Algèbre 1 Examen Final

AU 2015-2016 CPI 1

Durée: 2h

Exercice 1:

- a) Montrer que pour tout entier naturel n, $u_n = 4^{4n+2} 3^{n+3}$ est divisible par 11.
- b) On définit une suite (u_n) par : $u_0 = 1$, $u_1 = \cos \theta$, et pour n > 2 : $u_n = 2u_1u_{n-1} u_{n-2}$. Monter que $u_n = \cos(n\theta)$.

Exercice 2:

Soient $f: E \to F, g: F \to G$ et $h: G \to H$ trois applications.

Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et h sont bijectives.

Exercice 3:

Soit $-\pi \le \varphi \le \pi$.

Calculer le module et l'argument des nombres complexes suivants :

 $z_1 = 1 + \cos \varphi + i \sin \varphi$

 $z_2 = \sin \varphi + i(1 + \cos \varphi)$

Exercice 4:

Soit (G,*) un groupe abélien de neutre e.

Pour $a \in G$ on note a' sont symétrique.

Soit α un élément de G, différent de e.

On définit une loi \bot en posant : $\forall a, b \in G, a \bot b = a * b * \alpha$.

Montrer que (G, \bot) est un groupe abélien.

Exercice 5:

Soient $a, b \in \mathbb{R}$, on pose :

$$a \perp b = a + b - 1$$
 et $a * b = ab - a - b + 2$

Montrer que $(R, \perp, *)$ est un corps.