МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙУНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА» (НГТУ)

Институт ядерной энергетики и технической физики

Кафедра «Биоинженерия и ядерная медицина»

Фонд оценочных средств (ФОС) по дисциплине «История и методология науки и техники в области биотехнических систем и технологий»

Направление подготовки **12.04.04 Биотехнические системы и технологии**

Профиль подготовки Медико-биологические аппараты, системы и комплексы

> Квалификация (Степень) **Магистр**

> > Форма обучения Очная

Разработчик / составитель фонда оценочных средств по дисциплине «История и методология науки и техники в области биотехнических систем и технологий»

профессор, д.б.н., проф. Монич В.А.

Кафедра «Биоинженерия и ядерная медицина»

Дата, подпись

Фонд оценочных средств по дисциплине «История и методология науки и техники в области биотехнических систем и технологий» рассмотрен на заседании кафедры «Биоинженерия и ядерная медицина»

Заведующий кафедрой профессор, д.т.н. Снегирев С.Д.

Дата, подпись

Фонд оценочных средств по дисциплине «История и методология науки и техники в области биотехнических систем и технологий» утвержден методическим советом образовательнонаучного института «Ядерной энергетики и технической физики»

Протокол № 3 от « 10» 04 20 t.

«10» ampelle 20 15 F.

Председатель методического совета/комиссии Деробост

А.Е. Хробостов /

СОДЕРЖАНИЕ

Введение. Цели и задачи освоения дисциплины.	.4
1. Паспорт оценочных средств для текущей и промежуточной аттестации	5
2. Фонд оценочных средств для текущей аттестации	.7
3. Фонд оценочных средств и шкала оценивания для промежуточной аттестации	7

Введение. Цели и задачи освоения дисциплины

Дисциплина «История и методология науки и техники в области биотехнических систем и технологий» относится к вариативной части первого блока (Б1.Б.3), готовит к решению профессиональной задачи по научно-исследовательскому виду деятельности.

Подготовка специалистов по направлению 12.04.04 – «Биотехнические системы и технологии», профиль подготовки: «Медико-биологические аппараты, системы и комплексы» реализуется в институте ядерной энергетики и технической физики на кафедре «Биоинженерия и ядерная медицина».

Целью учебной дисциплины «История и методология науки и техники в области биотехнических систем и технологий» является формирование знаний о ходе исторического процесса создания медицинских диагностических, терапевтических и исследовательских технологий, аппаратов и систем, а также развитие компетенций в сфере биомедицинской инженерии. Задачи учебной дисциплины «История и методология науки и техники в области биотехнических систем и технологий» является изучение основных этапов создания и развития биотехнических систем и технологий; изучение инновационных процессов, обеспечивших создание и развитие биотехнических систем и технологий, применяемых для диагностических исследований в медицине; изучение инновационных процессов, обеспечивших создание и развитие биотехнических систем и технологий, применяемых для терапевтических и хирургических процедур в медицине; изучение инновационных процессов, обеспечивших создание и развитие биотехнических систем и технологий, применяемых для лабораторных исследований в медицине;- овладение методологией оценки инновационного характера биотехнических систем и технологий.

Изучение дисциплины обеспечивает реализацию требований федерального государственного образовательного стандарта высшего образования по направлению 12.04.04 «Биотехнические системы и технологии», профиль подготовки: «Медико-биологические аппараты, системы и комплексы».

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие профессиональные компетенции (ПК) (таблица 1):

Таблица 1 - Признаки проявления компетенций

таолица т - признаки проявления компетенции					
Коды и содержание компетенций	Признаки проявления компетенций				
ОК-4 «Способность	Знать: этапы исторического развития в области биотехнических				
адаптироваться к из-	систем и технологий, место и значение биотехнических систем и				
меняющимся услови-	технологий в современном мире; роль цифровых и компьютерных				
ям, переоценивать на-	технологий в прогрессе создания аппаратуры медико-				
копленный опыт, ана-	биологического назначения				
лизировать свои воз-	Уметь: абстрактно мыслить, обобщать, анализировать и система-				
можности»	тизировать полученную информацию, использовать полученные				
	знания для развития своего творческого потенциала, работать со				
	специальной литературой				
	Владеть: навыками методологического анализа научного исследо-				
	вания и его результатов, навыками самостоятельного составления				
	прогнозов планируемых результатов своей деятельности				

Знания, полученные при изучении дисциплины «Методы исследования биосистем», необходимѕ для освоения магистрантами параллельно изучаемого курса: «Математическое моделирование биологических процессов и систем», а также для последующего изучения дисциплин «Биотехнические системы и технологии», «Современные проблемы биомедицинской и экологической инженерии».

