Analysis I Zusammenfassung $_{613348}$

Inhaltsverzeichnis

1	Beweise 1.1 Beweismethoden	3 4 6
2	Vollständige Induktion 2.1 Elementare Summenformeln	7 7
3	Betrag und Dreiecksungleichung	8
4	Beschränktheit, sup, inf, max, min	9
5	Binomischer Lehrsatz	9
6	Komplexe Zahlen 6.1 Elementare Ungleichungen	10
7	Konvergenz von Folgen 7.1 Reelle Folgen	11 11 12 13
8	Konvergenz von Reihen 8.1 Grenzwert von Reihen	14 16 16
9	Stetigkeit	17
10	10.1 Formales Bestimmen von Grenzwerten	19 19 20
11	Differenzierbarkeit 11.1 Tangentengleichung	23
12	2 Ableitungen 12.1 Kurvendiskussion	24 24 25
13	Integration 13.1 Riemann-Summe zu Integral	26 27
14	Taylor-Reihe mit Rest	27

1 Beweise

1.1 Beweismethoden

• Beidseitige Implikation

Die logische Äquivalenz ist definiert als Relation zweier Aussagen, die dieselben Einträge in der Wahrheitstabelle haben. Es gilt die folgende, sehr nützliche Beziehung, mit der eine Äquivalenz durch zwei Implikationen gezeigt werden kann.

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A) \tag{1}$$

$\bullet \ \ Widerspruchsbeweis$

Die Implikation $A \Rightarrow B$ kann gezeigt werden, indem A und die Verneinung von B (meist kreativ) über logische Schritte auf einen Widerspruch geführt werden

$$(A \Rightarrow B) \Leftrightarrow ((A \land \neg B) \Rightarrow \text{Widerspruch})$$
 (2)

• Kontraposition

Die folgenden Aussagen sind äquivalent, d.h. $\neg B \Rightarrow \neg A$ zu zeigen, zeigt $A \Rightarrow B$, was unter Umständen leichter zu beweisen ist.

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \tag{3}$$

• Vollständige Induktion

siehe entsprechendes Kapitel

1.2 Beweise Mengenlehre

Tabelle 1: Ausformulierungen der Mengennotation

Ausformuliert
$x \in A$
$x \notin A$
$x \in A \text{ oder } x \in B$
$x \in A \text{ und } x \in B$
$x \in A \text{ und } x \notin B$
$x \notin \dots$
$x \in A \land y \in B$

• Äquivalenz

Eine Äquivalenz zeigt man durch Implikation in beide Richtungen gezeigt. Dabei wird für den Hinweg \implies zunächst die linke Seite als wahr angenommen und daraus die rechte Seite abgeleitet. Dann wird auf dem Rückweg \iff die rechte Seite als wahr angeommen und die linke Seite gefolgert.

Beispiel

 $\overline{\text{zz: } A \subseteq C} \land B \subseteq C \Leftrightarrow ((A \cup B) \subseteq C)$

\implies Es gelte $A \subseteq C \land B \subseteq C$.

 $\overline{\text{Sei }} x \in A \cup B$ beliebig. Dann ist entweder $x \in A \vee x \in B$.

Aus der Annahme der linken Seite folgt: $A\subseteq C\Rightarrow (x\in A\Rightarrow x\in C)$ und $B\subseteq C\Rightarrow (x\in B\Rightarrow x\in C)$.

Daher folgt $(x \in A \lor x \in B) \Rightarrow x \in C$, weil in beiden Fällen das Element in C liegt.

Zurück in Mengennotation wurde gezeigt, dass $A \subseteq C \land B \subseteq C \Rightarrow ((A \cup B) \subseteq C) \checkmark$

\Leftarrow Es gelte $(A \cup B) \subseteq C$.

 $\overline{\text{Sei }} a \in A \text{ beliebig.}$

Eingesetzt in die linke Annahme folgt dann: $a \in A \cup B$ und somit $a \in C$.

Analog für $b \in B$. $b \in A \cup B$ und somit $b \in C$.

Es gilt also $a \in A \Rightarrow a \in C$ und $b \in B \Rightarrow b \in C$.

Zurück in Mengennotation wurde gezeigt, dass $A \subseteq C \land B \subseteq C \Leftarrow ((A \cup B) \subseteq C) \checkmark$

Es wurde also gezeigt, dass $A \subseteq C \land B \subseteq C \Leftrightarrow ((A \cup B) \subseteq C)$

• Teilmenge einer Menge

Um zu zeigen, dass A eine Teilmenge von B ist, muss gezeigt werden, dass

$$\forall x : x \in A \Rightarrow x \in B \tag{4}$$

• Gleichheit zweier Mengen

Um zu zeigen, dass zwei Mengen gleich sind, muss gezeigt werden, dass die erste Menge eine Teilmenge der zweiten und umgekehrt ist.

$$A \subseteq B \land B \subseteq A \tag{5}$$

Beispiel

 \overline{zz} : $(A \cup B)^c = A^c \cap B^c$ (eine De Morgan'sche Regel)

 \subseteq Zeige, dass $(A \cup B)^c \subseteq A^c \cap B^c$

$$x \in (A \cup B)^c \Rightarrow x \notin (A \cup B) \Rightarrow x \notin A \land x \notin B \Rightarrow x \in A^c \land x \in B^c \Rightarrow x \in A^c \cap B^c$$

Es wurde gezeigt, dass $x \in (A \cup B)^c \Rightarrow x \in A^c \cap B^c \Leftrightarrow (A \cup B)^c \subset A^c \cap B^c \checkmark$.

 \supseteq Zeige, dass $(A \cup B)^c \supseteq A^c \cap B^c$.

Es kann derselbe Weg aus \subset , nur rückwärts genommen werden. In diesem Fall werden die Folgepfeile zu Äquivalenzpfeilen umgeschrieben und der Beweis ist vollendet.

• Kontraposition bei Komplement

Für Beweise mit Komplementen (A^c, B^c) kann es nützlich sein, die Kontraposition zu nutzen

$$(x \in A \Rightarrow x \in B) \Leftrightarrow \neg(x \in B) \Rightarrow \neg(x \in A)) \tag{6}$$

Beispiel

 $\overline{\mathrm{zz}}: (A \subseteq B) \Leftrightarrow (B^c \subseteq A^c)$

 \subseteq Zeige $(A \subseteq B) \Rightarrow (B \subseteq A^c)$

$$(x \in A \Rightarrow x \in B) \overset{\text{Kontraposition}}{\Rightarrow} (\neg (x \in B) \Rightarrow \neg (x \in A)) \Rightarrow (x \notin B \Rightarrow x \notin A) \Rightarrow \Rightarrow (x \in B^c \Rightarrow x \in A^c)$$

Zurück in Mengennotation: $(A \subseteq B) \Rightarrow (B^c \subseteq A^c) \checkmark$.

 \supseteq Zeige \subseteq Rückwärts.

• Verneinung Kartesisches Produkt

Bei der Verneinung des kartesischen Produkts entsteht gemäß De-Morgan

$$\neg(x \in A \land y \in B) = x \notin A \lor y \notin B \tag{7}$$

1.3 Beweise Funktionen

Seien A, B Mengen und $f: A \to B$ eine Funktion.

• Surjektiv, Injektiv, Bijektiv

f ist surjektiv, wenn jedes Element der Zielmenge B mindestens einmal getroffen wird.

$$\forall b \in B \exists a \in A : f(a) = b \tag{8}$$

f ist injektiv, wenn jedes Element der Zielmenge B <u>höchstens</u> einmal getroffen wird.

$$\forall a, a' \in A : f(a) = f(a') \Rightarrow a = a' \tag{9}$$

f ist bijektiv, wenn jedes Element der Zielmenge B genau einmal getroffen wird. Alt.: f ist surjektiv und injektiv.

$$\forall b \in B \exists ! a \in A : f(a) = b \tag{10}$$

In Beweisen wird das $\forall b$ bzw. $\forall a, a'$ dadurch gewährleistet, dass $b \in B$ bzw. $a, a' \in A$ beliebig gewählt wird.

Für den Injektivitätsbeweis wird f(a) = f(a') als wahr angenommen und die Implikation a = a' gezeigt.

Beispiel

 $geg: A, \overline{B}, C$ Mengen, $i: A \to B, s: B \to C$ Funktionen; zz: s, i sind injektiv $\Rightarrow s \circ i$ ist injektiv

Es gelte s, i sind injektiv.

Zeige, dass $\forall a, a' \in A : (s \circ i)(a) = (s \circ i)(a') \Rightarrow a = a'$.

Sei $a, a' \in A$ beliebig.

Es gelte $(s \circ i)(a) = (s \circ i)(a') \Leftrightarrow s(i(a)) = s(i(a')) \Rightarrow i(a) = i(a') \Rightarrow a = a'$.

Da $a, a' \in A$ beliebig, wurde gezeigt, dass s, i inj. $\Rightarrow \forall a, a' \in A : (s \circ i)(a) = (s \circ i)(a') \Rightarrow a = a'$

• Bild

Nutze die Definition. Liegt ein Element im Bild $y \in f(M)$, dann folgt aus der Definition von f, dass

$$\exists x \in M : f(x) = y \tag{11}$$

Ist M z.B. ein Schnitt oder eine Vereinigung, können dann wie in Mengenbeweisen üblich logische Operationen durchgeführt werden.

