1 Предварительные сведения

Опр. 1. Пусть $\Omega = \{\omega\}$ - произвольное множество, а \mathcal{F} - σ -алгебра его подмножеств, то есть система множется, таких что:

1. $\Omega \in \mathcal{F}$

2. Если $A \in \mathcal{F}$, то $\bar{A} := \Omega - A \in \mathcal{F}$

3. Ecnu $A_1, A_2, \ldots \in \mathcal{F}$, mo $\bigcup_i A_i \in \mathcal{F} \ u \bigcap_i A_i \in \mathcal{F}$

Пример. Система всех подмножеств \mathcal{F} - σ -алгебра

Пример. $\{0,\Omega\}$ - σ -алгебра

Опр. 2. Пусть $\Omega = \mathbb{R}$, а \mathcal{F} - наименьшая сигма-алгебра, содержащая все интервалы (α, β) . Такая \mathcal{F} обозначается $\mathfrak{B}(\mathbb{R})$ и называется **борелевской сигма-алгеброй**.

Опр. 3. Мера μ , определенная на \mathcal{F} , называется **сигма-аддитивной**, если это неотрицательная функция, $\mu(A) \geq 0$ для $A \in \mathcal{F}$, и она удовлетворяет условию сигма-аддитивности, то есть:

$$\mu(\bigcup_{i} A_i) = \sum_{i} \mu(A_i), \ A_i \in \mathcal{F}, A_i \cap A_j \underset{i \neq j}{=} \varnothing$$

Опр. 4. Мера μ называется **сигма-конечной**, если \exists множетсва $A_i \in \mathcal{F}$ такие, что $\bigcup_i A_i = \Omega$ и $\mu(A_i) < \infty$

Пример (Считающая мера). Пусть Ω - счетное, \mathcal{F} - множество всех подмножеств Ω . Положим для $A \in \mathcal{F}$

$$\mu(A) := \{ uchy moνeκ Ω, nonaeuux ε A \}$$

Такая мера называется считающей, она сигма-конечна.

Пример (Лебегова мера). Пусть $\Omega = \mathbb{R}, \mathcal{F} = \mathfrak{B}(\mathbb{R})$. $\exists !$ мера μ на $\mathfrak{B}(\mathbb{R})$ такая, что

$$\mu((\alpha,\beta]) = \beta - \alpha$$

Это мера Лебега, она сигма-конечна.

Опр. 5. (Ω, \mathcal{F}) - измеримое пространство. $(\Omega, \mathcal{F}, \mu)$ - пространство с мерой.

Опр. 6. Если $\mu(\Omega) = 1$, то μ - вероятностная мера, она обозначается через P.

Опр. 7. Тройка (Ω, \mathcal{F}, P) - вероятностное пространство.

Опр. 8. Измеримая функция $\xi:(\Omega,\mathcal{F})\to (\mathbb{R}.\mathfrak{B}(\mathbb{R}))$ (то есть $\forall B\in\mathfrak{B}(\mathbb{R})\ \xi^{-1}(B):=(\omega:\xi(\omega)\in B)\in\mathcal{F})$ называется случайной величной.

Измеримая функция $\phi:(\mathbb{R}.\mathfrak{B}(\mathbb{R})) \to (\mathbb{R}.\mathfrak{B}(\mathbb{R}))$ называется **борелевской**.

Опр. 9. Рассмотрим сл. в. $\xi \in \mathbb{R}^1$. Для $x \in \mathbb{R}^1$ функция $F(x) = P(\omega : \xi(\omega) \le x) = P(\xi \le x)$ называется функцией распределения.

Опр. 10. Мера $P_{\xi}(A) := P(\omega : \xi(\omega) \in A), \ A \in \mathfrak{B}(\mathbb{R}),$ называется **распределением** случайной величины ξ .

Тогда $F(x) = P_{\xi}((-\infty, x])$, то есть P_{ξ} определяет F(x).

Обратно: $P(\alpha < \xi \leq \beta) = F(\beta) \overline{-F(\alpha)}$, $u \exists !$ вероятнаостная мера P_{ξ} такая, что $P_{\xi}((\alpha,\beta]) = F(\beta) - F(\alpha)$, то есть $\underline{F(x)}$ определяет P_{ξ} .

