and the R^2 statistic are identical. However, in the next section we will discuss the multiple linear regression problem, in which we use several predictors simultaneously to predict the response. The concept of correlation between the predictors and the response does not extend automatically to this setting, since correlation quantifies the association between a single pair of variables rather than between a larger number of variables. We will see that R^2 fills this role.

3.2 Multiple Linear Regression

Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable. However, in practice we often have more than one predictor. For example, in the Advertising data, we have examined the relationship between sales and TV advertising. We also have data for the amount of money spent advertising on the radio and in newspapers, and we may want to know whether either of these two media is associated with sales. How can we extend our analysis of the advertising data in order to accommodate these two additional predictors?

One option is to run three separate simple linear regressions, each of which uses a different advertising medium as a predictor. For instance, we can fit a simple linear regression to predict sales on the basis of the amount spent on radio advertisements. Results are shown in Table 3.3 (top table). We find that a \$1,000 increase in spending on radio advertising is associated with an increase in sales by around 203 units. Table 3.3 (bottom table) contains the least squares coefficients for a simple linear regression of sales onto newspaper advertising budget. A \$1,000 increase in newspaper advertising budget is associated with an increase in sales by approximately 55 units.

However, the approach of fitting a separate simple linear regression model for each predictor is not entirely satisfactory. First of all, it is unclear how to make a single prediction of sales given levels of the three advertising media budgets, since each of the budgets is associated with a separate regression equation. Second, each of the three regression equations ignores the other two media in forming estimates for the regression coefficients. We will see shortly that if the media budgets are correlated with each other in the 200 markets that constitute our data set, then this can lead to very misleading estimates of the individual media effects on sales.

Instead of fitting a separate simple linear regression model for each predictor, a better approach is to extend the simple linear regression model (3.5) so that it can directly accommodate multiple predictors. We can do this by giving each predictor a separate slope coefficient in a single model. In general, suppose that we have p distinct predictors. Then the multiple linear regression model takes the form

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$
 (3.19)

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001

Simple regression of sales on radio

O: 1	•	c	_			
Simple	regression	\cap t	02 00	on	notici	nanar
DILLIPIC	I CEI COSIOII	$O_{\rm I}$	Sares	OII	TICMP	paper

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115

TABLE 3.3. More simple linear regression models for the Advertising data. Coefficients of the simple linear regression model for number of units sold on Top: radio advertising budget and Bottom: newspaper advertising budget. A \$1,000 increase in spending on radio advertising is associated with an average increase in sales by around 203 units, while the same increase in spending on newspaper advertising is associated with an average increase in sales by around 55 units (Note that the sales variable is in thousands of units, and the radio and newspaper variables are in thousands of dollars).

where X_j represents the jth predictor and β_j quantifies the association between that variable and the response. We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed. In the advertising example, (3.19) becomes

$$\mathtt{sales} = \beta_0 + \beta_1 \times \mathtt{TV} + \beta_2 \times \mathtt{radio} + \beta_3 \times \mathtt{newspaper} + \epsilon. \tag{3.20}$$

3.2.1 Estimating the Regression Coefficients

As was the case in the simple linear regression setting, the regression coefficients $\beta_0, \beta_1, \ldots, \beta_p$ in (3.19) are unknown, and must be estimated. Given estimates $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p$, we can make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p.$$
 (3.21)

The parameters are estimated using the same least squares approach that we saw in the context of simple linear regression. We choose $\beta_0, \beta_1, \ldots, \beta_p$ to minimize the sum of squared residuals

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
=
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2.$$
 (3.22)

FIGURE 3.4. In a three-dimensional setting, with two predictors and one response, the least squares regression line becomes a plane. The plane is chosen to minimize the sum of the squared vertical distances between each observation (shown in red) and the plane.

The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize (3.22) are the multiple least squares regression coefficient estimates. Unlike the simple linear regression estimates given in (3.4), the multiple regression coefficient estimates have somewhat complicated forms that are most easily represented using matrix algebra. For this reason, we do not provide them here. Any statistical software package can be used to compute these coefficient estimates, and later in this chapter we will show how this can be done in R. Figure 3.4 illustrates an example of the least squares fit to a toy data set with p=2 predictors.

