

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Wprowadzenie Statystyka opisowa

Statystyka

Dr inż. Janusz Majewski Katedra Informatyki

Literatura

- Tadeusiewicz R., Izworski A., Majewski J.: "Biometria", Skrypt AGH, Kraków 1993
- Armitage P.: "Metody statystyczne w badaniach medycznych", PZWL, Warszawa 1978
- Greń J.: "Statystyka matematyczna. Modele i zadania", PWN, Warszawa 1982
- Parker R.E.: "Wprowadzenie statystki dla biologów", PWN, Warszawa 1978
- Żuk B.: "Biometria stosowana", PWN, Warszawa 1989
- Blalock H.M.: "Statystyka dla socjologów", PWN, Warszawa 1977
- Zieliński R, Zieliński W.: "Tablice statystyczne" PWN, 1990
- Aczel A.: "Statystyka w zarządzaniu", PWN, Warszawa, 2007

Literatura

 Prezentacja wykorzystuje fragmenty książki: Amir D. Aczel "Statystyka w zarządzaniu", PWN, 2007

Dane

Jakościowe

llościowe

Skala nominalna Skala porządkowa Skala interwałowa

Skala ilorazowa

Podział na kategorie (wyczerpujący i rozłączny) Podział na kategorie dające się uporządkować Można określić "odległość" między danymi

Można określić "punkt zerowy" skali

Rysunek 1. Podział danych

Tabela 1. Przykład: Dane jakościowe/skala nominalna

Grupa krwi	Liczba pacjentów	Udział %		
Α	425	39,5%		
В	180	16,7%		
AB	84	7,8%		
0	388	36,0%		
Razem	1077	100,0%		

Tabela 2. Przykład: Dane jakościowe/skala porządkowa

Stan migdałków	Liczba dzieci	Udział %		
niepowiększone	516	36,9%		
powiększone	589	42,1% 21,0%		
bardzo powiększone	293			
Razem	1398	100,0%		

Tabela 3. Przykład: agregacja danych ilościowych

Wiek	Liczba pacjentów	Udział
25÷34	19	0,018
35÷44	116	0,087
45÷54	493	0,363
55÷64	545	0,401
65÷74	186	0,137
Razem	1359	1,000

Przygotowanie danych (dane ilościowe, szereg rozdzielczy)

Wiek pacjentek z nowotworem szyjki macicy w pewnym szpitalu w Algierii

wiek	liczba pacjentek	środek przedziału wiekowego
(A)	(B)	(C)
20-25	3	22,5
25-30	10	25,5
30-35	38	32,5
35-40	71	37,5
40-45	117	42,5
45-50	100	47,5
50-55	89	52,5
55-60	75	57 , 5
60-65	70	62,5
65-70	59	67,5
70-75	21	72,5
75-80	11	77,5
80-85	1	82,5
85-90	2	87,5
Suma	667	

Miary tendencji centralnej (dla próby)

(1) Średnia z próby

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Gdzie:

x_i- obserwacja wartości badanej cechy dla i-tego elementu populacji generalnej wybranego dla próby

- n liczba obserwacji w próbie
- (2) Mediana wartość obserwacji środkowej, jeżeli obserwacje uporządkowaliśmy w kolejności np. rosnących wartości. Gdy liczba obserwacji w próbie jest parzysta, to jako medianę przyjmujemy średnią z dwu obserwacji w próbie jest parzysta, to jako medianę przyjmujemy średnią z dwu obserwacji środkowych.
- (3) Moda (dominanta) najczęściej występująca wartość obserwacji w próbie

Uwagi:

- (a) Średnia jest obliczana na podstawie wszystkich wartości obserwacji.
- (b) Mediana nie zależy od obserwacji skrajnych dlatego lepiej odzwierciedla tendencję centralną przy rozkładach silnie asymetrycznych.
- (c) Dominanta w próbie może być jedna, może ich być więcej lub nie być w ogóle

