Data de imicio: 21 de Setembro, 2023 Autorus: Maria Fermander, 103020 Guilhumre Coimbra, 102522 Alexandre Samtana, 100122 Samuel Tavares, 103634 Objetivos Gerais: Tantrodução de técnicas básicas de deteção de eventos ma área da fisica de particulas e muclear De particulas e muclear Delilização destes primeípios para demonstrar um importante diagmós-
Cuilharme Coimbra, 102522 Alexandre Santama, 100122 Samuel Tavares, 103634 Objetivas Gerais: + Introdução de técnicas básicas de deteção de eventas ma área da física de particulas e nuclear + Utilização dastes princípios para
Cuilharme Coimbra, 102522 Alexandre Samtama, 100122 Samuel Tavares, 103634 Objetivas Gerais: + Introdução de técnicas básicas de deteção de eventos ma área da física de particulas e muelcar > Utilização destes princípios para
Alexandre Samtama, 100122 Samuel Tavares, 103634 Objetivos Gerais: + Introdução de técnicas básicas de deteção de eventos ma área da física de particulas e nuclear + Utilização dates princípios para
Samuel Tavares, 103634 Objetivos Gerais: + Introdução de técnicas básicas de deteção de eventos ma área da física de partículas e nuclear + Utilização dates primcípios para
→ Introdução de técnicas básicas de deteção de eventos ma área da física de particulas e muclear → Utilização dates primcípios para
deteção de eventos ma área da fisien de particulas e nuclear > Utilização dates primcipios para
de partieulas : nuelear > Utilização dates primeipios para
→ Utilização dastes primeipios para
→ Utilização destes primeipios para
demonstrar um importante diagnos-
0011101.001
ties médies a Tomografia por
Empissão de Positriões - PET

1ª Sessão - Comeidências XX: espetroscopia X
de 22 Na, montagem e covulações
angulares
21/09/2023
Objetivas:
Estudar as comeidências entre os
dois so resultantes da aniquilação
dum positrão oriundo duma fonte
de 22 Na com um eletrão do
material que a rodeia.
-> Estudar as coincidências entre
os dois às em função do âmquelo
entre estes.

Montageno	- 1450	2 / n 2 / n		4,00		
Amp A (TC 241) TN OUT OUT	S(A A (TC 451) IN OUT- OUT+ O	TV	IN O	Hulti Purpose Gincidence (TC 404 A) OUT IN A IN B O OUT OUT OUT OUT OUT OUT OUT OUT OUT O	AMP B (TC 241)	
				pador B		

	15h16	in the krem	
	Avis on a f	11/11/2014 124	
	HV(8)-900 V (6 voltas do botão)	CAA water	
	Amplificulos coarse gain 10	and the state of t	
7	Amplificulos coarse gain 10	THE 2.5	
•			
Gritage	Same Espetro:	A 17,45	
	At = 3005		
		1 mi mini	
		A STATE OF THE STA	
1	A A		
		2 (45 A) D (40) - 74 (47)	MA
		The second second	
			1
	1 2 1 1 2 1 1	Co	anal
	1- Pico de amiquilação (511 KeV)	A REAL MANAGEMENT	
	Controide: 250,84 Chm	THE ROLL OF THE STATE OF THE ST	
	FWHH: 27,59 Chm	GOD LANDAL - TOLING	
	ROI INT: 116045 ± 345 Cmt		
	1 RO) NET: 94517 = 612 Cmt		

	Pimite imposior Pimite suporior	
	Pulser: 4,42 Pulser: 5,89	I I PING - MA
	SCA Primite inf: 2,00 SCA Primite su	
	Chm: 213 Chm: 284	
	*	
	Cint. A	
	lim. inf lim. sup	
	Pulson: 4,68 Pulson: 6,02	
	SCA lim. inf: 1,94 SCA lim sup	
	Chm: 224 Chm: 289	
16h01	HV (A): 900 V (6 voltas ao botão)	
	Amplifiex (A): cooxes gain 10	
	fine gain 1	
	· V	
	Espetro: At = 3005	
	Controide: 253,92 Chm	
	FWHH: 24,35 Chm	1,114
	AOI INT: \$ 93688 + 306 Cmt	A refer to
	ROI NET: 74658 ± 650 Cmt	, 15, HAE
	* (Asima ma pag.)	

:44	GROUD	e	en	E2	
	0	4004	8585	1250	
	1	4053	3926	1147	
	Q	3999	3808	1052	
	3	3961	3830	934	
	4	3976	3822	833	
	5	3893	3740	639	26 segundos
	6	3878	3848	591	1
	7	3921	3792	500	
	8	4022	3800	378	
	9	4001	3734	325	
	10	3989	3870	233	
	12	5952	5712	156	36 segundas
	15	11754	11440	42	6 segundar
	20	(2 minutos
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
					tempos enrados
	Com	os redult	odus dohidos	andeuros a	omeluir que a
					to angulo whe
	os brogos				0
+	US Brogus				
+					