HM2 Zusammenfassung

Julius Vater - 2603322

Inhalt

12	Analysis in $\mathbb C$							
	12.1	Konver	rgenz von Folgen und Reihen	4				
		12.1.1	Real- und Imaginärteil	4				
		12.1.2	Rechenregeln	4				
		12.1.3	Betrag einer komplexen Zahl	4				
		12.1.4	Konvergenz	5				
		12.1.5	Unendliche Reihen	5				
		12.1.6	Potenzreihen	5				
	12.2	Die ko	mplexe Exponentialfunktion	5				
		12.2.1	Definitionen	5				
		12.2.2	Eigenschaften	6				
			Argument	6				
	12.3	Wurze	In und Logarithmus in $\mathbb C$	6				
			Fundamentalsatz der Algebra	6				
			Wurzeln	6				
			Einheitswurzeln	7				
		12.3.4	Logarithmus	7				
	12.4		ntial- und Integraldrechnung für komplexwertige Funktionen	7				
			DIfferenzierbarkeit	7				
		12.4.2	Stammfunktionen	7				
10	TC3	,		-				
13		rierreil Esumia		7 7				
	13.1		rreihen im Reellen	ι 7				
			Trigonometrische Reihen	7				
			Orthogonalitätsrelationen	8				
			Fourierkoeffizienten	8				
		19.1.4	Positve und negative Grenzwerte	8				
		19.1.5	Stückweise Glätte	8				
			Satz über die Konvergenz von Fourierreihen	9				
			Vereinfachungen zum Rechnen	9				
			Eigenschaften von Fourierreihen	9				
	13 9		-	0				
	10.2			0				
		19.2.1	Rompiese Fourierkoemzienien	U				
14				0				
	14.1	Grund	legendes	0				
		14.1.1	Stückweise Glätte	0				
				0				
		14.1.3	Eigenschaften	1				
		14.1.4		1				
				2				
				2				
		14.1.7	Abtast theorem von Shannon	2				

15 De	er Raum	$1 \; \mathbb{R}^n$	12
15.	.1 Grund	llegendes	12
	15.1.1	Skalarprodukt, Norm, Abstand	12
	15.1.2	Rechenregeln	13
	15.1.3	Für Matrizen	13
		Offene Kugeln	13
		Beschränkt, offen, abgeschlossen, kompakt	14
16 Ka	onverger	nz im \mathbb{R}^n	14
	.1 Grund		14
10.		Allgemeine Definitionen	14
		Eigenschaften	14
		Häufungpunkte	15
		or	
		te bei Funktionen, Stetigkeit	15
17		llegendes	15
		Limes	15
	17.1.2	Eigenschaften des Limes	16
	17.1.3	Stetigkeit	16
	17.1.4	Eigenschaften der Stetigkeit	16
18 Di	fforentis	\mathbf{R}^n alrechnung im \mathbb{R}^n (reellwertige Funktionen)	17
		zierbarkeit und partielle Differenzierbarkeit	17
10.		Partielle Differenzierbarkeit und Ableitung	17
		Gradient	17
		Ableitung 2. Ordnung	17
		m-malige stetig partielle diffbarkeit	18
		Satz von Schwarz	18
		Differenzierbarkeit	18
		Ableitung	18
18		littelwertsatz	19
10.		Differenzierbarkeit	19
		Kettenregel	19
		Der Mittelwertsatz	19
		Streckenzug	19
18		ingsableitungen und Extrema	20
10.		Richtungsvektoren	20
		Hesse-Matrix	$\frac{20}{20}$
		Definitheit	$\frac{20}{20}$
		Eigenschaften	20
		Minimum/ Maximum	$\frac{20}{21}$
		Figenschaften	$\frac{21}{21}$

19 Diff	$ ilde{ ext{e}}$ erentaial $ ext{rechnung im } \mathbb{R}^n$ (vektorwertige Funktionen)	21
19.1	Grundlegende Eigenschaften	21
	19.1.1 Jacobi-Matrix	21
	19.1.2 Differenzierbarkeit	22
	19.1.3 Ableitungen	22
	19.1.4 Kettenregel	22
19.2	Implizit definierte Funktionen	22
	19.2.1 Satz über implizi definierte Funktionen	22
19.3	Differenzierbarkeit von Umkehrfunktionen	23
	19.3.1 Der Umkehrsatz	23
20 Inte	egration in \mathbb{R}^n	23
	Definition und grundelgende Eigenschaften	23
20.1	20.1.1 Kompakte Intervalle, Inhalt, Zerlegung	23
	20.1.2 Ober- und Untersummen	24
	20.1.3 Integrierbarkeit	24
	20.1.4 Grundlegende Eigenschaften	24
20.2	Der Satz von Fubini und das Prinzip von Cavalieri	25
20.2	20.2.1 Satz von Fubini	25
	20.2.2 Charakteristische Funktion	25
	20.2.3 Innerer und äußerer Inhalt	26
	20.2.4 Integrierbarkeit und Intervall	26
	20.2.5 Eigenschaften	26
	20.2.6 Prinzip von Cavalieri	27
20.3	Die Substitutionsregel	28
20.0	20.3.1 Die Substitutionsregel	28
	•	20
	zielle Differentialglicheungen 1. Ordnung	28
21.1	Grundlegendes	28
	21.1.1 Anfangswertprobleme	28
21.2	Differentialgleichung mit getrennten Veränderlichen	28
	21.2.1 Definition	28
	21.2.2 Eigenschaften	29
21.3	Lineare Differentialgleichungen	29
	21.3.1 Definition	29
	21.3.2 Eigenschaften	29
22 Lin	eare Systeme mit konstanten Koeffizienten	30
22.1	Grundlegendes	30
	22.1.1 System linearer Differentialgleichungen	30
	22.1.2 Eigenschaften	30
	22.1.3 Lösungsmethode für (22.2)	31

12 Analysis in \mathbb{C}

12.1 Konvergenz von Folgen und Reihen

Die Komplexen Zahlen $\mathbb C$ sind gegeben durch

$$\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{R} \}$$

Wobei die **imaginäre Einhiet** i die Eigenschaft

$$i^2 = -1$$

erfüllt. Addition und Multiplikation von komplexen Zahlen z=a+ib und w=x+iy sind definiert durch

$$z + w = (a + x) + i(b + y)$$
 und $z \cdot w = (ax - by) + i(ay + bx)$

Es gelten:

 $\mathbb{R} \subseteq \mathbb{C}$ in dem Sinne, dass $a \in \mathbb{R} = a + 0i \in \mathbb{C}$

 $\mathbb C$ ist ein Körper

12.1.1 Real- und Imaginärteil

Für $z = a + ib \in \mathbb{C}$ mit $a, b \in \mathbb{R}$ bezeichnen wir

- a) $Re(z) := a \text{ und } IM(z) := b \text{ den } \mathbf{Real}\text{-} \text{ bzw. } \mathbf{Imagin \ddot{a}rteil} \text{ von } z.$
- b) $\bar{z} := a ib := a + i(-b)$ die komplex konjugiergte Zahl von z.

12.1.2 Rechenregeln

- a) Der Imaginärteil ist immer eine Reelle Zahl!
- b) $\operatorname{Re}(z) = \frac{1}{2}(z + \bar{z})$ und $\operatorname{Im}(z) = \frac{1}{2i}(z + \bar{z})$
- c) $\overline{z+w} = \overline{z} + \overline{w}, \overline{z\cdot w} = \overline{z}\cdot \overline{w}, \overline{z} = z, \overline{\frac{1}{z}} = \frac{1}{\overline{z}}$

12.1.3 Betrag einer komplexen Zahl

Der Betrag von z ist definiert durch

$$|z| := \sqrt{z \cdot \overline{z}} = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$$

Es gilt:

- $a) |z| = |\overline{z}|$
- b) $|z \cdot w| = |z| \cdot |w|$
- c) $|z+w| \le |z| + |w|$ und $||z| |z|| \le |z-w|$

12.1.4 Konvergenz

Eine Folge $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ heißt konvergent, falls ein $z\in\mathbb{C}$ existiert mit

$$|z_n - z| \to 0$$
 für $n \to \infty$

In diesem Fall heißt z der **Grenzwert** von $(z_n)_{n\in\mathbb{N}}$. Ist die Folge nicht konvergent, so heißt sie **divergent**. Es folgt

- a) $z_n \to z \iff \operatorname{Re}(z_n) \to \operatorname{Re}(z) \text{ und } \operatorname{Im}(z_n) \to \operatorname{Im}(z)$
- b) $0 \le ||z_n| |z|| \le |z_n z| \to 0$
- c) $z_n + w_n \to z + w$ und $z_n w_n \to zw$

12.1.5 Unendliche Reihen

Für eine Folge $(a_n) \subseteq \mathbb{C}$ sei $s_n := a_1 + \cdots + a_n, n \in \mathbb{N}$. Die Folge (s_n) heißt unendliche Reihe und wird mit $\sum_{n=1}^{\infty} a_n$ bezeichnet.