• Urbild

Nutze die Definition des Urbildes. Analog zum Bild folgt aus der Definition des Urbilds.

$$x \in f^{-1}(M) \Leftrightarrow f(x) \in M \tag{12}$$

2 Vollständige Induktion

Die Aussage (**Induktionsvoraussetzung**) A(n) gilt für alle $n \ge n_0$ (wobei $n \in \mathbb{N}$), wenn gezeigt wird, dass

- 1. $A(n_0)$ ist wahr (**Induktionsanfang**)
- 2. Für ein beliebiges n folgt, dass A(n+1) richtig ist, wenn A(n) richtig ist (**Induktionsschritt**)

Beispiel

 $\overline{\operatorname{zz}: A(n)}: \sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$ für alle $n \geq 1$

1. Induktionsanfang

$$A(1): \sum_{i=1}^{1} i = 1 \stackrel{!}{=} \frac{1}{2}(2) = 1$$
 \checkmark

2. Induktionsschritt

IB:
$$\sum_{i=1}^{n+1} i \stackrel{!}{=} \frac{1}{2} (n+1)(n+2)$$
$$\sum_{i=1}^{n+1} i = (n+1) + \sum_{i=1}^{n} i$$
$$\stackrel{!V}{=} (n+1) + \frac{1}{2} n(n+1)$$
$$\frac{1}{2} \frac{2(n+1)}{2} + \frac{n(n+1)}{2} = \frac{(2+n)(n+1)}{2}$$

Strategie: Induktionsschritt so umformen, dass die Induktionsvoraussetzung eingesetzt werden kann.

2.1 Elementare Summenformeln

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{13}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \tag{14}$$

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 \tag{15}$$

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} \quad \text{mit } x \in \mathbb{R}$$
 (16)

3 Betrag und Dreiecksungleichung

Um Ungleichungen mit Beträgen zu zeigen, nutze die Dreiecksungleichung

$$|x+y| \le |x| + |y| \tag{17}$$

$$\left| |x| - |y| \right| \le |x - y| \tag{18}$$

• Umformen zu wahren Aussage

Um zu zeigen, dass eine Ungl. gilt, muss sie nicht vollständig von einer Seite zur anderen umgeformt werden. Es kann z.B. argumentiert werden, dass alle Terme einer Seite positiv oder negativ sind und es sich daher um eine wahre Aussage handelt (Baum ÜB 4 10b).

• Fallunterscheidung

Um bspw. abzuschätzen, für welche Werte einer Variable die Ungleichung gilt, können Abschätzungen für die Beträge gemacht werden.

Beispiel

ges: Werte für $x \in \mathbb{R}$ {3}, für die $\frac{1}{|x-3|} > \frac{1}{1+|x-1|}$ gilt.

Umformen der Ungleichung zu 1 + |x - 1| > |x - 3|

1. Fall: x < 1

$$1 + |x - 1| = 1 - (x - 1) = 2 - x > |x - 3| = -(x - 3) = 3 - x$$

$$\Leftrightarrow 2 > 3$$

Die Ungl. gilt also nicht für x < 1.

2. Fall: $1 \le x < 3$

$$1 + |x - 1| = 1 + x - 1 = x \stackrel{!}{>} |x - 3| = -(x - 3) = 3 - x$$

 $\Leftrightarrow x > 3/2$

Die Ungl. gilt somit für $\frac{3}{2} < x < 3$

3. Fall: x < 3

$$1 + |x - 1| = 1 + x - 1 = x \stackrel{!}{>} |x - 3| = x - 3$$

 $\Leftrightarrow 0 > -3$

Die Ungl. gilt somit für x > 3.

Insgesamt gilt die Ungl. somit für x > 3/2 und $x \neq 3$.

4 Beschränktheit, sup, inf, max, min

Definition max, min, sup, inf.

$$\exists y_0 \in Y : \forall y \in Y : y \le y_0 \equiv \max(Y) \tag{19}$$

$$\exists y_0 \in Y : \forall y \in Y : y \ge y_0 \equiv \min(Y) \tag{20}$$

$$\forall y \in Y : y \le \sup(Y) \tag{21}$$

$$\forall y \in Y : y \ge \inf(Y) \tag{22}$$

• Gegebene Mengen

Für gegebene Mengen lässt sich durch Ausrechenen der ersten Elemente und Grenzwertbetrachtung, sowie ggf. Nutzen anderer Bedingungen feststellen, ob die Menge beschränkt ist und ob sup, inf, max, min existieren und wie sie lauten.

Beispiel

geg: $M = \{x \in \mathbb{R} | x^2 + 2x + 3 > 6, x < 0\}$

Lös: $x^2 + 2x - 3 = 0 \Rightarrow x_{1,2} = -3, 1$. Da die Funktion positiv sein muss, sind alle Elemente unterhalb -3 und alles überhalb 1 erlaubt. Die zweite Bedingung verbietet aber alle Elemente größer 1, weshalb die Menge $M = (-\infty, -3]$ ist.

Die Menge ist demnach nicht nach unten beschränkt, es existieren kein inf und min. Die Funktion ist nach oben beschränkt, sup = $\max = -3$.

Reweise

Ist eine Menge A beschränkt, so existieren sup, inf.

5 Binomischer Lehrsatz

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$
 (23)

Die **Binomialkoeffizienten** lassen sich am Pascal'schen Dreieck ablesen (Zeile $\hat{=} n = 0, 1, 2, ...,$ Diagonale von links nach rechts $\hat{=} k = 0, 1, 2, ...)$.

Sie sind dabei die Anzahl der k-elementigen Teilmengen, die man aus einer n-elementigen Menge bilden kann, wobei $0 < k \le n$ gilt. Dabei gilt Ziehen ohne Zurücklegen.

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$
 (24)

 $\min \binom{n}{0} := 1.$

6 Komplexe Zahlen

• Algebraische Form

Um eine komplexe Zahl in Bruchform in die algebraische Form

$$z = a + ib (25)$$

zu bringen, erweitere mit dem komplex konjugierten des Nenners.

Bei komplexen Zahlen mit Potenz lohnt es sich zunächst das Innere darzustellen und dann erst die Potenz anzuwenden. Im letzten Schritt hilft der binomische Lehrsatz.

• Trigonometrische-/Polardarstellung

Um eine komplexe Zahl in die trigonometrische- bzw. Polardarstellung

$$z = |z|(\cos\theta + i\sin\theta) \tag{26}$$

$$z = |z| \cdot e^{i\theta} \tag{27}$$

zu bringen, müssen Betrag |z| und Argument θ über die bzw. eine der folgenden Gleichungen berechnet werden.

$$|z| = \sqrt{z \cdot z^*} \tag{28}$$

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}, \quad \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}, \quad \tan \theta = \frac{b}{a}$$
 (29)

• Gauß'sche Zahlenebene

Um eine Menge in der Gauß'schen Zahlenebene (= Koordinantesystem mit 3 auf der y-Achse und R auf der x-Achse) darzustellen, müssen die Bedingungen umformuliert werden, um interpretierbar gemacht zu werden. Dabei helfen

$$|z_1 + z_2|^2 = (z_1 + z_2)(z_1^* + z_2^*) \tag{30}$$

$$z + z^* \Rightarrow \Im = 0 \tag{31}$$

$$z - z^* \Rightarrow \Re = 0 \tag{32}$$

$$1 \le |z - i| \le 2 \Rightarrow \text{Abstand zw. Zahl zum Punkt } i \text{ ist } \ge 1 \text{ und } \le 2$$
 (33)

Elementare Ungleichungen 6.1

$$1 + x \le e^x, \qquad \forall x \in \mathbb{R} \tag{34}$$

$$1 + x \le e^x,$$
 $\forall x \in \mathbb{R}$ (34)
 $\ln(1+x) \le x,$ falls $x > -1$ (35)

$$x - \frac{x^2}{2} \le \ln(1+x), \qquad \forall x \in \mathbb{R}_{\ge 0}$$
 (36)

$$\sin(x) \le x, \qquad \forall x \in \mathbb{R}_{\ge 0} \tag{37}$$

$$1 - \frac{x^2}{2} \le \cos(x), \qquad \forall x \in \mathbb{R}$$
 (38)

$$1 + x \le \frac{1}{1 - x}, \qquad \text{falls } -1 \le x \le 1 \tag{39}$$

Konvergenz von Folgen

Es gelten die Grenzwertsätze

$$\lim_{n \to \infty} (u_n + v_n) = \lim_{n \to \infty} u_n + \lim_{n \to \infty} v_n \tag{40}$$

$$\lim_{n \to \infty} (u_n \cdot v_n) = \lim_{n \to \infty} u_n \cdot \lim_{n \to \infty} v_n \tag{41}$$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{\lim_{n \to \infty} u_n}{\lim_{n \to \infty} v_n} \quad \text{falls } \lim_{n \to \infty} v_n \neq 0$$

$$\lim_{n \to \infty} e^{u_n} = \exp(\lim_{n \to \infty} u_n)$$
(42)

$$\lim_{n \to \infty} e^{u_n} = \exp(\lim_{n \to \infty} u_n) \tag{43}$$

$$\lim_{n \to \infty} \ln(u_n) = \ln(\lim_{n \to \infty} u_n) \qquad \text{falls } \lim_{n \to \infty} u_n > 0$$
 (44)

7.1Reelle Folgen

• Brüche/Wurzelterme/Induktionsformel

- Bei Brüchen ist es sinnvoll Potenzen von n auszuklammern, um vor allem Nullfolgen zu erkennen

Bsp:
$$\lim_{n\to\infty} \frac{n^4 + 3n^2 + 3n + 1}{6n^4 + 3} = \lim_{n\to\infty} \frac{n^4}{n^4} \frac{1 + \frac{2}{n^2} + \frac{3}{n^3} + \frac{1}{n^4}}{6 + \frac{3}{n^4}} = \frac{1 + 0 + 0 + 0}{6 + 0} = \frac{1}{6}$$

- Bei einer Summe von mehreren Wurzeltermen kann es sinnvoll mit dem Term, aber ei-

nem umgekehrten Vorzeichen zu erweitern und dann wie mit Brüchen zu verfahren. Bsp:
$$\sqrt{n^2+2}-\sqrt{n^2+3n}=\sqrt{n^2+2}-\sqrt{n^2+3n}\cdot\frac{\sqrt{n^2+2}+\sqrt{n^2+3n}}{\sqrt{n^2+2}+\sqrt{n^2+3n}}=\ldots=\frac{\frac{2}{n}-3}{\sqrt{1+\frac{2}{n^2}+\sqrt{1+\frac{3}{n}}}}$$

- Lässt sich das Folgenglied über eine Summe beschreiben, ist es sinnvoll, eine mittels Induktion gezeigte Formel einzusetzen.

