cādence®

Hardware System Verification (HSV) Vertical Solutions Engineering (VSE)

Hybrid Memory Cube (HMC)
Palladium Memory Model
User Guide

Document Version: 1.9

Document Date: July 2018

Copyright © 2015-2017 Cadence Design Systems, Inc. All rights reserved. Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence's trademarks, contact the corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this publication subject to the following conditions:

- 1. The publication may be used only in accordance with a written agreement between Cadence and its customer.
- 2. The publication may not be modified in any way.
- 3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other proprietary notices and this permission statement.
- 4. The information contained in this document cannot be used in the development of like products or software, whether for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seg. or its successor.

Contents

LIST (OF FIGURES	4
LIST (OF TABLES	4
GENE	RAL INFORMATION	5
1.1	RELATED PUBLICATIONS.	5
HMC I	MEMORY MODEL	## ## ## ## ## ## ## ## ## ## ## ## ##
1.	INTRODUCTION	6
2.	MODEL RELEASE LEVELS	
3.	ACRONYMS	
4.	FEATURES	
2.	VERILOG MACRO DEFINES	
3.	MODEL BLOCK DIAGRAM	12
4.	INPUT/OUTPUT (I/O) DIAGRAM	13
5.	I/O SIGNAL DESCRIPTION	13
6.	EXAMPLE INSTANTIATION OF HMC MODEL	15
7.	MODEL PARAMETER DESCRIPTIONS	15
8.	ADDRESS MAPPING	19
9.	CONFIGURATION AND STATUS REGISTERS.	23
10.	HMC INITIALIZATION SEQUENCE	
a.	Link Layer Initialization	26
b.	Transaction Layer Initialization	27
11.	COMPILE AND EMULATION	28
a.		
12.	HMC DEBUGGING	30
REVIS	JON HISTORY	32

List of Figures

FIGURE 1: HMC MODEL BLOCK DIAGRAM	12
FIGURE 2: HMC MODEL I/O DIAGRAM	13
FIGURE 3: LINK LAYER INITIALIZATION SEQUENCE	
FIGURE 4: LINK LAYER INITIALIZATION TIMING	27
List of Tables	
TABLE 1: HMC MODEL ACRONYMS	8
TABLE 2: FEATURES LIST OF HMC MODEL	9
TABLE 3: VERILOG MACRO DEFINES	11
TABLE 4: HMC MODEL I/O SIGNALS	13
TABLE 5: USER ADJUSTABLE PARAMETERS	
TABLE 6: VISIBLE NON-USER-ADJUSTABLE PARAMETERS & LOCALPARAMS	18
TABLE 7: ADDRESSING DEFINITIONS	19
TABLE 8: DEFAULT ADDRESS-MAP MODE TABLE	21
TABLE 9: CONFIGURATION AND STATUS REGISTERS	23
TABLE 10: HMC MODEL RTL FILE LIST	28

General Information

The Cadence Memory Model Portfolio provides memory device models for the Cadence Palladium XP, Palladium XP II and Palladium Z1 series systems. Optimizing the acceleration and/or emulation flow on these platforms for MMP memory models may require information outside the scope of the MMP user guides and related MMP documentation.

1.1 Related Publications

For basic information regarding emulation and acceleration, please refer to the following documents:

For Palladium XP and Palladium XP II:

UXE User Guide
UXE Library Developer's Guide
UXE Known Problems and Solutions
UXE Command Reference Manual
Palladium XP Planning and Installation Guide
Palladium Target System Developer's Guide
What's New in UXE

For Palladium Z1:

VXE User Guide
VXE Library Developer's Guide
VXE Known Problems and Solutions
VXE Command Reference Manual
Palladium Z1 Planning and Installation Guide
Palladium Target System Developer's Guide
What's New in VXE

HMC Memory Model

1. Introduction

The Cadence Hybrid Memory Cube (HMC) Palladium memory model is based upon *Hybrid Memory Cube Specification 2.1* (October 2015).

2. Model Release Levels

All models in the Memory Model Portfolio are graded with a release level. This release level informs users of the current maturity and status of the model. All families in the library are graded at one of these levels.

The different levels give an overall indication of the amount of testing, level of quality and feature availability in the model. For details on supported features check the User Guide for that particular model family.

There are three release levels for models in the MMP release.

Release Level		Model Status	Available in Release	Listed in Catalog	Requires Beta Agreement
Mainstream Release	MR	Fully released and available in the catalog for all customers to use.	Yes	Yes	No
Emerging Release	ER	Model has successfully completed Beta engagement(s). Most, but not all features have been tested. Documentation is available.	No	Yes	Yes
Initial Release	IR	Model has completed initial development and has been released to Beta customer(s). The model may have missing features, may not be fully tested and may not have documentation. Model may contain defects.	No	Yes	Yes

Access to Initial Release and Emerging Release versions of the models will require a Beta Agreement to be signed before the model can be delivered.

3. Acronyms

Table 1: HMC Model Acronyms

_	
Term	Definition
ADR or ADRS	Address
CMD	Command
CRC	Cyclical Redundancy Checking
CUB	Cube
DLN	Duplicate length
DNU	Do Not Use
Downstream	Away from the host
ERRSTAT	Error status
Forward	From the point of view of the link master, "forward" meaning in the direction
	that the link master is driving, on this side of the link.
FRP	Forward retry pointer
HMC	Hybrid memory cube
Host link	HMC link configuration that uses its link slave to receive request packets and
	its link master to transmit response packets.
HSS	High-speed SerDes
IRTRY	Init retry
Lane	A pair of differential signal lines, one in each direction (transmitters and
	receivers); multiple lanes are combined to form links.
LFSR	Linear feedback shift register
Link	A fully-duplexed interface connecting two components, implemented with
	SerDes lanes that carry system commands and data.
LNG	Length
LSB	Least significant bit
MSB	Most significant bit
NULL	Null packets
Partition	Portion of a memory die that is connected to and controlled by a single vault
	controller
Pass-thru Link	HMC link configuration that uses its link master to transmit the request
	packet toward its destination cube and its link slave to receive response
	packets destined for the host processor.
PRET	Retry pointer return
Quadrant	The four local vaults associated with a given link that do not require routing
	across the crossbar switch.
Requester	Represents either a host processor or an HMC link configured as a pass-
	thru link. A requester transmits packets downstream to the responder.
Responder	Represents an HMC link configured as a host link. A responder transmits
	packets upstream to the requester.
Return	From the point-of-view of the link master, "return" meaning in the direction on
	the other side of the link that the local link slave is receiving.
RRP	Return retry pointer.
RTC	Return token counts
SBE	Single bit error
SEQ	Sequence number
TAG	Data tag
TRET	Token return
Upstream	Toward the host
Vault	Independent memory controller and local memory stacked directly above, in
	a cube

