

15.
$$x^2y_{xx}'' + axy_x' + (bx^n + c)y = 0$$
, $n \neq 0$.

The case b = 0 corresponds to the Euler equation 2.12.

For $b \neq 0$, the solution is:

$$y = x^{\frac{1-a}{2}} \left[C_1 J_{\nu} \left(\frac{2}{n} \sqrt{b} \, x^{\frac{n}{2}} \right) + C_2 Y_{\nu} \left(\frac{2}{n} \sqrt{b} \, x^{\frac{n}{2}} \right) \right],$$

where $\nu = \frac{1}{n}\sqrt{(1-a)^2-4c}$; C_1 and C_2 are arbitrary constants; $J_{\nu}(z)$ and $Y_{\nu}(z)$ are the Bessel functions of the first and second kind.

References

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition,* Chapman & Hall/CRC, Boca Raton, 2003.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0215.pdf