

Name: Shreyas Srinivasan

Unity-id: ssrini22

Student-ID: 200255421

Delay (ns to run provided provided

example). = 7627ns

Clock period: 21.5ns

cycles": 88+111+139 = **338**

(For message with length 1, 27, 55)

Delay (TA provided example. TA to complete)

Logic Area: (um²)

29036.56044

1/(delay.area) (ns⁻¹.um⁻²)

4.74 x 10⁻⁹

1/(delay.area) (TA)

Abstract:

The objective of this project is to design and simulate SHA 256 – A cryptographic Hash function using Verilog. A message of length varying from 1-55 characters is provided as the input from an SRAM and a corresponding Hashed output is obtained after required operations. The SHA-256 module is primarily designed using registers, adders and logic gates. An input message is operated for multiple iterations using the module components and a final output of 8x32 bits length, a cryptic version of the message is obtained which is written back to the SRAM.

Introduction:

The message will be contained as ascii in an SRAM and the length of the message is specified using a 6-bit number representing the number of ascii characters in the message. For example, if the message is 'hello' the length will be 6'd5 and the message SRAM will contain 0x68, 0x65, 0x6C, 0x6C, 0x6F

Steps followed in SHA-256 operation:

- The message is read and a 512-bit block/vector, M is constructed using the message and the bit length of the message. The vector M is then separated into an array of sixteen 32-bit words, M_1(0) .. M_1(15)
- The array M_1 is copied into the first 16 elements of a 64 32-bit word array, W. The elements 16 through 63 of W are processed using a combination of XOR and shift/rotate. Each element W[i] is a function of lower order elements e.g. W[i] = fn(W[i-2],W[i-7],W[i-15],W[i-16])

$$\begin{split} W_i &= \sigma_1(Wi-2) + W_{i-7} + \sigma_0(W_{i-15}) + W_{i-16}, \quad 17 \leq i \leq 64 \\ \sigma_0(X) &= RotR(X,\,7) \, \oplus \, RotR(X,\,18) \, \oplus \, ShR(X,\,3) \\ \sigma_1(X) &= RotR(X,\,17) \, \oplus \, RotR(X,\,19) \, \oplus \, ShR(X,\,10) \end{split}$$

- We then construct another 64-element array, K by reading 64 values from the K SRAM.
- Once we have W and K, we load an eight 32-bit element array H from the contents of the H SRAM. We then initialize eight 32-bit registers, a, b, c, d, e, f, g, h from the contents of the H vector. We then iterate 64 times, j=0...63 on the a-h registers using element j from W and K and calculating a-h as,

$$T1 = h + \Sigma 1(e) + Ch(e, f, g) + Ki + Wi$$
 $T2 = \Sigma 0(a) + Maj(a, b, c)$
 $h = g$ $g = f$
 $f = e$ $e = d + T1$
 $d = c$ $c = b$
 $b = a$ $a = T1 + T2$

$$Ch (X, Y, Z) = (X \land Y) \oplus (X \land Z)$$

$$Maj (X, Y, Z) = (X \land Y) \oplus (X \land Z) \oplus (Y \land Z)$$

$$\Sigma_0(X) = RotR(X, 2) \oplus RotR(X, 13) \oplus RotR(X, 22)$$

$$\Sigma_1(X) = RotR(X, 6) \oplus RotR(X, 11) \oplus RotR(X, 25)$$

We continue the above step for 64 iterations and on completion the final hash contents are calculated as,

H (t)
$$1 = H (t-1) 1 + a$$

H (t) $2 = H (t-1) 2 + b$
H (t) $3 = H (t-1) 3 + c$
H (t) $4 = H (t-1) 4 + d$
H (t) $5 = H (t-1) 5 + e$
H (t) $6 = H (t-1) 6 + f$
H (t) $7 = H (t-1) 7 + g$
H (t) $8 = H (t-1) 8 + h$

$$H = H\ (N)\ 1\ \|\ H\ (N)\ 2\ \|\ H\ (N)\ 3\ \|\ H\ (N)\ 4\ \|\ H\ (N)\ 5\ \|\ H\ (N)\ 6\ \|\ H\ (N)\ 7\ \|\ H\ (N)$$

The output consists of eight 32-bit vectors and the length is fixed for any input message length. The module is verified for different messages and the obtained output from the Verilog module is checked against a standard output obtained from a reference function.

