Large-dimensional Central Limit Theorem with Fourth-moment Error Bounds on Convex Sets and Balls

Zhi Zhang

2021/3/3

Topics

- Some results on the large-dimensional Gaussian approximation of a sum of n independent random vectors in \mathbb{R}^d together with fourth-moment error bounds on convex sets and Euclidean balls.
- ► Application to the bootstrap: Applied the bounds we obtained to the bootstrap approximation on balls.

Outline

Introduction and Motivations

Main Theorem

Approximation on Convex Sets Approximation on Euclidean Balls

Sketch of the Proof

Basic Decomposition Proof of Theorem 2.1 Proof of Theorem 2.2

Application: Bootstrap Approximation on Balls

Empirical bootstrap Wild bootstrap

Introduction and Motivation

- Let $\{\xi_i\}_{i=1}^n$ be a sequence of independent mean-zero random vectors in \mathbb{R}^d , $W = \sum_{i=1}^n \xi_i$ and $\Sigma = \text{Var}(W)$.
- It is well known that under finite third-moment conditions and for fixed dimension d, the distribution of W can be approximated by a Gaussian distribution with error rate $O(1/\sqrt{n})$.
- ▶ Motivated by modern statistical applications, we are interested in the large-dimensional setting where *d* grows with *n*. Numerous studies have provided explicit error bounds on various distributional distances in the Gaussian approximation.

Introduction and Motivation

- ▶ However, the optimal rates, especially in terms of how rapidly d can grow with n while maintaining the validity of the Gaussian approximation, have not been fully addressed and remain a challenging open problem.
- For convex sets, Bentkus (2005) proved for the above W that if Σ is invertible and $Z \sim N(0, \Sigma)$, then

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant Cd^{1/4} \sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^3 \quad (1)$$

where \mathcal{A} is the collection of all measurable convex sets in \mathbb{R}^d , C is an absolute constant and $|\cdot|$ denotes the Euclidean norm when applied to a vector.

Introduction and Motivation

▶ The first main result is that up to a logarithmic factor,

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant_{\log} Cd^{1/4} \left(\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2}$$
(2)

where A is the collection of all measurable convex sets in \mathbb{R}^d . And they derive the similar result in the case of Euclidean balls.

► These two results share some advantages over Bentkus's works and have some applications on bootstraps approximation on balls.

Notations

For two vectors $x, y \in \mathbb{R}^d$, $x \cdot y$ denotes their inner product. For two $d \times d$ matrices M and N, we write $\langle M, N \rangle_{H.S.}$ for their Hilbert-Schmidt inner product.

$$\langle M, N \rangle_{\mathrm{H.S.}} = \mathsf{tr}\left(M^T N\right) = \sum_i \langle M e_i, N e_i \rangle$$

where $\{e_i : i \in I\}$ an orthonormal basis.

▶ We write ∇f and $\operatorname{Hess} f$ for the gradient and Hessian matrix of f, respectively. In addition, we denote by $\nabla^r f(x)$ the r-th derivative of f at x regarded as an r-linear form: The value of $\nabla^r f(x)$ evaluated at $u_1, \ldots, u_r \in \mathbb{R}^d$ is given by

$$\langle \nabla^r f(x), u_1 \otimes \cdots \otimes u_r \rangle = \sum_{j_1, \dots, j_r=1}^d \partial_{j_1, \dots, j_r} f(x) u_{1, j_1} \cdots u_{r, j_r}$$

When $u_1 = \cdots = u_r =: u$, we write $u_1 \otimes \cdots \otimes u_r = u^{\otimes r}$ for short.

Notations

ightharpoonup For any r -linear form T, its injective norm is defined by

$$|T|_{\lor} := \sup_{|u_1|\lor...\lor|u_r|\leqslant 1} |\langle T, u_1\otimes\cdots\otimes u_r \rangle|$$

For an (r-1) -times differentiable function $h: \mathbb{R}^d \to \mathbb{R}$, we write

$$M_r(h) := \sup_{x \neq y} \frac{\left| \nabla^{r-1} h(x) - \nabla^{r-1} h(y) \right|_{\vee}}{\left| x - y \right|}$$

Note that $M_r(h) = \sup_{x \in \mathbb{R}^d} |\nabla^r h(x)|_{\vee}$ if h is r-times differentiable.

Main Theorem

Theorem (2.1)

Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Assume $\text{Var}(W) = \Sigma$ and Σ is invertible. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ . Then,

$$\sup_{A\in\mathcal{A}}|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)|$$

where A is the collection of all measurable convex sets in \mathbb{R}^d .

