The N³LO Twist-2 Matching of TMD Quark Transversity

Yu Jiao Zhu^a

^a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Boltzmannstr. 8, 85748 Garching, German

E-mail: yzhu@mpp.mpg.de

ABSTRACT: We present the first next-to-next-to-leading order (N³LO) calculation of the twist-2 matching coefficients for transverse momentum dependent (TMD) quark transversity parton distribution and fragmentation functions in QCD. This matching relates the TMD quark transversity functions to their collinear counterparts in the large-transverse-momentum regime, and provides essential ingredients for precision TMD phenomenology involving transversely polarized beams. As part of our analysis, we also compute the complete set of next-to-next-to-leading order (NNLO) DGLAP splitting functions governing the QCD evolution of collinear transversity distributions. These results extend the perturbative toolkit for spin-dependent observables and establish the transversity sector on the same theoretical footing as unpolarized and helicity distributions. Our findings enable high-precision extractions of transversity PDFs and facilitate improved theoretical predictions for azimuthal asymmetries in semi-inclusive deep inelastic scattering (SIDIS), especially in light of forthcoming data from the Electron-Ion Collider (EIC).

Contents		
1	Introduction	2
2	The transversely polarized quark TMD PDFs and FFs	3
	2.1 Operator definitions for TMD quark transeversity PDFs and FFs	3
	2.2 Collinear mass factorization and renormalization group equations	5
3	The NNLO transversity splitting functions	9
	3.1 Space-like results in $\overline{\rm MS}$	10
	3.2 Time-like results in $\overline{\rm MS}$	14
4	N^3 LO coefficients for transversity TMDs in \overline{MS}	18
	4.1 Small-x and threshold limit	18
	4.1.1 Small-x expansion of TMD transversity PDFs	19
	4.1.2 Small- z expansion of TMD transversity FFs	20
	4.2 Numerical fits of the N3LO coefficients	21
	4.2.1 Numerical fit for TMD PDFs	21
	4.2.2 Numerical fit for TMD FFs	23
5	Conclusion	25
\mathbf{A}	QCD Beta Function	25
В	Anomalous dimensions	25
\mathbf{C}	Renormalization Constants	27

1 Introduction

Quark transversity distributions [1–6] represent one of the three leading-twist parton distribution functions (PDFs), alongside the unpolarized and helicity distributions. Unlike their chiral-even counterparts, transversity distributions are chiral-odd and therefore are inaccessible through inclusive deep inelastic scattering (DIS), but are only measurable in processes involving two chiral-odd objects that enter the cross section. The quark transversity PDFs carry essential information about the transverse spin structure of the nucleon, at the same time, they play a role in searches for physics Beyond-Standard-Model (BSM) through their contribution to tensor interactions [7]. In particular, precision measurements of low-energy β decays provide sensitive tests of possible BSM interactions encoded in the effective Lagrangians describing semi-leptonic transitions with dimension-six scalar and tensor operators. Their contributions interfere linearly with the Standard Model amplitude, making them directly proportional to the nucleon tensor charge g_T [8],

$$g_T = \delta^u(Q^2) - \delta^d(Q^2), \qquad \delta^q(Q^2) = \int_0^1 dx \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right],$$
 (1.1)

i.e., the isovector combination of first Mellin moments of up and down quark transversity. Tensor charges are also indispensable inputs to nucleon electric dipole moment (EDM), which provide a unique window to hadronic and semi-leptonic CP violation [9].

Over the past decades, significant progress has been made in unraveling the quark transversity, driven by increasingly refined theoretical frameworks and experimental observations [10–17]. Its extraction has been made possible either within TMD framework through Collins effect [18–25], or within collinear framework through the mechanism of dihadron productions [26–28]. The first experimental evidence for transversity was obtained in semi-inclusive deep-inelastic scattering (SIDIS) with a transversely polarized proton target, $\ell + P^{\uparrow} \rightarrow \ell' + h + X$, by the HERMES Collaboration [29]. Later, both experimental analyses and theoretical studies advanced significantly, in particular through global analyses of SIDIS Collins modulation in conjunction with the chiral-odd Collins fragmentation function, as well as hadron-in-jet Collins effect and dihadron correlations [30–48]. In parallel, transversity distributions are also independently computed in Lattice simulations [49–54]. For a comprehensive review of recent progress, see Refs. [55, 56].

The large $p_T \gg \Lambda_{\rm QCD}$ asymptotics has provided additional theoretical constraint relating TMD-based approach and the collinear framework. Significant progress has been made in recent years in developing the TMD formalism and computing perturbative ingredients at next-to-next-to-next-to-leading order (N³LO) for unpolarized and helicity TMDs [57–61]. However, the precision theory of transversely polarized TMDs has lagged behind, with matching coefficients and evolution kernels only known up to NLO (LO) [62]. The work of Gutierrez-Reyes, Scimemi, and Vladimirov [63] established the NNLO matching of the transversity TMDPDF and TMDFF. Their analysis also revealed interesting structures, such as the vanishing of the pretzelosity matching coefficients at two loops, suggesting that it does not match onto any twist-2 collinear distribution. This feature is consistent with quark-model studies indicating that the TMD pretzelosity distribution $h_{1T}^{\perp q}$ is directly

related to the higher-twist quark angular momentum [64–66]. The pioneering work of Gutierrez-Reyes, Scimemi, and Vladimirov has significantly advanced the theoretical understanding of quark transversity. Nevertheless, we find minor discrepancies compared to their results, as discussed in detail in the main body of the manuscript.

In this work, we extend the perturbative understanding of transversely polarized TMDs to the next level of precision. We present the first computation of the N³LO twist-2 matching coefficients for TMD quark transversity distributions and fragmentation functions, using an exponential regulator [67]. As an outcome, we derive the full set of NNLO DGLAP splitting functions in analytic form for quark transversity. Together, these developments provide a solid foundation for global analyses of spin-dependent data and for interpreting precision measurements at the forthcoming EIC.

2 The transversely polarized quark TMD PDFs and FFs

2.1 Operator definitions for TMD quark transeversity PDFs and FFs

The transversely polarized TMD distribution can be defined in terms of SCET [68–72] collinear fields

$$\mathcal{B}^{\mu}_{q/N}(x, b_{\perp}, \vec{s_T}) = \int \frac{db^-}{2\pi} e^{-ixb^-P^+} \langle N(P), \vec{s_T} | \bar{\chi}_n(0, b^-, b_{\perp}) \frac{\vec{n}\gamma_{\perp}^{\mu}}{2} \gamma_5 \chi_n(0) | N(P), \vec{s_T} \rangle , \quad (2.1)$$

where γ_{\perp}^{μ} is given by $\gamma_{\perp}^{\mu} \equiv g_{\perp}^{\mu\nu}\gamma_{\nu}$, and N(P) is a hadron state with momentum $P^{\mu} = (\bar{n} \cdot P)n^{\mu}/2 = P^{+}n^{\mu}/2$, with $n^{\mu} = (1,0,0,1)$ and $\bar{n}^{\mu} = (1,0,0,-1)$, $\chi_{n} = W_{n}^{\dagger}\xi_{n}$ is the gauge invariant collinear quark field [73] in SCET, constructed from collinear quark field ξ_{n} and path-ordered collinear Wilson line $W_{n}(x) = \mathcal{P} \exp\left(ig \int_{-\infty}^{0} ds \,\bar{n} \cdot A_{n}(x + \bar{n}s)\right)$. For a polarized hadron with transverse spin \vec{s}_{T} and mass M, the transversely polarized TMD distribution is parameterized as [74–77]

$$\mathcal{B}^{\mu}_{q/N}(x, b_{\perp}, \vec{s_T}) = \vec{s_T}^{\mu} h_1(x, b_{\perp}) + i\epsilon_{\perp}^{\mu\nu} b_{\perp\nu} M h_1^{\perp}(x, b_{\perp}) + \frac{M^2 b_T^2}{2} \left(\frac{g_{\perp}^{\mu\nu}}{2} + \frac{b_{\perp}^{\mu} b_{\perp}^{\nu}}{b_T^2} \right) \vec{s_T}_{\nu} h_{1T}^{\perp}(x, b_{\perp}) . \tag{2.2}$$

The physical meaning of the relevant TMDs are summarized as follows. The chiral-odd Boer-Mulders function [78] $h_1^{\perp}(x, b_{\perp})$ describes the distribution of transversely polarized quarks in an unpolarized target, this function is studied at NLO in [79]. It is a T-odd function just like the Sivers function [80], both change sign when going from SIDIS to the Drell-Yan process [81–85]. Their existence is attributed to initial-state or final-state interactions between the active partons and the spectators. The pretzelosity distribution $h_{1T}^{\perp}(x, b_{\perp})$ has vanishing twist-2 matching coefficients, as found in [63]. The quark may contribute a transverse angular momentum proportional to the transverse spin of the nucleon target, this contribution is described by the TMD quark transversity $h_1(x, b_{\perp})$. In this work, we consider perturbative matching of $h_1(x, b_{\perp})$ onto transversity PDFs

$$\vec{s_T}^{\mu} h_1(x) \equiv \int \frac{db^-}{2\pi} e^{-ixb^- P^+} \langle N(P), \vec{s_T} | \bar{\chi}_n(0, b^-, 0) \frac{\vec{n} \gamma_{\perp}^{\mu}}{2} \gamma_5 \chi_n(0) | N(P), \vec{s_T} \rangle, \qquad (2.3)$$

the definition above utilizes the consequence of rotation and parity symmetries of the operator matrix elements. The function $h_1(x)$ describes parton densities, in fact, it is asymmetries of quark transverse spin

$$h_1(x)$$
 =density of quark of spin parallel to target
-density of quark of spin antiparallel to target, (2.4)

where the target is fully transversely polarized with respect to the beam axis. The OPE relation at small b_T is

$$h_1^q(x, b_\perp) = \int_x^1 \frac{dy}{y} \sum_{f=q, \bar{q}} \delta \mathcal{I}_{qf} \left(\frac{x}{y}, b_\perp\right) h_1^f(x) + \mathcal{O}(b_T^2 \Lambda_{\text{QCD}}^2), \qquad (2.5)$$

where the sum over flavors is restricted to non-singlet combinations, as there is no gauge-invariant operator corresponding to a transversely polarized gluon. The matching coefficients $\delta \mathcal{I}_{qf}$ describes physics above the $\Lambda_{\rm QCD}$ scale, as a result, it can be computed from partonic TMD transversity PDFs

$$\delta h_{q/j}^{\text{bare}}(x,b_{\perp}) = \int \frac{db^{-}}{2\pi} e^{-ixb^{-}P^{+}} \langle P, j_{\sigma} | \bar{\chi}_{n}(0,b^{-},b_{\perp}) \frac{\not n \gamma_{\perp}^{\mu}}{2} \gamma_{5} \chi_{n}(0) | P, j_{\rho} \rangle \bar{\Gamma}_{\mu}^{\sigma\rho}, \qquad (2.6)$$

where we introduce the dual spin projector $\bar{\Gamma}_{\mu} = \frac{\gamma_5 \gamma_{\perp \mu} \not P}{2}$ to project out $\delta h_{q/j}(x, b_{\perp})$, the partonic version of $h_1^q(x, b_{\perp})$. By inserting a complete set of *n*-collinear state $\mathbb{1} = \mathcal{L}_{X_n} d\mathrm{PS}_{X_n} |X_n\rangle\langle X_n|$ into the operator definition, the bare TMD PDFs can be computed from splitting amplitudes integrated over collinear phase space with a rapidity cutoff $\nu = 1/\tau$ through the exponential regulator $e^{-b_0 \tau \frac{P \cdot K}{P^+}}$ [67, 86]

$$\delta h_{qj}^{\text{bare}}(x, b_{\perp}) = \lim_{\tau \to 0} \sum_{X_n} d\text{PS}_{X_n} e^{-iK_{\perp} \cdot b_{\perp}} e^{-b_0 \tau \frac{P \cdot K}{P^+}} \delta(K^+ - (1 - x)P^+) \delta \mathbf{P}_{\mu \, i \leftarrow j}^{\sigma \rho} \bar{\Gamma}_{\sigma \rho}^{\mu} , \qquad (2.7)$$

where K^{μ} is the total momentum of $|X_n\rangle$, and dPS_{X_n} is the collinear phase space measure, and $\delta \mathbf{P}^{\sigma\rho}_{\mu i \leftarrow j}$ is the space-like spin correlator for the target

$$\delta \mathbf{P}_{\mu \, q \leftarrow j}^{\sigma \tau} \equiv \mathbf{S} \mathbf{p}_{X_n q_l^* \leftarrow j_\sigma}^* \Gamma_{\mu}^{ls} \mathbf{S} \mathbf{p}_{X_n q_s^* \leftarrow j_\rho} \equiv \langle j_\sigma | \bar{\chi}_n | X_n \rangle \frac{\vec{n} \gamma_{\perp \mu}}{2} \gamma_5 \langle X_n | \chi_n | j_\rho \rangle. \tag{2.8}$$

Besides, since the distribution is non-vanishing only in the non-singlet (ns) sectors, one may expect an equivalent definition of the integrand without the explicit appearance of γ_5 . Our strategy is therefore to eliminate γ_5 by deforming the operator definitions in four dimensions, as follows:

$$\frac{\rlap{/}{n}\gamma_{\perp}^{\mu}}{2}\gamma_{5}\ldots\times\frac{\gamma_{5}\gamma_{\perp\mu}\rlap{/}{p}}{2}\cdots=-i\frac{1}{2}\varepsilon_{\perp}^{\mu\nu}\rlap{/}{n}\gamma_{\perp\nu}\ldots\times i\frac{1}{2}\varepsilon_{\mu\sigma}\gamma_{\perp}^{\sigma}\rlap{/}{p}\cdots=\frac{\rlap{/}{n}\gamma_{\perp}^{\mu}}{2}\ldots\times\frac{\gamma_{\perp\mu}\rlap{/}{p}}{2}\ldots, \quad (2.9)$$

note that it is not assumed here that various traces are topologically connected. With this method we have also verified that terms proportional to the cubic color structure d_{abc}^2 vanish identically. The TMD quark transversity FFs [87] can be obtained from crossing,

and frame-dependence must be carefully taken into account [1, 57, 86]. For a final state detected hadron N carrying momentum $P^{\mu} = (\bar{n} \cdot P)n^{\mu}/2 = P^{+}n^{\mu}/2$ and transverse spin $\vec{s_T}$, we define

$$\delta \mathcal{D}_{N/q}^{\mu}(z, b_{\perp}/z, \vec{s_T}) = z^{1-2\epsilon} \sum_{X_n} \int \frac{db^-}{2\pi} e^{iP^+b^-/z} \langle 0|\bar{\chi}_n(0, b^-, b_{\perp})|N(P), \vec{s_T}, X\rangle$$

$$\times \frac{\not{n}\gamma_{\perp}^{\mu}}{2} \gamma_5 \langle N(P), \vec{s_T}, X|\chi_n(0)|0\rangle, \qquad (2.10)$$

where again we only consider contributions proportional to the detected hardron's transverse spin, i.e., the TMD transversity FFs. Similar to Eq.(2.7), we can define the partonic TMD transversity FFs as

$$\delta f_{iq}^{\text{bare}}(z, b_{\perp}/z) = z^{1-2\epsilon} \lim_{\tau \to 0} \sum_{X_n} d\text{PS}_{X_n} e^{-iK_{\perp} \cdot b_{\perp}} e^{-b_0 \tau \frac{P \cdot K}{P^+}} \delta \left(K^+ - \left(\frac{1}{z} - 1 \right) P^+ \right) \delta \mathbf{P}_{\mu i \leftarrow q}^{T, \sigma \rho} \bar{\Gamma}_{\sigma \rho}^{\mu}, \tag{2.11}$$

where $\delta \mathbf{P}_{\mu i \leftarrow q}^{T,\sigma\rho}$ is the square of the time-like splitting amplitude, which can be obtained from the space-like ones in Eq. (2.8) by analytical continuation. The dual spin projectors $\bar{\Gamma}$ in Eq. (2.11) are formally identical to those of the space-like ones.

