p53 第二章 习题解答-3,4,5

- 3. 解 不能成立,因为 $<a,<b,c>=={\{a\},\{a,\{a,\{\{b\},\{b,c\}\}\}\}\},$ 而 $<a,b,c>=<<a,b>,c>={\{\{\{a\},\{a,b\}\}\}\},\{\{\{a\},\{a,b\}\}\},c\}\},$ 。 $a\neq < a,b>, < b,c>\neq c$
- 4. 解 $<\emptyset$, $\emptyset>=\{\{\emptyset\},\{\emptyset,\emptyset\}\}=\{\{\emptyset\}\}$, 所以(3)成立。 $<a,\{a\}>=\{\{a\},\{a,\{a\}\}\}\}$, 所以(7)成立
- 5.解 (1) A=∅ ∨ B=∅
- (2) $A = \emptyset \lor B = \emptyset \lor A = B$
- (3) $A = \emptyset \lor B = \emptyset \lor C = \emptyset$

p54 6.(1)

- 6.设A,B,C为任意集合,证明下列各式成立.
- $(1) (A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$
- $(2) (A-B) \times (C-D) \subseteq (A \times C) (B \times D)$
- 证明 (1) 任取< x,y >,
- $\langle x,y \rangle \in (A \times C) \cup (B \times D)$
- $\Leftrightarrow \langle x,y \rangle \in A \times C \bigvee \langle x,y \rangle \in B \times D$
- $\Leftrightarrow (x \in A \land y \in C) \lor (x \in B \land y \in D)$
- $\Leftrightarrow (x \in A \lor x \in B) \land (y \in C \lor y \in D)$
 - $\land (x \in A \lor y \in D) \land (y \in C \lor x \in B)$
- $\Rightarrow (x \in A \lor x \in B) \land (y \in C \lor y \in D)$ (注: 使用了化简规则)
- $\Leftrightarrow (x \in A \cup B) \land (y \in C \cup D)$
- $\Leftrightarrow <x,y> \in (A \cup B) \times (C \cup D)$
- $_{A}$ 故($_{A}$ \times $_{C}$) \cup ($_{B}$ \times $_{D}$) \subseteq ($_{A}$ \cup $_{B}$) \times ($_{C}$ \cup $_{D}$)

p.

p54 6.(2)

方法2:

```
(1) (A \cup B) \times (C \cup D) = (A \times C) \cup (A \times D) \cup (B \times C) \cup (B \times D)
  显然(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)
  (2) 求证(A-B)\times(C-D)\subseteq(A\times C)-(B\times D)
  证任取\langle x,y \rangle, \langle x,y \rangle \in (A-B) \times (C-D)
       \Leftrightarrow x \in A-B \land y \in C-D
       \Leftrightarrow (x \in A \land x \in \neg B) \land (y \in C \land y \in \neg D)
       \Leftrightarrow (x \in A \land y \in C) \land (x \in \neg B \land y \in \neg D)
       \Rightarrow (x \in A \land y \in C) \land (x \in \neg B \lor y \in \neg D) (P \land Q \Rightarrow P \Rightarrow P \lor Q)
       \Leftrightarrow (x \in A \land y \in C) \land \neg (x \in B \land y \in D)
       \Leftrightarrow <x,y> \in (A \times C) \land <x,y> \notin B \times D
       \Leftrightarrow <x,y> \in (A \times C)-(B \times D)
习题二解答
```

3

第二章 习题解答-7

- ⅰ 7. 设A,B,C为任意集合,证明下列各式成立.
- $(1) (A-B) \times C = (A \times C) (B \times C)$
- (2) $(A \oplus B) \times C = (A \times C) \oplus (B \times C)$
- 证明 任意<x,y>∈(A-B)×C
 - $\Leftrightarrow (x \in A \land x \notin B) \land y \in C$
 - $\Leftrightarrow x \in A \land y \in C \land x \notin B$
 - $\Leftrightarrow (x \in A \land y \in C \land x \notin B) \lor (x \in A \land y \in C \land y \notin C)$
 - \Leftrightarrow $(x \in A \land y \in C) \land (x \notin B \lor y \notin C)$ (注意)
 - $\Leftrightarrow (x \in A \land y \in C) \land \neg (x \in B \land y \in C)$
 - $\Leftrightarrow <x,y> \in A \times C \land <x,y> \notin B \times C$
 - $\Leftrightarrow \langle x,y \rangle \in (A \times C)$ -(B \times C). 得证.

- $\bullet (2) (A \oplus B) \times C = (A \times C) \oplus (B \times C)$
- 证明 (A⊕B)×C

$$=((A-B)\cup(B-A))\times C$$

$$= ((A-B) \times C) \cup ((B-A) \times C)$$

$$=((A \times C)-(B \times C)) \cup ((B \times C)-(A \times C))$$

$$=(A \times C) \oplus (B \times C)$$

得证.

p54 8的解

8. 设A,B为二集合,在什么条件下,有A×B⊆A成立? 等号能成立吗?