Remark of Theorem 2.1

Consider the situation where $\xi_i=X_i/\sqrt{n}$ and $\{X_1,X_2,\ldots\}$ is a sequence of i.i.d. mean-zero random vectors in \mathbb{R}^d with $\mathrm{Var}(X_i)=I_d$. In this setting, $\Sigma=I_d$, and for the d-vector X_i , we have

$$\mathbb{E} |X_i|^3 \propto d^{3/2} \qquad \mathbb{E} |X_i|^4 \propto d^2$$

- ► RHS of (3) in Theorem 2.1 is of the order $O\left(\frac{d^{5/2}}{n}\right)^{1/2}$ up to a logarithmic factor.
- ▶ RHS of (1) in Bentkus's work is of the order $O\left(\frac{d^{7/2}}{n}\right)^{1/2}$

Therefore, subject to the requirement of the existence of the fourth moment, (3) is preferable to (1) in the large-dimensional setting where $d \to \infty$.

Theorem (2.2)

Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ . Assume Σ is invertible. Then

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant C\Psi(\delta(W, \Sigma)) \tag{4}$$

where $\Psi(x) = x(|\log x| \vee 1), \mathcal{B}$ is the set of all Euclidean balls in \mathbb{R}^d and

$$\delta(W,\Sigma) := \left\| I_d - \mathsf{Var}\left(\Sigma^{-1/2}W\right) \right\|_{H.S.} + \left(\sum_{i=1}^n \mathbb{E}\left|\Sigma^{-1/2}\xi_i\right|^4\right)^{1/2}$$

Main Theorem

Theorem (2.3)

Let ξ , W and Z be as in Theorem 2.2. Assume $\operatorname{tr}\left(\Sigma^{2}\right)>0$. Then

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant \frac{C}{\operatorname{tr}(\Sigma^2)^{1/4}} \sqrt{\tilde{\delta}(W, \Sigma)}$$
 (5)

where

$$egin{aligned} ilde{\delta}(W, \Sigma) := \|\Sigma - \mathsf{Var}(W)\|_{H.S.} + \sum_{j=1}^d |\Sigma_{jj} - \mathsf{Var}\left(W_j
ight)| \ + \sqrt{\sum_{i=1}^n \mathbb{E} \left| \xi_i
ight|^4} + \sum_{j=1}^d \sqrt{\sum_{i=1}^n \mathbb{E} \left[\xi_{ij}^4
ight]} \end{aligned}$$

Remark

Under the same setting in the previous remark, note that

$$\mathbb{E}\left|\xi_{i}\right|^{4}\leqslant d\sum_{j=1}^{d}\mathbb{E}\xi_{ij}^{4}$$

if $Var(W) = \Sigma = I_d$, the RHS of (5) in Thm 2.3 is bounded by

$$C \max_{1 \leqslant j \leqslant d} \left(d \sum_{i=1}^{n} \mathbb{E} \xi_{ij}^{4} \right)^{1/4}$$

If $\max_{1\leqslant i\leqslant n}\max_{1\leqslant j\leqslant d}\left(\mathbb{E}\xi_{ij}^4\right)^{1/4}=O(1/\sqrt{n})$ as $n\to\infty$, the RHS of Thm 2.3 is of order $O(\frac{d}{n})^{\frac{1}{4}}$. This converges to 0 as long as $d/n\to0$.

Sketch of the Proof

Basic Decomposition and Sketch proof of Thm 2.1

- ▶ The proof for Theorem 2.1 starts with approximating the indicator function 1_A for a convex set A by an appropriate smooth function h. Then, the problem amounts to establishing an appropriate bound for $\mathbb{E}h(W) \mathbb{E}h(Z)$.
- ▶ To accomplish this, we will make use of a decomposition of $\mathbb{E}h(W) \mathbb{E}h(Z)$ derived from the exchangeable pair approach in Stein's method for multivariate normal approximation by Chatterjee and Meckes (2008)

Stein's Equation

Lemma (cf. Götze (1991) and Meckes (2009))

Given a twice differentiable function $h: \mathbb{R}^d \to \mathbb{R}$ with bounded partial derivatives, we consider the Stein equation

$$\langle \operatorname{Hess} f(w), \Sigma \rangle_{H.S.} - w \cdot \nabla f(w) = h(w) - \mathbb{E}h(Z), \quad w \in \mathbb{R}^d$$
 (6)

then

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) - \mathbb{E}h(Z) \right] \phi(z) dz ds$$
(7)

is a solution to (6).

