Homomorphism Closed vs. Existential Positive

Tomás Feder*

Moshe Y. Vardi[†]

Abstract

Preservations theorems, which establish connection between syntactic and semantic properties of formulas, are a major topic of investigation in model theory. In the context of finite-model theory, most, but not all, preservation theorems are known to fail. It is not known, however, whether the Łos-Tarski-Lyndon Theorem, which asserts that a 1st-order sentence is preserved under homomorphisms iff it is equivalent to an existential positive sentence, holds with respect to finite structures. Resolving this is an important open question in finite-model theory.

In this paper we study the relationship between closure under homomorphism and positive syntax for several non-1st-order existential logics that are of interest in computer science. We prove that the Łos-Tarski-Lyndon Theorem holds for these logics. The logics we consider are variable-confined existential infinitary logic, Datalog, and various fragments of second-order logic.

1 Introduction

A preservation theorem in model theory is a result that asserts that if a formula of some logic has certain preservation properties (i.e., if it is true on some structure, then it is also true on every structure obtained from that structure via certain algebraic operations), then the formula is actually equivalent to a formula in some syntactically restricted class such that every formula in that class clearly possesses the preservation property at hand. Preservations theorems, which establish connection between syntactic and semantic properties of formulas, are a major topic of investigation in model theory [4]. Several preservation theorems are known to hold for 1storder logic. For example, the Łos-Tarski Theorem asserts that a 1st-order theory is preserved under extensions iff it is equivalent to a existential sentence. Lyndon's Theorem asserts that a 1st-order theory is preserved under surjective homomorphisms iff it is equivalent to a positive sentence [4]. (A homomorphism is a mapping from the universe of a structure A to the universe of of a structure ${f B}$ (over the same signature) that maps every tuple in a relation $R^{{f A}}$ to a tuple in the corresponding relation $R^{{f B}}$. A class ${\cal C}$ is closed under surjective homomorphisms if ${f A}\in {\cal C}$ implies that $h({f A})\in {\cal C}$, for an arbitrary mapping h.) The proof techniques can be easily combined to show that a 1st-order theory is preserved under (not necessarily surjective) homomorphisms iff it is equivalent to an existential positive sentence. (A class ${\cal C}$ is closed under homomorphisms if ${f A}\in {\cal C}$ implies that ${f B}\in {\cal C}$, whenever there is a homomorphism from ${f A}$ to ${f B}$.) We slighly abuse terminology and refer to this as the Łos-Tarski-Lyndon Theorem.

In the context of finite-model theory, the model theory of finite structures, most, but not all, preservation theorems are known to fail, including, for example, the Łos-Tarski Theorem [6]. It is not known, however, whether Lyndon's Theorem holds with respect to finite structures. It is also not known whether the Łos-Tarski-Lyndon Theorem holds with respect to finite structures (for a closely related failure, see [2]). Resolving the latter problem is an important and well-known open question in finitemodel theory (see Problem 1.9 on the finite-model theory website¹ and an incorrect claim in [11]). On one hand, the class of existential positive 1st-order formulas corresponds to the class of select-project-join-union database queries, which are the queries that most often occur in practice [1]. On the other hand, classes of unsatisfiable instances of constraint-satisfaction problems, e.g., all non-3-colorable graphs, are known to be closed under homomorphism [8]. An extensive treatment of preservation theorems in finite-model theory can be found in [9, 18].

While the main focus of model theory has been on 1st-order logic, finite-model theory studies also many non-1st-order logics, as it is well known that the expressive power of 1st-order logic over finite-structures is rather limited [6, 13]. In this paper we study the relationship between homomorphism closure and existential positive syntax for several non-1st-order logics that are of interest in computer science. We focus on existential logics, for which preservations under extensions holds trivially, and ask whether for these logics homomorphism closure yields positivity. We prove that this is the case for several logics. Most of our proofs are constructive; we start with a given formula in a logic and then show how to eliminate

^{*}tomas@theory.stanford.edu

[†]Rice University, vardi@cs.rice.edu, supported in part by NSF grants CCR-9988322, CCR-0124077, IIS-9908435, IIS-9978135, and EIA-0086264

 $^{^{1} \}verb|http://wwwmgi.informatik.rwth-aachen.de/FMT/$

negated atoms and inequalities² over homomorphism-closed classes.

We start by examining the logic $\exists L^{\omega}$, a variableconfined infinitary logic that was studied extensively in finite-model theory, cf. [16, 15]. We show that $\exists L^{\omega}$ sentences with negated atoms and inequalities over homomorphism-closed classes of structures can be rewritten without inequalities or negated atoms. The proof uses an asymmetric pebble game that is known to characterize the expressive power of this logic [15]. We then prove this result also for *Datalog*, the language of function-free logic programs (known also as Horn-clause programs), which plays a major role in database theory [1]. Datalog is essentially the existential fragment of fixpoint logic, i.e., the closure of existential 1st-order logic under recursion [3], and is also an effective fragment of $\exists L^{\omega}$ [15]. Our proof for Datalog is constructive and uses an analysis of Datalog derivation trees.

Datalog can also be viewed as a fragment of the extension of existential 1st-order logic with universal 2ndorder quantification, so we now turn our attention to the latter logic. The extension of existential 1st-order logic with universal 2nd-order quantification is of interest because its dual, the extension of universal 1st-order logic with existential 2nd-order quantification is the class SNP, a syntactic fragment of NP (via the characterization of NP in terms of existential 2nd-order logic [7]), which plays an important role in the theory of approximation algorithms [17]. The restriction to monadic 2nd-order quantification is also of interest, because the extension of universal 1st-order logic with existential monadic 2ndorder quantification, the class monadic SNP, captures the class of constraint-satisfaction problems, which is of major interest in artificial intelligence and complexity theory [8]. We relate closure under homomorphism and positivity to the complements of both SNP and monadic SNP. In fact, we can extend our results also to the complement of binary SNP, where the 2nd-order quantification is binary (cf. [5]), but our techniques, which are based on the probabilistic method and Ramsey bounds, do not seem to be able to handle 2nd-order quantification of any fixed arity beyond two.

The proof presented here for Datalog holds over both for classes of general structures as well as classes of finite structures. The proofs for $\exists L^\omega$ and for the various SNP classes are over the class of finite structures. An application of the Compactness Theorem shows that the results for the various SNP classes hold for arbitrary structures as well. Finally we show that the main property studied in this paper, namely preservation under homomorphisms, is undecidable all of our effective logics $(\exists L^\omega)$ is not effective).

2 The logic $\exists L^{\omega}$

The logic $\exists L^k(\neq,\neg)$ is a variable-confined existential infinitary logic: we start with k individual variables, then form atomic formulas, negated atomic formulas, and inequalities, and then form formulas by closing under existential quantification and under infinitary conjunctions and disjunctions. We get $\exists L^k()$ if we start without negated atomic formulas and inequalities. The logic $\exists L^\omega(\neq,\neg)$ (resp., $\exists L^\omega()$) is obtained by taking the union of $\exists L^k(\neq,\neg)$ (resp., $\exists L^k()$), for all k>0. These logic play an important role in finite-model theory, since they capture many other non-1st-order logics and since their expressive power has been characterized in terms of pebble games [15, 16].

