Eigenvalue eigenvector

Instructor: Dr. Avijit Pal

Linear algebra- II (IC152)

Observation:4

- Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an orthonormal subset of \mathbb{R}^n .
- Let $\mathcal{B}=(\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n)$ be the standard ordered basis of \mathbb{R}^n . Then there exist real numbers $\alpha_{ij},\ 1\leq i\leq k,\ 1\leq j\leq n$ such that

$$[\mathbf{v}_i]_{\mathcal{B}} = (\alpha_{1i}, \alpha_{2i}, \dots, \alpha_{ni})^t.$$

Let

$$A = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k].$$

• Then in the ordered basis \mathcal{B} , we have

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1k} \\ \vdots & \vdots & \cdots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nk} \end{bmatrix}$$

is an $n \times k$ matrix.

Observation: 4 cont.

• Also, observe that the conditions $\|\mathbf{v}_i\|=1$ and $\langle \mathbf{v}_i,\mathbf{v}_j\rangle=0$ for $1\leq i\neq j\leq n$, implies that implies that

$$1 = \|\mathbf{v}_i\|^2 = \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \sum_{j=1}^n \alpha_{ji}^2 \text{ and } 0 = \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \sum_{s=1}^n \alpha_{si} \alpha_{sj}.$$
 (1)

Note that,

$$A^{t}A = \begin{bmatrix} \mathbf{v}_{1}^{t} \\ \mathbf{v}_{2}^{t} \\ \vdots \\ \mathbf{v}_{k}^{t} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k} \end{bmatrix} = \begin{bmatrix} \|\mathbf{v}_{1}\|^{2} & \langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle & \cdots & \langle \mathbf{v}_{1}, \mathbf{v}_{k} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_{k}, \mathbf{v}_{1} \rangle & \langle \mathbf{v}_{k}, \mathbf{v}_{2} \rangle & \cdots & \|\mathbf{v}_{k}\|^{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{k}.$$

Observation: 4 cont.

Or using (1), in the language of matrices, we get

$$A^{t}A = \begin{bmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{n1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1k} & \alpha_{2k} & \cdots & \alpha_{nk} \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nk} \end{bmatrix} = I_{k}.$$

- Notice that the inverse of A is its transpose.
- Such matrices are called orthogonal matrices and they have a special role to play.

QR Decomposition

Definition

A $n \times n$ real matrix A is said to be an orthogonal matrix if

$$A A^t = A^t A = I_n$$
.

Theorem (QR Decomposition)

Let A be a square matrix of order n. Then there exist matrices Q and R such that Q is orthogonal and R is upper triangular with A = QR. In case, A is non-singular, the diagonal entries of R can be chosen to be positive. Also, in this case, the decomposition is unique.

Outline of the proof

- We prove the theorem when A is non-singular.
- Let the columns of A be x_1, x_2, \dots, x_n .
- The Gram-Schmidt orthogonalisation process applied to the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ gives the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ satisfying
 - $\|\mathbf{u}_i\| = 1 \text{ for } 1 \le i \le n,$
 - $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0$ for $1 \le i \ne j \le n$, and
- Now, consider the ordered basis $\mathcal{B} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$.
- So, we can find scalars α_{ji} , $1 \le j \le i$ such that

$$\mathbf{x}_i = \alpha_{1i}\mathbf{u}_1 + \alpha_{2i}\mathbf{u}_2 + \dots + \alpha_{ii}\mathbf{u}_i = \left[(\alpha_{1i}, \dots, \alpha_{ii}, 0 \dots, 0)^t \right]_{\mathcal{B}}.$$
 (2)

Outline of the proof cont.

- Let $Q = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n]$. Then Q is an orthogonal matrix.
- We now define an $n \times n$ upper triangular matrix R by

$$R = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{nn} \end{bmatrix}.$$

• By using (2), we get

$$QR = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n] \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{nn} \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_{11}\mathbf{u}_1, & \alpha_{12}\mathbf{u}_1 + \alpha_{22}\mathbf{u}_2, \dots, \sum_{i=1}^n \alpha_{in}\mathbf{u}_i \end{bmatrix}$$
$$= [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n] = A.$$

Outline of the proof cont.

