PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCI)

(51) Classification internationale des brevets 6:

(11) Numéro de publication internationale:

WO 99/66006

C09K 7/00, 7/02, C10M 173/02

(43) Date de publication internationale: 23 décembre 1999 (23.12.99)

(21) Numéro de la demande internationale:

PCT/FR99/01367

A1

(22) Date de dépôt international:

9 juin 1999 (09.06.99)

(30) Données relatives à la priorité:

98/07969

12 juin 1998 (12.06.98)

FR

(71) Déposants (pour tous les Etats désignés sauf US): INSTITUT FRANCAIS DU PETROLE [FR/FR]; 1 & 4, avenue de Bois Préau, F-92852 Rueil-Malmaison Cedex (FR). FINA RESEARCH [BE/BE]; Zone Industrielle C, B-7181 Seneffe (Feluy) (BE).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): ARGILLIER, Jean-François [FR/FR]; 4, square de l'Hippodrome, F-92210 Saint-Cloud (FR). DEMOULIN, André [BE/BE]; 1, rue de Pymont, B-5998 Beauvechain (BE). AUDIB-ERT-HAYET, Annie [FR/FR]; 10, place Blanche de Castille, F-78290 Croissy sur Seine (FR). JANSSEN, Michel [BE/BE]; 59, avenue de la Forêt, B-1970 Wezembeek-Oppem (BE).
- (74) keprésentant commun: INSTITUT FRANCAIS DU PET-ROLE; 1 & 4, avenue de Bois Préau, F-92852 Rueil Malmaison Cedex (FR).

(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: BOREHOLE FLUID CONTAINING A LUBRICATING COMPOSITION METHOD FOR VERIFYING THE LUBRIFICA-TION OF A BOREHOLE FLUID – APPLICATION WITH RESPECT TO FLUIDS WITH A HIGH PH
- (54) Titre: FLUIDE DE PUITS COMPORTANT UNE COMPOSITION LUBRIFIANTE PROCEDE POUR CONTROLER LA LUBRIFICATION D'UN FLUIDE DE PUITS APPLICATION AUX FLUIDES A HAUT PH

(57) Abstract

The present invention relates to a borehole fluid comprising a lubricating compound containing at least one amphiphilic non-ionic compound obtained by reacting at least one vegetable oil or fatty acid as such or in a polymerised state on at least one amino alcohol. In one variant, the compound can be mixed with a solvent. The invention also relates to a method for verifying the lubrication power of a water-based fluid. The invention further relates to the application of said method to borehole fluids with a high pH.

(57) Abrégé

La présente invention concerne un fluide de puits qui comporte un composé lubrifiant comprenant au moins un composé amphiphile non-ionique obtenu par réaction d'au moins une huile végétale, ou un acide gras tel quel ou polymérisé, sur au moins un aminoalcool. Dans une variante, le composé peut être mélangé à un solvant. L'invention concerne également un procédé de contrôle du pouvoir lubrifiant d'un fluide à base d'eau. Application du procédé à un fluide de puits ayant un haut pH.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaldjan	GB	Royaume-Uni	MC	Моласо	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	İşrağl	MR	Mauritanic	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Btats-Unis d'Amérique
CA	Canada	IT	Italic	MX	Мехіque	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavic
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	u	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Bstonie	LR	Libéria	SG	Singapour		

WO 99/66006 PCT/FR99/01367

FLUIDE DE PUITS COMPORTANT UNE COMPOSITION LUBRIFIANTE PROCEDE POUR CONTROLER LA LUBRIFICATION D'UN FLUIDE DE PUITS - APPLICATION AUX FLUIDES A HAUT PH

La présente invention concerne les fluides utilisés pour le forage, le conditionnement de puits ou les interventions dans des puits. Plus particulièrement, l'invention décrit un fluide à base d'eau comportant un composé lubrifiant et un procédé pour contrôler le pouvoir lubrifiant de fluides à base d'eau placés dans des puits forés. Dans une application, les fluides de puits à base d'eau ont un pH supérieur à 9.

La méthode conventionnelle de forage de puits, pétroliers ou non, consiste à entraîner en rotation un outil à dents fixé à l'extrémité d'une colonne de tiges de forage, la colonne étant généralement entraînée en rotation par une installation de surface. Un fluide, appelé fluide ou boue de forage, est injecté au niveau de l'outil par l'espace intérieur des tiges. Les fonctions principales de ce fluide sont : de nettoyer l'outil et le puits en remontant les débris vers la surface, de stabiliser les parois du puits, d'inhiber les réactions des formations géologiques en contact avec le fluide, etc...

