```
import pandas as pd
import numpy as np
data = {
    'name': ['Alice','Bob','Charlie','David','Eve'],
    'Age' : [25,30,35,40,None],
    'Gender' : ['female', 'male', 'male', 'female'],
    'Salary' : [50000,60000,70000,80000,90000]
df = pd.DataFrame(data)
df
\overline{\pm}
          name Age Gender Salary
          Alice 25.0 female
                              50000
           Bob 30.0
                              60000
                       male
     2 Charlie 35.0
                       male
                              70000
          David 40.0
                       male
                              80000
           Eve NaN female
                              90000
import pandas as pd
import numpy as np
df1 = pd.DataFrame(data=np.random.randint(0,30,(6,4)),
              columns = ['co11','co12','col3','col4'],
              index = ['A','B','C','D','E','F'])
df1
→
         coll coll coll col4
                12
                      15
                             6
```

 20
 24
 14
 28

 15
 14
 20
 19

 10
 18
 15
 27

18

10

10

25

21

21

18

```
df1.shape
→ (6, 4)
df
→
         name Age Gender Salary
         Alice 25.0 female
                          50000
         Bob 30.0
                          60000
                    male
    2 Charlie 35.0
                    male 70000
        David 40.0
                    male 80000
         Eve NaN female 90000
df.head(2)
       name Age Gender Salary
    0 Alice 25.0 female 50000
    1 Bob 30.0 male 60000
df.tail()
```

→				
<u> </u>	name	Age	Gender	Salary
0	Alice	25.0	female	50000
1	Bob	30.0	male	60000
2	Charlie	35.0	male	70000
3	David	40.0	male	80000
4	Eve	NaN	female	90000
•				

df.describe()

```
4.000000
     count
                         5.000000
           32.500000 70000.000000
      std
            6.454972 15811.388301
           25.000000 50000.000000
      min
           28.750000 60000.000000
      25%
      50%
           32.500000 70000.000000
      75%
           36.250000 80000.000000
      max 40.000000 90000.000000
df.info()
RangeIndex: 5 entries, 0 to 4
    Data columns (total 4 columns):
         Column Non-Null Count Dtype
                5 non-null
     0
         name
                               object
     1
         Age
                4 non-null
                               float64
         Gender 5 non-null
                               object
         Salary 5 non-null
                               int64
    dtypes: float64(1), int64(1), object(2)
    memory usage: 292.0+ bytes
df1.tail(2)
₹
        coll coll coll col4
     Ε
          15
               14
                     20
                          19
          10
               18
                    15
                          27
df[['Age','Salary']].mean()
₹
                 0
               32.5
      Age
     Salary 70000.0
    dtuna: float64
df[['Age','Salary']].max()
```

→

Age

Salary

```
→
                   0
                40.0
       Age
      Salary 90000.0
     dtuna: float64
df[['Age','Salary']].min()
→
                   0
                25.0
       Age
      Salary 50000.0
     dtuna: float64
df['Salary'].value_counts()
→
              count
      Salary
      50000
                  1
      60000
                  1
      70000
      80000
                  1
      90000
                  1
     dtura intel
df1.count()
\overline{\mathbf{T}}
            0
      co11 6
      co12 6
      col3 6
      col4 6
     dtuna intel
df.count()
```

```
name 5
       Age 5
     Gender 5
      Salary 5
     dtuna intel
df.info()
</pre
    RangeIndex: 5 entries, 0 to 4
    Data columns (total 4 columns):
         Column Non-Null Count Dtype
         name
                 5 non-null
                               object
     1
         Age
                 5 non-null
                               object
                               object
         Gender 5 non-null
         Salary 5 non-null
                                int64
    dtypes: int64(1), object(3)
    memory usage: 292.0+ bytes
df.groupby('Salary').sum()
→
                     Age Gender
              name
     Salary
      50000
              Alice
                      25
                          female
      60000
               Bob
                      30
                           male
      70000
             Charlie
                      35
                           male
      80000
                      40
              David
                           male
      90000
               Eve none
                          female
df[['Age','Salary']].sum()
\overline{\Rightarrow}
                  0
               130.0
      Age
     Salary 350000.0
```

