

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-160949

(43)公開日 平成9年(1997)6月20日

(51) Int.Cl. ⁶		觀別記号	庁内整理番号	FΙ		•	- 1	技術表示箇所
G06F	17/50			G06F 1	5/60	6541	M	
	9/06	530		•	9/06	5300	J	
	11/28	3 4 0	7313-5B	1	1/28	3400	2	
				1	5/60	6 3 0		
				審査請求	未請求	請求項の数19	OL	(全 20 頁)
(21)出願番号	 }	特顏平7-318688		(71)出願人	0000051	108		
				株式会社	社日立製作所			
(22)出願日		平成7年(1995)12	月7日	-	東京都	千代田区神田駿河	可台四	丁目6番地
				(72)発明者	鈴木	数 ·		
					東京都區	国分寺市東恋ケ智	11丁	目280番地
					株式会	社日立製作所中 5	块研究	听内
				(72)発明者	内部	こなぎ		
					東京都	国分寺市東恋ケ	11丁	目280番地
					株式会	社日立製作所中央	央研究	乔内
				(72)発明者	庄内 ³	亨		
				1	東京都	国分寺市東恋ケ網	第1丁	目280番地
			•		株式会	社日立製作所中等	央研究)	所内
				(74)代理人	弁理士	蒋田 利幸		

(54) 【発明の名称】 ハードウエアとソフトウエアの混在システムの設計支援方法

(57)【要約】

【課題】マイクロコンピュータの制御プログラムの機能 の内、ハードウエア化すべき部分の選択を支援する。

【解決手段】組み込みプログラム108中のソースプログラムをディスプレイ104に表示し、その中のシミュレーション開始点と終了点とそれら2点間の満たすべき処理時間とをユーザに指定させ(111)、組み込みプログラム108中のオブジェクトプログラム解析してその構成要素としての関数と関数を構成するセグメントとおよびそれらの相互の関係を抽出し(113)、オブジェクトプログラムの動作を解析して、開始点を通過してから終了点を通過するまでに実行された構成要素毎に、処理時間と処理回数等を記録し、これらの構成要素と、それらに関して記録された処理時間、処理回数等を表示し(115)、ユーザに、ハードウエア化すべき部分を構成要素単位に選択可能にする。

2

【特許請求の範囲】

【請求項1】プロセッサと、それに接続された少なくとも一つの関連回路とを有する回路を制御するためのオブジェクトプログラムの内、他の関連回路によりその機能を実行させるべき部分の選択を、計算機と、入力装置と、出力装置とを有する計算機システムを用いて支援するハードウエアとソフトウエアの混在システムの設計支援方法であって、

そのオブジェクトプログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係を判別し、ユーザにより選択された、動作解析すべき区間を特定するための区間指定情報を上記入力装置を用いて入力し、該プロセッサと該関連回路を制御するときの上記オブジェクトプログラムの動作を、上記プロセッサの仕様と上記少なくとも一つの関連回路を記述するハードウエア記述とに基づいてシミュレーションし、

上記シミュレーションの間に、該判別された複数の構成 要素の内、該入力された区間指定情報で特定される動作 解析すべき区間に属する一部の複数の構成要素の各々の 処理時間に関連する情報を収集し、

上記一部の複数の構成要素の各々を識別する情報とそれぞれに対して収集された処理時間に関連する情報とを、該オブジェクトプログラムの内、ハードウエア化すべき部分の、該ユーザによる選択を支援するための情報として上記表示装置に表示するハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項2】上記オブジェクトプログラムを構成する該複数の構成要素の判別は、上記オブジェクトプログラムに対するソースプログラムを構成する複数の構成要素の一つにそれぞれ対応するように相対的に大きな複数の構成要素を選択し、該選択された相対的に大きな複数の構成要素の各々を構成する相対的に小さな複数の構成要素を選択し、上記選択された相対的に大きな複数の構成要素と上記選択された相対的に小さな複数の構成要素ととオブジェクトプログラムを構成する複数の構成要素として判別するステップを有し、

上記収集は、上記動作解析すべき区間に属する複数の相対的に大きな構成要素の各々に関する処理時間に関連する情報と、それぞれの相対的に大きな構成要素に属する相対的に小さな複数の構成要素の各々についての処理時 40間に関する情報とを収集するステップを含み、

上記表示は、上記動作解析すべき区間に属する上記判別された相対的に大きな複数の構成要素の各々およびそれぞれの相対的に大きな複数の構成要素に属する相対的に小さな複数の構成要素の各々に関して収集された処理時間に関連する情報を表示するステップを有する請求項1記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項3】上記オブジェクトプログラムは、上記オブジェクトプログラムに対するソースプログラムを変換し

て得られるアセンブラブログラムをさらに変換して<mark>得</mark>ら れたものであり、

上記オブジェクトプログラムの複数の構成要素と構成要素間関係の判別は、

上記アセンブラブログラムを解析して、アセンブラプログラムを構成する複数の構成要素とそれらの構成要素の 間の関係を指示する構成要素間関係を判別し、

上記アセンブラブログラムを構成する複数の構成要素と それらの構成要素の間の関係を指示する構成要素間関係 10 に基づいて、上記オブジェクトプログラムの対応する複 数の構成要素と構成要素間関係を判別するステップを有 する請求項1記載のハードウエアとソフトウエアの混在 システムの設計支援方法。

【請求項4】上記オプジェクトプログラムの構成要素と 構成要素間関係の判別は、上記オプジェクトプログラム を解析して行われる請求項1記載のハードウエアとソフ トウエアの混在システムの設計支援方法。

【請求項5】上記区間指定情報の入力は、

上記オブジェクトプログラムに対するソースプログラム を上記表示装置に表示し、

表示されたソースプログラム上の、ユーザにより選択された動作解析すべき区間の開始点と終了点とを指定する区間指定情報を上記入力装置を用いて入力するステップを有する請求項1記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項6】上記選択においては、

前記ソースプログラム上の上記開始点および上記終了点 にそれぞれ対応する、上記オブジェクトプログラム上の 開始点と終了点を、オブジェクト上の動作解析すべき区 間を規定する情報として検出し、

該検出された開始点と終了点および該判別された構成要素間関係とに基づいて、該オブジェクトプログラム上の開始点を通過してから該オブジェクトプログラム上の終了点に至るまでの間に実行される一部の構成要素を、上記情報を収集する一部の複数の構成要素として選択するステップをさらに有する請求項5記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項7】上記オブジェクトプログラムを、該ソースプログラムから生成する時に、上記ソースプログラム内のコードと上記オブジェクトプログラム内の対応するコートとを関連づけるプログラム間関係情報を生成するステップをさらに有し、

上記検出においては、

上記生成されたプログラム間関係情報に基づいて、ソースプログラム上の上記開始点および上記終了点に対応する、上記オブジェクトプログラム上の開始点と終了点を検出するステップをさらに有する請求項6記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項8】上記動作解析すべき区間に属する該一部の 複数の構成要素中の複数箇所に含まれる共通動作部分を

検索し、

該共通動作部分をそれぞれ含む複数の構成要素と、該共通動作部分のデータフローグラフとを該表示装置に表示するステップをさらに有する請求項1記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項9】プロセッサと、それに接続された少なくとも一つの関連回路とを有する回路を制御するためのオブジェクトプログラムの内、他の関連回路によりその機能を実行させるべき部分の選択を、計算機と、入力装置と、出力装置とを有する計算機システムを用いて支援するハードウエアとソフトウエアの混在システムの設計支援方法であって、

そのオブジェクトプログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係を判別し、ユーザにより選択された、複数の動作解析すべき区間の一つをそれぞれ特定するための複数の区間指定情報と各動作解析すべき区間が満たすべき、ユーザが指定した処理時間条件に関する情報とを上記入力装置を用いて入力し、

該プロセッサと該関連回路を制御するときの上記オブジ 20 ェクトプログラムの動作を、上記プロセッサの仕様と上 記少なくとも一つの関連回路を記述するハードウエア記 述とに基づいてシミュレーションし、

上記シミュレーションの間に、該入力された複数の区間 指定情報で特定される複数の動作解析すべき区間の各々 の処理時間に関連する情報と、各動作解析すべき区間に 属すると判別された該一部の複数の構成要素の各々の処 理時間に関連する情報を収集し、

該複数の動作解析すべき区間の各々に対して収集された 処理時間に関連する情報とその区間に対して入力された 30 処理時間条件に関する情報とに基づいて、上記複数の動 作解析すべき区間の内、それぞれの区間に対して指定さ れた処理時間条件を満たさない一つまたは複数の動作解 析すべき区間を検出し、

該検出された一つまたは複数の動作解析すべき区間の各々に対して検出された上記一部の複数の構成要素の各々を識別する情報と、それぞれの構成要素に対して収集された処理時間に関連する情報とを、該オブジェクトプログラムの内、ハードウエア化すべき部分の、該ユーザによる選択を支援するための情報として上記表示装置に表 40示するハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項10】上記オブジェクトプログラムを構成する 該複数の構成要素の判別は、上記オブジェクトプログラ ムに対するソースプログラムを構成する複数の構成要素 の一つにそれぞれ対応するように相対的に大きな複数の 構成要素を選択し、該選択された相対的に大きな複数の 構成要素の各々を構成する相対的に小さな複数の構成要 素を選択し、上記選択された相対的に大きな複数の構成 要素と上記選択された相対的に大きな複数の構成 をオプジェクトプログラムを構成する複数の構成要素と して判別するステップを有し、

上記収集は、上記動作解析すべき区間に属する複数の相対的に大きな構成要素の各々に関する処理時間に関連する情報と、それぞれの相対的に大きな構成要素に属する相対的に小さな複数の構成要素の各々についての処理時間に関する情報とを収集するステップを含み、

上記表示は、上記動作解析すべき区間に属する上記判別された相対的に大きな複数の構成要素の各々およびそれぞれの相対的に大きな複数の構成要素に属する相対的に小さな複数の構成要素の各々に関して収集された処理時間に関連する情報を表示するステップを有する請求項1記載のハードウエアとソフトウエアの混在システムの設計支援方法。請求項9記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項11】上記オブジェクトプログラムは、上記オブジェクトプログラムに対するソースプログラムを変換して得られるアセンブラプログラムをさらに変換して得られたものであり、

