Report .1

Theta functions, Kronecker functions and bilinear relations

Artyom Lisitsyn

1 Introduction & Background

[Cha22] [Ber10]

2 Decomposition of functions

One of the goals we have as we describe complex functions on Riemann surfaces is to find a simple way to decompose any arbitrary function.

2.1 Genus-Zero decomposition

I wrote this proof myself as an exercise. I think I am missing something in terms of how to formally treat the point at infinity; without that, my arguments that no poles \implies bounded is not sound. See \dagger below.

Theorem 1 (Decomposition for Genus-Zero). Let f be a meromorphic function on \mathbb{C} (including the point at ∞). Let z_i be its zeros with multiplicity n_i and q_j be the poles with multiplicity p_j . Then, there exists a constant $C \in \mathbb{C}$ such that

$$f(z) = C \frac{\prod_{i} (z - z_i)^{n_i}}{\prod_{j} (z - q_j)^{p_j}}$$
 (.1|1)

This is equivalent to saying that a meromorphic function is uniquely defined, up to the scaling factor C, by the locations and multiplicity of its zeros and poles.

Proof. Consider a meromorphic function g with zeros and poles as described above. Let us define h as h(z) = f(z)/g(z). We will show that h(z) must be a constant function, thus showing that g is of the form desired. In order to show that h(z) is constant, we can show that it is bounded and then use Liouville's Theorem [refer to reportA5? or to a source?].

At all points besides the z_i and q_j , we see that f(z) and g(z) have no zeros or poles, so h(z) cannot have a pole at those locations.

For each zero z_i , with multiplicity n_i , we can write

$$f(z) = (z - z_i)^{n_i} \tilde{f}(z) \tag{112}$$

$$g(z) = (z - z_i)^{n_i} \tilde{g}(z) \tag{113}$$

for some holomorphic functions \tilde{f} and \tilde{g} defined on a disc around z_i that satisfy $\tilde{f} \neq 0 \neq \tilde{g}$. Then, on that disc we have $h(z) = \frac{\tilde{f}(z)}{\tilde{g}(z)}$. Since this is a ratio of two non-zero holomorphic functions, h does not have a pole at z_i .

Similarly, for each pole q_i with multiplicity p_i , we can write

$$f(z) = (z - q_j)^{-p_j} \tilde{f}(z)$$
(.1|4)

$$g(z) = (z - q_j)^{-p_j} \tilde{g}(z)$$
 (.1|5)

and conclude that h does not have poles at q_j either.

Since h has no poles, it must be bounded. † Some step is missing here.

2.2Genus-One decomposition

- 3 Main theorem
- Preconditions 3.1
- 3.2 Boundary conditions
- Proof 3.3

4 Outlook & open questions

Bibliography

 $[\mathrm{Ber}10]$ Marco Bertola. Riemann surfaces and theta functions mast 661 g / mast 837. 2010.

[Cha22] Zhi Cong Chan. Towards a higher-genus generalization of the kronecker function using schottky covers. 2022.