Lab 13 Autoencoder & GANs

DataLab

Department of Computer Science, National Tsing Hua University, Taiwan

13-1 Autoencoder

Autoencoder

Autoencoder without noise

Autoencoder

Autoencoder with noise

13-2 GAN Outline

• Reviewing GAN Structure

• Loss Functions

• WGAN

Outline

• Reviewing GAN Structure

Loss Functions

• WGAN

Review - GAN

Outline

• Reviewing GAN Structure

• Loss Functions

• WGAN

- Minimax Loss:
 - For D: maximize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
 - For G: minimize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$

- Wasserstein Loss:
 - For D: maximize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$
 - For G: minimize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$

- Minimax Loss:
 - For D: maximize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
 - For G: minimize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$

- Wasserstein Loss:
 - For D: maximize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$
 - For G: minimize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz** continuous if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2)) \leq K d_X(x_1,x_2)$$

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz** continuous if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2)) \leq K d_X(x_1,x_2)$$

• How to make the discriminator Lipschitz continuous?

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz** continuous if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2)) \leq K d_X(x_1,x_2)$$

- How to make the discriminator Lipschitz continuous?
 - Weight clipping clip all weights in f_w into a certain range.

Outline

• Reviewing GAN Structure

Loss Functions

• WGAN

WGAN

Discriminator Training

```
3: Sample \{x^{(i)}\}_{i=1}^{m} \sim \mathbb{P}_{r} a batch from the real data.

4: Sample \{z^{(i)}\}_{i=1}^{m} \sim p(z) a batch of prior samples.

5: g_{w} \leftarrow \nabla_{w} \left[\frac{1}{m} \sum_{i=1}^{m} f_{w}(x^{(i)}) - \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))\right]

6: w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_{w})

7: w \leftarrow \text{clip}(w, -c, c)

Make sure critic is 1-

Lipchitz
```

Outline

• Reviewing GAN Structure

Loss Functions

• WGAN

• Instead of weight clipping, adding gradient penalty can also achieve Lipchitz continuity.

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \, \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

• In comparison with WGAN

• In comparison with WGAN

Assignment

- Assignment requirements
 - Implementation of Improved WGAN (WGAN-GP) and train on CelebA.
 - Build dataset to read and resize image to 64×64 for training
 - Training loop(s) / routine(s) for GAN. Pre-trained models are not allowed.
 - Show at least 8×8 animated image of training and some best generated samples.
 - Draw the curve of discriminator loss and generator loss during training process in a single image.
 - Brief report about what you have done.

Assignment

Submission

- Upload notebook and attachments to google drive and submit the link to eeclass.
- Your notebook should be named after "Lab13-2_{student id}.ipynb".
- Deadline: 2022/12/08 23:59