Question Bank

ACADEMY OF TECHNOLOGY

Subject: MATHEMATICS Subject Code: BSC-301

Semester: 3RD Stream: CSE1/CSE2/CSE3

MODULE 1: SEQUENCE AND SERIES

SI.	Question	Marks
No.		
1.	State D'Alembert's ratio test and Raabe's test	5
2.	State Leibnitz's Theorem of infinite series with an example	5
3.	Define absolute and conditional convergence of an infinite series.	5
4.	Define convergence of an infinite series with examples.	5

SI.	Question	Marks
No.		
5.	For what values of x the following series is convergent: $\sum_{n=1}^{\infty} \frac{(n+1)^n x^n}{n^{(n+1)}}, x > 0.$	5

SI.	Question	Marks
No.		
6.	Show that, $e^x = e^2 + (x-2)e^2 + \frac{(x-2)^2}{2!}e^2 + \cdots$	5
7.	Examine the convergence of the series: $1 + 1/2^2 + 2^2/3^3 + 3^3/4^4 + 4^4/5^5 + \cdots$	5
8.	Examine the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$.	5

9.	Examine the convergence of the series $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$	5
10.	Examine the convergence of the series whose <i>n</i> -th term is	5
10.		3
	$\frac{1.3.5(2n-1)}{2.4.6(2n-2)} \cdot \frac{x^n}{2n-1}.$	
	2.1.0(2n 2) 2n 1	
11.	Eventing the convergence of the series $\sum_{n=0}^{\infty} n! 2^n$	5
	Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{n!2^n}{n^n}$.	
	2.2	
12.	Examine the convergence of the series: $1^2.2^2/1! + 2^2.3^2/2! + 3^2.4^2/3! + \cdots$	5
	3 .4 /3! +	
13.	Examine the series: $1/(1+2) + 2/(1+2^2) + 3/(1+2^3) + \cdots$	5
14.	Examine the convergence of the series $1 - 1/2^{1/2} + 1/3^{1/2} - 1/4^{1/2} + \cdots$	5
	$1 - 1/2^{2/2} + 1/3^{2/2} - 1/4^{2/2} + \dots$	
15.	Examine the convergence of the series:	5
	$\frac{1/2^3 - (1+2)/3^3 + (1+2+3)/4^3 - (1+2+3+4)/5^3 + \dots}{1/2^3 - (1+2)/3^3 + (1+2+3)/4^3 - (1+2+3+4)/5^3 + \dots}$	
16.	Evening the convergence of the series:	5
10.	Examine the convergence of the series: $(1/3)^2 + \{(1.2)/(3.5)\}^2 + \{\{1.2.3\}/(3.5.7)\}^2 + \cdots$	3
	() - () () () () () () () () (
17.	Check whether the following series is convergent or divergent:	5
	$\sum_{n=0}^{\infty} n^2 + 1_{n} = 0$	
	$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^2 - 1} x^n, \ x > 0.$	
18.	Examine the convergence of the following series	5
	$1/x - 1/(x+3) + 1/(x+6) - 1/(x+9) + \dots$ (x>0)	
10	$1/X - 1/(X+3) + 1/(X+0) - 1/(X+3) + \dots$ (X> 0)	-
19.		5
	Solve the series:	
	$1 + \{2^2/3^2\}x + \{(2^2.4^2)/(3^2.5^2)\}x^2 + \{(2^2.4^2.6^2)/(3^2.5^2.7^2)\}x^3 + \dots$	
	(x≠1).	
20.	Show that the series $1 - 1/2 + 1/3 - 1/4 +$ converges	5
	conditionally.	
21.	Determine cosx in powers of x in infinite series stating the	5
	condition under which the expansion is valid.	

MODULE 2: MULTIVARIABLE CALCULUS (DIFFERENTIATION)

