Chapter 5: Mining Frequent Patterns, Association and Correlations

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Challenges of Frequent Pattern Mining

Challenges

- □ Multiple scans of DB (*k* times): too much costly
- Huge number of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates = 2^{100} -1 = $1.27*10^{30}$!
- Tedious workload of the candidate-generation-and-test process
 - support counting for candidates

Improving Apriori: general ideas

- □ Reduce the number of DB scans
- □ Reduce the number of candidates
- Improve the candidate counting approaches

DIC: Reduce Number of Scans

DIC

DIC: Dynamic Itemset Counting

- Once both A and D are determined frequent, the counting of AD begins at that time
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins at that time

Partition: Scan Database Only Twice

Approach

Divide a DB into k pieces (local databases called

- Each partition should reside in main memory
- □ Find *local frequent patterns* in each partition (scan 1)
 - localMinSup is set as (minSup (k)) PONTHING THE
 - Local frequent patterns have their localSup larger than localMinSup in any local database
- Consolidate global frequent patterns (scan 2)

Partition: Scan Database Only Twice

- □It guarantees that frequent patterns are never missed
 - Any itemset globally frequent in DB must be frequent

- A global frequent pattern must be a local frequent pattern
- But, a local frequent pattern may not be a global frequent pattern. This must be confirmed by scanning the entire DB (2nd scan)

Sampling

Randomly select a sample of an original database, mine frequent patterns within the sample (SDB) using Apriori (in the same way as before)

Sampling =>

sampled DB (SDB)

□ Use a smaller value of the minimum support for SDB (say, min_sup* (size of SDB) / (size of DB))

Problems with the simple sampling

- □ Some of frequent patterns found in SDB are not really frequent in the original database (similar with the local frequent patterns in Partition)
- □ Some of true frequent patterns could be missed if they are not included in SDB (different with Partition)

Sampling

- **■**Solutions: two more scanning for verification
- ■1. Scan the whole database once, applying the original minimum support
 - □ Verify the frequent itemsets (**S**) found in SDB, and its negative borders (NB: not in S, but all its subsets are in S + single items)
 - $S = \{a\}, \{b\}, \{c\}, \{f\}, \{a,b\}, \{a,c\}, \{a,f\}, \{c,f\}, \{a,c,f\}, ...$
 - NB = {b,c}, {b,f}, {d}, {e}, ...
- 2. Scan the whole database again
 - □ Find missed frequent patterns (due to the success of NBs)
 - □ For example, {a,b,c} due to the success of {a,b}, {a,c}, and {b,c}

DHP: Direct Hashing and Pruning

□ When generating L_k , this algorithm also generates all the **size** k+1 **itemsets for each transaction**, and **hashes** them to a hash table and keeps a count

Database

Tid	Items	
100	A, C, D	
200	В, С, Е	
300	A, B, C, E	
400	B, E	

minimum support, s = 2

Making a hash table 100 {A C}, {A D}, {C D} 200 {B C}, {B E}, {C E} 300 {A B}, {A C}, {A E}, {B C}, {B E}, {C E} 400 {B E}

ex) predefined order: A1, B2, C3, D4, E5 We can use any hash function

 $A \subset (1 \times 10 + 3 = 13) \mod 7 = 6$ h{{x y}}) = ((order of x)*10 + (order of y)) mod 7;

Hash table H₂ Hash address

The number of items hashed to bucket 2

DHP: Direct Hashing and Pruning

■ While generating C_{k+1} via L_k , it first accesses to the hash table, looks at each candidate's **hash bucket count**.

- If the hash bucket count is below the min_sup, it cannot be a candidate!
 - Effective in reducing # of candidates

Original Apriori VS. DHP

$Sup_{min} = 2$

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

-	1
Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

L_I	
Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

DHP

{C E} {C E} {A D}	(A E) (B C) (B, C)	whing &	(UB E) (B E) (B E)	(AB)	{A C} {C D} (A C)
3	20mb Crack	0	3	1	3
0	1 600 2	3	4	5	6

DHP는 frequency 세기 전에 hash bucket count 에 기안하여 Useless candidates 를제거한다

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

C_2	Itemset	sup
2	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

			_
		Itemset	
	DHP	{A, C}	
	more reduced	{B, C}	
	Gize of Can	idotes {B, E}	
		{C, E}	
	아직	frequent pattern of	<u>ur</u> andidates
1		Apriori	

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Until now...

- We have learned DIC, Partition, Sampling, DHP
 - Reduce DB scanning time: DIC, Partition, Sampling
 - Reduce # of candidates: DHP, Sampling
- But, they still have limitations, and they are still very slow
- Can we completely avoid candidate generation?
 - Yes, FP(frequent pattern)-Growth can do this!
- Next class: FP-Growth
 - Mining Frequent Patterns Without Candidate Generation

Thank You

