Théorie des nombres algorithmique

2024-2025

Table des matières

1	\mathbf{Alg}	orithmes
	1.1	$\frac{3}{5} 0>+\frac{4}{5} 1>$
	1.2	Deutsch-Josza
	1.3	Simon
	1.4	Transormée de Fourier quantique
		1.4.1 Cas $r = 2^d$
		1.4.2 Construire la porte QFT
		143 Le cas r général

TABLE DES MATIÈRES

Chapitre 1

Algorithmes

1.1
$$\frac{3}{5}|0>+\frac{4}{5}|1>$$

C'est un exo à la con mais c'est instructif, on regarde

$$|0> \to \frac{1}{\sqrt{2}}(|0>+|1>)$$

$$\to \frac{1}{\sqrt{2}}(|0>+e^{i\theta}|1>)$$

$$\to \frac{1}{2}(|0>(1+e^{i\theta})+|1>(1-e^{i\theta}))$$

$$\to \frac{1}{2}(e^{i\theta/2}(e^{-i\theta/2}+e^{i\theta/2})+e^{i\theta/2}|1>(e^{-i\theta/2}-e^{i\theta/2}))$$

et là suffit d'ajuster theta puis de refaire des phases shifts.

1.2 Deutsch-Josza

Donc l'algorithme permet de décider si $f: 2^n \to 2$ est constante ou équilibrée (Comme un morphisme de groupes $(\mathbb{Z}/2\mathbb{Z})^n \to \mathbb{F}_2$).

En gros le point crucial c'est que sur $|0^n>|1>$ Si on fait $H^{\otimes (n+1)},\,U_f$

puis $H^{\otimes n}$ on obtient :

$$|0^{n} > |1 > \to \sum_{x \in 2^{n}} |x > (|0 > -|1 >)$$

$$\to \sum_{x \in 2^{n}} |x > (|f(x) > -|1 \oplus f(x) >$$

$$\to \sum_{y \in 2^{n}} |y > \sum_{x \in 2^{n}} (-1)^{f(x)} (-1)^{x \cdot y}$$

En particulier $||q_{0^n}|| = \sum_{x \in 2^n} (-1)^{f(x)}/2^n$. D'où si f est constant on obtient 0^n avec proba 1, sinon proba 0 d'avoir 0^n .

1.3 Simon

Cette fois c'est plus fun, si on prends

$$f: (\mathbb{Z}/2\mathbb{Z})^n \to X$$

avec X un ensemble fini, et si f vérifie f(x) = f(y) ssi x = y ou x = y + a on aimerait trouver a. Essentielemment, si f passe au quotient en a > a on veut trouver le "noyau". On regarde

À nouveau on fait rentrer $|0^{n+m}>$, on obtient

$$|0^{n+m}\rangle \to \frac{1}{2^{n/2}} \sum_{x \in 2^n} |x\rangle |f(x)\rangle$$
$$\to \frac{1}{2^n} \sum_{y \in 2^n} |y\rangle \sum_{x \in 2^n} (-1)^{x,y} |f(x)\rangle$$

et on à $q_y = \sum_{x \in 2^n} (-1)^{x,y} | f(x) >$. Le claim c'est qu'on obtient un vecteur $v \in \mathbb{F}_2^n$ uniformément distribué orthogonal à a en sortie. Ça se voit direct en regardant $y.a \mod 2$:

$$q_y = \sum_{\bar{x} \in (\mathbb{Z}/2\mathbb{Z})^n/\langle a \rangle} (1 + (-1)^{a \cdot y})((-1)^{x \cdot y} | f(x) \rangle$$

Algorithmes

$$a.y = 1 \mod 2 \to q_y = \sum_{\bar{x} \in (\mathbb{Z}/2\mathbb{Z})^n/} \(1 + \(-1\)^{a.y}\)\(\(-1\)^{x.y}|f\(x\) > 0$$

$$= 0$$

$$a.y = 0 \mod 2 \to q_y = \sum_{\bar{x} \in (\mathbb{Z}/2\mathbb{Z})^n/} \(1 + \(-1\)^{a.y}\)\(\(-1\)^{x.y}|f\(x\) > 0$$

$$= \sum_{\bar{x} \in (\mathbb{Z}/2\mathbb{Z})^n/} \(\(-1\)^{x.y}|f\(x\) > 0$$

En particulier, y'a que les $y.a = 0 \mod 2$ qui ont une proba de sortir. L'uniforme distribution est claire.

Pour obtenir a, on peut lancer l'algorithme jusqu'à obtenir une base de $\langle a \rangle^T$.

Remarque 1. La proba d'avoir une base en m étapes se calcule bien, regarder la matrice des m vecteurs colonnes. Calculer sur le rang sur les lignes! On obtient une proba $P_{d+k} \geq 1 - \frac{1}{q^k(q-1)} = 1 - \frac{1}{2^k}$ avec q = 2 ici et $d = n - 1 = dim < a >^T$.

