GRIP@The Spark Foundation- Data Science & Business Analytics Internship

Author - Samarth Waghmode

Task 3: Exploratory Data Analysis - Retail

Dataset used: Sample Superstore dataset

It can be downloaded through the following link - https://bit.ly/3i4rbWl)

Problem Statement(s):

*** As a business manager, try to find out the weak areas where you can work to make more profit.

Import necessary libraries

```
In [1]: # Importing Libraries required for data analysis
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt

import warnings
   warnings.filterwarnings('ignore')
```

```
In [2]: # load the data
df = pd.read_csv("SampleSuperstore.csv")
```

In [3]: df.sample(5)

Out[3]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales
9443	Standard Class	Home Office	United States	Jacksonville	Florida	32216	South	Technology	Phones	219.184
695	First Class	Home Office	United States	Chester	Pennsylvania	19013	East	Office Supplies	Labels	47.360
4410	Standard Class	Home Office	United States	Los Angeles	California	90004	West	Office Supplies	Art	107.940
6862	Standard Class	Consumer	United States	Los Angeles	California	90008	West	Furniture	Chairs	218.352
8111	Second Class	Consumer	United States	San Angelo	Texas	76903	Central	Furniture	Chairs	248.430

In [4]: df.head()

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quant
0	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.9600	
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.9400	
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.6200	
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.5775	
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.3680	

In [5]: df.tail()

Out[5]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	(
9989	Second Class	Consumer	United States	Miami	Florida	33180	South	Furniture	Furnishings	25.248	_
9990	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings	91.960	
9991	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Technology	Phones	258.576	
9992	Standard Class	Consumer	United States	Costa Mesa	California	92627	West	Office Supplies	Paper	29.600	
9993	Second Class	Consumer	United States	Westminster	California	92683	West	Office Supplies	Appliances	243.160	

In [6]: df.shape

Out[6]: (9994, 13)

df.info() In [7]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9994 entries, 0 to 9993 Data columns (total 13 columns): Ship Mode 9994 non-null object Segment 9994 non-null object Country 9994 non-null object 9994 non-null object City State 9994 non-null object Postal Code 9994 non-null int64 9994 non-null object Region Category 9994 non-null object 9994 non-null object Sub-Category 9994 non-null float64 Sales 9994 non-null int64 Quantity Discount 9994 non-null float64 Profit 9994 non-null float64 dtypes: float64(3), int64(2), object(8)

memory usage: 1015.1+ KB

In [8]: df.describe()

Out[8]:

Profit	Discount	Quantity	Sales	Postal Code	
9994.000000	9994.000000	9994.000000	9994.000000	9994.000000	count
28.656896	0.156203	3.789574	229.858001	55190.379428	mean
234.260108	0.206452	2.225110	623.245101	32063.693350	std
-6599.978000	0.000000	1.000000	0.444000	1040.000000	min
1.728750	0.000000	2.000000	17.280000	23223.000000	25%
8.666500	0.200000	3.000000	54.490000	56430.500000	50%
29.364000	0.200000	5.000000	209.940000	90008.000000	75%
8399.976000	0.800000	14.000000	22638.480000	99301.000000	max

```
In [9]:
           df.drop(["Country", "Postal Code"], axis=1, inplace=True)
 Out[9]:
                      Ship
                                                                                   Sub-
                            Segment
                                            City
                                                     State Region
                                                                                            Sales Quantity Discour
                                                                    Category
                     Mode
                                                                                Category
                    Second
               0
                                                                                                         2
                                                                                         261.9600
                                                                                                                0.0
                            Consumer
                                       Henderson
                                                 Kentucky
                                                             South
                                                                     Furniture
                                                                               Bookcases
                     Class
                    Second
                                                                                                         3
                1
                            Consumer
                                       Henderson
                                                  Kentucky
                                                             South
                                                                     Furniture
                                                                                  Chairs
                                                                                         731.9400
                                                                                                                0.0
                     Class
                                                                        Office
                    Second
               2
                                                                                                         2
                            Corporate
                                                             West
                                                                                  Labels
                                                                                          14.6200
                                                                                                                0.0
                                      Los Angeles
                                                 California
                     Class
                                                                     Supplies
                  Standard
                                             Fort
               3
                                                                                                         5
                                                    Florida
                                                                     Furniture
                                                                                         957.5775
                                                                                                                0.4
                            Consumer
                                                             South
                                                                                  Tables
                     Class
                                       Lauderdale
                                                                        Office
                  Standard
                                             Fort
                                                    Florida
                                                                                 Storage
                                                                                          22.3680
                                                                                                         2
                                                                                                                0.2
                            Consumer
                                                             South
                     Class
                                       Lauderdale
                                                                     Supplies
                    Second
            9989
                            Consumer
                                                                                                         3
                                                                                                                0.2
                                           Miami
                                                    Florida
                                                             South
                                                                     Furniture Furnishings
                                                                                          25.2480
                     Class
                  Standard
            9990
                                                                                                         2
                                                                                                                0.0
                            Consumer
                                      Costa Mesa
                                                  California
                                                             West
                                                                     Furniture
                                                                             Furnishings
                                                                                          91.9600
                     Class
                  Standard
            9991
                            Consumer
                                                                                         258.5760
                                                                                                         2
                                                                                                                0.2
                                      Costa Mesa
                                                 California
                                                             West
                                                                   Technology
                                                                                 Phones
                     Class
                  Standard
                                                                        Office
            9992
                            Consumer
                                      Costa Mesa
                                                 California
                                                             West
                                                                                   Paper
                                                                                          29.6000
                                                                                                         4
                                                                                                                0.0
                     Class
                                                                     Supplies
                    Second
                                                                        Office
            9993
                                                                                                         2
                                                                                                                0.0
                            Consumer
                                      Westminster
                                                 California
                                                             West
                                                                               Appliances
                                                                                         243.1600
                     Class
                                                                     Supplies
           9994 rows × 11 columns
In [10]:
           #Total Sales:
            print("Total sales are {}".format(df["Sales"].sum()))
            #Total Profit:
            print("Total profit is {}".format(df["Profit"].sum()))
           Total sales are 2297200.8603
           Total profit is 286397.0217
In [11]:
           df.columns
           Index(['Ship Mode', 'Segment', 'City', 'State', 'Region', 'Category',
                     'Sub-Category', 'Sales', 'Quantity', 'Discount', 'Profit'],
                   dtype='object')
In [12]:
           df.duplicated().sum()
Out[12]: 50
            df.drop_duplicates(inplace=True)
In [13]:
```

In [14]:

Out[14]: 0

df.duplicated().sum()

In [15]: sns.pairplot(df)

Out[15]: <seaborn.axisgrid.PairGrid at 0x1b41ff994c8>

- 1. As Discount increases Profit decreases
- 2. As Discount increases Sales decrease
- 3. As Sales increase Profit increases

In [16]: df.corr()

Out[16]:

	Sales	Quantity	Discount	Profit
Sales	1.000000	0.200469	-0.028625	0.479078
Quantity	0.200469	1.000000	0.008307	0.066089
Discount	-0.028625	0.008307	1.000000	-0.219939
Profit	0.479078	0.066089	-0.219939	1.000000

```
In [17]: plt.figure(figsize=(10,6))
    sns.heatmap(df.corr(),annot=True)
    plt.title("Heat Map on Sample of the Superstore")
    plt.show()
```


1. Most correlation: Sales and Profit

2. Least correlation: Discount and Quantity

In [18]: sns.pairplot(df, hue="Ship Mode")

Out[18]: <seaborn.axisgrid.PairGrid at 0x1b420925d08>

In [19]: df["Ship Mode"].value_counts()

Out[19]: Standard Class 5930 Second Class 1941 First Class 1531 Same Day 542

Name: Ship Mode, dtype: int64

```
In [20]: sns.countplot(x=df["Ship Mode"])
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x1b4226a1288>

Most opted Ship Mode: Standard Class
 Least opted Ship Mode: Same Day

Out[21]:

	Profit	Sales
Ship Mode		
First Class	48910.4477	3.512746e+05
Same Day	15871.8869	1.283217e+05
Second Class	57425.5716	4.591240e+05
Standard Class	163889.6517	1.355879e+06

```
In [22]: ps.plot(kind="bar", figsize=(10,6))
    plt.title("Profit v/s Sales")
    plt.ylabel("Profit and Sales")
    plt.show()
```


- 1. Maximum Profit and Sales: Standard Class
- 2. Minimum Profit and Sales: Same Day

```
In [23]: cat=df["Category"].value_counts()
    cat
```

Out[23]: Office Supplies 5986
Furniture 2114
Technology 1844

Name: Category, dtype: int64

Major distribution of business is in Office Supplies and Least in Technology

```
In [25]: #Category wise Sales
    cs=df.groupby("Category").Sales.sum()
    #Category wise Profit
    cp=df.groupby("Category").Profit.sum()
```

```
In [26]: #Sales
    ax0=cs.plot(kind="bar", figsize=(10,6), color="lightskyblue")

#Profit
    ax0=cp.plot(kind="bar", figsize=(10,6), color="lightcoral")

ax0.set_title("Category wise Sales and Profit")
    ax0.set_ylabel("Total Sales and Profit")

plt.show()
```


- 1. Maximum Profit and Sales in Category: Technology
- 2. Minimum Profit and Sales in Category: Office Supplies

Sub-Category

```
sub=df["Sub-Category"].value_counts()
In [27]:
          sub
Out[27]: Binders
                           1518
          Paper
                           1344
          Furnishings
                            954
          Phones
                            888
          Storage
                            845
          Art
                            793
          Accessories
                            773
          Chairs
                            615
          Appliances
                            466
          Labels
                            359
          Tables
                            319
          Envelopes
                            254
          Bookcases
                            226
          Fasteners
                            217
          Supplies
                            190
          Machines
                            115
          Copiers
                             68
          Name: Sub-Category, dtype: int64
In [28]:
          from matplotlib import cm
          cmap = cm.get_cmap('Spectral')
          sub.plot(kind="pie", figsize=(15,6), autopct="%1.1f%%", shadow=True, startangle=18
          Θ,
                                                 explode=explode_list, labels=None, pctdistan
          ce=1.11, cmap=cmap)
          plt.title("Sub-Category")
          plt.axis("equal")
          plt.legend(labels=sub.index,loc="upper left")
          plt.show()
                                                   Sub-Category
                                                 4.7%
                                                       6.2%
                Binders
                                             3.6%
                                                              7.8%
                Paper
                Furnishings
                                          3.2%
                Phones
                Storage
                                        2.6%
                                                                    8.0%
                Art
                                       2.39
                Accessories
                Chairs
                                      2.2%
                Appliances
                Labels
                                                                      8.5%
                Tables
                Envelopes
                Bookcases
                Fasteners
                Supplies
                                                                     8.9%
                Machines
                                        15.3%
                Copiers
```

9.6%

13.5%

- 1. Major distribution of business is in Binders, Paper and Furnishings
- 2. Least distribution of business is in Copiers, Machines and Supplies

Category and Sub-Category

```
In [29]: x=df.groupby(["Category", "Sub-Category"]).Sales.sum()
y=df.groupby(["Category", "Sub-Category"]).Profit.sum()
```

Sales

```
In [30]: |fig=plt.figure()
         ax0=fig.add_subplot(2,2,1)
         ax1=fig.add_subplot(2,2,2)
         ax2=fig.add\_subplot(2,2,3)
         ax3=fig.add_subplot(2,2,4)
         #Furniture
         x["Furniture"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax
         =ax1)
         ax1.set_title("Furniture")
         ax1.set_xlabel("Sub-Categories")
         ax1.set_ylabel("Sales")
         #Technology
         x["Technology"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),a
         x=ax2)
         ax2.set_title("Technology")
         ax2.set_xlabel("Sub-Categories")
         ax2.set_ylabel("Sales")
         #Office Supplies
         x["Office Supplies"].sort_values(ascending=True).plot(kind="barh", figsize=(20,
         20), ax = ax3)
         ax3.set_title("Office Supplies")
         ax3.set_xlabel("Sub-Categories")
         ax3.set_ylabel("Sales")
         #Total
         x.sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax=ax0)
         ax0.set_title("All Sub-Categories")
         ax0.set_xlabel("Sub-Categories")
         ax0.set_ylabel("Sales")
```


- 1. Maximum Sales in : Phones(Technology), Chairs(Furniture) and Storage(Office Supplies)
- 2. Minimum Sales in : Fasteners, Labels and Envelopes (Office Supplies)

Profit

```
In [31]: | fig=plt.figure()
         ax0=fig.add_subplot(2,2,1)
         ax1=fig.add_subplot(2,2,2)
         ax2=fig.add\_subplot(2,2,3)
         ax3=fig.add_subplot(2,2,4)
         #Furniture
         y["Furniture"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax
         =ax1, color="red")
         ax1.set_title("Furniture")
         ax1.set_xlabel("Sub-Categories")
         ax1.set_ylabel("Profits")
         #Technology
         y["Technology"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),a
         x=ax2, color="red")
         ax2.set_title("Technology")
         ax2.set_xlabel("Sub-Categories")
         ax2.set_ylabel("Profit")
         #Office Supplies
         y["Office Supplies"].sort_values(ascending=True).plot(kind="barh", figsize=(20,
         20), ax=ax3, color="red")
         ax3.set_title("Office Supplies")
         ax3.set_xlabel("Sub-Categories")
         ax3.set_ylabel("Profit")
         #Total
         y.sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax=ax0,color="r
         ed")
         ax0.set_title("All Sub-Categories")
         ax0.set_xlabel("Sub-Categories")
         ax0.set_ylabel("Profit")
```

Out[31]: Text(0, 0.5, 'Profit')

- 1. Maximum Profit in : Copiers, Phones and Accessories (Technology)
- 2. Loss in : Tables and Bookcases (Furniture) and Supplies (Office Supplies)

Sales and Profit Combined

```
In [32]: #Sales
         fig=plt.figure()
         ax0=fig.add\_subplot(2,2,1)
         ax1=fig.add_subplot(2,2,2)
         ax2=fig.add\_subplot(2,2,3)
         ax3=fig.add_subplot(2,2,4)
         #Furniture
         x["Furniture"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax
         =ax1,)
         ax1.set_title("Furniture")
         ax1.set_xlabel("Sub-Categories")
         ax1.set_ylabel("Sales")
         #Technology
         x["Technology"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),a
         ax2.set_title("Technology")
         ax2.set_xlabel("Sub-Categories")
         ax2.set_ylabel("Sales")
         #Office Supplies
         x["Office Supplies"].sort_values(ascending=True).plot(kind="barh", figsize=(20,
         20), ax = ax3)
         ax3.set_title("Office Supplies")
         ax3.set_xlabel("Sub-Categories")
         ax3.set_ylabel("Sales")
         #Total
         x.sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax=ax0)
         ax0.set_title("All Sub-Categories")
         ax0.set_xlabel("Sub-Categories")
         ax0.set_ylabel("Sales")
         #Profit
         #Furniture
         y["Furniture"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax
         =ax1, color="red")
         ax1.set_title("Furniture")
         ax1.set_xlabel("Sub-Categories")
         ax1.set_ylabel("Profits")
         #Technology
         y["Technology"].sort_values(ascending=True).plot(kind="barh", figsize=(20,20),a
         x=ax2, color="red")
         ax2.set_title("Technology")
         ax2.set_xlabel("Sub-Categories")
         ax2.set_ylabel("Profit")
         #Office Supplies
         y["Office Supplies"].sort_values(ascending=True).plot(kind="barh", figsize=(20,
         20), ax=ax3, color="red")
         ax3.set_title("Office Supplies")
         ax3.set_xlabel("Sub-Categories")
         ax3.set_ylabel("Profit")
```

```
#Total
y.sort_values(ascending=True).plot(kind="barh", figsize=(20,20),ax=ax0,color="r
ed")
ax0.set_title("All Sub-Categories")
ax0.set_xlabel("Sub-Categories")
ax0.set_ylabel("Profit")
```

Out[32]: Text(0, 0.5, 'Profit')

- 1. Highest Sales and Profit in: Copiers, Phones and Accessories (Technology)
- 2. Lowest Sales and Profit in: Tables, Bookcases (Furniture) and Supplies (Office Supplies)

In [33]:	state=df["State"].value_cstate	counts()
In [33]: Out[33]:	California New York Texas Pennsylvania Washington Illinois Ohio Florida Michigan North Carolina Virginia Arizona Georgia Tennessee Colorado Indiana Kentucky Massachusetts New Jersey Oregon Wisconsin Maryland Delaware Minnesota Connecticut Oklahoma Missouri Alabama Arkansas Rhode Island Mississippi Utah South Carolina Louisiana Nevada Nebraska New Mexico	1980 1119 980 581 502 490 468 383 254 224 224 184 183 182 149 135 130 123 110 105 96 89 82 66 61 60 53 53 53 42 42 42 42 42 43 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45
	South Carolina Louisiana Nevada Nebraska New Mexico Iowa	42 42 39 38 37 30
	New Hampshire Kansas Idaho Montana South Dakota Vermont District of Columbia	27 24 21 15 12 11
	Maine North Dakota West Virginia Wyoming Name: State, dtype: int64	8 7 4 1

