Report No: TRE18060027 Page: 59 of 83 Issued: 2018-06-13

#### **SAR Test Data Plots**

Test mode: GPRS850 3Tx slot Test Position: Right Touch Cheek Test Plot: H1

Date:2018-06-06

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2) (0); Frequency: 836.6 MHz; Duty

Cycle: 1:2.67

Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.933 \text{ S/m}$ ;  $\varepsilon_r = 43.899$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Right Section

#### **DASY5 Configuration:**

- Probe: EX3DV4 SN7494; ConvF(10.73, 10.73, 10.73) @ 836.6 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# Right Touch Cheek/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0620 W/kg

### Right Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.754 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0670 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.038 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0613 W/kg



0 dB = 0.0613 W/kg = -12.13 dBW/kg

Report No: TRE18060027 Page: 60 of 83 Issued: 2018-06-13

Test mode: GPRS1900 4Tx slot Test Position: Left Touch Cheek Test Plot: H2

Date:2018-06-08

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2-3) (0); Frequency: 1880 MHz; Duty

Cycle: 1:2.00447

Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.455 S/m;  $\varepsilon_r$  = 41.738;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Left Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.83, 8.83, 8.83) @ 1880 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# **Left Touch Cheek/Procedure/Area Scan (61x121x1):** Interpolated grid: dx=1.500 mm, dv=1.500 mm

Maximum value of SAR (interpolated) = 0.0440 W/kg

#### Left Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.223 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0500 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.020 W/kg Maximum value of SAR (measured) = 0.0416 W/kg



0 dB = 0.0416 W/kg = -13.81 dBW/kg

Report No: TRE18060027 Page: 61 of 83 Issued: 2018-06-13

Test mode: WCDMA Band II Test Position: Left Touch Cheek Test Plot: H3

Date:2018-06-08

Communication System: UID 0, Generic UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1907.6 MHz;  $\sigma = 1.455$  S/m;  $\epsilon_r = 41.738$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.83, 8.83, 8.83) @ 1907.6 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# **Left Touch Cheek/Procedure/Area Scan (61x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0745 W/kg

#### Left Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.738 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.0880 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.034 W/kg Maximum value of SAR (measured) = 0.0747 W/kg



0 dB = 0.0747 W/kg = -11.27 dBW/kg

Report No: TRE18060027 Page: 62 of 83 Issued: 2018-06-13

Test mode: WCDMA Band V Test Position: Right Touch Cheek Test Plot: H4

Date:2018-06-06

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma$  = 0.933 S/m;  $\epsilon_r$  = 43.899;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Right Section

#### **DASY5 Configuration:**

- Probe: EX3DV4 SN7494; ConvF(10.73, 10.73, 10.73) @ 836.6 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# Right Touch Cheek/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0415 W/kg

#### Right Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.064 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.0450 W/kg

SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.018 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0397 W/kg



0 dB = 0.0397 W/kg = -14.01 dBW/kg

Report No: TRE18060027 Page: 63 of 83 Issued: 2018-06-13

Test mode: LTE Band 5 Test Position: Right Touch Cheek Test Plot: H5

Date:2018-06-06

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz;  $\sigma = 0.933$  S/m;  $\epsilon_r = 43.899$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Right Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.73, 10.73, 10.73) @ 836.5 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# Right Touch Cheek/Procedure/Area Scan (61x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.0343 W/kg

#### Right Touch Cheek/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.540 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.0350 W/kg

SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.021 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.0321 W/kg



0 dB = 0.0321 W/kg = -14.93 dBW/kg

Report No: TRE18060027 Page: 64 of 83 Issued: 2018-06-13

Test mode: LTE Band 7 Test Position: Left Touch Cheek Test Plot: H6

Date:2018-06-11

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz;  $\sigma = 1.914$  S/m;  $\varepsilon_r = 40.778$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

#### **DASY5 Configuration:**

- Probe: EX3DV4 SN7494; ConvF(7.92, 7.92, 7.92) @ 2535 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# **Left Touch Cheek/Procedure/Area Scan (81x151x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.217 W/kg

