1. Tabela de requisitos e especificações do sistema

Com base nas descrições do sistema foi levantada uma tabela de requisitos funcionais e não funcionais, listando exigências do projeto. Também foi construída uma tabela com as especificações de materiais para construção do projeto, como utilizamos o kit de desenvolvimento McLacb2 recomendamos a utilização do mesmo para obter desempenhos semelhantes.

Tabela de r	Tabela de requisitos		Tabela de especificações do sistema			
Requisitos f	Requisitos funcionais		- Uma placa de desenvolvimento FRDM-KL25Z			
- (R1) Determinar a temperatura	- (R1) Determinar a temperatura do resistor		- Display LCD 16x2			
- (R2) Exibir temperatura atual	- (R2) Exibir temperatura atual		- Quatro botões push-buttom			
- (R3) Fornecer uma interface lo	- (R3) Fornecer uma interface local para operação		- Comunicação serial RS-232			
- (R4) Manter o resistor na temp	- (R4) Manter o resistor na temperatura determinada		- Conversor AD com resolução mínima de 8 bits			
- (R5) Permitir controle por coma RS232	- (R5) Permitir controle por comando serial em uma interface RS232		- Díodo de silício como sensor de temperatura			
- (R6) Sintonizar e setar os contr temperatura	- (R6) Sintonizar e setar os controladores, antes de setar a temperatura		- Resistência de 5W68R como aquecedor			
- (R7) Setar uma temperatura er a resistência	ntra 0 e 90° para não queimar	- Componentes eletrônicos básicos				
Requisitos não	o funcionais	Obs: Alternativamente, todos esses hardwares podem ser encontrados no kit				
- (R1) Sistema deve aquecer o n	nais rápido possível	de desenvolvimento McLab2				
- (R2) Overshot máximo de 1°C						
- (R3) Exibir os valores de entrados definindo	da quando o usuária estiver					
- (R4) Manter o Duty Cycle do co	poler em 50%					
- (R5) Aqueceder o resistor o ma de um sistema de controle	ais rápido possível por meio					

2.1 Diagrama de casos de uso

Levando em conta as ações que o usuário aplica no sistema foi construído o seguinte diagrama de caso de uso.

Obs.:

O caso de exibir temperatura atual, deve ocorrer sempre que uma interrupção é finalizada, a fim de que sempre esteja disponível a temperatura atual para a visualização do usuário.

2.2 Diagrama de casos de cenário

Com base no diagrama de caso de usos, foram construídas 6 tabelas representando o cenário proposto para cada caso. Um caso para definir temperatura por botões, outro por comunicação serial, um para definir os ganhos por botões, outros 3 por comunicação serial, e um para cada get pela serial.

