PROCURA EM ESPAÇOS DE ESTADOS

(PARTE 3)

Luís Morgado 2015

ESTADOS REPETIDOS NA ÁRVORE DE PROCURA

- Acontece quando as acções correspondentes às transições de estado são reversíveis
- o grafo do espaço de estados apresenta ciclos

Figure 3.19 A state space that generates an exponentially larger search tree. The left-hand side shows the state space, in which there are two possible actions leading from A to B, two from B to C, and so on. The right-hand side shows the corresponding search tree.

EXPANSÃO DE ESTADOS JÁ ANTERIORMENTE ANALISADOS

Desperdício de recursos (tempo, memória)

MEMÓRIA DE NÓS PROCESSADOS

- Nós gerados mas não expandidos (fronteira de exploração)
 - ABERTOS
- Nós expandidos
 - FECHADOS

```
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if EMPTY?( fringe) then return failure
node ← REMOVE-FIRST(fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
if STATE[node] is not in closed then
add STATE[node] to closed
fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
```

Figure 3.19 The general graph-search algorithm. The set *closed* can be implemented with a hash table to allow efficient checking for repeated states. This algorithm assumes that the first path to a state *s* is the cheapest (see text).

[Russel & Norvig, 2003]

PROCURA GERAL EM GRAFOS

- Ao gerar novo nó sucessor noSuc é necessário considerar:
 - noSuc ∉ Abertos ∧ noSuc ∉ Fechados
 - Inserir noSuc em Abertos
 - noSuc ∈ Abertos
 - Se noSuc foi atingido através de um caminho mais curto (com menor custo)
 - Remover nó anterior de Abertos
 - inserir noSuc em Abertos
 - noSuc ∈ Fechados
 - Se noSuc foi atingido através de um caminho mais curto (com menor custo)
 - Remover nó anterior de Fechados
 - inserir noSuc em Abertos

MEMÓRIA DE NÓS PROCESSADOS

- Nós gerados mas não expandidos (fronteira de exploração)
 - ABERTOS
- Nós expandidos
 - FECHADOS

EXPLORADOS

PROCURA MELHOR-PRIMEIRO (BEST-FIRST)

- Tira partido de uma avaliação do estado
- Utiliza uma função f para avaliação de cada nó n gerado
 - $-f(n) \geq 0$
 - Tipicamente f(n) representa uma estimativa do custo da solução através do nó n
 - Quanto menor o valor de f(n) mais promissor é o nó n
- A fronteira de exploração (Fringe / Abertos) é ordenada por ordem crescente de f(n)

PROCURA DE CUSTO UNIFORME

- Estratégia de controlo
 - Explorar primeiro caminhos com menor custo
 - Custo de transição $\geq \varepsilon$ > 0

MÉTODOS DE PROCURA NÃO INFORMADA

PROCURA EM PROFUNDIDADE

- Critério de exploração: maior profundidade
- Variantes
 - PROCURA EM PROFUNDIDADE LIMITADA
 - PROCURA EM PROFUNDIDADE ITERATIVA

PROCURA EM LARGURA

- Critério de exploração: menor profundidade
- Variantes
 - PROCURA BIDIRECCIONAL

PROCURA DE CUSTO UNIFORME

Critério de exploração: custo de transição > 0

COMPLEXIDADE COMPUTACIONAL

Método de Procura	Tempo	Espaço	Óptimo	Completo
Profundidade	$O(b^m)$	O(bm)	Não	Não
Largura	$O(b^d)$	$O(b^d)$	Sim	Sim
Custo Uniforme	$O(b^{[C^*/\varepsilon]})$	$O(b^{[C^*/\varepsilon]})$	Sim	Sim
Profundidade Limitada	O(b')	O(bl)	Não	Não
Profundidade Iterativa	$O(b^d)$	O(bd)	Sim	Sim
Bidireccional	O(b ^{d/2})	O(b ^{d/2})	Sim	Sim

b – factor de ramificação

d – dimensão da solução

m – profundidade da árvore de procura

I – limite de profundidade

C* – Custo da solução óptima

 ε – Custo mínimo de uma transição de estado (ε > 0)

BIBLIOGRAFIA

[Russel & Norvig, 2009]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2009

[Nilsson, 1998]

N. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann 1998

[Luger, 2009]

G. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison-Wesley, 2009

[Jaeger & Hamprecht, 2010]

M. Jaeger, F. Hamprecht, *Automatic Process Control for Laser Welding*, Heidelberg Collaboratory for Image Processing (HCI), 2000