

Chittagong University of Engineering & Technology

EEE-496

DIGITAL SIGNAL PROCESSING SESSIONAL

Class Performance of lab-02.

Submitted by: MD. Sayedul ID: 1702079 Section: B

 $\begin{array}{c} \textit{Submitted to:} \\ \textit{Dr. Muhammad Ahsan Ullah} \\ \textit{Professor} \\ \textit{Dept. of EEE} \end{array}$

Contents

1	User defined function			
	1.1	Impulse function which take only one input	2	
	1.2	Step function which take only one input		
	1.3	Ramp function which take only one input		
	1.4	Parabolic function		
2	Implulse function with delay			
	2.1	Code	2	
		Figure		
3	Step function with delay			
	3.1	Code	3	
		Figure		
4	Rar	np function with delay	4	
		Code	4	
		Figure		
5	Par	rabolic function with delay	5	
		Code		
		Figure		

1 User defined function

1.1 Impulse function which take only one input

```
function out=DeltaFunction(n)
if n==0
    out=1;
else
    out=0;
end
end
```

1.2 Step function which take only one input

```
function out=StepFunction(n)
if n≥0
    out=1;
else
    out=0;
end
end
```

1.3 Ramp function which take only one input

```
function out=RampFunction(n)
out=n*StepFunction(n);
end
```

1.4 Parabolic function

```
function out=parabolic(n)
out=n^2*StepFunction(n);
end
```

2 Implulse function with delay

```
clc;
clear;
close all;
n=-3:13;
delt=zeros(size(n));
delt_5=zeros(size(n));
for i=1:length(n)
```

```
delt(i) = DeltaFunction(n(i));
    delt_5(i) = DeltaFunction(n(i) - 5);
end
figure
stem(n, delt, "filled", "linewidth", 1.5, "color", [62/256
   19/256 191/256])
plt = [];
plt.XLabel='Discrete time n'
plt.YLabel="impulse[n]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
figure
stem(n, delt_5, "filled", "linewidth", 1.5, "color", "k")
plt = [];
plt.XLabel='Discrete time n'
plt.YLabel="impulse[n-5]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
```


Figure 1: (a) Unit impulse signal $\delta[n]$ (b) Unit impulse signal with delay; $\delta[n-5]$

3 Step function with delay

```
clc;
clear;
close all;
n = -5:10;
step=zeros(size(n));
step_5=zeros(size(n));
for i=1:length(n)
    step(i)=10*StepFunction(n(i));
    step_5(i) = 10 * StepFunction(n(i) - 5);
end
figure
stem(n, step, "filled", "linewidth", 1.5, "color", [62/256
   19/256 191/256])
plt = [];
plt.XLabel='Discrete time n'
plt.YLabel="u[n]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
figure
stem(n, step_5, "filled", "linewidth", 1.5, "color", "k")
plt=[];
plt.XLabel='Discrete time n'
plt.YLabel="u[n-5]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
```

4 Ramp function with delay

```
clc;
clear;
close all;
n=-3:13;
ramp=zeros(size(n));
ramp_5=zeros(size(n));
for i=1:length(n)
    ramp(i)=RampFunction(n(i));
    ramp_5(i)=RampFunction(n(i)-5);
end
```


Figure 2: (a) Unit step signal u[n] (b) Unit step signal with delay; u[n-5]

```
figure
stem(n, ramp, "filled", "linewidth", 1.5, "color", [62/256
   19/256 191/256])
plt = [];
plt.XLabel='Discrete time n'
plt.YLabel="r[n]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
figure
stem(n, ramp_5, "filled", "linewidth", 1.5, "color", "k")
plt = [];
plt.XLabel='Discrete time n'
plt.YLabel="r[n-5]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
```

5 Parabolic function with delay

```
clc;
clear;
close all;
```


Figure 3: (a) Ramp signal r[n] (b) Ramp signal with delay; r[n-5]

```
n = -3:13;
parab=zeros(size(n));
parab_5=zeros(size(n));
for i=1:length(n)
    parab(i)=parabolic(n(i));
    parab_5(i)=parabolic(n(i)-5);
end
figure
stem(n, parab, "filled", "linewidth", 1.5, "color", [62/256]
   19/256 191/256])
plt = [];
plt.XLabel='Discrete time n'
plt.YLabel="p[n]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
figure
stem(n, parab_5, "filled", "linewidth", 1.5, "color", "k")
plt=[];
plt.XLabel='Discrete time n'
plt.YLabel="p[n-5]";
plt.XGrid="on";
plt.YGrid="on";
plt.ShowBox="off";
setPlotProp(plt)
```


Figure 4: (a) Parabolic signal r[n] (b) Parabolic signal with delay; r[n-5]