화학 General Chemistry 034.020-005

2018 Spring Semester

Tue/Thr 9:30~10:45 Building 028-302

송윤주 woonjusong@snu.ac.kr

What is happening to the ions?

AgCl (s)
$$\longleftrightarrow$$
 Ag⁺ (aq) + Cl⁻(aq)

$$K = [Ag^+][Cl^-] = K_{sp} (AgCl) = 1.6 \times 10^{-10}.$$
Solubility product (K_{sp})

 Ag_2CrO_4 molar solubility at 25 °C is 65 µmol/L. What is the Ksp of Ag_2CrO_4 at 25 °C?

Q₀ (reaction quotient) =
$$[Ag+]_0[CI-]_0$$
 AgCl (s) \longleftrightarrow Ag⁺ (aq) + Cl⁻(aq)
 $K = [Ag^+][CI^-] = K_{sp}$ (AgCl) = 1.6 x 10⁻¹⁰

A salt precipitates if Q_{sp} is greater than K_{sp}

$$[Ag+]_0 = 0.0015 M$$

 $[Cl-]_0 = 5.0 \times 10^{-6} M$

$$Q=[Ag+][CI-] = 7.5 \times 10^{-9} > Ksp$$

Precipitation occurs!

How much remains in solution after the precipitation?

Solubility Equilbia 12.1. The Solubility Product

- Solubility product (K_{sp}) in a saturated solution

Ex)
$$Bi_2S_3(s) \leftrightarrow 2Bi^{3+}(aq) + 3S^{2-}(aq)$$

$$K_{sp} \equiv \frac{(a_{Bi^{3+}})^2 \cdot (a_{S^{2-}})^3}{a_{Bi_2S_2}} \approx [Bi^{3+}]^2 \cdot [S^{2-}]^3$$

- Ksp is typically used for insoluble or slightly soluble salts: low Ksp values

TABLE 12.4 Solubility Products at 25°C

Compound	Formula	K_{sp}	Compound	Formula	K_{sp}
aluminum hydroxide	Al(OH) ₃	1.0×10^{-33}	lead(II) fluoride	PbF ₂	3.7×10^{-8}
antimony sulfide	Sb_2S_3	1.7×10^{-93}	iodate	$Pb(IO_3)_2$	2.6×10^{-13}
barium carbonate	$BaCO_3$	8.1×10^{-9}	iodide	PbI ₂	1.4×10^{-8}
fluoride	BaF ₂	1.7×10^{-6}	sulfate	PbSO ₄	1.6×10^{-8}
sulfate	BaSO ₄	1.1×10^{-10}	sulfide	PbS	8.8×10^{-29}
bismuth sulfide	Bi_2S_3	1.0×10^{-97}	magnesium ammonium phosphate	$MgNH_4PO_4$	2.5×10^{-13}
calcium carbonate	$CaCO_3$	8.7×10^{-9}	carbonate	$MgCO_3$	1.0×10^{-5}
fluoride	CaF ₂	4.0×10^{-11}	fluoride	MgF_2	6.4×10^{-9}
hydroxide	$Ca(OH)_2$	5.5×10^{-6}	hydroxide	$Mg(OH)_2$	1.1×10^{-11}
sulfate	$CaSO_4$	2.4×10^{-5}	mercury(I) chloride	Hg_2Cl_2	2.6×10^{-18}
chromium(III) iodatc	$Cr(IO_3)_3$	5.0×10^{-6}	iodide	Hg_2I_2	1.2×10^{-28}
copper(I) bromide	CuBr	4.2×10^{-8}	mercury(II) sulfide, black	HgS	1.6×10^{-52}
chloride	CuCl	1.0×10^{-6}	sulfide, red	HgS	1.4×10^{-53}
iodide	CuI	5.1×10^{-12}	nickel(II) hydroxide	$Ni(OH)_2$	6.5×10^{-18}
sulfide	Cu ₂ S	2.0×10^{-47}	silver bromide	AgBr	7.7×10^{-13}
copper(II) iodate	$Cu(IO_3)_2$	1.4×10^{-7}	carbonate	Ag_2CO_3	6.2×10^{-12}
oxalate	CuC ₂ O ₄	2.9×10^{-8}	chloride	AgCl	1.6×10^{-10}
sulfide	CuS	1.3×10^{-36}	hydroxide	AgOH	1.5×10^{-8}
iron(II) hydroxide	$Fe(OH)_2$	1.6×10^{-14}	iodide	AgI	8×10^{-17}
sulfide	FeS	6.3×10^{-18}	sulfide	Ag_2S	6.3×10^{-51}
iron(III) hydroxide	$Fe(OH)_3$	2.0×10^{-39}	zinc hydroxide	$Zn(OH)_2$	2.0×10^{-17}
lead(II) bromide	$PbBr_2$	7.9×10^{-5}	sulfide	ZnS	1.6×10^{-24}
chloride	PbCl ₂	1.6×10^{-5}			

