Manipulating and visualizing data in R

Frank Edwards

1/25/2019

School of Criminal Justice, Rutgers - Newark

Review HW1

· Challenges?

Understanding the R environment

Let's check installations

- · R
- · RStudio
- Git

Let's clone the course repository

In RStudio Terminal, navigate to desired folder using command cd
https://github.com/f-edwards/intermediate_stats.git

The R and RStudio environment

Using RMarkdown

 $\verb|http://stat545.com/block007_first-use-rmarkdown.html|\\$

Data input/output

 $\verb|http://stat545.com/block026_file-out-in.html|\\$

Basics of data frames in R

 $\verb|http://stat545.com/block006_care-feeding-data.html|$

Introducing dplyr

http://stat545.com/block009_dplyr-intro.html

Model objects in R

- Work through basics of lm()
- · Interpret output
- · Extract objects from model object

Working with (generalized) linear models

Basic syntax of lm

To produce:

$$y = \beta_0 + \beta_1 X + \varepsilon$$

We use:

$$lm(y \sim x)$$

Start a new R Project

- 1. Save it as lecture2.RProj in your intermediate_stats folder
- move the data from ./data to ./lecture2/data (drag and drop or cp from terminal)

If using terminal (try it!) input

- · mkdir data
- · cd ..
- cp./data/lecture_2_demo.csv./lecture2/data/lecture_2_demo.csv

Read in data

```
cj_budgets<-read_csv("./data/lecture_2_demo.csv")</pre>
```

Note that we use a relative file path here (what's that!?)

Explore the data

- Evaluate integrity with head()
- Evaluate column classes with str()
- Evaluate summary statistics with summary()

Develop a theory for relationships between variables

Let's look the outcome \texttt{exp_police_pc}, which is the total expenditures on police per capita (divided by the total population) in a county across municipal and county governments (local PDs, sherrif's depts).

What could predict police budgets?

head(cj budgets)

5 01081

6 01083

##	## # A CIDDIE. O X /					
##		fips	exp_police_pc	${\tt officers_pc}$	rev_prop_tax_pc	violent.cri
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<1gl>
##	1	01001	169.	83.4	158.	TRUE
##	2	01021	170.	32.2	242.	TRUE
##	3	01033	193.	31.9	256.	TRUE
##	4	01061	164.	29.9	260.	TRUE

... with 2 more variables: segregation.bw.high <lgl>,

51.6

34.4

187.

164.

331. TRUE

170. FALSE

Visualize the data, univariate

· hist()

Visualize the data, bivariate

- Look at crosstabs with table()
- Using base, plot()

Fit a single variable model

Interpret the model

· What does each coefficient mean

Visualize the fit

We can use coef() to extract coefficient estimates.

How could we use coef() to plot a fitted line?

Fit a regression with multiple variables

- · Interpret the coefficients
- Visualize the fit using coef() and plot()

Fit a model with an interaction

- Interpret the coefficients
- Visualize the fit using coef() and plot()

Introducing prediction and counterfactuals

- · Create fake data
- · Use coef() to generate expected values
- · Use predict() to generate expected values

Discuss HW2

- HW2 asks you to provide a brief analysis and writeup on the cj_budgets data
- · Use RMarkdown to explore the data and write up your findings
- Construct a multivariate regression model and interpret your results
- · Predict values for a theoretically interesting counterfactual
- Provide both criminological and statistical interpretations of your findings