Автор: FlintWithBlackCrown aka Кирилл Болохов

Замечания

- 1. В определениии 1 можно рассматривать лишь симметричные интервалы, то есть интервалы вида $(l-\varepsilon,l+\varepsilon),\varepsilon>0$
- 2. Вне интеравлов конечное число = начиная с некоторого номера все внутри, то есть

$$\forall n \geq N : x_n \in (l - \varepsilon, l + \varepsilon)$$

То есть определения означают одно и то же

Примеры

1. $x_n=c$ - стационарные последовательности $\lim x_n=c$

2.
$$x_n=\frac{n^2}{n^2+1}, \lim x_n=1$$
 Решение
$$|x_n-1|<\varepsilon, x_n-1=\frac{n^2}{n^2+1}-1=-\frac{1}{n^2+1}$$

$$\frac{1}{n^2+1}<\varepsilon$$

нужно понять, что начиная с некоторого номера N выполняется неравенство $n^2+1>\frac{1}{\varepsilon}$

3. $x_n = (-1)^n$ не имеет предела

Свойства

- 1. Предел единственный, т. е. если $\lim x_n = a, \lim x_n = b$, то a = b Доказательство от противного Пусть a < b, знаем, что вне $\left(a-1, \frac{a+b}{2}\right)$ лишь конечное число вне $\left(\frac{a+b}{2}, b+1\right)$, но любой член последовательности лежит вне какого-то из этих интервалов \Rightarrow их всего конечное число, противоречие
- 2. Перестановка местами членов последовательности не меняет предела
- 3. Если $l=\lim x_n$ и из последовательности выкинули какое-то количество членов, но их все еще бесконечно, то новая последовательность тоже имеет предел l
- 4. Пусть $l=\lim x_n$. Разложим каждый член последовательности с конечной кратностью, тогда предел новой последовательности l.
- 5. Добавление к последовательности конечного числа членов не менет предел Доказательство Почему lim не может появиться? Пусть появился предел, тогда по свойству 3 предел останется. противоречие Почему если был предел, то он и останется? Вне интервала было конченое число элементов, конечное и останется
- 6. Если послдовательность имеет предел, то она ограничена

Доказательство

Пусть
$$l=\lim x_n$$
. Возьмем $\varepsilon=1,\exists N \forall n\geq N\ |x_n-l|<1,$ то есть $l-1< x_n< l+1.$ $\max\{l+1,x_1,x_2,...,x_{N-1}\}$ - верхняя граница $\min\{l-1,x_1,x_2,...,x_{N-1}\}$ - нижняя граница

Лемма

Пусть $a=\lim x_n$ и $b=\lim y_n, \varepsilon>0$, тогда найдется N, такой что $\forall n\geq N\Rightarrow |x_n-a|<\varepsilon, |y_n-b|<\varepsilon$

Доказательство

$$a=\lim x_n\Rightarrow \exists N_1: \forall n\geq N_1 \ |x_n-a|<\varepsilon \ b=\lim y_n\Rightarrow \exists N_2: \forall n\geq N_2 \ |y_n-b|<\varepsilon$$
Возьмем $N=\max\{N_1,N_2\}$ и он найдется

7. Предельный переход в неравенстве

Пусть $x_n \leq y_n, \forall n \in \mathbb{N}, \lim x_n = a, \lim y_n = b,$ тогда $a \leq b$ Докажем от противного, пусть a > b, пусть $\varepsilon = \frac{a-b}{2}$ и воспользуемся леммой, тогда $\exists N_1,$ такой что $|x_n - a| < \varepsilon, |y_n - b| < \varepsilon \Rightarrow x_n > a - \varepsilon, y_n < b + \varepsilon \Rightarrow x_n > y_n$ противоречие. Замечания:

- 1. Достаточно, чтобы неравенство $x_n \leq y_n$ выполнялось начиная с некоторого номера
- 2. Строгое неравенство может не сохраняться

Пример

$$x_n = -\frac{1}{n}, y_n = \frac{1}{n}, x_n < y_n \forall n, \lim x_n = \lim y_n = 0$$

Следствия

- 1. Если $x_n \leq b \, \forall n \in \mathbb{N} \wedge \lim x_n = a$, то $a \leq b$
- 2. Если $a \leq y_n \, \forall n \in \mathbb{N} \wedge \lim y_n = b$, то $a \leq b$
- 3. Если $x_n \in [a,b] \wedge \lim x_n = l$, то $l \in [a,b]$

Продолжение свойств

8. Стабилизация знака. Пусть $\lim x_n = l \neq 0$. Тогда начиная с некоторого номера все члены последовательности имеют тот же знак, что и l

Доказательство

Считаем, что l>0

$$\exists N,$$
 такой что $\forall n \geq N \ |x_n - l| < \varepsilon.$ то есть $x_n \in (l - \varepsilon, l + \varepsilon) \Rightarrow x_n > 0 \forall n \geq N$

9. Теорема о сжатой последовательности (Теорема о двух милиционерах)

Пусть $x_n \leq y_n \leq z_n \forall n \in \mathbb{N}$ и $\lim x_n = \lim z_n = l$,
то $\lim y_n = l$

Доказательство: Возьмем $\varepsilon>0$ по лемме найдется такой N, что $\forall n\geq N \ |x_n-l|<\varepsilon, |z_n-l|<\varepsilon\Rightarrow x_n>l-\varepsilon, z_n< l+\varepsilon$ сложим неравенства $l-\varepsilon< x_n\leq y_n\leq z_n\leq l+\varepsilon (\forall n\geq N)\Rightarrow l-\varepsilon< y_n< l+\varepsilon (\forall n\geq N)$

Замечания

1. Достаточно, что неравенства становились верными после некоторого момента

Следствие. Пусть $|y_n| \leq z_n$ и $\lim z_n = 0$. Тогда $\lim y_n = 0$

Доказательство

$$\begin{split} x_n &:= -z_n \Rightarrow \lim x_n = 0 \\ \lim z_n &= 0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N \forall n \geq N \Rightarrow \underbrace{|z_n|}_x < \varepsilon \end{split}$$

Определение

- 1. Последовательность x_n возрастающая, если $x_1 \leq x_2 \leq \dots$
- 2. Последовательность строговозрастающая если очев
- 3. последовательность убывающая если очев
- 4. Последовательность строгоубывающая если очев
- 5. Последовательность x_n монотонная если она возрастающая или убывающая

Теорема

- 1. Возрастающая ограниченная сверху последовательность имеет предел
- 2. Убывающая ограниченная снизу последовательность тоже имеет предел
- 3. Монотонная последовательность имеет предел тогда и только тогда, когда она ограничена.

Доказательство

1. $x_1 \leq x_2 \leq x_3 \leq ...$, она ограничена сверху, поэтому у нее есть $a \coloneqq \sup\{x_n\}$, покажем, что $a = \lim x_n$

Возьмем $\varepsilon>0$. Рассмотрим $a-\varepsilon< a$ - наименьшая из верхних границ, тогда $a-\varepsilon$ не верхняя граница, для $\{x_n\}\Rightarrow$ найдется N, такой что $x_n>a-\varepsilon$, тогда $a-\varepsilon\leq x_N\leq x_{N+1}\leq ...\leq x_n$ при $n\geq N$ a - верхняя граница $x_n\leq a< a+\varepsilon \ \forall n\Rightarrow a-\varepsilon< x_n< a+\varepsilon \ \forall n>N$ то есть $|x_n-a|<\varepsilon \ \forall n>N$

- 2. Очев
- 3. Очев

Определение

Последовательность x_n бесконечно балая, если $\lim x_n = 0$

Теорема

Произведение бесконечно малой и ограниченной последовательности - это бесконечно балая последовательность

