ECON 147 MIDTERM EXAM

YOUR NAME:

Winter 2018, Feb 13th 3:30pm - 4:45pm

Instruction

- This is a closed book and closed note exam. All necessary information will be provided and all calculation will be done by hands, so no cheat sheet or calculator is needed.
- Try to answer all questions and write all answers within this exam sheets. You will hand in this exam sheets. Please write legibly.
- Examination Rules from Department Policy will be strictly followed.

1. (Probability Review; 30 pts) Consider the following joint distribution of X and Y:

Bivariate pmf				
		Y		
		0	1	
	0	1/8 1/4	1/8	
X	1	1/4	1/4	
	2	1/8	1/8	

1.1. Find the marginal probability mass functions of X and Y. Using these distributions, compute E[X], Var(X), E[Y] and Var(Y). [8 pts]

1.2. Compute the conditional pmf f(x|Y=0) and f(x|Y=1), and also write down the marginal pmf f(X) from 1.1. [5 pts]

1.3. Are X and Y independent? Fully justify your answer. (Hint: you will need the answer from 1.2.) [5 pts]

1.4. Compute E[X|Y=0], Var[X|Y=0] and Cov(X,Y). (Hint: use the earlier answers) [6 pts]

1.5. Now suppose X and Y represent outcomes of two lotteries, and you would like to invest your \$100 to these lotteries. Assume you are extremely risk averse, hence only care about the risk (preferably low variance) of your investment. How do you want to distribute your \$100, i.e., how do you choose your $\alpha \in [0, 1]$ for $\alpha X + (1 - \alpha)Y$? [6 pts]

2. (Return Calculation and VaR; 40 pts) Consider a 1-month investment in two assets (equities): the Goldman Sachs Group (GS) and American International Group (AIG). Suppose you buy one share of each GS and AIG at the end of September, 2017 for

$$P_{GS,t-1} = 100, \ P_{AIG,t-1} = 20$$

and then sell these shares at the end of October, 2017 for

$$P_{GS,t} = 115, \ P_{AIG,t} = 21.$$

(Note: these are hypothetical prices for your computation.)

2.1. What are the simple 1-month returns for the two investments? [5 pts]

2.2. What are the continuously compounded (cc) 1-month returns for the two investments? (You will use the approximation formula $\log(1+x) \simeq x$ for this question.) [5 pts]

2.3. Assume you get the same monthly returns from part 2.2. every month for the next year. What are the annualized cc returns? [6 pts]

2.4. At the end of September, 2017, suppose you have \$10,000 to invest in GS and AIG over the next month. Suppose you purchase \$5,000 worth of GS and the remainder in AIG. What are the portfolio weights in the two assets? Using the results from part 2.1. compute the 1-month simple portfolio returns $(R_{p,t})$. [8 pts]

2.5. Now assume the distributions of the two simple 1-month returns as

$$R_{GS,t} \sim iid \ N\left(0.15, \frac{3}{4}\right), \ R_{AIG,t} \sim iid \ N\left(0.05, \frac{1}{4}\right)$$

and suppose they are statistically independent. What is the mean, variance and distribution of the 1-month simple portfolio returns $(R_{p,t})$ from part 2.4.? [8 pts]

2.6. Using the distribution of $R_{p,t}$ from 2.5., compute the 2.5% monthly Value-at-Risk for the \$10,000 investment in the portfolio returns in 2.4. (You will use $q_{0.025}^Z = -2$, which is the 2.5% quantile of a standard normal random variable.) [8 pts]

3.	(30	pts,	5pts	eac	h) I	ndicate	whether	the	following	statements	are
	true	or fal	lse (ci	rcle o	one)	. Briefly	discuss	why	it is so.		

3.1. If r_t is continuously compounded (cc) 1-month return, then the annualized cc return is $r_A = \sum_{j=0}^{11} r_{t+j}$.

True False

Why?

3.2. Let $R_{GS,t}$ and $R_{AIG,t}$ be simple 1-month returns for Goldman Sachs Group (GS) and American International Group (AIG). If we construct a portfolio using the share $\alpha \in [0,1]$ for GS, the portfolio simple return is $R_{p,t} = \alpha R_{GS,t} + (1-\alpha) R_{AIG,t}$.

True

False

Why?

3.3.	-0.5, then $5%$ mon		the \$10,000 investment in 00.
		True	False
	Why?		
3.4.	^	ence interval based on e	mators for θ . If $Var(\hat{\theta}_1) < \hat{\theta}_1$ is more accurate (shorter)
		True	False
	Why?		

3.5.	If $R_{AIG,t} \sim N(0, \sigma_{AIG}^2)$ and $R_{GS,t} \sim N(0, \sigma_{GS}^2)$ and they are inde-
	pendent, the simple portfolio return $R_{p,t} = x_{GS}R_{GS,t} + x_{AIG}R_{AIG,t}$ is
	distributed as $N\left(0, x_{GS}^2 \sigma_{GS}^2 + x_{AIG}^2 \sigma_{AIG}^2\right)$.

True False

Why?

3.6. Assume r_t is continuously compounded (cc) 1-month returns with $r_t \sim iid\ N(\mu, \sigma^2)$. Then the sample mean $\hat{\mu} = \frac{1}{T} \sum_{t=1}^T r_t$ has a same distribution with r_t hence $\hat{\mu} \sim N(\mu, \sigma^2)$, because of (i) the iid property of r_t , and (ii) the property of the normal distribution.

True False

Why?