13.1- Dos antenas de radio A y B de f = 12,0 MHz, que radian en fase, están separadas 80 m. Un receptor de radio "C" se desplaza a lo largo de una perpendicular a la recta AB (ver figura) ¿A qué distancia de B habrá interferencia destructiva?; (Nota: la distancia del receptor a las fuentes no es grande comparada con la separación de las fuentes, de modo que no es aplicable la ecuación: $d sen \theta = (m+1/2)\lambda$.

Si f = 12MHz,
$$\lambda = c/f = 3 \cdot 10^8 \text{ m/s} / 12 \cdot 10^6 \cdot 1/s = 25 \text{ m}$$

Para que haya interferencia destructiva, en la superposición de las ondas, estas deberán llegar con un defasaje de π , o media longitud de onda. Si la distancia desde la antena de B hasta C es d, desde la antena de A será $((80\text{m})^2+(d)^2)^{1/2}$, la diferencia de recorrido será $((80\text{m})^2+(d)^2)^{1/2}-d$, que deberá ser un numero impar de veces $\lambda/2$, o sea (2m+1)*25m/2 con m entero.

$$((80\text{m})^2+(d)^2)^{1/2}-d=(2m+1)*25\text{m}/2$$

$$(80\text{m})^2 + (d)^2 = (d + (2m+1) * 25\text{m}/2)^2$$

d = 256 m/(2m+1) - (2m+1) * 25 m/4 para m = 0;1;2 ya que para 3; d daría negativo y es una distancia.

m	256	25/4	2 m +1	256/(2 m +1)	6,25*(2 m +1)	d	AC	AC-d	
0	256	6,25	1	256	6,25	249,75	262,25	12,5	½ λ
1	256	6,25	3	85,333333	18,75	66,58333	104,0833	37,5	3/2 λ
2	256	6,25	5	51,2	31,25	19,95	82,45	62,5	5/2 λ
3	256	6,25	7	36,571429	43,75	-7,17857			No

13.3- En un patrón de interferencia de dos ranuras, la intensidad en el máximo central es I_0 cuando se hace pasar una luz de 480 nm; en cierto punto de todo el patrón la diferencia de fase entre las ondas desde las dos ranuras es de $60,0^{\circ}$. a) ¿Cuál es la intensidad en ese punto? b) ¿cuál es la diferencia de las longitudes de las trayectorias para la luz procedente de las dos ranuras en ese punto?

Sí I en el máximo central es $I_0 = 2\varepsilon_0$ c E^2 ; E es la amplitud de la onda ya que en los máximos la diferencia de fase es 0; o sea, $\cos^2(\Phi/2)=0$.

a) Si la diferencia de fase entre las dos ondas en un punto es 60° , $I=2\epsilon_0$ c $E^2\cos^2(\Phi/2)$, con $\Phi=60^{\circ}$, entonces

$$I = I_0 \cos^2(60^{\circ}/2) = 3/4 I_0$$

b) Si la diferencia de fase es 60°, o sea, 1/6 de ciclo, 360°/6; la diferencia de recorrido, es un número entero de longitudes de onda mas 1/6 de longitud de onda;

$$r_2$$
 - r_1 = $n \cdot \lambda + \lambda/6 = n \cdot 480$ nm + 80nm

Respuestas a algunos problemas Física II Ciclo 2020

13.5 Dos ranuras separadas 0,160 mm están a 0,950 m de una pantalla e iluminadas por luz coherente de λ =500 nm. La intensidad en el centro del máximo central (θ =0°) es 12,0 μ W/m². a) ¿Cuál es la distancia, sobre la pantalla, del máximo central al primer mínimo?; b) ¿Cuál es la intensidad en un punto entre ese máximo y ese mínimo?

