Az (absztrakt) halmazok mérését (a mértéküknek az értelmezését) egy

$$\varphi \in \mathcal{P}(X) \to [0, +\infty]$$

függvény segítségével végezzük majd, ahol az X adott alaphalmaz. Il

0.1. Definíció: Véges- és szigma-additív halmazfüggvény

Azt mondjuk, hogy a $\varphi \in \mathcal{P}(X) \to [0, +\infty]$ halmazfüggvény

1. (véges) additív, ha

$$\varphi\left(\bigcup_{k=0}^{n} A_k\right) = \sum_{k=0}^{n} \varphi(A_k)$$

minden olyan $A_0,\ldots,A_n\in\mathcal{D}_{\varphi}$ páronként diszjunkt halmazrendszerre fennáll, amelynek az egyesítésére $A_0\cup\cdots\cup A_n\in\mathcal{D}_{\varphi}$ teljesül;

2. szigma-additív (σ -additív), ha

$$\varphi\left(\bigcup_{n=0}^{\infty} A_n\right) = \sum_{n=0}^{\infty} \varphi(A_n)$$

minden olyan $A_n \in \mathcal{D}_{\varphi}$ $(n \in \mathbb{N})$ páronként diszjunkt halmazsorozatra fennáll, amelynek az egyesítésére $\bigcup_{n=0}^{\infty} A_n \in \mathcal{D}_{\varphi}$ teljesül.

Állítás. Legyen φ egy additív halmazfüggvény, amire $\emptyset \in \mathcal{D}_{\varphi}$ fennáll.

- 1. Ha φ additív és $\varphi(\emptyset)$ véges, akkor $\varphi(\emptyset) = 0$.
- 2. Ha φ szigma-additív és $\varphi(\emptyset)$ véges, akkor $\varphi(\emptyset) = 0$ és φ additív is.

Bizonyítás.

1. Mivel $\emptyset = \emptyset \cup \emptyset = \emptyset \cap \emptyset$, ezért alkalmazhatjuk a φ additív tulajdonságát

$$\varphi(\emptyset) = \varphi(\emptyset) + \varphi(\emptyset) \implies \varphi(\emptyset) = 0.$$

2. Amennyiben φ szigma-additív, akkor a

$$\varphi(\emptyset) = \varphi\left(\bigcup_{n=0}^{\infty} \emptyset\right) = \sum_{n=0}^{\infty} \varphi(\emptyset)$$

sorösszeg pontosan akkor lesz véges, ha $\varphi(\emptyset) = 0$. Ezért bárhogyan véve egy véges $A_0, \ldots, A_n \in \mathcal{D}_{\varphi}$ $(n \in \mathbb{N})$ és páronként diszjunkt halmazrendszert, akkor az $A_k := \emptyset$ (k > n) választás mellett

$$\varphi\bigg(\bigcup_{k=0}^n A_k\bigg) = \varphi\bigg(\bigcup_{k=0}^\infty A_k\bigg) = \sum_{n=0}^\infty \varphi(A_k) = \sum_{n=0}^n \varphi(A_k).$$

Ezt pedig azt jelenti, hogy φ additív.

0.2. Definíció: Mérték, kvázimérték, előmérték

Azt mondjuk, hogy a $\mu \in \mathcal{P}(X) \to [0,+\infty]$ halmazfüggvény egy

- 1. **mérték**, ha \mathcal{D}_{μ} szigma-algebra, $\mu(\emptyset)=0,$ és a μ szigma-additív;
- 2. kvázimérték, ha \mathcal{D}_{μ} halmazgyűrű, $\mu(\emptyset)=0,$ és a μ szigma-additív;
- 3. előmérték, ha \mathcal{D}_{μ} halmazgyűrű, $\mu(\emptyset)=0,$ és a μ additív.

0.3. Tétel: Az előmérték tulajdonságai

Legyen μ előmérték a $\mathcal{G} \subseteq \mathcal{P}(X)$ gyűrűn, továbbá $A, B, A_n \in \mathcal{G} \ (n \in \mathbb{N}).$

1. μ monoton, azaz $B \subseteq A$ esetén $\mu(B) \leq \mu(A)$.

- 2. $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
- 3. Ha $\mu(B)$ véges és $B \subseteq A$, akkor $\mu(A \setminus B) = \mu(A) \mu(B)$.
- 4. Minden $n \in \mathbb{N}$ indexre $\mu\left(\bigcup_{k=0}^{n} A_k\right) \leq \sum_{k=0}^{n} \mu(A_k)$.
- 5. Ha az (A_n) tagjai páronként diszjunktak és $\bigcup_{n=0}^{\infty} A_n \in \mathcal{G}$, akkor

$$\mu\left(\bigcup_{n=0}^{\infty} A_n\right) \le \sum_{n=0}^{\infty} \mu(A_n).$$

Bizonyítás.

