

Leonardo Pisano Fibonacci (v. 1175/ v. 1250) est le plus connu des mathématiciens du Moyen Âge. Il est surtout connu par la suite de nombres éponyme. Elle aurait été découverte en comptabilisant les lapins suite à leur reproduction. Fibonacci met au point la formule qui permet de déduire la quantité de lapins de la saison suivante à partir des quantités des saisons précédentes. Cette formule devient la première formule de récursion connue de l'histoire. Ce fut une contribution majeure à la partie des Mathématiques nommée combinatoire que l'on traitera au cours de l'année.

1. Rappels de l'an dernier

– Définition 1.2 -

- Une suite est une application $u: \mathbb{N} \to$
- Pour $n \in \mathbb{N}$, on note u(n) ou u_n le n-ème terme ou terme général de la suite.

La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) . Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n\geq n_0}$.

Exemples.

- $(\sqrt{n})_{n\geq 0}$ est la suite de termes : 0, 1, $\sqrt{2}$, $\sqrt{3}$,...
- $(F_n)_{n\geq 0}$ définie par $F_0=1, F_1=1$ et la relation $F_{n+2}=F_{n+1}+F_n$ pour $n\in\mathbb{N}$ (suite de Fibonacci). Les premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents.

- Définition 2.2 -

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- $(u_n)_{n\in\mathbb{N}}$ est majorée si : $\exists M\in\mathbb{R}, \forall n\in\mathbb{N}, u_n\leq M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée si : $\exists m\in\mathbb{R} \quad \forall n\in\mathbb{N} \quad u_n\geq m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée si elle est majorée et minorée, ce qui revient à dire :

$$\exists (m, M) \in \mathbb{R}^2, \quad \forall n \in \mathbb{N}, \quad m \le u_n \le M.$$

Cas d'une suite

PAPPLICATION 1.2. Démontrer que la suite (u_n) définie sur \mathbb{N} par $u_n = \cos(n^3) + 3$ est bornée.

2. Sens de variation d'une suite

- Définition 3.2 -

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- $(u_n)_{n\in\mathbb{N}}$ est **croissante** si $\forall n\in\mathbb{N}$,
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si $\forall n\in\mathbb{N}$
- $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si $\forall n\in\mathbb{N}$,
- $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si $\forall n\in\mathbb{N}$,
- $(u_n)_{n\in\mathbb{N}}$ est **monotone** si elle est
- $(u_n)_{n\in\mathbb{N}}$ est strictement monotone si elle est strictement croissante ou strictement décroissante.

Exemple. Cas d'une suite croissante mais non strictement croissante.

Remarques.

- Il peut arriver qu'une suite soit **croissante** (resp. décroissante) à partir d'un certain rang n_0 : pour tout $n \ge n_0$, $u_{n+1} \ge u_n$ (resp. $u_{n+1} \le u_n$).
- Il existe des suites ni croissantes ni décroissantes, par exemple la suite u définie pour tout entier naturel non nul par $u_n = \frac{(-1)^n}{n}$:

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si :
- Si $(u_n)_{n\in\mathbb{N}}$ est une suite à termes **strictement positifs**, elle est croissante si et seulement si :

PAPPLICATION 2.2. Étudier la monotonie des suites u et v définies par :

1.
$$u_{n+1} = -2u_n^2 + u_n$$
 et $u_0 = -3$ avec $n \in \mathbb{N}$ 2. $v_n = \frac{2^n}{3^{n+4}}$ pour $n \in \mathbb{N}^*$

3. Limite infinie d'une suite

3.1 Limite infinie

Définition 4.2

Une suite (u_n) a pour limite $+\infty$ quand n tend vers $+\infty$, si tout intervalle de la forme $]A; +\infty[$ contient tous les termes u_n à partir d'un certain rang.

Autrement dit, pour tout réel A, il existe un entier n_0 tel que pour tout entier $n \ge n_0$, on ait $u_n > A$.

