

Theano 딥러닝 실습 1

2016.5.20 인지과학산업협회 튜토리얼 13 딥러닝 실습

Eun-Sol Kim

Biointelligence Laboratory

Department of Computer Science and Engineering

Seoul National Univertisy

http://bi.snu.ac.kr

개요

- 심층 컨볼루션 신경망(Deep Convolutional Neural Network)
 소개
- 다양한 딥러닝 프레임워크 비교 설명
- Theano의 특징 및 문법
 - Symbolic Variable
 - Shared Variable
- Theano 실습
 - Theano 기본 문법
 - Logistic Regression 구현
 - MLP 구현
 - Image classification
 - MNIST with CNN

Neural Network & Convolutional Neural Network

History of Neural Network Research

The New York Times

deep learning results

Unsupervised & Laver-wised pre-training

OIDODE VISE IL DIVER LIVER DIE CHAITING							
• Boostin	Rank	Name	Error rate	Description	ing (norm ilems		
IVECTIVOI	1	U. Toronto	0.15315	Deep Conv Net	P, HOG)		
	2	U. Tokyo	0.26172	Hand-crafted	ectures		
Y YIX	3	U. Oxford	0.26979	features and	CCCOTCS		
	4	Xerox/INRIA	0.27058	learning models. Bottleneck.			

Deep Networks Advance State of Artoin Speech ries

Classification Problem

- 데이터 x가 주어졌을 때 해당되는 레이블 y를 찿는 문제
 - ex1) x: 사람의 얼굴 이미지, y: 사람의 이름
 - ex2) x: 혈당 수치, 혈압 수치, 심박수, y: 당뇨병 여부
 - ex3) x: 사람의 목소리, y: 목소리에 해당하는 문장
- x: D차원 벡터, y: 정수 (Discrete)
- 대표적인 패턴 인식 알고리즘
 - Support Vector Machine
 - Decision Tree
 - K-Nearest Neighbor
 - Multi-Layer Perceptron (Artificial Neural Network; 인공신경망)

Perceptron (1/3)

http://cs231n.stanford.edu/slides/winter1516_lecture4.pdf

Perceptron (2/3)

Artificial Neural Networks

The Perceptron

Perceptron (3/3)

Parameter Learning in Perceptron

start:

The weight vector w is generated randomly **test**:

A vector $x \in P \cup N$ is selected randomly,

If $x \in P$ and $w \cdot x > 0$ goto <u>test</u>,

If $x \in P$ and $w \cdot x \le 0$ goto add,

If $x \in N$ and $w \cdot x < 0$ go to <u>test</u>,

If $x \in N$ and $w \cdot x \ge 0$ go to subtract.

add:

Set w = w+x, goto <u>test</u>

subtract:

Set w = w-x, goto <u>test</u>

Sigmoid Unit

Learning Algorithm of Sigmoid Unit

Loss Function $\begin{array}{c|c}
\text{Target} & \text{Unit} \\
\downarrow & \downarrow \\
\end{array}$ $\varepsilon = (d - f)^2$

Gradient Descent Update

$$\frac{\partial \varepsilon}{\partial \mathbf{W}} = -2(d - f) \frac{\partial f}{\partial s} \mathbf{X} = -2(d - f) \mathbf{f} (1 - f) \mathbf{X}$$

$$f(s) = 1/(1 + e^{-s})$$

$$f'(s) = f(s)(1 - f(s))$$

$$\mathbf{W} \leftarrow \mathbf{W} + c(d - f) f(1 - f) \mathbf{X}$$

Need for Multiple Units and Multiple Layers

- Multiple boundaries are needed (e.g. XOR problem)
- → Multiple Units
- More complex regions are needed (e.g. Polygons)
- → Multiple Layers

Structure	Regions	XOR	Meshed regions
single layer	Haif plane bounded by hyper- plane	A B B A	B
two layer	Convex open or closed regions	A B A	B
three layer	Arbitrary (limited by # of nodes)	A B B A	B

Structure of Multilayer Perceptron

Structure of Multilayer Perceptron (MLP; Artificial Neural Network)

Learning Parameters of MLP

- Loss Function
 - We have the same Loss Function
 - But the # of parameters are now much more (Weight for each layer and each unit)
 - To use Gradient Descent, we need to calculate the gradient for all the parameters
- Recursive Computation of Gradients
 - Computation of loss-gradient of the top-layer weights is the same as before
 - Using the chain rule, we can compute the loss-gradient of lower-layer weights recursively (Back Propagation)

Back Propagation Learning Algorithm (1/3)

■ Gradients of <u>top-layer</u> weights and update rule

$$\varepsilon = (d - f)^{2}$$

$$\frac{\P e}{\P W} = -2(d - f)\frac{\P f}{\P S}X = -2(d - f)f(1 - f)X$$

Gradient Descent update rule
$$W \leftarrow W + c(d - f)f(1 - f)X$$

Store intermediate value delta for later use of chain rule

$$O^{(k)} = \frac{\P e}{\P s_i^{(j)}} = (d - f) \frac{\P f}{\P s_i^{(j)}}$$
$$= (d - f) f (1 - f)$$