2.2 Collinear mass factorization and renormalization group equations

The bare TMD helicity PDFs (or FFs) contain both ultraviolet (UV) and infrared (IR) divergences. The procedure of UV renormalization, zero-bin subtraction, and mass factorization is technically identical to that of the unpolarized case [58], and are summarized in the following collinear mass factorization formula

$$\frac{1}{Z^B} \frac{\delta h_{qj}^{\text{bare}}(x, b_{\perp})}{\mathcal{S}_{0b}} = \sum_{k} \delta \mathcal{I}_{qk}(x, b_{\perp}, \mu, \nu) \otimes \delta \phi_{kj}(x, \mu) ,$$

$$\frac{1}{Z^B} \frac{\delta f_{iq}^{\text{bare}}(z, b_{\perp}/z)}{\mathcal{S}_{0b}} = \sum_{k} \delta d_{ik}(z, \mu) \otimes \delta \mathcal{C}_{kq}(z, b_{\perp}/z, \mu, \nu) .$$
(2.12)

where $S_{0b}(\alpha_s)$ is the bare zero-bin soft function which is the same as the TMD soft function [88]. Z^B (see in Sec. C) are the multiplicative operator renormalization constants for TMD PDFs and FFs, and $\delta \mathcal{I}_{qj}$ ($\delta \mathcal{C}_{iq}$) are the finite coefficient functions. $\delta \phi_{ki}$ (and δd_{ik}) are the partonic transversity PDFs (and FFs), they evolve with the transversity splitting functions δP [89, 90], up to α_s^3 , they are given by

$$\delta\phi_{ij}(x,\alpha_{s}) = \delta_{ij}\delta(1-x) - \frac{\alpha_{s}}{4\pi} \frac{\delta P_{ij}^{(0)}(x)}{\epsilon} + \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left[\frac{1}{2\epsilon^{2}} \left(\sum_{k} \delta P_{ik}^{(0)} \otimes \delta P_{kj}^{(0)}(x) + \beta_{0}\delta P_{ij}^{(0)}(x)\right) - \frac{1}{2\epsilon} \delta P_{ij}^{(1)}(x)\right] + \left(\frac{\alpha_{s}}{4\pi}\right)^{3} \left[\frac{-1}{6\epsilon^{3}} \left(\sum_{m,k} \delta P_{im}^{(0)} \otimes \delta P_{mk}^{(0)} \otimes \delta P_{kj}^{(0)}(x) + 3\beta_{0} \sum_{k} \delta P_{ik}^{(0)} \otimes \delta P_{kj}^{(0)}(x)\right) \right]$$

$$+2\beta_0^2 \delta P_{ij}^{(0)}(x) + \frac{1}{6\epsilon^2} \left(\sum_k \delta P_{ik}^{(0)} \otimes \delta P_{kj}^{(1)}(x) + 2 \sum_k \delta P_{ik}^{(1)} \otimes \delta P_{kj}^{(0)}(x) \right)$$

$$+2\beta_0 \delta P_{ij}^{(1)}(x) + 2\beta_1 \delta P_{ij}^{(0)}(x) - \frac{1}{3\epsilon} \delta P_{ij}^{(2)}(x) + \mathcal{O}(\alpha_s^3), \qquad (2.13)$$

and for the FFs

$$\delta d_{ij}(z,\alpha_{s}) = \delta_{ij}\delta(1-z) - \frac{\alpha_{s}}{4\pi} \frac{\delta P_{ij}^{T(0)}(z)}{\epsilon}
+ \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \left[\frac{1}{2\epsilon^{2}} \left(\sum_{k} \delta P_{ik}^{T(0)} \otimes \delta P_{kj}^{T(0)}(z) + \beta_{0}\delta P_{ij}^{T(0)}(z)\right) - \frac{1}{2\epsilon} \delta P_{ij}^{T(1)}(z)\right]
+ \left(\frac{\alpha_{s}}{4\pi}\right)^{3} \left[\frac{-1}{6\epsilon^{3}} \left(\sum_{m,k} \delta P_{im}^{T(0)} \otimes \delta P_{mk}^{T(0)} \otimes \delta P_{kj}^{T(0)}(z) + 3\beta_{0} \sum_{k} \delta P_{ik}^{T(0)} \otimes \delta P_{kj}^{T(0)}(z)\right)
+ 2\beta_{0}^{2} \delta P_{ij}^{T(0)}(z)\right) + \frac{1}{6\epsilon^{2}} \left(2\sum_{k} \delta P_{ik}^{T(0)} \otimes \delta P_{kj}^{T(1)}(z) + \sum_{k} \delta P_{ik}^{T(1)} \otimes \delta P_{kj}^{T(0)}(z)\right)
+ 2\beta_{0} \delta P_{ij}^{T(1)}(z) + 2\beta_{1} \delta P_{ij}^{T(0)}(z)\right) - \frac{1}{3\epsilon} \delta P_{ij}^{T(2)}(z)\right] + \mathcal{O}(\alpha_{s}^{3}), \tag{2.14}$$

where $\delta P_{ij}^{(n)}$ is the NⁿLO space-like transversity splitting function [91, 92], which is presently known to NLO [89, 90], and $\delta P_{ij}^{T(n)}$ is the NⁿLO time-like transversity splitting function.

The factorized finite coefficient functions obey the following μ -RG equations

$$\frac{d}{d\ln\mu}\delta\mathcal{I}_{ji}(x,b_{\perp},\mu,\nu) = 2\left[\Gamma_{j}^{\text{cusp}}(\alpha_{s}(\mu))\ln\frac{\nu}{xP_{+}} + \gamma_{j}^{B}(\alpha_{s}(\mu))\right]\delta\mathcal{I}_{ji}(x,b_{\perp},\mu,\nu) \\
-2\sum_{k}\delta\mathcal{I}_{jk}(x,b_{\perp},\mu,\nu)\otimes\delta P_{ki}(x,\alpha_{s}(\mu)), \tag{2.15}$$

$$\frac{d}{d \ln \mu} \delta \mathcal{C}_{ij}(z, b_{\perp}/z, \mu, \nu) = 2 \left[\Gamma_j^{\text{cusp}}(\alpha_s(\mu)) \ln \frac{z\nu}{P_+} + \gamma_j^B(\alpha_s(\mu)) \right] \delta \mathcal{C}_{ij}(z, b_{\perp}/z, \mu, \nu)
-2 \sum_k \delta P_{ik}^T(z, \alpha_s(\mu)) \otimes \delta \mathcal{C}_{kj}(z, b_{\perp}/z, \mu, \nu) ,$$
(2.16)

and the rapidity evolution equations [93, 94]

$$\frac{d}{d \ln \nu} \delta \mathcal{I}_{ji}(x, b_{\perp}, \mu, \nu) = -2 \left[\int_{\mu}^{b_0/b_T} \frac{d\bar{\mu}}{\bar{\mu}} \Gamma_j^{\text{cusp}}(\alpha_s(\bar{\mu})) + \gamma_j^R(\alpha_s(b_0/b_T)) \right] \delta \mathcal{I}_{ji}(x, b_{\perp}, \mu, \nu) ,$$

$$\frac{d}{d \ln \nu} \delta \mathcal{C}_{ij}(z, b_{\perp}/z, \mu, \nu) = -2 \left[\int_{\mu}^{b_0/b_T} \frac{d\bar{\mu}}{\bar{\mu}} \Gamma_j^{\text{cusp}}(\alpha_s(\bar{\mu})) + \gamma_j^R(\alpha_s(b_0/b_T)) \right] \delta \mathcal{C}_{ij}(z, b_{\perp}/z, \mu, \nu) .$$
(2.17)

We define the coefficient function oder-by-order in terms of strong coupling $\alpha_s/(4\pi)$, up to $\mathcal{O}(\alpha_s^3)$, the solution to these evolution equations reads

$$\delta \mathcal{I}_{ji}^{(0)}(x, b_{\perp}, \mu, \nu) = \delta_{ji} \delta(1 - x) ,$$

$$\begin{split} \delta I_{ji}^{(1)}(x,b_{\perp},\mu,\nu) &= \left(-\frac{\Gamma_{0}^{\text{cusp}}}{2} L_{\perp} L_{Q} + \gamma_{0}^{B} L_{\perp} + \gamma_{0}^{R} L_{Q} \right) \delta_{ji} \delta(1-x) - \delta P_{ji}^{(0)}(x) L_{\perp} + \delta I_{ji}^{(1)}(x), \\ \delta I_{ji}^{(2)}(x,b_{\perp},\mu,\nu) &= \left[\frac{1}{8} \left(-\Gamma_{0}^{\text{cusp}} L_{Q} + 2\gamma_{0}^{B} \right) \left(-\Gamma_{0}^{\text{cusp}} L_{Q} + 2\gamma_{0}^{B} + 2\beta_{0} \right) L_{\perp}^{2} \right. \\ &\quad + \left(\left(-\Gamma_{0}^{\text{cusp}} L_{Q} + 2\gamma_{0}^{B} + 2\beta_{0} \right) \frac{\gamma_{0}^{R}}{2} L_{Q} - \frac{\Gamma_{1}^{\text{cusp}}}{2} L_{Q} + \gamma_{1}^{B} \right) L_{\perp} \\ &\quad + \left(-\Gamma_{0}^{\text{cusp}} L_{Q} + 2\gamma_{0}^{B} + 2\beta_{0} \right) \frac{\gamma_{0}^{R}}{2} L_{Q} - \frac{\Gamma_{1}^{\text{cusp}}}{2} L_{Q} + \gamma_{1}^{B} \right) L_{\perp} \\ &\quad + \left(-\Gamma_{0}^{\text{cusp}} L_{Q} + 2\gamma_{0}^{B} + 2\beta_{0} \right) \frac{\gamma_{0}^{R}}{2} L_{Q} - \frac{\Gamma_{1}^{\text{cusp}}}{2} L_{Q} + \gamma_{1}^{B} \right) L_{\perp} \\ &\quad + \left(-\frac{\gamma_{0}^{R}}{2} L_{Q} + \gamma_{1}^{R} L_{Q} \right) \delta_{ji} \delta(1-x) + \left(\frac{1}{2} \sum_{l} \delta P_{ji}^{(0)} \otimes \delta P_{li}^{(0)}(x) \right. \\ &\quad + \frac{\delta P_{ji}^{(0)}(x)}{2} \left(\Gamma_{0}^{\text{cusp}} L_{Q} - 2\gamma_{0}^{B} - \beta_{0} \right) L_{\perp}^{2} + \left[-\delta P_{ji}^{(1)}(x) - \delta P_{ji}^{(0)}(x) \right. \\ &\quad + \frac{\delta P_{ji}^{(0)}(x)}{2} \left(\Gamma_{0}^{\text{cusp}} L_{Q} - 2\gamma_{0}^{B} - \beta_{0} \right) L_{\perp}^{2} + \left[-\delta P_{ji}^{(1)}(x) - \delta P_{ji}^{(0)}(x) \right. \\ &\quad + \frac{\delta P_{ji}^{(0)}(x)}{2} \left. \delta P_{ii}^{(0)}(x) + \delta I_{ji}^{(2)}(x) \right. \\ &\quad + \left(-\frac{\Gamma_{0}^{\text{cusp}}}{2} L_{Q} \right) L_{Q} + \gamma_{0}^{B} + \beta_{0} \right) \delta I_{ji}^{(1)}(x) \right] L_{\perp} \\ &\quad + \gamma_{0}^{B} L_{Q} \delta I_{ji}^{(1)}(x) + \delta I_{ji}^{(2)}(x) \right. \\ &\quad + \left. \frac{\delta P_{ji}^{(0)}(x)}{2} \left. \delta P_{ji}^{(0)}(x) + \delta I_{ji}^{(0)}(x) \right. \\ &\quad + \left(-\frac{\Gamma_{0}^{\text{cusp}}}{2} L_{Q} \right) + \frac{1}{4} \left(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}} L_{Q} \right) \right) \sum_{l} \delta P_{ji}^{(0)}(x) \delta P_{li}^{(0)}(x) \\ &\quad + \frac{1}{8} \beta_{0} (2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}} L_{Q})^{2} + \frac{1}{4} \left(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}} L_{Q} \right) \right) \\ &\quad + \delta P_{ji}^{(0)}(x) \left(-\frac{1}{2} \beta_{0} - \frac{1}{2} \left(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}} L_{Q} \right) \right) \sum_{l} \delta P_{ji}^{(0)}(x) \delta P_{li}^{(0)}(x) \\ &\quad + \frac{1}{2} \sum_{l} \delta I_{ji}^{(1)}(x) \delta P_{li}^{(0)}(x) \right) + \frac{1}{4} \left(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}} L_{Q} \right) + \delta P_{ji}^{(0)}(x) \\ &\quad + \frac{1}{2} \beta_{0} \left(2\gamma_{i}^{B} - \Gamma_{1}^{\text{cusp}} L_{Q} \right) + \frac{1}{4} \left(2\gamma_{0}^{B} - \Gamma$$

$$+\delta I_{ji}^{(1)}(x) \left(\beta_{1} + \frac{1}{2}(2\gamma_{1}^{B} - \Gamma_{1}^{\text{cusp}}L_{Q})\right) + \delta I_{ji}^{(2)}(x) \left(2\beta_{0} + \frac{1}{2}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right)\right] +\delta_{ji}\delta(1-x)\gamma_{2}^{R}L_{Q} + \delta I_{ji}^{(1)}(x)\gamma_{1}^{R}L_{Q} + \delta I_{ji}^{(3)}(x),$$
(2.18)

where $\delta I_{ji}^{(n)}(z)$ are the scale-independent coefficient functions. In $\delta \mathcal{I}_{ji}^{(3)}$ we have used $\gamma_0^R = 0$ to simplify the expression. The scale logarithms are defined by

$$L_{\perp} = \ln \frac{b_T^2 \mu^2}{b_0^2}, \quad L_Q = 2 \ln \frac{x P_+}{\nu}, \quad L_{\nu} = \ln \frac{\nu^2}{\mu^2}, \quad b_0 = 2e^{-\gamma_E}.$$
 (2.19)

Similarly, the solution to the fragmentation coefficient functions are

$$\begin{split} \delta \mathcal{C}_{ji}^{(0)}(z,b_{\perp}/z,\mu,\nu) &= \delta_{ji}\delta(1-z)\,, \\ \delta \mathcal{C}_{ji}^{(1)}(z,b_{\perp}/z,\mu,\nu) &= \left(-\frac{\Gamma_{0}^{\text{Cusp}}}{2}L_{\perp}L_{Q} + \gamma_{0}^{B}L_{\perp} + \gamma_{0}^{R}L_{Q}\right)\delta_{ji}\delta(1-z) - \delta P_{ji}^{T(0)}(z)L_{\perp} + \delta C_{ji}^{(1)}(z)\,, \\ \delta \mathcal{C}_{ji}^{(2)}(z,b_{\perp}/z,\mu,\nu) &= \left[\frac{1}{8}\left(-\Gamma_{0}^{\text{cusp}}L_{Q} + 2\gamma_{0}^{B}\right)\left(-\Gamma_{0}^{\text{cusp}}L_{Q} + 2\gamma_{0}^{B} + 2\beta_{0}\right)L_{\perp}^{2}\right. \\ &+ \left((-\Gamma_{0}^{\text{cusp}}L_{Q} + 2\gamma_{0}^{B} + 2\beta_{0})\frac{\gamma_{0}^{R}}{2}L_{Q} - \frac{\Gamma_{0}^{\text{cusp}}}{2}L_{Q} + \gamma_{1}^{B}\right)L_{\perp} \\ &+ \left(\frac{\gamma_{0}^{(2)}}{2}L_{Q}^{2} + \gamma_{1}^{R}L_{Q}\right)\delta_{ji}\delta(1-z) + \left(\frac{1}{2}\sum_{l}\delta P_{jl}^{T(0)}\otimes\delta P_{li}^{T(0)}(z)\right. \\ &+ \frac{\delta P_{ji}^{T(0)}(z)}{2}\left(\Gamma_{0}^{\text{cusp}}L_{Q} - 2\gamma_{0}^{B} - \beta_{0}\right)L_{\perp}^{2} + \left[-\delta P_{ji}^{T(1)}(z) - \delta P_{ji}^{T(0)}(z)\gamma_{0}^{R}L_{Q}\right. \\ &- \sum_{l}\delta P_{jl}^{T(0)}\otimes\delta C_{li}^{(1)}(z) + \left(-\frac{\Gamma_{0}^{\text{cusp}}}{2}L_{Q} + \gamma_{0}^{B} + \beta_{0}\right)\delta C_{ji}^{(1)}(z)\right]L_{\perp} \\ &+ \gamma_{0}^{R}L_{Q}\delta C_{ji}^{(1)}(z) + \delta C_{ji}^{(2)}(z)\,, \\ \delta \mathcal{C}_{ji}^{(3)}(z,b_{\perp}/z,\mu,\nu) &= L_{\perp}^{3}\left[\left(\frac{1}{2}\beta_{0} + \frac{1}{4}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right)\sum_{l}\delta P_{jl}^{T(0)}\otimes\delta P_{li}^{T(0)}(z)\right. \\ &- \frac{1}{6}\sum_{lk}\delta P_{jl}^{T(0)}\otimes\delta P_{lk}^{T(0)}\otimes\delta P_{ki}^{T(0)}(z) + \delta_{ji}\delta(1-z)\left(\frac{1}{6}\beta_{0}^{2}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right. \\ &+ \frac{1}{8}\beta_{0}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})^{2} + \frac{1}{48}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})^{3}\right. \\ &+ \delta P_{ji}^{T(0)}\left(-\frac{1}{2}\beta_{0}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q}) - \frac{1}{3}\beta_{0}^{2} - \frac{1}{8}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})^{2}\right)\right] \\ &+ L_{\perp}^{2}\left[\left(-\frac{3}{2}\beta_{0} - \frac{1}{2}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right)\sum_{l}\delta P_{jl}^{T(0)}\otimes\delta P_{li}^{T(1)}(z)\right. \\ &+ \frac{1}{2}\sum_{l}\delta P_{jl}^{T(0)}\otimes\delta P_{lk}^{T(0)}\otimes\delta P_{lk}^{T(0)}\otimes\delta P_{lk}^{T(0)}(z)\right) + \delta_{ji}\delta(1-z)\left(\frac{1}{4}\beta_{1}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right. \\ &+ \delta P_{ji}^{T(0)}(z)\left(-\frac{1}{2}\beta_{1} - \frac{1}{2}(2\gamma_{1}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right) + \delta_{ji}\delta(1-z)\left(\frac{1}{4}\beta_{1}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})\right. \\ &+ \delta P_{ji}^{T(0)}(z)\left(-\frac{1}{2}\beta_{1} - \frac{1}{2}(2\gamma_{1}^{B} - \Gamma_{1}^{\text{cusp}}L_{Q})\right) + \delta_{ji}\delta(1-z)\left(\frac{1}{4}\beta_{1}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{$$

$$+ \frac{1}{2}\beta_{0}(2\gamma_{1}^{B} - \Gamma_{1}^{\text{cusp}}L_{Q}) + \frac{1}{4}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})(2\gamma_{1}^{B} - \Gamma_{1}^{\text{cusp}}L_{Q})$$

$$+ \delta C_{ji}^{(1)}(z) \left(\frac{3}{4}\beta_{0}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q}) + \beta_{0}^{2} + \frac{1}{8}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})^{2} \right)$$

$$+ \delta P_{ji}^{T(1)}(z) \left(-\beta_{0} - \frac{1}{2}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q}) \right) + \frac{1}{2}\sum_{l} \delta P_{jl}^{T(1)} \otimes \delta P_{li}^{T(0)}(z) \right]$$

$$+ L_{\perp} \left[-\sum_{l} \delta P_{jl}^{T(1)} \otimes \delta C_{li}^{(1)}(z) - \sum_{l} \delta P_{jl}^{T(0)} \otimes \delta C_{li}^{(2)}(z) - \delta P_{ji}^{T(0)}(z)\gamma_{1}^{R}L_{Q} \right]$$

$$- \delta P_{ji}^{T(2)}(z) + \delta_{ji}\delta(1 - z) \left(2\beta_{0}\gamma_{1}^{R}L_{Q} + \frac{1}{2}\gamma_{1}^{R}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q})L_{Q} + \frac{1}{2}(2\gamma_{2}^{B} - \Gamma_{2}^{\text{cusp}}L_{Q}) \right)$$

$$+ \delta C_{ji}^{(1)}(z) \left(\beta_{1} + \frac{1}{2}(2\gamma_{1}^{B} - \Gamma_{1}^{\text{cusp}}L_{Q}) \right) + \delta C_{ji}^{(2)}(z) \left(2\beta_{0} + \frac{1}{2}(2\gamma_{0}^{B} - \Gamma_{0}^{\text{cusp}}L_{Q}) \right) \right]$$

$$+ \delta_{ji}\delta(1 - z)\gamma_{2}^{R}L_{Q} + \delta C_{ij}^{(1)}(z)\gamma_{1}^{R}L_{Q} + \delta C_{ij}^{(3)}(z).$$

$$(2.20)$$

The anomalous dimensions appeared above are identical to those in the space-like case. The logarithms appeared in the fragmentation coefficient functions are defined as

$$L_{\perp} = \ln \frac{b_T^2 \mu^2}{b_0^2}, \quad L_Q = 2 \ln \frac{P_+}{z \nu}, \quad L_{\nu} = \ln \frac{\nu^2}{\mu^2}, \quad b_0 = 2e^{-\gamma_E}.$$
 (2.21)

Both space-like and time-like coefficient functions depend on the rapidity regulator being used. Rapidity-regulator-independent TMD transversity PDFs and FFs can be obtained by multiplying the coefficient functions with the squared root of the TMD soft functions $S(b_{\perp}, \mu, \nu)$ [57, 86]

$$\delta h_{T,qj}(x, b_{\perp}, \mu) = \delta \mathcal{I}_{qj}(x, b_{\perp}, \mu, \nu) \sqrt{\mathcal{S}(b_{\perp}, \mu, \nu)},$$

$$\delta g_{T,iq}(z, b_{\perp}/z, \mu) = \delta \mathcal{C}_{iq}(z, b_{\perp}/z, \mu, \nu) \sqrt{\mathcal{S}(b_{\perp}, \mu, \nu)}.$$
(2.22)

3 The NNLO transversity splitting functions

The next-to-leading order (NLO) space-like transversity splitting functions were first obtained in Refs. [89, 90]. In this work, we extend the precision to next-to-next-to-leading order (NNLO) for the first time. A detailed comparison with the known NLO results confirms complete agreement. In the following, we present our analytical results for both the space-like and time-like transversity splitting functions at NNLO accuracy.

