Análisis exploratorio de los datos

Aprendizaje Automatico

Marco Teran EAFIT

Contenido

- Objetivos y mapa
- 2 Introducción
- 3 Principales desafíos del Machine Learning
- 4 Pruebas y validación
 - Ajuste de hiperparámetros y selección de modelos
 - Divergencia de datos
- 5 Proyecto de Machine Learning de principio a fin
 - Exploración de datos
- 6 Conceptos fundamentales de EDA
- 7 Bases de datos desbalanceadas
- 8 Ingeniería de características
 - Imputación y escalado
- 9 Pipelines y sklearn
- 10 Síntesis y referencias

Objetivos y mapa

Objetivos de aprendizaje del capítulo

- Entender CRISP-DM y su lógica iterativa.
- Dominar EDA: métricas, visualización y robustez.
- Practicar ingeniería de características efectiva y segura.
- Diferenciar sobreajuste vs. subajuste; usar regularización.
- Validar con rigor: holdout, CV y mismatch.
- Diseñar pipelines reproducibles y medibles.
- Evitar data leakage y sesgos comunes.

Mapa mental

CRISP–DM \to EDA \to Ingeniería de características \to Modelado \to Validación \to Despliegue \to Iteración

Marco Teran 2025 Análisis exploratorio de los datos 5 / 112

Capítulo en una página

- **Fundamentos**: objetivo de negocio y métricas.
- **EDA**: localización, dispersión, forma, dependencia.
- Visualización: principios perceptuales y gramática.
- Características: codificación, escalado, transformaciones.
- **Teoría clave**: sesgo—varianza, capacidad, información.
- Validación: particiones, CV, mismatch, drift.
- **Prácticas**: *pipelines*. monitoreo v retraining.

Introducción

CRISP-DM

- Un proyecto de ML trasciende elegir y entrenar modelos.
- Existen marcos para organizar el ciclo de vida completo.
- CRISP-DM es el estándar intersectorial (1996).

Idea central

Del objetivo de negocio a producción, con iteraciones informadas por datos.

Marco Teran 2025 Análisis exploratorio de los datos 9/112

CRISP-DM: fases y preguntas guía

■ Comprensión del negocio

- ¿Qué KPI mover? ¿Por qué ahora?
- ¿ML agrega valor frente a reglas?

■ Comprensión de los datos

- ¿Fuentes confiables? ¿Cobertura temporal?
- ¿Calidad y sesgos de muestreo?

■ Preparación de datos

■ Estructurar, limpiar, enriquecer, etiquetar.

Modelado

Objetivo, pérdida y validación coherentes.

Evaluación

- ¿Mueve el KPI empresarial?
- ¿Riesgos y trade-offs aceptables?

Despliegue

Integración, monitoreo y plan de retraining.

Ejemplo

Supongamos que queremos construir un sistema de detección de spam: para cada correo electrónico que recibimos, queremos determinar si es spam o no. Si lo es, queremos meterlo en la carpeta de "spam".

Reflexiór

Métrica de negocio: quejas y clics en "Report spam".

Marco Teran 2025 Análisis exploratorio de los datos 12 / 112

Etapa de comprensión del negocio

- Analizar quejas de usuarios y volumen de spam.
- Evaluar si ML supera reglas y filtros actuales.
- Definir éxito: reducción de reportes o quejas.
- Considerar alternativas no–ML si procede.

Pitfall

KPI mal definido \rightarrow optimización de la métrica equivocada.

Marco Teran 2025 Análisis exploratorio de los datos 14 / 112

Paso de comprensión de datos

- Inventariar fuentes: etiquetas de reporte de spam, logs.
- Auditar tamaño, ruido, faltantes y cobertura.
- Detectar sesgo de muestreo y drift temporal.
- Si falta calidad: mejorar captura o adquirir datos.

Nota histórica

Tukey impulsó el EDA: primero explorar, luego formalizar.

