Statistical Methods in AI (CS7.403)

Lecture-17: Decision Tree Learning

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Trees

- □Node
- Root
- Leaf
- ☐ Edge/Branch
- **□**Path
- **□** Depth

Hand-crafted, fixed trees

Credit Approval

Credit Approval (Raw Data)

4	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р
64	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	class
65	a	20.42	0.835	u	g	q	V	1.585	t	t	1	f	g	0	0	+
66	b	26.67	4.25	u	g	СС	V	4.29	t	t	1	t	g	120	0	+
67	b	34.17	1.54	u	g	СС	V	1.54	t	t	1	t	g	520	50000	+
68	a	36	1	u	g	С	V	2	t	t	11	f	g	0	456	+
69	b	25.5	0.375	u	g	m	v	0.25	t	t	3	f	g	260	15108	+
70	b	19.42	6.5	u	g	w	h	1.46	t	t	7	f	g	80	2954	+
71	b	35.17	25.125	u	g	x	h	1.625	t	t	1	t	g	515	500	+
72	b	32.33	7.5	u	g	e	bb	1.585	t	f	0	t	S	420	0	-
73	b	34.83	4	u	g	d	bb	12.5	t	f	0	t	g		0	-
74	a	38.58	5	u	g	СС	v	13.5	t	f	0	t	g	980	0	-
75	b	44.25	0.5	u	g	m	v	10.75	t	f	0	f	S	400	0	-
76	b	44.83	7	у	p	С	V	1.625	f	f	0	f	g	160	2	-
77	b	20.67	5.29	u	g	q	V	0.375	t	t	1	f	g	160	0	-
78	b	34.08	6.5	u	g	aa	v	0.125	t	f	0	t	g	443	0	-

2	sunny	hot	high	false	no
3	sunny	hot	high	true	no
4	overcast	hot	high	false	yes
5	rainy	mild	high	false	yes
6	rainy	cool	normal	false	yes
7	rainy	cool	normal	true	no
8	overcast	cool	normal	true	yes
9	sunny	mild	high	false	no
10	sunny	cool	normal	false	yes
11	rainy	mild	normal	false	yes
12	sunny	mild	normal	true	yes
13	overcast	mild	high	true	yes
14	overcast	hot	normal	false	yes
15	rainy	mild	high	true	no

humidity

temp

outlook

windy

play

Probability, Information, Entropy

1	outlook	temp	humidity	windy	play
2	sunny	hot	high	false	no
3	sunny	hot	high	true	no
4	overcast	hot	high	false	yes
5	rainy	mild	high	false	yes
6	rainy	cool	normal	false	yes
7	rainy	cool	normal	true	no
8	overcast	cool	normal	true	yes
9	sunny	mild	high	false	no
10	sunny	cool	normal	false	yes
11	rainy	mild	normal	false	yes
12	sunny	mild	normal	true	yes
13	overcast	mild	high	true	yes
14	overcast	hot	normal	false	yes
15	rainy	mild	high	true	no

An ideal attribute

 v_2

Decision Tree 1 outlook temp humidity windy play 2 sunny hot high 3 sunny true no hot high false 4 overcast yes mild false 5 rainy yes false 6 rainy cool normal yes cool normal true Attribute A 8 overcast cool true yes mild high false no 9 sunny v_3 v_2 cool normal false yes 11 rainy mild yes 12 sunny mild normal true yes high mild true ++++ 14 overcast hot false yes high ++++15 rainy mild true no Attribute B u_2 ++ Ideal attribute aka pure node

How much 'impurity' does this attribute decrease?

