Programming Assignment 1: Problem 2.1

GitHub URL for Project

- Run this in Python 2.7
- Requirements
 - o NumPy
 - o OpenCV (cv2)
 - o TensorFlow
 - o Matplotlib
- Running each of the python files should work in Python 2.7
- Must run it from within Programming1 Folder

Input/Output/Outlier Analysis

- The data for comparing the different CNN's exists on the attached excel file
- There is a separate sheet for the input comparison, output comparison, and the outlier comparison

Screenshots of Environment

• • •	Programming1 — -bas	sh — 103×47	
^r			
(Venv) verizon-ar:Programmingl col ['CNN-MINST.py', '.DS_Store', 'Cat 2019-09-04 20:10:00.633908: I tens ructions that this TensorFlow bina 2019-09-04 20:10:00.646361: I tens xecuting computations on platform 2019-09-04 20:10:00.646302: I tens 0): Host, Default Version Train on 4800 samples	svDogs.py', 'CNN-MINST- orflow/core/platform/cp ry was not compiled to orflow/compiler/xla/ser Host. Devices:	Fashion.py', 'dogs-vs u_feature_guard.cc:14 use: AVX2 FMA vice/service.cc:168)	2] Your CPU supports inst XLA service 0x137a515b0 e
Epoch 1/10 WARNING:tensorflow:From /Users/col /ops/nn_impl.py:183: where (from t a future version.			
Instructions for updating:			
Use tf.where in 2.0, which has the			
4800/4800 [======] - 38s 8ms/samp	le - loss: 0.6891 - a	ccuracy: 0.5375
4800/4800 [============	=====] - 37s 8ms/samp	le - loss: 0.6358 - a	ccuracy: 0.6454
Epoch 3/10			
4800/4800 [Epoch 4/10	======] - 37s 8ms/samp	le - loss: 0.5747 - a	ccuracy: 0.6994
4800/4800 [=====] - 37s 8ms/samp	le - loss: 0.5072 - a	ccuracy: 0.7421
Epoch 5/10 4800/4800 [===================================	======] - 37s 8ms/samp	le - loss: 0.4581 - a	ccuracy: 0.7875
Epoch 6/10			
4800/4800 [Epoch 7/10	======] - 38s 8ms/samp	le - loss: 0.3640 - a	ccuracy: 0.8348
4800/4800 [=====] - 38s 8ms/samp	le - loss: 0.2866 - a	ccuracy: 0.8806
Epoch 8/10 4800/4800 [===================================	======] - 37s 8ms/samp	le - loss: 0.2102 - a	ccuracy: 0.9127
Epoch 9/10			
4800/4800 [===================================	======] - 38s 8ms/samp	le - loss: 0.1307 - a	ccuracy: 0.9550
4800/4800 [
1200/1 [

• • •	Programming1 — -bash — 103×47
	amming1 colby\$ python2 CNN-MINST-Fashion.py .770: I tensorflow/core/platform/cpu_feature_quard.cc:142] Your CPU supports in
	orFlow binary was not compiled to use: AVX2 FMA
	829: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x12e739830
	n platform Host. Devices:
	852: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device
): Host, Default Versi	
rain on 48000 samples, boch 1/5	validate on 12000 samples
	======================================
loss: 0.3926 - val acc	
poch 2/5	unacy: 010332
	======================================
loss: 0.3421 - val acc	
poch 3/5	•
8000/48000 [======	======================================
loss: 0.2976 - val_acc	uracy: 0.8918
och 4/5	
	======================================
.oss: 0.2784 - val_acc	uracy: 0.8978
och 5/5	
loss: 0.2691 - val_acc	uracy: 0.9016

● ● Programming1 — -bash — 103×47	
(veny) verizon-ar:Programming1 colby\$ python2 CNN-Cifar10.py	
2019-09-04 20:20:07.273419: I tensorflow/core/platform/cpu feature quard.cc:142] Your CPU supp	orts inst
ructions that this TensorFlow binary was not compiled to use: AVX2 FMA	
2019-09-04 20:20:07.296633: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x14	8844918 6
xecuting computations on platform Host, Devices:	0010520 0
2019-09-04 20:20:07.296665: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor	doutes (
0): Host, Default Version	geatee (
Train on 40000 samples, validate on 10000 samples	
Enoch 1/10	
40000/40000 [=================================	0262
loss: 1.3757 - val accuracy: 0.5145	020 - vat
Epoch 2/10	
40000/40000 [=================================	401
	491 - Val
_loss: 1.1991 - val_accuracy: 0.5831	
Epoch 3/10	
40000/40000 [============] - 31s 774us/sample - loss: 1.1393 - accuracy: 0.6	036 - val
_loss: 1.0949 - val_accuracy: 0.6194	
Epoch 4/10	
40000/40000 [=================================	389 – val
_loss: 1.0604 - val_accuracy: 0.6324	
Epoch 5/10	
40000/40000 [=================================	693 – val
_loss: 0.9897 - val_accuracy: 0.6583	
Epoch 6/10	
40000/40000 [=================================	877 – val
_loss: 0.9859 - val_accuracy: 0.6573	
Epoch 7/10	
40000/40000 [=================================	084 – val
_loss: 0.9378 - val_accuracy: 0.6819	
Epoch 8/10	
40000/40000 [=================================	246 – val
_loss: 0.9212 - val_accuracy: 0.6838	
Epoch 9/10	
40000/40000 [=================================	357 - val
_loss: 0.9311 - val_accuracy: 0.6822	
Epoch 10/10	
40000/40000 [=================================	490 - val
_loss: 0.9736 - val_accuracy: 0.6755	
10000/1 [

Sample Images

• Cats vs. Dogs

• Cifar-10

• MINST

• MINST-Fashion

Outlier Image Samples (used Wallets as the outlier images)

Observations of Experiments

- The cats vs. dogs dataset results in a classifier with lower classification accuracy than some of the other classifiers due to the data itself. The images themselves are fairly blurry, the images all have different resolutions, and the objects in the image are not just of the animals, but contain other objects with different orientations. Because of this, the images had to be resized to fit the classifier, which resulted in the changing of the image, reduced resolutions, and altered the data itself. This would result in worse accuracy for the classifier because of the training data itself.
- Additionally, a classifier is only as good as the data provided, and it can only learn the classifications we provide it. This is why it could not classify any of the outlier images because the classifier never learned about any of those labels and never saw the image before. Because of this reason, this is why all the classifiers do not consistently classify the outlier images as the same label because it doesn't know what to make of the random wallets provided. The only odd one is the cats vs. dogs classifier, which consistently classified the wallets as cats for an unknown reason.
- This may or may not be related, but the color image datasets result in classifiers that have a lower accuracy. This could be due to the fact that the color images result in blurrier edges when converted into grayscale, which makes the feature detection harder to perform. This poor resolution and difficulty to perform feature detection because of the colored images is one reason as to why the Cifar and Cats vs. Dogs classifier have low performance.