Micro-architecture:

Inputs from SRAM:

- Input message
- Message length
- Enable & Write control signals
- Go signal
- K-vector
- H-vector

Output to SRAM:

Hashed output message

Modules used:

Top module – For testbench & instantiating other modules

My design module – Work module and contains SHA-256 operation

SRAM module – For reading in and writing out values

Signals used:

Control xxx dut go	Signal	Width(bits)	Description		
Length of message in bytes dut_xxx_finish 1 Finishing the operation		Control			
dut_xxx_finish 1 Finishing the operation Message Memory dut_msg_address log2(msg_length) Address of input message dut_msg_enable 1 Enable signal for input message dut_msg_write 1 Write signal for input message dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_adata 32 Output vector in bits Registers Used <td< td=""><td>xxxdutgo</td><td>1</td><td>Starting the operation</td></td<>	xxxdutgo	1	Starting the operation		
Message Memory dut_msg_address log2(msg_length) Address of input message dut_msg_enable 1 Enable signal for input message dut_msg_write 1 Write signal for input message dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_enable 1 Enable signal for output dut_dom_data 32 Output vector in bits Registers Used Message For loading initial message from SRAM W 64x32 W-memory	xxx_dutmsg_length	log2(msg_length)	Length of message in bytes		
dut_msg_address log2(msg_length) Address of input message dut_msg_enable 1 Enable signal for input message dut_msg_write 1 Write signal for input message dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_write 1 Write signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal for output dut_dom_enable 1 Enable signal for output dut_dom_enable 1 Write signal for output dut_dom_enable 1 Write signal for output dut_dom_enable 1 Write signal for output dut_dom_data 32 O	dutxxxfinish	1	Finishing the operation		
dut_msg_enable 1 Enable signal for input message dut_msg_write 1 Write signal for input message dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_write 1 Write signal for K input H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg_in 8 Registering initial message from SRAM w 64x32 W-memory		•			
dut_msg_write 1 Write signal for input message dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_enable 1 Enable signal output dut_dom_write 1 Enable signal output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory		log2(msg_length)			
dut_msg_write 1 Write signal for input message dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_write 1 Write signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_enable 1 Write signal for output dut_dom_address log2(Output length) Address of H input Brable signal output <td>dutmsgenable</td> <td>1</td> <td>Enable signal for input</td>	dutmsgenable	1	Enable signal for input		
dut_msg_data 8 Message in bits K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_write 1 Write signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory			Ť		
dutmsgdata 8 Message in bits K Memory dut_kmemaddress log2(No. of Ks) Address of K input dut_kmemenable 1 Enable signal for K input dut_kmemdata 32 K vector in bits H Memory dut_hmemaddress log2(No. of Hs) Address of H input dut_hmemenable 1 Enable signal for H input dut_hmemdata 32 H vector in bits Output Memory dut_domaddress log2(Output length) Address of output dut_domenable 1 Enable signal output dut_domenable 1 Write signal for output dut_domdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dutmsgwrite	1	Write signal for input		
K Memory dut_kmem_address log2(No. of Ks) Address of K input dut_kmem_enable 1 Enable signal for K input dut_kmem_write 1 Write signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used Memory State of the signal output State of the signal for the signal for K input State of the signal for K input					
dut_kmemaddress log2(No. of Ks) Address of K input dut_kmemenable 1 Enable signal for K input dut_kmem_write 1 Write signal for K input dut_kmem_data 32 K vector in bits H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dutmsgdata		Message in bits		
dutkmemenable 1 Enable signal for K input dutkmemwrite 1 Write signal for K input dut_kmemdata 32 K vector in bits H Memory dut_hmemaddress log2(No. of Hs) Address of H input dut_hmemenable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg_in 8 Registering initial message from SRAM w 64x32 W-memory					
dutkmemwrite 1 Write signal for K input dutkmemdata 32 K vector in bits H Memory dut_hmemaddress log2(No. of Hs) Address of H input dut_hmemenable 1 Enable signal for H input dut_hmemwrite 1 Write signal for H input dut_hmemdata 32 H vector in bits Output Memory dut_domaddress log2(Output length) Address of output dut_domenable 1 Enable signal output dut_domwrite 1 Write signal for output dut_domdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory		log2(No. of Ks)	1		
dutkmemdata 32 K vector in bits H Memory dut_hmemaddress log2(No. of Hs) Address of H input dut_hmemenable 1 Enable signal for H input dut_hmemwrite 1 Write signal for H input dut_domaddress log2(Output length) Address of output dut_domenable 1 Enable signal output dut_domwrite 1 Write signal for output dut_domdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut kmemenable		<u> </u>		
H Memory dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut kmemwrite		Write signal for K input		
dut_hmem_address log2(No. of Hs) Address of H input dut_hmem_enable 1 Enable signal for H input dut_hmem_write 1 Write signal for H input dut_hmem_data 32 H vector in bits Output Memory dut_dom_address log2(Output length) Address of output dut_dom_enable 1 Enable signal output dut_dom_write 1 Write signal for output dut_dom_data 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut kmemdata	dutkmemdata 32 K vector in bits			
duthmemenable 1 Enable signal for H input duthmemwrite 1 Write signal for H input duthmemdata 32 H vector in bits Output Memory dutdomaddress log2(Output length) Address of output dutdomenable 1 Enable signal output dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	H Memory				
duthmemwrite 1 Write signal for H input duthmemdata 32 H vector in bits Output Memory dutdomaddress log2(Output length) Address of output dutdomenable 1 Enable signal output dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	duthmemaddress	log2(No. of Hs)	Address of H input		
duthmemdata 32 H vector in bits Output Memory dutdomaddress log2(Output length) Address of output dutdomenable 1 Enable signal output dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut hmemenable	1	Enable signal for H input		
Output Memory dutdomaddress log2(Output length) Address of output dutdomenable 1 Enable signal output dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut hmemwrite	1	Write signal for H input		
dutdomaddress log2(Output length) Address of output dutdomenable 1 Enable signal output dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut hmemdata	32	H vector in bits		
dutdomenable 1 Enable signal output dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory		Output Memory			
dutdomwrite 1 Write signal for output dutdomdata 32 Output vector in bits Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dutdomaddress	log2(Output length)	Address of output		
Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut domenable	1	Enable signal output		
Registers Used msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut domwrite	1	Write signal for output		
msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory	dut domdata	32	Output vector in bits		
msg_in 8 Registering the input msg 512 For loading initial message from SRAM w 64x32 W-memory					
msg 512 For loading initial message from SRAM w 64x32 W-memory		Registers Used			
msg 512 For loading initial message from SRAM w 64x32 W-memory	msg_in		Registering the input		
from SRAM w 64x32 W-memory					
Ÿ					
	w	64x32			
K 52 K-vector value loaded and	k	y			
used for each iteration					