© Teaching www.teachingideas.co.uk Images: © ThinkStock

Entropy (2 class)

Step-1: Compute impurity score of training label distribution

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

$$E(S) = -\left(\frac{9}{14}log(\frac{9}{14}) + \frac{5}{14}log(\frac{5}{14})\right) = 0.94$$

Step-2: Compute impurity score for each unique value of candidate attributes

Example: Attribute Outlook

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left|\frac{2}{5}\right| - \frac{3}{5}\log\left|\frac{3}{5}\right| = 0.971$$

Step-2: Compute impurity score for each unique value of candidate attributes

Example: Attribute Outlook

Entropy:
$$i(V) = -(q \log q + (1-q) \log(1-q))$$

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left| \frac{2}{5} \right| - \frac{3}{5} \log \left| \frac{3}{5} \right| = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Note: this is normally undefined. Here: = 0

Step-2: Compute impurity score for each unique value of candidate attributes

Example: Attribute Outlook

Entropy:
$$i(V) = -(q \log q + (1 - q) \log(1 - q))$$

Outlook = rainy
 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left| \frac{2}{5} \right| - \frac{3}{5} \log \left| \frac{3}{5} \right| = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

Step-3: Compute impurity score for candidate attribute

Note: this

is normally

undefined

Here: = 0

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left(\frac{2}{5} \right) - \frac{3}{5} \log \left(\frac{3}{5} \right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute

Step-3: Compute impurity score for candidate attribute

Note: this

is normally

undefined

Here: = 0

Outlook = rainy 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left(\frac{2}{5} \right) - \frac{3}{5} \log \left(\frac{3}{5} \right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - · corresponds to an entire attribute

Solution:

- Compute the weighted average over all sets resulting from the split
 - weighted by their size

$$I(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$$

Step-3: Compute impurity score for candidate attribute

Note: this

is normally

undefined

Here: = 0

3 examples ves, 2 examples no Outlook = rainv

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5} \log \left| \frac{2}{5} \right| - \frac{3}{5} \log \left| \frac{3}{5} \right| = 0.971$$

Outlook = overcast: 4 examples ves, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Outlook = sunny 2 examples ves. 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

$$I(S, A) = \sum_{i} \frac{|S_i|}{|S|} \cdot E(S_i)$$

Average entropy for attribute *Outlook*:

Step-4: Compute Information Gain (reduction in impurity score) provided by candidate attribute

$$I(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Average entropy for attribute Outlook:

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

Entropy of root

$$E(S) = -(\frac{9}{14}log(\frac{9}{14}) + \frac{5}{14}log(\frac{5}{14})) = 0.94$$

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Gain(S, Outlook) = 0.246

Step-5: Compare Information Gain provided by all candidates

Select the attribute which provides largest 'impurity reduction'/Information Gain

Step-6: Assign root node

Recurse and repeat Steps 1-6

$$Gain(Temperature) = 0.571 \text{ bits}$$

 $Gain(Humidity) = 0.971 \text{ bits}$
 $Gain(Windy) = 0.020 \text{ bits}$

Humidity is selected

Final Decision Tree

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

Properties of an impurity measure

- Class labels: Binary {+1,-1}
- C

An *impurity measure* is a function i(V) such that

- $i(V) \ge 0$, with i(V) = 0 iff V consists of a single class
- a larger value of i(V) indicates that the distribution defined by (q,(1-q)) is closer to the uniform distribution

Impurity function: candidates

Entropy:
$$i(V) = -(q \log q + (1 - q) \log(1 - q))$$

Gini index: i(V) = 2q(1 - q)

Misclassification rate: $i(V) = \min(q, 1-q)$

References and Reading

- Cool demo: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
- Entropy
 - https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
 - https://plus.maths.org/content/information-surprise
 - In decision trees: https://bricaud.github.io/personal-blog/entropy-in-decision-trees/

Textbook References

- [TM] Machine Learning by Tom Mitchell (3.1 3.5, 3.7 3.8)
- [PRML] Pattern Recognition and Machine Learning by Chris Bishop (1.2 (intro), 1.6)
- [DHS] Duda and Hart (8.1 8.4)

Code

- https://scikit-learn.org/stable/modules/tree.html
- https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html