TD n°5

Algorithme de Glushkov et Lemme d'Arden

De l'Expression Rationnelle à l'Automate - Algorithme de Glushkov

Exercice 1 Utiliser l'algorithme de Glushkov pour trouver des automates reconnaissant les langages décrits par les expressions rationnelles suivantes.

- $E_1 = (a + ba + bba)^*,$
- $-E_2 = (a + ba + bba)^* (\epsilon + b + bb),$
- $-E_3=(aa+b)^*,$
- $-E_4 = (aa+b)^*(a+bb)^*,$ $-E_5 = (aa+bb+(ab+ba)(aa+bb)^*(ab+ba))^*.$
- $E_6 = (a^*b^*)^*,$
- $E_7 = b(ab)^* + (ba)^*b,$
- $-E_8 = (a+bb)^*(b+aa)^*$

De l'Automate à l'Expression Rationnelle - Lemme d'Arden

Exercice 2 (Lemme d'Arden) Utiliser le lemme d'Arden pour résoudre le système d'équations suivant:

$$\begin{cases}
L_1 = aL_2 + bL_4 \\
L_2 = aL_4 + bL_3 \\
L_3 = (a+b)L_3 + \epsilon \\
L_4 = aL_4 + \epsilon
\end{cases}$$

Exercice 3 (De l'Automate à l'Expression Rationnelle) Pour chacun des trois automates donnés au-dessous :

- 1. Déterminer le système d'équations associé à A_i .
- 2. Résoudre ce système en utilisant le lemme d'Arden. En déduire une expression rationnelle pour le langage $\mathcal{L}(\mathcal{A}_i)$.

Compléments - Rappels

Exercice 4 On considère l'alphabet $\Sigma = \{a, b\}$. Prouver l'égalité suivante :

$$(ab)^+ = (a\Sigma^* \cap \Sigma^* b) \setminus (\Sigma^* aa\Sigma^* + \Sigma^* bb\Sigma^*).$$

Exercice 5 (Propriétés de Clôture de Rec) Montrer que les langages reconnaissables sont clos sous les opérations suivantes :

- 1. Différence ensembliste : $X \setminus Y = \{x \mid x \in X \text{ et } x \notin Y\}$
- 2. Différence ensembliste symmétrique : $X \triangle Y = \{x \mid x \in X \text{ et } x \notin Y, \text{ ou } x \in Y \text{ et } x \notin X\}$

Exercice 6 (Clôture par Morphisme) Un morphisme de mot est une fonction $\varphi: \Sigma_1^* \mapsto \Sigma_2^*$ qui envoie un mot sur l'alphabet Σ_1^* vers un mot sur l'alphabet Σ_2^* telle que pour tout $u, v \in \Sigma_1^*$, $\varphi(u \cdot v) = \varphi(u) \cdot \varphi(v)$.

Montrer que si \mathcal{L} est un langage reconnaissable, alors $\phi(\mathcal{L})$ est reconnaissable.