Desenvolvimento de um Middleware para Comunicação via Web Services e sua Aplicação em uma API de Processamento Digital de Imagens

Fernando Henrique Alves¹

¹ Centro de Ciências Exatas e Naturais Universidade Federal Rural do Semi-Árido (UFERSA) – Mossoró, RN – Brazil

fernandofha01@gmail.com

Abstract. The technological evolution has been making the Distance Education accessible for a greater number of citizens anytime and anywhere. The potential increase of the supply for mobile devices integrated to mobile learning environments allows that the information comes out of the physical environment, creating opportunities for students and teachers to create geographically distributed learning scenarios. However, many applications developed for these environments remain isolated from each other and do not become integrated sufficiently into the virtual learning environments (AVA). This paper presents an interoperability model between mobile devices and distinct AVA based on webservices.

Resumo. A evolução tecnológica tem tornado a Educação a Distância acessível para um maior número de cidadãos em qualquer hora e em qualquer lugar. O aumento potencial da oferta de dispositivos móveis integrados a ambientes de aprendizado móvel permite que a informação saia dos ambientes físicos das instituições de ensino, oportunizando a alunos e professores criarem cenários de aprendizagem geograficamente distribuídos. Entretanto, muitos dos aplicativos desenvolvidos para estes ambientes ainda permanecem isolados uns dos outros e não se integram de maneira suficiente aos ambientes virtuais de aprendizagem (AVA). Este artigo apresenta um modelo de interoperabilidade entre dispositivos móveis e AVA distintos baseado em webservices.

1. Introdução/Motivação

Com a evolução da tecnologia, foram desenvolvidas várias facilidades para o ser humano. Dentre elas, a Computação e a Internet se destacam por automatizar tarefas, reduzir custos, distância e tempo para realizar a troca de vários tipos de informação.

Toda área, seja ela educação, comércio, medicina ou militar, exige troca de informação para seu funcionamento. Um dos mais populares modos de comunicação de dados via internet é através do uso de um web service. Web services podem ser definidos como aplicações cliente/servidor que se utilizam da comunicação através da internet, por meio do protocolo HTTP (HyperText Transfer Protocol), para prover serviços entre softwares que estejam executando em diferentes plataformas. Essas aplicações fazem uso do padrão XML (eXtensible Markup Language) para prover descritores que são interpretados automaticamente por outros sistemas, permitindo assim que diversos programas simples possam interagir uns com os outros para, em conjunto, fornecer soluções mais complexas e sofisticadas [DevMedia 2018].

Nos últimos anos, têm-se acompanhado a disponibilização de um grande número de sistemas computacionais com um considerável conjunto de recursos que satisfaçam as necessidades de desenvolvedores de software. Esse aumento do poder computacional gera um desejo de tratar problemas de maior escopo por parte de programadores e pesquisadores, e uma das áreas que podem se beneficiar de tal avanço é a de Processamento Digital de Imagens (PDI), pois a popularização de dispositivos de aquisição e armazenamento de mídias digitais, como imagens e vídeos, faz crescer a demanda por software capaz de manipulá-las. Neste contexto, bibliotecas de software podem incorporar implementações de métodos que são a base comum para a manipulação de imagens e vídeos a fim de minimizar erros de codificação, diminuir o custo e o tempo de produção. Com a disseminação da internet e da consequente e inevitável necessidade de troca de informação, as aplicações e sistemas desenvolvidos hoje em dia precisam atender a certas condições do cenário atual, essas condições dizem respeito às características de execução dos softwares de forma distribuída, rápida e portável.

Diante da necessidade de permitir que uma biblioteca de PDI atenda a tais requisitos, surge a possibilidade de implementar uma ferramenta, independente de plataforma, para a disponibilização de suas funcionalidades.

Para chegar à ferramenta, a solução está implementada em Linguagem Java, com auxílio de uma ferramenta denominada JERSEY, baseada na arquitetura SOA, mais especificamente em Serviço Web seguindo o conceito REST, do inglês Representational State Transfer (Transferência do Estado Representacional), o qual foi proposto por Roy T. Fielding em sua dissertação de doutorado, publicada no ano 2000. (SANDOVAL, 2009)

Este tipo de Serviço Web utiliza-se do protocolo HTTP para realizar a troca de mensagens entre clientes e servidor. Outra característica importante é a forma de redirecionamento de serviços, realizado através de um endereçamento URI específico. (RI-CHARDSON; RUBY, 2007)

Aliando todos os fatores e tecnologias apresentados anteriormente, torna-se possível o desenvolvimento de uma arquitetura baseada em Serviços Web, fornecendo uma plataforma que disponibiliza serviços de uma API de processamento digital de imagens com baixos custos computacionais, ou seja, baixo consumo de memória e processamento.

