K — поле $\leadsto R = K[x_1, \dots, x_n]$ — кольцо многочленов от переменных x_1, \dots, x_n $M = \{ax_1^{k_1}x_2^{k_2}\dots x_n^{k_n} \mid a\in K\setminus\{0\}, k_i\in\mathbb{Z}_{\geqslant 0}\}$ — множество всех одночленов R $M_0 = \{x_1^{k_1}x_2^{k_2}\dots x_n^{k_n} \mid k_i\in\mathbb{Z}_{\geqslant 0}\}$ — множество всех одночленов R с единичным коэффициентом $f\in R\setminus\{0\}$ $\leadsto M(f)$ — все одночлены входящие в f

Определение. Лексикографический порядок на множестве $M: ax_1^{k_1}x_2^{k_2}\dots x_n^{k_n} > bx_1^{l_1}x_2^{l_2}\dots x_n^{l_n}$, если существует i, такое что $k_1 = l_1, k_2 = l_2, \dots, k_{i-1} = l_{i-1}$ и $k_i > l_i$.

Замечание. Верны следующие утверждения:

- (a) $m_1, m_2, m_3 \in M$ u $m_1 > m_2, m_2 > m_3 \Rightarrow m_1 > m_3$
- (6) $m_1, m_2, m \in M \text{ if } m_1 > m_2 \Rightarrow m_1 m > m_2 m$

Лемма. Не существует бесконечно убывающих цепочек $m_1 > m_2 > \dots$, где $m_i \in M$ при $\forall i \in \mathbb{N}$.

Определение. Старший член многочлена $f \in R \setminus \{0\}$ – это наибольший в лексикографическом порядке одночлен из M(f).

Обозначение: L(f).

Лемма (о старшем члене). $f, g \in R \setminus \{0\} \Rightarrow L(f \cdot g) = L(f) \cdot L(g)$.

Пусть $f,g \in R \setminus \{0\}$ и g содержит одночлен m, такой что $m : L(f) \Rightarrow m = m' \cdot L(f)$, где $m' \in M$. Элементарная редукция: $g \leadsto g - m'f$ (обозначение: $g \stackrel{f}{\to} g' = g - m'f$). В результате в многочлене g многочлен m заменяется суммой нескольких меньших одночленов.

Рассмотрим систему $F \subseteq R \setminus \{0\}$.

Определение. Многочлен g редуцируется к g' при помощи системы F, если существует цепочка элементарных редукций $g \stackrel{f_1}{\to} g_1 \stackrel{f_2}{\to} g_2 \stackrel{f_3}{\to} \dots \stackrel{f_k}{\to} g_k = g', f_i \in F$.

Обозначение: $g \leadsto g'$.

Определение. Многочлен g нередущируем относительно F, если $\forall m \in M(g)$ и $\forall f \in F$ выполнено $m \not : L(f)$.

Лемма. $G \subseteq R \setminus \{0\}$ \Rightarrow всякая последовательность элементарных редукций относительно F за конечное число шагов приводит к нередуцируемому многочлену.

Определение. Если $g \stackrel{F}{\leadsto} r$ и r – нередуцируем, то r называется *остатком* многочлена g относительно системы F.

Замечание. Вообще говоря, остаток определён неоднозначно.

Определение. Множество F называется cucmemoй $\Gamma p\"e\'bhepa$, если $\forall g \in R$ остаток многочлена g относительно F определён однозначно, то есть не зависит от приводящей к нему цепочки элементарных редукций.

Предложение. Следующие условия эквивалентны:

- (a) F система Грёбнера
- (б) $\forall g \in R$ обладает следующим свойством: если $g \stackrel{f_1}{\to} g_1$ и $g \stackrel{f_2}{\to} g_2$ для некоторых $f_1, f_2 \in F$, то существует $g^{'} \in R$, такой что $g_1 \stackrel{F}{\to} g^{'}$ и $g_2 \stackrel{F}{\to} g^{'}$

Утверждение. Для всяких $g_1,g_2\in R$ и системы $F\subseteq R$ верно следующее:

- (a) $g_1 \stackrel{F}{\leadsto} g_2 \Rightarrow \forall m \in M : mg_1 \stackrel{F}{\leadsto} mg_2$
- (б) $g_1 g_2 \overset{F}{\leadsto} 0 \Rightarrow \exists g: g_1 \overset{F}{\leadsto} g$ и $g_2 \overset{F}{\leadsto} g$

Пусть $f_1, f_2 \in R \setminus \{0\}$ и $HOK(f_1, f_2) = m$. Рассмотрим одночлены $m_1, m_2 \in M$, такие что выполнено $m = m_1 \cdot L(f_1) = m_2 \cdot L(f_2)$.

