MPI: A Message-Passing Interface Standard Version 3.0

ticket0.

(Draft, with MPI 3 Nonblocking Collectives)
Unofficial, for comment only

Message Passing Interface Forum

April 25, 2011

Chapter 2

MPI Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document, some of the choices that have been made, and the rationale behind those choices. It is similar to the MPI-1 Terms and Conventions chapter but differs in some major and minor ways. Some of the major areas of difference are the naming conventions, some semantic definitions, file objects, Fortran 90 vs Fortran 77, C++, processes, and interaction with signals.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in the interface specification is set off in this format. Some readers may wish to skip these sections, while readers interested in interface design may want to read them carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that illustrates usage is set off in this format. Some readers may wish to skip these sections, while readers interested in programming in MPI may want to read them carefully. (End of advice to users.)

Advice to implementors. Throughout this document, material that is primarily commentary to implementors is set off in this format. Some readers may wish to skip these sections, while readers interested in MPI implementations may want to read them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form MPI_Class_action_subset. This convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize the names of MPI functions according to the following rules. The C++ bindings in particular follow these rules (see Section 2.6.4 on page 19).

1. In C, all routines associated with a particular type of MPI object should be of the form MPI_Class_action_subset or, if no subset exists, of the form MPI_Class_action. In Fortran, all routines associated with a particular type of MPI object should be of the form MPI_CLASS_ACTION_SUBSET or, if no subset exists, of the form

1

2

6 7

8 9

10

13

14

15

16

11 12

17 18 19

21 22 23

20

24 25 26

27

28 29

30

31

32

33

34 35 36

37

38

39 40 41

42

43 44

45 46 47

48

MPI_CLASS_ACTION. For C and Fortran we use the C++ terminology to define the Class. In C++, the routine is a method on Class and is named MPI::Class::Action_subset. If the routine is associated with a certain class, but does not make sense as an object method, it is a static member function of the class.

- 2. If the routine is not associated with a class, the name should be of the form MPI_Action_subset in C and MPI_ACTION_SUBSET in Fortran, and in C++ should be scoped in the MPI namespace, MPI::Action_subset.
- 3. The names of certain actions have been standardized. In particular, Create creates a new object, **Get** retrieves information about an object, **Set** sets this information, **Delete** deletes information, **Is** asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1 process) violate these rules in several cases. The most common exceptions are the omission of the Class name from the routine and the omission of the Action where one can be inferred.

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of procedure calls are marked as IN, OUT or INOUT. The meanings of these are:

- IN: the call may use the input value but does not update the argument,
- OUT: the call may update the argument but does not use its input value,
- INOUT: the call may both use and update the argument.

There is one special case — if an argument is a handle to an opaque object (these terms are defined in Section 2.5.1), and the object is updated by the procedure call, then the argument is marked INOUT or OUT. It is marked this way even though the handle itself is not modified — we use the INOUT or OUT attribute to denote that what the handle references is updated. Thus, in C++, IN arguments are usually either references or pointers to const objects.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use of INOUT arguments, because such use is error-prone, especially for scalar arguments. (End of rationale.)

MPI's use of IN, OUT and INOUT is intended to indicate to the user how an argument is to be used, but does not provide a rigorous classification that can be translated directly into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings). For instance, the "constant" MPI_BOTTOM can usually be passed to OUT buffer arguments. Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some processes and OUT by other processes. Such an argument is, syntactically, an INOUT argument

and is marked as such, although, semantically, it is not used in one call both for input and for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset of the processes. When an argument is not significant at a process then an arbitrary value can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased with any other argument passed to an MPI procedure. An example of argument aliasing in C appears below. If we define a C procedure like this,

```
void copyIntBuffer( int *pin, int *pout, int len )
{    int i;
    for (i=0; i<len; ++i) *pout++ = *pin++;
}</pre>
```

then a call to it in the following code fragment has aliased arguments.

```
int a[10];
copyIntBuffer( a, a+3, 7);
```

Although the C language allows this, such usage of MPI procedures is forbidden unless otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately below this, the ISO C version of the function is shown followed by a version of the same function in Fortran and then the C++ binding. Fortran in this document refers to Fortran 90; see Section 2.6.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if the procedure may return before the operation completes, and before the user is allowed to reuse resources (such as buffers) specified in the call. A nonblocking request is **started** by the call that initiates it, e.g., MPI_ISEND. The word complete is used with respect to operations, requests, and communications. An **operation completes** when the user is allowed to reuse resources, and any output buffers have been updated; i.e. a call to MPI_TEST will return flag = true. A **request is completed** by a call to wait, which returns, or a test or get status call which returns flag = true. This completing call has two effects: the status is extracted from the request; in the case of test and wait, if the request was nonpersistent, it is **freed**, and becomes **inactive** if it was persistent. A **communication completes** when all participating operations complete.

blocking A procedure is blocking if return from the procedure indicates the user is allowed to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local executing process.

non-local A procedure is non-local if completion of the operation may require the execution of some MPI procedure on another process. Such an operation may require communication occurring with another user process.

collective A procedure is collective if all processes in a process group need to invoke the procedure. A collective call may or may not be synchronizing. Collective calls over the same communicator must be executed in the same order by all members of the process group.

predefined A predefined datatype is a datatype with a predefined (constant) name (such as MPI_INT, MPI_FLOAT_INT, or MPI_UB) or a datatype constructed with MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are unnamed.

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable, if it is a predefined datatype, or it is derived from a portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR, MPI_TYPE_INDEXED, MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY, MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY. Such a datatype is portable because all displacements in the datatype are in terms of extents of one predefined datatype. Therefore, if such a datatype fits a data layout in one memory, it will fit the corresponding data layout in another memory, if the same declarations were used, even if the two systems have different architectures. On the other hand, if a datatype was constructed using MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HVECTOR or MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displacements (e.g., providing padding to meet alignment restrictions). These displacements are unlikely to be chosen correctly if they fit data layout on one memory, but are

used for data layouts on another process, running on a processor with a different

equivalent Two datatypes are equivalent if they appear to have been created with the same sequence of calls (and arguments) and thus have the same typemap. Two equivalent datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

architecture.

MPI manages **system memory** that is used for buffering messages and for storing internal representations of various MPI objects such as groups, communicators, datatypes, etc. This memory is not directly accessible to the user, and objects stored there are **opaque**: their size and shape is not visible to the user. Opaque objects are accessed via **handles**, which exist in user space. MPI procedures that operate on opaque objects are passed handle arguments to access these objects. In addition to their use by MPI calls for object access, handles can participate in assignments and comparisons.

In Fortran, all handles have type INTEGER. In C and C++, a different handle type is defined for each category of objects. In addition, handles themselves are distinct objects in C++. The C and C++ types must support the use of the assignment and equality operators.

2.5. DATA TYPES 13

Advice to implementors. In Fortran, the handle can be an index into a table of opaque objects in a system table; in C it can be such an index or a pointer to the object. C++ handles can simply "wrap up" a table index or pointer.

(End of advice to implementors.)

Opaque objects are allocated and deallocated by calls that are specific to each object type. These are listed in the sections where the objects are described. The calls accept a handle argument of matching type. In an allocate call this is an OUT argument that returns a valid reference to the object. In a call to deallocate this is an INOUT argument which returns with an "invalid handle" value. MPI provides an "invalid handle" constant for each object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deallocation. The object is not accessible to the user after the call. However, MPI need not deallocate the object immediately. Any operation pending (at the time of the deallocate) that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these objects. The user must not free such objects. In C++, this is enforced by declaring the handles to these predefined objects to be static const.

Rationale. This design hides the internal representation used for MPI data structures, thus allowing similar calls in C, C++, and Fortran. It also avoids conflicts with the typing rules in these languages, and easily allows future extensions of functionality. The mechanism for opaque objects used here loosely follows the POSIX Fortran binding standard.

The explicit separation of handles in user space and objects in system space allows space-reclaiming and deallocation calls to be made at appropriate points in the user program. If the opaque objects were in user space, one would have to be very careful not to go out of scope before any pending operation requiring that object completed. The specified design allows an object to be marked for deallocation, the user program can then go out of scope, and the object itself still persists until any pending operations are complete.

The requirement that handles support assignment/comparison is made since such operations are common. This restricts the domain of possible implementations. The alternative would have been to allow handles to have been an arbitrary, opaque type. This would force the introduction of routines to do assignment and comparison, adding complexity, and was therefore ruled out. (*End of rationale*.)

Advice to users. A user may accidently create a dangling reference by assigning to a handle the value of another handle, and then deallocating the object associated with these handles. Conversely, if a handle variable is deallocated before the associated object is freed, then the object becomes inaccessible (this may occur, for example, if the handle is a local variable within a subroutine, and the subroutine is exited before the associated object is deallocated). It is the user's responsibility to avoid adding or deleting references to opaque objects, except as a result of MPI calls that allocate or deallocate such objects. (End of advice to users.)

1

2

3

9

10 11

12

13

14

15

16

17

18

19

20

21 22 23

24

25

26

27 28

29 30

31

32

33

48

Advice to implementors. The intended semantics of opaque objects is that opaque objects are separate from one another; each call to allocate such an object copies all the information required for the object. Implementations may avoid excessive copying by substituting referencing for copying. For example, a derived datatype may contain references to its components, rather then copies of its components; a call to MPI_COMM_GROUP may return a reference to the group associated with the communicator, rather than a copy of this group. In such cases, the implementation must maintain reference counts, and allocate and deallocate objects in such a way that the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of handles. The array-of-handles is a regular array with entries that are handles to objects of the same type in consecutive locations in the array. Whenever such an array is used, an additional len argument is required to indicate the number of valid entries (unless this number can be derived otherwise). The valid entries are at the beginning of the array; len indicates how many of them there are, and need not be the size of the entire array. The same approach is followed for other array arguments. In some cases NULL handles are considered valid entries. When a NULL argument is desired for an array of statuses, one uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with *state* types. The values of such a data type are all identified by names, and no operation is defined on them. For example, the MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values MPI_ORDER_C and MPI_ORDER_FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argument; e.g., tag is an integer-valued argument of point-to-point communication operations, with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular values, which is a proper subrange of the range of values of the corresponding basic type; special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regular values, such as tag, can be queried using environmental inquiry functions (Chapter 7 of the MPI-1 document). The range of other values, such as source, depends on values given by other MPI routines (in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.

All named constants, with the exceptions noted below for Fortran, can be used in initialization expressions or assignments, but not necessarily in array declarations or as labels in C/C++ switch or Fortran select/case statements. This implies named constants to be link-time but not necessarily compile-time constants. The named constants listed below are required to be compile-time constants in both C/C++ and Fortran. These constants do not change values during execution. Opaque objects accessed by constant handles are defined and do not change value between MPI initialization (MPI_INIT) and MPI completion (MPI_FINALIZE). The handles themselves are constants and can be also used in initialization expressions or assignments.

2.5. DATA TYPES 15

The constants that are required to be compile-time constants (and can thus be used for array length declarations and labels in C/C++ switch and Fortran case/select statements) are:

 $\frac{44}{45}$

MPI_MAX_PROCESSOR_NAME
MPI_MAX_ERROR_STRING
MPI_MAX_DATAREP_STRING
MPI_MAX_INFO_KEY
MPI_MAX_INFO_VAL
MPI_MAX_OBJECT_NAME
MPI_MAX_PORT_NAME
MPI_STATUS_SIZE (Fortran only)
MPI_ADDRESS_KIND (Fortran only)
MPI_INTEGER_KIND (Fortran only)
MPI_OFFSET_KIND (Fortran only)
and their C++ counterparts where appropriate.
The constants that cannot be used in initialize.

The constants that cannot be used in initialization expressions or assignments in Fortran are:

MPI_BOTTOM
MPI_STATUS_IGNORE
MPI_STATUSES_IGNORE
MPI_ERRCODES_IGNORE
MPI_IN_PLACE
MPI_ARGV_NULL
MPI_ARGVS_NULL

MPI_UNWEIGHTED

Advice to implementors. In Fortran the implementation of these special constants may require the use of language constructs that are outside the Fortran standard. Using special values for the constants (e.g., by defining them through PARAMETER statements) is not possible because an implementation cannot distinguish these values from legal data. Typically, these constants are implemented as predefined static variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that the target compiler passes data by address. Inside the subroutine, this address can be extracted by some mechanism outside the Fortran standard (e.g., by Fortran extensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a *choice* (or union) data type. Distinct calls to the same routine may pass by reference actual arguments of different types. The mechanism for providing such arguments will differ from language to language. For Fortran, the document uses <type> to represent a choice variable; for C and C++, we use void *.

2.5.6 Addresses

Some MPI procedures use *address* arguments that represent an absolute address in the calling program. The datatype of such an argument is MPI_Aint in C, MPI::Aint in C++ and INTEGER (KIND=MPI_ADDRESS_KIND) in Fortran. These types must have the same

width and encode address values in the same manner such that address values in one language may be passed directly to another language without conversion. There is the MPI constant MPI_BOTTOM to indicate the start of the address range.

2.5.7 File Offsets

For I/O there is a need to give the size, displacement, and offset into a file. These quantities can easily be larger than 32 bits which can be the default size of a Fortran integer. To overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in Fortran. In C one uses MPI_Offset whereas in C++ one uses MPI::Offset. These types must have the same width and encode address values in the same manner such that offset values in one language may be passed directly to another language without conversion.

ticket 265. $_{12}$

2.5.8 Counts

As described above, MPI defines types (e.g., MPI_Aint) to address locations within memory and other types (e.g., MPI_Offset) to address locations within files. In addition, some MPI procedures use *count* arguments that represent a number of MPI datatypes on which to operate. At times, one needs a single type that can be used to address locations within either memory or files as well as express *count* values, and that type is MPI_Count in C and INTEGER (KIND=MPI_COUNT_KIND) in Fortran. These types must have the same width and encode values in the same manner such that count values in one language may be passed directly to another language without conversion. The size of the MPI_Count type is determined by the MPI implementation with the restriction that it must be minimally capable of encoding any value that may be stored in a variable of type int, MPI_Aint, or MPI_Offset in C and of type INTEGER, INTEGER (KIND=MPI_ADDRESS_KIND), or INTEGER (KIND=MPI_OFFSET_KIND) in Fortran.

Rationale. Count values logically need to be large enough to encode any value used for expressing element counts, type maps in memory, type maps in file views, etc. For backward compatibility reasons, many MPI routines still use int in C and INTEGER in Fortran as the type of count arguments. (*End of rationale*.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, ISO C, and C++, in particular. (Note that ANSI C has been replaced by ISO C.) The C++ language bindings have been deprecated. Defined here are various object representations, as well as the naming conventions used for expressing this standard. The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90, though they are designed to be usable in Fortran 77 environments.

Since the word PARAMETER is a keyword in the Fortran language, we use the word "argument" to denote the arguments to a subroutine. These are normally referred to as parameters in C and C++, however, we expect that C and C++ programmers will understand the word "argument" (which has no specific meaning in C/C++), thus allowing us to avoid unnecessary confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when resolving Fortran names. Users of case sensitive languages should avoid the "mpi_" and "pmpi_" prefixes.

2.6.1 Deprecated Names and Functions

A number of chapters refer to deprecated or replaced MPI-1 constructs. These are constructs that continue to be part of the MPI standard, as documented in Chapter 15, but that users are recommended not to continue using, since better solutions were provided with MPI-2. For example, the Fortran binding for MPI-1 functions that have address arguments uses INTEGER. This is not consistent with the C binding, and causes problems on machines with 32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given new names with new bindings for the address arguments. The use of the old functions is deprecated. For consistency, here and in a few other cases, new C functions are also provided, even though the new functions are equivalent to the old functions. The old names are deprecated. Another example is provided by the MPI-1 predefined datatypes MPI_UB and MPI_LB. They are deprecated, since their use is awkward and error-prone. The MPI-2 function MPI_TYPE_CREATE_RESIZED provides a more convenient mechanism to achieve the same

Table 2.1 shows a list of all of the deprecated constructs. Note that the constants MPI_LB and MPI_UB are replaced by the function MPI_TYPE_CREATE_RESIZED; this is because their principal use was as input datatypes to MPI_TYPE_STRUCT to create resized datatypes. Also note that some C typedefs and Fortran subroutine names are included in this list; they are the types of callback functions.

2.6.2 Fortran Binding Issues

effect.

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they are now interpreted in the context of the Fortran 90 standard. MPI can still be used with most Fortran 77 compilers, as noted below. When the term Fortran is used it means Fortran 90.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must not declare variables, parameters, or functions with names beginning with the prefix MPI_. To avoid conflicting with the profiling interface, programs should also avoid functions with the prefix PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. A few MPI operations which are functions do not have the return code argument. The return code value for successful completion is MPI_SUCCESS. Other error codes are implementation dependent; see the error codes in Chapter 8 and Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than in C and C++ as discussed in Section 16.3.9.

Handles are represented in Fortran as INTEGERs. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one.

The MPI Fortran binding is inconsistent with the Fortran 90 standard in several respects. These inconsistencies, such as register optimization problems, have implications for user codes that are discussed in detail in Section 16.2.2. They are also inconsistent with Fortran 77.

28

29 30 31

32

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1	Deprecated	MPI-2 Replacement
2	MPI_ADDRESS	MPI_GET_ADDRESS
3	MPI_TYPE_HINDEXED	MPI_TYPE_CREATE_HINDEXED
4	MPI_TYPE_HVECTOR	MPI_TYPE_CREATE_HVECTOR
5	MPI_TYPE_STRUCT	MPI_TYPE_CREATE_STRUCT
6	MPI_TYPE_EXTENT	MPI_TYPE_GET_EXTENT
7	MPI_TYPE_UB	MPI_TYPE_GET_EXTENT
8	MPI_TYPE_LB	MPI_TYPE_GET_EXTENT
9	MPI_LB	MPI_TYPE_CREATE_RESIZED
10	MPI_UB	MPI_TYPE_CREATE_RESIZED
11	MPI_ERRHANDLER_CREATE	MPI_COMM_CREATE_ERRHANDLER
12	MPI_ERRHANDLER_GET	MPI_COMM_GET_ERRHANDLER
13	MPI_ERRHANDLER_SET	MPI_COMM_SET_ERRHANDLER
14	MPI _ $Handler$ _ $function$	$MPI_Comm_errhandler_function$
15	MPI_KEYVAL_CREATE	MPI_COMM_CREATE_KEYVAL
16	MPI_KEYVAL_FREE	MPI_COMM_FREE_KEYVAL
17	MPI_DUP_FN	MPI_COMM_DUP_FN
18	MPI_NULL_COPY_FN	MPI_COMM_NULL_COPY_FN
19	MPI_NULL_DELETE_FN	MPI_COMM_NULL_DELETE_FN
20	MPI_Copy_function	MPI_Comm_copy_attr_function
21	COPY_FUNCTION	COMM_COPY_ATTR_FN
22	MPI_Delete_function	MPI_Comm_delete_attr_function
23	DELETE_FUNCTION	COMM_DELETE_ATTR_FN
24	MPI_ATTR_DELETE	MPI_COMM_DELETE_ATTR
25	MPI_ATTR_GET	MPI_COMM_GET_ATTR
26	MPI_ATTR_PUT	MPI_COMM_SET_ATTR
27		

Table 2.1: Deprecated constructs

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants are in all capital letters, and defined types and functions have one capital letter after the prefix. Programs must not declare variables or functions with names beginning with the prefix MPI_. To support the profiling interface, programs should not declare functions with names beginning with the prefix PMPI_.

The definition of named constants, function prototypes, and type definitions must be supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning "false" and a non-zero value meaning "true."

Choice arguments are pointers of type void *.

Address arguments are of MPI defined type MPI_Aint. File displacements are of type MPI_Offset. MPI_Aint is defined to be an integer of the size needed to hold any valid address

on the target architecture. MPI_Offset is defined to be an integer of the size needed to hold any valid file size on the target architecture.

2.6.4 C++ Binding Issues

The C++ language bindings have been deprecated. There are places in the standard that give rules for C and not for C++. In these cases, the C rule should be applied to the C++ case, as appropriate. In particular, the values of constants given in the text are the ones for C and Fortran. A cross index of these with the C++ names is given in Annex A.

We use the ISO C++ declaration format. All MPI names are declared within the scope of a namespace called MPI and therefore are referenced with an MPI:: prefix. Defined constants are in all capital letters, and class names, defined types, and functions have only their first letter capitalized. Programs must not declare variables or functions in the MPI namespace. This is mandated to avoid possible name collisions.

The definition of named constants, function prototypes, and type definitions must be supplied in an include file mpi.h.

Advice to implementors. The file mpi.h may contain both the C and C++ definitions. Usually one can simply use the defined value (generally __cplusplus, but not required) to see if one is using C++ to protect the C++ definitions. It is possible that a C compiler will require that the source protected this way be legal C code. In this case, all the C++ definitions can be placed in a different include file and the "#include" directive can be used to include the necessary C++ definitions in the mpi.h file. (End of advice to implementors.)

C++ functions that create objects or return information usually place the object or information in the return value. Since the language neutral prototypes of MPI functions include the C++ return value as an OUT parameter, semantic descriptions of MPI functions refer to the C++ return value by that parameter name. The remaining C++ functions return void.

In some circumstances, MPI permits users to indicate that they do not want a return value. For example, the user may indicate that the status is not filled in. Unlike C and Fortran where this is achieved through a special input value, in C++ this is done by having two bindings where one has the optional argument and one does not.

C++ functions do not return error codes. If the default error handler has been set to MPI::ERRORS_THROW_EXCEPTIONS, the C++ exception mechanism is used to signal an error by throwing an MPI::Exception object.

It should be noted that the default error handler (i.e., MPI::ERRORS_ARE_FATAL) on a given type has not changed. User error handlers are also permitted. MPI::ERRORS_RETURN simply returns control to the calling function; there is no provision for the user to retrieve the error code.

User callback functions that return integer error codes should not throw exceptions; the returned error will be handled by the MPI implementation by invoking the appropriate error handler.

Advice to users. C++ programmers that want to handle MPI errors on their own should use the MPI::ERRORS_THROW_EXCEPTIONS error handler, rather than MPI::ERRORS_RETURN, that is used for that purpose in C. Care should be taken using exceptions in mixed language situations. (*End of advice to users*.)

Opaque object handles must be objects in themselves, and have the assignment and equality operators overridden to perform semantically like their C and Fortran counterparts.

Array arguments are indexed from zero.

Logical flags are of type bool.

Choice arguments are pointers of type void *.

Address arguments are of MPI-defined integer type MPI::Aint, defined to be an integer of the size needed to hold any valid address on the target architecture. Analogously, MPI::Offset is an integer to hold file offsets.

Most MPI functions are methods of MPI C++ classes. MPI class names are generated from the language neutral MPI types by dropping the MPI_ prefix and scoping the type within the MPI namespace. For example, MPI_DATATYPE becomes MPI::Datatype.

The names of MPI functions generally follow the naming rules given. In some circumstances, the MPI function is related to a function defined already for MPI-1 with a name that does not follow the naming conventions. In this circumstance, the language neutral name is in analogy to the MPI name even though this gives an MPI-2 name that violates the naming conventions. The C and Fortran names are the same as the language neutral name in this case. However, the C++ names do reflect the naming rules and can differ from the C and Fortran names. Thus, the analogous name in C++ to the MPI name may be different than the language neutral name. This results in the C++ name differing from the language neutral name. An example of this is the language neutral name of MPI_FINALIZED and a C++ name of MPI::ls_finalized.

In C++, function typedefs are made publicly within appropriate classes. However, these declarations then become somewhat cumbersome, as with the following:

```
{typedef MPI::Grequest::Query_function(); (binding deprecated, see Section 15.2)}
```

would look like the following:

```
namespace MPI {
  class Request {
    // ...
  };

  class Grequest : public MPI::Request {
    // ...
    typedef Query_function(void* extra_state, MPI::Status& status);
  };
};
```

Rather than including this scaffolding when declaring C++ typedefs, we use an abbreviated form. In particular, we explicitly indicate the class and namespace scope for the typedef of the function. Thus, the example above is shown in the text as follows:

The C++ bindings presented in Annex A.4 and throughout this document were generated by applying a simple set of name generation rules to the MPI function specifications. While these guidelines may be sufficient in most cases, they may not be suitable for all situations. In cases of ambiguity or where a specific semantic statement is desired, these guidelines may be superseded as the situation dictates.

- 1. All functions, types, and constants are declared within the scope of a namespace called MPI.
- 2. Arrays of MPI handles are always left in the argument list (whether they are IN or OUT arguments).
- 3. If the argument list of an MPI function contains a scalar IN handle, and it makes sense to define the function as a method of the object corresponding to that handle, the function is made a member function of the corresponding MPI class. The member functions are named according to the corresponding MPI function name, but without the "MPI_" prefix and without the object name prefix (if applicable). In addition:
 - (a) The scalar IN handle is dropped from the argument list, and this corresponds to the dropped argument.
 - (b) The function is declared const.
- 4. MPI functions are made into class functions (static) when they belong on a class but do not have a unique scalar IN or INOUT parameter of that class.
- 5. If the argument list contains a single OUT argument that is not of type MPI_STATUS (or an array), that argument is dropped from the list and the function returns that value.

Example 2.1 The C++ binding for MPI_COMM_SIZE is int MPI::Comm::Get_size(void) const.

- 6. If there are multiple OUT arguments in the argument list, one is chosen as the return value and is removed from the list.
- 7. If the argument list does not contain any OUT arguments, the function returns void.

Example 2.2 The C++ binding for MPI_REQUEST_FREE is void MPI::Request::Free(void)

8. MPI functions to which the above rules do not apply are not members of any class, but are defined in the MPI namespace.

Example 2.3 The C++ binding for MPI_BUFFER_ATTACH is void MPI::Attach_buffer(void* buffer, int size).

- 9. All class names, defined types, and function names have only their first letter capitalized. Defined constants are in all capital letters.
- 10. Any IN pointer, reference, or array argument must be declared const.
- 11. Handles are passed by reference.
- 12. Array arguments are denoted with square brackets ([]), not pointers, as this is more semantically precise.

2.6.5 Functions and Macros

An implementation is allowed to implement MPI_WTIME, MPI_WTICK, PMPI_WTIME, PMPI_WTICK, and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 16.3.4, and no others, as macros in C.

Advice to implementors. Implementors should document which routines are implemented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work with the MPI profiling interface. (End of advice to users.)

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD style. The codes executed by each process need not be identical. The processes communicate via calls to MPI communication primitives. Typically, each process executes in its own address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI calls are used. The interaction of an MPI program with other possible means of communication, I/O, and process management is not specified. Unless otherwise stated in the specification of the standard, MPI places no requirements on the result of its interaction with external mechanisms that provide similar or equivalent functionality. This includes, but is not limited to, interactions with external mechanisms for process control, shared and remote memory access, file system access and control, interprocess communication, process signaling, and terminal I/O. High quality implementations should strive to make the results of such interactions intuitive to users, and attempt to document restrictions where deemed necessary.

Advice to implementors. Implementations that support such additional mechanisms for functionality supported within MPI are expected to document how these interact with MPI. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 12.4.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received correctly, and the user does not need to check for transmission errors, time-outs, or other error conditions. In other words, MPI does not provide mechanisms for dealing with failures in the communication system. If the MPI implementation is built on an unreliable underlying mechanism, then it is the job of the implementor of the MPI subsystem to insulate the user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible, such failures will be reflected as errors in the relevant communication call. Similarly, MPI itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A **program error** can occur when an MPI call is made with an incorrect argument (non-existing destination in a send operation, buffer too small in a receive operation, etc.). This type of error would occur in any

implementation. In addition, a **resource error** may occur when a program exceeds the amount of available system resources (number of pending messages, system buffers, etc.). The occurrence of this type of error depends on the amount of available resources in the system and the resource allocation mechanism used; this may differ from system to system. A high-quality implementation will provide generous limits on the important resources so as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion of the operation. Whenever possible, MPI calls return an error code if an error occurred during the call. By default, an error detected during the execution of the MPI library causes the parallel computation to abort, except for file operations. However, MPI provides mechanisms for users to change this default and to handle recoverable errors. The user may specify that no error is fatal, and handle error codes returned by MPI calls by himself or herself. Also, the user may provide his or her own error-handling routines, which will be invoked whenever an MPI call returns abnormally. The MPI error handling facilities are described in Section 8.3. The return values of C++ functions are not error codes. If the default error handler has been set to MPI::ERRORS_THROW_EXCEPTIONS, the C++ exception mechanism is used to signal an error by throwing an MPI::Exception object. See also Section 16.1.8 on page 508.

Several factors limit the ability of MPI calls to return with meaningful error codes when an error occurs. MPI may not be able to detect some errors; other errors may be too expensive to detect in normal execution mode; finally some errors may be "catastrophic" and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI calls may initiate operations that continue asynchronously after the call returned. Thus, the operation may return with a code indicating successful completion, yet later cause an error exception to be raised. If there is a subsequent call that relates to the same operation (e.g., a call that verifies that an asynchronous operation has completed) then the error argument associated with this call will be used to indicate the nature of the error. In a few cases, the error may occur after all calls that relate to the operation have completed, so that no error value can be used to indicate the nature of the error (e.g., an error on the receiver in a send with the ready mode). Such an error must be treated as fatal, since information cannot be returned for the user to recover from it.

This document does not specify the state of a computation after an erroneous MPI call has occurred. The desired behavior is that a relevant error code be returned, and the effect of the error be localized to the greatest possible extent. E.g., it is highly desirable that an erroneous receive call will not cause any part of the receiver's memory to be overwritten, beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner MPI calls that are defined here to be erroneous. For example, MPI specifies strict type matching rules between matching send and receive operations: it is erroneous to send a floating point variable and receive an integer. Implementations may go beyond these type matching rules, and provide automatic type conversion in such situations. It will be helpful to generate warnings for such non-conforming behavior.

MPI defines a way for users to create new error codes as defined in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MPI implementation may interact with the operating environment and system. While MPI does not mandate that any services (such as signal handling) be provided, it does strongly suggest the behavior to be provided if those services are available. This is an important point in achieving portability across platforms that provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment (such as write in Fortran and printf and malloc in ISO C) and are executed after MPI_INIT and before MPI_FINALIZE operate independently and that their *completion* is independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel services whose operation is collective. However, the following program is expected to complete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that printf is available at the executing nodes).

```
int rank;
MPI_Init((void *)0, (void *)0);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) printf("Starting program\n");
MPI_Finalize();
```

The corresponding Fortran and C++ programs are also expected to complete.

An example of what is *not* required is any particular ordering of the action of these routines when called by several tasks. For example, MPI makes neither requirements nor recommendations for the output from the following program (again assuming that I/O is available at the executing nodes).

```
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Output from task rank %d\n", rank);
```

In addition, calls that fail because of resource exhaustion or other error are not considered a violation of the requirements here (however, they are required to complete, just not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI be signal safe. The implementation may reserve some signals for its own use. It is required that the implementation document which signals it uses, and it is strongly recommended that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI library by catching signals only on threads that do not execute MPI calls. High quality single-threaded implementations will be signal safe: an MPI call suspended by a signal will resume and complete normally after the signal is handled.

2.10. EXAMPLES 25

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended to specify the standard. Furthermore, the examples have not been carefully checked or verified.

Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPI communication mechanism. The basic point-to-point communication operations are **send** and **receive**. Their use is illustrated in the example below.

```
#include "mpi.h"
int main( int argc, char **argv )
 char message[20];
 int myrank;
 MPI_Status status;
 MPI_Init( &argc, &argv );
 MPI_Comm_rank( MPI_COMM_WORLD, &myrank );
                      /* code for process zero */
 if (myrank == 0)
      strcpy(message, "Hello, there");
     MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
  }
 else if (myrank == 1) /* code for process one */
  {
     MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
     printf("received :%s:\n", message);
 MPI_Finalize();
}
```

In this example, process zero (myrank = 0) sends a message to process one using the send operation MPI_SEND. The operation specifies a send buffer in the sender memory from which the message data is taken. In the example above, the send buffer consists of the storage containing the variable message in the memory of process zero. The location, size and type of the send buffer are specified by the first three parameters of the send operation. The message sent will contain the 13 characters of this variable. In addition, the send operation associates an **envelope** with the message. This envelope specifies the message destination and contains distinguishing information that can be used by the **receive**

11 12 13

15 16

17

18

19 20

21

22 23

24

26

27

28

29 30

34

35

36

37 38

39

42

43 44

45 46

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19 20

21

22 23 24

25

46 47 operation to select a particular message. The last three parameters of the send operation, along with the rank of the sender, specify the envelope for the message sent. Process one (myrank = 1) receives this message with the receive operation MPI_RECV. The message to be received is selected according to the value of its envelope, and the message data is stored into the receive buffer. In the example above, the receive buffer consists of the storage containing the string message in the memory of process one. The first three parameters of the receive operation specify the location, size and type of the receive buffer. The next three parameters are used for selecting the incoming message. The last parameter is used to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send, receive, blocking communication semantics, type matching requirements, type conversion in heterogeneous environments, and more general communication modes. Nonblocking communication is addressed next, followed by channel-like constructs and send-receive operations, Nonblocking communication is addressed next, followed by channel-like constructs and send-receive operations, ending with a description of the "dummy" process, MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations

3.2.1 Blocking Send

The syntax of the blocking send operation is given below.

```
MPI_SEND(buf, count, datatype, dest, tag, comm)
```

```
26
       IN
                  buf
                                               initial address of send buffer (choice)
27
       IN
                                               number of elements in send buffer (non-negative inte-
                 count
28
                                               ger)
29
       IN
                 datatype
                                               datatype of each send buffer element (handle)
30
31
       IN
                  dest
                                               rank of destination (integer)
32
       IN
                  tag
                                               message tag (integer)
33
       IN
                  comm
                                               communicator (handle)
34
35
      int MPI_Send(void* buf, int count, MPI_Datatype datatype, int dest,
36
                     int tag, MPI_Comm comm)
37
38
      MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
39
          <type> BUF(*)
40
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
41
      {void MPI::Comm::Send(const void* buf, int count, const
42
                     MPI::Datatype& datatype, int dest, int tag) const(binding
43
                     deprecated, see Section 15.2) }
44
45
```

Unofficial Draft for Comment Only

The blocking semantics of this call are described in Section 3.4.

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of the type indicated by datatype, starting with the entry at address buf. Note that we specify the message length in terms of number of *elements*, not number of *bytes*. The former is machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type indicated by datatype. count may be zero, in which case the data part of the message is empty. The basic datatypes that can be specified for message data values correspond to the basic datatypes of the host language. Possible values of this argument for Fortran and the corresponding Fortran types are listed in Table 3.1.

MPI datatype	Fortran datatype
MPI_INTEGER	INTEGER
MPI_REAL	REAL
MPI_DOUBLE_PRECISION	DOUBLE PRECISION
MPI_COMPLEX	COMPLEX
MPI_LOGICAL	LOGICAL
MPI_CHARACTER	CHARACTER(1)
MPI_BYTE	
MPI_PACKED	

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is uninterpreted and is different from a character. Different machines may have different representations for characters, or may use more than one byte to represent characters. On the other hand, a byte has the same binary value on all machines. The use of the type MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran and ISO C. Additional MPI datatypes should be provided if the host language has additional data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4 and MPI_REAL8 for Fortran reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1 MPI_INTEGER2 and MPI_INTEGER4 for Fortran integers, declared to be of type INTEGER*1, INTEGER*2 and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a library, with no need for additional preprocessing or compilation. Thus, one cannot assume that a communication call has information on the datatype of variables in the communication buffer; this information must be supplied by an explicit argument. The need for such datatype information will become clear in Section 3.3.2. (End of rationale.)

Rationale. The datatypes MPI_C_BOOL, MPI_INT8_T, MPI_INT16_T, MPI_INT32_T, MPI_UINT8_T, MPI_UINT16_T, MPI_UINT32_T, MPI_C_COMPLEX,

1	MPI datatype	C datatype
2	MPI_CHAR	char
3		(treated as printable character)
4	MPI_SHORT	signed short int
5	MPI_INT	signed int
6	MPI_LONG	signed long int
7	MPI_LONG_LONG_INT	signed long long int
8	MPI_LONG_LONG (as a synonym)	signed long long int
9	MPI_SIGNED_CHAR	signed char
10		(treated as integral value)
11	MPI_UNSIGNED_CHAR	unsigned char
12		(treated as integral value)
13	MPI_UNSIGNED_SHORT	unsigned short int
14	MPI_UNSIGNED	unsigned int
15	MPI_UNSIGNED_LONG	unsigned long int
16	MPI_UNSIGNED_LONG_LONG	unsigned long long int
17	MPI_FLOAT	float
18	MPI_DOUBLE	double
19	MPI_LONG_DOUBLE	long double
20	MPI_WCHAR	wchar_t
21		(defined in <stddef.h>)</stddef.h>
22		(treated as printable character)
23	MPI_C_BOOL	_Bool
24	MPI_INT8_T	int8_t
25	MPI_INT16_T	int16_t
26	MPI_INT32_T	int32_t
27	MPI_INT64_T	int64_t
28	MPI_UINT8_T	uint8_t
29	MPI_UINT16_T	uint16_t
30	MPI_UINT32_T	uint32_t
31	MPI_UINT64_T	uint64_t
32	MPI_C_COMPLEX	float _Complex
33	MPI_C_FLOAT_COMPLEX (as a synonym)	float _Complex
34	MPI_C_DOUBLE_COMPLEX	double _Complex
35	MPI_C_LONG_DOUBLE_COMPLEX	long double _Complex
36	MPI_BYTE	-
37	MPI_PACKED	

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

```
MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and MPI_C_LONG_DOUBLE_COMPLEX have no corresponding C++ bindings. This was intentionally done to avoid potential collisions with the C preprocessor and namespaced C++ names. C++ applications can use the C bindings with no loss of functionality. (End of rationale.)
```

ticket265. 48 ticket265.

The datatypes $\mathsf{MPI_AINT}$ [and], $\mathsf{MPI_OFFSET}$, and $\mathsf{MPI_COUNT}$ correspond to the

9 ticket265.

10 ticket265. 11 ticket265.

₁₂ ticket265.

MPI datatype	C datatype	Fortran datatype	1
MPI_AINT	MPI_Aint	INTEGER (KIND=MPI_ADDRESS_KIND)	2
MPI_OFFSET	MPI_Offset	INTEGER (KIND=MPI_OFFSET_KIND)	3
[ticket265.] MPI_COUNT	[ticket265.]MPI_Count	[ticket265.]INTEGER (KIND=MPI_COUNT_	KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI-defined C types MPI_Aint [and], MPI_Offset, and MPI_Count and their Fortran equivalents INTEGER (KIND=MPI_ADDRESS_KIND) [and], INTEGER (KIND=MPI_OFFSET_KIND), and INTEGER (KIND=MPI_COUNT_KIND). This is described in Table 3.3. See Section 16.3.10 for information on interlanguage communication with these types.

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish messages and selectively receive them. This information consists of a fixed number of fields, which we collectively call the **message envelope**. These fields are

source
destination
tag
communicator

The message source is implicitly determined by the identity of the message sender. The other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.

The integer-valued message tag is specified by the tag argument. This integer can be used by the program to distinguish different types of messages. The range of valid tag values is 0,...,UB, where the value of UB is implementation dependent. It can be found by querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires that UB be no less than 32767.

The comm argument specifies the **communicator** that is used for the send operation. Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation. Each communication context provides a separate "communication universe:" messages are always received within the context they were sent, and messages sent in different contexts do not interfere.

The communicator also specifies the set of processes that share this communication context. This **process group** is ordered and processes are identified by their rank within this group. Thus, the range of valid values for dest is $0, \ldots, n-1$, where n is the number of processes in the group. (If the communicator is an inter-communicator, then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows communication with all processes that are accessible after MPI initialization and processes are identified by their rank in the group of MPI_COMM_WORLD.

Advice to users. Users that are comfortable with the notion of a flat name space for processes, and a single communication context, as offered by most existing communication libraries, need only use the predefined variable MPI_COMM_WORLD as the

2

3

5

6

9

10

11

12

13 14

15

16 17 18

19

20 21

22

23

24

25 26

27

28

29 30

31

32 33

34

35

36

37 38

39

40

41

42

43 44

45

46

47

48

comm argument. This will allow communication with all the processes available at initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators provide an important encapsulation mechanism for libraries and modules. They allow modules to have their own disjoint communication universe and their own process numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a fixed-length message header. However, the actual encoding is implementation dependent. Some of the information (e.g., source or destination) may be implicit, and need not be explicitly carried by messages. Also, processes may be identified by relative ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

```
OUT
                                          initial address of receive buffer (choice)
 IN
            count
                                          number of elements in receive buffer (non-negative in-
                                          teger)
 IN
                                          datatype of each receive buffer element (handle)
            datatype
 IN
            source
                                          rank of source or MPI_ANY_SOURCE (integer)
 IN
                                          message tag or MPI_ANY_TAG (integer)
            tag
  IN
            comm
                                          communicator (handle)
 OUT
                                          status object (Status)
            status
int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,
```

The blocking semantics of this call are described in Section 3.4.

The receive buffer consists of the storage containing count consecutive elements of the type specified by datatype, starting at address buf. The length of the received message must be less than or equal to the length of the receive buffer. An overflow error occurs if all incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for erroneous programs, the recommended handling of overflow situations is to return in status information about the source and tag of the incoming message. The receive operation will return an error code. A quality implementation will also ensure that no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it allows no modification of the other locations. A more lenient statement would allow for some optimizations but this is not allowed. The implementation must be ready to end a copy into the receiver memory exactly at the end of the receive buffer, even if it is an odd address. (*End of advice to implementors*.)

The selection of a message by a receive operation is governed by the value of the message envelope. A message can be received by a receive operation if its envelope matches the source, tag and comm values specified by the receive operation. The receiver may specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG value for tag, indicating that any source and/or tag are acceptable. It cannot specify a wildcard value for comm. Thus, a message can be received by a receive operation only if it is addressed to the receiving process, has a matching communicator, has matching source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The argument source, if different from MPI_ANY_SOURCE, is specified as a rank within the process group associated with that same communicator (remote process group, for intercommunicators). Thus, the range of valid values for the source argument is $\{0,...,n-1\}\cup\{MPI_ANY_SOURCE\}$, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may accept messages from an arbitrary sender, on the other hand, a send operation must specify a unique receiver. This matches a "push" communication mechanism, where data transfer is effected by the sender (rather than a "pull" mechanism, where data transfer is effected by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (However, it is unsafe to do so with the blocking send and receive operations described above, since this may lead to deadlock. See Section 3.5.)

Advice to implementors. Message context and other communicator information can be implemented as an additional tag field. It differs from the regular message tag in that wild card matching is not allowed on this field, and that value setting for this field is controlled by communicator manipulation functions. (End of advice to implementors.)

3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used in the receive operation. Also, if multiple requests are completed by a single MPI function

(see Section 3.7.5), a distinct error code may need to be returned for each request. The information is returned by the status argument of MPI_RECV. The type of status is MPI-defined. Status variables need to be explicitly allocated by the user, that is, they are not system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG, and MPI_ERROR; the structure may contain additional fields. Thus, status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and error code, respectively, of the received message.

In Fortran, status is an array of INTEGERs of size MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices of the entries that store the source, tag and error fields. Thus, status(MPI_SOURCE), status(MPI_TAG) and status(MPI_ERROR) contain, respectively, the source, tag and error code of the received message.

```
In C++, the status object is handled through the following methods:
{int MPI::Status::Get_source() const(binding deprecated, see Section 15.2) }

{void MPI::Status::Get_tag() const(binding deprecated, see Section 15.2) }

{int MPI::Status::Get_tag() const(binding deprecated, see Section 15.2) }

{void MPI::Status::Set_tag(int tag)(binding deprecated, see Section 15.2) }

{int MPI::Status::Get_error() const(binding deprecated, see Section 15.2) }

{void MPI::Status::Get_error(int error)(binding deprecated, see Section 15.2) }
```

In general, message-passing calls do not modify the value of the error code field of status variables. This field may be updated only by the functions in Section 3.7.5 which return multiple statuses. The field is updated if and only if such function returns with an error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status, such as MPI_WAIT, since that would only duplicate the information returned by the function itself. The current design avoids the additional overhead of setting it, in such cases. The field is needed for calls that return multiple statuses, since each request may have had a different failure. (End of rationale.)

The status argument also returns information on the length of the message received. However, this information is not directly available as a field of the status variable and a call to MPI_GET_COUNT is required to "decode" this information.

```
MPI_GET_COUNT(status, datatype, count)
```

```
    IN status return status of receive operation (Status)
    IN datatype datatype of each receive buffer entry (handle)
    OUT count number of received entries (integer)
```

```
int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)
MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
```

```
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
```

Returns the number of entries received. (Again, we count *entries*, each of type *datatype*, not *bytes*.) The datatype argument should match the argument provided by the receive call that set the status variable. If the number of entries received exceeds the limits of the count parameter, then MPI_GET_COUNT sets the value of count to MPI_UNDEFINED. [(We shall later see, in Section 4.1.11, that MPI_GET_COUNT may return, in certain situations, the value MPI_UNDEFINED.)]There are other situations where the value of count can be set to MPI_UNDEFINED; see Section 4.1.11.

Rationale. Some message-passing libraries use INOUT count, tag and source arguments, thus using them both to specify the selection criteria for incoming messages and return the actual envelope values of the received message. The use of a separate status argument prevents errors that are often attached with INOUT argument (e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use calls that refer implicitly to the "last message received." This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance. A message might be received without counting the number of elements it contains, and the count value is often not needed. Also, this allows the same function to be used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive this message. (*End of rationale*.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length zero where zero bytes have been transferred is zero. If the number of bytes transferred is greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray results in an empty block on some MPI process. Programs written in an SPMD style will not check for this special case and may want to use MPI_GET_COUNT to check the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data conversions and by the stride of the receive datatype. In most cases, the safest approach is to use the same datatype with MPI_GET_COUNT and the receive. (*End of advice to users.*)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm and status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details about the message received. There are also a number of other MPI calls where status is returned. An object of type MPI_STATUS is not an MPI opaque object; its structure

ticket265.
 ticket265.

is declared in mpi.h and mpif.h, and it exists in the user's program. In many cases, application programs are constructed so that it is unnecessary for them to examine the status fields. In these cases, it is a waste for the user to allocate a status object, and it is particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE, which when passed to a receive, wait, or test function, inform the implementation that the status fields are not to be filled in. Note that MPI_STATUS_IGNORE is not a special type of MPI_STATUS object; rather, it is a special value for the argument. In C one would expect it to be NULL, not the address of a special MPI_STATUS.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used everywhere a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of statuses is an OUT argument. Note that this converts status into an INOUT argument. The functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV, MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST_GET_STATUS. When an array is passed, as in the MPI_{TEST|WAIT}{ALL|SOME} functions, a separate constant,

MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE has been passed to that function.

MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same values in C and Fortran.

It is not allowed to have some of the statuses in an array of statuses for $MPI_{TEST|WAIT}_{ALL|SOME}$ functions set to MPI_{STATUS_IGNORE} ; one either specifies ignoring all of the statuses in such a call with $MPI_{STATUSES_IGNORE}$, or *none* of them by passing normal statuses in all positions in the array of statuses.

There are no C++ bindings for MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE. To allow an OUT or INOUT MPI::Status argument to be ignored, all MPI C++ bindings that have OUT or INOUT MPI::Status parameters are overloaded with a second version that omits the OUT or INOUT MPI::Status parameter.

Example 3.1 The C++ bindings for MPI_PROBE are:

```
void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const
void MPI::Comm::Probe(int source, int tag) const
```

3.3 Data Type Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.

- 1. Data is pulled out of the send buffer and a message is assembled.
- 2. A message is transferred from sender to receiver.
- 3. Data is pulled from the incoming message and disassembled into the receive buffer.

 $\frac{23}{24}$

Type matching has to be observed at each of these three phases: The type of each variable in the sender buffer has to match the type specified for that entry by the send operation; the type specified by the send operation has to match the type specified by the receive operation; and the type of each variable in the receive buffer has to match the type specified for that entry by the receive operation. A program that fails to observe these three rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of types of the host language with types specified in communication operations; and matching of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL, and so on. There is one exception to this rule, discussed in Section 4.2, the type MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the communication operation if the datatype name used by that operation corresponds to the basic type of the host program variable. For example, an entry with type name MPI_INTEGER matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a byte-addressable machine), irrespective of the datatype of the variable that contains this byte. The type MPI_PACKED is used to send data that has been explicitly packed, or receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

- Communication of typed values (e.g., with datatype different from MPI_BYTE), where the datatypes of the corresponding entries in the sender program, in the send call, in the receive call and in the receiver program must all match.
- Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender and receiver use the datatype MPI_BYTE. In this case, there are no requirements on the types of the corresponding entries in the sender and the receiver programs, nor is it required that they be the same.
- Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 3.2 Sender and receiver specify matching types.

```
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
    CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN
    CALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)
END IF
```

This code is correct if both a and b are real arrays of size ≥ 10 . (In Fortran, it might be correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced to an array with ten reals.)

```
Example 3.3 Sender and receiver do not specify matching types.
```

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)

END IF
```

This code is erroneous, since sender and receiver do not provide matching datatype arguments.

Example 3.4 Sender and receiver specify communication of untyped values.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)

END IF
```

This code is correct, irrespective of the type and size of a and b (unless this results in an out of bound memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND, then MPI will send the data stored at contiguous locations, starting from the address indicated by the buf argument. This may have unexpected results when the data layout is not as a casual user would expect it to be. For example, some Fortran compilers implement variables of type CHARACTER as a structure that contains the character length and a pointer to the actual string. In such an environment, sending and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have the anticipated result of transferring the character string. For this reason, the user is advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER, rather then the entire character string stored in the variable. Fortran variables of type CHARACTER or substrings are transferred as if they were arrays of characters. This is illustrated in the example below.

Example 3.5

Transfer of Fortran CHARACTERs.

The last five characters of string **b** at process 1 are replaced by the first five characters of string **a** at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a character of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termination symbol. There is no fixed convention on how to represent characters, and how to store their length. Some compilers pass a character argument to a routine as a pair of arguments, one holding the address of the string and the other holding the length of string. Consider the case of an MPI communication call that is passed a communication buffer with type defined by a derived datatype (Section 4.1). If this communicator buffer contains variables of type CHARACTER then the information on their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the MPI call. One could add a length parameter to the type MPI_CHARACTER, but this does not add much convenience and the same functionality can be achieved by defining a suitable derived datatype. (*End of rationale*.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a structure with a length and a pointer to the actual string. In such an environment, the MPI call needs to dereference the pointer in order to reach the string. (End of advice to implementors.)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environments. Communication in a heterogeneous environment may require data conversions. We use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex floating point to IEEE floating point.

The type matching rules imply that MPI communication never entails type conversion. On the other hand, MPI requires that a representation conversion be performed when a typed value is transferred across environments that use different representations for the datatype of this value. MPI does not specify rules for representation conversion. Such

conversion is expected to preserve integer, logical or character values, and to convert a floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Conversion of integers or characters may also lead to exceptions when a value that can be represented in one system cannot be represented in the other system. An exception occurring during representation conversion results in a failure of the communication. An error occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary representation of the byte stored at the receiver is identical to the binary representation of the byte loaded at the sender. This holds true, whether sender and receiver run in the same or in distinct environments. No representation conversion is required. (Note that representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system, where all processes run in the same environment.

Consider the three examples, 3.2-3.4. The first program is correct, assuming that a and b are REAL arrays of size ≥ 10 . If the sender and receiver execute in different environments, then the ten real values that are fetched from the send buffer will be converted to the representation for reals on the receiver site before they are stored in the receive buffer. While the number of real elements fetched from the send buffer equal the number of real elements stored in the receive buffer, the number of bytes stored need not equal the number of bytes loaded. For example, the sender may use a four byte representation and the receiver an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.

The third program is correct. The exact same sequence of forty bytes that were loaded from the send buffer will be stored in the receive buffer, even if sender and receiver run in a different environment. The message sent has exactly the same length (in bytes) and the same binary representation as the message received. If a and b are of different types, or if they are of the same type but different data representations are used, then the bits stored in the receive buffer may encode values that are different from the values they encoded in the send buffer.

Data representation conversion also applies to the envelope of a message: source, destination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry data type information. Both sender and receiver provide complete data type information. In a heterogeneous environment, one can either use a machine independent encoding such as XDR, or have the receiver convert from the sender representation to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the system to detect mismatches between datatype at sender and receiver. This might be particularly useful in a slower but safer debug mode. (*End of advice to implementors*.)

MPI requires support for inter-language communication, i.e., if messages are sent by a C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined in Section 16.3 on page 529.

3.4 Communication Modes

The send call described in Section 3.2.1 is **blocking**: it does not return until the message data and envelope have been safely stored away so that the sender is free to modify the send buffer. The message might be copied directly into the matching receive buffer, or it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can complete as soon as the message was buffered, even if no matching receive has been executed by the receiver. On the other hand, message buffering can be expensive, as it entails additional memory-to-memory copying, and it requires the allocation of memory for buffering. MPI offers the choice of several communication modes that allow one to control the choice of the communication protocol.

The send call described in Section 3.2.1 uses the **standard** communication mode. In this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may buffer outgoing messages. In such a case, the send call may complete before a matching receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose not to buffer outgoing messages, for performance reasons. In this case, the send call will not complete until a matching receive has been posted, and the data has been moved to the receiver.

Thus, a send in standard mode can be started whether or not a matching receive has been posted. It may complete before a matching receive is posted. The standard mode send is **non-local**: successful completion of the send operation may depend on the occurrence of a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering or not stems from the desire to achieve portable programs. Since any system will run out of buffer resources as message sizes are increased, and some implementations may want to provide little buffering, MPI takes the position that correct (and therefore, portable) programs do not rely on system buffering in standard mode. Buffering may improve the performance of a correct program, but it doesn't affect the result of the program. If the user wishes to guarantee a certain amount of buffering, the user-provided buffer system of Section 3.6 should be used, along with the buffered-mode send. (End of rationale.)

There are three additional communication modes.

A buffered mode send operation can be started whether or not a matching receive has been posted. It may complete before a matching receive is posted. However, unlike the standard send, this operation is **local**, and its completion does not depend on the occurrence of a matching receive. Thus, if a send is executed and no matching receive is posted, then MPI must buffer the outgoing message, so as to allow the send call to complete. An error will occur if there is insufficient buffer space. The amount of available buffer space is controlled by the user — see Section 3.6. Buffer allocation by the user may be required for the buffered mode to be effective.

A send that uses the **synchronous** mode can be started whether or not a matching receive was posted. However, the send will complete successfully only if a matching receive is posted, and the receive operation has started to receive the message sent by the synchronous send. Thus, the completion of a synchronous send not only indicates that the send buffer can be reused, but it also indicates that the receiver has reached a certain point in its

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

execution, namely that it has started executing the matching receive. If both sends and receives are blocking operations then the use of the synchronous mode provides synchronous communication semantics: a communication does not complete at either end before both processes rendezvous at the communication. A send executed in this mode is **non-local**.

A send that uses the **ready** communication mode may be started *only* if the matching receive is already posted. Otherwise, the operation is erroneous and its outcome is undefined. On some systems, this allows the removal of a hand-shake operation that is otherwise required and results in improved performance. The completion of the send operation does not depend on the status of a matching receive, and merely indicates that the send buffer can be reused. A send operation that uses the ready mode has the same semantics as a standard send operation, or a synchronous send operation; it is merely that the sender provides additional information to the system (namely that a matching receive is already posted), that can save some overhead. In a correct program, therefore, a ready send could be replaced by a standard send with no effect on the behavior of the program other than performance.

Three additional send functions are provided for the three additional communication modes. The communication mode is indicated by a one letter prefix: B for buffered, S for synchronous, and R for ready.

19 20

```
MPI_BSEND (buf, count, datatype, dest, tag, comm)
21
22
       IN
                 buf
                                              initial address of send buffer (choice)
23
       IN
                 count
                                               number of elements in send buffer (non-negative inte-
24
25
                                               datatype of each send buffer element (handle)
       IN
                 datatype
26
27
                 dest
       IN
                                              rank of destination (integer)
28
       IN
                                              message tag (integer)
                 tag
29
       IN
                 comm
                                              communicator (handle)
30
31
      int MPI_Bsend(void* buf, int count, MPI_Datatype datatype, int dest,
32
                     int tag, MPI_Comm comm)
33
34
     MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
35
          <type> BUF(*)
36
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
37
38
      {void MPI::Comm::Bsend(const void* buf, int count, const
39
                     MPI::Datatype& datatype, int dest, int tag) const/binding
                     deprecated, see Section 15.2) }
40
41
```

Send in buffered mode.

43 44 45

42

```
MPI_SSEND (buf, count, datatype, dest, tag, comm)
                                                                                             2
  IN
            buf
                                        initial address of send buffer (choice)
  IN
           count
                                        number of elements in send buffer (non-negative inte-
                                         ger)
  IN
                                        datatype of each send buffer element (handle)
           datatype
  IN
           dest
                                        rank of destination (integer)
  IN
           tag
                                        message tag (integer)
  IN
           comm
                                        communicator (handle)
                                                                                             11
                                                                                             12
int MPI_Ssend(void* buf, int count, MPI_Datatype datatype, int dest,
                                                                                             13
               int tag, MPI_Comm comm)
                                                                                            14
MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
                                                                                             15
    <type> BUF(*)
                                                                                             16
    INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
                                                                                             18
{void MPI::Comm::Ssend(const void* buf, int count, const
                                                                                            19
               MPI::Datatype& datatype, int dest, int tag) const(binding
                                                                                            20
               deprecated, see Section 15.2) }
                                                                                            21
    Send in synchronous mode.
                                                                                            22
                                                                                            23
                                                                                             24
MPI_RSEND (buf, count, datatype, dest, tag, comm)
  IN
                                        initial address of send buffer (choice)
                                                                                             26
                                                                                            27
  IN
           count
                                        number of elements in send buffer (non-negative inte-
                                                                                            28
                                        ger)
                                                                                            29
  IN
           datatype
                                        datatype of each send buffer element (handle)
                                                                                            30
  IN
           dest
                                        rank of destination (integer)
                                                                                            31
  IN
                                        message tag (integer)
            tag
                                                                                             33
  IN
                                        communicator (handle)
           comm
                                                                                            34
                                                                                            35
int MPI_Rsend(void* buf, int count, MPI_Datatype datatype, int dest,
                                                                                            36
               int tag, MPI_Comm comm)
                                                                                            37
                                                                                            38
MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
                                                                                            39
    <type> BUF(*)
    INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
                                                                                            41
{void MPI::Comm::Rsend(const void* buf, int count, const
                                                                                            42
               MPI::Datatype& datatype, int dest, int tag) const(binding
                                                                                            43
               deprecated, see Section 15.2) }
                                                                                            44
                                                                                            45
    Send in ready mode.
                                                                                             46
    There is only one receive operation, but it matches any of the send modes. The receive
```

Unofficial Draft for Comment Only

operation described in the last section is **blocking**: it returns only after the receive buffer

contains the newly received message. A receive can complete before the matching send has completed (of course, it can complete only after the matching send has started).

In a multi-threaded implementation of MPI, the system may de-schedule a thread that is blocked on a send or receive operation, and schedule another thread for execution in the same address space. In such a case it is the user's responsibility not to modify a communication buffer until the communication completes. Otherwise, the outcome of the computation is undefined.

Advice to implementors. Since a synchronous send cannot complete before a matching receive is posted, one will not normally buffer messages sent by such an operation.

 It is recommended to choose buffering over blocking the sender, whenever possible, for standard sends. The programmer can signal his or her preference for blocking the sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined below.

ready send: The message is sent as soon as possible.

synchronous send: The sender sends a request-to-send message. The receiver stores this request. When a matching receive is posted, the receiver sends back a permission-to-send message, and the sender now sends the message.

standard send: First protocol may be used for short messages, and second protocol for long messages.

buffered send: The sender copies the message into a buffer and then sends it with a nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of

course, there are many other possible protocols. Ready send can be implemented as a standard send. In this case there will be no

performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data

 buffering is needed. However, users may expect some buffering.

In a multi-threaded environment, the execution of a blocking communication should

In a multi-threaded environment, the execution of a blocking communication should block only the executing thread, allowing the thread scheduler to de-schedule this thread and schedule another thread for execution. (*End of advice to implementors.*)

3.5 Semantics of Point-to-Point Communication

 A valid MPI implementation guarantees certain general properties of point-to-point communication, which are described in this section.

Order Messages are *non-overtaking*: If a sender sends two messages in succession to the same destination, and both match the same receive, then this operation cannot receive the second message if the first one is still pending. If a receiver posts two receives in succession, and both match the same message, then the second receive operation cannot be satisfied by this message, if the first one is still pending. This requirement facilitates matching of sends to receives. It guarantees that message-passing code is deterministic, if processes are

single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of nondeterminism.)

If a process has a single thread of execution, then any two communications executed by this process are ordered. On the other hand, if the process is multi-threaded, then the semantics of thread execution may not define a relative order between two send operations executed by two distinct threads. The operations are logically concurrent, even if one physically precedes the other. In such a case, the two messages sent can be received in any order. Similarly, if two receive operations that are logically concurrent receive two successively sent messages, then the two messages can match the two receives in either order.

Example 3.6 An example of non-overtaking messages.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)

CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF
```

The message sent by the first send must be received by the first receive, and the message sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then at least one of these two operations will complete, independently of other actions in the system: the send operation will complete, unless the receive is satisfied by another message, and completes; the receive operation will complete, unless the message sent is consumed by another matching receive that was posted at the same destination process.

Example 3.7 An example of two, intertwined matching pairs.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)

CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)

CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF
```

Both processes invoke their first communication call. Since the first send of process zero uses the buffered mode, it must complete, irrespective of the state of process one. Since no matching receive is posted, the message will be copied into buffer space. (If insufficient buffer space is available, then the program will fail.) The second send is then invoked. At that point, a matching pair of send and receive operation is enabled, and both operations must complete. Process one next invokes its second receive call, which will be satisfied by

the buffered message. Note that process one received the messages in the reverse order they were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose that a send is posted. Then it is possible that the destination process repeatedly posts a receive that matches this send, yet the message is never received, because it is each time overtaken by another message, sent from another source. Similarly, suppose that a receive was posted by a multi-threaded process. Then it is possible that messages that match this receive are repeatedly received, yet the receive is never satisfied, because it is overtaken by other receives posted at this node (by other executing threads). It is the programmer's responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources that are limited. Errors may occur when lack of resources prevent the execution of an MPI call. A quality implementation will use a (small) fixed amount of resources for each pending send in the ready or synchronous mode and for each pending receive. However, buffer space may be consumed to store messages sent in standard mode, and must be consumed to store messages sent in buffered mode, when no matching receive is available. The amount of space available for buffering will be much smaller than program data memory on many systems. Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode. Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI implementation is required to do no worse than implied by this model. This allows users to avoid buffer overflows when they use buffered sends. Buffer allocation and use is described in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is erroneous. When such a situation is detected, an error is signalled that may cause the program to terminate abnormally. On the other hand, a standard send operation that cannot complete because of lack of buffer space will merely block, waiting for buffer space to become available or for a matching receive to be posted. This behavior is preferable in many situations. Consider a situation where a producer repeatedly produces new values and sends them to a consumer. Assume that the producer produces new values faster than the consumer can consume them. If buffered sends are used, then a buffer overflow will result. Additional synchronization has to be added to the program so as to prevent this from occurring. If standard sends are used, then the producer will be automatically throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated by the examples below.

Example 3.8 An exchange of messages.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
```

END IF

This program will succeed even if no buffer space for data is available. The standard send operation can be replaced, in this example, with a synchronous send.

Example 3.9 An errant attempt to exchange messages.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF
```

The receive operation of the first process must complete before its send, and can complete only if the matching send of the second processor is executed. The receive operation of the second process must complete before its send and can complete only if the matching send of the first process is executed. This program will always deadlock. The same holds for any other send mode.

Example 3.10 An exchange that relies on buffering.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF
```

The message sent by each process has to be copied out before the send operation returns and the receive operation starts. For the program to complete, it is necessary that at least one of the two messages sent be buffered. Thus, this program can succeed only if the communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation may occur where both processes are blocked because buffer space is not available. The same will certainly happen, if the synchronous mode is used. If the buffered mode is used, and not enough buffer space is available, then the program will not complete either. However, rather than a deadlock situation, we shall have a buffer overflow error.

A program is "safe" if no message buffering is required for the program to complete. One can replace all sends in such program with synchronous sends, and the program will still run correctly. This conservative programming style provides the best portability, since program completion does not depend on the amount of buffer space available or on the communication protocol used.

2

3

5

6

9

10

11

12

13

14 15

16 17

18

19 20 21

22

34

35

36 37 38

39

Many programmers prefer to have more leeway and opt to use the "unsafe" programming style shown in Example 3.10. In such cases, the use of standard sends is likely to provide the best compromise between performance and robustness: quality implementations will provide sufficient buffering so that "common practice" programs will not deadlock. The buffered send mode can be used for programs that require more buffering, or in situations where the programmer wants more control. This mode might also be used for debugging purposes, as buffer overflow conditions are easier to diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 3.7, can be used to avoid the need for buffering outgoing messages. This prevents deadlocks due to lack of buffer space, and improves performance, by allowing overlap of computation and communication, and avoiding the overheads of allocating buffers and copying messages into buffers. (*End of advice to users*.)

3.6 Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffering is done by the sender.

```
MPI_BUFFER_ATTACH(buffer, size)
```

```
IN
                  buffer
                                               initial buffer address (choice)
23
24
       IN
                                               buffer size, in bytes (non-negative integer)
                  size
25
26
      int MPI_Buffer_attach(void* buffer, int size)
27
     MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
28
          <type> BUFFER(*)
29
          INTEGER SIZE, IERROR
30
31
      {void MPI::Attach_buffer(void* buffer, int size) (binding deprecated, see
32
                     Section 15.2) }
33
```

Provides to MPI a buffer in the user's memory to be used for buffering outgoing messages. The buffer is used only by messages sent in buffered mode. Only one buffer can be attached to a process at a time.

```
MPI_BUFFER_DETACH(buffer_addr, size)
```

```
OUT
                 buffer_addr
                                              initial buffer address (choice)
40
41
       OUT
                 size
                                              buffer size, in bytes (non-negative integer)
42
43
     int MPI_Buffer_detach(void* buffer_addr, int* size)
44
45
     MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
46
          <type> BUFFER_ADDR(*)
47
          INTEGER SIZE, IERROR
```

```
{int MPI::Detach_buffer(void*& buffer)(binding deprecated, see Section 15.2)}
```

Detach the buffer currently associated with MPI. The call returns the address and the size of the detached buffer. This operation will block until all messages currently in the buffer have been transmitted. Upon return of this function, the user may reuse or deallocate the space taken by the buffer.

Example 3.11 Calls to attach and detach buffers.

```
#define BUFFSIZE 10000
int size;
char *buff;
MPI_Buffer_attach( malloc(BUFFSIZE), BUFFSIZE);
/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach( &buff, &size);
/* Buffer size reduced to zero */
MPI_Buffer_attach( buff, size);
/* Buffer of 10000 bytes available again */
```

Advice to users. Even though the C functions MPI_Buffer_attach and MPI_Buffer_detach both have a first argument of type void*, these arguments are used differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address of the pointer is passed to MPI_Buffer_detach, so that this call can return the pointer value. (End of advice to users.)

Rationale. Both arguments are defined to be of type void* (rather than void* and void**, respectively), so as to avoid complex type casts. E.g., in the last example, &buff, which is of type char**, can be passed as argument to MPI_Buffer_detach without type casting. If the formal parameter had type void** then we would need a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode sends. When no buffer is currently associated, MPI behaves as if a zero-sized buffer is associated with the process.

MPI must provide as much buffering for outgoing messages as if outgoing message data were buffered by the sending process, in the specified buffer space, using a circular, contiguous-space allocation policy. We outline below a model implementation that defines this policy. MPI may provide more buffering, and may use a better buffer allocation algorithm than described below. On the other hand, MPI may signal an error whenever the simple buffering allocator described below would run out of space. In particular, if no buffer is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard mode sends. It is expected that vendors will provide such information for their implementations.

Rationale. There is a wide spectrum of possible implementations of buffered communication: buffering can be done at sender, at receiver, or both; buffers can be dedicated to one sender-receiver pair, or be shared by all communications; buffering can be done in real or in virtual memory; it can use dedicated memory, or memory

shared by other processes; buffer space may be allocated statically or be changed dynamically; etc. It does not seem feasible to provide a portable mechanism for querying or controlling buffering that would be compatible with all these choices, yet provide meaningful information. (*End of rationale*.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Section 4.2 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained. Each entry contains a communication request handle that identifies a pending nonblocking send, a pointer to the next entry and the packed message data. The entries are stored in successive locations in the buffer. Free space is available between the queue tail and the queue head.

A buffered send call results in the execution of the following code.

- Traverse sequentially the PME queue from head towards the tail, deleting all entries for communications that have completed, up to the first entry with an uncompleted request; update queue head to point to that entry.
- Compute the number, n, of bytes needed to store an entry for the new message. An upper bound on n can be computed as follows: A call to the function MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm arguments used in the MPI_BSEND call, returns an upper bound on the amount of space needed to buffer the message data (see Section 4.2). The MPI constant MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed by the entry (e.g., for pointers or envelope information).
- Find the next contiguous empty space of n bytes in buffer (space following queue tail, or space at start of buffer if queue tail is too close to end of buffer). If space is not found then raise buffer overflow error.
- Append to end of PME queue in contiguous space the new entry that contains request handle, next pointer and packed message data; MPI_PACK is used to pack data.
- Post nonblocking send (standard mode) for packed data.
- Return

3.7 Nonblocking Communication

One can improve performance on many systems by overlapping communication and computation. This is especially true on systems where communication can be executed autonomously by an intelligent communication controller. Light-weight threads are one mechanism for achieving such overlap. An alternative mechanism that often leads to better performance is to use **nonblocking communication**. A nonblocking **send start** call initiates the send operation, but does not complete it. The send start call can return before the message was copied out of the send buffer. A separate **send complete** call is needed to complete the communication, i.e., to verify that the data has been copied out of the send buffer. With suitable hardware, the transfer of data out of the sender memory may proceed

concurrently with computations done at the sender after the send was initiated and before it completed. Similarly, a nonblocking **receive start call** initiates the receive operation, but does not complete it. The call can return before a message is stored into the receive buffer. A separate **receive complete** call is needed to complete the receive operation and verify that the data has been received into the receive buffer. With suitable hardware, the transfer of data into the receiver memory may proceed concurrently with computations done after the receive was initiated and before it completed. The use of nonblocking receives may also avoid system buffering and memory-to-memory copying, as information is provided early on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard, buffered, synchronous and ready. These carry the same meaning. Sends of all modes, ready excepted, can be started whether a matching receive has been posted or not; a nonblocking ready send can be started only if a matching receive is posted. In all cases, the send start call is local: it returns immediately, irrespective of the status of other processes. If the call causes some system resource to be exhausted, then it will fail and return an error code. Quality implementations of MPI should ensure that this happens only in "pathological" cases. That is, an MPI implementation should be able to support a large number of pending nonblocking operations.

The send-complete call returns when data has been copied out of the send buffer. It may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching receive has started. That is, a receive has been posted, and has been matched with the send. In this case, the send-complete call is non-local. Note that a synchronous, nonblocking send may complete, if matched by a nonblocking receive, before the receive complete call occurs. (It can complete as soon as the sender "knows" the transfer will complete, but before the receiver "knows" the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending receive. In this case, the send-complete call is local, and must succeed irrespective of the status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching receive is posted, if the message is buffered. On the other hand, the send-complete may not complete until a matching receive is posted, and the message was copied into the receive buffer.

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard mode, and must be delayed, for synchronous mode, until a matching receive is posted. The use of nonblocking sends in these two cases allows the sender to proceed ahead of the receiver, so that the computation is more tolerant of fluctuations in the speeds of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g., the blocking version of buffered send is capable of completing regardless of when a matching receive call is made. However, separating the start from the completion of these sends still gives some opportunity for optimization within the MPI library. For example, starting a buffered send gives an implementation more flexibility in determining if and how the message is buffered. There are also advantages for both nonblocking buffered and ready modes when data copying can be done concurrently with computation.

The message-passing model implies that communication is initiated by the sender. The communication will generally have lower overhead if a receive is already posted when the sender initiates the communication (data can be moved directly to the receive buffer, and there is no need to queue a pending send request). However, a receive operation can complete only after the matching send has occurred. The use of nonblocking receives allows one to achieve lower communication overheads without blocking the receiver while it waits for the send. (End of advice to users.)

9

10

11

12

13

14

15

16

1

2

3

5

6

3.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication operations and match the operation that initiates the communication with the operation that terminates it. These are system objects that are accessed via a handle. A request object identifies various properties of a communication operation, such as the send mode, the communication buffer that is associated with it, its context, the tag and destination arguments to be used for a send, or the tag and source arguments to be used for a receive. In addition, this object stores information about the status of the pending communication operation.

17 18 19

20

21

22

3.7.2 Communication Initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or R is used for buffered, synchronous or ready mode. In addition a prefix of I (for immediate) indicates that the call is nonblocking.

232425

```
MPI_ISEND(buf, count, datatype, dest, tag, comm, request)
```

```
IN
                 buf
                                              initial address of send buffer (choice)
27
       IN
                                              number of elements in send buffer (non-negative inte-
                 count
28
                                              ger)
29
30
       IN
                 datatype
                                              datatype of each send buffer element (handle)
31
       IN
                 dest
                                              rank of destination (integer)
32
       IN
                                              message tag (integer)
                 tag
33
34
       IN
                 comm
                                              communicator (handle)
35
       OUT
                                              communication request (handle)
                 request
36
37
     int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest,
38
                     int tag, MPI_Comm comm, MPI_Request *request)
39
40
     MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
41
          <type> BUF(*)
42
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
43
     {MPI::Request MPI::Comm::Isend(const void* buf, int count, const
44
                     MPI::Datatype& datatype, int dest, int tag) const(binding
45
                     deprecated, see Section 15.2) }
46
47
          Start a standard mode, nonblocking send.
```

```
MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)
                                                                                            2
 IN
            buf
                                        initial address of send buffer (choice)
 IN
           count
                                        number of elements in send buffer (non-negative inte-
                                        ger)
 IN
           datatype
                                        datatype of each send buffer element (handle)
 IN
           dest
                                        rank of destination (integer)
 IN
           tag
                                        message tag (integer)
 IN
           comm
                                        communicator (handle)
 OUT
                                        communication request (handle)
            request
                                                                                            12
                                                                                            13
int MPI_Ibsend(void* buf, int count, MPI_Datatype datatype, int dest,
                                                                                            14
               int tag, MPI_Comm comm, MPI_Request *request)
                                                                                            15
                                                                                            16
MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
    <type> BUF(*)
                                                                                            18
    INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
                                                                                            19
{MPI::Request MPI::Comm::Ibsend(const void* buf, int count, const
                                                                                            20
               MPI::Datatype& datatype, int dest, int tag) const(binding
                                                                                           21
               deprecated, see Section 15.2) }
                                                                                            22
                                                                                            23
    Start a buffered mode, nonblocking send.
                                                                                            24
MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)
                                                                                            26
                                                                                           27
 IN
            buf
                                        initial address of send buffer (choice)
                                                                                            28
 IN
                                        number of elements in send buffer (non-negative inte-
           count
                                                                                           29
                                        ger)
                                                                                            30
 IN
           datatype
                                        datatype of each send buffer element (handle)
                                                                                            31
           dest
                                        rank of destination (integer)
 IN
                                                                                            33
 IN
           tag
                                        message tag (integer)
                                                                                           34
 IN
                                        communicator (handle)
           comm
                                                                                           35
                                                                                           36
 OUT
            request
                                        communication request (handle)
                                                                                           37
int MPI_Issend(void* buf, int count, MPI_Datatype datatype, int dest,
                                                                                            39
               int tag, MPI_Comm comm, MPI_Request *request)
MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
                                                                                            41
                                                                                            42
    <type> BUF(*)
    INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
                                                                                            43
                                                                                            44
{MPI::Request MPI::Comm::Issend(const void* buf, int count, const
                                                                                            45
               MPI::Datatype& datatype, int dest, int tag) const/binding
                                                                                            46
               deprecated, see Section 15.2) }
    Start a synchronous mode, nonblocking send.
```

```
1
     MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)
2
       IN
                 buf
                                              initial address of send buffer (choice)
3
       IN
                 count
                                              number of elements in send buffer (non-negative inte-
                                              ger)
5
6
       IN
                 datatype
                                              datatype of each send buffer element (handle)
       IN
                 dest
                                              rank of destination (integer)
       IN
                 tag
                                              message tag (integer)
9
10
       IN
                 comm
                                              communicator (handle)
11
       OUT
                                              communication request (handle)
                 request
12
13
     int MPI_Irsend(void* buf, int count, MPI_Datatype datatype, int dest,
14
                     int tag, MPI_Comm comm, MPI_Request *request)
15
16
     MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
17
          <type> BUF(*)
18
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
19
     {MPI::Request MPI::Comm::Irsend(const void* buf, int count, const
20
                     MPI::Datatype& datatype, int dest, int tag) const(binding
21
                     deprecated, see Section 15.2) }
22
23
          Start a ready mode nonblocking send.
24
25
     MPI_IRECV (buf, count, datatype, source, tag, comm, request)
26
27
       OUT
                 buf
                                              initial address of receive buffer (choice)
28
       IN
                                              number of elements in receive buffer (non-negative in-
                 count
29
                                              teger)
30
31
       IN
                 datatype
                                              datatype of each receive buffer element (handle)
       IN
                 source
                                              rank of source or MPI_ANY_SOURCE (integer)
33
       IN
                                              message tag or MPI_ANY_TAG (integer)
                 tag
34
       IN
                                              communicator (handle)
35
                 comm
36
       OUT
                                              communication request (handle)
                 request
37
38
     int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,
39
                     int tag, MPI_Comm comm, MPI_Request *request)
40
     MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
41
42
          <type> BUF(*)
          INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR
43
44
     {MPI::Request MPI::Comm::Irecv(void* buf, int count, const
45
                     MPI::Datatype& datatype, int source, int tag) const/binding
46
                     deprecated, see Section 15.2) }
47
          Start a nonblocking receive.
```

These calls allocate a communication request object and associate it with the request handle (the argument request). The request can be used later to query the status of the communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the send buffer. The sender should not modify any part of the send buffer after a nonblocking send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the receive buffer. The receiver should not access any part of the receive buffer after a nonblocking receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in subsections "Problems Due to Data Copying and Sequence Association," and "A Problem with Register Optimization" in Section 16.2.2 on pages 514 and 517. (End of advice to users.)

3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communication. The completion of a send operation indicates that the sender is now free to update the locations in the send buffer (the send operation itself leaves the content of the send buffer unchanged). It does not indicate that the message has been received, rather, it may have been buffered by the communication subsystem. However, if a synchronous mode send was used, the completion of the send operation indicates that a matching receive was initiated, and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the received message, the receiver is now free to access it, and that the status object is set. It does not indicate that the matching send operation has completed (but indicates, of course, that the send was initiated).

We shall use the following terminology: A **null** handle is a handle with value MPI_REQUEST_NULL. A persistent request and the handle to it are **inactive** if the request is not associated with any ongoing communication (see Section 3.9). A handle is **active** if it is neither null nor inactive. An **empty** status is a status which is set to return tag = MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also internally configured so that calls to MPI_GET_COUNT and MPI_GET_ELEMENTS return count = 0 and MPI_TEST_CANCELLED returns false. We set a status variable to empty when the value returned by it is not significant. Status is set in this way so as to prevent errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any of the other derived functions (MPI_{TEST|WAIT}{ALL|SOME|ANY}), where the request corresponds to a send call, are undefined, with two exceptions: The error status field will contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only by the MPI completion functions that take arrays of MPI_STATUS. For the functions MPI_TEST, MPI_TESTANY, MPI_WAIT, and MPI_WAITANY, which return a single MPI_STATUS value, the normal MPI error return process should be used (not the MPI_ERROR field in the MPI_STATUS argument).

```
1
     MPI_WAIT(request, status)
2
       INOUT
                 request
                                             request (handle)
3
       OUT
                 status
                                             status object (Status)
4
5
6
     int MPI_Wait(MPI_Request *request, MPI_Status *status)
7
     MPI_WAIT(REQUEST, STATUS, IERROR)
8
          INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
9
10
     {void MPI::Request::Wait(MPI::Status& status)(binding deprecated, see
11
                    Section 15.2) }
12
     {void MPI::Request::Wait()(binding deprecated, see Section 15.2)}
13
14
```

A call to MPI_WAIT returns when the operation identified by request is complete. If the communication object associated with this request was created by a nonblocking send or receive call, then the object is deallocated by the call to MPI_WAIT and the request handle is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local operation.

The call returns, in status, information on the completed operation. The content of the status object for a receive operation can be accessed as described in Section 3.2.5. The status object for a send operation may be queried by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case the operation returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that the user send buffer can be reused — i.e., data has been sent out or copied into a buffer attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no longer cancel the send (see Section 3.8). If a matching receive is never posted, then the buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL (always being able to free program space that was committed to the communication subsystem). (End of advice to users.)

Advice to implementors. In a multi-threaded environment, a call to MPI_WAIT should block only the calling thread, allowing the thread scheduler to schedule another thread for execution. (End of advice to implementors.)

```
36
37
```

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

33

34

```
38
     MPI_TEST(request, flag, status)
39
       INOUT
                 request
                                              communication request (handle)
40
41
       OUT
                 flag
                                              true if operation completed (logical)
42
       OUT
                                              status object (Status)
                 status
43
44
     int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)
45
46
     MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
47
          LOGICAL FLAG
          INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
```

7

10

11

12 13

14 15

16

17

18

19

20

21

22 23 24

25 26

27

28

29

30

31

33

34

35

36

37

38 39

41

44 45

46

47

```
{bool MPI::Request::Test(MPI::Status& status)(binding deprecated, see
               Section 15.2) }
{bool MPI::Request::Test() (binding deprecated, see Section 15.2) }
```

A call to MPI_TEST returns flag = true if the operation identified by request is complete. In such a case, the status object is set to contain information on the completed operation; if the communication object was created by a nonblocking send or receive, then it is deallocated and the request handle is set to MPI_REQUEST_NULL. The call returns flag = false, otherwise. In this case, the value of the status object is undefined. MPI_TEST is a local operation.

The return status object for a receive operation carries information that can be accessed as described in Section 3.2.5. The status object for a send operation carries information that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_TEST with a null or inactive request argument. In such a case the operation returns with flag = true and empty status.

The functions MPI_WAIT and MPI_TEST can be used to complete both sends and receives.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to schedule alternative activities within a single thread of execution. An event-driven thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to users.)

Simple usage of nonblocking operations and MPI_WAIT. Example 3.12

```
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
    CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
    **** do some computation to mask latency ****
    CALL MPI_WAIT(request, status, ierr)
ELSE IF (rank.EQ.1) THEN
    CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)
    **** do some computation to mask latency ****
    CALL MPI_WAIT(request, status, ierr)
END IF
```

A request object can be deallocated without waiting for the associated communication to complete, by using the following operation.

```
MPI_REQUEST_FREE(request)
 INOUT
                                     communication request (handle)
           request
                                                                                      42
                                                                                      43
int MPI_Request_free(MPI_Request *request)
MPI_REQUEST_FREE(REQUEST, IERROR)
    INTEGER REQUEST, IERROR
{void MPI::Request::Free()(binding deprecated, see Section 15.2)}
```

Mark the request object for deallocation and set request to MPI_REQUEST_NULL. An ongoing communication that is associated with the request will be allowed to complete. The request will be deallocated only after its completion.

Rationale. The MPI_REQUEST_FREE mechanism is provided for reasons of performance and convenience on the sending side. (End of rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is not possible to check for the successful completion of the associated communication with calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the communication, an error code cannot be returned to the user — such an error must be treated as fatal. An active receive request should never be freed as the receiver will have no way to verify that the receive has completed and the receive buffer can be reused. (End of advice to users.)

Example 3.13 An example using MPI_REQUEST_FREE.

