

Università degli Studi di Cagliari Facoltà di Scienze Corso di Laurea Magistrale in Informatica A.A. 2021/22

Simulatore dApp per sistemi di tracciamento di processi produttivi in campo agroindustriale (progetto ABATA)

PROGETTO E SVILUPPO DI APPLICAZIONI BLOCKCHAIN

Studente

PISEDDU Enrico

matr. 60/73/65222

Docente del Corso

Prof. MARCHESI Michele

Il progetto ABATA (1/2)

> Applicazioni della Blockchain per l'Autenticità e la Tracciabilità Alimentare

Obiettivo

- > Tracciabilità della catena produttiva di prodotti agrifood
- Certificazione dei prodotti stessi

> Strumenti

- Sistemi classici (DBMS, DMS, App)
- > Blockchain e Smart Contract

Il progetto ABATA (2/2)

- > Due macro casi d'uso che interessano tipi di attori differenti:
 - > OPERATORI che generano transazioni al fine di memorizzare i dati dei prodotti agrifood

> **CONSUMATORI** che, in un secondo momento, intendono verificare l'autenticità e l'integrità dei prodotti che acquistano o che vorrebbero acquistare

L'idea del simulatore ABATA

> Sviluppo di un programma che simuli il sistema informatico di ABATA, al fine di valutarne le **prestazioni** in funzione del numero di attori coinvolti, indagare su eventuali colli di bottiglia etc.

Oggetti del simulatore

- > Sviluppo del simulatore con un approccio ad **oggetti:**
 - Componenti
 - Attori (Operatori e Consumatori)
 - > Transazioni degli attori
 - Eventi (legati ad una transazione)

I componenti

- ➤ I principali **componenti** del sistema sono:
 - > **App** (Operator and Navigator App)
 - **DBMS**
 - DMS (Document Management System)
 - > DLT
 - > Blockchain quando viene utilizzata in modalità «write»
 - > Blockchain quando viene utilizzata in modalità **«read only»**

Le caratteristiche dei componenti

> Ogni componente ha delle **proprietà**, descritte in un file .csv

4	Α	В	С	D	E	F	G	
1	name, avg. delay (ms), st.dev. delay (ms), max txs, wait when full (ms)							
2	app,3000,	1000,10000	000,500					
3	appSys, 20	0,80,300,5	00					
4	dlt,2500,1	000,250,25	00					
5	dltview,70	00,200,800,	500					
6	dbms,300,	150,300,20	0					
7	dms,500,4	00,1000,10	00					
0								

➤ **N.B.:** Tali valori sono altamente configurabili e dipendono dallo specifico componente!

Gli attori

- > Gli attori si dividono in due categorie:
 - Operatori
 - Consumatori

Essi interagiscono con i componenti inviando delle transazioni

> Gli operatori generano principalmente transazioni di scrittura dati, i consumatori, invece, generano transazioni di lettura (es. lettura da Blockchain, DMS...)

Le caratteristiche degli attori

➤ In un apposito file .csv, è possibile definire alcuni parametri che interessano gli attori:

Inoltre si definisce, per ogni tipologia di attore, lo **schedule**:

Attore \ Ora	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Operatore	10%	13%	13%	13%	7%	4%	12%	12%	12%	4%							
Consumatore		3%	6%	8%	8%	12%	6%	6%	8%	8%	8%	5%	10%	7%	5%		

> esso rappresenta la probabilità, per ogni ora della giornata, che una transazione inizi a quell'ora

Le transazioni

- > Due tipologie di transazioni, descritte in un file .csv
 - > transazioni base: esse coinvolgono un singolo componente
 - > transazioni complesse: sono composte da almeno due transazioni base

```
TX data: name, nr. txs,% operators, % customers, avq blocks, s.d. blocks
For each txs: type, component, avg time (ms), std. dev. (ms)
Simple write, 5, 50, 0, 1, 0
      DLT read, dlt, 400, 200
      DB read, dbms, 300, 100
      Input, app, 5000, 3000
      DB write, dbms, 600, 300
      DLT write, dlt, 800, 300
                                              Esempio:
```

