Topics in Data Engineering

Session 3

Masaomi Kimura

Topics in this session

- □ Association analysis
- □ Memory based reasoning

Association analysis

Association analysis

What we get by this method

- □ Association rules
 - \blacksquare Event P \Rightarrow Event Q
- □ Not all of obtained rules are beneficial
 - \blacksquare Bought diapers \Rightarrow bought beer
 - Bought expensive computer
 - ⇒ contracted 3-year guarantee
 - Bought a USB memory
 - \Rightarrow bought sprite

A sample

Customer#	Orange Juice	Coke	Coffee	Cake	Pizza
1	1	1			
2	1		1	1	
3	1				1
4	1	1			1
5		1		1	

Confidence/support/lift

 Confidence= conditional probability of Event A under the occurrence of Event A

$$P(A \mid B) = \frac{N(A \cap B)}{N(B)}$$

□ Support=joint probability of Event A and Event B

$$P(A \cap B) = \frac{N(A \cap B)}{N}$$

□ Lift=the ratio of the confidence to the probability of Event A

$$\frac{P(A \mid B)}{P(A)} = \frac{P(A \cap B)}{P(A)P(B)}$$

Procedure

- 1. Define items/determine abstractness of items
 - Soft drink?
 - Coke, diet coke, coke zero...?
- 2. Calculate support/confidence/lift
 - Overcome difficulty during the calculation

Choice of correct level for input items

- ✓ Easy to analyze
- **x** ignorance of less freq. event

- They make it easy to focus on the particular items
- Complex rules are obtained and long execution time is required.

Virtual items

Overcome difficulty during the calculation

- The number of items in an antecedent and an descendant can be more than one.
 - \blacksquare P, Q, ..., R \Rightarrow S,T,...,U
 - iPhone \Rightarrow a case, a protect seal
- □ If there are N items, the rules to be calculated are 2^{N} !

(Advantage) association analysis

- Generates results easily understandable
- □ Applicable to variable length data
- □ uses simple and understandable calculation

(Disadvantage) association analysis

- □ has a problem of calculation cost, if the number of items is huge
- □ needs suitable definition/abstraction of items
- does not explain the phenomena of rarely bought items

Memory Based Reasoning

Memory based reasoning

□ A distance measure and a combination function are necessary

Procedure

- 1. Normalize/standardize data in records
- 2. Search records nearest from an input record
 - a distance function is used to find nearest records
- 3. Predict a result from the records found in Step 2
 - a combining function is used to find a result from obtained records

1. data standardization/normalization

- □ Absorb the difference of range size of data
 - normalization

$$z_i = \frac{x_i - \mu_i}{\sigma_i}$$

standardization

$$z_i = \frac{x_i - x_i^{\min}}{x_i^{\max} - x_i^{\min}}$$

2. distance function

□ A distance function needs to satisfy the following conditions

Non negativity:
$$d(\vec{x}, \vec{y}) \ge 0$$
 (equality stands if and only if $\vec{x} = \vec{y}$)

symmetry:
$$d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$$

Triangle inequality:
$$d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z}) \ge d(\vec{x}, \vec{z})$$

□ In practice, some distance function might not satisfy some of the above conditions

Examples of distance functions

□ For continuous data, the followings are popular:

Euclid:

$$d_E(\vec{x}, \vec{y}) = \sqrt{\sum_i (x_i - y_i)^2}$$

Manhattan:

$$d_M(\vec{x}, \vec{y}) = \sum_i |x_i - y_i|$$

Standardized Euclid

$$d_N(\vec{x}, \vec{y}) = \frac{d_E(\vec{x}, \vec{y})}{\max_{x, y} d_E(\vec{x}, \vec{y})}$$

Examples of distance functions (cont'd)

As for categorical data, the following distance is popular:

```
e.g. d(male, male) = 0

d(male, female) = 1

d(female, male) = 1

d(female, female) = 0
```

Combination of distance functions

- □ If distance functions both for continuous data and for categorical data are necessary, we need to merge them as a single distance:
 - Summation
 - Euclid
 - Standardized sum

3. a combining function

- □ Predicts based on the records that have least values of a distance function
- □ Examples of combining functions

Advantage of MBR

- □ Advantage
 - Easy to understand why the result was output
 - Applicable to any data type
- Disadvantage
 - Takes long time if the number of existing records is huge