解 $A=\emptyset$ 或B= \emptyset 时,必有 $A\times$ B⊆A成立。 当 $A=\emptyset$ 时,有等号成立。

9. 设A是n元集,B是m元集,A到B共有多少个不同的二元关系?设A={a,b,c},B={1},写出A到B和B到A的全部二元关系。

解A到B有2nm个不同的二元关系。

$$A \times B = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \}$$

A到B的所有二元关系如下:

$$R_1 = {\langle a, 1 \rangle}, R_2 = {\langle b, 1 \rangle}, R_3 = {\langle c, 1 \rangle},$$

$$R_4 = {\langle a, 1 \rangle, \langle b, 1 \rangle}, R_5 = {\langle a, 1 \rangle, \langle c, 1 \rangle},$$

$$R_6 = {\langle b, 1 \rangle, \langle c, 1 \rangle}, R_7 = {\langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle}, R_8 = \emptyset.$$

习题9续

$$B \times A = \{<1,a>,<1,b>,<1,c>\}$$

B到A的所有二元关系如下:

$$R_1 = \{<1,a>\}, R_2 = \{<1,b>\}, R_3 = \{<1,c>\},$$
 $R_4 = \{<1,a>,<1,b>\}, R_5 = \{<1,a>,<1,c>\},$
 $R_6 = \{<1,b>,<1,c>\}, R_7 = \{<1,a>,<1,b>,<1,c>\},$
 $R_8 = \emptyset.$

11.设
$$R_1 = \{\langle a,b \rangle, \langle b,d \rangle, \langle c,c \rangle, \langle c,d \rangle\},$$
 $R_2 = \{\langle a,c \rangle, \langle b,d \rangle, \langle d,b \rangle, \langle d,d \rangle\}, A = \{a,c \rangle, \overline{X}:$
解 (1) $R_1 \cup R_2 = \{\langle a,b \rangle, \langle b,d \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle a,c \rangle,$
 $\langle d,b \rangle, \langle d,d \rangle\}$
 $R_1 \cap R_2 = \{\langle b,d \rangle\}$
 $R_1 \oplus R_2 = \{\langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle a,c \rangle, \langle d,b \rangle, \langle d,d \rangle\}$
(2) $dom R_1 = \{a,b,c\}, dom R_2 = \{a,b,d\},$

- $dom (R_1 \cup R_2) = \{a,b,c,d\}$
- (3) $\operatorname{ranR}_1 = \{b, d, c\}, \operatorname{ranR}_2 = \{b, c, d\},$ $\operatorname{ran} \mathbf{R}_1 \cap \operatorname{ran} \mathbf{R}_2 = \{b, c, d\}$

4

11 (续)

- (4) $R_1 \upharpoonright A = \{ \langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle \},$ $R_1 \upharpoonright \{c\} = \{ \langle c,c \rangle, \langle c,d \rangle \}$ $(R_1 \cup R_2) \upharpoonright A = \{ \langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle a,c \rangle \}$ $R_2 \upharpoonright A = \{ \langle a,c \rangle \}$
- (5) $R_1[A] = \{b,c,d\}$ $R_2[A] = \{c\}$ $(R_1 \cap R_2)[A] = \emptyset$.
- (6) $R_1 \circ R_2 = \{ \langle a, c \rangle, \langle a, d \rangle, \langle d, d \rangle \}$ $R_2 \circ R_1 = \{ \langle a, d \rangle, \langle b, b \rangle, \langle b, d \rangle, \langle c, b \rangle, \langle c, d \rangle \}$ $R_1 \circ R_1 = \{ \langle a, d \rangle, \langle c, c \rangle, \langle c, d \rangle \}$

4

习题12

设
$$R=\{\langle\emptyset,\{\emptyset,\{\emptyset\}\}\rangle,\langle\{\emptyset\},\emptyset\rangle,\langle\emptyset,\emptyset\rangle\},$$
求:

$$\mathbf{P}^{-1} = \{ \langle \{\emptyset, \{\emptyset\}\}, \emptyset \rangle, \langle \emptyset, \{\emptyset\} \rangle, \langle \emptyset, \emptyset \rangle \}$$

(2)
$$\mathbb{R}^{\circ}\mathbb{R} = \{\langle \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \rangle, \langle \{\emptyset\}, \emptyset \rangle, \langle \emptyset, \emptyset \rangle, \langle \emptyset, \{\emptyset\}\} \rangle\}$$

(3)
$$R \bowtie \emptyset = \emptyset$$

$$\mathbf{R} \upharpoonright \{\emptyset\} = \{\langle \emptyset, \{\emptyset, \{\emptyset\}\} \rangle, \langle \emptyset, \emptyset \rangle\}$$

$$\mathbb{R} \upharpoonright \{\{\emptyset\}\} = \{\langle \{\emptyset\},\emptyset \rangle\}$$

$$\mathbb{R} \upharpoonright \{\emptyset, \{\emptyset\}\} = \mathbb{R}$$

习题12 续

(4) $R[\varnothing] = \varnothing$ $R[\{\varnothing\}] = \{\varnothing, \{\varnothing, \{\varnothing\}\}\}\},$ $R[\{\{\varnothing\}\}\}] = \{\varnothing\}$ $R[\{\varnothing, \{\varnothing\}\}\}] = \{\varnothing, \{\varnothing, \{\varnothing\}\}\}\}$

