The goal of this short note is to record the following lower bounds on ℓ_{∞} mean estimation of d-dimensional spherical Gaussians and product binary distributions:

Theorem 1. For $d \ge 1$ and $\varepsilon \in (0,1]$, estimating the mean of (i) an identity-covariance d-dimensional Gaussian and (ii) a product distribution over $\{-1,1\}^d$ to ℓ_{∞} distance ε both has sample complexity $\Theta\left(\frac{\log d}{\varepsilon^2}\right)$.

For convenience, we denote by $\operatorname{Rad}(\lambda)$ the distribution over $\{-1,1\}$ with expectation $\lambda \in [-1,1]$, and let $\mathcal{G}_d \stackrel{\operatorname{def}}{=} \{ \mathcal{N}(\mu, I_d) : \mu \in \mathbb{R}^d \}$ and $\mathcal{B}_d \stackrel{\operatorname{def}}{=} \{ \otimes_{i=1}^d \operatorname{Rad}(\mu_i) : \mu \in [-1,1]^d \}$ be the families of identity-covariance Gaussians and product binary distributions considered, respectively.

Upper bound. The upper bound, for both \mathcal{G}_d and \mathcal{B}_d , follow from the following simple scheme: given $n = O((\log d)/\varepsilon^2)$ i.i.d. samples from an unknown $\mathbf{p} \in \mathcal{G}_d$ (resp., $\mathbf{p} \in \mathcal{B}_d$), we can estimate independently the mean μ_i of each marginal to an additive ε , with probability at least $1 - \frac{1}{3d}$, by using the corresponding coordinate of the n samples. By a union bound over all d coordinates, the resulting $\hat{\mu} \in \mathbb{R}^d$ satisfies $\|\hat{\mu} - \mu\|_{\infty} \leq \varepsilon$ with probability at least 1/3.

Lower bound. The lower bound is the more interesting part, and shows that this very naive approach (independently deal with each coordinate, then apply a union bound) is essentially the best one can do.

The following argument, which applies to both \mathcal{G}_d and \mathcal{B}_d , was communicated to me by Jayadev Acharya. It shows the even stronger statement about *testing* the mean of a Gaussian or product binary distribution, even under the promise that this mean is 1-sparse.

Lemma 2 (Gaussian Hide-and-Seek). For $d \geq 1$ and $\varepsilon \in (0,1]$, distinguishing between $\mathcal{N}(0,I_d)$ and $\mathcal{N}(\mu,I_d)$ where μ is promised to satisfy $\mu = \varepsilon e_i$ for some $i \in [d]$ requires $\Omega\left(\frac{\log d}{\varepsilon^2}\right)$ samples.

Proof. Fix any number of samples n. Denote by $\mathbf{p}^{(n)}$ the n-fold product of the standard Gaussian $\mathcal{N}(0, I_d)^{\otimes n} = \mathcal{N}(0, I_{nd})$, and by $\mathbf{q}^{(n)}$ the uniform mixture $\mathbf{q}^{(n)} = \frac{1}{d} \sum_{i=1}^{d} \mathcal{N}(\varepsilon e_i, I_d)^{\otimes n}$. By a standard Le Cam-type argument, any n-sample test for the original problem can be used to distinguish $\mathbf{p}^{(n)}$ and $\mathbf{q}^{(n)}$, which is only possible if $d_{\mathrm{TV}}(\mathbf{p}^{(n)}, \mathbf{q}^{(n)}) \gtrsim 1$. Since

$$d_{TV}(\mathbf{p}^{(n)}, \mathbf{q}^{(n)})^2 \le \frac{1}{4}\chi^2(\mathbf{q}^{(n)} \parallel \mathbf{p}^{(n)})$$

it suffices to bound $\chi^2(\mathbf{q}^{(n)} \mid\mid \mathbf{p}^{(n)})$. Which is convenient, as we can invoke Lemma 4 to compute this explicitly. Indeed, for any $j \in [n]$ and any $i \in [d]$, the corresponding δ_j^i is independent of j (as all marginals are the same) and equal to

$$\delta_{j}^{i}(x) = \frac{\mathcal{N}(\varepsilon e_{i}, I_{d})(x) - \mathcal{N}(0, I_{d})(x)}{\mathcal{N}(0, I_{d})(x)} = e^{-\frac{\varepsilon^{2}}{2}} e^{\varepsilon x_{i}} - 1, \quad x \in \mathbb{R}^{d},$$

so that for any two i_1, i_2 , the $H_i(i_1, i_2)$ of Lemma 4 (again independent of j) is equal to

$$H_j(i_1, i_2) = \mathbb{E}_{X \sim \mathcal{N}(0, I_d)}[(e^{-\frac{\varepsilon^2}{2}} e^{\varepsilon X_{i_1}} - 1)(e^{-\frac{\varepsilon^2}{2}} e^{\varepsilon X_{i_2}} - 1)] = (e^{\varepsilon^2} - 1)\mathbb{1}_{\{i_1 = i_2\}}.$$

This is great as now we get from Lemma 4 that

$$\chi^{2}\left(\mathbf{q}^{(n)} \parallel \mathbf{p}^{(n)}\right) = \mathbb{E}_{i_{1}, i_{2}}\left[\left(1 + \left(e^{\varepsilon^{2}} - 1\right)\mathbb{1}_{\{i_{1} = i_{2}\}}\right)^{n}\right] - 1 = \frac{d - 1}{d} + \frac{e^{n\varepsilon^{2}}}{d} - 1 = \frac{e^{n\varepsilon^{2}} - 1}{d}$$

and for this to be $\Omega(1)$ we need $n = \Omega\left(\frac{\log d}{\varepsilon^2}\right)$.

