

计算机组成与系统结构

第五章 中央处理器

吕昕晨

lvxinchen@bupt.edu.cn

网络空间安全学院

2020/4/6

第五章 中央处理器

- CPU功能与组成 (MIPS指令)
- 多级缓存系统扩展——边缘缓存设计
- 期中大作业要求

2020/4/6

CPU的功能

- CPU: 中央处理器
 - 根据编写的程序,自动从存储器中取出指令,并 完成指令操作
- 功能分解
 - 指令控制(程序的顺序控制)
 - 操作控制(一条指令有若干操作信号实现)
 - 时间控制(指令各个操作实施时间的定时)
 - 数据加工 (算术运算和逻辑运算)

取指令一操作控制、时间控制 →执行指令

MIPS指令系统简化版本

- 无符号加法和减法
 - addu rd, rs, rt
 - subu rd, rs, rt
- 立即数逻辑或
 - ori rt, rs, imm16
- 装载和存储一个字
 - sw rt, imm16(rs)
 - lw rt, imm16(rs)
- 条件分支
 - beq rs, rt, imm16

	6-bit		5-bit		5-bit		16-bit			
ı	opc	ode	r	s	r	t		immediate		
	31	26	25	21	20	16	15		0	

MIPS指令系统

MIPS 指令集(共31条)

助记符	指令格式	令格式					示例	示例含义	操作及其解释
Bit #	3126	2521	2016	1511	106	50			
R- type	ор	rs	rt	rd	shamt	func			
add	000000	rs	rt	rd	00000	100000	add \$1,\$2,\$3	\$1=\$2+\$3	rd <- rs + rt ; 其中rs = \$2,rt=\$3,rd=\$1
addu	000000	rs	rt	rd	00000	100001	addu \$1,\$2,\$3	\$1=\$2+\$3	rd <- rs + rt ; 其中rs = \$2,rt=\$3,rd=\$1,无符号数
sub	000000	rs	rt	rd	00000	100010	sub \$1,\$2,\$3	\$1=\$2-\$3	rd <- rs - rt ;其中rs = \$2,rt=\$3, rd=\$1
subu	000000	rs	rt	rd	00000	100011	subu \$1,\$2,\$3	\$1=\$2-\$3	rd <- rs - rt ; 其中rs = \$2, rt=\$3, rd=\$1,无符号数
and	000000	rs	rt	rd	00000	100100	and \$1,\$2,\$3	\$1=\$2 & \$3	rd <- rs & rt ;其中rs = \$2,rt=\$3,rd=\$1
or	000000	rs	rt	rd	00000	100101	or \$1,\$2,\$3	\$1=\$2 \$3	rd <- rs rt ; 其中rs = \$2, rt=\$3, rd=\$1
xor	000000	rs	rt	rd	00000	100110	xor \$1,\$2,\$3	\$1=\$2 ^ \$3	rd <- rs xor rt
nor	000000	rs	rt	rd	00000	100111	nor \$1,\$2,\$3	\$1=~(\$2 \$3)	rd <- not(rs rt) ; 其中rs = \$2, rt=\$3, rd=\$1(或非)
slt	000000	rs	rt	rd	00000	101010	slt \$1,\$2,\$3	if(\$2<\$3) \$1=1 else \$1=0	if (rs < rt) rd=1 else rd=0;其中rs =\$2,rt=\$3, rd=\$1
sltu	000000	rs	rt	rd	00000	101011	sltu \$1,\$2,\$3	if(\$2<\$3) \$1=1 else \$1=0	if (rs < rt) rd=1 else rd=0;其中rs =\$2,rt=\$3, rd=\$1 (无符号数)

 $\frac{https://blog.csdn.net/Curiou}{sLiu/article/details/8878409}\\ \underline{0}$

指令格式

- R型指令
 - 控制信号: {op, rs, rt, rd, shamt, funct}

	6-	bit	5-	bit	5-	bit	5-	bit	5-k	oit	6-	bit
R	opc	ode	r	s	r	t	r	d	sha	mt	fur	nct
	31	26	25	21	20	16	15	11	10	6	5	0

- I型指令
 - 控制信号: {op, rs, rt, rd, immediate}

- 取指需求: IR MEM [PC]
 - 高速缓存: I-cache
 - 寄存器: PC、IR

指令操作

- R型算数运算
 - ADDU: R[rd] R[rd] + R[rt]; PC PC + 4
 - SUBU: R[rd] R[rt]; PC PC + 4
 - 需求
 - 32位通用寄存器
 - 同时读取两个寄存器内容, 改写一个寄存器内容
- I型逻辑运算
 - ORI: R[rt] R[rs] | (zero-extend) immediate
 - 需求:
 - ALU提供算数与逻辑运算
 - 运算操作数可以是立即数
 - 零扩展: 16位 32位

