

Intial Draft

空

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒。

目录

第-	一章	问题 1	1
	1.1	螺线方程	1
	1.2	计算龙头前把手中心在各时刻的位置	1
	1.3	计算板凳龙其余各节板凳的后把手中心在各时刻的位置	2
		1.3.1 计算第 1 节板凳的后把手中心在第 t 秒时的位置 $P_1(t)$	2
		1.3.2 计算第 $i(2 \le i \le 223)$ 节板凳的后把手中心在第 t 秒时的位置 $P_i(t)$	2
	1.4	计算板凳龙其余各节板凳的后把手中心在各时刻的速度	3
	•	问题 2	4
	•	问题 2 计算各节板凳四个顶点的坐标	4
	2.1		
	2.1	计算各节板凳四个顶点的坐标	5
	2.1	计算各节板凳四个顶点的坐标	5
	2.1	计算各节板凳四个顶点的坐标	5

第一章 问题 1

1.1 螺线方程

在题目图 4 中的直角坐标系下, 以坐标原点 O 为极点建立极坐标系, 设图 4 中的等距螺线 Γ 的极坐标方程为

$$\Gamma: \rho = a + b\theta. \tag{1.1}$$

其中 ρ 为极径, θ 为极角,a,b 均为待定常数. 设龙头前把手中心的初始位置 P_0 极坐标和直角坐标分别为(ρ_0 , θ_0),(x_0 , y_0), 记 d_0 (m) 为图 4 中等距螺线的螺距,则由题可知

$$d_0 = 0.055, \rho_0 = 16d_0 = 0.88, \theta_0 = 16 \times 2\pi = 32\pi. \tag{1.2}$$

又由图 4 可知图中等距螺线 Γ 过原点 O 和 (ρ_0,θ_0) 点, 于是将 (0,0) 和 (ρ_0,θ_0) 代入(1.1)式解得

$$a = 0, b = \frac{d_0}{2\pi} = \frac{0.55}{2\pi} \tag{1.3}$$

因此, 等距螺线 Γ 的极坐标方程为

$$\Gamma: \rho = \frac{d_0}{2\pi}\theta, (0 \leqslant \theta \leqslant 32\pi). \tag{1.4}$$

再利用

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases},$$

得到等距螺线 Γ 的直角坐标方程为

$$\Gamma: \begin{cases} x = \frac{d_0}{2\pi} \theta \cos \theta \\ y = \frac{d_0}{2\pi} \theta \sin \theta \end{cases}, (0 \leqslant \theta \leqslant 32\pi). \tag{1.5}$$

1.2 计算龙头前把手中心在各时刻的位置

设龙头前把手的行进速度为 v_0 , 由题可知 $v_0 = 1(\mathbf{m} \cdot s^{-1})$. 记龙头前把手中心在第 t 秒时的位置为 $P_0(t)$, $P_0(t)$ 点的极坐标和直角坐标分别为 $(\rho_0(t), \theta_0(t))$ 和 $(x_0(t), y_0(t))$,则利用第一型曲线积分计算公式可得,曲线 $P_0P_0(t)$ 的长度 S 为

$$S = \int_{P_0 P_0(t)} ds = \int_{\theta_0(t)}^{\theta_0} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} d\theta.$$
 (1.6)

又由题可知

$$S = v_0 t. (1.7)$$

联立(1.4)(1.6)(1.7)式解得

$$\theta_0(t)\sqrt{\theta_0^2(t) + 1} - \ln(\theta_0(t) + \sqrt{(\theta_0(t))^2 + 1}) = \theta_0\sqrt{\theta_0^2 + 1} + \ln(\theta_0 + \sqrt{\theta_0^2 + 1}) - \frac{4\pi}{d_0}v_0t.$$
 (1.8)

根据上式, 利用 Python 求解得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_0(t)$ 的极角 $\theta_0(t)$, 再将其代入(1.4)式得到, $P_0(t)$ 的极坐标 $(\rho_0(t), \theta_0(t))$ 见表 1. 再利用

$$\begin{cases} x_0(t) = \rho_0(t) \cos \theta_0(t) \\ y_0(t) = \rho_0(t) \sin \theta_0(t) \end{cases} , \tag{1.9}$$

得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_0(t)$ 的的直角坐标 $(x_0(t), y_0(t))$ 见表 2.

