HM2 Kapitel 1 Zusammenfassung

May 2018

Inhaltsverzeichnis

1	Matrizen		2
	1.1	Hermitesche Matrizen	2
	1.2	Invertierbare/Reguläre Matrizen	2
	1.3	Unitäre Matrizen	2
	1.4	Normale Matrizen	2
	1.5	Diagonalisierbare Matrizen	2
		1.5.1 Diagonalisierbarkeit zeigen	2
		1.5.2 Unitär Diagonalisierbare Matrizen	2
	1.6	Spur einer Matrix	3
	1.7	Diagonalisieren von Matrizen	3
	1.8	Definitheit	3
		1.8.1 Definition	3
		1.8.2 Definitheit anhand von Eigenwerten	3
		1.8.3 Definitheit anhand von Hauptminoren	4
	1.9	Satz von Cayley-Hamilton	4
2	Determinanten		
	2.1	Umfomungen von Determinanten	4
3	Basiswechsel		
	3.1	Lineare Abbildung nach Basiswechsel	4
4	Ska	larprodukte	5
5	Lin	eare Abbildungen	5
	5.1	Linearität zeigen	5
	5.2	Linearität widerlegen	5
6	Gra	am Schmidt	5
7	Vektorräume		
	7.1	Voraussetzungen	5
	7 2	Vektorraum zeigen	6

1 Matrizen

1.1 Hermitesche Matrizen

- $\bullet \iff A^H = A$
- \Longrightarrow Eigenwerte $\lambda_i \in \mathbb{R}$
- ullet \implies A normal
- $\bullet \implies$ unitär diagonalisierbar.

1.2 Invertierbare/Reguläre Matrizen

• \iff det $A \neq 0$

1.3 Unitäre Matrizen

- $\bullet \iff A^H = A^{-1}$
- \implies A regulär (\iff invertierbar)
- $\bullet \implies |\det A| = 1$
- $\bullet \implies A \text{ normal}$
- \Longrightarrow Eigenvektoren orthonormal

1.4 Normale Matrizen

- $\bullet \iff A^HA = AA^H$
- ullet \iff A unitär diagonalisierbar

1.5 Diagonalisierbare Matrizen

• \iff $S^{-1}AS = D, D$ Diagonalmatrix

1.5.1 Diagonalisierbarkeit zeigen

- Charakteristisches Polynom zerfällt in Linearfaktoren
- $\bullet \ \land$ Geometrische und Algebraische Vielfachheiten stimmen überein

1.5.2 Unitär Diagonalisierbare Matrizen

ullet $\iff \exists S \text{ unit} \ddot{a} \mid S^H = S^{-1}$

1.6 Spur einer Matrix

Die Spur einer Matrix A ist die Summe der Hauptdiagonalelemente $\sum_{i=1}^{n} a_{ii} = Spur(A)$.

- bei diagonalisierbaren Matrizen ist die Spur die Summe der Eigenwerte ⇒ die Spur ähnlicher Matrizen ist gleich
- die Spur ist eine lineare Abbildung
- Vertauschung unter der Spur: Spur(AB) = Spur(BA)
- \bullet Invarianz bei zyklischen Vertauschungen Spur(ABC) = Spur(BCA) = Spur(CAB)

1.7 Diagonalisieren von Matrizen

Matrix A diagonalisierbar $\iff D_A = S^{-1}AS, A = SDS^{-1}$. Es sollen D_A und S berechnet werden.

- 1. Bestimmen der Eigenwerte λ_i mittels $\det(A \lambda I) = 0$.
- 2. Bestimmen der Eigenräume $E(\lambda_i)$ zu den Eigenwerten mittels $(A \lambda_i I) \cdot x = 0$
- 3. Bestimmen der Basisvektoren b der Eigenräume

4.
$$D_A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

 $S = (b_1, \dots, b_n)$

1.8 Definitheit

Wenn eine Matrix nicht symmetrisch oder hermitesch ist, kann nur der symmetrische oder hermitesche Teil betrachtet werden: $A_S = \frac{1}{2}(A + A^T)$ bzw $A_H = \frac{1}{2}(A + A^H)$.

