- 1. Calcule $\int_{\gamma} \vec{F} \cdot \vec{T} ds$, onde \vec{T} é o vetor unitário tangente à curva γ , nos seguintes casos:
 - 1. $\vec{F} = xy\vec{i} y\vec{j} + \vec{k}$, γ é o segmento de reta de (0,0,0) a (1,1,1);
 - 2. $\vec{F} = x\vec{i} y\vec{j} + z\vec{k}$, γ é dada por $x = \cos \theta$, $y = \sin \theta$, $z = \frac{\theta}{\pi}$, $0 \le \theta \le 2\pi$;
- 2. Calcule $\int_{\gamma} \vec{F} \cdot d\vec{r}$ sendo dados:
 - 1. $\vec{F}(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k} e \gamma(t) = (\cos t, \sin t, t), 0 \le t \le 2\pi$.
 - 2. $\vec{F}(x,y) = x^2 \vec{j} e \gamma(t) = (t^2,3), -1 \le t \le 1.$
 - 3. $\vec{F}(x,y) = x^2 \vec{i} + (x-y)\vec{j} e \gamma(t) = (t, sen t), 0 \le t \le \pi$.
 - 4. $\vec{F}(x,y,z) = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k} \ e \ \gamma(t) = (2\cos t, 3\sin t, t), 0 \le t \le 2\pi.$
- 3. Uma partícula desloca-se em um campo de forças dado por $\vec{F}(x,y,z) = -y\vec{i} + x\vec{j} + z\vec{k}$. Calcule o trabalho realizado por \vec{F} no deslocamento da partícula de $\gamma(a)$ até $\gamma(b)$, sendo dados
 - 1. $\gamma(t) = (\cos t, \sin t, t), a = 0 e b = 2\pi$.
 - 2. $\gamma(t) = (2t + 1, t 1, t), \alpha = 1 e b = 2.$
 - 3. $\gamma(t) = (\cos t, 0, \sin t), a = 0 \text{ e } b = 2\pi.$
- 4. Calcule $\int_{\gamma} x \, dx + y \, dy$, sendo γ dada por $x = t^2$ e y = sen t, $0 \le t \le \pi/2$.
- 5. Calcule $\int_{\gamma} x \, dx + y \, dy$, sendo γ o segmento de extremidades (1,1) e (2,3) percorrido no sentido de (1,1) para (2,3).
- 6. Calcule $\int_{\gamma} x \, dx + y \, dy + z \, dz$, sendo γ o segmento de retas de extremidades (0,0,0) e (1,2,1) percorrido no sentido de (0,0,0) para (1,2,1).
- 7. Calcule $\int_{\gamma} x \, dx + dy + 2 \, dz$, sendo γ a intersecção do parabolóide $z = x^2 + y^2$ com o plano z = 2x + 2y 1; o sentido de percurso deve ser escolhido de modo que a projeção de $\gamma(t)$ no plano xy caminhe no sentido anti-horário.
- 8. Calcule $\int_{\gamma} 2x \, dx dy$, onde γ tem por imagem $x^2 + y^2 = 4, x \ge 0$ e $y \ge 0$; o sentido de percurso é de (2,0) para (0,2).
- 9. Calcule $\oint_{\gamma} \frac{-y}{4x^2+y^2} \, dx \, + \, \frac{x}{4x^2+y^2} \, dy$, onde γ tem por imagem $4x^2+y^2=9$.
- 10. Calcule $\oint_{\gamma} \sqrt[3]{x} \, dx + \frac{dy}{1+u^2}$, onde γ é o quadrado centrado na origem e lado 2.
- 11. Calcule $\oint_{\gamma} \vec{F} \cdot d\vec{r}$ onde $\vec{F}(x,y) = (x+y^2)\vec{j}$ e γ é a curva do exercício anterior.

12. Calcule $\oint_{\gamma} (x-y) dx + e^{x+y} dy$, onde γ é a fronteira do triângulo de vértices (0,0),(0,1) e (1,2).

Respostas

1. 1)
$$\frac{5}{6}$$
 2) 2

2. 1)
$$2\pi^2$$

2. 1)
$$2\pi^2$$
 2) 0 3) $\frac{\pi^3}{3}$ - 2 4) $\frac{8\pi^3}{3}$

4)
$$\frac{8\pi^3}{3}$$

3. 1)
$$2\pi(\pi+1)$$
 2) $\frac{9}{2}$ 3) 0

2)
$$\frac{9}{2}$$

4.
$$\frac{\pi^4}{32} + \frac{1}{2}$$

5.
$$\frac{11}{2}$$

12.
$$\frac{e^3}{6} - \frac{e}{2} + \frac{5}{6}$$