1.3 计算板凳龙其余各节板凳的后把手中心在各时刻的位置

记第 i 节板凳的后把手中心在第 t 秒时的位置为 $P_i(t)$, 并设 $P_i(t)$ 的极坐标和直角坐标分别为 ($\rho_i(t)$, $\theta_i(t)$) 和 ($x_i(t)$, $y_i(t)$), 再记 $P_{i-1}(t)$ 与 $P_i(t)$ 之间的距离为 $|P_{i-1}(t)P_i(t)|$ (\mathbf{m})($0 \le i \le 223$). 再记第 i 节板凳前把手中心与后把手中心之间的距离为 $P_i(\mathbf{m})$ ($1 \le i \le 223$), 则由条件可知

$$|P_0(t)P_1(t)| = l_1 = 3.41 - 2 \times 0.275 = 2.86;$$
 (1.10)

$$|P_{i-1}(t)P_i(t)| = l_i = 2.2 - 2 \times 0.275 = 1.65, 2 \le i \le 223.$$
 (1.11)

1.3.1 计算第 1 节板凳的后把手中心在第 t 秒时的位置 $P_1(t)$

当 $t \in \{1, 2, \dots, 300\}$ 时, 由极坐标系的两点之间距离公式可得

$$l_1^2 = |P_0(t)P_1(t)|^2 = (\rho_1(t))^2 + (\rho_0(t))^2 - 2\rho_1(t)\rho_0(t)\cos(\theta_0(t) - \theta_1(t)). \tag{1.12}$$

又因为板凳龙各把手中心均位于螺线 Γ上, 所以再结合(1.5)式可得

$$\rho_1(t) = \frac{d_0}{2\pi} \theta_1(t), (0 \leqslant \theta_1(t) \leqslant 32\pi). \tag{1.13}$$

因此联立(1.12)(1.13)式可得

$$l_1^2 = \frac{d_0^2}{4\pi^2} [(\theta_1(t))^2 + (\theta_0(t))^2 - 2\theta_1(t)\theta_0(t)\cos(\theta_0(t) - \theta_1(t))]. \tag{1.14}$$

根据上式利用 Python 求解 $\theta_1(t)$, 可能得到多个不同解. 不妨设这些为不同的解为 $\alpha_j^1(t)(j=1,2,\cdots,m)$, 注意到一定有 $\theta_1(t) > \theta_0(t)$, 因此令

$$A_1 = \{\alpha_j^1(t) | \alpha_j^1(t) > \theta_0(t), j = 1, 2, \cdots, m\}.$$
(1.15)

又因为龙头前把手与第1节板凳后把手中心的极角之差一定是最小的, 所以

$$\theta_1(t) = \min_{\alpha_i(t) \in A_1} \left[\alpha_j^1(t) - \theta_0(t) \right] + \theta_0(t). \tag{1.16}$$

再将上述求得的 $\theta_1(t)$ 代入(1.13)式就能得到此时 $P_1(t)$ 的极坐标 ($\rho_1(t)$, $\theta_1(t)$). 令 t 依次取 1,2,···,300, 反复进行上述操作就能得到, 当 $t \in \{1,2,\cdots,300\}$ 时, $P_1(t)$ 的极坐标 ($\rho_1(t)$, $\theta_1(t)$). 再利用

$$\begin{cases} x_1(t) = \rho_1(t)\cos\theta_1(t) \\ y_1(t) = \rho_1(t)\sin\theta_1(t) \end{cases} , \tag{1.17}$$

得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_1(t)$ 的直角坐标 $(x_1(t), y_1(t))$.

1.3.2 计算第 $i(2 \le i \le 223)$ 节板凳的后把手中心在第 t 秒时的位置 $P_i(t)$

当 $i \in \{2, 3, \dots, 223\}$ 时, 由(1.3.1)同理可得, 当 $t \in \{1, 2, \dots, 300\}$ 时, 我们有

$$l_i^2 = |P_{i-1}(t)P_i(t)|^2 = (\rho_i(t))^2 + (\rho_{i-1}(t))^2 - 2\rho_i(t)\rho_{i-1}(t)\cos(\theta_{i-1}(t) - \theta_i(t)). \tag{1.18}$$

$$\rho_i(t) = \frac{d_0}{2\pi} \theta_i(t), (0 \le \theta_i(t) \le 32\pi). \tag{1.19}$$

从而联立(1.18)(1.19)式可得

$$l_i^2 = \frac{d_0^2}{4\pi^2} [(\theta_i(t))^2 + (\theta_{i-1}(t))^2 - 2\theta_i(t)\theta_{i-1}(t)\cos(\theta_{i-1}(t) - \theta_i(t))]. \tag{1.20}$$

