More on the Representation Theory of $\mathrm{GL}(V)$

We're working over the fixed ground field \mathbb{C} . We abbreviate $\otimes_{\mathbb{C}}$ as \otimes . We denote by V some m-dimensional vector space. The set of natural numbers \mathbb{N} contains 0. For any partition λ we denote by $\tilde{\lambda}$ the transpose of λ .

In this talk we will continue to explain the following connections:

1 Review

1.1 Schur modules

We have previously seen that the isomorphism classes of irreducible finite-dimensional polynomial representations of GL(V) are indexed by the set of all partitions: For every partition λ with $\lambda = (\lambda_1, \dots, \lambda_t)$ let

$$\widetilde{M}^{\lambda}(V) = \bigwedge^{\widetilde{\lambda}_1}(V) \otimes \cdots \otimes \bigwedge^{\widetilde{\lambda}_n}(V)$$

where $\tilde{\lambda}$ is the transposed of λ . The tensor factor $\bigwedge^{\tilde{\lambda}_j}(V)$ hence comes from the j-th column of the Young diagram associated to λ , which has height $\tilde{\lambda}_j$. Note that $\widetilde{M}^{\lambda}(V) = 0$ if $\ell(\lambda) > m$, i.e. if the Young diagram of λ has more than m rows.

Example 1. The Young diagram of $\lambda = (3, 3, 2, 1)$ is given by

and therefore

$$\widetilde{M}^{\lambda}(V) = \bigwedge^{4}(V) \otimes \bigwedge^{3}(V) \otimes \bigwedge^{2}(V).$$

The **Schur module** associated to λ is given by

$$S^{\lambda}(V) = \widetilde{M}^{\lambda}(V)/Q^{\lambda}(V)$$

for a certain submodule Q_{λ} of \widetilde{M}_{λ} . For $\ell(\lambda) \leq m$ these are precisely the irreducible finite-dimensional polynomial representations of GL(V).

Example 2.

- (1) For $\lambda = (1, ..., 1) \vdash n$ we have $S^{\lambda}(V) = \bigwedge^{n}(V)$.
- (2) For $\lambda = (n)$ we have $S^{\lambda}(V) = \operatorname{Sym}^{n}(V)$.

1.2 Characters

The polynomial GL(V)-representations can also be described by their characters: Using a basis e_1, \ldots, e_m of V we may identify GL(V) with $GL_m(\mathbb{C})$. For any finitedimensional polynomial representation $\rho \colon GL(V) \to GL(W)$ the **weight space** W_β for $\beta = (\beta_1, \ldots, \beta_m) \in \mathbb{N}^m$ is given by

$$W_{\beta} = \{ w \in W \mid \operatorname{diag}(x_1, \dots, x_m).w = x_1^{\beta_1} \cdots x_m^{\beta_m} w \text{ for all } x_1, \dots, x_m \in \mathbb{C}^{\times} \}.$$

The representation W decomposes into weight spaces in the sense that $W = \bigoplus_{\beta \in \mathbb{N}^m} W_\beta$ and its **character** is the polynomial $\operatorname{Char}(W) \in \mathbb{Z}[x_1, \dots, x_m]$ given by

$$\operatorname{Char}(W)(x_1,\ldots,x_m) = \operatorname{tr}(\rho(\operatorname{diag}(x_1,\ldots,x_m))) = \sum_{\beta \in \mathbb{N}^m} \dim(W_\beta) x^\beta.$$

The character Char(W) is actually a symmetric polynomial, and the representation W is (up to isomorphism) uniquely determined by its character.

Example 3.

(1) The basis $e_{i_1} \wedge \cdots \wedge e_{i_n}$ of $\bigwedge^n(V)$ with $i_1 < \cdots < i_n$ consists of weight vectors, and its character is given by

$$\operatorname{Char}\left(\bigwedge^{n}(V)\right)(x_{1},\ldots,x_{m}) = \sum_{1 \leq i_{1} < \cdots < i_{n} \leq m} x_{i_{1}} \cdots x_{i_{n}} = e_{n}(x_{1},\ldots,x_{m}),$$

the n-th elementary symmetric polynomial in m variables.