0 上記オブジェクトプログラムの複数の構成要素と構成要素間関係の判別は、

上記アセンプラプログラムを解析して、アセンプラプログラムを構成する複数の構成要素とそれらの構成要素の間の関係を指示する構成要素間関係を判別し、

上記アセンブラブログラムを構成する複数の構成要素とそれらの構成要素の間の関係を指示する構成要素間関係に基づいて、上記オブジェクトプログラムの対応する複数の構成要素と構成要素間関係を判別するステップを有する請求項9記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項12】上記オブジェクトプログラムの構成要素と構成要素間関係の判別は、上記オブジェクトプログラムを解析して行われる請求項9記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項13】各区間指定情報の入力は、

上記オブジェクトプログラムに対するソースプログラ ム を上記表示装置に表示し、

表示されたソースプログラム上の、ユーザにより選択された動作解析すべき区間の開始点と終了点とを指定する 区間指定情報を上記入力装置を用いて入力するステップ を有する請求項9記載のハードウエアとソフトウエアの 混在システムの設計支援方法。

【請求項14】上記選択においては、

前記ソースプログラム上の一つの動作解析すべき区間を表す開始点と終了点に対応する上記オブジェクトプログラム上での開始点と終了点を、オブジェクト上の一つの動作解析すべき区間を規定する情報として検出し、

該検出された上記オブジェクト上の開始点と終了点および該判別された構成要素間関係とに基づいて、該オブジェクトプログラム上の開始点を通過してから該オブジェ

5

クトプログラム上の終了点に至るまでの間に実行される 一部の構成要素を、上記情報を収集する一部の複数の構 成要素として選択するステップをさらに有する請求項1 3記載のハードウエアとソフトウエアの混在システムの 設計支援方法。

【請求項15】上記オブジェクトプログラムを、該ソースプログラムから生成する時に、上記ソースプログラム内のコードと上記オブジェクトプログラム内の対応するコートとを関連づけるプログラム間関係情報を生成するステップをさらに有し、

上記検出においては、

上記生成されたプログラム間関係情報に基づいて、各動作解析すべき区間に対する、前記ソースプログラム上の開始点と終了点に対応する、上記オプジェクトプログラム上の開始点と終了点を検出するステップを有する請求項14記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項16】上記複数の動作解析すべき区間に属する 複数の構成要素中の複数箇所に含まれる共通動作部分を 検索し、

該共通動作部分をそれぞれ含む複数の構成要素と、該共通動作部分のデータフローグラフとを該表示装置に表示するステップをさらに有する請求項9記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項17】プロセッサと、それに接続された少なくとも一つの関連回路とを有する回路を制御するためのオプジェクトプログラムの内、他の関連回路によりその機能を実行させるべき部分の選択を、計算機と、入力装置と、出力装置とを有する計算機システムを用いて支援するハードウエアとソフトウエアの混在システムの設計支 30 援方法であって、

上記オブジェクトプログラムに対応するソースプログラムを変換して得られるアセンブラプログラムを上記オブジェクトプログラムに変換し、

該アセンブラプログラムに基づいて、該アセンブラブログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係を検出し、

該アセンブラプログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係に基づいて、該オブジェクトプログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係を判別し、

該プロセッサと該関連回路を制御するときの上記オブジェクトプログラムの動作を、上記プロセッサの仕様と上記少なくとも一つの関連回路を記述するハードウエア記述とに基づいてシミュレーションし、

上記シミュレーションの間に、上記判別された上記オブ ジェクトプログラムを構成する該複数の構成要素の内、 少なくとも一部の複数の構成要素の各々の処理時間に関 連する情報を収集し、

上記少なくとも一部の複数の構成要素の各々を識別する

ための情報とそれぞれに対して収集された処理時間に関連する情報を、上記オブジェクトプログラム中のハードウエア化すべきプログラム部分のユーザによる選択を支援する情報として上記表示装置に出力し、

上記アセンブラブログラムの複数の構成要素が識別可能 なように、上記アセンブラブログラムを表示し、

上記表示されたアセンプラブログラムの内、ユーザにより選択されたハードウエア化すべきプログラム部分を指 定する情報を該入力装置より入力し、

10 該入力された指定情報に従って、上記アセンブラプログラムの上記プログラム部分に代えて、他の関連回路を使用するように該アセンブラプログラムを更新し、

該更新後のアセンブラプログラムに基づいて、上記変換 から更新までを繰り返し、

その繰り返し時における上記更新後のシミュレーションの実行は、上記プロセッサの仕様と、上記少なくとも一つの関連回路を記述するハードウエア記述と、上記他の関連回路を記述する他のハードウエア記述とに基づいて実行されるハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項18】上記他のハードウエア記述を、該入力された識別情報指定される一つの構成要素の内容に基づいて自動的に生成するステップをさらに有する請求項17記載のハードウエアとソフトウエアの混在システムの設計支援方法。

【請求項19】上記他のハードウエア記述を該ユーザが 指定するステップをさらに有する請求項17記載のハー ドウエアとソフトウエアの混在システムの設計支援方 法。

) 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、与えられた仕様のマイクロプロセッサを利用するシステムの設計にあたり、そのシステムが有すべき機能を、周辺回路により実現すべき一部の機能と、そのマイクロプロセッサの制御プログラムとで実現すべき機能とに分割するのを支援する方法に関する。

[0002]

【従来の技術】マイクロプロセッサを利用したシステム
40 用のLSIの設計では、そのシステムが有すべき多数の機能の各々をハードウェアで実行させるかソフトウェアで実行させるかの選択が重要である。これは、ある機能をソフトウェアで実行させる方がLSIのコストが小さくて済み、修正も容易であるが、その機能をハードウェアで実行させる方が処理速度は速いというトレードオフが存在するためである。システムが有すべき多数の機能を、ソフトウエアで実現すべき機能とハードウエアで実現すべき機能とハードウエアで実現すべき機能といアで実現すべき機能といアナッエアの機能分割。このようなハードウェアとソフトウェアの機能分割における最も重要な基準はシステムの性能(処理速度)

である。しかし、性能以外にも、ハードウェアとソフト ウェア間の転送データ量、LSIの面積(ハードウェア の面積とプログラムを格納するROMの面積)、消費電 力、仕様変更への容易性等、機能分割に当たり考慮すべ き点がいろいろある。

【0003】従来は、人手か、簡単なツールを用いてプ ログラムを解析し、ハードウェア化する部分を選択して いた。あるいは、設計者の経験を利用してハードウェア 化する部分を決定し、ソフトウェアの設計を行う過程で 性能的に不十分な機能をその都度ハードウェア化すると いう手法をとっていた。この場合、ハードウエア化すべ き機能を人手で仮に選択した後、選択された機能をハー ドウエア化した状態でのシステム性能等の評価が必要で あり、この評価の結果によっては、ハードウエア化すべ き機能を再度選択し直す必要が生じるため、ハードウエ ア化すべき機能の最終決定までには多くの時間が掛か る。

【0004】したがって、このような機能分割のために は、ソフトウエアで実現される機能とハードウエアで実 現される機能に機能分割した状態で、処理速度その他の 特性に関してシミュレーション出来ることが望ましい。 さらに、ハードウエア化すべき部分をこのシミュレーシ ョンにより自動的に決定できることが望ましい。さら に、ハードウエア化することが望ましいと決定された機 能を実現するハードウエアは、計算機により自動的に生 成出来ることが望ましい。

【0005】現在、ハードウェア/ソフトウェア混在シ ステムの性能のシミュレーションを支援する手段とし て、論理シミュレータ上でマイクロプロセッサのモデル を動作させ、ハードウェア部分とプログラムを同時にシ ミュレーションする技術がある。例えば、情報処理学会 大47回全国大会(平成5年後期)、6-85頁(以 下、第1の参考文献と呼ぶ)には、プログラムのデバッ グ機能を持つマイクロプロセッサモデルを論理シミュレ ータ上で動作させる技術が紹介されている。しかし、こ れらのハードウェア/ソフトウェア混在システムのシミ ュレーションの方法は、ハードウェア/ソフトウェア混 在システムの動作を検証する目的で作られているため、 処理速度を計る手段に関しては、プログラムの内、ユー ザ指定の一部分の処理時間を測定する機能がある程度で 40 ある。

【0006】したがって、システムの設計に当たり、そ のシステムが有すべき機能の性能は、LSIにある信号 が入力されてから、そのLSIが処理を行い別の信号を 出力するまでの処理時間等で定義される。ソフトウェア 上では信号の入力と信号の出力が同じサブルーチン内で 行われる訳ではなく、一般的には異なるサブルーチンで 行われ、その間に通過するプログラム上の経路も入力デ ータの値や、その時のLSIの状態により変化する。ま 一部の処理であったり複数のサブルーチンにまたがる処 理であったりする。そのため、ハードウェア化すべき 機 能の候補(プログラムの一部)を探すためには測定部分 を何度も変えて繰り返し測定する必要がある。

【0007】一方、シミュレーションだけでなく、機能 分割あるいはハードウエア化の自動化も研究されてい る。か一方、例えば、IEEE, Design&Tes t of Computers, Volume 10, N umber4, 1993年12月、64頁~75頁(以 下、第2の参考文献と呼ぶ)に示されるように、ハード ウェアとソフトウェアの切り分けの自動化を目指した研 究も報告されている。この論文ではC言語で記述したシ ステムの動作記述からコプロセッサ (ハードウェア) と プログラム (ソフトウェア) を自動的に生成するシステ ムが提案されている。これらの研究では、ソフトウェア の動作を解析し処理頻度の高い部分を選んでハードウェ ア部分とする処理を自動化している。しかし、自動化の 際のハードウェア化部分の選択の基準が処理頻度の高い 部分だけであり、前記のような他の観点での評価は行わ れていない。このため、システムの使用を実現するのに 最適な機能分割が実現できない。この問題を軽減するた めに、この従来技術では、設計者が直接ハードウェア化 すべき部分を指定可能になっているが、その場合も、指 摘できるのが、C言語のレベルのプログラム内の部分で あり、実際の機械語レベルの命令列ではないために、設 計者が意図した細かい分割を指定できないという問題が ある。また、自動的にハードウエア化するための技術 は、現段階では、十分実用的とは言えず、ある機能を実 現するために、このような自動的な方法で生成されるハ 30 ードウエアは、人手でその機能をハードウエア化した場 合に得られるハードウエアに比べて、集積度あるいは処 理速度等で劣る場合がある。

