Klausur am 29.08.2009:

Musterlösungen

Aufgabe 1

Im Induktionsanfang sei $n_0 = 0$. Dann gilt $\sum_{k=0}^{0} \frac{1}{(k+10)(k+11)} = \frac{1}{10\cdot 11}$ und $\frac{1}{10} - \frac{1}{11} = \frac{1}{10\cdot 11}$. Somit gilt der Induktionsanfang.

Die Induktionsvoraussetzung ist, dass für ein $n \ge 0$ die Formel $\sum_{k=0}^{n} \frac{1}{(k+10)(k+11)} = \frac{1}{10} + \frac{1}{n+11}$ gilt.

Wir müssen zeigen, dass daraus $\sum_{k=0}^{n+1} \frac{1}{(k+10)(k+11)} = \frac{1}{10} + \frac{1}{(n+1)+11} = \frac{1}{10} + \frac{1}{n+12}$ folgt.

Es gilt

$$\sum_{k=0}^{n+1} \frac{1}{(k+10)(k+11)} = \left(\sum_{k=0}^{n} \frac{1}{(k+10)(k+11)}\right) + \frac{1}{((n+1)+10)((n+1)+11)}$$

$$= \left(\frac{1}{10} - \frac{1}{n+11}\right) + \frac{1}{(n+11)(n+12)}$$

$$= \frac{1}{10} - \frac{1}{n+12}.$$

Mit dem Prinzip der vollständigen Induktion folgt die Behauptung.

Aufgabe 2

Durch die elementaren Zeilenumformungen: Addition der zweiten Zeile zur ersten und Subtraktion der zweiten Zeile von der vierten geht A über in die Matrix

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right).$$

Addition der ersten zur dritten Zeile und Subtraktion der vierten Zeile von der dadurch erhaltenen dritten ergibt die Matrix

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{array}\right).$$

Nach Vertauschung der zweiten und vierten Zeile und danach Vertauschung der dritten und vierten Zeile erhält man die Matrix

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right).$$

Durch die Umformungen: Multiplikation der vierten Zeile mit $\frac{1}{2}$ und danach Subtraktion der vierten Zeile von der ersten Zeile erhält man die Einheitsmatrix I_4 .

Die Treppennormalform von A ist also die Einheitsmatrix I_4 und damit gilt Rg(A) = 4.

Aufgabe 3

1. Seien
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 und $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ in $M_{22}(\mathbb{R})$. Dann gilt

$$\begin{split} f(A+A') &= f \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix} \\ &= (a+a'+b+b') + (a+a'+b+b')T + (a+a'+b+b'+c+c'+d+d')T^2 \\ &= (a+b) + (a+b)T + (a+b+c+d)T^2 \\ &+ (a'+b') + (a'+b')T + (a'+b'+c'+d')T^2 \\ &= f(A) + f(A'). \end{split}$$

Sei
$$r \in \mathbb{R}$$
, und sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{22}(\mathbb{R})$. Dann gilt

$$f(rA) = f \begin{pmatrix} ra & rb \\ rc & rd \end{pmatrix}$$

= $(ra+rb) + (ra+rb)T + (ra+rb+rc+rd)T^2$
= $r((a+b) + (a+b)T + (a+b+c+d)T^2)$
= $rf(A)$.

Somit ist f linear.

2. Sei
$$C = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
 die Standardbasis von $M_{22}(\mathbb{R})$. Wir bilden $f \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 + T + T^2, \ f \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 1 + T + T^2, \ f \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = T^2$ und $f \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = T^2.$

