

Basic statistical concepts.

DATA ANALYTICS | IRONHACK

Credit: Unsplas

Agenda

- Population.
- Samples.
- Measures of Central Tendency and Dispersion
- Random variables.
- Probabilities and probability distributions

POPULATIONS AND SAMPLES

• A population is a COMPLETE collection of items/individuals/products

A sample is SUBSET of a population

POPULATION

 A population is an aggregate/collection of creatures, things, cases, etc...

 A population commonly contains too many individuals to study conveniently, so an investigation is often restricted to a reduced subset of the population.

SAMPLES

• A sample of a population is a subset of elements of the population.

- Based on information from the sample, we can make assumptions about the population.
- A random sample means that the observations from the population are picked randomly and without any bias.

STATISTICAL DESCRIPTOR OF A SAMPLE VS. THE POPULATION

 The difference between both is that the population statistical descriptor is FIXED, while the the statistical descriptor of the SAMPLE will change from sample to sample.

- The population mean and standard deviation are fixed (assumed to be fixed) and are called population parameters.
- The sample mean, sample std. deviation varies every time we calculate them as a random sample will have different values every time. They are called sample statistics.

COMMON STATISTICS NOTATION

POPULATION PARAMETERS:

- N: Number of elements in the population
- μ: mean of the population
- \circ σ : standard deviation of the population

SAMPLE STATISTICS: (they are random by nature)

- n: Number of elements in the sample
- \circ $\overline{\chi}$: sample mean
- S: sample standard deviation

POPULATION, SAMPLE AND COLLECTION OF SAMPLES

A population can be characterized by a distribution which will have:

$$(\mu, \sigma)$$

 A sample drawn from a population will be characterized by a sample mean (changes from sample to sample; is a random variable), and a sample standard deviation:

$$(\bar{x},s)$$

 We can analyze what mean we will get if we compute the mean of the means of many collected samples from the population:

$$(\mu_{ar{x}},\sigma_{ar{x}})$$

RANDOM VARIABLES

- A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon.(for eg. height people in the US, marks scored in a test, etc.)
- This random variable can be either continuous or discrete in nature.
 - Discrete random variable: The set of values that his random variable can take are discrete (usually but not necessarily counts)
 - Continuous random variable: The set of values that his random variable can take are continuous

HOW TO CHARACTERIZE A SAMPLE/POPULATION

- There are two types of measures to characterize a sample / population
 - Central tendency
 - Dispersion

IRONHACK BOOTCAMP

MEASURES OF CENTRAL TENDENCY

- [1,2,2,4,6,8,50]
- Mean: (1+2+2+4+6+8+50)/7 = 10.43 (heavily affected by outliers)
- Median: 4 (unaffected by outliers)
- Mode: 2

MEASURES OF DISPERSION

- Residuals: (real predicted)
- Variance: sum of squared residuals divided by n 1
- Standard deviation: root square of variance
- Range: difference between the maximum and minimum
- Percentile: the value such P percent takes this value or less
- Interquartile range: difference between percentiles 75% and 25%

VARIANCE AND STANDARD DEVIATION

• Variance:
$$var(x) = \sum_{i} \frac{(x - \bar{x})^2}{n - 1}$$

• Standard deviation: $std(x) = \sqrt{\sum_i \frac{(x-\bar{x})^2}{n-1}}$ (we divide by n-1 to avoid underestimating the Standard deviation) $\frac{demo}{demo}$

QUANTILES AND IQR

- The quantiles of a sample are defined in the following way:
 - Q1: after sorting the values from the smallest to highest, which value is bigger than 25% of the values:
 - Q2: after sorting the values from the smallest to highest, which value is bigger than 50% of the values:
 - Q3: after sorting the values from the smallest to highest, which value is bigger than 75% of the values:
- The IQR = Q3 Q1 is called the "interquartile range"

MONTHLY GLOBAL

Probability and probability distributions

EVENTS AND PROBABILITY

 The probability of an outcome is the proportion of times that the outcome will occur if we observe the random process an infinity amount of times

COMBINING PROBABILITIES

- Two different events can be broadly classified as:
 - Joint -> They can happen together
 - Disjoint -> They can't happen together
- Combination rules for probabilities are different for join and disjoint events: A coin and you have dice

COMBINING PROBABILITIES: DISJOINT EVENTS

• To compute the probability of two disjoint events, we add the probabilities of each of them:

$$P(Aor B) = P(A) + P(B)$$
 $P_T = \sum_i P_i$

COMBINING PROBABILITIES: JOINT EVENTS

 To compute the probability of two joint events, we add the probabilities of each of them but subtracting the intersections:

$$P(AorB) = P(A) + P(B) - P(AandB)$$

EXAMPLES

	Barcelona	Berlin	Total
Data	26	21	47
UX	19	10	29
Total	45	31	76

$$P(Barcelona) = 45/76 = 0.59$$

$$P(Data) = 47/76 = 0.62$$

$$P(Bcn or Data) = 0.59 + 0.62 - 0.34 = 0.87$$

RANDOM VARIABLES:

PROBABILITY DISTRIBUTIONS:

Mathematical function that gives us the probabilities of occurrence of different outcomes.

Discrete →

Continuous →

PMF: PROBABILITY MASS FUNCTION

 Is a function that gives us the probability that a DISCRETE random variable takes a specific value

PDF: PROBABILITY DENSITY FUNCTION

- The PDF is the equivalent of PMF but for **continuous variables**.
- As you can have an infinite amount of possible values between any two numbers, it's not possible to define the probability for every value.
- Therefore, we define a **density of probability** rather than the probability mass. The concept is very similar to mass density in physics: its unit is **probability per unit length.** To get a feeling for PDF, consider a continuous random variable X

$$g(x) = \lim_{\Delta \to 0} \frac{P(X < x < X + \Delta)}{\Delta}$$

CDF: CUMULATIVE DISTRIBUTION FUNCTION

• The CDF is a function that gives the probability of getting any value smaller or equal to a given value:

$$F(X) \equiv P(x \le X) = \int_a^x g(z)dz$$

NORMAL DISTRIBUTION

 The normal distribution is characterized by the mean and the standard deviation.

$$\Phi_{\mu,\sigma} = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad P(x \le z) = \int_{-\infty}^z \Phi_{\mu,\sigma} dx$$

X can take values from (-inf,inf)

PROBABILITIES IN PYTHON: SCIPY

- Scipy library contains the module 'stats' which allows you to compute probabilities, PDF,
 CDF,....for several distributions.
- Official documentation
 - scipy.stats.norm.pmf()
 - scipy.stats.expon.pmf()
 - ..

Every distribution has its own pmf() function in scipy.