```
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank.EQ.0) THEN
    DO i=1, n
      CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
      CALL MPI_REQUEST_FREE(req, ierr)
      CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
      CALL MPI_WAIT(req, status, ierr)
    END DO
ELSE IF (rank.EQ.1) THEN
    CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
    CALL MPI_WAIT(req, status, ierr)
    DO I=1, n-1
       CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
       CALL MPI_REQUEST_FREE(req, ierr)
       CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
       CALL MPI_WAIT(req, status, ierr)
    END DO
    CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
    CALL MPI_WAIT(req, status, ierr)
END IF
```

3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution order of the calls that initiate the communication. The non-overtaking requirement of Section 3.5 is extended to nonblocking communication, with this definition of order being used.

Example 3.14 Message ordering for nonblocking operations.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK.EQ.0) THEN

CALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)

CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)

CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)

END IF

CALL MPI_WAIT(r1, status, ierr)

CALL MPI_WAIT(r2, status, ierr)
```

The first send of process zero will match the first receive of process one, even if both messages are sent before process one executes either receive.

Progress A call to MPI_WAIT that completes a receive will eventually terminate and return if a matching send has been started, unless the send is satisfied by another receive. In particular, if the matching send is nonblocking, then the receive should complete even if no call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that completes a send will eventually return if a matching receive has been started, unless the receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.15 An illustration of progress semantics.

```
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK.EQ.0) THEN

CALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)

CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)

CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, status, ierr)

CALL MPI_WAIT(r, status, ierr)

END IF
```

This code should not deadlock in a correct MPI implementation. The first synchronous send of process zero must complete after process one posts the matching (nonblocking) receive even if process one has not yet reached the completing wait call. Thus, process zero will continue and execute the second send, allowing process one to complete execution.

If an MPI_TEST that completes a receive is repeatedly called with the same arguments, and a matching send has been started, then the call will eventually return flag = true, unless the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly called with the same arguments, and a matching receive has been started, then the call will eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or MPI_TESTANY can be used to wait for the completion of one out of several operations. A call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

```
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled
2
     operations in a list.
3
4
     MPI_WAITANY (count, array_of_requests, index, status)
5
6
       IN
                 count
                                             list length (non-negative integer)
7
                 array_of_requests
       INOUT
                                             array of requests (array of handles)
8
       OUT
                 index
                                             index of handle for operation that completed (integer)
9
10
       OUT
                 status
                                             status object (Status)
11
12
     int MPI_Waitany(int count, MPI_Request *array_of_requests, int *index,
13
                    MPI_Status *status)
14
     MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
15
          INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
16
          IERROR
17
18
     {static int MPI::Request::Waitany(int count,
19
                    MPI::Request array_of_requests[], MPI::Status& status) (binding
20
                     deprecated, see Section 15.2) }
21
     {static int MPI::Request::Waitany(int count,
22
                    MPI::Request array_of_requests[])(binding deprecated, see
23
                     Section 15.2) }
24
```

Blocks until one of the operations associated with the active requests in the array has completed. If more then one operation is enabled and can terminate, one is arbitrarily chosen. Returns in index the index of that request in the array and returns in status the status of the completing communication. (The array is indexed from zero in C, and from one in Fortran.) If the request was allocated by a nonblocking communication operation, then it is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of_requests list may contain null or inactive handles. If the list contains no active handles (list has length zero or all entries are null or inactive), then the call returns immediately with $index = MPI_UNDEFINED$, and a empty status.

The execution of MPI_WAITANY(count, array_of_requests, index, status) has the same effect as the execution of MPI_WAIT(&array_of_requests[i], status), where i is the value returned by index (unless the value of index is MPI_UNDEFINED). MPI_WAITANY with an array containing one active entry is equivalent to MPI_WAIT.

11

12 13

14

15

16

18

19

20 21

22

23

24

26

27

28

29

30

31

33

34

35

36

37

38

39

41 42

43

44

45

46

47

```
MPI_TESTANY(count, array_of_requests, index, flag, status)
 IN
           count
                                       list length (non-negative integer)
 INOUT
           array_of_requests
                                       array of requests (array of handles)
  OUT
           index
                                       index of operation that completed, or
                                       MPI_UNDEFINED if none completed (integer)
 OUT
           flag
                                       true if one of the operations is complete (logical)
 OUT
           status
                                       status object (Status)
int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,
               int *flag, MPI_Status *status)
MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
    LOGICAL FLAG
    INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
    IERROR
{static bool MPI::Request::Testany(int count,
              MPI::Request array_of_requests[], int& index,
              MPI::Status& status) (binding deprecated, see Section 15.2) }
{static bool MPI::Request::Testany(int count,
              MPI::Request array_of_requests[], int& index) (binding deprecated,
               see Section 15.2) }
```

Tests for completion of either one or none of the operations associated with active handles. In the former case, it returns flag = true, returns in index the index of this request in the array, and returns in status the status of that operation; if the request was allocated by a nonblocking communication call then the request is deallocated and the handle is set to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from one in Fortran.) In the latter case (no operation completed), it returns flag = false, returns a value of MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles then the call returns immediately with flag = true, $index = MPI_UNDEFINED$, and an empty status.

If the array of requests contains active handles then the execution of MPI_TESTANY(count, array_of_requests, index, status) has the same effect as the execution of MPI_TEST(&array_of_requests[i], flag, status), for i=0, 1,..., count-1, in some arbitrary order, until one call returns flag = true, or all fail. In the former case, index is set to the last value of i, and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an array containing one active entry is equivalent to MPI_TEST.

```
MPI_WAITALL( count, array_of_requests, array_of_statuses)
```

```
IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT array_of_statuses array of status objects (array of Status)
```

```
1
     int MPI_Waitall(int count, MPI_Request *array_of_requests,
2
                   MPI_Status *array_of_statuses)
3
     MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
4
         INTEGER COUNT, ARRAY_OF_REQUESTS(*)
5
         INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR
6
7
     {static void MPI::Request::Waitall(int count,
8
                   MPI::Request array_of_requests[],
9
                   MPI::Status array_of_statuses[]) (binding deprecated, see
10
                   Section 15.2) }
11
     {static void MPI::Request::Waitall(int count,
12
                   MPI::Request array_of_requests[]) (binding deprecated, see
13
                   Section 15.2) }
14
```

Blocks until all communication operations associated with active handles in the list complete, and return the status of all these operations (this includes the case where no handle in the list is active). Both arrays have the same number of valid entries. The i-th entry in array_of_statuses is set to the return status of the i-th operation. Requests that were created by nonblocking communication operations are deallocated and the corresponding handles in the array are set to MPI_REQUEST_NULL. The list may contain null or inactive handles. The call sets to empty the status of each such entry.

The error-free execution of $MPI_WAITALL(count, array_of_requests, array_of_statuses)$ has the same effect as the execution of

 $MPI_WAIT(\&array_of_request[i], \&array_of_statuses[i])$, for i=0,..., count-1, in some arbitrary order. $MPI_WAITALL$ with an array of length one is equivalent to MPI_WAIT .

When one or more of the communications completed by a call to MPI_WAITALL fail, it is desireable to return specific information on each communication. The function MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the error field of each status to a specific error code. This code will be MPI_SUCCESS, if the specific communication completed; it will be another specific error code, if it failed; or it can be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL will return MPI_SUCCESS if no request had an error, or will return another error code if it failed for other reasons (such as invalid arguments). In such cases, it will not update the error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application code need only test the (single) function result to determine if an error has occurred. It needs to check each individual status only when an error occurred. (End of rationale.)

```
39
40
41
```

```
MPI_TESTALL(count, array_of_requests, flag, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT flag (logical)

OUT array_of_statuses array of status objects (array of Status)
```

13

14

15 16

17

18

19

20

21

22

23

24

25

26 27

28 29 30

31

33 34

35 36

37

38 39

41

42 43

44

45

46

Returns flag = true if all communications associated with active handles in the array have completed (this includes the case where no handle in the list is active). In this case, each status entry that corresponds to an active handle request is set to the status of the corresponding communication; if the request was allocated by a nonblocking communication call then it is deallocated, and the handle is set to MPI_REQUEST_NULL. Each status entry that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI_TESTALL are handled as errors in MPI_WAITALL.

MPI_WAITSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

```
IN
          incount
                                          length of array_of_requests (non-negative integer)
INOUT
          array_of_requests
                                          array of requests (array of handles)
OUT
          outcount
                                          number of completed requests (integer)
OUT
          array_of_indices
                                          array of indices of operations that completed (array of
OUT
          array_of_statuses
                                          array of status objects for operations that completed
                                          (array of Status)
```

```
MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT ARRAY OF REQUESTS(*) OUTCOUNT ARRAY OF INDICES
```

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Waits until at least one of the operations associated with active handles in the list have completed. Returns in outcount the number of requests from the list array_of_requests that have completed. Returns in the first outcount locations of the array array_of_indices the indices of these operations (index within the array array_of_requests; the array is indexed from zero in C and from one in Fortran). Returns in the first outcount locations of the array array_of_status the status for these completed operations. If a request that completed was allocated by a nonblocking communication call, then it is deallocated, and the associated handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount = MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then it is desirable to return specific information on each communication. The arguments outcount, array_of_indices and array_of_statuses will be adjusted to indicate completion of all communications that have succeeded or failed. The call will return the error code MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate success or to indicate the specific error that occurred. The call will return MPI_SUCCESS if no request resulted in an error, and will return another error code if it failed for other reasons (such as invalid arguments). In such cases, it will not update the error fields of the statuses.

MPI_TESTSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

```
IN
          incount
                                          length of array_of_requests (non-negative integer)
          array_of_requests
INOUT
                                          array of requests (array of handles)
OUT
          outcount
                                          number of completed requests (integer)
OUT
          array_of_indices
                                          array of indices of operations that completed (array of
                                          integers)
OUT
          array_of_statuses
                                          array of status objects for operations that completed
                                          (array of Status)
```

 $\frac{44}{45}$

int MPI_Testsome(int incount, MPI_Request *array_of_requests,

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has completed it returns outcount = 0. If there is no active handle in the list it returns outcount = MPI_UNDEFINED.

MPI_WAITSOME is a local operation, which returns immediately, whereas MPI_WAITSOME will block until a communication completes, if it was passed a list that contains at least one active handle. Both calls fulfill a fairness requirement: If a request for a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or MPI_TESTSOME, and a matching send has been posted, then the receive will eventually succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of $\mathsf{MPI_TESTSOME}$ are handled as for $\mathsf{MPI_WAITSOME}$.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use of MPI_TESTANY. The former returns information on all completed communications, with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client. Clients send messages to the server with service requests. The server calls MPI_WAITSOME with one receive request for each client, and then handles all receives that completed. If a call to MPI_WAITANY is used instead, then one client could starve while requests from another client always sneak in first. (*End of advice to users*.)

Advice to implementors. MPI_TESTSOME should complete as many pending communications as possible. (End of advice to implementors.)

Example 3.16 Client-server code (starvation can occur).

```
1
               CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
2
               CALL DO_SERVICE(a(1,index)) ! handle one message
               CALL MPI_IRECV(a(1, index), n, MPI_REAL, index, tag,
                          comm, request_list(index), ierr)
5
            END DO
6
     END IF
                      Same code, using MPI_WAITSOME.
     Example 3.17
9
10
11
     CALL MPI_COMM_SIZE(comm, size, ierr)
12
     CALL MPI_COMM_RANK(comm, rank, ierr)
13
     IF(rank .GT. 0) THEN
                                    ! client code
14
         DO WHILE(.TRUE.)
15
            CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
16
            CALL MPI_WAIT(request, status, ierr)
17
         END DO
18
     ELSE
                   ! rank=0 -- server code
19
         DO i=1, size-1
20
            CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,
21
                            comm, request_list(i), ierr)
22
         END DO
23
         DO WHILE(.TRUE.)
24
            CALL MPI_WAITSOME(size, request_list, numdone,
                              indices, statuses, ierr)
26
            DO i=1, numdone
27
               CALL DO_SERVICE(a(1, indices(i)))
28
               CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag,
29
                             comm, request_list(indices(i)), ierr)
30
            END DO
31
         END DO
32
     END IF
33
34
```

3.7.6 Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing the request (in case the user is expected to access it later). It allows one to layer libraries more conveniently, since multiple layers of software may access the same completed request and extract from it the status information.

```
39
40
41
```

42

43 44

45

35

36

37

38

```
MPI_REQUEST_GET_STATUS( request, flag, status )

IN request request (handle)

OUT flag boolean flag, same as from MPI_TEST (logical)

OUT status MPI_STATUS object if flag is true (Status)
```

12

13

14

15

16

17 18

19 20

21

22

23

24

26

27

28 29 30

31

33 34

35

36

37 38 39

41

42

43

44 45

46

47

Sets flag=true if the operation is complete, and, if so, returns in status the request status. However, unlike test or wait, it does not deallocate or inactivate the request; a subsequent call to test, wait or free should be executed with that request. It sets flag=false if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request argument. In such a case the operation returns with flag=true and empty status.

3.8 Probe and Cancel

The MPI_PROBE and MPI_IPROBE operations allow incoming messages to be checked for, without actually receiving them. The user can then decide how to receive them, based on the information returned by the probe (basically, the information returned by status). In particular, the user may allocate memory for the receive buffer, according to the length of the probed message.

The MPI_CANCEL operation allows pending communications to be canceled. This is required for cleanup. Posting a send or a receive ties up user resources (send or receive buffers), and a cancel may be needed to free these resources gracefully.

```
MPI_IPROBE(source, tag, comm, flag, status)
```

```
IN
                                      rank of source or MPI_ANY_SOURCE (integer)
           source
 IN
                                      message tag or MPI_ANY_TAG (integer)
           tag
 IN
           comm
                                      communicator (handle)
 OUT
           flag
                                      (logical)
 OUT
                                      status object (Status)
           status
int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
              MPI_Status *status)
MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
    LOGICAL FLAG
    INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
{bool MPI::Comm::Iprobe(int source, int tag, MPI::Status& status)
              const(binding deprecated, see Section 15.2) }
```

 $\frac{46}{47}$

```
{bool MPI::Comm::Iprobe(int source, int tag) const(binding deprecated, see Section 15.2)}
```

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message that can be received and that matches the pattern specified by the arguments source, tag, and comm. The call matches the same message that would have been received by a call to MPI_RECV(..., source, tag, comm, status) executed at the same point in the program, and returns in status the same value that would have been returned by MPI_RECV(). Otherwise, the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be subsequently accessed as described in Section 3.2.5 to find the source, tag and length of the probed message.

A subsequent receive executed with the same communicator, and the source and tag returned in status by MPI_IPROBE will receive the message that was matched by the probe, if no other intervening receive occurs after the probe, and the send is not successfully cancelled before the receive. If the receiving process is multi-threaded, it is the user's responsibility to ensure that the last condition holds.

The source argument of MPI_PROBE can be MPI_ANY_SOURCE, and the tag argument can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or with an arbitrary tag. However, a specific communication context must be provided with the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and the same message may be probed for several times before it is received.

MPI_PROBE(source, tag, comm, status)

Section 15.2) }

```
IN source rank of source or MPI_ANY_SOURCE (integer)
IN tag message tag or MPI_ANY_TAG (integer)
IN comm communicator (handle)
OUT status status object (Status)
```

MPI_PROBE behaves like MPI_IPROBE except that it is a blocking call that returns only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress: if a call to MPI_PROBE has been issued by a process, and a send that matches the probe has been initiated by some process, then the call to MPI_PROBE will return, unless the message is received by another concurrent receive operation (that is executed by another thread at the probing process). Similarly, if a process busy waits with MPI_IPROBE and

12

13

14

15

16

17

18

19

20

21

22 23

24

26

27

28

29

30

31

33

34

35

36

37

38

39

41

42

43

44

45 46

47

a matching message has been issued, then the call to MPI_IPROBE will eventually return flag = true unless the message is received by another concurrent receive operation.

Example 3.18

Use blocking probe to wait for an incoming message.

```
CALL MPI_COMM_RANK(comm, rank, ierr)
       IF (rank.EQ.0) THEN
           CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
       ELSE IF (rank.EQ.1) THEN
           CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
       ELSE IF (rank.EQ.2) THEN
           DO i=1, 2
              CALL MPI_PROBE(MPI_ANY_SOURCE, 0,
                             comm, status, ierr)
              IF (status(MPI_SOURCE) .EQ. 0) THEN
100
                  CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)
              ELSE
                  CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)
200
              END IF
           END DO
       END IF
```

Each message is received with the right type.

Example 3.19 A similar program to the previous example, but now it has a problem.

```
CALL MPI_COMM_RANK(comm, rank, ierr)
       IF (rank.EQ.0) THEN
            CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
       ELSE IF (rank.EQ.1) THEN
            CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
       ELSE IF (rank.EQ.2) THEN
           DO i=1, 2
              CALL MPI_PROBE(MPI_ANY_SOURCE, 0,
                              comm, status, ierr)
              IF (status(MPI_SOURCE) .EQ. 0) THEN
100
                   CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,
                                 0, comm, status, ierr)
              ELSE
200
                   CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,
                                 0, comm, status, ierr)
              END IF
           END DO
       END IF
```

We slightly modified Example 3.18, using MPI_ANY_SOURCE as the source argument in the two receive calls in statements labeled 100 and 200. The program is now incorrect: the receive operation may receive a message that is distinct from the message probed by the preceding call to MPI_PROBE.

Advice to implementors. A call to MPI_PROBE(source, tag, comm, status) will match the message that would have been received by a call to MPI_RECV(..., source, tag, comm, status) executed at the same point. Suppose that this message has source s, tag t and communicator c. If the tag argument in the probe call has value MPI_ANY_TAG then the message probed will be the earliest pending message from source s with communicator c and any tag; in any case, the message probed will be

the earliest pending message from source s with tag t and communicator c (this is the message that would have been received, so as to preserve message order). This message continues as the earliest pending message from source s with tag t and communicator c, until it is received. A receive operation subsequent to the probe that uses the same communicator as the probe and uses the tag and source values returned by the probe, must receive this message, unless it has already been received by another receive operation. (End of advice to implementors.)

```
MPI_CANCEL(request)
IN request communication request (handle)

int MPI_Cancel(MPI_Request *request)

MPI_CANCEL(REQUEST, IERROR)
    INTEGER REQUEST, IERROR

{void MPI::Request::Cancel() const(binding deprecated, see Section 15.2) }
```

A call to MPI_CANCEL marks for cancellation a pending, nonblocking communication operation (send or receive). The cancel call is local. It returns immediately, possibly before the communication is actually canceled. It is still necessary to complete a communication that has been marked for cancellation, using a call to MPI_REQUEST_FREE, MPI_WAIT or MPI_TEST (or any of the derived operations).

If a communication is marked for cancellation, then a MPI_WAIT call for that communication is guaranteed to return, irrespective of the activities of other processes (i.e., MPI_WAIT behaves as a local function); similarly if MPI_TEST is repeatedly called in a busy wait loop for a canceled communication, then MPI_TEST will eventually be successful.

MPI_CANCEL can be used to cancel a communication that uses a persistent request (see Section 3.9), in the same way it is used for nonpersistent requests. A successful cancellation cancels the active communication, but not the request itself. After the call to MPI_CANCEL and the subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can be activated for a new communication.

The successful cancellation of a buffered send frees the buffer space occupied by the pending message.

Either the cancellation succeeds, or the communication succeeds, but not both. If a send is marked for cancellation, then it must be the case that either the send completes normally, in which case the message sent was received at the destination process, or that the send is successfully canceled, in which case no part of the message was received at the destination. Then, any matching receive has to be satisfied by another send. If a receive is marked for cancellation, then it must be the case that either the receive completes normally,

or that the receive is successfully canceled, in which case no part of the receive buffer is altered. Then, any matching send has to be satisfied by another receive.

If the operation has been canceled, then information to that effect will be returned in the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed by reference, the C binding has listed the argument type as MPI_Request* since MPI_1.0. This function signature therefore cannot be changed without breaking existing MPI applications. (End of rationale.)

```
MPI_TEST_CANCELLED(status, flag)
IN status status object (Status)
OUT flag (logical)

int MPI_Test_cancelled(MPI_Status *status, int *flag)

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
    LOGICAL FLAG
    INTEGER STATUS(MPI_STATUS_SIZE), IERROR

{bool MPI::Status::Is_cancelled() const(binding deprecated, see Section 15.2)}
```

Returns flag = true if the communication associated with the status object was canceled successfully. In such a case, all other fields of status (such as count or tag) are undefined. Returns flag = false, otherwise. If a receive operation might be canceled then one should call MPI_TEST_CANCELLED first, to check whether the operation was canceled, before checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an "eager" protocol (data is transferred to the receiver before a matching receive is posted), then the cancellation of this send may require communication with the intended receiver in order to free allocated buffers. On some systems this may require an interrupt to the intended receiver. Note that, while communication may be needed to implement

MPI_CANCEL, this is still a local operation, since its completion does not depend on the code executed by other processes. If processing is required on another process, this should be transparent to the application (hence the need for an interrupt and an interrupt handler). (End of advice to implementors.)

3.9 Persistent Communication Requests

Often a communication with the same argument list is repeatedly executed within the inner loop of a parallel computation. In such a situation, it may be possible to optimize the communication by binding the list of communication arguments to a **persistent** communication request once and, then, repeatedly using the request to initiate and complete

messages. The persistent request thus created can be thought of as a communication port or a "half-channel." It does not provide the full functionality of a conventional channel, since there is no binding of the send port to the receive port. This construct allows reduction of the overhead for communication between the process and communication controller, but not of the overhead for communication between one communication controller and another. It is not necessary that messages sent with a persistent request be received by a receive operation using a persistent request, or vice versa.

A persistent communication request is created using one of the five following calls. These calls involve no communication.

10 11

12

23

24

25

26

27

28 29

30

31

32

33

34 35 36

37

1

2

3

4

5

6

7

8

9

MPI_SEND_INIT(buf, count, datatype, dest, tag, comm, request)

```
13
        IN
                    buf
                                                     initial address of send buffer (choice)
14
        IN
                                                     number of elements sent (non-negative integer)
                    count
15
        IN
                    datatype
                                                     type of each element (handle)
16
17
        IN
                    dest
                                                     rank of destination (integer)
18
        IN
                                                     message tag (integer)
                    tag
19
        IN
                                                     communicator (handle)
                    comm
20
21
        OUT
                                                     communication request (handle)
                    request
22
```

int MPI_Send_init(void* buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR) <type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

{MPI::Prequest MPI::Comm::Send_init(const void* buf, int count, const MPI::Datatype& datatype, int dest, int tag) const(binding deprecated, see Section 15.2) }

Creates a persistent communication request for a standard mode send operation, and binds to it all the arguments of a send operation.

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)

38	IN	buf	initial address of send buffer (choice)
39	IN	count	number of elements sent (non-negative integer)
40 41	IN	datatype	type of each element (handle)
42	IN	dest	rank of destination (integer)
43	IN	tag	message tag (integer)
44 45	IN	comm	communicator (handle)
46	OUT	request	communication request (handle)

47

15

16

18

19

24

26

33

43

44 45

46

47

```
int MPI_Bsend_init(void* buf, int count, MPI_Datatype datatype, int dest,
               int tag, MPI_Comm comm, MPI_Request *request)
MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
    <type> BUF(*)
    INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
{MPI::Prequest MPI::Comm::Bsend_init(const void* buf, int count, const
               MPI::Datatype& datatype, int dest, int tag) const/binding
               deprecated, see Section 15.2) }
    Creates a persistent communication request for a buffered mode send.
MPI_SSEND_INIT(buf, count, datatype, dest, tag, comm, request)
                                                                                          14
  IN
           buf
                                       initial address of send buffer (choice)
                                       number of elements sent (non-negative integer)
  IN
           count
  IN
           datatype
                                       type of each element (handle)
  IN
           dest
                                       rank of destination (integer)
                                                                                          20
  IN
           tag
                                       message tag (integer)
                                                                                          21
  IN
           comm
                                       communicator (handle)
                                                                                          22
  OUT
                                       communication request (handle)
           request
                                                                                          23
int MPI_Ssend_init(void* buf, int count, MPI_Datatype datatype, int dest,
               int tag, MPI_Comm comm, MPI_Request *request)
                                                                                          27
MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
                                                                                          28
    <type> BUF(*)
                                                                                          29
    INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
                                                                                          30
{MPI::Prequest MPI::Comm::Ssend_init(const void* buf, int count, const
                                                                                          31
               MPI::Datatype& datatype, int dest, int tag) const(binding
               deprecated, see Section 15.2) }
                                                                                          34
    Creates a persistent communication object for a synchronous mode send operation.
                                                                                          35
                                                                                          36
                                                                                          37
MPI_RSEND_INIT(buf, count, datatype, dest, tag, comm, request)
                                                                                          38
  IN
           buf
                                       initial address of send buffer (choice)
                                                                                          39
  IN
                                       number of elements sent (non-negative integer)
           count
                                                                                          41
  IN
           datatype
                                       type of each element (handle)
                                                                                          42
  IN
           dest
                                       rank of destination (integer)
  IN
           tag
                                       message tag (integer)
```

communicator (handle)

communication request (handle)

IN

OUT

comm

request

```
1
     int MPI_Rsend_init(void* buf, int count, MPI_Datatype datatype, int dest,
2
                    int tag, MPI_Comm comm, MPI_Request *request)
3
     MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
4
          <type> BUF(*)
5
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
6
7
     {MPI::Prequest MPI::Comm::Rsend_init(const void* buf, int count, const
                    MPI::Datatype& datatype, int dest, int tag) const(binding
9
                    deprecated, see Section 15.2) }
10
          Creates a persistent communication object for a ready mode send operation.
11
12
13
     MPI_RECV_INIT(buf, count, datatype, source, tag, comm, request)
14
       OUT
                 buf
                                             initial address of receive buffer (choice)
15
16
       IN
                 count
                                             number of elements received (non-negative integer)
17
       IN
                 datatype
                                             type of each element (handle)
18
       IN
                                             rank of source or MPI_ANY_SOURCE (integer)
                 source
19
       IN
                                             message tag or MPI_ANY_TAG (integer)
20
                 tag
21
       IN
                 comm
                                             communicator (handle)
22
       OUT
                 request
                                             communication request (handle)
23
24
     int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,
25
                    int tag, MPI_Comm comm, MPI_Request *request)
26
27
     MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
28
          <type> BUF(*)
29
          INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR
30
     {MPI::Prequest MPI::Comm::Recv_init(void* buf, int count, const
31
                    MPI::Datatype& datatype, int source, int tag) const(binding
32
                    deprecated, see Section 15.2) }
33
34
          Creates a persistent communication request for a receive operation. The argument buf
35
     is marked as OUT because the user gives permission to write on the receive buffer by passing
36
     the argument to MPI_RECV_INIT.
37
          A persistent communication request is inactive after it was created — no active com-
38
     munication is attached to the request.
39
          A communication (send or receive) that uses a persistent request is initiated by the
40
     function MPI_START.
41
42
     MPI_START(request)
43
44
       INOUT
                 request
                                             communication request (handle)
45
46
     int MPI_Start(MPI_Request *request)
47
48
     MPI_START(REQUEST, IERROR)
```

```
INTEGER REQUEST, IERROR
{void MPI::Prequest::Start()(binding deprecated, see Section 15.2)}
```

The argument, request, is a handle returned by one of the previous five calls. The associated request should be inactive. The request becomes active once the call is made.

If the request is for a send with ready mode, then a matching receive should be posted before the call is made. The communication buffer should not be modified after the call, and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations described in Section 3.7. That is, a call to MPI_START with a request created by MPI_SEND_INIT starts a communication in the same manner as a call to MPI_ISEND; a call to MPI_START with a request created by MPI_BSEND_INIT starts a communication in the same manner as a call to MPI_IBSEND; and so on.

Start all communications associated with requests in $array_of_requests$. A call to MPI_STARTALL(count, $array_of_requests$) has the same effect as calls to

MPI_START (&array_of_requests[i]), executed for i=0 ,..., count-1, in some arbitrary order. A communication started with a call to MPI_START or MPI_STARTALL is completed by a call to MPI_WAIT, MPI_TEST, or one of the derived functions described in Section 3.7.5. The request becomes inactive after successful completion of such call. The request is not deallocated and it can be activated anew by an MPI_START or MPI_STARTALL call.

A persistent request is deallocated by a call to MPI_REQUEST_FREE (Section 3.7.3). The call to MPI_REQUEST_FREE can occur at any point in the program after the persistent request was created. However, the request will be deallocated only after it becomes inactive. Active receive requests should not be freed. Otherwise, it will not be possible to check that the receive has completed. It is preferable, in general, to free requests when they are inactive. If this rule is followed, then the functions described in this section will

Create (Start Complete)* Free

be invoked in a sequence of the form,

where * indicates zero or more repetitions. If the same communication object is used in several concurrent threads, it is the user's responsibility to coordinate calls so that the

correct sequence is obeyed.

A send operation initiated with MPI_START can be matched with any receive operation and, likewise, a receive operation initiated with MPI_START can receive messages generated by any send operation.

Advice to users. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in subsections "Problems Due to Data Copying and Sequence Association," and "A Problem with Register Optimization" in Section 16.2.2 on pages 514 and 517. (End of advice to users.)

3.10 Send-Receive

The **send-receive** operations combine in one call the sending of a message to one destination and the receiving of another message, from another process. The two (source and destination) are possibly the same. A send-receive operation is very useful for executing a shift operation across a chain of processes. If blocking sends and receives are used for such a shift, then one needs to order the sends and receives correctly (for example, even processes send, then receive, odd processes receive first, then send) so as to prevent cyclic dependencies that may lead to deadlock. When a send-receive operation is used, the communication subsystem takes care of these issues. The send-receive operation can be used in conjunction with the functions described in Chapter 7 in order to perform shifts on various logical topologies. Also, a send-receive operation is useful for implementing remote procedure calls.

A message sent by a send-receive operation can be received by a regular receive operation or probed by a probe operation; a send-receive operation can receive a message sent by a regular send operation.

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype, source, recvtag, comm, status)

IN	sendbuf	initial address of send buffer (choice)
IN	sendcount	number of elements in send buffer (non-negative integer) $$
IN	sendtype	type of elements in send buffer (handle)
IN	dest	rank of destination (integer)
IN	sendtag	send tag (integer)
OUT	recvbuf	initial address of receive buffer (choice)
IN	recvcount	number of elements in receive buffer (non-negative integer) ${\bf r}$
IN	recvtype	type of elements in receive buffer (handle)
IN	source	${\rm rank\ of\ source\ or\ MPI_ANY_SOURCE\ (integer)}$
IN	recvtag	receive tag or MPI_ANY_TAG (integer)
IN	comm	communicator (handle)
OUT	status	status object (Status)

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive operation. Both send and receive use the same communicator, but possibly different tags. The send buffer and receive buffers must be disjoint, and may have different lengths and datatypes.

The semantics of a send-receive operation is what would be obtained if the caller forked two concurrent threads, one to execute the send, and one to execute the receive, followed by a join of these two threads.

MPI_SENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm, status)

INOUT	buf	initial address of send and receive buffer (choice)
IN	count	number of elements in send and receive buffer (non-negative integer)
IN	datatype	type of elements in send and receive buffer (handle)
IN	dest	rank of destination (integer)
IN	sendtag	send message tag (integer)
IN	source	${\rm rank\ of\ source\ or\ MPI_ANY_SOURCE\ (integer)}$
IN	recvtag	receive message tag or MPI_ANY_TAG (integer)
IN	comm	communicator (handle)
OUT	status	status object (Status)

```
MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
2
                   COMM, STATUS, IERROR)
3
         <type> BUF(*)
4
         INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
5
         STATUS (MPI_STATUS_SIZE), IERROR
6
     {void MPI::Comm::Sendrecv_replace(void* buf, int count, const
                   MPI::Datatype& datatype, int dest, int sendtag, int source,
8
                   int recvtag, MPI::Status& status) const/binding deprecated, see
9
                   Section 15.2) }
10
11
     {void MPI::Comm::Sendrecv_replace(void* buf, int count, const
12
                   MPI::Datatype& datatype, int dest, int sendtag, int source,
13
                   int recvtag) const(binding deprecated, see Section 15.2) }
14
```

Execute a blocking send and receive. The same buffer is used both for the send and for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the "replace" variant. (End of advice to implementors.)

3.11 Null Processes

In many instances, it is convenient to specify a "dummy" source or destination for communication. This simplifies the code that is needed for dealing with boundaries, for example, in the case of a non-circular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a destination argument is required in a call. A communication with process MPI_PROC_NULL has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to the receive buffer. When a receive with source = MPI_PROC_NULL is executed then the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0.

Chapter 4

Datatypes

Basic datatypes were introduced in Section 3.2.2 Message Data on page 29 and in Section 3.3 Data Type Matching and Data Conversion on page 36. In this chapter, this model is extended to describe any data layout. We consider general datatypes that allow one to transfer efficiently heterogeneous and noncontiguous data. We conclude with the description of calls for explicit packing and unpacking of messages.

4.1 Derived Datatypes

Up to here, all point to point communication have involved only buffers containing a sequence of identical basic datatypes. This is too constraining on two accounts. One often wants to pass messages that contain values with different datatypes (e.g., an integer count, followed by a sequence of real numbers); and one often wants to send noncontiguous data (e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into a contiguous buffer at the sender site and unpack it at the receiver site. This has the disadvantage of requiring additional memory-to-memory copy operations at both sites, even when the communication subsystem has scatter-gather capabilities. Instead, MPI provides mechanisms to specify more general, mixed, and noncontiguous communication buffers. It is up to the implementation to decide whether data should be first packed in a contiguous buffer before being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying, objects of various shape and size. It is not assumed that the MPI library is cognizant of the objects declared in the host language. Thus, if one wants to transfer a structure, or an array section, it will be necessary to provide in MPI a definition of a communication buffer that mimics the definition of the structure or array section in question. These facilities can be used by library designers to define communication functions that can transfer objects defined in the host language — by decoding their definitions as available in a symbol table or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that have been used so far with derived datatypes that are constructed from basic datatypes using the constructors described in this section. These methods of constructing derived datatypes can be applied recursively.

A general datatype is an opaque object that specifies two things:

• A sequence of basic datatypes

• A sequence of integer (byte) displacements

The displacements are not required to be positive, distinct, or in increasing order. Therefore, the order of items need not coincide with their order in store, and an item may appear more than once. We call such a pair of sequences (or sequence of pairs) a **type** map. The sequence of basic datatypes (displacements ignored) is the **type signature** of the datatype.

Let

$$Typemap = \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\$$

be such a type map, where $type_i$ are basic types, and $disp_i$ are displacements. Let

$$Typesig = \{type_0, ..., type_{n-1}\}$$

be the associated type signature. This type map, together with a base address buf, specifies a communication buffer: the communication buffer that consists of n entries, where the i-th entry is at address $buf + disp_i$ and has type $type_i$. A message assembled from such a communication buffer will consist of n values, of the types defined by Typesig.

Most datatype constructors have replication count or block length arguments. Allowed values are non-negative integers. If the value is zero, no elements are generated in the type map and there is no effect on datatype bounds or extent.

We can use a handle to a general datatype as an argument in a send or receive operation, instead of a basic datatype argument. The operation MPI_SEND(buf, 1, datatype,...) will use the send buffer defined by the base address buf and the general datatype associated with datatype; it will generate a message with the type signature determined by the datatype argument. MPI_RECV(buf, 1, datatype,...) will use the receive buffer defined by the base address buf and the general datatype associated with datatype.

General datatypes can be used in all send and receive operations. We discuss, in Section 4.1.11, the case where the second argument count has value > 1.

The basic datatypes presented in Section 3.2.2 are particular cases of a general datatype, and are predefined. Thus, MPI_INT is a predefined handle to a datatype with type map $\{(\mathsf{int},0)\}$, with one entry of type int and displacement zero. The other basic datatypes are similar.

The **extent** of a datatype is defined to be the span from the first byte to the last byte occupied by entries in this datatype, rounded up to satisfy alignment requirements. That is, if

$$Typemap = \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\$$

then

$$lb(Typemap) = \min_{j} disp_{j},$$

$$ub(Typemap) = \max_{j} (disp_{j} + sizeof(type_{j})) + \epsilon, \text{ and}$$

$$extent(Typemap) = ub(Typemap) - lb(Typemap). \tag{4.1}$$

If $type_i$ requires alignment to a byte address that is a multiple of k_i , then ϵ is the least non-negative increment needed to round extent(Typemap) to the next multiple of $\max_i k_i$. The complete definition of **extent** is given on page 99.

Example 4.1 Assume that $Type = \{(double, 0), (char, 8)\}$ (a double at displacement zero, followed by a char at displacement eight). Assume, furthermore, that doubles have to be strictly aligned at addresses that are multiples of eight. Then, the extent of this datatype is 16 (9 rounded to the next multiple of 8). A datatype that consists of a character immediately followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount of padding added at the end of each structure in an array of structures is the least needed to fulfill alignment constraints. More explicit control of the extent is provided in Section 4.1.6. Such explicit control is needed in cases where the assumption does not hold, for example, where union types are used. (*End of rationale*.)

4.1.1 Type Constructors with Explicit Addresses

In Fortran, the functions MPI_TYPE_CREATE_HVECTOR, MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_STRUCT, and MPI_GET_ADDRESS accept arguments of type INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type MPI_Aint and MPI::Aint are used in C and C++. On Fortran 77 systems that do not support the Fortran 90 KIND notation, and where addresses are 64 bits whereas default INTEGERs are 32 bits, these arguments will be of type INTEGER*8.

4.1.2 Datatype Constructors

Contiguous The simplest datatype constructor is MPI_TYPE_CONTIGUOUS which allows replication of a datatype into contiguous locations.

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

```
    IN count replication count (non-negative integer)
    IN oldtype old datatype (handle)
    OUT newtype new datatype (handle)
```

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

{MPI::Datatype MPI::Datatype::Create_contiguous(int count) const(binding deprecated, see Section 15.2)}

newtype is the datatype obtained by concatenating count copies of oldtype. Concatenation is defined using *extent* as the size of the concatenated copies.

Example 4.2 Let oldtype have type map $\{(double, 0), (char, 8)\}$, with extent 16, and let count = 3. The type map of the datatype returned by newtype is

```
\{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40)\};
```

i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.

45

46 47 48

```
1
          In general, assume that the type map of oldtype is
2
            \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\
3
      with extent ex. Then newtype has a type map with count \cdot n entries defined by:
5
6
            \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1}), (type_0, disp_0 + ex), ..., (type_{n-1}, disp_{n-1} + ex), ...\}
           ..., (type_0, disp_0 + ex \cdot (count - 1)), ..., (type_{n-1}, disp_{n-1} + ex \cdot (count - 1)).
8
9
10
11
12
      Vector The function MPI_TYPE_VECTOR is a more general constructor that allows repli-
13
      cation of a datatype into locations that consist of equally spaced blocks. Each block is
14
      obtained by concatenating the same number of copies of the old datatype. The spacing
15
      between blocks is a multiple of the extent of the old datatype.
16
17
18
      MPI_TYPE_VECTOR( count, blocklength, stride, oldtype, newtype)
19
        IN
                                                 number of blocks (non-negative integer)
                  count
20
                  blocklength
        IN
                                                 number of elements in each block (non-negative inte-
21
22
23
        IN
                  stride
                                                 number of elements between start of each block (inte-
24
                                                 ger)
        IN
                  oldtype
                                                 old datatype (handle)
26
        OUT
                                                 new datatype (handle)
                  newtype
27
28
      int MPI_Type_vector(int count, int blocklength, int stride,
29
                      MPI_Datatype oldtype, MPI_Datatype *newtype)
30
31
      MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
32
           INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR
33
34
      {MPI::Datatype MPI::Datatype::Create_vector(int count, int blocklength,
                      int stride) const(binding deprecated, see Section 15.2) }
35
36
37
      Example 4.3 Assume, again, that oldtype has type map {(double, 0), (char, 8)}, with extent
38
      16. A call to MPI_TYPE_VECTOR(2, 3, 4, oldtype, newtype) will create the datatype with
39
      type map,
40
41
            \{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40), \}
42
```

That is, two blocks with three copies each of the old type, with a stride of 4 elements $(4 \cdot 16)$ bytes) between the blocks.

(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104)}.

Example 4.4 A call to MPI_TYPE_VECTOR(3, 1, -2, oldtype, newtype) will create the datatype,

```
\{(double, 0), (char, 8), (double, -32), (char, -24), (double, -64), (char, -56)\}.
```

In general, assume that oldtype has type map,

$$\{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\$$

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with count \cdot bl \cdot n entries:

```
 \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1}), \\ (type_0, disp_0 + ex), ..., (type_{n-1}, disp_{n-1} + ex), ..., \\ (type_0, disp_0 + (\mathsf{bl} - 1) \cdot ex), ..., (type_{n-1}, disp_{n-1} + (\mathsf{bl} - 1) \cdot ex), \\ (type_0, disp_0 + \mathsf{stride} \cdot ex), ..., (type_{n-1}, disp_{n-1} + \mathsf{stride} \cdot ex), ..., \\ (type_0, disp_0 + (\mathsf{stride} + \mathsf{bl} - 1) \cdot ex), ..., (type_{n-1}, disp_{n-1} + (\mathsf{stride} + \mathsf{bl} - 1) \cdot ex), ..., \\ (type_0, disp_0 + \mathsf{stride} \cdot (\mathsf{count} - 1) \cdot ex), ..., \\ (type_{n-1}, disp_{n-1} + \mathsf{stride} \cdot (\mathsf{count} - 1) \cdot ex), ..., \\ (type_0, disp_0 + (\mathsf{stride} \cdot (\mathsf{count} - 1) + \mathsf{bl} - 1) \cdot ex), ..., \\ (type_{n-1}, disp_{n-1} + (\mathsf{stride} \cdot (\mathsf{count} - 1) + \mathsf{bl} - 1) \cdot ex)\}.
```

A call to MPI_TYPE_CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI_TYPE_VECTOR(1, count, n, oldtype, newtype), n arbitrary.

Hvector The function MPI_TYPE_CREATE_HVECTOR is identical to MPI_TYPE_VECTOR, except that stride is given in bytes, rather than in elements. The use for both types of vector constructors is illustrated in Section 4.1.14. (H stands for "heterogeneous").

MPI_TYPE_CREATE_HVECTOR(count, blocklength, stride, oldtype, newtype)

IN	count	number of blocks (non-negative integer)
IN	blocklength	number of elements in each block (non-negative integer)
IN	stride	number of bytes between start of each block (integer)
IN	oldtype	old datatype (handle)
OUT	newtype	new datatype (handle)

```
1
      int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,
2
                        MPI_Datatype oldtype, MPI_Datatype *newtype)
3
      MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
4
                        IERROR)
5
           INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
6
           INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE
7
8
      {MPI::Datatype MPI::Datatype::Create_hvector(int count, int blocklength,
9
                        MPI::Aint stride) const(binding deprecated, see Section 15.2) }
10
           This function replaces MPI_TYPE_HVECTOR, whose use is deprecated. See also Chap-
11
      ter 15.
12
13
14
           Assume that oldtype has type map,
15
            \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\
16
17
      with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
18
      count \cdot bl \cdot n entries:
19
20
            \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1}),
21
            (type_0, disp_0 + ex), ..., (type_{n-1}, disp_{n-1} + ex), ...,
22
23
            (type_0, disp_0 + (bl - 1) \cdot ex), ..., (type_{n-1}, disp_{n-1} + (bl - 1) \cdot ex),
24
            (type_0, disp_0 + stride), ..., (type_{n-1}, disp_{n-1} + stride), ...,
26
27
            (type_0, disp_0 + stride + (bl - 1) \cdot ex), ...,
28
29
            (type_{n-1}, disp_{n-1} + stride + (bl - 1) \cdot ex), \dots,
30
31
            (type_0, disp_0 + stride \cdot (count - 1)), ..., (type_{n-1}, disp_{n-1} + stride \cdot (count - 1)), ...,
32
33
            (type_0, disp_0 + stride \cdot (count - 1) + (bl - 1) \cdot ex), ...,
34
35
            (type_{n-1}, disp_{n-1} + stride \cdot (count - 1) + (bl - 1) \cdot ex).
```

Indexed The function MPI_TYPE_INDEXED allows replication of an old datatype into a sequence of blocks (each block is a concatenation of the old datatype), where each block can contain a different number of copies and have a different displacement. All block displacements are multiples of the old type extent.

```
MPI_TYPE_INDEXED( count, array_of_blocklengths, array_of_displacements, oldtype, new-
                type)
                                                                                                 3
  IN
            count
                                           number of blocks - also number of entries in
                                           array_of_displacements and array_of_blocklengths (non-
                                                                                                 5
                                           negative integer)
  IN
            array_of_blocklengths
                                           number of elements per block (array of non-negative
                                          integers)
            array_of_displacements
                                                                                                 9
                                           displacement for each block, in multiples of oldtype
  IN
                                                                                                 10
                                           extent (array of integer)
                                                                                                 11
  IN
            oldtype
                                           old datatype (handle)
                                                                                                 12
  OUT
            newtype
                                          new datatype (handle)
                                                                                                 13
                                                                                                 14
int MPI_Type_indexed(int count, int *array_of_blocklengths,
                                                                                                 15
                int *array_of_displacements, MPI_Datatype oldtype,
                                                                                                 16
                MPI_Datatype *newtype)
                                                                                                 17
                                                                                                 18
MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
                                                                                                 19
                OLDTYPE, NEWTYPE, IERROR)
                                                                                                 20
    INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),
                                                                                                 21
    OLDTYPE, NEWTYPE, IERROR
                                                                                                 22
{MPI::Datatype MPI::Datatype::Create_indexed(int count,
                                                                                                 23
                const int array_of_blocklengths[],
                                                                                                 24
                const int array_of_displacements[]) const(binding deprecated, see
                                                                                                 26
                Section 15.2)
                                                                                                 27
                                                                                                 28
Example 4.5
                                                                                                 29
    Let oldtype have type map \{(double, 0), (char, 8)\}, with extent 16. Let B = (3, 1) and
                                                                                                 30
let D = (4, 0). A call to MPI_TYPE_INDEXED(2, B, D, oldtype, newtype) returns a datatype
                                                                                                 31
with type map,
     {(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104),
                                                                                                 33
                                                                                                 34
     (double, 0), (char, 8).
                                                                                                 35
                                                                                                 36
That is, three copies of the old type starting at displacement 64, and one copy starting at
                                                                                                 37
displacement 0.
                                                                                                 38
                                                                                                 39
    In general, assume that oldtype has type map,
                                                                                                 41
     \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\
                                                                                                 42
                                                                                                 43
                      Let B be the array_of_blocklength argument and D be the
array_of_displacements argument. The newly created datatype has n \cdot \sum_{i=0}^{\mathsf{count}-1} \mathsf{B}[i] entries:
                                                                                                 45
                                                                                                 46
     \{(type_0, disp_0 + D[0] \cdot ex), ..., (type_{n-1}, disp_{n-1} + D[0] \cdot ex), ..., \}
                                                                                                 47
```

 $(type_0, disp_0 + (D[0] + B[0] - 1) \cdot ex), ..., (type_{n-1}, disp_{n-1} + (D[0] + B[0] - 1) \cdot ex), ...,$

ter 15.

48

```
1
            (type_0, disp_0 + \mathsf{D}[\mathsf{count-1}] \cdot ex), ..., (type_{n-1}, disp_{n-1} + \mathsf{D}[\mathsf{count-1}] \cdot ex), ...,
2
            (type_0, disp_0 + (\mathsf{D}[\mathsf{count-1}] + \mathsf{B}[\mathsf{count-1}] - 1) \cdot ex), ...,
3
            (type_{n-1}, disp_{n-1} + (\mathsf{D}[\mathsf{count-1}] + \mathsf{B}[\mathsf{count-1}] - 1) \cdot ex).
6
8
           A call to MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype) is equivalent
9
      to a call to MPI_TYPE_INDEXED(count, B, D, oldtype, newtype) where
10
            D[j] = j \cdot \text{stride}, \ j = 0, ..., \text{count} - 1,
11
12
      and
13
14
            B[j] = blocklength, j = 0, ..., count - 1.
15
16
      Hindexed The function MPI_TYPE_CREATE_HINDEXED is identical to
17
      MPI_TYPE_INDEXED, except that block displacements in array_of_displacements are spec-
18
      ified in bytes, rather than in multiples of the oldtype extent.
19
20
21
      MPI_TYPE_CREATE_HINDEXED( count, array_of_blocklengths, array_of_displacements, old-
                       type, newtype)
22
23
        IN
                                                   number of blocks — also number of entries in
                   count
24
                                                   array_of_displacements and array_of_blocklengths (non-
25
                                                  negative integer)
26
        IN
                   array_of_blocklengths
                                                   number of elements in each block (array of non-negative
27
                                                  integers)
28
        IN
                   array_of_displacements
                                                  byte displacement of each block (array of integer)
29
30
        IN
                   oldtype
                                                  old datatype (handle)
31
        OUT
                   newtype
                                                   new datatype (handle)
32
33
      int MPI_Type_create_hindexed(int count, int array_of_blocklengths[],
34
                       MPI_Aint array_of_displacements[], MPI_Datatype oldtype,
35
                       MPI_Datatype *newtype)
36
37
      MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,
38
                       ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
39
           INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
40
           INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)
41
      {MPI::Datatype MPI::Datatype::Create_hindexed(int count,
42
                       const int array_of_blocklengths[],
43
                       const MPI::Aint array_of_displacements[]) const/binding
44
                       deprecated, see Section 15.2) }
45
46
           This function replaces MPI_TYPE_HINDEXED, whose use is deprecated. See also Chap-
47
```

```
Assume that oldtype has type map,
```

$$\{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\$$

with extent ex. Let B be the array_of_blocklength argument and D be the array_of_displacements argument. The newly created datatype has a type map with $n \cdot \sum_{i=0}^{\mathsf{count}-1} \mathsf{B}[\mathsf{i}]$ entries:

```
\begin{split} &\{(type_0, disp_0 + \mathsf{D}[\mathsf{0}]), ..., (type_{n-1}, disp_{n-1} + \mathsf{D}[\mathsf{0}]), ..., \\ &(type_0, disp_0 + \mathsf{D}[\mathsf{0}] + (\mathsf{B}[\mathsf{0}] - 1) \cdot ex), ..., \\ &(type_{n-1}, disp_{n-1} + \mathsf{D}[\mathsf{0}] + (\mathsf{B}[\mathsf{0}] - 1) \cdot ex), ..., \\ &(type_0, disp_0 + \mathsf{D}[\mathsf{count-1}]), ..., (type_{n-1}, disp_{n-1} + \mathsf{D}[\mathsf{count-1}]), ..., \\ &(type_0, disp_0 + \mathsf{D}[\mathsf{count-1}] + (\mathsf{B}[\mathsf{count-1}] - 1) \cdot ex), ..., \\ &(type_{n-1}, disp_{n-1} + \mathsf{D}[\mathsf{count-1}] + (\mathsf{B}[\mathsf{count-1}] - 1) \cdot ex)\}. \end{split}
```

Indexed_block This function is the same as MPI_TYPE_INDEXED except that the block-length is the same for all blocks. There are many codes using indirect addressing arising from unstructured grids where the blocksize is always 1 (gather/scatter). The following convenience function allows for constant blocksize and arbitrary displacements.

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength, array_of_displacements, oldtype, newtype)

```
      IN
      count
      length of array of displacements (non-negative integer)

      IN
      blocklength
      size of block (non-negative integer)

      IN
      array_of_displacements
      array of displacements (array of integer)

      IN
      oldtype
      old datatype (handle)

      OUT
      newtype
      new datatype (handle)
```

```
MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
```

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE, NEWTYPE, IERROR

```
1
      Struct MPI_TYPE_STRUCT is the most general type constructor. It further generalizes
2
      MPI_TYPE_CREATE_HINDEXED in that it allows each block to consist of replications of
3
     different datatypes.
4
5
     MPI_TYPE_CREATE_STRUCT(count, array_of_blocklengths, array_of_displacements,
6
                     array_of_types, newtype)
7
8
       IN
                                               number of blocks (non-negative integer) — also num-
                 count
9
                                               ber of entries in arrays array_of_types,
10
                                               array_of_displacements and array_of_blocklengths
11
                  array_of_blocklength
       IN
                                               number of elements in each block (array of non-negative
12
                                               integer)
13
       IN
                  array_of_displacements
                                               byte displacement of each block (array of integer)
14
15
       IN
                  array_of_types
                                               type of elements in each block (array of handles to
16
                                               datatype objects)
17
        OUT
                  newtype
                                               new datatype (handle)
18
19
      int MPI_Type_create_struct(int count, int array_of_blocklengths[],
20
                     MPI_Aint array_of_displacements[],
21
                     MPI_Datatype array_of_types[], MPI_Datatype *newtype)
22
23
      MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,
24
                     ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)
25
          INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,
26
          IERROR
27
          INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)
28
      {static MPI::Datatype MPI::Datatype::Create_struct(int count,
29
                     const int array_of_blocklengths[], const MPI::Aint
30
                     array_of_displacements[],
31
                     const MPI::Datatype array_of_types[])(binding deprecated, see
32
                     Section 15.2) }
33
34
          This function replaces MPI_TYPE_STRUCT, whose use is deprecated. See also Chap-
35
      ter 15.
36
37
      Example 4.6 Let type1 have type map,
38
           \{(\mathsf{double}, 0), (\mathsf{char}, 8)\},\
39
40
      with extent 16. Let B = (2, 1, 3), D = (0, 16, 26), and T = (MPI_FLOAT, type1, MPI_CHAR).
41
      Then a call to MPI_TYPE_STRUCT(3, B, D, T, newtype) returns a datatype with type map,
42
           \{(float, 0), (float, 4), (double, 16), (char, 24), (char, 26), (char, 27), (char, 28)\}.
43
44
      That is, two copies of MPI_FLOAT starting at 0, followed by one copy of type1 starting at
45
      16, followed by three copies of MPI_CHAR, starting at 26. (We assume that a float occupies
46
      four bytes.)
```

In general, let T be the array_of_types argument, where T[i] is a handle to,

$$typemap_i = \{(type_0^i, disp_0^i), ..., (type_{n_i-1}^i, disp_{n_i-1}^i)\},$$

with extent ex_i . Let B be the array_of_blocklength argument and D be the array_of_displacements argument. Let c be the count argument. Then the newly created datatype has a type map with $\sum_{i=0}^{c-1} B[i] \cdot n_i$ entries:

$$\begin{split} &\{(type_0^0, disp_0^0 + \mathsf{D}[\mathsf{0}]), ..., (type_{n_0}^0, disp_{n_0}^0 + \mathsf{D}[\mathsf{0}]), ..., \\ &(type_0^0, disp_0^0 + \mathsf{D}[\mathsf{0}] + (\mathsf{B}[\mathsf{0}] - 1) \cdot ex_0), ..., (type_{n_0}^0, disp_{n_0}^0 + \mathsf{D}[\mathsf{0}] + (\mathsf{B}[\mathsf{0}] - 1) \cdot ex_0), ..., \\ &(type_0^{\mathsf{c}-1}, disp_0^{\mathsf{c}-1} + \mathsf{D}[\mathsf{c}-1]), ..., (type_{n_{\mathsf{c}-1}-1}^{\mathsf{c}-1}, disp_{n_{\mathsf{c}-1}-1}^{\mathsf{c}-1} + \mathsf{D}[\mathsf{c}-1]), ..., \\ &(type_0^{\mathsf{c}-1}, disp_0^{\mathsf{c}-1} + \mathsf{D}[\mathsf{c}-1] + (\mathsf{B}[\mathsf{c}-1] - 1) \cdot ex_{\mathsf{c}-1}), ..., \\ &(type_{n_{\mathsf{c}-1}-1}^{\mathsf{c}-1}, disp_{n_{\mathsf{c}-1}-1}^{\mathsf{c}-1} + \mathsf{D}[\mathsf{c}-1] + (\mathsf{B}[\mathsf{c}-1] - 1) \cdot ex_{\mathsf{c}-1})\}. \end{split}$$

A call to MPI_TYPE_CREATE_HINDEXED(count, B, D, oldtype, newtype) is equivalent to a call to MPI_TYPE_CREATE_STRUCT(count, B, D, T, newtype), where each entry of T is equal to oldtype.

4.1.3 Subarray Datatype Constructor

MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, array_of_subsizes, array_of_starts, order, oldtype, newtype)

IN	ndims	number of array dimensions (positive integer)	
IN	array_of_sizes	number of elements of type oldtype in each dimension of the full array (array of positive integers)	
IN	array_of_subsizes	number of elements of type oldtype in each dimension of the subarray (array of positive integers)	
IN	array_of_starts	starting coordinates of the subarray in each dimension (array of non-negative integers)	
IN	order	array storage order flag (state)	
IN	oldtype	array element datatype (handle)	
OUT	newtype	new datatype (handle)	

```
MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,

ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR
```

The subarray type constructor creates an MPI datatype describing an n-dimensional subarray of an n-dimensional array. The subarray may be situated anywhere within the full array, and may be of any nonzero size up to the size of the larger array as long as it is confined within this array. This type constructor facilitates creating filetypes to access arrays distributed in blocks among processes to a single file that contains the global array, see MPI I/O, especially Section 13.1.1 on page 421.

This type constructor can handle arrays with an arbitrary number of dimensions and works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note that a C program may use Fortran order and a Fortran program may use C order.

The ndims parameter specifies the number of dimensions in the full data array and gives the number of elements in array_of_sizes, array_of_subsizes, and array_of_starts.

The number of elements of type oldtype in each dimension of the *n*-dimensional array and the requested subarray are specified by array_of_sizes and array_of_subsizes, respectively. For any dimension i, it is erroneous to specify array_of_subsizes[i] < 1 or array_of_subsizes[i] > array_of_sizes[i].

The array_of_starts contains the starting coordinates of each dimension of the subarray. Arrays are assumed to be indexed starting from zero. For any dimension i, it is erroneous to specify array_of_starts[i] < 0 or array_of_starts[i] > (array_of_sizes[i] - array_of_subsizes[i]).

Advice to users. In a Fortran program with arrays indexed starting from 1, if the starting coordinate of a particular dimension of the subarray is n, then the entry in array_of_starts for that dimension is n-1. (End of advice to users.)

The order argument specifies the storage order for the subarray as well as the full array. It must be set to one of the following:

MPI_ORDER_C The ordering used by C arrays, (i.e., row-major order)

MPI_ORDER_FORTRAN The ordering used by Fortran arrays, (i.e., column-major order)

A ndims-dimensional subarray (newtype) with no extra padding can be defined by the function Subarray() as follows:

```
newtype = Subarray(ndims, {size_0, size_1, ..., size_{ndims-1}}, {subsize_0, subsize_1, ..., subsize_{ndims-1}}, {start_0, start_1, ..., start_{ndims-1}}, oldtype)
```

Let the typemap of oldtype have the form:

```
\{(type_0, disp_0), (type_1, disp_1), \dots, (type_{n-1}, disp_{n-1})\}
```

where $type_i$ is a predefined MPI datatype, and let ex be the extent of oldtype. Then we define the Subarray() function recursively using the following three equations. Equation 4.2 defines the base step. Equation 4.3 defines the recursion step when order = MPI_ORDER_FORTRAN, and Equation 4.4 defines the recursion step when order = MPI_ORDER_C.

12

13 14

15 16

17

18

19

20

21 22

23 24

25

26

27 28

29

30

31

32 33

34

35 36

37 38

39

40 41

42

43 44

45 46

47

48

```
Subarray(1, \{size_0\}, \{subsize_0\}, \{start_0\}, \}
                                                                                                       (4.2)
          \{(type_0, disp_0), (type_1, disp_1), \dots, (type_{n-1}, disp_{n-1})\}
  = \{(MPI_LB, 0),
       (type_0, disp_0 + start_0 \times ex), \dots, (type_{n-1}, disp_{n-1} + start_0 \times ex),
       (type_0, disp_0 + (start_0 + 1) \times ex), \dots, (type_{n-1},
                 disp_{n-1} + (start_0 + 1) \times ex), \dots
       (type_0, disp_0 + (start_0 + subsize_0 - 1) \times ex), \ldots,
                 (type_{n-1}, disp_{n-1} + (start_0 + subsize_0 - 1) \times ex),
       (MPI\_UB, size_0 \times ex)
Subarray(ndims, {size_0, size_1, ..., size_{ndims-1}},
                                                                                                       (4.3)
          \{subsize_0, subsize_1, \dots, subsize_{ndims-1}\},\
          \{start_0, start_1, \dots, start_{ndims-1}\}, \mathsf{oldtype}\}
  = Subarray(ndims - 1, {size_1, size_2, \dots, size_{ndims-1}},
          \{subsize_1, subsize_2, \dots, subsize_{ndims-1}\},\
          \{start_1, start_2, \dots, start_{ndims-1}\},\
                 Subarray(1, \{size_0\}, \{subsize_0\}, \{start_0\}, oldtype))
Subarray(ndims, {size_0, size_1, ..., size_{ndims-1}},
                                                                                                       (4.4)
          \{subsize_0, subsize_1, \dots, subsize_{ndims-1}\},\
          \{start_0, start_1, \dots, start_{ndims-1}\}, \mathsf{oldtype}\}
  = Subarray(ndims - 1, {size_0, size_1, ..., size_{ndims-2}},
          \{subsize_0, subsize_1, \dots, subsize_{ndims-2}\},\
          \{start_0, start_1, \dots, start_{ndims-2}\},\
                 Subarray(1, \{size_{ndims-1}\}, \{subsize_{ndims-1}\}, \{start_{ndims-1}\}, oldtype))
```

For an example use of MPI_TYPE_CREATE_SUBARRAY in the context of I/O see Section 13.9.2.

4.1.4 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [34] data distributions. However, unlike in HPF, the storage order may be specified for C arrays as well as for Fortran arrays.

Advice to users. One can create an HPF-like file view using this type constructor as follows. Complementary filetypes are created by having every process of a group call this constructor with identical arguments (with the exception of rank which should be set appropriately). These filetypes (along with identical disp and etype) are then used to define the view (via MPI_FILE_SET_VIEW), see MPI I/O, especially Section 13.1.1 on page 421 and Section 13.3 on page 433. Using this view, a collective data access operation (with identical offsets) will yield an HPF-like distribution pattern. (End of advice to users.)

37

38

39

40

41

42

44

45

46

47

```
1
     MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, array_of_distribs,
2
                     array_of_dargs, array_of_psizes, order, oldtype, newtype)
3
       IN
                 size
                                               size of process group (positive integer)
4
       IN
                  rank
                                               rank in process group (non-negative integer)
5
6
       IN
                  ndims
                                               number of array dimensions as well as process grid
7
                                               dimensions (positive integer)
       IN
                  array_of_gsizes
                                               number of elements of type oldtype in each dimension
9
                                               of global array (array of positive integers)
10
       IN
                  array_of_distribs
                                               distribution of array in each dimension (array of state)
11
       IN
                 array_of_dargs
                                               distribution argument in each dimension (array of pos-
12
                                              itive integers)
13
14
       IN
                 array_of_psizes
                                               size of process grid in each dimension (array of positive
15
                                              integers)
16
       IN
                 order
                                              array storage order flag (state)
17
                 oldtype
                                              old datatype (handle)
       IN
18
        OUT
                  newtype
                                              new datatype (handle)
19
20
21
      int MPI_Type_create_darray(int size, int rank, int ndims,
22
                     int array_of_gsizes[], int array_of_distribs[], int
23
                     array_of_dargs[], int array_of_psizes[], int order,
24
                     MPI_Datatype oldtype, MPI_Datatype *newtype)
25
     MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
26
                     ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
27
                     OLDTYPE, NEWTYPE, IERROR)
28
          INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),
29
          ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR
30
31
      {MPI::Datatype MPI::Datatype::Create_darray(int size, int rank, int ndims,
32
                     const int array_of_gsizes[], const int array_of_distribs[],
33
                     const int array_of_dargs[], const int array_of_psizes[],
34
                     int order) const(binding deprecated, see Section 15.2) }
35
```

MPI_TYPE_CREATE_DARRAY can be used to generate the datatypes corresponding to the distribution of an ndims-dimensional array of oldtype elements onto an ndims-dimensional grid of logical processes. Unused dimensions of array_of_psizes should be set to 1. (See Example 4.7, page 95.) For a call to MPI_TYPE_CREATE_DARRAY to be correct, the equation $\prod_{i=0}^{ndims-1} array_of_psizes[i] = size$ must be satisfied. The ordering of processes in the process grid is assumed to be row-major, as in the case of virtual Cartesian process topologies .

Advice to users. For both Fortran and C arrays, the ordering of processes in the process grid is assumed to be row-major. This is consistent with the ordering used in virtual Cartesian process topologies in MPI. To create such virtual process topologies, or to find the coordinates of a process in the process grid, etc., users may use the corresponding process topology functions, see Chapter 7 on page 277. (End of advice to users.)

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27 28

29

30

31

33

34

35

36

37

39

Each dimension of the array can be distributed in one of three ways:

- MPI_DISTRIBUTE_BLOCK Block distribution
- MPI_DISTRIBUTE_CYCLIC Cyclic distribution
- MPI_DISTRIBUTE_NONE Dimension not distributed.

The constant MPI_DISTRIBUTE_DFLT_DARG specifies a default distribution argument. The distribution argument for a dimension that is not distributed is ignored. For any dimension i in which the distribution is MPI_DISTRIBUTE_BLOCK, it is erroneous to specify array_of_dargs[i] * array_of_psizes[i] < array_of_gsizes[i].

For example, the HPF layout ARRAY(CYCLIC(15)) corresponds to MPI_DISTRIBUTE_CYCLIC with a distribution argument of 15, and the HPF layout ARRAY(BLOCK) corresponds to MPI_DISTRIBUTE_BLOCK with a distribution argument of MPI_DISTRIBUTE_DFLT_DARG.

The order argument is used as in MPI_TYPE_CREATE_SUBARRAY to specify the storage order. Therefore, arrays described by this type constructor may be stored in Fortran (column-major) or C (row-major) order. Valid values for order are MPI_ORDER_FORTRAN and MPI_ORDER_C.

This routine creates a new MPI datatype with a typemap defined in terms of a function called "cyclic()" (see below).

Without loss of generality, it suffices to define the type map for the MPI_DISTRIBUTE_CYCLIC case where MPI_DISTRIBUTE_DFLT_DARG is not used.

MPI_DISTRIBUTE_BLOCK and MPI_DISTRIBUTE_NONE can be reduced to the MPI_DISTRIBUTE_CYCLIC case for dimension i as follows.

 $\label{lock} MPI_DISTRIBUTE_BLOCK\ with\ array_of_dargs[i]\ equal\ to\ MPI_DISTRIBUTE_DFLT_DARG\ is\ equivalent\ to\ MPI_DISTRIBUTE_CYCLIC\ with\ array_of_dargs[i]\ set\ to$

```
(array_of_gsizes[i] + array_of_psizes[i] - 1)/array_of_psizes[i].
```

If array_of_dargs[i] is not MPI_DISTRIBUTE_DFLT_DARG, then MPI_DISTRIBUTE_BLOCK and MPI_DISTRIBUTE_CYCLIC are equivalent.

MPI_DISTRIBUTE_NONE is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] set to array_of_gsizes[i].

Finally, MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] equal to MPI_DISTRIBUTE_DFLT_DARG is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] set to 1.

For MPI_ORDER_FORTRAN, an ndims-dimensional distributed array (newtype) is defined by the following code fragment:

```
1
           For MPI_ORDER_C, the code is:
2
            oldtype[0] = oldtype;
            for (i = 0; i < ndims; i++) {
                oldtype[i + 1] = cyclic(array_of_dargs[ndims - i - 1],
                                                 array_of_gsizes[ndims - i - 1],
6
                                                 r[ndims - i - 1],
                                                 array_of_psizes[ndims - i - 1],
                                                 oldtype[i]);
9
            }
10
            newtype = oldtype[ndims];
11
12
13
       where r[i] is the position of the process (with rank rank) in the process grid at dimension i.
14
       The values of r[i] are given by the following code fragment:
15
16
                 t_rank = rank;
17
                 t_size = 1;
18
                 for (i = 0; i < ndims; i++)
19
                            t_size *= array_of_psizes[i];
20
                 for (i = 0; i < ndims; i++) {
21
                       t_size = t_size / array_of_psizes[i];
22
                       r[i] = t_rank / t_size;
23
                       t_rank = t_rank % t_size;
24
                 }
25
26
           Let the typemap of oldtype have the form:
27
             \{(type_0, disp_0), (type_1, disp_1), \dots, (type_{n-1}, disp_{n-1})\}
28
29
       where type_i is a predefined MPI datatype, and let ex be the extent of oldtype.
30
            Given the above, the function cyclic() is defined as follows:
31
32
             \operatorname{cyclic}(darg, gsize, r, psize, \mathsf{oldtype})
33
               = \{(MPI_LB, 0),
34
                    (type_0, disp_0 + r \times darq \times ex), \ldots,
35
                            (type_{n-1}, disp_{n-1} + r \times darg \times ex),
36
37
                    (type_0, disp_0 + (r \times darq + 1) \times ex), \ldots,
38
                            (type_{n-1}, disp_{n-1} + (r \times darq + 1) \times ex),
39
                    (type_0, disp_0 + ((r+1) \times darg - 1) \times ex), \ldots,
41
                            (type_{n-1}, disp_{n-1} + ((r+1) \times darq - 1) \times ex),
42
43
44
                    (type_0, disp_0 + r \times darg \times ex + psize \times darg \times ex), \dots,
45
                            (type_{n-1}, disp_{n-1} + r \times darg \times ex + psize \times darg \times ex),
46
                    (type_0, disp_0 + (r \times darg + 1) \times ex + psize \times darg \times ex), \ldots,
47
                             (type_{n-1}, disp_{n-1} + (r \times darg + 1) \times ex + psize \times darg \times ex),
```

```
(type_0, disp_0 + ((r+1) \times darg - 1) \times ex + psize \times darg \times ex), \ldots, \\ (type_{n-1}, disp_{n-1} + ((r+1) \times darg - 1) \times ex + psize \times darg \times ex), \\ \vdots \\ (type_0, disp_0 + r \times darg \times ex + psize \times darg \times ex \times (count - 1)), \ldots, \\ (type_{n-1}, disp_{n-1} + r \times darg \times ex + psize \times darg \times ex \times (count - 1)), \\ (type_0, disp_0 + (r \times darg + 1) \times ex + psize \times darg \times ex \times (count - 1)), \ldots, \\ (type_{n-1}, disp_{n-1} + (r \times darg + 1) \times ex \\ + psize \times darg \times ex \times (count - 1)), \\ \dots \\ (type_0, disp_0 + (r \times darg + darg_{last} - 1) \times ex \\ + psize \times darg \times ex \times (count - 1)), \dots, \\ (type_{n-1}, disp_{n-1} + (r \times darg + darg_{last} - 1) \times ex \\ + psize \times darg \times ex \times (count - 1)), \\ (MPI_UB, gsize * ex) \}
```

where *count* is defined by this code fragment:

```
nblocks = (gsize + (darg - 1)) / darg;
count = nblocks / psize;
left_over = nblocks - count * psize;
if (r < left_over)
    count = count + 1;</pre>
```

Here, nblocks is the number of blocks that must be distributed among the processors. Finally, $darg_{last}$ is defined by this code fragment:

Example 4.7 Consider generating the filetypes corresponding to the HPF distribution:

```
<oldtype> FILEARRAY(100, 200, 300)
!HPF$ PROCESSORS PROCESSES(2, 3)
!HPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES
```

This can be achieved by the following Fortran code, assuming there will be six processes attached to the run:

21

22

23

24

25

26

27

28

29 30 31

46 47

```
1
         ndims = 3
2
         array_of_gsizes(1) = 100
         array_of_distribs(1) = MPI_DISTRIBUTE_CYCLIC
         array_of_dargs(1) = 10
5
         array_of_gsizes(2) = 200
6
         array_of_distribs(2) = MPI_DISTRIBUTE_NONE
         array_of_dargs(2) = 0
         array_of_gsizes(3) = 300
9
         array_of_distribs(3) = MPI_DISTRIBUTE_BLOCK
10
         array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_DARG
11
         array_of_psizes(1) = 2
12
         array_of_psizes(2) = 1
13
         array_of_psizes(3) = 3
14
         call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
15
         call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
16
         call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &
17
              array_of_distribs, array_of_dargs, array_of_psizes,
18
              MPI_ORDER_FORTRAN, oldtype, newtype, ierr)
19
```

4.1.5 Address and Size Functions

The displacements in a general datatype are relative to some initial buffer address. **Absolute addresses** can be substituted for these displacements: we treat them as displacements relative to "address zero," the start of the address space. This initial address zero is indicated by the constant MPI_BOTTOM. Thus, a datatype can specify the absolute address of the entries in the communication buffer, in which case the buf argument is passed the value MPI_BOTTOM.

The address of a location in memory can be found by invoking the function $\mathsf{MPI_GET_ADDRESS}.$

```
MPI_GET_ADDRESS(location, address)
```

```
32
       IN
                 location
                                              location in caller memory (choice)
33
34
       OUT
                 address
                                              address of location (integer)
35
36
     int MPI_Get_address(void *location, MPI_Aint *address)
37
     MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)
38
          <type> LOCATION(*)
39
          INTEGER IERROR
40
          INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS
41
42
     {MPI::Aint MPI::Get_address(void* location)(binding deprecated, see Section 15.2)
43
44
45
```

This function replaces MPI_ADDRESS, whose use is deprecated. See also Chapter 15. Returns the (byte) address of location.

Advice to users. Current Fortran MPI codes will run unmodified, and will port

 $_{46}$ ticket 265.

ticket 265

to any system. However, they may fail if addresses larger than $2^{32} - 1$ are used in the program. New codes should be written so that they use the new functions. This provides compatibility with C/C++ and avoids errors on 64 bit architectures. However, such newly written codes may need to be (slightly) rewritten to port to old Fortran 77 environments that do not support KIND declarations. (*End of advice to users.*)

Example 4.8 Using MPI_GET_ADDRESS for an array.

```
REAL A(100,100)
   INTEGER(KIND=MPI_ADDRESS_KIND) I1, I2, DIFF
   CALL MPI_GET_ADDRESS(A(1,1), I1, IERROR)
   CALL MPI_GET_ADDRESS(A(10,10), I2, IERROR)
   DIFF = I2 - I1
! The value of DIFF is 909*sizeofreal; the values of I1 and I2 are
! implementation dependent.
```

Advice to users. C users may be tempted to avoid the usage of MPI_GET_ADDRESS and rely on the availability of the address operator &. Note, however, that & cast-expression is a pointer, not an address. ISO C does not require that the value of a pointer (or the pointer cast to int) be the absolute address of the object pointed at — although this is commonly the case. Furthermore, referencing may not have a unique definition on machines with a segmented address space. The use of MPI_GET_ADDRESS to "reference" C variables guarantees portability to such machines as well. (End of advice to users.)

Advice to users. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in subsections "Problems Due to Data Copying and Sequence Association," and "A Problem with Register Optimization" in Section 16.2.2 on pages 514 and 517. (End of advice to users.)

The following auxiliary [function provides]functions provide useful information on derived datatypes.

ticket265. 11 ticket265. 12

ticket265. 14

```
1
     MPI_TYPE_SIZE_X(datatype, size)
2
       IN
                datatype
                                            datatype (handle)
3
       OUT
                size
                                            datatype size (integer)
4
5
6
     int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)
7
     MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)
8
         INTEGER DATATYPE, IERROR
9
         INTEGER (KIND=MPI_COUNT_KIND) SIZE
10
```

MPI_TYPE_SIZE and MPI_TYPE_SIZE_X [returns]set the value of size to the total size, in bytes, of the entries in the type signature associated with datatype; i.e., the total size of the data in a message that would be created with this datatype. Entries that occur multiple times in the datatype are counted with their multiplicity.

If the total size of the datatype can not be expressed by the size parameter, then MPI_TYPE_SIZE and MPI_TYPE_SIZE_X set the value of size to MPI_UNDEFINED.

4.1.6 Lower-Bound and Upper-Bound Markers

It is often convenient to define explicitly the lower bound and upper bound of a type map, and override the definition given on page 99. This allows one to define a datatype that has "holes" at its beginning or its end, or a datatype with entries that extend above the upper bound or below the lower bound. Examples of such usage are provided in Section 4.1.14. Also, the user may want to overide the alignment rules that are used to compute upper bounds and extents. E.g., a C compiler may allow the user to overide default alignment rules for some of the structures within a program. The user has to specify explicitly the bounds of the datatypes that match these structures.

To achieve this, we add two additional "pseudo-datatypes," MPI_LB and MPI_UB, that can be used, respectively, to mark the lower bound or the upper bound of a datatype. These pseudo-datatypes occupy no space $(extent(\mathsf{MPI_LB}) = extent(\mathsf{MPI_UB}) = 0)$. They do not affect the size or count of a datatype, and do not affect the content of a message created with this datatype. However, they do affect the definition of the extent of a datatype and, therefore, affect the outcome of a replication of this datatype by a datatype constructor.

Example 4.9 Let D = (-3, 0, 6); $T = (MPI_LB, MPI_INT, MPI_UB)$, and B = (1, 1, 1). Then a call to $MPI_TYPE_STRUCT(3, B, D, T, type1)$ creates a new datatype that has an extent of 9 (from -3 to 5, 5 included), and contains an integer at displacement 0. This is the datatype defined by the sequence $\{(lb, -3), (int, 0), (ub, 6)\}$. If this type is replicated twice by a call to $MPI_TYPE_CONTIGUOUS(2, type1, type2)$ then the newly created type can be described by the sequence $\{(lb, -3), (int, 0), (int, 9), (ub, 15)\}$. (An entry of type ub can be deleted if there is another entry of type ub with a higher displacement; an entry of type lb can be deleted if there is another entry of type lb with a lower displacement.)

In general, if

```
Typemap = \{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\
```

then the **lower bound** of *Typemap* is defined to be

$$lb(Typemap) = \begin{cases} \min_{j} disp_{j} & \text{if no entry has basic type Ib} \\ \min_{j} \{disp_{j} \text{ such that } type_{j} = \mathsf{Ib} \} & \text{otherwise} \end{cases}$$

Unofficial Draft for Comment Only

12 13

14

20 21

22 23

24

```
Similarly, the upper bound of Typemap is defined to be
```

```
ub(Typemap) = \begin{cases} \max_{j} disp_{j} + sizeof(type_{j}) + \epsilon & \text{if no entry has basic type ub} \\ \max_{j} \{disp_{j} \text{ such that } type_{j} = \text{ub} \} & \text{otherwise} \end{cases}
```

Then

```
extent(Typemap) = ub(Typemap) - lb(Typemap)
```

If $type_i$ requires alignment to a byte address that is a multiple of k_i , then ϵ is the least non-negative increment needed to round extent(Typemap) to the next multiple of $\max_i k_i$.

The formal definitions given for the various datatype constructors apply now, with the amended definition of **extent**.

Extent and Bounds of Datatypes

The [following function replaces] functions MPI_TYPE_GET_EXTENT and MPI_TYPE_GET_EXTENT_X replace the three functions MPI_TYPE_UB, MPI_TYPE_LB and MPI_TYPE_EXTENT [. It also returns] and also return address sized integers[,] in the Fortran binding. The use of MPI_TYPE_UB, MPI_TYPE_LB and MPI_TYPE_EXTENT is deprecated.

MPI_TYPE_GET_EXTENT(datatype, lb, extent)

```
IN
           datatype
                                          datatype to get information on (handle)
OUT
           lb
                                          lower bound of datatype (integer)
OUT
           extent
                                          extent of datatype (integer)
```

```
int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,
             MPI_Aint *extent)
```

```
MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)
   INTEGER DATATYPE, IERROR
   INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT
```

```
{void MPI::Datatype::Get_extent(MPI::Aint& lb, MPI::Aint& extent)
              const(binding deprecated, see Section 15.2) }
```

MPI_TYPE_GET_EXTENT_X(datatype, lb, extent)

```
IN
          datatype
                                          datatype to get information on (handle)
OUT
          lb
                                          lower bound of datatype (integer)
OUT
          extent
                                          extent of datatype (integer)
```

```
int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *1b,
             MPI_Count *extent)
```

```
MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)
    INTEGER DATATYPE, IERROR
```

44 45

43

46 47

Unofficial Draft for Comment Only

¹⁵ ticket265.

¹⁷ ticket265. 18 ticket 265. 19

25 26 27

28 29 30

31 33

34

35

37 38

39

41

42

зе ticket265.

INTEGER(KIND = MPI_COUNT_KIND) LB, EXTENT Returns the lower bound and the extent of data

Returns the lower bound and the extent of datatype (as defined in Section 4.1.6 on page 98).

MPI allows one to change the extent of a datatype, using lower bound and upper bound markers (MPI_LB and MPI_UB). This is useful, as it allows to control the stride of successive datatypes that are replicated by datatype constructors, or are replicated by the count argument in a send or receive call. However, the current mechanism for achieving it is painful; also it is restrictive. MPI_LB and MPI_UB are "sticky": once present in a datatype, they cannot be overridden (e.g., the upper bound can be moved up, by adding a new MPI_UB marker, but cannot be moved down below an existing MPI_UB marker). A new type constructor is provided to facilitate these changes. The use of MPI_LB and MPI_UB is deprecated.

 $\frac{45}{46}$

MPI_TYPE_CREATE_RESIZED(oldtype, lb, extent, newtype)

```
    IN oldtype input datatype (handle)
    IN lb new lower bound of datatype (integer)
    IN extent new extent of datatype (integer)
    OUT newtype output datatype (handle)
```

```
MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
INTEGER OLDTYPE, NEWTYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT
```

Returns in newtype a handle to a new datatype that is identical to oldtype, except that the lower bound of this new datatype is set to be lb, and its upper bound is set to be lb + extent. Any previous lb and ub markers are erased, and a new pair of lower bound and upper bound markers are put in the positions indicated by the lb and extent arguments. This affects the behavior of the datatype when used in communication operations, with count > 1, and when used in the construction of new derived datatypes.

Advice to users. It is strongly recommended that users use these two new functions, rather than the old MPI-1 functions to set and access lower bound, upper bound and extent of datatypes. (End of advice to users.)

