Question Number	Answer		Mark
19(a)	Use of $\Delta W = F \Delta x$ or $\Delta E_{grav} = mg\Delta h$	(1)	
	Use of $P = W/t$	(1)	
	Use of efficiency = useful power output / total power input Or		
	Use of efficiency = useful energy output / total energy input	(1)	
	Total power input = $2.0 \times 10^4 \text{ W}$	(1)	4
	Example of calculation $\Delta W = 4.4 \times 10^4 \times 15 \text{ m} = 6.6 \times 10^5 \text{ J}$ Output power = $6.6 \times 10^5 \text{ J} \div 70 \text{ s} = 9.4 \times 10^3 \text{ W}$ Efficiency = $\frac{9.4 \times 10^3 \text{ W}}{\text{Total power input}} = 0.47$ Total power input = $\frac{9.4 \times 10^3 \text{ W}}{0.47} = 2.0 \times 10^4 \text{ W}$		
19(b)(i)	Total clockwise must balance total anticlockwise moment (about tower) Or		
	Net/resultant/total moment (about tower) must be zero.	(1)	
	Total anticlockwise moment is due to counterweight and		
	Total clockwise moment is due to sum of moment from beam and load	(1)	
	Increasing the distance of the load increases the (cw) moment (distance of CoG remains the same)	(1)	
	Distance of counterweight needs to be increased [dependent on MP3]	(1)	4

9(b)(ii)			
, , , ,	Use of moment = $F x$	(1)	
	Position of centre of mass of beam identified	(1)	
	Use of principle of moments	(1)	
	Maximum distance of load = 15 m		
	Or, for load at 22 m		
	CW moment = 1.18×10^6 Nm and max ASW moment = 8.8×10^5 Nm		
	Or		
	Required distance of counterweight = 11 m		
	Or		
	Required counterweight = 1.5×10^5 N		
	Or		
	Maximum load = 3.0×10^4 N		
	Or		
	Required distance to $CoG = 2.9 \text{ m}$		
	Or		
	Required weight of beam = 1.3×10^4 N		
	Or		
	Resultant moment = 3.0×10^5 Nm (cw)	(1)	
	Valid conclusion by comparison of relevant student values	(1)	5
	Example of calculation		
	For equilibrium:		
	$3.0 \times 10^4 \text{ N} \times 7.0 \text{ m} + 4.4 \times 10^4 \text{ N} \times x = 1.1 \times 10^5 \text{ N} \times 8.0 \text{ m}$		
	where <i>x</i> is the maximum distance of the load from the tower.		
	$x = (8.8 \times 10^5 \text{ Nm} - 2.1 \times 10^5 \text{ Nm}) \div 4.4 \times 10^4 \text{ N}$		
	$= 6.7 \times 10^5 \text{ Nm} \div 4.4 \times 10^4 \text{ N} = 15.2 \text{ m}$		
	15.2 m < 22.0 m so crane would topple if load moved to end of beam		

Total for question 19

13