Package 'lognGPD'

June 2, 2025

Title Estimation of a Lognormal - Generalized Pareto Mixture
Version 0.1.0

Description

Estimation of a lognormal - Generalized Pareto mixture via the Expectation-Maximization algorithm. Computation of bootstrap standard errors is supported and performed via parallel computing. Functions for random number simulation and density evaluation are also available. For more details see Bee and Santi (2025) <doi:10.48550/arXiv.2505.22507>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 4.0.0)
RdMacros Rdpack
Imports evd, Rdpack, parallel, LNPar, EnvStats
URL https://github.com/marco-bee/lognGPD
BugReports https://github.com/marco-bee/lognGPD/issues
NeedsCompilation no
Author Marco Bee [aut, cre] (ORCID: https://orcid.org/0000-0002-9579-3650)
Maintainer Marco Bee <marco.bee@unitn.it></marco.bee@unitn.it>
Repository CRAN
Date/Publication 2025-06-02 08:50:05 UTC

Contents

Index

dlognGPD	2
dlognPareto	2
EMBoot	3
EMlogngpdmix	
rlognGPD	
rlognPareto	
weiGpdLik	(

2 dlognPareto

dlognGPD Density of the lognormal-GPD mixture	
---	--

Description

This function evaluates the lognormal-GPD mixture density function.

Usage

```
dlognGPD(x, p, mu, sigma, xi, beta)
```

Arguments

vector (nx1): points where the function is evaluated.
real, 0 <p<1: prior="" probability<="" td=""></p<1:>
real: log-mean of the truncated lognormal distribution.
positive real: log-standard deviation of the truncated lognormal distribution.
real: shape parameter of the generalized Pareto distribution.

positive real: scale parameter of the generalized Pareto distribution.

Value

beta

```
ydens (n x 1) vector: numerical values of the lognormal - generalized Pareto mixture at x.
```

Examples

```
\label{eq:condition} $$y dens <- dlognGPD(seq(0,20,length.out=500),.9,0,1,0.5,2)$$
```

dlognPareto	Density of the lognormal-Pareto spliced distribution	

Description

This function evaluates the density of the continuous and differentiable version of the truncated lognormal-Pareto spliced distribution proposed by Scollnik (2007).

Usage

```
dlognPareto(x, sigma, xmin, alpha)
```

EMBoot 3

Arguments

X	vector (nx1): points where the function is evaluated.
sigma	positive real: log-standard deviation of the truncated lognormal distribution.
xmin	positive real: scale parameter of the Pareto distribution.
alpha	positive real: shape parameter of the Pareto distribution.

Details

To get a continuous and differentiable density, it is necessary to enforce constraints that reduce the number of free parameters of the model; in particular, the mixing weight and the log-mean of the lognormal distirbution are functions of the reamining parameters. See Scollnik (2007) for details.

Value

ysim (n x 1) vector: numerical values of the truncated lognormal-Pareto spliced distribution at x.

References

Scollnik DPM (2007). "On composite lognormal-Pareto models." *Scandinavian Actuarial Journal*, 1, 20-33.

Examples

```
ysim <- dlognPareto(seq(0,20,length.out=500),1,5,2)</pre>
```

EMBoot

Bootstrap standard errors for the MLEs of a lognormal-GPD mixture

Description

This function draws a bootstrap sample and uses it to estimate the parameters of a lognormal-Pareto mixture distribution. Since this is typically called by LPfitEM, see the help of LPfitEM for examples.

Usage

```
EMBoot(x, x0, y, maxiter)
```

Arguments

X	list: sequence of integers $1,,K$, where K is the mumber of datasets. Set $x = 1$ in case of a single dataset.
×0	numerical vector (5x1): initial values of the parameters \mathbf{p} , μ , σ , ξ , β .
У	numerical vector: observed sample.
maxiter	non-negative integer: maximum number of iterations of the EM algorithm.

4 EMlogngpdmix

Details

At each bootstrap replication, the mixture is estimated via the EM algorithm.