La présente invention ne concerne pas uniquement les fluides dits de forage, mais également les fluides dits de "complétion", ainsi que les fluides dits d'intervention ("workover"). La complétion est une opération qui poursuit l'opération de forage lorsque le puits atteint la formation productrice. La complétion consiste notamment à forer dans la roche réservoir, tester la formation, équiper le puits pour la production, mettre en production. Pour ces opérations, le fluide de complétion peut être spécifique notamment à la roche réservoir et aux effluents produits. Les

opérations de "workover" ou d'intervention consistent à travailler dans un puits producteur pour forer, reforer, nettoyer le puits, ou changer des équipements de puits.

Les fluides de puits doivent pouvoir avoir des caractéristiques ajustées en fonction des utilisations très variées, notamment leur viscosité, leur masse volumique ou leur capacité de contrôle du filtrat. Dans certains cas de puits très fortement déviés, par exemple des forages horizontaux, ou plus généralement des puits qui procurent des frottements importants sur les tubulaires descendus dans le puits, la capacité lubrifiante du fluide devient une caractéristique importante.

On utilise parfois des fluides à haut pH, c'est à dire supérieur à 9 et généralement supérieur à environ 10, par exemple les boues de forage à base de silicate telles celles décrites dans la publication SPE 37266 présentée à l'« International Symposium on Oilfield Chemistry, 18-21 February 1997, Houston TX ». Ces boues sont récemment utilisées notamment pour leur qualité d'inhibition du gonflement des argiles forées.

Ainsi, la présente invention concerne un fluide de puits à base d'eau qui comporte un composé lubrifiant comprenant au moins un composé amphiphile non-ionique obtenu par réaction d'au moins une huile végétale ou un acide gras sur au moins un aminoalcool.

Toutes les huiles végétales ou acides gras végétaux peuvent convenir. L'huile végétale ou acide gras peut être choisi dans le groupe formé par l'huile de lin, de carthame, de pépins de raisins, de bois de chine, de tournesol, de colza ou leur mélange, ou d'un acide gras dérivé de ces huiles végétales.

Dans une variante, l'huile végétale ou acide gras peut être polymérisé et avoir après polymérisation une viscosité à 20°C comprise entre 5 et 60 Pa.s.

L'aminoalcool utilisé peut être la diéthanolamine.

10

15

Le composé lubrifiant peut être conditionné sous la forme d'un mélange comprenant un ou plusieurs solvants et éventuellement d'autres composés.

Le solvant du mélange peut être un dérivé d'une huile végétale.

Le mélange (composé lubrifiant et solvants) peut contenir entre 0 et 80% en masse de solvant et de préférence entre 20 et 40%.

Le fluide de puits peut comporter une concentration de 0,1 à 5% en poids du composé lubrifiant et de préférence comprise entre 0,5 à 2% en poids.

Le fluide selon l'invention peut avoir un pH supérieur à 9, et de préférence supérieur à 10.

L'invention concerne également un procédé pour contrôler le pouvoir lubrifiant d'un fluide de puits à base d'eau qui consiste à incorporer dans le fluide un composé lubrifiant selon la définition cidessus.

L'invention comprend une application du procédé ci-dessus à des fluides de puits à pH supérieur à 9 et de préférence supérieur à 10.

peuvent convenir, on utilisera de préférence des huiles fortement insaturées telles que l'huile de lin ou encore de carthame, de pépins de raisins, de bois de chine, de tournesol, ou leur mélange. Ces huiles végétales ou acides gras sont utilisés tels quels ou polymérisés. Les huiles végétales polymérisées ("stand oils") sont obtenues par traitement thermique des huiles végétales fortement insaturées citées plus haut, dans des conditions telles qu'il n'y a pas d'oxydation. L'huile ou acide gras de lin (de préférence raffiné) est généralement utilisé, mais il est possible d'employer de l'huile ou acide gras de carthame, de pépins de raisins, de bois de chine, de tournesol, ou leur mélange. Pour préparer le composé lubrifiant selon une variante de l'invention, on pourra utiliser une huile végétale ou un acide gras polymérisé ayant une viscosité comprise entre 5

et 60 Pa.s à 20°C. A titre d'exemple, le traitement thermique d'une huile de lin raffinée à une température de 290-300°C donne en 6 à 12 heures un produit d'une viscosité de 10 Pa.s à 25°C.