(2) We see similarly that

$$\operatorname{Char}(\operatorname{Sym}^n(V))(x_1,\ldots,x_m) = \sum_{1 \le i_1 \le \cdots \le i_n \le m} x_{i_1} \cdots x_{i_n} = h_n(x_1,\ldots,x_m)$$

is the n-th complete homogeneous symmetric polynomial in m variables.

2 From S_n to GL(V)

We denote for any group G by $\mathbb{1}_G$ the trivial representation of G. We denote for $n \geq 1$ by \mathbb{U}_{S_n} the sign representation of the symmetric group S_n .

For every $n \geq 0$ the tensor power $V^{\otimes n}$ is again a GL(V)-representation, and it is also a right S_n -representation via

$$(e_1 \otimes \cdots \otimes e_n).\sigma = e_{\sigma(1)} \otimes \cdots \otimes e_{\sigma(n)}.$$

These actions commute. It follows that for every (left) S_n -representation E we get a GL(V)-representation

$$\mathbb{S}(E) := V^{\otimes n} \otimes_{\mathbb{C}[S_n]} E.$$

This construction results in an exact additive functor

$$S: S_n\operatorname{-rep} \to \operatorname{GL}(V)\operatorname{-rep},$$

where S_n -rep is the category of finite-dimensional S_n -representations and GL(V)-rep denotes the category of finite-dimensional polynomial GL(V)-representations. The functor S is the **Schur functor**. It depends on both n and V, but we will omit this in our notation.

Example 4.

(1) We have that $\mathbb{1}_{S_n} \cong \mathbb{C}[S_n]/\langle \sigma - 1 \mid \sigma \in S_n \rangle_{\mathbb{C}}$ and thus

$$\begin{split} \mathbb{S}(\mathbb{1}_{\mathbf{S}_n}) &\cong V^{\otimes n} \otimes_{\mathbb{C}[\mathbf{S}_n]} \mathbb{C}[\mathbf{S}_n] / \langle \sigma - 1 \mid \sigma \in \mathbf{S}_n \rangle_{\mathbb{C}} \\ &\cong V^{\otimes n} / \langle x - x.\sigma \mid t \in V^{\otimes n} \rangle_{\mathbb{C}} \\ &\cong \operatorname{Sym}^n(V) \,. \end{split}$$

(2) We find similarly that $\mathbb{S}(\mathbb{U}_{S_n}) \cong \bigwedge^n(V)$.

If E_1, \ldots, E_t are representations of the groups S_{n_1}, \ldots, S_{n_t} then for $n = n_1 + \cdots + n_t$,

$$E_1 \circ \cdots \circ E_t := \mathbb{C}[S_n] \otimes_{\mathbb{C}[S_{n_1} \times \cdots \times S_{n_t}]} (E_1 \boxtimes \cdots \boxtimes E_t)$$

is a representation of S_n .

Lemma 5. Let E_i , E and F be representations of symmetric groups. Then

- (1) $(E_1 \circ \cdots \circ E_s) \circ \cdots \circ (F_1 \circ \cdots \circ F_t) \cong E_1 \circ \cdots \circ F_t$
- (2) $E \circ F \cong F \circ E$.

Lemma 6. If E and F are representations of symmetric groups S_a and S_b then

$$\mathbb{S}(E \circ F) \cong \mathbb{S}(E) \otimes \mathbb{S}(F)$$
.

3 Some representation theory of S_n

For better use of the Schur functor \mathbb{S} we need some understand of the representation theory of the symmetric group S_n , where $n \geq 0$. In this section we always assume that $\lambda \vdash n$ unless otherwise specified.

