PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-309753

(43)Date of publication of application: 07.11.2000

(51)Int.CI.

CO9D183/06 C09D183/02 H01L 21/312 H01L 21/768

(21)Application number: 11-118951

(71)Applicant:

JSR CORP

(22)Date of filing:

27.04.1999

(72)Inventor:

NISHIKAWA MICHINORI

SUGITA HIKARI YAMADA KINJI **GOTO KOHEI**

(54) COMPOSITION FOR FORMING FILM AND MATERIAL FOR FORMING INSULATION FILM

PROBLEM TO BE SOLVED: To obtain a composition capable of forming a coating film excellent in resistances to oxygen plasma and cracks and in dielectric properties by incorporating (A) a hydrolyzate of an alkoxy silane and (B) a hydrolyzate of a silane compound comprising an alkoxycyclosilane and a silane polymer and/or the condensates of ingredients A and B into the same. SOLUTION: This composition contains (A) a hydrolyzate of a compound of the formula: R1aSi(OR2)4-a and (B) a hydrolyzate of a silane compound comprising a compound of the formula and a polymer having repeating units of the formula: -Si(OR5)2-b(R6)bO- and/or the condensates of ingredients A and B. In the formulas, R1 to R6 are each a monovalent organic group; a is 0-2; b is 0-1; and n is 3-10, These hydrolyzates and/or condensates form a two-dimensional or three-dimensional structure, forming a high-mol.-wt. polyorganosiloxane. When applied to a substrate (e.g. a silicone wafer) and subjected to thermal polycondensation, the composition, containing the polyorganosiloxane, forms a glassy or macromolecular film excellent in adbesiveness.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Japanese Patent Provisional Publication No. 2000-309753

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-309753 (P2000-309753A)

(43)公開日 平成12年11月7日(2000.11.7)

(51) Int.Cl.7		識別記号	FΙ		ī	-7]-1*(参考)
C09D	183/06		C09D	183/06		4J038
	183/02			183/02		5 F O 3 3
H01L	21/312		H01L	21/312	C	5 F O 5 8
	21/768			21/90	Q	

審査請求 未請求 請求項の数3 OL (全 13 頁)

(21)出願番号	特願平11-118951	(71)出願人	000004178	
		- "-	ジェイエスアール株式会社	
(22)出顧日	平成11年4月27日(1999.4.27)	0_0	東京都中央区築地2丁目11番24号	
		(72) 発明者	西川 選則	
			東京都中央区築地二丁目11番24号	ジェイ
			エスアール株式会社内	
	•	(72)発明者	杉田光	•
			東京都中央区築地二丁目11番24号	ジェイ
	-		エスアール株式会社内	
	·	(74)代理人	100085224	
			弁理士 白井 重隆	

最終頁に続く

(54) 【発明の名称】 膜形成用組成物および絶縁膜形成用材料

(57) 【要約】

【課題】 半導体素子などにおける層間絶縁膜として適当な、酸素プラズマ耐性を有し、しかもクラックが生じ難く、誘電率特性などに優れた膜形成用組成物を提供すること。

【解決手段】 R^1 a S i (OR^2) 4-a $(R^1$ および R^2 は 1 価の有機基を示し、a は $1\sim 2$ の整数を表す)で表される化合物、ならびに (B) (B-1) 下記 (K-1) $(R^3$ および R^4 は 1 価の有機基を示し、n は $3\sim 1$ 0 の整数を表す)で表される化合物および/または (B-2) - S i (OR^5) 2-b (R^6) b $O-(R^5$ および R^6 は 1 価の有機基を示し、b は $0\sim 1$ の整数を表す)の繰り返し単位を有するポリマーからなる化合物の、加水分解物および/または縮合物を含有する膜形成用組成物。

【化1】

【請求項1】 (A) 下記一般式(1) で表される化合物、

 R^1 a S i (OR^2) 4-a \cdots (1)

 $(R^1 およびR^2 は同一でも異なっていてもよく、それぞれ1価の有機基を示し、aは0~2の整数を表す。)ならびに(B)(B-1)下記一般式(2)で表される化合物、および/または$

【化1】

 $(R^3 およびR^4 は同一でも異なっていてもよく、それぞれ1価の有機基を示し、<math>nは3\sim10$ の整数を表す。) および/または (B-2) 下記一般式 (3) で表される繰り返し単位を有するポリマー

 $-Si(OR^5)_{2-b}(R^{6})_{b}O-\cdots(3)$

 $(R^5 およびR^6 は同一でも異なっていてもよく、それぞれ1価の有機基を示し、<math>bは0~1$ の整数を表す。)からなるシラン化合物の、加水分解物および/または縮合物を含有することを特徴とする膜形成用組成物。

【請求項2】 (A)成分(完全加水分解縮合物換算) 100重量部に対して、(B)成分が1~80重量部で ある請求項1記載の膜形成用組成物。

【請求項3】 請求項1記載の組成物からなることを特徴とする絶縁膜形成用材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、膜形成用組成物に関し、さらに詳しくは、半導体素子などにおける層間絶縁膜として適当な、良好な酸素プラズマ耐性を有し、しかもクラックが生じ難く、誘電率特性などに優れた膜形成用組成物に関する。

[0002]

【従来の技術】従来、半導体素子などにおける層間絶縁膜として、CVD法などの真空プロセスにより形成されたシリカ(SiO2)膜が多用されている。そして、近年、より均一な層間絶縁膜を形成することを目的として、SOG(Spin on Glass)膜と呼ばれるテトラアルコキシランの加水分解生成物を主成分とする塗布型の絶縁膜も使用されるようになっている。また、半導体素子などの高集積化に伴い、有機SOGと呼ばれるオルガノポリシロキサンを主成分とする低誘電率の層間絶縁膜が開発されている。しかしながら、半導体 50

素子などのさらなる高集積化や多層化に伴い、より優れ た導体間の電気絶縁性が要求されており、したがって、 より低誘電率でかつクラック耐性に優れる層間絶縁膜材 料が求められるようになっている。

【0003】そこで、特開平6-181201号公報には、層間絶縁膜材料として、より低誘電率の絶縁膜形成用塗布型組成物が開示されている。この塗布型組成物は、吸水性が低く、耐クラック性に優れた半導体装置の絶縁膜を提供することを目的としており、その構成は、チタン、ジルコニウム、ニオブおよびタンタルから選ばれる少なくとも1種の元素を含む有機金属化合物と、分子内にアルコキシ基を少なくとも1個有する有機ケイ素化合物とを縮重合させてなる、数平均分子量が500以上のオリゴマーを主成分とする絶縁膜形成用塗布型組成物である。

【0004】また、WO96/00758号公報には、 多層配線基板の層間絶縁膜の形成に使用される、アルコキシシラン類、シラン以外の金属アルコキシドおよび有機溶媒などからなる、厚膜塗布が可能で、かつ耐酸素プラズマアッシング性に優れるシリカ系塗布型絶縁膜形成用材料が開示されている。

【0005】さらに、特開平3-20377号公報には、電子部品などの表面平坦化、層間絶縁などに有用な酸化物被膜形成用塗布液が開示されている。この酸化物被膜形成用塗布液は、ゲル状物の発生のない均一な塗布液を提供し、また、この塗布液を用いることにより、高温での硬化、酸素プラズマによる処理を行った場合であっても、クラックのない良好な酸化物被膜を得ることを目的としている。そして、その構成は、所定のシラン化合物と、同じく所定のキレート化合物とを有機溶媒の存在化で加水分解し、重合して得られる酸化物被膜形成用塗布液である。

【0006】しかし、上記のようにシラン化合物にチタンやジルコニウムなどの金属キレート化合物を組み合せた場合、酸素プラズマ耐性、さらに誘電率、クラック耐性などをバランスよく有するものではない。

[0007]

【発明が解決しようとする課題】本発明は、上記問題点を解決するための膜形成用組成物に関し、さらに詳しくは、半導体素子などにおける層間絶縁膜として適当な、酸素プラズマ耐性を有し、しかもクラックが生じ難く、誘電率特性などに優れた膜形成用組成物を提供することを目的とする。

【0008】本発明は、(A)下記一般式(1)で表される化合物(以下「(A)成分」ともいう)、

 R^1 a S i (OR 2) 4-a · · · · (1) (R 1 および R^2 は同一でも異なっていてもよく、1 価の有機基を示し、a は $0\sim 2$ の整数を表す。) ならびに

(B) (B-1) 下記一般式 (2) で表される化合物 (以下「(B-1) 成分」ともいう)、

2

3

【0010】 $(R^3$ および R^4 は同一でも異なっていてもよく、それぞれ1価の有機基を示し、nは3 \sim 10の整数を表す。) (B-2) 下記一般式 (3) の繰り返し単位を有するポリマー(以下「(B-2) 成分」ともいう)

