Date: 11-12-23 #CSC 461 - Assignment 4-NLP # Nosheen Azhar # FA20-BSE-061 # Description: In the obellow task we will calculate #TF, WOF, IDF and TF IDF in greestion I and 4 0,0,0) Andri then the similarity between S1, S2 and S3 using cosine, manhatten and euclidean distances. ,0,00 41,X Question 1 S1. The Botta is one of the most important courses in S2: This is one of the best data science courses_ S3: The data science perform data analysis BOW = data, science, 'is', one of the most important' courses, in computer, this, best, scientists; perform analysis Vector R: [1,2,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0] Vector Rz: [1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0] Veclor R3. [2,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,1] Longth of Vector R1 = 12 Length of Vector R2 = 9 Length of Vector R3 = 6

Rof Vector S1.	If of Vector Sz	Rol Vectors
th ('data') = 1/12	# ('dala') = 1/9	
\$ (Science) = 1/2 = 6	tf (Science)=1/9	f ('data')=2/3/3
th(is')=1/2 th(ine')=1/2	th('is)=19 th('one)=19=4('oh')=1	4 ('is')= %=0
If (the') = 1/2 + ((d')) = 1/2	tf(the)=/9	tf('ob')=0/6=0 tf('the')=1/4
tf ('most')=/12 tf ('important')=/2	# ('most')= 1/9=0 + ('temportant')= 0/9=0	the (most)= 1/2 =0
fl(courses')=12	&('courses')= \$9	4 (courses)=8
#(in)=/12 tf(computer)=/12	If ('in') = 29=0 - If ('compuler) = 0	-4(in)= %=0
te(this) = %2=0	- ((4kis) = 0/9 =	-4 ('this')=6=
the best)= 12=0 the scientist')= 12=0	# (best') = 1/9 -4 ('scientist') = 1/9 = 0	-lf(best)====================================
tp(perform) = 2/2=0	-4(perform) = % = 0	the (perform) to
H(analysis')=1/12=0	the (analysis) = 9q =0	-lf (analysis)=16

idf()

idf (dada) = log(3/3) = 0 'idf (Science) = log(3/2) = 0.18 idf(is') = log(3/2)=0.18 id ('one) = log (3/2) = 0.18 idf (idf) = log (3/2) = 0.18 id (4he) = log (3/3) = 0.4 idf (most) = log (3/1) = 0.48 idf (important) = log (31) = 0.48 id ('courses) = log (3/2)=0.18 id ('in') = log (3/1) = 0.48 id ('computer) = log (3/2) = 0.48 idf ('this') = log (3/1)=0.48 idf ('best') = lag (3/1) = 0.48 (df (scientist) = log (3/1)=0.48 idf ('perform') = log (3/1)=0:48 iof (analysis) = log (3/1)=0.48.

	tf*idf(R1)	tf+idf(R2)	10 1000
data	0	4+104 (R2)	tfxiclf(R3)
Science	0.03	0.02	0
is .	0.015	0.02	0
, one	0.015	0.02	0
of	0.015	0.02	. 0
the	6	0	0
most	0.04	0	0
important	0.04	0	0
courses.	0.015	0.02	0
Vn	0.04	0	0
computer -	0.04	0	0
this	0	0.053	0
best	0	0.053	0
Socientist	0	0	0.08
Delform	0	0	0.08
analysis	0	0	0.08

	Question 2. Cosine Similarity	-
	Through Bow	-
3) S3	cos0 = 5.52.53	1
5311	15.11521153)	C
		7
	$(os(S_2,S_3)=S_2.S_2=3=6.482$ $(S_2 S_3 =(3)(2.4495)$	3 H
	$\cos(S_{1},S_{3}) = S_{1}.S_{3} = 8 = 0.327$ $ S_{1} S_{3} = (3.74)(2.4495)$	() () (
	Through Right.	1
	$\cos(S_{1}, S_{2}) = S_{1}.S_{2} = (0x0) + (0.03x0.02) ++(0x0) = 1.88 \times 10$ $ S_{1} S_{2} = (0.09)(0.087) = 7.85 \times 10$ $= \frac{36}{157} = 0.229$	10 /
	$Cos(S_2,S_3) = S_2.S_3 = 0 = 0$ $ S_2 S_3 = (0.087)(0.138)$	
	$\cos(S_{12}S_3) = S_2 \cdot S_3 = 0$ = 0 $ S_2 S_3 = (0.09)(0.138)$	

SII

Manhallen Distance | through BOW. Manhattan Distance (Si, S2) = 2, |Sii - S2) = |-0+1+(1-1)+(2-1)+---+(0-0)[Manshatten Distance (S2, S3) = 2; (Si2 - S32) = 1(1-2)+(1-0)+ ---= (0-1) Manhatlan Distance (Si, S3) = £1 | Si, S3 | =1(1-2)+(2-0)+(---+(0-1) Enclidan Distance I Using BOW. $\sqrt{(S_1 \cdot S_2)^2} = \sqrt{(1-1)^2 + (2-1)^2 + --+ (0-0)^2}$ = 2.6458 $\sqrt{(S_2,S_3)^2} = \sqrt{(1-2)^2 + (1-0)^2 + --- + (0-1)^2}$ $\sqrt{(\$_{19}\$_{3})^{2}} = \sqrt{(1-2)^{2}+(2-0)^{2}+--+(0-1)^{2}}$

Manhatten Distance through Hidl Manhattan Distance (SI, S2) - E, IS1 - S2; = [(0-0)+(0.03-0.02)+----(0-0)] 0.054 Manhattan Distance (S2, S3)= 2; | S2i - S3i) = [(0-0)+(0.02-0)+---+(0-0:08)] = 1-0.0341 = 0.034 Manhatlan Distance (Sz, S3)= Ei | Szi - S3i = 10-0)+ (0.03-0)+---+(0-0.08) = 10.01 = 0.01 Euclidean Distance Hough thicky. Euclidian D(SiS) = 1/2; (S1; - S2;)2 = 1/(0-0)2; (0.03-0.02)2--+(0-0) 0.1105 Euclidia D(S2, S3) = NE(S2; - S3i)2 = V(0-0)2 (0.02-0)2 ---+ (0-008) = 0.1637 Gudidan D (Sis S3) = NEi (Sin-S3)2 $= \sqrt{(0-0)^2 + (0.03-0)^2 + (0-0.08)^2}$ = 0.1655