Operations Research 1

Prof. Dr. Marco Lübbecke marco.luebbecke@rwth-aachen.de

WS $2015/16 \cdot 3$. Vorlesung

Bin Packing Problem

packe alle Gegenstände in minimal n Gegenstände der Größe a_i , wenige Bins so, dass Kapazitäten m Bins der Kapazität beingehalten MZN

Modellieren: Designentscheidungen

► Beispiel:

man möchte Kapazitäten verfügbar machen, $y \in \{0, 1\}$

y = 1: Kapazität cap steht zur Verfügung

 $y=\mathbf{0}$: Kapazität cap steht nicht zur Verfügung

- im Falle der Verfügbarkeit, kann die Kapazität benutzt werden, $x \ge 0$, muss aber nicht ausgeschöpft werden
- $x \leq cap \cdot y$

Bin Packing Problem: Alternatives Modell

Alle Möglichkeiten auflisten, eine Dose zu packen:

in Muster p vor

Segen und Fluch

- ▶ in der linearen Optimierung ist Modellierung meißt "klar"
- ▶ in der ganzzahligen Optimierung besteht viel mehr Freiheit
- erfordert viel Übung und Erfahrung
- "wir werden nie genügend fähige Modellierer haben"
- es hilft, sich viel an- und abzuschauen
- theoretisches/algorithmisches Hintergrundwissen hilft später

Standortplanung (Facility Location)

m potentielle Standorte mit Eröffnungskosten f_i , n Kunden, Verbindungskosten c_{ij}

eröffne Standorte so, dass jeder Kunde von einem Standort bedient wird und Gesamtkosten minimal

aj
$$\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum$$

Modellieren logischer Bedingungen

- ▶ binäre Variable $x_A = 1 \iff$ Aussage A wahr z.B. $A \equiv$ "ich kaufe eine neue Fräsmaschine"
- ▶ Implikation "wenn A, dann auch B" $(A \Rightarrow B)$: $x_A \leq x_B$
- ▶ Kontraposition "wenn **A** nicht, dann auch **B** nicht" : $x_A \ge x_B$
- Aquivalenz ($A \iff B$): $x_A = x_B$
- wir kennen schon:

genau eins ist wahr: $\sum_i x_i = 1$

höchstens eins ist wahr: $\sum_i x_i \le 1$

mindestens eins ist wahr: $\sum_i x_i \ge 1$

Scheduling auf parallelen Maschinen

n Jobs der Dauer p_i , m Maschinen

weise jedem Job eine Maschine so zu, dass Gesamtfertigstellzeit minimal makespan

1=1,...h

Scheduling auf parallelen Maschinen

n Jobs der Dauer p_j , m Maschinen

weise jedem Job eine Maschine so zu, dass Gesamtfertigstellzeit minimal makespan

$$\begin{array}{lll} \min & C_{max} \\ \text{s.t.} & \displaystyle \sum_{k=1}^m x_{jk} \ = 1 & \forall j \\ \\ & \displaystyle \sum_{j=1}^n p_j x_{jk} \ = C_k & \forall k \\ \\ & C_k \ \leq C_{max} & \forall k \\ & C_k \ \geq 0 & \forall k \\ \\ & C_{max} \ \geq 0 \\ & x_{jk} \ \in \ \{0,1\} & \forall j,k \end{array}$$