Marco Teran 2025 Análisis exploratorio de los datos 16/112

Paso de modelado

- Seleccionar algoritmos y definir pérdidas y métricas.
- Ajustar preparación según validación inicial.
- Diseñar un marco de validación honesto.
- Promover el mejor candidato a evaluación final.

Etapa de evaluación

- Comprobar alineación con expectativas del negocio.
- Validar que el KPI empresarial mejora realmente.
- Usar holdout ciego para estimar generalización.
- Evaluar riesgos: *false positives* y experiencia.

Etapa de despliegue

- *Ramp-up* por cohortes; medir impacto causal.
- Comparar grupo tratado vs. control (A/B).
- Reciclar aprendizaje: retroalimentar al inicio.
- Reevaluar el objetivo si cambia el entorno.

Marco Teran 2025 Análisis exploratorio de los datos 22 / 112

Iterar

- Iteraciones planificadas según evidencia y riesgo.
- El valor está antes y después del modelado.
- Mejor pregunta correcta aproximada que exactitud vana.
- EDA disciplinado evita sorpresas en producción.

Marco Teran 2025 Análisis exploratorio de los datos 24 / 112

Principales desafíos del Machine Learning

Principales desafíos del Machine Learning

- Dos ejes: calidad de datos y capacidad del modelo.
- Peligros: poca data, sesgos, ruido y *leakage*.
- Antídotos: EDA robusto y validación honesta.

Marco Teran 2025 Análisis exploratorio de los datos 27 / 112

Cantidad insuficiente de datos de entrenamiento

- Muchos algoritmos requieren grandes volúmenes.
- Tareas complejas: millones o transfer learning.
- Curva de datos guía inversión y expectativas.

 Marco Teran
 2025
 Análisis exploratorio de los datos
 28 / 112

Datos de entrenamiento no representativos

Para generalizar, la muestra debe representar producción.

- Muestras grandes también pueden sesgarse.
- Cuide el muestreo estratificado y temporal.
- Documente el proceso de muestreo siempre.

Pitfall

Sesgo de muestreo \rightarrow métricas infladas en validación.

Marco Teran 2025 Análisis exploratorio de los datos 30 / 112

Datos de baja calidad

- Errores, outliers y ruido degradan patrones.
- Limpieza: reglas, imputación y validación cruzada.
- Estrategias: descartar, corregir o modelar faltantes.

Marco Teran 2025 Análisis exploratorio de los datos 31/112

Características irrelevantes

- El éxito depende de buenas representaciones.
- Ingeniería: selección, extracción y reducción.
- Cuidado con alta cardinalidad y multicolinealidad.

Marco Teran 2025 Análisis exploratorio de los datos 32/112

Sobreajuste (overfitting) y regularización

- Ajuste perfecto al ruido no generaliza.
- Modelos complejos requieren control de capacidad.

$$\underline{\mathbb{E}(y-\hat{f})^2} \underline{\hspace{0.1cm}} \text{riesgo} = \sigma^2 + \mathrm{bias}^2 + \mathrm{varianza}$$

Descomposición sesgo-varianza: guía el trade-off óptimo.

Marco Teran Análisis exploratorio de los datos 33 / 112

Cómo reducir el sobreajuste

- Simplificar modelo o usar regularización.
- Conseguir más y mejores datos.
- Reducir ruido y estabilizar etiquetas.

Regla robusta

Valide cada decisión de limpieza con CV estratificada.

Marco Teran 2025 Análisis exploratorio de los datos 34 / 112

Ajuste insuficiente (underfitting)

- Modelo demasiado simple para la estructura.
- Soluciones: más capacidad o mejores rasgos.
- Ajustar hiperparámetros y aflojar restricciones.

Marco Teran 2025 Análisis exploratorio de los datos 37/112

Resumen (I)

- ML aprende de datos para mejorar tareas específicas.
- Tipos: supervisado, no supervisado, por lotes, en línea.
- Entrenamiento ajusta parámetros para predecir bien fuera.
- Éxito depende de datos, validación y mantenimiento.

