3° de Secundaria Unidad 3 2024-2025

Practica la Unidad 3

Nombre del alumno:						a:						
Aprendizajes:				Pu	ntu	ıac	iói	า:				
Comprende las series y sucesiones cuadraticas y geométricas y	Pregunta	1	2	3	4	5	6	7	8	9	10	11
sus respectivas formulaciones algebraicas.	Puntos	6	3	3	3	3	3	3	3	3	3	6
and respectives formationed angularities.	Obtenidos											
Reconoce y aplica los principales productos notables y su inter-		12	13	14	15	16	17	18	19	20	21	Total
pretación geométrica.	Puntos	6	6	12	10	3	3	3	3	6	6	97
Resuelve problemas mediante la formulación y la solución alge-	Obtenidos											
M Trestreine bioniemas mediame la formulación y la solución aixe-												

Usa las funciones trigonométricas para resolver problemas geométricos con aplicación en la vida diaria.

🙎 Formula, justifica y usa el teorema de Pitágoras para resolver

braica de ecuaciones cuadráticas.

problemas.

Ín	dice		3.	Ecuaciones cuadráticas	6
				3.1. Discriminante	6
1.	Sucesiones cuadráticas y geométricas	2		3.2. Ecuaciones cuadráticas incompletas	6
	1.1. Sucesión cuadrática	2		3.3. Ecuaciones cuadráticas completas	7
	1.2. Completando la sucesión cuadrática	3			
	1.3. Término general	3	4.	Teorema de Pitágoras	8
	-			4.1. Hallando la hipotenusa y catetos	8
	1.4. Sucesión geométrica	3		4.2. Áreas y perímetros	10
	1.5. Razón de una sucesión geométrica	4		4.3. Resolución de problemas	11
2.	Productos notables	4	5.	Trigonometría	11
	2.1. Binomios conjugados	4		5.1. Identificando lados	12
	2.2. Binomios con término común	4		5.2. Identificando funciones	13
	2.3. Binomio al cuadrado	5		5.3. Encontrando lados	14
	2.4. Binomios de la forma (mx+a)(nx+b)	5		5.4. Encontrando ángulos	15
	2.5. Binomio al cubo	5		5.5. Resolución de problemas	16

Teorema de Pitágoras

El cuadrado de la hipotenusa c es igual a la suma de los cuadrados de los catetos a y b, como se muestra a continuación:

$$a^2 + b^2 = c^2$$

La Hipotenusa

La **hipotenusa** es el lado más largo y está enfrente del ángulo recto (ver Figura). Los dos catetos son los lados más cortos que forman el ángulo recto:

Ecuación cuadrática

Una ecuación cuadrática completa en una variable es una ecuación del tipo

$$ax^2 + bx + c = 0 \tag{1}$$

donde a, b v c son números reales v $a \neq 0$. Las soluciones a una ecuación cuadrática son:

$$x = \frac{-b \pm \sqrt{\delta}}{2a}$$
 donde, $\delta = b^2 - 4ac$

que se pueden escribir en una sola expresión:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

El discriminante δ es un parámetro que indica cuantas soluciones tiene una ecuación cuadrática:

Número de soluciones =
$$\begin{cases} 2 & \text{si } \delta > 0 \\ 1 & \text{si } \delta = 0 \\ 0 & \text{si } \delta < 0 \end{cases}$$

1 Sucesiones cuadráticas y geométricas

1.1 Sucesión cuadrática

Ejemplo 1

Escribe los primeros 4 términos de las siguientes sucesiones cuadráticas:

$$2n^2 + 5n + 2$$

$$9,20,35,54$$
 b n^2+5n

6, 14, 24, 36

$$n = 1 2(1)^2 + 5(1) + 2 = 9$$

$$n = 2 2(2)^2 + 5(2) + 2 = 20$$

$$n = 3 2(3)^2 + 5(3) + 2 = 35$$

$$n = 4 2(4)^2 + 5(4) + 2 = 54$$

$$\begin{vmatrix} n = 1 & (1)^2 + 5(1) = 6 \\ n = 2 & (2)^2 + 5(2) = 14 \\ n = 3 & (3)^2 + 5(3) = 24 \\ n = 4 & (4)^2 + 5(4) = 36 \end{vmatrix}$$

Ejercicio 1 de 6 puntos

Escribe los primeros 4 términos de las siguientes sucesiones cuadráticas:

a $2n^2$

b $5n^2 + 2n$

 $n^2 - 6n$

- 1.2 Completando la sucesión cuadrática
- 1.3 Término general

Ejemplo 2

Determina el término general de las siguientes sucesiones cuadráticas:

a 8, 15, 24, 35, . . .

b 6, 9, 14, 21, ...

 $n^2 + 4n + 3$

 $n^2 + 5$

Ejercicio 2

de 3 puntos

Determina el término general de las siguientes sucesiones cuadráticas:

a 4, 10, 18, 28, . . .

b 0, 3, 8, 15, ...

c 1, 13, 33, 61, ...