[0008]

【発明が解決しようとする課題】上記第2の参考文献が めざす機能分割の自動化は、理想的であるが、現実には その技術は、まだ実用段階には達していない。このよう な技術の状況では、設計者がハードウエア化すべき部分 を選択するのを支援できる技術がより実用的である。そ のようは支援のためには、以下のような条件を満たすこ とが望ましい。

【0009】(1)ハードウエア化すべき部分は、オブ ジェクトプログラム上の構成要素を単位として設計者が 指定出来ることが望ましい。そのためには、シミュレー ション結果は、オブジェクトプログラム上の構成要素の 単位で得られることが望ましい。この場合、設計者が動 作解析すべきプログラム部分を比較的容易に指定できる ことが望ましい。そのためには、動作解析すべき範囲を ソースプログラム上で指定できることが望ましい。

【0010】(2)ユーザが指定した複数の動作解析す た、ハードウェア化されるべき処理はサブルーチン内の 50 べき区間に関するシミュレーションを行い、その結果に

基づいて、ユーザ指定の処理条件に違反したか否かを判 別し、違反した複数の区間があれば、それらをハードウ エア化すべき部分の候補としてユーザに提示し、ユーザ がそれらの区間の各々の内部の内、ハードウエア化すべ き部分を選択するのを支援するシミュレーション方法が 望ましい。

【0011】(3) さらに、シミュレーションの結果を 利用して一部の機能をハードウエア化した後に、その結 果を利用して新たにハードウエア化すべき部分を見つけ るように、シミュレーションを簡単に繰り返すことが出 来ることが望ましい。

【0012】その際、設計者が望めば、設計者が選んだ ハードウエア化すべきプログラム部分を設計者が人手で ハードウエア化した後に、その結果を取り込んで、新た なシミュレーションを実行できるシミュレーション方法 が望ましい。

【0013】したがって、本発明の目的は、動作解析す べきオブジェクトプログラムの各構成要素毎にシミュレ ーション結果を出力できる設計支援方法を提供すること である。

【0014】本発明のより具体的な目的は、これらの動 作解析すべき区間をユーザが指定でき、シミュレーショ ン結果として、オブジェクトプログラムの各構成要素毎 にシミュレーション結果を出力できる設計支援方法を提 供することである。本発明のさらに具体的な目的は、動 作解析すべき区間をユーザがソースプログラム上で指定 でき、シミュレーション結果として、オブジェクトプロ グラムの各構成要素毎にシミュレーション結果を出力で きる設計支援方法を提供することである。

【0015】本発明の他の目的は、ユーザ指定の複数の 動作解析すべき区間に対してシミュレーションを行い、 その結果に基づいて、設計者が指定した処理時間等の条 件を満たさない複数の動作解析すべき区間を自動的に判 別し、これらをハードウエア化すべきプログラム部分の 候補として設計者に提示できる設計支援方法を提供する ことである。

【0016】さらに、本発明の他の目的は、先行するシ ミュレーションの結果を利用して次のシミュレーション が実行できるように、シミュレーションを簡単に繰り返 すことを支援する設計支援方法を提供することである。 [0017]

【課題を解決するための手段】上記本願発明の目的を達 成するために、本願発明では、計算機と、入力装置と、 出力装置とを有する計算機システムにより以下を実行さ せる。

【0018】プロセッサと、それに接続された少なくと も一つの関連回路とを有する回路を制御するためのオブ ジェクトプログラムを構成する複数の構成要素とそれら の間の関係を示す構成要素間関係を判別し、ユーザによ り選択された動作解析すべき区間を特定するための区間 50 アセンブラブログラムを上記オブジェクトプログラムに

10

指定情報を入力装置を用いて入力し、該プロセッサと そ の関連回路を制御するときの上記オブジェクトプログラ ムの動作を、上記プロセッサの仕様と上記少なくとも ― つの関連回路を記述するハードウエア記述とに基づいて シミュレーションし、上記シミュレーションの間に、 該 判別された複数の構成要素の内、該入力された区間指定 情報で特定される動作解析すべき区間に属する一部の複 数の構成要素の各々の実行時間の合計、実行頻度など、 その構成要素の処理時間に関連する情報を収集し、上記 一部の複数の構成要素の各々を識別する情報とそれぞれ に対して収集された処理時間に関連する情報とを、該オ ブジェクトプログラムの内、ハードウエア化すべき部分 の、該ユーザによる選択を支援するための情報として表 示装置に表示する。

【0019】より具体的には、上記複数の構成要素は、 上記オブジェクトプログラムに含まれる複数の関数と、 該複数の関数の各々に含まれる複数のセグメントとを含 み、上記収集では、上記動作解析すべき区間に属する複 数の関数の各々に関する処理時間に関連する情報と、 そ れぞれの関数に属する複数のセグメントの各々について の処理時間に関する情報とを収集し、上記表示では、上 記動作解析すべき区間に属する上記複数の関数の各々 お よびそれぞれの関数に属する複数のセグメントの各々に 関して収集された処理時間に関連する情報を表示する。

【0020】さらに、より具体的には、上記区間指定情 報の入力では、上記オブジェクトプログラムに対する ソ ースプログラムを上記表示装置に表示し、表示されたソ ースプログラム上の、ユーザにより選択された動作解析 すべき区間の開始点と終了点とを指定する区間指定情報 を上記入力装置を用いて入力する。

【0021】さらに、本発明では以上のことをユーザが 選択した複数の動作解析すべき区間に関して行い、か つ、それぞれの区間に関してユーザが指定した処理時間 等の条件を入力装置から入力し、それらの区間がユーザ が指定した条件を満たしているかをそれらの区間に関す るシミュレーションの結果により判別し、条件を満たさ ない複数の区間を検出したときには、それらの区間の各 々に属する複数の構成要素に関するシミュレーション結 果を表示装置に表示し、それでもってユーザがハードウ エア化すべき部分を選択するのを支援する。

【0022】さらに、以上のようなシミュレーション結 果を利用して、ユーザがいずれかのハードウエア化すべ き部分を選択した後に、さらに他のハードウエア化すべ き部分を選択するように、後続のシミュレーションを繰 り返し実行するのを支援するために、本願発明のシミユ レーション支援方法は、アセンブラプログラムを使用し て、次のように行われる。

【0023】まず構成要素の解析は、オブジェクトプロ グラムに対応するソースプログラムを変換して得られる

12

変換し、該アセンブラブログラムに基づいて、該アセンブラブログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係を検出し、該アセンブラブログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係に基づいて、該オブジェクトブログラムを構成する複数の構成要素とそれらの間の関係を示す構成要素間関係を判別することにより行われる。

【0024】上記オブジェクトプログラムのシミュレーションの結果表示の後に、上記アセンブラプログラムの複数の構成要素が識別可能なように、上記アセンブラブログラムを表示し、上記表示されたアセンブラプログラムの内、ユーザにより選択されたハードウエア化すべきプログラム部分を指定する情報を入力装置より入力し、該入力された指定情報に従って、上記アセンブラブログラムの上記プログラム部分に代えて、他の関連回路を使用するように該アセンブラプログラムを更新し、該更新後のアセンブラブログラムに基づいて、上記変換から更新までを繰り返す。

[0025]

【発明の実施の形態】以下、本発明に係るハードウェア /ソフトウェア混在システムの設計支援方法を図面に示 した実施の形態を参照してさらに詳細に説明する。

【0026】(システム構成)図1はハードウェア/ソフトウェア混在システムの設計支援装置の構成を示す。101はCPU、102はキーボード、103はマウス等の入力機器、104はディスプレイ等の出力機器である。105、106は補助記憶装置であり、105は入力用のファイルを、106は出力用のファイルを表している。107はCPUに接続する主記憶装置で、本発明による設計支援装置の動作を決定するプログラムとデータを格納する。

【0027】入力用ファイルは、設計対象となるLSIのうち、LSI内のROMに組み込むプログラムを格納するファイル108、既設計の部分の論理回路や設計対象となるLSIの周囲の動作を表すハードウェア記述109からなる。また出力用ファイルは統計解析結果を格納するファイル110、共通動作検索結果を格納するファイル122、選択した命令列を格納するファイル134、ハードウェアの生成結果を格納するファイル135、生成したハードウェアに対応する命令を用いて組み込みプログラム108を書き換えたファイル136からなる。

【0028】主記憶装置107には図1に示す設計支援装置の処理プログラムおよびデータを格納する。処理プログラムとデータは、区間制約処理111、区間制約データ112、プログラム構成要素解析処理113、構造/統計データ114、プログラム実行解析処理115、統計解析処理116、共通動作検索処理121、命令列選択処理131、ハードウェア生成処理132、命令列置換処理133からなる。

【0029】区間制約処理111は、組み込みプログラム108を読み込み、組み込みプログラムの中の2点間のタイミング制約をユーザに指定させ区間制約データ112を作成する。プログラム構成要素解析処理113は、組み込みプログラム108を読み込み、オブジェクトプログラムの構造を解析する。具体的には、オブジェクトプログラムの構成要素を解析し、さらにそれらの構成要素の相互の関係を解析し、構造/統計データ114を作成する。する。

