FUNCIÓN Y ECUACIÓN DE RENOVACIÓN

Nexus-Probability

CURSO 4 (PROCESOS ESTOCÁSTICOS 2)

PARTE 2 / LECCIÓN 2

Definición 1 (Función de Renovación) Esta función representa el número promedio de renovaciones efectuadas hasta un tiempo t cualquiera. A tal función se le llama función de renovación, y se le denota por $\Lambda(t)$, es decir, $\Lambda(t) = E(N_t)$.

Definición 2 (Ecuación de renovación) La función de renovación $\Lambda(t)$ satisface la ecuación

$$\Lambda(t) = F(t) + \int_0^t \Lambda(t - s) \, dF(s). \tag{1}$$

Observe que la ecuación (1) puede escribirse como $\Lambda(t) = F(t) + (\Lambda * F)(t)$.

Debido a que se condiciona sobre el valor del primer tiempo de renovación, a la técnica de la demostración de este resultado se le llama a veces análisis del primer paso o se dice también que se ha utilizado un argumento de renovación, pues es muy frecuente su uso en el cálculo de probabilidades de ciertos eventos en los procesos de renovación.

Demostración. Condicionando sobre el valor del primer tiempo de vida T_1 se obtiene

$$\Lambda(t) = \int_0^t E(N_t | T_1 = s) dF(s),$$

en donde

$$E(N_t|T_1 = s) = \begin{cases} 0 & \text{si } s > t, \\ 1 + \Lambda(t - s) & \text{si } s \le t. \end{cases}$$

Por lo tanto,

$$\Lambda(t) = \int_0^t \left(1 + \Lambda(t-s)\right) dF(s) = F(t) + \int_0^t \Lambda(t-s) dF(s).$$

Ejemplo 1 Para el proceso de Poisson, el promedio de renovaciones o saltos al tiempo t es $\Lambda(t)=\lambda t$. Puede comprobarse directamente que esta función satisface (1) con $F(t)=1-e^{-\lambda t}, t\geq 0$.

A una ecuación integral del tipo (1) se le llama ecuación de renovación, pues algunas funciones de interés en la teoría de la renovación la cumplen.

Definición 3 Sean F(t), g(t) y h(t) funciones definidas para $t \geq 0$. Suponga que F(t) y h(t) son conocidas, y g(t) es desconocida. Se dice que g(t) satisface una ecuación de renovación si cumple la ecuación integral

$$g(t) = h(t) + \int_0^t g(t-s)dF(s).$$
 (2)

Puede demostrarse que si h(t) es una función acotada, entonces existe una única solución g(t) a la ecuación de renovación (2) que cumple con la condición de ser acotada sobre intervalos finitos y está dada explícitamente por

$$g(t) = h(t) + \int_0^t h(t-s), d\Lambda(s).$$
(3)

en donde $\Lambda(s)$ es la función de renovación.

Teorema 1 Para cualquier t > 0,

$$\Lambda(t) = \sum_{n=1}^{\infty} F^{*n}(t). \tag{4}$$

Demostración:

$$\Lambda(t) = \sum_{n=0}^{\infty} nP(N_t = n) = P(N_t = 1) + 2P(N_t = 2) + \cdots$$

$$= [F^{*1}(t) - F^{*2}(t)] + 2[F^{*2}(t) - F^{*3}(t)] + \cdots$$

$$= \sum_{n=1}^{\infty} F^{*n}(t).$$

Ejemplo 2 Cuando los tiempos de intervalo tienen distribución $exp(\lambda)$ se tiene que

$$F^{*n}(t) = \int_0^t \frac{(\lambda x)^{n-1}}{\Gamma(n)} \lambda e^{-\lambda x} dx = \sum_{k=n}^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!}.$$

Usando esta expresión y la fórmula recién demostrada, puede corroborarse que en este caso $\Lambda(t)=\lambda t$.

Es posible demostrar que para un proceso de renovación la variable N_t tiene momentos finitos de cualquier orden, y en particular para la esperanza, la suma que aparece en

(4) siempre es convergente. Se puede también demostrar que existe correspondencia biunívoca entre las funciones $\Lambda(t)$ y F(t), y que además el proceso de renovación $\{N_t: t \geq 0\}$ queda completamente especificado por la función promedio $\Lambda(t)$.

Ejercicio 1 Calculamos la función de renovación $\Lambda(t)$ para un proceso de Poisson, utilizando la propiedad de que la función de renovación es lineal en t para este caso específico.

Código en Python

```
import numpy as np
  import matplotlib.pyplot as plt
  # Parametros
  lambda_rate = 1  # Tasa del proceso Poisson
  t_max = 10 # Tiempo maximo
  # Funcion de renovacion para un proceso de Poisson
  def lambda_poisson(t, lambda_rate):
      return lambda_rate * t
11
  # Calcular y graficar la funcion de renovacion
12
  t_values = np.linspace(0, t_max, 100)
13
  lambda_values = lambda_poisson(t_values, lambda_rate)
14
  # Graficar la funcion de renovacion
  plt.plot(t_values, lambda_values, label=r'$\Lambda(t) = \lambda
     t$', color='b')
plt.xlabel('Tiempo t')
plt.ylabel(r'$\Lambda(t)$')
plt.title('Funcion de Renovacion para un Proceso de Poisson')
plt.grid(True)
plt.legend()
 plt.show()
```

Ejercicio 2 Simularemos la ecuación integral de renovación para un proceso donde los tiempos de vida siguen una distribución exponencial, usando la propiedad

$$\Lambda(t) = F(t) + \int_0^t \Lambda(t-s) \, dF(s).$$

Código en Python

```
import numpy as np
 import matplotlib.pyplot as plt
  from scipy.stats import expon
  # Parametros
 lambda_rate = 1  # Tasa de la distribucion exponencial
  t_max = 10 # Tiempo maximo
  # Funcion para calcular la integral de renovacion
  def lambda_integral(t, lambda_rate):
      F_t = 1 - np.exp(-lambda_rate * t)
11
      integral = np.trapz([1 + lambda_integral(t - s, lambda_rate)
12
      if t - s \ge 0 else 0 for s in np.linspace(0, t, 100)], np.
     linspace(0, t, 100))
      return F_t + integral
13
14
  # Calcular y graficar la funcion de renovacion
15
  t_values = np.linspace(0, t_max, 100)
  lambda_values = [lambda_integral(t, lambda_rate) for t in
     t_values]
  # Graficar la funcion de renovacion
19
 plt.plot(t_values, lambda_values, label=r'$\Lambda(t)$ integral'
     , color='r')
plt.xlabel('Tiempo t')
plt.ylabel(r'$\Lambda(t)$')
23 plt.title('Funcion de Renovacion usando la Ecuacion Integral')
plt.grid(True)
plt.legend()
 plt.show()
```

Ejercicio 3 Calculamos la probabilidad $P(N_t = n)$, donde N_t es el número de renovaciones hasta el tiempo t. Esta probabilidad se puede obtener usando la distribución de Poisson para el número de eventos.

Código en Python

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import poisson

# Parametros
lambda_rate = 1  # Tasa del proceso Poisson
t_max = 10  # Tiempo maximo
```