MAT-INF4110/MAT-INF9110 Mathematical optimization

Geir Dahl*

August 20, 2013

Convexity Part IV

Chapter 4 Representation of convex sets

- different representations of convex sets, boundary
- polyhedra and polytopes: facial structure

1 Faces of convex sets

- Face, Definition: Let C be a convex set. A convex subset F of C is a face of C if the following condition holds: if $x_1, x_2 \in C$ is such that $(1 \lambda)x_1 + \lambda x_2 \in F$ for some $0 < \lambda < 1$, then $x_1, x_2 \in F$.
- Remark: enough to check for $\lambda = 1/2$ here
- \emptyset , C: trivial faces
- Each nontrivial face is a subset of the relative boundary of C
- Exposed face, Definition: Let C be a convex set and H a supporting hyperplane of C. Then $C \cap H$ is called an *exposed face* of C.

^{*}Department of Mathematics, University of Oslo, Norway. geird@math.uio.no

- Each exposed face is the set of optimal solutions in $\max\{c^T x : x \in C\}$ for some $c \in \mathbb{R}^n$.
- ullet Proposition [Relation between faces and exposed faces] Let C be a nonempty convex set in \mathbb{R}^n . Then each exposed face of C is also a face of C.
- **Proof.** Let F be an exposed face of C. Then, for some suitable vector $c \in \mathbb{R}^n$, F is the set of optimal solutions in the problem of maximizing $c^T x$ over C. Define $v = \max\{c^T x : x \in C\}$. Thus, $F = \{x \in C : c^T x = C\}$ v. We noted above that F is convex, and we now verify the remaining face property. Let $x_1, x_2 \in C$ and assume that $(1 - \lambda)x_1 + \lambda x_2 \in F$ for some $0 < \lambda < 1$. Then $c^T((1 - \lambda)x_1 + \lambda x_2) = v$ and, moreover,

(i)
$$c^T x_1 \le v$$

(ii) $c^T x_2 \le v$

(ii)
$$c^T x_2 \le \iota$$

by the definition of the optimal value v. Assume now that at least one of the inequalities (i) and (ii) above is strict. We multiply inequality (i) by $1-\lambda$, multiply inequality (ii) by λ and add the resulting inequalities. Since λ lies strictly between 0 and 1 we then obtain

$$v > (1 - \lambda)c^T x_1 + \lambda c^T x_2 = c^T ((1 - \lambda)x_1 + \lambda x_2) = v.$$

From this contradiction, we conclude that $c^T x_1 = v$ and $c^T x_2 = v$, so both x_1 and x_2 lie in F and we are done.

- Proposition [Face of face] Let $C \subseteq \mathbb{R}^n$ be a nonempty convex set. Let F_1 be a face of C and F_2 a face of F_1 . Then F_2 is also a face of C.
- Next: Extreme points and extreme halflines
- Extreme point, Definition: A face of F of C with $\dim(F) = 0$ consists of a single point x, and it is called an extreme point. Thus, there are no points $x^1, x^2 \in C$ satisfying $x^1, x^2 \neq x$ and $x = (1/2)x^1 + (1/2)x^2$.
- Notation: $\operatorname{ext}(C)$: set of extreme points for C
- For a polytope $P = \text{conv}(\{x_1, \dots, x_t\})$, then $\text{ext}(C) \subseteq \{x_1, \dots, x_t\}$.
- Face of dim. 1: either line segment, a line or a halfline. The latter called *extreme halfline*.

- The union of all extreme halflines of C is a set which we denote by $\operatorname{exthl}(C)$.
- For a convex cone containing no line an extreme halfline is called an extreme ray.

