Foundation: What, Why and How

What, Why and How

- What is shown?
 - Data abstraction
- Why is the user looking at it?
 - Task abstraction
- How is it shown?
 - Idiom: visual encoding and interaction

Nested Model: Four Levels of Vis Design

2018	3-19 NBA Season Stan	<u>dings</u>	Sch	edule	and	Res	sults	<u>Le</u>	aders	Co	ach	es					Other •		Back	to top						
Rk	Player	Pos	Age	Tm	G	GS	МР	FG	FGA	FG%	3P	ЗРА	3P%	2P	2PA	2P%	eFG%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK
1	Alex Abrines	SG	25	ОКС	31	2	19.0	1.8	5.1	.357	1.3	4.1	.323	0.5	1.0	.500	.487	0.4	0.4	.923	0.2	1.4	1.5	0.6	0.5	0.2
2	Quincy Acy	PF	28	PHO	10	0	12.3	0.4	1.8	.222	0.2	1.5	.133	0.2	0.3	.667	.278	0.7	1.0	.700	0.3	2.2	2.5	0.8	0.1	0.4
3	Jaylen Adams	PG	22	ATL	15	0	6.8	0.5	1.5	.348	0.5	1.1	.438	0.1	0.5	.143	.500	0.1	0.1	1.000	0.2	0.7	0.9	1.0	0.2	0.1
4	Steven Adams	С	25	OKC	59	59	33.9	6.2	10.3	.603	0.0	0.0	.000	6.2	10.3	.604	.603	2.2	3.9	.545	4.6	4.9	9.5	1.7	1.6	0.7
5	Bam Adebayo	С	21	MIA	61	8	22.1	2.9	5.2	.563	0.0	0.1	.111	2.9	5.0	.577	.565	2.1	2.9	.726	2.0	4.6	6.6	2.0	0.8	0.8
6	Deng Adel	SF	21	CLE	12	3	13.2	0.8	2.5	.300	0.4	1.7	.250	0.3	0.8	.400	.383	0.2	0.2	1.000	0.2	0.9	1.1	0.3	0.1	0.3
7	DeVaughn Akoon-Purcell	SG	25	DEN	7	0	3.1	0.4	1.4	.300	0.0	0.6	.000	0.4	0.9	.500	.300	0.1	0.3	.500	0.1	0.4	0.6	0.9	0.3	0.0
8	LaMarcus Aldridge	С	33	SAS	62	62	32.6	8.2	16.1	.509	0.1	0.4	.200	8.1	15.7	.517	.512	4.4	5.2	.847	3.1	5.8	8.8	2.5	0.5	1.3
9	Rawle Alkins	SG	21	CHI	3	0	2.0	0.3	1.3	.250	0.3	0.3	1.000	0.0	1.0	.000	.375	0.0	0.0		1.0	0.0	1.0	0.7	0.3	0.0
10	Grayson Allen	SG	23	UTA	29	1	9.9	1.2	3.8	.306	0.7	2.4	.271	0.5	1.4	.366	.392	0.9	1.3	.711	0.0	0.3	0.4	0.6	0.1	0.1
11	Jarrett Allen	С	20	BRK	62	62	26.9	4.3	7.5	.579	0.1	0.6	.150	4.2	6.8	.619	.585	2.4	3.4	.719	2.5	6.1	8.5	1.5	0.6	1.6
12	Kadeem Allen	SG	26	NYK	10	1	22.5	3.7	7.6	.487	0.8	1.6	.500	2.9	6.0	.483	.539	1.9	2.6	.731	0.5	2.4	2.9	4.5	0.8	0.1
13	Al-Faroug Aminu	PF	28	POR	62	62	28.9	3.1	7.1	.440	1.3	3.5	.369	1.9	3.6	.509	.530	1.8	2.1	.850	1.5	6.3	7.7	1.4	0.9	0.4
14	Justin Anderson	SF	25	ATL	33	0	7.7	1.0	2.6	.379	0.2	1.2	.200	0.8	1.4	.532	.425	0.5	0.6	.762	0.3	1.0	1.4	0.4	0.3	0.2
15	Kyle Anderson	SF	25	MEM	43	40	29.8	3.5	6.4	.543	0.2	0.8	.265	3.3	5.6	.583	.560	0.9	1.5	.578	1.1	4.7	5.8	3.0	1.3	0.9
16	Ryan Anderson	PF	30	TOT	18	8	16.1	1.2	3.4	.339	0.5	2.0	.250	0.7	1.4	.462	.411	0.6	0.8	.786	0.8	1.7	2.5	1.0	0.2	0.1
16	Ryan Anderson	PF	30	PHO	15	8	18.5	1.3	4.0	.317	0.5	2.3	.206	0.8	1.7	.462	.375	0.7	0.9	.786	0.9	2.1	3.0	1.1	0.2	0.1
16	Ryan Anderson	PF	30	MIA	3	0	4.0	0.7	0.7	1.000	0.7	0.7	1.000	0.0	0.0		1.500	0.0	0.0		0.0	0.0	0.0	0.3	0.0	0.0
17	Ike Anigbogu	С	20	IND	3	0	2.0	0.0	1.0	.000	0.0	0.0		0.0	1.0	.000	.000	0.0	0.0		0.3	0.7	1.0	0.3	0.0	0.3
18	Giannis Antetokounmpo	PF	24	MIL	57	57	33.1	9.9	17.1	.579	0.6	2.5	.234	9.3	14.6	.638	.596	6.4	9.0	.717	2.3	10.3	12.6	5.9	1.4	1.5
19	Carmelo Anthony	PF	34	HOU	10	2	29.4	4.9	12.1	.405	2.1	6.4	.328	2.8	5.7	.491	.492	1.5	2.2	.682	0.9	4.5	5.4	0.5	0.4	0.7
20	OG Anunoby	SF	21	TOR	52	6	20.2	2.8	6.2	.444	1.1	3.2	.345	1.7	3.1	.547	.532	0.4	0.8	.452	0.8	2.3	3.0	0.7	0.6	0.3
Rk	Player	Pos	Age	Tm	G	GS	MP	FG	FGA	FG%	3P	ЗРА	3P%	2P	2PA	2P%	eFG%	FT	FTA	FT%	ORB	DRB	TRB	AST	STL	BLK
21	Ryan Arcidiacono	PG	24	CHI	62	26	24.8	2.0	4.6	.428	1.1	2.9	.376	0.9	1.6	.520	.548	0.9	0.9	.914	0.2	2.2	2.4	3.5	0.9	0.0
22	Trever Ariza	CF.	33	TOT	58	58	35.4	13	11.0	303	2.1	6.5	327	22	4.5	480	490	1.0	21	803	0.7	40	5.6	3.0	1.5	0.3

