Calculus 1 – Derivatives Formula Sheet:

·	
Basic Derivatives:	, , ,
	$\frac{d}{dx}[c] = 0 \qquad \frac{d}{dx}[x] = 1 \qquad \frac{d}{dx}[cx] = c$
	$\frac{d}{dx}[\boldsymbol{c}*\boldsymbol{f}(\boldsymbol{x})] = c*f'(\boldsymbol{x})$
Trigonometric Derivatives:	
mgonometrio Derivatives.	$\frac{d}{dx}[\sin x] = \cos x \qquad \frac{d}{dx}[\cos x] = -\sin x$
	$\frac{d}{dx}[\tan x] = \sec^2 x \qquad \frac{d}{dx}[\cot x] = -\csc^2 x$
	$\frac{d}{dx}[\sec x] = \sec x \tan x \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$
The Power Rule:	
	$\frac{d}{dx}[\mathbf{x}^n] = nx^{n-1}$
The Product Rule:	
	$\frac{d}{dx}[\mathbf{u}\mathbf{v}] = u'v + uv'$
	$\frac{d}{dx}[uvw] = u'vw + uv'w + uvw'$
The Quotient Rule:	$\frac{d}{dx} \left[\frac{\mathbf{u}}{\mathbf{v}} \right] = \frac{vu' - uv'}{v^2}$
	$ax \mathbf{v}^{2}$
The Reciprocal Rule:	$\frac{d}{dx} \left[\frac{1}{u} \right] = \frac{-u'}{u^2}$

The Chain Rule:	$d\mathbf{v}$ $d\mathbf{v}$ $d\mathbf{v}$
	$\frac{dy}{dx} = \frac{dy}{du} * \frac{du}{dx}$
	u x aa ax
	$\frac{d}{dx}[f(g(x))] = f'(g(x)) * g'(x)$
	$\frac{1}{dx} [f(g(x))] = f(g(x)) * g(x)$
	d
	$\frac{d}{dx}[f(g(u))] = f'(g(u)) * g'(u) * u'$
	$\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1} * f'(x)$
	dx dx dx dx dx
Trig Derivatives:	
mg Bonvativos.	d , d , d
"With Chain Rule"	$\frac{d}{dx}\sin(\mathbf{u}) = \cos(u)u' \qquad \frac{d}{dx}\cos(\mathbf{u}) = -\sin(u)u'$
	a a
	$\frac{d}{dx}\tan(\mathbf{u}) = \sec^2(u) u' \qquad \frac{d}{dx}\cot(\mathbf{u}) = -\csc^2(u) u'$
	ux ux
	$\frac{d}{dx}\mathbf{sec}(\mathbf{u}) = \sec(u)\tan(u)u'$ $\frac{d}{dx}\mathbf{csc}(\mathbf{u}) = -\csc(u)\cot(u)u'$
	$\frac{1}{dx} \sec(u) = \sec(u) \tan(u) u \qquad \frac{1}{dx} \csc(u) = -\csc(u) \cot(u) u$
Inverse Trig Derivatives	
Inverse Trig Derivatives:	d , u' d , $-u'$
"With Chain Rule"	$\frac{d}{dx}[sin^{-1}(u)] = \frac{u'}{\sqrt{1 - u^2}} \qquad \frac{d}{dx}[cos^{-1}(u)] = \frac{-u'}{\sqrt{1 - u^2}}$
	VI W
	$\frac{d}{dr}[tan^{-1}(u)] = \frac{u'}{1+u^2} \qquad \frac{d}{dr}[cot^{-1}(u)] = \frac{-u'}{1+u^2}$
	$dx^{1-u^2} \qquad 1+u^2 \qquad dx^{1-u^2} \qquad 1+u^2$
	d , u' d , $-u'$
	$\frac{d}{dx}[sec^{-1}(u)] = \frac{u'}{ u \sqrt{u^2 - 1}} \qquad \frac{d}{dx}[csc^{-1}(u)] = \frac{-u'}{ u \sqrt{u^2 - 1}}$
Exponential Derivatives:	
	$\frac{d}{dx}[e^{u}] = e^{u} * u'$
	dx^{2}
	d
	$\frac{d}{dx}[\mathbf{a}^{\mathbf{u}}] = a^{\mathbf{u}} * \mathbf{u}' * \ln a$
Daubrathus of Lagran	
Derivatives of Logs:	d u'
	$\frac{d}{dx}[\ln u] = \frac{u'}{u}$
	$\frac{d}{dx}[\log_a(\mathbf{u})] = \frac{u'}{u \ln a}$
	$dx^{[l]}u \ln a$

Logarithmic Differentiation:	$\frac{d}{dx}\left[\mathbf{u}^{\mathbf{v}}\right] = u^{\mathbf{v}}\left[\frac{vu'}{u} + v'\ln\left(u\right)\right]$
Inverse Functions:	$\frac{d}{dx}[f^{-1}(a)] = \frac{1}{f'(b)} \qquad f(b) = a f^{-1}(a) = b$ $\frac{d}{dx}[f^{-1}(x)] = \frac{1}{f'[f^{-1}(x)]}$
Limit Definition:	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
Alternative Definition:	$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$