4.1.8 True Extent of Datatypes

Suppose we implement gather (see also Section 5.5 on page 142) as a spanning tree implemented on top of point-to-point routines. Since the receive buffer is only valid on the root process, one will need to allocate some temporary space for receiving data on intermediate nodes. However, the datatype extent cannot be used as an estimate of the amount of space that needs to be allocated, if the user has modified the extent using the MPI_UB

```
and MPI_LB values. [ A function is] The functions MPI_TYPE_GET_TRUE_EXTENT and
                                                                                               <sup>1</sup> ticket265.
MPI_TYPE_GET_TRUE_EXTENT_X are provided which [returns] return the true extent of
                                                                                               <sup>2</sup> ticket265.
the datatype.
                                                                                               4
                                                                                               5
MPI_TYPE_GET_TRUE_EXTENT(datatype, true_lb, true_extent)
  IN
            datatype
                                          datatype to get information on (handle)
  OUT
            true_lb
                                          true lower bound of datatype (integer)
  OUT
            true_extent
                                          true size of datatype (integer)
                                                                                               11
int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
                                                                                               12
                MPI_Aint *true_extent)
                                                                                               13
                                                                                               14
MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
                                                                                               15
     INTEGER DATATYPE, IERROR
                                                                                               16
    INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT
                                                                                               17
{void MPI::Datatype::Get_true_extent(MPI::Aint& true_lb,
                                                                                               18
                MPI::Aint& true_extent) const(binding deprecated, see Section 15.2) }
                                                                                               <sub>20</sub> ticket265.
                                                                                               21
                                                                                               22
MPI_TYPE_GET_TRUE_EXTENT_X(datatype, true_lb, true_extent)
                                                                                               23
  IN
            datatype
                                         datatype to get information on (handle)
                                                                                               24
  OUT
            true_lb
                                         true lower bound of datatype (integer)
                                                                                               25
                                                                                               26
  OUT
            true_extent
                                         true size of datatype (integer)
                                                                                               27
                                                                                               28
int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,
                                                                                               29
                MPI_Count *true_extent)
                                                                                               30
MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)
                                                                                               31
     INTEGER DATATYPE, IERROR
                                                                                               32
    INTEGER(KIND = MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT
                                                                                               33
                                                                                               34
    true_lb returns the offset of the lowest unit of store which is addressed by the datatype,
                                                                                               35
i.e., the lower bound of the corresponding typemap, ignoring MPI_LB markers. true_extent
                                                                                               36
returns the true size of the datatype, i.e., the extent of the corresponding typemap, ignoring
                                                                                               37
MPI_LB and MPI_UB markers, and performing no rounding for alignment. If the typemap
                                                                                               38
associated with datatype is
                                                                                               39
     Typemap = \{(type_0, disp_0), \dots, (type_{n-1}, disp_{n-1})\}
                                                                                               41
Then
                                                                                               42
     true\_lb(Typemap) = min_i \{ disp_i : type_i \neq \mathbf{lb}, \mathbf{ub} \},\
                                                                                               43
                                                                                               44
     true\_ub(Typemap) = max_i \{ disp_i + sizeof(type_i) : type_i \neq lb, ub \},
                                                                                               45
                                                                                               46
and
                                                                                               47
     true\_extent(Typemap) = true\_ub(Typemap) - true\_lb(typemap).
```

(Readers should compare this with the definitions in Section 4.1.6 on page 98 and Section 4.1.7 on page 99, which describe the function MPI_TYPE_GET_EXTENT.)

The true_extent is the minimum number of bytes of memory necessary to hold a datatype, uncompressed.

4.1.9 Commit and Free

A datatype object has to be **committed** before it can be used in a communication. As an argument in datatype constructors, uncommitted and also committed datatypes can be used. There is no need to commit basic datatypes. They are "pre-committed."

```
MPI_TYPE_COMMIT(datatype)
INOUT datatype datatype that is committed (handle)
int MPI_Type_commit(MPI_Datatype *datatype)
MPI_TYPE_COMMIT(DATATYPE, IERROR)
    INTEGER DATATYPE, IERROR
{void MPI::Datatype::Commit() (binding deprecated, see Section 15.2) }
```

The commit operation commits the datatype, that is, the formal description of a communication buffer, not the content of that buffer. Thus, after a datatype has been committed, it can be repeatedly reused to communicate the changing content of a buffer or, indeed, the content of different buffers, with different starting addresses.

Advice to implementors. The system may "compile" at commit time an internal representation for the datatype that facilitates communication, e.g. change from a compacted representation to a flat representation of the datatype, and select the most convenient transfer mechanism. (End of advice to implementors.)

MPI_TYPE_COMMIT will accept a committed datatype; in this case, it is equivalent to a no-op.

Example 4.10 The following code fragment gives examples of using MPI_TYPE_COMMIT.

```
INTEGER type1, type2
36
     CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, type1, ierr)
37
                    ! new type object created
38
     CALL MPI_TYPE_COMMIT(type1, ierr)
39
                    ! now type1 can be used for communication
40
     type2 = type1
41
                    ! type2 can be used for communication
42
                    ! (it is a handle to same object as type1)
43
     CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, type1, ierr)
44
                    ! new uncommitted type object created
45
     CALL MPI_TYPE_COMMIT(type1, ierr)
46
                    ! now type1 can be used anew for communication
47
```

Marks the datatype object associated with datatype for deallocation and sets datatype to MPI_DATATYPE_NULL. Any communication that is currently using this datatype will complete normally. Freeing a datatype does not affect any other datatype that was built from the freed datatype. The system behaves as if input datatype arguments to derived datatype constructors are passed by value.

Advice to implementors. The implementation may keep a reference count of active communications that use the datatype, in order to decide when to free it. Also, one may implement constructors of derived datatypes so that they keep pointers to their datatype arguments, rather then copying them. In this case, one needs to keep track of active datatype definition references in order to know when a datatype object can be freed. (End of advice to implementors.)

4.1.10 Duplicating a Datatype

MPI_TYPE_DUP is a type constructor which duplicates the existing type with associated key values. For each key value, the respective copy callback function determines the attribute value associated with this key in the new communicator; one particular action that a copy callback may take is to delete the attribute from the new datatype. Returns in newtype a new datatype with exactly the same properties as type and any copied cached information, see Section 6.7.4 on page 265. The new datatype has identical upper bound and lower bound and yields the same net result when fully decoded with the functions in Section 4.1.13. The newtype has the same committed state as the old type.

4.1.11 Use of General Datatypes in Communication

Handles to derived datatypes can be passed to a communication call wherever a datatype argument is required. A call of the form $MPI_SEND(buf, count, datatype, ...)$, where count > 1, is interpreted as if the call was passed a new datatype which is the concatenation of count copies of datatype. Thus, $MPI_SEND(buf, count, datatype, dest, tag, comm)$ is equivalent to,

```
MPI_TYPE_CONTIGUOUS(count, datatype, newtype)
MPI_TYPE_COMMIT(newtype)
MPI_SEND(buf, 1, newtype, dest, tag, comm).
```

Similar statements apply to all other communication functions that have a **count** and **datatype** argument.

Suppose that a send operation MPI_SEND(buf, count, datatype, dest, tag, comm) is executed, where datatype has type map,

```
\{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\
```

and extent extent. (Empty entries of "pseudo-type" MPI_UB and MPI_LB are not listed in the type map, but they affect the value of extent.) The send operation sends $n \cdot \text{count}$ entries, where entry $i \cdot n + j$ is at location $addr_{i,j} = \text{buf} + extent \cdot i + disp_j$ and has type $type_j$, for i = 0, ..., count - 1 and j = 0, ..., n - 1. These entries need not be contiguous, nor distinct; their order can be arbitrary.

The variable stored at address $addr_{i,j}$ in the calling program should be of a type that matches $type_j$, where type matching is defined as in Section 3.3.1. The message sent contains $n \cdot \text{count}$ entries, where entry $i \cdot n + j$ has type $type_j$.

Similarly, suppose that a receive operation MPI_RECV(buf, count, datatype, source, tag, comm, status) is executed, where datatype has type map,

```
\{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\},\
```

with extent extent. (Again, empty entries of "pseudo-type" MPI_UB and MPI_LB are not listed in the type map, but they affect the value of extent.) This receive operation receives $n \cdot \text{count}$ entries, where entry $i \cdot n + j$ is at location buf $+ extent \cdot i + disp_j$ and has type $type_j$. If the incoming message consists of k elements, then we must have $k \leq n \cdot \text{count}$; the $i \cdot n + j$ -th element of the message should have a type that matches $type_j$.

Type matching is defined according to the type signature of the corresponding datatypes, that is, the sequence of basic type components. Type matching does not depend on some aspects of the datatype definition, such as the displacements (layout in memory) or the intermediate types used.

Example 4.11 This example shows that type matching is defined in terms of the basic types that a derived type consists of.

²⁷ ticket265. ²⁸ ticket265.

```
CALL MPI_TYPE_CONTIGUOUS( 2, MPI_REAL, type2, ...)

CALL MPI_TYPE_CONTIGUOUS( 4, MPI_REAL, type4, ...)

CALL MPI_TYPE_CONTIGUOUS( 2, type2, type22, ...)

...

CALL MPI_SEND( a, 4, MPI_REAL, ...)

CALL MPI_SEND( a, 2, type2, ...)

CALL MPI_SEND( a, 1, type22, ...)

CALL MPI_SEND( a, 1, type4, ...)

...

CALL MPI_RECV( a, 4, MPI_REAL, ...)

CALL MPI_RECV( a, 2, type2, ...)

CALL MPI_RECV( a, 1, type22, ...)

CALL MPI_RECV( a, 1, type4, ...)

CALL MPI_RECV( a, 1, type4, ...)
```

Each of the sends matches any of the receives.

A datatype may specify overlapping entries. The use of such a datatype in a receive operation is erroneous. (This is erroneous even if the actual message received is short enough not to write any entry more than once.)

Suppose that MPI_RECV(buf, count, datatype, dest, tag, comm, status) is executed, where datatype has type map,

```
\{(type_0, disp_0), ..., (type_{n-1}, disp_{n-1})\}.
```

The received message need not fill all the receive buffer, nor does it need to fill a number of locations which is a multiple of n. Any number, k, of basic elements can be received, where $0 \le k \le \mathsf{count} \cdot n$. The number of basic elements received can be retrieved from status using the query [function] functions MPI_GET_ELEMENTS[or MPI_GET_ELEMENTS_X].

MPI_GET_ELEMENTS(status, datatype, count)

```
IN status return status of receive operation (Status)

IN datatype datatype used by receive operation (handle)

OUT count number of received basic elements (integer)

int MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype, int *count)

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

{int MPI::Status::Get_elements(const MPI::Datatype& datatype) const(binding deprecated, see Section 15.2) }
```

42 ticket265.

```
1
     MPI_GET_ELEMENTS_X( status, datatype, count)
2
       IN
                                             return status of receive operation (Status)
                 status
3
       IN
                 datatype
                                             datatype used by receive operation (handle)
4
5
       OUT
                                             number of received basic elements (integer)
                 count
6
7
     int MPI_Get_elements_x(MPI_Status *status, MPI_Datatype datatype,
8
                    MPI_Count *count)
9
     MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)
10
          INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR
11
          INTEGER (KIND=MPI_COUNT_KIND) COUNT
12
13
          The previously defined function MPI_GET_COUNT (Section 3.2.5), has a different be-
14
15
16
```

havior. It returns the number of "top-level entries" received, i.e. the number of "copies" of type datatype. In the previous example, MPI_GET_COUNT may return any integer value k, where $0 \le k \le \text{count}$. If MPI_GET_COUNT returns k, then the number of basic elements received (and the value returned by MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X) is $n \cdot k$. If the number of basic elements received is not a multiple of n, that is, if the receive operation has not received an integral number of datatype "copies," then MPI_GET_COUNT [returns] sets the value of count to MPI_UNDEFINED. The datatype argument should match the argument provided by the receive call that set the status variable.

If the number of basic elements received exceeds the limits of the count parameter, then MPI_GET_ELEMENTS and MPI_GET_ELEMENTS_X set the value of count to MPI_UNDEFINED.

Example 4.12 Usage of MPI_GET_COUNT and MPI_GET_ELEMENTS.

```
CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)
CALL MPI_TYPE_COMMIT(Type2, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN
      CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)
      CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)
ELSE IF (rank.EQ.1) THEN
      CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
      CALL MPI_GET_COUNT(stat, Type2, i, ierr)
                                                   ! returns i=1
      CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=2
      CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)
      CALL MPI_GET_COUNT(stat, Type2, i, ierr)
                                                   ! returns i=MPI_UNDEFINED
      CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr)
                                                  ! returns i=3
END IF
```

The [function] functions MPI_GET_ELEMENTS and MPI_GET_ELEMENTS_X can also be used after a probe to find the number of elements in the probed message. Note that the [two] functions MPI_GET_COUNT [and], MPI_GET_ELEMENTS and MPI_GET_ELEMENTS_X return the same values when they are used with basic datatypes.

ticket265.

ticket265. ticket265. ticket 265. 22

23

24

25 26

27 28

29

30 31

32

33

34

35

36

37

38

39

41

42

43

ticket265. ticket 265. $_{46}$ ticket265. 47

ticket265. 48 ticket265.

Rationale. The extension given to the definition of MPI_GET_COUNT seems natural: one would expect this function to return the value of the count argument, when the receive buffer is filled. Sometimes datatype represents a basic unit of data one wants to transfer, for example, a record in an array of records (structures). One should be able to find out how many components were received without bothering to divide by the number of elements in each component. However, on other occasions, datatype is used to define a complex layout of data in the receiver memory, and does not represent a basic unit of data for transfers. In such cases, one needs to use the function MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X . (End of rationale.)

Advice to implementors. The definition implies that a receive cannot change the value of storage outside the entries defined to compose the communication buffer. In particular, the definition implies that padding space in a structure should not be modified when such a structure is copied from one process to another. This would prevent the obvious optimization of copying the structure, together with the padding, as one contiguous block. The implementation is free to do this optimization when it does not impact the outcome of the computation. The user can "force" this optimization by explicitly including padding as part of the message. (End of advice to implementors.)

4.1.12 Correct Use of Addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous locations. Thus, care must be exercised that displacements do not cross from one variable to another. Also, in machines with a segmented address space, addresses are not unique and address arithmetic has some peculiar properties. Thus, the use of **addresses**, that is, displacements relative to the start address MPI_BOTTOM, has to be restricted.

Variables belong to the same **sequential storage** if they belong to the same array, to the same COMMON block in Fortran, or to the same structure in C. Valid addresses are defined recursively as follows:

- 1. The function MPI_GET_ADDRESS returns a valid address, when passed as argument a variable of the calling program.
- 2. The buf argument of a communication function evaluates to a valid address, when passed as argument a variable of the calling program.
- 3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v and v+i are in the same sequential storage.
- 4. If v is a valid address then $MPI_BOTTOM + v$ is a valid address.

A correct program uses only valid addresses to identify the locations of entries in communication buffers. Furthermore, if u and v are two valid addresses, then the (integer) difference u - v can be computed only if both u and v are in the same sequential storage. No other arithmetic operations can be meaningfully executed on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as they are used to define a communication buffer that is wholly contained within the same sequential storage. However, the construction of a communication buffer that contains variables that are not within the same sequential storage must obey certain restrictions. Basically, a communication buffer with variables that are not within the same sequential ⁹ ticket265.

storage can be used only by specifying in the communication call $buf = MPI_BOTTOM$, count = 1, and using a datatype argument where all displacements are valid (absolute) addresses.

Advice to users. It is not expected that MPI implementations will be able to detect erroneous, "out of bound" displacements — unless those overflow the user address space — since the MPI call may not know the extent of the arrays and records in the host program. (End of advice to users.)

Advice to implementors. There is no need to distinguish (absolute) addresses and (relative) displacements on a machine with contiguous address space: MPI_BOTTOM is zero, and both addresses and displacements are integers. On machines where the distinction is required, addresses are recognized as expressions that involve MPI_BOTTOM. (End of advice to implementors.)

4.1.13 Decoding a Datatype

MPI datatype objects allow users to specify an arbitrary layout of data in memory. There are several cases where accessing the layout information in opaque datatype objects would be useful. The opaque datatype object has found a number of uses outside MPI. Furthermore, a number of tools wish to display internal information about a datatype. To achieve this, datatype decoding functions are provided. The two functions in this section are used together to decode datatypes to recreate the calling sequence used in their initial definition. These can be used to allow a user to determine the type map and type signature of a datatype.

MPI_TYPE_GET_ENVELOPE(datatype, num_integers, num_addresses, num_datatypes, combiner)

```
IN
          datatype
                                         datatype to access (handle)
OUT
          num_integers
                                         number of input integers used in the call constructing
                                         combiner (non-negative integer)
OUT
          num_addresses
                                         number of input addresses used in the call construct-
                                         ing combiner (non-negative integer)
OUT
                                         number of input datatypes used in the call construct-
          num_datatypes
                                         ing combiner (non-negative integer)
OUT
          combiner
                                         combiner (state)
```

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER, IERROR

```
{void MPI::Datatype::Get_envelope(int& num_integers, int& num_addresses, int& num_datatypes, int& combiner) const(binding deprecated, see Section 15.2)}
```

 $\frac{44}{45}$

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the number and type of input arguments used in the call that created the datatype. The number-of-arguments values returned can be used to provide sufficiently large arrays in the decoding routine MPI_TYPE_GET_CONTENTS. This call and the meaning of the returned values is described below. The combiner reflects the MPI datatype constructor call that was used in creating datatype.

Rationale. By requiring that the combiner reflect the constructor used in the creation of the datatype, the decoded information can be used to effectively recreate the calling sequence used in the original creation. One call is effectively the same as another when the information obtained from MPI_TYPE_GET_CONTENTS may be used with either to produce the same outcome. C calls MPI_Type_hindexed and MPI_Type_create_hindexed are always effectively the same while the Fortran call MPI_TYPE_HINDEXED will be different than either of these in some MPI implementations. This is the most useful information and was felt to be reasonable even though it constrains implementations to remember the original constructor sequence even if the internal representation is different.

The decoded information keeps track of datatype duplications. This is important as one needs to distinguish between a predefined datatype and a dup of a predefined datatype. The former is a constant object that cannot be freed, while the latter is a derived datatype that can be freed. (*End of rationale*.)

The list below has the values that can be returned in combiner on the left and the call associated with them on the right.

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.

For deprecated calls with address arguments, we sometimes need to differentiate whether the call used an integer or an address size argument. For example, there are two combiners for hvector: MPI_COMBINER_HVECTOR_INTEGER and MPI_COMBINER_HVECTOR. The former is used if it was the MPI-1 call from Fortran, and the latter is used if it was the MPI-1 call from C or C++. However, on systems where MPI_ADDRESS_KIND = MPI_INTEGER_KIND (i.e., where integer arguments and address size arguments are the same), the combiner MPI_COMBINER_HVECTOR may be returned for a datatype constructed by a call to MPI_TYPE_HVECTOR from Fortran. Similarly, MPI_COMBINER_HINDEXED may be returned for a datatype constructed by a call to MPI_TYPE_HINDEXED from Fortran, and MPI_COMBINER_STRUCT may be returned for a datatype constructed by a call to MPI_TYPE_STRUCT from Fortran. On such systems, one need not differentiate constructors that take address size arguments from constructors that take integer arguments, since these are the same. The preferred calls all use address sized arguments so two combiners are not required for them.

Rationale. For recreating the original call, it is important to know if address information may have been truncated. The deprecated calls from Fortran for a few routines could be subject to truncation in the case where the default INTEGER size is smaller than the size of an address. (*End of rationale*.)

The actual arguments used in the creation call for a datatype can be obtained from the call:

1		
2	MPI_COMBINER_NAMED	a named predefined datatype
3	MPI_COMBINER_DUP	MPI_TYPE_DUP
4	MPI_COMBINER_CONTIGUOUS	MPI_TYPE_CONTIGUOUS
5	MPI_COMBINER_VECTOR	MPI_TYPE_VECTOR
6	MPI_COMBINER_HVECTOR_INTEGER	MPI_TYPE_HVECTOR from Fortran
7	MPI_COMBINER_HVECTOR	MPI_TYPE_HVECTOR from C or C++
8		and in some case Fortran
9		or MPI_TYPE_CREATE_HVECTOR
10	MPI_COMBINER_INDEXED	MPI_TYPE_INDEXED
11	MPI_COMBINER_HINDEXED_INTEGER	MPI_TYPE_HINDEXED from Fortran
12	MPI_COMBINER_HINDEXED	MPI_TYPE_HINDEXED from C or C++
13		and in some case Fortran
14		or MPI_TYPE_CREATE_HINDEXED
15	MPI_COMBINER_INDEXED_BLOCK	MPI_TYPE_CREATE_INDEXED_BLOCK
16	MPI_COMBINER_STRUCT_INTEGER	MPI_TYPE_STRUCT from Fortran
17	MPI_COMBINER_STRUCT	MPI_TYPE_STRUCT from C or C++
18		and in some case Fortran
19	AADI COADINED CUDADDAY	or MPI_TYPE_CREATE_STRUCT
20	MPI_COMBINER_SUBARRAY	MPI_TYPE_CREATE_SUBARRAY
21	MPI_COMBINER_DARRAY	MPI_TYPE_CREATE_DARRAY
22	MPI_COMBINER_F90_REAL	MPI_TYPE_CREATE_F90_REAL
23	MPI_COMBINER_F90_COMPLEX	MPI_TYPE_CREATE_F90_COMPLEX MPI_TYPE_CREATE_F90_INTEGER
24	MPI_COMBINER_F90_INTEGER MPI_COMBINER_RESIZED	MPI_TYPE_CREATE_P90_INTEGER MPI_TYPE_CREATE_RESIZED
25	WPI_COWDINER_RESIZED	MFI_1 TFE_CREATE_RESIZED
26		
27	T-ll- 41, southings orlive material	MDI TVDE CET ENVELODE
28	Table 4.1: Combiner values return	ned from MPI_TYPE_GET_ENVELOPE
29		
30	· · · · · · · · · · · · · · · · · · ·	max_integers, max_addresses, max_datatypes,
31	ray_of_integers, array_of_	addresses, array_of_datatypes)

es, ar-

32	IN	datatype	datatype to access (handle)
33 34 35	IN	max_integers	$number\ of\ elements\ in\ {\tt array_of_integers}\ (non\text{-}negative \\ integer)$
36 37	IN	max_addresses	$number\ of\ elements\ in\ {\tt array_of_addresses}\ (non-negative\ integer)$
38 39	IN	max_datatypes	$number\ of\ elements\ in\ {\tt array_of_datatypes}\ (non-negative\ integer)$
40 41 42	OUT	array_of_integers	contains integer arguments used in constructing datatype (array of integers)
43 44	OUT	array_of_addresses	contains address arguments used in constructing datatype (array of integers)
45 46	OUT	array_of_datatypes	contains datatype arguments used in constructing datatype (array of handles)

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if datatype is a predefined named datatype.

The values given for max_integers, max_addresses, and max_datatypes must be at least as large as the value returned in num_integers, num_addresses, and num_datatypes, respectively, in the call MPI_TYPE_GET_ENVELOPE for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, and max_datatypes allow for error checking in the call. (End of rationale.)

The datatypes returned in array_of_datatypes are handles to datatype objects that are equivalent to the datatypes used in the original construction call. If these were derived datatypes, then the returned datatypes are new datatype objects, and the user is responsible for freeing these datatypes with MPI_TYPE_FREE. If these were predefined datatypes, then the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

The committed state of returned derived datatypes is undefined, i.e., the datatypes may or may not be committed. Furthermore, the content of attributes of returned datatypes is undefined.

Note that MPI_TYPE_GET_CONTENTS can be invoked with a datatype argument that was constructed using MPI_TYPE_CREATE_F90_REAL, MPI_TYPE_CREATE_F90_INTEGER, or MPI_TYPE_CREATE_F90_COMPLEX (an unnamed predefined datatype). In such a case, an empty array_of_datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined datatypes are equal. By requiring the same handle for named predefined datatypes, it is possible to use the == or .EQ. comparison operator to determine the datatype involved. (End of rationale.)

Advice to implementors. The datatypes returned in array_of_datatypes must appear to the user as if each is an equivalent copy of the datatype used in the type constructor call. Whether this is done by creating a new datatype or via another mechanism such as a reference count mechanism is up to the implementation as long as the semantics are preserved. (End of advice to implementors.)

Rationale. The committed state and attributes of the returned datatype is deliberately left vague. The datatype used in the original construction may have been modified since its use in the constructor call. Attributes can be added, removed, or modified as well as having the datatype committed. The semantics given allow for a reference count implementation without having to track these changes. (End of rationale.)

In the deprecated datatype constructor calls, the address arguments in Fortran are of type INTEGER. In the preferred calls, the address arguments are of type INTEGER(KIND=MPI_ADDRESS_KIND). The call MPI_TYPE_GET_CONTENTS returns all addresses in an argument of type INTEGER(KIND=MPI_ADDRESS_KIND). This is true even if the deprecated calls were used. Thus, the location of values returned can be thought of as being returned by the C bindings. It can also be determined by examining the preferred calls for datatype constructors for the deprecated calls that involve addresses.

Rationale. By having all address arguments returned in the array_of_addresses argument, the result from a C and Fortran decoding of a datatype gives the result in the same argument. It is assumed that an integer of type INTEGER(KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument used in datatype construction with the old MPI-1 calls so no loss of information will occur. (End of rationale.)

The following defines what values are placed in each entry of the returned arrays depending on the datatype constructor used for datatype. It also specifies the size of the arrays needed which is the values returned by MPI_TYPE_GET_ENVELOPE. In Fortran, the following calls were made:

```
27
           PARAMETER (LARGE = 1000)
28
           INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR
29
           INTEGER(KIND=MPI_ADDRESS_KIND) A(LARGE)
30
           CONSTRUCT DATATYPE TYPE (NOT SHOWN)
31
           CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)
32
           IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN
33
             WRITE (*, *) "NI, NA, OR ND = ", NI, NA, ND, &
34
             " RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE
35
             CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)
36
           ENDIF
37
           CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)
38
39
     or in C the analogous calls of:
40
41
     #define LARGE 1000
42
     int ni, na, nd, combiner, i[LARGE];
43
     MPI_Aint a[LARGE];
44
    MPI_Datatype type, d[LARGE];
45
     /* construct datatype type (not shown) */
46
     MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);
47
     if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {
       fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);
```

The C++ code is in analogy to the C code above with the same values returned.

In the descriptions that follow, the lower case name of arguments is used.

If combiner is MPI_COMBINER_NAMED then it is erroneous to call

MPI_TYPE_GET_CONTENTS.

If combiner is MPI_COMBINER_DUP then

Constructor argument	C & C++ location	Fortran location
oldtype	d[0]	D(1)

and ni = 0, na = 0, nd = 1.

If combiner is MPI_COMBINER_CONTIGUOUS then

Constructor argument	C & C++ location	Fortran location
count	i[0]	I(1)
oldtype	d[0]	D(1)

and ni = 1, na = 0, nd = 1.

If combiner is MPI_COMBINER_VECTOR then

Constructor argument	C & C++ location	Fortran location
count	i[0]	I(1)
blocklength	i[1]	I(2)
stride	i[2]	I(3)
oldtype	d[0]	D(1)

and ni = 3, na = 0, nd = 1.

If combiner is MPI_COMBINER_HVECTOR_INTEGER or MPI_COMBINER_HVECTOR then

Constructor argument	C & C++ location	Fortran location
count	i[0]	I(1)
blocklength	i[1]	I(2)
stride	a[0]	A(1)
oldtype	d[0]	D(1)

and ni = 2, na = 1, nd = 1.

If combiner is MPI_COMBINER_INDEXED then

Constructor argument	C & C++ location	Fortran location
count	i[0]	I(1)
$array_of_blocklengths$	i[1] to i[i[0]]	I(2) to I(I(1)+1)
array_of_displacements	i[i[0]+1] to $i[2*i[0]]$	I(I(1)+2) to $I(2*I(1)+1)$
oldtype	d[0]	D(1)

and ni = 2*count+1, na = 0, nd = 1.

If combiner is MPI_COMBINER_HINDEXED_INTEGER or MPI_COMBINER_HINDEXED then

Constructor argument	C & C++ location	Fortran location
count	i[0]	I(1)
$array_of_blocklengths$	i[1] to $i[i[0]]$	I(2) to I(I(1)+1)
$array_of_displacements$	a[0] to a[i[0]-1]	A(1) to $A(I(1))$
oldtype	d[0]	D(1)

and ni = count+1, na = count, nd = 1.

If combiner is MPI_COMBINER_INDEXED_BLOCK then

Constructor argument	C & C++ location	Fortran location
count	i[0]	<u>I(1)</u>
blocklength	i[1]	I(2)
array_of_displacements	i[2] to i[i[0]+1]	I(3) to I(I(1)+2)
oldtype	d[0]	D(1)

and ni = count + 2, na = 0, nd = 1.

If combiner is $MPI_COMBINER_STRUCT_INTEGER$ or $MPI_COMBINER_STRUCT$ then

Constructor argument	C & C++ location	Fortran location
count	i[0]	I(1)
$array_of_blocklengths$	i[1] to i[i[0]]	I(2) to I(I(1)+1)
array_of_displacements	a[0] to a[i[0]-1]	A(1) to $A(I(1))$
array_of_types	d[0] to $d[i[0]-1]$	D(1) to $D(I(1))$

and ni = count+1, na = count, nd = count.

If combiner is MPI_COMBINER_SUBARRAY then

Constructor argument	C & C++ location	Fortran location
ndims	i[0]	I(1)
array_of_sizes	i[1] to $i[i[0]]$	I(2) to I(I(1)+1)
array_of_subsizes	i[i[0]+1] to $i[2*i[0]]$	I(I(1)+2) to $I(2*I(1)+1)$
array_of_starts	i[2*i[0]+1] to $i[3*i[0]]$	I(2*I(1)+2) to $I(3*I(1)+1)$
order	i[3*i[0]+1]	I(3*I(1)+2]
oldtype	d[0]	D(1)

and ni = 3*ndims+2, na = 0, nd = 1.

If combiner is MPI_COMBINER_DARRAY then

Constructor argument	C & C++ location	Fortran location
size	i[0]	I(1)
rank	i[1]	I(2)
ndims	i[2]	I(3)
array_of_gsizes	i[3] to i[i[2]+2]	I(4) to I(I(3)+3)
$\operatorname{array_of_distribs}$	i[i[2]+3] to $i[2*i[2]+2]$	I(I(3)+4) to $I(2*I(3)+3)$
array_of_dargs	i[2*i[2]+3] to $i[3*i[2]+2]$	I(2*I(3)+4) to $I(3*I(3)+3)$
array_of_psizes	i[3*i[2]+3] to $i[4*i[2]+2]$	I(3*I(3)+4) to $I(4*I(3)+3)$
order	i[4*i[2]+3]	I(4*I(3)+4)
oldtype	d[0]	D(1)

and ni = 4*ndims+4, na = 0, nd = 1.

If combiner is MPI_COMBINER_F90_REAL then

15

16

22 23

24

26

27 28

29

30

34 35

36 37

42

43

44 45

46

Constructor argument	C & C++ location	Fortran location
p	i[0]	I(1)
r	i[1]	I(2)

and ni = 2, na = 0, nd = 0.

If combiner is MPI_COMBINER_F90_COMPLEX then

Constructor argument	C & C++ location	Fortran location
p	i[0]	I(1)
r	i[1]	I(2)

and ni = 2, na = 0, nd = 0.

If combiner is MPI_COMBINER_F90_INTEGER then

Constructor argument	C & C++ location	Fortran location
r	i[0]	I(1)

and ni = 1, na = 0, nd = 0.

If combiner is MPI_COMBINER_RESIZED then

Constructor argument	C & C++ location	Fortran location
lb	a[0]	A(1)
extent	a[1]	A(2)
oldtype	d[0]	D(1)

and ni = 0, na = 2, nd = 1.

4.1.14 Examples

The following examples illustrate the use of derived datatypes.

Example 4.13 Send and receive a section of a 3D array.

REAL a(100,100,100), e(9,9,9)

INTEGER oneslice, twoslice, threeslice, sizeofreal, myrank, ierr

INTEGER status(MPI_STATUS_SIZE)

- C extract the section a(1:17:2, 3:11, 2:10)
- C and store it in e(:,:,:).

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

- C create datatype for a 1D section
 CALL MPI_TYPE_VECTOR(9, 1, 2, MPI_REAL, oneslice, ierr)
- C create datatype for a 2D section
 CALL MPI_TYPE_HVECTOR(9, 1, 100*sizeofreal, oneslice, twoslice, ierr)

```
1
2
           CALL MPI_TYPE_COMMIT( threeslice, ierr)
           CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9*9*9,
                              MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)
5
6
     Example 4.14 Copy the (strictly) lower triangular part of a matrix.
           REAL a(100,100), b(100,100)
9
           INTEGER disp(100), blocklen(100), ltype, myrank, ierr
10
           INTEGER status(MPI_STATUS_SIZE)
12
     C
           copy lower triangular part of array a
13
     С
           onto lower triangular part of array b
14
15
           CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
16
17
     С
           compute start and size of each column
           DO i=1, 100
19
             disp(i) = 100*(i-1) + i
20
             blocklen(i) = 100-i
21
           END DO
22
23
           create datatype for lower triangular part
24
           CALL MPI_TYPE_INDEXED( 100, blocklen, disp, MPI_REAL, ltype, ierr)
26
           CALL MPI_TYPE_COMMIT(ltype, ierr)
27
           CALL MPI_SENDRECV(a, 1, ltype, myrank, 0, b, 1,
28
                          ltype, myrank, 0, MPI_COMM_WORLD, status, ierr)
29
30
     Example 4.15 Transpose a matrix.
31
32
           REAL a(100,100), b(100,100)
           INTEGER row, xpose, sizeofreal, myrank, ierr
34
           INTEGER status(MPI_STATUS_SIZE)
35
36
     C
           transpose matrix a onto b
37
38
           CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
           CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)
     С
           create datatype for one row
43
           CALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)
44
45
           create datatype for matrix in row-major order
46
           CALL MPI_TYPE_HVECTOR( 100, 1, sizeofreal, row, xpose, ierr)
47
```

```
CALL MPI_TYPE_COMMIT( xpose, ierr)
                                                                                  2
С
      send matrix in row-major order and receive in column major order
      CALL MPI_SENDRECV( a, 1, xpose, myrank, 0, b, 100*100,
                MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)
Example 4.16 Another approach to the transpose problem:
      REAL a(100,100), b(100,100)
      INTEGER disp(2), blocklen(2), type(2), row, row1, sizeofreal
                                                                                  11
      INTEGER myrank, ierr
                                                                                  12
      INTEGER status(MPI_STATUS_SIZE)
                                                                                  13
                                                                                  14
      CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
                                                                                  15
                                                                                  16
С
      transpose matrix a onto b
                                                                                  18
      CALL MPI_TYPE_EXTENT( MPI_REAL, sizeofreal, ierr)
                                                                                  19
                                                                                  20
С
      create datatype for one row
                                                                                  21
      CALL MPI_TYPE_VECTOR( 100, 1, 100, MPI_REAL, row, ierr)
                                                                                  22
                                                                                  23
С
      create datatype for one row, with the extent of one real number
                                                                                  ^{24}
      disp(1) = 0
      disp(2) = size of real
                                                                                  26
      type(1) = row
                                                                                  27
      type(2) = MPI_UB
                                                                                  28
      blocklen(1) = 1
                                                                                  29
      blocklen(2) = 1
                                                                                  30
      CALL MPI_TYPE_STRUCT( 2, blocklen, disp, type, row1, ierr)
                                                                                  31
      CALL MPI_TYPE_COMMIT( row1, ierr)
                                                                                  34
С
      send 100 rows and receive in column major order
                                                                                  35
      CALL MPI_SENDRECV( a, 100, row1, myrank, 0, b, 100*100,
                                                                                  36
                MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)
                                                                                  37
                                                                                  38
Example 4.17 We manipulate an array of structures.
struct Partstruct
   {
                                                                                  42
             class; /* particle class */
      int
                                                                                  43
      double d[6]; /* particle coordinates */
                                                                                  44
             b[7]; /* some additional information */
      char
                                                                                  45
   };
                                                                                  46
                                                                                  47
struct Partstruct
                     particle[1000];
```

```
1
2
                   i, dest, rank, tag;
     int
3
     MPI_Comm
                   comm;
5
6
     /* build datatype describing structure */
7
8
     MPI_Datatype Particletype;
9
     MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
10
                   blocklen[3] = \{1, 6, 7\};
     int
11
     \mathtt{MPI}\_\mathtt{Aint}
                   disp[3];
12
     MPI_Aint
                   base;
13
14
15
     /* compute displacements of structure components */
16
17
     MPI_Address( particle, disp);
18
     MPI_Address( particle[0].d, disp+1);
19
     MPI_Address( particle[0].b, disp+2);
20
     base = disp[0];
21
     for (i=0; i < 3; i++) disp[i] -= base;
22
23
     MPI_Type_struct( 3, blocklen, disp, type, &Particletype);
^{24}
        /* If compiler does padding in mysterious ways,
26
        the following may be safer */
27
28
     MPI_Datatype type1[4] = {MPI_INT, MPI_DOUBLE, MPI_CHAR, MPI_UB};
29
                   blocklen1[4] = \{1, 6, 7, 1\};
     int
30
     MPI_Aint
                   disp1[4];
31
32
     /* compute displacements of structure components */
33
34
     MPI_Address( particle, disp1);
35
     MPI_Address( particle[0].d, disp1+1);
36
     MPI_Address( particle[0].b, disp1+2);
37
     MPI_Address( particle+1, disp1+3);
38
     base = disp1[0];
39
     for (i=0; i < 4; i++) disp1[i] -= base;
40
41
     /* build datatype describing structure */
42
43
     MPI_Type_struct( 4, blocklen1, disp1, type1, &Particletype);
44
45
                    /* 4.1:
47
             send the entire array */
```

```
1
MPI_Type_commit( &Particletype);
                                                                                    2
MPI_Send( particle, 1000, Particletype, dest, tag, comm);
               /* 4.2:
        send only the entries of class zero particles,
        preceded by the number of such entries */
MPI_Datatype Zparticles;
                            /* datatype describing all particles
                                with class zero (needs to be recomputed
                                                                                   11
                                if classes change) */
MPI_Datatype Ztype;
                                                                                   12
                                                                                   13
             zdisp[1000];
                                                                                   14
MPI_Aint
                                                                                   15
int
             zblock[1000], j, k;
                                                                                   16
             zzblock[2] = \{1,1\};
int
MPI_Aint
             zzdisp[2];
                                                                                   18
MPI_Datatype zztype[2];
                                                                                   19
/* compute displacements of class zero particles */
                                                                                   20
j = 0;
                                                                                   21
for(i=0; i < 1000; i++)
                                                                                   22
                                                                                   23
   if (particle[i].class == 0)
                                                                                   24
      {
                                                                                   25
        zdisp[j] = i;
                                                                                   26
        zblock[j] = 1;
                                                                                   27
        j++;
      }
                                                                                   28
                                                                                   29
                                                                                   30
/* create datatype for class zero particles */
MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);
                                                                                   31
/* prepend particle count */
MPI_Address(&j, zzdisp);
                                                                                   34
MPI_Address(particle, zzdisp+1);
                                                                                   35
zztype[0] = MPI_INT;
                                                                                   36
                                                                                   37
zztype[1] = Zparticles;
                                                                                   38
MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);
MPI_Type_commit( &Ztype);
MPI_Send( MPI_BOTTOM, 1, Ztype, dest, tag, comm);
                                                                                   42
                                                                                   43
                                                                                   44
       /* A probably more efficient way of defining Zparticles */
                                                                                   45
                                                                                   46
/* consecutive particles with index zero are handled as one block */
                                                                                    47
j=0;
for (i=0; i < 1000; i++)
```

```
1
        if (particle[i].index == 0)
2
           {
3
              for (k=i+1; (k < 1000) \&\& (particle[k].index == 0); k++);
              zdisp[j] = i;
5
              zblock[j] = k-i;
6
              j++;
7
              i = k;
8
           }
9
     MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);
10
11
12
                      /* 4.3:
13
               send the first two coordinates of all entries */
14
15
    MPI_Datatype Allpairs;
                                  /* datatype for all pairs of coordinates */
16
17
    MPI_Aint sizeofentry;
18
19
    MPI_Type_extent( Particletype, &sizeofentry);
20
21
          /* sizeofentry can also be computed by subtracting the address
22
             of particle[0] from the address of particle[1] */
23
^{24}
    MPI_Type_hvector( 1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);
     MPI_Type_commit( &Allpairs);
26
     MPI_Send( particle[0].d, 1, Allpairs, dest, tag, comm);
27
28
           /* an alternative solution to 4.3 */
29
30
    MPI_Datatype Onepair; /* datatype for one pair of coordinates, with
31
                                the extent of one particle entry */
32
    MPI_Aint disp2[3];
33
    MPI_Datatype type2[3] = {MPI_LB, MPI_DOUBLE, MPI_UB};
34
     int blocklen2[3] = \{1, 2, 1\};
35
36
    MPI_Address( particle, disp2);
37
     MPI_Address( particle[0].d, disp2+1);
38
     MPI_Address( particle+1, disp2+2);
     base = disp2[0];
40
     for (i=0; i<2; i++) disp2[i] -= base;
41
42
     MPI_Type_struct( 3, blocklen2, disp2, type2, &Onepair);
43
     MPI_Type_commit( &Onepair);
44
     MPI_Send( particle[0].d, 1000, Onepair, dest, tag, comm);
45
^{46}
```

Example 4.18 The same manipulations as in the previous example, but use absolute

```
1
addresses in datatypes.
                                                                                     2
struct Partstruct
   {
      int class;
      double d[6];
      char b[7];
   };
struct Partstruct particle[1000];
                                                                                     11
           /* build datatype describing first array entry */
                                                                                     12
                                                                                     13
MPI_Datatype Particletype;
                                                                                     14
MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};
                                                                                     15
              block[3] = \{1, 6, 7\};
                                                                                     16
MPI_Aint
              disp[3];
                                                                                     18
MPI_Address( particle, disp);
                                                                                     19
MPI_Address( particle[0].d, disp+1);
                                                                                     20
MPI_Address( particle[0].b, disp+2);
                                                                                     21
MPI_Type_struct( 3, block, disp, type, &Particletype);
                                                                                     22
                                                                                     23
/* Particletype describes first array entry -- using absolute
                                                                                     24
   addresses */
                                                                                     26
                   /* 5.1:
                                                                                     27
             send the entire array */
                                                                                     28
                                                                                     29
MPI_Type_commit( &Particletype);
                                                                                     30
MPI_Send( MPI_BOTTOM, 1000, Particletype, dest, tag, comm);
                                                                                     31
                  /* 5.2:
                                                                                     34
         send the entries of class zero,
                                                                                     35
         preceded by the number of such entries */
                                                                                     36
                                                                                     37
MPI_Datatype Zparticles, Ztype;
                                                                                     38
MPI_Aint
              zdisp[1000];
int
              zblock[1000], i, j, k;
              zzblock[2] = \{1,1\};
                                                                                     42
MPI_Datatype zztype[2];
                                                                                     43
              zzdisp[2];
MPI_Aint
                                                                                     44
                                                                                     45
j=0;
                                                                                     46
for (i=0; i < 1000; i++)
   if (particle[i].index == 0)
```

```
1
           {
2
               for (k=i+1; (k < 1000) \&\& (particle[k].index == 0); k++);
               zdisp[j] = i;
              zblock[j] = k-i;
               j++;
6
               i = k;
7
           }
8
     MPI_Type_indexed( j, zblock, zdisp, Particletype, &Zparticles);
9
     /* Zparticles describe particles with class zero, using
10
        their absolute addresses*/
11
12
     /* prepend particle count */
13
     MPI_Address(&j, zzdisp);
14
     zzdisp[1] = MPI_BOTTOM;
15
     zztype[0] = MPI_INT;
16
     zztype[1] = Zparticles;
17
     MPI_Type_struct(2, zzblock, zzdisp, zztype, &Ztype);
18
19
     MPI_Type_commit( &Ztype);
20
     MPI_Send( MPI_BOTTOM, 1, Ztype, dest, tag, comm);
21
22
23
     Example 4.19 Handling of unions.
^{24}
     union {
        int
                 ival;
27
        float
                fval;
28
           } u[1000];
29
30
     int
             utype;
31
     /* All entries of u have identical type; variable
        utype keeps track of their current type */
34
35
     MPI_Datatype
                     type[2];
36
                     blocklen[2] = \{1,1\};
     int
37
     MPI_Aint
                     disp[2];
38
     MPI_Datatype
                     mpi_utype[2];
     MPI_Aint
                     i,j;
40
41
     /* compute an MPI datatype for each possible union type;
42
        assume values are left-aligned in union storage. */
43
44
     MPI_Address( u, &i);
45
     MPI_Address( u+1, &j);
46
     disp[0] = 0; disp[1] = j-i;
47
     type[1] = MPI_UB;
```

```
2
type[0] = MPI_INT;
MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[0]);
type[0] = MPI_FLOAT;
MPI_Type_struct(2, blocklen, disp, type, &mpi_utype[1]);
for(i=0; i<2; i++) MPI_Type_commit(&mpi_utype[i]);</pre>
/* actual communication */
                                                                                     11
MPI_Send(u, 1000, mpi_utype[utype], dest, tag, comm);
                                                                                     12
                                                                                     13
                                                                                    14
Example 4.20 This example shows how a datatype can be decoded. The routine
                                                                                     15
printdatatype prints out the elements of the datatype. Note the use of MPI_Type_free for
                                                                                     16
datatypes that are not predefined.
                                                                                     18
/*
                                                                                     19
  Example of decoding a datatype.
                                                                                     20
                                                                                    21
  Returns 0 if the datatype is predefined, 1 otherwise
 */
                                                                                    22
                                                                                    23
#include <stdio.h>
                                                                                     24
#include <stdlib.h>
#include "mpi.h"
int printdatatype( MPI_Datatype datatype )
                                                                                     27
{
                                                                                     28
    int *array_of_ints;
                                                                                    29
    MPI_Aint *array_of_adds;
                                                                                     30
    MPI_Datatype *array_of_dtypes;
    int num_ints, num_adds, num_dtypes, combiner;
    int i;
                                                                                    34
    MPI_Type_get_envelope( datatype,
                                                                                    35
                             &num_ints, &num_adds, &num_dtypes, &combiner );
                                                                                    36
    switch (combiner) {
                                                                                    37
    case MPI_COMBINER_NAMED:
                                                                                    38
        printf( "Datatype is named:" );
        /* To print the specific type, we can match against the
           predefined forms. We can NOT use a switch statement here
                                                                                    41
           We could also use MPI_TYPE_GET_NAME if we prefered to use
                                                                                    42
           names that the user may have changed.
         */
                                                                                    43
                                                                                    44
        if
                 (datatype == MPI_INT)
                                           printf( "MPI_INT\n" );
        else if (datatype == MPI_DOUBLE) printf( "MPI_DOUBLE\n" );
                                                                                     45
                                                                                     46
         ... else test for other types ...
                                                                                     47
        return 0;
        break;
```

```
1
         case MPI_COMBINER_STRUCT:
2
         case MPI_COMBINER_STRUCT_INTEGER:
             printf( "Datatype is struct containing" );
             array_of_ints
                              = (int *)malloc( num_ints * sizeof(int) );
5
             array_of_adds
6
                         (MPI_Aint *) malloc( num_adds * sizeof(MPI_Aint) );
             array_of_dtypes = (MPI_Datatype *)
                 malloc( num_dtypes * sizeof(MPI_Datatype) );
9
             MPI_Type_get_contents( datatype, num_ints, num_adds, num_dtypes,
10
                               array_of_ints, array_of_adds, array_of_dtypes );
11
             printf( " %d datatypes:\n", array_of_ints[0] );
12
             for (i=0; i<array_of_ints[0]; i++) {</pre>
13
                 printf( "blocklength %d, displacement %ld, type:\n",
14
                          array_of_ints[i+1], array_of_adds[i] );
15
                  if (printdatatype( array_of_dtypes[i] )) {
16
                      /* Note that we free the type ONLY if it
                         is not predefined */
18
                      MPI_Type_free( &array_of_dtypes[i] );
19
                  }
20
21
             free( array_of_ints );
22
             free( array_of_adds );
23
             free( array_of_dtypes );
24
             break;
             ... other combiner values ...
26
         default:
27
             printf( "Unrecognized combiner type\n" );
28
         }
29
         return 1;
30
     }
31
```

4.2 Pack and Unpack

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

Some existing communication libraries provide pack/unpack functions for sending noncontiguous data. In these, the user explicitly packs data into a contiguous buffer before sending it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are described in Section 4.1, allow one, in most cases, to avoid explicit packing and unpacking. The user specifies the layout of the data to be sent or received, and the communication library directly accesses a noncontiguous buffer. The pack/unpack routines are provided for compatibility with previous libraries. Also, they provide some functionality that is not otherwise available in MPI. For instance, a message can be received in several parts, where the receive operation done on a later part may depend on the content of a former part. Another use is that outgoing messages may be explicitly buffered in user supplied space, thus overriding the system buffering policy. Finally, the availability of pack and unpack operations facilitates the development of additional communication libraries layered on top of MPI.

11 12

13

14 15

16

17

18

19

20

21 22

23

24

26

27

28

29

30

31

32 33

46

47

```
MPI_PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)
  IN
            inbuf
                                           input buffer start (choice)
            incount
  IN
                                           number of input data items (non-negative integer)
                                           datatype of each input data item (handle)
  IN
            datatype
  OUT
            outbuf
                                           output buffer start (choice)
  IN
            outsize
                                           output buffer size, in bytes (non-negative integer)
  INOUT
                                           current position in buffer, in bytes (integer)
            position
  IN
            comm
                                           communicator for packed message (handle)
int MPI_Pack(void* inbuf, int incount, MPI_Datatype datatype, void *outbuf,
```

```
MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
<type> INBUF(*), OUTBUF(*)
INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR
```

Packs the message in the send buffer specified by inbuf, incount, datatype into the buffer space specified by outbuf and outsize. The input buffer can be any communication buffer allowed in MPI_SEND. The output buffer is a contiguous storage area containing outsize bytes, starting at the address outbuf (length is counted in bytes, not elements, as if it were a communication buffer for a message of type MPI_PACKED).

The input value of position is the first location in the output buffer to be used for packing. position is incremented by the size of the packed message, and the output value of position is the first location in the output buffer following the locations occupied by the packed message. The comm argument is the communicator that will be subsequently used for sending the packed message.

MPI_UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN	inbuf	input buffer start (choice)
IN	insize	size of input buffer, in bytes (non-negative integer)
INOUT	position	current position in bytes (integer)
OUT	outbuf	output buffer start (choice)
IN	outcount	number of items to be unpacked (integer)
IN	datatype	datatype of each output data item (handle)
IN	comm	communicator for packed message (handle)

Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from the buffer space specified by inbuf and insize. The output buffer can be any communication buffer allowed in MPI_RECV. The input buffer is a contiguous storage area containing insize bytes, starting at address inbuf. The input value of position is the first location in the input buffer occupied by the packed message. position is incremented by the size of the packed message, so that the output value of position is the first location in the input buffer after the locations occupied by the message that was unpacked. comm is the communicator used to receive the packed message.

Advice to users. Note the difference between MPI_RECV and MPI_UNPACK: in MPI_RECV, the count argument specifies the maximum number of items that can be received. The actual number of items received is determined by the length of the incoming message. In MPI_UNPACK, the count argument specifies the actual number of items that are unpacked; the "size" of the corresponding message is the increment in position. The reason for this change is that the "incoming message size" is not predetermined since the user decides how much to unpack; nor is it easy to determine the "message size" from the number of items to be unpacked. In fact, in a heterogeneous system, this number may not be determined a priori. (End of advice to users.)

To understand the behavior of pack and unpack, it is convenient to think of the data part of a message as being the sequence obtained by concatenating the successive values sent in that message. The pack operation stores this sequence in the buffer space, as if sending the message to that buffer. The unpack operation retrieves this sequence from buffer space, as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or sscanf in C, for a similar function.)

Several messages can be successively packed into one **packing unit**. This is effected by several successive **related** calls to MPI_PACK, where the first call provides **position** = 0, and each successive call inputs the value of **position** that was output by the previous call, and the same values for **outbuf**, **outcount** and **comm**. This packing unit now contains the equivalent information that would have been stored in a message by one send call with a send buffer that is the "concatenation" of the individual send buffers.

A packing unit can be sent using type MPI_PACKED. Any point to point or collective communication function can be used to move the sequence of bytes that forms the packing unit from one process to another. This packing unit can now be received using any receive operation, with any datatype: the type matching rules are relaxed for messages sent with type MPI_PACKED.

A message sent with any type (including MPI_PACKED) can be received using the type MPI_PACKED. Such a message can then be unpacked by calls to MPI_UNPACK.

A packing unit (or a message created by a regular, "typed" send) can be unpacked into several successive messages. This is effected by several successive related calls to

MPI_UNPACK, where the first call provides position = 0, and each successive call inputs the value of position that was output by the previous call, and the same values for inbuf, insize and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two packing units and then unpack the result as one packing unit; nor can one unpack a substring of a packing unit as a separate packing unit. Each packing unit, that was created by a related sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of related unpack calls.

Rationale. The restriction on "atomic" packing and unpacking of packing units allows the implementation to add at the head of packing units additional information, such as a description of the sender architecture (to be used for type conversion, in a heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a message and, thus, manage space allocation for buffers.

MPI_PACK_SIZE(incount, datatype, comm, size)

IN	incount	count argument to packing call (non-negative integer) $$
IN	datatype	data type argument to packing call (handle)
IN	comm	communicator argument to packing call (handle)
OUT	size	upper bound on size of packed message, in bytes (non-
		negative integer)

```
MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR
```

A call to MPI_PACK_SIZE(incount, datatype, comm, size) returns in size an upper bound on the increment in position that is effected by a call to MPI_PACK(inbuf, incount, datatype, outbuf, outcount, position, comm). If the packed size of the datatype can not be expressed by the size parameter, then MPI_PACK_SIZE sets the value of size to MPI_UNDEFINED.

Rationale. The call returns an upper bound, rather than an exact bound, since the exact amount of space needed to pack the message may depend on the context (e.g., first message packed in a packing unit may take more space). (End of rationale.)

Example 4.21 An example using MPI_PACK.

₃₈ ticket265.

```
1
                position, i, j, a[2];
     int
2
                buff[1000];
     char
3
4
     MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
5
     if (myrank == 0)
6
     {
7
        /* SENDER CODE */
8
        position = 0;
10
        MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
11
        MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);
12
        MPI_Send( buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);
13
14
     else /* RECEIVER CODE */
15
        MPI_Recv( a, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);
16
17
     Example 4.22 An elaborate example.
18
19
     int
           position, i;
20
     float a[1000];
21
     char buff[1000];
22
23
     MPI_Comm_rank(MPI_Comm_world, &myrank);
^{24}
     if (myrank == 0)
26
       /* SENDER CODE */
27
28
       int len[2];
^{29}
       MPI_Aint disp[2];
30
       MPI_Datatype type[2], newtype;
31
       /* build datatype for i followed by a[0]...a[i-1] */
33
34
       len[0] = 1;
35
       len[1] = i;
36
       MPI_Address( &i, disp);
37
       MPI_Address( a, disp+1);
       type[0] = MPI_INT;
       type[1] = MPI_FLOAT;
40
       MPI_Type_struct( 2, len, disp, type, &newtype);
41
       MPI_Type_commit( &newtype);
42
43
       /* Pack i followed by a[0]...a[i-1]*/
44
45
       position = 0;
       MPI_Pack( MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD);
47
       /* Send */
```

```
1
                                                                                     2
  MPI_Send( buff, position, MPI_PACKED, 1, 0,
            MPI_COMM_WORLD);
/* ****
   One can replace the last three lines with
   MPI_Send( MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);
   **** */
else if (myrank == 1)
                                                                                    11
   /* RECEIVER CODE */
                                                                                    12
                                                                                    13
                                                                                    14
  MPI_Status status;
                                                                                    15
  /* Receive */
                                                                                    16
                                                                                    18
  MPI_Recv( buff, 1000, MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);
                                                                                    19
                                                                                    20
  /* Unpack i */
                                                                                    21
  position = 0;
                                                                                    22
  MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD);
                                                                                    23
                                                                                    24
  /* Unpack a[0]...a[i-1] */
                                                                                    26
  MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD);
                                                                                    27
                                                                                    28
                                                                                    29
Example 4.23 Each process sends a count, followed by count characters to the root; the
                                                                                    30
root concatenates all characters into one string.
                                                                                    31
    count, gsize, counts[64], totalcount, k1, k2, k,
                                                                                    33
     displs[64], position, concat_pos;
                                                                                    34
char chr[100], *lbuf, *rbuf, *cbuf;
                                                                                    35
                                                                                    36
MPI_Comm_size(comm, &gsize);
                                                                                    37
MPI_Comm_rank(comm, &myrank);
                                                                                    38
      /* allocate local pack buffer */
MPI_Pack_size(1, MPI_INT, comm, &k1);
MPI_Pack_size(count, MPI_CHAR, comm, &k2);
                                                                                    42
k = k1+k2;
lbuf = (char *)malloc(k);
                                                                                    43
                                                                                    44
      /* pack count, followed by count characters */
                                                                                    45
                                                                                    46
position = 0;
                                                                                    47
MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);
MPI_Pack(chr, count, MPI_CHAR, lbuf, k, &position, comm);
```

40 41

42

43

44

45 46

47

```
1
2
     if (myrank != root) {
3
           /* gather at root sizes of all packed messages */
4
        MPI_Gather( &position, 1, MPI_INT, NULL, 0,
5
                  MPI_DATATYPE_NULL, root, comm);
6
           /* gather at root packed messages */
        MPI_Gatherv( lbuf, position, MPI_PACKED, NULL,
9
                  NULL, NULL, root, comm);
10
11
     } else {
                /* root code */
12
           /* gather sizes of all packed messages */
13
        MPI_Gather( &position, 1, MPI_INT, counts, 1,
14
                  MPI_INT, root, comm);
15
16
           /* gather all packed messages */
17
        displs[0] = 0;
18
        for (i=1; i < gsize; i++)
19
          displs[i] = displs[i-1] + counts[i-1];
20
        totalcount = displs[gsize-1] + counts[gsize-1];
21
        rbuf = (char *)malloc(totalcount);
22
        cbuf = (char *)malloc(totalcount);
23
        MPI_Gatherv( lbuf, position, MPI_PACKED, rbuf,
24
                  counts, displs, MPI_PACKED, root, comm);
26
            /* unpack all messages and concatenate strings */
27
        concat_pos = 0;
28
        for (i=0; i < gsize; i++) {
29
           position = 0;
30
           MPI_Unpack( rbuf+displs[i], totalcount-displs[i],
31
                  &position, &count, 1, MPI_INT, comm);
           MPI_Unpack( rbuf+displs[i], totalcount-displs[i],
33
                  &position, cbuf+concat_pos, count, MPI_CHAR, comm);
34
           concat_pos += count;
35
        }
36
        cbuf[concat_pos] = '\0';
37
     }
```

4.3 Canonical MPI_PACK and MPI_UNPACK

These functions read/write data to/from the buffer in the "external32" data format specified in Section 13.5.2, and calculate the size needed for packing. Their first arguments specify the data format, for future extensibility, but currently the only valid value of the datarep argument is "external32."

Advice to users. These functions could be used, for example, to send typed data in a portable format from one MPI implementation to another. (End of advice to users.)

The buffer will contain exactly the packed data, without headers. MPI_BYTE should be used to send and receive data that is packed using MPI_PACK_EXTERNAL.

Rationale. MPI_PACK_EXTERNAL specifies that there is no header on the message and further specifies the exact format of the data. Since MPI_PACK may (and is allowed to) use a header, the datatype MPI_PACKED cannot be used for data packed with MPI_PACK_EXTERNAL. (End of rationale.)

MPI_PACK_EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN	datarep	data representation (string)
IN	inbuf	input buffer start (choice)
IN	incount	number of input data items (integer)
IN	datatype	datatype of each input data item (handle)
OUT	outbuf	output buffer start (choice)
IN	outsize	output buffer size, in bytes (integer)
INOUT	position	current position in buffer, in bytes (integer)

MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION
CHARACTER*(*) DATAREP
<type> INBUF(*), OUTBUF(*)

MPI_UNPACK_EXTERNAL(datarep, inbuf, insize, position, outbuf, outsize, position)

INI		1.4. (4:)
IN	datarep	data representation (string)
IN	inbuf	input buffer start (choice)
IN	insize	input buffer size, in bytes (integer)
INOUT	position	current position in buffer, in bytes (integer)
OUT	outbuf	output buffer start (choice)
IN	outcount	number of output data items (integer)
IN	datatype	datatype of output data item (handle)

```
1
     int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,
2
                    MPI_Aint *position, void *outbuf, int outcount,
3
                    MPI_Datatype datatype)
4
     MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
5
                    DATATYPE, IERROR)
6
         INTEGER OUTCOUNT, DATATYPE, IERROR
7
         INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
         CHARACTER*(*) DATAREP
9
         <type> INBUF(*), OUTBUF(*)
10
11
     {void MPI::Datatype::Unpack_external(const char* datarep,
12
                    const void* inbuf, MPI::Aint insize, MPI::Aint& position,
13
                    void* outbuf, int outcount) const (binding deprecated, see
14
                    Section 15.2) }
15
16
17
     MPI_PACK_EXTERNAL_SIZE( datarep, incount, datatype, size )
18
       IN
                datarep
                                            data representation (string)
19
20
       IN
                incount
                                            number of input data items (integer)
21
       IN
                datatype
                                            datatype of each input data item (handle)
22
       OUT
                size
                                            output buffer size, in bytes (integer)
23
24
     int MPI_Pack_external_size(char *datarep, int incount,
25
26
                    MPI_Datatype datatype, MPI_Aint *size)
27
     MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
28
         INTEGER INCOUNT, DATATYPE, IERROR
29
         INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
30
         CHARACTER*(*) DATAREP
31
     {MPI::Aint MPI::Datatype::Pack_external_size(const char* datarep,
32
                    int incount) const(binding deprecated, see Section 15.2) }
33
34
35
36
37
38
39
41
42
43
44
45
```

Chapter 5

Collective Communication

5.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of processes. The functions of this type provided by MPI are the following:

- MPI_BARRIER, MPI_IBARRIER: Barrier synchronization across all members of a group (Section 5.3 and Section 5.12.1).
- MPI_BCAST , MPI_IBCAST : Broadcast from one member to all members of a group (Section 5.4 and Section 5.12.2). This is shown as "broadcast" in Figure 5.1.
- MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV, MPI_IGATHERW, MPI_IGATHERW: Gather data from all members of a group to one member (Section 5.5 and Section 5.12.3). This is shown as "gather" in Figure 5.1.
- MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV, MPI_ISCATTERV, MPI_ISCATTERV: Scatter data from one member to all members of a group (Section 5.6 and Section 5.12.4). This is shown as "scatter" in Figure 5.1.
- MPI_ALLGATHER, MPI_IALLGATHER , MPI_ALLGATHERV, MPI_IALLGATHERV , MPI_ALLGATHERW, MPI_IALLGATHERW: A variation on Gather where all members of a group receive the result (Section 5.7 and Section 5.12.5). This is shown as "allgather" in Figure 5.1.
- MPI_ALLTOALL, MPI_IALLTOALL , MPI_ALLTOALLV, MPI_IALLTOALLV , MPI_ALLTOALLW, MPI_IALLTOALLW : Scatter/Gather data from all members to all members of a group (also called complete exchange) (Section 5.8 and Section 5.12.6). This is shown as "complete exchange" in Figure 5.1.
- MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE: Global reduction operations such as sum, max, min, or user-defined functions, where the result is returned to all members of a group (Section 5.9.6 and Section 5.12.8) and a variation where the result is returned to only one member (Section 5.9 and Section 5.12.7).
- MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER: A combined reduction and scatter operation (Section 5.10, Section 5.12.9, and Section 5.12.10).

12 13 14

15 16

- ₂₂ ticket109. ₂₃ ticket109.
- ²⁴ ticket109. ²⁵ ticket109. ²⁶ ticket269. ²⁷ ticket109.
- 28 ticket109. 29 ticket109.
- 30 ticket269. 31 ticket109.
- 32 ticket109.
 33 ticket109.
- 133 ticket 100.
 134 ticket 269.
 135 ticket 109.
- ³⁶ ticket109.
- ³⁷ ticket109.
- ³⁸ ticket109. ³⁹ ticket109.
- ⁴¹ ticket109. ⁴² ticket109.
- 43 ticket 109.
- ⁴⁴ ticket109. ⁴⁵ ticket109.
- ticket109.
 ticket109.

ticket109. ²

1

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

29

30

31

32

33

34

36 37

38

39

41

44

45

46

47

• MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN: Scan across all members of a group (also called prefix) (Section 5.11, Section 5.11.2, Section 5.12.11, and Section 5.12.12).

ticket109. ticket109.

One of the key arguments in a call to a collective routine is a communicator that defines the group or groups of participating processes and provides a context for the operation. This is discussed further in Section 5.2. The syntax and semantics of the collective operations are defined to be consistent with the syntax and semantics of the point-to-point operations. Thus, general datatypes are allowed and must match between sending and receiving processes as specified in Chapter 4. Several collective routines such as broadcast and gather have a single originating or receiving process. Such a process is called the *root*. Some arguments in the collective functions are specified as "significant only at root," and are ignored for all participants except the root. The reader is referred to Chapter 4 for information concerning communication buffers, general datatypes and type matching rules, and to Chapter 6 for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the corresponding conditions between sender and receiver in point-to-point. Namely, for collective operations, the amount of data sent must exactly match the amount of data specified by the receiver. Different type maps (the layout in memory, see Section 4.1) between sender and receiver are still allowed.

Collective [routine calls] operations can (but are not required to) [return] complete as soon as [their] the caller's participation in the collective communication is [complete] finished. A blocking operation is complete as soon as the call returns. A nonblocking (immediate) call requires a separate completion call (cf. Section 3.7). The completion of a [call] collective operation indicates that the caller is [now] free to modify locations in the communication buffer. It does not indicate that other processes in the group have completed or even started the operation (unless otherwise implied by the description of the operation). [Thus, a collective communication call may, or may not, have the effect of synchronizing all calling processes. This statement excludes, of course, the barrier function] Thus, a collective communication operation may, or may not, have the effect of synchronizing all calling processes. This statement excludes, of course, the barrier operation.

Collective communication calls may use the same communicators as point-to-point communication; MPI guarantees that messages generated on behalf of collective communication calls will not be confused with messages generated by point-to-point communication. The collective operations do not have a message tag argument. A more detailed discussion of correct use of collective routines is found in Section 5.13.

Rationale. The equal-data restriction (on type matching) was made so as to avoid the complexity of providing a facility analogous to the status argument of MPI_RECV for discovering the amount of data sent. Some of the collective routines would require an array of status values.

The statements about synchronization are made so as to allow a variety of implementations of the collective functions.

[The collective operations do not accept a message tag argument. If future revisions of MPI define nonblocking collective functions, then tags (or a similar mechanism) might need to be added so as to allow the dis-ambiguation of multiple, pending, collective operations.] (*End of rationale*.)

ticket109. 21 ticket109. 22 ticket109. 23 ticket109. 24 ticket109. 25 ticket109. 26 ticket109. 27

ticket 109. $_{\rm 35}$

ticket109. 43

Figure 5.1: Collective move functions illustrated for a group of six processes. In each case, each row of boxes represents data locations in one process. Thus, in the broadcast, initially just the first process contains the data A_0 , but after the broadcast all processes contain it.

elzot 100

ticket109. 31

Advice to users. It is dangerous to rely on synchronization side-effects of the collective operations for program correctness. For example, even though a particular implementation may provide a broadcast routine with a side-effect of synchronization, the standard does not require this, and a program that relies on this will not be portable.

On the other hand, a correct, portable program must allow for the fact that a collective call may be synchronizing. Though one cannot rely on any synchronization side-effect, one must program so as to allow it. These issues are discussed further in Section 5.13. (*End of advice to users.*)

Advice to implementors. While vendors may write optimized collective routines matched to their architectures, a complete library of the collective communication routines can be written entirely using the MPI point-to-point communication functions and a few auxiliary functions. If implementing on top of point-to-point, a hidden, special communicator might be created for the collective operation so as to avoid interference with any on-going point-to-point communication at the time of the collective call. This is discussed further in Section 5.13. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of blocking MPI point-to-point routines. These are intended solely to indicate what data is sent or received by what process. Many of these examples are *not* correct MPI programs; for purposes of simplicity, they often assume infinite buffering.

5.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating processes. The routines do not have group identifiers as explicit arguments. Instead, there is a communicator argument. Groups and communicators are discussed in full detail in Chapter 6. For the purposes of this chapter, it is sufficient to know that there are two types of communicators: *intra-communicators* and *inter-communicators*. An intracommunicator can be thought of as an i[n]dentifier for a single group of processes linked with a context. An intercommunicator identifies two distinct groups of processes linked with a context.

5.2.1 Specifics for Intracommunicator Collective Operations

All processes in the group identified by the intracommunicator must call the collective routine.

In many cases, collective communication can occur "in place" for intracommunicators, with the output buffer being identical to the input buffer. This is specified by providing a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer argument, depending on the operation performed.

Rationale. The "in place" operations are provided to reduce unnecessary memory motion by both the MPI implementation and by the user. Note that while the simple check of testing whether the send and receive buffers have the same address will work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g., MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits aliasing of arguments; the approach of using a special value to denote "in place" operation eliminates that difficulty. (End of rationale.)

Advice to users. By allowing the "in place" option, the receive buffer in many of the collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding that includes INTENT must mark these as INOUT, not OUT.

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its use that MPI_BOTTOM has. [Some intracommunicator collective operations do not support the "in place" option (e.g., MPI_ALLTOALLV).] (End of advice to users.)

5.2.2 Applying Collective Operations to Intercommunicators

To understand how collective operations apply to intercommunicators, we can view most MPI intracommunicator collective operations as fitting one of the following categories (see, for instance, [48]):

All-To-All All processes contribute to the result. All processes receive the result.

- MPI_ALLGATHER, MPI_IALLGATHERV, MPI_IALLGATHERV, MPI_IALLGATHERW
- MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV, MPI_IALLTOALLW
- MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER
- MPI_BARRIER, MPI_IBARRIER

All-To-One All processes contribute to the result. One process receives the result.

- MPI_GATHER, MPI_IGATHERV, MPI_IGATHERV , MPI_GATHERW, MPI_IGATHERW
- MPI_REDUCE, MPI_IREDUCE

One-To-All One process contributes to the result. All processes receive the result.

- MPI_BCAST, MPI_IBCAST
- MPI_SCATTER, MPI_ISCATTERV, MPI_ISCATTERV, MPI_SCATTERW, MPI_ISCATTERW

Other Collective operations that do not fit into one of the above categories.

• MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN

The data movement patterns of MPI_SCAN, MPI_ISCAN [and], MPI_EXSCAN, and MPI_IEXSCAN do not fit this taxonomy.

The application of collective communication to intercommunicators is best described in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be described as collecting data from all members of one group with the result appearing in all members of the other group (see Figure 5.2). As another example, a one-to-all MPI_BCAST operation sends data from one member of one group to all members of the other group. Collective computation operations such as MPI_REDUCE_SCATTER have a similar interpretation (see Figure 5.3). For intracommunicators, these two groups are the

ticket109.

4

10

11

12

13

14

ticket109. ticket109.

¹⁷ ticket269. ¹⁸ ticket109.

¹⁹ ticket109. ²⁰ ticket109.

²¹ ticket109. ²² ticket109.

23 ticket109.

 $_{24}$ ticket 109.

ticket109.
ticket109.
ticket269.

ticket109.

ticket109.

 $_{4}^{4}$ ticket 109. $_{5}^{6}$ ticket 269.

36

43

44

45

46

47

48

38 ticket109.
39 ticket109.
40 ticket109.
41 ticket109.

₄₂ ticket109.

each beha

1

same. For intercommunicators, these two groups are distinct. For the all-to-all operations, each such operation is described in two phases, so that it has a symmetric, full-duplex behavior.

The following collective operations also apply to intercommunicators:

ticket109. $_6$

• MPI_BARRIER, MPI_IBARRIER

ticket109.

• MPI_BCAST, MPI_IBCAST

ticket109. ⁹ ticket109. ¹⁰

MPI_GATHER, MPI_IGATHERV, MPI_IGATHERV,
 MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV,

ticket109. 11 ticket109. 12

ticket109. 13

MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERV,

ticket109. ₁₄ ticket109. ₁₅

• MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV, MPI_ALLTOALLW, MPI_IALLTOALLW,

 ${{\rm ticket 109.}\atop {\rm ticket 109.}\atop {}_{17}}$

• MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE,

ticket109. 18 ticket109.

• MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER.

ticket109. 19 ticket109. 20

In C++, the bindings for these functions are in the MPI::Comm class. However, since the collective operations do not make sense on a C++ MPI::Comm (as it is neither an intercommunicator nor an intracommunicator), the functions are all pure virtual.

25 26

22

23

24

> 40 41 42

43 44

Figure 5.2: Intercommunicator allgather. The focus of data to one process is represented, not mandated by the semantics. The two phases do allgathers in both directions.

Figure 5.3: Intercommunicator reduce-scatter. The focus of data to one process is represented, not mandated by the semantics. The two phases do reduce-scatters in both directions.

5.2.3 Specifics for Intercommunicator Collective Operations

All processes in both groups identified by the intercommunicator must call the collective routine.

Note that the "in place" option for intracommunicators does not apply to intercommunicators since in the intercommunicator case there is no communication from a process to itself.

For intercommunicator collective communication, if the operation is in the All-To-One or One-To-All categories, then the transfer is unidirectional. The direction of the transfer is indicated by a special value of the root argument. In this case, for the group containing the root process, all processes in the group must call the routine using a special argument for the root. For this, the root process uses the special root value MPI_ROOT; all other processes in the same group as the root use MPI_PROC_NULL. All processes in the other group (the group that is the remote group relative to the root process) must call the collective routine and provide the rank of the root. If the operation is in the All-To-All category, then the transfer is bidirectional.

Rationale. Operations in the All-To-One and One-To-All categories are unidirectional by nature, and there is a clear way of specifying direction. Operations in the All-To-All category will often occur as part of an exchange, where it makes sense to communicate in both directions at once. (*End of rationale*.)

5

6

7 8

9

11

13

14

15

16

17

19

20 21 22

23 24 25

26

32

41

44

45

46

47

5.3 Barrier Synchronization

```
MPI_BARRIER(comm)
      IN
                comm
                                           communicator (handle)
     int MPI_Barrier(MPI_Comm comm)
    MPI_BARRIER(COMM, IERROR)
10
         INTEGER COMM, IERROR
12
     {void MPI::Comm::Barrier() const = 0(binding deprecated, see Section 15.2) }
```

If comm is an intracommunicator, MPI_BARRIER blocks the caller until all group members have called it. The call returns at any process only after all group members have entered the call.

If comm is an intercommunicator, MPI_BARRIER involves two groups. The call returns at processes in one group (group A) of the intercommunicator only after all members of the other group (group B) have entered the call (and vice versa). A process may return from the call before all processes in its own group have entered the call.

5.4 Broadcast

MPI_BCAST(buffer, count, datatype, root, comm)

```
27
       INOUT
                  buffer
                                              starting address of buffer (choice)
28
       IN
                  count
                                              number of entries in buffer (non-negative integer)
29
       IN
                  datatype
                                              data type of buffer (handle)
30
31
       IN
                                              rank of broadcast root (integer)
                  root
       IN
                  comm
                                              communicator (handle)
33
34
     int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
35
                     MPI_Comm comm)
36
37
     MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
38
          <type> BUFFER(*)
39
          INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR
40
     {void MPI::Comm::Bcast(void* buffer, int count,
                     const MPI::Datatype& datatype, int root) const = 0(binding
42
                     deprecated, see Section 15.2) }
43
```

If comm is an intracommunicator, MPI_BCAST broadcasts a message from the process with rank root to all processes of the group, itself included. It is called by all members of the group using the same arguments for comm and root. On return, the content of root's buffer is copied to all other processes.

5.4. BROADCAST 141

General, derived datatypes are allowed for datatype. The type signature of count, datatype on any process must be equal to the type signature of count, datatype at the root. This implies that the amount of data sent must be equal to the amount received, pairwise between each process and the root. MPI_BCAST and all other data-movement collective routines make this restriction. Distinct type maps between sender and receiver are still allowed.

The "in place" option is not meaningful here.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes in group B. The buffer arguments of the processes in group B must be consistent with the buffer argument of the root.

5.4.1 Example using MPI_BCAST

The examples in this section use intracommunicators.

Example 5.1

Broadcast 100 ints from process 0 to every process in the group.

```
MPI_Comm comm;
int array[100];
int root=0;
...
MPI_Bcast(array, 100, MPI_INT, root, comm);
```

As in many of our example code fragments, we assume that some of the variables (such as comm in the above) have been assigned appropriate values.

46

47

48

5.5 Gather

```
2
3
4
      MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)
5
        IN
                  sendbuf
6
                                               starting address of send buffer (choice)
7
        IN
                  sendcount
                                               number of elements in send buffer (non-negative inte-
                                               ger)
9
        IN
                  sendtype
                                               data type of send buffer elements (handle)
10
        OUT
                   recvbuf
                                               address of receive buffer (choice, significant only at
11
                                               root)
12
13
        IN
                   recvcount
                                               number of elements for any single receive (non-negative
14
                                               integer, significant only at root)
15
        IN
                                               data type of recv buffer elements (significant only at
                   recvtype
16
                                               root) (handle)
17
        IN
                                               rank of receiving process (integer)
18
                   root
19
        IN
                   comm
                                               communicator (handle)
20
21
      int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
22
                     void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
23
                     MPI_Comm comm)
24
     MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
25
26
                     ROOT, COMM, IERROR)
          <type> SENDBUF(*), RECVBUF(*)
27
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR
28
29
      {void MPI::Comm::Gather(const void* sendbuf, int sendcount, const
30
                     MPI::Datatype& sendtype, void* recvbuf, int recvcount,
31
                      const MPI::Datatype& recvtype, int root) const = 0/binding
32
                      deprecated, see Section 15.2) }
33
34
          If comm is an intracommunicator, each process (root process included) sends the con-
35
      tents of its send buffer to the root process. The root process receives the messages and stores
36
      them in rank order. The outcome is as if each of the n processes in the group (including
37
      the root process) had executed a call to
38
           MPI_Send(sendbuf, sendcount, sendtype, root, ...),
39
40
     and the root had executed n calls to
41
42
           MPI_Recv(recvbuf + i \cdot recvcount \cdot extent(recvtype), recvcount, recvtype, i, ...),
43
      where extent (recvtype) is the type extent obtained from a call to MPI_Type_get_extent().
44
          An alternative description is that the n messages sent by the processes in the group
45
      are concatenated in rank order, and the resulting message is received by the root as if by a
```

The receive buffer is ignored for all non-root processes.

call to MPI_RECV(recvbuf, recvcount·n, recvtype, ...).

5.5. GATHER 143

General, derived datatypes are allowed for both sendtype and recvtype. The type signature of sendcount, sendtype on each process must be equal to the type signature of recvcount, recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes, only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives from *each* process, not the total number of items it receives.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to the root. The send buffer arguments of the processes in group B must be consistent with the receive buffer argument of the root.

```
1
      MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
2
                     comm)
3
        IN
                  sendbuf
                                               starting address of send buffer (choice)
        IN
                  sendcount
                                                number of elements in send buffer (non-negative inte-
5
6
7
        IN
                  sendtype
                                                data type of send buffer elements (handle)
        OUT
                   recvbuf
                                               address of receive buffer (choice, significant only at
9
                                               root)
10
        IN
                   recvcounts
                                               non-negative integer array (of length group size) con-
11
                                                taining the number of elements that are received from
12
                                               each process (significant only at root)
13
14
                                               integer array (of length group size). Entry i specifies
        IN
                  displs
15
                                                the displacement relative to recybuf at which to place
16
                                                the incoming data from process i (significant only at
17
                                               root)
18
        IN
                                                data type of recv buffer elements (significant only at
                   recvtype
19
                                               root) (handle)
20
        IN
                                               rank of receiving process (integer)
                   root
21
22
        IN
                   comm
                                                communicator (handle)
23
24
      int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
25
                     void* recvbuf, int *recvcounts, int *displs,
26
                     MPI_Datatype recvtype, int root, MPI_Comm comm)
27
      MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
28
                     RECVTYPE, ROOT, COMM, IERROR)
29
          <type> SENDBUF(*), RECVBUF(*)
30
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
31
          COMM, IERROR
32
33
      {void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const
34
                     MPI::Datatype& sendtype, void* recvbuf,
35
                      const int recvcounts[], const int displs[],
36
                      const MPI::Datatype& recvtype, int root) const = 0/binding
37
                      deprecated, see Section 15.2) }
38
          MPI_GATHERV extends the functionality of MPI_GATHER by allowing a varying count
39
      of data from each process, since recvcounts is now an array. It also allows more flexibility
      as to where the data is placed on the root, by providing the new argument, displs.
41
          If comm is an intracommunicator, the outcome is as if each process, including the root
42
      process, sends a message to the root,
43
44
           MPI_Send(sendbuf, sendcount, sendtype, root, ...),
45
46
      and the root executes n receives,
47
           MPI_Recv(recvbuf + displs[j] \cdot extent(recvtype), recvcounts[j], recvtype, i, ...).
48
```

5.5. GATHER 145

The data received from process j is placed into recvbuf of the root process beginning at offset displs[j] elements (in terms of the recvtype).

The receive buffer is ignored for all non-root processes.

The type signature implied by sendcount, sendtype on process i must be equal to the type signature implied by recvcounts[i], recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed, as illustrated in Example 5.6.

All arguments to the function are significant on process root, while on other processes, only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on the root to be written more than once. Such a call is erroneous.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to the root. The send buffer arguments of the processes in group B must be consistent with the receive buffer argument of the root.

²⁴ ticket269.

```
1
      MPI_GATHERW(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtypes, root,
2
                      comm)
3
        IN
                   sendbuf
                                                starting address of send buffer (choice)
        IN
                   sendcount
                                                number of elements in send buffer (non-negative inte-
5
6
7
        IN
                   sendtype
                                                data type of send buffer elements (handle)
        OUT
                   recvbuf
                                                address of receive buffer (choice, significant only at
9
                                                root)
10
        IN
                   recvcounts
                                                non-negative integer array (of length group size) con-
11
                                                taining the number of elements that are received from
12
                                                each process (significant only at root)
13
14
        IN
                   displs
                                                integer array (of length group size). Entry i specifies
15
                                                the displacement relative to recybuf at which to place
16
                                                the incoming data from process i (significant only at
17
                                                root)
18
        IN
                   recvtypes
                                                array of datatypes (of length group size). Entry i
19
                                                specifies the type of data received from process i (ar-
20
                                                ray of handles)
21
        IN
                   root
                                                rank of receiving process (integer)
22
23
        IN
                                                communicator (handle)
                   comm
24
25
      int MPI_Gatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype,
26
                      void* recvbuf, int recvcounts[], int displs[],
27
                      MPI_Datatype recvtypes[], int root, MPI_Comm comm)
28
      MPI_GATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
29
                      RECVTYPES, ROOT, COMM, IERROR)
30
           <type> SENDBUF(*), RECVBUF(*)
31
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
32
          ROOT, COMM, IERROR
33
34
          MPI_GATHERW extends the functionality of MPI_GATHERV by allowing varying datatype
35
      specifications for data received from each process. If comm is an intracommunicator, the
36
      outcome is as if each process, including the root process, sends a message to the root,
37
38
           MPI_Send(sendbuf, sendcount, sendtype, root, ...),
39
      and the root executes n receives,
40
41
           MPI_Recv(recvbuf + displs[j] \cdot extent(recvtypes[j]), recvcounts[j], recvtypes[j], i, ...).
42
43
      The data received from process j is placed into recybuf of the root process beginning at
      offset displs[i] elements (in terms of recvtypes[i]).
44
45
          The receive buffer is ignored for all non-root processes.
46
          The type signature implied by sendcount, sendtype on process i must be equal to the
```

type signature implied by recvcounts[i], recvtypes[i] at the root. This implies that the amount

5.5. *GATHER* 147

of data sent must be equal to the amount of data received, pairwise between each process and the root.

 $_{25}$ ticket0.

All arguments to the function are significant on process root, while on other processes, only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments root and comm must have identical values on all processes. The specification of counts, types, and displacements should not cause any location on the root to be written more than once. Such a call is erroneous.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to the root. The send buffer arguments of the processes in group B must be consistent with the receive buffer arguments of the root.