- a) $\sum_{n=1}^{\infty} a_n$ heißt **konvergent** bzw. **divergent**, falls (s_n) konvergent bzw. divergent ist.
- b) Im Konvergenzfall heißt $\sum_{n=1}^\infty a_n := \lim_{n \to \infty} s_n$ der Reihenwert
- c) Ist $\sum_{n=1}^{\infty} |a_n|$ konvergent, so heißt $\sum_{n=1}^{\infty} a_n$ absolut konvergent

12.1.6 Potenzreihen

Für eine **Potenzreihe** $\sum_{n=1}^{\infty} a_n (z - z_0)^n$ sei

$$\rho = \begin{cases} \infty, & \text{falls } (\sqrt[n]{|a_n|}) \text{ unbeschänkt} \\ \limsup_{n \to \infty} \sqrt[n]{|a_n|}, & \text{falls } (\sqrt[n]{|a_n|}) \text{ beschränkt} \end{cases}$$

12.2 Die komplexe Exponentialfunktion

12.2.1 Definitionen

Auf \mathbb{C} definieren wir

$$\exp(z) := e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (komplexe Exponentialfunktion)

$$cos(z) := \sum_{n=0}^{\infty} (-1^n) \frac{z^{2n}}{(2n)!}$$
 (komplexer Cosinus)

$$\sin(z):=\sum_{n=0}^{\infty}(-1^n)\frac{z^{2n+1}}{(2n+1)!} \text{ (komplexer Sinus)}$$

12.2.2 Eigenschaften

- a) Für alle $z, w \in \mathbb{C}$ und $n \in \mathbb{Z}$ gelten $e^{z+w} = e^z e^w$ sowie $e^n z = (e^z)^n$
- b) Fpr alle $z \in \mathbb{C}$ gilt $\overline{e^z} = e^{\overline{z}}$
- c) Für alle $z \in \mathbb{C}$ gelten $e^{iz} = \cos(z) + i\sin(z)$ und $e^{-iz} = \cos(z) i\sin(z)$
- d) Für alle $z \in \mathbb{C}$ gelten $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$ und $\sin(z) = \frac{1}{2i}(e^{iz} e^{-iz})$
- e) Es gilt $e^{i\pi} + 1 = 0$
- f) Die komplexe Exponetialfunktion ist periosisch mit Periode $2\pi i,$ d.h. für alle $k\in\mathbb{R}$ und alle $z\in\mathbb{C}$ gilt $e^{z+2k\pi}=e^z$
- $g) \sin(z+w) = \sin(z)\cos(w) + \sin(w)\cos(z)$
- $h) \cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$

12.2.3 Argument

Das **Argument von** z ist der Winkel $\varphi \in (-\pi, \pi]$, der duch die Gerad durch 0 un z und der positiven x-Achse eingeschlossen wird. Wir schreiben $\arg(z) := \varphi$. Es gilt:

$$\cos(\varphi) = \frac{x}{r} \text{ und } \sin(\varphi) = \frac{y}{r}$$

also kann z auch geschreiben werden durch

$$z = x + iy = r\cos(\varphi) + ir\sin(\varphi) = re^{i\varphi} = |z|e^{i\arg(z)}$$

Dies ist die Darstellung von z in Polarkoordinaten.

12.3 Wurzeln und Logarithmus in $\mathbb C$

12.3.1 Fundamentalsatz der Algebra

Es sei $p(z) = a_0 + a_1 z + \dots + a_n z^n$ ein Polynom mit $n \ge 1, a_0, \dots, a_n \in \mathbb{C}$ und $a_n \ne 0$. Dann existieren eindutig bestimmte Zahlen $z_1, \dots z_n \in \mathbb{C}$ mit

$$p(z) = a_n(z - z_1) \cdot \dots \cdot (z - z_n)$$
 $(z \in \mathbb{C})$

Insbesondere gilt:

$$p(z) = 0 \iff z \in \{z_1, \dots, z_n\}$$

12.3.2 Wurzeln

Es sei $a \in \mathbb{C}$ und $n \in \mathbb{N}$. Jedes $z \in \mathbb{C}$ mit $z^n = a$ heißt eine n-te Wurzel aus a. Man bezeichnet solch eine Wurzel mit $\sqrt[n]{a}$.

12.3.3 Einheitswurzeln

Es seien $a \in \mathbb{C} \setminus \{0\}, n \in \mathbb{N}, r := |a| \text{ und } \varphi := \arg(a).$

Ist a=1, so heißen die Zahlen $z_k (0 \le k \le n-1)$ die n-ten Einheitswurzeln.

Diese sind also

$$z_k = e^{\frac{2k\pi i}{n}} \qquad (k = 0, \dots, n-1)$$

12.3.4 Logarithmus

Es sei $w \in \mathbb{C} \setminus \{0\}$. Jedes $z \in \mathbb{C}$ mit $e^z = w$ heißt **Logarithmus von** w

12.4 Differential- und Integraldrechnung für komplexwertige Funktionen

12.4.1 DIfferenzierbarkeit

fheißt auf I diffbar, falls u und v auf I diffbar sind. In diesem Fall definieren wir

$$f'(x) := u'(x) + iv'(x) \qquad (x \in I)$$

Es gilt:

$$\int_{a}^{b} \alpha f + \beta g \, dx = \alpha \int_{a}^{b} f \, dx + \beta \int_{y}^{b} g \, dx$$
$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx$$

12.4.2 Stammfunktionen

Es sei I = [a, b] für a < b. Besitzen u und v auf [a, b] die Stammfunktion U bzw. V, definiern wir eine Stammfunktion von f durch F := U + iV.

13 Fourierreihen

13.1 Fourierreihen im Reellen

13.1.1 Periodische Funktionnen

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ hießt 2π -**periosisch**, falls $f(x+2\pi) = f(x)$ für alle $x \in \mathbb{R}$ gilt.

13.1.2 Trigonometrische Reihen

Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Folgen in \mathbb{R} . Eine Reihe der Form

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

heißt eine trigonometrische Reihe.

13.1.3 Orthogonalitätsrelationen

Für alle $k, n \in \mathbb{N}$ gilt:

$$\int_{-\pi}^{\pi} \sin(nx)\cos(nx) \ dx = 0$$

und

$$\int_{-\pi}^{\pi} \sin(nx)\sin(kx) \ dx = \int_{-\pi}^{\pi} \cos(nx)\cos(kx) \ dx = \begin{cases} \pi, & k = n \\ 0, & k \neq n \end{cases}$$

13.1.4 Fourierkoeffizienten

Sei $f: \mathbb{R} \to \mathbb{R}$ 2π -periodisch und erfülle $f \in R([-\pi, \pi)]$. Die Koeffizienten

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \ dx \qquad (n \in \mathbb{N})$$

und

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \ dx \qquad (n \in \mathbb{N})$$

heißen die Fourierkoeffizienten von f und die mit (a_n) und (b_n) gebildete trigonometrische Reihe heißt die zu f gehörende Forierreihe. Man schreibt

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n(\sin(nx)))$$

13.1.5 Positve und negative Grenzwerte

Es sei $D \subseteq \mathbb{R}, x_0$ ein Häfungspunkt von D und $g:D \to \mathbb{R}$ eine Funktion. Wir definieren

$$g(x_0 \pm) := \lim_{x \to x_0 \pm} g(x)$$

falls dieser Grenzwert in \mathbb{R} existiert.

13.1.6 Stückweise Glätte

Es se a < b. Eine Funktion $g : [a, b] \to \mathbb{R}$ heißt **auf** [a.b] **stückweise glatt**, falls eine Zerlegung $\{t_0, \ldots, t_m\}$ von [a, b] existiert (also $a = t_0 < t_1 < \cdots < t_n = b$) mit

$$g \in C^1((t_{j-1}, t_j))$$
 $(j = 1, \dots, m)$

und falls für alle $j = 1, \dots, m-1$ die folgenden Grenzwerte existieren

$$g(t_j+), g(t_j-), g'(t_j+), g'(t_j-)$$
 sowie $g(a+), g'(a+), g'(b-), g(b-)$

Ist g stückweise glatt auf [a, b], so gelten:

- a) g muss in den Punkten t_j nicht stetig sein
- b) g ist Riemann-integrierbar auf [a, b]

13.1.7 Satz über die Konvergenz von Fourierreihen

Ist f 2π -periodisch und auf $[-\pi,\pi]$ stückweise glatt, so gilt für alle $x\in\mathbb{R}$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) = \frac{f(x+) + f(x-)}{2}$$

Ist f zusätzlich in x stetig, so konvergiert die Fourierreihe von f also gegen f(x)

13.1.8 Vereinfachungen zum Rechnen

a) Ist f gerade, also f(x) = f(-(x) für alle $x \in \mathbb{R}$, so gilt für die Fourierkoeffizienten von f:

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$$
 für alle $n \in \mathbb{N}_0$ und $b_n = 0$ für alle $n \in \mathbb{N}$

b) Ist f ungerade, also f(x) = -f(-x) für alle $x \in \mathbb{R}$, so gilt für die Fourierkoeffizienten von f:

$$a_n = 0$$
 für alle $n \in \mathbb{N}_0$ und $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$ für alle $n \in \mathbb{N}$

13.1.9 Eigenschaften von Fourierreihen

Es sei $f \in C(\mathbb{R})$, 2π -periodisch und stückweise glatt. Dann gelten:

- a) Die Fourierreihe von fkonvergiert in jedem $x \in \mathbb{R}$ absolut
- b) Die Fourierreihe von f konvergiert auf \mathbb{R} gleichmäßig gegen f
- c) Sind a_n, b_n die Fourierkoeffizienten von f, so konvergieren die Reihen

$$\sum_{n=0}^{\infty} a_n \qquad \text{und} \qquad \sum_{n=1}^{\infty} b_n \qquad \text{absolut}$$

Sei $f: \mathbb{R} \to \mathbb{R}$ 2π -periodisch und erfülle $f \in R([-\pi, \pi])$ und a_n sowie b_n seien die Fourierkoeffizienten.

- a) Dann ist die Reihe $\sum_{n=1}^{\infty}(a_n^2+b_n^2)$ konvergent
- b) Es gilt die Parsevalsche Gleichung

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx$$

c) Es gilt das Lemma von Riemann-Lebesgue, d.h. $a_n \to 0$ und $b_n \to 0$ für $n \to \infty$

9

13.2 Fourierreihen im Komplexen

13.2.1 Komplexe Fourierkoeffizienten

Es sei $f: \mathbb{R} \to \mathbb{C}$ eine 2π -periodische Funktion mit $f \in R([-\pi, \pi], \mathbb{C})$. Die **komplexen Fourierkoeffizienten** sind definiert durch

$$c_n := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx \qquad (n \in \mathbb{Z})$$

und

$$f \sim \sum_{i=0}^{n} nfty_{n=-\infty} c_n e^{inx} := \left(\sum_{k=-n}^{n} c_k e^{ikx}\right)_{n \in \mathbb{N}_0}$$

heißt die zu f gehörende **komplexe Fourierreihe**.

14 Die Fouriertransformation

14.1 Grundlegendes

14.1.1 Stückweise Glätte

- a) Eine Funktion $g: \mathbb{R} \to \mathbb{R}$ heißt auf \mathbb{R} stückweise glatt, g auf jedem Intervall $[a, b] \subseteq \mathbb{R}$ stückweise glatt ist
- b) Eine Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt auf \mathbb{R} stückweise glatt, falls Re(f) und Im(f) auf \mathbb{R} stückweise glatt sind

Seien $f, g : \mathbb{R} \to \mathbb{C}$ stückweise glatt. Dann gelten:

- a) f ist absolut integrierbar $\iff \int 1\infty_{-\infty} |f(x)| dx$ ist konvergent
- b) Ist f absolut integrierbar und $|g| \leq |f|$ auf \mathbb{R} , so ist g absolut integrierbar

14.1.2 Die Fouriertransformierte

Es sei $f : \mathbb{R} \to \mathbb{C}$ stückweise glatt und absolut integrierbar. Die Fouriertransformierte von f ist die Funktion

$$\widehat{f}: \mathbb{R} \to \mathbb{C}, \xi \mapsto \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ix\xi} dx$$

Oft schreibt man auch $\mathcal{F}f$ anstatt \widehat{f} . Die Zuordnung $f \mapsto \widehat{f}$ heißt Fourier-transformation und wid auch mit \mathcal{F} gezeichnet.

14.1.3 Eigenschaften

Es seien $f,g:\mathbb{R}\to\mathbb{C}$ stückweise glatt und absolut integrierrbar. Dann gelten:

a) Für $\alpha, \beta \in \mathbb{C}$ ist $\alpha f + \beta g$ stückweise glatt und absolut integrierbar und

$$\mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F} f + \beta \mathcal{F} g$$

- b) $\widehat{f}: \mathbb{R} \to \mathbb{C}$ ist beschränkt
- c) (Satz von Riemann-Lebesgue) \widehat{f} ist stetig und erfüllt

$$\lim_{\xi \to \pm \infty} \widehat{f}(\xi) = 0$$

d) Für $h \in \mathbb{R}$ definieren wir $f_h : \mathbb{R} \to \mathbb{C}$ durch $f_h(x) := f(x+h)$. Dann ist f_h stückweise glatt und absolut integrierbar und

$$(\mathcal{F}f_h)(\xi) = e^{ih\xi}(\mathcal{F}f)(\xi)$$
 $(\xi \in \mathbb{R})$

e) Für $\lambda > 0$ defineren wir $f^{\lambda} : \mathbb{R} \to \mathbb{C}$ durch $f^{\lambda}(x) := f(\lambda x)$. Dann ist f^{λ} stückweise glatt und absolut integrierbar und

$$(\mathcal{F}f^{\lambda})(\xi) = \frac{1}{\lambda}(\mathcal{F}f)(\frac{\xi}{\lambda})$$
 $(\xi \in \mathbb{R})$

Sei $f:\mathbb{R}\to\mathbb{C}$ diffbar und absolut integrierbar. Weiter sei f' stückweise glatt und absolut integrierbar. Dann gilt

$$(\mathcal{F}f')(\xi) = i\xi(\mathcal{F}f)(\xi) \qquad (\xi \in \mathbb{R})$$

14.1.4 Cauchysche Hauptwerte

Es sei $f_{\mathbb{R}} \to \mathbb{C}$ eine Funktion mit $f \in \mathbb{R}([a,b];\mathbb{C})$ für alle a < b. Existiert der Grenzwert

$$\lim_{\alpha \to \infty} \int_{-a}^{a} f(x) \ dx$$

so heißt die Zahl Cauchyscher Hauptwert und man schreibt

$$CH - \int_{-\infty}^{\infty} f(x) \ dx := \lim_{a \to \infty} \int_{-a}^{a} f(x) \ dx$$

Ist $\int_{-\infty}^{\infty} f(x) \ dx$ konvergent, so existiert $CH - \int_{-\infty}^{\infty} f(x) \ dx$ und

$$\int_{-\infty}^{\infty} f(x) \ dx = CH - \int_{-\infty}^{\infty} f(x) \ dx$$

14.1.5 Fourierinversion

Es sei $f:\mathbb{R}\to\mathbb{C}$ stückweise glatt und absolut integrierbar. Dann gilt für alle $x\in\mathbb{R}$

$$CH - \int_{-\infty}^{\infty} \widehat{f}(\xi)e^{ix\xi} d\xi = \frac{1}{2}(f(x+) + f(x-))$$

14.1.6 Bandbeschränktheit

Es sei $f: \mathbb{R} \to \mathbb{C}$ stetig, stückweise glatt und absolut integrierbar. Wenn die Fouriertransformierte $f: \mathbb{R} \to \mathbb{C}$ außerhalb eines beschränkten Intervalls 0 ist, so heißt f bandbeschränkt. In diesem Fall ist es möglich f aus den Werten auf einem hinreichend feinen Raster $\{kT \mid k \in \mathbb{Z}\}, T > 0$ zu reproduzieren.

14.1.7 Abtasttheorem von Shannon

Es sei $f:\mathbb{R}\to\mathbb{C}$ stetig, stückweise glatt und absolut integrierbar, und es existiere ein b>0 mit

$$\widehat{f}(\xi) = 0$$
 für alle $\xi \in \mathbb{R} \setminus (-b, b)$

Dann gilt für jedes $T < \frac{\pi}{h}$

$$f(x) = \sum_{k=-\infty}^{\infty} f(kT)\operatorname{si}(\frac{\pi}{T}(x - kT))$$
 $(x \in \mathbb{R})$

wobei si den Sinus cardinalis bezeichnet, welcher gegeben ist durch

$$\operatorname{si}(x) := \begin{cases} \frac{\sin(x)}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

15 Der Raum \mathbb{R}^n

15.1 Grundlegendes

15.1.1 Skalarprodukt, Norm, Abstand

Für $x = (x_1, \dots, x_n)^T, y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$ heißen

- a) $x \cdot y := x_1 y_1 + \dots + x_n y_n$ das **Skalarprodukt** oder **Innenprodukt** von x und y.
- b) $||x||:=\sqrt{x\cdot x}=(x_1^2+\cdot+x_n^2)^{\frac{1}{2}}$ die Norm oder Länge von x
- c) ||x-y|| der **Abstand** von x zu y

15.1.2 Rechenregeln

- a) $(x+y) \cdot z = x \cdot z + y \cdot z$ und $x \cdot y = y \cdot x$
- b) $(\alpha x) \cdot y = \alpha(x \cdot y) = x \cdot (\alpha y)$
- c) $||x|| \ge 0$ sowie $||x|| = 0 \iff x = 0 = (0, ..., 0 = T)$
- d) $||\alpha x|| = |\alpha|||x||$
- e) $|x \cdot y| \le ||x||||y||$ (Ungleichung von Cauchy-Schwarz)
- f) $||x+y|| \le ||x|| + ||y||$ (Dreiecksungleichung)
- $|y| ||x|| ||y|| \le ||x y||$ (Umgekehrte Dreiecksungleichung)
- h) Für alle j = 1, ..., n ist $|x_k| \le ||x|| \le \sum_{k=1}^n |x_k|$

15.1.3 Für Matrizen

Seien $l, m, n \in \mathbb{N}$ und

$$A := \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

eine reelle $m \times n$ -Matrix, d-h. $A \in \mathbb{R}^{m \times n}$. Die **Norm von** A ist definiert durch

$$||A|| = \left(\sum_{j=1}^{m} \sum_{k=1}^{n} a_{jk}^{2}\right)^{\frac{1}{2}}$$

Ist B eine reelle $n \times l$ -Matrix, so gilt

Für $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ ist das Matrix-Vektorproudkt gegeben durch

$$Ax = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^n a_{1k} x_k \\ \vdots \\ \sum_{k=1}^n a_{mk} x_k \end{pmatrix}$$

15.1.4 Offene Kugeln

Es sei $x_0 \in \mathbb{R}^n$ und $\epsilon > 0$.

