2023년 3월 (1)차 회의록								
팀번호	6	주제명	Rocker bogie mechanism 기반 야외 배달용 로봇 개발					
지도교수			(인) 회의일시	2023년 2월 24 일				
참석팀원			송종헌, 김민재, 석영선, 김강현					

- 발표내용
- 야외 배달용 로봇 개발의 경쟁력 및 필요성
- 프로젝트 진행 전 개념설계 실시

목적: 험지주파에 장애가 없는 동시에 흔들림을 최소화할 수 있는 음료배송로봇 기능

- 1. 험지에 기계적으로 적응할 수 있는 구동계
- 2. 흔들림에 제어적으로 적응할 수 있는 스태빌레이터
- 3. 두 시스템을 연결하면서 상호 기능을 방해하지 않는 결합방식

회의 구조

- 내용 1. 링크와 다중 구동륜을이용한 라커-보기 메커니즘
 - 2. IMU 자세정보를 피드백하여세개의 모터를 PID 제어하는 짐벌스태빌레이터
 - 3. 자유회전축과 밸러스트를 이용한 오뚜기식연결 메커니즘
 - 로커보기 설계진행 (A안-라커보기 구조물의 높이를 낮춤, B안-높은 라커보기구 조를 이용하되, 중앙구조물에 Swing 구조물을 추가해 중앙측의 무게중심을 회전축 보다 낮추는 방안), 두가지 방안의 장단점을 고려하여 B안 채택
 - 교수님 피드백 및 과제
 - 시나리오를 더 구체화 해 목표사양(기능/구조) 결정, 프로젝트에서 의의가 있는 핵심문제를 도출하는 과정 진행, 야외에서 라커보기와 캐터필러의 차이 분석

평가	평가항목	학습성과	1점	2점	3점	4점	5점
	진척도 (계획대비 진척도)	PO4	계획대비 0~30%	계획대비 30~50%	계획대비 50~70%	계획대비 70~90%	계획대비 90~100%
	의사소통능력 (진행상황설명능력)	PO7	팀원>20% 설명가능	팀원>40% 설명가능	팀원>60% 설명가능	팀원>80% 설명가능	팀원100% 설명가능
	설계구성요소 (개념설정타당성/ 이해도)	PO3	매우 불완전함	다소 불완전함	추가검토 필요	체계적임	매우 체계적임
	실현가능성 (기술/비용/ 제작가능성)	PO1	매우낮음 0~30%	다소낮음 30~50%	보통 50~70%	다소높음 70~90%	매우높음 90~100%
	합계		F 0]			0.01	11 0

3월	3월 (발표)	4월	4월	5월 (발표)	5월	6월	9월	9월 (발표)	10월	11월 (발표)
계획수립 및 자료조사	개념 설계	구체화 설계	상세 설계	상세 설계	최종 설계	부품 제작	제작및 조립	조립및 동작	작품 동작	최종 심사