Que: 10.10.1.3

Nikam Pratik Balasaheb (EE21BTECH11037)

1 Problem

A tangent $\mathbf{P} - \mathbf{Q}$ at a point \mathbf{P} of a circle of radius r = 5cm meets a line through the center \mathbf{O} at a point \mathbf{Q} so that $\mathbf{O} - \mathbf{Q} = 12cm$. Find length $\mathbf{P} - \mathbf{Q}$.

2 Solution

Let the circle be

$$||\mathbf{x}||^2 = 25 \tag{2.0.1}$$

and the point $\mathbf{P} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$

The tangent at \mathbf{P} , that \mathbf{Q} lies on, is given by

$$\mathbf{x} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2.0.2}$$

$$= \begin{pmatrix} \lambda \\ 5 \end{pmatrix} \tag{2.0.3}$$

also,

$$\|\mathbf{Q} - \mathbf{O}\| = 12 \tag{2.0.4}$$

$$\|\mathbf{Q}\| = 12\tag{2.0.5}$$

$$\|\mathbf{Q}\|^2 = 144 \tag{2.0.6}$$

for **Q**

$$\lambda^2 + 25 = 144 \tag{2.0.7}$$

$$\lambda^2 = 119 \tag{2.0.8}$$

$$\lambda = \pm \sqrt{119} \tag{2.0.9}$$

$$\mathbf{P} - \mathbf{Q} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} - \begin{pmatrix} \sqrt{119} \\ 5 \end{pmatrix} \tag{2.0.10}$$

$$= \begin{pmatrix} \sqrt{119} \\ 0 \end{pmatrix} \tag{2.0.11}$$

$$\|\mathbf{P} - \mathbf{Q}\| = \sqrt{119} \tag{2.0.12}$$

TABLE 0: Table1

Fig. 0: Figure 1