Recall that a **semistandard Young tableaux** of shape λ assigns to each box of the Young diagram of λ a natural number $1, 2, 3, \ldots$, weakly increasing in each row and strictly increasing in each column. A **numbering** of shape λ fills in the boxes of the Young diagram of λ bijectively with the numbers $1, \ldots, n$. A **standard Young tableaux** is a semistandard Young tableaux that is also a numbering. This means that we assign to the boxes of the Young diagram of λ bijectively the integers $1, 2, \ldots, n$, such that both rows and columns are (necessarily strictly) increasing.

3.1 The representation M^{λ}

Two numbering T and T' of a Young diagram of shape λ are **row-equivalent** if they have the same entries in each row. A **row tabloid** is an equivalence class of row-equivalent numbering. A row tabloid can be represented as follows:

Every numbering T defines a row tabloid [T].

The group S_n acts transitive on the set of numberings of shape λ via $(\sigma T)_{ij} = \sigma(T_{ij})$, which induces a transitive group action on the set of row tabloids of shape λ . The **row group** R(T) of a numbering T is given by all permutations $\sigma \in S_n$ that act row-wise on T, i.e. the stabilizer of the associated tabloid [T].

It follows that S_n acts linearly on M^{λ} , the free vector space on the set of row tabloids of shape λ , and that for any numbering T of shape λ ,

$$M^{\lambda} \cong \mathbb{C}[S_n]/(p-1 \mid p \in R(T))$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[R(T)]} \mathbb{C}[R(T)]/(p-1 \mid p \in R(T))$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[R(T)]} \mathbb{1}_{R(T)}$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[S_{\lambda_1} \times \dots \times S_{\lambda_t}]} \mathbb{1}_{S_{\lambda_1} \times \dots \times S_{\lambda_t}}$$

$$\cong \mathbb{C}[S_n] \otimes_{\mathbb{C}[S_{\lambda_1} \times \dots \times S_{\lambda_t}]} (\mathbb{1}_{S_{\lambda_1}} \boxtimes \dots \boxtimes \mathbb{1}_{S_{\lambda_t}})$$

$$= \mathbb{1}_{S_{\lambda_1}} \circ \dots \circ \mathbb{1}_{S_{\lambda_t}}.$$

It follows that

$$\mathbb{S}(M^{\lambda}) \cong \mathbb{S}(\mathbb{1}_{S_{\lambda_{1}}} \circ \cdots \circ \mathbb{1}_{S_{\lambda_{t}}})$$

$$\cong \mathbb{S}(\mathbb{1}_{S_{\lambda_{1}}}) \otimes \cdots \otimes \mathbb{S}(\mathbb{1}_{S_{\lambda_{t}}})$$

$$\cong \operatorname{Sym}^{\lambda_{1}}(V) \otimes \cdots \otimes \operatorname{Sym}^{\lambda_{t}}(V)$$

$$=: M^{\lambda}(V).$$

3.2 The representation \widetilde{M}^{λ}

We can alter the construction of M^{λ} in two ways: Working with column instead of rows and introducing an alternating sign.

We denote by C(T) the column group of a numbering T, i.e. all permutations that act column-wise on T. We let \widetilde{M}^{λ} be the free vector generated by the numbering T of shape λ subject to the relations $\sigma.T = \operatorname{sgn}(\sigma)T$ for $\sigma \in C(T)$. The resulting vector space generators [T] of \widetilde{M}^{λ} may be visualized as follows:

$$\begin{vmatrix} 1 & 4 \\ 2 & 5 \\ 3 \end{vmatrix} = - \begin{vmatrix} 2 & 4 \\ 1 & 5 \\ 3 \end{vmatrix} = \begin{vmatrix} 2 & 5 \\ 1 & 4 \end{vmatrix}$$

The group S_n acts on \widetilde{M}^{λ} via σ . $[T] = [\sigma.T]$ for any numbering T of shape λ , and

$$\widetilde{M}^{\lambda} \cong \mathbb{C}[S_n]/(q - \operatorname{sgn}(q)1 \mid q \in C(T))$$

