Modelling – Dataset A (Dean)

Group K

2025-10-03

Table 1: First 10 rows of Dataset A (Health)

Dataset	SurveyYear	${\bf Characteristic Id}$	CharacteristicCategory	${\bf Characteristic Label}$	IndicatorId	${\bf Indicator Type}$	Value	Denominator
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_DOC	I	28.5	2871
$Access_To_Healthcare_01$	1998	1000	Total	Total	RH_ANCP_W_DOC	I	30.0	4122
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_DOC	I	27.3	2010
$Access_To_Healthcare_01$	1998	1000	Total	Total	$RH_ANCP_W_NRS$	I	66.6	2871
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_NRS	I	65.0	4122
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_NRS	I	68.4	2010
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_TBA	I	0.1	2871
$Access_To_Healthcare_01$	1998	1000	Total	Total	RH_ANCP_W_OTH	I	0.6	2871
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_OTH	I	0.7	4122
$Access_To_Healthcare_01$	1998	1000	Total	Total	RH_ANCP_W_MIS	S	1.2	2871

```
health_i <- dataA %>%
 filter(
   Dataset == "Access_To_Healthcare_01",
   CharacteristicCategory == "Total",
   CharacteristicLabel == "Total",
    IndicatorType == "I"
 ) %>%
 mutate(
    SurveyYear = as.factor(SurveyYear),
    IndicatorId = as.factor(IndicatorId),
   Value = as.numeric(Value),
   DenominatorWeighted = as.numeric(DenominatorWeighted),
   DenominatorUnweighted = as.numeric(DenominatorUnweighted)
  ) %>%
  drop_na(Value, DenominatorWeighted, DenominatorUnweighted)
print_tbl(head(health_i, 10), "Filtered Health (I) - head(10)")
```

Table 2: Filtered Health (I) – head(10)

Dataset	SurveyYear	${\bf Characteristic Id}$	CharacteristicCategory	${\bf Characteristic Label}$	IndicatorId	${\bf Indicator Type}$	Value	Denominator
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_DOC	I	28.5	2871
$Access_To_Healthcare_01$	1998	1000	Total	Total	RH_ANCP_W_DOC	I	30.0	4122
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_DOC	I	27.3	2010
$Access_To_Healthcare_01$	1998	1000	Total	Total	$RH_ANCP_W_NRS$	I	66.6	2871
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_NRS	I	65.0	4122
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_NRS	I	68.4	2010
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_TBA	I	0.1	2871
$Access_To_Healthcare_01$	1998	1000	Total	Total	RH_ANCP_W_OTH	I	0.6	2871
Access_To_Healthcare_01	1998	1000	Total	Total	RH_ANCP_W_OTH	I	0.7	4122
$Access_To_Healthcare_01$	1998	1000	Total	Total	RH_ANCP_W_NON	I	2.9	2871

```
med_val <- median(health_i$Value, na.rm = TRUE)
model_df <- health_i %>%
  mutate(
    HighValue = factor(if_else(Value >= med_val, "Yes", "No"), levels = c("No","Yes")),
    DW_log = log1p(DenominatorWeighted),
    DU_log = log1p(DenominatorUnweighted),
    IndicatorId = forcats::fct_lump_n(IndicatorId, n = 5, other_level = "Other")
)

print_tbl(as.data.frame(table(model_df$HighValue)),
    "Class balance: HighValue (No/Yes)")
```

Table 3: Class balance: HighValue (No/Yes)

Var1	Freq
No	82
Yes	82

```
# Build plotting data in the same spirit as Group C
plot_df <- health_i %>%
  mutate(
    # Standardized value (z-score)
    Value_zscore = as.numeric(scale(Value)),
    # Use lumped IndicatorId to avoid too many categories on plots
    IndicatorGroup = forcats::fct_lump_n(IndicatorId, n = 8, other_level = "Other"),
    # Use SurveyYear as the "population-like" grouping (since Group A lacks PopulationGroup)
    YearGroup = SurveyYear
) %>%
    drop_na(Value_zscore, DenominatorWeighted)
```

Distribution of Standardized Values by Indicator (Top 8 + Other)

Distribution of Standardized Values by Survey Year

Histogram of Z-scores by Indicator Group

Z-score(Value) vs DenominatorWeighted by Indicator Grou

- ▶ RH_ANCP_W_NON RH_ANCP_W_SKP RH_DELA_C_DOC RH_DELP_C_DHF
- ▶ RH_ANCP_W_NRS RH_DELA_C_CSC RH_DELA_C_REL RH_DELP_C_HOM

Table 4: Train/Test split sizes

Split	Rows
Train	116
Test	48

```
factor_preds <- c("SurveyYear","IndicatorId")</pre>
valid factors <- factor preds[sapply(train df[factor preds], function(x) nlevels(x) >= 2)]
               <- c("DW_log") # avoid collinearity with DU_log
num_preds
               <- c(valid_factors, num_preds)</pre>
all_preds
logit_formula <- reformulate(termlabels = all_preds, response = "HighValue")</pre>
logit_fit <- glm(logit_formula, data = train_df, family = binomial(),</pre>
                  control = list(maxit = 100))
logit_prob <- predict(logit_fit, newdata = test_df, type = "response")</pre>
logit_pred <- factor(if_else(logit_prob >= 0.5, "Yes", "No"), levels = c("No","Yes"))
cm logit <- caret::confusionMatrix(logit pred, test df$HighValue, positive = "Yes")</pre>
roc_logit <- pROC::roc(response = test_df$HighValue,</pre>
                        predictor = as.numeric(logit_prob),
                        levels = c("No","Yes"), quiet = TRUE)
auc_logit <- pROC::auc(roc_logit)</pre>
png("../outputs/visuals/roc_logit.png", width = 900, height = 650)
plot.roc(roc_logit, main = sprintf("ROC - Logistic Regression (AUC = %.3f)", as.numeric(auc_logit)
dev.off()
pdf 2
```

Table 5: Logistic Regression – Overall Metrics (Test)

print_tbl(as.data.frame(t(cm_logit\$overall)) |> mutate(across(everything(), as.numeric)),

"Logistic Regression - Overall Metrics (Test)", digits = 3)

Accuracy	Kappa	AccuracyLower	AccuracyUpper	AccuracyNull	AccuracyPValue	McnemarPValue
0.667	0.333	0.516	0.796	0.5	0.015	0.803

Table 6: Logistic Regression – Class Metrics (Test)

Sensitivity	Specificity	Pos Pred Value	Neg Pred Value	Precision	Recall	F1	Prevalence	Detection Rate	Detection Prevalence	Balanced Accuracy
0.708	0.625	0.654	0.682	0.654	0.708	0.68	0.5	0.354	0.542	0.667

```
logit_metrics <- tibble(</pre>
  Metric = c("Accuracy", "Kappa", "Sensitivity", "Specificity", "AUC"),
 Value = c(as.numeric(cm logit$overall["Accuracy"]),
             as.numeric(cm_logit$overall["Kappa"]),
             as.numeric(cm logit$byClass["Sensitivity"]),
             as.numeric(cm_logit$byClass["Specificity"]),
             as.numeric(auc_logit))
)
readr::write_csv(logit_metrics, "../outputs/summary_tables/logit_metrics.csv")
tree_formula <- reformulate(termlabels = all_preds, response = "HighValue")</pre>
tree_fit <- rpart::rpart(</pre>
 tree_formula, data = train_df, method = "class",
  control = rpart.control(cp = 0.01, minsplit = 10, maxdepth = 6)
)
png("../outputs/visuals/tree_plot.png", width = 1000, height = 700)
rpart.plot::rpart.plot(tree_fit, cex = 0.75, type = 2, extra = 104, under = TRUE,
                       main = "Decision Tree - HighValue")
dev.off()
pdf 2
tree_prob <- predict(tree_fit, newdata = test_df, type = "prob")[, "Yes"]</pre>
tree_pred <- factor(if_else(tree_prob >= 0.5, "Yes", "No"), levels = c("No", "Yes"))
cm_tree <- caret::confusionMatrix(tree pred, test_df$HighValue, positive = "Yes")</pre>
roc_tree <- pROC::roc(response = test_df$HighValue,</pre>
                       predictor = as.numeric(tree_prob),
                       levels = c("No","Yes"), quiet = TRUE)
auc_tree <- pROC::auc(roc_tree)</pre>
png("../outputs/visuals/roc_tree.png", width = 900, height = 650)
plot.roc(roc_tree, main = sprintf("ROC - Decision Tree (AUC = %.3f)", as.numeric(auc_tree)))
dev.off()
pdf 2
print_tbl(as.data.frame(t(cm_tree$overall)) |> mutate(across(everything(), as.numeric)),
          "Decision Tree - Overall Metrics (Test)", digits = 3)
```

Table 7: Decision Tree – Overall Metrics (Test)

Accuracy	Kappa	AccuracyLower	AccuracyUpper	AccuracyNull	AccuracyPValue	McnemarPValue
0.708	0.417	0.559	0.83	0.5	0.003	0.423

Table 8: Decision Tree – Class Metrics (Test)

Sensitivity	Specificity	Pos Pred Value	Neg Pred Value	Precision	Recall	F1	Prevalence	Detection Rate	Detection Prevalence	Balanced Accuracy
0.792	0.625	0.679	0.75	0.679	0.792	0.731	0.5	0.396	0.583	0.708

```
varimp <- as.data.frame(varImp(tree_fit))
varimp$Feature <- rownames(varimp)
varimp <- varimp %>% arrange(desc(Overall))
print_tbl(head(varimp, 10), "Decision Tree - Top 10 Feature Importance")
```

Table 9: Decision Tree – Top 10 Feature Importance

	Overall	Feature
IndicatorId	15.976	IndicatorId
DW_{log}	11.800	DW_{log}
SurveyYear	0.704	Survey Year

```
readr::write_csv(
  tibble(Metric=c("Accuracy", "Kappa", "Sensitivity", "Specificity", "AUC"),
         Value=c(as.numeric(cm_tree$overall["Accuracy"]),
                 as.numeric(cm_tree$overall["Kappa"]),
                 as.numeric(cm_tree$byClass["Sensitivity"]),
                 as.numeric(cm_tree$byClass["Specificity"]),
                 as.numeric(auc_tree))),
  "../outputs/summary_tables/tree_metrics.csv"
readr::write_csv(varimp, "../outputs/summary_tables/tree_variable_importance.csv")
perf_tbl <- tibble(</pre>
 Model = c("Logistic Regression", "Decision Tree"),
 Accuracy = c(cm_logit$overall["Accuracy"], cm_tree$overall["Accuracy"]) %>% as.numeric(),
          = c(cm_logit$overall["Kappa"], cm_tree$overall["Kappa"]) %>% as.numeric(),
  Sensitivity = c(cm_logit$byClass["Sensitivity"], cm_tree$byClass["Sensitivity"]) %>% as.nume
  Specificity = c(cm_logit$byClass["Specificity"], cm_tree$byClass["Specificity"]) %>% as.nume
  AUC = c(as.numeric(auc_logit), as.numeric(auc_tree))
print_tbl(perf_tbl, "Model Performance Comparison (Test Set)", digits = 3)
```

Table 10: Model Performance Comparison (Test Set)

Model	Accuracy	Kappa	Sensitivity	Specificity	AUC
Logistic Regression	0.667	0.333	0.708	0.625	0.832
Decision Tree	0.708	0.417	0.792	0.625	0.786

```
readr::write_csv(perf_tbl, "../outputs/summary_tables/model_performance_comparison.csv")
```

```
# pick the best row using dplyr-qualified calls to avoid masking
best <- perf_tbl %>%
```

Summary. We trained two models on Dataset A's health indicators (binary target: HighValue \geq median(Value)). The table above shows test-set metrics. Based on AUC (primary) and Accuracy (secondary), the better model in this run is **Logistic Regression** (AUC = 0.832, Accuracy = 0.667). We also saved ROC curves, a tree plot, and CSV metrics in .../outputs/.