双序列比对

日期: 2022-11-2

实验者: 生信 2001 张子栋

MarkdownNotes/软件第2次作业.md at main · Bluuur/MarkdownNotes (github.com)

生物信息学原理/软件第2次作业.md·blur/MarkdownNotes - 码云 - 开源中国 (gitee.com)

实验内容与目的

- 序列比对工具 BLAST 在线版的使用
 - o Blastn, megablastn, dc megablastn
 - o Blastp, PSI-blast, PHI-blast
 - o blastx, tblastn, tblastx
 - 。 两序列比对 bl2seq
- 熟练使用序列相似性检索工具 BLAST 搜寻 NCBI 相关数据库
- 理解常用序列相似性检索工具 BLAST 的参数设置、结果解读与结果过滤
- 了解 BLAST 工具本地版的使用
- 了解 EBI 网站的序列相似性检索工具

实验流程和结果

- 1. 以大麦 MIo 基因 (Z83834) 为查询序列
 - 1. 用 Blastn 能在 nr/nt 数据库中检索到多少条与之同源的序列 (E-value<1e-30) ? 有多少条是禾本科中的?

■ 检索到 289 条

2. 换用 megablast 或 discontiguous megablast,观察检索结果的改变。

■ megablast, 结果为 64 条

■ discontiguous megablast, 结果为 129 条

3. 尝试修改 Blastn 的参数,观测对检索结果的影响。

■ 修改 Expect threshold 为 0.02, Word size 为 15

■ 得到 129 条结果

4. 找出 Mlo 基因的编码蛋白序列,用 Blastp 检索到的与 Mlo 蛋白同源的序列与用 PSI-Blast 检索到的同源序列是否有差别?

■ 打开第一个搜索结果

■ 跳转至 GenBank

- 复制氨基酸序列至 Blastp 搜索
- 二者结果不一致, PSI-blast 能利用初始 Blastp 得到的搜索结果, 构建 PSSM 进行迭代检索, 找出亲缘关系较远, 序列相似度较低的序列。

■ Blastp 结果

5. 使用 BlastX 预测 Mlo 基因的编码蛋白。

下载 FASTA 格式文件

blastn	blastp bl a	astx tblas	tn tblastx	Translated BLAST: blastx				
Forton On			BLAS	X search protein databases using a translated nucleotide query. more.				
Enter Qu	uery Sequence							
Enter acces	sion number(s), gi(s),	or FASTA sequer	nce(s) 😯 Clear	Query subrange ?				
TTCATGTTA	CAGGGATGAGACAAGTT GTCCCAATGTATAGCCA AATTTTTTACTGAGTC		GATTCGTACAAT	From				
Or, upload f	ile 选择文件	未选择文件	•					
Genetic cod	le Standard (*	1)		•				
Job Title		Z83834.1 H.vulgare mRNA for Mlo protein						
	o or more sequences ?	ptive title for your BLA	AST search 😯					
	Search Set							
Database	Non-redun	Non-redundant protein sequences (nr)						
Organism Optional		Enter organism name or id—completions will be suggested exclude Add organism enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.						
Exclude Optional	☐ Models (XM/XP) ☐ Non-redundant RefSeq proteins (WP) ☐ Uncultured/environmental sample sequences							
BLAS		base nr using Blasuults in a new window		databases using a translated nucleotide query)				
+ Algorit	+ Algorithm parameters							

■ 第一个结果预测编码蛋白相同

2. 用 bl2seq 分析大麦和小麦 Mlo 基因 mRNA 序列编码区和蛋白质产物的同源性

。 大麦氨基酸序列

/db_xre1= taxon:<u>112509</u> /chromosome="4H" <1..>1899 gene /gene="L0C123449793" /note="Derived by automated computational analysis using gene prediction method: Gnomon. Supporting evidence includes similarity to: 2 mRNAs, 35 ESTs, 26 Proteins, and 100% coverage of the annotated genomic feature by RNAseq alignments, including 41 samples with support for all annotated introns" /db_xref="GeneID: 123449793" CDS 208..1809 /gene="L0C123449793" /codon_start=1 /product="protein MLO" /protein_id="XP_044983060.1" /db_xref="GeneID: 123449793 /translation="MSDKKGVPARELPETPSWAVAVVFAAMVLVSVLMEHGLHKLGHW FQHRHKKALWEALEKMKAELMLVGFISLLLIVTQDPIIAKICISEDAADVMWPCKRGT EGRKPSKYVDYCPEGKVALMSTGSLHQLHVFIFVLAVFHVTYSVITIALSRLKMRTWK KWETETTSLEYQFANDPARFRFTHQTSFVKRHLGLSSTPGIRWVVAFFRQFFRSVTKV DYLTLRAGFINAHLSQNSKFDFHKYIKRSMEDDFKVVVGISLPLWGVAILTLFLDING VGTLIWISFIPLVILLCVGTKLEMIIMEMALEIQDRASVIKGAPVVEPSNKFFWFHRP DWVLFFIHLTLFQNAFQMAHFVWTVATPGLKKCYHTQIGLSIMKVVVGLALQFLCSYM TFPLYALVTQMGSNMKRSIFDEQTSKALTNWRNTAKEKKKVRDTDMLMAQMIGDATPS RGSSPMPSRGSSPVHLLHKGMGRSDDPQSAPTSPRTQQEARDMYPVVVAHPVHRLNPNDRRRSASSSALEADIPSADFSFSQG" ORIGIN

。 小麦氨基酸序列

CDS

100% coverage of the annotated genomic feature by RNAseq alignments, including 45 samples with support for all annotated introns"

/db_xref="GeneID: 100037642"

36..1640
/gene="L0C100037642"

