Élargissement des capacités de LATEX en matière de couleur : l'extension xcolor

Dr. Uwe Kern

v2.11 (21/01/2007) *

Résumé

xcolor met à disposition, simplement et indépendamment des pilotes graphiques, à de multiples types de couleurs, teintes, nuances, tons et mélanges de couleurs arbitraires par le biais d'expressions dédiées comme \color{red!50!green!20!blue}. Il permet de sélectionner un modèle de couleur à l'échelle du document et offre des outils d'assortiment de couleurs automatiques, de conversion des couleurs entre douze modèles colorimétriques, d'utilisation de couleurs alternées pour des lignes de tableau, de mélange et de masque de couleur, de séparation de couleur et de calculs de cercle chromatique.

Table des matières

1	Inti	Introduction			
	1.1	Objectif de cette extension	5		
	1.2	Teintes, nuances, tons et couleurs complémentaires	6		
	1.3	Modèles colorimétriques	6		
	1.4	Cercles chromatiques et accords de couleurs	7		
2	L'in	iterface utilisateur	8		
	2.1	Préparation	8		
		2.1.1 Installation de l'extension	8		
		2.1.2 Options de l'extension	8		
		2.1.3 Éxecution de commandes additionnelles à l'initialisation	9		
2.2 Modèles colorimétriques		Modèles colorimétriques	9		
		2.2.1 Modèles colorimétriques supportés	9		
		2.2.2 Substitution de modéles colorimétriques individuels	12		
		2.2.3 Changement du modèle colorimétrique cible dans un document	13		
	2.3	Arguments et terminologie	13		

^{*}Cette extension peut être téléchargée à partir de CTAN/macros/latex/contrib/xcolor/. Un site Internet dédié à xcolor existe égalemetn : www.ukern.de/tex/xcolor.html. N'hésitez à envoyer vos constats d'erreur et suggestions d'amélioration à l'auteur : xcolor@ukern.de.

		2.3.1 Remarques additionnelles et restrictions sur les arguments.	13				
		2.3.2 Signification des expressions de couleur standards	17				
		2.3.3 Signification des expressions de couleur étendues	18				
		2.3.4 Fonctions de couleur	18				
	2.4	Couleurs prédéfinies	19				
		2.4.1 Colors that are always available	19				
		2.4.2 Additional sets of colors	19				
	2.5	Color definition	20				
		2.5.1 Ordinary and named colors	20				
		2.5.2 Color definition in xcolor	21				
		2.5.3 Defining sets of colors	22				
		2.5.4 Immediate and deferred definitions	22				
		2.5.5 Global color definitions	24				
	2.6	Color application	24				
		2.6.1 Standard color commands	24				
		2.6.2 Colored boxes	24				
		2.6.3 Using the current color	25				
		2.6.4 Color testing	26				
	2.7	Color blending	26				
	2.8	Color masks and separation	26				
	2.9	Color series	27				
		2.9.1 Definition of a color series	28				
		2.9.2 Initialisation of a color series	29				
		2.9.3 Application of a color series	29				
		2.9.4 Differences between colors and color series	29				
	2.10	Border colors for hyperlinks	30				
	2.11	1 Additional color specification in the pstricks world					
	2.12	Color in tables	31				
	2.13	Color information	31				
	2.14	Color conversion	32				
	2.15	Problems and solutions	32				
		2.15.1 Name clashs between dvipsnames and svgnames	32				
		2.15.2 Page breaks and pdfTFX	32				
		2.15.3 Change color of included .eps file	33				
3	Exa	mples	34				
4	Cole	ors by Name	41				
	4.1	Base colors (always available)	41				
	4.2	Colors via dvipsnames option	41				
	4.3	Colors via svgnames option	41				
	4 4		42				

5	5 Technical Supplement						
5.1 Color models supported by drivers							
	5.2 How xcolor handles driver-specific color models						
	5.3 Behind the scenes: internal color representation						
	5.4	A remark on accuracy					
_	-	- ·					
6		Formulas 4					
	6.1	Color mixing					
	6.2	Conversion between integer and real models					
		6.2.1 Real to integer conversion					
	0.0	6.2.2 Integer to real conversion					
	6.3	Color conversion and complements					
		6.3.1 The rgb model					
		6.3.2 The cmy model					
		6.3.3 The cmyk model					
		6.3.4 The hsb model					
		6.3.5 The Hsb model					
		6.3.6 The tHsb model					
		6.3.7 The gray model					
		6.3.8 The RGB model					
		6.3.9 The HTML model					
		6.3.10 The HSB model					
		6.3.11 The Gray model					
		6.3.12 The wave model					
Ré	éfére	ces 6					
Aı	nnex						
	Ackr	owledgement					
	Mare	ues déposées					
	Prob	èmes connus					
	Histo	rique					
Τ'n	dex	6					
111	uex	0					
_							
L	iste	des tableaux					
	1	Options de l'extension					
	2	Ordre de chargement des extensions					
	3	Modèles colorimétriques supportés					
	3 4	Arguments et terminologie					
	4 5						
	-						
	6 7	Driver-dependent internal color representation					
	8	Color conversion pairs 4					
	()	NARA MARKATSKA DATE					

Table des figures

1	Color spectrum
2	Color testing
3	Progressing from one to another color
4	Target color model
5	Standard color expressions
6	Standard color expressions
7	Current color
8	Color series
9	Color masking
10	Alternating row colors in tables: \rowcolors vs. \rowcolors* 38
11	Hsb and tHsb : hue° in 15° steps
12	Color harmony 40

1 Introduction

1.1 Objectif de cette extension

L'extension color met à disposition un outil puissant et stable pour manipuler les couleurs dans (pdf)LATEX de façon cohérente, indépendamment des pilotes graphiques, tout en supportant différents modèles colorimétriques (de manière un peu moins indépendante des pilotes).

Néanmoins, il est parfois un peu laborieux de l'utiliser, particulièrement dans les cas où de légères variations de couleur, des mélanges de couleur ou des conversions de couleur sont en jeu : ceci implique d'habitude l'utisation d'un autre programme qui calcule les paramètres souhaités, paramètres alors copiés dans une commande \definecolor dans LATEX. Assez fréquemment, une calculatrice de poche est également retenue dans le traitement de problèmes comme ceux indiqués ci-après :

- Ma société a défini une couleur d'entreprise et le service des impressions m'a dit combien il est coûteux d'utiliser plus de deux couleurs dans notre nouveau brochure, alors même que toutes les teintes de notre couleur (par exemple, une version à 75%) peuvent être utilisées sans aucun surcoût. Comment accéder à ces variations de couleur avec LATEX?
 - (Réponse : \color{CouleurEntreprise!75} etc.)
- Mon ami utilise une belle couleur que je souhaiterais appliquer à mes propres documents; malheureusement, elle est définie avec le modèle hsb qui n'est pas accepté par mon application pdfLATEX favorite. Que faire alors?
 - (Réponse : utiliser tout simplement les définitions ${\bf hsb},$ xcolor fera les calculs nécessaires.)
- Et quelle est l'aspect de sa couleur complémentaire? (Réponse : ____, accessible via \color{-green!40!yellow})
- Maintenant, je souhaite mélanger trois mesures de la dernière couleur avec deux mesures de sa complémentaire et une mesure de rouge. Qu'est-ce que cela donne?
- Je sais qu'un rayonnement de longueur d'onde de 485nm appartient au spectre visible. Mais quelle couleur a-t-il?
 - (Réponse : approximativement ____, via \color[wave] {485})
- Mon service des impressions souhaite que toutes les définitions de couleur dans mon document soit basculées en modèle **cmyk** (CMJN en français). Comment puis-je faire ces calculs efficacement?
 - (Réponse : \usepackage[cmyk]{xcolor} ou \selectcolormodel{cmyk})
- J'ai un tableau de 50 lignes. Comment puis-je obtenir des lignes de tableau avec deux couleurs alternées (A pour les lignes paires et B pour les lignes impaires) sans recours à la copie de 50 commandes \rowcolor? Ce motif alterné devrait d'ailleurs commencer à partir de la troisième ligne.

(Réponse : grosso modo \rowcolors{3}{CouleurA}{CouleurB})

Ceci répresente quelques uns des problème résolus par l'extension xcolor. Son objectif peut être résumé en la conservation des caractéristiques de color, tout en apportant des fonctionnalités additionnelles et de la flexibilité avec des interfaces simples d'utilisation (avec un peu de chance).

1.2 Teintes, nuances, tons et couleurs complémentaires

Sur la base de [15] nous définissons les termes suivants :

- **teinte** : une couleur à laquelle est ajoutée du *blanc* (white);
- **nuance** : une couleur à laquelle est ajoutée du *noir* (black);
- ton : une couleur à laquelle est ajoutée du gris (gray).

Ce sont des cas spéciaux d'une fonction plus générale mélange(C,C',p) qui construit une nouvelle couleur, composée de p mesures de la couleur C et de 1-p mesures de la couleur C', où $0 \le p \le 1$. Aussi, nous posons

$$teinte(C, p) := mélange(C, white, p)$$
 (1)

$$\mathrm{nuance}(C,p) := \mathrm{m\'elange}(C, \mathtt{black}, p) \tag{2}$$

$$ton(C, p) := m\'{e}lange(C, gray, p)$$
(3)

où white, black, and gray sont des constantes dépendantes des modèles, comme présentées en table 7 page 48. Par la suite, nous définissons le terme :

— **complémentaire** : une couleur C^* qui génère du *blanc* si elle est mélangée avec la couleur d'origine C,

sachant qu'il existe également différents concepts de complémentarité (par exemple des couleurs opposées sur les *cercles chromatiques*). Voir la section 6.3 page 50 pour le détail des calculs et la section 1.4 page suivante pour certaines remarques sur les cercles chromatiques.

1.3 Modèles colorimétriques

Un modèle colorimétrique est un outil décrivant ou représentant un certain ensemble de couleurs d'une manière compatible avec l'appareil cible souhaité, par exemple un écran ou une imprimante. Il existe des modèles propriétaires (comme Pantone ou HKS) qui fournissent des ensembles finis de couleurs (chaque couleur étant appelés ton direct), dans lequel l'utilisateur doit piocher sans se soucier des paramétrages; à l'inverse, se trouvent des modèles paramétriques comme gray, rgb, et cmyk, dont le but est de représenter de larges ensembles finis ou même infinis (théoriquement) de couleurs, construits sur de très petits sous-ensembles de couleurs de base et de règles permettant de construire d'autres couleurs à partir des couleurs de base. Par exemple, un large ensemble de couleurs peut être construit par combinaison linéaire des couleurs de base rouge, vert et bleu. En contrepartie, un ton direct ne peut souvent être qu'approximé par des valeurs de paramètres dans les modèles comme cmyk ou rgb; les couleurs originales se mélangent physiquement et dépendent aussi du type de papier retenu. Enfin, il existe certaines couleurs comme l'or ou l'argent qui sont difficilement reproductibles par des modèles paramétriques avec des encres standard ou des imprimantes laser.

1.4 Cercles chromatiques et accords de couleurs

Il s'est développé une longue histoire du placement de couleurs (** teintes **) sur des cercles pour discuter de problèmes théoriques ou pratiques sur les couleurs (par exemple Isaac Newton, Johann Wolfgang von Goethe). Une explication de ceci pourrait être que le cercle lui-même est un outil tout naturel pour illustrer des relations communes aussi bien que des propriétés opposées.

De nos jours, une certaine confusion portant sur les notions associées aux couleurs existe, dans la mesure où deux grands domaines qui y sont liés — l'art et le design graphique d'une part, la théorie scientifique de couleur de l'autre — tendent à utiliser les même mots pour décrire les propriétés de la couleur bien qu'en décrivant parfois des faits très différents! Ainsi, l'apparence des cercles chromatiques diffère autant que la signification de concepts comme couleurs 'primaires' ou 'complémentaires'.

Construction d'un cercle chromatique typique Tout d'abord, trois couleurs primaires sont placées sur le cercle à 0°, 120°, 240° (les artistes choisissent souvent le triplet rouge, jaune, bleu, tandis que les scientifiques spécialistes de la couleur préféreront le triplet rouge, vert, bleu). Ensuite, les trois coulerus secondaires sont placées à 60°, 180°, 300°. Puis, six couleurs tertiaires pourront être placées au milieu de chaque arc (30°, 90°, ...). C'est pourquoi les cercles chromatiques sont fréquemment décrits par douze couleurs équidistantes bien que l'algorithme puisse être prolongé à merci.

Harmonies de couleur issues du cercle Nous commençons avec un cercle chromatique quelconque :

- les **couleurs complémentaires** sont situées à une distance de 180° sur le cercle:
- les **×** correspondent à trois couleurs séparées par 120°;
- les **× ×** correspondent à quatre couleurs séparées par 90°.

Nous supposons maintenant que le cercle est décomposé en 2n secteurs de taille égale :

- les **couleurs complémentaires adjacentes** d'une couleur donnée sont les deux voisines immédiates de la couleur complémentaire, caractérisées par les positions $\frac{n\pm 1}{2} \cdot 360^{\circ}$.
- les positions $\frac{n\pm 1}{2n} \cdot 360^{\circ}$, les **couleurs analogues** d'une couleur donnée sont les deux ou quatre voisines, caractérisées par les positions $\pm \frac{1}{2n} \cdot 360^{\circ}$ and $\pm \frac{2}{2n} \cdot 360^{\circ}$.

Vu les méthodes utilisées pour générer des accords de couleur, nous concluons que les résultats dépendent fortement de la manière dont nous construisons le cercle. Qui plus est, le choix de n affectera également le résultat visuel. Des exemples sont donnés en figure 12 page 40.

2 L'interface utilisateur

2.1 Préparation

2.1.1 Installation de l'extension

Il faut tout d'abord placer xcolor.sty et tous les fichiers dans un répertoire où (pdf)IATEX les trouvera. Un emplacement classique selon le * TEX Directory Structure (TDS) * serait le répertoire texmf/tex/latex/xcolor, où texmf est à remplacer par le répertoire principal de votre installation de TEXDE plus, il faut placer xcolor.pro à un endroit où dvips le trouvera, typiquement texmf/dvips/xcolor. Normalement, vous devez lancer une mise à jour de votre base de noms de fichiers afin que ces fichiers soient connus et facilement retrouvables dans l'arborescence TEX. Par la suite, il suffit simplement d'utiliser xcolor (au lieu de color) dans votre document. Pour cela, la commande générale d'appel est \usepackage[\langle options \rangle] \{xcolor\} dans le préambule du document. La table 2 page 11 montre dans quel ordre certaines extensions doivent être alors chargées.

2.1.2 Options de l'extension

En général, plusieurs types d'options existent :

- les options qui déterminent le pilote graphique comme expliqué dans [5] et [6], soit actuellement : dvips, xdvi, dvipdf, dvipdfm, dvipdfmx, pdftex, dvipsone, dviwindo, emtex, dviwin, oztex, textures, pctexps, pctexwin, pctexhp, pctex32, truetex, tcidvi, vtex, xetex;
- les options qui déterminent le modèle colorimétrique cible ¹ (natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, Gray) ou une sortie avec des couleurs désactivées (monochrome);
- les options qui contrôlent si certains ensembles de couleurs prédéfinies sont chargés et comment : dvipsnames, dvipsnames*, svgnames, svgnames*, x11names, x11names*;
- les options qui déterminent quelles autres extensions doivent être chargées ou supportées : table, fixpdftex, hyperref;
- les options qui influencent le comportement d'autres commandes : prologue, kernelfbox, xcdraw, noxcdraw, fixinclude, showerrors, hideerrors;
- les options obsolètes : pst, override, usenames, nodvipsnames.

\GetGinDriver \GinDriver

Toutes les options de l'extension (hors les sélections des pilotes et les options obsolètes) sont listées en table 1 page 10. Afin de faciliter la coopération avec l'extension hyperref, il existe une commande \GetGinDriver² qui récupère le nom du pilote effectivement utilisé et qui le place dans la commande \GinDriver. Ce dernier peut alors être utilisé au sein de l'extension hyperref (ou toute autre extension), voir l'exemple de code en page 12. S'il n'y a pas d'option hyperref correspondante, l'option hypertex sera prise par défaut.

^{1.} La section 2.2.3 page 13 explique comment ce paramétrage peut être annulé n'importe où dans un document

 $^{2. \ \,}$ Cette commande est exécutée automatiquement si l'option d'extension ${\tt hyperref}$ est sélectionnée.

Attention: il y a une différence substantielle entre xcolor et color dans la façon de manier l'option dvips. L'extension color appelle implicitement l'option dvipsnames dès qu'un des pilotes dvips, oztex ou xdvi est sélectionné. Ceci rend les documents moins portables dans la mesure où, à chaque fois qu'une des couleurs est utilisée sans l'appel explicite de l'option dvipsnames, les autres pilotes comme pdftex renvoient un message d'erreur pour cause de couleur inconnue. C'est pourquoi xcolor nécessite toujours explicitement l'option dvipsnames pour utiliser ces noms — qui fonctionnent alors pour tous les pilotes.

2.1.3 Éxecution de commandes additionnelles à l'initialisation

\xcolorcmd

Voici un interface simple pour passer des commandes devant être exécutées à la fin de l'extension extension xcolor (immédiatement avant que l'initialisation de \color{black} ne soit traitée). Indiquez juste \def\xcolorcmd{\commandes}\} avant le chargement de xcolor.

Exemple : en supposant que a.tex soit un document LATEX complet, une commande comme « latex \def\xcolorcmd{\colorlet{black}{red}}\input{a} » saisie en invite de commande génère un fichier a.dvi avec toutes les occurences de noir remplacées par du rouge, sans besoin de modifier le fichier source luimême. (La ligne de commande peut varier selon les systèmes d'exploitation et les distributions de TEX).

2.2 Modèles colorimétriques

2.2.1 Modèles colorimétriques supportés

La liste des modèles colorimétriques et les plages de valeur de leurs paramètres sont données en table 3 page 11. Notez bien que le support de ces couleurs est indépendant du pilote graphique choisi.

Ce support permet d'ailleurs de spécifier des couleurs directement avec leurs paramètres, par exemple avec \textcolor[cmy]{0.7,0.5,0.3}{toto} (toto) ou \textcolor[HTML]{AFFE90}{toto} (toto).

\adjustUCRBG

rgb, cmyk, hsb, gray Ce sont les modèles supportés directement par PostScript. C'est pourquoi * nous nous référons * à [1] pour une description de leurs propriétés et relations. Il existe une commande spécifique pour régler finement les mécanismes de * undercolor-removal * et * black-generation] * durant la conversion vers le modèle cmyk, voir section 6.3.2 page 53 pour plus de détails.

cmy Il s'agit principalement d'un modèle pour les étapes de calcul intermédiaire. De ce fait, il s'agit d'un simple complément de **rgb**. En terme d'affichage, **cmy** est traité comme **cmyk** avec k = 0.

HTML Ce modèle est dérivé de **rgb** afin de permettre l'entrée de paramètres de couleurs pour les pages web ou les fichiers CSS. Aussi, ce n'est pas un modèle colorimétrique en tant que tel mais plutôt une interface utilisateur commode. Il est

Table 1 – Options de l'extension

Option	Description			
natural	(valeur par défaut.) Garde toutes les couleurs dans leur modèle, à l'expcetion de RGB (converti en rgb), HSB (converti en hsb), et Gray (converti en gray).			
rgb	Convertit toutes les couleurs en modèle rgb .			
cmy	Convertit toutes les couleurs en modèle cmy .			
cmyk	Convertit toutes les couleurs en modèle cmyk .			
hsb	Convertit toutes les couleurs en modèle hsb .			
gray	Convertit toutes les couleurs en modèle gray . Particulièrement utile pour simuler un rendu en noir et blanc d'une imprimante monochrome.			
RGB	Convertit toutes les couleurs en modèle RGB (et ensuite en rgb).			
HTML	Convertit toutes les couleurs en modèle HTML (et ensuite en rgb).			
HSB	Convertit toutes les couleurs en modèle HSB (et ensuite en hsb).			
Gray	Convertit toutes les couleurs en modèle Gray (et ensuite en gray).			
dvipsnames, dvipsnames*	Charge un ensemble de couleurs prédéfinies. ¹			
svgnames, svgnames*	Charge un ensemble de couleurs prédéfinies selon la norme SVG $1.1.^{1}$			
x11names, x11names*	Charge un ensemble de couleurs prédéfinies selon la norme $\mathrm{Unix}/\mathrm{X}11.^1$			
table	Charge l'extension colortbl contenant les outils de colorisation des lignes, colonnes et cellules dans des tables.			
fixpdftex	Charge l'extension pdfcolmk permettant d'améliorer la gestion des couleurs dee pdftex (voir section 2.15.2 page 32).			
hyperref	Permet de prendre en charge l'extension hyperref pour les * expressions de couleur * en définissant des * clés * additionnelles (voir section 2.10 page 30).			
prologue	Écrit des informations en début de fichier .xcp pour chaque définition de couleur (comme décrit en section 2.5.1 page 20).			
kernelfbox	Utilise la méthode du noyau LATEX pour dessiner des boîtes \f(rame)box ² .			
xcdraw	Use driver-specific commands to draw frames and color boxes. 2			
noxcdraw	(Valeur par défaut.) Utilise un code générique pour dessiner les encadrements et boîets de couleur. 2			
fixinclude	Empêche la réinitialisation de couleur de dvips avant l'inclusion de fichier .eps (voir section 2.15.3 page 33).			
showerrors	(Valeur par défaut.) Affiche un message d'erreur si une couleur non définie est utilisée (comportement similaire à celui de l'extension color originale).			
hideerrors	Affiche seulement une alerte en cas d'utilisation d'une couleur non définie et remplace cette couleur par du <i>noir</i> .			

Chargement/Extension pdfcolmk colortbl hyperref pstricks color pstcol Avant xcolor non non permis permis¹ non non Avec l'option xcolor table fixpdftex Après xcolor permis non permis permis non non ¹ Les versions récentes de pstricks chargent xcolor par défaut.

Table 2 – Ordre de chargement des extensions

Table 3 – Modèles colorimétriques supportés

Nom	Couleurs de base/notions	Intervalle de valeur	Par défaut
rgb	$rouge,\ vert,\ bleu$	$[0,1]^3$	
cmy	$cyan,\ magenta,\ jaune$	$[0,1]^3$	
cmyk	$cyan,\ magenta,\ jaune,\ noir$	$\left[0,1\right]^4$	
hsb	$teinte,\ saturation,\ luminosit\'e$	$[0,1]^3$	
Hsb	$teinte^{\circ},\ saturation,\ luminosit\acute{e}$	$[0,H]\times[0,1]^2$	H = 360
tHsb	$teinte^{\circ},\ saturation,\ luminosit\acute{e}$	$[0,H] \times [0,1]^2$	H = 360
gray	gris	[0, 1]	
RGB	Rouge, Vert, Bleu	$\{0,1,\ldots,L\}^3$	L = 255
HTML	RRGGBB	$\{\texttt{000000}, \dots, \texttt{FFFFFF}\}$	
HSB	Teinte, Saturation, Luminosité	$\{0,1,\ldots,M\}^3$	M = 240
Gray	Gris	$\{0,1,\ldots,N\}$	N = 15
wave	lambda (nm)	[363, 814]	

L, M, N sont des nombres entiers positifs; H est un entier réel positif

important de mentionner que **HTML** accepte toutes les combinaisons de caractères 0–9, A–F, a–f, tant que la chaîne de caractères a une longueur de 6 caractères exactement. Cependant, les résultats de conversion en **HTML** consisteront en des nombres et des lettres *majuscules*.

\rangeHsb

Hsb, tHsb Premièrement, **Hsb** est un modèle « interface utilisateur » transformant $teinte \in [0,1]$ en $teinte^{\circ} \in [0,H]$, où H est donné par $\def\rangeHsb{\langle H \rangle}$. Aussi, si H=360, nous pouvons penser à un cercle ou une roue pour $\def\$ décrire $\def\$ le paramètre $teinte^{\circ}$.

Deuxièmement, **Hsb** est la base du **tHsb**, également nommé **Hsb** réglé, qui permet à l'utilisateur d'appliquer une transformation linéaire \ref{model} sur $teinte^\circ$ en déplaçant la $teinte^\circ$ sélectionnée en avant ou en arrière sur le cercle. La transformation est définie par \def\rangetHsb{ $x_1, y_1; x_2, y_2; \ldots$ } qui indique que $hue^\circ = x_1$ dans **tHsb** signifie $hue^\circ = y_1$ dans **Hsb**, etc. Par exemple, le jaune

\rangetHsb

est placé à 60° dans le cercle **Hsb** (le rouge étant à 0°); cependant dans la plus plupart des cercles chromatiques servant aux artistes, le jaune est à 120°. Ainsi, une entrée « 120,60 » ferait sens si nous avions décidé de répliquer un cercle chromatique d'artiste par le biais de **tHsb**. Voir la section 6.3.6 page 57 pour la formule exacte de la transformation et les restrictions avancées, et la section 1.4 page 7 pour les cercles chromatiques et les accords de couleur. La figure 11 page 39 peut servir pour effectuer des comparaisons.

Exemple: '\def\rangetHsb{60,30;120,60;180,120;210,180;240,240}' correspond en fait au paramétrage par défaut de xcolor.

wave Avec ce modèle nous essayons de transformer les longueurs d'onde en un modèle de colorimétrique standard afin de réaliser une approximation de l'apparence visuelle des ondes lumineuses. Tandis que le spectre visible couvre un intervalle de valeur de 400 à 750 nm, l'implémentation dans xcolor permet de traiter toutes les longueurs d'onde qui ont une valeur absolue inférieur à 16383.99998 (le plus grand nombre que TEX puisse considérer comme une dimension). Toutefois, la probabilité d'obtenir une couleur différente du noir hors de plage de valeur [363, 814] est très précisément nulle. Aussi, la figure 1 page 34 illustre seulement l'intervalle de valeur mention ci-dessus. Notez qu'il n'est pas possible de convertir fidèlement les autres modèles en wave puisque ce dernier ne couvre qu'un ensemble limité de couleurs.

RGB, HSB, Gray Ce sont des modèles dérivés, transformant la plage de valeurs continue [0,1] des paramètres de **rgb**, **hsb** et **gray** en un ensemble de valeurs finies; ce qui nous nous fait les désigner par le terme de modèles entiers. Les constantes L, M, N de la table 3 sont définies par les commandes $\{L, M, N\}$ de la table 3 sont définies par les commandes $\{L, M, N\}$ def range $\{L, M\}$, and $\{L, M\}$. La modification de ces constantes peut être fait avant ou après que l'extension xcolor ait été chargée, par exemple :

\rangeRGB \rangeHSB \rangeGray

```
\documentclass{article}
...
\def\rangeRGB{15}
\usepackage[dvips]{xcolor}
...
\GetGinDriver
\usepackage[\GinDriver]{hyperref}
...
\begin{document}
...
\def\rangeRGB{63}
...
```

2.2.2 Substitution de modéles colorimétriques individuels

\substitutecolormodel

 ${\langle mod \hat{e}le \ source \rangle} {\langle liste \ de \ mod \hat{e}les \ cibles \rangle}$

Substitue le $\langle mod\`ele\ source \rangle$ par le premier modèle disponible apparaissant dans la $\langle liste\ de\ mod\`eles\ cibles \rangle$. Seuls les modèles de type $\langle mod\`ele\ num\'erique \rangle$ sont possibles; tous les changements sont locaux au groupe courant, mais un \xglobal préfixé est respecté.

Exemple: supposons que le pilote actuel a une implémentation incorrecte de **hsb** tandis que **rgb** paraît correct. Alors \substitutecolormodel{hsb}{rgb} pourrait être un bon choix puisqu'il convertit — à partir de ce point — toutes les définitions des couleurs **hsb** en spécifications du modèle **rgb** par le biais des algorithmes de xcolor, sans toucher aux autres modèles.

2.2.3 Changement du modèle colorimétrique cible dans un document

\selectcolormodel

 $\{\langle num\ model \rangle\}$

Définit le modèle cible au $\langle modèle \ num\'erique \rangle$, où ce dernier est un des noms de modèles autorisés comme option de l'extension (autrement dit, natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML, HSB, Gray), voir figure 4 page 36 pour un exemple. Il y a deux possibilités pour rendre possible la conversion au modèle cible :

\ifconvertcolorsD

— au moment de la *définition* des couleurs ³ (autrement dit dans \definecolor et ses assimilées); ceci est contrôlé par la bascule \ifconvertcolorsD:

\ifconvertcolorsU

— au moment de l'utilisation des couleurs (immédiatement avant que la couleur soit affichée, ce qui traite qui ont été définies dans d'autres modèles ou qui ont été définies directement comme avec \color[rgb]{.1,.2,.3}); ceci est contrôlé par la bascule \ifconvertcolorsU.

Les deux bascules valent « vrai » en sélectionnant n'importe quel modèle, à l'exception de natural qui leur donne la valeur « faux ». Ceci * s'applique * à une sélection par le biais d'une option d'extension comme par le biais de \selectcolormodel. Pourquoi ne convertissons-nous pas toutes les couleurs au moment de l'utilisation? Si de nombreuses couleurs sont impliquées, cela peut économiser du temps de traitement lorsque les conversions sont déjà faites au moment des définitions. De meilleures performances peuvent être obtenues par \usepackage[rgb,...]{xcolor}\convertcolorsUfalse, ce qui est en fait la façon dont xcolor fonctionnait jusqu'à la version 1.07.

2.3 Arguments et terminologie

Avant de décrire en détail les commandes liées aux couleurs de xcolor, nous définissons plusieurs éléments ou identifiants qui apparaissent de façon répétée dans les arguments de ces commandes. Une vue générale de la syntaxe est donnée dans la table 4 page suivante.

2.3.1 Remarques additionnelles et restrictions sur les arguments

Chaînes basiques et nombres Ces arguments ne nécessitent pas beaucoup

 $egin{array}{l} \langle vide
angle \ \langle moins
angle \ \langle plus
angle \ \langle ent
angle \ \langle num
angle \ \langle d\acute{e}c
angle \ \langle div
angle \end{array}$

3. Ceci signifie que toute couleur *nouvellement* définie sera d'abord convertie dans le modèle cible, puis sauvegardée.

Table 4 – Arguments et terminologie

Élement	Chaîne de remplacement	
$\langle vide \rangle$	→ chaîne vide ''	
$\langle moins \rangle$	→ chaîne non vide contenant un ou plusieurs signes '-'	
$\langle plus \rangle$	→ chaîne non vide contenant un ou plusieurs signes '+'	
$\langle ent \rangle$	\rightarrow nombre entier	(entier)
$\langle num \rangle$	\rightarrow nombre entier positif	(nombre)
$\langle d\acute{e}c angle$	\rightarrow nombre réel	$(d\acute{e}cimal)$
$\langle div \rangle$	\rightarrow nombre réel non nul	(diviseur)
$\langle pct \rangle$	\rightarrow nombre réel dans l'intervalle $[0,100]$	(pourcentage)
$\langle id \rangle$	\rightarrow chaîne non vide contenant des lettres et des chiffres	(identifiant)
$\langle id \ \'etendu \rangle$	$\begin{array}{l} \rightarrow \langle id \rangle \\ \rightarrow \langle id \rangle_1 = \langle id \rangle_2 \end{array}$	
$\langle liste\text{-}id \rangle$	$ ightarrow$ $\langle id$ étendu $ angle_1$, $\langle id$ étendu $ angle_2$, \ldots , $\langle id$ étendu $ angle_l$	
$\langle nom \rangle$	$ ightarrow \langle id angle ightarrow ightarr$	$(nom\ explicite) \ (nom\ implicite)$
$\langle mod\`{e}le~central\rangle$	$\rightarrow \texttt{`rgb'}, \texttt{`cmy'}, \texttt{`cmyk'}, \texttt{`hsb'}, \texttt{`gray'}$	$(mod\`{e}les\ centraux)$
$\langle mod\`ele\ num\'erique \rangle$	$ ightarrow \langle mod\`ele\ central \rangle$ ightarrow 'RGB', 'HTML', 'HSB', 'Gray' ightarrow 'Hsb', 'tHsb', 'wave'	(modèles entiers) (modèles décimaux)
$\langle mod\`{e}le \rangle$	$ ightarrow \langle mod\`ele \ num \rangle$	$(mod\`{e}les\ num\'{e}riques)$
	ightarrow 'named'	$(pseudo-mod\`{e}le)$
$\langle liste-mod\`ele \rangle$		$(mod\`{e}les\ multiples)$
$\langle sp\acute{e}c angle$	\rightarrow liste de valeurs numériques séparées par des virgules \rightarrow liste de valeurs numériques séparées par des virgules \rightarrow nom d'une couleur « nommée »	(spécification explicite) (spécification explicite) (spécification implicite)
$\langle liste\text{-}sp\acute{e}c \rangle$	$\rightarrow \langle sp\acute{e}c \rangle_1 / \langle sp\acute{e}c \rangle_2 / \dots / \langle sp\acute{e}c \rangle_m$	$(sp\'{e}cifications\ multiples)$
$\langle type \rangle$	$ ightarrow \langle vide angle \ ightarrow$ 'named', 'ps'	
$\langle expr \rangle$	$ ightarrow \langle pr\'efixe angle \langle nom angle \langle expr\ de\ m\'elange angle \langle suffixe angle$	(expression de couleur standard)
$\langle pr\!\!\:éf\!\!\:ixe \rangle$	$\begin{array}{l} \rightarrow \langle vide \rangle \\ \rightarrow \langle moins \rangle \end{array}$	$(indicateur\ compl\'ementaire)$
$\langle expr\ de\ m\'elange \rangle$	$ \rightarrow !\langle pct\rangle_1!\langle nom\rangle_1!\langle pct\rangle_2!\langle nom\rangle_2!\dots!\langle pct\rangle_n!\langle nom\rangle_n \\ \rightarrow !\langle pct\rangle_1!\langle nom\rangle_1!\langle pct\rangle_2!\langle nom\rangle_2!\dots!\langle pct\rangle_n $	(expression de mélange complète) (expression de mélange incomplète)
$\langle suffixe \rangle$		(* series step *) (* series access *)
$\langle expr \ \'etendue \rangle$		
$\langle \mathit{expr}\; \mathit{fonc}\overline{\mathit{tionnellle}}\rangle$	$ ightarrow$ > $\langle fonction \rangle$, $\langle arg \rangle_1$, $\langle arg \rangle_2$,, $\langle arg \rangle_j$ (ϵ	expression fonctionnelle de couleur)
$\langle fonction \rangle$	ightarrow 'wheel', 'twheel'	$(fonctions\ de\ couleur)$
$\langle couleur \rangle$	$\rightarrow \langle expr\ de\ couleur \rangle \langle expr\ fonctionnelle \rangle_1 \langle expr\ fonctionnelle \rangle_2 \langle expr\ fonctionne$	$nelle \rangle_2 \dots \langle expr\ fonctionnelle \rangle_i$
$\langle expr \ de \ couleur \rangle$	$ \begin{array}{l} \rightarrow \langle nom \rangle \\ \rightarrow \langle expr \rangle \\ \rightarrow \langle expr \; \acute{e}tendue \rangle \end{array} $	
Remarques :	chaque \rightarrow indique une chaîne de remplacement possible gauche; cependant, des restrictions avancées dépendant. Voir le texte principal pour plus de détails. La chaîne 'to les apostrophes. i,j,k,l,m,n indiquent des entiers positi	es du contexte peuvent s'appliquer. to' doit toujours être comprise sans

d'explications. Cependant, dans la mesure où nous traitons ici des valeurs numériques, il est important de noter que les nombres réels dans (La)TEX — tant qu'ils sont utilisés pour des longueurs, dimensions ou espaces — sont limités à une valeur maximale inférieure strictement à 16384. Cette contrainte, dans l'enchainement des calculs numériques, doit aussi être respectée par tous les résultats intermédiaires, ce qui implique généralement des restrictions plus larges. Comme xcolor utilise énormément les registres internes de dimension de TEX pour la plupart des calculs, ce point doit être gardé à l'esprit à chaque fois que des expressions $\langle expr$ étendue \rangle doivent être utilisées.

