- 1 Теоретическая часть
- 1.1 Линейные уравнения с частными производными первого порядка. Уравнения характеристик. Первый интеграл. Квазилинейные уравнения. Задача Коши.

1.4	Уравнение колебаний	полубесконечной	струны	(стержня).	Метод
	отражений.				
		A			
		4			

1.5	Энергия колебаний ограниченной струны. Теорема единственности для смешанной краевой задачи для уравнения колебаний стру-				
	ны.				
	5				

1.6	Метод резке.	разделения	переменных	для	уравнения	колебаний	на	OT-
			6					
			0					

ны. Метод разделения переменных.	х прямоугольнои	мемора-
7		
	ны. Метод разделения переменных.	

1.8	Распространение вой задачи.	тепла в	в стержне.	Постановка	смешанной	крае-
			8			

1.9	Принцип максимального значения для параболического уравнения и теорема единственности смешанной краевой задачи в ограниченной области.				

1.10	Разделение переменных в смешанной краевой задаче для уравнения теплопроводности/диффузии. Построение функции влияния мгновенного точечного источника.				

1.12	Задача без начального условия для уравнения теплопроводности.

1.13	Функции, гармонические в области. Теорема о среднем значении для гармонических функций. Принцип максимума.				
	13				

1.14	уравнение дапласа в криволиненных ортогональных (полярных цилиндрических, сферических) координатах.			
	14			

1.15 Собственные значения и собственные функции задачи Штурма-Лиувилля в прямоугольнике. Краевые задачи для уравнений Лапласа и Пуассона в прямоугольнике. 1.16 Метод разделения переменных решения первой краевой задачи для уравнения Лапласа внутри круга и вне круга. Интеграл Пуассона.

1.17	Функция Грина уравнения Лапласа первой краевой задачи в круге, на полуплоскости в полупространстве. Метод отражений.		

1.18	Единственность решения краево ней) для уравнения Лапласа.	й задачи	(внутренней	И	внеш-
	18				

1.20 Собственные значения и собственные функции задачи Штурма-Лиувилля в круге, в круговом кольце и во внешности круга. Краевые задачи для уравнения Лапласа в указанных областях. 1.21 Собственные значения и собственные функции задачи Штурма-Лиувилля в круговом секторе и в кольцевом секторе. Краевая задача для уравнения Лапласа в указанных областях.

1.23 Собственные значения и собственные функции задачи Штурма-Лиувилля для цилиндра. Краевые задачи для уравнений Лапласа и Пуассона в ограниченном цилиндре. 1.24 Полиномы Лежандра, их свойства. Формула Родриго. Рекуррентные соотношения. Задача Штурма — Лиувилля на сфере. Присоединенные функции Лежандра.

1.25	Краевые слое.	задачи	для	уравнений	Лапласа	и Пуассона	в шаровом
				25			

1.26 Основные функции и обобщенные функции, сходимость в пространстве основных функций. Регулярная обобщённая функция. Носитель обобщённой функции.

1.27	Регуляризация степенных особенностей. ная функция \mathcal{P}^{1}_{x} . Формула Сохоцкого.	Сингулярная	обобщён-

1.28	Фундаментальное решение дифференциального оператора. Обобщённое решение задачи Коши.					

1.29	Классическая свёртка. Свертка обобщённых функций. Обобщённое решение дифференциального уравнения.
	29

1.30 Пространство быстроубывающих функций и пространство функций медленного роста. Обобщённое преобразование Фурье. Обобщённое преобразование Фурье свертки и обобщённое равенство Парсеваля.

31

Фундаментальное решение оператора Лапласа.

1.31

ция влияния	и мгновенного те	очечного исто	очника.	
		32		

Фундаментальное решение оператора теплопроводности. Функ-

1.32

1.33	Фундаментальное решение оператора Гельмгольца. Сферические волны.