-Si(OR⁵) 2-b (R⁶) b O- ・・・(3) (R⁵ およびR⁶ は同一でも異なっていてもよく、それぞれ1価の有機基を示し、bは0~1の整数を表す。) からなるシラン化合物の、加水分解物および/または縮 20合物(以下「加水分解縮合物」ともいう)を含有することを特徴とする膜形成用組成物に関するものである。ここで、(A)成分(完全加水分解縮合物換算)100重量部に対して、(B)成分の重量は1~80重量部であることが好ましい。

[0011]

【発明の実施の形態】本発明は、膜を形成する成分として、(A)成分および(B)成分の加水分解・縮合を行なうことによって、これらの加水分解物および/またはその縮合物(加水分解縮合物)が二次元~三次元的な構造をとり、高分子量を有するポリオルガノシランが生成するものである。そして、この生成されたポリオルガノシランを含有する本発明の組成物を、浸漬またはスピンコート法などにより、シリコンウエハなどの基材に塗布すると、例えば、微細パターン間の溝を充分に埋めることができ、加熱により、有機溶剤の除去と熱縮重合を行なうと、ガラス質または巨大高分子の膜を形成することができる。得られる膜は、密着性が良好で、平坦化に優れ、クラックの発生がない、厚膜の絶縁体を形成することができる。

【0012】ここで、上記加水分解物とは、上記(A) ~(B)成分に含まれるR² O-, R⁴ O-およびR⁵ O-基すべてが加水分解されている必要はなく、例えば、1個だけが加水分解されているもの、2個以上が加水分解されているもの、あるいは、これらの混合物であってもよい。また、上記縮合物は、(A)~(B)成分の加水分解物のシラノール基が縮合してSi-O-Si 結合を形成したものであるが、本発明では、シラノール基がすべて縮合している必要はなく、僅かな一部のシラノール基が縮合したもの、縮合の程度が異なっているも 50

のの混合物などをも包含した概念である。

【0013】以下、本発明に用いられる(A)成分、

(B) 成分などについて説明し、次いで、本発明の組成物の調製方法について詳述する。

【0014】(A)成分

上記一般式(1)において、1価の有機基としては、アルキル基、アリール基、アリル基、グリシジル基などを挙げることができる。ここで、アルキル基としては、メチル基、エチル基、プロピル基、ブチル基などが挙げられ、好ましくは炭素数1~5であり、これらのアルキル基は鎖状でも、分岐していてもよく、さらに水素原子がフッ素原子などに置換されていてもよい。一般式(1)においてアリール基としては、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基などを挙げることができる。

【0015】一般式(1)で表される化合物の具体例と しては、テトラメトキシシラン、テトラエトキシシラ ン、テトラーnープロポキシシラン、テトラーiso-プロポキシシラン、テトラーnープトキシラン、テトラ -sec-プトキシシラン、テトラーtertープトキ シシラン、テトラフェノキシシラン、メチルトリメトキ シシラン、メチルトリエトキシシラン、メチルトリーn ープロポキシシラン、メチルトリーisoープロポキシ シラン、メチルトリーnープトキシシラン、メチルトリ -sec-ブトキシシラン、メチルトリーtert-ブ トキシシラン、メチルトリフェノキシシラン、エチルト リメトキシシラン、エチルトリエトキシシラン、エチル トリーnープロポキシシラン、エチルトリーisoープ ロポキシシラン、エチルトリーnープトキシシラン、エ チルトリーsecープトキシシラン、エチルトリーte rtープトキシシラン、エチルトリフェノキシシラン、 ピニルトリメトキシシラン、ビニルトリエトキシシラ ン、ビニルトリーnープロポキシシラン、ビニルトリー isoープロポキシシラン、ビニルトリーnープトキシ シラン、ピニルトリーsecープトキシシラン、ピニル トリーtertープトキシシラン、ビニルトリフェノキ シシラン、nープロピルトリメトキシシラン、nープロ ピルトリエトキシシラン、n-プロピルトリーn-プロ ポキシシラン、nープロピルトリーisoープロポキシ シラン、nープロピルトリーnープトキシシラン、nー プロピルトリーsecーブトキシシラン、nープロピル トリーtertープトキシシラン、nープロピルトリフ ェノキシシラン、iープロピルトリメトキシシラン、i ープロピルトリエトキシシラン、iープロピルトリーn ープロポキシシラン、iープロピルトリーisoープロ ポキシシラン、iープロピルトリーnープトキシシラ ン、iープロピルトリーsecープトキシシラン、iー プロピルトリーtert-プトキシシラン、i-プロピ ルトリフェノキシシラン、n-プチルトリメトキシシラ

ン、nープチルトリエトキシシラン、nープチルトリー n-プロポキシシラン、n-プチルトリーiso-プロ ポキシシラン、nープチルトリーnープトキシシラン、 n-プチルトリーsec-プトキシシラン、n-プチル トリーtertープトキシシラン、nープチルトリフェ ノキシシラン、secープチルトリメトキシシラン、s ecープチルーiートリエトキシシラン、secープチ ルートリーnープロポキシシラン、secーブチルート リーisoープロポキシシラン、secープチルートリ -n-プトキシシラン、sec-プチルートリーsec ープトキシシラン、secープチルートリーtertー プトキシシラン、secープチルートリフェノキシシラ ン、tープチルトリメトキシシラン、tープチルトリエ トキシシラン、tープチルトリーnープロポキシシラ ン、tーブチルトリーisoープロポキシシラン、tー ブチルトリーnーブトキシシラン、tープチルトリーs ecープトキシシラン、tープチルトリーtertープ トキシシラン、tープチルトリフェノキシシラン、フェ ニルトリメトキシシラン、フェニルトリエトキシシラ ン、フェニルトリーnープロポキシシラン、フェニルト リーisoープロポキシシラン、フェニルトリーnーブ トキシシラン、フェニルトリーsecープトキシシラ ン、フェニルトリーtertープトキシシラン、フェニ ルトリフェノキシシラン、ジメチルジメトキシシラン、 ジメチルジエトキシシラン、ジメチルージーnープロポ キシシラン、ジメチルージーisoープロポキシシラ ン、ジメチルージーnープトキシシラン、ジメチルージ -sec-プトキシシラン、ジメチルージーtert-プトキシシラン、ジメチルジフェノキシシラン、ジエチ ルジメトキシシラン、ジエチルジエトキシシラン、ジエ 30 チルージーnープロポキシシラン、ジエチルージーis oープロポキシシラン、ジエチルージーnーブトキシシ ラン、ジエチルージーsecープトキシシラン、ジエチ ルージーtertープトキシシラン、ジエチルジフェノ キシシラン、ジーnープロピルジメトキシシラン、ジー n-プロピルジエトキシシラン、ジーn-プロピルージ -n-プロポキシシラン、ジーn-プロピルージーis oープロポキシシラン、ジーnープロピルージーnーブ トキシシラン、ジーnープロピルージーsecープトキ シシラン、ジーnープロピルージーtertープトキシ 40 シラン、ジーnープロピルージーフェノキシシラン、ジ -iso-プロピルジメトキシシラン、ジーiso-プ ロピルジエトキシシラン、ジーisoープロピルージー nープロポキシシラン、ジーisoープロピルージーi soープロポキシシラン、ジーisoープロピルージー nープトキシシラン、ジーisoープロピルージーse cープトキシシラン、ジーisoープロピルージーte rtープトキシシラン、ジーisoープロピルージーフ ェノキシシラン、ジーnープチルジメトキシシラン、ジ -n-ブチルジエトキシシラン、ジ-n-ブチルージー 50

n-プロポキシシラン、ジーn-ブチルージーiso-プロポキシシラン、ジーnープチルージーnープトキシ シラン、ジーnープチルージーsecープトキシシラ ン、ジーnープチルージーtertープトキシシラン、 ジーnープチルージーフェノキシシラン、ジーsecー プチルジメトキシシラン、ジーsec-ブチルジエトキ シシラン、ジーsecープチルージーnープロポキシシ ラン、ジーsecープチルージーisoープロポキシシ ラン、ジーsecープチルージーnープトキシシラン、 ジーsecープチルージーsecープトキシシラン、ジ -sec-ブチルージーtert-ブトキシシラン、ジ -sec-ブチルージーフェノキシシラン、ジーter tープチルジメトキシシラン、ジーtertープチルジ エトキシシラン、ジーtertープチルージーnープロ ポキシシラン、ジーtertープチルージーisoープ ロポキシシラン、ジーtertープチルージーnーブト キシシラン、ジーtertープチルージーsecープト キシシラン、ジーtertープチルージーtertープ トキシシラン、ジーtertープチルージーフェノキシ シラン、ジフェニルジメトキシシラン、ジフェニルージ ーエトキシシラン、ジフェニルージーnープロポキシシ ラン、ジフェニルージーisoープロポキシシラン、ジ フェニルージーnープトキシシラン、ジフェニルージー secーブトキシシラン、ジフェニルージーtertー ブトキシシラン、ジフェニルジフェノキシシラン、ジビ ニルトリメトキシシラン、γ-アミノプロピルトリメト キシシラン、ャーアミノプロピルトリエトキシシラン、 y ーグリシドキシプロピルトリメトキシシラン、y ーグ リシドキシプロピルトリエトキシシラン、ャートリフロ ロプロピルトリメトキシシラン、ャートリフロロプロピ ルトリエトキシシランなどを挙げることができる。

