Question bank for UT-II EM-IV SE Comps

1)If two independent random samples of sizes 15 and 8 have respectively the following means and population standard deviations

$$\overline{X_1} = 980 \ \overline{X_2} = 1012$$

$$\sigma_{1=75}$$
 , $\sigma_{2=80}$

Test the hypothesis that $\mu_{1}=\mu_{2}$ at 5% level of significance.

2) Use simplex method to solve the following LPP

Maximize
$$Z = 10x_1 + x_2 + x_3$$

Subject to $x_1 + x_2 - 3x_3 \le 10$
 $4x_1 + x_2 + x_3 \ge 20$
 $x_1, x_2, x_3 \ge 0$

3) Solve the following NLPP

Maximize
$$Z = 10x_1 + 4x_2 - 2x_1^2 - x_2^2$$

Subject to $2x_1 + x_2 \le 5$

$$x_1, x_2 \ge 0$$

4)Use Kuhn -Tucker conditions to solve the following NLPP

Maximize
$$Z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

Subject to $2x_1 + 5x_2 \le 98$
 $x_1, x_2 \ge 0$

5) Using the Penalty (Big M) method solve the following LPP

Maximise Z=
$$3x_1 + 2x_2$$

Subject to
$$2x_1 + x_2 \le 2$$

 $3x_1 + 2x_2 \ge 12$
 $x_1, x_2 \ge 0$

6) Use the dual simplex method to solve following LPP

Minimize
$$Z = 2x_1 + 2x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + 5x_3 \ge 2$
 $3x_1 + x_2 + 7x_3 \le 3$
 $x_1 + 4x_2 + 6x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$