

离散数学

李昊 信息楼312

命题逻辑等值演算

本章的主要内容:

- 等值式与基本的等值式
- 等值演算与置换规则
- 析取范式与合取范式, 主析取范式与主 合取范式
- 联结词完备集本章与其他各章的联系
 - 是第一章的抽象与延伸
 - 是后续各章的先行准备

第一节 等值式

一、等值式与基本的等值式

1、等值式

定义2.1 若等价式 $A \leftrightarrow B$ 是重言式,则称 $A \ni B$ 等值,记作 $A \Leftrightarrow B$,并称 $A \Leftrightarrow B$ 是等值式

注意: ⇔ 不是联结词!

几点说明:

- 定义中, A, B, ⇔均为元语言符号
- A或B中可能有哑元出现. 例如,在 $(p\rightarrow q)\Leftrightarrow ((\neg p\lor q)\lor (\neg r\land r))$ 中,r为左边公式的哑元.
- 用真值表可验证两个公式是否等值 请验证: $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$ $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \rightarrow q) \rightarrow r$

判断方法:

1、利用真值表。

利用真值表证明:

 $\neg (p \lor q)$ 和 $\neg p \land \neg q$ 逻辑等值,是等值式.

Table 2

р	q	$p \vee q$	$\neg(p\lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

放在同一个表中,两个公式的真值相同,则称这两个公式等值。

利用真值表证明:

p→q和¬p∨q逻辑等值,是等值式.

TABLE 3

Truth Tables for $\neg p \lor q$ and $p \rightarrow q$.

р	q	$\neg \mathbf{p}$	¬p∨q	p→q
T	T	F	T	T
T	\mathbf{F}	F	${f F}$	${f F}$
${f F}$	T	T	T	T
F	F	T	T	T

TABLE 4

A Demonstration That $p \lor (q \lor r)$ and $(p \lor q) \land (p \lor r)$ Are Logically Equivalent.

p	q	r	q∧r	p∨(q∧r)	p∨q	p∨r	(p ∨q) ∧(p ∨r)
T	T	T	T	T	T	T	T
Т	T	\mathbf{F}	${f F}$	T	T	T	T
Т	\mathbf{F}	T	\mathbf{F}	T	T	T	T
Т	\mathbf{F}	\mathbf{F}	${f F}$	T	T	T	T
F	T	T	T	T	T	T	T
\mathbf{F}	T	\mathbf{F}	${f F}$	F	T	F	F
F	\mathbf{F}	T	\mathbf{F}	F	F	T	F
F	\mathbf{F}	F	F	F	F	F	F

判断方法:

1、利用真值表。

(计算量太大)

2、利用已知定律。

基本的等值式

双重否定律 ¬¬A⇔A

幂等律 $A\lor A \Leftrightarrow A, A \land A \Leftrightarrow A$

交換律 $A \lor B \Leftrightarrow B \lor A$, $A \land B \Leftrightarrow B \land A$

结合律 $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C), (A \land B) \land C \Leftrightarrow A \land (B \land C)$

分配律 $A\lor(B\land C)\Leftrightarrow (A\lor B)\land (A\lor C)$,

 $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

德摩根律 $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$

 $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

吸收律 $A\lor(A\land B)\Leftrightarrow A, A\land(A\lor B)\Leftrightarrow A$

零律 $A\lor1\Leftrightarrow1$, $A\land0\Leftrightarrow0$

同一律 $A \lor 0 \Leftrightarrow A. A \land 1 \Leftrightarrow A$

排中律 $A \lor \neg A \Leftrightarrow 1$

矛盾律 $A \land \neg A \Leftrightarrow 0$

蕴涵等值式 $A \rightarrow B \Leftrightarrow \neg A \lor B$

等价等值式 $A \leftrightarrow B \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$

假言易位 $A \rightarrow B \Leftrightarrow \neg B \rightarrow \neg A$

等价否定等值式 $A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$

归谬论 $(A \rightarrow B) \land (A \rightarrow \neg B) \Leftrightarrow \neg A$

注意: 要牢记各个等值式, 这是继续学习的基础

二、等值演算与置换规则

- 1、等值演算——由己知的等值式推演出新的等值式 的过程
 - 2、等值演算的基础:
 - (1) 等值关系的性质: 自反、对称、传递性
 - (2) 基本的等值式
 - (3) 置换规则(见3)
 - 3、置换规则

设 $\Phi(A)$ 是含公式A的命题公式, $\Phi(B)$ 是用公式B置换了 $\Phi(A)$ 中的所有的A后得到的命题公式,若 $B \Leftrightarrow A$,则 $\Phi(B) \Leftrightarrow \Phi(A)$

三、等值演算的应用举例

1. 证明两个公式等值

例 证明
$$p \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$$

证 $p \rightarrow (q \rightarrow r)$
 $\Leftrightarrow \neg p \lor (\neg q \lor r)$ (蕴涵等值式,置换规则)
 $\Leftrightarrow (\neg p \lor \neg q) \lor r$ (结合律,置换规则)
 $\Leftrightarrow \neg (p \land q) \lor r$ (德摩根律,置换规则)
 $\Leftrightarrow (p \land q) \rightarrow r$ (蕴涵等值式,置换规则)

