Tutorial 8 STAT 150

Exercise 1:

Let $S_n = X_1 + ... + X_n$ where the X_i are independent with $\mathbb{E}[X_i] = 0$ and $\text{Var}(X_i) = \sigma^2$.

- (a) Show that $S_n^2 n\sigma^2$ is a martingale.
- (b) Let $\tau = \min\{n : |S_n| > a\}$. Show that $\mathbb{E}[\tau] \geq \frac{a^2}{\sigma^2}$. (Hint: use Fatou's Lemma: for any sequence of positive r.v's X_n we have $\mathbb{E}[\lim_{n\to\infty} X_n] \leq \lim_{n\to\infty} \mathbb{E}[X_n]$)

Exercise 2:

Let $Y_1, ..., Y_n$ a sequence of i.i.d random variables such that $\mathbb{P}[Y_i = 0] = 1 - p$ and $\mathbb{P}[Y_i = 1] = p$. We define $M_n = \frac{1}{p^n} \prod_{i=1}^n Y_i$

- (a) Prove that M_n is a martingale with respect to Y_n .
- (b) Show that M_n converges to a limit M_{∞} and prove that this limit is almost surely equal to 0.

Exercise 3:

Consider a Markov chain $(X_n)_n$ with state space S. Let $A \subset S$ and suppose that C = S - A is a finite set. Let $V_A = \min\{n \geq 0 : X_n \in A\}$ be the time of the first visit to A. Suppose that g(x) = 0 for $x \in A$, while for $x \in C$ we have $g(x) = 1 + \sum_{x} p(x, y)g(y)$

- (a) Show that $g(X_{V_A \wedge n}) + (V_A \wedge n)$ is a martingale.
- (b) Prove that for all $x \in C$ we have $g(x) = \mathbb{E}_x[V_A]$.

Exercise 4:

Let $\xi_1, \xi_2, ...$ be independent with $\mathbb{P}(\xi_i = 1) = p$ and $\mathbb{P}(\xi_i = -1) = q = 1 - p$ where $p < \frac{1}{2}$.

Let
$$S_n = S_0 + \xi_1 + ... + \xi_n$$
 and $V_0 = \min\{n \ge 0 : S_n = 0\}.$

- (a) Let ϕ be the Laplace transform of ξ_1 (i.e : $\phi(\theta) = \mathbb{E}[e^{\theta \xi_1}]$). Show that $\frac{e^{\theta S_n}}{\phi(\theta)^n}$ is a martingale.
- (b) Using the optimal stopping theorem show that if $\theta \leq 0$ and x > 0 then $e^{\theta x} = \mathbb{E}_x[\phi(\theta)^{-V_0}].$
- (c) Let 0 < s < 1. Solve the equation $\phi(\theta) = \frac{1}{s}$, then use the previous question to conclude that the generating function of V_0 has the following form:

$$\mathbb{E}_x[s^{V_0}] = (\frac{1 - \sqrt{1 - 4pqs^2}}{2ps})^x$$