第 14 章

内積と計量空間

内積:ベクトルの「近さ」を返す関数

2 つのベクトルがどれくらい似ているかを議論するために、内積という尺度を導入しよう。

内積は、2 つのベクトルを引数にとり、その「近さ」を表すスカラー値を返す関数として定義する。

具体的な定義式を知る前に、「近さ」を測る道具として、どのような性質を持っていてほしいかを整理しておこう。

具体的な定義式は、その性質を満たすように「作る」ことにする。

内積の公理($\mathbb R$ 上の線形空間) $\mathbb R$ 上の線形空間 V を考え、 \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{w} ∈ V, $c \in \mathbb R$ とする。

2 つのベクトルを引数にとり、実数を返す関数 $(\cdot,\cdot): V \times V \to \mathbb{R}$ として、次の性質を満たすものを内積という。

対称性

 $(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{v}, \boldsymbol{u})$

双線形性 1. スカラー倍

$$(c\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},c\boldsymbol{v})=c(\boldsymbol{u},\boldsymbol{v})$$

双線形性 2. 和

$$(\boldsymbol{u} + \boldsymbol{w}, \boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v}) + (\boldsymbol{w}, \boldsymbol{v})$$

$$(\boldsymbol{u}, \boldsymbol{v} + \boldsymbol{w}) = (\boldsymbol{u}, \boldsymbol{v}) + (\boldsymbol{u}, \boldsymbol{w})$$

正定值性

$$(\boldsymbol{u}, \boldsymbol{u}) > 0, (\boldsymbol{u}, \boldsymbol{u}) = 0 \iff \boldsymbol{u} = \boldsymbol{0}$$

内積が定められた線形空間を、計量線形空間、または単に計量空間という。(計量空間の厳密 な定義は後に述べる。)

まずは、ここで示した内積の持つべき性質のそれぞれの意図を考えてみよう。

対称性

 $m{u}$ が $m{v}$ にどれくらい近いか?という視点で測っても、 $m{v}$ が $m{u}$ にどれくらい近いか?という視点で測っても、得られる「近さ」は同じであってほしい、という性質。

双線形件

どちらかのベクトルをスカラー倍してから「近さ」を測りたいとき、元のベクトルとの近さ を測っておいて、それを定数倍することでも目的の「近さ」を求められる、という性質。

また、ほかのベクトルを足してから「近さ」を測りたいとき、足し合わせたいベクトルそれ ぞれについて近さを測っておいて、それを合計することでも目的の「近さ」を求められる、 という性質。

これらは、近さを測るという「操作」と「演算」が入れ替え可能であるという、<mark>線形性</mark>と呼ばれる性質である。

2 つの引数 **u**, **v** のどちらに関しても線形性があるということで、「双」がついている。

正定值性

ベクトルの「近さ」とは、向きがどれくらい近いか、という尺度でもある。 同じ方向なら正の数、逆の方向なら負の数をとるのが自然だと考えられる。

自分自身との「近さ」を測るとき、自分と自分は完全に同じ向きであるから、その「近さ」は 正の数であるはずだ。

自分自身との「近さ」が 0 になるようなベクトルは、零ベクトル 0 だけである。

内積の正定値性より、自分自身との内積は次の性質を持つ。

- 常に正の数である
- 零ベクトルのときだけ O になる

零ベクトルのときだけ O になることから、自分自身との内積は、そのベクトル自身の大きさ (長さ)に応じてスケーリングする量なのではないか?と予想される。また、大きさを表す量 は、当然正の数である必要がある。

このように、内積の正定値性は、自分自身との内積を使ってそのベクトルの「大きさ」を測ることができることを示唆する性質と考えることができる。

ベクトルの「大きさ」を表現する量をノルムという。

ベクトルの「大きさ」の測り方 (ノルムの具体的な定義) はさまざま考えられ、用途によって 使い分けられるが、ノルムを名乗るものはどれも次の性質を満たすように作る必要がある。

ightharpoonup ノルムの公理 (m R 上の線形空間 m V を考え、 $m extbf{u}$, $m extbf{v}$ $\in V$, $c \in
m R$ とする。

非負性

$$\|\boldsymbol{u}\| \geq 0$$
, $\|\boldsymbol{u}\| = 0 \iff \boldsymbol{u} = \boldsymbol{0}$

斉次性

$$||c\boldsymbol{u}|| = |c|||\boldsymbol{u}||$$

三角不等式

$$\|u + v\| \le \|u\| + \|v\|$$

ノルムの非負性は、内積の正定値性そのものである。

斉次性についてはどうだろうか?

