Inferential Statistics

Pablo E. Gutierrez-Fonseca

Fall 2024

1/21

Expanding on Hypothesis Testing

- 1-tailed
 - ► Hypothesis includes an **expected direction**.

Expanding on Hypothesis Testing

• 1-tailed - hypothesis includes an **expected direction**.

• If your obtained test statistic falls beyond the critical value (lightblue) for your given Alpha threshold = Significant result, reject the numerical value (lightblue)

Expanding on Hypothesis Testing

- 2-tailed tests:
 - Have no expected directionality hypothesized.
 - ▶ Splits the 5% of the area under the curve that would be considered significant between both tails of the normal distribution curve.
 - ► Are therefore less powerful tests (more likely to find a significant result).

Significant or Not?

Not significant:

- Accept the null hypothesis.
- There is no difference between the sample and population mean.
- Obtained test statistic < critical value threshold.
- p-value > alpha threshold (usually 0.05).

Significant:

- Reject the null hypothesis,
- There is a difference between the sample and population mean.
- Obtained test statistic > critical value threshold.
- p-value < alpha threshold (usually 0.05).

Basic steps for an Inferential Test

• A statement of null hypothesis.

contents...

- Choose the appropriate test.
- Set the level of Type I error risk (alpha)
- Analyze data distribution
- Compute the test statistic (obtained) value
- Assess significance:
 - Determine the critical value needed to reject the null hypothesis and compare it to your calculated test statistic
 - Determine the p-value associated with your calculated test statistic
- Summarize

Basic steps for an Inferential Test

- We can select an appropriate test simply by answering some questions.
- What type of data do we have?
 - ▶ If we have **frequency data**, we select the Chi-square family.
 - ► Continuous and categorical variables will have a variety of different tests depending on the research question:
- What type of research question are we considering?
 - ▶ If comparing one sample mean to a population = z-test.
 - ▶ If focus is on **differences** we go to the family of tests concerned with comparing groups or treatments (i.e. t-tests, ANOVA).
 - If the focus is on relationships between variables, we go to the correlation tests.
 - ▶ If we want to **predict outcomes** we go to the regression family.

$$v = \beta_0 + \beta_1 x + \epsilon$$

where:

- y is the dependent variable,
- x is the independent variable,
- β_0 is the intercept,
- β_1 is the slope,
- ϵ is the error term.

Basic steps for an Inferential Test

- We can select an appropriate test simply by answering some questions.
 - ▶ How many variables, how many groups are we including? (multivariate)
 - ► Are observations independent from each other or purposely paired?
 - ▶ Is my data not normally distributed? (non-parametric tests)

Statistical shorthand **z-test** example

$$z_{100} = 1.4, p = 0.16$$

Statistical shorthand **z-test** example

$$z_{100} = 1.4, p = 0.16$$

$$z_{100} = 1.4, p = 0.16$$

$$z_{\text{Sample size}} = 1.4, p = 0.16$$
Test statistic

- Every statistical test has a letter designating the type of test.
- Because power is so closely tied to sample size, we report sample size.
- For clarity (and to confirm the correct-tailed test is used to assess the p-value), include the calculated test statistic value.
- Always report the p-value.
- Some tests will also include a secondary metric to assess how meaningful results are (if significant).

How to summarize your analysis: Key Components of a Statistical Summary

Before installing a new air quality monitoring instrument, we tested to see if a sample of measurements taken at the testing lab differed significantly different from the long-term mean for the larger network population.

Using a 2-tailed, one-sample z-test for on our normally distributed samples (W=0.78).

While the mean of the new instrument sample was slightly higher (sample mean =117 vs. population mean =108), we found no significant difference (z(100) =1.4, p =0.16).

Based on these results we approve the installation of this instrument at the new site. However, we would suggest statistical comparisons of the current and new unit side-by-side, prior to decommissioning the current instrument.

How to summarize your analysis: Key Components of a Statistical Summary

Introduction/Background:

Before installing a new air quality monitoring instrument, we tested to see if a sample of measurements taken at the testing lab differed significantly different from the long-term mean for the larger network population.

Methods:

Using a 2-tailed, one-sample z-test for on our normally distributed samples (W=0.78).

Results:

While the mean of the new instrument sample was slightly higher (sample mean =117 vs. population mean =108), we found no significant difference $z_{100}=1.4,\ p=0.16.$

Implications:

Based on these results we approve the installation of this instrument at the new site. However, we would suggest statistical comparisons of the current and new unit side-by-side, prior to decommissioning the current

Our First Inferential Tests!
One sample z-test

When would you run a one-sample z-test?

- Use the One Sample z-test when:
 - You want to test for a difference between one sample mean and a larger population mean.
 - ► There is only one group (sample) being tested against the larger population.
 - You know (or can estimate) the mean and standard deviation of the population.
 - Data is normally distributed.

$$z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

where:

- \bar{X} : Sample mean.
- μ : Population mean.
- σ : Population standard deviation. n: Sample size.

When would you run a one-sample z-test?

- Use the One Sample z-test when:
 - You want to test for a difference between one sample mean and a larger population mean.
 - ► There is only one group (sample) being tested against the larger population.
 - You know (or can estimate) the mean and standard deviation of the population.
 - ★ Expert Information.
 - ★ Scientific Literature.
 - ★ Data archives.
 - ★ Meaningful (hypothesized value).
 - Data is normally distributed.

Flowcharts: Keeping it simple with questions

One sample z-test

Assume you have a sample of **20 observations**. The mean of this **sample** is **150**, and you want to determine whether there is a **difference between** the sample mean and the larger population mean. Since you are not specifying a direction for this difference, you will conduct a two-tailed test.

The population mean is 164, and the population standard deviation is 33.

Next, calculate the obtained value for this one-sample z-test.

$$z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
 $z = \frac{150 - 164}{\frac{33}{\sqrt{20}}} = -1.897$

One sample z-test

Assume you have a sample of **20 observations**. The mean of this **sample** is **150**, and you want to determine whether there is a **difference between the sample mean and the larger population mean**. Since you are not specifying a direction for this difference, you will conduct a two-tailed test.

The population mean is 164, and the population standard deviation is 33.

Next, calculate the obtained value for this **one-sample z-test.**

$$z = \frac{150 - 164}{\frac{33}{\sqrt{20}}} = -1.897$$

Critical Value Approach

• In the critical value approach, we compare the calculated test statistic to the critical value from the standard normal distribution. For a two-tailed test at the $\alpha=0.05$ significance level, the critical values are approximately ± 1.96 , which corresponds to the $\bf 0.025$ in each tail.

- Decision Rule
- If |calculated test statistic| > critical value = **Significant**
- ullet If $|calculated\ test\ statistic| \le critical\ value = Not\ Significant$

Critical Value Approach

In this case:

$$|-1.897| < 1.96$$

 Thus, we fail to reject the null hypothesis, indicating that there is no significant difference between the sample mean and the population mean.

Finding the p-value

Now we need to determine the probability (p-value) associated with the calculated test statistic. You have several options to achieve this:

```
z_value <- -1.897
p_value <- 2 * pnorm(z_value) # Two-tailed p-value
p_value # This will give the result</pre>
```

```
## [1] 0.05782794
```

• Since this p-value (0.0578) is greater than the alpha threshold of 0.05, we conclude that the result is **not significant**.

