

Marker-based FastSLAM on the AlphaBot2 Autonomous Systems Project 2023/2024

J. Pessoa

J. Gonçalves

M. Ribeiro ist196446 T. Nogueira ist1100029

Group 27

Instituto Superior Técnico

- 1 Simulation Models and Algorithms
 - Motion Model
 - Measurement Model
 - Sensor Model
 - Resampling Algorithm
- 2 Simulation on a 2D Environment
- 3 Simulation on a 3D Environment
- 4 Simulation with Unknown Data Association
- 5 Gazebo Simulation
- 6 Questions
- 7 Thank You!

Simulation Models and Algorithms

Simulation Models and Algorithms

In our micro-simulator, we define the **motion**, **measurement**, and **sensor models**, along with an initial state X(0) and control sequence U(t), to generate synthetic data.

Motion Model

Given the absence of wheel odometry, we make use of the **velocity motion model**:

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t) \\ \frac{\hat{v}}{\hat{\omega}}\cos\theta - \frac{\hat{v}}{\hat{\omega}}\cos(\theta + \hat{\omega}\Delta t) \\ \hat{\omega}\Delta t + \hat{\gamma}\Delta t \end{pmatrix}$$

Where \hat{v} and $\hat{\omega}$ model **real motion!** (noisy values).


```
% Add some Gaussian random noise to the movement.
    v = normrnd(movement(1), variance(1));
    w = normrnd(movement(2), variance(2));
   % Check if there are no singularities
6
7
   % ...
   % Calculate the new position
    delta = zeros(3,1);
10
    delta(1) = -(v/w) * sin(pos(3)) + (v/w) * sin(pos(3) + w * dt);
11
    delta(2) = (v/w) * cos(pos(3)) - (v/w) * cos(pos(3) + w * dt);
12
    delta(3) = w * dt;
13
14
    newpos = pos + delta:
```

Note: For singularities we can use L'Hôpital's rule

$$\lim_{x \to a^+} = \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$$

Measurement Model

Figure: ArUco marker

Translation:

- x: Fiducial x-coordinate relative to the camera.
- y: Fiducial y-coordinate relative to the camera.
- z: Fiducial z-coordinate relative to the camera.

Header:

- frame_id: Camera frame ID.
- stamp: Message timestamp.

Child Frame ID:

fiducial_<id>: Unique identifier.

Sensors usually provide the marker's relative Cartesian coordinates or a range and bearing. These (noisy) values can be transformed into the **world reference frame**:

```
% Transform to world coordinates

particles(pIdx).landmarks(lIdx).pos = [
    particles(pIdx).position(1) + x;
    particles(pIdx).position(2) + y;
];
```

```
% Transform to world coordinates
particles(pIdx).landmarks(Id).pos = [
   particles(pIdx).position(1) + cos(angle) * distance;
   particles(pIdx).position(2) + sin(angle) * distance;
];
```


Assuming that the robot's pose is $s_t = \langle s_{t,x}, s_{t,y}, s_{t,\theta} \rangle$ and the marker's position is written as $l_{n_t} = \langle l_{n_t,x}, l_{n_t,y} \rangle$.

(1) Cartesian coordinates:

$$g = \begin{bmatrix} l_{n_t, x} \\ l_{n_t, y} \end{bmatrix}$$

$$G = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

(2) Polar coordinates:

$$g = \begin{bmatrix} r(s_t, l_{n_t}) \\ \phi(s_t, l_{n_t}) \end{bmatrix}$$

$$G = \begin{bmatrix} \frac{l_{n_t,x} - s_{t,x}}{\sqrt{q}} & \frac{l_{n_t,y} - s_{t,y}}{\sqrt{q}} \\ \frac{s_{t,x} - l_{n_t,x}}{q} & \frac{l_{n_t,y} - s_{t,y}}{q} \end{bmatrix},$$

$$q = (l_{n_t,x} - s_{t,x})^2 + (l_{n_t,y} - s_{t,y})^2$$

Sensor Model

Based on official documentation, the Raspberry Pi Camera Module 2 has a field of view (FOV) as follows:

$$FOV = 2 \cdot \arctan\left(\frac{\text{sensor size}}{2 \cdot \text{focal length}}\right)$$

- Horizontal FOV: Approximately 62.2 degrees
- Vertical FOV: Approximately 48.8 degrees
- 14 cm ArUcos are roughly perceived up to 3 m, with the standard 1280 × 720 resolution (width × height).

Resampling Algorithm

Simulation Models and Algorithms Resample Algorithm Extra Mechanism

To prevent sample **impoverishment and degeneration** we resample only when the particle variance is low.

$$ESS = \left(\sum_{i=1}^{N} (W_n^i)^2\right)^{-1}$$

Resampling is performed if the Effective Sample Size (ESS) is below the threshold "number of particles/2".

Simulation on a 2D Environment

Figure: Noise variance is equal to the velocities

Figure: Noise variance is equal to 1.5× of the velocities

Simulation on a 3D Environment

Figure: Noise variance is equal to the velocities (animation, gif)

Figure: Noise variance is equal to 1.5× of the velocities

Simulation with Unknown Data Association

Unknown Data Association

■ What happens if we **disregard** (or don't have) the IDs provided by the detect_aruco function?

Figure: Measurement Ambiguity.

Unknown Data Association

Current Solution (based on Maximum Likelihood)

Initialization:

- Determine the number of measurements and existing landmarks observed and initialize a cost table with zeros.
- Compute Cost Table:

$$cost = \frac{1}{\sqrt{|2\pi Z_{n,t}|}} \exp\left\{-\frac{1}{2}(z_t - \hat{z}_{n,t})^T [Z_{n,t}]^{-1}(z_t - \hat{z}_{n,t})\right\}$$

- Assign Default Importance for New Landmarks:
 - Fill remaining columns of the cost table with default importance for new landmarks.
- Data Association:
 - For each measurement, determine the best matching landmark and update particle's weight.
- 5 Weight Update:
 - Update particle's weight based on the combined likelihood of all measurements.

Measurement	Landmark 1	Landmark 2	New Landmark 1	New Landmark 2	New Landmark 3
1	0.8	0.3	0.1	0.1	0.1
2	0.5	0.7	0.1	0.1	0.1
3	0.01	0.01	0.1	0.1	0.1

Data Association:

- Measurement 1: Best match is Landmark 1 (0.8)
- Measurement 2: Best match is Landmark 2 (0.7)
- Measurement 3: Best match is New Landmark 1 (0.1)

Unknown Data Association Example of a Simulated Result

Figure: 2D simulation with unknown data association

Gazebo Simulation

Gazebo Simulation

AlphaBot2 Xacro Model in Gazebo

Figure: ROS node working with the simulated robot in Gazebo

Gazebo Simulation

Simulated Detection of an ArUco

Figure: ROS node working with the simulated robot in Gazebo

Questions

Thank You!