Deep Learning: Lecture 2

Alexander Schönhuth

UU October 9, 2019 Supervised Learning

► There is a functional relationship

$$f^*: \mathbb{R}^d \to V$$

we would like to understand, or *learn*.

- Regression: $V = \mathbb{R}$
- Classification: $V = \{1, ..., k\}$
- ► To learn it, we are given *m* data points

$$(x_i, f^*(x_i) = y_i)_{i=1,...,m}$$

that reflect this functional relationship.

Final goal: Predict $f^*(x)$ well on unknown data points x.

- ► The idea is to set up a *training procedure* (an algorithm) that $learns f^*$ from the training data.
- ▶ Learning f^* means to *approximate* it by $f : \mathbb{R}^d \to V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M} .
- ▶ In most cases, $f \in \mathcal{M}$ are parameterized by parameters w. This means that we have to pick an appropriate choice of parameters w for learning f^* .

- ► The idea is to set up a *training procedure* (an algorithm) that *learns* f^* from the training data.
- ▶ Learning f^* means to *approximate* it by $f : \mathbb{R}^d \to V$ sufficiently well, where $f \in \mathcal{M}$ for a certain class of functions \mathcal{M} .
- ▶ In most cases, $f \in \mathcal{M}$ are parameterized by parameters **w**. This means that we have to pick an appropriate choice of parameters **w** for learning f^* .

- ▶ We need to determine a *cost* (*or loss*) *function* C where $C(f, f^*)$ measures how well $f \in \mathcal{M}$ approximates f^* .
- ▶ *Optimization*: Pick $f \in \mathcal{M}$ (by picking the right set of parameters) that yields small (possibly minimal) cost $C(f, f^*)$
- ▶ *Generalization*: Optimization procedure should address that f is to approximate f* well on *unknown data points*.

- ▶ We need to determine a *cost* (*or loss*) *function* C where $C(f, f^*)$ measures how well $f \in \mathcal{M}$ approximates f^* .
- ▶ *Optimization*: Pick $f \in \mathcal{M}$ (by picking the right set of parameters) that yields small (possibly minimal) cost $C(f, f^*)$
- ► *Generalization*: Optimization procedure should address that f is to approximate f^* well on *unknown data points*.

LINEAR REGRESSION

Example: $f: \mathbb{R} \to \mathbb{R}$

PERCEPTRON

Example: $f: \mathbb{R}^2 \to \{0, 1\}$

$$f \quad \mathbb{R}^2 \quad \longrightarrow \quad \{0 = \text{blue}, 1 = \text{red}\}$$

$$(x_1, x_2) \quad \mapsto \quad \begin{cases} 1 & x_2 - x_1 > 0 \\ 0 & x_2 - x_1 \le 0 \end{cases} \tag{1}$$

SUMMARY

We need to specify:

- ► How to set up the data being used for training
- \blacktriangleright A model class \mathcal{M} , for example linear functions
- ► A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- ► An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUMMARY

We need to specify:

- How to set up the data being used for training
- \blacktriangleright A model class \mathcal{M} , for example linear functions
- ► A cost function $C(f, f^*)$ that evaluates the goodness of $f \in \mathcal{M}$
- ► An optimization procedure that picks f such that $C(f, f^*)$ is minimal, or very small
- ► Keep in mind that *f* is to perform well on previously unseen data

SUPERVISED LEARNING NOTATION

- ► The dataset is given by a *design matrix* $\mathbf{X} \in \mathbb{R}^{m \times d}$ where m is the number of data points and d is the number of *features*
- ► Each data point x_i (a row in **X**) is assigned to a *label* y_i that reflects the true functional relationship $y_i = f^*(x_i)$, where further $\mathbf{y} = (y_1, ..., y_m) \in V^m$ is the *label vector*.

