Statistical Data Analysis EKA: T510028102

Henrik Schwarz

Learning objectives

- Knowlegde
 - explain relevant data types and their representation for statistical analysis
 - explain probabilities and random variables
 - explain distributions of random variables
 - explain inference and hypothesis testing
 - explain how data may be collected from experiments involving randomness

• Skills

- choose an appropriate experimental design in respect to a given task
- perform statistical analyzes on data collected
- use a statistical tool for analysis and visualization of data

• Competence

- use statistical methods and tools to interpret experimental data

1 Lecture 1

Table 1: Terms in statistics

Table 1. Terms in statistics	
Term	Description
Variable	Characteristic or value that can change
Data	The values variables assume
Population	The subjects (human or otherwise) we study
Sample	Subset of the population

- Descriptive statistics vs Inferential Statistics
 - Descriptive statistics: Used to describe data
 - Inferential statistics: Used to make conclusions about

Measures of central tedency (london)

- Mean
 - Division and sum of all values.
 - Calculated $\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\sum X}{n}$
 - Properties of Mean
 - * Uses all data values
 - * Unique, usually not part of the values
 - * Affected by extremely low or high values (outliers)

• Median

- Midpoint of the dataset.
- Calculated by sorting all values in ascending order and then selecting the middle one.
- If the number of values is odd it will be one value, if the number of values is even it will be the average of two.
- Properties of Median:
 - * Affected less than the mean by extremely low or high values.
- Mode
 - The Mode is the value that appears most often in the dataset.
 - Said to be the most typical case.
 - There may be no mode (all unique)m, one mode (unimodal), two modes (bimodal), or many modes (multimodal).

- Calculated by sorting all the values, count instances and then select the one (or multiple) that has the most.
- Properties of the Mode:
 - * Easy to compute
 - * Can be used with nominal data
 - * May not exist

• Midrange

- The midrange is the average of the lowest and highest value in the dataset.
- Calculated by $MR = \frac{Lowest + Highest}{2}$.
- Properties of the Midrange:
 - * Easy to compute
 - * Affected by **extremely** by low and high values in a dataset.

2 Lecture 2

Measures of variablity(dispersion)

- Range
 - Difference between highest and lowest values in the dataset.
 - Highest-Lowest

• Variance

- Together with standard diviation, it is the measure of how spread out your data is.
- Variance is the avarage of the squares of distance of each value is from the mean.
- Population variance: $\sigma^2 = \frac{\sum (X-\mu)^2}{N}$ where X is the value, μ is the mean and N is the number of values.
- Samlpe variance: $s^2 = \frac{\sum (X \bar{X})^2}{n-1}$

• Standard Diviation

- Together with standard diviation, it is the measure of how spread out your data is.
- Population Standard deviation is $\sigma = \sqrt{\frac{\sum (X-\mu)^2}{N}}$
- Sample Standard Deviation: $s = \sqrt{\frac{\sum (X \bar{X})^2}{n-1}}$ where X is the data, \bar{X} is the mean and n-1 is the dataset size minus 1.

- Coefficient of variation
 - the coefficient of variation is the standard deviation divided by the mean expressed as percentage

$$- CV = \frac{s}{\bar{X}} \cdot 100\%$$

Measure of position Measures of position indicate the position of a value relative to other values in a set of observations

- Z-score
 - Z score determines how many standard deviations a value is from the mean
 - $z=\frac{x_i-\bar{x}}{s}$ where x_i is the value, \bar{x} is the mean and s is the standard deviation.
- Percentile
 - Percentiles separate the data set into 100 equal groups
 - A percentile rank for a datum represents the percentage of data values below the datum
- Decile and Quartile
 - Deciles seperate the data set into 10 equal groups
 - Quartiles seperate the data into 4 equal groups
 - $* Q_1 = p_{25}, Q_2 = MD, Q_3 = P_{75}$
 - $*\ Q_2 = median(Low, High), Q_1 = median(Low, Q_2), Q_3 = median(Q_2, High)$
 - * The Interquartile Range $IQR = Q_3 Q_1$
- Outlier
 - Outlier is an extremely low and high data values when compared to other values
 - Following data values can be considered outliers:
 - * less than $Q_1 1.5(IQR)$
 - * greater than $Q_3 + 1.5(IQR)$