

### **Description**

The VST20N1450 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of  $R_{\text{DS(ON)}}$  and  $Q_g$ . This device is ideal for high-frequency switching and synchronous rectification.

#### **General Features**

- $V_{DS}$  =200V, $I_D$  =12A  $R_{DS(ON)}$ =145m $\Omega$  (typical) @  $V_{GS}$ =10V
- Excellent gate charge x R<sub>DS(on)</sub> product(FOM)
- Very low on-resistance R<sub>DS(on)</sub>
- 175 °C operating temperature
- Pb-free lead plating

#### **Application**

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification



**Package Marking and Ordering Information** 

| Device Marking | Device     | Device Package | Reel Size | Tape width | Quantity |
|----------------|------------|----------------|-----------|------------|----------|
| VST20N1450-TF  | VST20N1450 | TO-220F        | -         | -          | -        |

Absolute Maximum Ratings (T<sub>4</sub>=25°Cunless otherwise noted)

| Parameter                                        | Symbol                 | Limit      | Unit       |  |
|--------------------------------------------------|------------------------|------------|------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>        | 200        | V          |  |
| Gate-Source Voltage                              | V <sub>GS</sub>        | ±20        | V          |  |
| Drain Current-Continuous                         | I <sub>D</sub>         | 12         | А          |  |
| Drain Current-Continuous(T <sub>C</sub> =100℃)   | I <sub>D</sub> (100°C) | 8.4        | А          |  |
| Pulsed Drain Current                             | I <sub>DM</sub>        | 48         | А          |  |
| Maximum Power Dissipation                        | P <sub>D</sub>         | 20         | W          |  |
| Derating factor                                  |                        | 0.13       | W/°C       |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>        | 80         | mJ         |  |
| Operating Junction and Storage Temperature Range | $T_{J}$ , $T_{STG}$    | -55 To 175 | $^{\circ}$ |  |

#### **Thermal Characteristic**

| Thermal Résistance, Junction-to-Case <sup>(Note 2)</sup> | R <sub>θJC</sub> | 7.5 | °C/W |
|----------------------------------------------------------|------------------|-----|------|
|----------------------------------------------------------|------------------|-----|------|



# Electrical Characteristics (T<sub>A</sub>=25 ℃ unless otherwise noted)

| Parameter                          | Symbol                                               | Condition                                 | Min | Тур | Max  | Unit |
|------------------------------------|------------------------------------------------------|-------------------------------------------|-----|-----|------|------|
| Off Characteristics                |                                                      |                                           | •   |     |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>                                    | V <sub>GS</sub> =0V I <sub>D</sub> =250μA | 200 | -   | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>                                     | V <sub>DS</sub> =200V,V <sub>GS</sub> =0V | -   | -   | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>                                     | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V | -   | -   | ±100 | nA   |
| On Characteristics (Note 3)        |                                                      |                                           | •   |     |      |      |
| Gate Threshold Voltage             | $V_{GS(th)}$                                         | $V_{DS}=V_{GS},I_{D}=250\mu A$            | 2.5 | 3.5 | 4.5  | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub>                                  | V <sub>GS</sub> =10V, I <sub>D</sub> =12A | -   | 145 | 155  | mΩ   |
| Forward Transconductance           | g <sub>FS</sub>                                      | V <sub>DS</sub> =5V,I <sub>D</sub> =12A   | 15  | -   | -    | S    |
| Dynamic Characteristics (Note4)    |                                                      |                                           | •   |     |      |      |
| Input Capacitance                  | C <sub>lss</sub>                                     | \/ -100\/\/ -0\/                          | -   | 483 |      | PF   |
| Output Capacitance                 | C <sub>oss</sub>                                     | $V_{DS}$ =100V, $V_{GS}$ =0V,<br>F=1.0MHz | -   | 42  |      | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>                                     | r-1.0WInz                                 | -   | 1   |      | PF   |
| Switching Characteristics (Note 4) |                                                      |                                           | •   |     |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>                                   |                                           | -   | 4   | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>                                       | $V_{DD}$ =100V, RL=8 $\Omega$             | -   | 5   | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub>                                  | $V_{GS}$ =10 $V$ , $R_{G}$ =3 $\Omega$    | -   | 10  | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>                                       |                                           | -   | 2   | -    | nS   |
| Total Gate Charge                  | $Q_g$                                                | \/ -100\/   -124                          | -   | 9.2 | -    | nC   |
| Gate-Source Charge                 | $Q_{gs}$ $V_{DS}$ =100V, $I_{D}$ =12A, $V_{GS}$ =10V |                                           | -   | 3.8 | -    | nC   |
| Gate-Drain Charge                  | $Q_{gd}$                                             | VGS-10V                                   | -   | 2.3 | -    | nC   |
| Drain-Source Diode Characteristics |                                                      |                                           | •   | •   |      |      |
| Diode Forward Voltage (Note 3)     | $V_{SD}$                                             | V <sub>GS</sub> =0V,I <sub>S</sub> =12A   | -   | -   | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                                                   |                                           | -   | -   | 12   | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>                                      | $T_J = 25^{\circ}C, I_F = I_S$            | -   | 25  | -    | nS   |
| Reverse Recovery Charge            | Qrr                                                  | $di/dt = 100A/\mu s^{(Note3)}$            | -   | 110 | -    | nC   |

### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25  $^{\circ}\!\!\mathrm{C}$  ,V\_DD=50V,V\_G=10V,L=0.5mH,Rg=25 $\Omega$



### **Test Circuit**

# 1) E<sub>AS</sub> test Circuit



## 2) Gate charge test Circuit



## 3) Switch Time Test Circuit









**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



**Figure 3 Rdson- Drain Current** 



Figure 4 Rdson-Junction Temperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward



Ip- Drain Current (A)





Figure 7 Capacitance vs Vds

Figure 9 Power De-rating





Figure 8 Safe Operation Area

Figure 10 Current De-rating



Square Wave Pluse Duration(sec)

**Figure 11 Normalized Maximum Transient Thermal Impedance**