No one can cheat the time, no matter how smart I am, it still very far until I understand the natural of intelligent, and understand at least at a surface, what is god, why gods create human, and who created gods? Did it intentionally, or just purely coincidental.

What is the natural of intelligent?

Does machine intelligence work the same like us?.

Does machine learning is just stay in the black box, that we never actually understand it? Wait, but if we cannot truly understand it, how dare we sure they will produce the correct solutions?

Let pick a random, but somewhat useful, practical, and latest AI problem in Kaggle.

In[237]:=

SetDirectory["~/nhannht-projects/AI"]

Out[237]=

/home/vermin/nhannht-projects/AI

Competitions

There is 10 indefinitely competitions (a hackathon that never end), oh we see, despite call themself hackathon, it actually like a collection of challenges just for learning. At least if I finished those competitions, and the projects from AWS "scholarships", maybe I can do actually know a bit about AI

In[17]:= trained = importCSVAsDataset["/home/vermin/nhannht-projects/AI/data/titanic/train.csv"]

Out[17]=

PassengerId	Survived	Pclass	Name
1	0	3	Braund, Mr. Owen Harris
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)
3	1	3	Heikkinen, Miss. Laina
1	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)
5	0	3	Allen, Mr. William Henry
5	0	3	Moran, Mr. James
7	0	1	McCarthy, Mr. Timothy J
3	0	3	Palsson, Master. Gosta Leonard
)	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
LO	1	2	Nasser, Mrs. Nicholas (Adele Achem)
11	1	3	Sandstrom, Miss. Marguerite Rut
12	1	1	Bonnell, Miss. Elizabeth
13	0	3	Saundercock, Mr. William Henry
L4	0	3	Andersson, Mr. Anders Johan
15	0	3	Vestrom, Miss. Hulda Amanda Adolfina
16	1	2	Hewlett, Mrs. (Mary D Kingcome)
17	0	3	Rice, Master. Eugene
L8	1	2	Williams, Mr. Charles Eugene
19	0	3	Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)
20	1	3	Masselmani, Mrs. Fatima

```
In[18]:= tests =
               importCSVAsDataset["/home/vermin/nhannht-projects/AI/data/titanic/test.csv"];
  In[19]:= trained[1] // Normal
Out[19]=
           \langle\,\big|\, \text{PassengerId} \,\rightarrow\, \text{1, Survived} \,\rightarrow\, \text{0, Pclass} \,\rightarrow\, \text{3,}
             Name \rightarrow Braund, Mr. Owen Harris, Sex \rightarrow male, Age \rightarrow 22, SibSp \rightarrow 1,
             Parch \rightarrow 0, Ticket \rightarrow A/5 21171, Fare \rightarrow 7.25, Cabin \rightarrow , Embarked \rightarrow S \mid \rangle
```

In[20]:=

Using the patterns you find in the train.csv data, predict whether the other 418 passengers on board (found in test.csv) survived.

Out[20]=

Using the patterns you find in the train.csv data, predict whether the other 418 passengers on board (found in test.csv) survived.

In[47]:= trainedHeader = tests[1, Keys] // Normal

Out[47]=

{PassengerId, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked}

First, we must extract the column that will affect the outcome, purely based on the our logic. Example PassengerID, SibSpParch ,Name is no necessary here.

In[234]:=

trained1 =
 trained[All, <|"Survived" → # Survived "Pclass" → # Pclass "Sex" → # Sex
 "Age" → # Age "Fare" → # Fare "Cabin" → # Cabin> &]

Out[234]=

Survived	Pclass	Sex	Age	Fare	Cabin
0	3	male	22	7.25	
1	1	female	38	71.2833	C85
1	3	female	26	7.925	
1	1	female	35	53.1	C123
0	3	male	35	8.05	
0	3	male		8.4583	
0	1	male	54	51.8625	E46
0	3	male	2	21.075	
1	3	female	27	11.1333	
1	2	female	14	30.0708	

Second, we should delete the column that have missing data so much

 $ln[61]:= \langle | \# \rightarrow trained1[Count[""], \#] / Length[trained1]| \rangle \& /@ trained1[1, Keys]$

Out[61]=

Survived	0
Pclass	0
Sex	0
Age	0.198653
Fare	0
Cabin	0.771044

The cabin column have 77 percent missing data, better remove it

In[199]:=

trained1 = trained[All, <|"Survived" → # Survived</pre> "Pclass" $\rightarrow \#$ Pclass "Sex" $\rightarrow \#$ Sex "Age" $\rightarrow \#$ Age "Fare" $\rightarrow \#$ Fare> &]