Преподавание дисциплины «Методы исследования биосистем» предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельную работу студента, консультации (таблица 2).

Таблица 2 - Общая трудоемкость, виды занятий, форма аттестации

Вид учебной ра	2 семестр			
1. Контактная работа обучающихся с преподавателем (по видам учебных				
занятий) (всег	40			
1.1. Аудито	36			
в том числе:	Лекции (Л)	18		
	Лабораторные работы (ЛР)			
	Практические занятия (ПЗ)	18		
	Практикумы			
1.2. Внеауд	4			
групповые консультации по дисциплине				
групповые консультации по промежуточной аттестации (экзамен)				
индивидуальная работа преподавателя с обучающимися:				
- по проектиров	0			
- по выполнению работ РГР, реферат, КР				
2. Самост	32			
Вид промежут	зачет			
Общая трудое	72/2			

1. Паспорт оценочных средств для текущей и промежуточной аттестации Паспорт оценочных средств для текущей и промежуточной аттестации представлен в таблицах 3, 4

Таблица 3 - Паспорт оценочных средств (текущая аттестация)

1		Лекционн	п пинные занятия		рактические занятия	Самостоятельная работа		
раз-а	плины	руемые компе- тенции	Процедура оценивания	Наименование оценочных средств	Процедура оценивания	Наименование оценочных средств	Процедура оценивания	Наименование оценочных средств
1	Биометрические системы: исторические аспекты, основные направления и перспективы развития	ОК-4	Участие в групповых обсуждениях	Комплект те- матик для дис- куссий			Участие в групповых обсуждениях	Комплект тематик для дискуссий
2	История и методология развития рентгеновских методов исследования внутренних органов.	ОК-4	Участие в групповых обсуждениях	Комплект те- матик для дис- куссий	Выполнение практической работы	Практическая работа «Этапное развитие рентгенотехники, как пример каскада технических инноваций»	Участие в групповых обсуждениях	Комплект тематик для дискуссий
3	История и методология развития электрокардиографических методов исследования состояния сердечнососудистой системы.	ОК-4	Участие в групповых обсуждениях	Комплект те- матик для дис- куссий	Выполнение практической работы	Практическая работа 1. «Струнный гальванометр Депреза и Д Арсонваля», 2. «Методология исследований В. Эйнтховена, инновационные аспекты»	Участие в групповых обсуждениях	Комплект тематик для дискуссий
4	Биометрические системы: исторические аспекты, основные направления и перспективы развития	ОК-4	Участие в групповых обсуждениях	Комплект тематик для дискуссий	Выполнение практической работы	Практическая работа 1. «Ртутный тонометр Н. Короткова – золотой стандарт до нашего времени» 2. «Современные направления развития технологий измерения внутрисосудистого давления крови»	Участие в групповых обсуждениях	Комплект тематик для дискуссий
5	История и методология развития методов плетизмографии и реографии.	OK-4	Участие в групповых обсуждениях	Комплект те- матик для дис- куссий	Выполнение практической работы	Практическая работа «Импедан- сометрия, как разновидность плетизмографии»	Участие в групповых обсуждениях	Комплект тематик для дискуссий
6	История и методология развития акустических и оптоакустических, микропотоковых и фототерапевтических методов в медицине	OK-4	Участие в групповых обсуждениях	Комплект те- матик для дис- куссий	Выполнение практической работы	Практическая работа «История создания и развития медицинских применений ультрафиолетового, лазерного и широкополосного излучения в фотомедицине»	Участие в групповых обсуждениях	Комплект тематик для дискуссий

Таблица 4 - Паспорт оценочных средств (промежуточная аттестация)

Наименование дис-	Формируемые	Знаниевая	компонента	Деятельностная компонент	
циплины	компетенции	Процедура	Наименование	Процедура	Наименование
		оценивания	оценочных	оценивания	оценочных
			средств		средств
История и методоло- гия науки и техники в области биотехниче- ских систем и техно- логий	OK-4	Устное собе- седование по вопросам	Вопросы к зачету	Решение практических заданий	Задания к зачету

2. Фонд оценочных средств для текущей аттестации Вопросы для групповых обсуждений, круглых столов