⟨nom⟩ Noms de couleur Un ⟨nom⟩ indique le nom déclaré (ou le nom qui va être déclaré) d'une couleur ou d'une * série de couleur *; il peut être déclaré explicitement par l'une des commandes suivantes : \definecolor, \providecolor, \colorlet, \definecolorset, \providecolorset, \definecolorseries, \definecolors, \providecolors. Par ailleurs, le nom de couleur réservé '.' est déclaré implicitement et indique la couleur actuelle. En fait, au-delà des chiffres et lettres, certains autres caractères peuvent également être utilisés pour les déclarations de ⟨nom⟩ mais les restrictions données évitent les incompréhensions et garantissent la compatibilité avec les futures évolutions de xcolor.
Exemples : 'red', 'MonVertSpecial1980', '.'.

 $\langle mod\`{e}le \; central
angle \ \langle mod\`{e}le \; num\'{e}rique
angle \ \langle mod\`{e}le
angle$

Modèles colorimétriques

La différence faite entre les modèles centraux (rgb, cmy, cmyk, hsb, gray), les modèles entiers (RGB, HTML, HSB, Gray), les modèles décimaux (Hsb, tHsb, wave) et les pseudo-modèles (actuellement 'named', 'ps') s'explique simplement : les modèles centraux avec leurs paramètres basés sur l'intervalle unité [0,1] permettent de faire plus aisément tout type de calculs, tandis que le but des modèles entiers est principalement de faciliter la saisie des paramètres en entrée (transformés ensuite en ceux d'un des modèles centraux). Enfin, les modèles décimaux Hsb et tHsb sont des versions de hsb pensés pour des buts spécifiques, tandis que wave et le pseudo-modèle 'named' ont un statut spécial dans la mesure où ils ne sont pas pensés pour des calculs : s'il est normalement possible de convertir une couleur de ces modèles en une d'un autre modèle, l'inverse ne l'est pas. La situation est bien pire pour le pseudo-modèle 'ps' : ces couleurs contenant du code PostScript ne sont pas transparentes pour TeX.

\$\langle sp\'eqc\rangle\$ Sp\'eqcifications de couleur L'argument \$\langle sp\'eqc\rangle\$ — qui sp\'eqcifie les param\'etres d'une couleur — d\'etpend \'evidemment du mod\'ete colorim\'etrique sous-jacent. Une diff\'etrence est faite entre les sp\'etcifications \(explicite\) et \(implicite\), la premi\'ete faisant r\'eterence \(\text{\text{a}}\) des param\'etres num\'etriques comme expliqu\'ete en table 3 page 11, la seconde — id\'etalement — faisant r\'eterence \(\text{\text{a}}\) des noms d\'etinis par le pilote graphique. Exemples: \('.1,.2,.3\', '.1 \cdot .2 \cdot .3\', '0.56789\', '89\'etaleCD', 'Forest\'etgreen'.\)

 $\langle liste-mod\`{e}le \rangle$ $\langle liste-sp\'{e}c \rangle$ Modèles et spécifications multiples Ces arguments apparaissent toujours par paires (explicites ou implicites) dans les commandes de définition de couleur

suivantes: \definecolor, \providecolor, \definecolorset, \providecolorset. Tout d'abord, $\langle mod\`ele\text{-}sp\'ec \rangle$ est réconcilié avec le modèle cible courant (fixé par exemple avec une option de l'extension ou la commande \selectcolormodel; dans le cas où il n'existe de modèle correspondant, le premier modèle de la liste est choisi. Ensuite, la spécification de couleur correspondante sera sélectionnée dans $\langle liste\text{-}sp\'ec \rangle$, de telle façon à ce que le traitement aboutisse à une paire $(\langle mod\`ele \rangle, \langle sp\'ec \rangle)$ cohérente. Ceci explique pourquoi il n'y a plus d'ambiguité possible dans la définition de couleur réellement suivie. La forme étendue $\langle mod\`ele \ central \rangle$: $\langle mod\`ele \rangle_1 / \langle mod\`ele \rangle_2 / \dots / \langle mod\`ele \rangle_m$ provoque la conversion immédiate de la $\langle sp\'ec \rangle$ adéquate au $\langle mod\`ele\ central \rangle$; un modèle inconnu sera tout simplment ignoré ici, sans aucun commentaire.

Exemples: 'rgb/cmyk/named/gray', '0,0,0/0,0,0,1/Black/0', 'rgb:cmy/hsb'.

(type) L'argument de type Ceci est utilisé uniquement dans le contexte de commandes de définition de couleur, voir la description de \definecolor et assimilées.

 $\langle expr \rangle \ \langle pr\'efixe \rangle \ \langle expr \ de \ m\'elange \rangle \ \langle suffixe \rangle$

Expressions standards de couleur Ces expressions servent d'outils pour spécifier facilement une certaine forme de mélange de couleur en cascade, par ailleurs décrit en détail en section 2.3.2. L'argument $\langle préfixe \rangle$ détermine si la couleur à retenir est celle qui suit ou sa complémentaire : un nombre impair de signes négatifs indique que la couleur résultant de l'expression préfixée doit être convertie en sa couleur complémentaire. Une expression de mélange incomplète est une juste une abbréviation d'une expression de mélange complère avecc $\langle nom \rangle_n = \text{white}$, afin d'éviter quelques saisies dans le cas des teintes. La chaîne $\langle suffixe \rangle$ est généralement vide mais elle offre quelques fonctionnalités additionnelles dans le cas de \approx color series \approx : les cas où la chaîne n'est pas vide demandent à ce que

- le $\langle nom \rangle$ indique le nom d'une \times color series \times ;
- l' $\langle expr \ de \ m\'elange \rangle$ est complète.

Exemples: 'red', '-red', '--red!50!green!12.345', 'red!50!green!20!blue', 'truc!!+', 'truc!![7]', 'truc!25!red!!+++', 'truc!25!red!70!green!![7]'.

 $\langle expr \ \'etendue \rangle$

Expressions de couleur étendues Ces expressions fournissent une autre méthode pour mélanger des couleurs, voir section 2.3.3 page 18 pour plus d'informations. La forme raccourcie

$$\langle mod\`ele\ central \rangle : \langle expr \rangle_1, \langle d\'ec \rangle_1; \langle expr \rangle_2, \langle d\'ec \rangle_2; \dots; \langle expr \rangle_k! \langle d\'ec \rangle_k$$

est une abbréviation pour le cas spécial (et probablement plus courant)

$$\langle mod\`ele\ central \rangle$$
, $\langle div \rangle$: $\langle expr \rangle_1$, $\langle d\'ec \rangle_1$; $\langle expr \rangle_2$, $\langle d\'ec \rangle_2$; ...; $\langle expr \rangle_k$! $\langle d\'ec \rangle_k$

avec la définition suivante (impliquant une somme non nulle de tous les coefficients $\langle d\acute{e}c\rangle_{\kappa})$:

$$\langle div \rangle := \langle d\acute{e}c \rangle_1 + \langle d\acute{e}c \rangle_2 + \dots + \langle d\acute{e}c \rangle_k \neq 0.$$

Exemples: 'rgb:red,1', 'cmyk:red,1;-green!25!blue!60,11.25;blue,-2'.

Expressions fonctionnelles Ces expressions étendent les fonctionnalités des expressions standards ou étendues en récupérant le résultat de ces expressions pour effectuer des calculs complémentaires. Le nombre d'arguments peut varier entre les différentes fonctions, voir section 2.3.4 page suivante pour plus d'informations. Exemples: '>wheel,30', '>wheel,30', '>twheel,1,12', '>twheel,-11,12'.

 $\langle couleur \rangle$ $\langle expr \ de \ couleur \rangle$ Couleurs Au final, $\langle couleur \rangle$ est un argument générique recouvrant les différents concepts de spécification des couleurs. Ceci signifie qu'à chaque fois qu'un argument $\langle couleur \rangle$ est utilisable, la totalité des noms et expressions vues ci-dessus peuvent être utilisées.

2.3.2 Signification des expressions de couleur standards

Est expliquée maintenant comme l'expression

$$\langle pr\'efixe \rangle \langle name \rangle ! \langle pct \rangle_1 ! \langle name \rangle_1 ! \langle pct \rangle_2 ! \dots ! \langle pct \rangle_n ! \langle name \rangle_n \langle suffixe \rangle$$

est interprêtée et traitée :

- 1. Tout d'abord, le modèle et les paramètres de couleur de $\langle nom \rangle$ sont extraits pour définir une couleur temporaire $\langle temp \rangle$. Si $\langle suffixe \rangle$ est de la forme '!! $[\langle num \rangle]$ ', alors $\langle temp \rangle$ sera la couleur correspondante $\langle num \rangle$ (en accès direct) de la série de couleur $\langle nom \rangle$.
- 2. Alors un mélange de couleur, consistant en $\langle pct \rangle_1 \%$ de la couleur $\langle temp \rangle$ et $(100 \langle pct \rangle_1)\%$ de la couleur $\langle nom \rangle_1$ est calculé; ce dernier devient la nouvelle couleur temporaire $\langle temp \rangle$.
- 3. L'étape précédente est répétée pour toutes les paires de paramètres restantes. $(\langle pct \rangle_2, \langle nom \rangle_2), \ldots, (\langle pct \rangle_n, \langle nom \rangle_n)$.
- 4. Si $\langle préfixe \rangle$ contient un nombre impair de signes négactifs '-', alors $\langle temp \rangle$ sera changée en sa couleur complémentaire.
- 5. Si ⟨suffixe⟩ est de la forme '!!+', '!!++', '!!+++', etc. un nombre de step commands (= nombre de signes '+') sont effectuées sur la série de couleur sous-jacente ⟨nom⟩. Ceci est sans conséquence pour la couleur ⟨temp⟩.
- 6. La couleur $\langle temp \rangle$ est enfin affichée ou sert comme donnée en entrée pour d'autres opérations, selon la commande utilisée.

Notez que, dans une expression $\langle temp \rangle ! \langle pct \rangle_{\nu} ! \langle nom \rangle_{\nu}$ typique de l'étape 2, si $\langle pct \rangle_{\nu} = 100$, la couleur $\langle temp \rangle$ est directement utilisée sans plus de transformation. Si $\langle pct \rangle_{\nu} = 0$, c'est alors la couleur $\langle name \rangle_{\nu}$ qui est utilisée. Dans les cas de véritables mélanges $(0 < \langle pct \rangle_{\nu} < 100)$, les deux couleurs impliquées peuvent être définies dans des modèles colorimétriques différents, par exemple $\langle definecolor\{foo\}\{rgb\}\{...\}$ et $\langle definecolor\{bar\}\{cmyk\}\{...\}$. En général, la seconde couleur, $\langle name \rangle_{\nu}$, est convertie dans le modèle de la première couleur, $\langle temp \rangle$, puis le mélange est calculé dans le modèle $\langle definecolor\}\{cmp\}\{cmp\}\{cmp\}\}$, que de l'étape 2, si $\langle definecolor\}\{cmp\}\{cmp\}\{cmp\}\{cmp\}\{cmp\}\{cmp\}\}$

^{4.} Exception : afin d'éviter des résultats inattendus, cette règle est inversée si $\langle temp \rangle$ est issue du modèle **gray** ; dans ce cas, elle est convertie dans le modèle associé à $\langle nom \rangle_{\nu}$.

 $\langle nom \rangle_{\nu}! \langle 100-pct \rangle_{\nu}! \langle temp \rangle$ qui devraient être théoriquement équivalents, peuvent ne pas avoir des résultats visuels identiques.

Les figures 5 à 6 page 36 montrent de premières applications des couleurs et expressions. D'autres exemples sont donnés en figure 3 page 35. Par ailleurs, un grand nombre d'exemples peuvent être trouvé dans [9].

2.3.3 Signification des expressions de couleur étendues

Une expression de couleur étendue

$$\langle core\ model \rangle : \langle expr \rangle_1$$
, $\langle dec \rangle_1$; $\langle expr \rangle_2$, $\langle dec \rangle_2$; ...; $\langle expr \rangle_k$, $\langle dec \rangle_k$

imite la manière dont les peintres mélangent les couleurs : en indiquant une liste de couleurs, chaque couleur étant associée à un facteur $\langle d\acute{e}c \rangle$. Dans une telle $\langle expr$ étendue \rangle , chaque expression standard de couleur $\langle expr \rangle_{\kappa}$ sera convertie dans le $\langle modèle\ central \rangle$ et le vecteur résultant est multiplié par $\langle d\acute{e}c \rangle_{\kappa}/\langle div \rangle$, où

$$\langle div \rangle := \langle d\acute{e}c \rangle_1 + \langle d\acute{e}c \rangle_2 + \dots + \langle d\acute{e}c \rangle_k.$$

Ensuite, la somme de tous ces vecteurs est calculée.

Exemple: mélanger 4 parts de red, 2 parts de green, et une part de yellow permet d'obtenir par le biais de \color{rgb:red,4;green,2;yellow,1}. Essayer le même mélange en mettant -1 part de yellow au lieu d'une fait obtenir. Notez que ce mécanisme peut être aussi utilisé pour afficher une (expression de) couleur individuelle dans un certain modèle colorimétrique: \color{rgb:yellow,1} permet une telle conversion. La forme générale

$$\langle mod\`ele\ central \rangle$$
, $\langle div \rangle$: $\langle expr \rangle_1$, $\langle d\acute{e}c \rangle_1$; $\langle expr \rangle_2$, $\langle d\acute{e}c \rangle_2$; ...; $\langle expr \rangle_k$, $\langle d\acute{e}c \rangle_k$

exécute la même opération avec pour seule différence que le diviseur $\langle div \rangle$ est spécifié au lieu d'être calculé. Dans l'exemple ci-dessus, nous obtenons une version plus sombre par le biais de \color{rgb,9:red,4;green,2;yellow,1}. Notez qu'il n'est pas interdit de spécifier un argument $\langle div \rangle$ qui soit plus petit que la somme de tous les $\langle dec \rangle_{\kappa}$, de telle façon à ce que certains des paramètres de spécification des couleurs puissent être hors de l'intervalle [0,1]. Le traitement de l'équation 7 gère ce type de cas.

2.3.4 Fonctions de couleur

Les fonctions de couleur utilisent une liste d'arguments séparés par des virgules et elles servent à transformer la *couleur donnée* (autrement dit le résultat des calculs précédant l'appel de la fonction) en une nouvelle couleur.

wheel Calculs associés aux cercles chromatiques Ces fonctions permettent de détuheel terminer des couleurs liées par des relations harmoniques basées sur les cercles chromatiques (voir section 1.4 page 7). Les arguments sont ici $\langle angle \rangle$ ou $\langle angle \rangle$, $\langle cercle\ complet \rangle$, le premier servant d'abbréviation à $\langle angle \rangle$, $\langle rangeHsb.$

Le second argument $\langle cercle\ complet \rangle$ indique de combien d'unités un cercle complet est constitué tandis que le premier argument indique de combien d'unités doit être faite la rotation à appliquer à la couleur donnée. Pour cela, la couleur donnée est tout d'abord convertie en \mathbf{Hsb} (dans le cas de wheel), ce qui génère les paramètres $teinte^{\circ}$, saturation, et $luminosit\acute{e}$. Ensuite,

$$teinte^{\circ} := teinte^{\circ} + \frac{\langle angle \rangle}{\langle cercle\ complet \rangle} \cdot H, \qquad teinte := u \left(\frac{teinte^{\circ}}{H} \right)$$
 (4)

où u est la fonction de réduction d'intervalle de l'équation 7 et $H = \text{\sc hsb}$. La saturation et la luminosité étant laissées inchangées, le modèle final est hsb. La fonction twheel fonctionne de façon similaire, mais ces arguments se basent sur tHsb au lieu de Hsb. Des exemples sont présentés en figure 12 page 40.

