МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

УΤΙ	ВЕРЖДАК	0
3aı	м. директо	ра по УР ЮТИ ТПУ
		В.Л. Бибик
<u> </u>	>>	2013 г.

ВОЗДУШНО-КОМПРЕССОРНАЯ ШАХТНАЯ ПЕРЕДВИЖНАЯ СТАНЦИЯ ЗИФ-ШВ-5

Методические указания к выполнению лабораторных работ по дисциплине «Стационарные машины» для студентов V курса, обучающихся по специальности 150402 «Горные машины и оборудование»

Составители: В.Ю. Тимофеев, А.А. Дронов

Издательство Юргинского технологического института (филиала) Томского политехнического университета 2013 УДК 622.6 ББК 33.16 С78

С78 Воздушно-компрессорная шахтная передвижная станция ЗИФ-ШВ-5: методические указания к выполнению лабораторных работ по дисциплине «Стационарные машины» для студентов V курса, обучающихся по специальности 150402 «Горные машины и оборудование» / сост.: В.Ю. Тимофеев, А.А. Дронов; Юргинский технологический институт (филиал) Томского политехнического университета. – Юрга: Изд-во Юргинского технологического института (филиала) Томского политехнического университета, 2013. – 31 с.

> УДК 622.6 ББК 33.16

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры горно-шахтного оборудования ЮТИ ТПУ « » 2013 г.

Зав. кафедрой ГШО	
кандидат тех. наук	А.А. Казанцев
Председатель	
учебно-методической комиссии	А.А. Дортман

Рецензент

Кандидат технических наук доцент кафедры ГШО ЮТИ ТПУ В.Ю. Бегляков

[©] Составление. ФГБОУ ВПО НИ ТПУ Юргинский технологический институт (филиал), 2013

[©] Тимофеев В.Ю., Дронов А.А., составление, 2013

Содержание

Воздушно-компрессорная шахтная передвижная станция ЗИФ-ШВ-5	4
Технические данные и общие требования по применению и хранению	5
Горнотехнические условия применения станции	7
Указания мер безопасности	7
Техническое описание	9
Инструкция по эксплуатации	26
Список литературы	30

ВОЗДУШНО-КОМПРЕССОРНАЯ ШАХТНАЯ ПЕРЕДВИЖНАЯ СТАНЦИЯ ЗИФ-ШВ-5

Воздушно-компрессорная шахтная передвижная станция ЗИФ-ШВ-5 с винтовым маслозаполненным компрессором предназначена для снабжения сжатым воздухом пневматических инструментов и приводов механизмов.

Использование станции для других целей должно быть согласовано с заводом-изготовителем.

Техническое описание и инструкция по эксплуатации содержат описание устройства и принцип действия, технические характеристики, а также необходимые сведения для правильной эксплуатации станции и текущего ремонта.

Для обеспечения безопасной эксплуатации станции необходимо дополнительно руководствоваться:

- «Правилами безопасности в угольных и сланцевых шахтах»;
- «Правилами устройства электроустановок»;
- «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением»;
- инструкцией по монтажу и эксплуатации «Взрывозащищенные асинхронные двигатели ВАО 7,5-55 кВт»;
- инструкцией по монтажу и эксплуатации «Магнитные взрывобезопасные пускатели серии ПМВИ-03»;
- инструкцией по эксплуатации «Кнопочные посты управления КУ-90-

PB»;

- паспортом «Датчик-реле температуры термобиметаллический типа ДТР-3M-УТ».

В связи с постоянным усовершенствованием станций, направленным на повышение надежности и улучшение эксплуатационных характеристик, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

ТЕХНИЧЕСКИЕ ДАННЫЕ И ОБЩИЕ ТРЕБОВАНИЯ ПО ПРИМЕНЕНИЮ И ХРАНЕНИЮ

Технические данные

Подача при номинальной частоте вращения и норм	иальных услови-
ях всасывания, м ³ /мин	
Рабочее давление, МПа	
Минимальное рабочее давление, МПа	
ПриводЭл	
	сполнении «РВ2
Габариты станции, мм:	
длина	
ширина	1050
высота	1400
база	1200
Колея	600; 900
Масса станции (сухой), кг	1200
Тяговое усилие, кгс	40-60
Тип тяговой машины,	
Скорость транспортировки, км/ч, не более	5
Число подсоединяемых шлангов	
Регулирование подачи компрессора	
Давление открытия предохранительного	
клапана, МПа (кгс/см)	0,647 (6,6).
Уровень шума (общий) на расстоянии 1 м, дБ	
Тепловая защита: автоматическая, отключением	
электродвигателя при повышении температур:	
в обмотках статора свыше 165+10°С и в	
попости всасывания и патрубке	
нагнетательной трубы свыше	$110 + 10^{\circ}C$
(латчика	ми ДТР-ЗМ-УТ)
в нагнетательной трубе термовыключателем свыше	
z minoruz viznon apy o a apanozzinano iurivira vzzizo	
Компрессор	
Тип	
Число ступеней сжатия	1
Диаметр винтов, мм	125
Число винтов	щий и ведомый)