Les aminoalcools utilisés pour préparer les composés de l'invention sont des amines ou polyamines comportant une ou plusieurs fonctions alcool et éventuellement une ou plusieurs fonctions éthers.

Par exemple, les aminoalcools peuvent correspondre aux formules suivantes :

10 HO-CmH2m-NH2

HO-CmH2m-NH-CkH(2k+1)

(HO-CmH2m)2-NH

(HO-CmH2m)3-N

(HO-CmH2m)p-CH(3-p)-NH2

HO- $(CmH2m-O)_n$ -NH-CkH(2k+1)

HO-(CmH2m-O)_n-CkH2k-NH2

HO-(CmH2m-O), -NH-CkH2k-(O-CmH2m), -OH ramifiés ou non

avec m=2 à 6; k=1 à 6; p=2 ou 3; n=2 à 20

En particulier, on peut citer:

la monoéthanolamine : OH - (CH2)2 - NH2,

la monopropanolamine: OH - (CH2)3 -NH2,

la monoisopropanolamine : CH3 -CH (OH) - CH2 - NH2.

le 2-amino-1-butanol: CH3 -CH2 - CH (NH2) -CH2 - OH,

le 1-amino-2-butanol: CH3 - CH2 - CH(OH) - CH2 - NH2.

la N-méthyl-éthanolamine : CH3 - NH - (CH2)2 - OH,

la N-butyl-éthanolamine: CH3 - (CH2)3 - NH - (CH2)2 - OH,

la pentanolamine, l'hexanolamine, la cyclohexanolamine, les polyalcanolamines ou encore les polyalcoxyglycolamines, de formule :

OH - (CH2 - CH2 - O)n - CH2 - CH2 - NH2 (n entre 1 et 30)

et les polyols aminés tels que :

la diéthanolamine: (OH - CH2 - CH2)2 - NH,

la diisopropanolamine : (CH3 - CH (OH) - CH2)2 - NH, ou

le trihydroxyméthylaminométhane : ((HO)H2C -)3C - NH2.

5

La synthèse des composés de l'invention peut être obtenue en faisant réagir un excès d'aminoalcool, de préférence la diéthanolamine sur une huile végétale ou un acide gras végétal tel quel, ou polymérisé de préférence obtenu à partir d'huile de lin.

10

De préférence, la réaction est conduite en l'absence de solvant, et généralement à une température supérieure à environ 100°C, et de préférence comprise entre 100 et 200°C.

Cependant, si la viscosité du milieu réactionnel est trop élevée, la réaction pourra se faire en présence d'un solvant.

On obtient en fin de réaction le composé lubrifiant inclus dans le fluide selon l'invention.

Ce composé peut être incorporé tel quel dans le fluide de puits aqueux à haut pH ou non, ou sous la forme d'un mélange comprenant un solvant ou plusieurs solvants et éventuellement d'autres composés.

Pour obtenir un mélange de viscosité acceptable compte tenu des applications envisagées, un solvant peut être additionné. Un certain nombre de solvants sont susceptibles d'être utilisés, en particulier des coupes aromatiques; toutefois on donnera la préférence à tous les solvants dérivés d'huiles naturelles, tels que des esters d'acides gras en C6 à C18 et d'alcools linéaires ou branchés en C2 à C18, afin d'obtenir une solution d'additifs biodégradable et non polluante pour l'environnement.

10

Dans leur utilisation comme additif lubrifiant à un fluide de puits ces composés sont ajoutés dans le fluide de puits à des concentrations allant en général de 0,1 à 5% en masse, de préférence de 0,5 à 2% en masse.

Il faut noter que les réglementations relatives à la protection de l'environnement imposent de plus en plus que les différents additifs utilisés dans la formulation des fluides de puits soient non toxiques et non polluants vis-à-vis de l'environnement.

Le fluide de puits de la présente invention qui comporte la composition lubrifiante a notamment l'avantage de répondre aux critères actuels relatifs à la protection de l'environnement.

De plus, la présente composition peut être utilisée avec tous les fluides de puits à base d'eau à haut pH, par exemple, les fluides à base de silicate alourdis ou non, certains fluides hautes pressions/hautes températures (HP/HT), etc...