- a) $U_{\epsilon}(x_0) := \{x \in \mathbb{R}^n \mid ||x x_0|| < \epsilon\}$ heißt offene Kugel um x_0 mit Radius ϵ , oder auch ϵ -Umgebung von x_0
- b) $\overline{U_{\epsilon}(x_0}:=\{x\in\mathbb{R}^n\mid ||x-x_o||\leq \epsilon\}$ heißt abgeschlossene Kugel um x_0 mit Radius ϵ

15.1.5 Beschränkt, offen, abgeschlossen, kompakt

Es sei $A \subseteq \mathbb{R}^n$.

- a) A heißt **beschränkt**, falls ein $c \ge 0$ exisitert, derart, dass $||a|| \le c$ für alle $a \in A$ gilt.
- b) A heißt **offen**, falls für alle $a\in A$ ein $\delta>0$ existiert, derart, dass $U_{\delta}(a)\subseteq A$
- c) A heißt **abgeschlossen**, falls $\mathbb{R}^n \setminus A$ offen ist.
- d) A heißt kompakt, falls A beschränkt und abgeschlossen ist.

16 Konvergenz im \mathbb{R}^n

16.1 Grundlegendes

16.1.1 Allgemeine Definitionen

Sei $(A^{(k)})$ eine Folge im \mathbb{R}^n , d.h. $(a^{(k)}) = (a^{(1)}, a^{(2)}, \dots)$ wobei für jedes $k \in \mathbb{N}$ das Folgenglied $a^{(k)}$ ein Vektor im \mathbb{R}^n ist, d.h. $a^{(k)} = (a_1^{(k)}, \dots, a_n^{(k)}) \in \mathbb{R}^n$.

- a) ($a^{(k)}$ heißt **beschränkt**, falls ein $c \ge 0$ existiert, derart, dass $||a^{(k)}|| \le c$ für alle $k \in \mathbb{N}$ gilt.
- b) Der Begriff **Teilfolge** (TF) wird wie in HMI definiert
- c) $x_0 \in \mathbb{R}^n$ heißt ein **Häufungswert** (HW) von $(a^{(k)})$, falls für alle $\epsilon > 0$ gilt

 $a^{(k)} \in U_{\epsilon}(x_0)$ für unendlich viele $k \in \mathbb{N}$

d) $(a^{(k)})$ heißt **konvergent**, falls ein $a \in \mathbb{R}^n$ existiert mit

$$||a^{(k)} - a|| \to 0$$
 für $k \to \infty$

In diesem Fall heißt a der **Grenzwert** bzw. **Limes** von $(a^{(k)})$ und man schreibt

$$a = \lim_{k \to \infty} a^{(k)}$$
 oder $a^{(k)} \to a(k \to \infty)$ oder $a^{(k)} \to a$

e) Ist $(a^{(k)})$ nicht konvergent, so heißt $(a^{(k)})$ divergent

16.1.2 Eigenschaften

a) Ist $(a^{(k)}) \subseteq \mathbb{R}^n$ eine Folge, so gilt

$$a^{(k)} \to a \text{ für } k \to \infty \iff \forall j \in \{1, \dots, n\} : a_j^{(k)} \to a_j \text{für} k \to \infty$$

- b) Ist $(a^{(k)}$ konvergent, so ist $(a^{(k)}$ beschränkt und jede Teilfolge von $(a^{(k)}$ konvergiert gegen $\lim_{k\to\infty}a^{(k)}$
- c) Ist $(b^{(k)}) \subseteq \mathbb{R}^n$ eine wieter Folge, $a, b \in \mathbb{R}^n$, $(\beta_k) \subseteq \mathbb{R}$, $\beta \in \mathbb{R}$ und gilt $a^{(k)} \to a, b^{(k)} \to b$ und $\beta_k \to \beta$ so gelten
 - i) $a^{(k)} + b^{(k)} \to a + b$
 - ii) $\beta_k a^{(k)} \to \beta a$
 - iii) $a^{(k)} \cdot b^{(k)} \rightarrow a \cdot b$
 - iv) $||a^{(k)}|| \to ||a||$
- d) (Cauchykriterium) Folgende Aussagen sind Äquivalent:
 - i) $(a^{(k)})$ ist konvergent
 - ii) für alle $\epsilon>0$ existiert ein $k_0\in\mathbb{N}$ derart, dass für alle $k,l\geq k_0$ gilt

$$||a^{(k)} - a^{(l)}|| < \epsilon$$

e) (Bolzano-Weierstraß) Ist $(a^{(k)})$ beschränkt, so enthält $(a^{(k)})$ eine konvergente Teilfolg

16.1.3 Häufungpunkte

Es sei $A \subseteq \mathbb{R}^n$. Ein Vektor $x_0 \in \mathbb{R}^n$ heißt ein **Häufungspunkt** (HP) von A, falls eine Folge $(a^{(k)} \subseteq A \setminus \{x_o\})$ existiert mit $a^{(k)} \to x_0$ für $k \to \infty$. Es gilt

- a) Die Folgenden Aussagen sind äquivalent:
 - i) A ist abgeschlossen
 - ii) Für jede konvergent Folge $(a^{(k)})$ in A gilt $\lim_{k\to\infty} a^{(k)} \in A$
 - iii) Jeder Häufungspunkt von A gehört zu A
- b) A ist kompakt \iff Jede Folge in A enthält eine konvergent Teilfoge deren Grenzwert zu A gehört.

17 Grenzwerte bei Funktionen, Stetigkeit

17.1 Grundlegendes

17.1.1 Limes

Es seien $x_0 \in \mathbb{R}^n$ ein Häufungspunkt von D und $y_0 \in \mathbb{R}^n$. Wir schreiben

$$\lim_{x \to x_0} f(x) = y_0$$

falls für jede Folge $(x^{(k)}) \subseteq D \setminus \{x_0\}$ mit $x^{(k)} \to x_0$ für $k \to \infty$ gilt

$$f(x^{(k)}) \to y_0 \text{ für } k \to \infty$$

In diesem Fall schreiben wir auch $f(x) \to y_0$ für $x \to x_0$

17.1.2 Eigenschaften des Limes

Es sei x_0 ein HP von $D \subseteq \mathbb{R}^n$ und $f, g: D \to \mathbb{R}^n$ und $h: D \to \mathbb{R}$ seien Funktionen. Ferner seien $y_0, z_0 \in \mathbb{R}^n$ und $\alpha \in \mathbb{R}$

a) Ist $f = (f_1, ..., f_m)$ und $y_0 = (y_1, ..., y_m)$, so gilt

$$f(x) \rightarrow y_0 \ (x \rightarrow x_0) \iff \forall j \in \{1, \dots, n\} : f_j/x) \rightarrow y_j \ (x \rightarrow x_0)$$

b) Es gilt

$$\lim_{x \to x_0} f(x) = y_0 \Longleftrightarrow \forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in D \setminus \{x_0\} : ||x - x_0|| < \delta \Rightarrow ||f(x) - y_0|| < \epsilon$$

- c) Es gelte $f(x) \to y_0, g(x) \to z_0$ und $h(x) \to \alpha$ für $x \to x_0$. Dann gilt
 - i) $f(x) \pm g(x) \rightarrow y_0 \pm z_0 \ (x \rightarrow x_0)$ und $f(x) \cdot g(x) \rightarrow y_0 \cdot z_0 \ (x \rightarrow x_0)$
 - ii) $h(x)f(x) \to \alpha y_0 \ (x \to x_0)$
 - iii) $||f(x)|| \to ||y_0|| (x \to x_0)$
 - iv) Ist $\alpha \neq 0$ und $h(x) \neq 0$ für jedes $x \in D$, so gilt

$$\frac{1}{h(x)} \to \frac{1}{\alpha}$$
 für $x \to x_0$

17.1.3 Stetigkeit

a) f heißt in $x_0 \in D$ stetig, falls für jede Folge $(x^{(k)})$ in D mit $x^{(k)} \to x_0$ gilt

$$f(x^{(k)}) \to f(x_0)$$

b) f heißt **stetig auf** D, falls f in jedem $x \in D$ stetig ist. In diesem Fall schreiben wir $f \in C(D; \mathbb{R}^m)$

17.1.4 Eigenschaften der Stetigkeit

a) Es sei $f:D\to\mathbb{R}^m$ in $x_0\in D$ stetig, $E\subseteq\mathbb{R}^m, f(D)\subseteq E$ und es sei $g:E\to\mathbb{R}^p$ stetig in $f(x_0)$. Dann ist

$$g \circ f : D \to \mathbb{R}^p$$

stetig in x_0

- b) Es sei D kompakt und $f \in D(D; \mathbb{R}^m)$. Dann gelten
 - i) f(D) ist kompakt, insbesonder ist f beschränkt
 - ii) Ist m=1, so existieren $x_1, x_2 \in D$ mit

$$f(x_1) \le f(x) \le f(x_2) \qquad (x \in D)$$

c) Jede lineare Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$ ist stetig auf \mathbb{R}^n

