BLG335E Recitation 4 Binomial Heaps

Doğay Kamar 05.12.2019

Course slides from Kevin Wayne @Princeton have been used in preparation of these slides.

Contents

- What is Priority Queue?
- Binary Heaps
- Binomial Trees
- Binomial Heaps

Priority Queues

- A priority queue is a type of queue that assigns priority values to its elements.
- Instead of First-In-First-Out method, values with higher probabilities are dequeued first.
- If smaller values have more priority, which element would be at the top of the queue?
 Element with minimum key

Priority Queues

A priority queue should support following operations:

- Insert an element to the queue
- Pop the minimum element from the queue
- Decrease key of an element

Binary Heap

Binary Heap is a type of priority queue.

• It is a complete binary tree: All levels are filled, except possibly the last level

Binary Heap

Satisfies the heap property: Key of each node is smaller than the key of its children nodes(min heap): $key(a) \ge key(parent(a))$

extract_min(): Delete the root item and return it.

extract_min(): Pop the minimum element from the heap.

extract_min(): Pop the minimum element from the heap. **Now, we need to replace root!**

Replace root with the last leaf element!

However, the root is not minimum now, therefore heap property does not hold anymore!

We need to fix it!

Until the **key 4** is smaller than or equal to its children, we need to swap it with its smallest child key.

Until the **key 4** is smaller than or equal to its children, we need to swap it with its smallest child key. -> **SWAP 4 <-> 3**

Until the **key 4** is smaller than or equal to its children, we need to swap it with its smallest child key.

Until the **key 4** is smaller than or equal to its children, we need to swap it with its smallest child key. -> **SWAP 4 <-> 3**

Now the heap property is satisfied! extract_min() function finishes by returning **key 1**(The root in the beginning).

Time complexity? O(logn)

insert(): inserts a new key as the very last leaf key.

But, heap property is again gone! Now, we need to keep swapping key 2 with its parent until heap property is satisfied!

SWAP 2 <-> 4

Now, we need to keep swapping key 2 with its parent until heap property is satisfied!

SWAP 2 <-> 3

Now, we need to keep swapping key 2 with its parent until heap property is satisfied!

SWAP 2 <-> 3

Now, we need to keep swapping key 2 with its parent until heap property is satisfied!

The heap property is satisfied! Insertion of key 2 is complete!

• Decrease_key operation decreases the key of an element, then performs the same bubble up operations as in "insert" operation.

Binomial Tree

Binomial tree is a set of nodes such that :

- A tree of order 0 is a single node and
- A tree of order k is combination of two trees of order k-1. To combine, one of the trees becomes the leftmost child of the other.

Binomial Tree

If the order of binomial tree is k, then:

- It has 2^k elements.
- Degree of root is k, a.k.a the root has k children.
- Its depth is k

Each child of root is a binomial tree with orders 0, 1, 2..., k-1.

Two trees of order 2

→A tree of order 3

Binomial Heap

- Vuillemin, 1978
- Sequence of binomial trees that satisfy binomial heap property
 - each tree is min-heap ordered
 - 0 or 1 binomial tree of order k

Binomial Heap: Properties

- Properties of N-node binomial heap
 - Min key contained in root of B_0 , B_1 , ..., B_k
 - Contains binomial tree B_i iff b_i = 1 where $b_n \cdot b_2 b_1 b_0$ is binary representation of N
 - At most $\log_2 N$ + 1 binomial trees

Binomial Heap: Implementation

- Represent trees using left-child, right sibling pointers [Ch. 10.4]
 - three links per node (parent, left, right)
- Roots of trees connected with singly linked list

- Create heap H that is union of heaps H' and H"
 - "Mergeable heaps"
 - Easy if H' and H" are each order k binomial trees
 - connect roots of H' and H"
 - choose smaller key to be root of H

$$19 + 7 = 26$$

- Create heap H that is union of heaps H' and H"
 - Analogous to binary addition
- Running time: O(log N)
 - Proportional to number of trees in root lists $\leq 2(\lceil \log_2 N \rceil + 1)$

$$19 + 7 = 26$$

Binomial Heaps: Delete Min

- Delete node with minimum key in binomial heap H
 - Find root x with min key in root list of H, and delete
 - H' ← broken binomial trees
 - $H \leftarrow Union(H', H)$

• Running time: O(log N)

8
29
10
44
37
H

Binomial Heaps: Delete Min

- Delete node with minimum key in binomial heap H
 - Find root x with min key in root list of H, and delete
 - H' ← broken binomial trees
 - $H \leftarrow Union(H', H)$
- Running time: O(log N)

Н

Binomial Heaps: Decrease Key

- Decrease key of node x in binomial heap H
 - Suppose x is in binomial tree B $_{k}$
 - Bubble node x up the tree if x is too small

Binomial Heaps: Delete

- Delete node x in binomial heap H.
 - Decrease key of x to -∞
 - Delete min

Running time: O(log N)

Binomial Heaps: Insert

- Insert a new node x into binomial heap H
 - $-H' \leftarrow MakeHeap(x)$
 - $-H \leftarrow Union(H', H)$

Binomial Heaps: Sequence of Inserts

- Insert a new node x into binomial heap H
 - If N =0, then only 1 steps
 - If N =**01**, then only 2 steps
 - If $N = \dots 011$, then only 3 steps
 - If $N = \dots 0111$, then only 4 steps

- Inserting 1 item can take $\Omega(\log_2 N)$ time
 - If N = 11...111, then $\log_2 N$ steps
- But, inserting sequence of N items takes O(N) time!
 - $(N/2)(1) + (N/4)(2) + (N/8)(3) + ... \le 2N$
 - Amortized analysis
 - Basis for getting most operations down to constant time

$$\sum_{i=1}^{N} \frac{i}{2^{i}} = 2 - \frac{N}{2^{N}} - \frac{1}{2^{N-1}}$$

$$\leq 2$$

$$\leq N \sum_{i=0}^{\infty} \frac{1}{2^{i}} = 2N$$

Binomial Heap Operations

- MAKE-HEAP()
- INSERT(H,x)
- MINIMUM(H)
- EXTRACT-MIN(H)
- UNION(H1,H2)
- DECREASE-KEY(H,x,k)
- DELETE(H,x)

- MAKE-HEAP() [Trivial, just create an object H, head[H]=nil]
- MINIMUM(H) [Trivial: Return the minimum among binomial tree roots in the binomial heap]

Priority Queues

		Heaps			
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed
make-heap	1	1	1	1	1
insert	1	log N	log N	1	1
find-min	N	1	log N	1	1
delete-min	N	log N	log N	log N	log N
union	1	N	log N	1	1
decrease-key	1	log N	log N	1	1
delete	N	log N	log N	log N	log N
is-empty	1	1	1	1	1

Summary

- Binomial Trees and Binomial Heaps
- Operations on Binomial Heaps
 - Creating New Binomial Heap
 - Finding Minimum Key
 - Uniting Two Binomial Heaps
 - Inserting Node
 - Extracting Node with Minimum Key
 - Deleting Key
 - Decreasing Key