习题 $4.1\cdot 6\cdot$ 设 < A,**>是一个半群,而且对于 A 中的元素 a,b,若 $a \neq b$,必有 $a*b \neq b*a$,试证明: (1)·对任意的 $x \in A$,有 x*x=x。(2)·对任意的 x, $y \in A$,有 x*y*x=x。(3)·对任意的 x,y, $z \in A$,有 x*y*z=x*z。

证明:由题意,对于A中的元素a,b,若a*b=b*a,必有a=b。。

- (1) 对任意的 $x \in A$,由半群满足结合律,(x*x)*x = x*(x*x)。所以x*x = x。
- (2) 对任意的 $x, y \in A$, (x*y*x)*x = x*y*(x*x) = x*y*x

且x*(x*y*x) = (x*x)*y*x = x*y*x,即x*(x*y*x) = (x*y*x)*x,所以x*y*x = x。

(3)· 对任意的 $x, y, z \in A$, (x * y * z) * (x * z) = x * y * (z * x * z) = x * y * z

 $\mathbb{H}(x*z)*(x*y*z) = (x*z*x)*y*z = x*y*z,$

即(x*y*z)*(x*z)=(x*z)*(x*y*z),所以x*y*z=x*z。。

习题4.2 第3和6题·题面微变

记〈G,*〉是一个群,则〈G,*〉为交换群的充分必要条件是 : 对∀a, b∈G, 有(a*b)²=a²*b² 「证明 "⇒" 对 $\forall a, b \in G$,由于运算"*"是可交换的,所以 有: $(a*b)^2 = (a*b)*(a*b) = a*(b*a)*b$ $= a*(a*b)*b = (a*a)*(b*b) = a^2*b^2$ "⇐" 对∀a, b∈G, 若有(a*b)²=a²*b², 则: (a*b)*(a*b) = (a*a)*(b*b) $\rightarrow a*(b*a)*b=a*(a*b)*b$. 由消去律知: b*a=a*b, 所以,运算"*"满足交换律,即群〈G,*〉是交换群。

证明: (1)· 对任意的 $a,b,c \in G$,存在 $\hat{a} \in G$,使得 $\hat{a}*a=e$ 。若 a*b=a*c,则 $\hat{a}*(a*b)=\hat{a}*(a*c)$,由 < G,*>是半群,有 $(\hat{a}*a)*b=(\hat{a}*a)*c$,即 e*b=e*c,又因为 e 是左幺元,所以 b=c。……

习题 $4.2 \cdot 5 \cdot$ 设 < G, *> 是一个群,对任一 $a \in G$,令 $H = \{y \mid y * a = a * y, y \in G\}$,试证明: < H, *> 是< G, *>的子群。。

证 明 : 对 任 意 的 $x,y \in H$, 有 x*a=a*x 和 y*a=a*y , 则 $y^{-1}*y*a*y^{-1}=y^{-1}*a*y*y^{-1}$, 所 以 有 $a*y^{-1}=y^{-1}*a$, 进 一 步 有 $(x*y^{-1})*a=x*(y^{-1}*a)=x*(a*y^{-1})=(x*a)*y^{-1}=(a*x)*y^{-1}=a*(x*y^{-1})$ 所以 $x*y^{-1} \in H$, 故 <H, *> 是 < G, *> 的子群。

本题应用了定理4.12