Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6666/01)

June 2008 6666 Core Mathematics C4 Mark Scheme

Question			Sch	neme					Marks
1. (a)	<u> </u>	0	0.4	0.8	1.2	1.6	2		
1. (α)	у	e^0	e ^{0.08}	e ^{0.32}	e ^{0.72}	e ^{1.28}	e^2		
	or y	1	1.08329	1.37713	2.05443	3.59664	7.38906		
						av	er e ^{0.32} and e ¹ wrt 1.38 and nixture of e's decir	3.60 s and	B1 [1]
							Outside brace $\frac{1}{2} \times 0.4$ or		B1;
(b) Way 1	Area $\approx \frac{1}{2} \times$	< 0.4 ;×[_	$e^{0} + 2(e^{0.08} +$	$e^{0.32} + e^{0.72} +$	$-e^{1.28}$) + e^2	ļ	For structu trape rule	<u>re of</u> zium	<u>M1</u> √
	$=0.2\times24$.612031	64 = 4.92	22406 = <u>4.9</u>	<u>922</u> (4sf)		4.	.922	A1 cao [3]
Aliter (b) Way 2	Area ≈ 0.	$.4 \times \left[\frac{e^0 + e^0}{2}\right]$	$\frac{e^{0.08}}{2} + \frac{e^{0.08} + e^{0.32}}{2}$	$\frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.72} + e^{0.72}}{2} + $	$-\frac{e^{0.72}+e^{1.28}}{2}+\frac{e^{1.2}}{2}$	$\left(\frac{e^{28}+e^2}{2}\right)^2$ 0.4 and all terms	d a divisor of s inside brac	2 on kets.	B1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	which is ϵ Area $\approx \frac{1}{-} \times$	•		$e^{0.32} + e^{0.72} +$	$-e^{1.28}+e^{2}$	ordi middle	e of first and nates, two o e ordinates in ts ignoring tl	f the nside	<u>M1</u> √
	2	_		22406 = <u>4.9</u>			<u>4</u> .	.922	A1 cao [3]

Note an expression like Area $\approx \frac{1}{2} \times 0.4 + e^0 + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^2$ would score B1M1A0

Allow one term missing (slip!) in the (\quad) brackets for

The M1 mark for structure is for the material found in the curly brackets ie [first y ordinate + 2(intermediate ft y ordinate) + final y ordinate]

Question Number	Scheme		Marks
2. (a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$		
	$\int x e^x dx = x e^x - \int e^x .1 dx$	Use of 'integration by parts' formula in the correct direction . (See note.) Correct expression. (Ignore dx)	M1 A1
	$= x e^x - \int e^x dx$		
	$= x e^x - e^x (+ c)$	Correct integration with/without $+ c$	A1 [3]
(b)	$\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x & \Rightarrow v = e^x \end{cases}$		
	$\int x^2 e^x dx = x^2 e^x - \int e^x . 2x dx$	Use of 'integration by parts' formula in the correct direction . Correct expression. (Ignore dx)	M1 A1
	$= x^2 e^x - 2 \int x e^x dx$		
	$= x^2 e^x - 2\left(x e^x - e^x\right) + c$	Correct expression including + c. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW [3]
	$\begin{cases} = x^{2}e^{x} - 2xe^{x} + 2e^{x} + c \\ = e^{x}(x^{2} - 2x + 2) + c \end{cases}$	Ignore subsequent working	[3]
			6 marks

Note integration by parts in the **correct direction** means that u and $\frac{dv}{dx}$ must be assigned/used as u=x and $\frac{dv}{dx}=e^x$ in part (a)

+ *c* is not required in part (a).

Question Number	Scheme	Marks
3. (a)	From question, $\frac{dA}{dt} = 0.032$ $\frac{dA}{dt} = 0.032$ seen or implied from working.	B1
	$\left\{ A = \pi x^2 \implies \frac{\mathrm{d}A}{\mathrm{d}x} = \right\} 2\pi x$ 2\pi x by itself seen or implied from working	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032) \frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$ $0.032 \div \text{Candidate's } \frac{\mathrm{d}A}{\mathrm{d}x};$	M1;
	When $x = 2 \text{cm}$, $\frac{dx}{dt} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479$ (cm s ⁻¹) awrt 0.00255	A1 cso [4]
(b)	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$ $V = \underline{\pi x^2(5x)} \text{ or } \underline{5\pi x^3}$	B1
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 15\pi x^2$ or ft from candidate's V in one variable	B1 √
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24 x\right\}$ Candidate's $\frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t};$	M1√
	When $x = 2 \text{cm}$, $\frac{\text{d}V}{\text{d}t} = 0.24(2) = \underline{0.48} (\text{cm}^3 \text{s}^{-1})$ $\underline{0.48} \text{or} \underline{\text{awrt } 0.48}$	A1 cso
		[4]
		8 marks