### Left Touch Cheek/Procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.861 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.239 W/kg

**SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.079 W/kg** Maximum value of SAR (measured) = 0.200 W/kg



0 dB = 0.200 W/kg = -6.99 dBW/kg

Report No: TRE18060027 Page: 65 of 83 Issued: 2018-06-13

Test mode: WLAN 802.11b Test Position: Left Touch Cheek Test Plot: H7

Date:2018-06-11

Communication System: UID 0, Generic WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.829$  S/m;  $\varepsilon_r = 41.002$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.27, 8.27, 8.27) @ 2437 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# **Left Touch Cheek/Procedure/Area Scan (81x151x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.729 W/kg

#### Left Touch Cheek/Procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.107 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.754 W/kg

SAR(1 g) = 0.318 W/kg; SAR(10 g) = 0.156 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.543 W/kg



0 dB = 0.543 W/kg = -2.65 dBW/kg

Report No: TRE18060027 Page: 66 of 83 Issued: 2018-06-13

Test mode: BT 8DPSK Test Position: Left Touch Cheek Test Plot: H8

Date:2018-06-11

Communication System: UID 0, Generic Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.30617 Medium parameters used (interpolated): f = 2441 MHz;  $\sigma = 1.831$  S/m;  $\epsilon_r = 40.998$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Left Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.27, 8.27, 8.27) @ 2441 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

# **Left Touch Cheek/Procedure/Area Scan (81x151x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.259 W/kg

#### Left Touch Cheek/Procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.793 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.052 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.181 W/kg



0 dB = 0.181 W/kg = -7.42 dBW/kg

Report No: TRE18060027 Page: 67 of 83 Issued: 2018-06-13

Test mode: GPRS850 3Tx slot Test Position: Body- worn Rear Test Plot: B1

Date:2018-06-07

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2) (0); Frequency: 836.6 MHz; Duty

Cycle: 1:2.67

Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.967 \text{ S/m}$ ;  $\varepsilon_r = 55.399$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

#### **DASY 5 Configuration:**

- Probe: EX3DV4 SN7494; ConvF(10.5, 10.5, 10.5) @ 836.6 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (61x131x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.101 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.935 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.081 W/kg; SAR(10 g) = 0.046 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.115 W/kg



0 dB = 0.115 W/kg = -9.39 dBW/kg

Report No: TRE18060027 Page: 68 of 83 Issued: 2018-06-13

Test mode: GPRS1900 4Tx slot Test Position: Body- worn Rear Test Plot: B2

Date:2018-06-08

Communication System: UID 0, Generic GPRS(TDMA, GMSK, TN 0-1-2-3) (0); Frequency: 1880 MHz; Duty

Cycle: 1:2.00447

Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.539 S/m;  $\varepsilon_r$  = 53.741;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

#### **DASY5 Configuration:**

Probe: EX3DV4 - SN7494; ConvF(8.42, 8.42, 8.42) @ 1880 MHz; Calibrated: 2/26/2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (61x131x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.219 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.732 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.274 W/kg

**SAR(1 g) = 0.151 W/kg; SAR(10 g) = 0.084 W/kg** Maximum value of SAR (measured) = 0.225 W/kg



0 dB = 0.225 W/kg = -6.48 dBW/kg

Report No: TRE18060027 Page: 69 of 83 Issued: 2018-06-13

Test mode: WCDMA Band II Test Position: Body- worn Rear Test Plot: B3

Date:2018-06-08

Communication System: UID 0, Generic UMTS (0); Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1907.6 MHz;  $\sigma = 1.539$  S/m;  $\varepsilon_r = 53.741$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.42, 8.42, 8.42) @ 1907.6 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (61x131x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.354 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.121 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.446 W/kg

**SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.140 W/kg** Maximum value of SAR (measured) = 0.363 W/kg



0 dB = 0.363 W/kg = -4.40 dBW/kg

Report No: TRE18060027 Page: 70 of 83 Issued: 2018-06-13

Test mode: WCDMA Band V Test Position: Body- worn Rear Test Plot: B4

Date:2018-06-07

Communication System: UID 0, Generic UMTS (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.967$  S/m;  $\epsilon_r = 55.399$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.5, 10.5, 10.5) @ 836.6 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (61x131x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.211 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.633 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.093 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.254 W/kg



0 dB = 0.254 W/kg = -5.95 dBW/kg

Report No: TRE18060027 Page: 71 of 83 Issued: 2018-06-13

Test mode: LTE Band 5 Test Position: Body- worn Rear Test Plot: B5

Date:2018-06-07

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz;  $\sigma = 0.967$  S/m;  $\epsilon_r = 55.399$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(10.5, 10.5, 10.5) @ 836.5 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (61x131x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.118 W/kg

Rear/Procedure/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.935 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.087 W/kg; SAR(10 g) = 0.048 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.120 W/kg



0 dB = 0.120 W/kg = -9.21 dBW/kg

Report No: TRE18060027 Page: 72 of 83 Issued: 2018-06-13

Test mode: LTE Band 7 Test Position: Body- worn Rear Test Plot: B6

Date:2018-06-11

Communication System: UID 0, Generic LTE-FDD (0); Frequency: 2535 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz;  $\sigma = 2.082$  S/m;  $\epsilon_r = 52.884$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### **DASY5 Configuration:**

Probe: EX3DV4 - SN7494; ConvF(7.51, 7.51, 7.51) @ 2535 MHz; Calibrated: 2/26/2018

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (81x161x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.10 W/kg

Rear/Procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.475 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.612 W/kg; SAR(10 g) = 0.292 W/kg Maximum value of SAR (measured) = 1.00 W/kg



0 dB = 1.00 W/kg = 0.00 dBW/kg

Report No: TRE18060027 Page: 73 of 83 Issued: 2018-06-13

Test mode: WLAN 802.11b Test Position: Body- worn Rear Test Plot: B7

Date:2018-06-11

Communication System: UID 0, Generic WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz;  $\sigma = 1.991$  S/m;  $\varepsilon_r = 53.023$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

#### **DASY5** Configuration:

- Probe: EX3DV4 SN7494; ConvF(8.08, 8.08, 8.08) @ 2437 MHz; Calibrated: 2/26/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 4/25/2018
- Phantom: ELI V8.0; Type: QD OVA 004 AA; Serial: 2078
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Rear/Procedure/Area Scan (81x151x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.239 W/kg

Rear/Procedure/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.891 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.335 W/kg

SAR(1 g) = 0.141 W/kg; SAR(10 g) = 0.067 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.246 W/kg



0 dB = 0.246 W/kg = -6.09 dBW/kg

Report No: TRE18060027 Page: 74 of 83 Issued: 2018-06-13

## 15. Simultaneous Transmission analysis

| No. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | Note |
|-----|------------------------------------------|------|-----------|---------|------|
| 1   | GSM(voice) + Bluetooth (data)            | Yes  | Yes       |         |      |
| 2   | GSM(voice) + WIFI (data)                 | Yes  | Yes       |         |      |
| 3   | WCDMA(voice) + Bluetooth (data)          | Yes  | Yes       |         |      |
| 4   | WCDMA(voice) + WIFI (data)               | Yes  | Yes       |         |      |
| 5   | GPRS (data) + Bluetooth (data)           | Yes  | Yes       | NA      |      |
| 6   | GPRS (data) + WIFI (data)                | Yes  | Yes       | Yes     |      |
| 7   | WCDMA (data) + Bluetooth (data)          | Yes  | Yes       | NA      |      |
| 8   | WCDMA (data) + WIFI (data)               | Yes  | Yes       | Yes     |      |
| 9   | LTE + Bluetooth (data)                   | Yes  | Yes       | NA      |      |
| 10  | LTE + WIFI (data)                        | Yes  | Yes       | Yes     |      |