Generalization

- ightharpoonup Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters
- \blacktriangleright Hyperparameters can refer to choosing subsets of \mathcal{M} . For
- \triangleright ($\mathbf{X}^{(\text{test})}, \mathbf{v}^{(\text{test})}$) are never touched during training.
- ▶ The final goal is to minimize the cost on the test data.

- ► Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and *validation* data in combination is for picking hyperparameters
- ightharpoonup Hyperparameters can refer to choosing subsets of \mathcal{M} . For
- \triangleright ($\mathbf{X}^{(\text{test})}, \mathbf{v}^{(\text{test})}$) are never touched during training.
- ▶ The final goal is to minimize the cost on the test data.

- ► Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and *validation* data in combination is for picking hyperparameters
- \blacktriangleright Hyperparameters can refer to choosing subsets of \mathcal{M} . For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
- \triangleright ($\mathbf{X}^{(\text{test})}, \mathbf{v}^{(\text{test})}$) are never touched during training.
- ▶ The final goal is to minimize the cost on the test data.

- ► Split (**X**, **y**) into

 - $\begin{array}{l} \blacktriangleright \ \ \text{training data} \ (X^{(\text{train})}, y^{(\text{train})}) \\ \blacktriangleright \ \ \text{validation data} \ (X^{(\text{val})}, y^{(\text{val})}) \\ \blacktriangleright \ \ \text{test data} \ (X^{(\text{test})}, y^{(\text{test})}) \end{array}$
- ▶ While *training data* is to pick the optimal set of parameters (which specify elements from \mathcal{M}), using training and *validation* data in combination is for picking hyperparameters
- \blacktriangleright Hyperparameters can refer to choosing subsets of \mathcal{M} . For example, depth of a neural network, and widths of hidden layers. They may also refer to specifications of cost function or optimization procedure.
- $(X^{(\text{test})}, \mathbf{v}^{(\text{test})})$ are never touched during training.
- ▶ The final goal is to minimize the cost on the test data.

ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit Center: Polynomials of degree 2 neither under- nor overfit Right: Polynomials of degree 9 overfit

- Choose a class of models that has the right capacity
- ► Capacity too large: *overfitting*
- ► Capacity too small: *underfitting*

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let $C(f, f^*)$ be the cost function. Let $\mathbf{w} = (w_1, ..., w_k)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

► Usually, *C* refers to only known data points. That is, *C* evaluates as

$$C(f, f^*) = \sum_{i} C(f(x_i), y_i = f^*(x_i))$$
 (2)

where x_i runs over all training data points.

Add a *regularization term* to cost function, and choose f_w that yields minimal

$$C(f_{\mathbf{w}}, f^*) + \lambda \Omega(\mathbf{w})$$
 (3)

 \triangleright λ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let $C(f, f^*)$ be the cost function. Let $\mathbf{w} = (w_1, ..., w_k)$ be the parameters specifying elements of $f_{\mathbf{w}} \in \mathcal{M}$.

▶ Usually, *C* refers to only known data points. That is, *C* evaluates as

$$C(f, f^*) = \sum_{i} C(f(x_i), y_i = f^*(x_i))$$
 (2)

where x_i runs over all training data points.

► Add a *regularization term* to cost function, and choose f_w that yields minimal

$$C(f_{\mathbf{w}}, f^*) + \lambda \Omega(\mathbf{w}) \tag{3}$$

 \blacktriangleright λ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

- ► Prominent examples:
 - L_1 norm: $\Omega(\mathbf{w}) := \sum_i |w_i|$
 - L_2 norm: $\Omega(\mathbf{w}) := \sum_{i=1}^{n} w_i^2$
- ► Rationale: Penalize too many non-zero weights
- Virtually less complex model, hence virtually less capacity
- ► I Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: OPTIMIZATION EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.

- ► *Early stopping*: Stop the optimization procedure before cost function reaches an optimum on the training data.
- ► *Dropout*: Neural network specific. Randomly remove neurons and optimize parameters for neurons remaining.