- The basic decomposition assumes that f is thrice differentiable with bounded partial derivatives. This is true if Σ is invertible or h is thrice differentiable with bounded partial derivatives.
- Let $\{\xi_1', \ldots, \xi_n'\}$ be an independent copy of $\{\xi_1, \ldots, \xi_n\}$, and let I be a random index uniformly chosen from $\{1, \ldots, n\}$ and independent of $\{\xi_1, \ldots, \xi_n, \xi_1', \ldots, \xi_n'\}$. Define

$$W' = W - \xi_I + \xi_I'$$

It is easy to verify that (W, W') has the same distribution as (W', W) (exchangeability) and

$$\mathbb{E}\left(W' - W \mid W\right) = -\frac{W}{n} \tag{8}$$

From exchangeability and (8) we have, with D = W' - W

$$0 = \frac{n}{2} \mathbb{E} \left[D \cdot \left(\nabla f \left(W' \right) + \nabla f(W) \right) \right]$$

$$= \mathbb{E} \left[\frac{n}{2} D \cdot \left(\nabla f \left(W' \right) - \nabla f(W) \right) + nD \cdot \nabla f(W) \right]$$

$$= \mathbb{E} \left[\frac{n}{2} \sum_{j,k=1}^{d} D_{j} D_{k} \partial_{jk} f(W) + R_{2} + nD \cdot \nabla f(W) \right]$$

$$= \mathbb{E} \left[\langle \text{Hess } f(W), \Sigma \rangle_{H.S.} - R_{1} + R_{2} - W \cdot \nabla f(W) \right]$$

$$(9)$$

where

$$R_1 = \sum_{j,k=1}^d \mathbb{E}\left\{\left(\sum_{jk} - \frac{n}{2}D_j D_k\right) \partial_{jk} f(W)\right\}$$
 (10)

and

$$R_{2} = \frac{n}{2} \sum_{j,k,l=1}^{d} \mathbb{E} D_{j} D_{k} D_{l} U \partial_{jkl} f(W + (1 - U)D)$$
 (11)

and U is a uniform random variable on [0,1] independent of everything else. From (6) and (9) we have

$$\mathbb{E}h(W) - \mathbb{E}h(Z) = R_1 - R_2 \tag{12}$$

We further rewrite R_1 and R_2 respectively as follows (this requires some complicated calculation). First, set

$$V = (V_{jk})_{1 \leqslant j,k \leqslant d} := \left(\mathbb{E} \left[\sum_{jk} - \frac{n}{2} D_j D_k \mid \xi \right] \right)_{1 \leqslant j,k \leqslant d}$$

Then we evidently have

$$R_1 = \sum_{j,k=1}^d \mathbb{E} V_{jk} \partial_{jk} f(W) = \mathbb{E} \langle V, \text{ Hess } f(W) \rangle_{H.S.}$$
 (13)

Also, one can verify that (cf. Eq.(22) of Chernozhukov, Chetverikov and Kato (2014)) (we will use this result to bound R_1 later)

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{i} \xi_{i}^{\top} \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_{i} \xi_{i}^{\top}$$

$$= (\Sigma - \mathsf{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_{i} \xi_{i}^{\top} - \mathbb{E} \left[\xi_{i} \xi_{i}^{\top} \right] \right)$$

$$(14)$$

Next, by exchangeability we have

$$\mathbb{E}\left[D_{j}D_{k}D_{l}U\partial_{jkl}f(W+(1-U)D)\right]$$

$$=-\mathbb{E}\left[D_{j}D_{k}D_{l}U\partial_{jkl}f(W'-(1-U)D)\right]$$

$$=-\mathbb{E}\left[D_{j}D_{k}D_{l}U\partial_{jkl}f(W+UD)\right]$$
(15)

and also

$$R_{2} = \frac{n}{4} \sum_{j,k,l=1}^{d} \mathbb{E} \left[D_{j} D_{k} D_{l} U \left\{ \partial_{jkl} f(W + (1 - U)D) - \partial_{jkl} f(W + UD) \right\} \right]$$
(16)

If f is thrice differentiable with bounded partial derivatives, then

$$\mathbb{E}h(W) - \mathbb{E}h(Z) = R_1 - R_2$$

where

$$R_1 = \sum_{j,k=1}^d \mathbb{E} V_{jk} \partial_{jk} f(W) = \mathbb{E} \langle V, \mathsf{Hess} f(W) \rangle_{H.S.}$$

$$R_2 = \frac{n}{4} \sum_{j,k,l=1}^d \mathbb{E} \left[D_j D_k D_l U \left\{ \partial_{jkl} f(W + (1-U)D) - \partial_{jkl} f(W + UD) \right\} \right]$$

and

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{i} \xi_{i}^{\top} \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_{i} \xi_{i}^{\top}$$
$$= (\Sigma - \mathsf{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_{i} \xi_{i}^{\top} - \mathbb{E} \left[\xi_{i} \xi_{i}^{\top} \right] \right)$$

Main Theorem

Theorem (2.1)

Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Assume $\text{Var}(W) = \Sigma$ and Σ is invertible. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ . Then,

$$\sup_{A\in\mathcal{A}}|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)|$$

$$\leq Cd^{1/4} \left(\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_{i} \right|^{4} \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_{i} \right|^{4} \right) \right| \vee 1 \right)$$

$$(17)$$

where A is the collection of all measurable convex sets in \mathbb{R}^d .

Main Idea behind the Proof for Theorem 2.1

- ▶ Since $\Sigma^{-1/2}W = \sum_{i=1}^{n} \Sigma^{-1/2} \xi_i$ and $\{\Sigma^{-1/2}x : x \in A\} \in \mathcal{A}$ for all $A \in \mathcal{A}$, it suffices to consider the case $\Sigma = I_d$.
- Fix $\beta_0 > 0$. Define

$$K(\beta_{0}) = \sup_{W} \frac{\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|}{\max \left\{\beta_{0}, \left(\sum_{i \in \mathcal{I}} \mathbb{E} |\xi_{i}|^{4}\right)^{1/2} \left(\left|\log \left(\sum_{i \in \mathcal{I}} \mathbb{E} |\xi_{i}|^{4}\right)\right| \vee 1\right)\right\}}$$
(18)

where the first supremum is taken over the family of all sums $W = \sum_{i \in \mathcal{I}} \xi_i$ of finite number of independent mean-zero random vectors with $\mathbb{E} \left| \xi_i \right|^4 < \infty$ and $\operatorname{Var}(W) = I_d$.

▶ We will obtain a recursive inequality for $K(\beta_0)$ and prove that

$$K\left(\beta_{0}\right) \leqslant Cd^{1/4} \tag{19}$$

for an absolute constant C that does not depend on β_0 . Equation (3) then follows by sending $\beta_0 \to 0$.

Proof of Theorem 2.1

Now we fix a $W = \sum_{i=1}^{n} \xi_i, n \geqslant 1$, in the aforementioned family

$$\bar{\beta} = \max \left\{ \beta_0, \left(\sum_{i=1}^n \mathbb{E} \left| \xi_i \right|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} \left| \xi_i \right|^4 \right) \right| \vee 1 \right) \right\}. \tag{20}$$

and for $A \in \mathcal{A}, \varepsilon > 0$, define

$$A^{\varepsilon} = \left\{ x \in \mathbb{R}^d : \operatorname{dist}(x, A) \leqslant \varepsilon \right\} \qquad \operatorname{dist}(x, A) = \inf_{y \in A} |x - y|$$

To proceed, we need some technical lemmas.

Technical Lemmas

(Lemma 2.3 of Bentkus (2003))

Lemma (2)

For any $A \in \mathcal{A}$ and $\varepsilon > 0$, there exists a function $h_{A,\varepsilon}$ (which depends only on A and ε) such that

$$h_{A,\varepsilon}(x)=1 \text{ for } x\in A, \quad h_{A,\varepsilon}(x)=0 \text{ for } x\in \mathbb{R}^d\backslash A^{\varepsilon}, \quad 0\leqslant h_{A,\varepsilon}(x)\leqslant 1$$

and

$$M_1(h_{A,\varepsilon}) \leqslant \frac{C}{\varepsilon}, \quad M_2(h_{A,\varepsilon}) \leqslant \frac{C}{\varepsilon^2}$$
 (21)

where C is an absolute constant that does not depend on A and ε .

Technical Lemmas

(Theorem 4 of Ball (1993))

Lemma (3)

Let ϕ be the standard Gaussian density on \mathbb{R}^d , $d \geqslant 2$, and let A be a convex set in \mathbb{R}^d . Then

$$\int_{\partial A} \phi \leqslant 4d^{1/4} \tag{22}$$

Technical Lemmas

Using Lemma 3, one can show following lemmas of bounding the target difference between W and Z (Lemma 4.2 of Fang and Rollin (2015)).

Lemma (4)

For any d -dimensional random vector W and any $\varepsilon > 0$,

$$\sup_{A\in\mathcal{A}} |\mathbb{P}(W\in A) - \mathbb{P}(Z\in A)| \leqslant 4d^{1/4}\varepsilon + \sup_{A\in\mathcal{A}} |\mathbb{E}h_{A,\varepsilon}(W) - \mathbb{E}h_{A,\varepsilon}(Z)|$$
(23)

where $h_{A,\varepsilon}$ is as in Lemma 2.

Before we proceed, we provide the outline of the remaining proof.

- ▶ Using equation (23) in lemma 4, we can bound $\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) \mathbb{P}(Z \in A)|$ by bounding $\sup_{A \in \mathcal{A}} |\mathbb{E}h_{A,\varepsilon}(W) \mathbb{E}h_{A,\varepsilon}(Z)|$.
- ▶ Then we can using basic decomposition to bound $\sup_{A \in \mathcal{A}} |\mathbb{E} h_{A,\varepsilon}(W) \mathbb{E} h_{A,\varepsilon}(Z)|$ by considering R_1 and R_2 respectively.
- $ightharpoonup R_1$ can be decomposed further into $R_{11} + R_{12}$, and each term can be bounded directly.
- ▶ To bound R_2 , we divide into two cases. In the first case, $R_2 = R_{21} + R_{22}$ and we can bound two terms respectively. Besides, we will see the second case is trivial.

We now fix $A \in \mathcal{A}$ (will take sup later), $0 < \varepsilon \leqslant 1$, write $h := h_{A,\varepsilon}$ and proceed to bound $|\mathbb{E}h(W) - \mathbb{E}h(Z)|$ by the basic decomposition (12). Consider the solution f to the Stein equation (6) with $\Sigma = I_d$

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h\left(\sqrt{1-s}w + \sqrt{s}z\right) - \mathbb{E}h(Z) \right] \phi(z) dz ds$$

Since h has bounded partial derivatives up to the second order and $\Sigma = I_d$ is invertible, f is thrice differentiable with bounded partial derivatives. Using the integration by parts formula, we have for $1 \leqslant j, k, l \leqslant d$ and any constant $0 \leqslant c_0 \leqslant 1$ that

$$\partial_{jk}f(w) = \int_{0}^{c_0} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_j h(\sqrt{1-s}w + \sqrt{s}z) \partial_k \phi(z) dz ds + \int_{c_0}^{1} -\frac{1}{2s} \int_{\mathbb{R}^d} h(\sqrt{1-s}w + \sqrt{s}z) \partial_{jk} \phi(z) dz ds$$
(24)

and

$$\partial_{jkl}f(w) = \int_{0}^{c_0} \frac{\sqrt{1-s}}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_{jk} h(\sqrt{1-s}w + \sqrt{s}z) \partial_l \phi(z) dz ds + \int_{c_0}^{1} -\frac{\sqrt{1-s}}{2s} \int_{\mathbb{R}^d} \partial_j h(\sqrt{1-s}w + \sqrt{s}z) \partial_{kl} \phi(z) dz ds$$
(25)

Now, using the expression of $\partial_{jk}f$ in (24) with $c_0 = \varepsilon^2$, we have

$$R_1 = R_{11} + R_{12}$$

where

$$R_{11} = \sum_{j,k=1}^{d} \mathbb{E} \left[V_{jk} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \partial_{j} h(\sqrt{1-s}W + \sqrt{s}z) \partial_{k} \phi(z) dz ds \right]$$

and

$$R_{12} = \sum_{j,k=1}^{d} \mathbb{E}\left[V_{jk} \int_{\varepsilon^{2}}^{1} -\frac{1}{2s} \int_{\mathbb{R}^{d}} h(\sqrt{1-s}W + \sqrt{s}z) \partial_{jk} \phi(z) dz ds\right]$$

To proceed, we will utilize the following lemma (Lemma 4.3 of Fang and Röllin (2015)).

Lemma (5)

For $k \geqslant 1$ and each map $a: \{1, \ldots, d\}^k \to \mathbb{R}$, we have

$$\int_{\mathbb{R}^d} \left(\sum_{i_1,\ldots,i_k=1}^d a(i_1,\ldots,i_k) \frac{\partial_{i_1\ldots i_k}\phi(z)}{\phi(z)} \right)^2 \phi(z) dz \leqslant k! \sum_{i_1,\ldots,i_k=1}^d \left(a(i_1,\ldots,i_k) \right)^2$$
(26)

Bound for R_{11}

For R_{11} , we use the Cauchy-Schwarz inequality and the bounds in lemma 2 and lemma 5 and obtain

$$|R_{11}| = \left| \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \mathbb{E} \sum_{j=1}^{d} \partial_{j} h(\sqrt{1-s}W + \sqrt{s}z) \sum_{k=1}^{d} V_{jk} \frac{\partial_{k} \phi(z)}{\phi(z)} \phi(z) dz ds \right|$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \mathbb{E} \left\{ \sum_{j=1}^{d} \left(\sum_{k=1}^{d} V_{jk} \frac{\partial_{k} \phi(z)}{\phi(z)} \right)^{2} \right\}^{1/2} \phi(z) dz ds$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \left\{ \int_{\mathbb{R}^{d}} \mathbb{E} \sum_{j=1}^{d} \left(\sum_{k=1}^{d} V_{jk} \frac{\partial_{k} \phi(z)}{\phi(z)} \right)^{2} \phi(z) dz \right\}^{1/2} ds$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \left\{ \mathbb{E} \sum_{j=1}^{d} \sum_{k=1}^{d} V_{jk}^{2} \right\}^{1/2} ds \leq C \left\{ \sum_{j,k=1}^{d} \mathbb{E} V_{jk}^{2} \right\}^{1/2}$$

$$(27)$$

Bound for R_{11}

Recall that $Var(W) = \Sigma$ and

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{i} \xi_{i}^{\top} \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_{i} \xi_{i}^{\top}$$
$$= (\Sigma - \mathsf{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_{i} \xi_{i}^{\top} - \mathbb{E} \left[\xi_{i} \xi_{i}^{\top} \right] \right)$$

we have

$$\mathbb{E}V_{jk}^2 = \frac{1}{4}\operatorname{Var}\left[\sum_{i=1}^n \xi_{ij}\xi_{ik}\right] = \frac{1}{4}\sum_{i=1}^n \operatorname{Var}\left[\xi_{ij}\xi_{ik}\right] \leqslant \frac{1}{4}\sum_{i=1}^n \mathbb{E}\left[\xi_{ij}^2\xi_{ik}^2\right]$$

Bound for R_{11}

and therefore,

$$|R_{11}| \leqslant C \left\{ \sum_{j,k=1}^{d} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{ij}^{2} \xi_{ik}^{2} \right] \right\}^{1/2}$$

$$= C \left\{ \sum_{i=1}^{n} \mathbb{E} \left[\sum_{j=1}^{d} \xi_{ij}^{2} \right]^{2} \right\}^{1/2}$$

$$= C \left(\sum_{i=1}^{n} \mathbb{E} \left[\xi_{i} \right]^{4} \right)^{1/2}$$

Bound for R_{12}

Applying similar arguments, we have, for R_{12} ,

$$|R_{12}| \leqslant \int_{\varepsilon^{2}}^{1} \frac{1}{2s} \left\{ \int_{\mathbb{R}^{d}} \mathbb{E} \left[\sum_{j,k=1}^{d} V_{jk} \frac{\partial_{jk} \phi(z)}{\phi(z)} \right]^{2} \phi(z) dz \right\}^{1/2} ds$$

$$\leqslant C \int_{\varepsilon^{2}}^{1} \frac{1}{2s} \left\{ \mathbb{E} \sum_{j,k=1}^{d} V_{jk}^{2} \right\}^{1/2} ds \leqslant C |\log \varepsilon| \left(\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4} \right)^{1/2}$$
(28)

therefore,

$$|R_1| \leqslant C(|\log \varepsilon| \vee 1) \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right)^{1/2}$$
 (29)

Bound for R_2

Next, we bound R_2 . Take $0 < \eta \le 1$ arbitrarily. Using the expression of $\partial_{jkl} f$ in (25) with $c_0 = \eta^2$ and in this case, we have

$$R_2 = R_{21} + R_{22}$$

where

$$\begin{split} R_{21} = & \frac{1}{2} \sum_{i=1}^{n} \sum_{j,k,l=1}^{d} \mathbb{E} U \left(\xi'_{ij} - \xi_{ij} \right) \left(\xi'_{ik} - \xi_{ik} \right) \left(\xi'_{il} - \xi_{il} \right) \int_{0}^{\eta^{2}} \frac{\sqrt{1-s}}{2\sqrt{s}} \\ & \times \int_{\mathbb{R}^{d}} \partial_{jk} h \left(\sqrt{1-s} \left(W + (1-U) \left(\xi'_{i} - \xi_{i} \right) \right) + \sqrt{s} z \right) \partial_{l} \phi(z) dz ds \end{split}$$

Bound for R_2

and

$$R_{22} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j,k,l,m=1}^{d} \mathbb{E}U(1-2U) \left(\xi'_{ij} - \xi_{ij}\right) \left(\xi'_{ik} - \xi_{ik}\right) \left(\xi'_{il} - \xi_{il}\right) \left(\xi'_{im} - \xi_{im}\right) \times \int_{\eta^{2}}^{1} -\frac{1-s}{2s} \int_{\mathbb{R}^{d}} \partial_{jm} h_{22} \partial_{kl} \phi(z) dz ds$$
(30)

where

$$h_{22} = h\left(\sqrt{1-s}\left(W+\left(U+(1-2U)U'\right)\left(\xi_i'-\xi_i\right)\right)+\sqrt{s}z\right)$$

and U' is a uniform random variable on [0,1] independent of everything else.

Bound for R_2

Set $\beta_* = 0.19$ and $\sigma_* = (1 - \beta_*)^{1/2} = 0.9$. Recall that

$$\bar{\beta} = \max \left\{ \beta_0, \left(\sum_{i=1}^n \mathbb{E} \left| \xi_i \right|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} \left| \xi_i \right|^4 \right) \right| \vee 1 \right) \right\}$$

We now discuss the proof in following cases

- ► Case-1: $\bar{\beta} \leq \beta_* / d^{1/4}$
- Case-2: $\bar{\beta} > \beta_*/d^{1/4}$

The settings for β_* and σ_* will be used in bounding R_{21} and R_{22} with some specific calculation. We will skip these calculations and present the results directly.

In this case, we have for any $0<\eta\leqslant 1$ and any $\varepsilon>0$

$$|R_{21}| \leqslant \frac{C}{\varepsilon^2} \sum_{i=1}^n \mathbb{E} |\xi_i|^3 \left(d^{1/4} \varepsilon + K(\beta_0) \,\bar{\beta} \right) \eta \tag{31}$$

and

$$|R_{22}| \leqslant \frac{C}{\varepsilon^2} \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \left(d^{1/4} \varepsilon + K(\beta_0) \,\bar{\beta} \right) |\log \eta| \tag{32}$$

By choosing appropriate η

$$\eta = \begin{cases} \frac{\sum_{i=1}^{n} \mathbb{E}\left|\xi_{i}\right|^{4}}{\sum_{i=1}^{n} \mathbb{E}\left|\xi_{i}\right|^{3}} & \text{if } \sum_{i=1}^{n} \mathbb{E}\left|\xi_{i}\right|^{4} < \sum_{i=1}^{n} \mathbb{E}\left|\xi_{i}\right|^{3} \\ 1 & \text{otherwise} \end{cases}$$

Hence, we have

$$|R_{21}| + |R_{22}| \leq \frac{C}{\varepsilon^2} \sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \left(d^{1/4} \varepsilon + K(\beta_0) \bar{\beta} \right) \times \left(\left| \log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) \right| \vee 1 \right)$$
(33)

Therefore, in this case

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|$$

$$\leq 4d^{1/4}\varepsilon + C(|\log \varepsilon| \vee 1) \left(\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4}\right)^{1/2}$$

$$+ \frac{C}{\varepsilon^{2}} \sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4} \left(d^{1/4}\varepsilon + K(\beta_{0})\bar{\beta}\right) \left(\left|\log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4}\right)\right| \vee 1\right)$$
Choose

 $\varepsilon = \min \left\{ \left[2C \sum_{i=1}^{n} \mathbb{E} \left| \xi_{i} \right|^{4} \left(\left| \log \left(\sum_{i=1}^{n} \mathbb{E} \left| \xi_{i} \right|^{4} \right) \right| \vee 1 \right) \right]^{1/2}, 1 \right\}$ with the same absolute constant C as in the third term on the right-hand side of (34)

If ε < 1, then (34) can be simplified to

$$\sup_{A\in\mathcal{A}}\left|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)\right|\leqslant \left(\mathit{Cd}^{1/4}+\frac{\mathit{K}\left(\beta_{0}\right)}{2}\right)\bar{\beta}$$

hence

$$\frac{\sup_{A\in\mathcal{A}}|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)|}{\bar{\beta}}\leqslant Cd^{1/4}+\frac{K(\beta_0)}{2}$$
(35)

If $\varepsilon=1$, then $\sum_{i=1}^n\mathbb{E}\left|\xi_i\right|^4$ and $\bar{\beta}$ are bounded away from 0 by an absolute constant; hence

$$\frac{\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|}{\bar{\beta}} \leqslant \frac{2}{\bar{\beta}} \leqslant C$$
 (36)

Bound for R_2 : Case-2: $\bar{\beta} > \beta_*/d^{1/4}$

We trivially estimate

$$\frac{\sup_{A\in\mathcal{A}}|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)|}{\bar{\beta}}\leqslant \frac{2}{\bar{\beta}}\leqslant \frac{2d^{1/4}}{\beta_*}\leqslant Cd^{1/4} \quad (37)$$

Proof of Theorem 2.1

Combining both cases together, we have

$$\frac{\sup_{A\in\mathcal{A}}|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)|}{\bar{\beta}}\leqslant Cd^{1/4}+\frac{K\left(\beta_{0}\right)}{2}$$

Note that the right-hand side of the above bound does not depend on W. Taking supremum over W, we obtain

$$K(\beta_0) \leqslant Cd^{1/4} + \frac{K(\beta_0)}{2} \tag{38}$$

which completes the proof.

Proof of Theorem 2.2

The proof of Theorem 2.2 is quite similar to that of Theorem 2.1. It is enough to prove (4) when Σ is diagonal with positive entries. Fix $\beta_0 > 0$. Define

$$K'(\beta_0) = \sup_{W,\Sigma} \frac{\sup_{A \in \mathcal{B}} \left| \mathbb{P}(W \in A) - \mathbb{P}\left(\Sigma^{1/2} Z_0 \in A\right) \right|}{\max\left\{\beta_0, \Psi(\delta(W, \Sigma))\right\}}$$
(39)

where $Z_0 \sim N\left(0,I_d\right)$ and the first supremum is taken over the family of all sums $W = \sum_{i \in \mathcal{I}} \xi_i$ of finite number of independent centered random vectors with $\mathbb{E}\left|\xi_i\right|^4 < \infty$, and diagonal matrices Σ with positive entries. We will obtain a recursive inequality for $K'\left(\beta_0\right)$ and prove that

$$K'(\beta_0) \leqslant C \tag{40}$$

for an absolute constant C that does not depend on β_0 . Equation (4) then follows by sending $\beta_0 \to 0$.

Applications

Applications on the bootstrap

Empirical bootstrap approximation for $\mathbb{P}(W \in A)$

- ▶ X_1, \ldots, X_n : be a sequence of centered independent vectors in \mathbb{R}^d with finite fourth moments. $W := n^{-1/2} \sum_{i=1}^n X_i$, $\Sigma := Var(W)$, $Z \sim N(0, \Sigma)$. X_1^*, \ldots, X_n^* : be i.i.d. draws from the empirical distribution of X
- $W^* := \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i^* \bar{X})$., where $\bar{X} := \frac{1}{n} \sum_{i=1}^n X_i$
- ► The bootstrap analog of Theorem 2.3 is given by:

Theorem (4.1)

If $tr(\Sigma^2) > 0$, for any K > 0, we have

$$\mathbb{P}\left(\sup_{A\in\mathcal{B}}|\mathbb{P}(W^*\in A|X)-\mathbb{P}(Z\in A)|>K\sqrt{\Delta_n}\right)\leqslant \frac{C}{K^2} \qquad (41)$$

where

$$\Delta_n := \frac{1}{n \operatorname{tr} \left(\Sigma^2\right)^{1/2}} \left(\sqrt{\sum_{i=1}^n \mathbb{E} \left|X_i\right|^4} + \sum_{j=1}^d \sqrt{\sum_{i=1}^n \mathbb{E} \left[X_{ij}^4\right]} \right)$$

Remark of Theorem 4.1

- Compared to the non-asymptotic bound for the quantity of $\sup_{A \in \mathcal{B}} |\mathbb{P}(W^* \in A|X) \mathbb{P}(Z \in A)|$ under additional distribution assumption on X_i . Ours Theorem 4.1 provides better dependence on the **dimension** $d(d = o(n) \text{ v.s. } d = o(n^{1/2}))$, at least when $\Sigma = I_d$;
- ▶ Our result allows Σ to be singular;
- It's possible to give a non-asymptotic version of equation 41 but an exponential concentration if we also assume X_i are sub-Gaussian.

Wild bootstrap approximation for $\mathbb{P}(W \in A)$

Let $\{e_i\}_{i=1}^n$ be i.i.d. variables independent of $\{X_i\}_{i=1}^n$ with $\mathbb{E}e_1=0, \mathbb{E}e_1^2=1, \mathbb{E}e_1^4<\infty.$

The $W^o := \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i X_i$ is the wild bootstrap approximation of W with multiplier variables e_1, \ldots, e_n .

Theorem (4.2)

If $tr(\Sigma^2) > 0$, for any K > 0, we have

$$\mathbb{P}\left(\sup_{A\in\mathcal{B}}|\mathbb{P}(W^o\in A|X)-\mathbb{P}(Z\in A)|>K(\mathbb{E}e_1^4)^{1/4}\sqrt{\Delta_n}\right)\leqslant \frac{C}{K^2}$$
(42)

where Δ_n is defined in 4.1

Remark of Theorem 4.2

Compared to the non-asymptotic bound for the quantity of $\sup_{A\in\mathcal{B}}|\mathbb{P}(W^o\in A|X)-\mathbb{P}(Z\in A)|$ under additional distribution assumption on X_i . Our Theorem 4.2 provides better dependence on the n and $d(O(d/n)^{1/4}$ v.s. $O(d^2/n)^{1/5})$;

Ours does not require the **unit skewness assumption** $\mathbb{E}e_1^3=1$ on the multiplier variables;

Thank you!