Réseaux virtuels

cours@urec.cnrs.fr

Réseaux virtuels

- 1997 : Jean-Paul Gautier
- modifications
 - 1998 : Jean-Paul Gautier

- Evolution des réseaux
- Qu'est ce qu'un réseau virtuel (VLAN)
- Les VLANs et les standards
- Règles de "design"
- Administration des VLAN's

Evolution des ressources CPU

Evolution

– En 1980	Vax 780	1 Mips
– En 1996	IBM Power Station 590 11	7
	DEC 3000 model 800	138
	SUN SS20	89
	Intel Xpress Deskside	100

• Autorisent les applications distribuées

Evolution des applications

- Basées auparavant sur du texte, elles incluent maintenant la voix, les images, la vidéo
 - exemple : Mail avec MIME W W W
- De nouvelles exigences
 - Qualité de services (QoS)
 - Temps Réel ou Play-Back
 - Point à point ou Multipoint
 - Vidéoconférence, enseignement à distance, "kiosques"

Les réseaux partagés : contraintes

- Les sous-réseaux sont liés aux hubs
- Les utilisateurs sont groupés géographiquement
- Pas de sécurité sur un segment
- Plan d'adressage difficile
- La mobilité entraîne un changement d'addresse

La commutation

- Meilleur accès au média
 - bande passante dédiée,
 - moins de conflits d'accès
 - collisions réduites
- Le trafic est dirigé vers la station spécifiée
- Les "broadcast" sont diffusés plus vite
- L'évolutivité reste un problème

Le réseau local commuté

- Domaines de collisions réduits
- Intelligence dans le port du commutateur
- Les frontières physiques disparaissent
- Regroupement logique des utilisateurs
- Meilleur contrôle de la bande passante et des changements dans le réseau
- Centralisation de l'administration
- Routeur pour la communication inter-réseau

Technologies commutées

- Ethernet commuté 10/100 Mbps
- Gigabit Ethernet (IEE 802.3z)
- Token ring commuté 4/16 Mbps
- FDDI/CDDI commuté 100 Mbps

Caractéristiques communes

- Modes Half -Duplex & Full-Duplex
- Cut-Through & Store and Forward
- Commutateur = Pont multi-ports
- ATM (155 Mbps, 622 Mbps, 2.4 Gbps), circuit virtuel

Qu'est ce qu'un réseau virtuel

- Trois nécessités pour introduire le concept
 - Limiter les domaines de broadcast
 - Garantir la sécurité
 - Permettre la mobilité des utilisateurs

Une nouvelle manière d'exploiter la technique de la commutation pour donner plus de flexibilité aux réseaux locaux

c 'est un réseau logique

Qu'est ce qu'un réseau virtuel

Qu'est ce qu'un réseau virtuel

Le réseau virtuel (VLAN)

- Permet la gestion dynamique de la mobilité
- Permet a des utilisateurs géographiquement dispersés de partager des données
- Maintient la sécurité
- Conserve les domaines de broacast traditionnels des LANs
- Requiert une couche 3 pour la communication entre VLANs

Réseaux virtuels : Plusieurs types

Appartenance par port

- Association port-utilisateur Association port-segment
- Ne nécessite pas de recherche si fait par des ASICs
- Aucun paquet ne quitte son domaine
- Sécurité maximale entre VLANs
- Facilement contrôlable dans le réseau

Plusieurs VLANs par port?

Hub

- Quand plusieurs clients sont derrière le même port
- Nécessitent de rechercher les adresses
- Pas de filtarge des broadcasts sur les segments partagés
- Beaucoup d'administration

Réseaux virtuels : Plusieurs types

Appartenance par adresse MAC

- Filtrage requis
 - impact sur les performances
- Echange des tables d'adresses des VLANs entre les commutateurs
 - overhead dû à l'administration