1.4 Transormée de Fourier quantique

On a une nouvelle porte,

$$QFT(|x>) = \frac{1}{2^{n/2}} \sum_{y \in 2^n} \zeta_{2^n}^{x,y} |y>.$$

Et on peut l'utiliser pour trouver la période d'une fonction! Y'a une nuance dans la suite :

On part de $\mathbb{Z}/2^n\mathbb{Z}$ et pas $(\mathbb{Z}/2\mathbb{Z})^n$, puis xy est le produit dans $\mathbb{Z}/2^n\mathbb{Z}$ pas le produit scalaire.

1.4.1 Cas $r = 2^d$

Problème 1. $f \colon \mathbb{F}_2^n \to X$ telle qu'il existe $d \le n$ t.q :

- 1. f est 2^d -périodique.
- 2. $f(x) = f(y) \operatorname{ssi} 2^d | x y$.

Le circuit

mesure un $|y\rangle$ uniforme divisible par 2^{n-d} . En particulier, on a une manière de chopper une période de la forme 2^d en itérant. Donc en gros comme d'hab on regarde :

$$\sum_{x \in \mathbb{Z}/2^n \mathbb{Z}} |x > |f(x) >$$

et on applique QFT cette fois pour obtenir :

$$\sum_{x \in \mathbb{Z}/2^n \mathbb{Z}} \sum_{y \in \mathbb{Z}/2^n \mathbb{Z}} \zeta_{2^n}^{xy} |y > |f(x) >$$

et on pose

$$q_y = 1/2^n \sum_{x \in \mathbb{Z}/2^n \mathbb{Z}} \zeta_{2^n}^{xy} | f(x) >$$

puis on écrit $x = a + 2^d b$, alors f(x) = f(a). On peut montrer que

- 1. si $2^{n-d} | y$ alors $||q_y||^2 = 1/2^d$.
- 2. sinon $||q_y||^2 = 0$.

Fait: En gros, en prenant la QFT comme boite noire, j'ai revu deutsh josza et simon. Puis Shor pour trouver les périodes de la forme 2^k . Ensuite pour une période de la forme r générale, on peut l'estimer à partir du circuit du dessus. À faire: Comprendre l'estimation d'abord, via les fractions continues. Puis comprendre la QFT sans boite noire mais ca c'est moins important. Faut savoir construire $|x\rangle \mapsto |0\rangle + \zeta_{2^n}^x |1\rangle$.

Finalement : Ça vaut le coup de comprendre comment marche la QFT pour le td ? Ou au moins pour l'algorithmique.

1.4.2 Construire la porte QFT

En gros on utilise la factorisation:

$$\begin{split} QFT(|x>) &= \frac{1}{2^{n/2}} \sum_{y \in 2^n} \zeta_{2^n}^{xy} | y> \\ &= \frac{1}{2^{n/2}} \sum_{y_0, \dots, y_{n-1} \in \{0,1\}} \prod_{i=0, \dots, n-1} \zeta_{2^n}^{x2^i y_i} | y_i> \\ &= \frac{1}{2^{n/2}} \prod_{i=0, \dots, n-1} (|0> + \zeta_{2^n}^{x2^i} | 1>) \end{split}$$

en particulier, y suffit de savoir construire

$$\frac{|0>+\zeta_{2^{n-i}}^x|1>}{\sqrt{2}}$$

Mais ça on peut le faire avec un controlled phase shift :

$$\frac{|0>+\zeta_{2^{n-i}}^{x}|1>}{\sqrt{2}} = \frac{|0>+\zeta_{2^{n-i}}^{x_0+\dots+2^{n-i}x_i}|1>}{\sqrt{2}}$$
$$= \frac{|0>+\prod_{j=0}^{n-i}\zeta_{2^{n-i-j}}^{x_j}|1>}{\sqrt{2}}$$

Au sens où la c'est juste une suite de phase shifts là où $x_i = 1$.

Conclusion 1. Là on a construit un circuit Q_i qui créé le qbit du dessus qui agit que sur la n-i-1-ème entrée. En particulier pour appliquer la QFT, on fait successivement Q_0 puis Q_1, \ldots

1.4.3 Le cas r général

Bon là on savait trouver une période de la forme 2^d . Maintenant on veut trouver une période quelconque. On va faire exactement la même chose et voir ce qu'y se passe.

Résumé 1. En gros, la sortie de Shor est une approximation de k/r une fraction proche à 2^{n+1} , i.e. :

$$|y/2^n - j/r| < 1/2^{n+1}$$

On connaît par j/r mais on peut montrer avec une telle approximation que il existe un convergent de y, p_n/q_n tel que $p_n/q_n = j/r!$

On peut montrer avec des théorèmes sur les fractions continues que pour une sortie de Shor y, il existe j tel que $|y/2^n-j/r|<1/2^{n+1}$ et par la théorie des fractions continues, j/r est un convergent de y! I.e. y'a dans la fraction continue on peut trouver p_n/q_n t.q $p_n/q_n=j/r$, wow.

Stratégie 1. Ducoup la stratégie c'est :

- 1. Lancer Shor et obtenir y.
- 2. Calculer les convergents de $y/2^n$, (p_i/q_i) .
- 3. Vérifier si $f(0) = f(q_i)$ pour un i, si oui retourner q_i .

À la dernière étape ce sera vrai par la théorie parce que une condition c'est $2^n > r^2$ et on le choisit comme ça.