Bsp:
$$\frac{1}{n^3} \sum_{k=1}^{n} k^2 = \frac{1}{n^3} \cdot \frac{1}{6} n(n+1)(2n+1)$$

• Einschnürungssatz

Seien $(x_n)_n, (y_n)_n, (w_n)_n$ Folgen, es gelte $x_n \leq w_n \leq y_n$ und $(x_n)_n, (y_n)_n \stackrel{n \to \infty}{\longrightarrow} a$. Dann ist der Grenzwert von w_n auch a.

• Vergleich mit kleinerer/größerer Folge

$$u_n \le v_n \quad \Rightarrow \quad \lim_{n \to \infty} u_n \le \lim_{n \to \infty} v_n$$
 (45)

Dann insbesondere:

$$\lim_{n \to \infty} u_n = +\infty \quad \Rightarrow \quad \lim_{n \to \infty} v_n = +\infty$$

$$\lim_{n \to \infty} v_n = -\infty \quad \Rightarrow \quad \lim_{n \to \infty} u_n = -\infty$$
(46)

$$\lim_{n \to \infty} v_n = -\infty \quad \Rightarrow \quad \lim_{n \to \infty} u_n = -\infty \tag{47}$$

• ε - n_0 bzw. M- n_0 -Kriterium Eine Folge $(u_n)_n$ konvergiert dann gegen einen Grenzwert a, also $\lim_{n\to\infty} u_n = a$, wenn

$$\forall \varepsilon > 0 \ \exists n_0 > 0 : \forall n \in \mathbb{N} \ n \ge n_0 : |u_n - a| \le \varepsilon \tag{48}$$

zz: $\lim_{n\to\infty} \frac{1}{n^2+4} = 0$ Nebenrechnung

$$\left|\frac{1}{n^2+4}-0\right|=\frac{1}{n^2+4}\leq \frac{1}{n^2}\stackrel{!}{\leq} \varepsilon$$

Stelle die Ungl. nach n um. Dieses wird im Beweis als n_0 gewählt.

$$\Leftrightarrow n \geq \frac{1}{\sqrt{\varepsilon}}$$

Beweis

Sei $\varepsilon > 0$. Gemäß dem archimedischem Axiom kann ein $n_0 \in \mathbb{N}$ gewählt werden s.d. $n_0 \geq \frac{1}{\sqrt{\varepsilon}}$. Dann folgt $\forall n \geq n_0$

$$\left| \frac{1}{n^2 + 4} - 0 \right| = \frac{1}{n^2 + 4} \le \frac{1}{n^2} \le \frac{1}{n_0^2} = \frac{1}{\left(\frac{1}{\sqrt{\varepsilon}}\right)^2} = \varepsilon$$

Somit wurde gezeigt, dass $\forall \varepsilon > 0 \ \exists n_0 > 0 \ (\text{n\"{a}mlich} \ n_0 = \frac{1}{\sqrt{\varepsilon}}) : \forall n \in \mathbb{N} \ n \geq n_0 : |\frac{1}{n^2+4} - 0| \leq \varepsilon.$

• Zeige Divergenz durch Teilfolgen Beispiele

Wenn <u>nicht</u> alle Teilfolgen gegen a konv., konv. die Folge $(u_n)_n$ nicht gegen a. Kontraposition von: $(u_n)_n$ konv. gegen a gdw. alle TF gegen a konv.

7.2 Komplexe Folgen

Komplexe Folgen konvergieren dann, wenn Realteil und Imaginärteil konvergieren. Der Grenzwert der Folge ergibt sich dann aus der algebraischen Form.

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \Re(z_n) + i \lim_{n \to \infty} \Im(z_n)$$
(49)

• Trigonometrische Form

Dargestellt in der trigonometrischen Form lässt sich direkt der Betrag des Folgenglieds ablesen und einen Schluss auf z.B. Nullfolgen- oder Divergenzverhalten zu.

Elementare Grenzwerte von Folgen

Sei $a, \alpha \in \mathbb{R}_{>0}$.

$$\lim_{n \to \infty} n! = +\infty \tag{50}$$

$$\lim_{n \to \infty} a^n = \begin{cases} 0, & a \in (0,1) \\ +\infty, & a > 1 \end{cases}$$
 (51)

$$\lim_{n \to \infty} n^{\alpha} = +\infty \tag{52}$$

$$\lim_{n \to \infty} n^{-\alpha} = 0 \tag{53}$$

$$\lim_{n \to \infty} \ln(n) = +\infty \tag{54}$$

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \tag{55}$$

$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{bn} = e^{ab}$$

$$\lim_{n \to \infty} \frac{n}{(n!)^{1/n}} = e$$

$$(56)$$

$$\lim_{n \to \infty} \frac{n}{(n!)^{1/n}} = e \tag{57}$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \tag{58}$$

$$\lim \sqrt[n]{n!} = \infty \tag{59}$$

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
(59)

$$\lim_{n \to \infty} \frac{\sqrt[k]{k!}}{k} = \frac{1}{e} \tag{61}$$

Für $n\to\infty$ gilt

$$\ln(n) \ll n^p \ll b^n \ll n! \ll n^n$$

mit p > 0 und b > 1.

8 Konvergenz von Reihen

• Elementare Reihen

Die Grenzwerte bzw. Konvergenzverhalten der geometrischen, harmonischen und Teleskopreihe sind

$$\sum_{k=0}^{\infty} a^k \begin{cases} = \frac{1}{1-a}, & \text{falls } |a| < 1\\ \text{divergiert}, & \text{sonst} \end{cases}$$
 (62)

$$\sum_{k=1}^{\infty} \frac{1}{k^s} \begin{cases} \text{konvergiert, falls } s > 1 \\ \text{divergiert, sonst} \end{cases}$$
 (63)

$$\sum_{k=0}^{n} a_k - a_{k+1} = a_0 - a_{n+1} \tag{64}$$

• Divergenz falls keine Nullfolge

$$\lim_{n \to \infty} u_n \neq 0 \quad \Rightarrow \quad \sum_{k > n_0}^{\infty} u_k = +\infty \tag{65}$$

• Quotientenkriterium (QK)

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| \begin{cases} < 1, & \text{absolut konvergent} \\ > 1, & \text{divergent} \\ = 1, & \text{keine Aussage} \end{cases}$$
 (66)

Nützlich bei Fakultäten.

• Wurzelkriterium (WK)

$$\lim_{n \to \infty} \sqrt[n]{|u_n|} \begin{cases} < 1, & \text{konvergent} \\ > 1, & \text{divergent} \\ = 1, & \text{keine Aussage} \end{cases}$$
 (67)

• Satz der alternierenden Reihen (Leibniz-Kriterium)

Wird eine alternierende Reihe $\sum_{k\geq n_0} (-1)^k a_k$ untersucht, gilt das Kriterium

$$a_k$$
 positive Nullfolge $\Rightarrow \sum_{k \ge n_0} (-1)^k a_k$ konvergent (68)

• Verdichtungskriterium

Sei $(u_n)_n$ eine positive fallende Folge, dann gilt

$$\sum_{n > n_0} u_n \quad \text{konvergiert} \quad \Rightarrow \quad \sum_{n > n_0} 2^k u_{2^k} \quad \text{konvergiert} \tag{69}$$

• Majorantenkriterium (Maj.)

Konvergiert eine größere Reihe, so konvergiert auch die zu untersuchende Reihe. Sei $|a_n| \leq b_n$, so folgt

$$\sum_{n=1}^{\infty} b_n \quad \text{konvergent} \quad \Rightarrow \quad \sum_{n=1}^{\infty} a_n \quad \text{absolut konvergent}$$
 (70)

• Minorantenkriterium (Min.)

Divergiert eine kleinere Reihe, so divert auch die zu untersuchende Reihe. Sei $a_n \geq b_n$, so folgt

$$\sum_{n=1} b_n \quad \text{divergent} \quad \Rightarrow \quad \sum_{n=1} a_n \quad \text{divergent}$$
 (71)

• Absolute Konvergenz

Eine Reihe $(a_n)_n$ konvergiert absolut (und ist somit konvergent), wenn

$$\sum_{n=1}^{\infty} |a_n| \quad \text{konv.} \tag{72}$$

Nützlich für z.B. sin, da dieser im Betrag mit ≤ 1 weggenähert werden kann.

