Universität zu Köln

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Praktikum B 23. April 2024

B3.1 Statistik in der Kernphysik

CATHERINE TRAN
CARLO KLEEFISCH
OLIVER FILLA

Inhaltsverzeichnis

1	Ein	leitung	5	4	
2	The	eoretise	che Grundlagen	5	
	2.1	Radio	aktiver Zerfall	5	
		2.1.1	Halbwertszeit	5	
		2.1.2	Zerfallswahrscheinlichkeit	5	
		2.1.3	Herleitung der Zerfallswahrscheinlichkeit	5	
	2.2	Statist	<u> </u>	6	
		2.2.1	Zufallsvariablen	6	
		2.2.2	Wahrscheinlichkeitsdichte	7	
		2.2.3	Wahrscheinlichkeitsmassenfunktion	7	
		2.2.4	Wahrscheinlichkeitsverteilungsfunktion	7	
	2.3	Wahrs	scheinlichkeitsverteilungen	8	
		2.3.1	Binomialverteilung	8	
		2.3.2	Poissonverteilung	8	
		2.3.3	Gaußverteilung	9	
	2.4	Interv	allverteilung	9	
		2.4.1	Herleitung der Wahrscheinlichkeitsdichte	10	
	2.5	Statist	tische Tests	11	
		2.5.1	Hypothesentest	11	
		2.5.2	Fehlerarten	11	
		2.5.3	Der χ^2 -Anpassungstest	11	
		2.5.4	Pearsons χ^2 -Test	12	
		2.5.5	Die χ^2 –Verteilung	12	
	2.6	Versu	chsidee	13	
		2.6.1	Das Geiger–Müller–Zählrohr	14	
		2.6.2	Totzeit	15	
		2.6.3	Totzeit im χ^2 -Test	16	
		2.6.4	Zwei-Präparate-Methode	16	
3	Dui	chfühi	rung	18	
	3.1	Versu	chsaufbau	18	
	3.2	Messu	ngen	18	
4	Aus	wertu	$\mathbf{n}\mathbf{g}$	19	
	4.1	Poisso	onverteilung	19	
	4.2	Gaußv	verteilung	21	
	4.3	Interv	allverteilung	23	
	4.4	Totzei	t	24	
	4.5	χ^2 -Te	${ m st}$	25	
		4.5.1	Hypothesen	26	
		4.5.2	χ^2 -Werte	26	

	4.5.3	Halbwertszeit	 	 	 	 	 	 	 28
5	Fazit								29
6	Literatury	verzeichnis							30

1 Einleitung

In diesem Versuch wird die statistische Methode des χ^2 –Anpassungstests mithilfe von radioaktiver Strahlung untersucht. Dazu wird $^{137}\mathrm{Cs}$ verwendet, dessen Strahlung mit einem Geiger–Müller–Zählrohr detektiert wird.

Basierend auf den Messergebnissen werden drei Hypothesen über die Präparatsstärke bewertet. Zudem soll die Totzeit des Detektors mithilfe der Zwei-Präparate-Methode bestimmt werden.

Außerdem sollen aus den Messergebnissen Poisson–, Gauß– und Intervall–Verteilungen extrahiert werden. Diese sollen mit den theoretischen Verteilungen verglichen werden, um ein Gefühl für diese zentralen Verteilungen der Statistik zu erwerben.

2 Theoretische Grundlagen

2.1 Radioaktiver Zerfall

Bei radioaktivem Zerfall wandelt sich ein Atomkern in einen anderen Atomkern um, indem Teilchen ausgestoßen werden.

Es wird zwischen α -, β -und γ -Zerfall unterschieden. Der Energiegewinn durch den Zerfall wird durch den Q-Wert beschrieben und kann durch die Weizsäcker Massenformel ermittelt werden.

2.1.1 Halbwertszeit

Die Halbwertszeit $T_{1/2}$ ist die Zeit, in der die Hälfte einer Anzahl von Kernen oder Elementarteilchen eines Stoffes zerfällt. Sie ist eine charakteristische Größe für radioaktive Zerfälle, die unabhängig von der aktuell vorhandenen Substanzmenge ist. [9]

2.1.2 Zerfallswahrscheinlichkeit

Die Zerfallswahrscheinlichkeit α ist eine isotopspezifische Konstante, die angibt wie schnell ein Kern des entsprechenden Isotops zerfällt. Sie steht in Relation mit der Halbwertszeit $T_{1/2}$. Dies wird im folgenden Abschnitt hergeleitet.

$$\alpha = \frac{\ln(2)}{T_{1/2}} \tag{2.1}$$

Das in diesem Versuch verwendete 137 Cs hat eine Halbwertszeit von $T_{1/2} \approx 30.08$ a [10], was etwa $9.49 \cdot 10^8$ s entspricht. Daraus kann die Zerfallswahrscheinlichkeit α nach (2.1) bestimmt werden.

$$\alpha_{\rm Cs} \approx 7.3 \cdot 10^{-10} \,\rm s^{-1}$$
 (2.2)

2.1.3 Herleitung der Zerfallswahrscheinlichkeit

Ein instabiler Kern mit einer Halbwertszeit $T_{1/2}$ zerfällt mit einer Wahrscheinlichkeit ω innerhalb einer Zeitspanne Δt . Falls diese Zeitspanne Δt klein gegen die Halbwertszeit $T_{1/2}$ ist, lässt sich ω linear annähern. Die Gegenwahrscheinlichkeit $(1 - \omega)$ beschreibt demnach den Fall, dass der Kern nicht zerfällt.

$$\omega = \alpha \Delta t \tag{2.3}$$

$$1 - \omega = 1 - \alpha \Delta t \tag{2.4}$$

Nun sollen größere Zeitspannen t betrachtet werden. Dazu wird t in k gleich große Teilzeitspannen unterteilt, sodass jede Teilzeitspanne t_i klein genug ist, um linear angenähert

zu werden. Dann kann die Wahrscheinlichkeit $(1 - \omega_i)$ dafür ermittelt werden, dass in der Teilzeitspanne t_i kein Zerfall stattfindet.

Daraus kann die Wahrscheinlichkeit $(1-\omega)$ für den Erhalt des Kerns nach der Zeit termittelt werden.

$$1 - \omega_i = \left(1 - \alpha \frac{t}{k}\right) \tag{2.5}$$

$$1 - \omega = \left(1 - \alpha \frac{t}{k}\right)^k \tag{2.6}$$

Die Teilzeitabschnitte infinitesimal klein sein, um ein exaktes Ergebnis zu liefern. Damit wird k unendlich groß. Dadurch kann die Wahrscheinlichkeit $(1-\omega)$ für den Erhalt des Kerns durch eine Exponentialfunktion beschrieben werden. Entsprechend kann die Wahrscheinlichkeit ω für einen Zerfall innerhalb der Zeitspanne t beschrieben werden.

$$1 - \omega = \lim_{k \to \infty} \left(1 - \alpha \frac{t}{k} \right)^k$$

$$= e^{-\alpha t}$$
(2.7)

$$= e^{-\alpha t} \tag{2.8}$$

$$\omega = 1 - e^{-\alpha t} \tag{2.9}$$

Die Zerfallswahrscheinlichkeit α lässt sich damit aus der Halbwertszeit ermitteln.

$$\omega(T_{1/2}) = \frac{1}{2}$$

$$\Rightarrow \alpha = \frac{\ln(2)}{T_{1/2}}$$

$$(2.10)$$

$$\Rightarrow \alpha = \frac{\ln(2)}{T_{1/2}} \tag{2.11}$$

2.2 Statistik

2.2.1 Zufallsvariablen

Eine Zufallsvariable ist eine Funktion X, die jedem Ereignis ω eines Zufallsexperiments eindeutig eine reelle Zahl zuordnet. Sie kann sowohl diskret als auch kontinuierlich sein.

$$X: \omega \to x(\omega) \in \mathbb{R} \tag{2.12}$$

Das Ereignis ω des Zufallsexperiments kann direkt eine Zahl sein, wie beispielsweise die Augenzahl eines Würfelwurfs. Alternativ kann jedem Ereignis des Zufallsexperiments eine Zahl zugeordnet werden, beispielsweise können bei einem Münzwurf dem Ereignis Kopf der Wert 0 und dem Ereignis Zahl eine 1 zugeordnet werden.

Bei einem Zufallsexperiment, welches mehrfach wiederholt wird hingegen, liefert die Anzahl mit der ein bestimmtes Ereignis eintritt eine reelle Zahl.

