

SÍLABO TECNOLOGÍA DE INFORMACIÓN I

ÁREA CURRICULAR: TECNOLOGÍAS DE INFORMACIÓN

CICLO: III SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 09111503050

II. CRÉDITOS : 05

III. REQUISITOS : 09111402050 Introducción a la Programación

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de formación básica, dirigido a que el alumno adquiera los conocimientos para que pueda explicar, definir y establecer el funcionamiento de los dispositivos electrónicos y computadoras desde el punto de vista del microcontrolador y su interacción con el entorno.

Unidades: Arquitectura de computadoras - Software Básico de Entrada Salida - Comunicación alámbrica - Comunicación inalámbrica - Desarrollo de un proyecto final aplicando los conocimientos adquiridos en el curso

VI. FUENTES DE CONSULTA

Bibliográficas

- Tanenbaum, A. (2003). Redes de Computadoras. Cuarta edición. Ámsterdam. Editorial Prentice Hall.
- · Catherin López Sanjurjo. (2004). *Tecnologías de Información. Conceptos básicos.* Primera edición. España. Editorial Ideaspropias.
- Preston Gralla. (2006). How the Internet Works. Octava edición. Estados Unidos de Norte América. Editorial QUE.

Electrónicas

Pomares Baeza. (2009). Control por computador. Primera edición. Manual de Arduino.
 Recuperado de: http://rua.ua.es/dspace/bitstream/10045/11833/1/arduino.pdf

VII. UNIDADES DE APRENDIZAJE

UNIDAD I. ESTRUCTURA BÁSICA DE UN MICROCONTROLADOR

OBJETIVOS DE APRENDIZAJE:

- Enumerar y definir las partes que constituyen la arquitectura de un microcontrolador.
- Establecer diferencias entre un microprocesador y un microcontrolador.
- Explicar el manejo y la interacción del microcontrolador con su entorno.

PRIMERA SEMANA

Primera sesión

Definición de Tecnología de Información.

Impacto de las TI en la sociedad. Dominios de Aplicación.

Segunda sesión

Introducción a Microcontroladores y Hardware Open Source.

Laboratorio

Introducción al laboratorio, reglas y evaluación. Componentes y software a utilizar durante las experiencias de laboratorio.

SEGUNDA SEMANA

Primera sesión

Conversión entre Sistema binario, decimal y hexadecimal. Manejo de bits y Bytes. Manejo de prefijos.

Segunda sesión

Señales Analógicas y Digitales

Laboratorio

Introducción al microcontrolador, uso de software IDE (Entorno de Desarrollo Integrado) para simulación del microcontrolador y demostración de manejo de puertos de comunicación.

TERCERA SEMANA

Primera sesión

Componentes de un Microcontrolador

Componentes de un microprocesador (ALU, Unidad de Control, Cache, registros).

Segunda sesión

Manejo de Memoria y E/S en el microcontrolador.

Laboratorio

Manejo de puertos de entrada/salida del microcontrolador, estructuras if else, switch case.

CUARTA SEMANA

Primera sesión

Diferencias entre un Microcontrolador y una computadora

Segunda sesión

Conceptos básicos de circuitos electrónicos

Laboratorio

Implementación de circuitos en placa de prototipos (protoboard), simulación de circuitos y carga de programas al microcontrolador.

UNIDAD II. SOFTWARE BASICO DE ENTRADA Y SALIDA

OBJETIVOS DE APRENDIZAJE:

- Explicar los principales elementos que componen un software básico de entrada y salida y su importancia dentro de las tecnologías de información.
- Describir los procesos involucrados en un Software básico de entrada y salida.

QUINTA SEMANA

Primera sesión

Manejo de Rutinas y Tiempos en los Microcontroladores.

Segunda sesión

Proceso de Arranque de un Microcontrolador.

Laboratorio

Simulación e implementación de interrupciones por hardware, manipulación de display de 7 segmentos para mostrar números de cuentas decimales

SEXTA SEMANA

Primera sesión

El Compilador.

Segunda sesión

Bootloader.

Laboratorio

Práctica calificada 1 de laboratorio: Evaluación de la programación del microcontrolador para la el manejo de dispositivos de entrada/salida de datos y utilización del simulador.

SÉPTIMA SEMANA

Primera sesión

Proceso de Arranque en una Computadora.