Back Propagation Learning Algorithm (2/3)

■ Gradients of <u>lower-layer</u> weights

Gradient Descent Update rule for lower-layer weights

$$\mathbf{W}_{i}^{(j)} \leftarrow \mathbf{W}_{i}^{(j)} + c_{i}^{(j)} \delta_{i}^{(j)} \mathbf{X}^{(j-1)}$$

Back Propagation Learning Algorithm (3/3)

Applying chain rule, recursive relation between delta's

$$\delta_i^{(j)} = f_i^{(j)} (1 - f_i^{(j)}) \sum_{l=1}^{m_{j+1}} \delta_i^{(j+1)} w_{il}^{(j+1)}$$

Algorithm: Back Propagation

- 1. Randomly Initialize weight parameters
- 2. Calculate the activations of all units (with input data)
- 3. Calculate top-layer delta
- 4. Back-propagate delta from top to the bottom
- 5. Calculate actual gradient of all units using delta's
- 6. Update weights using Gradient Descent rule
- 7. Repeat 2~6 until converge

Applications

- Almost All Classification Problems
 - Face Recognition
 - Object Recognition
 - Voice Recognition
 - Spam mail Detection
 - Disease Detection
 - etc.

Limitations and Breakthrough

Limitations

- Back Propagation barely changes lower-layer parameters (Vanishing Gradient)
- Therefore, Deep Networks cannot be fully (effectively) trained with Back Propagation

Breakthrough

- Deep Belief Networks (Unsupervised Pre-training)
- Convolutional Neural Networks (Reducing Redundant Parameters)
- Rectified Linear Unit (Constant Gradient Propagation)

Some Issues (1/3)

Stochastic Gradient Descent

Some Issues (2/3)

- Learning Rate Adaptation
- Momentum
- Weight Decay

Some Issues (3/3)

State-of-the-art optimization techniques on NN

Convolutional Neural Networks

Motivation

Idea:

- Fully connected 네트워크 구조는 학습해야할 파라미터 수가 너무 많음
- 이미지 데이터, 음성 데이터 (spectrogram)과 같이 각 feature들 간의 위상적, 기하적 구조가 있는 경우 Local한 패턴을 학습하는 것이 효과적

Structure of Convolutional Neural Network (CNN)

- Convolution과 Pooling (Subsampling)을 반복하여 상위 Feature 를 구성
- Convolution은 Local영역에서의 특정 Feature를 얻는 과정
- Pooling은 Dimension을 줄이면서도, Translation-invariant한 Feature를 얻는 과정

Convolution Layer

The Kernel Detects pattern:

Image

Convolved Feature

- The Resulting value Indicates:
 - How much the pattern matches at each region

Max-Pooling Layer

- The Pooling Layer summarizes the results of Convolution Layer
 - e.g.) 10x10 result is summarized into 1 cell

 The Result of Pooling Layer is Translation-invariant

Remarks

- Higher layer catches more specific, abstract patterns
- Lower layer catches more general patterns

Parameter Learning of CNN

- CNN is just another Neural Network with sparse connections
- Learning Algorithm:
 - Back Propagation on Convolution Layers and Fully-Connected Layers

Back Propagation \mathbf{C}_1 input feature maps feature maps feature maps output 14 x 14 28×28 2x25x5 convolution subsampling convolution subsampling feature extraction classification

Applications (Image Classification) (1/4)

Image Net Competition Ranking

(1000-class, 1 million images)

- 1. Clarifi (0.117): Deep Convolutional Neural Networks (Zeiler)
- 2. NUS: Deep Convolutional Neural Networks
- 3. ZF: Deep Convolutional Neural Networks
- 4. Andrew Howard: Deep Convolutional Neural Networks
- 5. OverFeat: Deep Convolutional Neural Networks
- 6. UvA-Euvision: Deep Convolutional Neural Networks
- 7. Adobe: Deep Convolutional Neural Networks
- 8. VGG: Deep Convolutional Neural Networks
- 9. CognitiveVision: Deep Convolutional Neural Networks
- 10. decaf: Deep Convolutional Neural Networks
- 11. IBM Multimedia Team: Deep Convolutional Neural Networks
- 12. Deep Punx (0.209): **Deep Convolutional Neural Networks**
- 13. MIL (0.244): Local image descriptors + FV + linear classifier (Hidaka et al.)
- 14. Minerva-MSRA: Deep Convolutional Neural Networks

ALL CNN!!