Опр. 11. Пусть на $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ задана σ -конечная мера μ . Если \exists борелевская функция $f(x), f(x) \geq 0$ такая, что:

$$P_{\xi}(A) = \int_{A} f(x)\mu(dx) \ \forall A \in \mathfrak{B}(\mathbb{R})$$

то f(x) называется плотностью вероятности случайной величины по мере μ .

Если μ - мера Лебега, то f(x) - обычная плотность вероятности сл. в. ξ , введенная на 2-ом курсе. Если же ξ дискретна со значениями x_1, x_2, \ldots , а μ - считающая мера, сосредоточенная в этих точках, то, очевидно,

$$P_{\xi}(A) = \int_{A} P(\xi = x) \mu(dx) \ \forall A \in \mathfrak{B}(\mathbb{R})$$

Последнее равенство означает, что у дискретной случайной величины ξ есть плотность вероятности $f(x) = P(\xi = x), \ x = x_1, x_2, \dots$ по считающей мере. (При $x \neq x_1, x_2, \dots$ значения не важны, их можно положить равными 0)

Опр. 12. $\it Mame mamu ческим ожидание M$ случайной величины $\it \xi$ называется число

$$E\xi = \int_{\Omega} \xi(\omega) P(d\omega)$$

(в предположении, что $\int_{\Omega} |\xi(\omega)| P(d\omega) < \infty$, иначе говорим, что мат. ожидание \sharp)

Если f(x) - плотность вероятности случайной величины ξ по мере μ , а $\phi(x)$ - борелевская функция, то

$$E\phi(\xi) = \int_{\mathbb{R}} \phi(x) P_{\xi}(dx) = \int_{\mathbb{R}} \phi(x) f(x) \mu(dx)$$

В частности, если ξ - абсолютно непрерывная случайная величина в терминологии 2-го курса (то есть μ - мера Лебега), то пишем

$$E\phi(\xi) = \int_{\mathbb{R}} \phi(x) f(x) dx$$

Разумеетса, только в случае $\int_{\mathbb{R}} |\phi(x)| f(x) dx < \infty$. Если же ξ дискретна со значениями x_1, x_2, \dots и соответствующими вероятностями, то

$$\mathrm{E}\phi(\xi) = \sum_{i>1} \phi(x_i) p_i$$
 (если ряд сходится абсолютно)

Опр. 13. Обозначим $\mathfrak{B}(\mathbb{R}^K)$ борелевскую σ -алгебру подмножеств \mathbb{R}^K . Вектор $\xi = (\xi_1, \dots, \xi_k)^T$ называется k-мерным случайным вектором, если ξ - измеримое отображение $\xi : (\Omega, \mathcal{F}) \to (\mathbb{R}^K, \mathfrak{B}(\mathbb{R}^K))$

Известно: ξ - случайный вектор \Leftrightarrow каждая компонента ξ_i - одномерная случайная величина.

Опр. 14. Функция распределения случайного вектора ξ :

$$F(x_1,\ldots,x_K) = P(\xi_1 \le x_1,\ldots,\xi_K \le x_K), x_i \in \mathbb{R}$$

Опр. 15. *Pacnpedenenue*: $P_{\xi}(A) = P(\omega : \xi(\omega) \in A), A \in \mathfrak{B}(\mathbb{R}^K).$

Опр. 16. Плотность вероятности вектора ξ по мере μ (μ определена на элементах $\mathfrak{B}(\mathbb{R}^K)$) - борелевская функция $f(x) \geq 0, x = (x_1, \dots, x_K)$ такая, что:

$$P_{\xi}(A) = \int_{A} f(x)\mu(dx), \ \forall A \in \mathfrak{B}(\mathbb{R}^{K})$$

Опр. 17. Случайные величины $\{\xi_1, \dots, \xi_K\}$ **независимы**, если

$$P(\xi_1 \in A_1, \dots, \xi_K \in A_K) = \prod_{i=1}^K P(\xi_i \in A_i) \ \forall A_i \in \mathfrak{B}(\mathbb{R})$$

Бесконечная последовательность будет последовательностью независимых величин, если каждая конечная подпоследовательность независима.

Необходимые и достаточные условия независимости.

 $Paccмompum x = (x_1, \dots, x_K) \in \mathbb{R}^K$

- 1. $F(x) = F_{\xi_1}(x_1) F_{\xi_2}(x_2) \dots F_{\xi_K}(x_K) \ \forall x \in \mathbb{R}^K$
- 2. Если \exists плотность f(x): $f(x) = f_{\xi_1}(x_1) f_{\xi_2}(x_2) \dots f_{\xi_K}(x_K)$ для μ -почти всех $x \in \mathbb{R}^K$

В заключении Раздела 1 поговорим о сходимости случайных векторов.

