25 февраля 2012 г. (день 8), высшая лига

Задача А. Добавление и удаление точек

 Имя входного файла:
 a.in

 Имя выходного файла:
 a.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

He все $N^2 \log N$ одинаковы полезны...

Какая-то лекция

У вас в каждый момент есть мультимножество A точек на плоскости. Нужно научиться обрабатывать запросы трех типов:

- ullet Добавить точку в мультимножество A
- ullet Удалить точку из мультимножества A
- Вычислить $\sum\limits_{p\in A}\max\limits_{q\in A}distance(p,q).$

Формат входного файла

Число запросов N ($1 \le N \le 3000$). Далее N строк, описывающие запросы, точный формат смотрите в примере. Координаты точек — целые число от 0 до 3000. Точки могут совпадать. Запрос $y\partial a$ лить точку должен удалять ровно одну точку (гарантируется, что такая точка в мультимножестве на момент запроса есть).

Формат выходного файла

После каждой операции с множеством выводите текущую сумму максимальных расстояний. Абсолютная погрешность не должна превышать 10^{-6} .

a.in	a.out	
6	0.000000000000000000000	
+ 0 0	14.14213562373095100000	
+ 5 5	19.14213562373095100000	
+ 5 0	10.000000000000000000	
- 5 5	0.000000000000000000	
- 5 0	0.000000000000000000	
- 0 0		

25 февраля 2012 г. (день 8), высшая лига

Задача C. Count Offline

 Имя входного файла:
 с.in

 Имя выходного файла:
 c.out

 Ограничение по времени:
 2 с

 Ограничение по памяти:
 256 Мб

Вам дано множество точек на плоскости.

Нужно уметь отвечать на два типа запросов:

- + х у добавить в множество точку (x, y).
- ? x_1 y_1 x_2 y_2 сказать, сколько точек лежит в прямоугольнике $[x_1..x_2] \times [y_1..y_2]$. Точки на границе и в углах тоже считаются. $x_1 \le x_2$, $y_1 \le y_2$.

Формат входного файла

Число точек N (1 $\leq N \leq$ 50 000). Далее N точек. Число запросов Q (1 $\leq Q \leq$ 100 000). Далее Q запросов. Все координаты от 0 до 10^9 .

Формат выходного файла

Для каждого запроса GET одно целое число — количество точек внутри прямоугольника.

Пример

c.in	c.out
4	2
0 0	4
1 0	1
0 1	
1 1	
5	
? 0 1 1 2	
+ 1 2	
+ 2 2	
? 1 0 2 2	
? 0 0 0 0	

Примечание

Автор задачи уже написал некоторый код, который вы можете скачать по адресу (http://ejudge.kture.kharkov.ua/buffer/Kopeliovich/C/lib.cpp или http://ejudge.kture.kharkov.ua/buffer/Kopeliovich/C/lib.java) и использовать. Имеется код на языках C++, Java.

Написанная часть умеет делать три вещи:

- Build (множество точек на плоскости и их начальные значения).
- ChangeValue (индекс точки в множестве, ее новое значение).
- GetSum(прямоугольник).

Время работы: Build за $O(N \log N)$, ChangeValue за $O(\log^2 N)$, Get за $O(\log^2 N)$.

Задача D. Count Online

Имя входного файла:d.inИмя выходного файла:d.outОграничение по времени:3 сОграничение по памяти:256 Мб

Вам дано множество точек на плоскости.

Нужно уметь отвечать на два типа запросов: Вам дано множество точек на плоскости.

Нужно уметь отвечать на два типа запросов:

- ? x_1 y_1 x_2 y_2 сказать, сколько точек лежит в прямоугольнике $[x_1..x_2] \times [y_1..y_2]$. Точки на границе и в углах тоже считаются. $x_1 \le x_2$, $y_1 \le y_2$.
- + x y добавить в множество точку (x + res % 100, y + res % 101). Где res ответ на последний запрос вида ?, а % операция взятия по модулю.