Caso de uso: Definir temperatura por botões	Caso de uso: Definir temperatura	por serial	Caso de uso: Ler temperatura por serial		
Atores: Usuário.	Atores: Usuário.		Atores: Usuário		
Pré-requisito: O usuário deve acionar a interrupção pressionando o botão 1.	Pré-requisito: O usuário deve enviar um comando por interface serial RS-232.		Pré-requisito: O usuário deve enviar um comando por interface serial RS-232.		
Descrição: Definir uma temperatura para o controle do sistema.	Descrição: Definir uma temperatura para o controle do sistema.		Descrição: Ler o valor de temperatura através da interface serial RS-232.		
Fluxo de Eventos Principais:	Fluxo de Eventos Principais:		Fluxo de Eventos Principais:		
Acionar a interrupção do botão correspondente à temperatura;	Verificar se o comando é de set ou get;		Verificar se o comando é de set ou get;		
2. Definir a temperatura desejada para o sistema;	2. Se for de set, verificar se a variável a ser setada é o 't' de temperatura;		2. Se for de get, verifica a variável desejada;		
3. Se ele pressionar o botão 2 aumenta a temperatura em 1°C;	3. Se a variável for 't', verifica o va	lor desejado para a definição	3. Se for 't', lê o valor de temperatura e atualiza resposta;		
4. Se ele pressionar o botão 3 aumenta a temperatura em 10° C;	 Aguarda a interrupção do controle para atualizar a temperatura e exibir no LCD; 		4. Envia a resposta através da interface serial;		
5. Se ele pressionar o botão 1 confirma a temperatura setada;			5. Aguarda a interrupção do controle para atualizar a temperatura e exibir no LCD;		
7. Aguarda a interrupção do controle para atualizar a temperatura e exibir;					
Caso de uso: Definir ganhos por botões	Caso de uso: Definir ganhos por	serial	Caso de uso: Ler ganhos por serial		
Atores: Usuário	Atores: Usuário		Atores: Usuário		
Pré-requisito: O usuário deve acionar a interrupção pressionando o botão 2	Pré-requisito: O usuário deve enviar um comando por interface serial RS-232.		Pré-requisito: O usuário deve enviar um comando por interface serial RS-232.		
Descrição: Definir os três ganhos para o controle do sistema	Descrição: Definir ganhos para o controle do sistema.		Descrição: Ler o valor dos ganhos através da interface serial RS-232.		
Fluxo de Eventos Principais:	Fluxo de Eventos Principais:		Fluxo de Eventos Principais:		
Acionar a interrupção do botão correspondente aos controladores	1. Verificar se o comando é de set ou get;		1. Verificar se o comando é de set ou get;		
2. Definir um controlador por vez	2. Se for de set, verifica a variável a ser setada;		2. Se for de get, verifica a variável a ser lida;		
3. Define e exibe Kp	3. Se for 'p', verifica o valor desejado e atualiza o Kp;		3. Se for 'p', lê o valor de Kp e atualiza a resposta;		
4. Se ele pressionar o botão 2 aumenta o K em 1°C;	4. Se for 'i', verifica o valor desejado e atualiza o Ki;		4. Se for 'i', lê o valor de Ki e atualiza a resposta;		
5. Se ele pressionar o botão 3 aumenta o K em 10°C;	5. Se for 'd', verifica o valor desejado e atualiza o Kd;		5. Se for 'd', lê o valor de Kd e atualiza a resposta;		
6. Se ele pressionar o botão 1 confirma o K setado;	Aguarda a interrupção do controle para atualizar a temperatura e exibir no LCD;		6. Envia a resposta através da interface serial;		
7. Repetir passos 3 a 6 para Ki			7. Aguarda a interrupção do controle para atualizar a temperatura e exibir no LCD;		
8. Repetir passos 3 a 6 para Kd					
9. Se ele pressionar o botão 1 atualiza todos os ganhos no sistema;					
10. Aguarda a interrupção do controle para atualizar a temperatura e exibir;					

3 Diagrama em blocos do Hardware

Analisando a estrutura do nosso projeto, construímos o diagrama em blocos a seguir, representando as conexões de hardware e os detalhes da placa FRDM-KL24.

4 Fluxograma do algoritmo

Construídos o fluxograma a seguir para representar o nosso algoritmo, não foram representadas todas as verificações de interrupção no meio do fluxo a fim de simplificar o diagrama.

5 Diagrama UML de Classes

Analisando nosso código, construímos o diagrama de classes, tentando representá-lo pelo paradigma de orientado a objetos.

6 Diagrama UML de Sequência

Com base no diagrama de classes e no diagrama de casos de uso, foram construídos 6 diagramas de sequência, um para cada caso de uso como no diagrama de cenários.

7 Diagrama UML de Máquina de Estados

A máquina de estados foi elaborada levando em conta quais estados o sistema terá em cada instante do programa, também não foram representadas as interrupções do controlador, pois elas podem ocorrer em qualquer estado.

Obs.:

Em todos os estados deve-se verificar se a interrupção do timer do PID foi adionada e trata-la, a fim de não perder a periodicidade de 100ms que o controlador precisa para funcioar. Para simplificar a máquina de estados e evitar a poluição visual, essa verificação foi removida do diagrama, mas está acontecendo no sistema.