Part (a)

Show that the set $\{1, 2, 4, 8, 16, ...\}$ of powers of 2 is Δ -definable.

The set can be defined by $\phi(x) :\equiv (\exists y < x)(SS0Ey = x)$ which is a Δ -formula.

Part (b)

Suppose $A \subseteq \mathbb{N}$ is a Σ -definable set.

Required: Show that the complement $\mathbb{N} \setminus A$ is Π -definable.

Let $\phi(x)$ be the Σ -formula such that,

1. $\forall a \in A, \mathfrak{N} \models \phi(\overline{a})$ and

2. $\forall b \notin A, \mathfrak{N} \models \neg \phi(\overline{b}).$

We know that the negation of any Σ -formula is logically equivalent to a Π -formula, since the set of Σ -formulas and the set of Π -formulas are the same, except that Σ -formulas can begin with unbounded \exists quantifiers and Π -formulas can begin with unbounded \forall quantifiers.

And the negation of Σ -formulas starting with an unbounded \exists quantifier is logically equivalent to a Π -formula beginning with an unbounded \forall , when we distribute the negation down throughout the formula.

Consider $\neg \phi(x)$ which is logically equivalent to a Π -formula from the above discussion. We will show that the Π -formula logically equivalent to $\neg \phi(x)$ defines $\mathbb{N} \setminus A$.

Let $a \in \mathbb{N} \setminus A$. This implies that $a \notin A$.

By 2. this implies that $\mathfrak{N} \models \neg \phi(\overline{a})$.

Since a was arbitrary, we have that $\forall a \in \mathbb{N} \setminus A, \mathfrak{N} \models \neg \phi(\overline{a})$.

Let $b \notin \mathbb{N} \setminus A$. This implies that $b \in A$.

By 1. this implies that $\mathfrak{N} \models \phi(\overline{b})$ which implies that $\mathfrak{N} \not\models \neg \phi(\overline{b})$.

Since b was arbitrary, we have that $\forall b \notin \mathbb{N} \setminus A, \mathfrak{N} \not\models \neg \phi(\overline{b})$.

Therefore, we have shown that the Π -formula logically equivalent to $\neg \phi(x)$ defines $\mathbb{N} \setminus A$.

Part (c)

Let $B\subseteq \mathbb{N}\times \mathbb{N}$ be a Σ -definable set.

Let $B_1 \subseteq \mathbb{N}$ be the set $B_1 = \{b_1 \in \mathbb{N} : (b_1, b_2) \in B \text{ for some } b_2 \in \mathbb{N}\}$

Required: Show that B_1 is Σ -definable.

Let $\phi(x,y)$ be the Σ -formula that defines B.

Now consider the following Σ -formula that defines the set B_1 .

$$\sigma(x) :\equiv (\exists y) \phi(x,y)$$

Part (a)

Compute the following natural numbers.

Note: $16910355000 = 2^3 \cdot 3 \cdot 5^4 \cdot 7 \cdot 11^5$

- (i) $< 3, 0, 4, 2, 1 > = 2^4 \cdot 3^1 \cdot 5^5 \cdot 7^3 \cdot 11^2 = 6225450000$
- (ii) $(16910355000)_3 = 3$
- (iii) |16910355000| = 5
- (iv) $(16910355000)_{42} = 0$
- (v) $17^42 = 0$

Part (b)

- (i) (5, 13) ∈ ITHPRIME is FALSE because 13 is the 6th prime, not the 5th prime.
- (ii) $(1200, 3) \in LENGTH$ is TRUE because 1200 = <3, 0, 1 > and thus, <math>|1200| = 3.
- (iii) IthElement($\overline{1}, \overline{2}, \overline{3630}$) is FALSE because $3630 = 2 \cdot 3 \cdot 5 \cdot 11^2$ which implies that 3630 is not even a code number since it does not have 7 as a prime factor.

Part (c)

Required: An \mathcal{L}_{NT} -term t(x) such that $\mathfrak{N} \models t(\overline{\lceil \phi \rceil}) = \overline{\lceil \neg \phi \rceil}$.

Let $t(x) :\equiv SS0ESS0SSS0ESx$

In more informal notation, $t(x) :\equiv \overline{2}^{\overline{2}} \cdot \overline{3}^{Sx}$.

Now let $s: Vars \to A$ be a variable assignment function where A is the universe of \mathfrak{N} .

We will check that, $\mathfrak{N} \models t(\overline{\lceil \phi \rceil}) = \overline{\lceil \neg \phi \rceil}[s]$. We will use Lemma 2.8.4 below.

