Building Robust Neural Networks

Attack_des_titans

December 9, 2022

Use case: image classification

Problem Setting

- A model classifies images
- small perturbations, imperceptible for the human eye, can change the prediction label

How to make the classifier more robust to these perturbations?

- Generate images with attack mechanisms
 - FGSM Attack
 - PGM Attack
- Use defense mechanisms to make the network robust to the attacks
 - Adversarial Training
 - Randomized Smoothing

Adversarial attacks

Fast Gradient Signed Method (FGSM)

- Simply trying to maximise the loss by adding a small perturbation in the direction of the gradient
- This method is able to generate adversarial examples rapidly
- Requires the gradients to be computed once

$$x' = x + \varepsilon sign(\nabla_x J(\theta, x, y))$$

x': adversarial exemple

x : original image

J:loss

y : original input label

epsilon: max perturbation radius

sign: the sign function

Adversarial attacks

Projected Gradient Descent (PGD)

- Also known as an iterated GSM attack
- The perturbation is constrained by a norm of the input
- If the output exits this constraint, it is projected back into the set.
- In theory, it generates more powerful adversary exemples.

$$x^{t+1} = \Pi_{x+S} \left(x_t + \alpha sign \left(\nabla_x L_f \left(x, y \right) \right) \right)$$

 \prod The projection operator

S Set of allowed perturbations

Defense mechanism

Adversarial Training

$$ilde{J}(oldsymbol{ heta},oldsymbol{x},y) = lpha J(oldsymbol{ heta},oldsymbol{x},y) + (1-lpha)J(oldsymbol{ heta},\max_{||\delta||\leq\epsilon}\ell_{\mathit{f}}(\mathit{x}+\delta,\mathit{y}),y)$$

Basic idea: Augment dataset with adversarial examples. Could be FGSM (fast) or PGD (better), I-2 or I-∞:

- Advantages: Good results against the chosen adversarial examples
- Disadvantage: Does not defend as well against other adversarial examples

To train against both attacks: Mix-Adversarial Training

Defense mechanism

Randomized smoothing

Certification: Certifying the robustness of the smooth classifier around a radius r

Results

Comparing the different defense mechanisms

accuracy (%)	Basic Classifier	basic classifier + noisy train	adversarial training (PGD-l2)	adversarial training (PGD-l∞)	Mix adversarial training	randomized smoothing
Natural	58.2	62.16	54.78	54.41	51.76	59.71
FGSM	3.81	26.17	25.00	28.32	28.41	38.1
PGD-l∞	0.29	21.77	20.99	25.58	26.46	37.68
PGD-l2	0.29	25.16	23.82	19.33	27.15	39.8

Takeaways:

Just training the model with gaussian noise make it more robust (faster than AT with PGD)

Randomized network seems to be the more effective and general defence mechanism

Some defenses work better against a subset of attacks.