application for numerical simulations:

- experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques, ...
- theoretical fluid mechanics: investigations concerning the derivation of turbulence models, e.g.
- computational fluid mechanics (CFD): numerical simulations

Many fields of application:

- aerodynamics: aircraft design, car design,...
- thermodynamics: heating, cooling,...
- process engineering: combustion
- material science: crystal growth
- astrophysics: accretion disks
- geophysics: mantle convection, climate/weather prediction, tsunami simulation, . . .

Part I: Modelling

Mathematical Models for CFD

Advection and Diffusion

Advection Equation
Advection-Diffusion Equation

Euler Equations

1D Euler Equations Conservation Laws in Higher Dimensions 2D Euler Equations

Navier-Stokes Equations

Conservation and Convection Form Incompressible Equations Viscous Forces

Boundary Conditions

Fluids and Flows

- ideal or real fluids
 - → "ideal": no resistance to tangential forces
- compressible or incompressible fluids
 - → volume change of gases (vs. liquids?) under pressure
- viscous or inviscid fluids
 - → think of the different characteristics of honey and water
- Newtonian and non-Newtonian fluids
 - → the latter may show some elastic behaviour (e.g. in liquids with particles like blood)
- laminar or turbulent flows
 - → turbulence: unsteady, 3D, high vorticity, vortices of different scales, high transport of energy between scales

Mathematical Models for CFD

- typically: all require different models
- our focus here: incompressible, viscous, Newtonian, laminar
 - → incompressible Navier-Stokes Equations
 - → Shallow Water Equations
- starting point: continuum mechanics
 - → macroscopic properties (pressure, density, velocity field)
 - ightarrow compared to stochastic or micro-/mesoscopic approaches (lattice Boltzman method, e.g.)
- relies on basic conservation laws (remember the heat equation): conservation of mass and momentum (and energy)
- additionally: slight focus on Finite Volume Methods

Advection Equation

Conservation of some quantity q in a fluid domain $\Omega = [a, b]$ with given velocity v(x, t):

- total amount/mass of q in $\Omega = [a, b]$ is given by $\int_a^b q(x, t) dx$
- change of mass can only happen due to in-/outflow at a and b:

$$\frac{\partial}{\partial t} \int_{a}^{b} q(x,t) dx = F(a,t) - F(b,t) = -F(x,t)|_{a}^{b} = -\int_{a}^{b} \frac{\partial}{\partial x} F(x,t) dx$$

• note: F(a, t) and -F(b, t) denote an inflow into the domain Ω

Advection Equation (2)

Consider

• flux function F(x, t) depends on velocity v(x, t), density q(x, t) and the pipe's cross-sectional area A(x):

$$F(x,t) = A(x)v(x,t)q(x,t)$$

• for simplicity, we set A(x) = 1, and obtain:

$$\frac{\partial}{\partial t} \int_{a}^{b} q(x,t) dx = -\int_{a}^{b} \frac{\partial}{\partial x} F(x,t) dx = -\int_{a}^{b} \frac{\partial}{\partial x} (v(x,t)q(x,t)) dx$$

Advection Equation (3)

Advection Equation:

for smooth functions, we may write:

$$\int_{a}^{b} \frac{\partial}{\partial t} q(x, t) dx = \frac{\partial}{\partial t} \int_{a}^{b} q(x, t) dx = -\int_{a}^{b} \frac{\partial}{\partial x} (v(x, t) q(x, t)) dx$$

• as this equation has to hold for any $\Omega = [a, b]$, we demand:

$$\frac{\partial}{\partial t}q(x,t) = -\frac{\partial}{\partial x}(v(x,t)q(x,t))$$
 or short: $q_t + (vq)_x = 0$

