Analysis of Several Variables

Homework 1

Bikram Halder

bmat2112

Solution 1

For, $x,y\in\mathbb{R}^n$, $\|x-y\|=\|x+(-y)\|\leq \|x\|+\|-y\|=\|x\|+\|y\|$ Also, $\|y\|=\|x+y-x\|\leq \|x\|+\|y-x\|=\|x\|+\|x-y\|$

,i.e.,
$$-\|x-y\| \le \|x\| - \|y\|$$
 (1.1)

Again, $||x|| = ||x - y + y|| \le ||x - y|| + ||y||$

,i.e.,
$$||x|| - ||y|| \le ||x - y||$$
 (1.2)

Thus, by 1.1 and 1.2, we get

$$|||x|| - ||y||| \le ||x - y|| \tag{1.3}$$

Solution 2

Denote,

- L(S) = set of all limit points of S.
- $S_r^{n-1}(a) = \{x \in \mathbb{R}^n : ||x a|| = r\}$
- (i) For $x\in B_r(a)$, let $\{x_m\}\subseteq B_r(a)$ be a sequence with $x_m=\frac{x}{m}+\left(1-\frac{1}{m}\right)a$ which converges to x. Since, x is arbitary, we get $B_r(a)\subset L(B_r(a))$. For $s\in S_r^{n-1}(a)$ the sequence $\{y_m\}\subseteq B_r(a)$ with $y_m=\frac{s}{m}+\left(1-\frac{1}{m}\right)a$ converges to s which implies $S_r^{n-1}(a)\subset L(B_r(a))$. But, for $x\in (B_r(a)\cup S_r^{n-1}(a))^c$ we have $\|x-a\|>r$. Assume that \exists a sequence $\{x_m\}\subseteq B_r(a)$ converging to x. Take, $\epsilon=r$. Then, \forall m, with inequality (1.3) $\|x-y_m\|=\|(x-a)-(y_m-a)\|\geq |\|x-a\|-\|y_m-a\||>r+r>\epsilon \qquad \text{(contradiction!)}$ Hence, $L(B_r(a))=B_r(a)\cup S_r^{n-1}(a)$
- (ii) We claim the following:

Claim 2.1. For
$$p=(p_1,\ldots,p_n)\in S_1^{n-1}(0), \exists q\in S_1^{n-1}(0)$$
 such that $\langle p,q\rangle=0$

Proof of the claim. Since, $\|p\|^2 = \sum_{j=1}^n p_j^2 = 1$, $\exists k \in \{1,\dots,n\}$ such that $p_k \neq 0$. For, $q = (q_1,\dots,q_n)$ take $q_k = -\frac{1}{p_k} \sum_{\substack{j=1 \ j \neq k}}^n p_j q_j$ then we get $\langle p,q \rangle = \sum_{j=1}^n p_j q_j = 0$

For, $x \in S_1^{n-1}(0)$ take $x_\perp \in S_1^{n-1}(0)$ such that $\langle x, x_\perp \rangle = 0$. Define a sequence, $\{x_m\} \subset S_1^{n-1}(0)$ with $x_m = \left(\cos\left(\frac{1}{m}\right)\right)x + \left(\sin\left(\frac{1}{m}\right)\right)x_\perp$

(We should see,
$$||x_m||^2 = ||x||^2 \cos^2\left(\frac{1}{m}\right) + ||x_\perp||^2 \sin^2\left(\frac{1}{m}\right) + 2\left\langle\left(\cos\left(\frac{1}{m}\right)\right)x, \left(\sin\left(\frac{1}{m}\right)\right)x_\perp\right\rangle = 1$$
).

Clearly, $x_m \to x$. Thus, $S_1^{n-1}(0) \subset L(S_1^{n-1}(0))$ Now, take $x \in (S_1^{n-1}(0))^c$, so $\|x\| \neq 1$. Let, $\{x_m\} \subset S_1^{n-1}(0)$ be a sequence converging to x. Take, $\epsilon = \frac{|1-||x||}{2}$ Then, $\forall m$, with inequality $1.3, \|x_m - x\| \geq |\|x_m\| - \|x\|| = |1-\|x\|| > \epsilon$ (contradiction!) Therefore, $S_1^{n-1}(0) = L(S_1^{n-1}(0))$

(iii) Let, $A^k := \mathbb{Q}^k \cap (0,1)^k, k \in \mathbb{N}$

For, $z=(x,y)\in(0,1)^2$, the sequence $\{z_m\}\subset A^2$ defined by, $z_m=\left(\frac{\lfloor 10^{m-1}x\rfloor}{10^{m-1}},\frac{\lfloor 10^{m-1}y\rfloor}{10^{m-1}}\right)$ converges to z.

The sequences $\{z_m\} \subset A^2$ defined by,

-
$$z_m = \left(\frac{\lfloor 10^{m-1}x \rfloor}{10^{m-1}}, \frac{1}{m}\right)$$
 converges to $(x,0)$ for any $x \in A^1$

-
$$z_m = \left(\frac{\lfloor 10^{m-1}x\rfloor}{10^{m-1}}, 1 - \frac{1}{m}\right)$$
 converges to $(x,1)$ for any $x \in A^1$

–
$$z_m = \left(\frac{1}{m}, \frac{\lfloor 10^{m-1}y \rfloor}{10^{m-1}}\right)$$
 converges to $(0,y)$ for any $y \in A^1$

–
$$z_m = \left(1 - \frac{1}{m}, \frac{\lfloor 10^{m-1}y \rfloor}{10^{m-1}}\right)$$
 converges to $(1,y)$ for any $y \in A^1$

–
$$z_m=\left(\frac{1}{m},\frac{1}{m}\right)$$
 converges to $(0,0)$

-
$$z_m = \left(1 - \frac{1}{m}, \frac{1}{m}\right)$$
 converges to $(1, 0)$

–
$$z_m=\left(\frac{1}{m},1-\frac{1}{m}\right)$$
 converges to $(0,1)$

–
$$z_m=\left(1-\frac{1}{m},1-\frac{1}{m}\right)$$
 converges to $(1,1)$

Therefore, $[0,1]^2 \subseteq L(A^2)$

Claim 2.2. For, $z \in ([0,1]^2)^c$ and $\forall z' \in A^2, \exists \delta > 0$ such that $||z-z'|| > \delta$

Proof of the claim. Let, $z = (x, y) \in [0, 1]^2$

$$\circ \ x>1 \ {\rm or} \ y>1 \ {\rm take} \ \delta=\min\left\{\frac{|x-1|}{2},\frac{|y-1|}{2}\right\}$$

$$\circ \ x < 0 \ \text{or} \ y < 0 \text{, take} \ \delta = \min \left\{ \frac{|x|}{2}, \frac{|y|}{2} \right\}$$

So by the Claim (2.2) we conclude that no point in $([0,1]^2)^c$ is a limit point of A^2 Thus, $[0,1]^2 = L(A^2)$

Solution 3

(i) Let $f(x,y) = \frac{x^2y}{x^4+y^2} \ \forall (x,y) \neq (0,0)$, let $l_1 := \{0\} \times \mathbb{R}_{>0}$ and $l_2 := \{(x,y) \in \mathbb{R}^2_{>0} : x = y^2\}$.

$$f\Big|_{l_1} = 0$$
 and $f\Big|_{l_2} = \frac{1}{2}$

So,

$$\lim_{\substack{(x,y)\to(0,0)\\l_1}} f = 0 \neq \lim_{\substack{(x,y)\to(0,0)\\l_2}} f = \frac{1}{2}$$

Hence, the limit doesn't exist!

(ii) Let
$$h(x,y)=rac{\sin\left(x^2+y\right)}{x^2+y}$$
 $\forall (x,y)\in\{(x,y)\in\mathbb{R}^2:x^2+y=0\}^c.$ Then

$$\lim_{(x,y)\to(0,0)} h = \lim_{z\to 0} \frac{\sin(z)}{z}$$

$$= 1 \qquad ((x,y)\to(0,0) \implies z = x^2 + y \to 0)$$

(iii) Let
$$g(x,y) = \frac{x^2y^3}{x^4+y^6} \ \forall (x,y) \neq (0,0)$$
, let $l_1 := \{0\} \times \mathbb{R}$ and $l_2 := \{(x,y) \in \mathbb{R}^2 : x^2 = y^3\}$. Then,

$$f\Big|_{l_1} = 0$$
 and $f\Big|_{l_2} = \frac{1}{2}$

So,

$$\lim_{\substack{(x,y)\to(0,0)\\l_1}} g = 0 \neq \lim_{\substack{(x,y)\to(0,0)\\l_2}} g = \frac{1}{2}$$

Hence, the limit doesn't exist!