18 Differential rechnung im \mathbb{R}^n (reellwertige Funktionen)

18.1 Diffenzierbarkeit und partielle Differenzierbarkeit

18.1.1 Partielle Differenzierbarkeit und Ableitung

Es sei $x_0 = (\xi_1, \dots, \xi_n) \in D$ und $i \in \{1, \dots, n\}$. Weiter bezeichne

$$e_i = (0, \dots, 0, 1, 0, \dots, 0 =$$

den i-ten Einheitswektor. Dann gilt

$$x_0 + te_i = (\xi, \dots, \xi_{i-1}, \xi_i + t, \xi_{i+1}, \dots, \xi_n)$$

f heißt in x_0 nach x_i partiell diffbar, falls der Grenzwert

$$f_{x_i}(x_0) := \partial_{x_i} f(x_0) := \frac{\partial f}{\partial x_i}(x_0) := \lim \frac{f(x_0 + te_i) - f(x_0)}{t} \in \mathbb{R}$$

existert. In diesem Fall heißt $\partial_{x_i} f(x_0)$ die partielle Ableitung von f nach x_i in x_0

18.1.2 Gradient

a) f heißt in $x_0 \in D$ partiell differenzievar, falls f in x_0 nach allen Variablen x_1, \ldots, x_n partiell diffbar ist. In diesem Fall heißt der Vektor

grad
$$f(x_0) := \nabla f(x_0) := \begin{pmatrix} \partial_{x_1} f(x_0) \\ \vdots \\ \partial_{x_n} f(x_0) \end{pmatrix}$$

der Gradient von f in x_0

- b) f heißt auf D partiell diffbar, falls f in jedem $x \in D$ partiell diffbar ist.
- c) Für i = 1, ..., n sagen wir, dass $\partial_{x_i} f$ auf D existiert, falls f in jedem $x \in D$ nach x_i partiell diffbar ist. In diesem Fall heißt die Funktion

$$\partial_{x_i} f: D \to \mathbb{R}$$

die partielle Ableitung von f nach x_i

d) f heißt **auf** D **stetig partiell diffbar**, falls f aur D partiell diffbar ist und $\partial_{x_1} f, \ldots, \partial_{x_n} f \in C(D; \mathbb{R})$

18.1.3 Ableitung 2. Ordnung

Für $i=1,\ldots,n$ existiere die partielle Ableitung $\partial_{x_i}f:D\to\mathbb{R}$ von f nach x_i auf D. Es sei $x_0\in D$ und $j=1,\ldots,n$. Ist $\partial_{x_i}f$ in x_0 nach x_j partiell diffbar, so heißt

$$f_{x_i x_j}(x_0) := \partial_{x_j} \partial_{x_i} f(x_0) := \frac{\partial^2 f}{\partial_{x_j} \partial_{x_i}} (x_0) := \partial_{x_j} (\partial_{x_i} f)(x_0)$$

die partielle Ableitung 2. Ordnung von f nach x_i und x_j in x_0 . Entsprechend definert man, falls vorhanden, Ableitung höherer Ordung. Schreibweisen:

$$\frac{\partial^3 f}{\partial y \partial x^2} = f_{xxy}, \quad \frac{\partial^7 f}{\partial y^3 \partial x^4} = f_{xxxxyy}, \quad \frac{\partial^5 f}{\partial z^2 \partial y \partial x^2} = f_{xxyzz}$$

18.1.4 *m*-malige stetig partielle diffbarkeit

Es sei $m \in \mathbb{N}$. f heißt auf D m-mal stetig partiell diffbar, falls alle partiellen Ableitungen von f der Ordnung kleiner gleich m auf D existieren und dort stetig sind. In diesem Fall schreiben wir $f \in C^m(D; \mathbb{R})$

18.1.5 Satz von Schwarz

Es sei $m \in \mathbb{N}$ mit $m \geq 2$ und $f \in C^m(D; \mathbb{R})$. Dann ist jede partielle Ableitung von f der Ordnung kleiner gleich m unabhängig von der Reihenfolge der Differentation.

18.1.6 Differenzierbarkeit

a) f heißt in $x_0 \in D$ diffbar, falls

$$\exists a \in \mathbb{R}^{1 \times n} : \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ah}{||h||} = 0$$

$$\iff \exists a \in \mathbb{R}^{1 \times n} : \lim_{x \to x_0} \frac{f(x) - f(x_0) - a(x - x_0)}{||x - x_0||} = 0$$

b) f heißt auf D diffbar, falls f in jedem $x \in D$ diffbar ist.

18.1.7 Ableitung

Es sei $x_0 \in D$

- a) Ist f in x_0 diffbar, so ist f in x_0 stetig, und f ist in x_0 partiell diffbar
- b) Ist f in x_0 diffbar, so ist die Matrix a obiger Definition eindeutig bestimmt und es gilt $a = \nabla f(x_0)^T$. In diesem Fall heißt

$$f'(x_0) := a = \nabla f(x_0)^T$$

die Ableitung von f in x_0

c) f ist in x_0 diffbar $\iff f$ ist in x_0 partiell diffbar und

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - \nabla f(x_0) \cdot h}{||h||} = 0$$

wobei, wie schon zuvor "." das Skalarprodukt bezeichnet

d) Es sei f auf D partiell diffbar und $\partial_{x_1} j, \ldots, \partial_{x_n} f$ seien in $x_0 \in D$ stetig. Dann ist f in x_0 diffbar. Insbesondere gilt: Ist $f \in C^1(D; \mathbb{R})$, so ist f auf D diffbar.

18.2 Der Mittelwertsatz

18.2.1 Differenzierbarkeit

Es sei $I \subseteq \mathbb{R}$ ein Intervall und $g = (g_1, \ldots, g_n) :) \to \mathbb{R}^n$ eine Funktion. Dann heißt g in $t_o \in I$ diffbar, falls g_1, \ldots, g_n in $t_0 \in I$ diffbar sind. In diesem Fall setzen wir

$$g'(t_o) := \begin{pmatrix} g_1'(t_0) \\ \vdots \\ g_n'(t_0) \end{pmatrix}$$

Eintsprechend definiert man "auf I diffbar" und "auf I stetig diffbar".

18.2.2 Kettenregel

Sind $I \subseteq \mathbb{R}$ ein Intervall, $g = (g_1, \dots, g_n) : I \to \mathbb{R}^n$ in $t_0 \in I$ diffbar, $g(I) \subseteq D$ und f in $x_0 := g(t_0)$ diffbar, so ist

$$f \circ g: I \to \mathbb{R}$$
 in t_0 diffbar

und
$$(f \circ g)'(t_0) = f'(g(t_0))g'(t_0)$$

18.2.3 Der Mittelwertsatz

Seien $f:D\to\mathbb{R}$ auf D diffbar und $a,b\in D$ derart, dass $S[a,b]\subseteq D$. Dann existiert ein $\xi\in S[a,b]$ mit

$$f(b) - f(a) = f'(\xi)(b - a)$$

18.2.4 Streckenzug

a) Für $x^{(0)}, \dots, x^{(m)} \in \mathbb{R}^n$ heißt die Menge

$$S\left[x^{(0)},\dots,x^{(m)}\right] := \bigcup_{j=1}^{m} S\left[x^{(j-1)},x^{(j)}\right]$$

Streckenzug durch $x^{(0)}, \ldots, x^{(m)}$

b) Eine Menge $M \subseteq \mathbb{R}^n$ heißt ein **Gebiet**, falls M offen ist und falls zu je zwei Punkten $a,b \in M$ ein Streckenzug in M existiert, der a und b verbindet, d.h. es existieren Punkte $x^{(0)}, \ldots, x^{(m)} \in M$ mit

$$a = x^{(0)}, b = x^{(m)} \text{ und } S\left[x^{(0)}, \dots, x^{(m)}\right] \subseteq M$$

c) Ist D ein Gebiet, $f:D\to\mathbb{R}$ diffbar auf §D§ und gilt $f'(x)=0, x\in D,$ so ist f auf D konstant.

18.3 Richtungsableitungen und Extrema

18.3.1 Richtungsvektoren

- a) Ein Vektor $a \in \mathbb{R}^n$ mit ||a|| = 1 heißt **Richtung** oder **Richtungsvektor**
- b) Seien $x_0 \in D$ und $a \in \mathbb{R}^n$ eine Richtung. Die Funktion f heißt in x_0 in Richtung a diffbar, falls der Grenzwert

$$\frac{\partial f}{\partial a}(x_0) := \lim_{t \to 0} \frac{f(x_0 + ta) - f(x_0)}{t} \in \mathbb{R}$$

existiert. In deisem Fall heißt $\frac{\partial f}{\partial a}(x_0)$ die Richtungsableitung von f in x_0 in Richtung a

Ist f in $x_0 \in D$ diffbar und $a \in \mathbb{R}^n$ eine Richtung, so existiert $\frac{\partial f}{\partial a}(x_0)$ und

$$\frac{\partial f}{\partial a}(x_0) = a \cdot \nabla f(x_0)$$

18.3.2 Hesse-Matrix

Für $f \in C^2(D; \mathbb{R})$ und $x_0 \in D$ heißt

$$H_f(x_0) := \begin{pmatrix} \partial_{x_1} \partial_{x_1} f(x_0) & \partial_{x_1} \partial_{x_2} f(x_0) & \cdots & \partial_{x_1} \partial_{x_n} f(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_n} \partial_{x_1} f(x_0) & \partial_{x_n} \partial_{x_2} f(x_0) & \cdots & \partial_{x_n} \partial_{x_n} f(x_0) \end{pmatrix}$$

die Hesse-Matrix von f in x_0 . Diese Matrix ist symmetrisch.

