Package 'HMC'

March 5, 2024

Title High dimensional mean comparison with projection and cross-fitting	
Version 1.0	
Date 2024-03-04	
Author Tianyu Zhang	
Maintainer Tianyu Zhang <tianyuz3@andrew.cmu.edu></tianyuz3@andrew.cmu.edu>	
Description This package provide interpretable High-dimensional Mean Comparison methods (HMC). For example, users can use them to assess the difference of gene expression between two treatment groups. It is not a gene-by-gene comparison. Instead, we focus on the interplay between features and are interested in those are predictive of the group label. The methods are valid frequentist tests and give sparse estimate indicating which features contribute to the test results. License GPL-2 Imports glmnet, irlba, PMA, MASS Encoding UTF-8 Roxygen list(markdown = TRUE) RoxygenNote 7.2.3	a-
NeedsCompilation no R topics documented:	
summarize_pc_name	2 3 4 5 6 7 8 8 9
Index	12

```
anchored_lasso_testing
```

Simple plug-in test for two-sample mean comparison.

Description

Simple plug-in test for two-sample mean comparison.

Usage

```
anchored_lasso_testing(
  sample_1,
  sample_2,
  pca_method = "sparse_pca",
  mean_method = "lasso",
  num_latent_factor = 1,
  n_folds = 5
)
```

Arguments

sample_1 Group 1 sample. Each row is a subject and each column corresponds to a feature. sample_2 Group 2 sample. Each row is a subject and each column corresponds to a feature. Methods used to estimate principle component The default is "sparse_pca", uspca_method ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity. mean method Methods used to estimate the mean vector. Default is sample mean "naive". There is also a hard-thresholding sparse estiamtor "hard". num_latent_factor The principle component that lasso coefficient anchors at. The default is PC1 = n_folds Number of splits when performing cross-fitting. The default is 5, if computational time allows, you can try to set it to 10.

Examples

debiased_pc_testing 3

extract_pc(result) # extract the estimated discriminant coefficients

debiased_pc_testing

Debiased one-step test for two-sample mean comparison. A small p-value tells us not only there is difference in the mean vectors, but can also indicates which principle component the difference aligns with.

Description

Debiased one-step test for two-sample mean comparison. A small p-value tells us not only there is difference in the mean vectors, but can also indicates which principle component the difference aligns with.

Usage

```
debiased_pc_testing(
  sample_1,
  sample_2 = NULL,
  pca_method = "sparse_pca",
  mean_method = "naive",
  num_latent_factor = 1,
  n_folds = 5
)
```

Arguments

sample_1 Group 1 sample. Each row is a subject and each column corresponds to a feature. Group 2 sample. Each row is a subject and each column corresponds to a feature. sample_2 pca_method Methods used to estimate principle component The default is "sparse pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity. mean_method Methods used to estimate the mean vector. Default is sample mean "naive". There is also a hard-thresholding sparse estiamtor "hard". num_latent_factor Number of principle to be estimated/tested. Default is 1. Number of splits when performing cross-fitting. The default is 5, if computan_folds tional time allows, you can try to set it to 10.

Examples

```
sample_size_1 <- sample_size_2 <- 300

true_mean_1 <- matrix(c(rep(1, 10), rep(0, 90)), ncol = 1)
true_mean_2 <- matrix(c(rep(1.5, 10), rep(0, 90)), ncol = 1)
pc1 <- c(rep(1, 10), rep(0, 90))
pc1 <- pc1/norm(pc1, type = '2')

simulation_covariance <- 10 * pc1 %*% t(pc1)
simulation_covariance <- simulation_covariance + diag(1, 100)</pre>
```

```
estimate_nuisance_parameter_lasso
```

The function for nuisance parameter estimation in anchored_lasso_testing().

Description

The function for nuisance parameter estimation in anchored_lasso_testing().