Obliczanie średniej, mediany i mody dla danych w postaci szeregów rozdzielczych

Średnia:

$$\bar{x} \cong \frac{\sum_{i=1}^{k} \dot{x}_i n_i}{\sum_{i=1}^{k} n_i}$$

 $n_{i^{-}}$ liczebność w i-tym przedziale klasowym

k – liczba klas

 \dot{x}_i - środek i-tego przedziału klasowego

Mediana:

$$M_e \cong x_0 + \frac{l}{n_0} (N_{Me} - N^*)$$

 x_0 – dolna granica przedziału klasowego mediany

I – szerokość przedziału klasowego mediany

 n_0 - liczebność w przedziale mediany

 N_{Me} – numer obserwacji, której wartość jest medianą

N* - skumulowana liczba obserwacji do klasy mediany (bez klasy mediany)

Moda (dominanta):

$$D \cong x_0 + l \frac{n_d - n_{d-1}}{(n_d - n_{d-1}) + (n_d - n_{d+1})}$$

 x_0 – dolna granica przedziału klasowego mody

I – szerokość przedziału klasowego mody

 n_d - liczebność w przedziale mody

 n_{d-1} - liczebność w przedziale poprzedzającym przedział mody

 n_{d+1} - liczebność w przedziale następującym po przedziale mody

Średnia, mediana i moda rozkładu populacji

Średnia, mediana i moda rozkładu populacji

Średnia, mediana i moda rozkładu populacji

Średnia, mediana i moda rozkładu

Wiek pacjentek z nowotworem szyjki macicy w pewnym szpitalu w Algierii

Wiek	Liczba pacjentek	Środek przedziału wiekowego	(D):=(B)*(C)	Liczba pacjentek narastająco
(A)	(B)	(C)	(D)	(E)
20-25	3	22,5	67,5	3
25-30	10	25,5	255	13
30-35	38	32,5	1235	51
35-40	71	37,5	2662,5	122
40-45	117	42,5	4972,5	239
45-50	100	47,5	4750	339
50-55	89	52,5	4672,5	428
55-60	75	57,5	4312,5	503
60-65	70	62,5	4375	573
65-70	59	67,5	3982,5	632
70-75	21	72,5	1522,5	653
75-80	11	77,5	852,5	664
80-85	1	82,5	82,5	665
85-90	2	87,5	175	667
Suma	667		33917,5	
		Średnia:	50,9	
		Mediana:	49,8	
		Moda:	43,7	

Średnia, mediana i moda rozkładu

Miary pozycyjne - staniny

KARTY WYNIKÓW MATURY 2018

INFORMATYKA

Komentarz dla zdajacego

INFORMATYKA na poziomie rozszerzonym (egzamin zdawało 7 310 osób)

wvniki

	klasa	nazwa klasy	na świadectwie			(informację o procentach podano w przybliżeniu)
as	1	najniższa	0%			4% zdających ma wynik w tej klasie, 96% zdających ma wynik w wyższych klasach
Podział wyników na dziewięć klas	2	bardzo niska	1%	1% – 4%		7% zdających ma wynik w tej klasie, 89% zdających ma wynik w wyższych klasach, 4% w niższej
ziewi	3	niska	5% – 12%		12%	12% zdających ma wynik w tej klasie, 77% zdających ma wynik w wyższych klasach, 11% w niższych
na d	4	poniżej średniej	13%	_	20%	17% zdających ma wynik w tej klasie, 60% zdających ma wynik w wyższych klasach, 23% w niższych
ików	5	średnia	21%	21% – 329		20% zdających ma wynik w tej klasie, 40% zdających ma wynik w wyższych klasach, 40% w niższych
wyn	6	powyżej średniej	33% – 50%		50%	17% zdających ma wynik w tej klasie, 23% zdających ma wynik w wyższych klasach, 60% w niższych
dział	7	wysoka	51%	-	68%	12% zdających ma wynik w tej klasie, 11% zdających ma wynik w wyższych klasach, 77% w niższych
Po	8	bardzo wysoka	69%	% – 86		7% zdających ma wynik w tej klasie, 4% zdających ma wynik w wyższej klasie, 89% w niższych
	9	najwyższa	87%	37% – 100%		4% zdających ma wynik w tej klasie, 96% w niższych