Beispiele

 $geg: \sum_{k=2} \frac{k+2}{4^k} \qquad (QK)$

$$\left|\frac{(k+1)+2}{4^{k+1}} \cdot \frac{4^k}{k+2}\right| = \frac{k+3}{4} \cdot \frac{1}{k+2} = \frac{k}{k} \frac{(1+\frac{3}{k})}{4(1+\frac{2}{k})} \overset{k \to \infty}{\to} \frac{1}{4} < 1 \quad \text{konvergiert}$$

geg: $\sum_{k=0}^{\infty} \frac{k}{2^k}$ (WK)

$$\lim_{k\to\infty} \sqrt[k]{\left|\frac{k}{2^k}\right|} = \lim_{k\to\infty} \frac{\sqrt[k]{k}}{2} = \frac{\lim_{k\to\infty} \sqrt[k]{k}}{\lim_{n\to\infty} 2} = \frac{1}{2} < 1 \quad \text{konvergiert}$$

geg: $\sum_{n=1}^{\infty} \frac{n+1+\sqrt{n}}{2n^3-n}$ (Majorantenkriterium)

$$\sum_{n=1}^{\infty} \frac{n+1+\sqrt{n}}{2n^3-n} \le \sum_{n=1}^{\infty} \frac{n+n+n}{2n^3-n^3} = \sum_{n=1}^{\infty} \frac{3n}{n^3} = 3\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 konvergiert

8.1 Grenzwert von Reihen

Der Grenzwert einer Reihe

$$\lim_{n \to \infty} \sum_{k \ge n_0}^n a_k \equiv \sum_{k \ge n_0}^\infty a_k \tag{73}$$

bestimmt sich dadurch, dass die zu untersuchende Reihe in eine der elementare Reihen umgeformt wird, dessen Grenzwert bereits bekannt ist.

• Aufspalten der Summe

$$\sum_{k=0}^{\infty} \frac{n+1}{n} = 1 + \sum_{k=1}^{\infty} \frac{n+1}{n}$$

• Indexverschiebung

Was in Folgengliedindex addiert wird, wird in Start und Endwert der Summe subtrahiert.

$$\lim_{n \to \infty} \sum_{k=2}^{n} \frac{1}{(n-2)!} = \lim_{n \to \infty} \sum_{k=0}^{n-2} \frac{1}{n!}$$

8.2 Konvergenzradius

Der Konvergenzradius KR ist das größte z, für das eine Potenzreihe absolut konvergiert.

$$\sum_{k > n_0} a_k \cdot z^k \begin{cases} \text{absolut konvergent,} & |z| < KR \\ \text{divergiert,} & |z| > KR \end{cases}$$
 (74)

 z^k kann dabei auch in der Form $(z-z_0)^k$ sein.

• Bestimmung über Hadamand-Formel

$$\frac{1}{KR} = \lim_{n \to \infty} |a_n|^{1/n} \in [0, +\infty]$$
 (75)

• Bestimmung über **QK für Potenzreihen** Seien $(a_n)_{n\geq n_0}$ s.d. $a_n\neq 0$ für n groß genug.

$$\frac{1}{KR} = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \in [0, +\infty]$$

$$(76)$$

Beispiel

geg: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot z^n$ (QK für Potenzreihen)

$$\frac{|a_{n+1}|}{|a_n|} = \left| \frac{(-1)^{n+1-1}}{n+1} \right| \cdot \left| \frac{n}{(-1)^n} \right| = \frac{n}{n+1} = \frac{1}{1 + \frac{1}{n}} \xrightarrow{n \to \infty} 1 \quad \Rightarrow KR = \frac{1}{1} = 1$$

geg: $\sum_{n=1}^{\infty} n^4 \cdot 4^n \cdot (z-1)^n$ (Hadamand)

$$\sqrt[n]{|a_n|} = (\sqrt[n]{n})^4 \cdot 4 \stackrel{n \to \infty}{\longrightarrow} 4 \quad \Rightarrow KR = \frac{1}{4}$$

9 Stetigkeit

Anschaulich bedeutet Stetigkeit in einem Punkt, dass die betrachtete Funktion in einer kleinen Umgebung davon keinen plätzlichen Sprung im Funktionswert macht.

• Elementare stetige Fkt./stetige Verknüpfungen

- Konstante Funktionen sind stetig
- Die Identitätsfunktion $x \mapsto x$ ist stetig
- Polynomiale Funktionen sind stetig
- Rationale Funktionen in $\mathbb{C} \setminus P$ sind stetig (wobei P die Menge der NSn des Nenners)

Sind $f, g: A \to \mathbb{R}$ oder \mathbb{C} stetige Funktionen, so ist

- die Addition f + g stetig
- die Multiplikation $f \cdot g$ stetig
- das Verhältnis $\frac{f}{g}$ stetig, falls $g(x) \neq 0 \ \forall x \in A$
- $\max(f,g)$, $\min(f,g)$ stetig für $\mathbb{K}'=\mathbb{R}$
- $\Re(f)$, $\Im(f)$, |f| stetig für $\mathbb{K}' = \mathbb{C}$

• ε - δ -Kriterium

Eine Funktion f ist im Punkt a stetig, wenn

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \mathbb{R} : |x - a| \le \delta \Rightarrow |f(x) - f(a)| \le \varepsilon \tag{77}$$

Beispiel

 $\overline{\text{zz: } x^2 \text{ stetig in } \mathbb{R}}$

Lös: Zeige $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in \mathbb{R} : |x - a| \le \delta \Rightarrow |x^2 - a^2| \le \varepsilon$

Nebenrechnung

$$\begin{split} |x^2 - a^2| &= |(x+a) \cdot (x-a)| = |x+a| \cdot |x-a| \le |x+a| \cdot \delta = |x-a+2a| \cdot \delta \\ &\le (|x-a| + |2a|) \cdot \delta \le (\delta + |2a|) \cdot \delta \overset{\delta \le 1}{\le} (1 + |2a|) \cdot \delta \le \varepsilon \\ &\Rightarrow \left(\delta \le \frac{\varepsilon}{1 + |2a|} \wedge \delta \le 1\right) \Leftrightarrow \delta = \min\left(1, \frac{\varepsilon}{1 + |2a|}\right) \end{split}$$

Beweis

Sei $\varepsilon > 0$. Wähle $\delta = \min\left(1, \frac{\varepsilon}{1 + |2a|}\right)$. Sei $a \in \mathbb{R}$ beliebig. Sei $x \in \mathbb{R}$ mit $|x - a| \le \delta$.

$$|x^2-a^2|=\ldots \leq (1+|2a|)\cdot \delta \leq (1+|2a|)\cdot \frac{\varepsilon}{1+|2a|}=\varepsilon \qquad \blacksquare$$

• Beidseitiger Grenzwert Kriterium

f ist stetig im Punkt a, wenn

$$\lim_{x \to a} f(x) = f(a) \tag{78}$$

d.h. f(a) existiert, $\lim_{x\to a} f(x)$ existiert und beide sind gleich.

Beispiel

$$geg: f(x) = \begin{cases} 3x^2 \sin(1/x) - x \cos(1/x), & x \neq 0 \\ 0, x = 0 \end{cases} ges: Stetigkeit in x = 0$$

$$f(0) = 0 \stackrel{!}{=} \lim_{x \to 0} \left(3x^2 \sin(1/x) - x \cos(1/x) \right) = 0 - 0 = 0 \checkmark$$

• Folgenkriterium

$$\forall (u_n)_n \in A \text{ mit } \lim_{n \to \infty} = a, \text{ gilt:}$$

$$\lim_{n \to \infty} f(u_n) = f(a) \tag{79}$$

Beispiel

 $\overline{\text{zz: } x^2 \text{ stetig in } a = 2}$

Lös: Sei $\forall (u_n)_n : \lim_{n \to \infty} u_n = 2.$

$$\lim_{n \to \infty} f(u_n) = \lim_{n \to \infty} (u_n)^2 = \lim_{n \to \infty} = (u_n \cdot u_n) = \lim_{n \to \infty} u_n \cdot \lim_{n \to \infty} u_n = 2 \cdot 2 = 4$$

$$f(a) = f(2) = 2^2 = 4$$

$$\Rightarrow \lim_{n \to \infty} f(u_n) = f(a)$$

Beispiel

$$\overline{\mathbf{zz}} : \mathbf{f}(\mathbf{x}) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$
 ist unstetig in 0.

Lös: Betrachte die Folge $(u_n)_n = (1/n)_n$

$$\lim_{n \to \infty} f(1/n) = \lim_{n \to \infty} 1 = 1 \neq f(0) = 0$$

10 Grenzwert von Funktionen

10.1 Formales Bestimmen von Grenzwerten

Eine Funktion $f(x): \mathbb{R} \to \mathbb{R}$ konvegiert gegen l bzw. divergiert (=konv. gegen $\pm \infty$), wenn

$$\lim_{x \to a} f(x) = l \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} \ \forall x \in \mathbb{R} : |x - a| \le \delta \Rightarrow |f(x) - \underbrace{f(a)}_{l}| \le \varepsilon$$
 (80)

$$\lim_{x \to \infty} f(x) = l \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists x_0 > 0 \text{ s.d. } \forall x \in \mathbb{R} \ x \ge x_0 : |f(x) - \underbrace{f(a)}_{-l}| \le \varepsilon$$
 (81)

$$\lim_{x \to a} f(x) = \pm \infty \quad \Leftrightarrow \quad \forall M > 0 \ \exists \delta \ge 0 \text{ s.d. } \forall x \in \mathbb{R} : |x - a| \le \delta \Rightarrow f(x) \ge M$$
 (82)

$$\lim_{x \to \infty} f(x) = \pm \infty \quad \Leftrightarrow \quad \forall M > 0 \ \exists x_0 \ge 0 \text{ s.d. } \forall x \in \mathbb{R} \ x \stackrel{\ge}{\le} x_0 : f(x) \ge M$$
 (83)

