PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-349365

(43)Date of publication of application: 03.12.1992

(51)Int.CI.

H01M 10/40

(21)Application number: 03-120836

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

27.05.1991 (72)Invento

(72)Inventor: TAKAMI NORIO

OSAKI TAKAHISA

(54) LITHIUM BATTERY

(57)Abstract:

PURPOSE: To provide a lithium battery having a long life

and high safety.

CONSTITUTION: A nonaqueous electrolyte is a salt fusible at normal temperature and containing an aluminum halide, a lithium salt, and an organic halogen compound and the concentrations of aluminum ion and lithium ion in the nonaqueous electrolyte are set to be 30-50mol% and 0.1-12-mol%, respectively.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

4-349365

Example 5

[0023] A coin type lithium secondary battery similar to that of Example 1 was assembled in the same manner as Example 1, except that dimethylethylmethoxymethylammonium chloride (DEMAC) was used in place of MEIC.

H 0 1 M 10/40

(19) B * 四特前庁 (J P) (12) 公開特許公報(A)

FΙ

(11)特許出額公開番号

特開平4-349365

(43)公開日 平成4年(1992)12月3日

(51) Int.Cl.

識別記号 庁内整理番号

A 8939 - 4 K

Z 8939 - 4 K

技術表示箇所

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特顯平3-120836

(22)出顧日

平成3年(1991)5月27日

(71)出額人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72) 発明者 高見 則雄

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝比合研究所内

(72)発明者 大崎 陸久

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝総合研究所内

(74)代理人 弁理士 則近 憲佑

(54)【発明の名称】 リチウム電池

(57)【要約】

【目的】 長寿命で安全性の優れたリチウム電池を提供 する.

【構成】 非水電解液は、ハロゲン化アルミニウムと、 リチウム塩と、有機系ハロゲン化物を有する常温溶融塩 で、非水電解液中のアルミニウムイオン濃度は30~5 。 5 m o 1 %、リチウムイオン遺度は 0. 1 ~ 1 2 m o 1 %とする。

【特許請求の範囲】

【胡求項1】正極と負極と非水電解液を備え、正極は、 コバルト、ニッケル、マンガン、鉄、バナジウム、クロ ム、モリブデン、チタンのうち少なくとも1種の金属を 含むリチウム金属酸化物、若しくは金属酸化物を有し、 負極は、リチウムと合金を形成する金属、リチウム合 金、リチウムイオンを吸蔵放出することができる炭素質 **ものうち少なくとも一種を有し、非水電解液を、ハロゲ** ン化アルミニウムと、リチウム塩と、

[化1]

で、表される骨格を有するイオン結合性の有機系ハロゲ ン化物を有する常温溶融塩から成り、前紀非水電解液中 のアルミニウムイオン譲度が30~55mol%で、リ チウムイオン濃度が0.1~12mol%であることを 特徴とするリチウム電池。

【発明の詳細な説明】

[発明の目的]

[0001]

【産業上の利用分野】本発明は、溶融塩を改良した非水 電解液電池に係わるものである。

[0002]

【従来の技術】近年、負債活物質としてリチウム、ナト リウム、アルミニウム等の軽金属を用いた非水電解液電 池は高エネルギー密度電池として注目されており、正極 活物質に二酸化マンガン(MnO2)、フッ化炭素 [(CF) a], 塩化チオニル (SOC1:) 等を用い た一次電池は既に電卓、時計の電源やメモリのパックア ップ電池として多用されている。更に、近年、VTR、 通信機器等の各種の電子機器の小形、計量化に伴い、そ れらの電源として高エネルギー密度の二次電池の要求が 高まり、軽金属を負抵活物質とする非水電解液二次電池 の研究が活発に行われている。

【0003】非水電解液二次電池は、負極にリチウム、 ナトリウム、アルミニウム等の軽金属を用い、電解液と して炭酸プロピレン (PC)、1、2-ジメトキシエタ ン (DME)、ァーブチロラクトン (ァーBL)、テト ラヒドロフラン (THF) などの非水溶媒中にLICI Oi, LIBFi, LIAsFi, LIPFi 等の電解 質を溶解したものから構成され、正価活物質としては主 にTIS: . MoS: 、V: O: . V: O: 等のリチウ ムとの間でトポケミカル反応する化合物が研究されてい ち.