Table 3.4 displays the multiple regression coefficient estimates when TV, radio, and newspaper advertising budgets are used to predict product sales using the Advertising data. We interpret these results as follows: for a given amount of TV and newspaper advertising, spending an additional \$1,000 on radio advertising leads to an increase in sales by approximately 189 units. Comparing these coefficient estimates to those displayed in Tables 3.1 and 3.3, we notice that the multiple regression coefficient estimates for TV and radio are pretty similar to the simple linear regression coefficient estimates. However, while the newspaper regression coefficient estimate in Table 3.3 was significantly non-zero, the coefficient estimate for newspaper in the multiple regression model is close to zero, and the corresponding p-value is no longer significant, with a value around 0.86. This illustrates

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

TABLE 3.4. For the Advertising data, least squares coefficient estimates of the multiple linear regression of number of units sold on radio, TV, and newspaper advertising budgets.

that the simple and multiple regression coefficients can be quite different. This difference stems from the fact that in the simple regression case, the slope term represents the average effect of a \$1,000 increase in newspaper advertising, ignoring other predictors such as TV and radio. In contrast, in the multiple regression setting, the coefficient for newspaper represents the average effect of increasing newspaper spending by \$1,000 while holding TV and radio fixed.

Does it make sense for the multiple regression to suggest no relationship between sales and newspaper while the simple linear regression implies the opposite? In fact it does. Consider the correlation matrix for the three predictor variables and response variable, displayed in Table 3.5. Notice that the correlation between radio and newspaper is 0.35. This reveals a tendency to spend more on newspaper advertising in markets where more is spent on radio advertising. Now suppose that the multiple regression is correct and newspaper advertising has no direct impact on sales, but radio advertising does increase sales. Then in markets where we spend more on radio our sales will tend to be higher, and as our correlation matrix shows, we also tend to spend more on newspaper advertising in those same markets. Hence, in a simple linear regression which only examines sales versus newspaper, we will observe that higher values of newspaper tend to be associated with higher values of sales, even though newspaper advertising does not actually affect sales. So newspaper sales are a surrogate for radio advertising; newspaper gets "credit" for the effect of radio on sales.

This slightly counterintuitive result is very common in many real life situations. Consider an absurd example to illustrate the point. Running a regression of shark attacks versus ice cream sales for data collected at a given beach community over a period of time would show a positive relationship, similar to that seen between sales and newspaper. Of course no one (yet) has suggested that ice creams should be banned at beaches to reduce shark attacks. In reality, higher temperatures cause more people to visit the beach, which in turn results in more ice cream sales and more shark attacks. A multiple regression of attacks versus ice cream sales and temperature reveals that, as intuition implies, the former predictor is no longer significant after adjusting for temperature.

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

TABLE 3.5. Correlation matrix for TV, radio, newspaper, and sales for the Advertising data.

3.2.2 Some Important Questions

When we perform multiple linear regression, we usually are interested in answering a few important questions.

- 1. Is at least one of the predictors X_1, X_2, \dots, X_p useful in predicting the response?
- 2. Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- 3. How well does the model fit the data?
- 4. Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

We now address each of these questions in turn.

One: Is There a Relationship Between the Response and Predictors?

Recall that in the simple linear regression setting, in order to determine whether there is a relationship between the response and the predictor we can simply check whether $\beta_1 = 0$. In the multiple regression setting with p predictors, we need to ask whether all of the regression coefficients are zero, i.e. whether $\beta_1 = \beta_2 = \cdots = \beta_p = 0$. As in the simple linear regression setting, we use a hypothesis test to answer this question. We test the null hypothesis,

$$H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0$$

versus the alternative

 H_a : at least one β_j is non-zero.

This hypothesis test is performed by computing the *F-statistic*,

F-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)},$$
(3.23)