2 The recession cone

- Question: How does an unbounded convex set "behave towards infinity"?
- For general sets this could be complicated, but convexity simplifies.
- A useful set: Let C be nonempty closed convex set in \mathbb{R}^n and define

$$\operatorname{rec}(C, x) = \{ z \in \mathbb{R}^n : x + \lambda z \in C \text{ for all } \lambda \ge 0 \}.$$

- rec(C, x) is a nonempty closed convex cone.
- Now a surprising result!
- **Proposition** [On recession cones] The closed convex cone rec(C, x) does not depend on x.
- **Proof.** Let x_1 and x_2 be distinct points in C and let $z \in \operatorname{rec}(C, x_1)$. Consider the two halflines $R_i = \{x_i + \lambda z : \lambda \geq 0\}$ for i = 1, 2. Then $R_1 \subseteq C$ and we want to prove that also $R_2 \subseteq C$. To do this consider a point $y_2 \in R_2$, where $y_2 \neq x_2$, and let $w \in [x_1, y_2)$ (this set is $[x_1, y_2] \setminus \{y_2\}$). The halfline from x_2 that goes through w must intersect the halfline R_1 (as R_1 and R_2 lie in the same two-dimensional plane). But then, as both this intersection point and x_2 lie in C, convexity implies that $w \in C$. It follows that $[x_1, y_2) \subseteq C$ and since C is closed this implies that $y_2 \in C$. We have therefore proved that $R_2 \subseteq C$. Since this holds for every $z \in \operatorname{rec}(C, x_1)$ we conclude that $\operatorname{rec}(C, x_1) \subseteq \operatorname{rec}(C, x_2)$. The converse inclusion follows by similar arguments (i.e., by symmetry), so $\operatorname{rec}(C, x_1) = \operatorname{rec}(C, x_2)$.
- Recession cone, Definition: rec(C) := rec(C, x) is called the *recession cone* (or *asymptotic cone*) of C.

- One can show: $rec(C) = \{O\}$ if and only if C is bounded.
- If C is a closed convex cone, then rec(C) = C.
- Lineality space, Definition: $\lim (C) := \operatorname{rec}(C) \cap (-\operatorname{rec}(C))$ is called the *lineality space* of C. It is a subspace.
- So lin (C) consists of all direction vectors of lines that are contained in C (the zero vector is included)
- Polyhedra: $rec(\{x : Ax \le b\}) = \{x : Ax \le O\}.$
- Example: Hyperplane $H=\{x\in\mathbb{R}^n:a^Tx=\alpha\}$. Then $\mathrm{rec}\,(H)=\mathrm{lin}\,(H)=\{a\}^\perp$
- Line-free (pointed), Definition: C is line-free (or pointed) if it contains no lines, i.e., $\lim (C) = \{O\}$.
- Any closed convex set may be decomposed as the (direct) sum of its lineality space L and a line-free convex set (contained in L^{\perp}).
- For this reason it usually suffices to study line-free sets.

3 Inner representation and Minkowski's theorem

- A main goal is to prove results saying that any closed convex set C
 may be written as the convex hull conv (S) of a certain "small" subset
 S of the boundary of C.
- Examples: circle disc, triangle
- Lemma 4.3.1 Let C be a line-free closed convex set and assume that $x \in \text{Rint}(C)$. Then there are two distinct points $x_1, x_2 \in \text{Rbd}(C)$ such that $x \in [x_1, x_2]$.
- **Proof.** The affine hull of C, aff (C), is parallel to a unique linear subspace L, so aff $(C) = L + x_0$ for some $x_0 \in C$. We observe that $\operatorname{rec}(C) \subseteq L$ (for if $z \in \operatorname{rec}(C)$, then $x_0 + z \in C \subseteq x_0 + L$, so $z \in L$). Moreover, $-\operatorname{rec}(C) \subseteq L$ as L is a linear subspace. Thus, $\operatorname{rec}(C) \cup L$

 $(-\operatorname{rec}(C)) \subseteq L$. We now prove that this inclusion is strict. For if $\operatorname{rec}(C) \cup (-\operatorname{rec}(C)) = L$, then it is easy to see that both $\operatorname{rec}(C)$ and $-\operatorname{rec}(C)$ must contain some line, and this contradicts that C is line-free. Therefore, there is a vector $z \in L \setminus (\operatorname{rec}(C) \cup (-\operatorname{rec}(C)))$. Consider the point x(t) = x + tz. Since $x \in \operatorname{Rint}(C)$ there is some $\lambda_0 > 0$ such that $x(t) \in C$ when $|t| \leq \lambda_0$. On ther other hand, if t is large enough $x(t) \notin C$ as $z \notin \operatorname{rec}(C)$. Since C is closed there is a maximal t, say $t = t_1$ such that x(t) lies in C. Thus, $x(t_1) \in \operatorname{Rbd}(C)$. Similarly (because $z \notin -\operatorname{rec}(C)$) we can find t_2 such that $x(t_2) \in \operatorname{Rbd}(C)$. Moreover, we clearly have that $x \in [x_1, x_2]$ and the proof is complete.