【0030】一般に、プログラムは、ルーチンと呼ぶあ るまとまった処理を実行するプログラム部分により構成 される。ルーチンはメインルーチンとサブルーチンに分 類できる。サブルーチンは、手続きあるいは関数とも よ ばれる。オブジェクトプログラム上のこれらのルーチン は、ソースプログラム上の一つのルーチンに対応する。 従って、オブジェクトプログラムの構造を解析するとき のプログラム構成要素として、ルーチンを解析すれば、 それらはソースプログラム上のルーチンに対応するの で、これらの構成要素はユーザにとってソースプログ ラ ムと対比して理解できる、分かりやすい構造といえる。 このため、本実施の形態では、オブジェクトプログラム のルーチンを構成要素として解析する。しかし、各ルー チンは一般に多くの処理を実行するので、オブジェク ト プログラムをハードウエア化する場合には、ルーチンよ り小さな構成要素についてハードウエア化するか否かを 決めることが望ましい。このため、本実施の形態では、 各ルーチンを構成する相対的に小さな構成要素も解析す

【0031】以下に説明するように、本実施の形態では、一般に関数と呼ばれる複数のルーチンにより構成されたソースプログラムを使用するので、対応するオブジェクトプログラムの相対的に大きな構成要素の一例として、オブジェクトプログラムを構成する関数を解析する。各関数より相対的に小さなプログラム構成要素の一例として、セグメントを解析する。セグメントは、関数を構成する機械語レベルの命令列で、本実施の形態では、その途中に外への分岐点も外からの飛び込む点も持たない命令列をセグメントと定義する。このようなセグメントは、分岐に関連する処理を含まないために、オブジェクトプログラムのハードウエア化の際に、このセグメントを単位にしてハードウエア化するかあるいはその一部をハードウエア化するのに適している。

【0032】構造/統計データ114はセグメントや関数間の関係を表すデータと各セグメントと各関数毎の処理時間に関する統計情報を格納する。プログラム実行解析処理115は組み込みプログラム108とハードウェア記述109を読み込み、設計対象とするLSIのハードウェアとソフトウェア双方を同時にシミュレーションすることによりハードウェアの影響も考慮したソフトウェア(組み込みプログラム)の実行時の統計情報の採取

を行う。統計情報はセグメントや関数毎に構造/統計データ114に格納する。統計解析処理116はプログラム実行解析処理115の終了後に構造/統計データ114を解析して組み込みプログラムの処理時間に関する統計情報を計算しディスプレイ104と統計解析結果ファイル110に出力する。

【0033】共通動作検索処理121は、複数のセグメントに存在する類似の動作をする命令列を検索する処理である。ここで類似の動作とは、例えば、命令の実行順序が異なっていたり、計算時に使用するレジスタが異なっているが、同じ計算を行う場合を言う。検索結果はディスプレイ104とファイル122に出力する。

【0034】命令列選択処理131は、統計解析結果116、あるいは共通動作検索処理121により出力されたセグメント、あるいは共通動作命令列の中からハードウェア化する対象の命令列を選択する処理である。選択結果はファイル134に出力するとともに、ハードウェア生成処理132と命令列置換処理133に渡される。

【0035】ハードウェア生成処理132は、命令列選択処理131で選択されたハードウェア化対象の命令列20を解析してその命令列と同じ動作を行うハードウェアの構成を求め、そのハードウェア記述をファイル135に出力する。命令列置換処理133は、組み込みプログラム108を読み込み、プログラム中に存在する命令列選択処理131で選択された命令列をハードウェア生成処理132で生成されたハードウェアを起動する命令列に置き換える処理である。置き換えた結果できたプログラムはファイル136に出力する。

【0036】以上の処理により組み込みプログラムの性能を解析し、与えた処理時間制約を満たさない部分に関 30 してハードウェア化すべき部分を探索することができる。またハードウェア化すべき命令列からハードウェアを生成するとともに、元の組み込みプログラム中のハードウェア化対象命令列を生成したハードウェアを起動する命令列に置き換えることができる。さらに、置き換えた命令列と、生成したハードウェアを用いて再度プログラムの性能解析を繰り返すことにより、ハードウェア化の効果を確認し、生成したハードウェアの修正や、他のハードウェア化対象部分を検索することができる。

【0037】以下、以上の処理とそれらに関係するデータの詳細を説明する。

【0038】(区間制約指定処理111)図2は区間制約指定処理111の説明図である。区間制約指定では、ユーザに動作解析すべき区間を指定する情報をキーボード102あるいはマウス103を用いて入力させる。さらにその区間が満たさなくてはならない処理時間の制約も指定させる。この処理を行うために、まずプログラム3を読み込み201により組み込みプログラム108を読み込む。

【0039】組み込みプログラム108は、高級言語で

14

記述したソースプログラムをコンパイルすることにより 生成する。コンパイルは高級言語プログラムをアセン ブ ラブログラムに変換する処理と、アセンブラブログラ ム をアセンブルし、機械語命令に対する命令コードと命令 のアドレスからなるオブジェクトプログラムを生成する 処理からなる。図8は組み込みプログラム108のファ イル形式を説明する図である。図中で801はプログラ ムの格納されるアドレス、802は命令コード、803 はラベル、804はコメント中に記録された高級言語の ソースプログラム (805、807、809、811、 813) とそのコンパイル結果であるアセンブリ言語 (806、808、810、812) である。ソースプ ログラム解析202ではコメント中にある高級言語で記 載されたソースプログラムの各文805とプログラムの アドレス801の関係を調べる。204のループはユー ザによる区間指定が終了するまで205~209の処理 を繰り返す。開始点指定205ではユーザによる開始点 の指定を受け取る。指定はソースプログラムの文単位で 行う。このように、ソースプログラム上でシミュレーシ ョンの開始点と終了点を指定する方法は、ユーザにとっ て分かりやすい。このために、組み込みプログラム10 8をディスプレイ104に表示し、ユーザにその表示さ れた組み込みプログラム中のソースプログラム805上 の、開始点の位置を区間指定情報として入力させる。 開 始点アドレス検索206ではオブジェクトプログラム解 析処理203で解析した時に得られるプログラム間関 係、すなわち、オブジェクトプログラムの各命令のア ド レスと対応する高級言語プログラムの文との間の関係を 基に、開始点に対応するオブジェクトプログラム上の命 令の実際のアドレスを求める。終了点指定207と終了 点アドレス検索208では同様にユーザ指定の終了点に 対応するオブジェクトプログラム上の命令の実際のアド レスを求める。

【0040】処理時間制約指定209では205~208で指定した区間の処理時間が満たさなくてはならない時間の制約を受け取る。205~209で得た区間制約データは図3に示す区間制約データ112に格納する。図3において、1行が1つの区間制約データを表す。301は区間制約データの識別番号id、302は開始点アドレス、303は終了点アドレス、304は処理時間制約である。305はプログラム実行解析処理115と統計解析処理116で使用する区間毎の統計情報である。統計情報は複数の情報からなる。この詳細はプログラム実行解析処理115とともに説明する。

【0041】(プログラム構成要素解析処理113)図4はプログラム構成要素解析処理113を説明する図である。プログラム構成要素解析処理113は、組み込みプログラム108を読み込み、プログラムの構造をセグメントと関数単位で解析し、構造/統計データ114を50作成する。処理は402~408の処理を組み込みプロ

20

グラム108を1行ずつ読み込み(402)、解釈す る。プログラムが関数の先頭であれば(403)、その 関数の情報を構造/統計データ114に登録する。プロ グラム中の分岐点(ラベルが付加されているか、分岐命 令がある場合)であれば(405)、その前に分岐点が 出現したアドレスから現在の行のアドレスまでをセグメ ントとして登録する(406)。さらに、プログラム中 に他の関数を呼び出すコール部分が存在すれば(40 7) 、現在の関数の下位階層に呼ばれる関数があること を登録する(408)。図4の処理により、図8のプロ グラム例は806、808、810、812の4つのセ

グメントに分解される。 【0042】 (構造/統計データ114) 図5は構造/ 統計データ114を説明する図である。図は大きく関数 の構造を表すFNstruct (501)、関数の情報 を表すFN (506)、セグメント間の関係を表すSG struct (512)、セグメントの情報を表すSG (525) からなる。FNstruct (501) は4 つの要素からなる。 fnp (502) はその関数の情報 を表すFN (506) へのポインタ、sgl (503) はその関数を構成するセグメントの集合を表すリスト (518) へのポインタ、prnt (504) はその関 数の上位階層の関数(その関数をコールする関数)のF Nstructを指すポインタのリスト(519)への ポインタ、chd(505)はその関数の下位階層の関 数のFNstructを指すポインタのリスト(52 0) へのポインタである。FN(506)は大きく5つ の情報からなる。id (507) は関数の識別番号、F N名 (508) は関数名、sa (509) は関数の開始 アドレス、ea (510) は関数の終了アドレス、関数 30 統計情報 (511) はその関数の統計情報である。51 1はさらに複数の情報により構成される。この詳細はブ ログラム実行解析処理115とともに説明する。SGs truct (512) は4つの要素からなる。sgp (521) はセグメント情報SG(525) へのポイン タ、pre (522) はこのセグメントの直前に実行さ れるセグメントのリスト541へのポインタ、suc (523) はこのセグメントの直後に実行されるセグメ ントのリスト542へのポインタ、fnp(524)は このセグメントを含む関数(FNstruct)へのポ インタである。セグメントの情報を表すSG(525) は大きく5つの情報からなる。id(526)はこのセ グメントの識別番号、ラベル名(527)はこのセグメ ントの先頭アドレスにラベルがあればそのラベル名、s a (528) はそのセグメントの開始アドレス、ea (529) はそのセグメントの終了アドレス、セグメン ト統計情報 (530) はそのセグメントの統計情報であ る。530はさらに複数の情報により構成される。この 詳細はプログラム実行解析処理115とともに説明す る。