Рабочая длина винта, мм	190
Число зубьев на винтах:	
на ведущем	4
на ведомом	
Частота вращения винтов, об/мин.:	
ведущего	5761
ведомого	
Мощность на валу компрессора при	нормальной частоте
вращения двигателя и давлении наг	•
(6 кгс/см ²), кВт	$33,5 \pm 1,675$
Передаточное отношение редуктора	
Масляный насос	
Смазка	
	и разбрызгиванием
Емкость маслосистемы, л	
Расход масла при нормальных услог	
всасывания, кг/ч, не более	
Воздушный фильтр	
	с масляной ванной
Масса, кг	180
Габариты, мм:	
длина	765
ширина	610
высота (с фильтром)	
Электрооборудование	
Двигатель: типВ АО	81-4 асинхронный трехфазный
<u></u>	Электродвигатель с коротко-
	замкну-тым ротором, взрыво-
	защищенный, исполнения
	«РВ». МІОІ; со встроенными
	датчиками тепловой защиты
	ДТР-3М-УТ
Номинальная мощность на валу, кВ	
Синхронная частота вращения вала,	
Напряжение, В	
Пускатель	
,	(магнитный взрывобезопасный)
Пост управленияКУ-92-	
11001 Jupublionini(J=)2	взрывобезопасный)
	bopbiboocoonaciibin)

Ходовая часть

Рама	сварная из швеллеров
	дисковые, литые, чугунные
Сцепка	висячая для шахтного транспорта

ГОРНОТЕХНИЧЕСКИЕ УСЛОВИЯ ПРИМЕНЕНИЯ СТАНЦИИ

Воздушно-компрессорная шахтная передвижная станция ЗИФ-ШВ-5 предназначена для применения в подземных выработках шахт, стволах и надшахтных зданиях, в которых «Правилами безопасности в угольных и сланцевых шахтах» допущено применение электрооборудования в исполнении «РВ», а также при соблюдении требований ПБ и других требований ПБ, относящихся к электрооборудованию и кабелям

В дополнение к ПБ. указанные станции должны располагаться в выработках со свежей струей воздуха не ближе 150 м от забоя тупиковой выработки и не ближе 50 м от очистного забоя, а на месте их установки должен осуществляться автоматический контроль концентрации метана (на пластах опасных и угрожаемых по внезапным выбросам угля и газа).

Станция допускается к эксплуатации при температуре окружающего воздуха от минус 35° C до $+40^{\circ}$ C и атмосферном давлении не ниже $0.0866 \text{ M}\Pi \text{a}$ (650 мм рт. ст.).

На установку в шахте компрессорной станции разрабатывается «Проект установки компрессорной станции», который содержит в себе характеристику места установки, меры обшей и пожарной безопасности и утверждается главным инженером шахты. После согласования с командиром подразделения ВГСЧ проект вывешивается в месте установки станции.

УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

При подготовке и проведении работ со станцией должны быть соблюдены требования, установленные «Правилами безопасности в угольных и сланцевых шахтах» и другими нормативными документами.

Эксплуатация и техническое освидетельствование (внутренний осмотр и гидравлическое испытание) воздухосборника должны проводиться в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением».

Компрессорная станция должна располагаться на горизонтальной площадке (с уклоном не более 5°) на свежей струе воздуха в местах с несгораемой крепью, протяженность которой должна быть не менее 10 м по обе стороны компрессорной станции. Минимальное расстояние от забоя выработки до компрессорной станции должно быть таким, чтобы исключилась возможность повреждения ее при ведении взрывных работ. Расстояние до места погрузки угля и других пожароопасных мест должно быть не менее 30 м.

Запрещается.

- работа станции при содержании метана более 0,5%.
- 1. Перед каждым пуском станции необходимо проверить выполнение пунктов таблички *«Внимание»*, закрепленной на боковой стойке масляного холодильника.
- 2. При применении станции в шахтах, опасных по газу или пыли и внезапных выбросах угля и газа, машинист должен снабжаться приборами для проверки наличия метана.
- 3. При эксплуатации компрессорной станции в шахтах, опасных по пыли» необходимо производить регулярное осланцевание выработки в месте установки станции.
- 4. Масляные скопления, получающиеся в результате небрежной заливки, должны немедленно засыпаться песком или инертной пылью и удаляться.

Категорически запрещается собирать отходы масла в поддоны, а также запрещается наличие масляной ветоши и других горючих материалов у места установки станции.

- 5. При установке и эксплуатации станции необходимо выполнять следующие требования:
 - скаты станции должны быть заторможены;
- с обеих сторон станции должны располагаться ящики с песком емкостью не менее $0,4\,\mathrm{m}^3$ и по 5 порошковых огнетушителей.

Телефонный аппарат должен располагаться в месте, позволяющем вести разговор при работающем компрессоре;

- состояние узлов и систем станции должны быть технически исправными (в соответствии с разделом 3.1).
- 6. Эксплуатация компрессорной станции без включенных в цепь управления электродвигателя датчиков-реле ДТР-ЗМ-УТ не допускает-
- 7. Все работы с электрооборудованием станции должны производиться только при отключенном магнитном пускателе компрессорной станции, при этом рукоятка пускателя должна быть заблокирована.

- 8. Запуск станции и проверка уровня масла при наличии давления воздуха в воздухосборнике запрещается.
 - 9. Эксплуатация компрессорной станции запрещается при:
 - наличии течи и подтекания масла;
 - использовании нештатных или неисправных ремней;
 - уровне масла в воздухосборнике ниже нижней риски масломера;
 - запахе гари масла, шерсти;
 - отсутствии знака "РВ" на электрооборудовании.
 - 10. Немедленно остановить станцию при:
 - появлении стука или постороннего шума в компрессоре;
 - непрерывной работе предохранительного клапана;
- неисправности системы регулирования производительности, манометров и термометра.
- 11. Обслуживающий персонал обязан регулярно производить техническое обслуживание станции в соответствии с графиком плановопредупредительного ремонта.
- О проведенных осмотрах и работах необходимо делать отметки в специальном журнале.
- 12. Сведения о замене составных частей станции за время эксплуатации и случаях срабатывания тепловой зашиты заносятся в формуляр.

