34659-02 Tópicos Especiais em Sistemas Interativos II

Introdução à Support Vector Machines

PROFA. ISABEL HARB MANSSOUR DOUTORANDO MARCELO CABRAL GHILARDI

PORTO ALEGRE, OUTUBRO DE 2017

SVMs

As máquinas de vetores de suporte (Support Vector Machines – SVMs) (Cristianini e Shawe-Taylor, 2000) são modelos de aprendizagem supervisionada. As SVMs são embasadas pela teoria de aprendizado estatístico, desenvolvida por **Vladimir Vapnik** (1995) a partir de estudos iniciados por Vapnik e Chervonenkis (1971).

SVM pode ser aplicado a problemas de **Reconhecimento de Padrões**, Regressão, Extração de Características e Detecção de Novidades. Para cada um desses contextos há definições matemáticas específicas.

Exemplos de aplicações: Real-time traffic sign recognition (S. Ardianto *et al.,* 2017); Real-time Brain Cancer Classification (E. Torti *et al.,* 2017); A real-time human motion recognition (J. Li *et al.,* 2017); Bank Credit Risk (W. Zhen and S. Wenjuan,2017); Driver fatigue recognition (Z. You *et al.,* 2017); Text converter for Turkish (B. TombaloĞlu *et al.,* 2017);

Formas de Aprendizado

Aprendizado Supervisionado

- * são treinados usando exemplos rotulados
- Aprendizado Não Supervisionado
 - é usado em dados que não possuem rótulos ou históricos
 - o algoritmo deve descobrir atributos semelhantes, agrupamentos
- Aprendizado Semi-supervisionado
 - ❖ é usado nas mesmas aplicações de Aprendizado Supervisionado, mas com uma parte dos dados de treinamento rotulados e outra parte não.
- Aprendizado por Reforço
 - o algoritmo descobre, por tentativa e erro, quais ações geram as maiores recompensas

Aprendizado Supervisionado

Observa-se alguns pares de exemplos de entrada e saída, de forma a aprender uma função que mapeia a entrada para a saída.

Damos ao sistema a **resposta correta durante** o treinamento.

É eficiente pois o sistema pode trabalhar diretamente com informações corretas.

SVMs

Dado um conjunto de exemplos de treinamento, cada um marcado para pertencer a uma de duas categorias, um algoritmo de treinamento **SVM constrói um modelo** que atribui novos exemplos a uma categoria ou a outra.

Um modelo SVM é uma representação dos exemplos como pontos no espaço, mapeados para que os exemplos das categorias separadas sejam divididos por um hiperplano ótimo com a maior margem possível.

Novos exemplos são então mapeados para o mesmo espaço e preveem pertencer a uma categoria com base em qual lado da lacuna eles caem.

SVMs Lineares Imagine os dados de treinamento abaixo

SVMs Lineares

Podemos desenhar um "hiperplano" de separação entre as duas classes

SVMs Lineares

Mas há muitas opções para hiperplanos que separam perfeitamente ...

SVMs Lineares

Gostaríamos de escolher um hiperplano que maximize a margem entre as classes

SVMs Lineares – hiperplano ótimo Os pontos de vetor que as linhas de margem tocam são conhecidos como vetor de suporte

SVMs Não Lineares

Podemos expandir essa ideia para dados nãolinearmente separáveis

SVMs Não Lineares - A abordagem utilizada pelo SVM para resolver esse tipo de problema consistem em mapear os dados para um espaço de dimensão maior.

SVMs Não Lineares

Data in R^3 (separable w/ hyperplane)

Dimensões

Kernel	Função $\phi(x_i, x_j)$
Polinomial	$\left \left(\delta(x_i \cdot x_j) + k \right)^d \right $
Gaussiano	$\left \exp(-\sigma \left\ x_i - x_j \right\ ^2) \right $
Sigmoidal	$\tanh(\delta(x_i \cdot x_j) + k)$

$$(R^1 \rightarrow R^2)$$
:

Kernel:
$$\phi(x) = (x, x^2)$$

$$(R^2 \rightarrow R^3)$$

Exemplo de Kernel:

$$\phi(x_1, x_2) \rightarrow (z_1, z_2, z_3) = (x_1^2, \sqrt{2x_1x_2}, x_2^2)$$

Considere o dataset abaixo, qual o melhor classificador ?

Overfitting, underfitting e melhor capacidade de generalização

Outliers ou exemplos rotulados erroneamente

outlier outlier

Além da mudança de dimensão, o SVM possui o parâmetro C (**soft margin** – variáveis de folga) que é utilizado para ignorar outliers

Múltiplas classes

 O SVM foi originalmente concebido para lidar com classificações binárias.

• Entretanto, a maior parte dos problemas reais requerem **múltiplas classes**.

 Para se utilizar uma SVM para classificar múltiplas classes é necessário transformar o problema multi-classe em vários problemas da classes binárias

Aplicação

Antes de aplicar uma SVM para classificar um conjunto de dados é necessário responder algumas questões:

- Quais funções de kernel utilizar?
- Qual o valor do parâmetro C (Soft Margin)?

Vantagens:

- Consegue lidar bem com grandes conjuntos de exemplos.
- Trata bem dados de alta dimensão.
- O processo de classificação é bem rápido.

Desvantagens:

- É necessário definir um bom Kernel.
- O tempo de treinamento pode ser bem longo dependendo do numero de exemplos e dimensionalidade dos dados.

Bibliografia

Faceli, K., Lorena, A. C., Gama, J., & Carvalho, A. C. P. L. F. (2011). Inteligência Artificial: Uma abordagem de aprendizado de máquina. *Rio de Janeiro: LTC, 2,* 192.

Lorena, Ana Carolina, and André CPLF de Carvalho. "Uma introdução às support vector machines." *Revista de Informática Teórica e Aplicada* 14.2 (2007): 43-67.