Advection and Diffusion

Diffusion

- even in a fluid at rest, an inhomogeneous density q(x, t) will slowly change towards a uniform density q₀ due to molecular processes → diffusion
- Fick's law of diffusion: resulting flux is prop. to gradient of q

$$-F_{\mathsf{diff}} = \beta q_{\mathsf{x}}$$

• to model both advection and diffusion, we have $-F = -vq + \beta q_x$, and thus

$$q_t + (vq)_x = \beta q_{xx}$$

special case q_t = 0 → "advection-diffusion equation":

$$-\beta q_{xx} + (vq)_x = 0$$

1D Euler Equations

 with our quantity q being the mass density ρ, we obtain an equation for the conservation of mass:

$$\rho_t + (\nu \rho)_x = 0$$

 another conservation property is that of momentum ρν; here, the flux term includes the pressure p:

$$F_{\text{mom}} = \rho v^2 + p$$

thus, we obtain as equation for the conservation of momentum:

$$(\rho \mathbf{v})_t + (\rho \mathbf{v}^2 + \mathbf{p})_x = 0$$

- we obtain a system of two PDEs, the 1D Euler Equations
- to close the system, we need a relation between ρ and p
 (using the ideal gas law, e.g.)
- we might add an equation for temperature (derived from the conservation of internal energy)

Conservation Laws in Higher Dimensions

• in 2D, a conservation law for quantity q takes the form:

$$q_t + F(q)_x + G(q)_y = 0$$

or similar in 3D:

$$q_t + F(q)_x + G(q)_y + H(q)_z = 0$$

for advection, the flux functions are

$$F(q) = uq$$
 $G(q) = vq$ $H(q) = wq$

where u, v, w are the velocity components in the three space dimensions x, v, z

hence, for 2D we obtain a conservation law such as

$$q_t + (uq)_x + (vq)_y = 0$$

2D Euler Equations

• in 2D, with velocity components u(x, y, t) and v(x, y, t) the equation for conservation of mass reads:

$$\rho_t + (\rho u)_x + (\rho v)_y = 0$$

similar, the two equation for conservation of momentum are:

$$(\rho u)_t + (\rho u^2 + p)_x + (\rho u v)_y = 0$$

$$(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y = 0$$

- again, we assume constant temperature, and we need a relation between ρ and p to close the system
- the Euler equations model an inviscid (ideal) fluid
- we also neglect additional source terms, such as for gravity forces, etc.

Navier-Stokes Equations

 mass conservation/continuity equation is the same as for the Euler equations:

$$\rho_t + (\rho u)_x + (\rho v)_y + (\rho w)_z = 0$$

or, written in vector notation:

$$\frac{\partial}{\partial t}\rho + \nabla \cdot (\rho \vec{u}) = 0, \qquad \nabla \cdot \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

momentum conservation/momentum equations

$$\frac{\partial}{\partial t}(\rho \vec{u}) + \nabla \cdot (\vec{u} \otimes \rho \vec{u}) - \nabla \sigma - f = 0$$

- with σ being the *stress tensor*, which includes the pressure p and viscous forces: $\sigma = -pI + \dots$
- f models external (volume) forces (gravity, e.g.)

Navier-Stokes Equations

Conservation and Convection Form

- the equations for mass and momentum, on the previous slide, are given in the so-called conservation form
- with the equations

$$\begin{split} \nabla \cdot (\rho \vec{u}) &= \vec{u} \cdot \nabla \rho + \rho \nabla \cdot \vec{u} \quad \text{and} \quad \nabla \cdot (\rho \vec{u} \otimes \vec{u}) = \vec{u} \big(\nabla \cdot (\rho \vec{u}) \big) + (\rho \vec{u} \cdot \nabla) \vec{u}, \\ \text{we obtain:} & \frac{\partial}{\partial t} \rho + \vec{u} \cdot \nabla \rho + \rho \nabla \cdot \vec{u} = 0 \\ & \frac{\partial}{\partial t} (\rho \vec{u}) + \vec{u} \big(\nabla \cdot (\rho \vec{u}) \big) + (\rho \vec{u} \cdot \nabla) \vec{u} - \nabla \sigma - f = 0 \end{split}$$

• with $\frac{\partial}{\partial t}(\rho \vec{u}) = \rho \frac{\partial}{\partial t} \vec{u} + \vec{u} \frac{\partial}{\partial t} \rho$ and applying $\vec{u} \frac{\partial}{\partial t} \rho + \vec{u} (\nabla \cdot (\rho \vec{u})) = \vec{u} (\frac{\partial}{\partial t} \rho + \nabla \cdot (\rho \vec{u})) = 0$,

we obtain for the momentum equation in convection form

$$\rho\left(\frac{\partial}{\partial t}\vec{u} + (\vec{u}\cdot\nabla)\vec{u}\right) - \nabla\sigma - f = 0$$

