Blockchain, cryptocurrencies and Bitcoin **Printed version**

Technology, architecture, implementation

Blockchain, cryptocurrencies and Bitcoin

- Blockchain basics
 - Security and integrity by design
 - Blockchain as distributed database
- Blockchain\Cryptocurrency network
 - Users\Software, P2P, nodes, protocols
 - Bitcoin P2P full nodes
- Cryptocurrency wallets
 - Types, public/private keys, ECDSA, addresses
- Blocks and transactions
 - Merkley tree, blocks structure, hashing and validation
 - Money transfer and genesis
- Mining
 - Proof-of-work, hashcash
 - Software and hardware, network difficulty, hash-rate
- Security issues and attacks
 - Anonimity
 - 51% and 34% attacks
 - DoS, Eclipse, ID, MINT and other attacks

Requirements

Bare minimum

 hash, transaction, encryption, decryption, public\private key, TCP\IP basics, data structures (tree, hash table/map), encoding, broadcast

Good

cryptographic hash, SHA 1/2, asymmetric encryption (RSA), digital signature, integrity validation, peer-to-peer (P2P), basic network security, base64 encoding

Perfect

 cryptographic protocols, ECDSA, Merkle/hash tree, P2P architecture and vulnerabilities, cryptographic attacks, gossip protocols, distributed hash table

Blockchain basics

- Blockchain
 - Data structure built from blocks with hash pointer to the previous block
 - Data is continuously added
 - Every block has transactions (one or more)
 - Transaction is some data record (money transfer, vote, token, ...)
- Security and integrity by design
 - Block change requires changing all next blocks
- Fork (branch)
 - when a few blocks have reference to the same block
 - forks share the same block history up to some point (block)

Blockchain as distributed database

- Every full node has full blockchain local copy
 - Bitcoin has 10-100K copies, the most redundant db (2-20 PB)
- Blockchain database contains:
 - blocks (header + transactions)
 - size limits: Bitcoin— 1MB, Ethereum no*, BCH 8MB
 - Indexes, bloom filters
 - Some other data (addresses)
- Blockchain implementations use key/value data storage to store blocks
 - Bitcoin uses Bitcoin LevelDB
 - Bitcoin used Berkley DB (up to Mar 2013)

Bitcoin blockchain DB stat

- BD size about 180GB
- 0.5M blocks
- 6 blocks per hour (every 10 min)
- 300M transactions
- 200-300K transactions per day (tpd) or 2-3 tps (per second), peak – 4 tps
 - VISA and Mastercard 1.8-2K tps
 - PayPal 100-150 tps
- Transaction size 0.3-1KB
- Transactions per block 1.5-2.5K
- Block size limits 1 MB

Blockchain software and users

Wallets

• send/receive money, balance, validation

Miners

- blockchain builders
- Blockchain will die without miners

• Services:

- Exchanges, banks (bitfinex, gdax, coinbase, ..)
- Info and stats (blockchain.info)
- ATMs, analytics, calculators, ...

Blockchain\Cryptocurrency network

- Blockchain is basically Peer-to-Peer (P2P) unstructured network
 - There's no network topology
 - Nodes can easy come and leave network
- Blockchain protocols implement network communication rules
 - Bitcoin, Ethereum, ... protocols (P2P/TCP)
 - Miner protocols:
 - Stratum (TCP)
 - Getblocktemplate (JSON-RPC)
 - Getwork (Http)

Bitcoin network

• Full network

Node map (http://bitnotes.earn.com)

Bitcoin full node

Features:

- Broadcast transactions and blocks
- Validation blocks and transactions (wallets, miners)
- Listening network requests (wallets, miners)

Network discovery

- getting own public IP
- DNS requests (seed.bitcoin.sipa.be, dnsseed.bluematt.me, ...)
- address 24 propagation, getaddr request, connect callback address
- Hard coded "Seed" addresses (peers.dat)

Node connections

- Manage up to 2.5K IPv4\v6 addresses
- 8 outgoing (send) and up to 117 incoming (receive) bidirectional connections
- Data propagation gossip (controlled flooding) protocol
 - Nodes are randomly connected
 - Only validated and unknown transaction and blocks are relayed

Bitcoin protocol messages

- version, verack connection initialization
- inv (inventory vector) data relaying (transactions, block, block header)
- getdata returns requested data (transactions, block, block header)
- addr broadcast address (version, IP4\6, port)
- getaddr returns known addresses (init state)
- getblocks returns list of blocks (init state)
- getheaders returns list of block headers
- tx, block reply to getdata (transaction, block)
- ping connection is valid