Формат входного файла

Число точек N (1 $\leq N \leq$ 50 000). Далее N точек. Число запросов Q (1 $\leq Q \leq$ 100 000). Далее Q запросов. Все координаты от 0 до 10^9 .

Формат выходного файла

Для каждого запроса GET одно целое число — количество точек внутри прямоугольника.

Пример

d.in	d.out
5	3
0 0	3
1 0	1
0 1	0
1 1	0
1 1	3
9	
? 0 1 1 2	
+ 1 2	
+ 2 2	
? 1 0 2 2	
? 0 0 0 0	
+ 3 3	
? 3 3 3 3	
? 4 3 4 3	
? 4 4 5 5	

Примечание

На самом деле добавлялись точки (4, 5), (5, 5), (4, 4).

25 февраля 2012 г. (день 8), высшая лига

Задача Е. Динамический Лес

 Имя входного файла:
 e.in

 Имя выходного файла:
 e.out

 Ограничение по времени:
 0.5 с

 Ограничение по памяти:
 256 Мб

Вам нужно научиться обрабатывать 3 типа запросов:

- 1. Добавить ребро в граф (link).
- 2. Удалить ребро из графа (cut).
- 3. По двум вершинам a и b вернуть длину пути между ними (или -1, если они лежат в разных компонентах связности) (get).

Изначально граф пустой (содержит N вершин, не содержит ребер). Гарантируется, что в любой момент времени граф является лесом. При добавлении ребра гарантируется, что его сейчас в графе нет. При удалении ребра гарантируется, что оно уже добавлено.

Формат входного файла

Числа N и M ($1 \le N \le 10^5 + 1$, $1 \le M \le 10^5$) — количество вершин в дереве и, соответственно, запросов. Далее M строк, в каждой строке команда (link или cut, или get) и 2 числа от 1 до N — номера вершин в запросе.

Формат выходного файла

В выходной файл для каждого запроса get выведите одно число — расстояние между вершинами, или -1, если они лежат в разных компонентах связности.

e.in	e.out
3 7	-1
get 1 2	1
link 1 2	-1
get 1 2	1
cut 1 2	
get 1 2	
link 1 2	
get 1 2	
5 10	1
link 1 2	2
link 2 3	-1
link 4 3	1
cut 3 4	-1
get 1 2	-1
get 1 3	
get 1 4	
get 2 3	
get 2 4	
get 3 4	

25 февраля 2012 г. (день 8), высшая лига

Задача F. Самая дальняя

 Имя входного файла:
 f.in

 Имя выходного файла:
 f.out

 Ограничение по времени:
 1 с

 Ограничение по памяти:
 256 Мб

Даны N точек на плоскости, нужно уметь обрабатывать следующие запросы:

- ullet get a b возвращает максимум по всем точкам величины ax+by.
- add x y добавить точку в множество.

Формат входного файла

Число N ($1 \le N \le 10^5$) и N точек. Далее число M ($1 \le M \le 10^5$ — количество запросов и собственно запросы. Формат запросов можно посмотреть в примере. Все координаты точек и числа a, b — целые числа, по модулю не превосходящие 10^9 .

Формат выходного файла

На каждый запрос вида get выведите одно целое число — максимум величины ax + by.

Примеры

f.in	f.out	
3	1	
0 0	0	
1 0	1	
0 1	1	
10	4	
get 1 1	4	
get -1 -1	1	
get 1 -1	1	
get -1 1		
add 2 2		
add -2 -2		
get 1 1		
get -1 -1		
get 1 -1		
get -1 1		

Примечание

Автор задачи уже написал некоторый код, который вы можете скачать по адресу (http://ejudge.kture.kharkov.ua/buffer/Kopeliovich/F/lib.cpp или http://ejudge.kture.kharkov.ua/buffer/Kopeliovich/F/lib.java) и использовать. Имеется код на языках C++, Java.