Navier-Stokes Equations

Incompressible Equations

in the convective forms

$$\begin{split} &\frac{\partial}{\partial t}\rho + \vec{u} \cdot \nabla \rho + \rho \nabla \cdot \vec{u} = 0 \\ &\rho \left(\frac{\partial}{\partial t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} \right) - \nabla \sigma - f = 0 \end{split}$$

we assume that the density ρ is constant: $\frac{\partial}{\partial t}\rho = 0$, $\nabla \rho = 0$

we obtain obtain the incompressible Navier-Stokes equations:

$$\nabla \cdot \vec{u} = 0$$

$$\rho \left(\frac{\partial}{\partial t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} \right) - \nabla \sigma - f = 0$$

 "incompressible": the density does not change due to pressure or temperature, e.g.

Viscous Forces

Open question: stress tensor σ

- σ includes pressure p and viscosity tensor τ : $\sigma = -pI + \tau$
- Newtonian fluids: viscous stresses proportional to the strain rate (first derivatives)
- isotropic, incompressible fluids, Stokes assumption (no volume viscosity), then $\nabla \sigma = -\nabla p + \mu \Delta \vec{u}$
- μ the dynamic viscosity

Incompressible Navier-Stokes equations:

$$\nabla \cdot \vec{u} = 0$$

$$\rho \left(\frac{\partial}{\partial t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} \right) = -\nabla \rho + \mu \Delta \vec{u} + f$$

Dynamic Similarity of Flows

Dimensionless Form of the Navier-Stokes Equations

• we scale our unknowns to typical length scale L and velocity u_{∞} :

$$x \to \frac{x}{L}$$
 $t \to \frac{u_{\infty}t}{L}$ $u \to \frac{u}{u_{\infty}}$ $p \to \frac{p - p_{\infty}}{\rho u_{\infty}^2}$

 and obtain the dimensionless form of the Navier-Stokes equations:

$$\nabla \cdot \vec{u} = 0$$

$$\frac{\partial}{\partial t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} = -\nabla p + \frac{1}{\text{Re}} \Delta \vec{u} + f$$

introducing the Reynolds number $\text{Re} := \frac{\mu}{\rho \textbf{\textit{u}}_{\infty} \textbf{\textit{L}}}$

 important corollary: flows with the same Reynolds number will show the same behaviour

Boundary Conditions (here only velocity)

no-slip: the fluid can not penetrate the wall and sticks to it

$$\vec{u}=0$$
.

 free-slip: the fluid can not penetrate the wall but does not stick to it

$$u_{\vec{n}}=0, \frac{\partial \vec{u}_{\parallel}}{\partial \vec{n}}=0.$$

inflow: both tangential and normal velocity components are prescribed

$$\vec{u} = \vec{u}_{inflow}$$
.

 outflow: should be "do nothing"; simple option: all velocity components do not change in normal direction

$$\frac{\partial \vec{u}}{\partial \vec{n}} = 0.$$

periodic: same velocity and pressure at inlet and outlet

$$\vec{u}_{\text{in}} = \vec{u}_{\text{out}}$$
.

Part II: A Finite Difference/Volume Method for the Incompressible Navier-Stokes Equations

Numerical Treatment – Spatial Derivatives

Finite Volume Discretisation and Upwind Flux Marker-and-Cell Method, Staggered Grid Discretization of Continuity Equation Discretization of Momentum Equation

Time Discretization

Chorin Projection

Implementation

Finite Volume Discretisation – Advection-Diffusion Equation

• compute tracer concentration q with diffusion β and convection v:

$$-\beta q_{xx} + (vq)_x = 0$$
 on $\Omega = (0,1)$

with boundary conditions q(0) = 1 and q(1) = 0.

- equidistant grid points $x_i = ih$, grid cells $[x_i, x_{i+1}]$
- back to representation via conservation law (for one grid cell):

$$\int_{x_i}^{x_{i+1}} \frac{\partial}{\partial x} F(x) \, \mathrm{d} x = F(x) \Big|_{x_i}^{x_{i+1}} = 0$$

with
$$F(x) = F(q(x)) = -\beta q_x(x) + vq(x)$$
.