【0016】好ましくは、テトラメトキシシラン、テト ラエトキシシラン、テトラーnープロポキシシラン、テ トラーisoープロポキシシラン、テトラフェノキシシ ラン、メチルトリメトキシシラン、メチルトリエトキシ シラン、メチルトリーnープロポキシシラン、メチルト リーisoープロポキシシラン、エチルトリメトキシシ ラン、エチルトリエトキシシラン、ピニルトリメトキシ シラン、ピニルトリエトキシシラン、フェニルトリメト キシシラン、フェニルトリエトキシシラン、ジメチルジ メトキシシラン、ジメチルジエトキシシラン、ジエチル ジメトキシシラン、ジエチルジエトキシシラン、ジフェ ニルジメトキシシラン、ジフェニルジエトキシシラン、 トリメチルモノメトキシシラン、トリメチルモノエトキ シシラン、トリエチルモノメトキシシラン、トリエチル モノエトキシシラン、トリフェニルモノメトキシシラ ン、トリフェニルモノエトキシシランである。これら は、1種あるいは2種以上を同時に使用してもよい。 【0017】(B)成分

(B-1) 成分;上記一般式 (2) において、1価の有

機基としては、先の一般式(1)と同様な有機基を挙げ ることができる。一般式(2)で表される化合物の具体 例としては、1,3,5-トリメトキシ-1,3,5-トリメチルシクロトリシロキサン、1、3、5ートリエ トキシー1、3、5ートリメチルシクロトリシロキサ ン、1,3,5-トリメトキシ-1,3,5-トリフェ ニルシクロトリシロキサン、1,3,5-トリエトキシ -1, 3, 5-トリフェニルシクロトリシロキサン、 1, 3, 5, 7ーテトラメトキシー1, 3, 5, 7ーテ トラメチルシクロテトラシロキサン、1、3、5、7-テトラエトキシー1,3,5,7-テトラメチルシクロ テトラシロキサン、1,3,5,7-テトラーnープロ ポキシー1, 3, 5, 7ーテトラメチルシクロテトラシ ロキサン、1, 3, 5, 7ーテトラーisoープロポキー シー1, 3, 5, 7ーテトラメチルシクロテトラシロキ サン、1, 3, 5, 7ーテトラーnープトキシー1, 3, 5, 7ーテトラメチルシクロテトラシロキサン、 1, 3, 5, 7-r+7-sec-7+4v-1, 3, 5, 7ーテトラメチルシクロテトラシロキサン、1, 3, 5, 7-F->-tert-7-+>-1, 3, 5, 7ーテトラメチルシクロテトラシロキサン、1, 3, 5, 7-テトラフェノキシー1, 3, 5, 7-デト ラメチルシクロテトラシロキサン、1,3,5,7ーテ トラメトキシー1, 3, 5, 7ーテトラビニルシクロテ トラシロキサン、1,3,5,7-テトラエトキシー 1、3、5、7ーテトラビニルシクロテトラシロキサ ン、1,3,5,7ーテトラーnープロポキシー1, 3, 5, 7ーテトラビニルシクロテトラシロキサン、 1, 3, 5, 7ーテトラーisoープロポキシー1, 3, 5, 7ーテトラビニルシクロテトラシロキサン、 1, 3, 5, 7-r-7-n-7-4-1, 3, 5, 7ーテトラビニルシクロテトラシロキサン、1,3, 5, 7-テトラーsec-ブトキシー1, 3, 5, 7-テトラビニルシクロテトラシロキサン、1,3,5,7 - F + F - t e r t - J + F - 1, 3, 5, 7 - F + F - 1ラピニルシクロテトラシロキサン、1,3,5,7ーテ トラフェノキシー1, 3, 5, 7ーテトラビニルシクロ テトラシロキサン、1,3,5,7-テトラメトキシー 1, 3, 5, 7ーテトラフェニルシクロテトラシロキサ ン、1, 3, 5, 7ーテトラエトキシー1, 3, 5, 7 40 ーテトラフェニルシクロテトラシロキサン、1,3, 5, 7-テトラーn-プロポキシー1, 3, 5, 7-テ トラフェニルシクロテトラシロキサン、1,3,5,7 ーテトラーisoープロポキシー1,3,5,7ーテト ラフェニルシクロテトラシロキサン、1,3,5,7-テトラーnープトキシー1,3,5,7ーテトラフェニ ルシクロテトラシロキサン、1,3,5,7ーテトラー sec-プトキシー1, 3, 5, 7-テトラフェニルシ クロテトラシロキサン、1, 3, 5, 7-テトラーte

ロテトラシロキサン、1,3,5,7-テトラフェノキ シー1、3、5、7ーテトラフェニルシクロテトラシロ キサン、1, 3, 5, 7, 9ーペンタメトキシー1, 3, 5, 7, 9ーペンタメチルシクロペンタシロキサ ν , 1, 3, 5, 7, 9- $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 1, 3, 5, 7, 9ーペンタメチルシクロペンタシロキサン、 1, 3, 5, 7, $9 - ^2 \vee p - n - ^2 \cup r^2 + v - 1$, 3, 5, 7, 9ーペンタメチルシクロペンタシロキサ ン、1, 3, 5, 7, 9-ペンターiso-プロポキシ -1, 3, 5, 7, 9-229 + 729 +キサン、1,3,5,7,9ーペンターnープトキシー 1, 3, 5, 7, 9-ペンタメチルシクロペンタシロキ サン、1, 3, 5, 7, 9-ペンターsec-プトキシ -1, 3, 5, 7, 9-ペンタメチルシクロペンタシロ キサン、1, 3, 5, 7, 9ーペンターtertープト キシー1, 3, 5, 7, 9ーペンタメチルシクロペンタ シロキサン、1,3,5,7,9-ペンタフェノキシー 1, 3, 5, 7, 9ーペンタメチルシクロペンタシロキ サン、1,3,5,7,9ーペンタメトキシー1,3, 5,7,9ーペンタビニルシクロペンタシロキサン、 1, 3, 5, 7, 9ーペンタエトキシー1, 3, 5, 7, 9-ペンタビニルシクロペンタシロキサン、1, 3, 5, 7, $9 - ^2 \vee 9 - n - ^2 \vee 1 + ^2 \vee 1$, 3, 5, 7, 9-ペンタビニルシクロペンタシロキサン、 1, 3, 5, 7, 9ーペンターisoープロポキシー 1, 3, 5, 7, 9ーペンタビニルシクロペンタシロキ サン、1,3,5,7,9ーペンターnープトキシー 1, 3, 5, 7, 9ーペンタビニルシクロペンタシロキ サン、1,3,5,7,9ーペンターsecープトキシ -1, 3, 5, 7, 9ーペンタビニルシクロペンタシロ キサン、1, 3, 5, 7, 9ーペンターtertープト キシー1, 3, 5, 7, 9-ペンタビニルシクロペンタ シロキサン、1,3,5,7,9-ペンタフェノキシー 1, 3, 5, 7, 9ーペンタピニルシクロペンタシロキ サン、1,3,5,7,9ーペンタメトキシー1,3, 5, 7, 9ーペンタフェニルシクロペンタシロキサン、 1, 3, 5, 7, 9ーペンタエトキシー1, 3, 5, 7, 9-ペンタフェニルシクロペンタシロキサン、1, 3, 5, 7, 9ーペンターnープロポキシー1, 3, 5. 7. 9-ペンタフェニルシクロペンタシロキサン、 1, 3, 5, 7, 9ーペンターisoープロポキシー 1, 3, 5, 7, 9ーペンタフェニルシクロペンタシロ キサン、1,3,5,7,9ーペンターnープトキシー 1, 3, 5, 7, 9ーペンタフェニルシクロペンタシロ キサン、1, 3, 5, 7, 9-ペンターsecープトキ シー1, 3, 5, 7, 9ーペンタフェニルシクロペンタ シロキサン、1, 3, 5, 7, 9-ペンターtert-プトキシー1, 3, 5, 7, 9ーペンタフェニルシクロ ペンタシロキサン、1,3,5,7,9-ペンタフェノ rtープトキシー1, 3, 5, 7ーテトラフェニルシク 50 キシー1, 3, 5, 7, 9ーペンタフェニルシクロペン

