Fatigue Homework 6

April 30, 2023

Gabe Morris

```
[1]: # Notebook Preamble
import matplotlib.pyplot as plt
import numpy as np

plt.style.use('maroon_ipynb.mplstyle')
```

Contents

1			3
	1.1	Given	ç
	1.2	Find	
	1.3	Solution	ç
		1.3.1 Part A	4
		1.3.2 Part B	٦
		1.3.3 Part C	6

1

1.1 Given

A stepped circular rod of 4340 steel (with $S_u = 1468$ MPa) with diameters of 60 and 45 mm has a root radius of 3 mm at the stepped section. The rod is to be subjected to axial cyclic loading.

The cyclic yield strength (S'_{y}) is estimated from:

$$S_y' = K'(0.002)^{n'}$$

where K' and n' are given in Table A.2

For the purpose of constructing Haigh diagram, exact value of σ_f is not needed, as the diagram is not very sensitive to its value. Since σ_f is not listed in Table A.2 for this material, we use Eq. 5.20 in the textbook to approximate it as

$$\sigma_f \approx S_u + 345 \; (MPa)$$

1.2 Find

Using a Haigh diagram, determine the following for an approximate median fatigue life of 10^6 cycles:

- a. What fully reversed alternating force, P_a , can be applied?
- b. What is the maximum value of P_a , if proper compressive residual stresses are present at the notch root? What is the magnitude of the compressive residual stress needed to obtain this maximum alternating stress?
- c. What value of P_a can be applied if the residual stress calculated in (b) is tensile? What fully reversed alternating force, P_a , can be applied?

1.3 Solution

According to equation 4.3b, the endurance limit is 700~MPa for materials with an ultimate strength greater than 1400~MPa. With the size effect, the endurance limit becomes

$$S_f = 0.85(700) = 595\ MPa$$

1.3.1 Part A


```
[2]: D, d, r = 60, 45, 3  # mm
Su = 1468  # MPa
size_effect = 0.85

if Su <= 1400:
    Sf = 0.5*Su*size_effect
else:
    Sf = 700*size_effect</pre>
```

[2]: 1.3333333333333333

[3]: r/d

[3]: 0.0666666666666667

From above the stress concentration factor is $K_t = 2$. The fatigue notch factor for the fully reversed condition is

$$K_f = 1 + \frac{K_t - 1}{1 + a/r}$$

where $a=0.0254 \left(\frac{2070}{S_u}\right)^{1.8}$ with a in mm and S_u in MPa.

[4]:
$$Kt = 2$$

 $a = 0.0254*(2070/Su)**1.8$

a # mm

[4]: 0.047149103389883054

[5]:
$$Kf = 1 + (Kt - 1)/(1 + a/r)$$

 Kf

[5]: 1.9845268144780213

Since the stress is maximized at the smaller diameter,

$$P_a = \frac{S_f}{K_f} \left(\frac{\pi}{4}\right) (d)^2$$

[6]: 476842.4418454644

1.3.2 Part B

From Table A.2,

Property	Value
$\overline{S_y}$	1371 MPa
S_y'	$863~\mathrm{MPa}$
S_f	595 MPa
σ_f	1813 MPa
K_f	1.98
S_{cat}	70 MPa

 S_{cat} comes from the fact that this is a hard steel. The other calculations are shown below.

[7]: 1813

[8]: 862.5804014077875

[9]: 731598.3892047232

1.3.3 Part C

From above, point B is when the mean stress is tensile.

[10]: 143138.81527918496