 $\cong \mathbb{U}_{S_{\tilde{\lambda}_1}} \circ \cdots \circ \mathbb{U}_{S_{\tilde{\lambda}_t}}.$

It follows that

$$\mathbb{S}\big(\widetilde{M}^\lambda\big) \cong \bigwedge^{\widetilde{\lambda}_1}(V) \otimes \cdots \otimes \bigwedge^{\widetilde{\lambda}_t}(V) = \widetilde{M}^\lambda(V) \,.$$

3.3 Specht modules

The irreducible representations of the symmetric group S_n can be indexed by the partitions $\lambda \vdash n$ and constructed as follows:

If T is any numbering of shape λ then its **Young centralizer** is the element

$$c_T := \sum_{q \in C(T)} \operatorname{sgn}(q) q \in \mathbb{C}[S_n].$$

The **Specht module** S^{λ} is the subspace of M^{λ} spanned by the elements $v_T := c_T \cdot [T]$ as T ranges through the numbering of shape λ . This is a subrepresentation of M^{λ} .

Theorem 7 (Classification of irreducible representations of S_n).

(1) The representations S^{λ} with $\lambda \vdash n$ are pairwise non-isomorphic irreducible representations.

- (2) Every irreducible representation of S_n is of the form S^{λ} for some partition $\lambda \vdash n$.
- (3) The elements v_T where T ranges through the standard Young tableaux of shape λ form a basis of S^{λ} . Hence

 $\dim S^{\lambda} = \text{number of standard Young tableaux of shape } \lambda$.

One can also construct the Specht module S^{λ} as a quotient of the representation \widetilde{M}^{λ} : The map

 $\widetilde{M}^{\lambda} \to S^{\lambda} \quad [T] \mapsto v_T$

is a well-defined surjective homomorphism of S_n -representations. Its kernel Q^{λ} can be described similarly to $Q^{\lambda}(V)$, and it follows that under the isomorphism $\mathbb{S}(\widetilde{M}^{\lambda}) \cong \widetilde{M}^{\lambda}(V)$ we have $\mathbb{S}(Q^{\lambda}) \cong Q^{\lambda}(V)$.

Theorem 8. For any partition $\lambda \vdash n$,

$$\mathbb{S}(S^{\lambda}) \cong S^{\lambda}(V) .$$

Proof. By applying the (exact) functor S(-) to the short exact sequence

$$0 \to Q^{\lambda} \to \widetilde{M}^{\lambda} \to S^{\lambda} \to 0$$

we get the short exact sequence

$$0 \to \mathbb{S}(Q^{\lambda}) \to \mathbb{S}(\widetilde{M}^{\lambda}) \to \mathbb{S}(S^{\lambda}) \to 0e$$

and find that

$$\mathbb{S}(S^{\lambda}) \cong \mathbb{S}(\widetilde{M}^{\lambda})/\mathbb{S}(Q^{\lambda}) \cong \widetilde{M}^{\lambda}(V)/Q^{\lambda}(V) \cong S^{\lambda}(V)\,,$$

proving the assertion.

Remark 9. If $\ell(\lambda) > m$, i.e. if the Young diagram of λ has more than $m = \dim(V)$ rows, then $\mathbb{S}(S^{\lambda}) = S^{\lambda}(V) = 0$. If $\ell(\lambda) \leq m$ then $\mathbb{S}(S^{\lambda}) = S^{\lambda}(V)$ is again an irreducible representation.

Corollary 10. For any $n \geq 0$, $V^{\otimes n} \cong \bigoplus_{\lambda \vdash n} S^{\lambda}(V)^{\oplus f^{\lambda}}$ where f^{λ} denotes the number of standard Young tableaux of shape λ .

