ZFSC: План работ по подтверждени теории. Часть 1. Вычислительные подтверждения констант микромира.

Евгений Монахов

Стратегическая цель

Доказать Zero-Field Spectral Cosmology (ZFSC) через микромир:

- массы поколений частиц,
- матрицы смешивания СКМ/PMNS,
- силы взаимодействий,
- ullet строгое геометрическое определение постоянной тонкой структуры lpha.

Главный ориентир №1: вывести α как геометрический инвариант без подгонки.

Этап A. Базовая матрица H и сектора

- 1. Построить H (размер $N \times N$, параметры $\Delta, r, g_L, g_R, h_1, h_2, h_3$).
- 2. Сектора (u,d,ℓ,ν) как геометрические трансформации H.
- 3. Собственные значения $\lambda_n(H_s) \to \text{массы: } m_n^{(s)} = c_s \cdot \lambda_n(H_s).$
- 4. Критерий: устойчивые топ-3 собственных значений для поколений.

 Π о-человечески: Мы проверяем, что базовая матрица H порождает три устойчивых значения, которые можно трактовать как массы поколений частиц.

Этап В. Смешивание СКМ и PMNS

$$\mathrm{CKM} = U_u^{\dagger} U_d, \qquad \mathrm{PMNS} = U_{\ell}^{\dagger} U_{\nu}.$$

 $\it По-человечески:$ Берём собственные векторы из разных секторов. Если они чуть расходятся, рождаются матрицы смешивания. Мы ждём малые углы для CKM и большие углы для PMNS.

1

Этап С. Силы взаимодействий

- Связность слоёв \rightarrow группы SU(3), SU(2), U(1).
- Эффективные константы: $g_i \propto f$ (связность).
- \bullet Критерий: правильные порядки отношений $(g_3:g_2:g_1)$ на шкале $\mu_{\mathrm{geo}}.$

Этап D. Геометрическое α

Ищем инвариант $\mathcal I$ такой, что

 $\alpha^{-1}=\mathcal{F}(\text{геометрия матрицы } H$ и слоёв).

Главная цель — получить $1/\alpha \approx 137$ без подгонки.

Этап Е. Верификация

- Сравнить с $\alpha^{-1}(0)\approx 137.036$ и $\alpha^{-1}(M_Z)\approx 127.95.$
- Проверить устойчивость: N, шум $\pm 1\%$, разные граничные условия.
- Критерий: α^{-1} остаётся в 137.0 ± 0.3 .

Этап F. Контрольные тесты

- Универсальность по секторам.
- Сходимость при росте N.
- Робастность к шумам.
- Независимость от нормировок.

Этап G. Мини-таймлайн

- 1. Итерация 1 (3–5 дней): спектры, черновые СКМ/РМNS, первые α .
- 2. Итерация 2 (5–7 дней): устойчивость, выбор лучших кандидатов α .
- 3. Итерация 3 (5–7 дней): финальный отчёт.

2

Выходные артефакты

- \bullet CSV со спектрами по секторам.
- CSV с углами CKM/PMNS.
- CSV с кандидатами α .
- PDF-отчёт: формула, стабильность, шкала.