5.5.1 Examples using MPI_GATHER, MPI_GATHERV

The examples in this section use intracommunicators.

Example 5.2

Gather 100 ints from every process in group to root. See [f] Figure 5.4.

```
MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```

Example 5.3

Previous example modified – only the root allocates memory for the receive buffer.

```
MPI_Comm comm;
int gsize,sendarray[100];
int root, myrank, *rbuf;
...
MPI_Comm_rank(comm, &myrank);
if (myrank == root) {
    MPI_Comm_size(comm, &gsize);
    rbuf = (int *)malloc(gsize*100*sizeof(int));
}
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```


Figure 5.4: The root process gathers 100 ints from each process in the group.

Example 5.4

Do the same as the previous example, but use a derived datatype. Note that the type cannot be the entire set of gsize*100 ints since type matching is defined pairwise between the root and each process in the gather.

```
MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;
MPI_Datatype rtype;
...
MPI_Comm_size(comm, &gsize);
MPI_Type_contiguous(100, MPI_INT, &rtype);
MPI_Type_commit(&rtype);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);
```

Example 5.5

Now have each process send 100 ints to root, but place each set (of 100) stride ints apart at receiving end. Use MPI_GATHERV and the displs argument to achieve this effect. Assume $stride \geq 100$. See Figure 5.5.

```
MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;

...

MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
    displs[i] = i*stride;
    rcounts[i] = 100;
}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT, root, comm);</pre>
```

5.5. *GATHER* 149

2

11 12

13 14

15

16

18

19

20

21

22

23242526

27

28

29

30

31

33

34

35

36

37

38

41 42

43

44

45 46 47

Figure 5.5: The root process gathers 100 ints from each process in the group, each set is placed stride ints apart.

Note that the program is erroneous if stride < 100.

Example 5.6

Same as Example 5.5 on the receiving side, but send the 100 ints from the 0th column of a 100×150 int array, in C. See Figure 5.6.

```
MPI_Comm comm;
int gsize,sendarray[100][150];
int root, *rbuf, stride;
MPI_Datatype stype;
int *displs,i,*rcounts;
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {</pre>
    displs[i] = i*stride;
    rcounts[i] = 100;
}
/* Create datatype for 1 column of array
 */
MPI_Type_vector(100, 1, 150, MPI_INT, &stype);
MPI_Type_commit(&stype);
MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,
                                                           root, comm);
```

Example 5.7

Process i sends (100-i) ints from the i-th column of a 100×150 int array, in C. It is received into a buffer with stride, as in the previous two examples. See Figure 5.7.

5

9 10

11

12 13

Figure 5.6: The root process gathers column 0 of a 100×150 C array, and each set is placed stride ints apart.

```
MPI_Comm comm;
14
         int gsize,sendarray[100][150],*sptr;
15
         int root, *rbuf, stride, myrank;
16
         MPI_Datatype stype;
17
         int *displs,i,*rcounts;
18
19
         . . .
20
21
         MPI_Comm_size(comm, &gsize);
22
         MPI_Comm_rank(comm, &myrank);
23
         rbuf = (int *)malloc(gsize*stride*sizeof(int));
24
         displs = (int *)malloc(gsize*sizeof(int));
         rcounts = (int *)malloc(gsize*sizeof(int));
26
         for (i=0; i<gsize; ++i) {
27
             displs[i] = i*stride;
28
             rcounts[i] = 100-i;
                                       /* note change from previous example */
29
         }
30
         /* Create datatype for the column we are sending
31
          */
32
         MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
33
         MPI_Type_commit(&stype);
34
         /* sptr is the address of start of "myrank" column
35
          */
36
         sptr = &sendarray[0][myrank];
37
         MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
38
                                                                 root, comm);
39
```

Note that a different amount of data is received from each process.

Example 5.8

41 42

43

44

45

46 47 Same as Example 5.7, but done in a different way at the sending end. We create a datatype that causes the correct striding at the sending end so that we read a column of a C array. A similar thing was done in Example 4.16, Section 4.1.14.

```
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
```

5.5. *GATHER* 151

2

12 13

42

43

Figure 5.7: The root process gathers 100-i ints from column i of a 100×150 C array, and each set is placed stride ints apart.

```
int root, *rbuf, stride, myrank, disp[2], blocklen[2];
                                                                                14
MPI_Datatype stype,type[2];
                                                                                15
int *displs,i,*rcounts;
                                                                                16
                                                                                18
. . .
                                                                                19
MPI_Comm_size(comm, &gsize);
                                                                                20
MPI_Comm_rank(comm, &myrank);
                                                                                21
rbuf = (int *)malloc(gsize*stride*sizeof(int));
                                                                                22
displs = (int *)malloc(gsize*sizeof(int));
                                                                                23
rcounts = (int *)malloc(gsize*sizeof(int));
                                                                                24
for (i=0; i<gsize; ++i) {
                                                                                25
    displs[i] = i*stride;
                                                                                26
    rcounts[i] = 100-i;
                                                                                27
                                                                                28
/* Create datatype for one int, with extent of entire row
                                                                                29
 */
                                                                                30
disp[0] = 0;
                    disp[1] = 150*sizeof(int);
                                                                                31
type[0] = MPI_INT; type[1] = MPI_UB;
blocklen[0] = 1;
                    blocklen[1] = 1;
                                                                                33
MPI_Type_create_struct(2, blocklen, disp, type, &stype);
                                                                                34
MPI_Type_commit(&stype);
                                                                                35
sptr = &sendarray[0][myrank];
                                                                                36
MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,
                                                                                37
                                                               root, comm);
                                                                                38
                                                                                39
```

Example 5.9

Same as Example 5.7 at sending side, but at receiving side we make the stride between received blocks vary from block to block. See Figure 5.8.

```
MPI_Comm comm;
int gsize,sendarray[100][150],*sptr;
int root, *rbuf, *stride, myrank, bufsize;

MPI_Datatype stype;
int *displs,i,*rcounts,offset;

44
45
46
47
48
48
```

3

5

9 10

11

12 13 14

Figure 5.8: The root process gathers 100-i ints from column i of a 100×150 C array, and each set is placed stride[i] ints apart (a varying stride).

```
15
         . . .
16
         MPI_Comm_size(comm, &gsize);
17
18
         MPI_Comm_rank(comm, &myrank);
19
         stride = (int *)malloc(gsize*sizeof(int));
20
21
22
         /* stride[i] for i = 0 to gsize-1 is set somehow
23
          */
24
         /* set up displs and rounts vectors first
26
         displs = (int *)malloc(gsize*sizeof(int));
27
         rcounts = (int *)malloc(gsize*sizeof(int));
28
         offset = 0;
29
30
         for (i=0; i<gsize; ++i) {
31
             displs[i] = offset;
             offset += stride[i];
33
             rcounts[i] = 100-i;
34
         }
         /* the required buffer size for rbuf is now easily obtained
35
          */
36
37
         bufsize = displs[gsize-1]+rcounts[gsize-1];
         rbuf = (int *)malloc(bufsize*sizeof(int));
         /* Create datatype for the column we are sending
39
          */
         MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
41
42
         MPI_Type_commit(&stype);
         sptr = &sendarray[0][myrank];
43
         MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
44
45
                                                                 root, comm);
46
```

Example 5.10

47

48

5.5. GATHER 153

Process i sends num ints from the i-th column of a 100×150 int array, in C. The complicating factor is that the various values of num are not known to root, so a separate gather must first be run to find these out. The data is placed contiguously at the receiving end.

```
MPI_Comm comm;
int gsize, sendarray[100][150], *sptr;
int root, *rbuf, myrank, disp[2], blocklen[2];
MPI_Datatype stype,type[2];
int *displs,i,*rcounts,num;
                                                                               11
                                                                               12
                                                                               13
MPI_Comm_size(comm, &gsize);
                                                                               14
MPI_Comm_rank(comm, &myrank);
                                                                               15
                                                                               16
/* First, gather nums to root
 */
                                                                               18
rcounts = (int *)malloc(gsize*sizeof(int));
                                                                               19
MPI_Gather(&num, 1, MPI_INT, roounts, 1, MPI_INT, root, comm);
                                                                              20
/* root now has correct rounts, using these we set displs[] so
                                                                              21
 * that data is placed contiguously (or concatenated) at receive end
                                                                              22
                                                                              23
displs = (int *)malloc(gsize*sizeof(int));
                                                                               24
displs[0] = 0;
for (i=1; i<gsize; ++i) {
                                                                               26
    displs[i] = displs[i-1]+rcounts[i-1];
                                                                               27
}
                                                                               28
/* And, create receive buffer
                                                                               29
 */
rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])
                                                            *sizeof(int));
/* Create datatype for one int, with extent of entire row
 */
                                                                              34
disp[0] = 0;
                    disp[1] = 150*sizeof(int);
                                                                              35
type[0] = MPI_INT; type[1] = MPI_UB;
                                                                              36
blocklen[0] = 1;
                  blocklen[1] = 1;
                                                                              37
MPI_Type_create_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit(&stype);
sptr = &sendarray[0][myrank];
MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT,
                                                                              42
                                                              root, comm);
                                                                               43
                                                                               44
                                                                               45
                                                                               46
```

44

45

46

47

48

5.6 Scatter

```
2
3
4
      MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)
5
       IN
                  sendbuf
                                               address of send buffer (choice, significant only at root)
6
7
       IN
                  sendcount
                                               number of elements sent to each process (non-negative
8
                                               integer, significant only at root)
9
       IN
                  sendtype
                                               data type of send buffer elements (significant only at
10
                                               root) (handle)
11
       OUT
                  recybuf
                                               address of receive buffer (choice)
12
13
       IN
                  recvcount
                                               number of elements in receive buffer (non-negative in-
14
                                               teger)
15
       IN
                                               data type of receive buffer elements (handle)
                  recvtype
16
17
       IN
                  root
                                               rank of sending process (integer)
18
       IN
                                               communicator (handle)
                  comm
19
20
      int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
21
                     void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
22
                     MPI_Comm comm)
23
     MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
24
                     ROOT, COMM, IERROR)
25
26
          <type> SENDBUF(*), RECVBUF(*)
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR
27
28
      {void MPI::Comm::Scatter(const void* sendbuf, int sendcount, const
29
                     MPI::Datatype& sendtype, void* recvbuf, int recvcount,
30
                     const MPI::Datatype& recvtype, int root) const = O(binding)
31
                     deprecated, see Section 15.2) }
32
33
          MPI_SCATTER is the inverse operation to MPI_GATHER.
34
          If comm is an intracommunicator, the outcome is as if the root executed n send oper-
35
      ations.
36
           MPI\_Send(sendbuf + i \cdot sendcount \cdot extent(sendtype), sendcount, sendtype, i, ...),
37
38
      and each process executed a receive,
39
           MPI_Recv(recvbuf, recvcount, recvtype, i, ...).
41
          An alternative description is that the root sends a message with MPI_Send(sendbuf,
42
43
```

sendcount \cdot n, sendtype, ...). This message is split into n equal segments, the *i*-th segment is sent to the i-th process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.

The type signature associated with sendcount, sendtype at the root must be equal to the type signature associated with recvcount, recvtype at all processes (however, the type maps may be different). This implies that the amount of data sent must be equal to the 5.6. SCATTER 155

amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes, only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

ticket109.

The specification of counts and types should not cause any location on the root to be read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write restriction) is necessary. (*End of rationale*.)

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and root "sends" no data to itself. The scattered vector is still assumed to contain n segments, where n is the group size; the *root*-th segment, which root should "send to itself," is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in group B. The receive buffer arguments of the processes in group B must be consistent with the send buffer argument of the root.

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm)

	commi	
IN	sendbuf	address of send buffer (choice, significant only at root)
IN	sendcounts	non-negative integer array (of length group size) specifying the number of elements to send to each processor
IN	displs	integer array (of length group size). Entry i specifies the displacement (relative to sendbuf) from which to take the outgoing data to process i
IN	sendtype	data type of send buffer elements (handle)
OUT	recvbuf	address of receive buffer (choice)
IN	recvcount	number of elements in receive buffer (non-negative integer)
IN	recvtype	data type of receive buffer elements (handle)
IN	root	rank of sending process (integer)
IN	comm	communicator (handle)

2

3

5

6

7

9

11

12

13

14

15

16

17

18

19 20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

```
MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
                  RECVTYPE, ROOT, COMM, IERROR)
        <type> SENDBUF(*), RECVBUF(*)
        INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
        COMM, IERROR
     {void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],
                  const int displs[], const MPI::Datatype& sendtype,
                  void* recvbuf, int recvcount, const MPI::Datatype& recvtype,
                  int root) const = 0(binding deprecated, see Section 15.2) }
10
```

MPI_SCATTERV is the inverse operation to MPI_GATHERV.

MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying count of data to be sent to each process, since sendcounts is now an array. It also allows more flexibility as to where the data is taken from on the root, by providing an additional argument, displs.

If comm is an intracommunicator, the outcome is as if the root executed n send operations,

```
MPI\_Send(sendbuf + displs[i] \cdot extent(sendtype), sendcounts[i], sendtype, i, ...),
and each process executed a receive,
```

```
MPI_Recv(recvbuf, recvcount, recvtype, i, ...).
```

The send buffer is ignored for all non-root processes.

The type signature implied by sendcount[i], sendtype at the root must be equal to the type signature implied by recvcount, recvtype at process i (however, the type maps may be different). This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes, only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on the root to be read more than once.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of recybuf at the root. In such a case, recycount and recytype are ignored, and root "sends" no data to itself. The scattered vector is still assumed to contain n segments, where n is the group size; the *root*-th segment, which root should "send to itself," is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in group B. The receive buffer arguments of the processes in group B must be consistent with the send buffer argument of the root.

ticket269. 46

47 48 5.6. SCATTER 157

MPI_SCATTERW(sendbuf, sendcount, displs, sendtypes, recvbuf, recvcount, recvtype, root, comm)				
IN	sendbuf	starting address of send buffer (choice, significant only at root)	3 4 5	
IN	sendcount	non-negative integer array (of length group size) specifying the number of elements to send to each processor	6 7	
IN	displs	integer array (of length group size). Entry i specifies the displacement relative to sendbuf from which to take the outgoing data to process i	8 9 10	
IN	sendtypes	array of datatypes (of length group size). Entry j specifies the type of data to send to process j (array of handles)	11 12 13	
OUT	recvbuf	address of receive buffer (choice)	14 15	
IN	recvcount	number of elements in receive buffer (non-negative integer)	16 17	
IN	recvtype	data type of receive buffer elements (handle)	18	
IN	root	rank of sending process (integer)	19 20	
IN	comm	communicator (handle)	21	
			22	
int MP		<pre>buf, int sendcounts[], int displs[],</pre>	23	
	V -	sendtypes[], void* recvbuf, int recvcount, recvtype, int root, MPI_Comm comm)	24 25	
	V-	•	26	
MPI_SC		OUNTS, DISPLS, SENDTYPES, RECVBUF, RECVCOUNT,	27	
<t< td=""><td>ype> SENDBUF(*), RECV</td><td></td><td>28 29</td></t<>	ype> SENDBUF(*), RECV		28 29	
IN	•	COUNTS(*), SENDTYPES, RECVCOUNT, RECVTYPE, ROOT,	30 31	
MF	PI SCATTERW is the inv	erse operation to MPI_GATHERW.	32	
		the functionality of MPI_SCATTERV by allowing varying	33	
datatype specifications for data sent to each process. 34				
	comm is an intracommun	icator, the outcome is as if the root executed n send oper-	35 36	
ations,				
$\texttt{MPI_Send}(\texttt{sendbuf} + \texttt{displs[i]} \cdot \texttt{extent}(\texttt{sendtypes[i]}), \texttt{sendcounts[i]}, \texttt{sendtypes[i]}, \texttt{i}, \texttt{.38}),$				
and each process executed a receive,				
41				
$\texttt{MPI_Recv}(\texttt{recvbuf}, \texttt{recvcount}, \texttt{recvtype}, \texttt{i},).$			42	
The send buffer is ignored for all non-root processes. 45			43	
		by $sendcount[i]$, $sendtypes[i]$ at the root must be equal to	44	
the type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype at process i (however, the type maps may define type signature implied by recvcount, recvtype signature implied by the type maps may define type signature implied by the				
be different). This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed. 48				
and the following with the series of the ser				

Figure 5.9: The root process scatters sets of 100 ints to each process in the group.

All arguments to the function are significant on process root, while on other processes, only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on the root to be read more than once.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and root "sends" no data to itself. The scattered vector is still assumed to contain n segments, where n is the group size; the root-th segment, which root should "send to itself", is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in group B. The receive buffer arguments of the processes in group B must be consistent with the send buffer arguments of the root.

5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

The examples in this section use intracommunicators.

Example 5.11

The reverse of Example 5.2. Scatter sets of 100 ints from the root to each process in the group. See Figure 5.9.

```
MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100];
...
MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*100*sizeof(int));
...
MPI_Scatter(sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```

Example 5.12

5.6. SCATTER 159

Figure 5.10: The root process scatters sets of 100 ints, moving by stride ints from send to send in the scatter.

The reverse of Example 5.5. The root process scatters sets of 100 ints to the other processes, but the sets of 100 are *stride ints* apart in the sending buffer. Requires use of MPI_SCATTERV. Assume $stride \ge 100$. See Figure 5.10.

```
MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100], i, *displs, *scounts;

...

MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*stride*sizeof(int));
...
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i<gsize; ++i) {
    displs[i] = i*stride;
    scounts[i] = 100;
}
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,
    root, comm);</pre>
```

Example 5.13

The reverse of Example 5.9. We have a varying stride between blocks at sending (root) side, at the receiving side we receive into the i-th column of a 100×150 C array. See Figure 5.11.

```
MPI_Comm comm;
int gsize,recvarray[100][150],*rptr;
int root, *sendbuf, myrank, *stride;
MPI_Datatype rtype;
int i, *displs, *scounts, offset;
...
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
```


Figure 5.11: The root scatters blocks of 100-i ints into column i of a 100×150 C array. At the sending side, the blocks are stride[i] ints apart.

```
14
         stride = (int *)malloc(gsize*sizeof(int));
15
16
         /* stride[i] for i = 0 to gsize-1 is set somehow
17
          * sendbuf comes from elsewhere
18
          */
19
         . . .
20
         displs = (int *)malloc(gsize*sizeof(int));
21
         scounts = (int *)malloc(gsize*sizeof(int));
22
         offset = 0;
23
         for (i=0; i<gsize; ++i) {</pre>
24
             displs[i] = offset;
              offset += stride[i];
26
             scounts[i] = 100 - i;
27
28
         /* Create datatype for the column we are receiving
29
          */
30
         MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &rtype);
31
         MPI_Type_commit(&rtype);
         rptr = &recvarray[0][myrank];
33
         MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,
34
                                                                      root, comm);
35
```

5.7 Gather-to-all

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)		
IN	sendbuf	starting address of send buffer (choice)
IN	sendcount	number of elements in send buffer (non-negative integer) $$
IN	sendtype	data type of send buffer elements (handle)
OUT	recvbuf	address of receive buffer (choice)
IN	recvcount	number of elements received from any process (non-negative integer) $$
IN	recvtype	data type of receive buffer elements (handle)
IN	comm	communicator (handle)

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes receive the result, instead of just the root. The block of data sent from the j-th process is received by every process and placed in the j-th block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to the type signature associated with recvcount, recvtype at any other process.

If comm is an intracommunicator, the outcome of a call to MPI_ALLGATHER(...) is as if all processes executed n calls to

for $\mathtt{root} = 0$, ..., $\mathtt{n-1}$. The rules for correct usage of MPI_ALLGATHER are easily found from the corresponding rules for MPI_GATHER.

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored. Then the input data of each process is assumed to be in the area where that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes sendcount data items; these data are concatenated and the result is stored at each process

in the other group (group B). Conversely the concatenation of the contributions of the processes in group B is stored at each process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in group B, and vice versa.

3 4 5

6

9

10

11

12

13

1

2

Advice to users. The communication pattern of MPI_ALLGATHER executed on an intercommunication domain need not be symmetric. The number of items sent by processes in group A (as specified by the arguments sendcount, sendtype in group A and the arguments recvcount, recvtype in group B), need not equal the number of items sent by processes in group B (as specified by the arguments sendcount, sendtype in group B and the arguments recvcount, recvtype in group A). In particular, one can move data in only one direction by specifying sendcount = 0 for the communication in the reverse direction.

(End of advice to users.)

sendbuf

14 15 16

MPI_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

starting address of send buffer (choice)

17 18 19

IN

```
20
       IN
                  sendcount
                                               number of elements in send buffer (non-negative inte-
21
                                               ger)
22
       IN
                  sendtype
                                               data type of send buffer elements (handle)
23
        OUT
                  recvbuf
                                               address of receive buffer (choice)
24
       IN
                  recvcounts
                                               non-negative integer array (of length group size) con-
25
26
                                               taining the number of elements that are received from
                                               each process
27
28
       IN
                  displs
                                               integer array (of length group size). Entry i specifies
29
                                               the displacement (relative to recvbuf) at which to place
30
                                               the incoming data from process i
31
       IN
                  recvtype
                                               data type of receive buffer elements (handle)
32
       IN
                  comm
                                               communicator (handle)
33
34
35
      int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
36
                     void* recvbuf, int *recvcounts, int *displs,
37
                     MPI_Datatype recvtype, MPI_Comm comm)
38
      MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
39
                     RECVTYPE, COMM, IERROR)
40
          <type> SENDBUF(*), RECVBUF(*)
41
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
42
          IERROR
43
44
      {void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount, const
45
                     MPI::Datatype& sendtype, void* recvbuf,
46
                     const int recvcounts[], const int displs[],
47
                     const MPI::Datatype& recvtype) const = O(binding deprecated, see
                     Section 15.2) }
```

4

5

6 7

11

12

13

14

15

16

17

18

19

22

232425

26

27 28

29 30

31

34

35

36

37

38

39

41

42 43

44

45

46 47 ticket269.

MPI_ALLGATHERV can be thought of as MPI_GATHERV, but where all processes receive the result, instead of just the root. The block of data sent from the j-th process is received by every process and placed in the j-th block of the buffer recvbuf. These blocks need not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to the type signature associated with recvcounts[j], recvtype at any other process.

If comm is an intracommunicator, the outcome is as if all processes executed calls to

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm),

for $\mathtt{root} = 0$, ..., $\mathtt{n-1}$. The rules for correct usage of MPI_ALLGATHERV are easily found from the corresponding rules for MPI_GATHERV.

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcount and sendtype are ignored, and the input data of each process is assumed to be in the area where that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes sendcount data items; these data are concatenated and the result is stored at each process in the other group (group B). Conversely the concatenation of the contributions of the processes in group B is stored at each process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in group B, and vice versa.

MPI_ALLGATHERW(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtypes, comm)

```
IN
            sendbuf
                                           starting address of send buffer (choice)
IN
            sendcount
                                           number of elements in send buffer (non-negative inte-
IN
           sendtype
                                           data type of send buffer elements (handle)
OUT
            recybuf
                                           address of receive buffer (choice)
IN
            recvcounts
                                           non-negative integer array (of length group size) con-
                                           taining the number of elements that are received from
                                           each process
IN
           displs
                                           integer array (of length group size). Entry i specifies
                                           the displacement (relative to recvbuf) at which to place
                                           the incoming data from process i
IN
                                           array of datatypes (of length group size). Entry i
            recvtypes
                                           specifies the type of data received from process i (ar-
                                           ray of handles)
IN
                                           communicator (handle)
            comm
```

MPI_ALLGATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, RECVTYPES, COMM, IERROR)

```
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
COMM, IERROR
```

MPI_ALLGATHERW can be thought of as MPI_GATHERW, but where all processes receive the result, instead of just the root. The block of data sent from the j-th process is received by every process and placed in the j-th block of the buffer recybuf. These blocks need not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to the type signature associated with recvcounts[j], recvtypes[j] at any other process.

If comm is an intracommunicator, the outcome is as if all processes executed calls to

```
\label{eq:mpi_gatherw} \texttt{MPI\_GATHERW}(\texttt{sendbuf}, \texttt{sendcount}, \texttt{sendtype}, \texttt{recvbuf}, \texttt{recvcounts}, \texttt{displs}, \texttt{recvtypes}, \texttt{root}, \texttt{comm}) for \texttt{root} = 0 \ , \ ..., \ \texttt{n-1}.
```

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcount and sendtype are ignored, and the input data of each process is assumed to be in the area where that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes sendcount data items; these data are concatenated and the result is stored at each process in the other group (group B). Conversely the concatenation of the contributions of the processes in group B is stored at each process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in group B, and vice versa.

5.7.1 Example using MPI_ALLGATHER

The example in this section uses intracommunicators.

Example 5.14

The all-gather version of Example 5.2. Using MPI_ALLGATHER, we will gather 100 ints from every process in the group to every process.

```
MPI_Comm comm;
int gsize,sendarray[100];
int *rbuf;
...
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Allgather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);
```

After the call, every process has the group-wide concatenation of the sets of data.

13

14

15

16

18

19

20 21

22

23

24

25 26

27

28

29

30

34

35

36

37

38

39

42 43

44

45 46

47

5.8 All-to-All Scatter/Gather

```
MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)
            sendbuf
 IN
                                         starting address of send buffer (choice)
                                         number of elements sent to each process (non-negative
 IN
            sendcount
                                         integer)
 IN
            sendtype
                                         data type of send buffer elements (handle)
            recvbuf
 OUT
                                         address of receive buffer (choice)
 IN
                                         number of elements received from any process (non-
            recvcount
                                         negative integer)
 IN
            recvtype
                                         data type of receive buffer elements (handle)
 IN
            comm
                                         communicator (handle)
int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
               void* recvbuf, int recvcount, MPI_Datatype recvtype,
               MPI_Comm comm)
```

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, IERROR)

```
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR
```

MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each process sends distinct data to each of the receivers. The j-th block sent from process i is received by process j and is placed in the i-th block of recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to the type signature associated with recvcount, recvtype at any other process. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of processes. As usual, however, the type maps may be different.

If comm is an intracommunicator, the outcome is as if each process executed a send to each process (itself included) with a call to,

```
\label{eq:mpi_send} \begin{split} \texttt{MPI\_Send}(\texttt{sendbuf} + \texttt{i} \cdot \texttt{sendcount} \cdot \texttt{extent}(\texttt{sendtype}), \texttt{sendcount}, \texttt{sendtype}, \texttt{i}, ...), \\ \text{and a receive from every other process with a call to,} \end{split}
```

```
MPI_Recv(recvbuf + i \cdot recvcount \cdot extent(recvtype), recvcount, recvtype, i, ...).
```

All arguments on all processes are significant. The argument comm must have identical values on all processes.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE to the argument sendbuf at *all* processes. In such a case, sendcount and sendtype are ignored.

ticket109.

ticket109.

The data to be sent is taken from the recvbuf and replaced by the received data. Data sent and received must have the same type map as specified by recvcount and recvtype.

Rationale. For large MPI_ALLTOALL instances, allocating both send and receive buffers may consume too much memory. The "in place" option effectively halves the application memory consumption and is useful in situations where the data to be sent will not be used by the sending process after the MPI_ALLTOALL exchange (e.g., in parallel Fast Fourier Transforms). (End of rationale.)

Advice to implementors. Users may opt to use the "in place" option in order to conserve memory. Quality MPI implementations should thus strive to minimize system buffering. (End of advice to implementors.)

If comm is an intercommunicator, then the outcome is as if each process in group A sends a message to each process in group B, and vice versa. The j-th send buffer of process i in group A should be consistent with the i-th receive buffer of process j in group B, and vice versa.

Advice to users. When a complete exchange is executed on an intercommunication domain, then the number of data items sent from processes in group A to processes in group B need not equal the number of items sent in the reverse direction. In particular, one can have unidirectional communication by specifying sendcount = 0 in the reverse direction.

(End of advice to users.)

```
MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm)
```

IN	sendbuf	starting address of send buffer (choice)
IN	sendcounts	non-negative integer array (of length group size) specifying the number of elements to send to each processor
IN	sdispls	integer array (of length group size). Entry j specifies the displacement (relative to $sendbuf$) from which to take the outgoing data destined for process j
IN	sendtype	data type of send buffer elements (handle)
OUT	recvbuf	address of receive buffer (choice)
IN	recvcounts	non-negative integer array (of length group size) specifying the number of elements that can be received from each processor
IN	rdispls	integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from process i
IN	recvtype	data type of receive buffer elements (handle)
IN	comm	communicator (handle)

 Section **15.2**) }

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for the send is specified by sdispls and the location of the placement of the data on the receive side is specified by rdispls.

void* recvbuf, const int recvcounts[], const int rdispls[],

const MPI::Datatype& recvtype) const = 0/binding deprecated, see

If comm is an intracommunicator, then the j-th block sent from process i is received by process j and is placed in the i-th block of recvbuf. These blocks need not all have the same size.

The type signature associated with <code>sendcounts[j]</code>, <code>sendtype</code> at process <code>i</code> must be equal to the type signature associated with <code>recvcounts[i]</code>, <code>recvtype</code> at process <code>j</code>. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with,

```
MPI\_Send(sendbuf + sdispls[i] \cdot extent(sendtype), sendcounts[i], sendtype, i, ...), and received a message from every other process with a call to
```

```
\texttt{MPI\_Recv}(\texttt{recvbuf} + \texttt{rdispls}[\texttt{i}] \cdot \texttt{extent}(\texttt{recvtype}), \texttt{recvcounts}[\texttt{i}], \texttt{recvtype}, \texttt{i}, ...).
```

All arguments on all processes are significant. The argument comm must have identical values on all processes.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE to the argument sendbuf at *all* processes. In such a case, sendcounts, sdispls and sendtype are ignored. The data to be sent is taken from the recvbuf and replaced by the received data. Data sent and received must have the same type map as specified by the recvcounts array and the recvtype, and is taken from the locations of the receive buffer specified by rdispls.

Advice to users. Specifying the "in place" option (which must be given on all processes) implies that the same amount and type of data is sent and received between any two processes in the group of the communicator. Different pairs of processes can exchange different amounts of data. Users must ensure that recvcounts[j] and recvtype on process i match recvcounts[i] and recvtype on process j. This symmetric exchange can be useful in applications where the data to be sent will not be used by the sending process after the MPI_ALLTOALLV exchange. (End of advice to users.)

If comm is an intercommunicator, then the outcome is as if each process in group A sends a message to each process in group B, and vice versa. The j-th send buffer of process i in group A should be consistent with the i-th receive buffer of process j in group B, and vice versa.

The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much flexibility as one would achieve by specifying n independent, point-to-point communications, with two exceptions: all messages use the same datatype, and messages are scattered from (or gathered to) sequential storage. (End of rationale.)

5 6

1

2

Advice to implementors. Although the discussion of collective communication in terms of point-to-point operation implies that each message is transferred directly from sender to receiver, implementations may use a tree communication pattern. Messages can be forwarded by intermediate nodes where they are split (for scatter) or concatenated (for gather), if this is more efficient. (End of advice to implementors.)

11 12 13

14

15

10

MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes, comm)

10		· ·	
16	IN	sendbuf	starting address of send buffer (choice)
17 18	IN	sendcounts	non-negative integer array (of length group size) specifying the number of elements to send to each processor
19 20 21 22 23	IN	sdispls	integer array (of length group size). Entry j specifies the displacement in bytes (relative to sendbuf) from which to take the outgoing data destined for process j (array of integers)
24 25 26	IN	sendtypes	array of datatypes (of length group size). Entry j specifies the type of data to send to process j (array of handles)
27	OUT	recvbuf	address of receive buffer (choice)
28 29 30 31	IN	recvcounts	non-negative integer array (of length group size) specifying the number of elements that can be received from each processor
32 33 34 35	IN	rdispls	integer array (of length group size). Entry i specifies the displacement in bytes (relative to recvbuf) at which to place the incoming data from process i (array of integers)
36 37 38	IN	recvtypes	array of datatypes (of length group size). Entry i specifies the type of data received from process i (array of handles)
39 40	IN	comm	communicator (handle)

41 42

43

44 45

46

47

```
int MPI_Alltoallw(void* sendbuf, int sendcounts[], int sdispls[],
             MPI_Datatype sendtypes[], void* recvbuf, int recvcounts[],
             int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)
```

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR) <type> SENDBUF(*), RECVBUF(*)

```
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
RDISPLS(*), RECVTYPES(*), COMM, IERROR
```

MPI_ALLTOALLW is the most general form of complete exchange. Like MPI_TYPE_CREATE_STRUCT, the most general type constructor, MPI_ALLTOALLW allows separate specification of count, displacement and datatype. In addition, to allow maximum flexibility, the displacement of blocks within the send and receive buffers is specified in bytes.

If comm is an intracommunicator, then the j-th block sent from process i is received by process j and is placed in the i-th block of recvbuf. These blocks need not all have the same size.

The type signature associated with <code>sendcounts[j]</code>, <code>sendtypes[j]</code> at process <code>i</code> must be equal to the type signature associated with <code>recvcounts[i]</code>, <code>recvtypes[i]</code> at process <code>j</code>. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

```
MPI\_Send(sendbuf + sdispls[i], sendcounts[i], sendtypes[i], i, ...),
```

and received a message from every other process with a call to

```
MPI_Recv(recvbuf + rdispls[i], recvcounts[i], recvtypes[i], i, ...).
```

All arguments on all processes are significant. The argument comm must describe the same communicator on all processes.

Like for MPI_ALLTOALLV, the "in place" option for intracommunicators is specified by passing MPI_IN_PLACE to the argument sendbuf at *all* processes. In such a case, sendcounts, sdispls and sendtypes are ignored. The data to be sent is taken from the recvbuf and replaced by the received data. Data sent and received must have the same type map as specified by the recvcounts and recvtypes arrays, and is taken from the locations of the receive buffer specified by rdispls.

If comm is an intercommunicator, then the outcome is as if each process in group A sends a message to each process in group B, and vice versa. The j-th send buffer of process i in group A should be consistent with the i-th receive buffer of process j in group B, and vice versa.

Rationale. The MPI_ALLTOALLW function generalizes several MPI functions by carefully selecting the input arguments. For example, by making all but one process have sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (End of rationale.)

5.9 Global Reduction Operations

The functions in this section perform a global reduce operation (for example sum, maximum, and logical and) across all members of a group. The reduction operation can be either one of

a predefined list of operations, or a user-defined operation. The global reduction functions come in several flavors: a reduce that returns the result of the reduction to one member of a group, an all-reduce that returns this result to all members of a group, and two scan (parallel prefix) operations. In addition, a reduce-scatter operation combines the functionality of a reduce and of a scatter operation.

5.9.1 Reduce

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN	sendbut	address of send buffer (choice)
OUT	recvbuf	address of receive buffer (choice, significant only at root) $$
IN	count	number of elements in send buffer (non-negative integer) $$
IN	datatype	data type of elements of send buffer (handle)
IN	ор	reduce operation (handle)
IN	root	rank of root process (integer)
IN	comm	communicator (handle)

<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

If comm is an intracommunicator, MPI_REDUCE combines the elements provided in the input buffer of each process in the group, using the operation op, and returns the combined value in the output buffer of the process with rank root. The input buffer is defined by the arguments sendbuf, count and datatype; the output buffer is defined by the arguments recvbuf, count and datatype; both have the same number of elements, with the same type. The routine is called by all group members using the same arguments for count, datatype, op, root and comm. Thus, all processes provide input buffers and output buffers of the same length, with elements of the same type. Each process can provide one element, or a sequence of elements, in which case the combine operation is executed element-wise on each entry of the sequence. For example, if the operation is MPI_MAX and the send buffer contains two elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT), then recvbuf(1) = global max(sendbuf(1)) and recvbuf(2) = global max(sendbuf(2)).

Section 5.9.2, lists the set of predefined operations provided by MPI. That section also enumerates the datatypes to which each operation can be applied.

In addition, users may define their own operations that can be overloaded to operate on several datatypes, either basic or derived. This is further explained in Section 5.9.5.

The operation op is always assumed to be associative. All predefined operations are also assumed to be commutative. Users may define operations that are assumed to be associative, but not commutative. The "canonical" evaluation order of a reduction is determined by the ranks of the processes in the group. However, the implementation can take advantage of associativity, or associativity and commutativity in order to change the order of evaluation. This may change the result of the reduction for operations that are not strictly associative and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI_REDUCE be implemented so that the same result be obtained whenever the function is applied on the same arguments, appearing in the same order. Note that this may prevent optimizations that take advantage of the physical location of processors. (End of advice to implementors.)

Advice to users. Some applications may not be able to ignore the non-associative nature of floating-point operations or may use user-defined operations (see Section 5.9.5) that require a special reduction order and cannot be treated as associative. Such applications should enforce the order of evaluation explicitly. For example, in the case of operations that require a strict left-to-right (or right-to-left) evaluation order, this could be done by gathering all operands at a single process (e.g., with MPI_GATHER), applying the reduction operation in the desired order (e.g., with MPI_REDUCE_LOCAL), and if needed, broadcast or scatter the result to the other processes (e.g., with MPI_BCAST). (End of advice to users.)

The datatype argument of MPI_REDUCE must be compatible with op. Predefined operators work only with the MPI types listed in Section 5.9.2 and Section 5.9.4. Furthermore, the datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to MPI_REDUCE in each process. MPI does not define which operations are used on which operands in this case. User-defined operators may operate on general, derived datatypes. In this case, each argument that the reduce operation is applied to is one element described by such a datatype, which may contain several basic values. This is further explained in Section 5.9.5.

Advice to users. Users should make no assumptions about how MPI_REDUCE is implemented. It is safest to ensure that the same function is passed to MPI_REDUCE by each process. (End of advice to users.)

Overlapping datatypes are permitted in "send" buffers. Overlapping datatypes in "receive" buffers are erroneous and may give unpredictable results.

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at the root. In such a case, the input data is taken at the root from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Only send buffer arguments are significant in group B and only receive buffer arguments are significant at the root.

5.9.2 Predefined Reduction Operations

The following predefined operations are supplied for MPI_REDUCE and related functions MPI_ALLREDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, and MPI_EXSCAN. These operations are invoked by placing the following in op.

,	Name	Meaning
1 1 2 3 3 4 5 5 6 7 8	MPI_MAX MPI_MIN MPI_SUM MPI_PROD MPI_LAND MPI_BAND MPI_BOR MPI_LOR MPI_BOR MPI_LXOR MPI_BXOR MPI_BXOR MPI_MAXLOC	maximum minimum sum product logical and bit-wise and logical or bit-wise or logical exclusive or (xor) bit-wise exclusive or (xor) max value and location
J	MPI_MINLOC	min value and location

The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately in Section 5.9.4. For the other predefined operations, we enumerate below the allowed combinations of op and datatype arguments. First, define groups of MPI basic datatypes in the following way.

 22

	27	C integer:	MPI_INT, MPI_LONG, MPI_SHORT,
	28		MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
	29		MPI_UNSIGNED_LONG,
	30		MPI_LONG_LONG_INT,
	31		MPI_LONG_LONG (as synonym),
	32		MPI_UNSIGNED_LONG_LONG,
	33		MPI_SIGNED_CHAR,
	34		MPI_UNSIGNED_CHAR,
	35		MPI_INT8_T, MPI_INT16_T,
	36	Fortran integer:	MPI_INT32_T, MPI_INT64_T,
	37		MPI_UINT8_T, MPI_UINT16_T,
	38		MPI_UINT32_T, MPI_UINT64_T
ticket265.	39		MPI_INTEGER, MPI_AINT,
	40		MPI_COUNT, MPI_OFFSET,
	41		and handles returned from
	42		MPI_TYPE_CREATE_F90_INTEGER,
	43		and if available: MPI_INTEGER1,
	44		MPI_INTEGER2, MPI_INTEGER4,
			MPI_INTEGER8, MPI_INTEGER16
	45	Floating point:	MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
	46		MPI_DOUBLE_PRECISION
	47		MPI_LONG_DOUBLE

and handles returned from

47

```
MPI_TYPE_CREATE_F90_REAL,
                                        and if available: MPI_REAL2,
                                        MPI_REAL4, MPI_REAL8, MPI_REAL16
  Logical:
                                        MPI_LOGICAL, MPI_C_BOOL
  Complex:
                                        MPI_COMPLEX,
                                        MPI_C_FLOAT_COMPLEX.
                                        MPI_C_DOUBLE_COMPLEX,
                                        MPI_C_LONG_DOUBLE_COMPLEX,
                                        and handles returned from
                                        MPI_TYPE_CREATE_F90_COMPLEX,
                                        and if available: MPI_DOUBLE_COMPLEX,
                                        MPI_COMPLEX4, MPI_COMPLEX8,
                                                                                       12
                                        MPI_COMPLEX16, MPI_COMPLEX32
                                                                                       13
                                        MPI_BYTE
  Byte:
                                                                                       14
    Now, the valid datatypes for each option is specified below.
                                                                                       15
                                                                                       16
                                        Allowed Types
  Op
                                                                                       18
                                                                                       19
  MPI_MAX, MPI_MIN
                                        C integer, Fortran integer, Floating point
                                                                                       20
  MPI_SUM, MPI_PROD
                                        C integer, Fortran integer, Floating point, Complex
                                                                                       21
  MPI_LAND, MPI_LOR, MPI_LXOR
                                        C integer, Logical
                                                                                       22
  MPI_BAND, MPI_BOR, MPI_BXOR
                                        C integer, Fortran integer, Byte
                                                                                       23
    The following examples use intracommunicators.
                                                                                       24
                                                                                       25
Example 5.15
    A routine that computes the dot product of two vectors that are distributed across a
                                                                                       27
group of processes and returns the answer at node zero.
                                                                                       28
                                                                                       29
SUBROUTINE PAR_BLAS1(m, a, b, c, comm)
                                                                                       30
REAL a(m), b(m)
                       ! local slice of array
                                                                                       31
                        ! result (at node zero)
REAL c
REAL sum
                                                                                       33
INTEGER m, comm, i, ierr
                                                                                       34
                                                                                       35
! local sum
                                                                                       36
sum = 0.0
                                                                                       37
DO i = 1, m
                                                                                       38
   sum = sum + a(i)*b(i)
END DO
! global sum
                                                                                       42
CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)
                                                                                       43
RETURN
```

Example 5.16

A routine that computes the product of a vector and an array that are distributed across a group of processes and returns the answer at node zero.

```
1
     SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
2
     REAL a(m), b(m,n)
                            ! local slice of array
3
     REAL c(n)
                            ! result
4
     REAL sum(n)
5
     INTEGER n, comm, i, j, ierr
6
7
     ! local sum
8
     DO j = 1, n
9
       sum(j) = 0.0
10
       DO i = 1, m
11
         sum(j) = sum(j) + a(i)*b(i,j)
12
       END DO
13
     END DO
14
15
     ! global sum
16
     CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)
17
18
     ! return result at node zero (and garbage at the other nodes)
19
     RETURN
```

5.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction operations. MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER (which represent printable characters) cannot be used in reduction operations. In a heterogeneous environment, MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER will be translated so as to preserve the printable character, whereas MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR will be translated so as to preserve the integer value.

Advice to users. The types MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER are intended for characters, and so will be translated to preserve the printable representation, rather than the integer value, if sent between machines with different character codes. The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in C if the integer value should be preserved. (*End of advice to users*.)

5.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One application of these is to compute a global minimum (maximum) and the rank of the process containing this value.

The operation that defines MPI_MAXLOC is:

$$\left(\begin{array}{c} u\\i \end{array}\right) \circ \left(\begin{array}{c} v\\j \end{array}\right) = \left(\begin{array}{c} w\\k \end{array}\right)$$

where

 $w = \max(u, v)$

and

$$k = \begin{cases} i & \text{if } u > v \\ \min(i, j) & \text{if } u = v \\ j & \text{if } u < v \end{cases}$$

MPI_MINLOC is defined similarly:

$$\left(\begin{array}{c} u\\i\end{array}\right)\circ\left(\begin{array}{c} v\\j\end{array}\right)=\left(\begin{array}{c} w\\k\end{array}\right)$$

where

$$w = \min(u, v)$$

and

$$k = \begin{cases} i & \text{if } u < v \\ \min(i, j) & \text{if } u = v \\ j & \text{if } u > v \end{cases}$$

Both operations are associative and commutative. Note that if MPI_MAXLOC is applied to reduce a sequence of pairs $(u_0,0),(u_1,1),\ldots,(u_{n-1},n-1)$, then the value returned is (u,r), where $u=\max_i u_i$ and r is the index of the first global maximum in the sequence. Thus, if each process supplies a value and its rank within the group, then a reduce operation with $\mathsf{op}=\mathsf{MPI}_\mathsf{MAXLOC}$ will return the maximum value and the rank of the first process with that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More generally, MPI_MINLOC computes a lexicographic minimum, where elements are ordered according to the first component of each pair, and ties are resolved according to the second component.

The reduce operation is defined to operate on arguments that consist of a pair: value and index. For both Fortran and C, types are provided to describe the pair. The potentially mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented, for Fortran, by having the MPI-provided type consist of a pair of the same type as value, and coercing the index to this type also. In C, the MPI-provided pair type has distinct types and the index is an int.

In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide a datatype argument that represents a pair (value and index). MPI provides nine such predefined datatypes. The operations MPI_MAXLOC and MPI_MINLOC can be used with each of the following datatypes.

Fortran:
Name
Description
MPI_2REAL
pair of REALs
MPI_2DOUBLE_PRECISION
pair of DOUBLE PRECISION variables
MPI_2INTEGER
pair of INTEGERs

C:

Name Description
MPI_FLOAT_INT float and int

```
1
       MPI_DOUBLE_INT
                                              double and int
2
                                              long and int
       MPI_LONG_INT
       MPI_2INT
                                              pair of int
4
       MPI_SHORT_INT
                                              short and int
       MPI_LONG_DOUBLE_INT
                                              long double and int
5
6
         The datatype MPI_2REAL is as if defined by the following (see Section 4.1).
7
8
     MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)
9
10
          Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.
11
         The datatype MPI_FLOAT_INT is as if defined by the following sequence of instructions.
12
     type[0] = MPI_FLOAT
13
     type[1] = MPI_INT
14
     disp[0] = 0
15
     disp[1] = sizeof(float)
16
     block[0] = 1
17
     block[1] = 1
     MPI_TYPE_CREATE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)
19
20
     Similar statements apply for MPI_LONG_INT and MPI_DOUBLE_INT.
21
         The following examples use intracommunicators.
22
23
     Example 5.17
^{24}
         Each process has an array of 30 doubles, in C. For each of the 30 locations, compute
25
     the value and rank of the process containing the largest value.
26
27
28
          /* each process has an array of 30 double: ain[30]
29
           */
30
          double ain[30], aout[30];
31
          int ind[30];
          struct {
33
              double val;
34
              int
                     rank;
35
          } in[30], out[30];
36
          int i, myrank, root;
37
38
          MPI_Comm_rank(comm, &myrank);
          for (i=0; i<30; ++i) {
              in[i].val = ain[i];
41
              in[i].rank = myrank;
42
43
          MPI_Reduce(in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm);
44
          /* At this point, the answer resides on process root
45
           */
          if (myrank == root) {
47
              /* read ranks out
               */
```

```
for (i=0; i<30; ++i) {
                                                                                     2
             aout[i] = out[i].val;
             ind[i] = out[i].rank;
        }
    }
Example 5.18
    Same example, in Fortran.
                                                                                     11
    ! each process has an array of 30 double: ain(30)
                                                                                     12
                                                                                     13
    DOUBLE PRECISION ain(30), aout(30)
                                                                                     14
    INTEGER ind(30)
                                                                                     15
    DOUBLE PRECISION in(2,30), out(2,30)
                                                                                     16
    INTEGER i, myrank, root, ierr
                                                                                     18
    CALL MPI_COMM_RANK(comm, myrank, ierr)
                                                                                     19
    DO I=1, 30
                                                                                     20
        in(1,i) = ain(i)
                                                                                     21
        in(2,i) = myrank
                              ! myrank is coerced to a double
                                                                                     22
    END DO
                                                                                     23
    CALL MPI_REDUCE(in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,
                                                                    comm, ierr)
                                                                                     26
    ! At this point, the answer resides on process root
                                                                                     27
                                                                                     28
    IF (myrank .EQ. root) THEN
                                                                                     29
        ! read ranks out
                                                                                     30
        DO I = 1, 30
            aout(i) = out(1,i)
             ind(i) = out(2,i) ! rank is coerced back to an integer
        END DO
                                                                                     34
    END IF
                                                                                     35
                                                                                     36
                                                                                     37
Example 5.19
    Each process has a non-empty array of values. Find the minimum global value, the
rank of the process that holds it and its index on this process.
#define LEN
                1000
                                                                                     42
float val[LEN];
                       /* local array of values */
                                                                                     43
                        /* local number of values */
                                                                                     44
int count;
int myrank, minrank, minindex;
                                                                                     45
                                                                                     46
float minval;
                                                                                     47
struct {
```

```
1
          float value;
2
          int
                 index;
3
     } in, out;
5
          /* local minloc */
6
     in.value = val[0];
7
     in.index = 0;
8
     for (i=1; i < count; i++)
9
          if (in.value > val[i]) {
10
              in.value = val[i];
11
              in.index = i;
12
          }
13
14
          /* global minloc */
15
     MPI_Comm_rank(comm, &myrank);
16
     in.index = myrank*LEN + in.index;
17
     MPI_Reduce( &in, &out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm );
18
          /* At this point, the answer resides on process root
19
           */
20
     if (myrank == root) {
21
          /* read answer out
22
           */
23
          minval = out.value;
24
          minrank = out.index / LEN;
          minindex = out.index % LEN;
26
     }
27
                        The definition of MPI_MINLOC and MPI_MAXLOC given here has the
           Rationale.
28
           advantage that it does not require any special-case handling of these two operations:
29
           they are handled like any other reduce operation. A programmer can provide his or
30
           her own definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage
31
           is that values and indices have to be first interleaved, and that indices and values have
           to be coerced to the same type, in Fortran. (End of rationale.)
33
34
35
     5.9.5 User-Defined Reduction Operations
36
37
38
     MPI_OP_CREATE(function, commute, op)
39
       IN
                 function
                                             user defined function (function)
40
41
       IN
                                             true if commutative; false otherwise.
                 commute
42
       OUT
                                             operation (handle)
                 op
43
44
     int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)
45
46
     MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)
47
          EXTERNAL FUNCTION
          LOGICAL COMMUTE
```

INTEGER OP, IERROR

```
{void MPI::Op::Init(MPI::User_function *function, bool commute)(binding deprecated, see Section 15.2)}
```

MPI_OP_CREATE binds a user-defined reduction operation to an op handle that can subsequently be used in MPI_REDUCE, MPI_ALLREDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, and MPI_EXSCAN. The user-defined operation is assumed to be associative. If commute = true, then the operation should be both commutative and associative. If commute = false, then the order of operands is fixed and is defined to be in ascending, process rank order, beginning with process zero. The order of evaluation can be changed, talking advantage of the associativity of the operation. If commute = true then the order of evaluation can be changed, taking advantage of commutativity and associativity.

The argument function is the user-defined function, which must have the following four arguments: invec, inoutvec, len and datatype.

```
The ISO C prototype for the function is the following.

typedef void MPI_User_function(void* invec, void* inoutvec, int *len,

MPI_Datatype *datatype);
```

```
The Fortran declaration of the user-defined function appears below.

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE
```

```
The C++ declaration of the user-defined function appears below. {typedef void MPI::User_function(const void* invec, void* inoutvec, int len, const Datatype& datatype); (binding deprecated, see Section 15.2)}
```

The datatype argument is a handle to the data type that was passed into the call to MPI_REDUCE. The user reduce function should be written such that the following holds: Let u[0], ..., u[len-1] be the len elements in the communication buffer described by the arguments invec, len and datatype when the function is invoked; let v[0], ..., v[len-1] be len elements in the communication buffer described by the arguments inoutvec, len and datatype when the function is invoked; let w[0], ..., w[len-1] be len elements in the communication buffer described by the arguments inoutvec, len and datatype when the function returns; then w[i] = u[i] \circ v[i], for i=0, ..., len-1, where \circ is the reduce operation that the function computes.

Informally, we can think of invec and inoutvec as arrays of len elements that function is combining. The result of the reduction over-writes values in inoutvec, hence the name. Each invocation of the function results in the pointwise evaluation of the reduce operator on len elements: i.e., the function returns in inoutvec[i] the value invec[i] \circ inoutvec[i], for $i = 0, \ldots, count - 1$, where \circ is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE to avoid calling the function for each element in the input buffer. Rather, the system can choose to apply the function to chunks of input. In C, it is passed in as a reference for reasons of compatibility with Fortran.

By internally comparing the value of the datatype argument to known, global handles, it is possible to overload the use of a single user-defined function for several, different

4

5 6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23 24

26 27

28

29

30

31

32

33

34

35

36

37

38

39

41

42

43 44

45

46

47

```
data types. (End of rationale.)
```

1 2

> General datatypes may be passed to the user function. However, use of datatypes that are not contiguous is likely to lead to inefficiencies.

> No MPI communication function may be called inside the user function. MPI_ABORT may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that are overloaded: the datatype argument is used to select the right execution path at each invocation, according to the types of the operands. The user-defined reduce function cannot "decode" the datatype argument that it is passed, and cannot identify, by itself, the correspondence between the datatype handles and the datatype they represent. This correspondence was established when the datatypes were created. Before the library is used, a library initialization preamble must be executed. This preamble code will define the datatypes that are used by the library, and store handles to these datatypes in global, static variables that are shared by the user code and the library code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using the Fortran calling conventions and will pass a Fortran-type datatype argument; the C version will use C calling convention and the C representation of a datatype handle. Users who plan to mix languages should define their reduction functions accordingly. (End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation of MPI_REDUCE not supporting the "in place" option.

```
MPI_Comm_size(comm, &groupsize);
MPI_Comm_rank(comm, &rank);
if (rank > 0) {
    MPI_Recv(tempbuf, count, datatype, rank-1,...);
    User_reduce(tempbuf, sendbuf, count, datatype);
}
if (rank < groupsize-1) {
    MPI_Send(sendbuf, count, datatype, rank+1, ...);
}
/* answer now resides in process groupsize-1 ... now send to root
 */
if (rank == root) {
    MPI_Irecv(recvbuf, count, datatype, groupsize-1,..., &req);
if (rank == groupsize-1) {
    MPI_Send(sendbuf, count, datatype, root, ...);
if (rank == root) {
    MPI_Wait(&req, &status);
}
```

5

6 7

9

10

11

12 13 14

15 16

18

19

20

21 22

23

26

27

28

29 30

31

33

41

43 44

45

46

47

The reduction computation proceeds, sequentially, from process 0 to process groupsize-1. This order is chosen so as to respect the order of a possibly noncommutative operator defined by the function User_reduce(). A more efficient implementation is achieved by taking advantage of associativity and using a logarithmic tree reduction. Commutativity can be used to advantage, for those cases in which the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary buffer required can be reduced, and communication can be pipelined with computation, by transferring and reducing the elements in chunks of size len <count.

The predefined reduce operations can be implemented as a library of user-defined operations. However, better performance might be achieved if MPI_REDUCE handles these functions as a special case. (End of advice to implementors.)

```
MPI_OP_FREE(op)
 INOUT
                                     operation (handle)
           op
int MPI_op_free(MPI_Op *op)
MPI_OP_FREE(OP, IERROR)
    INTEGER OP, IERROR
{void MPI::Op::Free()(binding deprecated, see Section 15.2)}
```

Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.

Example of User-defined Reduce

It is time for an example of user-defined reduction. The example in this section uses an intracommunicator.

Example 5.20 Compute the product of an array of complex numbers, in C.

```
32
typedef struct {
    double real, imag;
                                                                                    34
} Complex;
                                                                                    35
                                                                                    36
/* the user-defined function
                                                                                    37
*/
void myProd(Complex *in, Complex *inout, int *len, MPI_Datatype *dptr)
                                                                                    38
                                                                                    39
{
    int i;
    Complex c;
                                                                                    42
    for (i=0; i< *len; ++i) {
        c.real = inout->real*in->real -
                    inout->imag*in->imag;
        c.imag = inout->real*in->imag +
                    inout->imag*in->real;
        *inout = c;
```

```
1
               in++; inout++;
2
          }
3
     }
4
5
      /* and, to call it...
6
      */
7
8
9
          /* each process has an array of 100 Complexes
10
           */
11
          Complex a[100], answer[100];
12
          MPI_Op myOp;
13
          MPI_Datatype ctype;
14
15
          /* explain to MPI how type Complex is defined
16
           */
17
          MPI_Type_contiguous(2, MPI_DOUBLE, &ctype);
18
          MPI_Type_commit(&ctype);
19
          /* create the complex-product user-op
20
21
          MPI_Op_create( myProd, 1, &myOp );
22
23
          MPI_Reduce(a, answer, 100, ctype, myOp, root, comm);
24
          /* At this point, the answer, which consists of 100 Complexes,
26
           * resides on process root
27
           */
28
29
      5.9.6 All-Reduce
30
      MPI includes a variant of the reduce operations where the result is returned to all processes
31
      in a group. MPI requires that all processes from the same group participating in these
32
      operations receive identical results.
33
34
35
      MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)
36
       IN
                 sendbuf
                                               starting address of send buffer (choice)
37
38
       OUT
                 recvbuf
                                              starting address of receive buffer (choice)
39
       IN
                 count
                                               number of elements in send buffer (non-negative inte-
40
                                              ger)
41
       IN
                                               data type of elements of send buffer (handle)
                 datatype
42
43
       IN
                                              operation (handle)
                 op
44
       IN
                 comm
                                               communicator (handle)
45
46
```

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,

13 14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30 31

33

34

35

36

37

38

42

43

44

46 ticket0.

ticket0.

If comm is an intracommunicator, MPI_ALLREDUCE behaves the same as MPI_REDUCE except that the result appears in the receive buffer of all the group members.

Advice to implementors. The all-reduce operations can be implemented as a reduce, followed by a broadcast. However, a direct implementation can lead to better performance. (End of advice to implementors.)

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all processes. In this case, the input data is taken at each process from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided by processes in group A is stored at each process in group B, and vice versa. Both groups should provide count and datatype arguments that specify the same type signature.

The following example uses an intracommunicator.

Example 5.21

A routine that computes the product of a vector and an array that are distributed across a group of processes and returns the answer at all nodes (see also Example 5.16).

```
SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n)
                     ! local slice of array
REAL c(n)
                     ! result
REAL sum(n)
INTEGER n, comm, i, j, ierr
! local sum
DO j=1, n
  sum(j) = 0.0
  DO i = 1, m
    sum(j) = sum(j) + a(i)*b(i,j)
  END DO
END DO
! global sum
CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)
! return result at all nodes
RETURN
```

5.9.7 Process-[I]Local [r]Reduction

The functions in this section are of importance to library implementors who may want to implement special reduction patterns that are otherwise not easily covered by the standard

```
1
     MPI operations.
2
          The following function applies a reduction operator to local arguments.
3
4
     MPI_REDUCE_LOCAL( inbuf, inoutbuf, count, datatype, op)
5
6
       IN
                 inbuf
                                              input buffer (choice)
7
       INOUT
                 inoutbuf
                                              combined input and output buffer (choice)
8
       IN
                 count
                                              number of elements in inbuf and inoutbuf buffers (non-
9
                                              negative integer)
10
11
       IN
                 datatype
                                              data type of elements of inbuf and inoutbuf buffers
12
                                              (handle)
13
       IN
                 op
                                              operation (handle)
14
15
     int MPI_Reduce_local(void* inbuf, void* inoutbuf, int count,
16
                     MPI_Datatype datatype, MPI_Op op)
17
18
     MPI_REDUCE_LOCAL(INBUF, INOUBUF, COUNT, DATATYPE, OP, IERROR)
19
          <type> INBUF(*), INOUTBUF(*)
20
          INTEGER COUNT, DATATYPE, OP, IERROR
21
     {void MPI::Op::Reduce_local(const void* inbuf, void* inoutbuf, int count,
22
                     const MPI::Datatype& datatype) const(binding deprecated, see
23
                     Section 15.2) }
24
25
          The function applies the operation given by op element-wise to the elements of inbuf
26
     and inoutbuf with the result stored element-wise in inoutbuf, as explained for user-defined
27
     operations in Section 5.9.5. Both inbuf and inoutbuf (input as well as result) have the
28
     same number of elements given by count and the same datatype given by datatype. The
29
     MPI_IN_PLACE option is not allowed.
30
          Reduction operations can be queried for their commutativity.
31
32
     MPI_OP_COMMUTATIVE( op, commute)
33
34
       IN
                                              operation (handle)
                 op
35
       OUT
                 commute
                                              true if op is commutative, false otherwise (logical)
36
37
     int MPI_Op_commutative(MPI_Op op, int *commute)
38
39
     MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
40
          LOGICAL COMMUTE
41
          INTEGER OP, IERROR
42
     {bool MPI::Op::Is_commutative() const(binding deprecated, see Section 15.2)}
43
```

5.10 Reduce-Scatter

MPI includes variants of the reduce operations where the result is scattered to all processes in a group on return. One variant scatters equal-sized blocks to all processes, while another variant scatters blocks that may vary in size for each process.

5.10.1 MPI_REDUCE_SCATTER_BLOCK

MPI_REDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm)

IN	sendbuf	starting address of send buffer (choice)
OUT	recvbuf	starting address of receive buffer (choice)
IN	recvcount	element count per block (non-negative integer)
IN	datatype	data type of elements of send and receive buffers (handle) $$
IN	ор	operation (handle)
IN	comm	communicator (handle)

```
MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM, IERROR)
```

```
<type> SENDBUF(*), RECVBUF(*)
INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR
```

If comm is an intracommunicator, MPI_REDUCE_SCATTER_BLOCK first performs a global, element-wise reduction on vectors of count = n*recvcount elements in the send buffers defined by sendbuf, count and datatype, using the operation op, where n is the number of processes in the group of comm. The routine is called by all group members using the same arguments for recvcount, datatype, op and comm. The resulting vector is treated as n consecutive blocks of recvcount elements that are scattered to the processes of the group. The i-th block is sent to process i and stored in the receive buffer defined by recvbuf, recvcount, and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER_BLOCK routine is functionally equivalent to: an MPI_REDUCE collective operation with count equal to recvcount*n, followed by an MPI_SCATTER with sendcount equal to recvcount. However, a direct implementation may run faster. (End of advice to implementors.)

The "in place" option for intracommunictors is specified by passing MPI_IN_PLACE in the sendbuf argument on *all* processes. In this case, the input data is taken from the receive buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided by processes in one group (group A) is scattered among processes in the other group (group B) and vice versa. Within each group, all processes provide the same value for the recvount argument, and provide input vectors of $count = n^*recvcount$ elements stored in the send buffers, where n is the size of the group. The number of elements count must be the same for the two groups. The resulting vector from the other group is scattered in blocks of recvcount elements among the processes in the group.

7 8 9

10

11

1

2

3

4

5

6

The last restriction is needed so that the length of the send buffer of one group can be determined by the local recvount argument of the other group. Otherwise, a communication is needed to figure out how many elements are reduced. (End of rationale.)

12 13 14

15

16

17

5.10.2 MPI_REDUCE_SCATTER

sendbuf

MPI_REDUCE_SCATTER extends the functionality of MPI_REDUCE_SCATTER_BLOCK such that the scattered blocks can vary in size. Block sizes are determined by the recvcounts array, such that the i-th block contains recvcounts[i] elements.

18 19 20

21

22

23

24

25

26

27

28

29 30

31

32 33

34

35 36

37

38

39 40

41

42

43

44

4546

47

48

IN

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)

```
starting address of send buffer (choice)
 OUT
           recvbuf
                                       starting address of receive buffer (choice)
 IN
                                       non-negative integer array (of length group size) spec-
           recvcounts
                                       ifying the number of elements of the result distributed
                                       to each process.
 IN
           datatype
                                       data type of elements of send and receive buffers (han-
                                       dle)
 IN
                                       operation (handle)
           op
 IN
                                       communicator (handle)
           comm
int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
               MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
               IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR
{void MPI::Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,
               int recvcounts[], const MPI::Datatype& datatype,
```

If comm is an intracommunicator, MPI_REDUCE_SCATTER first performs a global, element-wise reduction on vectors of $count = \sum_{i=0}^{n-1} recvcounts[i]$ elements in the send buffers defined by sendbuf, count and datatype, using the operation op, where n is the number of processes in the group of comm. The routine is called by all group members using the same arguments for recvcounts, datatype, op and comm. The resulting vector is treated as

const MPI::Op& op) const = O(binding deprecated, see Section 15.2) }

5.11. SCAN 187

n consecutive blocks where the number of elements of the i-th block is recvcounts[i]. The blocks are scattered to the processes of the group. The i-th block is sent to process i and stored in the receive buffer defined by recvbuf, recvcounts[i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally equivalent to: an MPI_REDUCE collective operation with count equal to the sum of recvcounts[i] followed by MPI_SCATTERV with sendcounts equal to recvcounts. However, a direct implementation may run faster. (End of advice to implementors.)

4

10

11

12

13

14

15

16

17

18

19

20 21

22

23

242526

27

28 29 30

33

34 35

36

37

38

39

41 42

43

44

45

46

47

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE in the sendbuf argument. In this case, the input data is taken from the receive buffer. It is not required to specify the "in place" option on all processes, since the processes for which recvcounts[i]==0 may not have allocated a receive buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided by processes in one group (group A) is scattered among processes in the other group (group B), and vice versa. Within each group, all processes provide the same recvcounts argument, and provide input vectors of count = $\sum_{i=0}^{n-1} \text{recvcounts}[i]$ elements stored in the send buffers, where n is the size of the group. The resulting vector from the other group is scattered in blocks of recvcounts[i] elements among the processes in the group. The number of elements count must be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send buffer can be determined by the sum of the local recvcounts entries. Otherwise, a communication is needed to figure out how many elements are reduced. (*End of rationale*.)

5.11 Scan

5.11.1 Inclusive Scan

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)

```
IN
           sendbuf
                                           starting address of send buffer (choice)
OUT
           recvbuf
                                           starting address of receive buffer (choice)
IN
           count
                                           number of elements in input buffer (non-negative in-
                                           teger)
IN
           datatype
                                           data type of elements of input buffer (handle)
IN
                                           operation (handle)
           op
IN
                                           communicator (handle)
           comm
```

If comm is an intracommunicator, MPI_SCAN is used to perform a prefix reduction on data distributed across the group. The operation returns, in the receive buffer of the process with rank i, the reduction of the values in the send buffers of processes with ranks 0,...,i (inclusive). The type of operations supported, their semantics, and the constraints on send and receive buffers are as for MPI_REDUCE.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE in the sendbuf argument. In this case, the input data is taken from the receive buffer, and replaced by the output data.

This operation is invalid for intercommunicators.

5.11.2 Exclusive Scan

MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN	sendbuf	starting address of send buffer (choice)
OUT	recvbuf	starting address of receive buffer (choice)
IN	count	number of elements in input buffer (non-negative integer) $$
IN	datatype	data type of elements of input buffer (handle)
IN	ор	operation (handle)
IN	comm	intracommunicator (handle)

```
MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, COMM, IERROR
```

If comm is an intracommunicator, MPI_EXSCAN is used to perform a prefix reduction on data distributed across the group. The value in recvbuf on the process with rank 0 is undefined, and recvbuf is not significant on process 0. The value in recvbuf on the process with rank 1 is defined as the value in sendbuf on the process with rank 0. For processes with rank i > 1, the operation returns, in the receive buffer of the process with rank i, the reduction of the values in the send buffers of processes with ranks $0, \ldots, i-1$ (inclusive). The type of operations supported, their semantics, and the constraints on send and receive buffers, are as for MPI_REDUCE.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE in the sendbuf argument. In this case, the input data is taken from the receive buffer, and 5.11. SCAN 189

replaced by the output data. The receive buffer on rank 0 is not changed by this operation. This operation is invalid for intercommunicators.

Rationale. The exclusive scan is more general than the inclusive scan. Any inclusive scan operation can be achieved by using the exclusive scan and then locally combining the local contribution. Note that for non-invertable operations such as MPI_MAX, the exclusive scan cannot be computed with the inclusive scan. (End of rationale.)

 $\frac{44}{45}$

5.11.3 Example using MPI_SCAN

The example in this section uses an intracommunicator.

Example 5.22

This example uses a user-defined operation to produce a *segmented scan*. A segmented scan takes, as input, a set of values and a set of logicals, and the logicals delineate the various segments of the scan. For example:

The operator that produces this effect is,

$$\left(\begin{array}{c} u\\i\end{array}\right)\circ\left(\begin{array}{c} v\\j\end{array}\right)=\left(\begin{array}{c} w\\j\end{array}\right),$$

where,

$$w = \begin{cases} u + v & \text{if } i = j \\ v & \text{if } i \neq j \end{cases}.$$

Note that this is a non-commutative operator. C code that implements it is given below.

10 11

ticket109.

35

36 37

38

39

40

41

42

43

44

45

46

47

48

Note that the inout argument to the user-defined function corresponds to the right-hand operand of the operator. When using this operator, we must be careful to specify that it is non-commutative, as in the following.

```
12
         int i, base;
13
                       a, answer;
         SegScanPair
14
         MPI_Op
                       myOp;
15
         MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};
16
         MPI_Aint
                       disp[2];
                       blocklen[2] = \{ 1, 1 \};
         int
18
         MPI_Datatype sspair;
19
20
         /* explain to MPI how type SegScanPair is defined
21
          */
22
         MPI_Get_address( a, disp);
23
         MPI_Get_address( a.log, disp+1);
24
         base = disp[0];
         for (i=0; i<2; ++i) disp[i] -= base;
26
         MPI_Type_create_struct( 2, blocklen, disp, type, &sspair );
27
         MPI_Type_commit( &sspair );
28
         /* create the segmented-scan user-op
29
          */
30
         MPI_Op_create(segScan, 0, &myOp);
31
         MPI_Scan( &a, &answer, 1, sspair, myOp, comm );
```

5.12 Nonblocking Collective Operations

As described in Section 3.7, performance of many applications can be improved by overlapping communication and computation, and many systems enable this. Nonblocking collective operations combine the potential benefits of nonblocking point-to-point operations, to exploit overlap and to avoid synchronization, with the optimized implementation and message scheduling provided by collective operations [27, 30]. One way of doing this would be to perform a blocking collective operation in a separate thread. An alternative mechanism that often leads to better performance (e.g., avoids context switching, scheduler overheads, and thread management) is to use nonblocking collective communication [28].

The nonblocking collective communication model is similar to the model used for nonblocking point-to-point communication. A nonblocking call initiates a collective operation, which must be completed in a separate completion call. Once initiated, the operation

may progress independently of any computation or other communication at participating processes. In this manner, nonblocking collective operations can mitigate possible synchronizing effects of collective operations by running them in the "background." In addition to enabling communication-computation overlap, nonblocking collective operations can perform collective operations on overlapping communicators, which would lead to deadlocks with blocking operations. Their semantic advantages can also be useful in combination with point-to-point communication.

As in the nonblocking point-to-point case, all calls are local and return immediately, irrespective of the status of other processes. The call initiates the operation, which indicates that the system may start to copy data out of the send buffer and into the receive buffer. Once initiated, all associated send buffers and buffers associated with input arguments (such as arrays of counts, displacements, or datatypes in the vector versions of the collectives) should not be modified, and all associated receive buffers should not be accessed, until the collective operation completes. The call returns a request handle, which must be passed to a completion call.

All completion calls (e.g., MPI_WAIT) described in Section 3.7.3 are supported for nonblocking collective operations. Similarly to the blocking case, nonblocking collective operations are considered to be complete when the local part of the operation is finished, i.e., for the caller, the semantics of the operation are guaranteed and all buffers can be safely accessed and modified. Completion does not indicate that other processes have completed or even started the operation (unless otherwise implied by the description of the operation). Completion of a particular nonblocking collective operation also does not indicate completion of any other posted nonblocking collective (or send-receive) operations, whether they are posted before or after the completed operation.

Advice to users. Users should be aware that implementations are allowed, but not required (with exception of MPI_IBARRIER), to synchronize processes during the completion of a nonblocking collective operation. (End of advice to users.)

Upon returning from a completion call in which a nonblocking collective operation completes, the MPI_ERROR field in the associated status object is set appropriately, see Section 3.2.5 on page 33. The values of the MPI_SOURCE and MPI_TAG fields are undefined. It is valid to mix different request types (i.e., any combination of collective requests, I/O requests, generalized requests, or point-to-point requests) in functions that enable multiple completions (e.g., MPI_WAITALL). It is erroneous to call MPI_REQUEST_FREE or MPI_CANCEL for a request associated with a nonblocking collective operation. Nonblocking collective requests are not persistent.

Rationale. Freeing an active nonblocking collective request could cause similar problems as discussed for point-to-point requests (see Section 3.7.3). Cancelling a request is not supported because the semantics of this operation are not well-defined. (End of rationale.)

Multiple nonblocking collective operations can be outstanding on a single communicator. If the nonblocking call causes some system resource to be exhausted, then it may fail and generate an MPI exception. Quality implementations of MPI should ensure that this happens only in pathological cases. That is, an MPI implementation should be able to support a large number of pending nonblocking operations.

Unlike point-to-point operations, nonblocking collective operations do not match with blocking collective operations, and collective operations do not have a tag argument. All processes must call collective operations (blocking and nonblocking) in the same order per communicator. In particular, once a process calls a collective operation, all other processes in the communicator must eventually call the same collective operation, and no other collective operation with the same communicator in between. This is consistent with the ordering rules for blocking collective operations in threaded environments.

Rationale. Matching blocking and nonblocking collective operations is not allowed because the implementation might use different communication algorithms for the two cases. Blocking collective operations may be optimized for minimal time to completion, while nonblocking collective operations may balance time to completion with CPU overhead and asynchronous progression.

The use of tags for collective operations can prevent certain hardware optimizations. (End of rationale.)

Advice to users. If program semantics require matching blocking and nonblocking collective operations, then a nonblocking collective operation can be initiated and immediately completed with a blocking wait to emulate blocking behavior. (End of advice to users.)

In terms of data movements, each nonblocking collective operation has the same effect as its blocking counterpart for intracommunicators and intercommunicators after completion. Likewise, upon completion, nonblocking collective reduction operations have the same effect as their blocking counterparts, and the same restrictions and recommendations on reduction orders apply.

The use of the "in place" option is allowed exactly as described for the corresponding blocking collective operations. When using the "in place" option, message buffers function as both send and receive buffers. Such buffers should not be modified or accessed until the operation completes.

Progression rules for nonblocking collective operations are similar to progression of nonblocking point-to-point operations, refer to Section 3.7.4.

Advice to implementors. Nonblocking collective operations can be implemented with local execution schedules [29] using nonblocking point-to-point communication and a reserved tag-space. (End of advice to implementors.)

5.12.1 Nonblocking Barrier Synchronization

```
39
40
```

```
MPI_IBARRIER(comm , request)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)

MPI_IBARRIER(COMM, REQUEST, IERROR)
```

4 5

6

7

9

10

11

12

13

14

1516

17 18 19

20 21 22

23

24 25

26

27

28

29

30

31

33

34

35 36

37

38

39

41 42

43 44

45

46 47

```
INTEGER COMM, REQUEST, IERROR
{MPI::Request MPI::Comm::Ibarrier() const = O(binding deprecated, see
              Section 15.2) }
```

MPI_IBARRIER is a nonblocking version of MPI_BARRIER. By calling MPI_IBARRIER, a process notifies that it has reached the barrier. The call returns immediately, independent of whether other processes have called MPI_IBARRIER. The usual barrier semantics are enforced at the corresponding completion operation (test or wait), which in the intracommunicator case will complete only after all other processes in the communicator have called MPI_IBARRIER. In the intercommunicator case, it will complete when all processes in the remote group have called MPI_IBARRIER.

Advice to users. A nonblocking barrier can be used to hide latency. Moving independent computations between the MPI_IBARRIER and the subsequent completion call can overlap the barrier latency and therefore shorten possible waiting times. The semantic properties are also useful when mixing collective operations and point-to-point messages. (End of advice to users.)

5.12.2 Nonblocking Broadcast

```
MPI_IBCAST(buffer, count, datatype, root, comm, request)
```

```
buffer
INOUT
                                          starting address of buffer (choice)
IN
           count
                                          number of entries in buffer (non-negative integer)
IN
                                          data type of buffer (handle)
           datatype
IN
           root
                                          rank of broadcast root (integer)
IN
           comm
                                          communicator (handle)
OUT
                                          communication request (handle)
           request
```

```
int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,
             MPI_Comm comm, MPI_Request *request)
```

```
MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
    <type> BUFFER(*)
```

INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

```
{MPI::Request MPI::Comm::Ibcast(void* buffer, int count,
              const MPI::Datatype& datatype, int root) const = O(binding
              deprecated, see Section 15.2) }
```

This call starts a nonblocking variant of MPI_BCAST (see Section 5.4).

Example using MPI_IBCAST

The example in this section uses an intracommunicator.

Example 5.23

```
1
          Start a broadcast of 100 ints from process 0 to every process in the group, perform some
2
     computation on independent data, and then complete the outstanding broadcast operation.
3
4
          MPI_Comm comm;
          int array1[100], array2[100];
5
6
          int root=0;
          MPI_Request req;
7
          MPI_Ibcast(array1, 100, MPI_INT, root, comm, &req);
9
          compute(array2, 100);
10
11
          MPI_Wait(&req, MPI_STATUS_IGNORE);
12
13
     5.12.3 Nonblocking Gather
14
15
16
     MPI_IGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
17
                     request)
18
       IN
                  sendbuf
                                              starting address of send buffer (choice)
19
       IN
20
                  sendcount
                                              number of elements in send buffer (non-negative inte-
21
                                              ger)
22
       IN
                  sendtype
                                              data type of send buffer elements (handle)
23
       OUT
                  recvbuf
                                              address of receive buffer (choice, significant only at
24
                                              root)
25
26
       IN
                                              number of elements for any single receive (non-negative
                  recvcount
27
                                              integer, significant only at root)
28
       IN
                                              data type of recv buffer elements (significant only at
                  recvtype
29
                                              root) (handle)
30
       IN
                                              rank of receiving process (integer)
                  root
31
32
       IN
                  comm
                                              communicator (handle)
33
       OUT
                                              communication request (handle)
                 request
34
35
     int MPI_Igather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
36
                     void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
37
                     MPI_Comm comm, MPI_Request *request)
38
     MPI_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
39
40
                     ROOT, COMM, REQUEST, IERROR)
41
          <type> SENDBUF(*), RECVBUF(*)
42
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,
43
          IERROR
44
     {MPI::Request MPI::Comm::Igather(const void* sendbuf, int sendcount, const
45
                     MPI::Datatype& sendtype, void* recvbuf, int recvcount,
46
                     const MPI::Datatype& recvtype, int root) const = O(binding
47
                     deprecated, see Section 15.2) }
```

39

41

42

43

45 46 47

44 ticket 269.

This call starts a nonblocking variant of MPI_GATHER (see Section 5.5). 2 MPI_IGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm, request) 6 IN sendbuf starting address of send buffer (choice) IN sendcount number of elements in send buffer (non-negative integer) IN sendtype data type of send buffer elements (handle) 10 11 OUT recvbuf address of receive buffer (choice, significant only at 12 root) 13 IN recvcounts non-negative integer array (of length group size) con-14 taining the number of elements that are received from 15 each process (significant only at root) 16 IN displs integer array (of length group size). Entry i specifies 17 the displacement relative to recvbuf at which to place 18 the incoming data from process i (significant only at 19 root) 20 21 IN data type of recv buffer elements (significant only at recvtype 22 root) (handle) 23 IN root rank of receiving process (integer) 24 IN comm communicator (handle) 25 26 OUT communication request (handle) request 27 28 int MPI_Igatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype, 29 void* recvbuf, int *recvcounts, int *displs, 30 MPI_Datatype recvtype, int root, MPI_Comm comm, 31 MPI_Request *request) MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, 33 RECVTYPE, ROOT, COMM, REQUEST, IERROR) 34 <type> SENDBUF(*), RECVBUF(*) 35 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT, 36 COMM, REQUEST, IERROR 37

```
{MPI::Request MPI::Comm::Igatherv(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype, void* recvbuf, const int recvcounts[], const int displs[], const MPI::Datatype& recvtype, int root) const = O(binding deprecated, see Section 15.2) }
```

This call starts a nonblocking variant of MPI_GATHERV (see Section 5.5).

```
1
                MPI_IGATHERW(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtypes, root,
          2
                                comm, request)
          3
                  IN
                             sendbuf
                                                          starting address of send buffer (choice)
                  IN
                             sendcount
                                                          number of elements in send buffer (non-negative inte-
          5
          6
          7
                  IN
                             sendtype
                                                          data type of send buffer elements (handle)
                  OUT
                             recvbuf
                                                          address of receive buffer (choice)
          9
                  IN
                                                          non-negative integer array (of length group size) con-
                             recvcounts
          10
                                                          taining the number of elements that are received from
          11
                                                          each process (signifiant only at root)
          12
          13
                  IN
                             displs
                                                          integer array (of length group size). Entry i specifies
          14
                                                          the displacement relative to recvbuf from which to take
          15
                                                          the incoming data from process i (significant only at
          16
                                                          root)
          17
                  IN
                                                          array of datatypes (of length group size). Entry i
                             recvtypes
          18
                                                          specifies the type of data received from process i (sig-
          19
                                                          nificant only at root) (array of handles)
          20
                  IN
                                                          rank of sending process (integer)
                             root
          21
         22
                  IN
                                                          communicator (handle)
                             comm
         23
                  OUT
                             request
                                                          communication request (handle)
          24
          25
                int MPI_Igatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype,
          26
                                void* recvbuf, int recvcounts[], int displs[],
         27
                                MPI_Datatype recvtypes[], int root, MPI_Comm comm,
          28
                                MPI_Request *request)
         29
          30
                MPI_IGATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
          31
                                RECVTYPES, ROOT, COMM, REQUEST, IERROR)
          32
                     <type> SENDBUF(*), RECVBUF(*)
          33
                    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
          34
                    ROOT, COMM, REQUEST, IERROR
ticket109. 36
                    This call starts a nonblocking variant of MPI_GATHERW (see Section 5.5).
          37
          38
          39
```

11

12

13

14

15 16

17

18

19 20

21 22

23

24

26

27

28

29

30

34

35

5.12.4 Nonblocking Scatter

```
MPI_ISCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
                 request)
  IN
             sendbuf
                                            address of send buffer (choice, significant only at root)
  IN
             sendcount
                                            number of elements sent to each process (non-negative
                                            integer, significant only at root)
  IN
             sendtype
                                            data type of send buffer elements (significant only at
                                            root) (handle)
  OUT
             recvbuf
                                            address of receive buffer (choice)
  IN
             recvcount
                                            number of elements in receive buffer (non-negative in-
                                            teger)
  IN
                                            data type of receive buffer elements (handle)
             recvtype
  IN
                                            rank of sending process (integer)
             root
  IN
             comm
                                            communicator (handle)
  OUT
             request
                                            communication request (handle)
```

MPI_ISCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, REQUEST, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,
IERROR

This call starts a nonblocking variant of MPI_SCATTER (see Section 5.6).

