

REAL AFFINE SET REPRESENTATIONS

Why

Since every affine set is a translate of a unique subspace, we can represent them by representing the vector and the subspace.

Definition

Recall that M is affine means M=S+a for some subspace S and vector $a\in \mathbf{R}^n$. The dimension of M is the dimension of the subspace. Suppose $\dim S=k$, then there exists $Q\in \mathbf{R}^{n\times k}$ with $Q^\top Q=I$, so that for any $x\in S$, there exists unique $z\in \mathbf{R}^k$ with x=Qz. Since M=S+a, we have

$$M = \{ y \in \mathbf{R}^n \mid (\exists z \in \mathbf{R}^k) (y = a + Qz) \}$$

We also denote this set $\{a + Qz \mid z \in \mathbf{R}^k\}$.