スカラー倍したベクトルの自身との内積を考えてみると、スカラー倍に対する内積の双線形性より、次のようになる。

$$(c\boldsymbol{u}, c\boldsymbol{u}) = c^2(\boldsymbol{u}, \boldsymbol{u})$$

これはノルムの斉次性を満たしていない。

自分自身との内積をそのままノルムとして使おうとすると、ベクトルをc倍したらその長さは c^2 倍されるという、不自然な定義になってしまう。

そこで、二乗を消すために平方根をとることで、斉次性も満たす量を得ることができる。

$$\sqrt{(c\boldsymbol{u},c\boldsymbol{u})} = \sqrt{c^2(\boldsymbol{u},\boldsymbol{u})} = |c|\sqrt{(\boldsymbol{u},\boldsymbol{u})}$$

このように自身との内積の平方根をとった形を、ベクトル **u** のノルムと定義することにする。

ightharpoonup ベクトルのノルム 計量空間 V 上のベクトル a のノルム (長さ) を次のよう に定義する。

$$\|\boldsymbol{a}\| = \sqrt{(\boldsymbol{a}, \boldsymbol{a})}$$

コーシー・シュワルツの不等式

内積の公理だけを用いて、次の重要な不等式を導くことができる。

♣ Theorem - コーシー・シュワルツの不等式 (ベクトルの内積)

計量空間 V 上のベクトル \boldsymbol{u} , \boldsymbol{v} に対して、次が成り立つ。

$$(\boldsymbol{u}, \boldsymbol{v})^2 \leq (\boldsymbol{u}, \boldsymbol{u})(\boldsymbol{v}, \boldsymbol{v})$$

証明

内積の正定値性より、任意の $t \in \mathbb{R}$ に対して、

$$(\boldsymbol{u} - t\boldsymbol{v}, \boldsymbol{u} - t\boldsymbol{v}) \geq 0$$

が成り立つ。

ここで、内積の双線形性を用いて左辺を展開すると、

$$(u, u) - 2t(u, v) + t^2(v, v) \ge 0$$

これは t についての 2 次式であり、実数全体で非負ということは判別式が非正でなければならない。

$$(-2(\mathbf{u}, \mathbf{v}))^2 - 4(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v}) \le 0$$

 $4(\mathbf{u}, \mathbf{v})^2 \le 4(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v})$

よって、両辺を4で割ると

$$(\boldsymbol{u}, \boldsymbol{v})^2 \leq (\boldsymbol{u}, \boldsymbol{u})(\boldsymbol{v}, \boldsymbol{v})$$

が得られる。

この不等式は、 \mathbf{u} と \mathbf{v} の近さを測って掛け合わせても、 \mathbf{u} 自身、 \mathbf{v} 自身との近さの積には勝てないことを表している。

$$(\boldsymbol{u}, \boldsymbol{v})(\boldsymbol{u}, \boldsymbol{v}) \leq (\boldsymbol{u}, \boldsymbol{u})(\boldsymbol{v}, \boldsymbol{v})$$

内積(の絶対値や2乗)は2つのベクトルが似ているほど大きくなり、2つのベクトルが 完全に一致する場合に最大となることを示唆しているようにも捉えられる。

このコーシー・シュワルツの不等式は、両辺の平方根をとることで、次のようにも書ける。

♣ Theorem - コーシー・シュワルツの不等式 (ベクトルのノルム)

計量空間 V 上のベクトル \boldsymbol{u} , \boldsymbol{v} に対して、次が成り立つ。

$$|(u, v)| \le ||u|| ||v||$$

コーシー・シュワルツの不等式は、絶対値の性質から、次のように書き換えられる。

$$-\|u\|\|v\| \le (u, v) \le \|u\|\|v\|$$

$$-1 \leq \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \leq 1$$

となるので、

$$\cos \theta = \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \quad (0 \le \theta \le \pi)$$

を介して **u**, **v** のなす角を定義できる。

ightharpoonup ベクトルのなす角 計量空間 V 上のベクトル \mathbf{u} , \mathbf{v} に対して、

$$\cos \theta = \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \quad (0 \le \theta \le \pi)$$

