Data Modeling

@ Purpose of Data Modeling

To design structured data systems that support analytical needs, especially for OLAP (Online Analytical Processing) use cases like:

- Dashboards
- KPIs and trend reports
- Forecasting & ML models
- Data warehousing & reporting

OLAP Concepts: Fact & Dimension Tables

Fact Table

- Stores quantitative, event-based data (measurable metrics)
- Examples: sales, trips, payments, logins
- Often grows very fast (append-only)

Contains:

- Foreign keys to dimensions
- o Numeric metrics like amount, time, distance

% Example: trip_facts

• Columns: trip_id, driver_id, city_id, fare, duration, rating

Dimension Table

- Stores descriptive information related to facts
- Examples: drivers, cities, riders, vehicles, date
- Changes slowly (managed via SCD)

• Used for filtering, slicing, and grouping

X Example: driver_dim

• Columns: driver_id, name, city_id, rating, vehicle_type

Star Schema

- 1 central fact table
- Surrounding denormalized dimension tables
- Simplified structure, faster for querying and BI tools

Example: Uber's Trip Data

- trip_facts: trip_id, driver_id, city_id, time_id, fare
- driver_dim, rider_dim, time_dim, city_dim

Snowflake Schema

- **Normalized dimensions** → further broken into sub-dimensions
- Reduces redundancy and improves data consistency
- Slightly slower queries due to more joins

***** Example:

• trip_facts → driver_dim → location_dim → region_dim

Galaxy Schema (Fact Constellation)

- Multiple fact tables share common dimensions
- Used for multi-domain models like Uber's:
 - trip_facts, payment_facts, support_ticket_facts
- Shared dimensions: driver_dim, city_dim, time_dim

SCD – Slow Changing Dimensions

SCD Type	Description	Keeps History?	Example
SCD 0	Fixed – never changes	V	Country code, gender
SCD 1	Overwrite existing data	×	Update phone number
SCD 2	Add new row with version/timestamp	V	Address or rating change
SCD 3	Add new column for current/previous	A Partial	Old vs new pricing tier
SCD 4	Separate current + historical table	V	Active vs archived coupons
Hybrid	Mix of SCD1 + SCD2	V	Overwrite contact info, version rating

🧠 Summary Tips (For Interview)

• Mention **grain** of fact tables (e.g. 1 row per trip):

"The grain of my trip_facts table is one row per completed ride.

This means each row represents a unique trip, and includes metrics like fare, distance, trip duration, and foreign keys to dimensions like driver, rider, city, and time."

- Star schema is faster, Snowflake is normalized
- Choose schema based on read performance vs storage cost

Trade-Off Summary

Criteria	Star Schema	Snowflake Schema
☑ Joins Needed	Fewer (flat)	More (normalized)
∳ Read Speed	Faster	Slower
Storage Cost	Higher (duplication)	Lower (eliminates redundancy)
☆ Simplicity	Easier for analysts	Slightly more complex
	Lower	Higher

- SCD type selection is key in modeling slowly changing attributes
- Always consider use case: analytics (OLAP) vs app transactions (OLTP)

u varriina y **OLTP (App Transactions)** OLAP (Analytics) Criteria Focus Real-time reads/writes Historical aggregations Query Load High volume, low complexity Low volume, high complexity Design Normalized schema Star/Snowflake schema Storage Long-term, historical Short-term, operational