Caracterización de Lenguajes

Def.: un lenguaje L es recursivamente enumerable (RE) sii existe una MT M que lo acepte, es decir L = L(M).

Def.: un lenguaje L es recursivo (R) o decidible sii existe una MT M tal que L = L(M) y M siempre se detiene para todo input de Σ^*

Recordar: Dado un alfabeto Σ , denotamos con Σ^* al conjunto de todas las cadenas formadas por símbolos de Σ . \mathscr{L} es el conjunto de todos los lenguajes definidos sobre el alfabeto Σ , es decir $\mathscr{L} = \rho(\Sigma^*)$, es decir el conjunto de todos los subconjuntos posibles de Σ^* . Se tiene la siguiente situación:

 $R \subseteq RE \subseteq \mathcal{L}$ por las definiciones

Caracterización de Lenguajes

Interrogantes: ¿Las inclusiones son propias?

Es decir
$$\begin{cases} \mathcal{L}\text{-} RE \neq \emptyset? \\ \\ \mathcal{L}\text{RE} - R \neq \emptyset? \end{cases}$$

Ejercicio: Sean $L_1 \in R$ y $L_2 \in R$ $L_1 \cap L_2 \in R$?

Rta.: sí $L_1 \cap L_2 \in R$

Dem.: Sean M_1 y M_2 MT de una sola cinta $tq L_1 = L(M_1)$ y $L_2 = L(M_2)$

Además se eligen ambas MT tal que se detienen para toda entrada, seguro existen porque ambos lenguajes pertenecen a R

$$\begin{split} \mathbf{M}_1 &= <\!\!\mathbf{Q}_1^{}, \, \boldsymbol{\Sigma}, \, \boldsymbol{\Gamma}_{\!\!1}^{} \, , \, \delta^1, \, q_0^{}{}^1, \, q_A^{}{}^1, \, q_R^{}{}^1 \!\!> \\ & \quad \quad con \, \boldsymbol{Q}_1^{} \, \cap \boldsymbol{Q}_2^{} \, = \, \varnothing \\ \\ \mathbf{M}_2 &= <\!\!\mathbf{Q}_2^{}, \, \boldsymbol{\Sigma}, \, \boldsymbol{\Gamma}_{\!\!2}^{} \, , \, \delta^2, \, q_0^{}{}^2, \, q_A^{}{}^2, \, q_R^{}{}^2 \!\!> \end{split}$$

Se construye una MT de dos cintas que funciona de la siguiente manera:

- 1) Copia la entrada en la segunda cinta y posiciona el cabezal en el principio de la entrada en la 2da. cinta.
- 2) Simula M_1 sobre la cinta 2. Si M_1 para en q_R^1 , M para en q_R , si M_1 para en q_A^1 ir al punto 3)
- 3) Borra la cinta 2
- 4) Copia w de la cinta 1 a la cinta 2.
- 5) Simula M_2 sobre w en la cinta 2.

Si M₂ para en q_R², M para en q_R

Si M_2 para en q_A^2 , M para en q_A

¿ Cómo sería concretamente la codificación de esta MT?

Para formalizar:
$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$

 δ : $Q \times \Gamma^2 \to Q \cup \{q_A, q_R\} \times (\Gamma \times \{D, I, S\})^2$
 $con Q_1 \cup \{q^1_A, q^1_R\} \cup Q_2 \cup \{q^2_A, q^2_R\} \subseteq Q \; ; \; \Gamma_1 \cup \Gamma_2 \subseteq \Gamma$
 $\delta(q_i, a, b) = (q_j, (c, m_1), (d, m_2)) \; con \, q_i \in Q; \, q_j \in Q \cup \{q_A, q_R\}; \, a,b,c,d \in \Gamma; \, m_1,m_2 \in \{D, I, S\}$
Símbolos en cinta 1 y cinta 2 en la cinta 1 en la cinta 2

1) Copia la entrada en la segunda cinta y posiciona el cabezal en el principio de la entrada en la 2da. cinta.

$$\delta\left(q_{0},\left(x,B\right)\right)=\left(q_{0},\left(x,D\right),\left(x,D\right)\right)\ \left(\forall x\right)(x\in\Sigma)\ \left(\text{Copia la entrada en cinta 2}\right)$$

$$\delta\left(q_{0},\left(B,B\right)\right)=\left(q_{1},\left(B,S\right),\left(B,I\right)\right)\ \left(\text{Fin de copia, empieza a buscar el inicio del string en la cinta 2}\right)$$

$$\delta\left(q_{1},\left(B,x\right)\right)=\left(q_{1},\left(B,S\right),\left(x,I\right)\right)\ \left(\forall x\right)(x\in\Sigma)\ \left(\text{se dirige al inicio del string en la cinta 2}\right)$$

$$\delta\left(q_{1},\left(B,B\right)\right)=\left(q_{0}^{-1},\left(B,S\right),\left(B,D\right)\right)\ \left(\text{Queda apuntando al inicio del string en la cinta 2},\text{ para comenzar la simulación de }M_{1}\text{ sobre la cinta 2}\right)$$

Para formalizar:
$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$

 δ : $Q \times \Gamma^2 \to Q \cup \{q_A, q_R\} \times (\Gamma \times \{D, I, S\})^2$
 $con Q_1 \cup \{q_A^1, q_R^1\} \cup Q_2 \cup \{q_A^2, q_R^2\} \subseteq Q \; ; \; \Gamma_1 \cup \Gamma_2 \subseteq \Gamma$
 $\delta(q_i, a, b) = (q_j, (c, m_1), (d, m_2)) \; con q_i \in Q; q_j \in Q \cup \{q_A, q_R\}; a,b,c,d \in \Gamma; m_1,m_2 \in \{D, I, S\}$
Símbolos en cinta 1 y cinta 2 en la cinta 1 en la cinta 2

2) Simula M_1 sobre la cinta 2. Si M_1 para en q_R^1 , M para en q_R , si M_1 para en q_A^1 ir al punto 3)

Para cada
$$\delta^1(q_i^{\ 1},x)=(q_j^{\ 1},y,m)$$
 se define
$$\delta\left(q_i^{\ 1},(B,x)\right)=(q_j^{\ 1},(B,S),(y,m)) \qquad \text{(Simulación en cinta 2)}$$

$$\delta(q_R^{\ 1},(B,x))=(q_R,(B,S),(x,S)) \quad \forall x\in\Gamma_1 \quad \text{(si M_1 Rechaza, M también)}$$

$$\delta(q_A^{\ 1},(B,x))=(q_3,(B,S),(x,S)) \quad \forall x\in\Gamma_1 \quad \text{(M_1 Acepta ir al punto 3)}$$

$$q_3 \text{ es el estado en el que comienza la ejecución del punto 3)}$$

Para formalizar:
$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$

 δ : $Q \times \Gamma^2 \to Q \cup \{q_A, q_R\} \times (\Gamma \times \{D, I, S\})^2$
 $con Q_1 \cup \{q_A^1, q_R^1\} \cup Q_2 \cup \{q_A^2, q_R^2\} \subseteq Q \; ; \; \Gamma_1 \cup \Gamma_2 \subseteq \Gamma$
 $\delta(q_i, a, b) = (q_j, (c, m_1), (d, m_2)) \; con \, q_i \in Q; \, q_j \in Q \cup \{q_A, q_R\}; \, a,b,c,d \in \Gamma; \, m_1,m_2 \in \{D, I, S\}$
Símbolos en cinta 1 y cinta 2 en la cinta 1 en la cinta 2

3) Borra la cinta 2

Pregunta: ¿Cómo saber cuánto borrar de la cinta 2? Tenga en cuenta que luego de simular M_1 la cinta posee cualquier string de Γ_1 *

Ejercicio1: De acuerdo a la estrategia elegida como respuesta a la pregunta anterior, completar la función delta de transición para los puntos 3), 4) y 5)

Ejercicio2: Demostrar que $L(M) = L(M_1) \cap L(M_2)$ y que M se detiene siempre. Con eso quedaría demostrado que $L_1 \cap L_2 \in R$.

Más definiciones

Def.: un lenguaje $L \in \text{Co-R sii } \overline{L} \in R \ (\overline{L} \text{ es el complemento de } L \text{ respecto de } \Sigma^*, \text{ es decir } \overline{L} = \Sigma^* - L)$

Def.: un lenguaje $L \in \text{Co-RE sii } \overline{L} \in \text{RE}$

Más interrogantes:

¿Qué relación habrá entre R, Co-R RE y Co-RE?

Teorema 1: $R \subseteq Co-R$

Demostración. Hay que demostrar que si $L \in R \Rightarrow L \in Co-R$, es decir que si $L \in R \Rightarrow \overline{L} \in R$.