(5) dom R={ \emptyset ,{ \emptyset }} ran R={ \emptyset ,{ \emptyset ,{ \emptyset }}} fld R={ \emptyset ,{ \emptyset },{ \emptyset ,{ \emptyset }}}

15. 设A为一集合,R,S,T⊆P(A)×P(A),其中

 $\mathbf{R} = \{ \langle x, y \rangle | x, y \in \mathbf{P}(\mathbf{A}) \land x \subset y \}$

 $S = \{ \langle x, y \rangle | x, y \in P(A) \land x \cap y = \emptyset \}$

 $T = \{ \langle x, y \rangle | x, y \in P(A) \land x \cup y = A \}$

试分析R,S,T的性质.

解 A≠Ø时,则

R是反自反、反对称,传递

S是对称的.

T是对称的.

注意: $\emptyset \cap \emptyset = \emptyset \Leftrightarrow \emptyset S \emptyset$, S不是自反的也不是反自反的. $A \cup A = A \Leftrightarrow ATA$, T不是自反的也不是反自反的.

A=Ø时,

 $P(A)=\{\emptyset\}, P(A)\times P(A)=\{\emptyset,\emptyset\}$

 $R=\emptyset$, 故R具有反自反性、对称性、反对称性、传递性 $S=\{<\emptyset,\emptyset>\}$,具有自反性、对称性、反对称性、传递性 $T=\{<\emptyset,\emptyset>\}$ 具有自反性、对称性、反对称性、传递性

(2) R是对称的; S是反对称的.

17. 设 $A = \{0,1,2,3\}$. $R \subseteq A \times A$,且 $R = \{\langle x,y \rangle | x = y \lor x + y \in A\}$, 求R的关系矩阵M(R)和关系图G(R),并讨论R的性质.

$$M(R) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

3 2 G(R)

R具有自反性、对称性.

<3,0>∈R,<0,1>∈R,但<3,1>∉R.所以R不是传递的

→ 习题18

18. 设 $A=\{a,b,c\}$,图2.7中给出了4个二元关系 R_1,R_2,R_3,R_4 的关系图,写出每个关系的集合表达式 和关系矩阵,并讨论每个关系的性质。

 $\mathbb{R}_1 = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle a, b \rangle, \langle c, b \rangle \}$

$$M_{R_1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

R₁有自反性、反对称性、传递性

$$\mathbf{R}_2 = \{ \langle a,b \rangle, \langle b,c \rangle \}$$

$$M_{R_2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 R₂有反自反性、反对称性

$$\mathbf{R}_{3} = \{ \langle a,b \rangle, \langle c,b \rangle, \langle a,c \rangle, \langle c,a \rangle \},$$

$$M_{R_3} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
 R₃有反自反性

$$\mathbf{R}_{4} = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}$$

$$M_{R_4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

R₄有自反性、对称性、反对称性、传递性

19. 设 $A=\{a,b,c\}$, R_1 , R_2 , R_3 , $R_4\subseteq A\times A$,它们的关系矩阵分别为.....,写出各关系的集合表达式,画出关系图并讨论它们的性质。

解 \mathbf{R}_1 ={<a,a>,<a,b>,<b,a>,<b,b>,<c,c>,<c,a>,<c,c>}

R_1 有自反性;

 $< c,a > \in \mathbb{R}_1, < a,b > \in \mathbb{R}_1, \le c,b > \notin \mathbb{R}_1$ 所以 \mathbb{R}_1 无传递性。

$$\mathbf{R}_2 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle, \langle c, a \rangle, \langle c, b \rangle \}$$

 $\langle a,a\rangle\in R_2$,所以 R_2 没有反自反性。

 $\langle c,c \rangle \notin \mathbb{R}_2$,所以 \mathbb{R}_2 没有自反性。

<c,a>∈R₂, <a,c>∉R₂,所以R₁没有对称性

 $G(R_2)$

R2有反对称性、传递

$$R_3 = \{ \langle a,b \rangle, \langle a,c \rangle, \langle b,a \rangle, \langle b,c \rangle, \langle c,a \rangle, \langle c,b \rangle \}$$

 $<c,a>\in R_3, <a,c>\in R_3, <c,c>\notin R_3$ 所以 R_3 没有传递性。

 $G(R_3)$

 R_3 有反自反性、对称性;

$$\mathbf{R}_{4} = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle c, a \rangle \}$$

所以R₄没有传递性。

 $< c,a > \in R_4, < a,b > \in R_4, < c,b > \notin R_4$

 $G(R_4)$

R₄不具有任何性质

画出下列二元关系的关系图,并写出关系矩阵.

$$A_1 = \{a,b,c,d\}, B_1 = \{1,2,3\}, R_1 \subseteq A_1 \times B_1, 且$$

 $R_1 = \{\langle a,1\rangle, \langle b,2\rangle, \langle c,2\rangle, \langle c,3\rangle\}$

解关系图和关系矩阵如下

$$\begin{array}{cccc}
a & & & & & \\
b & & & & & \\
c & & & & & \\
d & & & & \\
\end{array}$$

$$M_{R_4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

22.设R是非空集合A上的二元关系,试证明,如果R是自反的,并且是传递的,则R°R=R,但其逆不真.

证 由于R是传递的,故R°R⊆R.

任取 $\langle x,y \rangle \in R$,则有 $\langle y,y \rangle \in R$.

 $< x,y > \in R \land < y,y > \in R \Rightarrow < x,y > \in R \circ R$, $\square R \subseteq R \circ R$

因此, $R^{\circ}R=R$

如果 $R^{\circ}R=R,R$ 不一定是自反的和传递的.反例: $A=\{1,2\},R=\{<1,1>\},则R^{\circ}R=R$,但R不是自反的.

22(续)

方法2:证 由于R是传递的,故R°R⊆R.

由于R是自反的,所以 $I_A \subseteq R$,故而有 $R = R \cup I_A$.

 $R^{\circ}R = (R \cup I_A)^{\circ}(R \cup I_A) = R^{\circ}R \cup R^{\circ}I_A \cup I_A^{\circ}R \cup I_A^{\circ}I_A$

 $= \mathbf{R}^{\circ} \mathbf{R} \cup \mathbf{R} \cup \mathbf{I}_{\mathbf{A}} = \mathbf{R}^{\circ} \mathbf{R} \cup \mathbf{R}$

所以 $R \subseteq R^{\circ}R$

因此, $R^{\circ}R=R$

方法3: 由于R是传递的,故R°R⊆R.

 $R \cup (R^{\circ}R) = (R^{\circ}I_{A}) \cup (R^{\circ}R) = R^{\circ}(I_{A} \cup R) = R^{\circ}R$

所以 $R \subseteq R^{\circ}R$

23.设R,S是非空集合A上的二元关系,且它们都是对称的.证明R°S具有对称性当且仅当R°S=S°R.

证 【R是对称的 $\Leftrightarrow R = R^{-1}$ 】

先证必要性.已知 $R^{\circ}S$ 具有对称性,且R,S都有对称性, 所以有

$$R^{\circ}S = (R^{\circ}S)^{-1} = S^{-1} \circ R^{-1} = S^{\circ}R$$

再证充分性.已知R°S=S°R.

$$(R^{\circ}S)^{-1} = S^{-1} {}^{\circ}R^{-1} = S^{\circ}R = R^{\circ}S$$

故 $R^{\circ}S$ 是对称的.

4

习题23 方法2

23.设R,S是非空集合A上的二元关系,且它们都是对称的.证明R°S具有对称性当且仅当R°S=S°R.

证 【R是对称的 $\Leftrightarrow R=R^{-1}$ 】

先证 \Rightarrow : 任取< x,y >,

 $< x,y> \in R^{\circ}S$

 $\Leftrightarrow <y,x> \in R^{\circ}S$

 $\Leftrightarrow \exists z (\langle y,z \rangle \in S \land \langle z,x \rangle \in R)$

 $\Leftrightarrow \exists z (<_z,y> \in S \land <_x,z> \in R)$

 $\Leftrightarrow <x,y> \in S^{\circ}R$

所以R°S=S°R

4

习题23 方法2 续

23.设R,S是非空集合A上的二元关系,且它们都是对称的.证明R°S具有对称性当且仅当R°S=S°R.

证 【R是对称的 $\Leftrightarrow R = R^{-1}$ 】

再证 \leftarrow : 任取< x,y >,

$$< x,y> \in R^{\circ}S$$

$$\Leftrightarrow \exists z (\langle x,z \rangle \in S \land \langle z,y \rangle \in R)$$

$$\Leftrightarrow \exists z (\langle z, x \rangle \in S \land \langle y, z \rangle \in R)$$

$$\Leftrightarrow \in S^{\circ}R$$

$$\Leftrightarrow \in R^{\circ}S$$

所以 $R^{\circ}S$ 是对称的

p56 Exercises 26

26. AP 1)
$$M(R) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, M(R^2) = M^2(R) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M(R^3) = M^3(R) = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\mathbf{R}^2 = \{ \langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, d \rangle \}$$

$$\mathbf{R}^3 = \{ \langle a,b \rangle, \langle a,d \rangle, \langle b,a \rangle, \langle b,c \rangle \}$$

Exercises 26

2)

$$M(R^4) = M^4(R) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

显然, $R^2=R^4$,即m=2,n=4

3)
$$R^2 = R^4 = R^6 = ... = R^{2k}, (k \ge 1),$$

 $R^3 = R^5 = R^7 = ... = R^{2k+1}, (k \ge 1)$

- 27. 设 R_1 , R_2 是 $n(n \ge 2)$ 元集A上的二元关系,已知 $fldR_1 \cap fldR_2 = \emptyset$,证明 $(R_1 \cup R_2)^m = R_1^m \cup R_2^m (m \ge 0)$.
- 证 归纳法

当m=1时, $R_1 \cup R_2 = R_1 \cup R_2$ 假设m=k时成立,当m=k+1时,

$$(R_1 \cup R_2)^{k+1} = (R_1 \cup R_2)^k \circ (R_1 \cup R_2) = (R_1^k \cup R_2^k) \circ (R_1 \cup R_2)$$
$$= (R_1^k \circ R_1) \cup (R_2^k \circ R_2) \cup (R_1^k \circ R_2) \cup (R_2^k \circ R_1)$$

因为fld R_1 ∩fld R_2 =Ø,故 $(R_1^k \circ R_2) = \phi$ $R_2^k \circ R_1 = \phi$ 因此 $(R_1 \cup R_2)^{k+1} = (R_1^k \circ R_1) \cup (R_2^k \circ R_2) = R_1^{k+1} \cup R_2^{k+1}$ 得证.

