

Introduction

Problem:

- Baseline RAG has issues
 - to answer questions that require information from different pieces of corpus
 - when complex insights are required
 - when it should understand complicated concepts

Solution:

- Draft Generation
 - Multiple drafts from subset of retrieved docs are created
 - Aim: increased diversity, reduced redundancy
- 2. Draft Verification
 - Typically uses an LLM to evaluate drafts
 - Selects best answer

RAG approaches

Figure 1: Illustration of different RAG approaches. Given a knowledge-intensive query Q and retrieved documents, (a) Standard RAG incorporates all documents into the prompt, increasing input length and slowing inference; (b) Self-Reflective RAG (Asai et al., 2023) requires specialized instruction-tuning of the general-purpose language model (LM) to generate specific tags for self-reflection; (c) Corrective RAG (Yan et al., 2024) employs an external retrieval evaluator to refine document quality, focusing solely on contextual information without enhancing reasoning capabilities; (d) In contrast, our proposed SPECULATIVE RAG leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, specialized LM. Each draft is generated from a distinct subset of retrieved documents, providing diverse perspectives on the evidence while minimizing the number of input tokens per draft.

SPECULATIVE RAG: ENHANCING RETRIEVAL AUG-MENTED GENERATION THROUGH DRAFTING

Zilong Wang^{1*} Zifeng Wang² Long T. Le² Huaixiu Steven Zheng³ Swaroop Mishra³ Vincent Perot³ Yuwei Zhang¹ Anush Mattapalli⁴ Ankur Taly⁴ Jingbo Shang¹ Chen-Yu Lee² Tomas Pfister²

¹University of California, San Diego ²Google Cloud AI Research

³Google DeepMind ⁴Google Cloud AI

How does it work?

Drafter: generates drafts and rationales, Understands multiple perspectives **Evaluator:** evaluates draft answers based on question and rationale, using generalist LLM, best draft accepted gollnickdata.de

Performance

Speculative RAG compared to the standard RAG with various backbone LLMs, including Mistral-7B, Mixtral-8x7B, Mistral-Instruct-7B, and Mixtral-Instruct-8x7B. On all datasets, Speculative RAG achieves the best performance.

Source: https://research.google/blog/speculative-rag-enhancing-retrieval-augmented-generation-through-drafting/

