8 Find the points on the curve $\chi^2 + \chi y + y^2 = 1$ that are nearest and furthest from The origin.

The distance of (x,y) from the origin is $(x^2 + y^2)$ but to find (x,y) that minimizer or maximizes this, we just need to find Those (x,y) which minimize or maximize its square $f(x,y) = \chi^2 + y^2$

Thus we seek the max/min of $f(x,y) = \chi^2 + y^2$ subject to The constraint $\chi^2 + \chi y + y^2 - 1 = 0$

g(x,y) = 0Need to solve $\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases}$

 $= \begin{cases} \langle 2x, 2y \rangle = \lambda \langle 2x+y, x+2y \rangle \\ x^2 + xy + y^2 = 1 \end{cases}$

 $\Rightarrow \begin{cases} 2x = \lambda(2x+y) & 0 \\ 2y = \lambda(x+2y) & 2 \\ x^2 + xy + y^2 = 1 & 3 \end{cases}$

Note: If $\lambda=0$, (1) and (2)?

Would give $\chi=0$ and y=0?

and then putting this into $\chi^2 + \chi y + y^2 = 1$, we'd get 0=1.

Therefore we conclude $\lambda \neq 0$. $2\chi y = 2\chi y + \chi y^2$ (2)

 $=)\begin{cases} 2x = 2xx + 2y \\ 2y = xx + 2xy \end{cases} \begin{cases} 2xy = 2xxy + 2y^2 @ \\ 2xy = xx^2 + 2xxy & 6 \end{cases}$ $\begin{cases} 2xy = 2xxy + 2y^2 @ \\ 2xy = 2xxy + 2xxy & 6 \end{cases}$

If |x=y| then @ gives $x^2 + x^2 + x^2 = 1 \Rightarrow 3x^2 = 1 \Rightarrow x^2 = \frac{1}{3}$ $\Rightarrow x = \pm \frac{1}{3}$ and we get points $(\frac{1}{3}, \frac{1}{3})$ and $(\frac{1}{3}, \frac{1}{3})$ (8) Continued On the other hand, if |x=-y| then (c) gives $x^2 + x(-x) + x^2 = 1$, or $x^2 = 1$, so $x = \pm 1$. Then we get points (1, -1) and (-1, 1). $f(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ minimum $f(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ maximum f(-1, -1) = 1 + 1 = 2 maximum f(-1, 1) = 1 + 1 = 2

Answer:

The points $(\sqrt{13}, \sqrt{3})$ and $(\sqrt{13}, \sqrt{13})$ on $\chi^2 + \chi y + y^2 = 1$ are at a minimum distance from the origin and (1,-1) and (-1,1) are at a maximum distance

(24) Find the points on the sphere $x^2 + y^2 + z^2 = 25$ where f(x, y, z) = x + 2y + 3z has its max and min values.

Want to find max/min of $f(x,y,z) = \chi + 2y + 3z$ Subject to $\chi^2 + y^2 + z^2 - 25 = 0$ g(x,y;z)

Set up system $\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) \\ g(x, y, z) = 0 \end{cases}$

 $= \begin{cases} \langle 1, 2, 3 \rangle = \lambda \langle 2x, 2y, 2z \rangle \\ \chi^2 + y^2 + z^2 - 25 = 0 \end{cases}$

(Note: O, E, 3)

Say none of

a, x, y nor z

is equal to zero

 $\frac{2}{0} \Rightarrow 2 = \frac{2\lambda y}{2\lambda x} \Rightarrow 2 = \frac{y}{x} \Rightarrow \boxed{y = 2x}$

$$\frac{3}{0} \Rightarrow 3 = \frac{2\lambda^2}{2\lambda^2} \Rightarrow 3 = \frac{2}{\lambda} \Rightarrow \boxed{2 = 3\lambda}$$

From
$$x^2 + y^2 + z^2 = 25$$
 we get $x^2 + (2x)^2 + (3x^2) = 25$
 $x^2 + 4x^2 + 9x^2 = 25$
 $x^2 + 4x^2 + 9x^2 = 25$
 $x^2 = \frac{25}{14}$
 $x = \frac{25}{14}$
 $x = \frac{25}{14}$
Get points $(\frac{5}{174}, \frac{10}{174}, \frac{15}{174})$

Get points
$$\left(\frac{5}{174}, \frac{70}{\sqrt{14}}, \frac{15}{\sqrt{14}}\right)$$
 and $\left(\frac{-5}{\sqrt{14}}, \frac{-10}{\sqrt{14}}, -\frac{15}{\sqrt{14}}\right)$

$$f(\frac{5}{14}, \frac{15}{14}) = \frac{5}{14} + 2\frac{10}{14} + 3\frac{15}{14} = \frac{70}{14}$$

 $f(\frac{5}{14}, \frac{15}{14}) = \frac{-5}{14} - 2\frac{10}{14} - 3\frac{15}{14} = -\frac{70}{34}$

Conclusión:

Minimum at
$$\left(-\frac{5}{\sqrt{14}}, -\frac{10}{\sqrt{14}}, \frac{-15}{\sqrt{14}}\right)$$

Maximum at $\left(\frac{5}{\sqrt{14}}, \frac{10}{\sqrt{14}}, \frac{15}{\sqrt{14}}\right)$