h	32	H – vector value loaded for 1 st iteration and used for storing the final hash value
a_reg	32	_
b_reg	32	
c_reg	32	
d_reg	32	
e_reg	32	Registers used for multiple-
f_reg	32	iteration operation
g_reg	32	
h_reg	32	
T1	32	
T2	32	
address	log2(msg_length)	Register used for accessing and incrementing the address from SRAM for loading input message
k_address	log2(No. of Ks)	Register used for accessing and incrementing the address from SRAM for loading K values
h_address	log2(No. of Hs)	Register used for accessing and incrementing the address from SRAM for loading H values
output_address	3	Register used for accessing and incrementing the address from SRAM for loading output message
length_count	log2(msg_length)	Register used for comparing length of message while loading
k_length	log2(No. of Ks)	Register used for comparing length of K value while loading
h_length	log2(No. of Hs)	Register used for comparing length of H value while loading
output_length_count	5	Register used for comparing length of output while loading
i	8	
j	8	
m	8	Used for iterations
n	8	
Iteration	8	
start	1	Control signals to indicate
start_w	1	the successive operation that

start_k	1	message, w-vector, k-vector are ready for usage
done, done1	1	Control signal to indicate finish of computing hash values
control_for_go	1	Control signal used to neglect intermediate 'go' signals during computation
compute_k	1	Control signal to signal start of computation of k value
k_first	1	Control signals used to
h_first	1	signal the design to load
comp_first	1	values from SRAM or load
out_first	1	values to SRAM
rst	1	
go	1	Registering input signals
finish	1	
dut_msg_length	log2(msg_length)	
msg_enable	1	
msg_write	1	
k_enable	1	
k_write	1	Registering output signals
h_enable	1	
h_write	1	
out_enable	1	
out_write	1	