2. Referencial Teórico

2.1. Middleware

Para Coulouris (2005) o middleware "é um termo aplicado a uma camada de software que fornece uma abstração da programação, assim como o mascaramento de heterogeneidade das redes, do hardware, de sistemas operacionais e linguagens de programação subjacentes". Tal camada configura funções de identificação, autorização, autenticação, segurança, entre outras. O middleware implementa a comunicação e o compartilhamento de recursos e aplicativos distribuídos. Um middleware forma uma camada entre aplicações e plataformas distribuídas cuja finalidade é proporcionar um grau de transparência de distribuição. [Tanenbaum, 2007] Neste trabalho pretende-se fazer middleware de modo que sejam simples as configurações, adaptações e personalizações da aplicação conforme sejam necessárias.

2.2. Webservice

Com o surgimento da comunicação através das redes de computadores e da necessidade de diferentes softwares trocarem informações, surgiu o conceito de Webservice (WS). Os Webservices permitem que sistemas desenvolvidos em diferentes linguagens, sendo executados em diversas plataformas, transmitam e recebam informações padronizadas entre si, permitindo uma interação entre os dispositivos, mais abrangente que qualquer outra tecnologia de computação distribuída existente. Segundo Kalin (2009) Webservice é um tipo de aplicação para web distribuída, cujos componentes podem ser aplicados e executados em dispositivos distintos. Configura-se como um mecanismo de comunicação que permite a interoperabilidade entre sistemas. Para Kreger (2001) um Webservice descreve uma coleção de operações que são acessíveis pela rede através de mensagens XML (eXtensible Markup Language) padronizadas. Porém existe a tecnologia JSON (Javascript Object Notation) que também possibilita a troca de mensagens de forma mais leve. O uso de Webservice possibilita que aplicações desenvolvidas em plataformas e linguagens diversificadas troquem informações padronizadas permitindo a interação entre elas com rapidez, facilidade e baixo custo, conforme ilustrado na Figura 1.

Figura 1. Troca de informações entre uma aplicação cliente e um WebService

Souza (2004) explica que os Webservices utilizam tecnologias que permitem que os serviços sejam disponibilizados pela WEB transportando e transformando dados entre aplicações com base em XML ou JSON. Nesse contexto, o XML e JSON além de funcionarem como padrão para troca de mensagens também têm o papel de definir os serviços. Sua sintaxe especifica como os dados são representados, transmitidos e detalhes de como são publicados e descobertos.

Existem basicamente, dois grupos de serviços web: os serviços baseados em SOAP (Simple Object Access Protocol) e os REST (Representational State Transfer). Um serviço baseado em SOAP entregue sobre HTTP é um caso especial dos serviços REST. O foco deste trabalho está na criação e utilização de um web service do grupo REST, devido a sua popularização, e ferramentas auxiliares disponíveis para uso.

2.2.1. REST - Representational State Transfer

Descrito por Fielding (2000), REST é um modelo de arquitetura de software distribuído, baseado em comunicação via rede. Um sistema baseado no modelo REST denomina-se RESTful. Para a implementação de tal sistema não há a necessidade da criação de novos protocolos ou tecnologias, pois o mesmo é suportado em qualquer arquitetura de rede. Enquanto o SOAP é um protocolo de mensagens, o REST é um estilo de arquitetura de

software para sistemas hipermídia distribuídos, conhecidos como recursos e são acessados via URIs (Uniform Resource Identifiers ou, em português, Identificador Uniforme de Recursos). Um recurso RESTful é qualquer coisa que possua um endereço através da web, como por exemplo uma imagem jpg, dados de uma empresa, entre outros, ou seja, sistemas em que as hipermídias são armazenadas em uma rede e interconectadas através de hiperlinks podendo ser acessados e transferidos entre clientes e servidores. O núcleo da abordagem REST consiste na utilização dos métodos HTTP, que correspondem às operações CRUD (Create, Read, Update, Delete). Cada requisição HTTP inclui um dos métodos apresentados na tabela 1 para indicar qual a operação CRUD que deve ser realizada sobre o recurso.

