Computação Móvel

Telefonia Móvel

*GPRS, EDGE, HSDPA, TDMA, WCDMA, 2G, 3G, 4G, 5G e 802.11x.

Estação Base

- As estações base são responsáveis pela alocação de canais e realização de chamadas entre os dispositivos de telefonia móvel e para isso, utilizam uma Central de Comutação.
- □ São formadas pelo conjunto de transmissão, formado por receptores, torres e antenas; e pelo conjunto de controle, consistindo de uma unidade com microprocessador que controla e supervisiona as chamadas entre os móveis.
 - ☐ É também responsável por monitorar os níveis de sinais e o controle de handoff.

Estação Base

Evolução da Telefonia Celular

Evolução da Telefonia Celular

□ A real história do telefone móvel, também conhecido como celular, começou em 1973, quando foi efetuada a primeira chamada de um telefone móvel para um telefone fixo. Foi a partir de Abril de 1973 que todas as teorias comprovaram que o celular funcionava perfeitamente, e que a rede de telefonia celular sugerida em 1947 foi projetada de maneira correta. Este foi um momento não muito conhecido, mas certamente foi um fato marcado para sempre e que mudou totalmente a história do mundo.

História: a evolução do celular

□Vários fabricantes fizeram testes entre o ano de 1947 e 1973, contudo a primeira empresa que mostrou um aparelho funcionando foi a Motorola. O nome do aparelho era DynaTAC e não estava a venda ao público (era somente um protótipo). O primeiro modelo que foi liberado comercialmente nos EUA (alguns outros países já haviam recebido aparelhos de outras marcas) foi o Motorola DynaTAC 8000x, isso ainda no ano de 1983, ou seja, dez anos após o primeiro teste realizado.

Os primeiros aparelhos

A primeira geração da telefonia celular

Se iniciava com celulares não tão portáteis, tanto que a maioria era desenvolvida para instalação em carros. A maioria dos celulares pesava em média 1kg e tinha dimensões absurdas de quase 30 centímetros de altura. Isso era apenas o começo, a tendência era a redução no tamanho físico e o aumento de funções. O preço dos celulares evidentemente era astronômico, até porque, nem todo mundo tinha um carro para poder carregar estes "trambolhos".

Evolução da Telefonia Celular

1G

1G – AMPS (Advanced Mobile Phone System)

Serviço de voz (analógico) – foi a primeira geração de sistemas celulares, formada por sistemas analógicos (que só permite a transmissão de voz). Estabeleceu a estrutura e as funcionalidades básicas associadas a estes sistemas, como roaming e handover entre células.

1G

AMPS – 1G

- * AMPS Advanced Mobile Phone Service
- Sistema Analógico
- * Tipo de acesso a rede: FDMA (Frequency Division Multiple Access).
- * Possibilita o "handoff" ou "handover" e o "roaming"
- * Largura de banda de cada canal: 30KHz
- * Opera na faixa de frequência de 800MHz

AMPS – 1G

Evolução da Telefonia Celular 2.5G 2.75G **2G 3G WCDMA GSM GPRS EDGE TDMA IS-136 CDMA CDMA CDMA EVDO EVDV IS-95 IS-95** 2000 rev A rev B

Segunda Geração – 2G

TDMA / CDMA / GSM

A segunda geração

26

- □ No início da década de 90, as fabricantes já estavam prontas para lançar novos aparelhos, com um tamanho aceitável e um peso que não prejudicasse a coluna de ninguém. A segunda geração de aparelhos não traria apenas novos aparelhos, também iria aderir a novos padrões de comunicação.
- □ Três tecnologias principais iriam imperar nesta época: TDMA, CDMA e GSM. A segunda geração da telefonia móvel durou até a virada do milênio e trouxe várias novidades.

Telefonia 2G

2G - TDMA / CDMA / GSM:

As tecnologias mais usadas nos sistemas de telefonia celular Serviço de voz digital, dados CSD, SMS Ineficiência da comutação de circuitos para transferência de dados: utilização dos canais físico e lógico da interface aérea GSM durante toda a fase de conversação, mesmo quando não há nenhuma informação sendo transferida, gerando:

- ☐ Ineficiência espectral
- ☐ Ineficiência dos recursos de rede
- □ Tratamento ineficiente do tráfego internet