Solution 4

Define, $h:\mathbb{R}^2\to\mathbb{R}$ with h(x,y)=xy. Let $(a,b)\in\mathbb{R}^2$ for $\epsilon>0$ take, $\delta=\sqrt{4\epsilon+(|a|+|b|)^2}-(|a|+|b|)>0$. Then, $(x,y)\in B_{\frac{\delta}{2}}((a,b))$ which gives $|y-b|<\frac{\delta}{2},|x-a|<\frac{\delta}{2}$. So,

$$\begin{aligned} |h(x,y) - h(a,b)| &= |xy - ab| \\ &= |xy - ab + xb - xb| \\ &\leq |x| \, |y - b| + |b| \, |x - a| \\ &= |x - a + a| \, |y - b| + |b| \, |x - a| \\ &\leq |x - a| \, |y - b| + |a| \, |y - b| + |b| \, |x - a| \\ &\leq \frac{\delta^2}{4} + (|a| + |b|) \frac{\delta}{2} = \epsilon \end{aligned}$$

Thus, h is continuous at (a,b). Since, $f=g\circ h$ and composition of 2 real valued continuous function is continuous , we get that f is continuous .

Solution 5

None!

(i) Let
$$l_1 := \{0\} \times \mathbb{R}_{>0}$$
 and $l_2 := \{(x,y) \in \mathbb{R}^2_{>0} : y = 2x\}$. Then,

$$f\Big|_{l_1} = 0 \text{ and } f\Big|_{l_2} = \frac{1 - 8x}{5}$$

So,

$$\lim_{(x,y)\to(0,0)\atop l_1}f=0\neq \lim_{(x,y)\to(0,0)\atop l_2}f=\frac{1}{5}$$

Hence, the limit doesn't exist at (0,0)

(ii) Let $l_1 := \{0\} \times \mathbb{R}_{>0}$ and $l_2 := \{(x, y) \in \mathbb{R}^2_{>0} : y^2 = x\}$. Then,

$$f\Big|_{l_1} = 0 \text{ and } f\Big|_{l_2} = \frac{1}{2}$$

So,

$$\lim_{\substack{(x,y)\to(0,0)\\l_1}} f = 0 \neq \lim_{\substack{(x,y)\to(0,0)\\l_2}} f = \frac{1}{2}$$

Hence, the limit doesn't exist at (0,0)

Solution 6

Yes!

It is clear that f is continuous at every point on $\mathbb{R}^2-\{(0,0)\}$

For $\epsilon>0$ take $\delta=\epsilon$. For, $(x,y)\in D_{\delta}((0,0)),$ $\left|\frac{xy}{|x|+|y|}\right|\leq \left|\frac{xy}{|x|}\right|\leq |y|<\|(x,y)\|<\delta=\epsilon$, i.e., $\lim_{(x,y)\to(0,0)}f=0$. Therefore, f can be extended to a continuous function on \mathbb{R}^2 by defining, f(0,0)=0

Solution 7

It is clear that f is continuous at every point on $\mathbb{R}^2-\{(0,0)\}.$

For $\epsilon>0$, take $\delta=\epsilon$. For, $(x,y)\in D_{\delta}((0,0)), \left|\frac{x^3}{x^2+y^2}\right|\leq \left|\frac{x^3}{x^2}\right|\leq \|(x,y)\|<\delta=\epsilon$,i.e., $\lim_{(x,y)\to(0,0)}f=0$

Therefore, f is continuous at (0,0). Thus, f is continuous .

Solution 8

 $\Longrightarrow : \text{Assume that, } f \text{ is uniformly continuous . Let, } a,b \in \mathbb{R}^n. \text{ Then, for } \epsilon > 0, \exists \delta > 0 \text{ such that } \|a-b\| < \delta \text{ gives } \|f(a)-f(b)\| < \epsilon \text{ which implies, } |\Pi_i f(a)-\Pi_i f(b)| < \epsilon \ \forall i \text{ ,i.e., each } \Pi_i f \text{ is uniformly continuous .}$