# The Bonn-Gatchina analysis of reaction with production of the $\eta$ -meson

**Andrey Sarantsev** 





**HISKP**, Uni-Bonn, Germany

**NRC Kurchatov Institute, PNPI, Russia** 

Mainz, Germany, 19th February 2019

#### **Bonn-Gatchina partial wave analysis group:**

#### A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma.

http://pwa.hiskp.uni-bonn.de/





#### **Bonn-Gatchina Partial Wave Analysis**



Address: Nussallee 14-16, D-53115 Bonn Fax: (+49) 228 / 73-2505

| Data Base                | Meson<br>Spectroscopy | Baryon<br>Spectroscopy | NN-interaction     | <u>Formalism</u> |
|--------------------------|-----------------------|------------------------|--------------------|------------------|
| Analysis of Other Groups |                       | BG PWA                 | Useful Links       |                  |
| • <u>SAID</u>            |                       | Publications           | •SPIRES            |                  |
| • <u>MAID</u>            |                       | • <u>Talks</u>         | • PDG Homepage     |                  |
| <u> </u>                 |                       | • Contacts             | Durham Data Base   |                  |
|                          |                       |                        | <u>■</u> <u>Bc</u> | onn Homepage     |
|                          |                       | CB-ELSA Homepage       |                    |                  |

Responsible: Dr. V. Nikonov, E-mail: <u>nikonov@hiskp.uni-bonn.de</u>
Last changes: January 26<sup>th</sup>, 2010.

## Recently included data

| DATA                                 | 2011-2016                                                         | added in 2016-2018                                                               |
|--------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $\gamma n \to \Lambda K, \Sigma^- K$ |                                                                   | $rac{d\sigma}{d\Omega}$ (CLAS), E (CLAS)                                        |
| $\gamma n \to \pi^- p$               | $\frac{d\sigma}{d\Omega}, \Sigma, P$                              | $E,\Sigma$ (CLAS)                                                                |
| $\gamma n \to \eta n$                | $rac{d\sigma}{d\Omega}, \Sigma$                                  | $rac{d\sigma}{d\Omega}$ (MAMI) $rac{d\sigma}{d\Omega}(h=rac{1}{2})$ (CB-ELSA) |
| $\gamma p \to \eta p$                | $\frac{d\sigma}{d\Omega}, \Sigma(GRAAL)$                          | $rac{d\sigma}{d\Omega}, F, T$ (MAMI) $T, P, H, G$ ,(CB-ELSA)                    |
|                                      |                                                                   | $E, \Sigma$ (CB-ELSA,CLAS)                                                       |
| $\gamma p \to \eta' p$               |                                                                   | $rac{d\sigma}{d\Omega}, \Sigma$                                                 |
| $\gamma p \to K^+ \Lambda$           | $\frac{d\sigma}{d\Omega}, \Sigma, P, T, C_x, C_z, O_{x'}, O_{z'}$ | $\Sigma, P, T, O_x, O_z$ (CLAS)                                                  |
| $\gamma p \to K^+ \Sigma^0$          | $\frac{d\sigma}{d\Omega}, \Sigma, P, C_x, C_z$                    | $\Sigma, P, T, O_x, O_z$ (CLAS)                                                  |
| $\pi^- p \to \pi^+ \pi^- n$          |                                                                   | $d\sigma/d\Omega$ (HADES)                                                        |
| $\pi^- p \rightarrow \pi^- \pi^0 p$  |                                                                   | $d\sigma/d\Omega$ (HADES)                                                        |
| $\gamma p \to \pi^0 \pi^0 p$         | $d\sigma/d\Omega, \Sigma, E, I_c, I_s$                            | $T,P,H,F,P_x,P_y$ (CB-ELSA)                                                      |
| $\gamma p \to \pi^+ \pi^- p$         |                                                                   | $d\sigma/d\Omega, I_c, I_s$ (CLAS)                                               |
| $\gamma p 	o \omega p$               | $d\sigma/d\Omega, \Sigma,  ho_{ij}^k, E, G$ (CB-ELSA)             | $\Sigma$ (CLAS) P,T,F,H (CLAS)                                                   |
| $\gamma p \to K^* \Lambda$           |                                                                   | $d\sigma/d\Omega$ , $ ho_{ij}$                                                   |