Tabela 1. Métodos HTTP e operações CRUD

POST	Cria um novo recurso a partir dos dados requisitados
GET	Lê um recurso
PUT	Atualiza um recurso a partir dos dados requisitados
DELETE	Remove um recurso

Em termos gerais, um cliente RESTful emite um pedido que envolve um recurso, como por exemplo, um pedido de alteração. Se este pedido for bem sucedido, uma representação do recurso é transferido do servidor que hospeda o recurso para o cliente que emitiu o pedido [Kalin 2009].

2.3. Processamento Digital de Imagens(PDI)

Uma imagem pode ser definida por uma função bidimensional f (x,y) em que x e y são um par de coordenadas espaciais e o valor de f representa a intensidade da imagem naquele ponto. Quando x, y e os valores das intensidades de f são todos finitos e em quantidades discretas, pode-se dizer que a imagem é uma imagem digital. Os elementos constituintes das imagens são denominados pixels. O PDI refere-se à utilização de métodos que manipulam imagens digitais e que geram como resultado outras imagens digitais. Esta manipulação envolve a utilização dos pixels da imagem de entrada para a geração de novos pixels que formam a nova imagem de obtida [4].

Na maioria dos casos, os métodos que se deseja implementar para a manipulação das imagens são mapeamentos, considerando a utilização de uma matemática básica ou avançada, que utilizam as posições e os valores dos próprios pixels. Entretanto, quando os programadores se deparam com o desenvolvimento de programas que processam imagens, eles devem se preocupar com outras tarefas que não são estão ligadas à essência do PDI. Exemplos destas tarefas são dados pela escolha e utilização de bibliotecas para a leitura e gravação de arquivos, criação de interface gráfica ou aplicação de testes para verificação do que foi implementado. Estas nuâncias de implementação podem ser abstraídas através do uso de uma biblioteca específica que faça a abstração destas tarefas [4, 5].

2.4. Application Programming Interface(API)

2.5. API em Desenvolvimento

3. Mecanismo de chamada de serviço remoto (RSI)

Esta sessão está destinada a descrever a arquitetura e funcionamento do Middleware proposto, bem como as tecnologias envolvidas em sua implementação.

A figura 2 representa o diagrama da estratégia de comunicação que foi desenvolvida em duas etapas: entre a aplicação cliente e o Middleware via Web Services e entre o Middleware e a API de PDI desenvolvida via linha de comando, esta, que por sua vez, está localizada no mesmo servidor do web service.

Para a troca de informações adotou-se o JSON (JavaScript Object Notation). O JSON é um formato de interconexão de dados utilizado em ambientes cliente-servidor que possibilita o desenvolvimento nas mais variadas linguagens. O JSON atualmente vem sendo utilizado como linguagem padrão para comunicação entre sistemas nas mais diversas plataformas. A disponibilidade de bibliotecas e o desempenho proporcionado pela simplicidade da transmissão de dados utilizando JSON influenciaram na decisão por utilizá-lo.

A interoperabilidade entre a aplicação cliente e a biblioteca de PDI, conforme ilustrado na Figura 2, é realizado da seguinte forma:

- A aplicação cliente se conecta ao web service através da URL de acesso a algum serviço disponibilizado pelo mesmo, informando junto com a requisição, a imagem alvo a qual se deseja realizar tal transformação, codificada no formato base64;
- O middleware recebe a requisição, decodifica a imagem requisitada, salva-a no disco, e realiza uma chamada via linha de comando para o sistema operacional do servidor, passando como parâmetro o caminho da imagem salva, e o tipo de transformação que se deseja realizar na mesma, para que a API possa realizar seu trabalho;
- Após realizar seu processamento, a API retorna para o middleware como resultado de execução, a imagem transformada e codificada no formato base64;
- O middleware por fim, retorna para a aplicação cliente do serviço, um código de status da requisição, representando o sucesso ou insucesso da operação, em conjunto com uma mensagem informando se houve qualquer erro em algum dos passos anteriores, e caso todo o processo tenha sido realizado com sucesso, retorna também a imagem processada pela API, também no formato base64.