18.3.3 Definitheit

Eine reelle und symmetrische $n \times n$ -Matrix A heißt

- a) positiv definit, falls für alle $x \in \mathbb{R}^n \setminus \{0\}$ gilt: $(Ax) \cdot x > 0$
- b) **negativ definit**, falls für alle $x \in \mathbb{R}^n \setminus \{0\}$ gilt: $(Ax) \cdot x < 0$
- c) indefinit, falls $u, v \in \mathbb{R}^n$ existieren mut $(Au) \cdot u > 0$ und $(Av) \cdot v < 0$

Eine gegebene Matrix muss allerdings keinem der obigen Begriffe genügen.

18.3.4 Eigenschaften

Für $A \in \mathbb{R}^{n \times b}$ symmetrisch gilt:

- a) i) A ist positiv definit \iff alle Eigenwerte von A sind positiv
 - ii) A ist negativ definit \iff alle Eigenwerte von A sind negativ
 - iii) Aist indefinit \Longleftrightarrow es gibt Eigenwerte λ,μ von Amit $\lambda>0$ und $\mu<0$

- b) Sei n=2 und $A=\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$
 - i) A ist positiv definit $\iff \alpha > 0$, det A > 0
 - ii) A ist negativ definit $\iff \alpha < 0$, det A > 0
 - iii) A ist indefinit \iff det A < 0

18.3.5 Minimum/ Maximum

Es sei $M \subseteq \mathbb{R}^n$ und $g: M \to \mathbb{R}$ eine Funktion, g hat in $x_0 \in M$ ein

- a) lokales Maximum, falls ein $\delta > 0$ derart existiert, dass für alle $x \in U_{\delta}(x_0) \cap M$ gilt $g(x) \leq g(x_0)$
- b) lokales Minimum, falls ein $\delta > 0$ derart existiert, dass für alle $x \in U_{\delta}(x_0) \cap M$ gilt $g(x) \geq g(x_0)$
- c) globales Maximum, falls für alle $x \in M$ gilt $g(x) \leq g(x_0)$
- d) globales Minimum, falls für alle $x \in M$ gilt $g(x) \geq g(x_0)$

18.3.6 Eigenschaften

- a) Ist f in $x_0 \in D$ partiell diffbar und hat f in x_0 ein lokales Extremum, so ist $\nabla f(x_0) = 0$
- b) Ist $f \in C^2(D; \mathbb{R}), x_0 \in D$ und $\nabla f(x_0) = 0$ so gilt:
 - i) Ist $H_f(x_0)$ posity definit, so hat f in x_0 ein lokales Minimum
 - ii) Ist $H_f(x_0)$ negativ definit, so hat f in x_0 ein lokales Maximum
 - iii) Ist $H_f(x_0)$ indefinit, so hat f in x_0 kein lokales Extremum

19 Differentaial rechnung im \mathbb{R}^n (vektorwertige Funktionen)

19.1 Grundlegende Eigenschaften

19.1.1 Jacobi-Matrix

a) Es sei $x_0 \in D$. f heißt in x_0 partiell diffbar, falls f_j für alle $j = 1, \ldots, m$ in x_0 partiell diffbar ist. In diesem Fall heißt

$$\frac{\partial f}{\partial x}(x_0) := \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)}(x_0) := J_f(x_0) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

die Jacobi- oder Funktionalmatrix von f in x_0 .

Beachte: In der Jacobi-Matrix stehen zeilenweise die Gradienten der Koordinatenfunktionen.

b) Es sei $p \in \mathbb{N}$. Wir schreiben $f \in C^p(D; \mathbb{R}^m)$, falls $f_j \in C^p(D; \mathbb{R})$ für alle j = 1, ..., m gilt.

19.1.2 Differenzierbarkeit

f heißt in $x_0 \in d$ diffbar, falls $A \in \mathbb{R}^{m \times n}$ existiert mit

$$\lim_{h \to 0} \frac{f(x_0 + h - f(x_0) - Ah}{||h||} = 0$$

19.1.3 Ableitungen

Es sei $x_0 \in D$

- a) f ist in x_0 diffbar \iff Alle f_j sind in x_0 diffbar. In diesem Fall gilt:
 - i) f ist in x_0 stetig
 - ii) f ist in x_0 partiell diffbar
 - iii) die matrix A in obiger Definition ist eindeutig bestimmt und gegben durch $A=J_f(x_0)$
- b) Ist f in x_0 diffbar, so heißt $f'(x_0) := J_f(x_0)$ die Ableitung von f in x_0 .
- c) Existieren alle partiellen Ableitungen $\frac{\partial f_j}{\partial x_k}$ auf D und sind in x_0 stetig, so ist f in x_0 diffbar. Insbesondere gilt, ist $f \in C^1(D; \mathbb{R})$, so ist f auf D diffbar.

19.1.4 Kettenregel

Es sei $f: D \to \mathbb{R}^m$ in $x_0 \in D$ diffbar, es sei $E \subseteq \mathbb{R}^m$ offen, $f(D) \subseteq E$ und $g: E \to \mathbb{R}^l$ sei diffbar in $y_0 := f(x_0)$. Dann ist

$$g \circ f: D \to \mathbb{R}^l$$

in x_0 diffbar und

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$$

19.2 Implizit definierte Funktionen

19.2.1 Satz über implizi definierte Funktionen

Es sei $(x_0,y_0)\in D, f(x_0,y_0)=0$ und $\det(\frac{\partial f}{\partial y}(x_0,y_0))\neq 0$. Dann existieren $\delta,\mu>0$ mit den folgenden Eigenschaften:

- a) $U_{\delta}(x_0) \times U_{\mu}(y_0) \subseteq D$
- b) für alle $x \in U_delta(x_0)$ existiert ein eindeutiges $y \in U_\mu(y_0)$ mit f(x,y) = 0

Wir definieren $g: U_{\delta}(x_0) \to U_{\mu}(y_0)$ durch g(x) = y, wobei x und y vermöge Aussage b) zusammenhängen. Die Funktion g erfüllt

- a) $q \in C^1(U_\delta(x_0); \mathbb{R}^m)$
- b) für alle $x \in U_{\delta}(x_0)$ ist $det(\frac{\partial f}{\partial y}(x, g(x))) \neq 0$

c) für alle $x \in U_{\delta}(x_0)$ ist die Ableitung von g gegeben durch

$$J_g(x) = -\left(\frac{\partial f}{\partial y}(x, g(x))\right)^{-1} \left(\frac{\partial f}{\partial y}(x, g(x))\right)$$

19.3 Differenzierbarkeit von Umkehrfunktionen

19.3.1 Der Umkehrsatz

Es sei $D \subseteq \mathbb{R}^n$ offen, $f \in C^1(D;\mathbb{R}^n)$ und $x_0 \in D$. Ist $\det(f'(x_0)) \neq 0$, so existiert ein $\delta > 0$ mit

- a) $U_{\delta}(x_0) \subseteq D$ und $f(U_{\delta}(x_0))$ ist offen
- b) f ist auf $U_{\delta}(x:0)$ injektiv
- c) $f^{-1}: f(U_{\delta}(x_0)) \to U_{\delta}(x_0)$ ist in $C^2(f(U_{\delta}(x_0)); \mathbb{R}^n)$,

$$\det(f'(x)) \neq 0 \qquad (x \in U_{\delta}(x_0))$$

und

$$(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1}$$
 $(y \in f(U_{\delta}(x_0)))$

20 Integration in \mathbb{R}^n

20.1 Definition und grundelgende Eigenschaften

20.1.1 Kompakte Intervalle, Inhalt, Zerlegung

a) Sind $[a_1, b_1], [a_2, b_2], \ldots, [a_n, b_n]$ kompakte Intervalle in \mathbb{R} , so heißt

$$I := [a_1, b_2] \times \cdots \times [a_n, b_n]$$

ein kompaktes Intervall im \mathbb{R}^n

- b) Die Zahl $|I|:=(b_1-a_1)\cdot\dots\cdot(b_n-a_n)$ heißt **Inhalt** (oder **Volumen**) von I
- c) Zu jedem $j \in \{1, \ldots, n\}$ sei eine Zerlegung Z_j von $[a_j, b_j]$ gegeben. Dann heißt

$$Z := Z_1 \times \dots \times Z_n$$

= $\{(x_1, \dots, x_n) \mid x_j \in Z_j \text{ für } j = 1, \dots, n\}$

eine Zerlegung von I

20.1.2 Ober- und Untersummen

Es sei I wie oben, $f:I\to\mathbb{R}$ sei beschränkt und Z sei eine Zerlegung von I mit den Teilintervallen I_1,\ldots,I_m . Wir setzen

$$m_j := \inf f(I_j)$$
 und $M_j := \sup f(I_j)$ $(j = 1, \dots, m)$

und definieren die Unter- bzw. Obersomme von f bzgl. Z durch

$$U_f(Z) := \sum_{j=1}^m m_j |I_j|$$
 die Untersumme von f bzgl. Z

$$O_f(Z) := \sum_{j=1}^m m_j |I_j|$$
 die Obersumme von f bzgl. Z

20.1.3 Integrierbarkeit

Es seien I und f wie oben. Wir definierne das **Unter-** bzw. **Oberintegral** von f auf I durch

$$\int_I f(x) \ dx := \sup\{U_f(Z) \mid Z \text{ Zerlegung von } I\}$$

$$\overline{\int_I} f(x) \ dx := \inf\{O_f(Z) \mid Z \text{ Zerlegung von } I\}$$

