Quiz 6 v. A

Name:			

UW email address:

Indicate the correct answer for the questions below. You do not need to justify your answers.

1. It is known that one of the three vector fields shown below is **not** conservative. Which one?

Plot C produces work along closed paths (or has nonzero curl)

2. Mark the correct answer: Let $\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$ be a vector field in \mathbb{R}^3 , where P, Q, R have continuous third partial derivatives. Then

$$\vec{F} \times \operatorname{curl}(\nabla(\operatorname{div} \vec{F}))$$

is

a. A vector field

b. A scalar function

c. Undefined (nonsense)

3. Mark the following sentence as **true** or **false**. If $\vec{F}(x,y)$ is a conservative vector field on a domain $D \subset \mathbb{R}^2$ with continuous coefficients and c_1 , c_2 are two curves in D such that they both start at the same point A and they both end at the same point B then

$$\int_{c_1} \vec{F}(x,y) \cdot d\vec{r} = \int_{c_2} \vec{F}(x,y) \cdot d\vec{r}.$$

True

False

By FTC

4. Mark the following statement as **true** or **false**. Let $\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ be a vector field defined on a domain $D \subset \mathbb{R}^2$, with P and Q continuously differentiable on D. If $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ on D then \vec{F} is conservative on D.

True

False

Need Simply Connected