DECISION TREE

GINI Index

March 2023

DECISION TREE

INDUCE A DECISION TREE

Restaurant Example

"Are they willing to wait for a table in a restaurant?"

- Label:
 - Will Wait: Yes/No
- All Features:
 - Alternatives Patrons Type
 - Bar Price Estimated Time
 - Friday Rain
 - Hunger Reservation

Decision Tree: Example

"Are they willing to wait for a table in a restaurant?"

Example	Input Attributes										Output
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = Yes$
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Yes$
X9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = Yes$

Features and labels for the restaurant dataset

Restaurant Example

"Are they willing to wait for a table in a restaurant?"

- Label:
 - Will Wait: Yes/No
- Features Used For the tree:
 - Patrons (None/Some/Full)
 - Hunger (Yes/No)
 - Type (French/Italian/Thai/Burger)
 - Friday (Yes/No)

Decision Tree: Example

"Are they willing to wait for a table in a restaurant?"

Making a decision tree:

- How do we branch and determine terminal node?
- 2. How do we choose which features to use for branching?

Legend (for the slide set)

Each row in our feature table represents a person

- Blue: Yes (they waited)
- Red: No (they did not wait)

FEATURES

LABELS

Patrons	Hungry	Туре	Friday	Will Wait	
Some	Yes	French	No	Yes	→ å
Full	Yes	Thai	No	No	2
Some	No	Burger	No	Yes	→ 3
Full	Yes	Thai	Yes	Yes	4
Full	No	French	Yes	No	5

• • •

"Persons" are grouped then split according to a feature

- 1. Start with everyone in one group
- 2. Select a feature (based on gini index)
- 3. Then split into multiple groups depending on their "answer" to the feature

Patrons?

Feature: Patrons

(Are there people in the restaurant?)

Possible answers/categories:

- None:

- Some

- Full

Feature: Patrons

(Are there people in the restaurant?)

Possible answers/categories:

- None:

Yes: 0

No: 2

- Some

- Full

Feature: Patrons

(Are there people in the restaurant?)

Possible answers/categories:

No: 2

- None:

Yes: 0

- Some

Yes: 4 No: 0

- Full

Feature: Patrons

(Are there people in the restaurant?)

Possible answers/categories:

- None:

Yes: 0

No: 2

- Some

Yes: 4

No: 0

- Full

Yes: 2

No: 4

What to do with new groups?

- Leaf (terminal node)
 - All instances in the group have the same label
 - e.g. all yes or all no
- Branch
 - Instances have mixed labels
 - e.g. mix of yes and no
 - Considered as a new group to split

Choosing the Feature

Split via new feature...

... But which feature?

Choosing the Feature

Why did we use the Patrons feature for branching?

Choosing the Feature

Split via new feature...

But which feature?

How do we choose which feature to use?

GINI INDEX!

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

DECISION TREE

BRANCHING

FIND FEATURE WITH THE SMALLEST GINI SCORE

SPLIT/BRANCH ACCORDING
TO THAT FEATURE

How do we choose which feature to use?

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

Measure of Impurity: GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

t: node (e.g. the category like none/some/full for Patrons)

j: class (e.g. the label like Yes/No for Will Wait)

p(j|t): relative frequency of the class in the group

DECISION TREE

GINI INDEX FOR A FEATURE

PICK A FEATURE AND SPLIT

COMPUTE GINI INDEX FOR EACH NODE

GET THE WEIGHTED AVERAGE

In the Restaurant Example...

"Patrons" Feature

- 3 Categories (None/Some/Full)
- 2 Labels for Will Wait (Yes/No)

3 GINI indices:

GINI (None)

GINI (Some)