Nested Model: Four Levels of Vis Design

- Domain situation
 - Who are the target user?

The weakness of players?

Can starters' skills match well?

basketball data

Observe whether a team's win-loss ratio change a lot after all-star week

The best FG% of a players by shot position

coach

commentator

Nested Model: Four Levels of Vis Design

- Domain situation
 - Who are the target user?
- Abstraction
 - Translate from specifics of domain to vocabulary of vis
 - What is shown? data abstraction
 - Why is the user looking at it? task abstraction

Rank	AreaName	St1	Population 7/1/2010	Population 7/1/2015 ♥	Change 2010-15	%Change 2010-15
1	New York city	NY	8,192,426	8,550,405	357,979	4.4
2	Los Angeles city	CA	3,796,575	3,971,883	175,308	4.6
3	Chicago city	IL	2,697,650	2,720,546	22,896	0.8
4	Houston city	TX	2,114,761	2,296,224	181,463	8.6
5	Philadelphia city	PA	1,528,338	1,567,442	39,104	2.6
6	Phoenix city	AZ	1,450,267	1,563,025	112,758	7.8
7	San Antonio city	TX	1,333,953	1,469,845	135,892	10.2
8	San Diego city	CA	1,306,080	1,394,928	88,848	6.8
9	Dallas city	TX	1,200,699	1,300,092	99,393	8.3
10	San Jose city	CA	955,399	1,026,908	71,509	7.5

Non-order order

Non-order

order

"State name" and "position" are both non-order data.
We might be able to use similar way to visualize them

Understand the abstraction of data could help us to pick up better way to visualize the data

domain

abstraction

idiom

algorithm

What?