Output Waveform:

Message length: 5 characters

Message: "Hello" – 48, 65, 6c, 6c, 68

Complete Waveform

STEP 1:

Input values getting loaded from SRAM after 'go' signal

STEP 2:

STEP 3:

Iteration of 64 times, computing a, b, c, d, e, f, g, h on loading corresponding values from W-vector, K-vector & H-vector

STEP 4:

Output values loaded to SRAM and finish signal is asserted to make ready for next set of computation

STEP 5:

Output Verification:

computation

The output obtained from the Verilog module is checked for correctness on comparison with a reference Python function.

Scenarios Tested:

Message length = 1

Output from Python function	Output from Verilog module
H1: 0x4b68ab38	@00000000 4b68ab38
H2: 0x47feda7d	@00000001 47feda7d
H3: 0x6c62c1fb	@00000002 6c62c1fb
H4: 0xcbeebfa3	@00000003 cbeebfa3
H5: 0x5eab7351	@00000004 5eab7351
H6: 0xed5e78f4	@00000005 ed5e78f4
H7: 0xddadea5d	@00000006 ddadea5d
H8: 0xf64b8015	@00000007 f64b8015

Message length = 5

Output from Python function

Output from Verilog module

H1: 0x185f8db3	@0000000 185f8db3

H2: 0x2271fe25 @00000001 2271fe25

H3: 0xf561a6fc @00000002 f561a6fc

H4: 0x938b2e26 @00000003 938b2e26

H5: 0x4306ec30 @0000004 4306ec30

H6: 0x4eda5180 @0000005 4eda5180

H7: 0x07d17648 @00000006 07d17648

H8: 0x26381969 @00000007 26381969

Message length = 10

Output from Python function

Output from Verilog module

H1: 0x36b45660	@00000000 36b45660
----------------	--------------------

H2: 0xa055ed8c @00000001 a055ed8c

H3: 0x725f4ad5 @00000002 725f4ad5

H4: 0x84f06eff @0000003 84f06eff

H5: 0x9dbc75fe @00000004 9dbc75fe

H6: 0x03a53704 @00000005 03a53704

H7: 0xbce79f80 @0000006 bce79f80

H8: 0x33d7e457 @00000007 33d7e457

Message length = 27

Output from Python function

Output from Verilog module

H1: 0xc0922a0b	@00000000 c0922a0b
H1. 0xc0922a00	@0000000 c0922a00

H2: 0x27b7b58e @00000001 27b7b58e

H3: 0x4ee4ddc7 @00000002 4ee4ddc7

H4: 0x4029f4c7 @00000003 4029f4c7

H5: 0xbc836ac3 @00000004 bc836ac3

H6: 0x29ce9f1c @00000005 29ce9f1c

H7: 0x80cc48fe @00000006 80cc48fe

H8: 0x996e9a26 @00000007 996e9a26

Message length = 55

Output from Python function

Output from Verilog module

H1: 0x7926e9b3 @00000000 7926e9b3

H2: 0xaffe2d46 @00000001 affe2d46

H3: 0x7beae296 @00000002 7beae296

H4: 0x6a0461d1 @00000003 6a0461d1

H5: 0x766c956c @00000004 766c956c

H6: 0xcfc3bd39 @00000005 cfc3bd39

H7: 0xdeb71a5b @00000006 deb71a5b

H8: 0xa8027e09 @00000007 a8027e09

Thus, the output from the Verilog module is verified and found to match that of the reference Python module.

Results achieved:

The design module is synthesized using synopsys and the timing and area reports are generated. The design is also optimized for area and clock period reduction.