The weak existential k-pebble game between the Spoiler and the Duplicator on the structures \mathbf{A} and \mathbf{B} is played as follows. Each player has k pebbles: the Spoiler has pebbles p_1, \ldots, p_k and the Duplicator has pebbles q_1, \ldots, q_k . A position in the game is a placement of some of the pebbles on the elements of \mathbf{A} and \mathbf{B} ; the p_i 's are placed on elements of \mathbf{A} and the q_i 's are placed on elements of \mathbf{B} . Initially, no pebble is placed. In each round of the game, the Spoiler places (resp., removes) a pebble p_i on (resp., from) an element of \mathbf{A} ; the Duplicator responds with a similar move with the pebble q_i on \mathbf{B} .

Let i_1,\ldots,i_m be the indices of the pebbles that are placed on \mathbf{A} (and \mathbf{B}) after the i-th round. Let a_{i_1},\ldots,a_{i_m} (resp., b_{i_1},\ldots,b_{i_m}) be the elements of \mathbf{A} (resp., \mathbf{B}) x pebbled by the pebbles p_{i_1},\ldots,p_{i_m} (resp., q_{i_1},\ldots,q_{i_m}) after the i-th round. If the mapping h with $h(a_{i_j})=b_{i_j}$, for $1\leq j\leq m$, is not a homomorphism between the substructures of \mathbf{A} and \mathbf{B} with universes $\{a_{i_1},\ldots,a_{i_m}\}$ and $\{b_{i_1},\ldots,b_{i_m}\}$, respectively, then the Spoiler wins the game. Otherwise, the game continues. The Duplicator wins the game if he has a winning strategy that allows him to continue playing "forever", i.e., if he can block the Spoiler from winning the game.

Define the strong existential k-pebble game similarly to the weak existential k-pebble game above, except that the Spoiler now wins if the mapping h with $h(a_{i_j}) = b_{i_j}$, for $1 \le j \le m$, is not an isomorphism between the substructures of \mathbf{A} and \mathbf{B} with universes $\{a_{i_1},\ldots,a_{i_m}\}$ and $\{b_{i_1},\ldots,b_{i_m}\}$, respectively.

Lemma 1 [16, 15]

- A class C of finite structures is ∃L^k()-definable if and only if, for every pair of structures A ∈ C and B ∉ C, the Spoiler has a winning strategy for the weak existential k-pebble game.
- A class C of finite structures is $\exists L^k(\neq, \neg)$ -definable if and only if, for every pair of structures $A \in C$ and

²All the inequalities in this paper are of the form $x \neq y$.

 $\mathbf{B} \notin \mathcal{C}$, the Spoiler has a winning strategy for the strong existential k-pebble game.

We use the characterizations given by this lemma to obtain the following result:

Theorem 1 Over homomorphism-closed classes of finite structures, $L^k()$ is as expressive as $L^k(\neq, \neg)$.

PROOF SKETCH: Suppose a homomorphism-closed class $\mathcal C$ of finite structures is not $\exists L^k()$ -definable. Then, by Lemma 1, there is a pair of structures $\mathbf A \in \mathcal C$ and $\mathbf B \not\in \mathcal C$ such that the Duplicator has a winning strategy for the *weak* existential k-pebble game. We shall then exhibit a pair of structures $\mathbf A' \in \mathcal C$ and $\mathbf B' \not\in \mathcal C$ such that the Duplicator has a winning strategy for the *strong* existential k-pebble game. Therefore the class $\mathcal C$ is not $\exists L^k(\neq,\neg)$ -definable either, proving the theorem.

Given the two structures \mathbf{A} and \mathbf{B} , we let $\mathbf{A}' = \mathbf{A}$ and $\mathbf{B}' = \mathbf{A} \times \mathbf{B}$. Here $\mathbf{A} \times \mathbf{B}$ has universe $\{(a,b): a \in \mathbf{A}, b \in \mathbf{B}\}$, and relations R such that $R((a_1,b_1),\ldots,(a_l,b_l))$ iff $R(a_1,\ldots,a_l)$ holds in \mathbf{A} and $R(b_1,\ldots,b_l)$ holds in \mathbf{B} . Note that $\mathbf{B}' \not\in \mathcal{C}$, since there is a homomorphism f from \mathbf{B}' to \mathbf{B} given by f(a,b) = b, and $\mathbf{B} \not\in \mathcal{C}$.

The strategy for the Duplicator in the strong existential k-pebble game G_2 is based on its strategy in the weak existential k-pebble game G_1 . Suppose that in G_1 , when the Spoiler placed a pebble at a in \mathbf{A} , then the Duplicator placed the corresponding pebble at b in \mathbf{B} . Now in G_2 , when the Spoiler places a pebble at a in $\mathbf{A}' = \mathbf{A}$, then the Duplicator places the corresponding pebble at (a, b) in $\mathbf{B}' = \mathbf{A} \times \mathbf{B}$.

The resulting mapping that sets f(a) = (a,b) is clearly one-to-one. Furthermore, it is a homomorphism, since if $R(a_1,\ldots,a_l)$ holds in $\mathbf A$, then $R(b_1,\ldots,b_l)$ in $\mathbf B$ for the corresponding pebbles according to G_1 , and so $R((a_1,b_1),\ldots,(a_l,b_l))$, that is, $R(f(a_1),\ldots,f(a_l))$ holds in $\mathbf B'$. Conversely, if $R(a(x_1),\ldots,f(a_l))$, that is, $R((a_1,b_1),\ldots,(a_l,b_l))$, holds in $\mathbf B'$, then $R(a_1,\ldots,a_l)$ holds in $\mathbf A$. Therefore the Duplicator maintains an isomorphism f, as desired.

3 Datalog

A Datalog(\neq , \neg) program is a finite collection of rules of the form $t_0 \leftarrow t_1, t_2, \ldots, t_l$. The expression t_0 is the *head* of the rule, while t_1, t_2, \ldots, t_l form the *body* of the rule. The head of the rule is an atomic formula $S(x_1, \ldots, x_n)$, where S is a relational symbol; x_1, \ldots, x_n are called the *head variables* of this rule. The expressions in the body can be inequalities $x_j \neq x_k$, atomic formulas $R(x_1, \ldots, x_m)$, or negated atomic formulas $R(x_1, \ldots, x_m)$. The relational symbols appearing in the heads of the rules form the *intensional database*

predicates (IDBs), while the others are the extensional database predicates (EDBs). In negations of atomic formulas $\neg R(x_1,\ldots,x_m)$ appearing in the body of a rule, the symbol R must be an EDB. One of the IDB predicates is designed as the goal predicate of the program. Here we shall assume that the goal predicate is of the form S(), that is, it has arity zero. We also refer to $\operatorname{Datalog}(\neg)$, $\operatorname{Datalog}(\neq)$, and $\operatorname{Datalog}()$, depending on whether we allow negated atomic formulas and inequalities.