On note:

$$\lim_{n \to +\infty} u_n =$$

On dit dans ce cas que la suite (u_n) diverge vers $+\infty$.

3.2 Premières limites à connaître

Propriété 1.2.

- $\bullet \ \lim_{n \to +\infty} n =$
- $\bullet \lim_{n \to +\infty} n^2 =$

- $\lim_{n \to +\infty} \sqrt{n} =$
- $\bullet \lim_{n \to +\infty} n^k =$

pour tout entier $k \geqslant 1$

Exercice 3. Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 2n + 1$.

- 1. Conjecturer la limite de la suite (u_n) en $+\infty$.
- 2. Résoudre l'inéquation $u_n > A$ où A est un réel donné.

3. Justifier alors que la suite (u_n) a pour limite $+\infty$.

4. Limite finie d'une suite

4.1 convergente

Définition 5.2

Une suite (u_n) admet pour limite le réel ℓ quand n tend vers $+\infty$, si tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang n_0 .

On note:

$$\lim_{n \to +\infty} u_n =$$

On dit dans ce cas que la suite (u_n)

vers ℓ .

4.2 Suites de référence

Propriété 2.2.

- $\bullet \lim_{n \to +\infty} \frac{1}{n} = 0$
- $\bullet \lim_{n \to +\infty} \frac{1}{n^2} = 0$

- $\bullet \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$
- $\lim_{n \to +\infty} \frac{1}{n^k} = 0$ pour tout entier $k \geqslant 1$

Théorème 3.2.

Si une suite (u_n) admet une limite le réel ℓ quand n tend vers $+\infty$ alors cette limite est unique et on note :

$$\lim_{n \to +\infty} u_n = \ell$$

4.3 Des suites sans limite

Une suite n'a pas nécessairement de limite. C'est le cas par exemple pour les suites « alternées » ou celles dont les valeurs oscillent. Dans ces cas, on dira que ces suites sont également divergentes.

Exemple. La suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n$ alterne entre les valeurs -1 et 1:

5. Théorèmes d'encadrement et de comparaison

5.1 Théorème d'encadrement des limites dit « des gendarmes »

Théorème 4.2.

Si les suites (u_n) , (v_n) et (w_n) sont telles que :

- à partir d'un certain rang $v_n \leqslant u_n \leqslant w_n$;
- (v_n) et (w_n) ont la même limite finie ℓ ,

alors la suite (u_n) converge et a pour limite ℓ .

Démonstration.			

${ m Ch} { m 02-Suites} { m num\'eriques}$	7
PAPPLICATION 5.2. Déterminer la limite de la suite v définie sur \mathbb{N}^* par $v_n = \frac{2 + \cos n}{3n}$.	
$=$ Application 0.2. Determine a number de la suite v definie sui v par $v_n = 3n$	
5.2 Théorème de comparaison	
Théorème 6.2.	
Soient (u_n) , (v_n) deux suites définies sur \mathbb{N} . Si à partir d'un certain rang, $u_n \geqslant v_n$ et si $\lim_{n \to +\infty} v_n = +\infty$ alors :	
$n{ ightarrow}+\infty$	
$\lim_{n \to +\infty} u_n = +\infty .$	
Démonstration.	
Demonstration.	

Le même type de théorème existe pour $-\infty$ et il se démontre de la même manière.

Théorème 7.2.

Soient (u_n) et (v_n) deux suites définies sur \mathbb{N} . Si à partir d'un certain rang, $u_n \leq v_n$ et si $\lim_{n \to +\infty} v_n = -\infty$ alors :

$$\lim_{n \to +\infty} u_n = -\infty$$

6. Opérations et limites

6.1 Somme

Limite de (u_n)	ℓ	ℓ	$+\infty$	$-\infty$
Limite de (v_n)	ℓ'	$\pm \infty$	$+\infty$	$-\infty$
Limite de $(u_n + v_n)$	$\ell + \ell'$	$\pm \infty$	$+\infty$	$-\infty$

Dans le cas où $\lim_{n\to+\infty} u_n = -\infty$ et $\lim_{n\to+\infty} v_n = +\infty$ on ne peut pas tirer de conclusion générale pour (u_n+v_n) , il s'agit d'une **forme indéterminée**, forme que l'on essaiera de lever en fonction de l'expression donnée. En tout état de cause, il n'y a pas de résultat général.