Réseaux virtuels : Plusieurs types

1ère Génération de la technologie VLAN

2ère Génération de la technologie VLAN

VLANs de niveau 1

Groupe de segments

VLANs de niveau 2

Groupe d'adresses Mac

Vlan 1

0525de78ad2c 0a20487541ed 0b4cf246371d 12df467852ce Vlan 2

205678ae10a6 7247ef1dc52a 02602909a214 2084dcb1a705

Chaque adresse Mac appartient à un seul VLAN, Plusieurs VLAN par port autorisé

VLANs de niveau 3

Sous-réseau protocolaire (ex IP)

Vlan 1

Sous réseau IP 134.157.4

Vlan 2

Sous réseau IP 134.157.8

Appartenance par sous-réseau

Appartenance par sous-réseau

- Domaine de broadcast de niveau 2 automatiquement construit sur l'adresse de niveau 3.
- Pas d'administration manuelle des VLANs
- Uniquement avec les protocoles routables

- Simplicité des VLANs par port (statique)
- Facilité d'administration des VLANs par port (dynamique)
- Intérêt des VLANs par sous-réseau pour les protocoles routables et des VLANs par adresse MAC pour les protocoles non routables
- Administration centralisée

Utilisation des VLANs aujourd'hui

- Gestion du trafic broadcast et multicast
- Centralisation des serveurs
 - administration, sécurité
- Isolement de certaines applications
 - protection du "backbone"
- Administration centralisée
 - groupes logiques d'utilisateurs
 - contrôle de chaque utilisateur, chaque port, chaque commutateur

Evolutions

- Automatisation des déplacements, des ajouts, des changements
 - serveurs de configuration
 - enregistrement
 - base de données centralisée
 - requêtes de configuration des commutateurs basées sur les nouvelles adresses MAC enregistrées.

Contrôle

- services sur les VLANs liés aux applications
- accès basé sur des règles centralisées
- requiert de "l'intelligence" dans les équipements
- Réseaux de cellules ou de trames

Composants des VLANs

- Commutateurs
- Routeurs
- Serveurs
- Administration

VLAN et standards

Transparent Bridge

- Présence de ponts transparents aux stations.
- Toutes les décisions de routage, au niveau 2, sont exclusivement faites par les ponts.
- Un pont maintient une base de données pour l'aiguillage des trames : « Forwarding Data Base (FDB) »

IEE 802.1D Transparent Bridge

Transparent Bridge

- Autoapprentissage
 - à la mise en service : FDB vide
 - réception d'une trame
 - @ source et le port d'arrivée dans la FDB
 - port de transmission inconnu : copie de la trame sur tous les autres ports (mécanisme de *flooding*)
 - tous les segments sont concernés
 - => convergence rapide du processus (spanning tree)

IEE 802.1D Les boucles

Concepts

- BPDU
 - -Bridge protocol Data Unit
- Bridge Types
 - -Root Bridge
 - -Designated Bridge
- Port Types
 - -Root Port
 - –Designated Ports

Port States

- -Blocking
- -Listening
- -Learning
- -Forwarding

Spanning Tree

Root Bridge

Root Port

Designated Bridge

- Toujours le pont avec le plus court chemin vers le « root bridge »

Designated port

Spanning Tree

Port States

Spanning Tree Paramètres de configuration

• Paramètres réseau

-Hello interval

•Fréquence à laquelle un « designated port » envoie des BPDU, 2 s par défault.

-Forward delay

•Passage de l'état « listening, learning » à l'état « forwarding », 15 s par défault

-Max age

•Pseudo TTL pour les BPDU

Bridge priority (per bridge)

•Intervalle 1-32768, valeur par défaut 32768

Paramètres liés au port

-Port cost

- •Coût de transmission d'une trame sur un segment
- Path cost
 - coût total vers le « root bridge »
 - lors de l'envoi d'une BPDU, le « port cost »
 du port précédent qui a reçu la BPDU est ajouté
- •Par défaut : 1000/Débit en Mbps
 - •10 Base T = 100, 100 Base FX, FDDI = 10, ATM = 6