- Domain situation
 - Who are the target user?
- Abstraction
 - Translate from specifics of domain to vocabulary of vis.
 - What is shown? data abstraction
 - Why is the user looking at it? task abstraction
- Idiom (approach)
 - How is it shown?
 - Visual encoding idiom: how to draw the picture
 - Interaction idiom: how to manipulate the picture

- Domain situation
 - Who are the target user?
- Abstraction
 - Translate from specifics of domain to vocabulary of vis
 - What is shown? data abstraction
 - Why is the user looking at it? task abstraction
- Idiom (approach)
 - How is it shown?
 - Visual encoding idiom: how to draw the picture
 - Interaction idiom: how to manipulate the picture
- Algorithm
 - Efficient computation

- Domain situation
 - Who are the target user?
- Abstraction
 - Translate from specifics of domain to vocabulary of vis
 - What is shown? data abstraction
 - Why is the user looking at it? task abstraction
- O Idiom (approach)
 - How is it shown?
 - Visual encoding idiom: how to draw the picture
 - Interaction idiom: how to manipulate the picture
- Algorithm
 - Efficient computation

Value to think about these four level differently: help us to debug when the visual design fails

- After the visualization is designed and implemented, we would like to evaluate it. However, it is not trivial.
 - Different ways to get the vis wrong/ineffective at each level

Solution: use methods from different fields at each level

Technique-driven work. e.g. scalability

Solution: use methods from different fields at each level

Technique-driven work. e.g. scalability

Solution: use methods from different fields at each level

Technique-driven work, e.g. scalability

Solution: use methods from different fields at each level

Domain situation problem-driven work Observe target users using existing tools Anthropology/ ethnography Data/task abstraction (based on a specific data/target to build the vis Visual encoding/interaction idiom tool) Design Justify design with respect to alternatives Algorithm Technique-driven work. e.g. scalability Computer science Measure system time/memory Analyze computational complexity Analyze results qualitatively Cognitive psychology Measure human time with lab experiment (lab study) Observe target users after deployment (field study) Anthropology/ ethnography Measure adoption

- Easy for vis designer to choose effective design
 - The space of the design choice is too huge
 - Abstraction helps vis designer to ignore most of the improper vis design choices (improper color encoding, style of plots...)
- Different domain data/questions could be abstracted to similar visdesign language
 - When does my salary increase most?
 - Which value of the parameter could have the most impact of classification accuracy?
 - Abstraction: need to observe the **pattern** of **one attribute** according to change of **another attribute**
 - Pie chart(x), heap map(x), line chart(o), bar chart(?)

What - Data Abstraction

- Only a few visual design fit a specific type or attribute well
 - Reduce the design search space
 - Easy to know something wrong in the visual design

Example:

- Student score is "ordered" attribute:
 - what visual designs are the candidates? Then make the design decision
 - Department name is "non-ordered" attribute:
 - what visual designs are the candidates? Then make the design decision

