DFT - Part 1

- Introduction
- Internal Scan
 - FF-based
 - Latch-based
- Scan Design Flow
- Issues and Solutions
- Conclusion

Scan Design Flow

Scan Design Rule Checking

- DRC: Make sure designs obey rules so that scan chains can be inserted
 - Tools now supports automatic fix violations after DRC
- Typical scan design rules (WWW Table 2.7)

DRC#1

DRC#2

DRC#3

DRC#4

Design Style	Scan Design Rule	Recommended Solution
Tri-state buses	Avoid during shift	Fix bus contention during shift
Bi-directional I/O ports	Avoid during shift	Force to input or output mode during shift
Gated clocks (muxed-D full-scan)	Avoid during shift	Enable clocks during shift
Derived clocks (muxed-D full-scan)	Avoid	Bypass clocks
Combinational feedback loops	Avoid	Break the loops
Asynchronous set/reset signals	Avoid	Use external pin(s)
Clocks driving data	Avoid	Block clocks to the data portion
Floating buses	Avoid	Add bus keepers
Floating inputs	Not recommended	Tie to Vcc or ground
Cross-coupled NAND/NOR gates	Not recommended	Use standard cells
Non-scan storage elements	Not recommended for full-scan Design	Initialize to known states, bypass, or make transparent

^{*}rules varies for tools/companies

DRC#1: Tri-State Buses

Problem: potential bus contention during scan shift

Original design

Testable design

No bus contention when SE=1 No floating bus

DRC#2: Bidirectional I/O

Problem: random I/O direction during scan shift

(WWW Fig 2.22)

Gated Clock (1)

- Clock is gated (OFF) when enable = 0
- This is not good design. Cannot handle hazards

Gated Clocks (2)

- This is a better design that handle hazards
- Problem: clock is randomly gated during scan shift

DRC#3: Gated Clock

Problem repaired: When SE=1, clock always ON

DRC#4: Combinational Feedback Loop

- Problem: Sequential behavior in test mode
 - Sequential ATPG is difficult!

Original design

Testable design

break loop when TM=1

TM=0, normal operation TM=1,SE=1: scan shift TM=1,SE=0: scan capture

Quiz

Problem: SFF₂ randomly reset during scan shift

Q: Please repair this circuit so that no reset occurs when SE=1

Scan Design Flow

Scan Synthesis

- aka. Scan insertion, DFT insertion
- Four steps:
 - 1. Scan Configuration
 - * Decide number of scan chains, FF to exclude, ...
 - 2. Scan Replacement
 - Replaces original FF/latch in testable design with their functionally-equivalent scan cells
 - 3. Scan Reordering
 - Reorder scan cells to minimize routing wires
 - 4. Scan Stitching
 - Stitch all scan cells together to form scan chains

Scan Chain Cross Clock Domains

- What is wrong with this scan chain?
 - HINT: consider clock skew among two clock domains

Lock-up Latch

- Insert lock-up latch between two clock domains
 - Avoid clock skew

(WWW Fig 2.30)

14 ersity

Clock Grouping* not in exam

- Due to large clock skew, data from different clock domains CANNOT be captured together
 - CD₁ and CD₂ cannot form a scan chain.
- We can assign independent CD as one clock group
 - CD₂ and CD₃ has NO interaction. Can form a scan chain.
 - Totally three clock groups needed in this design: CK₁ ~ CK₃

CD: (functional) clock domains CCD: cross clock domains edge indicates data transfer CK: clock groups

(WWW Fig. 2.28)

Scan Design Flow

Scan Chain Reordering

- 1. Place logic gates and FF based on functional timing
- 2. Reorder scan cells to save routing wires
- 3. Route function signals and scan chains

Mixed N/P-edge FF

- OK when negative-edge BEFORE positive-edge FF
- Both scan shift (SE=1) and scan capture (SE=0) are correct

Quiz

WRONG if positive-edge BEFORE negative-edge FF

WHY? Hint: consider scan capture when SE=0

Scan Design Flow

Scan Extraction and Verification

- Scan Extraction (ATPG and Scan Synthesis are separate tools)
 - 1. Extract order of scan cells for ATPG
 - 2. Make sure all chains are correctly connected
- Scan Verification
 - Make sure ATPG test patterns correctly applied
 - both scan shift and scan capture
 - Example: timed logic simulation can catch hold-time violation

Summary

- Scan Design Rule Checking (DRC)
 - Tristate buses, bi-dirctional I/O, gated clocks, feedback loops...
 - Violations must be repaired
- Scan Synthesis
 - Scan configuration, replacement, reorder, stitching
 - Insert lock-up latch, buffer
- Scan Extraction and Verification
 - Test patterns work correctly

Successful Scan Design is Non-trivial

FFT

- Q: We make sure no contention when SE=1. How about SE=0?
 - i.e. How to avoid contention during scan capture?

Original design

Testable design

No bus contention when SE=1
No floating bus

- Q: What is wrong with this scan chain?
 - HINT: consider time skew

