Resume

Text Mining and Chatbots

Ayman Damoun

Text Mining and Chatbots

28/01/2021

lab1: Word embeddings training lab2: Named entity recognition

lab1: Word embeddings training

lab2: Named entity recognition

Word embeddings

Word embeddings

Word embedding is a learned representation of a word in which each word is represented using a vector in an n-dimensional space.

Ayman Damoun Text Mining and Chatbots
Resume 5 / 23

Word embeddings

Word embeddings

Word embedding is a learned representation of a word in which each word is represented using a vector in an n-dimensional space.

word2vec

word2vec is the deep learning Google framework to train word embeddings. This framework use all the words of the corpus to predict the neighboring words.

Ayman Damoun Text Mining and Chatbots
Resume 5 / 23

Skip-Gram

Figure 1: The skip-gram model [1]

skip-gram model [2]

predict a context word when a target word is taken as input.

Ayman Damoun Text Mining and Chatbots
Resume 6 / 23

Resume

Continuous Bag of Words

Figure 2: The CBOW model [1]

CBOW model [2]

predict the target word using the context words as input.

Ayman Damoun Text Mining and Chatbots

Cosine similarity

In order to get semantic similarity between vectors, we need to compare the Word embeddings. **Cosine similarity** is the most used method to compare two vectors.

similarity
$$= \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Resume

About the dataset

- The QUAERO French Medical Corpus
- The QUAERO French Press Corpus

Both datasets are complete corpus, tokenized and with one sentence per line

Ayman Damoun Text Mining and Chatbots
Resume 9 / 23

Figure 3: Visualizing Word Embeddings for skipgram (French Medical Corpus)

(ロ) (回) (目) (目) (目) (の)

Figure 4: Visualizing Word Embeddings for cbow (French Medical

Corpus)

Ayman Damoun

Text Mining and Chatbots

Figure 5: Visualizing Word Embeddings for fastText (French Medical Corpus)

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 年 り 9 0 0

Resume

lab1: Word embeddings training

lab2: Named entity recognition

Named Entity Recognition

Named Entity Recognition (NER)

Can be defined as the process of determining whether a word or word-group represents a place, organization, or anything else. This can be broken down into two sub tasks: identifying the boundaries of the named entity, and identifying its type

Ayman Damoun Text Mining and Chatbots
Resume 14 / 23

Data

	FrenchPress	FrenchPress	FrenchPress	FrenchMed	FrenchMed	FrenchMed
	training set	dev set	test set	training set	dev set	test set
Words	1156339	95222	95807	15339	13543	12388
sentences	35723	2825	2880	706	649	578

Table 1: Statistics on the FrenchPress and frenchMed EMEA corpus

Data: Visualizing entities statistics (French Press Corpus)

(a) FrenchMed training set

(b) FrenchPress dev set

(c) FrenchPress test set

Visualizing entities statistics (French Medical EMEA Corpus)

(a) FrenchMed training set

(b) FrenchMed dev set

(c) FrenchMed test set

biLSTM

Figure 8: An illustration of the BiLSTM architecture [3]

biLSTM

A Bidirectional LSTM (biL-STM), is a sequence processing model that consists of two LSTMs: one taking the input in a forward direction, and the other in a backwards direction.

example of the prediction

Prediction on test set QUAERO FrenchPress

```
25 monsieur dummy dummy b-pers b-pers
26 Europe dummy dummy i-pers i-prod
27, dummy dummy 0 0
28 c' dummy dummy 0 0
29 est dummy dummy 0 0
30 Alex dummy dummy b-pers b-pers
31 Taylor dummy dummy i-pers i-pers
32, dummy dummy 0 0
33 qui dummy dummy 0 0
34 publie dummy dummy 0 0
35 Bouche dummy dummy b-prod 0
36 <_UNK> dummy dummy i-prod 0
```

37 , dummy dummy i-prod 0

	QUAERO French Press			QUAERO French Medical			
	skipgram	Cbow	FastText	skipgram	Cbow	FastText	
lr	0.006569	0.006569	0.006866	0.009908	0.009918	0.009908	
loss	4.3756	6.7739	7.6158	8.5539	9.4780	8.5539	
dev acc	96.56%	96.17%	95.54%	87.48%	87.02%	87.48%	
dev precision	71.70%	66.78%	60.48%	66.51%	61.59%	66.51%	
dev recall	71.97%	68.71%	62.79%	43.88%	41.42%	43.88%	
dev F1	71.84%	67.73%	61.62%	52.88%	49.53%	52.88%	
test acc	97.36%	96.76%	96.83%	85.58%	84.78%	85.58%	
test precision	71.76%	59.71%	60.49%	62.12%	58.75%	62.12%	
test recall	65.88%	62.71%	57.91%	35.02%	32.05%	35.02%	
test F1	68.70%	61.17%	59.17%	44.79%	41.48%	44.79%	

Table 2: The results of different named entity recognition models

Conclusion

- \bullet According to F1-score for QUAERO French Press the skipgram model outperform Cbow and FastText Cbow with a score of 68.70% in test dataset. On the other hand for small datasets like QUAERO FrenchMedical i can't notice a big difference for 20 epochs
- We can conclude that the larger the training set the better the result, and skipgram world embeddings get better results.

References I

- [1] Lilian Weng. Learning word embedding, 2017.
- [2] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their

CoRR, abs/1310.4546, 2013.

compositionality.

- [3] Savelie Cornegruta, Robert Bakewell, Samuel Withey, and Giovanni Montana.
 - Modelling radiological language with bidirectional long short-term memory networks.

pages 17-27, 01 2016.

Avman Damoun Text Mining and Chatbots Resume

Thanks!

And now, we welcome your questions and comments.

4 D F 4 D F 4 D F 9 9 9

Ayman Damoun Text Mining and Chatbots
Resume 23 / 23