ANALISE COMPLETA DO AMPLIACADE EMISSOR Comum com Pouseiração POR DIVISOR DE TENSÃO 1. TOPOLOGIA 2. DADOS Rs=1KQ, R1-40KQ; R2=20KQ; R==2KQ $Rc = 4K\Omega$; $R_{L} = 2K2$; $C_{S} = 10\mu F$; $C_{E} = 20\mu F$ $h_{fe} = \beta = 100$; Vcc = 20V; $Cc = 1\mu F$; $V_{gE} = 0.7V$ $V_{S} = 100 \text{ mV}$; $C_{be} = 36 \text{ pF}$; $C_{bc} = 4 \text{ pF}$; $C_{ce} = 1 \text{ pF}$; Cwi = GPF; Cwo = 8PF

tilibra

$V_{R2} = \frac{R2}{R_1 + R_2}, V_{CC} = \frac{30K}{40K + 10K}, 20 = 4V$ $V_{E} = V_{R2} - V_{BE} = 4 - 0, 7 = 3, 3V$ $I_{E} = \frac{V_{E}}{R_{E}} = \frac{3, 3}{2K} \stackrel{?}{=} 1, 6mA$ $V_{RC} = I_{E}, R_{C} = \frac{3}{1}, 6mA$ $V_{C} = V_{C} - V_{C} = 20 - 6, 4 = 13, 6V$ $V_{CE} = V_{C} - V_{E} = 13, 6 - 3, 3 = 30, 3V$ $V_{C} = V_{C} = V_{C} = \frac{20 - 6}{1}, \frac{4}{1}, \frac{2}{1} = \frac{10}{1}, \frac{3}{1} = \frac{10}{1}, \frac{3}{1} = \frac{10}{1}$ $V_{C} = V_{C} = V_{C} = \frac{26mV}{1} = \frac{16}{1}, \frac{25}{1} = \frac{16}$	3. ANA41:	SE DC
$V_{E} = V_{R2} - V_{BE} = 4 - 0, 7 = 3, 3 V$ $T_{E} = V_{E} = 3, 3 \approx 1, 6 \text{ mA}$ $V_{RC} = I_{E}, R_{C} = 1, 6 \text{ m. } 4K = 6, 4V$ $V_{C} = V_{C} - V_{RC} = 20 - 6, 4 = 13, 6V$ $V_{CE} = V_{C} - V_{E} = 13, 6 - 3, 3 = 10, 3V$ $P_{Q} = V_{CE}, T_{E} = 10, 3, 1, 6 \text{ m. } 2, 16 \text{ mW}$	V _{R2} =	R1+R2 Vce = 30K . 20 = 4V
$V_{RC} = I_{E} \cdot R_{C} = 1,6m \cdot 4K = 6,4V$ $V_{C} = V_{CC} - V_{RC} = 20 - 6,4 = 13,6V$ $V_{CE} = V_{C} - V_{E} = 13,6 - 3,3 = 10,3V$ $P_{Q} = V_{CE} \cdot I_{E} = 10,3 \cdot 1,6m \approx 16mW$		
$V_{C} = V_{CC} - V_{PC} = 20 - 6, 4 = 13,6 V$ $V_{CG} = V_{C} - V_{E} = 13,6 - 3,3 = 10,3 V$ $P_{Q} = V_{CE} \cdot I_{E} = 10,3 \cdot 1,6 m = 16 mW$	I_{ϵ} =	VE = 3,3 2 1,6 mA RE 2K
$V_{CE} = V_{C} - V_{E} = 13,6 - 3,3 = 10,3V$ $P_{Q} = V_{CE}, I_{E} = 10,3,1,6m = 16mW$		
PQ = VCE, IE = 10,3, 1,6m = 16mW		
TE 1,6mA = 16,25.0	PQ =	VcE, IE = 10,3,1,6m = 16mW
	re:	= 26 mV = 26 mV = 16,25.0 IE 1,6 mA

- Indiana	Vian	Zin	Ne			+
	- V(N =	Zin.	10/2			1
		tin+Ks				
	Via	1 35K	. 100 m V =	571		+
	Tin =	1246	1 JOOTH V =	Jimy		+
		1,35K+1K				
	la la		io,57mV=.	11. 001		
-	Av.	$V_{in} = -25$	0.57mV=	19,250		+
	NC	0				-
	Vout	= KL	. A. V.	=		
	(AC)	2 - 0	Avni Vin			
		ZOUTTEL				
		2.2K	14700	51		
	CAC	1.11 2 21	. 14,25 2 .			1
	(ac)	9K+2,2K				
		++++++				
						-
, st				179		-
						+
						1
					tili	· Ila

5,3 CAPACITION DE DESACOPLAMENTO DE EMISSOR PANIR211Rs tre DRE TCE Z== RE//(re+R1/1R2/1/Rs) = 1 2 TT. Le. Ce 211.25,13.20M = 327 Hz tilibra

tilibra