Написанная часть умеет делать две вещи:

- Build (множество точек на плоскости).
- GetMax(a, b).

Время работы: Build за $O(N \log N)$, GetMax за $O(\log N)$.

25 февраля 2012 г. (день 8), высшая лига

Задача G. Persistant Array

 Имя входного файла:
 g.in

 Имя выходного файла:
 g.out

 Ограничение по времени:
 0.5 с

 Ограничение по памяти:
 256 Мб

Дан массив (вернее, первая, начальная его версия).

Нужно уметь отвечать на два запроса:

- $a_i[j] = x$ создать из i-й версии новую, в которой j-й элемент равен x, а остальные элементы такие же, как в i-й версии.
- ullet get $a_i[j]$ сказать, чему равен j-й элемент в i-й версии.

Формат входного файла

Количество чисел в массиве N ($1 \le N \le 10^5$) и N элементов массива. Далее количество запросов M ($1 \le M \le 10^5$) и M запросов. Формат описания запросов можно посмотреть в примере. Если уже существует K версий, новая версия получает номер K+1. M исходные, и новые элементы массива — целые числа от 0 до 10^9 . Элементы в массиве нумеруются числами от 1 до N.

Формат выходного файла

На каждый запрос типа get вывести соответствующий элемент нужного массива.

g.in	g.out
6	6
1 2 3 4 5 6	5
11	10
create 1 6 10	5
create 2 5 8	10
create 1 5 30	8
get 1 6	6
get 1 5	30
get 2 6	
get 2 5	
get 3 6	
get 3 5	
get 4 6	
get 4 5	

25 февраля 2012 г. (день 8), высшая лига

Задача Н. Перестановки strike back

 Имя входного файла:
 h.in

 Имя выходного файла:
 h.out

 Ограничение по времени:
 1.5 с

 Ограничение по памяти:
 256 Мб

Вася выписал на доске в каком-то порядке все числа от 1 по N, каждое число ровно по одному разу. Иногда он стирает какое-то число и записывает на его место другое. Количество чисел, выписанных Васей, оказалось довольно большим, поэтому Вася не может окинуть взглядом все числа. Однако ему надо всё-таки представлять эту последовательность, поэтому он написал программу, которая в любой момент отвечает на вопрос — сколько среди чисел, стоящих на позициях с x по y, по величине лежат в интервале от k до l. Сделайте то же самое.

Формат входного файла

В первой строке лежит два натуральных числа $-1\leqslant N\leqslant 100\,000$ — количество чисел, которые выписал Вася и $1\leqslant M\leqslant 100\,000$ — суммарное количество вопросов и изменений сделанных Васей. Во второй строке дано N чисел — последовательность чисел, выписанных Васей. Далее в M строках находятся описания вопросов. Каждый запрос на изменение числа в некоторой позиции начинается со слова SET и имеет вид SET а b $(1\leqslant a\leqslant N,\ 1\leqslant b\leqslant N)$. Это означает, что Вася изменил число, записанное в позиции a на число b. Каждый Васин вопрос начинается со слова GET и имеет вид GET x y k 1 $(1\leqslant x\leqslant y\leqslant N,\ 1\leqslant k\leqslant l\leqslant N)$.

Формат выходного файла

Для каждого Васиного вопроса выведите единственное число — ответ на Васин вопрос.

h.in	h.out
4 4	1
1 2 3 4	3
GET 1 2 2 3	2
GET 1 3 1 3	
SET 1 4	
GET 1 3 1 3	

25 февраля 2012 г. (день 8), высшая лига

Задача I. Persistent List

 Имя входного файла:
 i.in

 Имя выходного файла:
 i.out

 Ограничение по времени:
 2 с

 Ограничение по памяти:
 512 Мб

Даны N списков. Каждый состоит из одного элемента.

