	Differences	Moving Average	**************************************	Reverse	Sort	<u>G</u> roup	Transformation		Fynand Wariables	Contract Variables	Merge	<u>J</u> oin		Missing Values	Information	Data Analysis Data Plot Build_EQS
	.000	.000			000	.000	.000	1.0000	1000	.000	1.000	.000	1.000	_	is Ie	EQS Window
	2.0000	2,000	1.000	2.0000	1.000	2.000	1.000	1.0000	1.0000	2,0000	1.000	1,000	2.0000	Į s	E	~ 唱
Other Principal Control of the Contr	1,000	2,000	2.0000	1.0000	1.0000	1.000	1.0000	4.0000	1.0000	1.000	1.00	1,000	1.0000	Si	N N	
THE COLUMN TWO IS NOT	1.000	1.88	1.000	4.000	4.0000	3,000	1.000	3.000n	1.00	1.00	1.88	1.000	1.00on	S		

Information option. FIG. 5.3. Open .ess file with Data drop-down menu showing

	94	5	VA.	3	BDI-1	List of Variables;	NO. OI Mark	Number of Cases =	Number of \	c:\eqs61\ii	Data File Name:		
	(<u>\$</u>					bles:	No. 01 Marked Cases = 0	Jases =	Number of Variables = 21	c:\eqs61\files\books\data\bdigirl.ess	ame:		i
			t.	š v	Numeric	Variable Type		321	21	ta\bdigirl.es			9.0
data		venda	discharge and the same of the		1	ype		ČF	Ca Vol	oK			ν4
eficen	- Wielensch	4400000		Code	Catego	ĺ	BDI-2	Variable Name:	idhle and Co	1.0	10	1.0	15
				Name	Lategorical Variable		Moderation of the second	ine.	and Code Name Editing			William Control of the Control of th	V6
		ŀ,			r.) 			ing	1.0000	1.000	1.0000	
					Callegi		8		X		1.0000	1.0000	A

FIG. 5.4. Define Variables and Group Names dialog box with Variable and Code Name Editing dialog box.

THE MEASURING INSTRUMENT UNDER STUDY

using Save As with a meaningful file name. all variables in the complete data set have been relabeled. The ESS, file is saved the label has already been edited to read as BDI-2. This process continues until been changed to BDI-1. The variable undergoing change in Fig. 5.4 is V2, and name. For example, review of Fig. 5.4 shows that the variable V1 label has already

amining the input file related to the hypothesized model of BDI structure (see categorically coded variables, it is important to address these issues before exvolved, and (c) the intent, in this chapter, to illustrate analysis of data based on SEM field, (b) the importance of acquiring an understanding of the issues inthe pros and cons of doing so. Given (a) the prevalence of this practice in the data as if they were continuous, however, has been ongoing debate concerning well as SEM analyses. Paralleling this widespread practice of treating ordinal and applies to traditional statistical techniques (e.g., ANOVA and MANOVA) as if they were continuous. Indeed, such practice has been the norm for many years tically represent categorical data of an ordinal scale, albeit they were treated as chapters, however, the observed variables were Likert-scaled items that realisprocedures is that the scale of the observed variables is continuous. In both estimation (see chap. 4). An important assumption underlying both estimation based on maximum likelihood (ML) estimation (see chap. 3) and Robust MI Analysis of Categorical Data. Thus far in this book, analyses have been

as Continuous Variables Categorical Variables Analyzed

issues associated with this customary practice are briefly reviewed in the next the known limitations associated with available alternative estimation strategies timation of parameters using ML procedures (see, e.g., Breckler, 1990). Given search, at least) reveals most to be based on Likert-type scaled data with es-(described later), however, this common finding is not surprising. The primary Review of SEM applications during the past 15 years (in psychological re-

attenuation occurs with variables having fewer than five categories and those exings. First, Pearson correlation coefficients appear to be higher when computed & Kaplan, 1985), West and colleagues (1995) reported several important findhibiting a high degree of skewness—the latter condition being made worse by variables restructured with an ordered categorical scale. However, the greatest between two continuous variables than when computed between the same two (see, e.g., Babakus, Ferguson, & Jöreskog, 1987; Boomsma, 1982; and Muthén variables skewed in opposite directions (i.e., one variable positively skewed, the The Issues. From a review of Monte Carlo studies that addressed this issue

other negatively skewed; see Bollen & Barb, 1981). Second, when categorical variables approximate a normal distribution, (a) the number of categories has little effect on the χ^2 likelihood ratio test of model fit. Nonetheless, increasing skewness—particularly differential skewness (i.e., variables skewed in opposite directions)—leads to increasingly inflated χ^2 values: (b) factor loadings and factor correlations are only modestly underestimated. However, underestimation becomes more critical when there are fewer than three categories, skewness is greater than 1.0, and differential skewness occurs across variables; (c) error variance estimates, more so than other parameters, appear to be most sensitive to the categorical and skewness issues noted in (b); and (d) standard error estimates for all parameters tend to be too low, with this result being more so when the distributions are highly and differentially skewed (see Finch, West, & MacKinnon, 1997).

In summary, the literature to date appears to support the notion that when the number of categories is large and the data approximate a normal distribution, failure to address the ordinality of the data is likely to be negligible (Atkinson, 1988; Babakus et al., 1987; and Muthén & Kaplan, 1985). Indeed, Bentler and Chou (1987, p. 88) argued that given normally distributed categorical variables, "continuous methods can be used with little worry when a variable has four or more categories." More recent findings support these earlier contentions and have further shown that the χ^2 statistic is influenced most by the two-category response format and becomes less so as the number of categories increases (Green, Akey, Fleming, Hershberger, & Marquis, 1997).

Categorical Variables Analyzed as Categorical Variables

The Theory. In addressing the categorical nature of observed variables, the researcher automatically assumes that each has an underlying continuous scale. As such, the categories can be regarded as only crude measurements of an unobserved variable that, in truth, has a continuous scale (Jöreskog & Sörbom, 1993) with each pair of thresholds (or initial scale points) representing a portion of the continuous scale. The crudeness of these measurements arises from the splitting of the continuous scale of the construct into a fixed number of ordered categories (DiStefano, 2002). Indeed, this categorization process led O'Brien (1985) to argue that the analysis of Likert-scaled data actually contributes to two types of error: (a) categorization error resulting from the splitting of the continuous scale into categorical scale, and (b) transformation error resulting from categories of unequal widths.

For purposes of illustration, let's consider the measuring instrument under study in this chapter in which each item is structured on a four-point scale. The work of Jöreskog and Sörbom (1993) is drawn upon to describe the decomposition of these categorical variables. Let z represent the ordinal variable (the item) and z* the

unobserved continuous variable. The threshold values can then be conceptualized as follows:

If $z^* < or = \tau_1$, z is scored 1. If $\tau_1 < z^* < or = \tau_2$, z is scored 2. If $\tau_2 < z^* < or = \tau_3$, z is scored 3. If $\tau_3 < z^*$, z is scored 4.

Where $\tau_1 < \tau_2 < \tau_3$ represent threshold values for z^* .

