Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

по лабораторной работе №3

по дисциплине «Методы оптимизации»

Работу выполнили:

Ахметов Марсель Ринатович M3237

Винников Глеб Вячеславович

M3237

Яценко Данил Вячеславович

M3236

Факультет: ИТиП

Группа: М3236-37

Преподаватель:

Корсун Мария Михайловна

Санкт-Петербург 2021

Цель работы:

• Разработать программы для безусловной минимизации функций многих переменных.

I. Ньютоновские методы.

Мы реализовали 3 модификации метода Ньютона оптимизации функции:

- 1. Классическая
- 2. С использованием методов одномерной оптимизации
- 3. С выбором направления

И протестировали их на двух выбранных нами функциях и двух заданных.

Выбранные функции:

a.
$$f(x) = 1x_1^2 + 11x_2^2 + 21x_3^2 + 31x_4^2 + 41x_5^2 + 51x_6^2 + 61x_7^2 + 71x_8^2 + 81x_9^2 + 91x_{10}^2$$

Данная функция является квадратичной. Все представленные методы сходятся за две итерации в точку минимума (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) из любых стартовых позиций. Стоит отметить, что на втором заходе точка минимума уже достигнута, и дополнительная итерация происходит лишь из-за выбранного критерия остановки, основывающемся на сдвиге во время выполненного шага. Во всех случаях одномерные поиски находили 1.

b.
$$f(x, y) = 10 * x * y^2 * e^{(-(x^2 + y^2)/4)}$$

Функция имеет две точки минимума: $(-\sqrt{2}; -2)$ и $(-\sqrt{2}; 2)$

Рассмотрим действия алгоритмов для различных стартовых точек.

Цвета на графиках:

- Красный классический
- Черный с использованием методов одномерной оптимизации
- Желтый с выбором направления

(-1.5; 2.3):

Количество итераций:

- Классический 10
- С использованием методов одномерной оптимизации 3
- С выбором направления 3

Траектории сходимости:

	С исп. мет. одномер. опт.	С выб. напр.
	0.680320754538694	0.088522848010998
	0.799301969480556	0.800783754096583
	0.791067735810200	0.806666862112074
Итераций:	102	102

(-2; -1):

Количество итераций:

- Классический inf
- С использованием методов одномерной оптимизации 6
- С выбором направления 6

Траектории сходимости:

	С исп. мет. одномер. опт.	С выб. напр.
	-0.229096229412625	0.12473324309864
	0.766580141806592	0.708753328272324
	0.800265413840477	0.799434275082973
	0.803369578221733	0.810314299316421
Итераций:	136	136

(-3; 0.5):

Количество итераций:

- Классический inf
- С использованием методов одномерной оптимизации 7
- С выбором направления 6

Траектория сходимости:

	С исп. мет. одномер. опт.	С выб. напр.
	-0.999999921581193	0.635621478621565
	-0.970460146826609	0.160874666509877
	0.501614236392038	0.806503939001958
	0.798534867960968	0.800069664965775
	0.800120166190462	0.625991712583749
	0.531702783939251	
Итераций:	204	102

(0.5, 2.1)

Количество итераций:

- Классический inf
- С использованием методов одномерной оптимизации 5
- С выбором направления 4

Траектория сходимости:

	С исп. мет. одномер. опт.	С выб. напр.
	-0.999999921581193	0.158129228768813
	0.482811208462974	0.732038379101754
	0.812178641636814	0.800153310881539
	0.799966766322992	-0.501552828519740
	0.858393846066638	
Итераций:	170	136

На основе экспериментов можно сделать выводы:

- Для сложных функций классический метод Ньютона находит минимум только при старте в достаточно близкой к нему точке.
- Метод Ньютона с выбором направления находит минимум затрачивая на это минимальное число итераций.

Заданные функции:

a.
$$f(x, y) = x^2 + y^2 - 1.2xy$$
; $x_0 = (4, 1)$

Количество итераций:

- Классический 1
- С использованием методов одномерной оптимизации 1
- С выбором направления 1
- Наискорейший спуск 27

Траектория сходимости:

^{*}для метода Ньютона с выбором направления показан сдвиг, выполненный до начала итерационного процесса

b.
$$f(x, y) = 100(y - x^2)^2 + (1 - x)^2$$
; $x_0 = (-1.2, 1)$

Количество итераций:

- Классический 6
- С использованием методов одномерной оптимизации 13
- С выбором направления 13
- Наискорейший спуск 1527

Траектории движения:

Подведем итоги исследования работы Ньютоновских методов:

- Метод наискорейшего спуска крайне неэффективен при оптимизации неквадратичных функций. В нашем эксперименте он продвигался очень маленькими зигзагами, медленно сходясь к точке минимума. Для критерия остановки grad(x) < ерѕ метод может вовсе не сойтись, "прыгая" вокруг точки минимума, но не приближаясь к ней.
- В некоторых случаях классический метод Ньютона сходится к точке минимума за меньшее число итераций, чем его модификации. Однако велики риски вовсе не найти нужную точку, из-за чего методы с выбором направлений и с использованием методов одномерной оптимизации выглядят куда более эффективными.

П. Квазиньютоновские метолы.

Мы реализовали два квазиньютоновских метода: метод Пауэлла и метод Давидона-Флетчера-Пауэлла - и протестировали их на заданных функциях.

Цвета линий на графиках:

- Красный метод Ньютона с выбором направлений
- Черный метод ДФП
- Желтый- метод Пауэлла

•
$$f(x, y) = 100(y - x^2)^2 + (1 - x)^2$$

Итерации:

	(1, -1.2)	(0, 1.5)	(2.5, 2.5)
Выб. Напр.	12	16	16
ДФП	25	30	30
Пауэлл	24	30	31

•
$$f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

Итерации:

	(0, 0)	(4, 4)	(0, -4)
Выб. Напр.	6	8	4
ДФП	7	10	8
Пауэлл	7	10	8

•
$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

Итерации:

	(0, -4, 0, 1)	(10, -9, 19, 10)	(3, -3, -19, -20)
Выб. Напр.	31	31	34
ДФП	33	26	19
Пауэлл	37	58	66

•
$$f(x, y) = 100 - \frac{2}{1 + (\frac{x-1}{2})^2 + (\frac{y-1}{3})^2} - \frac{1}{1 + (\frac{x-2}{2})^2 + (\frac{y-1}{3})^3}$$

Итерации:

	(0, 0)	(1, 0.5)	(2, -2)
Выб. Напр.	5	5	6
ДФП	8	6	7
Пауэлл	8	6	8

Подведем итоги исследования работы квазиньютоновских методов:

- Оба метода в целом находят минимум за большее количество итераций, чем метод Ньютона с выбором направлений, использующий более точные направления за счет вычисления гессиана. Все методы заметно замедляют свою работу при увеличении числа переменных.
- Траектории обоих квазиньютоновских методов практически идентичны и редко отличаются.

Выводы.

Мы реализовали различные ньютоновские и квазиньютоновские методы оптимизации многомерных функций. Среди ньютоновских методов самым эффективным себя показал метод Ньютона с выбором направлений. Квазиньютоновские методы показали себя примерно одинаково.