Silicates

Why silicates?

 Table 3.6 The Eight Most Abundant Elements in the Earth's Crust

		Proportion of Earth's Crust				
Element	Common Oxidation State	(wt %)	(atom %)	(vol %)	Oceanic Crust (wt %)	Total Earth (wt %)
0	-2	46.6	62.5	91.7	40.9	29.5
Si	+4	27.7	21.2	0.2	23.1	15.2
Al	+3	8.1	6.5	0.5	8.5	1.1
Fe	+2/+3	5.0	1.9	0.5	8.2	34.6
Ca	+2	3.6	1.9	1.5	8.1	1.1
Na	+1	2.8	2.6	2.2	2.1	0.6
K	+1	2.6	1.4	3.1	1.3	0.1
Mg	+2	2.1	1.8	0.4	4.6	12.7
Total		98.5	99.8	~100	96.8	94.9

Oxygen and Silicon are the most abundant minerals on the Earth's crust

Source: Adapted from Mason and Moore (1982).

Coordination	Radius Ratio		~Maximum Radius (Å)	Common Cations
12	~1.00	1.26	N/A	K ⁺ , Ca ²⁺ , Na ⁺ Fe ²⁺ , Ca ²⁺ ,
8	0.732-1.00	0.92	1.26	Na^+ , Mg^{2+}
6	0.414-0.732	0.52	0.92	Al ³⁺ , Fe ²⁺ , Fe ³⁺ , Mg ²⁺
4	0.225-0.414	0.28	0.52	Si ⁴⁺ , Al ³⁺ , S ⁶⁺ , P ⁵⁺
3	0.155-0.225	0.20	0.28	C ^{4+ a}
2	< 0.155	N/A	0.20	None

Silicate classification

Orthosilicates = Nesosilicates

Disilicates = Sorosilicates

Ring silicates = Cyclosilicates

Chain silicates = Inosilicates

Sheet silicates = Phyllosilicates

Framework silicates = Tectosilicates

Table 11.1 Silicate Classification^a

Silicate	Number of O ²⁻ Shared per	Z:O	Structural
Class	Tetrahedron	Ratio	Configuration
Orthosilicates	0	1:4	Isolated tetrahedra
Disilicates	1	2:7	Double tetrahedra
Ring silicates	2	1:3	Rings of tetrahedra
Chain silicates			Chains of tetrahedra
Single chain	2	1:3	
Double chain	2 or 3	4:11	
Sheet silicates	3	2:5	Sheets of tetrahedra
Framework silicates	4	1:2	Framework of tetrahedra

^aZ refers to the cation(s), usually Si⁴⁺, and also Al³⁺, that occupy the tetrahedral sites.

Structural linkage schemes among silicates

Nesosilicates

Unit composition: (SiO₄)4-Example: olivine, (Mg, Fe)₂SiO₄

Inosilicates (single chain)

Unit composition: (Si₂O₆)4-

Sorosilicates

Unit composition: (Si₂O₇)6-Example: hemimorphite, Zn₄Si₂O₇(OH)₂ · H₂O

Cyclosilicates

Unit composition: (Si₆O₁₈)¹²-Example: beryl, Be₃Al₂Si₆O₁₈

Unit composition: (Si₄O₁₁)⁶-Example: amphibole-e.g.,

anthophyllite, Mg7Si8O22(OH)2

Silicate classification

Orthosilicates = Nesosilicates

Disilicates = Sorosilicates

Ring silicates = Cyclosilicates

Chain silicates = Inosilicates

Sheet silicates = Phyllosilicates

Framework silicates = Tectosilicates

Table 11.1 Silicate Classification^a

Silicate Class	Number of O ^{2–} Shared per Tetrahedron	Z:O Ratio	Structural Configuration
Orthosilicates	0	1:4	Isolated tetrahedra
Disilicates	1	2:7	Double tetrahedra
Ring silicates	2	1:3	Rings of tetrahedra
Chain silicates			Chains of tetrahedra
Single chain	2	1:3	
Double chain	2 or 3	4:11	
Sheet silicates	3	2:5	Sheets of tetrahedra
Framework silicates	4	1:2	Framework of tetrahedra

Phyllosilicates

Unit composition: (Si₂O₅)²⁻ Example: mica—e.g., phlogopite, KMg₃(AlSi₃O₁₀)(OH)₂

Tectosilicates

Unit composition: $(SiO_4)^{4-}$ Example: high cristobalite, SiO_2

^aZ refers to the cation(s), usually Si⁴⁺, and also Al³⁺, that occupy the tetrahedral sites.