3.1 Space-like results in $\overline{\rm MS}$

$$\delta P_{qq}^{(0)} = 4C_F \left[\frac{1}{1-x} \right]_+ + 3C_F \delta(1-x) - 4C_F, \qquad (3.1)$$

$$\begin{split} \delta P_{qq}^{(1)} &= \left[\frac{1}{1-x}\right]_{+} \left(\left(\frac{268}{9} - 8\zeta_{2}\right) C_{A} C_{F} - \frac{40 C_{F} N_{f}}{9}\right) \\ &+ C_{A} C_{F} \left(\frac{x}{x-1} \left(\left(-\frac{44}{3}\right) H_{0} - 8 H_{0,0}\right) + 2x + 8\zeta_{2} - \frac{286}{9}\right) \\ &+ C_{F}^{2} \left(\frac{x}{x-1} \left(-16 H_{1,0} + 12 H_{0} - 16 H_{2}\right) - 4x + 4\right) \\ &+ \delta (1-x) \left(\left(\frac{44}{3}\zeta_{2} - 12\zeta_{3} + \frac{17}{6}\right) C_{A} C_{F} + \left(\left(-\frac{8}{3}\right)\zeta_{2} - \frac{1}{3}\right) C_{F} N_{f} + \left(-12\zeta_{2} + 24\zeta_{3} + \frac{3}{2}\right) C_{F}^{2}\right) \\ &+ C_{F} N_{f} T_{F} \left(\frac{16x}{3(x-1)} H_{0} + \frac{80}{9}\right) \,, \end{split} \tag{3.2}$$

$$\begin{split} \delta P_{qq}^{(2)} &= C_F^3 \left(\left(\left(-\frac{64}{3} \right) H_{-1,-1,0} + \left(-\frac{32}{3} \right) H_{-1,2} + \left(-\frac{16}{3} \right) H_{0,0,0} + \frac{8}{3} H_{-1,0} + \frac{16}{3} H_{-1,0,0} + \frac{32}{3} H_3 \right. \\ &\quad \left. + \frac{64}{3} H_{-2,0} \right) x^2 + \left(\left(-\frac{16}{3} \right) H_2 + \frac{40}{3} H_{-1,0} + 96 H_3 + 192 H_{-2,0} - 96 H_{-1,2} - 16 H_{1,0} \right. \\ &\quad \left. - 192 H_{-1,-1,0} + 48 H_{-1,0,0} - 48 H_{0,0,0} \right) x + \frac{40}{3} H_{-1,0} + \frac{80}{3} H_2 \\ &\quad \left. + \frac{1}{x-1} \left(\left(-\frac{8}{3} \right) H_0 + \frac{16}{3} H_{0,0} + \frac{200}{3} H_1 + \frac{104}{3} \right) \right. \\ &\quad \left. + \frac{1}{x} \left(\left(-\frac{64}{3} \right) H_{-1,-1,0} + \left(-\frac{32}{3} \right) H_{-1,2} + \frac{8}{3} H_{-1,0} + \frac{16}{3} H_{-1,0,0} \right) + \left(-\frac{72x}{x-1} \right) \zeta_4 \right. \\ &\quad \left. + \frac{x}{x-1} \left(\left(-\frac{400}{3} \right) H_1 + \left(-\frac{254}{3} \right) H_0 - 64 H_4 + 64 H_{-3,0} - 28 H_{0,0} - 256 H_{1,3} + 96 H_{2,0} \right. \\ &\quad \left. - 128 H_{2,2} - 128 H_{3,0} - 128 H_{3,1} - 384 H_{-2,-1,0} + 192 H_{-2,0,0} - 256 H_{1,-2,0} + 192 H_{1,0,0} \right. \\ &\quad \left. - 128 H_{1,2,0} - 64 H_{2,0,0} - 128 H_{2,1,0} + 64 H_{0,0,0,0} + 128 H_{1,0,0,0} - \frac{208}{3} \right) \right. \\ &\quad \left. + \frac{x^2}{x-1} \left(\left(-\frac{80}{3} \right) H_{0,0} + \frac{200}{3} H_1 + \frac{280}{3} H_0 + \frac{104}{3} \right) + \frac{128x^2}{3(x-1)} \zeta_3 + \left(-\frac{8x^3}{3(x-1)} \right) H_{0,0} \right. \\ &\quad \left. + \frac{36x^3}{3(x-1)} \zeta_3 + \left(-\frac{16\zeta_2}{3(x-1)x} \right) H_1 + \frac{1}{x-1} \left(\frac{64}{3} - \frac{128 H_1}{3} \right) \zeta_2 \right. \\ &\quad \left. + \frac{x}{x-1} \left(-32 H_0 - 384 H_1 - 48 \right) \zeta_3 + \frac{x}{x-1} \left(-192 H_{-2} + 96 H_0 + 96 H_1 - \frac{104}{3} \right) \zeta_2 \right. \\ &\quad \left. + \frac{x^2}{x-1} \left(-\frac{128 H_0}{3} - \frac{128 H_1}{3} + \frac{32}{3} \right) \zeta_2 + \frac{x^3}{x-1} \left(-\frac{16 H_0}{3} - \frac{16 H_1}{3} + \frac{8}{3} \right) \zeta_2 - 96 H_{-1,2} \right. \\ &\quad \left. + \frac{16 H_{1,0} - 192 H_{-1,-1,0} + 48 H_{-1,0,0} \right) + N_f T_F C_F^2 \left(\frac{64}{x-1} \zeta_3 + \left(-\frac{320 x}{3(x-1)} \right) \zeta_3 \right. \\ &\quad \left. + \frac{436}{3} H_3 + \frac{128}{3} H_{2,0} + \frac{640}{9} H_2 + \frac{640}{9} H_1, 0 + \frac{256}{3} H_{1,0,0} - 24 H_0 - 32 H_{0,0} \right. \\ &\quad \left. + \frac{436}{9} \right) + \frac{x^2}{x-1} \left(\frac{32}{3} H_0 + \frac{112}{9} \right) + \left(-\frac{64 x \zeta_2}{3(x-1)} \right) H_0 - \frac{548}{9(x-1)} \right) \right. \\ &\quad \left. + \frac{436}{9} \right) + \frac{x^2}{x-1} \left(\frac{32}{3} H_0 + \frac{112}{9} \right) + \left(-\frac{64 x \zeta_2}{3(x-1)} \right) H_0 - \frac{548}{9(x-1$$

$$\begin{split} +N_f^2 T_F^2 C_F \left(-\frac{32x}{9} + \frac{x}{x-1} \left(\left(-\frac{320}{4} \right) H_{0-1} + \left(-\frac{64}{9} \right) H_{0.0} \right) + \frac{160}{27} \right) \\ + C_A^2 C_F \left(4H_{-1} \zeta_2 x^2 + \left(\left(-\frac{4}{3} \right) H_{-1,0} - 8H_{-1,2} - 8H_{-1,-1,0} \right) x^2 + 36H_{-1} \zeta_2 x \right) \\ + \left(8H_2 + 4H_{-1,0} - 72H_{-1,2} - 72H_{-1,-1,0} \right) x + \frac{1}{x-1} \left(\left(-\frac{4}{3} \right) H_0 + \frac{92}{3} H_1 + \frac{1586}{9} \right) \right) \\ + \frac{88}{3(x-1)} \zeta_3 + \frac{88}{x-1} \zeta_4 + \frac{1}{x} \left(\left(-\frac{4}{3} \right) H_{-1,0} - 8H_{-1,2} - 8H_{-1,-1,0} \right) + \left(-\frac{192x}{x-1} \right) \zeta_4 \\ + \frac{x}{x-1} \left(\left(-\frac{5396}{27} \right) H_0 + \left(-\frac{1592}{9} \right) H_{0,0} + \left(-\frac{304}{3} \right) H_3 + \left(-\frac{248}{3} \right) H_{0,0,0} + \left(-\frac{184}{3} \right) H_1 \\ - 32H_4 - 32H_{-3,0} - 24H_{-2,0} - 64H_{-2,2} - 128H_{1,3} - 128H_{-2,-1,0} + 32H_{-2,0,0} - 192H_{1,-2,0} \right) \\ + 88H_{1,0,0} + 64H_{2,0,0} + 32H_{0,0,0,0} + 96H_{1,0,0,0} + 128H_{1,1,0,0} - \frac{1702}{9} \right) + \left(-\frac{32x^2}{x-1} \right) \zeta_3 \\ + \frac{x^2}{x-1} \left(\frac{8}{3} H_{0,0} + \frac{92}{3} H_1 + \frac{140}{3} H_0 + 64H_3 + 64H_{-2,0} + \frac{116}{9} \right) + \left(-\frac{4x^3}{x-1} \right) \zeta_3 \\ + \frac{x^3}{x-1} \left(\frac{4}{3} H_{0,0} + 8H_3 + 8H_{-2,0} \right) + \frac{4\zeta}{x} H_{-1} + \left(-\frac{4\zeta_2}{(x-1)^x} \right) H_1 + \frac{1}{x-1} \left(-32H_1 - \frac{1000}{9} \right) \zeta_2 \\ + \frac{x}{x-1} \left(-128H_0 - 288H_1 + 20 \right) \zeta_3 + \frac{x}{x-1} \left(-8H_0 - 4H_1 - \frac{4}{3} \right) \zeta_2 + 8H_2 + 36H_{-1} \zeta_2 + 4H_{-1,0} \\ - 72H_{-1,2} - 72H_{-1,-1,0} \right) + CAC_F^2 \left(\left(\left(-\frac{8}{3} \right) H_{-1,0} + \frac{4}{3} H_{-1,0} + \frac{64}{3} H_{-1,0} + \frac{87}{3} H_{-1,-1,0} \right) x^2 \\ - 8H_{-1} \zeta_2 x^2 - 72H_{-1} \zeta_2 x + \left(\left(-\frac{44}{3} \right) H_1 + \left(-\frac{8}{3} \right) H_{0,0} + \frac{88}{3} H_2 + 4H_0 + 8H_{1,0} - \frac{872}{9} \right) \\ + \frac{1}{x} \left(\left(-\frac{8}{3} \right) H_{-1,0} + \frac{4}{3} H_{-1,0} + 192H_{-1,2} + 240H_{-1,-1,0} - 24H_{-1,0,0} \right) x \\ + \left(-\frac{44}{3} \right) H_{-1,0} + \frac{4}{3} H_{-1,0} + \frac{64}{3} H_{-1,2} + \frac{80}{3} H_{-1,-1,0} \right) \\ + \frac{x}{x-1} \left(\left(-\frac{8}{3} \right) H_{1,0} + \left(-\frac{2288}{3} \right) H_1 + \left(-\frac{8}{3} \right) H_{0,0} + \frac{88}{3} H_2 + 4H_0 + 8H_{1,0} - \frac{872}{9} \right) \\ + \frac{12}{x} \left(\left(-\frac{8}{3} \right) H_{-1,0} + \frac{64}{3} H_{-1,0} + \frac{64}{3} H_{-1,0} + \frac{64}{3} H_{-1,0,0} + \frac{64}{3} H_{-1,0,0} + \frac{872}{3} H_{-1,0,0} \right) \right) \\ +$$

$$\begin{split} +\delta(1-x)\left(\left(-32\zeta_3\zeta_2+18\zeta_2+68\zeta_3+144\zeta_4-240\zeta_5+\frac{29}{2}\right)C_F^3\\ +\left(\left(-\frac{136}{3}\right)\zeta_3+\frac{20}{3}\zeta_2+\frac{116}{3}\zeta_4-23\right)N_fC_F^2+\left(\left(-\frac{16}{9}\right)\zeta_3+\frac{80}{27}\zeta_2-\frac{17}{9}\right)N_f^2C_F\\ +C_A^2\left(\left(-\frac{1552}{9}\right)\zeta_3+\frac{4496}{27}\zeta_2-5\zeta_1+40\zeta_5-\frac{1657}{36}\right)C_F\\ +C_A\left(\left(\left(-\frac{494}{3}\right)\zeta_4+\left(-\frac{410}{3}\right)\zeta_2+\frac{844}{3}\zeta_3+16\zeta_2\zeta_3+120\zeta_5+\frac{151}{4}\right)C_F^2\\ +N_f\left(\left(-\frac{1336}{37}\right)\zeta_2+\frac{290}{9}\zeta_3+2\zeta_4+20\right)C_F\right)\right)\\ +C_AN_fT_FC_F\left(\left(-\frac{8}{3}\right)H_1+\left(-\frac{224}{3(x-1)}\right)\zeta_3+\frac{320}{9(x-1)}\zeta_2\\ +\frac{8x}{3}H_1+\frac{x}{x-1}\left(\frac{32}{3}H_3+\frac{64}{3}H_{0,0,0}+\frac{224}{3}H_{0,0}+\frac{2744}{2}H_0-32H_{1,0,0}+\frac{952}{27}\right)\\ +\frac{96x}{x-1}\zeta_3+\frac{x^2}{x-1}\left(\left(-\frac{8}{3}\right)H_0+\frac{40}{3}\right)+\frac{x}{x-1}-\left(-\frac{64H_0}{3}-\frac{320}{9}\right)\zeta_2-\frac{1312}{27(x-1)}\right)\\ +\left[\frac{1}{1-x}\right]_+\left(C_F\left(\left(-\frac{1072}{9}\right)\zeta_2+88\zeta_4+\frac{88\zeta_3}{3}\right)+\frac{490}{3}\right)C_A^2\\ +C_FN_f\left(\frac{160}{9}\zeta_2-\frac{112\zeta_3}{3}\right)-\frac{836}{27}\right)C_A-\frac{16}{27}C_FN_f^2+C_F^2N_f\left(-\frac{110}{3}+32\zeta_3\right)\right),\\ \delta P_{q\bar{q}}^{(1)}=C_AC_F\left(\frac{x}{x+1}\left(8H_{0,0}-16H_{-1,0}\right)-\frac{2x^2}{x+1}+\left(-\frac{8x}{x+1}\right)\zeta_2+\frac{2}{x+1}\right)\\ +C_F^2\left(\frac{x}{x+1}\left(32H_{-1,0}-16H_{0,0}\right)+\frac{4x^2}{x+1}+\frac{16x}{x+1}\zeta_2-\frac{4}{x+1}\right),\\ \delta P_{q\bar{q}}^{(2)}=+N_fT_FC_FC_A\left(\frac{56x^2}{9(x+1)}+\frac{16}{3}H_1+\left(-\frac{16x}{3}\right)H_1+\left(-\frac{32x}{x+1}\right)\zeta_3+\frac{x}{x+1}\left(\left(-\frac{128}{3}\right)H_{-1,0}\right)\\ +\frac{x}{x+1}\left(\frac{128H_{-1}}{3}-\frac{32H_0}{3}+\frac{320}{9}\right)\zeta_2-\frac{56}{9}H_{-1,0}\right)\\ +N_fT_FC_F^2\left(-\frac{112x^2}{9(x+1)}+\left(-\frac{32}{3}\right)H_{-1,0,0}+\frac{640}{3}H_{0,0}+\frac{640}{3}H_{0,0}+\frac{640}{3}H_{0,0}+\frac{640}{3}H_{0,0}+\frac{640}{3}H_{0,0}\right)\zeta_2+\frac{112}{9(x+1)}\right)\\ +C_F^2\left(\left(-\frac{184}{3}\right)H_1+\left(-\frac{32}{3x}\right)H_{-1,0,0}+\frac{128}{3}H_{0,0}+\frac{640}{3}H_{0,0}+\frac{640}{3}H_{0,0}+\frac{640}{3}H_{0,0}\right)\zeta_2+\frac{112}{9(x+1)}\right)\\ +\frac{1}{x+1}\left(\left(-\frac{8}{3}\right)H_0+\frac{16}{3}H_2+\frac{16}{3}H_{0,0}+\left(-\frac{32x}{3}\right)H_{-1,-1,0}\\ +\frac{1}{x+1}\left(\left(-\frac{8}{3}\right)H_0+\frac{16}{3}H_2+\frac{16}{3}H_{0,0}+\left(-\frac{32x}{3}\right)H_{-1,0,0}+\frac{512}{3}H_{-1,2}+\frac{104}{3}\right)\\ +\frac{1}{x(x+1)}\left(\left(-\frac{64}{3}\right)H_{-1,2}+\left(-\frac{16}{3}\right)H_{-1,0,0}+\left(-\frac{8}{3}\right)H_{-1,0}\right)+\left(-\frac{280x}{x+1}\right)\zeta_3$$