#### General note:

- 1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2. EUT will choose either GSM or WCDMA LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 3. The reported SAR summation is calculated based on the same configuration and test position
- 4. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below
  - a) [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \*  $[\sqrt{f(GHz)/x}]W/kg$  for test separation distances  $\leq 50$ mm; whetn x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.
  - b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion
  - c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.

| Bluetooth | Exposure position    | Body-worn |  |
|-----------|----------------------|-----------|--|
| Max power | Test separation      | 10mm      |  |
| 12.50 dBm | Estimated SAR (W/kg) | 0.371     |  |

Report No: TRE18060027 Page: 75 of 83 Issued: 2018-06-13

### Maximum reported SAR value for Head

|         |          | WWAN PC      | E + WLAN DTS |          |            |
|---------|----------|--------------|--------------|----------|------------|
| 10/10/0 | N. Danad | Exposure     | Max SAI      | R (W/kg) | Summed SAR |
| VVVA    | N Band   | Position     | WWAN PCE     | WLAN DTS | (W/kg)     |
| GSM     |          | Left Cheek   | 0.042        | 0.353    | 0.395      |
|         | GSM850   | Left Tilted  | 0.032        | 0.299    | 0.331      |
|         | GSIVIOSU | Right Cheek  | 0.051        | 0.268    | 0.319      |
|         |          | Right Tilted | 0.039        | 0.225    | 0.264      |
|         |          | Left Cheek   | 0.032        | 0.353    | 0.384      |
|         | PCS1900  | Left Tilted  | 0.026        | 0.299    | 0.324      |
|         | PCS 1900 | Right Cheek  | 0.030        | 0.268    | 0.298      |
|         |          | Right Tilted | 0.024        | 0.225    | 0.249      |
|         |          | Left Cheek   | 0.057        | 0.353    | 0.410      |
|         | Dond II  | Left Tilted  | 0.047        | 0.299    | 0.346      |
|         | Band II  | Right Cheek  | 0.054        | 0.268    | 0.323      |
| WCDMA   |          | Right Tilted | 0.044        | 0.225    | 0.269      |
| WCDIVIA | Band V   | Left Cheek   | 0.029        | 0.353    | 0.382      |
|         |          | Left Tilted  | 0.024        | 0.299    | 0.323      |
|         |          | Right Cheek  | 0.031        | 0.268    | 0.299      |
|         |          | Right Tilted | 0.024        | 0.225    | 0.250      |
|         | B5       | Left Cheek   | 0.027        | 0.353    | 0.380      |
|         |          | Left Tilted  | 0.023        | 0.299    | 0.322      |
|         | 1RB      | Right Cheek  | 0.028        | 0.268    | 0.296      |
|         |          | Right Tilted | 0.022        | 0.225    | 0.247      |
|         |          | Left Cheek   | 0.026        | 0.353    | 0.379      |
|         | B5       | Left Tilted  | 0.020        | 0.299    | 0.319      |
|         | 25RB     | Right Cheek  | 0.027        | 0.268    | 0.296      |
| LTE     |          | Right Tilted | 0.022        | 0.225    | 0.248      |
| LIC     |          | Left Cheek   | 0.155        | 0.353    | 0.508      |
|         | B7       | Left Tilted  | 0.130        | 0.299    | 0.429      |
|         | 1RB      | Right Cheek  | 0.150        | 0.268    | 0.418      |
|         |          | Right Tilted | 0.119        | 0.225    | 0.344      |
|         |          | Left Cheek   | 0.140        | 0.353    | 0.493      |
|         | B7       | Left Tilted  | 0.109        | 0.299    | 0.407      |
|         | 50RB     | Right Cheek  | 0.139        | 0.268    | 0.408      |
| İ       |          | Right Tilted | 0.114        | 0.225    | 0.339      |