Beispiel ε - δ -Beweis

$$zz$$
: $\lim_{x \to 2} \frac{x}{x-2} = 3$

zz: $\lim_{x \to 3} \frac{x}{x-2} = 3$ Lös: Zeige $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{s.d.} \; \forall x \in \mathbb{R} : |x-3| \le \delta \Rightarrow |\frac{x}{x-2} - 3| \le \varepsilon$

$$\left| \frac{x}{x-2} - 3 \right| = \left| \frac{x - (3x - 2)}{x-2} \right| = \frac{|-2||x-3|}{|x-2|} = 2\delta \frac{1}{|x-2|}$$

Wähle $\delta \leq \frac{1}{2}$ (Nicht $\delta = 1$, da der linke äußere Rand des δ -Schlachs dort eine Def.lücke hat: $3 - \delta = 3 - 1 = 2$, f(2) undefiniert).

$$|x-3| \leq \delta \leq \frac{1}{2} \Rightarrow -\frac{1}{2} \leq x-3 \leq \frac{1}{2} \Rightarrow \frac{1}{2} \leq x-2 \leq \frac{3}{2} \Rightarrow \frac{1}{|x-2|} \leq 2$$

Sei $\varepsilon > 0$. Wähle $\delta = \min\{\frac{1}{2}, \frac{\varepsilon}{4}\}$. $\forall x \in \mathbb{R}$ folgt

$$\left|\frac{x}{x-2}-3\right| = \left|\frac{x-(3x-2)}{x-2}\right| = \frac{|-2||x-3|}{|x-2|} = 2\delta \frac{1}{|x-2|} \le 4\delta \le 4\frac{\varepsilon}{4} = \varepsilon \quad \blacksquare$$

Beispiel ε - x_0 -Beweis

zz:
$$\lim_{x \to \infty} \frac{x^2}{3x^2 + 1} = \frac{1}{3}$$

Lös: Zeige $\forall \varepsilon>0\ \exists x_0>0$ s.d. $\forall x\in\mathbb{R}\ x\geq x_0: |\frac{x^2}{3x^2+1}-\frac{1}{3}|\leq \varepsilon$

$$\left| \frac{x^2}{3x+1} - \frac{1}{3} \right| = \left| \frac{3x^2 - (3x^2 + 1)}{3(3x^2 + 1)} \right| = \frac{|-1|}{9x^2 + 1} \le \frac{1}{9x^2} \le \frac{1}{x^2} \le \frac{1}{x_0^2} \le \frac{1}{x_0$$

Sei $\varepsilon > 0$. Wähle $x_0 \geq \frac{1}{\sqrt{\varepsilon}}$. $\forall x \in \mathbb{R}$ mit $x \geq x_0$ folgt

$$\left| \frac{x^2}{3x+1} - \frac{1}{3} \right| = \left| \frac{3x^2 - (3x^2 + 1)}{3(3x^2 + 1)} \right| = \frac{|-1|}{9x^2 + 1} \le \frac{1}{9x^2} \le \frac{1}{x^2} \le \frac{1}{x_0^2} \le \frac{1}{\frac{1}{x}} = \varepsilon \quad \blacksquare$$

$$\overline{\text{zz: } \lim_{x \to \infty} \frac{x}{2x-2} = \infty}$$

zz: $\lim_{x \to \infty} \frac{x}{2x-2} = \infty$ Lös: Zeige $\forall M > 0 \; \exists \delta > 0 \; \text{s.d.} \; \forall x \in \mathbb{R} : |x-1| \le \delta \Rightarrow \frac{x}{2x-2} > M$

Da $x \to 1^+$, ist x > 1 und somit $|x - 1| = x - 1 \le \delta$.

$$\frac{x}{2x-2} = \frac{x}{2(x-1)} \ge \frac{x}{2\delta} \ge \frac{1}{2\delta} \stackrel{!}{>} M$$

Sei M > 0. Wähle $\delta < \frac{1}{2M}$. $\forall x \in \mathbb{R}$ folgt

$$\frac{x}{2x-2} = \frac{x}{2(x-1)} \ge \frac{x}{2\delta} \ge \frac{1}{2\delta} > \frac{1}{2\frac{1}{2M}} = M \quad \blacksquare$$

Beispiel M- x_0 -Beweis

$$zz: \lim_{x \to \infty} \frac{x^2}{x+1} = \infty$$

Lös: Zeige $\forall \varepsilon > 0 \ \exists x_0 > 0 \ \text{s.d.} \ \forall x \in \mathbb{R} \ x \geq x_0 : \frac{x^2}{x+1} > M$

$$\frac{x^2}{x+1} \stackrel{x \ge x_0 \ge 1}{\ge} \frac{x^2}{x+x} = \frac{x^2}{2x} = \frac{x}{2} \ge \frac{x_0}{2} \stackrel{!}{>} M \quad \Rightarrow \quad x_0 > 2M$$

Sei $\varepsilon > 0$. Wähle $x_0 = \max(1, 2M)$. $\forall x \in \mathbb{R}$ mit $x \geq x_0$ gilt:

$$\frac{x^2}{x+1} \stackrel{x \ge x_0 \ge 1}{\ge} \frac{x^2}{x+x} = \frac{x^2}{2x} = \frac{x}{2} \ge \frac{x_0}{2} \ge \frac{2M}{2} = M$$

- Um z.B. |x+2| abzuschätzen, wähle δ kleiner einer Zahl (typisch: 1) und stelle die Ungl. um.

$$|x-2| < \delta < 1 \quad \Rightarrow \quad -1 < x-2 < 1 \quad \Rightarrow \quad 3 < x+2 < 5 \quad \Rightarrow \quad |x+2| < 5$$

Schreibe dann $\delta = \min\{1, ...\}$ wobei ... eine weitere Bedingung für δ ist, die i.d.R. später gefunden

- Für z.B. $x \to 1^+$ folgt die Bedingung x > 1, da es sich von rechts annähert.
- Für mehrere Abschätzungen z.B. $x_0 \ge 1, x_0 \ge ...,$ schreibe $x_0 = \max(1,...)$

Praktisches Bestimmen der Grenzwerte

Es gelten die Grenzwertsätze

$$\lim_{x \to \infty} (f + g) = \lim_{x \to \infty} f + \lim_{x \to \infty} g \tag{84}$$

$$\lim_{x \to \infty} (f \cdot g) = \lim_{x \to \infty} f \cdot \lim_{x \to \infty} g \tag{85}$$

$$\lim_{x \to \infty} (f \cdot g) = \lim_{x \to \infty} f \cdot \lim_{x \to \infty} g$$

$$\lim_{x \to \infty} \frac{f}{g} = \frac{\lim_{x \to \infty} f}{\lim_{x \to \infty} g} \quad \text{falls } \lim_{x \to \infty} g \neq 0$$
(85)

• Einsetzen

$$\lim_{x \to 1} (3x^2 + 4) = 3 \cdot 1^2 + 4 = 7$$

Außerdem gilt:

$$\infty + \infty, \ -\infty - \infty = -\infty, \ a \pm \infty = \pm \infty, \ \infty \cdot \infty = \infty, \ b \cdot \infty = \operatorname{sgn}(b) \cdot \infty$$
$$\frac{b}{\pm \infty} = 0, \ e^{\infty} = \infty, \ e^{-\infty} = 0, \ \ln(\infty) = \infty, \ \ln(0) = -\infty$$

Wichtige Umstelltricks für das Einsetzen sind

- Faktorisieren

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{\cancel{(x - 2)}(x^2 + 2x + 4)}{\cancel{(x - 2)}} = 12$$

- Rationalisierung des Zählers für Wurzeln

$$\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4} \stackrel{!}{=} \lim_{x \to 4} \left(\frac{\sqrt{x+5}-3}{x-4} \cdot \frac{\sqrt{x+5}+3}{\sqrt{x+5}+3} \right) = \lim_{x \to 4} \frac{x+5-9}{(x-4)\sqrt{x+5}+3} = \frac{1}{6}$$

Doppelbrüche mittels Hauptnenner lösen

$$\lim_{x \to 3} \frac{\frac{x}{x+2} - \frac{3}{5}}{x-3} \stackrel{!}{=} \lim_{x \to 3} \frac{\frac{x}{x+2} - \frac{3}{5}}{x-3} \cdot \frac{5(x+2)}{5(x+2)} = \lim_{x \to 3} \frac{5x - 3(x+2)}{5(x-3)(x+2)} = \lim_{x \to 3} \frac{2(x-3)}{5(x-3)(x+2)} = \frac{2}{25}$$

• Einschnürungssatz

Wenn $g(x) \le f(x) \le h(x)$, dann folgt aus

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l \quad \Rightarrow \quad \lim_{x \to a} f(x) = l \tag{87}$$

• L'Hopital

De l'Hopitals Regel kann in den Fällen $\frac{0}{0}$, $\frac{\infty}{\infty}$, $\frac{-\infty}{\infty}$, $\frac{\infty}{-\infty}$ angewendet werden. Dann gilt

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = l \quad \Rightarrow \quad \lim_{x \to a} \frac{f(x)}{g(x)} = l \tag{88}$$

wobei a auch $\pm \infty$ sein kann.