タシロキサン、1,3,5,7,9,11-ヘキサメト キシー1, 3, 5, 7, 9, 11-ヘキサメチルシクロ ヘキサシロキサン、1,3,5,7,9,11-ヘキサ エトキシー1、3、5、7、9、11ーヘキサメチルシ クロヘキサシロキサン、1, 3, 5, 7, 9, 11-ヘ キサーn-プロポキシー1, 3, 5, 7, 9, 11-ヘ キサメチルシクロヘキサシロキサン、1,3,5,7, 9, 11-ヘキサーiso-プロポキシー1, 3, 5, 7, 9, 11-ヘキサメチルシクロヘキサシロキサン、 1, 3, 5, 7, 9, 11-ヘキサーn-ブトキシー 1, 3, 5, 7, 9, 11-ヘキサメチルシクロヘキサ シロキサン、1, 3, 5, 7, 9, 11-ヘキサーse c-ブトキシ-1, 3, 5, 7, 9, 11-ヘキサメチ ルシクロヘキサシロキサン、1,3,5,7,9,11 ーヘキサーtertープトキシー1, 3, 5, 7, 9, 11-ヘキサメチルシクロヘキサシロキサン、1,3, 5, 7, 9, 11-ヘキサフェノキシー1, 3, 5, 7, 9, 11-ヘキサメチルシクロヘキサシロキサン、 1, 3, 5, 7, 9, 11-ヘキサメトキシー1, 3, 5、7、9、11-ヘキサビニルシクロヘキサシロキサ ン、1, 3, 5, 7, 9, 11-ヘキサエトキシー1, 3, 5, 7, 9, 11-ヘキサビニルシクロヘキサシロ キサン、1, 3, 5, 7, 9, 11-ヘキサーnープロ ポキシー1, 3, 5, 7, 9, 11-ヘキサビニルシク ロヘキサシロキサン、1, 3, 5, 7, 9, 11-ヘキ サーiso-プロポキシー1, 3, 5, 7, 9, 11-ヘキサビニルシクロヘキサシロキサン、1,3,5, 7, 9, 11-ヘキサーn-プトキシー1, 3, 5, 7, 9, 11-ヘキサビニルシクロヘキサシロキサン、 1, 3, 5, 7, 9, 11-ヘキサーsecープトキシ -1, 3, 5, 7, 9, 11-ヘキサビニルシクロヘキ サシロキサン、1, 3, 5, 7, 9, 11-ヘキサー t ert-プトキシー1, 3, 5, 7, 9, 11-ヘキサ ビニルシクロヘキサシロキサン、1,3,5,7,9, 11-ヘキサフェノキシー1, 3, 5, 7, 9, 11-ヘキサビニルシクロヘキサシロキサン、1,3,5, 7, 9, 11-ヘキサメトキシー1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキサシロキサン、1, 3, 5, 7, 9, 11-ヘキサエトキシー1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキサシロキサ ン、1, 3, 5, 7, 9, 11-ヘキサーnープロポキ シー1, 3, 5, 7, 9, 11-ヘキサフェニルシクロ ヘキサシロキサン、1,3,5,7,9,11-ヘキサ -iso-プロポキシ-1, 3, 5, 7, 9, 11-へ キサフェニルシクロヘキサシロキサン、1,3,5, 7, 9, 11 - n - 7 + 5 - 1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキサシロキサ ン、1, 3, 5, 7, 9, 11-ヘキサーsecープト キシー1, 3, 5, 7, 9, 11-ヘキサフェニルシク

ロヘキサシロキサン、1, 3, 5, 7, 9, 11ーヘキ 50

サー t e r t - プトキシ-1, 3, 5, 7, 9, 11- ヘキサフェニルシクロヘキサシロキサン、1, 3, 5, 7, 9, 11-ヘキサフェノキシ-1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキサシロキサンなどを挙げることができる。

【0018】これらのうち、好ましくは、1,3,5, 7ーテトラメトキシー1, 3, 5, 7ーテトラメチルシ クロテトラシロキサン、1,3,5,7-テトラエトキ シー1, 3, 5, 7ーテトラメチルシクロテトラシロキ サン、1, 3, 5, 7-テトラ-n-プロポキシ-1, 3, 5, 7ーテトラメチルシクロテトラシロキサン、 1, 3, 5, 7ーテトラーisoープロポキシー1, 3, 5, 7ーテトラメチルシクロテトラシロキサン、 1, 3, 5, 7-F->-n-J-+>-1, 3, 5, 7-テトラメチルシクロテトラシロキサン、1,3, 5, 7-7-7-8 e c-7-7-7-1, 3, 5, 7-テトラメチルシクロテトラシロキサン、1,3,5,7 ーテトラーtertープトキシー1, 3, 5, 7ーテト ラメチルシクロテトラシロキサン、1,3,5,7-テ トラフェノキシー1、3、5、7ーテトラメチルシクロ テトラシロキサン、1,3,5,7-テトラメトキシー 1, 3, 5, 7ーテトラフェニルシクロテトラシロキサ ン、1, 3, 5, 7ーテトラエトキシー1, 3, 5, 7 ーテトラフェニルシクロテトラシロキサン、1,3, 5, 7ーテトラーnープロポキシー1, 3, 5, 7ーテ トラフェニルシクロテトラシロキサン、1,3,5,7 ーテトラーiso-プロポキシー1,3,5,7ーテト ラフェニルシクロテトラシロキサン、1,3,5,7-テトラーnープトキシー1,3,5,7ーテトラフェニ ルシクロテトラシロキサン、1,3,5,7ーテトラー sec-プトキシー1, 3, 5, 7-テトラフェニルシ クロテトラシロキサン、1, 3, 5, 7-テトラーte. rtープトキシー1, 3, 5, 7ーテトラフェニルシク ロテトラシロキサン、1,3,5,7ーテトラフェノキ シー1, 3, 5, 7ーテトラフェニルシクロテトラシロ キサン、1, 3, 5, 7, 9ーペンタメトキシー1, 3, 5, 7, 9ーペンタメチルシクロペンタシロキサ ン、1, 3, 5, 7, 9ーペンタエトキシー1, 3, 5、7、9ーペンタメチルシクロペンタシロキサン、 1, 3, 5, 7, $9-\sqrt{2} - n - \sqrt{2} - n + \sqrt{2} - 1$, 3, 5, 7, 9ーペンタメチルシクロペンタシロキサ ン、1, 3, 5, 7, 9-ペンターiso-プロポキシ -1, 3, 5, 7, 9-ペンタメチルシクロペンタシロ キサン、1,3,5,7,9ーペンターnープトキシー 1, 3, 5, 7, 9-ペンタメチルシクロペンタシロキ サン、1, 3, 5, 7, 9-ペンターsecープトキシ -1,3,5,7,9ーペンタメチルシクロペンタシロ キサン、1, 3, 5, 7, 9-ペンターtertープト キシー1, 3, 5, 7, 9ーペンタメチルシクロペンタ シロキサン、1,3,5,7,9-ペンタフェノキシー

1, 3, 5, 7, 9ーペンタメチルシクロペンタシロキ サン、1,3,5,7,9,11-ヘキサメトキシー 1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキ サシロキサン、1, 3, 5, 7, 9, 11-ヘキサエト キシー1, 3, 5, 7, 9, 11-ヘキサフェニルシク ロヘキサシロキサン、1,3,5,7,9,11-ヘキ サーnープロポキシー1, 3, 5, 7, 9, 11ーヘキ サフェニルシクロヘキサシロキサン、1,3,5,7, 9, 11-ヘキサーiso-プロポキシー1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキサシロキサ ン、1, 3, 5, 7, 9, 11-ヘキサーnープトキシ -1, 3, 5, 7, 9, 11ーヘキサフェニルシクロヘ キサシロキサン、1, 3, 5, 7, 9, 11-ヘキサー sec-プトキシ-1, 3, 5, 7, 9, 11-ヘキサ フェニルシクロヘキサシロキサン、1,3,5,7, 9, 11-ヘキサーtert-プトキシー1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキサシロキサ ン、1, 3, 5, 7, 9, 11ーヘキサフェノキシー 1, 3, 5, 7, 9, 11-ヘキサフェニルシクロヘキ サシロキサンが挙げられる。。これらは、1種あるいは 20 2種以上を同時に使用してもよい。