GINI (Full)

$$GINI(None) = 1 - \left(\frac{total \# "Yes"}{total \ under \ None}\right)^{2} - \left(\frac{total \# "No"}{total \ under \ None}\right)^{2}$$

$$GINI(None) = 1 - \left(\frac{0}{2}\right)^2 - \left(\frac{2}{2}\right)^2$$

$$GINI(None) = 1 - \left(\frac{total \ \#"Yes"}{total \ under \ None}\right)^{2} - \left(\frac{total \ \#"No"}{total \ under \ None}\right)^{2}$$

$$GINI(None) = 1 - 0 - 1 = 0$$

$$GINI(Some) = 1 - \left(\frac{total \ \#"Yes"}{total \ under \ Some}\right)^{2} - \left(\frac{total \ \#"No"}{total \ under \ Some}\right)^{2}$$

$$GINI(Some) = 1 - \left(\frac{4}{4}\right)^{2} - \left(\frac{0}{4}\right)^{2}$$

$$GINI(Some) = 1 - \left(\frac{total \ \#"Yes"}{total \ under \ Some}\right)^2 - \left(\frac{total \ \#"No"}{total \ under \ Some}\right)^2$$

$$GINI(Some) = 1 - 1 - 0 = 0$$

$$GINI(Full) = 1 - \left(\frac{total \ \#"Yes"}{total \ under \ Full}\right)^2 - \left(\frac{total \ \#"No"}{total \ under \ Full}\right)^2$$

$$GINI(Full) = 1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2$$

$$GINI(Full) = 1 - \left(\frac{total \ \# "Yes"}{total \ under \ Full}\right)^2 - \left(\frac{total \ \# "No"}{total \ under \ Full}\right)^2$$

$$GINI(Full) = 1 - 0.111 - 0.444 = 0.56$$

GINI (None) = 0

GINI (Some) = 0

GINI (Full) = 0.55

How do we choose which feature to use?

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

GINI(None)
$$\frac{2}{12}$$
 GINI(Some) $\frac{4}{12}$ GINI(Full) $\frac{6}{12}$

Computing for Weighted Average:

- For each category, multiply GINI(category) by:

- Then sum all values to get the weighted average
- Also called GINI_{split}

Total # in None: 2 GINI (None) = 0

Total # in Some: 4 GINI (Some) = 0

Total # in Full: 6 GINI (Full) = 0.56

Total # in all: 12

$$GINI_{Split} = GINI(None) \frac{total \# in \ None}{total \# in \ all} + GINI(Some) \frac{total \# in \ Some}{total \# in \ all} + GINI(Full) \frac{total \# in \ Full}{total \# in \ all}$$

Total # in None: 2 GINI (None) = 0

Total # in Some: 4 GINI (Some) = 0

Total # in Full: 6 GINI (Full) = 0.56

Total # in all: 12

$$GINI_{split} = GINI(None) \frac{total \# in \ None}{total \# in \ all} + GINI(Some) \frac{total \# in \ Some}{total \# in \ all} + GINI(Full) \frac{total \# in \ Full}{total \# in \ all}$$

$$GINI_{split} = GINI(None) \left(\frac{2}{12}\right) + GINI(Some) \left(\frac{4}{12}\right) + GINI(Full) \left(\frac{6}{12}\right)$$

Total # in None: 2 GINI (None) = 0

Total # in Some: 4 GINI (Some) = 0

Total # in Full: 6 GINI (Full) = 0.56

Total # in all: 12

$$GINI_{Split} = GINI(None) \frac{total \# in \ None}{total \# in \ all} + GINI(Some) \frac{total \# in \ Some}{total \# in \ all} + GINI(Full) \frac{total \# in \ Full}{total \# in \ all}$$

$$GINI_{split} = GINI(None) \left(\frac{2}{12}\right) + GINI(Some) \left(\frac{4}{12}\right) + GINI(Full) \left(\frac{6}{12}\right)$$

$$GINI_{split} = 0(\frac{2}{12}) + 0(\frac{4}{12}) + 0.56(\frac{6}{12}) = 0.28$$

GINI for Patrons: 0.28

How do we choose which feature to use?

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

GINI for Patrons: 0.28

GINI for Hungry: _____

How do we choose which feature to use?

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

In the Restaurant Example...

"Hungry" Feature

- 2 Categories for hungry (Yes/No)
- 2 Labels for Will Wait (Yes/No)

2 GINI indices:

GINI (Hungry)

GINI (Not Hungry)

Yes (Hungry)

No (Not Hungry)

$$GINI(Hungry) = 1 - \left(\frac{total \ \# "Yes"}{total \ under \ Hungry}\right)^2 - \left(\frac{total \ \# "No"}{total \ under \ Hungry}\right)^2$$

$$GINI(Hungry) = 1 - \left(\frac{5}{7}\right)^2 - \left(\frac{2}{7}\right)^2$$

Gini Index

In the Restaurant Example...

$$GINI(Hungry) = 1 - \left(\frac{total \ \#"Yes"}{total \ under \ Hungry}\right)^2 - \left(\frac{total \ \#"No"}{total \ under \ Hungry}\right)^2$$

$$GINI(Hungry) = 1 - 0.51 - 0.08 = 0.41$$

Gini Index

In the Restaurant Example...

