Parcial final presencial – Martes 14 de julio de 2020

Nro de Examen	Cédula	Apellido y nombre

Escribir nombre y cédula en todas las hojas que se entrequen.

Ejercicio 1.(10 pts.) La cantidad de palabras formadas por las letras B y C y tres vocales distintas donde las consonantes están separadas son: (A) 4!; (B) 5!; (C) 6!; (D) 7!; (E) 8!.

Ejercicio 2.(10 pts.) Sea $A = \{1, 2, 3\}$. La cantidad de funciones $f : \mathcal{P}(A) \to \mathcal{P}(A)$ tales que $f(X) \subseteq X$ para todo $X \subseteq A$ es igual a: (A) 2^3 ; (B) 2^6 ; (C) 2^8 ; (D) 2^9 ; (E) 2^{12} .

Ejercicio 3.(10 pts.) Sea (a_n) una sucesión que verifica $a_n = \frac{(n-1)a_{n-1}+2^{n-2}}{n}$ para $n \ge 2$. Si $a_{64} = 2^{57} + 2$ entonces: (A) $a_1 = 0$; (B) $a_1 = 1/2$; (C) $a_1 = 64$; (D) $a_1 = 128$; (E) $a_1 = 129$.

Ejercicio 4.(10 pts.) Consideremos las funciones generatrices $f(x) = \sum_{n=0}^{\infty} a_n x^n$ y $g(x) = \sum_{n=0}^{\infty} b_n x^n$. Se sabe que $a_{n+1} = \sum_{i=0}^{n} a_i b_{n-i}$ para todo $n \ge 0$ y que $a_0 = 1$. Indique la opción correcta:

- (A) La función generatriz f(x) es invertible y su inversa es g(x);
- (B) La función generatriz f(x) es invertible y su inversa es xg(x);
- (C) La función generatriz f(x) es invertible y su inversa es 1 xg(x);
- (D) La función generatriz f(x) es invertible y su inversa es 1 + xg(x);
- (E) La función generatriz f(x) no es invertible.

(Nota: la invertibilidad es con respecto a la operación producto.)

Ejercicio 5.(10 pts.) Sea N el número de funciones $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3\}$ que verifica que si i + j es primo con $i \neq j$ entonces $f(i) \neq f(j)$ entonces:

(A) N < 10; (B) $10 \le N < 20$; (C) $20 \le N < 30$; (D) $30 \le N < 40$; (E) $N \ge 40$. (Sugerencia: resuélvalo como un problema de coloración de grafos)

Ejercicio 6.(10 pts.) El mapa de la figura corresponde a una parte de la ciudad de París. Esta ciudad está dividida en margen derecha y margen izquierda por el Río Sena. En el centro de la ciudad hay dos islas, llamadas la "Île de la Cité" (Isla de la Ciudad) e "Île Saint Louis" (Isla San Luis). Estas islas están conectadas con las márgenes y entre sí por numerosos puentes, que están indicados en la figura.

Se desea organizar un paseo guiado para que los turistas recorran los puentes, atravesándolos a todos una sola vez. Seleccione **todas** las opciones correctas:

- (A) Es posible hacerlo empezando en la Isla San Luis y terminando en la margen izquierda o vice-versa.
- (B) Es posible hacerlo comenzando en la Isla de la Ciudad y terminando en la Isla San Luis o vice-versa.
- (C) Es posible hacerlo empezando y terminando en el mismo lugar.
- (D) Es posible hacerlo empezando en la Isla de la Ciudad y terminando en la margen derecha o vice-versa.
- (E) No es posible hacer el paseo.

Ejercicios de desarrollo

Ejercicio 7.(20 puntos en total).

- (a)(5 puntos) Enuncie el principio de inclusión-exclusión (P.I.E.).
- (b)(7 puntos) Pruebe el P.I.E. para el caso de dos condiciones (o dos conjuntos en caso de considerar la versión conjuntista).
- (c)(8 puntos) Sea \mathcal{U} el conjunto de todas las palabras de 5 letras que pueden obtenerse permutando las letras de la palabra COVID (incluyendo esta palabra). Calcule cuántas palabras de \mathcal{U} verifican simultáneamente las siguientes condiciones:
 - i) Las letras O y V están separadas;
 - ii) Las letras V e I están separadas.

Ejercicio 8.(20 puntos en total).

- (a)(4 puntos) Defina isomorfismo y explique que significa que dos grafos sean isomorfos.
- (b)(4 puntos) Explique que significa que dos grafos sean homeomorfos.
- (c)(6 puntos) Halle (a menos de isomorfismo) todos los grafos homeomorfos a $K_{1,3}$ con hasta 6 vértices.
- (d)(6 puntos) Sea G el grafo completo con vértices $V = \{1, 2, 3, 4, 5, 6\}$. ¿Cuántos subgrafos homeomorfos a $K_{1,3}$ tiene G?