16

【0043】 (プログラム実行解析処理115) 図6は プログラム実行解析処理115を説明する図である。 プ ログラム実行解析処理115は組み込みプログラム1 0 8とハードウェア記述109により記述されるソフトウ ェアとハードウェア双方の動作を同時にシミュレーショ ンし、ハードウェアの影響を考慮したソフトウェア (組 み込みプログラム) の実行統計情報の採取を行う。ハー ドウェアとプログラムを同時にシミュレーションするた めに、通常の論理シミュレータ(601)上でハードウ ェア記述により定義される周辺回路602と組み込みプ ログラム108を格納するメモリのモデル603とマイ クロプロセッサの動作を行うマイクロプロセッサモデル 604を動作させる。そして、マイクロプロセッサモデ ルの実行する命令をトレースするプログラム実行トレー ス605によりプログラム実行統計情報を採取し、その 結果は構造統計データ114に格納する。ここで採取す る統計データは、セグメント毎と関数毎に、最大処理時 間、最小処理時間、合計処理時間、処理回数、区間制約 毎に最大処理時間、最小処理時間、合計処理時間、処理 回数、制約値を超えた回数、処理中に通過したセグメン トのリストである。また統計を採取する際にしようする データとして各セグメント毎に開始時刻、終了時刻、 経 過時間、最終実行アドレス等の情報を、各区間制約毎に 開始時刻、終了時刻、集計中を示すのフラグ等の情報を 持つ。

【0044】図10はプログラム実行トレース処理60 5を詳しく説明する図である。プログラム実行トレース の処理は論理シミュレータ601上でのシミュレーショ ンの各サイクル毎に起動される。処理はマイクロプロセ ッサモデル604上で実行されている命令のアドレス a dとシミュレーション時刻 c t を用いる。まず、現在の 実行アドレスadを含むセグメント番号csを求める (1001)。次に、区間制約データ112に格納され ているすべての区間制約 t s n に関して 1003~10 06の処理を行う。現在の実行アドレスadが開始アド レスならば1004~1005を、終了アドレスなら1 006を行う(1003)。開始アドレスなら現在参照 している区間制約tsnに関して、統計データを集計中 でなければ(1004)、その区間制約tsnの統計デ ータの集計を開始する。一方、終了アドレスなら集計を 開始してから現在までの時間を統計情報305を更新す る。次に現在のセグメント番号csが、一回前にプログ ラム実行トレースを行った際のセグメント番号snとが 等しくない場合、即ち、現時刻で新しいセグメントに入 った場合に(1007)、現在集計中の区間制約 t s a に関して(1008)、現在のセグメント番号csを統 計情報305中の通過セグメントリストに追加する(1 009)。さらに、現在のセグメントcsの統計情報 5 30を更新する(1010)。この処理は図17で詳し 50 く説明する。そして、現在のセグメントcsをsnとし

20

17

(1011)、最終シミュレーション時刻Xtimeを現在の時刻ctとする(1012)。

【0045】図17は現在のセグメントcsの統計情報 530の更新処理1010を説明する図である。この処 理も現在のセグメント番号 c s が、一回前にプログラム 実行トレースを行った際のセグメント番号snとが等し くない場合とそうでない場合で処理が異なる(170 1)。等しい場合は、セグメントcsの最後に実行した アドレスを現在の実行アドレス a d として記録する(1 702)。等しくない場合は、セグメントcsの実行開 始時刻を現在のシミュレーション時刻ctとして記録し (1703)、セグメントcsが処理の一番最初のセグ メントでない限り (1704) 、今までのセグメントs nの終了時刻をctとし(1705)、今までのセグメ ントの最終実行アドレスとセグメントの終了アドレスが 等しい場合 (1706)、セグメントsnの処理時間を 計算し(1707)、それを基にセグメントsnの統計 情報を更新し(1708)、処理時間の計算に用いる経 過時間をクリアする(1709)。一方、等しくない場 合、即ち、割り込み等の要因で、セグメント途中で他の セグメントに処理が移った場合は、経過時間に今までの 処理時間を加え保持する(1710)。

【0046】以上では、ソフトウェア中の一部の指定された区間に対して実行解析を行ったが、プログラム全体をミュレーション区間として指定したい場合には、シミュレーションの指定区間の開始点と終了点として、プログラムの先頭およびオブジェクトプログラムの命令が持つことがありえない命令アドレスを指定すればよい。

【0047】(統計解析処理116)統計解析処理116はプログラム実行解析処理115により求めた各セグメント毎の処理時間や実行回数などの値から、区間制約、セグメント、関数毎の処理頻度、実行回数などの統計値を計算し、出力する処理である。この出力では、計算結果をファイル110として出力するとともに、ディスプレイ104へその内容を表示する。

【0048】図7は統計解析処理116を説明する図である。統計解析処理116では、まず各セグメントsgについて(701)、全処理時間に対するsgの処理時間割合とsgの平均処理時間を計算(702)し、各関数fnに関して(703)、fn自体の合計処理時間、全処理時間に対するfnの処理時間割合、fnの実行回数、fnの平均処理時間、fn以下の関数の平均処理時間を計算(704)。そして区間制約違反部分に関して処理時間に関連する情報の表示を行う(705)。この処理は図11で詳しく説明する。最後に区間制約、セグメント、関数毎の処理時間に関連する情報を統計解析結果ファイル110に出力する。

【0049】図11は区間制約違反部分に関して処理時間に関連する情報の表示を行う処理(705)を説明す

18

る図である。これは図12~図16に示すディスプレイ上に表示される情報がどのような手順により表示されるかを示す状態遷移図である。区間リスト表示1101は、区間制約に違反した、即ち、実際の処理時間が区間制約としてあらかじめ指定された処理時間304を超えた場合にその区間制約を表示する。1101から一つの区間制約を選択し(1104)、その区間を処理する際に通過したセグメントのリストを表示する(1105)。ここで、一つのセグメントを選択し(110

8)、セグメントの中の命令列を表示できる(1109)、またはそのセグメントを含む関数、さらにその上位の関数といったプログラムの階層を表示できる(1110)、プログラムの階層表示で、一つのセグメントを選択すると、セグメントリスト表示1105に戻り、一つの関数を選択すると関数のリストを表示できる(1113)。関数表示から関数を選択すると、その関数に含まれるセグメントのリスト(1105)、またはその関数を処理中に通過した区間を表示できる(1101)。【0050】区間リスト表示1101、セグメントリス

ト表示1105、関数表示1113は表形式の表示で、さらに2つの状態を含む。第一の状態は表のある列が選択された状態である(1103、1107、1115)。列が選択されると、選択された列の表示内容によりソーティングして再表示する。第二の状態は表のある行が選択された状態である(1104、1108、1116)。行が選択され、再度指示があると、表示が変わる。たとえば、状態1104から状態1108へ、状態1108から状態1112または状態1104へ、状態1116から状態1112または状態1108または1104へと変わる。

【0051】図12~図16を用いてディスプレイ上に表示する情報の例を示す。これらの表や図は、ディスプレイ上のウィンドに個々に表示する。またウィンドの大きさはキーボードやマウスによる指示により変更できる。

【0052】図12は区間制約に違反した区間情報の表示例である。1201はタイトル部分で、この表のタイトル「区間制約違反」の他、表の各項目のタイトルを表示する。表の各項目は#(1202)が各行の番号、tsn#(1203)が区間制約データの識別番号id(301)、start(1204)が開始点アドレス(302)、end(1205)が終了点アドレス(303)、spec(1206)が制約として与えられた処理時間(304)、ave(1207)がその区間の実行回数、violate(1208)が実際の処理時間が制約時間を超えた回数である。

【0053】図12や他の類似の表形式の表示(図13、図16、図19)に共通する機能として、行選択機能、列選択機能、表示範囲変更機能がある。行選択機能

20

20

は表の1つの行を選択する機能で、ディスプレイ104 上に表示されるマウス103のカーソルを選択したい行 に合わせ、マウスのボタンをクリックすることにより選 択する。選択するとその行の表示の背景色と文字色を反 転する。初期状態では最も上にある行が選択されてい る。列選択機能は表の各行の表示順序を変更する機能で ある。ウィンドのタイトル部分の各項目にマウスのカー ソルを合わせ、マウスのポタンをクリックすることによ り、その項目に関してソーティングを行い再表示を行 う。選択した項目が数値であれば大きい順に、文字であ ればアルファベット順にソーティングする。表示範囲変 更機能はスクロールバー(1210~1212)を用い て表の表示範囲を変更する。要素数が多い表では狭いウ ィンド上に多くの情報を表示できないため、一部分のみ を表示する。その時、全体に対する表示箇所の位置が1 212の位置で表わされる。1212にマウスのカーソ ルを合わせ、マウスのボタンを押したままカーソルを上 下することにより表示範囲を上下に移動する。また12 10、1211にマウスのカーソルを合わせ、マウスの ボタンをクリックすることで、上下方向にそれぞれ1行 分表示範囲をずらすことができる。図11に示すような 他の表示へ状態を移動するには、選択した行の上にマウ スのカーソルを合わせマウスのボタンを押し続けた際に 画面上に現われる移動可能な表示状態のリストのうちの 一つをマウスのカーソルで選択することにより行う。す でに目的のウィンドが画面上に表示されている場合は、 行選択の結果、他のウィンドの表示内容も連動して変化 する。またカーソルをそのウィンドに合わせることでそ のウィンドの状態に移ることができる。なお、図12に おいては初期状態で1207の項目に関してソーティン グして表示する。

【0054】図13はセグメントの実行統計の情報の表 示例である。1301はタイトル部分で、この表のタイ トル「セグメント実行統計」の他、表の各項目のタイト ルを表示する。各項目は、#(1302)が各行の番 号、sg# (1303) がセグメント番号 (SGのid 526)、label(1304)がセグメントの先 頭アドレスのラベル(SGの1abe1名 527)、 start (1305) はそのセグメントの開始アドレ ス (SGのsa 528)、end (1306) は終了 アドレス (SGのea 529)、total (130 7) はそのセグメントの合計処理時間、rate (13 08) は全処理時間に対するそのセグメントの処理時間 の割合、 call (1309) はそのセグメントの実行 回数、ave (1310) はそのセグメントの平均処理 時間、min (1311) は最小処理時間、max (1 312) は最大処理時間である。なお、図13において は初期状態で1307の項目に関してソーティングして 表示する。

例である。1401はタイトル部で、図13における #、sg#、start、endの情報を表示する。 1 402はアドレス部、1403はラベル部、1404は 命令部である。命令部にはアセンブラの命令列の他、 ア センプラに対応するソースプログラムをコメントの形で 表示する。これらの命令列の情報は組み込みプログラム ファイルを参照して表示する。

【0056】図15は関数とセグメントの階層を表わ す。例えば、図13でlabelがL103の行を選択 している場合、L103(1504)とそれを含む関数 (1503) やその上位関数 (1502) 、あるいは L 103と同じ関数に含まれるセグメント (1505~1 507)、そして上位関数に含まれる関数(1508) とセグメント(1509)が表示される。関数名あるい はセグメント名を表示したボックスにマウスのカーソル を合わせ、マウスのボタンをクリックすると、選択した 部分を中心とした表示に切り替わる。

【0057】図16は関数の実行統計の情報の表示例で ある。1601はタイトル部である。表の各項目は、# (1602) が各行の番号、fn#(1603) が関数 の識別番号 (FNのid関数 507)、name (1 604) が関数名 (FNのFN名 508)、star t (1605) が開始アドレス (FNのsa 50. 9) 、end (1606) が終了アドレス (FNのea 510)、total (1607) がその関数自体の 合計処理時間、rate(1608)が全処理時間に対 するその関数の処理時間の割合、call(1609) がその関数の実行回数、ave(1610)がその関数 平均処理時間、all(1611)がその関数以下の全 処理とその関数の処理時間合計、arate (161 30 2) がallの全処理時間に対する割合である。この表 は初期状態でtotalの大きい順に表示する。

【0058】(共通動作検索処理121)この処理は、 ハードウエア化すべき部分の候補として、プログラム中 の異なる部分で実行される同一の処理の部分を検出し、 ユーザに提示するために行う。図18は共通動作検索処 理121を説明する図である。図18の1801では各 セグメントsgについて1802~1805の処理を繰 り返す。1802ではsg中の演算命令をノードとする データフローグラフ d f g を作成する。1803では d fg中で出枝が2以上のノードがルートとするような木 に分割し個々の木をクラスタとする。例えば、図22に 示すデータフローグラフの場合、出枝が2以上のノード 2206と2208、出枝が無い2210と2211を ルートとするような木に分割し個々の木(2212、2 213、2214、2215) をクラスタとする。18 04では命令毎にあらかじめ決められた命令コストの総 和とそのクラスタの実行回数(すなわちセグメントの実 行回数) の積を求め、これをクラスタのコストCcとす 【0055】図14は図13の第1要素のセグメントの 50 る。1805ではクラスタをその中の構造、演算命令の

30

22

種類により分類し、種類毎に識別番号idを付加する。 1806~1807では同一クラスタ種の2つのクラス タの組i, jに関して、クラスタiとjが同一の種類の クラスタを出力側または入力側に持つ場合にiとjを同 一のグループとする処理を行う。1808~1809で は1807で作成した各グループについて、1807と 同様の処理を繰り返すことで、グループに属するクラス タを増やしていく。この処理により、共通のクラスタ構 造を持つ極大のグループを構成できる。1810~18 11では1809で拡大したグループについて、グルー プを構成するクラスタのノード数があらかじめ決められ た値Nよりも小さいグループの登録を抹消する。181 2では、各グループについて、グループを構成するクラ スタのコストの総和が大きいグループから順にグループ のデータフローグラフとグループを構成するクラスタを 含むセグメント番号を整列して共通動作命令列情報を生 成し、出力する。この出力では、この共通動作命令列情 報をファイル122へ出力するとともに、ディスプレイ 104に表示するように行う。

【0059】図19は1812の処理によりディスプレ イ104に表示される共通動作命令列情報の表示例であ る。1901はタイトル部である。表の各項目は#(1 902) が各行の番号、gr# (1903) が共通動作 の命令列のグループ番号、cost (1904) がその グループのコストの総和、# c l (1905) がそのグ ループを構成するクラスタの種類の数、#sg(190 6) がそのグループの共通動作命令列を含むセグメント の種類の数である。この表はcostの大きい順に表示 する。また、マウスのカーソルを任意の行(共通動作命 令列グループ) に合わせ、マウスのボタンをクリックす ると、図23に示す様な命令列のデータフローグラフを 表示するウィンドを開くことができる。また同時に、も し図13に示すセグメント情報の表示が画面上にあれ ば、そのグループの共通動作命令列を含むセグメントに 対応する行の表示の背景色と文字色を反転する。

【0060】図23はデータフローグラフの表示例であり、2301はデータ入力、2302はデータ出力、2303~2305は演算ノードを表わす。このグラフでは命令列中のデータ移動命令(メモリ読み出し、レジスタ間の移動)やフロー制御命令(分岐)は省略される。【0061】(命令列選択処理131)命令列選択処理131は、ハードウェア化の対象となるプログラムの一部としてユーザが選択した命令列を入力する。選択の対象は、共通動作命令列、セグメント内の一部の命令列、複数のセグメントにまたがる命令列である。ユーザは、統計解析処理116の処理結果あるいは共通動作検索処理121の処理結果をディスプレイ104上で見て、ハードウエア化すべきプログラム部分を選択し、選択した部分を、ディスプレイ104上で指示する。たとえば、統計解析処理116の結果に従って、このハードウエア

化する部分を選択するときには、図12あるいは図13等の、ディスプレイ104に表示される情報を見て、ハードウエア化すべき部分をこれらの画面上で指示する。また、共通動作検索処理121で検索された共通動作命令列またはその一部をハードウエア化すべき部分として選択する場合、図19上で一つの行を選択する。

【0062】 (ハードウェア生成処理132) ハードウ ェア生成処理132は命令列選択処理131が選択した 命令列について、ユーザより、その命令列を実行するハ ードウェアを自動生成することが指示された場合に行な われ、ユーザ自身がその命令列を実行するハードウェア を設計する場合には、この処理は行われない。このハー ドウェア生成処理132で生成されるハードウエアが実 用的と期待される場合には、ユーザは、この処理を起動 すればよい。あるいは、テスト的にこの処理を起動し、 この処理で生成されるハードウエアを評価した後、この ハードウエアが実用的でないと判断したときには、この 処理で生成されたハードウエアを破棄するようにしても よい。以下では、ユーザが共通動作検索処理121で検 索された共通動作命令列をハードウエア化すべき命令列 として選択した場合を例に取り、ハードウェア生成処理 132を説明する。

【0063】図20はハードウェア生成処理132の動作を説明する図である。まず、ユーザが選択した命令列を解析し、図23に示すようなデータフローグラフを作成する(2001)。次にデータフローグラフの各ノードにある演算命令に対応してあらかじめ定義されている演算器を調べる(2002)。そして、使用する演算器の情報とデータフローグラフの構造に合わせた演算器の接続情報を含んだハードウェア記述を生成する。この時、生成したハードウェアはマイクロプロセッサのメモリ空間に設定されたレジスタを入出力とし、メモリ空間の決められたアドレスを参照することにより起動する。生成は回路の雛型(HDL)をライブラリに用意し、これを実際のデータフローに対応して変更することにより行う。

【0064】例えば、図23に示すデータフローグラフに対して図24のような論理回路を生成するが、この図で2405、2407の入力レジスタが図23の入力2301に、2412の出力レジスタが出力2302に、2409の乗算器が2303に、2410の乗算器が2404に、2411の加算器が2405にそれぞれ対応する。実際には図25と図26に示すHDLが生成の対象である。2501部分は回路名称と入出力端子を定義している。この中で回路名称と、入力レジスタの書き込み制御線の本数(STR0、STR1)が設計対象により異なる。2502部分はライブラリファイルに定義されている各演算命令に対応した演算器とレジスタの定義である。これらは、設計対象のデータフローグラフのノードに応じて必要な演算器を選択する。2503は生成

24

回路中で用いる定数と信号線である。これらは、このハ ードウェアの起動命令で用いる割り当てアドレスとこの ハードウェアの実行サイクル、使用する演算器とレジス タの数により決める。ハードウェアの実行サイクルは入 カレジスタと出力レジスタ以外のレジスタの段数+1の 値である。2601は図24の制御回路2404の動作 である。これらは実行サイクル、割り当てアドレス部分 の名称を設計対象により変更する。2602はレジスタ と演算器の接続情報である。これらは図23のグラフに 対応して生成する。ハードウェア生成処理では、図2 5、図26に示したHDLの他に、入出力レジスタの選 択信号を作成するアドレスデコーダの回路を用意する。 このアドレスデコーダもライブラリファイルにあらかじ め登録したHDL記述を用いる。このハードウェア生成 には特開平4-175974に示した方法を用いること もできる。

【0065】なお、以上において、プログラム中の一部 の命令列と等価な動作を行うハードウェアを人手で作成 した場合は、そのハードウェア記述を既設計のハードウ エア記述を格納したファイル109に追加する。ハード ウェアの起動の方法が、すでに示した方法と同様の場合 は、ハードウェア化した命令列をデータフローの形式で 入力すると、後に述べる命令列置換処理133によるプ ログラムの修正が可能である。また、このような人手に よるハードウエア記述を含むプログラムの修正も人手で 行うことも可能である。追加したハードウェアの記述 と、そのハードウェアを起動する命令列を含むプログラ ムが準備できれば、上に示した手順でハードウェア込み の性能解析が可能になる。この時、ソースプログラム上 で指定した区間制約の箇所をソースプログラムレベルで 保存しておくことにより、プログラムのサイズの変化に 伴い、制約区間の実際のアドレスが変わっても、再度区 間制約の指定を行わずに同じ制約箇所に関する情報を採 取することができる。

【0066】(命令列置換処理133)命令列置換処理1330命令列置換処理1330の実行をユーザが指定した場合に行われ、ユーザが選択したハードウェア化すべき命令列として選択した命令列と、ハードウェア生成処理132が生成したハードウェアを起動するための命令列を用いて、組み込みプログラム108に記述された命令列をハードウェア生成処理132が生成したハードウェアを利用する命令列に自動的に置き換える。

【0067】この処理を図21を用いて説明する。21 うに、少ない追加ハードウェア量で目的の動作を実現し01では、命令列選択132が選択した命令列のデータ ようとする場合に、処理時間制約を満足しない指定区間 中に通過するプログラム部分の処理頻度を調べることに 理を、命令列の置き換えが必要な各セグメントsgにつ いて繰り返す。2103ではsgのすべての命令をノー ドとするデータフローグラフdfg_sgを作成する。 とするデータフローグラフdfg_sgを作成する。 さらに、同じ動作を異なる命令順で行っているプログラム中の共通動作部分を自動的に調べて、ユーザに提示し た場合には、プログラムの構成要素の一部あるいは複数

演算対象のレジスタ、あるいはメモリ位置を指すインデックスレジスタの値をセットしている命令を検索する。 2106では2105で求めたレジスタのセットの命令を、生成したハードウェアの入力レジスタへの書き込み 命令に変更する。 2107ではdfg_sg上の対応演算命令のうち、最後の演算命令とその結果が格納される出力レジスタの番号Nrを検索する。 2108では最後の演算命令を、生成したハードウェアの起動命令と、生成したハードウェアの出力レジスタからレジスタNrへの書き込み命令に変更する。 2109ではdfg_sg上の対応演算命令のうち、変更されていない残りのノードを削除する。 2110ではdfg_sgのノードをトポロジカルオーダで(入力の依存順)アセンブラ命令に置き換えてファイル136出力する。

【0068】図9は命令列置換の結果を説明する図であ る。2701は図8に示したプログラムである。ここで は図23に示すデータフローグラフが表す共通動作命令 列を置換の対象とする例を説明する。図23の共通命令 列を含むL103から始まるセグメント(810)は、 命令列置換の処理により2702のように置き換わる。 図9に示す結果はこの形式でファイル136に格納され る。命令列置換により命令数が変化するので従来のアド レスや命令コードはそのまま再利用することはできない が、ファイル136を再度アセンブルし、図8に示すよ うにアドレス、命令コードを含む形式に変換することに より、再度本実施の形態に示す方法を適用することがで きる。すなわち、置換後のプログラムファイル136を アセンブルし、ハードウェア生成処理132が生成した ファイル135をハードウェア記述109に追加して、 本実施の形態に示す方法を再度適用することで新しく生 成したハードウェアを含めてシステム性能を評価し、ハ ードウェア化の効果を確認できるとともに、新たなハー ドウェア化箇所の候補を選択することが可能である。 【0069】以上の発明の実施の形態から分かるよう

に、マイクロプロセッサとそのプログラムを組み込んだメモリ、および周辺回路を1チップに集積したシステムの設計に際し、ハードウェア部分の動作を含めて、力を調査したり、カウェアの処理時間と処理頻度を正確に測定し、指定を描出するので、ユーザがハードウエア化すべき部足とである。さらに、目標性能を満足しない追加ハードウェア量で制力を満足しない追加ハードウェア量がある。さらに、少ない追加ハードウェア量である。は、少ない追加ハードウェア量である。とする場合に、処理時間制約を満足しない指定を選より、ユーザがハードウェアをして実現するプログラムの場合に通過するプログラムの場合にできるようになるの1部分の候補を探すことが容易にで行っているプログラムの場合に、コーザに提示の一部を入いけまり、カーの共通動作部分を自動的に調べて、ユーザに提示の一部を入いけまり、カーの共通動作部分を自動的に調べて、コーザに提示の一部を入い時間である。

の構成要素にまたがった、ハードウェア化すべき範囲と して、ユーザがこの共通動作部分を選択しやすくなる。 選択したプログラム動作から自動的に生成したハードウ ェアモデルが実用的であると期待される場合には、ユー ザの指示によりそのハードウエアモデルを自動的に生成 し、元のプログラムを生成したハードウェアを利用する ように自動的に書き換えることもできる。この書き換え 後のプログラムの性能評価を再度おこなうことによりハ ードウェア化の効果を簡単に確認することが可能にな る。さらに、この作業を繰り返すことにより、すでに生 10 成したハードウェアの修正や他のハードウェア化対象部 分を検索することができる。

【0070】<変形例>

(1) 前述の実施の形態で記載した技術は、マイクロプ ロセッサ以外のプロセッサ、たとえば、信号処理プロセ ッサ等を搭載した回路にも適用できる。さらに、プロセ ッサが搭載されているLSIの外部に位置する他のLS Iに一部の周辺回路が搭載されている場合にも、適用で きる。

【0071】(2)前述の実施の形態では、区間制約の 指定に際し、ソースプログラム上で指定する例を示し た。これは、区間制約に関しての統計情報は、機械語命 令レベルで採取するが、ユーザにとって機械語命令レベ ルより、ソースプログラムで指示を行う方が容易である ことによる。しかし、画面上で機械語命令のアドレスで 区間を指定する、またはファイルに記述した機械語命令 のアドレスで区間を指定することもできる。

【0072】 (3) 前述の実施の形態では、組込みプロ グラムの例として機械語プログラム、アセンブラ、ソー スプログラムが混在する形式のファイルを入力し、アセ ンプラの記述をベースにして構成要素解析を実施する例 を示したが、機械語プログラムと、各関数の開始アドレ スや分岐先のアドレス等のコンパイル時の情報を元に同 様の解析を行うこともできる。この場合、機械語プログ ラムを解析し、分岐命令の分岐先アドレスを特定するこ とにより、セグメントへの分割を行う。分岐先アドレス がレジスタ値により指定されるような分岐命令でこの命 令だけでは分岐先が特定できない場合、その直前のレジ スタ設定命令を調べ、その値を調べるか、統計情報を採 取する際のシミュレーション時に、分岐先が判明した時 点で新たにセグメント分割位置を変更することにより構 成要素の解析を行う。各関数と機械語プログラムのアド レスとの対応は、コンパイル時の情報を用いる。また、 区間制約を与える際に使用するソースプログラムは別途

【0073】(4)前述の実施の形態では、命令列置換 処理133において、アセンブラプログラムのレベルで 置換を行い、変更されたアセンブラプログラムを再アセ ンプルすることにより再度、ハードウェア化部分も含め た性能解析を行う方法を示した。再度アセンブルするの 50 合には、設計者が希望する条件を満たさない区間の中か

は、命令列置換処理により、プログラムのサイズが変わ るため、分岐先のアドレス、データの格納アドレス等を 再度設定しなおす必要があるからである。これに対し再 アセンブルを行わず、内部データのみを修正する方法も ある。内部データを修正する場合は、分岐命令やデータ 参照等のメモリアドレスを使用している機械語命令の場 所とそのアドレスに関する情報を別途保持し、プログラ ムサイズが変わった際に、機械語命令中のアドレス情報 を直接変更できるようにする。また、構造/統計データ 中のアドレスに関する情報も同時に更新する。

【0074】(5)前述の実施の形態では、セグメント 内の一部の命令列をハードウェアの起動命令列に置き換 える例を示したが、複数のセグメントにまたがった命令 列をハードウェアに置き換えることも可能である。この 場合、構造/統計データのうちのセグメントの構成に関 する情報も修正する必要がある。これは、修正のあった セグメントに対し、それを含む関数の情報をたどり、逐 次情報を修正することにより行う。

【0075】(6)前述の実施の形態に示した支援方法 では、そこで用いる処理や関連する処理が全て同じ計算 機システム上で実行される。しかし、これらの処理は、 異なるプロセッサ上に実現されていても、本発明の目的 を損なうものではない。例えば、ハードウェアのシミュ レーションに用いる論理シミュレータがその他の部分と 異なるプロセッサ上で動作し、適宜必要な情報をプロセ ッサ間で通信することにより実現できる。また、入力と する組込みプログラムのコンパイル・アセンブルを他の プロセッサ上で行うこともできる。この場合、ファイル を通信あるいは記録媒体を介して転送するか、プロセッ サ間でのファイル共有方法により共有を実現する。

[0076]

【発明の効果】本発明によれば、オブジェクトプログラ ムのシミュレーションの結果として、そのプログラムの 各構成要素毎に処理時間に関連する情報を出力できるの で、ユーザは、そのプログラムの中のハードウエア化す べき部分を各構成要素を手掛かりにして選択すればよい ので、このハードウエア化すべき部分の選択しやすくな る。さらに、その際、シミュレーションを実行する区間 を指定するようにすれば、ユーザが希望する区間に関し て、上に述べたよう、構成要素を単位としてのシミュレ ーション結果が得られるので、ユーザが希望する部分の 中からハードウエア化すべき部分をさらに絞ることが出 来る。さらに、このシミュレーション区間の指定を、ソ ースプログラム上で指定する方法を採用した場合には、 ユーザにとって、区間の指定が平易に出来る。

【0077】さらに、ユーザ指定の複数のシミュレーシ ョン区間に対してシミュレーションを行い、その結果に 基づいて、設計者が指定した処理時間等の条件を満たさ ない複数のシミュレーション区間を自動的に判別する場

らハードウエア化すべきプログラム部分をユーザは選択 できるので、ハードウエア化すべき部分の選択が容易に なる。

【0078】さらに、先行するシミュレーションの結果 を利用して、ハードウエア化すべき部分を自動的に決 め、その後シミュレーション中に使用するプログラムを そのハードウエア化する部分により自動的に更新する場 合には、ユーザは、そのプログラムを自らが更新するこ となく、シミュレーションを繰り返すことが出来る。

[0079]

【図面の簡単な説明】

【図1】本発明によるハードウェア/ソフトウェア混在 システムの設計支援装置の構成を示す図である。

【図2】区間制約指定処理のフローチャートである。

【図3】区間制約データを説明する図である。

【図4】プログラム構成要素解析処理のフローチャート である。

【図5】構造/統計データを説明する図である。

【図6】プログラム実行解析処理のフローチャートであ る。

【図7】統計解析処理のフローチャートである。

【図8】組み込みプログラムの例を説明する図である。

【図9】命令置換後のプログラムの例を示す図である。

【図10】プログラム実行トレース処理のフローチャー トである。

【図11】区間制約違反部分に関して、処理時間に関連 する情報の表示動作を説明する図である。

【図12】区間制約違反の出力例である。

【図13】セグメント実行統計の出力例を示す図であ る。

【図14】セグメントの出力例を示す図である。

【図15】関数とセグメントの階層の出力例を示す図で ある。

【図16】関数実行統計の出力例を示す図でである。

【図17】現在のセグメントの統計情報の更新処理のフ · ローチャートである。

【図18】共通動作検索処理のフローチャートである。

【図19】共通動作命令列の例を示す図である。

【図20】ハードウェア生成処理のフローチャートであ

【図21】命令列置換処理のフローチャートである。

【図22】共通動作検索処理を説明するための図であ

【図23】共通動作検索処理で生成されるデータフロー グラフの例を説明する図である。

【図24】命令列選択処理により選択された命令列を実 行するハードウェアを例示する図である。

【図25】命令列選択処理により生成されるハードウェ ア記述言語の例を示す図である。

【図26】命令列選択処理により生成されるハードウェ 50 e、1311…最小処理時間min、1312…最大処

28 ア記述言語の他の例を示す図である。

【符号の説明】

801…プログラムの格納されるアドレス、802…命 令コード、803…ラベル、804…プログラム部、8 05…コメント中に記録された高級言語のプログラム、 806…アセンブリ言語、501…関数の構造データ F Nstruct、502…その関数の情報を表すFN (506) へのポインタfnp、503…リスト (51 8) へのポインタsgl、504…リスト (519) へ 10 のポインタprnt、505…リスト(520)へのポ インタchd、506…関数の情報FN、507…関数 の識別番号id、508…関数名(FN名)、509… 関数の開始アドレスsa、510…関数の終了アドレス e a 、5 1 1…関数統計情報はその関数の統計情報、 5 18…関数を構成するセグメントの集合を表すリスト、 519…関数の上位階層の関数(その関数をコールする 関数)のFNstructを指すポインタのリスト、 5 20…関数の下位階層の関数のFNstructを指す ポインタのリスト、512…セグメント間の関係を表す 20 データSGstruct、521…セグメント情報SG へのポインタpre、523…リスト542へのポイン タsuc、524…このセグメントを含む関数へのポイ ンタfnp、525…セグメント情報を表すデータS G、526…セグメントの識別番号id、527…セグ メントの先頭アドレスにラベルがあった場合のラベル 名、528…セグメントの開始アドレスsa、529… セグメントの終了アドレスea、530…セグメントの 統計情報、541…このセグメントの直前に実行される 30 セグメントのリスト、542…このセグメントの直後に 実行されるセグメントのリスト、1201…タイトル部 分、1202…各行の番号#、1203…区間制約デー タの識別番号 i d (301) に対応する番号 t s n # 、 1204…開始点アドレス (302) start、12 05…終了点アドレス (303) end、1206…制 約として与えられた処理時間 (304) spec、12 0 7 … その区間の平均の処理時間 a v e 、 1 2 0 8 … そ の区間の実行回数cnt、1209…実際の処理時間が 制約時間を超えた回数violate、1301…タイ トル部分、1302…各行の番号#、1303…セグメ ント番号 (SGのid 526) sg#、1304…セ グメントの先頭アドレスのラベル(SGの1abe1名 527) label、1305…そのセグメントの開 始アドレス (SGのsa 528) start、130 6…終了アドレス (SGのea 529) end、13 07…そのセグメントの合計処理時間total、13 08…全処理時間に対するそのセグメントの処理時間の 割合rate、1309…そのセグメントの実行回数 c all、1310…そのセグメントの平均処理時間 a v

(16)

29

理時間max、1401…タイトル部、1402…アドレス部、1403…ラベル部、1404…命令部、1502・1503・1505…関数、1504・1506~1508…セグメント、1601…タイトル部、1602…各行の番号#、1603…関数の識別番号(FNのid関数 507)fn#、1604…関数名(FNのFN名 508)name、1605…開始アドレス(FNのsa 509)start、1606…終了アドレス(FNのea 510)end、1607…その関数自体の合計処理時間total、1608…全処理時間に対するその関数の処理時間の割合rate、1609…その関数の実行回数にall、1610…その関数平均処理時間ave、1611…その関数以下の全処

理とその関数の処理時間合計 a l l、1612…allowを処理時間に対する割合 a r a t e、2201~2205…入力ノード、2206~2211…ノード、2212~2215…クラスタ、1901…タイトル部、1902…各行の番号#、1903…共通動作の命令列のグループ番号 g r #、1904…そのグループのコストの総和 c o s t、1905…そのグループを構成するクラスタの種類の数# c l、1906…そのグループの共通動作命令列を含むセグメントの種類の数# s g、2301…入力ノード、2302…出力ノード、2303~2305…ノード、2401…アドレスバス、2402…データバス、2405~2408…入力レジスタ、2409~2411…演算器、2412…出力レジスタ。

30

【図1】

【図12】

【図3】

[図4]

【図5】

【図6】

【図7】

【図8】

【図10】

【図11】

【図14】

【図15】

【図16】

			行統計 name		end	total	rete	call	ave	all	arate	
	1	13								5997		Ζ
	2	4	psum	саЗс	ca54	1356	10.2	100	13.6	1356	10.2	Γ
	3	16	culc	0610	D9fc	1320	9.9	28	50.8	1320	9.9	l
	4	6	find	3154	34c4	1285	9,7	13	98,8	1285	9.7	Ī
,	~	7	<u>, 4</u>	~	_~~	1 1	1 1	′ ^	1 ~	810 1	, <i>\</i>	·

【図17】

【図18】

||現在のセグメントcsの統計情報の更新:||~1010 csの最終実行アドレスを現在の V1702 実行アドレスadとする; 現在のセグ メントcs == 今までのセ セグメントcsの実行開始時刻を グメントsn? シミュレーション時刻ctとする; 1701 今までのセグメントsnの終了時刻をctとする; yes csは最初の セグメントanの処理時間xt を計算(経過時間+終了時刻 //1707 セグメント でない -開始時刻); snの最小処理時間、最大処 /1708 理時間、合計処理時間、処 /1706 理回数を更新: snの経過時間をクリア; ~1709 今までのセグメント snの最終実行アドレ スとセグメントの終 snの経過時間を計算(今まで アアドレスが等しい の経過時間十終了時期一開始 時刻); 1710

[図23]

【図21】

```
図21
命令列置換 ~133
命令列選択131が選択した命令列
のデータフローグラフdigを作成:
          sgのすべての命令をノードとする
データフローグラフdfg_sgを作成;
          digとdig_sgの対応する命令を探索:
    /2102
          dig_sg上の対応演算命令の演算対象のレジスタ
 各セグメント
           あるいはメモリ位置を指すインデックスレジス
sgについて
          タの値をセットしている命令を探索
           その命令を生成したハードウェアの入
          カレジスタへの書き込み命令に変更;
           digの出力ノードに対応するdig_sg上の演し
          算命令の出力レジスタの番号Nァを探索:
          digに対応するdig_sg上の演算命令を生成
したハードウェアの起動命令と生成した
                                    ~2108
           ハードウェアの出力レジスタからレジス
           タN / への書き込み命令に変換;
          digに対応するdfg_sg上の演算
命令をdfg_sg上から削除; ~2109
           dfg_sgのノードをトポロジカルオーダ
           でアセンブラ命令列に置き換えて出力:
```

【図26】

begin

図26

```
process (RD, WR, CLK)
    variable STATE: integer := 0;
    begin
    if (CLK'event and CLK = '1') then
        st_reg_o <= 0;
        if (STATE > 0) then
            STATE := STATE - 1;
        if (STATE = 0) then
            St_reg_o <= '1';
        end if;
    end if;
    end if;
    if (ADR = psum_ADR) then
        if (MR'event and WR = '0' and CS = '0') then
            STATE := psum_CYC;
    end if;
    end if;
end process;

/2602

i_REG_0: REG32 port map
    ( DATA_IN => DATA, DATA_OUT => r_out0, ST => STR0 );
l_REG_1: REG32 port map
    ( DATA_IN => DATA, DATA_OUT => r_out1, ST => STR1 );

MULL_0: MULL port map
    ( IN_A => r_out0, IN_B => r_out1, OUT_L => op_out0 );
MULL_1: MULL port map
    ( IN_A => r_out1, IN_B => r_out1, OUT_L => op_out1 );
ADD_0: ADD port map
    ( IN_A => op_out0, IN_B => op_out1, OUT => op_out2 );

0_REG_0: REG32 port map
    ( DATA_IN => op_out2, DATA_OUT => DATA, ST => st_reg_o );
```

【図25】

```
225
```

```
entity psum_RTL is
    port ( ADR : in std_logic_vector(31 downto 0);
        DATA : inout std_logic_vector(31 downto 0);
        WR, CS, CLK : in std_logic;
        STR0, STR1 : in std_logic;
        STR0, STR1 : in std_logic;
        STR0, STR1 : in std_logic;
        str.

architecture RTL of psum_RTL is

component REG32
    port ( DATA_IN : in std_logic_vector(31 downto 0);
        ST : in std_logic_vector(31 downto 0);
        ST : in std_logic_vector(31 downto 0);
        ST : in std_logic_vector(31 downto 0);
        OUT_L, OUT_H : out std_logic_vector(31 downto 0);
        OUT_L, OUT_H : out std_logic_vector(31 downto 0);
        component ADD
        port ( INA, IN_C : in std_logic_vector(31 downto 0);
        COUT : out std_logic_vector(31 downto 0);
        COUT : out std_logic_vector(31 downto 0);
        constant psum_ADR: std_logic_vector(31 downto 0) := 割当てアドレス;
        constant psum_CYC: integer := 実行サイクル数;
        signal st_reg_o : std_logic;
        signal st_reg_o : std_logic;
        signal r_out0, r_out_1 : std_logic_vector(31 downto 0);
        signal op_out0, op_out_1, op_out_2 : std_logic_vector(31 downto 0);
}
```

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.