- Thus, we see that A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix.
- The proof doesn't guarantee that for $1 \le i \le n$, α_{ii} is positive.
- But this can be achieved by replacing the vector \mathbf{u}_i by $-\mathbf{u}_i$ whenever α_{ii} is negative.
- Uniqueness :
 - Suppose $Q_1R_1 = Q_2R_2$ then $Q_2^{-1}Q_1 = R_2R_1^{-1}$. Observe the following properties of upper triangular matrices.
 - The inverse of an upper triangular matrix is also an upper triangular matrix, and product of upper triangular matrices is also upper triangular.
 - Thus the matrix $R_2R_1^{-1}$ is an upper triangular matrix. Also, the matrix $Q_2^{-1}Q_1$ is an orthogonal matrix.
 - 4 Hence, $R_2R_1^{-1} = I_n$. So, $R_2 = R_1$ and therefore $Q_2 = Q_1$.

Generalised QR Decomposition

- Suppose we have matrix $A = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k]$ of dimension $n \times k$ with rank (A) = r.
- Then by the application of the Gram-Schmidt orthogonalisation process yields a set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ of orthonormal vectors of \mathbb{R}^n .
- In this case, for each i, $1 \le i \le r$, we have

$$L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_i) = L(\mathbf{x}_1, \dots, \mathbf{x}_j), \text{ for some } j, i \leq j \leq k.$$

 Hence, proceeding on the lines of the above theorem, we have the following result.

Theorem (Generalised QR Decomposition)

Let A be an $n \times k$ matrix of rank r. Then A = QR, where

- Q is an $n \times r$ matrix with $Q^tQ = I_r$. That is, the columns of Q form an orthonormal set,
- ② If $Q = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r]$, then $L(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r) = L(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k)$,
- 3 R is an $r \times k$ matrix with rank (R) = r.

Example 1

• Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
.

- We want to find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.
- We know that

$$\mathbf{v}_1 = \frac{1}{\sqrt{2}}(1,0,1,0), \ \mathbf{v}_2 = \frac{1}{\sqrt{2}}(0,1,0,1), \ \mathbf{v}_3 = \frac{1}{\sqrt{2}}(0,-1,0,1).$$
 (3)

• We now compute \mathbf{w}_4 . If we denote $\mathbf{u}_4 = (2, 1, 1, 1)^t$ then by the Gram-Schmidt process,

$$\mathbf{w}_4 = \mathbf{u}_4 - \langle \mathbf{u}_4, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_4, \mathbf{v}_2 \rangle \mathbf{v}_2 - \langle \mathbf{u}_4, \mathbf{v}_3 \rangle \mathbf{v}_3$$
$$= \frac{1}{2} (1, 0, -1, 0)^t. \tag{4}$$

Example 1 cont.

Thus, using (3) and (4), we get

$$Q = \begin{bmatrix} \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

and

$$R = \begin{bmatrix} \sqrt{2} & 0 & \sqrt{2} & \frac{3}{\sqrt{2}} \\ 0 & \sqrt{2} & 0 & \sqrt{2} \\ 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

and

• Check that A = QR.

Example 2

• Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & -2 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 1 \end{bmatrix}$$
.

- We wish to find a 4×3 matrix Q satisfying $Q^tQ = I_3$ and an upper triangular matrix R such that A = QR.
- Let us apply the Gram Schmidt orthogonalisation to the columns of $\cal A$.
- Or equivalently to the rows of A^t . So, we need to apply the process to the subset $\{(1,-1,1,1),(1,0,1,0),(1,-2,1,2),(0,1,0,1)\}$ of \mathbb{R}^4 .
- Let $\mathbf{u}_1 = (1, -1, 1, 1)$. Define $\mathbf{v}_1 = \frac{\mathbf{u}_1}{2}$. Let $\mathbf{u}_2 = (1, 0, 1, 0)$.
- Then $\mathbf{w}_2=(1,0,1,0)-\langle \mathbf{u}_2,\mathbf{v}_1\rangle \mathbf{v}_1=(1,0,1,0)-\mathbf{v}_1=\frac{1}{2}(1,1,1,-1).$

Example 2 cont.

• Hence,
$$\mathbf{v}_2 = \frac{(1,1,1,-1)}{2}$$
. Let $\mathbf{u}_3 = (1,-2,1,2)$.

