PC 4 : Vecteurs aléatoires à densités - lois conditionnelles

Dernière modification 24 mai 2023

Exercice 1

Soit X une variable aléatoire de loi $\mathcal{N}(0,1)$. Pour tout $p \in \mathbb{R}$, justifier que e^{pX} est intégrable et calculer $\mathbb{E}(e^{pX})$.

Une variable aléatoire $X \in L^0$ est dite \mathbb{P} - intégrable si $\mathbb{E}(|X|) < +\infty$. Pour toute fonction mesurable $h : \mathbb{R} \to \mathbb{R}$, on a que h est P_X - intégrable si et seulement si h(X) est \mathbb{P} - intégrable.

Par définition, e^{pX} est intégrable si $\mathbb{E}(|\cdot^{\mathbb{X}}|) < +\infty$. La fonction e^{pX} est positive, donc $\mathbb{E}(\cdot^{\mathbb{X}})$ a un sens a calculer. On note que

$$|e^{px}|f(x) = \frac{e^{px} \cdot e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$$
 (1)

est bien intégrable par croissances comparées.

Alors,

$$\mathbb{E}(e^{pX}) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{px - \frac{x^2}{2}} dx$$

$$= e^{\frac{p^2}{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-p)^2}{2}} dx$$

$$= e^{\frac{p^2}{2}}.$$
(2)

Exercice 2

Soit X e Y deux variables aléatoires réelles independantes et S = X + Y. Lorsque X et Y suivent la loi exponentielle de paramètre $\lambda > 0$, déterminer la densité conditionnelle de X sachant S = s. En déduire $\mathbb{E}(X|S)$.

Par définition,

$$f_{X|S=s}(x) = \frac{f_{X,S}(x,s)}{f_S(s)}$$
 (3)

Alors, on veut calculer la loi jointe $f_{X,S}(x,s)$ et la loi marginale $f_S(s)$. On va utiliser la méthode de la fonction muette.

Méthode de la fonction muette

Soit μ une probabilité sur $\mathbb R$ telle que

$$\mathbb{E}(h(X)) = \int_{\mathbb{R}} h(x)\mu(dx),\tag{4}$$

pour toute fonction h continue bornée. Alors, $P_X = \mu$.

Soit $\phi: \mathbb{R}^2 \to \mathbb{R}$ continue et bornée.

$$\mathbb{E}[\phi(X,S)] = \mathbb{E}[\phi(X,X+Y)]$$

$$= \iint_{\mathbb{R}^2} \phi(x,x+y) f_{X,Y}(x,y) dx dy$$
(5)

On note que $f_{X,Y}(x,y) = f_X(x)f_Y(y) = [\lambda e^{-\lambda x}\mathbf{1}_{x\geq 0}][\lambda e^{-\lambda y}\mathbf{1}_{y\geq 0}] = \lambda^2 e^{-\lambda(x+y)}\mathbf{1}_{x,y\geq 0}$. On fait la substitution

$$\begin{cases} u = x \\ v = x + y \end{cases} \tag{6}$$

Alors,

$$\iint\limits_{\mathbb{R}^2} \phi(x, x+y) \lambda^2 e^{-\lambda(x+y)} \mathbf{1}_{x,y \ge 0} dx dy = \iint\limits_{\mathbb{R}^2} \phi(u, v) \lambda^2 e^{-\lambda v} \mathbf{1}_{v \ge u \ge 0} du dv. \tag{7}$$

Donc, (u, v) = (X, S) admet densité

$$f_{X,S}(x,s) = \lambda^2 e^{-\lambda s} \mathbf{1}_{s > x > 0} \tag{8}$$

Pour vérifier ce résultat, on peut calculer la loi marginale $f_X(x)$.

$$f_X(x) = \int_0^{+\infty} f_{X,S}(x,s)ds$$

$$= \int_x^{+\infty} \lambda^2 e^{-\lambda s} ds$$

$$= \lambda e^{-\lambda x} \text{ce qui est cohérent.}$$
(9)

On calcule la loi marginale

$$f_S(s) = \int_0^{+\infty} f_{X,S}(x,s) dx$$

$$= \int_0^{+\infty} s \lambda^2 e^{-\lambda s} dx$$

$$= \lambda^2 s e^{-\lambda s} \mathbf{1}_{s \ge 0}.$$
(10)

Donc, on a la densité conditionnelle

$$f_{X|S=s}(x) = \frac{1}{s} \mathbf{1}_{s \ge x \ge 0}$$
 on reconnait la loi uniforme $\mathcal{U}(0,s)$. (11)

Pour calculer $\mathbb{E}[X|S],$ on calcule d'abord $\mathbb{E}[X|S=s].$

$$\mathbb{E}[X|S=s] = \int_{\mathbb{R}} x f_{X|S=s}(x) dx$$

$$= \int_{0} s \frac{x}{s} dx$$

$$= \frac{s}{2}.$$
(12)

Donc, $\mathbb{E}[X|S] = \frac{S}{2}$.