4. Features

The Cadence Hybrid Memory Cube (HMC) Palladium memory model is based upon *Hybrid Memory Cube Specification 2.1* (October 2015). The HMC features and the level of support provided in the MMP memory model are listed below in Table 2: Features List of HMC Model.

Table 2: Features List of HMC Model

Feature	Support	Spec. Section
Full width link (16 lanes)	Yes	Logical Sub-
		Block of
		Physical Layer
Half width link (8 lanes)	Yes	Logical Sub-
		Block of
		Physical Layer
Quarter width link (4 lanes)	No	Logical Sub-
		Block of
		Physical Layer
Half-width link configuration uses lanes 0-7 or 8-15	Yes	Logical Sub-
		Block of
		Physical Layer
Lane scrambling and descrambling	Yes	Logical Sub-
		Block of
		Physical Layer
Lane reversal	No	Logical Sub-
		Block of
		Physical Layer
Lane polarity	No	Logical Sub-
		Block of
		Physical Layer
Chaining (up to 8 Cubes)	Yes	Chaining
Link layer initialization	Yes	Power-On and
		Initialization
Power state management	Yes	Power State
		Management
Address mapping	Yes	Memory
		Addressing
Tagging	Yes	Tagging
CRC error checking	Yes	Packet Integrity
Sequence number checking	Yes	Request
		Packets
Packet length checking	Yes	Request
		Packets
Command validity checking	Yes	Request
		Packets
Error status report	Yes	Response
		Packets
Flow packets	Yes	Flow Packets
Transaction layer initialization	Yes	Transaction
		Layer
		Initialization

Feature	Support	Spec. Section
Link retry	Yes	Link Retry
Poisoned data feature in WRITE/READ request	Yes ¹	j
command		
Warm reset	No	Warm Reset
Retraining	No	Retraining
Vault ECC and Reference Error Detection	No	Functional
		Characteristics
Refresh	No	Functional
		Characteristics
Scrubbing	No	Functional
		Characteristics
Response open loop mode	No	Functional
		Characteristics
JTAG interface	No	JTAG Interface
I2C interface	No	I2C Interface
Commands		
16-byte 256-byte WRITE request	Yes	Request
		Commands
16-byte 256-byte POSTED WRITE request	Yes	Request
	`	Commands
MODE WRITE request	Yes	Request
		Commands
All Arithmetic Atomics requests	Yes	ATOMIC
		Request
		Commands
All Boolean Atomics requests	Yes	ATOMIC
		Request
		Commands
All Comparison Atomics requests	Yes	ATOMIC
		Request
		Commands
All Bitwise Atomics requests	Yes	ATOMIC
		Request
		Commands
16-byte 256-byte READ request	Yes	Request
		Commands
MODE READ request	Yes	Request
		Commands
READ response	Yes	Response
		Commands
WRITE response	Yes	Response
		Commands
MODE READ response	Yes	Response
		Commands
MODE WRITE response	Yes	Response
		Commands
ERROR response	Yes	Response
		Commands
Null (NULL)	Yes	Flow
		Commands
Retry pointer return (PRET)	Yes	Flow
		Commands

Feature	Support	Spec. Section
Token return (TRET)	Yes	Flow
		Commands
Init retry (IRTRY)	Yes	Flow
		Commands

Notes:

1. Poison code is 128'hEEEE_EEEE_EEEE_EEEE_EEEE_EEEEEEEE; For the READ request with pb=1, the response only set the ERRSTAT to 7'b0000011, no ECC function.

2. Verilog Macro Defines

The following table, Table 3: Verilog Macro Defines, lists the Verilog macro `define(s) required by the MMP HMC model. There is an example in section 11 Compile and Emulation to show how to define these macros. It is not necessary for the user to define all the LINK and CUBE macros; the usage of these macros depends on the users' requirements. But, at least one LINK and one CUBE MUST be defined.

Table 3: Verilog Macro Defines

Marco Name	Purpose
MMP_HMC_ENABLE_HOST_LINK_0	Enable host link 0 ¹
MMP_HMC_ENABLE_HOST_LINK_1	Enable host link 1
MMP_HMC_ENABLE_HOST_LINK_2	Enable host link 2
MMP_HMC_ENABLE_HOST_LINK_3	Enable host link 3
MMP_HMC_ENABLE_CUBE_0	Enable cube 0 2
MMP_HMC_ENABLE_CUBE_1	Enable cube 1
MMP_HMC_ENABLE_CUBE_2	Enable cube 2
MMP_HMC_ENABLE_CUBE_3	Enable cube 3
MMP_HMC_ENABLE_CUBE_4	Enable cube 4
MMP_HMC_ENABLE_CUBE_5	Enable cube 5
MMP_HMC_ENABLE_CUBE_6	Enable cube 6
MMP_HMC_ENABLE_CUBE_7	Enable cube 7
MMP_HMC_INSERT_CRC_ERROR	Inject CRC error in the packet sent to host controller ³
MMP_EN_SCRAMBLE	Enable the TX scramble and RX
	descramble configuration
MMP_HMC_STATISTIC_ENABLE	Enable statistic report ⁴

Notes:

- 1. Enable specific host link. If the user wants to use all the links as host links, the user needs to define all of the macros --- MMP_HMC_ENABLE_HOST_LINK_X. The number of defined LINK macros shall match with the parameter "SOURCE_LINK_NUM" described in section 7 Model Parameter Descriptions. For example, if the user enables host link 0 and host link1 by defining the appropriate macros, then the corresponding parameter SOURCE_LINK_NUM needs to be '2'.
- 2. Enable specific cubes by setting the corresponding Verilog macro if the user expects to use chaining.