При срабатывании тепловой защиты в формуляре отмечается:

- продолжительность работы компрессорной станции с начала эксплуатации и до аварийной остановки;
- причины, вызвавшие срабатывание тепловой защиты и принятые меры по их устранению.

В случае нарушения пломбировки тепловой зашиты, она должна быть восстановлена с записью в формуляре. Пломбирование должно производиться лицом, ответственным за эксплуатацию станции.

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Устройство и работа станции и составных частей

Компрессорная станция (рис. 1) состоит из следующих основных узлов: компрессора, воздухосборника, масляного холодильника, масляного фильтра, системы регулирования подачи, электродвигателя, системы тепловой защиты, приборного щита, ходовой части, электрооборудования (магнитного пускателя и кнопочного поста управления) и запасных частей, уложенных в инструментальную сумку.

Рис. 1. Общий вид станции

Все узлы, кроме магнитного пускателя, смонтированы на раме ходовой части.

Компрессор

Винтовой одноступенчатый компрессор предназначен для выработки сжатого воздуха.

Компрессор (рис. 2 и 3) состоит из корпуса 26, полумуфты 5, приводного вала 1. двух шестерен редуктора 8, двух винтов 22 и 24, опоры 29, крышки 31. крышки корпуса 2, шестеренного масляного насоса 33, дроссельного клапана 7, вентилятора 16 и воздушного фильтра 10.

Рис. 2. Продольный разрез компрессора

Рис. 3. Поперечный и горизонтальный разрез компрессора

Масляный насос - двухсекционный, шестеренный. Основная секция нагнетает масло в компрессор для охлаждения сжимаемого воздуха, смазки винтов, шестерен, подшипников и уплотнения зазоров. Дополнительная секция отсасывает скапливающееся масло из маслоотделителя и подает его в воздухосборник.

Для обеспечения герметичности между основанием, корпусом, плитой, обоймой и крышкой поставлены прокладки на клей БФ-4.

Дроссельный клапан (рис. 4).

Через него проходит весь воздух, поступающий в компрессор. При помощи клапана осуществляется регулирование подачи.

Вентилятор 16 (см. рис. 2) во время работы компрессора создаст воздушный поток, охлаждающий наружные поверхности трубок холодильника, по которым протекает масло.

Вентилятор — шестилопастный, закреплен на ведомом шкиве 14, который свободно вращается на двух роликовых подшипниках, которые насажены на ось, неподвижно укрепленную в кронштейне. Вентилятор приводится во вращение от ведущего винта. Кронштейн вентилятора крепится на крышке опоры.

Рис. 4. Клапан дроссельный

Воздушный фильтр (рис. 5) служит для очистки воздуха, поступающего в компрессор.

Рис. 5. Фильтр воздушный

Фильтр установлен на корпусе дроссельного клапана и состоит из корпуса 3, фильтрующего элемента с крышкой 2, шпильки с барашком 1 и патрубка 4 с фланцем. В корпусе налито масло для собирания пыли. Наружный воздух засасывается в воздухоочиститель и по кольцевой полости опускается вниз. Дойдя до поверхности масла, воздух изменяет направление на 180° и поднимается в кольцевой фильтрующий элемент. При этом тяжелые частицы пыли оседают в масле. Воздух при движении увлекает за собой вверх по направляющему кольцу, а затем по фильтрующему элементу и маслом смачивает последний. В фильтрующем элементе оседают более легкие частицы пыли, оставшиеся в воздухе. Очищенный воздух через патрубок направляется в компрессор.

Принцип работы компрессора (см. рис. 2 и 3).

Винтовой компрессор является машиной объемного сжатия.

Привод ведущего винта осуществляется через полумуфту, приводной вал и редуктор. Ведомый и ведущий винты находятся в непосредственном зацеплении своими профилями. При вращении винтов происходит всасывание воздуха через воздушный фильтр, и дроссельный

клапан. Воздух заполняет полости обоих винтов, которые в это время сообщены с окном всасывания. При дальнейшем вращении винтов заполненные полости отсекаются от окна всасывания и подвергаются постепенному сжатию зубьями, входящими в эти полости. Сжатие происходит до тех пор, пока объем парной полости не соединится с окном нагнетания. Одновременно в рабочую полость ведомого винта подается под давлением масло, которое, смешиваясь со сжимаемым воздухом, охлаждает его, смазывает винты и уплотняет зазоры. Таким образом, сжимается не чистый воздух, а смесь воздуха с маслом.

Процессы всасывания, сжатия и выталкивания смеси чередуются для каждой отдельно взятой полости, но благодаря большой частоте следования полостей друг за другом практически происходит непрерывная подача смеси. Через окно нагнетания и нагнетательную трубу смесь поступает в воздухосборник.

Воздухосборник

Верхняя часть воздухосборника представляет собой емкость для сжатого воздуха, а нижняя его часть является резервуаром для масла. Одновременно воздухосборник служит для отделения масла от воздуха.

При входе в воздухосборник из нагнетательной трубы скорость струи смеси воздуха с маслом резко уменьшается. Благодаря этому основная часть масла выделяется из воздуха и оседает в нижней части воздухосборника. Окончательная очистка воздуха от масла происходит в маслоотделителе. Воздухосборник (рис. 6) включает в себя корпус 1, маслоотделитель 6, крышку 3, раздаточную трубу 7, предохранительный клапан 4, клапан 5 минимального давления и масломер 12. Маслоотделитель (6) - цилиндрической формы имеет 14 секций, заполненных шерстяными очесами (очес гребенный, крупный, I группы из полугрубой однородной шерсти).

Рис. 6. Воздухосборник

Маслоотделитель вставляется в корпус (1) через отверстие в левом днище 2 и закрывается крышкой 3. На раздаточной трубе расположены три раздаточных вентиля с расходом воздуха в диапазоне 1,5-2 м/мин. и фланец для подсоединения к общей магистрали.

Предохранительный клапан (рис. 7) автоматически стравливает излишки воздуха из воздухосборника в атмосферу при давлении выше $0.647 \, \mathrm{M}\Pi \mathrm{a} (6.6 \, \mathrm{krc/cm})$.

Рис. 7. Клапан предохранительный

Клапан состоит из основания 1, на которое навернут корпус 2, клапана 3. пружины 4 и регулировочного винта 5.

Клапан работает следующим образом.

При давлении воздуха в воздухосборнике выше 0,647 МПа (6,6 кгс/см) клапан поднимается, поднимая шток и сжимая пружину; при этом воздух выходит через отверстия корпуса в атмосферу. После стравливания излишка воздуха усилием пружины клапан возвращается на место. Для ручного стравливания излишка воздуха в атмосферу служит рычаг с кольцом. Регулировочный винт предназначен для регулировки давления, при котором срабатывает клапан.

Клапан минимального давления (рис. 8)

Предназначен для отключения подачи сжатого воздуха из воздухосборника при давлении ниже 0.392 МПа (4 кгс/см) с целью исключения повышения расхода масла, уносимого вместе с воздухом. Кроме того, он одновременно является и обратным клапаном, и в случае работы станции на общую магистраль при давлении в магистрали, превышающем давление в воздухосборнике, исключает поступление воздуха из магистрали в воздухосборник.

Рис. 8. Клапан минимального давления

Клапан состоит, из корпуса I, клапана 2, фланца 3, поршня 4 и пружин 6 и 7. Клапан установлен на раздаточной трубе. При давлении в

воздухосборнике выше 0,392 МПа (4 кгс/см) клапан прижат воздухом к поршню и поднят с ним над седлом. Воздух поступает в раздаточную трубу. Если давление после клапана превышает давление до клапана, пружина отжимает клапан вниз, последний скользит по хвостовику поршня и перекрывает поток воздуха, идущего в раздаточную трубу. Масломер установлен в штуцере воздухосборника и закреплен резьбовым колпачком. На конце стержня масломера имеются две поперечные риски. Верхняя риска соответствует нормальному рабочему уровню масла, нижняя минимальному допустимому уровню.

Масляный холодильник

Масляный холодильник служит для охлаждения горячего масла.

Масляный холодильник (рис. 9) состоит из трубчатки I, верхнего коллектора 2, нижнего коллектора 6, диффузора 4, стоек 3 и 7, сливной пробки 5 и турбулизаторов 8.

Трубчатка состоит из комплекта стальных трубок круглого сечения, закрепленных с обоих концов в стальных досках.

Для герметичности соединений концы трубок в досках развальцованы И пропаяны. Трубки расположены вертикально в несколько рядов по фронту и в глубину. На доски трубчатки снизу и сверху устанавливаются литые алюминиевые коллекторы коробчатого сечения с перегородками, разделяющими коллекторы и трубки на отдельные секции.

Рис. 9. Масляный холодильник

Верхний и нижний коллекторы и трубчатка соединены с боков двумя стойками, установленными на раму станции.

Нижний коллектор имеет два отверстия, одно из них - сквозное. Сквозное отверстие с одной стороны соединяется шлангом с воздухосборником, а с другой через перепускной клапан шлангом соединяется со всасывающей линией - насоса. Другое отверстие шлангом соединяется с масляным фильтром.

Для повышения эффективности холодильника в трубки вставлены турбулизаторы, усиливающие перемешивание масла.

Горячее масло из воздухосборника под давлением поступает в холодильник и, пройдя по секциям трубчатки, поступает в масляный фильтр.

Масло в холодильнике охлаждается потоком воздуха, прогоняемым между трубками вентилятором компрессора. Диффузор помогает вентилятору просасывать воздух по всему фронту холодильника. Цилиндрический раструб диффузора увеличивает эффективность вентилятора.

Масляный фильтр

Масляный фильтр служит для очистки загрязненного масла.

Масляный фильтр крепится на раме станции с левой стороны и включен в масляную систему после холодильника на всасывающей линии масляного насоса.

Масляный фильтр (рис. 10) состоит из стакана 1, крышки 4 и оси 6 с закрепленным на ней фильтрующим пакетом 9. Крышка крепится к стакану болтами. Между стаканом и крышкой усыновлено кольцо 3. Ось закреплена в крышке и имеет рукоятку 7. В крышке устанавливается уплотнение, чтобы исключить возможность утечек масла по оси. Поджим уплотнения выполняется фланцем 5. Фильтрующий пакет состоит из набора поочередно установленных основных и промежуточных пластин.