Man kann zeigen, dass immer $\underline{\int_I} f(x) \ dx \le \overline{\int_I} f(x) \ dx$ gilt. Wir nennen die Funktion f integrierbar über \overline{I} , falls $\underline{\int_I} f(x) \ dx = \overline{\int_I} f(x) \ dx$. In diesem Fall hießt

$$\int_{I} f \ dx := \int_{I} f(x) \ dx := \int_{I} f(x) \ dx \left(= \overline{\int_{I}} f(x) \ dx \right)$$

das Integral von f über I und man schreib $f \in R(I)$ oder $f \in R(I; \mathbb{R})$

20.1.4 Grundlegende Eigenschaften

Es sei I ein kompaktes Intervalll im \mathbb{R}^n , $f,g\in R(I)$ und es seien $\alpha,\beta\in\mathbb{R}$. Dann geilten:

a) Es sind $\alpha f + \beta g, fg, |f| \in R(I)$ es gelten

$$\int_{I} (\alpha f + \beta g) \ dx = \alpha \int_{I} f \ dx + \beta \int_{I} g \ dx$$

b) Ist $f \leq g$ auf I, so ist

$$\int_{I} f \ dx \le \int_{I}$$

Insbesondere gilt

$$\left| \int_{I} f(x) \ dx \right| \le \int_{I} |f(x)| \ dx$$

- c) Gilt $|g(x)| \ge \alpha$ für alle $x \in I$ und ein $\alpha > 0$, so ist $\frac{f}{g} \in R(I)$
- d) $C(I) \subseteq R(I)$

20.2 Der Satz von Fubini und das Prinzip von Cavalieri

20.2.1 Satz von Fubini

Es sei $k, l \in \mathbb{N}$ und n = k + l (also $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^l$). Weiterhin seien $I_1 \subseteq \mathbb{R}^k$ und $I_2 \in \mathbb{R}^l$ kompakte Intervalle. $I = I_1 \times I_2 \subseteq \mathbb{R}^n$ und $f \in R(I)$. Punkte in I bezeichnen wir mit (x, y), wobei $x \in I_1$ und $y \in I_2$

a) Für jedes feste $y\in I_2$ sei dei Funktion $x\mapsto f(x,y)$ integrierbar über I_1 und es sei $g(y):=\int_{I_1}f(x,y)\;dx.$ Dann gilt $f\in R(I_2)$ und

$$\int_{I} f(x,y) \ d(x,y) = \int_{I_{2}} g(x) \ dx = \int_{I_{2}} \left(\int_{I_{1}} f(x,y) \ dy \right) \ dx$$

b) Für jedes feste $x\in I_1$ sei dei Funktion $y\mapsto f(x,y)$ integrierbar über I_2 und es sei $g(y):=\int_{I_2}f(x,y)\ dx$. Dann gilt $f\in R(I_1)$ und

$$\int_{I} f(x,y) \ d(x,y) = \int_{I_{1}} g(x) \ dx = \int_{I_{1}} \left(\int_{I_{2}} f(x,y) \ dy \right) \ dx$$

Diese Verfahren lässt sich auch auf mehr als zwei Intervalle übertragen.

20.2.2 Charakteristische Funktion

Es sei $B \subseteq \mathbb{R}^n$. Die Funktion

$$c_B : \mathbb{R}^n \to \mathbb{R}, \quad c_B(x) := \begin{cases} 1, & x \in B \\ 0, & x \notin B \end{cases}$$

heißt charakteristische Funkton von B Um das "Volumen" von B zu definiern wählen wir est ein kompaktes Intervall I mit $B \subseteq I$ und zerlegen dann I in Teilintervalle I_1, \ldots, I_m bzgl. einer Zerlegung Z. Es gilt

$$\inf c_B(I_j) = \begin{cases} 1, & I_j \in B \\ 0, & I_j \notin B \end{cases}$$

Die Untersumme von c_B bzgl. Z ist damit gegeben durch

$$U_{c_B}(Z) = \sum_{\substack{j \in \mathbb{N} \\ I_j \subseteq B}} |I_j|$$

Analog gilt

$$\sup c_B(I_j) = \begin{cases} 1, & \text{falls } I_j \cap B \neq \emptyset \\ 0, & \text{falls } I_j \cap B = \emptyset \end{cases}$$

sodass die Obersumme von c_B bzgl. Z gegeben ist durch

$$O_{c_B}(Z) = \sum_{\substack{j \in \mathbb{N} \\ I_j \cap B \neq \emptyset}} |I_j|$$

20.2.3 Innerer und äußerer Inhalt

Für $B\subseteq\mathbb{R}^n$ beschränkt setzten wir

$$\underline{v}(B) := \int_{\underline{I}} c_B(x) \ dx \quad \text{ innerer Inhalt von } B$$

$$\overline{v}(B) := \overline{\int_I} c_B(x) \ dx$$
 äußerer Inhalt von B

Die Menge B heißt **messbar**, falls $c_B \in R(I)$. In diesem Fall ist

$$\underline{v}(B) = \overline{v}(B) = \int_{I} c_{B}(x) dx$$

und

$$|B| := \int_I c_B(x) \ dx$$

heißt der Inhalt von B

20.2.4 Integrierbarkeit und Intervall

Für $B\subseteq\mathbb{R}^n$ messbar und $f:B\to\mathbb{R}$ beschränkt definieren wir

$$f_B(x) := \begin{cases} f(x), & x \in B \\ 0, & x \notin B \end{cases}$$

Zusätzlich sei I ein kompaktes Intervall mit $B \subseteq I$. Wir nenn f **über** B **integrierbar**, falls $f_B \in R(I)$. In diesem Fall schreiben wir $f \in R(B)$, setzen

$$\int_B f \ dx := \int_B f(x) \ dx := \int_I f_B(x) \ dx$$

und nennen dies das Integral von f über B.

20.2.5 Eigenschaften

Es seien $A, B \subseteq \mathbb{R}^n$ messbar und $\alpha, \beta \in \mathbb{R}$

- a) Ist $f \in C(B; \mathbb{R})$ beschränkt, so ist $f \in R(B)$
- b) Es seien $f, g \in R(B)$. Dann gelten:

i) Es sind $\alpha f + \beta g, fg, |f| \in R(B)$ und es gilt

$$\int_{B} (\alpha f + \beta g) \ dx = \alpha \int_{B} f \ dx + \beta \int_{B} g \ dx$$

ii) Ist $f \leq g$ auf B, so ist

$$\int_{B} f \ dx \le \int_{B} g \ dx$$

Insbesondere gilt

$$\left| \int_{B} f \ dx \right| \le \int_{B} |f| \ dx$$

- iii) Gilt $|g(x)| \ge \alpha$ für alle $x \in B$ und ein $\alpha > 0$, so ist $\frac{f}{g} \in R(B)$
- c) i) $A \cup B$, $A \cap B$ und $A \setminus B$ sind messbar.
 - ii) Aus $A \subseteq B$ folt $|A| \le |B|$
 - iii) $f \in R(A \cup B) \iff f \in R(A) \cap R(B)$. In diesem Fall gilt

$$\int A \cup Bf \ dx = \int_A f \ dx + \int_B f \ dx - \int A \cap Bf \ dx$$

Insbesondere gilt

$$|A \cup B| = |A| + |B| - |A \cap b|$$

Es sei $B\subseteq \mathbb{R}^n$ beschränkt und messbar. Es seien $f,g\in R(B)$ mit $g\leq f$ auf B und

$$M_{f,g} := \{(x,y) \in \mathbb{R}^{n+1} \mid x \in B, g(x) \le y \le f(x)\}$$

Dann ist $M_{f,g}$ messbar (im \mathbb{R}^{n+1}) und, ist $h \in (M_{f,g}; \mathbb{R})$ beschränkt, so ist

$$\int_{M_{f,g}} h(x,y) \ d(x,y) = \int_{B} \left(\int_{g_x)}^{f(x)} h(x,y) \ dy \right) \ dx$$

Insbesondere gilt

$$|M_{f,g}| = \int_{B} (f - g) \ dx$$

20.2.6 Prinzip von Cavalieri

Es sei $B \subseteq \mathbb{R}^{n+1}$ messbar und beschränkt. FÜr Punkte im \mathbb{R}^{n+1} schreiben wir (x,y) mit $x \in \mathbb{R}^n$ und $y \in \mathbb{R}$. Ferner sei $a,b \in \mathbb{R}$ derart, dass $a \leq y \leq b$ für alle $(x,y) \in B$ gilt. Ist für jedes $y \in [a,b]$ die Menge

$$Q(y) := \{ x \in \mathbb{R}^n \mid (x, y) \in B \}$$

messbar, so ist $y\mapsto |Q(y)|$ integrierbar über [a,b] und

$$|B| = \int_a^b |Q(y)| \ dy$$

20.3 Die Substitutionsregel

20.3.1 Die Substitutionsregel

Es sei $G\subseteq\mathbb{R}^n$ offen, $g\in C^1(G;\mathbb{R}^n)$ und $B\subseteq G$ kompakt und messbar. Weiter sei g auf dem Inneren B^0 von B injektiv und

$$\det(g'(y)) \neq 0 \qquad (y \in B^0)$$

Ist dann A := g(B) und $f \in C(A; \mathbb{R})$, so ist A kompakt und messbar und es gilt

$$\int_A f(x) \ dx = \int_B f(g(y)) |\det(g'(y))| \ dy$$

21 Spezielle Differentialglicheungen 1. Ordnung

21.1 Grundlegendes

21.1.1 Anfangswertprobleme

Es sei $\emptyset \neq D \subseteq \mathbb{R}^3$ und $h: D \to \mathbb{R}$ eine Funktion

a) Die Gleichung

$$h(x, y(x), y * (x)) = 0 (21.1)$$

heißt eine **Differentialgleichung (DGL) 1. Ordnung**. Sind $x_0, y_0 \in \mathbb{R}$, so heißt

$$\begin{cases} h(x, y(x), y'(x)) = 0 \\ y(x_0) = y_0 \end{cases}$$
 (21.2)

ein Anfangswertproblem (AWP)

b) Ist $I \subseteq \mathbb{R}$ ein Intervall une $y:I \to \mathbb{R}$ eine Funktion, so heipt y eine Lösung von (21.1) auf I, falls y auf I diffbar ist und

$$\forall x \in I : (x, y(x), y'(x)) \in D \quad \text{und} \quad h(x, y(x), y'(x)) = 0$$