Les pH élevés sont des conditions difficiles pour la stabilité des produits lubrifiants, en particulier ceux à base d'esters classiques qui s'hydrolysent à pH élevé et sous l'effet de la température.

L'invention sera mieux comprise et ses avantages apparaîtront plus nettement à lecture des exemples suivants, nullement limitatifs.

Le pouvoir lubrifiant d'une composition lubrifiante ajoutée à un fluide de puits selon l'invention est testé à l'aide d'un "Lubricity tester-Model 212" fabriqué par la société NL Baroid Petroleum Services (Instruction Manual Part No.211210001EA). Les tests ("Lubricity-surface to surface) sont effectués selon les procédures recommandées par la norme RP 13B de l'American Petroleum Institute (API), (100 psi (689 kPa) à 60 tours/minute). Pour comparer les capacités lubrifiantes des différentes compositions, on a relevé les lectures des graduations obtenues avec l'appareil de test ci-dessus décrit. Ces lectures correspondent à des valeurs relatives du couple de frottement. Plus ces

valeurs lues sont faibles, meilleur est le pouvoir lubrifiant de la composition testée.

Le principe des exemples ci-après est de mélanger, à un fluide de base, une certaine quantité d'une composition lubrifiante déterminée, le mélange étant ensuite testé dans l'appareillage. Les essais, sauf avis contraire, ont été réalisés à température ambiante (environ 25°C).

Une première composition lubrifiante, donnée en exemple, et ajoutée au fluide de puits de base a été dénommé ici NTL.

Le NTL est le résultat de la réaction de 52 kg d'huile de lin polymérisée d'une viscosité de 10 Pa.s et 28 kg de diéthanolamine, dans un réacteur de 100 litres et chauffé pendant une heure à 160°C. Sa viscosité est de l'ordre de 2700 mPa.s à 40°C.

Une seconde composition lubrifiante, dénommée XTL est le produit de la réaction de 52 kg d'huile de lin et de 28 kg de diéthanolamine dans le même réacteur que précédemment et sous les mêmes conditions.

Exemple 1 : Boue silicate avant vieillissement

Composition du fluide de base:

20	eau douce,	
	viscosifiant (xanthane)	5.2 g/l,
•	■ réducteur de filtrat (Aquapac-Regular)	0.14 g/l
	■ réducteur de filtrat (Aquapac-LV)	2.51 g/l
	■ argile de charge	20 g/l
25	■ silicate de sodium	84,7 g/l
	■ chlorure de sodium	50 g/l
	■ baryte	93 g/l
	■ NaOH pour obtenir :	pH=11

Le xanthane utilisé pour tous les tests est de l'IDVIS commercialisé par la société Dowell Drilling Fluids. Les produits du type CMC AQUAPAC Regular et LV sont commercialisés par la société Aqualon.

Cet essai démontre le pouvoir de lubrification du lubrifiant NTL ajouté à un fluide de base à haut pH, en fonction de la concentration en poids.

Lubrifiant NTL	Lecture du couple		
(%)	(lbs.in)	N.m	
0	42	4,75	
0.5	25	2,8	
, 1	23	2,6	
1,5	21	2,4	
2	17	1,9	
3	17	1.9	
4	17	1,9	
5	17	1,9	

On observe une diminution de la valeur du couple avec l'augmentation de la concentration en lubrifiant. Les résultats montrent les bonnes performances du système NTL sur cette formulation à pH élevé. Une concentration en additif lubrifiant de l'ordre de 2% est ici optimale.

Exemple 2: Boue silicate après vieillissement

On utilise la formulation du fluide de base précédent, additionnée de 2% de NTL à laquelle on fait subir un vieillissement dans une cellule de test dite « Hot Rolling » à 80°C pendant 16 heures, puis retour à la température ambiante. Les résultats suivants montrent que le vieillissement en température ne dégrade pas les propriétés de lubrification de l'additif NTL dans une boue à haut pH.

Г	Lecture du couple		
	(lbs.in) (N.m		
Avant vieillissement	17	1.9	
Après vieillissement	18	2,03	

Exemple 3: Influence du lubrifiant sur les propriétés rhéologiques et de filtration de la boue

Dans ce qui suit, sont indiquées les propriétés rhéologiques de la boue (exprimées en VA viscosité apparente en centipoise (cP), VP viscosité plastique en centipoise (cP), YV est la valeur seuil de cisaillement (Yield Value) en lb/100ft² et gel 0 et gel 10 (ces mesures sont conformes au standard API RP 13B1 qui donne les correspondances des unités SI dans l'Appendice I), avec et sans NTL, avant (AV) et après vieillissement (AP) de 16h à 80°C, ainsi que les propriétés de filtration exprimées par la quantité de filtrat (en cm3) corrigé obtenu après 30 minutes de filtration.

