- How do I talk abt 0/95] ECS 122A Lecture | (- Partnered Hws Course overview + Communication - Design and Analysis of Algorithms

Spece quarter too short

Comprinciples

Comprinciples

Comprinciples S Principles + Paradisms nothust -> Correctness 13t of - Divide & Congruer - Divide & Congram

- Dynamic Programming

- Cocco La A Standard ælgs ((e.g. Dijkstras) - Greedy A --- Firm expectation warm up Practice w/ rigo -- Practice w/ rigo - Required ourse - Exploring theory, foundation for good school - Job interviews Many companies still use alg problems Something to learn for everyone, regardless of your experience

(Leture capture + attendana) Logistics Logistics

h-memories, handwriften

Course webpage (all material) notes etc

Piazza (announcements + discussions) Dead COURSE in full Gradescope (HW Submissions) + Carvas integration
+ see mailing 13+ two total out two total on the confliction.

Midten out. Grading: them Component Midtern ~ In class 25% will be 35-/-Curred. Bonus: extra credit HW Max 10% Percentages for reference Bonus: Collab Hours 5% only Grade HWS. (Roughly weekly. HW vs CA) boundary cases HWD + CAO Written HW: groups will be Hwi considered $\subset A \perp$ halistically HW2 CAL ~ HWI + HW2, random groups HW3 ~ HW3f4, can choose CA3 1+W4 ~ Be responsible to your Thankgiving, more time than I week Partners

Written
problem grades: V V t La lex recommended = Correctness + Style (Communication clarity for convenience : Preciseness + Conciseness) for convertence but not necessary
Late policy: 24 hours in advance
(except emergencies/be reasonable * Collab Policy (academic honesty): Sign (Very lax, encourage collab+ talk to each other) +411 co[(~b (Can look for answers online/Lly, just cite sources of who you worked with) Policy on HWO - Write everything in your own words Lest code Golas/proofs1 You MUST understand what you turned in are nonsense. LLMs - Reserve right to meet with you to gauge your understanding of your submission train on that slop cent write als proofs (arrectly Sel also stides on Gradescope Coding Assignments

	all discussions run as collab hours, plus more
	Collab hours (Doing this give 2016)
	NOT just office hows
	Homework help w/ gurdance from TA/tutor/me
14	Collab w/ other groups
friends	Learning community, not just a queue to talk to TA fird 5 minutes.
	iveffective
	Algorithms can be challenging
	Algorithms can be challenging Some HW problems can feel hard
	IT IS OK TO STRUGGLE
	Me/Suraij/Tutors all struggled (still do
	Come to collab hours to struggle productively!
) NOT	(Learn the material, otherwise you won't do well m exams)
TA/futors	5% bonus: Show up to collab hours between 3 ont & 10 Oct
_	between 3 not & 10 not

	Will fry to keep lectures conversational
	Analysis of algs
	Selection sort - 2 implementations
	-2 analyses
	Version
	ρ
	for i = 1 to n
	Find Moder j Eli n] minimizing Acj]
	Swap Ati) with Atj]
	Lesson housed work its pade iter
	Upper bound work in each iter then sum
	Runtime: $O(Zi) = O(n^2)$
	or just $O(N \cdot N) = O(N^2)$
	12pi find min
	Correctness: Very useful for analyzing
	High-level strategy? Induction! algorithm
	Induction hypothesis =
1	
100	of SAt the end of the ith iteration,
- 0.16	wiant A[1i] contains the smallest i elements
INO	in sorted order. & A is a perantation of original input
	of original input

(Complete English sentences for typed work please) Base case: i=0 (start at (202).
Base case: [=0 (start of (-0p)
T. I to stand
Induction step: Assume statement true for some i >0.
Now consider executing it 1th loop,
- Min of A excluding smallest i elements 15 it1st smallest, I (because A is permutation at imput)
- CWGD ctoD arts 77 to right of
- Swap step gets 77 to right pos.
- Rest of A[1i) didn't change
lacksquare
Case of i=n implies A is sorted at the end of 100P II
Pseudo code: don't just invent your own
dialect of Cor Python. Use English if useful for communication.
English if useful for communication.
Version 2
() if Size (A) ==1
tunction >11 (7)
Find arg min A[i] else
j
B:=A : B[i] = A[i]
function sort (A) 2 if Size (A) == 1 Find arg min A[j] else B:=A; B[j] = A[j]
Return A[]]: Sort (B[2. Size (A)])
,

(Induct on thing that is changing) Ryntime recurrence: $T(n) \leq C_1 \cdot n + T(n-1)$ 7(1) < 1 where C, 2 | Induction on n that T(n) < C2. n2 if c2 is suff large. Base case: C27/ would work Induction step: $T(n) \leq C_1 \cdot n + C_2 \cdot (n-1)^{L}$ = Cz·n2 - 2-czn +C1·n +cz = (2. n2 if C1 7 C1 (and n=1) Induction on n that $T(n) \leq C \cdot n^2$ Base case: C, 7, 1 by assumption Induction Step: $T(n) \leq C_1 \cdot n + C_1/2 \cdot (n-1)^2$ = C1 · n2 - 2. C1 n +C1. n +C2

Correctness: Induction again! Hypothusis: sort reterns a sorted version of its input array of size M Rase rase / Induction step: Assume statement for some nz1. Now for an array of size nt 1 BC2. INT IS a permutation of the n largest elements of A and Atj] is the smallest. So ALj): Sort (B()., n+17) is the sorted permutation of AT So what have we learnt?

- What variable are we inducting on? ~ Something that changes during computation

Loops: loop index

Recursion: input size usually

- Proof structure should match ade structure.
- Precision: Induction hypothesis didn't use

 a vague word like "correct"

 spelled out what it means in each context