Introduce Machine Learning

Presented by Tae Geun Kim

- Table of Contents

- Types of Machine Learning
- Scoring Machine Learning Algorithm

Types of Machine Learning

Types of Machine Learning

- Supervised Learning
- Unsupervised Learning
- · Reinforcement Learning
- Evolutionary Learning

We will divide ML by two ways

- Statistical Learning (Based on Statistics)
- Deep Learning (Based on Induction)

For Statistical Learning,

- Statistics
- R (or Scipy or Julia)
- DIY (Do It Yourself with your own languages)

For Deep Learning,

- Tensorflow
- Torch / PyTorch
- MXNet or Other frameworks

Scoring Machine Learning Algorithm

1. Overfitting

We need third data sets - validation set. This procedure called Cross Validation. But in some cases, we can't get enough labeled data. So, we need **semi-supervised learning**.

There are some ways:

- Leave Some Out (Leave one out)
- · Multifold cross validation

Example: Multifold cross validation

2. Confusion Matrix

Actual \ Predicted	Cat	Dog	Rabbit
Cat	5	3	0
Dog	2	3	1
Rabbit	0	2	11

Prediction outcome

Predicted \ Actual	Cat	Non-cat
Cat	5 TP	3 FN
Non-cat	2 FP	17 TN

Notations

$$P = TP + FN, \ N = FP + TN$$

Accuracy

$$ACC = \frac{TP + TN}{P + N}$$

Sensitivity, Recall, True positive rate

$$TPR = \frac{TP}{P}$$

Specificity, True negative rate

$$TNR = rac{TN}{N}$$

Precision, Positive predictive value

$$PPV = \frac{TP}{TP + FP}$$

- High Recall \rightarrow the class is correctly recognized (small FN)
- High Precision → an example labeled as positive is indeed positive (small FP)
- High Recall, Low Precision → Miss a lot of positive examples, but those we predict as positive are indeed positive (low FP)

F-measure

$$F = \frac{1}{\alpha \frac{1}{PPV} + (1 - \alpha) \frac{1}{TPR}} = \frac{(\beta^2 + 1)PPV \times TPR}{\beta^2 PPV + TPR}$$

• F_1 -measure ($\beta = 1$)

$$F_1 = 2 imes rac{TPR imes PPV}{TPR + PPV}$$

- ullet $F_1
 ightarrow 1$: Best!
- ullet $F_1
 ightarrow 0$: Worst!