指令操作

- I型访存指令
 - LW/LOAD: R[rt] MEM[R[rd] + sign_ext(Imm)];PC PC + 4
 - SW/STORE: MEM[R[rd] + sign_ext(Imm)] R[rt];
 PC PC + 4
 - 需求
 - 高速缓存: D-Cache
 - 符号扩展: 16位数扩展至32位
- I型条件转移
 - BEQ: if (rs == rt)
 PC PC + 4 + (sign_ext(Imm) << 2)
 - 需求
 - 判断数是否相等, PC寄存器不同自增方式

CPU基本组成——运算器

- CPU组成
 - 运算器
 - I-Cache/D-Cache
 - 控制器
- 运算器
 - ALU
 - 通用寄存器
 - 数据缓冲器: DR
 - 状态字寄存器: PSWR

CPU基本组成——高速缓存

- CPU组成
 - 运算器
 - I-Cache/D-Cache
 - 控制器
- 高速缓存
 - I-Cache
 - PC寄存器
 - I-BUS
 - D-Cache
 - AR寄存器
 - D-BUS

CPU基本组成——控制器

- CPU组成
 - 运算器
 - I-Cache/D-Cache
 - 控制器
- 控制器
 - 指令寄存器IR
 - 指令译码器
 - 时序发生器 操作控制器
 - 数据通路

CPU基本组成——控制器

- 数据通路
 - 各组件间通路
- 操作控制器
 - 为数据通路的建立提供各种操作信号。根据设计方法不同
 - 硬布线控制器
 - 微程序控制器
- 时序产生器
 - 提供定时和时序信号
- 其他功能部件:中断系统、总线接口等

CPU的基本组成

- CPU组成
 - 运算器
 - I-Cache/D-Cache
 - 控制器
- 本章内容
 - 指令执行
 - 指令周期 (录播)
 - 时序信号
 - 操作控制器
 - 微程序控制器
 - 流水线设计
 - RISC CPU

第五章 中央处理器

- CPU功能与组成 (MIPS指令)
- 多级缓存系统扩展——边缘缓存设计
 - 背景知识
 - 研究现状调研
 - 现有问题分析
 - 解决方法与验证
- 期中大作业要求

2020/4/6

基本业务模式 (CDN/边缘缓存)

移动网络发展历程

5G网络需求

- 支持0.1~1Gbps的用户体验 速率
- 每平方公里一百万的连接 数密度
- 毫秒级的端到端时延
- 每平方公里数十Tbps的流 量密度
- 每小时500Km以上的移动 性
- 频谱效率提升5~15倍
- 能效和成本效率提升百倍 以上

5G主要应用场景

未来5G应用场景的80%会在工业互联网,尤值得期待的是车 联网和远程医疗。

- 工业互联网特点:
 - 大数据传输
 - 低时延高可靠
 - 连接数巨大

5G主要应用场景

- 增强型移动宽带 (eMBB)
- 大规模机器类通信(mMTC)
- 高可靠低时延通信(uRLLC)

网络切片 (Network Slicing)

增强型移动宽带 (eMBB)

- 超高清视频传输
- 高速移动物体传输(高铁上)
- 虚拟现实、增强现实

5G主要应用场景

大规模机器类通信(mMTC)

- 智能家居
- 环境监测
- 智慧城市

5G主要应用场景

高可靠低时延通信(uRLLC):

时延 (1ms), 可靠性 (99.999%)

- 无人驾驶
- 远程医疗手术
- 工业自动化控制

第五章 中央处理器

- CPU功能与组成 (MIPS指令)
- 多级缓存系统扩展——边缘缓存设计
 - 背景知识
 - 研究现状调研
 - 现有问题分析
 - 解决方法与验证
- 期中大作业要求

2020/4/6

研究现状调研

- 关键:分类总结,关键突出
- 调研步骤
 - 阅读相关综述文献
 - https://ieeexplore.ieee.org/Xplore/home.jsp
 - Google Scholar
 - 关键词
 - edge caching (边缘缓存), survey (调研)
 - 明确方向,扩展阅读
 - 整理总结,形成报告

