B-Tag 2015

Thomas, Josua, Niclas, Andreas

November 20, 2015

Contents

1	Auf	gaben	1
	1.1	Aufgabe 1: Dreiecksgeometrie]

1 Aufgaben

1.1 Aufgabe 1: Dreiecksgeometrie

Wir wollen eine Funktion $\overline{FE}(\theta)$ aufstellen, und zeigen, dass diese immer größer als CA ist.

1. Wie lang ist die Strecke \overline{FM} ?

$$\overline{FM}(\theta) = \frac{M_y}{\sin(\theta)}$$

2. Wie lang ist die Strecke \overline{ME} ?

$$\overline{ME}(\theta) = \frac{M_x}{\sin((\pi/2) - \theta)}$$

3. Die Strecke \overline{FE} ist also $\overline{FE}+\overline{ME}$ (natürlich alles im Definitionsbereich $0<\theta<\frac{\pi}{2}$:

$$\overline{FE}(\theta) = \frac{M_y}{sin(\theta)} + \frac{M_x}{sin((\pi/2) - \theta)}$$

Jetzt muss gezeigt werden, dass der Tiefpunkt von $\overline{FE}(\theta)$ den wert \overline{AC} hat. Dazu wird $\overline{FE}(\theta)$ zuerst abgeleitet, um den TP zu finden:

able itung function

Jetzt setzen wir FE' = 0, um den TP zu finden, und sehen, dass FE(TP) = CA ist. Daher FE immer länger als CA (außer bei $\theta = \frac{pi}{2}$)

mehrzeug