- Notation: ext(C) is the set of all extreme points
- Notation: exthl (C) is the union of all extreme halflines of C
- The next result is very central in convexity and its applications
- Theorem 4.3.2 Inner description of closed convex sets] Let $C \subseteq \mathbb{R}^n$ be a nonempty and line-free closed convex set. Then C is the convex hull of its extreme points and extreme halflines, i.e.,

$$C = \operatorname{conv} (\operatorname{ext} (C) \cup \operatorname{exthl} (C)).$$

• **Proof.** We prove this by induction on $d = \dim(C)$. If $\dim(C) = 0$, C must be a one-point set, and then the result is trivial. Assume that the result holds for all line-free closed convex sets in \mathbb{R}^n having dimension strictly smaller than d. Let C be a line-free closed convex set with $d = \dim(C) > 0$. Let $x \in C$. We treat two possible cases separately.

First, assume that $x \in \text{Rbd}(C)$. From Proposition 3.2.3 C has a nontrivial supporting hyperplane H at x. Then the exposed face $C' := C \cap H$ of C is a strict subset of C and $\dim(C') < d$ (as C contains a point which does not lie in $\operatorname{aff}(C') \subseteq H$). Since C' is convex and has dimension less than d, and $x \in C'$, we conclude from our induction hypothesis that x may be written as a convex combination of points in $\operatorname{ext}(C') \cup \operatorname{exthl}(C')$. But $\operatorname{ext}(C') \subseteq \operatorname{ext}(C)$ and $\operatorname{exthl}(C') \subseteq \operatorname{exthl}(C)$ so we are done.

The remaining case is when $x \in \text{Rint}(C)$ (for $\text{Rbd}(C) = \text{cl}(C) \setminus \text{Rint}(C) = C \setminus \text{Rint}(C)$ as C is closed). We now use Lemma 4.3.1 and

conclude that x may be written as a convex combination of two points x_1 and x_2 lying on the relative boundary of C. But, by the first part of our proof, both x_1 and x_2 may be written as convex combinations of points in $\operatorname{ext}(C') \cup \operatorname{exthl}(C')$. A small calculation then proves that also x is a convex combination of points in $\operatorname{ext}(C') \cup \operatorname{exthl}(C')$ and we are done.

• Corollary 4.3.3 [Inner description – another version] Let $C \subseteq \mathbb{R}^n$ be a nonempty and line-free closed convex set. Choose a direction vector z for each extreme halfline of C and let Z be the set of these direction vectors. Then we have that

$$C = \operatorname{conv}(\operatorname{ext}(C)) + \operatorname{rec}(C) = \operatorname{conv}(\operatorname{ext}(C)) + \operatorname{cone}(Z).$$

- **Proof.** Note first that $Z \subseteq \operatorname{rec}(C)$ (see an exercise) and by convexity $\operatorname{cone}(Z) \subseteq \operatorname{rec}(C)$ (why?). Let $x \in C$, so by Theorem 4.3.2 we may write x as a convex combination of points v_1, \ldots, v_t in $\operatorname{exth}(C)$ and points w_1, \ldots, w_r in $\operatorname{exthl}(C)$. But every point w_j in $\operatorname{exthl}(C)$ may be written $w_j = x_j + z_j$ for some $x_j \in C$ and $z_j \in Z$. From this we obtain that x is a convex combination of v_1, \ldots, v_t plus a nonnegative combination of points z_1, \ldots, z_r in Z. This proves that $C \subseteq \operatorname{conv}(\operatorname{ext}(C)) + \operatorname{cone}(Z) \subseteq \operatorname{conv}(\operatorname{ext}(C)) + \operatorname{rec}(C)$ (the last inclusion is due to what we noted initially). Moreover, the inclusion $\operatorname{conv}(\operatorname{ext}(C)) + \operatorname{rec}(C) \subseteq C$, follows directly from the fact that C is convex and the definition of the recession cone. This proves the desired equalities.
- If a convex set is bounded, then clearly $rec(C) = \{0\}.$
- We get the following very important consequence of Corollary 4.3.3
- Corollary 4.3.4 [Minkowski's theorem] If $C \subseteq \mathbb{R}^n$ is a compact convex set, then C is the convex hull of its extreme points, i.e., C = conv(ext(C)).

