Projekt

Sterowniki robotów

Założenia projektowe

Theremin

_

Skład grupy: Cyprian Hryniuk, 235512 Tomasz Masłoń, 235827

Termin: srTN17

 $\begin{tabular}{ll} $Prowadzqcy: \\ mgr inż. Wojciech DOMSKI \end{tabular}$

Spis treści

1	Opis projektu				
2	Założenia projektowe	2			
3	Konfiguracja mikrokontrolera3.1 Konfiguracja pinów				
4	Harmonogram pracy 4.1 Podział pracy	4			
5	Podsumowanie	5			
Bi	ibilografia	6			

1 Opis projektu

Projekt ma na celu stworzenie theremina, w którym rolę anten spełniać będą dwa czujniki odległości: jeden do określania częstotliwości fali dźwiękowej, a drugi do jej amplitudy.

Rysunek 1: Architektura systemu

2 Założenia projektowe

3 Konfiguracja mikrokontrolera

Tutaj powinna znaleźć się konfigurację poszczególnych peryferiów mikrokontrolera – jeśli wykorzystywany jest np. ADC to należy podać jego konfigurację nie zapominając o DMA jeśli jest wykorzystywane. Proszę wzorować się na raporcie wygenerowanym z programu STM32CubeMx (plik PDF i TXT, Project -> Generate Report Ctrl+R). W pliku PDF jest to rozdział *IPs* and *Middleware Configuration*. Należy umieścić uproszczoną konfiguracje peryferiów w formie tabelek (najistotniejsze parametry + parametry zmienione, pogrubione). Dodatkowo w pliku tekstowym (TXT) znajduje się konfiguracja pinów mikrokontrolera, którą również należy zamieścić w raporcie.

W przypadku, gdy projekt zakłada wykorzystanie większej liczby modułów sekcję tą należy podzielić na odrębne podsekcje.

Rysunek 2: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 3: Konfiguracja zegarów mikrokontrolera

3.1 Konfiguracja pinów

Numer pinu	PIN	Tryb pracy	Funkcja/etykieta
2	PC13	ANTI_TAMP GPIO_EXTI13	B1 [Blue PushButton]
3	PC14	OSC32_IN* RCC_OSC32_IN	
4	PC15	OSC32_OUT* RCC_OSC32_OUT	
5	PH0	OSC_IN* RCC_OSC_IN	
6	PH1	OSC_OUT*	RCC_OSC_OUT
16	PA2	USART2_TX	USART_TX
17	PA3	USART2_RX	USART_RX
21	PA5	GPIO_Output	LD2 [Green Led]
29	PB10	I2C2_SCL	I2C_SCL
41	PA8	TIM1_CH1	PWM1
46	PA13*	SYS_JTMS-SWDIO	TMS
49	PA14*	SYS_JTCK-SWCLK	TCK
55	PB3*	SYS_JTDO-SWO	SWO
62	PB9	I2C2_SDA	I2C_SCL

Tabela 1: Konfiguracja pinów mikrokontrolera

3.2 USART

Przykładowa konfiguracja peryferium interfejsu szeregowego. Należy opisać do czego będzie wykorzystywany interfejs. Zmiany, które odbiegają od standardowych w programie CubeMX powinn być zaznaczone innym kolorem, jak to zostało pokazane w tabeli 2.

Parametr	Wartość
Baud Rate	11520
Word Length	8 Bits (including parity)
Parity	None
Stop Bits	1

Tabela 2: Konfiguracja peryferium USART

4 Harmonogram pracy

Należy wstawić diagram Gantta oraz określić ścieżkę krytyczną. Ponadto zaznaczyć i opisać kamienie milowe.

Rysunek 4: Diagram Gantta

4.1 Podział pracy

Każdy z członków grupy powinien w każdym etapie mieć wymienione od 2 do 4 zadań. Przykładowa tabele podziału zadań dla etapu II (Tab. 3) oraz dla etapu III (Tab. 4) zostały przedstawione poniżej. Przy podziałe prac nie uwzględniamy tworzenia dokumentacji projektu! Przykładowy podział prac dla projektu pod tytułem Automatyczny dyktafon rozmowy":

Tomasz Masłoń	%	Cyprian Hryniuk	%
Wstępna konfiguracja peryferiów w		Wstępna konfiguracja peryferiów w	
programie CubeMx		programie CubeMx	
Implementacja obsługi Audio DAC		Implementacja obsługi czujników odległości	
Opracowanie algorytmu modulującego falę		Opracowanie algorytmu modulującego falę	
dźwiękową na podstawie danych z czujników		dźwiękową na podstawie danych z czujników	
odległosci		odległosci	

Tabela 3: Podział pracy – Etap II

Tomasz Masłoń	%	Cyprian Hryniuk	%
Finalna konfiguracja peryferiów w programie		Finalna konfiguracja peryferiów w programie	
CubeMX		CubeMX	
Opracowanie funkcji modyfikujących dźwięk		Opracowanie funkcji modyfikujących dźwięk	
Obsługa wyświetlacza ciekłokrystalicznego		Obsługa joysticka	

Tabela 4: Podział pracy – Etap III

5 Podsumowanie

Krótkie podsumowanie projektu

Literatura