- 3. If the user defines this macro, the HMC model will inject CRC errors every 100 packets.
- 4. If the user defines this macro, statistic reporting will be enabled. This is part of HMC Debug Display, for the details, please read section 14 of this user guide.

3. Model Block Diagram

The following diagram, Figure 1: HMC Model Block Diagram shows the HMC memory model. The number of host links and cubes are defined by users. The different delays between host and cubes can be set by parameters.

Figure 1: HMC Model Block Diagram

4. Input/Output (I/O) Diagram

The IO signals shown in Figure 2: HMC Model I/O Diagram include common model signals (clock and reset) and standard HMC link interfaces.

Figure 2: HMC Model I/O Diagram

5. I/O Signal Description

The table below, Table 4: HMC Model I/O Signals, lists and describes the model I/O signals. Some ports listed in the spec are not supported in the Palladium HMC model, they are listed in the table as "Not supported".

Table 4: HMC Model I/O Signals

NAME	TYPE	DESCRIPTION
Link Interface ¹		DECOMM HON
LxRXP[n:0] LxRXN[n:0]	input	Receiving lanes ²
LxTXP[n:0] LxTXN[n:0]	output	Transmitting lanes ²
LxRXPS	input	Power-reduction input
LxTXPS	output	Power-reduction output
FERR_N	output	Fatal error indicator. HMC drives this signal LOW if a fatal error occurs, otherwise the pull down is turned off and floats HIGH
Clocks and Reset		
REFCLKP		Reference clock for all links, it is used as
REFCLKN	input	the UI clock for input data LxRxP and output data LxTxP.
P_RST_N	input	System reset, active LOW

NAME	TYPE	DESCRIPTION
flit_clk	output	The flit clock generated and used by MMP HMC model. NOTE: The user needs check this signal with the flit clock of the host controller, and set the parameter 'FLIT_CLK_SHIFT_NUM' to make the two flit clock aligned. Refer to section 7 for detail.
Unsupported I/O		
REFCLKSEL	input	Not supported
CUB[2:0]	input	User-assigned HMC identification to enable the host to map the unique location of an HMC in a system. NOTE: For the Palladium HMC model, the user enables the chaining mode by setting specific macros (section 2 Verilog Macro Defines) and delay parameters (section 7 Model Parameter Descriptions). The CUB[2:0] signal is therefore not valid for Palladium HMC model. The port exists but the input information is not handled in any way.
All the JTAG interfaces		Not supported
All the I2C interfaces		Not supported
Bootstrapping pins		Not supported
All the analog interfaces		Not supported

Notes:

- 1. 'x' represents a specific link number and will be within 0 .. 3 depending upon the user's configuration.
- 2. In full-width mode n=15. In half-width mode n=7, lanes 0-7 or 8-15 are used depending on the parameter LANE_MAP_MODE.

6. Example Instantiation of HMC Model

The following is an instantiation example that uses a chain which consists of 3 host links and 8 cubes. The cube delays shown here are default values; see [Table 5: User Adjustable Parameters]. In this example the link width is 16 lanes and address mapping is 4GB-32byte.

```
mmp_hmc_top
                 # (
    .SOURCE LINK NUM(1),
    .LANE NUM
                      (16),
    .VAULT WIDTH
                      (5),
    .BANK WIDTH
                      (3),
    .LANE MAP MODE (0)
hmc_pd (
    .REFCLKP
                  (CLK),
    .REFCLKN
                  (),
    .LORXP
                  (LINK RX[0]),
    .LORXN
                  (),
    .L1RXP
                  (LINK RX[1]),
    .L1RXN
                  (),
    .L2RXP
                  (LINK RX[2]),
    .L2RXN
                  (),
                  (LINK RX[3])
    .L3RXP
    .L3RXN
                  (),
                  (LINK TX[0]),
     .LOTXP
    .LOTXN
                  (),
                  (LINK TX[1]),
    .L1TXP
    . T.1 TXN
                  (),
                  (LINK TX[2]),
    .L2TXP
                 (),
    .L2TXN
    .L3TXP
                  (LINK TX[3]),
    .L3TXN
                  (),
                  (P RST N),
    .P RST N
    .FERR N
                  (FERR N),
     .LORXPS
                  (RXPS[0]),
                  (RXPS[1]),
     .L1RXPS
     .L2RXPS
                  (RXPS[2]),
                  (RXPS[3]),
     .L3RXPS
                  (TXPS[0]),
     .LOTXPS
     .L1TXPS
                  (TXPS[1]),
     .L2TXPS
                  (TXPS[2]),
                  (TXPS[3]),
    .L3TXPS
    .flit_clk
 ) :
```

7. Model Parameter Descriptions

The following table, Table 5: User Adjustable Parameters, provides details on the user adjustable parameters for the Palladium HMC Memory Model. These parameters may be modified when instantiating a HMC wrapper or, if necessary, by modifying the HDL parameter declarations and default values which are exposed in the RTL for access and debug visibility. Note that all the numbers related to timing are measured by REFCLK, NOT ns/us/ms.