2.4 Couleurs prédéfinies

×

2.4.1 Colors that are always available

Within xcolor.sty, the following color names are defined: red, green, leaves blue, cyan, magenta, yellow, leaves black, gray, white, darkgray, lightgray, brown, lime, olive, orange, pink, purple, teal, violet.

This base set of colors can be used without restrictions in all kinds of color expressions, as explained in section 2.3 page 13.

2.4.2 Additional sets of colors

There are also sets of color names that may be loaded by xcolor via package options, available in two variants: a 'normal' version (e.g., dvipsnames) and a 'starred' version (e.g., dvipsnames*). The first variant simply defines all the colors immediately, whereas the second applies the mechanism of deferred definition. In the latter case, individual color names have to be activated by \definecolors or \providecolors commands, as described in section 2.5.4 page 22, before they can be applied in a document.

- dvipsnames/dvipsnames* loads a set of 68 cmyk colors as defined in the dvips driver. However, these colors may be used in all supported drivers.
- svgnames/svgnames* loads a set of 151 **rgb** color names ⁵ according to the SVG 1.1 specification [17] ⁶, enhanced by 4 names taken from the file rgb.txt which is part of Unix/X11 distributions. Note that HTML4 accepts a subset of 16 color keywords (using identical specifications), see [16] and section 4 page 41.

 $^{5.\,}$ In fact, these names represent 141 different colors.

^{6.} Actually, the cited specification lists only lowercase names, and the original definitions are given in **RGB** parameters, converted to **rgb** by the author.

- x11names/x11names* loads a set of 317 **rgb** color names ⁷ that are basically variations of a subset of the SVG set mentioned before, according to the file rgb.txt which is part of Unix/X11 distributions ⁸. We describe now how to access all 752 color names of rgb.txt without much effort:
 - Load x11namees as well as svgnames.
 - Capitalise initials and skip blanks : DarkSlateGray instead of dark slate gray.
 - X11 names without numbers are identical to the corresponding SVG colors, except in 5 cases: use Gray0, Grey0, Green0, Maroon0, Purple0 instead of Gray, Grey, Green, Maroon, Purple to obtain the original X11 colors.
 - For $N=0,1,\ldots,100$ use '[gray] $\{N/100\}$ ' or 'black! 100-N' instead of grayN or greyN.

The color names and corresponding displays are listed in section 4 page 41. Section 2.15.1 page 32 describes how to deal with name clashs while using both svgnames and dvipsnames in the same document. See also [9] for a systematic set of color and mix examples.

2.5 Color definition

2.5.1 Ordinary and named colors

In the extension color there is a distinction between 'colors' (defined by the command \definecolor) and 'named colors' (defined by \DefineNamedColor, which is allowed only in the preamble). Whenever an ordinary color is being used in a document, it will be translated into a \special command that contains a — driver-specific — numerical description of the color which is written to the .dvi file. On the other hand, named colors offer the opportunity to store numerical values at a central place whereas during usage, colors may be identified by their names, thus enabling post-processing if required by the output device.

All drivers delivered with the standard graphics package support the *formalism* of defining and invoking 'named colors'. However, real support for the *concept* behind that, i.e. employing names instead of parameters, ranges from 'none' to 'complete'. We demonstrate the current situation for three different drivers:

— dvips has very good support for the 'named' concept; the PostScript equivalents to the color names defined by dvipsnames are being loaded – unless switched off – by dvips automatically. However, additional names have to be made known to the PostScript interpreter by some kind of header file. Since version 2.01, xcolor offers an integrated solution for this task: by invoking the package option prologue, a PostScript header file xcolor.pro is loaded by dvips. Additionally, under this option every color definition command (\definecolor, \colorlet, etc.) will generate some PostScript code that is written to an auxiliary file with the extension .xcp (shortcut for xcolor)

^{7.} These names represent 315 different colors.

^{8.} Again, the original definitions are given in RGB parameters, converted to rgb by the author.

^{9.} This is not only true for the document preamble, but for the document body as well.

prologue). This file is as well loaded by *dvips* as a prologue, thus making all color names available to the PostScript interpreter. Of course, the .xcp file may be edited before *dvips* is applied, making it easy to change device-specific color parameters at a central place. Note that the PostScript code is designed similar to color.pro: only *new* names are defined. This allows to preload other prologue files with color definitions that are not being destroyed by xcolor. On the other hand, it requires the user to take care about redefining color names.

Example: \colorlet{foo}{red}\colorlet{foo}{blue}\color{foo} will switch to blue in the usual xcolor logic, however the .ps file would display red (unless foo had been defined differently before).

It should be stressed that this mechanism is only employed by the prologue option. Without that, the predefined 'named' colors activated by the dvipsnames option (without employing any tints, shades, color expressions, etc.) may be used in this way, all other 'named' colors are unknown to Post-Script.

- dvipdfm supports only the standard dvipsnames colors since these are hard-coded in the *dvipdfm* program itself; there seems to be no way to load any user-defined prologue files.
- pdftex does not offer conceptual support, all 'named' colors are converted immediately to their numerical representation. It therefore allows unrestricted definition and usage of named colors (although offering no added value through this).

Typically, a .dvi viewer will have difficulties to display user-defined 'named' colors. For example, MiKTEX's viewer *Yap* currently displays only 'named' colors from the dvipsnames set. Thus, whenever the prologue option is invoked together with dvips, *all* other colors will appear black. However, after employing *dvips*, a PostScript viewer should display the correct colors.

2.5.2 Color definition in xcolor

\definecolor

 $[\langle type \rangle] \{\langle name \rangle\} \{\langle model-list \rangle\} \{\langle spec-list \rangle\}^{10}$

This is one of the commands that may be used to assign a $\langle name \rangle$ to a specific color. Afterwards, this color is known to the system (in the current group) and may be used in *color expressions*, as explained in section 2.3 page 13. It replaces both color's \DefineNamedColor and \definecolor. Note that an already existing color $\langle name \rangle$ will be overwritten. The variable \tracingcolors controls whether such an overwriting will be logged or not (see section 2.13 page 31 for details). The arguments are described in section 2.3 page 13. Hence, valid expressions for color definitions are

- \definecolor{red}{rgb}{1,0,0},
- $\definecolor{red}{rgb/cmyk}{1,0,0/0,1,1,0}$,
- $\definecolor{red}{hsb:rgb/cmyk}{1,0,0/0,1,1,0}$,
- \definecolor[named]{Black}{cmyk}{0,0,0,1},

^{10.} Prior to version 2.00, this command was called \mathbb{xdefinecolor}, the latter name still being available for compatibility reasons.

— \definecolor{myblack}{named}{Black},

where the last command is equivalent to \colorlet{myblack}{Black} (see below); the second command defines red in the rgb or cmyk model, depending on the current setting of the target model, whereas the third will additionally transform the color to hsb prior to saving. Note that there is a special pstricks-related version as described in section 2.11 page 30.

\providecolor

Similar to \backslash definecolor, but the color $\langle name \rangle$ is only defined if it does not exist already.

\colorlet

 $[\langle type \rangle] \{\langle name \rangle\} [\langle num \ model \rangle] \{\langle color \rangle\}$

Copies the actual color which results from $\langle color \rangle$ to $\langle name \rangle$. If $\langle num\ model \rangle$ is non-empty, $\langle color \rangle$ is first transformed to the specified model, before $\langle name \rangle$ is being defined. The pseudo model 'named' is not allowed here, it may, however, be specified in the $\langle type \rangle$ argument. Note that an already existing color $\langle name \rangle$ will be overwritten.

Example: we said \colorlet{tableheadcolor}{gray!25} in the preamble of this document. In most of the tables we then formatted the first row by using the command \rowcolor{tableheadcolor}.

2.5.3 Defining sets of colors

\definecolorset

 $[\langle type \rangle] \{\langle model-list \rangle\} \{\langle head \rangle\} \{\langle tail \rangle\} \{\langle set\ spec \rangle\}$

This command facilitates the construction of *color sets*, i.e. (possibly large) sets of individual colors with common underlying $\langle model\text{-}list\rangle$ and $\langle type\rangle$. Here, $\langle setspec\rangle = \langle name\rangle_1, \langle spec\text{-}list\rangle_1; \ldots; \langle name\rangle_l, \langle spec\text{-}list\rangle_l \ (l \geq 1 \text{ name/specification-list pairs})$. Individual colors are being constructed by single

```
\definecolor[\langle type \rangle] \{\langle head \rangle \langle name \rangle_{\lambda} \langle tail \rangle\} \{\langle model-list \rangle\} \{\langle spec-list \rangle_{\lambda}\}
```

commands, $\lambda = 1, \dots, l$. For example,

- \definecolorset{rgb}{}{red,1,0,0;green,0,1,0;blue,0,0,1} could be used to define the basic colors red, green, and blue; 11
- \definecolorset{rgb}{x}{10}{red,1,0,0;green,0,1,0;blue,0,0,1} would define the colors xred10, xgreen10, and xblue10.

\providecolorset

 $[\langle type \rangle] \{\langle model-list \rangle\} \{\langle head \rangle\} \{\langle tail \rangle\} \{\langle set\ spec \rangle\}$

Similar to \definecolorset, but based on \providecolor, thus the individual colors are defined only if they do not exist already.

2.5.4 Immediate and deferred definitions

Traditionally, the definition of a color as described above leads to the immediate construction of a command that holds at least the information needed by the driver to display the desired color. Thus, defining 300 colors, e.g., by loading a huge set

^{11.} Actually, xcolor uses a more complicated variant to provide the basic colors for different underlying models (see the source code for the full command): \definecolorset{rgb/hsb/cmyk/gray}}{}{red,1,0,0/0,1,1/0,1,1,0/.3;green,...}.

of predefined colors, will result in 300 new commands, although most of them — except for the purpose of displaying lists of colors — will hardly ever be used within a document. Along the development of computer memory — increasing in size, decreasing in price — recent TEX implementations have increased their provisions for internal memory stacks that are available for strings, control sequences, etc. However, as memory continues to be finite, it may still be useful (or occasionally necessary) to have a method at hand that allows to reduce memory requirements a bit. This is the point where deferred color definition comes into play. Its principle is simple: for every definition of this type (e.g., via \preparecolor), all necessary information is saved on a specific global definition stack, where it can be taken from later (e.g., via \definecolors) in order to construct the actual color command. Note that the following commands are only to be used in the document preamble, since the definition stack of colors for deferred definitions is deleted at the begin of the document body — in order to save memory.

\preparecolor

 $[\langle type \rangle] \{\langle name \rangle\} \{\langle model-list \rangle\} \{\langle spec-list \rangle\}$

Similar to \definecolor, but the color $\langle name \rangle$ is not yet being defined: the arguments $\langle model\text{-}list \rangle$ and $\langle spec\text{-}list \rangle$ are evaluated immediately, then all necessary parameters (i.e. $\langle type \rangle$, $\langle name \rangle$, $\langle model \rangle$, $\langle spec \rangle$) are put onto the definition stack for later usage.

\preparecolorset \ifdefinecolors

 $[\langle type \rangle] \{\langle model-list \rangle\} \{\langle head \rangle\} \{\langle tail \rangle\} \{\langle set\ spec \rangle\}$

Similar to \definecolorset, but depending on the \ifdefinecolors switch: if set to 'true', to each element of the set the command \definecolor (i.e. immediate definition) is applied; if set to 'false', \preparecolor (i.e. deferred definition) is applied. For example, the package option svgnames performs something like \definecolorstrue\preparecolorset, whereas svgnames* acts like \definecolorsfalse\preparecolorset. Both options set \definecolorstrue at the end, in order to have a proper starting point for other color sets.

\DefineNamedColor

 $\{\langle type \rangle\} \{\langle name \rangle\} \{\langle model-list \rangle\} \{\langle spec-list \rangle\}$ is provided mainly for compatibility reasons, especially to support the predefined colors in dvipsnam.def. It is the same as $\langle cmd \rangle [\langle type \rangle] \{\langle name \rangle\} \{\langle model \rangle\} \{\langle spec \rangle\}$, where $\langle cmd \rangle$ is either \definecolor or \preparecolor, depending on the state of \ifdelinecolors. Note that color's restriction to allow \DefineNamedColor only in the document preamble has been abolished in xcolor.

\definecolors

 $\{\langle id\text{-}list\rangle\}$

Recall that $\langle id\text{-}list \rangle$ has the form $\langle ext \ id \rangle_1, \ldots, \langle ext \ id \rangle_l$ where each $\langle ext \ id \rangle_\lambda$ is either an identifier $\langle id \rangle_\lambda$ or an assignment $\langle id \rangle_{\lambda'} = \langle id \rangle_\lambda$. We consider the first case to be an abbreviation for $\langle id \rangle_\lambda = \langle id \rangle_\lambda$ and describe the general case : the definition stack is searched for the name $\langle id \rangle_\lambda$ and its corresponding color parameters; if there is no match, nothing happens; if the name $\langle id \rangle_\lambda$ is on the stack and its color parameters are $\langle type \rangle_\lambda$, $\langle model \rangle_\lambda$, and $\langle spec \rangle_\lambda$, then the command $\langle definecolor[\langle type \rangle_\lambda]\{\langle id \rangle_{\lambda'}\}\{\langle model \rangle_\lambda\}\{\langle spec \rangle_\lambda\}$ is executed. Thus, the user may control by which names the prepared colors are to be used in the document. Note that the entry $\langle id \rangle_\lambda$ is not removed from the stack, such that it can be used several times (even within the same $\langle definecolors command$).

\providecolors

 $\{\langle id\text{-}list\rangle\}$

Similar to \definecolors, but based on \providecolor, thus the individual colors are defined only if they do not exist already.

2.5.5 Global color definitions

\ifglobalcolors

By default, definitions via \definecolor, \providecolor, ... are available only within the current group. By setting \globalcolorstrue, all such definitions are being made globally available — until the current group ends. ¹² Another method to specify that an individual color definition is to be made global is to prefix it by \xglobal, e.g., \xglobal\definecolor{foo}....

\xglobal

2.6 Color application

2.6.1 Standard color commands

Here is the list of user-level color commands, as known from the extension color, but with an extended syntax for the colors, allowing for expressions etc. :

\color

 $\{\langle color \rangle\}$

 $[\langle model\text{-}list \rangle] \{\langle spec\text{-}list \rangle\}$

Switches to the color given either by name/expression or by model/specification. This color will stay in effect until the end of the current TFX group.

\textcolor

 $\{\langle color \rangle\}\{\langle text \rangle\}$

 $[\langle model-list \rangle] \{\langle spec-list \rangle\} \{\langle text \rangle\}$

are just alternative syntax for \color , in which the groups are added implicitly. Thus $\langle text \rangle$ appears in the specified color, but then the color reverts to its previous value. Additionally, it calls $\color{leavevmode}$ to ensure the start of horizontal mode.

\pagecolor

 $\{\langle color \rangle\}$

 $[\langle model\text{-}list\rangle] \{\langle spec\text{-}list\rangle\}$

Specifies the background color for the current, and all following, pages. It is a global declaration which does not respect TpX groups.

Remark : all of these commands except \color require that the $\langle color \rangle$ resp. $\langle spec \rangle$ arguments are put into curly braces $\{\}$, even if they are buried in macros.

For example, after \def\foo{red}, one may say \color\foo, but one should always write \textcolor{foo}{bar} instead of \textcolor\foo{bar} in order to avoid strange results.

Note that color-specific commands from other packages may give unexpected results if directly confronted with color expressions (e.g., soul's \sethlcolor and friends). However, one can turn the expression into a name via \colorlet and try to use that name instead.

2.6.2 Colored boxes

\colorbox

^{12.} The switch may also be set in the preamble in order to control the whole document.

Takes the same argument forms as $\texttt{\textcolor}$, but the color specifies the *back-ground* color of the box.

\fcolorbox

 ${\langle frame\ color \rangle} {\langle background\ color \rangle} {\langle text \rangle}$

 $[\langle model-list \rangle] \{\langle frame\ spec-list \rangle\} \{\langle background\ spec-list \rangle\} \{\langle text \rangle\}$

 $\begin{tabular}{ll} $ [\langle fr.\ model-list \rangle] {\langle fr.\ spec-list \rangle} [\langle backgr.\ model-list \rangle] {\langle backgr.\ spec-list \rangle} {\langle frame\ color \rangle} [\langle background\ model-list \rangle] {\langle background\ spec-list \rangle} {\langle text \rangle} \\ \end{tabular}$

Puts a frame of the first color around a box with a background specified by the second color. If only the first optional argument is given, it specifies the color model for both colors. Besides the possibility to specify color *expressions* as arguments, \fcolorbox now offers more flexibility for its arguments than the color version:

- test \fcolorbox{gray}{yellow}{test},
- ____test_\fcolorbox[cmyk]{0,0,0,0.5}{0,0,1,0}{test},
- test \fcolorbox[gray]{0.5}[wave]{580}{test},
- test \fcolorbox{gray}[wave]{580}{test}.