1. Mivel $A = B \cup (A \setminus B)$ diszjunkt felbontás és μ nemnegatív, ezért

$$\mu(A) = \mu(B) + \mu(A \setminus B) \ge \mu(B). \tag{*}$$

- 2. Ha $\mu(B)$ véges, akkor (*) átrendezésével adódik a belátandó állítás.
- 3. Két esetet különböztetünk meg.
 - (a) Amennyiben $\mu(A \cap B) = +\infty$, akkor az $A \cap B \subseteq A, B \subseteq A \cup B$ tartalmazások, valamint a μ monotonitása alapján

$$\mu(A \cap B) = \mu(A \cup B) = \mu(A) = \mu(B) = +\infty. \checkmark$$

(b) Ha most $\mu(A \cap B)$ véges, akkor az $A \cup B = A \cup (B \setminus (A \cap B))$ diszjunkt felbontás és μ additivitása miatt

$$\mu(A \cup B) = \mu(A) + \mu(B \setminus (A \cap B)) \stackrel{3}{=} \mu(A) + \mu(B) - \mu(A \cap B). \checkmark$$

- 4. Az állítás teljes indukcióval igazolható, felhasználva 2-t.
- 5. Mivel $A_0,\dots,A_n\ (n\in\mathbb{N})$ páronként diszjunktak és μ additív, ezért

$$\sum_{n=0}^{\infty} \mu(A_n) = \lim_{n \to \infty} \sum_{k=0}^{n} \mu(A_k) = \lim_{n \to \infty} \mu\left(\bigcup_{k=0}^{n} A_k\right).$$

Ugyanakkor az $\bigcup\limits_{k=0}^n A_k\subseteq \bigcup\limits_{k=0}^\infty A_k$ tartalmazás és μ monotonitása miatt

$$\sum_{n=0}^{\infty} \mu(A_n) = \lim_{n \to \infty} \mu\Bigg(\bigcup_{k=0}^n A_k\Bigg) \leq \lim_{n \to \infty} \mu\Bigg(\bigcup_{k=0}^{\infty} A_k\Bigg) = \mu\Bigg(\bigcup_{n=0}^{\infty} A_n\Bigg).$$

Tehát $\mu: \mathcal{G} \to [0, +\infty]$ egy előmérték.

0.4. Tétel: Kvázimértékek ekvivalens jellemzése

Legyen μ egy előmérték a $\mathcal{G}\subseteq\mathcal{P}(X)$ gyűrűn, és vegyük az alábbi állításokat.

- a) A μ kvázimérték.
- b) Minden $\mathcal{G}\text{-beli}\ A_n\subseteq A_{n+1}\ (n\in\mathbb{N})$ monoton bővülő halmazsorozatra

$$A := \bigcup_{n=0}^{\infty} A_n \in \mathcal{G} \implies \mu(A) = \lim_{n \to \infty} \mu(A_n).$$

c) Minden \mathcal{G} -beli $B_{n+1}\subseteq B_n\ (n\in\mathbb{N})$ halmazsorozatra, ha $\mu(B_n)<+\infty$

$$B := \bigcap_{n=0}^{\infty} B_n \in \mathcal{G} \qquad \Longrightarrow \qquad \mu(B) = \lim_{n \to \infty} \mu(B_n).$$

d) Minden $\mathcal G$ -beli $C_{n+1}\subseteq C_n\ (n\in\mathbb N)$ halmazsorozatra, ha $\mu(C_n)<+\infty$

$$\emptyset = \bigcap_{n=0}^{\infty} C_n \in \mathcal{G} \implies \mu(\emptyset) = \lim_{n \to \infty} \mu(C_n) = 0.$$

Ekkor

- 1. a) \iff b) \implies c) \iff d);
- 2. ha μ véges, akkor még b) \iff c) is fennáll.

Tehát $\mu(Z) < +\infty \ (Z \in \mathcal{G}).$

Bizonyítás.

 $a) \Longrightarrow b$ Tekintsük az A "határhalmaznak" az

$$A = A_0 \cup (A_1 \setminus A_0) \cup (A_2 \setminus A_1) \cup \cdots$$

páronként diszjunkt halmazokból álló felbontását. Mivel μ szigma-additív, ezért

$$\mu(A) = \mu(A_0) + \mu(A_1 \setminus A_0) + \mu(A_2 \setminus A_1) + \cdots$$

$$= \lim_{n \to \infty} \left(\mu(A_0) + \mu(A_1 \setminus A_0) + \cdots + \mu(A_n \setminus A_{n-1}) \right)$$

$$= \lim_{n \to \infty} \mu(A_0 \cup (A_1 \setminus A_0) \cup \cdots \cup (A_n \setminus A_{n-1}))$$

$$= \lim_{n \to \infty} \mu(A_n).$$

0.5. Tétel

Legyen $\mathcal{H}\subseteq\mathcal{P}(X)$ félgyűrű, tovább
á $m:\mathcal{H}\to[0,+\infty]$ halmazfüggvény és

- 1. az m additív és $m(\emptyset) = 0$;
- 2. $n \in \mathbb{N}, \ H_0, \dots, H_n \in \mathcal{H}$ páronként diszjunktak;
- 3. $s \in \mathbb{N}, \ Q_0, \dots, Q_s \in \mathcal{H}$ páronként diszjunktak.

Ekkor

$$\bigcup_{k=0}^{n} H_k = \bigcup_{\ell=0}^{s} Q_{\ell} \qquad \Longrightarrow \qquad \sum_{k=0}^{n} m(H_k) = \sum_{\ell=0}^{s} m(Q_{\ell}).$$

Bizonyítás. Mivel a metszetképzés disztributív az unióra, ezért

$$H_k = H_k \cap \left(\bigcup_{\ell=0}^s Q_\ell\right) = \bigcup_{\ell=0}^s (H_k \cap Q_\ell) \qquad (k=0,\ldots,n)$$

$$Q_{\ell} = Q_{\ell} \cap \left(\bigcup_{k=0}^{n} H_{k}\right) = \bigcup_{k=0}^{n} \left(Q_{\ell} \cap H_{k}\right) \qquad (\ell = 0, \dots, s)$$

páronként diszjunkt halmazrendszerek, ezért az m additivitása miatt

$$\sum_{k=0}^{n} m(H_k) = \sum_{k=0}^{n} \sum_{\ell=0}^{s} m(H_k \cap Q_\ell) = \sum_{\ell=0}^{s} \sum_{k=0}^{n} m(Q_\ell \cap H_k) = \sum_{\ell=0}^{s} m(Q_\ell).$$

0.6. Tétel

Legyen $\mathcal{H}\subseteq\mathcal{P}(X)$ félgyűrű, továbbá $m:\mathcal{H}\to[0,+\infty]$ additív és $m(\emptyset)=0$. Definiáljuk az

$$\mu: \mathcal{G}(\mathcal{H}) \to [0, +\infty], \qquad \mu(A) := \sum_{k=0}^{n} m(H_k).$$

Ekkor

- 1. μ előmérték, valamint $\mu|_{\mathcal{H}} = m$;
- 2. ha λ előmérték $\mathcal{G}(\mathcal{H})$ -n és $\lambda|_{\mathcal{H}}=m,$ akkor $\lambda=\mu;$
- 3. hamszigma-additív, akkor μ kvázi-mérték.

Bizonyítás.

- 1. Az állítás nyilvánvalóan igaz.
- 2. Az lemma felhasználásával
- 3. Legyenek $A_n \in \mathcal{G}(\mathcal{H})$ páronként diszjunkt halmazok $(n \in \mathbb{N})$ és

$$A\coloneqq\bigcup_{n=0}^\infty A_n\in\mathcal{G}(\mathcal{H}).$$

Ekkor vannak olyan $H_0, \dots, H_s \in \mathcal{H}$ páronként diszjunkt halmazok, hogy

$$A = \bigcup_{k=0}^{s} H_k \in \mathcal{G}(\mathcal{H}).$$

Ugyan ez elmondható az ${\cal A}_n$ halmazokra is, vagyis

$$A_n = \bigcup_{j=0}^{p_n} H_{nj} \quad (n \in \mathbb{N})$$

valamilyen $H_{n0}, \dots, H_{np_n} \in \mathcal{H}$ páronként diszjunkt halmazokkal.

$$\mu(A) = \sum_{k=0}^{s} m(H_k) = \sum_{k=0}^{s} \sum_{n=0}^{\infty} \sum_{j=0}^{p_n} m(H_{nj} \cap H_k)$$
$$= \sum_{n=0}^{\infty} \sum_{j=0}^{p_n} \sum_{k=0}^{s} m(H_{nj} \cap H_k) = \sum_{n=0}^{\infty} \mu(A_n).$$

Tehát $\lambda: \mathcal{G}(\mathcal{H}) \to [0, +\infty]$ alakú.