Evolving the Standard Model

Chris Quigg
Fermilab
quigg@fnal.gov

Elements of the Standard Model

Pointlike constituents ($r < 10^{-18} \text{ m}$)

Few fundamental forces: gauge symmetries $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$.

Elements of the Standard Model

Pointlike constituents ($r < 10^{-18} \text{ m}$)

Few fundamental forces: gauge symmetries $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$.

Local gauge symmetries

Global rotation — same everywhere: $\psi
ightarrow e^{i heta} \psi$

A different convention at each point: $\psi \to e^{i\theta(\mathbf{x})}\psi$

Requires interactions: $U(1) \rightsquigarrow QED$

Yang, Mills, Shaw: isospin \rightsquigarrow non-Abelian gauge theory

Hadron spectroscopy $\rightsquigarrow SU(3)_{flavor}$

Gell-Mann, Ne'eman: SU(3) classification symmetry

• Mesons: 1 and 8

Baryons: 1 and 8 and 10

Babar, 2006: $S_{\Omega^{-}} = \frac{3}{2}$

Hadron spectroscopy \rightsquigarrow SU(3)_{flavor} \rightsquigarrow quark model

Zweig, Gell-Mann: fundamental **3** of quarks: u, d, s

- Mesons as $q\bar{q}$
- Baryons as qqq

Relations among amplitudes; selection rules (Dalitz)

Two problems and a question:

- Exquisite rareness of free quarks
- Symmetry of the spin- $\frac{3}{2}$ wavefunctions
- Origin of the $q\bar{q}$, qqq rules

Greenberg, Han, Nambu: 3 colors of each flavor

Bjorken Scaling: SLAC-MIT Experiment

FIG. 2. νW_2 vs $\omega = 2M \nu/q^2$ is shown for various assumptions about $R = \sigma_S/\sigma_T$. (a) 6° data except for 7-GeV spectrum for R = 0. (b) 10° data for R = 0. (c) 6° data except for 7-GeV spectrum for $R = \infty$. (d) 10° data for $R = \infty$. (e) 6°, 7-GeV spectrum for R = 0 and $R = \infty$.

Interpreting the Clues . . .

- Feynman's parton model
- Bjorken & Paschos: are partons quarks?
- Neutrino scattering: Yes!
- But . . . neutral partons carry half the proton's momentum
- Quasifree but confined partons incompatible with many field theories — Gell-Mann: the "put-on model"

Growing interest in color gauge theory of strong interactions

Asymptotic freedom → Quantum Chromodynamics

Politzer, Gross & Wilczek, 1973

Evolution of the Strong Coupling Constant

S. Bethke, hep-ex/0606035

Quantitative description of evolving structure functions . . .

$Q\bar{Q}$ bound states as limiting case

Appelquist & Politzer: nonrelativistic motion

Pure one-gluon exchange as $M_Q \to \infty$, but top lifetime too short

Early three-jet event from TASSO @ PETRA

Color 8 vector gluons; carry proton's missing momentum

Perturbative QCD: $e^+e^- \rightarrow \text{hadrons}$

$$R \approx 3 \sum_{\text{flavors}} e_{q_i}^2$$

Color 3 quarks . . .

Perturbative QCD: Inclusive jet production

Gluons as partons and force particles

Nonperturbative QCD: hadron spectrum, static properties

- Current algebra: up and down quarks are light! $m_u = 1.7 \pm 0.3 \text{ MeV}$; $m_d = 3.9 \pm 0.5 \text{ MeV}$
- Proton mass is not the sum of its parts, but confinement energy: a new kind of matter!

 "Mass without mass": $M = E/c^2$

We understand the origin of nearly all the visible mass of the Universe: QCD

• Lattice QCD becomes a quantitative tool . . . and a source of insights:

 $Q\bar{Q}$ spectra, $f_{Q\bar{q}}$, light hadrons, ...