Определение. Многочлен $S(f_1, f_2) = m_1 f_2 - m_2 f_2$ называется S-многочленом (S-полиномом) многочленов f_1 и f_2 .

Замечание. $S(f_1, f_2) = -S(f_1, f_2)$.

Теорема (критерий Бухбергера). Для системы $F \in R \setminus \{0\}$ следующие условия эквивалентны:

- (а) F система Грёбнера
- (б) $\forall f_1, f_2 \in F$ верно $S(f_1, f_2) \stackrel{F}{\leadsto} 0$

Следствие. Если существуют $f_1, f_2 \in F$, такие что $S(f_1, f_2) \stackrel{F}{\leadsto} r \neq 0$ (где r – остаток), то F не система Грёбнера.

Задание 1. Какие значения может принимать длина убывающей (в лексикографическом порядке) цепочки одночленов от переменных x_1, x_2, x_3 , начинающийся с одночлена $x_1^3 x_2^2 x_3$ и заканчивающийся одночленом $x_1^3 x_2 x_3^2$.

- 1. Докажем, что цепочка может быть любой длины большей или равной двум. Цепочка единичной и нулевой длины не может быть получена, так как по условию в ней обязательно должны быть одночлены $x_1^3x_2^2x_3$ и $x_1^3x_2x_3^2$, а их уже две штуки.
 - Получаем, что минимальная длина цепочки два. Она достигается для $x_1^3x_2^2x_3>x_1^3x_2x_3^2$.
- 2. Для каждого натурального n>2 покажем, как получить цепочку длины n. Заметим, что для любого натурального k>2 верно $x_1^3x_2^2x_3>x_1^3x_2x_3^k>x_1^3x_2x_3^2$. Из последнего равенства становится понятно, как построить цепочку требуемой длины:

$$x_1^3 x_2^2 x_3 > x_1^3 x_2 x_3^n > x_1^3 x_2 x_3^{n-1} > \ldots > x_1^3 x_2 x_3^3 > x_1^3 x_2 x_3^2$$

Одночленов вида $x_1^3x_2x_3^k$ в цепочке n-1 штука, а других видов – одна штука. Таким образом, в цепочке n-1+1=n одночленов, то есть длина цепочки n.

Также заметим, что для каждого n>2 построенная цепочка не единственная возможная цепочка длины n. Например, первый после $x_1^3x_2^2x_3$ одночлен в цепочке можно заменить на $x_1^3x_2^2$.

Ответ: $n \geqslant 2, n \in \mathbb{N}$

Задание 2. Найдите остаток многочлена g относительно системы $\{f\}$, где

$$g = x_2^4 x_3^5 + 2x_1 x_2^4 x_3 + x_1^2 x_2^2 f = x_2^4 x_3 - 2x_1 x_2 x_3^2 + x_1 x_2^2$$

- 1. Описанная система $F = \{f\}$ система Грёбнера, так как для любых двух многочленов $f_1, f_2 \in F$ их S-полином равен $S(f_1, f_2) = S(f, f) = 0$. Из последнего следует, что остаток многочлена g относительно системы $\{f\}$ определён однозначно в независимости от цепочки элементарных редукций.
- 2. Проделаем следующие элементарные редукции:

$$x_{1}^{2}x_{2}^{2} + 2x_{1}x_{2}^{4}x_{3} + x_{2}^{4}x_{3}^{5} \xrightarrow{-x_{1} \cdot f}$$

$$\xrightarrow{-x_{1} \cdot f} x_{1}^{2}x_{2}^{2} + 2x_{1}x_{2}^{4}x_{3} + x_{2}^{4}x_{3}^{5} - (x_{1}^{2}x_{2}^{2} - 2x_{1}^{2}x_{2}x_{3}^{2} + x_{1}x_{2}^{4}x_{3}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + x_{1}x_{2}^{4}x_{3} + x_{2}^{4}x_{3}^{5} \xrightarrow{-x_{2}^{2}x_{3} \cdot f}$$

$$\xrightarrow{-x_{2}^{2}x_{3} \cdot f} 2x_{1}^{2}x_{2}x_{3}^{2} + x_{1}x_{2}^{4}x_{3} + x_{2}^{4}x_{3}^{5} - (x_{1}x_{2}^{4}x_{3} - 2x_{1}x_{2}^{3}x_{3}^{3} + x_{2}^{6}x_{3}^{2}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + 2x_{1}x_{2}^{3}x_{3}^{3} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} \xrightarrow{-2x_{2}x_{3}^{3} \cdot f}$$