Para que o processo funcione adequadamente, a API precisa estar ao alcance do web service, ou seja, localizada no mesmo servidor, e também é necessário que a mesma implemente a forma padronizada de comunicação descrita anteriormente: enviar como resposta à suas chamadas de funções, uma imagem codificada no formato base64, para que o middleware consiga se conectar à mesma e, dessa forma, interagir com as aplicações clientes conforme o esperado.

O middleware será executado em um servidor de aplicação. Este servidor é responsável por estabelecer a comunicação com as aplicações clientes que desejem utilizar os serviços da API. A desvantagem é que recursos computacionais de um servidor serão

Figura 2. Modelo de Comunicação

alocados para o middleware, porém, como vantagens teremos a flexibilidade, melhoria no desempenho, manutenibilidade e disponibilidade do serviço.

A utilização das funcionalidades da API de forma direta, necessitando de tê-la instalada na própria máquina do utilizador, traria alguns inconvenientes, sendo eles:

- O usuário necessitar instalar novas versões da mesma à medida que novas funcionalidades forem sendo adicionadas;
- Dependência de plataforma, uma vez que para se comunicar corretamente com a biblioteca de programação, o usuário necessita utilizar a mesma linguagem de programação com a qual a mesma fora implementada;
- Restrição de utilização da biblioteca à medida que os recursos da máquina do usuário foram ficando mais escassos, uma vez que todo o processamento da API será feito no computador do usuário.

O middleware possui a implementação e uso de dois serviços através dos quais será possível realizar diversas operações de troca de informações, à medida que novas funcionalidades forem sendo disponibilizadas pela API, poderão ser adicionados novos serviços que correspondam às mesmas. Todos os serviços possuem somente um parâmetro de entrada (Requisicao) e um parâmetro de saída (Resposta) de tipos que encapsulam as informações necessárias para realizar as requisições e o resultado da operação. Os serviços são descritos a seguir:

GreenFilter: Operação destinada a realizar a aplicação do filtro de cor verde na imagem requisitada;

BlackAndWhiteFilter: Operação destinada a realizar a aplicação do filtro de cores preto e branco na imagem requisitada.

A definição dos elementos de comunicação – ou objetos de comunicação – é determinante para o sucesso de todo o processo de comunicação, que inicia na requisição

da aplicação cliente, passa pelo middleware, chega na API, e finaliza na resposta final do web service. Esses objetos são as estruturas de dados que carregam as informações necessárias para consumir e responder um WS. A dinâmica de comunicação é realizada da seguinte forma: a aplicação cliente realiza uma requisição encapsulando um objeto de comunicação que é processado pelo web service. Em seguida, o WS realiza uma chamada à função requisitada pelo cliente à API, esta que por sua vez, realiza seu processamento, e envia uma resposta ao WS, que, por fim, responde à requisição do cliente através de um outro objeto de comunicação.

Por exemplo: para consumir o serviço GreenFilter a aplicação cliente requisita através do objeto de comunicação Requisicao os dados da imagem codificada. Em seguida, o serviço GreenFilter envia a resposta com o objeto de comunicação Resposta.

A tabela 2 representa um exemplo da estrutura de dados de um objeto de comunicação exemplificado no formato JSON.

Objeto de Comunicação	Atributos	Exemplo (JSON)
Requisicao	Img: texto	{"img": "/9j/4AAQSkZJRgABAQAAAQAB"}
	Status: inteiro	{"Status": 1,
Resposta	Msg: texto	"Msg": "Sucesso",
	Img: texto	"Img":"/9j/4AAQSkZJRgABAQAAAQAB"}

Tabela 2. Descrição dos atributos de comunicação

A figura 3 representa o diagrama de sequência para o consumo do serviço Green-Filter:

3.1. Tecnologias Envolvidas

Nesta seção, serão descritas, bem como o título da mesma explicita, as tecnologias envolvidas na criação deste trabalho, sendo elas, a especificação Java EE; a ferramenta de automatização de construção e gerenciamento de projetos Java, Apache Maven; o framework Jersey, que implementa todas as características da arquitetura REST, ou seja, que nos permite a criação de sistemas RESTful, e por fim, as tecnologias que nos permite o armazenamento e transmissão de informação no formato de texto: JSON e base64.

