Reg. No.						

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, DECEMBER 2023 Fourth Semester

21MAB204T - PROBABILITY AND QUEUEING THEORY

(For the candidates admitted from the academic year 2021 - 2022 & 2022-2023) (Data books, tables, graph sheet to be provided)

Note	•
745	

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

(ii)	Part – B and Part - C should be answered in answer booklet.				
Time:	3 Hours	Max	. M	arks	s: 75
	$PART - A (20 \times 1 = 20Marks)$	Marks	BL	CO) PO
	Answer ALL Questions				
1	A random variable X has the following probability function. The value is X 0 1 2 3 4	of k 1	1	1	2
	P(X) k 2k 5k 7k 9k				
	(A) 2/24 (B) 21/24				
	(C) 7/12 (D) 1/24				
2	If k is a constant (non random variable) then E(k) is	1	1	1	2
	(A) k (B) 0	_	1	1	2
	(C) 1 (D) k^2				
3.	If $E(X^2) = 6$, $E(X) = 2$ then $Var(X)$ is	1 .	1	1	1
	(A) 2 (B) 4				
	(C) 6 (D) 8				9
4.	If F is the distribution function of a continuous random variable X and if a then $P(a \le X \le b)$	n b 1	1	1	2
	(A) $F(a)+F(a)$ (B) $aF(b)-bF(a)$				
	(C) $aF(b)+bF(a)$ (D) $F(b)-F(a)$				
5.	A coin is tossed 300 times. Find the mean of the binomial distribution.	1	2	2	1
	(A) 100 (B) 75	•			
	(C) 300 (D) 150				
6.	The moment generating function of Poisson distribution is	1	1	2	2
	(A) $e^{\lambda(1-e^t)}$ (B) $e^{\lambda(e^t-1)}$				
	(C) $e^{\left(e^{t}-1\right)}$ (D) $e^{-\lambda\left(e^{t}-1\right)}$			•	
	$e^{\left(\frac{1}{e}\right)}$				
7.	The mean of exponential distribution is	1			

(B) $\lambda/\lambda-t$

(D) $1/\lambda^2$

(A) λ

(C) 1/λ

8.	The normal curve is (A) Very flat	(B) Bell shaped symmetrical about	•	_		
	. ,	mean				
	(C) Very peaked	(D) Smooth			_	
9.	The conditional probability density	function of X given Y is	1	2	3	1
	(A) $f(x,y)f(x)$	(B) $f(x,y)f(y)$ (D) $\frac{f(x,y)}{f(y)}$				
	(C) $\frac{f(x,y)}{f(x)}$	(D) $f(x,y)$				
	f(x)	f(y)				
10	The coefficient of correlation lies be	tween	1	2	3	2
10.	(A) -1 and 1	(B) 0 and 1				
	(C) 0	(D) -1				
11.	If X and Y have join $f(x,y) = \begin{cases} k & xy, 0 < x < 1, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$	nt probability density function	1	1	3	2
	Find the value of k.					
	(A) 2	(B) 1				
	(C) 4	(D) 3				
12.	The Karl Pearson's coefficient of co	orrelation between X and Y is	1	2	3	1
	(A) $r(x,y) = \frac{\text{cov}(x,y)}{\sigma_x^2 \sigma_y^2}$	(B) $r(x,y) = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y}$				
	(A) $r(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x^2 \sigma_y^2}$ (C) $r(x,y) = \frac{\operatorname{cov}^2(x,y)}{\sigma_x \sigma_y}$	(D) $r(x,y) = \frac{\cot^2(x,y)}{\sigma_x^2 \sigma_y^2}$				
13	. What stands for 'c' in the queue m	odel (a/b/c:d/e)	1	2	4	1
15	(A) Queue discipline	(B) System capacity				
	(C) Number of server	(D) Service time				N
14	The interval between two consecudistribution.	tive arrival of a Poisson process follows	1	4	4	. 1
	(A) Binomial	(B) Uniform				
	(C) Normal	(D) Exponential				4 2
1:	5. The average waiting time of a comodel	ustomer in the system (M M 1:∞ FIFO) 1	1	. 4	4 2
	(A) <u>μ</u>	(B) <u>1</u>				
	$\lambda + \mu$	$\lambda - \mu$				
	(C) <u>1</u>	(D) $\frac{1}{\mu - \lambda}$				
	$\lambda + \mu$	$\mu - \lambda$	_		,	4 2
1	6. What is the mean of the Poisson p	rocess?	1		1	4 2
	(A) λ	(B) λt				
	(C) λ/t	(D) t/λ				