T A B L E 16.2

Solubility Product Constants $K_{\rm sp}$ at 25°C

Iodates AgIO ₃ CuIO ₃ Pb(IO ₃) ₂	-1	$[Ag^{+}][IO_{3}^{-}] = 3.1 \times 10^{-8}$ $[Cu^{+}][IO_{3}^{-}] = 1.4 \times 10^{-7}$ $[Pb^{2+}][IO_{3}^{-}]^{2} = 2.6 \times 10^{-13}$
Carbonate: Ag ₂ CO ₃ BaCO ₃ CaCO ₃ PbCO ₃ MgCO ₃ SrCO ₃	-2	$\begin{split} [Ag^+]^2[CO_3^{2^-}] &= 6.2 \times 10^{-12} \\ [Ba^{2^+}][CO_3^{2^-}] &= 8.1 \times 10^{-9} \\ [Ca^{2^+}][CO_3^{2^-}] &= 8.7 \times 10^{-9} \\ [Pb^{2^+}][CO_3^{2^-}] &= 3.3 \times 10^{-14} \\ [Mg^{2^+}][CO_3^{2^-}] &= 4.0 \times 10^{-5} \\ [Sr^{2^+}][CO_3^{2^-}] &= 1.6 \times 10^{-9} \end{split}$
Chromates Ag ₂ CrO ₄ BaCrO ₄ PbCrO ₄	-2	$[Ag^{+}]^{2}[CrO_{4}^{2-}] = 1.9 \times 10^{-12}$ $[Ba^{2+}][CrO_{4}^{2-}] = 2.1 \times 10^{-10}$ $[Pb^{2+}][CrO_{4}^{2-}] = 1.8 \times 10^{-14}$
Oxalates CuC ₂ O ₄ FeC ₂ O ₄ MgC ₂ O ₄ PbC ₂ O ₄ SrC ₂ O ₄	-2	$\begin{split} &[Cu^{2^+}][C_2O_4^{2^-}] = 2.9 \times 10^{-8} \\ &[Fe^{2^+}][C_2O_4^{2^-}] = 2.1 \times 10^{-7} \\ &[Mg^{2^+}][C_2O_4^{2^-}] = 8.6 \times 10^{-5} \\ &[Pb^{2^+}][C_2O_4^{2^-}] = 2.7 \times 10^{-11} \\ &[Sr^{2^+}][C_2O_4^{2^-}] = 5.6 \times 10^{-8} \end{split}$
Sulfates BaSO ₄ CaSO ₄ PbSO ₄	-2	$\begin{aligned} [Ba^{2^+}][SO_4^{2^-}] &= 1.1 \times 10^{-10} \\ [Ca^{2^+}][SO_4^{2^-}] &= 2.4 \times 10^{-5} \\ [Pb^{2^+}][SO_4^{2^-}] &= 1.1 \times 10^{-8} \end{aligned}$