4 Polytopes and polyhedra

- Goal: specialize results like Minkowski to polyhedra
- Throughout: we consider nonempty line-free (pointed) polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}.$

- Then rank (A) = n and $m \ge n$. Let a_i be the *i*th row in A (treated as a column vector).
- Vertex, Definition: A point $x_0 \in P$ (polyhedron as above) is called a *vertex* of P if x_0 is the (unique) solution of n linearly independent equations from the system Ax = b.
- So: x_0 unique solution of a subsystem $A_0x = b_0$ for an invertible $n \times n$ submatrix A_0 of A.
- Lemma 4.4.1 [Extreme point = vertex] Let $x_0 \in P$. Then x_0 is a vertex of P if and only if x_0 is an extreme point of P.
- **Proof.** Let x_0 be a vertex of P, so there is a $n \times n$ submatrix A_0 of A and a corresponding subvector b_0 of b such that $A_0x_0 = b_0$. Assume that $x_0 = (1/2)x_1 + (1/2)x_2$ where $x_1, x_2 \in P$. Let a_i be a row of A_0 . We have that $a_i^T x_1 \leq b_i$ and $a_i^T x_2 \leq b_i$ (as both points lie in P). But if one of these inequalities were strict we would get $a_i^T x_0 = (1/2)a_i^T x_1 + (1/2)a_i^T x_2 < b_i$ which is impossible (because $A_0x_0 = b_0$). This proves that $A_0x_1 = b_0$ and $A_0x_2 = b_0$. But A_0 is nonsingular so we get $x_1 = x_2 = x_0$. This shows that x_0 is an extreme point of P.

Conversely, assume that $x_0 \in P$ is not a vertex of P, and consider all the indices i such that $a_i^T x_0 = b_i$. Let A_0 be the submatrix of A containing the corresponding rows a_i , and let b_0 be the corresponding subvector of b. Thus, $A_0 x_0 = b_0$ and, since x_0 is not a vertex, the rank of A_0 is less than n, so the kernel (nullspace) of A_0 contains a nonzero vector z, i.e., $A_0 z = O$. We may now find a "small" $\epsilon > 0$ such that the two points $x_1 = x_0 + \epsilon \cdot z$ and $x_2 = x_0 - \epsilon \cdot z$ both lie in P. (For each row a_i which is not in A_0 we have $a_i^T x_0 < b_i$ and a small ϵ assures that $a_i^T (x_0 \pm \epsilon z) < b_i$). But $x_0 = (1/2)x_1 + (1/2)x_2$ so x_0 is not an extreme point.

- An extreme halfline is an unbounded face of dimension 1.
- It has the form $F = x_0 + \text{cone}(\{z\})$ such that there are no two non-parallel vectors $z_1, z_2 \in \text{rec}(P)$ such that $z = z_1 + z_2$.
- Lemma 4.4.2 [Extreme halfline] Let $R = x_0 + \text{cone}(\{z\})$ be a halfline in P. Then R is an extreme halfline if and only if $A_0z = O$ for some $(n-1) \times n$ submatrix A_0 of a with rank $(A_0) = n-1$.

- Corollary 4.4.3 [Finiteness] Each pointed polyhedron has a finite number of extreme points and extreme halflines.
- **Proof.** According to Lemma 4.4.1 each vertex of a pointed polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is obtained by setting n linear inequalities inequalities among the m inequalities in the defining system $Ax \leq b$ to equality. But there are only a finite number of such choices of subsystems (in fact, at most $\binom{m}{n} = m!/(n!(m-n)!)$), so the number of vertices is finite. For similar reasons the number of extreme halflines is finite (at most m!/((n-1)!(m-n+1)!)).
- Next: The representation theorem for polyhedra:
- This is the main theorem for polyhedra, and it is due to Motzkin, Farkas, Minkowski, Weyl
- It holds for all (also non-pointed) polyhedra.
- Theorem 4.4.4 [Main theorem for polyhedra] Each polyhedron $P \subseteq \mathbb{R}^n$ may be written as

$$P = \operatorname{conv}(V) + \operatorname{cone}(Z)$$

for finite sets $V, Z \subset \mathbb{R}^n$. In particular, if P is pointed, we may here let V be the set of vertices and let Z consist of a direction vector of each extreme halfline of P.