Proof. We find with Theorem 7 and Maschke's theorem that

$$\mathbb{C}[S_n] \cong \bigoplus_{\lambda \vdash n} (S^{\lambda})^{\oplus f^{\lambda}}$$

with

 $f^{\lambda} = \text{multiplicity of } S_{\lambda} \text{ in } \mathbb{C}[S_n]$

= dimension of S_{λ}

= number of standard Young tableaux of shape λ

where the second equality follows (for example) from the Artin–Wedderburn theorem. It follows that

$$V^{\otimes n} = V^{\otimes n} \otimes_{\mathbb{C}[S_n]} \mathbb{C}[S_n]$$

$$\cong \mathbb{S}(\mathbb{C}[S_n])$$

$$\cong \mathbb{S}\left(\bigoplus_{\lambda \vdash n} (S^{\lambda})^{\oplus f^{\lambda}}\right)$$

$$\cong \bigoplus_{\lambda \vdash n} \mathbb{S}(S^{\lambda})^{\oplus f^{\lambda}}$$

$$\cong \bigoplus_{\lambda \vdash n} S^{\lambda}(V)^{\oplus f^{\lambda}}$$

as claimed.

4 Translation into ring language

4.1 The Grothendieck ring of GL(V)

Recall that the Grothendieck group $K_0(A)$ of a semisimple abelian category A is generated by the isomorphism classes of objects of A subject to the relation $[A]+[B]=[A\oplus B]$ for any two objects $A,B\in \mathcal{A}$. Then in particular

$$[A] + [B] = [A \oplus B] \tag{1}$$

for all $A, B \in \mathcal{A}$, and if \mathcal{A} semisimple then these relations suffice to define $K_0(GL(V))$. Let \mathcal{A} be the semisimple category of finite-dimensional polynomial representations of GL(V). We abbreviate $K_0(GL(V)) := K_0(\mathcal{A})$ This becomes a ring when endowed with the multiplication

$$[V] \cdot [W] = [V \otimes W].$$

It follows from last week's classification of irreducible finite-dimensional polynomial GL(V)-representations that $K_0(GL(V))$ admits a \mathbb{Z} -basis given by the isomorphism classes $[S^{\lambda}(V)]$ where λ ranges through all partitions with $\ell(\lambda) \leq m$.

The character of a GL(V)-representation results in a well-defined ring homomorphism

Char:
$$K_0(GL(V)) \to \Lambda(m)$$

where $\Lambda(m)$ denotes the ring of symmetric polynomials in the variables x_1, \ldots, x_m .

4.2 The representation ring of the symmetric groups

For every $n \geq 0$ let R_n be the Grothendieck group of S_n -rep, the category of finite-dimensional S_n -representations. We can define on $R := \bigoplus_{n \geq 0} R_n$ a multiplication via

$$[E] \cdot [F] = [E \circ F].$$

This makes R into a commutative graded ring.

The category S_n -rep is semisimple by Maschke's theorem and it follows from Theorem 7 that R_n admits a \mathbb{Z} -basis given by the isomorphism classes $[S^{\lambda}]$ with $\lambda \vdash n$. The ring R hence damits a \mathbb{Z} -basis given by the isomorphism classes $[S^{\lambda}]$ where λ ranges through all partitions (of all natural numbers).

The additivity of the Schur functor(s) $S: S_n$ -rep $\to A$ gives for every $n \ge 0$ a group homomorphism $R_n \to K_0(GL(V))$, which together give a group homomorphism $R \to K_0(GL(V))$. It follows from Lemma 6 that this is a ring homomorphism. By abuse of notation we denote this homomorphism again by S.

We have argued in Remark 9 that the kernel of $\mathbb{S}: R \to \mathrm{K}_0(\mathrm{GL}(V))$ is spanned by those $[S^{\lambda}]$ with $\ell(\lambda) > m$, whereas all other basis vector $[S^{\lambda}]$ with $\ell(\lambda) \leq m$ are mapped bijectively onto the basis $[S^{\lambda}(V)]$ of $\mathrm{K}_0(\mathrm{GL}(V))$.

4.3 The ring of symmetric functions

For every $k \geq 0$ let $\Lambda(k)$ denote the ring of symmetric polynomials, a subring of $\mathbb{Z}[x_1,\ldots,x_k]$.

