Assignment 1: R

Name: Venkata Siva Prasad kakumani

Use the files named NationalSalaries.xlsx, and Salaries.xlsx and write R scripts to perform the following tasks:

1. Data cleaning. Determine what rows have invalid entries in NationalSalaries.xlsx file and remove all such rows. (20')

```
n_rows <- nrow(df)
n_cols <- ncol(df)
#for loop for finding the index of invalid columns
for (i in 1:nrow(df)) {
    for (j in 1:ncol(df)) {
        if (!is.na(df[i, j]) && (df[i, j] == "**" || df[i, j] == "*"||df[i, j] == "**"||df[i, j] == """||df[i, j] == """|df[i, j] ==
```

I got 7th column to 21st column have invalid entries. Here I excluded the NA values as some column have NA values completely. Those NA values leads to remove all the rows.

When I removed the invalid entries I got the dataset of from original dataset of 36,822 rows:

		7 Filter				Q	
^	AREA [‡]	ST [‡]	STATE ÷	OCC_CODE [‡]	OCC_TITLE	GROUP [‡]	TOT_EMP
1	20	KS	Kansas	41-2012	Gaming change persons and booth cashiers	NA	100
2	35	NM	New Mexico	37-3012	Pesticide handlers, sprayers, and applicators, vegetation	NA	100
3	55	WI	Wisconsin	39-3019	Gaming service workers, all other	NA	100
4	78	VI	Virgin Islands	43-2011	Switchboard operators, including answering service	NA	100
5	56	WY	Wyoming	47-3016	Helpersroofers	NA	100
5	40	ОК	Oklahoma	51-9193	Cooling and freezing equipment operators and tenders	NA	100
7	78	VI	Virgin Islands	21-1093	Social and human service assistants	NA	100
В	56	WY	Wyoming	13-2082	Tax preparers	NA	100
9	20	KS	Kansas	51-4052	Pourers and casters, metal	NA	100
n	16	ID	Idaho	51-4035	Milling and planing machine setters, operators, and tenders	NA	100

Total Invalid entries rows are 36822-30927=5895.

2. Select only columns that appear in the Salaries.xlsx file. Save the result into a new file and use the new file to complete the remaining tasks below.(10')

```
similar_cols <- intersect(colnames(df_removed), colnames(df2))
df_similar_cols <- df2[, similar_cols]
# Write new data set
write.csv(df_similar_cols, "combined_columns.csv", row.names=FALSE, fileEncoding = "UTF-8", na = ' ')
# Read csv file to perform following tasks
df_combined <- read.csv(file = "combined_columns.csv",header = TRUE,sep = ",",dec = ".",stringsAsFactors = FALSE)</pre>
```


3. Randomly select 1500 rows. (10')

sample_n(1500)

#3.Randomly select 1500 rows. (10') df_random <- df2 %>%

4. Create a data frame that holds only individual jobs (not major groups or all occupations) whose average hourly salary is lower than 15. (10')

```
#Create a data frame that holds only individual jobs (not major groups or all
#occupations) whose average hourly salary is lower than 15. (
df_filtered_individ <- df2 %>%
   filter((Group != "major" | Group != "All Occupations") & AverageHourlySalary < 15)</pre>
```

	1							Q,
•	State	StateName	JobCode	JobName	Group	TotalEmployment	AverageYearlySalary [‡]	AverageHourlySalary
1	GU	Guam	35-3041	Food servers, nonrestaurant		30	13340	6
2	GU	Guam	51-3022	Meat, poultry, and fish cutters and trimmers		30	14230	7
3	PR	Puerto Rico	21-2099	Religious workers, all other		30	15020	7
4	GU	Guam	49-2011	Computer, automated teller, and office machine repairers		30	15860	8
5	VI	Virgin Islands	51-9022	Grinding and polishing workers, hand		30	16170	8
6	ОК	Oklahoma	39-6032	Transportation attendants, except flight attendants and bag		30	18180	g
7	SC	South Carolina	41-2012	Gaming change persons and booth cashiers		30	18540	9
8	AK	Alaska	39-3021	Motion picture projectionists		30	19540	9
9	ОК	Oklahoma	51-6062	Textile cutting machine setters, operators, and tenders		30	19600	9
0	VI	Virgin Islands	25-4031	Library technicians		30	19950	10
1	NM	New Mexico	49-9095	Manufactured building and mobile home installers		30	20140	10
2	DE	Delaware	51-9191	Cementing and gluing machine operators and tenders		30	20680	10
3	VT	Vermont	51-9132	Photographic processing machine operators		30	20680	10
4	SD	South Dakota	43-9081	Proofreaders and copy markers		30	20700	10
5	GU	Guam	27-4011	Audio and video equipment technicians		30	21060	10
6	MS	Mississippi	33-3041	Parking enforcement workers		30	21090	10
7	PR	Puerto Rico	45-2099	Agricultural workers, all other		30	21100	10
8	ID	Idaho	39-4021	Funeral attendants		30	21130	10
9	WV	West Virginia	47-2043	Floor sanders and finishers		30	21150	10
0	VT	Vermont	39-3021	Motion picture projectionists		30	21180	10
		Caush Canalina	21 1010	Commenters all address		20	21270	10