67%

Miary pozycyjne - staniny

KARTY WYNIKÓW MATURY 2018

GEOGRAFIA

Komentarz dla zdajacego

GEOGRAFIA na poziomie rozszerzonym (egzamin zdawało 66 119 osób)

wvniki

	klasa	nazwa klasy	na świadectwie			(informację o procentach podano w przybliżeniu)
klas	1	najniższa	0%	_	7%	4% zdających ma wynik w tej klasie, 96% zdających ma wynik w wyższych klasach
ęć KI	2	bardzo niska	8%	-	10%	7% zdających ma wynik w tej klasie, 89% zdających ma wynik w wyższych klasach, 4% w niższej
Podział wyników na dziewięć	3	niska	11%	_	15%	12% zdających ma wynik w tej klasie, 77% zdających ma wynik w wyższych klasach, 11% w niższych
na d	4	poniżej średniej	16%	-	22%	17% zdających ma wynik w tej klasie, 60% zdających ma wynik w wyższych klasach, 23% w niższych
ików	5	średnia	23%	-	30%	20% zdających ma wynik w tej klasie, 40% zdających ma wynik w wyższych klasach, 40% w niższych
wyn	6	powyżej średniej	31%	_	40%	17% zdających ma wynik w tej klasie, 23% zdających ma wynik w wyższych klasach, 60% w niższych
dział	7	wysoka	41%	_	52%	12% zdających ma wynik w tej klasie, 11% zdających ma wynik w wyższych klasach, 77% w niższych
a	8	bardzo wysoka	53%	_	65%	7% zdających ma wynik w tej klasie, 4% zdających ma wynik w wyższej klasie, 89% w niższych
	9	najwyższa	66%	_	100%	4% zdających ma wynik w tej klasie, 96% w niższych

67%

Miary rozrzutu (zmienności)

(1) Odchylenie przeciętne

$$d = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

Bazuje na informacji zawartej we wszystkich obserwacjach, ale trudno poddaje się działaniom matematycznym, stąd nie ma szerszego zastosowania.

(2) Wariancja i odchylenie standardowe

Wariancja

$$s^{2} = \frac{\sum_{i=0}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Odchylenie standardowe

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{x})^2}{n-1}}$$

Estymator nieobciążony:

$$s^{2} = \frac{\sum_{i=0}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Estymator obciążony:

$$s^{2} = \frac{\sum_{i=0}^{n} (x_{i} - \bar{x})^{2}}{n}$$

$$\frac{Oszacowanie}{wariancji} = \frac{suma \ kwadratów \ odchyleń \ od \ pewnej \ wartości}{liczba \ stopni \ swobody}$$

Wariancja dla szeregu rozdzielczego:

$$s^{2} = \frac{\sum_{i=0}^{k} (\dot{x}_{i} - \bar{x})^{2}}{\sum_{i=1}^{k} n_{i} - 1}$$

k – liczba przedziałów klasowych

 \dot{x}_i - środek i-tego przedziału klasowego

 $n_{i^{-}}$ liczebność w i-tym przedziale klasowym

Odchylenie standardowe dla szeregu rozdzielczego:

$$s = \sqrt{s^2}$$

(3) Współczynnik zmienności:

$$v = \frac{s}{\bar{x}} \cdot 100\%$$

(4) Współczynniki asymetrii:

Pierwszy:
$$a_1 = \frac{\bar{x} - D}{s}$$
, gdzie: $D - \text{Moda}$

Drugi:
$$a_2 = \frac{3(\bar{x} - M_e)}{s}$$
, gdzie: M_e – Mediana

Prawdopodobieństwo, że wykonując n <u>niezależnych</u> doświadczeń, każde o prawdopodobieństwie sukcesu równym π , odniesiemy r sukcesów wynosi:

$$P(r) = \binom{n}{r} \pi^r (1 - \pi)^{n-r}$$

Zmienna losowa przyjmująca wartości dyskretne r z przedziału od θ do r z prawdopodobieństwem wyrażonym powyższym wzorem ma rozkład dwumianowy, gdzie:

$$E(r) = n\pi$$

$$\sigma^2(r) = n\pi(1-\pi)$$

W zastosowaniach praktycznych na ogół znamy wartość n, ale nie znamy π . Prawdopodobieństwo sukcesu π można wyznaczyć na podstawie średniej z próby.