# The analysis of the new $\gamma p \to \eta p$ data. New MAMI data: a strong cusp effect from the $\eta' p$ channel





## N/D based (D-matrix) analysis of the data

$$\frac{J}{m} = \frac{J}{m} \times \frac{K}{m} \times \frac{K}{m} \times \frac{\delta_{JK}}{m} \times \frac{\delta_{JK}}$$

$$D_{jm} = D_{jk} \sum_{\alpha} B_{\alpha}^{km}(s) \frac{1}{M_m - s} + \frac{\delta_{jm}}{M_j^2 - s} \qquad \hat{D} = \hat{\kappa} (I - \hat{B}\hat{\kappa})^{-1}$$

$$\hat{\kappa} = diag\left(\frac{1}{M_1^2 - s}, \frac{1}{M_2^2 - s}, \dots, \frac{1}{M_N^2 - s}, R_1, R_2 \dots\right)$$

$$\hat{B}_{ij} = \sum_{\alpha} B_{\alpha}^{ij} = \sum_{\alpha} \int \frac{ds'}{\pi} \frac{g_{\alpha}^{(R)i} \rho_{\alpha}(s', m_{1\alpha}, m_{2\alpha}) g_{\alpha}^{(L)j}}{s' - s - i0}$$

In the present fits we calculate the elements of the  $B_{\alpha}^{ij}$  using one subtraction taken at the channel threshold  $M_{\alpha}=(m_{1\alpha}+m_{2\alpha})$ :

$$B_{\alpha}^{ij}(s) = B_{\alpha}^{ij}(M_{\alpha}^{2}) + (s - M_{\alpha}^{2}) \int_{M_{\alpha}^{2}}^{\infty} \frac{ds'}{\pi} \frac{g_{\alpha}^{(R)i} \rho_{\alpha}(s', m_{1\alpha}, m_{2\alpha}) g_{\alpha}^{(L)j}}{(s' - s - i0)(s' - M_{\alpha}^{2})}.$$

In this case the expression for elements of the  $\hat{B}$  matrix can be rewritten as:

$$B_{\alpha}^{ij}(s) = g_a^{(R)i} \left( b^{\alpha} + (s - M_{\alpha}^2) \int_{M_a^2}^{\infty} \frac{ds'}{\pi} \frac{\rho_{\alpha}(s', m_{1\alpha}, m_{2\alpha})}{(s' - s - i0)(s' - M_{\alpha}^2)} \right) g_{\beta}^{(L)j} = g_a^{(R)i} B_{\alpha} g_{\beta}^{(L)j}$$

and D-matrix method equivalent to the K-matrix method with loop diagram with real part taken into account:

$$A = \hat{K}(I - \hat{B}\hat{K})^{-1} \qquad B_{\alpha\beta} = \delta_{\alpha\beta}B_{\alpha}$$

 $S_{11}$ -partial wave:  $\pi N$ ,  $\eta N$ ,  $K\Lambda$ ,  $K\Sigma$ ,  $\Delta(1232)\pi$ ,  $\rho N$  (S,D).

|                                   | $N(1535)S_{11}$ |              | $N(1650)S_{11}$ |              | $N(1890)S_{11}$  |          |
|-----------------------------------|-----------------|--------------|-----------------|--------------|------------------|----------|
|                                   | K-matrix        | D-matrix     | K-matrix        | D-matrix     | K-matrix         | D-matrix |
| $M_{ m pole}$                     | 1501±4          | 1494         | 1647±6          | 1651         | 1900±15          | 1905     |
| $\Gamma_{ m pole}$                | 134±11          | 116          | 103±8           | 95           | $90^{+30}_{-15}$ | 106      |
| Elastic residue                   | <b>31</b> ±4    | 25           | 24±3            | 23           | 1±1              | 1.5      |
| Phase                             | -(29±5)°        | <b>-38</b> ° | -(75±12)°       | <b>-62</b> ° | _                | _        |
| $Res_{\pi N 	o \Delta \pi}$       | <b>7</b> ±4     | 4            | 11±3            | 12           | _                | -        |
| Phase                             | (147±17)°       | 157°         | -(30±20)°       | -40          | _                | _        |
| $A^{1/2}$ (GeV $^{-rac{1}{2}}$ ) | 0.116±0.010     | 0.107        | 0.033±0.007     | 0.029        | 0.012±0.006      | 0.010    |
| Phase                             | <b>(7</b> ±6)°  | <b>1</b> °   | -(9±15)°        | <b>0</b> °   | 120±50°          | 150°     |

## The analysis of the new $\gamma p \to \eta p$ data. $d\sigma/d\Omega$ (MAMI)



The analysis of the new  $\gamma p \to \eta p$  data. H,P,T (CB-ELSA)



## The analysis of the new $\gamma p \to \eta p$ data. T (CB-ELSA), (MAMI scale 1.4)



## The analysis of the new $\gamma p \to \eta p$ data. E (CB-ELSA), F (MAMI) (scale 1.4)



### The analysis of the new $\gamma p o \eta p$ data. $\Sigma$ (CB-ELSA and CLAS)



## Resonance branchings to the $\eta N$ channel

| Res.      | BR                      | Res.      | BR                       | Res.      | BR           |
|-----------|-------------------------|-----------|--------------------------|-----------|--------------|
| N(1535)   | $0.42{\pm}0.04$         | N(1650)   | 0.32±0.04                | N(1895)   | 0.10±0.05    |
| $1/2^{-}$ | 0.42±0.10               | $1/2^{-}$ | 0.05 - 0.15              | $1/2^{-}$ | (0.21±0.06)  |
| N(1710)   | 0.25±0.09               | N(1880)   | 0.19±0.07                | N(2100)   | 0.25±0.10    |
| $1/2^{+}$ | 0.10 - 0.30             | $1/2^{+}$ | $(0.25^{+0.30}_{-0.20})$ | $1/2^{+}$ | 0.61±0.61    |
| N(1520)   | < 0.001                 | N(1700)   | 0.01±0.01                | N(1875)   | 0.02±0.01    |
| $3/2^{-}$ | 0.0023±0.0004           | $3/2^{-}$ | 0±0.01                   | $3/2^{-}$ | 0.012±0.018  |
| N(1720)   | 0.03±0.02               | N(1900)   | 0.03±0.01                | N(2120)   | <b>≤0.01</b> |
| $3/2^{+}$ | 0.021±0.014             | $3/2^{+}$ | $\sim$ 0.12              | $3/2^{-}$ | -            |
| N(1675)   | $0.005 \pm 0.005$       | N(2060)   | 0.04±0.01                | N(2190)   | 0.025±0.005  |
| $5/2^{-}$ | <b>0</b> ± <b>0.007</b> | $5/2^{-}$ | $0.04{\pm}0.02$          | $7/2^{-}$ | 0±0.01       |
| N(1680)   | 0.002±0.001             | N(2000)   | 0.002±0.001              | N(1990)   | <b>≤0.01</b> |
| $5/2^{+}$ | <b>0</b> ± <b>0.007</b> | $5/2^{+}$ | 0.002±0.002              | $7/2^{+}$ | -            |

# The analysis of the $\gamma p \to \eta' p$ data.



Strong contribution from the  $S_{11}(1895)$ ,  $P_{13}(1900)$ ,  $P_{11}(2100)$  and  $D_{13}(2120)$  states.