文献检索结果

IEEE Xplore® Digital Library	Access provided by: BEIJING UNIVERSITY C AND TELECOM » Sign Out)F POST	◆IEEE
Browse V My	Settings v Get Help v		
All Enter key	words or phrases (Note: Searches metadata only by defau	ult. A search for 'smart grid' = 'smart AND gric	(i') Q
		A	dvanced Search Other Search Options ✓
Search within results		Download PDFs ▼ Per Page: 25 ▼ F	Export ▼ Set Search Alerts ▼ Search History
Showing 1-25 of 30 for edg			
Journals (16)	Conferences (8)	□ Magazines (3)	Courses (2)
□ Books (1)			
	Select All on Page	Sort By: Relev	vance ▼
Show		Soft by. Relev	unce v
All Results	On Mobile Edge Caching		în .
My Subscribed Content	Jingjing Yao ; Tao Han ; Nirwan Ansari IEEE Communications <mark>Surveys</mark> & Tutorials		
Open Access	Year: 2019 Volume: 21, Issue: 3 Journal Arti	cle Publisher: IEEE	
'	Cited by: Papers (5)		
V	▶ Abstract ((html)) (4018 Kb)		
Year			
Single Year Range	 A Survey on Mobile Edge Networks: Converse Communications 	rgence of Computing, <mark>Caching</mark> and	To
3 - 135. Tange	Shuo Wang ; Xing Zhang ; Yan Zhang ; Lin Wa	ang ; Juwo Yang ; Wenbo Wang	
2003	IEEE Access		
	Year: 2017 Volume: 5 Journal Article Publi: Cited by: Papers (301)	sher: IEEE	
	► Abstract ((html)) (8680 Kb) (C)		
From To	, , ,		
2003 2020	 Recent Advances of Edge Cache in Radio Ad 	ccess Networks for Internet of Things:	1
	Techniques, Performances, and Challenges		
Author	Zhuying Piao ; Mugen Peng ; Yaqiong Liu ; Ma IEEE Internet of Things Journal	anmoud Danesnmand	
	Year: 2019 Volume: 6, Issue: 1 Journal Articl	le Publisher: IEEE	
Affiliation	Cited by: Papers (7)		
	Δhstract ((html)) [2625 Kh) (C)		

研究现状调研

- 关键:分类总结,关键突出
- 调研步骤
 - 阅读相关综述文献
 - 明确方向,扩展阅读
 - 整体了解研究方向(根据已有综述)
 - 明确感兴趣的内容
 - 扩展阅读
 - 整理总结,形成报告

研究方向总结

Time tolerate

研究现状调研

- 关键: 分类总结, 关键突出
- 调研步骤
 - 阅读相关综述文献
 - 明确方向,扩展阅读
 - 整理总结,形成报告
 - 要求
 - 图表总结
 - 重点方向明确
 - 扩展阅读文献数目不少于20篇

第五章 中央处理器

- CPU功能与组成 (MIPS指令)
- 多级缓存系统扩展——边缘缓存设计
 - 背景知识
 - 研究现状调研
 - 现有问题分析
 - 解决方法与验证
- 期中大作业要求

2020/4/6

研究现状分析

- 基础:研究方向现状调研
- 例,边缘缓存策略
 - 单点缓存
 - LRU/LFU等经典算法
 - 优化理论
 - 机器学习
 - 分析:无法充分利用边缘节点协作
 - 协作缓存
 - 全网整体优化
 - 多智体机器学习
 - 分析: 方案复杂, 实现信令开销大
- 拟研究问题:如何将单点缓存扩展至协作缓存

第五章 中央处理器

- CPU功能与组成 (MIPS指令)
- 多级缓存系统扩展——边缘缓存设计
 - 背景知识
 - 研究现状调研
 - 现有问题分析
 - 解决方法与验证
- 期中大作业要求

2020/4/6

边缘缓存域

- 边缘缓存域
 - 定义: 节点协作范围
 - 因素
 - 内容大小
 - 网络拓扑
 - 内容流行度
 - 为每一边缘服务器、内容,划 分边缘缓存域
- LRU/LFU应用
 - 在对应缓存域内命中
- 仿真验证

Profitable Cooperative Region for Distributed Online Edge Caching, IEEE TCOM

第五章 中央处理器

- CPU功能与组成 (MIPS指令)
- 多级缓存系统扩展——边缘缓存设计
- 期中大作业要求 (二选一)
 - 研究现状调研分析
 - 课程相关报告

2020/4/6

研究现状调研

- 调研内容要求
 - 计算机/通信领域
 - 感兴趣, 最好与课程内容有一定关联度
- 调研报告内容
 - 研究背景
 - 研究现状调研
 - 整体分类
 - 重点内容
 - 现状分析(可选)
 - 解决方法与验证(可选)
 - 总结
- 字数: 5000字以上
- 最多2人一组完成

课程相关报告

- 报告内容要求
 - 课程内容紧密相关
 - 例如
 - MIPS指令系统分析
 - CPU与简单模型机设计
- 可参考网上已有课程设计相关题目
 - 关键词: 计算机组成原理课程设计
- 字数: 5000字以上
- 单人完成

整体与评分要求

- 时间节点
 - 5月30日前
- 提交方式
 - 以班级为单位,发送至lvxinchen@bupt.edu.cn
- 评分要求
 - 大作业:满分10分(替代期中考试占最终成绩10%)
 - 若满足字数满足要求,查重不存在问题,6~10分
 - 调研报告成绩相同
- 查重方式
 - 本地文件查重 (整体重复率, 查重文字)
 - 重复率超过40%,满分5分
 - 40%以上,每超过5%,成绩满分减1分(65% 0分)