Пусть случайные векторы ξ, ξ_1, ξ_2, \dots размера K со значениями в $(\mathbb{R}, \mathfrak{B}(\mathbb{R}^K))$ определены на некотором вероятностном пространстве (Ω, \mathcal{F}, P) . Пусть $|\cdot|$ означает Евклидову норму вектора, то есть $|\xi| = \sqrt{\sum_{i=1}^K \xi_i^2}$.

Опр. 18. Говорят, что последовательность ξ_n сходится **слабо** $\kappa \, \xi$, (пишем $\xi_n \xrightarrow{w} \xi$, $n \to \infty$) если для любой непрерывной и ограниченной $g: \mathbb{R}^K \to \mathbb{R}^1$

$$\int_{\mathbb{R}^K} g(x) P_n(dx) \to \int_{\mathbb{R}^K} g(x) P(dx), \ n \to \infty$$
 (1)

3десь P_n и P - распределения соотвественно ξ_n и ξ .

В вероятностных терминах: $\xi_n \xrightarrow{w} \xi$, $n \to \infty \Leftrightarrow$ математическое ожидание $E\xi_n \to E\xi$

Опр. 19. Обозначим $F_n(x)$, F(x), $x=(x_1,\ldots,x_n)$ как функции распределения векторов ξ_n и ξ , тогда сходимостью **в основном** называют

$$F_n(x) \Rightarrow F(x), \text{ mo ecmb } F_n(x) \to F(x) \ \forall x \in C(F)$$
 (2)

Пусть $\phi_n(t)$ и $\phi(t), t \in \mathbb{R}^K$, будут характеристические функции ξ_n и ξ , то есть $\phi(t) := \mathbf{E} e^{it^T \xi}$.

$$\phi_n(t) \to \phi(t) \ \forall t \in \mathbb{R}^K, \ n \to \infty$$
 (3)

Опр. 20. Если выполнено любое из соотношений (1) - (3) будем писать

$$\xi_n \xrightarrow{d} \xi, \ n \to \infty$$
 (4)

U говорить, что $\{\xi_n\}$ сходится $\kappa \xi$ по распределению.

Замечание. Сходимость (4) не следует из сходимости $\xi_{i_n} \xrightarrow{d} \xi_i$, i = 1, ..., K, компонент векторов ξ_n и ξ

Рассмотрим двумерный вектор $(-\xi,\xi)$, $\xi \sim N(0,1)$. $(-\xi) \xrightarrow{w} \xi$, так как одна и та жее функция распределения и плотность, значит есть покомпонентная сходимость. Почему нет слабой сходимости двумерного вектора? По теореме с прошлого семестра: если $\xi_1 \xrightarrow{w} \xi_2$, то $\sum_i \xi_{1_i} \xrightarrow{w} \sum_i \xi_{2_i}$, но $-\xi + \xi = 0 \xrightarrow{w} \xi + \xi = 2\xi$, так как разные функции распределения.

Опр. 21. Говорят, что последовательность $\{\xi_n\}$ сходится по вероятности к вектору ξ (пишут $\xi_n \xrightarrow{P} \xi$, $n \to \infty$), если

$$P(|\xi_n - \xi| > \epsilon) \to 0, \ n \to \infty, \ \forall \epsilon > 0$$
 (5)

Понятно, что сходимость (5) эквивалентна сходимости компонент $\xi_{i_n} \xrightarrow{P} \xi_i$, $\forall i = 1, ..., K$ (5) \Rightarrow (4), но обратное верно только в частных случаях, например:

Если
$$\xi_n \xrightarrow{d} c = const$$
, то $\xi_n \xrightarrow{P} c$

Опр. 22. Говорят, что последовательность $\{\xi_n\}$ сходится n.н. (почти наверное или c вероятностью единица) и пишут $\xi_n \xrightarrow{n.н.} \xi$, $n \to \infty$, если

$$P(w: \xi_n(w) \to \xi(\omega)) = 1 \tag{6}$$

Задача. Если ξ_n и ξ скаляры, и $\xi_n \xrightarrow{n.n.} \xi$, то верно ли, что $\xi_n^3 \xrightarrow{n.n.} \xi^3$?

