Lesson 9 Neural machine translation

Outline

- 1. Introduction to machine translation
- 2. Neural machine translation
- 3. Attention mechanism

Introduction to machine translation

Machine translation

Google translate

Machine Translation

 Machine translation (MT) is the operation of translating a sentence x from one language (called the source language) into a sentence y in another language (called the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

History of machine translation

- Beginning in the 1950s
- Translate from Russian to English (demand comes from the cold war)
- The translation system is mainly rule-based, using a dictionary to map Russian words to English

1 minute video showing 1954 MT: https://youtu.be/K-HfpsHPmvw

Rule based translation

Figure 1: The Vauquois triangle

© https://www.coroflot.com/tuyenduong/machine-translation

Rule based translation

- Lots of manual handling and human effort
 - Mapping dictionary from Source Destination
 - Transformation rules (lexical, structure)
 - Morphological rules
- Low quality

Statistical machine translation (1990-2010)

- Statistical machine translation learns a probabilistic model from data
- Objective: Find the best sentence in the target language for the input sentence in the source language

One way to model P(s|t)

- Assumption: Match each word in the source sentence with the words in the target sentence
- Alignment vector a = [1,2,4,5,6]
- Objective: Find a way to maximize P(s,a|t)

© Vasily Konovalov, MSc Natural Language Processing

Disadvantages of statistical machine translation

- The best systems following this approach are very complex, each containing many small, independently designed modules.
 - Still not as efficient as a human
- Requires a lot of manual handling and human effort
 - Feature engineering
 - External resources
- Maintenance costs are high
- Cannot reuse efforts when switching to another language pair,

Progress in machine translation

Neural Machine Translation

Neural Machine Translation is the approach of modeling the entire MT process via one big artificial neural network (ACL 2016)

Sequence-to-sequence model

- The RNN encoder generates the "encoding information" of the source sentence
- The RNN decoder generates the target sentence based on the encoding information of the source sentence

Sequence-to-sequence model

- The seq2seq model can be used for many other problems such as:
 - Text summary (long text → short text)
 - Conversation (previous sentence → next sentence)
 - Code generation (natural language → python code)
 - ...

Neural machine translation (NMT)

© Tensorflow for deep learning research. Standford

MT as conditional language model

• NMT model: P(y|x)

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

- Conditional language model
 - Language modeling: predicting a word based on the context of surrounding words
 - Conditional: the prediction is based on additional conditions from the source sentence

<START> the don't have poor any money

Training seq2seq model

© Tensorflow for deep learning research. Standford

Decoding in Seq2seq

- Decode the target sentence by taking argmax at each step
- This is greedy decoding
- If you make a mistake at a certain step, you will be wrong in the following steps, there is no way to go back to correct it.

Beam search in decoding

Searching method

 We want to find the target sentence y (length T) that maximizes the posterior probability:

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x)$$

- We can compute for all of y's alternatives.
- Complexity V^T where V is the size of the vocabulary set.

Beam search method

- Idea: At each decoding step, we maintain k partial solutions with the highest probability (called hypotheses).
- k is the beam size
- A hypothesis $y_1, y_2, ..., y_t$ has a score equal to the log of its probability value:

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- All scores are negative, the higher the better
- We will keep the k hypotheses with the highest score at each step
- Beam search does not guarantee optimal solution
- But much more efficient than the brute-force method

Calculate the probability distribution of the next word

Keep the two options with the highest score

 For each hypothesis, find the next k with the highest scores

• In k² new hypothesis we keep only k highest score hypothesis

 For each hypothesis, find the next k with the highest scores

• In k² new hypothesis we keep only k highest score hypothesis

 For each hypothesis, find the next k with the highest scores

 In k² new hypothesis we keep only k highest score hypothesis

 For each hypothesis, find the next k with the highest scores

 In k² new hypothesis we keep only k highest score hypothesis

 For each hypothesis, find the next k with the highest scores

 The hypothesis with the highest score is the solution to be found!

24

Beam search stop condition

- In greedy decoding, usually stops when the model generates token <END>
- Example: <START> he hit me with a pie <END>
- For beam search, different hypotheses can generate
 <END> tokens at different times
- When a hypothesis generates <END> we call that hypothesis complete and set it aside to continue finding other hypotheses.
- Usually will stop beam search when:
 - Or reach a given step T
 - Or when at least n complete hypotheses have been found

Beam search ending

- After finding a complete set of hypotheses, which one to choose?
- Problem: the longer the hypothesis, the lower the score

score
$$(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

 Solution: Normalize the score according to the hypothetical length

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{LM}(y_i|y_1,\ldots,y_{i-1},x)$$

BLEU (Bilingual evaluation understudy) score

- BLEU calculates the similarity between the translated sentence generated by the model and the label sentence, created by the translator
- Measure accuracy of N-grams (N from 1 to 4)
- Penalties for translation sentences that are too short

BLEU = min
$$\left(1, \frac{\textit{output-length}}{\textit{reference-length}}\right) \left(\prod_{i=1}^{4} \textit{precision}_i\right)^{\frac{1}{4}}$$

BLEU Score	Interpretation
30 - 40	Understandable to good translations
40 - 50	High quality translations
50 - 60	Very high quality, adequate, and fluent translations
> 60	Quality often better than human

NMT vs. SMT

- Advantages of NMT compared to SMT:
 - Better performance: more fluent translation, better context usage...
 - Using only a single network, it is possible to train end-to-end, no need to optimize other independent modules
 - Less human effort required: no manual feature extraction required; the same method is reusable for many different language pairs
- Disadvantages of NMT compared to SMT:
 - NMT is harder to explain, harder to debug
 - NMT is difficult to control. For example, it is not easy to give a rule or translation suggestion to NMT.

Attention mechanism

Bottleneck in seq2seq model

Long sentence translation

- Machine learning has turned out to be a very useful tool for translation, but it has a few weak spots. The tendency of translation models to do their work word by word is one of those, and can lead to serious errors.
- L'apprentissage automatique s'est révélé être un outil très utile pour la traduction, mais il comporte quelques points faibles. La tendance des modèles de traduction à faire leur travail mot à mot en fait partie et peut entraîner de graves erreurs.

Model performance w.r.t. sentence length

© On the Properties of Neural Machine Translation: Encoder-Decoder Approaches

Attention

- Attention solves the bottleneck problem of seq2seq
- The idea
 - At each decoding step, use a direct connection to the encoder network part for computation and from there focus (pay attention) only on a specific part of the source sentence, ignoring irrelevant parts.
- One of the most influential ideas in deep learning for NLP
 - Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio.
 "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Formulations

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^T oldsymbol{h}_1, \dots, oldsymbol{s}_t^T oldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use $\, \alpha^t \,$ to take a weighted sum of the encoder hidden states to get the attention output $_N$

$$\boldsymbol{a}_t = \sum_{i=1}^{n} \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output a_t with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t; oldsymbol{s}_t] \in \mathbb{R}^{2h}$$

Advantages of attention mechanism

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

© Tensorflow for deep learning research. Standford

References

- 1. https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/
- 2. http://cs231n.stanford.edu/slides/2020/lecture 10.pdf