La formulation du fluide de base est la même que celle de la boue silicate de l'exemple 1.

	sans NTL (AV)	avec 2% NTL (AV)	sans NTL (AP)	avec 2% NTL (AP)
VA	34	41	32	43
VP	11	20	17	22
YV	46	42	30	42
Gel 0/Gel 10	11/15	5/8	8/10	8/15
Filtrat (ml)	2,6	2,0	4,6	3,9

Ces résultats mettent en évidence que l'addition du pourcentage optimisé de NTL ne modifie pas significativement les propriétés rhéologiques et de filtration de la boue, que ce soit avant ou après vieillissement.

Exemple 4: Dilution de NTL par un solvant

Différents composés lubrifiants ont été testés (L1, L2, L3, L4, L5, L6), tous représentatifs de la présente invention. Les pourcentages sont exprimés en poids. Les viscosités mesurées à 40°C sont indiquées dans le tableau ci-dessous.

Mélanges	Viscosité
	(mPa.s)
L1: NTL-100%	2670
L2: NTL-80% + Oléate de méthyle-20%	790
L3: NTL-70% + Oléate de méthyle-30%	410
L4: NTL-80% + 2-butyle C12-C14-20%	710
L5: NTL-70% + 2-butyle C12-C14-30%	385
L6: NTL-70% + 2-butyle C12-C14-30% + 2-octanol (5% par rapport au 2-butyle C12-C14)	350

Les performances de lubrification et les caractéristiques des différents mélanges sont indiquées ci-dessous. Les mélanges ont été ajoutés à 1 ou 2% en poids dans la formulation de boue silicate de l'exemple 1.

Avant vieillissement

10

•	concentration	Lecture of	Lecture de couple		VP	YV
	%	(lbs.in)	(N.m)	mPa.s	mPa.s	lbs/100ft ²
Ll	2	17	1,9	41	20	42
L2	2	18	2,03	42	19	46
L3	1	24	2,7	34	13	42
LA	1	24	2,7	31	14	34
L4	2	18	2,03	33	15	36
L5	2	20	2,3	40	19	42
L6	2	18	2,03	39	18	42

Après vieillissement 16h à 80°C

	concentration	Lecture couple		VA	VP	YV
	%	(lbs.in)	(N.m)	mPa.s	mPa.s	lbs/100ft ²
Ll	2	18	2,03	43	22	42
LA	2	19	2,15	34	15	38
L6	2	18	-	39	18	42

Ces résultats montrent les très bonnes performantes des systèmes étudiés en terme de lubrification. L'intérêt principal d'utiliser un diluant est de diminuer la viscosité de l'additif NTL ce qui facilite son incorporation dans le fluide aqueux.

Exemple 5: Boue silicate et composé XTL:

On utilise la formulation de boue silicate de l'exemple 1, avant vieillissement et après un vieillissement tel que décrit dans l'exemple 2.

10 Avant vieillissement:

Lubrifiant XTL	Lecture du couple		
(%)	(lbs.in)	N.m	
0	42	4,75	
0,5	26	2,9	
1	24	2,7	
1,5	22	2,5	
2	22	2,5	
3	22	2,5	

Après vieillissement:

Lubrifiant XTL	Lecture du couple		
(%)	(lbs.in)	N.m	
2	22	2,5	

Ces résultats montrent que le composé lubrifiant XTL permet de diminuer les frottements de façon notable. Ses caractéristiques ne sont pas altérées après vieillissement.

Exemple 6: Boue bentonitique à l'eau de mer composition du fluide de base :

• eau de mer,

• Bentonite	30 g/l
 viscosifiant (xanthane) 	2 g/l
• réducteur de filtrat (Aquapac-LV)	1 g/l
• dispersant	3 g/l
Baryte, telle que la masse volumique	SG = 1.21

Le dispersant utilisé est du polyacrylate FP30S commercialisé par la société COATEX (France) .

Le pH de la formulation est ajusté à la soude NaOH, tel que pH=9 ou pH=12.

