

Architecture des ordinateurs

Département Informatique

Erwan LEBAILLY — Vilavane LY — Vincent TRÉLAT — Benjamin ZHU

21 février 2022

Table des matières

1	Exe	rcices																		•
	1.1	Exercice 1																		
	1.2	Exercice 2																		
	1.3	Exercice 3																		
	1.4	Exercice 4																		
	1.5	Exercice 5																		
	1.6	Exercice 6																		;
	1.7	Exercice 7			_		_			_		_	_		_					

1 Exercices

1.1 Exercice 1

Avec la convention $0 \leftrightarrow \mathtt{faux} \ \mathtt{et} \ 1 \leftrightarrow \mathtt{vrai}, \ 0 \land 1 = \mathtt{faux}.$

1.2 Exercice 2

On donne la table de c_0 :

	$a_0 \backslash b_0$	0	1
c_0 :	0	0	1
	1	1	0

On peut interpréter cette table comme la table de vérité du "ou exclusif", le xor. Ainsi, c_0 coincide avec $a_0 \oplus b_0 = (a_0 \vee b_0) \wedge (\neg (a_0 \wedge b_0))$.

1.3 Exercice 3

- a. Montrer que xor est associatif et commutatif puis recopier calcul
- b. inclure schéma

1.4 Exercice 4

a. On écrit le code suivant :

```
int main()
{
    printf("Sizeof int: %lu octets\n", sizeof(int));
    printf("Sizeof short: %lu octets\n", sizeof(short));
    printf("Sizeof char: %lu octets\n", sizeof(char));
    return 0;
}
```

La sortie est la suivante :

```
Sizeof int: 4 octets
Sizeof short: 2 octets
Sizeof char: 1 octets
```

b. On écrit le code suivant :

```
int main()
{
    int a = pow(2, 31);
    int b = pow(2, 31);
    int c = a + b;
    printf("%d\n", c);
    return 0;
}
```

La sortie affiche 0, ce qui correspond bien à $2^{32} \mod (2^{32})$

1.5 Exercice 5

On donne ci-dessous l'écriture binaire sur 4 et 8 bits de 0, 1, -1 et -2:

$\underline{}$	4 bits	8 bits
0:	0000	0000 0000
1:	0001	0000 0001
-1:	1111	1111 1111
-2:	1110	1111 1110

1.6 Exercice 6

```
a. m_1 = 0001 et m_{-1} = 1001.
```

- b. En abusant de la notation + pour des mots : $m_0 = m_1 + m_{-1} = 1010$.
- c. En suivant la règle de signes, 1010 est l'encodage de -2.

1.7 Exercice 7