MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

August 14, 2024

Lecture 6 Infinite Sequences

Convergence and divergence

• The sequence $\{a_n\}$ converges to the number L if for every positive number ε there corresponds an integer N such that for all n,

$$n > N$$
 \Rightarrow $|a_n - L| < \varepsilon$.

- Here we call L as limit of the sequence. If no such number L exists, we say that $\{a_n\}$ diverges.
- If $\{a_n\}$ converges to L, we write $\lim a_n = L$, or simply $a_n \to L$ as $n \to \infty$. We call L as the **limit** of the sequence $\{a_n\}$.

Convergence of Sequence

Examples

• Show that (a) $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$; (b) $\lim_{n\to\infty}k=k$ (k is any real constant).

Part (a): To show that
$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$$
, for given $\varepsilon>0$, we need to find an $N\in\mathbb{N}$ such that

$$|1/\sqrt{n}-0|<\varepsilon$$
 for every $n>N$.

It is clear that
$$|1/\sqrt{n} - 0| = 1/\sqrt{n} < \varepsilon$$
 if $n > 1/\varepsilon^2$. Hence we choose $N = [1/\varepsilon^2] + 1$.

• Show that the sequence

$$\{(-1)^n\} = \{-1, 1, -1, \dots (-1)^n, \dots\}$$
 diverges.

Proof: We will prove that the limit does not exist. Suppose the limit exists and let the limit be L.

For $\varepsilon = 1/2 > 0$, by definition, there is a positive integer N such that for all n > N we have that

$$\left| (-1)^n - L \right| < \frac{1}{2} \iff (-1)^n \in (L - \frac{1}{2}, L + \frac{1}{2})$$

which is impossible as the interval $(L - \frac{1}{2}, L + \frac{1}{2})$ contains at most one of -1 and 1.

Diverging to $+\infty$

What can we say about the convergence of $\{n^2\}$?

• We say that the sequence $\{a_n\}$ diverges to infinity if for every number M there corresponds a positive integer N such that

$$a_n > M$$
 for all $n > N$.

If this case we write

$$\lim_{n\to\infty} a_n = \infty \quad \text{or simply} \quad a_n \to \infty.$$

Diverging to $-\infty$

What can we say about the convergence of $\{-n\}$?

• We say that the sequence $\{a_n\}$ diverges to negative infinity if for every number m there is a positive integer N such that

$$a_n < m$$
 for all $n > N$

and in this case we write

$$\lim_{n\to -\infty} a_n = \infty$$
 or simply $a_n\to -\infty$.

Examples

1 Show that (a) $\lim_{n\to\infty} \sqrt{n} = \infty$; (b) $\lim_{n\to\infty} \frac{1-n^3}{n^2} = -\infty$.

4ロト 4団ト 4 豆ト 4 豆 ト 豆 かくで

Limit of a convergence sequence

Theorem 0.1.

A convergent sequence $\{a_n\}$ has a unique limit.

• Find the limits:

(a)
$$\lim_{n\to\infty} (\frac{n-1}{n})$$
; Ans: 1

(b)
$$\lim_{n\to\infty} \left(1+\frac{5}{n^2}\right) \left(\frac{1}{2^n}+4\right)$$
. Ans: 4 (c) $\lim_{n\to\infty} \sin(n\pi/2)$

Algebra of sequences

Theorem 0.2.

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let A and B be real numbers. If $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$, then the following rules holds:

- $\bullet \ \lim_{n\to\infty}(a_n+b_n)=A+B$
- $\lim_{n\to\infty}(a_n-b_n)=A-B$
- $\bullet \ \operatorname{lim}_{n\to\infty}(a_n\cdot b_n)=A\cdot B$

Find the limits:

(a)
$$\lim_{n\to\infty} \left(\frac{n^7+2n-1}{n^6+n^2+1}\right)$$
;

Find the limits:

(a)
$$\lim_{n\to\infty} \left(\frac{n^7+2n-1}{n^6+n^2+1}\right)$$
; Ans: ∞

(b)
$$\lim_{n\to\infty} \frac{10+n^2}{5-n^2}$$
;

Find the limits:

(a)
$$\lim_{n\to\infty} \left(\frac{n^7+2n-1}{n^6+n^2+1}\right)$$
; Ans: ∞

(b)
$$\lim_{n\to\infty} \frac{10+n^2}{5-n^2}$$
;

Ans: -1

(c)
$$\lim_{n\to\infty} \left(\sqrt{n^2+5n}-n\right)$$
.

