

Probabilistic graphical models

Lecture 3+4 of "Mathematics and Al"

Outline

- 1. Definition
- 2. Markov random fields
- 3. Bayesian networks
- 4. Inference via message passing

Factorizations of functions

$$p(x,y) = p(x)p(y)$$

$$p(x,y) = p(x)p(y) p(x,y) \neq p(x)p(y)$$

$$e^{x+y} = e^x e^y$$

$$e^{(x+y)^2} = e^{x^2}e^{y^2}e^{2xy}$$

We want to describe complex relationships between an (ordered) set

$$S = \{X_1, X_2, \dots, X_n\}$$

of random variables $X_1, X_2, ... X_n$. We can do so via the multivariate probability distribution

$$p(S = s) = p(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

If S can be split into two independent subsets S_1 and S_2 , p(S=s) can be factorized:

$$p(S = s) = p(S_1 = s_1)p(S_2 = s_2)$$

We want to describe complex relationships between an (ordered) set

$$S = \{X_1, X_2, \dots, X_n\}$$

of random variables $X_1, X_2, ... X_n$. We can do so via the multivariate probability distribution

$$p(s) = p(x_1, x_2, \dots, x_n)$$

If S can be split into two independent subsets S_1 and S_2 , p(s) can be factorized:

$$p(s) = p(s_1)p(s_2)$$

A probabilistic graphical model (PGM) includes:

- A multivariate probability distribution
- A graphical representation of its factorization properties

 $p(x_1, x_2, x_3)$ X_2 X_3

Different variants of PGMs represent factorization properties differently

Markov random fields

Markov random field

- Undirected graph of statistical dependencies
- Edge = statistical dependence
- Missing edge = independence
- Probability distribution $p(s) = \frac{1}{Z}$
- Extension: Factor graphs

$$p(x_1, x_2, x_3) = \frac{1}{Z}\varphi(x_1, x_2) \varphi(x_2, x_3)$$

Non-negative function called "potential" or "factor"

Normalization constan

 $c_i \in \overline{\text{Cliques}} \setminus$

MRF Example

$$p(x_1, x_2, x_3) = \frac{1}{Z}\varphi(x_1, x_2) \varphi(x_2, x_3)$$

MRF Example

Spring Rain	False	True
False	$\frac{3}{4} \cdot \frac{4}{5}$	$\frac{1}{4} \cdot \frac{1}{2}$
True	$\frac{3}{4} \cdot \frac{1}{5}$	$\frac{1}{4} \cdot \frac{1}{2}$

 X_2 : "It rains" $x_2 \in \{0,1\}$

Rain Outside	False	True
False	$\frac{3}{4} \cdot \frac{5}{6}$	$\frac{1}{4} \cdot \frac{19}{20}$
True	$\frac{3}{4} \cdot \frac{1}{6}$	$\frac{1}{4} \cdot \frac{1}{20}$

 X_1 : "It is spring" $x_1 \in \{0,1\}$

 X_3 : "I am outside" $x_3 \in \{0,1\}$

 $\varphi(x_2,x_3)$

MRF Example

3	1	
- 5	8	
3	1	
20	8	
	- 5	5 8 3 1

 X_2 : "It rains" $x_2 \in \{0,1\}$

Rain Outside	False	True	
False	$\frac{15}{24}$	19 80	
True	$\frac{3}{24}$	$\frac{1}{80}$	

 $\varphi(x_1,x_2)$

 X_1 : "It is spring" $x_1 \in \{0,1\}$

 X_3 : "I am outside" $x_3 \in \{0,1\}$

Bayesian networks

Bayesian networks

- Directed graph of statistical dependencies
- Edge = statistical dependence
- No edge = independence
- Probability distribution: $p(s) = \frac{1}{Z} \prod \varphi(x_i, X_i's \text{ parents})$

• Extension: Directed factor graphs

BN Example

Assume a tropical node ordering: If X_i is a parent of X_j , then i < j.

$$p(x_1, x_2, x_3) = \frac{1}{Z} \varphi(x_1) \varphi(x_1, x_2) \varphi(x_2, x_3)$$
$$= p(x_1) p(x_2 | x_1) p(x_3 | x_2)$$

BN Example

Spring	False	True	
Rain			
False	4	1	
	$\frac{1}{5}$	$\overline{2}$	
True	1	1	
	- 5	2	

 X_2 : "It rains" $x_2 \in \{0,1\}$

 $\varphi(x_3, x_2) = p(x_3 | x_2)$

False	True	1
<u>5</u>	19 20	-
$\frac{1}{6}$	$\frac{1}{20}$	
	5 6 1	

 $\varphi(x_2, x_1) = p(x_2|x_1)$

 X_1 : "It is spring" $x_1 \in \{0,1\}$

	Spring	False	True
		$\frac{3}{4}$	$\frac{1}{4}$
$\varphi(x_1) = p(x_1)$			

 X_3 : "I am outside" $x_3 \in \{0,1\}$

BN: How does X_1 affect X_3 ?

- When it rains (i.e. $X_2 = 1$):
 - Look at conditional probabilities $p(X_1, X_3 | X_2 = 1)$

S, R, O	р
F, F, F	
F, F, T	
F, T, F	
F, T, T	
T, F, F	
T, F, T	
T, T, F	
Т, Т, Т	

Spring	False	True
	3	1
	4	4

Spring Rain	Fa 9	True
False	4	1_
	- 5	2
Te	1	1
	- 5	$\overline{2}$

Rain Outside	False	True
False		10
	0	20
True	1	1
	6	20

Outside	False	True
	19	1
	20	20

BN: How does X_1 affect X_3 ?

