Análisis de datos ambientales con Python I

Marvin J. Quispe Sedano

Mayo 2021

1/15

Contenido

- Introducción y conceptos generales de Python
- Instalación de Anaconda con Python 3.8
- Uso de Python en la nube con Google colab
- Operaciones básicas

¿Por qué muchos usan Python?

- El código en Python está diseñado para ser legible y, por lo tanto, reutilizable y mantenible.
- El código desarrollado en Python suele ser 1/3 o 1/5 del tamaño del código escrito en C++ o Java.
- Python se ejecuta sin problemas en las principales plataformas informáticas y sistemas operativos (Windows, GNU/Linux, OSX).
- Python viene con una gran colección de funcionalidades precompiladas y portátiles, conocidas como biblioteca estándar y también admite ampliar la biblioteca con aplicaciones o librerías de terceros.
- Python es "open source".

¿Quiénes usan Python?

¿Qué puedo hacer con Python?

• Los roles de Python son prácticamente ilimitados: puede usarlo para todo, desde el desarrollo de sitios web, videojuegos, pronósticos meterólogicos, modelado climático, robótica, etc.

¿Cómo instalo Python en mi PC?

 Se recomienda instalar Python desde Anaconda, aunque se puede instalar directamente desde:

https://www.python.org/downloads/

 Anaconda es una distribución open source de Python y R que incluye más de 250 paquetes orientados a la ciencia de datos.

Operaciones aritméticas

• Los operadores aritméticos se utilizan con valores numéricos para realizar operaciones matemáticas comunes.

Operator	Meaning	Example	
+	Addition	4 + 7 → 11	
2	Subtraction	12 - 5 → 7	
*	Multiplication	6 * 6 → 36	
1	Division	30/5 → 6	
%	Modulus	10 <mark>%</mark> 4 → 2	
<i>II</i>	Quotient	18 // 5 → 3	
**	Exponent	3 ** 5 → 243	

Tipos de objetos (Python's Core Data Types)

- En Python se denomina "objeto" a una estructura de datos definida para representar diversos componentes en el dominio de su aplicación.
- Por defecto, Python proporciona varios tipos de objetos como parte intrínseca del lenguaje.

Object type	Example literals/creation
Numbers	1234, 3.1415, 3+4j, Decimal, Fraction
Strings	'spam',"guido's",b'a\x01c'
Lists	[1, [2, 'three'], 4]
Dictionaries	{'food': 'spam', 'taste': 'yum'}
Tuples	(1, 'spam', 4, 'U')
Files	<pre>myfile = open('eggs', 'r')</pre>
Sets	set('abc'), {'a', 'b', 'c'}
Other core types	Booleans, types, None
Program unit types	Functions, modules, classes (Part IV, Part V, Part VI)
Implementation-related types	Compiled code, stack tracebacks (Part IV, Part VII)

Números (Numbers)

- Los números en Python pueden ser enteros (int), decimales (float) y complejos (complex).
- Además, con la ayuda de los "módulos" o librerías de python podemos realizar diversas operaciones e importar constantes numéricas.

Texto (Strings)

 Las secuencias mantienen un orden de izquierda a derecha entre los elementos que contienen.

P	Y	Т	Н	0	N
0	1	2	3	4	5
-6	-5	-4	-3	-2	-1

- Las cadenas o "strings" se usan para registrar información textual, así como colecciones arbitrarias de bytes.
- Las cadenas se concatenan usando "+" y se multiplican usando "*".

Listas (List)

• Las listas son **secuencias** ordenadas de objetos y a diferencia de los "strings" son de tipo **mutable**.

P	Y	т	н	0	N
0	1	2	3	4	5
-6	-5	-4	-3	-2	-1

Diccionarios (Dict)

- Los diccionarios son **asignaciones**, por ello no mantienen un orden confiable de izquierda a derecha.
- Son útiles siempre que necesitemos asociar un conjunto de valores con claves. Por ejemplo:

```
Dict = {"TEMP": 26.5, "HUM": 85, "DIRV": "NE"}
Dict["DIRV"]
'NE'
```

Tuplas

- Los tuplas son muy parecidas a las listas. Al igual que las listas son secuencias, con la diferencia que son de tipo inmutable.
- Las tuplas proporcionan una especie de restricción de integridad que es conveniente en programas más grandes.

Archivos (Files)

- Este tipo de objeto sirve para importar y exportar diferentes tipos de archivos en Python.
- Python es compatible en la importación/exportación de la mayoría de extensiones de archivos, para ello se usan librerías de la biblioteca y/o de terceros.

GRACIAS