Functions: Increasing and Decreasing Functions

Video companion

1 Introduction

- f is strictly increasing
- g is strictly decreasing
- h is neither

```
Let f : \mathbb{R} \to \mathbb{R},

f is strictly increasing if whenever a < b, we have f(a) < f(b).

f is strictly decreasing if whenever a < b, we have f(a) > f(b).
```

2 Examples

 $f(x) = 2^x$ (exponential function)

$$g(x) = 3^{-x}$$

$$h(x) = x^2$$

\boldsymbol{x}	f(x)	x	g(x)	x	h(x)
0	$2^0 = 1$		$3^0 = 1$	0	$0^2 = 0$
1	$2^1 = 2$	1	$3^{-1} = \frac{1}{3}$		$1^2 = 1$
2	$2^2 = 4$	2	$3^{-2} = \frac{1}{9}$	2	$2^2 = 4$
3	$2^3 = 8$	3	$3^{-3} = \frac{1}{27}$	3	$3^2 = 9$
-1	$2^{-1} = \frac{1}{2}$	-1	$3^1 = 3$	-1	$(-1)^2 = 1$

- \bullet f is strictly increasing
- \bullet g is strictly decreasing
- \bullet h is neither
 - h is strictly increasing on $[0, \infty)$
 - h is strictly decreasing on $(-\infty, 0]$

3 "Real-world" examples

4 Horizontal line test

A function is strictly increasing or strictly decreasing if a horizontal line crosses it only once.

M. M.