Additionally, \fcolorbox uses a new approach to frame drawing, which is an extension of Donald Arseneau's suggestion in bug report latex/3655 [2]. The main difference to IATEX's implementation is that box construction and frame drawing are split into separate operations, such that the frame is drawn after the box contents has been constructed. This ensures that the frame is always on top of the box. Donald Arseneau improved speed as well as memory requirements of this approach. Furthermore, a new macro is introduced:

\boxframe

 ${\langle width \rangle} {\langle height \rangle} {\langle depth \rangle}$

Draws a frame with a linewidth of **\fboxrule**. Returns a **\hbox** with outer dimensions $\langle width \rangle$, $\langle height \rangle$, $\langle depth \rangle$. By this approach, a frame-primitive may also be provided by a driver file, in order to exploit driver-specific drawing facilities (see below). Again, this macro was optimised by Donald Arseneau.

The new frame approach is used for \fcolorbox as well as LATEX's \fbox and \framebox commands, unless the kernelfbox option is specified, which returns to LATEX's original definitions of \f(rame)box.

Option xcdraw uses PostScript commands to draw frames and color boxes in case of the dvips driver and PDF code to draw frames in case of the pdftex and dvipdfm drivers. This is still experimental code that may confuse .dvi viewers. The opposite option noxcdraw forces usage of the generic (driver-independent) code.

2.6.3 Using the current color

Within a color expression, '.' serves as a placeholder for the current color. See figure 7 page 36 for an example.

It is also possible to save the current color for later use, e.g., via the command \colorlet{foo}{.}.

Note that in some cases the current color is of rather limited use, e.g., the construction of an \fcolorbox implies that at the time when the $\langle background\ color \rangle$ is evaluated, the current color equals the $\langle frame\ color \rangle$; in this case '.' does not refer to the current color outside the box.

2.6.4 Color testing

testcolors

 $[\langle num \ models \rangle]$

This is a simple tabular environment in order to test (display) colors in different models, showing both the visual result and the model-specific parameters. The optional $\langle num\ models \rangle$ argument is a comma-separated list of numerical color models (as usual without spaces) which form the table columns; the default list is rgb, cmyk, hsb, HTML.

\testcolor

 $\{\langle color \rangle\}\$ $[\langle model-list \rangle] \{\langle spec-list \rangle\}\$

Each \testcolor command generates a table row, containing a display sample plus the respective parameters for each of the models. If the column-model matches the model of the color in question, its parameters are underlined. Note that this command is only available within the testcolors environment.

For applications see figure 2 page 34 and figures 11, 12.

2.7 Color blending

The purpose of *color blending* is to add some mixing color (expression) to all subsequent explicit color commands. Thus, it is possible to perform such a mix (or blend) operation for many colors without touching the individual commands.

\blendcolors \blendcolors* $\{\langle mix \ expr \rangle\}\$

Initialises all necessary parameters for color blending. The actual (completed) color blend expression is stored in \colorblend. In the starred version, the argument will be appended to a previously defined blend expression. An empty $\langle mix \; expr \rangle$ argument will switch blending off.

\xglobal

In order to achieve global scope, \blendcolors may be prefixed by \xglobal. Remark: color blending is applied only to explicit color commands, i.e. \color, \fcolorbox and the like. In the previous example the frames are not being blended because their color is set by an driver-internal command (switching back to the 'current color'). Thus, to influence these implicit colors as well, we have to set the current color after the blending: \blendcolors{!50!yellow}\color{black} results in _______, an additional \blendcolors*{!50}\color{black} yields

2.8 Color masks and separation

The purpose of *color separation* is to represent all colors that appear in the document as a combination of a finite subset of base colors and their tints. Most prominent is **cmyk** separation, where the base colors are *cyan*, *magenta*, *yellow*, and *black*, as required by the printers. This can be done by choosing the package option **cmyk**, such that all colors will be converted in this model, and post-processing the output file. We describe now another — and more general — solution: *color*

masking. How does it work? Color masking is based on a specified color model $\langle m\text{-}model \rangle$ and a parameter vector $\langle m\text{-}spec \rangle$. Whenever a color is to be displayed in the document, it will first be converted to $\langle m\text{-}model \rangle$, afterwards each component of the resulting color vector will be multiplied by the corresponding component of $\langle m\text{-}spec \rangle$. For example, let's assume that $\langle m\text{-}model \rangle$ equals cmyk, and $\langle m\text{-}spec \rangle$ equals $(\mu_c, \mu_m, \mu_y, \mu_k)$. Then an arbitrary color foo will be transformed according to

$$foo \mapsto (c, m, y, k) \mapsto (\mu_c \cdot c, \mu_m \cdot m, \mu_y \cdot y, \mu_k \cdot k) \tag{5}$$

Obviously, color separation is a special case of masking by the vectors (1,0,0,0), (0,1,0,0), etc. An interesting application is to shade or tint all colors by masking them with (x,x,x) in the **rgb** or **cmy** model, see the last two rows in figure 9 page 38.

\maskcolors

 $[\langle num\ model \rangle] \{\langle color \rangle\}$

\ifmaskcolors

Initialises all necessary parameters for color masking: if $\langle num\ model \rangle$ is not specified (or empty), $\langle m\text{-}model \rangle$ will be set to the natural model of $\langle color \rangle$, otherwise to $\langle num\ model \rangle$; the color specification of $\langle color \rangle$ is extracted to define $\langle m\text{-}spec \rangle$. Additionally, \maskcolorstrue is performed. Color masking can be switched off temporarily by \maskcolorsfalse, or — in a more radical way — by \maskcolors{\}, which in addition clears the initialisation parameters. In general, the scope of \maskcolors is the current group (unless it is prefixed by the \maskcolors command), but it may be used in the document preamble as well. The final remark of the color blending section applies here similarly.

\xglobal

Now it is easy to separate a complete document without touching the source code: latex \def\xcolorcmd{\maskcolors[cmyk]{cyan}}\input{a} will do the cyan part of the job for a.tex.

\colormask

Caution: xcolor has no idea about colors in files that are included via the command \includegraphics, e.g., images of type .eps, .pdf, .jpg, or .png. Such files have to be separated separately. Nevertheless, xcolor offers some basic support by storing the mask color in \colormask, which can be used to decide which file is to be included:

2.9 Color series

Automatic coloring may be useful in graphics or chart applications, where a — potentially large and unspecified — number of colors are needed, and the user does not want or is not able to specify each individual color. Therefore, we introduce the term *color series*, which consists of a base color and a scheme, how the next color is being constructed from the current color.

The practical application consists of three parts: definition of a color series (usually once in the document), initialisation of the series (potentially several times), and application — with or without stepping — of the current color of the series (potentially many times).

2.9.1 Definition of a color series

\definecolorseries

 ${\langle name \rangle} {\langle core\ model \rangle} {\langle method \rangle} {\langle b-model \rangle} {\langle s-spec \rangle} {\langle s-model \rangle} {\langle s-spec \rangle}$ Defines a color series called $\langle name \rangle$, whose calculations are performed within the color model $\langle core\ model \rangle$, where $\langle method \rangle$ selects the algorithm (one of step, grad, last, see below). The method details are determined by the remaining arguments:

- $[\langle b\text{-}model \rangle] \{\langle b\text{-}spec \rangle\}$ specifies the base (= first) color in the algorithm, either directly, e.g., $[rgb] \{1,0.5,0.5\}$, or as a $\langle color \rangle$, e.g., $\{-yellow!50\}$, if the optional argument is missing.
- $[\langle s\text{-}model \rangle] \{\langle s\text{-}spec \rangle\}$ specifies how the *step* vector is calculated in the algorithm, according to the chosen $\langle method \rangle$:
 - step, grad: the optional argument is meaningless, and $\langle s\text{-}spec \rangle$ is a parameter vector whose dimension is determined by $\langle core \ model \rangle$, e.g., $\{0.1, -0.2, 0.3\}$ in case of rgb, cmy, or hsb.
- last : the last color is specified either directly, e.g., [rgb]{1,0.5,0.5}, or as a $\langle color \rangle$, e.g., {-yellow!50}, if the optional argument is missing. This is the general scheme :

$$color_1 := base, \qquad color_{n+1} := U(color_n + step)$$
 (6)

for n = 1, 2, ..., where U maps arbitrary real m-vectors into the unit m-cube :

$$U(x_1, \dots, x_m) = (u(x_1), \dots, u(x_m)), \qquad u(x) = \begin{cases} 1 & \text{if } x = 1 \\ x - [x] & \text{if } x \neq 1 \end{cases}$$
 (7)

Thus, every step of the algorithm yields a valid color with parameters from the interval [0, 1].

Now, the different methods use different schemes to calculate the step vector :

- step, grad : the last argument, $\{\langle s\text{-}spec\rangle\}$, defines the directional vector qrad.
- last : $\{\langle s\text{-}spec\rangle\}\$ resp. $[\langle s\text{-}model\rangle]\{\langle s\text{-}spec\rangle\}\$ defines the color parameter vector last.

Then, during \resetcolorseries, the actual step vector is calculated:

$$step := \begin{cases} grad & \text{if } \langle method \rangle = \text{step} \\ \frac{1}{\langle div \rangle} \cdot grad & \text{if } \langle method \rangle = \text{grad} \\ \frac{1}{\langle div \rangle} \cdot (last - base) & \text{if } \langle method \rangle = \text{last} \end{cases}$$
(8)

Please note that it is also possible to use the current color placeholder '.' within the definition of color series. Thus, \definecolorseries \{foo\\{rgb\}\{last\\{.\}\{-.\}}

will set up a series that starts with the current color and ends with its complement. Of course, similar to TEX's \let primitive, the *current* definition of the current color at the time of execution is used, there is no relation to current colors in any later stage of the document.

2.9.2 Initialisation of a color series

\resetcolorseries

 $[\langle div \rangle] \{\langle name \rangle\}$

\colorseriescycle

This command has to be applied at least once, in order to make use of the color series $\langle name \rangle$. It resets the current color of the series to the base color and calculates the actual step vector according to the chosen $\langle div \rangle$, a non-zero real number, for the methods grad and last, see equation (8). If the optional argument is empty, the value stored in the macro \colorseriescycle is applied. Its default value is 16, which can be changed by \def\colorseriescycle{\langle} \div \rangle, applied \begin{argument} before the extension xcolor is loaded (similar to \rangeRGB and friends). The optional argument is ignored in case of the step method.

2.9.3 Application of a color series

There are two ways to display the current color of a color series: any of the *color expressions* in section 2.3 page 13 used within a \color, \textcolor, ... command will display this color according to the usual syntax of such expressions. However, in the cases when $\langle postfix \rangle$ equals '!!+', \color{ $\langle name \rangle$!!+} etc., will not only display the color, but it will also perform a step operation. Thus, the current color of the series will be changed in that case. An expression \color{ $\langle name \rangle$!![$\langle num \rangle$]} enables direct access to an element of a series, where $\langle num \rangle = 0, 1, 2, \ldots$, starting with 0 for the base color. See figure 8 page 37 for a demonstration of different methods.

2.9.4 Differences between colors and color series

Although they behave similar if applied within color expressions, the objects defined by \definecolor and \definecolorseries are fundamentally different with respect to their scope/availability: like color's original \definecolor command, \definecolor generates local colors, whereas \definecolorseries generates global objects (otherwise it would not be possible to use the stepping mechanism within tables or graphics conveniently). E.g., if we assume that bar is an undefined color, then after saying

```
\begingroup
\definecolorseries{foo}{rgb}{last}{red}{blue}
\resetcolorseries[10]{foo}
\definecolor{bar}{rgb}{.6,.5,.4}
\endgroup
```

commands like \color{foo} or \color{foo!!+} may be used without restrictions, whereas \color{bar} will give an error message. However, it is possible to say

\colorlet{bar}{foo} or \colorlet{bar}{foo!!+} in order to save the current color of a series locally — with or without stepping.

2.10 Border colors for hyperlinks

The hyperref package offers all kinds of support for hyperlinks, pdfmarks etc. There are two standard ways to make hyperlinks visible (see the package documentation [14] for additional information on how to set up these features):

- print hyperlinks in a different color than normal text, using the keys citecolor, filecolor, linkcolor, menucolor, pagecolor, runcolor, urlcolor with color expressions, e.g., \hypersetup{urlcolor=-green!50};
- display a colored border around hyperlinks, using the keys citebordercolor, filebordercolor, linkbordercolor, menubordercolor, pagebordercolor, runbordercolor, urlbordercolor with explicit numerical rgb parameter specification, e.g., \hypersetup{urlbordercolor={1 0.5 0.25}}.

Obviously, the second method is somewhat inconvenient since it does not allow for color names or even color expressions. Therefore, xcolor provides — via the package option hyperref — a set of extended keys xcitebordercolor, xfilebordercolor, xlinkbordercolor, xmenubordercolor, xpagebordercolor, xrunbordercolor, xurlbordercolor which are being used in conjunction with color expressions, e.g., \hypersetup{xurlbordercolor=-green!50}.

Another new key, xpdfborder, provides a way to deal with a dvips-related problem: for most of the drivers, a setting like pdfborder={0 0 1} will determine the width of the border that is drawn around hyperlinks in points. However, in the dvips case, the numerical parameters are interpreted in relation to the chosen output resolution for processing the .dvi file into a .ps file. Unfortunately, at the time when the .dvi is constructed, nobody knows if and at which resolution a transformation into .ps will take place afterwards. Consequently, any default value for pdfborder may be useful or not. Within hyperref, the default for dvips is pdfborder={0 0 12}, which works fine for a resolution of 600 or 1200 dpi, but which produces an invisible border for a resolution of 8000 dpi, as determined by the command-line switch -Ppdf. On the other hand, setting pdfborder={0 0 80} works fine for dvips at 8000 dpi, but makes a document unportable, since other drivers (or even dvips in a low resolution) will draw very thick boxes in that case. This is were the *xpdfborder* key comes in handy: it rescales its arguments for the dvips case by a factor 80 (ready for 8000 dpi) and leaves everything unchanged for other drivers. Thus one can say xpdfborder={0 0 1} in a driver-independent way.

2.11 Additional color specification in the pstricks world

For pstricks users, there are different ways of invoking colors within command option keys:

- \psset{linecolor=green!50}
- \psset{linecolor=[rgb]{0.5,1,0.5}}
- \psframebox[linecolor={[rgb]{0.5,1,0.5}}]{foo}

Note the additional curly braces in the last case; without them, the optional argument of \psframebox would be terminated too early.

\definecolor

 $[ps]{\langle name \rangle}{\langle core\ model-list \rangle}{\langle code \rangle}$

Stores PostScript $\langle code \rangle$ — that should not contain slash '/' characters — within a color. Example: after \definecolor[ps]{foo}{rgb}{bar}, the pstricks command \psline[linecolor=foo]... inserts 'bar setrgbcolor' where the linecolor information is required — at least in case of the dvips driver. See also xcolor2.tex for an illustrative application.

2.12 Color in tables

\rowcolors
\rowcolors*

One of these commands has to be executed before a table starts. $\langle row \rangle$ tells the number of the first row which should be colored according to the $\langle odd\text{-}row \ color \rangle$ and $\langle even\text{-}row \ color \rangle$ scheme. Each of the color arguments may also be left empty (= no color). In the starred version, $\langle commands \rangle$ are ignored in rows with inactive $rowcolors \ status$ (see below), whereas in the non-starred version, $\langle commands \rangle$ are applied to every row of the table. Such optional commands may be \hline or \noalign{\langle} stuff{\rangle}.

\showrowcolors \hiderowcolors \rownum

The rowcolors status is activated (i.e., use coloring scheme) by default and/or \showrowcolors, it is inactivated (i.e., ignore coloring scheme) by the command \hiderowcolors. The counter \rownum may be used within such a table to access the current row number. An example is given in figure 10 page 38. These commands require the table option (which loads the colortbl package).

Note that table coloring may be combined with color series. This method was used to construct the examples in figure 8 page 37.

2.13 Color information

\extractcolorspec

 $\{\langle color \rangle\}\{\langle cmd \rangle\}$

Extracts the color specification of $\langle color \rangle$ and puts it into $\langle cmd \rangle$; equivalent to $\{ \langle model \rangle \} \{ \langle spec \rangle \} \}$.

\extractcolorspecs

 ${\langle color \rangle} {\langle model-cmd \rangle} {\langle color-cmd \rangle}$

Extracts the color specification of $\langle color \rangle$ and puts it into $\langle model\text{-}cmd \rangle$ and $\langle color\text{-}cmd \rangle$, respectively.

\tracingcolors

 $=\langle int \rangle$

Controls the amount of information that is written into the log file:

- $\langle int \rangle \leq 0$: no specific color logging.
- $-\langle int \rangle > 1$: ignored color definitions due to \providecolor are logged.
- $-\langle int \rangle > 2$: multiple (i.e. overwritten) color definitions are logged.
- $-\langle int \rangle \geq 3$: every command that defines a color will be logged.
- $-\langle int \rangle \geq 4$: every command that sets a color will be logged.

Like TEX's \tracing... commands, this command may be used globally (in the document preamble) or locally/block-wise. The package sets \tracingcolors=0

as default. Remark: since registers are limited and valuable, no counter is wasted for this issue.

Note that whenever a color is used that has been defined via color's \definecolor command rather than xcolor's new \definecolor and friends, a warning message 'Incompatible color definition' will be issued. ¹³

2.14 Color conversion

\convertcolorspec

 ${\langle model \rangle} {\langle spec \rangle} {\langle target\ model \rangle} {\langle cmd \rangle}$

Converts a color, given by the $\langle spec \rangle$ in model $\langle model \rangle$, into $\langle target\ model \rangle$ and stores the new color specification in $\backslash cmd$. $\langle target\ model \rangle$ must be of type $\langle num\ model \rangle$, whereas $\langle model \rangle$ may also be 'named', in which case $\langle spec \rangle$ is simply the name of the color.

Example: $\convertcolorspec{cmyk}{0.81,1,0,0.07}{HTML}\tmp acts like \def \tmp{1F00ED}.$

2.15 Problems and solutions

2.15.1 Name clashs between dvipsnames and svgnames

Due to the fixed option processing order (which does not depend on the order how the options were specified in the \usepackage command), the svgnames colors will always overrule dvipsnames colors with identical names. This can lead to undesired results if both options are used together. For instance, Fuchsia yields under the regime of dvipsnames and with respect to svgnames. However, there is a simple trick — based on deferred color definition — that allows us to use colors from both sets in the desired way:

```
\usepackage[dvipsnames*,svgnames]{xcolor}
\definecolors{Fuchsia}
```

Now all colors from the SVG set are available (except Fuchsia) plus Fuchsia from the other set.

2.15.2 Page breaks and pdfT_EX

Since pdfTEX does not maintain a *color stack* — in contrast to *dvips* — a typical problem is the behaviour of colors in the case of page breaks, as illustrated by the following example :

```
\documentclass{minimal}
\usepackage{xcolor}
\begin{document}
black\color{red}red1\newpage red2\color{black}black
\end{document}
```

^{13.} This should not happen since usually there is no reason to load color in parallel to xcolor.

This works as expected with dvips, i.e., 'red1' and 'red2' being red, however, with pdftex, 'red2' is displayed in black. The problem may be solved by using the fixpdftex option which simply loads Heiko Oberdiek's pdfcolmk package [12]. However, its author also lists some limitations:

- Mark limitations : page breaks in math.
- LaTeX's output routine is redefinded.
 - Changes in the output routine of newer versions of LaTeX are not detected.
 - Packages that change the output routine are not supported.
- It does not support several independent text streams like footnotes.

2.15.3 Change color of included .eps file

In general, xcolor cannot change colors of an image that is being included via the \includegraphics command from the graphics or graphicx package. There is, however, a limited opportunity to influence the current color of included PostScript files. Consider the following file foo.eps which draws a framed gray box:

```
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 60 12
0 0 60 12 rectfill
0.75 setgray
2 2 56 8 rectfill
```

Now run the following code through LATEX and dvips :

```
\documentclass{minimal}
\usepackage[fixinclude]{xcolor}
\usepackage{graphics}
\begin{document}
\includegraphics{foo} \textcolor{red}{\includegraphics{foo}}
\end{document}
```

The resulting .ps file will display two gray boxes: the first with a black frame, the second with a red frame. If we had omitted the fixinclude option, the second box would also display a black frame. This is because *dvips* usually resets the current color to black immediately before including an .eps file.

3 Examples

Figure 1 – Color spectrum

FIGURE 2 – Color testing

color	rgb	cmyk	hsb	HTML	gray
olive	0.5 0.5 0	0 0 1 0.5	0.16667 1 0.5	808000	0.39
red!50!green	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445
-cyan!50!magenta	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445
[cmyk]0,0,1,0.5	0.5 0.5 0	0 0 1 0.5	0.16667 1 0.5	808000	0.39
[cmyk]0,0,.5,.5	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445
[rgb:cmyk]0,0,.5,.5	0.5 0.5 0	0 0 0.5 0.5	0.16667 1 0.5	808000	0.445

\sffamily
\begin{testcolors}[rgb,cmyk,hsb,HTML,gray]
\testcolor{olive}
\testcolor{red!50!green}
\testcolor{-cyan!50!magenta}
\testcolor[cmyk]{0,0,1,0.5}
\testcolor[cmyk]{0,0,.5,.5}
\testcolor[rgb:cmyk]{0,0,.5,.5}
\end{testcolors}

FIGURE 3 – Progressing from one to another color

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

Color Definition/representation (pdftex driver)

MyGreen {0.92 0 0.87 0.09 k 0.92 0 0.87 0.09 K}{cmyk}{0.92,0,0.87,0.09} MyGreen-rgb {0 0.91 0.04001 rg 0 0.91 0.04001 RG}{rgb}{0,0.91,0.04001} MyGreen-cmy {1 0.09 0.95999 0 k 1 0.09 0.95999 0 K}{cmy}{1,0.09,0.95999} MyGreen-hsb {0 0.91 0.03995 rg 0 0.91 0.03995 RG}{hsb}{0.34065,1,0.91}

MyGreen-gray {0.5383 g 0.5383 G}{gray}{0.5383}

FIGURE 4 - Target color model

Figure 5 – Standard color expressions

Figure 6 – Standard color expressions

```
\fboxrule6pt
\fcolorbox
\{red!70!green}\% outer frame
\{yellow!30!blue}\% outer background
\{\fcolorbox
\{-yellow!30!blue}\% inner frame
\{-red!70!green}\% inner background
\{Test\textcolor\{red!72.75\}\{Test}\color\{-green}\{Test\}\}
```

FIGURE 7 - Current color

Figure 8 – Color series

S_1	S_2	G_1	G_2	L_1	L_2	L_3	L_4	L_5
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10
11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12
13	13	13	13	13	13		_13_	13
14	14	14	14	14	14	14	14	14
15	15	15	15	15	15	15	15	15
16	16	16	16	16	16	16	16	16

Individual definitions

- $S_1 \setminus \{fgb\} \{step\} [rgb] \{.95, .85, .55\} \{.17, .47, .37\}$
- S_2 \definecolorseries{test}{hsb}{step}[hsb]{.575,1,1}{.11,-.05,0}
- G_1 \definecolorseries{test}{rgb}{grad}[rgb]{.95,.85,.55}{3,11,17}
- $G_2 \quad \texttt{\definecolorseries\{test\}\{hsb\}\{grad\}[hsb]\{.575,1,1\}\{.987,-.234,0\}}$
- L_1 \definecolorseries{test}{rgb}{last}[rgb]{.95,.85,.55}[rgb]{.05,.15,.55}
- $L_2 \quad \texttt{\definecolorseries\{test\}\{hsb\}\{last\}[hsb]\{.575,1,1\}[hsb]\{-.425,.15,1\}}$
- L_3 \definecolorseries{test}{rgb}{last}{yellow!50}{blue}
- L_4 \definecolorseries{test}{hsb}{last}{yellow!50}{blue}
- $L_5 \qquad \texttt{\definecolorseries\{test\}\{cmy\}\{last\}\{yellow!50\}\{blue\}}$

$Common\ definitions$

 $\verb|\resetcolorseries[12]{test}|$

 $\verb|\rowcolors[\hline]{1}{test!!+}{test!!+}|$

\begin{tabular}{c}

\end{tabular}

FIGURE 9 – Color masking

maskcolors
{}
[cmyk]{cyan}
[cmyk] {magenta}
[cmyk]{yellow}
[cmyk]{black}
[cmyk]{red}
[cmyk]{green}
[cmyk]{blue}
[rgb]{red}
[rgb]{green}
[rgb]{blue}
[hsb]{red}
[hsb] {green}
[hsb]{blue}
[rgb]{gray}
[cmy]{gray}

Figure 10 – Alternating row colors in tables : \rowcolors vs. \rowcolors*

 $\label{lower} $$\operatorname{[\hline]}_{3}_{green!25}_{yellow!50} \arrayrulecolor_{red!75!gray} \end{tabular}_{11}$

test & row \number\rownum\\				
<pre>test & row \number\rownum\\</pre>	test	row 1	test	row 1
test & row \number\rownum\\	test	row 2	test	row 2
test & row \number\rownum\\		row 3	test	norr 2
\arrayrulecolor{black}	test	10w 3	test	row 3
test & row \number\rownum\\	test	row 4	test	row 4
<pre>test & row \number\rownum\\</pre>	test	row 5	test	row 5
\rowcolor{blue!25}	test	row 6	test	row 6
test & row \number\rownum\\	test	row 7	test	row 7
test & row \number\rownum\\				
\hiderowcolors	test	row 8	test	row 8
<pre>test & row \number\rownum\\</pre>	test	row 9	test	row 9
<pre>test & row \number\rownum\\</pre>	test	row 10	test	row 10
\showrowcolors	test	row 11	test	row 11
test & row \number\rownum\\	toat	row 12	test	row 12
<pre>test & row \number\rownum\\</pre>	test			
\multicolumn{1}%	test	row 13	test	row 13

Figure $11 - \mathbf{Hsb}$ and $\mathbf{tHsb} : hue^{\circ}$ in 15° steps

color	rgb	cmyk	hsb	Hsb	tHsb
[Hsb]0,1,1	100	0 1 1 0	<u>0 1 1</u>	0 1 1	0 1 1
[Hsb]15,1,1	1 0.25002 0	0 0.74998 1 0	0.04167 1 1	15.00128 1 1	30.00256 1 1
[Hsb]30,1,1	1 0.49998 0	0 0.50002 1 0	<u>0.08333 1 1</u>	29.99872 1 1	59.99744 1 1
[Hsb]45,1,1	<u> </u>	0 0.25 1 0	<u>0.125 1 1</u>	<u> </u>	90 1 1
[Hsb]60,1,1	0.99998 1 0	0.00002 0 1 0	<u>0.16667 1 1</u>	60.00128 1 1	120.00128 1 1
[Hsb]75,1,1	0.75002 1 0	0.24998 0 1 0	0.20833 1 1	74.99872 1 1	134.99872 1 1
[Hsb]90,1,1	0.5 1 0	0.5 0 1 0	0.25 1 1	90 1 1	150 1 1
[Hsb]105,1,1	0.24998 1 0	0.75002 0 1 0	<u>0.29167 1 1</u>	105.00128 1 1	165.00128 1 1
[Hsb]120,1,1	0.00002 1 0	0.99998 0 1 0	0.33333 1 1	119.99872 1 1	179.99872 1 1
[Hsb]135,1,1	0 1 0.25	1 0 0.75 0	<u>0.375 1 1</u>	135 1 1	187.5 1 1
[Hsb]150,1,1	0 1 0.50002	1 0 0.49998 0	0.41667 1 1	150.00128 1 1	195.00064 1 1
[Hsb]165,1,1	0 1 0.74998	1 0 0.25002 0	0.45833 1 1	164.99872 1 1	202.49936 1 1
[Hsb]180,1,1	0 1 1	1000	0.5 1 1	180 1 1	210 1 1
[Hsb]195,1,1	0 0.74998 1	1 0.25002 0 0	0.54167 1 1	195.00128 1 1	217.50064 1 1
[Hsb]210,1,1	0 0.50002 1	1 0.49998 0 0	0.58333 1 1	209.99872 1 1	224.99936 1 1
[Hsb]225,1,1	0 0.25 1	1 0.75 0 0	0.625 1 1	225 1 1	232.5 1 1
[Hsb]240,1,1	0.00002 0 1	0.99998 1 0 0	0.66667 1 1	240.00128 1 1	240.00128 1 1
[Hsb]255,1,1	0.24998 0 1	0.75002 1 0 0	0.70833 1 1	254.99872 1 1	254.99872 1 1
[Hsb]270,1,1	0.5 0 1	0.5 1 0 0	0.75 1 1	270 1 1	270 1 1
[Hsb]285,1,1	0.75002 0 1	0.24998 1 0 0	0.79167 1 1	285.00128 1 1	285.00128 1 1
[Hsb]300,1,1	0.99998 0 1	0.00002 1 0 0	0.83333 1 1	299.99872 1 1	299.99872 1 1
[Hsb]315,1,1	1 0 0.75	0 1 0.25 0	0.875 1 1	315 1 1	315 1 1
[Hsb]330,1,1	1 0 0.49998	0 1 0.50002 0	0.91667 1 1	330.00128 1 1	330.00128 1 1
[Hsb]345,1,1	1 0 0.25002	0 1 0.74998 0	0.95833 1 1	344.99872 1 1	344.99872 1 1
[Hsb]360,1,1	100	0 1 1 0	111	360 1 1	360 1 1
[tHsb]0,1,1	100	0 1 1 0	<u>0 1 1</u>	0 1 1	0 1 1
[tHsb]15,1,1	1 0.12498 0	0 0.87502 1 0	0.02083 1 1	7.49872 1 1	14.99744 1 1
[tHsb]30,1,1	1 0.25002 0	0 0.74998 1 0	0.04167 1 1	15.00128 1 1	30.00256 1 1
[tHsb]45,1,1	1 0.375 0	0 0.625 1 0	0.0625 1 1	22.5 1 1	45 1 1
[tHsb]60,1,1	1 0.49998 0	0 0.50002 1 0	0.08333 1 1	29.99872 1 1	59.99744 1 1
[tHsb]75,1,1	1 0.62502 0	0 0.37498 1 0	0.10417 1 1	37.50128 1 1	75.00256 1 1
[tHsb]90,1,1	1 0.75 0	0 0.25 1 0	0.125 1 1	45 1 1	90 1 1
[tHsb]105,1,1	1 0.87498 0	0 0.12502 1 0	0.14583 1 1	52.49872 1 1	104.99744 1 1
[tHsb]120,1,1	0.99998 1 0	0.00002 0 1 0	0.16667 1 1	60.00128 1 1	120.00128 1 1
[tHsb]135,1,1	0.75002 1 0	0.24998 0 1 0	0.20833 1 1	74.99872 1 1	134.99872 1 1
[tHsb]150,1,1	0.5 1 0	0.5 0 1 0	0.25 1 1	90 1 1	150 1 1
[tHsb]165,1,1	0.24998 1 0	0.75002 0 1 0	0.29167 1 1	105.00128 1 1	165.00128 1 1
[tHsb]180,1,1	0.00002 1 0	0.99998 0 1 0	0.33333 1 1	119.99872 1 1	179.99872 1 1
[tHsb]195,1,1	0 1 0.50002	1 0 0.49998 0	0.41667 1 1	150.00128 1 1	195.00064 1 1
[tHsb]210,1,1	0 1 1	1000	0.5 1 1	180 1 1	210 1 1
[tHsb]225,1,1	0 0.50002 1	1 0.49998 0 0	0.58333 1 1	209.99872 1 1	224.99936 1 1
[tHsb]240,1,1	0.00002 0 1	0.99998 1 0 0	0.66667 1 1	240.00128 1 1	240.00128 1 1
[tHsb]255,1,1	0.24998 0 1	0.75002 1 0 0	0.70833 1 1	254.99872 1 1	254.99872 1 1
[tHsb]270,1,1	0.5 0 1	0.5 1 0 0	0.75 1 1	270 1 1	270 1 1
[tHsb]285,1,1	0.75002 0 1	0.24998 1 0 0	0.79167 1 1	285.00128 1 1	285.00128 1 1
[tHsb]300,1,1	0.99998 0 1	0.00002 1 0 0	0.83333 1 1	299.99872 1 1 315 1 1	299.99872 1 1 315 1 1
[tHsb]315,1,1	1 0 0.75	0 1 0.50002 0	0.875 1 1	330.00128 1 1	330.00128 1 1
[tHsb]330,1,1	1 0 0.49998	0 1 0.74998 0	0.91667 1 1 0.95833 1 1	344.99872 1 1	344.99872 1 1
[tHsb]345,1,1 [tHsb]360,1,1	1 0 0.25002	0 1 0.74998 0	111	360 1 1	360 1 1
[::130]300,1,1	100	0110	<u> </u>	500 1 1	500 1 1