Beispiel

ges:
$$\lim_{x\to 0} \frac{\sqrt{2+x}+\sqrt{2-x}}{1+x(1-x)^{1/4}}$$

$$\lim_{x \to 0} \frac{\sqrt{2+x} + \sqrt{2-x}}{1 + x(1-x)^{1/4}} \stackrel{\text{Typ}}{=} \stackrel{\text{"0/0"}}{=} \lim_{x \to 0} \frac{\frac{1}{\sqrt{2+x}} + \frac{1}{\sqrt{2-x}}}{1 + \frac{1}{4}(1-x)^{-3/4}} = \frac{2\sqrt{2}}{5}$$

Die anderen pathologischen Fälle lassen sich wie folgt auf die L'Hopital Fälle umformen.

$$-$$
 " $0 \cdot \infty$ "

Falls bereits ein Bruch vorhanden, können die Faktoren einfach "zusammengeschoben" werden:

$$\lim_{x\to\infty} \left(\frac{1}{x}\cdot \ln(x)\right) \stackrel{\text{"}0\cdot\infty"}{=} \lim_{x\to\infty} \left(\frac{\ln(x)}{x}\right) \stackrel{\text{"}\infty"}{\stackrel{\infty}{=}} \dots$$

Falls kein Bruch vorhanden, erzeuge einen Doppelbruch:

$$-$$
 "00", " ∞ 0", "1 ∞ "

Diese Pathologien werden mittels dem e-ln-Trick in " $0\cdot\infty$ " umgeformt

$$\lim_{x \to 0^+} x^{2x} \stackrel{\text{``0}^{0}\text{''}}{=} \lim_{x \to 0^+} e^{\ln\left(x^{2x}\right)} = \lim_{x \to 0^+} e^{2x \cdot \ln(x)} = \exp\left(\lim_{x \to 0^+} (2x \cdot \ln(x))\right) \stackrel{\text{``0}}{=} \stackrel{\cdot \infty}{=} \dots$$

$$-$$
 " $\infty - \infty$ '

$$\lim_{x \to 1^+} \left(\frac{1}{1-x} - \ln(x) \right) \tilde{}^{\infty} = \tilde{}^{\infty} \lim_{x \to 1^+} \frac{\ln(x) - (1-x)}{(1-x)\ln(x)} \tilde{}^{\frac{0}{0}} \dots$$

• Potenzreihe

Teile der Funktion können durch ihre Potenzreihen genähert werden (z.B. bis Grad 3).

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 = 1 + x + $\frac{x^2}{2}$ + $\frac{x^3}{6}$ + ... KR = ∞ (89)

$$\sin(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2n+1)!} = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots$$
 KR = ∞ (90)

$$\cos(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots \qquad KR = \infty$$
 (91)

$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \quad KR = 1$$
 (92)

$$\sqrt{1+x} = = 1 + \frac{x}{2} - \frac{x^2}{8} + \dots$$
 KR = 1 (93)

Beispiel

ges: $\lim_{x\to 0} \frac{\ln\left(\frac{\sin x}{x}\right)}{x^2}$ mit Näherungen bis Grad 3 um x=0

$$\sin x \approx x - \frac{x^3}{6} \qquad \Rightarrow \frac{\sin x}{x} \approx 1 - \frac{x^2}{6}$$

$$\ln (1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} \qquad \Rightarrow \ln \left(\frac{\sin x}{x}\right) \approx \ln \left(1 + \left(-\frac{x^2}{6}\right)\right) \approx -\frac{x^2}{6}$$

$$\lim_{x \to 0} \frac{\ln \left(\frac{\sin x}{x}\right)}{x^2} \approx \lim_{x \to 0} \frac{-x^2/6}{x^2} = -\frac{1}{6}$$

11 Differenzierbarkeit

Eine Funktion f ist am Punkt a differenzierbar, wenn der Grenzwert des Differenzenquotients, genannt Ableitung, existiert.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \equiv f'(a) \tag{94}$$

Eine Funktion f ist stetig differenzierbar, wenn ihre Ableitung f'(x) stetig ist.

Beispiel

zz:
$$f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 diff.bar, stetig diff.bar

Lös: Untersuche Diffbar.keit.

fist für $x \neq 0$ als Verkettung und Produkt von diff.baren Funktionen diff.bar.

Es bleibt zu zeigen, dass f in 0 diff.bar ist.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3 \sin\left(\frac{1}{x}\right)}{x} = \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$

Denn $-1 \le \sin\left(\frac{1}{x}\right) \le 1 \quad \Rightarrow \quad -x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$ und dann Einschnürungssatz.

Untersuche stetige Diff.barkeit.

Stetig Diff.bar bedeutet, dass die Ableitung f' stetig ist.

$$f'(x) = \begin{cases} 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

f' ist als Verkettung, Summe und Produkt von stetigen Fktn. stetig. Es bleibt zu zeigen, dass f' in 0 stetig ist. Dazu muss gelten:

$$f'(0) = \lim_{x \to 0} f'(x)$$
$$f'(0) = 0 \stackrel{!}{=} \lim_{x \to 0} \left[3x^2 \sin\left(\frac{1}{x}\right) - x\cos\left(\frac{1}{x}\right) \right] = 0 - 0 = 0 \checkmark$$

11.1 Tangentengleichung

Die Tangentengleichung für eine Tangente, die die Funktion am Punkt x_0 schneidet, lautet

$$T_{f,x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0) \tag{95}$$

12 Ableitungen

Die Ableitung der Funktion f im Punkt a ist der Grenzwert der Steigungsrate

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
(96)

Die folgenden Regeln gelten für zwei differenzierbare Funktionen f, g

• Additionsregel

$$(f+g)' = f' + g' (97)$$

• Produktregel

$$(f \cdot g)' = f' \cdot g + f \cdot g' \tag{98}$$

• Quotientenregel Für $g \neq 0$ gilt

$$\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2} \tag{99}$$

• Potenzregel Sei $n \in \mathbb{N}^*$

$$(f^n)' = nf' \cdot f^{n-1} \tag{100}$$

• Kettenregel

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a) \tag{101}$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x} \tag{102}$$

mit z = g(y), y = f(x).

12.1 Kurvendiskussion

Die kritischen Punkte einer Funktion f sind die Nullstellen ihrer Ableitung f'.

$$f'(x_0) = 0 (103)$$

mit einem kritischen Punkt x_0 .

Handelt es sich bei $f(x_0)$ um ein lokales Extremum, gilt

$$f''(x_0)$$
 $\begin{cases} < 0, & \text{lokales Maximum} \\ > 0, & \text{lokales Minimum} \end{cases}$ (104)

Sind alle Punkte \leq bzw. \geq des Funktionswerts des lokalen Maximums (Minimums), handelt es sich um ein **globales** Maximum (Minimum).

Die Funktion ist monoton wachsend falls $f'(x) \ge 0$ (streng: >) bzw. monoton fallend falls $f'(x) \le 0$ (streng: <) und konstant falls f'(x) = 0.

12.2 Elementare Ableitungen

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1} \quad \text{mit } \alpha \in \mathbb{R}$$

$$\sin' = \cos$$

$$\cos' = -\sin$$

$$\tan' = 1 + \tan^2 = \frac{1}{\cos^2} \equiv \sec^2(x)$$

$$\cot' = -\frac{1}{\sin^2} \equiv -\csc^2(x) = -1 - \cot^2$$

$$\sec' = \sec x \tan x$$

$$\csc' = -\cot x \csc x$$

$$\arccos' = -\frac{1}{\sqrt{1 - y^2}}$$

$$\arcsin' = \frac{1}{\sqrt{1 - y^2}}$$

$$\arctan' = \frac{1}{1 + y^2}$$

$$\arctan' = \frac{1}{1 + y^2}$$

$$\sinh' = \cosh$$

$$\cosh' = \sinh$$

$$\tanh' = \frac{1}{\cosh^2} = 1 - \tanh^2$$

$$\coth' = -\frac{1}{\sinh^2} = 1 - \coth^2$$

$$\arcsin' = \frac{1}{\sqrt{y^2 + 1}}$$

$$\arcsin' = \frac{1}{\sqrt{y^2 + 1}}$$

$$\arccos' = \frac{1}{\sqrt{y^2 - 1}}$$

Herleitung

Die Ableitungen der Umkehrfunktionen stammen aus dem Satz der diff.baren Umkehrfunktionen, der unter gewissen Voraussetzungen besagt: $(f^{-1})'(x) = \frac{1}{(f' \circ f^{-1})(x)}$.

$$(\sin^{-1})'(x) \equiv (\arcsin)'(x) = \frac{1}{((\sin)' \circ \arcsin)(x)} = \frac{1}{(\cos \circ \arcsin)(x)} = \frac{1}{\cos(\arcsin(x))}$$
$$= \frac{1}{\sqrt{1 - \sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1 - x^2}}$$

13 Integration

• Partielle Integration

$$\int_{-\infty}^{\infty} f(x) \cdot g'(x) \, \mathrm{d}x = f(x) \cdot g(x) - \int_{-\infty}^{\infty} f'(x) \cdot g(x) \, \mathrm{d}x \tag{105}$$

Vor allem bei ln und dann $f(x) = \ln(...)$.

