GEOMETRÍA

Chapter 11

Sesión 1

3th SECONDARY

Cuadriláteros

MOTIVATING | STRATEGY

CUADRILÁTEROS

<u>Definición</u>: Es aquella figura que resulta de la reunión de 4 segmentos de recta unidos en sus extremos de tal forma que cualquier par de ellas no es colineal.

- VÉRTICES: A; B; C y D
- LADOS: AB; BC; CD y DA

TEOREMAS

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$\omega + \gamma + \psi + \delta = 360^{\circ}$$

Teorema

$$y = \frac{\beta - \alpha}{2}$$

Teorema

$$x = \frac{\alpha + \beta}{2}$$

CLASIFICACIÓN DE LOS CUADRILÁTEROS

TRAPEZOIDE

Es aquel cuadrilátero convexo que no tiene lados opuestos paralelos.

TRAPECIO

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos, llamados bases.

Teoremas

△ ABCD: Trapecio

1. María observa el farol de la casa de su abuela y se percata que las ventanas tienen forma de trapecio isósceles. Halle el valor de x.

Resolución:

- Piden: x
- Del gráfico:

$$2x + 3x = 180^{\circ}$$

$$5x = 180^{\circ}$$

$$x = 36^{\circ}$$

2. Halle el valor de x.

Resolución:

- Piden: x
- En ABCD:

10x + 6x + 2
$$\alpha$$
 + 2 β = 360°
12x + 2 α + 2 β = 380°
8x + α + β = 180°
 α + β = 180° - 8x

En AICD:

3. Halle el valor de x, si BC // AD // PQ.

RESOLUCIÓN

- Piden: x
- ABCD: trapecio
- \overline{PQ} es base media.
- Aplicando teorema:

$$PQ = \frac{17+7}{2}$$

$$PQ = 12$$

⊿PRQ: notable de 30° y 60°

$$x = 6 u$$

HELICO | PRACTICE

4. Si BC // AD y CM = MD, calcule BM.

△ABCD: Trapecio

MN: Base media

 $\overline{AD} // \overline{BC} // \overline{MN}$

RESOLUCIÓN

- ABCD: trapecio
- Trazamos NM // AD
- NM: base media

$$NM = \frac{4+6}{2} = 5$$

△BNM: isósceles

$$BM = NM$$

$$BM = 5 u$$

5. Las bases de un trapecio se diferencian en 6 u y la longitud de la mediana es igual a 8 u. Halle la longitud de la base menor.

RESOLUCIÓN

- ABCD: trapecio
- BC // AD (bases)
- \overline{MN} : mediana ($\overline{MN} = 8$)
- Aplicando teorema:

$$8 = \frac{b+b+6}{2}$$

$$16 = 2b + 6$$

$$10 = 2b$$

$$5 = b$$

$$BC = 5 u$$

6. Halle el valor de x, si QT = TR.

RESOLUCIÓN

- Trazamos $\overline{QP} \perp \overline{YA}$ y $\overline{RS} \perp \overline{YA}$
- △YQP: notable de 45° y 45°
- ⊿RSA: notable de 30° y 60°
- PQRS: trapecio
- TL: base media
- Aplicando teorema de la base media:

$$6 = \frac{2x + x}{2}$$

$$12 = 3x$$

x = 4 u

HELICO | PRACTICE

7. Halle la longitud del segmento que une los puntos medios de las diagonales del trapecio mostrado.

RESOLUCIÓN

- Trazamos la altura CH
- ∠ CHD: notable de 45° y 45°
- ABCH es un rectángulo
- AP = PC y BQ = QD
- Por teorema:

$$x = \frac{b+10-b}{2}$$

$$x = 5$$

PQ = 5 u