により定まる θ を \boldsymbol{u} , \boldsymbol{v} のなす角という。

内積が表す「関係の強さ」

ベクトルのなす角の式から、内積の幾何的な解釈を捉えることができる。

$$(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos \theta$$

この式を、次のような図でイメージしてみよう。

この図から、内積は次のようにも解釈できる。

v 自身の長さと、u の v 方向の長さの積である

ここで、「**u** の **v** 方向の長さ」は、後に正射影という量として定義する。

自分自身との内積の再解釈

 $m{v}$ と $m{u}$ が平行でまったく同じ方向を向いている場合、「 $m{u}$ の $m{v}$ 方向の長さ」は、 $m{u}$ の長さ そのものである。

$$\|\boldsymbol{u}\|\cos\theta = \|\boldsymbol{u}\|$$

また、このとき、 \boldsymbol{v} と \boldsymbol{u} は互いに正の数のスカラー倍で表すことができるので、

$$\|\boldsymbol{v}\| = k\|\boldsymbol{u}\| \quad (k > 0)$$

すると、内積は、

$$(\boldsymbol{u},\boldsymbol{v})=k\|\boldsymbol{u}\|^2$$

ここで、 $oldsymbol{v}=oldsymbol{u}$ の場合は、 $oldsymbol{u}$ を特にスケーリングしなくても $oldsymbol{v}$ に一致するので、 $oldsymbol{k}=1$ である。

$$(u, u) = ||u||^2$$

このように ${m u}$ の ${m u}$ 方向の長さは ${m u}$ 自身の長さであることから、自分自身との内積は 長さ 2 となる。

その平方根をとれば長さが得られるということで、ベクトルのノルムの定義

$$\|oldsymbol{u}\| = \sqrt{(oldsymbol{u},oldsymbol{u})}$$

を自然に解釈することができる。

平行の度合いと内積

同じ方向を向いているベクトルどうしは、平行に近ければ近いほど、これらは互いに似ていて「関係性の強い」ベクトルだといえる。

2 つのベクトルが同方向で完全に平行なとき、なす角 θ は 0 であるので、 $\cos\theta$ の値は 1 ($\cos\theta$ の最大値) となる。

つまり、同方向で平行に近い「似た」ベクトルほど、内積の値は最大値に近くなる。

逆方向と内積の符号

一方、2 つのベクトルが完全に平行で、逆の方向を向いているなら、片方のベクトルはもう 片方のベクトルを負の数を使ってスカラー倍したものになる。

逆向きのベクトルどうしは、近い方向どころかむしろ「かけ離れた方向を向いている」といえる。

内積が「向きの似ている度合い」なら、「近い方向を向いている」度合いを正の数で、「かけ 離れた方向を向いている」度合いを負の数で表すのが自然である。

実際、2 つのベクトルが逆向きで完全に平行なとき、 $\cos \theta$ の値は -1 ($\cos \theta$ の最小値) となる。

つまり、逆方向に近い「かけ離れた」ベクトルほど、内積の値は最小値に近くなる。

ベクトルの直交

「同じ向きに近い」場合と「逆向きに近い」場合が切り替わるのは、2 つのベクトルどうしが 垂直なときである。

ならば、内積の正と負が切り替わる境界、すなわち内積が 0 になる場合とは、2 つのベクトルが直交する場合であるのが自然ではないだろうか。

別な考え方として、完全に垂直な 2 つのベクトルは、互いに全く影響を与えない方向を向いている。

2 つのベクトルが直交している場合、2 つのベクトルは互いに全く関係がないものとして、 関係の強さを表す内積の値は 0 にしたい。

実際、内積の定義はこの解釈に沿うものになっている。

 \boldsymbol{u} と \boldsymbol{v} のなす角が直角であるとき、 $\cos \theta = 0$ となるので、内積も 0 になる。

幾何学的なイメージができない高次元の場合についても、内積が 0 になること、すなわち 2 つのベクトルが無関係であることを直交の定義としてしまおう。

ightharpoonup ベクトルの直交 計量空間 V 上のベクトル u, v に対して、

$$({\bf u},{\bf v})=0$$

が成り立つとき、 \boldsymbol{u} と \boldsymbol{v} は直交するといい、

 $\boldsymbol{u} \perp \boldsymbol{v}$

と表記する。

直交系と直交基底

 直交系と直交基底 計量空間 V の $\mathbf{0}$ でないベクトル $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ がど の $\mathbf{2}$ つも互いに直交する、すなわち、

$$(\boldsymbol{a}_i, \boldsymbol{a}_j) = 0 \quad (i \neq j)$$

が成り立つとき、 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ を直交系という 直交系が V の基底であるとき、直交基底と呼ばれる