```
1
      MPI_ISCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
2
                     comm, request)
3
       IN
                  sendbuf
                                               address of send buffer (choice, significant only at root)
       IN
                  sendcounts
                                               non-negative integer array (of length group size) speci-
5
                                               fying the number of elements to send to each processor
6
7
       IN
                  displs
                                               integer array (of length group size). Entry i specifies
8
                                               the displacement (relative to sendbuf) from which to
9
                                               take the outgoing data to process i
10
       IN
                  sendtype
                                               data type of send buffer elements (handle)
11
       OUT
                  recvbuf
                                               address of receive buffer (choice)
12
13
       IN
                                               number of elements in receive buffer (non-negative in-
                  recvcount
14
                                               teger)
15
        IN
                  recvtype
                                               data type of receive buffer elements (handle)
16
       IN
                  root
                                               rank of sending process (integer)
17
18
        IN
                  comm
                                               communicator (handle)
19
       OUT
                                               communication request (handle)
                  request
20
21
      int MPI_Iscatterv(void* sendbuf, int *sendcounts, int *displs,
22
                     MPI_Datatype sendtype, void* recvbuf, int recvcount,
23
                     MPI_Datatype recvtype, int root, MPI_Comm comm,
24
                     MPI_Request *request)
25
26
     MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
27
                     RECVTYPE, ROOT, COMM, REQUEST, IERROR)
28
          <type> SENDBUF(*), RECVBUF(*)
29
          INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
30
          COMM, REQUEST, IERROR
31
      {MPI::Request MPI::Comm::Iscatterv(const void* sendbuf,
32
                     const int sendcounts[], const int displs[],
33
                     const MPI::Datatype& sendtype, void* recvbuf, int recvcount,
34
                     const MPI::Datatype& recvtype, int root) const = 0(binding)
35
                     deprecated, see Section 15.2) }
36
```

12

13 14

15

16

17

18

19

20 21

22

23

2425

26 27

28

29

30

31

34

35

36

39

ticket 269. This call starts a nonblocking variant of MPI_SCATTERV (see Section 5.6).

```
recvtype, root, comm, request)
IN
           sendbuf
                                           starting address of send buffer (choice, significant only
                                           at root)
IN
           sendcounts
                                           non-negative integer array (of length group size) speci-
                                           fying the number of elements to send to each processor
           displs
IN
                                           integer array (of length group size). Entry i specifies
                                           the displacement relative to sendbuf from which to
                                           take the outgoing data to process i
IN
           sendtypes
                                           array of datatypes (of length group size). Entry j
                                           specifies the type of data to send to process j (array
                                           of handles)
OUT
            recvbuf
                                           address of receive buffer (choice)
IN
                                           number of elements in receive buffer (non-negative in-
            recvcount
                                           teger)
IN
                                           data type of receive buffer elements (handle)
            recvtype
IN
            root
                                           rank of sending process (integer)
IN
                                           communicator (handle)
            comm
```

MPI_ISCATTERW(sendbuf, sendcounts, displs, sendtypes, recvbuf, recvcount,

communication request (handle)

OUT

request

This call starts a nonblocking variant of MPI_SCATTERW (see Section 5.6).

ticket109.

```
1
     5.12.5
             Nonblocking Gather-to-all
2
3
4
     MPI_IALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
5
                     request)
6
       IN
                  sendbuf
                                             starting address of send buffer (choice)
7
8
       IN
                  sendcount
                                             number of elements in send buffer (non-negative inte-
9
                                             ger)
10
       IN
                  sendtype
                                             data type of send buffer elements (handle)
11
       OUT
                  recvbuf
                                             address of receive buffer (choice)
12
       IN
                                             number of elements received from any process (non-
13
                  recvcount
14
                                             negative integer)
15
       IN
                  recvtype
                                             data type of receive buffer elements (handle)
16
       IN
                  comm
                                             communicator (handle)
17
       OUT
18
                 request
                                             communication request (handle)
19
20
     int MPI_Iallgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
21
                     void* recvbuf, int recvcount, MPI_Datatype recvtype,
22
                     MPI_Comm comm, MPI_Request *request)
23
     MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
24
                     COMM, REQUEST, IERROR)
25
          <type> SENDBUF(*), RECVBUF(*)
26
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR
27
28
     {MPI::Request MPI::Comm::Iallgather(const void* sendbuf, int sendcount,
29
                     const MPI::Datatype& sendtype, void* recvbuf, int recvcount,
30
                     const MPI::Datatype& recvtype) const = O(binding deprecated, see
31
                     Section 15.2) }
32
```

This call starts a nonblocking variant of MPI_ALLGATHER (see Section 5.7).

```
MPI_IALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm,
               request)
  IN
            sendbuf
                                        starting address of send buffer (choice)
  IN
            sendcount
                                        number of elements in send buffer (non-negative inte-
  IN
            sendtype
                                        data type of send buffer elements (handle)
  OUT
            recvbuf
                                        address of receive buffer (choice)
  IN
            recvcounts
                                        non-negative integer array (of length group size) con-
                                        taining the number of elements that are received from
                                        each process
                                                                                             12
  IN
            displs
                                                                                             13
                                        integer array (of length group size). Entry i specifies
                                                                                             14
                                        the displacement (relative to recvbuf) at which to place
                                                                                             15
                                         the incoming data from process i
                                                                                             16
  IN
            recvtype
                                        data type of receive buffer elements (handle)
                                                                                             17
  IN
                                        communicator (handle)
            comm
                                                                                             18
                                                                                             19
  OUT
                                        communication request (handle)
            request
                                                                                             20
                                                                                             21
int MPI_Iallgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
                                                                                             22
               void* recvbuf, int *recvcounts, int *displs,
                                                                                             23
               MPI_Datatype recvtype, MPI_Comm comm, MPI_Request* request)
                                                                                             24
MPI_IALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
               RECVTYPE, COMM, REQUEST, IERROR)
                                                                                             26
    <type> SENDBUF(*), RECVBUF(*)
                                                                                             27
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
                                                                                            28
    REQUEST, IERROR
                                                                                             29
                                                                                             30
{MPI::Request MPI::Comm::Iallgatherv(const void* sendbuf, int sendcount,
                                                                                             31
               const MPI::Datatype& sendtype, void* recvbuf,
               const int recvcounts[], const int displs[],
                                                                                             33
               const MPI::Datatype& recvtype) const = O(binding deprecated, see
                                                                                            34
               Section 15.2) }
                                                                                            35
    This call starts a nonblocking variant of MPI_ALLGATHERV (see Section 5.7).
                                                                                            зе ticket269.
```

37

39

ticket109.

```
1
      MPI_IALLGATHERW(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtypes,
2
                     comm, request)
3
        IN
                  sendbuf
                                               starting address of send buffer (choice)
        IN
                  sendcount
                                                number of elements in send buffer (non-negative inte-
5
6
7
        IN
                  sendtype
                                               data type of send buffer elements (handle)
        OUT
                   recvbuf
                                               address of receive buffer (choice)
9
        IN
                   recvcounts
                                               non-negative integer array (of length group size) con-
10
                                               taining the number of elements that are received from
11
                                               each process
12
13
        IN
                  displs
                                               integer array (of length group size). Entry i specifies
14
                                               the displacement (relative to recvbuf) at which to place
15
                                                the incoming data from process i
16
        IN
                                               array of datatypes (of length group size). Entry i
                   recvtypes
17
                                               specifies the type of data received from process i (ar-
18
                                                ray of handles)
19
        IN
                                               communicator (handle)
                  comm
20
21
        OUT
                                                communication request (handle)
                   request
22
23
      int MPI_Iallgatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype,
24
                      void* recvbuf, int recvcounts[], int displs[],
25
                     MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Request *request)
26
27
      MPI_IALLGATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
28
                     RECVTYPES, COMM, REQUEST, IERROR)
29
          <type> SENDBUF(*), RECVBUF(*)
30
          INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
31
          COMM, REQUEST, IERROR
          This call starts a nonblocking variant of MPI_ALLGATHERW (see Section 5.7).
35
36
37
38
39
```

 24

5.12.6 Nonblocking All-to-All Scatter/Gather

MPI_IALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request)

IN	sendbuf	starting address of send buffer (choice)
IN	sendcount	number of elements sent to each process (non-negative integer) $$
IN	sendtype	data type of send buffer elements (handle)
OUT	recvbuf	address of receive buffer (choice)
IN	recvcount	number of elements received from any process (non-negative integer)
IN	recvtype	data type of receive buffer elements (handle)
IN	comm	communicator (handle)
OUT	request	communication request (handle)

int MPI_Ialltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_IALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR) <type> SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

{MPI::Request MPI::Comm::Ialltoall(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype, void* recvbuf, int recvcount, const MPI::Datatype& recvtype) const = O(binding deprecated, see *Section* 15.2) }

This call starts a nonblocking variant of MPI_ALLTOALL (see Section 5.8).

```
1
     MPI_IALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
2
                      recvtype, comm, request)
3
       IN
                  sendbuf
                                               starting address of send buffer (choice)
       IN
                  sendcounts
                                               non-negative integer array (of length group size) speci-
5
                                               fying the number of elements to send to each processor
6
7
       IN
                  sdispls
                                               integer array (of length group size). Entry j specifies
                                               the displacement (relative to sendbuf) from which to
9
                                               take the outgoing data destined for process j
10
       IN
                  sendtype
                                               data type of send buffer elements (handle)
11
       OUT
                  recvbuf
                                               address of receive buffer (choice)
12
13
       IN
                  recvcounts
                                               non-negative integer array (of length group size) spec-
14
                                               ifying the number of elements that can be received
15
                                               from each processor
16
       IN
                  rdispls
                                               integer array (of length group size). Entry i specifies
17
                                               the displacement (relative to recvbuf) at which to place
18
                                               the incoming data from process i
19
       IN
                                               data type of receive buffer elements (handle)
                  recvtype
20
21
        IN
                                               communicator (handle)
                  comm
22
       OUT
                                               communication request (handle)
                  request
23
24
      int MPI_Ialltoallv(void* sendbuf, int *sendcounts, int *sdispls,
25
                     MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
26
                     int *rdispls, MPI_Datatype recvtype, MPI_Comm comm,
27
                     MPI_Request *request)
28
29
     MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
30
                     RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)
31
          <type> SENDBUF(*), RECVBUF(*)
32
          INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
33
          RECVTYPE, COMM, REQUEST, IERROR
34
      {MPI::Request MPI::Comm::Ialltoallv(const void* sendbuf,
35
                     const int sendcounts[], const int sdispls[],
36
                     const MPI::Datatype& sendtype, void* recvbuf,
37
                     const int recvcounts[], const int rdispls[],
38
                     const MPI::Datatype& recvtype) const = 0/binding deprecated, see
39
                      Section 15.2) }
41
```

This call starts a nonblocking variant of MPI_ALLTOALLV (see Section 5.8).

```
MPI_IALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls,
                                                                                               2
                recvtypes, comm, request)
  IN
            sendbuf
                                         starting address of send buffer (choice)
                                                                                               4
  IN
            sendcounts
                                         integer array (of length group size) specifying the num-
                                         ber of elements to send to each processor (array of
                                                                                               6
                                         non-negative integers)
                                                                                               7
  IN
            sdispls
                                         integer array (of length group size). Entry j specifies
                                                                                               9
                                         the displacement in bytes (relative to sendbuf) from
                                                                                               10
                                          which to take the outgoing data destined for process
                                                                                               11
                                          j (array of integers)
                                                                                               12
  IN
            sendtypes
                                         array of datatypes (of length group size). Entry j
                                                                                               13
                                         specifies the type of data to send to process j (array
                                                                                               14
                                         of handles)
                                                                                               15
  OUT
            recvbuf
                                         address of receive buffer (choice)
                                                                                               16
                                                                                               17
  IN
            recvcounts
                                         integer array (of length group size) specifying the num-
                                                                                               18
                                         ber of elements that can be received from each proces-
                                                                                               19
                                         sor (array of non-negative integers)
                                                                                               20
  IN
            rdispls
                                         integer array (of length group size). Entry i specifies
                                                                                               21
                                          the displacement in bytes (relative to recvbuf) at which
                                                                                               22
                                         to place the incoming data from process i (array of
                                                                                               23
                                         integers)
                                                                                               24
  IN
            recvtypes
                                         array of datatypes (of length group size). Entry i
                                                                                               25
                                         specifies the type of data received from process i (ar-
                                                                                               26
                                         ray of handles)
                                                                                               27
                                                                                               28
  IN
            comm
                                         communicator (handle)
                                                                                               29
  OUT
                                         communication request (handle)
            request
                                                                                               30
                                                                                               31
int MPI_Ialltoallw(void* sendbuf, int sendcounts[], int sdispls[],
               MPI_Datatype sendtypes[], void* recvbuf, int recvcounts[],
                                                                                               33
                int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm,
                                                                                               34
               MPI_Request *request)
                                                                                               35
                                                                                               36
MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
                                                                                               37
               RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)
                                                                                               38
    <type> SENDBUF(*), RECVBUF(*)
                                                                                               39
    INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
    RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR
                                                                                               41
{MPI::Request MPI::Comm::Ialltoallw(const void* sendbuf, const int
                                                                                               42
                sendcounts[], const int sdispls[], const MPI::Datatype
                                                                                               43
               sendtypes[], void* recvbuf, const int recvcounts[], const int
                                                                                               44
               rdispls[], const MPI::Datatype recvtypes[]) const = O(binding
                                                                                               45
                deprecated, see Section 15.2) }
                                                                                               46
                                                                                               47
    This call starts a nonblocking variant of MPI_ALLTOALLW (see Section 5.8).
```

address of receive buffer (choice, significant only at

OUT

1

2 3 4

5

6

7

9

10 11

12

13

14

15

16 17

18 19

20

21

22

23

24

25

26 27

28

29

30

31 32

33

34

35

36

37

38

39

41

42

43

5.12.7 Nonblocking Reduce

recvbuf

comm

```
MPI_IREDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, request)
 IN
             sendbuf
                                          address of send buffer (choice)
```

root) IN count number of elements in send buffer (non-negative inte-

IN datatype data type of elements of send buffer (handle) IN reduce operation (handle) op IN root rank of root process (integer) IN communicator (handle)

OUT request communication request (handle)

```
int MPI_Ireduce(void* sendbuf, void* recvbuf, int count,
             MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
             MPI_Request *request)
```

MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR)

```
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR
```

```
{MPI::Request MPI::Comm::Ireduce(const void* sendbuf, void* recvbuf,
             int count, const MPI::Datatype& datatype, const MPI::Op& op,
             int root) const = 0(binding deprecated, see Section 15.2) }
```

This call starts a nonblocking variant of MPI_REDUCE (see Section 5.9.1).

Advice to implementors. The implementation is explicitly allowed to use different algorithms for blocking and nonblocking reduction operations that might change the order of evaluation of the operations. However, as for MPI_REDUCE, it is strongly recommended that MPI_IREDUCE be implemented so that the same result be obtained whenever the function is applied on the same arguments, appearing in the same order. Note that this may prevent optimizations that take advantage of the physical location of processes. (End of advice to implementors.)

Advice to users. For operations which are not truly associative, the result delivered upon completion of the nonblocking reduction may not exactly equal the result delivered by the blocking reduction, even when specifying the same arguments in the same order. (End of advice to users.)

12 13

14

15 16

18

19 20

21

22

23

24

26

27 28

29 30

31

34 35 36

37

38

39

41

42

43

44

45

46 47

5.12.8 Nonblocking All-Reduce

IN

IN

OUT

op

comm

request

```
MPI_IALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, request)
 IN
           sendbuf
                                        starting address of send buffer (choice)
 OUT
           recvbuf
                                        starting address of receive buffer (choice)
                                        number of elements in send buffer (non-negative inte-
 IN
           count
 IN
                                        data type of elements of send buffer (handle)
           datatype
 IN
                                        operation (handle)
           op
 IN
           comm
                                        communicator (handle)
 OUT
                                        communication request (handle)
           request
int MPI_Iallreduce(void* sendbuf, void* recvbuf, int count,
               MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
               MPI_Request *request)
MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST,
               IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR
{MPI::Request MPI::Comm::Iallreduce(const void* sendbuf, void* recvbuf,
               int count, const MPI::Datatype& datatype, const MPI::Op& op)
               const = 0(binding deprecated, see Section 15.2) }
    This call starts a nonblocking variant of MPI_ALLREDUCE (see Section 5.9.6).
5.12.9 Nonblocking Reduce-Scatter with Equal Blocks
MPI_IREDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm, request)
 IN
           sendbuf
                                        starting address of send buffer (choice)
 OUT
           recvbuf
                                        starting address of receive buffer (choice)
 IN
           recvcount
                                        element count per block (non-negative integer)
 IN
           datatype
                                        data type of elements of send and receive buffers (han-
                                        dle)
```

operation (handle)

communicator (handle)

communication request (handle)

```
1
     int MPI_Ireduce_scatter_block(void* sendbuf, void* recvbuf, int recvcount,
2
                    MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
3
                    MPI_Request *request)
4
     MPI_IREDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
5
                    REQUEST, IERROR)
6
          <type> SENDBUF(*), RECVBUF(*)
7
          INTEGER RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR
8
9
     {MPI::Request MPI::Comm::Ireduce_scatter_block(const void* sendbuf,
10
                    void* recvbuf, int recvcount, const MPI::Datatype& datatype,
11
                    const MPI::Op& op) const = O(binding deprecated, see Section 15.2)}
12
         This call starts a nonblocking variant of MPI_REDUCE_SCATTER_BLOCK (see Sec-
13
     tion 5.10.1).
14
15
     5.12.10 Nonblocking Reduce-Scatter
16
17
18
19
     MPI_IREDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, request)
20
       IN
                sendbuf
                                            starting address of send buffer (choice)
21
       OUT
                recvbuf
                                            starting address of receive buffer (choice)
22
23
       IN
                 recvcounts
                                            non-negative integer array specifying the number of
24
                                            elements in result distributed to each process. Array
25
                                            must be identical on all calling processes.
26
       IN
                                            data type of elements of input buffer (handle)
                datatype
27
       IN
                                            operation (handle)
                 op
28
29
       IN
                comm
                                            communicator (handle)
30
       OUT
                 request
                                            communication request (handle)
31
32
     int MPI_Ireduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
33
                    MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
34
                    MPI_Request *request)
35
36
     MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
37
                    REQUEST, IERROR)
38
          <type> SENDBUF(*), RECVBUF(*)
39
          INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR
     {MPI::Request MPI::Comm::Ireduce_scatter(const void* sendbuf,
41
                    void* recvbuf, int recvcounts[],
42
                    const MPI::Datatype& datatype, const MPI::Op& op)
43
                    const = 0(binding deprecated, see Section 15.2)}
44
45
         This call starts a nonblocking variant of MPI_REDUCE_SCATTER (see Section 5.10.2).
```

5.12.11 Nonblocking Inclusive Scan

```
MPI_ISCAN(sendbuf, recvbuf, count, datatype, op, comm, request)
  IN
           sendbuf
                                         starting address of send buffer (choice)
  OUT
            recvbuf
                                         starting address of receive buffer (choice)
  IN
                                         number of elements in input buffer (non-negative in-
            count
                                                                                             10
  IN
                                         data type of elements of input buffer (handle)
           datatype
                                                                                             11
  IN
                                         operation (handle)
           op
                                                                                             12
                                                                                             13
  IN
                                         communicator (handle)
           comm
                                                                                             14
  OUT
                                         communication request (handle)
           request
                                                                                             15
                                                                                             16
int MPI_Iscan(void* sendbuf, void* recvbuf, int count,
                                                                                             17
               MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
                                                                                             18
               MPI_Request *request)
                                                                                             19
                                                                                             20
MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
                                                                                             21
    <type> SENDBUF(*), RECVBUF(*)
                                                                                             22
    INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR
                                                                                             23
{MPI::Request MPI::Intracomm::Iscan(const void* sendbuf, void* recvbuf,
                                                                                             24
               int count, const MPI::Datatype& datatype, const MPI::Op& op)
                                                                                             25
               const(binding deprecated, see Section 15.2) }
                                                                                             26
                                                                                             27
    This call starts a nonblocking variant of MPI_SCAN (see Section 5.11).
                                                                                             28
                                                                                             29
5.12.12 Nonblocking Exclusive Scan
                                                                                             30
                                                                                             31
MPI_IEXSCAN(sendbuf, recvbuf, count, datatype, op, comm, request)
                                                                                             34
  IN
           sendbuf
                                         starting address of send buffer (choice)
                                                                                             35
  OUT
            recybuf
                                         starting address of receive buffer (choice)
                                                                                             36
  IN
           count
                                         number of elements in input buffer (non-negative in-
                                                                                             37
                                         teger)
                                                                                             38
                                                                                             39
  IN
           datatype
                                         data type of elements of input buffer (handle)
  IN
            op
                                         operation (handle)
                                                                                             41
  IN
           comm
                                         intracommunicator (handle)
                                                                                             42
  OUT
           request
                                         communication request (handle)
                                                                                             43
                                                                                             44
                                                                                             45
int MPI_Iexscan(void* sendbuf, void* recvbuf, int count,
                                                                                             46
               MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
                                                                                             47
```

MPI_Request *request)

5.13 Correctness

A correct, portable program must invoke collective communications so that deadlock will not occur, whether collective communications are synchronizing or not. The following examples illustrate dangerous use of collective routines on intracommunicators.

Example 5.24

The following is erroneous.

```
switch(rank) {
   case 0:
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Bcast(buf2, count, type, 1, comm);
        break;
   case 1:
        MPI_Bcast(buf2, count, type, 1, comm);
        MPI_Bcast(buf1, count, type, 0, comm);
        break;
}
```

We assume that the group of comm is $\{0,1\}$. Two processes execute two broadcast operations in reverse order. If the operation is synchronizing then a deadlock will occur.

Collective operations must be executed in the same order at all members of the communication group.

Example 5.25

The following is erroneous.

```
switch(rank) {
   case 0:
        MPI_Bcast(buf1, count, type, 0, comm0);
        MPI_Bcast(buf2, count, type, 2, comm2);
        break;
   case 1:
        MPI_Bcast(buf1, count, type, 1, comm1);
        MPI_Bcast(buf2, count, type, 0, comm0);
        break;
   case 2:
        MPI_Bcast(buf1, count, type, 2, comm2);
```

Assume that the group of comm0 is $\{0,1\}$, of comm1 is $\{1,2\}$ and of comm2 is $\{2,0\}$. If the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast in comm2 completes only after the broadcast in comm0; the broadcast in comm0 completes only after the broadcast in comm1; and the broadcast in comm1 completes only after the broadcast in comm2. Thus, the code will deadlock.

Collective operations must be executed in an order so that no cyclic dependencies occur. Nonblocking collective operations can alleviate this issue.

Example 5.26

The following is erroneous.

```
switch(rank) {
    case 0:
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Send(buf2, count, type, 1, tag, comm);
        break;
    case 1:
        MPI_Recv(buf2, count, type, 0, tag, comm, status);
        MPI_Bcast(buf1, count, type, 0, comm);
        break;
}
```

Process zero executes a broadcast, followed by a blocking send operation. Process one first executes a blocking receive that matches the send, followed by broadcast call that matches the broadcast of process zero. This program may deadlock. The broadcast call on process zero may block until process one executes the matching broadcast call, so that the send is not executed. Process one will definitely block on the receive and so, in this case, never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations should be such, so that even if the collective operations and the point-to-point operations are synchronizing, no deadlock will occur.

Example 5.27

An unsafe, non-deterministic program.

```
39
switch(rank) {
    case 0:
                                                                                   41
        MPI_Bcast(buf1, count, type, 0, comm);
                                                                                   42
        MPI_Send(buf2, count, type, 1, tag, comm);
        break;
                                                                                   43
    case 1:
                                                                                   44
        MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
                                                                                   45
                                                                                    46
        MPI_Bcast(buf1, count, type, 0, comm);
                                                                                    47
        MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
        break;
```


Figure 5.12: A race condition causes non-deterministic matching of sends and receives. One cannot rely on synchronization from a broadcast to make the program deterministic.

```
case 2:
    MPI_Send(buf2, count, type, 1, tag, comm);
    MPI_Bcast(buf1, count, type, 0, comm);
    break;
}
```

All three processes participate in a broadcast. Process 0 sends a message to process 1 after the broadcast, and process 2 sends a message to process 1 before the broadcast. Process 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives, are illustrated in Figure 5.12. Note that the second execution has the peculiar effect that a send executed after the broadcast is received at another node before the broadcast. This example illustrates the fact that one should not rely on collective communication functions to have particular synchronization effects. A program that works correctly only when the first execution occurs (only when broadcast is synchronizing) is erroneous.

Finally, in multithreaded implementations, one can have more than one, concurrently executing, collective communication call at a process. In these situations, it is the user's responsibility to ensure that the same communicator is not used concurrently by two different collective communication calls at the same process.

Advice to implementors. Assume that broadcast is implemented using point-to-point MPI communication. Suppose the following two rules are followed.

- 1. All receives specify their source explicitly (no wildcards).
- 2. Each process sends all messages that pertain to one collective call before sending any message that pertain to a subsequent collective call.

Then, messages belonging to successive broadcasts cannot be confused, as the order of point-to-point messages is preserved.

It is the implementor's responsibility to ensure that point-to-point messages are not confused with collective messages. One way to accomplish this is, whenever a communicator is created, to also create a "hidden communicator" for collective communication. One could achieve a similar effect more cheaply, for example, by using a hidden tag or context bit to indicate whether the communicator is used for point-to-point or collective communication. (*End of advice to implementors*.)

Example 5.28

Blocking and nonblocking collective operations can be interleaved, i.e., a blocking collective operation can be posted even if there is a nonblocking collective operation outstanding.

```
MPI_Request req;
MPI_Ibarrier(comm, &req);
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Wait(&req, MPI_STATUS_IGNORE);
```

Each process starts a nonblocking barrier operation, participates in a blocking broadcast and then waits until every other process started the barrier operation. This effectively turns the broadcast into a synchronizing broadcast with possible communication/communication overlap (MPI_Bcast is allowed, but not required to synchronize).

Example 5.29

The starting order of collective operations on a particular communicator defines their matching. The following example shows an erroneous matching of different collective operations on the same communicator.

This ordering would match MPI_lbarrier on rank 0 with MPI_Bcast on rank 1 which is erroneous and the program behavior is undefined. However, if such an order is required, the user must create different duplicate communicators and perform the operations on them. If started with two processes, the following program would be correct:

ticket109.

```
1
    MPI_Request req;
2
     MPI_Comm dupcomm;
3
     MPI_Comm_dup(comm, &dupcomm);
4
     switch(rank) {
5
         case 0:
6
             MPI_Ibarrier(comm, &req);
7
             MPI_Bcast(buf1, count, type, 0, dupcomm);
             MPI_Wait(&req, MPI_STATUS_IGNORE);
9
             break;
10
         case 1:
11
             MPI_Bcast(buf1, count, type, 0, dupcomm);
12
             MPI_Ibarrier(comm, &req);
13
             MPI_Wait(&req, MPI_STATUS_IGNORE);
14
             break;
15
     }
16
```

Advice to users. The use of different communicators offers some flexibility regarding the matching of nonblocking collective operations. In this sense, communicators could be used as an equivalent to tags. However, communicator construction might induce overheads so that this should be used carefully. (End of advice to users.)

Example 5.30

Nonblocking collective operations can rely on the same progression rules as nonblocking point-to-point messages. Thus, if started with two processes, the following program is a valid MPI program and is guaranteed to terminate:

```
MPI_Request req;

switch(rank) {
    case 0:
        MPI_Ibarrier(comm, &req);
        MPI_Wait(&req, MPI_STATUS_IGNORE);
        MPI_Send(buf, count, dtype, 1, tag, comm);
        break;
    case 1:
        MPI_Ibarrier(comm, &req);
        MPI_Recv(buf, count, dtype, 0, tag, comm, MPI_STATUS_IGNORE);
        MPI_Wait(&req, MPI_STATUS_IGNORE);
        break;
}
```

The MPI library must progress the barrier in the MPI_Recv call. Thus, the MPI_Wait call in rank 0 will eventually complete, which enables the matching MPI_Send so all calls eventually return.

Example 5.31

Blocking and nonblocking collective operations do not match. The following example is erroneous.

```
1
MPI_Request req;
                                                                                        2
switch(rank) {
    case 0:
      /* erroneous false matching of Alltoall and Ialltoall */
      MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req);
      MPI_Wait(&req, MPI_STATUS_IGNORE);
      break;
    case 1:
      /* erroneous false matching of Alltoall and Ialltoall */
                                                                                       11
      MPI_Alltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm);
      break;
                                                                                       12
}
                                                                                       13
                                                                                       14
                                                                                       15
Example 5.32
                                                                                       16
    Collective and point-to-point requests can be mixed in functions that enable multiple
                                                                                       17
completions. If started with two processes, the following program is valid.
                                                                                       18
                                                                                       19
MPI_Request reqs[2];
                                                                                       20
                                                                                       21
switch(rank) {
                                                                                       22
    case 0:
                                                                                       23
      MPI_Ibarrier(comm, &reqs[0]);
                                                                                       24
      MPI_Send(buf, count, dtype, 1, tag, comm);
      MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);
                                                                                       26
      break;
                                                                                       27
    case 1:
                                                                                       28
      MPI_Irecv(buf, count, dtype, 0, tag, comm, &reqs[0]);
                                                                                       29
      MPI_Ibarrier(comm, &reqs[1]);
                                                                                       30
      MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);
                                                                                       31
      break;
}
                                                                                       33
                                                                                       34
    The Waitall call returns only after the barrier and the receive completed.
                                                                                       35
                                                                                       36
Example 5.33
                                                                                       37
    Multiple nonblocking collective operations can be outstanding on a single communicator
                                                                                       38
and match in order.
                                                                                       39
MPI_Request reqs[3];
                                                                                       41
                                                                                       42
compute(buf1);
MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);
                                                                                       43
                                                                                       44
compute(buf2);
MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
                                                                                       45
                                                                                       46
compute(buf3);
MPI_Ibcast(buf3, count, type, 0, comm, &reqs[2]);
```

MPI_Waitall(3, reqs, MPI_STATUSES_IGNORE);

 Advice to users. Pipelining and double-buffering techniques can efficiently be used to overlap computation and communication. However, having too many outstanding requests might have a negative impact on performance. (End of advice to users.)

Advice to implementors. The use of pipelining may generate many outstanding requests. A high-quality hardware-supported implementation with limited resources should be able to fall back to a software implementation if its resources are exhausted. In this way, the implementation could limit the number of outstanding requests only by the available memory. (End of advice to implementors.)

Example 5.34

Nonblocking collective operations can also be used to enable simultaneous collective operations on multiple overlapping communicators (see Figure 5.13). The following example is started with three processes and three communicators. The first communicator comm1 includes ranks 0 and 1, comm2 includes ranks 1 and 2 and comm3 spans ranks 0 and 2. It is not possible to perform a blocking collective operation on all communicators because there exists no deadlock-free order to invoke them. However, nonblocking collective operations can easily be used to achieve this task.

```
MPI_Request reqs[2];
switch(rank) {
    case 0:
      MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);
      MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);
      break;
    case 1:
      MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);
      MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[1]);
      break;
    case 2:
      MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[0]);
      MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);
      break;
}
MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);
```

Advice to users. This method can be useful if overlapping neighboring regions (halo or ghost zones) are used in collective operations. The sequence of the two calls in each process is irrelevant because the two nonblocking operations are performed on different communicators. (End of advice to users.)

Example 5.35

The progress of multiple outstanding nonblocking collective operations is completely independent.

 24

Figure 5.13: Example with overlapping communicators.

```
MPI_Request reqs[2];

compute(buf1);
MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);
compute(buf2);
MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
MPI_Wait(&reqs[1], MPI_STATUS_IGNORE);
/* nothing is known about the status of the first bcast here */
MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);
```

Finishing the second MPI_IBCAST is completely independent of the first one. This means that it is not guaranteed that the first broadcast operation is finished or even started after the second one is completed via reqs[1].

Chapter 12

External Interfaces

12.1 Introduction

This chapter begins with calls used to create **generalized requests**, which allow users to create new nonblocking operations with an interface similar to what is present in MPI. This can be used to layer new functionality on top of MPI. Next, Section 12.3 deals with setting the information found in status. [This is] This functionality is needed for generalized requests.

The chapter continues, in Section 12.4, with a discussion of how threads are to be handled in MPI. Although thread compliance is not required, the standard specifies how threads are to work if they are provided.

12.2 Generalized Requests

The goal of generalized requests is to allow users to define new nonblocking operations. Such an outstanding nonblocking operation is represented by a (generalized) request. A fundamental property of nonblocking operations is that progress toward the completion of this operation occurs asynchronously, i.e., concurrently with normal program execution. Typically, this requires execution of code concurrently with the execution of the user code, e.g., in a separate thread or in a signal handler. Operating systems provide a variety of mechanisms in support of concurrent execution. MPI does not attempt to standardize or replace these mechanisms: it is assumed programmers who wish to define new asynchronous operations will use the mechanisms provided by the underlying operating system. Thus, the calls in this section only provide a means for defining the effect of MPI calls such as MPI_WAIT or MPI_CANCEL when they apply to generalized requests, and for signaling to MPI the completion of a generalized operation.

Rationale. It is tempting to also define an MPI standard mechanism for achieving concurrent execution of user-defined nonblocking operations. However, it is very difficult to define such a mechanism without consideration of the specific mechanisms used in the operating system. The Forum feels that concurrency mechanisms are a proper part of the underlying operating system and should not be standardized by MPI; the MPI standard should only deal with the interaction of such mechanisms with MPI. (End of rationale.)

 $^{'}$ ticket 0.

For a regular request, the operation associated with the request is performed by the MPI implementation, and the operation completes without intervention by the application. For a generalized request, the operation associated with the request is performed by the application; therefore, the application must notify MPI when the operation completes. This is done by making a call to MPI_GREQUEST_COMPLETE. MPI maintains the "completion" status of generalized requests. Any other request state has to be maintained by the user. A new generalized request is started with MPI_GREQUEST_START(query_fn, free_fn, cancel_fn, extra_state, request)

8 9 10

1

2

3

4

5

6

7

```
11
       IN
                 query_fn
                                             callback function invoked when request status is queried
12
                                             (function)
13
                 free_fn
       IN
                                             callback function invoked when request is freed (func-
14
                                             tion)
15
       IN
                 cancel_fn
                                             callback function invoked when request is cancelled
16
                                             (function)
17
18
       IN
                 extra_state
                                             extra state
19
       OUT
                                             generalized request (handle)
                 request
20
21
     int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
22
                    MPI_Grequest_free_function *free_fn,
23
                    MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
24
                    MPI_Request *request)
25
26
     MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,
27
                     IERROR)
28
          INTEGER REQUEST, IERROR
29
          EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
30
          INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE
31
     {static MPI::Grequest
32
                    MPI::Grequest::Start(const MPI::Grequest::Query_function*
33
                     query_fn, const MPI::Grequest::Free_function* free_fn,
34
                     const MPI::Grequest::Cancel_function* cancel_fn,
35
                     void *extra_state) (binding deprecated, see Section 15.2) }
36
```

37 38

Advice to users. Note that a generalized request belongs, in C++, to the class MPI::Grequest, which is a derived class of MPI::Request. It is of the same type as regular requests, in C and Fortran. (End of advice to users.)

41 42

43

39

The call starts a generalized request and returns a handle to it in request.

44 ticket0. 45

The syntax and meaning of the callback functions are listed below. All callback functions are passed the extra_state argument that was associated with the request by the starting call MPI_GREQUEST_START[. This can]; extra_state can be used to maintain user-defined state for the request.

In C, the query function is

47 48

```
typedef int MPI_Grequest_query_function(void *extra_state,
               MPI_Status *status);
in Fortran
SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)
    INTEGER STATUS(MPI_STATUS_SIZE), IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
and in C++
{typedef int MPI::Grequest::Query_function(void* extra_state,
               MPI::Status& status); (binding deprecated, see Section 15.2)}
                                                                                            <sub>12</sub> ticket0.
    [query_fn] The query_fn function computes the status that should be returned for the
                                                                                            13
generalized request. The status also includes information about successful/unsuccessful
                                                                                            14
                                                                                           _{15} ticket0.
cancellation of the request (result to be returned by MPI_TEST_CANCELLED).
    [query_fn]The query_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL}
                                                                                            16
call that completed the generalized request associated with this callback. The callback
function is also invoked by calls to MPI_REQUEST_GET_STATUS, if the request is com-
plete when the call occurs. In both cases, the callback is passed a reference to the cor-
                                                                                            19
responding status variable passed by the user to the MPI call; the status set by the call-
                                                                                            20
back function is returned by the MPI call. If the user provided MPI_STATUS_IGNORE or
                                                                                           21
MPI_STATUSES_IGNORE to the MPI function that causes query_fn to be called, then MPI
                                                                                            22
will pass a valid status object to query_fn, and this status will be ignored upon return of the
                                                                                            23
callback function. Note that query_fn is invoked only after MPI_GREQUEST_COMPLETE
                                                                                            24
is called on the request; it may be invoked several times for the same generalized request,
e.g., if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also
that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn
                                                                                            27
callback functions, one for each generalized request that is completed by the MPI call. The
                                                                                            28
order of these invocations is not specified by MPI.
                                                                                            29
    In C, the free function is
                                                                                            30
typedef int MPI_Grequest_free_function(void *extra_state);
                                                                                            31
and in Fortran
                                                                                            33
SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)
                                                                                            34
    INTEGER IERROR
                                                                                            35
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
                                                                                            36
                                                                                            37
and in C++
                                                                                            38
{typedef int MPI::Grequest::Free_function(void* extra_state); (binding
                                                                                            39
               deprecated, see Section 15.2)
                                                                                            41 ticket0.
    [free_fn] The free_fn function is invoked to clean up user-allocated resources when the
generalized request is freed.
                                                                                              ticket0.
                                                                                            43
    [free_fn] The free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL}
                                                                                           44
call that completed the generalized request associated with this callback. free_fn is invoked
                                                                                            45
after the call to query_fn for the same request. However, if the MPI call completed multiple
generalized requests, the order in which free_fn callback functions are invoked is not specified
by MPI.
                                                                                             ticket0.
```

ticket0. 34

ticket0. 36

[free_fn]The free_fn callback is also invoked for generalized requests that are freed by a call to MPI_REQUEST_FREE (no call to WAIT_{WAIT|TEST}_{ANY|SOME|ALL}) will occur for such a request). In this case, the callback function will be called either in the MPI call MPI_REQUEST_FREE(request), or in the MPI call MPI_GREQUEST_COMPLETE(request), whichever happens last, i.e., in this case the actual freeing code is executed as soon as both calls MPI_REQUEST_FREE and MPI_GREQUEST_COMPLETE have occurred. The request is not deallocated until after free_fn completes. Note that free_fn will be invoked only once per request by a correct program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle to be set to MPI_REQUEST_NULL. This handle to the generalized request is no longer valid. However, user copies of this handle are valid until after free_fn completes since MPI does not deallocate the object until then. Since free_fn is not called until after MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this call. Users should note that MPI will deallocate the object after free_fn executes. At this point, user copies of the request handle no longer point to a valid request. MPI will not set user copies to MPI_REQUEST_NULL in this case, so it is up to the user to avoid accessing this stale handle. This is a special case [where]in which MPI defers deallocating the object until a later time that is known by the user. (End of advice to users.)

```
In C, the cancel function is
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);
in Fortran
SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
    INTEGER IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
    LOGICAL COMPLETE
and in C++
{typedef int MPI::Grequest::Cancel_function(void* extra_state,
```

[cancel_fn] The cancel_fn function is invoked to start the cancelation of a generalized request. It is called by MPI_CANCEL(request). MPI passes [to the callback function complete=true] complete=true to the callback function if MPI_GREQUEST_COMPLETE was already called on the request, and complete=false otherwise.

bool complete); (binding deprecated, see Section 15.2)}

All callback functions return an error code. The code is passed back and dealt with as appropriate for the error code by the MPI function that invoked the callback function. For example, if error codes are returned then the error code returned by the callback function will be returned by the MPI function that invoked the callback function. In the case of an MPI_{WAIT|TEST}{ANY} call that invokes both query_fn and free_fn, the MPI call will return the error code returned by the last callback, namely free_fn. If one or more of the requests in a call to MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of statuses, then MPI will return in each of the statuses that correspond to a completed generalized request the error code returned by the corresponding invocation of its free_fn callback function.

However, if the MPI function was passed MPI_STATUSES_IGNORE, then the individual error codes returned by each callback functions will be lost.

Advice to users. query_fn must **not** set the error field of status since query_fn may be called by MPI_WAIT or MPI_TEST, in which case the error field of status should not change. The MPI library knows the "context" in which query_fn is invoked and can decide correctly when to put in the error field of status the returned error code. (End of advice to users.)

The call informs MPI that the operations represented by the generalized request request are complete (see definitions in Section 2.4). A call to MPI_WAIT(request, status) will return and a call to MPI_TEST(request, flag, status) will return flag=true only after a call to MPI_GREQUEST_COMPLETE has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However, new nonblocking operations should be defined so that the general semantic rules about MPI calls such as MPI_TEST, MPI_REQUEST_FREE, or MPI_CANCEL still hold. For example, all these calls are supposed to be local and nonblocking. Therefore, the callback functions query_fn, free_fn, or cancel_fn should invoke blocking MPI communication calls only if the context is such that these calls are guaranteed to return in finite time. Once MPI_CANCEL is invoked, the cancelled operation should complete in finite time, irrespective of the state of other processes (the operation has acquired "local" semantics). It should either succeed, or fail without side-effects. The user should guarantee these same properties for newly defined operations.

Advice to implementors. A call to MPI_GREQUEST_COMPLETE may unblock a blocked user process/thread. The MPI library should ensure that the blocked user computation will resume. (End of advice to implementors.)

12.2.1 Examples

Example 12.1 This example shows the code for a user-defined reduce operation on an **int** using a binary tree: each non-root node receives two messages, sums them, and sends them up. We assume that no status is returned and that the operation cannot be cancelled.

```
1
     typedef struct {
2
        MPI_Comm comm;
3
        int tag;
        int root;
5
        int valin;
6
        int *valout;
7
        MPI_Request request;
8
        } ARGS;
9
10
11
     int myreduce(MPI_Comm comm, int tag, int root,
12
                    int valin, int *valout, MPI_Request *request)
13
     {
14
        ARGS *args;
15
        pthread_t thread;
16
17
        /* start request */
18
        MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);
19
20
        args = (ARGS*)malloc(sizeof(ARGS));
21
        args->comm = comm;
        args->tag = tag;
23
        args->root = root;
^{24}
        args->valin = valin;
        args->valout = valout;
26
        args->request = *request;
27
28
        /* spawn thread to handle request */
        /* The availability of the pthread_create call is system dependent */
30
        pthread_create(&thread, NULL, reduce_thread, args);
31
32
        return MPI_SUCCESS;
33
     }
34
35
     /* thread code */
36
     void* reduce_thread(void *ptr)
37
38
        int lchild, rchild, parent, lval, rval, val;
        MPI_Request req[2];
40
        ARGS *args;
41
42
        args = (ARGS*)ptr;
43
44
        /* compute left, right child and parent in tree; set
45
           to MPI_PROC_NULL if does not exist */
        /* code not shown */
47
```

```
MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);
   MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);
   MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
   val = lval + args->valin + rval;
   MPI_Send( &val, 1, MPI_INT, parent, args->tag, args->comm );
   if (parent == MPI_PROC_NULL) *(args->valout) = val;
   MPI_Grequest_complete((args->request));
   free(ptr);
   return(NULL);
}
int query_fn(void *extra_state, MPI_Status *status)
                                                                                  12
                                                                                  13
{
                                                                                  14
   /* always send just one int */
                                                                                  15
   MPI_Status_set_elements(status, MPI_INT, 1);
   /* can never cancel so always true */
                                                                                  16
   MPI_Status_set_cancelled(status, 0);
   /* choose not to return a value for this */
                                                                                  19
   status->MPI_SOURCE = MPI_UNDEFINED;
   /* tag has no meaning for this generalized request */
                                                                                  20
                                                                                  21
   status->MPI_TAG = MPI_UNDEFINED;
   /* this generalized request never fails */
                                                                                  22
                                                                                  23
   return MPI_SUCCESS;
                                                                                  24
}
                                                                                  26
int free_fn(void *extra_state)
                                                                                  27
                                                                                  28
                                                                                  29
   /* this generalized request does not need to do any freeing */
                                                                                  30
   /* as a result it never fails here */
   return MPI_SUCCESS;
}
                                                                                  34
int cancel_fn(void *extra_state, int complete)
                                                                                  35
                                                                                  36
   /* This generalized request does not support cancelling.
      Abort if not already done. If done then treat as if cancel failed.*/
   if (!complete) {
     fprintf(stderr,
             "Cannot cancel generalized request - aborting program\n");
                                                                                  42
     MPI_Abort(MPI_COMM_WORLD, 99);
                                                                                  43
                                                                                  44
   return MPI_SUCCESS;
}
                                                                                  45
                                                                                  46
```

12.3 Associating Information with Status

ticket0. 5 ticket0. 6

MPI supports several different types of requests besides those for point-to-point operations. These range from MPI calls for I/O to generalized requests. It is desirable to allow these calls [use] to use the same request [mechanism. This]mechanism, which allows one to wait or test on different types of requests. However, MPI_{TEST|WAIT}{ANY|SOME|ALL} returns a status with information about the request. With the generalization of requests, one needs to define what information will be returned in the status object.

ticket0. 12 Each MPI call fills in the appropriate fields in the status object. Any unused fields will have undefined values. A call to MPI_{TEST|WAIT}{ANY|SOME|ALL} can modify any of the fields in the status object. Specifically, it can modify fields that are undefined. The fields with meaningful [value]values for a given request are defined in the sections with the new request.

Generalized requests raise additional considerations. Here, the user provides the functions to deal with the request. Unlike other MPI calls, the user needs to provide the information to be returned in status. The status argument is provided directly to the callback function where the status needs to be set. Users can directly set the values in 3 of the 5 status values. The count and cancel fields are opaque. To overcome this, these calls are provided:

```
20
21
```

```
MPI_STATUS_SET_ELEMENTS(status, datatype, count)
```

 ${\rm ticket 265}.$

```
MPI_STATUS_SET_ELEMENTS_X(status, datatype, count)
```

```
38
       INOUT
                                             status with which to associate count (Status)
                 status
39
       IN
                 datatype
                                             datatype associated with count (handle)
41
       IN
                                             number of elements to associate with status (integer)
                 count
42
43
     int MPI_Status_set_elements_x(MPI_Status *status, MPI_Datatype datatype,
44
                    MPI_Count count)
45
     MPI_STATUS_SET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)
46
          INTEGER STATUS (MPI_STATUS_SIZE), DATATYPE, IERROR
47
          INTEGER (KIND=MPI_COUNT_KIND) COUNT
```

¹ ticket265.

8 ticket265.

9 ticket265.

11 ticket265

14 ticket0.

This call modifies the opaque part of status so that a call to MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X will return count. MPI_GET_COUNT will return a compatible value.

Rationale. The number of elements is set instead of the count because the former can deal with a nonintegral number of datatypes. (End of rationale.)

A subsequent call to MPI_GET_COUNT(status, datatype, count) [or to], MPI_GET_ELEMENTS(status, datatype, count) , or MPI_GET_ELEMENTS_X(status, datatype, count) must use a datatype argument that has the same type signature as the datatype argument that was used in the call to MPI_STATUS_SET_ELEMENTS or MPI_STATUS_SET_ELEMENTS_X.

Rationale. [This] The requirement of matching type signatures for these calls is similar to the restriction that holds when count is set by a receive operation: in that case, the calls to MPI_GET_COUNT and MPI_GET_ELEMENTS must use a datatype with the same signature as the datatype used in the receive call. (*End of rationale*.)

```
MPI_STATUS_SET_CANCELLED(status, flag)
```

```
INOUT status status with which to associate cancel flag (Status)

IN flag if true indicates request was cancelled (logical)
```

```
int MPI_Status_set_cancelled(MPI_Status *status, int flag)
```

```
MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG
```

```
  \{ \verb|void MPI::Status::Set_cancelled(bool flag)| (binding deprecated, see Section 15.2) \\  \}
```

If flag is set to true then a subsequent call to $MPI_TEST_CANCELLED(status, flag)$ will also return flag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other than those for which they were intended. Doing so may lead to unexpected results when using the status object. For example, calling MPI_GET_ELEMENTS may cause an error if the value is out of range or it may be impossible to detect such an error. The extra_state argument provided with a generalized request can be used to return information that does not logically belong in status. Furthermore, modifying the values in a status set internally by MPI, e.g., MPI_RECV, may lead to unpredictable results and is strongly discouraged. (End of advice to users.)

12.4 MPI and Threads

This section specifies the interaction between MPI calls and threads. The section lists minimal requirements for **thread compliant** MPI implementations and defines functions

ticket 0. $_{17}$

that can be used for initializing the thread environment. MPI may be implemented in environments where threads are not supported or perform poorly. Therefore, it is not required that all MPI implementations fulfill all the requirements specified in this section.

This section generally assumes a thread package similar to POSIX threads [33], but the syntax and semantics of thread calls are not specified here — these are beyond the scope of this document.

12.4.1 General

In a thread-compliant implementation, an MPI process is a process that may be multithreaded. Each thread can issue MPI calls; however, threads are not separately addressable: a rank in a send or receive call identifies a process, not a thread. A message sent to a process can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communication: the fact that a process is multi-threaded, rather than single-threaded, does not affect the external interface of this process. MPI implementations [where]in which MPI 'processes' are POSIX threads inside a single POSIX process are not thread-compliant by this definition (indeed, their "processes" are single-threaded). (End of rationale.)

Advice to users. It is the user's responsibility to prevent races when threads within the same application post conflicting communication calls. The user can make sure that two threads in the same process will not issue conflicting communication calls by using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.

- 1. All MPI calls are *thread-safe*, i.e., two concurrently running threads may make MPI calls and the outcome will be as if the calls executed in some order, even if their execution is interleaved.
- 2. Blocking MPI calls will block the calling thread only, allowing another thread to execute, if available. The calling thread will be blocked until the event on which it is waiting occurs. Once the blocked communication is enabled and can proceed, then the call will complete and the thread will be marked runnable, within a finite time. A blocked thread will not prevent progress of other runnable threads on the same process, and will not prevent them from executing MPI calls.

Example 12.2 Process 0 consists of two threads. The first thread executes a blocking send call MPI_Send(buff1, count, type, 0, 0, comm), whereas the second thread executes a blocking receive call MPI_Recv(buff2, count, type, 0, 0, comm, &status), i.e., the first thread sends a message that is received by the second thread. This communication should always succeed. According to the first requirement, the execution will correspond to some interleaving of the two calls. According to the second requirement, a call can only block the calling thread and cannot prevent progress of the other thread. If the send call went ahead of the receive call, then the sending thread may block, but this will not prevent the receiving thread from executing. Thus, the receive call will occur. Once both calls occur, the communication is enabled and both calls will complete. On the other hand, a single-threaded process that posts a send, followed by a matching receive, may deadlock.

The progress requirement for multithreaded implementations is stronger, as a blocked call cannot prevent progress in other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at a time, e.g., by protecting MPI code with one process-global lock. However, blocked operations cannot hold the lock, as this would prevent progress of other threads in the process. The lock is held only for the duration of an atomic, locally-completing suboperation such as posting a send or completing a send, and is released in between. Finer locks can provide more concurrency, at the expense of higher locking overheads. Concurrency can also be achieved by having some of the MPI protocol executed by separate server threads. (End of advice to implementors.)

12.4.2 Clarifications

Initialization and Completion The call to MPI_FINALIZE should occur on the same thread that initialized MPI. We call this thread the **main thread**. The call should occur only after all the process threads have completed their MPI calls, and have no pending communications or I/O operations.

Rationale. This constraint simplifies implementation. (End of rationale.)

Multiple threads completing the same request. A program where two threads block, waiting on the same request, is erroneous. Similarly, the same request cannot appear in the array of requests of two concurrent MPI_{WAIT|TEST}_{ANY|SOME|ALL} calls. In MPI, a request can only be completed once. Any combination of wait or test [which]that violates this rule is erroneous.

Rationale. [This] This restriction is consistent with the view that a multithreaded execution corresponds to an interleaving of the MPI calls. In a single threaded implementation, once a wait is posted on a request the request handle will be nullified before it is possible to post a second wait on the same handle. With threads, an MPI_WAIT{ANY|SOME|ALL} may be blocked without having nullified its request(s) so it becomes the user's responsibility to avoid using the same request in an MPI_WAIT on another thread. This constraint also simplifies implementation, as only one thread will be blocked on any communication or I/O event. (End of rationale.)

Probe A receive call that uses source and tag values returned by a preceding call to MPI_PROBE or MPI_IPROBE will receive the message matched by the probe call only if there was no other matching receive after the probe and before that receive. In a multi-threaded environment, it is up to the user to enforce this condition using suitable mutual exclusion logic. This can be enforced by making sure that each communicator is used by only one thread on each process.

Collective calls Matching of collective calls on a communicator, window, or file handle is done according to the order in which the calls are issued at each process. If concurrent threads issue such calls on the same communicator, window or file handle, it is up to the user to make sure the calls are correctly ordered, using interthread synchronization.

 $_{25}$ ticket0.

ticket0.

ticket $0._{12}$

ticket 0. $^{32}_{33}$

ticket0. 31

12.4.3 Initialization

The following function may be used to initialize MPI, and initialize the MPI thread environment, instead of MPI_INIT.

Advice to users. With three concurrent threads in each MPI process of a communicator comm, it is allowed that thread A in each MPI process calls a collective operation on comm, thread B calls a file operation on an existing filehandle that was formerly opened on comm, and thread C invokes one-sided operations on an existing window handle that was also formerly created on comm. (End of advice to users.)

Rationale. As already specified in MPI_FILE_OPEN and MPI_WIN_CREATE, a file handle and a window handle inherit only the group of processes of the underlying communicator, but not the communicator itself. Accesses to communicators, window handles and file handles cannot affect one another. (*End of rationale*.)

Advice to implementors. [Advice to implementors.] If the implementation of file or window operations internally uses MPI communication then a duplicated communicator may be cached on the file or window object. (End of advice to implementors.)

Exception handlers An exception handler does not necessarily execute in the context of the thread that made the exception-raising MPI call; the exception handler may be executed by a thread that is distinct from the thread that will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the communication protocol may execute on a thread that is distinct from the thread that made the MPI call. The design allows the exception handler to be executed on the thread where the exception occurred. (End of rationale.)

Interaction with signals and cancellations The outcome is undefined if a thread that executes an MPI call is cancelled (by another thread), or if a thread catches a signal while executing an MPI call. However, a thread of an MPI process may terminate, and may catch signals or be cancelled by another thread when not executing MPI calls.

Rationale. Few C library functions are signal safe, and many have cancellation points — points [where]at which the thread executing them may be cancelled. The above restriction simplifies implementation (no need for the MPI library to be "async-cancelsafe" or ["async-signal-safe."] "async-signal-safe"). (End of rationale.)

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by masking signals on MPI calling threads, and unmasking them in one or more non-MPI threads). A good programming practice is to have a distinct thread blocked in a call to signal to each user expected signal that may occur. Users must not catch signals used by the MPI implementation; as each MPI implementation is required to document the signals used internally, users can avoid these signals. (End of advice to users.)

Advice to implementors. The MPI library should not invoke library calls that are not thread safe, if multiple threads execute. (End of advice to implementors.)

16 ticket0.

¹⁷ ticket0.

¹⁹ ticket0.

Advice to users. In C and C++, the passing of argc and argv is [optional.] optional, as with MPI_INIT as discussed in Section 8.7. In C, [this is accomplished by passing the appropriate null pointer.] null pointers may be passed in their place. In C++, [this is accomplished with two separate bindings to cover these two cases. This is as with MPI_INIT as discussed in Section 8.7.] two separate bindings support this choice. (End of advice to users.)

This call initializes MPI in the same way that a call to MPI_INIT would. In addition, it initializes the thread environment. The argument required is used to specify the desired level of thread support. The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED The process may be multi-threaded, but the application must ensure that only the main thread makes MPI calls (for the definition of main thread, see MPI_IS_THREAD_MAIN on page 419).

MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are "serialized").

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions.

These values are monotonic; i.e., $MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.$

Different processes in $\mathsf{MPI_COMM_WORLD}$ may require different levels of thread support.

The call returns in **provided** information about the actual level of thread support that will be provided by MPI. It can be one of the four values listed above.

The level(s) of thread support that can be provided by MPI_INIT_THREAD will depend on the implementation, and may depend on information provided by the user before the program started to execute (e.g., with arguments to mpiexec). If possible, the call will return provided = required. Failing this, the call will return the least supported level such that provided > required (thus providing a stronger level of support than required by the

 user). Finally, if the user requirement cannot be satisfied, then the call will return in provided the highest supported level.

A thread compliant MPI implementation will be able to return provided

- = MPI_THREAD_MULTIPLE. Such an implementation may always return provided
- = MPI_THREAD_MULTIPLE, irrespective of the value of required. At the other extreme, an MPI library that is not thread compliant may always return

provided = MPI_THREAD_SINGLE, irrespective of the value of required.

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with a required = MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of thread support available when the MPI program is started, e.g., with arguments to mpiexec. This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is available. Then MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, irrespective of the value of required; a call to MPI_INIT will also initialize the MPI thread support level to MPI_THREAD_MULTIPLE. Suppose, on the other hand, that an MPI program has been started so that all four levels of thread support are available. Then, a call to MPI_INIT_THREAD will return provided = required; on the other hand, a call to MPI_INIT will initialize the MPI thread support level to MPI_THREAD_SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-threaded, or is executed on multiple threads, but not concurrently: mutual exclusion code may be omitted. Furthermore, if only one thread executes, then the MPI library can use library functions that are not thread safe, without risking conflicts with user threads. Also, the model of one communication thread, multiple computation threads fits many applications well, e.g., if the process code is a sequential Fortran/C/C++ program with MPI calls that has been parallelized by a compiler for execution on an SMP node, in a cluster of SMPs, then the process computation is multi-threaded, but MPI calls will likely execute on a single thread.

The design accommodates a static specification of the thread support level, for environments that require static binding of libraries, and for compatibility for current multi-threaded MPI codes. (*End of rationale.*)

Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library should not invoke C/C++/Fortran library calls that are not thread safe, e.g., in an environment where malloc is not thread safe, then malloc should not be used by the MPI library.

Some implementors may want to use different MPI libraries for different levels of thread support. They can do so using dynamic linking and selecting which library will be linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations for lower levels of thread support will occur only when the level of thread support required is specified at link time. (*End of advice to implementors.*)

The following function can be used to query the current level of thread support.

29

30

31

33

35

36

37

38

39

41

42

43

44

45

46 47

32 ticket0.

```
MPI_QUERY_THREAD(provided)
  OUT
            provided
                                         provided level of thread support (integer)
int MPI_Query_thread(int *provided)
MPI_QUERY_THREAD(PROVIDED, IERROR)
     INTEGER PROVIDED, IERROR
{int MPI::Query_thread()(binding deprecated, see Section 15.2)}
                                                                                               <sup>10</sup> ticket0.
    The call returns in provided the current level of thread [support, This] support, which
will be the value returned in provided by MPI_INIT_THREAD, if MPI was initialized by a
                                                                                               12
call to MPI_INIT_THREAD().
                                                                                               13
                                                                                               14
MPI_IS_THREAD_MAIN(flag)
                                                                                               15
                                                                                               16
  OUT
            flag
                                          true if calling thread is main thread, false otherwise
                                                                                               17
                                          (logical)
                                                                                               18
                                                                                               19
int MPI_Is_thread_main(int *flag)
                                                                                               20
MPI_IS_THREAD_MAIN(FLAG, IERROR)
                                                                                              21
     LOGICAL FLAG
                                                                                               22
     INTEGER IERROR
                                                                                               23
                                                                                               24
{bool MPI::Is_thread_main() (binding deprecated, see Section 15.2) }
                                                                                              <sup>26</sup> ticket0.
```

This function can be called by a thread to [find out whether] determine if it is the main thread (the thread that called MPI_INIT or MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support threads, so that portable code that contains invocations to these functions [be able to]can link correctly. MPI_INIT continues to be supported so as to provide compatibility with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but no MPI call other than MPI_INITIALIZED should be executed by these threads, until MPI_INIT_THREAD is invoked by one thread (which, thereby, becomes the main thread). In particular, it is possible to enter the MPI execution with a multi-threaded process.

The level of thread support provided is a global property of the MPI process that can be specified only once, when MPI is initialized on that process (or before). Portable third party libraries have to be written so as to accommodate any provided level of thread support. Otherwise, their usage will be restricted to specific level(s) of thread support. If such a library can run only with specific level(s) of thread support, e.g., only with MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check whether the user initialized MPI to the correct level of thread support and, if not, raise an exception. (*End of advice to users*.)

Chapter 13

I/O

13.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimization needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [39], collective buffering [6, 13, 40, 44, 51], and disk-directed I/O [35]) can only be implemented if the parallel I/O system provides a high-level interface supporting partitioning of file data among processes and a collective interface supporting complete transfers of global data structures between process memories and files. In addition, further efficiencies can be gained via support for asynchronous I/O, strided accesses, and control over physical file layout on storage devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a shared file (broadcast, reduction, scatter, gather), we chose another approach in which data partitioning is expressed using derived datatypes. Compared to a limited set of predefined access patterns, this approach has the advantage of added flexibility and expressiveness.

13.1.1 Definitions

file An MPI file is an ordered collection of typed data items. MPI supports random or sequential access to any integral set of these items. A file is opened collectively by a group of processes. All collective I/O calls on a file are collective over this group.

displacement A file *displacement* is an absolute byte position relative to the beginning of a file. The displacement defines the location where a *view* begins. Note that a "file displacement" is distinct from a "typemap displacement."

etype An etype (elementary datatype) is the unit of data access and positioning. It can be any MPI predefined or derived datatype. Derived etypes can be constructed using any of the MPI datatype constructor routines, provided all resulting typemap displacements are non-negative and monotonically nondecreasing. Data access is performed in etype units, reading or writing whole data items of type etype. Offsets are expressed as a count of etypes; file pointers point to the beginning of etypes. Depending on context, the term "etype" is used to describe one of three aspects of an elementary datatype: a particular MPI type, a data item of that type, or the extent of that type.

filetype A filetype is the basis for partitioning a file among processes and defines a template for accessing the file. A filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same etype. In addition, the extent of any hole in the filetype must be a multiple of the etype's extent. The displacements in the typemap of the filetype are not required to be distinct, but they must be non-negative and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an ordered set of etypes. Each process has its own view of the file, defined by three quantities: a displacement, an etype, and a filetype. The pattern described by a filetype is repeated, beginning at the displacement, to define the view. The pattern of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows how the tiling works; note that the filetype in this example must have explicit lower and upper bounds set in order for the initial and final holes to be repeated in the view. Views can be changed by the user during program execution. The default view is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution such as a scatter/gather pattern (see Figure 13.2).

Figure 13.2: Partitioning a file among parallel processes

offset An offset is a position in the file relative to the current view, expressed as a count of etypes. Holes in the view's filetype are skipped when calculating this position. Offset 0 is the location of the first etype visible in the view (after skipping the displacement and any initial holes in the view). For example, an offset of 2 for process 1 in Figure 13.2 is the position of the 8th etype in the file after the displacement. An "explicit offset" is an offset that is used as a formal parameter in explicit data access routines.

file size and end of file The *size* of an MPI file is measured in bytes from the beginning of the file. A newly created file has a size of zero bytes. Using the size as an absolute displacement gives the position of the byte immediately following the last byte in the file. For any given view, the *end of file* is the offset of the first etype accessible in the current view starting after the last byte in the file.

file pointer A file pointer is an implicit offset maintained by MPI. "Individual file pointers" are file pointers that are local to each process that opened the file. A "shared file pointer" is a file pointer that is shared by the group of processes that opened the file.

file handle A file handle is an opaque object created by MPI_FILE_OPEN and freed by MPI_FILE_CLOSE. All operations on an open file reference the file through the file handle.

13.2 File Manipulation

13.2.1 Opening a File

MPI_FILE_OPEN(comm, filename, amode, info, fh)

```
INcommcommunicator (handle)INfilenamename of file to open (string)INamodefile access mode (integer)INinfoinfo object (handle)OUTfhnew file handle (handle)
```

```
MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
CHARACTER*(*) FILENAME
INTEGER COMM, AMODE, INFO, FH, IERROR
```

MPI_FILE_OPEN opens the file identified by the file name filename on all processes in the comm communicator group. MPI_FILE_OPEN is a collective routine: all processes must provide the same value for amode, and all processes must provide filenames that reference the same file. (Values for info may vary.) comm must be an intracommunicator; it is erroneous to pass an intercommunicator to MPI_FILE_OPEN. Errors in MPI_FILE_OPEN are raised using the default file error handler (see Section 13.7, page 479). A process can open a file independently of other processes by using the MPI_COMM_SELF communicator. The file handle returned, fh, can be subsequently used to access the file until the file is closed using MPI_FILE_CLOSE. Before calling MPI_FINALIZE, the user is required to close (via MPI_FILE_CLOSE) all files that were opened with MPI_FILE_OPEN. Note that the

communicator comm is unaffected by MPI_FILE_OPEN and continues to be usable in all MPI routines (e.g., MPI_SEND). Furthermore, the use of comm will not interfere with I/O behavior.

The format for specifying the file name in the filename argument is implementation dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that filename include a string or strings specifying additional information about the file. Examples include the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET). (End of advice to implementors.)

Advice to users. On some implementations of MPI, the file namespace may not be identical from all processes of all applications. For example, "/tmp/foo" may denote different files on different processes, or a single file may have many names, dependent on process location. The user is responsible for ensuring that a single file is referenced by the filename argument, as it may be impossible for an implementation to detect this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data in its own native representation (no data representation conversion is performed). (POSIX files are linear byte streams in the native representation.) The file view can be changed via the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the following integer constants):

- MPI_MODE_RDONLY read only,
- MPI_MODE_RDWR reading and writing,
- MPI_MODE_WRONLY write only,
- MPI_MODE_CREATE create the file if it does not exist,
- MPI_MODE_EXCL error if creating file that already exists,
- MPI_MODE_DELETE_ON_CLOSE delete file on close,
- MPI_MODE_UNIQUE_OPEN file will not be concurrently opened elsewhere,
- MPI_MODE_SEQUENTIAL file will only be accessed sequentially,
- MPI_MODE_APPEND set initial position of all file pointers to end of file.

Advice to users. C/C++ users can use bit vector OR (|) to combine these constants; Fortran 90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (non-portably) bit vector IOR on systems that support it. Alternatively, Fortran users can portably use integer addition to OR the constants (each constant should appear at most once in the addition.). (End of advice to users.)

Advice to implementors. The values of these constants must be defined such that the bitwise OR and the sum of any distinct set of these constants is equivalent. (End of advice to implementors.)

The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY, MPI_MODE_CREATE, and MPI_MODE_EXCL have identical semantics to their POSIX counterparts [33]. Exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY, must be specified. It is erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in conjunction with MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL together with MPI_MODE_RDWR.

The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to performing an MPI_FILE_DELETE) when the file is closed.

The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by eliminating the overhead of file locking. It is erroneous to open a file in this mode unless the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both inside and outside the MPI environment. In particular, one needs to be aware of potential external events which may open files (e.g., automated backup facilities). When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring that no such external events take place. (End of advice to users.)

The MPI_MODE_SEQUENTIAL mode allows an implementation to optimize access to some sequential devices (tapes and network streams). It is erroneous to attempt nonsequential access to a file that has been opened in this mode.

Specifying MPI_MODE_APPEND only guarantees that all shared and individual file pointers are positioned at the initial end of file when MPI_FILE_OPEN returns. Subsequent positioning of file pointers is application dependent. In particular, the implementation does not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.

The info argument is used to provide information regarding file access patterns and file system specifics (see Section 13.2.8, page 430). The constant MPI_INFO_NULL can be used when no info needs to be specified.

Advice to users. Some file attributes are inherently implementation dependent (e.g., file permissions). These attributes must be set using either the info argument or facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode file consistency semantics (see Section 13.6.1, page 469). The more stringent atomic mode consistency semantics, required for atomicity of conflicting accesses, can be set using MPI_FILE_SET_ATOMICITY.

13.2.2 Closing a File

```
{void MPI::File::Close()(binding deprecated, see Section 15.2)}
```

MPI_FILE_CLOSE first synchronizes file state (equivalent to performing an MPI_FILE_SYNC), then closes the file associated with fh. The file is deleted if it was opened with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and there are other processes currently accessing the file, the status of the file and the behavior of future accesses by these processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and split collective operations associated with fh made by a process have completed before that process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to MPI_FILE_NULL.

13.2.3 Deleting a File

MPI_FILE_DELETE(filename, info)

{static void MPI::File::Delete(const char* filename,

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does not exist, MPI_FILE_DELETE raises an error in the class MPI_ERR_NO_SUCH_FILE.

const MPI::Info& info) (binding deprecated, see Section 15.2) }

The info argument can be used to provide information regarding file system specifics (see Section 13.2.8, page 430). The constant MPI_INFO_NULL refers to the null info, and can be used when no info needs to be specified.

If a process currently has the file open, the behavior of any access to the file (as well as the behavior of any outstanding accesses) is implementation dependent. In addition, whether an open file is deleted or not is also implementation dependent. If the file is not deleted, an error in the class MPI_ERR_FILE_IN_USE or MPI_ERR_ACCESS will be raised. Errors are raised using the default error handler (see Section 13.7, page 479).

13.2.4 Resizing a File

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured in bytes from the beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in the group must pass identical values for size.

If size is smaller than the current file size, the file is truncated at the position defined by size. The implementation is free to deallocate file blocks located beyond this position.

If size is larger than the current file size, the file size becomes size. Regions of the file that have been previously written are unaffected. The values of data in the new regions in the file (those locations with displacements between old file size and size) are undefined. It is implementation dependent whether the MPI_FILE_SET_SIZE routine allocates file space—use MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file pointer. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file after a MPI_FILE_SET_SIZE operation truncates a file. This is legal, and equivalent to seeking beyond the current end of file. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before calling MPI_FILE_SET_SIZE. Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far as consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that conflicts with operations that access bytes at displacements between the old and new file sizes (see Section 13.6.1, page 469).

13.2.5 Preallocating Space for a File

```
MPI_FILE_PREALLOCATE(fh, size)

INOUT fh file handle (handle)

IN size size to preallocate file (integer)
```

9

10

11

12

13

14

15

16

17

18 19

20

21 22

23 24 25

26 27

28

29 30

31 32

33

34

35

36 37

38

39

```
int MPI_File_preallocate(MPI_File fh, MPI_Offset size)
2
    MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
3
         INTEGER FH, IERROR
4
         INTEGER(KIND=MPI_OFFSET_KIND) SIZE
5
6
     {void MPI::File::Preallocate(MPI::Offset size)(binding deprecated, see
7
                   Section 15.2) }
```

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes of the file associated with fh. MPI_FILE_PREALLOCATE is collective; all processes in the group must pass identical values for size. Regions of the file that have previously been written are unaffected. For newly allocated regions of the file, MPI_FILE_PREALLOCATE has the same effect as writing undefined data. If size is larger than the current file size, the file size increases to size. If size is less than or equal to the current file size, the file size is unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the same as with MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive. (End of advice to users.)

13.2.6 Querying the Size of a File

```
MPI_FILE_GET_SIZE(fh, size)
 IN
           fh
                                      file handle (handle)
 OUT
                                      size of the file in bytes (integer)
           size
int MPI_File_get_size(MPI_File fh, MPI_Offset *size)
MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
    INTEGER FH, IERROR
    INTEGER(KIND=MPI_OFFSET_KIND) SIZE
{MPI::Offset MPI::File::Get_size() const(binding deprecated, see Section 15.2)}
```

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with the file handle fh. As far as consistency semantics are concerned, MPI_FILE_GET_SIZE is a data access operation (see Section 13.6.1, page 469).

24

26

44

45

46

47

```
13.2.7 Querying File Parameters
MPI_FILE_GET_GROUP(fh, group)
  IN
           fh
                                       file handle (handle)
  OUT
           group
                                       group which opened the file (handle)
int MPI_File_get_group(MPI_File fh, MPI_Group *group)
MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
    INTEGER FH, GROUP, IERROR
                                                                                         12
                                                                                         13
{MPI::Group MPI::File::Get_group() const(binding deprecated, see Section 15.2)}
                                                                                         14
    MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to
                                                                                         15
open the file associated with fh. The group is returned in group. The user is responsible for
                                                                                         16
freeing group.
MPI_FILE_GET_AMODE(fh, amode)
                                                                                         20
                                       file handle (handle)
  IN
           fh
                                                                                         21
  OUT
                                                                                         22
           amode
                                       file access mode used to open the file (integer)
                                                                                         23
int MPI_File_get_amode(MPI_File fh, int *amode)
MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
    INTEGER FH, AMODE, IERROR
                                                                                         27
                                                                                         28
{int MPI::File::Get_amode() const(binding deprecated, see Section 15.2) }
                                                                                         29
    MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with
                                                                                         30
fh.
                                                                                         31
Example 13.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:
                                                                                         34
                                                                                         35
      SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)
                                                                                         36
!
                                                                                         37
!
    TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE
                                                                                         38
    IF SET, RETURN 1 IN BIT_FOUND, O OTHERWISE
!
      INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND
                                                                                         41
      BIT_FOUND = 0
                                                                                         42
      CP\_AMODE = AMODE
                                                                                         43
 100 CONTINUE
      LBIT = 0
      HIFOUND = 0
      DO 20 L = MAX_BIT, 0, -1
```

MATCHER = 2**L

2

3

4

5

6

9

11

12

13 14

15

16

18

19

20 21

22 23

24

25

26

27

28

29

30

31

32 33

34

35

36

37

```
IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN
                 HIFOUND = 1
                 LBIT = MATCHER
                 CP_AMODE = CP_AMODE - MATCHER
              END IF
      20
          CONTINUE
           IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1
           IF (BIT_FOUND .EQ. O .AND. HIFOUND .EQ. 1 .AND. &
               CP_AMODE .GT. 0) GO TO 100
10
           END
```

This routine could be called successively to decode amode, one bit at a time. For example, the following code fragment would check for MPI_MODE_RDONLY.

```
CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)
IF (BIT_FOUND .EQ. 1) THEN
   PRINT *, ' FOUND READ-ONLY BIT IN AMODE=', AMODE
ELSE
   PRINT *, ' READ-ONLY BIT NOT FOUND IN AMODE=', AMODE
END IF
```

13.2.8 File Info

Hints specified via info (see Section 9, page 331) allow a user to provide information such as file access patterns and file system specifics to direct optimization. Providing hints may enable an implementation to deliver increased I/O performance or minimize the use of system resources. However, hints do not change the semantics of any of the I/O interfaces. In other words, an implementation is free to ignore all hints. Hints are specified on a per file basis, in MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO, via the opaque info object. When an info object that specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one system, and later executes on another system that does not support these hints. In general, unsupported hints should simply be ignored. Needless to say, no hint can be mandatory. However, for each hint used by a specific implementation, a default value must be provided when the user does not specify a value for this hint. (End of advice to implementors.)

```
39
41
```

42 43

44

45 46

```
MPI_FILE_SET_INFO(fh, info)
 INOUT
           fh
                                       file handle (handle)
 IN
           info
                                       info object (handle)
int MPI_File_set_info(MPI_File fh, MPI_Info info)
MPI_FILE_SET_INFO(FH, INFO, IERROR)
```

MPI_FILE_SET_INFO sets new values for the hints of the file associated with fh. MPI_FILE_SET_INFO is a collective routine. The info object may be different on each process, but any info entries that an implementation requires to be the same on all processes must appear with the same value in each process's info object.

Advice to users. Many info items that an implementation can use when it creates or opens a file cannot easily be changed once the file has been created or opened. Thus, an implementation may ignore hints issued in this call that it would have accepted in an open call. (End of advice to users.)

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associated with fh. The current setting of all hints actually used by the system related to this open file is returned in info_used. If no such hints exist, a handle to a newly created info object is returned that contains no key/value pair. The user is responsible for freeing info_used via MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently active for this file. This set of hints may be greater or smaller than the set of hints passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO, as the system may not recognize some hints set by the user, and may recognize other hints that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values are reserved. An implementation is not required to interpret these key values, but if it does interpret the key value, it must provide the functionality described. (For more details on "info," see Section 9, page 331.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices. For each hint name introduced, we describe the purpose of the hint, and the type of the hint value. The "[SAME]" annotation specifies that the hint values provided by all participating processes must be identical; otherwise the program is erroneous. In addition, some hints are

context dependent, and are only used by an implementation at specific times (e.g., file_perm is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which the file will be accessed until the file is closed or until the access_style key value is altered. The hint value is a comma separated list of the following: read_once, write_once, read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may benefit from collective buffering. Collective buffering is an optimization performed on collective accesses. Accesses to the file are performed on behalf of all processes in the group by a number of target nodes. These target nodes coalesce small requests into large disk accesses. Legal values for this key are true and false. Collective buffering parameters are further directed via additional hints: cb_block_size, cb_buffer_size, and cb_nodes.

cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective buffering file access. *Target nodes* access data in chunks of this size. The chunks are distributed among target nodes in a round-robin (CYCLIC) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used for collective buffering on each target node, usually a multiple of cb_block_size.

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file consists of a multidimentional array that is often accessed by subarrays. The value for this hint is a comma separated list of array dimensions, starting from the most significant one (for an array stored in row-major order, as in C, the most significant dimension is the first one; for an array stored in column-major order, as in Fortran, the most significant dimension is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size of each array entry, in bytes.

chunked_size (comma separated list of integers) [SAME]: This hint specifies the dimensions of the subarrays. This is a comma separated list of array dimensions, starting from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the implementation is capable of returning the file name of an open file, it will be returned using this key by MPI_FILE_GET_INFO. This key is ignored when passed to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation. Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that includes MPI_MODE_CREATE. The set of legal values for this key is implementation dependent.

13.3. FILE VIEWS 433

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of I/O devices that should be used to store the file. This hint is most relevant when the file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will typically be assigned to run programs that access this file. This hint is most relevant when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the system. This hint is most relevant when the file is created.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the file should be striped across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used for this file. The striping unit is the amount of consecutive data assigned to one I/O device before progressing to the next device, when striping across a number of devices. It is expressed in bytes. This hint is relevant only when the file is created.

13.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT	fh	file handle (handle)
IN	disp	displacement (integer)
IN	etype	elementary datatype (handle)
IN	filetype	filetype (handle)
IN	datarep	data representation (string)
IN	info	info object (handle)

```
MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
CHARACTER*(*) DATAREP
INTEGER(KIND=MPI_OFFSET_KIND) DISP
```

The MPI_FILE_SET_VIEW routine changes the process's view of the data in the file. The start of the view is set to disp; the type of data is set to etype; the distribution of data to processes is set to filetype; and the representation of data in the file is set to datarep. In addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file pointer to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents

of etype in the file data representation must be identical on all processes in the group; values for disp, filetype, and info may vary. The datatypes passed in etype and filetype must be committed.

The etype always specifies the data layout in the file. If etype is a portable datatype (see Section 2.4, page 11), the extent of etype is computed by scaling any displacements in the datatype to match the file data representation. If etype is not a portable datatype, no scaling is done when computing the extent of etype. The user must be careful when using nonportable etypes in heterogeneous environments; see Section 13.5.1, page 462 for further details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displacement to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes or streaming network connections, the *displacement* may not be meaningful. MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files. (*End of rationale*.)

Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will immediately follow MPI_FILE_OPEN in numerous instances. A high-quality implementation will ensure that this behavior is efficient. (*End of advice to implementors*.)

The disp displacement argument specifies the position (absolute offset in bytes from the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence of data segments that are to be accessed in different patterns (see Figure 13.3). Separate views, each using a different displacement and filetype, can be used to access each segment.

Figure 13.3: Displacements

(End of advice to users.)

An etype (elementary datatype) is the unit of data access and positioning. It can be any MPI predefined or derived datatype. Derived etypes can be constructed by using any of the MPI datatype constructor routines, provided all resulting typemap displacements are non-negative and monotonically nondecreasing. Data access is performed in etype units, reading or writing whole data items of type etype. Offsets are expressed as a count of etypes; file pointers point to the beginning of etypes.

13.3. FILE VIEWS 435

Advice to users. In order to ensure interoperability in a heterogeneous environment, additional restrictions must be observed when constructing the etype (see Section 13.5, page 460). (End of advice to users.)

A filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same etype. In addition, the extent of any hole in the filetype must be a multiple of the etype's extent. These displacements are not required to be distinct, but they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to contain overlapping regions. This restriction is equivalent to the "datatype used in a receive cannot specify overlapping regions" restriction for communication. Note that filetypes from different processes may still overlap each other.

If filetype has holes in it, then the data in the holes is inaccessible to the calling process. However, the disp, etype and filetype arguments can be changed via future calls to MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.

The info argument is used to provide information regarding file access patterns and file system specifics to direct optimization (see Section 13.2.8, page 430). The constant MPI_INFO_NULL refers to the null info and can be used when no info needs to be specified.

The datarep argument is a string that specifies the representation of data in the file. See the file interoperability section (Section 13.5, page 460) for details and a discussion of valid values.

The user is responsible for ensuring that all nonblocking requests and split collective operations on fh have been completed before calling MPI_FILE_SET_VIEW—otherwise, the call to MPI_FILE_SET_VIEW is erroneous.

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

see Section 15.2) }

```
IN fh file handle (handle)
OUT disp displacement (integer)
OUT etype elementary datatype (handle)
OUT filetype filetype (handle)
OUT datarep data representation (string)
```

```
MPI_Datatype *filetype, char *datarep)

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

{void MPI::File::Get_view(MPI::Offset& disp, MPI::Datatype& etype,

MPI::Datatype& filetype, char* datarep) const(binding deprecated,
```

MPI_FILE_GET_VIEW returns the process's view of the data in the file. The current value of the displacement is returned in disp. The etype and filetype are new datatypes with

tvp

typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring that datarep is large enough to hold the returned data representation string. The length of a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corresponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype or filetype are derived datatypes, the user is responsible for freeing them. The etype and filetype returned are both in a committed state.

13.4 Data Access

13.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are three orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer), synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective vs. collective). The following combinations of these data access routines, including two types of file pointers (individual and shared) are provided in Table 13.1.

positioning	synchronism	coordination	
		noncollective	collective
explicit	blocking	MPI_FILE_READ_AT	MPI_FILE_READ_AT_ALL
offsets		MPI_FILE_WRITE_AT	MPI_FILE_WRITE_AT_ALL
	nonblocking &	MPI_FILE_IREAD_AT	MPI_FILE_READ_AT_ALL_BEGIN
	split collective		MPI_FILE_READ_AT_ALL_END
		MPI_FILE_IWRITE_AT	MPI_FILE_WRITE_AT_ALL_BEGIN
			MPI_FILE_WRITE_AT_ALL_END
individual	blocking	MPI_FILE_READ	MPI_FILE_READ_ALL
file pointers		MPI_FILE_WRITE	MPI_FILE_WRITE_ALL
	nonblocking &	MPI_FILE_IREAD	MPI_FILE_READ_ALL_BEGIN
	split collective		MPI_FILE_READ_ALL_END
		MPI_FILE_IWRITE	MPI_FILE_WRITE_ALL_BEGIN
			MPI_FILE_WRITE_ALL_END
shared	blocking	MPI_FILE_READ_SHARED	MPI_FILE_READ_ORDERED
file pointer		MPI_FILE_WRITE_SHARED	MPI_FILE_WRITE_ORDERED
	nonblocking &	MPI_FILE_IREAD_SHARED	MPI_FILE_READ_ORDERED_BEGIN
	split collective		MPI_FILE_READ_ORDERED_END
		MPI_FILE_IWRITE_SHARED	MPI_FILE_WRITE_ORDERED_BEGIN
			MPI_FILE_WRITE_ORDERED_END

Table 13.1: Data access routines

 POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations and use individual file pointers. The MPI equivalents are MPI_FILE_READ and MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This does not affect reads, as the data is always available in the user's buffer after a read operation completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual file pointers, and shared file pointers. The different positioning methods may be mixed within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g., MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position given directly as an argument—no file pointer is used nor updated. Note that this is not equivalent to an atomic seek-and-read or seek-and-write operation, as no "seek" is issued. Operations with explicit offsets are described in Section 13.4.2, page 439.

The names of the individual file pointer routines contain no positional qualifier (e.g., MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.4.3, page 442. The data access routines that use shared file pointers contain _SHARED or _ORDERED in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file pointers are described in Section 13.4.4, page 448.

The main semantic issues with MPI-maintained file pointers are how and when they are updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to the next data item after the last one that is accessed by the operation. In a nonblocking or split collective operation, the pointer is updated by the call that initiates the I/O, possibly before the access completes.

More formally,

$$new_file_offset = old_file_offset + \frac{elements(datatype)}{elements(etype)} \times count$$

where count is the number of datatype items to be accessed, elements(X) is the number of predefined datatypes in the typemap of X, and old_file_offset is the value of the implicit offset before the call. The file position, new_file_offset , is in terms of a count of etypes relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.

A blocking I/O call will not return until the I/O request is completed.

A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete. Given suitable hardware, this allows the transfer of data out/in the user's buffer to proceed concurrently with computation. A separate request complete call (MPI_WAIT, MPI_TEST, or any of their variants) is needed to complete the I/O request, i.e., to confirm that the data has been read or written and that it is safe for the user to reuse the buffer. The nonblocking versions of the routines are named MPI_FILE_IXXX, where the I stands for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to use that buffer as the source or target of other communications, between the initiation and completion of the operation.

The split collective routines support a restricted form of "nonblocking" operations for collective data access (see Section 13.4.5, page 453).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN

and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling process. However, the completion of a collective call (which must be called by all members of the process group) may depend on the activity of the other processes participating in the collective call. See Section 13.6.4, page 473, for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts, as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines move data from a file into memory. Write routines move data from memory into a file. The file is designated by a file handle, fh. The location of the file data is specified by an offset into the current view. The data in memory is specified by a triple: buf, count, and datatype. Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in etype units relative to the current view. Explicit offset routines pass offset as an argument (negative values are erroneous). The file pointer routines use implicit offsets maintained by MPI

A data access routine attempts to transfer (read or write) count data items of type datatype between the user's buffer buf and the file. The datatype passed to the routine must be a committed datatype. The layout of data in memory corresponding to buf, count, datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2 on page 29 and Section 4.1.11 on page 104. The data is accessed from those parts of the file specified by the current view (Section 13.3, page 433). The type signature of datatype must match the type signature of some number of contiguous copies of the etype of the current view. As in a receive, it is erroneous to specify a datatype for reading that contains overlapping regions (areas of memory which would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and associate a request handle, request, with the I/O operation. Nonblocking operations are completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register optimization done by Fortran compilers, please note the hints in subsections "Problems Due to Data Copying and Sequence Association," and "A Problem with Register Optimization" in Section 16.2.2, pages 514 and 517. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split collective routines, status is returned when the operation is completed. The number of datatype entries and predefined elements accessed by the calling process can be extracted from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS, respectively. The interpretation of the MPI_ERROR field is the same as for other operations — normally undefined, but meaningful if an MPI routine returns MPI_ERR_IN_STATUS. The user can pass (in C and Fortran) MPI_STATUS_IGNORE in the status argument if the return value of this argument is not needed. In C++, the status argument is optional. The status can be passed to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other fields of status are undefined.

13.4. DATA ACCESS 439

When reading, a program can detect the end of file by noting that the amount of data read is less than the amount requested. Writing past the end of file increases the file size. The amount of data accessed will be the amount requested, unless an error is raised (or a read reaches the end of file).

3

5

10 11

12

13 14

15

16

18

19

20 21

22

23 24

25

26

27

28

29

30

31 32

33

34

35

36 37 38

39

41

42

43

44 45

46

47

13.4.2 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the routines in this section.

