TD: Bases de probabilités (suite)

Exercice 1 Inégalité de Markov

Soit X une variable aléatoire positive, telle que $\mathbb{E}[X] < +\infty$ et a > 0. On note $Y_1 = X \mathbb{1}_{X>a}$ et $Y_2 = X \mathbb{1}_{X<a}$.

- 1. Exprimer X en fonction de Y_1 et Y_2 .
- 2. Montrer que $\mathbb{E}[X] \ge a\mathbb{P}(X > a)$.

Exercice 2 Inégalité Bienaymé-Tchébychev

Soit X une variable aléatoire de variance finie, et a>0. Montrer, en utilisant l'inégalité précédente, que

$$\mathbb{P}\Big(|X - \mathbb{E}[X]| > a\Big) \le \frac{\operatorname{Var}(X)}{a^2}.$$

Exercice 3 Loi faible des grands nombres

Soit $(X_i)_{i\in\mathbb{N}}$ une suite de variables aléatoire i.i.d, d'espérance m et de variance σ^2 . Montrer, en utilisant l'inégalité précédente, la loi faible des grands nombres :

$$\bar{X}_n \xrightarrow{\mathbb{P}} m.$$

Exercice 4 Décomposition biais/variance

Soit $\theta \in \mathbb{R}$ et $(X_i)_{i \in \mathbb{N}}$ une suite de v.a. i.i.d. de densité f_{θ} , et \hat{T}_n un estimateur de θ . Montrer que

$$\mathbb{E}[(\hat{T}_n - \theta)^2] = \operatorname{Var}(\hat{T}_n) + b_n^2,$$

où b_n désigne le biais de l'estimateur \hat{T}_n .

En déduire qu'un estimateur asymptotiquement sans biais qui vérifie $Var(\hat{T}_n) \to 0$ est consistant.

Exercice 5 Fonction de répartition

Soient U_1, U_2 deux variables aléatoires indépendantes uniformes sur [0,1]. Donner les fonctions de répartition des variables aléatoires suivantes :

- 1. $\min(U_1, U_2)$
- 2. U_1^2

Exercice 6 Lois normales

Soit $X_1 \sim \mathcal{N}(7,4)$ et $X_2 \sim \mathcal{N}(1,4)$ indépendantes.

- 1. Quelle est la loi de $X_1 + X_2$?
- 2. Quelle est la loi de $\frac{X_1-2X_2}{5}$?
- 3. Centrer et réduire X_2 .

Exercice 7 Indépendance et corrélation

On rappelle que la covariance entre deux variables aléatoires peut être calculée

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

On définit sur l'ensemble $\Omega = \{1, 2, 3, 4\}.$

• Une probabilité \mathbb{P} définie par

$$\mathbb{P}(\{1\}) = \mathbb{P}(\{2\}) = \mathbb{P}(\{3\}) = \mathbb{P}(\{4\}) = \frac{1}{4}.$$

• Une variable aléatoire X_1 définie par

$$X_1(1) = X_1(2) = -1; X_1(3) = X_1(4) = 1.$$

• Une variable aléatoire X_2 définie par

$$X_2(1) = -2; X_2(2) = 2; X_2(3) = -1; X_2(4) = 1.$$

- **1.** Calculer $\mathbb{P}(\{1,2,3\})$.
- **2.** Quelle est la loi de $Z = \frac{X_1+1}{2}$? **3.** Calculer $\mathbb{P}(X_1 = -1)$, $\mathbb{P}(X_2 = 2)$, $\mathbb{P}(|X_2| = 2)$, $\mathbb{P}(X_1 = -1 \text{ et } |X_2| = 2)$. **4.** X_1 et X_2 sont-elles indépendantes ? Pourquoi ?
- **5.** Calculer $\mathbb{E}[X_1]$, $\mathbb{E}[X_2]$, et $Cov(X_1, X_2)$.

Exercice 8 Estimateur de la variance

Soit $(X_i)_{i\in\mathbb{N}}$ une suite de v.a. i.i.d. d'espérance m et de variance σ^2 . On définit la variance empirique par

$$\hat{T}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

- 1. Montrer que \hat{T}_n^2 est un estimateur biaisé de la variance σ^2 . Est-il asymptotiquement sans biais ?
- 2. Trouver a tel que $\hat{S}_n^2 = a\hat{T}_n^2$ soit un estimateur sans biais de la variance.