CS 779: Tutorial solutions

Amit Rajaraman

Last updated January 16, 2023

Contents

1 Tutorial 1 2

§1. Tutorial 1

Exercise 1.1. Prove that the maximum number of subsets of [n] with pairwise non-empty intersection is 2^{n-1} .

Solution

 2^{n-1} is clearly attainable by taking $\{S \subseteq [n] : 1 \in S\}$. Furthermore, this is an upper bound since if \mathcal{S} is a family of subsets with pairwise non-empty intersection, then $\mathcal{S}' = \{S^c : S \in \mathcal{S}\}$ has zero intersection with \mathcal{S} and is of the same size, so $2|\mathcal{S}| = |\mathcal{S}'| + |\mathcal{S}| \le 2^n$.

Exercise 1.2. Suppose you have a set system with m sets $(A_i)_{i=1}^m$ such that $|A_i|$ is odd for each i and $|A_i \cap A_j|$ is even for any $i \neq j$. Prove that $m \leq n$.

Solution

Consider the $m \times n$ matrix M where M_{ij} is 1 if $j \in A_i$ and is 0 otherwise. Then,

$$(MM^{\top})_{ij} = \sum_{k \in [n]} M_{ik} M_{jk} = |A_i \cap A_j|.$$

In particular, all the diagonal entries of MM^{\top} are odd and all off-diagonal entries are even. Using this, it is not too difficult to show that $\det(MM^{\top}) \neq 0$ (for an easy solution* of this, note that modulo 2, MM^{\top} is congruent to the identity, which has nonzero determinant). Therefore, $m = \operatorname{rank}(MM^{\top}) = \operatorname{rank}(M)$, so $m \leq n$.

Exercise 1.3. Prove that for matrices $A, B, \operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

Solution

It suffices to show that any column of A + B is present in the space spanned by the column of A and B. This is straightforward since any column of A + B is just the sum of the two corresponding columns in A and B.

Exercise 1.4. Suppose you have $A + A^{\top} = J - I$, where J is the all ones matrix. Prove that $\operatorname{rank}(A) \geq n/2$.

Solution

Using the previous exercise, we have $n = \operatorname{rank}(J - I) = \operatorname{rank}(A + A^{\top}) \le \operatorname{rank}(A) + \operatorname{rank}(A^{\top}) = 2\operatorname{rank}(A)$.

Exercise 1.5. Suppose you have $A + A^{\top} = J - I$, where J is the all ones matrix. Show that if $\operatorname{rank}(A) < n - 1$, there is a vector x such that Ax = 0, $x \neq 0$, and $\mathbf{1}^{\top}x = 0$. Using this, prove that $\operatorname{rank}(A) \geq n - 1$.

Solution

Suppose $\operatorname{rank}(A) < n-1$. Then, $\dim \ker A \geq 2$. We also have $\dim \mathbf{1}^{\perp} = n-1$. Therefore, $\ker A$ and $\mathbf{1}^{\perp}$ have nonzero intersection, and say $x \neq 0$ is in both. x satisfies the conditions mentioned in the question. Now,

$$0 = x^{\top}(Ax) + (x^{\top}A^{\top})x$$
$$= x^{\top}(J - I)x$$
$$= \left(\sum_{i} x_{i}\right)^{2} - \left(\sum_{i} x_{i}^{2}\right) = -\sum_{i} x_{i}^{2},$$

so x = 0, a contradiction. Therefore, $rank(A) \ge n - 1$.

Exercise 1.6. Suppose B_1, \ldots, B_m are complete bipartite graphs whose edge disjoint union yields the complete graph K_n . Show that $m \ge n - 1$.

Solution

Suppose that B_i corresponds to the complete bipartite graph between sets $X_i, Y_i \subseteq [n]$, where $X_i \cap Y_i = \varnothing$. As a graph on vertex set [n], on setting $M_i = \mathbbm{1}_X \mathbbm{1}_Y^\top$, B_i has adjacency matrix $M_i + M_i^\top$. Note that $\mathrm{rank}(M_i) = 1$ for all i, since $\mathbbm{1}_Y^\perp \subseteq \ker M_i$. Because the edge disjoint union of the B_i is K_n , we have $(\sum_i M_i) + (\sum_i M_i)^\top = J - I$. Using the previous exercise, $\mathrm{rank}(\sum_i M_i) \ge n - 1$. Using Exercise 1.3 and the observation that $\mathrm{rank}(M_i) = 1$ for all i, this implies that $m = \sum_{i=1}^m \mathrm{rank}(M_i) \ge n - 1$, completing the proof.

Exercise 1.7. Suppose you have a set system of m sets such that for every pair of sets, the intersection size is fixed as $\lambda \geq 1$. Prove that $m \leq n$.

Solution

Let the set system be $(A_i)_{i=1}^m$. The size of at most one set is equal to λ . Furthermore, if $|A_1| = \lambda$, then $A_i \setminus A_1$ are disjoint for distinct i, so $m-1 \le n-\lambda$. Thus, we may assume that the size of every set is greater than λ . Define the matrix M exactly as in Exercise 1.2. We have that the off-diagonal entries of M are equal to λ . Now, $MM^\top = \lambda J + D$, for some diagonal matrix D with all positive diagonal entries. We wish to show that $\mathrm{rank}(\lambda J + D) = m$. Let $x \ne 0$ in \mathbb{R}^n , and let u, v be the components of x along and orthogonal to 1 respectively, such that $u = t\mathbf{1}$. Then,

$$(\lambda J + D)x = (\lambda J + D)(u + v)$$
$$= n\lambda u + D(u + v)$$
$$= D(D^{-1}n\lambda u + u + v).$$

When t = 0, this is clearly nonzero as $v \neq 0$. Otherwise, to conclude, note that

$$\sum_{i} (D^{-1}n\lambda u + u + v)_{i} = \sum_{i} (D_{ii}^{-1}n\lambda + 1)u_{i} + v_{i} = \sum_{i} t(D_{ii}^{-1}n\lambda + 1),$$

which is nonzero as d_{ii} , $\lambda > 0$ and $t \neq 0$.