一阶逻辑(一

一阶逻辑(一)

第五章 - 哥德尔完全性定理

姚宁远

复旦大学哲学学院

October 18, 2021

目录

- 1 可靠性定理
- 2 完全性定理
- 3 紧致性定理及其应用
 - 紧致性定理的运用

可靠性定理

可靠性定理

如果 $\Gamma \vdash \phi$, 则 $\Gamma \models \phi$.

Proof.

- 验证逻辑公理的普遍有效性;
- 验证推理规则的普遍有效性;
- 对证明序列的长度归纳证明。

验证推理规则的普遍有效性

- $\Gamma \models \psi \rightarrow \phi;$
- $\Gamma \models \psi$;
- $\blacksquare \Rightarrow \Gamma \models \phi$.

验证逻辑公理的普遍有效性

- **1** A(1), A(2), A(3) (显然);
- **2** $\forall \alpha \rightarrow \alpha_t^{\mathbf{X}}$, 其中 *t* 在 α 中可以替换 \mathbf{X} ;
- $\forall \mathbf{X}(\alpha \to \beta) \to (\forall \mathbf{X}\alpha \to \forall \mathbf{X}\beta);$
- 4 $\alpha \to \forall x \alpha$, 其中 x 不在 α 中自由出现;
- $5 \quad X = X \quad (显然);$
- **6** $(x = y) \rightarrow (\alpha \rightarrow \alpha')$, 其中 α 为原子公式, 并且 α' 是将 α 中的若干个 x 的自由出现替换为 y 而得到;

第二组公理的普遍有效性

引理

设 $\mathfrak{U}=(U,...)$ 是一个 L-结构。 $s:V\to U$ 是一个赋值。如果 t 可以在公式 ϕ 中替换变元 x,且 $s(\bar{t})=d$,则

$$(\mathfrak{U}, \mathbf{s}) \models \phi_t^{\mathbf{x}} \iff (\mathfrak{U}, \mathbf{s}_d^{\mathbf{x}}) \models \phi.$$

第二组公理的普遍有效性-证明

- 设 $\bar{s}(t) = d$, 对项 u 归纳证明 $\bar{s}(u_t^x) = \overline{s_d^x}(u)$;
- 对公式 φ 的长度归纳证明。
- 原子公式: $u_1 = u_2$ 或者 $Pu_1...u_n$;
- $(\mathfrak{U}, \mathbf{s}) \models (u_1 = u_2)_t^{\mathsf{x}} \Leftrightarrow \bar{\mathbf{s}}(u_1_t^{\mathsf{x}}) = \bar{\mathbf{s}}(u_2_t^{\mathsf{x}}) \Leftrightarrow (\mathfrak{U}, \mathbf{s}_d^{\mathsf{x}}) \models (u_1 = u_2);$
- 否定公式 $\neg \psi$ 和蕴含公式 $\psi_1 \rightarrow \psi_2$ 由归纳假设容易证明;
- 设 ϕ 是全称公式: $\forall y \psi$ $(y \neq x \perp x \neq t)$.
- 则 $(\mathfrak{U},s)\models\phi_t^x$ 当且仅当对每个 $e\in|\mathfrak{U}|$ 有 $(\mathfrak{U},(s_e^y))\psi_t^x$
- 根据归纳假设,当且仅当对每个 $e \in |\mathfrak{U}|$ 有 $(\mathfrak{U}, (s_e^y)_d^x) \models \psi$
- 显然 $(s_e^y)_d^x = (s_d^x)_e^y$, 故对每个 $e \in |\mathfrak{U}|$ 有 $(\mathfrak{U}, (s_d^x)_e^y) \models (\psi)$.
- 即,当且仅当 $(\mathfrak{U}, s_d^x) \models \forall y \psi$

第三组公理的普遍有效性

第三组公理普遍有效性的证明

$$\{\forall \mathbf{x}(\alpha \to \beta), \ \forall \mathbf{x}\alpha\} \models \forall \mathbf{x}\beta.$$