```
MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)
           fh
 IN
                                       file handle (handle)
 IN
           offset
                                       file offset (integer)
 OUT
           buf
                                       initial address of buffer (choice)
 IN
           count
                                       number of elements in buffer (integer)
 IN
           datatype
                                       datatype of each buffer element (handle)
 OUT
           status
                                       status object (Status)
int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
               MPI_Datatype datatype, MPI_Status *status)
MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
    <type> BUF(*)
    INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
    INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
```

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

```
IN
           fh
                                            file handle (handle)
IN
           offset
                                            file offset (integer)
OUT
           buf
                                            initial address of buffer (choice)
IN
           count
                                            number of elements in buffer (integer)
IN
                                            datatype of each buffer element (handle)
           datatype
OUT
                                            status object (Status)
           status
```

```
1
     int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,
2
                    int count, MPI_Datatype datatype, MPI_Status *status)
3
     MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
4
          <type> BUF(*)
5
         INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
6
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
7
     {void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,
9
                    const MPI::Datatype& datatype, MPI::Status& status) (binding
10
                    deprecated, see Section 15.2) }
11
     {void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,
12
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
13
14
15
         MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT
16
     interface.
17
18
     MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)
19
20
       INOUT
                                            file handle (handle)
                 fh
21
                offset
       IN
                                            file offset (integer)
22
       IN
                 buf
                                            initial address of buffer (choice)
23
24
       IN
                count
                                            number of elements in buffer (integer)
       IN
                datatype
                                            datatype of each buffer element (handle)
26
       OUT
                status
                                            status object (Status)
27
28
29
     int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
30
                    MPI_Datatype datatype, MPI_Status *status)
31
     MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
32
          <type> BUF(*)
33
         INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
34
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
35
36
     {void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,
37
                    const MPI::Datatype& datatype, MPI::Status& status) (binding
38
                    deprecated, see Section 15.2) }
39
     {void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,
40
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
41
42
43
         MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.
44
```

13.4. DATA ACCESS 441

```
MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)
                                                                                          2
  INOUT
           fh
                                        file handle (handle)
  IN
           offset
                                       file offset (integer)
           buf
  IN
                                       initial address of buffer (choice)
  IN
           count
                                       number of elements in buffer (integer)
  IN
           datatype
                                       datatype of each buffer element (handle)
  OUT
           status
                                       status object (Status)
                                                                                          11
int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
               int count, MPI_Datatype datatype, MPI_Status *status)
                                                                                          12
                                                                                          13
MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
                                                                                          14
    <type> BUF(*)
                                                                                          15
    INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
                                                                                          16
    INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
                                                                                          18
{void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,
                                                                                          19
               int count, const MPI::Datatype& datatype,
                                                                                          20
               MPI::Status& status) (binding deprecated, see Section 15.2) }
                                                                                          21
{void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,
                                                                                          22
               int count, const MPI::Datatype& datatype) (binding deprecated, see
                                                                                          23
               Section 15.2) }
                                                                                          24
                                                                                          25
    MPI_FILE_WRITE_AT_ALL is a collective version of the blocking
                                                                                          26
MPI_FILE_WRITE_AT interface.
                                                                                          27
                                                                                          28
MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)
                                                                                          29
                                                                                          30
  IN
           fh
                                        file handle (handle)
                                                                                          31
  IN
           offset
                                       file offset (integer)
  OUT
           buf
                                       initial address of buffer (choice)
                                                                                          33
                                                                                          34
  IN
           count
                                       number of elements in buffer (integer)
                                                                                          35
  IN
           datatype
                                       datatype of each buffer element (handle)
                                                                                          36
  OUT
                                       request object (handle)
           request
                                                                                          37
                                                                                          38
int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
               MPI_Datatype datatype, MPI_Request *request)
MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
                                                                                          42
    <type> BUF(*)
                                                                                          43
    INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
                                                                                          44
    INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
                                                                                          45
{MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf, int count,
                                                                                          46
                                                                                          47
               const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
               }
```

2 3

4 5

6

7

8 9

11

21

24

25 26

27 28

29

30

31

32

33

34

35

36 37

38

39

40

41

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface. MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request) INOUT fh file handle (handle) IN offset file offset (integer) buf IN initial address of buffer (choice) IN count number of elements in buffer (integer) 10 IN datatype datatype of each buffer element (handle) OUT request object (handle) request 12 13 14 int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf, int count, MPI_Datatype datatype, MPI_Request *request) 1516 MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR) 17 <type> BUF(*) 18 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR 19 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET 20 {MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf, 22 int count, const MPI::Datatype& datatype) (binding deprecated, see 23 Section 15.2) }

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.

Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value of this pointer implicitly specifies the offset in the data access routines described in this section. These routines only use and update the individual file pointers maintained by MPI. The shared file pointer is not used nor updated.

The individual file pointer routines have the same semantics as the data access with explicit offset routines described in Section 13.4.2, page 439, with the following modification:

• the offset is defined to be the current value of the MPI-maintained individual file pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated to point to the next etype after the last one that will be accessed. The file pointer is updated relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.

13.4. DATA ACCESS 443

```
MPI_FILE_READ(fh, buf, count, datatype, status)
                                                                                       2
 INOUT
           fh
                                      file handle (handle)
 OUT
           buf
                                      initial address of buffer (choice)
 IN
           count
                                      number of elements in buffer (integer)
 IN
                                      datatype of each buffer element (handle)
           datatype
 OUT
           status
                                      status object (Status)
int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,
              MPI_Status *status)
                                                                                       12
MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
                                                                                       13
    <type> BUF(*)
                                                                                       14
    INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
                                                                                       15
{void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
                                                                                       16
                                                                                       17
              MPI::Status& status) (binding deprecated, see Section 15.2) }
                                                                                       18
{void MPI::File::Read(void* buf, int count,
                                                                                       19
              const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
                                                                                       20
                                                                                       21
    MPI_FILE_READ reads a file using the individual file pointer.
                                                                                       22
                                                                                       23
Example 13.2 The following Fortran code fragment is an example of reading a file until
                                                                                       24
the end of file is reached:
                                                                                       26
    Read a preexisting input file until all data has been read.
                                                                                       27
    Call routine "process_input" if all requested data is read.
                                                                                       28
    The Fortran 90 "exit" statement exits the loop.
                                                                                       29
                                                                                       30
                 bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)
      integer
                                                                                       31
      parameter (bufsize=100)
                 localbuffer(bufsize)
      real
                                                                                       33
                                                                                       34
      call MPI_FILE_OPEN( MPI_COMM_WORLD, 'myoldfile', &
                                                                                       35
                            MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )
                                                                                       36
      call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, 'native', &
                                                                                       37
                            MPI_INFO_NULL, ierr )
                                                                                       38
      totprocessed = 0
                                                                                       39
      do
          call MPI_FILE_READ( myfh, localbuffer, bufsize, MPI_REAL, &
                                                                                       41
                                status, ierr )
                                                                                       42
          call MPI_GET_COUNT( status, MPI_REAL, numread, ierr )
                                                                                       43
          call process_input( localbuffer, numread )
                                                                                       44
         totprocessed = totprocessed + numread
                                                                                       45
          if ( numread < bufsize ) exit
                                                                                       46
      enddo
                                                                                       47
```

```
1
            write(6,1001) numread, bufsize, totprocessed
2
     1001 format( "No more data: read", I3, "and expected", I3, &
3
                     "Processed total of", I6, "before terminating job." )
4
5
            call MPI_FILE_CLOSE( myfh, ierr )
6
     MPI_FILE_READ_ALL(fh, buf, count, datatype, status)
9
10
       INOUT
                 fh
                                             file handle (handle)
11
       OUT
                 buf
                                             initial address of buffer (choice)
12
       IN
                 count
                                             number of elements in buffer (integer)
13
14
       IN
                 datatype
                                             datatype of each buffer element (handle)
15
       OUT
                 status
                                             status object (Status)
16
17
     int MPI_File_read_all(MPI_File fh, void *buf, int count,
18
                    MPI_Datatype datatype, MPI_Status *status)
19
20
     MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
21
          <type> BUF(*)
22
          INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
23
     {void MPI::File::Read_all(void* buf, int count,
24
                     const MPI::Datatype& datatype, MPI::Status& status) (binding
25
                     deprecated, see Section 15.2) }
26
27
     {void MPI::File::Read_all(void* buf, int count,
28
                     const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
29
30
          MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.
31
32
33
     MPI_FILE_WRITE(fh, buf, count, datatype, status)
34
       INOUT
                 fh
                                             file handle (handle)
35
36
       IN
                 buf
                                             initial address of buffer (choice)
37
       IN
                                             number of elements in buffer (integer)
                 count
38
                                             datatype of each buffer element (handle)
       IN
                 datatype
39
       OUT
                 status
                                             status object (Status)
41
42
     int MPI_File_write(MPI_File fh, void *buf, int count,
43
                    MPI_Datatype datatype, MPI_Status *status)
44
     MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
45
          <type> BUF(*)
46
          INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
47
```

13.4. DATA ACCESS 445

```
{void MPI::File::Write(const void* buf, int count,
               const MPI::Datatype& datatype, MPI::Status& status) (binding
               deprecated, see Section 15.2) }
{void MPI::File::Write(const void* buf, int count,
               const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
               }
    MPI_FILE_WRITE writes a file using the individual file pointer.
MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)
                                                                                           11
                                                                                           12
  INOUT
                                        file handle (handle)
                                                                                           13
  IN
           buf
                                        initial address of buffer (choice)
                                                                                           14
  IN
           count
                                        number of elements in buffer (integer)
                                                                                           15
                                                                                           16
  IN
           datatype
                                        datatype of each buffer element (handle)
  OUT
           status
                                        status object (Status)
                                                                                           18
                                                                                           19
int MPI_File_write_all(MPI_File fh, void *buf, int count,
                                                                                           20
               MPI_Datatype datatype, MPI_Status *status)
                                                                                           21
                                                                                           22
MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
                                                                                           23
    <type> BUF(*)
                                                                                           24
    INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
{void MPI::File::Write_all(const void* buf, int count,
                                                                                           26
               const MPI::Datatype& datatype, MPI::Status& status)(binding
                                                                                           27
               deprecated, see Section 15.2) }
                                                                                           28
                                                                                           29
{void MPI::File::Write_all(const void* buf, int count,
                                                                                           30
               const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
                                                                                           31
               }
                                                                                           32
    MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE inter-
                                                                                           33
face.
                                                                                           34
                                                                                           35
                                                                                           36
MPI_FILE_IREAD(fh, buf, count, datatype, request)
                                                                                           37
  INOUT
           fh
                                        file handle (handle)
                                                                                           38
                                                                                           39
  OUT
           buf
                                        initial address of buffer (choice)
  IN
                                        number of elements in buffer (integer)
           count
                                                                                           41
  IN
           datatype
                                        datatype of each buffer element (handle)
                                                                                           42
                                                                                           43
  OUT
           request
                                        request object (handle)
                                                                                           44
                                                                                           45
int MPI_File_iread(MPI_File fh, void *buf, int count,
                                                                                           46
               MPI_Datatype datatype, MPI_Request *request)
                                                                                           47
MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
```

```
1
         <type> BUF(*)
2
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
     {MPI::Request MPI::File::Iread(void* buf, int count,
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
5
                    }
6
         MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.
     Example 13.3 The following Fortran code fragment illustrates file pointer update seman-
9
     tics:
10
11
         Read the first twenty real words in a file into two local
12
         buffers. Note that when the first MPI_FILE_IREAD returns,
13
         the file pointer has been updated to point to the
14
         eleventh real word in the file.
15
16
                       bufsize, req1, req2
            integer
            integer, dimension(MPI_STATUS_SIZE) :: status1, status2
            parameter (bufsize=10)
19
            real
                       buf1(bufsize), buf2(bufsize)
20
21
            call MPI_FILE_OPEN( MPI_COMM_WORLD, 'myoldfile', &
22
                                  MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )
23
            call MPI_FILE_SET_VIEW( myfh, 0, MPI_REAL, MPI_REAL, 'native', &
24
                                 MPI_INFO_NULL, ierr )
            call MPI_FILE_IREAD( myfh, buf1, bufsize, MPI_REAL, &
26
                                   req1, ierr )
27
            call MPI_FILE_IREAD( myfh, buf2, bufsize, MPI_REAL, &
28
                                   req2, ierr )
29
30
            call MPI_WAIT( req1, status1, ierr )
31
            call MPI_WAIT( req2, status2, ierr )
            call MPI_FILE_CLOSE( myfh, ierr )
34
35
36
37
     MPI_FILE_IWRITE(fh, buf, count, datatype, request)
38
       INOUT
                fh
                                            file handle (handle)
39
       IN
                buf
                                            initial address of buffer (choice)
41
       IN
                count
                                            number of elements in buffer (integer)
       IN
                datatype
                                            datatype of each buffer element (handle)
43
44
       OUT
                 request
                                            request object (handle)
45
46
     int MPI_File_iwrite(MPI_File fh, void *buf, int count,
47
                    MPI_Datatype datatype, MPI_Request *request)
```

```
MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
                                                                                            2
    <type> BUF(*)
    INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
{MPI::Request MPI::File::Iwrite(const void* buf, int count,
               const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
               }
    MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.
MPI_FILE_SEEK(fh, offset, whence)
                                                                                           11
                                                                                           12
  INOUT
           fh
                                        file handle (handle)
                                                                                           13
  IN
           offset
                                        file offset (integer)
                                                                                           14
  IN
           whence
                                        update mode (state)
                                                                                           15
                                                                                           16
int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)
                                                                                           18
MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
                                                                                           19
    INTEGER FH, WHENCE, IERROR
                                                                                           20
    INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
                                                                                           21
{void MPI::File::Seek(MPI::Offset offset, int whence) (binding deprecated, see
                                                                                           22
                                                                                           23
               Section 15.2)
                                                                                           24
    MPI_FILE_SEEK updates the individual file pointer according to whence, which has the
                                                                                           25
following possible values:
                                                                                           26
                                                                                           27
   • MPI_SEEK_SET: the pointer is set to offset
                                                                                           28
   • MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset
                                                                                           29
                                                                                           30
   • MPI_SEEK_END: the pointer is set to the end of file plus offset
                                                                                           31
    The offset can be negative, which allows seeking backwards. It is erroneous to seek to
                                                                                           33
a negative position in the view.
                                                                                           34
                                                                                           35
MPI_FILE_GET_POSITION(fh, offset)
                                                                                           36
                                                                                           37
            fh
  IN
                                        file handle (handle)
                                                                                           38
  OUT
           offset
                                        offset of individual pointer (integer)
                                                                                           39
int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)
                                                                                           41
                                                                                           42
MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
                                                                                           43
    INTEGER FH, IERROR
                                                                                           44
    INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
                                                                                           45
{MPI::Offset MPI::File::Get_position() const(binding deprecated, see Section 15.2)
                                                                                           46
               }
                                                                                           47
```

 MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using whence = MPI_SEEK_SET to return to the current position. To set the displacement to the current file pointer position, first convert offset into an absolute byte position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting displacement. (End of advice to users.)

```
MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)
```

```
      IN
      fh
      file handle (handle)

      IN
      offset
      offset (integer)

      OUT
      disp
      absolute byte position of offset (integer)
```

const(binding deprecated, see Section 15.2) }

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte position. The absolute byte position (from the beginning of the file) of offset relative to the current view of fh is returned in disp.

13.4.4 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among processes in the communicator group). The current value of this pointer implicitly specifies the offset in the data access routines described in this section. These routines only use and update the shared file pointer maintained by MPI. The individual file pointers are not used nor updated.

The shared file pointer routines have the same semantics as the data access with explicit offset routines described in Section 13.4.2, page 439, with the following modifications:

- the offset is defined to be the current value of the MPI-maintained shared file pointer,
- the effect of multiple calls to shared file pointer routines is defined to behave as if the calls were serialized, and
- the use of shared file pointer routines is erroneous unless all processes use the same file view.

For the noncollective shared file pointer routines, the serialization ordering is not deterministic. The user needs to use other synchronization means to enforce a specific order.

After a shared file pointer operation is initiated, the shared file pointer is updated to

point to the next etype after the last one that will be accessed. The file pointer is updated relative to the current view of the file. 5 Noncollective Operations MPI_FILE_READ_SHARED(fh, buf, count, datatype, status) INOUT fh file handle (handle) 11 OUT buf initial address of buffer (choice) 12 IN count number of elements in buffer (integer) 13 IN datatype datatype of each buffer element (handle) 14 15 OUT status status object (Status) 16 17 int MPI_File_read_shared(MPI_File fh, void *buf, int count, 18 MPI_Datatype datatype, MPI_Status *status) 19 MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR) 20 <type> BUF(*) 21 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR 22 23 {void MPI::File::Read_shared(void* buf, int count, 24 const MPI::Datatype& datatype, MPI::Status& status) (binding deprecated, see Section 15.2) } 26 {void MPI::File::Read_shared(void* buf, int count, 27 const MPI::Datatype& datatype) (binding deprecated, see Section 15.2) 28 } 29 30 MPI_FILE_READ_SHARED reads a file using the shared file pointer. 31 32 33 MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status) 34 **INOUT** fh file handle (handle) 35 IN buf initial address of buffer (choice) 36 37 IN number of elements in buffer (integer) count 38 IN datatype datatype of each buffer element (handle) 39 OUT status status object (Status) 41 42 int MPI_File_write_shared(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status *status) 43 44 MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR) 45 <type> BUF(*) 46

47

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

```
1
     {void MPI::File::Write_shared(const void* buf, int count,
2
                     const MPI::Datatype& datatype, MPI::Status& status) (binding
3
                     deprecated, see Section 15.2) }
4
     {void MPI::File::Write_shared(const void* buf, int count,
5
                     const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
6
                     }
7
8
          MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.
9
10
     MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)
11
12
       INOUT
                                             file handle (handle)
13
       OUT
                 buf
                                             initial address of buffer (choice)
14
       IN
                 count
                                             number of elements in buffer (integer)
15
16
       IN
                 datatype
                                             datatype of each buffer element (handle)
17
       OUT
                 request
                                             request object (handle)
18
19
     int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
20
                    MPI_Datatype datatype, MPI_Request *request)
21
22
     MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
23
          <type> BUF(*)
24
          INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
25
     {MPI::Request MPI::File::Iread_shared(void* buf, int count,
26
                     const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
27
28
29
          MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED
30
     interface.
31
32
     MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)
33
34
       INOUT
                 fh
                                             file handle (handle)
35
       IN
                 buf
                                             initial address of buffer (choice)
36
37
       IN
                 count
                                             number of elements in buffer (integer)
38
       IN
                 datatype
                                             datatype of each buffer element (handle)
39
       OUT
                 request
                                             request object (handle)
40
41
     int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,
42
                    MPI_Datatype datatype, MPI_Request *request)
43
44
     MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
45
          <type> BUF(*)
46
          INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
47
```

```
{MPI::Request MPI::File::Iwrite_shared(const void* buf, int count, const MPI::Datatype& datatype)(binding deprecated, see Section 15.2) }
```

MPI_FILE_IWRITE_SHARED is a nonblocking version of the MPI_FILE_WRITE_SHARED interface.

Collective Operations

The semantics of a collective access using a shared file pointer is that the accesses to the file will be in the order determined by the ranks of the processes within the group. For each process, the location in the file at which data is accessed is the position at which the shared file pointer would be after all processes whose ranks within the group less than that of this process had accessed their data. In addition, in order to prevent subsequent shared offset accesses by the same processes from interfering with this collective access, the call might return only after all the processes within the group have initiated their accesses. When the call returns, the shared file pointer points to the next etype accessible, according to the file view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group need to access the file using the shared file pointer, but the program may not require that data be accessed in order of process rank. In such programs, using the shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, improving performance. (End of advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have to be serialized. Once all processes have issued their requests, locations within the file for all accesses can be computed, and accesses can proceed independently from each other, possibly in parallel. (End of advice to implementors.)

```
MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)
```

```
INOUT fh file handle (handle)
OUT buf initial address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype datatype of each buffer element (handle)
OUT status status object (Status)
```

```
1
     {void MPI::File::Read_ordered(void* buf, int count,
2
                     const MPI::Datatype& datatype, MPI::Status& status) (binding
3
                    deprecated, see Section 15.2) }
4
     {void MPI::File::Read_ordered(void* buf, int count,
5
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
6
                     }
8
          MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED
9
     interface.
10
11
     MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)
12
13
       INOUT
                 fh
                                             file handle (handle)
14
       IN
                 buf
                                             initial address of buffer (choice)
15
       IN
                 count
                                             number of elements in buffer (integer)
16
17
       IN
                 datatype
                                             datatype of each buffer element (handle)
18
       OUT
                                             status object (Status)
                 status
19
20
     int MPI_File_write_ordered(MPI_File fh, void *buf, int count,
21
                    MPI_Datatype datatype, MPI_Status *status)
22
     MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
23
24
          <type> BUF(*)
          INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
25
26
     {void MPI::File::Write_ordered(const void* buf, int count,
27
                    const MPI::Datatype& datatype, MPI::Status& status) (binding
28
                    deprecated, see Section 15.2) }
29
     {void MPI::File::Write_ordered(const void* buf, int count,
30
31
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
                     }
32
33
          MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED
34
     interface.
35
36
     Seek
37
38
     If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
39
     to call the following two routines (MPI_FILE_SEEK_SHARED and
     MPI_FILE_GET_POSITION_SHARED).
41
42
     MPI_FILE_SEEK_SHARED(fh, offset, whence)
43
44
       INOUT
                 fh
                                             file handle (handle)
45
       IN
                 offset
                                             file offset (integer)
46
       IN
                 whence
                                             update mode (state)
47
```

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which has the following possible values:

- MPI_SEEK_SET: the pointer is set to offset
- MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset
- MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to a negative position in the view.

```
MPI_FILE_GET_POSITION_SHARED(fh, offset)
```

```
IN fh file handle (handle)
OUT offset of shared pointer (integer)
```

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

```
MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
    INTEGER FH, IERROR
    INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
```

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED using whence = MPI_SEEK_SET to return to the current position. To set the displacement to the current file pointer position, first convert offset into an absolute byte position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting displacement. (End of advice to users.)

13.4.5 Split Collective Data Access Routines

MPI provides a restricted form of "nonblocking collective" I/O operations for all data accesses using split collective data access routines. These routines are referred to as "split" collective routines because a single collective operation is split in two: a begin routine and

1

an end routine. The begin routine begins the operation, much like a nonblocking data access (e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must not use the buffer passed to a begin routine while the routine is outstanding; the operation must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the semantic rules given below.

7 8

• On any MPI process, each file handle may have at most one active split collective operation at any time.

9 10

11

• Begin calls are collective over the group of processes that participated in the collective open and follow the ordering rules for collective calls.

12 13 14

15

16

• End calls are collective over the group of processes that participated in the collective open and follow the ordering rules for collective calls. Each end call matches the preceding begin call for the same collective operation. When an "end" call is made, exactly one unmatched "begin" call for the same operation must precede it.

17 18 19

20

21

• An implementation is free to implement any split collective data access routine using the corresponding blocking collective routine when either the begin call (e.g., MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is issued. The begin and end calls are provided to allow the user and MPI implementation to optimize the collective operation.

22 23 24

25 26 • Split collective operations do not match the corresponding regular collective operation. For example, in a single collective read operation, an MPI_FILE_READ_ALL on one process does not match an MPI_FILE_READ_ALL_BEGIN/ MPI_FILE_READ_ALL_END pair on another process.

28 29 30

27

• Split collective routines must specify a buffer in both the begin and end routines. By specifying the buffer that receives data in the end routine, we can avoid many (though not all) of the problems described in "A Problem with Register Optimization," Section 16.2.2, page 517.

31 32 33

34

• No collective I/O operations are permitted on a file handle concurrently with a split collective access on that file handle (i.e., between the begin and end of the access). That is

35 36 37

38

39 40

```
MPI_File_read_all_begin(fh, ...);
MPI_File_read_all(fh, ...);
MPI_File_read_all_end(fh, ...);
```

41 42

is erroneous.

43 44

45

46

47

• In a multithreaded implementation, any split collective begin and end operation called by a process must be called from the same thread. This restriction is made to simplify the implementation in the multithreaded case. (Note that we have already disallowed having two threads begin a split collective operation on the same file handle since only one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective versions (e.g., the argument definitions for MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END are equivalent to the arguments for MPI_FILE_READ_ALL). The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split collective operation that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END) produces the result as defined for the equivalent collective routine (i.e., MPI_FILE_READ_ALL).

 $\frac{44}{45}$

For the purpose of consistency semantics (Section 13.6.1, page 469), a matched pair of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END) compose a single data access.

```
MPI_FILE_READ_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

IN fh file handle (handle)
```

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(fh, buf, status)

```
IN fh file handle (handle)
```

OUT buf initial address of buffer (choice)

OUT status object (Status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

```
1
     {void MPI::File::Read_at_all_end(void* buf)(binding deprecated, see Section 15.2)
2
                     }
3
4
5
     MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)
6
       INOUT
                                             file handle (handle)
                 fh
7
       IN
                 offset
8
                                             file offset (integer)
9
       IN
                 buf
                                             initial address of buffer (choice)
10
       IN
                 count
                                             number of elements in buffer (integer)
11
       IN
                                             datatype of each buffer element (handle)
12
                 datatype
13
14
     int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
15
                     int count, MPI_Datatype datatype)
16
     MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
17
          <type> BUF(*)
18
          INTEGER FH, COUNT, DATATYPE, IERROR
19
          INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
20
21
     {void MPI::File::Write_at_all_begin(MPI::Offset offset, const void* buf,
22
                     int count, const MPI::Datatype& datatype) (binding deprecated, see
23
                     Section 15.2) }
24
25
26
     MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)
27
       INOUT
                 fh
                                             file handle (handle)
28
29
       IN
                 buf
                                             initial address of buffer (choice)
30
       OUT
                                             status object (Status)
                 status
31
32
     int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)
33
34
     MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
35
          <type> BUF(*)
36
          INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
37
     {void MPI::File::Write_at_all_end(const void* buf,
38
                    MPI::Status& status) (binding deprecated, see Section 15.2) }
39
40
     {void MPI::File::Write_at_all_end(const void* buf)(binding deprecated, see
41
                     Section 15.2) }
42
43
44
```

```
MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)
                                                                                           2
  INOUT
           fh
                                        file handle (handle)
  OUT
           buf
                                        initial address of buffer (choice)
  IN
           count
                                        number of elements in buffer (integer)
  IN
                                        datatype of each buffer element (handle)
           datatype
int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
               MPI_Datatype datatype)
                                                                                           11
MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
                                                                                           12
    <type> BUF(*)
                                                                                           13
    INTEGER FH, COUNT, DATATYPE, IERROR
                                                                                           14
{void MPI::File::Read_all_begin(void* buf, int count,
                                                                                           15
               const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
                                                                                           16
               }
                                                                                           18
                                                                                           19
MPI_FILE_READ_ALL_END(fh, buf, status)
                                                                                           20
                                                                                           21
  INOUT
           fh
                                        file handle (handle)
                                                                                           22
  OUT
           buf
                                        initial address of buffer (choice)
                                                                                           23
  OUT
           status
                                        status object (Status)
                                                                                           24
                                                                                           26
int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)
                                                                                           27
MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
                                                                                           28
    <type> BUF(*)
                                                                                           29
    INTEGER FH, STATUS (MPI_STATUS_SIZE), IERROR
                                                                                           30
                                                                                           31
{void MPI::File::Read_all_end(void* buf, MPI::Status& status) (binding
               deprecated, see Section 15.2) }
{void MPI::File::Read_all_end(void* buf)(binding deprecated, see Section 15.2)}
                                                                                           34
                                                                                           35
                                                                                           36
MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)
                                                                                           37
                                                                                           38
  INOUT
           fh
                                        file handle (handle)
                                                                                           39
  IN
           buf
                                        initial address of buffer (choice)
  IN
                                        number of elements in buffer (integer)
                                                                                           41
           count
                                                                                           42
  IN
           datatype
                                        datatype of each buffer element (handle)
                                                                                           43
                                                                                           44
int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
                                                                                           45
               MPI_Datatype datatype)
                                                                                           46
MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
                                                                                           47
    <type> BUF(*)
```

```
1
          INTEGER FH, COUNT, DATATYPE, IERROR
2
     {void MPI::File::Write_all_begin(const void* buf, int count,
3
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
5
6
7
     MPI_FILE_WRITE_ALL_END(fh, buf, status)
8
9
       INOUT
                 fh
                                             file handle (handle)
10
                 buf
       IN
                                             initial address of buffer (choice)
11
       OUT
                                             status object (Status)
                 status
12
13
14
     int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)
15
     MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
16
          <type> BUF(*)
17
          INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
18
19
     {void MPI::File::Write_all_end(const void* buf, MPI::Status& status)(binding
20
                     deprecated, see Section 15.2) }
21
     {void MPI::File::Write_all_end(const void* buf)(binding deprecated, see
22
                    Section 15.2) }
23
24
25
     MPI_FILE_READ_ORDERED_BEGIN(fh, buf, count, datatype)
26
27
       INOUT
                 fh
                                             file handle (handle)
28
       OUT
                 buf
                                             initial address of buffer (choice)
29
       IN
                 count
                                             number of elements in buffer (integer)
30
31
       IN
                 datatype
                                             datatype of each buffer element (handle)
32
33
     int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
34
                    MPI_Datatype datatype)
35
     MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
36
37
          <type> BUF(*)
          INTEGER FH, COUNT, DATATYPE, IERROR
38
39
     {void MPI::File::Read_ordered_begin(void* buf, int count,
40
                    const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
41
                     }
42
```

```
MPI_FILE_READ_ORDERED_END(fh, buf, status)
  INOUT
           fh
                                       file handle (handle)
  OUT
           buf
                                       initial address of buffer (choice)
  OUT
           status
                                       status object (Status)
int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)
MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)
    <type> BUF(*)
    INTEGER FH, STATUS (MPI_STATUS_SIZE), IERROR
                                                                                         12
{void MPI::File::Read_ordered_end(void* buf, MPI::Status& status) (binding
                                                                                         13
               deprecated, see Section 15.2) }
                                                                                         14
{void MPI::File::Read_ordered_end(void* buf)(binding deprecated, see Section 15.2)
                                                                                         15
               }
                                                                                         16
                                                                                         18
                                                                                         19
MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)
                                                                                         20
  INOUT
           fh
                                       file handle (handle)
                                                                                         21
  IN
           buf
                                       initial address of buffer (choice)
                                                                                         22
                                                                                         23
  IN
           count
                                       number of elements in buffer (integer)
                                                                                         24
  IN
           datatype
                                       datatype of each buffer element (handle)
                                                                                         26
int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,
                                                                                         27
               MPI_Datatype datatype)
                                                                                         28
                                                                                         29
MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
                                                                                         30
    <type> BUF(*)
                                                                                         31
    INTEGER FH, COUNT, DATATYPE, IERROR
{void MPI::File::Write_ordered_begin(const void* buf, int count,
               const MPI::Datatype& datatype) (binding deprecated, see Section 15.2)
                                                                                         34
               }
                                                                                         35
                                                                                         36
                                                                                         37
MPI_FILE_WRITE_ORDERED_END(fh, buf, status)
                                                                                         38
  INOUT
           fh
                                       file handle (handle)
  IN
           buf
                                       initial address of buffer (choice)
  OUT
                                       status object (Status)
                                                                                         42
           status
                                                                                         43
                                                                                         44
int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)
                                                                                         45
MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)
                                                                                         46
    <type> BUF(*)
    INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
```

13.5 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously written to a file—not just the bits of data, but the actual information the bits represent. MPI guarantees full interoperability within a single MPI environment, and supports increased interoperability outside that environment through the external data representation (Section 13.5.2, page 463) as well as the data conversion functions (Section 13.5.3, page 464).

Interoperability within a single MPI environment (which could be considered "operability") ensures that file data written by one MPI process can be read by any other MPI process, subject to the consistency constraints (see Section 13.6.1, page 469), provided that it would have been possible to start the two processes simultaneously and have them reside in a single MPI_COMM_WORLD. Furthermore, both processes must see the same data values at every absolute byte offset in the file for which data was written.

This single environment file interoperability implies that file data is accessible regardless of the number of processes.

There are three aspects to file interoperability:

- transferring the bits,
- converting between different file structures, and
- converting between different machine representations.

The first two aspects of file interoperability are beyond the scope of this standard, as both are highly machine dependent. However, transferring the bits of a file into and out of the MPI environment (e.g., by writing a file to tape) is required to be supported by all MPI implementations. In particular, an implementation must specify how familiar operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it is expected that the facility provided maintains the correspondence between absolute byte offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the MPI environment are at byte offset 102 outside the MPI environment). As an example, a simple off-line conversion utility that transfers and converts files between the native file system and the MPI environment would suffice, provided it maintained the offset coherence mentioned above. In a high-quality implementation of MPI, users will be able to manipulate MPI files using the same or similar tools that the native file system offers for manipulating its files.

The remaining aspect of file interoperability, converting between different machine representations, is supported by the typing information specified in the etype and filetype. This facility allows the information in files to be shared between any two applications, regardless of whether they use MPI, and regardless of the machine architectures on which they run.

MPI supports multiple data representations: "native," "internal," and "external32." An implementation may support additional data representations. MPI also supports user-defined data representations (see Section 13.5.3, page 464). The "native" and "internal"

data representations are implementation dependent, while the "external32" representation is common to all MPI implementations and facilitates file interoperability. The data representation is specified in the *datarep* argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representation was used when a file is written. Therefore, to correctly retrieve file data, an MPI application is responsible for specifying the same data representation as was used to create the file. (End of advice to users.)

"native" Data in this representation is stored in a file exactly as it is in memory. The advantage of this data representation is that data precision and I/O performance are not lost in type conversions with a purely homogeneous environment. The disadvantage is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous MPI environment, or when the MPI application is capable of performing the data type conversions itself. (*End of advice to users*.)

Advice to implementors. When implementing read and write operations on top of MPI message-passing, the message data should be typed as MPI_BYTE to ensure that the message routines do not perform any type conversions on the data. (End of advice to implementors.)

"internal" This data representation can be used for I/O operations in a homogeneous or heterogeneous environment; the implementation will perform type conversions if necessary. The implementation is free to store data in any format of its choice, with the restriction that it will maintain constant extents for all predefined datatypes in any one file. The environment in which the resulting file can be reused is implementation-defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O efficiently in a heterogeneous environment, though with implementation-defined restrictions on how the file can be reused. (*End of rationale*.)

Advice to implementors. Since "external32" is a superset of the functionality provided by "internal," an implementation may choose to implement "internal" as "external32." (End of advice to implementors.)

"external32" This data representation states that read and write operations convert all data from and to the "external32" representation defined in Section 13.5.2, page 463. The data conversion rules for communication also apply to these conversions (see Section 3.3.2, page 25-27, of the MPI-1 document). The data on the storage medium is always in this canonical representation, and the data in memory is always in the local process's native representation.

This data representation has several advantages. First, all processes reading the file in a heterogeneous MPI environment will automatically have the data converted to their respective native representations. Second, the file can be exported from one MPI environment and imported into any other MPI environment with the guarantee that the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O performance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top of MPI message-passing, the message data should be converted to and from the "external32" representation in the client, and sent as type MPI_BYTE. This will avoid possible double data type conversions and the associated further loss of precision and performance. (End of advice to implementors.)

13.5.1 Datatypes for File Interoperability

If the file data representation is other than "native," care must be taken in constructing etypes and filetypes. Any of the datatype constructor functions may be used; however, for those functions that accept displacements in bytes, the displacements must be specified in terms of their values in the file for the file data representation being used. MPI will interpret these byte displacements as is; no scaling will be done. The function

MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the file. For etypes and filetypes that are portable datatypes (see Section 2.4, page 11), MPI will scale any displacements in the datatypes to match the file data representation. Datatypes passed as arguments to read/write routines specify the data layout in memory; therefore, they must always be constructed using displacements corresponding to displacements in memory.

Advice to users. One can logically think of the file as if it were stored in the memory of a file server. The etype and filetype are interpreted as if they were defined at this file server, by the same sequence of calls used to define them at the calling process. If the data representation is "native", then this logical file server runs on the same architecture as the calling process, so that these types define the same data layout on the file as they would define in the memory of the calling process. If the etype and filetype are portable datatypes, then the data layout defined in the file is the same as would be defined in the calling process memory, up to a scaling factor. The routine MPI_FILE_GET_FILE_EXTENT can be used to calculate this scaling factor. Thus, two equivalent, portable datatypes will define the same data layout in the file, even in a heterogeneous environment with "internal", "external32", or user defined data representations. Otherwise, the etype and filetype must be constructed so that their typemap and extent are the same on any architecture. This can be achieved if they have an explicit upper bound and lower bound (defined either using MPI_LB and

MPI_TYPE_CONTIGUOUS, or implictly, by a blocklength argument that is greater than one. If an etype or filetype is not portable, and has a typemap or extent that is architecture dependent, then the data layout specified by it on a file is implementation dependent.

MPI_UB markers, or using MPI_TYPE_CREATE_RESIZED). This condition must also

be fulfilled by any datatype that is used in the construction of the etype and filetype,

if this datatype is replicated contiguously, either explicitly, by a call to

File data representations other than "native" may be different from corresponding data representations in memory. Therefore, for these file data representations, it is important not to use hardwired byte offsets for file positioning, including the initial displacement that specifies the view. When a portable datatype (see Section 2.4,

page 11) is used in a data access operation, any holes in the datatype are scaled to match the data representation. However, note that this technique only works when all the processes that created the file view build their etypes from the same predefined datatypes. For example, if one process uses an etype built from MPI_INT and another uses an etype built from MPI_FLOAT, the resulting views may be nonportable because the relative sizes of these types may differ from one data representation to another. (End of advice to users.)

```
MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)
  IN
                                      file handle (handle)
  IN
           datatype
                                      datatype (handle)
  OUT
           extent
                                      datatype extent (integer)
int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
              MPI_Aint *extent)
MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
    INTEGER FH, DATATYPE, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT
{MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype)
              const(binding deprecated, see Section 15.2) }
```

Returns the extent of datatype in the file fh. This extent will be the same for all processes accessing the file fh. If the current view uses a user-defined data representation (see Section 13.5.3, page 464), MPI uses the dtype_file_extent_fn callback to calculate the extent.

Advice to implementors. In the case of user-defined data representations, the extent of a derived datatype can be calculated by first determining the extents of the predefined datatypes in this derived datatype using dtype_file_extent_fn (see Section 13.5.3, page 464). (End of advice to implementors.)

13.5.2 External Data Representation: "external32"

All MPI implementations are required to support the data representation defined in this section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [31] of the appropriate size. Floating point values are represented by one of three IEEE formats. These are the IEEE "Single," "Double," and "Double Extended" formats, requiring 4, 8 and 16 bytes of storage, respectively. For the IEEE "Double Extended" formats, MPI specifies a Format Width of 16 bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous to the "Double" format. All integral values are in two's complement big-endian format. Big-endian means most significant byte at lowest address byte. For C _Bool, Fortran LOGICAL and C++ bool, 0 implies false and nonzero implies true. C float _Complex, double _Complex and long double _Complex as well as Fortran COMPLEX and DOUBLE COMPLEX are represented by a pair of floating point format values for the real and imaginary components.

Characters are in ISO 8859-1 format [32]. Wide characters (of type MPI_WCHAR) are in Unicode format [52].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary parts at the most significant bit of each part.

According to IEEE specifications [31], the "NaN" (not a number) is system dependent. It should not be interpreted within MPI as anything other than "NaN."

8 9

1

2

3

4

5

6

7

Advice to implementors. The MPI treatment of "NaN" is similar to the approach used in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

10 11 12

All data is byte aligned, regardless of type. All data items are stored contiguously in the file (if the file view is contiguous).

13 14 15

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine the value. (End of advice to implementors.)

16 17 18

Advice to users. The type MPI_PACKED is treated as bytes and is not converted. The user should be aware that MPI_PACK has the option of placing a header in the beginning of the pack buffer. (End of advice to users.)

19 20 21

22

23

24

The size of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL, MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined in Section 16.2.5, page 525.

25 26

27

Advice to implementors. When converting a larger size integer to a smaller size integer, only the less significant bytes are moved. Care must be taken to preserve the sign bit value. This allows no conversion errors if the data range is within the range of the smaller size integer. (End of advice to implementors.)

28 29

Table 13.2 specifies the sizes of predefined datatypes in "external32" format.

30 31 32

33

13.5.3 User-Defined Data Representations

the I/O stream to do the data representation conversion.

34 35 36

37

38 39 There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and

40 41 42 2. a user wants to read a file written in a representation unknown to the implementation. User-defined data representations allow the user to insert a third party converter into

43 44 45

Туре	Length	Optional Type	Length
MPI_PACKED	1	MPI_INTEGER1	1
MPI_BYTE	1	MPI_INTEGER2	2
MPI_CHAR	1	MPI_INTEGER4	4
MPI_UNSIGNED_CHAR	1	MPI_INTEGER8	8
MPI_SIGNED_CHAR	1	MPI_INTEGER16	16
MPI_WCHAR	2		
MPI_SHORT	2	MPI_REAL2	2
MPI_UNSIGNED_SHORT	2	MPI_REAL4	4
MPI_INT	4	MPI_REAL8	8
MPI_UNSIGNED	4	MPI_REAL16	16
MPI_LONG	4		
MPI_UNSIGNED_LONG	4	MPI_COMPLEX4	2*2
MPI_LONG_LONG_INT	8	MPI_COMPLEX8	2*4
MPI_UNSIGNED_LONG_LONG	8	MPI_COMPLEX16	2*8
MPI_FLOAT	4	MPI_COMPLEX32	2*16
MPI_DOUBLE	8		
MPI_LONG_DOUBLE	16		:
			:
MPI_C_BOOL	4		:
MPI_INT8_T	1		:
MPI_INT16_T	2		:
MPI_INT32_T	4		:
MPI_INT64_T	8		:
MPI_UINT8_T	1		:
MPI_UINT16_T	2		:
MPI_UINT32_T	4		:
MPI_UINT64_T	8		;
MPI_AINT	8		;
<pre>[ticket265.]MPI_COUNT</pre>		8	;
MPI_OFFSET	8		;
MPI_C_COMPLEX	2*4		;
MPI_C_FLOAT_COMPLEX	2*4		;
MPI_C_DOUBLE_COMPLEX	2*8		;
MPI_C_LONG_DOUBLE_COMPLEX	2*16		;
MPI_CHARACTER	1		;
MPI_LOGICAL	4		;
MPI_INTEGER	4		4
MPI_REAL	4		4
MPI_DOUBLE_PRECISION	8		4
MPI_COMPLEX	2*4		4
MPI_DOUBLE_COMPLEX	2*8		4

Table 13.2: "external32" sizes of predefined datatypes

```
1
     MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
2
                    dtype_file_extent_fn, extra_state)
3
       IN
                 datarep
                                             data representation identifier (string)
       IN
                 read_conversion_fn
                                             function invoked to convert from file representation to
5
                                             native representation (function)
6
7
       IN
                 write\_conversion\_fn
                                             function invoked to convert from native representation
                                             to file representation (function)
9
       IN
                 dtype_file_extent_fn
                                             function invoked to get the extent of a datatype as
10
                                             represented in the file (function)
11
       IN
                 extra_state
                                             extra state
12
13
14
     int MPI_Register_datarep(char *datarep,
                    MPI_Datarep_conversion_function *read_conversion_fn,
15
                    MPI_Datarep_conversion_function *write_conversion_fn,
16
                    MPI_Datarep_extent_function *dtype_file_extent_fn,
17
18
                    void *extra_state)
19
     MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
20
                    DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)
21
          CHARACTER*(*) DATAREP
22
          EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
23
          INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
24
          INTEGER IERROR
25
26
     {void MPI::Register_datarep(const char* datarep,
27
                    MPI::Datarep_conversion_function* read_conversion_fn,
28
                    MPI::Datarep_conversion_function* write_conversion_fn,
29
                    MPI::Datarep_extent_function* dtype_file_extent_fn,
30
                    void* extra_state) (binding deprecated, see Section 15.2) }
```

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn with the data representation identifier datarep. datarep can then be used as an argument to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conversion functions to convert all data items accessed between file data representation and native representation. MPI_REGISTER_DATAREP is a local operation and only registers the data representation for the calling MPI process. If datarep is already defined, an error in the error class MPI_ERR_DUP_DATAREP is raised using the default file error handler (see Section 13.7, page 479). The length of a data representation string is limited to the value of MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64. No routines are provided to delete data representations and free the associated resources; it is not expected that an application will generate them in significant numbers.

```
Extent Callback
```

31

32

33

34

35

36

37

38

39

40

41

42

44 45

46

47

Datarep Conversion Functions

```
SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF, POSITION, EXTRA_STATE, IERROR)
```

```
<TYPE> USERBUF(*), FILEBUF(*)
INTEGER COUNT, DATATYPE, IERROR
INTEGER(KIND=MPI_OFFSET_KIND) POSITION
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
```

The function read_conversion_fn must convert from file data representation to native representation. Before calling this routine, MPI allocates and fills filebuf with count contiguous data items. The type of each data item matches the corresponding entry for the predefined datatype in the type signature of datatype. The function is passed, in extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. The function must copy all count data items from filebuf to userbuf in the distribution described by datatype, converting each data item from file representation to native representation. datatype will be equivalent to the datatype that the user passed to the read function. If the size of datatype is less than the size of the count data items, the conversion function must treat datatype as being contiguously tiled over the userbuf. The conversion function must begin storing converted data at the location in userbuf specified by position into the (tiled) datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK and MPI_UNPACK, one should note the differences in the use of the arguments count and position. In the conversion functions, count is a count of data items (i.e., count of typemap entries of datatype), and position is an index into this typemap. In MPI_PACK, incount refers to the number of whole datatypes, and position is a number of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

5 6

9 10

11

12 13

14

15

16 17 18

19

20

21

22

23 24 25

26

27

28 29 30

31

33

34

35

37

38

39

40

32 36

41 42 43

1. Get file extent of all data items

- 2. Allocate a filebuf large enough to hold all count data items
- 3. Read data from file into filebuf
- 4. Call read_conversion_fn to convert data and place it into userbuf
- 5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from a read operation, it may call the conversion function repeatedly using the same datatype and userbuf, and reading successive chunks of data to be converted in filebuf. For the first call (and in the case when all the data to be converted fits into filebuf), MPI will call the function with position set to zero. Data converted during this call will be stored in the userbuf according to the first count data items in datatype. Then in subsequent calls to the conversion function, MPI will increment the value in position by the count of items converted in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the transfer allows the conversion function to decode the datatype only once and cache an internal representation of it on the datatype. Then on subsequent calls, the conversion function can use the position to quickly find its place in the datatype and continue storing converted data where it left off at the end of the previous call. (End of rationale.)

Although the conversion function may usefully cache an internal Advice to users. representation on the datatype, it should not cache any state information specific to an ongoing conversion operation, since it is possible for the same datatype to be used concurrently in multiple conversion operations. (End of advice to users.)

The function write_conversion_fn must convert from native representation to file data representation. Before calling this routine, MPI allocates filebuf of a size large enough to hold count contiguous data items. The type of each data item matches the corresponding entry for the predefined datatype in the type signature of datatype. The function must copy count data items from userbuf in the distribution described by datatype, to a contiguous distribution in filebuf, converting each data item from native representation to file representation. If the size of datatype is less than the size of count data items, the conversion function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the write function. The function is passed, in extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL may be used as either write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by using a filebuf large enough to hold all the requested data items or else by making repeated

calls to the conversion function with the same datatype argument and appropriate values for position.

An implementation will only invoke the callback routines in this section (read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn) when one of the read or write routines in Section 13.4, page 436, or MPI_FILE_GET_TYPE_EXTENT is called by the user. dtype_file_extent_fn will only be passed predefined datatypes employed by the user. The conversion functions will only be passed datatypes equivalent to those that the user has passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has a value other than MPI_SUCCESS, the implementation will raise an error in the class MPI_ERR_CONVERSION.

13.5.4 Matching Data Representations

It is the user's responsibility to ensure that the data representation used to read data from a file is *compatible* with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file does not guarantee that the representation is compatible. Similarly, using different representation names on two different implementations may yield compatible representations.

Compatibility can be obtained when "external32" representation is used, although precision may be lost and the performance may be less than when "native" representation is used. Compatibility is guaranteed using "external32" provided at least one of the following conditions is met.

- The data access routines directly use types enumerated in Section 13.5.2, page 463, that are supported by all implementations participating in the I/O. The predefined type used to write a data item must also be used to read a data item.
- In the case of Fortran 90 programs, the programs participating in the data accesses obtain compatible datatypes using MPI routines that specify precision and/or range (Section 16.2.5, page 521).
- For any given data item, the programs participating in the data accesses use compatible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compatiblity with another implementation's "native" or "internal" representation.

Advice to users. Section 16.2.5, page 521, defines routines that support the use of matching datatypes in heterogeneous environments and contains examples illustrating their use. (*End of advice to users.*)

13.6 Consistency and Semantics

13.6.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file accesses in MPI are relative to a specific file handle created from a collective open. MPI

provides three levels of consistency: sequential consistency among all accesses using a single file handle, sequential consistency among all accesses using file handles created from a single collective open with atomic mode enabled, and user-imposed consistency among accesses other than the above. Sequential consistency means the behavior of a set of operations will be as if the operations were performed in some serial order consistent with program order; each access appears atomic, although the exact ordering of accesses is unspecified. User-imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH_1 be the set of file handles created from one particular collective open of the file FOO, and FH_2 be the set of file handles created from a different collective open of FOO. Note that nothing restrictive is said about FH_1 and FH_2 : the sizes of FH_1 and FH_2 may be different, the groups of processes used for each open may or may not intersect, the file handles in FH_1 may be destroyed before those in FH_2 are created, etc. Consider the following three cases: a single file handle (e.g., $fh_1 \in FH_1$), two file handles created from a single collective open (e.g., $fh_{1a} \in FH_1$ and $fh_{1b} \in FH_1$), and two file handles from different collective opens (e.g., $fh_1 \in FH_1$ and $fh_2 \in FH_2$).

For the purpose of consistency semantics, a matched pair (Section 13.4.5, page 453) of split collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-blocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes the request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below, these data access operations are subject to the same constraints as blocking data access operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice to users.)

Assume that A_1 and A_2 are two data access operations. Let D_1 (D_2) be the set of absolute byte displacements of every byte accessed in A_1 (A_2). The two data accesses overlap if $D_1 \cap D_2 \neq \emptyset$. The two data accesses conflict if they overlap and at least one is a write access.

Let SEQ_{fh} be a sequence of file operations on a single file handle, bracketed by MPI_FILE_SYNCs on that file handle. (Both opening and closing a file implicitly perform an MPI_FILE_SYNC.) SEQ_{fh} is a "write sequence" if any of the data access operations in the sequence are writes or if any of the file manipulation operations in the sequence change the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Given two sequences, SEQ_1 and SEQ_2 , we say they are not concurrent if one sequence is guaranteed to completely precede the other (temporally).

The requirements for guaranteeing sequential consistency among all accesses to a particular file are divided into the three cases given below. If any of these requirements are not met, then the value of all data in that file is implementation dependent.

Case 1: $fh_1 \in FH_1$ All operations on fh_1 are sequentially consistent if atomic mode is set. If nonatomic mode is set, then all operations on fh_1 are sequentially consistent if they are either nonconcurrent, nonconflicting, or both.

Case 2: $fh_{1a} \in FH_1$ and $fh_{1b} \in FH_1$ Assume A_1 is a data access operation using fh_{1a} , and A_2 is a data access operation using fh_{1b} . If for any access A_1 , there is no access A_2 that conflicts with A_1 , then MPI guarantees sequential consistency.

However, unlike POSIX semantics, the default MPI semantics for conflicting accesses do not guarantee sequential consistency. If A_1 and A_2 conflict, sequential consistency can be guaranteed by either enabling atomic mode via the MPI_FILE_SET_ATOMICITY routine, or meeting the condition described in Case 3 below.

Case 3: $fh_1 \in FH_1$ and $fh_2 \in FH_2$ Consider access to a single file using file handles from distinct collective opens. In order to guarantee sequential consistency, MPI_FILE_SYNC must be used (both opening and closing a file implicitly perform an MPI_FILE_SYNC).

Sequential consistency is guaranteed among accesses to a single file if for any write sequence SEQ_1 to the file, there is no sequence SEQ_2 to the file which is *concurrent* with SEQ_1 . To guarantee sequential consistency when there are write sequences,

MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency of the sequences.

See the examples in Section 13.6.10, page 475, for further clarification of some of these consistency semantics.

```
MPI_FILE_SET_ATOMICITY(fh, flag)
```

```
INOUT fh file handle (handle)

IN flag true to set atomic mode, false to set nonatomic mode (logical)
```

```
int MPI_File_set_atomicity(MPI_File fh, int flag)
```

```
MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
INTEGER FH, IERROR
LOGICAL FLAG
```

```
{void MPI::File::Set_atomicity(bool flag)(binding deprecated, see Section 15.2)}
```

Let FH be the set of file handles created by one collective open. The consistency semantics for data access operations using FH is set by collectively calling MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all processes in the group must pass identical values for fh and flag. If flag is true, atomic mode is set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses. All completed data accesses are guaranteed to abide by the consistency semantics in effect during their execution. Nonblocking data accesses and split collective operations that have not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger than those guaranteed by nonatomic mode, an implementation is free to adhere to the more stringent atomic mode semantics for outstanding requests. (*End of advice to implementors.*)

21 22

23

24

25 26

27

28

29

30

31

32

33

34

35 36

37 38

39

40

41

42

43

44

45

46 47

48

```
MPI_FILE_GET_ATOMICITY(fh, flag)
2
       IN
                                               file handle (handle)
3
       OUT
                 flag
                                               true if atomic mode, false if nonatomic mode (logical)
4
5
6
     int MPI_File_get_atomicity(MPI_File fh, int *flag)
7
     MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
8
          INTEGER FH, IERROR
9
          LOGICAL FLAG
10
11
     {bool MPI::File::Get_atomicity() const(binding deprecated, see Section 15.2)}
12
          MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access
13
     operations on the set of file handles created by one collective open. If flag is true, atomic
14
     mode is enabled; if flag is false, nonatomic mode is enabled.
15
16
17
     MPI_FILE_SYNC(fh)
18
       INOUT
                 fh
                                               file handle (handle)
19
20
```

{void MPI::File::Sync() (binding deprecated, see Section 15.2) } Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process to be transferred to the storage device. If other processes have made updates to the storage device, then all such updates become visible to subsequent reads of fh by the calling process.

above).

MPI_FILE_SYNC is a collective operation.

int MPI_File_sync(MPI_File fh)

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR

The user is responsible for ensuring that all nonblocking requests and split collective operations on fh have been completed before calling MPI_FILE_SYNC—otherwise, the call to MPI_FILE_SYNC is erroneous.

MPI_FILE_SYNC may be necessary to ensure sequential consistency in certain cases (see

Random Access vs. Sequential Files 13.6.2

MPI distinguishes ordinary random access files from sequential stream files, such as pipes and tape files. Sequential stream files must be opened with the MPI_MODE_SEQUENTIAL flag set in the amode. For these files, the only permitted data access operations are shared file pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition, the notion of file pointer is not meaningful; therefore, calls to MPI_FILE_SEEK_SHARED and MPI_FILE_GET_POSITION_SHARED are erroneous, and the pointer update rules specified for the data access routines do not apply. The amount of data accessed by a data access operation will be the amount requested unless the end of file is reached or an error is raised.

This implies that reading on a pipe will always wait until the requested amount of data is available or until the process writing to the pipe has issued an end

of file. (End of rationale.)

Finally, for some sequential files, such as those corresponding to magnetic tapes or streaming network connections, writes to the file may be destructive. In other words, a write may act as a truncate (a MPI_FILE_SET_SIZE with size set to the current position) followed by the write.

13.6.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on implementors. In cases where the progress rules restrict possible implementation choices more than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking point to point communication: a nonblocking write is equivalent to a nonblocking send for which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all processes in the group associated with the collective call have invoked the routine. Once all processes in the group have invoked the routine, the progress rule of the equivalent noncollective routine must be followed.

13.6.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication operations. For a complete discussion, please refer to the semantics set forth in Section 5.13 on page 210.

Collective file operations are collective over a dup of the communicator used to open the file—this duplicate communicator is implicitly specified via the file handle argument. Different processes can pass different values for other arguments of a collective routine unless specified otherwise.

13.6.5 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation. In general, the etype of data items written must match the etype used to read the items, and for each data access operation, the current etype must also match the type declaration of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the file interoperability features of MPI. File interoperability can only perform automatic conversion between heterogeneous data representations when the exact datatypes accessed are explicitly specified. (End of advice to users.)

13.6.6 Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype

 and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the file. Note that for nonblocking routines and split collective operations, the operation must be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file manipulation or data access operations. For example, the etype and filetype must be committed before calling MPI_FILE_SET_VIEW, and the datatype must be committed before calling MPI_FILE_READ or MPI_FILE_WRITE.

13.6.7 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest file supported by MPI. Displacements and offsets are always specified as values of type MPI_Offset.

In Fortran, the corresponding integer is an integer of kind MPI_OFFSET_KIND, defined in mpif.h and the mpi module.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset arguments should be declared as an INTEGER of suitable size. The language interoperability implications for MPI_Offset are similar to those for addresses (see Section 16.3, page 529).

13.6.8 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not how that file structure is to be stored on one or more disks. Specification of the physical file structure was avoided because it is expected that the mapping of files to disks will be system specific, and any specific control over file layout would therefore restrict program portability. However, there are still cases where some information may be necessary to optimize file layout. This information can be provided as *hints* specified via *info* when a file is created (see Section 13.2.8, page 430).

13.6.9 File Size

The size of a file may be increased by writing to the file after the current end of file. The size may also be changed by calling MPI *size changing* routines, such as MPI_FILE_SET_SIZE. A call to a size changing routine does not necessarily change the file size. For example, calling MPI_FILE_PREALLOCATE with a size less than the current size does not change the size.

Consider a set of bytes that has been written to a file since the most recent call to a size changing routine, or since MPI_FILE_OPEN if no such routine has been called. Let the high byte be the byte in that set with the largest displacement. The file size is the larger of

- One plus the displacement of the high byte.
- The size immediately after the size changing routine, or MPI_FILE_OPEN, returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE are considered writes to the file (which conflict with operations that access bytes at displacements between the old and new file sizes), and MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the file).

6

7

10

11

12

13

14 15

16

17

18 19

20

21 22

23

24

25

26

27

28

29 30

31

34

35

36

37

38

39

41

42

43 44

45

46 47

Advice to users. Any sequence of operations containing the collective routines MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE is a write sequence. As such, sequential consistency in nonatomic mode is not guaranteed unless the conditions in Section 13.6.1, page 469, are satisfied. (End of advice to users.)

File pointer update semantics (i.e., file pointers are updated by the amount accessed) are only guaranteed if file size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by separate processes to a file containing 100 bytes: an MPI_FILE_READ of 10 bytes and an MPI_FILE_SET_SIZE to 0 bytes. If the user does not enforce sequential consistency between these two operations, the file pointer may be updated by the amount requested (10 bytes) even if the amount accessed is zero bytes. (End of advice to users.)

13.6.10 Examples

The examples in this section illustrate the application of the MPI consistency and semantics guarantees. These address

- conflicting accesses on file handles obtained from a single collective open, and
- all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10 integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of the read are undefined.

```
/* Process 0 */
int i, a[10];
    TRUE = 1;
int
for (i=0;i<10;i++)
   a[i] = 5;
MPI_File_open( MPI_COMM_WORLD, "workfile",
               MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 );
MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_set_atomicity( fh0, TRUE ) ;
MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;
/* MPI_Barrier( MPI_COMM_WORLD ) ; */
/* Process 1 */
int b[10]:
int TRUE = 1;
MPI_File_open( MPI_COMM_WORLD, "workfile",
               MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 );
MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
MPI_File_set_atomicity( fh1, TRUE ) ;
/* MPI_Barrier( MPI_COMM_WORLD ) ; */
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;
```

2

3

5

6

8

32 33

34 35

36

37

38

39 40

41

42

44

45

46

47

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal order. In the example above, process 0 could use MPI_SEND to send a 0 byte message, received by process 1 using MPI_RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

```
9
     /* Process 0 */
10
     int i, a[10];
11
     for ( i=0;i<10;i++)
12
        a[i] = 5;
13
14
     MPI_File_open( MPI_COMM_WORLD, "workfile",
15
                    MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 );
16
     MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
17
     MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status );
18
     MPI_File_sync( fh0 ) ;
19
     MPI_Barrier( MPI_COMM_WORLD ) ;
20
     MPI_File_sync( fh0 ) ;
21
22
     /* Process 1 */
23
     int b[10];
^{24}
     MPI_File_open( MPI_COMM_WORLD, "workfile",
25
                    MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 );
26
    MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
27
     MPI_File_sync( fh1 ) ;
28
     MPI_Barrier( MPI_COMM_WORLD ) ;
29
    MPI_File_sync( fh1 ) ;
30
     MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status );
31
```

The "sync-barrier-sync" construct is required because:

- The barrier ensures that the write on process 0 occurs before the read on process 1.
- The first sync guarantees that the data written by all processes is transferred to the storage device.
- The second sync guarantees that all data which has been transferred to the storage device is visible to all processes. (This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by eliminating the apparently superfluous second "sync" call for each process.

```
/* ----- THIS EXAMPLE IS ERRONEOUS ----- */
/* Process 0 */
int i, a[10];
for ( i=0;i<10;i++)
    a[i] = 5;
```

The above program also violates the MPI rule against out-of-order collective operations and will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC as a temporally synchronizing function. When using such an implementation, the "sync-barrier-sync" construct above can be replaced by a single "sync." The results of using such code with an implementation for which MPI_FILE_SYNC is not temporally synchronizing is undefined. (*End of advice to users.*)

Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified above for synchronous I/O operations.

The following examples all access a preexisting file "myfile." Word 10 in myfile initially contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

For asynchronous data access operations, MPI specifies that the access occurs at any time between the call to the asynchronous data access routine and the return from the corresponding request complete routine. Thus, executing either the read before the write, or the write before the read is consistent with program order. If atomic mode is set, then MPI guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic

2

3

4

35

36 37

38

39 40

41

47

48

mode is not set, then sequential consistency is not guaranteed and the program may read something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

```
int a = 4, b;
5
    MPI_File_open( MPI_COMM_WORLD, "myfile",
6
                     MPI_MODE_RDWR, MPI_INFO_NULL, &fh );
    MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
     /* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */
9
    MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]);
10
    MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]);
11
    MPI_Wait(&reqs[0], &status) ;
12
    MPI_Wait(&reqs[1], &status);
13
14
     If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
15
     sequential consistency in nonatomic mode.
16
         On the other hand, the following code fragment:
17
     int a = 4, b;
18
    MPI_File_open( MPI_COMM_WORLD, "myfile",
19
                     MPI_MODE_RDWR, MPI_INFO_NULL, &fh );
20
    MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
21
     MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]);
22
    MPI_Wait(&reqs[0], &status);
23
    MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]);
24
     MPI_Wait(&reqs[1], &status) ;
25
26
     defines the same ordering as:
27
     int a = 4, b;
28
     MPI_File_open( MPI_COMM_WORLD, "myfile",
29
                     MPI_MODE_RDWR, MPI_INFO_NULL, &fh );
30
    MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
31
     MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status );
32
    MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status );
33
34
     Since
```

- nonconcurrent operations on a single file handle are sequentially consistent, and
- the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

```
MPI_File_write_all_begin(fh,...);
MPI_File_iread(fh,...);
MPI_Wait(fh,...);
MPI_File_write_all_end(fh,...);
```

Recall that constraints governing consistency and semantics are not relevant to the following:

```
MPI_File_write_all_begin(fh,...);
MPI_File_read_all_begin(fh,...);
MPI_File_read_all_end(fh,...);
MPI_File_write_all_end(fh,...);
```

since split collective operations on the same file handle may not overlap (see Section 13.4.5, page 453).

13.7 I/O Error Handling

By default, communication errors are fatal—MPI_ERRORS_ARE_FATAL is the default error handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g., "file not found") than communication errors, and common practice is to catch these errors and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous MPI call has occurred. A high-quality implementation will support the I/O error handling facilities, allowing users to write programs using common practice for I/O. (End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI I/O error handling routines are defined in Section 8.3, page 308.

When MPI calls a user-defined error handler resulting from an error on a particular file handle, the first two arguments passed to the file error handler are the file handle and the error code. For I/O errors that are not associated with a valid file handle (e.g., in MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is MPI_FILE_NULL,

I/O error handling differs from communication error handling in another important aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN. The default file error handler has two purposes: when a new file handle is created (by MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default error handler, and I/O routines that have no valid file handle on which to raise an error (e.g., MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The default file error handler can be changed by specifying MPI_FILE_NULL as the fh argument to MPI_FILE_SET_ERRHANDLER. The current value of the default file error handler can be determined by passing MPI_FILE_NULL as the fh argument to

Rationale. For communication, the default error handler is inherited from MPI_COMM_WORLD. In I/O, there is no analogous "root" file handle from which default properties can be inherited. Rather than invent a new global file handle, the default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End of rationale.)

13.8 I/O Error Classes

MPI_FILE_GET_ERRHANDLER.

The implementation dependent error codes returned by the I/O routines can be converted into the error classes defined in Table 13.3.

1 In addition, calls to routines in this chapter may raise errors in other MPI classes, such 2 as MPI_ERR_TYPE. 3 Invalid file handle MPI_ERR_FILE MPI_ERR_NOT_SAME Collective argument not identical on all processes, or collective routines called in 6 a different order by different processes MPI_ERR_AMODE Error related to the amode passed to MPI_FILE_OPEN 9 Unsupported datarep passed to MPI_ERR_UNSUPPORTED_DATAREP 10 MPI_FILE_SET_VIEW 11 MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on 12 a file which supports sequential access only 13 MPI_ERR_NO_SUCH_FILE File does not exist 14 MPI_ERR_FILE_EXISTS File exists 15 MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long) 16 Permission denied MPI_ERR_ACCESS 17 Not enough space MPI_ERR_NO_SPACE Quota exceeded MPI_ERR_QUOTA 19 Read-only file or file system MPI_ERR_READ_ONLY 20 MPI_ERR_FILE_IN_USE File operation could not be completed, as 21 the file is currently open by some process 22 Conversion functions could not be regis-MPI_ERR_DUP_DATAREP 23 tered because a data representation identi-24 fier that was already defined was passed to 25 MPI_REGISTER_DATAREP 26 MPI_ERR_CONVERSION An error occurred in a user supplied data 27 conversion function. 28 MPI_ERR_IO Other I/O error 29 30 Table 13.3: I/O Error Classes 31

32 33

34 35

36 37

38

39

13.9 Examples

13.9.1 Double Buffering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed by the function compute_buffer().

```
40
41
42
      * Function:
                                double_buffer
43
44
        Synopsis:
45
              void double_buffer(
46
                       MPI_File fh,
                                                                      ** IN
47
                       MPI_Datatype buftype,
                                                                      ** IN
                       int bufcount
                                                                     ** IN
```

13.9. EXAMPLES 481

```
)
* Description:
       Performs the steps to overlap computation with a collective write
       by using a double-buffering technique.
* Parameters:
       fh
                         previously opened MPI file handle
       buftype
                         MPI datatype for memory layout
                         (Assumes a compatible view has been set on fh)
       bufcount
                         # buftype elements to transfer
 *----*/
                                                                            12
                                                                            13
                                                                            14
/* this macro switches which buffer "x" is pointing to */
                                                                            15
#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))
void double_buffer( MPI_File fh, MPI_Datatype buftype, int bufcount)
                                                                            19
  MPI_Status status;
                            /* status for MPI calls */
                                                                            20
                                                                            21
  float *buffer1, *buffer2; /* buffers to hold results */
  float *compute_buf_ptr;
                           /* destination buffer */
                                                                            22
                            /* for computing */
                                                                            23
                                                                            24
                          /* source for writing */
  float *write_buf_ptr;
  int done;
                           /* determines when to quit */
  /* buffer initialization */
                                                                            27
  buffer1 = (float *)
                                                                            28
                                                                            29
                    malloc(bufcount*sizeof(float));
  buffer2 = (float *)
                    malloc(bufcount*sizeof(float));
  compute_buf_ptr = buffer1 ; /* initially point to buffer1 */
  write_buf_ptr = buffer1 ; /* initially point to buffer1 */
                                                                            34
                                                                            35
                                                                            36
  /* DOUBLE-BUFFER prolog:
       compute buffer1; then initiate writing buffer1 to disk
                                                                            37
   */
  compute_buffer(compute_buf_ptr, bufcount, &done);
  MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);
  /* DOUBLE-BUFFER steady state:
   * Overlap writing old results from buffer pointed to by write_buf_ptr
                                                                           43
   * with computing new results into buffer pointed to by compute_buf_ptr.
                                                                            45
   * There is always one write-buffer and one compute-buffer in use
                                                                            47
      during steady state.
   */
```

```
1
        while (!done) {
2
           TOGGLE_PTR(compute_buf_ptr);
           compute_buffer(compute_buf_ptr, bufcount, &done);
           MPI_File_write_all_end(fh, write_buf_ptr, &status);
5
           TOGGLE_PTR(write_buf_ptr);
6
           MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);
        }
9
        /* DOUBLE-BUFFER epilog:
10
             wait for final write to complete.
11
         */
        MPI_File_write_all_end(fh, write_buf_ptr, &status);
12
13
14
15
        /* buffer cleanup */
16
        free(buffer1);
17
        free(buffer2);
18
     }
19
20
```

13.9.2 Subarray Filetype Constructor

Figure 13.4: Example array file layout

Assume we are writing out a 100x100 2D array of double precision floating point numbers that is distributed among 4 processes such that each process has a block of 25 columns (e.g., process 0 has columns 0-24, process 1 has columns 25-49, etc.; see Figure 13.4). To create the filetypes for each process one could use the following C program (see Section 4.1.3 on page 89):

```
double subarray[100][25];
MPI_Datatype filetype;
int sizes[2], subsizes[2], starts[2];
int rank;
```

13.9. EXAMPLES 483

Figure 13.5: Example local array filetype for process 1

11 12 13

14

15

16

18

19

20 21

22 23

24

25

26 27

28

29

30

31

33

34 35

36

37

38 39

40