$$\begin{split} &+\frac{x}{x+1}\left(\frac{16}{3}H_{-1,0} + \frac{128}{3}H_2 + \frac{152}{3}H_{0.0} + 80H_0 - 288H_3 - 384H_4 + 192H_{-3,0} - 192H_{-2,0} \right. \\ &+ 896H_{-2,2} + 576H_{-1,2} + 1024H_{-1,3} - 64H_{3,0} - 256H_{-2,-1,0} + 832H_{-2,0,0} - 256H_{-1,-2,0} \\ &- 1536H_{-1,-1,2} + 128H_{-1,2,0} + 96H_{0,0,0} - 1280H_{-1,-1,0,0} + 704H_{-1,0,0,0} - 192H_{0,0,0,0} \right) \\ &+ \frac{x^2}{x+1}\left(\left(-\frac{512}{3}\right)H_3 + \left(-\frac{256}{3}\right)H_{-2,0} + \left(-\frac{128}{3}\right)H_{0,0,0} + \frac{104}{3}H_0 + \frac{112}{3}H_2 \right. \\ &+ \frac{128}{3}H_{-1,0,0} + \frac{512}{3}H_{-1,2} + 48H_{0,0} - \frac{104}{3} + \frac{512x^2}{3(x+1)}\zeta_3 + \left(-\frac{64x^3}{3(x+1)}\right)\zeta_3 \\ &+ \frac{x^3}{x+1}\left(\left(-\frac{64}{3}\right)H_{-1,2} + \left(-\frac{16}{3}\right)H_{-1,0,0} + \left(-\frac{8}{3}\right)H_{-1,0} + \frac{8}{3}H_{0,0} + \frac{16}{3}H_{0,0,0} + \frac{32}{3}H_{-2,0} \right. \\ &+ \frac{64}{3}H_3\right) + \frac{32\zeta_2}{3x}H_1 + \left(-\frac{32}{3}x^2\zeta_2\right)H_1 + \frac{16\zeta_2}{x(x+1)}H_{-1} + \frac{1}{x+1}\left(-128H_{-1} - \frac{32}{3}\right)\zeta_2 \\ &+ \frac{x}{x+1}\left(-1152H_{-1} + 416H_0 + 336\right)\zeta_5 + \frac{x}{x+1}\left(-1024H_{-2} + 480H_{-1} + 288H_0 - 192H_2 \right. \\ &+ \frac{1536H_{-1,-1} - 1280H_{-1,0} + 448H_{0,0} - 40\right)\zeta_2 + \frac{x^2}{x+1}\left(-128H_{-1} + \frac{640H_0}{3} - 32\right)\zeta_2 \\ &+ \frac{x^3}{x+1}\left(16H_{-1} - \frac{80H_0}{3} - \frac{8}{3}\right)\zeta_2 + 96xH_1\zeta_2 - 96H_1\zeta_2 - 16H_{1,0} + 96H_{-1,-1,0} \right. \\ &+ x\left(\frac{184}{3}H_1 + 16H_{1,0} + 96H_{-1,-1,0}\right)\right) + CAC_F^2\left(\frac{64}{3}H_{-1,-1,0} + \frac{64x^2}{3}H_{-1,-1,0} \right. \\ &+ \frac{1}{x+1}\left(\left(-\frac{640}{3}\right)H_{-1,2} + \left(-\frac{64}{3}\right)H_{-1,0,0} + \left(-\frac{56}{3}\right)H_2 + \left(-\frac{32}{3}\right)H_{-1,0} \right. \\ &+ \left(-\frac{8}{3}\right)H_{0,0} + 4H_0 - \frac{872}{9}\right) + \frac{1}{x(x+1)}\left(\left(-\frac{4}{3}\right)H_{-1,0} + \frac{8}{3}H_{-1,0,0} + \frac{80}{3}H_{-1,2}\right) \\ &+ \left(-\frac{20x}{3}\right)H_0 + \left(-\frac{160}{3}\right)H_2 + \frac{352}{3}H_{-1,0,0} + \frac{1072}{3}H_{-2,0} + \frac{1216}{3}H_3 + \frac{4120}{9}H_{-1,0} \right. \\ &+ \frac{220H_0}{3}H_0 + \left(-\frac{160}{3}\right)H_2 + \frac{352}{3}H_{-1,0,0} + \frac{1072}{3}H_{-2,0} + \frac{1216}{3}H_3 + \frac{4120}{9}H_{-1,0} \right. \\ &+ \frac{230H_0}{3}H_0 + \left(-\frac{160}{3}\right)H_2 + \frac{352}{3}H_{-1,0} + \frac{1072}{3}H_{-2,0} + \frac{1216}{3}H_3 + \frac{120}{9}H_{-1,0} \right. \\ &+ \frac{27}{3}H_{-1,0,0} + \frac{1072}{3}H_{-1,0} + \frac{1072}{3}H_{-1,0} + \frac{1072}{3}H_{-1,0} + \frac{1072}{3}H_{-1,0} - \frac{1072}{3}H_{-1,0} \right. \\ &+ \frac{27}{3}H$$

3.2 Time-like results in $\overline{\text{MS}}$

$$\delta P_{qq}^{T(0)} = 4C_F \left[\frac{1}{1-z} \right]_+ + 3C_F \delta(1-z) - 4C_F, \qquad (3.9)$$

$$\delta P_{qq}^{T(1)} = \left[\frac{1}{1-z} \right]_{+} \left(\left(\frac{268}{9} - 8\zeta_2 \right) C_A C_F - \frac{80}{9} C_F N_f T_F \right)
+ C_A C_F \left(\frac{z}{z-1} \left(\left(-\frac{44}{3} \right) H_0 - 8 H_{0,0} \right) + 2z + 8\zeta_2 - \frac{286}{9} \right)
+ C_F^2 \left(\frac{z}{z-1} \left(32 H_{0,0} + 16 H_{1,0} - 12 H_0 + 16 H_2 \right) - 4z + 4 \right)
+ \delta(1-z) \left(C_A C_F \left(\frac{44}{3} \zeta_2 - 12\zeta(3) + \frac{17}{6} \right) + \left(\left(-\frac{16}{3} \right) \zeta_2 - \frac{2}{3} \right) C_F N_f T_F
+ C_F^2 \left(-12\zeta_2 + 24\zeta(3) + \frac{3}{2} \right) \right) + C_F N_f T_F \left(\frac{16z}{3(z-1)} H_0 + \frac{80}{9} \right) ,$$
(3.10)

$$\begin{split} \delta P_{qq}^{T(2)} &= C_F^3 \left(\left(\left(-\frac{64}{3} \right) H_{-1,-1,0} + \left(-\frac{32}{3} \right) H_{-1,2} + \frac{8}{3} H_{-1,0} + \frac{16}{3} H_{-1,0,0} + \frac{32}{3} H_3 + \frac{64}{3} H_{-2,0} \right) z^2 \right. \\ &\quad + \left(\frac{40}{3} H_{-1,0} + \frac{80}{3} H_2 + 96 H_3 + 192 H_{-2,0} - 96 H_{-1,2} + 16 H_{1,0} - 192 H_{-1,-1,0} + 48 H_{-1,0,0} \right) z \\ &\quad + \left(-\frac{16}{3} \right) H_2 + \frac{40}{3} H_{-1,0} + \frac{1}{z-1} \left(\left(-\frac{80}{3} \right) H_0 + \frac{16}{3} H_{0,0} + \frac{200}{3} H_1 + \frac{104}{3} \right) \\ &\quad + \frac{1}{z} \left(\left(-\frac{64}{3} \right) H_{-1,-1,0} + \left(-\frac{32}{3} \right) H_{-1,2} + \frac{8}{3} H_{-1,0} + \frac{16}{3} H_{-1,0,0} \right) + \left(-\frac{72z}{z-1} \right) \zeta_4 \\ &\quad + \frac{z}{z-1} \left(\left(-\frac{400}{3} \right) H_1 + \left(-\frac{146}{3} \right) H_0 - 448 H_4 + 64 H_{-3,0} - 92 H_{0,0} - 256 H_{1,3} + 96 H_{2,0} \right. \\ &\quad - 128 H_{2,2} - 256 H_{3,0} - 128 H_{3,1} - 384 H_{-2,-1,0} + 192 H_{-2,0,0} + 336 H_{0,0,0} - 256 H_{1,-2,0} \\ &\quad + 192 H_{1,0,0} - 128 H_{1,2,0} - 192 H_{2,0,0} - 128 H_{2,1,0} - 448 H_{0,0,0,0} - 256 H_{1,0,0,0} - \frac{208}{3} \right) \\ &\quad + \frac{z^2}{z-1} \left(\left(-\frac{128}{3} \right) H_{0,0,0} + \frac{112}{3} H_{0,0} + \frac{200}{3} H_1 + \frac{208}{3} H_0 + \frac{104}{3} \right) + \frac{128z^2}{3(z-1)} \zeta_3 \right. \\ &\quad + \frac{z^3}{z-1} \left(\left(-\frac{16}{3} \right) H_{0,0,0} + \left(-\frac{8}{3} \right) H_{0,0} \right) + \frac{16z^3}{3(z-1)} \zeta_3 + \left(-\frac{16\zeta_2}{3(z-1)z} \right) H_1 \right. \\ &\quad + \frac{1}{z-1} \left(\frac{64}{3} - \frac{128 H_1}{3} \right) \zeta_2 + \frac{z}{z-1} \left(32 H_0 - 384 H_1 - 48 \right) \zeta_3 \\ &\quad + \frac{z}{z-1} \left(-192 H_{-2} + 192 H_0 + 96 H_1 + 256 H_{0,0} - \frac{104}{3} \right) \zeta_2 \\ &\quad + \frac{z^2}{z-1} \left(-\frac{128 H_0}{3} - \frac{128 H_1}{3} + \frac{32}{3} \right) \zeta_2 + \frac{z^3}{z-1} \left(-\frac{16 H_1}{3} - \frac{16 H_1}{3} + \frac{8}{3} \right) \zeta_2 - 96 H_{-1,2} \right. \\ &\quad - 16 H_{1,0} - 192 H_{-1,-1,0} + 48 H_{-1,0,0} \right) + N_f T_F C_F^2 \left(\frac{64}{z-1} \zeta_3 + \left(-\frac{320z}{3(z-1)} \right) \zeta_3 \\ &\quad + \frac{z}{z-1} \left(\left(-\frac{992}{9} \right) H_{0,0} + \left(-\frac{320}{3} \right) H_{0,0,0} + \left(-\frac{640}{9} \right) H_2 + \left(-\frac{640}{9} \right) H_{1,0} + \left(-\frac{128}{3} \right) H_3 \right. \\ &\quad + \left(-\frac{128}{3} \right) H_{2,0} + \frac{104}{3} H_0 + \frac{436}{9} \right) + \frac{z^2}{z-1} \left(\frac{32}{3} H_0 + \frac{112}{9} \right) + \frac{64z\zeta_2}{3(z-1)} H_0 - \frac{548}{9(z-1)} \right)$$

$$\begin{split} &+C_A^2C_F\left(4H_{-1}\zeta_2z^2+\left(\left(-\frac{4}{3}\right)H_{-1,0}-8H_{-1,2}-8H_{-1,1,0}\right)z^2+36H_{-1}\zeta_2z\right.\\ &+\left(8H_2+4H_{-1,0}-72H_{-1,2}-72H_{-1,-1,0}\right)z+\frac{1}{z-1}\left(\left(-\frac{4}{3}\right)H_0+\frac{92}{3}H_1+\frac{1586}{9}\right)\\ &+\frac{88}{3(z-1)}\zeta_3+\frac{88}{z-1}\zeta_4+\frac{1}{z}\left(\left(-\frac{4}{3}\right)H_{-1,0}-8H_{-1,2}-8H_{-1,-1,0}\right)+\left(-\frac{192z}{z-1}\right)\zeta_4\\ &+\frac{z}{z-1}\left(\left(-\frac{5396}{27}\right)H_0+\left(-\frac{1599}{9}\right)H_{0,0}+\left(-\frac{304}{3}\right)H_3+\left(-\frac{248}{3}\right)H_{0,0,0}+\left(-\frac{184}{3}\right)H_1\\ &-22H_4-32H_{-3,0}-24H_{-2,0}-64H_{-2,2}-128H_{1,3}-128H_{-2,-1,0}+32H_{-2,0,0}-192H_{1,-2,0}\\ &+88H_{1,0,0}+64H_{2,0,0}+32H_{0,0,0}+96H_{1,0,0,0}+128H_{1,1,0,0}-\frac{1709}{9}\right)+\left(-\frac{4z^3}{z-1}\right)\zeta_3\\ &+\frac{z^2}{z-1}\left(\frac{8}{3}H_{0,0}+\frac{92}{3}H_1+\frac{140}{3}H_0+64H_3+64H_{-2,0}+\frac{116}{9}\right)+\left(-\frac{4z^3}{z-1}\right)\zeta_3\\ &+\frac{z^3}{z-1}\left(\frac{4}{3}H_{0,0}+8H_3+8H_{-2,0}\right)+\frac{4\zeta_2}{z}H_{-1}+\left(-\frac{4\zeta_2}{(z-1)z}\right)H_1+\frac{1}{z-1}\left(-32H_1-\frac{1000}{9}\right)\zeta_2\\ &+\frac{z^2}{z-1}\left(-64H_0-32H_1-\frac{8}{3}\right)\zeta_2+\frac{z^2}{z-1}\left(-8H_0-4H_1-\frac{4}{3}\right)\zeta_2+8H_2+36H_{-1}\zeta_2+4H_{-1,0}\\ &-72H_{-1,2}-72H_{-1,-1,0}\right)+C_AC_F^2\left(\left(-\frac{8}{3}\right)H_{-1,0,0}+\frac{4}{3}H_{-1,0}+\frac{64}{3}H_{-1,2}+\frac{80}{3}H_{-1,-1,0}\right)z^2\\ &-8H_{-1}\zeta_2z^2-72H_{-1}\zeta_2z+\left(\left(-\frac{44}{3}\right)H_{-1,0}+192H_{-1,2}+240H_{-1,-1,0}-24H_{-1,0,0}\right)z\\ &+\left(-\frac{44}{3}\right)H_{-1,0}+\frac{4}{3}H_{-1,0}+\frac{68}{3}H_{-1,2}+240H_{-1,-1,0}-24H_{-1,0,0}\right)z\\ &+\frac{z}{z-1}\left(\frac{352}{3}H_2+\frac{45}{3}H_{-1,0}+\frac{64}{3}H_{-1,2}+\frac{8}{3}H_{-1,-1,0}\right)z^2\\ &-8H_{-1}\zeta_2z^2-72H_{-1}\zeta_2z+\left(\left(-\frac{44}{3}\right)H_{-1,0}+192H_{-1,2}+240H_{-1,-1,0}-24H_{-1,0,0}\right)z\\ &+\frac{z}{z-1}\left(\frac{35}{3}H_{2,0}+\frac{65}{3}H_1+\frac{736}{3}H_{0,0}+\frac{228}{9}H_{1,0}+\frac{1216}{3}H_3\\ &+\frac{2892}{9}H_{0,0}+26H_0+160H_4+32H_{-3,0}+144H_{-2,0}+128H_{-2,2}+256H_{1,3}+32H_{3,0}+448H_{-2,-1,0}\\ &-160H_{-2,0,0}+512H_{1,-2,0}-96H_{1,0,0}-96H_{2,0,0}+96H_{0,0,0}-160H_{1,0,0,0}-256H_{1,1,0,0}+\frac{1744}{9}\right)\\ &+\frac{27}{2z-1}\left(-\frac{89}{3}\right)H_{-1}\left(-\frac{84}{3}\right)H_{-2,0}+\left(-\frac{512}{3}\right)H_3+\left(-\frac{428}{3}\right)H_0\\ &+\frac{23}{3}(z-1)z^2+\left(-\frac{64}{3}\right)H_{-2,0}+\left(-\frac{512}{3}\right)H_3+\left(-\frac{428}{3}\right)H_0\\ &+\frac{23}{3}(z-1)z^2+\left(-\frac{64}{3}\right)H_{-2,0}+\left(-\frac{512}{3}\right)H_{-1}+\frac{1282}{3}\right)\zeta_3\\ &+\frac{z^2}{z-1}\left(-\frac{448H_{-2,0}}{3}\right)+\frac{27}{3}\left(-\frac{$$

$$\begin{split} &+N_f^2 T_F^2 C_F \left(-\frac{32}{9} + \frac{z}{z-1} \left(\left(-\frac{320}{27}\right) H_0 + \left(-\frac{64}{9}\right) H_{0,0}\right) + \frac{160}{27}\right) \\ &+ \left[\frac{1}{1-z}\right]_+ \left(C_F \left(\left(-\frac{1072}{9}\right) \zeta_2 + 88 \zeta_4 + \frac{88 \zeta_3}{3} + \frac{490}{3}\right) C_A^2 \right. \\ &+ C_F N_f T_F \left(\frac{320}{9} \zeta_2 - \frac{224 \zeta_3}{3} - \frac{1672}{27}\right) C_A - \frac{64}{2} C_F N_f^2 T_F^2 + C_F^2 N_f T_F \left(-\frac{220}{3} + 64 \zeta_3\right)\right)\right) \\ &+ \delta(1-z) \left(\left(18 - 32 \zeta_3\right) \zeta_2 + 144 \zeta_4 - 240 \zeta_5\right) + 68 \zeta_3\right) + \frac{29}{2}\right) C_F^3 \\ &+ N_f T_F \left(\frac{40}{3} \zeta_2 + \frac{232}{3} \zeta_4 - \frac{272 \zeta_3}{3} - 46\right) C_F^2 + N_f^2 T_F^2 \left(\frac{320}{27} \zeta_2 - \frac{64 \zeta_3}{9} - \frac{68}{9}\right) C_F \\ &+ C_A^2 \left(\frac{4496}{27} \zeta_2 - 5 \zeta_4 + 40 \zeta_5\right) - \frac{1552 \zeta_3}{9} - \frac{1657}{36}\right) C_F \\ &+ C_A \left(\left(\left(-\frac{494}{3}\right) \zeta_4 + \left(-\frac{410}{3} + 16 \zeta_3\right)\right) \zeta_2 + 120 \zeta_5\right) + \frac{844 \zeta_3}{3} + \frac{151}{4}\right) C_F^2 \\ &+ N_f T_F \left(\left(-\frac{2672}{27}\right) \zeta_2 + 4 \zeta_4 + \frac{400 \zeta_3}{9} + 40\right) C_F\right)\right), \end{split}$$

