Disproof

Disproof

A "disproof" of a statement P is a proof of $\sim P$.

Suppose the result we are interested is a universally quantified statement of the form:

For all $x \in S$, P(x)

The negation of this statement is:

There exists $x \in S$ such that $\sim P(x)$.

Disproof

For example, if the original statement is:

▶ if $n \in \mathbb{Z}$ and $n^5 - n$ is even, then n is even.

The negation is:

▶ There exists an integer n, such that $n^5 - n$ is even and n is odd.

Disproof by counterexample

The negation of the "for all statement" is a "there exists" statement. To prove that negation, we need to find an example that satisfies the negation.

To disprove

▶ if $n \in \mathbb{Z}$ and $n^5 - n$ is even, then n is even.

we must find an integer n such that $n^5 - n$ is even and n is odd.

Try a few n and it doesn't take long to find n = 1.

Let n = 1. Then $n^5 - n = 0$ is even, but n = 1 is odd.

This example which establishes the truth of the negation is called a *counterexample* to the original statement.

Another disproof by counterexample

It may not be obvious that a statement is false. (this is problem 7 on page 179).

Proposition: Suppose that A, B, and C are sets. If $A \times C = B \times C$ then A = B.

Counterexamples, cont'd

Counterexamples often come from "edge cases." - What if a variable is zero? - What if a set is empty? - What if an integer is negative?