Lecture 30: Morphisms of varieties

Prop: The set of ratil functions on a projective variety $X \subseteq \mathbb{P}$ is a field denoted k(X). In fact, $k(X) = \begin{cases} \frac{1}{9} | F, G \in k[X_0, -, X_n] \text{ homogen of the same degree, } \\ G \notin \mathcal{J}(X) \end{cases}$ $G \notin \mathcal{J}(X) = \begin{cases} \frac{1}{9} | F, G \in k[X_0, -, X_n] \text{ homogen of the same degree, } \\ G \notin \mathcal{J}(X) \end{cases}$ $G \notin \mathcal{J}(X)$ $G \notin \mathcal{J}(X)$ $G \notin \mathcal{J}(X)$

Prop: Let $P \in X \subseteq P''$ be a point of a proj von X. Then $O_{X,P} = \{ f \in k(X) | f \text{ is pregular at } P \} \text{ is a local pigwith}$ maximal ideal $M = \{ f \in O_{X,P} | f(P) = 0 \}$.

Let be a grafil func on P

sit of is regular at all points

Then f is const.

Then f is const.

Then f is const.

Then f is a grational function on P.

Then f is a grational function on P.

Xo E k (Xo,-, Xn) is not a grational function on P.

Xo E k (Xo,-, Xn) is not a grational function on P.

Xo E k (Xo,-, Xn) is not a grational function on P.

When X S P a proj van & U. S P given by Xo # 0 then

k (Uo N X) = k(X) if UN X # P.

Exz: XCP2 $\frac{1}{Z}\left(\chi_{x}^{2}\chi_{1}+\chi_{1}^{2}\chi_{2}+\chi_{0}\chi_{2}^{2}\right)$ (X_bX₁ + X₁X₂ + X₆X₂) = k + (k X₆+k X₁+kX₂) + (deg z terms)

(X_bX₁ + X₁X₂ + X₆X₂)

Deg 3 terms

(X_bX₁ + X₁X₂ + X₆X₂) homoger coordinate hing of X is K[X01X1,X2] Let $\chi_1 = \frac{\chi_1}{\chi} & \chi_2 = \frac{\chi_2}{\chi_*}$ Igek(X) & deg f = d then f = \frac{1}{9} = \frac{\tilde{\chi}}{9} $= \left\{ (1, \overline{\chi}_1, \overline{\chi}_2) \middle/ g(1, \overline{\chi}_1, \overline{\chi}_2) \right\}$ where $f(1,\overline{x}_1,\overline{x}_2) + g(1,\overline{x}_1,\overline{x}_2)$ = k[x,xz] (x,+x²xz+x²) (x,+x²xz+x²) coordinate ring of UonX {X, +0} in P2

Def A map $Q: X \rightarrow Y$ between varieties is said to be a morphism if \exists an affine open cover $\{V_i\}$ of Y s.t. $P(U_i) \subseteq V_i$ and affine open cover $\{V_i\}$ of Y s.t. $P(U_i) \subseteq V_i$ and $P(U_i) \subseteq V_i$ is a morphism of affine and $P(U_i) \subseteq V_i$ is a morphism of affine varieties. $\{V_i\} \in Y_i \in Y_i$

0: P' -> P' @ [a,a] -> [a,a] $O(O_0) = V_1$ $\phi(Q_i) = V_o$ $\left(1, \frac{\alpha_1}{\alpha_0}\right) \mapsto \left[\frac{\alpha_1}{\alpha_4}, \frac{1}{1}\right]$ So Plus indeed a workphism

(ii)
$$\varphi([a,a]) \rightarrow [a,a,a]$$

$$\varphi(V) \subseteq V_{0}$$

$$\varphi(V_{0}) \subseteq V_{0}$$