Handlers in Action

Ohad Kammar <ohad.kammar@ed.ac.uk>

SPLS
March 15
joint with Sam Lindley and Nicolas Oury

Programming with effects

ML-style effects

Implicit effects

```
# let f = fun \times -> let y = ! loc in
                                   loc := x + y;;
   val f : int \rightarrow unit = \langle \mathbf{fun} \rangle
  # let g = fun i \rightarrow if (i < 0)
                             then raise (Failure "neg.")
                             else 0::
   val g : int \rightarrow int = \langle \mathbf{fun} \rangle
Trivially combined
  # let h = f(7); g(1);
   val h : int = 0
```

ML-style effects

Controlling effects: effect systems

Rigid effects

Fixed collection of effects.

Haskell effects

Explicit effects

Haskell effects

Sophisticated combination

```
f :: Int -> State Int ()
f = \langle x \rangle do \{ v \langle -get \rangle \}
                    put (x+y) }
g :: Monad m => Int -> ErrorT String m Int
g = \langle i \rangle  if (i < 0)
              then throw Error "neg."
              else return 0
h :: (ErrorT String (State Int)) Int
h = do \{ lift (f 7);
```

Haskell effects

Controlling effects: Monads

```
f :: Int -> State Int ()
g :: Monad m => Int -> ErrorT String m Int
h :: (ErrorT String (State Int)) Int
```

Manual/semi-inferred, intrinsic.

Fluid effects

User defined effects.

Semantic synthesis

Layered monads and effect reification

Monads in action, Filinski, POPL'10.

Eff

Programming with algebraic effects and handlers, Bauer and Pretnar, arXiv draft, 2012.

Idea

- Operational semantics for an Eff variant.
- Inspired by Filinski.

Contribution

The $\lambda_{\rm eff}$ -calculus:

- Implicit effects.
- Trivially combined.
- Fluidity.

Non-contribution

Controlling effects: type system, effect system.

Outline

- Running example: pipes.
- $ightharpoonup \lambda_{ ext{eff}}$ -calculus
- Pipes: implementation and execution.
- Summary and further work.

Running example: pipes

No concurrency!

```
M1 = x \leftarrow random(2);
      if (x = 1)
      then put('y')
      else put('n');
      put('\n')
M2 = s \leftarrow readIn:
      if (s = "v")
      then set(loc, 10);
M1 | M2
```

$\lambda_{ ext{eff}}$ -calculus

Syntax

```
V ::= \times \mid * \mid thunk M
     M, N ::= \mathbf{return} \ V \mid x \leftarrow M_1; M_2 \mid \mathbf{force} \ V \mid
                \lambda \times .M \mid M \mid V \mid op(V)(\lambda \times .M)
                whatever V \mid handle M with H
     H ::=  handler { return : M_{ret}.
                          op_1: N_1
                          op_n : N_n
                                   abbreviated as
For example,
output('a')(\lambda_{-}.return *) put('a')
input(*)(\lambda c. return c)
                                        get
raise ("neg.") (\lambda z. whatever z) raise ("neg.")
```

Handlers

Base case:

```
handle return 'a'
with handler {return: \lambda c.put(c)}
\longrightarrow (\lambda c.put(c)) 'a' \longrightarrow put('a')
```

Generally:

```
handle return V with handler \{\text{return}: N_{\text{ret}} \cdots \} \longrightarrow N_{\text{ret}} V
```

Handlers

Operations

```
H := handler \{return : \lambda x . return \times \}
                   input : \lambda_{-}.\lambda k.(force k) 'f'
handle input(*)(\lambda c.return c) with H
\longrightarrow (\lambda_-.\lambda k.(force k), f')
       * (thunk \lambda c. handle return c with H)
\rightarrow (\lambdak.(force k) 'f')
       (thunk \lambda c. handle return c with H)
\longrightarrow (force (thunk (\lambdac. handle return c with H)))
→handle return 'f' with H
\rightarrowreturn 'f'
```

Handlers

Operations

Generally, given:

```
H \coloneqq \mathbf{handler} \ \{ \ \mathbf{return} \ : \ M_{\mathrm{ret}} \ op_1 \ : \ N_1 \ \dots \ op_n \ : \ N_n \ \}
\mathbf{handle} \ op_i(V)(\lambda \times .M) \ \mathbf{with} \ H \ \longrightarrow N_i \ V \ (\mathbf{thunk} \ \lambda \times .\mathbf{handle} \ M \ \mathbf{with} \ H)
```

Pipes

$$M_1 \xrightarrow{input} M_2$$

Idea

- \blacktriangleright Parametrise M_2 by a computation **producing** characters, and
- ightharpoonup parametrise M_1 by a computation **consuming** characters,

without touching M_1 , M_2 .