1.8.1 Definition

```
Eine Matrix ist genau dann positiv definit, falls x^TAx > 0 positiv semidefinit, falls x^TAx \geq 0 negativ definit, falls x^TAx < 0 negativ semidefinit, falls x^TAx \leq 0.
```

1.8.2 Definitheit anhand von Eigenwerten

Eine Matrix ist genau dann

```
positiv definit, wenn alle Eigenwerte größer als null sind; positiv semidefinit, negativ definit, negativ semidefinit, indefinit, wenn alle Eigenwerte kleiner als null sind; wenn alle Eigenwerte kleiner oder gleich null sind; indefinit, wenn positive und negative Eigenwerte existieren.
```

1.8.3 Definitheit anhand von Hauptminoren

Positiv definit: Führende Hauptminoren sind positiv

Negativ definit: Vorzeichen der führenden Hauptminoren alternieren (ungerade führende Hauptminoren negativ, alle geraden positiv).

1.9 Satz von Cayley-Hamilton

Matrix ist Nullstelle des Zugehörigen charakteristischen Polynoms:

$$P_A(A) = (-1)^n (A^n + a_{n-1}A^{n-1} + \dots + a_0E_n) = 0$$

Durch Multiplizieren von A^{-1} lässt sich damit A^{-1} bestimmen.

2 Determinanten

2.1 Umfomungen von Determinanten

- 1. Vertauschen von Zeile oder Spalte \implies Faktor -1 vor Determinante
- 2. Multiplizieren von Zeile \implies Faktor vor Determinante
- 3. Gauß ohne Folgen
- 4. $\det(A^{-1}) = (\det(A))^{-1}$

3 Basiswechsel

Ein VR zur Basis A soll durch die Transformationsmatrix in die Basis B umgeformt werden. Berechnung der Trafomatrix mittels Gauß-Jodan:

 $(B \mid A)$ (Umformungen mit Gauß) \implies $(E \mid T)$

mit E als Einheitsmatrix und T als Tranformationsmatrix.

3.1 Lineare Abbildung nach Basiswechsel

Wichtig: Transformationsschritte links anmultiplizieren.

Abbildung 1: Basiswechsel linearer Abbildungen

In den meisten Fällen gilt bei uns A=B und A'=B' und somit $T_{B'}^B$ invers zu $T_A^{A'}$.

4 Skalarprodukte

Ein Skalarprodukt ist gegeben durch $f(x,y) = = x^T M y$

1. \iff M hermitesch \land M positiv definit.

5 Lineare Abbildungen

5.1 Linearität zeigen

- Abbildung als Matrix darstellen
- $\alpha Lv = L(\alpha v) \wedge Lv_1 + Lv_2 = L(v_1 + v_2)$

5.2 Linearität widerlegen

- Additivität widerlegen: $Lv_1 + Lv_2 \neq L(v_1 + v_2)$
- Abbildung auf Null widerlegen: $L0 \neq 0$
- Skalarmultiplikation widerlegen: $\alpha L v_1 \neq L(\alpha v_1)$

6 Gram Schmidt

1.
$$u_1 = \frac{v_1}{\|v_1\|}$$

2.
$$u_2' = v_2 - \langle v_2, u_1 \rangle u_1$$

3.
$$u_2 = \frac{u_2'}{\|u_2'\|}$$

4.
$$u'_k = v_k - \sum_{i=1}^{k-1} \langle v_k, u_i \rangle u_i$$

5.
$$u_k = \frac{u'_k}{\|u'_k\|}$$

7 Vektorräume

7.1 Voraussetzungen

- \bullet $V \neq \varnothing$
- \bullet (V,+) abelsche Gruppe (kommutative Vektoraddition)
 - Assoziativität, Neutrales, Inverses, Kommutativität

• Vektorraumaxiome

- $-1 \cdot v = v$
- $(\lambda + \mu) \cdot v = \lambda v + \mu v$, $\lambda(v + w) = \lambda v + \lambda w$ Distributivgesetzt bzgl. Skalarmultiplikation, Vektoraddition
- $-\lambda(\mu v) = (\lambda \cdot \mu) \cdot v$ Assoziativgesetz

7.2 Vektorraum zeigen

Einfacher als Axiome: Unterraumkriterium:

- Abgeschlossenheit bzgl. Vektoraddition
- $\bullet\,$ Abgeschlossenheit bzgl. Skalarmultiplikation