Principes des échanges sur voie radio

Jean-Philippe Bourbon EPITA

Sommaire

- Introduction
 - Pourquoi 1 'interface radio est-elle une partie essentielle de la norme GSM
- Schéma d'accès multiple
 - TDMA, FDMA
- Canaux logiques
 - Principes

Introduction

- Interface radio : partie essentielle des spécifications GSM à cause de:
 - Compatibilité inter-PLMN ==< spécification complète (au bit près)
 - Technique d'optimisation de l'efficacité spectrale très élaborées:

Diminution des interférences, pour gérer un grand nombre de mobiles au km²

Trafic et Signalisation

- Trafic: Informations échangées d'usager à usager, après établissement de la communication, donc allocation de ressources radio dédiées.
- Signalisation: Information échangées (éventuellement à l'insu de l'usager) entre l'équipement mobile et les machines de réseau
 - Hors communication: nécessaire pour assurer la gestion des mobiles,
 Ex.: mise à jour de localisation
 - Pendant la communication: nécessaire pour différentes raisons,

Ex.: handover, accès à un service supplémentaire

Besoins en canaux radio

Nature des informations à transmettre	Débit de base	Type de canaux nécessaires
- parole (+ Signalisation associée) - données 9,6 kbit/s - données 4,8 kbit/s - données 2,4 kbit/s	13 - 5,6 kbit/s 12 kbit/s 6 kbit/s 3,6 kbit/s	Canaux dédiés « trafic » , Bidirectionnels point à point
Messages courts Point à pointSignalisation hors communications	< 1 kbit/s	Canaux dédiés « signalisation » , Bidirectionnels point à point
- Messages courts diffusés - Infos système, synchro mobiles - Recherche (paging)		Canaux communs Diffusés + Mécanisme d'Accès

Canaux radio : du mode « veille » au mode « connecté »

Procédure

Mode veille (idle)

d'accès

Mode connecté

Canaux à Canaux Canaux Canaux communs Canaux utiliser diffusés communs communs communs diffusés diffusés diffusés PRINCIPALES Recherche Surv. Authentification -Trafic (parole - [paging] **TACHES** fréquences fréquences - Demande Mise à jour ou données) ET Synchro d'accès localisation - Signalisation Messages courts temporelle - Assignation pendant la **TYPES** communication **D'ECHANGES** Analyse de canal dédié (si nécessaire) Param. Assign. Canal Système trafic

Les fréquences (1)

Le sens de transmission MS vers BTS est appelé "uplink" Le sens de transmission BTS vers MS est appelé "downlink"

Les fréquences 1800(2)

Ressources Hertziennes DCS:

- Une bande uplink (Emission du mobile)
- Une bande downlink (Réception du mobile)
- Ecart entre les canaux uplink et downlink : 95 MHz
- Ecart de 200 kHz entre chaque canal
- 75 canaux disponibles

Les fréquences 900(3)

Ressources Hertziennes GSM:

- Une bande uplink (Emission du mobile)
- Une bande downlink (Réception du mobile)
- Ecart entre les canaux uplink et downlink : 45 MHz
- Ecart de 200 kHz entre chaque canal
- 75 canaux disponibles

Plan de fréquences d'une BTS

• Soit une BTS équipée de 3 TRX

• Seule 1 porteuse configurée comme fréquence balise.

Interface Radio

TDMA: Time Division Multiple Access

Chaque utilisateur a un time slot sur une seule fréquence Pour augmenter la capacité, on ajoute un émetteur (une fréquence)

Les BURSTS

Le débit brut d'une porteuse GSM est de 270.8 kb/s

La porteuse RF est modulée par un train de données que l'on appelle burst (partie élémentaire d'information)

Un burst est constitué de :

- d'une partie utile (données à transmettre, séquence d'apprentissage, bits de fin)
- d'une période de garde

TRAFFIC CHANNELS : Ils sont destinés à transporter la voix et les données

CONTROL CHANNELS: Ils sont destinés à transporter la signalisation et les données de synchronisation entre BTS et MS