Yes: 1

$$GINI(Not\ Hungry) = 1 - \left(\frac{total\ \#"Yes"}{total\ under\ Not\ Hungry}\right)^2 - \left(\frac{total\ \#"No"}{total\ under\ Not\ Hungry}\right)^2$$

$$GINI(Not\ Hungry) = 1 - \left(\frac{1}{5}\right)^2 - \left(\frac{4}{5}\right)^2$$

Gini Index

In the Restaurant Example...

$$GINI(Not\ Hungry) = 1 - \left(\frac{total\ \#"Yes"}{total\ under\ Not\ Hungry}\right)^2 - \left(\frac{total\ \#"No"}{total\ under\ Not\ Hungry}\right)^2$$

$$GINI(Not\ Hungry) = 1 - 0.04 - 0.64 = 0.32$$

How do we choose which feature to use?

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

Weighted Average

Sum of the following value for all categories:

GINI(category)
$$\left(\frac{total \# in < category >}{total \# in \ all \ categories}\right)$$

Hungry: $\frac{7}{12}$ Not Hungry: $\frac{5}{12}$

Total # in Hungry: 7

Total # in Not Hungry: 5

GINI (Hungry) = 0.41

GINI (Not Hungry) = 0.32

Total # in all: 12

$$GINI_{split} = GINI(Hungry) \frac{total \# in \ Hungry}{total \# in \ all} + GINI(Not \ Hungry) \frac{total \# in \ Not \ Hungry}{total \# in \ all}$$

Total # in Hungry: 7

Total # in Not Hungry: 5

GINI (Hungry) = 0.41

GINI (Not Hungry) = 0.32

Total # in all: 12

$$GINI_{split} = GINI(Hungry) \frac{total \# in \ Hungry}{total \# in \ all} + GINI(Not \ Hungry) \frac{total \# in \ Not \ Hungry}{total \# in \ all}$$

$$GINI_{split} = GINI(Hungry) \left(\frac{7}{12}\right) + GINI(Not\ Hungry) \left(\frac{5}{12}\right)$$

Total # in Hungry: 7

Total # in Not Hungry: 5

GINI (Hungry) = 0.41

GINI (Not Hungry) = 0.32

Total # in all: 12

$$GINI_{split} = GINI(Hungry) \frac{total \# in \ Hungry}{total \# in \ all} + GINI(Not \ Hungry) \frac{total \# in \ Not \ Hungry}{total \# in \ all}$$

$$GINI_{split} = GINI(Hungry) \left(\frac{7}{12}\right) + GINI(Not\ Hungry) \left(\frac{5}{12}\right)$$

$$GINI_{split} = 0.41 \left(\frac{7}{12}\right) + 0.32 \left(\frac{5}{12}\right) = 0.37$$

GINI for Patrons: 0.28

GINI for Hungry: 0.37

GINI for Type: 0.5

GINI for Fri/Sat: 0.49

How do we choose which feature to use?

- 1. For each feature, compute Gini index for each of its categories
- 2. Compute for the weighted average of the feature's Gini indices
- 3. Select the feature with smallest (weighted average)
 Gini index

Decision Tree: Example

Restaurant Example:

The feature Patrons is used as the root node because it has the smallest GINI index

GINI for Patrons: 0.28

GINI for Hungry: 0.37

GINI for Type: 0.5

GINI for Fri/Sat: 0.49

Summary

INDUCE A DECISION TREE

Summary

BRANCHING

FIND FEATURE WITH THE SMALLEST GINI SCORE

SPLIT/BRANCH ACCORDING
TO THAT FEATURE

Summary

GINI INDEX FOR A FEATURE

PICK A FEATURE AND SPLIT

COMPUTE GINI INDEX FOR EACH NODE

GET THE WEIGHTED AVERAGE