Datalog(\neq , \neg) programs have a *least fixpoint* semantics, which can be viewed as a declarative or a procedural semantics [3]. For the result below, it will be more useful to describe the semantics in term of derivation trees. A derivation tree for a program π over a structure A with universe D a tree that has at the root the goal S() and a rule with this goal as its head; the variables appearing in the rule are instantiated to elements of D. In general, an internal node of the tree is an IDB $S(x_1, \ldots, x_n)$ and a rule with this goal at its head; the variables appearing in the rule are instantiated to elements of D. Such an internal node has children corresponding to the atoms in the body of the rules. The chidren inherit an instantiation to elements of D from their parents. The leaves of the tree are instantiations to elements of D of inequalities $x_j \neq x_k$, EDB atoms $R(x_1, \ldots, x_m)$, or negated EDB atoms $\neg R(x_1, \dots, x_m)$ such that the condition they state holds in the structure A.

Note that we have not allowed expressions in the body of a rule to be equalities $x_j = x_k$. This limitation causes no loss of generality, because for such an equality we can replace all occurences of x_k by x_j throughout the rule. We also assume that the variables in an IDB $S(x_1,\ldots,x_n)$ occurring either in the head or in the body of a rule are all distinct. This also causes no loss of generality, because otherwise we can introduce a new IDB S' with fewer arguments. Thus, without loss of generality we can assume the the list of head variables in a rule head is always a prefix x_1,\ldots,x_k of some list x_1,\ldots,x_n of variables. For example, the Datalog program that recogizes whether a directed graph has a cycle is usually written as follows:

$$P(x,y) \leftarrow E(x,y)$$

$$P(x,y) \leftarrow P(x,z), E(z,y)$$

$$C() \leftarrow P(x,x)$$

To avoid having P(x,x), we introduce P'(x) to stand for P(x,x), remove the last rule, and add the following extra rules

$$P'(x) \leftarrow E(x, x)$$

 $P'(x) \leftarrow P(x, z), E(z, x)$
 $P'(x) \leftarrow P'(x), E(x, x)$

$$P(x,y) \leftarrow P'(x), E(x,y)$$

 $C() \leftarrow P'(x)$

The remainder of this section is devoted to the proof of the following result.

Theorem 2 Over homomorphism-closed classes, Datalog() is as expressive as Datalog(\neq , \neg).

Let \mathcal{C} be a class of structures that is closed under homomorphisms and characterized by a $\mathrm{Datalog}(\neq, \neg)$ program π_0 . We define from π_0 a new $\mathrm{Datalog}(\neq, \neg)$ program π_1 that also characterizes \mathcal{C} . We then define from π_1 a $\mathrm{Datalog}()$ program π_2 and show that π_2 also characterizes \mathcal{C} .

To illustrate the constructions, we consider the following simple example for π_0 :

$$T(x,y,w) \leftarrow E(x,y), x \neq w, \neg E(x,w)$$

$$T(x,y,w) \leftarrow E(x,z), T(z,y,w), x \neq w$$

$$T(x,y,w) \leftarrow E(z,w), T(z,y,w), \neg E(y,w), y \neq w$$

$$S() \leftarrow T(x,y,z).$$

The program π_1 is obtained by introducing, for each IDB T in π_0 , several indexed IDBs corresponding to T. The indexing indicates which EDBs, or negations of EDBs, on the arguments $x_1, x_2, \ldots x_n$ of T are needed in the derivation of T. We call such rules *annotated rules*. We discard annotated rules that would require both E and $\neg E$ on the same arguments, since such rules cannot occur in a derivation tree.

The construction is described formally with an iterative process. Initially, the program π_1 is empty. We perform the following two steps:

- (1) For each rule r in π_0 with head $R(x_1,\ldots,x_k)$ and body that has no IDB atoms, let σ' be the set of literals—atomic formulas or negated atomic formulas—that appear in the body of r. If σ' does not contain a contradition, i.e., an atom and its negation, then let $\sigma = \sigma'|_{x_1,\ldots,x_k}$ be the restriction of σ' to literals over the head variables. We create a new IDB predicate R_σ ; we call it an annotated predicate. Add to π_1 the annotated rule r' obtained from r by replacing the IDB atom $R(x_1,\ldots,x_k)$ in the head with the annotated atom $R_\sigma(x_1,\ldots,x_k)$.
- (2) For each rule r in π_0 with head $R(x_1,\ldots,x_k)$, and body with IDB atoms, let σ' be the set of literals atomic formulas or negated atomic formulas—that appear in the body of r. For each IDB atom $Q(u_1,\ldots,u_k)$ in the body of r, choose an annotated IDB atom $Q_{\tau}(x_1,\ldots,x_k)$ already in π_1 , replace $Q(u_1,\ldots,u_k)$ by $Q_{\tau}(u_1,\ldots,u_k)$, apply to τ the substitution $[x_1\mapsto u_1,\ldots,x_k\mapsto u_k]$, and add the resulting literals to σ' . If σ' does not contain a contradition, i.e., an atom and its negation, then let

 $\sigma=\sigma'|_{x_1,\dots,x_k}$ be the restriction of σ' to the litearls over the head variables. Create a new annotated IDB atom R'_{σ} for π_1 . Add to π_1 the annotated rule r' obtained from r by replacing also the IDB atom $R(x_1,\dots,x_k)$ in the head with the annotated atom $R_{\sigma}(x_1,\dots,x_k)$. This step is iterated as long as possible.

We illustrate this construction with the above program. The first rule of π_0 yields in π_1 :

$$T_{E(x,y),\neg E(x,w)}(x,y,w) \leftarrow E(x,y), x \neq w, \neg E(x,w)$$

The second rule of π_0 yields in π_1 :

$$T(x, y, w) \leftarrow E(x, z), T_{E(x,y), \neg E(x,w)}(z, y, w), x \neq w$$

$$T(x, y, w) \leftarrow E(x, z), T(z, y, w), x \neq w$$

Note that the conditions appearing as subindices of T in the body do not carry over to the subindices of the head T in this case; this is because they all involve x instantiated as z, which is not a head variable.

The third rule of π_0 yields in π_1 :

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(z,w), T(z,y,w), \neg E(y,w), y \neq w$$

Now that we have a new IDB predicate $T_{\neg E(y,w)}$, the second rule of π_0 yields in π_1 :

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(z,w), T_{\neg E(y,w)}(z,y,w), y \neq w$$

Note how the indices of T in the body do carry over to the indices of T in the head.

The third rule of π_0 now yields in π_1 :

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(z,w), T(z,y,w), \neg E(y,w), y \neq w,$$

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(z,w), T_{\neg E(y,w)}(z,y,w),$$

 $\neg E(y,w), y \neq w$

Note that we excluded here the rule that would have $T_{E(x,y),\neg E(x,w)}(z,y,w)$ in the body. The reason is that $\neg E(x,w)$ instantiates to $\neg E(z,w)$, but the body of the rule contains E(z,w); such conflicts, as we said before, leads to excluding the rule.

Finally, the fourth rule of π_0 yields in π_1 :

$$S() \leftarrow T(x, y, z)$$
$$S() \leftarrow T_{E(x,y), \neg E(x,w)}(x, y, z)$$
$$S() \leftarrow T_{\neg E(y,w)}(x, y, z)$$

Lemma 2 The program π_1 characterizes the same class C of structures characterized by π_0 .

PROOF SKETCH: In one direction, a derivation tree for a structure **A** and program π_1 can be used to obtain a derivation tree for **A** and program π_0 , simply by omitting the indices from π_1 in the derivation tree.

Conversely, a derivation tree for a structure $\bf A$ and program π_0 can be used to obtain a derivation tree for $\bf A$ and program π_1 , simply by traversing the tree for π_0 from the leaves up to the root, and adding to it the appropriate indices to obtain annotated rules from π_1 .

In our example, if π_0 was using at a leaf the rule

$$T(x, y, w) \leftarrow E(x, y), x \neq w, \neg E(x, w)$$

then π_1 uses instead the rule

$$T_{E(x,y),\neg E(x,w)}(x,y,w) \leftarrow E(x,y), x \neq w, \neg E(x,w),$$

so that while π_0 was deriving T(x,y,w), the program π_1 will derive instead $T_{E(x,y),\neg E(x,w)}(x,y,w)$. Continuing up the derivation tree, if π_0 now uses the rule

$$T(x, y, w) \leftarrow E(x, z), T(z, y, w), x \neq w$$

then π_1 uses instead the rule

$$T(x, y, w) \leftarrow E(x, z), T_{E(x,y), \neg E(x,w)}(z, y, w), x \neq w,$$

and so on up the derivation tree.

We now show how to construct from π_1 the program π_2 without negations or inequalities. Simply remove all negations and inequalities from the bodies in the rules of π_1 . In our example, we get:

$$T_{E(x,y),\neg E(x,w)}(x,y,w) \leftarrow E(x,y)$$

$$T(x,y,w) \leftarrow E(x,z), T_{E(x,y),\neg E(x,w)}(z,y,w)$$

$$T(x,y,w) \leftarrow E(x,z), T(z,y,w)$$

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(x,z), T_{\neg E(y,w)}(z,y,w)$$

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(z,w), T(z,y,w)$$

$$T_{\neg E(y,w)}(x,y,w) \leftarrow E(z,w), T_{\neg E(y,w)}(z,y,w)$$

$$S() \leftarrow T(x,y,z)$$

$$S() \leftarrow T_{E(x,y),\neg E(x,w)}(x,y,z)$$

$$S() \leftarrow T_{\neg E(y,w)}(x,y,z)$$

We finally show:

Lemma 3 The program π_2 characterizes the same class C of structures characterized by π_1 .

PROOF SKETCH: In one direction. a derivation tree for a structure **A** and program π_1 can be used to obtain a derivation tree for **A** and program π_2 , because the rules of π_2 have fewer conditions than the corresponding rules of π_1

Conversely, suppose we have a derivation tree τ for a structure \mathbf{A} and program π_2 . Construct a different tree τ' for a structure \mathbf{A}' from τ by traversing the tree τ from the root down to the leaves. Every time the rule corresponding to the instantiated rule at an internal node of the tree has a variable x_i occurring in the body but not in the head of the rule, instantiate x_i to a new element of \mathbf{A}' ; this new element may only occur in the subtree rooted at this node. Once the tree is constructed put in \mathbf{A}' all the tuples required by the EDB atoms in leaves of τ' . The leaves of τ' have the EDBs that \mathbf{A}' must have.

From the way τ' was constructed from τ , we obtain a homomorphism from \mathbf{A}' to \mathbf{A} , namely by traversing both trees simultaneously from the root down and determining for each variable in τ' the corresponding variable in τ . More precisely, each element a_i in \mathbf{A}' is obtained from some variable x_i in τ' . But x_i is instantiated in τ to some element b_i . We map a_i to b_i .

We now consider the derivation tree τ' for \mathbf{A}' and π_2 , and obtain a derivation tree τ'' for \mathbf{A}' and π_1 . The tree τ'' is obtained by replacing each rule of π_2 with its corresponding rule of π_1 in τ' , adding the leaves involving inequalities and negated atoms. Note that the inequalities hold, because every new variable in the body of a rule instantiated in τ'' yields a new element in \mathbf{A}' when we go down the tree; that is, in all instantiatiations of a rule in τ'' , different variables in the rule correspond to different elements in \mathbf{A}' . The negated atoms also hold, because every variable added down the tree is new, and an EDB that is required to hold both positively and negatively would have been detected by the consistency check for indices of the annotated program π_1 (as we said earlier, rules that yield such a situation are eleminated).

Finally, once we know that A' is in the class C of structures for π_1 , we can use the fact that C is closed under homomorphisms to infer that A, as a homomorphic image of A', is also in C.

4 SNP

Rather than investigate the extension of existential 1st-order logic with universal 2nd-order quantifiers over classes of structures closed under homomorphism, it is more convenient to consider the dual logic, the extension of universal 1st-order logic with existential 2nd-order quantification over class of structures closed under inverse homomorphisms. (A class $\mathcal C$ is closed under inverse homomorphisms if $\mathbf B \in \mathcal C$ implies that $\mathbf A \in \mathcal C$, whenever there is a homomorphism from $\mathbf A$ to $\mathbf B$.) The logic SNP consists of all classes characterizable by an existential 2nd-order formula with a universal 1st-order part. We assume that the 1st-order part is written in conjunctive normal form, and view each disjunction as the negation

of a conjunction of positive and negative literals. The full logic, in which we allow inequality and negated atoms, is denoted as $SNP(\neq, \neg)$.

For example, the 3-colorability problem can be written as

$$(\exists R, B, G)(\forall x, y)$$

$$\neg (R(x) \land B(x)) \land \neg (R(x) \land G(x)) \land \neg (B(x) \land G(x))$$
$$\land \neg (\neg R(x) \land \neg B(x) \land \neg G(x)) \land \neg (E(x,y) \land R(x) \land R(y))$$
$$\land \neg (E(x,y) \land B(x) \land B(y)) \land \neg (E(x,y) \land G(x) \land G(y)).$$

Note that this sentence is monadic, since the existentialy quantified relations R,B,G are monadic. It is monotone, because inside each negated conjunction, the input relation E appears positively. The formula does not use inequalities. Thus, 3-colorability is in 1SNP(), which is monadic, without inequalities or negated atoms. (In general, we let kSNP denote the restriction of SNP to existential quantification of arity at most k.)