Figure 12 – Color harmony

color	rgb	cmyk	Hsb	tHsb
complementary colors	(two-color harmon	y):		
yellow>wheel,1,2	0.00002 0 1	0.99998 1 0 0	240.00128 1 1	240.00128 1 1
yellow	110	0010	60.00128 1 1	120.00128 1 1
yellow>twheel,1,2	1 0 0.99995	0 1 0.00005 0	300.00256 1 1	300.00256 1 1
color triad (three-colo	or harmony) ·			
yellow>wheel,2,3	1 0 0.99995	0 1 0.00005 0	300.00256 1 1	300.00256 1 1
yellow>wheel,1,3	011	1000	180 1 1	210 1 1
yellow	110	0010	60.00128 1 1	120.00128 1 1
yellow>twheel,1,3	0.00002 0 1	0.99998 1 0 0	240.00128 1 1	240.00128 1 1
yellow>twheel,2,3	1 0.00012 0	0 0.99988 1 0	0.00714 1 1	0.01428 1 1
color tetrad (four-colo	or harmony) :			
yellow>wheel,3,4	1 0 0.49998	0 1 0.50002 0	330.00128 1 1	330.00128 1 1
yellow>wheel,2,4	0.00002 0 1	0.99998 1 0 0	240.00128 1 1	240.00128 1 1
yellow>wheel,1,4	0.00002 0 1	1 0 0.49998 0	150.00128 1 1	195.00064 1 1
yellow	110	0 0 1 0	60.00128 1 1	120.00128 1 1
yellow>twheel,1,4	0 0.99988 1	1 0.00012 0 0	180.00714 1 1	210.00357 1 1
yellow>twheel,2,4	1 0 0.99995	0 1 0.00005 0	300.00256 1 1	300.00256 1 1
yellow>twheel,3,4	1 0.25002 0	0 0.74998 1 0	15.00128 1 1	30.00256 1 1
split complementary o	solors :			
yellow>wheel,7,12	0.5 0 1	0.5 1 0 0	270 1 1	270 1 1
yellow>wheel,5,12	0.301	1 0.50005 0 0	210.00256 1 1	225.00128 1 1
yellow	110	0 0 1 0	60.00128 1 1	120.00128 1 1
yellow>twheel,5,12	0.50018 0 1	0.49982 1 0 0	270.01099 1 1	270.01099 1 1
yellow>twheel,7,12	1 0 0.49998	0 1 0.50002 0	330.00128 1 1	330.00128 1 1
-				
analogous (adjacent)		0.0.40005.1.0	20 00056 1 1	CO 00512 1 1
yellow>wheel,11,12	1 0.50005 0	0 0.49995 1 0	30.00256 1 1	60.00513 1 1
yellow>wheel,10,12	100	0 1 1 0	360 1 1	360 1 1
yellow>wheel,2,12	0 1 0.00005	1 0 0.99995 0	120.00256 1 1	180.00128 1 1
yellow>wheel,1,12	0.5 1 0	0.5 0 1 0	90 1 1 60.00128 1 1	150 1 1 120.00128 1 1
yellow yellow>twheel,1,12	0.5 1 0	0 0 1 0 0.5 0 1 0	90 1 1	150 1 1
yellow>twheel,2,12	0.5 1 0	1 0 0.99979 0	120.013 1 1	180.0065 1 1
yellow>twheel,10,12	1 0.50005 0	0 0.49995 1 0	30.00256 1 1	60.00513 1 1
yellow>twheel,11,12	1 0.30003 0	0 0.24988 1 0	45.00714 1 1	90.01428 1 1
yenow>twneer,11,12	1 0.75012 0	<u> </u>	45.00714 1 1	90.01 4 20 1 1

4 Colors by Name

4.1 Base colors (always available)

4.2 Colors via dvipsnames option

4.3 Colors via sygnames option

 $\begin{aligned} & \text{Duplicate colors}: Aqua = Cyan, Fuchsia = Magenta; Navy = NavyBlue; Gray = Grey, DarkGray \\ & = DarkGrey, LightGray = LightGrey, SlateGray = SlateGrey, DarkSlateGray = DarkSlateGrey, LightSlateGray = LightSlateGrey, DimGray = DimGrey. \end{aligned}$

 $\label{eq:hammon} \mbox{HTML4 color keyword subset}: \mbox{$Aqua$, $Black$, $Blue$, $Fuchsia$, $Gray$, $Green$, $Lime$, $Maroon$, $Navy$, $Olive$, $Purple$, Red, $Silver$, $Teal$, $White$, $Yellow$.$

 ${\it Colors\ taken\ from\ Unix/X11: LightGoldenrod,\ LightSlateBlue,\ NavyBlue,\ VioletRed.}$

4.4 Colors via x11names option

AntiqueWhite1	Burlywood4	DarkGoldenrod3	DeepSkyBlue2
AntiqueWhite2	CadetBlue1	DarkGoldenrod4	DeepSkyBlue3
AntiqueWhite3	CadetBlue2	DarkOliveGreen1	DeepSkyBlue4
AntiqueWhite4	CadetBlue3	DarkOliveGreen2	DodgerBlue1
Aquamarine1	CadetBlue4	DarkOliveGreen3	DodgerBlue2
Aquamarine2	Chartreuse1	DarkOliveGreen4	DodgerBlue3
Aquamarine3	Chartreuse2	DarkOrange1	DodgerBlue4
Aquamarine4	Chartreuse3	DarkOrange2	Firebrick1
Azure1	Chartreuse4	DarkOrange3	Firebrick2
Azure2	Chocolate1	DarkOrange4	Firebrick3
Azure3	Chocolate2	DarkOrchid1	Firebrick4
Azure4	Chocolate3	DarkOrchid2	Gold1
Bisque1	Chocolate4	DarkOrchid3	Gold2
Bisque2	Coral1	DarkOrchid4	Gold3
Bisque3	Coral2	DarkSeaGreen1	Gold4
Bisque4	Coral3	DarkSeaGreen2	Goldenrod1
Blue1	Coral4	DarkSeaGreen3	Goldenrod2
Blue2	Cornsilk1	DarkSeaGreen4	Goldenrod3
Blue3	Cornsilk2	DarkSlateGray1	Goldenrod4
Blue4	Cornsilk3	DarkSlateGray2	Green1
Brown1	Cornsilk4	DarkSlateGray3	Green2
Brown2	Cyan1	DarkSlateGray4	Green3
Brown3	Cyan2	DeepPink1	Green4
Brown4	Cyan3	DeepPink2	☐ Honeydew1
Burlywood1	Cyan4	DeepPink3	Honeydew2
Burlywood2	DarkGoldenrod1	DeepPink4	Honeydew3
Burlywood3	DarkGoldenrod2	DeepSkyBlue1	Honeydew4

- H (D: 14		D 1 W 1 (D 18	
HotPink1	LightYellow2	PaleVioletRed3	SlateBlue4
HotPink2	Light Yellow3	PaleVioletRed4	SlateGray1
HotPink3	Light Yellow4	PeachPuff1	SlateGray2
HotPink4	Magenta1	PeachPuff2 PeachPuff3	SlateGray3 SlateGray4
IndianRed1 IndianRed2	Magenta2		
IndianRed3	Magenta3	PeachPuff4 Pink1	\square Snow1 \square Snow2
IndianRed4	Magenta4 Maroon1	Pink1 Pink2	Snow2 Snow3
	Maroon2	Pink3	Snow4
☐ Ivory1 ☐ Ivory2	Maroon3	Pink4	SpringGreen1
Ivory3	Maroon4	Plum1	SpringGreen2
Ivory4	MediumOrchid1	Plum2	SpringGreen3
Khaki1	MediumOrchid2	Plum3	SpringGreen4
Khaki2	MediumOrchid3	Plum4	SteelBlue1
Khaki3	MediumOrchid4	Purple1	SteelBlue2
Khaki4	MediumPurple1	Purple2	SteelBlue3
LavenderBlush1	MediumPurple2	Purple3	SteelBlue4
LavenderBlush2	MediumPurple3	Purple4	Tan1
LavenderBlush3	MediumPurple4	Red1	Tan2
LavenderBlush4	MistyRose1	Red2	Tan3
LemonChiffon1	MistyRose2	Red3	Tan4
LemonChiffon2	MistyRose3	Red4	Thistle1
LemonChiffon3	MistyRose4	RosyBrown1	Thistle2
LemonChiffon4	NavajoWhite1	RosyBrown2	Thistle3
LightBlue1	NavajoWhite2	RosyBrown3	Thistle4
\square LightBlue2	NavajoWhite3	RosyBrown4	Tomato1
LightBlue3	NavajoWhite4	RoyalBlue1	Tomato2
LightBlue4	OliveDrab1	RoyalBlue2	Tomato3
LightCvan1	OliveDrab2	RoyalBlue3	Tomato4
LightCyan2	OliveDrab3	RoyalBlue4	Turquoise1
LightCyan3	OliveDrab4	Salmon1	Turquoise2
LightCyan4	Orange1	Salmon2	Turquoise3
Light Goldenrod1	Orange2	Salmon3	Turquoise4
LightGoldenrod2	Orange3	Salmon4	VioletRed1
LightGoldenrod3	Orange4	SeaGreen1	VioletRed2
LightGoldenrod4	OrangeRed1	SeaGreen2	VioletRed3
LightPink1	OrangeRed2	SeaGreen3	ightharpoonup VioletRed4
LightPink2	OrangeRed3	SeaGreen4	Wheat 1
\blacksquare LightPink3	OrangeRed4	Seashell1	Wheat2
\blacksquare LightPink4	Orchid1	Seashell2	Wheat3
LightSalmon1	Orchid2	Seashell3	Wheat4
LightSalmon2	Orchid3	Seashell4	Yellow1
LightSalmon3	Orchid4	Sienna1	Yellow2
LightSalmon4	PaleGreen1	Sienna2	Yellow3
LightSkyBlue1	PaleGreen2	Sienna3	Yellow4
LightSkyBlue2	PaleGreen3	Sienna4	\square Gray0
LightSkyBlue3	PaleGreen4	SkyBlue1	Green0
LightSkyBlue4	PaleTurquoise1	SkyBlue2	Grey0
LightSteelBlue1	PaleTurquoise2	SkyBlue3	Maroon0
LightSteelBlue2	PaleTurquoise3	SkyBlue4	Purple0
LightSteelBlue3	PaleTurquoise4	SlateBlue1	
LightSteelBlue4	PaleVioletRed1	SlateBlue2	
Light Yellow1	PaleVioletRed2	SlateBlue3	

Duplicate colors : Gray0 = Grey0, Green0 = Green1.

5 Technical Supplement

5.1 Color models supported by drivers

Since some of the drivers only pretend to support the **hsb** model, we included some code to bypass this behaviour. The models actually added by xcolor are shown in the log file. Table 5 lists mainly the drivers that are part of current MiKTEX [13] distributions and their color model support. Probably, other distributions behave similarly.

DriverVersioncmyk hsb gray RGB HTML **HSB** Gray rgb cmy dvipdf 1999/02/16 v3.0i d n d n d i n n n dvips 1999/02/16 v3.0i d n d d d n \mathbf{n} n 1999/02/16 v3.0i d dvipsone d n d d i n n n pctex32 1999/02/16 v3.0i d d d d i n n n \mathbf{n} $1999/02/16\ v3.0i$ pctexps d d d d i n pdftex 2006/03/02 v0.03p d d d i n n n n \mathbf{n} dvipdfm 1998/11/24 vx.x¹ d d d i n a \mathbf{n} \mathbf{n} n $1999/9/6 \text{ vx.x}^2$ dvipdfm d d d \mathbf{n} a \mathbf{n} \mathbf{n} \mathbf{n} dvipdfmx ? d d f d i n n n n 1997/5/28 v0.3 textures d d n a i n \mathbf{n} n n 1999/01/14 v6.3 d vtex d i n 2004/05/09 v0.7i i i i i d xetex \mathbf{n} n n tcidvi 1999/02/16 v3.0i i n i n i d n n n 1999/02/16 v3.0i truetex i n i n d n n n dviwin 1999/02/16 v3.0i n n n \mathbf{n} n n \mathbf{n} \mathbf{n} emtex 1999/02/16 v3.0i \mathbf{n} \mathbf{n} \mathbf{n} n n \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} 1999/02/16 v3.0i pctexhp n n n n \mathbf{n} n n n n pctexwin 1999/02/16 v3.0 i \mathbf{n} n

Table 5 – Drivers and color models

dviwindo = dvipsone; oztex = dvips; xdvi = dvips + monochrome

1 part of graphics package 2 additionally distributed with MiKTEX

Driver's color model support : d = direct, i = indirect, a = alleged, n = none, f = faulty

5.2 How xcolor handles driver-specific color models

Although there is a variety of drivers that implement different approaches to color visualisation, they all have some features in common, as defined by the original extension color. One of these features is that any color model 'foo' requires a $\texttt{color@foo}\{\langle cmd \rangle\}\{\langle spec \rangle\}$ command in order to translate the 'foo'-dependent color $\langle spec \rangle$ into some driver-specific code that is stored in $\langle cmd \rangle$. Therefore, xcolor in general detects driver-support for the 'foo' model via the existence of color@foo.

By this mechanism, xcolor can also change the behaviour of certain models without touching the driver file itself. A good example is the \substitutecolormodel command which is used during the package initialisation process to provide support for models that are not covered by the actual driver (like hsb for pdftex) or that have incorrect implementations (like hsb for dvipdfm).

5.3 Behind the scenes: internal color representation

Every definition of a color in order to access it by its name requires an internal representation of the color, i.e. a macro that contains some bits of information required by the driver to display the color properly.

color's \definecolor{foo}{...}{...} generates a command \\color@foo ¹⁴ which contains the color definition in a driver-dependent way; therefore it is possible but non-trivial to access the color model and parameters afterwards (see the colorinfo package [11] for a solution).

color's \DefineNamedColor{named}{foo}{...}{...} generates \col@foo ¹⁵ which again contains some driver-dependent information. In this case, an additional \\color@foo will only be defined if the package option usecolors is active.

xcolor's \definecolor{foo}{...}{...} generates ¹⁶ a command \\color@foo as well, which combines the features of the former commands and contains both the driver-dependent and driver-independent information, thus making it possible to access the relevant parameters in a standardised way. Although it has now a different syntax, \\color@foo expands to the same expression as the original command. On the other hand, \\col@foo commands are no longer needed and therefore not generated in the 'named' case : xcolor works with a single color data structure (as described).

Table 6 page suivante shows some examples for the two most prominent drivers. See also figure 3 page 35 which displays the definitions with respect to the driver that was used to process this document.

5.4 A remark on accuracy

Since the macros presented here require some computation, special efforts were made to ensure a maximum of accuracy for conversion and mixing formulas — all within TEX's limited numerical capabilities. ¹⁷ We decided to develop and include a small set of commands to improve the quality of division and multiplication results, instead of loading one of the packages that provide multi-digit arithmetic and a lot more, like realcalc or fp. The marginal contribution of the latter packages seems not to justify their usage for our purposes. Thus, we stay within a sort of

^{14.} The double backslash is intentional.

^{15.} The single backslash is intentional.

^{16.} This was introduced in version 1.10; prior to that, a command \xcolor@foo with a different syntax was generated.

^{17.} For example, applying the 'transformation' $\dim 0=0.\langle int \rangle$ the $\dim 0$ to all 5-digit numbers $\langle int \rangle$ of the range 00000...99999, exactly 34464 of these 100000 numbers don't survive unchanged. We are not talking about gobbled final zeros here ...

Table 6 – Driver-dependent internal color representation

dvips driver		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	color
->rgb .5 0 1.		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{rgb 0.5 0 1}{	rgb}{0.5,0,1}.	
\col@Plum=macro: (\D	DefineNamedColor{Plum}{rgb}{.5,0,1})	color
->\@nil .		
\\color@Plum=macro:	(with option usenames)	
-> Plum.		
\\color@Plum=macro: (\def	<pre>inecolor[named]{Plum}{rgb}{.5,0,1})</pre>	xcolor
->\xcolor@ {named}{ Plum}{r	gb}{0.5,0,1}.	
pdftex driver		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	color
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	(\definecolor{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{0.5 0 1 rg 0.	5 0 1 RG}{rgb}{0.5,0,1}.	
\col@Plum=macro: (\D	DefineNamedColor{Plum}{rgb}{.5,0,1})	color
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro:	(with option usenames)	
->.5 0 1 rg .5 0 1 RG.		
\\color@Plum=macro: (\def	inecolor[named]{Plum}{rgb}{.5,0,1})	xcolor
->\xcolor@ {}{0.5 0 1 rg 0.	· · · · · · · · · · · · · · · · · · ·	
	-	

fixed-point arithmetic framework, providing at most 5 decimal digits via T_EX 's dimension registers.

6 The Formulas

6.1 Color mixing

In general, we use linear interpolation for color mixing:

$$m\'{e}lange(C, C', p) = p \cdot C + (1 - p) \cdot C'$$
(9)

Note that there is a special situation in the **hsb** case: if saturation = 0 then the color equals a gray color of level brightness, independently of the hue value. Therefore, to achieve smooth transitions of an arbitrary color to a specific gray (like white or black), we actually use the formulas

teinte_{hsb}
$$(C, p) = p \cdot C + (1 - p) \cdot (hue, 0, 1)$$
 (10)

nuance
$$_{\mathsf{hsb}}(C, p) = p \cdot C + (1 - p) \cdot (hue, 0, 0)$$
 (11)

$$ton_{\mathsf{hsb}}(C,p) = p \cdot C + (1-p) \cdot \left(hue, 0, \frac{1}{2}\right) \tag{12}$$

where C = (hue, saturation, brightness).

