Python for Geographic Information System

Magdalena Surówka Zazuko

About me

Born and raised in Poland Living in Switzerland

Hands on experience in geospatial analytics Working as Data Scientist Studied Econometrics

Focus on Linked Data ...also Geodata Solving graph problems

About you

- Your background
- Python experience
- GIS experience
- What do you want to learn?
- How can this course help you in everyday work?
- What would you do in a world without computers?

Goal

Develop geospatial thinking

Agenda

Day 1

- Intro
- Shapely
- Geopandas
- Map projections

Day 2

- Geocoding
- Point in polygon
- Spatial join
- Geometric operations
- Classifiers

Day 3

- OSM data
- Network analysis
- Visualizations

Format

Day 1. Agenda

9:30-10:00 Intro

9:30-12:30 Live coding:

- Shapely
- Geopandas

12:30-13:30 Lunch break

13:30-14:30 Live coding:

- Map projections

14:30-16:00 Exercise

16:00-16:30 Exercise review

Python for GIS examples

Your projects?

Python for GIS tools

GDAL, Geopandas, Shapely, Fiona, Pyproj, Pysal, Geopy, Contextily, GeoViews, Dash, OSMnx, Networkx, Cartopy, Scipy.spatial, Rtree, Rasterio, Rasterstats, RSGISLib, Matplotlib, Bokeh, Plotly, Pandas, Scipy, Basemap, Datashader, Folium, Mapclassify...

Python for GIS tools

GDAL, **Geopandas, Shapely**, Fiona, **Pyproj**, Pysal, **Geopy**, **Contextily**, GeoViews, Dash, **OSMnx, Networkx,** Cartopy, Scipy.spatial, Rtree, Rasterio, Rasterstats, RSGISLib, **Matplotlib, Bokeh**, Plotly, **Pandas**, Scipy, Basemap, Datashader, Folium, **Mapclassify**...

Setup

- Virtual machines:
 - https://jupyter.zazukoians.org/
 - O User: yourname
- Jupyter notebooks:
 - Lecture file => we code together
 - Solutions file => if you fall behind

Use VMs for all exercises!

Materials

- VMs until 01.04.2021
- Afterwards: source code on github
 - o https://github.com/zazuko/gis-training
 - **Use virtual environment** for setup!!!

To export your solutions:

- Export notebooks, or
- Use terminal

Lecture flow

He who asks a question is a fool for five minutes. He who does not ask a question remains a fool forever.

Chinese proverb

Let's get started!

Exercises

- 2x4 people groups
 - Breakout room
 - Main room => questions and hints
- Exercise:
 - Save your results in module/solutions.ipynb file
 - Make your code modular => use functions
- Discussion:
 - Random participants share their results with class
 - Revisit the same exercise tomorrow morning

Exercises

```
if not calm:
    keep_calm()
else:
    keep_coding()
```

Day 2. Agenda

Exercises review 9:30-9:45 9:45-12:30 Live coding: Geocoding Point in polygon Spatial join Lunch break 12:30-13:30 Live coding: 13:30-15:15 Classification Geometric operations 15:15-16:15 Exercise 16:15-16:30 Exercise review

Let's get started!

Day 3. Agenda

9:30-10:00 Exercises review

10:00-11:00 Live coding:

Retrieving OSM Data

Network analysis

11:00-11:45 Coding exercise

11:45-12:00 Exercise review

12:00-13:00 Lunch break

13:00-14:00 Live coding:

Map visualizations

14:00-16:00 Coding exercise

16:00-16:30 Exercise review, Wrap up

Let's get started!

Wrap up

Spatial data model

Map projections and CRS

Geocoding

Point in polygon

Spatial join

1. Crime Data for London

1. London Boroughs

Number of Crimes in London Boroughs

Overlay analysis

Data aggregation

Geometry simplification

Data classification

OSM data

Network analysis

Visualizations

Python for GIS tools

GDAL, Geopandas, Shapely, Fiona, Pyproj, Pysal, Geopy, Contextily, GeoViews, Dash, OSMnx, Networkx, Cartopy, Scipy.spatial, Rtree, Rasterio, Rasterstats, RSGISLib, Matplotlib, Bokeh, Plotly, Pandas, Scipy, Basemap, Datashader, Folium, Mapclassify...

Python for GIS tools

GDAL, **Geopandas, Shapely**, Fiona, **Pyproj**, Pysal, **Geopy**, **Contextily**, GeoViews, Dash, **OSMnx, Networkx,** Cartopy, Scipy.spatial, Rtree, Rasterio, Rasterstats, RSGISLib, **Matplotlib, Bokeh**, Plotly, **Pandas**, Scipy, Basemap, Datashader, Folium, **Mapclassify**...

Questions?

Thank you!

Contact details:

magdalena@surowka.ch https://www.linkedin.com/in/magdalena-surówka-535a21a9/

ttps://automating-gis-processes.github.io/site/notebooks/L1/geometric-objects.html
ttps://www.ptvgroup.com/en/solutions/products/ptv-xserver/developer-zone/geocoding-api/
ttps://sites.google.com/site/samill12ncsugis520/topicsoverview/Suitability-Analysis-and-Weighted-Overlay
ttps://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/
ttps://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/h-how-dissolve-data-management-works.htm
ttps://www.youtube.com/watch?v=2gfSHkKLVXQ

 $\underline{https://www.lynda.com/Business-Intelligence-tutorials/Statistics-Fundamentals-Part-2-Intermediate/495322-2.html}$

 $\underline{https://towardsdatascience.com/python-interactive-network-visualization-using-networkx-plotly-and-dash-e44749161ed7}$

Image credits: