

PROIECT EIM Tema 6

Cimuca Denisa-Maria Grupa 30125

CUPRINS:

1. Te	ema proiectului	3
2. Re	eductor	
a) Ca	alcule	4-5
b) D	esen	5
3. M	lecanismul cu cama si tachet de translatie	
3.1	Analiza cinematica	6
3.2	Intervalul de urcare	6-7
3.3	Intervalul de coborare	7-8
3.4	Grafice	8
4. M	lecanismul pentru transmiterea intermitenta a miso	carii
a) Ca	alcule, Analiza cimenatica	9-11
b) De	esen	12
5. Bi	ibliografie	13

1. Tema: Proiectarea unui sistem mecanic ce are in componenta un reductor, un mecanismcu cama si tachet de translațiesi un mecanism pentru transmiterea intermitenta a mișcării (mecanism cu cruce de Malta).

2.Reductor

a) Calcule

Tabelul 9.4

Nr.crt.	Denumirea marimii	Simbol	Dimensiune	Relatia de calcul	Valoarea
1	Numarul de dinti	Z 1	-	-	15
		Z ₂	-	-	22
2	Coeficientul de deplasare a profilurilor	X ₁	-	Se alege din tabelul 9.2	0.55
		X ₂	-		0.54
3	Modulul	m	mm	Se rotunjeste conform STAT 822-61	4.5
4	Unghiul de angrenare	α	grade	$inv \alpha$ $= inv \alpha_0 + 2 \frac{x_1 + x_2}{z_1 + z_2} \tan \alpha_0$ unde α_0 =20°	26.56
5	Coeficientul de modificare a distantei dintre axe	У	-	$Y = \frac{z_1 + z_2}{2} \left(\frac{\cos \alpha_0}{\cos \alpha} - 1 \right)$	0,93548
6	Distanta axiala	а	mm	$a=m\frac{z_1+z_2}{2}\cdot\frac{\cos\alpha_0}{\cos\alpha}$	87.45912
7	Coeficientul de scurtare a inaltimii dintilor	ψ	-	$\psi = \mathbf{x}_1 + \mathbf{x}_2 - \mathbf{y}$	0.15452
8	Inaltimea dintilor	h	mm	h=(2.25- ψ)	9.42966
9	Dimensiunea cercurilor de	d ₁	mm	d ₁ =2r ₁ =mz ₁	67.5
	divizare	d ₂	mm	d ₂ =2r ₂ =mz ₂	99
10	Diametru cercurilor de baza	d _{b1}	mm	$d_{b1}=2r_{b1}=mz_1\cdot\cos\alpha_0$	63.42907
		d _{b2}	mm	$d_{b2}=2r_{b2}=mz_2\cdot\cos\alpha_0$	93.02931

11	Diametrul cercurilor de rostogolire	d _{w1}	mm	$d_{w1}=2r_{w1}=mz_1\cdot\frac{\cos\alpha_0}{\cos\alpha}$	70.9128
		d _{w2}	mm	$d_{w2}=2r_{w2}=mz_2\cdot\frac{\cos\alpha_0}{\cos\alpha}$	104.00544
12	Diametrul cercurilor de cap	d _{a1}	mm	$d_{a1}=2r_{a1}=m(z_1+2+2x_1-2\psi)$	80.05932
		d _{a2}	mm	$d_{a2}=2r_{a2}=m(z_1+2+2x_1-2\psi)$	111.46932
13	Diametrul cercurilor de picior	d _{f1}	mm	$d_{f1}=2r_{f1}=m(z_1-2+2x_1-0.5)$	61.2
		d _{f2}	mm	$d_{f2}=2r_{f2}=m(z_1-2+2x_2-0.5)$	92.61
14	Arcele dintilor pe cercurile de divizare	S ₁	mm	$s_1 = \frac{\pi m}{2} + 2m \cdot x_1 \cdot \tan \alpha_0$	8.86665
	uivizare	S ₂	mm	$s_2 = \frac{\pi m}{2} + 2m \cdot x_2 \cdot \tan \alpha_0$	8.83389
15	Gradul de acoperire	ε	-	$\varepsilon = \frac{\sqrt{r_{a2}^2 - r_{b2}^2} + \sqrt{r_{a1}^2 - r_{b1}^2} - a \sin \alpha}{\pi m \cos \alpha_0}$	1.206

b)Desen

3. Mecanismul cu cama si tachet de translatie

3.1 Analiza cinematica:

- Cursa maxima a tachetului h = 7 + 0.5i = 12
- Unghiurile de rotatie aferente fazelor de functionare:
 - $\phi_{ij} = 66 + i = 76$ -unghiul de urcare
 - $\phi_R = 60$ -unghiul de repaus superior
 - $\varphi_{\rm r} = 80$ –unghiul de repaus inferior
 - $\phi_{C} = 360 \phi_{u} \phi_{R} \phi_{r} = 144 \text{ -unghiul de}$ coborare
- Legile de mișcare:
- La urcare: cosinusoidală
- La coborâre: sinusoidală
- Unghiul de presiune: $\alpha = 45^{\circ}$;

3.2 Intervalul de urcare

Spaţiul : $S = C1*cos(k\varphi) + C2*\varphi + C3$

Viteza redusă : $\frac{v}{\omega} = -kC1 * \sin(k\varphi) + C2$

Accelerația redusă : $\frac{a}{\omega} = -k^2C1\cos{(k\varphi)}$

- ->Condițiile de limită inițiale: φ =0; S=0; v=0;
- ->Condițiile de limită finale: $\varphi = \varphi u$; S=h; v=0;

$$C1=-\frac{h}{2}$$
; $C2=0$; $C3=\frac{h}{2}$; $k=\frac{\pi}{\varphi u}$

Ecuațiile devin =>

$$S = \frac{-h}{2} \cos\left(\frac{\pi}{\varphi u}\varphi\right) + \frac{h}{2}$$

$$\frac{v}{\omega} = \frac{\pi h}{2\varphi u} \sin\left(\frac{2\pi}{\varphi u}\varphi\right)$$

$$\frac{a}{\omega^2} = \frac{\pi^2 h}{\varphi_u^2 2} \cos\left(\frac{\pi}{\varphi u}\varphi\right)$$

3.3 Intervalul de coborare

Spaţiul : $S = C1*cos(k\varphi) + C2*\varphi + C3$

Viteza redusă : $\frac{v}{\omega} = -kC1 * \sin(k\varphi) + C2$

Accelerația redusă : $\frac{a}{\omega} = -k^2C1\cos(k\varphi)$

->Condițiile de limită inițiale: φ =0; S=h; v=0;

->Condițiile de limită finale: $\varphi = \varphi c$; S=0; v=0;

$$C1=-\frac{h}{2}$$
; $C2=0$; $C3=\frac{h}{2}$; $k=\frac{\pi}{\alpha c}$

Ecuațiile devin =>

$$s = \frac{-h}{2}\cos\left(\frac{\pi}{\omega c}\varphi\right) + \frac{h}{2}$$

$$\frac{v}{\omega} = \frac{\pi h}{2\varphi c} \sin\left(\frac{2\pi}{\varphi c}\varphi\right)$$

$$\frac{a}{\omega^2} = \frac{\pi^2 h}{\varphi_c^2 2} \cos\left(\frac{\pi}{\varphi c}\varphi\right)$$

3.4 Grafice

4. Mecanismul pentru transmiterea intermitenta a miscarii

a) Calcule

Date: 1.Turatia motorului de antrenare n₁=960 2.Distanta dintre centrele de rotatie L=20 3. Numarul de antrenori n=3 4. Numarul de canale ale crucii de Malta z=3 Formule de calcul Nr. Denumirea marimii Valori rezultate $\omega_1 = \frac{\pi n_1}{30}$ $\lambda = \frac{R_1}{L} = \sin \varphi_2 = \sin \frac{\pi}{z}$ Viteza unghiulare a 1 100.48 elementului conducator Constanta mecanismului cu 2 cruce de Malta Lungimea bratului de $R_1=L\sin\varphi_2=L\sin\frac{\pi}{z}$ $10\sqrt{3}$ 3 antrenare(raza elementului de antrenare) Timpul de miscare in care $t_{\rm m} = \frac{\pi (1 - \frac{2}{Z})}{\omega_2}$ 4 elementul conducator 0.02266 antreneaza elemental condus Timpul de repaus al 5 0.05700 elementului condus Timpul de rotatie complete al 6 0.02289 elementului conducator 7 Coeficientul de miscare k_m 0.16 8 Coeficientul de repaus kr 0.83

0.2

Analiza cinematica:

Coeficientul timpului de lucru

al mecanismului k

Nr.	Denumirea marimii	Formule de calcul
1	Unghiul de rotatie al elementului condus	$\varphi_2 = arctg\left(\frac{\lambda \sin \varphi_1}{1 - \lambda \cos \varphi_1}\right) = 3.44959$
2	Viteza unghiulara a elementului condus	$\omega_2 = \frac{\lambda(\cos\varphi_1 - \lambda)}{1 - 2\lambda\cos\varphi_1 + \lambda^2} \omega_1 = 91.43$
3	Acceleratia unghiulara a elementului condus	$\varepsilon_2 = -\frac{\lambda (1 - \lambda^{2) \sin \varphi_1}}{(1 - 2\lambda \cos \varphi_1 + \lambda^2)^2} \omega_1^2 = -6.18994$

9

Grafice:

b) Desen

BIBLIOGRAFIE:

- Elemente de inginerie mecanica, "Indrumator de laborator partea 1"
- https://www.intuwiz.com/involute.html
- https://planetcalc.com/993/
- Curs EIM