## Machine Learning Exercise Sheet 10

# Dimensionality Reduction & Matrix Factorization, Part 1

### In-class Exercises

**Problem 1:** In this exercise, we use proof by induction to show that the linear projection onto an M-dimensional subspace that maximizes the variance of the projected data is defined by the M eigenvectors of the data covariance matrix S, given by

$$oldsymbol{S} = rac{1}{N} \sum_{n=1}^N (oldsymbol{x}_n - ar{oldsymbol{x}}) (oldsymbol{x}_n - ar{oldsymbol{x}})^T \qquad ar{oldsymbol{x}} = rac{1}{N} \sum_{n=1}^N oldsymbol{x}_n$$

corresponding to the M largest eigenvalues. In Section 12.1 in Bishop this result was proven for the case of M = 1. Now suppose the result holds for some general value of M and show that it consequently holds for dimensionality M + 1.

**Problem 2:** Proof that minimizing the error is equivalent to maximizing the variance.

### Homework

### **PCA**

**Problem 3:** Let the matrix  $X \in \mathbb{R}^{N \times D}$  represent N data points of dimension D = 10 (samples stored as rows). We applied PCA to X. By using the K = 5 top principal components, we transformed/projected X into  $\tilde{X} \in \mathbb{R}^{N \times K}$ . We computed that  $\tilde{X}$  preserves 70% of the variance of the original data X.

Suppose now we apply PCA on the following matrices:

a) 
$$Y_1 = XS$$
 where  $S = \lambda I$ , with  $\lambda \in \mathbb{R}$  and  $I \in \mathbb{R}^{D \times D}$  is the identity matrix

b) 
$$Y_2 = XR$$
 where  $R \in \mathbb{R}^{D \times D}$  and  $RR^T = I$ 

c) 
$$Y_3 = XP$$
 where  $P = \text{diag}(+5, -5, \dots, +5, -5)$  is a  $D \times D$  diagonal matrix

d) 
$$Y_4 = XQ$$
 where  $Q = diag(1, 2, 3, ..., D - 1, D)$  is a  $D \times D$  diagonal matrix

e) 
$$Y_5 = X + \mathbf{1}_N \boldsymbol{\mu}^T$$
 where  $\boldsymbol{\mu} \in \mathbb{R}^D$  and  $\mathbf{1}_N$  is an N-dimensional column vector of all ones

f) 
$$Y_6 = XA$$
 where  $A \in \mathbb{R}^{D \times D}$  and rank $(A) = 5$ 

and obtain the projected data  $\tilde{Y}_1, \dots \tilde{Y}_6 \in \mathbb{R}^{N \times K}$  using the principal components corresponding to the top K = 5 largest eigenvalues of the respective  $Y_i$ .

What fraction of variance of each  $Y_i$  will be preserved by each respective  $\tilde{Y}_i$ ? Justify your answer.

The answer "cannot tell without additional information" is also valid if you provide a justification.

**Problem 4:** You are given N = 4 data points:  $\{x_i\}_{i=1}^4, x_i \in \mathbb{R}^3$ , represented with the matrix  $X \in \mathbb{R}^{4 \times 3}$ .

$$\boldsymbol{X} = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 1 & -2 \\ 4 & -1 & 2 \\ -2 & 1 & 2 \end{bmatrix}$$

Hint: In this task the results of all (final and intermediate) computations happen to be integers.

- a) Perform principal component analysis (PCA) of the data X, i.e. find the principal components and their associated variances in the transformed coordinate system. Show your work.
- b) Project the data to two dimensions, i.e. write down the transformed data matrix  $Y \in \mathbb{R}^{4 \times 2}$  using the top-2 principal components you computed in (a). What fraction of variance of X is preserved by Y?
- c) Let  $x_5 \in \mathbb{R}^3$  be a new data point. Specify the vector  $x_5$  such that performing PCA on the data including the new data point  $\{x_i\}_{i=1}^5$  leads to exactly the same principal components as in (a).

#### **SVD**

**Problem 5:** Use the SVD shown below. Suppose a new user Leslie assigns rating 3 to Alien and rating 4 to Titanic, giving us a representation of Leslie in the 'original space' of [0,3,0,0,4]. Find the representation of Leslie in concept space. What does that representation predict about how well Leslie would like the other movies appearing in our example data?

|       | Matrix | Alien | Star Wars | Casablanca | Titanic |
|-------|--------|-------|-----------|------------|---------|
| Joe   | 1      | 1     | 1         | 0          | 0       |
| Jim   | 3      | 3     | 3         | 0          | 0       |
| John  | 4      | 4     | 4         | 0          | 0       |
| Jack  | 5      | 5     | 5         | 0          | 0       |
| Jill  | 0      | 0     | 0         | 4          | 4       |
| Jenny | 0      | 0     | 0         | 5          | 5       |
| Jane  | 0      | 0     | 0         | 2          | 2       |
|       |        |       |           |            |         |

Figure 11.6: Ratings of movies by users

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} .14 & 0 \\ .42 & 0 \\ .56 & 0 \\ .70 & 0 \\ 0 & .60 \\ 0 & .75 \\ 0 & .30 \end{bmatrix} \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .58 & .58 & .58 & 0 & 0 \\ 0 & 0 & 0 & .71 & .71 \end{bmatrix}$$

$$M \qquad \qquad U \qquad \qquad \Sigma \qquad \qquad V^{T}$$

**Problem 6:** You want to perform linear regression on a data set with features  $\boldsymbol{X} \in \mathbb{R}^{N \times D}$  and targets  $\boldsymbol{y} \in \mathbb{R}^N$ . Assume that you have already computed the SVD of the feature matrix  $\boldsymbol{X} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$ . Additionally, assume that  $\boldsymbol{X}$  has full rank and N > D.

Show how we can compute the optimal linear regression weights  $\boldsymbol{w}^{\star}$  in  $\mathcal{O}(ND)$  operations by using the result of the SVD.

Hint: Matrix operations have the following asymptotic complexity

- Matrix multiplication  $\pmb{AB}$  for arbitrary  $\pmb{A} \in \mathbb{R}^{P \times Q}$  and  $\pmb{B} \in \mathbb{R}^{Q \times R}$  takes  $\mathcal{O}(PQR)$
- Matrix multiplication AD for an arbitrary  $A \in \mathbb{R}^{P \times Q}$  and a diagonal  $D \in \mathbb{R}^{Q \times Q}$  takes  $\mathcal{O}(PQ)$
- Matrix inversion  $C^{-1}$  for an arbitrary matrix  $C \in \mathbb{R}^{M \times M}$  takes  $\mathcal{O}(M^3)$
- Matrix inversion  $D^{-1}$  for a diagonal matrix  $D \in \mathbb{R}^{M \times M}$  takes  $\mathcal{O}(M)$

#### Coding

**Problem 7:** Download the notebook exercise\_10\_notebook.ipynb from Moodle. Fill in the missing code and run the notebook.