Ist y eine Lösung von (21.1) auf I so ist $x_0 \in I$ und $y(x_0) = y_0$, so heißt y eine Lösung des Anfangswertproblems (21.2) auf I

21.2 Differentialgleichung mit getrennten Veränderlichen

21.2.1 Definition

Es sei $I_1, I_2 \subseteq \mathbb{R}$ Intervalle und $f \in C(I_1; \mathbb{R})$ sowie $g \in C(I_2; \mathbb{R})$. Die Dgl

$$y'(x) = f(x)g(y(x))$$
 (21.3)

heißt eine Differentialgleichung mit getrennten veränderlichen.

21.2.2 Eigenschaften

Es seien $I_1, I_2 \subseteq \mathbb{R}$ Intervalle und $f \in C(I_1; \mathbb{R})$ sowie $g \in C(I_2; \mathbb{R})$. Gilt $g(y) \neq 0$ für alle $y \in I_2$, so erhält man die Lösungen von (21.3), indem man die Gleichung

$$\int \frac{dy}{g(y)} = \int f(x) \, dx + c$$

nach y auflöst.

Diese Formel kann man sich ugt mit Hilfe der folgenden Rechnung merken

$$y' = f(x)g(y) \Rightarrow \frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx \Rightarrow \int \frac{dy}{g(y)} = \int f(x) dx + c$$

21.3 Lineare Differentialgleichungen

21.3.1 Definition

Die Differentialgleichung

$$y'(x) = \alpha(x)y(x) + s(x) \tag{21.4}$$

heißt eine lineare Differentialgleichung und s heißt Störfunktion. Die Differentialgleichung

$$y'(x) = \alpha(x)x(x) \tag{21.5}$$

heißt die zu (21-4) gehörige **homogene Gleichung**. Ist $s \neq 0$ (also nicht die Nullfunktion), so heißt die Gleichung (21.4) **inhomogen**.

21.3.2 Eigenschaften

Es sei β eine Stammfunkton von α auf I.

- a) Es sei $y: I \to \mathbb{R}$ eine Funktion. Dann gilt:
 - i) y ist eine Lösung von (21.5) auf $I \iff \exists c \in \mathbb{R} : y(x) = ce^{\beta(x)}$
 - ii) Sei y_p eine spezielle Lösung von (21.4) auf I. Dann gilt:

yist eine Lösung von (21.4) auf $I \Longleftarrow \exists c \in \mathbb{R} : y(x) = y_p(x) + ce^{\beta(x)}$

b) Variation der Konstanten: Der Ansatz

$$y_p(x) : c(x)e^{\beta(x)}$$

mit einer noch unbekannten Funktion c führt auf eine spezielle Lösung von (21.4) auf I

c) Es sei $x_0 \in I$ und $y_0 \in \mathbb{R}$. Dann hat das Awp

$$\begin{cases} y'(x) &= \alpha(x)y(x) + s(x) \\ y(x_0) &= y_0 \end{cases}$$

auf I genau eine Lösung

22 Lineare Systeme mit konstanten Koeffizienten

22.1 Grundlegendes

22.1.1 System linearer Differentialgleichungen

Ist $A = (a_{j,k} \in \mathbb{R}^{n \times n}, n \in \mathbb{N}, \text{ so betrachten wir auf einem Intervall } I \subseteq \mathbb{R}$ ein Intervall das folgende **System linearer Differentialgleichungen**

$$\begin{cases} y_1'(x) = a_{11}y_1(x) + a_{12}y_2(x) + \dots + a_{1n}y_n(x) + b_1(x) \\ y_2'(x) = a_{21}y_1(x) + a_{22}y_2(x) + \dots + a_{2n}y_n(x) + b_2(x) \\ \vdots & \vdots & \vdots \\ y_n'(x) = a_{n1}y_1(x) + a_{n2}y_2(x) + \dots + a_{nn}y_n(x) + b_n(x) \end{cases}$$

wobei $b_j:)\to\mathbb{R}$ für $j=1,\ldots,n$ gegebende stetige Funktionen sind und jedes $y_j:I\to\mathbb{R}$ für $j=1,\ldots,n$ gesucht ist. Definert man $y:=(y_1,\ldots,y_n)^T$ und $b:=(b_1,\ldots,b_n)^T$ kann dieses System kompakter geschriebgen werden durch

$$y'(x) = Ay(x) + b(x)$$
 (22.1)

Das System

$$y'(x) = Ay(x) \tag{22.2}$$

heißt das zu (22-1) gehörende **homogene System** ((22.2) heißt **inhomogen**, falls $b \neq 0$). Gesucht sind nun also vektorwertige FUnktionen die (22.1) bze. (22.2) erfüllen.

22.1.2 Eigenschaften

a) Die Lösung von (22.2) sind auf gan
r $\mathbb R$ definiert. Ferner ist die Menge aller Lösungen

$$V := \{ y : \mathbb{R} \to \mathbb{R}^n \mid y \text{ ist eine L\"osung von } (22.2) \}$$

ein reeller Vektorraum mit $\dim(V) = n$. Jede Basis von V heißt **Fundamentalsystem** von (22.2)

- b) Ist y_p eine spezielle Lösung von (22.1) auf I, so gilt: y ist eine Lösung von (22.1) auf $I \iff \exists y_h \in V : y(x) = y_p(x) + y_h(x) \ (x \in I)$
- c) Ist $x_0 \in I$ und $y_0 \in \mathbb{R}^0$, so hat das Awp

$$\begin{cases} y'(x) = Ay(x) + b(x) \\ y(x_0) = y_0 \end{cases}$$

auf I genau eine Lösung

22.1.3 Lösungsmethode für (22.2)

- 1. Bestimme die verschiedenen Eigenwerte $\lambda_1, \ldots \lambda_r$ von A, wobei $r \leq n$. Ordne die Eigenwerte wie folgt an:
 - i) $\lambda_1, \ldots, \lambda_m$ bezeichnen die reellen Eigenwerte von A
 - ii) $\lambda_{m+1}, \ldots, \lambda_r$ bezeichnen die Eigenwerte in $\mathbb{C} \setminus \mathbb{R}$. Die komplex konjugierten Zahlen sind ebenfalls Nullstellen, befinden sich also auch unter den Zahlen $\lambda_{m+1}, \ldots, \lambda_r$. Folglich ist r-m gerade und mit $s:=\frac{1}{2}(r-m)$ können wir diese derart durchnummerieren, dass

$$\lambda_{m+s+1} = \overline{\lambda_m}, \dots, \lambda_{m+2s} = \overline{\lambda_s}$$

Setze

$$M := \{\lambda_1, \dots, \lambda_{m+s}\}$$

Die Zahlen $\lambda_{m+s+1}, \dots \lambda_r$ sind nicht weiter von Wichtigkeit!

- 2. Für jedes $\lambda_j \in M$ und jeden Eigenvektor $u^{(1)}$ von A_j bestimmt man die zugehörige Jordankette $u^{(1)}, \ldots, u^{(p)}$, die $u^{(l)} = (A \lambda_j \operatorname{Id}) u^{(l+1)}$ für $l = 1, \ldots, p-1$ erfüllt
- 3. Es sei $\lambda_j \in M$ und $u^1, \ldots, u^{(p)}$ die Jordankett aus Schritt 2. Wir bilden die Funktion

$$e^{t\lambda_j}u^{(1)}, \ e^{t\lambda_j}(xu^{(1)}+u^{(2)}), \ e^{t\lambda_j}\left(\frac{x^1}{2}u^{(1)}+xu^{(2)}+u^{(3)}\right), \ \ldots,$$

$$e^{t\lambda_j} \left(\frac{x^{p-1}}{(p-1)!} u^{(1)} + \dots + x u^{(p-1)} + u^{(p)} \right)$$
 (22.3)

<u>Fall 1</u>: $\lambda_j \in \mathbb{R}$. Bezeichnet $y : \mathbb{R} \to \mathbb{R}^n$ eine Funktion aus (22.3), so ist y eine Lösung von (22.2) auf \mathbb{R} .

<u>Fall 2</u>: $\lambda_j \in \mathbb{C} \setminus \mathbb{R}$. Es bezeichne $z : \mathbb{R} \to \mathbb{R}$ eine Funktion aus (22.3). Zerlege z(x) komponentenweise in Real- und Imaginärtel

$$z(x) = \text{Re}(z(x)) + i\text{Im}(z(x)) = y^{(1)}(x) + iy^{(2)}(x)$$