【0019】(B-2)成分;上記一般式(3)におい て、1価の有機基としては、先の一般式(1)と同様な 有機基を挙げることができる。一般式(3)で表される ポリマーの具体例としては、例えば、ポリメチルメトキ シシロキサン、ポリメチルエトキシシロキサン、ポリメ チルーnープロポキシシロキサン、ポリメチルーiso ープロポキシシロキサン、ポリメチルーnープトキシシ ロキサン、ポリメチルーsecープトキシシロキサン、 ポリメチルーtertープトキシシロキサン、ポリメチ ルフェノキシシロキサン、ポリビニルメトキシシロキサ ン、ポリビニルエトキシシロキサン、ポリビニルーnー プロポキシシロキサン、ポリビニルーisoープロポキ シシロキサン、ポリビニルーnープトキシシロキサン、 ポリピニルーsec-プトキシシロキサン、ポリビニル -tert-プトキシシロキサン、ポリピニルフェノキ シシロキサン、ポリフェニルメトキシシロキサン、ポリ フェニルエトキシシロキサン、ポリフェニルーnープロ ポキシシロキサン、ポリフェニルーiso-プロポキシ シロキサン、ポリフェニルーnープトキシシロキサン、 ポリフェニルーsec-ブトキシシロキサン、ポリフェ ニルーtertープトキシシロキサン、ポリフェニルフ エノキシシロキサン、ポリジメトキシシロキサン、ポリ ジエトキシシロキサン、ポリジーnープロポキシシロキ サン、ポリジーisoープロポキシシロキサン、ポリジ -n-プトキシシロキサン、ポリジ-sec-プトキシ シロキサン、ポリジーtertーブトキシシロキサン、 ポリジフェノキシシロキサンなどを挙げることができ

【0020】これらのうち、好ましくは、ポリメチルメ 50 ン、テトラキス (アセチルアセトナート) チタン、トリ

トキシシロキサン、ポリメチルエトキシシロキサン、ポ リメチルーnープロポキシシロキサン、ポリメチルーi soープロポキシシロキサン、ポリメチルーnープトキ シシロキサン、ポリメチルーsecーブトキシシロキサ ン、ポリメチルーtertープトキシシロキサン、ポリ メチルフェノキシシロキサン、ポリジメトキシシロキサ ン、ポリジエトキシシロキサン、ポリジーnープロポキ シシロキサン、ポリジーisoープロポキシシロキサ ン、ポリジーnーブトキシシロキサン、ポリジーsec ープトキシシロキサン、ポリジーtertーブトキシシ ロキサン、ポリジフェノキシシロキサンが挙げられる。 この際、一般式(3)の繰り返し単位を有するポリマー の分子量としては、ポリスチレン換算の重量平均分子量 で、300~200,000、好ましくは300~10 0,000である。これらは、1種あるいは2種以上を 同時に使用してもよい。

【0021】上記(A)成分ならびに(B)成分を加水分解、縮合させる際に、R² O-, R⁴ O-およびR⁵ O-で表される基1モル当たり、0.25~3モルの水を用いることが好ましく、0.3~2.5モルの水を加えることが特に好ましい。添加する水の量が0.25~3モルの範囲内の値であれば、途膜の均一性が低下する恐れが無く、また、膜形成用組成物の保存安定性が低下する恐れが少ないためである。

【0022】また、(A) 成分ならびに(B) 成分を加 水分解、縮合させる際には、触媒を使用してもよい。こ の際に使用する触媒としては、金属キレート化合物、有 機酸、無機酸、有機塩基、無機塩基を挙げることができ る。金属キレート化合物としては、例えば、トリエトキ シ・モノ (アセチルアセドナート) チタン、トリーn-プロポキシ・モノ (アセチルアセトナート) チタン、ト リーiープロポキシ・モノ (アセチルアセトナート) チ タン、トリーnープトキシ・モノ(アセチルアセトナー ト) チタン、トリーsecーブトキシ・モノ (アセチル アセトナート) チタン、トリー t ープトキシ・モノ (ア セチルアセトナート) チタン、ジエトキシ・ビス (アセ チルアセトナート) チタン、ジーnープロポキシ・ビス (アセチルアセトナート) チタン、ジーi-プロポキシ ・ビス (アセチルアセトナート) チタン、ジーnープト キシ・ビス (アセチルアセトナート) チタン、ジーse c-ブトキシ・ビス (アセチルアセトナート) チタン、 ジー t ープトキシ・ビス (アセチルアセトナート) チタ ン、モノエトキシ・トリス(アセチルアセトナート)チ タン、モノーnープロポキシ・トリス(アセチルアセト ナート) チタン、モノーiープロポキシ・トリス (アセ チルアセトナート) チタン、モノーnープトキシ・トリ ス (アセチルアセトナート) チタン、モノーsecープ トキシ・トリス (アセチルアセトナート) チタン、モノ - t-プトキシ・トリス (アセチルアセトナート) チタ

14

エトキシ・モノ (エチルアセトアセテート) チタン、ト リーn-プロポキシ・モノ (エチルアセトアセテート) チタン、トリーi-プロポキシ・モノ (エチルアセトア セテート) チタン、トリーn-ブトキシ・モノ (エチル アセトアセテート) チタン、トリーsecープトキシ・ モノ (エチルアセトアセテート) チタン、トリー t ープ トキシ・モノ (エチルアセトアセテート) チタン、ジェ トキシ・ビス (エチルアセトアセテート) チタン、ジー n-プロポキシ・ビス (エチルアセトアセテート) チタ ン、ジーi-プロポキシ・ビス (エチルアセトアセテー 10 ト) チタン、ジーnープトキシ・ビス (エチルアセトア セテート) チタン、ジーsec-プトキシ・ビス (エチ ルアセトアセテート) チタン、ジーtープトキシ・ビス (エチルアセトアセテート) チタン、モノエトキシ・ト リス (エチルアセトアセテート) チタン、モノーnープ ロポキシ・トリス (エチルアセトアセテート) チタン、 モノー i -プロポキシ・トリス (エチルアセトアセテー ト) チタン、モノーnープトキシ・トリス (エチルアセ トアセテート) チタン、モノーsecープトキシ・トリ ス (エチルアセトアセテート) チタン、モノー t ープト 20 キシ・トリス (エチルアセトアセテート) チタン、テト ラキス (エチルアセトアセテート) チタン、モノ (アセ チルアセトナート)トリス (エチルアセトアセテート) チタン、ビス (アセチルアセトナート) ビス (エチルア セトアセテート) チタン、トリス (アセチルアセトナー ト) モノ (エチルアセトアセテート) チタンなどのチタ ンキレート化合物;トリエトキシ・モノ(アセチルアセ トナート) ジルコニウム、トリーnープロポキシ・モノ (アセチルアセトナート) ジルコニウム、トリーiープ ロポキシ・モノ(アセチルアセトナート)ジルコニウ ム、トリーnープトキシ・モノ(アセチルアセトナー ト) ジルコニウム、トリーsecープトキシ・モノ (ア セチルアセトナート) ジルコニウム、トリー tープトキ シ・モノ (アセチルアセトナート) ジルコニウム、ジエ トキシ・ピス (アセチルアセトナート) ジルコニウム、 ジーn-プロポキシ・ビス (アセチルアセトナート) ジ ルコニウム、ジーi-プロポキシ・ピス (アセチルアセ トナート) ジルコニウム、ジーnープトキシ・ピス (ア セチルアセトナート) ジルコニウム、ジーsecーブト キシ・ビス (アセチルアセトナート) ジルコニウム、ジ 40 -t-プトキシ・ビス (アセチルアセトナート) ジルコ ニウム、モノエトキシ・トリス(アセチルアセトナー ト) ジルコニウム、モノーnープロポキシ・トリス (ア セチルアセトナート) ジルコニウム、モノー i ープロポ キシ・トリス (アセチルアセトナート) ジルコニウム、 モノーnープトキシ・トリス (アセチルアセトナート) ジルコニウム、モノーsecーブトキシ・トリス(アセ **チルアセトナート)ジルコニウム、モノーtーブトキシ** ・トリス (アセチルアセトナート) ジルコニウム、テト ラキス (アセチルアセトナート) ジルコニウム、トリエ 50

