

Scalable Data Science

Lecture 1: Introduction

Sourangshu Bhattacharya

Computer Science and Engineering
IIT KHARAGPUR

In this Lecture:

- Stream processing and sketching
- Dimensionality reduction and hashing
- Frameworks for big data computation
- Scalable Machine Learning

Stream processing and sketching

Data Streams

- In many data mining situations, we do not know the entire data set in advance
- Stream Management is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as infinite and non-stationary (the distribution changes over time)

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports (i.e., streams)
 - We call elements of the stream tuples
- The system cannot store the entire stream accessibly
- Q: How do you make critical calculations about the stream using a limited amount of (secondary) memory?

General Stream Processing Model

Problems on Data Streams

- Types of queries one wants on answer on a data stream:
 - Sampling data from a stream
 - Construct a random sample
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream

Sliding Windows

A useful model of stream processing is that queries are about a window of length N - the N most recent elements received

Amazon example:

- For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want to answer queries, how many times have we sold X in the last
 k sales

Maintaining a fixed-size sample

- Problem: Fixed-size sample
- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Why? Don't know length of stream in advance
- Suppose at time n we have seen n items
 - Each item is in the sample S with equal prob. s/n

```
How to think about the problem: say s = 2
Stream: a x c y z k c d e g...
```

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n=7, each of the first 7 tuples is included in the sample **S** with equal prob.

Impractical solution would be to store all the *n* tuples seen so far and out of them pick *s* at random

Solution: Fixed Size Sample

- Algorithm (a.k.a. Reservoir Sampling)
 - Store all the first s elements of the stream to S
 - Suppose we have seen *n-1* elements, and now the *nth* element arrives (*n > s*)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

- We prove this by induction:
 - Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
 - We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see n=s elements the sample S has the desired property
 - Each out of **n=s** elements is in the sample with probability **s/s = 1**

Proof: By Induction

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- Now element n+1 arrives
- Inductive step: For elements already in *S*, probability that the algorithm keeps it in *S* is:

$$\left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$

Element **n+1** discarded

Element **n+1** Element in the not discarded sample not picked

- So, at time **n**, tuples in **S** were there with prob. **s/n**
- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in **S** at time $n+1 = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}$

Problems on Data Streams

- Types of queries one wants on answer on a data stream:
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements

Applications (1)

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 A web company wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

E.g., look for trending topics on Twitter, Facebook

Applications (2)

- Sensor Networks
 - Many sensors feeding into a central controller
- Telephone call records
 - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
 - Gather information for optimal routing
 - Detect denial-of-service attacks

Dimensionality reduction

Dimensionality Reduction

- Assumption: Data lies on or near a low d-dimensional subspace
- Axes of this subspace are effective representation of the data

Dimensionality Reduction

- Compress / reduce dimensionality:
 - 10⁶ rows; 10³ columns; no updates
 - Random access to any cell(s); small error: OK

\mathbf{day}	We	\mathbf{Th}	\mathbf{F} r	\mathbf{Sa}	$\mathbf{S}\mathbf{u}$
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
\mathbf{Smith}	0	0	0	2	2
$_{ m Johnson}$	0	0	0	3	3
Thompson	0	0	0	1	1

The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

Why Reduce Dimensions?

Why reduce dimensions?

- Discover hidden correlations/topics
 - Words that occur commonly together
- Remove redundant and noisy features
 - Not all words are useful
- Interpretation and visualization
 - Genres of movies
- Easier storage and processing of the data

Locality sensitive hashing

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Users who visited similar websites

Problem definition

- Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- And some distance function $d(x_1, x_2)$
 - Which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \le s$
- Note: Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- MAGIC: This can be done in O(N)!! How?

Frameworks for big data computation

MapReduce

- Much of the course will be devoted to large scale computing for data mining
- Challenges:
 - How to distribute computation?
 - Distributed/parallel programming is hard
- Map-reduce addresses all of the above
 - Google's computational/data manipulation model
 - Elegant way to work with big data

Example: Language Model

- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents
- Very easy with MapReduce:
 - Map:
 - Extract (5-word sequence, count) from document
 - Reduce:
 - Combine the counts

Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host
- Other examples:
 - Link analysis and graph processing
 - Machine Learning algorithms

Scalable Machine Learning

Big Data

- 6 Billion web queries per day.
 6 TB per day, 2.5 PB per year
- 10 Billion display ads per day.
 15 TB per day, 5.5 PB per year
- 30 Billion text ads per day.
 30 TB per day, ~ 11 PB per year
- 150 Million Credit card transactions per day.
 150 GB per day, ~ 5.5 TB per year
- 100 Billion emails per day.
 1 PB per day, ~ 360 PB per year

Machine Learning on Big Data

- 6 Billion web queries per day.
 6 TB per day, ~ 2.5 PB per year
- 10 Billion display ads per day.
 15 TB per day, 5.5 PB per year
- 30 Billion text ads per day.
 30 TB per day, ~ 11 PB per year
- 150 Million Credit card transactions per day.
 150 GB per day, 5.5 TB per year
- 100 Billion emails per day.
 1 PB per day, ~ 360 PB per year

- Ranking search results
 Training ranking algorithms from past searches
- Segmentation of customers e.g. "high income male"
 View count by customer segments
- Click through rate estimation Training logistic regression
- Fraudulent transactions
 Anomaly detection
- Personalised spam filtering Multi-task binary classification

Large Scale Machine Learning

Main question:
 How to efficiently train
 (build a model/find model parameters)?

- Auxiliary question: fast / scalable optimization
 - Stochastic / online optimization
 - Distributed optimization.

References:

• Jure Leskovec, Anand Rajaraman, Jeff Ullman. **Mining of Massive Datasets.** 2nd edition. - Cambridge University Press. http://www.mmds.org/

Thank You!!