Table 5: User Adjustable Parameters

User Adjustable Parameter	Default Value	Description
SOURCE_LINK_NUM	1	Number of source links which are enabled in user's configuration. Value can be 1 to 4. The value shall be compatible with MMP HMC ENABLE LINK X
LANE_NUM	16	Number of the lanes which are enabled in user's configuration. Value can be 8 or 16.
VAULT_WIDTH	5	The number of the vaults is (1< <vault_width). (section="" 8="" address="" guide)<="" is="" mapping="" of="" related="" td="" the="" this="" to="" user="" value=""></vault_width).>
BANK_WIDTH	3	The number of the banks is (1< <bank_width). (section="" 8="" address="" is="" mapping="" of="" related="" td="" the="" this="" to="" ug)<="" value=""></bank_width).>
LANE_MAP_MODÉ	0	0: full-width link configuration, use all 0~15 1: half-width link configuration, use 0~7 2: half-width link configuration, use 8~15
INPUT_BUFFER_ADDR_WIDTH	10	The depth of link input buffer is (1< <input_buffer_addr_ td="" width)<=""></input_buffer_addr_>
SOURCE_CUBE_ID	0	Specify the cube ID which is connected to the host directly. Typically the value is '0'. If the user wants to specify another cube as the source cube, this parameter is set. NOTE: The parameter CUBEx_RESPONSE_DELAY shall be compatible with this parameter. The source cube MUST have the smallest delay.
CUBE0_RESPONSE_DELAY	0	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
CUBE1_RESPONSE_DELAY	100	The delay between current cube and the source cube. This

User Adjustable Parameter	Default Value	Description
		value is measured by REFCLK, all the 8 cubes make a star topology
CUBE2_RESPONSE_DELAY	100	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
CUBE3_RESPONSE_DELAY	100	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
CUBE4_RESPONSE_DELAY	200	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
CUBE5_RESPONSE_DELAY	200	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
CUBE6_RESPONSE_DELAY	200	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
CUBE7_RESPONSE_DELAY	300	The delay between current cube and the source cube. This value is measured by REFCLK, all the 8 cubes make a star topology
DELAY_POINTER_WIDTH	9	(1< <delay_pointer_widt H) MUST be larger than the value of the maximum cube delay. For example, the maximum default cube delay is 300, (1<<delay_pointer_widt H) must be larger than 300.</delay_pointer_widt </delay_pointer_widt
FLIT_CLK_SHIFT_NUM	0	The number of UI clock (REFCLKP) cycles to shift to make the flit clock in the MMP HMC model aligned with the controller's. '+' for left-shift and '-' for right-shift. The value range is 0 to 7 for full-width and

User Adjustable Parameter	Default Value	Description
		0 to 15 for half-width configuration.
STATISTIC_PERIOD	100000	Indicates the period of STATISTIC display, measured by "REFCLK". For example, clock frequency is 100MHz, default value of parameter is 100000, so statistic will be printed every 1ms

The following table Table 6: Visible Non-User-Adjustable Parameters & Localparams provides some information about exposed parameters and localparams that are NOT user adjustable. On rare occasion the user may find one of these parameters or localparam needs adjusting for their configuration. If this case arises, please contact Cadence emulation or MMP support. Note that all the numbers related to timing are measured by REFCLK, NOT ns/us/ms.

Table 6: Visible Non-User-Adjustable Parameters & Localparams

Parameter / Localparam	Default Value	Description
hmc_lane_sync.vp		
TS1_OK_NUM	8	The number of scrambled TS1 patterns which aligns; after receiving these patterns, step to the stage that is waiting for at least 32 null packets.
hmc_link_sync.vp		
NULL_RECEIVE_AT_LEAS T_NUM	32	After finishing TS1 sync, the memory model needs to receive at least 32 null packets before starting normal transaction flow
NULL_SEND_NUM	36	After finishing TS1 sync, the model needs to send 36 null packets before sending normal flow packets
hmc_link.vp		
tPST	8	Power state transition timing: represents the delay from the transition of a link's LxRXPS signal to the transition of its LxTXPS signal

Note that there are additional exposed localparams in the model HDL that are not described here nor intended to be described here. These additional localparams are exposed for debugging purposes only and will not be described herein.

18

8. Address Mapping

A request packet header includes an address field of 34 bits for internal memory addressing within the HMC. This includes vault, bank, and DRAM address bits. The configurations currently defined will provide a total of up to 8GB of addressable memory locations within one HMC. This requires use of the lower 33 address bits of the 34-bit field; the upper 1 bits is reserved for future expansion and are ignored by the HMC.

Table 7: Addressing Definitions

Address	Description	Comments
	Bytes within the	The 4 LSBs of the byte address are ignored for
Byte address	maximum supported	READ and WRITE requests with the exception of
	block size	BIT WRITE command
		Lower 3 bits of the vault address specifies 1 of 8
Vault address	Addresses vaults	vaults within the logic chip quadrant;
	within the HMC	Upper 2 bits of the vault address specifies 1 of 4
		quadrants
Bank address	Addresses banks	4GB HMC: addresses 1 of 8 banks in the vault;
bank address	within a vault	8GB HMC: addresses 1 of 16 banks in the vault
	Addresses DRAM	The vault controller breaks the DRAM
DRAM address	rows and column	address into row and column addresses,
	within a bank	addressing 1Mb blocks of 16 bytes each

The host can choose to use one of the default address map modes offered in the HMC (See

Table 8: Default Address-Map Mode Table). The default address mapping is based on the maximum block size chosen in the address map mode register. It maps the vault address to the least significant address bits, with the bank address field lying just above the vault address. This address mapping algorithm is referred to as "low interleave," and forces sequential addressing to be spread across different vaults and then across different banks within a vault, thus avoiding bank conflicts. A request stream that has a truly random address pattern is not sensitive to the specific method of address mapping. This function is related to the mode register address_mapping_mode in Table 9: Configuration and Status Registers.

