INTERPOLACIÓN SEGMENTARIA

La interpolación segmentaria es un método para construir una función continua a partir de segmentos de funciones simples (como polinomios) definidos entre puntos consecutivos conocidos (nodos). A diferencia de la interpolación global, la segmentaria ofrece mejor estabilidad y precisión cuando se trabaja con grandes conjuntos de datos o datos con comportamiento local complejo.

En MATLAB, esta técnica es útil para ajustar curvas o funciones a datos experimentales, especialmente cuando se desea evitar oscilaciones no deseadas.

TIPOS DE INTERPOLACIÓN SEGMENTARIA

Existen varios tipos de interpolación segmentaria, entre ellos:

Lineal: Une los puntos con líneas rectas. Es rápida y simple, pero poco precisa si los datos cambian bruscamente.

Polinómica por tramos (p.ej., cuadrática, cúbica): Usa polinomios entre nodos, ofreciendo mayor suavidad.

Trazadores (Splines): Interpolación polinómica que asegura continuidad de derivadas. La más común es la cúbica.

En MATLAB se pueden usar funciones como interp1, spline, makima, pchip.

INTERPOLACIÓN MEDIANTE TRAZADORES (SPLINES)

Los splines son funciones polinómicas definidas por tramos que garantizan continuidad hasta la segunda derivada. Son ideales para suavizar datos o construir curvas suaves.

En MATLAB:

spline (x, y, xx) realiza interpolación cúbica natural.

csape (requiere Curve Fitting Toolbox) permite mayor control sobre condiciones de frontera.

Pchip (x,y,xx) genera una forma similar, pero mantiene la forma de los datos (forma-preserving).

Ventaja principal: evita la oscilación excesiva de la interpolación polinómica de alto grado.

APLICACIONES EN INGENIERÍA

La interpolación segmentaria tiene múltiples aplicaciones en ingeniería, tales como:

Procesamiento de señales: reconstrucción de señales a partir de muestras.

Simulación y modelado: suavizado de curvas para representar trayectorias de robots, vehículos, etc.

Diseño asistido por computadora (CAD): modelado de contornos suaves.

Análisis estructural: representación de deformaciones.

Control automático: interpolación de trayectorias de referencia.