$$\xrightarrow{-2x_{2}x_{3}^{3} \cdot f} 2x_{1}^{2}x_{2}x_{3}^{2} + 2x_{1}x_{2}^{3}x_{3}^{3} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - (2x_{1}x_{2}^{3}x_{3}^{3} - 4x_{1}x_{2}^{2}x_{3}^{5} + 2x_{2}^{5}x_{3}^{4}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + 4x_{1}x_{2}^{2}x_{3}^{5} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} \xrightarrow{-4x_{3}^{5} \cdot f}$$

$$\xrightarrow{-4x_{3}^{5} \cdot f} 2x_{1}^{2}x_{2}x_{3}^{2} + 4x_{1}x_{2}^{2}x_{3}^{5} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} - (4x_{1}x_{2}^{2}x_{3}^{5} - 8x_{1}x_{2}x_{3}^{7} + 4x_{2}^{4}x_{3}^{6}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + 8x_{1}x_{2}x_{3}^{7} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} - (4x_{1}x_{2}^{2}x_{3}^{5} - 8x_{1}x_{2}x_{3}^{7} + 4x_{2}^{4}x_{3}^{6}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + 8x_{1}x_{2}x_{3}^{7} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} - (4x_{1}x_{2}^{2}x_{3}^{5} - 8x_{1}x_{2}x_{3}^{7} + 4x_{2}^{4}x_{3}^{6}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + 8x_{1}x_{2}x_{3}^{7} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} - (4x_{1}x_{2}^{2}x_{3}^{5} - 8x_{1}x_{2}x_{3}^{7} + 4x_{2}^{4}x_{3}^{6}) =$$

$$= 2x_{1}^{2}x_{2}x_{3}^{2} + 8x_{1}x_{2}x_{3}^{7} + x_{2}^{4}x_{3}^{5} - x_{2}^{6}x_{3}^{2} - 2x_{2}^{5}x_{3}^{4} - 4x_{2}^{4}x_{3}^{6}$$

3. Полученный многочлен нередуцируем относительно $\{f\}$, так как каждый его одночлен не делится на старший член f, который равен $L(f) = x_1 x_2^2$. Получаем, что найденный многочлен искомый остаток.

Ответ: $2x_1^2x_2x_3^2 + 8x_1x_2x_3^7 + x_2^4x_3^5 - x_2^6x_3^2 - 2x_2^5x_3^4 - 4x_2^4x_3^6$

Задание 3. Выясните, является ли множество $\{f_1, f_2, f_3\}$ системой Грёбнера, где

$$f_1 = 2x_1x_2 + 4x_1x_3 + x_2x_3^2$$
 $f_2 = 4x_1x_3^2 + x_2x_3^3 - 4$ $f_3 = x_2^2x_3^3 - 4x_2 - 8x_3$

- 1. Воспользуемся критерием Бухбергера и с его помощью проверим, является ли описанное множество $F = \{f_1, f_2, f_3\}$ системой Грёбнера. Другими словами: надо проверить, что S-полином любых $f_i, f_j \in F$ редуцируется к 0 относительно F.
- 2. Проверим редуцируемость к нулю полинома $S(f_1, f_2)$. Для этого найдём наименьшее общее кратное старших членов: $m = \text{HOK}(L(f_1), L(f_2)) = 4x_1x_2x_3^2$.

$$\begin{array}{l} m = L(f_1) \cdot 2x_3^2 \\ m = L(f_2) \cdot x_2 \end{array} \Rightarrow S(f_1, f_2) = 4x_1x_2x_3^2 + 8x_1x_3^3 + 2x_2x_3^4 - (4x_1x_2x_3^2 + x_2^2x_3^3 - 4x_2)$$

Получаем: $S(f_1,f_2)=8x_1x_3^3+2x_2x_3^4-x_2^2x_3^3+4x_2$. Выполним следующие элементарные редукции:

$$8x_{1}x_{3}^{3} + 2x_{2}x_{3}^{4} - x_{2}^{2}x_{3}^{3} + 4x_{2} \xrightarrow{-2x_{3} \cdot f_{2}}$$

$$\xrightarrow{-2x_{3} \cdot f_{2}} 8x_{1}x_{3}^{3} + 2x_{2}x_{3}^{4} - x_{2}^{2}x_{3}^{3} + 4x_{2} - (8x_{1}x_{3}^{3} + 2x_{2}x_{3}^{4} - 8x_{3}) =$$

$$= -x_{2}^{2}x_{3}^{3} + 4x_{2} + 8x_{3} \xrightarrow{f_{3}} -x_{2}^{2}x_{3}^{3} + 4x_{2} + 8x_{3} + (x_{2}^{2}x_{3}^{3} - 4x_{2} - 8x_{3}) = 0$$

Найденный полином редуцируется относительно F к нулю: $S(f_1, f_2) \stackrel{F}{\leadsto} 0$.