Find the limits:

(a)
$$\lim_{n \to \infty} \left(\frac{n^7 + 2n - 1}{n^6 + n^2 + 1} \right)$$
; **Ans**: ∞

(b)
$$\lim_{n\to\infty} \frac{10+n^2}{5-n^2}$$
;

Ans: -1

(c)
$$\lim_{n\to\infty} \left(\sqrt{n^2+5n}-n\right)$$
.

Ans : 5/2

(d)
$$\lim_{n\to\infty} \left(\frac{\cos n}{n}\right)$$
.

Find the limits:

(a)
$$\lim_{n \to \infty} \left(\frac{n^7 + 2n - 1}{n^6 + n^2 + 1} \right)$$
; **Ans**: ∞

(b)
$$\lim_{n\to\infty} \frac{10+n^2}{5-n^2}$$
;

Ans: -1

(c)
$$\lim_{n\to\infty} \left(\sqrt{n^2+5n}-n\right)$$
.

Ans : 5/2

(d)
$$\lim_{n\to\infty} \left(\frac{\cos n}{n}\right)$$
. Ans: 0

Theorem 0.3 (Squeeze theorem).

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

Examples

• Discuss the convergence of the following sequences:

(a)
$$\left\{\frac{\cos n^2}{n}\right\}$$
, (b) $\left\{\frac{\sin(n\pi/2)}{n}\right\}$ (c) $\left\{\frac{n}{2^n}\right\}$.

Theorem 0.3 (Squeeze theorem).

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

Examples

- Discuss the convergence of the following sequences:
 - (a) $\left\{\frac{\cos n^2}{n}\right\}$, (b) $\left\{\frac{\sin(n\pi/2)}{n}\right\}$ (c) $\left\{\frac{n}{2^n}\right\}$. Ans: Each of the above converges to 0.
- What about the sequence $\left\{ \log \left(\frac{1+n}{n} \right) \right\}$?

Theorem 0.3 (Squeeze theorem).

Let $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ be sequences of real numbers. If $a_n \leq b_n \leq c_n$ holds for all n beyond some index N and if $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

Examples

- Discuss the convergence of the following sequences:
 - (a) $\left\{\frac{\cos n^2}{n}\right\}$, (b) $\left\{\frac{\sin(n\pi/2)}{n}\right\}$ (c) $\left\{\frac{n}{2^n}\right\}$. Ans: Each of the above converges to 0.
- What about the sequence $\left\{ \log \left(\frac{1+n}{n} \right) \right\}$? Ans: It converges to 0.

Theorem 0.4.

Let $\{a_n\}$ be a sequence of real numbers. If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \to f(L)$.

Examples

• Discuss the convergence of the following sequences:

(a)
$$\left\{ \sin\left(\frac{1+n}{n^2}\right) \right\}$$
, (b) $\left\{ \sqrt{\frac{n+1}{n}} \right\}$ (c) $\left\{ e^{\left(\frac{2n^2+3}{n^3+5n+6}\right)} \right\}$.

Theorem 0.5.

Suppose that f(x) is a continuous function defined for all $x \ge n_0$ and $\{a_n\}$ is a sequence of real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x\to\infty} f(x) = L \quad \Rightarrow \lim_{n\to\infty} a_n = L.$$

Examples

• Discuss the convergence of the following sequences:

(a)
$$\left\{\frac{\ln n}{n}\right\}$$
, (b) $\left\{\left(\frac{n-1}{n}\right)^n\right\}$.