Sea $L \in R \Rightarrow$ Existe una MT $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$ tq L = L(M) y M se detiene en algún momento para toda entrada.

Se construye $\overline{M} = <Q$, Σ , Γ , δ , q_0 , $\overline{q_A}$, $\overline{q_R} > con <math>\overline{q_A} = q_R$ y $\overline{q_R} = q_A$

Hay que probar que $L(\overline{M}) = \overline{L}$ y además que \overline{M} se detiene en algún momento para toda entrada.

1) Sea
$$w \in L(\overline{M}) \Leftrightarrow q_0 w \models_{\overline{M}} \alpha_1 \overline{q_A} \alpha_2 \Leftrightarrow q_0 w \models_{M} \alpha_1 q_R \alpha_2 \Leftrightarrow w \notin L(M) \Leftrightarrow w \notin L \Leftrightarrow w \in \overline{L}$$

$$def.L(\overline{M}). \qquad Constr. \qquad def.L(M) \qquad Hip. \qquad def.\overline{L}$$

Por lo tanto,
$$L(\overline{M}) = \overline{L}$$

2) \overline{M} se detiene para toda entrada?: Sí, por construcción \overline{M} se detiene cuando M se detiene y por hipótesis M se detiene para toda entrada.

De 1) y 2)
$$L \in R \Rightarrow L \in Co-R$$

Por lo tanto, $R \subseteq Co-R$

Teorema 2: Co-R \subseteq R

Sea
$$L \in \text{Co-R} \Rightarrow \overline{L} \in R \Rightarrow \overline{L} \in \text{Co-R} \Rightarrow \overline{\overline{L}} \in R \Rightarrow L \in R$$

def.Co-R teor. ant. def. Co-R prop. de compl.

Por lo tanto, $Co-R \subseteq R$

Corolario: de los dos teoremas anteriores surge que R = Co-R

Teorema 3: $R \subseteq Co-RE$

Dem.: Sea
$$L \in R \implies \overline{L} \in R \implies \overline{L} \in RE \implies L \in Co-RE$$
 teor. 1 (def.R y RE) def. Co-RE

Por lo tanto, $R \subseteq \text{Co-RE}$.

Además, como por definición $R \subseteq RE$ se tiene que $R \subseteq (RE \cap Co-RE)$

Teorema 4: $(RE \cap Co-RE) \subseteq R$

Sea $L \in (RE \cap Co-RE)$

$$\Rightarrow$$
 L \in RE \land \overline{L} \in RE

(por def. de \cap y de Co-RE)

 \Rightarrow existen M y \overline{M} , dos MT tq L = L(M) y \overline{L} = L(\overline{M})

Hay que construir una MT M' que reconozca L y que se detenga siempre.

 $\forall w \in \Sigma^*$ o bien \overline{M} para en q_A o bien M para en q_A (no puede darse nunca el caso que ambas "loopeen").

Por lo tanto hay que construir M' simulando en paralelo M y \overline{M} , si M para en q_A o \overline{M} para en q_R \Rightarrow M' para en q_A y si M para en q_R o \overline{M} en q_A \Rightarrow M' para en q_R .

¿Cómo simular dos máquinas en paralelo? No importa la eficiencia, en una máquina de 4 cintas:

- 1) Escribir el número 1 en la cinta 4 (sea i ese valor).
- 2) Copiar w a las cintas 2 y 3.
- 3) Simular a lo sumo i pasos de M en la cinta 2 y a lo sumo i pasos de \overline{M} en la cinta 3. si M para en q_A o \overline{M} para en $q_R \Rightarrow$ M' para en q_A y si M para en q_R o \overline{M} para en $q_A \Rightarrow$ M' para en q_R .
- 4) Borrar las cintas 2 y 3. Incrementar *i* en la cinta 4 y volver al punto 2.

Demostrar como ejercicio que L = L(M') y que M' se detiene siempre.

Pregunta: ¿Cómo se pueden simular i pasos?