A sentence in $SNP(\neq, \neg)$ might have a negated conjunction, say, of the form

$$\neg(\neg E(x,y) \land R(x) \land B(y) \land x \neq y).$$

We establish the following result:

Theorem 3 For classes of finite structures closed under inverse homomorphisms, ISNP() is as expressive as $ISNP(\neq, \neg)$.

Consider a class $\mathcal C$ that is closed under inverse homomorphisms, and such that $\mathcal C$ can be defined by a sentence Q_0 in $1\mathrm{SNP}(\neq,\neg)$. We define sentences Q_1,Q_2,Q_3,Q_4,Q_5 successively, and show that Q_i describes the same set of structures as Q_{i-1} . The last sentence, Q_5 , is in $1\mathrm{SNP}()$, and this completes the proof.

 Q_1 is obtained from Q_0 to ensure that for all pairs of variables x,y appearing in a negated conjunction, the statement $x \neq y$ is one of the conjuncts; if this is not the case, then we can split the negated conjunction into two, one involving $x \neq y$ and the other one involving x = y, and then removing the occurrence of x = y by replacing all occurrences of y by x in the conjunction.

For example, if Q_0 has a negated conjunction

$$\neg(\neg E(x,y) \land R(x) \land B(y))$$

then Q_1 has instead two negated conjunctions

$$\neg(\neg E(x,y) \land R(x) \land B(y) \land x \neq y)$$

$$\land \neg (\neg E(x, x) \land R(x) \land B(x))$$

The following is immediate:

Lemma 4 Q_1 describes the same class as Q_0 .

 Q_2 is obtained from Q_1 as follows. If an input relation p occurs with all its arguments equal, say p(x,x,x), then introduce a new existentially quantified monadic relation p', add a conjunct $\neg(p(x,x,x) \land \neg p'(x))$ to the formula, and replace every occurrence of p(x,x,x) by p'(x). This transformation forces p(x,x,x) not to appear negated inside a negated conjunction.

For example, if Q_1 has a negated conjunction

$$\neg(\neg E(x,x) \land R(x) \land B(x))$$

then Q_2 will have instead (with a new quantified relation E')

$$\neg (E(x,x) \land \neg E'(x)) \land \neg (\neg E'(x) \land R(x) \land B(x))$$

Lemma 5 Q_2 describes the same class as Q_1 .

PROOF SKETCH: If a structure \mathbf{A} satisfies Q_1 , then we can verify that it satisfies Q_2 with the same assignment to existentially quantified relations, making also p'(x) true precisely when p(x,x,x) is true. For the converse, suppose \mathbf{A} satisfies Q_2 . If p'(x) is true precisely when p(x,x,x) is true, then clearly \mathbf{A} satisfies Q_1 . Otherwise, we may construct a new structure \mathbf{A}' by increasing the cases where p(x,x,x) is true so that it coincides with p'(x) (recall $p(x,x,x) \to p'(x)$). Then \mathbf{A}' satisfies Q_1 , and with the obvious homomorphism from \mathbf{A} to \mathbf{A}' , we have that \mathbf{A} also satisfies Q_1 , since the class described by Q_1 is closed under inverse homomorphisms.

 Q_3 is obtained from Q_2 by removing the negated conjunctions that contain a conjunct $x \neq x$ (such a negated conjunction is always satisfied), and removing the negated conjunctions that contain both p and $\neg p$ applied to the same arguments (such a negated conjunction is also always satisfied). The following is immediate:

Lemma 6 Q_3 describes the same class as Q_2 .

Finally, starting with Q_3 , remove all negated input relations inside negated conjunctions to obtain Q_4 , and remove all inequalities to obtain Q_5 .

For example, if Q_3 has a negated conjunction (with an input relation E)

$$\neg(\neg E(x,y) \land R(x) \land B(y) \land x \neq y),$$

then Q_4 has instead

$$\neg (R(x) \land B(y) \land x \neq y),$$

and Q_5 has instead

$$\neg (R(x) \land B(y)).$$

Since the proof of the equivalence of Q_4 and Q_5 is simpler than the proof of the equivalence of Q_3 and Q_4 , we give it first.

Lemma 7 If the class described by Q_4 is closed under inverse homomorphisms, then Q_5 describes the same class as Q_4 .

PROOF SKETCH: It is immediate that if a structure A satisfies Q_5 , it also satisfies Q_4 , because the conditions in Q_4 are less restrictive with the added inequalities inside the negated conjunctions.

The interesting direction is the opposite direction. Suppose \mathbf{A} satisfies Q_4 . Construct a new structure \mathbf{A}' such that for each a_i in \mathbf{A} , the structure \mathbf{A}' has a large enough (see later) number N of elements a_i^j for $1 \leq j \leq N$. The elements in \mathbf{A}' are related in the same way as the elements in \mathbf{A} they correspond to. For example, if we have $E(a_1,a_2)$ in \mathbf{A} , then we have $E(a_1^j,a_2^{j'})$ for all $1 \leq j,j' \leq N$ in \mathbf{A}' .

Since there is a homomorphism from \mathbf{A}' to \mathbf{A} , and \mathbf{A} satisfies Q_4 , it follows that \mathbf{A}' also satisfies Q_4 . Consider the assignment of the r existentially quantified relations over \mathbf{A}' in Q_4 . This can be viewed as a coloring of the elements of \mathbf{A}' with $c=2^r$ colors. Then N/c of the a_i^j in \mathbf{A}' corresponding to a given a_i in \mathbf{A} have the same color. Select such a color for each a_i in \mathbf{A} , corresponding to an assignment of truth values for existentially quantified monadic relations for each a_i in \mathbf{A} .

We claim that this is a valid coloring for \mathbf{A} with respect to Q_5 . If not, it violates some negated conjunction involving certain elements a_i of \mathbf{A} . But this negated conjunction corresponds to a negated conjunction in Q_4 with some additional conditions $a_{i'} \neq a_i$; this negated conjunction in Q_4 is satisfied by the N/c chosen elements a_i^j of \mathbf{A}' of the same color as the corresponding a_i in \mathbf{A} . We may choose different such a_i^j for the variables that were instantiated to the same a_i in the negated conjunction, so that the conditions $a_i^j \neq a_i^{j'}$ also hold for distinct variables. This can be achieved is N is large enough so that N/c is at least the number of variables in Q_4 . Thus \mathbf{A}' would not satisfy the corresponding negated conjunction in Q_4 , a contradiction.

It remains to show:

Lemma 8 Q_4 describes the same class as Q_3 .

PROOF SKETCH: As in the preceding lemma, it is immediate that if ${\bf A}$ satisfies Q_4 , it will also satisfy Q_3 , because the conditions in the negated conjunctions of Q_3 are less restrictive than the conditions for Q_4 .

