Progettazione di veicoli aerospaziali

<u>Unmanned Aerial Vehicle – UAV</u>

A.A. 2020/2021

Docente: Erasmo Carrera

Collaboratori: Matteo Filippi, Roberta Fusaro, Alfonso Pagani, Marco Petrolo, Enrico Zappino

t: 011-090(5875)

e: alfonso.pagani@polito.it

w: www.mul2.com

Definizione ed esempi

- Veicolo aereo motorizzato che non trasporta alcun operatore umano.
- Può essere autonomo o operato da remoto.
- Veicoli balistici, proiettili, torpedo, mine, satelliti e sensori *unattended* non sono considerati UAV.

Manned vs Unmanned

- Missione ISR: intelligence, surveillance, and reconnaissance.
- Es. Cessna O-2 Skymaster.
- Peso componentistica: 600 lb vs 45 lb (270 kg vs 20 kg)

Component	Weight, Ib	Notes	
Pilot	160	Power for flight controls	
Second crew member	160	Likely radio or ISR systems operator	
Windows	20	Visibility for pilot and crew	
Furnishings	60	Not ejection seats	
Doors	30		
Instrumentation and avionics	100	Includes guidance and navigation equipment	
Control interface	20		
Cabin environmental controls	30		
Survival kit	10		
Portion of electrical system	10	For powering avionics and cabin environmental controls	

Component	Weight, Ib	Notes	
Autopilot and other avionics	15		
Flight control actuation	15	Electromechanical actuators	
Line-of-sight communications	10	C2 and payload links	
Portion of electrical system	5	Generator and power system	

Attribute	Human Pilot	UAS Avionics	Attribute	Human Pilot	UAS Avionics
Acceleration limits Temperature limits	5–10 g peak Body temperature must be	Design criteria. Some are designed to over 10,000-g shock. Design criteria. Many avionics are		capability in short-wave IR, mid-wave IR, and long-wave IR.	of regard is typically less than a full hemisphere, but greater than what a human neck permits. Optics can be made to
maintained at 98.6 deg. Cabin temperatures typically 60 to 100° F.		designed to operate at -20 to 120°F .			operate in any band of the entire atmospheric transmission window.
Pressure limits	Typically 0.75–1 atm	Design criteria. Space electronics can operate in vacuum.	Acoustic sensor performance	The human ear can detect sound in the 0.02–20-kHz range. The frequency range and threshold sound pressure levels vary among individuals.	Most UASs have no acoustic sensors. Microphones could be added if necessary with performance superior to the human ear.
Orientation	Pilots are generally upright (sitting upright). Rare aircraft have prone pilot (lying down on belly with face	Avionics and sensors can be designed for a wide range of orientations. Unmanned aircrafts can fly inverted for			
	forward)	extended duration.	Radio-frequency detection	Humans have no ability to detect RF signals.	UAS can transmit or receive line-of-sight and satellite RF signals with the necessary sensitivity to permit receipt of data. Typical RF communications frequencies
Mathematical operations	Humans have a limited ability to perform calculations in flight.	Avionics can perform millions of calculations per second, with an ever-increasing capability trend.	derection		
a population, but the distribution is nearly consta over time. Without controversial future biomechanical technology		Major revolutions in avionics and software occur about once a			range from 72 MHz (VHF) through 30 GHz (Ka band).
	no change over relevant timescales. Variation exists in a population, but the distribution is nearly constant over time. Without controversial future biomechanical technology	decade.	Errors	Pilot error is a major cause of manned aircraft losses. Human decision making is intuitive and imperfect.	Pilot errors are a major cause of UAS losses when pilots are in control of the unmanned aircraft. Autonomous UAS losses due to system logic errors are considered design errors.
	(i.e., cyborgs), pilots can't be upgraded.		Work duration	8–12-hr shifts, rest required between shifts.	Only limited by unmanned aircraft flight performance or reliability. 5-year duration solar-powered aircraft are feasible.
Reasoning	Pilots can flexibly react to unexpected situations. Pilot situational awareness is high due to visual cues, sounds, smell, and physical feel. Pilots have an intuitive feel for the aircraft sometime referred to as "seat of the pants."	Avionics can only react as programmed. Human operators in the ground			
		stations can handle situations within the available interfaces if communications exist. The situational awareness of humans is limited to data received from the unmanned aircraft.	Operational service	20-30-yr career	Technology obsolete in 5 – 10 yrs, component service life of 100–10,000 hr
			Bravery	Pilots are generally courageous and can be motivated to perform highly	An autopilot is indifferent to risk or self-sacrifice.
Visual sensor performance	The neck can enable a field of regard beyond the forward hemisphere. The eye can see in the visual band (400 – 700 nm), but has no	The visual sensor performance is a design criterion. Payload optics can often resolve features of a few inches at ranges of 1 – 20 miles. The field	_	dangerous or suicidal (i.e., Kamikaze) missions, but pilots also have an inherent will to live.	
			Value	Immeasurable (except by actuaries)	Hundreds to millions of U.S. dollars

Categorie

- Micro AV (MAV): l < 15 cm. Caratterizzati da bassa efficienza aerodinamica (bassi n. di Reynolds, $L/D = 3 \div 7$), bassa capacità di carico, avionica miniaturizzata e bassi costi di produzione.
- Small Unmanned AV (SUAV): MTOW < 25 kg. Solitamente modelli d'aeroplano in scala con autopilota low-cost.
- Tactical Unmanned AV (TUAV): 600 < MTOW < 25 kg. Autonomia di 5-12 hr, altitudne max 20'000 ft.
- Medium-Altitude Long Endurance (MALE) UAV: 450 kg < MTOW < 4.5 ton. Autonomia di 12-50 hr, altitudine 15'000-30'000 ft (motore alternativo) o 30'000-50'000 ft (turboprop).

- High-Altitude Long Endurance (HALE) UAV:
 MTOW > 2 ton. Autonomia > 24 h, altitudine
 > 50'000 ft.
- Ultra Long Endurance (ULE) UAV. Autonomia
 5 gg, altitudine > 25'000 ft.
- Combat UAV, Conversioni da velivoli manned, droni target, rotorcraft (VTOL), UAV a energia solare, veicoli planetari (*flyers*), Lighter-thenair (LTA)

Dimensionamento preliminare

Dimensionamento preliminare

$$MF_{\rm Empty} = \frac{W_{\rm Empty}}{W_{\rm TO}}$$
 \rightarrow "Mass Fractions", frazione in massa del peso a vuoto..

$$W_{\mathrm{TO}} = W_{\mathrm{Struct}} + W_{\mathrm{Subs}} + W_{\mathrm{Prop}} + W_{\mathrm{Avion}} + W_{\mathrm{Other}} + W_{\mathrm{PL}} + W_{\mathrm{Energy}}$$

Contributi che scalano linearmente rispetto a WTO. Es:

$$W_{\text{Struct}} = \frac{W_{\text{Struct}}}{W_{\text{TO}}} \cdot W_{\text{TO}} = MF_{\text{Struct}} \cdot W_{\text{TO}}$$

$$\begin{array}{c} W_{\mathrm{TO}} = W_{\mathrm{PL}} + W_{\mathrm{Avion}} + W_{\mathrm{Other}} \\ \qquad + \left(MF_{\mathrm{Struct}} + MF_{\mathrm{Subs}} + MF_{\mathrm{Prop}} + MF_{\mathrm{Energy}} \right) \cdot W_{\mathrm{TO}} \end{array} \rightarrow$$

$$W_{\text{TO}} = \frac{W_{\text{PL}} + W_{\text{Avion}} + W_{\text{Other}}}{1 - \left(MF_{\text{Struct}} + MF_{\text{Subs}} + MF_{\text{Prop}} + MF_{\text{Energy}}\right)}$$

Prestazioni

$$(1-MF_{\rm Fuel}) = \prod_{i=1}^{NSegs} (1-MF_{\rm Fuel,i}) \qquad \longrightarrow \qquad MF_{\rm Fuel} = 1 - \prod_{i=1}^{NSegs} (1-MF_{\rm Fuel,i})$$

Motori alternativi e turboprop:

$$R = \frac{L/D \cdot \eta_p}{BSFC} \cdot ln \left(\frac{1}{1 - MF_{Fuel}} \right)$$

$$R = \frac{L/D \cdot \eta_p}{BSFC} \cdot \ln\left(\frac{1}{1 - MF_{\text{Fuel}}}\right) \qquad MF_{\text{Fuel}} = 1 - \exp\left(\frac{-R \cdot BSFC}{L/D \cdot \eta_p}\right)$$

Motori a reazione (jet):

$$R = \frac{V \cdot L/D}{TSFC} \cdot \ln \left(\frac{1}{1 - MF_{\text{Fuel}}} \right)$$

$$R = \frac{V \cdot L/D}{TSFC} \cdot \ln \left(\frac{1}{1 - MF_{\text{Fuel}}} \right) \qquad MF_{\text{Fuel}} = 1 - \exp \left(\frac{-R \cdot TSFC}{V \cdot L/D} \right)$$

Propulsione elettrica:

$$E = \frac{Energy_{Batt}}{P_{Batt}}$$

$$\textit{Energy}_{\text{Batt}} = \textit{Capacity} \cdot \textit{Voltage} \cdot \eta_{\text{Batt}} \cdot f_{\text{Usable}}$$

$$P_{\text{Thrust}} = T \cdot V$$

$$Energy_{Batt} = E_{spec} \cdot M_{Batt} \cdot \eta_{Batt} \cdot f_{Usable}$$
 $P_{Thrust} = D \cdot V = \frac{W_{TO}}{L/D} \cdot V$

$$P_{\mathrm{Thrust}} = D \cdot V = \frac{W_{\mathrm{TO}}}{L/D} \cdot V$$

$$\mathit{MF}_{\mathrm{Batt}} = \frac{E \cdot g}{E_{\mathrm{Spec}} \cdot \prod \eta \cdot \eta_{\mathrm{Batt}} \cdot f_{\mathrm{Usable}} \cdot C_L^{3/2} / C_D} \cdot \sqrt{\frac{W_{\mathrm{TO}} / S_w}{1 / 2 \cdot \rho}}$$

Dimensionamento preliminare

... un po' più in dettaglio

- 1. Configurazione geometrica: ala, superfici di coda, fusoliera, integrazione propulsore, etc.
- 2. Aerodinamica. Es. profili alari, momento picchiante, resistenza.
- 3. Stima pesi.
- 4. Strutture: materiali, carichi, dimensionamento ala e fusoliera...
- 5. Sistema propulsivo.
- 6. Prestazioni di volo e analisi di missione.
- 7. Avionica, software di volo e sottosistemi.
- 8. Lancio e recupero, su binario, a mano, da veicolo in movimento a terra, recupero in rete, etc.
- Sistemi di comunicazione.
- 10. Sistemi di misura.
- 11. ...

Brain storming – fase 1

- Quale categoria?
- Quale payload? Quale missione?
- Quale propulsione?

Riferimenti

• J. Gundlach, Designing Unmanned Aircraft Systems: A Comprehensive Approach, AIAA Education Series, 2014.