SI. No.	Question	Marks
1.	If $x = r\sin\theta\cos\phi$, $y = r\sin\theta\sin\phi$, $z = r\cos\theta$, show that $\partial(x,y,z)/\partial(r,\theta,\phi) = r^2\sin\theta$.	5
2.	If $y = f(x+ct) + \phi(x-ct)$, show that $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$.	5
3.	Let $f(x, y) = \frac{xy}{x^2 + y^2}$, if $(x,y) \neq (0,0)$. Show that $\lim_{x \to 0} f(x,y)$ as $x \to 0$, $y \to 0$ does not exist.	5
4.	If $u = f(y-z, z-x, x-y)$, show that $(\partial u/\partial x) + (\partial u/\partial y) + (\partial u/\partial z) = 0$.	5
5	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $(\partial u/\partial x) + (\partial u/\partial y) + (\partial u/\partial z) = 3/(x+y+z)$	5
6.	If $u = log(x^3+y^3+z^3-3xyz)$, show that $ \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -3/(x+y+z)^2 $	5
7.	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $ (\partial/\partial x + \partial/\partial y + \partial/\partial z) 2u = -9/(x + y + z)^2. $	5
8.	Given $f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & if x^2 + y^2 \neq 0 \\ 0 & if x^2 + y^2 = 0 \end{cases}$, show that $\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$ at the origin.	5
9.	If $u = f(x^2 + 2yz, y^2 + 2zx)$, show that $(y^2 - zx)\frac{\partial u}{\partial x} + (x^2 - yz)\frac{\partial u}{\partial y} + (z^2 - xy)\frac{\partial u}{\partial z} = 0$.	5
10.	If $\vec{v} = \vec{\omega} \times \vec{r}$, then show that $\vec{\omega} = \frac{1}{2} Curl \vec{v}$, where $\vec{\omega}$ is a constant vector.	5
11.	Calculate the maxima and minima of the function $x^3+y^3-3x-12y+20$ and also the saddle points.	4+2
12.	Calculate the maximum value of x^3y^2 subject to the constraint x+y =1, using the method of Lagrange's multiplier.	7

12	Calculate the directional derivative of $f = xyz$ at $(1,1,1)$ in the	5
13.	direction $2\hat{i} - \hat{j} - 2\hat{k}$.	

SI.	Question	Marks
No.		
14.	Evaluate div \vec{F} and curl \vec{F} , where $\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz)$.	5
15.	Evaluate the directional derivative of $f = xyz$ at $(1,1,1)$ in the	5
	direction $2\hat{i} - \hat{j} - 2\hat{k}$.	
16.	Justify Euler's theorem for the function $f(x,y) = (x^{1/4} + y^{1/4})/(x^{1/5} + y^{1/5})$.	5
17.	If $z = e^{xy^2}$, $x = \text{tcost}$, $y = \text{tsint}$, evaluate the value of (dz/dt) at $t = -\frac{1}{2}$	5
	$\pi/2$.	

MODULE 3: MULTIVARIABLE CALCULUS (INTEGRATION)

Sl.	Question	Marks
No.		
1.	State Green's theorem in plane. State Divergence Theorem of	5
	Gauss.	

SI.	Question	Marks
No.		
2.	Evaluate $\iint (4x^2-y^2)^{1/2} dxdy$ over the triangle formed by the straight	5
	lines $y = 0$, $x = 1$ and $y = x$.	
3.		
	$\int_{a}^{a} \int_{a}^{x} \int_{a}^{x+y} \int_{a}^{x+y+z} dz dx dy$	_
	Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dz dx dy$	5
4.	Evaluate $\int_0^a \int_0^{\sqrt{(a^2-y^2)}} (x^2+y^2) dxdy$ by changing to polar	5

	coordinates.	
5.	Evaluate by Green's theorem $\int_C [(xy + x^2)dx + (x^2 + y^2)dy],$	5
	where C is the square formed by the lines $y = \pm 1$, $x = \pm 1$,	
	described in the positive sense.	
6.	Verify Green's theorem in the plane for	5
	$\int_C [(xy + y^2)dx + x^2dy], \text{ where } C \text{ is the closed curve of the}$	
	region bounded by $y = x$ and $y = x^2$.	
7.	Evaluate by Green's theorem $\int_C [(xy + x^2)dx + (x^2 + y^2)dy],$	5
	where C is the square formed by the lines $y = \pm 1$, $x = \pm 1$,	
	described in the positive sense.	
8.	Evaluate by Green's theorem	5
	$\oint_C \{(\cos x \sin y - xy) dx + \sin x \cos y dy\}, \text{ where } C \text{ is the circle}$	
	$x^2 + y^2 = 1.$	
9.	$\frac{\pi}{2}\pi$	5
	Evaluate $\int_{0}^{\pi} \int_{0}^{\pi} \sin(x+y) dx dy$	
10.	Verify divergence theorem for $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ taken over	5
	the cube bounded by $x=0$, $x=1$; $y=0$, $y=1$ and $z=0$, $z=1$.	

11.	Evaluate by Green's theorem	5
	$\oint_C \{(\cos x \sin y - xy)dx + \sin x \cos ydy\}, \text{ where } C \text{ is the circle}$	
	$x^2 + y^2 = 1.$	
12.	Evaluate $\iint (4x^2-y^2)^{1/2} dxdy$ over the triangle formed by the straight lines $y = 0$, $x = 1$ and $y = x$.	5
13.	Evaluate by Green's theorem $\int_C [(xy+x^2)dx+(x^2+y^2)dy]$, where C is the square formed by the lines $y=\pm 1, x=\pm 1$, described in the positive sense.	5

