PROVA SCRITTA DI ELETTRONICA 17 LUGLIO 2008

1) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia V_{Tn1} e V_{Tn2} e dai coefficienti β_{n1} e β_{n2} II segnale d'ingresso abbia il sequente andamento:

t<0: V_i = 0 t>0: V_i = Vdd

Si dimensioni la resistenza R_2 in modo tale che la potenza dissipata per t<0 sia P_{diss} =7 mW. Si determini il valore della capacità C in modo tale che il tempo di discesa t_{fall} relativo al segnale d'uscita vu, definito come il tempo necessario a compiere la transizione fra il 90% e il 10% dell'escursione totale del segnale di uscita, sia t_{fall} =1.4 μ s.

$$V_{dd} = 3.5 \text{ V}, V_{Tn1} = 0.5 \text{ V}, \beta_{n1} = 5\text{mA/V}^2, V_{Tn2} = 0.7 \text{ V}, \beta_{n2} = 1\text{mA/V}^2, R_1 = 1\text{k}\Omega.$$

- 2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia $V_{Tn}=|V_{Tp}|=V_{T}$ e dai coefficienti β_n e β_p . I segnali d'ingresso abbiano l'andamento mostrato in figura, periodico con periodo di 8 ns.
 - Si tracci l'andamento del segnale di uscita V_u nell'intervallo $[0 \div 8ns]$, trascurando i tempi di transizione e specificandone il valore a regime in ciascun tratto.
 - Si determinino i valori di β_n e β_p in modo che:
 - l'escursione logica di Vu sia pari a 2.9 V
 - la potenza media erogata dal generatore V_{dd} sia pari a 350 μW.

$$V_{dd} = 3.3 \text{ V}, V_T = 0.5 \text{ V}.$$

[•] Indicare su ciascun foglio nome, cognome, data e numero di matricola

[•] Non usare penne o matite rosse

OSS. PRELIMINARI: Quando M2 è on è SAT. M2 on quando Vdd-vu>vtn2.

1) t<0, vi=0, allora M1 OFF.

La potenza dissipata per t<0, Pdiss=7mW.

ir1=(vdd-vu)/r1 id2sat=β _{n2} /2*(vdd-vu-vt _{n2})^2 ir2=vu/r2 ma ir1+id2sat=ir2 e Pdiss1=vdd*vu/r2	r2=951 Ω e vu=1.903 V; r2=2848.68 Ω e vu=5.697 V. Delle due soluzioni quella accettabile è r2=951 Ω vu=1.903 V. Tale valore di vu soddisfa l'Hp di accensione di M2: vu=1.903 V < 2.8 V.
da cui si ricava che:	

2) Per $t \rightarrow \infty$, vi=vdd, quindi M1 on e lin (sse $vdd \rightarrow vu+vtn1$) e M2 sat.

ir1=(vdd-vu)/r1 $id2sat=\beta_{n2}/2*(vdd-vu-vt_{n2})^2$ ir2=vu/r2 $id1lin=\beta_{n1}*((vdd-vt_{n1})*vu-vu^2/2)$	Da cui si ricava che: vu=0.398 V, vu=6.219 V. Delle due soluzioni quella accettabile è vu=0.398 V. Tale soluzione soddisfa l'hp di linearità di M1 (vdd>0.898 V) e di accensione di M2 (vdd-		
ir1+id2sat=ir2+id1lin	vu=3.102>0.7V).		

Per t=0+ vi=vdd, allora M1 on e M2 on, e vu(0+)=vu(0-)=1.903V. Il tfall è il tempo che il segnale d'uscita impiega per compiere la transizione dal 90% al 10 % della transizione totale : Vu(iniziale)=1.903V, Vu(finale)=0.398, quindi Δ vu=1.505V e vuiniz=1.903-0.1*1.505=1.7525 V e vufinal=0.1*1.505+0.398=0.5485 V. Si noti che durante tutto il transitorio della vu, M1 rimane in regione lin.