Segunda sesión

Demostraciones del funcionamiento interno del ARDUINO

Laboratorio

Manejo de una pantalla de cristal líquido (LCD), implementación y uso de librería LiquidCristal.h

OCTAVA SEMANA

Examen Parcial (EP)

UNIDAD III. COMUNICACIONES ALÁMBRICAS

OBJETIVOS DE APRENDIZAJE:

- Inferir la importancia de las redes de comunicaciones en el proceso de compartir la información.
- Reconocer y explicar las topologías y protocolos en las redes de computadoras.

NOVENA SEMANA

Primera sesión

Introducción a Comunicaciones Alámbricas

Segunda sesión

Introducción a estándares protocolos de comunicación

Laboratorio

Manejo de una pantalla de cristal líquido (LCD), creación de caracteres. Uso de createChar() y lcd.write().

DÉCIMA SEMANA

Primera sesión

Manejo de señales analógicas y digitales para trasmisión y recepción de datos

Segunda sesión

Protocolos y Estándares de Comunicación

Laboratorio

El convertidor análogo-digital ADC y uso del sensor de temperatura LM35.

UNDÉCIMA SEMANA

Primera sesión

Arquitectura Maestro Esclavo

Segunda sesión

Comunicación Serial y Paralelo

Laboratorio

Manipulación del módulo de comunicación Bluetooth para la transmisión y recepción de datos entre Smartphone y módulo del microcontrolador y uso de buzzer.

DUODÉCIMA SEMANA

Primera sesión

Internet.

Segunda sesión

Aplicaciones modernas de Internet

Laboratorio

Práctica calificada de laboratorio 2. Evaluación sobre el uso de módulos de comunicación y programación del microcontrolador.

UNIDAD IV. COMUNICACIÓN INALÁMBRICA

OBJETIVOS DE APRENDIZAJE:

- Diferenciar entre las redes de comunicación alámbrica e inalámbrica.
- Interpretar el impacto de internet en la sociedad actual.

DECIMOTERCERA SEMANA

Primera sesión

Comunicaciones Alámbricas vs Inalámbricas.

Ventajas y desventajas de Comunicación Inalámbrica (medios de comunicación, espectro electromagnético, ancho de banda, alcance.

Segunda sesión

Tecnología de Comunicación Inalámbrica (WiFi, Bluetooth).

Laboratorio

Asignación de proyectos finales. Los alumnos (en grupos de 2 o 3) deberán presentar un proyecto final basado en lo aprendido en el curso y deberán presentar un afiche.

DECIMOCUARTA SEMANA

Primera sesión

Tecnología de Comunicación Inalámbrica (RF, Infrarrojo, GPS).

Segunda sesión

Seguridad en Comunicación entre dispositivos.

Laboratorio:

Asesoría de proyectos finales y revisión de avance de proyectos.

DECIMOQUINTA SEMANA

Primera sesión

Comunicación entre múltiples dispositivos.

Segunda sesión

Internet de las Cosas

Laboratorio:

Presentación del Proyecto final del curso.

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

- **Equipos**: Computadora, ecran y proyector multimedia.
- Materiales: Material docente, prácticas dirigidas de laboratorio y componentes electrónicos.
- Software
 - Software Arduino IDE. Recuperado de http://arduino.cc/es/main/software
 - Proteus V7.0. Software de simulación del microcontrolador

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene con la fórmula siguiente:

PF = (2*PE+EP+EF)/4

Donde:

PF = Promedio Final.

PE = Promedio de Evaluaciones.

EP = Examen Parcial (escrito)

EF = Examen Final (escrito)

PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL) /3

PL = (Lb1+Lb2+Lb3+Lb4)/4

Donde:

P1...P4 = Práctica calificada

MN = Menor nota **W1** = Trabajo 1

PL = Promedio de laboratorio

Donde:

Lb1...Lb4 = Práctica de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.				
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.				
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.				
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.				
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.				
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.				
g.	. Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.				
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.				
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.				
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.				

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		4	0	2

b) Sesiones por semana: Tres sesiones.

c) **Duración**: 6 horas académicas de 45 minutos

XIV. DOCENTES DEL CURSO

Ing. Javier Cieza Dávila Ing. Eiriku Yamao

XV. FECHA

La Molina, marzo de 2018.