Document write, 6, 50, 0, 1, 0 DLT read, dltview, 400, 200 DB read, dbms, 300, 100 Input, app, 30000, 20000 Doc_upload, dms, 1500, 1000 DB write, dbms, 600, 300 DLT write, dlt, 800, 300

1 transazione complessa composta da 6 transazioni base Simple read, 2, 0, 50, 4, 2 DLT read, dltview, 300, 100 Read, app, 5000, 4000

Document read, 4, 0, 50, 3, 1 DLT read, dltview, 300, 100 Read, app, 3000, 2000 Doc download, dms, 1000, 800 Read, app, 30000, 20000

La simulazione (1/3)

- Lettura dei dati di configurazione descritti nei file .csv
- Generazione dei componenti
- Generazione degli attori (n operatori ed m consumatori, dove m >> n)
- > Generazione, per ogni attore, delle **transazioni** (e rispettivo *timestamp* di inizio) utilizzando un generatore di numeri casuali (distribuiti secondo una log-normale)
- > Inserimento delle transazioni in una «coda» ordinata secondo il timestamp

La simulazione (2/3)

- La simulazione procede con un approccio a coda di eventi (Start | End | Resubmit Event)
- > Si estrae un evento dalla coda:
 - > se l'evento è **StartTX**:
 - > Se il componente accetta txs viene generato un evento EndTX, altrimenti un evento ResubmitTX con opportuno ritardo.
 - > se l'evento è **EndTX**:
 - L'esecuzione di una tx termina. Se la TX è seguita da un'altra, si genera allo stesso tempo un evento StartTX.
 - > se l'evento è **ResubmitTX**:
 - > Si riprende l'esecuzione di una tx (causa componente pieno). Se il componente è ancora pieno si genera un'altra ResubmitTX, altrimenti si genera un evento di EndTX

La simulazione (3/3)

- La simulazione procede fintantoché la coda degli eventi è vuota
- > Al termine di essa, gli oggetti generati (componenti, transazioni, eventi) risiedono ancora in memoria ed è possibile manipolarli al fine di estrarre informazioni utili.

Il modello ad oggetti del simulatore

Strumenti utilizzati

- ➤ Linguaggio **Python** e IDE **PyCharm**
- > Libreria rand per la gestione dei numeri casuali
- ➤ Libreria CSV per la lettura e scrittura dei rispettivi file
- > Libreria matplotlib per la generazione e visualizzazione degli output

Output del simulatore

> Gli output vengono generati a partire dall'elaborazione degli attributi degli oggetti al termine della simulazione

- > Tipologia di output: file .csv, grafici .png e informazioni sulla console dell'IDE
- Essi quantificano le *performance* dell'intero sistema al fine di trovare eventuali colli di bottiglia, rallentamenti dovuti a qualche componente etc.
- > Tipicamente vengono eseguite più simulazioni facendo variare alcuni dati (es. numero di attori) e in seguito si confrontano gli output generati.

Output di una simulazione (1/2)

Per ogni componente:

- > Dati un tempo iniziale, finale ed un intervallo di tempo (configurabile):
 - > NUMERO DI TXS INIZIATE E TERMINATE IN OGNI INTERVALLO
 - > INTERVALLI NEI QUALI IL COMPONENTE HA RAGGIUNTO, EVENTUALMENTE, IL LIMITE MASSIMO DI TXS
- ➤ NUMERO DI TXS BASE/sec

Per ogni tipo di transazione base:

- > STATISTICHE SULLA DURATA MEDIA, DEV. ST, CASO MIGLIORE E PEGGIORE
- > STATISTICHE SPECIFICHE PER UN DATO INTERVALLO DI TEMPO (configurabile)
- > Media della durata di ogni transazione complessa

Output di una simulazione (2/2)

Gli output precedenti, si riferiscono sempre ad una specifica simulazione e sono salvati un una cartella / report e aggregati :

```
ABATA output/
L- TESTS/
     — 200 20.000/
       - report
                                          report/
       500 50.000/
                                              components/
                                                - <nameOfComponent>_transactions_actors_<numberOfActors>.csv
       1.000 100.000/
                                              - report
                                              base_txs_duration_actors_<numberOfActors>.png
                                              base_txs_duration_statistics_actors_<numberOfActors>.csv
                                              complex txs duration actors <numberOfActors>.png
       11.000 1.100.000/

    interval base txs duration actors <numberOfActors>.png

                                             interval base txs duration statistics actors <numberOfActors>.csv
       13.000 1.300.000/
       - report
```

