#### Capa de red

#### Objetivo

Proveer servicios para intercambiar secciones de datos individuales a través de la red entre dispositivos finales identificados.

#### Procesos básicos

Para realizar este transporte de extremo a extremo la Capa de red utiliza 4 procesos básicos:

- Direccionamiento
- Encapsulamiento
- ► Enrutamiento / encaminamiento
- Desencapsulamiento



#### **DIRECCIONAMIENTO**



192.168.32.11

192.168.36.5



#### Protocolos de capa de red

- Versión 4 del protocolo de Internet (IPv4)
- Versión 6 del protocolo de Internet (IPv6)
- ▶ Intercambio Novell de paquetes de Internetwork (IPX)
- Apple Talk
- Servicio de red sin conexión (CLNS/DECNet)

#### Protocolos de capa de red

- Fue diseñado como un protocolo de bajo costo.
- Provee sólo las funciones necesarias para enviar un paquete desde un origen a un destino a través de un sistema interconectado de redes.

#### Características

- ▶ Sin conexión: No establece conexión antes de enviar los paquetes de datos.
- Máximo esfuerzo (no confiable): No se usan encabezados para garantizar la entrega de paquetes.
- Medios independientes: Operan independientemente del medio que lleva los datos.

#### Sin conexión



El emisor no sabe:

- Si el receptor está presente
- Si llegó la carta
- Si el receptor puede leer la carta

El receptor no sabe:

- Cuando llegará



#### Mejor intento

No confiable significa que IP no tiene la capacidad de administrar ni recuperar paquetes no entregados o corruptos

Como los protocolos en otras capas pueden administrar la confiabilidad, se le permite a IP funcionar con mucha eficiencia.

#### Independencia de medios



#### Direccionamiento

#### ¿Dividir redes?

- Geográfica
- Propósito
- Propiedad

- Seguridad
- Rendimiento

#### Para dividir redes necesitamos:

Direccionamiento jerárquico



Nombre Dirección Código Postal Estado País

#### Dirección lógica

Dirección lógica IPv4 es de 32 bits, jerárquica y está constituida por dos partes.



#### Dirección lógica

▶ Por comodidad, las direcciones IPv4 se dividen en

#### 4 grupos de 8 bits (octetos)

Cada parte se convierte a su valor decimal y se dividen por punto.

#### Máscara de subred

- Longitud: 32 bits. Representación en decimal
- Utiliza unos y ceros para indicar cuáles bits de la dirección son bits de red y cuáles bits de host

IP 192.168.2.8 MÁSCARA 255.255.250

#### Modo de operación

► Operador lógico: AND

11000000.10101000.00000010.00001000

11111111.111111111.11111111.00000000

11000000.10101000.00000010.0000000

## Clasificación de direcciones

# Clases IP



#### Prefijo de red

- El prefijo de red es una representación de cuántos bits representan la porción de red.
- ▶ 172.16.4.0 /24, /24 es la longitud de prefijo e indica que los primeros 24 bits son la dirección de red. Esto deja a los 8 bits restantes, el último octeto, como la porción de host.

#### Clases IP

- Clase A 0.0.0.0 /8 a 127.0.0.0 /8
- ► Clase B 128.0.0.0 /16 hasta 191.255.0.0 /16
- Clase C 192.0.0.0 /24 a 223.255.255.0 /24

#### Tipos de direcciones IPv4

- Dirección de red: la dirección en la que se hace referencia a la red.
- Dirección de broadcast: una dirección especial utilizada para enviar datos a todos los hosts de la red.
- Direcciones host: las direcciones asignadas a los dispositivos finales de la red.

### Rango de direcciones IPv4 Reservadas y especiales

- Direcciones experimentales 240.0.0.0 a 255.255.255.254
- Direcciones multicast 224.0.0.0 a 239.255.255.255
- Ruta predeterminada 0.0.0.0 0.255.255.255 (0.0.0.0/8)
- **Loopback** 127.0.0.0 a 127.255.255.255
- ► Enlace local 169.254.0.0 a 169.254.255.255 (169.254.0.0 /16)
- ► Test Net 192.0.2.0 a 192.0.2.255 (192.0.2.0 /24)

#### Direcciones públicas y privadas

#### **Direcciones privadas**

- 10.0.0.0 a 10.255.255.255 (10.0.0.0 /8)
- 172.16.0.0 a 172.31.255.255 (172.16.0.0 /12)
- 192.168.0.0 a 192.168.255.255 (192.168.0.0 /16)



ADDRESS RESOLUTION PROTOCOL

#### ARP

- Protocolo que permite asociar una dirección IP con la dirección MAC correspondiente.
- Envía un broadcast a todos los host conectados en una misma red LAN
- > Guarda las asociaciones en una tabla en memoria caché

#### Paquete ARP

| physical layer header                               |                                                                                                                                                                                                       | x bytes                                                                                                                                                                                                               |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hardware address space                              |                                                                                                                                                                                                       | 2 bytes                                                                                                                                                                                                               |
| protocol address space                              |                                                                                                                                                                                                       | 2 bytes                                                                                                                                                                                                               |
| hardware address<br>byte length (n) byte length (m) |                                                                                                                                                                                                       | 2 bytes                                                                                                                                                                                                               |
| operation code                                      |                                                                                                                                                                                                       | 2 bytes                                                                                                                                                                                                               |
| hardware address of sender                          |                                                                                                                                                                                                       | n bytes                                                                                                                                                                                                               |
| protocol address of sender                          |                                                                                                                                                                                                       | m bytes                                                                                                                                                                                                               |
| hardware address of target                          |                                                                                                                                                                                                       | n bytes                                                                                                                                                                                                               |
| protocol address of target                          |                                                                                                                                                                                                       | m bytes                                                                                                                                                                                                               |
|                                                     | hardware address space  protocol address space  hardware address protocol address byte length (n)  operation code  hardware address of sender  protocol address of sender  hardware address of target | hardware address space  protocol address space  hardware address protocol address byte length (n) byte length (m)  operation code  hardware address of sender  protocol address of sender  hardware address of target |









INTERNET CONTROL MESSAGE PROTOCOL

#### ICMP

Se utiliza para comunicar a la fuente original, los errores encontrados mientras se encaminan los paquetes



#### ICMP

Algunos ejemplos del uso de ICMP es en el PING y Traceroute o Tracert

```
Protocol
  10.000000 192.168.100.7
                                      216.58.195.228
                                                                  74 Echo (ping) request id=0x0001, seg=31/7936,
                                                          ICMP
   20.011624 216.58.195.228
                                                                   74 Echo (ping) reply
                                                                                           id=0x0001, seq=31/7936,
                                      192.168.100.7
                                                          ICMP
Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
Ethernet II, Src: e8:2a:ea:80:56:29 (e8:2a:ea:80:56:29), Dst: 50:1d:93:ba:d6:08 (50:1d:93:ba:d6:08)
■ Internet Protocol Version 4, Src: 192.168.100.7 (192.168.100.7), Dst: 216.58.195.228 (216.58.195.228)
□ Internet Control Message Protocol
  Type: 8 (Echo (ping) request)
  code: 0
  Checksum: 0x4d3c [correct]
  Identifier (BE): 1 (0x0001)
  Identifier (LE): 256 (0x0100)
  Sequence number (BE): 31 (0x001f)
  Sequence number (LE): 7936 (0x1f00)
  [Response In: 2]

    □ Data (32 bytes)
```

#### ICMP

```
Protocol
                                                                 Length Info
  10.000000 192.168.100.7
                                      216.58.195.228
                                                                   74 Echo (ping) request id=0x0001, seq=
                                                          ICMP
  20.011624 216.58.195.228
                                                                   74 Echo (ping) reply
                                                                                           id=0x0001, seq=
                                      192.168.100.7
                                                          ICMP

■ Frame 2: 74 bytes on wire (592 bits), 74 bytes captured (592 bits).

Ethernet II, Src: 50:1d:93:ba:d6:08 (50:1d:93:ba:d6:08), Dst: e8:2a:ea:80:56:29 (e8:2a:ea:80:56:29)
■ Internet Protocol Version 4, Src: 216.58.195.228 (216.58.195.228), Dst: 192.168.100.7 (192.168.100.7)
■ Internet Control Message Protocol
  Type: 0 (Echo (ping) reply)
  code: 0
  Checksum: 0x553c [correct]
  Identifier (BE): 1 (0x0001)
  Identifier (LE): 256 (0x0100)
  Sequence number (BE): 31 (0x001f)
  Sequence number (LE): 7936 (0x1f00)
  [Response To: 1]
  [Response Time: 11.624 ms]

■ Data (32 bytes)
```

## Ejercicios