【0004】しかしながら、上述した二次電池は現在、 未だ実用化されていない。この主な理由は、充放電効率 が低く、しかも充放電回数 (サイクル) 寿命が短いため である。この原因は、負債リチウムと電解後との反応に よるリチウムの劣化によるところが大きいと考えられて

溶解したリチウムは充電時に折出する際に溶媒と反応 し、その表面が一郎不活性化される。このため、充放電 を練返していくと、デンドライト状 (樹枝状) のリチウ ムが発生したり、小球状に折出したりリチウムが異意体 より脱離するなどの現象が生じる。

【0005】更に、従来の非水粒解液二次電池では有機 溶媒を含む電解液を用いるため、正植と負極との間での ショートや電極不良等による内部温度の上昇によって、 引火、爆発を起こす危険性がある。

10 (0006)

> 【発明が解決しようとする課題】このように、従来の非 水電解液二次電池は、充放電効率、サイクル寿命、更に 安全性の点で必ずしも充分でないという問題があった。 本発明はこのような問題を解決するために成されたもの で、長寿命で安全性に優れたリチウム電池を提供しよう とするものである。

[発明の構成]

[0007]

【原題を解決するための手段及び作用】上記目的を達成 20 するために、本発明は、正恆と負極と非水電解液を備 え、正復は、コパルト、ニッケル、マンガン、鉄、パナ ジウム、クロム、モリブデン、チタンのうち少なくとも 1種の金属を含むリチウム金属酸化物、若しくは金属酸 化物を有し、負債は、リチウムと合金を形成する金属、 リチウム合金、リチウムイオンを吸蔵放出することがで さる炭素質物のうち少なくとも一種を有し、非水電解液 は、ハロゲン化アルミニウムと、リチウム塩と、

[0.00.8]

[化2]

【0009】で表される骨格を有するイオン結合性の有 機系ハロゲン化物を有する常温溶融塩から成り、前配非 水電解液中のアルミニウムイオン濃度が30~55mo 1%で、リチウムイオン濃度が0.1~12mol%で あることを特徴とするリチウム電池を提供するものであ

【0010】正極は、例えばリチウムコパルト酸化物 (Lin CoO:)、リチウム鉄酸化物 (LiFe O:) リチウムニッケル酸化物 (L1, N1O:)、リ チウムニッケルコパルト酸化物 (LI, NI, Coι-, O: (0 < y < 1))、リチウムマンガン酸化物(L) » MnO:) 等のリチウム金属酸化物、マンガン酸化物 (MnO:)、五酸化パナジウム(V,O;)、クロム 酸化物(CriOi,CrOi)三酸化モリブデン (M OO:)、二酸化チタン(TiO:)等の会属酸化物を 用いることができ、これにより高電圧或いは高容量のも のが得られる。特に高盤圧を得る点から、LL、CoO 1 . Ll. NIO2 . Ll. FeO: . Li, NI, C いる。即ち、放電時にリチウムイオンとして電解液中に 50 o_1 , O_2 (1 < y < 1))を用いることが好ましい。

.3

また、xの範囲は可逆性も高める点から0≤x≤2、好 ましくは0 < x < 1. 1とすることが好ましい。

【0011】負極は、例えばリチウムアルミニウム合 金、リチウム鉛合金、リチウム亜鉛合金、リチウムスズ 台金、リチウムシリコン合金などの合金あるいはアルミ ニウム、鉛、亜鉛、スズ、シリコンなどリチウムと合金 を形成する金属を用いることができる。さらにリチウム イオンを吸載放出することのできる炭素物質も用いるこ とができ、例えば、有機樹脂焼成体、炭素繊維、コーク ス、球状炭素質物などを用いることにより高充放電効 10-0、1 mol 1 名未満であると、過電圧が大きくなり、充 事、長寿命が得られ、さらに安全性が向上する。また。 上述したリチウム合金あるいは金属と上記炭系質物の混 合物を用いることができ、これによりリチウム合金の構 造劣化によるサイクル寿命の低下が抑制され長寿命が得 られる。

【0012】非水電解液は、ハロゲン化アルミニウム と、リチウム塩と、有機系ハロゲン化物を混合した常温 溶融塩である。これには、有機溶媒等を用いていないた め、引火、爆発の危険が避けられる。

【0013】ハロゲン化アルミニウムは、アルミニウム 20 イオンとして溶融塩中に存在し、電解液のイオン導電率 に寄与する。これには例えばAICI」、AIBri、 All, を用いることができる。

【0014】リチウム塩は、リチウムイオンとして溶融 塩中に存在し、充放電反応に寄与する。これには例えば LICI、LIBr、或いはLil、またLIAICI 、LIAIBr、等を用いることができる。

[0015]

【化3】

【0016】で衰わされる骨格を有する有機系ハロゲン 化物には、例えばイミダゾリウムハライド(IMX)や テトラアルキルアンモニウムハライド(TAX)を用い ることができる。IMXとしては1-メチル-3エチル イミダゾリウムハライド等のジアルキルイミダゾリウム ハライドや、1、2-ジメチル-3-プロピルイミダゾ リウムハライド等のトリアルキルイミダゾリウムハライ ド等が実用的である。また、TAXとしてはジメチルエ チルメトキシアンモニウムハライド等が実用的である。 これらの有機系ハロゲン化物を用いることにより融点が 低下し、また電気化学的安定性の向上(分解電圧が4. 5~5V)により高電圧作動が可能となる。また、

[0017]

(化4)

の代わりに.