Conversely, if V and Z are finite sets in \mathbb{R}^n , then the set $P = \operatorname{conv}(V) + \operatorname{cone}(Z)$ is a polyhedron. i.e., there is a matrix $A \in \mathbb{R}^{m,n}$ and a vector $b \in \mathbb{R}^m$ for some m such that

$$\operatorname{conv}(V) + \operatorname{cone}(Z) = \{x \in \mathbb{R}^n : Ax \le b\}.$$

• **Proof.** Consider first a pointed polyhedron $P \subseteq \mathbb{R}^n$. Due to Corollary 4.4.3 P has a finite number of extreme halflines. Moreover the set V of vertices is finite (Lemma 4.4.1). Let Z be the finite set consisting of a direction vector of each of these extreme halflines. It follows from Corollary 4.3.3 that

$$P = \operatorname{conv}(V) + \operatorname{cone}(Z).$$

This proves the first part of the theorem when P is pointed. If $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ is not pointed, we recall that $P = P' \oplus \text{lin}(P)$ where lin(P) is the lineality space of P and P' is pointed. In fact, we may let P' be the pointed polyhedron

$$P' = \{ x \in \mathbb{R}^n : Ax < b, \ Bx = O \}$$

where the rows $b_1, \ldots, b_k \in \mathbb{R}^n$ of the $k \times n$ -matrix B is a basis of the linear subspace $\lim_{k \to \infty} (P)$. By the first part of the theorem (as P' is pointed) there are finite sets V and Z' such that $P = \operatorname{conv}(V) + \operatorname{cone}(Z')$. We now note that $\lim_{k \to \infty} (P) = \operatorname{cone}(b_0, b_1, \ldots, b_k)$ where $b_0 = -\sum_{j=1}^k b_j$ (see an exercise). But then it is easy to check that $P = \operatorname{conv}(V) + \operatorname{cone}(Z)$ where $Z = Z' \cup \{b_0, b_1, \ldots, b_k\}$ so the first part of the theorem is shown.

We shall prove the second part by using what we just showed in a certain (clever!) way.

First, we prove the result for convex cones, so assume that C is a finitely generated cone, say $C = \text{cone}(\{z_1, \ldots, z_t\})$. We introduce the set

$$C^{\circ} = \{ a \in \mathbb{R}^n : z_j^T a \le 0 \text{ for } j = 1, \dots, t \}.$$

The main observation is that C° is a polyhedral cone (and therefore a polyhedron) in \mathbb{R}^n : it is defined by the linear and homogeneous inequalities $z_j^T a \leq 0$ for $j=1,\ldots,t$ (here a is the variable vector!). Thus, by the first part of the theorem, there is a finite set of vectors $a_1,\ldots,a_s\in C^{\circ}$ such that $C^{\circ}=\operatorname{cone}(\{a_1,\ldots,a_s\})$ (because any polyhedral cone has only one vertex, namely O, see an exercise). We shall prove that

(*)
$$C = \{x \in \mathbb{R}^n : a_i^T x \le 0 \text{ for } i = 1, \dots, s\}.$$

If $x_0 \in C$, then $x_0 = \sum_{j=1}^t \mu_j z_j$ for some $\mu_j \geq 0$, $j \leq t$. For each $i \leq s$ and $j \leq t$ we have from the definition of C° that $a^T z_j \leq 0$ and therefore $a^T x_0 = \sum_{j=1}^t \mu_j a^T z_j \leq 0$. This shows the inclusion " \subseteq " in (*). Assume next that $x_0 \notin C$. As $C = \text{cone}(\{z_1, \ldots, z_t\})$ it follows from Farkas' lemma (Theorem 3.2.5) that there is a vector $y \in \mathbb{R}^n$ such that $y^T x_0 > 0$ and $y^T z_j < 0$ for each j. Therefore $y \in C^{\circ}$ so $y = \sum_i \lambda_i a_i$ for nonnegative numbers λ_i $(i \leq s)$. But x_0 violates the inequality