直交系の線型独立性

♣ Theorem 14.1 - 直交系の線型独立性

計量空間の直交系 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ は線型独立である

≥ 証明

係数 $c_1, c_2, \ldots, c_n \in K$ を用いた線形関係式

$$c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \cdots + c_n \mathbf{a}_n = \mathbf{0}$$

を考える

このとき、 \boldsymbol{a}_{i} ($j=1,2,\ldots,n$) との内積をとると、

$$(c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \cdots + c_n \mathbf{a}_n, \mathbf{a}_i) = 0$$

内積の双線形性より、

$$c_1(\boldsymbol{a}_1, \boldsymbol{a}_j) + c_2(\boldsymbol{a}_2, \boldsymbol{a}_j) + \dots + c_n(\boldsymbol{a}_n, \boldsymbol{a}_j) = 0$$

$$\sum_{i=1}^n c_i(\boldsymbol{a}_i, \boldsymbol{a}_j) = 0$$

ここで、 \mathbf{a}_i は直交系であることから、 $i \neq j$ の場合、

$$(a_i, a_j) = 0$$

よって、 $i \neq j$ の項はすべて 0 になり、残るのは

$$c_i(\boldsymbol{a}_i, \boldsymbol{a}_i) = 0$$

ここで、直交系の定義より、 $\mathbf{a}_j \neq \mathbf{0}$ なので、

$$(\boldsymbol{a}_j, \boldsymbol{a}_j) \neq 0$$

よって、 $c_j=0$ でなければならず、これは $oldsymbol{a}_1,oldsymbol{a}_2,\ldots,oldsymbol{a}_n$ が線型独立であることを意味する

正規直交系と正規直交基底

正規直交系と正規直交基底 計量空間 V の $\mathbf{0}$ でないベクトル $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ が直交系であり、さらに、どのベクトルもそのノルムが $\mathbf{1}$ に 等しいとき、 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ を正規直交系という

正規直交系が V の基底であるとき、正規直交基底と呼ばれる

正規直交基底と内積

正規直交基底どうしの内積は、クロネッカーのデルタ記号を用いて、簡潔に表現できる

ightharpoonup クロネッカーのデルタ 次のように定義される δ_{ij} をクロネッカーのデルタという

$$\delta_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

予 Theorem - 正規直交基底同士の内積

計量空間 V の正規直交基底 e_1, e_2, \ldots, e_n の内積に関して、次が成り立つ

$$(e_i, e_j) = \delta_{ij}$$
 $(i, j = 1, 2, ..., n)$

証明 証明

 e_1, e_2, \ldots, e_n の直交性より、 $i \neq j$ のときは、

$$(e_i, e_i) = 0$$

$$(e_i, e_i) = ||e_i||^2 = 1$$

この場合分けとそれぞれの結果は、クロネッカーのデルタ記号の定義と一致する

正規直交基底による表現行列の展開

 \mathbb{R}^n から \mathbb{R}^m への線形写像は、ある $m \times n$ 型行列 A によって表現されるこれを定める基本的な方法は、

- 1. 定義域 \mathbb{R}^n に一つの正規直交基底(互いに直交する単位ベクトル) $\{ oldsymbol{u}_1, \ldots, oldsymbol{u}_n \}$ を定める
- 2. それぞれが写像されるべき m 次元ベクトル($oldsymbol{\$}$) $oldsymbol{a}_1, \ldots, oldsymbol{a}_n$ を指定する

という手順であり、このとき、行列 A は

$$A = \begin{pmatrix} \boldsymbol{a}_1 \\ \vdots \\ \boldsymbol{a}_n \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_n \end{pmatrix} = \boldsymbol{a}_1 \boldsymbol{u}_1^\top + \cdots + \boldsymbol{a}_n \boldsymbol{u}_n^\top$$