Fluorides BaF ₂ CaF ₂ MgF ₂ PbF ₂ SrF ₂	-1	$[Ba^{2+}][F^{-}]^{2} = 1.7 \times 10^{-6}$ $[Ca^{2+}][F^{-}]^{2} = 3.9 \times 10^{-11}$ $[Mg^{2+}][F^{-}]^{2} = 6.6 \times 10^{-9}$ $[Pb^{2+}][F^{-}]^{2} = 3.6 \times 10^{-8}$ $[Sr^{2+}][F^{-}]^{2} = 2.8 \times 10^{-9}$
Chlorides AgCl CuCl Hg ₂ Cl ₂	-1	$[Ag^{+}][CI^{-}] = 1.6 \times 10^{-10}$ $[Cu^{+}][CI^{-}] = 1.0 \times 10^{-6}$ $[Hg_{2}^{2+}][CI^{-}]^{2} = 1.2 \times 10^{-18}$
Bromides AgBr CuBr Hg ₂ Br ₂	-1	$[Ag^{+}][Br^{-}] = 7.7 \times 10^{-13}$ $[Cu^{+}][Br^{-}] = 4.2 \times 10^{-8}$ $[Hg_{2}^{2+}][Br^{-}]^{2} = 1.3 \times 10^{-21}$
l odides AgI CuI PbI ₂ Hg ₂ I ₂	-1	$[Ag^{+}][I^{-}] = 1.5 \times 10^{-16}$ $[Cu^{+}][I^{-}] = 5.1 \times 10^{-12}$ $[Pb^{2+}][I^{-}]^{2} = 1.4 \times 10^{-8}$ $[Hg_{2}^{2+}][I^{-}]^{2} = 1.2 \times 10^{-28}$
Hydroxide AgOH Al(OH) ₃ Fe(OH) ₂ Mg(OH) ₂ Mn(OH) ₂ Zn(OH) ₂	-1	$[Ag^{+}][OH^{-}] = 1.5 \times 10^{-8}$ $[Al^{3+}][OH^{-}]^{3} = 3.7 \times 10^{-15}$ $[Fe^{3+}][OH^{-}]^{3} = 1.1 \times 10^{-36}$ $[Fe^{2+}][OH^{-}]^{2} = 1.6 \times 10^{-14}$ $[Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}$ $[Mn^{2+}][OH^{-}]^{2} = 2.0 \times 10^{-13}$ $[Zn^{2+}][OH^{-}]^{2} = 4.5 \times 10^{-17}$

Solubility of ionic solids

Molar solubility

- Moles of solids that can maximally dissolve in1 liter of water
- Gram solubility
 - = grams of solids that can dissolve in 1 liter of water.
- Solubilities of most of ionic salts increase with T.
- The changes are not smooth because different solid hydrates from over different temperature ranges.
- Typically when the solubility at 25 °C is less than 0.1g/L: insoluble. More than 10g/L: soluble.

12.2. The Common-Ion Effects

- Common-Ion Effect: the suppression of the degree of dissociation of a weak electrolyte containing a common ion according to Le Chatelier's principle.

Example

Estimate the solubility of AgCl in 10⁻⁴ M NaCl (aq) at 25 °C.

Common ion effect

$$MX \leftarrow \rightarrow M^+ + X^-$$

$$MY \leftarrow \rightarrow M^+ + Y^-$$

if there's already some amount of common ion in the solution, the solubility is **further reduced**.

More AgCl precipitates

Earlier precipitation

0.1 M, 1 liter, NaCl solution

Amount of AgCl that can dissolve = x.

$$[Ag^{+}]_{eq} =$$
 , $[CI^{-}]_{eq} =$

Addition of AgCl onto pure water:

Dominant equilibrium in precipitation reactions:

AgCl \longleftrightarrow Ag⁺ + Cl⁻ NaCl \longleftrightarrow Na⁺ + Cl⁻, Dominant eq.

[Cl-] is determined by the amount a of NaCl we put in.

12.3. Predicting Precipitation

- If Q_{sp} is greater than K_{sp} , then a salt precipitates.

Example.

When 0.150 L of 0.10 M Pb(NO_3)₂ (aq) and 0.100 L of 0.20 M NaCl are mixed. Will lead(II) chloride, PbCl₂ precipitate?

12.4. Selective Precipitation

- Separation of different cations in solution
- : add a soluble salt containing an **anion** with which the cation form insoluble salts.
- → If the insoluble salts have sufficiently different solubilities, they will precipitate at different anion concentrations and can be collected separately.