• we need to compute the flux F at the boundaries of the grid cells; however, assume q(x) piecewise constant within the grid cells

Finite Volume Discretisation – Advection-Diffusion Equation (2)

- wanted: compute $F(x_i)$ with $F(q(x)) = -\beta q_x(x) + vq(x)$
- where $q(x) := q_i$ for each $\Omega_i = [x_i, x_{i+1}]$
- computing the diffusive flux is straightforward:

$$-\beta q_{x}\big|_{x_{i+1}} = -\beta \frac{q(x_{i+1}) - q(x_{i})}{h}$$

- options for advective flux vq:
 - symmetric flux:

$$vq\big|_{x_{i+1}}=\frac{vq(x_i)+vq(x_{i+1})}{2}$$

"upwind" flux:

$$vq\big|_{x_{i+1}} = \left\{ \begin{array}{ll} vq(x_i) & \text{if } v > 0 \\ vq(x_{i+1}) & \text{if } v < 0 \end{array} \right.$$

Finite Volume Discretisation – Advection-Diffusion Equation (3)

• system of equations: for all i

$$F(x)\Big|_{x_i}^{x_{i+1}} = F(x_{i+1}) - F(x_i) = 0$$

for symmetric flux:

$$-\beta \frac{q(x_{i+1}) - 2q(x_i) + q(x_{i-1})}{h^2} + \nu \frac{q(x_{i+1}) - q(x_{i-1})}{2h} = 0$$

leads to non-physical behaviour as soon as $\beta < \frac{vh}{2}$ (observe signs of matrix elements!)

system of equations for upwind flux (assume v > 0):

$$-\beta \frac{q(x_{i+1}) - 2q(x_i) + q(x_{i-1})}{h^2} + v \frac{q(x_i) - q(x_{i-1})}{h} = 0$$

→ stable, but overly diffusive solutions (positive definite matrix)

Marker-and-Cell Method – Staggered Grid

Marker-and-Cell method (Harlow and Welch, 1965):

- discretization scheme: Finite Differences
- can be shown to be equivalent to Finite Volumes, however
- based on a so-called staggered grid:
 - Cartesian grid (rectangular grid cells), with cell centres at x_{i,j} := (ih, jh), e.g.
 - pressure located in cell centres
 - velocities (those in normal direction) located on cell edges

Spatial Discretisation – Continuity Equation:

mass conservation: discretise ∇ · ū
 → evaluate derivative at cell centres, allows central derivatives:

$$(\nabla \cdot \vec{u})\big|_{i,j} = \frac{\partial u}{\partial x}\bigg|_{i,j} + \frac{\partial v}{\partial y}\bigg|_{i,j} \approx \frac{u_{i,j} - u_{i-1,j}}{h} + \frac{v_{i,j} - v_{i,j-1}}{h}$$

remember: $u_{i,j}$ and $v_{i,j}$ located on cell edges

• notation: $(\nabla \cdot \vec{u})\big|_{i,j} := (\nabla \cdot \vec{u})\big|_{x_{i,j}}$ (evaluate expression at cell centre $x_{i,j}$)

Spatial Discretisation – Pressure Terms

note: velocities located on midpoints of cell edges

$$\frac{\partial u}{\partial t}\Big|_{i+\frac{1}{2},j} = \dots \qquad \frac{\partial v}{\partial t}\Big|_{i,j+\frac{1}{2}} = \dots$$

thus, all derivatives need to be approximated at midpoints of cell edges!

 pressure term ∇p: central differences for first derivatives (as pressure is located in cell centres)

$$\left. \frac{\partial p}{\partial x} \right|_{i+\frac{1}{2},j} \approx \frac{p_{i+1,j} - p_{i,j}}{h} \qquad \left. \frac{\partial p}{\partial y} \right|_{i,j+\frac{1}{2}} \approx \frac{p_{i,j+1} - p_{i,j}}{h}$$

Spatial Discretisation – Diffusion Term

• for diffusion term $\Delta \vec{u}$: use standard 5- or 7-point stencil

• 2D:

$$i-1$$
, j $i,j-1$

$$\Delta u|_{i,j} \approx \frac{u_{i-1,j} + u_{i,j-1} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}}{h^2}$$

• 3D:

$$i,j,k+1$$

 $i,j+1,k$
 $i,j-1,k^*$
 $i,j,k-1$

$$\Delta u\big|_{i,j,k} \approx \frac{u_{i-1,j,k} + u_{i,j-1,k} + u_{i,j,k-1} - 6u_{i,j,k} + u_{i+1,j,k} + u_{i,j+1,k} + u_{i,j,k+1}}{h^2}$$

