Домашнее задание №6

Бояркин 43501/3

1.1 Применение критерия Найквиста к логарифмическим частотным характеристикам

Логарифмическая амплитудно-частотная характеристика разомкнутой САР вычисляется по формуле:

$$L(\omega) = 20lg|A(\omega|) - 20lg|W(j\omega)|$$

Логарифмическая фазо-частотная характеристика по формуле:

$$\phi(\omega) = arg(W(j\omega))$$

Из частотной характеристики следует, что достижению частотной характеристики окружности единичного радиуса с центром в начале координат при определенной частоте ω_c , называемой *частотой среза* или граничной частотой, соответствует пересечение ЛАЧХ $L(\omega)$ оси частот ($L(\omega_c) = 0$).

Переходу годографа через вещественную ось при $Re[W(j\omega)] < 0$ соответствует переход ЛАФЧХ $\phi(\omega)$ через отметку - π (в более сложных случаях, когда частотная характеристика имеет вид спирали - через отметки $\pm \pi, \pm 3\pi, \pm 5\pi, ...$). При этом положительному переходу сооответствует переход ЛФЧХ снизу вверх, а отрицательному переходу - сверху вниз.

Поэтому на основании критерия Найквиста может быть сформулирован логарифмический частотный критерий устойчивости.

1.2 Логарифмический частотный критерий устойчивости

Для устойчивости замкнутой САР необходимо и достаточно, чтобы разность между числом положительных и отрицательных переходов ЛФЧХ разомкнутой САР через линию $\pm(2k+1)\pi$ (где k=0,1,2,...) при частотах, кгда $L(\omega)>0$, была равна m/2.

Рис. 1.1