A Hierarchical Framework for Relation Extraction with Reinforcement Learning

Ryuichi Takanobu^{1,3*}, Tianyang Zhang^{1,3*}, Jiexi Liu^{2,3*}, Minlie Huang^{1,3†}

¹ Dept. of Computer Science & Technology, ² Dept. of Physics, Tsinghua University, Beijing, China

³ Institute for Artificial Intelligence, Tsinghua University (THUAI), China

³ Beijing National Research Center for Information Science & Technology, China

{gxly15, zhang-ty15, liujx15}@mails.tsinghua.edu.cn, aihuang@tsinghua.edu.cn

Characteristics:

- 1. Jointly extract relation and entity pair.
- 2. Higher performance in extraction of overlapping relations

```
test-reading-friendly.json
Open ▼
                                                                                            Save
                                    ~/projects/OpenNRE-PyTorch/raw_data
              "head": {
   31
                  "id": "/quid/9202a8c04000641f8000000003147149".
   32
                  "type": "/user/narphorium/people/nndb person,/music/artist,/base/moscratch/
   33
      topic,/award/award winner,/music/composer,/music/producer,/broadcast/artist,/people/
      person,/common/topic,/internet/social network user,/base/moscratch/shce021709,/user/
      narphorium/people/topic".
                  "word": "Johnny Rivers"
   34
   35
              },
              "relation": "/people/person/place lived",
   36
   37
              "sentence": "There were also performers who were born in Louisiana , including
      Lucinda Williams , Jerry Lee Lewis and Johnny Rivers , whose '' Secret Agent Man '' had a
      touch of bayou-country swamp-pop . ",
              "tail": {
   38
                  "id": "/quid/9202a8c04000641f800000000024ba1",
   39
   40
                  "type": "/location/administrative division,/common/topic,/base/locations/
      states and provences,/base/locations/topic,/location/location,/base/ontologies/
      ontology instance,/organization/organization scope,/location/statistical region,/base/
      coloniesandempire/topic,/base/coloniesandempire/former french colonies,/base/localfood/
      food producing region,/freebase/apps/hosts/com/acre/juggle/juggle,/base/seafood/topic,/
      government/political district,/base/seafood/fishery location,/government/
      governmental jurisdiction,/user/robert/default domain/states i ve been to,/user/skud/names/
      namesake,/user/tsegaran/random/taxonomy subject,/location/dated location,/location/
      us state,/base/localfood/topic,/book/book subject,/user/skud/names/topic,/meteorology/
      cyclone affected area".
                  "word": "Louisiana"
   41
   42
   43
          },
   44
```


Overlapping relation case

High-Level policy:

Scan sequentially until find a Relation indicator.

Relation indicator: is the **position** in a sentence when sufficient information has been mentioned to identify a semantic relation

Low-Level policy:

Scan from the beginning, and tag corresponding entity pair.

Motivation:

- 1. Treating entities as the arguments of a relation, therefore the model can connect classification and tagging process.
- 2. Hierarchical structures to solve overlapping problem.

Hierarchical Reinforcement Learning:

Task:

Agent: High-Level policy: Drive...

Low-Level policy: object detection, muscle-control

High-Level policy

Option:

Selected from $\{NR\} \cup \mathcal{R}$

State:

$$s_t^h = f^h(W_s^h[h_t; v_t^r; s_{\{t-1\}}])$$

Policy:

$$o_t \sim \mu(o_t | s_t^h) = softmax(W_\mu s_t^h)$$

Reward:

$$r_t^h = \left\{ egin{array}{ll} -1, & if \ o_t \ not \ in \ S \ 0, & if \ o_t = ext{NR} \ 1, & if \ o_t \ in \ S. \end{array}
ight.$$

$$r_{fin}^h = F_{\beta}(S) = \frac{(1+\beta^2)Prec \cdot Rec}{\beta^2 Prec + Rec},$$

Steve Belichick, the father of New England Patriots coach Bill Belichick, died of heart failure in Annapolis, ...