Рис. 10. Фильтр масляный

Качество фильтрации определяется толщиной промежуточных пластин, равной Q.12 мм. 6 щелях между основными пластинами расположены неподвижные скребки, насаженные на стойку 10, закрепленную в крышке. Загрязненное масло через впускное отверстие в крышке поступает в стакан и, проходя через щели между основными пластинами, очищается, а затем попадает во внутреннюю полость, образованную отверстиями в виде секторов в основных пластинах, по ней поднимается на всю высоту пакета и очищенное выходит через отверстие в крышке.

Фильтрующий пакет рукояткой поворачивают вокруг своей оси, и основные пластины, проходя мимо скребков, очищаются от пыли, которая попадает на дно стакана.

В дне стакана имеется пробка 2 для слива отстоя.

В крышке фильтра помещен перепускной клапан 8. состоящий из шарика, пружины и резьбового колпачка с прокладкой. Клапан открывается при перепаде давления 0,245 - 0,294 МПа 1 (2,5 - 3,0 кгс/см⁻) и соединяет полость стакана с выходным отверстием в крышке. При засорении фильтрующего пакета давление масла за фильтрами падает, клапан открывается и масло, минуя фильтрующий пакет, проходит в выходное отверстие в крышке.

Клапан стравливания

Клапан стравливания установлен на раздаточной трубе и предназначен для автоматического стравливания воздуха из воздухосборника в момент остановки станции. Клапан (рис. 11) состоит из стального корпуса 2, поршня I с толкателем, шарика 5, двух крышек 4, имеющих отверстия и прокладки 3.

Рис. 11. Клапан стравливания

Отверстие верхней крышки соединено трубкой с воздухосборником, отверстие нижней крышки соединено трубкой с полостью всасывания компрессора. При остановке станции, когда давление в полости всасывания повысится, поршень с толкателем пойдет вверх и поднимет шарик над седлом, открывая выход: воздуху из воздухосборника в атмосферу через отверстия в корпусе.

Система регулирования подачи

Система регулирования подачи (рис. 12) служит для автоматического приведения подачи воздуха в соответствие с его потреблением.

Она состоит из следующих узлов: датчика, дроссельного клапана и соединительных трубок.

Датчик состоит из корпуса 10, пластины 12, пружины 17, основания 13. и винта 8. регулирующего поджатие пружины и фильтра датчика 18.

Фильтр, состоящий из стакана, сетки и двух уплотнительных колец, предназначен для очистки воздуха, подаваемого под пластину. В основании сбоку имеется отверстие, к которому подводится воздух трубкой от раздаточной трубы. Корпус датчика имеет отверстие, соединяемое трубкой с дроссельным клапаном.

Работа системы регулирования подачи

Из раздаточной трубы воздухосборника воздух проходит по трубке и попадает в датчик пол пластину. Подъему пластины мешает усилие пружины, отрегулированное винтом на 0,598 МПа (6,1 кгс/см⁻¹) давления воздуха на пластину.

Рис. 12. Схема регулирования полами

При давлении воздуха более 0,598 МПа (6,1 кгс/см²) пластина отойдет от нижнего седла, прижмется к верхнему седлу и откроет путь воздуху через отверстие в корпусе датчика к дроссельному клапану. Воздух, поступая под поршень дроссельного клапана, передвигает его и закрывает проход атмосферному воздуху в компрессор, который начинает работать вхолостую. Этот режим работы сохраняется до тех пор, пока давление воздуха в раздаточной трубе воздухосборника не снизится до 0,460-0,480 МПа (4.7-4,9 кгс/см²), тогда усилие пружины датчика превысит давление воздуха и прижмет пластину к нижнему седлу. Поступление воздуха от раздаточной трубы через датчик к дроссельному клапану прекращается. Оставшийся воздух из поршневой полости дроссельного клапана через отверстие в регулировочном винте датчика стравливается в атмосферу. Поршень под действием пружины возвращается в исходное положение. Одновременно происходит открытие дроссельного клапана под действием разряжения, создаваемого винтами. Атмосферный воздух поступает в компрессор, который начинает подавать сжатый воздух в воздухосборник.

В случае необходимости настройка системы регулирования подачи осуществляется изменением поджатия пружины датчика регулировочным винтом. Настройка производится по давлению воздуха в воздухосборнике. Дроссельный клапан не регулируется.

Система тепловой защиты

Система тепловой защиты компрессорной станции предназначена для отключения электродвигателя от сети при опасном перегреве изоляции электродвигателя, повышении температуры выше нормы во всасывающей и нагнетательной полостях компрессора.

Рис. 13. Зашита тепловая

Система тепловой защиты состоит из (см. рис. 13 и 14):

- тепловой защиты с применением температурных датчиков-реле ДТР-3М-УТ. установленных на электродвигателе и компрессоре, срабатывающих соответственно при превышении температур свыше $165 \pm 10^{\circ}$ С и $110 + 10^{\circ}$ С;
- тепловой защиты с применением плавкой вставки, установленной на нагнетательной трубе и срабатывающей при температуре свыше 115+10°C.

Два датчика-реле, встроенные в электродвигатель, срабатывают при опасном перегреве изоляции (свыше 165 + 10°C) и тем самым обеспечивают отключение двигателя от сети.