Clearly
$$s(t(\overline{\lceil \phi \rceil})) = s(\overline{2}^{\overline{2}} \cdot \overline{3}^{S\overline{\lceil \phi \rceil}}) = \overline{2}^{\overline{2}} \cdot \overline{3}^{S\overline{\lceil \phi \rceil}}$$

Similarly,
$$s(\overline{\ } \neg \phi \overline{\ }) = \overline{\ } \overline{\ } \neg \phi \overline{\ } = \overline{\ } \overline{\ } < 1, \overline{\ } \phi \overline{\ } > = \overline{\ } \overline{$$

Therefore, we have found a satisfactory t(x).

Part (a)

Required: Express Goldbach's conjecture as a Π -sentence. You may use Even(x) and Prime(x) as subformulas.

The following sentence ϕ is a Π -sentence that expresses Goldbach's conjecture.

$$\phi :\equiv (\forall x) \Big((Even(x) \land x > SS0) \to (\exists y < x) (\exists z < x) (Prime(y) \land Prime(z) \land x = y + z) \Big)$$

Part (b)

Let N be the axioms of Robinson Arithmetic.

Required: Show that Goldbach's Conjecture is true if, and only if, $N \not\vdash \neg Goldbach$.

 (\Rightarrow)

Consider the following proof by contradiction.

Assume Goldbach's conjecture is true. i.e. $\mathfrak{N} \models Goldbach$.

Assume for sake of contradiction that $N \vdash \neg Goldbach$.

Since $N \vdash \neg Goldbach$, by Soundness Theorem, we have that $N \models \neg Goldbach$.

But, we know that $\mathfrak{N} \models N$, so we have that $\mathfrak{N} \models \neg Goldbach$

This is equivalent to saying $\mathfrak{N} \not\models Goldbach$.

So we have that $\mathfrak{N} \models Goldbach$ and $\mathfrak{N} \not\models Goldbach$ which is a contradiction.

Therefore, our assumption that $N \vdash \neg Goldbach$ was wrong, and so $N \not\vdash \neg Goldbach$.

 (\Leftarrow)

Consider the following proof by contraposition.

Assume $N \vdash \neg Goldbach$

Required to Prove: Goldbach's conjecture is false.

By Soundness Theorem, we have that $N \models \neg Goldbach$.

But, we know that $\mathfrak{N}\models N,$ so we have that $\mathfrak{N}\models \neg Goldbach$

This is equivalent to saying $\mathfrak{N} \not\models Goldbach$.

Therefore, we have shown that Goldbach's conjecture is false.

Since we have proven both directions, we have proven that Goldbach's Conjecture is true if, and only if, $N \not\vdash \neg Goldbach$, as required.

Suppose θ is an \mathcal{L}_{NT} -sentence such that,

$$N \vdash [\theta \leftrightarrow Thm_N(\overline{\lnot \neg \theta \urcorner})].$$

Required: Determine whether θ is true or false in \mathfrak{N} and justify your answer.

We will show that θ is FALSE in \mathfrak{N} .

Proof. Assume for sake of contradiction that θ is true in \mathfrak{N} . i.e. $\mathfrak{N} \models \theta$.

Since $N \vdash [\theta \leftrightarrow Thm_N(\overline{\neg \neg \neg \neg})]$, by the Soundness Theorem, we have that,

$$N \models [\theta \leftrightarrow Thm_N(\overline{\ulcorner \neg \theta \urcorner})].$$

Since $\mathfrak{N} \models N$, we have that $\mathfrak{N} \models [\theta \leftrightarrow Thm_N(\overline{\neg \neg \theta})]$.

This implies that $\mathfrak{N} \models \theta$ if and only if $\mathfrak{N} \models Thm_N(\overline{\neg \theta})$.

Since we assumed that $\mathfrak{N} \models \theta$, we have that $\mathfrak{N} \models Thm_N(\overline{\neg \theta})$.

This says that it is true that $\neg \theta \neg$ is the Godel number of the formula $\neg \theta$ that is a theorem of N.

i.e. $N \vdash \neg \theta$.

By Soundness Theorem, we have that $N \models \neg \theta$.

Since $\mathfrak{N} \models N$, we have that $\mathfrak{N} \models \neg \theta$.

This implies that $\mathfrak{N} \not\models \theta$.

So, we have that $\mathfrak{N} \models \theta$ and $\mathfrak{N} \not\models \theta$.

This is a contradiction. Therefore our assumption that θ was true in $\mathfrak N$ was wrong.

Therefore θ is FALSE in \mathfrak{N} , as required.