と書くことができる(Tは転置を表す)

♪ Theorem 14.2 - 正規直交基底による表現行列の展開

 \mathbb{R}^n から \mathbb{R}^m への線形写像 f の表現行列 A は、 \mathbb{R}^n の正規直交基底 $\{ \boldsymbol{u}_1, \ldots, \boldsymbol{u}_n \}$ を用いて、次のように表すことができる

$$A = \sum_{i=1}^n f(\boldsymbol{u}_i) \boldsymbol{u}_i^\top$$

実際、両辺に \mathbf{u}_i をかけると、

$$Aoldsymbol{u}_i = \sum_{j=1}^n oldsymbol{a}_j oldsymbol{u}_j^ op oldsymbol{u}_i = \sum_{j=1}^n oldsymbol{a}_j \delta_{ij} = oldsymbol{a}_i$$

より、

$$A\boldsymbol{u}_i = \boldsymbol{a}_i \quad (i = 1, \ldots, n)$$

が成り立つことがわかる

特に、 \mathbb{R}^n の正規直交基底として標準基底 $\{m{e}_1,\dots,m{e}_n\}$ を選ぶと、行列 A は次のように表せる

$$A = \sum_{i=1}^{n} \boldsymbol{a}_{i} \boldsymbol{e}_{i}^{\top}$$

$$= \begin{pmatrix} \boldsymbol{a}_{11} \\ \vdots \\ \boldsymbol{a}_{m1} \end{pmatrix} \begin{pmatrix} 1 & \cdots & 0 \end{pmatrix} + \cdots + \begin{pmatrix} \boldsymbol{a}_{1n} \\ \vdots \\ \boldsymbol{a}_{mn} \end{pmatrix} \begin{pmatrix} 0 & \cdots & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{a}_{11} & \cdots & \boldsymbol{a}_{1n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{a}_{m1} & \cdots & \boldsymbol{a}_{mn} \end{pmatrix}$$

すなわち、表現行列 A は、

像
$$oldsymbol{a}_1,\ldots,oldsymbol{a}_n$$
 を列として順に並べた行列 $\left(oldsymbol{a}_1 \ \cdots \ oldsymbol{a}_n
ight)$

\mathbb{R}^n 上の内積

内積の公理と、正規直交基底の内積をもとに、 \mathbb{R}^n 上の内積を作ることができる。

まず、任意のベクトル $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^n$ を、正規直交基底の一次結合として表そう。

$$oldsymbol{a} = a_1 oldsymbol{e}_1 + \dots + a_n oldsymbol{e}_n = \sum_{i=1}^n a_i oldsymbol{e}_i$$
 $oldsymbol{b} = b_1 oldsymbol{e}_1 + \dots + b_n oldsymbol{e}_n = \sum_{j=1}^n b_j oldsymbol{e}_j$

これらの内積を、双線形性を使って展開していく。

まず、和に関する双線形性より、「足してから内積を計算」と「内積を計算してから足す」は 同じ結果になるので、シグマ記号 ∑ を内積の外に出すことができる。

また、スカラー倍に関する双線形性より、定数 a_i , b_i も内積の外に出すことができる。

$$egin{aligned} (oldsymbol{a},oldsymbol{b}) &= \left(\sum_{i=1}^n a_i oldsymbol{e}_i, \sum_{j=1}^n b_j oldsymbol{e}_j
ight) \ &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j (oldsymbol{e}_i,oldsymbol{e}_j) \end{aligned}$$

正規直交基底の内積 (e_i, e_j) はクロネッカーのデルタ δ_{ij} で表せるので、次のように書き換えられる。

$$egin{align} oldsymbol{(a,b)} &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j (oldsymbol{e}_i, oldsymbol{e}_j) \ &= \sum_{i=1}^n \sum_{j=1}^n a_i b_j \delta_{ij} \ \end{aligned}$$

