

1. A method of fabricating a dental restoration comprising:
providing a framework possessing a coefficient of thermal expansion of as high as
about $18 \times 10^{-6}/^{\circ}\text{C}$; and
fusing a dental porcelain composition comprising a leucite crystallite phase dispersed
in a feldspathic glass matrix to said framework to provide a smooth, non-abrasive surface
thereon;
said fused dental porcelain composition having a maturing temperature in the range
from about 750° to about 1050° C. , a coefficient of thermal expansion (room temperature to
 450° C.) of from about $12 \times 10^{-6}/^{\circ}\text{C.}$ to about $17.5 \times 10^{-6}/^{\circ}\text{C.}$, and comprising:

Component	Amount (wt. %)
SiO_2	57-66
Al_2O_3	7-15
K_2O	7-15
Na_2O	7-12
Li_2O	0.5-3

and further comprising a dispersed leucite crystallite phase representing from about 5 to
about 65 weight percent of the dental porcelain, and wherein the leucite crystallites possess
diameters not exceeding about 10 microns.

2. The method of Claim 1 wherein the leucite crystallites of the fused porcelain
have diameters not exceeding about 5 microns.

3. The method of Claim 2 wherein the leucite crystallite are less than have diameters not exceeding about 1 micron.
4. The method of Claim 1, wherein the dental porcelain has a maturing temperature of from about 800° to about 1000°C.
5. The method of Claim 1, wherein the dental porcelain is fired at a temperature ranging from about 780° to about 870°C.
6. The method of claim 1, wherein the fused porcelain is a two-phase porcelain.
7. The method of Claim 1 wherein the fused dental porcelain composition further comprises at least one of:

Component	Amount (wt. %)
CaO	0-3
MgO	0-7
F	0-4
CeO ₂	0-1.