# Lecture 23 Bayesian Matting

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building 2 302-F



## **Motivation**





#### Motivation







#### Introduction





> Basic function of image matting

$$I(x,y) = \alpha(x,y)F(x,y) + [1 - \alpha(x,y)]B(x,y)$$

I(x,y), F(x,y), B(x,y): Full RGB image;

$$\alpha(x,y)$$
: gray level image







 $\triangleright$  What is the function of  $\alpha$ 's?

Finite pixel size

Finite shutter spread

Motion blur

Wispiness/ fuzziness/ Translucency



#### Why is matting hard?

$$I(x,y) = \alpha(x,y)F(x,y) + [1 - \alpha(x,y)]B(x,y)$$
know: 
$$J(x,y) = \begin{bmatrix} R \\ G \end{bmatrix} + \begin{bmatrix} R \\ G \end{bmatrix}$$
whenow: 
$$\chi(x,y) = \begin{bmatrix} R \\ G \end{bmatrix}$$
whenow: 
$$\chi(x,y) = \begin{bmatrix} R \\ G \end{bmatrix}$$

• 3 equations in 7 unknowns



### Vlahos blue-screen matting

$$\alpha = 1 - a_1(I_b - a_2I_g)$$









## Vlahos blue-screen matting









## Getting ground-truth matting







#### Getting ground-truth matting

$$I = \alpha \cdot \widehat{F} + [1 - \alpha] \cdot B$$

When B is known, 3 equations in 4 unknowns.

Take 2 images with different known background.

$$\int_{1} I_{1} = \alpha \cdot F + [1 - \alpha] \cdot B_{1}$$

$$I_{2} = \alpha \cdot F + [1 - \alpha] \cdot B_{2}$$

Then 6 equations in 4 unknowns.





- Known: I(x,y), full RGB
- Unknown:  $\alpha(x,y)$  gray level image; F(x,y), B(x,y): full RGB
- Optimization target:

$$\arg \max P(F, B, \alpha | I) = \max \frac{P(I|F, B, \alpha)P(F, B, \alpha)}{P(I)}$$

Bayesian rule: 
$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$



• Take logs:

$$\arg \max \log P(F, B, \alpha | I) \approx \log(P(I|F, B, \alpha)) + \log(P(F, B, \alpha))$$

• Then we assume  $P(F,B,\alpha) = P(F) P(B)P(\alpha)$ , and get:

$$\arg\max log P(F,B,\alpha|I) \approx \log(P(I|F,B,\alpha)) + \log(P(F)) + \log(P(B)) + \log(P(\alpha))$$

$$\text{Potal term}$$



pg(I) = 1 = 0

• Data term:

$$\arg\max log P(F, B, \alpha | I) \neq \log e^{\frac{1}{2\sigma^2} ||I - (\alpha \cdot F + [1 - \alpha] \cdot B)||^2}]$$

- $I, F, B, \alpha$  should be consistent with the matting equation.
- $\sigma$  is tunable equation.





## Trimap





$$\alpha \in (0,1)$$



• Prior term:

P(F), P(B),  $P(\alpha)$  comes from trimap/scribbles.

- Gaussian assumption for P(F) and P(B).
- Constant assumption for  $P(\alpha)$ .
- Fit Gaussian PDFs to color labeled in the trimap:

$$P(B) = \frac{1}{2\pi\sigma} e^{-\frac{1}{2\sigma^2}(B - \mu_B)^2 (E - \mu_B)}$$



• Taking partial derivatives for F and B then equals to 0 and we get estimation of F and B.  $-\frac{1}{2} \left[ 1 - \left( \sqrt{1 + (1 - \alpha)^2} \right) \right]$ 

$$\arg\max log P(F, B, \alpha | I) \approx \log(P(I|F, B, \alpha)) + \log(P(F)) + \log(P(B)) + \log($$

• Then  $\alpha$  can be calculated with:

$$1 = \sqrt{\frac{(I - B)(F - B)}{(F - B)(F - B)}}$$

https://grail.cs.washington.edu/projects/digital-matting/papers/cvpr2001.pdf



## Results of Bayesian image matting























#### Take home message

- Blue screen matting
- Ground-truth matting
- Bayesian image matting
- Closed form matting