Marco Teran 2025 Análisis exploratorio de los datos 38 / 112

Resumen (II)

- EDA disciplinado descubre estructura y anomalías.
- Ingeniería de rasgos conecta dominio y algoritmo.
- Regularización y CV controlan la generalización.
- CRISP-DM guía el ciclo de vida completo.

Marco Teran 2025 Análisis exploratorio de los datos 39 / 112

Pruebas y validación

Principios de validación

- Generalización se estima con datos no vistos.
- Separar entrenamiento, validación y prueba.
- Tamaño del *test* depende de la data.
- Evitar adaptar decisiones al conjunto de prueba.

Ajuste de hiperparámetros y selección de modelos

Conjuntos y flujo de selección

- Comparar candidatos en validación, no en prueba.
- Regularizar para minimizar riesgo esperado.
- Barrido de hiperparámetros con CV estratificada.
- Elegir el mejor y reentrenar en todo el train.

Cuándo usar CV y cuánto

- K-fold reduce varianza de estimación.
- CV repetida mejora estabilidad con costo extra.
- Para series temporales use forward chaining.

Pitfall

No mezcle información futura en particiones temporales.

Divergencia de datos

Cuando validación no representa producción

- Entrenamiento puede no reflejar el *live traffic*.
- Validación y prueba deben emular producción.
- Deduplicar entre splits y periodos temporales.
- Mantener un conjunto de desarrollo para diagnóstico.

 Marco Teran
 2025
 Análisis exploratorio de los datos
 48 / 112

Diagnóstico de mismatch

- Mal en train y dev: simplifique, limpie, más datos.
- Bien en train y dev, mal en test: preprocesar como producción.
- Sólo entonces, estimar con prueba final una vez.

Marco Teran 2025 Análisis exploratorio de los datos 49 / 112

Proyecto de Machine Learning de principio a fin

Exploración de datos

Exploración de datos: propósito

- Comprender estructura, calidad y señales útiles.
- Guiar decisiones de rasgos y validación.
- Formular hipótesis y detectar anomalías.

Marco Teran 2025 Análisis exploratorio de los datos 54 / 112

Checklist esencial de EDA

- Auditar faltantes y outliers sistemáticos.
- Distribuciones: centro, dispersión y forma.
- Dependencias: correlación e información mutua.
- Estabilidad temporal y drift de covariables.
- Balance de clases y separación de etiquetas.

Ventajas de un EDA riguroso

- I Evita errores caros en producción.
- Acelera selección de modelos adecuados.
- Mejora interpretabilidad y gobernanza.
- Reduce sobreajuste por decisiones informadas.

Técnicas de EDA recomendadas

- Estadística descriptiva robusta: mediana, IQR, MAD.
- Gráficos: histogramas, cajas, dispersión, facetas.
- Reducción: PCA para explorar multivariado.
- Dependencia: Spearman y mutual information.

Pasos para resolver con EDA

- Analizar el panorama general del negocio.
- Obtener y versionar los datos crudos.
- Explorar y visualizar con criterios robustos.
- Preparar datos para algoritmos de ML.

Dataset de precios de casas de California

Dataset de precios de casas de California

- Usaremos California Housing Prices (censo 1990).
- 2 Apto para aprender EDA y regresión tabular.
- 3 Se añadió un atributo categórico para práctica.
- Se eliminaron rasgos para simplificar ejercicios.

California Housing: rasgos y tareas

- 20,640 instancias, 8 atributos demográficos y geográficos.
- Rangos heterogéneos: considerar escalado o transformaciones.
- Tareas: predecir valor medio y analizar patrones.

Marco Teran 2025 Análisis exploratorio de los datos 62 / 112

Tener una visión amplia

- Objetivo: predecir precio medio por distrito.
- Insumos: población, ingresos, habitaciones, localización.
- La unidad: distrito del censo (600–3,000 personas).