Table 8: Default Address-Map Mode Table

Request	4GB			
Address	32-Byte	64-Byte	128-Byte	256-Byte
Bit	Max Block Size	Max Block Size	Max Block Size	Max Block Size
33	Ignored	Ignored	Ignored	Ignored
32	Ignored	Ignored	Ignored	Ignored
31	DRAM[19]	DRAM[19]	DRAM[19]	DRAM[19]
30	DRAM[18]	DRAM[18]	DRAM[18]	DRAM[18]
29	DRAM[17]	DRAM[17]	DRAM[17]	DRAM[17]
28	DRAM[16]	DRAM[16]	DRAM[16]	DRAM[16]
27	DRAM[15]	DRAM[15]	DRAM[15]	DRAM[15]
26	DRAM[14]	DRAM[14]	DRAM[14]	DRAM[14]
25	DRAM[13]	DRAM[13]	DRAM[13]	DRAM[13]
24	DRAM[12]	DRAM[12]	DRAM[12]	DRAM[12]
23	DRAM[11]	DRAM[11]	DRAM[11]	DRAM[11]
22	DRAM[10]	DRAM[10]	DRAM[10]	DRAM[10]
21	DRAM[9]	DRAM[9]	DRAM[9]	DRAM[9]
20	DRAM[8]	DRAM[8]	DRAM[8]	DRAM[8]
19	DRAM[7]	DRAM[7]	DRAM[7]	DRAM[7]
18	DRAM[6]	DRAM[6]	DRAM[6]	DRAM[6]
17	DRAM[5]	DRAM[5]	DRAM[5]	DRAM[5]
16	DRAM[4]	DRAM[4]	DRAM[4]	DRAM[4]
15	DRAM[3]	DRAM[3]	DRAM[3]	Bank[2]
14	DRAM[2]	DRAM[2]	Bank[2]	Bank[1]
13	DRAM[1]	Bank[2]	Bank[1]	Bank[0]
12	Bank[2]	Bank[1]	Bank[0]	Vault[4]
11	Bank[1]	Bank[0]	Vault[4]	Vault[3]
10	Bank[0]	Vault[4]	Vault[3]	Vault[2]
9	Vault[4]	Vault[3]	Vault[2]	Vault[1]
8	Vault[3]	Vault[2]	Vault[1]	Vault[0]
7	Vault[2]	Vault[1]	Vault[0]	Byte[7]=DRAM[3]
6	Vault[1]	Vault[0]	Byte[6]=DRAM[2]	Byte[6]=DRAM[2]
5	Vault[0]	Byte[5]=DRAM[1]	Byte[5]=DRAM[1]	Byte[5]=DRAM[1]
4	Byte[4]=DRAM[0]	Byte[4]=DRAM[0]	Byte[4]=DRAM[0]	Byte[4]=DRAM[0]
3	Byte[3] = ignored	Byte[3] = ignored	Byte[3] = ignored	Byte[3] = ignored
2	Byte[2] = ignored	Byte[2] = ignored	Byte[2] = ignored	Byte[2] = ignored
1	Byte[1] = ignored	Byte[1] = ignored	Byte[1] = ignored	Byte[1] = ignored
0	Byte[0] = ignored	Byte[0] = ignored	Byte[0] = ignored	Byte[0] = ignored

Request	8GB			
Address	32-Byte	64-Byte	128-Byte	256-Byte
Bit	Max Block Size	Max Block Size	Max Block Size	Max Block Size
33	Ignored	Ignored	Ignored	Ignored
32	DRAM[19]	DRAM[19]	DRAM[19]	DRAM[19]
31	DRAM[18]	DRAM[18]	DRAM[18]	DRAM[18]
30	DRAM[17]	DRAM[17]	DRAM[17]	DRAM[17]
29	DRAM[16]	DRAM[16]	DRAM[16]	DRAM[16]
28	DRAM[15]	DRAM[15]	DRAM[15]	DRAM[15]
27	DRAM[14]	DRAM[14]	DRAM[14]	DRAM[14]
26	DRAM[13]	DRAM[13]	DRAM[13]	DRAM[13]
25	DRAM[12]	DRAM[12]	DRAM[12]	DRAM[12]
24	DRAM[11]	DRAM[11]	DRAM[11]	DRAM[11]
23	DRAM[10]	DRAM[10]	DRAM[10]	DRAM[10]
22	DRAM[9]	DRAM[9]	DRAM[9]	DRAM[9]
21	DRAM[8]	DRAM[8]	DRAM[8]	DRAM[8]
20	DRAM[7]	DRAM[7]	DRAM[7]	DRAM[7]
19	DRAM[6]	DRAM[6]	DRAM[6]	DRAM[6]
18	DRAM[5]	DRAM[5]	DRAM[5]	DRAM[5]
17	DRAM[4]	DRAM[4]	DRAM[4]	DRAM[4]
16	DRAM[3]	DRAM[3]	DRAM[3]	Bank[3]
15	DRAM[2]	DRAM[2]	Bank[3]	Bank[2]
14	DRAM[1]	Bank[3]	Bank[2]	Bank[1]
13	Bank[3]	Bank[2]	Bank[1]	Bank[0]
12	Bank[2]	Bank[1]	Bank[0]	Vault[4]
11	Bank[1]	Bank[0]	Vault[4]	Vault[3]
10	Bank[0]	Vault[4]	Vault[3]	Vault[2]
9	Vault[4]	Vault[3]	Vault[2]	Vault[1]
8	Vault[3]	Vault[2]	Vault[1]	Vault[0]
7	Vault[2]	Vault[1]	Vault[0]	Byte[7]=DRAM[3]
6	Vault[1]	Vault[0]	Byte[6]=DRAM[2]	Byte[6]=DRAM[2]
5	Vault[0]	Byte[5]=DRAM[1]	Byte[5]=DRAM[1]	Byte[5]=DRAM[1]
4	Byte[4]=DRAM[0]	Byte[4]=DRAM[0]	Byte[4]=DRAM[0]	Byte[4]=DRAM[0]
3	Byte[3] = ignored	Byte[3] = ignored	Byte[3] = ignored	Byte[3] = ignored
2	Byte[2] = ignored	Byte[2] = ignored	Byte[2] = ignored	Byte[2] = ignored
1	Byte[1] = ignored	Byte[1] = ignored	Byte[1] = ignored	Byte[1] = ignored
0	Byte[0] = ignored	Byte[0] = ignored	Byte[0] = ignored	Byte[0] = ignored

9. Configuration and Status Registers

The HMC model supports the following configuration and status registers.

