تمرین سوم درس بهینه سازی تحویل: هفتم دی 97

1. نشان دهید که در روش گرادیان مزدوج، برای سیستم Ax = b، شروع از x_0 معادل شروع از $y_0 = 0$ برای سیستم $y_0 = 0$ است که در آن $y_0 = 0$. $y_0 = 0$

2. R^n داده شده است که فاصله ی اقلیدسی میان هر جفت N بو N در N در N داده شده است که فاصله ی اقلیدسی میان هر جفت N در N به شکل زیر است که فاصله های داده شده را تقریب بزند N است. هدف پیدا کردن N به شکل زیر است که فاصله های داده شده را تقریب بزند N (N = N):

$$d(x,y) = ((x-y)^T P(x-y))^{1/2}$$

که در آن $P \in S^n$ به این منظور P را به گونه ای انتخاب می کنیم که تابع هدف زیر را کمینه کند:

$$\frac{1}{N} \sum_{i=1}^{N} (d_i - d(x_i, y_i))^2.$$

برای محاسبه ی P یک مسئله ی بهینه سازی محدب یا شبه محدب ارائه دهید (در صورت نیاز می توانید تقریب بزنید).

3. سوال 7.3 از كتاب Convex Optimization, Stephen Boyd, Lieven Vandenberghe ...

مسئله ی تقریب زیر را در نظر بگیرید.

$$\label{eq:minimize} \begin{aligned} & \min \text{minimize} & & \sum_{i=1}^{m} \emptyset(r_i). \\ & \text{S.T.} & & r = Ax - b. \end{aligned}$$

الف) دو گان این مسئله را بیابید (برحسب conjugate تابع penalty).

ب) اگر تابع deadzone linear $\phi(x)$ penalty با پهنای w=1 با پهنای بالا را بیابید.

5. دو گان مسئله ی بهینه سازی زیر را بیابید:

$$\min 0.5 \|y - y_0\|_2 + \sum_{i=1}^m \|x_i\|_2$$

s.t. $x_i = C_i y + d_i$.

 $y_0 \in R^n, C_i \in R^{ni \times n}, d_i \in R^{ni}$ پارامترهای مسئله (که مشخص هستند) عبارت اند از:

6. هدف کمینه نمودن تابع محدب و مشتق پذیر f(x) با داشتن قید Ax = b است. اگر مقدار کمینه ی تابع

مقید عامی dual feasible برای مسئله ی مقید x^* نشان دهیم، چگونه می توان یک نقطه ی $p(x) = f(x) + a \mid Ax - b \mid^2$ مطرح شده با استفاده از x^* یافت؟ حد پایین مربوط به نقطه ی dual feasible به دست آمده را بیابید.

 $p(a) = c_0 + c_1 a + c_2 a^2 + ... + c_k a^k$ است که $p(A) = c_0 l + c_1 A + c_2 A^2 + ... + c_k A^k$ است که $p(A) = c_0 l + c_1 A + c_2 A^2 + ... + c_k A^k$

تقریبی برای معکوس ماتریس معکوس پذیر $\mathbf{x}^* = \mathbf{p}(\mathbf{A})\mathbf{b}$ است. به صورت کلی، وقتی از $\mathbf{x}^* = \mathbf{p}(\mathbf{A})\mathbf{b}$ برای معکوس ماتریس معکوس پذیر $\mathbf{A} = \mathbf{A} \subset \mathbf{R}^{n \times n}$ استفاده می شود. از نرم $\mathbf{A} = \mathbf{b} = \mathbf{A}$ استفاده می شود. $\mathbf{A} = \mathbf{b} = \mathbf{b}$ استفاده می شود. این سوال، برای ارزیابی چند جمله ای ارائه شده یعنی $\mathbf{p}(\mathbf{A})$ بدترین حالت خطا (worst case residual) را به ازای $\mathbf{A} \in \mathbf{A}$ و طهای عضو unit ball در نظر می گیریم:

$$R^{\text{wc}} = \sup_{A \in \mathcal{A}, \|b\|_2 \le 1} \|A(p(A)b) - b\|_2.$$

که در آن $\Omega\subseteq R$ اجتماع چند بازه است که $A=\{A\in S_n\mid \sigma(A)\subseteq \Omega\}$ اجتماع چند بازه است که شامل صفر نمی شود.

ضرایب $c^*_0,...,c^*_k$ که R^{wc} را کمینه می کنند به دست آورید (پاسخ شما می تواند حاوی supremum یک چند جمله ای در یک بازه باشد).

- در صورتی که سوالی در رابطه با تمرینات دارید با ایمیل ammarg1375@gmail.com در ارتباط باشید و عنوان ایمیل را CVX_OPT_2019 قرار دهید.
 - فایل را با نام Student_Number].pdf بار گذاری کنید.
- شما در مجموع می توانید ۱۰ روز تاخیر داشته باشید (برای کل تمرینات جمع تاخیر های شما نباید از ۱۰ روز بیشتر شود) و در صورت تاخیر بیش از ۱۰ روز کسر ۵ درصد نمره از نمره کل تمرینات به ازای هر روز تاخیر کم می گردد. بنابراین سعی کنید از این ۱۰ روز به نحو بهینه ای استفاده نمایید.