Marco Teran 2025 Análisis exploratorio de los datos 63 / 112

Lista de comprobación de proyecto

- Usar checklist de ML adaptado al contexto.
- Documentar supuestos, métricas y decisiones.
- Separar datos crudos, intermedios y limpios.

Marco Teran 2025 Análisis exploratorio de los datos 64 / 112

Enmarcar el problema

- ¿Cómo generará valor el modelo?
- Integración aguas abajo define tolerancias.
- Métrica empresarial condiciona la técnica.

Pitfall

Optimizar RMSE sin impacto en el ROI definido.

Pipelines

Pipelines

Una secuencia de datos que procesan componentes se llama pipeline de datos. Las pipelines son muy comunes en los sistema de machine learning, puesto que hay muchos datos que manipular y muchas transformaciones de datos que aplicar.

- Componentes asíncronos con almacenamiento compartido.
- Equipos independientes, acoplamiento débil y resiliencia.
- Monitoreo evita stale data y degradación.

Buenas prácticas

Encapsular, versionar, ser deterministas y trazables.

Marco Teran 2025 Análisis exploratorio de los datos 67 / 112

Conceptos fundamentales de EDA

¿Qué es EDA?

- Exploratory Data Analysis: metodología para descubrir estructura.
- Combina estadísticas descriptivas y visualización.
- Objetivos: patrones, anomalías, hipótesis, suposiciones.
- Pasos: coleccionar/concatenar, explorar, procesar, reportar.
- Más un arte que una ciencia.

Marco Teran 2025 Análisis exploratorio de los datos 71/112

Localización y dispersión robustas

- Media y varianza: sensibles a outliers.
- Mediana e IQR/MAD: opciones robustas por defecto.

$$IQR = Q_3 - Q_1$$
, Outlier : $x \notin [Q_1 - 1.5 IQR, Q_3 + 1.5 IQR]$

Reporte siempre media±DE y mediana/IQR.

72 / 112

Forma y dependencia

- Asimetría y curtosis: forma de la distribución.
- Pearson/Spearman: lineal y monótona, respectivamente.
- Información mutua: dependencias no lineales.

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Estadística descriptiva: visión general

- Generales: df.head(), df.shape, df.info()
- Univariada numérica: media, varianza, histograma (df.describe())
- Univariada categórica: moda, frecuencias, % únicos.
- Variable objetivo: distribución de clases.

Marco Teran 2025 Análisis exploratorio de los datos $74\ / \ 112$

Código: numéricas y categóricas

```
# Caracteristica numérica
import matplotlib.pyplot as plt
df[num_feature].plot.hist(bins=7)
plt.show()

# Caracteristica categórica
import matplotlib.pyplot as plt

df[cat_feature].value_counts().plot.bar()
plt.show()
```

Estadística de la variable objetivo

- df[target].value_counts() para distribución de clases.
- np.bincount(y) alternativa para y numérico.
- Verificar desbalance y rareza de clases.

Marco Teran 2025 Análisis exploratorio de los datos 76/112

Dependencias y correlaciones

- Dispersión: df.plot.scatter('f1','f2').
- Matriz de correlación: df [cols].corr().
- \blacksquare Rango: [-1,1]; 0 indica linealmente independiente.
- Multicolinealidad afecta regresiones (inversas de matrices).
- Arboles son menos sensibles a colinealidad
- Correlación alta con el objetivo ayuda a lineales.

Análisis exploratorio de los datos Marco Teran

Visualización efectiva

- Aproveche canales preatentivos: forma, tamaño, posición.
- Facetar por grupos; evite *chartjunk*.
- Seleccione escalas lineales o log según rango.

Gramática de gráficos

Datos, estéticas, geometrías, facetas, estadísticas y temas.