- 1. Виды и особенности биометрических систем;
- 2 Три опыта Дж. Томпсона с электродными трубками;
- 3 Струнный электрокардиограф В. Эйнтховена золотой стандарт до наших дней.
- 4. Исследования М. Яновского.
- 5. Основные этапы развития методов плетизмографии. Современный статус и перспективы развития технологий.
- 6. Реографическая томография, как прорывная технология интроскопии. Этапы развития реографических методов исследования. Современный статус и перспективы развития технологий.
- 7. Оптоакустика, как одно из направлений исторического развития медицинской биоинженерии.
 - 8. Наноробототехника, наносенсоры, история создания и перспективы развития

Практические задания, требующие практического решения и ответа в письменной форме

- 1. Дайте классификацию спектральных диапазонов ультрафиолетового излучения. Укажите границы спектральных диапазонов в терминах длин волн и энергии фотонов.
- 2. Опишите биофизические эффекты, вызываемые в животных клетках ультрафиолетовым излучением всех диапазонов.
- 3. Подробно опишите историю создания и развития технологии фототерапевтического использования ультрафиолетового излучения. Каковы инновационные перспективы данного направления фотомедицины?
- 4. Дайте классификацию спектральных диапазонов видимого света. Укажите границы спектральных диапазонов в терминах длин волн и энергии фотонов.
- 5. Дайте классификацию спектральных диапазонов инфракрасного излучения. Укажите границы спектральных диапазонов в терминах длин волн и энергии фотонов.
- 6. Подробно опишите историю создания и развития технологии фототерапевтического использования видимого и инфракрасного излучений. Каковы инновационные перспективы данного направления фотомедицины?
- 7. Перечислите особенности лазерного излучения и укажите их значимость для формирования эффектов фотобиомодификации. Перечислите основные этапы исторического процесса в медицинском применении лазерного излучения. Укажите особенности применения низкоинтенсивного лазерного излучения в фототерапии и их инновационные перспективы.
- 8. Дайте определение широкополосного света. Перечислите основные этапы исторического процесса в медицинском применении широкополосного света для фототерапии. Укажите особенности применения низкоинтенсивного лазерного излучения в фототерапии и их инновационные перспективы.

3. Фонд оценочных средств и шкала оценивания для промежуточной аттестации

Формой промежуточной аттестации по дисциплине «История и методология науки и техники в области биотехнических систем и технологий» является зачет.

Вопросы для оценивания знаниевой компоненты

- 1. Дайте обзор исторических этапов создания и развития биометрических систем, виды и особенности биометрических систем.
- 2. Опишите опыты Дж. Томпсона с электродными трубками и рассмотрите их основные следствия.
- 3. Опишите обстоятельства и технологию открытия К. Рентгена. Проанализируйте исторические обстоятельства этого открытия.
- 4. Проанализируйте инновационный потенциал открытия К. Рентгена. Как обеспечивалась краткость временного интервала между открытием и коммерческим применением?
- 5. Опишите основные этапы развития рентгенотехники. Укажите инновационный потенциал каждого технологического этапа прогресса в этом направлении медицинской инженерии.
- 6. Опишите постановку опытов Р. Келликера и И. Мюллера, а также технологии, используемые в электрометре Г. Липпмана.
- 7. Опишите методику записи ЭКГ Уоррена, достоинства, недостатки, инновационные аспекты.
- 8. Опишите структуру и принципы струнного гальванометра Депреза и Д'Арсонваля, а также струнного электрокардиографа В. Эйнтховена.
- 9. Почему струнный электрокардиограф В. Эйнтховена остаётся золотым стандартом до наших дней? Опишите первое практическое применение телемедицинских технологий.
- 10. Опишите развитие телемедицинских технологий от 1906 до 2012 гг. В чём состоит их инновационный потенциал?
 - 11. Опишите методику С. Рива-Роччи, укажите недостатки данного метода.
- 12. Опишите аускультационный метод Н. Короткова, физический и физиологический базис метода, а также его инновационные аспекты.
- 13. Дайте современную классификацию современных направлений развития технологий измерения внутрисосудистого давления крови, опишите их, проанализируйте их инновационный аспект.
- 14. Плетизмография, как исторически первый этап развития биомедицинской инженерии. Основные этапы развития методов плетизмографии. Современный статус и перспективы развития технологий.
- 15. Импедансометрия, как разновидность плетизмографии. Реографическая томография, как прорывная технология интроскопии.
- 16. Этапы развития реографических методов исследования. Современный статус и перспективы развития технологий.
- 17. История эхо-акустических методов медицинских исследований. Перспективы развития. Оптоакустика, как одно из направлений исторического развития медицинской биоинженерии. Инновационные направления исследований.
 - 18. Наноробототехника, наносенсоры, история создания и перспективы развития.
- 19. Дайте классификацию спектральных диапазонов ультрафиолетового излучения. Укажите границы спектральных диапазонов в терминах длин волн и энергии фотонов.
- 20. Опишите биофизические эффекты, вызываемые в животных клетках ультрафиолетовым излучением всех диапазонов.
- 21. Подробно опишите историю создания и развития технологии фототерапевтического использования ультрафиолетового излучения. Каковы инновационные перспективы данного направления фотомедицины?
- 22. Дайте классификацию спектральных диапазонов видимого света. Укажите границы спектральных диапазонов в терминах длин волн и энергии фотонов.
- 23. Дайте классификацию спектральных диапазонов инфракрасного излучения. Укажите границы спектральных диапазонов в терминах длин волн и энергии фотонов.
- 24. Подробно опишите историю создания и развития технологии фототерапевтического использования видимого и инфракрасного излучений. Каковы инновационные перспективы данного направления фотомедицины?