In conducting SEM with categorical data, analyses must be based on the correct correlation matrix. Where the correlated variables are both of an ordinal scale, the resulting matrix comprises, *polychoric correlations*; where one variable is of an ordinal scale and the other is of a continuous scale, the resulting matrix comprises *polyserial correlations*. If two variables are dichotomous, this special case of a polychoric correlation is called a *tetrachoric correlation*. If a polyserial correlation involves a dichotomous rather than a more general ordinal variable, the polyserial correlation is also called a *biserial correlation*.

The Assumptions. Applications involving the use of categorical data are based on three critically important assumptions: (a) underlying each categorical observed variable is an unobserved latent counterpart, the scale of which is both continuous and normally distributed; (b) sample size is sufficiently large to enable reliable estimation of the related correlation matrix; and (c) the number of observed variables is kept to a minimum. As Bentler (2005) cogently notes, however, it is this very set of assumptions that essentially epitomizes the primary weakness in this methodology. Let's now take a brief look at why this should be so.

That each categorical variable has an underlying continuous and normally distributed scale is undoubtedly a difficult criterion to meet and, in fact, may be totally unrealistic. For example, in this chapter, scores tapping aspects of depression for normal adolescents are examined. Clearly, we would expect such item scores for normal adolescents to be low, thereby reflecting no incidence of depressive symptoms. As a consequence, we can expect to find evidence of kurtosis and possibly skewness related to these variables, with this pattern being reflected in their presumed underlying continuous distribution. Consequently, in the event that the model under test is deemed to be less than adequate, it may well be that the normality assumption is unreasonable in this instance.

The rationale underlying the latter two assumptions stems from the fact that in working with categorical variables, analyses must proceed from a frequency table comprising number of thresholds *x* number of observed variables to an estimation of the correlation matrix. The problem lies with the occurrence of cells having zero or near-zero cases, which can subsequently lead to estimation difficulties (Bentler, 2005). This problem can arise because (a) sample size is small relative to the

number of response categories (i.e., specific category scores across all categorical variables); (b) the number of variables is excessively large; and/or (c) the number of thresholds is large. Taken in combination, the larger the number of observed variables and/or number of thresholds for these variables and the smaller the sample size, the greater the chance of having cells comprising zero to near-zero cases.

General Analytic Strategies. Until recently, two primary approaches to the analysis of categorical data (Jöreskog, 1990, 1994; and Muthén, 1984) have dominated this area of research. Both methodologies use standard estimates of polychoric and polyserial correlations followed by a type of asymptotic distribution-free (ADF) methodology for the structured model. Unfortunately, the positive aspects of these categorical variable methodologies have been offset by the ultra restrictive assumptions noted previously and which, for most practical researchers, are both impractical and difficult to meet. In particular, conducting ADF estimation has the same problem of requiring huge sample sizes as in Browne's (1984a) ADF method for continuous variables. Attempts to resolve these difficulties in recent years have resulted in the development of several different approaches to modeling categorical data (see, e.g., Bentler, 2005; Coenders, Satorra, & Saris, 1997; Moustaki, 2001; and Muthén & Muthén, 2004). One of these newer strategies is incorporated in the EQS 6.1 program described in the following subsection.

The EQS Strategy. Given both the stringency and dubious appropriateness of assumptions underpinning the analysis of categorical data, Bentler (2005) argued that it may make more sense to correct the test statistic while using a mode of estimation that works well with not-too-large samples. Using a normal theory-based method such as ML followed by Satorra-Bentler corrections (Satorra & Bentler, 1988) yields a reliable procedure (see, e.g., DiStefano, 2002). The use of an improved estimator of polychoric and polyserial correlations (Lee, Poon, & Bentler, 1995), together with ROBUST methodologies, distinguishes the EQS approach to the analysis of categorical data from that of other SEM programs.

Consistent with the traditions of Muthén (1984), Jöreskog (1994), and Lee, Poon, and Bentler (1990, 1992), EQS follows a three-step sequential approach to estimation. Univariate statistics such as thresholds are estimated first, followed by estimation of bivariate statistics such as correlations. Estimation of the SEM model is completed using a method like ML followed by ROBUST computations based on an appropriate weight matrix. (For technical details related to this three-stage approach, see Bentler, 2005, and the original articles.) It is important to note that although the correlation estimates and weight matrices in EQS are similar to those of Muthén (1984) and Jöreskog (1994), they are not identical.

From the perspective of sample size, at least, the EQS approach to analysis of categorical data is more practical than the one based on full estimation. Whereas sample size requirements for both the Muthén (1984) and Jöreskog (1994) methodological strategies have been reported as substantial (see, e.g., Dolan, 1994; and

Lee, Poon, & Bentler, 1995), those associated with the ML ROBUST approach in EQS are much less so. Indeed, Bentler (2005) contends that the ROBUST methodology allows for the attainment of correct statistics, which are quite stable even in relatively small samples. Although the ML estimator (or another simpler estimator—e.g., GLS) is not asymptotically optimal when used with categorical variables, the inefficiency is small and certainly offset by improved performance in smaller samples. The Satorra–Bentler scaled χ^2 and ROBUST standard errors provide trustworthy statistics. Of course, if sample size is huge, ME=AGLS can always be used, which, in EQS, gives the asymptotically optimal solution.

With an understanding of the issues involved in the analysis of categorical variables, we move to an application based on the BDI data described at the beginning of this chapter.

ANALYSES BASED ON DATA REGARDED AS CATEGORICAL

The EQS Input File

By now, you will be fairly familiar with the EQS input file setup so details related to all aspects of the file shown in Table 5.1 are not reiterated; my explanation is to therefore limited model specifications not previously addressed. Two features of the current application are of particular interest: (a) that the ordinality of the data is being taken into account and (b) that the model under study is a higher order CFA model.

We turn first to /SPECIFICATIONS and, in particular, the first line of this paragraph. Here we see that the score data are based on 321 cases, an adequate sample to use with the ML estimator but certainly not large enough to use with AGLS, the distribution-free estimator (see Bentler, 2005). Thus, the next specification of note is the method to be used in analyzing the data; here we see ME=ML, ROBUST. This specification conveys two important pieces of information: (a) that ML estimation is to be used in analyzing the correlation matrix, and (b) that the χ^2 and standard errors are to be corrected (i.e., made robust) through use of a large optimal weight matrix appropriate for analysis of categorical data. Given that ML estimation assumes the variables under study are continuous, it is important to acknowledge this obvious misspecification. Bentler (2005) notes that although the estimates will be good, it is essential to follow up with the ROBUST option to obtain the correct S-B χ^2 and Yuan-Bentler tests and standard errors. As a final point, analyses are based on a raw matrix (MA=RAW)—another necessary requirement in the analysis of categorical data.

Line 2 contains commands that must be specified to perform analyses that include categorical variables. The CATEGORY specification identifies which variables are of a categorical nature. In this case, all 21 variables have an ordinal

END

TABLE 5.1 EQS Input for Initially Hypothesized Model

CFA OF 2nd-order BDI Structure for Adolescent Females "BDIGIRL1"
Treated as Categorical Variables
/SPECIFICATIONS
CASE=321; VAR=21; ME=ML_ROBUST; MA=RAW; FO='(21F1.0)';
CATEGORY=V1 to V21; ANALYSIS=CORRELATION;
DATA='C:\EQS61\Files\Books\Data\bdigirl.ess';
/LABELS
V1=11SAD; V2=12PESS; V3=13FAIL; V4=14DISSAT; V5=15GUILT;
V6=16PUNISH; V7=17SDISL; V8=18SACCUS; V9=19SUI; V10=110CRY;
V16=116INSOM; V17=117FATIG; V18=118NDEC; V14=114SIMAGE; V15=115WINHIB;
V16=116INSOM; V17=117FATIG; V18=118ALOSS; V19=119WLOSS; V20=120HYPOC;
V21=121LLOSS;

F1=NEGATT; F2=PERFDIFF; F3=SOMELEM; F4=DEPRESS/EQUATIONS

V9 = *F1 + E9; V10 = *F1 + E10; V14 = *F1 + E14; V4 = F2 + E4; V11 = *F2 + E11; V12 = *F2 + E13; V13 = *F2 + E13; V15 = *F2 + E15; V17 = *F2 + E17; V20 = *F2 + E20; V18 = *F3 + E16; V19 = *F3 + E18; V19 = *F3 + E19; V21 = *F3 + E21;

V1 = F1 + E1; V2 = *F1 + E2; V3 = *F1 + E3; V5 = *F1 + E5; V6 = *F1 + E6; V7 = *F1 + E7; V8 = *F1 + E8;

V19 = "F3 + E19; V21 = "F3 + E21; F1= "F4 + D1; F2= "F4 + D2; F3= "F4 + D3.

F3= *F4 + D3; /VARIANCES F4= 1.0; D1= *; D2= *; D3= *; E1 to E21 = *; /CONSTRAINTS (D2,D2) = (D3,D3); /PRINT FIT = ALL; /LMTEST SET=PEE,GVF;

scale; hence, the specification of V1 to V21. However, it may well be that in some other data set, the number of categorical variables may only be a subset of otherwise continuous variables. In such a case, only these categorical variables need be identified. In EQS, there is no need to specify the number of scale points associated with categorical variables because the program automatically determines this information as you will see later (demonstrated when the output is reviewed). The second specification on this line advises the program that analyses are to be based on a correlation rather than the default covariance structure. Finally, Line 3 of the /SPECIFICATION paragraph specifies the filename and location of the data, which is the bdigirl.ess file created from raw data at the beginning of this chapter.

paths to 1.0, the variance of Factor 4 could be freely estimated. However, typically of Factor 4 must be fixed to 1.0. Had we elected to fix one of these second-order input file in Table 5.1, note that each of the higher order factor loadings (i.e., F1 = but is possible nonetheless), we need to fix the variance to 1.0. Returning to the mate the regression path rather than the variance (which does not make much sense and, therefore, the regression path must be fixed to 1.0. However, if we want to esti path is fixed to 1.0. In this instance, a choice had to be made: either estimate the error terms. In each case, the variance is estimated, whereas the related regression both. Before relating this corollary to Factor 4 (i.e., the second-order factor that which states that either a regression path or a variance can be estimated but not to a value of 1.0. This specification derives from an important corollary in SEM not estimated. These factors represent dependent variables in the model and, as surement errors (E1 to E21) as well as with the disturbance terms (D1 to D3) with higher order models, the loadings rather than the variance of the higher order *F4 + D1; F2 = *F4 + D2; F3 = *F4 + D3) is estimated; as a result, the variance variance or the regression path. The error variance, of course, is of greater interest trate its application using a simple example. Let's turn to Fig. 5.1 and review the explains correlations among the first-order factors F1-F3), allow me to first illus-Finally, you may wonder why the variance for Factor 4 (F4; Depression) is fixed Weeks sense) cannot be estimated; they remain to be explained by the model discussed in chapter 1, dependent variables and their covariances (in the Bentleris to be estimated. However, variance related to each of the first-order factors is factor are of interest. In the /VARIANCES paragraph, the variance associated with each of the mea-

The final specification of note lies within the /CONSTRAINTS paragraph. The information being conveyed is that the variance of the disturbance term associated with Factor 2 (D2,D2) is to be constrained equal to that for Factor 3 (D3,D3). What is the rationale for such specification? Recall that in Chapter 2, I emphasized the importance of computing the degrees of freedom associated with hypothesized models to ascertain their status with respect to statistical identification. With hierarchical models, it is additionally critical to check the identification status of the higher order portion of the model. In the current case, given the specification of only three first-order factors, the higher order structure is just-identified unless a

ANALYSES BASED ON CATEGORICAL DATA

Selected EQS Output for Initially Hypothesized Model: Polychoric Thresholds and Matrix

RESULTS OF POLYCHORIC PARTITION

AVERAGE THRESHOLDS

V21	V20	V19	V18	V17	V16	V15	V14	V13	V12	V11	V10	V 9	∨ 8	V 7	V 6	< 51	V 4	V 3	V 2	V 1	
069	85	015	205	353	056	063	152	004	682	17	109	153	199	063	ω	ω	0559	43		S	
539	206	.597	.964	206	.097	990	570	<u>بر</u>	134	.8731	775	63)29	.331	.846	. 63	.978	.187	\vdash	.276	
. 981		.867		.697	.538	.232	.142	.817		.111	.977	.136	.541	. 699	15	.061	W	.987	26	.70	

POLYCHORIC CORRELATION MATRIX BETWEEN DISCRETE VARIABLES

V	⋖	V 8	∨	V	٧	<	<	∨	⋖	
10	9	00	7	9	UΊ	4	w	2	⊢	
.477	.546	.321	.475	.428	.336	.381	.444	.357	1.000	V 1
.244	.411	.332	.499	. 383	.345	.284	.486	1.000		V 2
.467	.381	.385	.631	.436	.409	.322	1.000			V 3
.284	.369	.316	.420	.312	.282	1.000				V 4
.289	.226	.339	.431	.468	1.000					V 5

under study are categorical to give you a flavor of the type of information that EQS provides when the variables no response scores in Category 4). Only a portion of this matrix is presented here whereas V12 (Item 12) has two thresholds for its three categories (i.e., there were shown in Table 5.3. Note that Variables with four categories have three thresholds olds for each categorical variable, followed by the polychoric correlation matrix. no subject responded to the fourth category; as a result, EQS assumed that this item had only three categories. Appearing next in the output are the average thresh-

The EQS Output File

at the higher order level of the model

variance of D3 was equated with that of D2, thereby providing 1 degree of freedom revealed the estimated values for D2 and D3 to be very close. For this reason, the approximately equal. An initial test of the hypothesized model shown in Fig. 5.1

straints can be placed on particular parameters known to yield estimates that are

but if we wish also to resolve this condition of just-identification, equality convariances), thereby resulting in a just-identified model. This result is acceptable;

of estimable parameters is also six (i.e., three factor loadings and three residual

first-order factors, there are six (i.e., $[4 \times 3]/2$) pieces of information; the number

e.g., Bentler, 2005; and Rindskopf & Rose, 1988). More specifically, with three

constraint is placed on at least one parameter in this upper level of the model (see