2.2.2 Wahrscheinlichkeitsdichte

Eine Wahrscheinlichkeitsdichte (PDF¹) ist eine Funktion f(x), welche die Wahrscheinlichkeit \mathbb{P} angibt, dass eine Zufallsvariable X einen Wert innerhalb eines Intervalls [a,b]annimmt.

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \mathbb{P}(a \le X \le b) \tag{2.13}$$

Die Wahrscheinlichkeitsdichte kann auch Werte über 1 annehmen. Beispielsweise kann der Ort eines Punktteilchens durch eine δ -Funktion beschrieben werden.

2.2.3 Wahrscheinlichkeitsmassenfunktion

Im Fall von diskreten Zufallsvariablen wird die Wahrscheinlichkeitsdichte auch als Wahrscheinlichkeitsmassenfunktion (PMF²) bezeichnet. Diese Funktion f(x) gibt die Wahrscheinlichkeit an, dass die Zufallsvariable X genau den Wert x annimmt.

$$f(x) = \mathbb{P}(X = x) \tag{2.14}$$

2.2.4 Wahrscheinlichkeitsverteilungsfunktion

Eine Wahrscheinlichkeitsverteilungsfunktion (CDF³) einer Zufallsvariable X ist dagegen eine Funktion F(x), die angibt, mit welcher Wahrscheinlichkeit \mathbb{P} die Zufallsvariable X einen Wert kleiner oder gleich x annimmt.

$$F(x) = \mathbb{P}(X \le x) \tag{2.15}$$

Sie ist die integrierte Wahrscheinlichkeitsdichte f(x). Für kontinuierliche Zufallsvariablen ist dies durch das Integral gegeben. Für diskrete Zufallsvariablen wird die kumulative Verteilungsfunktion als Summe der Wahrscheinlichkeitsmassenfunktion dargestellt.

$$F(x) = \int_{-\infty}^{x} f(t) dt \qquad (2.16)$$

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$F(x) = \sum_{x_i \le x} f(x_i)$$
(2.16)

¹Probability Density Function

²Probability Mass Function

 $^{^3}$ Cumulative Distribution Function, kumulative Verteilungsfunktion

2.3 Wahrscheinlichkeitsverteilungen

2.3.1 Binomialverteilung

Die Binomialverteilung ist eine wichtige diskrete Wahrscheinlichkeitsverteilung. Sie beschreibt ein Zufallsexperiment, das genau zwei sich gegenseitig ausschließende Ereignisse A und B haben kann. Die entsprechenden Wahrscheinlichkeiten \mathbb{P} können wie folgt definiert werden.

$$\mathbb{P}(A) = p \tag{2.18}$$

$$\mathbb{P}(B) = 1 - p \tag{2.19}$$

Dieses Experiment wird N-mal durchgeführt, wobei die einzelnen Ergebnisse jeder Wiederholung unabhängig von den Ergebnissen der vorherigen Wiederholungen sind. Die Zufallsvariable X gibt dann die Anzahl n an eingetretenen Ereignissen A an. Dabei spielt die Reihenfolge, in der die Ereignisse A eintreten, keine Rolle.

Die entsprechende Wahrscheinlichkeit P(N, n, p) gibt demnach die Wahrscheinlichkeit an, dass das Ereignis A genau n-mal eintritt. Weiterhin können der Erwartungswert μ und die Varianz σ^2 bestimmt werden.

$$P(N, n, p) = \binom{N}{n} p^n (1-p)^{N-n}$$

$$m_B = Np$$

$$\sigma_B^2 = Np(1-p)$$
(2.20)
$$(2.21)$$

$$m_B = Np (2.21)$$

$$\sigma_B^2 = Np(1-p) \tag{2.22}$$

Der Binomialkoeffizient $\binom{N}{n}$ dient dabei dazu, alle möglichen Reihenfolgen zu berücksichtigen, in der das Ereignis A eintreten kann, wobei der restliche Term die Wahrscheinlichkeit angibt, dass das Ereignis A in einer bestimmten Reihenfolge n-mal eintritt.

2.3.2 Poissonverteilung

Die Poissonverteilung beschreibt Reihen von Zufallsvariablen, die unabhängig voneinander eintreten. Sie ist eine weitere diskrete Verteilung mit der Wahrscheinlichkeitsdichte $P(n,\lambda)$. Ihr Erwartungswert λ und ihre Varianz λ sind identisch.

$$P_{\lambda}(n) = \frac{\lambda^n}{n!} e^{-\lambda} \tag{2.23}$$

$$m = \lambda \tag{2.24}$$

$$\sigma^2 = \lambda \tag{2.25}$$

$$P_{\lambda}(n) = \frac{\lambda^{n}}{n!}e^{-\lambda}$$

$$m = \lambda$$

$$\sigma^{2} = \lambda$$

$$\Rightarrow \frac{\sigma}{m} = \frac{1}{\sqrt{m}}$$

$$(2.23)$$

$$(2.24)$$

$$(2.25)$$

Die Poissonverteilung $P_{\lambda}(n)$ folgt als Grenzfall aus der Binomialverteilung P(N, n, p) mit infinitesimal kleinen Schrittgrößen $(p \to 0)$ und unendlich vielen Schritten $(N \to \infty)$.

Dabei bildet $\lambda \equiv Np$ eine Konstante. Die Poissonverteilung ist als Näherung für die Binomialverteilung zu verwenden, falls folgende Bedingung erfüllt ist.

$$P(n,\lambda) = \lim_{\substack{N \to \infty \\ p \to 0}} P(N,n,p)$$

$$m_B \le 10$$
(2.27)

$$m_B \leq 10 \tag{2.28}$$

2.3.3 Gaußverteilung

Die Gaußverteilung ist eine kontinuierliche Verteilung. Ihre Wahrscheinlichkeitsdichte $P(x,\mu,\sigma)$ wird folgendermaßen mithilfe des Erwartungswerts μ und der Varianz σ^2 beschrieben. Die Standardnormalverteilung ist eine Gaußverteilung mit $\mu = \sigma^2 = 1$.

$$P(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (2.29)

Der Grenzwert der Poissonverteilung für $\lambda \to \infty$ liefert die Gaußverteilung.

$$\lim_{\lambda \to \infty} \frac{\lambda^n e^{-\lambda}}{n!} = \frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{(x-\lambda)^2}{2\lambda}}$$
 (2.30)

Weiterhin konvergiert die Binomialverteilung nach dem Satz von Moivre-Laplace für $N \to \infty$ mit der Bedingung 0 gegen die Normalverteilung. Eine Faustregelbesagt, dass die Normalverteilung schon eine gute Näherung für die Binomialverteilung liefert, sobald ihre Varianz σ_B^2 mindestens 9 beträgt.

$$\lim_{N \to \infty} \binom{N}{n} p^n (1-p)^{N-n} = \frac{1}{\sqrt{2\pi N p (1-p)}} e^{-\frac{(x-Np)^2}{2Np(1-p)}}$$
 (2.31)

$$\sigma_B^2 \ge 9 \tag{2.32}$$

2.4 Intervallverteilung

Die Intervallverteilung ist dann gefragt, wenn nicht die Anzahl an eingetroffenen Ereignissen A, sondern stattdessen die Zeit zwischen zwei oder mehr Ereignissen A interessant ist.

Für Kernzerfälle ist ihre Wahrscheinlichkeitsdichte P_n wie folgt gegeben. Sie ähnelt der Poissonverteilung, hat aber einen zusätzlichen Faktor a.

$$P_n = a \frac{(at)^n}{n!} e^{-at} \tag{2.33}$$

Damit gibt die kumulative Verteilungsfunktion $\int_{t_0}^{t_1} P_n dt$ die Wahrscheinlichkeit an, dass in dem Zeitintervall $[t_0, t_1]$ zwei Ereignisse im Abstand t stattgefunden haben, sowie

Abbildung 1: Intervallverteilung für a = 1 und verschiedene n [8]

n weitere Ereignisse zwischen diesen beiden. Somit haben in der Zeit t exakt n+2 Ereignisse stattgefunden.

Somit gibt die Verteilungsfunktion für n=0 die Wahrscheinlichkeit an, dass die Zeit t zwischen zwei aufeinanderfolgenden Zerfällen innerhalb des Intervalls $[t_0,t_1]$ liegt.

2.4.1 Herleitung der Wahrscheinlichkeitsdichte

Nun soll die Wahrscheinlichkeitsdichte P_n der Intervallverteilung hergeleitet werden.

Hierzu wird die Wahrscheinlichkeit W bestimmt, dass die Zeit zwischen zwei Zerfällen, zwischen denen genau n andere Zerfälle stattfinden, den Wert Δt annimmt. W setzt sich aus dem Produkt zweier Einzelwahrscheinlichkeiten W_1 und W_2 zusammen.

 W_1 gibt die Wahrscheinlichkeit an, dass im Zeitintervall Δt genau n weitere Zerfälle stattfinden. Dies wird durch eine Poissonverteilung (2.23) beschrieben, deren Erwartungswert $\lambda = a\Delta t$ beträgt und durch die Zerfallswahrscheinlichkeit a beschrieben wird.

 W_2 hingegen gibt die Wahrscheinlichkeit an, dass nach der Zeit Δt in einer sehr kurzen Zeit dt ein Zerfall stattfindet. Aufgrund der kurzen Zeitspanne kann dies linear genähert werden, wie es bei der Herleitung der Zerfallswahrscheinlichkeit in Abschnitt 2.1.3 in Gleichung (2.3) gemacht wurde.

$$W_1 = \frac{(a\Delta t)^n}{n!} e^{-a\Delta t}$$
 (2.34)

$$W_2 = a \, \mathrm{d}t \tag{2.35}$$

$$W = W_1 \cdot W_2 \tag{2.36}$$

$$= \frac{(a\Delta t)^n}{n!} e^{-a\Delta t} \cdot a \, dt \tag{2.37}$$

Da die Wahrscheinlichkeit W das Integral der Wahrscheinlichkeitsdichte P_n darstellt, wird P_n durch differenzieren ermittelt.

$$P_{n} = \frac{\mathrm{d}W}{\mathrm{d}t}$$

$$= a \frac{(at)^{n}}{n!} e^{-at}$$
(2.38)

$$= a \frac{(at)^n}{n!} e^{-at} \tag{2.39}$$

2.5 Statistische Tests

2.5.1 Hypothesentest

Ein Hypothesentest oder Statistischer Test dient dazu, durch eine Hypothese mittels statistischer Messungen zu bewerten.

Dazu verwendet man eine $Nullhypothese^4$ H_0 und eine Gegenhypothese oder Alterna $tivhypothese H_1$, die sich unterscheiden. Ziel des Tests ist es, die Alternativhypothese H_1 zu belegen. Falls dies nicht gelingt, muss man die Nullhypothese H_0 als wahr annehmen. Diese wird nicht überprüft. [1]

Aufgrund der Zufälligkeit der Ereignisse kann es dabei zwei Arten von Fehlern geben. Ein α -Fehler beschreibt das irrtümliche Ablehnen von H_0 , während ein β -Fehler das fälschliche Annehmen von H_0 bezeichnet.

2.5.2 Fehlerarten

Ein Fehler erster Art oder α -Fehler beschreibt die fälschliche Ablehnung der Nullhypothese H_0 in einem Statistischen Test. Man nimmt z.B. an, dass ein Würfel gezinkt ist (H_1) , obwohl er in Wahrheit fair ist (H_0) . Hierbei ist die H_0 die Annahme eines fairen Würfels. Man spricht hier auch von einem falsch-positiven Ergebnis. [1]

Ein Fehler zweiter Art oder β -Fehler beschreibt umgekehrt die fälschliche Akzeptanz der Nullhypothese H_0 . Beispielsweise geht man davon aus, dass ein Würfel fair ist (H_0) , obwohl er tatsächlich unfair ist (H_1) . Man spricht hier auch von einem falsch-negativen Ergebnis. [1]

Die statistische Signifikanz beschreibt die erlaubte Wahrscheinlichkeit, einen α -Fehler zu begehen. [1] In einem Alternativtest dagegen beschreibt die Signifikanz die Wahrscheinlichkeit, einen α - oder einen β -Fehler zu machen. Bei einer Signifikanz Y sind α und β -Fehler mit einer Wahrscheinlichkeit von je $\frac{Y}{2}$ erlaubt.

2.5.3 Der χ^2 -Anpassungstest

Der χ^2 -Anpassungstest dient dazu, eine Verteilung von Zufallsvariablen A mit einer theoretischen Verteilung zu vergleichen. Man kann mithilfe des Tests bewerten, ob die Zufallsvariablen der Verteilung entsprechen können. Hierbei werden sowohl Fehler 1. Art als auch Fehler 2. Art berücksichtigt.

⁴Hypothesis to be nullified [2]

Die Grundidee dahinter ist, einen Erwartungswert $\langle A \rangle$ und seine Varianz σ_A^2 bewerten zu können. Das Maß für die Abweichung von der Hypothese wird für einen Freiheitsgrad durch χ^2 beschrieben,⁵ was durch die χ^2 -Verteilung beschrieben wird.

$$\chi^2 = \sum_i x_i^2 \tag{2.40}$$

Mithilfe der χ^2 -Verteilung kann eine Signifikanz Y festgelegt werden. Damit kann ein Intervall $[\chi^2_{\min}, \chi^2_{\max}]$ durch die Verteilungsfunktion F(x, f) ermittelt werden. Liegt das ermittelte χ^2 in diesem Interval, so kann H_1 als signifikant gültig angenommen werden.

$$F(\chi_{\min}^2, f) = 1 - \frac{Y}{2}$$
 (2.41)

$$F(\chi_{\text{max}}^2, f) = \frac{Y}{2} \tag{2.42}$$

Oft wird die Signifikanz von Y = 5% gefordert, wodurch das Gültigkeitsintervall durch folgende Gleichungen bestimmt wird.

$$F(\chi_{\min}^2, f) = 0.975 \tag{2.43}$$

$$F(\chi^2_{\min}, f) = 0.975$$
 (2.43)
 $F(\chi^2_{\max}, f) = 0.025$ (2.44)

Falls $\chi^2 < \chi^2_{\rm min}$ das Ergebnis des Tests ist, sind die Daten zu gut an die These angepasst. Dies kann beispielsweise durch Overfitting entstehen.

2.5.4 Pearsons χ^2 -Test

Eine Variante des χ^2 –Tests betrachtet nur ein Ende der Gauß–Verteilung. Hierbei wird die Signifikanz Y verwendet, um ein maximal gültiges χ^2_{\max} zu bestimmen, dabei wird auf einen minimalen Wert verzichtet. [5] Damit kann eine Hypothese nur dann abgelehnt werden, wenn χ^2 zu groß ist, ein zu kleines χ^2 ist dabei nicht betrachtet. Auch hier wird oft eine Signifikanz von 5 % verwendet.

$$F(\chi_{\text{max}}^2, f) = Y$$
 (2.45)
 $F(\chi_{\text{max}}^2, f) = 0.05$ (2.46)

$$F(\chi_{\text{max}}^2, f) = 0.05 \tag{2.46}$$

2.5.5 Die χ^2 -Verteilung

Sei A standardnormalverteilt⁶, dann ist die χ_1^2 -Verteilung eine quadrierte Normalverteilung mit einem Freiheitsgrad. Daher ist der Erwartungswert $\langle \chi_1^2 \rangle = 1$. Gibt es mehrere

⁵Man könnte auch den Betrag $|x_i|$ anstatt des Quadrates x_i^2 wählen. Dies wird nicht gemacht, weil damit schwieriger zu rechnen ist.

⁶Diese Annahme ist bei ausreichend vielen Messung durch das Gesetz der großen Zahl gerechtfertigt.

Freiheitsgrade f, so müssen f Erwartungswerte $\langle \chi_i^2 \rangle$ addiert werden, um den gesamten Erwartungswert zu ermitteln. Dies wird durch die Wahrscheinlichkeitsdichte (PDF⁷) f(x, f) beschrieben,⁸ wobei die Gammafunktion $\Gamma(x)$ benötigt wird.

$$f(x,2f) = \begin{cases} \frac{x^{f-1}}{2^f} \frac{\exp\left[-\frac{x}{2}\right]}{\Gamma(f)} & : x \ge 0\\ 0 & : x < 0 \end{cases}$$
 (2.47)

$$\Gamma(x) = \int_0^\infty t^{x-1} \cdot e^t dt$$
 (2.48)

Die Verteilungsfunktion (CDF⁹) F(x, f) ist dabei komplex und hat den Erwartungswert $\langle \chi_f^2 \rangle = f$ und die Varianz $\sigma_{\chi^2} = 2f$.

$$F(x,2f) = \int_0^x \frac{y^{f-1} \exp\left[-\frac{y}{2}\right]}{\Gamma(f)} dy$$
 (2.49)

$$\left\langle \chi_f^2 \right\rangle = \int_0^\infty x \cdot f(x, f) \, \mathrm{d}x$$
 = f (2.50)

$$\sigma_{\chi^2} = \int_0^\infty \left(x - \left\langle \chi_f^2 \right\rangle \right)^2 \cdot f(x, f) \, \mathrm{d}x \qquad = 2f \qquad (2.51)$$

2.6 Versuchsidee

In diesem Versuch wird ¹³⁷Cs als radioaktive Probe verwendet, das eine Halbwertszeit $T_{1/2} \approx 30$ a hat.

Damit soll die folgende Hypothese getestet, die Präparatstärke sei konstant und habe den Wert \bar{n} . Hierbei ist \bar{n} der Mittelwert von vielen Einzelmessungen n_i über eine kurze Zeit von $\Delta t = 20\,\mathrm{s}$, der durch Gleichung (2.52) bestimmt wird. All diese N Messungen werden in einem Zeitraum von wenigen Stunden absolviert.

Da der Zeitraum der Messungen sehr kurz gegen die Halbwertszeit ist, kann man annehmen, dass die Stärke der Probe sich im Rahmen der Messungenauigkeit nicht verändert.

Damit können die Differenzen zum Mittelwert $(n_i - \bar{n})$ ermittelt werden. Nach dem zentralen Grenzwertsatz sind die relativen Differenzen standardnormalverteilt. Dadurch kann die Abweichung χ^2 wie folgt ermittelt werden.

$$\bar{n} = \sum_{i=1}^{N} \frac{n_i}{N} \tag{2.52}$$

$$\chi^2 = \sum_{i=1}^{N} \frac{(n_i - \bar{n})^2}{\bar{n}} \tag{2.53}$$

⁷ probability density function

⁸Achtung: Hier wird zur besseren Lesbarkeit f(x, 2f) angegeben, die Zahl der Freiheitsgrade wird in der Funktion halbiert.

⁹cumulative distribution function

2.6.1 Das Geiger-Müller-Zählrohr

Ein Geiger-Müller-Zählrohr besteht aus einem Zylinderkondensator mit einem dünnem Anodendraht in der Mitte. Das elektrische Potential ist somit zylindersymmetrisch, um die Anode herum ist es am stärksten. Dies ist in Abbildung 2 schematisch dargestellt. Der Zylinder ist mit einem Edelgas gefüllt, weil Edelgase im Grundzustand keine freien Elektronen aufnehmen.

Abbildung 2: Aufbau eines typischen Geiger-Müller-Zählrohrs, originale Grafik von [13]

Wenn ein Photon in den Zylinder eintritt und auf ein Gasteilchen trifft, wird dieses ionisiert. Dabei löst sich ein Elektron aus dem Atom. Die Gammastrahlung verliert bei dem Ionisationsprozess nur einen Bruchteil der Energie, da ihre Energie im Bereich von mindestens 100 eV sehr viel größer als die Ionisationsenergie von Atomen in der Größenordnung von 10 eV ist. Daher ionisiert ein Gammaquant viele Gasteilchen. [7] Durch das elektrische Potential wird das freie Elektron zur Anode hin beschleunigt und stößt auf dem Weg mit weiteren Gasteilchen. Dadurch sammeln sich immer mehr Elektronen um den Anodendraht.

Währenddessen regen sich die Gasteilchen durch Photonenemission ab und erzeugen die sogenannte Geiger-Entladung. Hierbei ionisieren die entstandene Photonen weitere Gasteilchen, somit entstehen wiederum neue freie Elektronen. Da die Photonen eine größere Reichweite als die Elektronen haben und überall innerhalb des Zählrohres sein können, findet die Entladung großräumig in dem gesamten Zählrohr statt.

Die Zeit, während der die relativ langsame Wolke aus ionisierten Gasteilchen nach außen zur Zylinderwand wandert, wird *Totzeit* genannt. In diesem Zeitraum existiert um den Anodendraht kein Potential. Daher können dann keine Elektronen beschleunigt werden, obwohl weitere Strahlungsquanten ins Zählrohr hinein dringen können. In dieser Zeit kann keine Strahlungen gemessen werden.

Um eine Mehrfachentladung von Gasteilchen während der Totzeit an der Zylinderwand zu vermeiden wird ein starker Widerstand mit ca. $10^8 \Omega$ zwischen Hochspannungsversorgung und Anode geschaltet. Dadurch ist die Hochspannung nach einer Entladung nicht

ausreichend für eine weitere Entladung.

Alle Elektronen, die an der Anode ankommen, erzeugen einen Stromimpuls mit derselben Amplitude, aus diesem Grund ist eine Energiemessung nicht möglich. Andererseits ist die Empfindlichkeit des Detektors relativ hoch, denn schon ein einzelnes Elektron kann eine Gasentladung hervorrufen und gemessen werden. Die Höhe der Stromimpulse lässt sich auch ohne komplizierte Verstärker messen.

2.6.2 Totzeit

Ganz allgemein beschreibt Totzeit τ die Zeit, die nach der Registrierung eines Ereignisses durch einen Detektor verstreicht, bis er wieder messbereit ist. [12]

Wie schon beschrieben ist während der Totzeit τ keine Strahlungsmessung möglich. Dadurch weicht die gemessene Zählrate a' von der tatsächlichen Rate a ab. Um die tatsächliche Rate zu bestimmen, muss für jedes gemessene Teilchen die Anzahl der Detektionen in der Totzeit $a\tau$ addiert werden. Dies beschreibt die tatsächlich geschehenen Ereignisse, die während der Totzeit nicht gemessen werden können.

Analog kann der gemessene Mittelwert m' von in einem Zeitraum T gemessenen Ereignissen korrigiert werden, um den korrigierten Mittelwert m=aT zu erhalten. Dieser ist größer als der gemessene Mittelwert.

$$a = a' \cdot (1 + a\tau) \tag{2.54}$$

$$a = a' \cdot (1 + a\tau)$$

$$\Leftrightarrow a = \frac{a'}{1 - a'\tau}$$

$$m = \frac{m'}{1 - a'\tau}$$

$$(2.54)$$

$$(2.55)$$

$$m = \frac{m'}{1 - a'\tau} \tag{2.56}$$

Das Verhältnis von Varianz σ^2 und Mittelwert m der gemessenen Verteilung entspricht der tatsächlichen Verteilung. Weisen die Messwerte eine Poissonverteilung auf, dann sind Varianz σ^2 der Messung mit dem Mittelwert m identisch.

$$\frac{\sigma}{m} = \frac{\sigma'}{m'} \tag{2.57}$$

$$\frac{\sigma}{m} = \frac{\sigma'}{m'}$$

$$\Rightarrow \sigma'^2 = \frac{m'^2}{m}$$

$$= m' \cdot (1 - a'\tau)$$

$$\sigma^2 = \frac{m'}{1 - a\tau}$$

$$(2.57)$$

$$(2.58)$$

$$(2.59)$$

$$= m' \cdot (1 - a'\tau) \tag{2.59}$$

$$\sigma^2 = \frac{m'}{1 - a\tau} \tag{2.60}$$

Hierbei wurden die Verhältnisse $\frac{\sigma}{m}$ und $\frac{a'}{a}$ durch die Gleichungen (2.26) und (2.56) beschrieben.

Durch die Totzeit ist somit die gemessene Verteilung schmaler als die tatsächliche. Außerdem wird die Totzeit mit höherer Spannung geringer, da unter anderem das Gas sich schneller erholen kann.

2.6.3 Totzeit im χ^2 -Test

Die Totzeit der Länge τ hat einen Einfluss auf die gemessenen Zählraten. Anstatt einer Zählrate von $\frac{n_i}{\Delta t}$ wird eine totzeitkorrigierte Anzahl k_i gemessen. Dadurch kann ein korrigierter Mittelwert M nach (2.52) bestimmt werden und man erhält eine korrigierte Abweichung χ^2_{korr} . Die korrigierte Rate wird nach Gleichung (2.55) bestimmt. Hierbei ist Δt das Zeitintervall, innerhalb dessen n_i Ereignisse gemessen wurden.

$$k_i = \frac{n_i}{1 - \frac{m}{\Delta t}\tau} \tag{2.61}$$

$$M = \sum_{i=1}^{N} \frac{k_i}{N} \tag{2.62}$$

$$\chi_{\text{korr}}^2 = \sum_{i=1}^N \frac{(k_i - M)^2}{M}$$
 (2.63)

Falls der Erwartungswert m konstant ist, kann man weitere Schlussfolgerungen ziehen. Durch Einsetzen der Gleichungen (2.61)-(2.62) sowie (2.53) kann man (2.63) vereinfachen und man erhält die folgende vereinfachte Relation. Hier sieht man, dass die korrigierte Abweichung $\chi^2_{\rm korr}$ größer als die nicht-korrigierte Abweichung χ^2 ist, was kontraintuitiv wahrgenommen werden kann.

$$\chi_{\text{korr}}^2 = \frac{1}{1 - \frac{m}{\Delta t}\tau} \cdot \chi^2 \tag{2.64}$$

In diesem Experiment wird die gemessene Zählrate daher immer kleiner als die tatsächliche Rate der Ereignisse sein. Für die Hypothesen wir auch der unkorrigierte χ^2 -Wert zu klein sein, was zu einer fälschlichen Ablehnung einer Hypothese führen kann. Daher sind Totzeitkorrekturen notwendig.

2.6.4 Zwei-Präparate-Methode

Die Zwei-Präparate-Methode wird verwendet, um die Totzeit zu messen. Man misst die Zählrate von zwei verschiedenen Präparaten $z_{1/2}'$ jeweils einzeln und dann von beiden zusammen z_{12}' . Zusätzlich wird die Untergrundzählrate z_0' ohne Präparate gemessen.

Somit erhält man gemessene Werte z_i' und sowie wahre Werte z_i . Die wahren Zählraten z_i sind durch die Präparate und den Untergrund entstanden.

Nun seien $p_{1,2,12}$ die Zählraten, die sich durch die Verwendung von Präparaten ergeben. Daraus erhält man ein lösbares Gleichungssystem mit von je acht Gleichungen und Unbekannten. Die letzten Gleichungen ergeben sich durch die Totzeitkorrektur (2.55) der Zählraten.

$$p_{12} = p_1 + p_2 (2.65)$$

$$\forall i \in \{1, 2, 12\}: \qquad z_i = p_i + z_0 \tag{2.66}$$

$$p_{12} = p_1 + p_2$$

$$\forall i \in \{1, 2, 12\} : z_i = p_i + z_0$$

$$\forall i \in \{0, 1, 2, 12\} : z_i = \frac{z'_i}{1 - z'_i \tau}$$

$$(2.65)$$

$$(2.66)$$

Die Lösung dieses Gleichungssystems ergibt die Totzeit. Mathematisch erhählt man zwei Lösungen, allerdings ist nur eine davon physikalisch relevant.

$$\tau_{1,2} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \tag{2.68}$$

$$A = u'z'_{12}z'_{2} - z'_{1}z'_{1}2z'_{2} + u'z'_{12}z'_{1} - u'z'_{1}z'_{2}$$

$$A = u'z'_{12}z'_{2} - z'_{1}z'_{1}2z'_{2} + u'z'_{12}z'_{1} - u'z'_{1}z'_{2}$$

$$B = -2z'_{12}u' + 2z'_{1}z'_{2}$$
(2.69)

$$C = z'_{12} - z'_1 + u' - z'_2$$

3 Durchführung

3.1 Versuchsaufbau

Der Aufbau beinhaltet zwei ¹³⁷Cs-Quellen und Zählrohr mit angeschlossener Elektronik. Die am Zählrohr angeschlossene Spannung lässt sich variieren, die Zählrohrelektronik erzeugt ein Rechtecksignal je detektiertem Ereignis. Dieses Signal wird an einen Zähler und an einen Computer übertragen. Auf dem Computer können die Ereignisse zeitaufgelöst gemessen werden.

Zur Bearbeitung der Daten sind am Computer drei Python-Programme vorinstalliert, mit denen die Messdaten verarbeitet werden können. Mit divide.py Ereignisse in Zeitintervallen fester Größe, z.B. jeweils 10 s, gezählt. Mittels binomial.py kann eine Binomialverteilung aus den Daten extrahiert werden, mit interval.py eine Intervallverteilung.

3.2 Messungen

Es wurden 3 lange und 12 kurze Messungen durchgeführt.

Bei den ersten beiden langen Messungen wurde nur Probe A verwendet, bei der dritten langen Messung die Probe A und B. Eine Einzelmessung von Probe A und die gemeinsame Messung wurden bei einer Spannung von $500\,\mathrm{V}$ durchgeführt, die zweite Einzelmessung bei $600\,\mathrm{V}$. Hierbei wurden die Ereignisse zeitaufgelöst gemessen.

Die 12 kurzen Messung dienten der Bestimmung der Totzeit mit der Zwei-Präparate-Methode. Hierzu wurden jeweils bei Spannungen von $500\,\mathrm{V}$, $550\,\mathrm{V}$ und $600\,\mathrm{V}$ die Ereignisse in jeweils 5 min gemessen. Dabei wurden die Proben A und B sowohl einzeln als auch gemeinsam verwendet. Die letzten drei kurzen Messungen erfolgten ohne Proben, um den Untergrund zu vermessen.

4 Auswertung

4.1 Poissonverteilung

Als erstes wird der Zerfall der Proben mit der Poisson-Verteilung verglichen. Dazu werden die Messergebnisse jeweils mit einer dazu passenden Poisson-Verteilung aufgetragen, was in Abbildung 3 dargestellt ist. Für alle drei Messungen werden Mittelwerte λ und Varianzen σ^2 ermittelt, die in Tabelle 1 dargestellt sind.

Probe	Spannung [V]	m	σ^2	δ [%]
\overline{A}	500	6.929 ± 0.019	4.69 ± 0.06	32.3 ± 0.9
A	600	8.447 ± 0.024	7.79 ± 0.11	7.8 ± 1.3
A + B	500	13.327 ± 0.021	5.95 ± 0.08	55.4 ± 0.6

Tabelle 1: Mittelwerte m, Varianzen σ^2 und Abweichung δ dieser Werte voneinander der drei gemessenen Poisson-Verteilungen

Dabei findet der für alle Messungen gleiche Normierungsfaktor N=13499 Verwendung, der die Gesamtzahl der Ereignisse darstellt. Weiterhin beschreiben i die Anzahl an Zerfällen in $0.2\,\mathrm{s}$ und n_i die zugehörige Anzahl an Detektionen. Der Fehler des Mittelwerts Δm ist durch die Mittlere Quadratsumme der Residuen beschrieben, der Fehler der Varianz $\Delta \sigma^2$ durch Gauß'sche Fehlerfortpflanzung.

$$\lambda = \frac{1}{N} \sum_{i=0}^{i_{\text{max}}} i \cdot n_i \tag{4.1}$$

$$\sigma^2 = \frac{1}{N} \sum_{i=0}^{i_{\text{max}}} (m-i)^2 \cdot n_i$$
 (4.2)

$$\Delta \lambda = \sqrt{\frac{1}{N(N-1)} \sum_{i=0}^{i_{\text{max}}} (m-i)^2 \cdot n_i}$$
 (4.3)

$$\Delta \sigma^2 = \frac{2}{N} \sum_{i=0}^{i_{\text{max}}} (m-i) \cdot n_i \cdot \Delta m \tag{4.4}$$

Die theoretischen Poisson-Verteilungen $P(n,\lambda)$ werden durch Gleichung (2.23) beschrieben. Damit sollen die Abweichungen der Messungen von den theoretischen Poisson-Verteilungen bestimmt werden. Diese wird durch die Abweichung δ der gemessenen Varianz σ^2 vom gemessenen Mittelwert λ beschrieben. Der Fehler $\Delta\delta$ ergibt sich wieder aus der Gauß'schen Fehlerfortpflanzung.

$$\delta = \frac{\lambda - \sigma^2}{\lambda} \tag{4.5}$$

$$\Delta \delta = \sqrt{\left(\frac{\Delta \sigma^2}{\lambda}\right)^2 + \left(\frac{\sigma^2 \cdot \Delta \lambda}{\lambda^2}\right)^2} \tag{4.6}$$

Abbildung 3: Messwerte und Poisson-Verteilungen

Die Anzahl an Zerfällen innerhalb von relativ kurzen Zeitintervallen von 0.2 s wird jeweils in einem Balken dargestellt. Die kurzen Zeitintervalle sorgen dafür, dass der Mittelwert der Messdaten klein bleibt und so eine Poisson-Verteilung nach der in Abschnitt 2.3.2 erwähnten Faustregel eine sinnvolle Näherung ergibt, solange der Mittelwert 10 nicht überschreitet.

