Personalization with Latent Confounders

Leo Guelman

RBC Royal Bank

Figure: Ronald Fisher (1890-1962)

A/B Testing is likely NOT 'gold standard' for Personalized Decision-Making.

 The value of Personalization is founded on the premise that individuals have heterogenous response to actions.

- The value of Personalization is founded on the premise that individuals have heterogenous response to actions.
- Personalization algorithms aim to improve decision-making by identifying and exploiting this heterogeneity.

- The value of Personalization is founded on the premise that individuals have heterogenous response to actions.
- Personalization algorithms aim to improve decision-making by identifying and exploiting this heterogeneity.
- However, latent confounders (i.e., unobserved variables affecting both the actions and the outcome variables) pose a unique challenge to personalization.

- The value of Personalization is founded on the premise that individuals have heterogenous response to actions.
- Personalization algorithms aim to improve decision-making by identifying and exploiting this heterogeneity.
- However, latent confounders (i.e., unobserved variables affecting both the actions and the outcome variables) pose a unique challenge to personalization.
- In contrast to the general notion that Randomized Controlled Experiments (a.k.a. A/B Tests) are 'gold standard', in this setting they might actually result in loss of information.

- The value of Personalization is founded on the premise that individuals have heterogenous response to actions.
- Personalization algorithms aim to improve decision-making by identifying and exploiting this heterogeneity.
- However, latent confounders (i.e., unobserved variables affecting both the actions and the outcome variables) pose a unique challenge to personalization.
- In contrast to the general notion that Randomized Controlled Experiments (a.k.a. A/B Tests) are 'gold standard', in this setting they might actually result in loss of information.
- Counterfactual-based decision-making can address these problems and lead to a coherent fusion of observational and experimental data.

The Business Setting

- Business objective: Cross-sell a credit card to new-to-RBC clients.
- Past campaign: All new-to-RBC clients who visited the RBC public site, get a credit card offer + iPad incentive.

 The goal is to personalize the incentive: Identify which new-to-RBC clients should receive an iPad incentive in the future to maximize the expected profitability of the campaign.

Data Generating Process

Figure: Past campaign 'true' causal DAG.

Data Generating Process

Figure: Past campaign 'true' causal DAG.

$$V := M \oplus F$$

 $I := V$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$. Highlighted cells reflect (new-to-RBC) client's 'natural' choice to visit the Public site or not.

Approach 1: Empirical Decision Criterion (EDC)

$$\mathsf{EDC} \to \operatorname*{argmax}_{I \in \mathsf{0},1} E[\pi|I,M]$$

$$E[\pi|I=1, M=1] = 0.25$$

 $E[\pi|I=0, M=1] = 0.05$
 $E[\pi|I=1, M=0] = 0.05$
 $E[\pi|I=0, M=0] = 0.10$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
/ = 1	0.25	0.50	0.45	0.05
<i>I</i> = 0	0.50	0.10	0.05	0.30

Table: $E[\pi|M, R, I]$.

Approach 1: Empirical Decision Criterion (EDC)

$$\mathsf{EDC} \to \operatorname*{argmax}_{I \in \mathsf{0},1} E[\pi|I,M]$$

$$E[\pi|I=1, M=1] = 0.25$$

 $E[\pi|I=0, M=1] = 0.05$
 $E[\pi|I=1, M=0] = 0.05$

$$E[\pi|I=0, M=0] = 0.10$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M, R, I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.25$
- If Visit Site \land Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.05$

Expected profit =
$$\boxed{0.15}$$
 = $(0.25+0.05)/2$.

Approach 2: Post-Visit Randomization (PVR)

Figure: Causal DAG with post-visit randomization.

Approach 2: Post-Visit Randomization (PVR) - cont'd

$$\mathsf{PVR} \to \operatorname*{argmax}_{I \in 0,1} E[\pi | do(I), M, V = 1]$$

$$E[\pi|do(I=1), M=1, V=1] = 0.25$$

 $E[\pi|do(I=0), M=1, V=1] = 0.50$
 $E[\pi|do(I=1), M=0, V=1] = 0.05$
 $E[\pi|do(I=0), M=0, V=1] = 0.30$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

Approach 2: Post-Visit Randomization (PVR) - cont'd

$$\mathsf{PVR} \to \operatorname*{argmax}_{I \in 0,1} \, E[\pi| do(I), M, V = 1]$$

$$E[\pi|do(I=1), M=1, V=1] = 0.25$$

 $E[\pi|do(I=0), M=1, V=1] = 0.50$
 $E[\pi|do(I=1), M=0, V=1] = 0.05$
 $E[\pi|do(I=0), M=0, V=1] = 0.30$

	R = 0		R = 1	
	M = 1	<i>M</i> = 0	M = 1	M = 0
/ = 1 / = 0	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \land Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$

Expected profit = $\boxed{0.40}$ = (0.50+0.30)/2.

Approach 3: A/B Test on All New-to-RBC Clients

Figure: Causal DAG with A/B Test on All New-to-Bank Clients.