Alternative Proof

Suppose θ is an \mathcal{L}_{NT} -sentence such that,

$$N \vdash [\theta \leftrightarrow Thm_N(\overline{\ulcorner \neg \theta \urcorner})].$$

Required: Determine whether θ is true or false in \mathfrak{N} and justify your answer.

We will show that θ is FALSE in \mathfrak{N} .

First, as a sub-proof, we will show that $N \not\vdash \theta$. Assume for sake of contradiction that $N \vdash \theta$.

Call $N \vdash \theta$ "result". Now consider the following deduction.

1.
$$N \vdash [\theta \leftrightarrow Thm_N(\overline{\ulcorner \neg \theta \urcorner})]$$

2.
$$N \vdash \theta$$

3.
$$N \vdash Thm_N(\overline{\neg \theta})$$
 1,2, (PC)

result

From line 3 and the Soundness Theorem, we that $N \models Thm_N(\overline{\neg \theta})$.

Since $\mathfrak{N} \models N$, we have that $\mathfrak{N} \models Thm_N(\overline{\neg \neg \theta})$

This says that it is true that $\neg \theta \neg$ is the Godel number of the formula $\neg \theta$ that is a theorem of N.

i.e. we have that $N \vdash \neg \theta$.

Since $N \vdash \theta$ and $N \vdash \neg \theta$, we have that $N \vdash \bot$ by (PC).

By Soundness Theorem, this implies that $N \models \bot$. Since, $\mathfrak{N} \models N$, we have that $\mathfrak{N} \models \bot$.

This is a contradiction, as \perp cannot have a model. Therefore, our assumption that $N \vdash \theta$ was wrong.

Therefore $N \not\vdash \theta$. Now we will prove our main result.

Proof. Since $N \not\vdash \theta$, by the contrapositive of the Completeness Theorem, we have that $N \not\models \theta$.

This implies that $N \models \neg \theta$.

Since, $\mathfrak{N} \models N$, we have that $\mathfrak{N} \models \neg \theta$ which implies that $\mathfrak{N} \not\models \theta$.

Therefore, θ is FALSE in \mathfrak{N} , as required.

Part (a)

Suppose that $\phi(x)$ is a formula that weakly represents A, that is,

if $a \in A$, then $N \vdash \phi(\overline{a})$

if $b \notin A$, then $N \not\vdash \phi(\overline{b})$

Required: Show that A is semi-calculable by describing a suitable computer program P_0 .

Consider the following computer program P_0 .

For each $n \in \mathbb{N}$ as an input, the program P_0 will search for a deduction of $\phi(\overline{n})$ from N, and if a deduction is found, will return "yes".

Note, a deduction of $\phi(\overline{n})$ from N is a finite sequence of logical axioms, non-logical axioms N, and rules of inference. The program P_0 will search for a finite sequence that is a deduction of $\phi(\overline{n})$ from N. Since \mathcal{L}_{NT} is a countable language, all possible deductions in \mathcal{L}_{NT} can be enumerated. Thus, P_0 will check every possible deduction in an enumeration of all possible finite deductions in \mathcal{L}_{NT} .

If $n \in A$, then since $N \vdash \phi(\overline{n})$, and deductions are finite, P_0 will eventually halt once it finds a finite deduction as we can enumerate all possible deductions. Once P_0 finds a deduction, it will return "yes".

If $n \notin A$, we have that since since $N \not\vdash \phi(\overline{n})$, there is no finite deduction of $\phi(\overline{n})$ from N. Since there are countably infinitely many possible finite deductions, P_0 will keep running forever to try and find a deduction, but will never halt, as no deduction can ever be found.

Therefore, we have a program P_0 such that $\forall a \in A$, P_0 will eventually return "yes" on input a, and $\forall b \notin A$, P_0 will never halt (i.e. run forever) on input b.

Thus, A is semi-decidable, as required.

Part (b)

Required: Show that a set $A \subseteq \mathbb{N}$ is calculable if and only if both A and $\mathbb{N} \setminus A$ are semi-calculable.

(\Rightarrow)

Assume $A \subseteq \mathbb{N}$ is calculable. i.e. There exists a computer program P such that,

If $a \in A$, program P returns "yes" on input a.

If $b \notin A$, program P returns "no" on input b.

Now consider the following program P_0 that will show that A is semi-calculable.

For any $n \in \mathbb{N}$ as an input, the program P_0 will then input n into P.

If $n \in A$, then P will return "yes". The program P_0 will then also return "yes".