28. 设 $A = \{a,b,c,d,e,f,g,h\},R\subseteq A \times A$,且

 $R = \{ \langle a,b \rangle, \langle b,c \rangle, \langle c,a \rangle, \langle d,e \rangle, \langle e,f \rangle, \langle f,g \rangle, \langle g,h \rangle, \langle h,d \rangle \}$, 求最小的自然数 $m,n(m \leq n)$,使得 $R^m = R^n$.

$$\mathbf{R} = R_1 \cup R_2$$
,其中

$$R_1 = \{ \langle a,b \rangle, \langle b,c \rangle, \langle c,a \rangle \},$$

$$R_2 = \{ < d, e >, < e, f >, < f, g >, < g, h >, < h, d > \}$$

$$R^{m}=(R_{1}\cup R_{2})^{m}=R_{1}^{m}\cup R_{2}^{m}.$$

$$R_1^{3k} = I_{\text{fldR}_1}, R_1^{5k} = I_{\text{fldR}_2}, k \in \mathbb{N}.$$

$$R^{15k} = (R_1 \cup R_2)^{15k} = R_1^{15k} \cup R_2^{15k} = I_{\text{fldR}_1} \cup I_{\text{fldR}_2} = I_A.$$

取
$$m=0, n=15, 有R^0=R^{15}=I_A.0$$
和15满足要求.

29. 设 $A = \{a,b,c,d\}, R \subseteq A \times A, R = \{\langle a,a \rangle, \langle b,b \rangle, \langle a,b \rangle, \langle c,d \rangle\}.$ 求 (1) r(R) (2) s(R) (3) t(R) 并画出它们的关系图.

解

$$\begin{split} r(A) &= I_A \cup R = \{ < a, a >, < b, b >, < c, < d, d >, < a, b >, < c, d > \} \\ &\mathbf{s}(R) = R \cup R^{-1} = \{ < a, a >, < b, b >, < a, b >, < c, d >, < b, a >, < d, c > \} \\ &t(R) = R = \{ < a, a >, < b, b >, < a, b >, < c, d > \} \end{split}$$

30.

30.设R是非空集合A上的二元关系,记传递闭包t(R)=R+,

记
$$\bigcup_{i=0}^{\infty} R^{i} = \mathbb{R}^{\oplus}$$
,证明:

- (1) $(R^+)^+=R^+;$ (2) $(R^\oplus)^\oplus=R^\oplus;$
- (3) $R^{\circ} R^{\oplus} = R^{+} = R^{\oplus \circ} R$.
- 解(1)因为R+是传递的,因此(R+)+=t(R+)=R+
 - (2) R[⊕]=I_A∪ R⁺=rt(R),因此R[⊕]是传递的,

即
$$t(R^{\oplus})=R^{\oplus}$$

$$(\mathbf{R}^{\oplus})^{\oplus} = (\mathbf{R}^{\oplus})^{+} \cup \mathbf{I}_{\mathbf{A}} = \mathbf{t}(\mathbf{R}^{\oplus}) \cup \mathbf{I}_{\mathbf{A}} = \mathbf{R}^{\oplus} \cup \mathbf{I}_{\mathbf{A}} = \mathbf{R}^{+} \cup \mathbf{I}_{\mathbf{A}} \cup \mathbf{I}_{\mathbf{A}}$$
$$= \mathbf{R}^{+} \cup \mathbf{I}_{\mathbf{A}} = \mathbf{R}^{\oplus}$$

30(续)

另一种方法:

$$R^{\oplus}=I_A \cup R^+=rt(R),$$

$$(\mathbf{R}^{\oplus})^{\oplus} = \operatorname{rt}(\operatorname{rt}(\mathbf{R})) = \operatorname{rt}(\mathbf{R}) = \mathbf{R}^{\oplus}$$

(3)
$$R^{\circ}R^{\oplus} = R^{\circ} \cup_{i=0}^{\infty} R^{i} = \bigcup_{i=0}^{\infty} R^{i+1} = \bigcup_{i=1}^{\infty} R^{i} = R^{+}$$

$$R^{\bigoplus \circ} \mathbf{R} = (\bigcup_{i=0}^{\infty} R^i)^{\circ} \mathbf{R} = \bigcup_{i=0}^{\infty} R^{i+1} = \bigcup_{i=1}^{\infty} R^i = R^+$$

31. r(R), s(R), t(R)的关系图如下:

解

- (1) 不是。因为~R不是自反的
- (2) 不是。因为 R_1 - R_2 (R_2 - R_1)不是自反的
- (3) 不是,可能没有传递性,如

$$A = \{0,1,2\}, R_1 = A \times A, R_2 = \{<0,1>,<1,0>\} \cup I_A$$

R₁-R₂没有传递性

(4) 不是,具有自反,但不一定是对称和传递的,如

$$A = \{1,2,3,4\}, R_1 = \{<1,2>,<2,1>\} \cup I_A$$

$$R_2 = {<2,3>,<3,2>} \cup I_A$$

$$R_1^{\circ}$$
 $R_2 = \{<1,2>,<2,1>,<3,1>,<2,3>,<3,2>\} \cup I_A$

- 35.设R是非空集合A上的二元关系,R满足下面条件:
- (1) R是自反的;
- (2) $\forall x,y,z \in A$,若 $\langle x,y \rangle \in R \land \langle x,z \rangle \in R$,则 $\langle y,z \rangle \in R$. 证明R是A上的等价关系.
- 证 只需证明R是对称的和传递的.任取< x,y>,

$$< x,y>$$
 ∈ $R \land < x,x>$ ∈ $R \Rightarrow < y,x>$ ∈ R , $\&$ R \bowtie M M

任取
$$\langle x,y \rangle \in R \land \langle y,z \rangle \in R$$

$$\Rightarrow < y, x > \in R \land < y, z > \in R \Rightarrow < x, z > \in R,$$

故R是传递的.

因此R是等价关系.

证明 $\forall x \in A, x \equiv x \pmod{5}$, 所以xRx, 因此R是自反的.

 $\forall xRy \Rightarrow x-y=5k \Rightarrow y-x=5(-k) \Rightarrow yRx, k \in \mathbb{Z}$,故R是对称的

 $\forall xRy,yRz \Rightarrow x-y=5k_1, y-z=5k_2 \Rightarrow x-z=5(k_1+k_2) \Rightarrow xRz,k_1, k_2 \in \mathbb{Z}$, 故R是传递的.

综上所述,R是等价关系。

 $[x] = \{y \mid yRx\} = \{y \mid y \equiv x \pmod{5}, y \in A\}$

 $[0] = \{5,10,15,20\}, [1] = \{1,6,11,16\}, [2] = \{2,7,12,17\}, [3] = \{3,10,15,20\}, [3] =$

8,13,18},[4]={4,9,14,19}

 $A/R = \{[0], [1], [2], [3], [4]\}$

- 39.设 $A=\{1,2,3,4\},\pi=\{\{1,2,3\},\{4\}\}$ 是A的一个划分.
- (1)求π诱导出的A上的等价关系 R_{π} 及商集 A/R_{π} ;
- (2)求π的所有加细诱导出的A上的等价关系及其商集.

$$i\mathbb{E} (1) \qquad \mathbf{R}_{\pi} = \{1,2,3\} \times \{1,2,3\} \cup \{4\} \times \{4\}$$

$$= I_{A} \cup \{<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>\}$$

$$A/R_{\pi} = \{\{1,2,3\},\{4\}\}$$

(2) π的所有加细:

$$\pi_{1} = \{\{1,2\},\{3\},\{4\}\}\}, \quad R_{\pi_{1}} = I_{A} \cup \{<1,2>,<2,1>\}, A/R_{\pi_{1}} = \pi_{1},$$

$$\pi_{2} = \{\{1\},\{2,3\},\{4\}\}\}, \quad R_{\pi_{2}} = I_{A} \cup \{<2,3>,<3,2>\}, A/R_{\pi_{2}} = \pi_{2},$$

$$\pi_{3} = \{\{1,3\},\{2\},\{4\}\}\}, \quad R_{\pi_{3}} = I_{A} \cup \{<1,3>,<3,1>\}, A/R_{\pi_{3}} = \pi_{3},$$

$$\pi_{4} = \{\{1\},\{2\},\{3\},\{4\}\}\}, \quad R_{\pi_{4}} = I_{A}, \quad A/R_{\pi_{4}} = \pi_{4},$$

$$\pi_{5} = \pi$$

$$R_{\pi_{5}} = R, \quad A/R_{\pi_{5}} = \pi$$

41.设 R_1 是A上的等价关系, R_2 是B上的等价关系, A_3 B均非空. R_3 ={<< x_1,y_1 >,< x_2,y_2 >>| $x_1R_1x_2 \land y_1R_2y_2$ },证明 R_3 是 A×B上的等价关系.

