DrägerSensor® IR EX

Order no. 68 51 881

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5600	no	yes	5 years	> 5 years
Dräger X-am 8000	no	yes	5 years	> 5 years

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Data attau Basit.	10/ LEL (b.s. seliberateditb CLL)			
Detection limit:	1% LEL (when calibrated with CH ₄)			
Resolution:	1% LEL			
Measurement range:	0 to 100 % LEL/ 0 to 100 Vol%			
	(depending on the respective target gas)			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
Humidity:	(0 to 95)% RH			
Pressure:	(800 to 1100) hPa (in potentially explosive atmospheres)			
	(700 to 1300) hPa			
Warm-up time:	≤ 3 minutes			

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH₄ WHEN CALIBRATED WITH METHANE IN AIR:

Response time:		X-am 5600	X-am 8000				
	Diffusion mode (t ₅₀)	≤ 10 seconds	≤ 10 seconds				
	Diffusion mode (t ₉₀)	≤ 15 seconds	≤ 21 seconds				
	Pump mode (t ₅₀)	≤ 7 seconds	≤ 9 seconds				
	Pump mode (t ₉₀)	≤ 10 seconds	≤ 11 seconds				
Precision							
Zero point:	≤ ± 1.0% LEL						
Sensitivity:	≤ ± 2% LEL at 50% LEL	-					
Linearity error:	≤ ± 4 % of mesaured va	≤ ± 4 % of mesaured value or					
	\leq ± 1.5 % of the end of	\leq ± 1.5 % of the end of measurement range					
	(the larger value applies	(the larger value applies in each case)					
Influence of temperature (-	20 to 50 °C)						
Zero point:	≤ ± 0.02% LE/K						
Sensitivity:	≤ ± 0.1% LEL/K at 50%	≤ ± 0.1% LEL/K at 50% LEL					
Influence of humidity, at 40	°C (104 °F) (0 to 95 % RH, nor	n-condensing)					
Zero point:	≤ ± 0.01% LEL/% RH	≤ ± 0.01% LEL/% RH					
Influence off pressure of th	ne respective measured value/l	hPa					
	X-am 5600		X-am 8000				
Zero point:	≤±0.16 % (uncompens	≤±0.16 % (uncompensated) ≤±0.06 % (co					
Long-term drift							
Zero point:	≤ ± 1% LEL/month						
Sensitivity:	≤ ± 3% LEL/month at 5	≤ ± 3% LEL/month at 50 % LEL					

TYPICAL MEASURING PROPERTIES FOR THE MEASUREMENT RANGE 0 TO 100 % LEL WHEN CALIBRATED WITH PROPANE IN AIR*:

Response time:		X-am 5600	X-am 8000				
	Diffusion mode (t_{50})	≤ 12 seconds	≤ 14 seconds				
	Diffusion mode (t ₉₀)	≤ 40 seconds	≤ 57 seconds				
	Pump mode (t ₅₀)	≤ 8 seconds	≤ 10 seconds				
	Pump mode (t ₉₀)	≤ 13 seconds	≤ 15 seconds				
Precision							
Zero point:	≤ ± 1.0 % LEL						
Sensitivity:	≤ ± 2 % LEL at 50 % L	≤ ± 2 % LEL at 50 % LEL					
Linearity error:	≤ ± 3.0 % of mesaure	d value or					
	\leq ± 1.0 % of the end o	\leq ± 1.0 % of the end of measurement range					
	(the larger value applie	(the larger value applies in each case)					
Influence of temperature	e (-20 to 50 °C)						
Zero point:	≤ ± 0.06 % LEL/K	≤ ± 0.06 % LEL/K					
Sensitivity:	≤ ± 0.13 % LEL/K at 5	≤ ± 0.13 % LEL/K at 50 % LEL					
Influence of humidity at	40 °C (104 °F) (0 to 95 % RH, no	n-condensing)					
Zero point:	≤ ± 0.01 % LEL/% RH						
Influence of pressure of	the respective measured value/	hPa					
	X-am 5600	X	-am 8000				
Zero point:	≤±0.16 % (uncompens	sated)	≤±0.06 % (compensated)				
Long-term drift		<u> </u>	<u> </u>				
Zero point:	≤ ± 3% LEL/month						
Sensitivity:	≤ ± 4% LEL/month at 5	50 % LEL					

Test gas:	2,5 Vol% CH ₄ for measurement range up to 100 %LEL
	50 Vol% CH ₄ for measurement range up to 100 Vol.% CH ₄
	0,9 Vol% C ₃ H ₈ for measurement range up to 100 %LEL

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring and Vol.-% monitoring for some gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASURING RANGES:

Gas	Data set name	Measurement range	
n-butane	buta	0 to 100% LEL	
n-BUTANE	BUTA	0 to 100 Vol%	
Ethene	c2h4	0 to 100% LEL	
ETHENE	C2H4	0 to 100 Vol%	
Ethanol	EtOH	0 to 100% LEL	
Ex	Ex	0 to 100% LEL	
JetFuel	JetF	0 to 100% LEL	
Liquid Petroleum Gas ***	LPG	0 to 100 Vol%	
Methane	ch4	0 to 100% LEL	
METHANE	CH4	0 to 100 Vol%	
n-nonane	Nona	0 to 100% LEL	
n-pentane	Pent	0 to 100% LEL	
Propane	c3h8	0 to 100% LEL	
PROPANE	C3H8	0 to 100 Vol%	
Toluene	Tolu	0 to 100% LEL	

^{**} The LEL information is dependent on the applicable country-specific standards.