Report No: TRE18060027 Page: 76 of 83 Issued: 2018-06-13

|           |          | WWAN PO      | CE + Bluetooth |           |            |
|-----------|----------|--------------|----------------|-----------|------------|
| 10/10/0   | N.D. I   | Exposure     | Max SAI        | R (W/kg)  | Summed SAR |
| WWAN Band |          | Position     | WWAN PCE       | Bluetooth | (W/kg)     |
| GSM       |          | Left Cheek   | 0.042          | 0.119     | 0.161      |
|           | GSM850   | Left Tilted  | 0.032          | 0.101     | 0.133      |
|           | GSIVIOSO | Right Cheek  | 0.051          | 0.100     | 0.150      |
|           |          | Right Tilted | 0.039          | 0.084     | 0.122      |
|           |          | Left Cheek   | 0.032          | 0.119     | 0.150      |
|           | PCS1900  | Left Tilted  | 0.026          | 0.101     | 0.126      |
|           | PC31900  | Right Cheek  | 0.030          | 0.100     | 0.130      |
|           |          | Right Tilted | 0.024          | 0.084     | 0.107      |
|           |          | Left Cheek   | 0.057          | 0.119     | 0.176      |
|           | Dandill  | Left Tilted  | 0.047          | 0.101     | 0.147      |
|           | Band II  | Right Cheek  | 0.054          | 0.100     | 0.154      |
| MODMA     |          | Right Tilted | 0.044          | 0.084     | 0.127      |
| WCDMA     | Band V   | Left Cheek   | 0.029          | 0.119     | 0.148      |
|           |          | Left Tilted  | 0.024          | 0.101     | 0.124      |
|           |          | Right Cheek  | 0.031          | 0.100     | 0.130      |
|           |          | Right Tilted | 0.024          | 0.084     | 0.108      |
|           | B5       | Left Cheek   | 0.027          | 0.119     | 0.146      |
|           |          | Left Tilted  | 0.023          | 0.101     | 0.123      |
|           | 1RB      | Right Cheek  | 0.028          | 0.100     | 0.127      |
|           |          | Right Tilted | 0.022          | 0.084     | 0.106      |
|           |          | Left Cheek   | 0.026          | 0.119     | 0.145      |
|           | B5       | Left Tilted  | 0.020          | 0.101     | 0.121      |
|           | 25RB     | Right Cheek  | 0.027          | 0.100     | 0.127      |
|           |          | Right Tilted | 0.022          | 0.084     | 0.106      |
| LTE       |          | Left Cheek   | 0.155          | 0.119     | 0.274      |
|           | В7       | Left Tilted  | 0.130          | 0.101     | 0.231      |
|           | 1RB      | Right Cheek  | 0.150          | 0.100     | 0.250      |
|           |          | Right Tilted | 0.119          | 0.084     | 0.203      |
|           |          | Left Cheek   | 0.140          | 0.119     | 0.259      |
|           | B7       | Left Tilted  | 0.109          | 0.101     | 0.209      |
|           | 50RB     | Right Cheek  | 0.139          | 0.100     | 0.239      |
|           |          | Right Tilted | 0.114          | 0.084     | 0.197      |

