CS388C: LECTURE 1

KURTIS DAVID

1. Circuits

Definition 1.1. Circuit (ckt) - a function $f: \{0,1\}^n \to \{0,1\}$. i.e. any function of n bits is computable by a **ckt** of $size \le n \cdot 2^n$

Definition 1.2. Size (of a ckt) - # of nodes in a ckt. e.g. and, or, not gates.

Question 1.3. *Do* \exists *functions requiring exponential size ckts?*

Answer: Yes.

Solution.

- Many possible $f: \{0,1\}^n \to \{0,1\}$
 - -2^n inputs, 2 outputs $\Rightarrow 2^{2^n}$ possible circuits
- "Few" ckts of small size *s* (few in comparison to above)

ckts of size $s \le (\text{# possible ways to add a new gate})^s$

But there are 3 types of nodes (add/or/not) and $\binom{s}{2}$ nodes to choose from when adding these gates so # possible ways = $\frac{3s(s-1)}{2}$.

$$\therefore$$
 # ckts of size $s \le (2s^2)^s \le s^{3s}$

If we say $s = \frac{2^n}{3n}$ then we end up with ... $\leq \frac{2^n}{3n}^{\frac{2^n}{n}} = \frac{1}{3n}^{\frac{2^n}{n}} 2^{n\frac{2^n}{n}}$ ∴ most fns require ckts of size $\geq \frac{2^n}{3n}$

2. Languages

Definition 2.1. Language - a subset of $\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$ mapped to $\Sigma = \{0,1\}$. i.e. $f : \Sigma^* \to \Sigma$ (all lengths of binary strings!)

To show $NP \neq P$, it suffices to show a language in NP requires ckt families of size $> n^c \, \forall c$.

Open Q: Find a language in NP requiring ckts of size $\omega(n)$

3. Basic Counting

Question 3.1. How many ways can r objects be placed in n bins?

Solution. Assume bins are distinguishable.

1a. Let objects be distinguishable.

 \Rightarrow n^r ways (since each object can be placed in any of the n bins).

1b. Now assume 1a AND ≤ 1 object/bin.

 $\Rightarrow n\Pr = \frac{n!}{(n-r)!}$. This is because after placing an object into some distinguishable bin, you can no longer choose this bin again.

(so the product would look like $n \cdot (n-1) \cdot (n-2) \cdot ...$)

2a. Let objects be indistinguishable.

2b. If ≤ 1 object/bin, simple. $\binom{n}{r}$, since we have repeated permutations.

For 2a, we must be more careful. One "trick" is to use a sticks argument – suppose all r objects are layed across a floor – to create bins, simply add *boundaries* before or after each object.

To have n bins, we will have n-1 boundaries. There exist at least r spaces, but because we can put all objects into the first bin, there must be at least n-1 spaces at the end to put all the boundaries at.

$$\therefore$$
 there are $\binom{r+n-1}{n-1}$.

Remark. We only covered 4 situations, there is something called the **Twelvefold way** that includes when bins are indistinguishable, and if each bin has ≥ 1 object each.

Question 3.2. How many triples (a, b, c) of nonnegative integers are there s.t. a + b + c = 100?

Solution. This question can be reformulated as the previous, where we have r = 100 indistinguishable objects and n = 3 bins. Thus we have $\binom{102}{2}$ ways.

Question 3.3. Suppose you can place n points on a circle s.t. no 3 chords between them meet at an interior point. How many interior intersection points are there?

Solution.

Notice that an intersection point can be determine by 2 lines i.e. 4 points.

$$\therefore$$
 in terms of n , we have $\binom{n}{4}$

Question 3.4. Show that # people who shake hands an odd # of times is even.

Solution.

Create a handshake graph – let nodes be people, and edges represent a handshake between them.

Thus # handshakes =
$$\Sigma \deg(v) = 2 * edges$$

But also # handshakes = $\Sigma_{\deg(v) \text{ odd}} \deg(v) + \Sigma_{\deg(v) \text{ even}} \deg(v)$

4. Hypergraphs

Definition 4.1. <u>Hypergraph</u> - graph that contains (hyper)edges can contain an arbitrary # of nodes (instead of just 2)

Definition 4.2. k-uniform hypergraph - each hyperedge contains k nodes. deg(v) = # hyperedges containing v $\Rightarrow k|\Sigma \deg(v)$