SEMAINE DU 13/03 AU 17/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(K[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet \mathfrak{a} pour racine \mathfrak{si} et seulement \mathfrak{si} il est divisible par $X-\mathfrak{a}$. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré \mathfrak{n} admet au plus \mathfrak{n} racines.

2 Méthodes à maîtriser

- ▶ Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- ▶ Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- ▶ Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- ▶ Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir des racines à partir d'une racine donnée.
- ▶ Faire le lien entre divisibilité et racine.

3 Questions de cours

- ▶ Démontrer la formule de Taylor pour les polynômes.
- ▶ Soit $P \in \mathbb{K}[X]$ tel que P(X + 1) = P(X). Montrer que P est constant.
- ▶ Démontrer la formule de Leibniz pour les polynômes par récurrence : $(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$.
- ▶ Soit $A \in \mathbb{K}[X] \setminus \{0\}$. Montrer que l'application D qui à $P \in \mathbb{K}[X]$ associe le reste de la division euclidienne de P par A est un projecteur de $\mathbb{K}[X]$.