IN THE CLAIMS:

Please cancel claim 9 without prejudice, and amend the claims as follows:

1. (Currently Amended) A deposition method of forming a silicon inorganic insulating film on a substrate, comprising the steps of:

placing a substrate in a semiconductor manufacturing apparatus having parallel plate type electrodes; and

depositing a fluorine-containing silicon insulating film on the substrate by generating a plasma of a process gas containing SiH₄, SiF₄, and an oxygen source substance, wherein a flow rate ratio of said SiF₄ to said SiH₄ into the semiconductor manufacturing apparatus is larger than 1.

- 2. (Currently Amended) The deposition method according to claim 1, further comprising the step of: introducing the process gas containing SiH₄, SiF₄ and oxygen source substance into a chamber.
- 3. (Original) The deposition method according to claim 1 wherein the RF power applied to said parallel plate type electrodes is 1000 Watts or more.
- 4. (Original) The deposition method according to claim 1 wherein the RF power applied to said parallel plate type electrodes is 1400 Watts or more.
- 5. (Previously Presented) The deposition method according to claim 1, wherein said oxygen source substance includes at least one substance of N_2O , N_2O_3 , N_2O_5 , NO_3 , N_2O_4 and NO_2 .
- 6. (Previously Presented) The deposition method according to claim 1, wherein said oxygen source substance includes at least one substance of O_2 and O_3 .
- 7. (Previously Presented) The deposition method according to claim 1, wherein

said oxygen source substance includes at least one substance of CO, CO2 and H2O.

- 8. (Currently Amended) The deposition method according to claim 1, wherein the RF power applied to said parallel plate type electrodes is at least 4 Watts/sccm of a total combined flow rate of the SiH₄ and SiF₄.
- 9. (Canceled)
- 10. (Original) The deposition method according to claim 1, wherein the RF power applied to said parallel plate type electrodes is modulated with a single frequency.
- 11. (Original) The deposition method according to claim 1, wherein the pressure in said reaction chamber in said deposition step is not more than 666 Pa.
- 12. (Previously Presented) The deposition method according to claim 1, wherein the deposition temperature in said deposition step is not more than 480°C.
- 13. (Currently Amended) A method of manufacturing a semiconductor device having conductive portions of a damascene structure on a substrate, comprising the steps of:

depositing a fluorine-containing silicon insulating film on a substrate by generating a plasma of a process gas containing SiH_4 , SiF_{41} and an oxygen source substance, said process gas being introduced into the chamber of the semiconductor manufacturing apparatus having parallel plate type electrodes; and

forming said conductive portions of the damascene structure in said silicon insulating film.

14. (Currently Amended) The method according to claim 13 wherein the forming said conductive portions of the damascene step structure comprises the steps of:

forming depressed portions in said silicon insulating film; and

forming conductive material in said depressed portions.

- 15. (Original) The method according to claim 13, wherein the RF power applied to said parallel plate type electrodes is at least 1000 Watts.
- 16. (Original) The method according to claim 13, wherein the RF power applied to said parallel plate type electrodes is 1400 Watts or more.
- 17. (Currently Amended) The method according to claim 13, wherein the RF power applied to said parallel plate type electrodes is at least 4 Watts/sccm of a total combined flow rate of the SiH₄ and SiF₄.
- 18. (Original) The method according to claim 13, wherein the flow rate ratio of said SiF_4 to said SiH_4 is larger than 1.
- 19. (Withdrawn) A deposition apparatus comprising:

parallel plate type electrodes arranged in a chamber; means for introducing a process gas containing SiH₄, SiF₄

and oxygen source substance into said chamber; and a power source for supplying RF power for generating

a plasma of said process gas, said power source being capable of supplying RF power of at least 1000 Watts to said parallel plate type electrodes.

20. (Withdrawn) The deposition apparatus according to claim 19 wherein the separation of said parallel plate type electrodes is at least 0.5 cm and not more than 1.75 cm.