证: 任意 $\langle x,y \rangle \in A \times B$,

 $xR_1x \wedge yR_2y \Rightarrow \langle \langle x,y \rangle, \langle x,y \rangle \rangle \in R_3$,所以 R_3 是A×B上的自反关系;

任意< x_1,y_1 >R₃< x_2,y_2 >,

 $\langle x_1, y_1 \rangle R_3 \langle x_2, y_2 \rangle \Rightarrow x_1 R_1 x_2 \wedge y_1 R_2 y_2 \Rightarrow x_2 R_1 x_1 \wedge y_2 R_2 y_1 \Rightarrow$

 $\langle x_2, y_2 \rangle R_3 \langle x_1, y_1 \rangle$,所以 R_3 是A×B上的对称关系;

任意 $< x_1, y_1 > R_3 < x_2, y_2 > , < x_2, y_2 > R_3 < x_3, y_3 > ,$

 $< x_1, y_1 > R_3 < x_2, y_2 > \land < x_2, y_2 > R_3 < x_3, y_3 > \Rightarrow x_1 R_1 x_2 \land y_1 R_2 y_2$

 $x_2\mathbf{R}_1x_3 \wedge y_2\mathbf{R}_2y_3 \Rightarrow x_1\mathbf{R}_1x_3 \wedge y_1\mathbf{R}_2y_3 \Rightarrow \langle x_1,y_1 \rangle \mathbf{R}_3 \langle x_3,y_3 \rangle$

所以R3是A×B上的传递关系;

- ▶ 求偏序集< $\{\pi_1, \pi_2, \pi_3, \pi_4, \pi_5\}$,≤>,其中≤是加细关系,并画出哈斯图。
- ▶ $mathrew{\mathbf{H}} \leq = \{ \langle \pi_4, \pi_1 \rangle, \langle \pi_4, \pi_2 \rangle, \langle \pi_4, \pi_3 \rangle, \langle \pi_4, \pi_5 \rangle, \\
 \langle \pi_4, \pi_2 \rangle, \langle \pi_1, \pi_5 \rangle, \langle \pi_2, \pi_5 \rangle, \langle \pi_3, \pi_5 \rangle, \langle \pi_1, \\
 \pi_1 \rangle, \langle \pi_2, \pi_2 \rangle, \langle \pi_3, \pi_3 \rangle, \langle \pi_4, \pi_4 \rangle, \langle \pi_5, \pi_5 \rangle \}$

(2) π的所有加细:

$$\pi_1 = \{\{1,2\}, \{3\}, \{4\}\},\$$
 $\pi_2 = \{\{1\}, \{2,3\}, \{4\}\},\$
 $\pi_3 = \{\{1,3\}, \{2\}, \{4\}\},\$
 $\pi_4 = \{\{1\}, \{2\}, \{3\}, \{4\}\}\}$

解

$$\sum_{i=1}^{5} {5 \brace i} = {5 \brace 1} + {5 \brace 2} + {5 \brace 3} + {5 \brace 4} + {5 \brace 5}$$

$$= 1 + (2 \begin{Bmatrix} 4 \rbrace 2 \end{Bmatrix} + {4 \brack 1}) + (3 \begin{Bmatrix} 4 \rbrace 3 \end{Bmatrix} + {4 \brack 2}) + (4 \begin{Bmatrix} 4 \rbrace 4 \end{Bmatrix} + {4 \brack 3}) + 1$$

$$= 2 + 3 \begin{Bmatrix} 4 \rbrace 2 \end{Bmatrix} + 1 + 4 \begin{Bmatrix} 4 \rbrace 3 \end{Bmatrix} + 4 = 7 + 3 \begin{Bmatrix} 4 \rbrace 2 \end{Bmatrix} + 4 \begin{Bmatrix} 4 \rbrace 3 \end{Bmatrix}$$

$$= 7 + 3(2 \begin{Bmatrix} 3 \rbrace 2 \end{Bmatrix} + {3 \brack 1}) + 4(3 \begin{Bmatrix} 3 \rbrace 3 \end{Bmatrix} + {3 \brack 2}) = 7 + 10 \begin{Bmatrix} 3 \rbrace 3 \end{Bmatrix} + 12 \begin{Bmatrix} 3 \rbrace 3 \end{Bmatrix}$$

$$= 7 + 10 \times 3 + 3 \times 1 + 12 \times 1 = 52$$

▶ (1) 哈斯图

▶ (2) R₄是全序关系。

- 45. 分别画出下列偏序集的哈斯图,并指出A的最大元、最小元、极大元、极小元.
 - (1) 偏序集 $<A_1$, $\leq_1>$,其中, $A_1=\{a,b,c,d,e\}$,

$$\leq_1 = I_{A_1} \cup \{ \langle a,b \rangle, \langle a,c \rangle, \langle a,d \rangle, \langle a,e \rangle, \langle b,e \rangle, \langle c,e \rangle, \langle d,e \rangle \}.$$

(2)偏序集 $<A_1$, $\leq_1>$,其中, $A_2=\{a,b,c,d,e\}$,

$$\leq_2 = I_{A_2} \cup \{< c, d>, < b, d>\}$$

- (1) 哈斯图如下图左图所示. 最大元、极大元是e,最小元、极小元是a
- (2)哈斯图如下图右图所示. 无最大元、极大元是a,d,e,无最小元,极小元是a,b,c,e.

46. 在偏序集<Z+, ≤>中,Z+为正整数集合, ≤ 为整除关系,设B={1,2,...,10},求B的上界、上确界、下界、下确界.

解: B的上界是2520k,k是整数

B的上确界是2520,

B的下界是1,下

确界是1.

47. 设偏序集为47. 设偏序集为41, >,其中A是54的因子的集合, |为整除关系,画出哈斯图,指出A中有多少条最长链,并指出A中元素至少可以划分成多少个互不相交的反链.又至多可以划分成多少个互不相交的反链.

