Lecture 4

Descriptive Statistics II

Text: Chapter III

STAT 8010 Statistical Methods I August 28, 2019

> Whitney Huang Clemson University

Notes

Agenda

- Review of Last Class
- Quantitative Variables
- 3 Numerical Summaries of Quantitative Variables

١	Notes			
_				

Last Lecture

- Summarizing categorical variables
 - Frequency Table
 - Bar Chart and Pie Chart
- Summarizing numerical variables
 - $\bullet \ \ \text{Mean} \Rightarrow \text{A measure of } \textbf{central tendency}$
 - $\bullet \ \ \, \text{Variance} \ / \ \, \text{Standard Deviation} \Rightarrow \text{A measure of} \\ \ \ \, \text{spread}$

escriptive atistics II	Notes	

42

Example: Clemson Fact Sheet 2018

			STUDENT E	ISTRII	BUTIO	N	
			Full Time Pa	rt Time	Total	Age	Average
RACE/ETHNICITY/GEND	ER	Freshman	3,273	10	3,283	16-73	18
Non-Resident Alien	6%	Sophomore	4,765	61	4,826	17-79	19
Hispanic	4%	Junior	4,786	122	4,908	17-64	20
American Indian or Alaskan Native	<1%	Senior	6,121	426	6,547	18-66	22
Asian	2%	Uncl. U/G	26	79	105	16-73	24
Black or African American	6%	Master's	1,661	1,629	3,290	19-78	29
Native Hawaiian or Pacific Islander	<1%	Doctoral	1,291	292	1,583	20-71	30
White	77%	Certificate		94	94	21-56	35
Two or More Races (non-Hispanic)	3%	Specialists	1	29	30	26-55	36
Unknown	1%	Uncl. Grad	16	269	285	23-73	38
51% Male, 49% Female	-	Total	21,940	3,011	24,951	16-79	22

Data source: https://www.clemson.edu/institutional-effectiveness/

documents/oir/minis/F18FactSheetUpdated.pdf

Notes

Notes

Example: Clemson vs. Notre Dame

Data source: https://www.shakinthesouthland.com/2018/12/24/18132204/

 $\verb|cotton-bowl-clemson-vs-notre-dame-preview-depth-chart-statistical-analysis| \\$

Example: Clemson Expenditures 2017-2018

Data source: https://www.clemson.edu/institutional-effectiveness/

documents/oir/minis/F18FactSheetUpdated.pdf

Notes			

Example: Murder arrests (per 100,000) in US States in 1973

Data: 13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9, 15.4, 17.4, 5.3, 2.6, 10.4, 7.2, 2.2, 6.0, 9.7, 15.4, 2.1, 11.3, 4.4, 12.1, 2.7, 16.1, 9.0, 6.0, 4.3, 12.2, 2.1, 7.4, 11.4, 11.1, 13.0, 0.8, 7.3, 6.6, 4.9, 6.3, 3.4, 14.4, 3.8, 13.2, 12.7, 3.2, 2.2, 8.5, 4.0, 5.7, 2.6, 6.8.

Question: How to graphically summarize this data set?

Dotplot

Dotplot of Murder Arrest Rate (per 100,000)

Notes

Notes

Dotplot cont'd

Rounded Murder Arrest Rate (per 100,000)

Descriptive Statistics II					
CLEMS#N					
Graphical Summaries of Quantitative Variables					

Notes

Stem-and-Leaf Plot

```
The decimal point is at the |

0 | 8

1 |
2 | 1122667
3 | 2348
4 | 0349
5 | 379
6 | 00368
7 | 2349
8 | 158
9 | 007
10 | 04
11 | 134
12 | 127
13 | 022
14 | 4
15 | 44
16 | 1
17 | 4
```


Notes

Histogram

Notes

Histogram

Notes			

Box-and-Whisker Plot

Notes _____

Side-by-Side Boxplots

Source: https://www.datamentor.io/r-programming/box-plot/

Notes			

Shape of Distributions

Source: Skewness - Wikipedia

Note	S			

Shape of Distributions cont'd

Source: Multimodal distribution - Wikipedia

Descriptive Statistics II
Graphical Summaries of Quantitative Variables

Measures of Center

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a **parameter**
- Measures: Mean, Median, Mode, ...

Descriptive Statistics II	
Numerical Summaries of Quantitative Variables	

N	otes
ıν	Oles

Notes

Mean

• The **population mean**, denoted by μ_X , is the sum of all the population values $(\{X_i,\cdots,X_N\})$ divided by the total number (N) of population values. That is,

$$\mu_X = \frac{\sum_{i=1}^N X_i}{N}$$

• The **sample mean**, denoted by \bar{X} is the sum of all the sample values $(\{X_1, \cdots, X_n\})$ divided by the total number of sample values (n). That is

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Class
Graphical
Summaries of
Quantitative

Numerical Summaries of Quantitative Variables

Notes			

Example

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

 Plot this "data set" and describe the shape of the distribution

• Find the mean (both sample and popular means)

$$\bar{X} = \mu_X = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

Descriptive Statistics II	Note	es		
merical mmaries of antitative				
iables				
$\frac{3}{2} = 15$				
- = 15				
4.19				

Notes			

notes			