→

dtuna: float64

import numpy as np
import pandas as pd

Start coding or generate with AI.

```
from datetime import datetime
def age_calculation(Birthday):
   Birth_day = datetime.strptime(Birthday, "%d-%m-%Y")
   current_date= datetime.now()
   age= current_date.year - Birth_day.year - ((current_date.month, current_date.day) < (Birth_day.month, Birth_day.day))
   return age
def convert_rupee(salary_rupees):
  convertion = 0.012
  return salary_rupees*convertion
salary_rupees = float(input())
Birthday = input()
salary_dollar = convert_rupee(salary_rupees)
age= age_calculation(Birthday)
→ 100000
     27-08-1970
salary_dollar
→ 1200.0
age
def reverse_num(n) :
 return int(str(n)[::-1])
n= int(input())
print(reverse_num(n))
→ 123
     321
n= int(input())
x=n
while x!=0:
  digit = x%10
 x = x//10
 print(digit,end="")
→ 123
     321
```

Start coding or generate with AI.

```
import numpy as np
arr1 = np.array([10,20,30,40,50])
print(arr1)
→ [10 20 30 40 50]
arr1.ndim
→ 1
import numpy as np
arr2 = np.array([[10,20,30],[40,50,60]])
arr2
array([[10, 20, 30], [40, 50, 60]])
arr1[-1]
→ np.int64(50)
arr1[-2:]
→ array([40, 50])
arr1[::-1]
→ array([50, 40, 30, 20, 10])
arr1[-2:]
→ array([40, 50])
arr1[-5:]
⇒ array([10, 20, 30, 40, 50])
B = np.arange(10,22,2)
→ array([10, 12, 14, 16, 18, 20])
```

```
arr3 = np.random.randint(1,5,(4,4))
arr3
\rightarrow array([[3, 1, 2, 4],
           [1, 2, 2, 2],
           [2, 4, 1, 4],
           [4, 2, 1, 1]])
c = np.linspace(10,2,6)
\Rightarrow array([10., 8.4, 6.8, 5.2, 3.6, 2.])
A = np.array([3.14,11.2,0.5,1.62])
→ array([ 3.14, 11.2 , 0.5 , 1.62])
type(A)
→ numpy.ndarray
A.dtype
dtype('float64')
A.size
→ 4
A.shape
→ (4,)
A.ndim
→ 1
arr3.shape
→ (4, 4)
arr2.ndim
→ 2
```

```
arr4 = arr3.reshape(4,4)
arr4
     array([[3, 1, 2, 4],
            [1, 2, 2, 2],
            [2, 4, 1, 4],
            [4, 2, 1, 1]])
arr4
⇒ array([[3, 1, 2, 4],
            [1, 2, 2, 2],
            [2, 4, 1, 4],
            [4, 2, 1, 1]])
arr3.reshape(4,4)
\rightarrow array([[3, 1, 2, 4],
            [1, 2, 2, 2],
            [2, 4, 1, 4],
            [4, 2, 1, 1]])
arr3[::-1,:]
\rightarrow array([[4, 2, 1, 1],
            [2, 4, 1, 4],
            [1, 2, 2, 2],
            [3, 1, 2, 4]])
arr3
\rightarrow array([[3, 1, 2, 4],
            [1, 2, 2, 2],
            [2, 4, 1, 4],
            [4, 2, 1, 1]])
A = np.array([[1,2,3],[4,5,6]])
B = np.array([1,2,3])
C = A + B
С
→ array([[2, 4, 6],
            [5, 7, 9]])
A = np.array([[1,2,3],[4,5,6]])
B = np.array([[7,8,9],[10,11,12]])
```

```
c1 = np.add(A,B)
c2 = np.subtract(A,B)
c3 = np.multiply(A,B)
c4 = np.transpose(A)
с1
→ array([[ 8, 10, 12],
           [14, 16, 18]])
c2
→ array([[-6, -6, -6],
           [-6, -6, -6]])
с3
→ array([[ 7, 16, 27],
           [40, 55, 72]])
с4
    array([[1, 4],
           [2, 5],
[3, 6]])
    array([[1, 2, 3],
           [4, 5, 6]])
\rightarrow array([[ 7, 8, 9],
           [10, 11, 12]])
C = np.array([[1,2,3],[4,5,6]])
D = np.array([[7,8,9]])
print("hello")
→ hello
horizontal= np.hstack((A,B))
horizontal
```

```
⇒ array([[ 1, 2, 3, 7, 8, 9], [ 4, 5, 6, 10, 11, 12]])
vertical = np.vstack((A,B))
vertical
\rightarrow array([[ 1, 2, 3],
           [4, 5, 6],
           [7, 8, 9],
           [10, 11, 12]])
import numpy as np
arr5 = np.array([[624,77,85,70,83,82],[625,71,72,73,74,75],[626,60,90,92,98,87],[627,88,86,43,95,97]])
arr5
\rightarrow \overline{\phantom{a}} array([[624, 77, 85, 70, 83, 82],
            [625, 71, 72, 73, 74, 75],
            [626, 60, 90, 92, 98, 87],
            [627, 88, 86, 43, 95, 97]])
(r,c) = arr5.shape
print("Total Students:",r)
print("Total Students:",c)
→ Total Students: 4
     Total Students: 6
print("All the stuident roll no : ",arr5[::,0])
All the stuident roll no : [624 625 626 627]
print("subject 1 marks",arr5[::,1])
→ subject 1 marks [77 71 60 88]
print("Min marks in subject",np.min(arr5[::,2]))
→ Min marks in subject 72
print("Max marks in subject",np.max([arr5[::,2]]))
→ Max marks in subject 90
print("All subject of the marks:",arr5[::,1::])
→ All subject of the marks: [[77 85 70 83 82]
      [71 72 73 74 75]
```

```
print("Total marks",np.sum(arr5[::,1::],axis=1))

→ Total marks [397 365 427 409]

avg = np.mean(arr5[::,1::],axis=1)
print(np.round(avg,1))
print(np.round(avg))

→ [79.4 73. 85.4 81.8]
[79. 73. 85. 82.]

print("average marks of each subject ",np.mean(arr5[::,1::],axis=0))

→ average marks of each subject [74. 83.25 69.5 87.5 85.25]

Start coding or generate with AI.
```