/codon_start=1
/product="protein MLO isoform X2"
/protein_id="XP 044371495.1"
/db_xref="GeneID: 100037642"

/translation="MADDDEYPPARTI PETPSWAVALVEAVMITYSVILEHALHKIO"

/translation="MADDDEYPPARTLPETPSWAVALVFAVMIIVSVLLEHALHKLGH
WFHKRHKNALAEALEKIKAELMLVGFISLLLAVTQDPISGICISEKAASIMRPCKLPP
GSVKSKYKDYYCAKQGKVSLMSTGSLHQLHIFIFVLAVFHVTYSVIIMALSRLKMRTW
KKWETETASLEYQFANDPARFRFTHQTSFVKRHLGLSSTPGVRWVVAFFRQFFRSVTK
VDYLTLRAGFINAHLSHNSKFDFHKYIKRSMEDDFKVVVGISLPLWCVAILTLFLDID
GIGTLTWISFIPLVILLCVGTKLEMIIMEMALEIQDRASVIKGAPVVEPSNKFFWFHR
PDWVLFFIHLTLFQNAFQMAHFVWTVATPGLKKCFHMHIGLSIMKVVLGLALQFLCSY
ITFPLYALVTQMGSNMKRSIFDEQTAKALTNWRNTAKEKKKVRDTDMLMAQMIGDATP
SRGASPMPSRGSSPVHLLHKGMGRSDDPQSTPTSPRAMEEARDMYPVVVAHPVHRLNP
ADRRRSVSSSALDVDIPSADFSFSQG"

ORIGIN

。 在 Blastp 中比对

。 相似性为 88.18%

o mRNA 序列编码区的同源性

○ 下载 FASTA 文件

。 在 blastn 中比对

mRNA 序列编码区的同源性 为 91%

XM_044515560.1:263-1992 PREDICTED: Triticum aestivum protein MLO (LOC100037642), transcript variant X2, mRNA Sequence ID: Query_155863 Length: 1730 Number of Matches: 1

Score 2283	bits(12	Expect 0.0	Identities 1576/1740(91%)	Gaps 23/1740(1%)	Strand Plus/Plus
Query	173	,	, , ,	TGTCGGACAAAAAAGGGGT-GCC	·
Sbjet	1	CTCCGGACAAGGAAAG	AGGTTGCGCTCGG-GGACCGA	TGGCGGAC-GACGACGAGTACCC	58
Query	231	GGC-GCG-GGA-GCTG	CCGGAGACGCCGTCGTGGGCG	GTGGCGGTGGTCTTCGCCGCCAT	287
Sbjct	59	CCCAGCGAGGACGCTG	CCGGAGACGCCGTCCTGGGCG	GTGGCCCTCGTCTTCGCCGTCAT	118
Query	288	GGTGCTCGTGTCCGTC	CTCATGGAGCACGGCCTCCAC	AAGCTCGGCCATTGGTTCCAGCA	347
Sbjct	119	GATCATCGTGTCCGTC	CTCCTGGAGCACGCGCTCCAT	AAGCTCGGCCATTGGTTCCACAA	178
Query	348	CCGGCACAAGAAGGCC	CTGTGGGAGGCGCTGGAGAAG	ATGAAGGCGGAGCTCATGCTGGT	407
Sbjct	179	GCGGCACAAGAACGCG	CTGGCGGAGGCGCTGGAGAAG	ATCAAGGCGGAGCTCATGCTGGT	238
Query	408	GGGCTTCATATCCCTG	CTCCTCATCGTCACGCAGGAC	CCCATCATCGCCAAGATATGCAT	467
Sbjct	239	GGGCTTCATCTCGCTG	CTGCTCGCCGTGACGCAGGAC	CCCATC-TCCGGGATATGCAT	295
Query	468	CTCCGAGGATGCCGCC	GACGTCATGTGGCCCTGCAAG	CGCGGCACCGAGG-GCCG-CAAG	525
Sbjet	296	CTCCGAGAAGGCCGCC	AGCATCATGCGGCCCTGCAAG	C-TGCCCCCTGGCTCCGTCAAG	353
Query	526	CCCAGCAAGTACG	TTGACTACTGC-CCGGAGG	GCAAGGTGGCGCTCATGTCCACG	579
Sbjet	354	AGCAAGTACAAAG	ACTACTACTGCGCCAAACAGG	GCAAGGTGTCGCTCATGTCCACG	410
Query	580	GGCAGCTTGCACCAGC	TGCACGTCTTCATCTTCGTGC	TCGCGGTCTTCCATGTCACCTAC	639
Sbjct	411	GGCAGCTTGCACCAGC	TGCACATATTCATCTTCGTGC	TCGCCGTCTTCCATGTCACCTAC	470
Query	640	AGCGTCATCACCATAG	CTCTAAGCCGTCTCAAAATGA	GAACATGGAAGAAATGGGAGACA	699
Sbjet	471	AGCGTCATCATCATGG	CTCTAAGCCGTCTCAAAATGA	GAACCTGGAAGAAATGGGAGACA	530

- 3. 总结有哪些方法可以加快 Blast 检索速度? 有哪些方法可以降低 Blast 结果的假阳性?
 - o 加快 Blast 检索速度的方法有:
 - 1. 多线程进行 Blast
 - 2. 增大 word 的值
 - 3. 设置并限制比对方向
 - 。 降低 Blast 结果假阳性的方法有:

- 1. 屏蔽重复性的低复杂度区域
- 2. 选取 E-value 更小的结果
- 3. 更严苛的打分和罚分规则

讨论

BLAST 是一套在蛋白质数据库或 DNA 数据库中进行相似性比较的分析工具。BLAST 程序能迅速与公开数据库进行相似性序列比较。