## Решения

## Заключительный тур олимпиады Росатом, физика, 11 класс, 2017-2018 учебный год, комплект 3

- 1. Амперметр подключают к источнику, имеющему некоторое внутреннее сопротивление, и он показывает силу тока  $I_1 = 1$  А. Если параллельно первому амперметру подключить второй, точно такой же, то сумма показаний амперметров будет равна  $I_2 = 1,2\,$  А. Найти сумму показаний 8 точно таких же амперметров, подключенных к этому же источнику параллельно.
- **2.** Имеется 2018 одинаковых стержней массой m=1 кг. Каждый стержень подвешен на двух нитях, прикрепленных к его концам. Левый стержень подвешен к горизонтальному потолку. Все остальные стержни подвешены так, что одна из нитей прикреплена к потолку, вторая – к «предыдущему» стержню в точке, отстоящей на одну пятую часть его длины от его правого конца (см. рисунок). Найти силу натяжения самой левой нити. Считать, что  $g = 10 \text{ м/c}^2$ .



**3.** Однородный цилиндр радиусом R и высотой h положили в кювету в форме прямоугольного параллелепипеда, длина которой на очень небольшую величину превосходит длину цилиндра h, а ширина – диаметр цилиндра, так, что цилиндр можно положить в кювету с очень небольшими зазорами между ним и стенками кюветы. Затем в кювету налили воду, которая только-только покрывает цилиндр (см. рисунок). минимальную работу нужно совершить, чтобы вытащить цилиндр из воды? Плотность воды  $\rho$ , плотность материала цилиндра  $6\rho$ .



4. В протекторе покрышек переднего и заднего колес велосипеда застряли два маленьких камня. В тот момент, когда камень на заднем колесе касается земли, камень на переднем находится в крайнем переднем положении (см. рисунок; камни обведены кружками). Найти минимальное расстояние между камнями в процессе движения велосипеда. Через какое минимальное время после положения, показанного на рисунке, расстояние между достигает минимального значения? Скорость велосипеда v, радиус колес R, расстояние между центрами колес - 3R. Колеса не проскальзывают по дороге.



**5.** Два тела с теплоемкостями 2C и C имеют температуры T и 3T соответственно. Какая минимальная температура может установиться в этой системе, если тела использовать в качестве нагревателя и холодильника теплового двигателя, а произведенная механическая работа будет «уходить» из системы? Какую максимальную работу можно получить в такой системе тел? Других потерь энергии в рассматриваемой системе нет.

## Решения

1. Очевидно, что амперметры неидеальны. Действительно, если бы сопротивление амперметров равнялось бы нулю, то сумма токов через все амперметры (которая равна току через источник) определялся бы ЭДС и внутренним сопротивлением самого источника. А эта величина не меняется при подключении дополнительных амперметров. У нас же ток через источник при подключении одного амперметра и сумма токов через два амперметра – разная.

Пусть сопротивление амперметра - R, сопротивление источника - r. Тогда для тока через источник (или суммы токов через амперметры) получим из закона Ома для замкнутой цепи в первом и втором случае

$$R + r = \frac{\varepsilon}{I_1}$$
$$\frac{R}{2} + r = \frac{\varepsilon}{I_2}$$

где  $\varepsilon$  - ЭДС источника, R/2 - общее сопротивление двух амперметров. Из этой системы уравнений находим

$$R = \frac{2\varepsilon \left(I_2 - I_1\right)}{I_1 I_2}, \qquad r = \frac{\varepsilon \left(2I_1 - I_2\right)}{I_1 I_2}$$

Тогда закон Ома для замкнутой цепи в случае восьми амперметров, подключенных к источнику параллельно, дает

$$\frac{\varepsilon}{I_3} = \frac{R}{8} + r = \frac{\varepsilon(I_2 - I_1)}{4I_1I_2} + \frac{\varepsilon(2I_1 - I_2)}{I_1I_2} = \frac{\varepsilon(7I_1 - 3I_2)}{4I_1I_2}$$

где  $I_3$  - ток через источник (сумма токов через амперметры). Отсюда

$$I_3 = \frac{4I_1I_2}{7I_1 - 3I_2} = 1,41 \text{ A}$$

**2.** На самый правый стержень действует сила тяжести и две силы натяжения. Из симметрии задачи очевидно, что последние одинаковы. Поэтому