(V12) consisting of four categories. Although Item 12 actually had four categories. model. Here we see that the program has identified 21 variables, with all but one Table 5.2 presents the first citation from the output related to the hypothesized

TOTAL NUMBER OF VARIABLES ARE

Selected EQS Output for Initially Hypothesized Model: Categorical Variable Summary

TABLE 5.2

YOUR MODEL HAS SPECIFIED CATEGORICAL VARIABLES

NUMBER	NUMBER
OF I	OF (
DISCRETE	CONTINUOUS
VARIABLES .	VARIABLES
ARE	ARE
21	0

INFORMATION ON DISCRETE VARIABLES

V21	V20	V19	V18	V17	V16	V15	V14	V13	V12	V11	V10	V9	V8	77	ν6	V5	V4	V3	V2	V1
MITH	WITH	WITH	HTTW	HTTW	HTTH	WITH	WITH	MITH	WITH	WITH	HTIW	WITH	WITH	HTIW	WITH	WITH	WITH	MITH	WITH	WITH
4	4	4	4	4	4	4	4	4	ω	4	4	4	4	4	4	4	4	4	Ą	4
CATEGORIES																				
01	01	01	01	02	01	01	01	01	01			01	01	Ç	01	01	01	01	01	01

TABLE 5.4

Selected EQS Output for Initially Hypothesized Model: Warning Messages

SAMPLE STATISTICS BASED ON COMPLETE CASES

*** NOTE *** CATEGORICAL VARIABLES LISTED ABOVE ARE INDICATORS OF LATENT CONTINUOUS VARIABLES. THEIR UNIVARIATE AND JOINT STATISTICS MAY NOT BE MEANINGFUL.

	ıd	UNIVARIATE S	STATISTICS		
VARIABLE	BDI1SAD	BDI2PESS	BDI3FAIL	BDI4DISSAT	BDI5GUILT
MEAN	1.5296	1.4829	1.4081	1.7508	1.3645
SKEWNESS (G1)) 1.5320	1.4757	1.7337	1.1455	1.8754
KURTOSIS (G2)) 2.0716	1.3265	2.1816	.6015	3.9313
STANDARD DEV	7623	.7627	.7279	.8910	.6184
*** WARNING ***	** NORMAL THEORY STATISTICS MAY NOT	RY STATISTI DUE TO ANAL	CS MAY NOT YZING CORRE	STATISTICS MAY NOT BE TO ANALYZING CORRELATION MATRIX	
	BDI1SAD	BDI2PESS	BDI3FAIL	BDI4DISSAT	BDI5GUILT
	V 1	V 2	V 3	V 4	V 5
BDI1SAD V	1 1.000				
BDI2PESS V	2 .357	1.000			
BDI3FAIL V	3 .444	.486	1.000		
BDI4DISSAT V	4 .381	.284	.322	1.000	
BDI5GUILT V	5 .336	.345	.409	.282	1.000
BDI6PUNISH V	6 .428	.383	.436	.312	.468
BDI7SDISL V	7 .475	.499	.631	.420	.431
BDI8SACCUS V	8 .321	.332	.385	.316	.339
BDI9SUI V	9 .546	.411	.381	.369	.226
BDI10CRY V	10 .477	.244	.467	.284	.289

estimated from the factor model. Appearing first is an excerpt from the standardized off-diagonal residual estimate (.0581; over cross-diagonal elements only). In the their signs (.0528; over both diagonal and off-diagonal elements) and average residual matrix followed by values for the average residual estimate, ignoring residuals: the discrepancy between the sample polychoric correlations and those the top line of Table 5.5. The table presents information related to the standardized should be ignored in favor of their ROBUST counterparts; this reminder is shown in follow) should be scrutinized for relevance. The ML $\chi 2$ test and standard errors a message reminding the user that normal theory statistics such as ML (which largest of these standardized residuals, we see that the largest misspecification the program presents the polychoric correlation matrix to be analyzed, but it prints meaningful—and they are not; therefore, this output should be ignored. Thereafter, messages shown in Table 5.4 advising that the univariate statistics may not be univariate statistics, which represent statistics for the data file. Because the scores 1, 2, 3, and 4 in the data file are not of interest, the program presents the warning Consistent with output related to continuous variables, EQS presents the sample

ANALYSES BASED ON CATEGORICAL DATA

TABLE 5.5
Selected EQS Output for Initially Hypothesized Model: Standardized Residuals

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)
WITH ROBUST STATISTICS (LEE, POON, AND BENTLER OPTIMAL WEIGHT MATRIX)

STANDARDIZED RESIDUAL MATRIX:

BDI10CRY V 10	BDI9SUI V	BDI8SACCUS V	BDI7SDISL V	BDI6PUNISH V	BDI5GUILT V	BDI4DISSAT V	BDI3FAIL V	BDI2PESS V	BDI1SAD V	
0	Ø	00	7	9	U	4	ω	N	₩.	
.096	.103	037	045	.022	028	.014	042	045	.000	BDI1SAD V 1
101	.009	.007	.028	.014	.014	048	.045	.000		BDI2PESS V 2
.049	106	009	.060	011	.008	081	.000			BDI3FAIL V 3
031	.002	.019	011	024	020	.002				BDI4DISSAT V 4
025	140	.043	.002	.133	.000					BDISGUILT V 5

LARGEST STANDARDIZED RESIDUALS:

AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS

.0581

NO.	PARA	PARAMETER	ESTIMATE	NO.	PARAMETER	ESTIMATE
⊢	V21, V20	V20	.278	P	V19, V7	1.15
2	V11,	V10	.209	12		14
نیا	V19,	V14	~.193	13		13
4	V19,	₩8	.192	14		.13
υı	V21,	V19	.189	15		13
0	V19,	V3	183	16		. 13
7	V11,	V2	178	17	V18, V10	.12
00	V19,	V2	175	18		12
9	V20,	V6	.162	19		.128
10	V13,	8V	.161	20		12

DISTRIBUTION OF STANDARDIZED RESIDUALS

				٥,	S Fi				ú	7				7.5					100-	
12	1			- ī					· 1	٠.				ĭ	•				Ť	
2 3	1																			
8	1																			
4	1																			
5	*	*	*	+																
6	*	*	*	+ >	÷ ×	· ×	· *	· *	· »	. ,		· ×	· *	*	*	淅	*	*	*	
7	*	* :	+ :	+ >	+ ×	- ×	· *	*	· *	- *	- *	· ×	*	*	*	*	*	*		
œ	*	* :	+																	
9																				
A	i																			
В	i																			
C	ļ 			. ,					1					1					1 .	
ΕA		10) (I	Þ	· w	00	7	S	UI	4	W	N	<u> </u>							
CH		 +	0.5	0.4	0.3	0.2	0.1	0	-0.	-0	-0	-0	-0							
*		+	U	1 \$△	w	W	JA	0	j.a	N	w	4	UI							
REP	TOTAL	1	1	I	ı	ł	ı	1	1	1	1	í	1		RANGE					
RES	H	0		0	0	0	0	-0.1	-0	-0	-0	-0	I		Ėd					
ENT		·	A	0.3	'n	'n	ò	<u>-</u>	'n	·w	4	Մ								
5 5	231	C	0	0	N	14	97	100	00 1-7	0	0	0	0	1	FREO					
EACH "*" REPRESENTS 5 RESIDUALS	100.00%	.00%	.00%			m.	41.99%	43.29%	7.79%	.00%	.00%	.00%	.00%		PERCENT					

in the model appears to involve Items 21 and 20 (V21,V20). Finally, a distribution table summarizes the spread of these residuals. Ideally, this distribution should be symmetric with residual values clustered around the zero point. Although the distribution shown in Table 5.5 shows the bulk of these residuals falling into this category, with values ranging from –.1 to 1.0 (85.28%), there is nonetheless some indication of misfit, with 7.79% of residual values ranging from –.1 to –.2 and 6.06% ranging from ..1 to ..3. The LM Test statistics will shed more light on this possible model misspecification.