QCD Frontiers

- ullet QCD validated to ~ 1 TeV
- Unified theories suggest that we can understand where the strong interactions become strong
- Exploring the richness of QCD in heavy-ion collisions
- Techniques for (higher-order) multiparton amplitudes
- Effective field theories, approximations, models
- Dynamical fermions on the lattice
- Strong-weak interplay (nonleptonic enhancement)
- An analytic proof of confinement?
- Derive nuclear forces?
- One dark cloud: the strong-CP problem $(G\widetilde{G})$ axions?
- ... the irony of isospin

Currents in the electroweak synthesis

- β decay, the neutrino(s)
- The paradigm of Quantum Electrodynamics
- Fermi's theory of weak (charged-current) interactions
- Universality of the weak interactions → Cabibbo
- Parity violation and the V A theory
- *W*-boson: analogy with photon and unitarity (high-energy behavior) of $\nu_{\mu}e \rightarrow \mu\nu_{e}$
- Positing an intermediate vector boson brings its own unitarity problems: $\mathcal{M}(\nu\bar{\nu} \to W_L^+W_L^-) \propto s$

Symmetry of laws *⇒* symmetry of outcomes

Nambu, Goldstone, ...

Weak interactions from a symmetry?

Left-handed weak-isospin doublets,

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_L \qquad \begin{pmatrix} u \\ d_\theta \end{pmatrix}_L$$

- Schwinger (before V A), Bludman, ..., (Klein)
- $SU(2)_L \otimes U(1)_{\gamma}$: Glashow But, gauge symmetry \sim massless gauge bosons

Guidance from superconductivity: the Meissner effect Ginzburg–Landau vacuum hides U(1) gauge symmetry

 \bullet $\it Gauge \ boson \ \gamma$ acquires mass within superconductor Higgs, Brout & Englert, . . .

The Electroweak Synthesis

Spontaneously broken $SU(2)_L \otimes U(1)_Y$: Weinberg, Salam

ullet Charged-current mediated by massive W^\pm -boson,

$$M_W = \left(\pi \alpha / G_F \sqrt{2} \sin^2 \theta_W\right)^{1/2}$$

 $\propto \langle \phi \rangle_0 = (G_F \sqrt{8})^{-1/2} \approx 174 \text{ GeV}$

- ullet Massless γ mediates electromagnetism
- Weak neutral current mediated by Z^0 , $M_Z^2 = M_W^2/\cos^2\theta_W$
- Fermions can acquire mass $\langle \phi \rangle_0 \times$ Yukawa coupling but all fermion masses lie beyond the standard model!
- A massive neutral scalar: "Higgs boson"

Quarks + Leptons to cancel anomalies: Bouchiat, et al.

Renormalizability: 't Hooft, ...

Gargamelle $\bar{\nu}_{\mu}e \rightarrow \bar{\nu}_{\mu}e$ event (1973): Neutral Currents

 \Rightarrow charm (eliminate flavor-changing neutral currents) \cdot GIM

The Period of Splendid Confusion

Incomplete or misleading experiments Exploratory model building

- The long wait $(1\frac{1}{2} \text{ years!})$ for charm
- ullet Coincident au, charm thresholds
- High-y anomaly in $\bar{\nu} N \to \mu^+ + \text{anything}$
- \bullet Atomic parity violation (conflict w/ $SU(2)_L \otimes U(1)_Y)$
- Parity violation in inelastic \vec{e} d scattering
- Υ family and B mesons
- . . .

Discovery of W^\pm and Z^0

UA-1 (1983)

Gauge cancellation in $e^+e^- \rightarrow W^+W^-$

 $\mathcal{M}^{(a,b,c)} \propto s$ for longitudinal gauge bosons

Gauge cancellation in $e^+e^- \rightarrow W^+W^-$

Gauge cancellation in $e^+e^- \rightarrow W^+W^-$

Global fits to precision EW measurements

• precision improves with time / calculations improve with time

11.94, LEPEWWG: $m_t = 178 \pm 11^{+18}_{-19}~{
m GeV/}c^2$

Direct measurements: $m_t = 171.4 \pm 2.2 \text{ GeV}/c^2 \approx \langle \phi \rangle_0$

Global fits to precision EW measurements

precision improves with time / calculations improve with time

11.94, LEPEWWG: $m_t = 178 \pm 11^{+18}_{-19} \text{ GeV/}c^2$

Direct measurements: $m_t = 171.4 \pm 2.2 \text{ GeV/}c^2 \approx \langle \phi \rangle_0$

Global fits to precision EW measurements

precision improves with time / calculations improve with time

11.94, LEPEWWG: $m_t = 178 \pm 11^{+18}_{-19} \text{ GeV/}c^2$

Direct measurements: $m_t = 171.4 \pm 2.2 \text{ GeV/}c^2 \approx \langle \phi \rangle_0$

Successful predictions of $SU(2)_L \otimes U(1)_V$ theory:

- neutral-current interactions
- necessity of charm
- ullet existence and properties of W^\pm and Z^0
- + a decade of precision EW tests (one-per-mille)

$$M_Z$$
 91 187.6 \pm 2.1 MeV/ c^2 Γ_Z 2495.2 \pm 2.3 MeV 41.541 \pm 0.037 nb 1744.4 \pm 2.0 MeV 83.984 \pm 0.086 MeV 499.0 \pm 1.5 MeV $\Gamma_{\text{invisible}}$ $\equiv \Gamma_Z - \Gamma_{\text{hadronic}} - 3\Gamma_{\text{leptonic}}$

light
$$\nu: N_{\nu} = \Gamma_{\text{invisible}}/\Gamma^{\text{SM}}(Z \to \nu_i \bar{\nu}_i) = 2.994 \pm 0.012 \quad (\nu_e, \nu_{\mu}, \nu_{\tau})$$

Pulls in a global fit

LEP Electroweak Working Group, Summer 2006

Fit to a universe of data

Standard-model $M_H \lesssim 200$ GeV at 95% CL

Constraints on quark mixing parameters

Kobayashi–Maskawa: 3 families \sim CP violation UT Fit, hep-ex/0606167

10 years precise measurements: no significant deviations

Quantum corrections tested at $\pm 10^{-3}$

No "new physics" ... yet!

Theory tested from 10^{-17} cm to interplanetary distances

What is the nature of the mysterious new force that hides electroweak symmetry?

- A fundamental force of a new character, based on interactions of an elementary scalar field (Ginzburg-Landau)
- A new gauge force, perhaps acting on undiscovered constituents
- A residual force that emerges from strong dynamics among the weak gauge bosons
- An echo of extra spacetime dimensions

We have explored examples of all four, theoretically.

Which path has Nature taken?

The importance of the 1-TeV scale

EW theory does not predict Higgs-boson mass

Thought experiment → conditional upper bound

 $W_L^+W_L^-, Z_L^0Z_L^0, HH, HZ_L^0$ satisfy s-wave unitarity, for

$$M_H \leq \left(8\pi\sqrt{2}/3G_F\right)^{1/2} = 1 \text{ TeV}$$

- If the bound is respected, perturbation theory is everywhere reliable
- If the bound is violated, weak interactions among W^{\pm} , Z, H become strong on 1-TeV scale

New phenomena are to be found $\sim 1 \text{ TeV}$

With no Higgs mechanism . . .

- Quarks and leptons would remain massless
- QCD would confine the quarks in color-singlet hadrons
- N mass little changed, but p outweighs n
- QCD breaks EW to EM, gives $(1/2500 \times \text{observed})$ masses to W, Z, so weak-isospin force doesn't confine
- Rapid! β -decay \Rightarrow lightest nucleus is n; no H atom
- ullet Some light elements in BBN (?), but ∞ Bohr radius
- No atoms (as we know them) means no chemistry, no stable composite structures like solids and liquids

... the character of the physical world would be profoundly changed

Electroweak frontiers

- EW theory validated at 0.1%
- Find the Higgs boson, explore its properties
- Does H generate mass for gauge bosons, fermions?
- How does H interact with itself?
- A dark cloud: the vacuum energy problem $\varrho_H \equiv M_H^2 v^2/8 \gtrsim 10^8 \text{ GeV}^4 \quad \approx 10^{24} \text{ g cm}^{-3}$ Observed vacuum energy density $\varrho_{\text{vac}} \lesssim 10^{-46} \text{ GeV}^4$ (A chronic dull headache for thirty years . . .)
- Depending on M_H, new physics required for EW consistency
- Hierarchy problem—stabilizing $M_H \lesssim 1$ TeV—invites new physics on 1-TeV scale

Opportunities beyond the standard model

- What makes a top quark a top quark, an electron an electron, a neutrino a neutrino?
- What is the origin of CP violation?
- Is Nature left-handed? If so, why?
- What is dark matter? How many species?
- What accounts for the accelerated expansion of the Universe?
- How does the matter-antimatter asymmetry arise?
- Why is matter so exquisitely neutral?
- Can we unify quarks & leptons, the $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ interactions?
- What about gravity?
- **.** . . .

Happy Birthday, Art & Matts!

