

# به نام خدا دانشگاه تهران پردیس دانشکدههای فنی دانشکده مهندسی برق و کامپیوتر



# معماري كامپيوتر

زمستان 1400

استاد: دکتر سعید صفری

<mark>تمرین کامپیوتری شماره 3</mark> CA#3

اعضای گروه:

محمدمهدي عبدالحسيني

810 198 434

على رنجبرى 810 198 570

Computer Architecture

# فهرست مطالب

| مسي                                      |
|------------------------------------------|
| كنتر                                     |
| پرچ                                      |
| انواع                                    |
| انواع                                    |
| فيلد                                     |
| حافة                                     |
| نحوه                                     |
| نتيج                                     |
| نحوه                                     |
| בר ב |

### مسیر داده (DataPath)



#### کنترلر (Controller)



# پرچم (Flag)



| С  | Name             | Description                                                 | Flag        | Instructions      |
|----|------------------|-------------------------------------------------------------|-------------|-------------------|
| 00 | EQ(equal)        | Z set                                                       | Z(zero)     | All               |
| 01 | GT(greater than) | Z clear, and either N set and V set, or N clear and V clear | C(carry)    | ADD, SUB, RSB,CMP |
| 10 | LT(less than)    | N set and V clear, or N clear and V set                     | N(negative) | All               |
| 11 | AL               | always                                                      | V(overflow) | ADD, SUB, RSB,CMP |

# انواع دستورات پردازنده

- پردازنده دارای سه نوع دستور است:
- o دستورات پردازش داده (Data Processing Instructions)

| 31 | 30  | 29   | 24  | 23 | 22 | 20 | 19 |    | 16 | 15 | 1  | 12 | 11  | 0 |
|----|-----|------|-----|----|----|----|----|----|----|----|----|----|-----|---|
| C  | , , | 0000 | 000 | Ι  | op | С  |    | Rn |    |    | Rd |    | Op2 |   |

(Data Transfer Instructions) دستورات انتقال داده

| 31 | 30  | 29 2      | 1 20 | 19 | 16 | 15 | 12 | 11     | 0 |
|----|-----|-----------|------|----|----|----|----|--------|---|
| (  | ( ) | 010000000 | I    |    | Rb |    | Rd | Offset |   |

o دستورات پرش (Branch Instructions) دستورات

| 31 3 | ) 2 | 9  | 27 | 26 | 25     | 0 |
|------|-----|----|----|----|--------|---|
| С    | T   | 10 | )1 | L  | Offset |   |

#### انواع عملياتهاي ALU

| Орс | Inst. | Description                       |
|-----|-------|-----------------------------------|
| 000 | ADD   | Rd = Rn + Op2                     |
| 001 | SUB   | Rd = Rn - Op2                     |
| 010 | RSB   | Rd = Rn – Op2                     |
| 011 | AND   | Rd = Rn AND Op2                   |
| 100 | NOT   | Rd = -Op2(2's complement)         |
| 101 | TST   | Set condition codes on Rn AND Op2 |
| 110 | CMP   | Set condition codes on Rn – Op2   |
| 111 | MOV   | Rd = Op2                          |

#### فیلد I و فیلد L

|   | Op2 |                |   |    |   |  |
|---|-----|----------------|---|----|---|--|
|   | 11  | 4              | 3 |    | 0 |  |
| 0 |     |                |   | Rm |   |  |
|   | 11  |                |   |    | 0 |  |
| 1 |     | Immediate Data | 1 |    |   |  |

| Inst. Type | L | Inst.      | Description                           |
|------------|---|------------|---------------------------------------|
| Branch     | 0 | В          | Jump to offset+PC                     |
|            | 1 | B and Link | Jump to offset+PC, R15=return address |
| Data       | 0 | Load       | Rd=Mem[Rb+offset]                     |
| Transfer   | 1 | Store      | Mem[Rb+offset]=Rd                     |

#### حافظه (Memory)

```
R1,1000(R0)
11_010000000_0_0000_0001_001111101000
                                       //#01
                                               LW
                                                                      # C=11 AL
11\_000000\_1\_111\_0000\_0010\_001111101000
                                       //#02
                                               MOVi
                                                      R2,1000
                                                                       # C=11 AL
11_000000_1_111_0000_0011_000000000001
                                                                      |# C=11 AL
                                       //#03
                                              MOVi
                                                      R3,1
11 000000 1 110 0011 0000 000000001010
                                       //#04
                                               CMPi
                                                      R3,10
                                                                      |# C=11 AL
00_101_0_00000000000000000000000111
                                       //#05
                                                      +7
                                                                      |# C=00 EQ
                                                                      |# C=11 AL
                                       //#06
                                                      R4,1000(R3)
11_010000000_0_0011_0100_001111101000
                                              LW
11 000000 0 110 0001 0000 000000000100
                                       //#07
                                               CMP
                                                      R1,R4
                                                                      |# C=11 AL
//#08
                                                                      |# C=10 LT
                                              В
                                                      +2
11_000000_0_111_0000_0001_000000000100
                                      //#09
                                              MOV
                                                      R1,R4
                                                                      |# C=11 AL
11_000000_1_000_0011_0010_001111101000
                                       //#10
                                               ADDi
                                                      R2,R3,1000
                                                                      |# C=11 AL
                                                      R3,R3,1
11\_000000\_1\_000\_0011\_0011\_000000000001
                                       //#11
                                               ADDi
                                                                      # C=11 AL
//#12
                                                                      # C=11 AL
                                                      R1,2000(R0)
11_010000000_1_0000_0001_011111010000
                                       //#13
                                                                      # C=11 AL
                                              SW
11_010000000_1_0000_0010_011111010100
                                       //#14
                                                      R2,2004(R0)
                                                                      # C=11 AL
                                              SW
00001111_00000000_00000100_00000110
01111000_00000000_00000001_00011111
00000000_00000000_11110010_00000001
00000000 00000000 11111111 10000001
00001111_11111111_00000000_00000001
00000000_000000000_11111100_00011111
00000000_000000000_00000000_00000101
                                       //#5:@7
00000000_00000000_00000000_11111001
00000000 00000000 00000000 00111111
00000000_11110000_11110000_00001111
```

# نحوه يرشدن خانههاى حافظه

#### دستورات:



#### محتواي خانه 1000 تا 1010:



# نتيجه شبيهسازي



# نحوه پرشدن رجيسترها

