

Datasheet

HTTP://ROALOGIC.GITHUB.IO/PLIC

October, 2017

Contents

1	Intr	oducti	on	1									
	1.1	Featur	es	1									
2	Specifications												
	2.1	Functi	onal Description	2									
	2.2	Opera	ting Modes	2									
		2.2.1	Push-Pull Mode	2									
		2.2.2	Open-Drain Mode	3									
		2.2.3	Pad Inference	3									
3	Con	nfigura	tions	4									
	3.1	Introd	uction	4									
	3.2	Core F	Parameters	4									
		3.2.1	PDATA_SIZE	4									
		3.2.2	INPUT_STAGES	4									
		3.2.3	Registers	4									
		3.2.4	INPUT	5									
		3.2.5	OUTPUT	5									
		3.2.6	DIRECTION	5									
		3.2.7	MODE	5									
4	Inte	erfaces		6									
	4.1	APB4	(Peripheral) Interface	6									
		4.1.1	PRESETn	6									
		4.1.2	PCLK	6									
		4.1.3	PSEL	6									
		4.1.4	PENABLE	6									
		4.1.5	PPROT	6									
		4.1.6	PWRITE	7									
		4.1.7	PSTRB	7									
		4.1.8	PADDR	7									
		4.1.9	PWDATA	7									
		4.1.10	PRDATA	7									
		1111	PREADV	7									

6	Rev	ision I	History																	10
5	Res	ources																		9
		4.2.3	GPIO_0)E .	 	•	 	٠	 •	•	 •	•		•				•	•	8
			GPIO_0																	
		4.2.1	GPIO_I		 	•	 													8
	4.2	GPIO	Interface	e	 		 													8
		4.1.12	PSLVE	RR.	 		 													7

Todo list

1. Introduction

The APB4 GPIO Core is fully parameterised core designed to provide a user-defined number of general purpose, bidirectional IO to a design.

The IO are accessible via an AMBA APB v2.0 Specification interface – typically referred to as APB4 – and the core operates synchronously with the rising edge of the APB4 Bus Clock..

Inputs to the core may operate asynchronously to the core and will be automatically synchronised to the bus clock. Outputs may be configured to operate in push-pull mode or open-drain.

Figure 1.1: APB4 GPIO Signalling

1.1 Features

- Compliant with AMBA APB v2.0 Specification
- User-defined number of Bi-directional General Purpose IO
- Automatic synchronisation of General Inputs to Bus Clock
- Each General Output configurable as push-pull or open-drain

2. Specifications

2.1 Functional Description

The Roa Logic APB4 GPIO is a configurable, fully parameterized soft IP to enable general connectivity to a APB4 based Master (Host) It is fully compliant with the $AMBA\ APB\ v2.0$ bus protocols.

The IP contains a single Master Interface to connect to the APB4 Host and a user defined number of General Purpose IO, configurable as a bi-directional bus as shown below:

Figure 2.1: Bidirectional IO Pad

The core operates synchronously with the APB4 Bus Clock. Inputs may be asynchronous to this bus clock and therefore the implements configurable length synchronisation

2.2 Operating Modes

The core supports bidirectional IO pads as shown in Figure 3, where each IO may operate in a push-pull or open-drain mode. The mode of each IO is defined via the MODE register.

Note:

IO Pads are not implemented within the APB4 GPIO core – this technology specific capability is the responsibility of the designer.

2.2.1 Push-Pull Mode

In push-pull mode, the $\tt GPIO_O$ bus is driven from an internal $\tt OUTPUT$ register and $\tt GPIO_OE$ is controlled via the DIRECTION register

Logically the push-pull mode is configured as follows:

Figure 2.2: Push-Pull Configuration

2.2.2 Open-Drain Mode

In open-drain mode, GPIO_O is always driven low ('0') and individual GPIO_OE signals set to enable (i.e. Logic '0') or high-Z (Logic '1') at the output buffer corresponding to the value of the OUTPUT register.