Turning to the goodness-of-fit statistics presented in Table 5.6, we observe a vasi difference in values derived from ML normal theory estimation versus those basec

TABLE 5.6
Selected EQS Output for Initially Hypothesized Model: Goodness-of-Fit Statistics

90% CONFIDENCE INTERVAL OF RMSEA

025

.046)

on the robust statistics; these appear to be particularly discrepant with respect to the Fit Indexes. For example, whereas the CFI is .76 with uncorrected ML estimation, it is .93 with corrected robust estimation. However, it is important to emphasize again, that when EQS analyses are based on categorical data, interpretation of model fit must be based on the ROBUST statistical output.

available residual-based test at this time. (For technical details related to these of Browne's (1984a) statistic and is considered by Bentler (2005) to be the best so without any loss of its large-sample properties. Finally, the YUAN-BENTLER ter in smaller samples than the original RESIDUAL-BASED STATISTIC, it does on the work of Yuan & Bentler, 1998; and Bentler & Yuan, 1999) represents an is very large. The YUAN-BENTLER RESIDUAL-BASED STATISTIC (based is curtailed by the fact that its interpretation is meaningful only when sample size of a type developed by Browne (1982, 1984a). The use of this statistic, however degree of misfit in the model residual-based tests, see Bentler, 2005). In this input, all test statistics imply some RESIDUAL-BASED F-STATISTIC (Yuan & Bentler, 1998), designed to take samsamples. In this regard, Bentler (2005) notes that in addition to performing betextension of Browne's residual-based test such that it can be used with smaller new statistics (Bentler, 2005). The first, the RESIDUAL-BASED STATISTIC, is each is included in the output when ROBUST statistics are requested. These are ple size into account more adequately, represents a more extensive modification These distribution-free statistics are based on the distribution of residuals, and value (264.57 with 187 df) there are three statistics that have not been addressed In the ROBUST goodness-of-fit statistics, we see that, in addition to the S-B χ^2

We now turn to an evaluation of the hypothesized BDI structure shown in Fig. 5.1 using fit indexes. Focusing on the ROBUST fit indexes, we find a CFI value of .93 and a RMSEA value of .036, with a 90% C.I. ranging from .025 to .046. On the basis of these indexes, this model exemplifies a relatively good fit to the data, although, admittedly, it does not reach the CFI value of .95 recommended by Hu and Bentler (1999). However, recall that the standardized residuals indicated some degree of misfit with respect to Items 20 and 21. To further assess this situation, we turn now to the results of the LM Test presented in Table 5.7.

As expected, review of the LM Test univariate incremental values reveals an error covariance between Items 21 and 20 to contribute most to any misfit in the model. Item 21 is concerned with loss of interest in sex, whereas Item 20 targets health concerns. It is interesting that in the original study (Byrne et al., 1993), which focused on a comparison of the BDI structure across gender, this error covariance did not exist for boys. In light of the degree of social attention accorded sexually transmitted diseases in general and AIDS in particular, we argued that it is not surprising that female adolescents develop health concerns related to sexual activity. Given that the content of Items 20 and 21 appears to elicit responses reflective of the same mind set, we argued that specification of an error covariance

TABLE 5.7

Selected EQS Output for Initially Hypothesized Model: Modification Indexes

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1
PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE: PEE GVF

	CUMULATIVE	CUMULATIVE MULTIVARIATE		STATISTICS	UNIVARIATE		INCREMENT	H
							HANC	HANCOCK'S
							SEQUE	SEQUENTIAL
STEP	PARAMETER	CHI-SQUARE	D.F.	PROB.	CHI-SQUARE	PROB.	D.F.	PROB.
<u></u>	E21,E20	41.006	ا با ا	.000	41.006	. 000	187	1 1 1 1 1 1
2	V19,F4	77.172	2	.000	36.166	.000	186	1.000
ω	E19,E8	108.537	w	.000	31.365	.000	185	1.00
4	V20,F4	129.980	4	.000	21.443	.000	184	1.000
ΔJ	E11,E10	150.814	U)	.000	20.834	.000	183	1.000
Q	E9,E5	169.776	9	.000	18.962	.000	182	1.000
7	E9,E3 ·	192.556	7	.000	22.780	.000	181	1.00
œ	E13,E8	209.477	00	.000	16.921	.000	180	1.000
9	E11, E2	226.103	9	.000	16.626	.000	179	1.000
10	E11, E7	242.605	10	.000	16.502	.000	178	1.000
بــا	E12,E11	257.768	11	.000	15.163	.000	177	1.000
12	E20,E6	271.329	12	.000	13.561	.000	176	1.000
13	E13,E12	284.842	13	.000	13.514	.000	175	1.000
14	E17,E13	299.161	14	.000	14.319	.000	174	1.000
Ŋ	V10,F4	312.412	H	.000	13.251	.000	173	1.000

between these two items was substantively reasonable. In contrast, it is difficult to substantiate estimation of the two subsequent parameters (i.e., V19,F4 and E19,E8), the only two worthy of consideration. Although the loading of Item 19 (i.e., measuring weight loss) on the higher order factor of Depression might seem reasonable substantively, it is not realistic psychometrically. With respect to the third parameter, specification of an error covariance between Item 19 (weight loss) and Item 8 (self-accusation) is substantively unjustified. Keeping a watchful eye on parsimony, then, I consider only the error covariance between Items 20 and 21 to be a reasonable addition to the model, for two reasons: (a) the specification is substantively reasonable, and (b) the model already represents a fairly adequate fit to the data. We now move into exploratory mode and peruse EQS output related to Model 2.

