Gas

can be single atoms or molecules

Helium He

Nitrogen N₂

Oxygen O₂

Water H₂O

Pressure

in a box

Wall of area A

Pressure = Force / Area

Temperature

Low Temperature

High Temperature

Thermal motion = Kinetic energy

Higher temperature, higher kinetic energy, faster motion more force, greater pressure

Density

More particles hitting the box, higher pressure

Ideal Gas Law

Combine what we already know

P pressure

P = number density x R x T

pressure is proportional to density of particles times temperature

More particles, higher pressure

Higher temperature, higher pressure

Atmosphere

Low pressure

Force of gravity of the air in the box (F_g)

Force from pressure of air below pushing up (F_b)

If there are N boxes on top, then $F_b = (N + 1) \times F_g$

High pressure

What does pressure really mean

```
Atmospheric pressure at sea level
100,000 newtons per square meter, 100,000 pascals (Pa)
(~10,000 kg per square meter or 14.7 pounds per square inch)
Pressure at Denver
83,000 Pa (12.2 psi)
Pressure at Mount Everest
33,000 Pa (4.9 psi)
```

At sea level, equivalent to a bus on top of you or 1 ton per square foot

Pressure difference between top and bottom of wing 2,000 Pa (1/3 psi)

Large force (heavy weight) Large area

Hydraulic pump

pressure = force / area so force = pressure times area

pressure of the fluid is the same everywhere

Small force (easy to push) Small area

Buoyancy

Archimedes' principle:

An object partially or wholly immersed in a fluid is acted upon by an upward buoyant force equal to the weight of the fluid it displaces.

Consider part of the fluid

Total Force = force up - force down - force of gravity = 0

If the object has a different mass, the force of gravity will be different

if mass is greater than the fluid

Total Force is negative, object falls
if mass is less than the fluid

Total Force is positive, object goes up
if mass is the same

Total Force = 0, object stays where it is

Hot Air Balloon

pressure inside = pressure outside

pressure is proportional to density times temperature Hot air has higher temperature and same pressure so density is lower

So weight of balloon is less than air around it

Balloon rises

Helium Balloon

Force due to gravity = weight of balloon + weight of helium

If

weight of helium is less than weight of air (yes)

and

weight of helium + weight of balloon is less than weight of air (depends on balloon)

then

balloon goes up

Bubbles

Surfactant molecule (SOAP)