$$\delta P_{qq}^{T(1)} &= C_A C_F \left(\frac{z}{z+1} \left(8 H_{0,0} - 16 H_{-1,0}\right) - \frac{2z^2}{z+1} + \left(-\frac{8z}{z+1}\right) \zeta_2 + \frac{2}{z+1}\right) \\ &+ C_F^2 \left(\frac{z}{z+1} \left(32 H_{-1,0} - 16 H_{0,0}\right) + \frac{4z^2}{z+1} + \frac{16z}{z+1} \zeta_2 - \frac{4}{z+1}\right), \end{split}$$

$$\delta P_{qq}^{T(2)} &= + C_F C_A^2 \left(-4 H_1 \zeta_2 z^2 - 8 H_{-1,-1,0} z^2 + 36 H_1 \zeta_2 z + \left(\frac{68}{3} H_1 + 72 H_{-1,-1,0}\right) z + \left(-\frac{68}{3}\right) H_1 \\ &+ \left(-\frac{8}{8}\right) H_{-1,-1,0} + \frac{1}{z+1} \left(\left(-\frac{4}{3}\right) H_0 + \frac{16}{3} H_{-1,0} + 8 H_2 + 64 H_{-1,2} + \frac{358}{9}\right) \\ &+ \frac{2}{z+1} \left(\left(-\frac{2072}{9}\right) H_{-1,0} + \left(-\frac{392}{3}\right) H_3 + \left(-\frac{392}{3}\right) H_{-2,0} + \left(-\frac{176}{3}\right) H_{-1,0,0} + \frac{88}{3} H_0 \right) \\ &+ \frac{228}{3} H_{0,0,0} + \frac{1108}{3} H_{0,0} + \frac{784}{3} H_{-1,2} + 16 H_2 - 64 H_4 + 32 H_{-3,0} + 256 H_{-2,2} + 256 H_{-1,3} \\ &+ \frac{2z}{z+1} \left(\frac{3}{3} H_{0,0} + \frac{16}{3} H_{-1,0} + \frac{2}{3} H_0 + 8 H_2 - 64 H_3 - 64 H_{-2,0} + 64 H_{-1,2} - \frac{358}{9}\right) \\ &+ \frac{32z^2}{z+1} \zeta_3 + \left(-\frac{4z^2}{z+1}\right) \zeta_3 + \frac{z^2}{z+1} \left(\left(-\frac{4}{3}\right) H_{0,0} + \frac{4}{3} H_{-1,0} + 8 H_3 + 8 H_{-2,0} - 8 H_{-1,2}\right) \\ &+ \frac{4\zeta_2}{z+1} H_1 + \frac{4\zeta_2}{z+1} H_{-1} + \frac{1}{z+1} \left(-32 H_{-1} - 8\right) \zeta_2 + \frac{z}{z+1} \left(-38 H_{-1} - 1 - 352 H_{-1,0} + 96 H_{0,0} \\ &+ \frac{2z}{z+1} \left(-256 H_{-2} - \frac{568 H_{-1}}{3} + \frac{232$$

$$\begin{split} C_F^3\left(\left(-\frac{184}{3}\right)H_1+\left(-\frac{32}{3z}\right)H_{-1,-1,0}+\left(-\frac{32z^2}{3}\right)H_{-1,-1,0}\right.\\ &+\frac{1}{z+1}\left(\left(-\frac{80}{3}\right)H_0+\frac{16}{3}H_{0,0}+\frac{112}{3}H_2+\frac{128}{3}H_{-1,0,0}+\frac{512}{3}H_{-1,2}+\frac{104}{3}\right)\\ &+\frac{1}{z(z+1)}\left(\left(-\frac{64}{3}\right)H_{-1,2}+\left(-\frac{16}{3}\right)H_{-1,0,0}+\left(-\frac{8}{3}\right)H_{-1,0}\right)+\left(-\frac{280z}{z+1}\right)\zeta_4\\ &+\frac{z}{z+1}\left(\left(-\frac{40}{3}\right)H_{0,0}+\frac{16}{3}H_{-1,0}+\frac{128}{3}H_2+80H_0-288H_3-320H_{-3,0}+640H_{-2,2}\\ &+576H_{-1,2}+512H_{-1,3}+64H_{3,0}+256H_{-2,-1,0}-64H_{-2,0,0}+256H_{-1,-2,0}-1536H_{-1,-1,2}\\ &+384H_{-1,0,0}-128H_{-1,2,0}-192H_{0,0,0}-256H_{-1,-1,0,0}-448H_{-1,0,0,0}+320H_{0,0,0,0}\right)\\ &+\frac{z^2}{z+1}\left(\left(-\frac{512}{3}\right)H_3+\left(-\frac{256}{3}\right)H_{-2,0}+\left(-\frac{128}{3}\right)H_{0,0,0}+\frac{16}{3}H_2\\ &+\frac{128}{3}H_{-1,0,0}+\frac{176}{3}H_0+\frac{512}{3}H_{-1,2}-16H_{0,0}-\frac{104}{3}\right)+\frac{512z^2}{3(z+1)}\zeta_3\\ &+\left(-\frac{64z^3}{3(z+1)}\right)\zeta_3+\frac{z^3}{z+1}\left(\left(-\frac{64}{3}\right)H_{-1,2}+\left(-\frac{16}{3}\right)H_{-1,0,0}+\left(-\frac{8}{3}\right)H_{-1,0}\\ &+\frac{8}{3}H_{0,0}+\frac{16}{3}H_{0,0,0}+\frac{32}{3}H_{-2,0}+\frac{64}{3}H_3\right)+\frac{32\zeta_2}{3z}H_1+\left(-\frac{32}{3}z^2\zeta_2\right)H_1\\ &+\frac{16\zeta_2}{z(z+1)}H_{-1}+\frac{1}{z+1}\left(-128H_{-1}-\frac{32}{3}\right)\zeta_2+\frac{z}{z+1}\left(-1152H_{-1}-32H_0+336\right)\zeta_3\\ &+\frac{z}{z+1}\left(-512H_{-2}-480H_{-1}+384H_0-192H_2+1536H_{-1,-1}-768H_{-1,0}-64H_{0,0}-40\right)\zeta_2\\ &+\frac{z^2}{z+1}\left(-128H_{-1}+\frac{640H_0}{3}-32\right)\zeta_2+\frac{z^3}{z+1}\left(16H_{-1}-\frac{80H_0}{3}-\frac{8}{3}\right)\zeta_2\\ &+96zH_1\zeta_2-96H_1\zeta_2+16H_{1,0}+96H_{-1,-1,0}+z\left(\frac{184}{3}H_{1}-16H_{1,0}+96H_{-1,-1,0}\right)\right)\\ &+N_fT_FC_F^2\left(-\frac{912z^2}{9(z+1)}+\left(-\frac{32}{3}\right)H_{-1,30}+\frac{128}{3}H_{0,0,0}+\frac{649}{9}H_{0,0}+\frac{256}{3}H_{-1,2}\right)\\ &+\frac{64z}{z+1}\zeta_3+\frac{z}{z+1}\left(-\frac{128}{3}H_{-1,0,0}+\frac{128}{3}H_{0,0,0}+\frac{649}{9}H_{0,0}+\frac{256}{3}H_{-1,2}\right)\\ &+\frac{64}{3}H_{-1,0,0}+\frac{649}{9}H_{-1,0}\right)+\frac{z}{z}+\left(\frac{128H_{-1}}{3}-\frac{32H_0}{3}+\frac{320}{9}\right)\zeta_2-\frac{56}{9(z+1)}\right), \end{split}$$

$$+ C_A C_F^2 \left(\frac{64}{3z} H_{-1,-1,0} + \frac{64z^2}{3} H_{-1,-1,0} + \frac{1}{z+1} \left(\left(-\frac{640}{3} \right) H_{-1,2} + \left(-\frac{104}{3} \right) H_2 \right. \\ + \left(-\frac{64}{3} \right) H_{-1,0,0} + \left(-\frac{32}{3} \right) H_{-1,0} + \left(-\frac{8}{3} \right) H_{0,0} + 16 H_0 - \frac{872}{9} \right) \\ + \frac{1}{z(z+1)} \left(\left(-\frac{4}{3} \right) H_{-1,0} + \frac{8}{3} H_{-1,0,0} + \frac{80}{3} H_{-1,2} \right) + \left(-\frac{20z}{z+1} \right) \zeta_4 \\ + \frac{z}{z+1} \left(\left(-\frac{2432}{3} \right) H_{-1,2} + \left(-\frac{2156}{9} \right) H_{0,0} + \left(-\frac{296}{3} \right) H_0 + \left(-\frac{224}{3} \right) H_{-1,0,0} \\ + \left(-\frac{208}{3} \right) H_{0,0,0} + \left(-\frac{160}{3} \right) H_2 + \frac{784}{3} H_{-2,0} + \frac{1216}{3} H_3 + \frac{4120}{9} H_{-1,0} + 128 H_4 \\ + 96 H_{-3,0} - 832 H_{-2,2} - 768 H_{-1,3} - 32 H_{3,0} - 128 H_{-2,-1,0} - 224 H_{-2,0,0} \\ - 128 H_{-1,-2,0} + 1792 H_{-1,-1,2} + 64 H_{-1,2,0} + 640 H_{-1,-1,0,0} + 32 H_{-1,0,0,0} - 96 H_{0,0,0,0} \right) \\ + \left(-\frac{448z^2}{3(z+1)} \right) \zeta_3 + \frac{z^2}{z+1} \left(\left(-\frac{640}{3} \right) H_{-1,2} + \left(-\frac{128}{3} \right) H_0 + \left(-\frac{64}{3} \right) H_{-1,0,0} \right. \\ + \left(-\frac{56}{3} \right) H_2 + \left(-\frac{32}{3} \right) H_{-1,0} + \frac{8}{3} H_{0,0} + \frac{64}{3} H_{0,0,0} + \frac{512}{3} H_{-2,0} + \frac{640}{3} H_3 + \frac{872}{9} \right) \\ + \frac{z^3}{z+1} \left(\left(-\frac{80}{3} \right) H_3 + \left(-\frac{64}{3} \right) H_{-2,0} + \left(-\frac{8}{3} \right) H_{0,0,0} + \left(-\frac{4}{3} \right) H_{-1,0} + \frac{4}{3} H_{0,0} \right. \\ + \frac{8}{3} H_{-1,0,0} + \frac{80}{3} H_{-1,2} \right) + \frac{56z^3}{3(z+1)} \zeta_3 + \left(-\frac{40\zeta_2}{3z} \right) H_1 + \frac{40z^2\zeta_2}{3} H_1 + \left(-\frac{16\zeta_2}{z(z+1)} \right) H_{-1} \\ + \frac{1}{z+1} \left(128 H_{-1} + \frac{64}{3} \right) \zeta_2 + \frac{z}{z+1} \left(1344 H_{-1} - 240 H_0 - 416 \right) \zeta_3 + \frac{z}{z+1} \left(768 H_{-2} \right) \\ + \frac{1856 H_{-1}}{3} - \frac{1040 H_0}{3} + 224 H_2 - 1792 H_{-1,-1} + 1088 H_{-1,0} - 160 H_{0,0} + \frac{2540}{9} \right) \zeta_2 \\ + \frac{z^2}{z+1} \left(128 H_{-1} - \frac{704 H_0}{3} + \frac{64}{3} \right) \zeta_2 + \frac{z^3}{z+1} \left(-16 H_{-1} + \frac{88 H_0}{3} - \frac{4}{3} \right) \zeta_2 + 76 H_1 \\ - 120z H_1 \zeta_2 + 120 H_1 \zeta_2 - 8 H_{1,0} + z \left(-76 H_1 + 8 H_{1,0} - 192 H_{-1,-1,0} \right) - 192 H_{-1,-1,0} \right)$$

4 N^3LO coefficients for transversity TMDs in \overline{MS}

The analytic expressions for the coefficient functions will be provided in the ancillary files along with the arXiv submission. In this section we study the asymptotic behaviors and present their numerical fits.

4.1 Small-x and threshold limit

The coefficient functions develop end-point divergences both in the threshold and high energy limit. We first present here the results for leading threshold limit. The results for high energy limit will be discussed in next section. In the $z \to 1$ limit, we have exactly the same results as the unpolarized case [58, 95]

$$\lim_{z \to 1} \delta \mathcal{I}_{ij}^{(2)}(z) = \lim_{z \to 1} \delta \mathcal{C}_{ji}^{(2)}(z) = \frac{2\gamma_{1,i}^R}{(1-z)_+} \delta_{ij} , \quad \lim_{z \to 1} \delta \mathcal{I}_{ij}^{(3)}(z) = \lim_{z \to 1} \delta \mathcal{C}_{ji}^{(3)}(z) = \frac{2\gamma_{2,i}^R}{(1-z)_+} \delta_{ij} , \quad (4.1)$$

where $\gamma_{1(2)}^R$ are the two(three)-loop rapidity anomalous dimensions [88, 96]. The relation between threshold limit and rapidity anomalous dimension has been anticipated in [97–99]. The explicit expressions up to three-loop read [95]

$$\delta \mathcal{I}_{qq}^{(1)}(z) = \delta \mathcal{C}_{qq}^{(1)}(z) = 0,$$

$$\delta \mathcal{I}_{qq}^{(2)}(z) = \delta \mathcal{C}_{qq}^{(2)}(z) = \frac{1}{(1-z)_{+}} \left[\left(28\zeta_{3} - \frac{808}{27} \right) C_{A}C_{F} + \frac{224}{27} C_{F} N_{f} T_{F} \right],$$

$$\delta \mathcal{I}_{qq}^{(3)}(z) = \delta \mathcal{C}_{qq}^{(3)}(z) = \frac{1}{(1-z)_{+}} \left[\left(-\frac{1648\zeta_{2}}{81} - \frac{1808\zeta_{3}}{27} + \frac{40\zeta_{4}}{3} + \frac{125252}{729} \right) C_{A}C_{F} N_{f} T_{F} \right]$$

$$+ \left(-\frac{176}{3}\zeta_{3}\zeta_{2} + \frac{6392\zeta_{2}}{81} + \frac{12328\zeta_{3}}{27} + \frac{154\zeta_{4}}{3} - 192\zeta_{5} - \frac{297029}{729} \right) C_{A}^{2} C_{F}$$

$$+ \left(-\frac{608\zeta_{3}}{9} - 32\zeta_{4} + \frac{3422}{27} \right) C_{F}^{2} N_{f} T_{F} + \left(-\frac{128}{9}\zeta_{3} - \frac{7424}{729} \right) C_{F} N_{f}^{2} T_{F}^{2} \right]. \tag{4.2}$$

It is also instructive to investigate the small-x behavior of the transversity coefficient functions and to compare them with the corresponding unpolarized case. Unlike the unpolarized coefficient functions, which exhibit a power-like divergence $\sim 1/x$ in the small-x limit, the transversity coefficient functions diverge only logarithmically. For clarity, we summarize below the small-x expansions of the coefficient functions. In particular, we focus on the scale-independent functions that appear in the RG solutions, cf. Eqs. (2.18) and (2.20).

4.1.1 Small-x expansion of TMD transversity PDFs

$$\delta I_{qq}^{(1)}(x) = 0,$$
 (4.3)

$$\delta I_{qq}^{(2)}(x) = \frac{14C_A C_F}{3} - \frac{4}{3}C_F N_f T_F - 2C_F^2, \qquad (4.4)$$

$$\delta I_{qq}^{(3)}(x) = C_A C_F N_f T_F \left(\left(-\frac{8}{9} \right) \ln^2 x + \left(-\frac{200}{27} \right) \ln x + \frac{16}{9} \zeta_2 - \frac{2672}{81} \right)$$

$$+ C_A C_F^2 \left(\left(-\frac{16}{3} \right) \ln^2 x + \left(-\frac{148}{9} \right) \ln x - 16 \zeta_2 + 24 \zeta_3 - \frac{12616}{81} \right)$$

$$+ C_A^2 C_F \left(\frac{22}{9} \ln^2 x + \frac{296}{27} \ln x + \left(-\frac{44}{3} \right) \zeta_3 + \frac{4}{9} \zeta_2 + \frac{2384}{27} \right)$$

$$+ C_F^2 N_f T_F \left(\frac{16}{9} \ln^2 x + \frac{64}{9} \ln x + \frac{2600}{81} \right) + C_F N_f^2 T_F^2 \left(\frac{32}{27} \ln x + \frac{160}{81} \right)$$

$$+ C_F^3 \left(\frac{8}{9} \ln^2 x + \left(-\frac{40}{9} \right) \ln x + \frac{32}{3} \zeta_2 + \frac{32}{3} \zeta_3 + \frac{464}{9} \right) , \tag{4.5}$$

$$\delta I_{q\bar{q}}^{(1)}(x) = 0,$$
 (4.6)

$$\delta I_{q\bar{q}}^{(2)}(x) = 2C_F^2 - C_A C_F, \qquad (4.7)$$

$$\delta I_{q\bar{q}}^{(3)}(x) = C_A C_F N_f T_F \left(\frac{8}{9} \ln^2 x + \frac{8}{9} \ln x + \left(-\frac{16}{9} \right) \zeta_2 + \frac{1192}{81} \right)$$

$$+ C_A C_F^2 \left(\frac{16}{3} \ln^2 x + \frac{16}{9} \ln x + \left(-\frac{232}{9} \right) \zeta_2 - 24\zeta_3 + \frac{11428}{81} \right)$$

$$+ C_A^2 C_F \left(\left(-\frac{22}{9} \right) \ln^2 x - 2 \ln x + \frac{92}{9} \zeta_2 + \frac{44}{3} \zeta_3 - \frac{4670}{81} \right)$$

$$+ C_F^2 N_f T_F \left(\left(-\frac{16}{9} \right) \ln^2 x + \left(-\frac{16}{9} \right) \ln x + \frac{32}{9} \zeta_2 - \frac{2384}{81} \right)$$

$$+ C_F^3 \left(\left(-\frac{8}{9} \right) \ln^2 x + \frac{40}{9} \ln x + \left(-\frac{32}{3} \right) \zeta_3 + \frac{32}{3} \zeta_2 - \frac{464}{9} \right) , \tag{4.8}$$