$ir1=(vdd-vu)/r1$ $id2sat=\beta_{n2}/2*(vdd-vu-vt_{n2})^2$ $ir2=vu/r2$	$T_{c,n} = \int_{-\infty}^{0.5485} C$		
$id1lin=\beta_{n1}*((vdd-vt_{n1})*vu-vu^2/2)$ Cdvu/dt=ir1+id2sat-id1lin-ir2	$T_{fall} = \int_{1.7525} \frac{c}{ir1 + id2sat - id1lin - ir2} dV_u$		
	Imponendo t_{fall} = 1.4 µs, si ricava C=10 nF.		

Soluzione esercizio 2

I transistori M7,M8 e M9 costituiscono una rete di pull-up, attiva se almeno uno dei segnali di ingresso (Va,Vb,Vc) è basso. La rete costituita dai pass-transistor M1...M6 è invece inattiva se almeno due fra tali segnali sono nulli; si configura come rete di pull-down (due transistori nMOS in serie) se uno soltanto fra i segnali di ingresso è nullo; si configura come rete di pull-up set tutti gli ingressi sono alti. La tabella della verità è quindi la seguente:

Va	V_b	V _c	M1M6	M7M9	Vu	1
0	0	0	ON (PU)	OFF	V _{dd}	1
0	0	V_{dd}	ON (PU)	OFF	V_{dd}	Č
0	V_{dd}	0	ON (PU)	OFF	V_{dd}	C
0	V _{dd}	V_{dd}	ON (PU)	ON (PD)	Vı	2
V_{dd}	0	0	ON (PU)	OFF	V_{dd}	Œ
V_{dd}	0	V_{dd}	ON (PU)	ON (PD)	Vı	2
V_{dd}	V_{dd}	0	ON (PU)	ON (PD)	Vı	0
V_{dd}	V_{dd}	V_{dd}	OFF	ON (PU)	Vaa (debole)	3

Caso ①:

il pull-up è ON, il PD è off:

$V_U = V_H = V_{dd}$

Caso ②:

sono attivi sia il PU (1 pMOS) che il PD (2 nMOS in serie, equivalenti a un transistore con $\beta_{eq}=\beta_n/2$). Il circuito equivale a un invertitore pseudo-nMOS, al quale occorre imporre un valore di uscita bassa:

$$V_U = V_L = V_H - escursione = 3.3 - 2.9 = 0.4 V$$

Si ha quindi, in questo caso:

$$\left. \begin{array}{l} V_{GSn} = V_{dd} \\ V_{DSn} = V_L \end{array} \right\} \to V_{GSn} > V_{DSn} + V_T \to \text{nMOS LIN} \\ \to I_{Dn} = \beta_{eq} \left((V_{dd} - V_T) V_L - \frac{V_L^2}{2} \right) = 0.52 \; \beta_n \; (*)$$

$$\frac{V_{SGp} = V_{dd}}{V_{SDp} = V_{dd} - V_L} \rightarrow V_{SGp} < V_{SDp} + V_T \rightarrow \text{pMOS SAT} \\ \rightarrow I_{Dp} = \frac{\beta_p}{2} (V_{dd} - V_T)^2 = 3.92 \; \beta_p \; \; (**)$$

Caso:

In questo caso, il pull-up è costituito da una rete di nMOS ed è equivalente ad un solo transistore, con $\beta_{eq} = \frac{3}{2} \beta_n$. Il pull-up non consente, se necessario, di portare l'uscita al valore pieno Vdd, ma il transitorio si arresta per:

$$V_U = V_{dd} - V_T$$

L'andamento del segnale di uscita risulta quindi quello indicato in figura:

La potenza media vale:

$$P = \frac{1}{T} \int_0^T V_{dd} I_{dd} dt$$

Dove I_{dd} è la corrente erogata dal generatore V_{dd} . Tale corrente è non nulla solo negli intervalli in cui sono simultaneamente attivi il pull-up e il pull-down. In tali intervalli, indicati con ② e complessivamente pari ai 3/8 del periodo T, la corrente è costante, secondo la (**). Si ha quindi:

$$P = \frac{1}{T} \frac{3T}{8} V_{dd} \cdot 3.92 \, \beta_p \rightarrow \beta_p = 72.15 \, \frac{\mu A}{V^2}$$

Imponendo l'uguaglianza delle correnti (*) e (**), si ricava infine:

$$\beta_n = 543.9 \, \frac{\mu A}{V^2}$$

