Potencia de una Prueba de Hipótesis

Considere X_1, \ldots, X_n una muestra aleatoria proveniente de una distribución Normal (μ, σ) . Tenemos que \overline{X}_n es un estimador insesgado y consistente para el parámetro μ , con distribución Normal $(\mu, \sigma/\sqrt{n})$.

Si queremos contrastar las siguientes hipótesis:

$$H_0: \mu = \mu_0 \quad \text{vs} \quad H_a: \mu \neq \mu_0$$
 (1)

$$H_0: \mu \le \mu_0 \quad \text{vs} \quad H_a: \mu > \mu_0$$
 (2)

$$H_0: \mu \ge \mu_0 \quad \text{vs} \quad H_a: \mu < \mu_0$$
 (3)

El estadístico de prueba, bajo el supuesto que H_0 es correcta (se considera siempre como referencia $H_0: \mu = \mu_0$) y σ conocido

$$Z_0 = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1)$$

Para (1) se rechaza H_0 si $|Z_0| > k_{1-\alpha/2}$, entonces

Potencia =
$$1 - \beta$$

= $1 - P(\text{Error Tipo II})$
= $1 - P(\text{No rechazar H}_0 \mid \text{H}_0 \text{ es falsa})$
= $P(\text{Rechazar H}_0 \mid \text{H}_0 \text{ es falsa})$
= $P(|Z_0| > k_{1-\alpha/2}| \mu = \mu_0 + \Delta)$
= $P\left(\left|\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}\right| > k_{1-\alpha/2}\right| \mu = \mu_0 + \Delta\right)$
= $P\left(\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} > k_{1-\alpha/2}\right| \mu = \mu_0 + \Delta\right) + P\left(\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} < -k_{1-\alpha/2}\right| \mu = \mu_0 + \Delta\right)$
= $P\left(\frac{\overline{X}_n - (\mu_0 + \Delta)}{\sigma/\sqrt{n}} > k_{1-\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right| \mu = \mu_0 + \Delta\right) + P\left(\frac{\overline{X}_n - (\mu_0 + \Delta)}{\sigma/\sqrt{n}} < -k_{1-\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right| \mu = \mu_0 + \Delta\right)$
= $P\left(\frac{\overline{X}_n - (\mu_0 + \Delta)}{\sigma/\sqrt{n}} > k_{1-\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right| \mu = \mu_0 + \Delta\right) + P\left(\frac{\overline{X}_n - (\mu_0 + \Delta)}{\sigma/\sqrt{n}} < k_{\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right| \mu = \mu_0 + \Delta\right)$
= $1 - \Phi\left(k_{1-\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right) + \Phi\left(k_{\alpha/2} - \Delta\frac{\sqrt{n}}{\sigma}\right)$

Notar que para $\Delta = 0 \rightarrow \mu = \mu_0$ y la Potencia es igual a α

Para (2) se rechaza H_0 si $Z_0 > k_{1-\alpha}$, entonces

Potencia =
$$1 - \beta$$

= $1 - P(\text{Error Tipo II})$
= $1 - P(\text{No rechazar H}_0 \mid \text{H}_0 \text{ es falsa})$
= $P(\text{Rechazar H}_0 \mid \text{H}_0 \text{ es falsa})$
= $P(Z_0 > k_{1-\alpha} \mid \mu = \mu_0 + \Delta)$
= $P\left(\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} > k_{1-\alpha} \mid \mu = \mu_0 + \Delta\right)$
= $P\left(\frac{\overline{X}_n - (\mu_0 + \Delta)}{\sigma/\sqrt{n}} > k_{1-\alpha} - \Delta \frac{\sqrt{n}}{\sigma} \mid \mu = \mu_0 + \Delta\right)$
= $1 - \Phi\left(k_{1-\alpha} - \Delta \frac{\sqrt{n}}{\sigma}\right)$

Notar que para $\Delta=0 \rightarrow \mu=\mu_0$ y la Potencia es igual a α

Para (3) se rechaza H_0 si $Z_0 < k_{\alpha}$, entonces

Potencia =
$$1 - \beta$$

= $1 - P(\text{Error Tipo II})$
= $1 - P(\text{No rechazar H}_0 \mid \text{H}_0 \text{ es falsa})$
= $P(\text{Rechazar H}_0 \mid \text{H}_0 \text{ es falsa})$
= $P(Z_0 < k_\alpha \mid \mu = \mu_0 + \Delta)$
= $P\left(\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} < k_\alpha \mid \mu = \mu_0 + \Delta\right)$
= $P\left(\frac{\overline{X}_n - (\mu_0 + \Delta)}{\sigma/\sqrt{n}} < k_\alpha - \Delta \frac{\sqrt{n}}{\sigma} \mid \mu = \mu_0 + \Delta\right)$
= $\Phi\left(k_\alpha - \Delta \frac{\sqrt{n}}{\sigma}\right)$

Notar que para $\Delta=0 \rightarrow \mu=\mu_0$ y la Potencia es igual a α

