Lesson 13. Markov Chains - Time-Independent Performance Measures

Course standards covered in this lesson: E3 – Irreducible sets, transient and recurrent states; E4 – Steady-state probabilities.

1 Overview

• Last time: performance measures that depend on the number of time steps, for example

$$p_{ij}^{(n)} = \Pr\{S_n = j \mid S_0 = i\}$$
 $p_j^{(n)} = \Pr\{S_n = j\}$

• Today: what happens in the **long run**, i.e. as $n \to \infty$? In particular, what is the **limiting probability**

$$p_{ij}^{(\infty)} = \lim_{n \to \infty} p_{ij}^{(n)} ?$$

• Note: the text uses \vec{p}_{ij} instead of $p_{ij}^{(\infty)}$

2 Periodic and aperiodic states

- As usual, suppose we have a Markov chain with state space $\mathcal{M} = \{1, \dots, m\}$
- Consider the following two-state Markov chain:

• The *n*-step transition probability between state 1 and itself is:

• A state $i \in \mathcal{M}$ is **periodic** with period δ (δ is a positive integer) if

$$p_{ii}^{(n)}$$
 $\begin{cases} > 0 & \text{if } n = \delta, 2\delta, 3\delta, \dots \\ = 0 & \text{otherwise} \end{cases}$

and therefore $p_{ii}^{(\infty)} = \lim_{n \to \infty} p_{ii}^{(n)}$ does not exist

- A state $i \in \mathcal{M}$ is **aperiodic** if it is not periodic
- In this class, we do not consider $p_{ij}^{(\infty)}$ for periodic states j

3 Transient and recurrent states

• Consider the following two-state Markov chain:

• The limiting probability between state 1 and itself is:

- In other words, the process eventually leaves state 1 and never returns
- A state $i \in \mathcal{M}$ is **transient** if $p_{ii}^{(\infty)} = 0$
 - $\circ~$ The process will eventually leave state i and never return
- A state $i \in \mathcal{M}$ is **recurrent** if $p_{ii}^{(\infty)} > 0$
 - \circ The process is guaranteed to return to state i over and over again, given that it reaches state i at some time

Example 1. An autonomous UAV has been programmed to move between four regions to perform surveillance. The UAV is currently located in region 1, and moves between regions 1, 2, 3, and 4 according to a Markov chain with the transition-probability diagram on the right. Can you guess which states are transient and which states are recurrent?

- A subset of states \mathcal{R} irreducible is if
 - $\circ \mathcal{R}$ forms a self-contained Markov chain
 - \circ no proper subset of $\mathcal R$ also forms a Markov chain
- Otherwise the subset \mathcal{R} is **reducible**
- To find transient and recurrent states of a Markov chain:
 - 1. Find all irreducible proper subsets of the state space
 - If there are no such subsets, the entire state space is irreducible
 - 2. All states in an irreducible set are recurrent
 - 3. All states not in an irreducible set are transient

4 Steady-state and absorption probabilities

- Based on how the states are classified, we can compute the limiting probabilities $p_{ij}^{(\infty)}$
- **Case 1.** State *j* is transient.

$$p_{ij}^{(\infty)} =$$

- Why? State j is transient \Rightarrow will eventually leave state j and never return
- Case 2. States i and j are in different irreducible sets of states.

$$op_{ij}^{(\infty)} =$$

- Why? State *i* is one self-contained Markov chain, state *j* is in another
- Case 3. States i and j are in the same irreducible set of states \mathcal{R} .

$$\circ \ p_{ij}^{(\infty)} = \pi_j \text{ for some } \pi_j > 0 \quad - \quad \text{note that } p_{ij}^{(\infty)} \text{ in this case } \underline{\text{does not depend on } i!}$$

• We can compute π_i by solving the following system of linear equations:

- The π_i are called **steady-state probabilities**
- Interpretation: given that the process reaches the irreducible set containing state j, π_i is
 - \diamond the probability of finding the process in state *j* after a long time, or
 - \diamond the long-run fraction of time that the process spends in state *j*
- Note that by construction, the steady-state probabilities add up to 1

	4. State <i>i</i> is transient and state <i>j</i> is an absorbing state at i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in an irreducible set of states i is the only state in i in i is the only state in i in
0	$p_{ij}^{(\infty)} = \alpha_{ij} \text{ for some } \alpha_{ij} \ge 0$
0]	Let ${\mathcal T}$ be the set of transient states
0]	Let α_{TR} be the <u>vector</u> whose elements are α_{ij} for $i \in T$ (remember $R = \{j\}$)
0 1	We can find the α_{ij} 's using:
0 '	The α_{ij} are called absorption probabilities
	♦ What is the probability that the process is ultimately "absorbed" at state <i>j</i> ?
mple 3.	Consider the UAV example again. What is the probability that the UAV is in region 4?

concepts above (I'll let you think about this.)

(possibly with more than 1 state) by lumping the states in \mathcal{R} into a "super state" and then applying the

5 Why are the steady-state probabilities computed this way?

- Some details in Nelson, pp. 153-154
- Intuition: in steady state, we have that

frequency of being in state j = frequency of transitions into state j

Problem 1. An autonomous UAV has been programmed to move between six regions to perform surveillance. The movements of the UAV follow a Markov chain with 6 states (1 for each region), and the following transition probability diagram:

- a. There are two irreducible sets of states: $\{1,2\}$ and $\{3,5\}$. Briefly explain why these sets are irreducible.
- b. Which states are transient? Which states are recurrent? Briefly explain.
- c. Suppose the UAV starts in region 1. What is the long-run fraction of time that the UAV spends in region 1?
- d. What is the probability that the UAV is absorbed into states 3 or 5, given that it starts in region 4?