Reinforcement Learning

reward function

positive reward : helicopter flying well +1

negative reward : helicopter flying poorly -1000

time flying well and hopefully to never crash.

© Deeplearning Al Stanford ONLINE

Andrew Ng

Applications

- → Controlling robots
- Factory optimization
- → Financial (stock) trading
 - · Playing games (including video games)

For example, one of my friends was working on efficient stock execution.

Mars Rover Example

you see that these four things,

© DeepLearning.AI Stanford ONLINE

Andrew Ng

Return

Return = $0 + (0.9)0 + (0.9)^{2}0 + (0.9)^{3}100 = 0.729 \times 100 = 72.9$

Return = $R_1 + r R_2 + r^2 R_3 + \cdots$ (until terminal state)

Discount Factor $\gamma = 0.9$ 0.99 0.999

r = 0.5Return = $0 + (0.5)0 + (0.5)^{2}0 + (0.5)^{3}100 = 12.5$

In financial applications,

the discount factor also has

Example of Return

$\gamma = 0.5$	← return	40	6.25	12.5	25	50	100
7 - 0.5	← reward	40	0	0	0	0	100
	,				_	•	

The return depends on the actions you take.

4	40	20	10	5	2.5	100
	40	0	0	0	0	100
	6	5	4	3	2	1
01	40	20	12.5	25	50	100

© Deeplearning Al Stanford ONLINE 8:52 / 10:18

> action a

Andrew Na

Policy

policy

π

state

5

$$\pi(s) = \alpha$$

$$\pi(2) = \leftarrow$$

$$\pi(3) = \leftarrow$$

$$\pi(4) = \leftarrow$$

$$\pi(5) = \rightarrow$$

A policy is a function $\pi(s) = a$ mapping from states to actions, that tells you what action a to take in a given state s.

The goal of reinforcement learning

Find a policy π that tells you what action (a = π (s)) to take in every state (s) so as to maximize the return.

are that we get.

© DeepLearning.AI Stanford ONLINE

100

Andrew Ng

State action value function

((5, a)) =Return if you

50

- start in state s.
- take action a (once).

25

then behave optimally after that.

12.5

20

40

reward
$$() (2, \rightarrow) = 12.5$$

$$0 + (0.5) 0 + (0.5)^{2} 0 + (0.5)^{3} 100$$

$$()(2, \leftarrow) = 50$$

 $0+(0, 5)100$

return

action

 $()(4, \leftarrow) = 12.5$ 0+(0.5)0+(0.5)²0+(0.5)³100

Picking actions

$$\max_{\alpha} (\lambda(s, a))$$

$$\pi(s) = a$$

Q(s,a) = Return if you

R(1)=100 R(2)=0 ...

- start in state s. take action a (once).
- · then behave optimally after that.

The best possible return from state s is $\max_{a} Q(s, a)$.

The best possible action in state s is the action a that gives $\max Q(s,a)$.

 Q^* Optimal Q function

Andrew Na

R(6)=40

Bellman Equation

Q(s,a) =Return if you

- start in state s.
- take action a (once).
- then behave optimally after that.

R(s) = reward of current state s: current state

a: current action

s': state you get to after taking action aa': action that you take in state s'

$$(\lambda(s,a) = R(s) + r \max_{\alpha'} (\lambda(s',\alpha'))$$

We'll come back to see why

$$Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$

$$Q(s,a) = R(s)$$

5 = 2 $\alpha = \rightarrow 5' = 3$

$$Q(4, \leftarrow) = R(4) + 0.5 \max_{\alpha'} Q(3, \alpha')$$

$$= 0 + (0.5)_{25} = 12.5$$
any other state action in

Explanation of Bellman Equation

Q(s,a) = Return if you• start in state s.

- take action a (once).
- then behave optimally after that.

 \rightarrow The best possible return from state s' is max Q(s', a')

$$Q(s,a) = R(s) + y \max_{a'} Q(s',a')$$

Reward you get

Return from behaving optimally starting from state s'.

$$(\lambda(s_{3}a) = R_{1} + (r_{2} + r_{3} + r_{3} + r_{4} + \cdots)$$

the total return you get

Explanation of Bellman Equation

$$Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$

Gamma times the returns from the next state s prime.