Pipes

```
H_2 := \mathbf{handler} \{ \mathbf{return} : \lambda \times . \lambda \, \mathsf{prod} . \, \, \mathbf{return} \, \times \, \,
                           input: \lambda_{-}.\lambda k.\lambda prod.
                                                 (force prod) * k
H_1 := \mathbf{handler} \{ \mathbf{return} : \lambda \mathbf{z} . \mathbf{whatever} \ \mathbf{z} \}
                         output: \lambda c. \lambda k. \lambda cons.
                                                 (force cons) c k}
M_1 \mid M_2 := handle M_2 with H_2
                   (thunk \lambda_{-} handle M_1 with H_1)
Run M_1 \mid M_2 for:
M_1 := output('a')(\lambda_-.M_1')
M_2 := input (*)(\lambda c. M_2' c)
```

```
M_1 \mid M_2 =
handle input (*)(\lambda c.M_2' c)
with handler {return: \lambda x . \lambda prod. return x
                     input : \lambda_{-} . \lambda k . \lambda prod.
                                      (force prod) * k
   (thunk \lambda_{-} handle M_1 with H_1)
(\lambda_{-}.\lambda k.\lambda prod.(force prod) * k)
   (thunk \lambda c. handle M_2' c with H_2)
   (thunk \lambda_{-} handle M_1 with H_1)
```

```
\longrightarrow3
(force (thunk \lambda_{-} handle M_1 with H_1))
(thunk (\lambda c.thunk handle M'_2 c with H_2))
(\lambda_{-}. handle M_1 with H_1)
(thunk (\lambda c.thunk handle M'_2 c with H_2))
\longrightarrow
handle M_1 with H_1
(thunk (\lambdac.handle M'_2 c with H_2))
```

```
handle output ('a')(\lambda_-.M_1')
with handler {return: \lambda z. whatever z
                     output: \lambda c. \lambda k. \lambda cons.
                                      (force cons) c k}
(thunk (\lambdac.handle M_2 c with H_2))
\longrightarrow
(\lambda c. \lambda k. \lambda cons. (force cons) c k)
'a'
(thunk \lambda_{-} handle M'_{1} with H_{1})
(thunk (\lambda c. handle M'_2 c with H_2))
```

```
____3
(force (thunk (\lambdac.handle M_2' c with H_2)))
   'a'
   (thunk \lambda_{-} handle M'_1 with H_1)
(\lambdac.handle M'_2 c with H_2)
   'a'
   (thunk \lambda_{-} handle M'_{1} with H_{1})
handle M_2' 'a' with H_2
   (thunk \lambda_{-} handle M'_1 with H_1)
=
M'_1 \mid (M'_2, a')
```

Zoom out

Expected behaviour

output ('a')
$$(\lambda_- . M_1')$$
 | (input (*) $(\lambda c. M_2' c)$ \longrightarrow^* M_1' | $(M_2' 'a')$

Unhandled effects

```
H := \text{handler } \{ \text{ return } : M_{\text{ret}} \}
                      op_1: N_1
                      op_n : N_n 
If op \notin \{op_1, \dots, op_n\} then:
   handle [op](V)(\lambda x.M) with H
      \longrightarrow [op](V)(\lambda \times . handle M with H)
i.e., implicit handling:
   handler {...
                  op : \lambda p.\lambda k.op(p)(\lambda x.(force k) x)
```

Further work

- Type system, type inference.
- Effect reification.
- Implement as Haskell, ML, Scheme libraries?
- What is the delta? (e.g., delimited continuations? proof obligations?)

Idea

- Operational semantics for an Eff variant.
- Inspired by Filinski.

Contribution

The $\lambda_{\rm eff}$ -calculus:

- Implicit effects.
- Trivially combined.
- Fluidity.

Non-contribution

Controlling effects: type system, effect system.