

EXAMEN CONVOCATORIA ORDINARIA

12 de enero de 2017

1. Dados los subespacios de \mathbb{R}^4

$$S = \{(x, y, z, t) \in \mathbb{R}^4, \ x - z = 0, \ x + y + t = 0\} \ \text{y}$$
$$T = \langle (1, -1, 1, 0), (0, 1, 0, 1) \rangle,$$

- (I) (1 pto.) encuentra una base de S e indica cuál es su dimensión.
- (II) (1 pto.) Si $f: \mathbb{R}^4 \mapsto \mathbb{R}^4$ es una aplicación lineal tal que:
 - Ker f = S
 - $f(e_1) = (1, 0, 1, 1) \text{ y } f(e_2) = (0, 1, 0, 1).$

Calcula $f(e_3)$ y $f(e_4)$ siendo $[e_1, e_2, e_3, e_4]$ la base canónica de \mathbb{R}^4 .

- (III) $(0,3 \ ptos.)$ Escribe la matriz asociada a f en las bases canónicas de \mathbb{R}^4 y su expresión general.
- (IV) (1 pto.) Calcula la dimensión de $\operatorname{Im} f$ y prueba que $\operatorname{Im} f = T$. Razona si la aplicación f es biyectiva o no.
- 2. Dada la matriz 3×3 sobre \mathbb{R} ,

$$A = \left(\begin{array}{ccc} 1 & a & 1 \\ -1 & 1 & -a \\ 1 & 0 & a+1 \end{array}\right)$$

- (I) (2 ptos.) determina para qué valores de $a \in \mathbb{R}$ es diagonalizable la matriz A.
- (II) (1,3 ptos.) Para a=0, determina una matriz P regular tal que $P^{-1}AP$ sea una matriz diagonal.
- 3. Dada la función $F: \mathbb{R} \mapsto \mathbb{R}$ definida por $F(x) = \int_0^x \frac{2t}{1+t^4} \, dt$,
 - (I) $(1,1 \ ptos.)$ estudia el crecimiento y decrecimiento de F(x). ¿Tiene esta función algún máximo o mínimo?
 - (II) $(1,2\ ptos.)$ Determina $P_2(x)$, el polinomio de MacLaurin de orden 2 de F(x). Usa este resultado para calcular un valor aproximado de $F(1) = \int_0^1 \frac{2t}{1+t^4} dt$ mediante $P_2(1)$.
 - (III) (1,1 ptos.) Halla el valor exacto de $F(1) = \int_0^1 \frac{2t}{1+t^4} dt$.