COMP 6721 Applied Artificial Intelligence (Fall 2021)

Worksheet #8: Knowledge Graphs & Intelligent Agents, Part II

N-Triples.	Quick refresher:	Using the N-Triples	serialization format,	write an RDF	triple describing	Concordia's
homepage:						

Your first Vocabulary. Define the fact that Student is a class (as opposed to an instance, like *Jane*). Use the following prefix definitions and define Student as part of the ex namespace (ex:Student):

```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example.org/> .
```

Add the triple:

Creating Instances. Now add another triple stating that Jane (ex:jane#me) is of type ex:Student:

and add it to the graph above.

Subclasses. For now at least, every *Student* is a *Person* (sorry, robots!). Define this fact as a triple:

Note: use the same ex: namespace for the subclass as before for Student.

Are we there yet? Ok, let's look at these three triples (written in pseudocode for brevity):

```
<LS-210> <teaches> <COMP472/6721> . 
  <professor> <is a> <slide> . 
  <student> <handed in by> <assignment> .
```

Are these *syntactically* legal triples? (Spoiler alert: yes, we could write each of them using perfectly fine RDF URIs.) So what exactly is wrong here?

Construct	Syntactic form	Description
Class (a class)	C rdf:type rdfs:Class	C (a resource) is an RDF class
Property (a class)	Prdf:type rdf:Property	P (a resource) is an RDF property
type (a property)	Irdf:type C	I (a resource) is an instance of C (a class)
subClassOf (a property)	C1 rdfs:subClassOf C2	C1 (a class) is a subclass of C2 (a class)
subPropertyOf (a property)	P1 rdfs:subPropertyOf P2	P1 (a property) is a sub-property of P2 (a property)
domain (a property)	P rdfs:domain C	domain of ${\bf P}$ (a property) is ${\bf C}$ (a class)
range (a property)	P rdfs:range C	range of ${\bf P}$ (a property) is ${\bf C}$ (a class)

cial) networks is Friend-of-a-Friend (FOAF).
is here for brevity.) as for our property to avoid problems like the ly permit ex:Student resources and for the
cial) networks is Friend-of-a-Friend (FOAF).
cial) networks is Friend-of-a-Friend (FOAF).
cial) networks is Friend-of-a-Friend (FOAF).
ook.me/joe.png (not a real URL). How can
0 - 0 (
0 - 0 (
graph linked to Wikidata? Find the property
a with: (use the public SPARQL endpoint at

Your own Al Agent. Consider the output of a commercial AI, for example the Google Assistant, when you ask a question like "What is Concordia University?": You'll typically see a definition as part of the answer that often comes from Wikipedia ("Concordia University, commonly referred to as Concordia, is a public comprehensive research university located in Montreal, Quebec, Canada..."). Write a SPARQL query that retrieves this information from DBpedia:

```
SELECT ?desc
WHERE {
    . . .
```

To achieve this translation from question to query automatically, the AI needs an additional natural language processing (NLP) layer, which we'll cover later in this course.