6.2 Produit

Limite de (u_n)	ℓ	$\ell \neq 0$	$+\infty$	$+\infty$	$-\infty$
Limite de (v_n)	ℓ'	$\pm \infty$	$+\infty$	$-\infty$	$-\infty$
Limite de $(u_n \times v_n)$	$\ell \times \ell'$	$*\infty$	$+\infty$	$-\infty$	$+\infty$

*: + ou - appliquer la règle des signes.

Dans le cas où $\lim_{n\to+\infty} u_n = 0$ et $\lim_{n\to+\infty} v_n = \pm \infty$, on ne peut pas tirer de conclusion générale pour $(u_n \times v_n)$, il s'agit d'une **forme indéterminée** qui nécessitera une étude particulière.

6.3 Quotient

Limite de (u_n)	ℓ	ℓ	$+\infty$	$-\infty$
Limite de (v_n)	$\ell' \neq 0$	$\pm \infty$	$\ell' \neq 0$	$\ell' \neq 0$
Limite de $\left(\frac{u_n}{v_n}\right)$	$\frac{\ell}{\ell'}$	0	*∞	*∞

*: + ou – appliquer la règle des signes.

Dans les cas où $\lim u_n = \pm \infty$ et $\lim v_n = \pm \infty$, $\lim u_n = 0$ et $\lim v_n = 0$, on ne peut pas tirer de conclusion générale pour $\left(\frac{u_n}{v_n}\right)$, il s'agit de formes indéterminées.

7. Limites de suites monotones

Propriété 3.2. Si une suite croissante a pour limite ℓ , alors tous les termes de la suite sont inférieurs ou égaux à ℓ .

Théorème 8.2.

- Une suite croissante majorée converge, c'est-à-dire admet une limite finie.
- Une suite décroissante minorée converge, c'est-à-dire admet une limite finie.

Ce théorème est un théorème d'existence, il justifie l'existence d'une limite finie mais ne précise pas cette limite.

Théorème 9.2.

- Une suite **croissante non majorée** a pour limite $+\infty$.
- Une suite décroissante non minorée a pour limite $-\infty$.

Limites de suites arithmétiques et géométriques 8.

8.1 Suites arithmétiques

Propriété 4.2. Soit (u_n) une suite arithmétique de raison r.

- Si r < 0 on a lim_{n→+∞} u_n = -∞.
 Si r = 0 alors la suite est constante et égale à u₀, lim_{n→+∞} u_n = u₀.
- Si r > 0 alors on a $\lim_{n \to +\infty} u_n = +\infty$.

8.2 Suites géométriques

Propriété 5.2. Soit la suite géométrique (q^n) définie sur \mathbb{N} avec q un réel.

- Si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$.
- Si q = 1 alors lim_{n→+∞} qⁿ = 1.
 Si -1 < q < 1 alors lim_{n→+∞} qⁿ = 0.
- Si $q \leqslant -1$ alors la suite (q^n) n'a pas de limite.

Propriété 6.2. Soit (u_n) la suite géométrique de raison q et de premier terme u_0 .

	$u_0 < 0$	$u_0 > 0$	
$q \leqslant -1$	Pas de limite		
-1 < q < 1	la suite (u_n) tend vers 0		
q = 1	la suite (u_n) tend vers u_0		
q > 1	la suite (u_n) tend vers $-\infty$	la suite (u_n) tend vers $+\infty$	

P Application 10.2. Soit la suite (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + 1 \end{cases}$$

1.	Démontrer par récurrence que pour tout entier $n \ge 1$, $u_n \ge 2^{n-1}$.				

2. En déduire que la suite (u_n) diverge vers $+\infty$.