Project

Tasks

- There are 2 tasks
 - Regression task
 - Classification task

Datasets

- Need to find a dataset for each task
- Both datasets should be a dataset not used in the Lab

Regression Task

Choose a regression problem

- Predicting Housing Prices
- Predicting Weather in Dublin

• ...

Choose a data set

- For "Predicting of Housing Prices"
 - E.g.
 - California Housing Data set
 - Sydney Housing Data Set
 - Perth Housing Data set

Read data file

- Reading CSV File into a DataFrame
- Checking for Null Values (isnull)
 - cal_df.isnull().sum()
- Do imputation if any null values
 - cal_df.total_bedrooms=cal_df.total_bedrooms.fillna(cal_df.total_bedrooms.mean())
- If too many problem in cols /rows; remove entire columns/rows
- Dropping columns
 - cal_df.drop(['Col_name'], axis =1)

Categorical

Check if any predictor (column) categorical?

You may not consider Categorical predictor

- Or You can convert that into continuous predictor
 - LE = LabelEncoder()
 - cal_df['ocean_proximity']=LE.fit_transform(cal_df['ocean_proximity'])

Standardize your data

- If not in same unit
- Example (California Housing Data) [already shown in Lab 7]
 - # Get column names first of your data frame
 - names = cal_df.columns
 - # Create the Scaler object
 - scaler = StandardScaler()
 - # Fit your data on the scaler object
 - scaled_df = scaler.fit_transform(cal_df)
 - scaled_df = pd.DataFrame(scaled_df, columns=names)
 - scaled_df.head()

Data Statistics

- Produce some stat and plots
- Boxplots
- Mean, variance, SD
- Number of instances etc.
- Number of missing values

Training and Test data

- Split into train and test
 - X_train,X_test,Y_train,Y_test = train_test_split(X,y,test_size=0.20, random_state=1)
 - print(X_train.shape)
 - print(Y_train.shape)
 - print(X_test.shape)
 - print(Y_test.shape)
- Build your Linear regression model on Train data
- Measure performance of LR model on the test data
 - MAE,
 - MSE,
 - R-Squared

- See how parameters were learnt in training
 - Values of Beta0, Beta1 etc.
 - Already shown (reuse code if needed)

Further Training

- Say you have 8 predictors in California Housing data set
- Choose 4 most informative features (look at the data set and decide)
- You can perform same set of experiments (e.g. cleaning, building and evaluation)
- You can reuse codes that were used in LAB

Classification Task

Classification Task

- Choose a problem
 - Heart Disease prediction (yes/no)
 - Cancer Prediction (yes/no)
 - ...

• Choose a data set

- Same preprocessing as in Regression Task
- You can reuse codes that were used in LAB

K-NN

- Play with different parameters
 - Different values of k (1 to 100)
 - Distance Metrics (Euclidean, Manhattan etc.)
 - Distance (uniform, distance weighted)
- You can reuse codes that were used in LAB

Logistic Regression

- Use the template codes that has been used in LAB
- Your classification data is the same for both classification tasks, i.e.
 - K-NN
 - Logistic Regression

Size of Data

- As big as possible
 - Say 10,000 instances
 - If they are close to 10K, that's fine
 - If you find say one that has say 5,000 instances or less, send an email to me
 - We will talk and sort out
- Number of predictors
 - As many as possible
 - 9-10
 - Say >=3

Summary

- Regression Task
 - Choose a problem (of your interest)
 - Choose a data (of your interest)
 - If predictors are not in same unit, Normalize or Standardize your data
 - Split the data into train and test sets
 - Build your Regression Model on train data, evaluate it on test data
 - Use the template code file that was used in LAB
- Classification Task
 - Choose a problem (of your interest)
 - Choose a data (of your interest)
 - If predictors are not in same unit, Normalize or Standardize your data
 - Split the data into train and test sets
 - Build your two Classification Models on train data (K-NN and Logistic Regression)
 - Evaluate them on test data
 - Use the template code files that have been used in LAB