Table 9: Configuration and Status Registers

Address	Name	Reset value	Type	Description
0x2B0000	External Data Register 0	0	RW	Multipurpose register used to access configuration and status registers
0x2B0001	External Data Register 1	0	RW	Multipurpose register used to access configuration and status registers
0x2B0002	External Data Register 2	0	RW	Multipurpose register used to access configuration and status registers
0x2B0003	External Data Register 3	0	RW	Multipurpose register used to access configuration and status registers
0x2B0004	External Request Register	0	RW	Bit[31]: Start Bit[30:26]: External request status Bit[25:22]: Size Bit[21:16]: Target location Bit[15:8]: Type Bit[7:0]: Register Request commands
0x280000	Global Configuration	Ô	RW	Bit[31:7]: Vendor specific Bit[6]: Warm Reset Bit[5]: Clear Error Bit[4]: Stop on Fatal Error Bit[3:0]: Vendor specific
0x240000	Link Configuration (Link0) ¹	0x00000879	ŔW	Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable Bit[5]: Link Duplicate Length Detection Bit[4]: Link CRC Detection Bit[3]: Link Packet Sequence Detection Bit[2]: Link Response Open Loop Mode Bit[1:0]: Link Mode
0x250000	Link Configuration (Link1) ¹	0x00000879	RW	Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable Bit[5]: Link Duplicate Length Detection Bit[4]: Link CRC Detection Bit[3]: Link Packet Sequence Detection Bit[2]: Link Response Open Loop Mode Bit[1:0]: Link Mode
0x260000	Link Configuration (Link2) ¹	0x00000879	RW	Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode

July 2018 © 2015-2018 Document Version: 1.9 All rights reserved.

Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable Bit[5]: Link Duplicate Length Det Bit[4]: Link CRC Detection Bit[3]: Link Packet Sequence De Bit[2]: Link Response Open Loop Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable Bit[6]: Link Duplicate Length Det	etection
Bit[5]: Link Duplicate Length Det Bit[4]: Link CRC Detection Bit[3]: Link Packet Sequence De Bit[2]: Link Response Open Loop Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	etection
Bit[4]: Link CRC Detection Bit[3]: Link Packet Sequence De Bit[2]: Link Response Open Loop Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	etection
Bit[3]: Link Packet Sequence De Bit[2]: Link Response Open Loop Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
Bit[3]: Link Packet Sequence De Bit[2]: Link Response Open Loop Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
Bit[2]: Link Response Open Loop Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
Bit[1:0]: Link Mode Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
Bit[31:12]: Vendor specific Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
0x270000 Bit[11]: Error Response Packet Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
0x270000 Link Configuration (Link3)¹ Bit[10]: Link Scramble Enable Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
0x270000 Link Configuration (Link3) ¹ Link Configuration 0x00000879 RW Bit[9]: Link Descramble Enable Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
0x270000 Link Configuration (Link3) ¹ Ox00000879 RW Bit[8]: Inhibit Link Down Mode Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
0x270000 Link Configuration (Link3) ¹ 0x00000879 RW Bit[7]: Packet Output Enable Bit[6]: Packet Input Enable	
UX270000 (Link3) ¹ UX00000879 RVV Bit[6]: Packet Input Enable	
(Link3)' Bit[o]: Packet input Enable	
Bit[5]: Link Duplicate Length Det	
	ection
Bit[4]: Link CRC Detection	
Bit[3]: Link Packet Sequence De	tection
Bit[2]: Link Response Open Loop	
	Jivioue
Bit[1:0]: Link Mode	<u> </u>
Link Run Length Limit Bit[31:24]: Vendor specific	
0X240003 (Linko)	Limit
` ' Bit[15:0]: Vendor specific	
Link Run Length Limit Dw Bit[31:24]: Vendor specific	
	Limit
(Link1) Bit[15:0]: Vendor specific	
Bit[31:24]: Vendor specific	
0v260003 Link Run Length Limit 0 PW Bit[23:16]: Transmit Run Length	Limit
(Link2) (Link2) Bit[15:0]: Vendor specific	Little
Bit[31:24]: Vendor specific	
	Limait
0x270003 (Link3) 0 RVV Bit[23.10]. Transmit Run Length	LIMIL
Bit[15:0]: Vendor specific	
Bit[31:24]: Vendor specific	
Bit[23:16]: Init Retry Packet Rec	eive
Number	
Bit[15:14]: Vendor specific	
0x0C0000 Link Retry(Link0) 0x00100856 RW Bit[13:8]: Init Retry Packet Trans	mit Number
Bit[7]: Vendor specific	
Bit[6:4]: Retry Timeout Period	
Bit[3:1]: Retry Limit	
Bit[0]: Retry Status	
Bit[31:24]: Vendor specific	
	oivo
Bit[23:16]: Init Retry Packet Rec	EIVE
Number	
Bit[15:14]: Vendor specific	
0x0D0000 Link Retry(Link1) 0x00100856 RW Bit[13:8]: Init Retry Packet Trans	mit Number
Bit[7]: Vendor specific	
Bit[6:4]: Retry Timeout Period	
Bit[3:1]: Retry Limit	
Bit[0]: Retry Status	
Bit[31:24]: Vendor specific	-
Bit[23:16]: Init Retry Packet Rec	oivo
Number	2110
11V0E0000 1 1 10V PATRVO 10V0 1 10V00100856 1 PVV 1	
Bit[15:14]: Vendor specific	
Bit[13:8]: Init Retry Packet Trans	
Bit[7]: Vendor specific	mit Number

July 2018 © 2015-2018 Document Version: 1.9 All rights reserved.