Esempi di output (1/3)

> Per la componente *blockchain* (aka DLT), numero di transazioni iniziate e terminate in ogni intervallo dalle ore 6 alle 22

Esempi di output (2/3)

> Per ogni transazione base, durata media, mediana, deviazione st., caso peggiore e migliore

(valori espressi in ms)

1	Α	В	С	D	E	F	G
1	base_tx_n	ame,avg,n	nedian, std	Dev,max,n	nin		
2	app_input	,18023.673	536377613	,17293,510	1.27348802	24014,5004	7,6423
3	app_read,	12503.3023	6544847,9	015.0,8352	.908660878	3025,79775	,1324
4	dlt_read,3	200.777060	0041408,30	23,1018.97	556809221	94,9352,11	30
5	dlt_write,	5002.77296	7133419,4	826,1395.2	268982595	78,14902,1	609
6	dltview_re	ead,1399.3	394417771	092,1373.0	,282.02474	14032345,3	324,524
7	dms_docD	own,3498.	985471262	7543,3426.	0,675.8119	870178226	,9079,1541
8	dms_docU	Jpl,3705.74	482988659	1,3614.0,80	07.3049104	967539,862	20,1643
9	dbms_wri	te,400.6784	180907466	7,370,153.1	246330568	1777,1963,	122
10	dbms_rea	d,500.3616	570407612	,471,156.65	5767095137	7664,1721,1	L66

Esempi di output (3/3)

> Durata media di ogni transazione complessa (composta da più transazioni base)

Simulazioni eseguite

> Sono state eseguite 10 simulazioni, considerando un numero di attori sempre crescente (i.e. transazioni crescenti) a parità di configurazione di componenti:

Rapporto 1:100

Nr°	A	ttori
Simulazione	#Operatori	#Consumatori
1	200	20.000
2	500	50.000
3	1.000	100.000
4	2.000	200.000
5	5.000	500.000
6	7.500	750.000
7	10.000	1.000.000
8	10.500	1.050.000
9	11.000	1.100.000
10	13.000	1.300.000

Risultati ottenuti (1/3)

Figura 9. Statistiche per ogni transazione base (20.200 attori)

	A	В	С	D	Е	F
1	base_tx_name	avg	median	stdDev	max	min
2	app_input	18000.604408465813	17290	5048.934530844104	45145	6359
3	app_read	12489.064248270493	8991	8364.762933824608	74984	1474
4	dlt_read	3201.8313702394976	3022.5	998.864380920667	8017	1230
5	dlt_write	5002.2343704281675	4838	1397.2956924107507	13966	1756
6	dltview_read	1398.9152316296868	1371.0	281.6542481425018	3607	584
7	dms_docDown	3498.396526677232	3426.0	675.2681789253147	9005	1661
8	dms_docUpl	3704.8511339406864	3623	791.3441237740084	7871	1723
9	dbms_write	402.0588120550083	371	155.93674858962322	1629	124
10	dbms_read	498.77840632010145	470	156.5837911967398	1703	185
11						

Figura 10. Statistiche per ogni transazione base (1.060.500 attori)

			_	_	_	
	A	В	С	D	E	F
1	base_tx_name	avg	median	stdDev	max	min
2	app_input	18009.285587154336	17266.0	5086.105146214073	59331	5381
3	app_read	12497.151095534184	8997	8355.70654141969	105919	1184
4	dlt_read	3197.237254939685	3026	1014.1309397277355	12277	942
5	dlt_write	4997.124007026898	4810.0	1405.5188811741023	16175	1481
6	dltview_read	1399.7050849649445	1372.0	282.27586885676783	3634	523
7	dms_docDown	3498.6849382843666	3427.0	675.2348145697226	13051	1517
8	dms_docUpl	3699.989555007849	3612	802.585585464368	11106	1558
9	dbms_write	399.3262075554562	369.0	151.61899940912102	2151	86
10	dbms_read	499.66896530469154	471.0	157.10858701328723	2122	151