[60 90 92 98 87] [88 86 43 95 97]]

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
!pip install seaborn
    Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist-packages (0.13.2)
    Requirement already satisfied: numpy!=1.24.0,>=1.20 in /usr/local/lib/python3.11/dist-packages (from seaborn) (2.0.2)
    Requirement already satisfied: pandas>=1.2 in /usr/local/lib/python3.11/dist-packages (from seaborn) (2.2.2)
    Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in /usr/local/lib/python3.11/dist-packages (from seaborn) (3.10.0)
    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.2)
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)
    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.57.0)
    Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1.>=3.4->seaborn) (1.4.8)
    Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (24.2)
    Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (11.2.1)
    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.3)
    Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.11/dist-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas>=1.2->seaborn) (2025.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas>=1.2->seaborn) (2025.2)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)
df1 = pd.read csv('titanic (1).csv')
df1.shape
→ (891, 15)
df1.columns
→ Index(['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'fare',
            'embarked', 'class', 'who', 'adult_male', 'deck', 'embark_town',
            'alive', 'alone'],
           dtvpe='object')
df1.info()
RangeIndex: 891 entries, 0 to 890
    Data columns (total 15 columns):
         Column
                      Non-Null Count Dtype
                      -----
         survived
                      891 non-null
                                      int64
     1
         pclass
                      891 non-null
                                     int64
     2
                      891 non-null
                                     object
         sex
```

714 non-null

891 non-null

891 non-null

891 non-null

3

5

age sibsp

parch

fare

float64

int64

int64

float64