When dealing with symmetric polynomials it often happens that the number of variables, k, does not matter: One has a family $(f_k)_{k\geq 0}$ of symmetric polynomials $f_k\in\Lambda(k)$ such that $f_k(x_1,\ldots,x_{k-1},0)=f_{k-1}(x_1,\ldots,x_{k-1})$ for every $k\geq 1$, and for every $k\geq 1$ an identity involving f_k which reduces for $x_k\to 0$ to the identity involving f_{k-1} .

To formalize this phenomenon we introduce the **ring of symmetric functions** Λ : For every degree $n \geq 0$ we set

$$\Lambda_n := \left\{ (f_k)_{k \ge 0} \middle| \begin{array}{c} f_k \in \Lambda_n(k) \text{ with} \\ f_k(x_1, \dots, x_{k-1}, 0) = f_{k-1}(x_1, \dots, x_{k-1}) \\ \text{for every } k \ge 1 \end{array} \right\}$$

where $\Lambda_n(k) \to \Lambda_n(k-1)$ is the group homomorphism given by setting $x_k \to 0$. We combine these groups into a graded ring $\Lambda = \bigoplus_{n>0} \Lambda_n$ with multiplication given by

$$(f_k)_{k\geq 0}\cdot (g_k)_{k\geq 0}\coloneqq (f_kg_k)_{k\geq 0}.$$

Remark 11. We have $\Lambda = \lim(\Lambda(0) \leftarrow \Lambda(1) \leftarrow \Lambda(2) \leftarrow \Lambda(3) \leftarrow \cdots)$ in the category of graded rings.

Example 12. For every degree $n \geq 0$ we have an element

$$e_n := (e_n(), e_n(x_1), e_n(x_1, x_2), e_n(x_1, x_2, x_3), \dots) \in \Lambda_n$$

and similarly elements $h_n, p_n \in \Lambda_n$. We get for every partition $\lambda = (\lambda_1, \dots, \lambda_t)$ an induced element

$$e_{\lambda} \coloneqq e_{\lambda_1} \cdots e_{\lambda_t} \in \Lambda_{|\lambda|}$$

and similarly elements $h_{\lambda}, p_{\lambda} \in \Lambda_{|\lambda|}$.

Example 13 (Schur polynomials and Schur functions). Let λ be a partition. For every semistandard Young tableaux T of shape λ with entries in $\{1, \ldots, k\}$ let

$$x_T \coloneqq \prod_{i \in T} x_i$$
.

The **Schur polynomial** $s_{\lambda}(x_1,\ldots,x_k)$ is defined as

$$s_{\lambda}(x_1,\ldots,x_k) = \sum_{T} x_{T'} \in \mathbb{Z}[x_1,\ldots,x_n]$$

where T ranges through the semistandard Young tableaux of shape λ with entries in $\{1, \ldots, k\}$.

We observe the following:

- (1) The Schur polynomial $s_{\lambda}(x_1,\ldots,x_k)$ is homogeneous of degree $|\lambda|$.
- (2) If $\ell(\lambda) > k$, i.e. if the Young diagram of λ has more than k rows, then the Schur polynomial $s_{\lambda}(x_1, \ldots, x_k)$ vanishes since there exist no semistandard Young tableaux of shape λ with entries in $\{1, \ldots, k\}$. (We don't have enough entries to make the first column strictly increasing, which is required for a semistandard Young tableaux.)
- (3) The Specht module $S^{\lambda}(V)$ has a basis e_T where T ranges through the semistandard Young tableaux with entries in $\{1, \ldots, m\}$. Each e_T is a weight vector with corresponding weight x_T . Hence

$$s_{\lambda}(x_1,\ldots,x_m) = \operatorname{Char}(S^{\lambda}(V))(x_1,\ldots,x_m).$$

This shows in particular that $s_{\lambda}(x_1, \ldots, x_m)$ is a symmetric polynomial. We also see again that $s_{\lambda}(x_1, \ldots, x_m) = 0$ if $\ell(\lambda) > m$ since then $S^{\lambda}(V) = 0$.