Два других датчика-реле встроены:

- один в полость всасывания компрессора и отключает электродвигатель при превышении температуры в случае пуска его в обратную сторону;
- второй в патрубке нагнетательной трубы и отключает электродвигатель при повышении температуры нагнетания свыше 110 ± 10 °C.

Элементы электрической цепи управления станции с включенными в нее тепловыми защитами (датчиками ДТР-3М-УТ) смонтированы на заводе-изготовителе и опломбированы, что предусматривает их использование только со штатным кнопочным постом управления КУ 92-РВ-IВ.

Рис. 14. Тепловая зашита с датчиками ДТР-3М-УТ

Подсоединение электродвигателя станции к магнитному пускателю должно производиться без нарушения установленных пломбировок (на муфте КУ92-PB-1B, коробках выводов тепловых зашит компрессора).

Эксплуатацию тепловой зашиты с применением температурных датчиков-реле ДТР-3М-УТ производить в соответствии с паспортом «Датчик-реле температуры термобиметаллический типа ДТР-3М-УТ», указанным во введении.

Тепловая зашита с плавкой вставкой (см. рис. 14) состоит из: термовыключателя и выключающего устройства.

Термовыключатель установлен в нагнетательной трубе компрессора, легкоплавкий сплав которого плавится при температуре 115+7°C. - 10

Выключающее устройство установлено вместе с кнопочным постом управления на раздаточной трубе, рычаг которого через рычаг кнопочного поста отключает электродвигатель от сети.

Принцип работы термовыключателя и выключающего устройства.

При нагреве сжатого воздуха в нагнетательной трубе до температуры 115°C легкоплавкий сплав, которым впаяна медная пробка 10 в наконечник термовыключателя, расплавляется, и медная пробка выталкивается сжатым воздухом термовыключателя. Сжатый воздух по трубопроводу поступает к выключающему устройству и своим давлением перемещает поршень. Поршень поворачивает рычаг, который через рычаг кнопочного поста нажимает на кнопку СТОП и отключает электродвигатель от сети. При этом фиксатор должен войти в кольцевую выточку поршня и застопорить поршень таким образом, чтобы включение электродвигателя было невозможно до тех пор. пока фиксатор находится в выточке поршня. Для оттяжки фиксатора вручную необходимо снять пломбу с кожуха выключающею устройства. Для приведения тепловой зашиты в рабочее состояние после ее срабатывания, необходимо проделать следующее.

- 1. Распломбировать термовыключатель и выключающее устройство.
- 2. Произвести замену сработавшего термовыключателя запасным из ЗИПа или произвести его перепайку легкоплавким сплавом, находящимся в ЗИПе.

Химический состав этого сплава: висмут 36,4%; олово 36,5% и свинец 27%, температура плавления сплава $117 + 2^{\circ}C$.

Перед пайкой медной пробки термовыключателя необходимо удалить старый слой сплава, извлечь медную пробку из выключающего устройства или из трубопровода и установить эту пробку в наконечник термовыключателя, согласно рис. 36.

1. Снять выключающее устройство с фиксатора, для чего оттянуть фиксатор и утопить поршень выключающего устройства до отка-

за. Запломбировать термовыключатель и выключающее устройство тепловой зашиты.

Приборный шит

Приборный щит установлен на раздаточной трубе воздухосборника. На приборном щите размещены следующие контрольноизмерительные приборы и надписи:

- манометр MTП-60/3-ТУ-16х4 для контроля давления масла на входе в компрессор;
- манометр МТП-100/1-16x2,5 для контроля давления воздуха в воздухосборнике;
- указатель температуры для масла тракторный конденсационный дистанционный (УТ-201E; t 120°C):
 - инструкция по пуску и остановке станции.

Ходовая часть

Ходовая часть станции представляет собой двухосную прицепную тележку с дисковыми чугунными скатами. Рама тележки сварная. В средней части рамы к швеллерам сверху приварено основание для установки компрессора. Спереди и сзади к раме приварены буферные листы. Задняя ось приварена к швеллерам, а передняя закреплена в средней точке, в кронштейне, и качается на пальце. Это качание оси воспринимает неровности пути. Ширина колеи станции с 900 мм на 600 мм меняется путем перестановки скатов и распорных труб. Тележка снабжена с двух сторон висячей сцепкой в виде свободно качающейся серьги, а также четырьмя кольцами для подъема станции, расположенными на осях.

Описание работы станции

(смотри: комбинированная функциональная схема, рис. 15) Наружный воздух через воздушный фильтр 15 и дроссельный клапан 16 поступает в зону всасывания компрессора (рис. 37). В компрессоре воздух винтами сжимается до давления 0,588 МПа (6 кгс/см²) и одновременно масляным насосом (основной секцией 26) в зону начала сжатия впрыскивается масло. Из зоны нагнетания компрессора смесь воздуха с маслом через нагнетательную трубу поступает в воздухосборник 1, где масло выделяется и опускается в нижнюю часть воздухосборника.

Puc. 15. Схема комбинированная функциональная

Воздух с остатками масла проходит через маслоотделитель 2 и окончательно очищается. Очищенный воздух через клапан 4 минимального давления, раздаточную трубу 3 и вентили поступает к потребителю.

Клапан стравливания 6 соединен трубками с воздухосборником и зоной всасывания компрессора.

От раздаточной трубы давление воздуха подводится к датчику 17 системы регулирования подачи. Давление воздуха в воздухосборнике

контролируется с помощью манометра, установленного на приборном щите.

