The spin-transport documentation

Rico A.R. Picone*

Aug 30, 2017

Abstract

The *spin-transport* software (GitHub) is for the dynamic simulation of bulk spin transport—diffusion and separation—in solid media. The project is open-source and still in development.

Contents

1	Inst	allation	1	
2	spin-transport: introduction			
	2.1	Installation	2	
	2.2	Workflow	2	
	2.3	Testing the installation	2	
	2.4	Acknowledgement	3	
	2.5	Contributors	3	
3	Sho	ort theoretical introduction	3	

1 Installation

2 spin-transport: introduction

This repository contains the (developing) open-source code for simulating bulk spin transport—diffusion and separation—in solid media. Multi-spin-species and magnetic resonance simulations are in development.

This is a Python and FEniCS project. FEniCS is used to numerically solve the spin transport governing partial differential equations.

End users of this project write Python code to interface with FEniCS.

 $[\]hbox{``Email: rpicone@stmartin.edu. Department of Mechanical Engineering, Saint Martin's University.}\\$

2.1 Installation

One must first have a working installation of FEniCS. This README assumes the use of Docker for installation, which is documented here.

Then clone this repository to the host machine.

2.2 Workflow

The FEniCS docs have a section on workflow. There are many ways to instantiate these good practices, but if you're using a nix system, the following may be the easiest.

With the cloned spin-transport repository as your working directory, create a link in your path to **spin-transport**'s fenics executable bash script.

```
ln fenics /usr/local/bin
```

Now a FEniCS Python script foo.py can be started with the command fenics foo.py **from the host** instead of manually starting it from a Docker container. This has several advantages, including that there is no need to move scripts into the container and that the complicated syntax need not be remembered.

2.3 Testing the installation

To verify that everything is installed correctly, run the Poisson equation demo ft01_poisson.py (source) in your container.

If you installed the fenics bash script per the instructions above, you can use the following command (working directory: spin-transport).

```
$ fenics ft01_poisson.py
```

If everything is working fine, the output should look something like the following.

```
$ fenics ft01_poisson.py
Calling DOLFIN just-in-time (JIT) compiler, this may take some time.
--- Instant: compiling ---
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Solving linear variational problem.
*** Warning: Degree of exact solution may be inadequate for accurate result in errornorm.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
   Ignoring precision in integral metadata compiled using quadrature representation. Not implemented.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
Calling FFC just-in-time (JIT) compiler, this may take some time.
```

The directory spin-transport/poisson should have been created and should contain two files: solution.pvd and solution000000.vtu. These files contain the solution data.

2.4 Acknowledgement

This work is supported by a grant from the Army Research Office, Materials Science Division under grant proposal **Nanoscale Spin Hyperpolarization and Imaging** with PI John Marohn, PhD.

2.5 Contributors

This project stems from a collaboration among three institutions:

[Cornell University (http://www.cornell.edu/),

[Saint Martin's University (https://www.stmartin.edu/), and the

[University of Washington (http://www.washington.edu/).

The lead contributor to this project is Rico Picone, PhD of Saint Martin's University, co-PI on the ARO grant. Other contributors include John Marohn, PhD (Cornell, PI), John A. Sidles, PhD (Washington), Joseph L. Garbini, PhD (Washington), and Corinne Isaac (Cornell).

3 Short theoretical introduction

Here's some code.

```
x = 5
if x > 3:
  print('big!')
```