Image Super-Resolutions

Guillem Escriba	U188331	242123
David Pérez	U188332	241375
Arnau Solans	U161668	216530

Index

- 1. Context of the project and objectives.
- 2. Dataset.
- 3. Architecture used.
- 4. Training performed.
- 5. Results obtained.
- 6. Experiments conducted.
- 7. Possible extensions of our project.
- 8. References.

Context and Objectives

• **Motivation:** It is common to have blurred or pixelated images, and it is usually difficult get more optimal images. **Our objective** was to construct a model that can improve the resolution of any image by a factor of 4.

Milestones:

- → Produce a Super Resolution x4 times the Low Resolution.
- → Correct the use of MSELoss (instead of VGG Loss) with a more complex architecture.
- → Construct a model that works for any test image.

Dataset

We started with BSD300.

- ➤ 200 variate Training images
- ➤ 100 variate Test images

We finally selected **DIV2K**

- ➤ 800 variate Training images
- ➤ 100 variate Test images

Center cropping of all the images:

- > 64x64 for Low Resolution images
- ➤ 256x256 for High Resolution images

High Resolution

Low Resolution

Architecture

Improved with Densely Connected Convolutional Networks principle:

- Application of Densely Connected Residual Blocks
- Element-wise sum replaced with Weighted 'concatenation' of outputs

Basic SRGAN architecture:

- Generator
 - Convolutional+Parametric ReLU
 - 5 Residual Blocks
 - Batch Normalization
 - Upscaling Blocks with Sub-Pixel Convolutions
- Discriminator
 - Strided Convolutions
 - Fully Connected Layers

Use of VGG19 as Transfer learning for the discriminator:

Use a pre-trained VGG19:

- Input of the Discriminator
- Pre-processed VGG(HR)
- Less parameters

Training

Losses:

- Content Loss: Pixel-wise loss (MSE versus VGG).
- Adversarial Loss: Discriminator loss (Wasserstein versus BCE).
- Perceptual Loss: Generator loss taking into account Content Loss and Discriminator feedback.

Hyperparameters:

- Learning Rate: Unique or one for each piece of the network.
- Epochs: Computational time and diminishing returns.
- Adversarial training: Regulating the race between Generator and Discriminator.
- Batch Size: Usage of Batch Normalization or Instance Normalization in our architecture.

Results

Metrics: Peak Signal to Noise Ratio (PSNR) and structural similarity (SSIM).

- Weighted Dense ResNet (WDRN) with VGG SRGAN 50 epochs:
 - o PSNR = 29.23
 - o SSIM = 0.739

More Results (Second best model)

- Normal SRGAN 30 epochs:
 - o PSNR = 29.21
 - SSIM = 0.731

COMPARISON BETWEEN WDRN AND THE ORIGINAL NETWORK

COMPARISON BETWEEN WDRN AND LOW RESOLUTION

Experiments

- Implementation of Densely Connected Blocks
 - Encouraging forward-pass nature of the model.
 - Experimentation with Weighted Dense Connections
- Wasserstein Loss
 - As discriminator loss
- VGG implementation
 - After the SR and HR images and before the Discriminator
 - Pre processed
- Dropout
 - To reduce overfitting
 - Different values
- Batch size
 - Problems
 - Instance Norm

Possible extensions

- Use a bigger dataset
- Use all possible crops of the same dataset (up to 10K)
- Adapt state of the art model with usage of hybrid attention blocks and transformers (HAT-L).
- Weighted dense Connections
 - Fine-tune the hyper-parameter "b"
 - Add modifications
- Expand the amount of layers of the Generator
- Change the content loss from MSE to VGG loss
- Modify the alternative training
- Experiment in a Cluster or local machine with more RAM (batch size, dataset size...)

References

- Densely Connected Convolutional Networks [DenseNets] (1608.06993.pdf (arxiv.org))
- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [SRGAN] (1609.04802.pdf (arxiv.org))
- Hybrid Attention Transformers [HAT-L] (2205.04437.pdf (arxiv.org))
- Wasserstein GAN (https://arxiv.org/pdf/1701.07875.pdf)

Thank You for your attention

Thank You for your attention

Image Super-Resolutions

Guillem Escriba	U188331	242123
David Pérez	U188332	241375
Arnau Solans	U161668	216530