Neural Networks: Autoencoders

Objectives

- Review multilayer perceptrons
- Be able to define an autoencoder
- List common use cases
- Show you what a denoising autoencoder looks like in Python
 - Tensorflow and Keras syntax
- Introduce the idea of an embedding
 - word2vec
- Public Service Announcement: Tensorflow callbacks
 - Tensorboard: a way to visualize the training of your Tensorflow model
 - Early stopping: why keep training when your loss has plateaued?

Review

- What's an epoch (in neural net training)?
- Where is the learning in neural networks stored?
- How do the weights get updated?
- Name some hyperparameters to tune in multilayer perceptrons.
- What activation function would you use in the final layer for:
 - o a multi-class output
 - regression
 - a value representing a probability between 0 and 1
 - multiple values each with their own probability between 0 and 1
- What does supervised learning mean?
- What does unsupervised learning mean?
- What do you think "self-supervised" learning means?

Autoencoders

Original

Google's artificial brain learns to find cat videos.

Reconstructed

arXiv abstract

Autoencoders

- ANN used to learn efficient data codings through an encoding/decoding process.
- Form of self-supervised learning
 - It's outputs are the inputs (or variations on the inputs)
- Autoencoders encode (embed) the input into a lower dimensional space
 - It's lossy!
- Can be used with many types of data: typical rows & columns, images, sequences.
- Common uses:
 - Reduction in dimensionality of data before sending to another algorithm
 - Denoising (noise added to input, output is input without noise) &
 - Recently, generative (learns parameters of distributions)
 - Face recognition
- Embeddings (similar idea, but not training on itself, exactly)

Use cases: reduce dimensionality then clustering

Finding Similar Images using Autoencoders

Fig 1.a) Similar image recommendations from querying a burger image in a small training set of steakhouse food images

from [2]

Examples:

- [1] https://sefiks.com/2018/03/23/convolutional-autoencoder-clustering-images-with-neural-networks/
- [2] https://towardsdatascience.com/find-similar-images-using-autoencoders-315f374029ea

Wine Recommender

Project Objective

Do you pick your wine based on region? Price? Label? Varietal?

Image from The Daily Meal in Psychology of a Wine Label: Why We Buy the Bottles We Do

Like the label -> buy the wine....

https://github.com/alyserecord/wine

Cluster 3

Cluster 7

Use cases: reduce dim. then denoising

mnist_denoising_autoencoder.ipynb

Use cases: Generative Adversarial Denoising Autoencoder for Face Completion

Goal: Create a pipeline for photo restoration of portrait images.

link to video

https://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/ https://www.tensorflow.org/tutorials/generative/dcgan

Related topic to autoencoder - embeddings (Word2vec)

Word embedding

- where words or phrases from the vocabulary are mapped to vectors of real numbers.
- conceptually it involves a mathematical embedding from a space with many dimensions per word to a continuous vector space with a much lower dimension.

--Wikipedia

Related topic to autoencoder - embeddings (Word2vec)

Blog: <u>Clustering documents using Word2Vec</u>

PSA: Callbacks

Some useful Keras callbacks

A callback is a set of functions to be applied at given stages of the training procedure. See full list at https://keras.io/callbacks/

To view your Tensorflow model after it has trained using Tensorboard

In your Python script:

After you have run your python script successfully, call Tensorboard from the terminal:

```
$ tensorboard --logdir ./logs
```

Cb: Tensorboard - use it to visualize loss after training

Cb: EarlyStopping

If you want to stop at a convergence criteria:

In your Python script:

Objectives

- Review multilayer perceptrons
- Be able to define an autoencoder
- List common use cases
- Show you what a denoising autoencoder looks like in Python
 - Tensorflow and Keras syntax
- Introduce the idea of an embedding
 - word2vec
- Public Service Announcement: Tensorflow callbacks
 - Tensorboard: a way to visualize the training of your Tensorflow model
 - Early stopping: why keep training when your loss has plateaued?