Семинар 1

Задачи:

- 1. Найдите $\prod_{k=1}^{\infty} \cos(x2^{-k})$.
- 2. Найдите сумму ряда

$$\sum_{n=1}^{\infty} \frac{f(n)}{n(n+1)}$$

где f(n) – количество единиц в двоичном представлении числа n.

- 3. Найдите сумму ряда $\sum_{n=1}^{\infty} \frac{2^n}{n!}$.
- 4. Найдите сумму $\sum_{k=0}^{\infty} (-1)^k \frac{(k+1)^2}{k!}$
- 5. Исследуйте на сходимость и абсолютную сходимость ряд

$$\sum_{k=1}^{\infty} \sin(\pi\sqrt{k^2 + 1})$$

6. Исследуйте на сходимость ряд

$$\sum_{n=3}^{\infty} (\ln \ln n)^{-\ln n}$$

- 7. Последовательность a_n задана условиями $a_1=1,\ a_{n+1}=\sin(a_n).$ Сходится ли ряд $\sum_{n=1}^{\infty}a_n$?
- 8. Исследуйте на сходимость (абсолютную и условную) ряд $\sum_{k=1}^{\infty} a_k$, где

$$a_k = \int\limits_0^{\frac{\sin k}{k}} \frac{\sin t}{t} \, dt$$

9. Пусть ξ_n — последовательность случайных величин, имеющих стандартное нормальное распределение. Сходится ли ряд

$$\sum_{n=1}^{\infty} P(\xi_n > \sqrt{2\ln n + 2\ln \ln n})?$$

- 10. Вычислить интеграл $\int \frac{1}{\sqrt{1+e^x}} dx$.
- 11. Вычислите $\int_{0}^{2\pi} (\sin x)^{8} dx$.
- 12. Вычислите сумму интегралов:

$$\int_{\sqrt{\pi/6}}^{\sqrt{\pi/3}} \sin(x^2) dx + \int_{1/2}^{\sqrt{3}/2} \sqrt{\arcsin(x)} dx$$

- 13. Найдите интеграл $\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^{2014}(x)}{\sin^{2014}(x) + \cos^{2014}(x)} \, dx.$
- 14. Вычислить интеграл $\int e^{e^x + 2014x} dx$.
- 15. Вычислить интеграл

$$\int_{\frac{1}{2}}^{3} \frac{\arctan x}{x^2 - x + 1} \, dx$$

1

16. Найдите

$$\lim_{x \to 0} \int_{0}^{x} \frac{\cos(t^3)}{t+x} dt$$

- 17. Пусть $I_m = \int\limits_0^{2\pi} \cos(x) \cos(2x) \ldots \cos(mx) \, dx$. Для каких $m \in [1, 10] \, I_m \neq 0$?
- 18. Определим последовательность x_n начальными условиями $x_1=a, \ x_2=b$ и рекуррентной формулой $x_{n+1}=\frac{1}{2}(x_n+x_{n-1}).$ Найдите $\lim_{n\to\infty}x_n.$
- 19. Найдите предел

$$\lim_{\lambda \to 0+} \frac{1}{\ln \lambda} \int_{\lambda}^{a} \frac{\cos x}{x} \, dx$$

- 20. Найдите предел последовательности c_n , определяемой рекуррентным соотношением $c_{n+1} = (q \frac{1}{n})c_n + \beta_n$, где β_n любая последовательность со свойством $n^2\beta_n \to 0$ при $n \to \infty$.
- 21. Последовательность $\{a_n\}_{n=0}^{\infty}$ определена рекурсивно: $a_0=1,\ a_{n+1}=\frac{a_n}{1+na_n}$. Найдите формулу общего члена последовательности.
- 22. Трудоемкость алгоритма A описывается следующим соотношением (T(n) время решения задачи размерности n):

$$T(n) \leqslant T([\sqrt{n}]) + 1, \quad T(1) = C_1(\text{const}).$$

Найдите асимптотически как можно большую функцию, удовлетворяющую этому соотношению. Ответ представьте в О-нотации, докажите, что функция удовлетворяет данному соотношению.

23. Найдите предел последовательности a_n , для которой $a_0 = -\frac{1}{2}$, $a_{n+1} = \frac{a_n^2(a_n-3)}{4}$.