4.1.2 Small-z expansion of TMD transversity FFs

$$\delta C_{qq}^{(1)}(z) = 0, \qquad (4.9)$$

$$\delta C_{qq}^{(2)}(z) = C_A C_F \left(\frac{14}{3} - 2 \ln z \right) - \frac{4}{3} C_F N_f T_F + C_F^2 (4 \ln z - 2), \qquad (4.10)$$

$$\delta C_{qq}^{(3)}(z) = C_A C_F N_f T_F \left(\left(-\frac{32}{9} \right) \ln^2 z + \frac{40}{27} \ln z + \frac{16}{9} \zeta_2 - \frac{2672}{81} \right)
+ C_A C_F^2 \left(\left(\left(-\frac{56}{3} \right) \zeta_2 + \frac{310}{3} \right) \ln z + \left(-\frac{260}{9} \right) \ln^2 z - 116 \zeta_2 - \frac{11932}{81} \right)
+ C_A^2 C_F \left(\left(8\zeta_2 - \frac{838}{27} \right) \ln z + \frac{88}{9} \ln^2 z + \frac{172}{9} \zeta_2 + \frac{2348}{27} \right)
+ C_F^2 N_f T_F \left(\frac{64}{9} \ln^2 z - 16 \ln z + \frac{32}{3} \zeta_2 + \frac{2600}{81} \right) + C_F N_f^2 T_F^2 \left(\frac{32}{27} \ln z + \frac{160}{81} \right)
+ C_F^3 \left(\left(\frac{16}{3} \zeta_2 - \frac{140}{3} \right) \ln z + \frac{56}{3} \ln^2 z + \frac{232}{3} \zeta_2 + 40 \right) ,$$
(4.11)

$$\delta C_{\bar{q}g}^{(1)}(z) = 0,$$
 (4.12)

$$\delta C_{\bar{q}q}^{(2)}(z) = C_A C_F(2 \ln z - 1) + C_F^2(2 - 4 \ln z), \qquad (4.13)$$

$$\delta C_{\bar{q}q}^{(3)}(z) = C_A C_F N_f T_F \left(\frac{32}{9} \ln^2 z - 8 \ln z + \left(-\frac{64}{9} \right) \zeta_2 + \frac{1192}{81} \right)$$

$$+C_{A}C_{F}^{2}\left(\left(\left(-\frac{88}{3}\right)\zeta_{2}-\frac{310}{3}\right)\ln z+\frac{260}{9}\ln^{2}z+\frac{32}{9}\zeta_{2}+\frac{10744}{81}\right)$$

$$+C_{A}^{2}C_{F}\left(\left(8\zeta_{2}+40\right)\ln z+\left(-\frac{88}{9}\right)\ln^{2}z+\frac{56}{9}\zeta_{2}-\frac{4562}{81}\right)$$

$$+C_{F}^{2}N_{f}T_{F}\left(\left(-\frac{64}{9}\right)\ln^{2}z+16\ln z+\frac{128}{9}\zeta_{2}-\frac{2384}{81}\right)$$

$$+C_{F}^{3}\left(\left(\frac{80}{3}\zeta_{2}+\frac{140}{3}\right)\ln z+\left(-\frac{56}{3}\right)\ln^{2}z-32\zeta_{2}-40\right),$$
(4.14)

4.2 Numerical fits of the N3LO coefficients

The NLO and NNLO space-like coefficient functions were obtained in Refs.[62, 63, 100, 101]. The present work is devoted to extending these results to higher orders, and for the first time we provide the complete expressions up to N³LO. By comparing our results for the regulator-independent TMD PDFs and TMD FFs with those reported in Ref.[63], we confirm agreement in the $\bar{q} \to q$ (and $q \to \bar{q}$) channel. For the $q \to q$ channel, however, we observe minor discrepancies

$$\delta h_{T,qq}^{(2)} |-\delta h_{T,qq}^{(2)}|_{\text{DIA}} = -6C_F^2(1-x),$$

$$\delta g_{T,qq}^{(2)} |-\delta g_{T,qq}^{(2)}|_{\text{DIA}} = -6C_F^2(1-z) - \frac{2}{3}\pi^4 C_A C_F \delta(1-z). \tag{4.15}$$

The analytic expressions of N³LO coefficient functions contain harmonic polylogarithms up to transcendental weight 5. To facilitate straightforward numerical implementation, we provide a numerical fitting to all the coefficient functions. Following Ref. [102], we use the following elementary functions to fit the results,

$$L_x \equiv \ln x \,, \, L_{\bar{x}} \equiv \ln(1-x) \,, \, \bar{x} \equiv 1-x \,.$$
 (4.16)

For NNLO and N³LO coefficient functions, we fit the exact results in the region $10^{-6} < x < 1 - 10^{-6}$ (Numerical evaluation of HPLs are made with the HPL package [103]), and we have set the color factor to their numerical values in QCD, i.e.

$$C_F = \frac{4}{3}, \qquad C_A = 3, \qquad T_F = \frac{1}{2}.$$
 (4.17)

In more detail, we subtract the $x \to 0$ and $x \to 1$ limits and then fit the remaining terms in the region $10^{-6} < x < 1 - 10^{-6}$. Combining the two parts, the fitted results can achieve an accuracy better than 10^{-3} for 0 < x < 1. We show below the numerical fitting with six significant digits. The full numerical fitting is attached as ancillary files with the arXiv submission.

4.2.1 Numerical fit for TMD PDFs

$$\delta I_{qq}^{(1)}(x) = 0, (4.18)$$

```
\delta I_{qq}^{(2)}(x) = N_f \left( 5.53086 \left[ \frac{1}{\bar{x}} \right]_+ + x^3 \left( 0.159353 L_x^2 + 1.83868 L_x - 3.46249 \right) \right)
                       +x^{2}\left(0.918768L_{x}^{2}+3.30005L_{x}+1.07696\right)+x\left(0.888889L_{x}^{2}+2.96296L_{x}+2.37017\right)
                                                -0.0100775x^{6} + 0.090776x^{5} - 0.657935x^{4} + 1.48148\bar{x} - 7.90123
                +14.9267\left[\frac{1}{\bar{x}}\right] + x^3\left(2.43688L_x^3 - 17.6078L_x^2 + 43.7086L_x - 39.0133\right)
                +x^{2}\left(-2.54756L_{x}^{3}-13.8299L_{x}^{2}-7.50098L_{x}+63.2888\right)
                +x\left(-2.66667L_{x}^{3}-9.33333L_{x}^{2}-39.1111L_{x}-16.4544\right)+\bar{x}^{3}\left(0.508876L_{\bar{x}}^{2}-0.601064L_{\bar{x}}\right)
                +\bar{x}^2\left(1.19128L_{\bar{x}}^2-2.40075L_{\bar{x}}\right)-7.11111L_{\bar{x}}^2+22.2222L_{\bar{x}}
                +\bar{x}(3.55556L_{\bar{x}}^2-13.3333L_{\bar{x}}+10.0354)+0.0762313x^6-0.683931x^5+3.19561x^4-9.851
\delta I_{qq}^{(3)}(x) = N_f \left( 154.257 \left[ \frac{1}{\bar{x}} \right]_+ + x^3 \left( -10.139 L_x^4 + 53.293 L_x^3 - 362.551 L_x^2 + 1069.36 L_x - 2080.42 \right) \right)
                                                  +x^{2}\left(3.35283L_{x}^{4}+38.0541L_{x}^{3}+204.028L_{x}^{2}+893.7L_{x}+1807.17\right)
                             +x\left(3.16049L_{x}^{4}+27.0398L_{x}^{3}+95.569L_{x}^{2}+243.104L_{x}+167.326\right)-0.197531L_{x}^{2}
                                                         -8.49383L_x + \bar{x}^3 \left(0.0903308L_{\bar{x}}^3 - 0.534541L_{\bar{x}}^2 + 1.48298L_{\bar{x}}\right)
                         +\,\bar{x}^2\left(-0.344655L_{\bar{x}}^3-1.88691L_{\bar{x}}^2-4.7445L_{\bar{x}}\right)+2.107L_{\bar{x}}^3+10.3704L_{\bar{x}}^2-10.4458L_{\bar{x}}
                 +\bar{x}\left(-1.0535L_{\bar{x}}^3-11.358L_{\bar{x}}^2+3.08951L_{\bar{x}}+132.\right)-0.0981767x^6-0.236655x^5+65.9262x^4
                -317.852+N_f^2\left(-9.09324\left[\frac{1}{\bar{x}}\right]_{+}+x^3\left(0.431032L_x^3-3.50262L_x^2+9.32163L_x-8.91467\right)
                                                                +x^{2}\left(-0.62563L_{x}^{3}-2.59739L_{x}^{2}-1.44432L_{x}+15.2779\right)
                    +x\left(-0.658436L_{x}^{3}-3.29218L_{x}^{2}-7.2428L_{x}-6.71585\right)+0.395062L_{x}+0.00672043x^{6}
                                              -0.0760913x^5 + 0.55363x^4 - 6.05761\bar{x} + 15.8093 + 140.136 \left[\frac{1}{\bar{x}}\right]_{\perp}
                +x^{3}\left(32.8538L_{x}^{5}-59.8157L_{x}^{4}+1263.35L_{x}^{3}-1593.34L_{x}^{2}+9101.99L_{x}+965.588\right)
                +x^{2}\left(-3.03843L_{x}^{5}-67.7124L_{x}^{4}-364.242L_{x}^{3}-1888.44L_{x}^{2}-2473.02L_{x}+836.39\right)
                +x\left(-2.64691L_{x}^{5}-37.1111L_{x}^{4}-137.094L_{x}^{3}-453.207L_{x}^{2}-173.141L_{x}+1583.11\right)
                 +3.25926L_x^2 + 32.5926L_x + \bar{x}^3 \left(20.7632L_{\bar{x}}^3 - 16.7047L_{\bar{x}}^2 + 301.823L_{\bar{x}}\right)
                +\bar{x}^2\left(6.41987L_{\bar{x}}^3+1.21958L_{\bar{x}}^2+202.422L_{\bar{x}}\right)-34.7654L_{\bar{x}}^3-5.09037L_{\bar{x}}^2
                +637.843L_{\bar{x}}+\bar{x}\left(-7.90123L_{\bar{x}}^3+110.483L_{\bar{x}}^2-62.9396L_{\bar{x}}-863.968\right)
                 -8.32785x^6 + 84.9876x^5 - 3254.01x^4 + 948.568
                                                                                                                                        (4.20)
      \delta I_{q\bar{q}}^{(2)}(x) = x \left( 2.14474 - 0.296296L_x^3 \right) + x^3 \left( 15.5499L_x^3 - 48.8464L_x^2 + 242.942L_x - 320.161 \right)
                      +x^{2}(1.20874L_{x}^{3}+19.8823L_{x}^{2}+132.773L_{x}+344.416)
                      +0.243961x^6 - 1.09739x^5 - 25.5468x^4 - 0.444444\bar{x}.
                                                                                                                                        (4.21)
```

```
\delta I_{q\bar{q}}^{(3)}(x) = N_f \left( x^3 \left( -86.9687L_x^4 + 339.693L_x^3 - 3577.27L_x^2 + 9245.24L_x - 18136.9 \right) \right. \\ \left. + x^2 \left( 1.88363L_x^4 + 69.5867L_x^3 + 974.23L_x^2 + 6391.29L_x + 16891.9 \right) \right. \\ \left. + x \left( 0.263374L_x^4 + 1.09739L_x^3 + 5.25509L_x^2 + 2.52335L_x - 14.4093 \right) + 0.197531L_x^2 \right. \\ \left. + 0.197531L_x + \bar{x}^3 \left( 0.672455L_{\bar{x}}^2 + 0.57305L_{\bar{x}} \right) + \bar{x}^2 \left( -0.0270463L_{\bar{x}}^2 - 1.49294L_{\bar{x}} \right) \right. \\ \left. + \bar{x} \left( 0.197531L_x^2 + 1.0535L_{\bar{x}} + 2.87517 \right) + 1.23754x^6 - 39.0649x^5 + 1297.47x^4 - 0.254789 \right) \right. \\ \left. + x^3 \left( 218.515L_x^5 + 99.2151L_x^4 + 9703.19L_x^3 - 1433.99L_x^2 + 66557.2L_x + 18184.5 \right) \right. \\ \left. + x^2 \left( -1.98473L_x^5 - 69.4832L_x^4 - 1029.42L_x^3 - 6944.15L_x^2 - 15843.L_x + 16446.3 \right) \right. \\ \left. + x \left( -0.118519L_x^5 - 3.53086L_x^4 - 22.2993L_x^3 - 32.9084L_x^2 + 32.298L_x + 174.427 \right) \right. \\ \left. - 3.25926L_x^2 - 3.25926L_x + \bar{x}^3 \left( 1.23696L_x^2 + 9.1761L_{\bar{x}} \right) + \bar{x}^2 \left( 13.7472L_{\bar{x}} - 0.884454L_x^2 \right) \right. \\ \left. + \bar{x} \left( -3.13186L_x^2 - 19.7773L_{\bar{x}} - 47.6421 \right) - 56.825x^6 + 1077.22x^5 - 35852.2x^4 + 26.6075 \right.
```

4.2.2 Numerical fit for TMD FFs

$$\delta C_{qq}^{(1)}(z) = z^3 \left(6.88266 L_z - 7.0639 \right) + z^2 \left(10.467 L_z - 0.842818 \right) + z \left(10.6667 L_z + 5.3312 \right)$$

$$- 0.128696 z^6 + 0.818297 z^5 - 3.44742 z^4 + 5.33333 \bar{z} - 5.33333 ,$$

$$(4.23)$$

$$\begin{split} \delta C_{qq}^{(2)}(z) &= N_f \left(5.53086 \left[\frac{1}{\bar{z}} \right]_+ + z^3 \left(1.70397 L_z^2 - 4.64799 L_z + 10.359 \right) \right. \\ &\quad + z^2 \left(0.881779 L_z^2 - 8.99257 L_z - 0.401235 \right) + z \left(0.888889 L_z^2 - 8.88889 L_z - 3.55556 \right) \\ &\quad - 0.00933333 z^6 + 0.104686 z^5 - 1.16427 z^4 - 4.44444 \bar{z} - 1.97531 \right) \\ &\quad + 14.9267 \left[\frac{1}{\bar{z}} \right]_+ + z^3 \left(-9.54698 L_z^3 - 53.3203 L_z^2 + 15.1648 L_z - 156.471 \right) \\ &\quad + z^2 \left(-22.9556 L_z^3 - 10.3136 L_z^2 - 68.1265 L_z + 154.308 \right) \\ &\quad + z \left(-23.4074 L_z^3 + 12.L_z^2 - 17.7527 L_z - 99.8513 \right) - 0.888889 L_z \\ &\quad + \bar{z}^3 \left(-0.799338 L_{\bar{z}}^2 - 1.59409 L_{\bar{z}} \right) + \bar{z}^2 \left(2.65626 L_{\bar{z}} - 1.16785 L_{\bar{z}}^2 \right) + 7.11111 L_{\bar{z}}^2 - 22.2222 L_{\bar{z}} \\ &\quad + \bar{z} \left(-3.55556 L_{\bar{z}}^2 + 51.5556 L_{\bar{z}} + 149.849 \right) + 0.9055556 z^6 - 8.00011 z^5 + 91.7047 z^4 - 149.664 \right. \end{split} \tag{4.24}$$

```
\delta C_{qq}^{(3)}(z) = N_f \left( 154.257 \left[ \frac{1}{z} \right]_+ + z^3 \left( -19.7868 L_z^4 + 33.0601 L_z^3 - 442.868 L_z^2 + 663.837 L_z - 1896.52 \right) \right)
                                               +z^{2}\left(-1.97195L_{z}^{4}+32.7379L_{z}^{3}+194.866L_{z}^{2}+441.17L_{z}+1895.42\right)
                            +z\left(-2.13992L_{z}^{4}+17.8217L_{z}^{3}+86.4094L_{z}^{2}-297.674L_{z}-60.271\right)-0.790123L_{z}^{2}
                                                           -11.2593L_z + \bar{z}^3 \left(-0.141494L_{\bar{z}}^3 + 2.07513L_{\bar{z}}^2 - 9.48914L_{\bar{z}}\right)
                            +\bar{z}^2\left(0.342792L_{\bar{z}}^3+1.84641L_{\bar{z}}^2-25.477L_{\bar{z}}\right)-2.107L_{\bar{z}}^3-10.3704L_{\bar{z}}^2+13.8356L_{\bar{z}}
                 +\bar{z}\left(1.0535L_{\bar{z}}^{\stackrel{\circ}{3}}-7.30864L_{\bar{z}}^{2}-71.9318L_{\bar{z}}-212.901\right)+0.577185z^{6}-9.72231z^{5}+302.016z^{4}
                 +42.6462+N_f^2\left(-9.09324\left[\frac{1}{z}\right]_{+}+z^3\left(1.13739L_z^3-1.11292L_z^2+8.49447L_z+0.132844\right)
                                                                   +z^{2} (0.911883L_{z}^{3} - 3.47057L_{z}^{2} + 5.15991L_{z} - 2.6942)
                      +z\left(0.921811L_{z}^{3}-3.29218L_{z}^{2}+5.92593L_{z}-0.131794\right)+0.395062L_{z}-0.0139459z^{6}
                                               +0.212281z^{5}-3.95786z^{4}+0.526749\bar{z}+9.22493 +140.136\left[\frac{1}{\bar{z}}\right]
                 +z^{3}\left(47.894L_{z}^{5}+302.009L_{z}^{4}+1727.78L_{z}^{3}+2836.22L_{z}^{2}+18851.7L_{z}-138.226\right)
                 +z^{2}\left(13.272L_{z}^{5}+26.3528L_{z}^{4}-155.496L_{z}^{3}-1693.73L_{z}^{2}+10289.1L_{z}-417.803\right)
                 +z\left(13.3136L_z^5-22.963L_z^4-302.296L_z^3+602.58L_z^2+5948.2L_z+9896.07\right)
                 +7.11111L_z^2 + 84.0824L_z + \bar{z}^3 \left(29.1314L_{\bar{z}}^3 - 45.6048L_{\bar{z}}^2 + 386.789L_{\bar{z}}\right)
                 +\bar{z}^2\left(-4.9028L_{\bar{z}}^3-96.5395L_{\bar{z}}^2+243.669L_{\bar{z}}\right)+34.7654L_{\bar{z}}^3+5.09037L_{\bar{z}}^2
                 -1826.42L_{\bar{z}} + \bar{z}\left(-42.6667L_{\bar{z}}^3 + 133.837L_{\bar{z}}^2 + 2290.36L_{\bar{z}} + 473.618\right)
                 -23.3915z^6 + 335.792z^5 - 11339.4z^4 - 583.13
                                                                                                                                          (4.25)
```

