Erweiterungen der Hauptplatine (V 1.6)

Die Hauptplatine in der Version "Minimal-DCC", "Minimal-Selectrix" oder "Minimal-MCAN" kann durch die nachfolgenden Erweiterungen um nützliche Funktionen ergänzt und erweitert werden.

Taster für Funktionstests und Einstellung der Servos

Stückliste

Reichelt Warenkorb: MLL100 v2-EW-Taster

Anzahl	Bezeichnung	Beschreibung	Bestellnummer	Alternativen, Bemerkungen
1	Board	100DE Hauptplatine	ALF 100DE Arduino für LEDs Master	
1	LED BLAU	LED, 3 mm, blau, 3800 mcd, 30°	RND 135-00158	
1	LED GELB	LED, 3 mm, gelb, 350 mcd, 60°	RND 135-00117	
1	LED WEISS	LED, 3 mm, weiss, 8500 mcd, 30°	RND 135-00162	
1	R4	Widerstand, 470 Ω	METALL 470	
2	R5, R6	Widerstand, 1,00 KΩ	METALL 1,00K	
3	S1, S2, S3	Kurzhubtaster	TASTER 3301 - Höhe 4,3mm	TASTER 3301B - Höhe 9,5mm JTP-1130 - Höhe 13mm Es können auch die besseren Taster: - DTL 2 BL - DTL 2 GE - DTL 2 WS verwendet werden

Bestückung - Aufbauanleitung

Den Anfang machen die Widerstände R4 (470 Ω), R5 und R6 (je 1,0 $K\Omega$)

danach folgen die LEDs. Das lange Beinchen der LED kommen dabei auf die linken Seite, wo das Plus auf der Platine ist.

und zum Schluss die drei Taster

oder wer eine bessere Qualität haben will die "Alternativen Taster"

Bild der fertigen Platinenerweiterung mit Beschriftungen

Erweiterung für die PushButton-Platine und die Analoge Tastererkennung

Stückliste

Reichelt Warenkorb: MLL100_v2-EW-4017

Anzahl	Bezeichnung	Beschreibung	Bestellnummer	Alternativen, Bemerkungen
1	Board	100DE_v2 Hauptplatine	ALF 100-2.0a Arduino für LEDs Master	
2	C7, C9	Keramikkondensator, 1µF	Z5U-5 1,0μ	
1	LED1	LED, 3 mm, grün, 3800 mcd, 30°	LED 3MM GN	
1	R3	Widerstand, 470 Ω	METALL 470	
1	R7	Widerstand, 47,0 KΩ	METALL 47,0K	
1	R12	Widerstand, 100 Ω	METALL 100	
2	R14, R27	Widerstand, 22,0 KΩ	METALL 22,0K	
1	KEY_80	Wannenstecker, 14-pol	WSL 14G	
2	KEYBRD, KEYBRD1	Wannenstecker, 8-pol	BKL 10120552	Alt.: Pollin: 451167 (Bei Reichelt leider nicht immer erhältlich.)

Bestückung - Aufbauanleitung

Den Anfang machen, wie üblich, die Widerstände R3 (470 Ω), R7 (47,0 K Ω), R12 (100 Ω), R14 und R27 (je 22,0 K Ω)

danach folgt die LED. Das lange Beinchen der LED kommen dabei nach unten, dorthin wo das Plus auf der Platine ist.

Als nächstes folgen die beiden Keramikkondensatoren C7 & C9 (je 1,0 μ F).

Den Abschluss machen die drei Wannenstecker KEY80, KEYBRD und KEYBRD1.

Damit die Erkennung der analogen Taster funktioniert, muss der Lötjumper "SJ_4" auf der Unterseite der Platine geschlossen werden.

Bild der fertigen Platinenerweiterung mit Beschriftungen

Modifikation für einen zusätzlichen dritten Analogtastereingang

Damit man bis zu 30 analoge Taster verwenden kann, ist es möglich den Anschluss für den "Tag/Nacht" Sensor in einen Eingang für die Taster umzubauen. Dazu muss der Widerstand R13 mit 33 K Ω durch einen Widerstand mit 22 K Ω ersetzt werden. Zudem muss der Kondensator C8 mit $1\mu F$, wie bei den anderen beiden Eingängen eingelötet werden. Die Positionen sind auf dem nachfolgenden Bild hervorgehoben.

Versorgung der Hauptplatine direkt mit 5V

Die Hauptplatine in der Version 1.6 kann direkt über eine Schraubklemme mit 5V versorgt werden.