- When it rains (i.e. $X_2 = 1$):
 - Look at conditional probabilities $p(X_1, X_3 | X_2 = 1)$
- When it does not rain (i.e. $X_2 = 0$):
 - ► Look at conditional probabilities $p(X_1, X_3 | X_2 = 1)$
- When we make no assumption about X_2
 - \triangleright Look at marginal probabilities $p(X_1, X_3)$

Spring	False	True
	3	1
	4	4

Rain	Fa. 7	True
Spring		
False	4	1
	- 5	_
Tue	1	1
•	2	2

Outside Rain	False	True
False	5	1
	V	
True	19	1
	20	20

OutsideFalseTrue $\frac{5}{6}$ $\frac{1}{6}$

$$\varphi(x_1) = p(x_1)$$

Spring	False	True
	3	1
	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$

BN: How does X_1 affect X_3 ?

$$\varphi(x_2, x_1) = p(x_2 | x_1)$$

Rain	False	True
Spring		
False	4	1
	- 5	- 5
True	1	1
	$\overline{2}$	- 2

$p(x_1, x_3) =$	$\sum p(x_1,x_2,x_3) =$	$= \sum_{1}^{1} p(x_1, x_3 x_2) p(x_2)$
	$\overline{x_2}$	$\frac{\mathcal{X}_2}{\mathcal{X}_2}$
=	$\sum_{x_2} p(x_3 x_2)p(x_2)$	$p(x_1)$

Outside Rain	False	True
False	$\frac{5}{6}$	$\frac{1}{6}$
True	$\frac{19}{20}$	$\frac{1}{20}$

• When we make no assumption about X_2 below the probabilities $p(X_1, X_2)$ by $p(X_2|X_1)p(X_1)$ $p(X_1)$

$$\varphi(x_3, x_2) = p(x_3 | x_2)$$

BN: How does X_1 affect X_3 in general?

- X_3 is independent of X_1 when conditioning on X_2
- X_3 depends on X_1 when X_2 is marginalized

More generally:

- Conditioning on all parents of a variable X_i yields a probability distribution in which X_i is independent of all other variables
- Marginalizing a variable X_j yields a probability distribution in which all children of X_i depend on all parents of X_i

Back to MRF: How are X_1 and X_3 related?

- When it rains (i.e. $X_2 = 1$):
 - ► Look at conditional probabilities $p(X_1, X_3 | X_2 = 1)$
- When it does not rain (i.e. $X_2 = 0$):
 - ► Look at conditional probabilities $p(X_1, X_3 | X_2 = 1)$
- When we make no assumption about X_2
 - \triangleright Look at marginal probabilities $p(X_1, X_3)$

Back to MRF: How are X_1 and X_3 related?

- X_1 and X_3 are independent variables when conditioning on X_2
- X_1 and X_3 are dependent variables when X_2 is marginalized

More generally: "Markov blanket"

- Conditioning on all neighbors of X_i yields a probability distribution in which X_i is independent of all other variables and vice versa
- Marginalizing X_j yields a probability distribution in which all neighbors of X_i depend on each other

Inference on probabilistic graph models

Queries for a probabilistic graph model

What is the probability distribution (or most likely value) of variable X_k given variable $X_i = x_i$?

What is the probability distribution (or most likely value) of variable set S_2 given variable set $S_1 = S_1$?

Inference via message passing

- Message passing (a.k.a. belief propagation):
 - Algorithm for finding posterior distributions (and posterior most likely values)
 - Idea: Find solution by passing messages from parents to children

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1, x_2, x_3, x_4)$$

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_1, x_2, x_3} p(x_1) p(x_2 | x_1) p(x_3 | x_2) p(x_4 | x_3)$$

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_1, x_2, x_3} p(x_1) p(x_2 | x_1) p(x_3 | x_2) p(x_4 | x_3)$$

$$= \sum_{x_1, x_2, x_3} p(x_4 | x_3) p(x_3 | x_2) p(x_2 | x_1) p(x_1)$$

$$p(x_4) = \sum_{x_1, x_2, x_3} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_1, x_2, x_3} p(x_1) p(x_2 | x_1) p(x_3 | x_2) p(x_4 | x_3)$$

$$= \sum_{x_1, x_2, x_3} p(x_4 | x_3) p(x_3 | x_2) p(x_2 | x_1) p(x_1)$$

$$= \sum_{x_3} p(x_4 | x_3) \sum_{x_2} p(x_3 | x_2) \sum_{x_1} p(x_2 | x_1) p(x_1)$$

$$m_{X_1 \to X_2}(x_2)$$

Messages:

$$\begin{array}{c}
 m_{X_1 \to X_2} (x_2) \\
 m_{X_2 \to X_3} (x_3) \\
 m_{X_3 \to X_4} (x_4)
\end{array}$$

Conclusion on knowledge representation

- Different graphical models for representing
 - Certain structured knowledge
 - Uncertain structured knowledge
- Inferences on semantic networks
 - based on logic
- Inferences on probabilistic graph models
 - based on probability rules
 - Using message-passing algorithm for efficient inference