Laboratorio de Repaso - Álgebra Lineal

13 de Febrero de 2025

1 Operaciones con Matrices y Determinantes

1.1 Inversa de una Matriz y Verificación

Dada la matriz:

$$F = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

La inversa de F se obtiene mediante la fórmula:

$$F^{-1} = \frac{1}{\det(F)} \operatorname{adj}(F)$$

Paso 1: Calcular el determinante de F

$$\det(F) = 1 \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} - 2 \begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} + 3 \begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix}$$
$$= 1(1 \cdot 0 - 4 \cdot 6) - 2(0 \cdot 0 - 4 \cdot 5) + 3(0 \cdot 6 - 1 \cdot 5)$$
$$= 1(0 - 24) - 2(0 - 20) + 3(0 - 5) = -24 + 40 - 15 = 1$$

Paso 2: Calcular la matriz adjunta de F

$$adj(F) = \begin{bmatrix} -24 & 20 & -5 \\ -18 & 15 & -2 \\ 5 & -4 & 1 \end{bmatrix}$$

Paso 3: Obtener F^{-1}

$$F^{-1} = \begin{bmatrix} -24 & 20 & -5 \\ -18 & 15 & -2 \\ 5 & -4 & 1 \end{bmatrix}$$

Paso 4: Verificar que $FF^{-1} = I$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix} \begin{bmatrix} -24 & 20 & -5 \\ -18 & 15 & -2 \\ 5 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.2 Demostración de $det(AB) = det(A) \cdot det(B)$

Dado que cualquier matriz A se puede escribir como producto de matrices elementales:

$$A = E_1 E_2 \dots E_k.$$

Usando la propiedad demostrada en matrices elementales:

$$\det(AB) = \det(E_1 E_2 \dots E_k B).$$

Aplicando la propiedad recursivamente:

$$\det(AB) = \det(E_1) \det(E_2) \dots \det(E_k) \det(B).$$

Dado que el determinante es multiplicativo para matrices elementales:

$$\det(A) = \det(E_1) \det(E_2) \dots \det(E_k),$$

finalmente obtenemos:

$$\det(AB) = \det(A) \cdot \det(B).$$

2 Sistemas de Ecuaciones Lineales

2.1 Método de Gauss-Seidel

Dado el sistema de ecuaciones:

$$4x - y + z = 7$$
$$-2x + 4y - 2z = 1$$
$$x - y + 3z = 5$$

2.2 Transformación a Forma Iterativa

Despejamos cada variable:

$$x = \frac{7+y-z}{4}$$
$$y = \frac{1+2x+2z}{4}$$
$$z = \frac{5-x+y}{3}$$

2.3 Iteraciones

Usamos valores iniciales $x_0 = 0$, $y_0 = 0$, $z_0 = 0$ y aplicamos iteraciones:

Iteración 1:

$$x_1 = \frac{7+0-0}{4} = 1.75$$

$$y_1 = \frac{1+2(1.75)+2(0)}{4} = 1.125$$

$$z_1 = \frac{5-1.75+1.125}{3} = 1.458$$

Iteración 2:

$$x_2 = \frac{7 + 1.125 - 1.458}{4} = 1.666$$

$$y_2 = \frac{1 + 2(1.666) + 2(1.458)}{4} = 1.812$$

$$z_2 = \frac{5 - 1.666 + 1.812}{3} = 1.715$$

Se repiten iteraciones hasta alcanzar la convergencia.

3 Sistema Homogéneo

Dado el sistema:

$$x + 2y + 3z = 0$$
$$2x + 4y + 6z = 0$$
$$3x + 6y + 9z = 0$$

3.1 Forma Matricial

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

La segunda y tercera ecuación son múltiplos de la primera, lo que indica infinitas soluciones.

3.2 Solución General

Expresamos en términos de parámetros:

$$x = -2y - 3z$$
$$y = y$$
$$z = z$$

Por lo tanto, la solución general es:

$$(x, y, z) = y(-2, 1, 0) + z(-3, 0, 1)$$

Esto indica que las soluciones forman un subespacio de dimensión 2.

4 Base y Dimensión del Subespacio

Dado el conjunto de vectores:

$$S = \{(1, 2, 3), (2, 4, 6), (3, 6, 9)\}$$

Construimos la matriz:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

Aplicamos reducción por filas:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

El rango de la matriz es 1, por lo que la base del subespacio es:

$$B = \{(1, 2, 3)\}$$

Y la dimensión del subespacio es 1.

5 Autovalores y Autovectores

Dada la matriz:

$$G = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

Calculamos la ecuación característica:

$$\begin{vmatrix} 5 - \lambda & -2 \\ -2 & 5 - \lambda \end{vmatrix} = 0$$

Expandiendo el determinante:

$$(5-\lambda)^2 - 4 = 0$$

Resolviendo la ecuación cuadrática:

$$\lambda^2 - 10\lambda + 21 = 0$$

$$\lambda = \frac{10 \pm \sqrt{16}}{2} = \{7, 3\}$$

Para $\lambda_1 = 7$:

$$\begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x = -y \Rightarrow v_1 = k_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Para
$$\lambda_2 = 3$$
:

$$\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x = y \Rightarrow v_2 = k_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Los autovalores y autovectores son:

$$\lambda_1 = 7, \quad v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_2 = 3, \quad v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

6 Análisis de Componentes Principales (PCA)

El PCA reduce la dimensionalidad transformando los datos en nuevas variables llamadas componentes principales.

6.1 Representación Matricial de los Datos

Los datos se organizan en una matriz X donde cada fila es una observación y cada columna una variable:

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$$

6.2 Cálculo de la Matriz de Covarianza

$$C = \frac{1}{n} X_{\text{centrado}}^T X_{\text{centrado}}$$

6.3 Autovalores y Autovectores

$$\det(C - \lambda I) = 0$$

Los autovalores indican la varianza capturada y los autovectores representan las direcciones principales.

6.4 Proyección en las Componentes Principales

$$X' = X_{\text{centrado}} V_k$$

Este paso reduce la dimensionalidad manteniendo la mayor información posible.

7 Descomposición en Valores Singulares (SVD)

Dada la matriz:

$$H = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$$

7.1 Definición de la Descomposición

$$H = U \Sigma V^T$$

Donde U y V son matrices ortogonales, y Σ es diagonal con los valores singulares.

7.2 Cálculo de H^TH

$$H^{T}H = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}^{T} \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 13 & 7 \\ 7 & 5 \end{bmatrix}$$

Resolviendo $det(H^TH - \lambda I) = 0$ encontramos los valores singulares.

8 Uso del Álgebra Lineal en Aprendizaje Profundo

8.1 Representación de Datos

En redes neuronales, los datos se representan como tensores y se transforman mediante multiplicaciones matriciales.

8.2 Cálculo de Pesos y Optimización

Se minimiza la función de costo con gradiente descendente, que depende del cálculo de derivadas y la inversa de matrices.

8.3 Reducción de Dimensionalidad en IA

PCA y SVD ayudan a preprocesar datos, eliminando redundancias, y se usan en compresión de imágenes y reducción de ruido.