Für die Messung der Probe A bei 600 V folgen die Messwerte am besten der theoretischen Poisson–Verteilung. Die gemessene Varianz σ^2 hat nur eine Abweichung von unter 10 % vom Mittelwert λ . Die anderen beiden Messungen weisen deutlichere Unterschiede auf.

Bei der Messung von Probe A bei 500 V ist eine Abweichung von ca. 33 % bemerkenswert. Damit liegt sie näher an der theoretischen Verteilung als die gemeinsame Messung von A und B, welche eine Abweichung von ca. 55 % besitzt. In beiden Fällen ist die Poisson-Verteilung deutlich breiter als die Messwerte und um den Mittelwert herum niedriger.

In Abbildung 4 sind alle drei Poisson-Verteilungen gemeinsam dargestellt. Ersichtlich ist der Anstieg des Mittelwerts sowohl bei höheren Spannungen, als auch bei mehr

Abbildung 4: Alle drei Poisson-Verteilungen zusammen Die Grenze der Faustregel für den Mittelwert einer sinnvolle Poisson-Annäherung ist in rot markiert

Probenmaterial. Außerdem werden die Verteilungen breiter und flacher, je größer der Mittelwert ist.

Die Totzeit erklärt die Abweichungen aller drei Messungen von den jeweiligen theoretischen Poisson-Verteilungen, da sie die Mittelwert und Standardabweichung der Messungen verringert. Dies wurde bereits in Abschnitt 2.6.2 erklärt.

Die erwartete Totzeit wird bei höheren Spannungen geringer. Dies erklärt die geringen Abweichungen bei der 600 V-Messung, die deutlich kleiner als bei den anderen Messungen ist.

Bei der gemeinsamen Messung der Proben A und B bestätigt sich außerdem die in Abschnitt 2.3.2 besprochene Faustregel, die Poisson–Verteilung sei für $\lambda > 10$ keine gute Näherung mehr. Hierfür solle besser die Gaußverteilung verwendet werden. Zudem zeigt sich der Fehler der Totzeit hier stärker als bei den anderen Messungen, da hier deutlich mehr Zerfälle pro Sekunde stattfinden. Daher werden auch mehr Zerfälle nicht detektiert.

4.2 Gaußverteilung

Für größere Mittelwerte ist der Vergleich mit der Gaußverteilung sinnvoll. Dazu werden die Messewerte für Zeitintervalle von $\Delta t = 5$ s zusammengefasst.

Weiterhin wird ein sogenanntes Binning von n=8 verwendet. Dies bedeutet, es werden n benachbarte Balken zu einem zusammengefasst. Der erste Balken gibt also demnach an, wie oft innerhalb von 5 s zwischen 0 und 7 Zerfällen detektiert wurden.

Dies ist in Abbildung 5 dargestellt. Zudem ist jeweils die theoretische Gaußkurve eingezeichnet, die sich aus den gemessenen Werten ergibt.

Die Mittelwerte m der Messungen werden aus den Zählraten z' gebildet, die in Tabelle 2 dargestellt sind. Diese wiederum lassen sich relativ einfach aus der Darstellung der Messwerte aus Abschnitt 4.1 bestimmen.

Die Summe aller Balken bildet die gesamte Anzahl der gemessenen Zerfälle. Durch die Dauer der Messung $T=45\,\mathrm{min}$ geteilt entspricht dies der gemessenen Zählrate z'. F ist ein Normierungsfaktor, der die beschriebene Anzahl an Ereignissen beschreibt.

Die Messwerte sowie die Mittelwerte der Gaußkurven sind in Tabelle 2 angegeben.

$$P(x) = \frac{1}{\sqrt{2\pi m}} \cdot F \cdot \sqrt{n} \cdot e^{-\frac{(x-m)^2}{2m/n}}$$
(4.7)

$$m = z' \cdot \frac{\Delta t}{n} \tag{4.8}$$

Probe	Spannung [V]	Zählrate z' [s ⁻¹]	Mittelwert m
\overline{A}	500	34.64	21.65
A	600	42.23	26.39
A + B	500	66.63	41.64

Tabelle 2: Zählraten der Quellen bei unterschiedlichen Spannungen

Abbildung 5: Messwerte und Gauß-Verteilungen

Alle Gauß-Verteilungen passen gut zu den Messungen. Es gibt allerdings leichte Abweichungen.

Bei der $600\,\mathrm{V}$ Messung von Probe A ist der Peak der Messkurve ein wenig höher als die theoretische Kurve. Bei der gemeinsamen Messung der Proben A und B ist dies noch stärker sichtbar. Weiterhin ist die gemessene Verteilung schmaler als die Gauß-Verteilung. Beides kann durch die Totzeit erklärt werden. Diese verringert die Standardabweichung der Messung, so wie es auch bei der Poisson-Verteilung geschieht.

Die deutlichere Abweichung bei der gemeinsamen Messung der Proben A und B kann ebenso wie bei der Poissonverteilung dadurch erklärt werden, dass mehr Zerfälle pro

Sekunde stattfinden und deshalb auch mehr Zerfälle durch die Totzeit nicht detektiert werden.

Insgesamt sind damit die Beobachtungen sehr ähnlich zu denen der Poissonverteilung.

4.3 Intervallverteilung

In Abbildung 6 sind die gemessenen Intervall-Verteilungen für die Messung von Probe A bei 500 V für n = 0, 1, 2 aufgetragen.

Abbildung 6: Gemessene Intervall-Verteilungen für Probe A bei 500 V für n = 0, 1, 2

Die gemessene Intervall-Verteilung mit n=0 wird mit der theoretischen Verteilung verglichen. Dafür wird die theoretische Intervall-Verteilung P_0 an die Messwerte gefittet. P_0 wird dazu um einen Faktor N=aT gestreckt, um die korrekte Anzahl an Ereignissen abzubilden. Diese hängt von a und der Messdauer $T=45\,\mathrm{min}$ in Sekunden ab.

Aus dem Fit mittels des Julia-Pakets LsqFit [15] wird der Parameter a gewonnen.

$$P(t) = T \cdot a^{2} \cdot e^{-at}$$

$$a = (43.21 \pm 0.13) \,\mathrm{s}^{-1}$$
(4.9)

$$a = (43.21 \pm 0.13) \,\mathrm{s}^{-1}$$
 (4.10)

Das Ergebnis ist in Abbildung 7 zu sehen. Dabei ist zu beachten, dass die ersten elf Messwerte der gemessenen Intervall-Verteilung für den Fit ausgeschlossen wurden, da sie in einem Zeitabschnitt liegen, der kleiner als die erwartete Totzeit ist, wodurch ihre Ergebnisse stark von den erwarteten abweichen dürften.

Aus dem so bestimmten Fit-Parameter a lässt sich nun mittels Gleichung (2.55) die Totzeit τ ermitteln. Der Fehler $\Delta \tau$ folgt durch Gauß'sche Fehlerfortpflanzung.

Abbildung 7: Gemessene Intervall-Verteilung für Quelle Nr. 6 bei 500 V für n=0 und dazu gefittete theoretische Intervall-Verteilung

$$\tau = \frac{1}{a'} - \frac{1}{a}$$

$$\Delta \tau = \frac{\Delta a}{a^2}$$

$$\tau = (5.72 \pm 0.07) \,\text{ms}$$
(4.11)
(4.12)

$$\Delta \tau = \frac{\Delta a}{a^2} \tag{4.12}$$

$$\tau = (5.72 \pm 0.07) \,\mathrm{ms}$$
 (4.13)

Dabei ist $a' = 34.64 \,\mathrm{s}^{-1}$ die für diese Quelle gemessene Zählrate aus Tabelle 2. Dadurch ergibt sich für die Totzeit $\tau \approx 5.7 \,\mathrm{ms}$ (4.13).

Für die anderen beiden gemessenen Intervall-Verteilungen für n=1,2 ist ein Fit-Versuch mit der theoretischen Kurve nicht sinnvoll. Dies liegt daran, dass die Totzeit bei n=1,2 nicht nur im vordersten Teil der Verteilung sichtbar ist, wie bei n=0. Bei ihnen verändert die Totzeit hingegen die ganze Verteilung, wodurch kein sinnvoll zu fittender Bereich mehr übrig bleibt. Ursächlich ist der Einfluss der Totzeit auf alle Detektionen, der für einzelne Messungen nicht bestimmt werden kann. Dadurch verändert die Totzeit die Intervallverteilung der Messwerte variabel.