–Port priority

Spanning Tree

IEEE 802.10

- IEEE 802.10 correspond aux besoins de segmentation du trafic et de sécurité dans les réseaux LAN/MAN
 - à la base, gestion des Groupes Fermés d'Abonnés
- Indépendance vis à vis des équipements intermédiaires
- Son utilisation semble être limité à FDDI

IEEE 802.1p

- Extension de IEEE 802.1D pour le support dans les LANs "bridgés"
 - Classes de trafic
 - prioritisation du trafic dans les commutateurs
 - permettre le trafic temps réel dans les commutateurs
 - la priorité est alloué
 - au niveau MAC sur le protocole (ex 802.3)
 - au niveau des adresses MAC des entités
 - pas de QoS, pas de contrôle de flux
 - Filtrage dynamique du multicast
 - protocole GARP

Generic Attribute Registration Protocol

- identique à IGMP mais au niveau 2

Internet Group Management Protocol

IEEE 802.1Q Virtual Bridged Local Area network

- Standard VLAN pour des LAN commutés/bridgés
- Construit sur IEEE 802.1D et IEEE 802.1P
- Marquage des trames
 - Etiquette implicite
 - Pas d'étiquette dans la trame
 - Appartenante d'une trame à un VLAN basée sur son contenue (@MAC,@IP) et le port
 - Etiquette explicite
 - Etiquette dans la trame
- Supporte la prioritisation
- Draft Standard P802.1Q/D11

IEEE 802.1Q Virtual Bridged Local Area network

Trame IEEE 802.3

7 octets1 octet6 octets2 octets2 octets46 - 1500 octets4 octetsPréambuleSFD@ DEST@ SCELg DATADATAFCS

Etiquette explicite

Règles de design des VLAN

Questions?

- nombre d'utilisateurs ?
- plan du campus
- les utilisateurs qui partagent des données sont-ils géographiqement proches ?
- plan de câblage du campus
- les changements sont-ils le fait de départements ou d'utilisateurs isolés ?
- quel est le trafic sur le campus ?
- les ressources sont centralisées ou distribuées ?
- applications multimédia en perspectives ?

Le "backbone"

- Choix de la technologie
 - Fast ethernet
 - Gigabit ethernet
 - ATM 155 Mbps, 622 Mbps (PNNI Phase 1)
- Ne doit jamais être saturé
 - règle des 80/20
 - garantir un bon temps de réponse aux applications
- Liens multiples
 - répartition de charge
 - redondance
- Evolution et stabilité
 - Spanning Tree par VLAN

Les "broadcasts"

- Les broadcasts et les multicasts interrompent tous les matériels sur le réseau
 - traitement au niveau du CPU
- Taille d'un domaine de broadcast
 - IP < 500 stations
 - la classe C est un moyen pratique de limitation
 - -IPX < 300 stations
 - Appletalk < 200 stations

Accès à des serveurs d'applications

- Serveurs centralisés géographiquement
 - liaisons haut-débit
- Les groupes de travails, les services sont séparés logiquement avec des serveurs dédiés.
- Liens haut-débit pour interconnecter les VLANs
 - Le routage et la sécurité se font au niveau 3
- Architecture indépendante des technologies
 - LAN, ATM

Campus Architecture VLAN

- Commutateurs multi-niveaux L2-L3
- Contrôle par « Access Lists »
- Services haute-performance

Architecture VLAN

- Les utilisateurs sont membres d'un VLAN donné, indépendamment des déplacements physiques.
- Chaque VLAN peut avoir un jeu de règles de sécurité pour l'ensemble de ses membres.
- Aujourd'hui, le trafic est principalement local, les performances des commutateurs de niveau 3 ne sont pas requises.

Administration des VLANs

- Disposer d'outils graphiques
 - "Drag & drop" pour la configuration des ports
 - Suivi de configuration par VLAN
 - à travers le réseau
 - topologie par VLAN
 - Mise en oeuvre et configuration centralisées
 - Configuration des liens redondants basée sur des chemins préférentiels
 - Outils pour "régler" le réseau
 - problème de la visibilité dans les réseaux commutés

Administration des VLANs

