Dynamic Programming with Hermite Approximation¹

Kenneth L. Judd, Hoover Institution

January 20, 2014

¹Joint work with Yongyang Cai.

Envelope Theorem

► Envelope theorem: Let

$$V(x) = \max_{a} f(x, a)$$

s.t. $g(x, a) = 0$.

Let $a^*(x)$ be the optimizer and $\lambda^*(x)$ be the shadow price.

$$\frac{\partial V}{\partial x} = \frac{\partial f}{\partial x}(x, a^*(x)) + \lambda^*(x)^{\top} \frac{\partial g}{\partial x}(x, a^*(x)).$$

Derivative of Value Functions in General Models

For an optimization problem,

$$V(x) = \max_{a} f(x, a)$$

s.t. $g(x, a) = 0, h(x, a) \ge 0,$

add a trivial control variable y and a trivial constraint x - y = 0:

$$V(x) = \max_{a,y} f(y,a)$$

s.t. $g(y,a) = 0, h(y,a) \ge 0, x - y = 0.$

▶ Then by the envelope theorem, we get

$$V'(x) = \lambda$$
,

where λ is the shadow price for the trivial constraint x - y = 0.

Hermite Value Function Iteration (H-VFI)

Initialization. Choose the approximation nodes, $\mathbb{X}_t = \{x_t^i : 1 \leq i \leq N_t\} \subset \mathbb{R}^d$, for every t < T, and choose a functional form for $\hat{V}(x; \mathbf{b})$. Let $\hat{V}(x; \mathbf{b}^T) \equiv V_T(x)$. Then for $t = T - 1, T - 2, \dots, 0$, iterate through steps 1 and 2.

Step 1. Maximization Step. For each $x^i \in \mathbb{X}_t$, $1 \leq i \leq N_t$, compute

$$\begin{aligned} v_i &= \max_{\mathbf{a} \in \mathcal{D}(y,t),y} \ u_t(y,\mathbf{a}) + \beta \hat{V}(x^+;\mathbf{b}^{t+1}), \\ \text{s.t.} & x^+ = g_t(y,\mathbf{a}), \\ x_j^i - y_j &= 0,, \quad j = 1,\dots,d, \end{aligned}$$

and

$$s_j^i = \tau_j^*(x^i),$$

where $\tau_j^*(x^i)$ is the shadow price of the constraint $x_i^i - y_j = 0$.

Step 2. Hermite Fitting Step. Using an appropriate approximation method, compute the \mathbf{b}^t such that $\hat{V}(x; \mathbf{b}^t)$ approximates (x^i, v_i, s^i) data.

Derivative of Value Functions in Optimal Growth Models

► For the optimal growth problem,

$$V_t(k) = \max_{k^+, c, l, y} \qquad u(c, l) + \beta V_{t+1}(k^+),$$

s.t. $F(y, l) - c - k^+ = 0,$
 $k - y = 0,$

with k^+ , c and I as control variables, and y is the dummy variable.

▶ Formula for computing $V'_t(k)$:

$$V_t'(k) = \lambda,$$

where λ is the shadow price for the dummy constraint k-y=0, and given directly by optimization packages.

Chebyshev-Hermite Interpolation

If we have Hermite data $\{(x_i, v_i, s_i) : i = 1, \ldots, m\}$ on $[x_{\min}, x_{\max}]$ with $x^i = (z_i + 1)(x_{\max} - x_{\min})/2 + x_{\min}$ (where $z_i = -\cos((2i - 1)\pi/(2m))$), then the following system of 2m linear equations produces coefficients for degree 2m - 1 Chebyshev polynomial interpolation on the Hermite data:

$$\begin{cases} \sum_{j=0}^{2m-1} b_j \mathcal{T}_j(z_i) = v_i, & i = 1, ..., m, \\ \frac{2}{x_{\text{max}} - x_{\text{min}}} \sum_{j=1}^{2m-1} b_j \mathcal{T}'_j(z_i) = s^i, & i = 1, ..., m, \end{cases}$$
(1)

where $T_j(z)$ are Chebyshev basis polynomials.

Multidimensional Hermite Approximation with Complete Chebyshev Polynomials

- Assume that we have Hermite data $\{(x^i, v_i, s^i) : i = 1, \dots, N\}$ on $[-1, 1]^d$, where $x^i \in [-1, 1]^d$ are d-dimensional approximation nodes, $v_i = V(x^i)$, and $s^i = (s^i_1, \dots, s^i_d)$ are the gradient of V at x^i , i.e., $s^i_i = \frac{\partial}{\partial x_i} V(x^i)$.
- ► Use least square method to compute coefficients for degree *n* complete Chebyshev polynomial approximation

$$\min_{\mathbf{b}} \left\{ \sum_{i=1}^{N} \left(v_{i} - \sum_{0 \leq |\alpha| \leq n} b_{\alpha} \mathcal{T}_{\alpha} \left(x^{i} \right) \right)^{2} + \sum_{i=1}^{N} \sum_{j=1}^{d} \left(s_{j}^{i} - \sum_{0 \leq |\alpha| \leq n} b_{\alpha} \frac{\partial}{\partial x_{j}} \mathcal{T}_{\alpha} \left(x^{i} \right) \right)^{2} \right\}$$

$$(2)$$

Derivative of Value Functions in Portfolio Optimization

► For the multi-stage portfolio optimization problem,

$$V_t(W) = \max_{B,S} E\{V_{t+1}(R_f B + R^{\top} S)\},$$

s.t. $W - B - e^{\top} S = 0,$

with the bond allocation B and the stock allocation S.

▶ Formula for computing $V'_t(W)$:

$$V_t'(W) = \lambda,$$

where λ is the shadow price for the constraint $W - B - e^{\top}S = 0$.

Bounded Normal Random Variables

▶ Transform a standard normal random variable $\varsigma \sim \mathcal{N}(0,1)$ to a bounded random variable Ψ :

$$\Psi = \frac{1 - e^{-\kappa\varsigma}}{1 + e^{-\kappa\varsigma}}\Upsilon,\tag{3}$$

where Υ and κ are two positive parameters. We see that Ψ has zero mean, and it is symmetric around the mean and bounded in $(-\Upsilon, +\Upsilon)$. Once we choose a number of Υ , we would like to choose a corresponding κ so that Ψ has a unit variance.

Assume that the stocks have a bounded log-normal return $R = (R_1, \dots, R_d)^\top$, i.e.,

$$\log(R_j) = \mu_i + \frac{1 - e^{-\kappa \varsigma_j}}{1 + e^{-\kappa \varsigma_j}} \Upsilon \sigma_j, \tag{4}$$

where ς_j is a standard normal random variable for $j=1,\ldots,d$, and the correlation matrix of $(\varsigma_1,\ldots,\varsigma_d)$ is Σ .

Nonlinear Change of Variable

- When the relative risk aversion coefficient γ in the power utility function is bigger than 1, the value function is steep and has a large magnitude at nearly 0 and also is very flat at a large wealth. So it will be hard to approximate the value function well on the state variable W if W has a small lower bound and a large upper bound.
- Use $w = \log(W)$ as our state variable.
- Approximate the value function with

$$\hat{V}(w; \mathbf{b}) = \sum_{j=0}^{n} b_j \mathcal{T}_j \left(\frac{2w - \overline{w} - \underline{w}}{\overline{w} - \underline{w}} \right),$$

for any $w \in (\underline{w}, \overline{w})$, where $\underline{w} = \log(\underline{W})$ and $\overline{w} = \log(\overline{W})$,

Approximation ranges are expanding just linearly. :

$$\begin{array}{ll} \underline{w}_{t+1} & = & \min_{j=1,\ldots,d} \left\{ \mu_j - \Upsilon \sigma_j \right\} + \underline{w}_t, \\ \overline{w}_{t+1} & = & \max_{j=1,\ldots,d} \left\{ \mu_j + \Upsilon \sigma_j \right\} + \overline{w}_t, \end{array}$$

Example

- Portfolio with one bond and three stocks having the bounded and correlated log-normal returns
- Use product Gaussian-Hermite quadrature formula with 7 quadrature nodes in each dimension

Table: Relative Errors and Running Times of L-VFI or H-VFI for Dynamic Portfolio Optimization

m	L-VFI error	H-VFI error	L-VFI time	H-VFI time
5	0.8	0.00327	9 seconds	10 seconds
10	0.00328	1.3×10^{-5}	12 seconds	17 seconds
20	2.0×10^{-6}		33 seconds	

Relative Errors of H-VFI or L-VFI for Dynamic Portfolio Optimization

Note: The points labeled with "Lagrange - 5" are the errors of L-VFI with 5 approximation nodes, and "Hermite - 5" are for H-VFI with the same 5 approximation nodes.

Single-Country Stochastic Optimal Growth Problems

► Model:

$$V_{0}(k_{0}, \theta_{0}) = \max_{k_{t}, c_{t}, l_{t}} \mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^{t} u(c_{t}, l_{t}) + \beta^{T} V_{T}(k_{T}, \theta_{T}) \right\}, \quad (5)$$
s.t. $k_{t+1} = F(k_{t}, l_{t}, \theta_{t}) - c_{t}, \quad 0 \le t < T,$
 $\theta_{t+1} = h(\theta_{t}, \epsilon_{t}), \quad 0 \le t < T,$

DP Model for H-VFI:

$$V_{t}(k,\theta) = \max_{k^{+},c,l,y} u(c,l) + \beta \mathbb{E} \left\{ V_{t+1}(k^{+},\theta^{+}) \right\}, \qquad (6)$$
s.t.
$$k^{+} = F(y,l,\theta) - c,$$

$$\theta^{+} = h(\theta,\epsilon),$$

$$k - y = 0,$$

Errors of optimal solutions of L-VFI or H-VFI for stochastic growth problems

			erre	or ot c_0^*	error	of I_0^*	
γ	η	m	L-VF	I H-VFI	L-VFI	H-VFI	_
0.5	0.1	5	1.1(-1) 1.3(-2)	1.9(-1)	1.8(-2)	
		10	5.4(-3)	2.7(-5)	7.8(-3)	3.7(-5)	
		20	1.8(-5)	4.0(-6)	2.4(-5)	4.9(-6)	
0.5	1	5	1.5(-1	1.8(-2)	6.5(-2)	7.0(-3)	
		10	7.2(-3)	3.4(-5)	2.9(-3)	1.5(-5)	
		20	2.4(-5)	4.9(-6)	1.1(-5)	5.0(-6)	
2	0.1	5	4.9(-2)	5.0(-3)	2.5(-1)	2.8(-2)	
		10	2.5(-3)) 1.6(-5)	1.5(-2)	8.0(-5)	
		20	1.1(-5)	3.3(-6)	5.2(-5)	4.7(-6)	
2	1	5	9.1(-2)	9.7(-3)	1.3(-1)	1.5(-2)	
		10	4.2(-3)	2.7(-5)	6.7(-3)	4.7(-5)	
		20	1.8(-5)	3.2(-6)	3.1(-5)	5.0(-6)	
8	0.1	5	2.3(-2)) 2.2(-3)	4.5(-1)	4.9(-2)	
		10	9.5(-4)	1.2(-5)	2.2(-2)	2.6(-4)	
		20	8.9(-6)	2.7(-6)	1.9(-4)	3.7(-6)	
8	1	5	2.6(-1)	1.7(-2)	1.0(-0)	1.0(-1)	
		10	8.4(- 3	3.8(-5)	⁴5.2(<u></u> - 2)	2.4(-4)	4

Three-Country Optimal Growth Problems

Model:

$$V_{0}(k_{0}) = \max_{k_{t}, l_{t}, c_{t}, l_{t}} \sum_{t=0}^{I-1} \beta^{t} u(c_{t}, l_{t}) + \beta^{T} V_{T}(k_{T}),$$

$$\text{s.t.} \quad k_{t+1, j} = (1 - \delta) k_{t, j} + l_{t, j}, \quad j = 1, \dots, d,$$

$$\Gamma_{t, j} = \frac{\zeta}{2} k_{t, j} \left(\frac{l_{t, j}}{k_{t, j}} - \delta \right)^{2}, \quad j = 1, \dots, d,$$

$$\sum_{j=1}^{d} (c_{t, j} + l_{t, j} - \delta k_{t, j}) = \sum_{j=1}^{d} (f(k_{t, j}, l_{t, j}) - \Gamma_{t, j}),$$

$$(7)$$

Three-Country Optimal Growth Problems

DP Model for H-VFI:

$$V_{t}(k) = \max_{k^{+}, l, c, l, y} u(c, l) + \beta V_{t+1}(k^{+}),$$
(8)
s.t. $k_{j}^{+} = (1 - \delta)y_{j} + l_{j}, \quad j = 1, ..., d,$

$$\Gamma_{j} = \frac{\zeta}{2}y_{j} \left(\frac{l_{j}}{y_{j}} - \delta\right)^{2}, \quad j = 1, ..., d,$$

$$\sum_{j=1}^{d} (c_{j} + l_{j} - \delta y_{j}) = \sum_{j=1}^{d} (f(y_{j}, l_{j}) - \Gamma_{j}),$$

$$k_{j} - y_{j} = 0, \quad j = 1, ..., d,$$

L-VFI vs H-VFI for Three-Country Optimal Growth Problems

L-VFI vs H-VFI for Three-Country Optimal Growth Problems

Six-Country Optimal Stochastic Growth Problems

► Model:

$$V_{0}(k_{0}, \theta_{0}) = \max_{k_{t}, l_{t}, c_{t}, l_{t}} \mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^{t} u(c_{t}, l_{t}) + \beta^{T} V_{T}(k_{T}, \theta_{T}) \right\},$$
(9)
s.t. $k_{t+1,j} = (1 - \delta) k_{t,j} + l_{t,j}, \quad j = 1, ..., d,$

$$\Gamma_{t,j} = \frac{\zeta}{2} k_{t,j} \left(\frac{l_{t,j}}{k_{t,j}} - \delta \right)^{2}, \quad j = 1, ..., d,$$

$$\sum_{j=1}^{d} (c_{t,j} + l_{t,j} - \delta k_{t,j}) = \sum_{j=1}^{d} (f(k_{t,j}, l_{t,j}, \theta_{t}) - \Gamma_{t,j}),$$

$$\theta_{t+1} = g(\theta_{t}, \epsilon_{t}).$$

H-VFI vs L-VFI for Six-Dimensional Stochastic Problems

	error	of <i>c</i> ₀ *	error of I_0^*		runnin	running times	
m	L-VFI	H-VFI	L-VFI	H-VFI	L-VFI	H-VFI	
3	3.8(-2)	3.6(-3)	5.4(-2)	5.2(-3)	0.3	0.67	
5	5.5(-3)		8.2(-3)		8.74		
6	3.1(-3)		4.5(-3)		36.6		

Note: a(k) means $a \times 10^k$. Time unit is a hour.