Corolario: (RE \cap Co-RE) = R (por los teoremas 3 y 4)

Por lo tanto hasta ahora nuestra situación es:

Def.: **orden canónico para** Σ^* : se listan todas las palabras en orden según su tamaño con las palabras del mismo tamaño en orden lexicográfico.

```
Ej: \Sigma = \{0, 1\}, el orden canónico es: \lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, 0001 ... 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17
```

Obsérvese que si w es un string de $\{0,1\}^*$, la posición i que ocupa en el orden canónico se escribe en binario como 1w. Decimos entonces que w es el i-ésimo string y por ello lo denotamos w_i

Por ejemplo el string λ ocupa la posición 1 (1 λ) el string 01 ocupa la posición 5 (101), el string 0000 la posición 16 (10000)

Pregunta 1: ¿Puede una MT generar las palabras de {0,1}* en orden canónico?

Rta.: Sí. Idea: ir sumando 1 en binario, cuando el resultado necesita un bit más, se ponen todos los bits en cero y se vuelve al proceso de sumar uno en binario.

Ejercicios para el lector

Ej. 1) construir una MT que escriba en la primera cinta las palabras de {0, 1}* en orden canónico separadas por ","

Ej. 2): construir una MT que genere las palabras de $\{a, b, c\}^*$ en orden canónico separadas por "," es decir: λ , a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab ...

Pregunta 2: Si L es un lenguaje recursivo ($L \in \mathbb{R}$) ¿Puede una MT generar todas las palabras de L en orden canónico?

Rta.: Sí, porque existirá alguna MT M que reconoce L y siempre se detiene. Se construye una MT M' que va generando en una cinta los strings de Σ^* en orden canónico, simula M sobre cada string generado y si M lo acepta M' lo escribe en la cinta 1.

Pregunta 3: si L es un lenguaje recursivamente enumerable $(L \in RE)$; Puede una MT generar todas las palabras de L?

Rta.: Sí. Se generan todos los pares (i, j) en orden de su suma, i+j, y entre los de igual suma en orden creciente de i (ver ejercicio de la práctica 1)

$$(1, 1); (1, 2); (2, 1); (1, 3); (2, 2); (3, 1), \dots$$

Por cada par (i, j) generado se simulan j pasos de la MT M que reconoce el lenguaje L (L = L(M)), sobre w_i (i-ésimo string de Σ^* en orden canónico). Si M acepta w_i en esos j pasos \Rightarrow se escribe w_i en la cinta 1.

Pregunta 4: ¿Puede codificarse una MT como un string de un alfabeto de 2 símbolos?

Rta.: Sí. Se puede hacer de muchas formas, acá se muestra una.

Ej: se quiere codificar $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$

$$Q = \{q_0, q_1, ..., q_K\} \ \Sigma = \{a_1, a_2, ..., a_L\} \ \Gamma = \{B, a_1, a_2, ..., a_L, a_{L+1}, ..., a_n\}$$

Se puede codificar M con un alfabeto binario {0, 1} de la sgte. forma:

Estados:
$$q_A = 1$$
 $q_R = 11$ $q_0 = 111$ $q_1 = 1111$... $q_i = 1^{(i+3)}$

Símbolos:
$$B = 1$$
, $a_1 = 11$ $a_2 = 111$... $a_i = 1^{(i+1)}$

Movimiento del Cabezal:
$$D = 1$$
 $I = 11$ $S = 111$

<u>Función de Transición</u>: cada transición se codifica como una quíntupla de elementos separados por un símbolo 0. Ej.:

$$\delta(q_0, a_2) = (q_1, a_4, D)$$
 se codifica como

M se codifica como una sucesión de quíntuplas separadas por 00.

Ej.:
$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$
 $Q = \{q_0\}$ $\Sigma = \{a, b\}$ $\Gamma = \{B, a, b\}$

$$\begin{split} &Ej.: M = \qquad Q = \{q_0\} \quad \, \Sigma = \{a, \, b\} \\ &q_A = 1 \qquad \qquad q_R = 11 \qquad \qquad q_0 = 111 \\ &B = 1 \qquad \qquad a = 11 \qquad \qquad b = 111 \\ &D = 1 \qquad \qquad I = 11 \qquad \qquad S = 111 \end{split}$$

Note que existen otros posibles códigos para M. Las tres transiciones pueden listarse en distinto orden (3! formas distintas) por lo tanto hay 6 códigos distintos para la misma M

Para pensar

¿Cuál sería la codificación de MT que tiene menor valor numérico? Es decir: toda codificación de MT puede verse como un número binario, ¿cuál sería la MT codificada de "menor" valor numérico?

