Inteligencia Artificial

Introducción

Índice

1. Introducción a la Inteligencia Artificial

- 1.1 Conceptos básicos y definiciones
- 1.2 Visión histórica de la Inteligencia Artificial
- 1.3 Áreas de la Inteligencia Artificial

2 / 53

Qué es la IA?

- Algunos autores, como Román Gubern en "El simio informatizado", dicen que el ser humano tiene vocación demiúrgica, jugando a ser dioses que se recrean a sí mismos en una materialidad diferente:
 - Haciendo imágenes de sí mismo: pintura, escultura, fotografía, cine, vídeo, reconocimiento y síntesis de voz, multimedia, imagen médica
 - Reproduciendo las capacidades motrices de animales y humanos: juguetes, autómatas, robots
 - Representando mediante computadoras las capacidades humanas de razonamiento lógico-matemático, toma de decisiones, comprensión del lenguaje natural

➤ El objetivo de la Inteligencia Artificial es precisamente construir máquinas y programas que imitan la inteligencia humana, entendida como capacidad para resolver problemas en todos los ámbitos señalados.

El mito del Golem (mediados siglo XVI)

- > Mitología Judía: ser animado (autómata), por el rabino Yehuda Löw
- ➤ Hecho de barro y arcilla para defender el Ghetto judio de Praga

Reloj de agua. Ctesibios (inventor Griego), 300 a.c

Regulador de corcho: flujo constante de agua para llenar los tanques (basado en estudios egipcios)

23/01/2024 Inteligencia Artificial 5 / 53

Caballero. Leonardo Da Vinci, 1585

- Androide construido mediante poleas, cables y engranajes.
- Capaz de andar, sentarse, mover las manos, la cabeza y mandíbula.
- > Dos sistemas de movimiento:
- La parte de arriba programable mediante un árbol de levas.
- La parte de abajo se encargaba un operario mediante cables.

> Solo en papel, aunque en 2007 fue creado y demostrado que era funcional

El pato de Vaucanson (1739)

- Principio de Descartes: los animales son autómatas
- Pato con aparato digestivo
- Más de 400 partes móviles, podía batir sus alas, beber agua, digerir grano y defecar. Creó el primer tubo flexible para construir los intestinos.
- El Flautista: tocaba el tambor y la flauta
- El Tamborilero: tocaba la zampoña

El turco de Von Kempelen (1769)

- Autómata que jugaba al ajedrez. Una cabina de 120cm x 60cm x 90cm fabricado con mecanismos de relojería junto con un maniquí.
- > ¿Deep Blue le ganó a Kasparov en 1997?

Término "Robot" (1921)

- Rossum's Universal Robots (RUR, 1921):
 Obra teatral por Karel Capek (1890-1938)
 (Novelista Checo)
- **Robotnik**: criado
- **Robota**: trabajo forzoso
- Creados para ayudar a la humanidad
- Los robots no eran mecánicos sino resultado de procesos químicos.

"Robótica" (1942)

Robótica: mencionado por Isaac Asimov en 1942 en sus novelas y cuentos

- Leyes de Asimov:
 - 1)Los robots no pueden perjudicar/dañar a los humanos, ni por acción ni por omisión
 - 2) Los robots **deben obedecer a los humanos**, sin contradecir la primera regla
 - 3) Los robots deben protegerse a sí mismos, sin contradecir las leyes anteriores

Cibernética (1948)

- Objetivos: estudio de sistemas biológicos, desde la neurona hasta los comportamientos
- Este área combina la teoría y los principios de la neurociencia y biología, tratando de buscar propiedades comunes en animales y máquinas
- ➤ El objetivo principal era crear comportamientos sofisticados teniendo en cuenta el mecanismo y el entorno

Tortugas de Grey Walter (1951)

Neurólogo: Machina Speculatrix: "Comportamiento emergente"

Inteligencia Artificial

- ➤ Alan Turing 1950, (Artículo Computing machinery and intelligence) → the imitation game
 - Test: dos habitaciones:
 - En una de ellas 1 persona + 1 máquina
 - En la otra solo 1 persona
 - Objetivo: reconocer si es persona o máquina, utilizando lenguaje natural o símbolos
- > Muchas contras: Chinese room argument
 - manipulación de caracteres
- > "Inteligencia Artificial". John MacCarthy, 1956. Conferencia de Darmouth
- > Objetivo de la IA: resolver problemas eficientemente utilizando lenguaje simbólico

Cart (H. Moravec, 1965-79), Stanford (California)

Velocidad: 0,3m/s

Mejoras: obtener representación 3D del entorno: 1m con paradas de 10-15 mins

Cart (H. Moravec, 1965-79) Stanford (California)

Shakey (Fikes and Nilsson, 1971), Stanford (California)

Shakey (Fikes and Nilsson, 1971), Stanford (California)

Sistemas simbólicos: El problema marco

Sistemas naturales a artificial 1986

- R.A. Brooks es considerado como el fundador de la robótica moderna:
 - Elephants don't play chess
 - Intelligence without reason
 - Flesh and machines
- Y si implementamos los sistemas inteligentes encontrados en la naturaleza? Cómo encuentran las hormigas caminos mínimos?