トキシ・モノ (エチルアセトアセテート) ジルコニウ ム、トリーnープロポキシ・モノ(エチルアセトアセテ ート) ジルコニウム、トリーi-プロポキシ・モノ (エ チルアセトアセテート) ジルコニウム、トリーnープト キシ・モノ (エチルアセトアセテート) ジルコニウム、 トリーsecープトキシ・モノ(エチルアセトアセテー ト) ジルコニウム、トリー t ープトキシ・モノ (エチル アセトアセテート) ジルコニウム、ジエトキシ・ビス (エチルアセトアセテート) ジルコニウム、ジーnープ ロポキシ・ビス (エチルアセトアセテート) ジルコニウ ム、ジーi-プロポキシ・ビス(エチルアセトアセテー ト) ジルコニウム、ジ-n-プトキシ・ビス (エチルア セトアセテート) ジルコニウム、ジーsecープトキシ ・ビス (エチルアセトアセテート) ジルコニウム、ジー t-ブトキシ・ビス (エチルアセトアセテート) ジルコ ニウム、モノエトキシ・トリス(エチルアセトアセテー ト) ジルコニウム、モノーnープロポキシ・トリス (エ チルアセトアセテート)ジルコニウム、モノーiープロ ポキシ・トリス (エチルアセトアセテート) ジルコニウ ム、モノーnープトキシ・トリス(エチルアセトアセテ ート) ジルコニウム、モノーsecーブトキシ・トリス (エチルアセトアセテート) ジルコニウム、モノーt-プトキシ・トリス (エチルアセトアセテート) ジルコニ ウム、テトラキス (エチルアセトアセテート) ジルコニ ウム、モノ (アセチルアセトナート) トリス (エチルア セトアセテート) ジルコニウム、ビス (アセチルアセト ナート) ビス (エチルアセトアセテート) ジルコニウ ム、トリス(アセチルアセトナート)モノ(エチルアセ トアセテート) ジルコニウムなどのジルコニウムキレー ト化合物; トリス (アセチルアセトナート) アルミニウ ム、トリス(エチルアセトアセテート)アルミニウムな どのアルミニウムキレート化合物;などを挙げることが できる。

【0023】有機酸としては、例えば、酢酸、プロピオ ン酸、プタン酸、ペンタン酸、ヘキサン酸、ヘプタン 酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレ イン酸、メチルマロン酸、アジピン酸、セバシン酸、没 食子酸、酪酸、メリット酸、アラキドン酸、シキミ酸、 2-エチルヘキサン酸、オレイン酸、ステアリン酸、リ ノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、pートルエンスルホン酸、ベンゼンス ルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ 酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン 酸、フタル酸、フマル酸、クエン酸、酒石酸などを挙げ ることができる。無機酸としては、例えば、塩酸、硝 酸、硫酸、フッ酸、リン酸などを挙げることができる。 【0024】有機塩基としては、例えば、ピリジン、ピ ロール、ピペラジン、ピロリジン、ピペリジン、ピコリ ン、トリメチルアミン、トリエチルアミン、モノエタノ ールアミン、ジエタノールアミン、ジメチルモノエタノ

ールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクラン、ジアザビシクロノナン、デトラメチルアンモニウムハイドロオキサイドなどを挙げることができる。無機塩基としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどを挙げることができる。

【0025】これら触媒のうち、金属キレート化合物、 有機酸、無機酸が好ましく、より好ましくはチタンキレ ート化合物、有機酸を挙げることができる。これらは、 1種あるいは2種以上を同時に使用してもよい。

【0026】上記触媒の使用量は、(A)成分および(B)成分の合計量100重量部に対して、通常、0.001~10重量部、好ましくは0.01~10重量部の範囲である。

【0027】本発明の膜形成用組成物は、(A)成分な らびに(B)成分の加水分解物および/または縮合物を 有機溶剤に溶解または分散してなる。本発明に使用する 有機溶剤としては、例えば、n-ペンタン、i-ペンタ ン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i- 20 ヘプタン、2, 2, 4ートリメチルペンタン、nーオク タン、i-オクタン、シクロヘキサン、メチルシクロヘ キサンなどの脂肪族炭化水素系溶媒;ベンゼン、トルエ ン、キシレン、エチルベンゼン、トリメチルベンゼン、 メチルエチルベンゼン、nープロピルベンセン、iープ ロピルベンセン、ジエチルベンゼン、 i ープチルベンゼ ン、トリエチルベンゼン、ジーiープロピルベンセン、 n-アミルナフタレン、トリメチルベンゼンなどの芳香 族炭化水素系溶媒:メタノール、エタノール、nープロ パノール、iープロパノール、nープタノール、iープ 30 タノール、secープタノール、tープタノール、nー ペンタノール、iーペンタノール、2ーメチルブタノー ル、secーペンタノール、tーペンタノール、3-メ トキシブタノール、n-ヘキサノール、2-メチルペン タノール、sec-ヘキサノール、2-エチルプタノー ル、secーヘプタノール、ヘプタノールー3、nーオ クタノール、2-エチルヘキサノール、sec-オクタ ノール、n-ノニルアルコール、2,6-ジメチルヘプ タノールー4、nーデカノール、secーウンデシルア ルコール、トリメチルノニルアルコール、secーテト 40 ラデシルアルコール、secーヘプタデシルアルコー ル、フェノール、シクロヘキサノール、メチルシクロヘ キサノール、3,3,5-トリメチルシクロヘキサノー ル、ベンジルアルコール、フェニルメチルカルピノー ル、ジアセトンアルコール、クレゾールなどのモノアル コール系溶媒;エチレングリコール、1,2-プロピレ ングリコール、1、3ープチレングリコール、ペンタン ジオールー2, 4、2ーメチルペンタンジオールー2, 4、ヘキサンジオールー2、5、ヘプタンジオールー 2, 4、2-エチルヘキサンジオールー1, 3、ジエチ 50

レングリコール、ジプロピレングリコール、トリエチレ ングリコール、トリプロピレングリコール、グリセリン などの多価アルコール系溶媒;アセトン、メチルエチル ケトン、メチルーロープロピルケトン、メチルーロープ チルケトン、ジエチルケトン、メチルーiープチルケト ン、メチルーnーペンチルケトン、エチルーnープチル ケトン、メチルーn-ヘキシルケトン、ジーi-ブチル ケトン、トリメチルノナノン、シクロヘキサノン、2-ヘキサノン、メチルシクロヘキサノン、2, 4-ペンタ ンジオン、アセトニルアセトン、ジアセトンアルコー ル、アセトフェノン、フェンチョンなどのケトン系溶 媒;エチルエーテル、i-プロピルエーテル、n-ブチ ルエーテル、n-ヘキシルエーテル、2-エチルヘキシ ルエーテル、エチレンオキシド、1,2-プロピレンオ キシド、ジオキソラン、4-メチルジオキソラン、ジオ キサン、ジメチルジオキサン、エチレングリコールモノ メチルエーテル、エチレングリコールモノエチルエーテ ル、エチレングリコールジエチルエーテル、エチレング リコールモノーnープチルエーテル、エチレングリコー ノフェニルエーテル、エチレングリコールモノー2-エ チルプチルエーテル、エチレングリコールジプチルエー テル、ジエチレングリコールモノメチルエーテル、ジエ チレングリコールモノエチルエーテル、ジエチレングリ コールジエチルエーテル、ジエチレングリコールモノー nープチルエーテル、ジエチレングリコールジーnープ チルエーテル、ジエチレングリコールモノーnーヘキシ ルエーテル、エトキシトリグリコール、テトラエチレン グリコールジー n ープチルエーテル、プロピレングリコ ールモノメチルエーテル、プロピレングリコールモノエ チルエーテル、プロピレングリコールモノプロピルエー テル、プロピレングリコールモノブチルエーテル、ジブ ロピレングリコールモノメチルエーテル、ジプロピレン グリコールモノエチルエーテル、トリプロピレングリコ ールモノメチルエーテル、テトラヒドロフラン、2ーメ チルテトラヒドロフランなどのエーテル系溶媒;ジエチ ルカーボネート、酢酸メチル、酢酸エチル、γープチロ ラクトン、γーバレロラクトン、酢酸nープロピル、酢 酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢 酸secーブチル、酢酸nーペンチル、酢酸secーペ ンチル、酢酸3-メトキシブチル、酢酸メチルペンチ ル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、 酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロ ヘキシル、酢酸nーノニル、アセト酢酸メチル、アセト 酢酸エチル、酢酸エチレングリコールモノメチルエーテ ル、酢酸エチレングリコールモノエチルエーテル、酢酸 ジエチレングリコールモノメチルエーテル、酢酸ジエチ レングリコールモノエチルエーテル、酢酸ジエチレング