Value

Estimated parameters obtained from a bootstrap sample.

EMlogngpdmix

Mixture estimation via EM

Description

This function estimates a static lognormal - generalized Pareto mixture by means of the EM algorithm. Optionally, bootstrap standard errors are computed via parallel computing.

Usage

```
EMlogngpdmix(x0, y, maxiter, nboot = 0)
```

Arguments

numerical vector (5x1): initial values of the parameters p, μ , σ , ξ , β .

y vector: observed data.

maxiter positive integer: maximum number of iterations of the EM algorithm.

nboot positive integer: number of bootstrap replications for the computation of the

standard errors (defaults to 0).

Value

A list with the following elements is returned: "p" = estimated value of p, "post" = posterior probabilities of all observations, "mu" = estimated value of μ , "sigma " = estimated value of σ , "xi" = estimated value of ξ , "beta" = estimated value of β , "loglik" = maximimzed log-likelihood, "nit" = number of iterations, bootEst = matrix of parameter estimates at each bootstrap replications (only if nboot > 0). bootStd = bootstrap standard errors of each parameter (only if nboot > 0).

Examples

```
y <- rlognGPD(100,.9,0,1,0.5,2)
x0 <- c(.7,.2,1.3,.8,1.7)
res <- EMlogngpdmix(x0, y, 1000)
```

rlognGPD 5

rlognGPD	Simulation of the lognormal-GPD mixture	

Description

This function simulates a lognormal-GPD mixture.

Usage

```
rlognGPD(n, p, mu, sigma, xi, beta)
```

Arguments

n	positive integer: number of observations sampled.
p	real, 0 <p<1: prior="" probability<="" th=""></p<1:>
mu	real: log-mean of the lognormal distribution.
sigma	positive real: log-standard deviation of the lognormal distribution.

xi real: shape parameter of the generalized Pareto distribution.

beta positive real: scale parameter of the generalized Pareto distribution.

Value

ysim (n x 1) vector: n random numbers from the lognormal - generalized Pareto mixture.

Examples

```
ysim <- rlognGPD(100,.9,0,1,0.5,2)</pre>
```

rlognPareto Simulation of the lognormal-Pareto spliced distribution

Description

This function simulates the continuous and differentiable version of the truncated lognormal-Pareto spliced distribution proposed by Scollnik (2007).

Usage

```
rlognPareto(n, sigma, xmin, alphapar)
```

6 weiGpdLik

Arguments

n positive integer: number of observations sampled.

sigma positive real: log-standard deviation of the truncated lognormal distribution.

xmin positive real: scale parameter of the Pareto distribution.
alphapar positive real: shape parameter of the Pareto distribution.

Details

See Scollnik (2007) for details.

Value

ysim (nreps x 1) vector: nreps random numbers from the truncated lognormal-Pareto spliced distribution.

References

Scollnik DPM (2007). "On composite lognormal-Pareto models." *Scandinavian Actuarial Journal*, **1**, 20-33.

Examples

```
ysim <- rlognPareto(100,1,5,2)</pre>
```

weiGpdLik

Weighted GPD log-likelihood

Description

This function evaluates the zero-mean generalized Pareto log-likelihood function computed with weighted observations.

Usage

```
weiGpdLik(x, y, post)
```

Arguments

x numerical vector (2x1): values of the parameters ξ and β .

y numerical vector (nx1): observed data.

post numerical vector (nx1) with elements in (0,1): weights of the observations (in

the EM algorithm, posterior probabilities).

Value

llik real: numerical value of the log-likelihood function

weiGpdLik 7

Examples

```
y <- rlognGPD(100,.9,0,1,0.5,2)
x0 <- c(.7,.2,1.3,.8,1.7)
res <- EMlogngpdmix(x0, y, 1000)
llik <- weiGpdLik(c(res$beta,res$xi),y,res$post)</pre>
```

Index

```
dlognGPD, 2
dlognPareto, 2
EMBoot, 3
EMlogngpdmix, 4
rlognGPD, 5
rlognPareto, 5
weiGpdLik, 6
```