

COMPUTER NETWORKS GROUP

VARIANCE REDUCTION

FOR REINFORCEMENT LEARNING

IN INPUT-DRIVEN ENVIRONMENTS

AICON PROJECT GROUP

Stefan Werner

MDP

• Trajectories: $\tau = (s_1, a_1, r_1, s_2, a_2, r_2, s_3, ..., s_T)$

MDP

- Trajectories: $\tau = (s_1, a_1, r_1, s_2, a_2, r_2, s_3, ..., s_T)$
 - $s_t \equiv server load and job size$

MDP

- Trajectories: $\tau = (s_1, a_1, r_1, s_2, a_2, r_2, s_3, ..., s_T)$
 - $s_t \equiv server \ load \ and \ job \ size$
 - $a_t \equiv schedule\ job\ to\ server\ i\ \in \{1, 2, 3\}$

MDP

- Trajectories: $\tau = (s_1, a_1, r_1, s_2, a_2, r_2, s_3, ..., s_T)$
 - $s_t \equiv server \ load \ and \ job \ size$
 - $a_t \equiv schedule\ job\ to\ server\ i\ \in \{1, 2, 3\}$
 - $r_t \equiv (-1)$ · average job completion time

Policy Gradient Methods

• Acting policy π_{θ} with parameterization θ

Policy Gradient Methods

• Acting policy π_{θ} with parameterization θ

• Expected return: $J(\theta) = E_{\tau \sim p_{\theta}(\tau)}(\sum_{t} r(s_t, a_t))$

• $\nabla_{\Theta} J(\Theta) = E_{\pi} (Q^{\pi}(s, a) \cdot \nabla_{\Theta} \ln \pi_{\Theta} (a|s))$

REINFORCE

- Updates: $\Theta_{t+1} = \Theta_t + \alpha \cdot G_t \cdot \nabla_{\Theta_t} \ln \pi_{\Theta}(a_t|s_t)$
- $G_t = r_t + \gamma \cdot r_{t+1} + \cdots \gamma^{T-1-t} r_{T-1}$

REINFORCE

- Updates: $\Theta_{t+1} = \Theta_t + \alpha \cdot G_t \cdot \nabla_{\Theta_t} \ln \pi_{\Theta}(a_t|s_t)$
- $G_t = r_t + \gamma \cdot r_{t+1} + \cdots \gamma^{T-1-t} r_{T-1}$

REINFORCE with Baseline

• $\Theta_{t+1} = \Theta_t + \alpha \cdot (G_t - \hat{V}^{\pi}(s_t)) \cdot \nabla_{\Theta_t} \ln \pi_{\Theta}(a_t|s_t)$

Input-Driven Environments

- Rewards may be the result of favorable inputs
- $\hat{V}^{\pi}(s_t, z_{t+1:\infty}^1) \neq \hat{V}^{\pi}(s_t, z_{t+1:\infty}^2)$
- $\hat{V}^{\pi}(s_t)$ doest not account for input differences

Multi-Value Network Baselines

Experimental Results

Sum_of_rewards

Stefan Werner

References

[1] H. Mao, S. B. Venkatakrishnan, M.Schwarzkopf, and M. Alizadeh.

"Vari-ance reduction for reinforcement learningin input-driven environments". In:arXivpreprint arXiv:1807.02264 (2018).

[2] Image source:

https://upload.wikimedia.org/wikipedia/commons/6/68/Gradient_ascent_ %28surface%29.png

[3] Image source:

https://github.com/hongzimao/input_driven_rl_example/blob/master/figur
es/training.png