Bayesian Decision Theory

Mingmin Chi

SCS Fudan University, Shanghai, China

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 \mathbf{I}$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- Receiver Operating Characteristic (ROC)

Learning Types

Imagine an organism or machine which experiences a series of sensory inputs: $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \cdots$

- Supervised learning: The machine is also given desired outputs y_1, y_2, y_3, \cdots , and its goal is to learn to produce the correct output given a new input
- Unsupervised learning: The goal of the machine is to build a model of x that can be used for reasoning, decision making, predicting things, communicating etc.
- Reinforcement learning: The machine can also produce actions a_1, a_2, \dots which affect the state of the world, and receives rewards (or punishments) r_1, r_2, \dots Its goal is to learn to act in a way that maximizes rewards in the long term

Inference Types

- Inductive Learning (specific-to-general): Learning is a problem of function estimation on the basis of empirical data
- Transductive Learning (specific-to-specific): To estimate the values of the function for a given finite number of samples of interest

General Decision Theory

Foundation of pattern recognition is probability theory

• Minimize the expected number of misclassifications by assigning each input \mathbf{x} to the class \mathcal{C}_k which maximizes the posterior

$$P(C_k|\mathbf{x}).$$

General Decision Theory

Foundation of pattern recognition is probability theory

• Minimize the expected number of misclassifications by assigning each input \mathbf{x} to the class \mathcal{C}_k which maximizes the posterior

$$P(C_k|\mathbf{x}).$$

- Two phases
 - Inference: model the posterior probabilities
 - Decision: choose the optimal output

Generative Vs. Discriminative Models

 Generative approaches: separately model the class-conditional densities and the priors

$$p(\mathbf{x}|\mathcal{C}_k), \quad P(\mathcal{C}_k)$$

then evaluate the posterior with the Bayes' Theorem

$$P(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)P(C_k)}{\sum_{j} p(\mathbf{x}|C_j)P(C_j)}$$

Generative Vs. Discriminative Models

 Generative approaches: separately model the class-conditional densities and the priors

$$p(\mathbf{x}|\mathcal{C}_k), \quad P(\mathcal{C}_k)$$

then evaluate the posterior with the Bayes' Theorem

$$P(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)P(C_k)}{\sum_{j} p(\mathbf{x}|C_j)P(C_j)}$$

Discriminative approaches: directly model the posterior

$$P(C_k|\mathbf{x})$$

Scenario

- Design of a classifier to separate two kinds of fish: sea bass and salmon
- What's the next emerging along the conveyor belt (prediction)?
- Does the sequence of types of fish appear to be random?

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different ∑ for each class
- Error Probabilities
- B Receiver Operating Characteristic (ROC)

9/89

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

Decision by Prior

- The type of fish, or state of nature, or class, ω , is a random variable
- As each fish emerges nature is in one or the other of the two possible states

$$\omega = \left\{ \begin{array}{ll} \omega_1 & \text{if fish is sea bass} \\ \omega_2 & \text{if fish is salmon} \end{array} \right.$$

- ullet As the ω is unpredictable, it must be described probabilistically
- Assuming there is some a priori probability (prior), which reflects our knowledge of how likely each type of fish will appear before we actually see it.

Prior

 Assuming that the catch of salmon and sea bass is equiprobable (uniform priors),

Prior

- Assuming that the catch of salmon and sea bass is equiprobable (uniform priors),
 - $P(\omega_1) = P(\omega_2)$

Prior

 Assuming that the catch of salmon and sea bass is equiprobable (uniform priors),

-
$$P(\omega_1) = P(\omega_2)$$

Assume there are no other types of fish

- Assuming that the catch of salmon and sea bass is equiprobable (uniform priors),
 - $P(\omega_1) = P(\omega_2)$
- Assume there are no other types of fish
 - $P(\omega_1) + P(\omega_2) = 1$ (exclusivity and exhaustivity)
- May use different values depending on the fishing area, time of the year, etc.

Decision with Prior

No more information available, if we are forced to make a decision

Decision with Prior

No more information available, if we are forced to make a decision

$$\omega = \begin{cases} \omega_1 & \text{if } P(\omega_1) > P(\omega_2) \\ \omega_2 & \text{if } P(\omega_1) < P(\omega_2) \\ \omega_1/\omega_2 & \text{if } P(\omega_1) = P(\omega_2) \end{cases}$$

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different ∑ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

Probability Density

- Let's try to improve the decision using the lightness measurement

 x
- different fish with different lightness values x_1, x_2, \cdots
 - \Rightarrow x is a random variable in probabilistic terms
- Assume x to be a continuous random variable whose distribution depends on the state of nature:

$$p(x|\omega)$$

- which is class-conditional probability density of measuring a particular feature value x given the pattern is in category (class) ω
- likelihood: if all other things are equal, larger $p(x|\omega_i)$ is of more "likely" that the true category is ω_i

Probability Density

 $p(x|\omega_1)$ and $p(x|\omega_2)$ describe the difference in lightness between population of sea bass and salmon

Mingmin Chi (Fudan Univ.)

Decision by Likelihood

$$\omega = \begin{cases} \omega_1 & \text{if } p(x|\omega_1) > p(x|\omega_2) \\ \omega_2 & \text{if } p(x|\omega_1) < p(x|\omega_2) \\ \omega_1/\omega_2/\text{reject} & \text{if } p(x|\omega_1) = p(x|\omega_2) \end{cases}$$

Mingmin Chi (Fudan Univ.)

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

Decision-theoretic terminology

- state of nature: ω
- a priori probability (prior) $P(\omega)$
- ullet class-conditional probability density function $p(x|\omega_i)$

the likelihood of ω_i wrt x

• a posteriori probability $P(\omega_i|x)$: the probability of the state of nature being ω_i given that feature value x has been measured

Posterior

Posterior

- Product of the likelihood and the prior probability
- Bayes formula:

$$posterior = \frac{likelihood \times prior}{evidence}$$

 \Rightarrow

Posterior

Posterior

- Product of the likelihood and the prior probability
- Bayes formula:

$$posterior = \frac{likelihood \times prior}{evidence}$$

 \Rightarrow

$$P(\omega_k|x) = \frac{p(x|\omega_k)P(\omega_k)}{\sum_{i=1}^2 p(x|\omega_i)P(\omega_i)}$$

Making Decision

- Suppose we know the likelihood and the prior probability
- How can we make a decision after observing the value of x?

Making Decision

- Suppose we know the likelihood and the prior probability
- How can we make a decision after observing the value of x?

$$\omega = \left\{ egin{array}{ll} \omega_1 & & ext{if } P(\omega_1|x) > P(\omega_2|x) \\ \omega_2 & & ext{otherwise} \end{array}
ight.$$

• We can rewrite the decision rule by

$$\omega = \left\{ \begin{array}{ll} \omega_1 & \quad \text{if } \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)} \\ \omega_2 & \quad \text{otherwise} \end{array} \right.$$

What is the probability of error for this decision:

What is the probability of error for this decision:

$$P(\text{error}|x) =$$

What is the probability of error for this decision:

$$P(\text{error}|x) = \begin{cases} P(\omega_2|x) & \text{if we decide } \omega_1 \\ P(\omega_1|x) & \text{if we decide } \omega_2 \end{cases}$$

What is the average probability of error?

What is the probability of error for this decision:

$$P(\text{error}|x) = \left\{ egin{array}{ll} P(\omega_2|x) & \text{if we decide } \omega_1 \\ P(\omega_1|x) & \text{if we decide } \omega_2 \end{array} \right.$$

What is the average probability of error?

What is the probability of error for this decision:

$$P(\text{error}|x) = \left\{ egin{array}{ll} P(\omega_2|x) & \text{if we decide } \omega_1 \\ P(\omega_1|x) & \text{if we decide } \omega_2 \end{array}
ight.$$

What is the average probability of error?

$$P(\text{error}) = \int_{-\infty}^{+\infty} P(\text{error}, x) dx = \int_{-\infty}^{+\infty} P(\text{error}|x) p(x) dx$$

Bayes decision rule minimizes this error since

$$P(\text{error}|x) = \min[P(\omega_1|x), P(\omega_2|x)]$$

Bayes Decision Rule

MAP and MLE

Maximum a posteriori (MAP)

Decide
$$\omega_1$$
 if $P(\omega_1|x) > P(\omega_2|x)$

MAP and MLE

Maximum a posteriori (MAP)

Decide
$$\omega_1$$
 if $P(\omega_1|x) > P(\omega_2|x)$

$$P(\omega_k|x) = \frac{p(x|\omega_k)P(\omega_k)}{p(x)} \quad \Downarrow \quad p(x) = \sum_{i=1}^2 p(x|\omega_i)P(\omega_i)$$

MAP and MLE

Maximum a posteriori (MAP)

Decide
$$\omega_1$$
 if $P(\omega_1|x) > P(\omega_2|x)$

$$P(\omega_k|x) = \frac{p(x|\omega_k)P(\omega_k)}{p(x)} \quad \Downarrow \quad p(x) = \sum_{i=1}^2 p(x|\omega_i)P(\omega_i)$$

Maximum Likelihood Estimation (MLE)

Decide
$$\omega_1$$
 if $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$

$$\Downarrow P(\omega_1) = P(\omega_2)$$

Decide ω_1 if $p(x|\omega_1) > p(x|\omega_2)$

Mingmin Chi (Fudan Univ.)

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

more than one feature:

- more than one feature:
 - replacing the scalar x by the *feature vector* $\mathbf{x} \in \mathcal{R}^d$

- more than one feature:
 - replacing the scalar x by the *feature vector* $\mathbf{x} \in \mathbb{R}^d$
- more than two states of nature
 - multiple classes

- more than one feature:
 - replacing the scalar x by the *feature vector* $\mathbf{x} \in \mathbb{R}^d$
- more than two states of nature
 - multiple classes
- allowing actions other than just decision
 - allowing the possibility of rejection

- more than one feature:
 - replacing the scalar x by the *feature vector* $\mathbf{x} \in \mathcal{R}^d$
- more than two states of nature
 - multiple classes
- allowing actions other than just decision
 - allowing the possibility of rejection
- different risks for the decision
 - define how costly each action is

 Let x be the d-dimensional random variable, called the feature vector

- Let x be the d-dimensional random variable, called the feature vector
- Let $\{\omega_1, \omega_2, \cdots, \omega_c\}$ be the finite set of the c states of nature ("categories" or "classes")

- Let x be the d-dimensional random variable, called the feature vector
- Let $\{\omega_1, \omega_2, \cdots, \omega_c\}$ be the finite set of the c states of nature ("categories" or "classes")
- Let $\{\alpha_1, \dots, \alpha_a\}$ be the finite set of *a* possible actions

- Let x be the d-dimensional random variable, called the feature vector
- Let $\{\omega_1, \omega_2, \cdots, \omega_c\}$ be the finite set of the c states of nature ("categories" or "classes")
- Let $\{\alpha_1, \dots, \alpha_a\}$ be the finite set of *a* possible actions
- Let $\lambda(\alpha_i|\omega_j)$ be the loss incurred for taking action α_i when the state of nature is ω_i

Bayesian Decision Theory

Posterior

- $P(\omega_i)$ is the prior probability when the state of nature is ω_i
- $p(x|\omega_i)$ is the class-conditional probability density function
- $P(\omega_i|x)$ is the posterior probability which can be computed by

$$P(\omega_k|x) = \frac{p(x|\omega_k)P(\omega_k)}{\sum_{i=1}^2 p(x|\omega_i)P(\omega_i)}$$

Conditional Risk

- Suppose we observe **x** and take action α_i
- If the true state of nature is ω_i , we incur the loss $\lambda(\alpha_i|\omega_i)$
- the expected loss with taking action α_i

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)P(\omega_j|\mathbf{x})$$

which is also called the conditional risk

Minimum Risk Classification

- The general decision rule $\alpha(\mathbf{x})$ tells us which action $(\alpha_i, i = 1, \dots, a)$ to take for every possible observation
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

- Bayes decision rule minimizes the overall risk by selecting the action α_i when $R(\alpha_i|\mathbf{x})$ is the minimum
- The resulting minimum overall risk is called the Bayes risk and is the best performance that can be achieved.

- α_1 : deciding ω_1
- α_2 : deciding ω_2
- $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$:

- α_1 : deciding ω_1
- α_2 : deciding ω_2
- $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$: loss incurred for deciding ω_i when the true state of nature is ω_i

- α_1 : deciding ω_1
- α_2 : deciding ω_2
- $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$: loss incurred for deciding ω_i when the true state of nature is ω_j

If action α_i is taken and the true state of nature is ω_j then:

the decision is correct if i = j and in error if $i \neq j$

Conditional risk:

-
$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) +$$

- α_1 : deciding ω_1
- α_2 : deciding ω_2
- $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$: loss incurred for deciding ω_i when the true state of nature is ω_i

If action α_i is taken and the true state of nature is ω_j then: the decision is correct if i = j and in error if $i \neq j$

Conditional risk:

-
$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$$

-
$$R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$$

- α_1 : deciding ω_1
- α_2 : deciding ω_2
- $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$

Minimum-risk decision rule:

This corresponds to

$$R(\alpha_{1}|\mathbf{x}) < R(\alpha_{2}|\mathbf{x})$$

$$\Rightarrow \lambda_{21} - \lambda_{11})P(\omega_{1}|\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_{2}|\mathbf{x})$$

$$\Rightarrow \frac{p(\mathbf{x}|\omega_{1})}{p(\mathbf{x}|\omega_{2})} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_{2})}{P(\omega_{1})}$$

Likelihood Ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$$

- the form of decision rule focuses on the x-dependence of probability densities
- likelihood ratio exceeds a threshold value that is independent of the observation x

Optimal decision property

If the likelihood ratio exceeds a threshold value independent of the input pattern \mathbf{x} , we can take optimal actions

Zero-One Loss

Recall: $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$

If action α_i is taken and the true state of nature is ω_i then:

the decision is correct if i = j and in error if $i \neq j$

Define the zero-one loss

$$\lambda(\alpha_i|\omega_j) = \left\{ egin{array}{ll} 0 & i=j \ 1 & i
eq j \end{array} i, j=1,\cdots,c
ight.$$

(all the errors are equally costly)

Conditional risk becomes

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x}) = \sum_{i\neq j} P(\omega_j|\mathbf{x})$$
$$= 1 - P(\omega_i|\mathbf{x})$$

Minimum Error Rate

$$R(\alpha_i|\mathbf{x}) = 1 - P(\omega_i|\mathbf{x})$$

• Minimizing the risk requires maximizing $P(\omega_i|\mathbf{x})$ and results in the minimum-error decision rule

Decide
$$\omega_i$$
 if $P(\omega_i|\mathbf{x}) > P(\omega_i|\mathbf{x}), \forall j \neq i$

 The resulting error is called the Bayes error and is the best performance that can be achieved

Recall likelihood ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda} \text{ then}$$

Recall likelihood ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda} \text{ then decide } \omega_1 \text{ if } \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \ \theta_{\lambda}$$

If Λ is the zero-one loss function,

$$\Lambda = \left(\begin{array}{cc} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{array}\right) =$$

Recall likelihood ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda} \text{ then decide } \omega_1 \text{ if } \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \theta_{\lambda}$$

If Λ is the zero-one loss function,

$$\Lambda = \left(\begin{array}{cc} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right),$$

Recall likelihood ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda} \text{ then decide } \omega_1 \text{ if } \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \ > \ \theta_{\lambda}$$

If Λ is the zero-one loss function,

$$\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \theta_{\lambda} = \frac{P(\omega_2)}{P(\omega_1)} = \theta_a$$

• If loss function penalizes misclassifying ω_2 as ω_1 more than the converse, say, 1.2 folds,

$$\Lambda =$$

Recall likelihood ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda} \text{ then decide } \omega_1 \text{ if } \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \ > \ \theta_{\lambda}$$

If Λ is the zero-one loss function,

$$\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \theta_{\lambda} = \frac{P(\omega_2)}{P(\omega_1)} = \theta_a$$

• If loss function penalizes misclassifying ω_2 as ω_1 more than the converse, say, 1.2 folds,

$$\Lambda = \left(\begin{array}{cc} 0 & 1.2 \\ 1 & 0 \end{array}\right),$$

Recall likelihood ratio

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)} = \theta_{\lambda} \text{ then decide } \omega_1 \text{ if } \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \ > \ \theta_{\lambda}$$

If Λ is the zero-one loss function,

$$\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \theta_{\lambda} = \frac{P(\omega_2)}{P(\omega_1)} = \theta_a$$

• If loss function penalizes misclassifying ω_2 as ω_1 more than the converse, say, 1.2 folds,

$$\Lambda = \left(\begin{array}{cc} 0 & 1.2 \\ 1 & 0 \end{array}\right), \quad \theta_{\lambda} = \frac{1.2P(\omega_2)}{P(\omega_1)} = \theta_b$$

Table: A cost matrix.

	actual normal	actual cancer
predicted normal	$\lambda_{11} = 0$	$\lambda_{12} = 1.2$
predicted cancer	$\lambda_{21} = 1$	$\lambda_{22} = 0$

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- Receiver Operating Characteristic (ROC)

Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector

Some properties of the Gaussian

- analytically tractable
- Completely specified by the 1st and 2nd moments
- A lot of processes are asymptotically Gaussian (Central Limit Theorem)
- Linear transformations of a Gaussian are also Gaussian
- Uncorrelatedness implies independence

Univariate Density

For $x \in \mathcal{R}$

$$p(x) = \mathcal{N}(\mu, \sigma^2)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$$

where

$$\mu = E[x] = \int_{-\infty}^{\infty} x p(x) dx$$
$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$$

