

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4040 12-stage binary ripple counter

Product specification
File under Integrated Circuits, IC06

December 1990

12-stage binary ripple counter**74HC/HCT4040****FEATURES**

- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4040 are high-speed Si-gate CMOS devices and are pin compatible with "4040" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4040 are 12-stage binary ripple counters with a clock input (\overline{CP}), an overriding asynchronous master reset input (MR) and twelve parallel outputs

(Q_0 to Q_{11}). The counter advances on the HIGH-to-LOW transition of \overline{CP} .

A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of \overline{CP} .

Each counter stage is a static toggle flip-flop.

APPLICATIONS

- Frequency dividing circuits
- Time delay circuits
- Control counters

QUICK REFERENCE DATA

$GND = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PHL}/t_{PLH}	propagation delay \overline{CP} to Q_0	$C_L = 15 \text{ pF}$; $V_{CC} = 5 \text{ V}$	14	16	ns
	Q_n to Q_{n+1}		8	8	
f_{max}	maximum clock frequency		90	79	MHz
C_I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipation capacitance per package	notes 1 and 2	20	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz

f_o = output frequency in MHz

$\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "*74HC/HCT/HCU/HCMOS Logic Package Information*".

12-stage binary ripple counter

74HC/HCT4040

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
8	GND	ground (0 V)
9, 7, 6, 5, 3, 2, 4, 13, 12, 14, 15, 1	Q_0 to Q_{11}	parallel outputs
10	\overline{CP}	clock input (HIGH-to-LOW, edge-triggered)
11	MR	master reset input (active HIGH)
16	V_{CC}	positive supply voltage

Fig.1 Pin configuration.

Fig.2 Logic symbol.

Fig.3 IEC logic symbol.

12-stage binary ripple counter

74HC/HCT4040

Fig.4 Functional diagram.

Fig.5 Logic diagram.

FUNCTION TABLE

INPUTS		OUTPUTS
\bar{CP}	MR	Q_n
\uparrow	L	no change
\downarrow	L	count
X	H	L

Notes

1. H = HIGH voltage level
L = LOW voltage level
X = don't care
 \uparrow = LOW-to-HIGH clock transition
 \downarrow = HIGH-to-LOW clock transition

Fig.6 Timing diagram.

12-stage binary ripple counter

74HC/HCT4040

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

 I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}$; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HC							V _{CC} (V)	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay CP to Q ₀		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay Q _n to Q _{n+1}		28 10 8	100 20 17		125 25 21		150 30 26	ns	2.0 4.5 6.0	Fig.7	
t _{PHL}	propagation delay MR to Q _n		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.7	
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
t _W	master reset pulse width; HIGH	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
t _{rem}	removal time MR to CP	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.7	
f _{max}	maximum clock pulse frequency	6.0 30 35	27 82 98		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.7	

12-stage binary ripple counter

74HC/HCT4040

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

 I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
CP	0.85
MR	1.10

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T_{amb} (°C)						UNIT	TEST CONDITIONS			
		74HCT							V _{cc} (V)	WAVEFORMS		
		+25			−40 to +85		−40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t_{PHL}/t_{PLH}	propagation delay CP to Q_0		19	40		50		60	ns	4.5	Fig.7	
t_{PHL}/t_{PLH}	propagation delay Q_n to Q_{n+1}		10	20		25		30	ns	4.5	Fig.7	
t_{PHL}	propagation delay MR to Q_n		23	45		56		68	ns	4.5	Fig.7	
t_{THL}/t_{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.7	
t_W	clock pulse width HIGH or LOW	16	7		20		24		ns	4.5	Fig.7	
t_W	master reset pulse width; HIGH	16	6		20		24		ns	4.5	Fig.7	
t_{rem}	removal time MR to CP	10	2		13		15		ns	4.5	Fig.7	
f_{max}	maximum clock pulse frequency	30	72		24		20		MHz	4.5	Fig.7	

12-stage binary ripple counter

74HC/HCT4040

AC WAVEFORMS

(1) HC : $V_M = 50\%$; $V_I = \text{GND to } V_{CC}$.
HCT: $V_M = 1.3 \text{ V}$; $V_I = \text{GND to } 3 \text{ V}$.

Fig.7 Waveforms showing the clock (\overline{CP}) to output (Q_n) propagation delays, the clock pulse width, the output transition times and the maximum clock pulse frequency.

Also showing the master reset (MR) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (\overline{CP}) removal time.

PACKAGE OUTLINES

See "[74HC/HCT/HCU/HCMOS Logic Package Outlines](#)".