Visual Question Answering: Experiments with deep learning and text features

Vien Nguyen

Data Science Retreat trucvien.nguyen@yahoo.com

July 16, 2016

Overview

- Introduction to the task Visual Question Answering (VQA)
- Method and Results
- Conclusion

Introduction

- Given an image and a question related to this image, the system will automatically learn to generate an answer for this question.
- Use the image to generate visual features with Convolution Neural Network.
- Use the text of the question to generate "bag-of-words" features.
- Use machine learning to learn the answer.

Examples (1)

Given an image and a question related to this image, the system will automatically learn to generate an answer for this question.

Image

Question

What animal is in this picture?

Examples (1)

Image

Question

What animal is in this picture?

Answer

cat

Examples (2)

Image

Question

How many chairs are in this shot?

Examples (2)

Image

Question

How many chairs are in this shot?

Answer

3

Examples (3)

Image

Question

What season is it?

Examples (3)

Image

Question

What season is it?

Answer

summer

Method

We use a machine learning approach.

- Extract features from the question
- Extract features from the image
- Combine features
- Learn the model

Dataset

VQA Visual Question Answering: http://visualqa.org/

	Images	Questions	Answers
Training	82,783	248,349	2,483,490
Validation	40,504	121,512	1,215,120

Table: Data statistics

Pre-processing (1)

Part-of-speech tagging:

Example:

What animal is in this picture ? WDT NN VBZ IN DT NN .

Table: POS-tagging example

Description of pos-tag labels

WDT: Wh-determiner

NN: Noun, singular or mass

VBZ: Verb, 3rd person singular present

IN: Preposition or subordinating conjunction

DT: Determiner

Pre-processing (2)

- Question: Extract n-gram features of words (n ≤ 2). Example: What animal is in this picture?
 unigram (n = 1): What, animal, is, in, this, picture, ?
 bigrams (n = 2): What animal, animal is, is in, in this, ...
- Question: Extract n-gram features of pos-tags (n \leq 2). Example: WDT NN VBZ IN DT NN . unigram: WDT, NN, VBZ, IN, DT, NN, . bigrams: WDT NN, NN VBZ, VBZ IN, IN DT, DT NN, NN .
- Image: Resize to 64*64.

Experiments

- Random Forest Classifier on n-gram features.
- Deep Learning on image features.
- Apply convolutional neural networks (CNN) layer on images. Combine features from images and text. Apply another layer on the combined features.

Learning methods

Random Forest

- Based on Decision Trees.
- From multiple trees, select the one with highest frequency.

Deep Learning

- A neural network with many layers (\geq 3), including CNN layer(s).
- Convolutional neural networks: not use pre-defined funtion like a normal neural network, but instead learn a function from the data.

Technologies

- Amazon Web Service: Ubuntu Server 14.04 LTS (HVM), 64-bit, GPU g2.8xlarge.
- 25 minutes for pre-processing image features, 10 minutes for pre-processing text features.
- 10 hours training on 50% images of the training set.
- 20 minutes training on 70% questions of the training set.
- Softwares: Python, NLTK, Theano, scikit-learn.

Results (1)

 $\begin{array}{ll} \text{Image features} & 28.38 \; (50\% \; \text{data}) \\ \text{Text features} & 42.46 \; (70\% \; \text{data}) \end{array}$

Table: Results

Results (2)

Per Question Type Accuracy	
are these	67.56
is there a	85.01
how many	33.12
what animal is	17.17
what	17.19
does the	75.50
could	87.36

Table: Results Per Question Type

Results (3)

Per Answer Type Accuracy		
number	27.81	
other	21.66	
yes/no	75.16	

Table: Results Per Answer Type

Examples (1)

Image

Question

What animal is in this picture?

Question type what animal is

Answer type other

Answer cat

Examples (2)

Image

Question

How many chairs are in this shot?

Question type

how many

Answer type

number

Answer

3

Examples (3)

Image

Question

What season is it?

Question type

what

Answer type

other

Answer

summer

Examples (4)

Image

Question

Does the weather appear rainy?

Question type does the

Answer type

yes/no

Answer

yes

Examples (5)

Image

Question

Could the items in this picture be used for sewing?

Question type

could

Answer type

yes/no

Answer

yes

Results per question type

Conclusion

- Visual Question Answering is a new research direction.
- Results depend on both visual and textual features.
- Requiring techniques in computer vision, language, integrating vision + language.

The deep learning framework here is based on the tutorial of Michael Nielsen: http://neuralnetworksanddeeplearning.com

Thank you!