Report No: TRE18060027 Page: 77 of 83 Issued: 2018-06-13

Maximum reported SAR value for Body

| waximum reported SAR value for Body |                     |          |                |          |               |  |  |
|-------------------------------------|---------------------|----------|----------------|----------|---------------|--|--|
|                                     | WWAN PCE + WLAN DTS |          |                |          |               |  |  |
| WWAN Band                           |                     | Exposure | Max SAR (W/kg) |          | Summed<br>SAR |  |  |
|                                     |                     | Position | WWAN<br>PCE    | WLAN DTS | (W/kg)        |  |  |
| GSM850 -                            |                     | Front    | 0.054          | 0.107    | 0.160         |  |  |
| CCM                                 | GSIMOSU             | Rear     | 0.081          | 0.156    | 0.238         |  |  |
| GSM                                 | DCC4000             | Front    | 0.097          | 0.107    | 0.204         |  |  |
|                                     | PCS1900             | Rear     | 0.153          | 0.156    | 0.310         |  |  |
|                                     | Band II             | Front    | 0.182          | 0.107    | 0.289         |  |  |
| NA/ODNAA                            |                     | Rear     | 0.174          | 0.156    | 0.331         |  |  |
| WCDMA                               | Band V              | Front    | 0.111          | 0.107    | 0.218         |  |  |
|                                     |                     | Rear     | 0.180          | 0.156    | 0.337         |  |  |
|                                     | B5<br>1RB           | Front    | 0.060          | 0.107    | 0.167         |  |  |
|                                     |                     | Rear     | 0.089          | 0.156    | 0.246         |  |  |
|                                     | B5                  | Front    | 0.045          | 0.107    | 0.152         |  |  |
| LTE                                 | 25RB                | Rear     | 0.082          | 0.156    | 0.239         |  |  |
| LTE                                 | B7                  | Front    | 0.461          | 0.107    | 0.568         |  |  |
|                                     | 1RB                 | Rear     | 0.684          | 0.156    | 0.840         |  |  |
|                                     | B7                  | Front    | 0.360          | 0.107    | 0.467         |  |  |
|                                     | 50RB                | Rear     | 0.659          | 0.156    | 0.815         |  |  |

Report No: TRE18060027 Page: 78 of 83 Issued: 2018-06-13

| WWAN PCE + Bluetooth |           |          |                |           |               |
|----------------------|-----------|----------|----------------|-----------|---------------|
| WWAN Band            |           | Exposure | Max SAR (W/kg) |           | Summed<br>SAR |
|                      |           | Position | WWAN<br>PCE    | Bluetooth | (W/kg)        |
| GSM850               |           | Front    | 0.054          | 0.371     | 0.425         |
| GSM                  | G21/1820  | Rear     | 0.081          | 0.371     | 0.452         |
| GSIVI                | D004000   | Front    | 0.097          | 0.371     | 0.468         |
|                      | PCS1900   | Rear     | 0.153          | 0.371     | 0.525         |
|                      | Band II   | Front    | 0.182          | 0.371     | 0.553         |
| MODMA                |           | Rear     | 0.174          | 0.371     | 0.545         |
| WCDMA                | Band V    | Front    | 0.111          | 0.371     | 0.482         |
|                      |           | Rear     | 0.180          | 0.371     | 0.552         |
|                      | B5<br>1RB | Front    | 0.060          | 0.371     | 0.431         |
|                      |           | Rear     | 0.089          | 0.371     | 0.460         |
|                      | B5        | Front    | 0.045          | 0.371     | 0.416         |
| LTE                  | 25RB      | Rear     | 0.082          | 0.371     | 0.454         |
| LTE                  | B7        | Front    | 0.461          | 0.371     | 0.832         |
|                      | 1RB       | Rear     | 0.684          | 0.371     | 1.055         |
|                      | B7        | Front    | 0.360          | 0.371     | 0.731         |
|                      | 50RB      | Rear     | 0.659          | 0.371     | 1.030         |