 $T_1 = \frac{mg}{2}$ 

$$\vec{T}_1$$
  $\uparrow$   $\vec{T}_1$  Первый стержень  $m\vec{g}$ 

Из условия равенства нулю моментов сил, действующих на второй стержень относительно правой нити, получим (чтобы не загромождать рисунок сила натяжения правой нити на рисунке не показана)

$$T_2 l = mg \frac{l}{2} + \frac{mg}{2} \frac{l}{5} = \frac{mgl}{2} \left( 1 + \frac{1}{5} \right)$$

Отсюда находим

$$T_2 = \frac{mg}{2} \left( 1 + \frac{1}{5} \right)$$

Условие равенства нулю моментов сил, действующих на третий стержень (относительно его правого) получим

$$T_3 l = mg \frac{l}{2} + T_2 \frac{l}{5} = \frac{mgl}{2} \left( 1 + \frac{1}{5} + \frac{1}{25} \right)$$

Теперь ясна и дальнейшая структура формул. Сила натяжения левой нити, привязанной к n-ому стержню, будет определяться суммой конечной геометрической прогрессии

$$\vec{T}_2$$
  $\underbrace{\frac{m\vec{g}}{2}}$  Второй стержень

$$T_n = \frac{mg}{2} \left( 1 + \left( \frac{1}{5} \right)^1 + \left( \frac{1}{5} \right)^2 + \left( \frac{1}{5} \right)^3 + \dots + \left( \frac{1}{5} \right)^n \right)$$

Используя формулу суммы прогрессии и учитывая, что  $\left(1/5\right)^{2018}$  - чудовищно малое число, получим

$$T_{2018} = \frac{mg}{2} \frac{1 - \left(\frac{1}{5}\right)^{2018}}{1 - \frac{1}{5}} = \frac{5mg}{8} = 6,25 \text{ H}$$

3. Работу, которую нужно совершить найдем как изменение потенциальной энергии воды и цилиндра при его вытаскивании из воды.

Кювета в разрезе, перпендикулярном высоте цилиндра, показана на рисунке, из которого заключаем, что объем налитой в кювету воды V равен разности объема параллелепипеда с основанием  $2R \times 2R$  и высотой h . То есть

$$V = (4 - \pi)R^2h$$

Минимальная высота  $\Delta h$ , на которую нужно поднять цилиндр, чтобы он полностью вытащить его из воды (см. рисунок), находится из очевидного соотношения

$$(4-\pi)R^2h = 2R\Delta hh$$
  $\Rightarrow$   $\Delta h = \frac{(4-\pi)}{2}R$ 



$$\Delta \Pi_{u} = Mg\Delta h = 3\rho\pi R^{2}hg\frac{(4-\pi)}{2}R = \frac{3\pi(4-\pi)}{2}\rho ghR^{3}$$

Центр тяжести воды находился в центре сечения цилиндра, а будет находиться на высоте  $\Delta h/2$  от дна кюветы. Поэтому потенциальная энергия воды уменьшится на величину

$$\Delta\Pi_{g} = mg\left(R - \frac{\Delta h}{2}\right) = \rho\left(4 - \pi\right)R^{2}hg\left(R - \frac{\left(4 - \pi\right)}{4}R\right) = \frac{\rho\left(4 - \pi\right)\pi R^{3}hg}{4}$$

Поэтому работа, которую необходимо совершить для вытаскивания цилиндра из воды (равная увеличению потенциальной энергии системы цилиндр-вода), равна

$$A = \Delta \Pi_{u} - \Delta \Pi_{e} = \frac{3\pi (4 - \pi)}{2} \rho g h R^{3} - \frac{\rho (4 - \pi) \pi R^{3} h g}{4} = \frac{5\rho (4 - \pi) \pi R^{3} h g}{4}$$

**4.** Поскольку колеса имеют одинаковые размеры и не проскальзывают, они вращаются с одинаковыми угловыми скоростями  $\omega$ , которые определяются соотношением:

$$\omega = \frac{v}{R},\tag{1}$$

где v - скорость велосипеда, R - радиус колеса. Поэтому угол между радиусами-векторами камней  $\vec{r_1}$  и  $\vec{r_2}$  относительно центров колес в любой момент времени составляет 90° (см. рисунок 1).