3.1.1. Java Enterprise Edition(Java EE)

Como mencionado na introdução deste trabalho, a linguagem escolhida para desenvolvimento do middleware foi Java, que é uma das linguagens de desenvolvimento multiplataforma mais conhecidas e atualmente está bastante consolidada no mercado, com vários fóruns e comunidades dispostos a nos auxiliar no processo de construção de software, o que torna tal escolha bastante razoável.

O Java EE consiste de uma série de especificações bem detalhadas, ditando como deve ser implementado um software capaz de realizar serviços de infraestrutura, como web services, persistência em banco de dados, gerenciamento de conexões HTTP, acesso remoto, gerenciamento de sessão web, entre outros. Tudo isso, claro, baseado na linguagem Java.

Figura 3. Diagrama de Sequência - GreenFilterService

3.1.2. Framework Jersey

Como o Java EE é apenas uma especificação, fez-se o uso de um dos principais frameworks utilizados para desenvolver aplicações RESTful em Java, o Jersey, que implementa todas as características da arquitetura REST.

3.1.3. Armazenamento e transmissão de informação

Como forma padrão de comunicação entre servidor e cliente, foi adotado o JSON. O JSON é um formato de troca de dados entre sistemas independente de linguagem de programação derivado do JavaScript[1][2]; a figura 4 exibe um exemplo de arquivo JSON, com a representação de um array de carros, onde cada elemento do array possui os atributos modelo e ano:

Figura 4. Exemplo de representação JSON

Para que fosse possível a transmissão de um arquivo binário de forma leve e eficiente, foi utilizado o padrão de codificação base64, que nada mais é do que uma forma de representar arquivos binários(imagens, no contexto deste trabalho) em formato de texto, método comumente utilizado na internet para transferência de dados. Seu nome é dado pelo fato de o mesmo ser constituído por 64 caracteres ([A-Za-z0-9], "/"e "+"). Trabalha com transformação em bits a partir de um outro padrão, como por exemplo ASCII. A tabela 3 expressa um exemplo de codificação da palavra "Fer".

Tabela 3. Exemplo de codificação base64

Conteúdo	F	e	r
ASCII	70	101	114
Padrão em Bit	01000110	01100101	01110010

Em seguida a cada 6 bits da esquerda para a direita, os valores são convertidos para decimal e posteriormente o algoritmo base 64 entende estes decimais como índices para serem convertidos a um dos 64 caracteres, como mostra o exemplo a seguir:

Tabela 4. Exemplo de codificação base64

Bits	Decimal	Base 64
010001	17	R
100110	38	m
010101	21	V
110010	50	у

Na tabela 5 confere-se os índices de conversão para base64.

Tabela 5. Tabela de índices base64

Value Char	Value Char	Value Char	Value Char
0 A	16 Q	32 g	48 w
1 B	17 R	33 h	49 x
2 C	18 S	34 i	50 y
3 D	19 T	35 j	51 z
4 E	20 U	36 k	52 0
5 F	21 V	37 1	53 1
6 G	22 W	38 m	54 2
7 H	23 X	39 n	55 3
8 I	24 Y	40 o	56 4
9 J	25 Z	41 p	57 5
10 K	26 a	42 q	58 6
11 L	27 b	43 r	59 7
12 M	28 c	44 s	60 8
13 N	29 d	45 t	61 9
14 O	30 e	46 u	62 +
15 P	31 f	47 v	63 /

3.1.4. Apache Maven

Inicialmente, para criação do projeto, utilizou-se da ferramenta de automatização de construção e gerenciamento de projetos Java, denominada Apache Maven, embora também possa ser utilizada com outras linguagens. Ela fornece aos desenvolvedores uma forma padronizada de automação, construção e publicação de suas aplicações.

O processo de criação de um projeto Java EE envolve vários passos, como a criação de um diretório principal com vários subdiretórios, a configuração de diversos arquivos XML, a obtenção de bibliotecas para o projeto, a criação dos pacotes de publicação, a geração de documentação javadoc, entre outras etapas. Normalmente, sem a utilização de tal ferramenta, cada projeto teria sua própria estrutura, seu próprio jeito de gerar pacotes(jar, war), ou de executar cada um desses passos. Projetos complexos, com vários módulos, podem exigir uma ordem específica para a compilação dos mesmos, para que se chegue ao pacote final[devmedia]. Essa não-padronização, pode acarretar vários problemas, como por exemplo, um desenvolvedor alterar a estrutura de pastas do projeto referente a localização de imagens, e esquecer de avisar aos demais, o sistema passaria a funcionar de forma instável em algumas partes. Tendo em vista esses pontos, e o fato de que tal ferramenta incentiva a adoção de boas práticas, optou-se por utilizá-la.

Após a criação de um projeto Maven, temos à disposição, uma de suas funcionalidades mais poderosas, que é a gestão de dependências, por meio do arquivo pom.xml, que fica localizado no diretório raiz do projeto. Esse arquivo xml nos fornece uma forma fácil de administrar bibliotecas de terceiros necessárias para o funcionamento correto do código, tarefa que pode se tornar difícil, à medida que o projeto for aumentando de proporção e que cada vez mais a adição de bibliotecas ao desenvolvimento se torne necessária. O arquivo pom.xml, além de conter uma lista das chamadas dependências, possui várias outras informações referentes ao correto funcionamento do Maven. Entre outras palavras, ele é basicamente o coração da ferramenta. Por meio da lista de dependências, a ferramenta faz uma análise e tenta localizá-las, com o intuito de disponibilizá-las para o projeto. Para realizar as buscas de dependências, o Maven faz uma varredura em locais denominados repositórios, cujos tipos principais são local e público. O primeiro fica localizado na máquina onde a ferramenta está sendo executada(no caso deste trabalho, /home/fernando/.m2/repository/), e o último, em http://repo.maven.apache.org/maven2/, endereço do repositório público oficial da ferramenta.

4. Estudo de caso

Nesta sessão, serão descritos os passos necessários para a realização de consumo dos serviços da API por meio da comunicação com o Middleware, apresentando o desenvolvimento de uma aplicação cliente como estudo de caso.

A escolha da linguagem JavaScript como base para o desenvolvimento da aplicação cliente, se deu mais pela necessidade de demonstrar a independência de plataforma que o Middleware nos proporciona, e também pelo fato de que atualmente JavaScript é uma das linguagens mais conhecidas e utilizadas ao redor do mundo.

A figura 5 representa a interface da aplicação cliente desenvolvida.

Esta aplicação consiste em uma página HTML, que utiliza-se da linguagem ja-

Figura 5. Aplicação Cliente

vascript para realizar as requisições ao Webservice. Na figura acima, temos a lista de serviços disponibilizados pelo middleware(1), onde o usuário poderá escolher qual filtro aplicar, um botão para selecionar a imagem desejada(2), a imagem escolhida(3), a imagem final(4), após o processamento da API, e resposta do middeware, e por fim, o botão de enviar(5), que realizará a requisição.

O código da figura 6 diz respeito ao código necessário para realizar a requisição aos serviços do webservice:

Como a maioria das linguagens de programação possuem suporte à codificação e decodificação do formato base64, por o mesmo ser bastante difundido, não há necessidade de explicar o seu funcionamento. Portanto, no código listado acima, a partir da linha 21, entende-se que a imagem selecionada já está codificada em tal formato, e que seu valor está atribuído na variável denominada "base64".

Assim sendo, na linha 22, têm-se a definição de qual serviço o usuário escolheu, atribuindo-o à variável serviceUrl, que mais tarde será utilizada para redirecionar a requisição para o serviço correto. A Figura 7 exibe as URLs associadas a cada serviço

```
19 getBase64(file).then(base64 => {
20
       const select = document.querySelector('select');
21
       const serviceUrl = select.value === 'g' ? greenFilterServiceUrl : bwFilterServiceUrl;
22
23
       const requisicao = JSON.stringify({
           ima:base64
24
25
       $.ajax({
26
            method: 'POST'.
27
28
            data: requisicao,
            beforeSend: function() {
29
                const image = document.querySelector('[data-id="img2"]');
30
31
                image.setAttribute('src', AJAX_LOADING_PATH);
32
33
           headers: {
34
                'Accept': 'application/json',
35
                'Content-Type': 'application/json'
           },
36
37
            url: serviceUrl,
38
           success: function(resposta) {
                const image = document.querySelector('[data-id="img2"]');
39
                if(resposta.status == '1'){ // sucesso
40
                    image.src = 'data:image/jpg;base64,'+data.base64;
                    alert("Erro durante o processamento da imagem: "+resposta.msg)
45
           }.
           error: function(e){
               console.log(e);
48
       });
49
50
51 });
```

Figura 6. Código responsável pela requisição ao webservice

do webservice. Como o middleware está localizado na máquina local, seu acesso se tem por meio da URL http://localhost:8080/demorest/restapi/ws;

```
5 const REST_API_PATH = "http://localhost:8080/demorest/restapi/ws";
6 const bwFilterServiceUrl = REST_API_PATH+"/get/image/black_and_white_filter";
7 const greenFilterServiceUrl = REST_API_PATH+"/get/image/green_filter";
```

Figura 7. Urls referentes aos serviços disponibilizados

A linha 23 é responsável pela criação e atribuição de um objeto de comunicação JSON com o atributo Img, como já descrito na tabela 2;

A partir da linha 26, têm-se de fato a requisição. Com o intuito de simplicidade e praticidade, foi utilizada uma biblioteca javascript chamada jquery, para realização das requisições, e seu uso é demonstrado a partir da linha 26, onde está sendo chamado o método ajax, por meio do objeto \$(cifrão), método este, que nos permite realizar requisições assíncronas, ou seja, o fluxo do código não é interrompido até que a resposta seja obtida. Pelo contrário, após realizar a requisição, a resposta é obtida em um momento posterior, de forma independente, e tratada por meio de uma função (chamada função de callback) que será executada após o término da requisição. Com uma sintaxe bastante simples, esse método nos permite enviar e tratar o resultado de requisições assíncronas:

Linha 27: informamos qual método/verbo HTTP será utilizado na requisição;

Linhas 33 a 36: informamos ao middleware, sob qual formato os dados do corpo da requisição foram encapsulados, e sob qual formato a aplicação cliente espera receber como resposta à sua requisição;

Linha 37: informamos a URL para a qual enviaremos a requisição;

Linha 28: enviamos alguma informação no corpo da requisição;

Linhas 29 a 32: o argumento beforeSend recebe uma função que é executada antes de a requisição ser enviada. Nesse caso, atribuímos um "gif"no local onde será inserido a imagem processada pela API, para demonstrar ao usuário que o processo de requisição ainda não foi concluído;

Linhas 38 a 45: a função de callback success é executada quando a requisição é finalizada com sucesso, e nos permite tratar o retorno do servidor, que é recebido por meio do parâmetro "resposta";

Linhas 46 a 48: a função de callback error, por sua vez, é executada quando ocorre algum erro na requisição. De modo semelhante, a mensagem de erro é recebida no parâmetro "e".

5. Considerações Finais

Bibliographic references must be unambiguous and uniform. We recommend giving the author names references in brackets, e.g. [Knuth 1984], [Boulic and Renault 1991], and [Smith and Jones 1999].

The references must be listed using 12 point font size, with 6 points of space before each reference. The first line of each reference should not be indented, while the subsequent should be indented by 0.5 cm.

[1][2] «ECMA-404 The JSON Data Interchange Standard.». json.org. Consultado em 23 de janeiro de 2015 «Network Working Group». ietf.org (em inglês). Consultado em 23 de janeiro de 2015

SANDOVAL, Jose. RESTful Java Web Services. Birmingham: Packt Publishing, 2009.

RICHARDSON Leonard; RUBY, Sam. RESTful Web Services. Sebastopol: O'Reilly, 2007.

https://www.devmedia.com.br/introducao-a-web-services-restful/37387 https://www.devmedia.com.br/ajax-com-jquery-trabalhando-com-requisicoes-assincronas/37141 https://www.devmedia.com.br/introducao-ao-maven/25128

Referências

Boulic, R. and Renault, O. (1991). 3d hierarchies for animation. In Magnenat-Thalmann, N. and Thalmann, D., editors, *New Trends in Animation and Visualization*. John Wiley & Sons ltd.

DevMedia (2018). Introdução a web services restful. https://www.devmedia.com.br/introducao-a-web-services-restful/37387. 27 Dezembro, 2018.

Knuth, D. E. (1984). The TEX Book. Addison-Wesley, 15th edition.

Smith, A. and Jones, B. (1999). On the complexity of computing. In Smith-Jones, A. B., editor, *Advances in Computer Science*, pages 555–566. Publishing Press.