Масло из воздухосборника под действием давления воздуха подаётся через шланг в нижний коллектор холодильника 7. Пройдя холодильник, масло поступает в масляный фильтр 8. снабженный клапаном 9, пропускающим масло мимо фильтрующего элемента при засорении фильтра. После масляного фильтра масло поступает в масляный насос, который также имеет клапан 12. соединяющий зоны всасывания и нагнетания насоса.

Масляный насос нагнетает масло по каналам в крышке, опоре и корпусе компрессора в рабочую зону винтов и на смазку подшипников в опоре.

По трубке, идущей снаружи корпуса компрессора, масло подается в редуктор 20 для смазки шестерен, масло скапливается в нижней части редуктора и отсасывается трубкой в зону всасывания. Для улучшения отсоса в редуктор подается дополнительное давление от нагнетательной трубы.

В холодное время года масло в компрессор поступает из нижнего коллектора холодильника через перепускной клапан, минуя холодильник и масляный фильтр. После разогрева масла перепускной клапан закроется, и масло пойдет в компрессор через холодильник и масляный фильтр.

Дополнительной секцией масляного насоса масло отсасывается из маслоотделителя и сбрасывается в воздухосборник. Для замера давления масла, подаваемого в компрессор, отведена трубка на манометр приборного щита. Для замера температуры в зоне нагнетания на приборном щите установлен дистанционный термометр.

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

Комплексное опробование, обкатка на поверхности

Перед спуском станции в шахту необходимо проверить ее работу (тепловой режим, техническую исправность) в наземных условиях в течение часа.

- 1. Установить станцию горизонтально в соответствии с п.1.3.3, при этом подклинить скаты. При подъеме строповку станции производить согласно схеме строповки.
- 2. Проверить центровку компрессора с электродвигателем. Полумуфты должны совпадать по внешней цилиндрической поверхности с точностью 0,2 мм и отстоять друг от друга с зазором 0,5-2 мм, при этом непараллельность торцевых поверхностей допускается не более 0,75 мм.

- 3. Проверить н при необходимости подтянуть крепления основных узлов станции. Соединения, имеющие контровку, должны быть законтрены вновь.
 - 4. Проверить натяжение ремней вентилятора.

Прогиб ремней между шкивами под усилием 3-4 кгс должен быть 10... 15 мм. Зазор между вентилятором и диффузором в нижней части должен быть 3+1 мм. Станция должна иметь три ремня вентилятора антистатического исполнения. Между шкивом вентилятора и крышкой уплотнения должен 'быть постоянный зазор не менее 5 мм.

- 5. До пуска станции в работу необходимо вынуть из ЗИП маховичок и установить на нижний вентиль воздухосборника (см. рис. 6, поз. 14) и спустить конденсат, после чего вернуть его в ЗИП.
- 6. Слить из системы компрессора оставшееся после обкатки на заводе-изготовителе масло. Залить масло в воздухосборник, воздушный фильтр, смазать ось вентилятора, согласно карте смазки. Заливку масла в воздухосборник производить через 3-4 слоя марли.
- 7. Проверить свободное вращение винтов, повернув на 1-2 оборота крыльчатку вентилятора.
- 8. Проверить свободное проворачивание рукоятки масляного фильтра.
- 9. Подготовить электрооборудование станции к опробованию в наземных условиях, для чего:
- проверить сопротивление изоляции обмоток статора электродвигателя мегомметром на напряжение 500 В. Наименьшее допустимое сопротивление изоляции должно составить 1,5 МОм;
- проверить целостность электрической цепи тепловой защиты и качество монтажа измерением величины падения напряжения между клеммами К2 и «шпилькой заземляющей» коробки выводов электродвигателя при нажатой кнопке ХОД кнопочного поста. Измерение проводить при токе 0.3А приборами магнитоэлектрической системы. Падение напряжения не должно превышать 3,5 В.»
- проверить наличие клейма "РВ" на электродвигателе. Применение в шахтах электродвигателей, не имеющих клейма "РВ" не допускается.
- произвести заземление и подключение к электросети согласно схеме в соответствии с "Правилами безопасности в угольных и сланцевых шахтах" и схеме, имеющейся на электродвигателе. Соединения обмоток двигателя должны соответствовать напряжению сети.
- 10. Опробование электродвигателя компрессорной станции на поверхности должно проводиться в присутствии лица, ответственного за обслуживание станции.

11. Провести толчковый ПУСК электродвигателя путем кратковременного нажатия кнопки ХОД кнопочного поста и сразу же выключить нажатием кнопки СТОП для проверки соответствия направления вращения электродвигателя со стрелкой, отлитой на крышке корпуса компрессора со стороны муфты.

Обратное вращение недопустимо и должно быть изменено при помощи реверсивного разъединителя пускателя.

12. Если при опробовании работы компрессорной станции в наземных условиях не обнаружено каких-либо ненормальностей или дефектов, то компрессорная станция может быть спущена в шахту.

Подготовка к работе

- 1. Доставить станцию в шахту:
- спуск станции по наклонному штреку или в горизонтальном положении в клети, в которой колея 900 мм, производить в собранном виде, без резких толчков;

при спуске станции в клети с колеей 600 мм, необходимо демонтировать воздухосборник и нагнетательную трубу с патрубком. При этом необходимо отсоединить коробку выводов тепловой температурной зашиты от патрубка, не нарушая пломбировки и закрепить все на корпусе компрессора.