Рудиус-вектор второго камня относительно первого  $\vec{r}_{21}$  можно найти из очевидного векторного равенства

$$\vec{r}_{21} = \vec{r}_0 + \vec{r}_2 - \vec{r}_1. \tag{2}$$



Рисунок 1.

где  $\vec{r}_0$  - радиус-вектор центра переднего колеса относительно центра заднего. Так как угол между векторами  $\vec{r}_1$  и  $\vec{r}_2$  всегда равен  $90^\circ$ , то вектор  $\vec{r}_2 - \vec{r}_1$  имеет длину  $\sqrt{2}R$  (R - радиус колес), и вращается с постоянной угловой скоростью, равной угловой скорости колес. Таким образом, радиус-вектор

второго камня относительно первого можно найти как сумму вектора  $\vec{r}_0$  и вектора, имеющего длину  $\sqrt{2}R$  и вращающегося с угловой скоростью (1). Сложение этих векторов показано на рисунке 2, причем концы векторов  $\vec{r}_2 - \vec{r}_1$  и  $\vec{r}_{21}$  лежат на окружности радиуса  $\sqrt{2}R$  с центром в конце вектора  $\vec{r}_0$ .

Из рисунка 2 следует, что минимальную длину вектор  $\vec{r}_{21}$  (2) имеет в тот момент времени, когда вектор  $\vec{r}_2 - \vec{r}_1$  направлен противоположно вектору  $\vec{r}_0$ , максимальную — когда вектор  $\vec{r}_2 - \vec{r}_1$  направлен так же, как и вектор  $\vec{r}_0$ . Поэтому



Рисунок 2.

$$r_{21}^{\min} = 3R - \sqrt{2}R = R(3 - \sqrt{2});$$
  $r_{21}^{\max} = 3R + \sqrt{2}R = R(3 + \sqrt{2})$ 

Вычитание векторов  $\vec{r}_2 - \vec{r}_1$ , 36 соответственно. Поэтому длина вектора  $\vec{r}_{21}$ минимальна, когда вектор  $\vec{r}_{2}$ 

вычитание векторов 
$$r_2-r_1$$
, отвечающее этим двум случаям, показано на рисунке 36 соответственно. Поэтому длина вектора  $\vec{r}_{21}$  будет Рисунок 3a.  $\vec{r}_{21}$  Рисунок 3б.

повернется на угол  $5\pi/4$ , а максимальна — на угол  $\pi/4$  по сравнению с начальным положением. Отсюда находим моменты времени  $t^{\min}$  и  $t^{\max}$ , когда расстояние между камнями достигает минимального и максимального значения

$$t^{\min} = \frac{5\pi}{4\omega} = \frac{5\pi R}{4v}, \qquad t^{\max} = \frac{\pi}{4\omega} = \frac{\pi R}{4v}.$$

5. Обычно, когда рассматривают принципы работы тепловой машины, считают, что температуры нагревателя и холодильника в процессе отдачи или получения тепла не изменяются. Это верно для бесконечно больших теплоемкостей нагревателя и холодильника. Если же теплоемкости этих тел конечны, необходимо учитывать, что их температуры в процессе работы машины будут изменяться. Очевидно, что, в конце концов, температуры нагревателя и холодильника сравняются. Действительно, в процессе работы машины рабочее тело берет некоторое количество теплоты у нагревателя, часть его превращает в работу, оставшуюся часть передает холодильнику. Другими словами, происходит теплообмен между горячим нагревателем и холодным холодильником, но с одновременным «уходом» части энергии из этой системы тел в виде механической работы. Учтем этот «уход» в уравнениях теплового баланса.