Cryptocurrency wallets

- Full node wallet (Bitcoin Core/Qt, Bitcoin Knots)
 - Stores full local blockchain
 - P2P/TCP, validation/listening/relaying
- Simplified Payment Validation (SPV) wallet
 - stores locally keys, block headers and some blocks
 - provides Simplified Payment Validation (SPV), P2P/TCP
- Lightweight (Jaxx)
 - stores locally keys but rely on validation outside, P2P/TCP or HTTP
- Web or online (Coinbase.com)
 - store keys and validation in server, HTTPS
- Hardware or cold (Ledger, Trezor)
 - Stores keys in encrypted offline storage, USB based
- Paper
 - Printed keys

1A5GqrNbpo7xwpt1VQVvcA5yzoEcgaFvff

SECRE

KxSRZnttMtVhe17SX5FhPqWpKAEgMT9T3R6Eferj3sx5frM6obqA

Bitcoin transaction signing

- Bitcoin uses ECDSA to sign transactions
 - small keys size comparing to RSA
 - slow validation comparing to RSA
- Loosing private key means loosing money
- 256 bits ECDSA
 - private key 32 bytes random number
 - public key generated from private key 65 bytes (4,x,y) number
 - transaction signature 71-73 bytes two numbers (r,s)

Elliptic Curve Digital Signature Algorithm

Bitcoin payment address\keys

- Bitcoin supports a few payment methods:
 - P2PK pay to public key first payment approach
 - P2PKH pay two public key hash (starts from 1):

18BqGGrBms3eGCRj2Vvrxso4XzWjJEEMBv

```
hash = version + ripemd160(sha256(public_key)) # 21 bytes, version - network
dhash = sha256(sha256(hash)) # double sha256
sum = check_sum(dhash) # first 4 bytes of dhash
address = base58_encode_padded(hash + sum) # 25 bytes, 26-35 alphanumeric characters
```

- P2SH pay to script hash (starts from 3), new format
 - Script a simple, stack-based, left->right language
- Mnemonic sentence or single key root can be used to generate\backup all key pairs

Bitcoin transaction structure

- Inputs (0+) reference to the previous transaction(s)
 - previous tx doubled sha256 transaction hash
 - scriptSig ECDSA signature
 - index input index in transaction
- Output (1+) money destination(s)
 - value number of Satoshi (1 BTC = 100M Satoshi)
 - scriptPubKey destination address (P2PK, P2PKH, P2SH)
- Time (lock_time)

Previous tx: f5d8ee39a430901c91a5917b9f2dc19d6d1a0e9cea205b009ca73dd04470b9a6

Index: 0

scriptSig: 304502206e21798a42fae0e854281abd38bacd1aeed3ee3738d9e1446618c4571d10 90db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d5d6cc8d25c6b241501

Output:

Value: 5000000000

scriptPubKey: OP DUP OP HASH160 404371705fa9bd789a2fcd52d2c580b65d35549d

OP_EQUALVERIFY OP_CHECKSIG

Money transfer

- Private key is required to send (sign) money
- Inputs are combined in one transaction if not enough money
- If sum inputs > requested outputs output is a sender's address
- Sum inputs >= Sum outputs
- Transaction fee = Sum inputs Sum outputs
 - fee defines according to priority and network loading

Merkley\hash tree

- Bitcoin uses Merkley\hash tree to store\validate transactions integrity
- Doubled sha256 hash is used
- Labeling:
 - Leaf node dhash(tran_data)
 - Non-leaf dhahs(hash1 + hash2)
- Changing any transaction will cause top hash change
- O(n²) hashes to create\validate tree

Bitcoin block structure

- Magic no 4 bytes
- Block size 4 bytes
- Block header 80 bytes
 - version 4 bytes
 - hashPrevBlock doubled sha256 previous block hash
 - hashMerkleRoot doubled sha256 hash of transactions
 - time 4 bytes
 - bits block target/difficulty, 4 bytes
 - nonce 4 bytes number
- Transaction counter (1-9 bytes)
- Transactions

Bitcoin money genesis and fees

- First block (genesis) one 50 BTC coinbase transaction
 - 50 BTC initial miner incentive
- Every new block emits new money (50 BTC)
 - 1+ transaction(s) in block has no inputs (coinbase)
- Every 210K blocks (4 years) miner incentive is halved
 - Now the 2th half-life (12.5 BTC)
- Total limit 21M BTC
- Now 16M BTC (80%) in network
- Miner incentive genesis + all transaction fees
 - On average miner has 15-16 BTC per block

Double-spending problem

- One transaction is spent (sent) twice
- General solution mint (central bank)
 - Money emission
- Bitcoin uses prof-of-work to prevent doublespending
- First transaction in blockchain is valid
- The right of building next block is given to miner who solved some crypto-puzzle