5. Create a data frame that holds only individual jobs (not major groups or all occupations) in Indiana, then divide average yearly salary range into 10 intervals(bins), and count how many jobs are in each bin. (10')

```
#5.5. Create a data frame that holds only individual jobs (not major groups or all
#occupations) in Indiana, then divide average yearly salary range into 10 intervals(bins),
#and count how many jobs are in each bin. (10')
df_filtered_indiana <- df2 %>%
  filter((Group != "major" | Group != "All Occupations") & StateName=="Indiana")
# the cut function is used to split the values in the "yearly wage" column into 10 quantile-based bins, and a new
df_filtered_indiana$bin <- cut(df_filtered_indiana$AverageYearlySalary,</pre>
                       breaks = quantile(df_filtered_indiana$AverageYearlySalary,
                                          probs = seq(0, 1, length.out = 11)), include.lowest = TRUE)
df_counts <- df_filtered_indiana %>%
  group_by(bin) %>%
  summarize(count = n())
                                                                                                    1 [1.53e+04,2.27e+04]
                                                                                                                            69
                                                                                                    2 (2.27e+04,2.66e+04]
                                                                                                                            68
                                                                                                    3 (2.66e+04,2.99e+04]
                                                                                                                            69
                                                                                                    4 (2.99e+04,3.33e+04]
                                                                                                    5 (3.33e+04,3.63e+04]
                                                                                                    6 (3.63e+04,4.05e+04]
                                                                                                                            68
                                                                                                    7 (4.05e+04,4.56e+04]
                                                                                                                            69
                                                                                                    8 (4.56e+04,5.48e+04]
                                                                                                                            67
```

9 (5.48e+04,6.84e+04]

10 (6.84e+04,2.01e+05]

68

69

6. Find the total employment for each state. (10')

#6. Find the total employment for each state.
df_total_employment_state <- df2 %>%
 group_by(StateName) %>%
 summarize(total_employment = sum(TotalEmployment))

7. Find the average yearly salary of all jobs in Indiana, and compare it with data provided in the data set (42630 vs 36410). (20')

```
#7. Find the average yearly salary of all jobs in Indiana, and compare it with data
#provided in the data set (42630 vs 36410). (20')
df_indiana_jobs <- df2 %>%
  filter(StateName == "Indiana")
average_yearly_salary_indiana <- df_indiana_jobs %>%
  summarize(average_yearly_salary = mean(AverageYearlySalary))
#comparing the average salary with 42630 and 36410
df_IN_jobs_g <- df_indiana_jobs %>%
  filter(AverageYearlySalary > 42630)
df_IN_jobs_1 <- df_indiana_jobs %>%
  filter(AverageYearlySalary < 42630)</pre>
df_IN_jobs_13 <- df_indiana_jobs %>%
  filter(AverageYearlySalary < 36410)
df_IN_jobs_g3 <- df_indiana_jobs %>%
  filter(AverageYearlySalary > 36410)
df_IN_jobs_gl <- df_indiana_jobs %>%
  filter(AverageYearlySalary > 36410 & AverageYearlySalary < 42630)</pre>
df_IN_jobs_avg_lg36410 <- df_indiana_jobs %>%
  filter(AverageYearlySalary > 36410 & AverageYearlySalary < mean(AverageYearlySalary))</pre>
 Assignment 1.R* × average_yearly_salary_indian:
  average_yearly_salary
```

On comparison with 42630 and 36410 values, the salaries greater than 42630 are 245 and less than are 438. In the same way, for 36410 are 340 and 341, respectively. 95 rows are there in between them. Compared to average yearly salary of Indiana, 95 rows are there in between average of Indiana and 36410. 0 rows are there in between average of Indiana and 42630.

8. Use a chart to compare average yearly salaries of "Computer and mathematical occupations" (coded 15 - xxxx) in Indiana, California and New York. Use colors and legends to make your chart informative. (10')

1 42579.21

Plot:

