What is claimed is:

1. An aromatic diamine derivative having the structure of formula (I):

$$R_1$$
 R_2
 R_3
 R_5
 R_5
Formula (I)

wherein,

each of R₁, R₂, R₃, R₅, and R₆, independently, is hydrogen or a monovalent organic functional group, and

 R_4 is C_4 - C_{20} alkyl, CO_2R_7 , $CONR_7$, or $(CH_2)_nCF_3$, wherein n is an integer of from 1 to 5, and R_7 is C_4 - C_{20} alkyl.

- 2. The aromatic diamine derivative according to claim 1 wherein each of R₁, R₂, R₃, R₅, and R₆, independently, is hydrogen or C₁-C₅ alkyl, R₄ is C₄-C₂₀ alkyl, and the two amino groups are directly attached to the 2-position and the 4-positioned of the benzene ring.
- 3. The aromatic diamine derivative according to claim 1 wherein the aromatic diamine derivative is 1-[4-(2,4-diaminophenoxy)phenoxy]octane.
- 4. The aromatic diamine derivative according to claim 1 wherein the aromatic diamine derivative is 1-[4-(2,4-diaminophenoxy)phenoxy]dodecane.
- 5. A method for preparing the compound of formula (I) according to claim 1, the method comprising:

(a) reacting a dinitrobenzene compound of formula (II)

$$O_2N$$
 NO_2 Formula (II)

with a hydroquinone compound of formula (III)

OH
$$R_2$$
 R_6 Formula (III) R_3 OH

in the presence of a base and an organic solvent to form a compound of formula (IV);

$$R_1$$
 R_2
 R_5
 R_5
 R_6
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7

(b) reacting the compound of formula (IV) with a halide R_4X in the presence of a base and an organic solvent to form a compound of formula (V);

$$O_2N$$
 R_1
 O_2
 R_2
 R_5
 O_{R_4}
Formula (V)

and

(c) hydrogenating the compound of formula (V) to form the compound of formula (I),

$$R_1$$
 R_2
 R_3
 R_5
 R_5
 R_6
 R_5
 R_5

wherein R₁, R₂, R₃, R₄, R₅, and R₆ are those defined in claim 1, and X is halogen selected from the group consisting of F, Cl, and Br.

- 6. The method according to claim 5 wherein the base is selected from carbonates of IA and IIA metals, trimethylamine, triethylamine, and disopropylethylamine.
- The method according to claim 5 wherein the organic solvent is selected from acetone, butanone, N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide.
- 8. The method according to claim 5 wherein the halide is selected from C₄-C₂₀ alkyl fluoride, chloride, and bromide.

- 9. A polyimide resin used as an alignment film material for a liquid crystal display device, the polyimide resin being prepared by a polymerization reaction between a tetracarboxylic acid or a dianhydride derivative thereof and a diamine, wherein the diamine comprises at least 5 mol% of one or more of the diamine derivatives of formula (I) according to claim 1.
- 10. The polyimide resin according to claim 9 wherein the diamine comprises at least 20 mol% of one or more of the diamine derivatives of formula (I) according to claim 1.
- 11. The polyimide resin according to claim 9 wherein the diamine comprises 1-[4-(2,4-diaminophenoxy)phenoxy]octane.
- 12. The polyimide resin according to claim 9 wherein the diamine comprises 1-[4-(2,4-diaminophenoxy)phenoxy]dodecane.