```
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sizes[0]=100; sizes[1]=100;
subsizes[0]=100; subsizes[1]=25;
starts[0]=0; starts[1]=rank*subsizes[1];
MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,
                         MPI_DOUBLE, &filetype);
 Or, equivalently in Fortran:
    double precision subarray(100,25)
    integer filetype, rank, ierror
    integer sizes(2), subsizes(2), starts(2)
    call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
    sizes(1)=100
    sizes(2)=100
    subsizes(1)=100
    subsizes(2)=25
    starts(1)=0
    starts(2)=rank*subsizes(2)
    call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &
               MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION,
                                                                &
               filetype, ierror)
```

The generated filetype will then describe the portion of the file contained within the process's subarray with holes for the space taken by the other processes. Figure 13.5 shows the filetype created for process 1.

Annex A

Language Bindings Summary

In this section we summarize the specific bindings for C, Fortran, and C++. First we present the constants, type definitions, info values and keys. Then we present the routine prototypes separately for each binding. Listings are alphabetical within chapter.

A.1 Defined Values and Handles

A.1.1 Defined Constants

The C and Fortran name is listed in the left column and the C++ name is listed in the middle or right column. Constants with the type **const** int may also be implemented as literal integer constants substituted by the preprocessor.

Return Codes

Return Codes			
C type: const int (or unnamed enum)	C++ type: const int		
Fortran type: INTEGER	(or unnamed enum)		
MPI_SUCCESS	MPI::SUCCESS		
MPI_ERR_BUFFER	MPI::ERR_BUFFER		
MPI_ERR_COUNT	MPI::ERR_COUNT		
MPI_ERR_TYPE	MPI::ERR_TYPE		
MPI_ERR_TAG	MPI::ERR_TAG		
MPI_ERR_COMM	MPI::ERR_COMM		
MPI_ERR_RANK	MPI::ERR_RANK		
MPI_ERR_REQUEST	MPI::ERR_REQUEST		
MPI_ERR_ROOT	MPI::ERR_ROOT		
MPI_ERR_GROUP	MPI::ERR_GROUP		
MPI_ERR_OP	MPI::ERR_OP		
MPI_ERR_TOPOLOGY	MPI::ERR_TOPOLOGY		
MPI_ERR_DIMS	MPI::ERR_DIMS		
MPI_ERR_ARG	MPI::ERR_ARG		
MPI_ERR_UNKNOWN	MPI::ERR_UNKNOWN		
MPI_ERR_TRUNCATE	MPI::ERR_TRUNCATE		
MPI_ERR_OTHER	MPI::ERR_OTHER		
MPI_ERR_INTERN	MPI::ERR_INTERN		
MPI_ERR_PENDING	MPI::ERR_PENDING		
(6.1			

(Continued on next page)

1	Return Codes (continued)		
2	MPI_ERR_IN_STATUS	MPI::ERR_IN_STATUS	
3	MPI_ERR_ACCESS	MPI::ERR_ACCESS	
4	MPI_ERR_AMODE	MPI::ERR_AMODE	
5	MPI_ERR_ASSERT	MPI::ERR_ASSERT	
6	MPI_ERR_BAD_FILE	MPI::ERR_BAD_FILE	
7	MPI_ERR_BASE	MPI::ERR_BASE	
8	MPI_ERR_CONVERSION	MPI::ERR_CONVERSION	
9	MPI_ERR_DISP	MPI::ERR_DISP	
10	MPI_ERR_DUP_DATAREP	MPI::ERR_DUP_DATAREP	
11	MPI_ERR_FILE_EXISTS	MPI::ERR_FILE_EXISTS	
12	MPI_ERR_FILE_IN_USE	MPI::ERR_FILE_IN_USE	
13	MPI_ERR_FILE	MPI::ERR_FILE	
14	MPI_ERR_INFO_KEY	MPI::ERR_INFO_VALUE	
15	MPI_ERR_INFO_NOKEY	MPI::ERR_INFO_NOKEY	
16	MPI_ERR_INFO_VALUE	MPI::ERR_INFO_KEY	
17	MPI_ERR_INFO	MPI::ERR_INFO	
18	MPI_ERR_IO	MPI::ERR_IO	
19	MPI_ERR_KEYVAL	MPI::ERR_KEYVAL	
20	MPI_ERR_LOCKTYPE	MPI::ERR_LOCKTYPE	
21	MPI_ERR_NAME	MPI::ERR_NAME	
22	MPI_ERR_NO_MEM	MPI::ERR_NO_MEM	
23	MPI_ERR_NOT_SAME	MPI::ERR_NOT_SAME	
24	MPI_ERR_NO_SPACE	MPI::ERR_NO_SPACE	
25	MPI_ERR_NO_SUCH_FILE	MPI::ERR_NO_SUCH_FILE	
26	MPI_ERR_PORT	MPI::ERR_PORT	
27	MPI_ERR_QUOTA	MPI::ERR_QUOTA	
28	MPI_ERR_READ_ONLY	MPI::ERR_READ_ONLY	
29	MPI_ERR_RMA_CONFLICT	MPI::ERR_RMA_CONFLICT	
30	MPI_ERR_RMA_SYNC	MPI::ERR_RMA_SYNC	
31	MPI_ERR_SERVICE	MPI::ERR_SERVICE	
32	MPI_ERR_SIZE	MPI::ERR_SIZE	
33	MPI_ERR_SPAWN	MPI::ERR_SPAWN	
34	MPI_ERR_UNSUPPORTED_DATAREP	MPI::ERR_UNSUPPORTED_DATAREP	
35	MPI_ERR_UNSUPPORTED_OPERATION	MPI::ERR_UNSUPPORTED_OPERATION	
36	MPI_ERR_WIN	MPI::ERR_WIN	
37	MPI_ERR_LASTCODE	MPI::ERR_LASTCODE	

Buffer Address Constants

C type: void * const	C++ type:
Fortran type: (predefined memory location)	<pre>void * const</pre>
MPI_BOTTOM	MPI::BOTTOM
MPI_IN_PLACE	MPI::IN_PLACE

C type: const int (or unnamed enum)	C++ type:
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>
MPI_PROC_NULL	MPI::PROC_NULL
MPI_ANY_SOURCE	MPI::ANY_SOURCE
MPI_ANY_TAG	MPI::ANY_TAG
MPI_UNDEFINED	MPI::UNDEFINED
MPI_BSEND_OVERHEAD	MPI::BSEND_OVERHEAD
MPI_KEYVAL_INVALID	MPI::KEYVAL_INVALID
MPI_LOCK_EXCLUSIVE	MPI::LOCK_EXCLUSIVE
MPI_LOCK_SHARED	MPI::LOCK_SHARED
MPI_ROOT	MPI::ROOT

Status size and reserved index values (Fortran only)

Fortran type: INTEGER	
MPI_STATUS_SIZE	Not defined for C++
MPI_SOURCE	Not defined for C++
MPI_TAG	Not defined for C++
MPI_ERROR	Not defined for C++

Variable Address Size (Fortran only)

Fortran type: INTEGER	
MPI_ADDRESS_KIND	Not defined for C++
[ticket265.] MPI_COUNT_KIND	Not defined for C++
MPI_INTEGER_KIND	Not defined for C++
MPI_OFFSET_KIND	Not defined for C++

Error-handling specifiers

C type: MPI_Errhandler	C++ type: MPI::Errhandler
Fortran type: INTEGER	
MPI_ERRORS_ARE_FATAL	MPI::ERRORS_ARE_FATAL
MPI_ERRORS_RETURN	MPI::ERRORS_RETURN
	MPI::ERRORS_THROW_EXCEPTIONS

Maximum Sizes for Strings

Widning Size	20 101 2011116 ²
C type: const int (or unnamed enum) C++ type:
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>
MPI_MAX_PROCESSOR_NAME	MPI::MAX_PROCESSOR_NAME
MPI_MAX_ERROR_STRING	MPI::MAX_ERROR_STRING
MPI_MAX_DATAREP_STRING	MPI::MAX_DATAREP_STRING
MPI_MAX_INFO_KEY	MPI::MAX_INFO_KEY
MPI_MAX_INFO_VAL	MPI::MAX_INFO_VAL
MPI_MAX_OBJECT_NAME	MPI::MAX_OBJECT_NAME
MPI_MAX_PORT_NAME	MPI::MAX_PORT_NAME

Named Predefined Datatypes		ed Datatypes	C/C++ types
C type: MPI_Dat		C++ type: MPI::Datatype	, , , , ,
Fortran type: IN	TEGER		
MPI_CHAR		MPI::CHAR	char
			(treated as printable
			character)
MPI_SHORT		MPI::SHORT	signed short int
MPI_INT		MPI::INT	signed int
MPI_LONG		MPI::LONG	signed long
MPI_LONG_LON	G_INT	MPI::LONG_LONG_INT	signed long long
MPI_LONG_LON	G	MPI::LONG_LONG	long long (synonym)
MPI_SIGNED_CH		MPI::SIGNED_CHAR	signed char
		_	(treated as integral value)
MPI_UNSIGNED	_CHAR	MPI::UNSIGNED_CHAR	unsigned char
	_	_	(treated as integral value)
MPI_UNSIGNED	SHORT	MPI::UNSIGNED_SHORT	unsigned short
MPI_UNSIGNED	_	MPI::UNSIGNED	unsigned int
MPI_UNSIGNED	LONG	MPI::UNSIGNED_LONG	unsigned long
MPI_UNSIGNED		MPI::UNSIGNED_LONG_LONG	unsigned long long
MPI_FLOAT	_	MPI::FLOAT	float
MPI_DOUBLE		MPI::DOUBLE	double
MPI_LONG_DOU	JBLE	MPI::LONG_DOUBLE	long double
MPI_WCHAR		MPI::WCHAR	wchar_t
			(defined in <stddef.h>)</stddef.h>
			(treated as printable
			character)
MPI_C_BOOL		(use C datatype handle)	_Bool
MPI_INT8_T		(use C datatype handle)	int8_t
MPI_INT16_T		(use C datatype handle)	int16_t
MPI_INT32_T		(use C datatype handle)	int32_t
MPI_INT64_T		(use C datatype handle)	int64_t
MPI_UINT8_T		(use C datatype handle)	uint8_t
MPI_UINT16_T		(use C datatype handle)	uint16_t
MPI_UINT32_T		(use C datatype handle)	uint32_t
MPI_UINT64_T		(use C datatype handle)	uint64_t
MPI_AINT		(use C datatype handle)	MPI_Aint
[ticket265.] MPI	_COUNT	(use C datatype handle)	MPI_Count
MPI_OFFSET		(use C datatype handle)	MPI_Offset
MPI_C_COMPLE	X	(use C datatype handle)	float _Complex
MPI_C_FLOAT_0	COMPLEX	(use C datatype handle)	float _Complex
MPI_C_DOUBLE		(use C datatype handle)	double _Complex
MPI_C_LONG_D	OUBLE_COMPLEX	(use C datatype handle)	long double _Complex
MPI_BYTE		MPI::BYTE	(any C/C++ type)
MPI_PACKED		MPI::PACKED	(any C/C++ type)

Unofficial Draft for Comment Only

Named Predefined Datatypes		Fortran types	2	
	C type: MPI_Datatype	C++ type: MPI::Datatype		3
	Fortran type: INTEGER			4
	MPI_INTEGER	MPI::INTEGER	INTEGER	5
	MPI_REAL	MPI::REAL	REAL	6
	MPI_DOUBLE_PRECISION	MPI::DOUBLE_PRECISION	DOUBLE PRECISION	7
	MPI_COMPLEX	MPI::F_COMPLEX	COMPLEX	8
	MPI_LOGICAL	MPI::LOGICAL	LOGICAL	9
	MPI_CHARACTER	MPI::CHARACTER	CHARACTER(1)	10
	MPI_AINT	(use C datatype handle)	INTEGER (KIND=MPI_ADDRESS_KIND)	1
	MPI_OFFSET	(use C datatype handle)	INTEGER (KIND=MPI_OFFSET_KIND)	12
	[ticket265.] MPI_COUNT	(use C datatype handle)	INTEGER (KIND=MPI_COUNT_KIND)	13
	MPI_BYTE	MPI::BYTE	(any Fortran type)	14
	MPI_PACKED	MPI::PACKED	(any Fortran type)	15

C++-Only Named Predefined Datatypes	C++ types
C++ type: MPI::Datatype	
MPI::BOOL	bool
MPI::COMPLEX	Complex <float></float>
MPI::DOUBLE_COMPLEX	Complex <double></double>
MPI::LONG_DOUBLE_COMPLEX	Complex <long double=""></long>

Optional data	atypes (Fortran)	Fortran types	26
C type: MPI_Datatype	C++ type: MPI::Datatype		27
Fortran type: INTEGER			28
MPI_DOUBLE_COMPLEX	MPI::F_DOUBLE_COMPLEX	DOUBLE COMPLEX	29
MPI_INTEGER1	MPI::INTEGER1	INTEGER*1	30
MPI_INTEGER2	MPI::INTEGER2	INTEGER*8	31
MPI_INTEGER4	MPI::INTEGER4	INTEGER*4	32
MPI_INTEGER8	MPI::INTEGER8	INTEGER*8	33
MPI_INTEGER16		INTEGER*16	34
MPI_REAL2	MPI::REAL2	REAL*2	35
MPI_REAL4	MPI::REAL4	REAL*4	36
MPI_REAL8	MPI::REAL8	REAL*8	37
MPI_REAL16		REAL*16	38
MPI_COMPLEX4		COMPLEX*4	39
MPI_COMPLEX8		COMPLEX*8	40
MPI_COMPLEX16		COMPLEX*16	41
MPI_COMPLEX32		COMPLEX*32	42
			43

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 37
37
39
40
41
42
43
44

Datatypes for reduction functions (C and C++)			
C type: MPI_Datatype	C++ type: MPI::Datatype		
Fortran type: INTEGER			
MPI_FLOAT_INT	MPI::FLOAT_INT		

MPI_LOAT_INT

MPI_DOUBLE_INT

MPI:DOUBLE_INT

MPI:LONG_INT

MPI:LONG_INT

MPI:TWOINT

MPI_SHORT_INT

MPI_SHORT_INT

MPI_LONG_DOUBLE_INT

MPI:LONG_DOUBLE_INT

Datatypes for reduction functions (Fortran)

	` ,
${ m C\ type:\ MPI_Datatype}$	C++ type: MPI::Datatype
Fortran type: INTEGER	
MPI_2REAL	MPI::TWOREAL
MPI_2DOUBLE_PRECISION	MPI::TWODOUBLE_PRECISION
MPI_2INTEGER	MPI::TWOINTEGER

Special datatypes for constructing derived datatypes

C++ type: MPI::Datatype
MPI::UB
MPI::LB

Reserved communicators

200001 (04 001111101111041012		
C type: MPI_Comm	C++ type: MPI::Intracomm	
Fortran type: INTEGER		
MPI_COMM_WORLD	MPI::COMM_WORLD	
MPI_COMM_SELF	MPI::COMM_SELF	

Results of communicator and group comparisons

C type: const int (or unnamed enum)	C++ type: const int
Fortran type: INTEGER	(or unnamed enum)
MPI_IDENT	MPI::IDENT
MPI_CONGRUENT	MPI::CONGRUENT
MPI_SIMILAR	MPI::SIMILAR
MPI_UNEQUAL	MPI::UNEQUAL

Environmental inquiry keys

C type: const int (or unnamed enum)	C++ type: const int	
Fortran type: INTEGER	(or unnamed enum)	
MPI_TAG_UB	MPI::TAG_UB	
MPI_IO	MPI::IO	
MPI_HOST	MPI::HOST	
MPI_WTIME_IS_GLOBAL	MPI::WTIME_IS_GLOBAL	

Collective Operations		
C type: MPI_Op	C++ type: const MPI::Op	
Fortran type: INTEGER		
MPI_MAX	MPI::MAX	
MPI_MIN	MPI::MIN	
MPI_SUM	MPI::SUM	
MPI_PROD	MPI::PROD	
MPI_MAXLOC	MPI::MAXLOC	
MPI_MINLOC	MPI::MINLOC	
MPI_BAND	MPI::BAND	
MPI_BOR	MPI::BOR	
MPI_BXOR	MPI::BXOR	
MPI_LAND	MPI::LAND	
MPI_LOR	MPI::LOR	
MPI_LXOR	MPI::LXOR	
MPI_REPLACE	MPI::REPLACE	

Null Handles

C/Fortran name	C++ name
C type / Fortran type	C++ type
MPI_GROUP_NULL	MPI::GROUP_NULL
MPI_Group / INTEGER	const MPI::Group
MPI_COMM_NULL	MPI::COMM_NULL
MPI_Comm / INTEGER	$^{1})$
MPI_DATATYPE_NULL	MPI::DATATYPE_NULL
${\tt MPI_Datatype} \; / \; {\tt INTEGER}$	const MPI::Datatype
MPI_REQUEST_NULL	MPI::REQUEST_NULL
${\tt MPI_Request} \; / \; {\tt INTEGER}$	const MPI::Request
MPI_OP_NULL	MPI::OP_NULL
MPI_Op / INTEGER	const MPI::Op
MPI_ERRHANDLER_NULL	MPI::ERRHANDLER_NULL
${\tt MPI_Errhandler} \; / \; {\tt INTEGER}$	const MPI::Errhandler
MPI_FILE_NULL	MPI::FILE_NULL
MPI_File / INTEGER	
MPI_INFO_NULL	MPI::INFO_NULL
<pre>MPI_Info / INTEGER</pre>	<pre>const MPI::Info</pre>
MPI_WIN_NULL	MPI::WIN_NULL
MPI_Win / INTEGER	
1) C++ type: See Section 16	1.7 on page 506 regarding

¹) C++ type: See Section 16.1.7 on page 506 regarding class hierarchy and the specific type of MPI::COMM_NULL

Empty group

C type: MPI_Group	C++ type: const MPI::Group
Fortran type: INTEGER	
MPI_GROUP_EMPTY	MPI::GROUP_EMPTY

1	Тор	Topologies		
2	C type: const int (or unnam		C++ type: const int	
3	Fortran type: INTEGER	/	(or unnamed enum)	
4	MPI_GRAPH		MPI::GRAPH	
5	MPI_CART		MPI::CART	
6	MPI_DIST_GRAPH		MPI::DIST_GRAPH	
7				
8				
9	Predefine	Predefined functions		
10	C/Fortran name	C++ n	ame	
11	C type / Fortran type	C++	- type	
12	MPI_COMM_NULL_COPY_FN		OMM_NULL_COPY_FN	
13	MPI_Comm_copy_attr_function	same	e as in C ¹)	
14	/ COMM_COPY_ATTR_FN		,	
15	MPI_COMM_DUP_FN	MPI_C	OMM_DUP_FN	
16	MPI_Comm_copy_attr_function	same	e as in C^{-1})	
17	/ COMM_COPY_ATTR_FN		,	
18	MPI_COMM_NULL_DELETE_FN	MPI_C	OMM_NULL_DELETE_FN	
19	MPI_Comm_delete_attr_function	same	e as in C ¹)	
20	/ COMM_DELETE_ATTR_FN		,	
21	MPI_WIN_NULL_COPY_FN	MPI_W	/IN_NULL_COPY_FN	
22	MPI_Win_copy_attr_function	same	e as in C ¹)	
23	/ WIN_COPY_ATTR_FN			
24	MPI_WIN_DUP_FN	MPI_W	/IN_DUP_FN	
25	MPI_Win_copy_attr_function	same	e as in C^{-1})	
26	/ WIN_COPY_ATTR_FN			
27	MPI_WIN_NULL_DELETE_FN	MPI_W	/IN_NULL_DELETE_FN	
28	MPI_Win_delete_attr_function	same	e as in C^{-1})	
29	/ WIN_DELETE_ATTR_FN			
30	MPI_TYPE_NULL_COPY_FN	MPI_T	YPE_NULL_COPY_FN	
31	MPI_Type_copy_attr_function	same	e as in C^{-1})	
32	/ TYPE_COPY_ATTR_FN			
33	MPI_TYPE_DUP_FN	MPI_T	YPE_DUP_FN	
34	MPI_Type_copy_attr_function	same	e as in C^{-1})	
35	/ TYPE_COPY_ATTR_FN			
36	MPI_TYPE_NULL_DELETE_FN	MPI_T	YPE_NULL_DELETE_FN	
37	MPI_Type_delete_attr_function	same	e as in C^{-1})	
38	/ TYPE_DELETE_ATTR_FN			
39	¹ See the advice to implementors of	n MPI_C	OMM_NULL_COPY_FN, in	
40	Section 6.7.2 on page 257			
41				

Deprecated	predefined	functions
------------	------------	-----------

C/Fortran name	C++ name
C type / Fortran type	C++ type
MPI_NULL_COPY_FN	MPI::NULL_COPY_FN
MPI_Copy_function / COPY_FUNCTION	MPI::Copy_function
MPI_DUP_FN	MPI::DUP_FN
MPI_Copy_function / COPY_FUNCTION	MPI::Copy_function
MPI_NULL_DELETE_FN	MPI::NULL_DELETE_FN
MPI_Delete_function / DELETE_FUNCTION	MPI::Delete_function

Predefined Attribute Keys

	· ·
C type: const int (or unnamed enum)	C++ type:
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>
MPI_APPNUM	MPI::APPNUM
MPI_LASTUSEDCODE	MPI::LASTUSEDCODE
MPI_UNIVERSE_SIZE	MPI::UNIVERSE_SIZE
MPI_WIN_BASE	MPI::WIN_BASE
MPI_WIN_DISP_UNIT	MPI::WIN_DISP_UNIT
MPI_WIN_SIZE	MPI::WIN_SIZE

Mode Constants

C type: const int (or unnamed enum)	C++ type:
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>
MPI_MODE_APPEND	MPI::MODE_APPEND
MPI_MODE_CREATE	MPI::MODE_CREATE
MPI_MODE_DELETE_ON_CLOSE	MPI::MODE_DELETE_ON_CLOSE
MPI_MODE_EXCL	MPI::MODE_EXCL
MPI_MODE_NOCHECK	MPI::MODE_NOCHECK
MPI_MODE_NOPRECEDE	MPI::MODE_NOPRECEDE
MPI_MODE_NOPUT	MPI::MODE_NOPUT
MPI_MODE_NOSTORE	MPI::MODE_NOSTORE
MPI_MODE_NOSUCCEED	MPI::MODE_NOSUCCEED
MPI_MODE_RDONLY	MPI::MODE_RDONLY
MPI_MODE_RDWR	MPI::MODE_RDWR
MPI_MODE_SEQUENTIAL	MPI::MODE_SEQUENTIAL
MPI_MODE_UNIQUE_OPEN	MPI::MODE_UNIQUE_OPEN
MPI_MODE_WRONLY	MPI::MODE_WRONLY

1	Datatype Decoding Constants		
2	C type: const int (or unnamed enum)	C++ type:	
3	Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>	
4	MPI_COMBINER_CONTIGUOUS	MPI::COMBINER_CONTIGUOUS	
5	MPI_COMBINER_DARRAY	MPI::COMBINER_DARRAY	
6	MPI_COMBINER_DUP	MPI::COMBINER_DUP	
7	MPI_COMBINER_F90_COMPLEX	MPI::COMBINER_F90_COMPLEX	
8	MPI_COMBINER_F90_INTEGER	MPI::COMBINER_F90_INTEGER	
9	MPI_COMBINER_F90_REAL	MPI::COMBINER_F90_REAL	
10	MPI_COMBINER_HINDEXED_INTEGER	MPI::COMBINER_HINDEXED_INTEGER	
11	MPI_COMBINER_HINDEXED	MPI::COMBINER_HINDEXED	
12	MPI_COMBINER_HVECTOR_INTEGER	MPI::COMBINER_HVECTOR_INTEGER	
13	MPI_COMBINER_HVECTOR	MPI::COMBINER_HVECTOR	
14	MPI_COMBINER_INDEXED_BLOCK	MPI::COMBINER_INDEXED_BLOCK	
15	MPI_COMBINER_INDEXED	MPI::COMBINER_INDEXED	
16	MPI_COMBINER_NAMED	MPI::COMBINER_NAMED	
17	MPI_COMBINER_RESIZED	MPI::COMBINER_RESIZED	
18	MPI_COMBINER_STRUCT_INTEGER	MPI::COMBINER_STRUCT_INTEGER	
19	MPI_COMBINER_STRUCT	MPI::COMBINER_STRUCT	
20	MPI_COMBINER_SUBARRAY	MPI::COMBINER_SUBARRAY	
21	MPI_COMBINER_VECTOR	MPI::COMBINER_VECTOR	

Threads Constants

C type: const int (or unnamed enum)	C++ type:
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>
MPI_THREAD_FUNNELED	MPI::THREAD_FUNNELED
MPI_THREAD_MULTIPLE	MPI::THREAD_MULTIPLE
MPI_THREAD_SERIALIZED	MPI::THREAD_SERIALIZED
MPI_THREAD_SINGLE	MPI::THREAD_SINGLE

File Operation Constants, Part 1

C type: const MPI_Offset (or unnamed enum)	C++ type:
Fortran type: INTEGER (KIND=MPI_OFFSET_KIND)	<pre>const MPI::Offset (or unnamed enum)</pre>
MPI_DISPLACEMENT_CURRENT	MPI::DISPLACEMENT_CURRENT

File Operation Constants, Part	\mathbf{File}	Operation	Constants.	Part	2
--------------------------------	-----------------	-----------	------------	------	---

The operation constants, Tart 2		
C type: const int (or unnamed enum)	C++ type:	
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>	
MPI_DISTRIBUTE_BLOCK	MPI::DISTRIBUTE_BLOCK	
MPI_DISTRIBUTE_CYCLIC	MPI::DISTRIBUTE_CYCLIC	
MPI_DISTRIBUTE_DFLT_DARG	MPI::DISTRIBUTE_DFLT_DARG	
MPI_DISTRIBUTE_NONE	MPI::DISTRIBUTE_NONE	
MPI_ORDER_C	MPI::ORDER_C	
MPI_ORDER_FORTRAN	MPI::ORDER_FORTRAN	
MPI_SEEK_CUR	MPI::SEEK_CUR	
MPI_SEEK_END	MPI::SEEK_END	
MPI_SEEK_SET	MPI::SEEK_SET	

F90 Datatype Matching Constants

	_
C type: const int (or unnamed enum)	C++ type:
Fortran type: INTEGER	<pre>const int (or unnamed enum)</pre>
MPI_TYPECLASS_COMPLEX	MPI::TYPECLASS_COMPLEX
MPI_TYPECLASS_INTEGER	MPI::TYPECLASS_INTEGER
MPI_TYPECLASS_REAL	MPI::TYPECLASS_REAL

Constants Specifying Empty or Ignored Input

	-
C/Fortran name	C++ name
C type / Fortran type	C++ type
MPI_ARGVS_NULL	MPI::ARGVS_NULL
char*** / 2-dim. array of CHARACTER*(*)	<pre>const char ***</pre>
MPI_ARGV_NULL	MPI::ARGV_NULL
<pre>char** / array of CHARACTER*(*)</pre>	<pre>const char **</pre>
MPI_ERRCODES_IGNORE	Not defined for C++
int* / INTEGER array	
MPI_STATUSES_IGNORE	Not defined for C++
<pre>MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE,*)</pre>	
MPI_STATUS_IGNORE	Not defined for C++
<pre>MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE)</pre>	
MPI_UNWEIGHTED	Not defined for C++

C Constants Specifying Ignored Input (no C++ or Fortran)

C type: MPI_Fint*	
MPI_F_STATUSES_IGNORE	
MPI_F_STATUS_IGNORE	

C and C++ preprocessor Constants and Fortran Parameters

```
1
                A.1.2 Types
          2
                The following are defined C type definitions, included in the file mpi.h.
          3
                /* C opaque types */
                MPI_Aint
ticket265. ^6
                MPI_Count
                MPI_Fint
                MPI_Offset
                MPI_Status
          10
          11
                /* C handles to assorted structures */
          12
                MPI_Comm
          13
                MPI_Datatype
          14
                MPI_Errhandler
          15
                MPI_File
          16
                MPI_Group
          17
                MPI\_Info
          18
                MPI_Op
          19
                MPI_Request
          20
                MPI_Win
          21
          22
                // C++ opaque types (all within the MPI namespace)
          23
                MPI::Aint
          ^{24}
                MPI::Offset
          25
                MPI::Status
          26
          27
                // C++ handles to assorted structures (classes,
          28
                // all within the MPI namespace)
          29
                MPI::Comm
          30
                MPI::Intracomm
          31
                MPI::Graphcomm
          32
                MPI::Distgraphcomm
          33
                MPI::Cartcomm
          34
                MPI::Intercomm
          35
                MPI::Datatype
          36
                MPI::Errhandler
          37
                MPI::Exception
          38
                MPI::File
          39
                MPI::Group
                MPI::Info
          41
                MPI::Op
          42
                \mathsf{MPI} :: \mathsf{Request}
          43
                MPI::Prequest
          44
                MPI::Grequest
          45
                MPI::Win
          ^{46}
          47
```

```
A.1.3 Prototype d Definitions
                                                                                    <sup>1</sup> ticket0.
The following are defined C typedefs for user-defined functions, also included in the file
mpi.h.
/* prototypes for user-defined functions */
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,
              MPI_Datatype *datatype);
typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm,
              int comm_keyval, void *extra_state, void *attribute_val_in,
              void *attribute_val_out, int*flag);
                                                                                    12
typedef int MPI_Comm_delete_attr_function(MPI_Comm comm,
                                                                                    13
              int comm_keyval, void *attribute_val, void *extra_state);
                                                                                   14
                                                                                    15
typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,
                                                                                    16
              void *extra_state, void *attribute_val_in,
              void *attribute_val_out, int *flag);
                                                                                    18
typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,
                                                                                    19
              void *attribute_val, void *extra_state);
                                                                                   20
                                                                                   21
typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,
                                                                                   22
              int type_keyval, void *extra_state,
                                                                                   23
              void *attribute_val_in, void *attribute_val_out, int *flag);
                                                                                   24
typedef int MPI_Type_delete_attr_function(MPI_Datatype type,
              int type_keyval, void *attribute_val, void *extra_state);
                                                                                    26
                                                                                   27
typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);
                                                                                   28
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);
                                                                                   29
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);
                                                                                   30
                                                                                    31
typedef int MPI_Grequest_query_function(void *extra_state,
            MPI_Status *status);
                                                                                    33
typedef int MPI_Grequest_free_function(void *extra_state);
                                                                                   34
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);
                                                                                   35
                                                                                   36
typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
                                                                                   37
            MPI_Aint *file_extent, void *extra_state);
                                                                                   38
typedef int MPI_Datarep_conversion_function(void *userbuf,
                                                                                   39
            MPI_Datatype datatype, int count, void *filebuf,
            MPI_Offset position, void *extra_state);
                                                                                   42
   For Fortran, here are examples of how each of the user-defined subroutines should be
                                                                                   43
declared.
                                                                                   44
   The user-function argument to MPI_OP_CREATE should be declared like this:
                                                                                    45
SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)
                                                                                    46
   <type> INVEC(LEN), INOUTVEC(LEN)
                                                                                    47
   INTEGER LEN, TYPE
```

```
1
         The copy and delete function arguments to MPI_COMM_CREATE_KEYVAL should be
2
     declared like these:
     SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
                  ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
        INTEGER OLDCOMM, COMM_KEYVAL, IERROR
6
        INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
                   ATTRIBUTE_VAL_OUT
        LOGICAL FLAG
9
10
     SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,
11
                   EXTRA_STATE, IERROR)
12
        INTEGER COMM, COMM_KEYVAL, IERROR
13
        INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
14
15
         The copy and delete function arguments to MPI_WIN_CREATE_KEYVAL should be
16
     declared like these:
17
18
     SUBROUTINE WIN_COPY_ATTR_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE,
19
                   ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
20
        INTEGER OLDWIN, WIN_KEYVAL, IERROR
21
        INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
22
                  ATTRIBUTE_VAL_OUT
23
        LOGICAL FLAG
^{24}
     SUBROUTINE WIN_DELETE_ATTR_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,
26
                   EXTRA_STATE, IERROR)
27
        INTEGER WIN, WIN_KEYVAL, IERROR
28
        INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
29
         The copy and delete function arguments to MPI_TYPE_CREATE_KEYVAL should be
30
     declared like these:
31
32
     SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,
33
                    ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
34
        INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
35
        INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,
36
                    ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
37
        LOGICAL FLAG
38
39
     SUBROUTINE TYPE_DELETE_ATTR_FN(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,
40
                    EXTRA_STATE, IERROR)
41
        INTEGER TYPE, TYPE_KEYVAL, IERROR
        INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
43
44
         The handler-function argument to MPI_COMM_CREATE_ERRHANDLER should be de-
45
     clared like this:
46
47
     SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)
```

INTEGER COMM, ERROR_CODE

```
The handler-function argument to MPI_WIN_CREATE_ERRHANDLER should be de-
clared like this:
SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)
   INTEGER WIN, ERROR_CODE
   The handler-function argument to MPI_FILE_CREATE_ERRHANDLER should be de-
clared like this:
SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)
   INTEGER FILE, ERROR_CODE
                                                                                   12
    The query, free, and cancel function arguments to MPI_GREQUEST_START should be
                                                                                   13
declared like these:
                                                                                   14
                                                                                   15
SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)
                                                                                   16
   INTEGER STATUS(MPI_STATUS_SIZE), IERROR
   INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
                                                                                   18
                                                                                   19
SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)
                                                                                   20
   INTEGER IERROR
                                                                                   21
   INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
                                                                                   22
                                                                                   23
SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
                                                                                   24
   INTEGER IERROR
   INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
                                                                                   26
   LOGICAL COMPLETE
                                                                                   27
   The extend and conversion function arguments to MPI_REGISTER_DATAREP should
be declared like these:
SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)
    INTEGER DATATYPE, IERROR
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE
                                                                                   34
                                                                                   35
SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,
                                                                                   36
             POSITION, EXTRA_STATE, IERROR)
                                                                                   37
    <TYPE> USERBUF(*), FILEBUF(*)
    INTEGER COUNT, DATATYPE, IERROR
    INTEGER(KIND=MPI_OFFSET_KIND) POSITION
    INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
                                                                                   42
    The following are defined C++ typedefs, also included in the file mpi.h.
                                                                                   43
namespace MPI {
                                                                                   44
  typedef void User_function(const void* invec, void *inoutvec,
                                                                                   45
              int len, const Datatype& datatype);
                                                                                   46
                                                                                   47
  typedef int Comm::Copy_attr_function(const Comm& oldcomm,
```

```
1
                           int comm_keyval, void* extra_state, void* attribute_val_in,
       2
                           void* attribute_val_out, bool& flag);
              typedef int Comm::Delete_attr_function(Comm& comm, int
                           comm_keyval, void* attribute_val, void* extra_state);
       5
       6
              typedef int Win::Copy_attr_function(const Win& oldwin,
                           int win_keyval, void* extra_state, void* attribute_val_in,
                           void* attribute_val_out, bool& flag);
       9
              typedef int Win::Delete_attr_function(Win& win, int
       10
                           win_keyval, void* attribute_val, void* extra_state);
       11
      12
              typedef int Datatype::Copy_attr_function(const Datatype& oldtype,
       13
                           int type_keyval, void* extra_state,
       14
                           const void* attribute_val_in, void* attribute_val_out,
       15
                           bool& flag);
       16
              typedef int Datatype::Delete_attr_function(Datatype& type,
                           int type_keyval, void* attribute_val, void* extra_state);
       19
              typedef void Comm::Errhandler_function(Comm &, int *, ...);
      20
              typedef void Win::Errhandler_function(Win &, int *, ...);
      21
              typedef void File::Errhandler_function(File &, int *, ...);
      22
      23
              typedef int Grequest::Query_function(void* extra_state, Status& status);
      ^{24}
              typedef int Grequest::Free_function(void* extra_state);
              typedef int Grequest::Cancel_function(void* extra_state, bool complete);
       26
      27
              typedef void Datarep_extent_function(const Datatype& datatype,
      28
                            Aint& file_extent, void* extra_state);
      29
              typedef void Datarep_conversion_function(void* userbuf,
      30
                            Datatype& datatype, int count, void* filebuf,
      31
                            Offset position, void* extra_state);
      32
            }
ticket
0. ^{34}
            A.1.4 Deprecated [p]Prototype [d]Definitions
ticket0. 35
            The following are defined C typedefs for deprecated user-defined functions, also included in
            the file mpi.h.
      37
      38
            /* prototypes for user-defined functions */
      39
            typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,
       40
                           void *extra_state, void *attribute_val_in,
      41
                           void *attribute_val_out, int *flag);
      42
            typedef int MPI_Delete_function(MPI_Comm comm, int keyval,
      43
                           void *attribute_val, void *extra_state);
      44
            typedef void MPI_Handler_function(MPI_Comm *, int *, ...);
      45
      46
                The following are deprecated Fortran user-defined callback subroutine prototypes. The
      47
            deprecated copy and delete function arguments to MPI_KEYVAL_CREATE should be de-
            clared like these:
```

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR) INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, IERR
LOGICAL FLAG
SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR) INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR
The deprecated handler-function for error handlers should be declared like this:
SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE) INTEGER COMM, ERROR_CODE
A.1.5 Info Keys
access_style
appnum
arch
cb_block_size
cb_buffer_size cb_nodes
chunked_item
chunked_size
chunked
collective_buffering
file_perm
filename
file
host io_node_list
ip_address
ip_port
nb_proc
no_locks
num_io_nodes
path
soft
striping_factor
striping_unit wdir
wuii
A.1.6 Info Values
false
random read_mostly
read_mostry read_once
1000_01100

1	reverse_sequential
2	sequential
3	true
4	write_mostly
5	write_once
6	
7	
8	
9	
.0	
.1	
.2	
.3	
.4	
.5	
.6	
.7	
.8	
.9	
20	
21	
22	
:5 !4	
.4 !5	
26	
27	
28	
29	
80	
1	
32	
33	
34	
3 5	
86	
37	
88	
39	
10	
1	
12	
13	
4	
15	
16	

A.2 C Bindings

A.2.1 Point-to-Point Communication C Bindings

- int MPI_Buffer_attach(void* buffer, int size)
- int MPI_Buffer_detach(void* buffer_addr, int* size)
- int MPI_Cancel(MPI_Request *request)
- int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

- int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

- int MPI_Request_free(MPI_Request *request)

```
1
     int MPI_Send_init(void* buf, int count, MPI_Datatype datatype, int dest,
2
                   int tag, MPI_Comm comm, MPI_Request *request)
3
     int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,
                   int dest, int sendtag, void *recvbuf, int recvcount,
5
                   MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
6
                   MPI_Status *status)
7
8
     int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,
9
                   int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
10
                   MPI_Status *status)
11
     int MPI_Ssend(void* buf, int count, MPI_Datatype datatype, int dest,
12
                   int tag, MPI_Comm comm)
13
14
     int MPI_Ssend_init(void* buf, int count, MPI_Datatype datatype, int dest,
15
                   int tag, MPI_Comm comm, MPI_Request *request)
16
     int MPI_Start(MPI_Request *request)
17
18
     int MPI_Startall(int count, MPI_Request *array_of_requests)
19
     int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)
20
21
     int MPI_Test_cancelled(MPI_Status *status, int *flag)
22
     int MPI_Testall(int count, MPI_Request *array_of_requests, int *flag,
23
                   MPI_Status *array_of_statuses)
^{24}
     int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,
26
                   int *flag, MPI_Status *status)
27
     int MPI_Testsome(int incount, MPI_Request *array_of_requests,
28
                   int *outcount, int *array_of_indices,
29
                   MPI_Status *array_of_statuses)
30
31
     int MPI_Wait(MPI_Request *request, MPI_Status *status)
32
33
     int MPI_Waitall(int count, MPI_Request *array_of_requests,
34
                   MPI_Status *array_of_statuses)
35
     int MPI_Waitany(int count, MPI_Request *array_of_requests, int *index,
36
                   MPI_Status *status)
37
38
     int MPI_Waitsome(int incount, MPI_Request *array_of_requests,
39
                   int *outcount, int *array_of_indices,
40
                   MPI_Status *array_of_statuses)
41
42
     A.2.2 Datatypes C Bindings
43
44
     int MPI_Get_address(void *location, MPI_Aint *address)
45
     int MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype, int *count)
46
47
```

int	MPI_Get_elements_x(MPI_Status *status, MPI_Datatype datatype, MPI_Count *count)	2
int	MPI_Pack(void* inbuf, int incount, MPI_Datatype datatype, void *outbuf, int outsize, int *position, MPI_Comm comm)	3 4 5
int	MPI_Pack_external(char *datarep, void *inbuf, int incount, MPI_Datatype datatype, void *outbuf, MPI_Aint outsize, MPI_Aint *position)	6 7 8 9
int	MPI_Pack_external_size(char *datarep, int incount, MPI_Datatype datatype, MPI_Aint *size)	10
int	<pre>MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm, int *size)</pre>	12 13
int	MPI_Type_commit(MPI_Datatype *datatype)	15
int	MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)	16 17
int	MPI_Type_create_darray(int size, int rank, int ndims, int array_of_gsizes[], int array_of_distribs[], int array_of_dargs[], int array_of_psizes[], int order, MPI_Datatype oldtype, MPI_Datatype *newtype)	19 20 21 22
int	<pre>MPI_Type_create_hindexed(int count, int array_of_blocklengths[],</pre>	23 24 25 26
int	MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride, MPI_Datatype oldtype, MPI_Datatype *newtype)	27 28
int	MPI_Type_create_indexed_block(int count, int blocklength, int array_of_displacements[], MPI_Datatype oldtype, MPI_Datatype *newtype)	29 30 31 32
int	MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint extent, MPI_Datatype *newtype)	33
int	MPI_Type_create_struct(int count, int array_of_blocklengths[], MPI_Aint array_of_displacements[], MPI_Datatype array_of_types[], MPI_Datatype *newtype)	35 36 37 38
int	MPI_Type_create_subarray(int ndims, int array_of_sizes[], int array_of_subsizes[], int array_of_starts[], int order, MPI_Datatype oldtype, MPI_Datatype *newtype)	39 40 41
int	MPI_Type_dup(MPI_Datatype type, MPI_Datatype *newtype)	42
int	MPI_Type_free(MPI_Datatype *datatype)	44
int	<pre>MPI_Type_get_contents(MPI_Datatype datatype, int max_integers, int max_addresses, int max_datatypes, int array_of_integers[], MPI_Aint array_of_addresses[],</pre>	45 46 47 48

```
1
                   MPI_Datatype array_of_datatypes[])
2
     int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
3
                   int *num_addresses, int *num_datatypes, int *combiner)
4
5
     int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,
6
                   MPI_Aint *extent)
7
     int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb,
8
                  MPI_Count *extent)
9
10
     int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,
11
                  MPI_Aint *true_extent)
12
     int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,
13
                   MPI_Count *true_extent)
14
15
     int MPI_Type_indexed(int count, int *array_of_blocklengths,
16
                   int *array_of_displacements, MPI_Datatype oldtype,
17
                   MPI_Datatype *newtype)
18
     int MPI_Type_size(MPI_Datatype datatype, int *size)
19
20
     int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)
21
     int MPI_Type_vector(int count, int blocklength, int stride,
22
                   MPI_Datatype oldtype, MPI_Datatype *newtype)
23
24
     int MPI_Unpack(void* inbuf, int insize, int *position, void *outbuf,
25
                   int outcount, MPI_Datatype datatype, MPI_Comm comm)
26
     int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,
27
                   MPI_Aint *position, void *outbuf, int outcount,
28
                   MPI_Datatype datatype)
29
30
31
     A.2.3 Collective Communication C Bindings
32
33
     int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
34
                   void* recvbuf, int recvcount, MPI_Datatype recvtype,
35
                   MPI_Comm comm)
36
     int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
37
                   void* recvbuf, int *recvcounts, int *displs,
38
                   MPI_Datatype recvtype, MPI_Comm comm)
39
40
     int MPI_Allgatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype,
41
                   void* recvbuf, int *recvcounts, int *displs,
42
                   MPI_Datatype *recvtypes, MPI_Comm comm)
43
     int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
44
                   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
45
46
     int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
47
                   void* recvbuf, int recvcount, MPI_Datatype recvtype,
```

1 MPI_Comm comm) 2 int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls, MPI_Datatype sendtype, void* recvbuf, int *recvcounts, int *rdispls, MPI_Datatype recvtype, MPI_Comm comm) int MPI_Alltoallw(void* sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtypes[], void* recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm) int MPI_Barrier(MPI_Comm comm) 11 int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root, 12 MPI_Comm comm) 13 int MPI_Exscan(void* sendbuf, void* recvbuf, int count, 14 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 15 16 int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype, 17 void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, 18 MPI_Comm comm) 19 int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype, 20 void* recvbuf, int *recvcounts, int *displs, 21 MPI_Datatype recvtype, int root, MPI_Comm comm) 22 23 int MPI_Gatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype, 24 void* recvbuf, int recvcounts[], int displs[], 25 MPI_Datatype recvtypes[], int root, MPI_Comm comm) 26 int MPI_Iallgather(void* sendbuf, int sendcount, MPI_Datatype sendtype, 27 void* recvbuf, int recvcount, MPI_Datatype recvtype, 28 MPI_Comm comm, MPI_Request *request) 29 30 int MPI_Iallgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype, 31 void* recvbuf, int *recvcounts, int *displs, MPI_Datatype recvtype, MPI_Comm comm, MPI_Request* request) 33 int MPI_Iallgatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype, 34 void* recvbuf, int recvcounts[], int displs[], 35 MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Request *request) 36 37 38 int MPI_Iallreduce(void* sendbuf, void* recvbuf, int count, 39 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Request *request) int MPI_Ialltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype, 42 void* recvbuf, int recvcount, MPI_Datatype recvtype, 43 MPI_Comm comm, MPI_Request *request) 44 45 int MPI_Ialltoallv(void* sendbuf, int *sendcounts, int *sdispls, 46 MPI_Datatype sendtype, void* recvbuf, int *recvcounts, 47

int *rdispls, MPI_Datatype recvtype, MPI_Comm comm,

```
1
                   MPI_Request *request)
2
     int MPI_Ialltoallw(void* sendbuf, int sendcounts[], int sdispls[],
3
                   MPI_Datatype sendtypes[], void* recvbuf, int recvcounts[],
                   int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm,
5
                   MPI_Request *request)
6
7
     int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)
8
     int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,
9
                   MPI_Comm comm, MPI_Request *request)
10
11
     int MPI_Iexscan(void* sendbuf, void* recvbuf, int count,
12
                   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
13
                   MPI_Request *request)
14
     int MPI_Igather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
15
                   void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
16
                   MPI_Comm comm, MPI_Request *request)
17
18
     int MPI_Igatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
19
                   void* recvbuf, int *recvcounts, int *displs,
20
                   MPI_Datatype recvtype, int root, MPI_Comm comm,
21
                   MPI_Request *request)
22
     int MPI_Igatherw(void* sendbuf, int sendcount, MPI_Datatype sendtype,
23
                   void* recvbuf, int recvcounts[], int displs[],
24
                   MPI_Datatype recvtypes[], int root, MPI_Comm comm,
                   MPI_Request *request)
26
27
     int MPI_Ireduce(void* sendbuf, void* recvbuf, int count,
28
                   MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
29
                   MPI_Request *request)
30
     int MPI_Ireduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
31
                   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
32
                   MPI_Request *request)
33
34
     int MPI_Ireduce_scatter_block(void* sendbuf, void* recvbuf, int recvcount,
35
                   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
36
                   MPI_Request *request)
37
     int MPI_Iscan(void* sendbuf, void* recvbuf, int count,
38
                   MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
39
                   MPI_Request *request)
41
     int MPI_Iscatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
42
                   void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
43
                   MPI_Comm comm, MPI_Request *request)
44
     int MPI_Iscatterv(void* sendbuf, int *sendcounts, int *displs,
45
                   MPI_Datatype sendtype, void* recvbuf, int recvcount,
46
47
                   MPI_Datatype recvtype, int root, MPI_Comm comm,
                   MPI_Request *request)
```

```
1
int MPI_Iscatterw(void* sendbuf, int sendcounts[], int displs[],
                                                                                  2
             MPI_Datatype sendtypes[], void* recvbuf, int recvcount,
             MPI_Datatype recvtype, int root, MPI_Comm comm,
             MPI_Request *request)
int MPI_Op_commutative(MPI_Op op, int *commute)
int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)
int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
             MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
int MPI_Reduce_local(void* inbuf, void* inoutbuf, int count,
                                                                                  12
             MPI_Datatype datatype, MPI_Op op)
                                                                                  13
int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
                                                                                 14
             MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
                                                                                  15
                                                                                  16
int MPI_Reduce_scatter_block(void* sendbuf, void* recvbuf, int recvcount,
             MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
                                                                                 18
int MPI_Scan(void* sendbuf, void* recvbuf, int count,
                                                                                 19
             MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
                                                                                 20
                                                                                 21
int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
                                                                                 22
             void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
                                                                                 23
             MPI_Comm comm)
                                                                                 24
int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
             MPI_Datatype sendtype, void* recvbuf, int recvcount,
                                                                                 26
             MPI_Datatype recvtype, int root, MPI_Comm comm)
                                                                                 27
                                                                                 28
int MPI_Scatterw(void* sendbuf, int sendcounts[], int displs[],
                                                                                 29
             MPI_Datatype sendtypes[], void* recvbuf, int recvcount,
                                                                                 30
             MPI_Datatype recvtype, int root, MPI_Comm comm)
                                                                                  31
int MPI_op_free(MPI_Op *op)
                                                                                  33
                                                                                 34
A.2.4 Groups, Contexts, Communicators, and Caching C Bindings
                                                                                 35
                                                                                 36
int MPI_COMM_DUP_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state,
                                                                                 37
             void *attribute_val_in, void *attribute_val_out, int *flag)
                                                                                 38
int MPI_COMM_NULL_COPY_FN(MPI_Comm oldcomm, int comm_keyval,
                                                                                 39
             void *extra_state, void *attribute_val_in,
             void *attribute_val_out, int *flag)
                                                                                 41
                                                                                 42
int MPI_COMM_NULL_DELETE_FN(MPI_Comm comm, int comm_keyval, void
                                                                                 43
             *attribute_val, void *extra_state)
                                                                                 44
int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)
                                                                                 45
                                                                                  46
int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)
                                                                                  47
```

```
1
     int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,
2
                   MPI_Comm_delete_attr_function *comm_delete_attr_fn,
3
                   int *comm_keyval, void *extra_state)
4
     int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)
5
6
     int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)
7
     int MPI_Comm_free(MPI_Comm *comm)
8
9
     int MPI_Comm_free_keyval(int *comm_keyval)
10
     int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,
11
                   int *flag)
12
13
     int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)
14
     int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)
15
16
     int MPI_Comm_rank(MPI_Comm comm, int *rank)
17
     int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)
18
19
     int MPI_Comm_remote_size(MPI_Comm comm, int *size)
20
21
     int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)
22
     int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)
23
^{24}
     int MPI_Comm_size(MPI_Comm comm, int *size)
25
     int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)
26
27
     int MPI_Comm_test_inter(MPI_Comm comm, int *flag)
28
     int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)
29
30
     int MPI_Group_difference(MPI_Group group1, MPI_Group group2,
31
                   MPI_Group *newgroup)
32
     int MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)
33
34
     int MPI_Group_free(MPI_Group *group)
35
     int MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)
36
37
     int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,
38
                  MPI_Group *newgroup)
39
     int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],
40
                  MPI_Group *newgroup)
41
42
     int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],
43
                  MPI_Group *newgroup)
44
     int MPI_Group_rank(MPI_Group group, int *rank)
45
46
     int MPI_Group_size(MPI_Group group, int *size)
47
```

```
int MPI_Group_translate_ranks (MPI_Group group1, int n, int *ranks1,
                                                                                  2
             MPI_Group group2, int *ranks2)
int MPI_Group_union(MPI_Group group1, MPI_Group group2,
             MPI_Group *newgroup)
int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,
             MPI_Comm peer_comm, int remote_leader, int tag,
             MPI_Comm *newintercomm)
int MPI_Intercomm_merge(MPI_Comm intercomm, int high,
             MPI_Comm *newintracomm)
                                                                                 11
                                                                                 12
int MPI_TYPE_DUP_FN(MPI_Datatype oldtype, int type_keyval,
                                                                                 13
             void *extra_state, void *attribute_val_in,
                                                                                 14
             void *attribute_val_out, int *flag)
                                                                                 15
int MPI_TYPE_NULL_COPY_FN(MPI_Datatype oldtype, int type_keyval,
                                                                                 16
             void *extra_state, void *attribute_val_in,
             void *attribute_val_out, int *flag)
                                                                                 18
                                                                                 19
int MPI_TYPE_NULL_DELETE_FN(MPI_Datatype type, int type_keyval, void
                                                                                 20
             *attribute_val, void *extra_state)
                                                                                 21
int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,
                                                                                 22
             MPI_Type_delete_attr_function *type_delete_attr_fn,
                                                                                 23
             int *type_keyval, void *extra_state)
                                                                                 24
                                                                                 25
int MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)
                                                                                 26
int MPI_Type_free_keyval(int *type_keyval)
                                                                                 27
                                                                                 28
int MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void
                                                                                 29
             *attribute_val, int *flag)
                                                                                 30
int MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen)
                                                                                 31
int MPI_Type_set_attr(MPI_Datatype type, int type_keyval,
             void *attribute_val)
                                                                                 34
int MPI_Type_set_name(MPI_Datatype type, char *type_name)
                                                                                 35
                                                                                 36
int MPI_WIN_DUP_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
                                                                                 37
             void *attribute_val_in, void *attribute_val_out, int *flag)
                                                                                 38
int MPI_WIN_NULL_COPY_FN(MPI_Win oldwin, int win_keyval, void *extra_state,
             void *attribute_val_in, void *attribute_val_out, int *flag)
                                                                                 40
int MPI_WIN_NULL_DELETE_FN(MPI_Win win, int win_keyval, void
                                                                                 42
             *attribute_val, void *extra_state)
                                                                                 43
                                                                                 44
int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,
                                                                                 45
             MPI_Win_delete_attr_function *win_delete_attr_fn,
                                                                                 46
             int *win_keyval, void *extra_state)
int MPI_Win_delete_attr(MPI_Win win, int win_keyval)
```

```
1
     int MPI_Win_free_keyval(int *win_keyval)
2
     int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,
3
                   int *flag)
4
5
     int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)
6
     int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)
7
8
     int MPI_Win_set_name(MPI_Win win, char *win_name)
9
10
     A.2.5 Process Topologies C Bindings
11
12
     int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)
13
     int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,
14
                   int reorder, MPI_Comm *comm_cart)
15
16
     int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods,
17
                   int *coords)
18
19
     int MPI_Cart_map(MPI_Comm comm, int ndims, int *dims, int *periods,
20
                   int *newrank)
21
     int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)
22
23
     int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
^{24}
                   int *rank_source, int *rank_dest)
25
     int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm)
26
27
     int MPI_Cartdim_get(MPI_Comm comm, int *ndims)
28
     int MPI_Dims_create(int nnodes, int ndims, int *dims)
29
30
     int MPI_Dist_graph_create(MPI_Comm comm_old, int n, int sources[],
31
                   int degrees[], int destinations[], int weights[],
32
                   MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)
33
     int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,
34
                   int sources[], int sourceweights[], int outdegree,
35
                   int destinations[], int destweights[], MPI_Info info,
36
                   int reorder, MPI_Comm *comm_dist_graph)
37
38
     int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],
39
                   int sourceweights[], int maxoutdegree, int destinations[],
40
                   int destweights[])
41
     int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,
42
                   int *outdegree, int *weighted)
43
44
     int MPI_Graph_create(MPI_Comm comm_old, int nnodes, int *index, int *edges,
45
                   int reorder, MPI_Comm *comm_graph)
^{46}
     int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index,
47
                   int *edges)
48
```

```
int MPI_Graph_map(MPI_Comm comm, int nnodes, int *index, int *edges,
              int *newrank)
int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
             int *neighbors)
int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)
int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)
int MPI_Topo_test(MPI_Comm comm, int *status)
                                                                                  11
A.2.6 MPI Environmental Management C Bindings
                                                                                  12
                                                                                  13
double MPI_Wtick(void)
                                                                                  14
double MPI_Wtime(void)
                                                                                  15
                                                                                  16
int MPI_Abort(MPI_Comm comm, int errorcode)
int MPI_Add_error_class(int *errorclass)
                                                                                  18
                                                                                  19
int MPI_Add_error_code(int errorclass, int *errorcode)
                                                                                  20
int MPI_Add_error_string(int errorcode, char *string)
                                                                                  21
                                                                                  22
int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)
                                                                                  23
                                                                                  24
int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)
int MPI_Comm_create_errhandler(MPI_Comm_errhandler_function *function,
                                                                                  26
             MPI_Errhandler *errhandler)
                                                                                  27
                                                                                  28
int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)
                                                                                  29
int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)
                                                                                  30
int MPI_Errhandler_free(MPI_Errhandler *errhandler)
int MPI_Error_class(int errorcode, int *errorclass)
                                                                                  33
                                                                                  34
int MPI_Error_string(int errorcode, char *string, int *resultlen)
                                                                                  35
int MPI_File_call_errhandler(MPI_File fh, int errorcode)
                                                                                  36
                                                                                  37
int MPI_File_create_errhandler(MPI_File_errhandler_function *function,
             MPI_Errhandler *errhandler)
int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)
                                                                                  41
int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)
                                                                                  42
int MPI_Finalize(void)
                                                                                  43
                                                                                  44
int MPI_Finalized(int *flag)
                                                                                  45
int MPI_Free_mem(void *base)
                                                                                  46
int MPI_Get_processor_name(char *name, int *resultlen)
```

```
1
     int MPI_Get_version(int *version, int *subversion)
2
     int MPI_Init(int *argc, char ***argv)
3
4
     int MPI_Initialized(int *flag)
5
     int MPI_Win_call_errhandler(MPI_Win win, int errorcode)
6
7
     int MPI_Win_create_errhandler(MPI_Win_errhandler_function *function,
8
                   MPI_Errhandler *errhandler)
9
     int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)
10
11
     int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)
12
13
     A.2.7 The Info Object C Bindings
14
15
     int MPI_Info_create(MPI_Info *info)
16
17
     int MPI_Info_delete(MPI_Info info, char *key)
18
     int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)
19
20
     int MPI_Info_free(MPI_Info *info)
21
     int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,
22
                   int *flag)
23
^{24}
     int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)
25
     int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)
26
27
     int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,
28
                   int *flag)
29
     int MPI_Info_set(MPI_Info info, char *key, char *value)
30
31
32
     A.2.8 Process Creation and Management C Bindings
33
     int MPI_Close_port(char *port_name)
34
35
     int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
36
                   MPI_Comm comm, MPI_Comm *newcomm)
37
38
     int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
                   MPI_Comm comm, MPI_Comm *newcomm)
39
40
     int MPI_Comm_disconnect(MPI_Comm *comm)
41
42
     int MPI_Comm_get_parent(MPI_Comm *parent)
43
     int MPI_Comm_join(int fd, MPI_Comm *intercomm)
44
45
     int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info
46
                   info, int root, MPI_Comm comm, MPI_Comm *intercomm,
47
                   int array_of_errcodes[])
```

```
int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],
                                                                                  2
             char **array_of_argv[], int array_of_maxprocs[],
             MPI_Info array_of_info[], int root, MPI_Comm comm,
             MPI_Comm *intercomm, int array_of_errcodes[])
int MPI_Lookup_name(char *service_name, MPI_Info info, char *port_name)
int MPI_Open_port(MPI_Info info, char *port_name)
int MPI_Publish_name(char *service_name, MPI_Info info, char *port_name)
                                                                                  10
int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)
                                                                                  11
                                                                                  12
A.2.9 One-Sided Communications C Bindings
                                                                                  13
                                                                                  14
int MPI_Accumulate(void *origin_addr, int origin_count,
                                                                                  15
             MPI_Datatype origin_datatype, int target_rank,
                                                                                  16
             MPI_Aint target_disp, int target_count,
             MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)
                                                                                  18
int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype
                                                                                  19
             origin_datatype, int target_rank, MPI_Aint target_disp, int
                                                                                  20
             target_count, MPI_Datatype target_datatype, MPI_Win win)
                                                                                  21
                                                                                  22
int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype
                                                                                  23
             origin_datatype, int target_rank, MPI_Aint target_disp, int
                                                                                  24
             target_count, MPI_Datatype target_datatype, MPI_Win win)
                                                                                  26
int MPI_Win_complete(MPI_Win win)
                                                                                  27
int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,
                                                                                  28
             MPI_Comm comm, MPI_Win *win)
                                                                                  29
                                                                                  30
int MPI_Win_fence(int assert, MPI_Win win)
                                                                                  31
int MPI_Win_free(MPI_Win *win)
int MPI_Win_get_group(MPI_Win win, MPI_Group *group)
                                                                                  34
int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
                                                                                  35
                                                                                  36
int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)
                                                                                  37
int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)
                                                                                  38
                                                                                  39
int MPI_Win_test(MPI_Win win, int *flag)
int MPI_Win_unlock(int rank, MPI_Win win)
                                                                                  42
int MPI_Win_wait(MPI_Win win)
                                                                                  43
                                                                                  44
A.2.10 External Interfaces C Bindings
                                                                                  45
                                                                                  46
int MPI_Grequest_complete(MPI_Request request)
```

```
1
     int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
2
                   MPI_Grequest_free_function *free_fn,
3
                   MPI_Grequest_cancel_function *cancel_fn, void *extra_state,
4
                   MPI_Request *request)
5
     int MPI_Init_thread(int *argc, char *((*argv)[]), int required,
6
                   int *provided)
7
8
     int MPI_Is_thread_main(int *flag)
9
     int MPI_Query_thread(int *provided)
10
11
     int MPI_Status_set_cancelled(MPI_Status *status, int flag)
12
     int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,
13
                   int count)
14
15
     int MPI_Status_set_elements_x(MPI_Status *status, MPI_Datatype datatype,
16
                   MPI_Count count)
17
18
     A.2.11 I/O C Bindings
19
20
     int MPI_File_close(MPI_File *fh)
21
22
     int MPI_File_delete(char *filename, MPI_Info info)
23
     int MPI_File_get_amode(MPI_File fh, int *amode)
24
25
     int MPI_File_get_atomicity(MPI_File fh, int *flag)
26
     int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,
27
                  MPI_Offset *disp)
28
29
     int MPI_File_get_group(MPI_File fh, MPI_Group *group)
30
     int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)
31
32
     int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)
33
     int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)
34
35
     int MPI_File_get_size(MPI_File fh, MPI_Offset *size)
36
     int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,
37
                   MPI_Aint *extent)
38
39
     int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,
40
                   MPI_Datatype *filetype, char *datarep)
41
     int MPI_File_iread(MPI_File fh, void *buf, int count,
42
                   MPI_Datatype datatype, MPI_Request *request)
43
44
     int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
45
                   MPI_Datatype datatype, MPI_Request *request)
^{46}
47
     int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
                   MPI_Datatype datatype, MPI_Request *request)
48
```

int	<pre>MPI_File_iwrite(MPI_File fh, void *buf, int count,</pre>	1 2
int	<pre>MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,</pre>	3 4
	<pre>int count, MPI_Datatype datatype, MPI_Request *request)</pre>	5
int	<pre>MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,</pre>	6
	<pre>MPI_Datatype datatype, MPI_Request *request)</pre>	7 8
int	<pre>MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info,</pre>	9
int	<pre>MPI_File_preallocate(MPI_File fh, MPI_Offset size)</pre>	11
int	<pre>MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,</pre>	12 13 14
int	<pre>MPI_File_read_all(MPI_File fh, void *buf, int count,</pre>	15 16 17
int	<pre>MPI_File_read_all_begin(MPI_File fh, void *buf, int count,</pre>	18 19
int	<pre>MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)</pre>	20 21
int	<pre>MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,</pre>	22 23
int	<pre>MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,</pre>	24 25 26
int	<pre>MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,</pre>	27 28
int	<pre>MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)</pre>	29 30
int	<pre>MPI_File_read_ordered(MPI_File fh, void *buf, int count,</pre>	31
	<pre>MPI_Datatype datatype, MPI_Status *status)</pre>	32
int	MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,	33
	MPI_Datatype datatype)	34 35
int	<pre>MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)</pre>	36
int.	<pre>MPI_File_read_shared(MPI_File fh, void *buf, int count,</pre>	37
1110	MPI_Datatype datatype, MPI_Status *status)	38 39
int	MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)	40
		41
ınt	MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)	42
int	<pre>MPI_File_set_atomicity(MPI_File fh, int flag)</pre>	43 44
int	<pre>MPI_File_set_info(MPI_File fh, MPI_Info info)</pre>	45
int	MPI_File_set_size(MPI_File fh, MPI_Offset size)	46

```
1
     int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
2
                   MPI_Datatype filetype, char *datarep, MPI_Info info)
3
     int MPI_File_sync(MPI_File fh)
4
5
     int MPI_File_write(MPI_File fh, void *buf, int count,
6
                   MPI_Datatype datatype, MPI_Status *status)
7
     int MPI_File_write_all(MPI_File fh, void *buf, int count,
8
                   MPI_Datatype datatype, MPI_Status *status)
9
10
     int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
11
                   MPI_Datatype datatype)
12
     int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)
13
14
     int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,
15
                   MPI_Datatype datatype, MPI_Status *status)
16
     int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
17
                   int count, MPI_Datatype datatype, MPI_Status *status)
18
19
     int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,
20
                   int count, MPI_Datatype datatype)
21
     int MPI_File_write_at_all_end(MPI_File fh, void *buf, MPI_Status *status)
22
23
     int MPI_File_write_ordered(MPI_File fh, void *buf, int count,
24
                   MPI_Datatype datatype, MPI_Status *status)
25
26
     int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,
                   MPI_Datatype datatype)
27
28
     int MPI_File_write_ordered_end(MPI_File fh, void *buf, MPI_Status *status)
29
     int MPI_File_write_shared(MPI_File fh, void *buf, int count,
30
31
                   MPI_Datatype datatype, MPI_Status *status)
32
     int MPI_Register_datarep(char *datarep,
33
                   MPI_Datarep_conversion_function *read_conversion_fn,
34
                   MPI_Datarep_conversion_function *write_conversion_fn,
35
                   MPI_Datarep_extent_function *dtype_file_extent_fn,
36
                   void *extra_state)
37
38
39
     A.2.12 Language Bindings C Bindings
40
     int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)
41
42
     int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)
43
     int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)
44
45
     int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)
^{46}
     MPI_Fint MPI_Comm_c2f(MPI_Comm comm)
47
```

A.2. C BINDINGS 579

```
MPI_Comm MPI_Comm_f2c(MPI_Fint comm)
                                                                                   2
MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)
MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)
MPI_Fint MPI_File_c2f(MPI_File file)
MPI_File MPI_File_f2c(MPI_Fint file)
MPI_Fint MPI_Group_c2f(MPI_Group group)
MPI_Group MPI_Group_f2c(MPI_Fint group)
                                                                                   11
MPI_Fint MPI_Info_c2f(MPI_Info info)
                                                                                   12
                                                                                   13
MPI_Info MPI_Info_f2c(MPI_Fint info)
                                                                                  14
MPI_Fint MPI_Op_c2f(MPI_Op op)
                                                                                   15
                                                                                   16
MPI_Op MPI_Op_f2c(MPI_Fint op)
MPI_Fint MPI_Request_c2f(MPI_Request request)
                                                                                  18
                                                                                  19
MPI_Request MPI_Request_f2c(MPI_Fint request)
                                                                                  20
int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status)
                                                                                  21
                                                                                  22
int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status)
                                                                                  23
MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)
                                                                                  24
MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)
                                                                                   26
                                                                                  27
MPI_Fint MPI_Win_c2f(MPI_Win win)
                                                                                  28
MPI_Win MPI_Win_f2c(MPI_Fint win)
                                                                                  29
                                                                                  30
A.2.13 Profiling Interface C Bindings
int MPI_Pcontrol(const int level, ...)
                                                                                  34
                                                                                  35
A.2.14 Deprecated C Bindings
                                                                                  36
int MPI_Address(void* location, MPI_Aint *address)
                                                                                  37
int MPI_Attr_delete(MPI_Comm comm, int keyval)
int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)
int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)
                                                                                  42
                                                                                  43
int MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
                                                                                  44
              void *attribute_val_in, void *attribute_val_out, int *flag)
                                                                                  45
int MPI_Errhandler_create(MPI_Handler_function *function,
                                                                                   46
              MPI_Errhandler *errhandler)
```

```
1
     int MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler *errhandler)
2
     int MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler errhandler)
3
4
     int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function
5
                   *delete_fn, int *keyval, void* extra_state)
6
     int MPI_Keyval_free(int *keyval)
7
8
     int MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,
9
                   void *attribute_val_in, void *attribute_val_out, int *flag)
10
     int MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,
11
                   void *extra_state)
12
13
     int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)
14
     int MPI_Type_hindexed(int count, int *array_of_blocklengths,
15
                   MPI_Aint *array_of_displacements, MPI_Datatype oldtype,
16
                   MPI_Datatype *newtype)
17
18
     int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,
19
                   MPI_Datatype oldtype, MPI_Datatype *newtype)
20
     int MPI_Type_lb(MPI_Datatype datatype, MPI_Aint* displacement)
21
22
     int MPI_Type_struct(int count, int *array_of_blocklengths,
23
                   MPI_Aint *array_of_displacements,
24
                   MPI_Datatype *array_of_types, MPI_Datatype *newtype)
25
26
     int MPI_Type_ub(MPI_Datatype datatype, MPI_Aint* displacement)
27
28
29
30
31
33
34
35
36
37
38
41
```

A.3 Fortran Bindings	1 2
A.3.1 Point-to-Point Communication Fortran Bindings	3
MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)	4
<type> BUF(*)</type>	5 6
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR	7
MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)	8
<type> BUF(*)</type>	9
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR	10
MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)	11 12
<type> BUFFER(*)</type>	13
INTEGER SIZE, IERROR	14
MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)	15
<type> BUFFER_ADDR(*)</type>	16
INTEGER SIZE, IERROR	17
MPI_CANCEL(REQUEST, IERROR)	18 19
INTEGER REQUEST, IERROR	20
MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)	21
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR	22
MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)	23
<pre><type> BUF(*)</type></pre>	24 25
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR	26
MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)	27
LOGICAL FLAG	28
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR	29
MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)	30 31
<type> BUF(*)</type>	32
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR	33
MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)	34
<type> BUF(*)</type>	35
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR	36
MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)	37 38
<type> BUF(*)</type>	39
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR	40
MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)	41
<type> BUF(*)</type>	42
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR	43 44
MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)	45
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR	46

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

```
1
         <type> BUF(*)
2
         INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
         IERROR
     MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
5
         <type> BUF(*)
6
         INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR
7
8
     MPI_REQUEST_FREE(REQUEST, IERROR)
9
         INTEGER REQUEST, IERROR
10
     MPI_REQUEST_GET_STATUS( REQUEST, FLAG, STATUS, IERROR)
11
         INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
12
         LOGICAL FLAG
13
14
     MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
15
         <type> BUF(*)
16
         INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
17
     MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
18
         <type> BUF(*)
19
         INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
20
21
     MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
22
         <type> BUF(*)
23
         INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
24
     MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
25
                   RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
26
         <type> SENDBUF(*), RECVBUF(*)
27
         INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
28
         SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR
29
30
     MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
31
                   COMM, STATUS, IERROR)
32
         <type> BUF(*)
33
         INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
34
         STATUS(MPI_STATUS_SIZE), IERROR
35
     MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
36
         <type> BUF(*)
37
         INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
38
39
     MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
40
         <type> BUF(*)
41
         INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR
42
     MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
43
         <type> BUF(*)
44
         INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
45
46
     MPI_START(REQUEST, IERROR)
47
```

INTEGER REQUEST, IERROR

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR) INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR
MPI_TEST(REQUEST, FLAG, STATUS, IERROR) LOGICAL FLAG INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR) LOGICAL FLAG INTEGER COUNT, ARRAY_OF_REQUESTS(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR
MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR) LOGICAL FLAG INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR
MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES, ARRAY_OF_STATUSES, IERROR) INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR
MPI_TEST_CANCELLED(STATUS, FLAG, IERROR) LOGICAL FLAG INTEGER STATUS(MPI_STATUS_SIZE), IERROR
MPI_WAIT(REQUEST, STATUS, IERROR) INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR) INTEGER COUNT, ARRAY_OF_REQUESTS(*) INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR
<pre>MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR) INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE), IERROR</pre>
MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES, ARRAY_OF_STATUSES, IERROR) INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*), ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR
A.3.2 Datatypes Fortran Bindings
MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR) <type> LOCATION(*) INTEGER IERROR INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS 4</type>
MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR) INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR
MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)

```
1
         INTEGER STATUS (MPI_STATUS_SIZE), DATATYPE, IERROR
2
         INTEGER (KIND=MPI_COUNT_KIND) COUNT
     MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)
         <type> INBUF(*), OUTBUF(*)
5
         INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR
6
     MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,
                  POSITION, IERROR)
9
         INTEGER INCOUNT, DATATYPE, IERROR
10
         INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION
11
         CHARACTER*(*) DATAREP
12
         <type> INBUF(*), OUTBUF(*)
13
    MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)
14
         INTEGER INCOUNT, DATATYPE, IERROR
15
         INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
16
         CHARACTER*(*) DATAREP
17
18
    MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)
19
         INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR
20
    MPI_TYPE_COMMIT(DATATYPE, IERROR)
21
         INTEGER DATATYPE, IERROR
22
23
    MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)
24
         INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR
     MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,
26
                  ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,
27
                  OLDTYPE, NEWTYPE, IERROR)
28
         INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),
29
         ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR
30
31
     MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,
32
                   ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)
33
         INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR
34
         INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)
35
     MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
36
                   IERROR)
37
         INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR
38
         INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE
39
40
     MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,
41
                  OLDTYPE, NEWTYPE, IERROR)
42
         INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,
43
         NEWTYPE, IERROR
44
    MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)
45
         INTEGER OLDTYPE, NEWTYPE, IERROR
46
47
         INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT
```

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,	1
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)	2
<pre>INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE, IERROR</pre>	3
INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)	5
MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,	6
ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)	7
INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),	8
ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR	9 10
MPI_TYPE_DUP(TYPE, NEWTYPE, IERROR)	11
INTEGER TYPE, NEWTYPE, IERROR	12
MPI_TYPE_FREE(DATATYPE, IERROR)	13
INTEGER DATATYPE, IERROR	14 15
	16
MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,	17
ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES, IERROR)	18
INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,	19
ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR	20
<pre>INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)</pre>	21
NDT MVDE GEM ENVELODE/DAMAMVDE NUM TNMEGEDG NUM ADDDEGGEG NUM DAMAMVDEG	22
MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER, IERROR)	23 24
INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER, IERROR	25 26
MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)	27
INTEGER DATATYPE, IERROR	28
INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT	29
INTEGRALICATION IN I_REPORTED CALLED AND AD A DATE OF	30
MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)	31
INTEGER DATATYPE, IERROR	32
<pre>INTEGER(KIND = MPI_COUNT_KIND) LB, EXTENT</pre>	33
MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)	34 35
INTEGER DATATYPE, IERROR	36
INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT	37
MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)	38
INTEGER DATATYPE, IERROR	39
<pre>INTEGER(KIND = MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT</pre>	40
MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,	41
OLDTYPE, NEWTYPE, IERROR)	42
INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),	43
OLDTYPE, NEWTYPE, IERROR	44
	45
MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)	46
INTEGER DATATYPE, SIZE, IERROR	47

```
1
    MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)
2
         INTEGER DATATYPE, IERROR
3
         INTEGER (KIND=MPI_COUNT_KIND) SIZE
     MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)
5
         INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR
6
7
     MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,
                   IERROR)
9
         <type> INBUF(*), OUTBUF(*)
10
         INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR
11
     MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,
12
                   DATATYPE, IERROR)
13
         INTEGER OUTCOUNT, DATATYPE, IERROR
14
         INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION
15
         CHARACTER*(*) DATAREP
16
         <type> INBUF(*), OUTBUF(*)
17
19
     A.3.3 Collective Communication Fortran Bindings
20
    MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
21
                  COMM, IERROR)
22
         <type> SENDBUF(*), RECVBUF(*)
23
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR
24
     MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
26
                   RECVTYPE, COMM, IERROR)
27
         <type> SENDBUF(*), RECVBUF(*)
28
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
         IERROR
30
     MPI_ALLGATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
31
                   RECVTYPES, COMM, IERROR)
         <type> SENDBUF(*), RECVBUF(*)
33
34
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
         COMM, IERROR
35
36
     MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
37
         <type> SENDBUF(*), RECVBUF(*)
38
         INTEGER COUNT, DATATYPE, OP, COMM, IERROR
39
    MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
41
                   COMM, IERROR)
         <type> SENDBUF(*), RECVBUF(*)
42
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR
43
44
     MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
45
                   RDISPLS, RECVTYPE, COMM, IERROR)
46
         <type> SENDBUF(*), RECVBUF(*)
47
```

```
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
    RECVTYPE, COMM, IERROR
MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
             RDISPLS, RECVTYPES, COMM, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
    RDISPLS(*), RECVTYPES(*), COMM, IERROR
MPI_BARRIER(COMM, IERROR)
    INTEGER COMM, IERROR
MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
                                                                                12
    <type> BUFFER(*)
                                                                                13
    INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR
                                                                                14
                                                                                15
MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER COUNT, DATATYPE, OP, COMM, IERROR
MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
                                                                                19
             ROOT, COMM, IERROR)
                                                                                20
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR
MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
             RECVTYPE, ROOT, COMM, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
                                                                                27
    COMM, IERROR
MPI_GATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
             RECVTYPES, ROOT, COMM, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
    ROOT, COMM, IERROR
MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
             COMM, REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR
MPI_IALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
             RECVTYPE, COMM, REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
    REQUEST, IERROR
                                                                                43
MPI_IALLGATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
             RECVTYPES, COMM, REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
```

```
1
         COMM, REQUEST, IERROR
2
     MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST,
3
                   IERROR)
         <type> SENDBUF(*), RECVBUF(*)
5
         INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR
6
     MPI_IALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
                  COMM, REQUEST, IERROR)
9
         <type> SENDBUF(*), RECVBUF(*)
10
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR
11
     MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
12
                  RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)
13
         <type> SENDBUF(*), RECVBUF(*)
14
         INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
15
         RECVTYPE, COMM, REQUEST, IERROR
16
17
     MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
18
                  RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)
19
         <type> SENDBUF(*), RECVBUF(*)
20
         INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
21
         RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR
22
    MPI_IBARRIER(COMM, REQUEST, IERROR)
23
         INTEGER COMM, REQUEST, IERROR
24
    MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
26
         <type> BUFFER(*)
27
         INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR
28
     MPI_IEXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
29
         <type> SENDBUF(*), RECVBUF(*)
30
         INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR
31
     MPI_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
33
                  ROOT, COMM, REQUEST, IERROR)
34
         <type> SENDBUF(*), RECVBUF(*)
35
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,
36
         IERROR
37
     MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
38
                  RECVTYPE, ROOT, COMM, REQUEST, IERROR)
         <type> SENDBUF(*), RECVBUF(*)
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
         COMM, REQUEST, IERROR
42
43
     MPI_IGATHERW(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
44
                  RECVTYPES, ROOT, COMM, REQUEST, IERROR)
45
         <type> SENDBUF(*), RECVBUF(*)
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPES(*),
47
         ROOT, COMM, REQUEST, IERROR
```

```
MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST,
             IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR
MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
             REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR
MPI_IREDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
             REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
                                                                                 12
                                                                                 13
    INTEGER RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR
                                                                                 14
MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
                                                                                 15
    <type> SENDBUF(*), RECVBUF(*)
                                                                                 16
    INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR
MPI_ISCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
                                                                                 19
             ROOT, COMM, REQUEST, IERROR)
                                                                                 20
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,
    IERROR
MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
             RECVTYPE, ROOT, COMM, REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
    COMM, REQUEST, IERROR
                                                                                 29
MPI_ISCATTERW(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPES, RECVBUF, RECVCOUNT,
             RECVTYPE, ROOT, COMM, REQUEST, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
    INTEGER DISPLS(*), SENDCOUNTS(*), SENDTYPES, RECVCOUNT, RECVTYPE, ROOT,
    COMM, REQUEST, IERROR
                                                                                 34
MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)
                                                                                 35
    LOGICAL COMMUTE
                                                                                 36
    INTEGER OP, IERROR
                                                                                 37
MPI_OP_CREATE( FUNCTION, COMMUTE, OP, IERROR)
    EXTERNAL FUNCTION
    LOGICAL COMMUTE
    INTEGER OP, IERROR
                                                                                 42
MPI_OP_FREE(OP, IERROR)
                                                                                 43
    INTEGER OP, IERROR
                                                                                 44
                                                                                 45
MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
    <type> SENDBUF(*), RECVBUF(*)
                                                                                 47
    INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR
```

```
1
    MPI_REDUCE_LOCAL(INBUF, INOUBUF, COUNT, DATATYPE, OP, IERROR)
2
         <type> INBUF(*), INOUTBUF(*)
         INTEGER COUNT, DATATYPE, OP, IERROR
     MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
5
                   IERROR)
6
         <type> SENDBUF(*), RECVBUF(*)
         INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR
8
9
     MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,
10
                   IERROR)
11
         <type> SENDBUF(*), RECVBUF(*)
12
         INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR
13
     MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
14
         <type> SENDBUF(*), RECVBUF(*)
15
         INTEGER COUNT, DATATYPE, OP, COMM, IERROR
16
17
     MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
18
                  ROOT, COMM, IERROR)
19
         <type> SENDBUF(*), RECVBUF(*)
20
         INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR
21
     MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
22
                  RECVTYPE, ROOT, COMM, IERROR)
23
         <type> SENDBUF(*), RECVBUF(*)
24
         INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
         COMM, IERROR
26
27
     MPI_SCATTERW(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPES, RECVBUF, RECVCOUNT,
28
                  RECVTYPE, ROOT, COMM, IERROR)
29
         <type> SENDBUF(*), RECVBUF(*)
30
         INTEGER DISPLS(*), SENDCOUNTS(*), SENDTYPES, RECVCOUNT, RECVTYPE, ROOT,
         COMM, IERROR
33
34
     A.3.4 Groups, Contexts, Communicators, and Caching Fortran Bindings
35
     MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)
36
         INTEGER COMM1, COMM2, RESULT, IERROR
37
     MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)
38
         INTEGER COMM, GROUP, NEWCOMM, IERROR
    MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,
                  EXTRA_STATE, IERROR)
42
         EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN
43
         INTEGER COMM_KEYVAL, IERROR
44
         INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
45
46
     MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)
47
         INTEGER COMM, COMM_KEYVAL, IERROR
```

MPI_COMM_DUP(COMM, NEWCOMM, IERROR) INTEGER COMM, NEWCOMM, IERROR	1 2
MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)	3 4 5
INTEGER OLDCOMM, COMM_KEYVAL, IERROR	6
<pre>INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,</pre>	7
ATTRIBUTE_VAL_OUT	8
LOGICAL FLAG	9
MPI_COMM_FREE(COMM, IERROR)	10
INTEGER COMM, IERROR	11
MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)	12 13
INTEGER COMM_KEYVAL, IERROR	14
MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)	15
INTEGER COMM, COMM_KEYVAL, IERROR	16
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL	17
LOGICAL FLAG	18
MDI COMM CET NAME COMM COMM NAME DECHITIEN TEDDOD	19
MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR) INTEGER COMM, RESULTLEN, IERROR	20
CHARACTER*(*) COMM_NAME	21 22
	23
MPI_COMM_GROUP(COMM, GROUP, IERROR) INTEGER COMM, GROUP, IERROR	24
MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,	25
ATTRIBUTE_VAL_OUT, FLAG, IERROR)	26 27
INTEGER OLDCOMM, COMM_KEYVAL, IERROR	28
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,	29
ATTRIBUTE_VAL_OUT	30
LOGICAL FLAG	31
MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,	32
IERROR)	33
INTEGER COMM, COMM_KEYVAL, IERROR	34
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE	35
MPI_COMM_RANK(COMM, RANK, IERROR)	36 37
INTEGER COMM, RANK, IERROR	38
	39
MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)	40
INTEGER COMM, GROUP, IERROR	41
MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)	42
INTEGER COMM, SIZE, IERROR	43
MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)	44
INTEGER COMM, COMM_KEYVAL, IERROR	45 46
INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL	46
MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)	48
1_00021_NIII(001)	

```
1
         INTEGER COMM, IERROR
2
         CHARACTER*(*) COMM_NAME
     MPI_COMM_SIZE(COMM, SIZE, IERROR)
         INTEGER COMM, SIZE, IERROR
5
6
     MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
7
         INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR
     MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)
9
         INTEGER COMM, IERROR
10
         LOGICAL FLAG
11
12
     MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)
13
         INTEGER GROUP1, GROUP2, RESULT, IERROR
14
     MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)
15
         INTEGER GROUP1, GROUP2, NEWGROUP, IERROR
16
17
     MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)
18
         INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR
19
    MPI_GROUP_FREE(GROUP, IERROR)
20
         INTEGER GROUP, IERROR
21
22
     MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)
23
         INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR
^{24}
     MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)
25
         INTEGER GROUP1, GROUP2, NEWGROUP, IERROR
26
27
     MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)
28
         INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR
29
    MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)
30
         INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR
31
     MPI_GROUP_RANK(GROUP, RANK, IERROR)
33
         INTEGER GROUP, RANK, IERROR
34
     MPI_GROUP_SIZE(GROUP, SIZE, IERROR)
35
         INTEGER GROUP, SIZE, IERROR
36
37
     MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)
38
         INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR
39
40
    MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)
41
         INTEGER GROUP1, GROUP2, NEWGROUP, IERROR
42
     MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,
43
                   TAG, NEWINTERCOMM, IERROR)
44
         INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,
45
         NEWINTERCOMM, IERROR
^{46}
```

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)

INTEGER INTERCOMM, INTRACOMM, IERROR LOGICAL HIGH	2
MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,	5 6 7 8
MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR) INTEGER TYPE, TYPE_KEYVAL, IERROR	1
MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,	1 1: 1: 1: 1:
INTEGER TYPE_KEYVAL, IERROR	1
MPI_TYPE_GET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)	2 2 2
INTEGER TYPE, RESULTLEN, IERRUR	2 2 2
<pre>INTEGER OLDTYPE, TYPE_KEYVAL, IERROR INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,</pre>	2 3 3 3 3 3 3
IERROR) INTEGER TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, INTEGER TYPE, TYPE_KEYVAL, IERROR INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE	3 3 3
MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR) INTEGER TYPE, TYPE_KEYVAL, IERROR	4 4 4
MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR) INTEGER TYPE, IERROR CHARACTER*(*) TYPE_NAME	4 4 4
MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,	4

```
1
         EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
2
         INTEGER WIN_KEYVAL, IERROR
         INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
     MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)
5
         INTEGER WIN, WIN_KEYVAL, IERROR
6
7
     MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
8
                   ATTRIBUTE_VAL_OUT, FLAG, IERROR)
9
         INTEGER OLDWIN, WIN_KEYVAL, IERROR
10
         INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
11
             ATTRIBUTE_VAL_OUT
12
         LOGICAL FLAG
13
    MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)
14
         INTEGER WIN_KEYVAL, IERROR
15
16
     MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
17
         INTEGER WIN, WIN_KEYVAL, IERROR
18
         INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
19
         LOGICAL FLAG
20
     MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)
21
         INTEGER WIN, RESULTLEN, IERROR
22
         CHARACTER*(*) WIN_NAME
23
24
     MPI_WIN_NULL_COPY_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
                   ATTRIBUTE_VAL_OUT, FLAG, IERROR)
26
         INTEGER OLDWIN, WIN_KEYVAL, IERROR
27
         INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
28
             ATTRIBUTE_VAL_OUT
29
         LOGICAL FLAG
30
    MPI_WIN_NULL_DELETE_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
31
         INTEGER WIN, WIN_KEYVAL, IERROR
32
         INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE
33
34
     MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)
35
         INTEGER WIN, WIN_KEYVAL, IERROR
36
         INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
37
     MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)
38
         INTEGER WIN, IERROR
39
         CHARACTER*(*) WIN_NAME
41
42
     A.3.5 Process Topologies Fortran Bindings
43
44
    MPI_CARTDIM_GET(COMM, NDIMS, IERROR)
45
         INTEGER COMM, NDIMS, IERROR
46
    MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
47
         INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR
```

LOGICAL PERIODS(*)

12

13 14

15

19 20

21

27

35

36

37

42

43

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COM	M CART.	IERROR)
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR	,	
LOGICAL PERIODS(*), REORDER		
MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)		
<pre>INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR</pre>		

- MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
 INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
 LOGICAL PERIODS(*)
- MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
 INTEGER COMM, COORDS(*), RANK, IERROR
- MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
 INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR
- MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
 INTEGER COMM, NEWCOMM, IERROR
 LOGICAL REMAIN_DIMS(*)
- MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
 INTEGER NNODES, NDIMS, DIMS(*), IERROR
- MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS, INFO, REORDER, COMM_DIST_GRAPH, IERROR)

 INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*), WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

 LOGICAL REORDER
- MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS, OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER, COMM_DIST_GRAPH, IERROR)
 - INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,
 DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR
 LOGICAL REORDER
- MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,

 MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

 INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,

 DESTINATIONS(*), DESTWEIGHTS(*), IERROR
- MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)
 INTEGER COMM, INDEGREE, OUTDEGREE, IERROR
 LOGICAL WEIGHTED
- MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)
 INTEGER COMM, NNODES, NEDGES, IERROR
- MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH, IERROR)
 - INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR

LOGICAL REORDER
MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR) INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR
MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR) INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR
MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR) INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR
MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR) INTEGER COMM, RANK, NNEIGHBORS, IERROR
MPI_TOPO_TEST(COMM, STATUS, IERROR) INTEGER COMM, STATUS, IERROR
A.3.6 MPI Environmental Management Fortran Bindings
DOUBLE PRECISION MPI_WTICK()
DOUBLE PRECISION MPI_WTIME()
MPI_ABORT(COMM, ERRORCODE, IERROR) INTEGER COMM, ERRORCODE, IERROR
MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR) INTEGER ERRORCLASS, IERROR
MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR) INTEGER ERRORCLASS, ERRORCODE, IERROR
MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR) INTEGER ERRORCODE, IERROR CHARACTER*(*) STRING
MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR) INTEGER INFO, IERROR INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR
MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR) INTEGER COMM, ERRORCODE, IERROR
MPI_COMM_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR) EXTERNAL FUNCTION INTEGER ERRHANDLER, IERROR
MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR) INTEGER COMM, ERRHANDLER, IERROR
MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR) INTEGER COMM, ERRHANDLER, IERROR
MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)

INTEGER ERRHANDLER, IERROR

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR) INTEGER ERRORCODE, ERRORCLASS, IERROR	2
MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR) INTEGER ERRORCODE, RESULTLEN, IERROR CHARACTER*(*) STRING	3 4 5
MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR) INTEGER FH, ERRORCODE, IERROR	8
MPI_FILE_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR) EXTERNAL FUNCTION INTEGER ERRHANDLER, IERROR	1 1 1
MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR) INTEGER FILE, ERRHANDLER, IERROR	1 1 1
MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR) INTEGER FILE, ERRHANDLER, IERROR	1
MPI_FINALIZE(IERROR) INTEGER IERROR	1
MPI_FINALIZED(FLAG, IERROR) LOGICAL FLAG INTEGER IERROR	2 2 2
MPI_FREE_MEM(BASE, IERROR) <type> BASE(*) INTEGER IERROR</type>	2 2 2
MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR) CHARACTER*(*) NAME INTEGER RESULTLEN, IERROR	2 2 3
MPI_GET_VERSION(VERSION, SUBVERSION, IERROR) INTEGER VERSION, SUBVERSION, IERROR	3 3 3
MPI_INIT(IERROR) INTEGER IERROR	3
MPI_INITIALIZED(FLAG, IERROR) LOGICAL FLAG INTEGER IERROR	3 3 3
MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR) INTEGER WIN, ERRORCODE, IERROR	3 4 4
MPI_WIN_CREATE_ERRHANDLER(FUNCTION, ERRHANDLER, IERROR) EXTERNAL FUNCTION INTEGER ERRHANDLER, IERROR	4 4 4
MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR) INTEGER WIN, ERRHANDLER, IERROR	4

