Analyse d'une simulation de centrifugeuse avec moteur CC

June 7, 2025

Objectif de la simulation

Le but de cette simulation est d'étudier le comportement dynamique d'une particule soumise à la force centrifuge dans un système tournant. La particule est reliée à l'axe de rotation par un ressort et un amortisseur, et l'ensemble est animé par un moteur à courant continu (CC) en boucle ouverte.

On cherche à tracer la distance radiale d de la particule par rapport à l'axe, en fonction de la vitesse de rotation ω du moteur.

Modèle physique

Le système se compose de :

- un moteur CC qui fournit une rotation selon la tension appliquée ;
- une particule mobile glissant sur un bras radial;
- un ressort linéaire ramenant la particule vers l'axe ;
- un amortisseur linéaire pour stabiliser les oscillations.

Les forces appliquées à la particule sont :

- Force centrifuge : $F_c = m \cdot \omega^2 \cdot d$
- Force de rappel du ressort : $F_r = -k \cdot d$
- Amortissement : $F_a = -c \cdot \dot{d}$

L'équation différentielle du mouvement est :

$$m \cdot \ddot{d} = m \cdot \omega^2 \cdot d - k \cdot d - c \cdot \dot{d}$$

Résultat en régime permanent

En régime permanent, on a $\ddot{d} \approx 0$ et $\dot{d} \approx 0$, donc :

$$m \cdot \omega^2 \cdot d = k \cdot d \Rightarrow d \cdot (k - m\omega^2) = 0$$

Deux cas apparaissent :

- d = 0 (équilibre trivial, instable)
- $\omega^2 = k/m$ (valeur critique de vitesse)

Lorsque ω approche $\sqrt{k/m},$ le dénominateur de d devient très petit, ce qui provoque une croissance rapide de d:

$$d = \frac{m \cdot \omega^2}{k - m \cdot \omega^2}$$

Analyse des résultats de simulation

Le graphe obtenu montre que :

- pour de faibles vitesses ω , la distance d reste faible ;
- à l'approche de la vitesse critique $\omega_c = \sqrt{k/m}$, d augmente rapidement ;
- le système devient instable lorsque $\omega \to \omega_c^-$.

Conclusion

Le comportement du système est physiquement cohérent :

- Le ressort contrebalance la force centrifuge jusqu'à une certaine limite.
- L'amortisseur permet d'atteindre plus rapidement un régime stable.
- Le modèle montre que le système est instable si la force centrifuge dépasse la capacité du ressort à retenir la particule.

Ce type de modèle peut représenter des mécanismes réels comme les régulateurs centrifuges ou des masses tournantes en robotique.