

The normal distribution below has a standard deviation of 10. Approximately what area is contained between 70 and 90?

The normal distribution below has a standard deviation of 10. Approximately what area is contained between 70 and 90?

$$\mu = 70$$

 $\sigma = 10$

PRACTICE QUESTIONS

For the normal distribution below, approximately what area is contained between -2 and 1?

For the normal distribution below, approximately what area is contained between -2 and 1?

$$\mu = 0$$

 $\sigma = 1$

, Data scilenc

3 For the uniform distribution below, what proportion of values are located between 12.3 and 18.6?

Probability Distribution

Probability Distribution

Graphical representation of variable & respective probabilities of variable.

Types of Probability Distribution

- > Discrete Probability Distribution
- > Continuous Probability Distribution

Discrete Probability Distribution

The daily sales of large flat panel TVs at a store (X)

	×	P(X=x)		
	0	0.40		
L	1	0.25		
	2	0.20		
	3	0.05		
	4	0.10		

What is the probability of a sale?

What is the probability of selling at least three TVs?

CCILORIC

Probability

Variable:

- Chance of occurrence.
- Ex: rolling a die, tossing a coin

Random Variable:

A random variable is probability associated each possibility of variable.

It is a random because there is some chance associated with each possible value.

Probability = No. of interested events/total no. of outcomes

- · Always probability value lies between 0 to1.
- · Sum of all Probabilities =1

Suppose you have randomly picked a card from the card deck. What is the probability that this card will be?

- Bigger than 10?
- Equal to or Bigger than 10?
- Smaller than 3
- Greater than 4 and less than 8

If A & B are two independent events

$$P(A \& B) = P(A) * P(B)$$

Ex: probability of getting Red & 9

$$P(A \text{ or } B) = P(A) + P(B) - P(A \& B)$$

Ex: probability of getting Red or 9

scilence solven

COVARIANCE

$$COV(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (n-1)}$$

CORRELATON

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

where:

- · cov is the covariance
- ullet σ_X is the standard deviation of X
- ullet σ_Y is the standard deviation of Y

CORRELATON

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

r = correlation coefficient

 x_i = values of the x-variable in a sample

= mean of the values of the x-variable

 y_i = values of the y-variable in a sample

 \bar{y} = mean of the values of the y-variable

Range	Strength of association
0	No association
0 to ±0.25	Negligible association
±0.25 to ±0.50	Weak association
±0.50 to ±0.75	Moderate association
±0.75 to ±1	Very strong association
±1	Perfect association

A DATA VALUE IS CONSIDERED TO BE AN OUTLIER IF...

DATA VALUE < Q1 – 1.5(IQR)

DATA VALUE

Q3 + 1.5(IQR)