	<u> </u>			Bit[6:4]: Retry Timeout Period
				Bit[3:1]: Retry Limit
				Bit[0]: Retry Status
				Bit[31:24]: Vendor specific
				Bit[23:16]: Init Retry Packet Receive Number
0050000	Link Data (Links)	000400050	DV4/	Bit[15:14]: Vendor specific
0x0F0000	Link Retry(Link3)	0x00100856	RW	Bit[13:8]: Init Retry Packet Transmit Number
				Bit[7]: Vendor specific
				Bit[6:4]: Retry Timeout Period
				Bit[3:1]: Retry Limit
	land Deffer Taller			Bit[0]: Retry Status
0x040000	Input Buffer Token	0x00000064	RW	Bit[31:8]: Vendor specific
	Count(Link0)			Bit[7:0]: Link Input Buffer Max Token Count
0x050000	Input Buffer Token	0x00000064	RW	Bit[31:8]: Vendor specific
	Count(Link1)			Bit[7:0]: Link Input Buffer Max Token Count
0x060000	Input Buffer Token	0x00000064	RW	Bit[31:8]: Vendor specific
CACCCCC	Count(Link2)	UNUUUUUU		Bit[7:0]: Link Input Buffer Max Token Count
0x070000	Input Buffer Token	0x00000064	RW	Bit[31:8]: Vendor specific
0,07,000	Count(Link3)	0,100000001		Bit[7:0]: Link Input Buffer Max Token Count
				Bit[31:14]: Vendor specific
				Bit[13:9]: User-defined Bank Register
				Address
				Bit[8:4]: User-defined Vault Register
0x2C0000	Address Configuration	0x00000001	RW	Address
CAZOCCC	7 tadi 666 Goringaration	OXOCCCCC 1	100	Bit[3:0]: Address Mapping Mode
				(0x0: 32-byte Max block size
				0x1: 64-byte Max block size
				0x2: 128-byte Max block size
				0x3: 256-byte Max block size)
				Bit[31:13]: Vendor specific
				Bit[12]: Enable SBE Report
				Bit[11]: Hard SBE Repair
				Bit[10]: Vendor specific
				Bit[9]: Data ECC Correction
0x108000	Vault Control Register	0x00001A78	RW	Bit[8:6]: Command/Address Retry Count
				Bit[5]: packet CRC Detection
				Bit[4]: Patrol Scrubbing
				Bit[3]: Demand Scrubbling
				Bit[2]: Hard SBE Detect
				Bit[1:0]: DRAM Initialization Mode
		4GB:		Bit[31:16]: Vendor specific
		0x00000011		Bit[15:12]: PHY
0x2C0003	Features	8GB:	RO	Bit[11:8]: Number of Banks per Vault
		0x00000112		Bit[7:4]: Number of Vaults
		3,00000112		Bit[3:0]: Cube Size
				Bit[31:24]: PHY revision
0x2C0004	Revisions and Vendor ID	0x02020000	RO	Bit[23:16]: Protocol revision
5A2000-F		JAG202000		Bit[15:8]: Product revision
				Bit[7:0]: Vendor ID
Notes:				

Notes:

1. The reset value of Link Configuration register will be 0x00000E79 when defined the macro 'MMP_EN_SCRAMBLE'.

10. HMC Initialization Sequence

The HMC initialization sequence is comprised of two portions: a link layer startup sequence and a transaction layer startup sequence. The host controller should follow the sequences described below to ensure that initialization is completed. The default value of 'Link descramble enable' and 'Link scramble enable' bits in the Link Configuration register are 0 (disabled). By defining the macro 'MMP_EN_SCRAMBLE', the default value of 'Link descramble enable' and 'Link scramble enable' bits will be 1 (enabled).

a. Link Layer Initialization

Figure 3: Link Layer Initialization Sequence

Figure 4: Link Layer Initialization Timing

b. Transaction Layer Initialization

Transaction layer initialization continues with the following steps:

- After link layer initialization is complete, the responder will send one or more TRET
 packets that will transfer the number of its link input buffer tokens to the requester.
 Note that each TRET packet can transmit a count of 31 tokens, therefore there will
 be multiple TRETs required to transfer the entire number of tokens representing the
 link input buffer's available space.
- 2. Once the requester receives at least one TRET packet from the responder, the requester should transmit a series of TRET packets back to the responder carrying the tokens representing the available space in the requester's link input buffer. The HMC can support up to 1023 tokens from the host on each link. After the TRET packets are transmitted from the requester to the responder, the requester can now start sending transaction packets. There is no required timeframe for when the transaction packets can start.

11. Compile and Emulation

The model is provided as protected RTL files (*.vp). These files need to be synthesized prior to the back-end Palladium compile. An example of the command for compilation (including synthesis) and run of this model in the IXCOM flow is shown below. The rtl_file_list_vp.f lists all the protected RTL files that are shown in the table Table 10: HMC Model RTL File List below. All the RTL files reside in the release folder "hmc model".

The scripts below show two examples for Palladium classic ICE synthesis:

```
1)
 hdlInputFile -i ./hmc model
 hdlInputFile -f rtl file list vp.f
 hdlInputFile -add ./hmc model/mmp hmc top.vp
 +define+MMP HMC ENABLE HOST LINK 0+MMP HMC ENABLE CUBE 0+MMP HMC ENABLE
  CUBE 1
 hdlImport -full -2001 -1 qtref
 hdlOutputFile -add -f Verilog mmp hmc top.vg
 hdlSynthesize -memory -keepRtlSymbol -keepAllFlipFlop mmp hmc top
2)
 vavlog
             -incDir ./hmc model \
             -f rtl file list vp.f \
             ./hmc model/mmp hmc top.vp \
             -define MMP HMC ENABLE HOST LINK 0 \
             -define MMP HMC ENABLE CUBE 0 \
             -define MMP HMC ENABLE CUBE 1
 vaelab -keepRtlSymbol -keepAllFlipFlop -outputVlog mmp hmc top.vg
 mmp hmc top
```

Table 10: HMC Model RTL File List

FILE NAME	DESCRIPTIONS
mmp_hmc_top.vp	HMC top level module
hmc_link.vp	The sub top level module for individual link
hmc_memory.vp	Memory core of HMC
hmc_lane_sync.vp	Operate lane synchronization

hmc_link_sync.vp	Operate link synchronization
hmc_pwr_mng.vp	HMC power management
hmc_cube_delay.vp	Delay data for individual cube and decode packets
hmc_link_proc.vp	Link/transaction flow.
hmc_statistic.vp	Operate statistic report.

a. Memory Load/Dump

Users can load/dump data into/from the HMC memory arrays. For example, if users create a 4-cubes chain by defining the macros "MMP_HMC_ENABLE_CUBE_0", "MMP_HMC_ENABLE_CUBE_1", "MMP_HMC_ENABLE_CUBE_2", "MMP_HMC_ENABLE_CUBE_3", there will be 4 memory arrays named "memcore_0", "memcore_1", "memcore_2", and "memcore_3". Users can load/dump data into/from each cube they want. The memcore width is 128bits.