Spatial Discretisation – Convection Terms

- treat derivatives of nonlinear terms $(\vec{u} \cdot \nabla)\vec{u}$:
- central differences (for momentum equation in *x*-direction):

$$u\frac{\partial u}{\partial x}\bigg|_{i+\frac{1}{2},j} \approx u_{i,j}\frac{u_{i+1,j}-u_{i-1,j}}{2h} \qquad v\frac{\partial u}{\partial y}\bigg|_{i+\frac{1}{2},j} \approx v\bigg|_{x_{i+\frac{1}{2},j}}\frac{u_{i,j+1}-u_{i,j-1}}{2h}$$

with
$$v|_{x_{i+\frac{1}{2},j}} = \frac{1}{4} (v_{i,j} + v_{i,j-1} + v_{i+1,j} + v_{i+1,j-1})$$

• upwind differences (for momentum equation in *x*-direction):

$$u\frac{\partial u}{\partial x}\bigg|_{x_{i+\frac{1}{2},j}} \approx u_{i,j}\frac{u_{i,j}-u_{i-1,j}}{2h} v\frac{\partial u}{\partial y}\bigg|_{x_{i+\frac{1}{2},j}} \approx v\bigg|_{x_{i+\frac{1}{2},j}}\frac{u_{i,j}-u_{i,j-1}}{2h}$$

$$\text{if } u_{i,j}>0 \text{ and } v\big|_{X_{i+\frac{1}{2},j}}>0$$

 code for CFD lab will mix central and upwind differences (and is based on conservation form of convection terms)

Time Discretisation

recall the incompressible Navier-Stokes equations:

$$\nabla \cdot \vec{u} = 0$$

$$\frac{\partial}{\partial t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} = -\nabla p + \frac{1}{\text{Re}} \Delta \vec{u} + f$$

- note the role of the unknowns:
 - → 2 or 3 equations for velocities (x, y, and z component) resulting from momentum conservation
 - → 4th equation (mass conservation) to "close" the system; required to determine pressure p
 - → however, p does not occur explicitly in mass conservation
- possible approach: Chorin's projection method
 - → p acts as a variable to enforce the mass conservation as "side condition"

Time Discretisation – Chorin Projection

• explicit Euler scheme for momentum equation:

$$ec{u}^{(n+1)} = ec{u}^{(n)} + au igg(-
abla
ho + rac{1}{Re} \Delta ec{u}^{(n)} - \left(ec{u}^{(n)} \cdot
abla
ight) ec{u}^{(n)} + ec{g} igg)$$

- Chorin projection
 - \rightarrow compute intermediate velocity that neglects pressure:

$$\vec{u}^{(n+\frac{1}{2})} = \vec{u}^{(n)} + \tau \left(\frac{1}{Re} \Delta \vec{u}^{(n)} - \left(\vec{u}^{(n)} \cdot \nabla \right) \vec{u}^{(n)} + \vec{g} \right),$$
$$\vec{u}^{(n+1)} = \vec{u}^{(n+\frac{1}{2})} - \tau \nabla p$$

• $\vec{u}^{(n+1)}$ needs to satisfy mass conservation: $\nabla \cdot \vec{u}^{(n+1)} = 0$ \rightarrow leads to a Poisson equation for the pressure:

$$\nabla \cdot \left(\vec{u}^{(n+\frac{1}{2})} - \tau \nabla \rho \right) = 0 \quad \Rightarrow \quad \Delta \rho = \frac{1}{\tau} \left(\nabla \cdot \vec{u}^{(n+\frac{1}{2})} \right)$$

thus, system of linear equations to be solved in each time step

Implementation

• geometry representation as a flag field (Marker-and-Cell)

- obstacle cell
- □ fluid cell

flag field as an array of booleans:

 input data (boundary conditions) and output data (computed results) as arrays

Implementation (2)

Lab course "Scientific Computing - Computational Fluid Dynamics":

- modular C-code
- parallelization:
 - simple data parallelism, domain decomposition
 - straightforward MPI-based parallelization (exchange of ghost layers)
- target architectures:
 - parallel computers with distributed memory
 - clusters
- possible extensions:
 - free-surface flows ("the falling drop")
 - multigrid solver for the pressure equation
 - heat transfer or turbulence models