POST HOC ANALYSES: MODEL 2

The EQS Output File

Goodness-of-fit statistics related to Model 2 are presented in Table 5.8. With the inclusion of the one error covariance between Items 20 and 21 and a CFI of .944

TABLE 5.8

CHI-SQUARE =	GOODNESS OF FIT	The state of the s		
723.505 BASED ON	GOODNESS OF FIT SUMMARY FOR METHOD = ML	ACTION OF THE PROPERTY OF THE	Selected EQS Output for Mo	100
186 DEGREES OF FREEDOM	MI	TH SQUIDS INTO THE PROPERTY OF	Selected EQS Output for Model 2: Goodness-of-Fit Statistics	MI MARKET COC

NORMED FIT INDEX = .725 N-NORMED FIT INDEX = .750 NDEX (CFI) = .778 RESIDUAL (RMR) = .068 ERROR OF APPROXIMATION (RMSEA) TERVAL OF RMSEA (.088, TOMMARY FOR METHOD = ROBUST CALED CHI-SQUARE = 247.1578 ON FOR THE CHI-SQUARE STATISTIC IS DUAL-BASED TEST STATISTIC IS DUAL-BASED F-STATISTIC = 186, FOR THE F-STATISTIC IS UNCRMED FIT INDEX = .937 AUEX (CFI) = .944 ERROR OF APPROXIMATION (RMSEA) TERVAL OF RMSEA (.020,	. 00042	
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS		.00000
INDICES		
NORMED FIT INDEX = .		
NON-NORMED FIT INDEX =		
11		
RESIDUAL (RMR) =		
II		
ERROR OF APPROXIMATION	11	. 095
		.102)
OF FIT SUMMARY FOR METHOD =		
		DEGREES OF 0180
	13	225.840
UAL-BASED F-STATISTIC	1.72	28
F-STATISTIC IS	13	3.5 1.2
FIT INDICES		
NORMED FIT INDEX =		
FIT INDEX = .		
INDEX (CF1) =		
ERROR OF APPROXIMATION	8	.032
		.042)

and RMSEA of .032, the BDI structure as specified in Model 2 represents a very adequate fit to the data.

In Table 5.9, only a few parameter estimates are again included to provide an overview of the printout when analyses are based on categorical data. Note first the reminder that results based on the normal theory standard errors are not to be used; only the categorical variable ROBUST statistics (in parentheses) should be interpreted. As seen in the last set of estimates, the error covariance between Items 20 and 21 was statistically significant (Z = 3.553). The standardized estimates are presented in Table 5.10, which shows the error correlation between these two items to be quite high, considering that this correlation represents similarity in responses to items with different content.

Before we close this chapter, I thought it would be interesting to test the original model again but, rather than honoring the categorical nature of the variables, we treat them as if they were continuous. Let's see how much difference this change in approach really makes.

Selected EQS Output for Model 2: Parameter Estimates TABLE 5.9

	*
	*** WARNING *** WITH CATEGORICAL DATA, NORMAL THEORY RESULTS WITHOUT
	*
COR	HTIW
CORRECTION SHOULD NOT BE TRUSTED.	CATEGOR
SHOU	ICAL
LD NOT	DATA,
BE TRU	NORMAL
STED.	THEORY
	RESULTS
	WITHOUT

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. (CATEGORICAL-VARIABLE ROBUST STATISTICS IN PARENTHESES)				
EMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS PICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. PRICAL-VARIABLE ROBUST STATISTICS IN PARENTHESES)	1	(CATEGO	STATIST	MEASURE
EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. L-VARIABLE ROBUST STATISTICS IN PARENTHESES))RICA	rics :	EMENT
WITH STANDARD ERRORS AND TEST STATISTICS AT THE 5% LEVEL ARE MARKED WITH @. ROBUST STATISTICS IN PARENTHESES)	2	L-VARIABLE	SIGNIFICANT	EQUATIONS
STANDARD ERRORS AND TEST STATISTICS HE 5% LEVEL ARE MARKED WITH @. T STATISTICS IN PARENTHESES)		ROBUS	P AT T	HILIM
RRORS AND TEST STATISTICS L ARE MARKED WITH @. CS IN PARENTHESES)		r statisti	HE 5% LEVE	STANDARD E
AND TEST STATISTICS MARKED WITH @. PARENTHESES)		CS IN	L ARE	RRORS
EST STATISTICS D WITH @. THESES)		PAREN	MARKE	AND T
STATISTICS TH @. ES)		THESI	D WIT	EST :
		3S)	rH @.	STATISTICS

				I3FAIL					I2PESS	I1SAD
				=V3					=V2	=V1
_	_			H	_	_			11	Н
(10.487@	.104)	11.450@	.096	1.095*F1	8.291@	.109)	9.709@	.093	.907*F1	1.000 F1
				+ 1.000 E3					+ 1.000 E2	+ 1.000 E1

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS

SOMELEM =	PERFOIFF=F2	NEGATT =
い 円 円	F2	는 교 II
~ ~ II	<u> </u>	~ ~
.504*F4 .056 8.951@ .064) 7.905@	.633*F4 .054 11.608@ .050) 12.691@	.588*F4 .052 11.407@ .055) 10.625@
+	+	+
⊢ `	<u>-</u>	
1.000	1.000	1.000
D3	D2	<u> </u>

COVARIANCES AMONG INDEPENDENT VARIABLES

			E20 -I20HYPOC	E21 -I21LLOSS	the sac can
(3.553@	(.082)	5.838@	.050	.291*	

Selected EQS Output for Model 2: Standardized Solution **TABLE 5.10**

ANALYSES BASED ON CONTINUOUS DATA

	T		The state of the s	
STANDARDIZED	SOLUTION:			R-SQUARED
I1SAD =V1 =	.666 F1	+ .746	5 再1	. 444
I2PESS =V2 =	.604*F1	+ .797	7 E2	, 365
I3FAIL =V3 =	.730*F1	+ .684	三 三 3	
I4DISSAT=V4 =	.645 F2	+ .764	1 E4	.416
I5GUILT =V5 =	.547*F1	+ .837	E5	
I6PUNISH=V6 =	.610*F1	+ .793	10000000000000000000000000000000000000	~J
I7SDISL =V7 =	.782*F1	+ .623	5 E7	.612
I8SACCUS=V8 =	.540*F1	+ .842		. 292
19SUI =V9 =	.669*F1	+ .744	E9	. 447
I10CRY =V10=	.571*F1	+ .821	. E10	.326
IllIRRIT=Vll=	.402*F2	+ .916	E11	.161
I12WDRL =V12=	.555*F2	+ .832	E12	.308
I13INDEC=V13=	.684*F2	+ 1.729	E13	.468
I14SIMAG=V14=	.511*F1	+ .859	E14	.261
I15WINHI=V15=	.556*F2	+ .831	E15	0
I16INSOM=V16=	.519 F3	+ .854	E16	.270
I17FATIG=V17=	.622*F2	+ .783	E17	.387
I18ALOSS=V18=	.533*F3	+ .846	E18	.284
I19WLOSS=V19=	155*F3	+ .988	E19	.024
I20HYPOC=V20=	.503*F2	+ .864	E20	. 253
I21LLoss=V21=	.386*F3	+ .922	E21 .	. 149
NEGATT =F1 =	.882*F4	+ .471	D1	.778
PERFDIFF=F2 =	.981*F4	+ .195	D2	.962
SOMELEM =F3 =	.970*F4	+ .242	D3	.941
CORRELATIONS	AMONG INDEL	INDEPENDENT	VARIABLES	

ANALYSES BASED ON DATA REGARDED AS CONTINUOUS

E21 -I21LLOSS E20 -I20HYPOC

H

.367*

The EQS Output File

pattern remained the same, the extent to which the standardized residuals spread esized model. You will quickly recognize that the format of this table is consistent standardized residuals derived from the categorical methodology were larger than with Table 5.5, in which the values were based on categorical data. Comparing those derived from the continuous methodology; and (2) although the distributional the results in these two tables reveals at least two interesting points: (1) in general, Table 5.11 presents a summary of the standardized residuals related to the hypoth-