Холодильник должен быть дополнительно закреплен, а все трубки и отверстия заглушены. На ходовой части переставить скаты на колею 600 мм. При необходимости допускается разборка станции по узлам с соблюдением требований, изложенных в разделе 4.4.

- 2. Станция в шахте устанавливается и подготавливается к работе в соответствии с "Правилами безопасности в угольных и сланцевых шахтах" и раздела 1.3 настоящей инструкции.
- 3. Для возможности подключения к электросети шахта электрооборудования компрессорной станции, рядом с ней заблаговременно должен быть установлен взрывобезопасный магнитный пускатель ПВИ-125 и проложена питающая его электросеть, а также сеть заземления до станции.
- 4. Подсоединение электродвигателя и поста управления компрессорной станции к магнитному пускателю производится посредством гибкого кабеля марки ГРШЭ.
- 5. После установки компрессорной станции в шахте и подсоединения ее электрооборудования к питающей электросети, пробный пуск компрессора можно производить после осмотра станции лицом, ответственным за ее правильную эксплуатацию.

- 6. Произвести пробный пуск электродвигателя в том же порядке, что и при опробовании станции в наземных условиях, т.е. соответственно п.5.1.11 настоящей инструкции с целью проверки правильности вращения.
- 7. Проверить настройку предохранительного клапана и системы регулирования подач:
- увеличив поджатие пружины датчика, при закрытых раздаточных вентилях, поднять давление воздуха в воздухосборнике до 0,647 МПа (6,6 кгс/см*) проверить безотказность работы предохранительного клапана. Предохранительный клапан должен настраиваться на давление срабатывания 0,647 МПа (6,6 кгс/см²);
- при работе станции с переменным расходом, давление воздуха в воздухосборнике должно поддерживаться в пределах $0,598~\text{M}\Pi a~(6,1~\text{кгc/cm}^2)$ до $0,441~\text{M}\Pi a~(4,5~\text{кгc/cm}^2)$.

Порядок работы

1. Эксплуатация компрессорной станции должна производиться при обязательном присутствии обслуживающего персонала в зоне видимости станции или с постоянным дежурством машинистов при невозможности соблюдения этого требования.

Ответственным за правильную и безопасную эксплуатацию станции назначается приказом руководителя предприятия лица, обученные по соответствующей программе и имеющие удостоверение квалификационной комиссии на право обслуживания компрессорной станции.

- 2. Запустить станцию нажатием кнопки ХОД кнопочного поста. Сжатый воздух поступит к раздаточным вентилям после достижения давления в воздухосборнике свыше 0.392 МПа (4,0 кгс/см²).
- 3. Регулирование подачи станции производится автоматически дросселированием на всасывании.
- 4. Во время работы станции необходимо следить за показаниями приборов на щите и контролировать:
 - давление масла в компрессоре: не менее 0,294 МПа (3 кгс/см⁻);
- давление воздуха в воздухосборнике: не более $0,588~\mathrm{M\Pi a}$ (6 кгс/см[:]);
 - температура воздуха на нагнетании: не более 100°C.
- 5. Для выключения станции нажать кнопку СТОП кнопочного поста.
 - 6. Рекомендуется останавливать станцию при:
 - -температуре нагнетания выше 100°С;
 - -давлении масла в компрессоре ниже 0,294 МПа (3 кгс/см);

<u>Примечание</u>. После остановки станции выяснить причину неисправности и устранить ее.

Порядок перемещения станции своим ходом

- 1. Перед перемещением станции проверить:
- надежность крепления узлов станции;
- исправность ходовой части;
- исправность прицепного устройства;
- надежность сцепления станции с электровозом.
- 2. Перемещение станции производится электровозом или вручную по узкоколейной железной дороге с шириной колеи 900 мм или 600 мм (после перестановки полускатов).
 - 3. При перемещении станции соблюдать следующие требования:
 - станция должна находиться пол наблюдением;
 - перемещение должно быть плавное, без толчков;
 - скорость перемещения не более 5 км/час.
 - 4. После перемещения скаты станции должны быть заторможены.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гарбуз Д.Л. Рудничные пневматические установки. М.: Недра, 1961.
 - 2. Хаджиков Р.М. Горная механика. М.: Недра, 1973.
- 3. Картавый Н.Г., Топорков А.А. Шахтные стационарные установки.
- М.: Недра, Справочное пособие, 1978.
- 4. Стационарные установки шахт. Под ред. Б.Ф. Братченко. М.: Недра, 1977.

Учебное издание

ВОЗДУШНО-КОМПРЕССОРНАЯ ШАХТНАЯ ПЕРЕДВИЖНАЯ СТАНЦИЯ ЗИФ-ШВ-5

Методические указания к выполнению лабораторных работ по дисциплине «Стационарные машины» для студентов V курса, обучающихся по специальности 150402 «Горные машины»

Составители

ТИМОФЕЕВ Вадим Юрьевич, ДРОНОВ Антон Анатольевич

Печатается в редакции составителей

Отпечатано в Издательстве ЮТИ ТПУ в полном соответствии с качеством предоставленного оригинал-макета

Подписано к печати 14.03.2013г. Формат 60х84/23 Бумага офсетная. Плоская печать. Усл. печ. л. 1,22. Уч-изд. л. 1,11. Тираж 20 экз. Заказ 1620. Цена свободная. ИПЛ ЮТИ ТПУ. Ризограф ЮТИ ТПУ. 652000, г. Юрга, ул. Московская, 17.