$$\delta C_{\bar{q}q}^{(2)}(z) = z^3 \left(48.286 L_z^3 - 13.4154 L_z^2 + 671.421 L_z - 392.838 \right) + z^2 \left(-1.24024 L_z^3 + 25.0531 L_z^2 + 243.89 L_z + 653.385 \right) + z \left(2.66667 L_z^3 - 0.888889 L_z + 6.41883 \right) + 0.888889 L_z - 1.49899 z^6 + 20.8743 z^5 - 286.341 z^4 - 0.444444 \bar{z},$$

$$(4.26)$$

```
\begin{split} \delta C_{\bar{q}q}^{(3)}(z) &= N_f \left(z^3 \left(37.0364 L_z^4 - 346.932 L_z^3 + 1818.28 L_z^2 - 7637.09 L_z + 11385.8\right) \right. \\ &\quad + z^2 \left(-3.3539 L_z^4 - 52.2866 L_z^3 - 733.542 L_z^2 - 4732.76 L_z - 11873.\right) \\ &\quad + z \left(1.54733 L_z^4 - 5.48697 L_z^3 - 3.1357 L_z^2 - 2.86412 L_z - 25.5883\right) + 0.790123 L_z^2 \\ &\quad - 1.77778 L_z + \bar{z}^3 \left(-2.41513 L_{\bar{z}}^2 - 2.27567 L_{\bar{z}}\right) + \bar{z}^2 \left(0.096473 L_{\bar{z}}^2 + 3.48785 L_{\bar{z}}\right) \\ &\quad + \bar{z} \left(0.197531 L_{\bar{z}}^2 + 1.0535 L_{\bar{z}} + 0.92562\right) + 8.42153 z^6 - 80.4256 z^5 + 585.108 z^4 - 0.254789\right) \\ &\quad + z^3 \left(-1978.47 L_z^5 + 2860.25 L_z^4 - 82483.7 L_z^3 + 98475.2 L_z^2 - 514733. L_z - 98159.7\right) \\ &\quad + z^2 \left(37.7554 L_z^5 + 1076.04 L_z^4 + 14126.6 L_z^3 + 94540.7 L_z^2 + 239007. L_z - 89211.8\right) \\ &\quad + z \left(-8.17778 L_z^5 - 7.95062 L_z^4 + 244.41 L_z^3 + 90.8704 L_z^2 - 547.94 L_z - 606.336\right) \\ &\quad - 7.11111 L_z^2 + 42.9687 L_z + \bar{z}^3 \left(53.1005 L_{\bar{z}}^2 + 66.5415 L_{\bar{z}}\right) + \bar{z}^2 \left(-1.30965 L_{\bar{z}}^2 - 58.0375 L_{\bar{z}}\right) \\ &\quad + \bar{z} \left(-3.13186 L_{\bar{z}}^2 - 19.7773 L_{\bar{z}} - 16.7318\right) - 59.6703 z^6 - 2084.85 z^5 + 190130.z^4 - 8.07101 \,, \end{split}
```

5 Conclusion

In this work we presented the first N³LO twist-2 matching coefficients for TMD quark transversity and extracted the complete NNLO DGLAP splitting functions in both space-like and time-like regimes. We verified that our NLO space-like results are consistent with the literature and rederived the NNLO TMD transversity PDFs and FFs, noting minor discrepancies compared to the work of Ref. [63]. These results place transversity on the same theoretical footing as unpolarized and helicity sectors and provide key inputs for precision study of SIDIS azimuthal asymmetries at the forthcoming EIC.

Acknowledgments

I thank Hua Xing Zhu for encouraging me to look into this problem and Tong-Zhi Yang for collaboration in the early stages of the project.

A QCD Beta Function

The QCD beta function is defined as

$$\frac{d\alpha_s}{d\ln\mu} = \beta(\alpha_s) = -2\alpha_s \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{n+1} \beta_n, \qquad (A.1)$$

with [104]

$$\beta_0 = \frac{11}{3}C_A - \frac{4}{3}T_F N_f,$$

$$\beta_1 = \frac{34}{3}C_A^2 - \frac{20}{3}C_A T_F N_f - 4C_F T_F N_f,$$

$$\beta_2 = \left(\frac{158C_A}{27} + \frac{44C_F}{9}\right)N_f^2 T_F^2 + \left(-\frac{205C_A C_F}{9} - \frac{1415C_A^2}{27} + 2C_F^2\right)N_f T_F + \frac{2857C_A^3}{54}.$$
(A.2)

B Anomalous dimensions

For all the anomalous dimensions entering the renormalization group equations of various TMD functions, we define the perturbative expansion in α_s according to

$$\gamma(\alpha_s) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{n+1} \gamma_n, \qquad (B.1)$$

where the coefficients for quark are given by

$$\begin{split} &\Gamma_0^{\text{cusp}} = & 4C_F \,, \\ &\Gamma_1^{\text{cusp}} = \left(\frac{268}{9} - 8\zeta_2\right) C_A C_F - \frac{80C_F T_F N_f}{9} \,, \\ &\Gamma_2^{\text{cusp}} = & \left[\left(\frac{320\zeta_2}{9} - \frac{224\zeta_3}{3} - \frac{1672}{27}\right) C_A C_F + \left(64\zeta_3 - \frac{220}{3}\right) C_F^2 \right] N_f T_F \end{split}$$

$$+ \left(-\frac{1072\zeta_2}{9} + \frac{88\zeta_3}{3} + 88\zeta_4 + \frac{490}{3} \right) C_A^2 C_F - \frac{64}{27} C_F N_f^2 T_F^2,$$

$$\gamma_0^S = 0,$$

$$\gamma_1^S = \left[\left(-\frac{404}{27} + \frac{11\zeta_2}{3} + 14\zeta_3 \right) C_A + \left(\frac{112}{27} - \frac{4\zeta_2}{3} \right) T_F N_f \right] C_F,$$

$$\gamma_2^S = \left(-\frac{88}{3} \zeta_3 \zeta_2 + \frac{6325\zeta_2}{81} + \frac{658\zeta_3}{3} - 88\zeta_4 - 96\zeta_5 - \frac{136781}{1458} \right) C_A^2 C_F + \left(\frac{80\zeta_2}{27} - \frac{224\zeta_3}{27} + \frac{4160}{729} \right) C_F N_f^2 T_F^2 + \left(-\frac{2828\zeta_2}{81} - \frac{728\zeta_3}{27} + 48\zeta_4 + \frac{11842}{729} \right) C_A C_F N_f T_F$$

$$+ \left(-4\zeta_2 - \frac{304\zeta_3}{9} - 16\zeta_4 + \frac{1711}{27} \right) C_F^2 N_f T_F.$$

$$\gamma_0^R = 0,$$

$$\gamma_1^R = \left[\left(-\frac{404}{27} + 14\zeta_3 \right) C_A + \frac{112}{27} T_F N_f \right] C_F,$$

$$\gamma_2^R = \left[\left(-\frac{824\zeta_2}{81} - \frac{904\zeta_3}{27} + \frac{20\zeta_4}{3} + \frac{62626}{729} \right) C_A N_f T_F + \left(-\frac{88}{3} \zeta_3 \zeta_2 + \frac{3196\zeta_2}{81} + \frac{6164\zeta_3}{27} + \frac{77\zeta_4}{3} - 96\zeta_5 - \frac{297029}{1458} \right) C_A^2 + \left(-\frac{304\zeta_3}{9} - 16\zeta_4 + \frac{1711}{27} \right) C_F N_f T_F + \left(-\frac{64\zeta_3}{9} - \frac{3712}{729} \right) N_f^2 T_F^2 \right] C_F.$$

$$(B.2)$$

Since cusp and soft and rapidity anomalous dimensions exhibit Casimir scaling, the corresponding anomalous dimensions for gluon could be obtained by multiplying in above with C_A/C_F .

The beam anomalous dimensions do not exhibits Casimir scaling, thus should be list separately. The beam anomalous dimensions for quark are

$$\gamma_0^B = 3C_F,
\gamma_1^B = \left[\left(\frac{3}{2} - 12\zeta_2 + 24\zeta_3 \right) C_F + \left(\frac{17}{6} + \frac{44\zeta_2}{3} - 12\zeta_3 \right) C_A + \left(-\frac{2}{3} - \frac{16\zeta_2}{3} \right) T_F N_f \right] C_F,
\gamma_2^B = \left[\left(-\frac{2672\zeta_2}{27} + \frac{400\zeta_3}{9} + 4\zeta_4 + 40 \right) C_A C_F + \left(\frac{40\zeta_2}{3} - \frac{272\zeta_3}{3} + \frac{232\zeta_4}{3} - 46 \right) C_F^2 \right] N_f T_F
+ \left(16\zeta_3\zeta_2 - \frac{410\zeta_2}{3} + \frac{844\zeta_3}{3} - \frac{494\zeta_4}{3} + 120\zeta_5 + \frac{151}{4} \right) C_A C_F^2 + \left(\frac{320\zeta_2}{27} - \frac{64\zeta_3}{9} - \frac{68}{9} \right)
\times C_F N_f^2 T_F^2 + \left(\frac{4496\zeta_2}{27} - \frac{1552\zeta_3}{9} - 5\zeta_4 + 40\zeta_5 - \frac{1657}{36} \right) C_A^2 C_F + \left(-32\zeta_3\zeta_2 + 18\zeta_2 + 68\zeta_3 + 144\zeta_4 - 240\zeta_5 + \frac{29}{2} \right) C_F^3.$$
(B.3)

The beam anomalous dimensions for gluon are

$$\begin{split} \gamma_0^B &= \frac{11}{3} C_A - \frac{4}{3} T_F N_f \,, \\ \gamma_1^B &= C_A^2 \left(\frac{32}{3} + 12 \zeta_3 \right) + \left(-\frac{16}{3} C_A - 4 C_F \right) N_f T_F \,, \end{split}$$

$$\gamma_2^B = C_A^3 \left(-80\zeta_5 - 16\zeta_3\zeta_2 + \frac{55}{3}\zeta_4 + \frac{536}{3}\zeta_3 + \frac{8}{3}\zeta_2 + \frac{79}{2} \right)
+ C_A^2 N_f T_F \left(-\frac{20}{3}\zeta_4 - \frac{160}{3}\zeta_3 - \frac{16}{3}\zeta_2 - \frac{233}{9} \right) + \frac{58}{9}C_A N_f^2 T_F^2 - \frac{241}{9}C_A C_F N_f T_F
+ 2C_F^2 N_f T_F + \frac{44}{9}C_F N_f^2 T_F^2.$$
(B.4)

The cusp anomalous dimension Γ^{cusp} can be found in [105]. The beam anomalous dimension γ^B is related to the soft anomalous dimension γ^S [106] and the hard anomalous dimensions γ^H [107–109] by renormalization group invariance condition $\gamma^B = \gamma^S - \gamma^H$. The rapidity anomalous dimension γ^R can be found in [88, 96]. Note that the normalization here differ from those in [88] by a factor of 1/2.

C Renormalization Constants

The following constants are needed for the renormalization of zero-bin subtracted [110] TMD PDFs through N³LO, see e.g. Ref. [57, 86]. The first three-order corrections to Z^B and Z^S are

$$\begin{split} Z_1^B &= \frac{1}{2\epsilon} \left(2\gamma_0^B - \Gamma_0^{\text{cusp}} L_Q \right) \,, \\ Z_2^B &= \frac{1}{8\epsilon^2} \bigg((\Gamma_0^{\text{cusp}} L_Q - 2\gamma_0^B)^2 + 2\beta_0 (\Gamma_0^{\text{cusp}} L_Q - 2\gamma_0^B) \bigg) + \frac{1}{4\epsilon} \left(2\gamma_1^B - \Gamma_1^{\text{cusp}} L_Q \right) \,, \\ Z_3^B &= \frac{1}{48\epsilon^3} \left(2\gamma_0^B - \Gamma_0^{\text{cusp}} L_Q \right) \left(8\beta_0^2 + 6\beta_0 \left(-2\gamma_0^B + \Gamma_0^{\text{cusp}} L_Q \right) + \left(-2\gamma_0^B + \Gamma_0^{\text{cusp}} L_Q \right)^2 \right) \\ &\quad + \frac{1}{24\epsilon^2} \bigg(\beta_1 \left(-8\gamma_0^B + 4\Gamma_0^{\text{cusp}} L_Q \right) + \left(4\beta_0 - 6\gamma_0^B + 3\Gamma_0^{\text{cusp}} L_Q \right) \left(-2\gamma_1^B + \Gamma_1^{\text{cusp}} L_Q \right) \bigg) \\ &\quad + \frac{1}{6\epsilon} \bigg(2\gamma_2^B - \Gamma_2^{\text{cusp}} L_Q \bigg) \\ Z_1^S &= \frac{1}{\epsilon^2} \Gamma_0^{\text{cusp}} + \frac{1}{\epsilon} \left(-2\gamma_0^S - \Gamma_0^{\text{cusp}} L_\nu \right) \,, \\ Z_2^S &= \frac{1}{2\epsilon^4} (\Gamma_0^{\text{cusp}})^2 - \frac{1}{4\epsilon^3} \bigg(\Gamma_0^{\text{cusp}} (3\beta_0 + 8\gamma_0^S) + 4(\Gamma_0^{\text{cusp}})^2 L_\nu \bigg) - \frac{1}{2\epsilon} \left(2\gamma_1^S + \Gamma_1^{\text{cusp}} L_\nu \right) \\ &\quad + \frac{1}{4\epsilon^2} \bigg(\Gamma_1^{\text{cusp}} + 2(2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu) (\beta_0 + 2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu) \right) \,, \\ Z_3^S &= \frac{1}{6\epsilon^6} \left(\Gamma_0^{\text{cusp}} \right)^3 - \frac{1}{4\epsilon^5} \left(\Gamma_0^{\text{cusp}} \right)^2 \left(3\beta_0 + 4\gamma_0^S + 2\Gamma_0^{\text{cusp}} L_\nu \right) + \frac{1}{36\epsilon^4} \Gamma_0^{\text{cusp}} \bigg(22\beta_0^2 + 45\beta_0 \left(2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu \right) + 9 \left(\Gamma_1^{\text{cusp}} + 2 \left(2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu \right)^2 \right) \bigg) + \frac{1}{36\epsilon^3} \bigg(-16\beta_1 \Gamma_0^{\text{cusp}} - 12\beta_0^2 \left(2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu \right) - 2\beta_0 \left(5\Gamma_1^{\text{cusp}} + 9 \left(2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu \right)^2 \right) - 3 \bigg[\Gamma_1^{\text{cusp}} \left(6\gamma_0^S + 9\Gamma_0^{\text{cusp}} L_\nu \right) \\ &\quad + 2 \bigg(8 \left(\gamma_0^S \right)^3 + 6\Gamma_0^{\text{cusp}} \gamma_1^S + 12\Gamma_0^{\text{cusp}} \left(\gamma_0^S \right)^2 L_\nu + 6 \left(\Gamma_0^{\text{cusp}} \right)^2 \gamma_0^S L_\nu^2 + \left(\Gamma_0^{\text{cusp}} \right)^3 L_\nu^3 \bigg) \bigg] \bigg) \\ &\quad + \frac{1}{18\epsilon^2} \bigg(2\Gamma_2^{\text{cusp}} + 3 \left(2\beta_1 \left(2\gamma_0^S + \Gamma_0^{\text{cusp}} L_\nu \right) + \left(2\beta_0 + 6\gamma_0^S + 3\Gamma_0^{\text{cusp}} L_\nu \right) \left(2\gamma_1^S + \Gamma_1^{\text{cusp}} L_\nu \right) \bigg) \bigg) \right) \end{split}$$

$$-\frac{2\gamma_2^S + \Gamma_2^{\text{cusp}} L_{\nu}}{3\epsilon} \,. \tag{C.1}$$

Keep in mind that the anomalous dimensions appeared above depends on the flavor, they should be replaced by the corresponding values in Sec B. We also remind the reader that the renormalization constants are formally identical for TMD PDFs and TMD FFs, the logarithms appeared above should be replaced by their corresponding values in each case, and we have

$$L_{\perp} = \ln \frac{b_T^2 \mu^2}{b_0^2}, \quad L_{\nu} = \ln \frac{\nu^2}{\mu^2},$$
 (C.2)

with $b_0 = 2e^{-\gamma_E}$ for both TMD PDFs and TMD FFs. On the other hand, we have for TMD PDFs

$$L_Q = 2 \ln \frac{x P_+}{v},$$
 (C.3)

while for TMD FFs,

$$L_Q = 2\ln\frac{P_+}{z\nu}.\tag{C.4}$$

References

- [1] J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1–624.
- [2] J. P. Ralston and D. E. Soper, Production of Dimuons from High-Energy Polarized Proton Proton Collisions, Nucl. Phys. B 152 (1979) 109.
- [3] R. L. Jaffe and X.-D. Ji, Chiral odd parton distributions and polarized Drell-Yan, Phys. Rev. Lett. 67 (1991) 552-555.
- [4] R. L. Jaffe and X.-D. Ji, Chiral odd parton distributions and Drell-Yan processes, Nucl. Phys. B 375 (1992) 527–560.
- [5] X.-D. Ji, Probing the nucleon's transversity distribution in polarized p p, p anti-p, and pi p collisions, Phys. Lett. B **284** (1992) 137–143.
- [6] R. L. Jaffe and X.-D. Ji, Novel quark fragmentation functions and the nucleon's transversity distribution, Phys. Rev. Lett. 71 (1993) 2547–2550, [hep-ph/9307329].
- [7] A. Courtoy, S. Baeßler, M. González-Alonso, and S. Liuti, Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology, Phys. Rev. Lett. 115 (2015) 162001,
 [arXiv:1503.06814].
- [8] V. Cirigliano, S. Gardner, and B. Holstein, Beta Decays and Non-Standard Interactions in the LHC Era, Prog. Part. Nucl. Phys. 71 (2013) 93–118, [arXiv:1303.6953].
- [9] N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi, and B. P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation, Eur. Phys. J. A 53 (2017), no. 3 54, [arXiv:1703.01570].
- [10] A. V. Efremov, L. Mankiewicz, and N. A. Tornqvist, Jet handedness as a measure of quark and quan polarization, Phys. Lett. B 284 (1992) 394–400.

