Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Физика с элементами компьютерного моделирования»

ДОМАШНАЯ РАБОТА №1

Вариант 5

Выполнил:
Суханкулиев Мухаммет,
студент группы N3246
Aberlo
(подпись)
Проверил:
Бочкарев Михаил Эдуардович,
инженер, физический факультет
(отметка о выполнении)
(подпись)

Санкт-Петербург 2025 г.

СОДЕРЖАНИЕ

1		Задача 1	4		
	1.1	Условие			
	1.2	Дано	4		
	1.3	Решение	4		
2		Задача 2	6		
	2.1	Условие	6		
	2.2	Дано	6		
	2.3	Решение	6		
3		Задача 3	7		
	3.1	Условие	7		
	3.2	Дано	7		
	3.3	Решение	7		
4		Задача 4	8		
	4.1	Условие	8		
	4.2	Дано	8		
	4.3	Решение	8		
C	Список использованных источников				

1.1 Условие

Самолет пролетает над аквалангистом, погрузившимся на небольшую глубину водоема, на высоте 3 км. Какой покажется высота полета самолета аквалангисту?

1.2 Дано

$$H=3\,$$
 км $n_{ ext{воздух}}pprox 1, n_{ ext{вода}}=rac{4}{3}$ $h-?$

Рисунок 1 – Самолет и аквалангист

1.3 Решение

Для луча I (реального):

$$tg\alpha_1 = \frac{c}{H}$$

Для луча II (кажущийся):

$$tg\alpha_2 = \frac{c}{h}$$

Отсюда:

$$\frac{tg\alpha_1}{tg\alpha_2} = \frac{c}{H} \cdot \frac{h}{c} = \frac{h}{H}$$

Из условия, так как самолет пролетает **над** аквалангистом следует, что углы α_1 и α_2 малы. А для малых углов:

 $tg\alpha \approx sin\alpha$

Поэтому:

$$\frac{\sin\alpha_1}{\sin\alpha_2} = \frac{h}{H}$$

Из закона Снеллиуса:

$$n_1sinlpha_1=n_2sinlpha_2=>rac{sinlpha_1}{sinlpha_2}=rac{n_2}{n_1}$$
, где $n_1=n_{ ext{воздух}}$, $n_2=n_{ ext{вода}}$

Из двух уравнений для $\frac{sin\alpha_1}{sin\alpha_2}$:

$$rac{h}{H} = rac{n_{ ext{вода}}}{n_{ ext{воздух}}} => h = rac{n_{ ext{вода}}H}{n_{ ext{воздух}}}$$

$$\boldsymbol{h} = \frac{4}{3} \cdot 3 \text{ км} = \boldsymbol{4} \text{ км}$$

Ответ:

Высота полета самолета покажется аквалангисту $h=4\ \mathrm{km}.$

2.1 Условие

Луч света выходит из скипидара в воздух. Предельный угол полного внутреннего отражения для этого луча 42°23'. Чему равна скорость распространения света в скипидаре?

2.2 Дано

Луч света:
$$c \approx 299\ 792\ 458\ \text{м/c}$$

$$\varphi_{crit} = 42^{\circ}23'$$

$$v_{\text{скипидар}} - ?$$

Рисунок 2 – Предельный угол

2.3 Решение

Найдем показатель преломления скипидара ($n_{\text{воздух}} \approx 1$):

Предельный угол полного внутреннего отражения:

$$arphi_{crit} = rcsin\left(rac{n_2}{n_1}
ight) => n_1 = rac{n_2}{\sin(arphi_{crit})}$$
, где $n_1 = n_{ ext{ckuпuдap}}; \; n_2 = n_{ ext{воздух}},$ тогда $n_{ ext{ckuпuдap}} = rac{1}{\sin(42^\circ23')} pprox 1.4835$

(из таблиц в интернете $n_{\text{скипидар}} = 1.46 - 1.51$)