> Conducta alelomimética:

- Salen del nido orientadas por el sol a buscar alimento.
- Cuando vuelven con la comida impregnan el suelo de una feromona que orienta a las demás.
- La feromona se evapora, así que el camino más transitado es el que queda marcado: a más tránsito más feromona.

Comportamiento inteligente en hormigas

- El camino más largo tendrá menos concentración de feromona, que se evapora.
- Así se refuerza el camino más corto

23/01/2024

Inteligencia Artificial

20 / 53

Sistemas naturales

> Aluminio fundido en hormiguero vacío

Evolución

- > Décadas 1950-1970: el optimismo se convierte en desengaño:
 - Traducción automática
 - Jugando a juegos
 - Solucionar problemas generales
 - El invierno de la Inteligencia Artificial (AI Winter)
- > 1970-1990: Sistemas basados en el conocimiento:
 - Sistemas expertos
 - Fracaso de los sistemas expertos

Evolución

- ➤ 1990-2012: Enfoques estadísticos
 - Probabilidad
 - Aprendizaje Automático (Machine Learning)
 - 1997, Deep Blue vence a Gary Kasparov.
- ➤ 2012 presente: Revolución
 - Big data + GPUs + redes neuronales = **Deep Learning**
 - IA en la industria: Youtube, Facebook, Google Ads, Amazon, ... (sistemas de recomendación)
 - En juegos: mediante **Deep Reinforcement Learning** (empresa **DeepMind** 2010, de Google en 2014)
 - 2016: AlphaGo ganador absoluto en el juego GO y BackGammon → NETFLIX
 - 2017: AlphaZero ganador en el juego Ajedrez → 4h de entrenamiento
 - principio de 2020: AlphaFold realizó predicciones para algunas proteínas del SARS-COV-2.
 - 2020: AlphaFold2 gana concurso CASP14, predice la estructura tridimensional de proteínas.
 - 2021 actual: **AlphaMissense** predecir variaciones en el ADN y **FunSearch** problemas maths
 - Procesamiento Lenguaje Natural: GPT3 (OpenAI California (chatGPT)) entrenado para generar texto, mantener una conversación (capaz de aprender 600 mil millones de pesos de las redes neuronales)

Capacidades necesarias para la IA

- Procesamiento del Lenguaje Natural (NLP)
- Robótica
- Visión por computador
- > Representación del conocimiento
- > Razonamiento automático
- Aprendizaje automático (ML)

NLP: Machine Translation

NMT itzultzailea

Además del traductor de google, también existen otros traductores para traducir texto de castellano a euskera o viceversa. Uno de ellos, creado por los grupos de investigación IXA y Aholab de la UPV.

El 5 de noviembre del 2020 inauguraron un nuevo centro de investigación llamado HiTZ.

ES->EU **∨** Submit

Procesamiento de Lenguaje Natural

Industria

> Kuka

> Baxter

> Kiva

Kuka

Baxter

Kiva

Medicina / Rehabilitación

Da Vincy Surgery Robot

Bionic

RP-Vita

Bionic

Exploración planetaria

Spirit & Opportunity

Curiosity Rover

Robot Chino: Yusu-2

Robot Indio: Pragyan

Robots bio-inspirados

Robobee

StickyBot

Sticky-Bot

Cuca-Bot

Vehículo de conducción automática

Google Car

Visión artificial

OpenCV: biblioteca libre de visión artificial originalmente desarrollada por Intel

Ejemplo: detección de puertas métodos tradicionales

Problemas posibles:

Ejemplo: detección de puertas

Falsos positivos:

Aprendizaje automático

- > Supervisado: Sé a qué clase corresponden los datos y entreno un clasificador para que clasifique automáticamente las nuevas entradas (enfoque predictivo). Se utilizan datos etiquetados para que el algoritmo obtenga el conocimiento.
- No supervisado: No sé a qué clase pertenecen los datos y sirve para hacer clustering (enfoque descriptivo). Se utilizan datos sin etiquetar para obtener un conocimiento.
- > Semi supervisado: utilizan la gran cantidad de datos sin etiquetar y una pequeña cantidad de datos etiquetados, suelen combinar técnicas de los dos tipos anteriores.

Aprendizaje automático (Aprendizaje por refuerzo)

- Este comportamiento puede ser modificado con el paso del tiempo según se adquiere conocimiento.
- Este conocimiento puede ser propio (aprendido del entorno), o adquirido por terceros.
 - Ejemplo: perros
- Aprendizaje por refuerzo (RL): el algoritmo de aprendizaje recibe algún tipo de valoración (premio) acerca de la idoneidad de la respuesta dada.