Suppose then that a *finite* structure A satisfies Q_3 but not Q_4 . We use the probabilistic method to derive a contradiction. We first construct again a structure A' that has a large enough (see later) number N of elements a_i^j for each a_i . For an input relation applied to a single element, say $E(a_1, a_1)$ in A we make as before $E(a_1^j, a_1^{j'})$ for all j, j' in A'. When an input relation is applied to

at least two distinct elements, say $E(a_1, a_2)$ in \mathbf{A} , then we make $E(a_1^j, a_2^{j'})$ hold in \mathbf{A}' only with probability 1/2, independently over all possible such situations and choices of j, j'.

As before, since there is a homomorphism from \mathbf{A}' to \mathbf{A} , the structure \mathbf{A}' must satisfy Q_3 , and we get in particular N/c elements a_i^j for each a_i that have the same color, where $c=2^r$ and r is the number of existentially quantified monadic relations. Consider the coloring of \mathbf{A} corresponding to a choice of color for a_i that occurs in these (N/c) a_i^j 's of the same color in \mathbf{A}' .

We claim that the following outcome has positive probability: Consider the subinstances \mathbf{A}^* of \mathbf{A} obtained by making some subset of the input relations that hold on \mathbf{A} between at least two elements become false. Each such \mathbf{A}^* is an induced subinstance of \mathbf{A}' , under a correspondence between each a_i in \mathbf{A}^* and some a_i^j among the chosen N/c of the same color in \mathbf{A}' .

Assume the claim holds. Then if some negated conjunction in Q_4 does not hold for \mathbf{A} for some elements a_i , we can consider the negated conjuncts in the corresponding negated conjunction in Q_3 , and find the subinstance \mathbf{A}^* of \mathbf{A} for which these will hold as well. Thus the negated conjunction in Q_3 would not hold for \mathbf{A}^* , and therefore also not hold for \mathbf{A}' , a contradiction.

It remains to prove the claim. Consider the k elements a_i of \mathbf{A} as integers $i=0,1,\ldots,k-1$, Take k< p< N/c prime, and consider p elements a_i^j in \mathbf{A}' corresponding to a_i in \mathbf{A} , viewed as integers j in the range $0,1,\ldots,p-1$, modulo p. Consider subinstances $\mathbf{A}_{a,b}$ of \mathbf{A}' containing for each a_i the element a_i^j with j=ai+b modulo p, where a,b are integers modulo p. Each choice of two a_i^j and $a_i^{j'}$ for two given a_i and $a_{i'}$ occurs in some unique $\mathbf{A}_{a,b}$. Therefore different $\mathbf{A}_{a,b}$ share at most one element. Consequently, for each input relation applied to at least two distinct elements, say $E(a_1,a_2)$ in \mathbf{A} , the corresponding $E(a_1^j,a_2^{j'})$, which are present with probability 1/2 in \mathbf{A}' , occur in at most one $\mathbf{A}_{a,b}$, and therefore the resulting possible outcomes for the different $\mathbf{A}_{a,b}$ are independent.

The total number of subinstances $\mathbf{A}_{a,b}$ being considered is p^2 . The probability that a particular induced subinstance \mathbf{A}^* does not appear in one of these p^2 choices of $\mathbf{A}_{a,b}$ is some constant d<1, so the probability that it does not appear in any $\mathbf{A}_{a,b}$ is d^{p^2} , by independence. Therefore the probability that the d' subinstances \mathbf{A}^* do not all occur as some $\mathbf{A}_{a,b}$ is at most $d' \cdot d^{p^2}$ for some constant d'.

But there are only $\binom{N}{p}^k$ possible choices of subsets of a_i^j of size p for each a_i . The claim then follows by verifying that $d' \cdot d^{p^2} \binom{N}{p}^k < 1$, so that for all possible choices of subsets of a_i^j of the same color we have that all possible \mathbf{A}^* occur as subinstances for some choice of

the a_i in \mathbf{A}^* from the a_i^j of the same color for each i, with nonzero probability; for this last inequality to hold, it suffices $p = \omega(\log N)$ as $N \to \infty$, which can be satisfied since p is allowed to be as large as N/c.

The proof of the monadic case extends to the binary case as well.

Theorem 4 For classes of finite structures closed under inverse homomorphisms, 2SNP() is as expressive as $2SNP(\neq, \neg)$.

PROOF SKETCH: As in the monadic case, we begin with a given sentence Q_0 in $2\text{SNP}(\neq,\neg)$, and define sentences Q_1,Q_2,Q_3,Q_4,Q_5 successively, and show that Q_i describes the same set of structures as Q_{i-1} . The last one Q_5 will be in 2SNP(), and this completes the proof.

The transformation from Q_0 to Q_1 to ensure that for all pairs of variables x, y appearing in a negated conjunction, the statement $x \neq y$ is one of the conjuncts, is the same as in the monadic case. To go from Q_1 to Q_2 , we handle occurrences of input conjuncts involving at most two variables, instead of just one variable as in the monadic case. That is, we replace each occurrence of say an input p(x, x, y, y) with p'(x, y), for an existentially quantified p', adding the conjunct $\neg (p(x, x, y, y) \land \neg p'(x, y))$. This forces p(x, x, y, y)never to appear negated inside a negated conjunction, and similarly for all input relations whose arguments involving at most two different variables. The proof that Q_2 describes the same class as Q_1 is the same as in Lemma 6 for the monadic case. The transformation from Q_2 to Q_3 is the same as in the monadic case, removing negated conjunctions with a conjunct $x \neq x$, and removing negated conjunctions containing both p and $\neg p$ applied to the same arguments. As in the monadic case, we go from Q_3 to Q_4 by removing negated input atoms inside negated conjunctions.

We go from Q_4 to Q_5 as follows. The sentence Q_5 has an existentially quantified binary relation eq that is required to be an equivalence relation. For every existentially quantified relation r in Q_4 , require in Q_5 when r is binary (the monadic case is similar) that if (eq(x,x') and eq(y,y')) then (r(x,y) if and only if r(x',y')). Also replace every occurrence of an input relation, say p(x,x,y,z), with (p(x',x'',y'.z') and eq(x,x') and eq(x,x'') and eq(y,y') and eq(z,z')), where x',x'',y',z' are new variables that do not occur elsewhere in the formula. Finally replace every occurrence of $x \neq y$ with $\neg eq(x,y)$.

Again we first give the proof of the equivalence of Q_4 and Q_5 . Given an instance \mathbf{A} , if \mathbf{A} satisfies Q_4 , then \mathbf{A} also satisfies Q_5 with eq set to be the equality relation. Conversely, if \mathbf{A} satisfies Q_5 , then the homomorphic image \mathbf{A}' of \mathbf{A} that identifies the elements related by eq for \mathbf{A} also satisfies Q_5 , with eq being the equality relation

in A', so A' satisfies Q_4 , and therefore A also satisfies Q_4 , because the set of instances satisfying Q_4 is closed under inverse homomorphisms.