Clock period set: 21.5ns

Report – Timing_max:

Report : timing -path full

-delay max -max_paths 1

Design: MyDesign Version: K-2015.06-SP1

Date : Mon Nov 26 19:41:09 2018

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: slow Library:

NangateOpenCellLibrary_PDKv1_2_v2008_10_slow_nldm Wire Load Model Mode: top

	Point	Incr	Path
	- clock clk (rise edge) clock network delay (ideal) iteration_reg[2]/CK (DFF_X2)	0.0000 0.0000 0.0000 #	0.0000 0.0000 0.0000
r f	iteration_reg[2]/Q (DFF_X2)	0.6377	0.6377
r	U23627/ZN (NOR2_X1)	0.2454	0.8831
r	U19615/ZN (AND2_X4)	0.5477	1.4307
' f	U23280/ZN (A0I22_X1)	0.2376	1.6683
f	U23626/ZN (AND4_X2)	0.4154	2.0837
f	U23635/ZN (OR2_X4)	0.3273	2.4110
r	U23632/ZN (NAND2_X2)	0.1185	2.5295
r	add_1_root_add_0_root_add_1103_4_C903/A[0] (MyDesign_	DW01_add_59) 0.0000) 2.5295
r	add_1_root_add_0_root_add_1103_4_C903/U1/ZN (AND2_X4)	0.1839	2.7134
· f	add_1_root_add_0_root_add_1103_4_C903/U1_1/S (FA_X1)	0.6923	3.4058
f	add_1_root_add_0_root_add_1103_4_C903/SUM[1] (MyDesig	n_DW01_add_! 0.0000	59) 3.4058
f	add_0_root_add_0_root_add_1103_4_C903/B[1] (MyDesign_	DW01_add_57) 0.0000) 3.4058
f	add_0_root_add_0_root_add_1103_4_C903/U1_1/C0 (FA_X1)	0.6478	4.0536
· f	add_0_root_add_0_root_add_1103_4_C903/U1_2/C0 (FA_X1)	0.5172	4.5708
· f	add_0_root_add_0_root_add_1103_4_C903/U1_3/C0 (FA_X1)	0.5172	5.0880
· f	add_0_root_add_0_root_add_1103_4_C903/U1_4/C0 (FA_X1)	0.5172	5.6053
f	add_0_root_add_0_root_add_1103_4_C903/U1_5/C0 (FA_X1)	0.5172	6.1225
f	add_0_root_add_0_root_add_1103_4_C903/U1_6/C0 (FA_X1)	0.5172	6.6398
f	add_0_root_add_0_root_add_1103_4_C903/U1_7/C0 (FA_X1)	0.5172	7.1570
f	add_0_root_add_0_root_add_1103_4_C903/U1_8/C0 (FA_X1)	0.5172	7.6743
Γ	add_0_root_add_0_root_add_1103_4_C903/U1_9/CO (FA_X1)		

```
0.5172
                                                                         8.1915
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_10/CO~(FA\_X1)
                                                                         8.7087
add_0_root_add_0_root_add_1103_4_C903/U1_11/CO (FA_X1)
                                                                         9.2260
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_12/CO~(FA\_X1)
                                                                         9.7432
add_0_root_add_0_root_add_1103_4_C903/U1_13/C0 (FA_X1) 0.5172
                                                                       10.2605
add_0_root_add_0_root_add_1103_4_C903/U1_14/C0 (FA_X1) 0.5172
                                                                       10.7777
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_15/CO~(FA\_X1)
                                                                       11.2950
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_16/CO~(FA\_X1)
                                                                       11.8122
add_0_root_add_0_root_add_1103_4_C903/U1_17/C0 (FA_X1)
0.5172
                                                                       12.3294
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_18/CO~(FA\_X1)
                                                                       12.8467
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_19/CO~(FA\_X1)
                                                                       13.3639
add_0_root_add_0_root_add_1103_4_C903/U1_20/C0 (FA_X1) 0.5172
                                                                       13.8812
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_21/CO~(FA\_X1)
                                                                       14.3984
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_22/C0 \ (FA\_X1)
                                                                       14.9157
add_0_root_add_0_root_add_1103_4_C903/U1_23/C0 (FA_X1)
                                                                       15.4329
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_24/CO \ (FA\_X1)
                                                                       15.9501
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_25/CO~(FA\_X1)
                                                                       16.4674
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_26/CO~(FA\_X1)
                                                                       16.9846
add_0_root_add_0_root_add_1103_4_C903/U1_27/C0 (FA_X1)
                                                                       17.5019
add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_28/CO~(FA\_X1)
                                                                       18.0191
add_0_root_add_0_root_add_1103_4_C903/U1_29/C0 (FA_X1)
0.5172
                                                                       18.5364
add_0_root_add_0_root_add_1103_4_C903/U1_30/C0 (FA_X1)
0.5172
                                                                       19.0536
add_0_root_add_0_root_add_1103_4_C903/U1_31/S (FA_X1)
                                                                       19.7698
add_0_root_add_0_root_add_1103_4_C903/SUM[31] (MyDesign_DW01_add_57)
```