GSM – 2G

- □ O GSM (Global System for Mobile Communications) é um padrão desenvolvido na Europa e que tem o maior número de assinantes e a maior área de cobertura dentre os padrões de segunda geração.
- Utiliza acesso **FDMA/TDMA** com portadoras de 200 kHz e 8 slots temporais por portadora (8 usuários por portadora).
- No Brasil o GSM é utilizado na faixa de 1,8GHz.
- □GSM também utiliza uma codificação digital para a conversação, um codificador de voz ACELP que opera a uma taxa de 13.000bps, correspondente a uma taxa de voz no canal de 22.800bps

GSM — (Global System for Mobile Communications)

- □Os sistemas de telefonia celular de segunda geração oferecem um serviço de mensagens curtas bastante limitado em taxa de transmissão e dedicado para carregar pequenos textos.
- Mas o desenvolvimento na área de redes sem fio trouxe outra possibilidade: por que não usar a infra-estrutura da rede de telefonia celular para a transmissão de dados, em adição à transmissão de voz?

IS - 136 (TDMA) - 2G

- □ A voz é digitalizada antes do envio para a ERB (Estação Radio Base)
- □ A codificação de voz utilizada é a VCELP a uma taxa de 7.950bps, que, depois do processamento digital, e para que a transmissão fique mais confiável, gera uma taxa de 13Kbps no canal.
- Largura de banda de cada canal: 30KHz, entretanto, diferentemente do sistema AMPS, utiliza 3 usuários por canal de 30KHZ.
- Opera na faixa de frequência de 800MHz no Brasil

IS-95 (CDMA) – 2G e 2.5G

- O IS-95 difere dos outros sistemas porque espalha cada sinal com um código pseudo-aleatório único que identifica o canal de comunicações dentro da portadora de RF (Radio Frequency).
- A largura de faixa padronizada para os serviços CDMA é de 1.25 MHz por portadora.
- □ O IS-95 transmite a voz em forma digital, usando para isso um codificador de voz do tipo QCELP com taxa de bits variável de 1,2Kbps a 14,4bps.
- Opera na faixa de frequência de 800MHz no Brasil

GPRS - 2.5G

- □ Global Packet Radio Service Transmissão de dados em redes GSM.
- □ A máxima taxa de transferência que um usuário pode obter é quando tem disponível para a sua transmissão os oito slots de tempo de uma determinada portadora GSM, o que implica em taxa de 171,2Kbps.
- O GPRS permitiu o surgimento de novas aplicações como navegação na Internet, chats, transferência de arquivos, automação residencial, etc nas redes celulares, como se o usuário estivesse usando um computador desktop

EDGE - Enhanced Data rates for GSM Evolution

2.75G

- Principal objetivo é aumentar a capacidade de transmissão de dados das redes GSM/GPRS, alterando o esquema de modulação de GSM por uma mais potente, mas mantendo a faixa de frequência de 200kHz
- □ Pode alcançar aproximadamente 470Kbps de transmissão de dados.

EDGE x GPRS x GSM

Tecnologia	Serviço	Taxa de transmissão máxima por ITC [kbits/s]	Taxa de transmissão máxima por quadro - 8 ITC [kbits/s]
GSM	Voz	13	13
	Dados por comutação de circuito	14,4	14,4
GPRS	Voz	13	13
	Dados por comutação de pacotes	21,4	171,2
EDGE	Voz	13	13
	Dados por comutação de pacotes	59,2	473,6

Terceira Geração

3G

3G — "A global system to connect anywhere and any time". (Sistema para ligar em qualquer lugar e em qualquer altura)

- □A faixa de frequência proposta é de 1885 a 2025MHz e de 2110 a 2200MHz.
- Caracterísiticas gerais do 3G definida pelo IMT-2000:
 - ✓ Roaming Global
 - ✓ Taxa de dados:
 - * 2Mbps usuário fixo
 - * 384Kbps usuário pedestre
 - * 144Kbps usuário veicular
 - Serviços: Voz, audio, texto, imagem, video, sinalização e dados.

Evolução da Telefonia Celular

- ...3G
 - Demanda por novos serviços e aplicações:
 - acesso Internet
 - e-mail
 - e-commerce
 - Imagens/ Video ...

Características da transferência de dados por comutação de pacotes :

- ☐ Tráfego intermitente e formado por rajadas
- Tráfego assimétrico (tráfego downlink > tráfego uplink)

Quarta Geração telefonia celular

Assim como demorou certo tempo para que o 3G fosse estabelecido, a quarta geração de telefonia celular (4G) não chegou tão rápida. Assim como o 3G já fez, a 4G deve continuou investindo no avanço da transmissão de dados. Os novos aparelhos celular já trabalham com o protocolo IP e são compatíveis com as redes de computador, a tendência é uma só: os celulares que viraram computadores minúsculos.