MODULE 4: ORDINARY DIFFERENTIAL EQUATIONS

SI.	Question	Marks
No.		
1.	Find the general and singular solution for the equation	5
	$y = px + \sqrt{a^2 p^2 + b^2}$, where $p \equiv \frac{dy}{dx}$.	
2.	Find the general and singular solution for the equation $y = px + p$ $-p^2 \text{ where } p \equiv \frac{dy}{dx}.$	5
3.	Find the general and singular solution of $(y - px)(p - 1) = e^{2p}$.	5

SI.	Question	Marks
No. 4.	C_{1}	5
	Solve: $(\sin x \cos y + e^{2x})dx + (\cos x \sin y + \tan y)dy = 0$.	
5.	Solve: $x \frac{dy}{dx} + y - x^3 y^6 = 0$.	5
6.	Solve: $y = 2px + yp^2$, where $p = \frac{dy}{dx}$.	5
7.	Solve: $p^2 + 2py\cot x = y^2$, where $p = \frac{dy}{dx}$.	5
8.	Solve: $(D^2 + 1)y = \cos x$, where $D = \frac{d}{dx}$.	5
9.	Solve: $(D^2 + 4)y = x\cos x$, where $D = \frac{d}{dx}$.	5
10.	Solve: $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^x \cos x$ Solve: $e^x \sin y dx + (e^x + 1)\cos y dy = 0$.	5
11.	Solve: $e^x \sin y dx + (e^x + 1) \cos y dy = 0$.	5
12.	Solve by the method of variation of parameters the equation	5

	$\frac{d^2y}{dx^2} + 9y = \sec 3x.$	
13.	Solve: $y = -px + x^4 p^2$, where $p = \frac{dy}{dx}$.	5
14.	Solve: $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x.$	5
15.	Solve: $(D^2 + 4D + 3)y = e^{-2x}$, where $D = \frac{d}{dx}$.	5
16.	Solve: $(D^2 - 4D + 4)y = x^2e^{2x}$, where $D = \frac{d}{dx}$.	
17.	Solve: $xy \frac{dy}{dx} = \frac{1+y^2}{1+x^2} (1+x+x^2)$.	5
18.	Solve: $(x+2y^3)\frac{dy}{dx} = y$	5
19.	Solve: $\frac{d^2y}{dx^2} - y = xe^x \sin x.$	5
20.	Solve: $(D^2 - 5D + 6)y = e^x \cos x$ where $D = \frac{d}{dx}$	5
21.	Apply the method of variation of parameters to solve the equation: $\frac{d^2y}{dx^2} + y = \sec^3 x \tan x$	5
22.	Solve: $(x+3)^{2} \frac{d^{2}y}{dx^{2}} - 4(x+3)\frac{dy}{dx} + 6y = x.$	5
23.	Solve: $(x^2D^2 - xD + 4)y = x\sin(\log x)$ where $D = \frac{d}{dx}$.	5

MODULE 5: GRAPH THEORY

SI. No.	Question	Marks
1.	Define Hamiltonian graph with an example	5

SI. No.	Question	Marks
2.	If G is a graph with n vertices and m edges then prove that $\sum_{i=1}^{n} d(v_i) = 2\text{m}, \text{ where }$ $d(v_i) \text{ is the degree of vertex } v_i.$	5
3.	Show that the number of edges in a complete graph with n vertices is $n(n-1)/2$.	5
4.	Prove that the maximum degree of any vertex in a simple graph with n vertices is (n-1).	5
5.	Prove that the number of odd vertices in any graph is even.	5
6.	Prove that there exist no graphs with 4 edges and 4 vertices with degree sequence 1,2,3,4.	5
7.	Prove that a tree with n vertices contains exactly (n-1) edges.	5
8.	Prove that the number of pendant vertices in a binary tree is $\frac{n+1}{2}$ where n is the number of vertices in the tree.	5
9.	Prove that if there is one and only path between every pair of vertices in a graph G then G is a tree.	5
10	Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ no of edges.	5
11	The maximum number of edges in a connected simple graph with n vertices is $\frac{n(n-1)}{2}$.	5
12.	Prove that a graph G has a spanning tree if and only if G is connected.	5
13.	Let G be a graph with n vertices and e edges. Prove that G has a vertex of degree m such that $m \ge \frac{2e}{n}$.	5

1.4	Determine the adjacency matrix of the following graph:	5
14.	Determine the adjacency matrix of the following graph.	J

SI.	Question	Marks
No.		
19.	Determine the minimum and maximum number of edges of a simple graph with 10 vertices and 3 components.	5
20.	Determine the adjacency matrix of the following graph:	5

SI.	Question	Marks
No.		
26.	If a simple regular graph has <i>n</i> vertices and 24 edges, find all possible values of <i>n</i> . Draw a graph against each of such values of <i>n</i> .	5
27.	Explain Konisberg bridge problem. Represent the problem by means of graph. Does the problem have a solution?	5