

Atelier Raspi

Atelier N°1 La différence de potentiel – la programmation

Logo du Raspberry Pico

Logo du MicroPython

L'atelier a pour valeurs, le partage, l'aide, la formation, le faire et construire ensemble à partir de l'expérience des participants

• Atelier 1 La différence de potentiel – la programmation

- Etape 1 Analogie circulation d'eau Electricité
- Etape2 Le cadre du jeu (plaquette, composants,...)
- Etape3 Câblage circuit LED pile
- Etape4 Choisir une séquence pour la LED
- Etape5 Câblage LED microcontrôleur
- Etape6 Pin OUT de la carte PICO
- Etape7 Introduction à Thonny (IDE)
- Etape8 Programme de la séquence avec le microcontrôleur
- Etape9 Glossaire électronique
- Etape10 Glossaire informatique

Analogie circulation d'eau /électricité

* Manipulation expérimentale avec la bouteille d'eau et le tuyau.

• Le cadre du jeu (plaquette, composants,....)

• Cablage LED Pile

Gros-plan d'une diode électroluminescente.

L'anode et la cathode d'une LED. Les signes indiquent la polarisation (courant conventionnel) lorsque la diode est utilisée en sens direct.

Connexions de la plaquette

05/10/2023

Atelier Raspi N°1 octobre 2023

5

- Choisir une séquence LED Pile
 - Proposer une séquence d'appui sur le BP pour allumer la LED
 - Noter les temps LED allumée et éteinte lors de la séquence
 - Essayer de faire cette séquence plusieurs fois et voir la complexité de la chose pour avoir toujours la même séquence!!!

• On va faire cette séquence avec un Microcontrôleur que l'on va programmer

Microcontroleur Raspberry Pico

C'est le microcontrôleur qui fournira l'énergie (Pile) et commandera la LED

Câblage sur la plaquette de la LED et de la Resistance

- * Faire vérifier le montage avant connexion du microcontrôleur au PC
- * Ne pas mettre les doigts sur le circuit imprimé du microcontrôleur
- * Tension max sur chaque Pin = 3,3V en Entrée comme en Sortie

A1E6 Pin out Pico

Dans le programme il faut utiliser le N° du port.

8

A1E7 IDE (Environnement de développement intégré) Thonny

Thonny - C:\archive documents\bri

Programme de la séquence avec le microcontrôleur

```
Fichier Édition Affichage Exécuter Outils Aide
Fichiers
                                 Project_1_LED_Blinking (2).py *
                                    1 # on a besoin des fonctions "time" et "Pin" (qui est dans "machine") donc on les importe
C: \ archive documents \ bricolage \ Atelier Raspi \ atelier
gamin \ programmes
                                     2 import time
                                    3 from machine import Pin
 Project_1_LED_Blinking (2).py
 Project_2_Water_flowing_LED.py
                                    4
 Project_3_Control_Servo_via_PWM.py
                                       # on choisit le Pin sur lequel on va monter la LED et on lui dit que c'est une sortie
 Project_4_Display_CPU_Temperature_by_using_LCD160
 Project_5_Motion_detect_by_using_PIR_sensor.py
                                    6 # (pas une entrée de signal) c'est à dire que la sortie PIN 0 va fournir l'énérgie pour commander la LED
 Project_6_Light_up_WS2812_Light_ring.py
                                       LED = Pin(∅, Pin.OUT)
 Project_7_Music_buzzer.py
 Project_8_8x8_MAX7219_matrix_display_CPU_Temperal
                                    8 # On donne la valeur 1 à la sortie pour allumer la LED
                                    9 LED. value(1)
                                   10 #on lui dit de rester allumée pendant 3 secondes
                                   11 time.sleep(3)
                                   12 #on lui dit de s'éteindre
                                   13 LED.value(0)
                                   14 #on lui dit de rester éteinte pendant 2 secondes
                                   15 time.sleep(2)
                                   16
                                   17 # fin de travail
                                   18 # on peut modifier les temps
                                   19 # puis il faut relancer le programme po.ur voir le resultat
```

Ecrire le programme de commande de la LED.

Ecrire le programme de la séquence choisie (d'allumage et d'extinction de la LED).

- *On va rajouter au programme plusieurs groupe d'instructions pour réaliser la séquence choisie.
- * On travaille en séquentiel, une instruction après l'autre, chaque instruction s'exécute du haut en bas.

A1E9 Glossaire électronique

A1E10 Glossaire informatique

import : pour importer des fonctions

Pin : Le N° du GPIO sur le circuit imprimé

: En début de ligne permet d'écrire un commentaire ce qui est écrit n'est pas une instruction et donc n'est pas pris en compte par le programme.