(4) It holds that $s_{\lambda}(x_1, \dots, x_{k-1}, 0) = s_{\lambda}(x_1, \dots, x_{k-1}).$

We find that we get a well-defined element $s_{\lambda} \in \Lambda_{|\lambda|}$, the **Schur function** associated to λ .

Proposition 14. For every $k \geq 0$ the ring of symmetric polynomials $\Lambda(k)$ has the Schur polynomials $s_{\lambda}(x_1, \ldots, x_k)$ with $\ell(\lambda) \leq k$ as a \mathbb{Z} -basis.

Corollary 15. The ring homomorphism Char: $K_0(GL(V)) \to \Lambda(m)$ is an isomorphim.

Proof. The basis $[S^{\lambda}(V)]$ of $K_0(GL(V))$ is mapped to the basis $s_{\lambda}(x_1, \ldots, x_m)$ of $\Lambda(m)$, both indexed by the partitions λ with $\ell(\lambda) \leq m$.

We have for every $k \geq 0$ a homomorphism of graded rings

$$\Lambda \to \Lambda(k)$$
, $f \mapsto f(x_1, \dots, x_k)$

that assigns to f the entailed symmetric polynomial in k variables. An equality f = g holds in Λ if and only if for every $k \ge 0$ the equality $f(x_1, \ldots, x_k) = g(x_1, \ldots, x_k)$ hold.

Proposition 16.

- (1) The symmetric functions e_1, e_2, \ldots generate Λ and are algebraically independent.
- (2) The symmetric functions h_1, h_2, \ldots generate Λ and are algebraically independent.
- (3) The monomials e_{λ} where λ ranges through all partitions form a \mathbb{Z} -basis of Λ .
- (4) The monomials h_{λ} where λ ranges through all partitions form a \mathbb{Z} -basis of Λ .
- (5) The symmetric functions s_{λ} where λ ranges through all partitions form a \mathbb{Z} -basis of Λ

Theorem 17. Let $\Phi \colon \Lambda \to R$ be the unique additive group homomorphism that maps the basis element $e_{\tilde{\lambda}}$ to the element $[\widetilde{M}^{\lambda}]$ where λ ranges through all partitions.

- (1) The map Φ is an isomorphism of rings.
- (2) It holds that $\Phi(h_{\lambda}) = [M^{\lambda}].$
- (3) It holds that $\Phi(s_{\lambda}) = [S^{\lambda}].$

The multiplicity of Φ stems from the identity $\widetilde{M}^{\lambda} = \mathbb{U}_{\lambda_1} \circ \cdots \circ \mathbb{U}_{\lambda_t}$ for $\lambda = (\lambda_1, \dots, \lambda_t)$.

5 Conclusion

Corollary 18. The composition

$$\Lambda \xrightarrow{\Phi^{-1}} R \xrightarrow{\mathbb{S}} \mathrm{K}_0(\mathrm{GL}(V)) \xrightarrow{\mathrm{Char}} \Lambda(m)$$

is given by $f \mapsto f(x_1, \dots, x_m)$.

Proof. The assertion holds for the basis elements s_{λ} of Λ as

$$s_{\lambda} \mapsto [S^{\lambda}] \mapsto [\mathbb{S}(S^{\lambda})] = [S^{\lambda}(V)] \mapsto s_{\lambda}(x_1, \dots, x_m).$$

The general assertion follow by additivity of all occuring maps.

