Вопрос №10. Свойства равномерно сходящихся рядов (непрерывность суммы (с док.), интегрирование, дифференцирование).

• Теорема 1 (Непрерывность суммы ряда). Пусть дан ряд $\sum_{n=1}^{\infty} u_n(x)$, $x \in X$, у которого функции $u_n(x)$ непрерывны в точке $x_0 \in X$. Если ряд сходится равномерно на X, то сумма ряда $s(x) = \sum_{n=1}^{\infty} u_n(x)$ непрерывна в точке x_0 .

<u>Док-во.</u> Пусть $s_n(x) = \sum_{k=1}^n u_k(x)$, $n=1,2,\ldots$ - частичные суммы ряда $\sum_{n=1}^\infty u_n(x)$. Зададим $\varepsilon > 0$. Ряд $\sum_{n=1}^\infty u_n(x)$ сходится равномерно, следовательно $s_n(x) \Rightarrow s(x)$, т.е. $\exists n_0 : \forall n > n_0$, $\forall x \in X$ выполняется неравенство

$$|s(x) - s_n(x_0)| < \frac{\varepsilon}{3}$$

Для всех $x \in U_{\delta}(x_0) \cap X$ имеем

 $|s(x)-s(x_0)|=|[s(x)-s_n(x)]+[s_n(x)-s_n(x_0)]+[s_n(x_0)-s(x_0)]|< \varepsilon$ что и означает непрерывность функции s(x) в точке x_0

<u>Замечание 1</u>. В условиях теоремы 1 для ряда $\sum_{n=1}^{\infty} u_n(x)$ в точке $x_0 \in X$ возможен переход к пределу:

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x)$$

• Теорема 2 (Интегрирование ряда).

C[a;b]- класс функций, непрерывных на отрезке [a;b]

 $C^1[a;b]$ - класс функций, непрерывно дифференц. на [a;b]

Пусть даны ф-и $u_n(x) \in C[a;b]$, n=1,2,... и ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на [a;b]. Тогда $\forall x_0 \in [a;b]$ ряд $\sum_{n=1}^{\infty} \left(\int_{x_0}^x u_n(t) dt \right)$ сходится равномерно на [a;b], причем

$$\int_{x_0}^{x} \left(\sum_{n=1}^{\infty} u_n(t) \right) dt = \sum_{n=1}^{\infty} \left(\int_{x_0}^{x} u_n(t) dt \right)$$

- ❖ Ряд непрерывных ф-ий в условиях теоремы 2 можно почленно интегрировать. Интеграл бесконечной суммы = сумме интегралов
- Функция f(x)называется непрерывной в точке, если: функция определена в точке и ее окрестности; существует конечный предел функции в точке; этот предел равен значению функции в этой точке.
- Теорема 3 (Дифференцирование). Пусть дана последовательность ф-й $u_n(x) \in C^1[a;b]$, n=1,2,..., и ряд $\sum_{n=1}^{\infty} u'_n(x)$ сходится равномерно на [a;b]. Тогда, если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится хотя бы в одной точке $x_0 \in [a;b]$, то

$$\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x)$$

Причем ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится на [a;b].

Его сумма $s(x) = \sum_{n=1}^{\infty} u_n(x)$ является непрерывно дифференцируемой функцией и $s'(x) = \sum_{n=1}^{\infty} u'_n(x)$.

В условиях Т3 ряд $\sum_{n=1}^{\infty}u_n(x)$ можно почленно дифференцировать.