Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación Tratamiento de Señales Visuales (TSV)

Grado en Ingeniería Informática

Tratamiento de Señales Multimedia I: señales visuales (TSMI)

Práctica 4 Reconocimiento de Escenas con redes convolucionales neuronales Tutorial Google Colaboratory

GOOGLE COLABORATORY

https://youtu.be/inN8seMm7UI

GOOGLE COLABORATORY

- Proporciona una máquina virtual con 2 CPUs Intel 2.2GHz,
 12GB RAM, disco duro de ~75GB y una GPU modelo K80
 - -Estos recursos se otorgan de manera continuada durante 12 horas (a partir de 12h, se desasigna la máquina virtual y se reasigna otra similar).
 - -Esta limitación no es un problema para esta práctica, puesto que las ejecuciones necesarias requieren 3-4 horas como máximo.

• Requisitos:

- —Una cuenta @gmail para acceder a los servicios de Google Se recomienda crearse una cuenta específica para la asignatura para reducir el riesgo de pérdida o acceso malintencionado a nuestros datos personales.
- Un navegador con acceso a internet para conectarnos a la máquina virtual de Google Colaboratory
- Dudas comunes: https://research.google.com/colaboratory/faq.html

TSV/TSMI - Práctica 4: reconocimiento de escenas con CNNs (juancarlos.sanmiguel@uam.es)

3/14

HERRAMIENTAS

Tensorflow (http://tensorflow.org/)
 librería basada en Python para algoritmos de Machine Learning y redes neuronales.
 Desarrollada principalmente por Google

Jupyter Notebook (http://jupyter.org/)
 software que permite ejecutar de manera
 interactiva código de python (i.e.
 visualizando el output de bloques de código
 en tiempo de ejecución)

Google Colaboratory
 (https://colab.research.google.com)
 entorno de trabajo que proporciona
 recursos de computación gratuitos
 en la nube mediante máquinas virtuales

TAREAS

- Preparación Interfaz y recursos de máquina virtual
- Tarea A Configuración inicial (paquetes, Drive,...)
- Tarea B Gestión de datasets
- Tarea C Definición de redes CNN
- Tarea D Entrenamiento de redes CNN

Tiempo estimado para completar el tutorial: 90-100 minutos

TSV/TSMI – Práctica 4: reconocimiento de escenas con CNNs (juancarlos.sanmiguel@uam.es)

5/14

TUTORIAL: PREPARACION

• Abrir el siguiente enlace para iniciar Google Colab con un ejemplo https://colab.research.google.com/notebooks/welcome.ipynb

TUTORIAL: PREPARACION

TSV/TSMI - Práctica 4: reconocimiento de escenas con CNNs (juancarlos.sanmiguel@uam.es)

7/14

TUTORIAL: PREPARACION

Seleccionar recursos para la máquina virtual

TUTORIAL: PREPARACION

Conectar la máquina virtual con los recursos seleccionados

Hacer click en "CONNECT" y verificar que estamos conectados (tick verde)

TSV/TSMI - Práctica 4: reconocimiento de escenas con CNNs (juancarlos.sanmiguel@uam.es)

9/14

TUTORIAL

- Tarea A: establecer el entorno de trabajo
 - -Instalación de paquetes necesarios
 - -Conectar la máquina virtual con su unidad Google Drive
 - -Operaciones más comunes

Realice el tutorial disponible en el script del siguiente enlace

https://bit.ly/30M5iZD

https://colab.research.google.com/drive/1-OH3vK5Xw7uCUiF2GsoouchEarDEssVG

- Este script está protegido contra escritura
- Para ejecutarlo, deberá seleccionar la opción "Open in playground Mode" en el menú superior izquierda
- Para modificarlo, deberá seleccionar la opción "Copy to Drive" en el menú superior izquierda

TUTORIAL

Tarea B: Manejo de datasets

- -Descarga de datasets y visualización
- -Preparación de datos
- -Iteradores de datos

Realice el tutorial disponible en el script del siguiente enlace

https://bit.ly/3HFOBQ5

https://colab.research.google.com/drive/1pnfZX7tQCoiCEKKjlEHeOrKDRumy3SFJ

- -Este script está protegido contra escritura
- Para ejecutarlo, deberá seleccionar la opción "Open in playground Mode" en el menú superior izquierda
- Para modificarlo, deberá seleccionar la opción "Copy to Drive" en el menú superior izquierda

TSV/TSMI - Práctica 4: reconocimiento de escenas con CNNs (juancarlos.sanmiguel@uam.es)

11/14

TAREAS - PARTE O

Tarea C: Definición de redes

- -Diseño de capas
- -Diseño de red completa
- -Carga de red preexistente

Realice el tutorial disponible en el script del siguiente enlace

https://bit.ly/3oQ563u

https://colab.research.google.com/drive/1Elun z8pzbnmf8dH0X NWXPYFpsv2jLq

- Este script está protegido contra escritura
- Para ejecutarlo, deberá seleccionar la opción "Open in playground Mode" en el menú superior izquierda
- Para modificarlo, deberá seleccionar la opción "Copy to Drive" en el menú superior izquierda

TAREAS - PARTE O

Tarea D: Entrenamiento

- -Resumen tarea 0a, tarea 0b (dataset) y tarea 0c (definición red)
- -Definición de hiperparámetros
- -Proceso iterativo de entrenamiento mediante épocas

Realice el tutorial disponible en el script del siguiente enlace

https://bit.ly/30RAiHv

https://colab.research.google.com/drive/1TF 7ukYDKV2Kqy8C3Uy6PFGmNc0hZSpF

- -Este script está protegido contra escritura
- Para ejecutarlo, deberá seleccionar la opción "Open in playground Mode" en el menú superior izquierda
- Para modificarlo, deberá seleccionar la opción "Copy to Drive" en el menú superior izquierda

TSV/TSMI - Práctica 4: reconocimiento de escenas con CNNs (juancarlos.sanmiguel@uam.es)

13/14

TAREAS - PARTE O

Tarea D: Entrenamiento

-Tras ejecutar el script con un *batchsize=16*, #epochs=10

Se obtendrá el resultado mostrado en ~50-60secs

Aumente el número de épocas a 30 o 50 ¿Qué observa?