Trabalho 02 - Otimização de Sistemas

Nome: Pedro Miranda Questão: No. 36

Dados do Problema

Máquina	Q_n	D_1	D_2	Q_p	Q_p'	Restrições (x_i)
1	1010	8,06	7,53	900	900	$0 \leq x_1 \leq 900$
2	1250	8,13	7,74	1100	1100	$0 \le x_2 \le 1100$
3	1610	10,30	8,91	1500	1200	$0 \leq x_3 \leq 1200$
4	2000	14,10	11,80	1900	1200	$0 \leq x_4 \leq 1200$
Total						$\sum Q = Q_{\Sigma} = 4400$

Função Objetivo

A função objetivo a ser minimizada é a perda total de carga P(Q):

$$P(Q) = \sum_{i=1}^4 \left(rac{D_{1i} \cdot Q_i}{Q_{ni}} + rac{D_{2i} \cdot Q_i^2}{Q_{ni}^2}
ight)$$

Onde Q_i é a vazão de cada máquina, e Q_{ni}, D_{1i}, D_{2i} são os parâmetros de cada máquina.

Cálculo dos Coeficientes:

Máquina	Coeficiente $A_i = rac{D_{1i}}{Q_{ni}}$	Coeficiente $B_i = rac{D_{2i}}{Q_{ni}^2}$
1	$rac{8.06}{1010}pprox0,007980$	$rac{7,53}{1010^2}pprox 0,000007374$
2	$rac{8,13}{1250}pprox0,006504$	$rac{7.74}{1250^2}pprox 0,000004954$
3	$rac{10,30}{1610}pprox 0,006398$	$rac{8,91}{1610^2}pprox 0,000003437$
4	$rac{14,10}{2000}pprox 0,007050$	$rac{11,80}{2000^2}pprox 0,000002950$

A função objetivo é:

$$P(x_1,x_2,x_3,x_4) = \sum_{i=1}^4 (A_i x_i + B_i x_i^2)$$

Sujeito à restrição de igualdade:

$$x_1 + x_2 + x_3 + x_4 = 4400$$

E às restrições de desigualdade:

$$0 \le x_1 \le 900$$

 $0 \le x_2 \le 1100$
 $0 \le x_3 \le 1200$
 $0 \le x_4 \le 1200$

Solução por Multiplicadores de Lagrange

O método dos Multiplicadores de Lagrange exige que a derivada parcial da função objetivo em relação a cada variável seja igual à constante λ :

$$rac{\partial P}{\partial x_i} = A_i + 2B_i x_i = \lambda$$

Isolando x_i :

$$x_i = rac{\lambda - A_i}{2B_i}$$

Expressões para x_i em função de λ :

Máquina	Expressão $x_i(\lambda)$
1	$x_1 = 67,804\lambda - 0,541$
2	$x_2 = 100,928\lambda - 0,656$
3	$x_3 = 145,463\lambda - 0,930$
4	$x_4 = 169,492\lambda - 1,195$

Cálculo Inicial de λ (Ignorando Restrições de Desigualdade):

A soma das vazões x_i deve ser igual a $Q_\Sigma=4400$:

$$egin{aligned} \sum_{i=1}^4 x_i(\lambda) &= 4400 \ &(67,804\lambda-0,541) + (100,928\lambda-0,656) + (145,463\lambda-0,930) + (169,492\lambda \ &483,687\lambda-3,322 = 4400 \ &\lambda = rac{4403,322}{483,687} pprox 9,10398 \end{aligned}$$

Cálculo das Vazões Iniciais:

Máquina	$x_i=rac{\lambda-A_i}{2B_i}$	Valor	Restrição Máxima
1	$x_1 = 67,804(9,10398) - 0,541$	616,849	900 (OK)
2	$x_2 = 100,928(9,10398) - 0,656$	918, 194	1100 (OK)
3	$x_3 = 145,463(9,10398) - 0,930$	1323, 430	1200 (VIOLADA)
4	$x_4 = 169,492(9,10398) - 1,195$	1540, 895	1200 (VIOLADA)

Ajuste das Vazões (Fixação das Restrições Violadas):

As vazões x_3 e x_4 violam as restrições máximas. Fixamos $x_3=1200$ e $x_4=1200$. A vazão restante a ser distribuída entre x_1 e x_2 é:

$$x_1 + x_2 = 4400 - 1200 - 1200 = 2000$$

Recálculo de λ (Apenas para x_1 e x_2):

$$(67,804\lambda-0,541)+(100,928\lambda-0,656)=2000$$
 $168,732\lambda-1,197=2000$ $\lambda=rac{2001,197}{168,732}pprox11,8605$

Cálculo das Vazões Ajustadas:

Máquina	$x_i=rac{\lambda-A_i}{2B_i}$	Valor	Restrição Máxima
1	$x_1 = 67,804(11,8605) - 0,541$	803, 569	900 (OK)
2	$x_2 = 100,928(11,8605) - 0,656$	1196, 974	1100 (VIOLADA)

Ajuste Final:

A vazão x_2 ainda viola a restrição máxima. Fixamos $x_2=1100$. A vazão restante é alocada para x_1 :

$$x_1 = 4400 - 1100 - 1200 - 1200 = 900$$

Solução Ótima Encontrada:

$$x_1 = 900$$
 $x_2 = 1100$
 $x_3 = 1200$
 $x_4 = 1200$

Verificação: 900+1100+1200+1200=4400. Todas as restrições de desigualdade são respeitadas.

Cálculo da Perda Total de Carga Mínima

$$P(x_1, x_2, x_3, x_4)$$

$$P(x_1,x_2,x_3,x_4) = \sum_{i=1}^4 (A_i x_i + B_i x_i^2)$$

Máquina	Vazão x_i	$A_i x_i$	$B_i x_i^2$	Perda P_i
1	900	$0,007980\cdot 900 = 7,1820$	$0,000007374 \cdot 900^2 = 5,9729$	13, 1549
2	1100	$0,006504\cdot 1100 = 7,1544$	$0,000004954 \cdot 1100^2 = 5,9943$	13, 1487
3	1200	$0,006398 \cdot 1200 = 7,6776$	$0,000003437 \cdot 1200^2 = \ 4,9493$	12,6269
4	1200	$0,007050 \cdot 1200 = 8,4600$	$0,000002950\cdot 1200^2 = \ 4,2480$	12,7080
Total	4400			51,6385

A perda total de carga mínima é de 51,64.

Resumo da Solução

Máquina	Vazão Ótima (x_i)	Restrição Máxima (Q_p^\prime)
1	900	900
2	1100	1100
3	1200	1200
4	1200	1200
Total	4400	

Perda Total de Carga Mínima: $P(x_1,x_2,x_3,x_4)=51,64$