

Using Machine Learning to Catalog Accreted Stars in ESA Gaia DR3 Survey.

Hang Su

Supervisors: Prof. Lina Necib, Tri Nguyen, Nora Shipp

MIT Kavli Institute for Astrophysics and Space Research

Background

- In situ stars:
 - born within the Milky Way
- Accreted stars:
 - merged with the Milky Way

Latte simulation (m12i): formation over 13.8 billion years showing stars

Objective

To distinguish which stars of the Milky Way are accreted based on Gaia DR3 Survey.

Motivation

Dark matter shares similar kinematics information to accreted stars.

L. Necib et al., The Astrophysical Journal 883, 27 (2019).

Coordinate Systems

Equatorial:

I, b, pmra, pmdec, parallax, radial velocities...

Galactocentric:

x, y, z, Vx, Vy, Vz...

Gaia ESA Data Release 3 (DR3)

- Release on June 13, 2022.
- Abundant radial velocity measurements.
- Well measured parallax.

Ananke Simulations based on FIRE

Gaia DR2:

Simulation Data:

Ananke DR2 m12i Isr0

Ananke DR3 m12i Isr0

Machine Learning Algorithms

In situ and accreted stars have distinctive velocity distributions.

Different metallicity

Better score separations with more dimensions.

 $score = \frac{e^{accreted}}{e^{accreted} + e^{in \text{ situ}}}$

Better performance with more dimensions.

Next steps

Including action angle variables for training

Transfer learning to Ananke DR3 m12f lsr0

Coordinate transformation from equatorial to cartesian

Gaia DR3 Accretion Catalog

Even bigger picture: Dark Matter Map

Main References

Gaia DR2 Accretion Catalog:

- Ostdiek, Necib et al. (2019).
- Helmi et al. (2020).

Gaia data:

• Gaia collaboration et al. (2016, 2018, 2022)

FIRE Simulations:

- Hopkins et al. (2013, 2015)
- Wetzel et al. (2016)
- Sanderson et al. (2020)

Main Takeaways + Q & A

The Milky Way experienced a hierarchical structure formation.

We use the simulated galaxy data to train our neural networks.

The accretion catalog can help map out dark matter.