Finally, we show that Q_4 describes the same class as Q_3 . The proof is a generalization of Lemma 8 in the monadic case. It is immediate that if A satisfies Q_4 , it will also satisfy Q_3 , because the conditions in the negated conjunctions of Q_3 are less restrictive that the conditions for Q_4 . Suppose then that a finite structure **A** satisfies Q_3 but not Q_4 . Again, we use the probabilistic methods to derive a contradiction. We construct again a structure \mathbf{A}' that has a large enough number N of elements a_i^j for each a_i . For an input relation applied to a single element, say $E(a_1, a_1)$ in **A**, we make as before $E(a_1^j, a_1^{j'})$ for all j, j' in A'. For an input relation applied to two distinct elements, say $E(a_1, a_2)$ in **A**, we also make $E(a_1^j, a_2^{j'})$ for all j, j' in A'. For an input relation applied to at least three distinct elements, say $E(a_1, a_2, a_3)$ in A, we make $E(a_1^j, a_2^{j'}, a_3^{j''})$ hold in \mathbf{A}' only with probability 1/2, independently over all possible such situations and choices of j, j', j''.

As before, since there is a homomorphism from \mathbf{A}' to \mathbf{A} , the structure \mathbf{A}' must satisfy Q_3 . By Ramsey theory [10], there exists a constant c' and a choice of $c'\log N$ elements a_i^j for each a_i , such that all a_i^j for the same a_i satisfy the same existentially quantified relations $r(a_i^j)$ and $r(a_i^j, a_i^j)$, and furthermore all $a_i^j, a_i^{j'}$ for two distinct $a_i, a_{i'}$ satisfy the same existentially quantified relations $r(a_i^j, a_{i'}^j)$. Consider an assignment of monadic and binary existentially quantified relations for \mathbf{A} corresponding to the choice of a_i^j for each a_i among these $(c'\log N)$ chosen a_i^j .

We claim that the following outcome has positive probability: Consider the subinstances \mathbf{A}^* of \mathbf{A} obtained by making some subset of the input relations that hold on \mathbf{A} between at least three elements become false. Each such \mathbf{A}^* occurs as an induced subinstance of \mathbf{A}' , under a correspondence between each a_i in \mathbf{A}^* and some a_i^j among the chosen $c' \log N$ in \mathbf{A}' .

Assume the claim holds. Then if some negated conjunction in Q_4 does not hold for \mathbf{A} , we can consider the negated conjuncts in the corresponding negated conjunction in Q_3 , and find the subinstance \mathbf{A}^* of \mathbf{A} for which these will hold as well. Thus the negated conjunction in Q_3 would not hold for \mathbf{A}^* , and therefore also not hold for \mathbf{A}' , a contradiction.

It remains to prove the claim. Consider the k elements a_i of \mathbf{A} as being $i=0,1,\ldots,k-1$, Take $k< p< c'\log N$ prime, and consider p elements a_i^j in \mathbf{A}' corresponding to a_i in \mathbf{A} , viewed as as integers j in the range $0,1,\ldots,p-1$, modulo p. Consider subinstances $\mathbf{A}_{a,b,c}$ of \mathbf{A}' containing for each a_i the element a_i^j with $j=ai^2+bi+c$ modulo p, where a,b,c are integers

modulo p. Each choice of three a_i^j , $a_i^{j'}$, and $a_{i''}^{j''}$ for three given a_i , $a_{i'}$, and $a_{i''}$ occurs in some unique $\mathbf{A}_{a,b,c}$. Therefore different $\mathbf{A}_{a,b,c}$ share at most two elements. Consequently, for each input relation applied to at least three distinct elements, say $E(a_1,a_2,a_3)$ in \mathbf{A} , the corresponding $E(a_1^j,a_2^{j'},a_3^{j''})$ which are present with probability 1/2 in \mathbf{A}' , occur in at most one $\mathbf{A}_{a,b,c}$, and therefore the resulting possible outcomes for the different $\mathbf{A}_{a,b,c}$ are independent.

The total number of subinstances $\mathbf{A}_{a,b,c}$ being considered considered is p^3 . The probability that a particular induced subinstance \mathbf{A}^* does not appear in one of these p^3 choices of $\mathbf{A}_{a,b,c}$ is some constant d<1, so the probability that it does not appear in any $\mathbf{A}_{a,b,c}$ is d^{p^3} , by independence. Therefore the probability that the d' subinstances \mathbf{A}^* do not all occur as some $\mathbf{A}_{a,b,c}$ is at most $d' \cdot d^{p^3}$ for some constant d'.

But there are only $\binom{N}{p}^k$ possible choices of subsets of a_i^j of size p for each a_i . The claim then follows by verifying that $d' \cdot d^{p^3} \binom{N}{p}^k < 1$, so that with nonzero probability all choices of subinstances \mathbf{A}^* occur for choices of subsets of a_i^j ; here it suffices $p = \omega(\sqrt{\log N})$ as $N \to \infty$, and as we said before, Ramsey theory guarantees $p = c' \log N$.

This proof does not extend to the r-adic case for $r \geq 3$, because we need $p = \omega((\log N)^{1/r})$, but Ramsey theory gives only $p = c' \log \log N$ for r = 3, with further iterations of \log for larger r. However, if we are not interested in preserving the arity of existentially quantified relations, we can, as in the monadic and in the binary case, introduce for each input relation R an existentially quantified relation R' of the same arity, add the condition $\neg(R \land \neg R')$, and use R' instead of R in the rest of the SNP statement. This is justified by the monotonicity of the class as before in Lemma 6, and immediately takes care of removing negations. The removal of inequalities is as in the proof of Theorem 4 for the binary case, by introducing a binary relation eq. Note that the new quantified relations are of the same arity as the input relations, so their arity cannot be bounded.

Theorem 5 For classes of finite structures closed under inverse homomorphisms, SNP() is as expressive as $SNP(\neq, \neg)$.

The k-pebble-game characterization of $\exists L^k$ -definability holds only for classes of finite structures, so Theorem 1 is stated for such classes. In contrast, the proof of Theorem 2 applies to classes finite structures as well as classes of general structures. The results for SNP fragments are proved for classes of finite structures (because of the probabilistic method). We show, however, that the Compactness Theorem applied to SNP implies that these results

apply also to classes of general structures. The following lemma seems to be a "folk theorem".

Lemma 9 Let **A** be a structure and φ an SNP sentence. Then **A** satisfies φ iff all finite substructures of **A** satisfies φ .