Univariate Density

Multivariate Density

For $\mathbf{x} \in \mathcal{R}^d$

$$\begin{split} \rho(\mathbf{x}) &= \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ &= \frac{1}{2\pi^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right] \end{split}$$

where

$$\mu = E[\mathbf{x}] = \int_{-\infty}^{\infty} \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$
$$\mathbf{\Sigma} = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^{\top}] = \int_{-\infty}^{\infty} (\mathbf{x} - \mu)(\mathbf{x} - \mu)^{\top} p(\mathbf{x}) d\mathbf{x}$$

statistically independent,

Multivariate Density

For $\mathbf{x} \in \mathcal{R}^d$

$$\begin{split} \rho(\mathbf{x}) &= \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ &= \frac{1}{2\pi^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right] \end{split}$$

where

$$\mu = E[\mathbf{x}] = \int_{-\infty}^{\infty} \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$
$$\mathbf{\Sigma} = E[(\mathbf{x} - \mu)(\mathbf{x} - \mu)^{\top}] = \int_{-\infty}^{\infty} (\mathbf{x} - \mu)(\mathbf{x} - \mu)^{\top} p(\mathbf{x}) d\mathbf{x}$$

statistically independent, $\sigma_{ij} = 0$

Linear Transformation

The linear transformation of a Gaussian is also Gaussian

•
$$p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\mathbf{z} = \mathbf{A}^{\mathsf{T}} \mathbf{x}, \ \mathbf{A} \in \mathcal{R}^{d \times k}$$

•
$$p(\mathbf{z}) =$$

Linear Transformation

The linear transformation of a Gaussian is also Gaussian

$$ullet$$
 $p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$\mathbf{z} = \mathbf{A}^{\mathsf{T}} \mathbf{x}, \ \mathbf{A} \in \mathcal{R}^{d \times k}$$

Projection onto a line

Remember
$$\mathbf{z} = \mathbf{P}^{\top}\mathbf{x}, \ \mathbf{P} \in \mathcal{R}^{d \times k}$$

- if k = 1 and **P** is a unit-length vector, **a**
- then,

Projection onto a line

Remember $\mathbf{z} = \mathbf{P}^{\top}\mathbf{x}, \ \mathbf{P} \in \mathcal{R}^{d \times k}$

- if k = 1 and **P** is a unit-length vector, **a**
- then, $z = \mathbf{a}^{\mathsf{T}} \mathbf{x}$ is a scalar, representing a projection of \mathbf{x} onto a line in the direction \mathbf{a}

Whitening Transformation

Coordinate transformation

arbitrarily Gaussian distribution → a spherical one

$$ullet$$
 $p(\mathbf{x}) = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})
ightarrow p(\mathbf{z}) =$

Whitening Transformation

Coordinate transformation

- ullet arbitrarily Gaussian distribution o a spherical one
- $\bullet \ \ p(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \rightarrow p(\mathbf{z}) = \mathcal{N}(\mathbf{A}_{\scriptscriptstyle W}^\top \boldsymbol{\mu}, \mathbf{I}_{\scriptscriptstyle d})$
- finding A_w

Whitening Transformation

Coordinate transformation

- arbitrarily Gaussian distribution → a spherical one
- $\bullet \ \ \rho(\mathbf{x}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \rightarrow \rho(\mathbf{z}) = \mathcal{N}(\mathbf{A}_{\scriptscriptstyle W}^\top \boldsymbol{\mu}, \mathbf{I}_{\scriptscriptstyle d})$
- finding \mathbf{A}_w
 - $\bullet \ \mathbf{A}_w^{\top} \mathbf{\Sigma} \mathbf{A}_w = \mathbf{I}_d$
 - $\Sigma = U \wedge U^{\top}$
 - $A_w = U \Lambda^{-1/2}$

Cloud

- cluster
- o position: mean
- shape: covariance matrix
- # parameters: d + d(d-1)/2

Mahalanobis distance

- the shape of data points with equal density is a hyperellipsoid (locus of points of constant density)
- principle axes of hyperellipsoids:

Mahalanobis distance

- the shape of data points with equal density is a hyperellipsoid (locus of points of constant density)
- principle axes of hyperellipsoids: eigenvector of Σ
- distance for \mathbf{x} to $\boldsymbol{\mu}$: $r^2 = (\mathbf{x} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})$, called squared Mahalanobis distance
 - determining similarity of an unknown sample set to a known one
 - scale-invariant, i.e. not dependent on the scale of measurements
 - dissimilarity measure between two random vectors with covariance matrix Σ : $(\mathbf{x}_1 \mathbf{x}_2)^{\top} \Sigma^{-1} (\mathbf{x}_1 \mathbf{x}_2)$
 - $\Sigma = I$, Euclidean distance
 - $\Sigma = diag(\sigma_1, \dots, \sigma_d)$, normalized Euclidean distance

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- Receiver Operating Characteristic (ROC)

• A useful way of representing classifiers is through discriminant functions $g_i(\mathbf{x}), i = 1, \cdots, c$, where the classifier assigns a feature vector \mathbf{x} to class ω_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
, for all $j \neq i$

or

$$\mathbf{x} \in \omega_m$$
 if and only if $g_m(\mathbf{x}) = \arg\max_{i=1,\cdots,c} \{g_i(\mathbf{x})\}$

