Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca http://gianluca.dellavedova.org

28 novembre 2019

Grafi di assemblaggio

Assemblaggio di genomi

Tecnologie

- Porzioni di genoma chiamate read
- 50–10000bp (base pairs)
- spesso in coppie (mate pairs)
- posizione originaria ignota

Objettive

Ricostruire il genoma: circa 3 miliardi bp

Evoluzione tecnologica

Mate pairs

Regola 1

Suffisso di una read può essere prefisso di un'altra read: overlap

Overlap — sovrapposizione

TCTATATCTCGGCTCTAGG

TATCTCGACTCTAGGCCC

Read 1

Read 2

Probabile motivo

TCTATATCTCGGCTCTAGG

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTT

TATCTCGACTCTAGGCCC

Read 1

True genome

Read 2

Errore oppure organismi diploidi

Grafo di overlap

Arco fra tutte le coppie di read con overlap abbastanza lungo

String Graph

Si rimuovono gli archi transitivi dal grafo di overlap

Shortest superstring

Istanza

Insieme $\mathcal{S} = \{s_1, \dots, s_n\}$ di stringhe

Soluzioni ammissibili

Superstring T di \mathcal{S} . Ogni s_i è sottostringa di T

Funzione obiettivo

|T|

T è il genoma assemblato, $\mathcal S$ le read

Problema

Regioni ripetute

Algoritmo ingordo

Algoritme

- 1 Fondere le due stringhe con massimo overlap
- 2 Finchè non rimane una stringa sola

Esempio: a_long_long_long_time

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- 3 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l
- 6 ong_lon long_time g_long_ a_long long_l
- 7 long_lon long_time g_long_ a_long
- 8 long_lon g_long_time a_long
- 10 a_long_long_time

Problema del commesso viaggiatore (TSP)

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

$$w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$$

- Una soluzione è un percorso che tocca ogni città esattamente una volta e torna al punto di partenza
- Il costo è il peso totale di tutti gli archi attraversati
- NP-completo

Problema del commesso viaggiatore (TSP)

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

$$w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$$

- Una soluzione è un percorso che tocca ogni città esattamente una volta e torna al punto di partenza
- Il costo è il peso totale di tutti gli archi attraversati
- NP-completo, ma risolvibile in pratica

Superstringa più corta e TSP

Similarità

1 read = 1 città

Differenze

- assemblaggio ≠ ciclo
- lunghezza stringa ≠ costo percorso TSP

Superstringa più corta e TSP

Similarità

1 read = 1 città

Differenze

- assemblaggio ≠ ciclo
- lunghezza stringa ≠ costo percorso TSP

Proprietà

$$|\mathcal{S}| = \sum_{i=1}^{n} |s_i| - \sum_{i=1}^{n-1} |ov(s_i, s_{i+1})|$$
, dove $ov(\cdot, \cdot)$ è la sovrapposizione fra le stringhe

Grafo di overlap — TSP

Overlay — Layout — Consensus

Passi

- Overlap: calcolare le sovrapposizioni e costruire il grafo. Usare suffix array (esatto) o programmazione dinamica (errori).
- 2 Layout: Fondere i cammini per ottenere i configs. Le ripetizioni (branching nodes) vengono rimosse.
- 3 Consensus: calcola i nucleotidi

Reverse and complement

- Non si conosce lo strand
- Versione canonica (minima fra x e revcomp(x)
- complica il calcolo degli overlap

SBH

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

- 1 Ogni k-mero viene diviso in (k-1)-meri
- 2 Un vertice per ogni (k-1)-mero
- 3 Un arco per ogni *k*-mero

Adesso

Stessa procedura, a partire dai read

Grafo di de Bruijn

4-meri — 3-meri — distinti							
ACGT		ACG	CGT		ACG		
CACG		CAC	ACG		CAC		
CCAC		CCA	CAC		CCA		
CGTG		CGT	GTG		CGT		
GCCA		GCC	CCA		GCC		
GTGC		GTG	TGC		GTG		
GTGT		GTG	TGT				
TGCC		TGC	GCC		TGC		
TGTG		TGT	GTG		TGT		

Problemi su grafi

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni areo esattamente una volta
- 2 Cammino Euleriano

Ciclo Hamiltoniano

- 1 É un cammino che attraversa ogni venice esattamente una volta
- 2 Caso particolare di TSP

Confronto

Qual è più difficile da risolvere?

Grafi Euleriani

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è semi-euleriano se esistono due vertici s, t tali che $N_G^-(s) = N_G^+(s) + 1$, $N_G^-(t) = N_G^+(v) - 1$, mentre per ogni altro vertice w, $N_G^-(w) = N_G^+(w)$.

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è euleriano se $N_G^-(w) = N_G^+(w)$. per ogni vertice.

Teorema

Un grafo connesso $G = \langle V, A \rangle$ ha un cammino euleriano se e solo se G è semi-euleriano. G ha un ciclo euleriano se e solo se G è euleriano.

Grafi Euleriani 2

Teorem:

Sia $G = \langle V, A \rangle$ un grafo semi-euleriano e sia P un cammino da s a t. Sia G_1 il grafo ottenuto da G togliendo tutti gli archi di P. Allora G_1 è euleriano.

Teorema

Sia $G = \langle V, A \rangle$ un grafo euleriano e sia C un ciclo di G. Sia G_1 il grafo ottenuto da G togliendo tutti gli archi di C. Allora G_1 è euleriano.

Ridurre il grafo di overlap

Caso senza errori

Osservazione 1

G grafo di overlap con $(a \to b_1)$ unico arco irriducibile uscente da a, e $(a, b_1), \ldots, (a, b_n)$ archi uscenti da a. Allora $(b_i \to b_{i+1})$ con $1 \le i \le n-1$ sono archi di G.

Osservazione 2

G grafo di overlap con $(a \to b_1)$ unico arco irriducibile uscente da a, e $(a,b_1),\ldots,(a,b_n)$ archi uscenti da a. Allora $(b_1 \to b_i)$ con $2 \le i \le n-1$ sono archi di G.

Ridurre il grafo di overlap — algoritmo

- $oldsymbol{b}_i$ ordinati per lunghezza dell'arco
- 2 Marcare "da eliminare" i vertici b_j tale che $(b_i \rightarrow b_j)$ con i < j
- 3 Rimuovere gli archi che terminano in vertici da eliminare

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. (https://creativecommons.org/licenses/by-sa/4.0/). Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.