Dwumianowy rozkład prawdopodobieństwa

<u>Przykład:</u> Przeprowadzamy test na zdolność kiełkowania umieszczając na 100 szalkach po 5 nasion (razem 500 nasion). Otrzymano następujące wyniki:

Liczba kiełkujących na szalce	5	4	3	2	1	0	Suma
Liczba szalek	17	36	31	12	4	0	100
Ogólna liczba kiełkujących nasion	85	144	93	24	4	0	350

Liczba kiełkujących na szalce	5	4	3	2	1	0	Suma
Liczba szalek	17	36	31	12	4	0	100
Ogólna liczba kiełkujących nasion	85	144	93	24	4	0	350

Liczba szalek $N_{szalek} = 100$

Liczba nasion na szalce n = 5

Łącznie wykiełkowało 350

Łącznie posiano N = 500

Zdolność kiełkowania 350/500 = 0.7 = p

p jest estymatorem π , p = 0.7

Średnia liczba kiełkujących nasion = np = 5*0,7 = 3,5

Wariancja liczby kiełkujących nasion = $np(1-p) = s^2 = 5*0,7*0,3 = 1,05$

Odchylenie standardowe = $\sqrt{s^2}$ = 1,025

Takie postępowanie badawcze jest słuszne, gdy nasiona kiełkują niezależnie (tzn. gdy kiełkowanie jednego nasienia nie ma wpływu na kiełkowanie żadnego innego). Metody sprawdzania zgodności rozkładu będą podane później. Obecnie jedynie obliczamy "oczekiwane" (teoretyczne) częstości ze wzoru:

$$E_r = N_{szalek} \binom{n}{r} p^r (1-p)^{n-r}$$

Liczba kiełkujących na szalce	5	4	3	2	1	0	Suma
Liczba szalek obserwowana	17	36	31	12	4	0	100
Liczba szalek oczekiwana (teoretyczna)	16,81	36,01	30,87	13,23	2,83	0,25	100

"Na oko" widać dużą zgodność.

Pojęcie ciągłej zmiennej losowej

Pojęcie ciągłej zmiennej losowej

Ciągłe zmienne losowe

Ciągła zmienna losowa to taka zmienna losowa, która może przyjmować dowolne wartości z pewnego przedziału liczbowego.

Prawdopodobieństwa związane z ciągłą zmienną losową X są wyznaczane przez funkcję gęstości prawdopodobieństwa zmiennej losowej. Ta funkcja, oznaczana f(x), ma następujące własności:

- 1. $f(x) \ge 0$ dla wszystkich x.
- 2. Prawdopodobieństwo, że X przyjmie wartość między a i b jest równe mierze pola pod krzywą (wykresem) f(x) między punktami a i b.
 - 3. Całe pole pod krzywą (wykresem) f(x) ma miarę 1,0.

Normalny rozkład prawdopodobieństwa

Funkcja gęstości prawdopodobieństwa normalnej zmiennej losowej o średniej μ i odchyleniu standardowym σ :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad \text{dla} \quad -\infty < x < \infty$$

gdzie e i π są liczbami 2,718... i 3,141...

Normalny rozkład prawdopodobieństwa

Rysunek 4.2. Rozkład normalny o różnych wartościach średniej (μ) i odchylenia standardowego (σ)

Standaryzowany rozkład normalny

Standaryzowaną normalną zmienną losową Z jest normalna zmienna losowa o średniej $\mu = 0$ i odchyleniu standardowym $\sigma = 1$.

Stosując wprowadzony sposób oznaczania zmiennych Iosowych zapiszemy:

(4.3)

Rysunek 4.3. Standaryzowana normalna funkcja gęstości

Rozkład dwumianowy dla coraz dłuższych serii zmierza do rozkładu normalnego