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

- For the classifier that minimizes error

$$g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$$

- For the classifier that minimizes error

$$g_i(\mathbf{x}) = P(\omega_i|\mathbf{x})$$

- These functions divide the feature space into c decision regions, $\mathcal{R}_1, \mathcal{R}_2, \cdots, \mathcal{R}_c$, separated by decision boundaries
- the choice of discriminant function is not unique
 - multiplicative or additive operations without influencing the decision
 - with a monotonically increasing function $f(\cdot)$, replacing $g_i(\mathbf{x})$ by $f(g_i(\mathbf{x}))$, i.e.,

$$g_i(\mathbf{x}) = p(\mathbf{x}|\omega_i)P(\omega_i) \Rightarrow$$

 $\ln g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i)$

- This may lead to significant analytical and computational simplifications

Example for the Two-category case

- special case of multi-category case, dichotomizer
- discriminant function:

$$egin{aligned} g(\mathbf{x}) &\equiv g_1(\mathbf{x}) - g_2(\mathbf{x}) \ \omega &= \left\{ egin{aligned} \omega_1, & ext{if } g(x) > 0 \ \omega_2, & ext{otherwise} \end{array}
ight. \end{aligned}$$

for minimum-error-rate discriminant function,

$$g(\mathbf{x}) = P(\omega_1|\mathbf{x}) - P(\omega_2|\mathbf{x})$$
$$\ln g(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 \mathbf{I}$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- Receiver Operating Characteristic (ROC)

 Recall that the minimum error-rate classification can be achieved by the discriminant function

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i)$$

- For multivariate normal density, $p(\mathbf{x}|\omega_i) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
- so we can have

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 \mathbf{I}$
 - Common covariance matrix
 - Different ∑ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

Linear Discriminant Function (1)

- features are statistically independent
- each feature has the same variance, σ^2
- Recall that the discriminant functions

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

Linear Discriminant Function (1)

- features are statistically independent
- each feature has the same variance, σ^2
- Recall that the discriminant functions

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

$$\Rightarrow -\frac{||\mathbf{x} - \boldsymbol{\mu}_i||^2}{2\sigma^2} + \ln P(\omega_i)$$

where $||\cdot||$ denotes the Euclidean norm, i.e.,

$$||\mathbf{x} - \boldsymbol{\mu}_i||^2 = (\mathbf{x} - \boldsymbol{\mu}_i)^{\top} (\mathbf{x} - \boldsymbol{\mu}_i)$$

Linear Discriminant Function (2)

- x equal distance to mean, optimal decision by a priori
- otherwise, not necessary to compute distance

$$g_i(\mathbf{x}) = -\frac{||\mathbf{x} - \boldsymbol{\mu}_i||^2}{2\sigma^2} + \ln P(\omega_i)$$

$$= -\frac{1}{2\sigma^2} [\mathbf{x}^\top \mathbf{x} - 2\boldsymbol{\mu}_i^\top \mathbf{x} + \boldsymbol{\mu}_i^\top \boldsymbol{\mu}_i] + \ln P(\omega_i)$$

$$\propto -\frac{1}{2\sigma^2} [-2\boldsymbol{\mu}_i^\top \mathbf{x} + \boldsymbol{\mu}_i^\top \boldsymbol{\mu}_i] + \ln P(\omega_i)$$

$$= \mathbf{w}_i^\top \mathbf{x} + w_{i0}$$

where $\mathbf{w}_i = \frac{\boldsymbol{\mu}_i}{\sigma^2}$ and $w_{i0} = -\frac{1}{2\sigma^2}\boldsymbol{\mu}_i^{ op}\boldsymbol{\mu}_i + \ln P(\omega_i)$

Linear Machine (1)

- A classifier that uses linear discriminant functions is called a linear machine
- decision surfaces \mathcal{R}_i , \mathcal{R}_i are pieces of hyperplanes defined by

$$\begin{split} g_i(\mathbf{x}) &\equiv g_j(\mathbf{x}) \Rightarrow \quad \mathbf{w}^\top (\mathbf{x} - \mathbf{x}_0) = 0 \\ \text{where} \left\{ \begin{array}{l} \mathbf{w} &= \mu_i - \mu_j \\ \mathbf{x}_0 &= \frac{1}{2} (\mu_i + \mu_j) - \frac{\sigma^2}{||\boldsymbol{\mu}_i - \boldsymbol{\mu}_j||^2} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i - \mu_j) \end{array} \right. \end{split}$$

Decision hyperplane

- separating \mathcal{R}_i and \mathcal{R}_i
- through the point \mathbf{x}_0
- orthogonal to $\mathbf{w} = \mu_i \mu_i$ and so

