CS 512, Spring 2014

Assignment 1

Shan Sikdar

Due Monday January 27th

1 (*) 2.1

Verify
$$\sum_{x=0}^{1} p(x|\mu) = 1$$

Proof. $\sum_{x=0}^{1} p(x|\mu) = p(x=0|\mu) + p(x=1|\mu) = \mu + 1 - \mu = 1$

Verify:
$$\mathbb{E}[x]=\mu$$
 Proof. $\mathbb{E}[x]=\sum\limits_{x}x \;\; p(x|\mu)=1*\mu+0*(1-\mu)=\mu$

Verify
$$var[x] = \mu(1 - \mu)$$

Proof.
$$var(x) = \mathbb{E}[(x - E[x])^2]$$

$$= (1 - \mu)(0 - \mu)^2 + \mu(1 - \mu)^2$$

$$= (1 - \mu)(\mu)^2 + \mu(1 - \mu)^2$$

$$= \mu - \mu^2 = \mu(1 - \mu)$$

Show entropy of H[x] of a Bernoulli distributed random variable x is given

by :
$$H[x] = -\mu \ln \mu - (1 - \mu) \ln (1 - \mu)$$

By definition of entropy: $H[x] = -\sum_x p(x|\mu) \ln [p(x|\mu)]$
 $= -[(1 - \mu) \ln (1 - \mu) + (\mu \ln \mu)] = -\mu \ln \mu - (1 - \mu) \ln (1 - \mu)$