第四组公理的普遍有效性

 $\models \alpha \rightarrow \forall x \alpha$, 其中 *x* 不在 α 中自由出现。

根据定理 5.1.1: 对任意结构 \mathfrak{U} ,任意赋值 s,以及任意 $d \in |\mathfrak{U}|$,有

证明

对任意结构 \mathfrak{U} ,任意赋值 s,以及任意 $d \in |\mathfrak{U}|$

- $s \vdash s_d^x$ 在 α 的自由变元上的取值相同;
- $\blacksquare (\mathfrak{U}, \mathbf{s}) \models \alpha \iff (\mathfrak{U}, \mathbf{s}_d^{\mathbf{x}}) \models \alpha;$
- **■** 故 $(\mathfrak{U}, s) \models \alpha \iff (\mathfrak{U}, s) \models \forall x \alpha$.

推论

推论

- 1 如果 $\vdash (\phi \leftrightarrow \psi)$,则 ϕ 与 ψ 语义等价;
- 2 如果 Γ 是可满足的,则 Γ 是一致的。

目录

- 1 可靠性定理
- 2 完全性定理
- 3 紧致性定理及其应用
 - 紧致性定理的运用

完全性定理

完全性定理

- **1** 如果 $\Gamma \models \phi$,则 $\Gamma \vdash \phi$;
- 2 如果 Γ 是一致的,则 Γ 是可满足的。

一所逻辑(一)

辛钦性质

辛钦性质

成一个句子集 Γ 具有辛钦性质是指:若 $\exists x\phi \in \Gamma$,则存在常数符号 c 使得 $\phi_c^x \in \Gamma$.

13/54

辛钦构造 l

枚举引理

设 L 是可数的语言, $\{c_0,c_1,c_2,...\}$ 是一个可数多个常数符号的集合,则存在 L-句子集的一个枚举 $S=\{\theta_0,\theta_1,\theta_2,...\}$ 使得对每个 $n\in\mathbb{N}$ 都有

$$c_n \notin \theta_0, ..., \theta_{n-1}.$$

辛钦构造 ||

Proof.

设 $f: \mathbb{N} \to S$ 是 L-句子集的一个枚举。递归构造函数序列 $\{f_n | n \in \mathbb{N}\}$ 如下:

- 1 $f_0 = f$;
- 2 设 fn 已经构造好了,则
 - $f_{n+1}(n) = f_n(d)$, $f_{n+1}(d) = f_n(n)$, 其中 $d \ge n$ 是最小的使得 $c_n, c_{n+1}, ... \notin f_n(d)$ 的自然数;
 - $f_{n+1}(k) = f_n(k)$, 其中 $k \neq n, d$.
- 令 $F: \mathbb{N} \to S$ 为 $F(n) = f_n(n)$,则 F 是双射且 $c_n \notin F(0), ..., F(n)$.

辛钦构造 III

引理

- 设 L 是可数的语言;
- $C = \{c_0, c_1, c_2, ...\}$ 是一个可数的新常数符号集合;
- Γ 是一致的 L-句子集,

则存在极大一致 L_C -句子集 Γ^* 使得 Γ^* 具有辛钦性质。

辛钦构造 IV (证明-构造 Γ^*)

设 $\{\theta_0, \theta_1, \theta_2, ...\}$ 是全体 L_C 句子的一个枚举使得 $c_n \notin \theta_0, ..., \theta_n$, 递归构造序列 $\{\Gamma_n | n \in \mathbb{N}\}$ 如下:

- $\Gamma_0 = \Gamma$;
- 设 Γ_n 已经构造好了,则
 - 一致性扩张 如果 $\Gamma_n \cup \{\theta_n\}$ 一致,则 $\Gamma_{n+1}^0 = \Gamma_n \cup \{\theta_n\}$,否则 $\Gamma_{n+1}^0 = \Gamma_n$;
 - 辛钦扩张 如果 $\Gamma_{n+1}^0 = \Gamma_n \cup \{\theta_n\}$ 且 θ_n 形如 $\exists x \phi$,则 $\Gamma_{n+1} = \Gamma_{n+1}^0 \cup \{\phi_{c_n}^x\}$,否则 $\Gamma_{n+1} = \Gamma_{n+1}^0$
- $\Diamond \Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n$, 则 $\Gamma^* \mathbf{W}$ 大一致且具有辛钦性质。

辛钦构造 V

引理

Γ^* 满足以下性质:

- 对每个句子 ϕ ,有 $\neg \phi \in \Gamma^*$ 当且仅当 $\phi \notin \Gamma^*$;
- 对每个句子 ϕ 和 ψ , $\phi \to \psi \in \Gamma^*$ 当且仅当 $\phi \notin \Gamma^*$ 或 $\psi \in \Gamma^*$;
- 若 ϕ 是含有自由变元 x 的公式,则 $\exists x \phi \in \Gamma^*$ 当且仅当存在常元 c 使得 $\phi_c^x \in \Gamma^*$.

辛钦构造 VI-论域

完全性定理的证明

存在 L_C -结构 $\mathfrak{U} = (U, ...)$ 满足 Γ^* .

在 L_C 的常数符号集上有一个 $\mod \Gamma^*$ 等价关系:

$$c \sim d \iff \Gamma^* \vdash c = d$$
.

令

$$U = \{ [c] | c \in L_C \}$$

对每个 $c \in L_C$,有 $\exists x(x = c) \in \Gamma^*$,由以上构造可知,存在 c_n 使得 $c_n = c \in \Gamma^*$,即

$$U = \{ [c] | c \in C \} = \{ [c_n] | n \in \mathbb{N} \}.$$

辛钦构造 VII-闭项

练习

对任意的闭项 t_1, t_2 ,定义 $t_1 \sim t_2 \iff t_1 = t_2 \in \Gamma^*$,则闭项的集合/ \sim 与 U 之间有一个自然的双射。

辛钦构造 VIII-解释

设 $d_1,...,d_n,c$ 均是常数符号,则

常数符号 c 的解释 $c^{\mathfrak{U}} = [c]$;

函数符号 f 的解释

$$f^{\mathfrak{U}}([d_1],...,[d_n])=[c]\iff f(d_1,...,d_n)=c\in\Gamma^*;$$

谓词符号 P 的解释 $([d_1],...,[d_n]) \in P^{\mathfrak{U}} \iff P(d_1,...,d_n) \in \Gamma^*$.

结构災的良定性

设 $d_1 \sim e_1,...,d_n \sim e_n$, 验证以下事实:

- **1** 函数符号 f 的解释与代表元的选取无关,即
 - **1** $f^{\mathfrak{U}}$ 在 ([d_1], ..., [d_n]) 处有定义;
 - 2 $f^{\mathfrak{U}}([d_1],...,[d_n]) = f^{\mathfrak{U}}([e_1],...,[e_n])$.
- 2 谓词符号 P 的解释与代表元的选取无关,即

$$([d_1], ..., [d_n]) \in P^{\mathfrak{U}} \iff ([e_1], ..., [e_n]) \in P^{\mathfrak{U}}$$

结构 μ 满足 Γ*

定理

对每个 L_C -句子,有

$$\mathfrak{U}\models\sigma\iff\sigma\in\Gamma^*.$$

需要先证明以下引理

引理

对每个 L_C -闭项 t, 有

- 存在常数符号 c 使得 $t = c \in \Gamma^*$;
- $\blacksquare t = c \in \Gamma^*$ 当且仅当 $t^{\mathfrak{U}} = [c]$ 。