4.4 Totzeit

Die Totzeit τ wird hier mit der Zwei-Präparate-Methode bestimmt. Es wurden für die Proben A und B jeweils N_A bzw. N_B Ereignisse gemessen. Weiterhin wurden N_{AB} Ereignisse bei Verwendung beider Proben A und B sowie N_0 Ereignisse ohne Proben gemessen. Letztere wurden durch die Untergrundstrahlung verursacht.

Aus den Zählungen N_i und der Dauer der Messungen T=5 min lassen sich Zählraten n_i ermitteln. Die Ergebnisse sind in den Tabellen 3 dargestellt. Der Fehler der Zählungen ΔN_i wird durch die statistische Ungenauigkeit gegeben.

Aus diesen Zählraten z_i kann die Totzeit $\tau_{1,2}$ nach Gleichung (2.68) ermittelt werden. Die Ungenauigkeiten $\Delta \tau_{1/2}$ werden durch das Julia-Paket Measurements ermittelt, das die lineare Fehlerfortpflanzungstheorie verwendet. [14] Diese Ergebnisse sind in Tabelle 4 dargestellt.

$$\Delta N = \sqrt{N} \tag{4.14}$$

$$n_i = \frac{N_i}{T} \tag{4.15}$$

$$n_{i} = \frac{N_{i}}{T}$$

$$\Delta n_{i} = \frac{\Delta N_{i}}{T}$$

$$(4.15)$$

Spannung [V]	$N_A \equiv N_1$	$N_B \equiv N_2$	$N_{AB} \equiv N_{12}$	N_0
500	11044	15833	20300	2396
550	12260	17914	25509	2513
600	12917	19421	28522	2550

Tabelle 3: Gemessene Ereignisse

Spannung [V]	$\tau_1 [\mathrm{ms}]$	$ au_2 \; [ext{ms}]$
500	$6.41 \pm 0.33 \ (\pm 5 \%)$	$22.04 \pm 0.15 \; (\pm 1 \%)$
550	$2.32 \pm 0.25 \ (\pm 11 \%)$	$19.79 \pm 0.12 \; (\pm 1 \%)$
600	$1.13 \pm 0.22 \ (\pm 19 \%)$	$18.51 \pm 0.11 \ (\pm 1 \%)$

Tabelle 4: ermittelte Totzeiten

Durch die quadratische Gleichung erhält man für die Totzeit zwei verschiedenen Lösungen. Allerdings ist eine Lösung rein mathematisch bedingt und hat keine physikalische Aussage. Durch die Totzeit $\tau \approx 5.7 \,\mathrm{ms}$ (4.13) kann man bestimmen, welche der mathematischen Lösungen physikalisch korrekt ist.

Nur τ_1 liegt in der Größenordnung von τ und kann daher als korrekt betrachtet werden. Dagegen wird τ_2 verworfen. Zur Bestimmung der Totzeit ist diese Methode genauer, da sie unabhängig von einem Fitting-Parameter ist. Zudem lässt sich der Fehler ziemlich genau ermitteln.

Die Totzeit scheint mit steigender Spannung kleiner zu werden. Dabei beschleunigt das elektrische Feld um die Anode die freien Elektronen stärker. Daher bewegt sich die Wolke aus ionisierten Gasteilchen schneller und die Zeitspanne zwischen zwei registrierten Signalen wird verringert. Somit kann sich das Füllgas auch schneller erholen und das Zählrohr ist somit früher messbereit.

4.5 χ^2 -Test

Nun sollen drei verschiedene Hypothesen mit dem χ^2 -Test bewertet werden. Dazu wurde eine Stichprobe aus der 45 min-Messung mit den beiden Proben A und B bei 500 V verwendet. Als Messergebnis wurden die Anzahl der Detektionen in jeweils 10 s–Intervallen definiert.

Es wurden die ersten 51 Zeitintervalle gewählt, weil die χ^2 -Grenzen für 50 statistische Freiheitsgrade bekannt sind. [6] Ein Freiheitsgrad der 51 Werte wird durch das Bilden des Mittelwerts gebunden.

4.5.1 Hypothesen

Es sollen drei verschiedene Hypothesen H_i bewertet werden. In allen Hypothesen wird ein "Mittelwert" verwendet. Dieser gemessene Mittelwert m' wird aus den 51 Messwerten gebildet. Zudem kann dieser totzeitkorrigierte Mittelwert m nach Gleichung (2.56) berechnet werden. Dieser ist ca. 9% größer als m'. Als Totzeit wurde der Mittelwert der in Abschnitt 4.4 bestimmten τ_1 verwendet.

$$m' \approx 654 \tag{4.17}$$

$$m \approx 714 \tag{4.18}$$

Hypothese H_1 besagt, die Präparatstärke sei im betrachteten Zeitraum konstant und gleiche dem Mittelwert der Messwerte. Aufgrund der im Vergleich zur Halbwertszeit der Proben kurzen Messdauer diese Hypothese H_1 als am wahrscheinlichsten betrachtet.

Hypothese H_2 dagegen behauptet, die Präparatstärke sei im betrachteten Zeitraum konstant und um 10 % kleiner als der Mittelwert der Messwerte. Diese Hypothese könnte zutreffen, wenn der totzeitkorrigierte Mittelwert verwendet wird.

Hypothese H_3 dagegen nimmt an, dass die Präparatstärke im betrachteten Zeitraum linear mit der Zeit abnimmt. Dies soll eine erste Näherung eines exponentiellen Abfalls darstellen. Die Anfangszählrate ist der Mittelwert der Messwerte und der Abfall von einer Messung zur anderen sei 1. Diese Hypothese würde eher bei Proben mit deutlich kürzerer Halbwertszeit oder bei deutlich längeren Messungen erwartet werden. Im vorliegenden Fall wurde ein Zeitraum von 500 s betrachtet, würde ein Zeitraum von 45 min ausgewertet werden, könnte das Ergebnis schon anders aussehen.

Diese Hypothesen werden zusammen mit den gewählten Messwerten in Abbildung 8 dargestellt, jeweils einmal mit und ohne Totzeitkorrektur nach Gleichung (2.62).

Es ist nicht überraschend, dass die Ergebnisse praktisch gleich aussehen. Die Hypothese H_1 scheint die Werte am besten zu beschreiben.

4.5.2 χ^2 -Werte

Nun müssen die einzelnen χ_i^2 -Werte für die Hypothesen H_i ermittelt werden. Dazu werden die Summen nach Gleichung (2.53) gebildet. Für die Hypothesen H_2 und H_3 muss der Mittelwert entsprechend angepasst werden, wodurch folgende Relationen entstehen. Zudem werden die totzeitkorrigierten χ_{korr}^2 nach Gleichung (2.64) ermittelt.

 $^{^{10}\}mathrm{Vergleiche}$ Abschnitte 2.1.2 und 2.1.3

Abbildung 8: Visualisierung der Hypothesen sowie der gewählten Messwerte, mit gemessenen (links) und totzeitkorrigierten Werten (rechts)

$$\bar{x} \in \{m, m'\} \tag{4.19}$$

$$\bar{x} \in \{m, m'\}$$
 (4.19)
 $\chi_1^2 = \sum_i \frac{(x_i - \bar{x}_1)^2}{\bar{x}_1}$

$$\chi_2^2 = \sum_i \frac{(x_i - 0.9\,\bar{x})^2}{0.9\,\bar{x}} \tag{4.21}$$

$$\chi_3^2 = \sum_i \frac{(x_i - (\bar{x} - i))^2}{(\bar{x} - i)} \tag{4.22}$$

Die daraus folgenden Ergebnisse werden in Tabelle 5 dargestellt. Alle Hypothesen müssen abgelehnt werden. Allerdings unterschreitet Hypothese H_1 den Minimalwert χ^2_{\min} in beiden Fällen. Bei den gemessenen Werten ist χ^2 und χ^2_{\ker} um ca. 35.6% bzw. 24.8% zu klein. Diese Abweichungen sind deutlich geringer als bei den anderen Hypothesen. Damit ist H_1 am wahrscheinlichsten, auch wenn die Hypothese verworfen werden muss.

$$\begin{array}{c|cccc} & H_1 & H_2 & H_3 \\ \hline \chi^2 & 20.84 < \chi^2_{\min} & 393.65 \gg \chi^2_{\max} & 106.02 > \chi^2_{\min} \\ \chi^2_{\rm korr} & 24.35 < \chi^2_{\min} & 459.80 \gg \chi^2_{\max} & 123.83 > \chi^2_{\min} \\ \end{array}$$

Tabelle 5: Ergebnisse des χ^2 -Tests mit $\chi^2_{\min} = 32.357$ und $\chi^2_{\max} = 71.420$ [6]

Würde man stattdessen Pearsons χ^2 -Test¹¹ durchführen, so würde man nur einen einzelnen Wert $\chi^2_{\rm P,max}$ = 67.505 zum Vergleich verwenden. [6] In diesem Falle würde die Hypothese H_1 bekräftigt werden, während die anderen Hypothesen verworfen werden müssen. Man kann die Vermutung aufstellen, dass die Präparatstärke im gemessenen Zeitrahmen näherungsweise konstant ist.