The address mapping for each cube is {VAULT, BANK, DRAM_ADDR}. For example, if users want to preload the address --- "vault=3, bank=4, dram_addr=5" of a 2GB (see address mapping of section11 in this UG) cube[1], they shall configure their DAT file like: "@1c00005 128bits data", then load this file into memcore_1.

Below is a scripting example snippet showing the preloading of the dat files into the HMC model. Users can change the HMC model instance name "mmp_hmc_top" as needed and they need to create the DAT files by their own.

```
xc memory -load %readmemh mmp_hmc_top.mem_model.memcore_0 -file
user_cube0.dat
xc memory -load %readmemh mmp_hmc_top.mem_model.memcore_1 -file
user_cube1.dat
xc memory -load %readmemh mmp_hmc_top.mem_model.memcore_2 -file
user_cube2.dat
xc memory -load %readmemh mmp_hmc_top.mem_model.memcore_3 -file
user_cube3.dat
```

12. HMC Debugging

The HMC model is complex and therefore the associated problem of debugging any potential issues is likewise complex. Below is a list of recommended debugging techniques and tips that the user may use in isolating a problem.

- For issues that may not be HMC specific please review the *Memory Model Portfolio FAQ* for All Models User Guide.
- Waveform debugging: signal and sequences
 - Check that the clock and reset signals are correctly driven.
 - Check that the link layer initialization sequence finished successfully.
 Related signals for checking: step1_ok, step2_ok, step3_ok, link_init_done in module hmc_pd.link0.link_sync.
 - Check that the transaction layer initialization sequence finished successfully.
 Related signals for checking: init_tret_start, init_tret_pulse, token_cnt_reg in module hmc_pd.link0.link_proc.
 - Check normal packet receiving.
 Related signals for checking: cmd_processing, proc_cmd, proc_cube, proc_tag, proc_rtc, proc_rrp, proc_frp in module hmc_pd.link0.link_proc
 - Check normal packet transmitting.
 Related signals for checking: drive_resp, resp_cmd, resp_tag, resp_rtc, resp_rrp, resp_frp in module hmc_pd.link0.link_proc
 - Check link retry.
 Related signals for checking: err_abort_mode, insert_crc_error, send_start_irtry, send_clear_irtry in module hmc_pd.link0.link_proc
- Golden waveform: A package with a reference waveform is available which shows the following command sequence:
 - o (1) synchronization with scramble/discramble disabled and link layer initialization
 - (2) transaction layer initialization by TRET packets
 - (3) normal command processing including READ, WRITE, BIT WRITE, ATOMIC WRITE, MODE REG READ/WRITE, POSTED COMMANDS, FLOW COMMANDS
- Debug Display: The Palladium HMC memory model has available a built-in debug methodology called MMP Debug Display that is based on the Verilog system task \$display. Please see the *Palladium Memory Model Debug Display User Guide* in the release docs directory for additional information. Some of the debug information displayed when the Debug Display macro options are enabled includes:
 - HMC command sequence received
 - HMC command sequence transmitted
 - HMC flow commands sequence
 - HMC mode registers operation
 - HMC error report including CRC error, sequence number error, and others
 There is a specific Debug Display macro --- MMP_DEBUG_DISPLAY_STATISTIC,
 which is NOT introduced in *Palladium Memory Model Debug Display User Guide*.
 When this option is enabled, the following statistic information will be displayed periodically. The period is controlled by parameter STATISTIC_PERIOD.

/////// IN 120000 CYCLES; WRITE 10203 FLITs(16BYTES); READ 10944 FLITs(16BYTES) ***** RUN TIME -- 120000 CYCLES; STATISTIC of SOURCE LINK[0] ****** TOTAL COMMANDs: 4001 605 POSTED COMMANDs: FLOW COMMANDs: 110 EXPECTED RESPONSEs: 3286 DEVICE SIDE ERROR ABORTs: 0 HOST SIDE ERROR ABORTs: NORMAL/MODE read/write: WRITE--480; POST_WRITE--492; MODE_WRITE--0; READ--1942; MODE READ--0 ARITHMETIC ATOMICs: DUAL 8B--23; SINGLE 16B--22; POST DUAL 8B--29; POST SINGLE 16B--21; RETURN DUAL 8B--51; RETURN SINGLE 16B--44; INCREMENT 8B--23; POST INCREMENT 8B--17 BOOLEAN ATOMICS: SUM--245 COMPARISON ATOMICS: SUM--253 8BIT WR--36; POST 8BIT WR--46; RETURN 8BIT WR--106; BITWISE ATOMICS: SWAP 16B--61 FLOW COMMANDs: PRET--52; TRET--58

Revision History

The following table shows the revision history for this document

Date	Version	Revision
July 2015	1.0	Initial release
July 2015	1.1	Update Cadence naming on front page
September 2015	1.2	Modify compile notes to reflect *.vp as sole model format
January 2016	1.3	Update for Palladium-Z1 and VXE
March 2016	1.4	Update parameter definition
April 2016	1.5	Update for HMC2.1
July 2016	1.6	Remove hyphen in Palladium naming
October 2017	1.7	Update module name to be much unique
January 2018	1.8	Modify header and footer
July 2018	1.9	Update for new utility library

© 2015-2018