		0.0000	19.7698
r	U23817/Z (CLKBUF_X3)	0.1919	19.9616
r r	add_1103_C908/B[31] (MyDesign_DW01_add_0)	0.0000	19.9616
f	add_1103_c908/U1_31/S (FA_X1)	0.6980	20.6596
ا f	add_1103_C908/SUM[31] (MyDesign_DW01_add_0)	0.0000	20.6596
•	U23811/ZN (A0I22_X2)	0.2318	20.8914
r f	U23810/ZN (OAI21_X2)	0.1556	21.0470
f '	e_reg_reg[31]/D (DFF_X1)	0.0000	21.0470
'	data arrival time		21.0470
	clock clk (rise edge) clock network delay (ideal) clock uncertainty e_reg_reg[31]/CK (DFF_X1)	21.5000 0.0000 -0.0500 0.0000	21.5000 21.5000 21.4500 21.4500
r 	library setup time data required time	-0.3620	21.0880 21.0880
	- data required time data arrival time		21.0880 -21.0470
-	- slack (MET)		0.0410

Report – Timing_max_slow_holdfixed:

Report : timing

-path full -delay max -max_paths 1

Design: MyDesign Version: K-2015.06-SP1

Date : Mon Nov 26 19:41:28 2018

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: slow Library:

NangateOpenCel]Library_PDKv1_2_v2008_10_slow_nldm

Wire Load Model Mode: top

Startpoint: iteration_reg[2]

(rising edge-triggered flip-flop clocked by clk)
Endpoint: e_reg_reg[31]

(rising edge-triggered flip-flop clocked by clk)

Path Group: clk Path Type: max

Point	Incr	Path
clock clk (rise edge) clock network delay (ideal) iteration_reg[2]/CK (DFF_X2)	0.0000 0.0000 0.0000 #	0.0000 0.0000 0.0000
r iteration_reg[2]/Q (DFF_X2) f	0.6377	0.6377

```
0.2454
                                                                   0.8831
 U23627/ZN (NOR2_X1)
                                                                   1.4307
  U19615/ZN (AND2_X4)
                                                        0.5477
                                                        0.2376
                                                                   1.6683
 U23280/ZN (A0I22_X1)
                                                        0.4154
                                                                   2.0837
 U23626/ZN (AND4_X2)
  U23635/ZN (OR2_X4)
                                                        0.3273
                                                                   2.4110
  U23632/ZN (NAND2_X2)
                                                        0.1185
                                                                   2.5295
  add_1_root_add_0_root_add_1103_4_C903/A[0] (MyDesign_DW01_add_59)
                                                        0.0\overline{0}00
                                                                   2.5295
 add_1_root_add_0_root_add_1103_4_C903/U1/ZN (AND2_X4)
                                                        0.1839
                                                                   2.7134
 add_1_root_add_0_root_add_1103_4_C903/U1_1/S (FA_X1)
                                                        0.6923
                                                                   3.4058
 3.4058
 add_0_root_add_0_root_add_1103_4_C903/B[1] (MyDesign_DW01_add_57)
                                                        0.0000
                                                                   3.4058
 add_0_root_add_0_root_add_1103_4_c903/U1_1/CO (FA_X1)
                                                        0.6478
                                                                   4.0536
  add_0_root_add_0_root_add_1103_4_C903/U1_2/C0 (FA_X1)
                                                        0.5172
                                                                   4.5708
 add_0_root_add_0_root_add_1103_4_C903/U1_3/C0 (FA_X1)
                                                        0.5172
                                                                   5.0880
 add_0_root_add_0_root_add_1103_4_C903/U1_4/C0 (FA_X1)
                                                        0.5172
                                                                   5.6053
  add_0_root_add_0_root_add_1103_4_C903/U1_5/C0 (FA_X1)
                                                        0.5172
                                                                   6.1225
 add_0_root_add_0_root_add_1103_4_C903/U1_6/C0 (FA_X1)
                                                        0.5172
                                                                   6.6398
 add_0_root_add_0_root_add_1103_4_C903/U1_7/C0 (FA_X1)
                                                        0.5172
                                                                   7.1570
 add_0_root_add_0_root_add_1103_4_c903/U1_8/C0 (FA_X1)
                                                        0.5172
                                                                   7.6743
 add_0_root_add_0_root_add_1103_4_c903/U1_9/C0 (FA_X1)
                                                        0.5172
                                                                   8.1915
 add_0_root_add_0_root_add_1103_4_c903/U1_10/C0 (FA_X1)
                                                        0.5172
                                                                   8.7087
  add_0_root_add_0_root_add_1103_4_C903/U1_11/C0 (FA_X1)
                                                                   9.2260
 add_0_root_add_0_root_add_1103_4_C903/U1_12/C0 (FA_X1)
                                                        0.5172
                                                                   9.7432
f
  add_0_root_add_0_root_add_1103_4_C903/U1_13/C0 (FA_X1)
                                                                  10.2605
  add_0_root_add_0_root_add_1103_4_C903/U1_14/C0 (FA_X1)
                                                        0.5172
                                                                  10.7777
f
```

```
add_0_root_add_0_root_add_1103_4_C903/U1_15/C0 (FA_X1)
0.5172
                                                                      11.2950
f
  add_0_root_add_0_root_add_1103_4_C903/U1_16/C0 (FA_X1)
0.5172
                                                                      11.8122
  add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_17/C0 \ (FA\_X1)
                                                                      12.3294
 add_0_root_add_0_root_add_1103_4_C903/U1_18/C0 (FA_X1) 0.5172
                                                                      12.8467
  add_0_root_add_0_root_add_1103_4_C903/U1_19/C0 (FA_X1)
                                                                      13.3639
  add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_20/CO~(FA\_X1)
                                                                      13.8812
 add_0_root_add_0_root_add_1103_4_C903/U1_21/C0 (FA_X1) 0.5172
                                                                      14.3984
  add_0_root_add_0_root_add_1103_4_C903/U1_22/C0 (FA_X1)
0.5172
                                                                      14.9157
 add_0_root_add_0_root_add_1103_4_C903/U1_23/C0 (FA_X1) 0.5172
                                                                      15.4329
 add_0_root_add_0_root_add_1103_4_C903/U1_24/C0 (FA_X1)
0.5172
                                                                      15.9502
  add_0_root_add_0_root_add_1103_4_C903/U1_25/C0 (FA_X1) 0.5172
                                                                      16.4674
 add_0_root_add_0_root_add_1103_4_C903/U1_26/C0 (FA_X1) 0.5172
                                                                      16.9846
 add_0_root_add_0_root_add_1103_4_C903/U1_27/C0 (FA_X1)
0.5172
                                                                      17.5019
  add_0_root_add_0_root_add_1103_4_C903/U1_28/C0 (FA_X1)
0.5172
                                                                      18.0191
  add\_0\_root\_add\_0\_root\_add\_1103\_4\_C903/U1\_29/CO \ (FA\_X1)
                                                                      18.5364
 add_0_root_add_0_root_add_1103_4_C903/U1_30/C0 (FA_X1)
0.5172
                                                                      19.0536
  add_0_root_add_0_root_add_1103_4_C903/U1_31/S (FA_X1)
                                                           0.7162
                                                                      19.7698
  add_0_root_add_0_root_add_1103_4_C903/SUM[31] (MyDesign_DW01_add_57)
                                                           0.0000
                                                                      \overline{19.7698}
  U23817/Z (CLKBUF_X3)
                                                           0.1919
                                                                      19.9616
  add_1103_C908/B[31] (MyDesign_DW01_add_0)
                                                           0.0000
                                                                      19.9616
  add_1103_C908/U1_31/S (FA_X1)
                                                           0.6980
                                                                      20.6596
  add_1103_C908/SUM[31] (MyDesign_DW01_add_0)
                                                           0.0000
                                                                      20.6596
                                                           0.2318
  U23811/ZN (A0I22_X2)
                                                                      20.8914
                                                           0.1556
                                                                      21.0470
  U23810/ZN (OAI21_X2)
                                                           0.0000
  e_reg_reg[31]/D (DFF_X1)
                                                                      21.0470
  data arrival time
                                                                      21.0470
```

	<pre>clock clk (rise edge) clock network delay (ideal) clock uncertainty e_reg_reg[31]/CK (DFF_X1)</pre>	21.5000 0.0000 -0.0500 0.0000	21.5000 21.5000 21.4500 21.4500
I.	library setup time data required time	-0.3367	21.1133 21.1133
	- data required time data arrival time		21.1133 -21.0470
_			0.0663

Report – Timing_min_fast_holdchecked:

Report : timing

-path full -delay min -max_paths 1

Design : MyDesign

Version: K-2015.06-SP1

Date : Mon Nov 26 19:41:21 2018

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: fast Library:

NangateOpenCellLibrary_PDKv1_2_v2008_10_fast_nldm Wire Load Model Mode: top

Path Group: clk Path Type: min

Point	Incr	Path
clock clk (rise edge) clock network delay (ideal) rst_reg/CK (DFF_X2) rst_reg/Q (DFF_X2) U12878/ZN (NOR2_X2) control_for_go_reg/D (DFF_X2) data arrival time	0.0000 0.0000 0.0000 # 0.0560 0.0095 0.0000	0.0000 0.0000 0.0000 r 0.0560 r 0.0656 f 0.0656 f
<pre>clock clk (rise edge) clock network delay (ideal) clock uncertainty control_for_go_reg/CK (DFF_X2) library hold time data required time</pre>	0.0000 0.0000 0.0500 0.0000 0.0006	0.0000 0.0000 0.0500 0.0500 r 0.0506 0.0506
data required time data arrival time		0.0506 -0.0656
slack (MET)		0.0150

Area Report:

Report: area

Design: MyDesign

Version: K-2015.06-SP1

Date: Mon Nov 26 19:51:48 2018

Library(s) Used:

NangateOpenCellLibrary_PDKv1_2_v2008_10_slow_nldm (File: /afs/eos.ncsu.edu/lockers/research/ece/wdavis/tech/nangate/NangateOpenCellLibrary_PDKv1_2_v2008_10/liberty/520/NangateOpenCellLibrary_PDKv1_2_v2008_10_slow_nldm.db)

Number of ports: 6393

Number of nets: 22989

Number of cells: 13376

Number of combinational cells: 11512

Number of sequential cells: 1796

Number of macros/black boxes: 0

Number of buf/inv: 1570

Number of references: 124

Combinational area: 20756.778260

Buf/Inv area: 862.106006

Noncombinational area: 8279.782185

Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 29036.560444

Conclusion:

Thus, the SHA-256 hashing function is designed and simulated using Verilog. An 8x32 bit hash output is obtained for any message of length 1-55 characters. The obtained output is compared with a reference output from a python program for correctness and is verified using the same.

The design is synthesized using Synopsys and the timing and area reports are generated. The design is then optimized at coding level by removing unwanted and redundant components in-order to reduce the cell area of design and to achieve a lower clock period. The reports are then again generated, and the above step is continued to achieve the design constraint as low as possible.

Thus, the clock period and area achieved are reported and the various timing reports are also provided. It is found that the slack is met in every report and thus the setup and hold constraints are managed and achieved.

Clock period: 21.5ns

Area achieved: 29036.56044 μm²

cycles for message with 1 character: 88

cycles for message with 27 character: 111

cycles for message with 55 character: 139

Total cycles = 338

Overall performance metric = $21.5 \times 10^{-9} \times 29036.56044 \times 338$

Overall performance metric = 211008685 ns μ m²