Question Number	Scheme		Marks
4. (a)	$3x^2 - y^2 + xy = 4$ (eqn *)		
	$\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \left($	Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $x \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$)	M1
	$\left\{ \frac{dy}{dx} \times \right\} \frac{6x - 2y}{dx} + \left(\frac{y + x}{dx} \frac{dy}{dx} \right) = 0$	Correct application $\underline{\underline{\hspace{0.5cm}}}$ of product rule $\underline{\underline{\hspace{0.5cm}}}$ $(3x^2 - y^2) \rightarrow \left(\underline{6x - 2y} \frac{dy}{dx}\right)$ and $(4 \rightarrow \underline{0})$	B1 <u>A1</u>
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6x - y}{x - 2y} \right\} \text{or} \left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x + y}{2y - x} \right\}$	not necessarily required.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$	Substituting $\frac{dy}{dx} = \frac{8}{3}$ into their equation.	M1 *
	giving $-18x - 3y = 8x - 16y$		
	giving $13y = 26x$	Attempt to combine either terms in x or terms in y together to give either ax or by .	dM1*
	Hence, $y = 2x \Rightarrow \underline{y - 2x = 0}$	simplifying to give $y - 2x = 0$ AG	A1 cso [6]
(b)	At $P \notin Q$, $y = 2x$. Substituting into eqn *		
	gives $3x^2 - (2x)^2 + x(2x) = 4$	Attempt replacing y by $2x$ in at least one of the y terms in eqn $*$	M1
	Simplifying gives, $x^2 = 4 \Rightarrow \underline{x = \pm 2}$	Either $x = 2$ or $x = -2$	<u>A1</u>
	$y = 2x \implies y = \pm 4$		
	Hence coordinates are $(2,4)$ and $(-2,-4)$	Both $(2,4)$ and $(-2,-4)$	<u>A1</u>
			[3] 9 marks
			7 111a1 K3

Question Number	Scheme		Marks
	** represents a constant (which must be consistent for	or first accuracy mark)	
5. (a)	$\frac{1}{\sqrt{(4-3x)}} = (4-3x)^{-\frac{1}{2}} = \underline{(4)}^{-\frac{1}{2}} \left(1 - \frac{3x}{4}\right)^{-\frac{1}{2}} = \underline{\frac{1}{2}} \left(1 - \frac{3x}{4}\right)^{-\frac{1}{2}}$	$(4)^{-\frac{1}{2}}$ or $\frac{1}{2}$ outside brackets	<u>B1</u>
		Expands $(1+**x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1+(-\frac{1}{2})(**x)$;	M1;
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(**x); + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2 + \dots}{2!} \right]$ with $** \neq 1$	A correct simplified or an unsimplified $[$ $]$ expansion with candidate's followed through $(**x)$	A1√
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(-\frac{3x}{4}) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-\frac{3x}{4})^2 + \dots}{2!} \right]$	Award SC M1 if you see $(-\frac{1}{2})(**x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2$	
	$= \frac{1}{2} \left[1 + \frac{3}{8}x; + \frac{27}{128}x^2 + \dots \right]$	SC: $K \left[1 + \frac{3}{8}x; \dots \right]$ $\frac{1}{2} \left[1 + \frac{3}{8}x + \frac{27}{128}x^2 + \dots \right]$ $\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]$	1
	$\left\{ = \frac{1}{2} + \frac{3}{16}x; + \frac{27}{256}x^2 + \dots \right\}$	Ignore subsequent working	
(b)	$(x+8)\left(\frac{1}{2} + \frac{3}{16}x + \frac{27}{256}x^2 + \dots\right)$	Writing $(x+8)$ multiplied by candidate's part (a) expansion.	[5] M1
	$= \frac{\frac{1}{2}x + \frac{3}{16}x^2 + \dots}{+ 4 + \frac{3}{2}x + \frac{27}{32}x^2 + \dots}$	Multiply out brackets to find a constant term, two \mathbf{x} terms and two \mathbf{x}^2 terms.	M1
	$= 4 + 2x; + \frac{33}{32}x^2 + \dots$	Anything that cancels to $4 + 2x$; $\frac{33}{32}x^2$	♦ ♦ A1; A1
			[4]
			9 marks

Question Number	Scheme		Marks
6. (a)	Lines meet where:		
	$ \begin{pmatrix} -9\\0\\10 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} + \mu \begin{pmatrix} 3\\-1\\5 \end{pmatrix} $		
	i: $-9 + 2\lambda = 3 + 3\mu$ (1) Any two of j: $\lambda = 1 - \mu$ (2) k: $10 - \lambda = 17 + 5\mu$ (3)	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $-9 = 1 + 5\mu \implies \mu = -2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\lambda = 1 - 2 = 3$	Both $\underline{\lambda} = \underline{3} \& \underline{\mu} = -2$	A1
	$\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} - 2 \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$	Substitutes their value of either λ or μ into the line l_1 or l_2 respectively. This mark can be implied by any two correct components of $\left(-3,3,7\right)$.	ddM1
	Intersect at $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix}$ or $\mathbf{r} = \underline{-3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$	$\frac{\begin{pmatrix} -3\\3\\7 \end{pmatrix}}{\text{or } -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$ $\text{or } (-3, 3, 7)$	A1
	Either check k: $\lambda = 3$: LHS = $10 - \lambda = 10 - 3 = 7$ $\mu = -2$: RHS = $17 + 5\mu = 17 - 10 = 7$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda=3$, $\mu=-2$ in a third equation or check that $\lambda=3$, $\mu=-2$ give the same coordinates on the other line. Conclusion not needed.	B1 [6]
(b)	$\mathbf{d}_1 = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{d}_2 = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$		
	As $\mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} = \underline{(2 \times 3) + (1 \times -1) + (-1 \times 5)} = 0$	Dot product calculation between the two direction vectors: $ \underline{(2\times3) + (1\times-1) + (-1\times5)} $ or $\underline{6-1-5}$	M1
	Then l_1 is perpendicular to l_2 .	Result '=0' and appropriate conclusion	A1 [2]

Question Number	Scheme	Marks
6. (c)	Equating \mathbf{i} ; $-9+2\lambda=5 \Rightarrow \lambda=7$ $\mathbf{r} = \begin{pmatrix} -9 \\ 0 \\ 10 \end{pmatrix} + 7 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ Substitutes candidate's $\lambda=7$ into the line l_1 and finds $5\mathbf{i}+7\mathbf{j}+3\mathbf{k}$. The conclusion on this occasion is not needed.	B1 [1]
(d)	Let $\overrightarrow{OX} = -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ be point of intersection Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\overrightarrow{AX} = \pm \begin{pmatrix} \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$	M1 √ ±
	$\overrightarrow{OB} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} \text{their } \overrightarrow{AX} \end{pmatrix}$	dM1√
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ $\underbrace{\begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}}_{\mathbf{or}} = \underbrace{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}_{\mathbf{or}}$ or $\underbrace{(-11, -1, 11)}_{\mathbf{or}}$	A1 [3]
		12 marks

Question Number	Scheme	Marks
7. (a)	$\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)}$	
	Forming this identity $2 \equiv A(2+y) + B(2-y)$ NB: A & B are not assigned in this question	n M1
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$	
	Let $y=2$, $2=A(4) \Rightarrow A=\frac{1}{2}$ Either one of $A=\frac{1}{2}$ or $B=\frac{1}{2}$	1 ₂ A1
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, as	f A1 cao
	(If no working seen, but candidate writes down <i>correct partial fraction</i> then award all three marks. If no working is seen but one of <i>A</i> or <i>B</i> is incorrect then M0A0A0.)	[3]

Question Number	Scheme		Marks
7. (b)	$\int \frac{2}{4 - y^2} \mathrm{d}y = \int \frac{1}{\cot x} \mathrm{d}x$	Separates variables as shown. Can be implied. Ignore the integral signs, and the '2'.	B1
	$\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)} \mathrm{d}y = \int \tan x \mathrm{d}x$		
		$ln(\sec x)$ or $-ln(\cos x)$	B1
		Either $\pm a \ln(\lambda - y)$ or $\pm b \ln(\lambda + y)$	M1;
	$\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$	their $\int \frac{1}{\cot x} dx = LHS$ correct with ft	_
		for their $\bf A$ and $\bf B$ and no error with the "2" with or without $+ c$	A1 √
		Use of $y = 0$ and $x = \frac{\pi}{3}$ in an	
	$y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 2 = \ln \left(\frac{1}{\cos(\frac{\pi}{3})} \right) + c$	integrated equation containing c	M1*
	$\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$		
	$-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$		
	$\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$ \ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right) $		
	$ \ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2 $	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$		
	Hence, $\sec^2 x = \frac{8+4y}{2-y}$	$\sec^2 x = \frac{8+4y}{2-y}$	A1 aef [8]
			11 marks

Question Number	Scheme		Marks
8. (a)	At $P(4, 2\sqrt{3})$ either $\underline{4 = 8\cos t}$ or $\underline{2\sqrt{3}} = 4\sin 2t$	$4 = 8\cos t \text{or} 2\sqrt{3} = 4\sin 2t$	M1
	\Rightarrow only solution is $\underline{t = \frac{\pi}{3}}$ where 0 ,, t ,, $\frac{\pi}{2}$	$\underline{t = \frac{\pi}{3}} \text{ or } \underline{\text{awrt } 1.05} \text{ (radians) only}$ stated in the range 0,, t ,, $\frac{\pi}{2}$	A1 [2]
(b)	$x = 8\cos t , \qquad y = 4\sin 2t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t , \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2t$ respectively Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	M1 A1
	At P , $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	Divides in correct way round and attempts to substitute their value of t (in degrees or radians) into their $\frac{dy}{dx}$ expression.	M1*
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	You may need to check candidate's substitutions for M1* Note the next two method marks are dependent on M1*	
	Hence $m(\mathbf{N}) = -\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{3}}}$	Uses $m(\mathbf{N}) = -\frac{1}{\text{their } m(\mathbf{T})}$.	dM1*
	N: $y-2\sqrt{3}=-\sqrt{3}(x-4)$	Uses $y-2\sqrt{3} = (\text{their } m_N)(x-4)$ or finds c using $x=4$ and $y=2\sqrt{3}$ and uses $y=(\text{their } m_N)x+"c"$.	dM1*
	N : $y = -\sqrt{3}x + 6\sqrt{3}$ AG	$y = -\sqrt{3}x + 6\sqrt{3}$	A1 cso AG
	or $2\sqrt{3} = -\sqrt{3}(4) + c \implies c = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$		
	so N: $\left[\underline{y = -\sqrt{3}x + 6\sqrt{3}}\right]$		[6]

Question	Scheme		Marks
8. (c)	$A = \int_{0}^{4} y dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4 \sin 2t \cdot (-8 \sin t) dt$	attempt at $A = \int y \frac{dx}{dt} dt$ correct expression (ignore limits and dt)	M1 A1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t \cdot \sin t dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) \cdot \sin t dt$	Seeing $\sin 2t = 2\sin t \cos t$ anywhere in PART (c).	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -64 \cdot \sin^2 t \cos t dt$ $A = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 64 \cdot \sin^2 t \cos t dt$	Correct proof. Appreciation of how the negative sign affects the limits. Note that the answer is given in the question.	A1 AG
	3		[4]
(d)	{Using substitution $u = \sin t \implies \frac{\mathrm{d}u}{\mathrm{d}t} = \cos t$ } {change limits: when $t = \frac{\pi}{3}$, $u = \frac{\sqrt{3}}{2}$ &t when $t = \frac{\pi}{2}$, $u = 1$ }		
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ or $A = 64 \left[\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1}$	$k \sin^3 t$ or ku^3 with $u = \sin t$ Correct integration ignoring limits.	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$ $A = 64 \left(\frac{1}{3} - \frac{1}{8} \sqrt{3} \right) = \frac{64}{3} - 8\sqrt{3}$	Substitutes limits of either $\left(t = \frac{\pi}{2} \text{ and } t = \frac{\pi}{3}\right)$ or $\left(u = 1 \text{ and } u = \frac{\sqrt{3}}{2}\right)$ and subtracts the correct way round. $\frac{64}{3} - 8\sqrt{3}$	
	(Note that $a = \frac{64}{3}$, $b = -8$)	Aef in the form $a+b\sqrt{3}$, with awrt 21.3 and anything that cancels to $a=\frac{64}{3}$ and $b=-8$.	16 marks