This was for Gaussians though. What about product binary distributions? As it turns out, the same argument goes through, nearly unchanged.

Lemma 3 (Bernoullli Hide-and-Seek). For $d \geq 1$ and $\varepsilon \in (0,1]$, distinguishing between the uniform distribution $\operatorname{Rad}(0)^{\otimes d}$ and $\otimes_{i=1}^d \operatorname{Rad}(\mu_i)$ where μ is promised to satisfy $\mu = \varepsilon e_i$ for some $i \in [d]$ requires $\Omega\left(\frac{\log d}{\varepsilon^2}\right)$ samples.

Proof. Fix any number of samples n. Denote by $\mathbf{p}^{(n)}$ the n-fold product of the uniform distribution, $(\operatorname{Rad}(0)^{\otimes d})^{\otimes n} = \operatorname{Rad}(0)^{\otimes nd}$, and by $\mathbf{q}^{(n)}$ the uniform mixture $\mathbf{q}^{(n)} = \frac{1}{d} \sum_{i=1}^{d} \frac{1}{2^{d-1}} \operatorname{Rad}(\varepsilon)$. As in the proof of Lemma 2, it suffices to bound $\chi^2(\mathbf{q}^{(n)} \mid\mid \mathbf{p}^{(n)})$, and to do so we will compute it explicitly using Lemma 4. Indeed, for any $j \in [n]$ and any $i \in [d]$, the corresponding δ^i_j is independent of j and can be seen to be equal to

$$\delta_j^i(x) = \frac{\frac{1}{2^{d-1}} \operatorname{Rad}(\varepsilon)(x) - \frac{1}{2^d}}{\frac{1}{2^d}} = \varepsilon x_i, \quad x \in \mathbb{R}^d,$$

so that for any two $i_1, i_2, H_j(i_1, i_2) = \varepsilon^2 \mathbb{E}_X[X_{i_1} X_{i_2}] = \varepsilon^2 \mathbb{1}_{\{i_1 = i_2\}}$ (where the expectation is over X u.a.r. from $\{-1, 1\}^d$). From Lemma 4, it follows that

$$\chi^2(\mathbf{q}^{(n)} \mid\mid \mathbf{p}^{(n)}) = \mathbb{E}_{i_1, i_2}[(1 + \varepsilon^2 \mathbb{1}_{\{i_1 = i_2\}})^n] - 1 = \frac{(1 + \varepsilon^2)^n - 1}{d}$$

and for this to be $\Omega(1)$ we again need $n = \Omega\left(\frac{\log d}{\varepsilon^2}\right)$.

We finally state the (relatively standard lemma) which allowed us to easily handle the chi square distance between a mixture and a product distribution.

Lemma 4 (See, e.g., [ACT18, Lemma III.5]). Consider a random variable θ such that for each $\theta = \vartheta$ the distribution Q_{ϑ}^n is defined as $Q_{1,\vartheta} \times \cdots \times Q_{n,\vartheta}$. Further, let $P^n = P_1 \times \cdots \times P_n$ be a fixed product distribution. Then,

$$\chi^2(\mathbb{E}_{\theta}[Q_{\theta}^n], P^n) = \mathbb{E}_{\theta\theta'} \left[\prod_{j=1}^n (1 + H_j(\theta, \theta')) \right] - 1,$$

where θ' is an independent copy of θ , and with $\delta_j^{\vartheta}(X_j) = (Q_{j,\vartheta}(X_j) - P_j(X_j))/P_j(X_j)$,

$$H_j(\vartheta,\vartheta') \stackrel{\mathrm{def}}{=} \left\langle \delta_j^\vartheta, \delta_j^{\vartheta'} \right\rangle = \mathbb{E} \Big[\delta_j^\vartheta(X_j) \delta_j^{\vartheta'}(X_j) \Big] \,,$$

where the expectation is over X_j distributed according to P_i .

References

[ACT18] Jayadev Acharya, Clément L. Canonne, and Himanshu Tyagi. Inference under information constraints I: lower bounds from chi-square contraction. *CoRR*, abs/1812.11476, 2018.

¹Note that for $\mu = \varepsilon e_i$, we have $\bigotimes_{i=1}^d \operatorname{Rad}(\mu_i) = \frac{1}{2^{d-1}} \operatorname{Rad}(\varepsilon)$ as all coordinates are uniform except one.