─财逻辑(一) └─紧致性定理及其应用

目录

- 1 可靠性定理
- 2 完全性定理
- 3 紧致性定理及其应用
 - 紧致性定理的运用

紧致性定理

紧致性定理

设 Γ 是一个公式集, ϕ 是一个公式, 则

- **1** 如果 $\Gamma \models \phi$,则存在有限的 $\Gamma_0 \subseteq \Gamma$ 使得 $\Gamma_0 \models \phi$;
- **2** 如果 Γ 的每个有穷子集 Γ_0 都是可满足的,则 Γ 是可满足的。

紧致性定理是完全性定理的直接推论。

紧致性定理拓扑解释

定义

设 X 是一个集合, $\tau \subseteq \mathcal{P}(X)$, 如果

- 1 $\emptyset \in \tau$, $X \in \tau$;
- 2 7 关于有限交封闭;
- τ 关于任意交封闭,

则称 (X,τ) 是一个拓扑空间,同时称 τ 中的元素为 X 的开子集,称 τ 中的元素的补集为闭集。

紧致性定理拓扑解释

定义

设 (X,τ) 是拓扑空间,如果对任意一族开集 $\{O_i|i\in I\}$ 使得

$$X = \bigcup_{i \in I} O_i$$

都存在/的有限子集/0使得

$$X=\bigcup_{i\in I_0}O_i,$$

则称 X 是紧空间。

紧致性定理拓扑解释

定义

设 (X,τ) 是拓扑空间,如果对任意一族闭集 $\{U_i|i\in I\}$ 使得

$$\bigcap_{i\in I}U_i=\emptyset,$$

都存在/的有限子集/0使得

$$\bigcap_{i\in I_0}U_i=\emptyset,$$

则称 X 是紧空间。

Stone 空间

设 *L* 是一个语言。

- 1 $\mathfrak{X} = \{\Gamma | \Gamma$ 是极大一致的*L*-句子集 $\}$
- 2 设 Σ 是一个 L-句子集,令

$$[\Sigma] = \{ \Gamma \in \mathfrak{X} | \ \Sigma \subseteq \Gamma \}$$

3 $U \subseteq \mathfrak{X}$ 是闭集当且仅当存在句子集 Σ 使得 $U = [\Sigma]$.

Stone 空间

引理

X 是一个拓扑空间。

Proof.

- $[\Sigma_1] \cup [\Sigma_2] = [\{\sigma_1 \vee \sigma_2 | \sigma_1 \in \Sigma_1, \ \sigma_2 \in \Sigma_2\}];$
- $[\Sigma_1] \cap [\Sigma_2] = [\Sigma_1 \cup \Sigma_2].$

一所逻辑(一) └─ 紧致性定理及其应用

语法紧致性

引理

X 是一个紧的拓扑空间。

证明

Proof.

设 σ 是一个句子,将 $[\{\sigma\}]$ 记作 $[\sigma]$ 。假设句子集 Σ 总是关于 \vdash 封闭的。

- **1** $\mathfrak{X}\setminus[\sigma]=[\neg\sigma]$, 故 $[\sigma]$ 是一个开闭集;
- ② 设 $O \subseteq \mathfrak{X}$ 是开集,则 $O = \mathfrak{X} \setminus [\Sigma]$,从而 $O = \bigcup_{\sigma \notin \Sigma} [\sigma]$;
- **3** $\{ [\sigma] | \sigma \in L \text{- 句子} \}$ 是拓扑基;
- 4 只需证明: 如果 $\{[\sigma_i] | ui \in I\}$ 是 \mathfrak{X} 的覆盖,则存在有穷子集 $I_0 \subseteq I$ 使得 $\mathfrak{X} = \bigcup_{i \in I_0} [\sigma_i];$
- 5 $\mathfrak{X} = \bigcup_{i \in I} [\sigma_i] \iff \bigcap_{i \in I} [\neg \sigma_i] = \emptyset \iff \{\neg \sigma_i | i \in I\}$ 不一致
- 6 $\{\neg \sigma_i | i \in I\}$ 不一致 \iff 存在有限子集 $I_0 \subseteq I$ 使得 $\{\neg \sigma_i | i \in I_0\}$ 不一致 \iff $\mathfrak{X} = \bigcup_{i \in I_0} [\sigma_i]$