 \mathbf{R} $A = \{1,2,3,6,9,18,27,54\}$

最长链有4条.

因为偏序集中的最长链的长度为5, 根据定理/4中至少存在5个互不相交 的反链.

|A|=8,因此A中的元素至多可划分为8个互不相交的反链,A中8个元素组成的8个单元子集满足要求.


```
证任取\langle x,y \rangle \in A \times B, 则x \in A, y \in B
\langle x,x\rangle \in \mathbb{R}_1 \land \langle y,y\rangle \in \mathbb{R}_2 \Leftrightarrow \langle \langle x,y\rangle, \langle x,y\rangle \rangle \in \mathbb{R},故R是自反的.
任取\langle x,y \rangle, \langle m,n \rangle \rangle \in \mathbb{R} \land \langle \langle m,n \rangle, \langle x,y \rangle \rangle \in \mathbb{R}
                                             \Leftrightarrow <x,m> \in R_1 \land <y,n> \in R_2 \land <m,x> \in R_1 \land <n,y> \in R_2 \land <m,x> \in R_3 \land <n,y> \in R_4 \land <n,y> \in R_4 \land <n,y> \in R_5 \land <n,y \( <n,y> \in R_5 \land <n,y> \in R_5 \land <n,y> \in R_5 \land <n,y> \in R_5 \land <n,y \( <n,y> \in R_5 \land <n,y> \in 
                                                 \Leftrightarrow x=m \land y=n \Leftrightarrow \langle x,y\rangle = \langle m,n\rangle, 故R是反对称的.
任取\langle x,y \rangle, \langle m,n \rangle \rangle \in \mathbb{R} \land \langle \langle m,n \rangle, \langle p,q \rangle \rangle \in \mathbb{R}
                          \Leftrightarrow <x,m> \in R_1 \land <y,n> \in R_2 \land <m,p> \in R_1 \land <n,q> \in R_2 \land <m,p> \in R_2 \land <m,p> \in R_3 \land <n,q> \in R_3 \land <m,p> \in R_4 \land <n,q> \in R_3 \land <n,q> \in R_4 \land <n,q> \in R_4 \land <n,q> \in R_5 \land <n,q \( <n,q> \ \cap R_5 \land <n,q> \ \cap R_5 \land <n,q> \ \cap R_5 \land <n,q> \cap R_5 \land <n
                          \Leftrightarrow <x,p> \in \mathbb{R}_1 \land <y,q> \in \mathbb{R}_2
                          \Leftrightarrow << x,y>,< p,q>> \in \mathbb{R},故R是传递的.
           因此R是偏序关系.
```



```
证任取\langle x,y \rangle \in A \times B, 则x \in A, y \in B
\langle x,x\rangle \in \mathbb{R}_1 \land \langle y,y\rangle \in \mathbb{R}_2 \Leftrightarrow \langle \langle x,y\rangle, \langle x,y\rangle \rangle \in \mathbb{R},故R是自反的.
任取\langle x,y \rangle, \langle m,n \rangle \rangle \in \mathbb{R} \land \langle \langle m,n \rangle, \langle x,y \rangle \rangle \in \mathbb{R}
                                             \Leftrightarrow <x,m> \in R_1 \land <y,n> \in R_2 \land <m,x> \in R_1 \land <n,y> \in R_2 \land <m,x> \in R_3 \land <n,y> \in R_4 \land <n,y> \in R_4 \land <n,y> \in R_5 \land <n,y \( <n,y> \in R_5 \land <n,y> \in R_5 \land <n,y> \in R_5 \land <n,y> \in R_5 \land <n,y \( <n,y> \in R_5 \land <n,y> \in 
                                                 \Leftrightarrow x=m \land y=n \Leftrightarrow \langle x,y\rangle = \langle m,n\rangle, 故R是反对称的.
任取\langle x,y \rangle, \langle m,n \rangle \rangle \in \mathbb{R} \land \langle \langle m,n \rangle, \langle p,q \rangle \rangle \in \mathbb{R}
                          \Leftrightarrow <x,m> \in R_1 \land <y,n> \in R_2 \land <m,p> \in R_1 \land <n,q> \in R_2 \land <m,p> \in R_2 \land <m,p> \in R_3 \land <n,q> \in R_3 \land <m,p> \in R_4 \land <n,q> \in R_3 \land <n,q> \in R_4 \land <n,q> \in R_4 \land <n,q> \in R_5 \land <n,q \( <n,q> \ \cap R_5 \land <n,q> \ \cap R_5 \land <n,q> \ \cap R_5 \land <n,q> \cap R_5 \land <n
                          \Leftrightarrow <x,p> \in \mathbb{R}_1 \land <y,q> \in \mathbb{R}_2
                          \Leftrightarrow << x,y>,< p,q>> \in \mathbb{R},故R是传递的.
           因此R是偏序关系.
```


解

R

- 52. 设A是3元集,问A上共有多少个偏序关系.
- 解 三个元素的哈斯图中至多有2条边,所以没有边的有 1个,有一条边的有6个,有2条边的有12个,共计有19个.

52.解(续)

