1

Classwork: Polynomial functions and graphs

Graph carefully using pencil

1. The zeros of a quartic polynomial function f are -5, 0, 2, and 7. The polynomial has a positive leading coefficient, a > 0. Sketch a graph of y = f(x) on the grid below.

Write an equation for f(x) in factored form, assuming the leading coefficient is one.

Express the function in standard form. Check that the y-intercept on your graph is correct.

2. Given that the remainder when $f(x) = 3x^3 - 9x^2 + 8x - 20$ is divided by x - 3 is 4. What is the value of f(3)?

3. What is the quotient when $3x^2 - 9x - 12$ is divided by x + 2?

4. Algebraically determine the values of h and k to correctly complete the identity stated below.

$$2x^3 - 3x^2 + 7x + 3 = (x - 2)(hx^2 + x + 9) + k$$

5. Given:
$$f(x) = x^2 + 3x - 2$$
 and $g(x) = 2x + 3$
Express $f(x) \times g(x)$ as a polynomial in standard form.

6. Simplify the expression
$$\frac{6x^3 + 9x^2 - 5x - 4}{2x + 1}$$
, where $x \neq -\frac{1}{2}$.

7. Given the function $f(x) = x^3 - 4x^2 - 4x - 7$.

X	f(x)
-4	
-3	
-2	
-1	

(a) Using the calculator table function, complete the y values.

- (b) Graph the function on the grid below.
- (c) Using the calculator graph-solve function, find the roots of the function, rounded to the $nearest\ hundredth$.

- 8. Sketch a graph with the following characteristics:
 - three real zeros
 - as $x \to +\infty$, $f(x) \to -\infty$
 - as $x \to -\infty$, $f(x) \to +\infty$

- 9. Sketch a graph with the following characteristics:
 - polynomial function of order four
 - a positive leading coefficient
 - four real zeros

- 10. For each polynomial graph, state
 - (a) its degree,
 - (b) how many distinct zeros it has, and
 - (c) the sign of its leading coefficient.

