

UNIVERSIDAD AUTÓNOMA DE CHIAPAS, TUXTLA GUTIÉRREZ A 2024-01-29 FACULTAD DE SISTEMAS. INGENIERÍA EN DESARROLLO Y TECNOLOGÍAS DE SOFTWARE.

SEXTO SEMESTRE.

ALUMNO GABRIEL HASSAN BRUNO SANCHEZ
MATRICULA: A210483

MATERIA: COMPILADORES

ACTIVIDAD: 1

SUBCOMPETENCIA: SUBCOMPETENCIA 1 ANÁLISIS LÉXICO.

PROFESOR: DR. LUIS GUTIÉRREZ ALFARO

Conceptos y ejemplos.

Tipos de operadores de expresiones regulares:	1
Ejemplo:	2
Proceso de conversión de DFA a expresiones regulares	
Ejemplo:	2
Leyes algebraicas de expresiones regulares:	
Conmutatividad:	4
Asociatividad:	4
Elemento identidad:	5
Ejemplo:	5
Elemento nulo:	5
Ejemplo:	5
Distributividad:	
Ley de idempotencia:	5
Referencias:	

Tipos de operadores de expresiones regulares:

 Cerradura de kleene: es representado por el símbolo asterisco * e indica que el elemento de atrás o precedente puede aparecer ninguna, una o muchas veces en el patrón o cadena.

- Cerradura positiva: es representada por el símbolo de suma + e indica que el elemento anterior o precedente aparece como mínimo una vez o muchas veces en el patrón o cadena.
- Calificador de interrogación: Está representado por el símbolo de cierre de pregunta ? e indica que el elemento anterior o precedente puede no aparecer o aparecer en el patrón o cadena.
- Concatenación: es representado por el punto . e indica que el elemento anterior y el siguiente deben aparecer uno después del otro en la cadena o patrón.
- Disyunción: representado por el símbolo | y es utilizado para separar las alternativas posibles.
- Paréntesis de apertura y cierre: Representados por el símbolo (y) y son utilizados para delimitar un grupo de caracteres que serán analizados.
- Corchetes: representados por los símbolos [y] y son utilizados para delimitar un grupo de carácteres de los cuales se utilizarán únicamente uno.

Ejemplo:

Una expresión regular que coincide con correos electrónicos: ^[\w]+@\w+\.\w+\$

Proceso de conversión de DFA a expresiones regulares.

- Empezamos por eliminar todos los estados de no aceptación: Éstos estados no contribuyen al lenguaje reconocido y pueden ser eliminados sin afectar el resultado final.
- Introducción de un nuevo estado de inicio: Se crea un nuevo estado de inicio y se agregan ε- transiciones desde el estado mencionado a cada uno de los estados iniciales originales. De esta forma garantizamos que la expresión regular producida abarque todos los caminos posibles hasta los caminos aceptados.
- Depuración de estados de manera individual: Los estados restantes del DFA son eliminados redirigiendo las transacciones entrantes y salientes a través de un nuevo estado.
 - Se redirigen las transiciones entrantes
 - se redirigen las transiciones salientes.
 - o se repite hasta que solo queden 3 estados.
- Se combinan los dos estados finales.

Ejemplo:

Concatenación:

UNIÓN:

EL RETORNO:

Leyes algebraicas de expresiones regulares:

Conmutatividad:

Se dice que un lenguaje L es conmutativo si se cumple que un operador pueda cambiar el orden de sus operadores y aun así obtener el mismo resultado.

L+M = M +L. Esta ley, la ley conmutativa de la unión, establece que podemos efectuar la unión de dos lenguajes en cualquier orden.

Asociatividad:

La asociativo es la propiedad de un operador que nos permite reagrupar los operando cuando el operador se aplica dos veces.

(L+M)+N = L+ (M +N). Esta ley, la ley asociativa para la unión, establece que podemos efectuar la unión de tres lenguajes bien calculando primero la unión de los dos primeros, o bien la unión de los dos últimos.

Elemento identidad:

El elemento identidad de un operador es un valor que operado con cualquier otro número no lo altera.

Ejemplo:

0 es el elemento identidad para la suma, ya que 0+X=X+0=X, Y 1 es el elemento identidad de la multiplicación, puesto que $1\times X=X\times 1=X$.

0+L=L+/0= L. Esta ley establece que /0 es el elemento identidad para la unión.

Elemento nulo:

Es un valor tal que cuando el operador se aplica al propio elemento nulo y a algún otro valor, el resultado es el elemento nulo.

Ejemplo:

0 es el elemento nulo de la multiplicación, ya que $0 \times x = x \times 0 = 0$.

Distributividad:

Esta implica a dos operadores y establece que un operador puede aplicarse por separado a cada argumento del otro operador. Existe una ley análoga para las expresiones regulares, que tenemos que establecer de dos formas

L(M + N) = LM + LN. Ésta es la ley distributiva por la izquierda de la concatenación respecto de la unión.

(M +N)L = ML+NL. Ésta es la ley distributiva por la derecha de la concatenación respecto de la unión.

Ley de idempotencia:

Se dice que un operador es idempotente si el resultado de aplicarlo a dos valores iguales es dicho valor. Los operadores aritméticos habituales no son idempotentes.

L + L = L. Ésta es la ley de idempotencia para la unión, que establece que si tomamos la unión de dos expresiones idénticas, podemos reemplazarla por una copia de la de la expresión.

Referencias:

Wiki, C. T. A. (s. f.). *Algebra de las expresiones regulares*. Autómatas Wiki. https://automatas.fandom.com/es/wiki/Algebra_de_las_expresiones_regulares

Prezi, D. H. O. (s. f.). TRANSFORMAR UN DFA EN UNA EXPRESION REGULAR. prezi.com.

https://prezi.com/fzrkq7tpeo9k/transformar-un-dfa-en-una-expresion-regular/