- 25. Перечислите особенности лазерного излучения и укажите их значимость для формирования эффектов фотобиомодификации. Перечислите основные этапы исторического процесса в медицинском применении лазерного излучения. Укажите особенности применения низкоинтенсивного лазерного излучения в фототерапии и их инновационные перспективы.
- 26. Дайте определение широкополосного света. Перечислите основные этапы исторического процесса в медицинском применении широкополосного света для фототерапии. Укажите особенности применения низкоинтенсивного лазерного излучения в фототерапии и их инновационные перспективы.

Задачи (задания) для оценивания деятельной компоненты

- 1. Опишите методы оптоакустики, как одного из направлений исторического развития медицинской биоинженерии.
- 2. Охарактеризуйте инженерные основы реографической томографии
- 3. Охарактеризуйте тензометрический метод измерения артериального давления, сравните его с альтернативными методами
- 4. Охарактеризуйте метод измерения артериального давления фон Реклингхаузена
- 5. Подробно охарактеризуйте недостатки механических датчиков давления
- 6. Каковы задачи исследования М. Яновского и полученные им результаты
- 7. Модель электрической активности сердца. Электрический вектор сердца
- 8. Опишите методологию исследований В. Эйнтховена
- 9. Охарактеризуйте точность измерения артериального давления методом С. Рива-Роччи и опишите недостатки данного метода
- 10. Опишите особенности конструкции векторэлектрокардиографа
- 11. Опишите конструкцию конструкция струнного электрокардиографа В. Эйнтховена
- 12. Опишите конструкцию струнного гальванометра Д`Арсонваля
- 13. Опишите конструкцию и принцип работы электрометра Г. Липпмана
- 14. Методика постановки экспериментов Рентгена
- 15. В чём состоит инновационная направленность инженерных разработок в области биомедицины

Таблица 5 - Шкала оценивания для зачета

Оценка	Критерии (критерии пишутся в соответствии с таблицей 7.2, углубленный уровень)					
Знаниевая компонента		Деятельностная компонента				
Неудовле-	Не знает этапы исторического развития	Не способен абстрактно мыслить, обобщать, анализи-				
творитель-	в области биотехнических систем и тех-	ровать и систематизировать полученную информацию,				
но	нологий, а также место и значение био-	а также использовать полученные знания для развития				
	технических систем и технологий в со-	своего творческого потенциала. Не способен работать				
	временном мире. Не знает роль цифро-	со специальной литературой и не владеет навыками				
	вых и компьютерных технологий в про-	методологического анализа научного исследования и				
	грессе создания аппаратуры медико-	его результатов. Не владеет навыками самостоятельно-				
	биологического назначения	го составления прогнозов планируемых результатов				
		своей деятельности				
Зачет	Знает этапы исторического разви-	Владеет достаточно полной информацией об основных				
	тия в области биотехнических систем	достижениях в области применения биотехнических				
	и технологий, а также имеет пред-	систем и технологий, владеет навыками методологиче-				
	ставление о месте и значение био-	ского анализа научного исследования и способен при-				
	технических систем и технологий в	менять его в своей профессиональной деятельности.				
	современном мире. Знает роль циф-	Способен абстрактно мыслить, обобщать, анализиро-				
	ровых и компьютерных технологий в	вать и систематизировать полученную информацию и				
	прогрессе создания аппаратуры медико-биологического назначения	использовать полученные знания для развития своего творческого потенциала. Умеет грамотно и качествен-				
	дико-опологического назначения	но работать со специальной литературой				