Entity Tag S_B S_I N N N N O_B O_I O_I N T_B T_I N N N N N N O_B N

Action:

$$A=({S,T,O}*{B,I})$$

State:

$$c_{t'} = g(W_h^l s_{t'}^h)$$

$$s_t^l = f^l(W_s^l[h_t; v_t^e; s_{t-1}; c_{t'}])$$

Policy:

$$a_t \sim \pi(a_t|\mathbf{s}_t^l; o_{t'}) = softmax(\mathbf{W}_{\pi}[o_{t'}]\mathbf{s}_t^l),$$

Reward:

$$r_t^l = \lambda(y_t) \cdot sgn(a_t^l = y_t(o_{t'})),$$
 $\lambda(y) = \begin{cases} 1, & \text{if } y \neq N \\ \alpha, & \text{if } y = N. \end{cases}$

The smaller α leads to less reward on words that are not entities. In this manner, the model avoids to learn a trivial policy that predicts all words as N (non-entity words). When

Maximize total reward

High-level policy reward function

$$J(\theta_{\mu,t}) = \mathbb{E}_{\mathbf{s}^h, o, r^h \sim \mu(o|\mathbf{s}^h)} [\sum_{k=t}^{I} \gamma^{k-t} r_k^h],$$
 (10)

High-level policy reward function

$$J(\theta_{\pi,t}; o_{t'}) = \mathbb{E}_{\mathbf{s}^l, a, r^l \sim \pi(a|\mathbf{s}^l; o_{t'})} [\sum_{k=t}^{T'} \gamma^{k-t} r_k^l], \qquad (11)$$

Main Results

Model	NYT10			NYT11			
	Prec	Rec	F_1	Prec	Rec	F_1	
FCM	_	_	_	.432	.294	.350	
MultiR	_	_	_	.328	.306	.317	
CoType	_	_	_	.486	.386	.430	
SPTree	.492	.557	.522	.522	.541	.531	
Tagging	.593	.381	.464	.469	.489	.479	
CopyR	.569	.452	.504	.347	.534	.421	
HRL	.714	.586	.644	.538	.538	.538	

CopyR:

Treat Relation Extraction as a triple generation process.

Two types of overlapping

- Type I: two triples share only one entity within a sentence
- Type II: two triples share two entities (both head and tail entities) within a sentence

To test performance of extracting overlapping relations

NYT11-plus: manually annotated overlapping sentences, mainly of type I.

NYT11-sub: without manually annotated, overlapping percent: 90/2082, mainly of type II.

Model	NYT10-sub			NYT11-plus		
	Prec	Rec	F_1	Prec	Rec	F_1
FCM	_	_	-	.234	.199	.219
MultiR	_	_	_	.241	.214	.227
CoType	_	_	_	.291	.254	.271
SPTree	.272	.315	.292	.466	.229	.307
Tagging	.256	.237	.246	.292	.220	.250
CopyR	.392	.263	.315	.329	.224	.264
HRL	.815	.475	.600	.441	.321	.372

To test the interaction between high-level policy and low-level policy:

Model	NYT11			NYT11-plus			
	Prec	Rec	F_1	Prec	Rec	F_1	
FCM	.502	.479	.490	.447	.327	.378	
MultiR	.465	.439	.451	.423	.336	.375	
CoType	.558	.558	.558	.491	.413	.449	
SPTree	.650	.614	.631	.700	.343	.460	
CopyR	.480	.714	.574	.626	.426	.507	
HRL-Ent	.676	.676	.676	.577	.321	.413	
HRL	.654	.654	.654	.626	.456	.527	

Option: The option o_t is selected from $\mathcal{O} = \{NR\} \cup \mathcal{R}$ where NR indicates no relation, and \mathcal{R} is the relation type set. When a low-level RL process enters a terminal state, the control of the agent will be taken over to the high-level RL process to execute the next options.

Reward: Then, the environment provides intermediate reward r_t^h to estimate the future return when executing o_t . The reward is computed as below:

$$r_t^h = \begin{cases} -1, & if \ o_t \ not \ in \ S \\ 0, & if \ o_t = \text{NR} \\ 1, & if \ o_t \ in \ S. \end{cases} \tag{4}$$

If $o_t = NR$ at certain time step, the agent transfers to a new high-level inter-option state at the next time step. Otherwise the low-level policy will execute the entity extraction process. The inter-option state will not transfer until the subtask