Driver Alertness Detection using Ensemble of Regression Trees and Implemented in OpenCV

CS 512 Final Project Fall 18'

Serg Masis

Jay Rodge

A20427420

A20418613

Problem Statement

- Road Safety
- Preventable accidents caused by...
 - Speeding and Reckless Driving
 - o Drunk Driving
 - Distraction
 - o Fatigue

In 2015,

according to the National Highway Traffic Safety Administration,

551

nonoccupants (pedestrians, bicyclists, and others)

killed

in distractionaffected crashes

3,477 killed 391,000 injured

in motor vehicle crashes involving distracted driving

of 15-19 year olds involved in fatal crashes

- reported as distracted at the time of crash
- not reported as distracted at the time of crash

Proposed Solution

- Predict and track facial annotations
- Interpret annotations in to estimations for:
 - Head pose
 - o Eye gaze
 - Eye openness
 - Yawning
- Designing a scale (KSS) which tracks:
 - Distraction
 - o Drowsiness
- Alert Driver using based on scale

Facial annotation estimation using an ensemble of Regression Trees (Kazemi-Sullivan paper)

- Detected face first
- Use cascade of regression trees to predict coordinates
- Over many iterations minimizes squared error loss function and
- Uses gradient boosting

Facial annotation estimation using an ensemble of Regression Trees (Kazemi-Sullivan paper)

- Great results achieved on the HELEN dataset (2000 training images and 230 for test), and rest 330 were used as the test data.
- average normalized distance of each landmark to its ground truth position was 0.049

(a) T = 0

(b) T = 1

(c) T = 2

(d) T = 3

(e) T = 10

(f) Ground truth

Head Pose

• Get 3D object pose using 3D-2D point correspondence

Head Pose

- Euler decomposition of rotation matrix
- Using combined euler angles, to estimate distraction

$$\theta_x = atan2\left(r_{32}, r_{33}\right)$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\theta_x = atan2\left(-r_{31}, \sqrt{r_{32}^2 + r_{33}^2}\right)$$

$$\theta_z = atan2\left(r_{21}, r_{11}\right)$$

Head Pose

• Camera angle calibration

Estimate Distraction with Eye Gaze

- Use of left and right scleras
- Determine Distraction Over time

$$d1 = ||(p2 - p6 / 2) - p1||$$

 $d2 = ||(p3 - p5 / 2) - p4||$

Estimating Drowsy Eyes

• Eye Aspect Ratio

EAR =
$$\frac{||p2 - p6|| + ||p3 - p6||}{2 * ||p1 - p4||}$$

Eye Aspect Ratio

• Threshold: 0.25

Figure: Eye blink event Tereza Soukupova et al. (2016)

Estimating Yawn

• Mouth Aspect Ratio(MAR) - Ratio of height over width of mouth

MAR =
$$\frac{mean(||p63-p67||,||p52-p58||)}{mean(||p61-p65||,||p49-p55||)}$$

```
*51 *52 *53

*50 *62 *63 *64 *54

*49*61 *65*55

*60 *67 *66

*59 *58 *57
```

Estimating Yawn

Measuring the MAR over time to estimate yawn

Karolinska Sleepiness Scale (KSS)

Karolinska Sleepiness Scale (KSS)

Extremely alert	1
Very alert	2
Alert	3
Rather alert	4
Neither alert nor sleepy	5
Some signs of sleepiness	6
Sleepy, but no effort to keep awake	7
Sleepy, but some effort to keep awake	8
Very sleepy, great effort to keep awake, fighting sleep	9
Extremely sleepy, can't keep awake	10

$$dist_{i,e} = \begin{cases} w_e & v_{i,e} \ge \tau_e \\ 0 & v_{i,e} < \tau_e \end{cases}$$

$$drow_{i,e} = \begin{cases} w_e & v_{i,e} \ge \tau_e \\ 0 & v_{i,e} < \tau_e \end{cases}$$

$$KSS_{i,k} = \frac{\sum_{j=i-k}^{i} dist_j + \sum_{j=i-k}^{i} drow_j}{2k}$$

Results

Comprehensive Application including

- Distraction Alert
- Drowsiness Alert
- Alertness Scale Combining Both

Head Pose Estimation:

Gaze Estimation

Eye Openness Estimation

Yawn Estimation

Yawn Estimation

KSS

Average KSS: 0.74

References

- Vahid Kazemi and Josephine Sullivan. "One Millisecond Face Alignment with an Ensemble of Regression Trees", 2014
- Shahid A., Wilkinson K., Marcu S., Shapiro C.M. (2011) Karolinska Sleepiness Scale (KSS). In: Shahid A., Wilkinson K., Marcu S., Shapiro C. (eds) STOP, THAT and One Hundred Other Sleep Scales. Springer, New York, NY
- S. Abtahi, M. Omidyeganeh, S. Shirmohammadi, and B. Hariri, *YawDD: A Yawning Detection Dataset*, Proc. ACM Multimedia Systems, Singapore, March 19 -21 2014, pp. 24-28.
- Yip, Ben & Y. Siu, W & S. Jin, Jesse. (2004). Pose determination of human head using one feature point based on head movement. 2. 1183-1186. 10.1109/ICME.2004.1394430.
- https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opency-python/
- https://opency-python-tutroals.readthedocs.io/en/latest/