 $y^Tx \leq 0$ (as $y^Tx_0 > 0$). This implies that $x_0 \notin \{x \in \mathbb{R}^n : a_i^Tx \leq 0 \text{ for } i = 1, \ldots, s\}$. This proves (*) and we have shown that every finitely generated convex cone is polyhedral.

More generally, let $P = \operatorname{conv}(V) + \operatorname{cone}(Z)$ where V and Z are finite sets in \mathbb{R}^n . Let $V = \{v_1, \ldots, v_k\}$ and $Z = \{z_1, \ldots, z_m\}$. Let $C = \operatorname{cone}(\{(v_1, 1), \ldots, (v_k, 1), (z_1, 0), \ldots, (z_m, 0)\})$, so this is a finitely generated convex cone in \mathbb{R}^{n+1} . By what we just showed this cone is polyhedral, so there is a matrix $A \in \mathbb{R}^{m,n+1}$ such that $C = \{(x, x_{n+1}) : \sum_{j=1}^n a^j x_j + a^{n+1} x_{n+1} \leq O\}$ (here a^j is the jth column of A). Note that $x \in P$ if and only if $(x, 1) \in C$ (see an exercise). Therefore, $x \in P$ if and only if $Ax + a^{n+1} \cdot 1 \leq O$, i.e., $Ax \leq b$ where $b = -a^{n+1}$. This proves that P is a polyhedron and our proof is complete.

- Corollary 4.4.5 [Polytopes] A set is a polytope if and only if it is a bounded polyhedron.
- Example: Consider the set

$$P = \{x \in \mathbb{R}^n : 1 > x_1 > x_2 > \dots > x_n > 0\}$$

which is a polyhedron. Actually, it is bounded (as P is contained in the unit cube $K = \{x : 0 \le x_i \le 1 \ (i \le n)\}$). So, by Corollary 4.4.5 P is also a polytope, i.e., the convex hull of a finite set of points, say V. We may here use V as the set of extreme points, or, as we just saw, the set of vertices of P. Let us find the vertices! Since P is defined by n+1 inequalities, any vertex is obtained by removing one inequality and solve for the remaining n equations. If we delete the first inequality $1 \geq x_1$, and solve the remaining equations, we get $x_1 = x_2 = \cdots =$ $x_n = 0$, so x = O is a vertex (as we see that it also lies in P). Further, if we delete the inequality $x_k \geq x_{k+1}$ and solve the remaining equations, we get $x_1 = \cdots = x_k = 1$ and $x_{k+1} = \cdots = x_n = 0$. This gives the vertex $(1, \ldots, 1, 0, \ldots, 0)$ with k leading ones. We have then found all the vertices; there were n+1 such points. Actually, one can show that these points are affinely independent, so P is a simplex. Try the same method for finding the extreme points when P is modified by adding the inequality $2x_1 + x_2 \ge 1$ (we assume here that $n \ge 3$).

- We next discuss an important application
- \bullet ... which is Combinatorial optimization and (0,1)-polytopes:

- CO: class \mathcal{F} of (feasible) subsets of a finite set E; let n = |E|. And a weight/cost function $c: E \to \mathbb{R}$. Find a set $F \in \mathcal{F}$ with $\sum_{e \in F} w_e$ largest possible (or smallest possible).
- Represent each subset F by its incidence vector (indicator vector/function) χ^F , χ^F_i is 1 if $j \in E$, and equals 0 otherwise.
- Define $P_{\mathcal{F}}$ as the convex hull of all these incidence vectors. A polytope. The vertices are these incidence vectors (all of them; why?).
- By the Main Theorem, $P_{\mathcal{F}}$ is a bounded polyhedron, so its points are the solutions to some linear system $Ax \leq b$.
- Thus: CO is, in principle, reduced to an LP problem since optimal solutions are in the vertices and $c^T \chi^F = \sum_{j \in F} c_j$.
- Example: TSP (Traveling Salesman Problem): graph, tour through all points, length, minimize length.
- The TSP polytope P_{TSP} is the convex hull of incidence vectors of tours. Well studied, but very complicated boundary (faces)!
- This approach to CO problems is an area called *polyhedral combinatorics*.
- More about this approach in the second part of the course!
- Now, we consider faces more closely
- Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}.$
- Valid inequality, Definition: an inequality $c^T x \leq \alpha$ is valid for P if $P \subseteq \{x \in \mathbb{R}^n : c^T x \leq \alpha\}$, i.e., $c^T x \leq \alpha$ for all $x \in P$.
- The next result says how exposed faces arise from subsystems of the inequalities in $Ax \leq b$.
- Theorem 4.4.6 Consider a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$. A nonempty set F is an exposed face of P if and only if

(*)
$$F = \{x \in P : A'x = b'\}$$

for some subsystem $A'x \leq b'$ of $Ax \leq b$.

• **Proof.** Let a_i denote the *i*th row of A (viewed as a column vector). Let F be a nonempty exposed face of P, so $F = \{x \in P : c^T x = \alpha\}$ where $c^T x = \alpha$ defines a supporting halfspace for P. Then the optimal value v^* of the linear programming problem (P) max $\{c^T x : Ax \leq b\}$ satisfies $v^* = \alpha < \infty$ and we have $F = \{x \in P : c^T x = v^*\}$. From the LP duality theorem we have that

$$v^* = \max\{c^T x : Ax \le b\} = \min\{y^T b : y^T A = c^T, y \ge 0\}$$

and the dual LP must be feasible (as the primal optimal value is finite). Let y^* be an optimal dual solution, so $(y^*)^T A = c^T$, $y^* \ge O$ and $(y^*)^T b = v^*$, and define $I' = \{i \le m : y_i > 0\}$. We claim that (*) holds with the subsystem $A'x \le b'$ consisting of the inequalities $a_i^T x \le b_i$ for $i \in I'$. To see this, note that for each $x \in P$ we have

$$c^T x = (y^*)^T A x = \sum_{i \in I} y_i^* (Ax)_i = \sum_{i \in I'} y_i^* (Ax)_i \le \sum_{i \in I'} y_i^* b_i = v^*.$$

Thus we have $c^T x = v^*$ if and only if $a_i^T x = b_i$ for each $i \in I'$, and (*) holds.

Conversely, assume that the set F satisfies (*) for some subsystem $A'x \leq b'$ of $Ax \leq b$, say that $A'x \leq b'$ consists of the inequalities $a_i^T x \leq b_i$ for $i \in I'$ (where $I' \subseteq \{1, \ldots, m\}$). Let $c = \sum_{i \in I'} a_i$ and $\alpha = \sum_{i \in I'} b_i$. Then $c^T x \leq \alpha$ is a valid inequality for P (it is a sum of other valid inequalities, see an exercise. Furthermore F is the face induced by $c^T x \leq \alpha$, i.e., $F = \{x \in P : c^T x = \alpha\}$. In fact, a point $x \in P$ satisfies $c^T x = \alpha$ if and only if $a_i^T x = b_i$ for each $i \in I'$.

- Theorem 4.4.7 Let P be a polyhedron in \mathbb{R}^n . Then every face of P is also an exposed face of P. Thus, for polyhedra, these two notions coincide.
- Facet, definition: a facet of a polyhedron $P \subseteq \mathbb{R}^n$ may be defined as a face F of P with $\dim(F) = \dim(P) 1$.
- Let P be a full-dimensional polyhedron P in \mathbb{R}^3 : Euler's relation says that

$$v - e + f = 2$$
.

where v, e and f are the number of vertices, edges and facets, respectively.

- May be generalized to higher dimensions.
- Facets are interesting because they are related to minimial representations of polyhedra: you only need one inequality for every facet (plus, possibly, equations for defining the affine hull).

SUMMARY OF NEW CONCEPTS AND RESULTS:

- face, exposed face
- extreme point, extreme halfline, ray
- recession cone
- inner representation, Minkowski's theorem
- main theorem for polyhedra