9. | a)
$$\hat{\chi}(b) = \mu_1 \phi(\gamma_{e-M}) = 10.8 + (-0.5)(12.2 - 10.8) = 10.1$$
b) $\hat{\chi}_{1}(a) = \lambda_{1} \phi(\hat{\chi}_{1}(a) - \lambda_{2}) = 10.8 + (-0.5)(10.1 - 10.8) = 11.15$
 $\hat{\gamma}_{1}(a) = \lambda_{1} \phi(\hat{\chi}_{1}(a) - \lambda_{2}) = 10.8 + (-0.5)^{2}(12.2 - 10.8) = 11.15$
c) $\hat{\chi}_{1}(a) = \lambda_{1} \phi(\hat{\chi}_{1}(a) - \lambda_{2}) = 10.8 + (-0.5)^{2}(12.2 - 10.8) = 10.801$

6. 2 a) $\hat{\chi}_{1} = 5 + 1.1 \hat{\chi}_{1-1} - 0.5 \hat{\chi}_{1-2} = \frac{10.8}{10.801} = 10.801$

6. 2 a) $\hat{\chi}_{1} = 5 + 1.1 \hat{\chi}_{1-1} - 0.5 \hat{\chi}_{1-2} = \frac{10.8}{10.801} = 0.5(1) = 10.5 \hat{\chi}_{1}(10.5) = 0.5(10)$

10.3	Y	L= a+h	t +5, +	X,	ARTMA	Lp,0,4) + (P.I.	(a),			
				-) - (A+			3		
		-				6-5 bs			.f-2		
				_	_	-	1 13/6				
		MIZZN	M(p, c),q)×(P,0,0)	5					
		N.									
10.5	(w)			-	r I	16-5 + e		_ ,			
		76-,	le-4 = (3.57 ₆₋₁	,-0.54	-5+et-	0.306-1				
			-	0.5(4	6-1- 4-4)·ce-	v.3e _{l-1}				
		1 5 = 0	.5 θ _i =	0.3	ARIMA	(1,0,1)×	(0,1,0)	4			
	<i>b</i>)	Y6= Y	6-1 + 1/6-	12-YE-	13 + CE-	0.5e6-1	-0.54-	12+0.29	C4-13		
						et- 0.5				L-12	
					:	e, -0.5	(e,)	er) +	(0.5X0	1.5)413	
		0,0	5 9	0.5		(0,1,1)				613	
					1 112 22 41			12			