语义紧致性

注

以上证明没有用到"紧致性定理"。

令 L 是一个语言。

- **1** $\mathfrak{X}^* = \{\mathfrak{U} | \mathfrak{U}$ 是一个L-结构 $\}$
- 2 设 Σ 是一个 L-句子集,令

$$[\Sigma]^* = \{ \mathfrak{U} \in \mathfrak{X}^* | \mathfrak{U} \models \}$$

③ $U \subseteq \mathfrak{X}^*$ 是闭集当且仅当存在句子集 Σ 使得 $U = [\Sigma]^*$. 则根据紧致性定理, \mathfrak{X}^* 是一个紧空间。

超滤

定义

设 X 是一个集合, $\mathcal{U} \subseteq \mathcal{P}(X)$, 如果

- 1 $\emptyset \notin \mathcal{U}, X \in \mathcal{U};$
- 2 \mathcal{U} 关于有限交封闭,即 $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- 3 \mathcal{U} 向上封闭,即 $A \in \mathcal{U}$, $A \subseteq B \subseteq X$,则 $B \in \mathcal{U}$,

则称称 $U \in X$ 上的滤子。如果对任意的 $A \subseteq X$,有 $A \in U$ 或者

 $X \setminus A \in \mathcal{U}$,则称 \mathcal{U} 是超滤。

超积丨

定义

设 I 是一个集合,U 是 I 上的一个超滤, $\{\mathfrak{M}_i|i\in I\}$ 是一族 L-结构。今

- **1** $\mathcal{D} = \prod_{i \in I} M_i = \{(a_i)_{i \in I} | a_i \in M_i\};$
- **3** $M = \mathcal{D}/\sim = \{[a] | a \in \mathcal{D}\};$
- $\mathbf{d} \quad \mathbf{c}^{\mathfrak{M}} = [(\mathbf{c}^{\mathfrak{M}_i})_{i \in I}];$
- **5** $f^{\mathfrak{M}}([a_1],...,[a_n]) = [(f^{\mathfrak{M}_i}(a_{1i},...,a_{ni}))_{i\in I}];$
- **6** $([a_1],...,[a_n]) \in R^{\mathfrak{M}} \iff \{i \in I | (a_{1i},...,a_{ni}) \in R^{\mathfrak{M}_i}\} \in \mathcal{U};$

 $\mathfrak{M} \mathfrak{M} = (M, c^{\mathfrak{M}}, f^{\mathfrak{M}}, R^{\mathfrak{M}}, \ldots)$ 为 $\{\mathfrak{M}_i | i \in I\}$ 关于 \mathcal{U} 的超积,记

作 $\Pi_{\iota}\mathfrak{M}_{i}$.

超积Ⅱ

引理

$\Pi_{i,i}\mathfrak{M}_{i}$ 是一个 L-结构

证明:验证 $f^{\mathfrak{M}}$ 和 $R^{\mathfrak{M}}$ 的良定性。

- **■** 设 $a_1 = (a_{1,i})_{i \in I}, ..., a_n = (a_{n,i})_{i \in I};$
- $b_1 = (b_{1,i})_{i \in I}, ..., b_n = (b_{n,i})_{i \in I};$
- 满足: $a_1 \sim b_1, ..., a_n \sim b_n$.
- 设 $U_1 = \{i \in I | a_{1,i} = b_{1,i}\}, ..., U_n = \{i \in I | a_{n,i} = b_{n,i}\}$
- 令 $U = \bigcap_{k \le n} U_k$,则 $U \in \mathcal{U}$ 且
- 对每个 $i \in U$, $f^{\mathfrak{M}_i}(a_{1i},...,a_{ni}) = f^{\mathfrak{M}_i}(b_{1i},...,b_{ni})$
- 故 $f^{\mathfrak{M}}([a_1],...,[a_n]) = f^{\mathfrak{M}}([b_1],...,[b_n]);$
- 若 $([a_1],...,[a_n]) \in R^{\mathfrak{M}}$,