• Variablentransformation

$$\int_{-\infty}^{y} f(y) \, \mathrm{d}y \stackrel{y=\psi(x)}{=} \int_{-\infty}^{x=\psi^{-1}(y)} f(\psi(x)) \cdot \psi'(x) \, \mathrm{d}x \tag{106}$$

• Trigonometrische Funktionen, um den Integrand zu vereinfachen

$$\cos^2(x) + \sin^2(x) = 1 \tag{107}$$

$$\cos(2x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) = \cos^2(x) - \sin^2(x) \tag{108}$$

$$\sin(2x) = 2\sin(x)\cos(x) \tag{109}$$

• Linearisierung von trig. Fktn. , um den Integrand zu vereinfachen

$$\cos^{n}(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} e^{i(2k-n)x}$$
(110)

$$\sin^{n}(x) = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{n} = \frac{1}{(2i)^{n}} \sum_{k=0}^{n} \binom{n}{k} e^{ixk} \cdot (-e^{ix})^{n-k}$$
(111)

• Substitutionen für trig./hyperb. Fktn. mit Symmetrien

Tabelle 2: Trigonometrische Funktionen $f(x) = R(\cos x, \sin x)$

f ungerade	$u = \cos x \Rightarrow \mathrm{d}u = -\sin x \mathrm{d}x$
$f(x) = -f(-\pi - x)$	$u = \sin x \Rightarrow \mathrm{d}u = \cos x \mathrm{d}x$
$f(x) = f(x + \pi)$	$u = \tan x \Rightarrow du = 1 + \tan^2 x = (1 + u^2) du$
keine Symmetrie	$t = \tan\left(\frac{x}{2}\right) \Rightarrow \frac{2\mathrm{d}t}{1+t^2} = \mathrm{d}x$
	$\Rightarrow \cos x = \frac{1-t^2}{1+t^2}, \ \sin x = \frac{2t}{1+t^2}, \ \tan x = \frac{2t}{1-t^2}$

Tabelle 3: Hyperbelfunktionen $f(x) = R(\cosh x, \sinh x)$

Im Allgemeinen	$u = e^x \Rightarrow \mathrm{d}x = \frac{\mathrm{d}t}{e^x} = \frac{\mathrm{d}t}{u}$
f(x) = -f(-x)	$u = \cosh x$
$f(x) = -f(i\pi - x)$	$u = \sinh x$
$f(x) = f(i\pi + x)$	$u = \tanh x$
keine Symmetrie	$t = \tanh\left(\frac{x}{2}\right) \Rightarrow \frac{2 \mathrm{d}t}{1 + t^2} = \mathrm{d}x$
	$\Rightarrow \cosh x = \frac{1+t^2}{1-t^2}, \ \sinh x = \frac{2t}{1-t^2}, \ \tanh x = \frac{2t}{1+t^2}$

13.1 Riemann-Summe zu Integral

Um eine Riemann-Summe in ein Integral umzuschreiben, werden zunächst a, b, f durch Vergleichen mit der allgemeinen Form der Riemann-Summe ermittelt und dann einfach in das Integral eingesetzt.

$$\lim_{n \to \infty} \underbrace{\frac{b-a}{n}}_{k=1} \sum_{k=1}^{n} f\left(a + \frac{b-a}{n}k\right) \equiv \int_{a}^{b} f(x) \, \mathrm{d}x \tag{112}$$

Beispiel

ges:
$$\lim_{n \to \infty} \frac{3}{n} \sum_{k=0}^{n} \sqrt{1 + \frac{3k}{n}}$$

Am Faktor vor der Summe liest man ab, dass b-a=3. Aus dem Argument der Wurzel folgt, dass a=1 ist. Somit ist b=4. Die Wurzel ist die Funktion f.

$$\lim_{n \to \infty} \frac{3}{n} \sum_{k=0}^{n} \sqrt{1 + \frac{3k}{n}} = \int_{1}^{4} \sqrt{x} \, \mathrm{d}x = \left. \frac{2}{3} x^{3/2} \right|_{1}^{4} = \frac{14}{3}$$

14 Taylor-Reihe mit Rest

Die Formel für die Taylor-Reihe mit Resttermabschätzung ist

$$f(x) = T_n(f, a)(x) + R_n(f, a)(x) = \sum_{k=0}^{n} \frac{f(k)(a)}{k!} (x - a)^k - \frac{f^{(k+1)}(\xi)}{(k+1)!} (x - a)^{n+1}$$
(113)

mit dem Entwicklungspunkt a.

Beispiel

ges: Näherung für $f(x) = \sqrt{1+x}$ mit n=2, a=0 und $|x| < \frac{1}{2}$

$$f(x) = T_2(f,0)(x) + R_2(f,0)(x)$$

$$= \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + \frac{f'''(\xi)}{3!} x^3$$

$$= \left(1 + \frac{1}{2}x - \frac{1}{8}x^2\right) + \left(\frac{1}{16}|x|^3|1 + \xi|^{-5/2}\right)$$

 $\text{Da } |\xi| < |x| < \tfrac{1}{2}, \text{ folgt } -\tfrac{1}{2} < \xi < \tfrac{1}{2} \Rightarrow \tfrac{1}{2} < 1 + \xi \Leftrightarrow |1 + \xi|^{-1} < 2 \Leftrightarrow |1 + \xi|^{-5/2} < 2^{2/5} < 2^3 < 8.$

$$= \left(1 + \frac{1}{2}x - \frac{1}{8}x^2\right) + \left(\frac{1}{2}|x|^3\right)$$

Tabelle 4: Glossar

Aussage, die aus mehreren Bestandteilen zusammengesetzt ist und
immer wahr ist, unabhängig von dem Wahrheitswert ihrer Be-
standteile.
$Bsp: \neg(\neg A) \Leftrightarrow A$
Tautologie der Form $A \Leftrightarrow B$
Aussage, die von einer Variablen abhängt
Aussage, der man den Wahrheitswert "wahr" zuordnet
Menge aller Teilmengen einer Grundmenge A. Dabei sind $\emptyset := \{\}$
und A immer Elemente der Potenzmenge.
Bsp: Sei $A = \{1, 2\}$ $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}$
Beziehung zwischen 2 Mengen, die jedem Element der 1. Menge
genau einem Element in der 2. Menge zuordnet.
Menge aller geordneten Paare $(x, f(x))$ aus den Elementen x der
Definitionsmenge und den zugehörigen Funktionswerten $f(x)$.
Das Bild einer Teilmenge A ist die Menge aller Funktionswerte
f(a).
Wert in einer Menge $X \supseteq M$, für den gilt, dass alle Werte in der
Teilmenge M kleiner gleich als er sind.
Wert in einer Menge $X \supseteq M$, für den gilt, dass alle Werte in der
Teilmenge M größer gleich als er sind.
Eine Menge M ist beschränkt, wenn eine obere und untere Schran-
ke existieren.
Kleinste obere Schranke
$\forall y \in Y : y \le \sup(Y)$
Größte untere Schranke
$\forall y \in Y : y \ge \sup(Y)$
Größter Wert einer Menge. Alt.: Obere Schranke, die zu der Menge
gehört.
Kleinster Wert einer Menge. Alt.: Untere Schranke, die zu der
Menge gehört.
Eine Folge ist konvergent, wenn für alle Abstände $\varepsilon > 0$ um
den Grenzwert a ein bestimmtes Folgenglied u_{n_0} gefunden werden
kann, s.d. alle Folgenglieder danach im ε -Bereich um den Grenz-
wert a liegen.
$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : u_n - a < \varepsilon \Leftrightarrow : \lim_{n \to \infty} u_n = a$
2.0 • • • • • • • • • • • • • • • • • • •
1.6 - Grenzwert a
3 14 12
0.8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 n ∈ N

Teilfolge	Folge der Form $v_n = u_{\varphi(n)}$ wobei $\varphi(n)$ eine steigende Fkt. ist
Limes superior	Grenzwert der Folge $\sup_{k\geq n}u_k$. Ein Folgenglied dieser Folge $\sup_{k\geq n}u_k$ ist dabei das Maximum aller Glieder u_k mit $k\geq n$. Die Glieder davor werden ignoriert.
	$ \limsup_{n \to \infty} u_n := \lim_{n \to \infty} (\sup_{k \ge n} u_k) $
Limes inferior	$ \liminf_{n \to \infty} u_n := \lim_{n \to \infty} (\inf_{k > n} u_k) $
Häufungspunkt	Grenzwert einer konvergenten Teilfolge
Satz von Bolzano-Weierstraß	Ist eine Folge beschränkt, existiert eine konvergente Teilfolge
Cauchy-Folge	Eine Folge ist eine Cauchy-Folge, wenn für alle Abstände $\varepsilon > 0$
	ein Folgenglied u_{n_0} gefunden werden kann, s.d. für alle Folgenglieder danach gilt, dass der Abstand zweier beliebiger Folgenglieder kleiner ε ist. $\varepsilon > 0 \; \exists n_0 \in \mathbb{N} : \forall m, n \geq n_0 : u_m - u_n \leq \varepsilon$
Potenzreihe	$\varepsilon > 0 \; \exists n_0 \in \mathbb{N} : \forall m, n \ge n_0 : u_m - u_n \le \varepsilon$ Reihe der Form $\sum_{k \ge n_0} a_k \cdot z^k$, wobei $(a_k)_k$ eine Folge ist.
Konvergenzradius	Grenze für das z in einer Potenzreihe, s.d. diese mit $ z < KR$ absolut konvergenz und mit $ z > KR$ divergiert.
Offen	Ein Menge A ist offen, wenn für jedes Element der Menge eine offene Kreisscheibe existiert, die wieder in der Menge liegt.
Abgeschlossen	Eine Menge A ist abgeschlossen, wenn ihr Komplement A^c offen ist. Bsp: $\{a\}, [a, b,], [a, +\infty), (-\infty, a]$
Charaktersisierung von abgeschl.	A ist abgeschlossen \Leftrightarrow Alle konv. Folgen $(u_n)_n$, deren Folgenglie-
Mengen durch Folgen	der in A liegen, haben auch einen Grenzwert in A .
A offen (abg.) in B	A ist offen (abg.) in B, wenn $A = B \cup \Omega$ mit Ω offene (abg.) Menge.
Stetig in A	Eine Funktion f ist stetig in einer Menge A , falls eine der Bedingungen S1, S2, S3, S4 (siehe VL) gilt