TABLE 5.11 uals

AXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)	Selected EQS Output for Initially Hypothesized Model: Standardized Residu:	
RIBUTION THEORY)	esized Model: Standardized R	
	esidu	

35	DISTRIBUTION OF	10. 3 2 2 1 1 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0	average largest stand	BDI1SAD BDI2PESS BDI3FAIL BDI4DISSAT BDI6PUNISH BDI7SDI5L BDI8SACCUS BDI9SUI BDI10CRY	MAKIMUM LIKE STANDARDIZED
* *********	1	PARAMETER V21, V20 V11, V10 V13, V8 V20, V6 V11, V2 V20, V4 V18, V9 V12, V11 V17, V1 V20, V10	AN OFF-DI? ARDIZED	T V 2 1 1 7 V 4 4 4 4 7 V 5 5 V 7 V 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LIHOOD
*******	STANDARDIZED RES	ESTIMATE	AVERAGE ABSOLUTE IAGONAL ABSOLUTE D RESIDUALS:		NORM
	RESIDUALS	10. 11 11 12 12 13 14 15 15 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	JTE STANDARDIZED	.000 .027 .029 .018 .032 .032 .038	BDI2PESS E
2 2 3 -0.2 3 3 -0.3 3 3 -0.3 3 5 -0.1 4 5 -0.1 4 5 -0.1 4 5 -0.1	>	V15. V6 V14. V2 V17. V2 V17. V2 V17. V2 V18. V4 V20. V3 V19. V16 V19. V3 V19. V16 V19. V2 V19. V3 V19. V3		.000 072 .037 019 .047 024 090	BDI3FAIL 1
TOTAL	RANGE	**************************************	- 99	002 020 004 019 .039 .017	BDI4DISSAT
123 53.25% 97 41.995% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%	FREQ PERCENT		.0420	.000 .073 010 .035 089	BDI5GUILT V 5
୍ଜ । ଏକ ଏକ ଏକ % % % % ଓ % ଏକ ଶକ ଶକ ଶକ	en la company de		ž 6		

- 1100000000000000000000000000000000000		120 SCHOOL SCHOOL STATE

Selected EQS Output for Initially Hypothesized Model: Goodness-of-Fit Statistics TABLE 5.12

A CONTRACTOR OF THE RESERVE OF THE PROPERTY OF	
CHI-SQUARE = 340.157 BASED ON 187 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00000	
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS	341.950.
FIT INDICES	
BENTLER-BONETT NORMED FIT INDEX = .778	
BENTLER-BONETT NON-NORMED FIT INDEX = .870	
COMPARATIVE FIT INDEX (CFI) = .884	
ROOT MEAN-SQUARE RESIDUAL (RMR) = .036	
STANDARDIZED RMR = .055	
ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = .051	
90% CONFIDENCE INTERVAL OF RMSEA (.042, .059)	
I K	
CRONBACH'S ALPHA = .844	
RELIABILITY COEFFICIENT RHO = .855	

GOODNESS OF FIT SUMMARY FOR METHOD # ROBOST	505E
SATORRA-BENTLER SCALED CHI-SQUARE = 266.6617 ON PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS	187 DEGREES OF FREEDOM .00012
RESIDUAL-BASED TEST STATISTIC PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS	= 695.619
YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC IS PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS	= 219.643 .05127
YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 187.	1.558 187. 134
FOR THE F-STATISTIC IS	.00334
FIT INDICES	
BENTLER-BONETT NORMED FIT INDEX = .765	
BENTLER-BONETT NON-NORMED FIT INDEX = .903	
COMPARATIVE FIT INDEX (CFI) = .914	
ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA)	.036
90% CONFIDENCE INTERVAL OF RMSEA (.026,	.046)

of the variables was taken into account. with Table 5.6 that the model was best fitted to the data when the categorical nature are derived from the robust methodology. It is evident from comparing this table the information provided in this table reveals that the model is extremely poornot bear out with review of the goodness-of-fit statistics in Table 5.12. Clearly, continuous. Although these results suggest that the degree of misfit was less when residuals ranged between -0.1 and 0.1 for variables treated as categorical, this across the zero point for the categorical variables was much greater than when fitting under normal theory estimation and is only slightly better when estimates the ordinal variables were treated as if they were continuous, this conclusion does range occurred for 95.24% of the residuals associated with variables treated as the variables were treated as continuous. For example, whereas 85.28% of the

ເກ 9 7 œ 9 D

W C

EACH "*" REPRESENTS 7 RESIDUALS

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1 Selected EQS Output for Initially Hypothesized Model: Modification Indexes

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE: PEE GVF

	CUMULATIVE	MULTIVARIATE	STATISTICS	STICS	UNIVARIATE		INCREMENT	
			1		i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		HANCOCK'S	CK'S
							SEQUENTIAL	NTIAL
STEP	PARAMETER	CHI-SQUARE	U ㅋ	PROB.	CHI-SQUARE	PROB.	U. H.	PROB
	E21,E20	22.594	1 1 1 1	.000	22.594	.000	187	1.000
N 1	V20,F4	38.406	N	.000	15.813	.000	186	1.000
ا دن	E13, E8	50.682	ω	.000	12.275	.000	185	1.000
Δ.	E11,E10	61.896	4	.000	11.214	.001	184	1.000
Ji i	E17,E1	72.375	UI	.000	10.479	.001	183	1.000
ر ا	V19,F4	82.404	o.	.000	10.029	.002	182	1.000
7	E18, E9	91.763	7	.000	9.360	.002	181	1.000
00	E11, E2	100.179	00	.000	8.416	.004	180	1.000
9	E9, E3	107.903	9	.000	7.723	.005	179	1.000
10	E20,E6	114.735	10	.000	6.832	.009	178	1.000
<u>ш</u>	E19,E8	121.538	11	.000	6.803	.009	177	1.000
12	E9,E5	128.296	12	.000	6.759	.009	176	1.000
13	E15, E8	134.915	13	.000	6.619	.010	175	1.000
14	E12,E11	141.293	14	.000	6.378	.012	174	1.000
15	E11,E7	148.032	15	.000	6.738	.009	173	1.000

univariate chi-square value was substantially different. the error covariance between Items 20 and 21 was consistent, albeit the size of the model differed across the two analytic approaches. However, the identification of is evident that, overall, the ordering of the parameters tagged for inclusion in the In comparing the LM Test statistics in Table 5.13 with those in Table 5.7, it

Model 2

The EQS Output File

compare the statistics in this table with those in Table 5.8, we see that the same is optimal when the four-category variables are treated as categorical data. data (e.g., CFI = .778) are less than those for continuous data (e.g., CFI = .901) pattern holds with respect to ML fit indexes being lower (e.g., CFI = .778) than the .930) than within the framework of ML estimation (e.g., CFI = .901). Now, if we that model fit is higher within the framework of the ROBUST statistics (CFI = those for the continuous data (e.g., CFI = .930). Overall, it appears that model his the ROBUST fit indexes for the categorical data are higher (e.g., CFI = .944) than Tables 5.8 and 5.14, we see that whereas the ML fit indexes for the categorical ROBUST fit indexes (e.g., CFI = .944). Conversely, if we compare values across Let's turn first to the goodness-of-fit statistics in Table 5.14 where we see

