CH 2

CH₂

Intro Linear Time-invariant system

2.1 Linear Constant-Coefficient Differential Equation
Classical Solution of Differential Equations

2.2 Partial Initial Conditions

The Law of Switching Impulse Function Matching Method The Laplace Transform

Intro Linear Time-invariant system

- linear
- time-invariant

2.1 Linear Constant-Coefficient Differential Equation

Linear constant-coefficient differential equation is the mathematical repression of a continuous-time LTI system.

Classical Solution of Differential Equations

$$C_{0} \frac{d^{n} r(t)}{dt^{n}} + C_{1} \frac{d^{n-1} r(t)}{dt^{n-1}} + \dots + C_{n-1} \frac{dr(t)}{dt} + C_{n} r(t)$$

$$= E_{0} \frac{d^{m} e(t)}{dt^{m}} + E_{1} \frac{d^{m-1} e(t)}{dt^{m-1}} + \dots + E_{m-1} \frac{de(t)}{dt} + E_{m} e(t)$$

$$(1)$$

$$C_0 \frac{d^n r(t)}{dt^n} + C_1 \frac{d^{n-1} r(t)}{dt^{n-1}} + \dots + C_{n-1} \frac{dr(t)}{dt} + C_n r(t) = 0$$
 (2)

- Homogeneous solution (natural response)
 - 1. Characteristic equation

$$C_0 \alpha^n + C_1 \alpha^{n-1} + \dots + C_{n-1} \alpha + C_n = 0$$
(3)

- 2. **Characteristic roots** $\alpha_1, \alpha_2, \dots, \alpha_n$ satisfy tje characteristic equation
- 3. Homogeneous solution

$$r_h(t) = \sum_{i=1}^n A_i e^{lpha_i t}$$

If $lpha_1$ is the k-th repeated roots, then there will be k number of $lpha_1$: $\sum_{i=1}^k A_i t^{k-i} e^{lpha_1 t}$

- Particular solution (forced response)
 - 1. Table look-up

Exciting $\boldsymbol{e}(t)$	Response $\boldsymbol{r}(t)$
t^p	$B_1 t^p + B_2 t^{p-1} + L + B_p t + B_{p+1}$
$e^{lpha t}$	$Be^{lpha t}$
$\sin(\omega t)/\cos(\omega t)$	$B_1\sin(\omega t)+B_2\cos(\omega t)$
$t^p e^{\alpha t} \sin(\omega t) / \ t^p e^{\alpha t} \cos(\omega t)$	$(B_1t^p+B_2t^{p-1}+L+B_pt+B_{p+1})e^{lpha t}\sin(\omega t)+(D_1t^p+D_2t^{p-1}+L+D_pt+D_{p+1})e^{lpha t}\cos(\omega t)$

- Auxiliary conditions (initial conditions)
 - 1. Determine the coefficients

$$r(t_0), \frac{dr(t_0)}{dt}, \frac{d^2r(t_0)}{dt^2}, L, \frac{d^{n-1}r(t_0)}{dt^{n-1}}$$

2.2 Partial Initial Conditions

The Law of Switching

$$v_c(0_-)=v_c(0_+),\ i_L(0_-)=i_L(0_+)$$

Impulse Function Matching Method

$$\delta(t)$$
 $\delta'(t)$ $\delta''(t)$...

The Laplace Transform

$$X(s) = \int_0^\infty x(t) e^{-st} \mathrm{d}t$$