Figure 2.3: Open Drain Configuration

2.2.3 Pad Inference

The inclusion of technology specific IO Pads is not part of the APB4 GPIO core and instead left to the designer. Pads may be behaviourally inferred however as follows:

$$PAD[n] \leftarrow GPIO_OE[n]$$
? $GPIO_O[n]$: 1'bz

3. Configurations

3.1 Introduction

The Roa Logic AHB-Lite APB4 GPIO is a fully configurable General Purpose Input/Output core. The core parameters and configuration options are described in this section.

3.2 Core Parameters

Parameter	Type	Default	Description
PDATA_SIZE INPUT_STAGES	Integer Integer	8 3	APB4 Data Bus & GPIO Size Number of GPIO_I input synchronization stages

Table 3.1: Core Parameters

3.2.1 PDATA_SIZE

The PDATA_SIZE parameter specifies the width of the APB4 data bus and corresponding GPIO interface width. This parameter must equal an integer multiple of bytes.

3.2.2 INPUT_STAGES

The APB4 GPIO inputs are sampled on the rising edge of the APB4 bus clock (PCLK). As these inputs may be asynchronous to the bus clock, the core automatically synchronises these signals and the INPUT_STAGES parameter determines the number of synchronisation stages.

Increasing this parameter reduces the possibility of metastability due to input signals changing state while being sampled, but at the cost of increased latency.

The minimum and default value of the INPUT_STAGES parameter is 3

3.2.3 Registers

The APB4 GPIO core implements 4 user accessible registers. These are described below:

Register	${f Address}$	Access	Function
INPUT	Base + 0x3	Read Only	Input Data Store
OUTPUT	Base + $0x2$	Read/Write	Output Data Store
DIRECTION	Base + $0x1$	Read/Write	Output Enable control
MODE	Base + 0x0	Read/Write	Push-Pull or Open-Drain Mode

Table 3.2: User Registers

3.2.4 INPUT

INPUT is a PDATA_SIZE bits wide read-only register accessible at the address 0x3.

On the rising edge of the APB4 Bus Clock (PCLK) input data on pins GPIO_I is sampled, synchronised and stored in the INPUT register where it may be read via the APB4 Bus Interface.

3.2.5 OUTPUT

OUTPUT is a PDATA_SIZE bits wide read/write register accessible at the address 0x2.

Data to be transmitted from the APB4 GPIO core via the GPIO_O & GPIO_OE buses is written from the APB4 Interface to the OUTPUT register.

3.2.6 DIRECTION

DIRECTION is a PDATA_SIZE bits wide active-high read/write register, accessible at the address 0x1, and controls the output enable bus GPIO_OE.

DIRECTION[n]	Direction
0	Input
1	Output

Table 3.3: DIRECTION Register

3.2.7 **MODE**

MODE is a PDATA_SIZE bits wide Read/Write register accessible at the address 0x0. It individually sets the operating mode for each signal of the GPIO_O and GPIO_OE buses as either push-pull or open drain, as follows:

MODE[n]	Operating Mode
0	Push-Pull
1	Open Drain
Table 3.4:	MODE Register

In push-pull mode, data written to the OUTPUT register directly drives the output bus GPIO_O. The DIRECTION register is then used to enable GPIO_O to drive the IO pad when set to 'Output' mode ('1').

In open-drain mode, GPIO_O is permanently driven low ('0') and the OUTPUT register sets GPIO_OE to 'Output' to assert a logic '0' on the bus, or 'Input' (i.e. High-Z) to assert a logic '1'.

4. Interfaces

4.1 APB4 (Peripheral) Interface

The APB4Interface is a regular APB4 Master Interface. All signals defined in the protocol are supported as described below. See the AMBA APB Protocol v2.0 Specifications for a complete description of the signals.

Port	\mathbf{Size}	Direction	Description
PRESETn	1	Input	Asynchronous active low reset
PCLK	1	Input	Clock Input
PSEL	1	Output	Peripheral Select
PENABLE	1	Output	Peripheral Enable Control
PPROT	3	Output	Transfer Protection Level
PWRITE	1	Output	Write Select
PSTRB	PDATA_SIZE/8	Output	Byte Lane Indicator
PADDR	PADDR_SIZE	Output	Address Bus
PWDATA	PDATA_SIZE	Output	Write Data Bus
PRDATA	PDATA_SIZE	Input	Read Data Bus
PREADY	1	Input	Transfer Ready Input
PSLVERR	1	Input	Transfer Error Indicator

Table 4.1: APB4 Peripheral Interface Ports

4.1.1 PRESETn

When the active low asynchronous PRESETn input is asserted ('0'), the APB4 interface is put into its initial reset state.

