Theoretical part

Barabanshchikova Polina, Protasov Dmitry, Shulgan Nikita

MIPT

25 октября 2022 г.

Формулировка задачи

Теоретическая модель

Пусть $V=(v_1,\ldots,v_N)$ — видеопоток, то есть $v_i\in\mathbb{R}^{K_v\times C\times H\times W}$, где K_v — число кадров в t секунд, а C,H,W — количество каналов, высота и ширина изображения. И пусть $F=(f_1,\ldots,f_N)$ — fMRI сигнал, состоящий из последовательности измерений $f_i\in\mathbb{R}^{K_f\times X\times Y\times Z}$, где K_f — число измерений за t секунд, а X,Y,Z — размерность одного измерения. Также для каждой пары (V,F) известна метка испытуемого $u\in\{1,\ldots,M\}$.

Задача состоит в предсказании fMRI сигнала F по паре (V,u). Формально, необходимо построить отображение H, которое видеоряду V и участнику u сопоставляет сигнал \tilde{F} , причём

$$p(\tilde{F}|V,u) = p(F|V,u).$$

◄□▶ ◀圖▶ ◀臺▶ ◀臺▶ 臺 ∽Q҈

(MIPT) Theoretical part

Формулировка задачи

Мы будем работать в предположении, что элемент f_t зависит только от текущего кадра v_t , предыдущих L кадров v_{t-1}^{t-1} и последних Lсгенерированных элементов $f_{\star-I}^{t-1}$. В таком случае возможна факторизация

$$p(\tilde{F}|V,u) = \prod_{n=1}^{N} p(f_t|f_{t-L}^{t-1}, v_{t-L}^t, u).$$

Теоретическое решение

Conditional GAN

$$\min_{G} \max_{D} E_{(F,V,u)} \log D(F,V,u) + E_{V,u} \log (1 - D(G(V,u),V,u)).$$

Conditional VAE

$$\mathcal{L}(\theta, \psi) = E_{q_{\psi}} \log p_{\theta}(F|z, u) - D_{KL}[q_{\psi}(z|F, u)||p_{\theta}(z|u)],$$

$$\mathcal{L}(\theta, \psi) = E_{q_{\psi_f}} \log p_{\theta}(F|z, u) - D_{KL}[q_{\psi_f}(z|F, u)||q_{\psi_v}(z|V, u)].$$

4/7

(MIPT) Theoretical part 25 октября 2022 г.

Модель cVAE

Модель cVAE

Формальное описание

Модель состоит из двух частей: автоэнкодера $(\mathcal{E}_f, \mathcal{T}_f, \mathcal{D}_f)$ и сети $(\mathcal{E}_v, \mathcal{T}_v)$. Автоэнкодер тренируется из предобученного состояния $(\mathcal{E}_f^o, \mathcal{T}_f^o, \mathcal{D}_f^o)$.

Входные данные имеют вид $(\overline{f}^o, \overline{f}, \overline{v})$, где $f_i^o, f_i \in \mathbb{R}^{K_f \times X \times Y \times Z}$, а $v_i \in \mathbb{R}^{K_v C \times H \times W}$.

Сначала сигнал fMRI нормируется и нормированные копии конкатенируются по оси каналов: \hat{f}_i^o , $\hat{f}_i \in \mathbb{R}^{3K_f \times X \times Y \times Z}$. Далее энкодеры, состоящие из 3D CNN, обрабатывают каждое измерение независимо: $e_i^f = \mathcal{E}_f(f_i)$, $e_i^o = \mathcal{E}_f^o(f_i^o)$. Полученные эмбеддинги подаются на вход трансформеру, который учитывает временные зависимости между измерениями. Результат применения трансформера \mathcal{T}_f к \overline{e}_f — это множество пар (m,σ) для каждого элемента эмбеддинга.

10 10 10 12 12 12 1

6/7

Модель cVAE

Продолжение

Вектор z семплируется из распределения $\mathcal{N}(m,\sigma)$ и подаётся на вход декодеру, которые восстанавливает fMRI. Качество восстановления сигнала контроллируется функцией потерь из статьи "Self-Supervised Transformers for fMRI representation".

По эмбеддингу \overline{e}_f^o трансформер \mathcal{T}_f^o строит вектор пользователя u. Энкодер \mathcal{E}_v , состоящий из 2D CNN, строит эмбеддинги кадров v_i видеоряда \overline{v} : $e_i^v = \mathcal{E}_v(v_i)$. Далее сеть \mathcal{T}_v используется для преобразования эмбеддингов и вектора u в множество пар (m_v, σ_v) той же размерности, что и выход трансформера \mathcal{T}_f . Минимизируется KL дивергенция между $\mathcal{N}(m, \sigma)$ и $\mathcal{N}(m_v, \sigma_v)$.

(MIPT) Theoretical part 25 октября 2022 г. 7 / 7