

YEAR 12 MATHEMATICS SPECIALIST SEMESTER TWO 2017 QUESTIONS OF REVIEW 5: Differentiation with Applications

By daring & by doing

c)

	Name	Name:	
	rsday 29 th June Time: 35 minutes S free, scientific calculator allowed.	Mark	/30
1.	[7 marks – 1, 3 and 3]		
a)	A curve is defined by the equation $y^2 = 3xy - \frac{5x^2}{4}$ Verify that $P(2,5)$ lies on the curve		
	dv		
b)	Develop an expression for the gradient function $\frac{dy}{dx}$	•	

Determine an equation for the normal to the curve at P(2,5).

2. [4 marks]

A particle with displacement x has velocity $v = 3\sqrt{x}$.

Show that the acceleration is constant and evaluate this constant.

3. [6 marks - 3, 2 and 1]

A second charged particle in a magnetic field has velocity $v = 8\sqrt{x}$ cm/sec when it has travelled x cm from rest.

a) Show that, if ∂x and ∂v represent small changes in x and v respectively, $\partial v \approx \frac{32\partial x}{v}$

b) Estimate the percentage change in *x* needed to reduce *v* by 4%.

c) Explain whether this is a valid method to estimate the effect of a 50% change in *x*.

4. [8 marks – 4, 1, 1 and 2]

A damaged oil tanker is leaking oil into the sea. A current pushes the spreading oil into the shape of a sector of a circle, with radius r and sector angle θ . Both r and θ change with time.

The area of a sector is given by $A = \frac{1}{2}r^2\theta$.

a) Show that $\frac{d\theta}{dt} = \frac{2}{r} \left(\frac{1}{r} \frac{dA}{dt} - \theta \frac{dr}{dt} \right)$

The radius of the oil spill is increasing at 2 m per minute and the area at $2\pi \ m^2$ per minute.

When the oil spill has a radius of 6 m:

- b) determine the area at this instant
- c) find the exact value of θ at this instant
- d) calculate the rate of change of $\,\theta\,$ at this instant.

5. [5 marks]

A small boat is being hauled towards a wharf by a winch mounted 2.5 m above water level. The winch is pulling the connecting rope at a rate of 0.06 m per second.

How fast is the boat moving horizontally when there is 6.5 of rope between the boat and the winch?