# The beam asymmetry on $\gamma p \to \eta' p$



No narrow states

 $D_{15}(1903)$ 

 $D_{13}(1900)$ 

### The description of the data below W=1917 MeV and the prediction of other observables

| Resonance                                       | N  | Basic | $D_{13}$ | $D_{15}$ |
|-------------------------------------------------|----|-------|----------|----------|
| M (MeV)                                         |    |       | 1900     | 1903     |
| $\Gamma$ (MeV)                                  |    |       | 1        | 1        |
| $\chi^2 (\Sigma)$                               | 13 | 29.5  | 11.7     | 10.1     |
| $\chi^2 \left( \frac{d\sigma}{d\Omega} \right)$ | 50 | 120.3 | 59.9     | 129.0    |



# Solution with interference between $S_{11}$ states





# Solutions with the $P_{11}(1680)$ states







#### The description of the new data as well as GRAAL data is notably worse



Limit for the production of  $P_{11}(1680)$ :  $|A^{\frac{1}{2}}|Br(\eta n) < 5 \text{ Gev}^{-\frac{1}{2}}10^{-3}$ 

### The description of the data with N/D-based approach



# The description of the differential cross section and beam asymmetry in the selected energy region



#### The description of the $\pi p o \eta p$ data with N/D-based approach



S. Prakhov et al., Phys. Rev. C72(2005) 015203

R.M. Brown et al. Nucl. Phys. B153, 89 (1979)

W. B. Richards et al., Phys. Rev. D1, 10 (1970)

## $\gamma p \to \eta p$ multipoles



## Amplitudes squared for the $\pi N \to \eta N$ and $\gamma p \to \eta p$ reactions



# Residues in the pole for $\pi N o \eta N$ (MeV) and $\gamma N o \eta N$ (10 $^{-3}$ GeV $^{-\frac{1}{2}}$ ) reactions amplitudes.

| Res                                                  | $N(1535)1/2^-$ |                                | $N(1650)1/2^-$ |                    | $N(1895)1/2^-$ |                            |
|------------------------------------------------------|----------------|--------------------------------|----------------|--------------------|----------------|----------------------------|
| $\pi N \to \eta N$                                   | (29±2)         | -(84±3)°                       | -(22±3)        | (2±12)°            | (5±3)          | (25±20)°                   |
| $\gamma p  ightarrow \eta p$ (E,- $A^{rac{1}{2}}$ ) | -(19±2)        | <b>-(60±3)</b> <sup>0</sup>    | (4±0.3)        | (31±10)°           | (1.7±0.8)      | ( <b>20</b> ± <b>20</b> )° |
| Res                                                  | $N(1440)1/2^+$ |                                | $N(1710)1/2^+$ |                    | $N(1880)1/2^+$ |                            |
| $\pi N \to \eta N$                                   | -(20±6)        | ( <b>0</b> ±30)°               | (7±2)          | (54±15)°           | (12±5)         | (60±18)°                   |
| $\gamma p  ightarrow \eta p$ (M, $A^{rac{1}{2}}$ )  | (5±2)          | (15±30)°                       | (2.2±0.7)      | -(73±16)°          | (0.9±0.35)     | (60±17)°                   |
| Res                                                  | $N(1520)3/2^-$ |                                | $N(1720)3/2^+$ |                    | $N(1900)3/2^+$ |                            |
| $\pi N \to \eta N$                                   | (1.7±0.4)      | -(88±15)°                      | (8.1±2.6)      | (45±10)°           | (2.9±0.8)      | (55±30)°                   |
| $\gamma p \to \eta p  (A^{\frac{1}{2}})$             | (0.22±0.06)    | (86±18)°                       | (8.7±3.0)      | (49±10)°           | -(1.3±0.4)     | -(40±25)°                  |
| $\gamma p \to \eta p  (A^{\frac{3}{2}})$             | (1.18±0.20)    | -(74±17)°                      | -(4.0±2.1)     | -(53±12)°          | (12±5)         | (14±10)°                   |
| $\gamma p  ightarrow \eta p$ (E)                     | -(0.91±0.15)   | - <b>(71</b> ±16) <sup>0</sup> | -(4.3±1.7)     | (35±15)°           | (4.0±1.3)      | (6±12)°                    |
| $\gamma p  ightarrow \eta p$ (M)                     | -(0.44±0.10)   | - <b>(79</b> ±14) <sup>0</sup> | -(6.1±2.7)     | - <b>(98</b> ±14)° | -(10.0±4)      | (17±12)°                   |