Three Major Dataset Types

→ Dataset Types

0-4-	Out-	Out-	Oute	O!-	O.ul-	Oute	Oute	O.ul-	O.ula	O.ula	O.ul-	Oute	Out-	O.ul-	D	O.ul-	0	F	F	Floral	T	T-4-1	
Code	Quiz 12	Quiz 13	Quiz 14	Quiz 15	Quiz 16	Quiz 17	Quiz 18	Quiz 19	Quiz 20	Quiz 21	Quiz 22	Quiz 23	Quiz 24	Quiz Total	Drop 5	Quiz %	Quiz	Exam	Exam II	Final	Term Paper	Total Grade	
	10	10	10	10	10	10	10	10	10	10	10	10	10	240	190	100.0%	100.0	100%	100%	100%	100.0%	100.0%	Grad
030767	10	4	0	10	0	0	8	1	10	10	9	10	5	166	163	85.8%	85.8	88%	82%	87%	96.5%	87.7%	B+
11291129	1	10	ō	6	9	10	6	2	10	8	9	9	10	155	152	80.0%	80.0	74%	87%	71%	95.0%	82.4%	В
12345	10	10	10	10	10	10	4	10	10	10	5	9	10	211	187	98.4%	98.4	94%	98%	89%	100.0%	96.0%	A
2182	0	10	9	10	3	10	8	3	10	6	0	10	10	164	158	83.2%	83.2	88%	94%	99%	98.0%	93.4%	Â
2663	10	10	10	0	6	10	10	8	10	9	3	10	10	200	185	97.4%	97.4	97%	71%	86%	98.0%	91.2%	A-
3196	10	5	10	10	7	10	8	8	10	10	10	10	10	203	181	95.3%	95.3	88%	90%	93%	100.0%	92.5%	A
3885	10	10	10	10	8	8	10	10	10	10	10	10	10	230	190	100.0%	100.0	95%	101%	110%	95.0%	100.5%	Â
4598379	10	10	10	10	9	8	0	10	10	10	4	5	10	193	179	94.2%	94.2	87%	102%	107%	98.0%	98.5%	A
623562	10	10	10	10	10	10	10	10	10	10	7	10	10	208	190	100.0%	100.0	81%	98%	100%	100.0%	96.3%	A
8765309	10	5	0	10	7	10	4	10	10	8	4	5	5	164	154	81.1%	81.1	80%	88%	91%	96.5%	86.7%	В
9648	10	3	10	6	5	10	6	1	10	5	4	2	5	148	139	73.2%	73.2	93%	85%	79%	96.5%	85.5%	В
9792	10	1	0	2	4	0	0	4	0	5	2	5	5	73	73	38.4%	38.4	62%	52%	68%	96.5%	66.8%	C
Cayuga	7	10	10	10	10	10	8	10	10	10	8	10	5	215	187	98.4%	98.4	98%	103%	92%	96.5%	96.8%	A
emm9899	10	10	10	10	10	10	6	8	8	10	10	10	10	217	187	98.4%	98.4	96%	98%	100%	95.0%	97.2%	Α
Junior	10	10	10	10	10	10	8	10	10	10	10	10	10	236	190	100.0%	100.0	96%	103%	103%	98.0%	100.2%	Α
Mako	0	2	11	10	10	8	10	10	10	10	8	5	10	177	173	91.1%	91.1	94%	93%	98%	98.0%	94.7%	Α
nonays	10	5	6	1	0	0	8	3	10	6	9	9	10	157	153	80.5%	80.5	81%	68%	68%	99.0%	75.4%	B-
ride	10	3	10	10	8	9	10	0	0	10	3	9	10	172	169	88.9%	88.9	82%	88%	84%	95.0%	87.8%	B+
SW363	4	10	10	10	10	10	10	1	10	10	5	8	10	195	178	93.7%	93.7	90%	101%	97%	100.0%	96.4%	Α
Tiger	10	3	0	10	6	8	2	5	10	6	0	0	10	124	124	65.3%	65.3	74%	95%	73%	95.0%	81.9%	В
TURKEYBOY	10	0	9	8	10	10	10	1	10	10	7	10	10	188	179	94.2%	94.2	77%	95%	93%	100.0%	92.3%	Α
							5.1																

Usually, it is infovis data

Three Major Datatypes

Dataset Types

Three Major Datatypes

Dataset Types

Usually, it is scivis data

Three Major Datatypes

→ Dataset Types

- Visualization vs computer graphics?
- Usually, people consider visualization is a subdomain of computer graphics
- Visualization usually requires design decision

Data and Dataset Types

Tables Networks & **Fields** Geometry Clusters, Sets, Lists Trees Items Items (nodes) Grids Items Items Positions Attributes Links Positions Attributes Attributes

- Data Types
 - → Items → Attributes → Links → Positions → Grids
- → Dataset Availability

attribute1

- Attribute? (variable)
 - Example 1: spreadsheet

attribute2

		attributor	attributez	attributed	attribute-	+ attributed	attributed
		А	В	С	D	Е	F
	1	First Name	Last Name	Date of birth	Age	Salary	Department
Data item 1	2	Hank	McNeil	1-2-1993	25	€ 20.000,00	Sales
Data item 2	3	Jessica	Williams	15-4-1956	62	€35.000,00	R&D
	4	Rick	Johnson	30-6-1966	52	€40.000,00	Management
	5	John	Jenkins	17-4-1969	49	€30.000,00	Sales
•••	6	Joe	Vanderberg	4-11-1970	48	€ 32.000,00	Sales
	7	Mary	Dylan	12-12-1979	39	€ 60.000,00	Management
	8	Leeroy	Johanson	12-7-1984	34	€ 24.000,00	R&D
	_						

attribute3

attribute4 attribute5

attribute6

- Attribute? (variable)
 - Example 2: spatial dataset

- → Attribute Types
 → Categorical (Non-ordered)
 → Ordinal
 → Quantitative
 □ □ □
 - Categorical v.s. ordered
 - Can you sort the data item by the attribute?
 - Yes: ordered attribute
 - No: categorical attribute