1 2 2 2

17.	A stochastic matrix P is said to be regular matrix if all the entries of p ^m for some m>0 are	1	2	5	1
	(A) Positive (B) Negative (C) Integer (D) Real				
18.	A state <i>i</i> is said to be non null persistent if its mean recurrence time list is (A) Finite (B) Infinite (C) Empty (D) 1	1	2	5	2
19.	The state i is said to be transient if the return to state i is uncertain if (A) $F_{ii}=0$ (B) $F_{ii}=1$ (C) $F_{ii}>1$ (D) $F_{ii}<1$	1	2	5	2
20.	In Markov analysis, state probabilities must (A) Sum to zero (B) Sum to one (C) Less than one (D) Greater than one	1	2	5	3
	$PART - B (5 \times 8 = 40 Marks)$				
	Answer ALL Questions	Marks	BL	CO	PO
21. a.	A fair die is tossed 720 times. Use Tchebycheff inequality to find a lower bound for the probability of getting 100 to 140 sixes.	8	4	1	2
b.	A discrete random variable X has the following probability distribution.	8	4	1	2
	 (i) Find the value of a (ii) Find P(X<3) (iii) Find P(0<x<3)< li=""> (iv) Find the distribution function of X </x<3)<>				
22. a.	In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and the variance of the distribution.	8	3	2	1
b	(OR) Fit a binomial distribution for the following data. Find the parameters of the distribution. x 0 1 2 3 4 5 6 Total f 5 18 28 12 7 6 4 80	8	4	2	2
23. a	The joint probability distribution of the random variables X and Y is given below. Y 1 2 3 4 5 6 0 0 0 2k 4k 4k 6k 1 4k 4k 8k 8k 8k 8k	8	3	3	1
	Find, (i) k (ii) the marginal probability distribution of X and Y (iii) $P(X \le 1 Y=2)$.)			

h	. Calculate the correlation coefficient for the following heights (in inches) of	. 8	4	2	2
J	fathers (X) and their sons (Y).	. 0	4	::	2
	X 22 26 29 30 31 31 34 35 Y 20 20 21 29 27 24 27 31				
24. a	. A departmental store has single cashier. During the rush hours, customers	8	3	4	2
	arrive at the rate of 20 customers per hour. The average number of customers				
	that can be processed by the cashier is 24 per hour. Calculate the following.				
	(i) What is the probability that the cashier is idle?				
	(ii) What is the average number of customers in the queuing system				
	(iii) What is the average time a customer spends in the system (iv) What is the average number of customers in the queue?				
	(iv) What is the average number of customers in the queue?				
	(OR)				
b.	There are 3 typists in an office. Each typist can type an average of 6 letter	8	4	4	1
	per hour. It letters arrive for being typed at the rate of 15 letters per hour				
	(1) What is the average number of letters waiting to be typed?				
	(ii) What is the average time a letter has to speed waiting and for being				
	typed?				
25. a.	A college study X has the following study habits. If he studies one night, he	8	3	5	2
	is 70% sure not to study the next night. If he does not study one night, he is	0	J.	,	2
	only 60% sure not to study the next night also. Find the transition probability				
	matrix and how often he studies in the long run.				
	\ -				
1_	(OR)				
ъ Ъ.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3	8	4	5	2
ъ.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 $\begin{bmatrix} 3/4 & 1/4 & 0 \end{bmatrix}$	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 $\begin{bmatrix} 3/4 & 1/4 & 0 \end{bmatrix}$	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 $\begin{bmatrix} 3/4 & 1/4 & 0 \end{bmatrix}$	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$.	8	4	5	2
b.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks)		4	5	
	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions	Marks	4 BL	СО	2
	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the		BL 3		
	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the ball to B and B always throws to C but C is just as likely to throw the ball to	Marks		СО	
	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the	Marks		СО	
26.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P(0) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the ball to B and B always throws to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition matrix and classify the states.	Marks		СО	
26.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the ball to B and B always throws to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition matrix	Marks 15	3	CO 5	PO 1
26.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P(0) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the ball to B and B always throws to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition matrix and classify the states. Marks obtained by 10 students in mathematics (X) and statistics (Y) are	Marks 15	3	CO 5	PO 1
26.	The transition probability matrix of a Markov chain $\{X_n\}$, $n=1,2,$ having 3 states 1,2,3 is $P = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 1/4 & 1/2 & 1/4 \\ 0 & 3/4 & 1/4 \end{bmatrix}$ and the initial distribution $P^{(0)} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ Find, (i) $P(X_2 = 2, X_1 = 1, X_0 = 2)$ (ii) $P(X_3 = 1, X_2 = 2, X_1 = 1, X_0 = 2)$. PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Three boys A, B, C are throwing a ball to each other. A always throw the ball to B and B always throws to C but C is just as likely to throw the ball to B as to A. Show that the process is Markovian. Find the transition matrix and classify the states. Marks obtained by 10 students in mathematics (X) and statistics (Y) are given below.	Marks 15	3	CO 5	PO 1

* * * * *