Нужно научиться совершать следующие операции:

- merge взять два каких-то уже существующих списка и породить новый, равный их конкатенации.
- head взять какой-то уже существующий список L и породить два новых, в одном первый элемент L, во втором весь L кроме первого элемента.
- ullet tail взять какой-то уже существующий список L и породить два новых, в одном весь L кроме последнего элемента, во втором последний элемент L.

Для свежесозданных списков нужно говорить сумму элементов в них по модулю $10^9 + 7$.

Формат входного файла

Число N ($1 \le N \le 10^5$). Далее N целых чисел от 1 до 10^9 — элементы списков. Исходные списки имеют номера — $1, 2, \cdots, N$.

Затем число M ($1 \le M \le 10^5$) — количество операций. Далее даны операции в следующем формате:

- merge i j
- head i
- tail i

Где і и ј — номера уже существующих списков. Если в текущий момент имеется K списков, новый список получает номер K+1.

Для операций head и tail считается, что сперва порождается левая часть, затем правая (см. пример). Также вам гарантируется, что никогда не будут порождаться пустые списки.

Формат выходного файла

Для каждого нового списка нужно вывести сумму элементов по модулю $10^9 + 7$.

i.in	i.out
4	3
1 2 3 4	7
6	10
merge 1 2	3
merge 3 4	7
merge 6 5	5
head 7	2
tail 9	5
merge 2 3	2
merge 1 1	

25 февраля 2012 г. (день 8), высшая лига

3адача J. Проекция в R^3

Имя входного файла:j.inИмя выходного файла:j.outОграничение по времени:1 сОграничение по памяти:256 Мб

Даны N трехмерных точек. Нужно для каждой найти любую ближайшую точку. Расстояние между точками равно $\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2}$.

Формат входного файла

Число точек N ($2 \le N \le 3 \cdot 10^4$) и N точек. Каждая точка задается тремя координатами \mathbf{x} , \mathbf{y} , \mathbf{z} . Все координаты — целые числа от 0 до 10^9 .

Формат выходного файла

Выведите N чисел — для каждой точки номер ближайшей к ней точки (от 1 до N).

j.in	j.out
6	5 5 5 5 3 4
0 0 0	
2 0 0	
2 2 0	
0 2 0	
1 1 0	
0 4 0	
3	2 1 2
0 0 0	
0 0 0	
1 1 1	

25 февраля 2012 г. (день 8), высшая лига

Задача К. Прямоугольные запросы

 Имя входного файла:
 k.in

 Имя выходного файла:
 k.out

 Ограничение по времени:
 4 с

 Ограничение по памяти:
 256 Мб

Даны N точек на плоскости, у каждой точки есть ценность. Нужно быстро обрабатывать запросы двух типов:

- Присвоить всем точкам в области $[x_1..x_2] \times [y_1..y_2]$ ценность K.
- Найти точку с минимальной ценностью в области $[x_1..x_2] \times [y_1..y_2]$.

Формат входного файла

Число точек N ($1 \le N \le 262\,144$) и N точек. Каждая точка задается тремя числами — $x,\ y,$ начальная ценность.

Число запросов M ($1 \le M \le 10^4$) и M запросов в формате = x_1 y_1 x_2 y_2 value для присваивания и ? x_1 y_1 x_2 y_2 для взятия минимума.

Все координаты от -10^9 до 10^9 . Все ценности от 0 до 10^9 .

Формат выходного файла

На каждый запрос ? выведите минимальную ценность точек в прямоугольнике. Если в прямоугольнике нет ни одной точки, выведите NO.

k.in	k.out
4	2
1 1 1	1
-1 1 1	NO
-1 -1 1	0
1 -1 1	
7	
= 0 0 3 3 2	
= -3 -3 0 0 2	
? 0 0 3 3	
? -3 -3 3 3	
= -1 -1 1 1 0	
? 0 0 0 0	
? -1000 -1000 1000 1000	

25 февраля 2012 г. (день 8), высшая лига

Задача L. Точки в полуплоскости

 Имя входного файла:
 1.in

 Имя выходного файла:
 1.out

 Ограничение по времени:
 0.75 с

 Ограничение по памяти:
 256 Мб

Есть N точек на плоскости. Точки равномерно распределены внутри квадрата $[0..C] \times [0..C]$. Вам нужно научиться отвечать на запрос "сколько точек лежит в полуплоскости"?

