

문서 유사도 계산

국민대학교 컴퓨터공학부

강승식

문서-문서간의 관련성 평가 방법

- 문서의 인덱싱 과정이 끝나면 이를 바탕으로 문서-문서간의 관련성을 평가할 수 있는 척도를 설정한다. 관련성에 대한 평가는 관련 정보의 추출, 여과, 분류 등의 기능을 수행하기 위한 중요한 기본 자료가 된다
- 일반적인 분류 시스템에서의 접근 방법에서는 N차원 벡터 공간에 존재하는 문서 벡터들 사이의 거리를 사용하여 문서간의 관련성을 평가한다
- 질의 또한, 이를 구성하는 어휘를 통해 벡터 형태로 표현될 수 있다.

클러스터링 기법에서의 유사도 측정 방법

문서 데이터의 형태: 문서-색인어 행렬

	T_1	T_2	 T_m
D_I	t_{II}	t_{I2}	 t_{1m}
D_2	t_{21}	t_{22}	 t_{2m}
			•
	•	•	
•	•	•	•
D_n	t_{n1}	t_{n2}	 t_{nm}

n: 문서의 개수

m: 단어의 개수

 $D_i(i=1,\dots,n)$: i 번째 문서

 $T_j(j=1,\dots,m)$: j 번째 단어

 t_{ij} : i 번째 문서에 나타난 j 번째 단어의 빈도수

문서 클러스터링에 사용되는 데이터의 형태 : 문서-색인어 행렬

Example

- M = 6, n = 5
- T = {computer, retrieval, archiving, hypertext, hypermedia, indexing}
- Di = {computer, retrieval, archiving, hypertext, hypermedia}

- 1,
- 1,

0}

- q1 = {archiving, hypermedia}
 - $= \{0,$
 - 0,

0,

0}

- q2 = {retrieval, indexing}
 - $= \{0, 1, \dots, 1, \dots$

0,

Dice's coefficient

• SIMDice(Di, Di') =

$$\frac{2\left[\sum_{j=1}^{m} \left(T_{ij} \cdot T_{i'j}\right)\right]}{\sum_{j=1}^{m} T_{ij} + \sum_{j=1}^{m} T_{i'j}}$$

- SIMDice $(q_1, D_i) = 2/3.5 = 0.5714$
- SIMDice $(q_2, D_i) = 1/3.5 = 0.286$

Jaccard's coefficient

• SIMJacc(Di, Di') =

$$\frac{\displaystyle\sum_{j=1}^{m} \left(T_{ij} \cdot T_{i' \ j}\right)}{\displaystyle\sum_{j=1}^{m} T_{ij} + \displaystyle\sum_{j=1}^{m} T_{i' \ j} - \displaystyle\sum_{j=1}^{m} \left(T_{ij} \cdot T_{i' \ j}\right)}$$

- SIMJacc $(q_1, D_i) = 2/5 = 0.4$
- SIMJacc(q_2 , D_i) = 1/6 = 0.167

Cosine measure

SIMcos(Di, Di') =

$$\sum_{j=1}^m \left(T_{ij} \cdot T_{i' \ j}\right)$$

$$\left[\sum_{j=1}^m \left(T_{ij}\right)^2 \cdot \sum_{j=1}^m \left(T_{i'j}\right)^2\right]^{1/2}$$

• SIMcos(q₁, D) =
$$2/\sqrt{10}$$
 = 0.632

• SIMcos(q₂, D) =
$$1/\sqrt{10}$$
 = 0.316

Inclusion measure

• SIMincl(Di, Di') =

$$rac{\displaystyle\sum_{j=1}^{m}\left(T_{ij}\cdot T_{i'\;j}
ight)}{\displaystyle\sum_{j=1}^{m}T_{ij}}$$

- $SIM_{incl}(q1, Di) = 2/2 = 1.0$
- SIM_{incl} (Di, q1) = 2/5 = 0.4
- SIM_{incl} (q2, Di) = 1/2 = 0.5
- SIM_{incl} (Di, q2) = 1/5 = 0.2

Overlap coefficient

• SIMovL(Di, Di') =

$$rac{\sum\limits_{j=1}^{m}ig(Tij\cdot Ti'\,jig)}{\minig(\sum\limits_{j=1}^{m}Tij,\sum\limits_{j=1}^{m}Ti'\,jig)}$$

• SIMovL(q1, Di) =
$$\frac{2}{\min(5,2)} = 1$$

• SIMOVL(q2, Di) =
$$\frac{1}{\min(5,2)} = 0.5$$

여러 가지 관련성 척도

- Dice's Coefficient
 2|X ∩ Y| / |X| + |Y|
- Jaccard's Coefficient
 |X ∩ Y| / |X ∪ Y|
- Cosine Coefficient
 |X ∩ Y| / |X|^{1/2} * |Y|^{1/2}
- Overlap Coefficient
 |X ∩ Y| / min(|X|, |Y|)

