

An introduction to data and data analytics

The data practitioner's guide

Ą

Attributes of a data professional

Data professionals have many attributes that make them **effective** in **working with data**, **extracting insights**, and **deriving value** from data-driven approaches.

Analytical thinking

Tend to possess strong analytical skills and are capable of **breaking down complex problems into manageable components**. Can **identify patterns**, **trends**, and **insights** within data and use **critical thinking** to derive meaningful conclusions.

Technical proficiency

Tend to have a solid **understanding of data-related technologies**, **programming languages**, and **tools**. Proficient in data manipulation, analysis, and visualisation.

Curiosity and continuous learning

Tend to have a **natural curiosity** and a **passion** for **exploring** and **understanding data**. Eager to learn new techniques, tools, and methodologies to enhance their data analysis skills. Stay updated with the latest trends and advancements.

Attributes of a data professional

Attention to detail

Pays attention to detail when working with data. They ensure **data accuracy**, **completeness**, and **quality**. They are **meticulous** in data cleaning, pre-processing, and validation to minimise errors and biases that could impact analysis outcomes.

Collaboration and teamwork

Collaborate effectively with colleagues from different backgrounds, including stakeholders. They can **work together** to identify project goals, share insights, and contribute to data-driven decision-making.

Communication and storytelling

Skilled communicators who can effectively **convey complex data concepts**. Can translate data insights into clear, actionable recommendations and present findings through **effective use of visualisations** and **storytelling**.

While the specific combination and emphasis of attributes may vary depending on the role and organisation, these attributes are **commonly sought after** in data professionals, such as data analysts, data scientists, and data engineers.

Since these attributes are in high demand, it is valuable for data professionals to develop these attributes.

Key data skills

Data has become an integral part of daily life and many of these skills are **critical** but **transferable** in many careers – we are all **data users**.

As data professionals, there are various skills we should have.

Depending on the specific role and responsibilities, **additional skills** such as machine learning, domain knowledge, database systems, and programming may be required.

Key data tools

Data professionals use several **different tools** to leverage their data skills and knowledge, depending on their role. Although we don't need to be proficient in all of them, it's important to know what the toolkit of a data professional could look like.

Spreadsheets:

Google Sheets, Microsoft Excel, Numbers, LibreOffice Calc

Database management systems:

MySQL, PostgreSQL, Oracle, Microsoft SQL Server, MongoDB, SQLite, Apache Cassandra

Data visualisation and dashboarding tools: Microsoft Power BI, Tableau,

QlikView

Programming languages:

SQL, Python, R

Integrated development environments (IDEs):

Visual Studio Code, Jupyter Notebook, PyCharm, RStudio

Version control systems:

Git, Mercurial, Subversion

Cloud computing platforms:

Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure

Machine learning frameworks:

scikit-learn (Python), TensorFlow, Keras

And many more.

Problem solving

Problem solving is a critical skill for all data users because it provides **structured**, **transferable**, and **logical** ways of approaching data problems.

Depending on the problem we need to solve, we use critical thinking "tools" such as **logic trees** and **flowcharts** to understand the problem and plan a solution.

w5 nc hhinc Total amount of "Don't "Refused household income Know" (after tax) w5 nc hhinc brac Total amount ofIMPUTE household income (after tax) bracket < R5000 R1500 and R3000" R3000 and R5000"

When we understand the problem, we apply a **variety of skills and tools to solve** the problem. The tools we could use include:

Spreadsheets

Database management systems

Data visualisation and dashboarding tools

Programming languages

R

Data preparation and analysis

Data preparation (cleaning) and **analysis** are critical skills for data professionals as they **enable effective decision-making**, **uncovering insights**, **identifying patterns**, and **detecting trends**.

The information extracted with these skills can **drive business strategy**, **optimisation**, **problem solving**, and **innovation**.

The tools we can use:

Spreadsheets

Database management systems

Data visualisation and dashboarding tools

Programming languages

Column	w5_nc_hhinc_brac	w5_nc_hhine
Count non NaN	1561	5862
Count after drop "Refused" and "Don't Know" in w5_nc_hhinc_brac	1167	5468

A

Mathematics and statistics

Although **mathematics** and **statistics** may feel overwhelming to many, understanding the **fundamentals** of these fields makes understanding and **using data easier**.

Mathematics and statistics are **critical for data** analysis, problem solving, and machine learning.

We can apply this knowledge and skills across various tools, including:

Spreadsheets

Database management systems

Machine learning frameworks

Programming languages

Column	w5_nc_hhinc
Count	4301.00
Mean	5653.48
Standard deviation	10057.09
Minimum	0.00
25%	1600.00
50%	3000.00
75%	5000.00
Maximum	250000.00

IQR = 3400 Higher outliers > R 10100

The number of outliers: 508 households (11.81%)

/?

Communication and storytelling

Strong communication skills are essential for data practitioners to effectively communicate insights and findings to non-technical stakeholders.

The ability to **translate complex data concepts** into clear meaningful narratives helps organisations to make data-driven decisions.

We use data visualisation, dashboards, reports, and presentations to communicate data insights.

The tools we can use:

Spreadsheets

Data visualisation and dashboarding tools

Programming languages

