Relational Algebra

Carsten Schürmann

Formal query languages

- How do we collect information?
- Example: Average age of students in this class?
- Relational algebra

[Codd 1970]

- Set theory
- Operators
- What is a minimal set of operators?

Relational Algebra

Domain: Relations

				attribute
R =	Id	Name	Address	Status
	111111111	John Doe	123 Main St.	Freshman
tuple	66666666	Joseph Public	666 Hollow Rd.	Sophomore
	111223344	Mary Smith	1 Lake St.	Freshman
	987654321	Bart Simpson	Fox 5 TV	Senior
	023456789	Homer Simpson	Fox 5 TV	Senior
	123454321	Joe Blow	6 Yard Ct.	Junior
				_
	,	column		

Definitions

Let R(A₁ ... A_n) a relational schema Instance of the schema

A1		An
F ₁₁		F _{1n}
•••	•••	
F _{m1}		F _{mn}

Attributes
$$A(R) = A_1 ... A_n$$

Tuples $T(R) = \{(F_{11}, ..., F_{1n}), ..., (F_{m1}, ..., F_{mn})\}$

RelAlg.js Introduction

Webaddress: http://fangel.github.io/RelAlg.js/

Author: Morten Fangel, former ITU student

Declaration of Relations:

[['attribute_a', 'attribute_b'] -> [1,2], [2,3], [3,4]]

Union

Query: Who is enrolled at ITU or DIKU?

 R_{ITU}

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

$$R = R_{ITU} \cup R_{DIKU}$$

$$R := R_{ITU} Union R_{DIKU}$$

 R_{DIKU}

cpr	name	address
120492-1234	Claudia	Odense
010299-2345	Peter	Copenhagen
151987-3456	Merete	Odense
250899-4567	Paul	Copenhagen

[Mathematics] [RelAlg.js]

Intersection

Query: Who is enrolled at ITU and SDU?

 R_{ITU}

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

 R_{SDU}

cpr	name	address
120492-1234	Claudia	Odense
010299-2345	Peter	Copenhagen
041297-5367	Nikoline	Aarhus
250899-4567	Paul	Copenhagen

 $R = R_{ITU} \cap R_{SDU}$

 $R := R_{ITU}$ InterSection R_{SDU}

[Mathematics]

Difference

Query: Who is enrolled at ITU and not SDU?

 R_{ITU}

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

$$R = R_{ITU} - R_{SDU}$$

$$R := R_{ITU} - R_{SDU}$$

R_{SDU}

cpr	name	address
120492-1234	Claudia	Odense
010299-2345	Peter	Copenhagen
041297-5367	Nikoline	Aarhus
250899-4567	Paul	Copenhagen

[Mathematics] [RelAlg.js]

Minmality

 Do we need all three, or can we get away with fewer connectives?

Intersection is redundant

$$R \cap S = R - (R - S) = S - (S - R)$$

Selection

Query: Find all ITU students living in Copenhagen

 R_{ITU}

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

$$R = \sigma_{address=Copenhagen}(R_{ITU})$$
 [Mathematics]

 $R := Select [address == Copenhagen] (R_{ITII}) [RelAlg.js]$

Projection

Query: Find all names of ITU students

R	ΙT	Γl	J
			J

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

 $R = \pi_{name}(R_{ITU})$

 $R := Project[name](R_{ITU})$

[Mathematics]

Cartesian Product

 R_{ITU}

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus

 R_{grades}

cpr	course	grade
140298-1234	SIDD	10
041297-5367	SIDD	12

R

R1.cpr		name	address	R2.cpr		course	grade
140298-12	34	Jesper	Copenhagen	140298-12	34	SIDD	10
140298-12	34	Jesper	Copenhagen	041297-53	867	SIDD	12
041297-53	67	Nikoline	Aarhus	140298-12	234	SIDD	10
041297-53	67	Nikoline	Aarhus	041297-53	867	SIDD	12

$$R = R_{ITU} x R_{grades}$$

$$R := R_{ITU} X R_{grades}$$

[Mathematics]

Renaming

Query: Replace attribute name by first name

 R_{ITU}

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

 $R = \varrho_{\text{name/firstname}}(R_{\text{ITU}})$

 $R := Rename [name/firstname](R_{ITU})$

[Mathematics]

Fundamental Relational Operators

• Selection $\sigma_{P(A1...An)}(R)$

• Projection $\pi_{A1...An}(R)$

Cartesian Product R x S

• Set Union $R \cup S$

• Set Difference $R \cap S$

• Renaming $\varrho_{A/B}(R)$

Where P is a logical formula with conjunctions, relations etc.

Derived Operators

Join

```
Equi-join: R \bowtie_{A=B} S = \sigma_{A=B}(R \times S)
```

Theta-join:
$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

Natural join:

Let A be an attribute common to R and S

$$\mathsf{R} \bowtie \mathsf{S} = \pi_{(\mathsf{R} \cup \mathsf{S})}(\varrho_{\mathsf{A}}(\varrho_{\mathsf{A}/\mathsf{R}.\mathsf{A}}(\mathsf{R}) \bowtie_{\mathsf{R}.\mathsf{A}=\mathsf{S}.\mathsf{A}} \varrho_{\mathsf{A}/\mathsf{S}.\mathsf{A}}(\mathsf{S})))$$

Relation Renaming

R

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

$$\varrho_{\rm S}({\rm R}) =$$

S.cpr	S.name	S.address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus
151197-2352	Claus	Dragør
050596-1142	Martin	Copenhagen

Find the suspicious suppliers who supply all parts necessary to build a bomb!