Report No: TRE18060027 Page: 79 of 83 Issued: 2018-06-13

### Maximum reported SAR value for Hotspot mode

|           |         | WWAN PCE +  | WLAN DTS       |          |               |
|-----------|---------|-------------|----------------|----------|---------------|
| WWAN Band |         | Exposure    | Max SAR (W/kg) |          | Summed<br>SAR |
|           |         | Position    | WWAN<br>PCE    | WLAN DTS | (W/kg)        |
|           |         | Front       | 0.054          | 0.107    | 0.160         |
|           |         | Rear        | 0.081          | 0.156    | 0.238         |
|           | CCMSEO  | Left side   | 0.058          | -        | 0.058         |
|           | GSM850  | Right side  | -              | 0.131    | 0.131         |
|           |         | Top side    | -              | 0.103    | 0.103         |
| GSM       |         | Bottom side | 0.055          | -        | 0.055         |
| GSIVI     |         | Front       | 0.097          | 0.107    | 0.204         |
|           | PCS1900 | Rear        | 0.153          | 0.156    | 0.310         |
|           |         | Left side   | 0.093          | -        | 0.093         |
|           |         | Right side  | -              | 0.131    | 0.131         |
|           |         | Top side    | -              | 0.103    | 0.103         |
|           |         | Bottom side | 0.096          | -        | 0.096         |
|           |         | Front       | 0.182          | 0.107    | 0.289         |
|           |         | Rear        | 0.256          | 0.156    | 0.413         |
|           | D       | Left side   | 0.174          | -        | 0.174         |
|           | Band II | Right side  | -              | 0.131    | 0.131         |
|           |         | Top side    | -              | 0.103    | 0.103         |
| WCDMA     |         | Bottom side | 0.169          | -        | 0.169         |
|           |         | Front       | 0.111          | 0.107    | 0.218         |
|           |         | Rear        | 0.180          | 0.156    | 0.337         |
|           | Dond V  | Left side   | 0.110          | -        | 0.110         |
|           | Band V  | Right side  | -              | 0.131    | 0.131         |
|           |         | Top side    | -              | 0.103    | 0.103         |
|           |         | Bottom side | 0.109          | -        | 0.109         |

Report No: TRE18060027 Page: 80 of 83 Issued: 2018-06-13

|     |           | Front       | 0.060 | 0.107 | 0.167 |
|-----|-----------|-------------|-------|-------|-------|
|     |           | Rear        | 0.089 | 0.156 | 0.246 |
|     | B5        | Left side   | 0.063 | -     | 0.063 |
|     | 1RB       | Right side  | -     | 0.131 | 0.131 |
|     |           | Top side    | -     | 0.103 | 0.103 |
|     |           | Bottom side | 0.054 | -     | 0.054 |
|     |           | Front       | 0.045 | 0.107 | 0.152 |
|     |           | Rear        | 0.082 | 0.156 | 0.239 |
|     | B5        | Left side   | 0.054 | -     | 0.054 |
|     | 25RB      | Right side  | -     | 0.131 | 0.131 |
|     |           | Top side    | -     | 0.103 | 0.103 |
| LTE |           | Bottom side | 0.045 | -     | 0.045 |
| LTE | B7<br>1RB | Front       | 0.461 | 0.107 | 0.568 |
|     |           | Rear        | 0.684 | 0.156 | 0.840 |
|     |           | Left side   | 0.483 | -     | 0.483 |
|     |           | Right side  | -     | 0.131 | 0.131 |
|     |           | Top side    | -     | 0.103 | 0.103 |
|     |           | Bottom side | 0.414 | -     | 0.414 |
|     |           | Front       | 0.360 | 0.107 | 0.467 |
|     |           | Rear        | 0.659 | 0.156 | 0.815 |
|     | B7        | Left side   | 0.435 | -     | 0.435 |
|     | 50RB      | Right side  | -     | 0.131 | 0.131 |
|     |           | Top side    | -     | 0.103 | 0.103 |
|     |           | Bottom side | 0.361 | -     | 0.361 |

Report No: TRE18060027 Page: 81 of 83 Issued: 2018-06-13

# 16. TestSetup Photos





Liquid depth in the Head phantom

Liquid depth in the Body phantom



Left Head Touch

Right Head Touch



Shenzhen Huatongwei International Inspection Co., Ltd.

Report No: TRE18060027 Page: 82 of 83 Issued: 2018-06-13



Body-worn Front (10mm)

Body-worn Rear (10mm)



Front (10mm)

Rear (10mm)



Left Side (10mm)

Right Side (10mm)

Report No: TRE18060027 Page: 83 of 83 Issued: 2018-06-13



-----End of Report-----

#### 1.1. DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Client CCIC - HTW (Auden) Certificate No: DAE4-1549\_Apr18 CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BN - SN: 1549 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: April 25, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 31-Aug-17 (No:21092) Aug-18 Secondary Standards Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 04-Jan-18 (in house check) In house check: Jan-19 Calibrator Box V2.1 SE UMS 006 AA 1002 04-Jan-18 (in house check) In house check: Jan-19 Name Function Signature Calibrated by: Eric Hainfeld Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: April 25, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1549\_Apr18

