MATH 441 CRN 33477 Quiz 2

May 2nd, 2018

(1) Suppose $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$ and (1, 1, 0), (0, 1, 1) spans null T. Prove that $T(1, 1, 1) \neq T(1, 0, 1)$.

Proof. Because (1,1,1)-(1,0,1)=(0,1,0), we have T(1,1,1)-T(1,0,1)=T(0,1,0).

Because (1,1,0), (0,1,1) spans null T but $(0,1,0) \neq a_1(1,1,0) + a_2(0,1,1)$ for any $a_1, a_2 \in \mathbb{R}$, we have $(0,1,0) \notin \text{null } T$.

Thus $T(0,1,0) \neq 0$ by definition, which implies that $T(1,1,1) - T(1,0,1) \neq 0$. Hence $T(1,1,1) \neq T(1,0,1)$.

(2) Suppose v_1, \dots, v_n spans V and $T \in \mathcal{L}(V, W)$. Prove that the list Tv_1, \dots, Tv_n spans range T.

Proof. Let $w \in \operatorname{range} T$. Thus there exists $v \in V$ such that Tv = w.

Because v_1, \dots, v_n spans V, there exist $a_1, \dots, a_n \in \mathbb{F}$ such that $v = a_1v_1 + \dots + a_nv_n$.

Applying T to both sides of this equation, we get $Tv = a_1Tv_1 + \cdots + a_nTv_n$.

Because Tv = w, the equation above implies that $w \in \text{span}(Tv_1, \dots, Tv_n)$.

Because w was an arbitrary vector in range T, this implies that Tv_1, \dots, Tv_n spans range T.