GENERAL INSTRUCTIONS:

- 1. Each student has to implement 5 assignment individually from set A to set E assigned by faculty members
- 2. Each student has to complete mini project in group of max 4 members based in CIA.

LIST OF EXPERIMENTS:

	Sr. No.	Assignment	CO					
A	1.	Implement a problem of number of zeroes.						
7.1	1.	Statement : Given an array of 1s and 0s which has all 1s first	CO1					
		followed by all 0s? Find the number of 0s. Count the number						
		zeroes in the given array.						
		Input : arr[] = {1, 1, 1, 1, 0, 0} Output : 2						
		Input: $arr[] = \{1, 0, 0, 0, 0\}$ Output: 4						
	2.	Implement a problem of move all zeroes to end of array.	CO1					
		Statement: Given an array of random numbers, Push all the zero's						
		of a given array to the end of the array. For example, if the given arrays is {1, 9, 8, 4, 0, 0, 2, 7, 0, 6, 0}, it should be changed to {1, 9, 8, 4, 2, 7, 6, 0, 0, 0, 0}. The order of all other elements should be						
		same.						
		Input : arr[] = {1, 2, 0, 4, 3, 0, 5, 0};						
		Output : arr[] = {1, 2, 4, 3, 5, 0, 0, 0};						
	3.	Implement a problem of smallest number with at least n						
		trailing zeroes in factorial.						
		Statement: Given a number n. The task is to find the smallest						
		number whose factorial contains at least n trailing zeroes.						
		Input: $n = 1$ Output: 5						
	Input: n = 6 Output: 25							
В	1.							
		persons.						
		Statement: Given two arrays S[] and E[] of size N denoting						
		starting and closing time of the shops and an integer value K denoting the number of people, the task is to find out the						
		maximum number of shops they can visit in total if they visit each						
		shop optimally based on the following conditions:						
		 A shop can be visited by only one person 						
		 A person cannot visit another shop if its timing collide with it 						
		Input: S[] = {1, 8, 3, 2, 6}, E[] = {5, 10, 6, 5, 9}, K = 2						
		Output: 4						
		Input: S[] = $\{1, 2, 3\}$, E[] = $\{3, 4, 5\}$, K = 2						
		Output: 3						
	2.	Implement a problem of maximize Profit by trading stocks						
		based on given rate per day.						
		Statement: Given an array arr[] of N positive integers which						
		denotes the cost of selling and buying a stock on each of						
		the N days. The task is to find the maximum profit that can be						
		earned by buying a stock on or selling all previously bought stocks						
		on a particular day.						
		Input: $arr[] = \{2, 3, 5\}$ Output: 5						
		Input: $arr[] = \{8, 5, 1\}$ Output: 0						
	3.	Implement a problem of minimum work to be done per day to	CO2					

	finish given tasks within D days problem.						
	Statement: Given an array task[] of size N denoting ar						
		work to be done for each task, the problem is to find the minimum amount of work to be done on each day so that all the tasks can be					
		completed in at most D days. Note: On one day work can be done for only one task.					
		Input: task[] = $[3, 4, 7, 15]$, D = 10 Output: 4 Input: task[] = $[30, 20, 22, 4, 21]$, D = 6 Output: 22					
С	1.	Input: $task[] = [30, 20, 22, 4, 21], D = 6$ Output: 22 Implement Coin Change problem.	CO3				
	1.	Statement Given an integer array of coins[] of size N representing	CO3				
		different types of currency and an integer sum, The task is to find					
		the number of ways to make sum by using different combinations					
		from coins[].					
		Note: Assume that you have an infinite supply of each type of					
		coin.					
		Input: $sum = 4$, $coins[] = \{1,2,3\}$, Output: 4					
		Input: $sum = 10$, $coins[] = \{2, 5, 3, 6\}$ Output: 5					
	2.	Implement Subset Sum Problem.	CO3				
		Statement Given a set of non-negative integers and a value sum,					
		the task is to check if there is a subset of the given set whose sum is					
		equal to the given sum.					
		Input: $set[] = \{3, 34, 4, 12, 5, 2\}, sum = 9$ Output: True					
	3.	Input: $set[] = \{3, 34, 4, 12, 5, 2\}, sum = 30$ Output: False	CO3				
	3.	Implement Check if it is possible to transform one string to another.	COS				
		Statement Given two strings s1 and s2 (all letters in uppercase).					
		Check if it is possible to convert s1 to s2 by performing following					
		operations.					
		1. Make some lowercase letters uppercase.					
		2. Delete all the lowercase letters.					
		Input: $s1 = daBcd \ s2 = ABC$ Output: yes					
		Input: $s1 = argaju$ $s2 = RAJ$ Output: yes					
D	1.	Implement program to find all distinct subsets of a given set	CO4				
		using Bit Masking Approach.					
		Statement Given an array of integers arr[], The task is to find all					
		its subsets. The subset cannot contain duplicate elements, so any repeated subset should be considered only once in the output.					
		Input: $S = \{1, 2, 2\}$ Output: $\{\}, \{1\}, \{2\}, \{1, 2\}, \{2, 2\}, \{1, 2, 2\}$					
		Input: $S = \{1, 2, 2\}$ Output: $\{\}, \{1\}, \{2\}, \{1, 2\}$					
	2.	Implement program Count all possible Paths between two	CO4				
		Vertices.					
		Statement Count the total number of ways or paths that exist					
		between two vertices in a directed graph. These paths don't contain					
		a cycle, the simple enough reason is that a cycle contains an					
		infinite number of paths and hence they create a problem.					
		В					
		A E					
		C D					
	1	1	l				

		Input: Count	paths	between	\boldsymbol{A}	and	E		
		Output: Total paths between A and E are 4							
		Input: Count	paths	between	\boldsymbol{A}	and	\boldsymbol{C}		
	3. Implement program to print all subsets of a given Set or Array Statement Given a set of positive integers, find all its subsets.								
		Input: array =	-	G ,					
		Output: // this space denotes null element.							
		-	123		2	23	3		
		Input : 12							
		Output: 1	2	12					
Е								CO5	
		CO301 (DAA theory subject) and store in source code in git							
		repository.							

Books:

Text Books(**T**):

- T1. Horowitz and Sahani, "Fundamentals of Computer Algorithms", University Press.
- T2. Gills Brassard and Paul Bartly, "Fundamentals of Algorithmic", PHI, New Delhi.

Reference Books(R):

- R1. Fayez Gebali, "Algorithms and Parallel Computing", Willy Publication.
- R2. Thomas H. Coreman and Charles R. L. Leiserson, "Introduction to Algorithm", PHI Publications.

e-Resources(E):

E1:Robert Sedgewick and Kevin Wayne, "algorithms" Princeton University. https://bank.engzenon.com/tmp/5e7f6ee5-d4dc-4aa8-9b0a-42d3c0feb99b/6062caf3-c600-4fc2-b413-4ab8c0feb99b/Algorithms-4th-Edition.pdf.

E2: Jeff Erickson, "algorithms", a Creative Commons Attribution 4.0 International License https://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf.

E3: https://www.geeksforgeeks.org/

E4: https://github.com/

E5: https://www.codechef.com/