Todas tienen:

- Los estados q_0 , q_A y q_R
- Al menos 2 símbolos en Γ : B y 1 símbolo de Σ
- δ debe ser completa δ : Q x $\Gamma \to Q \cup \{q_A, q_R\}$ x Γ x $\{D, I\}$, completa

$$\begin{split} M = & < Q, \, \Sigma, \, \Gamma, \, \delta, \, q_0, \, q_A, \, q_R > \qquad \qquad Q = \{q_0\} \quad \Sigma = \{a\} \qquad \qquad \Gamma = \{B, \, a\} \\ q_A = 1 \qquad \qquad q_R = 11 \qquad \qquad q_0 = 111 \\ B = 1 \qquad \qquad a = 11 \\ D = 1 \qquad \qquad I = 11 \qquad \qquad S = 111 \\ < M > = 111011010110101010101111 \end{split}$$

¿Esta es la codificación de menor valor numérico?

 $\delta(q_0, a) = (q_A, a, D) \delta(q_0, B) = (q_A, B, S)$

Pregunta 5: $L_{<M>} \in \mathbb{R}$?

Con $L_{\langle M \rangle} = \{ w \in \{0, 1\}^* / w \text{ es el código bien formado de una MT} \}$

Rta.: Sí, para demostrarlo hay que construir una MT que realice un chequeo sintáctico y siempre se detenga.

El código binario de una MT M se denotará con <M>

Def. Se denomina *i*-ésima MT y se denota M_i a la MT cuyo código es w_i (*i*-ésimo string binario en orden canónico), es decir $\langle M_i \rangle = w_i$

Convención: Si w_i no es un código válido de MT se considera que codifica a M_i , siendo M_i una MT que se detiene inmediatamente rechazando cualquier entrada, $L(M_i)=\{\}$. Así, todo string w_i de $\{0,1\}^*$ se corresponde con, o codifica, una MT M_i

Def.: se define el lenguaje Diagonal L_D (primer ejemplo de lenguaje no recursivamente enumerable que se verá) de la siguiente manera:

$$L_D = \{ w_i \in \Sigma^* / w_i \notin \mathbf{L}(\mathbf{M}_i) \}$$

siendo $\Sigma = \{0,1\}$; w_i el *i*-ésimo string en orden canónico de Σ^* y \mathbf{M}_i la *i*-ésima MT.

 L_D : codificaciones de MT que rechazan su propia codificación

$$L_D = \{ w_i \in \Sigma^* / w_i \notin L(M_i) \}$$

Teorema: $L_D \notin RE$

Dem.: Por reducción al absurdo, se asume que $L_D \in RE \Rightarrow$ existirá una MT M que lo acepta y cuya codificación está en alguna posición del orden canónico, es decir que existe algún natural k para el cual $M = M_k$ y $L_D = L(M_k)$.

Considerando w_k el k-ésimo string de Σ^* , hay dos posibilidades, o bien $w_k \in L_D$ o bien $w_k \notin L_D$

a)
$$w_k \in L_D \Rightarrow w_k \notin L(M_k) \Rightarrow$$
 (por def. L_D)
 $\Rightarrow w_k \notin L_D$ (porque $L(M_k) = L_D$)
(contradicción)
b) $w_k \notin L_D \Rightarrow w_k \in L(M_k)$ (por def. L_D)
 $\Rightarrow w_k \in L_D$ (porque $L(M_k) = L_D$)
(contradicción)

En ambos casos se llega a una contradicción y por ende no puede existir una M_k que reconozca al lenguaje L_D , por lo tanto L_D no puede ser recursivamente enumerable.

Por lo tanto $L_D \notin RE$.

Máquina de Turing Universal (MTU): es una MT que recibe como entrada la codificación de otra MT *M* y una entrada *w*. La MTU ejecuta la MT M sobre la entrada *w*.

Nota: también se tiene una versión reconocedora de lenguajes

Esta máquina responde a cuestiones relativas a otras MT

Claramente la MTU puede construirse puesto que el proceso de mirar el estado y el símbolo corriente, buscar la quíntupla de δ que se va a aplicar y realizar lo que indica o detenerse es un procedimiento efectivo.

Se puede asumir que la entrada w se separa del código de la MT con 000, y M se codifica de la manera que ya se ha visto.