We have thus finally arrived at the following commutative diagram of rings:

$$\begin{array}{ccc} R & \stackrel{\sim}{\longleftarrow} & \Lambda \\ & & \downarrow f \mapsto f(x_1, \dots, x_m) \\ & & \downarrow K_0(\operatorname{GL}(V)) & \stackrel{\sim}{\longrightarrow} & \Lambda(m) \end{array}$$

We have the following special cases of this diagram:

$$[S^{\lambda}] \longleftrightarrow s_{\lambda} \downarrow \qquad \downarrow$$

$$[S^{\lambda}(V)] \longleftrightarrow s_{\lambda}(x_{1}, \dots, x_{n})$$

$$[\widetilde{M}^{\lambda}] \longleftrightarrow e_{\widetilde{\lambda}} \qquad [M^{\lambda}] \longleftrightarrow h_{\lambda} \downarrow \qquad \downarrow$$

$$[\widetilde{M}^{\lambda}(V)] \longleftrightarrow e_{\widetilde{\lambda}}(x_{1}, \dots, x_{n}) \qquad [M^{\lambda}(V)] \longleftrightarrow h_{\lambda}(x_{1}, \dots, x_{n})$$

We can now use these correspondeces to translate between problems about the representation theory of S_n , the representation theory of GL(V), and the combinatorics of symmetric polynomials.

Example 19.

- (1) For every $n \geq 0$ there exists unique natural numbers f^{λ} for $\lambda \vdash n$ such that one and thus all of the following conditions hold:
 - a) $\mathbb{C}[S_n] \cong \bigoplus_{\lambda \vdash n} (S^{\lambda})^{\oplus f^{\lambda}},$
 - b) $V^{\otimes n} \cong \bigoplus_{\lambda \vdash n} S^{\lambda}(V)^{\oplus f^{\lambda}},$
 - c) $(x_1 + \dots + x_m)^n = \sum_{\lambda \vdash n} f^{\lambda} s_{\lambda}(x_1, \dots, x_m)$ for every $m \ge 0$,
 - d) $e_1^n = \sum_{\lambda \vdash n} f^{\lambda} s_{\lambda}$ in Λ .

We have already seen that it follows from the first description that f^{λ} is given by the number of standard Young tableaux of shape λ .

- (2) For every partition λ there exist unique natural numbers $K_{\mu,\lambda}$ for $\mu \triangleleft \lambda$ such that one and thus all of the following conditions hold:
 - a) $M^{\lambda} \cong S^{\lambda} \oplus \bigoplus_{\mu \leq \lambda} (S^{\mu})^{\oplus K_{\mu,\lambda}},$
 - b) $M^{\lambda}(V) \cong S^{\lambda}(V) \oplus \bigoplus_{\mu \leq \lambda} S^{\mu}(V)^{\oplus K_{\mu,\lambda}},$
 - c) $h_{\lambda}(x_1,\ldots,x_m) = s_{\lambda}(x_1,\ldots,x_m) + \sum_{\mu \leq \lambda} K_{\mu,\lambda} s_{\mu}(x_1,\ldots,x_m)$ for all $m \geq 0$,
 - d) $h_{\lambda} = s_{\lambda} + \sum_{\mu \triangleleft \lambda} K_{\mu,\lambda} s_{\mu}$.

The numbers $K_{\mu,\lambda}$ are the **Kostka numbers**.

- (3) For any two partitions λ and μ there exist natural numbers $c_{\lambda,\mu}^{\nu}$ for $\nu \vdash |\lambda| + |\mu|$ such that one and thus all of the following conditions hold:
 - a) $S^{\lambda} \circ S^{\mu} \cong \sum_{\nu} (S^{\nu})^{\oplus c_{\lambda,\mu}^{\nu}},$
 - b) $S^{\lambda}(V) \otimes S^{\mu}(V) \cong \sum_{\nu} S^{\nu}(V)^{\oplus c_{\lambda,\mu}^{\nu}},$
 - c) $s_{\lambda}(x_1, \dots, x_m) s_{\mu}(x_1, \dots, x_m) = \sum_{\nu} c_{\lambda, \mu}^{\nu} s_{\nu}(x_1, \dots, x_m),$
 - d) $s_{\lambda}s_{\mu} = \sum_{\nu} c_{\lambda,\mu}^{\nu} s_{\nu}$.

The numbers $c_{\lambda,\mu}^{\nu}$ are the **Littlewood–Richardson coefficients**.