Out[199]=

	Survived	Pclass	Sex	Age	Fare
	0	2	male	59	13.5
	1	3	female	5	31.3875
	0	2	male	24	10.5
	0	3	female		7.55
∇	0	2	male	44	26

In[88]:= trained1[Select[# Age≠ "" &], "Age"] // Mean

Out[88]=

29.6991

Well, let trained using super function Classify from wolfram

What about age, it have only 20 percent data missing, better replace those missing by mean values

 $\label{eq:ln213} $ \text{ln[213]:=} $$ \text{classifier} = \text{Classify[trained2} \rightarrow \text{"Survived"]} $$ \text{Out[213]:=} $$$

 $\overline{}$ \wedge rows 1–10 of **891** \vee \vee

ClassifierFunction Input type: Mixed (number: 4) Classes: 0, 1

In[112]:=
 classifer@ tests[20] // Quiet

Out[112]=

tests // Length

Out[169]=

In[169]:=

418

In[183]:=

tests1 = tests[All, <|"Pclass" → # Pclass "Sex" → # Sex, "Age" → # Age, "Fare" → # Fare> &]; tests2 = tests1[All, {"Age" \rightarrow Replace["" \rightarrow (tests1[Select[# $Age \neq$ "" &], "Age"] // Mean)], "Fare" \rightarrow Replace["" \rightarrow (tests1[Select[# $Fare \neq$ "" &], "Fare"] // Mean)]

}]

Out[184]=

	Pclass	Sex	Age	Fare
	3	male	34.5	7.8292
	3	female	47	7
	2	male	62	9.6875
	3	male	27	8.6625
∇	3	female	22	12.2875

In[227]:=

testsWithSurvived = tests2[All, <|#, "Survived" → classifier[#]|> &]

Out[227]=

\triangle	Pclass	Sex	Age	Fare	Survived	
	3	male	34.5	7.8292	0	
	3	female	47	7	0	
	2	male	62	9.6875	0	
	3	male	27	8.6625	0	
	3	female	22	12.2875	0	
	3	male	14	9.225	0	
	3	female	30	7.6292	1	
	2	male	26	29	0	
∇	3	female	18	7.2292	1	
	3	male	21	24.15	0	

Well, it ... done if we consider the requirements in Kaggle, just push the dataset as a results . It is time to dive deep. I use super function Classify, the super meaning that this function give me a very high level of abstraction, it automatic pick from variable types to the algorihms to imple-

ment AI pipe line. IF you consider it is cheat, well, i am sure a ton of ML library in Python nowadays using the same style. People nowadays learn AI without actually know what happen under the iceberg.

Using the Information function, we can see classifier show it accuracy rate is from 72->80%. It pretty low, but still better than 50-50 purely random pick. IT still low because of the low number of training set. But, we know, no matter how big our training set is, the is a upper limit of how accurate AI can predict, and it will never 100% percent. . It is using RandomForest method. Well, the Wolfram super function smart enough it automatic pick the algorithm on it own.

In[216]:=

Information[classifier]

Out[216]=

In[218]:= <|# → Information[classifier, #]|> &/@ Information[classifier, "Properties"] // Dataset

Out[218]=

MeanCrossEntropy	0.49 ± 0.09		
Method	NearestNeighbors		
MethodDescription	The nearest neighbors predictor predicts the value of a new exa		
MethodOption	$\texttt{Method} \rightarrow \{"NearestNeighbors", "NearestNeighbors", "NearestN$		
MethodParameters	< NeighborsNumber → 20, DistributionSmoot		
MissingSynthesizer			
PerformanceGoal	Automatic		
Properties	{31}		
TrainingClassPriors	< 0 → 0.615901, 1 → 0.384099 >		
TrainingTime	2.73487 s		
	'		

In[224]:=

Divide @@ trained2[Counts, "Survived"] // N

Out[224]=

1.60526

In[229]:=

Divide @@ testsWithSurvived[Counts, "Survived"] // N

Out[229]=

1.84354

Well, temporally stop here. Still so shallow and full of darkness. I need sharpen the knowledge in some related fields

Scratchpad

In[29]:= SetDirectory["~/nhannht-projects/AI/"];

NotebookSave[EvaluationNotebook[], FileNameJoin[{Directory[], "basic.nb"}]]

In[242]:=

VerminExportKeepSyntaxHighLight[]