Example

A sample of seawater contains 0.050 mol/L Mg²⁺ (aq) and 0.010 mol/L Ca²⁺ (aq). (a) Determine the order in which ion precipitates as solid NaOH is added, and give the concentration of OH⁻ when precipitation of each begins. (b) Calculate the concentration of the first ion when the second one starts to precipitate.

Selective precipitation

Mixture of lead and silver ions → We want to separate Pb and Ag ions

Addition of x-M of Cl⁻:

Ag⁺ + Cl⁻
$$\longleftrightarrow$$
 AgCl, K_{sp} = 1.6 x 10⁻¹⁰
Pb²⁺ + 2Cl⁻ \longleftrightarrow PbCl₂, K_{sp} = 2.4 x 10⁻⁴

What is the appropriate amount of Cl⁻ that will precipitate nearly all of Ag⁺ while keeping all of the Pb²⁺ in solution?

AgCl(s)
PbCl₂(s)

AgCl(s)
PbCl₂(s)

AgCl(s)
No PbCl₂(s) $Q = K_{sp}$ for AgCl

No AgCl(s)
No PbCl₂(s)

No PbCl₂(s)

AgCl(s)
No PbCl₂(s)

I0⁻⁸

I0⁻¹⁰

Chloride ion concentration (mol L⁻¹)

Maximum conc. of Cl- before the PbCl₂ precipitation is:

At this [CI-], the amount of Ag+ ions remaining is:

12.5. Dissolving Precipitates

- Ion removal

: A precipitate will dissolve if one of the ions in the solubility equilibrium are removed.

Ex 1)
$$Fe(OH)_3(s) \Longrightarrow Fe^{3+}(aq) + 3 OH^{-}(aq)$$

Adding acid to remove the OH^{-} ions

Ex 2)
$$ZnCO_3(s) \rightleftharpoons Zn^{2+}(aq) + CO_3^{2-}(aq)$$

Adding nitric acid to form CO_2
 $CO_3^{2-}(aq) + 2 HNO_3(aq) \longrightarrow CO_2(g) + H_2O(l) + 2 NO_3^{-}(aq)$

Ex 3) CuS(s)
$$\rightleftharpoons$$
 Cu²⁺(aq) + S²⁻(aq)
Adding nitric acid to form S
3 S²⁻(aq) + 8 HNO₃(aq) \longrightarrow 3 S(s) + 2 NO(g) + 4 H₂O(l) + 6 NO₃⁻(aq)

Effect of pH on solubility

Some solids are only weakly soluble in water but dissolve readily in acidic solutions.

$$CaCO_3(s) + H^+ (aq) \rightarrow Ca_2^+ + HCO_3^-$$

* Solubility of metal hydroxides depends on pH

$$Zn(OH)_2$$
 (s) $\leftarrow \rightarrow Zn^{2+}(aq) + 2OH^-(aq)$

In pure water,

If the solution is buffered at pH = 6,

Some metal ions react with water molecules

```
Fe(NO<sub>3</sub>)<sub>3</sub> (iron nitrate) \rightarrow Fe<sup>3+</sup> + 3NO<sub>3</sub><sup>3-</sup>

Fe<sup>3+</sup> + 6H<sub>2</sub>O \longrightarrow Fe (H<sub>2</sub>O)<sub>6</sub><sup>3+</sup> (inorganic complex)

Fe (H<sub>2</sub>O)<sub>6</sub><sup>3+</sup> \longrightarrow Fe (H<sub>2</sub>O)<sub>5</sub>(HO)<sup>2+</sup> + H<sup>+</sup> (Fe ion breaks O-H bond of H<sub>2</sub>O ligand)
```

TABLE 16.5 pH of 0.1 M
Aqueous Metal Nitrate
Solutions at 25°C

Metal Nitrate	PH
Fe(NO ₃) ₃	1.6
$Pb(NO_3)_2$	3.6
$Cu(NO_3)_2$	4.0
$Zn(NO_3)_2$	5.3
$Ca(NO_3)_2$	6.7
NaNO₃	7.0
0.0007 79 17 17 17 17	

© 2007 Thomson Higher Education

If the ions are conjugate bases of weak acids,

$$CaF_2(s) \leftarrow \rightarrow Ca^{2+} + 2F^- (aq) Ksp=3.9 x 10^{-11}.$$

The F- can react with H+:

$$H^+ + F^- \leftarrow \rightarrow HF (aq)$$
 $K = 1/Ka = 2.9 \times 10^3$.

