Серов С.С. ИУ5-22 РК1

Задание

Для заданного набора данных проведите обработку пропусков в данных. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему? Для заданного набора данных произведите масштабирование данных и преобразование категориальных признаков в количественные. Какие методы Вы использовали для решения задачи и почему?

Набор данных: kaggle.com (Marvel)

Описание набора данных

In [92]:

from google.colab import files # files.upload() !ls -lha kaggle.ison !pip install -q kaggle !mkdir -p ~/.kaggle !cp kaggle.json ~/.kaggle/ # This permissions change avoids a warning on Kaggle tool startup. !chmod 600 ~/.kaggle/kaggle.json !kaggle datasets list !kaggle datasets download -d fivethirtyeight/fivethirtyeight-comic-characters-dataset -rw-r--r-- 1 root root 68 Apr 3 16:26 kaggle.json Warning: Looks like you're using an outdated API Version, please consider updating (server 1.5.6 / client 1.5.4) title size lastUpdated downloadCount COVID-19 Open Research Dataset Challenge (CORD-19) 729MB 2020-03-27 23:46:53 allen-institute-for-ai/CORD-19-research-challenge 41093 CBC News Coronavirus/COVID-19 Articles (NLP) 6MB 2020-03-27 23:23:07 ryanxjhan/cbc-news-coronavirus-articles-march-26 245 239KB 2020-04-02 22:27:03 vitaliymalcev/russian-passenger-air-service-20072020 Russian passenger air service 2007-2020 danevans/world-bank-wdi-212-health-systems World Bank WDI 2.12 - Health Systems 6KB 2020-03-29 19:00:14 310 sobhanmoosavi/us-accidents US Accidents (3.0 million records) 199MB 2020-01-17 04:45:09 12153 fireballbyedimyrnmom/us-counties-covid-19-dataset US counties COVID 19 dataset 206KB 2020-04-03 11:21:53 514 eswarchandt/amazon-music-reviews Amazon Musicual Instruments Reviews 5MB 2020-03-29 02:59:52 125 Project COVIEWED Coronavirus News Corpus trtmio/project-coviewed-subreddit-coronavirus-news-corpus 8MB 2020-03-31 11:32:45 28 monogenea/birdsongs-from-europe 7GB 2020-03-23 15:35:20 Bird songs from Europe (xeno-canto) dheerajmpai/hospitals-and-beds-in-india Hospitals and beds in India (Statewise) 5KB 2020-03-27 14:05:50 lakritidis/identifying-influential-bloggers-techcrunch Identifying Influential Bloggers: Techcrunch 112MB 2020-03-30 19:22:09 34 bappekim/air-pollution-in-seoul 20MB 2020-03-29 07:42:23 Air Pollution in Seoul UNCOVER COVID-19 Challenge roche-data-science-coalition/uncover 154MB 2020-04-01 15:17:39 599 sudalairajkumar/novel-corona-virus-2019-dataset Novel Corona Virus 2019 Dataset 661KB 2020-04-03 05:56:48 10455 Data Science for COVID-19 (DS4C) kimjihoo/coronavirusdataset 3MB 2020-03-30 19:54:12 24580 unanimad/dataisbeautiful Reddit - Data is Beautiful 11MB 2020-04-01 12:10:09 1456 jessemostipak/hotel-booking-demand Hotel booking demand 1MB 2020-02-13 01:27:20 12311 rubenssjr/brasilian-houses-to-rent brazilian houses to rent 282KB 2020-03-25 22:51:17 1554 216KB 2020-04-03 11:08: paultimothymooney/covid19-containment-and-mitigation-measures COVID-19 containment and mitigation measures clmentbisaillon/fake-and-real-news-dataset Fake and real news dataset 41MB 2020-03-26 18:51:15 605 fivethirtyeight-comic-characters-dataset.zip: Skipping, found more recently modified local copy (use --force to force download)

In [93]:

!unzip /content/fivethirtyeight-comic-characters-dataset.zip !head marvel-wikia-data.csv

6/3/02,Yologarch (Earth-616),∀Yologarch_(Earth-616),,Bad Characters,,,,Living Characters,,,

In [94]:

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import load_wine %matplotlib inline data = pd.read_csv('marvel-wikia-data.csv', sep=",") # data = pd.get_dummies(data) data.head()

