

EXPLORING MATHEMATICAL RELATIONSHIPS

Module 5: Investigation 4

Using the Grid World

ACTIVITY 5.4.1

Using the Grid World

Exploring relationships within rectangles and between rectangles

Activity 5.4.1 – Using the Grid World

Use your final **53-Grid World** project, or the provided **53-Grid World FINAL** project. Use the *grid 20* backdrop.

A is the **base** of the rectangle and B is the **height**.

- 1 Draw a rectangle where A = 3 and B = 1.
- 2 Draw a rectangle where A = 6 and B = 2.
- 3 Add the magic line.
- 4 Explore and draw two more rectangles which fit on the magic line.
- 5 Does the rectangle where A = 15 and B = 5 fit on the line? Can you explain your answer?
- **6** If A = 21, what is the value of B? Explain your answer.
- 7 If B = 10, what is the value of A? Explain your answer.
- 8 Transfer your answers into the table on Worksheet 1 and complete the calculations.

Activity 5.4.1 – Using the Grid World

Use the *grid 20* backdrop.

A is the **base** of the rectangle and B is the **height**.

- 1 Construct a rectangle where A = 3 and B = 2.
- 2 Construct a rectangle where A = 6 and B = 4.
- 3 Add the magic line.
- 4 Explore and draw two more rectangles which fit on the magic line.
- 5 Does the rectangle where A = 12 and B = 6 fit on the line? Can you explain your answer?
- **6** If A = 18, what is the value of B? Explain your answer.
- \bigcirc If B = 10, what is the value of A? Explain your answer.
- 8 Transfer you answers into the table on the Worksheet 2 and complete the calculations.

MODULE 5: INVESTIGATION 4

Activity 5.4.2 – BridgEing And Solving Problems

ACTIVITY 5.4.2

BridgEing And Solving Problems

MODULE 5: INVESTIGATION 4

Activity 5.4.2 – BridgEing And Solving Problems

Use the Grid World to solve the problems, draw diagrams and explain your working.

The two rectangles are proportional (mathematically similar) to one another.

Find length **x** and give a reason for your answer.

Two matchsticks have the same length as three bottle tops.

How many bottle tops will have the same length as 12 matchsticks?

Here is a picture of Mr. Short.

Mr Short is 4 buttons or 6 paperclips in height.

Mr Tall measures 6 buttons, how high is Mr Tall in paperclips?

Activity 5.4.2 – BridgEing And Solving Problems

Adam is making a spicy soup for 3 people. He uses 9ml of tabasco sauce.

- a) Create a rectangle in the Grid World which has a **base** of 9 and a **height** of 3. Draw the magic line.
- b) Davina is making the same soup for 6 people. How much tabasco sauce should she use?

[Clue: Draw a rectangle which fits on the magic line and has a height of 6.]

- c) Find another solution that works (i.e. fits on the magic line).
- d) What is the relationship between pairs of numbers?
- e) If Matt is making the same soup for a large party of 30, how much tabasco would he need?
- f) Tabasco is sold in 57ml bottles. How many people could be served the same spiciness of soup using one bottle?

My Investigation 4 check list:
I constructed mathematically similar rectangles in the grid world.
I used the "magic line" to find other mathematically similar rectangles.
I have explored the relationship of the side lengths within a rectangle and between rectangles for mathematically similar rectangles.
I can explain what it means when two rectangles are mathematically similar.
☐ I can solve problems which involve proportional relationships.