Canaux logiques et architecture en couches

- Couche 1: Physique
 - Canaux physique
 - Construction / Extraction de « bursts »
 - Multiplexage/ démultiplexage canaux logiques
 - Protection et détection d'erreur de transmission
- Couche 2 : Liaison
 - Canaux logiques
 - Mécanisme de retransmission (LAPDm)
- Couche 3 : Réseau + application
 - Call management, Mobility management, Radio ressource management

3 types de canaux logiques:

- BROADCAST CHANNELS: utilisés pour émettre des informations vers les mobiles d'une cellule. Ces canaux sont uniquement downlink.
- COMMON CONTROL CHANNELS : canaux communs de signalisation utilisés lors de l'établissement d'un appel.
- DEDICATED CONTROL CHANNELS: canaux dédiés à chaque appel, lorsque la liaison BTS-MS est établie.

BROADCAST CHANNELS

BROADCAST CONTROL CHANNEL: BCCH

Transmet des informations générales relatives à la cellule

- informations pour la sélection de cellule (identité de la cellule, LAI, identité du réseau, identité de la fréquence, nom des cellules adjacentes, état de la cellule...)

FREQUENCY CORRECTION CHANNEL: FCCH

Utilisé pour la synchronisation en fréquence du mobile

SYNCHRONISATION CHANNEL: SCH

Utilisé pour la synchronisation du mobile et identification de la cellule (BSIC)

COMMON CONTROL CHANNELS

- CANAUX DOWNLINK

ACCESS GRANT CHANNEL : AGCH
Canal d'allocation de ressources du fixe au mobile

PAGING CHANNEL: PCH
Canal d'appel des mobiles

- CANAUX UPLINK

RANDOM ACCESS CHANNEL : RACH

Canal d'accès aléatoire des mobiles, canal de demande d'allocation de ressource

La norme GSM: les canaux logiques **DEDICATED CONTROL CHANNELS**

STAND ALONE DEDICATED CONTROL CHANNEL: SDCCH

Transporte les données de signalisation faisant immédiatement suite à l'établissement de la connexion BSS-MS et ce avant basculement sur un canal de trafic => authentification et chiffrement

ISS SLOW ASSOCIATED CONTROL CHANNEL: SACCH

Il est associé à un TCH ou à un SDCCH et se localise sur le même canal physique. Il transporte des informations générales entre MS et BSS, tels que les rapports de mesures sur cellule serveuse et cellules voisines,...

FAST ASSOCIATED CONTROL CHANNEL: FACCH

Un FACCH sera assigné si un SACCH n'a pu être assigné. Il est utilisé en cas de signalisation urgente.

La hiérarchie des trames

L'interface RADIO GSM:

La gestion du temps entre le BSS et le MS est réalisée par la mise en place de burst, trame, multitrame, hypertrame ...

Hypertrame = 2048 x 51multitrame « 26 » durée 3H28mn53s

Les canaux logiques diffusés sur la fréquence balise

L'interface RADIO GSM:

exemple du canal BCCH downlink

Un canal: pattern identique sur une hupertrame

F: burst de correction de fréquence

S: burst de correction de synchronisation

B: burst BCCH (diffusion d 'info type LAC, CellID, voisinages,...)

C: burst de Paging ou de Réponse à RACH

Format des « bursts » de correction de fréquence et de synchronisation.

- Bursts de corrections de fréquence
 - 142 bits à 0.
- Bursts de synchronisation
 - Séquence d'apprentissage (64 bits)

FREQUENCY CORRECTION BURST

Start (3)	fixed bits (142)	Stop (3)	guard (8.25)
-----------	------------------	----------	--------------

SYNCHRONISATION BURST

Start (3)	encryted data (39)	training (64)	encryted data (39)	Stop (3)	guard (8.25)
-----------	--------------------	---------------	--------------------	----------	--------------

Les canaux logiques sur la voie montante

L'interface RADIO GSM

R: burst de demande d'accès au réseau.

Format du « burst »d 'accès (canal RACH)

- La durée d'un time slot. (~ 577μs)
- Temps de propagation (~ 233μs)
- Durée du burst RACH (~ 325μs)

ACCESS BURST

Start (8) synch seq (41) encryted data(36)	Stop (3) guard (68.25)
--	------------------------

Avance temporelle (« timing advance »)

Recherche d'abonné (« paging »)

- Le réseau a la connaissance de la zone de localisation (Location Area=LA) dans laquelle le mobile évolue. Une LA peut recouvrir plusieurs cellules.
- Le canal PCH est utilisé pour signaler à un mobile qu'il est appelé. Le même message de « Paging » sera transmis à toutes les cellules de la zone.
- Seul un mobile en état de « veille » (présynchronisé) peut répondre au paging.

Accès au réseau

- C'est toujours le mobile qui est à l'initiative de la demande d'accès. (d'où la procédure de « paging » précédente lorsqu'il est appelé).
- Le canal RACH est utilisé pour transmettre le message « CHANNEL REQUEST ».
- Ce canal est dit « aléatoire » (random) car le mobile choisit aléatoirement le TS d'appel. Il y a donc risque de collisions.
- Les cas de collisions sont résolus par des réémissions après délais pseudo-aléatoires.

Les canaux dédiés pour la signalisation (hors communication)

Canal logique	Occurrence et / ou débit utile	Rôle
SDCCH	8 TS toutes les 2*51 trames soit 456 bits / 235 ms → 1.94 kbit/s	Signalisation hors communication
SACCH	4 TS toutes les 2*51 trames soit 456 bits / 470 ms → 950 bit/s	Procédures non urgentes.

Les canaux dédiés pour le trafic (+ signalisation pendant communication)

Canal logique	Occurrence et / ou débit utile	Rôle
TCH/F	24 TS toutes les 120ms → 22.8 kbit/s	Trafic à débit max 13kbit/s
TCH/H	12 TS toutes les 120ms → 11.4 kbit/s	Trafic à débit max 5.6kbit/s
FACCH	Débit de 11.4 à 22.8 kbit/s	Signalisation après établissement du TCH.

Format du burst normal

NORMAL BURST

Start (3) encryted data (58) training (26)	encryted data (58)	Stop (3)	guard (8.25)
--	--------------------	----------	--------------

• Séquence d'apprentissage (« Training sequences »):

8 motifs binaires différents, choisis tels que:

- Ils soient aisément reconnaissables (fonction d'auto-corrélation très pointue)
- Ils soient aisément distinguables les uns des autres (faible corrélation entre eux)
- Indicateurs de Vol de Cycle: (« Stealing flags »)

Utilisation des canaux logiques : Récapitulation

- Emploi des canaux logiques durant les transactions entre le réseau et le mobile
- ① Si la transaction est « mobile Terminated » (appel arrivée), le mobile doit être rechargé (paging) [PCH]
- ② Le mobile accède au réseau PLMN [RACH]
- 3 Le réseau alloue un canal dédié au mobile, pour la signalisation [SDCCH + SACCH]
- 4 Echange de signalisation (SDCCH et SACCH). Si nécessaire, le réseau alloue un canal de TRAFIC au mobile.
- ⑤ Echange de Trafic (parole ou données) sur TCH, avec signalisation associée dans SACCH (tâches de fond) et FACCH si nécessaire.

Arrangement typique des canaux pour une BTS moyenne

TS0	FCCH + SCH + BCCH + PCH + AGCH	Sens descendant
	RACH	Sens montant
TS1	SDCCH + SACCH	Dans chaque sens
Autre TS	TCH (+ SACCH / FACCH)	Dans chaque sens

• Si la BTS gère 3, 4 ou 5 fréquences, alors elle peut faire transiter 22, 30 ou 38 communication.