4G-LTE

- **4G** foi desenvolvido prevendo para serviços baseados em banda larga móvel tais como Multimedia Messaging Service (MMS), vídeo chat, mobile TV, conteúdo HDTV, Digital Vídeo Broadcasting (DVB), serviços básicos como voz e dados, sempre no conceito de uso em qualquer local e a qualquer momento.
- □ Todos os serviços tem como premissas a otimização do uso de espectro, troca de pacotes em ambiente IP, grande capacidade de usuários simultâneos, banda mínima de 100 Mbit/s para usuários móveis e 5Gbit/s para estações fixas, interoperabilidade entre os diversos padrões de redes sem fio.

4G

4G estará baseada totalmente em redes IP com velocidades de acesso entre 100Mbps em movimento e 5Gbps em repouso, mantendo uma qualidade de serviço (QoS) de ponta a ponta de alta segurança para permitir serviços de qualquer tipo, a qualquer momento e em qualquer lugar.

4G QOE fatores Críticos sistema LTE

Os fatores considerados críticos para o sistema LTE:

- Deve prover altas taxas de troughput com baixa latência.
- Deve prover características e funcionalidades equivalentes ou melhores que as tecnologias anteriores.
- Chamadas em curso e os recursos utilizados devem ser mantidos enquanto o dispositivo se desloca das zonas cobertas pelo LTE para as áreas de cobertura do 2G/3G.
- ☐ A rede deve prover interoperabilidade entre as operadoras e proporcionar capacidade integral de roaming.
- Deve ser capaz de fazer distinção entre os planos de usuários e prover diferentes taxas de dados, serviços, QoS, etc.

Quinta Geração - 5G

Quinta Geração - 5G

□ **5G** (Quinta Geração de internet móvel ou Quinta Geração de sistema sem fio), representa a futura geração de telecomunicação móvel. O 5G já vem sendo estudado para substituir o 4G e ter a próxima geração lançada dentre os próximos 10 anos, seguindo o mesmo padrão de evolução das demais gerações anteriores

Foi definido Velocidade?

- A velocidade alcançada pelo novo padrão devera ser de até 20 Gbps, o que garantirá o download de um filme em alta definição em apenas 10 segundos.
- Essa velocidade toda não será disponibilizada para os clientes de forma massiva, uma vez que se trata de uma meta de máxima a ser atingida pela tecnologia de transmissão que ainda está para ser escolhida.
- □ A velocidade média das redes **5G** deve ser de 100 Mbps para conectar cerca de 1 milhão de aparelhos que seguem o conceito "Internet das Coisas" em uma área de 1 km². Mesmo com a comercialização mundial sendo esperada para iniciar em 2020, os sul-coreanos poderão experimentar as novas velocidades já em 2018.

O que o 5G possibilitará?

- Além de permitir navegação em alta velocidade na rede, com vídeos de alta qualidade (até com resolução 4K) carregando quase instantaneamente, a rede 5G traz outras mudanças importantes.
- □ Ela fará com que a internet das coisas seja possível. A chegada de dispositivos conectados criará demanda por rede de alta capacidade. Estima-se que o 5G permita a conexão de 7 trilhões de dispositivos assim, cada pessoa no mundo poderá ter mil objetos conectados.
- □O 5G estaria disponível não somente para smartphones e tablets, mas também para carros, hospitais, casas, entre outros

Quinta Geração - 5G

Quando o 5G chega?

- ✓ 5G não deve chegar tão cedo assim até os usuários. Tradicionalmente, as gerações de dados em Telecom mudam a cada dez anos. Especialistas acreditam que o **5G** deve começar a tomar corpo na sociedade lá por 2020.
- ✓ No momento, entidades, empresas e órgão internacionais estão debatendo e definido padrões para o 5G. Definidos os padrões, governos ao redor do mundo deve trabalhar para que seja possível implementar a rede.

Quinta Geração - 5G

□ Vai custar caro?

✓ Bem, nenhuma tecnologia nova é barata. Mas tem sido consenso entre empresas que o valor cobrado pelo 5G não pode ser astronômico. A ideia é que ele fique perto do que é cobrado por um plano 4G.

Teste atuais 5G?

- Nokia e a operadora Du, que é bastante influente no Oriente Médio, apresentaram um novo teste da tecnologia de rede móvel 5G. Ocorreu ao vivo durante o GITEX Technology Week, em Dubai.
- Durante o teste, as companhias atingiram a incrível velocidade de 10,22 Gbps sob baixa latência, um valor que ainda pode ser ultrapassado, mas que já é considerado um sucesso.
- O sistema usa antenas inteligentes e modulação de última geração, combinadas com alta largura de banda.

Teste 5G - GITEX Technology Week em Bubai.

Testes com 5G...

□A Huawei é outra fabricante interessada no 5G. Em um teste feito também em outubro e sob condições reais no Japão, a velocidade atingida foi de 3,6 Gbps. A tecnologia deve se tornar comercial somente daqui a cinco anos.

SVA – Serviços de Valor Agregado.

- ■VAS: Value Added Service ou Serviços de Valor Agregado (SVA) - São serviços que não são considerados essenciais ao serviço prestado (voz). SMS, MMS, Download, Acesso a Internet, são os serviços mais comum de VAS. Estão diretamente relacionados a convergência de serviços.
- Apesar da crise, a receita de SVA e dados deve alcançar 15% do total das teles móveis em 2009. Esse número deve crescer continuamente com o aumento do número de usuários que utilizam a tecnologia 3G.

SMS

- □ SMS (Short Message Service) É um protocolo para enviar e receber mensagens escritas sobre as redes celulares digitais, incluindo TDMA, CDMA, GSM e tecnologias 3G.
- ✓ As mensagens SMS estão limitados a 160 caracteres.
- ✓ Pode ser utilizado para comunicações entre dois aparelhos celulares (Peer to Peer) ou através de um servidor conectado a Internet, por exemplo, e um aparelho.
- ✓ Vários serviços atualmente utilizam o SMS para permitir a divulgação de notícias, comunicação com clientes e/ou funcionários, etc.

SMS

MMS

■ Multimedia Message System (MMS) é uma versão atualizada do SMS (Short Message Service), através do qual você pode enviar e receber mensagens multimídia, tais como textos, imagens, vídeos, clipes de áudio, etc. É um avançado serviço de mensagens que permite aos usuários enviar várias mídias em uma única mensagem para um ou mais destinatários.

WAP

WAP (sigla para Wireless Application Protocol) É um padrão internacional para aplicações que utilizam comunicações de dados digitais sem fio (Internet Móvel), como por exemplo o acesso à Internet a partir de um telefone móvel. WAP foi desenvolvido para prover serviços equivalentes a um navegador WEB com alguns recursos específicos para serviços móveis. Sofreu com a pouca atenção dada pela mídia e tem sido muito criticado por suas limitações e foi substituído por outras aplicações e avanços nos aparelhos celulares que permitiram o acesso a Internet através do aparelho móvel como se fosse através de um PC.

João Freire Abramowicz

Exercícios

- Na 1ª geração de Telefonia celular 1G, Qual foi a "primeira" tecnologia utilizada para implantação dos sistemas celulares analógicos?
- a) AMPS (Advanced Móbile Phone System)
- b) FDMA (Frequency Division Multiple Access).
- c) GSM- (Global System for Móbile Communications)
- d) Todas as alternativas estão corretas
- Na 4ª geração de Telefonia celular "4G", Qual foi a tecnologia utilizada para os sistemas celulares digitais?
- a) W-CDMA
- b) LTE
- c) TDMA
- d) Todas as alternativas estão corretas
- 3. Na 3ª geração de Telefonia celular "3G", Qual foi a tecnologia utilizada no inicio, sendo primeiro adotado pelas operadoras pelo baixo custo?
- a) GSM
- b) TDMA
- c) W-CDMA
- d) Todas as alternativas estão erradas
- 4. SVA (Serviços de Valor Agregado) Cite quais serviços foram adicionado ao serviço de voz na telefonia Móvel, que estão diretamente relacionados a convergência de serviços?
- 5. Qual protocolo para enviar e receber **mensagens escritas** sobre as redes celulares digitais, incluindo TDMA, CDMA, GSM e tecnologias 3G.
- 6. Qual o nome do serviço de mensagens que permite aos usuários enviar várias mídias em uma única mensagem para um ou mais destinatário, mensagens multimídia de **textos, imagens, vídeos, clipes de áudio**, etc..
- 7. O que são Estações Base? Quais equipamentos fazem parte de uma infraestrutura de uma Estação Base?
- 8. Conforme testes já realizados, qual a velocidade máxima que poderá ser atingida com a tecnologia 5G?