```
1
     MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)
2
         INTEGER WIN, ERRHANDLER, IERROR
3
     A.3.7 The Info Object Fortran Bindings
5
6
     MPI_INFO_CREATE(INFO, IERROR)
7
         INTEGER INFO, IERROR
8
     MPI_INFO_DELETE(INFO, KEY, IERROR)
9
         INTEGER INFO, IERROR
10
         CHARACTER*(*) KEY
11
12
     MPI_INFO_DUP(INFO, NEWINFO, IERROR)
13
         INTEGER INFO, NEWINFO, IERROR
14
     MPI_INFO_FREE(INFO, IERROR)
15
         INTEGER INFO, IERROR
16
17
     MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
18
         INTEGER INFO, VALUELEN, IERROR
19
         CHARACTER*(*) KEY, VALUE
20
         LOGICAL FLAG
21
     MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)
22
         INTEGER INFO, NKEYS, IERROR
23
^{24}
     MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
25
         INTEGER INFO, N, IERROR
26
         CHARACTER*(*) KEY
27
28
     MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
         INTEGER INFO, VALUELEN, IERROR
29
30
         LOGICAL FLAG
31
         CHARACTER*(*) KEY
     MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
         INTEGER INFO, IERROR
34
         CHARACTER*(*) KEY, VALUE
35
36
37
     A.3.8 Process Creation and Management Fortran Bindings
38
     MPI_CLOSE_PORT(PORT_NAME, IERROR)
39
         CHARACTER*(*) PORT_NAME
40
         INTEGER IERROR
41
42
     MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
43
         CHARACTER*(*) PORT_NAME
44
         INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR
45
     MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
46
         CHARACTER*(*) PORT_NAME
47
         INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR
```

MPI_COMM_DISCONNECT(COMM, IERROR)	1
INTEGER COMM, IERROR	2
MPI_COMM_GET_PARENT(PARENT, IERROR) INTEGER PARENT, IERROR	4
	5 6
MPI_COMM_JOIN(FD, INTERCOMM, IERROR) INTEGER FD, INTERCOMM, IERROR	7
INTEGER FD, INTERCORM, TERROR	8
MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,	9
ARRAY_OF_ERRCODES, IERROR)	10
CHARACTER*(*) COMMAND, ARGV(*) INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),	11 12
IERROR	13
MDT COMM CDAUN MULTIDIE/COUNT ADDAY OF COMMANDS ADDAY OF ADOL	14
MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV, ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,	15
ARRAY_OF_ERRCODES, IERROR)	16
INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,	17
<pre>INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR</pre>	18
CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)	19
MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)	20
CHARACTER*(*) SERVICE_NAME, PORT_NAME	22
INTEGER INFO, IERROR	23
MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)	24
CHARACTER*(*) PORT_NAME	25
INTEGER INFO, IERROR	26
MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)	27
INTEGER INFO, IERROR	28 29
CHARACTER*(*) SERVICE_NAME, PORT_NAME	30
MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)	31
INTEGER INFO, IERROR	32
CHARACTER*(*) SERVICE_NAME, PORT_NAME	33
	34
A.3.9 One-Sided Communications Fortran Bindings	35 36
A.3.9 One-Sided Communications Fortran Bindings	37
MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,	38
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)	39
<pre><type> ORIGIN_ADDR(*) INTEGER(VIND_MEL_ADDRESS VIND) TARGET DISC </type></pre>	40
<pre>INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,</pre>	41
TARGET_DATATYPE, OP, WIN, IERROR	42
_ , , ,	43
MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,	44 45
TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR) <type> ORIGIN_ADDR(*)</type>	46
INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP	47

2

```
TARGET_DATATYPE, WIN, IERROR
     MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
                   TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
5
         <type> ORIGIN_ADDR(*)
6
         INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
         INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
8
         TARGET_DATATYPE, WIN, IERROR
9
10
    MPI_WIN_COMPLETE(WIN, IERROR)
11
         INTEGER WIN, IERROR
12
    MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
13
         <type> BASE(*)
14
         INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
15
         INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR
16
17
     MPI_WIN_FENCE(ASSERT, WIN, IERROR)
18
         INTEGER ASSERT, WIN, IERROR
19
    MPI_WIN_FREE(WIN, IERROR)
20
         INTEGER WIN, IERROR
21
22
    MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)
23
         INTEGER WIN, GROUP, IERROR
^{24}
    MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
25
         INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR
26
27
    MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
28
         INTEGER GROUP, ASSERT, WIN, IERROR
29
    MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)
30
         INTEGER GROUP, ASSERT, WIN, IERROR
31
     MPI_WIN_TEST(WIN, FLAG, IERROR)
33
         INTEGER WIN, IERROR
34
         LOGICAL FLAG
35
     MPI_WIN_UNLOCK(RANK, WIN, IERROR)
36
         INTEGER RANK, WIN, IERROR
37
38
    MPI_WIN_WAIT(WIN, IERROR)
39
         INTEGER WIN, IERROR
40
41
42
     A.3.10 External Interfaces Fortran Bindings
43
    MPI_GREQUEST_COMPLETE(REQUEST, IERROR)
44
         INTEGER REQUEST, IERROR
45
46
     MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,
47
                   IERROR)
```

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

INTEGER REQUEST, IERROR EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE	1 2 3
MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR) INTEGER REQUIRED, PROVIDED, IERROR	5 6
MPI_IS_THREAD_MAIN(FLAG, IERROR) LOGICAL FLAG INTEGER IERROR	7 8 9
MPI_QUERY_THREAD(PROVIDED, IERROR) INTEGER PROVIDED, IERROR	1
MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR) INTEGER STATUS(MPI_STATUS_SIZE), IERROR LOGICAL FLAG	1:
MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR) INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR	1
MPI_STATUS_SET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR) INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR INTEGER (KIND=MPI_COUNT_KIND) COUNT	1 2 2 2
A.3.11 I/O Fortran Bindings	2
MPI_FILE_CLOSE(FH, IERROR) INTEGER FH, IERROR	2 2 2
MPI_FILE_DELETE(FILENAME, INFO, IERROR) CHARACTER*(*) FILENAME INTEGER INFO, IERROR	2 2 3
MPI_FILE_GET_AMODE(FH, AMODE, IERROR) INTEGER FH, AMODE, IERROR	3 3 3
MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR) INTEGER FH, IERROR LOGICAL FLAG	3 3
MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR) INTEGER FH, IERROR INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP	3 3 4
MPI_FILE_GET_GROUP(FH, GROUP, IERROR) INTEGER FH, GROUP, IERROR	4
MPI_FILE_GET_INFO(FH, INFO_USED, IERROR) INTEGER FH, INFO_USED, IERROR	4 4 4
MPI_FILE_GET_POSITION(FH, OFFSET, IERROR) INTEGER FH IERROR	4

```
1
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
2
     MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
3
         INTEGER FH, IERROR
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
5
6
     MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
7
         INTEGER FH, IERROR
8
         INTEGER(KIND=MPI_OFFSET_KIND) SIZE
9
    MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)
10
         INTEGER FH, DATATYPE, IERROR
11
         INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT
12
13
    MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
14
         INTEGER FH, ETYPE, FILETYPE, IERROR
15
         CHARACTER*(*) DATAREP
16
         INTEGER(KIND=MPI_OFFSET_KIND) DISP
17
    MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
18
         <type> BUF(*)
19
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
20
21
     MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
22
         <type> BUF(*)
23
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
^{24}
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
     MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
26
         <type> BUF(*)
27
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
28
29
     MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
30
         <type> BUF(*)
31
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
32
     MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
33
34
         <type> BUF(*)
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
35
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
36
37
     MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
38
         <type> BUF(*)
39
         INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
40
    MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
41
42
         CHARACTER*(*) FILENAME
         INTEGER COMM, AMODE, INFO, FH, IERROR
43
44
     MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
45
         INTEGER FH, IERROR
46
         INTEGER(KIND=MPI_OFFSET_KIND) SIZE
47
48
     MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
```

<pre><type> BUF(*) INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR</type></pre>	2
<pre>MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)</pre>	4
MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR) <type> BUF(*) INTEGER FH, COUNT, DATATYPE, IERROR</type>	5
<pre>MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)</pre>	1 1 1 1
INIEGER FH, COUNI, DATATYPE, STATUS(MPI_STATUS_SIZE), TERRUR	1 1 1
<pre>MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)</pre>	1 2 2 2 2 2
<pre>MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)</pre>	2 2 2
<pre>MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)</pre>	2 3
<pre>MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)</pre>	3 3
<type> BUF(*)</type>	3
MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)	3 4
<pre>MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)</pre>	4 4 4
MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR) INTEGER FH, WHENCE, IERROR INTEGER(KIND=MPI_OFFSET_KIND) OFFSET	4

```
1
    MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
2
         INTEGER FH, WHENCE, IERROR
3
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
     MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
5
         INTEGER FH, IERROR
6
         LOGICAL FLAG
7
8
     MPI_FILE_SET_INFO(FH, INFO, IERROR)
9
         INTEGER FH, INFO, IERROR
10
     MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
11
         INTEGER FH, IERROR
12
         INTEGER(KIND=MPI_OFFSET_KIND) SIZE
13
14
     MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
15
         INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
16
         CHARACTER*(*) DATAREP
17
         INTEGER(KIND=MPI_OFFSET_KIND) DISP
18
    MPI_FILE_SYNC(FH, IERROR)
19
         INTEGER FH, IERROR
20
21
    MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
22
         <type> BUF(*)
23
         INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
24
    MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
25
         <type> BUF(*)
         INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
27
28
     MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
29
         <type> BUF(*)
30
         INTEGER FH, COUNT, DATATYPE, IERROR
31
     MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
32
         <type> BUF(*)
33
         INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
34
35
    MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
36
         <type> BUF(*)
37
         INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
38
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
39
     MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
40
         <type> BUF(*)
41
         INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
42
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
43
44
     MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
45
         <type> BUF(*)
^{46}
         INTEGER FH, COUNT, DATATYPE, IERROR
47
         INTEGER(KIND=MPI_OFFSET_KIND) OFFSET
```

<pre>MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)</pre>	
INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR	;
<pre>MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)</pre>	
<pre>MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)</pre>	1
<pre>MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)</pre>	1 1 1
<pre>MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)</pre>	1 1
MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,	1 2 2 2 2 2
A.3.12 Language Bindings Fortran Bindings	2
MPI_SIZEOF(X, SIZE, IERROR) <type> X INTEGER SIZE, IERROR</type>	2 3
MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR) INTEGER P, R, NEWTYPE, IERROR	3
MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR) INTEGER R, NEWTYPE, IERROR	3
MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR) INTEGER P, R, NEWTYPE, IERROR	3
MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR) INTEGER TYPECLASS, SIZE, TYPE, IERROR	3 4 4
A.3.13 Profiling Interface Fortran Bindings	4
MPI_PCONTROL(LEVEL) INTEGER LEVEL	4

```
1
     A.3.14 Deprecated Fortran Bindings
2
     MPI_ADDRESS(LOCATION, ADDRESS, IERROR)
3
         <type> LOCATION(*)
         INTEGER ADDRESS, IERROR
5
6
    MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)
7
         INTEGER COMM, KEYVAL, IERROR
     MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
9
         INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
10
         LOGICAL FLAG
11
12
     MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)
13
         INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR
14
     MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
15
                   ATTRIBUTE_VAL_OUT, FLAG, IERR)
16
         INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
17
         ATTRIBUTE_VAL_OUT, IERR
         LOGICAL FLAG
19
20
     MPI_ERRHANDLER_CREATE(FUNCTION, ERRHANDLER, IERROR)
21
         EXTERNAL FUNCTION
22
         INTEGER ERRHANDLER, IERROR
23
    MPI_ERRHANDLER_GET(COMM, ERRHANDLER, IERROR)
^{24}
         INTEGER COMM, ERRHANDLER, IERROR
25
26
    MPI_ERRHANDLER_SET(COMM, ERRHANDLER, IERROR)
27
         INTEGER COMM, ERRHANDLER, IERROR
28
    MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)
29
         EXTERNAL COPY_FN, DELETE_FN
30
         INTEGER KEYVAL, EXTRA_STATE, IERROR
31
    MPI_KEYVAL_FREE(KEYVAL, IERROR)
33
         INTEGER KEYVAL, IERROR
34
     MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
35
                   ATTRIBUTE_VAL_OUT, FLAG, IERR)
36
         INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,
37
         ATTRIBUTE_VAL_OUT, IERR
38
         LOGICAL FLAG
40
     MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)
41
         INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR
42
     MPI_TYPE_EXTENT(DATATYPE, EXTENT, IERROR)
43
         INTEGER DATATYPE, EXTENT, IERROR
44
45
    MPI_TYPE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,
46
                   OLDTYPE, NEWTYPE, IERROR)
47
```

<pre>INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*), OLDTYPE, NEWTYPE, IERROR</pre>	1 2
MPI_TYPE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR) INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR	3 4 5
MPI_TYPE_LB(DATATYPE, DISPLACEMENT, IERROR) INTEGER DATATYPE, DISPLACEMENT, IERROR	6 7 8
MPI_TYPE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR) INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*), ARRAY_OF_TYPES(*), NEWTYPE, IERROR	9 10 11 12
MPI_TYPE_UB(DATATYPE, DISPLACEMENT, IERROR) INTEGER DATATYPE, DISPLACEMENT, IERROR	13 14
SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR) INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, IERR LOGICAL FLAG	15 16 17 18 19 20
SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR) INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
	45

```
A.4 C++ Bindings (deprecated)
1
2
     A.4.1 Point-to-Point Communication C++ Bindings
3
4
     namespace MPI {
5
6
       {void Attach_buffer(void* buffer, int size) (binding deprecated, see
                    Section 15.2) }
       {void Comm::Bsend(const void* buf, int count, const Datatype& datatype,
9
                    int dest, int tag) const(binding deprecated, see Section 15.2) }
10
11
       {Prequest Comm::Bsend_init(const void* buf, int count, const
12
                    Datatype& datatype, int dest, int tag) const(binding deprecated,
13
                    see Section 15.2) }
14
       {void Request::Cancel() const(binding deprecated, see Section 15.2)}
15
16
       {int Detach_buffer(void*& buffer)(binding deprecated, see Section 15.2)}
17
       {void Request::Free()(binding deprecated, see Section 15.2)}
18
19
       {int Status::Get_count(const Datatype& datatype) const(binding deprecated,
20
                    see Section 15.2)
21
22
       {int Status::Get_error() const(binding deprecated, see Section 15.2)}
23
       {int Status::Get_source() const(binding deprecated, see Section 15.2) }
24
       {bool Request::Get_status() const(binding deprecated, see Section 15.2) }
26
       {bool Request::Get_status(Status& status) const(binding deprecated, see
27
                    Section 15.2) }
28
29
       {int Status::Get_tag() const(binding deprecated, see Section 15.2) }
30
       {Request Comm::Ibsend(const void* buf, int count, const
31
                    Datatype& datatype, int dest, int tag) const(binding deprecated,
32
                    see Section 15.2) }
33
34
       {bool Comm::Iprobe(int source, int tag) const(binding deprecated, see
35
                    Section 15.2) }
36
       {bool Comm::Iprobe(int source, int tag, Status& status) const(binding
37
                    deprecated, see Section 15.2) }
38
39
       {Request Comm::Irecv(void* buf, int count, const Datatype& datatype,
                    int source, int tag) const(binding deprecated, see Section 15.2) }
41
       {Request Comm::Irsend(const void* buf, int count, const
42
                    Datatype& datatype, int dest, int tag) const(binding deprecated,
43
                    see Section 15.2) }
44
45
       {bool Status::Is_cancelled() const(binding deprecated, see Section 15.2) }
46
       {Request Comm::Isend(const void* buf, int count, const
47
                    Datatype& datatype, int dest, int tag) const(binding deprecated,
```

11

16 17

46

```
see Section 15.2) }
{Request Comm::Issend(const void* buf, int count, const
            Datatype& datatype, int dest, int tag) const(binding deprecated,
            see Section 15.2) }
{void Comm::Probe(int source, int tag) const(binding deprecated, see
            Section 15.2) }
{void Comm:: Probe(int source, int tag, Status& status) const(binding
            deprecated, see Section 15.2) }
{void Comm::Recv(void* buf, int count, const Datatype& datatype,
                                                                                   12
            int source, int tag) const(binding deprecated, see Section 15.2) }
                                                                                   13
{void Comm::Recv(void* buf, int count, const Datatype& datatype,
                                                                                  14
            int source, int tag, Status& status) const(binding deprecated, see
                                                                                   15
            Section 15.2) }
{Prequest Comm::Recv_init(void* buf, int count, const Datatype& datatype,
                                                                                   18
            int source, int tag) const(binding deprecated, see Section 15.2) }
                                                                                   19
{void Comm::Rsend(const void* buf, int count, const Datatype& datatype,
                                                                                  20
            int dest, int tag) const(binding deprecated, see Section 15.2) }
                                                                                  21
                                                                                  22
{Prequest Comm::Rsend_init(const void* buf, int count, const
                                                                                  23
            Datatype& datatype, int dest, int tag) const(binding deprecated,
                                                                                   24
            see Section 15.2)
{void Comm::Send(const void* buf, int count, const Datatype& datatype,
                                                                                   26
            int dest, int tag) const(binding deprecated, see Section 15.2) }
                                                                                  27
                                                                                  28
{Prequest Comm::Send_init(const void* buf, int count, const
                                                                                  29
            Datatype& datatype, int dest, int tag) const(binding deprecated,
                                                                                  30
            see Section 15.2) }
                                                                                   31
{void Comm::Sendrecv(const void *sendbuf, int sendcount, const
            Datatype& sendtype, int dest, int sendtag, void *recvbuf,
                                                                                  33
            int recvcount, const Datatype& recvtype, int source,
                                                                                  34
            int recvtag) const(binding deprecated, see Section 15.2) }
                                                                                  35
                                                                                  36
{void Comm::Sendrecv(const void *sendbuf, int sendcount, const
                                                                                  37
            Datatype& sendtype, int dest, int sendtag, void *recvbuf,
                                                                                  38
            int recvcount, const Datatype& recvtype, int source,
                                                                                   39
            int recvtag, Status& status) const(binding deprecated, see
            Section 15.2) }
                                                                                   41
{void Comm::Sendrecv_replace(void* buf, int count, const
                                                                                  42
            Datatype& datatype, int dest, int sendtag, int source,
                                                                                  43
            int recvtag) const(binding deprecated, see Section 15.2) }
                                                                                  44
                                                                                   45
{void Comm::Sendrecv_replace(void* buf, int count, const
            Datatype& datatype, int dest, int sendtag, int source,
            int recvtag, Status& status) const(binding deprecated, see
```

```
1
                    Section 15.2) }
2
       {void Status::Set_error(int error)(binding deprecated, see Section 15.2)}
3
       {void Status::Set_source(int source)(binding deprecated, see Section 15.2)}
5
       {void Status::Set_tag(int tag)(binding deprecated, see Section 15.2)}
6
       {void Comm:: Ssend(const void* buf, int count, const Datatype& datatype,
                    int dest, int tag) const(binding deprecated, see Section 15.2) }
9
       {Prequest Comm::Ssend_init(const void* buf, int count, const
10
                    Datatype& datatype, int dest, int tag) const(binding deprecated,
11
                    see Section 15.2) }
12
13
       {void Prequest::Start()(binding deprecated, see Section 15.2)}
14
       {static void Prequest::Startall(int count,
15
                    Prequest array_of_requests[])(binding deprecated, see Section 15.2) }
16
17
       {bool Request::Test() (binding deprecated, see Section 15.2) }
18
       \{bool\ Request:: Test(Status\&\ status)\ (binding\ deprecated,\ see\ Section\ 15.2)\}
19
20
       {static bool Request::Testall(int count,
21
                    Request array_of_requests[]) (binding deprecated, see Section 15.2) }
22
       {static bool Request::Testall(int count, Request array_of_requests[],
23
                    Status array_of_statuses[]) (binding deprecated, see Section 15.2) }
24
       {static bool Request::Testany(int count, Request array_of_requests[],
26
                    int& index) (binding deprecated, see Section 15.2) }
27
       {static bool Request::Testany(int count, Request array_of_requests[],
28
                    int& index, Status& status) (binding deprecated, see Section 15.2) }
29
30
       {static int Request::Testsome(int incount, Request array_of_requests[],
31
                    int array_of_indices[])(binding deprecated, see Section 15.2) }
32
33
       {static int Request::Testsome(int incount, Request array_of_requests[],
34
                    int array_of_indices[], Status array_of_statuses[]) (binding
35
                    deprecated, see Section 15.2) }
36
       {void Request::Wait()(binding deprecated, see Section 15.2)}
37
38
       {void Request::Wait(Status& status)(binding deprecated, see Section 15.2)}
39
       {static void Request::Waitall(int count,
                    Request array_of_requests[])(binding deprecated, see Section 15.2) }
41
42
       {static void Request::Waitall(int count, Request array_of_requests[],
43
                    Status array_of_statuses[]) (binding deprecated, see Section 15.2) }
44
       {static int Request::Waitany(int count,
45
                    Request array_of_requests[]) (binding deprecated, see Section 15.2) }
46
```

```
{static int Request::Waitany(int count, Request array_of_requests[],
              Status& status) (binding deprecated, see Section 15.2) }
  {static int Request::Waitsome(int incount, Request array_of_requests[],
              int array_of_indices[]) (binding deprecated, see Section 15.2) }
                                                                                      6
  {static int Request::Waitsome(int incount, Request array_of_requests[],
              int array_of_indices[], Status array_of_statuses[]) (binding
              deprecated, see Section 15.2) }
};
                                                                                      11
                                                                                      12
A.4.2 Datatypes C++ Bindings
                                                                                      13
                                                                                      14
namespace MPI {
                                                                                      15
                                                                                      16
  {void Datatype::Commit()(binding deprecated, see Section 15.2)}
  {Datatype Datatype::Create_contiguous(int count) const(binding deprecated,
              see Section 15.2)
                                                                                      19
                                                                                     20
  {Datatype Datatype::Create_darray(int size, int rank, int ndims,
                                                                                     21
              const int array_of_gsizes[], const int array_of_distribs[],
                                                                                     22
              const int array_of_dargs[], const int array_of_psizes[],
                                                                                     23
              int order) const(binding deprecated, see Section 15.2) }
                                                                                      24
  {Datatype Datatype::Create_hindexed(int count,
              const int array_of_blocklengths[],
                                                                                      26
              const Aint array_of_displacements[]) const(binding deprecated, see
                                                                                     27
              Section 15.2) }
                                                                                     28
                                                                                     29
  {Datatype Datatype::Create_hvector(int count, int blocklength, Aint
                                                                                      30
              stride) const(binding deprecated, see Section 15.2) }
  {Datatype Datatype::Create_indexed(int count,
              const int array_of_blocklengths[],
              const int array_of_displacements[]) const(binding deprecated, see
                                                                                     34
              Section 15.2) }
                                                                                     35
                                                                                     36
  {Datatype Datatype::Create_indexed_block(int count, int blocklength,
                                                                                     37
              const int array_of_displacements[]) const(binding deprecated, see
                                                                                     38
              Section 15.2) }
                                                                                      39
  {Datatype Datatype::Create_resized(const Aint 1b, const Aint extent)
              const(binding deprecated, see Section 15.2) }
                                                                                      42
  {static Datatype Datatype::Create_struct(int count,
                                                                                      43
              const int array_of_blocklengths[], const Aint
                                                                                      44
              array_of_displacements[],
                                                                                      45
              const Datatype array_of_types[])(binding deprecated, see
                                                                                      46
              Section 15.2)
                                                                                      47
```

```
1
       {Datatype Datatype::Create_subarray(int ndims,
2
                   const int array_of_sizes[], const int array_of_subsizes[],
3
                   const int array_of_starts[], int order) const(binding deprecated.
                   see Section 15.2) }
       {Datatype Datatype::Create_vector(int count, int blocklength, int stride)
                   const(binding deprecated, see Section 15.2) }
       {Datatype Datatype::Dup() const(binding deprecated, see Section 15.2)}
       {void Datatype::Free()(binding deprecated, see Section 15.2)}
10
11
       \{Aint Get\_address(void* location) (binding deprecated, see Section 15.2) \}
12
       {void Datatype::Get_contents(int max_integers, int max_addresses,
13
                   int max_datatypes, int array_of_integers[],
14
                   Aint array_of_addresses[], Datatype array_of_datatypes[])
15
                   const(binding deprecated, see Section 15.2) }
16
       {int Status::Get_elements(const Datatype& datatype) const(binding deprecated,
18
                   see Section 15.2)
19
       {void Datatype::Get_envelope(int& num_integers, int& num_addresses,
20
                    int& num_datatypes, int& combiner) const(binding deprecated, see
21
                   Section 15.2) }
22
23
       {void Datatype::Get_extent(Aint& lb, Aint& extent) const(binding deprecated,
24
                   see Section 15.2) }
       {int Datatype::Get_size() const(binding deprecated, see Section 15.2) }
26
27
       {void Datatype::Get_true_extent(Aint& true_lb, Aint& true_extent)
28
                   const(binding deprecated, see Section 15.2) }
29
       {void Datatype::Pack(const void* inbuf, int incount, void *outbuf,
30
                    int outsize, int& position, const Comm &comm) const/binding
                   deprecated, see Section 15.2) }
32
33
       {void Datatype::Pack_external(const char* datarep, const void* inbuf,
34
                   int incount, void* outbuf, Aint outsize, Aint& position)
35
                   const(binding deprecated, see Section 15.2) }
36
37
       {Aint Datatype::Pack_external_size(const char* datarep, int incount)
                   const(binding deprecated, see Section 15.2) }
       {int Datatype::Pack_size(int incount, const Comm& comm) const(binding
                    deprecated, see Section 15.2) }
42
       {void Datatype::Unpack(const void* inbuf, int insize, void *outbuf,
                    int outcount, int& position, const Comm& comm) const(binding
43
44
                    deprecated, see Section 15.2) }
45
       {void Datatype::Unpack_external(const char* datarep, const void* inbuf,
46
                   Aint insize, Aint& position, void* outbuf, int outcount) const
47
                    (binding deprecated, see Section 15.2) }
```

```
};
                                                                                     2
A.4.3 Collective Communication C++ Bindings
namespace MPI {
  {void Comm::Allgather(const void* sendbuf, int sendcount, const
              Datatype& sendtype, void* recvbuf, int recvcount,
              const Datatype& recvtype) const = O(binding deprecated, see
              Section 15.2) }
  {void Comm::Allgatherv(const void* sendbuf, int sendcount, const
                                                                                     11
              Datatype& sendtype, void* recvbuf, const int recvcounts[],
                                                                                     12
              const int displs[], const Datatype& recvtype) const = 0(binding
                                                                                     13
              deprecated, see Section 15.2) }
                                                                                     14
                                                                                     15
  {void Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,
                                                                                     16
              const Datatype& datatype, const Op& op) const = O(binding
              deprecated, see Section 15.2) }
                                                                                     18
  {void Comm::Alltoall(const void* sendbuf, int sendcount, const
                                                                                     19
              Datatype& sendtype, void* recvbuf, int recvcount,
                                                                                     20
              const Datatype& recvtype) const = 0(binding deprecated, see
                                                                                     21
              Section 15.2)
                                                                                     22
                                                                                     23
  {void Comm::Alltoallv(const void* sendbuf, const int sendcounts[],
                                                                                     24
              const int sdispls[], const Datatype& sendtype, void* recvbuf,
              const int recvcounts[], const int rdispls[],
                                                                                     26
              const Datatype& recvtype) const = O(binding deprecated, see
                                                                                     27
              Section 15.2)
                                                                                     28
  {void Comm::Alltoallw(const void* sendbuf, const int sendcounts[], const
                                                                                     29
              int sdispls[], const Datatype sendtypes[], void* recvbuf,
                                                                                     30
              const int recvcounts[], const int rdispls[], const Datatype
                                                                                     31
              recvtypes[]) const = 0(binding deprecated, see Section 15.2)}
  \{\text{void Comm}:: Barrier() const = 0 (binding deprecated, see Section 15.2)} \}
                                                                                     34
  {void Comm::Bcast(void* buffer, int count, const Datatype& datatype,
                                                                                     35
              int root) const = 0(binding deprecated, see Section 15.2) }
                                                                                     36
                                                                                     37
  {void Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,
                                                                                     38
              const Datatype& datatype, const Op& op) const(binding deprecated,
                                                                                     39
              see Section 15.2)
  {void Op::Free() (binding deprecated, see Section 15.2) }
                                                                                     42
  {void Comm::Gather(const void* sendbuf, int sendcount, const
                                                                                     43
              Datatype& sendtype, void* recvbuf, int recvcount,
                                                                                     44
              const Datatype& recvtype, int root) const = O(binding deprecated,
                                                                                     45
              see Section 15.2) }
                                                                                     46
                                                                                     47
  {void Comm::Gatherv(const void* sendbuf, int sendcount, const
              Datatype& sendtype, void* recvbuf, const int recvcounts[],
```

```
1
                   const int displs[], const Datatype& recvtype, int root)
2
                   const = 0(binding deprecated, see Section 15.2) }
       {Request Comm:: Iallgather(const void* sendbuf, int sendcount, const
                   Datatype& sendtype, void* recvbuf, int recvcount,
                   const Datatype& recvtype) const = 0(binding deprecated, see
6
                   Section 15.2) }
       {Request Comm:: Iallgatherv(const void* sendbuf, int sendcount, const
                   Datatype& sendtype, void* recvbuf, const int recvcounts[],
10
                   const int displs[], const Datatype& recvtype) const = O(binding
11
                   deprecated, see Section 15.2) }
12
       {Request Comm:: Iallreduce(const void* sendbuf, void* recvbuf, int count,
13
                   const Datatype& datatype, const Op& op) const = 0(binding)
14
                   deprecated, see Section 15.2) }
15
16
       {Request Comm:: Ialltoall(const void* sendbuf, int sendcount, const
                   Datatype& sendtype, void* recvbuf, int recvcount,
18
                   const Datatype& recvtype) const = O(binding deprecated, see
19
                   Section 15.2) }
20
       {Request Comm:: Ialltoallv(const void* sendbuf, const int sendcounts[],
21
                   const int sdispls[], const Datatype& sendtype, void* recvbuf,
22
                   const int recvcounts[], const int rdispls[],
23
                   const Datatype& recvtype) const = 0(binding deprecated, see
24
                   Section 15.2) }
26
       {Request Comm::Ialltoallw(const void* sendbuf, const int sendcounts[],
27
                   const int sdispls[], const Datatype sendtypes[], void*
28
                   recvbuf, const int recvcounts[], const int rdispls[], const
29
                   Datatype recvtypes[]) const = O(binding deprecated, see
30
                   Section 15.2) }
31
       {Request Comm::Ibarrier() const = O(binding deprecated, see Section 15.2)}
32
33
       {Request Comm::Ibcast(void* buffer, int count, const Datatype& datatype,
34
                   int root) const = 0(binding deprecated, see Section 15.2) }
35
       {Request Intracomm:: Iexscan(const void* sendbuf, void* recvbuf, int
36
                   count, const Datatype& datatype, const Op& op) const(binding
37
                   deprecated, see Section 15.2) }
38
39
       {Request Comm:: Igather(const void* sendbuf, int sendcount, const
                   Datatype& sendtype, void* recvbuf, int recvcount,
                   const Datatype& recvtype, int root) const = O(binding deprecated,
42
                   see Section 15.2) }
43
       {Request Comm:: Igatherv(const void* sendbuf, int sendcount, const
44
                   Datatype& sendtype, void* recvbuf, const int recvcounts[],
45
                   const int displs[], const Datatype& recvtype, int root)
46
47
                   const = 0(binding deprecated, see Section 15.2) }
```

```
{void Op::Init(User_function *function, bool commute)(binding deprecated, see
            Section 15.2) }
{Request Comm::Ireduce(const void* sendbuf, void* recvbuf, int count,
            const Datatype& datatype, const Op& op, int root)
            const = 0(binding deprecated, see Section 15.2) }
{Request Comm::Ireduce_scatter(const void* sendbuf, void* recvbuf,
            int recvcounts[], const Datatype& datatype, const Op& op)
            const = 0(binding deprecated, see Section 15.2) }
{Request Comm::Ireduce_scatter_block(const void* sendbuf, void* recvbuf,
            int recvcount, const Datatype& datatype, const Op& op)
                                                                                   12
            const = 0(binding deprecated, see Section 15.2) }
                                                                                   13
                                                                                   14
\{bool \ Op:: Is\_commutative() \ const(binding \ deprecated, see \ Section \ 15.2)\}
                                                                                   15
{Request Intracomm::Iscan(const void* sendbuf, void* recvbuf, int count,
                                                                                   16
            const Datatype& datatype, const Op& op) const(binding deprecated,
                                                                                   17
            see Section 15.2)
                                                                                   18
                                                                                   19
{Request Comm::Iscatter(const void* sendbuf, int sendcount, const
                                                                                   20
            Datatype& sendtype, void* recvbuf, int recvcount,
                                                                                   21
            const Datatype& recvtype, int root) const = 0(binding deprecated,
                                                                                   22
            see Section 15.2) }
                                                                                   23
{Request Comm::Iscatterv(const void* sendbuf, const int sendcounts[],
                                                                                   24
            const int displs[], const Datatype& sendtype, void* recvbuf,
            int recvcount, const Datatype& recvtype, int root)
                                                                                   26
            const = 0(binding deprecated, see Section 15.2) }
                                                                                   27
                                                                                   28
{void Comm::Reduce(const void* sendbuf, void* recvbuf, int count,
                                                                                   29
            const Datatype& datatype, const Op& op, int root)
                                                                                   30
            const = 0(binding deprecated, see Section 15.2) }
                                                                                   31
{void Op::Reduce_local(const void* inbuf, void* inoutbuf, int count,
            const Datatype& datatype) const(binding deprecated, see
                                                                                   33
            Section 15.2) }
                                                                                   34
                                                                                   35
{void Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,
                                                                                   36
            int recvcounts[], const Datatype& datatype, const Op& op)
                                                                                   37
            const = 0(binding deprecated, see Section 15.2) }
                                                                                   38
{void Comm::Reduce_scatter_block(const void* sendbuf, void* recvbuf,
                                                                                   39
            int recvcount, const Datatype& datatype, const Op& op)
            const = 0(binding deprecated, see Section 15.2) }
                                                                                   41
                                                                                   42
{void Intracomm::Scan(const void* sendbuf, void* recvbuf, int count,
                                                                                   43
            const Datatype& datatype, const Op& op) const(binding deprecated,
                                                                                   44
            see Section 15.2)
                                                                                   45
{void Comm::Scatter(const void* sendbuf, int sendcount, const
                                                                                   46
            Datatype& sendtype, void* recvbuf, int recvcount,
                                                                                   47
            const Datatype& recvtype, int root) const = 0(binding deprecated,
```

```
1
                    see Section 15.2) }
2
       {void Comm::Scatterv(const void* sendbuf, const int sendcounts[],
3
                    const int displs[], const Datatype& sendtype, void* recvbuf,
                    int recvcount, const Datatype& recvtype, int root)
5
                    const = 0(binding deprecated, see Section 15.2) }
6
7
     };
8
9
     A.4.4 Groups, Contexts, Communicators, and Caching C++ Bindings
10
11
     namespace MPI {
12
13
       \{Comm\& Comm::Clone() const = 0 (binding deprecated, see Section 15.2) \}
14
       {Cartcomm& Cartcomm::Clone() const(binding deprecated, see Section 15.2)}
15
16
       {Distgraphcomm& Distgraphcomm::Clone() const(binding deprecated, see
17
                    Section 15.2) }
18
       {Graphcomm& Graphcomm::Clone() const(binding deprecated, see Section 15.2)}
19
20
       {Intercomm& Intercomm::Clone() const(binding deprecated, see Section 15.2)}
21
       {Intracomm& Intracomm::Clone() const(binding deprecated, see Section 15.2)}
22
23
       {static int Comm::Compare(const Comm& comm1, const Comm& comm2)(binding
24
                    deprecated, see Section 15.2) }
26
       {static int Group::Compare(const Group& group1,
                    const Group& group2) (binding deprecated, see Section 15.2) }
27
28
       {Intracomm Intracomm::Create(const Group& group) const(binding deprecated,
29
                    see Section 15.2)
30
       {Intercomm Intercomm::Create(const Group& group) const(binding deprecated.
31
                    see Section 15.2) }
32
33
       {Intercomm Intracomm::Create_intercomm(int local_leader, const
34
                    Comm& peer_comm, int remote_leader, int tag) const(binding
35
                    deprecated, see Section 15.2) }
36
37
       {static int Comm::Create_keyval(Comm::Copy_attr_function*
                    comm_copy_attr_fn,
39
                    Comm::Delete_attr_function* comm_delete_attr_fn,
                    void* extra_state) (binding deprecated, see Section 15.2) }
41
       {static int Datatype::Create_keyval(Datatype::Copy_attr_function*
42
                    type_copy_attr_fn, Datatype::Delete_attr_function*
43
                    type_delete_attr_fn, void* extra_state) (binding deprecated, see
44
                    Section 15.2) }
45
46
       {static int Win::Create_keyval(Win::Copy_attr_function* win_copy_attr_fn,
47
                    Win::Delete_attr_function* win_delete_attr_fn,
                    void* extra_state) (binding deprecated, see Section 15.2) }
```

```
{void Comm::Delete_attr(int comm_keyval)(binding deprecated, see Section 15.2)}
{void Datatype::Delete_attr(int type_keyval)(binding deprecated, see
             Section 15.2) }
\{\text{void Win}:: Delete\_attr(int win\_keyval)} (binding deprecated, see Section 15.2) \}
{static Group Group::Difference(const Group& group1,
             const Group& group2) (binding deprecated, see Section 15.2) }
{Cartcomm Cartcomm::Dup() const(binding deprecated, see Section 15.2)}
\{\text{Distgraphcomm Distgraphcomm::Dup() const}(binding deprecated, see Section 15.2)}\}
                                                                                       12
\{Graphcomm : Graphcomm : Dup() const(binding deprecated, see Section 15.2)\}
                                                                                       13
\{Intercomm \ Intercomm::Dup() \ const(binding \ deprecated, \ see \ Section \ 15.2)\}
                                                                                       14
                                                                                        15
{Intracomm Intracomm::Dup() const(binding deprecated, see Section 15.2)}
                                                                                        16
{Group Group::Excl(int n, const int ranks[]) const(binding deprecated, see
             Section 15.2)
                                                                                        18
                                                                                        19
{void Comm::Free()(binding deprecated, see Section 15.2)}
                                                                                       20
{void Group::Free()(binding deprecated, see Section 15.2)}
                                                                                       21
                                                                                       22
{static void Comm::Free_keyval(int& comm_keyval)(binding deprecated, see
                                                                                       23
             Section 15.2) }
                                                                                        24
{static void Datatype::Free_keyval(int& type_keyval)(binding deprecated, see
                                                                                        26
             Section 15.2)
                                                                                       27
{static void Win::Free_keyval(int& win_keyval)(binding deprecated, see
                                                                                       28
             Section 15.2) }
                                                                                       29
{bool Comm::Get_attr(int comm_keyval, void* attribute_val) const(binding
                                                                                       30
             deprecated, see Section 15.2) }
{bool Datatype::Get_attr(int type_keyval, void* attribute_val)
                                                                                        33
             const(binding deprecated, see Section 15.2) }
                                                                                       34
{bool Win::Get_attr(int win_keyval, void* attribute_val) const(binding
                                                                                       35
                                                                                       36
             deprecated, see Section 15.2) }
                                                                                       37
{Group Comm::Get_group() const(binding deprecated, see Section 15.2)}
                                                                                        39
{void Comm::Get_name(char* comm_name, int& resultlen) const(binding
             deprecated, see Section 15.2) }
{void Datatype::Get_name(char* type_name, int& resultlen) const(binding
                                                                                       42
             deprecated, see Section 15.2) }
                                                                                       43
                                                                                       44
{void Win::Get_name(char* win_name, int& resultlen) const(binding deprecated,
                                                                                        45
             see Section 15.2) }
                                                                                        46
{int Comm::Get_rank() const(binding deprecated, see Section 15.2)}
                                                                                        47
```

```
1
       {int Group::Get_rank() const(binding deprecated, see Section 15.2)}
2
       {Group Intercomm::Get_remote_group() const(binding deprecated, see Section 15.2)
3
                    }
5
       {int Intercomm::Get_remote_size() const(binding deprecated, see Section 15.2)}
6
       {int Comm::Get_size() const(binding deprecated, see Section 15.2) }
       {int Group::Get_size() const(binding deprecated, see Section 15.2)}
9
       {Group Group::Incl(int n, const int ranks[]) const(binding deprecated, see
10
                    Section 15.2) }
11
12
       {static Group Group::Intersect(const Group& group1,
13
                    const Group& group2) (binding deprecated, see Section 15.2) }
14
       {bool Comm::Is_inter() const(binding deprecated, see Section 15.2)}
15
16
       {Intracomm Intercomm::Merge(bool high) const(binding deprecated, see
17
                    Section 15.2) }
18
       {Group Group::Range_excl(int n, const int ranges[][3]) const(binding)
19
                    deprecated, see Section 15.2) }
20
21
       {Group Group::Range_incl(int n, const int ranges[][3]) const(binding
22
                    deprecated, see Section 15.2) }
23
       {void Comm::Set_attr(int comm_keyval, const void* attribute_val)
24
                    const(binding deprecated, see Section 15.2) }
26
       {void Datatype::Set_attr(int type_keyval, const void*
27
                    attribute_val) (binding deprecated, see Section 15.2) }
28
       {void Win::Set_attr(int win_keyval, const void* attribute_val)(binding
29
                    deprecated, see Section 15.2) }
30
31
       {void Comm::Set_name(const char* comm_name)(binding deprecated, see
32
                    Section 15.2) }
33
34
       {void Datatype::Set_name(const char* type_name)(binding deprecated, see
                    Section 15.2) }
35
36
       \{\text{void Win}::\text{Set\_name}(\text{const char}* \text{win\_name}) (binding deprecated, see Section 15.2)\}
37
       {Intercomm Intercomm::Split(int color, int key) const(binding deprecated, see
39
                    Section 15.2) }
       {Intracomm Intracomm::Split(int color, int key) const(binding deprecated, see
41
                    Section 15.2) }
42
43
       {static void Group::Translate_ranks (const Group& group1, int n,
44
                    const int ranks1[], const Group& group2, int ranks2[]) (binding
45
                    deprecated, see Section 15.2) }
46
       {static Group Group::Union(const Group& group1,
47
                    const Group& group2) (binding deprecated, see Section 15.2) }
```

```
};
A.4.5 Process Topologies C++ Bindings
namespace MPI {
  {void Compute_dims(int nnodes, int ndims, int dims[])(binding deprecated, see
              Section 15.2) }
  {Cartcomm Intracomm::Create_cart(int ndims, const int dims[],
                                                                                      10
              const bool periods[], bool reorder) const(binding deprecated, see
              Section 15.2) }
                                                                                      12
  {Graphcomm Intracomm::Create_graph(int nnodes, const int index[],
                                                                                      13
              const int edges[], bool reorder) const(binding deprecated, see
                                                                                     14
              Section 15.2) }
                                                                                      15
                                                                                      16
  {Distgraphcomm Intracomm::Dist_graph_create(int n, const int sources[],
              const int degrees[], const int destinations[],
                                                                                      18
              const int weights[], const Info& info, bool reorder)
                                                                                      19
              const(binding deprecated, see Section 15.2) }
                                                                                     20
  {Distgraphcomm Intracomm::Dist_graph_create(int n, const int sources[],
                                                                                     21
              const int degrees[], const int destinations[],
                                                                                     22
              const Info& info, bool reorder) const(binding deprecated, see
                                                                                     23
              Section 15.2) }
                                                                                     24
  {Distgraphcomm Intracomm::Dist_graph_create_adjacent(int indegree,
                                                                                     26
              const int sources[], const int sourceweights[], int outdegree,
                                                                                     27
              const int destinations[], const int destweights[],
                                                                                     28
              const Info& info, bool reorder) const(binding deprecated, see
                                                                                     29
              Section 15.2) }
                                                                                     30
  {Distgraphcomm Intracomm::Dist_graph_create_adjacent(int indegree,
              const int sources[], int outdegree, const int destinations[],
              const Info& info, bool reorder) const(binding deprecated, see
                                                                                     33
              Section 15.2) }
                                                                                     34
                                                                                     35
  {int Cartcomm::Get_cart_rank(const int coords[]) const(binding deprecated,
                                                                                     36
              see Section 15.2) }
                                                                                     37
  {void Cartcomm::Get_coords(int rank, int maxdims, int coords[])
                                                                                     38
              const(binding deprecated, see Section 15.2) }
                                                                                     39
  {int Cartcomm::Get_dim() const(binding deprecated, see Section 15.2)}
  {void Graphcomm::Get_dims(int nnodes[], int nedges[]) const(binding
                                                                                     42
              deprecated, see Section 15.2) }
                                                                                     43
                                                                                     44
  {void Distgraphcomm::Get_dist_neighbors(int maxindegree, int sources[],
                                                                                      45
              int sourceweights[], int maxoutdegree, int destinations[],
                                                                                      46
              int destweights[]) (binding deprecated, see Section 15.2) }
                                                                                      47
```

```
1
       {void Distgraphcomm::Get_dist_neighbors_count(int rank, int indegree[],
2
                    int outdegree[], bool& weighted) const(binding deprecated, see
3
                    Section 15.2) }
       {void Graphcomm::Get_neighbors(int rank, int maxneighbors, int
5
                    neighbors[]) const(binding deprecated, see Section 15.2) }
6
       {int Graphcomm::Get_neighbors_count(int rank) const(binding deprecated, see
                    Section 15.2) }
9
       {void Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],
10
                    int coords[]) const(binding deprecated, see Section 15.2) }
11
12
       {void Graphcomm::Get_topo(int maxindex, int maxedges, int index[],
13
                    int edges[]) const(binding deprecated, see Section 15.2) }
14
       {int Comm::Get_topology() const(binding deprecated, see Section 15.2)}
15
16
       {int Cartcomm::Map(int ndims, const int dims[], const bool periods[])
17
                    const(binding deprecated, see Section 15.2) }
18
       {int Graphcomm::Map(int nnodes, const int index[], const int edges[])
19
                    const(binding deprecated, see Section 15.2) }
20
21
       {void Cartcomm::Shift(int direction, int disp, int& rank_source,
22
                    int& rank_dest) const(binding deprecated, see Section 15.2) }
23
       {Cartcomm Cartcomm::Sub(const bool remain_dims[]) const(binding deprecated,
24
                    see Section 15.2)
25
26
27
     };
28
29
     A.4.6 MPI Environmental Management C++ Bindings
30
     namespace MPI {
31
32
       {void Comm::Abort(int errorcode) (binding deprecated, see Section 15.2) }
       {int Add_error_class() (binding deprecated, see Section 15.2) }
34
35
       {int Add_error_code(int errorclass)(binding deprecated, see Section 15.2)}
36
37
       {void Add_error_string(int errorcode, const char* string)(binding deprecated,
                    see Section 15.2) }
38
39
       {void* Alloc_mem(Aint size, const Info& info) (binding deprecated, see
                    Section 15.2) }
41
42
       {void Comm::Call_errhandler(int errorcode) const(binding deprecated, see
                    Section 15.2) }
43
44
       {void File::Call_errhandler(int errorcode) const(binding deprecated, see
45
                    Section 15.2) }
46
47
       {void Win::Call_errhandler(int errorcode) const(binding deprecated, see
                    Section 15.2) }
```

```
{static Errhandler Comm::Create_errhandler(Comm::Errhandler_function*
               function) (binding deprecated, see Section 15.2) }
  {static Errhandler File::Create_errhandler(File::Errhandler_function*
               function) (binding deprecated, see Section 15.2) }
  {static Errhandler Win::Create_errhandler(Win::Errhandler_function*
               function) (binding deprecated, see Section 15.2) }
  {void Finalize() (binding deprecated, see Section 15.2) }
  {void Errhandler::Free()(binding deprecated, see Section 15.2)}
                                                                                           11
  {void Free_mem(void *base) (binding deprecated, see Section 15.2) }
                                                                                           12
                                                                                           13
  \{ \texttt{Errhandler Comm::Get\_errhandler() const}(binding deprecated, see Section 15.2) \}
                                                                                           14
  {Errhandler File::Get_errhandler() const(binding deprecated, see Section 15.2)}
                                                                                           15
                                                                                           16
  \{\text{Errhandler Win}::\text{Get\_errhandler}() \ \text{const}(binding \ deprecated, see \ Section \ 15.2)\}
                                                                                           17
  {int Get_error_class(int errorcode)(binding deprecated, see Section 15.2)}
                                                                                           18
                                                                                           19
  {void Get_error_string(int errorcode, char* name, int& resultlen)(binding
                                                                                           20
               deprecated, see Section 15.2) }
                                                                                           21
  {void Get_processor_name(char* name, int& resultlen)(binding deprecated, see
                                                                                           22
               Section 15.2) }
                                                                                           23
                                                                                           24
  {void Get_version(int& version, int& subversion)(binding deprecated, see
               Section 15.2) }
                                                                                           26
  {void Init()(binding deprecated, see Section 15.2)}
                                                                                           27
                                                                                           28
  {void Init(int& argc, char**& argv)(binding deprecated, see Section 15.2)}
                                                                                           29
  {bool Is_finalized() (binding deprecated, see Section 15.2) }
                                                                                           30
  {bool Is_initialized()(binding deprecated, see Section 15.2)}
                                                                                           33
  {void Comm::Set_errhandler(const Errhandler& errhandler)(binding deprecated,
                                                                                           34
               see Section 15.2) }
                                                                                           35
  {void File::Set_errhandler(const Errhandler& errhandler)(binding deprecated,
                                                                                           36
               see Section 15.2)
                                                                                           37
                                                                                           38
  {void Win::Set_errhandler(const Errhandler& errhandler)(binding deprecated,
                                                                                           39
               see Section 15.2) }
  {double Wtick() (binding deprecated, see Section 15.2) }
                                                                                           41
                                                                                           42
  {double Wtime() (binding deprecated, see Section 15.2) }
                                                                                           43
                                                                                           44
};
                                                                                           45
                                                                                           46
      The Info Object C++ Bindings
namespace MPI {
```

```
1
       {static Info Info::Create()(binding deprecated, see Section 15.2)}
2
       {void Info::Delete(const char* key)(binding deprecated, see Section 15.2)}
3
       {Info Info::Dup() const(binding deprecated, see Section 15.2)}
       {void Info::Free()(binding deprecated, see Section 15.2)}
6
       {bool Info::Get(const char* key, int valuelen, char* value) const(binding
                    deprecated, see Section 15.2) }
9
       {int Info::Get_nkeys() const(binding deprecated, see Section 15.2) }
10
11
       {void Info::Get_nthkey(int n, char* key) const(binding deprecated, see
12
                    Section 15.2)
13
       {bool Info::Get_valuelen(const char* key, int& valuelen) const(binding
14
                    deprecated, see Section 15.2) }
15
16
       {void Info::Set(const char* key, const char* value) (binding deprecated, see
17
                    Section 15.2)
18
19
     };
20
21
     A.4.8 Process Creation and Management C++ Bindings
22
23
     namespace MPI {
24
25
       {Intercomm Intracomm:: Accept(const char* port_name, const Info& info,
26
                    int root) const(binding deprecated, see Section 15.2) }
27
       {void Close_port(const char* port_name)(binding deprecated, see Section 15.2)}
28
29
       {Intercomm Intracomm::Connect(const char* port_name, const Info& info,
30
                    int root) const(binding deprecated, see Section 15.2) }
31
       {void Comm::Disconnect()(binding deprecated, see Section 15.2)}
32
33
       {static Intercomm Comm::Get_parent()(binding deprecated, see Section 15.2)}
34
       {static Intercomm Comm::Join(const int fd)(binding deprecated, see Section 15.2)
35
36
37
       {void Lookup_name(const char* service_name, const Info& info,
38
                    char* port_name) (binding deprecated, see Section 15.2) }
39
40
       {void Open_port(const Info& info, char* port_name)(binding deprecated, see
41
                    Section 15.2) }
42
       {void Publish_name(const char* service_name, const Info& info,
43
                    const char* port_name) (binding deprecated, see Section 15.2) }
44
45
       {Intercomm Intracomm::Spawn(const char* command, const char* argv[],
46
                    int maxprocs, const Info& info, int root) const(binding
47
                    deprecated, see Section 15.2) }
```

```
{Intercomm Intracomm::Spawn(const char* command, const char* argv[],
              int maxprocs, const Info& info, int root,
              int array_of_errcodes[]) const(binding deprecated, see Section 15.2)
  {Intercomm Intracomm::Spawn_multiple(int count,
              const char* array_of_commands[], const char** array_of_argv[],
              const int array_of_maxprocs[], const Info array_of_info[],
              int root) (binding deprecated, see Section 15.2) }
  {Intercomm Intracomm::Spawn_multiple(int count,
                                                                                      11
              const char* array_of_commands[], const char** array_of_argv[],
              const int array_of_maxprocs[], const Info array_of_info[],
                                                                                      12
                                                                                      13
              int root, int array_of_errcodes[]) (binding deprecated, see
                                                                                      14
              Section 15.2)
                                                                                      15
  {void Unpublish_name(const char* service_name, const Info& info,
                                                                                      16
              const char* port_name) (binding deprecated, see Section 15.2) }
                                                                                      18
                                                                                      19
};
                                                                                      20
                                                                                      21
A.4.9 One-Sided Communications C++ Bindings
                                                                                      22
namespace MPI {
                                                                                      23
                                                                                      24
  {void Win::Accumulate(const void* origin_addr, int origin_count, const
              Datatype& origin_datatype, int target_rank, Aint target_disp,
                                                                                      26
              int target_count, const Datatype& target_datatype, const Op&
                                                                                      27
              op) const(binding deprecated, see Section 15.2) }
                                                                                      28
                                                                                      29
  {void Win::Complete() const(binding deprecated, see Section 15.2)}
                                                                                      30
  {static Win Win::Create(const void* base, Aint size, int disp_unit, const
                                                                                      31
              Info& info, const Intracomm& comm) (binding deprecated, see
              Section 15.2) }
                                                                                      33
                                                                                      34
  \{\text{void Win}:: \text{Fence(int assert) const}(binding deprecated, see Section 15.2)}\}
                                                                                      35
  {void Win::Free() (binding deprecated, see Section 15.2) }
                                                                                      36
                                                                                      37
  {void Win::Get(void *origin_addr, int origin_count, const Datatype&
                                                                                      38
              origin_datatype, int target_rank, Aint target_disp, int
                                                                                      39
              target_count, const Datatype& target_datatype) const(binding
              deprecated, see Section 15.2) }
  {Group Win::Get_group() const(binding deprecated, see Section 15.2)}
                                                                                      42
                                                                                      43
  {void Win::Lock(int lock_type, int rank, int assert) const(binding
                                                                                      44
              deprecated, see Section 15.2) }
                                                                                      45
  {void Win::Post(const Group& group, int assert) const(binding deprecated, see
                                                                                      46
              Section 15.2)
                                                                                      47
```

```
1
       {void Win::Put(const void* origin_addr, int origin_count, const Datatype&
2
                    origin_datatype, int target_rank, Aint target_disp, int
3
                    target_count, const Datatype& target_datatype) const(binding
                    deprecated, see Section 15.2) }
5
       {void Win::Start(const Group& group, int assert) const(binding deprecated,
6
                    see Section 15.2) }
       {bool Win::Test() const(binding deprecated, see Section 15.2)}
9
       {void Win::Unlock(int rank) const(binding deprecated, see Section 15.2)}
10
11
       {void Win::Wait() const(binding deprecated, see Section 15.2) }
12
13
     };
14
15
     A.4.10 External Interfaces C++ Bindings
16
17
     namespace MPI {
18
19
       {void Grequest::Complete()(binding deprecated, see Section 15.2)}
20
       {int Init_thread(int required)(binding deprecated, see Section 15.2)}
21
22
       {int Init_thread(int& argc, char**& argv, int required)(binding deprecated,
23
                    see Section 15.2) }
24
       {bool Is_thread_main() (binding deprecated, see Section 15.2) }
25
26
       {int Query_thread()(binding deprecated, see Section 15.2)}
27
       {void Status::Set_cancelled(bool flag)(binding deprecated, see Section 15.2)}
28
29
       {void Status::Set_elements(const Datatype& datatype, int count)(binding
30
                    deprecated, see Section 15.2) }
31
       {static Grequest Grequest::Start(const Grequest::Query_function*
32
                    query_fn, const Grequest::Free_function* free_fn,
33
                    const Grequest::Cancel_function* cancel_fn,
34
                    void *extra_state) (binding deprecated, see Section 15.2) }
35
36
37
     };
38
39
     A.4.11 I/O C++ Bindings
40
     namespace MPI {
41
42
       {void File::Close() (binding deprecated, see Section 15.2) }
43
       {static void File::Delete(const char* filename, const Info& info)(binding
44
45
                    deprecated, see Section 15.2) }
46
       {int File::Get_amode() const(binding deprecated, see Section 15.2)}
47
       {bool File::Get_atomicity() const(binding deprecated, see Section 15.2)}
```

```
{Offset File::Get_byte_offset(const Offset disp) const(binding deprecated,
            see Section 15.2) }
{Group File::Get_group() const(binding deprecated, see Section 15.2)}
{Info File::Get_info() const(binding deprecated, see Section 15.2)}
{Offset File::Get_position() const(binding deprecated, see Section 15.2)}
\{\text{Offset File}::\text{Get_position\_shared()}\ \text{const}(binding\ deprecated,\ see\ Section\ 15.2)}\}
{Offset File::Get_size() const(binding deprecated, see Section 15.2)}
                                                                                      11
{Aint File::Get_type_extent(const Datatype& datatype) const(binding
                                                                                      12
            deprecated, see Section 15.2) }
                                                                                      13
{void File::Get_view(Offset& disp, Datatype& etype, Datatype& filetype,
                                                                                      14
            char* datarep) const(binding deprecated, see Section 15.2) }
                                                                                      15
                                                                                      16
{Request File::Iread(void* buf, int count,
                                                                                      17
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      18
{Request File::Iread_at(Offset offset, void* buf, int count,
                                                                                      19
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      20
                                                                                      21
{Request File::Iread_shared(void* buf, int count,
                                                                                      22
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      23
{Request File::Iwrite(const void* buf, int count,
                                                                                      24
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      26
{Request File::Iwrite_at(Offset offset, const void* buf, int count,
                                                                                      27
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      28
{Request File::Iwrite_shared(const void* buf, int count,
                                                                                      29
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      30
                                                                                      31
{static File File::Open(const Intracomm& comm, const char* filename,
            int amode, const Info& info) (binding deprecated, see Section 15.2) }
                                                                                      34
{void File::Preallocate(Offset size) (binding deprecated, see Section 15.2) }
                                                                                      35
{void File::Read(void* buf, int count, const Datatype& datatype) (binding
                                                                                      36
            deprecated, see Section 15.2) }
                                                                                      37
{void File::Read(void* buf, int count, const Datatype& datatype, Status&
            status) (binding deprecated, see Section 15.2) }
{void File::Read_all(void* buf, int count,
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                      42
                                                                                      43
{void File::Read_all(void* buf, int count, const Datatype& datatype,
                                                                                      44
            Status& status) (binding deprecated, see Section 15.2) }
                                                                                      45
{void File::Read_all_begin(void* buf, int count,
                                                                                      46
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
```

```
1
       {void File::Read_all_end(void* buf)(binding deprecated, see Section 15.2)}
2
       {void File::Read_all_end(void* buf, Status& status)(binding deprecated, see
3
                    Section 15.2)
5
       {void File::Read_at(Offset offset, void* buf, int count,
6
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
7
       {void File::Read_at(Offset offset, void* buf, int count,
                    const Datatype& datatype, Status& status) (binding deprecated, see
9
                    Section 15.2) }
10
11
       {void File::Read_at_all(Offset offset, void* buf, int count,
12
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
13
       {void File::Read_at_all(Offset offset, void* buf, int count,
14
                    const Datatype& datatype, Status& status) (binding deprecated, see
15
                    Section 15.2) }
16
17
       {void File::Read_at_all_begin(Offset offset, void* buf, int count,
18
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
19
       {void File::Read_at_all_end(void* buf)(binding deprecated, see Section 15.2)}
20
21
       {void File::Read_at_all_end(void* buf, Status& status)(binding deprecated,
22
                    see Section 15.2) }
23
       {void File::Read_ordered(void* buf, int count,
24
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
26
       {void File::Read_ordered(void* buf, int count, const Datatype& datatype,
27
                    Status& status) (binding deprecated, see Section 15.2) }
28
       {void File::Read_ordered_begin(void* buf, int count,
29
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
30
       {void File::Read_ordered_end(void* buf)(binding deprecated, see Section 15.2)}
32
       {void File::Read_ordered_end(void* buf, Status& status)(binding deprecated,
33
34
                    see Section 15.2) }
35
       {void File::Read_shared(void* buf, int count,
36
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
37
       {void File::Read_shared(void* buf, int count, const Datatype& datatype,
                    Status& status) (binding deprecated, see Section 15.2) }
39
       {void Register_datarep(const char* datarep,
41
                    Datarep_conversion_function* read_conversion_fn,
42
                    Datarep_conversion_function* write_conversion_fn,
43
                    Datarep_extent_function* dtype_file_extent_fn,
44
                    void* extra_state) (binding deprecated, see Section 15.2) }
45
46
       {void File::Seek(Offset offset, int whence) (binding deprecated, see
47
                    Section 15.2) }
```

```
{void File::Seek_shared(Offset offset, int whence)(binding deprecated, see
            Section 15.2)
{void File::Set_atomicity(bool flag)(binding deprecated, see Section 15.2)}
{void File::Set_info(const Info& info)(binding deprecated, see Section 15.2)}
{void File::Set_size(Offset size) (binding deprecated, see Section 15.2) }
{void File::Set_view(Offset disp, const Datatype& etype,
            const Datatype& filetype, const char* datarep,
            const Info& info) (binding deprecated, see Section 15.2) }
                                                                                     11
{void File::Sync() (binding deprecated, see Section 15.2) }
                                                                                     12
                                                                                     13
{void File::Write(const void* buf, int count,
                                                                                     14
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                     15
{void File::Write(const void* buf, int count, const Datatype& datatype,
                                                                                     16
            Status& status) (binding deprecated, see Section 15.2) }
                                                                                     18
{void File::Write_all(const void* buf, int count,
                                                                                     19
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                     20
{void File::Write_all(const void* buf, int count,
                                                                                     21
            const Datatype& datatype, Status& status) (binding deprecated, see
                                                                                     22
            Section 15.2) }
                                                                                     23
                                                                                     24
{void File::Write_all_begin(const void* buf, int count,
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                     26
{void File::Write_all_end(const void* buf)(binding deprecated, see Section 15.2)
                                                                                     27
            }
                                                                                     28
                                                                                     29
{void File::Write_all_end(const void* buf, Status& status)(binding
                                                                                     30
            deprecated, see Section 15.2) }
                                                                                     31
{void File::Write_at(Offset offset, const void* buf, int count,
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                     33
                                                                                     34
{void File::Write_at(Offset offset, const void* buf, int count,
                                                                                     35
            const Datatype& datatype, Status& status) (binding deprecated, see
                                                                                     36
            Section 15.2) }
                                                                                     37
{void File::Write_at_all(Offset offset, const void* buf, int count,
                                                                                     38
                                                                                     39
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
{void File::Write_at_all(Offset offset, const void* buf, int count,
            const Datatype& datatype, Status& status) (binding deprecated, see
                                                                                     42
            Section 15.2) }
                                                                                     43
                                                                                     44
{void File::Write_at_all_begin(Offset offset, const void* buf, int count,
                                                                                     45
            const Datatype& datatype) (binding deprecated, see Section 15.2) }
                                                                                     46
{void File::Write_at_all_end(const void* buf)(binding deprecated, see
                                                                                     47
            Section 15.2)
```

```
1
       {void File::Write_at_all_end(const void* buf, Status& status)(binding
2
                    deprecated, see Section 15.2) }
3
       {void File::Write_ordered(const void* buf, int count,
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
5
6
       {void File::Write_ordered(const void* buf, int count,
                    const Datatype& datatype, Status& status) (binding deprecated, see
                    Section 15.2) }
9
       {void File::Write_ordered_begin(const void* buf, int count,
10
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
11
12
       {void File::Write_ordered_end(const void* buf)(binding deprecated, see
13
                    Section 15.2) }
14
       {void File::Write_ordered_end(const void* buf, Status& status)(binding
15
                    deprecated, see Section 15.2) }
16
17
       {void File::Write_shared(const void* buf, int count,
18
                    const Datatype& datatype) (binding deprecated, see Section 15.2) }
19
       {void File::Write_shared(const void* buf, int count,
20
                    const Datatype& datatype, Status& status) (binding deprecated, see
21
                    Section 15.2)
22
23
24
     };
25
26
     A.4.12 Language Bindings C++ Bindings
27
     namespace MPI {
28
29
       {static Datatype Datatype::Create_f90_complex(int p, int r)(binding
30
                    deprecated, see Section 15.2) }
31
       {static Datatype Datatype::Create_f90_integer(int r)(binding deprecated, see
33
                    Section 15.2) }
34
       {static Datatype Datatype::Create_f90_real(int p, int r)(binding deprecated,
35
                    see Section 15.2) }
36
37
       Exception::Exception(int error_code)
38
       {int Exception::Get_error_class() const(binding deprecated, see Section 15.2) }
39
       {int Exception::Get_error_code() const(binding deprecated, see Section 15.2)}
41
42
       {const char* Exception::Get_error_string() const(binding deprecated, see
                    Section 15.2) }
43
44
       {static Datatype Datatype::Match_size(int typeclass, int size)(binding
45
                    deprecated, see Section 15.2) }
46
47
48
     };
```

```
629
A.4.13 Profiling Interface C++ Bindings
namespace MPI {
  {void Pcontrol(const int level, ...) (binding deprecated, see Section 15.2) }
};
                                                                                                ticket11.
[C++ Deprecated Functions section]
                                                                                              9
                                                                                              10
A.4.14 C++ Bindings on all MPI Classes
                                                                                              11
The C++ language requires all classes to have four special functions: a default constructor,
                                                                                              12
a copy constructor, a destructor, and an assignment operator. The bindings for these func-
                                                                                              13
tions are listed below; their semantics are discussed in Section 16.1.5. The two constructors
                                                                                              14
are not virtual. The bindings prototype functions are using the type (CLASS) rather than
                                                                                              15
listing each function for every MPI class. The token (CLASS) can be replaced with valid MPI-
                                                                                              16
```

18 19

20 21

22 23

24

25 26

27 28 29

30

31

33

34 35 36

37 38

39

41 42

43 44

45

46 47

A.4.15 Construction / Destruction

```
namespace MPI {
   \langle CLASS \rangle : : \langle CLASS \rangle ()
   \langle CLASS \rangle :: {}^{\sim} \langle CLASS \rangle ()
};
A.4.16 Copy / Assignment
namespace MPI {
   ⟨CLASS⟩::⟨CLASS⟩(const ⟨CLASS⟩& data)
   ⟨CLASS⟩& ⟨CLASS⟩::operator=(const ⟨CLASS⟩& data)
};
A.4.17
          Comparison
```

2 class names, such as Group, Datatype, etc., except when noted. In addition, bindings are

provided for comparison and inter-language operability from Sections 16.1.5 and 16.1.9.

Since Status instances are not handles to underlying MPI objects, the operator == () and operator!=() functions are not defined on the Status class.

```
namespace MPI {
  bool (CLASS)::operator==(const (CLASS)& data) const
  bool (CLASS)::operator!=(const (CLASS)& data) const
};
```

```
A.4.18 Inter-language Operability
1
2
      Since there are no C++ MPI::STATUS_IGNORE and MPI::STATUSES_IGNORE objects, the
3
      result of promoting the C or Fortran handles (MPI_STATUS_IGNORE and
      MPI_STATUSES_IGNORE) to C++ is undefined.
6
      namespace MPI {
8
         \langle CLASS \rangle \& \langle CLASS \rangle :: operator = (const MPI_<math>\langle CLASS \rangle \& data)
9
         ⟨CLASS⟩::⟨CLASS⟩(const MPI_⟨CLASS⟩& data)
10
11
         \(CLASS\)::operator MPI_\(CLASS\)() const
12
13
      };
14
15
16
17
18
19
20
21
22
23
24
26
27
28
29
30
31
33
34
35
36
37
38
39
41
42
43
44
45
46
47
```

Annex B

Change-Log

This annex summarizes changes from the previous version of the MPI standard to the version presented by this document. Only significant changes (i.e., clarifications and new features) that might either require implementation effort in the MPI libraries or change the understanding of MPI from a user's perspective are presented. Editorial modifications, formatting, typo corrections and minor clarifications are not shown.

B.1 Changes from Version 2.2 to Version 3.0

1. Chapter 5 on page 133 and Section 5.12 on page 190. Added nonblocking interfaces to all collective operations.

2. Sections 2.5.8, 3.2.2, 3.3, 5.9.2, on pages 16, 29, 31, 172, Sections 4.1.5, 4.1.7, 4.1.8, 4.1.11, 12.3 on pages 97, 99, 101, 105, 412, Sections 12.3 on pages 412, and Appendix A.1.1 on page 545.

New inquiry functions, MPI_TYPE_SIZE_X, MPI_TYPE_GET_EXTENT_X, MPI_TYPE_GET_TRUE_EXTENT_X, and MPI_GET_ELEMENTS_X, return their results as an MPI_Count value, which is a new type large enough to represent element counts in memory, file views, etc. A new function, MPI_STATUS_SET_ELEMENTS_X, modifies the opaque part of MPI_STATUS so that a call to MPI_GET_ELEMENTS_X returns the provided MPI_Count value.

3. Sections 3.2.5, 4.1.5, 4.1.11, 4.2 on pages 34, 97, 105, 127. The functions MPI_GET_COUNT, MPI_TYPE_SIZE, and MPI_GET_ELEMENTS are now defined to set the count parameter to MPI_UNDEFINED when that parameter would overflows. The function MPI_PACK_SIZE is now defined to set the size parameter to MPI_UNDEFINED when that parameter would overflow. In all other MPI-2.2 routines, the type and semantics of the count arguments are kept unchanged, i.e., int or INTEGER.

B.2 Changes from Version 2.1 to Version 2.2

1. Section 2.5.4 on page 14.

It is now guaranteed that predefined named constant handles (as other constants) can be used in initialization expressions or assignments, i.e., also before the call to MPI_INIT.

 ticket109

ticket265

- 2. Section 2.6 on page 16, Section 2.6.4 on page 19, and Section 16.1 on page 499. The C++ language bindings have been deprecated and may be removed in a future version of the MPI specification.
- 3. Section 3.2.2 on page 29.

operation is in progress.

MPI_CHAR for printable characters is now defined for C type char (instead of signed char). This change should not have any impact on applications nor on MPI libraries (except some comment lines), because printable characters could and can be stored in any of the C types char, signed char, and unsigned char, and MPI_CHAR is not allowed for predefined reduction operations.

- 4. Section 3.2.2 on page 29.

 MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,

 MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and

 MPI_C_LONG_DOUBLE_COMPLEX are now valid predefined MPI datatypes.
- 5. Section 3.4 on page 41, Section 3.7.2 on page 52, Section 3.9 on page 71, and Section 5.1 on page 133.
 The read access restriction on the send buffer for blocking, non blocking and collective API has been lifted. It is permitted to access for read the send buffer while the
- 6. Section 3.7 on page 50.

 The Advice to users for IBSEND and IRSEND was slightly changed.
- Section 3.7.3 on page 55.
 The advice to free an active request was removed in the Advice to users for MPI_REQUEST_FREE.
- 8. Section 3.7.6 on page 66.

 MPI_REQUEST_GET_STATUS changed to permit inactive or null requests as input.
- Section 5.8 on page 165.
 "In place" option is added to MPI_ALLTOALL, MPI_ALLTOALLV, and MPI_ALLTOALLW for intracommunicators.
- 10. Section 5.9.2 on page 172.
 Predefined parameterized datatypes (e.g., returned by MPI_TYPE_CREATE_F90_REAL) and optional named predefined datatypes (e.g. MPI_REAL8) have been added to the list of valid datatypes in reduction operations.
- 11. Section 5.9.2 on page 172.
 MPI_(U)INT{8,16,32,64}_T are all considered C integer types for the purposes of the predefined reduction operators. MPI_AINT and MPI_OFFSET are considered Fortran integer types. MPI_C_BOOL is considered a Logical type.
 MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and MPI_C_LONG_DOUBLE_COMPLEX are considered Complex types.
- 12. Section 5.9.7 on page 183.

 The local routines MPI_REDUCE_LOCAL and MPI_OP_COMMUTATIVE have been added.

- Section 5.10.1 on page 185.
 The collective function MPI_REDUCE_SCATTER_BLOCK is added to the MPI standard.
- 14. Section 5.11.2 on page 188. Added in place argument to MPI_EXSCAN.
- 15. Section 6.4.2 on page 232, and Section 6.6 on page 248.

 Implementations that did not implement MPI_COMM_CREATE on intercommunicators will need to add that functionality. As the standard described the behavior of this operation on intercommunicators, it is believed that most implementations already provide this functionality. Note also that the C++ binding for both MPI_COMM_CREATE and MPI_COMM_SPLIT explicitly allow Intercomms.
- 16. Section 6.4.2 on page 232.

 MPI_COMM_CREATE is extended to allow several disjoint subgroups as input if comm is an intracommunicator. If comm is an intercommunicator it was clarified that all processes in the same local group of comm must specify the same value for group.
- 17. Section 7.5.4 on page 284.

 New functions for a scalable distributed graph topology interface has been added. In this section, the functions MPI_DIST_GRAPH_CREATE_ADJACENT and MPI_DIST_GRAPH_CREATE, the constants MPI_UNWEIGHTED, and the derived C++ class Distgraphcomm were added.
- 18. Section 7.5.5 on page 290.
 For the scalable distributed graph topology interface, the functions
 MPI_DIST_NEIGHBORS_COUNT and MPI_DIST_NEIGHBORS and the constant
 MPI_DIST_GRAPH were added.
- 19. Section 7.5.5 on page 290. Remove ambiguity regarding duplicated neighbors with MPI_GRAPH_NEIGHBORS and MPI_GRAPH_NEIGHBORS_COUNT.
- 20. Section 8.1.1 on page 303.

 The subversion number changed from 1 to 2.
- 21. Section 8.3 on page 308, Section 15.2 on page 497, and Annex A.1.3 on page 557. Changed function pointer typedef names MPI_{Comm,File,Win}_errhandler_fn to MPI_{Comm,File,Win}_errhandler_function. Deprecated old "_fn" names.
- 22. Section 8.7.1 on page 327.
 Attribute deletion callbacks on MPI_COMM_SELF are now called in LIFO order. Implementors must now also register all implementation-internal attribute deletion callbacks on MPI_COMM_SELF before returning from MPI_INIT_THREAD.
- 23. Section 11.3.4 on page 377.

 The restriction added in MPI 2.1 that the operation MPI_REPLACE in MPI_ACCUMULATE can be used only with predefined datatypes has been removed. MPI_REPLACE can now be used even with derived datatypes, as it was in MPI 2.0. Also, a clarification has been made that MPI_REPLACE can be used only in

MPI_ACCUMULATE, not in collective operations that do reductions, such as MPI_REDUCE and others.

24. Section 12.2 on page 405.

Add "*" to the query_fn, free_fn, and cancel_fn arguments to the C++ binding for MPI::Grequest::Start() for consistency with the rest of MPI functions that take function pointer arguments.

- 25. Section 13.5.2 on page 463, and Table 13.2 on page 465.
 MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_COMPLEX,
 MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX,
 MPI_C_LONG_DOUBLE_COMPLEX, and MPI_C_BOOL are added as predefined datatypes in the external32 representation.
- 26. Section 16.3.7 on page 537.

 The description was modified that it only describes how an MPI implementation behaves, but not how MPI stores attributes internally. The erroneous MPI-2.1 Example 16.17 was replaced with three new examples 16.17, 16.18, and 16.19 on pages 538-540 explicitly detailing cross-language attribute behavior. Implementations that matched the behavior of the old example will need to be updated.
- 27. Annex A.1.1 on page 545.

 Removed type MPI::Fint (compare MPI_Fint in Section A.1.2 on page 556).
- 28. Annex A.1.1 on page 545. Table Named Predefined Datatypes.

 Added MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,

 MPI_C_FLOAT_COMPLEX, MPI_C_COMPLEX, MPI_C_DOUBLE_COMPLEX, and

 MPI_C_LONG_DOUBLE_COMPLEX are added as predefined datatypes.

B.3 Changes from Version 2.0 to Version 2.1

- Section 3.2.2 on page 29, Section 16.1.6 on page 503, and Annex A.1 on page 545.
 In addition, the MPI_LONG_LONG should be added as an optional type; it is a synonym for MPI_LONG_LONG_INT.
- Section 3.2.2 on page 29, Section 16.1.6 on page 503, and Annex A.1 on page 545.
 MPI_LONG_LONG_INT, MPI_LONG_LONG (as synonym),
 MPI_UNSIGNED_LONG_LONG, MPI_SIGNED_CHAR, and MPI_WCHAR are moved from optional to official and they are therefore defined for all three language bindings.
- 3. Section 3.2.5 on page 33.
 MPI_GET_COUNT with zero-length datatypes: The value returned as the count argument of MPI_GET_COUNT for a datatype of length zero where zero bytes have been transferred is zero. If the number of bytes transferred is greater than zero, MPI_UNDEFINED is returned.
- 4. Section 4.1 on page 79.

 General rule about derived datatypes: Most datatype constructors have replication count or block length arguments. Allowed values are non-negative integers. If the value is zero, no elements are generated in the type map and there is no effect on datatype bounds or extent.

- Section 4.3 on page 130.
 MPI_BYTE should be used to send and receive data that is packed using MPI_PACK_EXTERNAL.
- 6. Section 5.9.6 on page 182.

If comm is an intercommunicator in MPI_ALLREDUCE, then both groups should provide count and datatype arguments that specify the same type signature (i.e., it is not necessary that both groups provide the same count value).

7. Section 6.3.1 on page 224.

MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL as the translated rank.

8. Section 6.7 on page 256.

About the attribute caching functions:

Advice to implementors. High-quality implementations should raise an error when a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL is used with an object of the wrong type with a call to MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each keyval, information on the type of the associated user function. (End of advice to implementors.)

9. Section 6.8 on page 270.

In MPI_COMM_GET_NAME: In C, a null character is additionally stored at name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT_NAME-1. In Fortran, name is padded on the right with blank characters. resultlen cannot be larger then MPI_MAX_OBJECT_NAME.

10. Section 7.4 on page 278.

About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must have identical values on all processes of the group of comm_old.

11. Section 7.5.1 on page 280.

In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology is created. The call is erroneous if it specifies a grid that is larger than the group size or if ndims is negative.

12. Section 7.5.3 on page 282.

In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes == 0, then MPI_COMM_NULL is returned in all processes.

13. Section 7.5.3 on page 282.

In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times in the list of neighbors of a process (i.e., there may be multiple edges between two processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a nonsymmetric adjacency matrix are not defined. The definition of a node-neighbor edge does not imply a direction of the communication. (End of advice to users.)

3 5

6

9

10

11

12 13

14

1

2

- 14. Section 7.5.5 on page 290.
 - In MPI_CARTDIM_GET and MPI_CART_GET: If comm is associated with a zerodimensional Cartesian topology, MPI_CARTDIM_GET returns ndims=0 and MPI_CART_GET will keep all output arguments unchanged.

- 15. Section 7.5.5 on page 290.
 - In MPI_CART_RANK: If comm is associated with a zero-dimensional Cartesian topology, coord is not significant and 0 is returned in rank.

- 16. Section 7.5.5 on page 290.
 - In MPI_CART_COORDS: If comm is associated with a zero-dimensional Cartesian topology, coords will be unchanged.

15 16 17

18

19

20

21 22

23

24

- 17. Section 7.5.6 on page 297.
 - In MPI_CART_SHIFT: It is erroneous to call MPI_CART_SHIFT with a direction that is either negative or greater than or equal to the number of dimensions in the Cartesian communicator. This implies that it is erroneous to call MPI_CART_SHIFT with a comm that is associated with a zero-dimensional Cartesian topology.

- 18. Section 7.5.7 on page 299.
 - In MPI_CART_SUB: If all entries in remain_dims are false or comm is already associated with a zero-dimensional Cartesian topology then newcomm is associated with a zero-dimensional Cartesian topology.

25 26 27

28

29

30

34 35

36

37

38

39

- 18.1. Section 8.1.1 on page 303.
 - The subversion number changed from 0 to 1.

31 32 33

- 19. Section 8.1.2 on page 304.
 - In MPI_GET_PROCESSOR_NAME: In C, a null character is additionally stored at name[resultlen]. resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME-1. In Fortran, name is padded on the right with blank characters. resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME.

- 20. Section 8.3 on page 308.
 - MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler object is created. That is, once the error handler is no longer needed, MPI_ERRHANDLER_FREE should be called with the error handler returned from MPI_ERRHANDLER_GET or MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark the error handler for deallocation. This provides behavior similar to that of

41 42 43

44

45

46

21. Section 8.7 on page 322, see explanations to MPI_FINALIZE.

MPI_COMM_GROUP and MPI_GROUP_FREE.

MPI_FINALIZE is collective over all connected processes. If no processes were spawned, accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective over the union of all processes that have been and continue to be connected, as explained in Section 10.5.4 on page 362.

47

22. Section 8.7 on page 322. About MPI_ABORT:

Advice to users. Whether the errorcode is returned from the executable or from the MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or singleton init). (End of advice to implementors.)

23. Section 9 on page 331.

An implementation must support info objects as caches for arbitrary (key, value) pairs, regardless of whether it recognizes the key. Each function that takes hints in the form of an MPI_Info must be prepared to ignore any key it does not recognize. This description of info objects does not attempt to define how a particular function should react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY, MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must retain all (key,value) pairs so that layered functionality can also use the Info object.

24. Section 11.3 on page 371.

MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE, MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-to-point communication. See also item 25 in this list.

25. Section 11.3 on page 371.

After any RMA operation with rank MPI_PROC_NULL, it is still necessary to finish the RMA epoch with the synchronization method that started the epoch. See also item 24 in this list.

- 26. Section 11.3.4 on page 377.
 - MPI_REPLACE in MPI_ACCUMULATE, like the other predefined operations, is defined only for the predefined MPI datatypes.
- 27. Section 13.2.8 on page 430.

About MPI_FILE_SET_VIEW and MPI_FILE_SET_INFO: When an info object that specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that the info does not specify.

28. Section 13.2.8 on page 430.

About MPI_FILE_GET_INFO: If no hint exists for the file associated with fh, a handle to a newly created info object is returned that contains no key/value pair.

- 29. Section 13.3 on page 433.
 - If a file does not have the mode MPI_MODE_SEQUENTIAL, then MPI_DISPLACEMENT_CURRENT is invalid as disp in MPI_FILE_SET_VIEW.
- 30. Section 13.5.2 on page 463.

The bias of 16 byte doubles was defined with 10383. The correct value is 16383.

- 31. Section 16.1.4 on page 500.

 In the example in this section, the buffer should be declared as const void* buf.
- 32. Section 16.2.5 on page 521.
 About MPI_TYPE_CREATE_F90_xxxx:

Advice to implementors. An application may often repeat a call to MPI_TYPE_CREATE_F90_xxxx with the same combination of (xxxx,p,r). The application is not allowed to free the returned predefined, unnamed datatype handles. To prevent the creation of a potentially huge amount of handles, the MPI implementation should return the same datatype handle for the same (REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call to MPI_TYPE_CREATE_F90_xxxx and using a hashtable to find formerly generated handles should limit the overhead of finding a previously generated datatype with same combination of (xxxx,p,r). (End of advice to implementors.)

33. Section A.1.1 on page 545.

MPI_BOTTOM is defined as void * const MPI::BOTTOM.