Nr°	A	ttori
Simulazione	#Operatori	#Consumatori
1	200	20.000
2	500	50.000
3	1.000	100.000
4	2.000	200.000
5	5.000	500.000
6	7.500	750.000
7	10.000	1.000.000
8	10.500	1.050.000
9	11.000	1.100.000
10	13.000	1.300.000

- Nessun comportamento «anomalo» del simulatore
- Nessun componente ha raggiunto il limite max di txs gestibili

Risultati ottenuti (2/3)

1.111.000 attori

1.313.000 attori

```
Output generation in progress...
Components full
app full at:
not full
appSys full at:
not full
dlt full at:
not full
dltview full at:
13:3:31
14:3:31
dbms full at:
not full
dms full at:
not full
```

```
Output generation in progress...

Components full

app full at:

not full

appSys full at:

not full

dlt full at:

not full

dltview full at:

13:0:15

14:0:15

20:8:54

dbms full at:

not full

dms full at:

not full
```

➤II componente che raggiunge, per primo, il numero max di transazioni gestibili contemporaneamente è la blockchain

Nr°	Attori					
Simulazione	#Operatori	#Consumatori				
1	200	20.000				
2	500	50.000				
3	1.000	100.000				
4	2.000	200.000				
5	5.000	500.000				
6	7.500	750.000				
7	10.000	1.000.000				
8	10 500	1 050 000				
9	11.000	1.100.000				
10	13.000	1.300.000				

Risultati ottenuti (3/3)

Figura 15. Statistiche simulazione con 1.111.000 attori

	A	В	С	D	E	F
1	base_tx_name	avg	median	stdDev	max	min
2	app_input	18006.62292446792	17261.5	5081.443320683642	62456	5836
3	app_read	12499.104367172666	9001.0	8355.150672748032	102025	1122
4	dlt_read	3198.2055764288584	3026	1015.4669610260436	12044	951
5	dlt_write	4999.564458283368	4814.0	1409.1217220753638	17197	1465
6	dltview_read	1475.310087114268	1413	372.6424594835801	5420.527136541903	507
7	dms_docDown	3498.972855823519	3427.0	675.6626716006174	13407	1443
8	dms_docUpl	3699.105389665435	3611	801.8626249888683	9967	1536
9	dbms_write	399.7447601321278	370.0	152.17443489656827	2130	101
9	_					
10	dbms_read	499.32716106754253	471.0	157.0172590847383	2054	157

Figura 16. Statistiche simulazione con 1.313.000 attori

				•		
	Α	В	С	D	E	F
1	base_tx_name	avg	median	stdDev	max	min
2	app_input	18003.82282364509	17264.0	5080.04663873389	65343	5212
3	app_read	12499.13327379569	8999.0	8355.526695854573	121815	1206.4123438447714
4	dlt_read	3203.312176947335	3034.0	1016.5165465921314	12794	865
5	dlt write	5001.141205590785	4817.0	1408.7588957914584	19710	1171
6	dltview_read	1507.785116123353	1433	401.1085332607355	6084.915221139789	485
7	dms_docDown	3498.9396698150636	3427	675.1016912243016	13056	1401
8	dms_docUpl	3699.7388133113345	3612.0	800.9904943632943	10968	1535
9	dbms_write	399.39767444754904	369.0	151.81825387070774	2179	91
10	dbms_read	499.43828158149876	471.0	156.8479384053209	2138	152
44						

Nr°	A	ttori
Simulazione	#Operatori	#Consumatori
1	200	20.000
2	500	50.000
3	1.000	100.000
4	2.000	200.000
5	5.000	500.000
6	7.500	750.000
7	10.000	1.000.000
8	10 500	1 050 000
9	11.000	1.100.000
10	13.000	1.300.000

Commenti finali

- > Il simulatore presentato è uno strumento altamente configurabile
- > Strumento per indagare su eventuali colli di bottiglia e *performance* dei componenti del sistema informatico ABATA

- > **Utilità** degli output presentati
- (Decision Support System)

Grazie per l'attenzione