Stetig im Punkt a	Eine Funktion f ist stetig im Punkt a , falls eines der Kriterien gilt: • ε - δ -Kriterium
	$\forall \varepsilon > 0 \ \exists \eta > 0 : \forall x \in \mathbb{A} : x - a \le \eta \Rightarrow f(x) - f(a) \le \varepsilon$
	• Grenzwert-Kriterium
	$f(a) = \lim_{x \to a} f(x)$
	• Folgenkriterium $\forall (u_n)_n \in A$, die gegen a konv. gilt:
	$\lim_{n \to a} f(u_n) = f(a)$
Kompaktum bzw. A ist kompakt	A ist ein Kompaktum, wenn A abgeschlossen und beschränkt ist.
Gleichmäßig stetig	Stetigkeit, aber η hängt nur noch von ε und nicht mehr, wie bei der Stetigkeit, vom betrachteten Punkt a ab.
Zwischenwertsatz	Seien $a, b \in \mathbb{R}$ mit $a < b$ und $f : [a, b] \to \mathbb{R}$ stetig, dann nimmt f jeden beliebigen Wert zwischen $f(a), f(b)$ an mindestens einer Stelle $c \in [a, b]$ an.
Abschluss	- [4,1]
Ausdehnung (stetige Ergänzung)	Erweiterung einer Funktion $f: A \to \mathbb{K}$ an einer unstetigen Stelle a mit $f(a) := \lim_{x \to a} f(x)$, wodurch die Funktion dort stetig wird.
Umgebung von a in A	Offene Menge $(a - \varepsilon, a + \varepsilon) \cap A$ mit $\varepsilon > 0$.
"In der Nähe von a"	In einer gewissen Umgebung von a. D.h. $(a - \varepsilon, a + \varepsilon) \cap A$ für ein bestimmtes $\varepsilon > 0$.
Landau-Symbole	f ist von g in der Nähe von a dominiert.
	$f(x) \stackrel{x \to a}{=} O(g(x)) \Leftrightarrow \limsup_{x \to a} \left \frac{f(x)}{g(x)} \right < \infty$
	f ist in der Nähe von a vernachlässigbar gegenüber g .
	$f(x) \stackrel{x \to a}{=} o(g(x)) \Leftrightarrow \lim_{x \to \infty} \left \frac{f(x)}{g(x)} \right = 0$
	f ist in der Nähe von a äquivalent zu g .
	$f(x) \overset{x \to a}{\sim} g(x) \Leftrightarrow f(x) - g(x) \overset{x \to a}{=} o(g(x)) \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$

differenzierbar im Punkt c	fist differenzierbar in $c,$ wenn die Ableitung , also der Grenzwert der Steigungsrate
	$\lim_{x \to a, \ x \neq a} \frac{f(x) - f(a)}{x - a} \in \mathbb{R}$
	in diesem Punkt existiert und f auf $[a,b]$ stetig und auf $[a,b]\setminus\{c\}$ diff.bar ist.
Satz der diff.baren Umkehrfktn.	Ist die Funktion $f:A\to B$ diff.bar und ihre Ableitung f' in A stetig und ohne NS, so gilt für die Ableitung ihrer Umkehrfkt. f^{-1}
	$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$
lokales Maximum	Im Punkt c existiert ein lokales Maximum, wenn
	$\exists \varepsilon > 0 : f(x) \le f(c) \ \forall x \in A \cap (c - \varepsilon, c + \varepsilon)$
lokales Minimum	Im Punkt c existiert ein lokales Minimum, wenn
	$\exists \varepsilon > 0 : f(x) \ge f(c) \ \forall x \in A \cap (c - \varepsilon, c + \varepsilon)$
lokales Extremum	Lokales Maximum oder lokales Minimum
globales Maximum	Im Punkt c existiert ein globales Maximum, wenn
	$\forall x \in A : f(x) \le f(c)$
globales Minimum	Im Punkt c existiert ein globales Maximum, wenn
	$\forall x \in A : f(x) \ge f(c)$
globales Extremum	Globales Maximum oder gloables Minimum
kritischer Punkt	Ein kritischer Punkt einer diff.baren Fkt. f ist eine NS von f' .
Satz von Rolle	Sei $f:[a,b] \to \mathbb{R}$ stetig und diff.bar auf (a,b) und $f(a)=f(b)$, dann $\exists x_0 \in [a,b]$ s.d. $f'(x_0)=0$
Mittelwertsatz	Sei $f:[a,b] \to \mathbb{R}$ stetig mit $a < b$, dann existiert <u>mindestens</u> ein $c \in (a,b)$, s.d. die Ableitung an diesem c der Sekantensteigung entspricht
	$f'(c) = \frac{f(b) - f(a)}{b - a}$
Regel von De l'Hopital	
	I

Differentiationsklasse C^k	Die Differntiationsklasse, genauer das k , gibt an, wie oft die Funktion, die dieser Klasse angehört, stetig diff.bar ist. C^0 ist eine stetige, nicht diff.bare Fkt., C^{∞} eine glatte , also unendlich oft stetig diff.bare Fkt.
Polstelle	Definitionslücke mit der Eigentschaft $\lim_{x\to a} f(x) = +\infty$
konvex	Eine Funktion f ist konvex, wenn • ihr Graph <u>unterhalb</u> einer beliebigen Verbindungslinie zweier Funktionspunkte liegt.
	$\forall x, y \in I : \forall t \in [0, 1] f((1 - t)x + t \cdot y) \le (1 - t)f(x) + t \cdot f(y)$
	Falls f (2mal) diff.bar: • f' steigend ist • $\forall x \in I$ der Graph von f oberhalb seiner Tangente in x liegt.
	$\forall x, y \in I : f(y) \ge f(x) + (y - x)f'(x)$
	• $f''(x) \ge 0$ ist
konkav	Eine Funktion ist konkav, wenn • ihr Graph <u>oberhalb</u> einer beliebigen Verbindungslinie zweier Funktionspunkte liegt.
	$\forall x, y \in I : \forall t \in [0, 1] f((1 - t)x + t \cdot y) \ge (1 - t) f(x) + t \cdot f(y)$
	Falls f (2mal) diff.bar: • f' fallend ist • $\forall x \in I$ der Graph von f unterhalb seiner Tangente in x liegt.
	$\forall x, y \in I : f(y) \le f(x) + (y - x)f'(x)$
	• $f''(x) \le 0$ ist
streng konvex (konkav)	Ungl. wie bei konvex (konkav), jedoch mit $t \in (0,1)$ in den Ungl. und streng steigend statt nur steigend und $>$ statt \ge .
arithm., geom. harm. Mittel	$\frac{x_1 + \dots + x_n}{n} \ge (x_1 \cdot \dots \cdot x_n)^{1/n} \ge \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}}$
Satz d. Riemann'schen Integrale	Seien $a, b \in \mathbb{R}$ s.d. $a < b$ und $f : [a, b] \to \mathbb{C}$ stetig, dann gilt
	$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(a + (b-a)\frac{k}{n}\right) = \int_{a}^{b} f(x) dx$
Länge eines Graphen	Sei $f: I = [a, b] \to \mathbb{R}$ und $x_i = \frac{(b-a)i}{n}$
	$\lim_{n \to \infty} L_n, \ L_n = \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2}$

Stammfunktion	Sei $A \subseteq \mathbb{R}$. Eine Stammfunktion von $f: A \to \mathbb{R}$ ist eine diff.bare
	Funktion $F: A \to \mathbb{R}$ s.d. $f = F'$.
Fundamentalsatz der Analysis	Seien $a, b \in \mathbb{R}$ s.d. $a < b$ und $f : [a, b] \to \mathbb{R}$ stetig. Wenn F eine
Fundamentalsatz del Analysis	
	Stammfunktion von f ist, gilt
	a h
	$\int_{a}^{b} f(x) dx = F(b) - F(a) \equiv [F]_{a}^{b}$
	$\int_{a} \int (u) du = I(u) - I(u) = [I]_{a}$
	Für $f:(a,b)\to\mathbb{R}$ stetig und int.bar und $a\in\mathbb{R}\cup\{+\infty\},\ b\in$
	$\mathbb{R} \cup \{-\infty\} \text{ s.d } a < b$
	$[F]_a^b = \left(\lim_{x \to b} F(x)\right) - \left(\lim_{x \to a} F(x)\right)$
Variablentransformation	. 100
	$\int_{-\infty}^{y} \int_{-\infty}^{y} \int_{-\infty}^{\psi^{-1}(y)} \int_{-\infty}^{$
	$\int_{-\infty}^{y} f(y) dy \stackrel{y=\psi(x)}{=} \int_{-\infty}^{\psi^{-1}(y)} f(\psi(x)) \cdot \psi'(x) dx$
	J J
Partielle Integration	
i ai tielle integration	$\int_{-\infty}^{x} dx dx = \int_{-\infty}^{x} dx dx$
	$\int_{-\infty}^{x} f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int_{-\infty}^{x} f'(x) \cdot g(x) dx$
	J
• • • •	
integrierbar	Seien $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$ und $f:(a,b) \to \mathbb{C}$. Dann ist
	f integrierbar falls
	ah.
	$\int_{a}^{b} f(x) \mathrm{d}x < +\infty$
	$\int_{a} J(x) dx < +\infty$
	- w
in den Nähe einer Deerlete ist	Fine Dunktion f ist in den Nöberder Deutster eint ben an Deutster eine B
in der Nähe eines Punkts inte-	Eine Funktion f ist in der Nähe des Punktes a int.bar, wenn $\exists c \in A$
grierbar	(a,b) s.d. f auf $(a,c]$ int.bar (Analog für b).
Konvergenz von Reihen mittels	Sei $n_0 \in \mathbb{N}$ und $f: [n_0, +\infty) \to \mathbb{R}_{>}$ eine stetige, fallende Fkt.,
Integrabilität	dann konvergiert die Reihe $\sum_{n>n_0} f(n)$ gdw. f in der Nähe von
	$+\infty$ int.bar ist.
	I