DETECTING OTHER GASES AND VAPORS

Detection of other gases and vapors for the measuring range 0% to 100% LEL with the DrägerSensor Dual IR Ex/CO₂ ES or DrägerSensor IR Ex ES via cross-sensitivities used for technical measurements when calibrated with propane (C₃H₈, 100 % LEL = 1.7 Vol.%. Always observe these values for this application). The sensor can be used to detect the gases and vapors mentioned in the table. For this purpose, the sensor in the device must be configured to the target gas "Ex". The specified values apply to 20 $^{\circ}$ C and may vary by \pm 30 %. Calibration to the gas or the vapor can cause increased linearity errors.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading displayed in % LEL (if calibrated to 0.85 Vol% = 50 % LEL propane)	Cross- sensitivity factor f
Acetone	C ₃ H ₆ O	67-64-1	1.25	18	2.78
Acetylene	C ₂ H ₂	74-86-2		not possible	
Benzene	C ₆ H ₆	71-43-2	0.60	20	2.50
Butadiene -1,3	C ₄ H ₆	106-99-0	0.70	20	2.50
i-Butane	(CH ₃) ₃ CH	75-28-5	0.75	41	1.22
n-Butane	C ₄ H ₁₀	106-97-8	0.70	42	1.19
n-Butanol	C ₄ H ₁₀ O	71-36-3	0.85	25	2.00
2-Butanon (MEK)	C ₄ H ₈ O	78-93-3	0.75	22	2.27

^{***} The values in the table are based on 50% propane and 50% butane. In practice, the composition of LPG can fluctuate, which may lead to increased measuring errors.

Gas/vapor	Chemical symbol	CAS No.	Test gas concen- tration in Vol%	Reading dis- played in % LEL (if calibrated to 0.85 Vol% = 50 % LEL propane)	Cross- sensitivity factor f
i-Butene	C ₄ H ₈	115-11-7	0.80	31	1.61
n-Butyl acetate	C ₆ H ₁₂ O ₂	123-86-4	0.60	20	2.50
Cyclohexane	C ₆ H ₁₂	110-82-7	0.50	15	3.33
Cyclopentane	C ₅ H ₁₀	287-92-3	0.70	47	1.06
Diethylamine	C ₄ H ₁₁ N	109-89-7	0.85	44	1.14
Diethyl ether	(C ₂ H ₅) ₂ O	60-29-7	0.85	46	1.09
Dimethyl ether	C ₂ H ₆ O	115-10-6	1.35	51	0.98
Ethane	C ₂ H ₆	74-84-0	1.20	65	0.77
Ethanol	C ₂ H ₆ O	64-17-5	1.55	41	1.22
Ethene	C ₂ H ₄	74-85-1	1.20	15	3.33
Ethyl acetate	C ₄ H ₈ O ₂	141-78-6	1.00	35	1.43
Ethyl acrylate	C ₅ H ₈ O ₂	140-88-5	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	142-82-5	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	110-54-3	0.50	34	1.47
Methane	CH ₄	74-82-8	2.20	37	1.35
Methanol	CH ₄ O	67-56-1	3.00	92	0.54
n-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	107-98-2	0.90	26	1.92
Methyl choride	CH₃CI	74-87-3	3.80	47	1.06
Methylene chloride	CH ₂ Cl ₂	75-09-2	6.50	20	2.50
Methyl tert-butyl ether (MTBE)	C ₅ H ₁₂ O	1634-04-4	0.80	59	0.85
n-Nonane	C ₉ H ₂₀	111-84-2	0.35	on request	_
n-Octane	C ₈ H ₁₈	111-65-9	0.40	20	2.50
n-Pentane	C ₅ H ₁₂	109-66-0	0.55	36	1.39
Propane	C ₃ H ₈	74-98-6	0.85	50	1.00
n-Propanol	C ₃ H ₈ O	71-23-8	1.05	40	1.25
Propene	C ₃ H ₆	115-07-1	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	75-56-9	0.95	49	1.02
Toluene	C ₇ H ₈	108-88-3	0.50	19	2.63
o-Xylene	C ₈ H ₁₀	95-47-6	0.50	11	4.55

f = Specifications relate to the respective test gas concentration and the corresponding LEL.

The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

