Analysis Qualifying Exam August 2002

Instructions: Write your name legibly on each sheet of paper. Write only on one side of of each sheet of paper. Try to answer all questions. Questions 1-8 are each worth 10 points and question 9 is worth 20 points.

Terminology: f increasing means $x \leq y$ implies $f(x) \leq f(y)$. Measurability and inegrability on \mathbb{R} or an interval will always refer to the Lebesgue measure. except if otherwise specified. Lebesgue measure will be denoted by m, dx or dy depending on the context.

- 1. Let $f:[a,b] \to [c,d]$ be an increasing absolutely continuous function and let $g:[c,d] \to \mathbb{R}$ be an absolutely continuous function. Prove that the composition $g \circ f:[a,b] \to \mathbb{R}$ is absolutely continuous.
- 2. let f be an integrable function \mathbb{R} . Prove that

$$\int_{\mathbb{R}} \cos(xt) f(x) \, dx \to 0$$

as $t \to \infty$.

3 Let $0 \le f : [0, \infty) \to \mathbb{R}$ be Lebesgue integrable. Prove that

$$\lim_{n \to \infty} \frac{1}{n} \int_0^n x f(x) \, dx = 0.$$

4. Let $f \in L_2([0,\infty))$. Prove that

$$\frac{1}{\sqrt{x}} \int_0^x f(t) \, dt \to 0$$

as $x \downarrow 0$.

- 5. Let $\mu(X) < \infty$ and $1 . Let <math>f_n, f \in L_p(X, \mu)$ with $||f_n||_p \le 1$ for all n such that $f_n \to f$ a.e.. Let $g_n \in L_q$, where $\frac{1}{p} + \frac{1}{q} = 1$, such that $g_n \to g$ in norm in L_q . Prove that $f_n g_n \to f g$ in L_1 .
- 6. Let $f:[0,1]\to\mathbb{R}$ be a Lebesgue measurable function such that the function F(x,y)=f(x)-f(y) is integrable over $[0,1]^2$. Prove that f is integrable over [0,1] and also compute $\int \int F(x,y) dxdy$.

- Let $\Omega \subset \mathbb{C}$ be an open set containing the unit disk $\{z : |z| \leq 1\}$ and let $f: \Omega \to \mathbb{C}$ be a holomorphic function such that |f(z)| > |f(0)| for all |z| = 1. Prove that f has a zero in |z| < 1.
- Let $f,g:\{z:|z|<1\}\to\mathbb{C}$ be holomorphic functions such that |f(z)|=|g(z)| for all |z|<1. Prove that every zero of g is also a zero of f of the same multiplicity and that thus $f=\lambda g$ for some λ with modulus one.
 - 9. True or False. Prove, or give a counterexample.
 - a. There exists a compact set $K \subset [0,1] \setminus \mathbb{Q}$ with $m(K) > \frac{1}{2}$.
 - b. If $f(x) = \sqrt{x}$, then f is uniformly continuous on $[0, \infty)$.
 - c. If m(E) > 0, then E has a non-empty interior.
 - d. There exists M > 0 such that $|\sin z| \le M$ for all $z \in \mathbb{C}$.
 - e. Let f_n be integrable functions on \mathbb{R} such that $\lim_{n\to\infty} \int f_n dx = 0$. then there exists an integrable function g such that $|f_n| \leq g$ a.e. for all n.

71,00) 8= E

[0,1] compact set

$$|\sin z| = \frac{|e^{iz} - z^{iz}|}{2}$$

$$|et z = -iM, |\sin z| = \frac{e^{M} - e^{-M}}{2}$$

$$\geq \frac{e^{M} - e}{2} > \frac{e^{M}}{2} - 1$$

$$\geq \frac{e^{M} - e}{2} > \frac{e^{M}}{2} - 1$$

$$= 2M + 2 > e^{M}$$

$$\Rightarrow e^{M} = 2M + 2 > e^{M}$$

$$\Rightarrow e^{M} = 2M + 2 > e^{M}$$