Rank-65903 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65903

General information

Number of lines	4
Number of points	11
Number of singular points	0
Number of Eckardt points	0
Number of double points	4
Number of single points	4
Number of points off lines	3
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{4}
Type of lines on points	$2^4, 1^4, 0^3$

Singular Points

The surface has 0 singular points:

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_5 = \mathbf{Pl}(0,0,1,0,1,0)_{12}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{Pl}(1, 0, 0, 1, 0, 0)_{6}$$

$$\ell_3 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

Rank of lines: (0, 5, 14, 12)

Rank of points on Klein quadric: (0, 12, 6, 32)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_2$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_3$$

$$P_{12} = (0,0,1,1) = \ell_1 \cap \ell_3$$

Single Points

The surface has 4 single points:

The single points on the surface are:

$$0: P_4 = (1, 1, 1, 1)$$
 lies on line ℓ_3

1: $P_9 = (1, 0, 0, 1)$ lies on line ℓ_2

2: $P_{11} = (1, 1, 0, 1)$ lies on line ℓ_2

 $3: P_{13} = (1,0,1,1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 3 points not on any line:

The points on the surface but not on lines are:

$$0: P_6 = (1, 0, 1, 0)$$

 $1: P_7 = (0, 1, 1, 0)$

$$2: P_8 = (1, 1, 1, 0)$$

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 00111 \\ 11001 \\ 21000 \\ 31100 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_1	P_5

Line 1 intersects

Line	ℓ_0	ℓ_3
in point	P_0	P_{12}

 ${\bf Line~2~intersects}$

Line	ℓ_0
in point	P_1

Line 3 intersects

Line	ℓ_0	ℓ_1
in point	P_5	P_{12}

The surface has 11 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_0 = (1,0,0,0) & 4: \, P_6 = (1,0,1,0) & 8: \, P_{11} = (1,1,0,1) \\ 1: \, P_1 = (0,1,0,0) & 5: \, P_7 = (0,1,1,0) & 9: \, P_{12} = (0,0,1,1) \\ 2: \, P_4 = (1,1,1,1) & 6: \, P_8 = (1,1,1,0) & 10: \, P_{13} = (1,0,1,1) \\ 3: \, P_5 = (1,1,0,0) & 7: \, P_9 = (1,0,0,1) & \end{array}$$