Approach 3: A/B Test on All New-to-RBC Clients - cont'd

$$\mathsf{ABT} \to \operatorname*{argmax}_{I \in 0,1} E[\pi| do(I), M]$$

$E[\pi do(I=1), M=1] = 0.350 = (0.25 + 0.45)/2$
$E[\pi do(I=0), M=1] = 0.275 = (0.50 + 0.05)/2$
$E[\pi do(I=1), M=0] = 0.275 = (0.50 + 0.05)/2$
$E[\pi do(I=0), M=0] = 0.200 = (0.10 + 0.30)/2$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M, R, I]$.

Approach 3: A/B Test on All New-to-RBC Clients - cont'd

$$\mathsf{ABT} \to \operatorname*{argmax}_{I \in 0,1} E[\pi| do(I), M]$$

$$E[\pi|do(I=1), M=1] = 0.350 = (0.25 + 0.45)/2$$

$$E[\pi|do(I=0), M=1] = 0.275 = (0.50 + 0.05)/2$$

$$E[\pi|do(I=1), M=0] = 0.275 = (0.50 + 0.05)/2$$

$$E[\pi|do(I=0), M=0] = 0.200 = (0.10 + 0.30)/2$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M, R, I]$.

Decision Rule:

- If Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.35$
- If Not Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.275$

Expected profit =
$$\boxed{0.315}$$
 = $(0.35+0.275)/2$.

Approach 4: Regret Decision Criterion (RDC)

$$\mathsf{RDC} o \operatorname*{argmax}_{a' \in \ 0,1} E[\pi_{a'} | I = a, M]$$

Approach 4: Regret Decision Criterion (RDC)

$$\begin{split} \mathsf{RDC} &\to \operatorname*{argmax}_{a' \in \ 0,1} E[\pi_{a'} | I = a, M] \\ &P(\pi_{a'}, M) = P(\pi_{a'}, M, a') + P(\pi_{a'}, M, a) \\ &= P(\pi_{a'} | M, a') P(M, a') + P(\pi_{a'} | M, a) P(M, a) \\ \\ &P(\pi_{a'} | M) = P(\pi_{a'} | M, a') P(a' | M) + P(\pi_{a'} | M, a) P(a | M) \\ &= P(\pi | M, a') P(a' | M) + P(\pi_{a'} | M, a) P(a | M) \text{ (Consistency)} \\ \\ &P(\pi_{a'} | M, a) = \frac{1}{P(a | M)} \Big[P(\pi_{a'} | M) - P(\pi | M, a') P(a' | M) \Big] \\ &= \boxed{\frac{1}{P(a | M)} \Big[P(\pi | M, do(a')) - P(\pi | M, a') P(a' | M) \Big]} \end{split}$$

Approach 4: Regret Decision Criterion (RDC) - cont'd

$$P(\pi_{I=1}|M=1, I=0) =$$

$$\begin{split} \frac{1}{P(I=0|M=1)} \Big[P\Big(\pi|M=1, do(I=1)\Big) - \\ P(\pi|M=1, I=1) P(I=1|M=1) \Big]. \\ &= \frac{1}{1/2} (0.350 - 0.25 \times \frac{1}{1/2}) = \textbf{0.45} \end{split}$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	<i>M</i> = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

$$P(\pi_{I=1}|M=0, I=0) = 0.50$$

$$P(\pi_{I=0}|M=1, I=1) = 0.50$$

$$P(\pi_{I=0}|M=0, I=1) = 0.30$$

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \wedge Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$
- If Not Visit Site \land Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.45$
- ullet If Not Visit Site \wedge Not Married o Purchase Incentive o $E[\pi]=$ **0.50**

Expected profit = 0.4375 = (0.50 + 0.30 + 0.45 + 0.50)/4

Summary of Methods

Criterion	Decision Rule	<i>Ε</i> [<i>π</i>]
EDC		.1500
	• If Visit Site \land Married \rightarrow Purchase Incentive	
	• If Visit Site \wedge Not Married \rightarrow No Purchase Incentive	
PVR	Never Purchase Incentive	.4000
ABT	Always Purchase Incentive	.3150
RDC		.4375
	 If Visit Site ∧ Married → No Purchase Incentive 	
	• If Visit Site \wedge Not Married \rightarrow No Purchase Incentive	
	• If Not Visit Site \wedge Married \rightarrow Purchase Incentive	
	$ \begin{tabular}{ll} \bullet & \mbox{If Not Visit Site} \land \mbox{Not Married} \rightarrow \\ \mbox{Purchase Incentive} \\ \end{tabular} $	
Oracle		.4375

Key Takeaways

- A/B testing is not always the 'Gold Standard' for learning causal effects
- If (i) the goal is to learn optimal personalized actions, and (ii) we have unobserved confounders (very likely!), and (iii) these confounders interact with the action: then Counterfactual-based decision-making may outperform Causal-decision making.
- The expression derived from RDC works only in the binary treatment case.
 RDC-type randomization (Forney et al., 2017) was proposed to estimate the counterfactual expressions empirically from an arbitrary number of treatments.

References

- Elias Bareinboim, Andrew Forney, and Judea Pearl. 2015. Bandits with unobserved confounders: a causal approach. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15).
 - ► Implementation: https://github.com/leoguelman/mabuc
- Forney, A., Pearl, J.; Bareinboim, E.. (2017). Counterfactual Data-Fusion for Online Reinforcement Learners. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:1156-1164