1

Probability and random variables assignment

Maharshi Kadeval

1 Q8 c)

- 1.1. Using ruler and compass only, construct a \triangle ABC such that BC = 5 cm and AB = 6.5 cm and $\angle ABC = 120^{\circ}$
 - (i) Construct a circum-circle of △ABC
 - (ii) Construct a cyclic quadrilateral ABCD, such that D is equidistant from AB and BC.

Solution: The parameters for constructing the figure are given in the table below:

TABLE 1.1.1

Symbol	Value	Description
a	5	BC
c	6.5	AB
θ	$\frac{\pi}{3}$	$\pi - \angle ABC$
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	origin
В	$\begin{pmatrix} c \\ 0 \end{pmatrix}$	point of triangle

Deriving the coordinates of C,D,E and the radius r:

X-coordinate of any point is the perpendicular distance(algebraic) of point from Y-axis Y-coordinate of any point is the perpendicular distance(algebraic) of point from X-axis

Let foot of perpendicular from C to X-axis be F and C = $\begin{pmatrix} X_c \\ Y_c \end{pmatrix}$ $X_c = AB + BF$ and $Y_c = CF$ from trigonometry $BF = BC \cos \theta = a * \cos \theta$ and $CF = BC \sin \theta = a * \sin \theta$ $X_c = c + a * \cos \theta$ and $Y_c = a * \sin \theta$ $\therefore C = \begin{pmatrix} c + a \cos \theta \\ a \sin \theta \end{pmatrix}$ Using Sine rule in \triangle ABC, we find α

Let $E = \begin{pmatrix} X_E \\ Y_E \end{pmatrix}$ and foot of perpendicular from E to X-axis be G. Using the fact that angle subtended by a chord at any point of the circle is half of that subtended at the centre,

$$\angle AEB = 2\alpha$$

Since E is centre of circumcircle, EA = EB and hence $\triangle AEB$ is isoceles by which we conclude that $\angle AEG = \angle BEG = \alpha$ Using trigonometry in $\triangle AEG X_E = c/2$,

$$F_E = (c/2) \cot \alpha$$

 $\therefore E = \begin{pmatrix} c/2 \\ (c/2) \cot \alpha \end{pmatrix} \text{ and } r = \frac{c}{2 \sin \alpha}$

Using trigonometry in $\triangle AEG$ $X_E = c/2$, $\cot \alpha = \frac{Y_E}{X_E}$ and $\csc \alpha = \frac{r}{X_E}$, $Y_E = (c/2) \cot \alpha$ $\therefore E = \begin{pmatrix} c/2 \\ (c/2) \cot \alpha \end{pmatrix} \text{ and } r = \frac{c}{2 \sin \alpha}$ l is found by applying sine rule in $\triangle ADB$ Let $D = \begin{pmatrix} X_D \\ Y_D \end{pmatrix}$ and foot of perpendicular from D to X axis by H and given that AD = 1. from D to X-axis be H, and given that AD=1 From geometry $\angle DAB = 2\theta - \alpha$, Using trigonometry in $\triangle ADH$, $AH = X_D =$ $l\cos(2\theta - \alpha)$ and $DH = Y_D = l\sin(2\theta - \alpha)$ $\therefore D = l * \begin{pmatrix} \cos(2\theta - \alpha) \\ \sin(2\theta - \alpha) \end{pmatrix}$

Table for Output parameters:

TABLE 1.1.2

Symbol	Value	Description
α	$\cot^{-1} \frac{11*\sqrt{3}}{13}$	$\angle ACB$
l	$\frac{6.5*\sqrt{3}}{2*\sin\alpha}$	AD
C	$\begin{pmatrix} c + a * \cos \theta \\ a * \sin \theta \end{pmatrix}$	point of triangle
E		centre of circumcircle of $\triangle ABC$.
r	$\frac{c}{2\sin\alpha}$	radius of circumcircle of $\triangle ABC$.
D	$l * \begin{pmatrix} \cos(2\theta - \alpha) \\ \sin(2\theta - \alpha) \end{pmatrix}$	intersection point of angle bisector of AB and BC and circumcircle

Steps of construction:

- 1. The point A is taken as origin and a line segment AB = 6.5 cm is drawn along positive x-axis.
- 2. Draw a line segment emerging from B at ∠120° in anticlockwise direction from BA of length 5 cm.

- 3. Name the other endpoint of the line segment as C.
- 4. Join AC. This completes the $\triangle ABC$.
- 5. Now take the perpendicular bisector of any two sides, mark their point of intersection as E(centre of circumcircle).
- 6. Taking E as centre and EA=EB=EC as radius draw a circle(circumcircle).
- 7. Take internal angle bisector of AB and BC, let its point of intersection with the circumcircle be D.
- 8. Join AD and CD.

(i)1.1.1

center of the circumcircle is the point of intersection of the perpendicular bisectors of AB and BC.

Fig. 1.1.2.

Fig. 1.1.1.

(ii)1.1.2

the point D of the cyclic quadrilateral ABCD is the point of intersection of the angle bisectors of AB and BC and the circumcircle.