PROOF SKETCH: SNP is preserved under substructures. so one direction is immediate. Suppose now that A does not satisfy φ . Extend the vocabulary with a new constant symbol c_a for every element a of A. Let $diagram(\mathbf{A})$ consists of all atomic sentences and negated atomic sentences over the extended vocabulary; that is, $diagram(\mathbf{A})$ is a complete description of \mathbf{A} . Let ψ be the 1st-order part of φ . Consider the theory T= $diagram(\mathbf{A}) \cup \{\psi\}$. We claim that T is unsatisfiable. Otherwise, if it is satisfied by a structure A' over an expansion of the vocabulary with the quantified relations. But then, some expansion of A is a substructure of A', implying that φ holds in A, by substructure preservation. Since T is unsatisfiable, by the Compactness Theorem, a finite subset of T is unsatisfiable. Since $diagram(\mathbf{A})$ is satisfiable, we can assume that this finite subset includes ψ and all atomic sentences and negated atomic sentences of a finite subset $\{c_{a_1}, \dots, c_{a_n}\}$ of constants. But then φ does not hold over the substructure of **A** induced by $\{\mathbf{c}_{a_1},\ldots,\mathbf{c}_{a_n}\}.$

Corollary 1 For classes closed under inverse homomorphisms, SNP() (resp., 1SNP(), 2SNP()) is as expressive as $SNP(\neq, \neg)$ (resp., $1SNP(\neq, \neg)$, $2SNP(\neq, \neg)$).

PROOF SKETCH: Let \mathcal{C} be a class of structures closed under inverse homomorphism. Let \mathcal{C}_f be the class of finite substructures of structures in \mathcal{C} . It is easy to see that \mathcal{C}_f is also closed under inverse homomorphism. By Theorem 3,4, and 5, an $\mathrm{SNP}(\neq, \neg)$ sentence (resp., $\mathrm{1SNP}(\neq, \neg)$, $\mathrm{2SNP}(\neq, \neg)$) φ is equivalent over \mathcal{C}_f to a setence φ' in $\mathrm{SNP}()$ (resp., $\mathrm{1SNP}()$, $\mathrm{2SNP}()$). Suppose that the equivalence does not hold over \mathcal{C} , then φ and φ' do not agree on some structure $\mathbf{A} \in \mathcal{C}$. But then, by Lemma 9, φ and φ' must also disagree on a finite substructure \mathbf{A}' of \mathbf{A} , which is a contradiction, since $\mathbf{A}' \in \mathcal{C}_f$.

5 Undecidability of Homomorphism Closure

In this section we prove that homomorphism closure is not effective for our effective logics ($\exists L^{\omega}$ is not an effective logic). Since the complement of Datalog is a fragment of 1SNP (cf. [14]), we focus on the former.

Theorem 6 It is undecidable whether the class of (finite) structures characterized by a program in monadic $Datalog(\neq)$ is closed under homomorphisms.

PROOF SKETCH: Hillebrand et al. [12] consider a Turing machine M, and define a program Π in monadic Datalog(\neq) that accepts a structure \mathbf{A} if and only if \mathbf{A} does not describe a correct computation of the machine M. We can modify the program Π so that it accepts a structure \mathbf{A} if and only if \mathbf{A} describes a computation of M reaching an accepting state and the computation of the machine M described by \mathbf{A} contains an error.

Suppose M does not terminate. If \mathbf{A} describes a computation of M reaching an accepting state, then the description \mathbf{A} of the computation of M contains an error, and therefore Π accepts \mathbf{A} . If \mathbf{A} does not describe a computation of M reaching an accepting state, then Π does not accept \mathbf{A} . Therefore the language of Π (i.e., the class of structures characterized by Π) is the same as the language of structures \mathbf{A} describing a computation of M reaching an accepting state. A homomorphic image of such a structure \mathbf{A} also reaches an accepting state. Therefore the language of Π is closed under homomorphisms.

Suppose now M terminates. Then there is a structure ${\bf A}$ describing a correct computation of M reaching an accepting state. The program Π does not accept this structure ${\bf A}$. There also exists a structure ${\bf A}'$ describing a computation of M containing an error such that ${\bf A}'$ homomorphically maps to ${\bf A}$. The program Π accepts the structure ${\bf A}'$. Therefore the language of Π is not closed under homomorphisms.

Consequently, whether the language of Π is closed under homomorphisms depends on whether M terminates, and the undecidability of whether the language of Π is closed under homomorphisms follows from the undecidability of the halting problem for M.

Acknowledgements

The authors are grateful to Miki Ajtai for valuable conversations and to several referees for useful comments.

References

- [1] S. Abiteboul, R. Hull and V. Vianu, *Foundations of databases*, Addison-Wesley, 1995.
- [2] M. Ajtai and and Y. Gurevich, "Monotone versus positive," *J. ACM* 34(1987), 1004–1015.
- [3] A. Chandra and D. Harel, Horn-clause queries and generalizations", *J. Logic Programming*, 1(1985), 1–15.
- [4] C.C. Chang and H.J. Keisler, *Model Theory*, North-Holland, 3rd edition, 1990.

- [5] A .Durand, C. Lautemann, and T Schwentick, "Subclasses of binary NP", J. of Logic and Computation 8(1998), 189–207.
- [6] H. D. Ebbinghaus and J. Flum. *Finite Model Theory*. Springer Verlag, 1995.
- [7] R. Fagin, "Generalized first-order spectra and polynomial-time recognizable sets', in *Complex*ity of Computation, SIAM-AMS Proceedings, Vol. 7 (R. M. Karp, ed.), 1974, 43–73.
- [8] T. Feder and M. Y. Vardi, "The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory," SIAM J. Computing 28 (1998), 57–104.
- [9] E. Grädel and E. Rosen, "Preservation theorems for two-variable logic", *Mathematical Logic Quarterly*, 45(1999), 315–325.
- [10] R.L. Graham, B.L. Rothschild, and J. H. Spencer, *Ramsey Theory*, Wiley, 1980.
- [11] Y. Gurevich, "On Finite Model Theory", in *Feasible Mathematics* (S.R. Buss and P.J. Scott, eds.), Birkhaeuser, Boston, 1990, 211–219.
- [12] G. G. Hillebrand, P.C. Kanellakis, H. G. Mairson, and M. Y. Vardi, "Undecidable boundedness problems for database logic programs," *J. Logic Programming* 25(1995), 163–190.
- [13] N. Immerman, *Descriptive Complexity*, Springer-Verlag, 1998
- [14] P.G. Kolaitis, "Implicit Definability on Finite Structures and Unambiguous Computations", *Proc. 5th IEEE Symp. on Logic in Computer Science*, 1990, 168–180.
- [15] P. G. Kolaitis and M. Y. Vardi, "On the expressive power of Datalog: tools and a case study," *J. Computer and System Sciences* 51(1995), 110–134.
- [16] P.G. Kolaitis and M.Y. Vardi, "Infinitary logics and 0–1 laws," *Information and computation* 98(1992), 258–194.
- [17] C.H. Papadimitriou and M. Yannakakis, "Optimization, approximation, and complexity," *Proc. 20th ACM Symp. on Theory of Computing*, 1988, 229–234.
- [18] E. Rosen, Some aspects of model theory and finite structures, *Bulletin of Symbolic Logic*, 8(2002), 380–403.

