

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO				
Disciplina:				Có	digo da Disciplina:	
Sistemas de Controle I					ECA414	
Course:						
Control Systems I						
Materia:						
Periodicidade: Anual	Carga horária total:	160	Carga horária sema	anal: 02	2 - 00 - 02	
Curso/Habilitação/Ênfase:	<u> </u>		Série:	Período	0:	
Engenharia de Controle e Autor	nação		4	Diurn	0	
Engenharia de Controle e Autor	nação		5	Notur	Noturno	
Engenharia de Controle e Automação			4	Notur	Noturno	
Engenharia Eletrônica			4	Diurn	0	
Engenharia Eletrônica			5	Notur	no	
Engenharia Elétrica			4	Diurn	0	
Engenharia Elétrica			5	Notur	no	
Professor Responsável:		Titulação - Gradua	ção		Pós-Graduação	
Anderson Harayashiki Moreira		Engenheiro em Controle e Automação		Doutor		
Professores:		Titulação - Gradua	ção		Pós-Graduação	
Anderson Harayashiki Moreira		Engenheiro em Controle e Automação		Doutor		
Hugo da Silva Bernardes Gonçalves		Engenheiro da Computação		Mestre		
Rodrigo Alvite Romano		Engenheiro Ele	tricista		Doutor	
Vanderlei Cunha Parro		Engenheiro Ele	tricista		Doutor	

OBJETIVOS - Connecimentos, Habilidades, e Atitudes

Conhecimentos:

- 1 Análise do erro estacionário em regime permanente para sistemas lineares estáveis;
- 2 Análise e projeto de controladores PID e de avanço/atraso;
- 3 Análise e projeto de controladores pelo método do lugar das raízes, e de compensadores através da resposta na frequência de sistemas lineares;
- 4 Programação e solução de problemas de controle utilizando o programa Matlab;
- 5 Utilização do Simulink como ferramenta de simulação e controle;
- 6 Amostragem, transformada Z, e representação de sistemas discretos;
- 7 Projeto de controladores e filtros digitais;
- 8 Implementação de sistemas de controle digitais utilizando aquisição de dados;
- 9 Análise experimental de plantas de controle de processos;

Habilidades:

- 1 Analisar o comportamento transitório e de regime permanente de sistemas dinâmicos.
- 2 Projetar controladores analógicos e digitais para o controle de sistemas industriais.

2020-ECA414 página 1 de 10

3 - Utilizar o programa Matlab para resolver e simular problemas de controle de sistemas industriais.

Atitudes:

- 1- Desenvolver uma visão mais generalizada para o tratamento de problemas de controle.
- 2 Adquirir conhecimentos visando a implementação prática de sistemas de controle.

EMENTA

Análise do erro estacionário em regime permanente. Projeto de controladores tipo PID, avanço-atraso. Método do lugar das raízes. Diagrama de Bode e Nyquist. Teorema da amostragem. Transformada z. Sistemas em tempo discreto. Análise de estabilidade e da resposta temporal de sistemas discretos. Transformação de filtros analógicos em digitais. Projeto de controladores no domínio de tempo discreto. Laboratório: utilização do Matlab e Simulink, simulação e controle de sistemas lineares e não-lineares, aquisição de dados, identificação de parâmetros de sistemas, implementação prática de sistemas de controle.

SYLLABUS

Analysis of the stationary error in permanent regime. Project of PID and similar controllers using root locus. Project using Nyquist and Bode method. Z-Transform and sampling theorem. Analysis of stability of discrete time systems. Project of controllers in discrete time domain. Laboratory: utilization of the Matlab and Simulink, simulation and control of nonlinear and linear systems, systems parameters estimation, practical implementation of control systems.

TEMARIO

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas com referência aos materiais de apoio e aulas práticas (em laboratórios) utilizando programas como o Matlab, LabVIEW e bancadas experimentais com sistemas de controle de processos a serem controlados;

2020-ECA414 página 2 de 10

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Noções de programação;
- Princípios básicos de eletrônica analógica e digital;
- Modelagem e análise de sistemas dinâmicos;
- Modelagem de sistemas físicos dinâmicos, conceitos básicos de controle, tais como representação por funções de transferência e espaço de estados, análise de resposta e análise de estabilidade de sistemas dinâmicos.

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina de Sistemas de Controle apresenta um estudo detalhado de ferramentas de análise e técnicas de projeto e síntese de sistemas de controle analógicos e digitais. As informações capacitam o aluno a aplicar a melhor estratégia de controle e obter o desempenho conforme especificado. As experiências de laboratório permitem obter noções práticas para agir de forma eficiente na solução de problemas de controle em engenharia. Além disso, a disciplina tem como objetivo fornecer uma visão sistêmica das atuais tecnologias utilizadas na automação e controle de processos apresentando plantas de controle de processos e equipamentos de controle os quais o aluno certamente encontrará similares na indústria.