Shipment

supplier	part
s1	p1
s2	p1
s1	p2
s3	p1
s5	p1
s2	р3

Bomb

Bad

supplier s1

Idea: Compute the bad (suspicious suppliers) from all by removing the good suppliers

Shipment

supplier	part
s1	p1
s2	p1
s1	p2
s3	p1
s5	p1
s2	р3

All = π_{supplier} (Shipment)

supplier
s1
s2
s3
s5

Idea: Good Suppliers are those who do not deliver one bomb part.

Shipment

supplier	part
s1	p1
s2	p1
s1	p2
s3	p1
s5	p1
s2	р3

All

supplier
s1
s2
s3
s5

Bomb

part
p1
p2

Suspicious = All x Bomb

supplier	part
s1	p1
s1	p2
s2	р1
s2	p2
s3	р1
s3	p2
S 5	p1
S 5	p2

Idea: Compare shipments and suspicious shipments (didn't happen)

Shipment

Suspicious

NotHappen

= Suspicious - Shipment

supplier	part
s1	p1
s2	p1
s1	p2
s3	p1
s5	p1
s2	р3

supplier	part
s1	p1
s1	p2
s2	p1
s2	p2
s3	p1
s3	p2
S 5	p1
S5	p2

supplier	part
s2	p2
s3	p2
S 5	p2

Idea: Good suppliers are those with a bad shipment not happening

All

NotHappen Good = π_{supplier} (NotHappen)

supplier
s1
s2
s3
s5

supplier	part
s2	p2
s3	p2
S 5	p2

Bad = All - Good

supplier **s**1

Putting the Pieces Together

```
Shipment ÷ Bomb
= Bad
= All - Good
=\pi_{\text{supplier}} (Shipment) - \pi_{\text{supplier}} (NotHappen)
= \pi_{\text{supplier}} (Shipment) - \pi_{\text{supplier}} (Suspicious – Shipment)
= \pi_{\text{supplier}} (Shipment) - \pi_{\text{supplier}} (All x Bomb - Shipment)
= \pi_{\text{supplier}} (Shipment)
    - \pi_{\text{supplier}}(\pi_{\text{supplier}}(\text{Shipment}) \times \text{Bomb} - \text{Shipment})
```

Abstracting from the Example

Step 1:

$$R \div S = \pi_{\text{supplier}}(R) - \pi_{\text{supplier}}(\pi_{\text{supplier}}(R) \times S - R)$$

But how shall we abstract the supplier?

Step 2:

$$R \div S = \pi_{R-S}(R) - \pi_{R-S}(\pi_{R-S}(R) \times S - R)$$

Relational Tuple Calculus

Introduction

Query: Give me the set of tuples t that satisfy predicate P

Notation: {t | P(t)} Student

Example:

 $\{t \mid t \subseteq Student\}$

cpr	name	address	
140298-1234	Jesper Copenhagen		
041297-5367	Nikoline	Aarhus	
151197-2352	Claus	Dragør	
050596-1142	Martin	Copenhagen	

First-Order Logic

Atomic Propositions

(t, s tuples, R relation,
 a,b attributes)

Tuple equality

Set membership

Domain equality

Domain inequality

t = s

 $t \in R$

t.a = s.b

t.a < s.b

t.a <= s.b

t.a <> s.b

First-Order Logic

Formulas (Assuming P, Q are propositions)

Conjunction $P \wedge Q$

Disjunction $P \lor Q$

Negation ¬P

Implication $P \supset Q$

Universal Quantification $\forall t \in R$. P

Existental Quantification $\exists t \in R$. P

Examples

Find a student with cpr number 140298-1234

```
\{t \mid t \subseteq Student \land t.cpr = 140298-1234\}
```

Find the name of a student with cpr number 140298-1234

```
\{t \mid \exists s \in Student. \ t.cpr = 140298-1234\}
```

 \land t.name = s.name}

Who is enrolled at ITU or DIKU?

```
\{t \mid t \in ITU \ \lor \ t \in DIKU\}
```

Examples

Compute Cartesian product ITU Grades

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus

cpr	course	grade
140298-1234	SIDD	10
041297-5367	SIDD	12

Fun Facts

Relational Algebra and Relational Tuple Calculus are equivalent!

Example

Query: Who received what grade?

Student Grades

cpr	name address	
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus

cpr	course	grade
140298-1234	SIDD	10
041297-5367	SIDD	12

Example

What grade did Jesper receive in which course?

ITU Grades

cpr	name	address
140298-1234	Jesper	Copenhagen
041297-5367	Nikoline	Aarhus

cpr	course	grade
140298-1234	SIDD	10
041297-5367	SIDD	12

```
\{t \mid \exists s \in ITU. \exists r \in Grades. t \ s.cpr = r.cpr \ \land s.name = "Jesper" \leftarrow selection \ \land t.course = r.course \land t.grade = s.grade \ projection
```

Conclusion

- Relational Algebra
- RelAlg.js tool
- Relational Tuple Calculus

They are all equivalent

Next time: SQL