福州大学 2015~2016 学年第一学期考试 A 卷

课程名	名称	数学 A	学 A 考试日期			2016.1. 2	21	
考生姓名			学号			_专业或类别		
	题号	- <u>=</u> <u>=</u>		四	总分	累分人 签名		
	题分	20	20	28	32	100	系尔八 金石 	
	得分							
考生注意事项: 1、本试卷共 <u>10</u> 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 教师注意事项: 如果整门课程由一个教师评卷的,只需在累分人栏目签名,题首的评卷人栏目可不签名 一、 填空题(每空 2 分,共 20 分) 【得分】评卷人 【记录》								
3、设 G 是具有 8 个顶点的树,则 G 中增加条边才能把 G 变成无向完全图。								
4、设图	4、设图 $G=,E>, V =n, E =m。k 度顶点有 n_k个,且每个顶点或是 k 度$							
顶点或是 k +1 度顶点。则 n_k =。								

5、设 $A = \{0,1\}$, N为自然数集, $f(x) = \begin{cases} 0, & x$ 是奇数, 1, & x是偶数。

若 $f: A \rightarrow A$,则 f 是______ 射的,若 $f: N \rightarrow A$,则 f 是______ 射的。

- 7、设 $G = \{2^m * 3^n \mid m, n \in Z\}$,*为普通乘法。则代数系统<G,*>的单位元为___
- 8、论域 D={1, 2}, 指定谓词 P

P (1, 1)	P (1, 2)	P (2, 1)	P (2, 2)
T	T	F	F

则公式 $\forall x \exists y P(y,x)$ 真值为。

9、设代数系统<A, *>, 其中 A={a, b, c},

*	a	b	c
a	a	b	c
b	b	b	c
c	c	c	b

则该代数系统中的幂等元为。

单项选择题(每小题 2 分, 共 20 分)

得分	评卷人		

请将单项选择题答案统一写在下表,否则不予计分。

1	2	3	4	5	6	7	8	9	10

- 1、设 $A = \{x \mid x$ 是整数且 $x^2 < 16\}$,下面哪个命题为假()。

 - A, $\{0,1,2,4\}\subset A$; B, $\{-3,-2,-1\}\subset A$;
 - $C, \Phi \subset A$;
- D、 $\{x \mid x$ 是整数且 $|x| < 4\} \subseteq A$ 。
- 2、设 $A = \Phi$, $B = {\Phi, {\Phi}}$, 则 B—A 是(
- A, $\{\{\Phi\}\}\$; B, $\{\Phi\}\$; C, $\{\Phi, \{\Phi\}\}\$; D, Φ .
- 3、下图描述的偏序集中,子集 $\{b,e,f\}$ 的上界为 (

 - A, b, c; B, a, b;

 - C, b ; D, a,b,c

- 4、设f和g都是 X上的双射函数,则 $(f \circ g)^{-1}$ 为()。

 - A, $f^{-1} \circ g^{-1}$; B, $(g \circ f)^{-1}$; C, $g^{-1} \circ f^{-1}$; D, $g \circ f^{-1} \circ g^{-1}$

- 5、下面集合()关于减法运算是封闭的。
- A、N; B、 $\{2x \mid x \in Z\}$; C、 $\{2x+1 \mid x \in Z\}$; D、 $\{x \mid x$ 是质数 $\}$ 。

- 6、具有如下定义的代数系统< G.*>,() 不构成群。
 - A、 $G = \{1,10\}$,*是模 11 乘 ;
 - B、 $G = \{1,3,4,5,9\}$,*是模 11 乘;
 - $C \times G = Q$ (有理数集), *是普通加法;
 - $D \times G = O$ (有理数集),*是普通乘法。
- 7、设 $V = \{a, b, c, d, e, f\}$,

$$E = \{ \langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle a, d \rangle, \langle d, e \rangle, \langle f, e \rangle \}$$
,则有向图

- $G = \langle V, E \rangle$ 是()。
- A、强连通的: B、单侧连通的:
- C、弱连通的: D、不连通的。
- 8、下面那一个图可一笔画出(

)。

)。

- 9、在任何图中必定有偶数个(

 - A、度数为偶数的结点; B、入度为奇数的结点;

 - C、度数为奇数的结点; D、出度为奇数的结点。
- 10、在谓词演算中,下列各式哪个是正确的()。

 - A, $\exists x \exists y A(x, y) \Leftrightarrow \exists y \exists x A(x, y)$; B, $\exists x \exists y A(x, y) \Leftrightarrow \forall y \forall x A(x, y)$;
 - $C : \exists x \forall y A(x, y) \Leftarrow \forall y \exists x A(x, y) ; D : A(a) \Rightarrow \forall x A(x) .$

三、 解答题(每小题 7 分, 共 28 分)

得分	评卷人

1、求 $(\neg R \rightarrow (P \land Q)) \land (P \rightarrow Q) \lor (\neg Q \land \neg R)$ 的主析取范式。

2、已知 A 上的二元关系 R 满足 $R^n=R$,则 R, R^2 , R^3 ,…, R^n 中的哪个可确定具有可传递性? 并请说明或证明之。

4、设集合 A= { 1,2}, B 是 A 上的等价关系的集合。
(1) 列出 B 的元素;
(2) 给出代数系统: V= <b, ∩="">的运算表;</b,>
(3) 求出 V 的单位元、零元以及所有可逆元素的逆元;
(4) 说明 V 是否为半群、独异点和群。

四、 证明题(每小题 8 分, 共 32 分)

得分	评卷人

1、用谓词推理理论来论证下述推证。

前提: $(\forall x)(S(x) \rightarrow ((E(x) \land \neg P(x)) \lor (\neg E(x) \land P(x))))$

 $(\forall x) (S(x) \rightarrow (T(x) \leftrightarrow E(x)))$

 $\neg(\forall x) (S(x) \rightarrow T(x))$

结论: (∃x)(S(x) ∧P(x))

2、设 A 是集合,R⊆ A×A,则 R 是对称的 \Leftrightarrow R=R ⁻¹ 。	
3、设 G 为群,R 为 G 上的等价关系,且满足 $\forall a,b,c \in G, abRac \Rightarrow bRc$	
证明群 G 的单位元 e 的等价类[e]构成 G 的子群。	
而初供。由1十四年(日14月)公司43)260日111年。	

4、设 G 是具有 n 个结点的无向简单图,	其边数 $m = \frac{1}{2}(n-1)(n-2) + 2$,	则 G 是哈
密顿图。		