超积 Ш

- 则 $\{i \in I | (a_{1i},...,a_{ni}) \in R^{\mathfrak{M}_i}\} \in \mathcal{U};$
- 故 $\{i \in I | (a_{1i},...,a_{ni}) \in R^{\mathfrak{M}_i}\} \cap U \in \mathcal{U}$
- $\{i \in I | (a_{1i},...,a_{ni}) \in R^{\mathfrak{M}_i}\} \cap U \subseteq \{i \in I | (b_{1i},...,b_{ni}) \in R^{\mathfrak{M}_i}\}$
- 从而 $([b_1],...,[b_n]) \in R^{\mathfrak{M}}$ 。 反之亦然。

例

令 $\mathcal{U} \subseteq \mathcal{P}(\mathbb{N})$ 是 \mathbb{N} 上的一个超滤。考虑结构 $\mathcal{Z} = (\mathbb{Z}, +, -, <, 0, 1)$,令每个 $\mathcal{Z}_n = \mathcal{Z}$,令 $\mathcal{Z}^{\mathcal{U}} = \Pi_{\mathcal{U}} \mathcal{Z}_n$ 。

- $n \mapsto [(n, n, ...)]$ 是 \mathcal{Z} 到 $\mathcal{Z}^{\mathcal{U}}$ 的嵌入;
- 如果 \mathcal{U} 是主滤,则 $\mathcal{Z} \cong \mathcal{Z}^{\mathcal{U}}$;
- 如果对每个 n > 0, $n\mathbb{N} = \{0, n, 2n, 3n, ...\} \in \mathcal{U}$
- 则 x = [(0, 1, 2, 3, 4, ...)] 満足:

一阶逻辑(一) └─ _{紧致性定理及其应用}

超积 IV

- 对每个 $n \in \mathbb{N}$, 有 [(n, n, ...)] < x;
- 对每个 $n \in \mathbb{N}$,有 $\mathcal{Z}^{\mathcal{U}} \models \exists y (ny = x)$.

超积定理 I

Łós 超积定理

设 $\Pi_u\mathfrak{M}_i$ 是 $\{\mathfrak{M}_i|\ i\in I\}$ 关于 U 的超积, σ 是一个 L-句子, 则

$$\Pi_{\mathcal{U}}\mathfrak{M}_i \models \sigma \iff \{i \in I | \mathfrak{M}_i \models \sigma\} \in \mathcal{U}$$

超积定理 ||

引理

设 $t_1(x_1,...,x_n)$ 和 $t_2(x_1,...,x_n)$ 是两个项, $a_1,...,a_n\in\Pi_{i\in I}\mathfrak{M}_i$, 则

$$t_1^{\mathfrak{M}}([a_1],...,[a_n]) = t_2^{\mathfrak{M}}([b_1],...,[b_n])$$

当且仅当

$$\{i \in I | t_1^{\mathfrak{M}_i}(a_{1i},...,a_{ni})\} = t_2^{\mathfrak{M}_i}(a_{1i},...,a_{ni})\} \in \mathcal{U}.$$

 $\mathsf{L}\mathsf{ós}$ 超积定理的证明:对 σ 的长度归纳证明:

- σ 是 $t_1 = t_2$,其中 t_1, t_2 是闭项;
- σ 是 $R(t_1,...,t_n)$, 其中 $t_1,...,t_n$ 是闭项;
- $\blacksquare \sigma$ 是 $\neg \psi$;

超积定理 |||

- $\blacksquare \sigma$ 是 $\phi \lor \psi$;
- σ 是 $\exists x \psi(x)$.