Una idea de cómo construir una MTU Se copia w en la cinta 2 sobre la que se realiza la simulación

Es necesario identificar:

- Posición del cabezal (se puede usar una tercera cinta)
- Estado actual (se puede usar una cuarta cinta)
- Símbolo actualmente leído (se puede usar una quinta cinta)

MUT de 5 cintas

Nota1: puede probarse que L_D pertenece a Co-RE, pues fácilmente se verifica que:

$$\overline{L_D} \in RE \quad (\overline{L_D} = \{w_i \in \Sigma^* / w_i \in L(M_i)\})$$

Para ello se construye una MT que utilizando una MTU acepta $\overline{L_D}$ ejecutando el código de M_i sobre w_i aceptando sii M_i acepta w_i . Recuérdese que el código $<M_i>$ de la MT M_i se obtiene fácilmente pues $<M_i>=w_i$

Nota 2: Además $\overline{L_D}$ no puede estar en R, ya que esto implicaría que L_D también esté en R (y ya sabemos que L_D no pertenece a RE). Por lo tanto $\overline{L_D} \in \text{RE} - \text{R}$.

Def.: se define L_u , el lenguaje universal, como: $L_u = \{(<M>, w) / M \text{ acepta } w\}$

Pregunta: $L_u \in RE$?

Rta.: claramente sí. Se puede construir M_u de la siguiente manera:

- 1) Si (<M>, w) no es un par válido parar en q_R
- 2) En caso contrario separar <M> de w
- 3) Si <M> es un código inválido parar en q_R
- 4) Simular M sobre w. Si M para en $q_A \Rightarrow M_u$ para en q_A . Si M para en $q_R \Rightarrow M_u$ para en q_R . Si M loopea $\Rightarrow M_u$ también loopea.

Claramente $L_u = L(M_u)$, por lo tanto $L_u \in RE$

$$\xi L_u \in \mathbb{R}$$
?

Se verá que no es cierto probando que $\overline{L_u} \notin RE$

$$L_u = \{(\langle M \rangle, w) / M \text{ acepta } w\} \text{ entonces} :$$

 $(\langle M \rangle, w) \in \overline{L_u} \text{ sii } (\langle M \rangle, w) \text{ no es un par válido o } \underline{M \text{ rechaza } w}$

Teorema: $\overline{L_u} \notin RE$

Dem.: se demuestra que si $\overline{L_u} \in RE \Rightarrow L_D \in RE$, lo cual es absurdo pues ya se vio que $L_D \notin RE$.

Si $\overline{L_u} \in RE \Rightarrow \exists MT \overline{M_u}$ que acepta $\overline{L_u}$, es decir que dada una entrada ($\langle M \rangle$, w) puede identificar que M rechaza w

Considerando que existe tal $\overline{M_u}$ se construye la MT M_D que acepta L_D de la siguiente manera:

- 1) M_D a partir de la entrada w genera el par w000w (recordar que $< M_i > = w_i$)
- 2) M_D simula $\overline{M_u}$ sobre w000w. M_D acepta w sii $\overline{M_u}$ acepta w000w

$$L_u = \{(\langle M \rangle, w) / M \text{ acepta } w\} \text{ entonces} :$$

 $(\langle M \rangle, w) \in \overline{L_u} \text{ sii } (\langle M \rangle, w) \text{ no es un par válido o } \underline{M \text{ rechaza } w}$

Si w es w, en nuestra numeración se tiene que:

 M_D acepta $w_i \Leftrightarrow \overline{M_u}$ acepta $< M_i > 000 w_i \Leftrightarrow M_i$ rechaza $w_i \Leftrightarrow w_i \in L_D$ De esta forma $L(M_D) = L_D$ lo que significa que $L_D \in RE$ Por lo tanto demostramos que si $\overline{L_u} \in RE \Rightarrow L_D \in RE$, Por contrarrecíproca se tiene que $L_D \notin RE \Rightarrow \overline{L_u} \notin RE$ y como ya se conoce que $L_D \notin RE$ se tiene que $\overline{L_u} \notin RE$ Corolario: $L_u \in (RE - R)$.