Так же показатель преломления можно выразить через скорость света в веществе v и скорость света в вакууме c:

$$n=rac{c}{v}=>v=rac{c}{n}$$
, то есть $v_{ ext{cкипидар}}=rac{c}{n_{ ext{cкипидар}}}$, тогда $v_{ ext{cкипидар}}=rac{299792458 ext{ м/c}}{1.4835}pprox \mathbf{2.0209\cdot 10^8} ext{ м/c}$

Ответ:

Скорость распространения света в скипидаре равна $v_{\text{скипидар}} \approx 2.0209 \cdot 10^8 \text{ м/с.}$

3.1 Условие

Определить радиусы кривизны симметричной двояковыпуклой линзы, сделанной из стекла с показателем преломления 1.52, если фокусное расстояние линзы равно 12.5 см.

3.2 Дано

$$n = 1.52$$

$$f = 12.5$$
 см

Симметричная двояковыпуклая линза => Радиусы кривизны равны по модулю:

$$R_1 = -R_2 = R - ?$$

Рисунок 3 — Симметричная двояковыпуклая линза

3.3 Решение

Формула тонкой линзы:

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

В нашем случае:

$$\frac{1}{f} = (n-1)\left(\frac{2}{R}\right)$$

Выразим R:

$$R = 2fn - 2f$$

$$R = 2 \cdot 12.5 \text{ cm} \cdot 1.52 - 2 \cdot 12.5 \text{ cm} = 13 \text{ cm}$$

Ответ:

Радиусы кривизны симметричной двояковыпуклой линзы R=13 см.

4.1 Условие

Система состоит из двух собирающих тонких линз. Если оставить только первую линзу, то она дает увеличение предмета в два раза. Если оставить только вторую линзу, то она дает увеличение предмета в четыре раза. Расстояние от предмета до линзы не изменяется. Найти увеличение, даваемое обеими линзами, сложенными вместе.

4.2 Дано

$$\Gamma_1 = 2$$

$$\Gamma_2 = 4$$
 $d = const$

$$\Gamma - ?$$

Рисунок 4 — Система из двух собирающих тонких линз

4.3 Решение

Формула тонкой линзы:

$$\frac{1}{d} + \frac{1}{f} = \frac{1}{F} = D \implies f = -\frac{d}{1 - dD}$$

Выразив f, имеем выражение для Γ ($\Gamma = \frac{f}{d}$):

$$\frac{1}{\Gamma} = \frac{d}{d/(dD-1)} = dD - 1$$

Тогда:

$$\frac{1}{\Gamma_1} = D_1 d - 1, \qquad \frac{1}{\Gamma_2} = D_2 d - 1$$

Оптическая сила линз, сложенных вместе равна $D = D_1 + D_2$ и увеличение:

$$\frac{1}{\Gamma} = (D_1 + D_2)d - 1$$

Выразим D_1 и D_2 через Γ_1 и Γ_2 :

$$D_1 = \left(\frac{1}{\Gamma_1} + 1\right)\frac{1}{d}, \qquad D_2 = \left(\frac{1}{\Gamma_2} + 1\right)\frac{1}{d}$$

Тогда

$$\frac{1}{\Gamma} = \frac{1}{\Gamma_1} + \frac{1}{\Gamma_2} + 1 = \frac{\Gamma_1 \Gamma_2 + \Gamma_1 + \Gamma_2}{\Gamma_1 \Gamma_2}$$

$$\Gamma = \frac{\Gamma_1 \Gamma_2}{\Gamma_1 \Gamma_2 + \Gamma_1 + \Gamma_2}$$

$$\Gamma = \frac{2 \cdot 4}{2 \cdot 4 + 2 + 4} = \frac{8}{14} = \frac{4}{7}$$

Ответ:

Увеличение, даваемое обеими линзами, сложенными вместе $\Gamma = \frac{4}{7}$, то есть изображение уменьшится.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Bochkarev M. – 2025. – Семинары по курсу: Физика с элементами компьютерного моделирования.