Marco Teran 2025 Análisis exploratorio de los datos 78 / 112

Bases de datos desbalanceadas

Desbalance: definición y ejemplos

- Distribución de clases no equitativa.
- Riesgo: ignorar la clase rara.
- Casos: fraude, anomalías, diagnóstico médico.
- Ej.: Amazon reviews: 5 estrellas domina.

Marco Teran 2025 Análisis exploratorio de los datos 81/112

Cómo manejar el desbalance

- Ajustes **sólo** en *train*; dev/test conservan distribución.
- Submuestreo de la clase mayoritaria.
- Remuestreo de clases minoritarias.
- Generación sintética (p.ej., SMOTE/ADASYN).
- Ponderar la pérdida: pesos por clase/muestra.
- Recurso: imbalanced-learn.

Marco Teran 2025 Análisis exploratorio de los datos 82 / 112

Ingeniería de características

Ingeniería de características: principios

- Usa conocimiento del dominio para nuevas variables.
- Intuición: ¿Qué usaría un humano para predecir?
- Selección: filtrar irrelevantes y redundantes.
- Construcción: productos, polinomios, logaritmos, kernels.
- Codificación: representar categóricas numéricamente.

Marco Teran 2025 Análisis exploratorio de los datos 85 / 112

Imputación y escalado

Estrategias de imputación

- Descartar filas/columnas (cuidado con pérdida de señal).
- Imputar numéricas: media/mediana; categóricas: moda.
- Placeholder: valor constante reservado.
- **Avanzado**: imputación con ML (p.ej., Datawig).
- Código: df['col'].fillna(df['col'].mean()),
 df['col'].fillna(df['col'].mode()).

SimpleImputer en sklearn

- SimpleImputer(missing values=np.nan, strategy='mean', fill value=None).
- Numéricas: strategy='mean' o 'median'.
- Numéricas/Categóricas: 'most frequent' o 'constant'.
- Métodos: .fit() aprende; .transform() aplica; .fit transform().

Análisis exploratorio de los datos 88 / 112

Estandarización de características

- Motivación: kNN, redes, distancias dependen de escala.
- **StandardScaler**: media 0 y DE 1 por columna.
- MinMaxScaler: mapea a [0,1] por columna.
- Siempre *fit* en *train*; *transform* en dev/test.
- Standard vs. MinMax vs. Robust.
- Box–Cox y log para positividad y colas.
- Quantile para normalización marginal.

Codificación (encoding)

- **Ordinal**: categorías con orden (ej.: talla S<M<L).
- **Nominal**: sin orden (ej.: color {green, red, blue}).
- Cuidado: enteros ordinales pueden inducir órdenes ficticios.

Marco Teran Análisis exploratorio de los datos 90 / 112

Codificación categórica

- One—hot: ortogonalidad y simplicidad.
- Eliminar categoría de referencia en modelos lineales.
- Target encoding con *shrinkage* para alta cardinalidad.

$$\hat{y}_c = \frac{n_c \bar{y}_c + \lambda \bar{y}}{n_c + \lambda}$$

LabelEncoder y OrdinalEncoder

- LabelEncoder: codifica una sola columna o el objetivo.
- OrdinalEncoder: codifica múltiples columnas categóricas.

Marco Teran 2025 Análisis exploratorio de los datos 92 / 112

Código: OrdinalEncoder

```
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
y_enc = le.fit_transform(df["classlabel"])

# Inversa:
y_inv = le.inverse_transform(y_enc)

# Mapeo etiqueta->id:
classes = {lab:i for i, lab in enumerate(le.classes_)}
```

Código: OrdinalEncoder

One-Hot Encoding

- Evita orden artificial de enteros ordinales.
- Expande en variables binarias por categoría.
- OneHotEncoder (handle_unknown='ignore').
- Pandas: get_dummies.
- Para una sola variable, LabelBinarizer.

Demasiadas categorías

- Jerarquías: región \rightarrow estado \rightarrow ciudad.
- Elegir nivel apropiado de agregación.
- Agrupar en *bins* (ej.: grupos de edades).

