GEOMETRIC PARTIAL MATCHING

Pankaj K. Agarwal, Hsien-Chih Chang, Allen Xiao

Problem Statement

Geometric Bipartite Matching: Given two equal-sized point sets A, B in the plane, find a perfect matching minimizing the sum of lengths of matching edges.

Geometric Partial Matching: Given two point sets A, B in the plane, find a size-k matching minimizing the sum of lengths of matching edges.

Background

Let $n = \max(|A|, |B|)$ and $m = |A \times B| = O(n^2)$. Primal-dual algorithms for general graphs can solve the problem in $O(km + k^2 \log n) = O(kn^2 + k^2 \log n)$ time. However, there are faster algorithms for geometric bipartite matching versus perfect matching in general graphs, using dynamic data structures for **bichromatic closest pair** and **nearest neighbors**. Roughly speaking, we can replace the O(m) with O(n polylog n) or

nearest neighbors. Roughly speaking, we can replace the O(m) with O(n polylog n) or O(k polylog n) in many instances. If O(m) is no longer the running time bottleneck, can we design a faster algorithm for partial matching?

Results

Building from existing primal-dual algorithms,

- 1. An exact algorithm running in time $O((n+k^2)$ polylog n), using the Hungarian algorithm.
- 2. A $(1 + \varepsilon)$ -approximation algorithm running in time $O((n + k\sqrt{k}))$ polylog $n \log(1/\varepsilon)$, using a **cost-scaling** algorithm for unit-capacity minimum-cost flow by Goldberg, Hed, Kaplan, and Tarjan.

Primal-Dual Augmentation Algorithms

A classical algorithm for min-cost matching and min-cost flow: grow the matching using the least-cost augmenting path. Essentially, solve a **single-source shortest paths** problem (Dijkstra). Improves with geometry — can query the "next shortest edge" as a bichromatic closest pair.

Techniques