Theoretical Computer Science – Exercise 8

SS 2022 Jochen Schmidt

Please prepare the following exercises at home prior to the tutorial:

Exercise 1

Use the pumping lemma to show that the following language is not regular:

L =
$$\{u^k v^i a^j v^p | j > k; p > k; i, j, k, p \in \mathbb{N}_0\}.$$

Exercise 2

Consider the context-free grammar with $V = \{Z, A, B\}$, $\Sigma = \{a, b, c, =, +, *, (,), ;\}$, start symbol Z, and production rules:

$$Z \rightarrow B = A;$$

 $A \rightarrow B \mid A + A \mid A * A \mid (A)$
 $B \rightarrow aB \mid bB \mid cB \mid a \mid b \mid c$

- a) Describe in words which language is generated by the grammar. What is the meaning of the non-terminal symbols S, A, and B?
- b) Convert the grammar to Chomsky normal form.
- c) Use the CYK algorithm to check whether the following words are part of the language generated by the grammar (empty tables are provided at the end of this document):
 - b = c
 - b = c;
 - a = b * c;
 - a = (b * c;
 - c = a * ((b * c) + ba);

We will do the following exercises together during the tutorial:

Exercise 3

Consider the grammar with $V = \{ S, A, B, C, Y, Z \}, \Sigma = \{x, y, z\}, \text{ start symbol } S, \text{ and production rules:}$

$$S \rightarrow \underline{AS \mid AY}$$

$$A \rightarrow x, B \rightarrow y, C \rightarrow z, Z \rightarrow z$$

$$Y \rightarrow \underline{BY \mid BZ}$$

$$Z \rightarrow CZ$$

Using the CYK algorithm, check whether the word xyyyzzyz is part of the language defined by the grammar. Fill in the table below:

×	Y	У	Y	2	2	7	2
A	B	B	B,	۷,2	۷, ک	B	٥, ٦
			Y	7		Y	
		>	Y				
	Y	\nearrow					
5	Y						
S							

Exercise 4

Consider the grammar with $V = \{S, Y, Z\}, \Sigma = \{x, y, z\}$, start symbol S, and production rules:

$$S \rightarrow xS \mid xY$$

$$Y \rightarrow yY \mid Zy$$

$$Z \rightarrow Zz \mid z$$

- a) What type of the Chomsky hierarchy is this grammar? Restrict the type as much as possible, justify your answer.
- b) Specify the associated language in set notation. What type is the language of?
- c) Construct a Turing machine that accepts this language. Trap states may be omitted.
- d) Convert the grammar to Chomsky normal form. Show the required steps.

Tables for exercise 2

b = c

Ь	1	_
B	LΠ	A
	4	
Z		-

b = c;

Ь	Ŋ	C	;
B	E	A	
	D		
Z			-

a = b * c;

a	J	Ь	*	C	j
\mathcal{B}	E	A	R	A	
	P		T		
2		A			•
				•	
			•		
		!			

a = (b * c;

Ce	ı	(Ь	*	C	;
B	#	: 0	A	R	A	
				T		

c = a * ((b * c) + ba);

C	IJ	a	*	((Ь	¥	C)	+	Ь	Q)	<i>;</i>
B	E	A	R	<u></u>	Ö	4	R	A	Ü	Ø	G	B	٦ ،	
											G	B	· U	
							R	A	Ü	Ø	A	Ü		
						A	\	Ü	Q	A	Ü			
						A	(C)	Q	A	: <i>U</i>				
				Ö	Ö	Ä	Ø	Q A	<i>:</i>					
				:0	A	(3	A	Ü						
				0:0	A	C								
B	Ш	A	R	(O	A	Ü								
			2	O	Ä									
			R	A										
B	Ľ	A	<i></i>											
B	E	A												
B	D													
Z														