Project: Exploring Weather Trends

By: Abhinav Jha

1. What tools did you use for each step? (Python, SQL, Excel, etc)

- a. I used two SQL queries to extract my data from the database:
 - i. Global Data:

```
SELECT *
FROM global_data
```

ii. Local Data: (for San Jose, CA)

```
SELECT year, city, avg_temp
FROM city_data
WHERE city = 'San Jose'
```

- I used MS Excel to convert the CSV file to XSLX file, calculate the moving average and create the charts.

2. How did you calculate the moving average?

I tried 7, 10, 20-year moving averages to see which average is better to smooth out data. To calculate the moving average in MS Excel, I used the AVERAGE function (the same approach as in the lesson) as shown below:

Figure 1: 7-year Moving Average

1	A	В	C	D	E	
1	year	city	Loc_avg_temp	Loc_7Mov_avg	Loc_10Mov_avg l	
2	1849	San Jose	14.12			
3	1850	San Jose	13.8			
4	1851	San Jose	14.39			
5	1852	San Jose	13.81			
6	1853	San Jose	14.4			
7	1854	San Jose	13.98			
8	1855	San Jose	14.2	14.10		
9	1856	San Jose	14.1	14.10		
10	1857	San Jose	14.78	14.24		
11	1858	San Jose	14.19	14.21	=AVERAGE(C2:C11)	
12	1859	San Jose	13.71	14.19	AVERAGE(number1, [nun	
13	1860	San Jose	13.81	14.11	14.14	
14	1861	San Jose	14.88	14.24	14.19	

Figure 2: 10-year Moving Average

Abhinav Jha Data Analyst Project: Explore Weather

Figure 3: 20-year Moving Average

3. What were your key considerations when deciding how to visualize the trends?

The key consideration was to determine the timeframe for data visualization; Looking at the local temperature data for San Jose, the data covers the period between **1849** to **2013**, where in the global temperature data covers the period between **1750** and **2015**. Therefore, the analysis was performed for the range between **1849** to **2013**. To make sure local and global temperature data is mapped correctly, I used VLOOKUP to retrieve the global temperature data worksheet into the local data worksheet.

Another consideration was to adjust the starting point for each chart as follows:

- 7-year moving average starting point: 1855 (1849 + 7) See figure 6
- 10-year moving average starting point: 1858 (1849 + 10) See figure 5
- 20-year moving average starting point: 1868 (1849 + 20) See figure 4

To help assess the data variance and frequency of change between global and local temperature levels, I calculated the following:

The Global & Local annual change percentage:

The Local/Global temp. average difference:

Also, I used Pivot table to calculate the Max, Min, Average, Standard Deviation, High/Low (%) change as follows:

All the calculations above were summarized in table 1 and table 2 below

Observations:

- The San Jose is hotter than the global temperature (please refer to Min, Max and Avg. columns in the table below)
- The local (San Jose) and global temperature levels are both increasing.
- The global moving average experiences less fluctuations than the local moving average in San Jose.
- The global temperature levels have a smaller variance than the local temperature changes.
- To determine the slope, we used the Linear TREND function for the local and global temperature data, we got the following the following equations:

By comparing the two slopes (0.0049) & (0.0049) & (0.0033), we note the local trend is increasing more rapidly than the global trend.

- The highest difference between local and global temperature is 7.20 °. This was recorded in year 1864; where the lowest difference between local and global temperature is 4.84 °. this was recorded in year 1998 (see figure 7)

	Min	Max	Avg.	SD	highest Inc. (%)	Lowest Dec. (%)	Avg. Change
San Jose	13.22	16.23 °	14.5 °	0.505	9.907 %	- 8.698 %	0.152 %
Global	7.56 ^c	9.73 °	8.55 c	0.460	7.275%	- 7.475 %	0.146 %

Table 1: Global Vs. Local (Summary 1)

I II ala a a t	Laurant		
Highest Difference	Lowest Difference		
Difference	Difference		
7.20 °	4.86 ^c		

Table 2: Highest & Lowest Average Difference

Abhinav Jha Data Analyst Project: Explore Weather

Key considerations when deciding how to visualize the trends

Wanted to time align the data for all the 3 categories (Global, Delhi, Hyderabad) As 12 year moving average is taken for all the 3 categories, hence a line / trend chart is populated

w.r.t Year and Avg temperature

Figure 4: Graph

At least four observations about the similarities and/or differences in the trends

- a) Global temperatures are very less compared to Hyderabad and Delhi
- b) The temperatures for all the 3 categories have increased marginally in the last 200 years of data
- c) The lowest temperatures found for Global (7.3 deg C) around 1820, whereas for Hyderabad (25.8 deg around 1830. and for Delhi (26 deg C) around 1820
- d) Hyderabad temperature increment is more at present compared to Global and Delhi
- e) Exactly 50 years from the year 1807, we observe that Global and Delhi have their temperatures dipped

but for Hyderabad it is consistent.

- f) The global temperature remained consistent until the year 1957, but after 1957 increased.
- there seems to be a lot of change in temperatures. Hence global temperatures are
- g) At every 50 years interval, the temperatures are shown in chart .

Hence we can observe that temperatures have changed by +/ -0.3

- h) The correlation coefficient for (Global vs Delhi -> 0.937) and (Global vs Hyderabad -> 0.687) So from above, the changes in Global temperature will have huge impact to Delhi when compared to Hyderabad
- i) The difference in 12 year MA temperatures for Global (0.89), Hyderabad(1.16), Delhi (1.04) (comparison done w.r.t 1807 vs 2013)