Доказательство

 y_n - ограниченная последовательность. Тогда $|y_n| \leq M \forall n \in \mathbb{N}$. $\lim x_n = 0$ возьмем $\varepsilon > 0$ тогда $\exists N \forall n \geq N \Rightarrow |x_n| < \frac{\varepsilon}{M}$, следовательно при $n \geq N$ $|x_n y_n| \leq \frac{\varepsilon}{M} \cdot M \leq \varepsilon \Rightarrow \lim x_n y_n = 0$

Теорема об арифметических действиях с пределами

Пусть $\lim x_n = a, \lim y_n = b$, тогда

- 1. $\lim(x_n \pm y_n) = a \pm b$
- 2. $\lim x_n y_n = ab$ в частности $\lim cx_n = ca$
- 3. $\lim |x_n| = |a|$
- 4. Если $b \neq 0$, то $\lim \frac{x_n}{y_n} = \frac{a}{b}$
- 1 Доказательство

Возьмем $\varepsilon>0$, По лемме найдется N, такое что $|x_n-a|<\frac{\varepsilon}{2},|y_n-b|<\frac{\varepsilon}{2}$ при $n\geq N$, тогда $|(x_n+y_n)-(a+b)|=|(x_n-a)+(y_n-b)|\leq |x_n-a|+|y_n-b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ 2 Доказательство

 $\lim x_n = a \Leftrightarrow \lim (x_n - a) = 0 \Leftrightarrow x_n - a$ - бесконечно малая

 $\lim y_n = b \Rightarrow y_n$ ограниченная последовательность

 $\Rightarrow (x_n-a)y_n$ - бесконечно малая

 $x_ny_n=(x_n-a)y_n+ay_n$ осталось доказать, что $\lim ay_n=ab$ то есть что $\lim a(y_n-b)=0$ это верно, т.к y_n-b бесконечно малая, a ограничено $\Rightarrow a(y_n-b)=0$

3 Доказательство

$$\begin{split} \lim x_n &= a \Rightarrow \forall \varepsilon > 0 \ \exists N \ \forall n \geq N \ |x_n - a| < \varepsilon \\ \|x_n| &- |a\| \leq |x_n - a| < \varepsilon. \end{split}$$

4 Доказательство

Достаточно доказать, что $\lim \frac{1}{y_n} = \frac{1}{b}$

 $\lim y_n = b \neq 0.$ Будем считать, что b > 0. Найдется N_1 , такой что $\forall n \geq N_1 \ |y_n - b| \leq \frac{b}{2}$ то есть $y_n > \frac{b}{2}$ $|\frac{1}{y_n} - \frac{1}{b}| = \frac{|y_n - b|}{|y_n b|} < \frac{|y_n - b|}{b \cdot \frac{b}{2}} \text{ найдется такой номер } N_2, \text{ такой что } \forall n \geq N_2, |y_n - b| < \varepsilon \cdot \frac{b^2}{2},$ $\frac{y_n - b}{b \cdot \frac{b}{2}} < \varepsilon.$ Возьмем $N = \max\{N_1, N_2\}$ тогда $|\frac{1}{y_n} - \frac{1}{b}| < \varepsilon$ при $n \geq N$

Определение

 $\lim x_n = +\infty,$ если вне любого луча содержится лишь конечное число членов последовательности

$$\lim x_n = +\infty$$
, если $\forall E \ \exists N \ \forall n \geq N \Rightarrow x_n > E$

Определение

 $\lim x_n = -\infty,$ если вне любого луча $(-\infty, E)$ содержится лишь конечное число членов последовательности

$$\lim x_n = -\infty$$
, если $\forall E \ \exists N \ \forall n \geq N \Rightarrow x_n < E$

Определение

Последовательность x_n бесконечно большая, если $\forall E \ \exists N \ \forall n \geq N \Rightarrow |x_n| > E$ Замечания

- 1. x_n б.б $\Leftrightarrow \lim |x_n| = +\infty$
- 2. x_n б.б $\Rightarrow x_n$ неограничена, обратное неверно