Inmediato pues ya sabemos que L_u está en RE y que L_u no puede estar en R pues ello implicaría que $\overline{L_u}$ también estuviese en R lo que sería un absurdo pues acabamos de demostrar que $\overline{L_u} \not\in RE$ Hasta acá se tiene entonces la siguiente situación:

Lenguaje del conjunto \mathscr{L} – (RE \cup CO-RE)

$$L = \{1w / w \in L_D\} \cup \{0w / w \notin L_D\}$$
$$L \in \mathcal{L} - (RE \cup CO-RE)$$

Demostración

Claramente $L \in \mathcal{L}$. Falta mostrar que $L \notin (RE \cup CO-RE)$, es decir que $L \notin RE$ y que $L \notin CO-RE$

a) Demostrar que $L \notin RE$

Vamos a demostrar que si $L \in RE$ entonces $L_D \in RE$ (absurdo, ya demostramos que $L_D \notin RE$) por lo tanto la hipótesis $L \in RE$ no puede ser cierta.

Si $L \in RE$ entonces existe una MT M que acepta L. Vamos a construir una MT M_D que acepte L_D trabajando de esta manera:

- 1) A partir de una entrada w genera la cadena 1w en la cinta
- 2) Simula M sobre 1w, respondiendo como M con entrada 1w

$L = \{1w \ / \ w \in L_D\} \cup \{0w \ / \ w \not\in L_D\}$

Veamos que $L_D = L(M_D)$

$$(1) w \in L_D \Rightarrow 1w \in L$$
 (por definición de L)

$$\Rightarrow$$
 M acepta 1w (porque M reconoce L)

$$\Rightarrow$$
 M_D acepta w (por construcción de M_D)

$$\Rightarrow w \in L(M_D)$$

(2)
$$w \notin L_D \Rightarrow 1w \notin L$$
 (por definición de L)

$$\Rightarrow$$
 M rechaza 1w (porque M reconoce L)

$$\Rightarrow$$
 M_D rechaza w (por construcción de M_D)

$$\Rightarrow w \notin L(M_D)$$

por el contra-recíproca $w \in L(M_D) \Rightarrow w \in L_D$

De (1) y (2)
$$w \in L_D \Leftrightarrow w \in L(M_D)$$
 Por lo tanto $L_D = L(M_D)$

Así se demostró que si $L \in RE \implies L_D \in RE$

Pero ya sabemos que $L_D \notin RE$ por lo tanto $L \notin RE$

b) Demostrar que $L \notin CO$ -RE

Vamos a demostrar que si $L \in \text{CO-RE}$ entonces $L_D \in \text{RE}$ (absurdo, ya demostramos que $L_D \notin \text{RE}$) por lo tanto la hipótesis $L \in \text{CO-RE}$ no puede ser cierta.

Si $L \in \text{CO-RE}$ entonces $\overline{L} \in \text{RE}$, entonces existe una MT \overline{M} que acepta \overline{L} . Vamos a construir una MT M_D que acepte L_D trabajando de esta manera:

- 1) A partir de una entrada w genera la cadena 0w en la cinta
- 2) Simula \overline{M} sobre 0w, respondiendo como \overline{M} con entrada 0w

42

$L = \{1w / w \in L_D\} \cup \{0w / w \notin L_D\}$

Prefijo

0*w*

 $\overline{\mathsf{M}}$

```
Veamos que L_D = L(M_D)
```

- $(1) w \in L_D \Rightarrow 0w \notin L$
- (por definición de *L*)

 $\Rightarrow \overline{M}$ acepta 0w

(porque $\overline{\mathbf{M}}$ reconoce $\overline{\mathbf{L}}$ y $0w \in \overline{\mathbf{L}}$)

W

 \Rightarrow M_D acepta w

(por construcción de M_D)

- $\Rightarrow w \in L(M_D)$
- $(2) w \notin L_D \Rightarrow 0w \in L$
- (por definición de *L*)

 $\Rightarrow \overline{M}$ rechaza 0w

(porque $\overline{\mathbf{M}}$ reconoce $\overline{\mathbf{L}}$ y $0w \notin \overline{\mathbf{L}}$)

 \Rightarrow M_D rechaza w

(por construcción de M_D)

 $\Rightarrow w \notin L(M_D)$

por el contra-recíproca $w \in L(M_D) \Rightarrow w \in L_D$

De (1) y (2) $w \in L_D \Leftrightarrow w \in L(M_D)$ Por lo tanto $L_D = L(M_D)$

Así se demostró que si $L \in \text{CO-RE} \implies L_D \in \text{RE}$

Pero ya sabemos que $L_D \notin RE$ por lo tanto $L \notin CO$ -RE

Por lo demostrado en a) y b) se tiene que

$$L \notin (RE \cup CO-RE)$$

► d ¬