4.1.2 PCLK

PCLK is the APB4 interface system clock. All internal logic for the APB4 interface operates at the rising edge of this system clock and APB4 bus timings are related to the rising edge of PCLK.

4.1.3 **PSEL**

The APB4 Bridge generates PSEL, signaling to an attached peripheral that it is selected and a data transfer is pending.

4.1.4 PENABLE

The APB4 Bridge asserts PENABLE during the second and subsequent cycles of an APB4 data transfer.

4.1.5 PPROT

PPROT[2:0] indicates the protection type of the data transfer, with 3 levels of protection supported as follows:

Bit#	Value	Description
2	1	Instruction Access
	0	Data Access
1	1	Non-Secure Access
	0	Secure Access
0	1	Privileged Access
	0	Normal Access

Table 4.2: APB4 Protection Types

4.1.6 PWRITE

PWRITE indicates a data write access when asserted high ('1') and a read data access when de-asserted ('0')

4.1.7 **PSTRB**

There is one PSTRB signal per byte lane of the APB4 write data bus (PWDATA). These signals indicate which byte lane to update during a write transfer such that PSTRB[n] corresponds to PWDATA[(8n+7):8n].

4.1.8 PADDR

PADDR is the APB4 address bus. The bus width is defined by the PADDR_SIZE parameter and is driven by the APB4 Bridge core.

4.1.9 PWDATA

PWDATA is the APB4 write data bus and is driven by the APB4 Bridge core during write cycles, indicated when PWRITE is asserted ('1'). The bus width must be byte-aligned and is defined by the PDATA_SIZE parameter.

4.1.10 PRDATA

PRDATA is the APB4 read data bus. An attached peripheral drives this bus during read cycles, indicated when PWRITE is de-asserted ('0'). The bus width must be byte-aligned and is defined by the PDATA_SIZE parameter.

4.1.11 PREADY

PREADY is driven by the attached peripheral. It is used to extend an APB4 transfer.

4.1.12 PSLVERR

PSLVERR indicates a failed data transfer when asserted ('1'). As APB4 peripherals are not required to support this signal it must be tied LOW ('0') when unused.

4.2 **GPIO** Interface

Port	Size	Direction	Description
GPIO_I	PDATA_SIZE	Input	Input Signals Output Signals Output Enable Signal
GPIO_O	PDATA_SIZE	Output	
GPIO_OE	PDATA_SIZE	Output	

Table 4.3: GPIO Interface Signals

4.2.1 GPIO I

GPIO_I is the input bus. The bus is PDATA_SIZE bits wide and each bit is sampled on the rising edge of the APB4 bus clock PCLK. As the inputs may be asynchronous to the bus clock, synchronisation is implemented within the core.

4.2.2 GPIO_O

GPIO_O is the output bus and is PDATA_SIZE bits wide. Data is driven onto the output bus on the rising edge of the APB4 bus clock PCLK.

4.2.3 GPIO_OE

GPIO_OE is an active-high Output Enable bus and is PDATA_SIZE bits wide.

The specific functionality of the <code>GPIO_OE</code> bus is defined by the <code>MODE</code> register. In pushpull mode it is used to enable a bidirectional output buffer whose input is driven the <code>GPIO_O</code> bus

In open-drain mode the GPIO_OE bus is used to enable a logic '0' to be driven from the GPIO_O bus, and a logic '1' by disabling ('High-Z') the output buffer.

5. Resources

Below are some example implementations for various platforms. All implementations are push button, no effort has been undertaken to reduce area or improve performance.

Platform DFF Logic Cells Memory Performance (MHz)

Table 5.1: Resource Utilization Examples

6. Revision History

Date	Rev.	Comments
	1.0	

Table 6.1: Revision History