© Deep Learning Al Stanford ONLINE

Expected Return

Expected Return = Average($R_1 + \gamma R_2 + \gamma^2 R_3 + \gamma^3 R_4 + \cdots$) = $E[R_1 + \gamma R_2 + \gamma^2 R_3 + \gamma^3 R_4 + \cdots]$

> the average or the expected sum of discounted rewards.

■ 4 5:04 / 8:24

Andrew Na

Discrete vs Continuous State

Discrete State:

Continuous State:

$$s = \begin{bmatrix} y \\ \theta \\ \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$$

between zero and 360 degrees.

Autonomous Helicopter

$$= \begin{vmatrix} \dot{x} \\ \dot{y} \\ z \\ \dot{\phi} \\ \theta \\ \omega \\ \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\phi} \\ \dot{\theta} \\ \dot{\theta} \\ \dot{\phi}$$

and then the row pitch,

@DeepLearning.AI

Stanford ONLINE

Andrew Ng

Lunar Lander

actions: do nothing left thruster main thruster right thruster

So it's the lunar lander safely between these two flags here on the landing pad.

© DeepLearning AL Stanford ONLINE

1 138 / 553

Andrew Ng

Lunar Lander®

actions:
do nothing
left thruster
main thruster $S = \begin{cases} x \\ y \\ x \end{cases}$ right thruster

one depending on whether the left and right legs are touching the ground.

■ 1 Deeplearning / ■ 3:03 / 5:53

@Deeplearning Al Stanford ONLINE

Andrew Ng

Reward Function

Getting to landing pad: 100 – 140

· Additional reward for moving toward/away from pad.

· Crash: -100

Soft landing: +100
Leg grounded: +10
Fire main engine: -0.3

• Fire side thruster: -0.03

Which is much harder for this and many other reinforcement learning applications.

DeepLearning.Al

Stanford ONLINE

Andrew Ng

Lunar Lander Problem

Learn a policy π that, given

$$s = \begin{bmatrix} x \\ y \\ \dot{x} \\ \dot{y} \\ \theta \\ \dot{\theta} \\ l \\ r \end{bmatrix}$$

picks action $a = \pi(s)$ so as to maximize the return.

this lunar lander exciting application and

we're now finally ready to

Deep Reinforcement Learning

In a state s, use neural network to compute

Q(s, nothing), Q(s, left), Q(s, main)) Q(s, right)

Pick the action a that maximizes O(s,a) train a neural network on? Let's take a look.

Learning Algorithm

Initialize neural network randomly as guess of Q(s, a). Repeat {

Take actions in the lunar lander. Get (s, a, R(s), s'). Store 10,000 most recent (s,a)R(s),s' tuples.

Replay Buffer

Train neural network:

Create training set of 10,000 examples using

$$x = (s, a)$$
 and $y = R(s) + \gamma \max_{a'} Q(s', a')$

Train Q_{new} such that $Q_{new}(s,a) \approx y$.

Set
$$Q = Q_{new}$$
.

How to choose actions while still learning?

```
In some state s

Option 1:

Pick the action a that maximizes Q(s,a).

Option 2:

With probability 0.95, pick the action a that maximizes Q(s,a). Greedy, "Exploitation"

With probability 0.05, pick an action a randomly. "Exploration"

\varepsilon - greedy \ policy \quad (\varepsilon = 0.05)

One Start \varepsilon high

1.0 \longrightarrow 0.01

Gradually decrease
```

in the Jupiter lab that shows you how to do this.

DeepLearning.Al

Stanford ONLINE

Andrew Ng

Limitations of Reinforcement Learning

- · Much easier to get to work in a simulation than a real robot!
- Far fewer applications than supervised and unsupervised learning.
- But ... exciting research direction with potential for future applications.

machine learning systems as well.

© Deeplearning Al Stanford ONLINE

1 4) 2.25 / 2.54