ANALYSES BASED ON CONTINUOUS DATA

BENTLER-BONETT NORMED FIT INDEX = .779 BENTLER-BONETT NON-NORMED FIT INDEX = .921 COMPARATIVE FIT INDEX (CFI) = .930 ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = .033 90% CONFIDENCE INTERVAL OF RMSEA (.022, .043)	VALUE FOR THE CH RESIDUAL-BASED REEDOM = VALUE FOR THE F-	A-BENTLER SCALED CHI-SQUARE = 251.1182 ON 186 D ILLITY VALUE FOR THE CHI-SQUARE STATISTIC IS .001 AL-BASED TEST STATISTIC = 697.2 ILLITY VALUE FOR THE CHI-SQUARE STATISTIC IS .000	RELIABILITY COEFFICIENTS CRONBACH'S ALPHA RELIABILITY COEFFICIENT RHO GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST ROBUST INDEPENDENCE MODEL CHI-SQUARE = 1136.751 ON 210 DEGI	FIT INDICES BENTLER-BONETT NON-NORMED FIT INDEX = .793 BENTLER-BONETT NON-NORMED FIT INDEX = .888 COMPARATIVE FIT INDEX (CFI) = .901 ROOT MEAN-SQUARE RESIDUAL (RMR) = .036 STANDARDIZED RMR = .053 ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = .047 90% CONFIDENCE INTERVAL OF RMSEA (.038, .055)	Scienced EQS Output for Model 2: Goodness-of-Fit Statistics GOODNESS OF FIT SUMMARY FOR METHOD = MI CHI-SQUARE = 316.797 BASED ON 186 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00000	TABLE 5.14
ώ.	13	REES OF F	DEGREES OF FREEDOM	, H-1	ics	

with fewer than five categories and data that exhibit evidence of non-normality is not possible without going to the standardized solution. In general, the factor ables are treated as categorical data (see Table 5.9). However, a direct comparison the parameter estimates are somewhat lower than those produced when the varivariables treated as continuous data. Robust standard errors are somewhat larger regarding statistical significance remain across the two sets of analyses. Parameter estimates tend to be attenuated. Nonetheless, the bottom-line results lindings support those of West and colleagues (1995) (discussed previously) that loadings are smaller in Table 5.16 than the corresponding ones in Table 5.10. These than those for ML. Consistent with the pattern found for the standardized residuals Table 5.15 presents partial parameter estimates and standard errors related to

TABLE 5.15
Selected EQS Output for Model 2: Parameter Estimates

דורא היא – על – יינגין – אין אין – אין – אין אין – אין – אין אין – אין
(ROBUST STATISTICS IN PARENTHESES)
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS

CONSTRU	I3FAIL		I2PESS	I1SAD
CT E	=V3		=V2	=V1
ניאטל	· · · · · · · · · · · · · · · · · · ·		П	11
SNOI	7.898@ .150) 5.898@ 1.003*F1 .112 8.984@ .132) 7.622@	.112	. 88	1.000 F1
HTTW	80 0) 80 80 3*F1 2 40 40 20	2	.888*F1	0 F1
CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND	+ 1.000 E3		+ 1.000 E2	+ 1.000 E1
ERRORS	в3		E2	四1
AND				
TEST				
CTS				

ONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS FEGATOR -F1 - 124*F4 + 1 000 D1

				SOMELEM					PERFDIFF=F2					NEGATT
				=F3					=F2					Ή
_	_			11	_	_			11	_	_			П
6.291@	.055)	7.059@	.049	.346*F4	8.952@	.053)	9.172@	.052	.479*F4	7.7810	.054)	9.737@	.044	.424*F4
				+					+					+
				<u></u>										μ,
				+ 1.000 D3					1.000 D2					+ 1.000 D1
				D3					D2					D1

COVARIANCES AMONG INDEPENDENT VARIABLES

инивинентутичникупительного подписати предписати подписати подписа			E20 -I20HYPOC	E21 -I21LLOSS	1 1	H
(2.773@	(.038)	4.583@	.023	.104*	1	

TABLE 5.16
Selected EQS Output for Model 2: Standardized Solution

CONTRACTOR OF THE PROPERTY OF	AND THE CANADACTOR SECURITY AND ADMINISTRATION OF THE PROPERTY OF THE PARTY OF THE		THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO	
		.275*		E21 -I21LLOSS E20 -I20HYPOC
			i H	
	VARIABLES		AMONG INDEPENDENT	CORRELATIONS
.728	D3	+ .522	.853×F4	SOMETHEM = E.3 =
.837	D2	0.4) UI	7.41.4
.852	D1	+ .384	2	NEGATT =F1 =
.055	E21	+ .972	.235*F3	23
.172	E20	+ .910	.414*F2	I20HYPOC=V20 =
.002	E19	+ .999	046*F3	I19WLOSS=V19 =
\bigcirc	E18	+ .837	.548*F3	I18ALOSS=V18 =
. 293	E17	+ .841	.541*F2	I17FATIG=V17 =
.240	E16	+ .872	.490 F3	I16INSOM=V16 =
.244	E15	+ .869	.494*F2	I15WINHI=V15 =
9	E14	+ .897	.443*F1	I14SIMAG=V14 =
.382	E13	+ .786	.618*F2	113INDEC=V13 =
.196	E12	+ .897	.442*F2	I12WDRL =V12 =
.086	E11	+ .956	.293*F2	I11IRRIT=V11 =
.246	E10	+ .869	.495*F1	I10CRY =V10 =
N	E9	+ .821	.571*F1	19SUI =V9 =
· W	E O	+ .876	.482*F1	I8SACCUS=V8 =
. 483	E7	+ .719	.695*F1	I7SDISL =V7 =
00 I	E6	+ .845	.535*F1	I6PUNISH=V6 =
. 220	E5	+ .883	.469*F1	I5GUILT =V5 =
. 344	王4	+ .810	.586 F2	I4DISSAT=V4 =
. 400	臣3	+ .775	.632*F1	I3FAIL =V3 =
. 285	E2		.534*F1	I2PESS =V2 =
. 362	E1	+ .799	.602 F1	I1SAD =V1 =
R-SQUARED			SOLUTION:	STANDARDIZED

Overall, in the case of the current data, it appears that analyses for which the ordinality of the data was considered yielded the best fit to the data and was ultimately the most appropriate approach to follow. Nonetheless, Hutchinson and Olmos (1998) admonish that when assessment of model fit is based on data that are both categorical and non-normally distributed, researchers must realize that external artifacts such as model complexity, sample size, type of estimator, and degree of non-normality are all important to this goodness-of-fit criterion.

In conclusion, I leave you with one further caveat regarding this topic of categorical data. Because there is no way as yet to evaluate whether the assumption underlying polychoric and polyserial correlations is reasonable, we may be unaware that we are misusing this methodology. What would we do if we really doubted normality of the latent traits? Bentler (2005, p. 150) suggests that "in practice, we should do the technically wrong thing and treat the ordinal variables as continuous."