```
embarked
                889 non-null
                               object
    class
                891 non-null
                               object
    who
                891 non-null
                               object
                               bool
10 adult_male 891 non-null
11 deck
                203 non-null
                               object
12 embark_town 889 non-null
                               object
13 alive
                891 non-null
                               object
14 alone
                891 non-null
                               bool
dtypes: bool(2), float64(2), int64(4), object(7)
memory usage: 92.4+ KB
```

df1.head()

→		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

df1.tail()

→		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	886	0	2	male	27.0	0	0	13.00	S	Second	man	True	NaN	Southampton	no	True
	887	1	1	female	19.0	0	0	30.00	S	First	woman	False	В	Southampton	yes	True
	888	0	3	female	NaN	1	2	23.45	S	Third	woman	False	NaN	Southampton	no	False
	889	1	1	male	26.0	0	0	30.00	С	First	man	True	С	Cherbourg	yes	True
	890	0	3	male	32.0	0	0	7.75	Q	Third	man	True	NaN	Queenstown	no	True

df1.tail(10)

		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
	881	0	3	male	33.0	0	0	7.8958	S	Third	man	True	NaN	Southampton	no	True
	882	0	3	female	22.0	0	0	10.5167	S	Third	woman	False	NaN	Southampton	no	True
	883	0	2	male	28.0	0	0	10.5000	S	Second	man	True	NaN	Southampton	no	True
	884	0	3	male	25.0	0	0	7.0500	S	Third	man	True	NaN	Southampton	no	True
	885	0	3	female	39.0	0	5	29.1250	Q	Third	woman	False	NaN	Queenstown	no	False
	886	0	2	male	27.0	0	0	13.0000	S	Second	man	True	NaN	Southampton	no	True
	887	1	1	female	19.0	0	0	30.0000	S	First	woman	False	В	Southampton	yes	True

Third woman

man

man

First

Third

С

False NaN Southampton

True NaN Queenstown

С

Cherbourg

True

False

True

True

no

yes

no

2 23.4500

0 30.0000

0 7.7500

Start coding or generate with AI.

df1.describe()

888

889

890

→		survived	pclass	age	sibsp	parch	fare
	count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

3 female NaN

1 male 26.0

3 male 32.0

df1.isnull().sum()

-	-	_	
-	÷	•	
-	<u> </u>	_	

	0
survived	0
pclass	0
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult_male	0
deck	688
embark_town	2
alive	0
alone	0
dtunar int64	

df1.isnull().count()

	0
survived	891
pclass	891
sex	891
age	891
sibsp	891
parch	891
fare	891
embarked	891
class	891
who	891
adult_male	891
deck	891
embark_town	891
alive	891
alone	891
tunar int64	_

df1.isna().sum()

	0
survived	0
pclass	0
sex	0
age	0
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult_male	0
deck	688
embark_town	2
alive	0
alone	0
dtunou int64	

```
average = df1['age'].mean()

df1['age'] = df1['age'].fillna(average)

df1.groupby('sibsp')['survived'].mean()
```

	survived
sibsp	
0	0.345395
1	0.535885
2	0.464286
3	0.250000
4	0.166667
5	0.000000
8	0.000000
dtuma i fl	~~+C1

import warnings
warnings.filterwarnings('ignore')

df1.isna().sum()

```
0
               0
  survived
   pclass
               0
               0
    sex
               0
    age
    sibsp
               0
               0
    parch
    fare
               0
  embarked
               2
               0
    class
    who
               0
 adult_male
               0
    deck
             688
embark_town
               2
    alive
               0
    alone
               0
dtuna intel
```

```
plt.figure(figsize = (15,5))
plt.plot(df1.columns,df1.isna().sum())
plt.show()
```



```
plt.figure(figsize = (15,5))
plt.bar(df1.columns,df1.isna().sum(),color = 'yellow')
plt.show()
```


sb.countplot(x ='survived',data = df1)
plt.show()