紧致性定理的证明

设 □ 的任意有限子集都可满足。

- 令 / 为 \(\Gamma\) 的全体有限子集;
- 对每个 i ∈ I, 令 M_i 是 i 的模型;
- 对每个 $\sigma \in \Gamma$,令 $X_{\sigma} = \{i \in I | \mathfrak{M}_i \models \sigma\}$;
- $lacksquare X_{\sigma_1} \cap X_{\sigma_2} = X_{\sigma \wedge \sigma_2}$;
- $\{X_{\sigma} | \sigma \in \Gamma\}$ 具有有限交性质;
- 存在一个包含 $\{X_{\sigma} | \sigma \in \Gamma\}$ 的超滤 \mathcal{U} ;
- 对每个 $\sigma \in \Gamma$, $\{i \in I \mid \mathfrak{M}_i \models \sigma\} = X_{\sigma} \in \mathcal{U}$
- 根据 Łós 超积定理, $\Pi_{i,i}\mathfrak{M}_{i} \models \sigma$ 。

─阶逻辑(一) ──紧致性定理及其应用 ──紧致性定理的运用

- 1 可靠性定理
- 2 完全性定理
- 3 紧致性定理及其应用
 - 紧致性定理的运用

- 所逻辑(一) 一紧致性定理及其应用 └─ 紧致性定理的运用

无穷模型

定理

如果句子集 Σ 有任意大的有穷模型,则 Σ 有无穷模型。

定理

有穷模型的类不是初等类。

-附を辑(一) 一紧致性定理及其应用 └─ 紧致性定理的运用

挠群

定义

称 G 是一个挠群,如果对每个 $g \in G$,存在 n 使得 $g^n = 1_G$ 。

定理

挠群的类不是初等类。

-阶逻辑(一)
- 紧致性定理及其应用
- └─ 紧致性定理的运用
- └─ 紧致性定理的运用

连通图

定理

连通图的类不是初等类。

-阶逻辑(一) 一紧致性定理及其应用 └─ 紧致性定理的运用

连通图

- 1 有限图不是初等类;
- 2 有限度数的图不是初等类;
- 3 p-群不是初等类;
- 4 有限域不是初等类;

定理

一类结构 \mathcal{K} 是初等类当且仅当 \mathcal{K} 对于超积封闭。

-阶逻辑(一) 一紧致性定理及其应用 └─ 紧致性定理的运用

无穷小量

- $\blacksquare (\mathbb{R}, <, +, \times, 0, 1)$
- $\operatorname{Th}(\mathbb{R},r)_{r\in\mathbb{R}} = \{\phi(r_1,...,r_n) | \mathbb{R} \models \phi[r_1,...,r_n], \phi \in L, n \in \mathbb{N}, r_i \in \mathbb{R}\}$
- 是一个一致的 $L \cup \mathbb{R}$ -句子集;
- Th(\mathbb{R} , r) $_{r \in \mathbb{R}} \cup \{0 < c < 1/n | n \in \mathbb{N}^+\}$ 是一致的;
- $\blacksquare \mathfrak{R}^* \models \operatorname{Th}(\mathbb{R}, r)_{r \in \mathbb{R}} \cup \{0 < \mathbf{c} < 1/n | n \in \mathbb{N}^+\};$
- $c^{\Re^*} \in \mathbb{R}^*$ 是一个无穷小量;
- $\operatorname{st}:\operatorname{Bd}(\mathbb{R}^*)\to\mathbb{R}$ 是标准映射;

导数

设 $f: \mathbb{R} \to \mathbb{R}$ 是一个函数。用 μ 表示(某一个)无穷小量。则 f 在 x_0 处可导当且仅当

$$\frac{f(x_0 + \mu) - f(x)}{\mu} = \frac{f(x_0 - \mu) - f(x)}{-\mu}$$

均属于 Bd(ℝ*); 且

$$\operatorname{st}(\frac{f(x_0 + \mu) - f(x)}{\mu}) = \operatorname{st}(\frac{f(x_0 - \mu) - f(x)}{-\mu}).$$

此时
$$f'(x_0) = \operatorname{st}(\frac{f(x_0 + \mu) - f(x)}{\mu}).$$

- 紧致性定理及其应用 - 紧致性定理及其应用 - _ 紧致性定理的运用

自然数的非标准模型

- \blacksquare (N, <, S, 0, 1)
- $\operatorname{Th}(\mathbb{N}) \cup \{c > n | n \in \mathbb{N}\}$ 是一致的;
- $\blacksquare \mathfrak{N}^* \models \operatorname{Th}(\mathbb{N}) \cup \{c > n | n \in \mathbb{N}\};$
- $c^{\mathfrak{N}^*} \in \mathbb{N}^*$ 是一个无穷大的量;

- 紧致性定理及其应用 - 紧致性定理的运用

无穷图的四色定理

- 1 有限图 G = (V, E) 是平面图是指 G 可以画在在平面上使得 边互不相交;
- **2** 无限图 G = (V, E) 是平面图是指它的每个有限子图是平面图;

有穷四色定理

设 G 是有限平面图,则可以对 G 的顶点集着四种颜色,使得相邻的点不同色。

无穷四色定理

设 G 是无穷平面图,则可以对 G 的顶点集着四种颜色,使得相邻的点不同色。

·阶逻辑(一) - 紧致性定理及其应用 └─ 紧致性定理的运用

证明

设 $G = (V, E^G)$ 是一个无穷平面图。

- $L = \{E, R, W, B, Y\}$
- σ: R, W, B, Y 是一个划分;
- \bullet σ_R : $\forall x, y (E(x, y) \rightarrow \neg (R(x) \land R(y)))$;
- σ_W, σ_B, σ_Y 类似;
- Diag(G) = { $\phi(a_1,...,a_n)$ | $G \models \phi[a_1,...,a_n]$ | $a_i \in V, \phi \in L$ };
- $\blacksquare L_V = L \cup V;$
- $\Sigma = \text{Diag}(G) \cup \{\sigma, \sigma_R, \sigma_W, \sigma_B, \sigma_Y\}$ 是一个一致的 L_V -句子 集:
- 令 $G' = (V', E^{G'}) \models \Sigma$,则 $v \mapsto v^{G'}$ 是 G 到 G' 的单射同态。

```
-阶逻辑(一)
─紧致性定理及其应用
└─紧致性定理的运用
```

证明 2

不妨设 $V = \mathbb{N}$ 。

- 映射 $f: \mathbb{N} \to \{0, 1, 2, 3\} = 4$ 是一个着色方案;
- $X = \{f : f$ 是着色方案 $\} = 4^{\mathbb{N}} = \Pi_{\mathbb{N}}\{0, 1, 2.3\};$
- 定义 $X_{n,i} = \{f \in X | f(n) = i\};$
- 定义 X 的开集为任意多个 $X_{n,i}$ 的并, $n \in \mathbb{N}, i = 0, 1, 2, 3$;
- *X_{n,i}* 是开闭集;
- 由吉洪诺夫定理, X 是一个紧空间;
- 对任意子集 $A \subseteq \mathbb{N}$, $F(A) = \{f : A \rightarrow 4 | f$ 是好的着色方案 $\}$;
- 对任意有穷的 $A \subseteq \mathbb{N}$, F(A) 是闭集;
- 对任意的 $A, B \subseteq \mathbb{N}$, 有 $F(A \cup B) \subseteq F(A) \cap F(B)$;
- 根据四色定理, $\{F(A)|A\subseteq \mathbb{N}, A$ 有穷 $\}$ 具有有限交性质。
- $\bigcap_{A\subset\mathbb{N},\ A$ 有穷 $F(A)\neq\emptyset$, $f\in\bigcap_{A\subset\mathbb{N},\ A$ 有穷 $F(A)\Rightarrow f\in F(\mathbb{N})$.

一阶逻辑(一) 一紧致性定理及其应用 一紧致性定理的运用

Thanks!