Out[94]:

	page_id	name	urislug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	APPI
0	1678	Spider- Man (Peter Parker)	√Spider-Man_(Peter_Parker)	Secret Identity	Good Characters	Hazel Eyes	Brown Hair	Male Characters	NaN	Living Characters	4043.0	
1	7139	Captain America (Steven Rogers)	√Captain_America_(Steven_Rogers)	Public Identity	Good Characters	Blue Eyes	White Hair	Male Characters	NaN	Living Characters	3360.0	
2	64786	Wolverine (James \"Logan\" Howlett)	\Wolverine_(James_%22Logan%22_Howlett)	Public Identity	Neutral Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	3061.0	
3	1868	Iron Man (Anthony \"Tony\" Stark)	VIron_Man_(Anthony_%22Tony%22_Stark)	Public Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	2961.0	
4	2460	Thor (Thor Odinson)	VThor_(Thor_Odinson)	No Dual Identity	Good Characters	Blue Eyes	Blond Hair	Male Characters	NaN	Living Characters	2258.0	
4												Þ

In [95]:

data.shape

Out[95]:

(16376, 13)

In [96]:

Список колонок с типами данных data.dtypes

Out[96]:

page_id int64 object name urlslug object ID object **ALIGN** object EYE object HAIR object SEX object **GSM** object ALIVE object **APPEARANCES** float64 FIRST APPEARANCE object

Year float64

dtype: object

In [97]:

Количество пустых значений data.isnull().sum()

Out[97]:

nage id

name 0 0 urlslug ID 3770 ALIGN 2812 EYE 9767 HAIR 4264 SEX 854 16286 GSM **ALIVE APPEARANCES** 1096 FIRST APPEARANCE Year

dtype: int64

In [98]:

Основные статистические характеристки набора данных data.describe()

Out[98]:

	page_id	APPEARANCES	Year
count	16376.000000	15280.000000	15561.000000
mean	300232.082377	17.033377	1984.951803
std	253460.403399	96.372959	19.663571
min	1025.000000	1.000000	1939.000000
25%	28309.500000	1.000000	1974.000000
50%	282578.000000	3.000000	1990.000000
75%	509077.000000	8.000000	2000.000000
max	755278.000000	4043.000000	2013.000000

In [99]:

```
total_count = data.shape[0]
print('Строк в наборе : {}'.format(total_count))
```

Строк в наборе: 16376

Обработка пропусков

Удаление колонок, содержащих пустые значения

In [100]:

```
data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)
```

Out[100]:

((16376, 13), (16376, 3))

Удаление строк, содержащих пустые значения

In [101]:

```
data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

Out[101]:

((16376, 13), (58, 13))

Заполнение всех пропущенных значений нулями

In [102]:

data_new_3 = data.fillna(0) data_new_3.head()

Out[102]:

	page_id	name	urislug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	APPI
0	1678	Spider- Man (Peter Parker)	√Spider-Man_(Peter_Parker)	Secret Identity	Good Characters	Hazel Eyes	Brown Hair	Male Characters	0	Living Characters	4043.0	
1	7139	Captain America (Steven Rogers)	√Captain_America_(Steven_Rogers)	Public Identity	Good Characters	Blue Eyes	White Hair	Male Characters	0	Living Characters	3360.0	
2	64786	Wolverine (James \"Logan\" Howlett)	\Wolverine_(James_%22Logan%22_Howlett)	Public Identity	Neutral Characters	Blue Eyes	Black Hair	Male Characters	0	Living Characters	3061.0	
3	1868	Iron Man (Anthony \"Tony\" Stark)	VIron_Man_(Anthony_%22Tony%22_Stark)	Public Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	0	Living Characters	2961.0	
4	2460	Thor (Thor Odinson)	VThor_(Thor_Odinson)	No Dual Identity	Good Characters	Blue Eyes	Blond Hair	Male Characters	0	Living Characters	2258.0	
4												· ·

Построение гистограммы

In [103]:

для колонки Year fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['Year'])

Out[103]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fdc9d836048>

Mari iotolius

гімпьютацил

Числовые данные

Выберем числовые колонки с пропущенными значениями

In [104]:

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам да тасе та
num_cols = []
for col in data.columns:
# Количество пустых значений
temp_null_count = data[data[col].isnull()].shape[0]
dt = str(data[col].dtype)
if temp_null_count>0 and (dt=='float64' or dt=='int64'):
num_cols.append(col)
temp_perc = round((temp_null_count / total_count) * 100.0, 2)
print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка APPEARANCES. Тип данных float64. Количество пустых значений 1096, 6.69%. Колонка Year. Тип данных float64. Количество пустых значений 815, 4.98%.

In [105]:

```
# Филь тр по колонкам с пропущенными значениями data_num = data[num_cols] data_num
```

Out[105]:

	APPEARANCES	Year
0	4043.0	1962.0
1	3360.0	1941.0
2	3061.0	1974.0
3	2961.0	1963.0
4	2258.0	1950.0
16371	NaN	NaN
16372	NaN	NaN
16373	NaN	NaN
16374	NaN	NaN
16375	NaN	NaN

16376 rows × 2 columns

In [106]:

```
# Филь \tau p по пус \tau ым значениям поля APPEARANCES data[data['ALIVE'].isnull()]
```

Out[106]:

	page_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	FIRST APPEARANCE	Year
16293	541449	Mj7711	∨User:Mj7711	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
16329	714409	Sharjeel786	∨User:Sharjeel786	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
16347	462671	TOR∀test	VUser:TORVtest	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Запоминаем индексы строк с пустыми значениями

In [107]:

```
flt\_index = data[data['APPEARANCES'].isnull()].index \\ flt\_index
```

Out[107]:

```
Int64Index([15280, 15281, 15282, 15283, 15284, 15285, 15286, 15287, 15288, 15289, ...
16366, 16367, 16368, 16369, 16370, 16371, 16372, 16373, 16374, 16375],
dtype='int64', length=1096)
```

In [108]:

```
data_num[data_num.index.isin(flt_index)]['APPEARANCES']
```

Out[108]:

15280 NaN 15281 NaN 15282 NaN 15283 NaN 15284 NaN ... 16371 NaN 16372 NaN 16373 NaN 16374 NaN

Name: APPEARANCES, Length: 1096, dtype: float64

In [109]:

16375 NaN

```
data_num_MasVnrArea = data_num[['APPEARANCES']]
data_num_MasVnrArea.head()
```

Out[109]:

APPEARANCES

0	4043.0
1	3360.0
2	3061.0
3	2961.0
4	2258.0

In [0]:

from sklearn.impute import SimpleImputer from sklearn.impute import MissingIndicator

Фильтр для проверки заполнения пустых значений

In [111]:

```
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_MasVnrArea)
mask_missing_values_only
```

Out[111]:

In [0]:

```
strategies=['mean', 'median', 'most_frequent']

def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]

indicator = MissingIndicator()
```

```
mask_missing_values_only = indicator.fit_transform(temp_data)

imp_num = SimpleImputer(strategy=strategy_param)
data_num_imp = imp_num.fit_transform(temp_data)

filled_data = data_num_imp[mask_missing_values_only]

return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_data.size-1]
```

In [113]:

data[['ALIVE']].describe()

Out[113]:

	ALIVE
count	16373
unique	2
top	Living Characters
freq	12608

In [114]:

test_num_impute_col(data, 'APPEARANCES', strategies[0])

Out[114]:

('APPEARANCES', 'mean', 1096, 17.033376963350786, 17.033376963350786)

In [115]:

test_num_impute_col(data, 'APPEARANCES', strategies[1])

Out[115]:

('APPEARANCES', 'median', 1096, 3.0, 3.0)

In [116]:

test_num_impute_col(data, 'APPEARANCES', strategies[2])

Out[116]:

('APPEARANCES', 'most_frequent', 1096, 1.0, 1.0)

Выберем категориальные колонки с пропущенными значениями

Цикл по колонкам датасета

In [117]:

cat_temp_data = data[['ALIGN']] cat_temp_data.head()

Out[117]:

ALIGN

- 0 Good Characters
- 1 Good Characters
- 2 Neutral Characters
- 3 Good Characters
- 4 Good Characters

In [118]:

cat_temp_data['ALIGN'].unique()

Out[118]: array(['Good Characters', 'Neutral Characters', 'Bad Characters', nan], dtype=object) In [119]: cat_temp_data[cat_temp_data['ALIGN'].isnull()].shape Out[119]: (2812, 1)Импьютация наиболее частыми значениями In [120]: imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent') data_imp2 = imp2.fit_transform(cat_temp_data) data_imp2 Out[120]: array([['Good Characters'], ['Good Characters'], ['Neutral Characters'], ['Bad Characters'], ['Neutral Characters'], ['Bad Characters']], dtype=object) Пустые значения отсутствуют In [121]:

np.unique(data_imp2)

Out[121]:

array(['Bad Characters', 'Good Characters', 'Neutral Characters'],
 dtype=object)

Импьютация константой

In [122]:

```
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='!!!')
data_imp3 = imp3.fit_transform(cat_temp_data)
data_imp3
```

Out[122]:

In [123]:

np.unique(data_imp3)

Out[123]:

```
array(['!!!', 'Bad Characters', 'Good Characters', 'Neutral Characters'], dtype=object)
```

In [124]:

data_imp3[data_imp3=='!!!'].size

Out[124]:

2812

Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? -- удаление строк и колонок с пустыми значениями, заполнение всех пропущенных значений нулями, импьютацию для количественных признаков и для категориальных (импьютация наиболее частыми значениями и константой)

Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему? -- для дальнейшего построения моделей будем использовать категориальные признаки со стратегиями "most_frequent" или "constant" для корректной работы класса SimpleImputer

Масштабирование данных

In [0]:

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

In [0]:

```
 \begin{array}{l} sc1 = MinMaxScaler() \\ sc1\_data = sc1.fit\_transform(data[['Year']]) \end{array}
```

In [127]:

```
plt.hist(data['Year'], 50)
plt.show()
```

/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:839: RuntimeWarning: invalid value encountered in greater_equal keep = (tmp_a >= first_edge)
/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:840: RuntimeWarning: invalid value encountered in less_equal keep &= (tmp_a <= last_edge)

In [128]:

```
plt.hist(sc1_data, 50)
plt.show()
```

 $/usr/local/lib/python 3.6/dist-packages/numpy/lib/histograms.py: 839: Runtime Warning: invalid value encountered in greater_equal keep = (tmp_a >= first_edge)$

/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:840: RuntimeWarning: invalid value encountered in less_equal keep &= (tmp_a <= last_edge)

In [0]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['Year']])
```

In [130]:

```
plt.hist(sc2_data, 50)
plt.show()
```

/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:839: RuntimeWarning: invalid value encountered in greater_equal keep = (tmp_a >= first_edge)

/usr/local/lib/python3.6/dist-packages/numpy/lib/histograms.py:840: RuntimeWarning: invalid value encountered in less_equal keep &= (tmp_a <= last_edge)

In [0]:

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data_new_2[['Year']])
```

In [132]:

```
plt.hist(sc3_data, 50)
plt.show()
```


In [133]:

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
```

с1

Out[133]:

0 Good Characters

1 Good Characters

2 Neutral Characters

```
Good Characters
 16371
           Bad Characters
 16372
          Good Characters
           Bad Characters
 16373
 16374 Neutral Characters
 16375
           Bad Characters
16376 rows × 1 columns
In [0]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [0]:
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
In [136]:
cat_enc['c1'].unique()
Out[136]:
array (\hbox{['Good Characters', 'Neutral Characters']}, \hbox{'Bad Characters']},
   dtype=object)
In [137]:
np.unique(cat_enc_le)
Out[137]:
array([0, 1, 2])
In [138]:
le.inverse_transform([ 0, 1, 2])
Out[138]:
array(['Bad Characters', 'Good Characters', 'Neutral Characters'],
   dtype=object)
In [0]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
In [140]:
cat_enc.shape
Out[140]:
(16376, 1)
In [141]:
cat_enc_ohe.shape
Out[141]:
(16376, 3)
```

с1

Good Characters

In [142]: cat_enc_ohe Out[142]: <16376x3 sparse matrix of type '<class 'numpy.float64'>' with 16376 stored elements in Compressed Sparse Row format> In [143]: cat_enc_ohe.todense()[0:3] Out[143]: matrix([[0, 1., 0.], [0, 1., 0.], [0, 0., 1.]]) In [144]: cat_enc.head(3) Out[144]:

- 1 Good Characters
- 2 Neutral Characters

In [145]:

pd.get_dummies(cat_enc).head()

Out[145]:

	c1_Bad Characters	c1_Good Characters	c1_Neutral Characters
0	0	1	0
1	0	1	0
2	0	0	1
3	0	1	0
4	0	1	0

In [146]:

 $pd.get_dummies(cat_temp_data, dummy_na= \textbf{True}).head()$

Out[146]:

	ALIGN_Bad Characters	ALIGN_Good Characters	ALIGN_Neutral Characters	ALIGN_nan
0	0	1	0	0
1	0	1	0	0
2	0	0	1	0
3	0	1	0	0
4	0	1	0	0