Applications (Image Classification) (2/4)

- 1989, CNN for hand digit recognition, Yann LeCun

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [Yann LeCun; LeNet]

Applications (Image Classification) (3/4)

■ Krizhevsky et al.: the winner of ImageNet 2012 Competition

Applications (Image Classification) (4/4)

- 2014 ILSVRC winner, ~6.6% Top 5 error

Example: VGG

19 layers 3x3 convolution pad 1 stride 1

i	mage
cc	mv-64
cc	жту-64
m	axpool
co	nv-128
co	nv-128
	axpool
co	mv-256
33	mv-256
7	акрооі
co	m-512
CO	mv-512
m	акрооі
co	mv-512
60	mv-512
m	акрооі
FC	-4096
FC	-4096
FC	-1000
-	ftmax

Application (Speech Recognition)

Theano

GPU 컴퓨팅의 필요성

- 다루는 문제의 복잡도가 증가할수록 모델이 커지고 보다 많은 연산이 요구됨
- 컨볼루션 연산, 통합 연산은 모두 행렬 연산
- CUDA를 사용하여 컨볼루션 신경망을 구현한 경우 CPU에 비해 약 10배 이상 속도 향상
 - AlexNet으로 ILSVRC 데이터 학습시 CUDA를 이용한 경우 약 4~5일 정도 소모됨

다양한 딥러닝 프레임워크

	기반 언어	CNN	CUDA	Symbolic 연산	기타 모델 지원
Decaf / Caffe a Berkeley Vision Project	C++, Protobuf	O	0		
torch	Lua	0	0		RNN 및 다양한 Optimizer 제공. 기타 기본 ML 라이브러리 제공
theano	Python	0	Ο	Ο	RBM, DBN, AE, LSTM 등 대부분의 딥러닝 모델. 일반적인 확장 가능
Keras	Python, Theano	Ο	Ο	Ο	RBM, DBN, AE, LSTM, GRU 등 최신 모델. 다양한 Activation과 Optimizer 제공
MatConvNet	MATLAB	0	0		

다양한 딥러닝 프레임워크

	Caffe	Torch	Theano	TensorFlow
Language	C++, Python	Lua	Python	Python
Pretrained	Yes ++	Yes ++	Yes (Lasagne)	Inception
Multi-GPU: Data parallel	Yes	Yes cunn. DataParallelTable	Yes	Yes
Multi-GPU: Model parallel	No	Yes fbcunn.ModelParallel	Experimental	Yes (best)
Readable source code	Yes (C++)	Yes (Lua)	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)

Theano

■ 개요

- LISA Lab에서 만든 Python 기반의 오픈소스 Package (http://deeplearning.net/software/theano/)
- Symbolic 연산 철학

■ 장점

- Symbolic 연산 철학으로 간결하고 빠르게 모델 구현 가능
- Symbolic 미분이 가능하므로 Back-Propagation 등을 직접 구현할 필요가 없음
- 동일한 코드를 CPU와 GPU에서 모두 사용 가능
- Python 기반이므로, numpy, scipy, matplotlib, ipython 등 다양한 python 패키지와의 연동 용이

단점

- 에러 메세지가 번잡한 편
- GPU연산의 경우 float만 지원

기본 Symbolic 연산

■ 예제: $y = 2x^2 + 5x$ 함수의 구현

일반적인 Python	Theano
def compute(x): $y=2*x^2+5*x$	x = T.scalar()
return y compute(2)	compute = theano.function([x], y) \leftarrow 컴파일 compute(2)

Symbolic 미분 연산

• 예제: $y = 2x^2 + 5x$ 함수의 미분

일반적인 Python	Theano	
def diff(x):	x = T.scalar()	
y=4*x+5	y = 2*pow(x,2)+5*x $y_prime = T.grad(y, x)$ \leftarrow Symbolic	미브
return y diff(2)	$diff = theano.function([x], y_prime)$	기스
	diff(2)	

사람이 직접 미분한 식을 입력해야 함 Symbolic 미분을 통해 자동으로 도함수가 계산됨

복잡한 Back-Propagation 계산을 직접 구현할 필요가 없음

GPU 연산 관련 문법: shared

- 기능
 - VRAM과 RAM 사이의 데이터 전송

- shared_var =
 theano.shared(numpy_array)
- numpy_array =
 shared_var.get_value()

GPU 연산 관련 문법: Givens

■ 기능: Symbolic 변수에 Shared 데이터를 대입

[예제] y = 2*x 일때, x에 10을 대입 계산하는 두 가지 구현 방법

- 방법1)
 - compute = theano.function([x], 2*x);
 - compute(10) ← 실행시 RAM→VRAM→GPU연산
- 방법2)
 - x_value = theano.shared(10)
 - compute = theano function([], 2*x, givens=[(x,x_value)]) ← 실행시 VRAM→GPU연산
 - compute()

GPU 연산 관련 문법: updates

■ 기능: GPU연산 결과를 이용해 Shared 데이터를 수정

- increase =
 theano.function([], x_val,
 updates=(x_val, x_val+1))
- increase() ← 실행시 RAM을 거치지 않고, GPU내에서 계속 x_val을 1씩 증가시킴

Theano Basic 실습

Logistic Regression

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left[-y^{(i)} \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Target Function

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient