# Lecture 2: Image projection and Filtering

Book Ref.- Computer Vision, Szeliski: Section 2.1, especially Subsection 2.1.4

#### Chapter 2

# **Image formation**

| 2.1 | Geometric primitives and transformations |                         |    |
|-----|------------------------------------------|-------------------------|----|
|     | 2.1.1                                    | 2D transformations      | 39 |
|     | 2.1.2                                    | 3D transformations      | 43 |
|     | 2.1.3                                    | 3D rotations            | 45 |
|     | 2.1.4                                    | 3D to 2D projections    | 50 |
|     | 2.1.5                                    | Lens distortions        | 62 |
| 2.2 | Photometric image formation              |                         | 64 |
|     | 2.2.1                                    | Lighting                | 65 |
|     | 2.2.2                                    | Reflectance and shading | 66 |
|     | 2.2.3                                    | Optics                  | 73 |
| 2.3 | The digital camera                       |                         | 78 |
|     | 2.3.1                                    | Sampling and aliasing   | 82 |
|     | 2.3.2                                    | Color                   | 85 |
|     | 2.3.3                                    | Compression             | 97 |
| 2.4 | Additional reading                       |                         | 98 |
| 2.5 | Exercis                                  | ses                     | 99 |
|     |                                          |                         |    |

#### From the 3D to 2D



#### Camera Obscura used for Tracing



Lens Based Camera Obscura, 1568

# First Photograph

#### Oldest surviving photograph

Took 8 hours on pewter plate



Joseph Niepce, 1826

#### Photograph of the first photograph



Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

# **Projective Geometry**

#### What is lost?

Length



# Length and area are not preserved



# **Projective Geometry**

#### What is lost?

- Length
- Angles



# **Projective Geometry**

# What is preserved?

• Straight lines are still straight



# Vanishing points and lines

Parallel lines in the world intersect in the image at a "vanishing point"



# Vanishing points and lines



# Vanishing points and lines



#### Projection: world coordinates $\rightarrow$ image coordinates



If 
$$x = 2$$
,  $y = 3$ ,  $z = 5$ , and  $f = 2$   
What are u' and v'?

$$u' = -x * \frac{f}{z} \qquad u' = -2 * \frac{2}{5}$$

$$\frac{v'}{-f} = \frac{y}{z} \qquad v' = -y * \frac{f}{z} \qquad v' = -3 * \frac{2}{5}$$

#### Projection: world coordinates $\rightarrow$ image coordinates



How do we handle the general case?

Interlude: why does this matter?

# Relating multiple views



# Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

#### Projection: world coordinates image coordinates



How do we handle the general case?

# Homogeneous coordinates

#### Conversion

#### Converting to *homogeneous* coordinates

$$(x,y) \Rightarrow \left[ egin{array}{c} x \\ y \\ 1 \end{array} 
ight]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
  $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$ 

homogeneous scene coordinates

#### Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

# Homogeneous coordinates

#### Invariant to scaling

$$k\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$
Homogeneous
Coordinates
Coordinates

Point in Cartesian is ray in Homogeneous

#### Projection matrix



$$x = K[R \ t]X$$

**x**: Image Coordinates: (u,v,1)

**K**: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

#### Projection matrix



- Unit aspect ratio
- Optical center at (0,0)
- No skew

#### Intrinsic Assumptions Extrinsic Assumptions

K

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Savarese

#### Projection matrix



- Unit aspect ratio
- Optical center at (0,0)
- No skew

#### Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

### Remove assumption: known optical center

#### Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

### Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions

No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

# Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

#### Oriented and Translated Camera



#### Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

#### 3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:



$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

#### Allow camera rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

# Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

# Field of View (Zoom, focal length)



# Beyond Pinholes: Radial Distortion



**Corrected Barrel Distortion** 

# Things to remember

 Vanishing points and vanishing lines



 Pinhole camera model and camera projection matrix



Homogeneous coordinates

$$(x,y) \Rightarrow \left[ egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

# Reminder: read your book

- Lectures have assigned readings
- Szeliski 2.1 and especially 2.1.4 cover the geometry of image formation

# Image Filtering



Computer Vision
James Hays



BBC Clip: <a href="https://www.youtube.com/watch/OlumoQ05gS8">https://www.youtube.com/watch/OlumoQ05gS8</a>

### From the 3D to 2D



# Extract useful building blocks





# **Hybrid Images**



 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

# Upcoming classes: two views of filtering

- Image filters in spatial domain
  - Filter is a mathematical operation of a grid of numbers
  - Smoothing, sharpening, measuring texture

- Image filters in the frequency domain
  - Filtering is a way to modify the frequencies of images
  - Denoising, sampling, image compression

# Image filtering (or convolution)

 Image filtering: compute function of local neighborhood at each position

- Really important!
  - Enhance images
    - Denoise, resize, increase contrast, etc.
  - Extract information from images
    - Texture, edges, distinctive points, etc.
  - Detect patterns
    - Template matching
  - Deep Convolutional Networks

# Example: box filter

$$g[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$g[\cdot,\cdot]^{\frac{1}{9}}$$





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|----|----|----|----|----|----|----|----|--|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
| ·  |    | ·  |    |    |    |    |    |  |

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

#### **Box Filter**

#### What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

|          | <b>\{</b> | Z[· ,· | J |
|----------|-----------|--------|---|
| 1        | 1         | 1      | 1 |
| <u> </u> | 1         | 1      | 1 |
| 9        | 1         | 1      | 1 |

# Smoothing with box filter







| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

?



Original





Filtered (no change)





| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |





Original





Shifted left By 1 pixel



Original



(Note that filter sums to 1)



Original

| 0 | 0 | 0 |
|---|---|---|
| 0 | 2 | 0 |
| 0 | 0 | 0 |





**Sharpening filter** 

- Accentuates differences with local average

# Sharpening





before after

# Other filters



| 1 | 0 | -1 |
|---|---|----|
| 2 | 0 | -2 |
| 1 | 0 | -1 |

Sobel



Vertical Edge (absolute value)

## Other filters



| 1  | 2              | 1  |
|----|----------------|----|
| 0  | 0              | 0  |
| -1 | <del>-</del> 2 | -1 |

Sobel



Horizontal Edge (absolute value)

Next class: Light and Color and Thinking in Frequency

