Iris Flower Classification

The categorization of iris flowers using machine learning is increasingly common. Each of the three flower classes in the iris dataset—Versicolor, Setosa, and Virginica—has four features: sepal length, sepal width, petal length, and petal width. The categorization of iris flowers aims to anticipate blooms based on their distinctive characteristics.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from warnings import filterwarnings
filterwarnings(action='ignore')
```

iris=pd.read_csv("/content/IRIS.csv")

Saving	sepa1_1engtn	sepal_widtn	petal_length	netal width	species	7
					•	
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	
		•••				
145	6.7	3.0	5.2	2.3	Iris-virginica	
146	6.3	2.5	5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	

150 rows × 5 columns

iris.shape

(150, 5)

iris.describe()

	sepal_length	sepal_width	petal_length	petal_width	
count	150.000000	150.000000	150.000000	150.000000	
mean	5.843333	3.054000	3.758667	1.198667	
std	0.828066	0.433594	1.764420	0.763161	
min	4.300000	2.000000	1.000000	0.100000	
25%	5.100000	2.800000	1.600000	0.300000	
50%	5.800000	3.000000	4.350000	1.300000	
75%	6.400000	3.300000	5.100000	1.800000	
max	7.900000	4.400000	6.900000	2.500000	

iris.isna().sum()

iris.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris.head()

iris.head(150)

	sepal_length	sepal_width	petal_length	petal_width	species	*
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	2 Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	5.0 3.6 1.4	0.2	Iris-setosa		

Saving		×	5.2	2.3	Iris-virginica	
Javing			5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	

150 rows × 5 columns

iris.tail(100)


```
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.axis('equal')
l = ['Iris-versicolor', 'Iris-Setosa', 'Iris-Virginica']
s = [50,49,50]
ax.pie(s, labels = l, autopct = '%1.2f%%')
plt.show()
```


plt.figure(1)
plt.boxplot([iris['sepal_length']])
plt.figure(2)
plt.boxplot([iris['sepal_width']])
plt.show()

Saving... X

iris.plot(kind ='box',subplots = True, layout =(2,5),sharex = False)

```
Axes(0.125,0.53;0.133621x0.35)
     sepal length
     sepal_width
                      Axes(0.285345,0.53;0.133621x0.35)
     petal length
                       Axes(0.44569,0.53;0.133621x0.35)
     petal_width
                      Axes(0.606034,0.53;0.133621x0.35)
     dtype: object
      7
iris.plot(kind ='density', subplots = True, layout =(3,3), sharex = False)
     array([[<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
             <Axes: ylabel='Density'>],
            [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
             <Axes: ylabel='Density'>],
            [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
             <Axes: ylabel='Density'>]], dtype=object)
         0.4
                                             sepal width
                                                          0.2
                                                       Density
                    sepal_lengt
                                                                    petal length
                                  0.5
                                                          0.1
 Saving...
                                                                         5
                                                                                10
         0.4
      Density
         0.2
                     petal width
         0.0
                         2
                  0
```

iris.plot(kind ='box',subplots = True, layout =(2,5),sharex = False)

```
sepal_length
                           Axes(0.125,0.53;0.133621x0.35)
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
sns.violinplot(x='species',y='sepal_length',data=iris)
plt.subplot(2,2,2)
sns.violinplot(x='species',y='sepal_width',data=iris)
plt.subplot(2,2,3)
sns.violinplot(x='species',y='petal_length',data=iris)
plt.subplot(2,2,4)
sns.violinplot(x='species',y='petal_width',data=iris)
     <Axes: xlabel='species', ylabel='petal_width'>
                                                                     4.5
        8
                                                                     4.0
      sepal_length
                                                                   sepal_width
                                                                     2.5
 Saving...
                                                                     2.0
                               Iris-versicolor
                                                 Iris-virginica
               Iris-setosa
                                                                             Iris-setosa
                                                                                             Iris-versicolor
                                 species
                                                                                               species
```


sns.pairplot(iris,hue='species')

Saving... X

```
[6.7],
[6.9],
[5.8],
[6.8],
[6.7],
[6.7],
[6.3],
[6.5],
[6.5],
[5.9]])
```

Y = iris['sepal_length'].values.reshape(-1,1)

Υ

Saving... ×

```
[6.4],
[6.3],
[6.1],
[7.7],
[6.3],
[6.4],
[6.],
[6.9],
[6.7],
[6.9],
[5.8],
[6.8],
[6.7],
[6.7],
[6.3],
[6.5],
[6.2],
[5.9]])
```

```
plt.xlabel("sepal_length")
plt.ylabel("sepal_width")
plt.scatter(X,Y,color='b')
plt.show()
```



```
corr_mat = iris.corr()
corr_mat
```


from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier

train, test = train_test_split(iris, test_size = 0.25)

train.shape

test.shape

(38, 5)

train_X = train[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
train_y = train.species
test_X = test[['sepal_length', 'sepal_width', 'petal_length', 'petal_width']]
test_y = test.species

train X.head()

	sepal_length	sepal_width	petal_length	petal_width
121	5.6	2.8	4.9	2.0
13	4.3	3.0	1.1	0.1
83	6.0	2.7	5.1	1.6
71	6.1	2.8	4.0	1.3
31	5.4	3.4	1.5	0.4

test_y.head()

```
Iris Flower Classification.ipynb - Colaboratory
     125
             Iris-virginica
     147
             Iris-virginica
                Iris-setosa
     48
     135
            Iris-virginica
            Iris-versicolor
     Name: species, dtype: object
model = LogisticRegression()
model.fit(train_X, train y)
prediction = model.predict(test X)
print('Accuracy:',metrics.accuracy_score(prediction,test_y))
     Accuracy: 1.0
from sklearn.metrics import confusion_matrix,classification_report
confusion mat = confusion matrix(test y,prediction)
print("Confusion matrix: \n",confusion_mat)
print(classification_report(test_y,prediction))
     Confusion matrix:
```

[[13 0 0]

Saving	×	ecall	f1-score	support
Iris-setosa Iris-versicolor Iris-virginica	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	13 13 12
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	38 38 38

```
from sklearn.svm import SVC
model1 = SVC()
model1.fit(train X,train y)
pred_y = model1.predict(test_X)
from sklearn.metrics import accuracy score
print("Acc=",accuracy_score(test_y,pred_y))
     Acc= 1.0
from sklearn.neighbors import KNeighborsClassifier
model2 = KNeighborsClassifier(n_neighbors=5)
model2.fit(train_X,train_y)
y_pred2 = model2.predict(test_X)
from sklearn.metrics import accuracy score
```

print("Accuracy Score:",accuracy_score(test_y,y_pred2))

Accuracy Score: 1.0

```
from sklearn.naive_bayes import GaussianNB
model3 = GaussianNB()
model3.fit(train_X,train_y)
y_pred3 = model3.predict(test_X)
from sklearn.metrics import accuracy_score
print("Accuracy Score:",accuracy_score(test_y,y_pred3))

    Accuracy Score: 0.9736842105263158

from sklearn.tree import DecisionTreeClassifier
model4 = DecisionTreeClassifier(criterion='entropy',random_state=7)
model4.fit(train_X,train_y)
y_pred4 = model4.predict(test_X)
from sklearn.metrics import accuracy_score
print("Accuracy Score:",accuracy_score(test_y,y_pred4))

    Accuracy Score: 1.0
```

Saving... X

✓ 0s completed at 9:26 PM

×