Part III: The Shallow Water Equations and Finite Volumes Revisited

The Shallow Water Equations

Modelling Scenario: Tsunami Simulation

Finite Volume Discretisation

Central and Upwind Fluxes Lax-Friedrichs Flux

Towards Tsunami Simulation

Wave Speed of Tsunamis Treatment of Bathymetry Data

The SWE Code

Model and Discretisation

The Shallow Water Equations

$$\frac{\partial}{\partial t} \begin{pmatrix} h \\ hu \\ hv \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{pmatrix} = S(t, x, y)$$

Comments on modelling:

• generalized 2D hyperbolic PDE: $q = (h, hu, hv)^T$

$$\frac{\partial}{\partial t}q + \frac{\partial}{\partial x}F(q) + \frac{\partial}{\partial y}G(q) = S(t, x, y)$$

derived from conservations laws for mass and momentum

- may be derived by vertical averaging from the 3D incompressible Navier-Stokes equations
- compare to Euler equations: density ρ vs. water depth h

Modelling Scenario: Tsunami Simulation

The Ocean as "Shallow Water"??

- compare horizontal (\sim 1000 km) to vertical (\sim 5 km) length scale
- wave lengths large compared to water depth
- vertical flow may be neglected; movement of the "entire water column"

Modelling Scenario: Tsunami Simulation (2)

Tsunami Modelling with the Shallow Water equations:

- source term S(x, y) includes bathymetry data (i.e., elevation of ocean floor)
- Coriolis forces, friction, etc., as possible further terms
- boundary conditions are difficult: coastal inundation, outflow at domain boundaries

Finite Volume Discretisation

· discretise system of PDEs

$$\frac{\partial}{\partial t}q + \frac{\partial}{\partial x}F(q) + \frac{\partial}{\partial y}G(q) = S(t, x, y)$$

with

$$q := \begin{pmatrix} h \\ hu \\ hv \end{pmatrix}$$
 $F(q) := \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{pmatrix}$ $G(q) := \begin{pmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{pmatrix}$

basic form of numerical schemes:

$$Q_{i,j}^{(n+1)} = Q_{i,j}^{(n)} - \frac{\tau}{h} \left(F_{i+\frac{1}{2},j}^{(n)} - F_{i-\frac{1}{2},j}^{(n)} \right) - \frac{\tau}{h} \left(G_{i,j+\frac{1}{2}}^{(n)} - G_{i,j-\frac{1}{2}}^{(n)} \right)$$

where $F_{i+\frac{1}{2},j}^{(n)}$, $G_{i,j+\frac{1}{2}}^{(n)}$, ... approximate the flux functions F(q) and G(q) at the grid cell boundaries

Central and Upwind Fluxes

• define fluxes $F_{i+\frac{1}{2},i}^{(n)}$, $G_{i,j+\frac{1}{2}}^{(n)}$, ... via 1D numerical flux function \mathcal{F} :

$$F_{i+\frac{1}{2}}^{(n)} = \mathcal{F}\big(Q_i^{(n)},Q_{i+1}^{(n)}\big) \qquad G_{j-\frac{1}{2}}^{(n)} = \mathcal{F}\big(Q_{j-1}^{(n)},Q_j^{(n)}\big)$$

central flux:

$$F_{i+\frac{1}{2}}^{(n)} = \mathcal{F}(Q_i^{(n)}, Q_{i+1}^{(n)}) := \frac{1}{2} \left(F(Q_i^{(n)}) + F(Q_{i+1}^{(n)}) \right)$$

leads to unstable methods for convective transport

• **upwind flux** (here, for h-equation, F(h) = hu):

$$F_{i+\frac{1}{2}}^{(n)} = \mathcal{F}(h_i^{(n)}, h_{i+1}^{(n)}) := \begin{cases} hu|_i & \text{if } u|_{i+\frac{1}{2}} > 0\\ hu|_{i+1} & \text{if } u|_{i+\frac{1}{2}} < 0 \end{cases}$$

stable, but includes artificial diffusion

(Local) Lax-Friedrichs Flux

classical Lax-Friedrichs method uses as numerical flux:

$$F_{i+\frac{1}{2}}^{(n)} = \mathcal{F}(Q_i^{(n)}, Q_{i+1}^{(n)}) := \frac{1}{2} \left(F(Q_i^{(n)}) + F(Q_{i+1}^{(n)}) \right) - \frac{h}{2\tau} (Q_{i+1}^{(n)} - Q_i^{(n)})$$

can be interpreted as central flux plus diffusion flux:

$$\frac{h}{2\tau} \left(Q_{i+1}^{(n)} - Q_{i}^{(n)} \right) = \frac{h^2}{2\tau} \cdot \frac{Q_{i+1}^{(n)} - Q_{i}^{(n)}}{h}$$

with diffusion coefficient $\frac{h^2}{2\tau}$, where $c := \frac{h}{\tau}$ is some kind of velocity ("one grid cell per time step")

 idea of local Lax-Friedrichs method: use the "appropriate" velocity

$$F_{i+\frac{1}{2}}^{(n)} := \frac{1}{2} \left(F(Q_i^{(n)}) + F(Q_{i+1}^{(n)}) \right) - \frac{a_{i+\frac{1}{2}}}{2} \left(Q_{i+1}^{(n)} - Q_i^{(n)} \right)$$

Wave Speed of Tsunamis

consider the 1D case

$$\frac{\partial}{\partial t} \begin{pmatrix} h \\ hu \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \end{pmatrix} = 0$$

• with $q = (q_1, q_2)^T := (h, hu)^T$, we obtain

$$\frac{\partial}{\partial t} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} q_2 \\ q_2^2/q_1 + \frac{1}{2}gq_1^2 \end{pmatrix} = 0$$

write in convective form:

$$\frac{\partial}{\partial t} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} + f' \frac{\partial}{\partial x} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = 0$$

with

$$f' = \begin{pmatrix} \partial f_1/\partial q_1 & \partial f_1/\partial q_2 \\ \partial f_2/\partial q_1 & \partial f_2/\partial q_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -q_2^2/q_1^2 + gq_1 & 2q_2/q_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -u^2 + gh & 2u \end{pmatrix}$$

Wave Speed of Tsunamis (2)

compute eigenvectors and eigenvalues of f':

$$\lambda^{1/2} = u \pm \sqrt{gh}$$
 $r^{1/2} = \begin{pmatrix} 1 \\ u \pm \sqrt{gh} \end{pmatrix}$

• and then with $f' = R \Lambda R^{-1}$, where $R := (r^1, r^2)$ and $\Lambda := \text{diag}(\lambda^1, \lambda^2)$, we can diagonalise the PDE:

$$\frac{\partial}{\partial t} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} + \Lambda \frac{\partial}{\partial x} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = 0, \qquad w = R^{-1}q$$

- for small changes in h and small velocities, we thus obtain that waves are "advected" (i.e., travel) at speed $\lambda^{1/2}\approx \pm \sqrt{gh}$
- recall local Lax-Friedrichs method:

$$F_{i+\frac{1}{2}}^{(n)} := \frac{1}{2} \left(F \big(Q_i^{(n)} \big) + F \big(Q_{i+1}^{(n)} \big) \right) - \frac{a_{i+\frac{1}{2}}}{2} \big(Q_i^{(n)} - Q_{i-1}^{(n)} \big)$$

$$\rightarrow$$
 choose $a_{i+\frac{1}{2}} = \max\{\lambda^k\}$

Shallow Water Equations with Bathymetry

$$\frac{\partial}{\partial t} \begin{pmatrix} h \\ hu \\ hv \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{pmatrix} + \frac{\partial}{\partial y} \begin{pmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{pmatrix} = \begin{pmatrix} 0 \\ -(ghb)_x \\ -(ghb)_y \end{pmatrix}$$

Questions for numerics:

- treat (bh)_x and (bh)_y as source terms or include these into flux computations?
- preserve certain properties of solutions e.g., "lake at rest"

Shallow Water Equations with Bathymetry (2)

Consider "Lake at Rest" Scenario:

- "at rest": velocities u = 0 and v = 0
- examine local Lax-Friedrichs flux in h equation:

$$F_{i+\frac{1}{2}}^{(n)} = \frac{1}{2} \left((hu)_i^{(n)} + (hu)_{i+1}^{(n)} \right) - \frac{a_{i+\frac{1}{2}}}{2} (h_{i+1}^{(n)} - h_i^{(n)}) = 0$$

$$\Rightarrow F_{i+\frac{1}{2}}^{(n)} - F_{i-\frac{1}{2}}^{(n)} = -\frac{a_{i+\frac{1}{2}}}{2} \left(h_{i+1}^{(n)} - h_{i}^{(n)} \right) + \frac{a_{i-\frac{1}{2}}}{2} \left(h_{i}^{(n)} - h_{i-1}^{(n)} \right) = 0$$

- note: $a_{i\pm\frac{1}{2}}\approx \sqrt{gh}$ and if $b_{i-1}\neq b_i\neq b_{i+1}$ then $h_{i-1}\neq h_i\neq h_{i+1}$
- thus: "lake at rest" not an equilibrium solution for local Lax-Friedrichs flux

Additional problems:

- · complicated numerics close to the shore
- in particular: "wetting and drying" (inundation of the coast)

Model & Discretisation

Simplified setting (no friction, no viscosity, no coriolis forces, etc.):

$$\begin{pmatrix} h \\ hu \\ hv \end{pmatrix}_t + \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{pmatrix}_x + \begin{pmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{pmatrix}_y = S(t, x, y).$$

Finite Volume Discretization:

• generalized 2D hyperbolic PDE: $q = (h, hu, hv)^T$

$$\frac{\partial}{\partial t}q + \frac{\partial}{\partial x}F(q) + \frac{\partial}{\partial y}G(q) = S(t, x, y)$$

· Wave propagation form:

$$\begin{split} Q_{i,j}^{n+1} &= Q_{i,j}^n &\quad -\frac{\Delta t}{\Delta x} \left(\mathcal{A}^+ \Delta Q_{i-1/2,j} + \mathcal{A}^- \Delta Q_{i+1/2,j}^n \right) \\ &\quad -\frac{\Delta t}{\Delta y} \left(\mathcal{B}^+ \Delta Q_{i,j-1/2} + \mathcal{B}^- \Delta Q_{i,j+1/2}^n \right). \end{split}$$

Model & Discretisation

Simplified setting (no friction, no viscosity, no coriolis forces, etc.):

$$\begin{pmatrix} h \\ hu \\ hv \end{pmatrix}_t + \begin{pmatrix} hu \\ hu^2 + \frac{1}{2}gh^2 \\ huv \end{pmatrix}_x + \begin{pmatrix} hv \\ huv \\ hv^2 + \frac{1}{2}gh^2 \end{pmatrix}_y = S(t, x, y).$$

Flux Computation on Edges:

· Wave propagation form:

$$\begin{split} Q_{i,j}^{n+1} &= Q_{i,j}^n &\quad -\frac{\Delta t}{\Delta x} \left(\mathcal{A}^+ \Delta Q_{i-1/2,j} + \mathcal{A}^- \Delta Q_{i+1/2,j}^n \right) \\ &\quad -\frac{\Delta t}{\Delta y} \left(\mathcal{B}^+ \Delta Q_{i,j-1/2} + \mathcal{B}^- \Delta Q_{i,j+1/2}^n \right). \end{split}$$

- simple fluxes: Rusanov/(local) Lax-Friedrich
- more advanced: f-Wave or (augmented) Riemann solvers (George, 2008; LeVeque, 2011), no limiters

Unknowns and Numerical Fluxes

Unknowns and Numerical Fluxes:

- unknowns h, hu, hv, and b located in cell centers
- two sets of "net updates"/numerical fluxes per edge: $A^+\Delta Q_{i-1/2,i}$, $B^-\Delta Q_{i,i+1/2}$, etc.

Patches of Cartesian Grid Blocks

Spatial Discretization:

- regular Cartesian meshes; allow multiple patches
- ghost and copy layers to implement boundary conditions, for more complicated domains, and for parallelization

References and Literature

Course material is mostly based on:

- R. J. LeVeque: Finite Volume Methods for Hyperbolic Equations, Cambridge Texts in Applied Mathematics, 2002.
- M. Griebel, T. Dornseifer and T. Neunhoeffer: Numerical Simulation in Fluid Dynamics: A Practical Introduction, SIAM Monographs on Mathematical Modeling and Computation, SIAM, 1997.

Shallow Water Code SWE:

 \rightarrow http://www5.in.tum.de/SWE/

