한양대학교 인공지능연구실

AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients

임희주

한양대학교 인공지능연구실	
Introduction	

한양대학교 인공지능연구실

1. Introduction AdaBelief

fast as Adam, generalizes as good as SGD, and sufficiently stable to train GANs.

- ⇒ AdaBelief optimizer
- ⇒ Adam 에서 한 줄만 변경했는데 성능향상

한양대학교 인공지능연구실

1. Introduction AdaBelief

1. Introduction AdaBelief

1. Introduction Adam

Algorithm 1: Adam Optimizer

Initialize
$$\theta_0, m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0$$

While θ_t not converged

$$t \leftarrow t + 1$$

$$g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$$

$$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Bias Correction

$$\widehat{m_t} \leftarrow \frac{m_t}{1-\beta_1^t}, \, \widehat{v_t} \leftarrow \frac{v_t}{1-\beta_2^t}$$

Update

$$\theta_t \leftarrow \prod_{\mathcal{F}, \sqrt{\widehat{v_t}}} \left(\theta_{t-1} - \frac{\alpha \widehat{m_t}}{\sqrt{\widehat{v_t}} + \epsilon} \right)$$

- g_t: the gradient and step t
- m_t : exponential moving average (EMA) of g_t
- v_t, s_t : v_t is the EMA of g_t^2 , s_t is the EMA of $(g_t m_t)^2$
- α, ϵ : α is the learning rate, default is 10^{-3} ; ϵ is a small number, typically set as 10^{-8}
- β_1, β_2 : smoothing parameters, typical values are $\beta_1 = 0.9, \beta_2 = 0.999$
- β_{1t}, β_{2t} are the momentum for m_t and v_t respectively at step t, and typically set as constant (e.g. $\beta_{1t} = \beta_1, \beta_{2t} = \beta_2, \forall t \in \{1, 2, ... T\}$

Bias Correction: 학습 초기 가중치들이 0으로 편향되는 것 방지.

 m_t : 이전 gradient 들의 1차 moment 에 대한 추정

 v_t : 이전 gradient 들의 2차 moment 에 대한 추정

2. Method Problem - Adam

In Case 3

Ideal optimizer는 큰 step size를 가져야 하지만 Adam 은 오히려 작은 step size를 가짐

$$\theta_t \leftarrow \prod_{\mathcal{F},\sqrt{\widehat{v_t}}} \left(\theta_{t-1} - \frac{\alpha \widehat{m_t}}{\sqrt{\widehat{v_t}} + \epsilon}\right) \qquad v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Adam 의 step size 는 v_t 에 영향을 받음 이 v_t 는 g_t^2 에 따라 변하기 때문에 g_t 가 커지는 Case 3 구간에서 step size가 작음

2. Method

Problem - solution

Algorithm 2: AdaBelief Optimizer

Initialize
$$\theta_0, m_0 \leftarrow 0, s_0 \leftarrow 0, t \leftarrow 0$$

While θ_t not converged

$$t \leftarrow t + 1$$

$$g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$$

$$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

$$s_t \leftarrow \beta_2 s_{t-1} + (1 - \beta_2) (g_t - m_t)^2 + \epsilon$$

Bias Correction

$$\widehat{m_t} \leftarrow \frac{m_t}{1-\beta_1^t}, \, \widehat{s_t} \leftarrow \frac{s_t}{1-\beta_2^t}$$

Update

$$\theta_t \leftarrow \prod_{\mathcal{F}, \sqrt{\widehat{s_t}}} \left(\theta_{t-1} - \frac{\alpha \widehat{m_t}}{\sqrt{\widehat{s_t}} + \epsilon} \right)$$

$$g_t^2 \Rightarrow (g_t^2 - m_t^2)^2 + \varepsilon$$

 v_t 를 s_t 로 바꿈으로써 Case 3 에서 Ideal 한 step size (large)

$$s_t = EMA((g_0 - m_0)^2, ...(g_t - m_t)^2) \approx \mathbb{E}[(g_t - \mathbb{E}g_t)^2] = \mathbf{Var}g_t$$