Orthosilicate (Nesosilicate)

Orthosilicates

Olivine	$(Mg,Fe)_2SiO_4$
Zircon	ZrSiO ₄
Garnet	$X_3Y_2(SiO_4)_3$
Aluminum silicates	AlAlOSiO ₄
Staurolite	$Al_9Fe_2(SiO_4)_4O_6(OH)_2$
Chloritoid	$(Fe^{2+},Mg,Mn)_2(Al,Fe^{3+})$
	$Al_3O_2(SiO_4)_2(OH)_4$
Topaz	$Al_2(SiO_4)(F,OH)_2$
Titanite	CaTiOSiO ₄

Olivine: Composition

General formula: [M2M1SiO₄] M2 and M1 are octahedral sites (6 coordination number)

M2>M1 M2= Ca²⁺, Mg²⁺, Fe²⁺, Fe³⁺, Mn²⁺ M1= Mg²⁺, Fe²⁺, Fe³⁺, Mn²⁺

Important members:

Forsterite: Mg₂SiO₄

Fayalite: Fe₂SiO₄

Simple substitution

Olivine: Distinguishing features

Distinguishing features in hand specimen:

- Color: Olive to yellowish green, darker with increasing Fe
- Vitreous luster
- Conchoidal fracture
- Granular nature

https://www.mindat.org/a/best_fayalite

Olivine: Distinguishing features

Optical properties

- ✓ Color: Colorless or pale green-yellow with increasing Fe.
- ✓ Relief: High.
- ✓ Birefringence: High
- ✓ Interference colors: Strong, III order colors.
- ✓ Cleavage: None
- ✓ Distinctive fractures

Olivine: Occurrence

Olivine: Uses

- Clear green olivine, known as *peridot* is a minor gemstone
- Some of the finest material comes from the island of Zebirget in the Red Sea.
- Peridot has historically been used to treat gastrointestinal problems (however, efficacy not been proven scientifically)
- Some dental ceramics contain forsterite as a strengthening LIGHT YELLOWISH agent.

Periodot, SHADES

LIGHT GREEN peridat

peridot

VIVID GREEN peridot

DARK BROWNISH-GREEN periodity

Garnet: Composition

General formula: $X_3Y_2(SiO_4)_3$

 $X = Ca^{2+}$, Mg^{2+} , Fe^{2+} , Mn^{2+} (divalent cations) $Y = Al^{3+}$, Fe^{3+} (trivalent cations)

Group	End Member	Composition	
Pyralspite	Pyrope	Mg ₃ Al ₂ (SiO ₄) ₃	
	Almandine	Fe ₃ Al ₂ (SiO ₄) ₃	
	Spessartine	Mn ₃ Al ₂ (SiO ₄) ₃	
Grandite	Grossular	Ca ₃ Al ₂ (SiO ₄) ₃	
	Andradite	Ca ₃ Fe ₂ ³⁺ (SiO ₄) ₃	

Garnet: Distinguishing features

The diversity of color is controlled mostly by the presence of chromophore elements (Fe, Mn, Cr, etc.) in the X and Y structural sites.

Garnet: Distinguishing features

Optical properties

- ✓ Color: Colorless to pinkish.
- ✓ Relief: High.
- ✓ Birefringence: Isotropic
- ✓ Interference colors: Isotropic
- ✓ Cleavage: None
- ✓ Distinctive fractures
- ✓ Commonly contains a lot of inclusions.

Garnet: Occurrence

- Common mineral found in crustal rocks
- Commonly found in a variety of metamorphic rocks

(details will be discussed in petrology)

✓ Garnet composition is strongly dependent on the pressure and temperature condition during the formation of the mineral.

Garnet: Uses

- ✓ Used as a semiprecious gemstone.
- ✓ The irregular fracture makes garnet valuable as an abrasive, particularly for sandpaper.
- ✓ Also used in filters to help purify water in wastewater treatment plants.
- ✓ In petrology, garnet has a large importance in reveling the history and evolution of rocks
- ✓ Commonly found in a variety of rocks formed in a wide range of physicochemical conditions
- ✓ It can have a wide range of chemical compositions, which are related to the physicochemical conditions in which they formed.
- Resistant to weathering and erosion.