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1549\_Apr18

Page 2 of 5

### Appendix A: DAE and Probe Calibration Certificate

# DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

High Range:  $1LSB = 6.1 \mu V$ , full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | Х                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 406.286 ± 0.02% (k=2) | 405.992 ± 0.02% (k=2) | 406.121 ± 0.02% (k=2) |
| Low Range           |                       | 3.99129 ± 1.50% (k=2) |                       |

## **Connector Angle**

| Connector Angle to be used in DASY system | 19.5 ° ± 1 ° |
|-------------------------------------------|--------------|
|                                           | 10.0 -       |

# Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range        | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 200032.88    | -6.49           | -0.00     |
| Channel X + Input | 20007.86     | 2.59            | 0.01      |
| Channel X - Input | -19999.45    | 5.51            | -0.03     |
| Channel Y + Input | 200041.48    | 8.18            | 0.00      |
| Channel Y + Input | 20005.02     | -0.19           | -0.00     |
| Channel Y - Input | -20006.61    | -1.53           | 0.01      |
| Channel Z + Input | 200032.37    | -0.87           | -0.00     |
| Channel Z + Input | 20003.95     | -1.15           | -0.01     |
| Channel Z - Input | -20006.60    | -1.44           | 0.01      |

| Low Range         | Reading (μV) | Difference (μV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2001.67      | 0.37            | 0.02      |
| Channel X + Input | 201.82       | 0.29            | 0.15      |
| Channel X - Input | -198.25      | 0.31            | -0.16     |
| Channel Y + Input | 2001.35      | 0.05            | 0.00      |
| Channel Y + Input | 200.82       | -0.59           | -0.29     |
| Channel Y - Input | -199.06      | -0.48           | 0.24      |
| Channel Z + Input | 2000.94      | -0.41           | -0.02     |
| Channel Z + Input | 200.84       | -0.55           | -0.27     |
| Channel Z - Input | -199.79      | -1.17           | 0.59      |

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measurin

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | -15.83                             | -18.16                            |
|           | - 200                             | 21.36                              | 19.06                             |
| Channel Y | 200                               | 20.98                              | 20.64                             |
|           | - 200                             | -22.25                             | -22.23                            |
| Channel Z | 200                               | 5.37                               | 5.05                              |
|           | - 200                             | -7.46                              | -7.54                             |

### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | -1.66          | -2.66          |
| Channel Y | 200                | 5.97           | 12             | -0.75          |
| Channel Z | 200                | 9.87           | 3.19           | 0.75           |

Certificate No: DAE4-1549\_Apr18

Page 4 of 5

# 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 16424            | 16943           |
| Channel Y | 15770            | 17113           |
| Channel Z | 15616            | 15207           |

# 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input  $10 M\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) |
|-----------|--------------|------------------|------------------|---------------------|
| Channel X | -0.33        | -1.57            | 0.89             | 0.48                |
| Channel Y | 0.13         | -0.93            | 1.54             | 0.52                |
| Channel Z | -0.98        | -2.13            | 0.50             | 0.47                |

### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

| n) Measuring (MOhm) |
|---------------------|
| 200                 |
| 200                 |
| 200                 |
|                     |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |
|----------------|-------------------|
| Supply (+ Vcc) | +7.9              |
| Supply (- Vcc) | -7.6              |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

#### 1.2. Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CCIC-HTW (Auden)

Certificate No: EX3-7494\_Feb18

### **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:7494

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

February 26, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-17 (No. 217-02525)         | Apr-18                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-17 (No. ES3-3013_Dec17)    | Dec-18                 |
| DAE4                       | SN: 660          | 21-Dec-17 (No. DAE4-660_Dec17)    | Dec-18                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 |
| Network Analyzer HP 8753E  | SN: US37390585   | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: February 27, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-7494\_Feb18

Page 1 of 39

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NOR

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization  $\phi$   $\phi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
  b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on
  the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
  media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-7494\_Feb18

Page 2 of 39