ここで、 δ_{ij} は $i \neq j$ のとき 0 になるので、i = j の項しか残らない。

$$(oldsymbol{a}, oldsymbol{b}) = \sum_{i=1}^n \sum_{j=1}^n a_i b_j \delta_{ij}$$

$$= \sum_{i=1}^n a_i b_i \delta_{ii}$$

 δ_{ii} は常に 1 なので、最終的に次のような式が得られる。

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^n a_i b_i$$

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^n a_i b_i$$

を \mathbb{R}^n 上の内積と呼ぶ。

数ベクトルの同じ位置にある数どうしをかけ算して、それらを足し合わせる、という形に なっている。

\mathbb{R}^n 上の内積の性質

逆に、このように定義した \mathbb{R}^n 上の内積が、内積の公理を満たしていることを確認してみよう。

* Theorem - \mathbb{R}^n 上の内積の双線形性

 \boldsymbol{u} , \boldsymbol{v} , \boldsymbol{u}_1 , \boldsymbol{u}_2 , \boldsymbol{v}_1 , $\boldsymbol{v}_2 \in \mathbb{R}^n$, $c \in \mathbb{R}$ に対して、以下が成立する

i.
$$(\boldsymbol{u}_1 + \boldsymbol{u}_2, \boldsymbol{v}) = (\boldsymbol{u}_1, \boldsymbol{v}) + (\boldsymbol{u}_2, \boldsymbol{v})$$

ii.
$$(c u, v) = c(u, v)$$

iii.
$$(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = (\boldsymbol{u}, \boldsymbol{v}_1) + (\boldsymbol{u}, \boldsymbol{v}_2)$$

iv.
$$(\boldsymbol{u}, c\boldsymbol{v}) = c(\boldsymbol{u}, \boldsymbol{v})$$

証明

行列のかけ算と和に関する分配法則、行列のスカラー倍についての性質から従う

* Theorem - \mathbb{R}^n 上の内積の対称性

 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ に対して、次が成り立つ

$$(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{v}, \boldsymbol{u})$$

証明

実数同士の乗算は可換であることから、 \mathbb{R}^n 上の内積の定義により

$$(oldsymbol{u},oldsymbol{v}) = \sum_{i=1}^n u_i v_i = \sum_{i=1}^n v_i u_i = (oldsymbol{v},oldsymbol{u})$$

となり、明らかに成り立つ

 $\mathbf{u} \in \mathbb{R}^n$ に対して、

であり、 $\mathbf{u} = \mathbf{0}$ のときに限り、等号が成立する

≥ 証明

内積の定義より、

$$(\boldsymbol{u}, \boldsymbol{u}) = \sum_{i=1}^n u_i^2 \geq 0$$

である

ここで現れた \boldsymbol{u}_i^2 は、 \boldsymbol{u}_i が 0 のときに限り 0 になるので、 $\boldsymbol{u}=\boldsymbol{0}$ のときに限り、

等号が成立する

\mathbb{C}^n 上の内積

複素数 z = a + bi に対して、

$$(a + bi)(a - bi) = a^2 + b^2 > 0$$

という式が成り立つ

このとき、a-bi を z の共役複素数といい、 \overline{z} と表記するまた、 $\sqrt{a^2+b^2}$ は z の絶対値と呼ばれ、|z| と表記する

すなわち、冒頭の不等式は、

$$|z|^2 = z\overline{z} > 0$$

と書き換えられる

このことを利用して、 \mathbb{C}^n 上の内積は、次のように定義すると \mathbb{R}^n の場合の自然な拡張になる

 $m{c}$ \mathbb{C}^n 上の内積(標準内積) $m{a}=(a_i)_{i=1}^n$, $m{b}=(b_i)_{i=1}^n\in\mathbb{C}^n$ に対して、

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^{n} a_i \overline{b_i}$$

を \mathbb{C}^n 上の内積と定義する

この内積は標準内積、あるいは標準エルミート内積とも呼ばれる

このように定めることで、特に、

$$(\boldsymbol{a}, \boldsymbol{a}) = \sum_{i=1}^{n} a_i \overline{a_i} = \sum_{i=1}^{n} |a_i|^2 \ge 0$$

であるので、 \mathbb{R}^n の場合と同様に、ベクトルの/ルムを定義できる

 \mathbb{R}^n 上の内積で成り立つ性質の多くは、 \mathbb{C}^n 上の内積でも成り立つが、対称性に関しては注意が必要である

3 Theorem 14.3 - 標準内積の対称性

 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^n$ に対して、次が成り立つ

$$(\boldsymbol{u}, \boldsymbol{v}) = \overline{(\boldsymbol{v}, \boldsymbol{u})}$$