Да, верно, так как у них одно и то же множество сходимости. Сходимость (6) влечет (5), а значит верно следующее:

$$\xi_n \xrightarrow{\text{II.H.}} \xi \Rightarrow \xi_n \xrightarrow{P} \xi \Rightarrow \xi_n \xrightarrow{d} \xi, \ n \to \infty$$

Теорема 1 (Теорема непрерывности).

Пусть векторы $\{\xi_n\}$, ξ определены на (Ω, \mathcal{F}, P) , $\xi_n, \xi \in \mathbb{R}^K$. Пусть $A \in \mathfrak{B}(\mathbb{R}^K)$, $u P(\xi \in A) = 1$ (то есть A - носитель ξ). Пусть борелевская $H : \mathbb{R}^K \to \mathbb{R}^1$, u H(x) непрерывна на множестве A. Тогда:

- 1. Ecnu $\xi_n \xrightarrow{d} \xi$, mo $H(\xi_n) \xrightarrow{d} H(\xi)$, $n \to \infty$
- 2. Ecau $\xi_n \xrightarrow{P} \xi$, mo $H(\xi_n) \xrightarrow{P} H(\xi)$, $n \to \infty$
- 3. Ecnu $\xi_n \xrightarrow{n.n.} \xi$, mo $H(\xi_n) \xrightarrow{n.n.} H(\xi)$, $n \to \infty$

Докажем пункт 3. Остальные будут доказаны на практических занятиях. Итак, в силу непреревности функции H(x) на A:

$$(\omega:\xi_n(\omega)\to\xi(\omega))\cap(\omega:\xi(\omega)\in A)\subseteq(\omega:H(\xi_n(\omega))\to H(\xi(\omega)))$$

Значит,

$$1 \underset{\xi_n \xrightarrow{\text{\tiny I.H.}} \xi}{=} P(\xi_n(\omega) \to \xi(\omega)) \underset{A-\text{\tiny HOCUTEJIB}}{=} P(\xi_n(\omega) \to \xi(\omega), \xi(\omega) \in A) \leq P(H(\xi_n(\omega)) \to H(\xi(\omega)))$$

Пусть на (Ω, \mathcal{F}, P) задана бесконечная последовательность случайных величин ξ_1, ξ_2, \dots

1. Если $\{\xi_i\}$ независимы и одинаково распределены (н.о.р.) с конеченым средним, $\mathbf{E}|\xi_1|<\infty$, то

$$n^{-1} \sum_{i=1}^{n} \xi_i \xrightarrow{\text{II.H.}} \mathrm{E}\xi_1, \ n \to \infty$$
 (7)

Соотношение (7) - усиленный закон больших чисел Колмогорова

2. Если $\{\xi_i\}$ некоррелированные сл.в., может быть, разнораспределенные, но с одинаковым средним $m=\mathrm{E}\xi_i,\ \mathrm{D}\xi_i\leq c<\infty,$ то

$$n^{-1} \sum_{i=1}^{n} \xi_i \xrightarrow{P} m = E\xi_i, \ n \to \infty$$
 (8)

Соотношение (8) - слабый закон больших чисел.

3. Если $\{\xi_i\}$ - н.о.р. сл.в., $\mathbf{E}\xi_1=m,\ 0<\mathbf{D}\xi_1=\sigma^2<\infty,$ то

$$\frac{1}{\sqrt{n}\sigma} \sum_{i=1}^{n} (\xi_i - m) \xrightarrow{d} \xi \sim N(0, 1), \ n \to \infty$$
 (9)

Соотношение (9) - центральная предельная теорема (точнее, ее вариант). То есть

$$n^{1/2}(\overline{\xi}-m) \xrightarrow{d} N(0,\sigma^2)$$
, где $\overline{\xi} := n^{-1} \sum_{i=1}^n \xi_i$

2 Примеры статистических задач.

Статистическая модель.

Пример (Оценка среднего).

Для многих изделий одна из основных характеристик - срок службы. Срок службы обычно случаен и заранее неизвестен. Опыт показывает: для однородного процесса производства сроки службы x_1, x_2, \ldots, x_n соответственно 1-го, 2-го, и т.д. изделий можно рассматривать как реализации н.о.р. сл.в. X_1, X_2, \ldots, X_n

(Будем предполагать, что на некотором вероятностном пространстве (Ω, \mathcal{F}, P) определена бесконечная последовательность X_1, X_2, \dots и X_1, \dots, X_n - её первые n членов)

Интересующий нас параметр, определяющий (в какой-то мере) срок службы отождествим с $\theta = \mathbf{E} X_1$.

