Reasoning Over 2D and 3D Directional Relations in OWL: A Rule Based Approach

BATSAKIS SOTIRIOS
TECHNICAL UNIVERSITY OF CRETE

RULEML13
JULY 2013, SEATTLE WA

Problem Description

- Representing directional relations (e.g. "North") in OWL poses several challenges
 - o Relations have specific semantics that must be represented
 - Vse dedicated spatial reasoners
 - Need for additional software besides standard tools
 - Reduces reusability, modifications both on representation and software are required
 - Embedding reasoning into ontology [Batsakis & Petrakis, RuleML11]
 - Representing Cone shaped directional relations (CSD-9)
 - Complicated representation
 - No 3D representation

Proposed solution

- Decompose CSD-9 relations to sets of independent relations
 - Represent each CSD-9 relation as pair of new relations
 - × NW becomes N and W
 - Reasoning for each set of relations separately
 - Obtain resulting CSD-9 relation from pairs of inferred new relations
 - Straightforward extension to 3D

CSD-9 relations

Reasoning over CSD-9 relations

- Based on Path Consistency
 - Compose and intersect existing relations until
 - Fixed point is reached
 - Inconsistency is detected
 - Implemented using SWRL
 - **Compositions** of relations
 - $\bullet \ \mathrm{N}(\mathrm{x},\mathrm{y}) \land \mathrm{NW}(\mathrm{y},\mathrm{z}) \rightarrow (\mathrm{N} \cup \mathrm{NW})(\mathrm{x},\mathrm{z})$
 - × Intersections of relations
 - \circ (N \cup NE) (x,y) \wedge (NE \cup E)(x,y) \rightarrow NE(x,y)
 - Additional relations required besides basic CSD-9
 - Complicated representation and reasoning
 - o 33 relations and 964 rules

Decomposition: North-South Relations

Decomposition: East-West Relations

Reasoning

- Convert CSD-9 relations to new sets
 - \circ E.g. SW(x,y) \rightarrow S (x,y) \wedge W(x,y)
- Apply Path Consistency on each set
 - Compositions
 - Composition Tables defined
 - Similar to adding vectors
 - × New relations representing disjunctions are required
 - Detected using closure method
 - Intersect and compose relations until fix point is reached (i.e., all compositions and intersections yield relations into existing set)
 - Intersections

CSD-9 Decomposition

- \circ N_{CSD-9}(x,y) \leftrightarrow N(x,y) \wedge EqV(x,y)
- \circ NE_{CSD-9}(x,y) \leftrightarrow N(x,y) \wedge E(x,y)
- \circ E_{CSD-9}(x,y) \leftrightarrow EqH(x,y) \wedge E(x,y)
- \circ SE_{CSD-9}(x,y) \leftrightarrow S(x,y) \wedge E(x,y)
- \circ S_{CSD-9}(x,y) \leftrightarrow S(x,y) \land EqV(x,y)
- \circ SW_{CSD-9}(x,y) \leftrightarrow S(x,y) \wedge W(x,y)
- \circ W_{CSD-9}(x,y) \leftrightarrow EqH(x,y) \wedge W(x,y)
- \circ NW_{CSD-9}(x,y) \leftrightarrow N(x,y) \wedge W(x,y)
- \circ Id_{CSD-9}(x,y) \leftrightarrow IdH(x,y) \wedge IdV(x,y)

Composition table (North-South)

Relations	N	S	EqH	IdH
N	N	N,S,EqH,IdH	N,EqH	N
S	N,S,EqH,IdH	S	S,EqH	S
EqH	N,EqH	S,EqH	N,S,EqH,IdH	EqH
IdH	N	S	EqH	IdH

Composition table (East-West)

Relations	E	W	EqV	IdV
E	E	E,W,EqV,IdV	E,EqV	E
W	E,W,EqV,IdV	W	W,EqV	W
EqV	E,EqV	W,EqV	E,W,EqV,IdV	EqV
IdV	E	W	EqV	IdV

Reasoning Rules and Axioms

- Compositions derived from composition tables
 - \circ N(x,y) \wedge N(y,z) \rightarrow N(x,z)
 - \circ E(x,y) \wedge EqV(y,z) \rightarrow (E \cup EqV)(x,z)
- Additional axioms
 - Inverse
 - × North-South
 - × East-West
 - Symmetric
 - × EqV
 - × EqH
 - O Disjoints basic 4 relations on each set

Reasoning implementation

- Applying closure method for detecting relations
 - o 7 relations required for each set
 - Disjunction of all relations can be removed
 - **▼ 52 rules and axioms required**
 - Compositions, Intersections, Inverse, Symmetric relations
 - Combine 2 sets
 - × 14 Relations and 106 axioms
 - ➤ Important reduction compared to direct CSD-9 implementation

Composition table (Up-Down)

Relations	U	D	EqHe	IdHe
U	U	U,D,EqHe,IdHe	U,EqHe	U
D	U,D,EqHe,IdHe	D	D,EqHe	D
EqHe	U,EqHe	D,EqHe	U,D,EqHe,IdHe	EqHe
IdHe	U	D	EqHe	IdHe

3D reasoning

- Define composition table for additional relations
 - Similar to 2D sets
- Detect required relations
 - Apply closure method
 - × Yields 7 relations
 - O Define rules and axioms
 - ➤ Implement path consistency
 - Compositions
 - Intersections
 - o 52 axioms

Combined 3D representation

- Between 2 points 3 relations are asserted
 - North-South
 - o East-West
 - o Up-down
- Reasoning using SWRL and OWL axioms for each set
 - o Compositions & Intersections
 - o 21 relations and 158 rules and axioms for all 3 sets
 - o CSD-9 relations require 964 axioms only for 2D case

Quantitative evaluation

- Random points created
- Measuring average reasoning times

Points	Reasoning time			
	2D	3D	CSD-9	
200	299.8	268.6	386.0	
400	405.8	685.8	782.4	
600	865.2	1099.0	1066.4	
800	1053.6	1407.2	1396.4	
1000	1526.2	2261.4	2380.2	

Conclusions

- Integrated representation of relations and their semantics
 - Reasoning embedded into the ontology using SWRL
 - Compliance with standards
 - Use existing tools
 - × No additional software
 - Reusability
 - Compact representation compared to CSD-9
 - **×** Fewer relations
 - **Much fewer rules**
 - Faster reasoning (30% for 2D reasoning)
 - × 3D representation

Thank You

Questions?