几点说明:

- 也可以从右边开始演算(请做一遍)
- 因为每一步都用置换规则,故可不写出
- 熟练后,基本等值式也可以不写出
- 用等值演算不能直接证明两个公式不等值

例证明 $p \rightarrow (q \rightarrow r) \Leftrightarrow (p \rightarrow q) \rightarrow r$

方法一 真值表法(自己证)

方法二观察赋值法.易知000,010等是左边的成真赋值, 是右边的成假赋值

方法三 用等值演算先化简两个公式,再观察.

2. 判断公式类型

例 用等值演算法判断下列公式的类型

(1)
$$q \land \neg (p \rightarrow q)$$

$$(2) (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

(3)
$$((p \land q) \lor (p \land \neg q)) \land r)$$

解(1)
$$q \land \neg (p \rightarrow q)$$

$$\Leftrightarrow q \land \neg (\neg p \lor q)$$
 (蕴涵等值式)

$$\Leftrightarrow q \land (p \land \neg q)$$
 (德摩根律)

$$\Leftrightarrow p \land (q \land \neg q)$$
 (交換律,结合律)

$$\Leftrightarrow p \wedge 0$$
 (矛盾律)

由最后一步可知, (1) 为矛盾式.

$$(2) (p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

$$\Leftrightarrow (\neg p \lor q) \leftrightarrow (q \lor \neg p)$$
 (蕴涵等值式)

$$\Leftrightarrow (\neg p \lor q) \leftrightarrow (\neg p \lor q)$$
 (交換律)

 $\Leftrightarrow 1$

由最后一步可知, (2) 为重言式.

问:最后一步为什么等值于1?

说明: (2)的演算步骤可长可短,以上演算最省.

$$(3) ((p \land q) \lor (p \land \neg q)) \land r)$$

$$\Leftrightarrow (p \land (q \lor \neg q)) \land r$$
 (分配律)

$$\Leftrightarrow p \land 1 \land r$$
 (排中律)

$$\Leftrightarrow p \wedge r$$
 (同一律)

由最后一步可知, (3) 不是矛盾式, 也不是重言式, 它是可满足式, 其实101, 111是成真赋值, 000, 010等是成假赋值.

总结: 从此例可看出

A为矛盾式当且仅当A ⇔ 0

A为重言式当且仅当A ⇔ 1

例5:证明: $\neg (p \lor (\neg p \land q))$ 和 $\neg p \land \neg q$ 逻辑等值

证明
$$\neg (p \lor (\neg p \land q)) \Leftrightarrow \neg p \land \neg (\neg p \land q)$$
 $\Leftrightarrow \neg p \land (p \lor \neg q)$
 $\Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q)$
 $\Leftrightarrow 0 \lor (\neg p \land \neg q)$
 $\Leftrightarrow \neg p \land \neg q$

例6: 证明 $(p \land q) \rightarrow (p \lor q)$ 为永真式

$$(\mathbf{p} \wedge \mathbf{q}) \to (\mathbf{p} \vee \mathbf{q}) \qquad \Leftrightarrow \neg (p \wedge q) \vee (p \vee q)$$

$$\Leftrightarrow (\neg p \vee \neg q) \vee (p \vee q)$$

$$\Leftrightarrow (\neg p \vee p) \vee (\neg q \vee q)$$

$$\Leftrightarrow 1 \vee 1$$

$$\Leftrightarrow 1$$

判断命题公式逻辑等价的方法:

- 1、真值表
- 2、命题公式的演算

基本等值定理;

公式的代入不变性;

等值关系的传递性。

命题公式逻辑等价关系的应用:

- 1、判定是否逻辑等价;
- 2、判断是否为永真公式或永假公式;
- 3、命题公式的化简

应用:

有一个逻辑学家误入某部落,被拘于牢囚。酋长意欲放行。于是他对逻辑学家说: "今有两门,一为自由,一为死亡。你可任意开启一门。为协助你逃脱,加派两名战士负责解答你所提问题。两名战士中,一人说的永远是真话,另一永假。"

逻辑学家沉思片刻,然后向一名战士发问。后从容走出。试问:逻辑学家应如何发问?

解答:逻辑学家指着一扇门问一名战士:"当我问他(另一名战士)这扇门是否是死亡之门时,他将回答'是',对吗?"

分析:

P :	被问战士是诚实人。
Ρ:	被 问战士是

q:被问战士回答:是。

r: 另一战士回答: 是。

S: 这扇门死亡之门。

P	q	r	S
---	---	---	---

1 1 1 0

1 0 0 1

0 1 0 0

0 0 1 1

结果说明根据被询战士的回答可选择从哪扇门出去。若回答"是",说明被指的门非死亡之门。回答"否",说明该门是死亡之门。