∞ Rappels de probabilités

1 Probabilités et probabilités conditionnelles

Propriétés

Formule de Laplace : Soit un événement E sur un ensemble fini \mathscr{E} :

$$P(E) = \frac{\text{nombre d'éléments de E}}{\text{nombre d'élément de } \mathcal{E}}$$

Événements contraires : Soit un événement E et \bar{E} son événements contraire :

$$P(\bar{E}) = 1 - P(E)$$

Probabilité conditionnelle : Soit *A* et *B* deux événements.

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \text{probabilit\'e de B sachant A}$$

 $P(A \cap B) = P_A(B) \times P(A)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Deux événements A et B sont indépendants si et seulement si $P(A \cap B) = P(A) \times P(B)$ ou encore $P_A(B) = P(A)$.

2 Loi binomiale

Propriétés

On dit qu'une variable aléatoire X suit une loi binomiale de paramètres n et p si :

- X compte le nombre de succès d'une répétition de n épreuves de Bernouilli car deux issues (réussite ou échec, correct pas correct,....)
- Ces issues sont indépendantes : soit l'énoncé le dit explicitement, soit cette indépendance est due au tirage avec remise.
- Les épreuves de Bernouilli ont toute le même paramètre p.

L'espérance de X est alors $n \times p$: c'est le nombre moyen sur n lancers de l'apparition du caractère étudié.

La phrase à écrire pour justifer est donc :

La variable X compte le nombre de succès d'une répétition de n (premier paramètre) épreuves de Bernouilli (car deux issues), indépendantes et de même paramètre p (deuxième paramètre).

Donc $X \sim \mathcal{B}(n, p)$

Calculs

Les calculs se feront systématiquement à la calculatrice :

- **1.** P(X = k).
 - Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra D : Binomiale Ddp.
 - Le nombre d'essai sera n, la probabilité de succès p et la valeur de X sera k.
- **2.** $P(X \le k)$.
 - Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra E : Binomiale FdR.
 - Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera 0 et la borne sup sera k.
- **3.** $P(X \ge k)$.
 - Sur la TI, on fera 5 : Probabilités, 5 : Distributions , puis dans le menu des distributions, on prendra E : Binomiale FdR.
 - Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera k et la borne sup sera n.
- **4.** $P(i \le X \le j)$.
 - Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra E : Binomiale FdR.
 - Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera i et la borne sup sera j.

3 Loi de Poisson:

Propriétés

On associe cette loi à des événements qui se produisent rarement. Elle est associée à un paramètre : λ .

Son espérance sera : λ .

On écrira $X \sim \mathcal{P}(\lambda)$.

Calculs

Les calculs se feront systématiquement à la calculatrice :

1. P(X = k).

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra H : Poisson Ddp.

Le nombre d'essai sera n, la probabilité de succès p et la valeur de X sera k.

2. $P(X \le k)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera 0 et la borne sup sera k.

3. $P(X \ge k)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions, puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera k et la borne sup sera 1000.

4. $P(i \le X \le j)$.

Sur la TI, on fera 5 : Probabilités, 5 : Distributions , puis dans le menu des distributions, on prendra I : Poisson FdR.

Le nombre d'essai ou trials sera n, la probabilité p, la borne inf sera i et la borne sup sera j.

Approximation de la loi binomiale

Sous de bonnes conditions, (que nous ne vérifirons pas), on peut approcher une loi $X \sim \mathcal{B}(n, p)$ par une loi de Poisson de paramètre $\lambda = n \times p$.

4 Loi normale

Propriétés

Pour une loi normale $N(\mu, \sigma)$, on a :

- 1. μ qui est la moyenne
- **2.** σ qui est l'écart-type.
- **3.** $P(X \le \mu) = P(X \ge \mu) = 0.5$.
- **4.** $P(\mu 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$

Calculs

Pour $t, u \in \mathbb{R}$:

- **1.** $P(X \le t)$ se calcule avec normalFDR, borne inf = -10^9 et borne sup t.
- **2.** $P(X \ge t)$ se calcule avec normalFDR, borne inf = t et borne sup 10^9 .
- **3.** $P(u \le X \le t)$ se calcule avec normalFDR, lower=u et upper=t.
- **4.** $P(\mu h \le Y \le \mu + h) = t \Leftrightarrow 2P(Y \le \mu + h) 1 = t \Leftrightarrow P(Y \le \mu + h) = \frac{1+t}{2}$, on trouve la valeur de $\mu + h$ en utilisant InvNormale ou FracNormale sur la TI; la surface, c'est $\frac{1+t}{2}$.

Pour accéder à normalFDR, on fera les mêmes manipulations que dans le cas de la loi binomiale mais en choisissant les menus de la loi normale.

Calculs

Une loi binomiale $\mathcal{B}(n;p)$ peut être approchée par une loi normale de moyenne $n \times p$ et d'écart-type $\sqrt{n \times p \times (1-p)}$.

Il faut bien comprendre la signification du terme approcher dans ce contexte, il faudra prendre en compte la correction de continuité.

Pour $X \sim \mathcal{B}(n, p)$ et $Y \sim N(n \times p; \sqrt{n \times p \times (1 - p)})$:

- P(X = k) ne sera pas approximé par P(Y = k), qui est nul, mais par $P(k 0.5 \le Y \le k + 0.5)$
- $P(i \le X \le j)$ sera approximé par $P(i-0,5 \le Y \le j+0.5)$
- $P(X \ge i)$ sera approximé par $P(Y \ge i 0.5)$.
- $P(X \le i)$ sera approximé par $P(Y \le i + 0.5)$.

Dans les exercices, on demandera surtout de donner les paramètres de la loi normale par laquelle on pourra approcher la loi binomiale.