根据上式利用 Python 求解 $\theta_i(t)$,可能得到多个不同解. 不妨设这些为不同的解为 $\alpha_j^i(t)(j=1,2,\cdots,m)$,注意到一定有 $\theta_i(t)>\theta_{i-1}(t)$,因此令

$$A_i = \{\alpha_i^i(t) | \alpha_i^i(t) > \theta_{i-1}(t), j = 1, 2, \cdots, m\},$$
(1.21)

又因为第 i - 1 个把手与第 i 个把手的极角之差一定是最小的, 所以

$$\theta_i(t) = \min_{\alpha_i^i(t) \in A_i} \left[\alpha_j^i(t) - \theta_{i-1}(t) \right] + \theta_{i-1}(t). \tag{1.22}$$

再将上述求得的 $\theta_i(t)$ 代入(1.13)式就能得到此时 $P_i(t)$ 的极坐标 ($\rho_i(t)$, $\theta_i(t)$). 令 t 依次取 1,2,…,300, 反复进行上述操作就能得到, 当 $t \in \{1, 2, \dots, 300\}$ 时, $P_i(t)$ 的极坐标 ($\rho_i(t)$, $\theta_i(t)$). 再利用

$$\begin{cases} x_i(t) = \rho_i(t)\cos\theta_i(t) \\ y_i(t) = \rho_i(t)\sin\theta_i(t) \end{cases} , \tag{1.23}$$

得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_i(t)$ 的直角坐标 $(x_i(t), y_i(t))$.

综上所述, 令 i 依次取 1,2,···,223, 按照上述(1.3.1)(1.3.2)的方式, 利用 Python 不断迭代计算就能得到每秒板凳 龙各把手中心的位置直角坐标见表 3.

1.4 计算板凳龙其余各节板凳的后把手中心在各时刻的速度

记第 $i(1 \le i \le 223)$ 节板凳的后把手中心在第 t 秒时的速度为 $v_i(t)$. 根据(1.2),(1.3.1),(1.3.2)得到的第 $i(1 \le i \le 223)$ 节板凳的后把手中心第 t 秒时的位置 $P_i(t)$ 的极坐标 ($\rho_i(t)$, $\theta_i(t)$), 于是当 $i \in \{1, 2, \cdots, 223\}$ 时, 对(1.14)(1.20)式 两边同时对 t 求导可得

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \frac{\theta_{i-1} + \theta_i \cos(\theta_{i-1} - \theta_i) - \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i)}{\theta_i + \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i) - \theta_{i-1} \cos(\theta_{i-1} - \theta_i)} \cdot \frac{\mathrm{d}\theta_{i-1}}{\mathrm{d}t}.$$
(1.24)

设第 $i(1 \le i \le 223)$ 节板凳的后把手中心在充分短的时间 dt 内经过的路程微分为 ds_i , 又因为各把手中心始终在 螺线 Γ 上, 从而各把手的路程微分 ds_i 就是螺线 Γ 的弧微分, 所以利用(1.4)式及弧微分的计算公式可得

$$ds_{i} = \sqrt{[\rho(\theta_{i})]^{2} + [\rho'(\theta_{i})]^{2}} d\theta_{i} = \frac{d_{0}}{2\pi} \sqrt{{\theta_{i}}^{2} + 1} d\theta_{i}, i \in \{1, 2, \cdots, 223\}$$
(1.25)

故当 $t \in \{1, 2, \dots, 300\}$ 时, 由瞬时速度的定义可得

$$v_i(t) = \frac{ds_i}{dt} = \frac{d_0}{2\pi} \frac{\sqrt{\theta_i^2 + 1} d\theta_i}{dt}, i \in \{1, 2, \dots, 223\}.$$
 (1.26)

联立(1.24)(1.26)式得到

$$|v_{i}(t)| = \left| \frac{d_{0}}{2\pi} \frac{\sqrt{\theta_{i}^{2} + 1} d\theta_{i}}{dt} \right| = \frac{|\theta_{i-1} + \theta_{i} \cos(\theta_{i-1} - \theta_{i}) - \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i})|}{|\theta_{i} + \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i}) - \theta_{i-1} \cos(\theta_{i-1} - \theta_{i})|} \sqrt{\frac{1 + \theta_{i}^{2}}{1 + \theta_{i-1}^{2}}} \left| \frac{d\theta_{i-1}}{dt} \right|$$
(1.27)

$$= \frac{|\theta_{i-1}(t) + \theta_i \cos(\theta_{i-1} - \theta_i) - \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i)|}{|\theta_i + \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i) - \theta_{i-1} \cos(\theta_{i-1} - \theta_i)|} \sqrt{\frac{1 + \theta_i^2}{1 + \theta_{i-1}^2}} |v_{i-1}(t)|, i \in \{1, 2, \dots, 223\}.$$
(1.28)

其中 $\theta_i = \theta_i(t), \theta_{i-1} = \theta_{i-1}(t), v_0(t) \equiv 1, \forall t \geqslant 0$. 乂因为 $v_i(t)(1 \leqslant i \leqslant 223)$ 均大于 0, 所以上式可化为

$$v_{i}(t) = \sqrt{\frac{1 + \theta_{i}^{2}}{1 + \theta_{i-1}^{2}}} \frac{|\theta_{i-1} + \theta_{i} \cos(\theta_{i-1} - \theta_{i}) - \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i})|}{|\theta_{i} + \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i}) - \theta_{i-1} \cos(\theta_{i-1} - \theta_{i})|} v_{i-1}(t), i \in \{1, 2, \dots, 223\},$$

$$(1.29)$$

其中 $\theta_i = \theta_i(t)$, $\theta_{i-1} = \theta_{i-1}(t)$, $v_0(t) \equiv 1$, $\forall t \geq 0$. 于是根据上式, 令 i 依次取 1, 2, \cdots , 223, 再利用 Python 进行迭代计算, 就能得到板凳龙的第 $i(1 \leq i \leq 223)$ 节板凳的后把手中心在第 t 秒时的速度 $v_i(t)$. 再令 t 依次取 1, 2, \cdots , 300, 反复进行上述操作, 就能得到当 $t \in \{1, 2, \cdots, 300\}$ 时, 板凳龙的第 $i(1 \leq i \leq 223)$ 节板凳的后把手中心每秒的速度见表 7.

第二章 问题 2

2.1 计算各节板登四个顶点的坐标

 $\forall t \in \mathbb{N}$, 根据**问题 1** 求解得到龙头前把手中心、第 $i(i = 1, 2, \dots, 223)$ 节板凳后把手中心在第 t 秒的直角坐标 分别为 $(x_0(t), y_0(t)), (x_i(t), y_i(t))$. 设所有板凳的板宽均为 w, 板凳把手中心离最近的板头距离为 h, 则由条件可知 w = 0.3m, h = 0.275m. 当第 $i(i = 1, 2, \dots, 223)$ 节板凳后把手刚盘入螺线 (即后把手恰好在初始位置) 时, 记离原点 较远且离 P_i 较近的顶点为 A_i , 再按顺时针方向分别记其余顶点为 B_i , C_i , D_i , 记 A_i , B_i , C_i , D_i 在第 t 秒时的位置分 别为 $A_i(t), B_i(t), C_i(t), D_i(t)$, 其直角坐标分别为 $(x_{A_i}(t), y_{A_i}(t)), (x_{B_i}(t), y_{B_i}(t)), (x_{C_i}(t), y_{C_i}(t)), (x_{D_i}(t), y_{D_i}(t))$. 于是根据向量垂直坐标变换公式可得, 对 $\forall i \in \{0,1,2,\cdots,222, \text{ 都有}\}$

$$\overrightarrow{P_{i+1}(t)P_i(t)} = (x_i(t) - x_{i+1}(t), y_i(t) - y_{i+1}(t)), \qquad (2.1)$$

$$\overrightarrow{A_i(t)} \overrightarrow{D_i(t)} = \overrightarrow{B_i(t)} \overrightarrow{C_i(t)} = \left(-\left[y_i(t) - y_{i+1}(t) \right], x_i(t) - x_{i+1}(t) \right), \tag{2.2}$$

$$\left| \overrightarrow{A_i(t) D_i(t)} \right| = \left| \overrightarrow{B_i(t) C_i(t)} \right| = w. \tag{2.3}$$

再记 B_iC_i 和 A_iD_i 的中点分别为 E_i, F_i , 它们在第 t 秒时的位置分别为 $E_i(t), F_i(t)$, 直角坐标分别为

$$E_i(t) = (x_{E_i}(t), y_{E_i}(t)),$$
 (2.4)

$$F_i(t) = (x_{F_i}(t), y_{F_i}(t)).$$
 (2.5)

从而

$$\overrightarrow{P_{i+1}(t)E_i(t)} = (x_{E_i}(t) - x_{i+1}(t), y_{E_i}(t) - x_{i+1}(t)), \qquad (2.6)$$

$$\overrightarrow{P_i(t)} \overrightarrow{F_i(t)} = (x_{F_i}(t) - x_i(t), y_{F_i}(t) - x_i(t)), \qquad (2.7)$$

$$\left| \overline{P_{i+1}(t) E_i(t)} \right| = \left| \overline{P_i(t) F_i(t)} \right| = h. \tag{2.8}$$

$$\overrightarrow{E_i(t)} \overrightarrow{B_i(t)} = \left(x_{B_i}(t) - x_{E_i}(t), y_{B_i}(t) - y_{E_i}(t) \right), \tag{2.9}$$

$$\overrightarrow{E_i(t) C_i(t)} = (x_{C_i}(t) - x_{E_i}(t), y_{C_i}(t) - y_{E_i}(t)), \qquad (2.10)$$

$$\overrightarrow{F_i(t) A_i(t)} = \left(x_{A_i}(t) - x_{F_i}(t), y_{A_i}(t) - y_{F_i}(t)\right), \tag{2.11}$$

$$\overrightarrow{F_i(t)D_i(t)} = (x_{D_i}(t) - x_{F_i}(t), y_{D_i}(t) - y_{F_i}(t)).$$
(2.12)

由 E_i, P_i, P_{i+1}, F_i 共线可得

$$\overline{P_{i+1}(t)E_i(t)} = -\frac{\overline{P_{i+1}(t)P_i(t)}}{\left|\overline{P_{i+1}(t)P_i(t)}\right|} \cdot \left|\overline{P_{i+1}(t)E_i(t)}\right|, \tag{2.13}$$

$$\overline{P_{i}(t) F_{i}(t)} = \frac{\overline{P_{i+1}(t) P_{i}(t)}}{\left| \overline{P_{i+1}(t) P_{i}(t)} \right|} \cdot \left| \overline{P_{i+1}(t) E_{i}(t)} \right|.$$
(2.14)

联立(2.1)(2.6)(2.7)(2.8)(2.13)(2.14)式可得

$$\begin{cases} x_{E_{i}}(t) = x_{i+1}(t) - \frac{h}{l_{i+1}}(x_{i}(t) - x_{i+1}(t)) \\ y_{E_{i}}(t) = y_{i+1}(t) - \frac{h}{l_{i+1}}(y_{i}(t) - y_{i+1}(t)) \end{cases},$$

$$\begin{cases} x_{F_{i}}(t) = x_{i}(t) + \frac{h}{l_{i+1}}(x_{i}(t) - x_{i+1}(t)) \\ y_{F_{i}}(t) = y_{i}(t) + \frac{h}{l_{i+1}}(y_{i}(t) - y_{i+1}(t)) \end{cases}.$$

$$(2.15)$$

$$\begin{cases} x_{F_i}(t) = x_i(t) + \frac{h}{l_{i+1}} (x_i(t) - x_{i+1}(t)) \\ y_{F_i}(t) = y_i(t) + \frac{h}{l_{i+1}} (y_i(t) - y_{i+1}(t)) \end{cases}$$
(2.16)

又由 E_i 是 B_i , C_i 的中点和 F_i 是 A_i , D_i 的中点可得

$$\overline{E_i(t) B_i(t)} = -\frac{\overline{B_i(t) C_i(t)}}{2},$$
(2.17)

$$\overrightarrow{E_i(t) C_i(t)} = \frac{\overrightarrow{B_i(t) C_i(t)}}{2}, \tag{2.18}$$

$$\overline{F_i(t) A_i(t)} = -\frac{\overline{A_i(t) D_i(t)}}{2},$$
(2.19)

$$\overrightarrow{F_i(t) D_i(t)} = \frac{\overrightarrow{A_i(t) D_i(t)}}{2}.$$
(2.20)

因此联立(2.2)(2.3)(2.9)(2.10)(2.11)(2.12)(2.15)(2.16)(2.17)(2.18)(2.19)式,解得

$$\begin{cases} x_{A_{i}}(t) = x_{i}(t) + \frac{h}{l_{i+1}}(x_{i}(t) - x_{i+1}(t)) + \frac{y_{i}(t) - y_{i+1}(t)}{2} \\ y_{A_{i}}(t) = y_{i}(t) + \frac{h}{l_{i+1}}(y_{i}(t) - y_{i+1}(t)) - \frac{x_{i}(t) - x_{i+1}(t)}{2} \end{cases},$$
(2.21)

$$\begin{cases} x_{B_{i}}(t) = x_{i+1}(t) - \frac{h}{l_{i+1}}(x_{i}(t) - x_{i+1}(t)) + \frac{y_{i}(t) - y_{i+1}(t)}{2} \\ y_{B_{i}}(t) = y_{i+1}(t) - \frac{h}{l_{i+1}}(y_{i}(t) - y_{i+1}(t)) - \frac{x_{i}(t) - x_{i+1}(t)}{2} \end{cases},$$
(2.22)

$$\begin{cases} x_{C_{i}}(t) = x_{i+1}(t) - \frac{h}{l_{i+1}}(x_{i}(t) - x_{i+1}(t)) - \frac{y_{i}(t) - y_{i+1}(t)}{2} \\ y_{C_{i}}(t) = y_{i+1}(t) - \frac{h}{l_{i+1}}(y_{i}(t) - y_{i+1}(t)) + \frac{x_{i}(t) - x_{i+1}(t)}{2} \end{cases},$$
(2.23)

$$\begin{cases} x_{D_{i}}(t) = x_{i}(t) + \frac{h}{l_{i+1}}(x_{i}(t) - x_{i+1}(t)) - \frac{y_{i}(t) - y_{i+1}(t)}{2} \\ y_{D_{i}}(t) = y_{i}(t) + \frac{h}{l_{i+1}}(y_{i}(t) - y_{i+1}(t)) + \frac{x_{i}(t) - x_{i+1}(t)}{2} \end{cases}$$
(2.24)

2.2 计算板凳龙发生碰撞的时间

对 $\forall t>0$, 板凳龙在第 t 秒发生碰撞的充要条件是: 当 $t=t_0$ 时, 存在 $s,k\in\{1,2,\cdots,223\}$, 使得 $A_s(t),B_s(t)$, $C_s(t),D_s(t)$ 和 $A_k(t),B_k(t),C_k(t),D_k(t)$ 所对应的两节板凳在第 t 秒发生碰撞, 即此时矩形 $A_s(t)B_s(t)C_s(t)D_s(t)$ 和矩形 $A_k(t)$ $B_k(t)$ $C_k(t)$ $D_k(t)$ 有交点. 于是我们只需要判断在第 t 秒时, 对 $\forall i,j\in 1,2,\cdots,223$, 矩形 $A_i(t)$ $B_i(t)$ $C_i(t)$ $D_i(t)$ 和矩形 $A_j(t)$ $B_j(t)$ $C_j(t)$ 是否有交点即可.

2.2.1 判断矩形 $A_i(t)B_i(t)C_i(t)D_i(t)$ 和矩形 $A_i(t)B_i(t)C_i(t)D_i(t)$ 是否有交点的算法

任取矩形 $A_i(t)B_i(t)C_i(t)D_i(t)$ 的一条边记为 $X_1(t)Y_1(t)$, 矩形 $A_j(t)B_j(t)C_j(t)D_j(t)$ 的一条边记为 $X_2(t)Y_2(t)$. 则利用向量叉乘的性质 (详见几何算法: 判断两条线段是否相交) 可得

将矩形 $A_i(t)B_i(t)C_i(t)D_i(t)$ 和矩形 $A_j(t)B_j(t)C_j(t)D_j(t)$ 的每一条边都代入上式, 若所有边代入后都不相交, 则这两个矩形无交点, 否则有交点.

2.2.2 判断板凳龙是否发生碰撞

在第t秒时, 若对 $\forall i, j \in \{1, 2, \cdots, 223\}$, 将矩形 $A_i(t)B_i(t)C_i(t)D_i(t)$ 和矩形 $A_j(t)B_j(t)C_j(t)D_j(t)$ 代入(2.2.1)后, 结果都不相交. 则板凳龙在第t秒不发生碰撞, 否则发生碰撞.

2.2.3 计算板凳龙发生碰撞的时间及此时板凳龙各把手的位置和速度

令 t 依次取 $1, 2, \dots$,代入(2.2.2),利用 Python 计算得到板凳龙第一次发生碰撞的时间 t_0 ,从而板凳龙盘入的 终止时刻为 t_0 . 在将 t_0 代入问题 1 的模型,利用 Python 求解得到此时板凳龙各把手的位置直角坐标和速度见表.

第三章 问题 3