<u>Datos</u> :		Incógnita:			
d = 0,160.10 ⁻³ m	D = 0,959 m	a) y			
$\lambda = 500.10^{-9} \text{ m}$		b) I			
$I = 12,0 \mu W/m^2(\theta=0^\circ)$					

a)
$$sen \vartheta = \left(\frac{m\lambda}{2}\right) \cdot \frac{1}{2} \Longrightarrow \vartheta = 0.089$$

$$tg \vartheta = \frac{y}{D} \Longrightarrow y = 1.48mm$$

b)
$$I = I_0 \cdot \cos(\frac{\pi}{4})^2 = 12.0 \cdot \left(\frac{\mu W}{m^2}\right) \cdot \cos^2(45^\circ) \rightarrow I = 6\mu W/m^2$$

13.6 Se ilumina con luz blanca normal una placa de vidrio (n = 1,53) de espesor 485 nm rodeada de aire, dentro de los límites del espectro visible (400 a 700 nm) a) ¿qué longitudes de onda se intensifican al reflejarse? b) ¿qué longitudes de onda se intensifican en la luz transmitida/emergente?

<u>Datos</u> :	Incógnita:			
$n_p = 1,53$	a) Color/es dominante/s en las reflejadas			
e = 485.nm	b) Longitud/es de onda visible de la luz transmitida			

a) incidente, primer reflejado ($n_0 < n_p$) invierte

Incidente refracta, segundo reflejado $(n_p > n_0)$ no invierte, refracta y no invierte.

Entonces diferencia de fase relativa es medio ciclo; para interferencia constructiva nos queda usar:

$$2e = (m + \frac{1}{2})\lambda; \quad \lambda = \frac{\lambda_0}{n_p} \implies 2e = (m + \frac{1}{2})\frac{\lambda_0}{n_p} \implies \lambda_0 = \frac{2e \cdot n_p}{m + \frac{1}{2}} = \left(\frac{1484, 1}{m + \frac{1}{2}}\right)nm$$

Para: m=0 m=1 m=2 m=3

 $\lambda = 2968, 2nm$ $\lambda = 989, 4nm$ $\frac{\lambda = 593, 6nm}{\lambda = 424nm}$

b) Incidente refracta, no invierte; emerge y no invierte.

Incidente refracta, refleja en cara inferior $(n_p > n_0)$ no invierte, refleja en cara superior $(n_p > n_0)$ no invierte; refracta y no invierte.

Entonces diferencia de fase relativa es cero; para interferencia constructiva nos queda usar:

$$2e = m\frac{\lambda_0}{n_p}$$
 \Rightarrow $\lambda_0 = \frac{2e \cdot n_p}{m} = \left(\frac{1484,1}{m}\right)nm$

Para: m=1 m=2 m=3 m=4

 $\lambda = 1484, 1nm$ $\lambda = 742nm$ $\frac{\lambda = 494, 7nm}{\lambda}$ $\lambda = 371nm$

EJERCICIO 13-10

$$2e = m\lambda$$

$$\frac{h}{l} = \frac{e}{x} \implies e = \frac{h}{l}x$$
Plástico:
$$n = 1.40$$

$$2\frac{h}{l}x = m\lambda \quad \rightarrow \quad x = \frac{m\lambda l}{2h} \quad \rightarrow \quad \Delta x = \frac{\Delta m\lambda l}{2h} = \frac{1 \cdot \frac{520 \, nm}{1,5} \cdot 0.1m}{2 \cdot 0.024 \, mm} = 0.722 \, mm$$

EJERCICIO 13-12

$$2e = \left(3 + \frac{1}{2}\right)\lambda \implies e = \frac{1}{2}\left(3 + \frac{1}{2}\right)\lambda = 1,75 \lambda$$
$$e' = 1,75 \frac{\lambda}{1,90}$$

$$D = 2 x = 2 \sqrt{e 2 R}$$

$$D' = 2x' = 2\sqrt{e'2R}$$

$$\frac{D}{D} = \sqrt{\frac{e}{e}} = \sqrt{\frac{1,75}{0,92}} = 1,38 \implies D = \frac{D}{1,38} = 1,22 \, mm$$