Codificación usando la variable objetivo

- Reemplazar categorías por la media del objetivo (con *shrinkage*).
- Úsese con CV para evitar *leakage*.

Marco Teran 2025 Análisis exploratorio de los datos 97/112

Interacciones y no linealidades

- Polinomios e interacciones controladas.
- Fourier para estacionalidad y periodicidad.
- Autoencoders para representación compacta.

Evitar data leakage

- Target leakage: rasgos derivados de Y.
- Contaminación: estadísticas de test en preprocesado.
- **Temporal**: usar información futura sin intención.

Regla de oro

Calcular estadísticas dentro de cada partición de CV.

Marco Teran Análisis exploratorio de los datos 99 / 112

Pipelines y sklearn

Pipeline en sklearn

- Secuencia de transformaciones que termina en estimador.
- Implementa .fit() y .predict().
- Reduce leakage: las estadísticas se aprenden sólo en train.

Marco Teran 2025 Análisis exploratorio de los datos $102 \, / \, 112$

Ejemplo de Pipeline en Python

```
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
knn pipe = Pipeline([
                    ("imputer", SimpleImputer(strategy="median")),
                    ("scaler", MinMaxScaler()),
                    ("clf", KNeighborsClassifier(n neighbors=5)),
            1)
knn pipe.fit(X train, y train)
y pred = knn pipe.predict(X test)
```

Atajo con make_pipeline

Transformers comunes

- SimpleImputer, StandardScaler, MinMaxScaler.
- LabelEncoder, OrdinalEncoder, OneHotEncoder.
- CountVectorizer para texto.
- Todos: .fit(), .transform(), .fit_transform().

Marco Teran 2025 Análisis exploratorio de los datos 105 / 112

ColumnTransformer en sklearn

- Aplica transformaciones por subconjunto de columnas.
- Concatena salidas en una sola matriz de rasgos.
- Métodos: .fit() y .transform().

Marco Teran 2025 Análisis exploratorio de los datos 106 / 112

ColumnTransformer + Pipeline (ejemplo)

```
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsClassifier
num cols, cat cols = ["feature1", "feature3"], ["feature0", "feature2"]
num_proc = Pipeline([("imp", SimpleImputer(strategy="median")),
                                    ("scaler", MinMaxScaler())])
                                    cat proc = Pipeline([("imp". SimpleImputer(strategy="constant".
                                                                        fill value="missing")),
                                    ("ohe", OneHotEncoder(handle unknown="ignore",
                                                                             sparse output=False))])
pre = ColumnTransformer([("num", num_proc, num_cols),
                                            ("cat", cat proc. cat cols)])
model = Pipeline([("prep", pre),
                            ("clf", KNeighborsClassifier(n neighbors=5))])
model.fit(X train, y train)
v hat = model.predict(X test)
```

Síntesis y referencias

Lo esencial para llevar

- EDA riguroso antes de cualquier modelado.
- Rasgos bien diseñados superan modelos exóticos.
- Validación honesta gana a métricas infladas.
- *Pipelines* versionados y monitoreados.
- Iterar con propósito: negocio primero, siempre.

Referencias y lecturas recomendadas I

- Tukey, Exploratory Data Analysis (1977).
- Cleveland, Visualizing Data (1993).
- Wilkinson, *The Grammar of Graphics* (2005).
- Cover & Thomas, *Elements of Information Theory* (2006).
- Hastie, Tibshirani, Friedman, ESL (2009).
- Kuhn & Johnson, Feature Engineering and Selection (2019).
- scikit-learn, *Preprocessing Module* (docs).
- imbalanced-learn (lib).
- Datawig (imputación con NN).

Marco Teran 2025 Análisis exploratorio de los datos 111 / 112

¡Muchas gracias por su atención!

¿Preguntas?

Contacto: Marco Teran
webpage: marcoteran.github.io/
e-mail: mtteranl@eafit.edu.co