→ Categorical(Non-ordered) → Ordered

→ Quantitative

^ ·		44 11 4
Cateo	iorical	attribute

Ordered attribute

4	Α	В	С	D	E	F
1	First Name	Last Name	Date of birth	Age	Salary	Department
2	Hank	McNeil	1-2-1993	25	€ 20.000,00	Sales
3	Jessica	Williams	15-4-1956	62	€35.000,00	R&D
4	Rick	Johnson	30-6-1966	52	€40.000,00	Management
5	John	Jenkins	17-4-1969	49	€30.000,00	Sales
6	Joe	Vanderberg	4-11-1970	48	€32.000,00	Sales
7	Mary	Dylan	12-12-1979	39	€60.000,00	Management
8	Leeroy	Johanson	12-7-1984	34	€ 24.000,00	R&D

- Attribute Types
 → Categorical (Non-ordered)
 → Ordered
 → Ordinal
 → Quantitative
 □
 - Ordinal v.s. Quantitative
 - Is the result of subtraction between two values of the attribute meaningful?
 - Yes: quantitative attribute
 - No: ordinal attribute

Ordered attribute (all quantitative attribute)

4	А	В	С	D	E	F
1	First Name	Last Name	Date of birth	Age	Salary	Department
2	Hank	McNeil	1-2-1993	25	€ 20.000,00	Sales
3	Jessica	Williams	15-4-1956	62	€35.000,00	R&D
4	Rick	Johnson	30-6-1966	52	€40.000,00	Management
5	John	Jenkins	17-4-1969	49	€30.000,00	Sales
6	Joe	Vanderberg	4-11-1970	48	€32.000,00	Sales
7	Mary	Dylan	12-12-1979	39	€60.000,00	Management
8	Leeroy	Johanson	12-7-1984	34	€ 24.000,00	R&D

- Cloth size (S, M, L, XL)
 - They have order
 S->M->L->XL
 - However, can you calculate XL M? or is the result meaningful?

Sequential attribute: from min to max

4	Α	В	С	D	Е	F
1	First Name	Last Name	Date of birth	Age	Salary	Department
2	Hank	McNeil	1-2-1993	25	€ 20.000,00	Sales
3	Jessica	Williams	15-4-1956	62	€35.000,00	R&D
4	Rick	Johnson	30-6-1966	52	€40.000,00	Management
5	John	Jenkins	17-4-1969	49	€30.000,00	Sales
6	Joe	Vanderberg	4-11-1970	48	€32.000,00	Sales
7	Mary	Dylan	12-12-1979	39	€60.000,00	Management
8	Leeroy	Johanson	12-7-1984	34	€ 24.000,00	R&D

- → Ordering Direction
 → Sequential
 → Diverging
 → Cyclic
 ↓
 - Sequential attribute: from min to max
 - O Diverging attribute: can be divided into two sequences

- → Ordering Direction
 → Sequential
 → Diverging
 → Cyclic
 ✓ *
 - Sequential attribute: from min to max
 - O Diverging attribute: can be divided into two sequences
 - O Cyclic attribute: values wrap around back to a starting point

- Analyze
- → Consume

→ Produce

Search

	Target known	Target unknown
Location known	¹.⁺⁺• Lookup	•. Browse
Location unknown	< ○ Locate	₹ © .> Explore

- Query
 - → Identify → Summarize → Compare **⊙**

⊘ Targets

All Data

Attributes

- **Network Data**
 - → Topology

- **Spatial Data**
 - → Shape

"Why?" - Task Abstract

- Motivation
 - When a domain expert describe his/her "task", it probably sounds very complicated and hard to understand. So, this may increase the difficulty of visual design.
 - Actually, the task usually can be abstracted, and the action of the task will be just one of a few common actions.
 - Reduce our search in the design space

Task Abstraction: Action and Target Pattern

- A task can be described by one or multiple {action, target} pairs
 - Compare attributes
 - Discover distribution
 - Identify outlier
 - ·····