[0018]

(化5)

を用いることも可能で、これには例えばエチルトリプチ ルホスフォニウムハライドを挙げることができる。

【0019】上述した非水電解液中の、アルミニウムイ オンのモル分率は、融点が常温以下であるために30m ○1%以上であることが必要である。一方、55mol %を越えると、負債でのリチウムイオンの充放電反応が 起こらなくなる。また、リチウムイオンのモル分率は、 放電効率が低下する。一方、12mol%を越えると、 常温溶融塩の経時安定性が得られない。実用的にはアル ミニウムイオンのモル分率を45~52mo1%、リチ ウムイオンのモル分率を1~8mo1%とすることが好 ましい。また、ハロゲン(X)として塩素を用いると、 低融点の常温溶融塩が得られる。尚、上述した構成によ り、二次電池だけでなく一次電池も得られることは、自 用である。

[0020]

【実施例】以下本発明の実施例を詳細に説明する。 実施例1

【0021】塩化アルミニウム (A1C1)) と1-メ チル-3エチルイミダソリウムクロライド (MEIC) をモル比で1:1に混合して溶融した後、LIAICI を0.5mol/kg添加してリチウムイオンで6.1 4mol%、アルミニウムイオンが50mol%(以下 [LI/A1] = 6. 14/50を記す)の溶融塩を作 製し、リチウムアルミニウム合金を用いて予備電解を行 い精製した後、電解液として用いた。負極にリチウムア 30 ルミニウム合金、正徳にリチウムコバルト酸化物(LI CoO:) 80異量%、マセチレンブラック15重量 %、及びポリテトラフルオロエチン粉末5重量%の組成 のペレット、集電体にモリブデンシート、セパレータに はポリプロピレン製多孔質フィルムを用いたコイン型リ チウム二次電池を組み立てた。

実施例2

実施例1と同様にして、 [LI/AI] = 2. 7/50 である以外、実施例1と同様なコイン型リチウム二次電 池を組み立てた.

40 実施例3

実施例1と同様にして、[LI/AI]=1.0/50 である以外、実施例1と同様なコイン型リチウム二次電 池を組み立てた。

実施例4

【0022】ME1Cの代わりに1、2-ジメチルー3 スロピルイミダゾリウムクロライド(DMPrIC)を 用い、実施例1と同様にして実施例1と同様なコイン型 リチウム二次電池を組み立てた。

50 【0023】MEICの代わりにジメチルエチルメトキ

5

シメチルアンモニウムクロライド (DEMAC) を用い、実施例1と同様にして実施例1と同様なコイン型リチウム二次電池を組み立てた。

実基例 6

正様にリチウムコバルニッケル酸化物(LINI。 $_{11}$ C $_{00.14}$ $_{01}$) を用いる以外、実施例 $_{1}$ と同様なコイン型 リチウム二次電池を組み立てた。

実施例 7

正極にリチウムニッケル酸化物(LINIO:)を用いる以外、実施例1と同様なコイン型リチウム二次電池を 組み立てた。

実施例8

【0024】負担にアルミニウム粉末32重量%と球状 炭素質物64重量%とテトラフルオロエチレン端末4重 量%の組成から構成されるペレットを用いる以外、実施 例1と同様なコイン型リチウム二次電池を組み立てた。 実施例9

【0025】負種にアルミニウム粉末32属量%と球状 炭素質物64重量%とテトラフルオロエチレン増末4重 量%の組成から構成されるペレットを用いる以外、実施 例1と同様なコイン型リチウム二次電池を組み立てた。 実施例10

【0026】負極に球状炭素質物97重量%とテトラフルオロエチレン端末3重量%の組成から構成されるペレットを用いる以外、実施例1と同様なコイン型リチウム二次電池を組み立てた。

【0027】また、比較例Aとし[Li/Al] = [12.5/50], 比較例Bとして、[Li/Al] =

[11.5/59]である実施例1と同様なコイン型リチウム二次電池を組み立て、比較例Cとして、従来の二次電池で、電解液にプロピレンカーポネートと1.2ージメトキシエタンの混合溶媒(混合体積比1:1)に過塩素酸リチウム1mol/l溶解したものを用いた以外、実施例1と同様のコイン型リチウム電池を組み立てた。

【0028】本実施例1~10、及び比較例A~Cについて0.5mA/cm:の電液密度で2.4~4.0Vの範囲での充放電サイクルを行いサイクル寿命を測定した。その結果を図1に示す。尚、図中の番号1~10は実施例1~10に対応しており、図中の配号A~Cは比較例A~Cに対応している。

【0029】図1に示すように実施例 $1\sim10$ の二次電池において長サイクル寿命のものが得られた。これは特に実施例8.9,10において顕著である。また特に実施例1.6,7においては高容量も得られた。

【0030】また、本実施例1~10の二次電池を120℃で作動した際、放電容量、電池電圧は高くなり、電池性能が向上した。それに加えて安全性にも極めて高いものであることが確認された。さらに120℃以上の高温下において、危険性は無いことも確認された。

[0031]

【発明の効果】以上詳述したように、本発明により、寿命が長く、安全性の高いリチウム電池を提供できる。

【図面の簡単な説明】

【図1】 実施例1~10及び比較例A~Cのリチウム 二次電池の放電容量とサイクル数との関係を示す図。

[図1]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.