Theorem 1. Any normal modal logic containing $\Diamond \Box \bot$ is the inconsistent logic.

Proof. Formal proof deriving \perp :

1.
$$\bot \to p$$
 (taut.)
2. $\bot \to \neg \Box \bot$ (unif, 1.)
3. $\Box(\bot \to \neg \Box \bot)$ (nec, 2.)
4. $\Box(p \to q) \to (\Box p \to \Box q)$ (Ax. K.)
5. $\Box(\bot \to \neg \Box \bot) \to (\Box \bot \to \Box \neg \Box \bot)$ (unif, 4)
6. $\Box \bot \to \Box \neg \Box \bot$ (MP, 3, 5.)
7. $(p \to q) \to (\neg q \to \neg p)$ (taut.)
8. $(\Box \bot \to \Box \neg \Box \bot) \to (\neg \Box \neg \Box \bot \to \neg \Box \bot)$ (unif, 7.)
9. $\neg \Box \neg \Box \bot \to \neg \Box \bot$ (MP, 6, 8.)
10. $\Diamond p \leftrightarrow \neg \Box \neg p$ (Dual Ax.)
11. $\Diamond \Box \bot \leftrightarrow \neg \Box \neg \Box \bot$ (unif, 10.)
12. $(p \leftrightarrow q) \to ((q \to r) \to (p \to r))$ (taut.)
13. $(\Diamond \Box \bot \leftrightarrow \neg \Box \neg \Box \bot) \to ((\neg \Box \neg \Box \bot \to \neg \Box \bot) \to (\Diamond \Box \bot \to \neg \Box \bot)$ (MP, 11, 13.)
15. $\Diamond \Box \bot \to \neg \Box \bot$ (MP, 9, 14)
16. $\Diamond \Box \bot$ (Ax.)
17. $\neg \Box \bot$ (MP, 15, 16.)
18. $\Box \neg \Box \bot$ (MP, 15, 16.)
19. $q \to ((p \leftrightarrow \neg q) \to (p \to \bot))$ (taut.)
20. $\Box \neg \Box \bot \to ((\Diamond \Box \bot \leftrightarrow \neg \Box \neg \Box \bot) \to (\Diamond \Box \bot \to \bot))$ (unif, 19.)
21. $(\Diamond \Box \bot \leftrightarrow \neg \Box \neg \Box \bot) \to (\Diamond \Box \bot \to \bot)$ (MP, 18, 20.)
22. $\Diamond \Box \bot \to \bot$ (MP, 16, 22.)