Bayesian estimation of sparse partial correlation graph chain \boldsymbol{Y}_t \boldsymbol{Y}_{t+1} Observed data Gaussian noise $oldsymbol{eta}_{t+1}$ Transformed parameters $oldsymbol{eta}_t$ $\sqrt{\Omega_{t+1}}$ $\sqrt{\Omega_t}$ Model parameters ρ_{t+1} $Cauchy_T(0, \epsilon_{t+1}^s)$ $\operatorname{Cauchy}_{\mathbf{T}}(0, \epsilon_t^s)$ $\text{Exp}(\omega)$ $\operatorname{Exp}(\omega)$ Priors Hyperparameters λ : Smoothness ϵ_t^s : Sparsity control ω : Shrinking eigenvalues $G_t = \{V, E_t\}$ \rightarrow $G_{t+1} = \{V, E_{t+1}\}$ True graph