Одна из стандарстных статистических задач состоит в том, чтобы выяснить, чему равно θ . Вот возможное решение.

В силу Усиленного Закона Больших Чисел (УЗБЧ) Колмогорова

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{\text{\tiny II.H.}} EX_1 = \theta, \ n \to \infty$$

Возьмем n готовых изделий и проверим их. Пусть x_1, x_2, \ldots, x_n сроки службы готовых изделий. Это реализации сл.в. X_1, \ldots, X_n . Естественно ожидать, что $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ при больших n оокажется близким к θ .

Это задача точечного оценивания параметра

 X_1, \ldots, X_n - случайные наблюдения; \overline{X} - (борел. ф-ция) статистическая оценка, это случайная величина \overline{x} - реализация оценки, с ней работают на практике.

Ясно, что нужны оценки, которые в среднем близки θ . Тогда и реализации будут близки. Пусть в частности,

$$P(X_1 \le t) = \begin{cases} 0, \ t \le 0 \\ 1 - e^{-t/\theta}, \ t > 0 \end{cases}$$
 параметр $\theta > 0$

To есть $X_1 \sim Exp(\frac{1}{\theta})$, и $E_{\theta}X_1 = \theta$.

Тогда \overline{X} оптимальна при любом конечном $n \geq 1$ в следующем смысле:

1.

$$E_{\theta}\overline{X} = \frac{1}{n}\sum_{i=1}^{n} E_{\theta}X_i = \theta \ \forall \theta > 0$$

Это свойство несмещенности качественно: реализации \overline{X} группируются вокруг θ

2.

$$D_{\theta}\overline{X} \leq D_{\theta}\hat{\theta}_n \ \forall \theta > 0$$
 и любой несмещенной оценки $\hat{\theta}_n = \hat{\theta}_n(x_1,\dots,x_n)$

Это свойство также качественно: реализации \overline{X} в среднем лежат ближе к θ , чем у других $\hat{\theta}_n$

Пример (Проверка однородности данных).

Некоторый эксперимент проводится сначала m раз в условиях A, а затем n раз в условиях B. Пусть x_1, \ldots, x_m - результаты в условиях A, y_1, \ldots, y_n - в условиях B.

Например, влияет ли некоторый препарат на развитие растений, лекарство на анализы больного и т.п.

Будем считать $\{x_i\}$ реализациями н.о.р. сл.в., $\{X_i\}$ с ф.р. $X_1 \sim F_X(x) = \mathrm{P}(X_1 \leq X)$. Пусть $\{y_j\}$ - реализации н.о.р. сл.в. $\{Y_j\}$, ф.р. $Y_1 \sim F_Y(x)$.

Последовательности $\{X_i\}$ и $\{Y_j\}$ независимы.

Интерпретируем поставленную задачу как проверку гипотезы

$$H: F_X = F_Y$$

. Предположение о том, что условия B дают иной результат интерпретируем как гипотезу (альтернативную к H)

$$K: F_X \neq F_Y$$

<u>Важно</u>: ни F_X , ни F_Y неизвестны!

Оценкой $F_X(x)$ возьмем

$$\hat{F}_{mX}(x) = \frac{1}{m} \sum_{i=1}^{m} I(X_i \le x), \ x \in \mathbb{R}$$

Это "хорошая" оценка, т.к. в силу УЗБЧ

$$\hat{F}_{mX}(x) = \frac{1}{m} \sum_{i=1}^{m} I(X_i \le x) \xrightarrow{\text{\tiny II.H.}} EI(X_1 \le x) = F_X(x)$$

(У нас $\{X_i\}$ и $\{Y_j\}$ определены на одном $(\Omega, \mathcal{F}, P))$

Теорема Гливенко-Кантелли.

$$\sup_{x} |\hat{F}_{mX}(x) - F_X(x)| \xrightarrow{n.n.} 0, \ m \to \infty$$

Очевидно, если гипотеза H верна, то величина

$$\mathrm{D}_{mn} := \sup_x |\hat{F}_{mX} - \hat{F}_{nY}|$$
 мала при больших $m,\ n$

Получаем естественное правило:

Если $D_{mn} \leq c$, то H принять;

Если $D_{mn} > c$, то H опровергнуть и принять K.

Но как выбрать константу с?