3. Проверим редуцируемость к нулю полинома $S(f_1, f_3)$. Для этого найдём наименьшее общее кратное старших членов: $m = \text{HOK}(L(f_1), L(f_3)) = 2x_1x_2^2x_3^3$.

$$\begin{array}{l} m = L(f_1) \cdot x_2 x_3^3 \\ m = L(f_3) \cdot 2x_1 \end{array} \Rightarrow S(f_1, f_3) = 2x_1 x_2^2 x_3^3 + 4x_1 x_2 x_3^4 + x_2^2 x_3^5 - (2x_1 x_2^2 x_3^3 - 8x_1 x_2 - 16x_1 x_3)$$

Получаем: $S(f_1, f_2) = 4x_1x_2x_3^4 + x_2^2x_3^5 + 8x_1x_2 + 16x_1x_3$. Выполним следующие элементарные редукции:

$$4x_1x_2x_3^4 + x_2^2x_3^5 + 8x_1x_2 + 16x_1x_3 \xrightarrow{-x_2x_3^2 \cdot f_2}$$

$$\xrightarrow{-x_2x_3^2 \cdot f_2} 4x_1x_2x_3^4 + x_2^2x_3^5 + 8x_1x_2 + 16x_1x_3 - (4x_1x_2x_3^4 + x_2^2x_3^5 - 4x_2x_3^2) =$$

$$= 8x_1x_2 + 16x_1x_3 + 4x_2x_3^2 \xrightarrow{-4 \cdot f_1} 8x_1x_2 + 16x_1x_3 + 4x_2x_3^2 - (8x_1x_2 + 16x_1x_3 + 4x_2x_3^2) = 0$$

Найденный полином редуцируется относительно F к нулю: $S(f_1, f_3) \stackrel{F}{\leadsto} 0$.

4. Проверим редуцируемость к нулю полинома $S(f_2, f_3)$. Для этого найдём наименьшее общее кратное старших членов: $m = \text{HOK}(L(f_2), L(f_3)) = 4x_1x_2^2x_3^3$.

$$\begin{array}{ll} m = L(f_2) \cdot x_2^2 x_3 \\ m = L(f_3) \cdot 4x_1 \end{array} \Rightarrow S(f_2, f_3) = 4x_1 x_2^2 x_3^3 + x_2^3 x_3^4 - 4x_2^2 x_3 - (4x_1 x_2^2 x_3^3 - 16x_1 x_2 - 32x_1 x_3) \end{array}$$

Получаем: $S(f_2, f_3) = x_2^3 x_3^4 - 4x_2^2 x_3 + 16x_1 x_2 + 32x_1 x_3$. Выполним следующие элементарные редукции:

$$x_{2}^{3}x_{3}^{4} - 4x_{2}^{2}x_{3} + 16x_{1}x_{2} + 32x_{1}x_{3} \xrightarrow{-8 \cdot f_{1}}$$

$$\xrightarrow{-8 \cdot f_{1}} x_{2}^{3}x_{3}^{4} - 4x_{2}^{2}x_{3} + 16x_{1}x_{2} + 32x_{1}x_{3} - (16x_{1}x_{2} + 32x_{1}x_{3} + 8x_{2}x_{3}^{2}) =$$

$$= x_{2}^{3}x_{3}^{4} - 4x_{2}^{2}x_{3} - 8x_{2}x_{3}^{2} \xrightarrow{-x_{2}x_{3} \cdot f_{3}} x_{2}^{3}x_{3}^{4} - 4x_{2}^{2}x_{3} - 8x_{2}x_{3}^{2} - (x_{2}^{3}x_{3}^{4} - 4x_{2}^{2}x_{3} - 8x_{2}x_{3}^{2}) = 0$$

Найденный полином редуцируется относительно F к нулю: $S(f_2, f_3) \stackrel{F}{\leadsto} 0$.