Usage

```
estimate_nuisance_parameter_lasso(
  nuisance_sample_1,
  nuisance_sample_2,
  pca_method = "sparse_pca",
  mean_method = "lasso",
  num_latent_factor = 1
)
```

Arguments

```
nuisance_sample_1
```

Group 1 sample. Each row is a subject and each column corresponds to a feature.

nuisance_sample_2

Group 2 sample. Each row is a subject and each column corresponds to a feature.

pca_method

Methods used to estimate principle component The default is "sparse_pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

mean_method

Methods used to estimate the discriminant direction. Default is logistic Lasso "lasso".

```
num_latent_factor
```

The principle component that lasso coefficient anchors at. The default is PC1 = 1.

estimate_nuisance_pc 5

Description

The function for nuisance parameter estimation in simple_pc_testing() and debiased_pc_testing().

Usage

```
estimate_nuisance_pc(
  nuisance_sample_1,
  nuisance_sample_2 = NULL,
  pca_method = "sparse_pca",
  mean_method = "naive",
  num_latent_factor = 1
)
```

Arguments

```
nuisance_sample_1
Group 1 sample. Each row is a subject and each column corresponds to a feature.

nuisance_sample_2
Group 2 sample. Each row is a subject and each column corresponds to a feature.

pca_method
Methods used to estimate principle component The default is "sparse_pca", using sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

mean_method
Methods used to estimate the mean vector. Default is sample mean "naive".
```

There is also a hard-thresholding sparse estiamtor "hard".

num_latent_factor

Number of principle to be estimated/tested. Default is 1.

```
evaluate_influence_function_multi_factor

Calculate the test statistics on the left-out samples. Called in debi-
ased_pc_testing().
```

Description

Calculate the test statistics on the left-out samples. Called in debiased_pc_testing().

Usage

```
evaluate_influence_function_multi_factor(
  cross_fitting_sample_1,
  cross_fitting_sample_2 = NULL,
  nuisance_collection,
  num_latent_factor = 1
)
```

Arguments

```
cross_fitting_sample_1
                  Group 1 sample. Each row is a subject and each column corresponds to a feature.
{\tt cross\_fitting\_sample\_2}
                  Group 2 sample. Each row is a subject and each column corresponds to a feature.
nuisance_collection
                  A collection of nuisance quantities estimated using "nuisance" samples. It is the
                  output of estimate_nuisance_pc().
num_latent_factor
```

Number of principle components to be considered.

```
evaluate_pca_lasso_plug_in
```

Calculate the test statistics on the left-out samples. Called in anchored_lasso_testing().

Description

Calculate the test statistics on the left-out samples. Called in anchored_lasso_testing().

Usage

```
evaluate_pca_lasso_plug_in(
  cross_fitting_sample_1,
  cross_fitting_sample_2,
  nuisance_collection,
  mean_method = "lasso"
)
```

Arguments

```
cross_fitting_sample_1
```

Group 1 sample. Each row is a subject and each column corresponds to a feature.

```
cross_fitting_sample_2
```

Group 2 sample. Each row is a subject and each column corresponds to a feature.

nuisance_collection

A collection of nuisance quantities estimated using "nuisance" samples. It is the output of estimate_nuisance_pc().

mean_method

Methods used to estimate the discriminant direction. Default is logistic Lasso "lasso".

evaluate_pca_plug_in 7

Description

Calculate the test statistics on the left-out samples. Called in simple_pc_testing().

Usage

```
evaluate_pca_plug_in(
  cross_fitting_sample_1,
  cross_fitting_sample_2 = NULL,
  nuisance_collection
)
```

Arguments

```
cross_fitting_sample_1
```

Group 1 sample. Each row is a subject and each column corresponds to a feature.

cross_fitting_sample_2

 $\label{eq:continuous} Group\ 2\ sample.\ Each\ row\ is\ a\ subject\ and\ each\ column\ corresponds\ to\ a\ feature.$ $nuisance_collection$

A collection of nuisance quantities estimated using "nuisance" samples. It is the output of estimate_nuisance_pc().

extract_lasso_coef

Extract the lasso estimate from the output of anchored_lasso_testing().

