Pruebe que $f: S \subseteq \omega \to \omega$ es Σ -recursiva sii $\{\langle x, f(x) \rangle : x \in S\}$ es Σ -r.e. (Recuerde que $(x, y) = 2^x 3^y - 1$.)

Dar un programa $\mathcal{Q} \in Pro^{\Sigma_n}$ tal que $Im(\Psi_{\mathcal{Q}}^{1,0,\Sigma_n^*})$ sea el conjunto

$$\{P - Pro^{\Sigma_p} : \text{hay } n \in \omega \text{ tal que } \Psi^{0,1,\omega}_{\mathcal{P}}(\mathcal{P}) = \Psi^{1,0,\omega}_{\mathcal{P}}(n)\}.$$

duede usar macros.

o F. justifique.

V (a) Si T computa una función $f: D_f \subseteq \omega^2 \to \omega$, entonces \mathcal{P} computa la función $f \circ (p_1^{1,0}, C_0^{1,0})$.

(b) Si $Dom(\Psi_T^{1,0,\omega}) = \omega$ entonces $Dom(\Psi_{PP}^{1,0,\omega}) = \omega$.

Para cada $\mathcal{P} \in Pro^{\Sigma}$ hay un $\mathcal{P}' \in Pro^{\Sigma}$ tal que $Dom(\Psi_{\mathcal{P}'}^{1,0,\omega}) = Dom(\Psi_{\mathcal{P}}^{1,0,\omega})$.

 $\text{Finteness} \text{ Sea } f: \omega \times \omega \to \omega \text{ dada por } f(x_1, x_2) = \langle x_1, x_2 \rangle.$

$$lm(\Psi_{\mathcal{D}}^{2,0,\omega}) = lm\left(\lambda x \left[(x)_1 \right] \circ \left(E_{\#} \circ \left(p_1^{3,0}, f \circ (p_2^{3,0}, p_3^{3,0}), C_{\varepsilon}^{3,0}, C_{\mathcal{D}}^{3,0} \right) \right) \right).$$

 $f(x, \varepsilon) = x$, para cada $x \in \omega$

 $f(x, |\alpha) = g_1(f(x, \alpha), x, \alpha)$, para cada $x \in \omega$, $\alpha \in \{1, \%\}^*$

 $f(x, \%\alpha) = g_{\%}(f(x, \alpha), x, \alpha)$, para cada $x \in \omega$, $\alpha \in \{!, \%\}^*$

Pruebe que si g_1 y $g_{\%}$ son $\{!, \%\}$ -PR entonces f lo es

2. Pruebe que el siguiente predicado es Σ -PR. Enuncie todos los resultados del teórico que utilice.

$$P = \lambda x \alpha \beta \left[(\exists t \in \{impares\}) \ \alpha^{j=1}^{t} x^{j} = \beta \right]$$

V3. V o F, justifique

c(a) Si R(f,g)(0) = 0 y R(f,g)(x+1) = x para todo $x \in \omega$ entonces $f = \{(\diamondsuit,0)\}$ y $g = p_2^{2,0}$.

(b) $\lambda x_1 x_2 [x_1 \cdot x_2] \circ (C_0^{1,0}, Pred) = C_0^{1,0}$.