AOR Dr. Hendrik Kasten Mathematisches Institut

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK

26. November 2021

Modulformen 1 - Übungsblatt 6

Wintersemester 2021/22

Aufgabe 1 (8 Punkte)

In dieser Aufgabe behandeln wir Quasimodulformen, die wir wie folgt definieren möchten:

Definition: [Quasimodulform]

Eine holomorphe Funktion $f:\mathbb{H}\to\mathbb{C}$ heißt **Quasimodulform** vom Gewicht k und Tiefe p, kurz $f\in\mathfrak{Q}_{k,p}$, falls es holomorphe Funktionen $f_m:\mathbb{H}\to\mathbb{C}$ gibt, sodass

$$(f|_k M)(z) = \sum_{m=0}^{p} f_m(z) \left(\frac{c}{cz+d}\right)^m$$

für alle $M = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}_2(\mathbb{Z})$ gilt, und f holomorph bei ∞ ist.

Wie wir in Aufgabe 1a von Übungsblatt 3 gesehen haben, ist die Ableitung $g':=\frac{1}{2\pi i}\frac{dg}{dz}$ zu einer beliebigen holomorphen Modulform $g\in M_k$ eine Quasimodulform. Zeigen Sie die folgende Aussage:

(a) Die zu $f \in \mathfrak{Q}_{k,p}$ assoziierten $f_m : \mathbb{H} \to \mathbb{C}$ sind Quasimodulformen $f_m \in \mathfrak{Q}_{k-2m,p-m}$.

Weiterführend behandeln wir uns nun die Eisensteinreihe vom Gewicht 2, die bekanntermaßen keine holomorphe Modulform zur vollen Modulgruppe $\mathrm{SL}_2(\mathbb{Z})$ darstellt. Tatsächlich lässt sich zeigen, dass diese das Transformationsverhalten

$$G_2(M\langle z\rangle) = (cz+d)^2 G_2(z) - \pi i c(cz+d)$$
 für $z \in \mathbb{H}$

erfüllt und insbesondere der folgenden Fourier-Entwicklung genügt:

$$G_2(z) = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma_1(n)q^n$$
.

- (b) Weisen Sie nach, dass $g(lz) \in M_k(\Gamma_0(N))$ für alle $l \geq 1$ mit $l \mid N$ gilt.
- (c) Folgern Sie:

$$E_2(z) := G_2(z) - 2G_2(2z) \in M_2(\Gamma_0(2))$$
.

(d) Beweisen Sie mit E_2 aus (c), dass die **Serre-Ableitung** (nach Jean-Pierre SERRE)

$$\vartheta_k g := g' - \frac{k}{12} \cdot E_2 \cdot g$$

eine Modulform vom Gewicht k+2 ist.

Aufgabe 2 (4 Punkte)

In Proposition 3.8 haben Sie mit der Diskriminante $\Delta:\mathbb{H}\to\mathbb{C}$ eine Spitzenform vom Gewicht 12 zur vollen Modulgruppe kennengelernt. Zeigen Sie die folgenden Aussagen:

- (a) Eine ganze Modulform $f: \mathbb{H} \to \mathbb{C}$ ohne Nullstellen in \mathbb{H} ist ein konstantes Vielfaches von Δ^d für $d \in \mathbb{N}$.
- (b) Zu jedem Punkt $a \in \mathbb{H}$ existiert eine ganze Modulform $g \in M_{12}$, die in a, aber nicht identisch, verschwindet.
- (c) Jede meromorphe Modulform $h \in V_k$ ist als Quotient zweier ganzer Modulformen darstellbar.

Aufgabe 3 (3 Punkte)

Sei $k \geq 4$ eine gerade ganze Zahl. Nach Korollar 3.17 erzeugen die Poincaré-Reihen $P_{n,k}$ mit $n \geq 1$ den Raum S_k . Zeigen Sie, dass

$$\{P_{1,k}, P_{2,k}, \cdots, P_{d,k}\} \text{ mit } d = \dim_{\mathbb{C}}(S_k)$$

eine Basis von S_k bildet.

Aufgabe 4 (3 Punkte)

Sei $\Delta(z)=\sum_{n=1}^\infty \tau(n)q^n$ die Fourier-Entwicklung der Diskriminante $\Delta\in S_{12}$. Zeigen Sie für alle $n\in\mathbb{N}$ die Äquivalenz

$$\tau(n) = 0 \Leftrightarrow P_{n,12} \equiv 0 \Leftrightarrow g_n(n,12) = 0$$
.

Anmerkungen:

- Man bezeichnet die Zuordnung $\tau: \mathbb{N} \to \mathbb{Z}, n \mapsto \tau(n)$ als **Ramanujan'sche** τ -**Funktion** (nach Srinivasa RAMANUJAN).
- Der Vermutung von Lehmer (nach Derrick LEHMER) zufolge gilt: $\tau(n) \neq 0 \ \forall n \in \mathbb{N}$.

Abgabe: online über MaMpf bis Freitag, den 03. Dezember 2021, spätestens um 12 Uhr s. t.