Modelling Fitness Trade-Offs of Rates of Horizontal Gene Transfer Evolution 02-731 Project

Siddharth Reed

Carnegie Mellon University

May 6 2021

Background

Siddharth Reed Carnegie Mellon University

Horizontal Gene Transfer (HGT)

Figure 1: HGT Mechanisms

► Transformation: Incorporation of free-floating DNA into the genome

Horizontal Gene Transfer (HGT)

Figure 1: HGT Mechanisms

- ► Transformation: Incorporation of free-floating DNA into the genome
- ► Conjugation: Transfer of DNA through cell-cell connections

Horizontal Gene Transfer (HGT)

Figure 1: HGT Mechanisms

- Transformation: Incorporation of free-floating DNA into the genome
- Conjugation: Transfer of DNA through cell-cell connections
- Transduction: Transfer of DNA via phage

Figure 2: CRISPR-Cas Mechanism

Adaptive Bacterial Immune System

Figure 2: CRISPR-Cas Mechanism

- Adaptive Bacterial Immune System
- Requires CRISPR array and Cas proteins

Figure 2: CRISPR-Cas Mechanism

- Adaptive Bacterial Immune System
- Requires CRISPR array and Cas proteins
- Steps

Figure 2: CRISPR-Cas Mechanism

- Adaptive Bacterial Immune System
- Requires CRISPR array and Cas proteins
- Steps
 - 1. Exposure

Figure 2: CRISPR-Cas Mechanism

- Adaptive Bacterial Immune System
- Requires CRISPR array and Cas proteins
- Steps
 - 1. Exposure
 - 2. Spacer Acquisition

Figure 2: CRISPR-Cas Mechanism

- Adaptive Bacterial Immune System
- Requires CRISPR array and Cas proteins
- Steps
 - 1. Exposure
 - 2. Spacer Acquisition
 - 3. Targeted degradation in next exposure

Figure 2: CRISPR-Cas Mechanism

- Adaptive Bacterial Immune System
- Requires CRISPR array and Cas proteins
- Steps
 - 1. Exposure
 - 2. Spacer Acquisition
 - Targeted degradation in next exposure
- Protects against "foreign" DNA, but can acquire any DNA as a spacer

► HGT can help gain genes increase fitness in a specific environment faster than mutation

- ► HGT can help gain genes increase fitness in a specific environment faster than mutation
- CRISPR can block phage mediated HGT or uptake of environmental DNA

- ► HGT can help gain genes increase fitness in a specific environment faster than mutation
- CRISPR can block phage mediated HGT or uptake of environmental DNA
- HGT can result in genome disruption or gaining toxic gene products

- ► HGT can help gain genes increase fitness in a specific environment faster than mutation
- CRISPR can block phage mediated HGT or uptake of environmental DNA
- HGT can result in genome disruption or gaining toxic gene products
- metabolic cost to maintain CRISPR or HGT machinery expression

- ► HGT can help gain genes increase fitness in a specific environment faster than mutation
- CRISPR can block phage mediated HGT or uptake of environmental DNA
- HGT can result in genome disruption or gaining toxic gene products
- metabolic cost to maintain CRISPR or HGT machinery expression
- CRISPR systems can also be transferred between bacteria via plasmids

Model

Genotypes

Allele		Description
Major	Minor	
R	r	has/does not have resistance gene
Н	h	HGT machinery is expressed/not expressed
C	С	CRISPR-Cas is expressed/not expressed

Table 1: Allele definitions

Modelling Fitness Trade-Offs of Rates of Horizontal Gene Transfer

► Haploid population

- ► Haploid population
- ▶ infinite population

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection
 - no sexual reproduction, consider gene transfer step

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection
 - no sexual reproduction, consider gene transfer step
 - Gene transfer is analogous to oblique learning from Fogarty L. 2018

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection
 - no sexual reproduction, consider gene transfer step
 - Gene transfer is analogous to oblique learning from Fogarty L. 2018
 - ightharpoonup mutation is $r \to R$ or $R \to r$

We consider 3 different environments

- We consider 3 different environments
 - ► *E_n*: Neutral, no threats

- We consider 3 different environments
 - \triangleright E_n : Neutral, no threats
 - E_b: Bacteriophage, increased risk of phage contact

- We consider 3 different environments
 - ► *E_n*: Neutral, no threats
 - E_b: Bacteriophage, increased risk of phage contact
 - E_a: Antibiotic, increased risk of antibiotic contact

- We consider 3 different environments
 - ► *E_n*: Neutral, no threats
 - E_b: Bacteriophage, increased risk of phage contact
 - E_a: Antibiotic, increased risk of antibiotic contact

 Singular Threat: Singular threat event (antibiotic dosage or phage outbreak)

- We consider 3 different environments
 - E_n: Neutral, no threats
 - E_b: Bacteriophage, increased risk of phage contact
 - E_a: Antibiotic, increased risk of antibiotic contact

- Singular Threat: Singular threat event (antibiotic dosage or phage outbreak)
- Cyclical Threat: Regular threat events every 21 generations, lasting 1 generations.

- We consider 3 different environments
 - ► *E_n*: Neutral, no threats
 - E_b: Bacteriophage, increased risk of phage contact
 - E_a: Antibiotic, increased risk of antibiotic contact

- Singular Threat: Singular threat event (antibiotic dosage or phage outbreak)
- Cyclical Threat: Regular threat events every 21 generations, lasting 1 generations.
- Alternating Threat: Same as Cyclical Threat model but switching between threats threats each event.

Fitness

Genotype	Environment			
	En	E _b	E _a	
RCH	$1-2s_m$	$(1+s_p)(1-2s_m)$	$(1+s_p)(1-2s_m)$	
RCh	$1-s_m$	$(1+s_p)(1-s_m)$	$(1+s_p)(1-s_m)$	
RcH	$1-s_m$	$1-s_m$	$(1+s_p)(1-s_m)$	
Rch	1	1	$1+s_p$	
rCH	$1 - 2s_{m}$	$(1+s_p)(1-2s_m)$	$1-2s_m$	
rCh	$1-s_m$	$(1+s_p)(1-s_m)$	$1-s_m$	
rcH	$1-s_m$	$1-s_m$	$1-s_m$	
rch	1	1	1	

Table 2: Relative fitness values for each genotype in each environment

 $ightharpoonup s_m$ reflects cost of maintaining HGT/CRISPR, $s_m << s_p$

Genotype Frequencies

▶ g represents each genotype

Genotype Frequencies

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$

Genotype Frequencies

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R) , for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$

- ▶ g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R) , for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\blacktriangleright \mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\blacktriangleright \mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. **Selection:** $x'_g = \frac{x_g^s f(g)}{\bar{w}}$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\blacktriangleright \mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. Selection: $x'_g = \frac{x_g^s f(g)}{\bar{w}}$
 - ightharpoonup f(g) picks the correct fitness modifier from Table 2

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - \blacktriangleright $\mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. Selection: $x'_g = \frac{x_g^s f(g)}{\bar{w}}$
 - ightharpoonup f(g) picks the correct fitness modifier from Table 2
 - average fitness $\bar{w} = \sum_{g} x_{g}^{s} f(g)$

Results

Single Antibiotic Event

Single Phage Event

Cyclical Antibiotic Events

Cyclical Phage Events

Alternating Events

Environmental Stability

Genotype Frequencies vs Environmental Turover

Conclusion

resistance allele dominates even outside of antibiotic pressure

Conclusion

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

Conclusion

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

Future Directions

explore parameter space and look for empirical justifications

Conclusion

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

- explore parameter space and look for empirical justifications
- model phage population dynamics directly

Conclusion

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

- explore parameter space and look for empirical justifications
- model phage population dynamics directly
- incorporate terms that reflect biological trade-off of HGT/CRISPR