5. Другие S-полиномы также редуцируются к нулю:

$$S(f_{2}, f_{1}) = -S(f_{1}, f_{2}) \stackrel{F}{\leadsto} 0 \qquad S(f_{3}, f_{1}) = -S(f_{1}, f_{3}) \stackrel{F}{\leadsto} 0 \qquad S(f_{3}, f_{2}) = -S(f_{2}, f_{3}) \stackrel{F}{\leadsto} 0$$

$$S(f_{1}, f_{1}) = 0 \stackrel{F}{\leadsto} 0 \qquad S(f_{2}, f_{2}) = 0 \stackrel{F}{\leadsto} 0 \qquad S(f_{3}, f_{3}) = 0 \stackrel{F}{\leadsto} 0$$

Получаем, что для любых $f_i, f_j \in F$ их S-полином редуцируется к нулю относительно F.

6. Таким образом, по критерию Бухбергера: F – система Грёбнера.

Ответ: является системой Грёбнера

Задание 4. Докажите, что множество $F \subseteq K[x] \setminus \{0\}$ является системой Грёбнера тогда и только тогда, когда существует такой многочлен $f \in F$, который делит любой многочлен из F.

- 1. Докажем, что если $F = \{f_1, \dots, f_n\} \subseteq K[x] \setminus \{0\}$ система Грёбнера, то существует $f \in F$, который делит любой многочлен из F.
 - Система F система Грёбнера, значит, для разных цепочек элементарных редукций остаток многочлена относительно F определён однозначно, а также $S(f,g) \stackrel{F}{\leadsto} 0$ для всех f и g в F.
 - Пусть $f \in F$ многочлен в F с минимальной степенью, то есть степени остальных многочленов в F больше либо равны $\deg f$.
 - Покажем, что других многочленов $\deg f$ с точностью до умножения на константу в F быть не может. Пусть $g \in F$ другой многочлен $\deg g = \deg f$ и $f \neq C \cdot g$, тогда рассмотрим $S(f,g) = C_1 f C_2 g$ (старшие члены f и g равны с точностью до умножения на константу).
 - Степень S меньше $\deg f$ (при определённых C_1, C_2 старшие члены f и g сокращаются), то есть S нередуцируем относительно F, так как всякий одночлен S не делится на старший член любого многочлена из F. Но $S(f,g) \stackrel{F}{\leadsto} 0$, значит, S=0 и $f=C\cdot g$ противоречие.
 - Рассмотрим S-полином многочленов f и $g \in F$. Пусть $\deg f = m$ и $\deg g = n$. Так как у f минимальная степень, а рассматриваемые многочлены многочлены от одной переменной, получаем $\mathrm{HOK}(L(f),L(g)) = L(g)$ и $S(f,g) = x^{n-m}f g$.
 - Проведём элементарную редукцию над рассматриваемым S-полиномом $x^{n-m}f-g$. Каждую редукцию будем проводить только с помощью многочлена f. Он имеет минимальную степень, поэтому может быть применён на любом этапе редукции.
 - В результате редукции получим остаток деления многочлена S(f,g) на f. Так как этот остаток не зависит от цепочки редукций и $S(f,g) \stackrel{F}{\leadsto} 0$, получаем, что $S(f,g) \stackrel{:}{:} f$. Последнее верно в силу $S(f,g) \stackrel{m_1 \cdot f}{\longrightarrow} S'(f,g) \stackrel{m_2 \cdot f}{\longrightarrow} \dots \stackrel{m_k \cdot f}{\longrightarrow} 0$, то есть следующая сумма равна нулю: $x^{n-m}f g + m_1f + m_2f \dots + m_kf = 0$. Каждое преобразование не меняет остаток деления S(f,g) на f, а этот остаток равен 0.
 - Также взяв остатки от обеих частей описанного равенства относительно многочлена f получим: $x^{n-m}f g + m_1 f + m_2 f \dots + m_k f \equiv -g \equiv 0$. То есть g делится на f.
- 2. Докажем в другую сторону. Если в системе F существует многочлен, делящий любой многочлен рассматриваемой системы, то S-полином каждых $f_1, f_2 \in F$ делится на f:

$$S(f_1,f_2) = \underbrace{m_1 f_1}_{ ext{делится на } f} - \underbrace{m_2 f_2}_{ ext{делится на } f}$$

Так как S-полином каждых двух многочленов делится на f, для любых $f_1, f_2 \in F$ существует $g \in K[x] \setminus \{0\}$, такой что $S(f_1, f_2) = g \cdot f$. Значит $S(f_1, f_2) \stackrel{-g \cdot f}{\longrightarrow} 0$, то есть редуцируется к нулю относительно системы F.

По критерию Бухбергера: F – система Грёбнера.