リコールモノーnープチルエーテル、酢酸プロピレング

リコールモノメチルエーテル、酢酸プロピレングリコー

16

17

ルモノエチルエーテル、酢酸プロピレングリコールモノ プロピルエーテル、酢酸プロピレングリコールモノブチ ルエーテル、酢酸ジプロピレングリコールモノメチルエ ーテル、酢酸ジプロピレングリコールモノエチルエーテ ル、ジ酢酸グリコール、酢酸メトキシトリグリコール、 プロピオン酸エチル、プロピオン酸nープチル、プロピ オン酸iーアミル、シュウ酸ジエチル、シュウ酸ジーn ープチル、乳酸メチル、乳酸エチル、乳酸n-プチル、 乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチ ル、フタル酸ジエチルなどのエステル系溶媒; Nーメチ ルホルムアミド、N, Nージメチルホルムアミド、N, N-ジエチルホルムアミド、アセトアミド、N-メチル アセトアミド、N、Nージメチルアセトアミド、Nーメ チルプロピオンアミド、Nーメチルピロリドンなどの含 窒素系溶媒;硫化ジメチル、硫化ジエチル、チオフェ ン、テトラヒドロチオフェン、ジメチルスルホキシド、 スルホラン、1,3-プロパンスルトンなどの含硫黄系 溶媒などを挙げることができる。これらは1種あるいは 2種以上を混合して使用することができる。

【0028】本発明の膜形成用組成物は、上記の有機容 20 剤を含有するが、(A)成分ならびに(B)成分を加水分解および/または縮合する際に同様な溶剤を使用することができる。

【0029】具体的には、(A)成分ならびに(B)成分を溶解させた有機溶剤中に水を断続的あるいは連続的に添加する。この際、触媒は、有機溶剤中に予め添加しておいてもよいし、水添加時に水中に溶解あるいは分散させておいてもよい。この際の反応温度としては、通常、0~100℃、好ましくは15~80℃である。

【0030】また、膜形成用組成物を構成するにあたり、組成物中の沸点100℃以下のアルコールの含量が、20重量%以下、特に5重量%以下であることが好ましい。沸点100℃以下のアルコールは、上記(A)成分ならびに(B)成分の加水分解および/またはその縮合の際に生じる場合があり、その含量が20重量%以下、好ましくは5重量%以下になるように蒸留などにより除去することが好ましい。

【0031】本発明の膜形成用組成物中における(A)成分と(B)成分の使用割合は、(A)成分(完全加水分解縮合物換算)100重量部に対して、(B)成分が 401~80重量部、より好ましくは1~60重量部である。(B)成分の使用割合が1~80重量部であるとクラック耐性および組成物の保存安定性がより良好となる。なお、本発明において完全加水分解縮合物とは、化合物(1)中のOR²で表される基が100%加水分解してOH基となり、完全に縮合したものを示す。

【0032】本発明の膜形成用組成物は、さらに下記のような成分を添加してもよい。

【0033】 <u>β - ジケトン</u>

βージケトンとしては、アセチルアセトン、2,4-へ 50

キサンジオン、 2, 4ーヘブタンジオン、 3, 5ーヘブタンジオン、 2, 4ーオクタンジオン、 3, 5ーオクタンジオン、 2, 4ーノナンジオン、 3, 5ーノナンジオン、 5ーメチルー 2, 4ーヘキサンジオン、 2, 2, 6, 6ーテトラメチルー 3, 5ーヘプタンジオン、 1, 1, 1, 5, 5, 5ーヘキサフルオロー 2, 4ーヘブタンジオンなどの 1 種または 2 種以上である。本発明において、膜形成用組成物中の β ージケトン含有量は、全溶剤の $1\sim5$ 0 重量%、好ましくは $3\sim3$ 0 重量%とすることが好ましい。このような範囲で β ージケトンを添加すれば、一定の保存安定性が得られるとともに、膜形成用組成物の強膜均一性などの特性が低下するおそれが少ない。

【0034】その他の添加剤

本発明で得られる膜形成用組成物には、さらにコロイド 状シリカ、コロイド状アルミナ、有機ポリマー、界面活 性剤などの成分を添加してもよい。コロイド状シリカと は、例えば、高純度の無水ケイ酸を上記親水性有機溶媒 に分散した分散液であり、通常、平均粒径が5~30m μ、好ましくは10~20mμ、固形分濃度が10~4 0 重量%程度のものである。このような、コロイド状シ リカとしては、例えば、日産化学工業(株)製、メタノ ールシリカゾルおよびイソプロパノールシリカゾル;触 媒化成工業(株)製、オスカルなどが挙げられる。コロ イド状アルミナとしては、日産化学工業(株)製のアル ミナゾル520、同100、同200;川研ファインケ ミカル (株) 製のアルミナクリアーゾル、アルミナゾル 10、同132などが挙げられる。有機ポリマーとして は、例えば、ポリアルキレンオキサイド構造を有する化 合物、糖鎖構造を有する化合物、ビニルアミド系重合 体、 (メタ) アクリレート化合物、芳香族ピニル化合 物、デンドリマー、ポリイミド,ポリアミック酸、ポリ アリーレン、ポリアミド、ポリキノキサリン、ポリオキ サジアゾール、フッ素系重合体などを挙げることができ る。界面活性剤としては、例えば、ノニオン系界面活性 剤、アニオン系界面活性剤、カチオン系界面活性剤、両 性界面活性剤などが挙げられ、さらには、シリコーン系 界面活性剤、ポリアルキレンオキシド系界面活性剤、含 フッ素界面活性剤などを挙げることができる。

【0035】膜形成用組成物の調製方法

本発明の膜形成用組成物を調製するに際しては、上記のように、溶媒中、(A)成分ならびに(B)成分を混合して、水を連続的または断続的に添加して、加水分解し、縮合すればよく、特に限定されない。しかしながら、上記金属キレート化合物と β -ジケトン類を使用する場合には、組成物を調製後、最後に β -ジケトンを添加する方法が採用される。

【0036】本発明の組成物の調製法の具体例としては、下記①~⑥の方法などを挙げることができる。

① (A) 成分ならびに(B) 成分と、必要量の有機溶剤

および金属キレート化合物らなる混合物に、所定量の水 を加えて加水分解・縮合反応を行ったのち、得られる組 成物にβージケトンを添加し、反応液中の低沸点アルコ ール成分を除去する方法。

②(A)成分および(B)成分と、必要量の有機溶剤および触媒からなる混合物に、所定量の水を加えて加水分解・縮合反応を行ったのち、反応液中の低沸点アルコール成分を除去する方法。

③ (A) 成分および (B) 成分と、必要量の有機溶剤および触媒からなる混合物に、水を連続的あるいは断続的に添加して、加水分解、縮合反応を行なったのち、得られる組成物に、βージケトンを添加し、反応液中の低沸点アルコール成分を除去する方法。

④ (A) 成分および (B) 成分と、必要量の有機溶剤および触媒からなる混合物に、水を連続的あるいは断続的に添加して、加水分解、縮合反応を行なったのち、反応液中の低沸点アルコール成分を除去する方法。

⑤ (A) 成分および (B) 成分をそれぞれ別の反応容器中で、有機溶剤および触媒の存在下、所定量の水を加えて加水分解・縮合反応を行ったのち、反応液中の低沸点 20アルコール成分を除去し、それぞれの加水分解・縮合物を混合する方法。

⑥(A)成分および(B)成分をそれぞれ別の反応容器中で、有機溶剤および触媒の存在下、所定量の水を加えて加水分解・縮合反応を行ったのち、得られる組成物に、βージケトンを添加し、反応液中の低沸点アルコール成分を除去し、それぞれの加水分解・縮合物を混合する方法。

【0037】このようにして得られる本発明の組成物の全固形分譲度は、好ましくは、2~30重量%であり、使用目的に応じて適宜調整される。組成物の全固形分譲度が2~30重量%であると、盗膜の膜厚が適当な範囲となり、保存安定性もより優れるものである。また、このようにして得られる組成物中の全ポリオルガノシラン成分 [(A)成分ならびに(B)成分の加水分解物および/または縮合物〕の重量平均分子量は、通常、1,000~120,000程度である。

【0038】このようにして得られる本発明の組成物を、シリコンウエハ、SiO2 ウエハ、SiNウエハな 40 どの基材に強布する際には、スピンコート、浸漬法、ロールコート法、スプレー法などの塗装手段が用いられる。

【0039】この際の膜厚は、乾燥膜厚として、1回逸りで厚さ $0.05\sim1.5\mu$ m程度、2回逾りでは厚さ0. $1\sim3\mu$ m程度の逾膜を形成することができる。その後、常温で乾燥するか、あるいは $80\sim600$ ℃程度の温度で、通常、 $5\sim240$ 分程度加熱して乾燥することにより、ガラス質または巨大高分子の絶縁膜を形成することができる。この際の加熱方法としては、ホットプ 50