Dans cet essai, sont indiqués les résultats du pouvoir de lubrification du fluide à haut pH, en fonction de la concentration en lubrifiant NTL ajouté.

Lubrifiant NTL	Lecture du couple					
	pH 9		pH 12			
(%)	(lbs.in)	N.m	(lbs.in)	N.m		
0	36	4,07	36	4,07		
0,5	34	3,84	32	3,62		
1	31	3,5	21	2,37		
2	31	3,5	18	2,04		
3	25	2,8	18	2,04		
4	21	2,37	18	2,04		
5	19	2,15	16	1,81		

Ces résultats montrent les très bonnes performances de lubrification de NTL, notamment à pH élevé.

Exemple 7: Boue au formiate de césium

composition du fluide de base:

• eau de mer

• viscosifiant (xanthane) 2 g/l 5 • réducteur de filtrat 2 g/l • argile de charge 10 g/l

KCl 50 g/l

• CsCOOH, H2O (formiate de cesium hydraté):

300 g/l tel que la masse volumique

10

SG = 1.2 kg/l

Le pH de la formulation est ajusté à la soude NaOH, tel que le pH = 9 ou pH=12

Dans cet essai sont indiqués les résultats de lubrification en fonction de la concentration en lubrifiant NTL ajouté.

Lubrifiant NTL	·	Lecture	re du couple			
	pH 9		pH 12			
(%)	(lbs.in)	N.m	(lbs.in)	N.m		
0	36	4,07	40	4,52		
0,5	16	1,81	18	2,04		
1	4	0,45	6	0,68		
2	2	0,23	2	0,23		
3	2	0,23	2	0,23		

15

Ces mesures montrent les très bonnes performances de lubrification de NTL dans ce type de fluide à très haut pH.

REVENDICATIONS

5

1) Fluide de puits à base d'eau, caractérisé en ce qu'il comporte un composé lubrifiant comprenant au moins un composé amphiphile non-ionique obtenu par réaction d'au moins une huile végétale ou un acide gras sur au moins un aminoalcool.

10

2) Fluide selon la revendication 1, caractérisé en ce que ladite huile végétale ou acide gras est choisi dans le groupe formé par l'huile de lin, de carthame, de pépins de raisins, de bois de chine, de tournesol, de colza ou leur mélange, ou d'un acide gras dérivé de ces huiles végétales.

15

3) Fluide selon l'une des revendications 1 et 2, caractérisé en ce que ladite huile végétale est polymérisée et a une viscosité à 20°C comprise entre 5 et 60 Pa.s.

20

4) Fluide selon l'une des revendications 1 à 3, caractérisé en ce que ledit aminoalcool est la diéthanolamine.

25

5) Fluide selon l'une des revendication 1 à 4, caractérisé en ce que le composé lubrifiant est conditionné sous la forme d'un mélange comprenant au moins un solvant et éventuellement d'autres composés.

30

6) Fluide selon la revendication 5, caractérisé en ce que ledit solvant est un dérivé d'une huile végétale.

- 7) Fluide selon l'une des revendications 5 et 6, caractérisé en ce que ledit mélange contient entre 0 et 80% en masse de solvant et de préférence entre 20 et 40%.
- 8) Fluide selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une concentration de 0,1 à 5% en poids dudit composé lubrifiant.
 - 9) Fluide selon la revendication 8, caractérisé en ce que ladite concentration est comprise entre 0,5 à 2% en poids.
 - 10) Fluide selon l'une des revendications précédentes, caractérisé en ce que son pH est supérieur à 9, et de préférence supérieur à 10.
- 11) Procédé pour contrôler le pouvoir lubrifiant d'un fluide de puits à base d'eau, caractérisé en ce que l'on incorpore audit fluide un composé lubrifiant selon l'une des revendications 1 à 9.
- 12) Application du procédé selon la revendication 11 à des fluides de puits à pH supérieur à 9 et de préférence supérieur à 10.

INTERNATIONAL SEARCH REPORT

Im tional Application No
PCT/FR 99/01367

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C09K7/00 C09K7/02 C10M173/	' 02	
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	······································
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classification COSK C10M	on symbols)	·
Documenta	tion searched other than minimum documentation to the extent that s	such documents are included in the fields se	arched
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
X	DATABASE WPI Section Ch, Week 9017 Derwent Publications Ltd., Londor Class D23, AN 90-130964	n, GB;	1,4
	XP002094473 & SU 1 493 662 A (AS UZB CHEM INS , 15 July 1989 see abstract	ST)	
Υ	US 4 359 393 A (R.J.STURWOLD) 16 November 1982 see column 2, line 8 - column 3,	line 25	1,3-5
Υ	GB 922 667 A (MASTER CHEMICAL CON 3 April 1963 see page 2, line 4 - line 19 see page 2, line 65 - page 3, line		1,3-5
χ Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
° Conceint	toposico of citad documento		
"A" docume	ategories of cited documents: ent defining the general state of the art which is not dered to be of particular relevance	"T" later document published after the inter- or priority date and not in conflict with- cited to understand the principle or the invention	the application but
"E" earlier o	document but published on or after the international tate	"X" document of particular relevance; the c	
"L" docume	ent which may throw doubts on priority claim(s) or is cled to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the do	cument is taken alone
citatio	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the c cannot be considered to involve an inv document is combined with one or mo	ventive step when the re other such docu-
"P" docum	means ent published prior to the international filing date but han the priority date claimed	ments, such combination being obviou in the art. "&" document member of the same patent	·
	actual completion of the international search	Date of mailing of the international sea	
4	August 1999	12/08/1999	
Name and	rnailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3018	Boulon, A	

INTERNATIONAL SEARCH REPORT

Im tional Application No PCT/FR 99/01367

C./Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	FC1/FR 99/0130/		
Category °	Citation of document, with Indication, where appropriate, of the relevant passages			
A	US 3 761 410 A (T.C.MONDSHINE) 25 September 1973 see column 1, line 13 - line 23 see column 3, line 38 - column 4, line 3 see column 4, line 66 - column 5, line 9 see column 5, line 49 - line 54	1,2		
-				
•				
!				

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int Sional Application No PCT/FR 99/01367

Patent document cited in search repo	rt	Publication date		atent family member(s)	Publication date
US 4359393	Α	16-11-1982	CA	1162529 A	21-02-1984
GB 922667	Α		NL US	133191 C 3186946 A	01-06-1965
US 3761410	Α	25-09-1973	NONE		

RAPPORT DE RECHERCHE INTERNATIONALE

Dt de Internationale No PCT/FR 99/01367

CLASSEMENT DE L'OBJET DE LA DEMANDI C09K7/02 C10M173/02 C09K7/00 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB **B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE** Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 C09K C10M Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si realisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no, des revendications visées X DATABASE WPI 1,4 Section Ch, Week 9017 Derwent Publications Ltd., London, GB; Class D23, AN 90-130964 XP002094473 & SU 1 493 662 A (AS UZB CHEM INST) , 15 juillet 1989 voir abrégé US 4 359 393 A (R.J.STURWOLD) 1,3-516 novembre 1982 voir colonne 2, ligne 8 - colonne 3, ligne GB 922 667 A (MASTER CHEMICAL CORP.) 1,3-53 avril 1963 voir page 2, ligne 4 - ligne 19 voir page 2, ligne 65 - page 3, ligne 3 Voir la suite du cadre C pour la fin de la liste des documents Les documents de familles de brevets sont indiqués en annexe Catégories spéciales de documents cités: "T" document uttérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "L" document pouvant jeter un doute aur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale ' 4 août 1999 12/08/1999 Nom et adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorisé Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Boulon, A

RAPPORT DE RECHERCHE INTERNATIONALE

Da .de Internationale No PCT/FR 99/01367

atégorie	CUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec,le cas échéant, l'indicationdes passages pertinents	no, des revendications visées
·	US 3 761 410 A (T.C.MONDSHINE) 25 septembre 1973	1,2
	voir colonne 1, ligne 13 - ligne 23 voir colonne 3, ligne 38 - colonne 4,	
	ligne 3 voir colonne 4, ligne 66 - colonne 5,	
•	ligne 9	
	voir colonne 5, ligne 49 - ligne 54	
	·	
	2	
		·
		·
	·	
	. •	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatirs aux membres de familles de brevets

De de Internationale No PCT/FR 99/01367

Document brevet cit au rapport de recherci	-	Date de publication		mbre(s) de la le de brevet(s)	Date de publication
US 4359393	A	16-11-1982	CA	1162529 A	21-02-1984
GB 922667	Α		NL US	133191 C 3186946 A	01-06-1965
US 3761410	Α	25-09-1973	AUCU	N	

Formulaire PCT/ISA/210 (annexe families de brevets) (juillet 1992)