Calculus Notes

Avid David

July 2, 2025

Contents

Ι	Integral Calculus in One Variable	4
1	Indefinite Integrals	2
	1.1 Integral of a function	
	1.2 Ways to calculate indefinite integrals	
	1.3 Integral of rational functions	. ;

Part I

Integral Calculus in One Variable

1 Indefinite Integrals

1.1 Integral of a function

The integral is the inverse of the derivative operator. Given a function f(x), we can find a function F(x) such that F'(x) = f(x). The integral of a function is not unique, as for each f(x), F(x) + C is also an integral of that function.

Concept

Both the derivative and the integral are linear operators, so we have:

$$\int [\alpha f(x) + \beta g(x)] dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

1.2 Ways to calculate indefinite integrals

Expansion

We use the linearity rule to turn a complicated integral into the sum of many simpler ones, then calculate one by one.

Changing the differential expression (u-substitution)

If $\int f(x)dx = F(x) + C$ then $\int f(u)dx = F(u) + C$, where u = u(x) is a continuously differentiable function. Then, we can change the integrand g(x)dx into:

$$g(x) = f(u(x))u'(x)dx$$

Then the integral turns into:

$$\int g(x)dx = \int f(u(x))u'(x)dx = \int f(u(x))du = F(u) + C$$

Insight

In the simple case u = ax + b, we have du = adx. Then if $\int f(x)dx = F(x) + C$ then:

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

Change of variables

Consider the integral $I = \int f(x)dx$, where f(x) is a continuous function. We can change f(x) such that we work with functions with known or easier antiderivatives:

1. Change of variables type 1:

Let $x = \varphi(t)$, where $\varphi(t)$ is a monotonic and continuously differentiable function. Then:

$$I = \int f(x) dx = \int f[\varphi(t)] \varphi'(t) dt$$

Denote the antiderivative of $g(t) = f[\varphi(t)]\varphi'(t)$ as G(t) and h(x) as the inverse of $x = \varphi(t)$, we then have:

$$\int g(t)dt = G(t) + C \Rightarrow I = G[h(x)] + C$$

2. Change of variables type 2:

Let $t = \psi(x)$, where $\psi(x)$ is a continuously differentiable function and we can write $f(x) = g[\psi(x)]\psi'(x)$. Then:

$$I = \int f(x) dx = \int g[\psi(x)] \psi'(x) dx$$

Denote the antiderivative of g(t) as G(t), then:

$$I = G[\psi(x)] + C$$

Important

Remember to change back to the original variable!

Integration by parts

Let u = u(x) and v = v(x) be continuously differentiable functions. We know:

$$d(uv) = udv + vdu \Rightarrow \int d(uv) = \int udv + vdu$$

Then we have the following formula:

$$\int u \mathrm{d}v = uv - \int v \mathrm{d}u$$

Consider the integral $I = \int f(x) dx$ We need to express:

$$f(x)dx = [g(x)h(x)]dx = g(x)[h(x)dx] = udv$$

then applie the integration by parts formula to u = g(x), v = h(x)dx

1.3 Integral of rational functions