1. Докажите, что для действительных чисел x и y справедливы неравенства:

a)
$$\lfloor x \rfloor + \lfloor y \rfloor + 1 \geqslant \lfloor x + y \rfloor \geqslant \lfloor x \rfloor + \lfloor y \rfloor;$$
 c) $\left| x + \frac{1}{2} \right| = \lfloor 2x \rfloor - \lfloor x \rfloor;$

b)
$$\lceil x \rceil + \lceil y \rceil - 1 \leqslant \lceil x + y \rceil \leqslant \lceil x \rceil + \lceil y \rceil;$$
 d) $\left\lceil x - \frac{1}{2} \right\rceil = \lceil 2x \rceil - \lceil x \rceil.$

2. Докажите, что для действительного числа x и натурального числа n справедливы равенства:

a)
$$\lfloor \lfloor x \rfloor / n \rfloor = \lfloor x / n \rfloor;$$
 c) $\sum_{i=1}^{n} \lfloor x + \frac{i-1}{n} \rfloor = \lfloor nx \rfloor;$

b)
$$\lceil \lceil x \rceil / n \rceil = \lceil x / n \rceil;$$
 d) $\sum_{i=1}^{n} \left(\left\{ x + \frac{i}{n} \right\} - \frac{1}{2} \right) = \left\{ nx \right\} - \frac{1}{2}.$

- 3. Докажите, что простое число p входит в разложение числа n! с показателем $v_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \ldots + \left\lfloor \frac{n}{p^{s-1}} \right\rfloor$, где натуральное число s таково, что $p^{s-1} \leqslant n < p^s$.
- 4. Пусть $p,q\in\mathbb{N}$ взаимно простые числа. Докажите путём подсчета целых точек в области $1\leqslant x\leqslant p-1,\, 1\leqslant y\leqslant qx/p,$ что

$$\left\lfloor \frac{q}{p} \right\rfloor + \left\lfloor \frac{2q}{p} \right\rfloor + \ldots + \left\lfloor \frac{(p-1)q}{p} \right\rfloor = \frac{(p-1)(q-1)}{2}.$$

5. Пусть $\tau(k)$ — число всех натуральных делителей числа $k \in \mathbb{N}$. Для натурального n докажите равенство $\tau(1) + \tau(2) + \ldots + \tau(n) = n + \left\lfloor \frac{n}{2} \right\rfloor + \ldots + \left\lfloor \frac{n}{n} \right\rfloor$.

Домашнее задание

- 1. Для чисел $x_1, x_2, \ldots, x_n \in \mathbb{R}$ докажите неравенство $\left\lfloor \sum_{i=1}^n x_i \right\rfloor \geqslant \sum_{i=1}^n \lfloor x_i \rfloor$.
- 2. Докажите, что для любого натурального n число $\lfloor (2+\sqrt{3})^n \rfloor$ нечётно.
- 3. Докажите равенство $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor$ при $n \in \mathbb{N}$.
- 4. Пусть $\sigma(k)$ сумма всех натуральных делителей числа $k \in \mathbb{N}$. Для натурального n докажите равенство $\sigma(1) + \ldots + \sigma(n) = n + 2 \left\lfloor \frac{n}{2} \right\rfloor + \ldots + n \left\lfloor \frac{n}{n} \right\rfloor$.
- 5. Пусть α , $\beta > 1$. Докажите, что каждое натуральное число встречается в последовательности $\lfloor \alpha \rfloor$, $\lfloor \beta \rfloor$, $\lfloor 2\alpha \rfloor$, $\lfloor 2\beta \rfloor$, $\lfloor 3\alpha \rfloor$, $\lfloor 3\beta \rfloor$, ... единожды, тогда и только тогда, когда α иррациональное число и $1/\alpha + 1/\beta = 1$.