BIBLIOGRAFIA

Bibliografia Básica:

CASTRUCCI, Plínio de Lauro; BITTAR, Anselmo; SALES, Roberto Moura. Controle automático. Rio de Janeiro, RJ: LTC, 2011. 476 p. ISBN 9788521617860.

DORF, Richard C; BISHOP, Robert H. Sistemas de controle modernos. Trad. de Bernardo Severo da Silva Filho. 8. ed. Rio de Janeiro, RJ: LTC, 2001. 659 p.

NISE, Norman. Engenharia de sistemas de controle. [SILVA FILHO, Bernardo Severo da Silva]. 3 ed. São Paulo: LTC, 2002. 695 p. ISBN 85352216855.

OGATA, Katsuhiko. Discrete-time control systems. 2. ed. New Jersey: Prentice Hall, 1995. 745 p. ISBN 0-13-034281-5.

Bibliografia Complementar:

BOLTON, W. Engenharia de controle. São Paulo, SP: Makron Books, 1995. 497 p. ISBN 85-346-0343-X.

D'AZZO, John J; HOUPIS, Constantine H. Análise e projeto de sistemas de controle lineares. Trad. por Bernardo Severo da Silva Filho. Rio de Janeiro, RJ: Guanabara Dois, 1978. 610 p.

D'AZZO, John J; HOUPIS, Constantine H; SHELDON, Stuart N. Linear control system analysis and design with MATLAB. 5. ed. Boca Raton: Taylor & Francis, c2003. 839 p. (Control Engineering Series). ISBN 0824740386.

2020-ECA414 página 3 de 10

GOLTEN, Jack; VERWER, Andy. Control system design and simulation. London: McGraw-Hill, 1992. 388 p.

HANSELMAN, Duane; LITTLEFIELD, Bruce. MATLAB 5: versão do estudante, guia do usuário. São Paulo, SP: Makron Books, 1999. 413 p. ISBN 85-346-1058-4.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0$

Peso de MP($k_{_{\rm P}}$): 0,7 Peso de MT($k_{_{\rm T}}$): 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

- 1. As notas dos trabalhos se referem às atividades de laboratório. Esta média considera a participação, implementação e documentação destas atividades.
- 2. Serão necessários os seguintes materiais e equipamentos para o desenvolvimento da disciplina: 8 computadores em bom estado de funcionamento contendo: Matlab & Simulink; LabVIEW; sistema de posicionamento.
- 3. As experiências desenvolvidas ao longo do ano estão listadas no programa da disciplina.
- 4. É permitido o reaproveitamento de nota de laboratório pelos alunos que realizam dependência.
- 5. As atividades de laboratório poderão ser feitas por trabalhos práticos com entrega programada em comum acordo com os alunos ou com provas. A opção será feita pelos alunos no primeiro bimestre. Isto inclui a substituição de experiências que demonstrem afinidade com o trabalho escolhido.

2020-ECA414 página 4 de 10

OUTRAS INFORMAÇÕES	
	1

2020-ECA414 página 5 de 10

	SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
MatLab	
Labview	

2020-ECA414 página 6 de 10

APROVAÇÕES

Prof.(a) Anderson Harayashiki Moreira Responsável pela Disciplina

Prof.(a) Edval Delbone Coordenador(a) do Curso de Engenharia Elétrica

Prof.(a) Fernando Silveira Madani Coordenador(a) do Curso de Eng. de Controle e Automação

Prof.(a) Sergio Ribeiro Augusto Coordenador do Curso de Engenharia Eletrônica

Data de Aprovação:

2020-ECA414 página 7 de 10

		PROGRAMA DA DISCIPLINA	
N° d	la	Conteúdo	EAA
sema	na		
1 1	L	Programa de Recepção e Integração dos Calouros (PRINT).	0
1 7	Т	Programa de Recepção e Integração dos Calouros (PRINT).	0
2 1	L	Apresentação dos procedimentos de segurança do laboratório.	0
2 :	Т	Apresentação da disciplina. Introdução a sistemas de controle.	0
3 :	Т	Análise de Sistemas Dinâmicos de Primeira Ordem.	0
3 1	L	Introdução ao SW Matlab I.	91% a
			100%
4 :	Т	Análise de Sistemas Dinâmicos de Segunda Ordem.	0
4]	L	Introdução ao SW Matlab II.	91% a
			100%
5 :	Т	Diagrama de Blocos.	0
5 1	L	Introdução ao SW Matlab III.	91% a
			100%
6 5	Т	Critério de Estabilidade de Routh-Hurwitz.	0
6 1	L	Introdução ao SW Matlab - SIMULINK.	91% a
			100%
7 1	L	Introdução ao SW LabVIEW.	91% a
			100%
7 :	Т	Exercícios de Análise de Sistemas Dinâmicos.	91% a
			100%
8 :	Т	Período de provas P1.	0
8 1	L	Período de provas P1.	0
9 1	L	Período de provas P1.	0
9 7	Т	Período de provas P1.	0
10 7	Т	Diagrama do Lugar Geométrico das Raízes I.	0
10 1	L	Kit Qube-Servo 2: Caracterização Motor.	91% a
			100%
11 7	Т	Diagrama do Lugar Geométrico das Raízes II.	11% a 4
11 1	L	Kit Qube-Servo 2: Princípios de Modelagem (motor DC).	91% a
			100%
12 7	Т	Feriado DIA DO TRABALHADOR.	0
12 1	L	Kit Qube-Servo 2: Sistema de Segunda Ordem.	91% a
			100%
13 5	T	Exercícios de Diagrama do Lugar Geométrico das Raízes.	91% a
			100%
13 1	L	Kit Qube-Servo 2: Controle Proporcional Derivativo (Velocidade).	91% a
			100%
14 1	L	Semana de Inovação Mauá - SMILE 2020.	0
14 5	Т	Compensação por meio do lugar das raízes - Avanço de Fase.	1% a 10
15 :	Т	Compensação por meio do lugar das raízes - Atraso de Fase.	1% a 10
15 1	L	Kit Qube-Servo 2: Controle de Posição	91% a
			100%
16 5	Т	Compensação por meio do lugar das raízes - Avanço-Atraso de Fase.	1% a 10

2020-ECA414 página 8 de 10

16 L	Kit Qube-Servo 2: Pêndulo Invertido I.	91% a
		100%
17 T	Compensação por realimentação auxiliar.	1% a 10%
17 L	Kit Qube-Servo 2: Pêndulo Invertido II.	91% a
		100%
18 T	Exercícios de projeto de controladores.	91% a
		100%
18 L	Kit Qube-Servo 2: Pêndulo Invertido III.	91% a
		100%
19 T	Período de provas P2.	0
19 L	Período de provas P2.	0
20 T	Período de provas P2.	0
20 L	Período de provas P2.	0
21 T	Atividades de Planejamento e Capacitação Docente.	0
21 L	Atividades de Planejamento e Capacitação Docente.	0
22 L	Apoio e plantão de dúvidas.	0
22 T	Apoio e plantão de dúvidas.	0
23 T	Período de provas PS1.	0
23 L	Período de provas PS1.	0
24 L	Apresentação do projeto semestral prático da disciplina.	0
24 T	Diagrama de Bode.	0
25 T	Exercícios de Diagrama de Bode.	91% a
		100%
25 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
26 T	Margens de Estabilidade Diagrama de Bode.	1% a 10%
26 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
27 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
27 T	Exercícios de Margens de Estabilidade Diagrama de Bode.	91% a
		100%
28 T	Diagrama de Nyquist.	1% a 10%
28 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
29 T	Exercícios de Diagrama de Nyquist.	91% a
		100%
29 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
30 T	Período de provas P3.	0
30 L	Período de provas P3.	0
31 T	Regras de Ziegler-Nichols para Sintonia de Controladores PID.	1% a 10%
31 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
32 T	Transformada Z.	11% a 40%
32 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%

2020-ECA414 página 9 de 10

33 T	Sistemas de Tempo Discreto.	1% a 10%
33 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
34 T	Sistemas de Controle Digital.	1% a 10%
34 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
35 T	Sistemas de Controle Digital II.	1% a 10%
35 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
36 T	EUREKA.	0
36 L	Acompanhamento do projeto semestral da disciplina.	91% a
		100%
37 T	Exercícios de projeto de controladores digitais.	91% a
		100%
37 L	Apresentação do projeto semestral da disciplina.	91% a
		100%
38 T	Período de provas P4.	0
38 L	Período de provas P4.	0
39 L	Período de provas P4.	0
39 Т	Período de provas P4.	0
40 L	Apoio e plantão de dúvidas.	0
40 T	Apoio e plantão de dúvidas.	0
41 T	Período de provas PS2.	0
41 L	Período de provas PS2.	0
Legend	a: T = Teoria, E = Exercício, L = Laboratório	

2020-ECA414 página 10 de 10