ראייה ממוחשבת

דף סיכום

סגמנטציה - מצגת 3:

- גידול שטחים עמ' 6-28:
- :7-26 (Threshold) סגמנטציה על ידי ערך סף
 - 11 אלגוריתם
 - 19 השפעת רעשים
 - 19 (Adaptive threshold) סף גמיש
 - 27 גידול שטחים
 - 28 אלגוריתם
 - 29-30 ′ שלכה עמ׳ 6-29
 - 21 'עמ' (Overlapping) עמ'
 - זיהוי קצבות עמ' 32-48:
 - 36-37 נגזרת ראשונה
 - 38 Laplacian , נגזרת שנייה
 - 39-40 השפעת רעשים
 - החלקה ונגזרת 41-43
 - 44-48 ' מעקב קצבות עמ׳
- סגמנטציה בתמונות צבעוניות עמ' 49-51
- עמ' 52-58 עמ' Clustering סגמנטציה בעזרת • סגמנטציה בעזרת
 - עמ' 59 סגמנטציה לצבעי HSI סגמנטציה ל

מיצוי מאפיינים - מצגת 4:

- התמרות עמ' 28-10:
 - התמרת האף 11-24
 - זיהוי קווים 12-19:
 - תצוגה פולרית 16-18

- :21-24 זיהוי מעגל
- 25-28 מומנטים
- זיהוי פינות עמ' 29-42:
- :33-40 Harris corner detection
 - 35 נוסחא
 - 39 עוד וריאציה
 - רגישות לשינויים בתמונה 42
 - :43-50 עמ' HOG •
- 70-80 'עמ' Haar like features •
- קריטריונים לבחירת מאפיינים עמ' 81-82
- הפרדה לינארית באמצעות הוספת מאפיין 83
 - צמצום מאפיינים 84-107
 - מדד הפרדה 90
 - :95-107 PCA •
 - 97 Karhunen-Loeve transform (KLT)
 - 101 אלגוריתם
 - 102 ערך השגיאה •
 - 104 דוגמא לאלגוריתם

סיווג - מצגת 5:

- התאמת תבניות עמ' 5-10:
 - 8 נוסחא
 - חוזקות וחולשות 10
- מרחק מינימלי עמ' 11-15:
 - 14 נוסחא •
 - חוזקות וחולשות 15
- שכן קרוב ביותר עמ' 18-16:
 - חוזקות וחולשות 18
- סבירות מירבית עמ' 48-19:
 - כלל החלטה 23
- שימוש בהתפלגות נורמלית 28-35
- קירוב התפלגות באמצעות היסטוגרמה 43-48
 - 49 'עמ' KNN •
 - 50-70 'עמ' SVM •
 - 99-104 'עמ' Kmeans •
 - שגיאת סיווג עמ' 111-107:
 - 110 נוסחא •
- :עד הסוף 112 עמ׳ Feature reduction & mapping שוב פעם •

נוסחאות ומשוואות:

מומנטים:

מומנטים ממורכזים:

$$\mu_{ij} = \sum_{x} \sum_{y} g(x, y)(x - \overline{x})^{i}(y - \overline{y})^{j}, \quad i, j = 0, 1, 2, \dots$$

:כאשר

$$\bar{x} = \frac{m_{10}}{m_{00}}, \quad \bar{y} = \frac{m_{01}}{m_{00}}$$

מומנטים מנורמלים:

$$\eta_{ij} = \frac{\mu_{ij}}{(\mu_{00})^k}, \quad k = \lfloor \frac{(i+j)}{2} \rfloor + 1$$

זיהוי פינות:

:Harris

$$E(u,v) \approxeq [u,v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

:כאשר

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

צמצום מאפיינים:

מדד הפרדה:

$$J = \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}$$

סיווג לפי סבירות מירבית:

ישנם 4 אפשרויות:

בכל הדוגמאות, ובנוסף: Σ_i שווה בכל הדוגמאות, ובנוסף:

$$\Sigma_{i} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \quad or \quad \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{bmatrix}$$

אז הסיווג לפי לפי המרחק המינימלי:

$$\min\{|\underline{x} - \underline{\mu}_i|^2\}$$

בנוסף: בכל הדוגמאות, ובנוסף: Σ_i שווה בכל הדוגמאות, ובנוסף:

$$\Sigma_{i} = \begin{bmatrix} \sigma_{1}^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & \cdots & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{n}^{2} \end{bmatrix} \quad \Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma_{1}^{2}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sigma_{2}^{2}} & \cdots & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\sigma_{n}^{2}} \end{bmatrix}$$

אז הסיווג לפי לפי המרחק המינימלי ממושקל:

$$d_i^2 = \min\{\sum_{k=1}^n \frac{(x_k - \mu_{ik})^2}{\sigma_k^2}\}$$

בלבד: Σ שווה בכל הדוגמאות בלבד: כאשר מטריצת השונויות כלל הסיווג הוא:

$$\min\{d_i^2\} = \min\{-2\underline{\mu}_i^T \Sigma^{-1} \underline{x} + \underline{\mu}_i^T \Sigma^{-1} \underline{\mu}_i\} = \underline{w}_i^T \underline{x} + u_i$$

בכל הדוגמאות: Σ שונה בכל הדוגמאות: Σ כאשר מטריצת השונויות כלל הסיווג הוא:

$$d_i^2 = \min\{(\underline{x} - \underline{\mu}_i)^T \Sigma^{-1} (\underline{x} - \underline{\mu}_i)\} = \underline{x}^T \Sigma^{-1} \underline{x} - 2\underline{\mu}_i^T \Sigma^{-1} \underline{x} + \underline{\mu}_i^T \Sigma^{-1} \underline{\mu}_i$$

$$(\underline{x}^T \Sigma^{-1} \underline{\mu}_i = (\Sigma^{-1} \underline{\mu}_i)^T \underline{x} = \underline{\mu}_i^T (\Sigma^{-1})^T \underline{x} = \underline{\mu}_i^T \Sigma^{-1} \underline{x})$$