Seller B

Prof-of-work and Hashcash

- Prof-of-work to protect email span and DoS attacks
- Idea
 - Sender CPU expensive task to send email/request
 - Receiver CPU cheap task to validate email/request

• Implementation:

- Email header: email-time-counter (nonce)
- Calculate sha160 hash
- If first 20 bits are zero send email\request
 - hash <= target (2²⁰-1)
- Else counter++ and check hash again
- 2²⁰ hashes on average to get valid header (nonce)
- Validate hash(header) has 20 leading zeros
 - hash(header) <= target

Bitcoin mining

- Every miner collects transactions in queue
- Competition find block hash <= target
 - min target = 2^{32} -1 (first 32 zeros)
 - now target about 2⁸⁰-1
- Winner found first, gain incentive (genesis + fees)
- Collisions lower hash wins
- Target is adjusted by DAA every 2016 blocks (2 weeks)
 - Goal to build block every 10 mins

Miner software\hardware

- Software:
 - Block candidate preparation (pools)
 - Hash calculations
- Mining hardware (hash machines)
 - CPU
 - GPU
 - FPGA Field-Programmable Gate Arrays
 - ASIC Application Specific Integrated Circuits
 - Price \$2-15K, 4-15 TH/s
- Bitcoin network hash rate 15-25 EH/s (exa hashes per sec)
 - $1 \text{ exa} = 1 \text{M tera} = 10^{18}$

Transaction\block validation

- Transaction validation
 - Signature validation
 - Double-spent transaction (old clients)
- Block validation:
 - Block header hash is <= current target (DAA)
 - Size, incentive and fees validation
 - Merkley root hash (O(n²))
 - Transaction signatures (O(n))
 - Double-spent transactions
 - Every transaction input shouldn't be already spent (O(n*k))

Anonymity protection

- To stay anonymous
 - address should be not mapped to person identity
 - one address per one transaction
 - empty addresses\keys should be deleted
 - wallets on Tor net or/and anonymous VMs
- Giving wallet keys means transferring money (physical keys exchange)
- Some web-wallets manage many addresses per one real address
 - A few virtual addresses mapped to one Bitcoin address
 - Internal transactions are virtual
- CoinJoin some kind of "transaction cleaning"
- Exchanges between cryptocurrencies "hide" addresses
 - Local exchange history is evidence
- Printed Bitcoin banknote
 - Only note service knows purchase

51% or majority attack

- 50%+ network power is controlled by one\group attacker(s)
 - Private branch with reverted attacker transactions
- Incidents:
 - July 2014 gash.io pool had 50%+ Bitcoin power hash
 - August 2016 51% attacks on Krypton and Shift (Ethereum based)
- Preventing 51% attack:
 - Mining pool is not "strong structure"
 - 6 blocks confirmation
 - attacker has to build 7+ blocks
 - Hardcoded block checkpoint to prevent reverting big branches
 - 100% hash power 180 and 80 days to rebuild Bitcoin and Bitcoin Cash blockchains

DoS, Eclipse and ID attacks

- DoS flooding invalid transactions and blocks
 - Easy to validate transactions and blocks
 - only valid transactions are relayed
 - Ban protocol (IP restriction)
- Eclipse attack one node communicates only with malicious nodes (40% of nodes\IPs)
 - Random node selection in different network zones
 - Tried (known) and new address tables
- User profiling getting user identity
 - Hard to do attacker should be connected to all nodes
 - Bitcoin node can run upon Tor network (proxy)

Other attacks

- ID mapping and collision attack trying to create the same private key (public key and address)
- Sybil attack attacker creates a lot of identities (IP)
- Fake bootstrapping new nodes can get malicious addresses
- Unauthorize resource access steal private keys
 - Encryption and offline storage
- Man-in-the Middle (MITM) routing P2P attack
 - Onion routing
- Many other attacks P2P and crypto attacks

Sources

- Bitcoin Core source code https://github.com/bitcoin/bitcoin
- Bitcoin foundation https://bitcoin.org/en/
- Bitcoin: A Peer-to-Peer Electronic Cash System, Satoshi Nakamoto https://bitcoin.org/bitcoin.pdf
- Cryptocurrency networks: a new P2P paradigm http://downloads.hindawi.com/journals/misy/aip/2159082.pdf
- Bitcoin wiki https://en.bitcoin.it/wiki/Main_Page
- Bitcoin blockchain explorer https://blockexplorer.com/
- Bitcoin stats https://blockchain.info/
- Bitcoin node map http://bitnotes.earn.com
- Majority is not Enough: Bitcoin Mining is Vulnerable, Ittay Eyal and Emin G"un Sirer, https://arxiv.org/pdf/1311.0243v2.pdf
- Bitcoin StackEchange https://bitcoin.stackexchange.com/

Thank you!

