Quantum Ladder Operators for Predator Prey Model

Benevolent Tomato

0 Preliminary

0.1 Setting up the space

 $B(\mathcal{H})$ is defined as the space of bounded operators in the Hilbert space \mathcal{H} . $B(\mathcal{H})$ can be considered as a group representation of an abstract C*-algebra. A C*-algebra is a algebra that satisfies

$$||A||^2 = ||A * A|| \quad \forall a \in B(\mathcal{H})$$
 (0.1)

Note that unbounded operators can be bounded by the exponential map. For example, suppose X is an operator with unbounded operator norm. The following function maps X to a bounded operator.

$$X \mapsto e^{iX}$$
 (0.2)

0.2 Canonical Commutation Relation(CCR)

We choose 2L operators from the space $B(\mathcal{H})$.

$$\{\hat{a}_l, \hat{a}_l^{\dagger} | l \in [L] \} \tag{0.3}$$

Also, set this set of operators to satisfy CCR.

Definition 1 (CCR). The set of operators satisfy CCR if $\forall l, m \in [N]$

1.
$$[a_l, a_m^{\dagger}] = \delta_{l,m} I$$

2.
$$[a_l, a_m] = [a_l^{\dagger}, a_m^{\dagger}] = 0$$

. This means the operators a_l commute with each other and so does a_l^{\dagger} . Also,

$$a_l a_l^{\dagger} = a_l^{\dagger} a_l + I \tag{0.4}$$

so pushing a a_l to the right costs an additional identity matrix. Moreover, if the indicies of the operators do not match, the just commpute.

We also define two operators, \hat{n}_l , \hat{N}

$$\hat{n}_l = a_l^{\dagger} a_l$$

$$\hat{N} = \sum_{l \in [N]} \hat{n}_l \tag{0.5}$$

Here is a motivating example. Suppose φ_0 is the vaccum which gets annihilated by any of the operator a. e.g. $a_1\varphi_0=0$.

$$\hat{n}_{1}(a_{1}^{\dagger})^{3}\varphi_{0} = (a_{1}^{\dagger}a_{1})(a_{1}^{\dagger})^{3}\varphi_{0} = (a_{1}^{\dagger})(a_{1}^{\dagger}a_{1} + I)(a_{1}^{\dagger})^{2}\varphi_{0}$$

$$= \dots = 3(a_{1}^{\dagger})^{3} \qquad (0.6)$$

We call the a_l operators as the anhilation operator, and a_l^\dagger as the creation operator.

It is possible to create an orthonormal set of basis in \mathcal{H} by the vaccum φ_0 .

$$\varphi_{n_1,...,n_L} = \frac{1}{\sqrt{n_1! \cdots n_L!}} (a_1^{\dagger})^{n_1} \cdots (a_L^{\dagger})^{n_L} \varphi_0$$
(0.7)

where $n_1, \ldots, n_L \in \mathbb{N}$.

 $^{^{1}}$ anhilator starts with an a so the anti-anhilator is the creator