- [11] J. C. Collins, S. F. Heppelmann, and G. A. Ladinsky, Measuring transversity densities in singly polarized hadron hadron and lepton - hadron collisions, Nucl. Phys. B 420 (1994) 565–582, [hep-ph/9305309].
- [12] R. L. Jaffe, X.-m. Jin, and J. Tang, Interference fragmentation functions and the nucleon's transversity, Phys. Rev. Lett. 80 (1998) 1166–1169, [hep-ph/9709322].
- [13] J.-w. Qiu and G. F. Sterman, Single transverse spin asymmetries in hadronic pion production, Phys. Rev. D 59 (1999) 014004, [hep-ph/9806356].
- [14] A. Bianconi, S. Boffi, R. Jakob, and M. Radici, Two hadron interference fragmentation functions. Part 1. General framework, Phys. Rev. D 62 (2000) 034008, [hep-ph/9907475].
- [15] M. Radici, R. Jakob, and A. Bianconi, Accessing transversity with interference fragmentation functions, Phys. Rev. D 65 (2002) 074031, [hep-ph/0110252].
- [16] V. Barone, A. Drago, and P. G. Ratcliffe, *Transverse polarisation of quarks in hadrons*, *Phys. Rept.* **359** (2002) 1–168, [hep-ph/0104283].
- [17] A. Bacchetta and M. Radici, Partial wave analysis of two hadron fragmentation functions, Phys. Rev. D 67 (2003) 094002, [hep-ph/0212300].
- [18] J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B **396** (1993) 161–182, [hep-ph/9208213].
- [19] M. Anselmino, M. Boglione, U. D'Alesio, J. O. Gonzalez Hernandez, S. Melis, F. Murgia, and A. Prokudin, *Collins functions for pions from SIDIS and new* e⁺e⁻ data: a first glance at their transverse momentum dependence, Phys. Rev. D **92** (2015), no. 11 114023, [arXiv:1510.05389].
- [20] Z.-B. Kang, A. Prokudin, P. Sun, and F. Yuan, Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution, Phys. Rev. D 93 (2016), no. 1 014009, [arXiv:1505.05589].
- [21] H.-W. Lin, W. Melnitchouk, A. Prokudin, N. Sato, and H. Shows, First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints, Phys. Rev. Lett. 120 (2018), no. 15 152502, [arXiv:1710.09858].
- [22] U. D'Alesio, C. Flore, and A. Prokudin, Role of the Soffer bound in determination of transversity and the tensor charge, Phys. Lett. B 803 (2020) 135347, [arXiv:2001.01573].
- [23] Jefferson Lab Angular Momentum Collaboration, J. Cammarota, L. Gamberg, Z.-B. Kang, J. A. Miller, D. Pitonyak, A. Prokudin, T. C. Rogers, and N. Sato, Origin of single transverse-spin asymmetries in high-energy collisions, Phys. Rev. D 102 (2020), no. 5 054002, [arXiv:2002.08384].
- [24] Jefferson Lab Angular Momentum (JAM), Jefferson Lab Angular Momentum Collaboration, L. Gamberg, M. Malda, J. A. Miller, D. Pitonyak, A. Prokudin, and N. Sato, Updated QCD global analysis of single transverse-spin asymmetries: Extracting H~, and the role of the Soffer bound and lattice QCD, Phys. Rev. D 106 (2022), no. 3 034014, [arXiv:2205.00999].
- [25] M. Boglione, U. D'Alesio, C. Flore, J. O. Gonzalez-Hernandez, F. Murgia, and A. Prokudin, Simultaneous reweighting of Transverse Momentum Dependent distributions, Phys. Lett. B 854 (2024) 138712, [arXiv:2402.12322].
- [26] M. Radici and A. Bacchetta, First Extraction of Transversity from a Global Analysis of

- Electron-Proton and Proton-Proton Data, Phys. Rev. Lett. 120 (2018), no. 19 192001, [arXiv:1802.05212].
- [27] J. Benel, A. Courtoy, and R. Ferro-Hernandez, A constrained fit of the valence transversity distributions from dihadron production, Eur. Phys. J. C 80 (2020), no. 5 465, [arXiv:1912.03289].
- [28] JAM Collaboration, C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, and R. Seidl, Transversity Distributions and Tensor Charges of the Nucleon: Extraction from Dihadron Production and Their Universal Nature, Phys. Rev. Lett. 132 (2024), no. 9 091901, [arXiv:2306.12998].
- [29] **HERMES** Collaboration, A. Airapetian et al., Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. **94** (2005) 012002, [hep-ex/0408013].
- [30] F. Yuan, Azimuthal asymmetric distribution of hadrons inside a jet at hadron collider, Phys. Rev. Lett. 100 (2008) 032003, [arXiv:0709.3272].
- [31] M. Burkardt, C. A. Miller, and W. D. Nowak, Spin-polarized high-energy scattering of charged leptons on nucleons, Rept. Prog. Phys. **73** (2010) 016201, [arXiv:0812.2208].
- [32] M. Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, A. Prokudin, and C. Turk, Transversity and Collins functions from SIDIS and e+ e- data, Phys. Rev. D 75 (2007) 054032, [hep-ph/0701006].
- [33] **COMPASS** Collaboration, M. Alekseev et al., Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B 673 (2009) 127–135, [arXiv:0802.2160].
- [34] **HERMES** Collaboration, A. Airapetian et al., Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693 (2010) 11–16, [arXiv:1006.4221].
- [35] **COMPASS** Collaboration, M. G. Alekseev et al., Measurement of the Collins and Sivers asymmetries on transversely polarised protons, Phys. Lett. B **692** (2010) 240–246, [arXiv:1005.5609].
- [36] A. Courtoy, A. Bacchetta, M. Radici, and A. Bianconi, First extraction of Interference Fragmentation Functions from e⁺e⁻ data, Phys. Rev. D 85 (2012) 114023, [arXiv:1202.0323].
- [37] A. Martin, F. Bradamante, and V. Barone, Extracting the transversity distributions from single-hadron and dihadron production, Phys. Rev. D 91 (2015), no. 1 014034, [arXiv:1412.5946].
- [38] COMPASS Collaboration, C. Adolph et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons, Phys. Lett. B 744 (2015) 250–259, [arXiv:1408.4405].
- [39] **STAR** Collaboration, L. Adamczyk et al., Transverse spin-dependent azimuthal correlations of charged pion pairs measured in p[↑]+p collisions at √s = 500 GeV, Phys. Lett. B **780** (2018) 332–339, [arXiv:1710.10215].
- [40] M. Anselmino, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, and A. Prokudin, Simultaneous extraction of transversity and Collins functions from new SIDIS and e+edata, Phys. Rev. D 87 (2013) 094019, [arXiv:1303.3822].
- [41] Z.-B. Kang, A. Prokudin, P. Sun, and F. Yuan, Nucleon tensor charge from Collins azimuthal asymmetry measurements, Phys. Rev. D 91 (2015) 071501, [arXiv:1410.4877].

- [42] Jefferson Lab Angular Momentum (JAM) Collaboration, C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, and R. Seidl, First simultaneous global QCD analysis of dihadron fragmentation functions and transversity parton distribution functions, Phys. Rev. D 109 (2024), no. 3 034024, [arXiv:2308.14857].
- [43] COMPASS Collaboration, G. D. Alexeev et al., High-Statistics Measurement of Collins and Sivers Asymmetries for Transversely Polarized Deuterons, Phys. Rev. Lett. 133 (2024), no. 10 101903, [arXiv:2401.00309].
- [44] **COMPASS** Collaboration, G. D. Alexeev et al., Final COMPASS Results on the Transverse-Spin-Dependent Azimuthal Asymmetries in the Pion-Induced Drell-Yan Process, Phys. Rev. Lett. **133** (2024), no. 7 071902, [arXiv:2312.17379].
- [45] C. Zeng, H. Dong, T. Liue, P. Sun, and Y. Zhao, Global analysis of Sivers and Collins asymmetries within the TMD factorization, arXiv:2412.18324.
- [46] **STAR** Collaboration, Energy Independence of the Collins Asymmetry in $p^{\uparrow}p$ Collisions, arXiv:2507.16355.
- [47] LHCspin Collaboration, A. Accardi et al., LHCspin: a Polarized Gas Target for LHC, arXiv:2504.16034.
- [48] M.-S. Gao, Z.-B. Kang, W. Li, and D. Y. Shao, Accessing nucleon transversity with one-point energy correlators, arXiv:2509.15809.
- [49] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D 98 (2018), no. 9 091503, [arXiv:1807.00232].
- [50] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese, *Updated Lattice Results for Parton Distributions*, *Phys. Rev. D* 96 (2017), no. 1 014513, [arXiv:1610.03689].
- [51] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H. Zhang, Nucleon Helicity and Transversity Parton Distributions from Lattice QCD, Nucl. Phys. B 911 (2016) 246–273, [arXiv:1603.06664].
- [52] HadStruc Collaboration, C. Egerer et al., Transversity parton distribution function of the nucleon using the pseudodistribution approach, Phys. Rev. D 105 (2022), no. 3 034507, [arXiv:2111.01808].
- [53] Lattice Parton Collaboration, F. Yao et al., Nucleon Transversity Distribution in the Continuum and Physical Mass Limit from Lattice QCD, Phys. Rev. Lett. 131 (2023), no. 26 261901, [arXiv:2208.08008].
- [54] X. Gao, A. D. Hanlon, S. Mukherjee, P. Petreczky, Q. Shi, S. Syritsyn, and Y. Zhao, Transversity PDFs of the proton from lattice QCD with physical quark masses, Phys. Rev. D 109 (2024), no. 5 054506, [arXiv:2310.19047].
- [55] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot, The Spin Structure of the Nucleon, Rev. Mod. Phys. 85 (2013) 655-691, [arXiv:1209.2803].
- [56] R. Boussarie et al., TMD Handbook, arXiv:2304.03302.
- [57] M.-X. Luo, T.-Z. Yang, H. X. Zhu, and Y. J. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Gluon Case, arXiv:1909.13820.

- [58] M.-x. Luo, T.-Z. Yang, H. X. Zhu, and Y. J. Zhu, Unpolarized Quark and Gluon TMD PDFs and FFs at N³LO, arXiv:2012.03256.
- [59] M. A. Ebert, B. Mistlberger, and G. Vita, TMD fragmentation functions at N³LO, JHEP 07 (2021) 121, [arXiv:2012.07853].
- [60] M. A. Ebert, B. Mistlberger, and G. Vita, Transverse momentum dependent PDFs at N³LO, JHEP 09 (2020) 146, [arXiv:2006.05329].
- [61] Y. J. Zhu, The N³LO Twist-2 Matching of Helicity TMDs and SIDIS q_{*} Spectrum, arXiv:2509.01655.
- [62] D. Gutiérrez-Reyes, I. Scimemi, and A. A. Vladimirov, Twist-2 matching of transverse momentum dependent distributions, Phys. Lett. B 769 (2017) 84-89, [arXiv:1702.06558].
- [63] D. Gutierrez-Reyes, I. Scimemi, and A. Vladimirov, Transverse momentum dependent transversely polarized distributions at next-to-next-to-leading-order, JHEP 07 (2018) 172, [arXiv:1805.07243].
- [64] J. She, J. Zhu, and B.-Q. Ma, Pretzelosity h(1T)**perpendicular and quark orbital angular momentum, Phys. Rev. D 79 (2009) 054008, [arXiv:0902.3718].
- [65] H. Avakian, A. V. Efremov, P. Schweitzer, O. V. Teryaev, F. Yuan, and P. Zavada, Insights on non-perturbative aspects of TMDs from models, Mod. Phys. Lett. A 24 (2009) 2995–3004, [arXiv:0910.3181].
- [66] H. Avakian, A. V. Efremov, P. Schweitzer, and F. Yuan, The transverse momentum dependent distribution functions in the bag model, Phys. Rev. D 81 (2010) 074035, [arXiv:1001.5467].
- [67] Y. Li, D. Neill, and H. X. Zhu, An Exponential Regulator for Rapidity Divergences, Submitted to: Phys. Rev. D (2016) [arXiv:1604.00392].
- [68] C. W. Bauer, S. Fleming, and M. E. Luke, Summing Sudakov logarithms in $B -_{\dot{c}} X(s \ gamma)$ in effective field theory, Phys. Rev. **D63** (2000) 014006, [hep-ph/0005275].
- [69] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D63 (2001) 114020, [hep-ph/0011336].
- [70] C. W. Bauer, D. Pirjol, and I. W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D65 (2002) 054022, [hep-ph/0109045].
- [71] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and I. W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D66 (2002) 014017, [hep-ph/0202088].
- [72] M. Beneke, A. P. Chapovsky, M. Diehl, and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B643 (2002) 431–476, [hep-ph/0206152].
- [73] C. W. Bauer and I. W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B516 (2001) 134–142, [hep-ph/0107001].
- [74] K. Goeke, A. Metz, and M. Schlegel, Parameterization of the quark-quark correlator of a spin-1/2 hadron, Phys. Lett. B 618 (2005) 90–96, [hep-ph/0504130].
- [75] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders, and M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093, [hep-ph/0611265].

- [76] D. Boer, L. Gamberg, B. Musch, and A. Prokudin, Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering, JHEP 10 (2011) 021, [arXiv:1107.5294].
- [77] I. Scimemi and A. Vladimirov, Matching of transverse momentum dependent distributions at twist-3, Eur. Phys. J. C 78 (2018), no. 10 802, [arXiv:1804.08148].
- [78] D. Boer and P. J. Mulders, Time reversal odd distribution functions in leptoproduction, Phys. Rev. D 57 (1998) 5780–5786, [hep-ph/9711485].
- [79] F. Rein, S. Rodini, A. Schäfer, and A. Vladimirov, Sivers, Boer-Mulders and worm-gear distributions at next-to-leading order, JHEP 01 (2023) 116, [arXiv:2209.00962].
- [80] D. W. Sivers, Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents, Phys. Rev. D 41 (1990) 83.
- [81] J. C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536 (2002) 43–48, [hep-ph/0204004].
- [82] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Initial state interactions and single spin asymmetries in Drell-Yan processes, Nucl. Phys. B 642 (2002) 344–356, [hep-ph/0206259].
- [83] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B 530 (2002) 99–107, [hep-ph/0201296].
- [84] S. J. Brodsky, D. S. Hwang, Y. V. Kovchegov, I. Schmidt, and M. D. Sievert, Single-Spin Asymmetries in Semi-inclusive Deep Inelastic Scattering and Drell-Yan Processes, Phys. Rev. D 88 (2013), no. 1 014032, [arXiv:1304.5237].
- [85] A. V. Belitsky, X. Ji, and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165–198, [hep-ph/0208038].
- [86] M.-X. Luo, X. Wang, X. Xu, L. L. Yang, T.-Z. Yang, and H. X. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP 10 (2019) 083, [arXiv:1908.03831].
- [87] A. Metz and A. Vossen, Parton Fragmentation Functions, Prog. Part. Nucl. Phys. 91 (2016) 136–202, [arXiv:1607.02521].
- [88] Y. Li and H. X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017), no. 2 022004, [arXiv:1604.01404].
- [89] W. Vogelsang, Next-to-leading order evolution of transversity distributions and Soffer's inequality, Phys. Rev. D 57 (1998) 1886–1894, [hep-ph/9706511].
- [90] S. V. Mikhailov and A. A. Vladimirov, ERBL and DGLAP kernels for transversity distributions. Two-loop calculations in covariant gauge, Phys. Lett. B 671 (2009) 111–118, [arXiv:0810.1647].
- [91] X. Artru and M. Mekhfi, Transversely Polarized Parton Densities, their Evolution and their Measurement, Z. Phys. C 45 (1990) 669.
- [92] V. Barone, On the QCD evolution of the transversity distribution, Phys. Lett. B 409 (1997) 499–502, [hep-ph/9703343].
- [93] J.-y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601, [arXiv:1104.0881].

- [94] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084, [arXiv:1202.0814].
- [95] M.-x. Luo, T.-Z. Yang, H. X. Zhu, and Y. J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020), no. 9 092001, [arXiv:1912.05778].
- [96] A. A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys. Rev. Lett. 118 (2017), no. 6 062001, [arXiv:1610.05791].
- [97] M. G. Echevarria, I. Scimemi, and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016) 004, [arXiv:1604.07869].
- [98] G. Lustermans, W. J. Waalewijn, and L. Zeune, Joint transverse momentum and threshold resummation beyond NLL, Phys. Lett. B 762 (2016) 447–454, [arXiv:1605.02740].
- [99] G. Billis, M. A. Ebert, J. K. L. Michel, and F. J. Tackmann, A Toolbox for q_T and 0-Jettiness Subtractions at N^3LO , arXiv:1909.00811.
- [100] M. G. A. Buffing, M. Diehl, and T. Kasemets, Transverse momentum in double parton scattering: factorisation, evolution and matching, JHEP 01 (2018) 044, [arXiv:1708.03528].
- [101] A. Bacchetta and A. Prokudin, Evolution of the helicity and transversity

 Transverse-Momentum-Dependent parton distributions, Nucl. Phys. B 875 (2013) 536–551,

 [arXiv:1303.2129].
- [102] S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041, [arXiv:1707.08315].
- [103] D. Maitre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222–240, [hep-ph/0507152].
- [104] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017), no. 8 082002, [arXiv:1606.08659].
- [105] S. Moch, J. A. M. Vermaseren, and A. Vogt, *The Three loop splitting functions in QCD: The Nonsinglet case*, *Nucl. Phys. B* **688** (2004) 101–134, [hep-ph/0403192].
- [106] Y. Li, A. von Manteuffel, R. M. Schabinger, and H. X. Zhu, Soft-virtual corrections to Higgs production at N³LO, Phys. Rev. D 91 (2015) 036008, [arXiv:1412.2771].
- [107] S. Moch, J. A. M. Vermaseren, and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B625 (2005) 245–252, [hep-ph/0508055].
- [108] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli, and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094, [arXiv:1004.3653].
- [109] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081, [arXiv:0903.1126]. [Erratum: JHEP11,024(2013)].
- [110] A. V. Manohar and I. W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D76 (2007) 074002, [hep-ph/0605001].