2. Method

Problem - solution

모든 구간에서 ideal 한 step size를 가짐

Case1 : g_t 의 Variance 가 작기 때문에 step size is **large** Case2 : g_t 의 Variance 가 크기 때문에 step size is **small** Case3 : g_t 의 Variance 가 작기 때문에 step size is **large**

		Case	1		Case	2		Case	3
$ g_t , v_t$		S			L			L	
$ g_t-g_{t-1} , s_t$		S			L			S	
$ \Delta \theta_t _{ideal}$		L			S			L	
$ \Delta \theta_t $	SGD	Adam	AdaBelief	SGD	Adam	AdaBelief	SGD	Adam	AdaBelief
$ \Delta v_t $	S	L	L	L	S	S	L	S	L

2. Method

Convergence analysis in convex and non convex-optimization

Optimization problem For deterministic problems, the problem to be optimized is $\min_{\theta \in \mathcal{F}} f(\theta)$; for online optimization, the problem is $\min_{\theta \in \mathcal{F}} \sum_{t=1}^{T} f_t(\theta)$, where f_t can be interpreted as loss of the model with the chosen parameters in the t-th step.

Theorem 2.1. (Convergence in convex optimization) Let $\{\theta_t\}$ and $\{s_t\}$ be the sequence obtained by AdaBelief, let $0 \leq \beta_2 < 1$, $\alpha_t = \frac{\alpha}{\sqrt{t}}$, $\beta_{11} = \beta_1$, $0 \leq \beta_{1t} \leq \beta_1 < 1$, $s_t \leq s_{t+1}$, $\forall t \in [T]$. Let $\theta \in \mathcal{F}$, where $\mathcal{F} \subset \mathbb{R}^d$ is a convex feasible set with bounded diameter D_{∞} . Assume $f(\theta)$ is a convex function optimal point as θ^* . For θ_t generated with AdaBelief, we have the following bound on the regret?

$$\sum_{t=1}^{T} [f_t(\theta_t) - f_t(\theta^*)] \le \frac{D_{\infty}^2 \sqrt{T}}{2\alpha(1-\beta_1)} \sum_{i=1}^{d} s_{T,i}^{1/2} + \frac{(1+\beta_1)\alpha\sqrt{1+\log T}}{2\sqrt{c}(1-\beta_1)^3} \sum_{i=1}^{d} \left| \left| g_{1:T,i}^2 \right| \right|_2 + \frac{D_{\infty}^2}{2(1-\beta_1)} \sum_{t=1}^{T} \sum_{i=1}^{d} \frac{\beta_{1t} s_{t,i}^{1/2}}{\alpha_t}$$

Corollary 2.1.1. Suppose $\beta_{1,t} = \beta_1 \lambda^t$, $0 < \lambda < 1$ in Theorem (2.1), then we have:

$$\sum_{t=1}^{T} [f_t(\theta_t) - f_t(\theta^*)] \le \frac{D_{\infty}^2 \sqrt{T}}{2\alpha(1-\beta_1)} \sum_{i=1}^{d} s_{T,i}^{1/2} + \frac{(1+\beta_1)\alpha\sqrt{1+\log T}}{2\sqrt{c}(1-\beta_1)^3} \sum_{i=1}^{d} \left\| g_{1:T,i}^2 \right\|_2 + \frac{D_{\infty}^2 \beta_1 G_{\infty}}{2(1-\beta_1)(1-\lambda)^2 \alpha}$$

Proof in paper Appendix

한양대학교 인공지능연구실	
Ex	periments

3.Experiments Image Classification

Image Classification

Figure 4: Test accuracy ($[\mu \pm \sigma]$) on Cifar. Code modified from official implementation of AdaBound.

3.Experiments Language Modeling

Figure 5: Left to right: perplexity ($[\mu \pm \sigma]$) on Penn Treebank for 1,2,3-layer LSTM. Lower is better.

3.Experiments GAN

Generative Adversarial Network

Figure 6: FID score of WGAN and WGAN-GP on Cifar10. Lower is better. For each model, success and failure optimizers are shown in the left and right respectively, with different ranges in y value.

한양대학교 인공지능연구실 https://juntang-zhuang.github.io/adabelief/ https://arxiv.org/pdf/2010.07468v5.pdf 16