レート、オーブン、ファーネスなどを使用することが出来、加熱雰囲気としては、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下などで行うことができる。

20

【0040】このようにして得られる層間絶縁膜は、絶縁性に優れ、塗布膜の均一性、誘電率特性、塗膜の耐クラック性、塗膜の表面硬度に優れることから、LSI、システムLシ、DRAM、SDRAM、RDRAM、DーRDRAMなどの半導体素子用層間絶縁膜、半導体素子の表面コート膜などの保護膜、多層配線基板の層間絶縁膜、液晶表示素子用の保護膜や絶縁防止膜などの用途に有用である。

[0041]

【実施例】以下、実施例を挙げて、本発明をさらに具体的に説明する。なお、実施例および比較例中の部および%は、特記しない限り、それぞれ重量部および重量%であることを示している。また、実施例中における膜形成用組成物の評価は、次のようにして測定したものである。

【0042】<u>重量平均分子量(Mw)</u>

下記条件によるゲルパーミエーションクロマトグラフィー (GPC) 法により測定した。

試料:テトラヒドロフランを溶媒として使用し、加水分解縮合物1gを、100ccのテトラヒドロフランに溶解して調製した。

標準ポリスチレン: 米国プレッシャーケミカル社製の標準ポリスチレンを使用した。

装置:米国ウオーターズ社製の高温高速ゲル浸透クロマトグラム (モデル150-C ALC/GPC)

カラム:昭和電工(株) 製のSHODEX A-80M (長さ50cm)

測定温度:40℃ 流速:1cc/分

【0043】酸素プラズマアッシング耐性

8インチシリコンウエハ上に、スピンコート法を用いて組成物試料を塗布し、ホットプレート上で80℃で5分間、200℃で5分間基板を乾燥し、さらに380℃の真空オーブン中で60分基板を焼成した。得られた塗膜における有機基の吸収強度を、フーリエ変換型赤外分光光度計(FT-IR)(日本電子(株)製、JIR-5500)を用いて測定した。次いで、バレル型酸素プラズマアッシング装置を用い、この塗膜に対して、1torr、800W、500Sccmの条件で、20分間、酸素プラズマ処理を行った。次いで、酸素プラズマ処理後の塗膜における有機基の1,270cm⁻¹付近のSiに結合したメチル基の変角振動の強度を、上記FT-IRを用いて測定した。このようにして測定した強度の変化から、以下の基準で、酸素プラズマアッシング性を評価した。

〇:有機基の吸収強度の変化が40%未満

△:有機基の吸収強度の変化が40%以上60%未満 ×:有機基の吸収強度の変化が60%以上

【0044】耐クラック性

8インチシリコンウエハ上に、スピンコート法を用いて 組成物試料を塗布し、ホットプレート上で80℃で5分間、200℃で5分間基板を乾燥し、さらに380℃の 真空オープン中で60分基板を焼成した。得られた塗膜 の外観を35万ルクスの表面観察用ランプで観察し、下 記基準で評価した。

②: 塗膜表面にクラックが認められない。※: 塗膜表面にクラックが認められる。

【0045】誘電率

8インチシリコンウエハ上に、スピンコート法を用いて 組成物試料を塗布し、ホットプレート上で80℃で5分間、200℃で5分間基板を乾燥し、さらに380℃の 真空オープン中で60分基板を焼成した。得られた基板 上にアルミニウムを蒸着し、誘電率評価用基板を作製し た。誘電率は、横川・ヒューレットパッカード(株)製 のHP16451B電極およびHP4284AプレシジョンLCRメーター用いて、10kHzにおける容量値 20 から算出した。

【0046】合成例1

1,3,5,7ーテトラエトキシー1,3,5,7ーテトラメチルシクロテトラシロキサン26.0gをプロピレングリコールモノメチルエーテル170gに溶解させたのち、スリーワンモーターで攪拌させ、溶液温度を60℃に安定させた。次に、マレイン酸4.4gを溶解させたイオン交換水64gとメチルトリメトキシシラン135.7gと同時に1時間かけて溶液に添加した。その後、60℃で3時間反応させたのち、反応液を室温まで30冷却した。この反応液にプロピレングリコールモノメチルエーテル215g添加し、50℃で反応液からメタノールおよびエタノールを含む溶液を215gエバポレーションで除去し、反応液(A-1)を得た。このようにして得られた加水分解縮合物の重量平均分子量は、3,600であった。

【0047】合成例2

メチルトリメトキシシラン305.4gとポリスチレン 換算重量平均分子量約2,000のポリジエトキシシロ キサン6.4gをプロピレングリコールモノプロピルエ 40 ーテル143gに溶解させたのち、スリーワンモーター で攪拌させ、溶液温度を60℃に安定させた。次に、マロン酸4.4gを溶解させたイオン交換水70gを1時 間かけて溶液に添加した。その後、60℃で2時間反応 させたのち、反応液を室温まで冷却した。この反応液にプロピレングリコールモノブロピルエーテル482g添加し、50℃で反応液からメタノールとエタノールを含む溶液を482gエバポレーションで除去し、反応液(A-2)を得た。このようにして得られた加水分解縮合物の重量平均分子量は、5,400であった。

【0048】合成例3

メチルトリメトキシシラン305.4gとポリスチレン換算重量平均分子量約2,000のポリジエトキシシロキサン6.4gとジイソプロポキシチタンピスエチルアセチルアセテート1.1gをプロピレングリコールモノプロピルエーテル143gに溶解させたのち、スリーワンモーターで攪拌させ、溶液温度を60℃に安定させた。次に、イオン交換水70gを1時間かけて溶液に添加した。その後、60℃で2時間反応させたのち、反応液を室温まで冷却した。この反応液にプロピレングリコールモノプロピルエーテル482g添加し、50℃で反応液からメタノールとエタノールを含む溶液を482g エバポレーションで除去し、反応液(A-3)を得た。このようにして得られた加水分解縮合物の重量平均分子量は、5,100であった。

【0049】合成例4

合成例3において、ポリスチレン換算重量平均分子量約2,000のポリジエトキシシロキサンを添加しなかったこと以外は、合成例3と同様にして、反応液(B-1)を得た。このようにして得られた加水分解縮合物の重量平均分子量は、3,500であった。

【0050】実施例1

合成例 1 で得られた反応液(A-1)を 0. 2μ m 孔径 のテフロン製フィルターでろ過を行い、スピンコート法 でシリコンウエハ上に塗布した。得られた塗膜の酸素プラズマアッシング耐性を評価したところ、有機基の吸収 強度の変化は 2 2%と良好であった。塗膜の膜厚を変え てクラックの発生しない最大膜厚を評価したところ、 1, 7 5 0 n m と優れたクラック耐性を示した。また、 塗膜の誘電率を評価したところ、 2. 6 8 と非常に低い 誘電率を示した。

【0051】 実施例2~3

合成例2および3で得られた反応液(A-2)および (A-3)を使用した以外は、実施例1と同様に強膜を 評価した。評価結果を表1に示す。

[0052]

【表1】

|----|---|---| | 反応液 | 酸索プラズマ | 耐クラック性 | クラック | 誘電率 | | アッシング耐性 | |限界膜厚| ı 1 (%) | (nm) | |----|---|---| | 実施例1 | (A-1) | ○ (22) - 1 1,750 | 2.68 | 0 |----|---|---| |実施例2 | (A-2) | ○ (19) 1 0 1 1.800 | 2.75 | |----|---|----| | 実施例3 | (A-3) | 〇 (25) | 1,550 | 2.72 | 0

|----|---|---|

【0053】比較例1

合成例4で得られた反応液(B-1)を使用した以外は、実施例1と同様に塗膜の評価を行った。塗膜の誘電率は2.63と良好であったが、酸素プラズマアッシング耐性は43%、得られた塗膜のクラック限界膜厚は950nmと劣るものであった。

[0054]

【発明の効果】本発明によれば、特定のアルコキシシランの加水分解物および/またはその縮合物を含有させることにより、塗膜の酸素プラズマアッシング耐性、クラック耐性、誘電率特性などのバランスに優れた膜形成用組成物(層間絶縁膜用材料)を提供することが可能である。

フロントページの続き

(72)発明者 山田 欣司 東京都中央区築地二丁目11番24号 ジェイ エスアール株式会社内

(72)発明者 後藤 幸平 東京都中央区築地二丁目11番24号 ジェイ エスアール株式会社内 Fターム(参考) 4J038 DL051 DL052 JC32 NA11 NA12 NA17 NA21

5F033 QQ74 RR25 SS22 WW04 XX17 XX24

5F058 AA02 AA10 AC03 AC06 AD01 AD05 AF04 AG01 AG04 AH01 AH02