$$\text{Da}\left(f\begin{pmatrix}1&0\\0&0\end{pmatrix},f\begin{pmatrix}0&1\\0&0\end{pmatrix},f\begin{pmatrix}0&0\\1&0\end{pmatrix},f\begin{pmatrix}0&0\\0&1\end{pmatrix}\right) \text{ ein Erzeugendensystem von Bild}(f) \\ \text{ist, und da}\ f\begin{pmatrix}1&0\\0&0\end{pmatrix}=f\begin{pmatrix}0&1\\0&0\end{pmatrix} \text{ und } f\begin{pmatrix}0&0\\1&0\end{pmatrix}=f\begin{pmatrix}0&0\\0&1\end{pmatrix} \text{ gelten, folgt, dass} \\ (1+T+T^2,T^2) \text{ ein Erzeugendensystem von Bild}(f) \text{ ist. Die Polynome } 1+T+T^2 \text{ und } T^2 \text{ sind keine Vielfachen voneinander, sie sind also linear unabhängig. Somit ist } (1+T+T^2,T^2) \text{ eine Basis von Bild}(f).$$

Aufgabe 4

Zum Beweis benutzen wir das Unterraumkriterium.

Die Nullmatrix liegt in V, denn $0X_0 = 0$.

Seien $A, B \in V$. Dann gilt $(A + B)X_0 = AX_0 + BX_0 = 0 + 0 = 0$, also $A + B \in V$.

Sei $a \in \mathbb{R}$, und sei $A \in V$. Dann gilt $aAX_0 = a0 = 0$, also $aA \in V$.

Mit dem Unterraumkriterium folgt die Behauptung.

Aufgabe 5

Die Funktion f ist auf dem Intervall [1,e] stetig. Es gilt $f(1)=1-\ln(1)=1-0>0$ und $f(e)=\frac{1}{e}-1<0$. Mit dem Nullstellensatz von Bolzano gibt es ein $x_0\in(1,e)$, sodass $f(x_0)=0$ ist. Somit gibt es mindestens eine Nullstelle von f in [1,e]. Die Funktion f ist auch differenzierbar, und es gilt $f'(x)=-\frac{1}{x^2}-\frac{1}{x}<0$ für alle $x\in[1,e]$. Somit ist f im Intervall [1,e] streng monoton fallend und stetig. Es folgt, dass f höchstens eine Nullstelle in [1,e] besitzt. Zusammen folgt, dass f genau eine Nullstelle in [1,e] besitzt.

Aufgabe 6

Die Funktion f ist auf \mathbb{R} differenzierbar; daher genügt es, diejenigen Stellen x mit f'(x) = 0 zu betrachten. Es gilt

$$f'(x) = (4x - 1)\exp(-x) - (2x^2 - x - 1)\exp(-x) = (-2x^2 + 5x)\exp(-x).$$

Da $\exp(-x) > 0$ für alle $x \in \mathbb{R}$ ist, folgt, dass f'(x) = 0 genau dann gilt, wenn $-2x^2 + 5x = (-2x + 5)x = 0$ ist. Dies ist genau dann der Fall, wenn x = 0 oder $x = \frac{5}{2}$ ist.

Die Funktion f' ist auf \mathbb{R} differenzierbar, und es gilt

$$f''(x) = (-4x+5)\exp(-x) - (-2x^2+5x)\exp(-x) = (2x^2-9x+5)\exp(-x).$$

Es ist $f''(0) = 5 \exp(-x) > 0$ und $f''(\frac{5}{2}) = -5 \exp(-x) < 0$. Somit hat f bei x = 0 ein lokales Minimum und bei $x = \frac{5}{2}$ ein lokales Maximum.

Aufgabe 7

Die Reihe ist sogar absolut konvergent, denn für $n \in \mathbb{N}$ gilt

$$\left| \frac{(n+1)^2(-2)^{-n-1}}{n^2(-2)^{-n}} \right| = \frac{1}{2} \left(1 + \frac{1}{n} \right)^2.$$

Da $\lim_{n\to\infty} \frac{1}{2}(1+\frac{1}{n})^2 = \frac{1}{2} < 1$, folgt aus dem Quotientenkriterium, dass die Reihe konvergent ist.

