Popravni kolokvij iz Fizike II 20. 9. 2006

- 1. Elektron, ki ima sprva hitrost enako 70% hitrosti svetlobe, začnemo zavirati z električnim poljem, ki je usmerjeno v smeri gibanja elektrona in ima jakost 10^6 V/m. Kolikšno pot prepotuje elektron med zaviranjem?
- 2. Žarek delcev α s kinetično energijo 5.3 MeV in jakostjo 10^3 delcev/s pravokotno vpada na 150 nm debel listič zlata (gostota $193 \, \mathrm{kg/m^3}, \ Z = 79, \ A = 197.$ Sipane delce α zaznamo v detektorju z občutljivo površino $1 \, \mathrm{cm^2}$ na oddaljenosti $10 \, \mathrm{cm}$ od mesta vpada žarka. Izračunaj število delcev na časovno enoto, ki jih zaznamo v detektorju, postavljenem pod kotom $\pi/4!$ Izraz za Rutherfordov presek je

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{e_1 e_2}{16\pi\varepsilon_0 W_\mathrm{k}}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}} \,.$$

- 3. Izračunaj gostoto elektronov in električno prevodnost pri sobni temperaturi za germanij, v katerem je koncentracija primesi donorja $10^{24}/\mathrm{m}^3$. Upoštevaj, da zaradi tako velike koncentracije vsi donorski atomi niso ionizirani, temveč je verjetnost za zasedenost donorskih stanj podana s Fermijevo funkcijo. Prispevek elektronov z valenčnega pasu lahko seveda zanemariš. Širina energijske špranje je $0.67~\mathrm{eV}$, ionizacijska energija donorskega nivoja je $0.02~\mathrm{eV}$, gibljivost elektronov je $0.28~\mathrm{m}^2/\mathrm{Vs}$, efektivni masi vzami enaki masi elektrona.
- 4. Izračunaj razmerje med verjetnostma, da elektron v pravokotni (neskončni) potencialni jami širine 1 nm z emisijo električnega dipolnega sevanja preide iz tretjega vzbujenega v osnovno stanje oziroma iz prvega vzbujenega v osnovno stanje! Napotek: koordinatno izhodišče naj bo v sredini jame. Izračunaj še razmerje med številoma elektronov, ki so po času 1 ns še vedno v obeh vzbujenih stanjih. (Ob tvorbi vzbujenih stanj naj bosta števili enaki.)