

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Thorium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$				
	Baes and Mesmer, 1976	Rand et al., 2008	Thoenen et al, 2014	Brown and Ekberg, 2016	
$Th^{4+} + H_2O \rightleftharpoons ThOH^{3+} + H^+$	-3.20	-2.5 ± 0.5	-2.5 ± 0.5	-2.5 ± 0.5	
$Th^{4+} + 2 H_2O \rightleftharpoons Th(OH)_2^{2+} + 2 H^+$	-6.93	-6.2 ± 0.5	-6.2 ± 0.5	-6.2 ± 0.5	
$Th^{4+} + 3 H_2O \rightleftharpoons Th(OH)_3^+ + 3 H^+$	<-11.7				
$Th^{4+} + 4 H_2O \rightleftharpoons Th(OH)_4 + 4 H^+$	-15.9	-17.4 ± 0.7	-17.4 ± 0.7	-17.4 ± 0.7	
$2 \text{ Th}^{4+} + 2 \text{ H}_2\text{O} \rightleftharpoons \text{Th}_2(\text{OH})_2^{6+} + 2 \text{ H}^+$	-6.14	-5.9 ± 0.5	-5.9 ± 0.5	-5.9 ± 0.5	
$2 \text{ Th}^{4+} + 3 \text{ H}_2\text{O} \rightleftharpoons \text{Th}_2(\text{OH})_3^{5+} + 3 \text{ H}^+$		-6.8 ± 0.2	-6.8 ± 0.2	-6.8 ± 0.2	
$4 \text{ Th}^{4+} + 8 \text{ H}_2\text{O} \rightleftharpoons \text{Th}_4(\text{OH})_8^{8+} + 8 \text{ H}^+$	-21.1	-20.4 ± 0.4	-20.4 ± 0.4	-20.4 ± 0.4	
4 Th ⁴⁺ + 12 H ₂ O \rightleftharpoons Th ₄ (OH) ₁₂ ⁴⁺ + 12 H ⁺		-26.6 ± 0.2	-26.6 ± 0.2	-26.6 ± 0.2	
6 Th ⁴⁺ + 15 H ₂ O(I) \rightleftharpoons Th ₆ (OH) ₁₅ ⁹⁺ + 15 H ⁺	-36.76	-36.8 ± 1.5	-36.8 ± 1.5	-36.8 ± 1.5	
6 Th ⁴⁺ + 14 H ₂ O(I) \rightleftharpoons Th ₆ (OH) ₁₄ ¹⁰⁺ + 14 H ⁺		-36.8 ± 1.2	-36.8 ± 1.2	-36.8 ± 1.2	
$ThO_2(c) + 4 H^+ \rightleftharpoons Th^{4+} + 2 H_2O$	6.3				
$ThO_2(am) + 4 H^+ \rightleftharpoons Th^{4+} + 2 H_2O$				8.8 ± 1.0	
ThO ₂ (am,hyd,fresh) + 4 H ⁺ \rightleftharpoons Th ⁴⁺ + 2 H ₂ O			9.3 ± 0.9		

Contributors: Clemente Bretti, Elvira Bura Nakić, Montserrat Filella, Josep Galceran, Sofia Gama, Elżbieta Gumienna- Kontecka, Lucija Knežević, Gabriele Lando, Přemysl Lubal, Demetrio Milea, Andrzej Mular, Bartosz Orzeł, Michaela Rendošová, Matteo Savastano, Vladimir Sladkov, Kamila Stokowa-Sołtys, Yuliya Toporivska, Zuzana Vargová, Emanuele Zanda, Veronika Zinovyeva

$ThO_2(am,hyd,aged) + 4H^+ \rightleftharpoons Th^{4+} + 2H_2O$		8.5 ± 0.9	
$Th^{4+} + 4OH^{-} \rightleftharpoons ThO_{2}(am,hyd,fresh) + 2H_{2}O$	46.7 ± 0.9		
$Th^{4+} + 4OH^{-} \rightleftharpoons ThO_{2}(am,hyd,aged) + 2H_{2}O$	47.5 ± 0.9		

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 168.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 462–498.
- M. Rand, J. Fuger, I. Grenthe, V. Neck and D. Rai, Chemical Thermodynamics of Thorium, OECD Pub., 2008.
- T. Thoenen, W. Hummel, U. Berner and E. Curti, The PSI/Nagra Chemical Thermodynamic Database 12/07, Villigen: Paul Scherrer Institute PSI, 2014 pp. 259–263.

Distribution diagrams

These diagrams have been computed at two Th(IV) concentrations (1 mM = 1×10^{-3} mol L⁻¹ and 1 μ M = 1×10^{-6} mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