Aufgabe 8

Zunächst übersetzen wir die Umgangssprache in die Sprache der Aussagenlogik. Dabei verwenden wir folgende Abkürzungen:

p: P ist schuldig.

q: Q ist schuldig.

r: R ist schuldig.

Die Vorermittlungen der Kommissarin ergeben damit:

- 1. $q \lor r \to \neg p$
- 2. $\neg p \lor \neg r \to q$
- 3. $r \rightarrow p$

Diese Aussagen müssen wir mit \land verknüpfen und überprüfen, unter welchen Voraussetzungen an p, q und r sie sich als wahr herausstellt.

Wir berechnen die Wahrheitstafel für $(q \lor r \to \neg p) \land (\neg p \lor \neg r \to q) \land (r \to p)$, wobei wir diese allerdings nur so weit ausfüllen, bis klar ist, was der Wahrheitswert von $(q \lor r \to \neg p) \land (\neg p \lor \neg r \to q) \land (r \to p)$ ist.

p	q	r	$q \lor r \to \neg p$	$ \mid \neg p \vee \neg r \to q \mid$	$r \rightarrow p$	$ \mid (q \lor r \to \neg p) \land (\neg p \lor \neg r \to q) \land (r \to p) $
1	1	1	0			0
1	0	1	0			0
1	1	0	0			0
1	0	0	1	0		0
0	1	1	1	1	0	0
0	0	1	1	0		0
0	1	0	1	1	1	1
0	0	0	1	0		0

Damit ist der Fall eindeutig gelöst: Q ist schuldig und P und R sind unschuldig. Andere Möglichkeiten kann es nicht geben.

Aufgabe 9

- 1. Wir zeigen, dass die Folge monoton fallend und beschränkt ist.
 - Monotonie: Wir zeigen mit Induktion, dass $a_{n+1} < a_n$ für alle $n \in \mathbb{N}$ gilt. Im Induktionsanfang sei $n_0 = 1$. Dann gilt $a_2 = \sqrt{88 + 12} = 10 < 88 = a_1$. Der Induktionsanfang ist somit richtig. Die Induktionsannahme ist, dass $a_{n+1} < a_n$ für ein $n \ge 1$ gilt. Dann gilt $a_{n+2} = \sqrt{a_{n+1} + 12} < \sqrt{a_n + 12} = a_{n+1}$, denn die Wurzelfunktion ist streng monoton wachsend.
 - Beschränkt: Von oben ist (a_n) durch $a_1 = 88$ beschränkt, denn die Folge ist monoton fallend. Wir zeigen mit Induktion, dass $a_n > 0$ für alle $n \in \mathbb{N}$ ist. Im Induktionsanfang sei $n_0 = 1$. Dann ist $a_1 = 88 > 0$, es gilt also der Induktionsanfang. Die Induktionsannahme ist, dass $a_n > 0$ für ein $n \ge 1$ ist. Dann gilt $a_{n+1} = \sqrt{a_n + 12} > \sqrt{12} > 0$. Es folgt $a_n > 0$ für alle $n \in \mathbb{N}$.

Mit dem Monotonieprinzip folgt, dass (a_n) konvergent ist.

2. Im ersten Teil der Aufgabe haben wir gezeigt, dass (a_n) konvergent ist. Sei $a=\lim_{n\to\infty}a_n$. Dann gilt auch $\lim_{n\to\infty}a_{n+1}=a$, und es folgt

$$a^{2} = \lim_{n \to \infty} a_{n+1}^{2} = \lim_{n \to \infty} \sqrt{a_{n} + 12^{2}} = \lim_{n \to \infty} (a_{n} + 12) = a + 12,$$

also $a^2-a-12=0$. Es folgt $a=\frac{1}{2}\pm\frac{1}{2}\sqrt{1+48}$, also a=4 oder a=-3. Da der Grenzwert nicht negativ sein kann, denn alle Folgenglieder sind positiv, folgt, dass a=4 ist.