If $n \notin A$, then P will return "no". However, the program P_0 will then run forever (i.e. not halt). We can do this by simply making P_0 go on an endless loop.

Thus, our program P_0 shows that A is semi-calculable.

Now consider the following program P_1 that will show that $\mathbb{N} \setminus A$ is semi-calculable.

For any $n \in \mathbb{N}$ as an input, the program P_1 will then input n into P.

If $n \in \mathbb{N} \setminus A$, then $n \notin A$. So P will return "no". The program P_1 will then return "yes".

If $n \notin \mathbb{N} \setminus A$, then $n \in A$. So P will return "yes". However, the program P_1 will then run forever (i.e. not halt). We can do this by simply making P_1 go on an endless loop.

Thus, our program P_1 shows that $\mathbb{N} \setminus A$ is semi-calculable.

 (\Leftarrow)

Assume that A and $\mathbb{N} \setminus A$ are semi-calculable. i.e. There exists two computer programs P_0 and P_1 such that,

If $a \in A$, program P_0 returns "yes" on input a.

If $b \notin A$, program P_0 does not halt (i.e. runs forever) when given input b.

And,

If $a \in \mathbb{N} \setminus A$, program P_1 returns "yes" on input a.

If $b \notin \mathbb{N} \setminus A$, program P_1 does not halt (i.e. runs forever) when given input b.

Now consider the following program P that will show that A is calculable.

- 1. For any $n \in \mathbb{N}$ as an input, the program P will first input n into P_0 and have P_0 run for one minute.
- 2. If P_0 halts and returns "yes" within the first minute, we know that $n \in A$. So then P will also return "yes".
- 3. If P_0 does not halt within the first minute, we save the state of the program P_0 . We will then input n into P_1 and have P_1 run for one minute.
- 4. If P_1 halts and returns "yes" within a minute, we know that $n \in \mathbb{N} \setminus A$. This implies that $n \notin A$. So then P will return "no".
- 5. If P_1 does not halt within a minute, we will save the state of the program P_1 . We will then input n back into P_0 and have P_0 run for another 1 minute.

P will repeat steps 1-5 until P finally halts and outputs either "yes" or "no".

We know that for any input $n \in \mathbb{N}$, either $n \in A$ or $n \in \mathbb{N} \setminus A$.

If $n \in A$, then P_0 will eventually halt. If $n \in \mathbb{N} \setminus A$, then P_1 will eventually halt.

So we know that exactly one of P_0 and P_1 will always halt for each input $n \in \mathbb{N}$.

And therefore, from the above reasoning, P will always output either "yes" or "no".

Therefore, we have shown that A is calculable.

The sequence of Fibonacci numbers is defined by Fib(0) = Fib(1) = 1 and Fib(n) = Fib(n-2) + Fib(n-1) for all $n \ge 2$.

Required: Write down a Δ -formula defining the function $Fib: \mathbb{N} \to \mathbb{N}$.

We will write a Δ -formula Fibon(a, b) defining the set $FIBON = \{(a, b) \in \mathbb{N}^2 : b = Fib(a)\}.$

We will first write a Δ -formula FibonConSeq(a, b, c) defining the set

$$FIBONCONSEQ = \{(a, b, c) \in \mathbb{N}^3 : b = Fib(a) \text{ and } c = \langle Fib(0), ..., Fib(a) \rangle \}$$

We will define the construction sequence, $\langle Fib(0), ..., Fib(a) \rangle$ such that Fib(0) = Fib(1) = 1 and Fib(n) = Fib(n-2) + Fib(n-1) for $2 \le n \le a$.

We need c to be a codenumber and the length of c to be a+1 since Fib(n) starts at n=0. The first element of c needs to be 1 since Fib(0)=1. If a>0, we need the second element of c to be 1 since Fib(1)=1. We need the last element of c to be b since F(a)=b. Finally, we need every element in c following the first two elements, if they exist, to be equal to the sum of the previous two elements.

 $FibonConSeq(a, b, c) :\equiv$

 $Codenumber(c) \land Length(c, Sa) \land IthElement(\overline{1}, \overline{1}, c) \land$

$$(a>0 \rightarrow IthElement(\overline{1},\overline{2},c)) \land IthElement(b,Sa,c)$$

$$\wedge \ (\forall i < a) \Big(i > \overline{1} \rightarrow (\exists x < c) (\exists y < c) (\exists z < c) [Ithelement(x, i, c) \wedge Ithelement(y, Si, c)] \Big) \\$$

$$\land Ithelement(z, SSi, c) \land (z = x + y)]$$

Note, in our Δ -formula for FibonConSeq, we added the extra condition that $i > \overline{1}$ because if i = 0, or $i = \overline{1}$, then there does not exist two prior elements to i in c. So we must add this extra condition.