```
In [34]: state.plot(kind="bar", figsize=(15,6))
    plt.title("Distribution of Buyers in each State")
    plt.xlabel("States")
    plt.ylabel("Number of Buyers")
```

Out[34]: Text(0, 0.5, 'Number of Buyers')

- 1. Most buyers belong to "California", "New York" and "Texas"
- 2. Least buyers belong to "Wyoming", "West Virginia" and "North Dakota"

```
In [35]: ss=df.groupby(["State"]).Sales.sum()
sp=df.groupby(["State"]).Profit.sum()
```

```
In [36]:
         #State wise Distribution of Sales
         ss.sort_values(ascending=False).plot(kind="bar", figsize=(15,6))
         plt.xlabel("States")
         plt.ylabel("Sales")
         #State wise Distribution of Profit
         sp.sort_values(ascending=False).sort_values(ascending=False).plot(kind="bar",fi
         gsize=(15,6),color="red")
         plt.title("Distribution of Sales and Profit in each State")
         plt.xlabel("States")
         plt.ylabel("Profit")
```

Out[36]: Text(0, 0.5, 'Profit')

- 1. Maximum Sales and Profit in cities: "California" and "New York"
- 2. Minimum Sales and Profit in cities: "Oregon", "Florida", "Arizona", "Tennessee", "Colorado", "North Carolina", "Ilionis", "Pennsylvania", "Ohio" and "Texas"

Segment

```
seg=df["Segment"].value_counts()
In [37]:
         seg
Out[37]: Consumer
                         5160
```

Home Office 1776 Name: Segment, dtype: int64

Corporate

3008

Major business distribution in Consumer Segment and Least in Home Office

Sales and Profit in different segments

```
In [39]:
         df.groupby("Segment")[["Sales", "Profit"]].sum().plot(kind="bar", color=["lightsk")
         yblue", "lightcoral"])
         plt.ylabel("Sales and Profit")
         plt.xlabel("Segment")
         plt.title("Sales and Profit distribution among segments")
         plt.show()
```


Most Profit and Sales in Consumer segment and least in Home Office

Region

```
In [40]: | reg=df["Region"].value_counts()
          reg
Out[40]: West
                     3177
          East
                     2832
          Central
                     2315
```

1620 Name: Region, dtype: int64

South

Company deals majorly in Western Region and least in Southern Region

```
In [42]: df.groupby("Region")[["Sales","Profit"]].sum().sort_values(by=["Sales","Profit"], ascending=False).plot(kind="bar",color=["cornflowerblue","lightsalmon"])
    plt.ylabel("Sales and Profit")
    plt.xlabel("Region")
    plt.title("Sales and Profit distribution among segments")
    plt.show()
```


More Profit from Western and Eastern Regions whereas lesser profits from Central and Southern regions

Region wise Ship Mode

```
In [43]: plt.figure(figsize=(8,5))
    sns.countplot(x="Region", hue="Ship Mode", data=df)
    plt.title("Region wise Ship Mode Count")
    plt.ylabel("Ship Mode count")
    plt.show()
```


1. Most opted mode: Standard Class and

2. Least opted mode: Same Day

Relation between Profit and Discount

```
df["Discount"].corr(df["Profit"])
In [44]:
Out[44]: -0.21993898249765056
          sns.lineplot(x="Discount",y="Profit",data=df)
In [45]:
           plt.show()
              100
                0
             -100
           ₽00 −200
             -300
             -400
                   0.0
                        0.1
                             0.2
                                   0.3
                                        0.4
                                                  0.6
                                                        0.7
                                                             0.8
                                      Discount
```

Profit and Discount have negative relation, i.e., when one increases the other decreases

Relation among Sales, Profit and Discount

```
In [46]: plt.style.use("seaborn")
    df.plot(kind="scatter", x="Sales", y="Profit", c="Discount", colormap="Spectral")
    plt.xlabel("Sales")
    plt.ylabel("Profit")
    plt.title("Relation among Sales, Profit and Discount")
    plt.show()
```


- 1. As Discount increases Profit decreases
- 2. Discount and Sales have a lesser relation but Sales also decrease with increasing discount

Thank You!!!

In []:	
---------	--