Anzahl	Bezeichnung	Beschreibung	Bestellnummer	Alternativen, Bemerkungen
1	Board	IPIATING	ALF 100-2.0a Arduino für LEDs Master	
1	X /I	Lötbare Schraubklemme - 2-pol, RM 5 mm, 90°	RND 205-00045	

Versorgung der Hauptplatine per DCC mit 5V

Die maximale Belastung des DCC-Busses sollte nicht mehr als 800 mA betragen. Bei mehr kann es zu Störungen auf dem DCC-Bus kommen.

Stückliste

Reichelt Warenkorb: MLL100_v2-EW-DCC-5V

Anzahl	Bezeichnung	Beschreibung	Bestellnummer	Alternativen, Bemerkungen
1	Board	100DE_v2 Hauptplatine	ALF 100-2.0a Arduino für LEDs Master	
1	B1	Brückengleichrichter, 200 V, 1 A	B140C1000DIP	HDBL 103G
2	C1, C2	Keramikkondensator, 100nF	Z5U-2,5 100N	
2	C3, C4	Elektrolytkondensator, low ESR, 100μF, 25 V	FM-A 100U 25	
1	D1	Diode 1N4002	1N 4002	Schutzdiode für den Schaltregler vor Rückwartsspeisung
1	D2	Diode 1N4148	1N 4148	
1	IC1	Spannungsregler, fest, +5 V, 1,5A, 4%, TO-220	L7805CV-DG STM	Besser den Schaltregler DD4012SA (AliExpress)

Bestückung - Aufbauanleitung

Den Anfang macht die Diode D1 (1N4002) als flachstes Bauteil

danach folgen die beiden Keramikkondensatoren C1 und C2 (100nF),

der Brückengleichrichter,

die beiden Elektrolytkondensatoren C3 und C4 (je $100\mu F/25V$)

und zum Schluss der Spannungswandler "LM7805CV" bzw der Schaltregler "DD4012SA"

Sollte die Versorgung über den DCC-Bus erfolgen, so wird der Optokoppler (OK1 / 6N137) entfernt und durch die Diode D2 (1N4148) ersetzt.

Bild der fertigen Platinenerweiterung mit Beschriftungen

Lötjumper

Bezeichnung	Beschreibung	empfohlener Status
NO_OPTO	geschlossen werden. OK1 entfällt dann und wird durch	geschlossen, sofern OK1 gegen Diode ausgetauscht wurde

Versorgung der Hauptplatine per SX-Bus mit 5V

Die maximale Belastung des SX-Busses sollte nicht mehr als 1.000 mA betragen. Bei mehr wird der Bus unnötig belastet und es kann zu Störungen kommen.

Stückliste

Reichelt Warenkorb: MLL100_v2-EW-SX-5V

Anzahl	Bezeichnung	Beschreibung	Bestellnummer	Alternativen, Bemerkungen
1	Board	100DE_v2 Hauptplatine	ALF 100-2.0a Arduino für LEDs Master	
2	C1, C2	Keramikkondensator, 100nF	Z5U-2,5 100N	
2	C3, C4	Elektrolytkondensator, low ESR, 100µF, 25 V	FM-A 100U 25	
1	D1	Diode 1N4002	1N 4002	Schutzdiode für den Schaltregler vor Rückwartsspeisung
1	IC1	Spannungsregler, fest, +5 V, 1,5A, 4%, TO-220	L7805CV-DG STM	Besser den Schaltregler DD4012SA (AliExpress)

Bestückung - Aufbauanleitung

Den Anfang macht die Diode D1 (1N4002) als flachstes Bauteil

danach folgen die beiden Keramikkondensatoren C1 & C2 (je 100nF)

die beiden Elektrolytkondensatoren C3 und C4 (je 100µF/25V)

und zum Schluss der Spannungswandler "LM7805CV" bzw. der Schaltregler "DD4012SA"

Bild der fertigen Platinenerweiterung mit Beschriftungen

Die beiden mit einem Kreuz markierten Bauteile sind nicht notwendig, bei der Verwendung des SX-Busses als Spannungsquelle. Diese sind nur auf dem Bild, da die Platine, welche für die Fotos verwendet wurde, für die Verwendung mit DCC vorbereitet wurde.

Lötjumper

Bezeichnung	Beschreibung	empfohlener Status
10, 0, 0	SJ_SX3 & SJ_GND verbinden wenn die Platine aus dem SX Bus versorgt werden soll. Das geht aber nur bei wenigen LEDs.	offen
CV CND	Maximal 1,00 Ampere	offen

From:

https://wiki.mobaledlib.de/ - MobaLedLib Wiki

Permanent link:

https://wiki.mobaledlib.de/anleitungen/bauanleitungen/100de_hauptplatine_v1-6_erweiterungen

Last update: 2020/12/11 15:54

Printed on 2020/12/11 15:54 https://wiki.mobaledlib.de/