1.4 Sucesión geométrica

Ejemplo 3

Escribe los primeros 4 términos de las siguientes sucesiones geométricas:

 $\mathbf{a} \quad a_n = -\left(\frac{1}{5}\right)^{n-1}$

b $a_n = 4(2)^{n-1}$

 $-1, -\frac{1}{5}, -\frac{1}{25}, -\frac{1}{125}$

4, 8, 16, 32

Ejercicio 3

de 3 puntos

Escribe los primeros 4 términos de las siguientes sucesiones geométricas:

 $a_n = (-2)^{n-1}$

b $a_n = (4)^{n-1}$

 $|\mathbf{c}| \ a_n = 2 (5)^{n-1}$

1.5 Razón de una sucesión geométrica

Ejemplo 4

Determina la razón de las siguientes sucesiones geométricas:

 $3, \frac{3}{4}, \frac{3}{16}, \frac{3}{64}, \dots$ $r = \frac{1}{4}$

- **b** $3, \frac{6}{5}, \frac{12}{25}, \frac{24}{125}, \dots$ $r = \frac{2}{5}$
- Ejercicio 4 de 3 puntos

Determina la razón de las siguientes sucesiones geométricas:

- 2 Productos notables
- 2.1 Binomios conjugados

Ejemplo 5

Desarrolla los siguientes productos notables:

 $(x-15)(x+15) = x^2-225$

b $(9x-1)(9x+1) = 81x^2 - 1$

Ejercicio 5

de 3 puntos

Desarrolla los siguientes productos notables:

$$(x+7)(x-7) =$$

b
$$(x-12y)(x+12y) =$$

b
$$(x-12y)(x+12y) =$$
 c $(10x-9y)(10x+9y) =$

2.2 Binomios con término común

Ejemplo 6

Desarrolla los siguientes productos notables:

$$(x-5)(x-6) = x^2 - 11x + 30$$

b
$$(x+4)(x+6) = x^2 + 10x + 24$$

Ejercicio 6

de 3 puntos

Desarrolla los siguientes productos notables:

$$(x-2)(x+6) =$$

b
$$(x+6)(x-10) =$$

$$(x-9)(x-2) =$$

2.3 Binomio al cuadrado

Ejemplo 7

Desarrolla los siguientes binomios al cuadrado:

b
$$(x+3)^2 = x^2 + 6x + 9$$

Ejercicio 7

de 3 puntos

Desarrolla los siguientes binomios al cuadrado:

$$(x+7y)^2 =$$

b
$$(x-9)^2 =$$

$$|c|(6x+5y)^2 =$$

2.4 Binomios de la forma (mx+a)(nx+b)

Ejemplo 8

Desarrolla los siguientes productos notables:

$$(4x-3)(2x+9) = 8x^2 + 30x - 27$$

b
$$(3x-5)(3x+6) = 9x^2 + 3x - 30$$

Ejercicio 8

de 3 puntos

Desarrolla los siguientes productos notables:

$$(3x-3)(2x-8) =$$

b
$$(4x-1)(3x+2) =$$

$$(3x-3)(2x-8) =$$

2.5 Binomio al cubo

Ejemplo 9

Desarrolla los siguientes binomios al cubo:

a
$$(5x-2y)^3 = 125x^3 - 150x^2y + 60xy^2 - 8y^3$$
 b $(x-4)^3 = x^3 - 12x^2 + 48x - 64$

b
$$(x-4)^3 = x^3 - 12x^2 + 48x - 64$$

Ejercicio 9

de 3 puntos

Desarrolla los siguientes binomios al cubo:

$$(x-3)^3 =$$

b
$$(2x+5)^3 =$$

$$(3x-4)^3 =$$

3 Ecuaciones cuadráticas

3.1 Discriminante

Ejemplo 10

Calcula el discriminante y el número de soluciones que tienen cada una de las siguientes equaciones cuadráticas:

 $25x^2 - 10x + 1$

d=0, Soluciones: 1

b
$$3x^2 + 8x - 9$$

d=172, Soluciones: 2

$$d = b^2 - 4ac$$

$$d = (-10)^2 - 4(25)(1)$$

$$d = 100 - 100$$

$$d = 0$$

$$d = b^2 - 4ac$$

$$d = (8)^2 - 4(3)(-9)$$

$$d = 64 + 108$$

$$d = 172$$

Ejercicio 10 de 3 puntos

Calcula el discriminante y el número de soluciones que tienen cada una de las siguientes equaciones cuadráticas:

 $x^2 + 14x + 49$

Soluciones:

b $x^2 - 5x$

Soluciones:

 $3x^2 + 7x + 13$

Soluciones:

3.2 Ecuaciones cuadráticas incompletas

Ejemplo 11

Resuelve las siguientes ecuaciones cuadráticas:

 $4x^2 - 7x = 0$

b
$$3x^2 - 4x = 0$$

$$0 = 4x^2 - 7x$$

$$0 = x(4x - 7)$$

$$\therefore x_1 = 0 \text{ y } x_2 = \frac{7}{4}$$

$$0 = 3x^2 - 4x$$

$$0 = x(3x - 4)$$

$$\therefore x_1 = 0 \text{ y } x_2 = \frac{4}{3}$$

Ejercicio 11

de 6 puntos

Resuelve las siguientes ecuaciones cuadráticas:

 $x^2 + 9x = 0$

b $x^2 - 49 = 0$

 $x^2 + 4x = 0$

- 3.3 Ecuaciones cuadráticas completas

Ejemplo 12

Resuelve las siguientes ecuaciones cuadráticas:

 $x^2 - 13x + 30 = 0$

$$x_{1,2} = \frac{-(-13) \pm \sqrt{(-13)^2 - 4 \cdot 1 \cdot 30}}{2 \cdot 1}$$

$$x_{1,2} = \frac{-(-13) \pm 7}{2 \cdot 1}$$

$$x_{1} = \frac{-(-13) + 7}{2 \cdot 1} = 10$$

$$x_{2} = \frac{-(-13) - 7}{2 \cdot 1} = 3$$

b $x^2 + 2x - 63 = 0$

$$x_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-63)}}{2 \cdot 1}$$

$$x_{1,2} = \frac{-2 \pm 16}{2 \cdot 1}$$

$$x_{1} = \frac{-2 + 16}{2 \cdot 1} = 7$$

$$x_{2} = \frac{-2 - 16}{2 \cdot 1} = -9$$

Ejercicio 12

de 6 puntos

Resuelve las siguientes ecuaciones cuadráticas:

- $x^2 3x 40 = 0$
- $x^2 2x 15 = 0$

- **b** $x^2 3x 28 = 0$
- **d** $2x^2 9x 5 = 0$

- 4 Teorema de Pitágoras
- 4.1 Hallando la hipotenusa y catetos

Ejemplo 13

En los siguientes triángulos rectángulos, calcula el lado x que falta:

a

x = 38.11

 $c^{2} = a^{2} + b^{2}$ $44^{2} = 22^{2} + x^{2}$ $44^{2} - 22^{2} = x^{2}$ $\sqrt{44^{2} - 22^{2}} = x$ $38.11 \simeq x$

 $c^2 = a^2 + b^2$

 $x^2 = 8^2 + 20^2$

 $x^2 = 64 + 400$

 $x = \sqrt{464}$

 $x \simeq 21.54$

Ejercicio 13 de 6 puntos En los siguientes triángulos rectángulos, calcula el lado \boldsymbol{x} que falta: С a е x =x =x =21 f d b x =

4.2 Áreas y perímetros

4.3 Resolución de problemas

Ejemplo 15	
Resuelve los siguientes problemas:	
O Desde la ventana de una torre en la playa se ve un barco a 85 metros, cuando realmente se encuentra a 84 metros de la torre. ¿A qué altura está la ventana?	b Calcula la altura de un triángulo isósceles cuya base mide 12 cm y sus lados iguales miden 25 cm.
13	24.26
Ejercicio 15	de 10 puntos
Resuelve los siguientes problemas: O En una rampa, un ciclista avanza una distancia real o de 78 metros. ¿Cuál es la altura de la rampa?	de 85 metros mientras que avanza una distancia horizontal
	s y la distancia desde el punto de penalti hasta la raya de n si sale desde el punto de penalti y se estrella en la parte

5 Trigonometría

5.1 Identificando lados

5.2 Identificando funciones

5.3 Encontrando lados

Usando la función trigonométrica correcta, encuentra el valor de los lados x, para cada uno de los siguientes ejercicios:

Ejercicio 19

a

de 3 puntos

Usando la función trigonométrica correcta, encuentra el valor de los lados x, para cada uno de los siguientes ejercicios:

5.4 Encontrando ángulos

Ejemplo 19

Usando la función trigonométrica correcta, encuentra el valor de los ángulos x, para cada uno de los siguientes ejercicios:

x = 13.13

С

x = 34.33

Ejercicio 20

de 6 puntos

sando la función trigonométrica correcta, encuentra el valor de los ángulos x, para cada uno de los siguientes ejercicios:

b

b x =

5.5 Resolución de problemas

Ejemplo 20	
Resuelve los siguientes problemas:	
© El piloto de un avión debe aproximarse a la pista de aterrizaje con un ángulo de 7° con respecto a la horizontal. Si vuela a una altura de 8,000 metros, ¿a qué distancia de la pista debe iniciar su descenso?	b El sonar de un barco de salvamiento localiza los restos de un naufragio en un ángulo de depresión de 40°. Un buzo es bajado 40 metros hasta el fondo del mar, ¿cuánto necesita avanzar el buzo por el fondo para encontrar los restos del naufragio?
65154.77	47.67
Ejercicio 21	de 6 puntos
50 m de altura?	, ¿cuánto medirá la sombra proyectada por un edificio de contra un edificio forma un ángulo de 70° con el suelo. ¿A
C La diagonal de un rectángulo mide 8.25 cm y el me por la diagonal y el lado mayor del rectángulo.	nor de sus lados mide 3.14 cm. Calcula el ángulo formado