証明

 $\frac{1}{z} = z$ をふまえると、

$$egin{align} \overline{(oldsymbol{v},oldsymbol{u})} &= \sum_{i=1}^n v_i \overline{u_i} \ &= \sum_{i=1}^n \overline{v_i} \overline{u_i} \ &= \sum_{i=1}^n \overline{v_i} u_i \ &= \sum_{i=1}^n u_i \overline{v_i} \ &= (oldsymbol{u},oldsymbol{v}) \end{aligned}$$

となり、目的の式が示された

複素数 z = a + bi において、b = 0 の場合、z は実数である このとき、a + 0i = a - 0i = a であるから、z が実数の場合、

$$\overline{z} = z$$

が成り立つ

よって、 $\boldsymbol{u},\,\boldsymbol{v}\in\mathbb{R}^n$ であるなら、 \mathbb{C}^n 上の内積の対称性の式は

$$(\boldsymbol{u},\boldsymbol{v}) = \overline{(\boldsymbol{v},\boldsymbol{u})} = (\boldsymbol{v},\boldsymbol{u})$$

と書き換えられ、これは \mathbb{R}^n 上の内積の対称性そのものである

つまり、 \mathbb{C}^n 上の内積の対称性は、 \mathbb{R}^n 上の内積の対称性も含んだ表現になっている

転置による内積の表現

内積は、転置を用いて表現することもできる

\$ Theorem 14.4 - 転置による内積の表現

$$(\boldsymbol{a}, \boldsymbol{b}) = {}^{t}\boldsymbol{a} \cdot \overline{\boldsymbol{b}} = (a_1, a_2, \ldots, a_n) \begin{pmatrix} \frac{b_1}{b_2} \\ \vdots \\ \overline{b_n} \end{pmatrix}$$

計量線形空間

内積の概念は、双線形性、対称性、正定値性を満たすものとして抽象化できる

計量線形空間 体 K 上の線形空間 V において、その任意の要素 \boldsymbol{a} , $\boldsymbol{b} \in V$ に対し、次の性質

i.
$$(\boldsymbol{a}, \boldsymbol{b}_1 + \boldsymbol{b}_2) = (\boldsymbol{a}, \boldsymbol{b}_1) + (\boldsymbol{a}, \boldsymbol{b}_2)$$

 $(\boldsymbol{a}_1 + \boldsymbol{a}_2, \boldsymbol{b}) = (\boldsymbol{a}_1, \boldsymbol{b}) + (\boldsymbol{a}_2, \boldsymbol{b})$

ii.
$$(ca, b) = c(a, b)$$

iii.
$$(\boldsymbol{a}, \boldsymbol{b}) = \overline{(\boldsymbol{b}, \boldsymbol{a})}$$

iv.
$$(\boldsymbol{a},\boldsymbol{a})\geq 0$$
, $(\boldsymbol{a},\boldsymbol{a})=0\Longrightarrow \boldsymbol{a}=\mathbf{0}$

を満たす K の要素 $(\boldsymbol{a}, \boldsymbol{b})$ がただ一つ定まるとき、 $(\boldsymbol{a}, \boldsymbol{b})$ を内積と呼び、V は計量線形空間、または単に計量空間であるという

内積の定義に

$$(\boldsymbol{a},c\boldsymbol{b})=c(\boldsymbol{a},\boldsymbol{b})$$

が含まれていないことに注意しよう

この式は、(ii) と (iii) から導ける上、 $K=\mathbb{C}^n$ の場合には成り立たない

 $K = \mathbb{C}^n$ の場合を含め、一般に次が成り立つ

♣ Theorem 14.5 - 内積の共役線形性

計量空間 V の要素 \boldsymbol{a} , \boldsymbol{b} の内積と $c \in K$ について、次の性質が成り立つ

$$(\boldsymbol{a}, c\boldsymbol{b}) = \overline{c}(\boldsymbol{a}, \boldsymbol{b}) \quad (c \in K)$$

≥ 証明

計量線形空間の定義の (ii) と (iii) を用いて、

$$(\boldsymbol{a}, c\boldsymbol{b}) = \overline{(c\boldsymbol{b}, \boldsymbol{a})}$$

$$= \overline{c}(\boldsymbol{b}, \boldsymbol{a})$$

$$= \overline{c}(\boldsymbol{a}, \boldsymbol{b})$$

となる