Prominent Model Examples

EXAMPLE: LINEAR REGRESSION

- ▶ Design matrix $\mathbf{X} \in \mathbb{R}^{m \times d}$, label vector $\mathbf{y} \in \mathbb{R}^m$
- ▶ Model class: Let $\mathbf{w} \in \mathbb{R}^d$

$$f_{\mathbf{w}} = f(\mathbf{x}; \mathbf{w}) : \mathbb{R}^d \longrightarrow \mathbb{R}$$
$$\mathbf{x} \mapsto \mathbf{w}^T \mathbf{x}$$
(4)

- ► *Remark*: Note that the case $\mathbf{w}^T \mathbf{x} + b$ can be treated as a special case to be included in \mathcal{M} , by augmenting vectors \mathbf{x}_i by an entry 1 (think about this...)
- ► Cost function (recall $y_i = f^*(\mathbf{x}_i)$)

$$C(f,f^*) := \frac{1}{m} ||(f(\mathbf{x}_1),...,f(\mathbf{x}_m)) - \mathbf{y}||_2^2 = \frac{1}{m} \sum_{i=1}^m (f(\mathbf{x}_i) - \mathbf{y}_i)^2$$
(5)

EXAMPLE: LINEAR REGRESSION

Optimization

► Solve for

$$\nabla_{\mathbf{w}} C(f_{\mathbf{w}}, f^*) = 0 \tag{6}$$

to achieve a minimum. This yields the normal equations

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} \tag{7}$$

- ► *Global optimum* if $\mathbf{X}^T\mathbf{X}$ is invertible
- ▶ Do this on *training data* (so $X = X^{(train)}, y = y^{(train)}$) only. Hope that cost on test data is small.

LINEAR REGRESSION: NORMAL EQUATIONS

- ► *Left*: Data points, and the linear function $y = w_1x$ that approximates them best
- ▶ *Right*: Mean squared error (MSE) depending on w_1
- ► *Remark on Perceptrons*: Optimizing is different, but also supported by a very easy optimization scheme (the *perceptron algorithm*)

POPULAR MODELS: SUPPORT VECTOR MACHINES

► *Realization*: From (7), write

$$\mathbf{w}^{T}\mathbf{x} = \sum_{i=1}^{m} \alpha_{i}\mathbf{x}^{T}\mathbf{x}_{i} = \sum_{i=1}^{m} \alpha_{i}\langle \mathbf{x}, \mathbf{x}_{i}\rangle$$
(8)

- ▶ Replace $\langle .,. \rangle$ by different *kernel* (i.e. scalar product) k(.,.), that is by computing $\langle \phi(.), \phi(.) \rangle$ for appropriate ϕ
- Optimize for choosing good α 's: still easy to optimize both for regression and classification!

POPULAR MODELS: NEAREST NEIGHBOR CLASSIFICATION

► Consider appropriate distance measure

$$D: \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}_+ \tag{9}$$

► For unknown data point *x*, determine the closest given data point

$$\mathbf{x}_{i^*} := \operatorname{argmin}_i(D(\mathbf{x}, \mathbf{x}_i)) \tag{10}$$

▶ Predict label of \mathbf{x} as y_{i^*}

LECTURE 2: SUMMARY

- ► Topics:
 - Supervised Learning
 - Addressing Generalization
 - Prominent Supervised Learning Methods
- ► Reading:
 - ► http://neuralnetworksanddeeplearning.com: Chapter 1, up to 'Perceptrons'
 - ► https://www.deeplearningbook.org/: 5.1, 5.2, 5.3, 5.7

LECTURE 3: OUTLOOK

- ► Topics:
 - ► Neural Networks
 - Why going deep?
 - ► Gradient Descent
 - Preventing Slow Training
- ► Reading:
 - http://neuralnetworksanddeeplearning.com: Chapter 1, Chapter 3 until (and without) Overfitting and Regularization
 - ► https://www.deeplearningbook.org/: 5.10,6.1,6.2,6.3

Thanks for your attention