

Learning Invariant Representations using Inverse Contrastive Loss (ICL)

Aditya Kumar Akash[†], Vishnu Lokhande[†], Sathya Ravi[‡], Vikas Singh[†] [‡] University of Illinois at Chicago, USA University of Wisconsin Madison, USA

OVERVIEW

- In this paper we propose Inverse Contrastive Loss (ICL), a computationally efficient way to learn Invariant Representations
- We interpret ICL by drawing relation with well studied Maximum Mean Discrepancy (MMD)
- ♦ ICL provides invariant representations for not only discrete extraneous variables but also in the difficult case of continuous ones

BASIC SETTING

MOTIVATION

- Existing methods impose invariance by enforcing statistical independence $z \perp c$ through mutual information approx which compresses c from z
- ullet Increasing the compression weight parameter λ to get more invariance may lead to a collapsed latent space

ullet We propose ICL to explicitly use c in the compression term for preventing collapse

ICL AND BENEFITS

- Intuitively we propose to
- ullet Intermix representations for different c's
- Spread out representations for same c's

- Contrastive losses express high intraclass similarity z^Tz^+ and low interclass similarity z^Tz^- . We invert this class to impose invariance through ICL
- Switch roles of z^Tz^+ and z^Tz^- by sign flip
- Apply increasing function on z^Tz^-
- Apply decreasing function on z^Tz^+

- ♦ Optimizing ICL is equivalent to driving spring system to equilibrium where
- Samples with same c's have push connection
- Samples with different c's have pull connection

Optimizing ICL = System Equilibrium

 \Rightarrow Lemma 1 - For $c \in \{0, 1\}, p(c = 0) = 1/2$ \exists conditionally positive definite kernel g and an interaction energy functional R_w such that

$$ICL(Z, C) = MMD_g(p_0, p_1) + R_w(p_0, p_1)$$

ullet Significance of R_w - Prevents collapse of latent space since d(x, y) = 0 is now suboptimal

- **♦** Benefit 1 ICL is well suited for first order methods
- When d(x,y) is large, attraction for ICL is larger than MMD_f . Hence farther particles come closer faster.
- **♦ Benefit 2 ICL prevents particles from collapsing**
- Repulsion for ICL is larger than MMD_{-s} when d(x,y) is small. This pushes intraclass partices apart when they are close hence prevents collapse.
- \diamondsuit Lemma 2 For c continuous, L-Lipschitz adversary $b, \rho = P_{c,c'}(|c-c'| > \delta), \exists \alpha, \ \epsilon < \delta^2 \rho^2/L^2 \text{ such that}$ for $ICL(z,c) < \epsilon$

$$\mathbb{E}_z[(b(z)-c)^2] \ge (\delta\rho - L\sqrt{\epsilon})^2/4$$

• For sufficient small ICL, no Lipschitz adversary can have an arbitrarily small MSE

This research was supported in part by grant NIH R01 AG062336, NSF CAREER RI#1252725, NSF CCF #1918211.

EXPERIMENTAL RESULTS

- ♦ We apply ICL in both generative and discriminative model settings such as -
- Learning style information in MNIST dataset
- Invariant representations for Fairness datasets (Adult and German)
- Invariance wrt continuous extraneous attribute for Adult dataset
- Rotation Invariance for MNIST-ROT
- Predicting Alzheimer's disease status while controlling for scanner confounds (ADNI dataset)
- ♦ t-SNE shows ICL produces uniform latent space

ICL provides best invariance while providing good predictive accuracy

	MNIST		Adult		German		MNIST-Rot		ADNI	
	R↓	A↓	P↑	A↓	P↑	A↓	P↑	A↓	P↑	A ↓
Unregularized	12.1	46	84	84	73	78	96	42	83	55
MI	13.2	50	84	78	70	76	96	38	-	-
MMD_{-s}	15.8	55	84	82	73	75	96	35	85	49
$MMD_{\!f}$	15.8	50	83	80	74	78	96	34	86	57
ОТ	14.4	61	83	78	72	75	_	_	-	-
CAI	11.8	48	84	81	73	75	96	38	85	51
UAI	-	-	84	83	73	75	98	34	84	49
ICL (Ours)	16.6	32	83	75)75 (75	96 (33	84 (46

P: Prediction Accuracy, R: Reconstruction Error, A: Adversarial Invariance