Пусть в какой-то момент времени температура нагревателя равна  $T_1$ , холодильника -  $T_2$ . Поскольку нужно найти минимальную температуру тел, необходимо «увести» из системы максимальную работу. Поэтому проведем на этих телах цикл Карно. Возьмем малое количество теплоты  $\delta Q$  у нагревателя (чтобы его температура практически не изменилась). Поскольку кпд цикла Карно при температурах нагревателя и холодильника  $T_1$  и  $T_2$ , равен

$$\eta = 1 - \frac{T_2}{T_1} \tag{1}$$

то работа двигателя составит

$$\delta A = \eta \delta Q = \delta Q - \frac{T_2}{T_1} \delta Q \tag{2}$$

Поэтому более холодному телу будет передано количество теплоты  $\delta Q_1$ , равное

$$\delta Q_1 = \delta Q - \delta A = \frac{T_2}{T_1} \delta Q \tag{3}$$

Таким образом, тепловой баланс в системе тел с учетом «ухода» из системы механической работы выглядит так: если горячее отдает количество теплоты  $\delta Q$ , холодное получает количество теплоты  $\delta Q_1$ (3).

Найдем теперь, как изменятся температуры тел после осуществления рассмотренного процесса. Так как нагреватель отдает количество теплоты  $\delta Q$ , его температура уменьшится на величину  $\delta Q/C$ (C - теплоемкость нагревателя) и составит

$$T_1' = T_1 - \frac{\delta Q}{C} \tag{4}$$

Температура холодильника возрастет на величину  $\delta Q_1/2C$  (2C - теплоемкость холодильника) и составит

$$T_2' = T_2 + \frac{T_2}{T_1} \frac{\delta Q}{2C} \tag{5}$$

Возводя уравнение (5) в квадрат и учитывая, что  $\delta Q$  - малая величина, и потому слагаемое, содержащее  $\delta Q^2$ , является малым, и им можно пренебречь, получим

$$\left(T_2'\right)^2 \approx \left(T_2\right)^2 + \frac{\left(T_2\right)^2}{T_1} \frac{\delta Q}{C} \tag{6}$$

Перемножим теперь почленно формулы (4) и (6). Имеем

$$T_{1}'\left(T_{2}'\right)^{2} = T_{1}\left(T_{2}\right)^{2} - \left(T_{2}\right)^{2} \frac{\delta Q}{C} + \left(T_{2}\right)^{2} \frac{\delta Q}{C} + \frac{\left(T_{2}\right)^{2}}{T_{1}} \frac{\delta Q^{2}}{C^{2}} \approx T_{1}\left(T_{2}\right)^{2}$$
(7)

(в формуле (7) снова отброшено слагаемое, квадратичное по величине  $\delta Q$ ). Равенство (7) означает, что в рассмотренном процессе не меняется произведение температуры нагревателя на квадрат температуры холодильника. А поскольку этот результат будет иметь место при любых температурах тел, то он будет иметь место и для конечной температуры нагревателя и холодильника  $T_x$ :

$$3T(T)^2 = T_x(T_x)^2 = T_x^3$$
  $\Rightarrow$   $T_x = \sqrt[3]{3}T = 1,442T$  (8)

Таким образом, в результате работы рассмотренной тепловой машины в течение длительного времени температуры нагревателя и холодильника сравняются и станут равными величине (8).

Если бы энергия не уходила из системы, то в результате теплообмена между нагревателем и холодильником их температуры также сравнялись бы, но установившаяся температура была бы больше величины (8). Установившуюся в этом случае температуру тел  $T_y$  можно найти из «обычного» уравнения теплового баланса: количество теплоты, отданное нагревателем, равно количеству теплоты, полученному холодильником, при этом указанные количества теплоты можно стандартным образом связать с начальной и конечной температурами тел и их теплоемкостями:

$$C(3T - T_{y}) = 2C(T_{y} - T) \tag{9}$$

Из формулы (9) получаем

$$T_{y} = \frac{5}{3}T = 1,667 T \tag{10}$$

Энергия, связанная с разностью установившихся температур  $T_y - T_x$  (10), (11), и есть полная механическая работа, совершенная двигателем до того момента, как температуры нагревателя и холодильника сравняются, и двигатель больше не сможет совершать работу. Поскольку суммарная теплоемкость тел равна 3C, то эта работа равна

$$A = 3C \cdot (T_y - T_x) = CT(5 - 3\sqrt[3]{3}) = 0,675CT$$