Now we can define our Δ -formula Fibon(a, b). We will ignore the bound for now.

$$Fibon(a, b) :\equiv (\exists c < Bound)FibonConSeq(a, b, c).$$

Now we will determine *Bound*. We will use the following two facts.

Fib Fact: For every $a \ge 0$, $Fib(a) \le 2^a$. This is a trivial fact that can be proven by induction.

Lemma 5.8.7 (textbook): If $a \in \mathbb{N}$, such that $a \geq 1$ then $p_a \leq 2^{a^a}$, where p_a is the ath prime.

We know that our codenumber c will look like $c = \langle Fib(0), Fib(1), ..., F(a) \rangle$.

It follows that,

$$c = \langle Fib(0), ..., F(a) \rangle$$

$$= p_1^{Fib(0)+1} ... p_{a+1}^{Fib(a)+1}$$

$$< \underbrace{p_{a+1}^{Fib(0)+1} ... p_{a+1}^{Fib(a)+1}}_{a+1 \text{ terms}}$$

$$< \underbrace{p_{a+1}^{Fib(a)+1} ... p_{a+1}^{Fib(a)+1}}_{a+1 \text{ terms}}$$

$$= (p_{a+1})^{(Fib(a)+1)^{a+1}}$$

$$\leq (p_{a+1})^{(2^a+1)^{(a+1)}}$$
Since Fib is an increasing function
$$= (p_{a+1})^{(Fib(a)+1)^{a+1}}$$

$$\leq (p_{a+1})^{(2^a+1)^{(a+1)}}$$
By Fib Fact
$$\leq \left(2^{(a+1)^{(a+1)}}\right)^{(2^a+1)^{(a+1)}}$$
By Lemma 5.8.7

Therefore, we have $Bound = \left(2^{(a+1)^{(a+1)}}\right)^{(2^a+1)^{(a+1)}}$.

Therefore, we have that,

$$Fibon(a,b) :\equiv (\exists c < \left(\overline{2}^{Sa^{Sa}}\right)^{(\overline{2}^a + \overline{1})^{Sa}}) FibonConSeq(a,b,c).$$

Thus, we have we found a Δ -formula defining the function $Fib: \mathbb{N} \to \mathbb{N}$.

Alternate Proof (Don't Submit)

Suppose θ is an \mathcal{L}_{NT} -sentence such that,

$$N \vdash [\theta \leftrightarrow Thm_N(\overline{\ulcorner \neg \theta \urcorner})].$$

Required: Determine whether θ is true or false in \mathfrak{N} and justify your answer.

We will show that θ is false in \mathfrak{N} .

Assume for sake of contradiction that θ is true in \mathfrak{N} . i.e. $\mathfrak{N} \models \theta$.

We must have that $N \models \theta$ because if $N \not\models \theta$, then $N \models \neg \theta$. Since $\mathfrak{N} \models N$ we would have that $\mathfrak{N} \models \neg \theta$. This implies that $\mathfrak{N} \not\models \theta$ which would contradict our assumption that $\mathfrak{N} \models \theta$.

By Completeness Theorem, since $N \models \theta$, we have that $N \vdash \theta$.

Call $N \vdash \theta$ "result". Now consider the following deduction.

1.
$$N \vdash [\theta \leftrightarrow Thm_N(\overline{\neg \neg \theta})]$$

2.
$$N \vdash \theta$$
 result

3.
$$N \vdash Thm_N(\overline{\neg \neg \theta})$$
 1,2, (PC)

From line 4 and the Completeness Theorem, we that $N \models Thm_N(\overline{\neg \theta})$.

Since $\mathfrak{N} \models N$, we have by transitivity of \models that $\mathfrak{N} \models Thm_N(\overline{\neg \neg \theta})$

This implies that it is true that $\overline{\neg \neg \theta}$ is the Godel number of the formula $\neg \theta$ that is a theorem of N.

i.e. we have that $N \vdash \neg \theta$.

Since $N \vdash \theta$ and $N \vdash \neg \theta$, we have that $N \vdash \bot$ by (PC).

By Soundness Theorem, this implies that $N \models \bot$. Since, $\mathfrak{N} \models N$, by transitivity of \models , we have that $\mathfrak{N} \models \bot$. This is a contradiction, as \bot cannot have a model.

Therefore, our assumption that θ was true in \mathfrak{N} was false.

Therefore, θ is FALSE in \mathfrak{N} , as required.