The same thing does not happen to $CaCl_2$. Why? $CaCl_2(s) \leftarrow \rightarrow Ca^{2+} + 2Cl^{-}(aq)$

12.6. Complex Ion Formation

- Coordination Complex
- The solubility of the salt is increased by the complex ion formation.

$$AgCl(s) \leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$
 $K_{sp} = [Ag^{+}][Cl^{-}] (\ll 1)$
 $Ag^{+}(aq) + 2NH_{3}(aq) \leftrightarrow Ag(NH_{3})_{2}^{+}$ $K_{f} = \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag^{+}][NH_{3}]^{2}} (\gg 1)$

Equilibrium

 $Ag^{+}(aq) + 2 CN^{-}(aq) \Longrightarrow Ag(CN)_{2}^{-}(aq)$ $Ag^{+}(aq) + 2 NH_{3}(aq) \Longrightarrow Ag(NH_{3})_{2}^{+}(aq)$ $Au^{+}(aq) + 2 CN^{-}(aq) \Longrightarrow Au(CN)_{2}^{-}(aq)$ $Cu^{2+}(aq) + 4 NH_{3}(aq) \Longrightarrow Cu(NH_{3})_{4}^{2+}(aq)$ $Hg^{2+}(aq) + 4 Cl^{-}(aq) \Longrightarrow HgCl_{4}^{2-}(aq)$ $Fe^{2+}(aq) + 6 CN^{-}(aq) \Longrightarrow Fe(CN)_{6}^{4-}(aq)$ $Ni^{2+}(aq) + 6 NH_{3}(aq) \Longrightarrow Ni(NH_{3})_{6}^{2+}(aq)$

5.6×10^{8}
1.6×10^{7}
2.0×10^{38}
1.2×10^{13}
1.2×10^{5}
7.7×10^{36}
5.6×10^{8}

 K_{f}

 $K_{\rm f}$: formation constant

Complexation Equilibrium

Ag⁺ (aq) + NH₃ (aq)
$$\longleftrightarrow$$
 Ag(NH₃)⁺ (aq) $K_1 = 2 \times 10^3$
Ag(NH₃)⁺ (aq) + NH₃ (aq) \longleftrightarrow Ag(NH₃)₂⁺ (aq) $K_2 = 8 \times 10^3$
Ag⁺ (aq) + 2NH₃ (aq) \longleftrightarrow Ag(NH₃)₂⁺ (aq) $K_2 = K_1 K_2 = 1.6 \times 10^7$

Solubility of AgBr in ammonia solution is greatly increased by the addition of ligands.

Solubility of AgBr in 1.00 M ammonia solution?

Molar solubility of AgCl in 0.10 M NH₃ (aq) solution.

12.7. Qualitative Analysis

Step	Possible precipitate	K_{sp}
1) Add HCl(aq)	AgCl	1.6×10^{-10}
	Hg_2Cl_2	1.3×10^{-18}
	PbCl ₂	1.6×10^{-5}
		0.000
2) Add H ₂ S(aq)	Bi_2S_3	1.0×10^{-97}
(in acid solution, there is a	CdS	4.0×10^{-29}
low S ²⁻ concentration)	CuS	7.9×10^{-45}
	HgS	1.6×10^{-52}
	Sb_2S_3	1.6×10^{-93}
3) Add base to H ₂ S(aq)	FeS	6.3×10^{-18}
(in basic solution, there is a	MnS	1.3×10^{-15}
higher S ²⁻ concentration)	NiS	1.3×10^{-24}
	ZnS	1.6×10^{-24}