 $^{^{11}}$ Siehe Abschnitt 2.5.4

4.5.3 Halbwertszeit

Die Hypothese H_3 nähert den exponentiellen Abfall der Präparatstärke linear an. Wie schon in Abschnitt 4.5.1 erläutert wurde, ist dies für den beobachteten Messzeitraum nicht beobachtbar, was auch der χ^2 -Test bekräftigt.

Dennoch ist die Näherung im Allgemeinen sinnvoll. Die Halbwertszeit der $^{137}\mathrm{Cs-Probe}$ von ca. $T_{\rm Cs} = 30$ Jahren [10] zu groß, um in unseren Messungen einen (linearen) Abfall der Präparatstärke zu beobachten, so die These.

Im Folgenden soll angenommen werden, Hypothese H_3 treffe zu. Dann kann die Halbwertszeit der Probe $T_{1/2}$ aus der Steigung des beobachteten Abfalls ermittelt werden.

Hierzu wird die Präparatsstärke durch die Anzahl der nicht-zerfallenen Atome N(t)beschrieben. Nach Hypothese H_3 sei die Präparatsstärke zum Zeitpunkt t=0 identisch mit dem gemessenen Mittelwert. Daraus folgt Gleichung (4.23).

Weiterhin soll $N(\Delta t)$ nach $\Delta t = 10$ s um 1 geringer als N(0) sein, was durch Gleichung (4.25) beschrieben wird. Damit kann die Zerfallswahrscheinlichkeit λ bestimmt werden. Folglich erhält man die Halbwertszeit nach Gleichung (2.1).

$$N(t) = m \cdot \exp[-\lambda t] \tag{4.23}$$

$$N(\Delta t) = m - 1 \tag{4.24}$$

$$m - 1 = m \cdot \exp[-\lambda \Delta t] \tag{4.25}$$

$$\lambda = \frac{1}{\Delta t} \ln \left(\frac{m}{m-1} \right) \tag{4.26}$$

$$\lambda = \frac{1}{\Delta t} \ln \left(\frac{m}{m-1} \right)$$

$$T_{1/2}(m) = \frac{\Delta t \ln(2)}{\ln \left(\frac{m}{m-1} \right)}$$

$$(4.26)$$

Auf diese Weise erhält man eine Halbwertszeit von $T_{1/2}(m') = 1 \text{ h } 28 \text{ min } \ll T_{\text{Cs}}$ und eine totzeitkorrigierte Halbwertszeit von $T_{1/2}(m) = 1 \,\mathrm{h}\,51 \,\mathrm{min} \ll T_{\mathrm{Cs}}$. Beide Halbwertszeiten verschwinden im Vergleich zu der Halbwertszeit von $^{137}\mathrm{Cs}.$

Zudem gibt es ein weiteres systematisches Problem. Nach H_3 soll N(0) dem Mittelwert aller Messwerte entsprechen. Bei linear abfallenden Werten dürfte dieser Mittelwert in etwa dem Wert nach der halben Messdauer entsprechen. Stattdessen müsste man den Mittelwert der ersten Werte verwenden.

Daher könnte man die Halbwertszeit auf diese Weise messen, allerdings nur bei Proben, die eine deutlich kürzere Halbwertszeit als ¹³⁷Cs haben. Dabei muss man allerdings einen anderen Startwert N(0) als in der Hypothese H_3 wählen.

5 Fazit

Zusammenfassend scheint das Experiment erfolgreich gewesen zu sein. Die Darstellungen der Messwerte durch die Verteilungen ist gut gelungen, die Bestimmung der Totzeit verlief wie erwartet, und auch die χ^2 -Tests haben akzeptable Ergebnisse geliefert.

Für alle drei Verteilungsarten konnten die Messwerte Ergebnisse liefern, die mit jeweiligen theoretischen Verteilungen recht gut übereinstimmen. Unterschiede konnten erfasst und erklärt werden. Besonders gut ersichtlich ist der Einfluss der Totzeit.

Die Totzeit mithilfe der Zwei-Präparate-Methode zu bestimmen lieferte zwei Ergebnisse, aus denen der physikalisch sinnvolle mittels der bestimmten Totzeit aus der Intervallverteilung gewählt werden konnte. Die Methode scheint ziemlich genau zu sein.

Die χ^2 -Tests begründen eine Ablehnung aller drei getätigten Hypothesen. Allerdings sind sie dennoch aussagekräftig. Nur die Hypothese, die Präparatsstärke von ¹³⁷Cs bleibe im Zeitraum von Minuten konstant, kann durch die Tests unterstützt werden. Bei dem χ^2 -Test nach Pearson wird diese These eindeutig bekräftigt.

Hierbei kann der gemessene Mittelwert der Messwerte als konstanter Wert angenommen werden. Dieser ist allerdings durch die Totzeit um ca. $10\,\%$ kleiner als der tatsächliche Mittelwert.

Zuletzt wurde die Halbwertszeit einer fiktiven Probe ermittelt. Diese Probe soll zu Beginn dieselbe Präparatsstärke wie unsere Probe haben, allerdings soll ein linearer Abfall zu beobachten sein. Eine Halbwertszeit von ca. $1.5\,\mathrm{h} - 2\,\mathrm{h}$ notwendig, den in der dritten Hypothese beschriebene Steigung zu erhalten.

6 Literaturverzeichnis

- G. Casella, R. L. Berger, "Statistical Inference", ISBN 9781003456285, DOI 10.1201/9781003456285
- [2] G. Gigerenzer, "Mindless statistics", 2004, The Journal of Socio–Economics, DOI 0.1016/j.socec.2004.09.033
- [3] E. Cramer & U. Kamps, "Grundlagen der Wahrscheinlichkeitsrechnung und Statistik", Springer 2020, DOI 10.1007/978-3-662-60552-3
- [4] J. Puhani, "Statistik", Springer 2020, DOI 10.1007/978-3-658-28955-3
- [5] Mary L. McHugh, "The Chi-square test of independence", Biochemia Medica, DOI 10.11613/BM.2013.018
- [6] K. C. Kapur & M. Pecht, "Reliability Engineering": Appendix E, Wiley 2014, DOI 10.1002/9781118841716
- [7] W. Demtröder, "Experimentalphysik 4: Kern-, Teilchen- und Astrophysik", Springer-Spektrum-Verlag, 5. Auflage 2017, DOI 10.1007/978-3-662-52884-6
- [8] Universität zu Köln, "B3.1: Statistik der Kernzerfälle", Januar 2021, Online verfügbar unter https://www.ikp.uni-koeln.de/fileadmin/data/praktikum/B3.1_statistik_de.pdf, Abruf am 10.04.2024
- [9] Lexikon der Physik, "Halbwertszeit", https://www.spektrum.de/lexikon/physik/halbwertszeit/6327, Abruf am 07.06.2024
- [10] National Nuclear Data Center, "Chart of Nuclides", https://www.nndc.bnl.gov/nudat3, ¹³⁷Cs, Abruf am 07.05.2024
- [11] Ulf Konrad, "Geiger-Müller-Zählrohr", https://www.ulfkonrad.de/physik/geiger-mueller-zaehlrohr, Abruf am 22.04.2024
- [12] Lexikon der Physik, "Totzeit", https://www.spektrum.de/lexikon/physik/totzeit/14643, Abruf am 22.04.2024
- [13] Wikimedia, "File:Geiger Mueller Counter with Circuit-de.svg", https://commons.wikimedia.org/wiki/File:Geiger_Mueller_Counter_with_Circuit-de.svg, Abruf am 22.04.2024
- [14] Julia-Paket Measurements, Dokumentation unter https://juliaphysics.github.io/Measurements.jl/stable
- [15] Julia-Paket LsqFit, Dokumentation unter https://docs.juliahub.com/General/LsqFit/stable