CS1200: Intro. to Algorithms and their Limitations	Anshu & Vadhan
Lecture 3: Reductions	
Harvard SEAS - Fall 2024	2024-09-10

1 Announcements

- Lecture 2 detailed notes posted.
- Handout: Lecture notes 3 (PDF on Ed)
- Avi Wigderson (Abel Prize '21, Turing Award '23) lecture Friday 3:45pm, in this room "The Value of Errors in Proofs". Highly recommended!
- Sender–Receiver exercise today (partway through class)! Followed by a 5min in-class reflection survey (required for your participation grade).
- Don't burn yourself out on psets. Mistakes are part of learning, hence the possibility of revision videos. On psets 0 and 1, any grade can be revised even up to an R.

2 Loose Ends from Lecture 2

Definition 2.1. Let $h, g : \mathbb{N} \to \mathbb{R}^+$. We say:

- h = O(g) if
- $h = \Omega(g)$ if Equivalently:
- $h = \Theta(g)$ if
- h = o(g) if Equivalently:
- $h = \omega(g)$ if Equivalently:

Informal def: computational complexity of a problem $\Pi = \text{smallest possible growth rate of runtime among algorithms that solve }\Pi$.

2.1 Computational Complexity of Sorting

Let's analyze the runtime of the sorting algorithms covered so far (ExhaustiveSearchSort, InsertionSort, MergeSort).

$$T_{exhaustsort}(n) =$$

$$T_{insertsort}(n) =$$

And when n is a power of 2, $T_{mergesort}$ satisfies the following recurrence: $T_{mergesort}(n) \leq$

From this, we can derive that when n is a power of 2, $T_{mergesort}(n) =$

And the same holds true when n is not a power of 2 by rounding n up to the next-larger power of 2.

Exercise 2.2. Order $T_{exhaustsort}$, $T_{insertsort}$, $T_{mergesort}$ from fastest to slowest, i.e. T_0 , T_1 , T_2 such that $T_0 = o(T_1)$ and $T_1 = o(T_2)$.

In the detailed lecture notes for Lecture 2, you can find a proof (optional to read) that MergeSort is asymptotically optimal among comparison-based sorting algorithms:

Theorem 2.3. If A is a comparison-based algorithm that correctly solves the sorting problem on arrays of length n in time T(n), then $T(n) = \Omega(n \log n)$. Moreover, this lower bound holds even if the keys are restricted to be elements of [n] and the values are all empty.

We will be interested in three very coarse categories of running time:

```
(at most) exponential time T(n) = 2^{n^{O(1)}} (slow) (at most) polynomial time T(n) = n^{O(1)} (reasonably efficient) (at most) nearly linear time T(n) = O(n \log n) or T(n) = O(n) (fast)
```

3 Reductions

3.1 Motivating Problem: Interval Scheduling

A small public radio station decided to raise money by allowing listeners to purchase segments of airtime during a particular week. However, they now need to check that all of the segments that

they sold aren't in conflict with each other; that is, no two segments overlap.

This gives rise to the following computational problem:

Input : A collection of Output : YES if

Output : YES if
NO otherwise

Computational Problem IntervalScheduling-Decision

Using its definition directly, we can solve this problem in time $O(n^2)$. How?

However, we can get a faster algorithm by a reduction to sorting.

Proposition 3.1. There is an algorithm that solves IntervalScheduling-Decision for n intervals in time $O(n \log n)$.

Proof.

3.2 Reductions: Formalism

The technique above, to use the solution to one problem to solve another, is so commonly useful that it has a name, *reduction*, and we'll treat reductions more formally:

Definition 3.2 (reductions). Let $\Pi = (\mathcal{I}, \mathcal{O}, f)$ and $\Gamma = (\mathcal{J}, \mathcal{P}, g)$ be two computational problems. A reduction from Π to Γ is an algorithm that solves Π using as a subroutine a(ny) oracle that solves Γ .

An *oracle* solving Γ is a function that, given any input $x \in \mathcal{J}$ returns an element of g(x), or \bot if no such element exists.

Definition 3.3 (notation and efficiency for reductions). If there exists a reduction from Π to Γ , then we write $\Pi \leq \Gamma$. If there exists a reduction from Π to Γ which, on inputs (to Π) of size n,

takes O(T(n)) time (counting each oracle call as one time step) and calls the oracle only once on an input (to Γ) of size at most h(n), we write $\Pi \leq_{T,h} \Gamma$. If there is a reduction from Π to Γ that makes at most q(n) oracle calls of size at most h(n), we write $\Pi \leq_{T,q \times h} \Gamma$.

For example, our proof of Proposition 3.1 implicitly showed:

Proposition 3.4. IntervalScheduling-Decision \leq ____ Sorting.

The use of reductions is mostly described by the following lemma, which we'll return to many times in the course:

Lemma 3.5. Let Π and Γ be computational problems such that $\Pi \leq \Gamma$. Then:

- 1. If there exists an algorithm solving Γ , then
- 2. If there does not exist an algorithm solving Π , then
- 3. If there exists an algorithm solving Γ with runtime R(n), and $\Pi \leq_{T,q \times h} \Gamma$, then
- 4. If there does not exist an algorithm solving Π with runtime $T(n) + O(q(n) \cdot R(h(n))$, and $\Pi \leq_{T,h} \Gamma$, then

Proof.

For the next month or two of the course, we use reductions to show (efficient) solvability of problems, i.e. using Item 1 (or Item 3). Later, we'll use Item 2 to prove that problems are not efficiently solvable, or even entirely unsolvable! Note that the direction of the reduction ($\Pi \leq \Gamma$ vs. $\Gamma \leq \Pi$) is crucial!