Then

$$\mathbf{w}_3 = \mathbf{u}_3 - \langle \mathbf{u}_3, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3, \mathbf{v}_2 \rangle \mathbf{v}_2 = \mathbf{u}_3 - 3\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}.$$

• So, we again take $\mathbf{u}_3 = (0, 1, 0, 1)$. Then

$$\begin{aligned} \mathbf{w}_3 &= \mathbf{u}_3 - \langle \mathbf{u}_3, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3, \mathbf{v}_2 \rangle \mathbf{v}_2 = \mathbf{u}_3 - 0 \mathbf{v}_1 - 0 \mathbf{v}_2 = \mathbf{u}_3. \\ \text{So, } \mathbf{v}_3 &= \frac{(0, 1, 0, 1)}{\sqrt{2}}. \end{aligned}$$

Example 2 cont.

Hence,

$$Q = \begin{bmatrix} \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

and

$$R = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{bmatrix}$$

- Check the following:
 - rank (A) = 3,

 - 3 R a 3 \times 4 upper triangular matrix with rank (R) = 3.

Orthogonal Projections, Motivation

 Recall that given a k -dimensional vector subspace of a vector space V of dimension n, one can always find an (n - k) -dimensional vector subspace W₀ of V satisfying

$$W + W_0 = V$$
 and $W \cap W_0 = \{0\}.$

- The subspace W_0 is called the complementary subspace of W in V.
- We now define an important class of linear transformations on an inner product space, called orthogonal projections.

Projection Operator

Definition (Projection Operator)

Let V be an n -dimensional vector space and let W be a k -dimensional subspace of V. Let W_0 be a complement of W in V. Then we define a map $P_W:V\longrightarrow V$ by

$$P_W(\mathbf{v}) = \mathbf{w}$$
, whenever $\mathbf{v} = \mathbf{w} + \mathbf{w}_0$, $\mathbf{w} \in W$, $\mathbf{w}_0 \in W_0$.

The map P_W is called the projection of V onto W along W_0 .

Remark

- The map P is well defined due to the following reasons:
 - ① $W + W_0 = V$ implies that for every $\mathbf{v} \in V$, we can find $w \in W$ and $w_0 \in W_0$ such that $\mathbf{v} = \mathbf{w} + \mathbf{w}_0$.
 - ② $W \cap W_0 = \{\mathbf{0}\}$ implies that the expression $\mathbf{v} = \mathbf{w} + \mathbf{w}_0$ is unique for every $\mathbf{v} \in V$.

Orthogonal projection

- The next proposition states that the map defined above is a linear transformation from V to V.
- We omit the proof, as it follows directly from the above remarks.

Proposition

The map $P_W: V \longrightarrow V$ defined above is a linear transformation.

Example 1

- Let $V = \mathbb{R}^3$ and $W = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}.$
- Let $W_0 = L(\ (1,2,2)\)$. Then $W \cap W_0 = \{{\bf 0}\}$ and $W + W_0 = \mathbb{R}^3$.
- Also, for any vector $(x, y, z) \in \mathbb{R}^3$, note that $(x, y, z) = \mathbf{w} + \mathbf{w}_0$, where

$$\mathbf{w} = (z - y, 2z - 2x - y, 3z - 2x - 2y), \text{ and } \mathbf{w}_0 = (x + y - z)(1, 2, 2).$$

So, by definition,

$$P_W((x,y,z)) = (z-y,2z-2x-y,3z-2x-2y) = \begin{bmatrix} 0 & -1 & 1 \\ 2 & -1 & 2 \\ -2 & -2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Example 1, cont.

- Let $W_0 = L(\ (1,1,1)\)$. Then $W \cap W_0 = \{ {\bf 0} \}$ and $W + W_0 = \mathbb{R}^3$.
- Also, for any vector $(x, y, z) \in \mathbb{R}^3$, note that $(x, y, z) = \mathbf{w} + \mathbf{w}_0$, where

$$\mathbf{w} = (z - y, z - x, 2z - x - y), \text{ and } \mathbf{w}_0 = (x + y - z)(1, 1, 1).$$

So, by definition,

$$P_W((x,y,z)) = (z-y,z-x,2z-x-y) = \begin{bmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Thank You