## 武汉大学计算机学院2012-2013学年第一学期 2010级《编译原理》参考答案

一、(1



(2)

$$A = \{0, 2, 3\}$$

$$B = \{1\}$$

$$C = \{1, 2, 3, 4, 5\}$$

状态转换图为:



(3) 最小DFA如下所示:



- (4) 空串或以b结尾且没有连续的a.
- (5)  $r = (b \mid ab)^*$ .
- 二、(1)最左推导如下:

$$E \implies E[E]$$

$$\implies \operatorname{id}[E]$$

$$\implies \operatorname{id}[*E]$$

$$\implies \operatorname{id}[*\operatorname{id}]$$

(2) 消除左递归后的文法如下:

$$\begin{array}{ccc} E & \to & *ET \mid \mathrm{id}T \\ T & \to & [E]T \mid \varepsilon \end{array}$$

(3)  $\operatorname{First}(E) = \{ \operatorname{id}, * \}; \operatorname{First}(T) = \{ [, \varepsilon \}.$  $\operatorname{Follow}(E) = \operatorname{Follow}(T) = \{ [, ], \$ \}.$  (4) LL(1)分析表如下所示:

|   |                | id          | *           |                                 |                     | \$                  |
|---|----------------|-------------|-------------|---------------------------------|---------------------|---------------------|
| T | E              | $E \to idT$ | $E \to *ET$ |                                 |                     |                     |
|   | $\overline{T}$ |             |             | $E \to [E]T, E \to \varepsilon$ | $E \to \varepsilon$ | $E \to \varepsilon$ |

(5) 语句"id[\*id]"的分析过程如下所示:

| 剩余串       | 分析栈              | 分析动作                 |
|-----------|------------------|----------------------|
| id[*id]\$ | E\$              | $E \to idT$          |
| id[*id]\$ | $\mathrm{id}T\$$ | match-advance        |
| [*id]\$   | T\$              | $T \to [E]T$         |
| [*id]\$   | [E]T\$           | match-advance        |
| *id]\$    | E]T\$            | $E \to *ET$          |
| *id]\$    | *ET]T\$          | match-advance        |
| id]\$     | ET]T\$           | $E \to \mathrm{id}T$ |
| id]\$     | idTT]T\$         | match-advance        |
| ]\$       | TT]T\$           | $T \to \varepsilon$  |
| ]\$       | T]T\$            | $T \to \varepsilon$  |
| ]\$       | ]T\$             | match-advance        |
| \$        | T\$              | $T \to \varepsilon$  |
| \$        | \$               | 分析成功                 |

三、(1) "\*id[id]"的两颗不同的语法树:

语法树1:



语法树2:



(2) 无二义文法:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow *T \mid F$$

$$F \rightarrow F[E] \mid id$$

四、(1) 识别活前缀的自动机在吃进 E[\*\* 之后到达状态 $I_1$ ,其有效项目集为

$$\overline{\{E \to * \bullet E\}}$$
=\{E \to \* \blue E, E \to \blue \* E, E \to \blue E[E], E \to \blue id\}

识别活前缀的自动机在吃进 \*E[\*E[ 之后到达状态 $I_5,$  其有效项目集为:

$$\overline{\{E \to E[\bullet E]\}}$$
=\{E \to E[\epsilon E], E \to \blue \* E, E \to \blue E[E], E \to \blue id\}

- (2)  $First(E) = \{ id, * \}, Follow(T) = \{ [, ], \$ \}.$
- (3) SLR分析表如下所示:

|    | action |    |    | goto |     |        |
|----|--------|----|----|------|-----|--------|
| 状态 | id     | *  |    |      | \$  | goto E |
| 0  | s3     | s1 |    |      |     | 2      |
| 1  | s3     | s1 |    |      |     | 4      |
| 2  |        |    | s5 |      | acc |        |
| 3  |        |    | r3 | r3   | r3  |        |
| 4  |        |    | s5 | r1   | r1  |        |
| 5  | s3     | s1 |    |      |     | 6      |
| 6  |        |    | s5 | s7   |     | A      |
| 7  | 4      |    | r2 | r2   | r2  |        |

(4) "\*id[id]"的分析过程如下所示:

| 剩余串       | 分析栈         | 分析动作                |
|-----------|-------------|---------------------|
| *id[id]\$ | 0           | shift               |
| id[id]\$  | 0*1         | shift               |
| [id]\$    | 0*1id3      | reduce $E \to id$   |
| [id]\$    | 0*1E4       | shift               |
| id]\$     | 0*1E4[5]    | shift               |
| ]\$       | 0*1E4[5id3] | reduce $E \to id$   |
| ]\$       | 0*1E4[5E6   | shift               |
| \$        | 0*1E4[5E6]7 | reduce $E \to E[E]$ |
| \$        | 0*1E4       | reduce $E \to *E$   |
| \$        | 0E2         | 分析成功                |

## 五、(1)

|              | E.type = (int, 4)                                                                                    |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------|--|--|--|
|              | E.temp = newtemp()                                                                                   |  |  |  |
|              | $emit(E.temp+"="+E_1.temp+"+"+E_2.temp)$                                                             |  |  |  |
| $E \to *E_1$ | if $E_1$ .type $\neq$ (ptr( $T$ ), 4)                                                                |  |  |  |
|              | then error("* operates with no pointer")                                                             |  |  |  |
|              | if $E_1$ .type == $(ptr(T), 4)$ and $T == (array(T_1), n)$                                           |  |  |  |
|              | then $E.type = (ptr(T_1), 4); E.temp = E_1.temp$                                                     |  |  |  |
|              | else $E.type = T$ ; $E.temp = newtemp()$                                                             |  |  |  |
|              | $emit(E.temp+"=*"+E_1.temp)$                                                                         |  |  |  |
| $E \to id$   | E.temp = id.lexeme                                                                                   |  |  |  |
|              | T = getsymb(id.lexeme)                                                                               |  |  |  |
|              | if $T == (\text{char}, 1)$ then $E.\text{type} = (\text{int}, 4)$                                    |  |  |  |
|              | if $T == (\operatorname{array}(T_1), n)$ then $E.\operatorname{type} = (\operatorname{ptr}(T_1), 4)$ |  |  |  |
|              | else $E$ .type = $T$                                                                                 |  |  |  |
|              |                                                                                                      |  |  |  |

## (2) 变量a的类型表达式为:

array(array(array(ptr((int, 4), 4), 20), 80), 240)

表达式"\*a[x][y][z]"为三地址码:

六、

七、程序1中,函数foo()的形参b的类型是指向长度为5的整型数组的指针,子表达式b[1](即\*(b + 1))的类型是指向长度为5的整形数组第一个元素的指针,因此其值还是(b + 1),引用运算\*并没有起作用。所以foo(a)能正确第访问a[1][3].

但程序2中的子表达式b[1]的类型是指向整形的指针,因此\*(b + 1)中的引用运算\*将起作用。故对实参a,子表达式\*((int \*\*) a + 1)的值为5,类型是指针,这样b[1][3]将访问地址为5 + 3 \* 4上的值,超出了程序段的范围,因此报段错误。