

1 Problem Statement

https://www.kaggle.com/c/tensorflow-great-barrier-reef/overview/description

Our goal: Implement a YOLO object detector from scratch

https://www.google.com/url?sa=i&url=https%3A%2F%2Fblog.tensorflow.org%2F2021%2F11%2Fannouncing-tensorflows-kagglechallenge.html&pis=A0vVaw3pZWctWwYYD7HMyphUNG62&ust=1643789767389000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCN Crpl6f3vUCFQAAAAAAAAAABA

1 Problem Statement

Nick Wagner | David Unger - 08.01.2022

2 Our YOLO Architecture

^{*} For simplicity the values are denoted as pixel values. The implementation is relative to the grid.

Nick Wagner | David Unger - 08.01.2022

3 Approach

- Detection input pipeline
- Label conversion
- YOLO architecture
- Custom loss function
- Visualization

- Optimize the input pipeline
- Transfer learning
- Metrics
- IOU
- TP-rate / TN-rate
- Separate Loss functions

- Data augmentation
 - color jittering
 - horizontal & vertical flip
- Dropout
- Smaller model capacity

Overfit on complete training set

Detector works on test set

...more during breakout!

4 Results

Ground Truth
Estimate

white: objectness = 1, black: objectness = 0

