END-SEMESTER EXAMINATION MTH-204, MTH-204A ABSTRACT ALGEBRA Fall-2014

Date: 24th November 2014

Max. Marks: 40

Time Allowed: 3 hrs

 State PRECISELY the following theorems. Lagrange'e theorem. Sylow's theorems. Fundamental theorem of finite abelian groups. First isomorphism theorem of Rings Chinese reminder theorem. 	[6]
2. Find all the subgroups of D_4 and determine which are normal.	[4]
3. Give an example of a group G and a proper subgroup H such that $G = \bigcup_{g \in G} gHg^{-1}$. Justify.	[4]
4. Prove that every finite group having more than two elements has a nontrivial automorphism.	[5]
5. For each list of groups a, b and c below, decide which of the groups within each list are isomorph any:	ic, if [5]
a. $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_9 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_{18} \times \mathbb{Z}_2$ and $\mathbb{Z}_6 \times \mathbb{Z}_6$.	
b. $S_4, A_4 \times \mathbb{Z}_2, D_{12}$ and $Q_8 \times \mathbb{Z}_3$.	
c. $(\mathbb{Q}, +), (\mathbb{R}, +)$ and (\mathbb{R}_+, \times) , where \mathbb{R}_+ is the set of all positive real numbers.	
6. Let G be a p-group, where p is a prime. Prove that $Z(G)$ has more than one element.	[4]
7. Show that if a group G has a conjugacy class with two elements then G is not simple.	[4]
8. Let R be a ring in which every element x satisfies $x^n = x$ for some n (depending on x). Show the prime ideal in R is maximal.	at every [4]
9. State and prove the prime avoidance theorem.	[5]
10. Let R be a UFD. Prove that $x \in R$ is prime iff x is irreducible.	[4]