- RL se basa en la siguiente hipótesis (premisa):
 - Todo Objetivo-Goal puede ser descrito como una maximización del cúmulo de premios esperado.

Aprendizaje automático

- Mediante reglas (se analizará en el tema 5)
- Razonamiento basados en casos
 - Casos = datos reales
- Redes Neuronales

Aprendizaje automático

- > Razonamiento basados en casos
 - Casos = datos reales

Caso	Edad	Temperatura	Apariencia	Herida	Diagnostico	
K1	Joven	37,0	buena	no	buen estado	
K2	Joven	37,5	cansado	no	buen estado	
K3	Joven	38,0	cansado	no	catarro	
K4	Joven	39,0	cansado	sí	hematoma	
K5	Joven	40,0	preocupado	sí	roto	
K6	Joven	41,0	mala	no	coma	
K7	Mayor	37,0	buena	no	buen estado	
K8	Mayor	37,5	cansado	no	buen estado	
K9	Mayor	38,0	cansado	no	catarro	
K10	Mayor	39,0	cansado	sí	hematoma	
K11	Mayor	40,0	preocupado	sí	roto	
K12	Mayor	41,0	mala	no	coma	
K13	Crío	37,0	buena	no	buen estado	
K14	Crío	37,5	cansado	no	cuidado	
K15	Crío	38,0	cansado	no	catarro	
K16	Crío	39,0	cansado	sí	hematoma	
K17	Crío	40,0	preocupado	sí	roto	
K18	Crío	41,0	mala	sí	coma	
K19	Viejo	37,0	buena no		buen estado	
K20	Viejo	37,5	cansado no		cuidado	
K21	Viejo	38,0	cansado	no	gripe	
K22	Viejo	39,0	cansado	sí	roto	
K23	Viejo	40,0	preocupado	sí	roto	

Árboles de decisión

Es un modelo de predicción utilizado en diversos ámbitos (inteligencia artificial, economía, ...). Dado un conjunto de datos se fabrican diagramas de construcciones lógicas, muy similares a los sistemas de predicción basados en reglas, que sirven para representar y categorizar una serie de condiciones que ocurren de forma sucesiva, para la resolución de un problema.

Ejemplo -	Atributos									Meta	
	Alt	Bar	Vier	Ham	Clientes	Precio	Llov	Res	Tipo	Est	Esperar
X_1	Sí	No	No	Sí	Algunos	\$\$\$	No	Sí	Francés	0-10	Sí
X_2	Sí	No	No	Sí	Lleno	\$	No	No	Tailandés	30-60	No
X_3	No	Sí	No	No	Algunos	\$	No	No	Hamburg.	0-10	Sí
X_4	Sí	No	Sí	Sí	Lleno	\$	Sí	No	Tailandés	10-30	Sí
X_5	Sí	No	Sí	No	Lleno	\$\$\$	No	Sí	Francés	>60	No
X_6	No	Sí	No	Sí	Algunos	\$\$	Sí	Sí	Italiano	0-10	Sí
X_7	No	Sí	No	No	Ninguno	\$	Sí	No	Hamburg.	0-10	No
X_8	No	No	No	Sí	Algunos	\$\$	Sí	Sí	Tailandés	0-10	Sí
X_9	No	Sí	Sí	No	Lleno	\$	Sí	No	Hamburg.	>60	No
X_{10}	Sí	Sí	Sí	Sí	Lleno	\$\$\$	No	Sí	Italiano	10-30	No
X_{11}	No	No	No	No	Ninguno	\$	No	No	Tailandés	0-10	No
X ₁₂	Sí	Sí	Sí	Sí	Lleno	\$	No	No	Hamburg.	30-60	Sí

Árboles de decisión

Redes Neuronales

> Redes Neuronales (1943 W. McCulloch) se analizará en el tema 4

Inteligencia Artificial

- Pensar como un humano
- > Pensar racionalmente: ¿cuales son los argumentos correctos para tomar una decisión?
 - Teniendo cierta información, ¿cuál es la mejor solución?
- ➤ La IA en total es "un proceso de búsqueda"
- El truco esta en buscar una estrategia de búsqueda adecuada
 - Búsqueda ciega (bruta), informada, basada en la evolución, ...

IA en todos lados

- Motores de búsqueda
- Planificación de rutas
- ➤ Logística (líneas aéreas, barcos, ...)
- Diagnóstico médico
- > Detección de spam, fraude, ...
- Asesoramiento de productos (películas, ...)
- > Asistentes virtuales (Alexa, Siri, Google, ...)
- Coches autónomos
- Videojuegos
- > Reconocimiento y generación de voz: ASR, Text-to-Speech (TTS), AhoTTS
- **>** ...