Introduction to Embedded Systems

Cuauhtémoc Carbajal ITESM CEM 13/08/2013

Embedded Systems

- Embedded
 - "hidden inside so one can't see it"
 - computer/processor

Embedded Systems

- An embedded computer system includes a microcomputer
 - mechanical, chemical, and electrical devices
 - specific dedicated purpose, and
 - packaged as a complete system
- Applications
 - communications
 - automotive
 - military
 - medical
 - consumer
 - machine control

Embedded Systems

- An embedded microcomputer system
 - accepts inputs
 - performs calculations
 - generates outputs
 - runs in "real time"
- A real time system
 - specifies an upper bound on the time required to perform the input/calculation/output response to external events

What is a microprocessor?

The microprocessor is the integration of a number of useful functions into a single IC package:

- 1. The ability to execute a stored set of instructions to carry out user defined tasks.
- The ability to be able to access external memory chips to both read and write data from and to the memory.

http://data.bolton.ac.uk/learningresources/elearning/moodle/ami4655_micros/u01/micro01hist.html

History

A Brief History of Microprocessors

- The first microprocessor was developed by what was then a small company called Intel (short for Integrated Electronics) in the early 1970s. The chipset was a success and within a short while Intel developed a general purpose 4 bit microprocessor called the 4004.
- In 1974 the more powerful second generation microprocessor (the 8008) was announced fabricated as a single chip. This was quickly followed by the Intel 8080.
- At about the same time Motorola released its first microprocessor, the 6800, which was also an 8 bit processor with about the same processing power as that of the Intel 8080.
- The architectures used in the Intel 8080 and the Motorola 6800 were very different.
- In due course the Intel 8080 core processor was used for a range of microcontrollers (8048 and 8051 to name but two).
- Motorola followed in a similar vein with a range of microcontrollers based on the 6800 (6805, 6808, 6811 which survive to this day).

http://mic.unn.ac.uk/miclearning/modules/micros/ch1/micro01hist.html

Block Diagram

- Note:
 - Modern microprocessors have a much finer granularity and sometimes parallel units.
 - However, the basics are still very much the same.

Arithmetic Logic Unit

- Arithmetic Logic Unit (ALU) calculates arithmetical and / or logical functions:
- At least:

Arithmetical: Addition (ADD)Logical: Negation (NEG)

Conjunction (AND)

Typical:

Arithmetical: Subtraction (SUB)

Multiplication (MÚL)

Logical: Comparison (CMP)

Disjunction (ÒR)

Antivalence (EXOR)

Miscellaneous: Right- and Left Shift (ASR,ASL)

Rotation (ROL, ROR)

Register-Bit-Manipulation (set, clear, toggle, test)

Arithmetic Logic Unit (cont.)

- An ALU is able to process two binary values with equal length (N)
 - \rightarrow N-Bit ALU with N = 4, 8,16, 32 or 64
- Most ALUs process Fixed Point Numbers
- A few ALUs, used especially those in Digital Signal Processors and desktop processors are capable of operating on both Floating Point Numbers and on Fixed Point Numbers.

Example: a simple ALU structure

Arithmetic/Logic Unit (ALU)

Purely combinational logic

- Note:
 - Most ALUs will generate a size of 2*n for register Y in case of a multiply operation Y = A * B
 - ALUs are also available as standalone ICs:
 - SN74LS181

Control Unit: execution flow

Important selection features

- Word length:
 - Typical 16 or 32 bits
 - Important feature for performance
- Clock Cycles:
 - Million Instructions Per Second (MIPS)
 - Cycles Per Instruction (CPI)
 - depends on architecture
- Clock frequency [Hz] (f_{CLK}):
 - Frequency of an crystal oscillator
- Low-Power (CMOS):
 - $P = \sigma \cdot f_{CLK} \cdot C_L \cdot V_{DD}^2$
 - σ: switching activity
 - f_{CLK}: clock frequency
 - C_L: load capacitance
 - V_{DD}: supply voltage
 - Important for longer battery life
- Architecture:
 - Von Neumann, Harvard
- Instruction set:
 - CISC, RISC

History

- First Microprocessor Intel 4004 [5]:
 - Production start: 1971
 - Complexity: approx. 2,300 transistors; today: > 1,000,000,000 transistors
 - Integration: gate number
 - < 100 Small Scale Integration (SSI)
 - > today: 1 million gates
 - Clock rate (f_{CLK}): < 1 MHz; today: > 4 GHz
 - Word length: 4 bits; today > 64 bits
- First Microcontroller TI TMS1000
 - Production start: 1974
 - Clock rate: 0.4 MHz
 - Word length: 4 bits
- Note: Typical features for Embedded Systems.
 - Clock rate: 100 MHzWord length: 32 bits

Architectures

- Two basic microprocessor architectures:
 - "Von Neumann"- Architecture
 - "Harvard" Architecture
- "Von Neumann" Architecture:
 - Shared memory space between code and data
 - Shared memory busses between code and data
 - Example: typically microcontrollers such as the HCS12
- "Harvard" Architecture:
 - Two independent memory spaces for code and data
 - Two memory bus systems for code and data
 - Example: typically Digital Signal Processors (DSPs) such as the TI C2000, C5000 and C6000 family

Architectures

CISC/RISC

- Complex Instruction Set Computer (CISC)
 - Between 1971 until ≈ 1980 favoured architecture for general purpose processors
 - Extensive and complex instructions sets
- Reduced Instruction Set Computer (RISC)
 - Since 1980
 - Features
 - Single cycle instructions: one instruction per clock
 - CPI=1; Clock Cycle per Instruction (CPI)
 - Uniform instructions: all instructions have the same format
 - Load/Store architecture: only a few commands have memory-access
 - High-level languages support: architectures and compilers are co-coordinated
- Note: Today's Microprocessor architectures have the advantages of both CISC and RISC – these architectures are called Hybrid Architectures

What is a microcontroller?

A microcontroller combines onto the same microchip:

- 1. The CPU core
- 2. Memory (both ROM and RAM)
- 3. Peripherals

Isolated versus Memory-Mapped I/O

- Memory-mapped I/O
 - I/O ports/registers appear as addresses on common bus with memory
 - I/O ports/registers are accessed as though they are locations in memory
 - Employed on the STM32 microcontrollers
- Isolated I/O
 - I/O ports/registers have separate control signals from those used with memory
 - Special instructions are used to access I/O ports/registers
 - Employed on Intel x86 processors

Isolated versus Memory-Mapped I/O

What is a microcontroller?

What is a microcontroller?

Keys to a successful education

 "It is important that students bring a certain ragamuffin barefoot irreverence to their studies, they are here not to worship the known but to question it" – Jacob Bronowski

Important take-aways

- You are a professional
- Ethics matter
- Learn how to read
- Learn how to work efficiently
- Learn how to ask questions
- Be a good partner
- Learn how to debug