Description

Extract the lasso estimate from the output of anchored_lasso_testing().

Usage

```
extract_lasso_coef(testing_result)
```

Arguments

testing_result The output/test result list from anchored_lasso_testing().

Value

A list, whose elements are the estimated discriminant directions for each split—the length of the output list is the same as n_folds.

8 index_spliter

extract_pc	Extract	the	principle	components	from	the	output	of	sim-
<pre>ple_pc_testing() and debiased_pc_testing().</pre>									

Description

Extract the principle components from the output of simple_pc_testing() and debiased_pc_testing().

Usage

```
extract_pc(testing_result)
```

Arguments

 $testing_result \ \ The \ output/test \ result \ list \ from \ simple_pc_testing() \ or \ debiased_pc_testing().$

Value

A list, whose elements are the estimated PC for each split—the length of the output list is the same as n_{f} olds.

index_spliter Split the sample index into n_folds many groups so that we can perform cross-fitting

Description

Split the sample index into n_folds many groups so that we can perform cross-fitting

Usage

```
index_spliter(array, n_folds = 5)
```

Arguments

Sample index. Usually just an array from 1 to the number of samples in one

group.

n_folds Number of splits

simple_pc_testing 9

simple_pc_testing

Simple plug-in test for two-sample mean comparison.

Description

Simple plug-in test for two-sample mean comparison.

Usage

```
simple_pc_testing(
  sample_1,
  sample_2 = NULL,
  pca_method = "sparse_pca",
  mean_method = "naive",
  num_latent_factor = 1,
  n_folds = 5
)
```

Arguments

sample_1 Group 1 sample. Each row is a subject and each column corresponds to a feature. sample_2 Group 2 sample. Each row is a subject and each column corresponds to a feature. Methods used to estimate principle component The default is "sparse_pca", uspca_method ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular PCA; and "hard"— hard-thresholding PCA, which also induces sparsity. Methods used to estimate the mean vector. Default is sample mean "naive". mean_method There is also a hard-thresholding sparse estiamtor "hard". num_latent_factor Number of principle to be estimated/tested. Default is 1. Number of splits when performing cross-fitting. The default is 5, if computan_folds tional time allows, you can try to set it to 10.

Examples

10 summarize_pc_name

```
result$test_statistics
##these are test statistics. Each one of them corresponds to one PC.
summarize_pc_name(result, latent_fator_index = 1) #shows which features contribute to PC1
extract_pc(result) # extract the estimated leading PCs.
```

```
summarize_feature_name
```

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently show up in Lasso vectors.

Description

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently show up in Lasso vectors.

Usage

```
summarize_feature_name(testing_result, method = "majority voting")
```

Arguments

testing_result The output/test result list from anchored_lasso_testing().

method

How to combine the feature list across different splits. Default is 'majority voting'—features that show up more than 50% of the splits are considered active/useful. It can be 'union'—all the features pooled together; or 'intersection'—only include features showing up in all splits.

Value

A list of names of features (your very original input data need to have column names!) that contribute to the test result. An empty list means there is barely any difference between the two groups.

summarize_pc_name

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently show up in the sparse principle components.

Description

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently show up in the sparse principle components.

Usage

```
summarize_pc_name(
  testing_result,
  latent_fator_index = 1,
  method = "majority voting"
)
```

summarize_pc_name 11

Arguments

 $testing_result \quad The \ output/test \ result \ list \ from \ simple_pc_testing() \ or \ debiased_pc_testing(). \\ latent_fator_index$

Which principle component should the algorithm summarize? Default is PC1.

method

How to combine the feature list across different splits. Default is 'majority voting'—features that show up more than 50% of the splits are considered active/useful. It can be 'union'—all the features pooled together; or 'intersection'—only include features showing up in all splits.

Value

A list of names of features (your very original input data need to have column names!) that contribute to the test result.

Index