Linear Machine (1)

- A classifier that uses linear discriminant functions is called a linear machine
- decision surfaces \mathcal{R}_i , \mathcal{R}_i are pieces of hyperplanes defined by

$$\begin{split} g_i(\mathbf{x}) &\equiv g_j(\mathbf{x}) \Rightarrow \quad \mathbf{w}^\top (\mathbf{x} - \mathbf{x}_0) = 0 \\ \text{where} \left\{ \begin{array}{l} \mathbf{w} &= \mu_i - \mu_j \\ \mathbf{x}_0 &= \frac{1}{2} (\mu_i + \mu_j) - \frac{\sigma^2}{||\boldsymbol{\mu}_i - \boldsymbol{\mu}_j||^2} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mu_i - \mu_j) \end{array} \right. \end{split}$$

Decision hyperplane

- separating \mathcal{R}_i and \mathcal{R}_i
- through the point \mathbf{x}_0
- ullet orthogonal to ${f w}=\mu_i-\mu_i$ and so orthogonal to the line linking the means

Equal Prior

 $P(\omega_i) = P(\omega_j)$, the point \mathbf{x}_0 is halfway between the means, and the hyperplane is the perpendicular bisector of the line between the means

Equal Priors for multiple classes

If the priors are the same for all c classes, the $\ln P(\omega_i)$ term becomes unimportant constant

minimum-distance classifier

- measure the Euclidean distance $d_i = ||\mathbf{x} \boldsymbol{\mu}_i||$
- $\mathbf{x} \in \omega_m$, $d_m = \arg\min_{i=1,\dots,c} d_i$

If mean as ideal prototype or template, template-matching

Unequal Prior

$$egin{aligned} g_i(\mathbf{x}) &\equiv g_j(\mathbf{x}) \Rightarrow & \mathbf{w}^{ op}(\mathbf{x} - \mathbf{x}_0) = 0 \ \end{aligned}$$
 where $\left\{ egin{aligned} \mathbf{w} &= \mu_i - \mu_j \ \mathbf{x}_0 &= rac{1}{2}(\mu_i + \mu_j) - rac{\sigma^2}{||oldsymbol{\mu}_i - oldsymbol{\mu}_j||^2} \ln rac{P(\omega_i)}{P(\omega_j)}(\mu_i - \mu_j) \end{aligned}
ight.$

$P(\omega_i) \neq P(\omega_j)$

- the point x₀ shifts away from the more likely mean
- if $\frac{\sigma^2}{||\boldsymbol{\mu}_i \boldsymbol{\mu}_j||^2}$ is small, the position of the decision boundary is relatively insensitive to the exact values of the prior probability

Unequal Prior (1-d)

Unequal Prior (2-d)

Unequal Prior (3-d)

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

Linear discriminant

Common covariance matrix, i.e., $\Sigma_1 = \cdots = \Sigma_c = \Sigma$

Discriminant function is

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

$$= -\frac{1}{2} \mathbf{x}^{\top} \mathbf{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}_i^{\top} \mathbf{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_i^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$$

$$\propto \boldsymbol{\mu}_i^{\top} \mathbf{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_i^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$$

$$= \mathbf{w}_i^{\top} \mathbf{x} + \mathbf{w}_{i0}$$

where $\mathbf{w}_i = \mathbf{\Sigma}^{-1} \mu_i$ and $w_{i0} = -\frac{1}{2} \mu_i^{\top} \mathbf{\Sigma}^{-1} \mu_i + \ln P(\omega_i)$

Decision boundary (1)

If \mathcal{R}_i and \mathcal{R}_j are continuous, we have

$$\boldsymbol{w}^{\top}(\boldsymbol{x}-\boldsymbol{x}_0)=0$$

where

$$\begin{split} \mathbf{w} &= \mathbf{\Sigma}^{-1}(\mu_i - \mu_j) \\ \mathbf{x}_0 &= \frac{1}{2}(\mu_i + \mu_j) - \frac{\ln(P(\omega_i)/P(\omega_j)}{(\mu_i - \mu_j)^{\top}\mathbf{\Sigma}^{-1}(\mu_i - \mu_j)}(\mu_i - \mu_j) \end{split}$$

the hyperplane passes through \mathbf{x}_0 but is necessarily not orthogonal to the line between the means

Decision boundary (2)

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

Discriminant function

$$g_i(\mathbf{x}) = -(\mathbf{x} - \boldsymbol{\mu}_i)^{\top} \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

$$= -\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}_i^{-1} \mathbf{x} + \boldsymbol{\mu}_i^{\top} \boldsymbol{\Sigma}_i^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_i^{\top} \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i + \ln P(\omega_i)$$

$$= \mathbf{x}^{\top} \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^{\top} \mathbf{x} + w_{i0}$$

where

$$\mathbf{W}_i = -\frac{1}{2}\mathbf{\Sigma}_i^{-1}, \ \mathbf{w}_i = \mathbf{\Sigma}_i^{-1}\boldsymbol{\mu}_i$$
$$\mathbf{w}_{i0} = -\frac{1}{2}\boldsymbol{\mu}_i^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_i - \frac{1}{2}\ln|\mathbf{\Sigma}_i| + \ln P(\omega_i)$$

 g_i is quadratic discriminant

Decision boundary are hyperquadrics,

Mingmin Chi (Fudan Univ.) Intro2pr

Decision boundary (1-d)

Equal prior

Mingmin Chi (Fudan Univ.)

Decision boundary (2-d)

Decision boundary (3-d)

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- Receiver Operating Characteristic (ROC)

For binary classification

$$\begin{split} P(\mathsf{error}) &= P(\mathbf{x} \in \mathcal{R}_2, \omega_1) + P(\mathbf{x} \in \mathcal{R}_1, \omega_2) \\ &= P(\mathbf{x} \in \mathcal{R}_2 | \omega_1) P(\omega_1) + P(\mathbf{x} \in \mathcal{R}_1, \omega_2) P(\omega_2) \\ &= \int_{\mathcal{R}_2} p(\mathbf{x} | \omega_1) P(\omega_1) d\mathbf{x} + \int_{\mathcal{R}_1} p(\mathbf{x} | \omega_2) P(\omega_2) d\mathbf{x} \end{split}$$

For multicategory classification

$$\begin{aligned} P(\text{correct}) &= \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i, \omega_i) \\ &= \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i | \omega_i) P(\omega_i) \\ &= \sum_{i=1}^{c} \int_{\mathcal{R}_i} p(\mathbf{x} | \omega_i) P(\omega_i) d\mathbf{x} \end{aligned}$$

- Introduction
- Minimum-Error-Rate Classification
 - Prior
 - Decision by Likelihood
 - Decision by Posterior
- Minimum-Risk Classification
- 4 Gaussian (Normal) Density
- Discriminant Functions
- 6 Discriminant Function for the Normal Density
 - Case $\Sigma_i = \sigma^2 I$
 - Common covariance matrix
 - Different Σ for each class
- Error Probabilities
- 8 Receiver Operating Characteristic (ROC)

History

The ROC curve

- was first developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battle fields, also known as the signal detection theory
 - ω_1 : object is not present (negative), e.g., detecting a weak pulse
 - ω_2 : object is present (positive)
- was soon introduced in psychology to account for perceptual detection of signals
- has been widely used in medicine, radiology, and other areas for many decades

An Example

- A detector to detect whether there is an external signal (pulse) denoted by a signal x
- x is a random variable due to the random noise within and outside the detector itself
 - ω_1 : when the signal is not present (negative), $p(x|\omega_1) = \mathcal{N}(\mu_1, \sigma^2)$
 - ω_2 : when the signal is present (positive), $p(x|\omega_2) = \mathcal{N}(\mu_2, \sigma^2)$

discriminability:

$$d'=rac{|\mu_1-\mu_2|}{\sigma}$$

Confusion matrix

		Predicted		Total
		ω_1	ω_2	Total
State of	ω_1	correct rejection	false alarm	N
		(true negative)	(false positive)	
		$P(\mathbf{x}<\mathbf{x}^* \mathbf{x}\in\omega_1)$	$P(\mathbf{x} > \mathbf{x}^* \mathbf{x} \in \omega_1)$	
Nature	ω_2	miss (false negative)	hit (true positive)	Р
		$P(\mathbf{x}<\mathbf{x}^* \mathbf{x}\in\omega_2)$	$P(\mathbf{x} > \mathbf{x}^* \mathbf{x} \in \omega_2)$	

- true positive rate, TPR (hit rate, recall, sensitivity): TP / FN+TP, which determines a classifier or a diagnostic test performance on classifying positive instances correctly among all positive samples available during the test
- false positive rate, FPR (false alarm, 1 sensitivity): $\frac{FP}{TN+FP}$, which defines how many incorrect positive results occur among all negative samples available during the test

ROC

- only TPR and FPR are needed to draw an ROC curve
- fixed density, i.e.,

ROC

- only TPR and FPR are needed to draw an ROC curve
- fixed density, i.e., d'
- changeable x*

Example

- four prediction results from 100 positive and 100 negative instances
- C' is the mirror of C across the center point (0.5, 0.5)

Example

Extension

to non-Gaussian assumption

- ROC analysis provides tools to select possibly optimal models