Upload

- Turnitin
 - A **report** describing both tasks
 - See the Moodle page
 - A zip file
 - Regression Data Set
 - Classification Data Set
 - Codes [could be one or multiple Jupyter Notebook files (ipynb)]

Report Writing

Sections

- Abstract
 - A high-level overview of your project
- Introduction
 - A high-level overview of two tasks (classification) and data sets; outlining key findings
- Motivation
 - A few lines on why you chose to work on these problems
- Data Statistics
 - Describe your data sets (stats, e.g mean, SD, quartile (Q1, Q2, Q3), IQR)
 - Boxplots etc.
 - What preprocessing you applied (e.g. did you remove a predictor? and why?)
- Methodology
 - Describe your methods
 - Give high-level overview of the Algorithms (Linear regression, Knn, logistic regression) you applied
 - For scaling your data, did you use normalization or standardization or both. Give overview of the methods.
 - As for your training, did you choose different set hyperparameters (k, distance metrics)? Explain them how.
- Results and Evaluation
 - Describe your evaluation methods
 - Describe your results
 - R-Squared, MAE, MSE
 - Accuracy, Confusion Matrix
 - Discuss your findings.
- Error Analysis
 - Identify those instances for which your model performed poorly
 - Is there any pattern that you found in them?
- Conclusion
 - Conclude your work
 - What about this report (project/tasks) and Key findings
 - In future, if you are given more time, how you can improve your tasks.

- From first week
 - My emphasis was on Learning Python during LAB
 - Basic Syntax and some libraries that are needed for your project
- Python much more simple language (if you compare this with Java)

- If you are still Behind, go through
 - The Lab Sessions
- Learning Syntax
 - Getting Started with Python
 - Learning Programming in Python Set 1.ipynb
 - Learning Programming in Python Set 2.ipynb
 - Lab_IAIML_w1.pdf

- If you are still Behind, go through
 - The Lab Sessions
- Learning Syntax
 - 12 programming assignments

- If you are still Behind, go through
 - The Lab Sessions
- Learning Syntax
 - Ungraded assignments
 - 14 Small programmes

- If you are still Behind, go through
 - The Lab Sessions
- Learning Syntax
 - Python program to handle text data
 - Solutions

- If you are still behind, go through
 - The Lab Sessions
- Learning Syntax
 - Introduction to Numpy and Pandas (Similar concept of arrays in Java)
 - Introduction to NumPy with Exercises.ipynb
 - Introduction to Pandas with Exercises.ipynb
 - Series and Dataframe
 - Demo: Titanic data is used to make you familiar with Numpy and Pandas
 - Car data set
 - Understanding Characteristics of descriptive features
 - Producing stats from data (Mean, median, SD, IQR)
 - Visualization (boxplots)
 - Hardly 10 lines of code

- If you still Behind, go through
 - The Lab Sessions
- Learning Syntax
 - Introduction to Scikit-Learn
 - How to read a data
 - How to handle features and target variables
 - Simple prediction models

- If you still Behind, go through
 - The Lab Sessions
- Linear Regression
 - California Housing data
 - How to read a data
 - Basic Cleaning Methods,
 - Splitting data, Model building, evaluation
 - Handling categorical data
 - Hardly 20 lines of codes.
 - You can reuse the code for the project

- If you still Behind, go through
 - The Lab Sessions
- KNN Classification
 - Cancer data
 - How to read a data
 - Splitting data, Model building, evaluation
 - Using different Hyperparameters (k, distance weighting etc.)
 - Again, hardly 20 lines of codes.
 - You can reuse the code for the project

- If you still Behind, go through
 - The Lab Sessions
- Logistic Regression Classification
 - Digit Data (Toy)
 - How to read a data
 - Splitting data, Model building, evaluation [all default params of Scikit-learn used]
 - Hardly 10 lines of codes.
 - Iris Data (Toy)
 - Same as above
- Admission Data
 - You can reuse the code for the project