Three Categories of Actions

- Analyze
- Search
- Query

	Target known	Target unknown
Location known	·.·· Lookup	• . Browse
Location unknown	⟨`ฺ⊙ੑ∙> Locate	⟨`@、> Explore

- Consume
 - Discover
 - Discover new knowledge, that was not previously known
 - generate hypothesis, verify hypothesis

Does GSW have a better FG% around 3pts line? (we want to verify hypothesis)

GSW LAL

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`@.> Locate	€ ⊙ → Explore

- Consume
 - Discover
 - Present (convey information, storytelling)
 - The information that the visualization creator already knows

Experiment result

Search

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`@.> Locate	€ ⊙ → Explore

- Consume
 - Discover
 - Present
 - Enjoy

Baby name vis

For fun, get simple information

Search

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`ฺ⊙ੑ.> Locate	₹ © •> Explore

- Produce (the vis tool take input)
 - Annotate: add comment/note for the data

Search

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`@.> Locate	€ () Explore

- Produce (the vis tool take input)
 - Annotate
 - Record: save each steps of interaction on the vis tool
 - As the reference of other users

Search

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`ฺ⊙ੑ.> Locate	₹ © •> Explore

- Produce (the vis tool take input)
 - Annotate
 - Record
 - Derive: derive new data from the tool or derive new data to show
 - Don't always just draw what you're given!

 Transform city name to latitude and longitude
 - Transform temperature (floating) to categories (hot or cold)
 - Transform attributes to relation among attributes

Search

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`ฺ⊙ੑ.> Locate	₹ © •> Explore

Actions: Search

- These two question determine what users will do in search action
 - Do users know the target?
 - Do users know the location?

\odot	Search		
		Target known	Target unknown
	Location known	·.·· Lookup	•. Browse
	Location	⟨',⊙,> Locate	⟨`@.> Explore

Actions: Search

- These two question determine what users will do in search action
 - Do users know the target?
 - Do users know the location?

Actions: Search

- These two question determine what users will do in search action
 - Do users know the target?
 - Do users know the location?

Alphabetical order (first name)

- These two question determine what users will do in search action
 - Do users know the target?
 - Do users know the location?

Closest to human?

- These two question determine what users will do in search action
 - Do users know the target?
 - Do users know the location?

No specific goal, search special pattern for future exploration

Actions: Query

- Identify: after search
 - We are interested in California, We search and locate it. Then, we can identity its winning party and margin

& Actions

→ Consume

	Target known	Target unknown
Location known	·.·· Lookup	*. Browse
Location unknown	⟨`@.> Locate	₹ ⊙ → Explore

- O Identify
- O Compare: among items, among groups

& Actions

→ Consume

→ Produce

	Target known	Target unknown
Location known	·.·· Lookup	•. Browse
Location unknown	⟨`@.> Locate	₹ ⊙ > Explore

- Identify
- Compare
- Summarize: provide overview. Lead users to find out more information by more interaction

Find/explore the pattern in the dataset

& Actions

→ Consume

	Target known	Target unknown
Location known	·.·· Lookup	*. Browse
Location unknown	⟨`@.> Locate	₹ © → Explore

- To know what portions of the dataset you need to use to consider the visual design
 - e.g. A attribute is related to B or not?
 - You may need all data items of attributes A and B

All data

- If your target is trends, outliers, features, you need all data to achieve the goal.
- At least, it is impossible to visualize only one data item to see the trend

- All data
- Attribute
 - Example
 - single
 - observe distribution of salary
 - Find min, max salary
 - Multiple
 - Correlation between salary and age

All Data

→ Outliers → Features

Attributes

→ Many

→ Extremes

→ Network Data

→ Topology

→ Paths

Spatial Data

→ Shape

- All data
- Attribute
- Network data

- All data
- Attribute
- Network data
- Spatial data
 - Shape comparison

Network Data

→ Topology

→ Paths

How?

Encode

from categorical and ordered attributes → Color → Hue → Saturation → Luminance → Size, Angle, Curvature, ... · ■ ■ |//_ |))) → Shape → Motion Direction, Rate, Frequency, ...

Map

Manipulate Change ·.·· • !!! Select . . Navigate < >

Juxtapose Partition

Facet

Filter * IIIII

Reduce

