Special Matrices and their Properties

Arrows indicate subset or special case relationships. Additional arrows show overlaps.

Term	Definition	Unique Attributes / Key Properties
Diagonal	$a_{ij} = 0 \text{ for } i \neq j$	- Determinant is product of diagonal entries
		- Eigenvalues are diagonal entries
		- A^k is diagonal with entries raised to k
Symmetric	$A = A^T$, i.e., $a_{ij} = a_{ji}$	- All eigenvalues are real
		- Eigenvectors for distinct eigenvalues are orthogonal
		- Diagonalizable via orthogonal matrices
Identity (I)	$I_{ij} = \delta_{ij}$	-AI = IA = A
		$-I^{-1}=I$
		- All eigenvalues are 1
Invertible (Non-singular)	Exists A^{-1} such that $AA^{-1} = A^{-1}A = I$	$-\det(A) \neq 0$
		- Linearly independent rows and columns
		- No zero eigenvalues
Singular	A square matrix with $det(A) = 0$	- Not invertible
		- May have linearly dependent rows or columns
		- At least one zero eigenvalue
Orthogonal	$A^{-1} = A^T$, so $A^T A = I$	- Rows and columns form an orthonormal set
		- Preserves lengths and angles
		$-\det(A) = \pm 1$
	Generalized inverse A^{\dagger} satisfying the four Penrose conditions	- Always exists and is unique for any matrix
		- If $A \in \mathbb{R}^{m \times n}$ has full column rank $(m \ge n)$:
Danidainman		$A^{\dagger} = (A^T A)^{-1} A^T$, and $A^{\dagger} A = I_n$
Pseudoinverse (Moore-		- If A has full row rank $(n \ge m)$:
		$A^{\dagger} = A^T (AA^T)^{-1}$, and $AA^{\dagger} = I_m$
Penrose)		- If A is square and invertible: $A^{\dagger} = A^{-1}$
		- Used in least-squares solutions and underdetermined sys-
		tems
Positive Definite	$\vec{x}^T A \vec{x} > 0$ for all non-zero \vec{x}	- All eigenvalues are positive
		$-\det(A) > 0$
		- Invertible
Positive Semi- Definite	$A = A^T, \vec{x}^T A \vec{x} \ge 0 \text{ for all } \vec{x}$	- All eigenvalues are non-negative
		$-\det(A) \ge 0$
		- Always symmetric
		- Can always be written as X^TX for some X (Gram matrix)
		- Defines a semi-inner product
		F-33330

Triangular (Up-	Upper: $a_{ij} = 0$ for $i > j$;	- Determinant is product of diagonal entries
per / Lower)	Lower: $a_{ij} = 0$ for $i < j$	- Eigenvalues are diagonal entries
per / Lower)	Lower. $a_{ij} = 0$ for $i < j$	- Solves systems efficiently via substitution
Skew-Symmetric	$A = -A^T$, so $a_{ii} = 0$	- Eigenvalues are 0 or purely imaginary
		$-\vec{x}^T A \vec{x} = 0$ for all \vec{x}
Idempotent	$A^2 = A$	- Used in projection operations
		- Eigenvalues are 0 or 1
Nilpotent	$A^k = 0$ for some $k \in \mathbb{N}$	- All eigenvalues are 0
Onthogonal Dro	Linear transformation P	- Projects onto a subspace along its orthogonal complement
Orthogonal Pro-		- Minimizes distance to the subspace (best approximation)
jection	where $P^2 = P$ and $P = P^T$	- $\operatorname{Im}(P)$ is a subspace; $\operatorname{Ker}(P) = \operatorname{Im}(I - P)$
Linear Map	Function $T: V \to W$ satis-	- Represented by a matrix in finite dimensions
(Transforma-	fying $T(a\vec{x} + b\vec{y}) = aT(\vec{x}) +$	- Preserves linear structure
tion)	$bT(\vec{y})$	- Kernel and image define fundamental subspaces
		- Column space: span of columns (range of A)
Fundamental	Column space, row space,	- Row space: span of rows = col space of A^T
Subspaces	null space, left null space	- Null space: solutions to $A\vec{x} = 0$
		- Left null space: null space of A^T
		$-U^{\dagger}U = UU^{\dagger} = I$
Unitary	$U^{\dagger} = U^{-1}$, where U^{\dagger} is the	- Preserves inner products: $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$
	conjugate transpose of U	- All eigenvalues lie on the unit circle: $ \lambda =1$
		- Generalization of orthogonal matrices to complex space