Формат входного файла

Число точек N ($1 \le N \le 5 \cdot 10^4$), число запросов M ($1 \le M \le 5 \cdot 10^4$), константа C (целое число от 1 до 10^4). Далее N точек (X,Y) с целочисленными координатами. Далее M полуплоскостей (a,b,c). Числа a,b,c — целые, по модулю не превосходят 10^4 . $a^2+b^2\ne 0$. Считается, что точка лежит в полуплоскости тогда и только тогда, когда $ax+by+c\ge 0$.

Формат выходного файла

Для каждого из M запросов одно целое число — количество точек в полуплоскости.

1.in	1.out
3 4 10	2
5 5	2
1 7	1
7 4	0
1 1 -9	
1 1 -10	
1 1 -11	
1 1 -12	

25 февраля 2012 г. (день 8), высшая лига

Задача М. Жесть

 Имя входного файла:
 m.in

 Имя выходного файла:
 m.out

 Ограничение по времени:
 4 с

 Ограничение по памяти:
 256 Мб

Дам массив из N чисел. Нужно уметь обрабатывать 3 типа запросов:

- \bullet get(L, R, x) сказать, сколько элементов отрезка массива [L..R] не меньше x.
- set(L, R, x) присвоить всем элементам массива на отрезке [L..R] значение x.
- reverse(L, R) перевернуть отрезок массива [L..R].

Формат входного файла

Число N ($1 \le N \le 10^5$) и массив из N чисел. Далее число запросов M ($1 \le M \le 10^5$) и M запросов. Формат описания запросов предлагается понять из примера. Для всех отрезков верно $1 \le L \le R \le N$. Исходные числа в массиве и числа x в запросах — целые от 0 до 10^9 .

Формат выходного файла

Для каждого запроса типа get нужно вывести ответ.

m.in	m.out
5	3
1 2 3 4 5	1
6	3
get 1 5 3	1
set 2 4 2	
get 1 5 3	
reverse 1 2	
get 2 5 2	
get 1 1 2	

25 февраля 2012 г. (день 8), высшая лига

Задача N. Подстроки со сдвигом

 Имя входного файла:
 n.in

 Имя выходного файла:
 n.out

 Ограничение по времени:
 2 с

 Ограничение по памяти:
 256 Мб

Вам даны K текстов. Все тексты имеют одинаковую длину.

Ваша задача — научиться искать подстроку со сдвигом. Подстрока S со сдвигом a_1, a_2, \cdots, a_K входит в набор из K текстов T_1, T_2, \cdots, T_K , если существует такое число x, что для всех i $LCP(T_i + a_i + x, S) <math>\geq |S|$. Где LCP — длина наибольшего общего префикса, $(T_i + j) - j$ -й суффикс строки T_i , |S| — длина строки S.

Формат входного файла

Число K от 1 до 10 и K текстов (длины текстов одинаковы и лежат от 1 до 10^5). Далее M от 1 до 10^5 — число запросов и сами запросы. Каждый запрос это строка и K чисел от -10^9 до 10^9 . Суммарная длина всех строк в запросах не более 10^5 . Все строки и тексты состоят только из маленьких символов английского алфавита. Все строки S по всем запросам различны.

Формат выходного файла

Для каждого запроса выведите NO или YES \mathbf{x} (x — величина из условия).

n.in	n.out
3	YES 0
abacabaa	YES 5
ababbbaa	NO
aababbbb	YES 0
4	
a 0 0 1	
b 0 0 0	
ba 0 0 -1	
aa 6 6 0	