From equation (9) and the way how color expressions are being interpreted, as described in section 2.3 page 13, it is an easy proof by induction to verify that a color expression

$$C_0!P_1!C_1!P_2!\dots!P_n!C_n \tag{13}$$

with $n \in \{0, 1, 2, ...\}$, colors $C_0, C_1, ..., C_n$, and percentages $P_1, ..., P_n \in [0, 100]$ will result in a parameter vector

$$C = \sum_{\nu=0}^{n} \left(\prod_{\mu=\nu+1}^{n} p_{\mu} \right) (1 - p_{\nu}) \cdot C_{\nu}$$

$$= p_{n} \cdots p_{1} \cdot C_{0}$$

$$+ p_{n} \cdots p_{2} (1 - p_{1}) \cdot C_{1}$$

$$+ p_{n} \cdots p_{3} (1 - p_{2}) \cdot C_{2}$$

$$+ \cdots$$

$$+ p_{n} (1 - p_{n-1}) \cdot C_{n-1}$$

$$+ (1 - p_{n}) \cdot C_{n}$$
(14)

where $p_0 := 0$ and $p_{\nu} := P_{\nu}/100$ for $\nu = 1, \dots, n$. We note also a split formula :

$$C_0!P_1!C_1!\dots!P_{n+k}!C_{n+k} = p_{n+k}\cdots p_{n+1}\cdot C_0!P_1!C_1!\dots!P_n!C_n$$

$$-p_{n+k}\cdots p_{n+1}\cdot C_n$$

$$+C_n!P_{n+1}!C_{n+1}!\dots!P_{n+k}!C_{n+k}$$
(15)

6.2 Conversion between integer and real models

We fix a positive integer n and define the sets $\mathcal{I}_n := \{0, 1, \dots, n\}$ and $\mathcal{R} := [0, 1]$. The complement of $\nu \in \mathcal{I}_n$ is $n - \nu$, the complement of $x \in \mathcal{R}$ is 1 - x.

Table 7 – Color constants

model/constant	white	black	gray
rgb	(1, 1, 1)	(0, 0, 0)	$(rac{1}{2},rac{1}{2},rac{1}{2})$
сту	(0, 0, 0)	(1, 1, 1)	(rac12,rac12,rac12)
cmyk	(0,0,0,0)	(0,0,0,1)	$(0,0,0,\frac{1}{2})$
hsb	(h,0,1)	(h, 0, 0)	$(h,0,rac{1}{2})$
Hsb	$(h^\circ,0,1)$	$(h^\circ,0,0)$	$(h^\circ,0,\frac{1}{2})$
tHsb	$(h^{\circ},0,1)$	$(h^{\circ},0,0)$	$(h^\circ,0,\frac{1}{2})$
gray	1	0	$\frac{1}{2}$
RGB	(L, L, L)	(0, 0, 0)	$\left(\left\lfloor \frac{L+1}{2} \right\rfloor, \left\lfloor \frac{L+1}{2} \right\rfloor, \left\lfloor \frac{L+1}{2} \right\rfloor\right)$
HTML	FFFFFF	000000	808080
HSB	(H,0,M)	(H, 0, 0)	$(H,0,\lfloor \frac{M+1}{2} \rfloor)$
Gray	N	0	$\lfloor \frac{N+1}{2} \rfloor$

Table 8 – Color conversion pairs

from/to	rgb	cmy	cmyk	hsb	Hsb	tHsb	gray	RGB	HTML	HSB	Gray
rgb	id	*	(cmy)	*	(hsb)	(hsb)	*	*	*	(hsb)	(gray)
cmy	*	id	*	(rgb)	(rgb)	(rgb)	*	(rgb)	(rgb)	(rgb)	(gray)
cmyk	(cmy)	*	id	(cmy)	(cmy)	(cmy)	*	(cmy)	(cmy)	(cmy)	(gray)
hsb	*	(rgb)	(rgb)	id	*	(Hsb)	(rgb)	(rgb)	(rgb)	*	(rgb)
Hsb	(hsb)	(hsb)	(hsb)	*	id	*	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)
tHsb	(Hsb)	(Hsb)	(Hsb)	(Hsb)	*	id	(Hsb)	(Hsb)	(Hsb)	(Hsb)	(Hsb)
gray	*	*	*	*	*	*	id	*	*	*	*
RGB	*	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	id	(rgb)	(rgb)	(rgb)
HTML	*	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	(rgb)	id	(rgb)	(rgb)
HSB	(hsb)	(hsb)	(hsb)	*	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)	id	(hsb)
Gray	(gray)	(gray)	(gray)	(gray)	(gray)	(gray)	*	(gray)	(gray)	(gray)	id
wave	(hsb)	(hsb)	(hsb)	*	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)	(hsb)

id = identity function; * = specific conversion function; (model) = conversion via specified model

6.2.1 Real to integer conversion

The straightforward mapping for this case is

$$\Gamma_n: \mathcal{R} \to \mathcal{I}_n, \ x \mapsto \text{round}(n \cdot x, 0) = \left| \frac{1}{2} + n \cdot x \right|$$
 (16)

where round(r, d) rounds the real number r to $d \ge 0$ decimal digits. This mapping nearly always preserves complements, as shown in the next lemma.

Lemma 1 (Preservation of complements). For $x \in \mathcal{R}$,

$$\Gamma_n(x) + \Gamma_n(1-x) = n \iff x \notin \mathcal{R}_n^{\circ} := \left\{ \frac{1}{n} \left(\nu - \frac{1}{2} \right) \mid \nu = 1, 2, \dots, n \right\}. \tag{17}$$

Démonstration. Let $\nu := \Gamma_n(x)$, then from $-\frac{1}{2} \le \eta := n \cdot x - \nu < \frac{1}{2}$ we conclude

$$\Gamma_n(1-x) = \text{round}(n(1-x), 0) = \text{round}(n-\nu - \eta, 0) = \begin{cases} n-\nu & \text{if } \eta \neq -\frac{1}{2} \\ n-\nu + 1 & \text{if } \eta = -\frac{1}{2} \end{cases}$$

Now,
$$\eta = -\frac{1}{2} \iff x = \frac{1}{n} \left(\nu - \frac{1}{2} \right) \iff x \in \mathcal{I}'_n$$
.

Remark : the set \mathcal{R}_n° is obviously identical to the set of points where Γ_n is not continuous.

6.2.2 Integer to real conversion

The straightforward way in this case is the function

$$\Delta_n^*: \mathcal{I}_n \to \mathcal{R}, \ \nu \mapsto \frac{\nu}{n}.$$
 (18)

This is, however, only one out of a variety of solutions : every function $\Delta_n : \mathcal{I}_n \to \mathcal{R}$ that obeys the condition

$$\nu \in \mathcal{I}_n \Rightarrow \Gamma_n(\Delta_n(\nu)) = \nu \tag{19}$$

which is equivalent to

$$\nu \in \mathcal{I}_n \Rightarrow \nu + \frac{1}{2} > n \cdot \Delta_n(\nu) \ge \nu - \frac{1}{2}$$
 (20)

does at least guarantee that all integers ν may be reconstructed from $\Delta_n(\nu)$ via multiplication by n and rounding to the nearest integer. Preservation of complements means now

$$\nu \in \mathcal{I}_n \Rightarrow \Delta_n(\nu) + \Delta_n(n - \nu) = 1 \tag{21}$$

which is obviously the case for $\Delta_n = \Delta_n^*$. If we consider, more generally, a transformation

$$\Delta_n(\nu) = \frac{\nu + \alpha}{n + \beta} \tag{22}$$

with $\beta \neq -n$, then the magic inequality (20) is equivalent to

$$\frac{1}{2} > \frac{\alpha n - \beta \nu}{n + \beta} \ge -\frac{1}{2} \tag{23}$$

which is obeyed by the function

$$\Delta'_{n}: \mathcal{I}_{n} \to \mathcal{R}, \ \nu \mapsto \begin{cases} \frac{\nu}{n+1} & \text{if } \nu \leq \frac{n+1}{2} \\ \frac{\nu+1}{n+1} & \text{if } \nu > \frac{n+1}{2} \end{cases}$$
 (24)

that has the nice feature $\Delta'_n(\frac{n+1}{2}) = \frac{1}{2}$ for odd n.

Lemma 2 (Preservation of complements). For odd n and each $\nu \in \mathcal{I}_n$,

$$\Delta'_n(\nu) + \Delta'_n(n-\nu) = 1 \iff \nu \notin \mathcal{I}_n^{\circ} := \left\{ \frac{n-1}{2}, \frac{n+1}{2} \right\}. \tag{25}$$

Démonstration. The assertion is a consequence of the following arguments :

$$- \nu < \frac{n-1}{2} \iff n - \nu > \frac{n+1}{2} \text{ and } \frac{n-1}{2} + \frac{n+1}{2} = n;$$

$$- \nu < \frac{n-1}{2} \Rightarrow \Delta'_n(\nu) + \Delta'_n(n-\nu) = \frac{\nu}{n+1} + \frac{n-\nu+1}{n+1} = 1;$$

$$- \nu = \frac{n-1}{2} \Rightarrow \Delta'_n(\nu) + \Delta'_n(n-\nu) = \frac{n-1}{2(n+1)} + \frac{1}{2} = \frac{n}{n+1} \neq 1.$$

For the time being, we choose $\Delta_n := \Delta_n^*$ as default transformation function.

Another variant — which is probably too slow for large-scale on-the-fly calculations — may be used for constructing sets of predefined colors. The basic idea is to minimize the number of decimal digits in the representation while keeping some invariance with respect to the original resolution:

$$\Delta_n'': \mathcal{I}_n \to \mathcal{R}, \ \nu \mapsto \text{round}\left(\frac{\nu}{n}, d_n(\frac{\nu}{n})\right)$$
 (26)

where

$$d_n: [0,1] \to \mathbb{N}, \ x \mapsto \min \{ d \in \mathbb{N} \mid \Gamma_n(\text{round}(\Delta_n^*(\Gamma_n(x)), d)) = \Gamma_n(x) \}$$
 (27)

In the most common case n=255 it turns out that we end up with at most 3 decimal digits; preservation of complements is only violated for $\nu \in \{25, 26, 76, 77, 127, 128, 178, 179, 229, 230\}$ where the corresponding set of decimal numbers is $\{0.098, 0.1, 0.298, 0.3, 0.498, 0.5, 0.698, 0.7, 0.898, 0.9\}$.

6.3 Color conversion and complements

We collect here the specific conversion formulas between the supported color models. Table 8 page 48 gives an overwiew of how each conversion pair is handled. In general, PostScript (as described in [1]) is used as a basis for most of the calculations, since it supports the color models **rgb**, **cmyk**, **hsb**, and **gray** natively. Furthermore, Alvy Ray Smith's paper [15] is cited in [1] as reference for **hsb**-related formulas.

First, we define a constant which is being used throughout the conversion formulas:

$$E := (1, 1, 1) \tag{28}$$

6.3.1 The rgb model

Conversion rgb to cmy Source: [1], p. 475.

$$(cyan, magenta, yellow) := E - (red, green, blue)$$
 (29)

Conversion rgb to hsb (1) We set

$$x := \max\{red, green, blue\} \tag{30}$$

$$y := \text{med}\{red, green, blue\}$$
 (31)

$$z := \min\{red, green, blue\}$$
 (32)

(33)

where 'med' denotes the median of the values. Then,

$$brightness := x$$
 (34)

Case x = z:

$$saturation := 0 (35)$$

$$hue := 0 (36)$$

Case $x \neq z$:

$$saturation := \frac{x - z}{x}$$

$$f := \frac{x - y}{x - z}$$
(37)

$$f := \frac{x - y}{x - z} \tag{38}$$

$$hue := \frac{1}{6} \cdot \begin{cases} 1 - f & \text{if } x = red \ge green \ge blue = z \\ 1 + f & \text{if } x = green \ge red \ge blue = z \\ 3 - f & \text{if } x = green \ge blue \ge red = z \\ 3 + f & \text{if } x = blue \ge green \ge red = z \\ 5 - f & \text{if } x = blue \ge red \ge green = z \\ 5 + f & \text{if } x = red \ge blue > green = z \end{cases}$$

$$(39)$$

This is based on [15], RGB to HSV Algorithm (Hexcone Model), which reads

(slightly reformulated):

$$r := \frac{x - red}{x - z}, \qquad g := \frac{x - green}{x - z}, \qquad b := \frac{x - blue}{x - z}$$
 (40)

$$hue := \frac{1}{6} \cdot \begin{cases} 5+b & \text{if } red = x \text{ and } green = z \\ 1-g & \text{if } red = x \text{ and } green > z \\ 1+r & \text{if } green = x \text{ and } blue = z \\ 3-b & \text{if } green = x \text{ and } blue > z \\ 3+g & \text{if } blue = x \text{ and } red = z \\ 5-r & \text{if } blue = x \text{ and } red > z \end{cases}$$

$$(41)$$

Note that the singular case x = z is not covered completely in Smith's original algorithm; we stick here to PostScript's behaviour in real life.

Because we need to sort three numbers in order to calculate x, y, z, several comparisons are involved in the algorithm. We present now a second method which is more suited for $T_{F}X$.

Conversion rgb to hsb (2) Let β be a function that takes a Boolean expression as argument and returns 1 if the expression is true, 0 otherwise; set

$$i := 4 \cdot \beta(red \ge green) + 2 \cdot \beta(green \ge blue) + \beta(blue \ge red), \tag{42}$$

and

$$(hue, saturation, brightness) := \begin{cases} \Phi(blue, green, red, 3, 1) & \text{if } i = 1 \\ \Phi(green, red, blue, 1, 1) & \text{if } i = 2 \\ \Phi(green, blue, red, 3, -1) & \text{if } i = 3 \\ \Phi(red, blue, green, 5, 1) & \text{if } i = 4 \\ \Phi(blue, red, green, 5, -1) & \text{if } i = 5 \\ \Phi(red, green, blue, 1, -1) & \text{if } i = 6 \\ (0, 0, blue) & \text{if } i = 7 \end{cases}$$

$$(43)$$

where

$$\Phi(x,y,z,u,v) := \left(\frac{u \cdot (x-z) + v \cdot (x-y)}{6(x-z)}, \frac{x-z}{x}, x\right) \tag{44}$$

The singular case x = z, which is equivalent to red = green = blue, is covered here by i = 7.

It is not difficult to see that this algorithm is a reformulation of the previous method. The following table explains how the transition from equation (39) to equation (43) works:

$6 \cdot hue$	Condition	$red \geq green$	$green \geq blue$	$blue \geq red$	i
1-f	$red \geq green \geq blue$	1	1	*	6/7
1+f	$green \geq \mathit{red} \geq \mathit{blue}$	*	1	*	2/3/6/7
3-f	$green \geq blue \geq red$	*	1	1	3/7
3+f	$blue \geq green \geq red$	*	*	1	1/3/5/7
5-f	$blue \geq red \geq green$	1	*	1	5 /7
5+f	$red \geq blue \geq green$	1	*	*	4/5/6/7

Here, * denotes possible 0 or 1 values. Bold i values mark the main cases where all * values of a row are zero. The slight difference to equation (39) in the last inequality is intentional and does no harm.

Conversion rgb to gray Source: [1], p. 474.

$$gray := 0.3 \cdot red + 0.59 \cdot green + 0.11 \cdot blue \tag{45}$$

Conversion rgb to RGB As described in section 6.2.1 page 49.

$$(Red, Green, Blue) := (\Gamma_L(red), \Gamma_L(green), \Gamma_L(blue))$$
 (46)

Conversion rgb to HTML As described in section 6.2.1 page 49. Convert to 6-digit hexadecimal afterwards. Certainly, multiplication and summation can be replaced by simple text concatenation of 2-digit hexadecimals.

$$RRGGBB := (65536 \cdot \Gamma_L(red) + 256 \cdot \Gamma_L(green) + \Gamma_L(blue))_{hex}$$
 (47)

Complement of rgb color We simply take the complementary vector :

$$(red^*, green^*, blue^*) := E - (red, green, blue)$$
 (48)

6.3.2 The cmy model

Conversion cmy to rgb This is simply a reversion of the rgb \rightarrow cmy case, cf. section 6.3.1 page 51.

$$(red, green, blue) := E - (cyan, magenta, yellow)$$
 (49)

Conversion cmy to cmyk This is probably the hardest of our conversion tasks: many sources emphasize that there does not exist any universal conversion algorithm for this case because of device-dependence. The following algorithm is an extended version of the one given in [1], p. 476.

$$k := \min\{cyan, magenta, yellow\} \tag{50}$$

$$cyan := \min\{1, \max\{0, cyan - UCR_c(k)\}\}$$
(51)

$$magenta := \min\{1, \max\{0, magenta - UCR_m(k)\}\}$$
 (52)

$$yellow := \min\{1, \max\{0, yellow - UCR_y(k)\}\}$$
(53)

$$black := BG(k) \tag{54}$$

Here, four additional functions are required :

$$UCR_c, UCR_m, UCR_y : [0,1] \rightarrow [-1,1]$$
 undercolor-removal $BG : [0,1] \rightarrow [0,1]$ black-generation

These functions are device-dependent, see the remarks in [1]. Although there are some indications that they should be chosen as nonlinear functions, as long as we have no further knowledge about the target device we define them linearly:

$$UCR_c(k) := \beta_c \cdot k \tag{55}$$

$$UCR_m(k) := \beta_m \cdot k \tag{56}$$

$$UCR_{y}(k) := \beta_{y} \cdot k \tag{57}$$

$$BG(k) := \beta_k \cdot k \tag{58}$$

\adjustUCRBG

where the parameters are given by $\langle def \rangle (\beta_c), \langle \beta_m \rangle, \langle \beta_y \rangle, \langle \beta_k \rangle$ at any point in a document, defaulting to $\{1, 1, 1, 1\}$.

Conversion cmy to gray This is derived from the conversion chain cmy \rightarrow rgb \rightarrow gray.

$$gray := 1 - (0.3 \cdot cyan + 0.59 \cdot magenta + 0.11 \cdot yellow) \tag{59}$$

Complement of cmy color We simply take the complementary vector :

$$(cyan^*, magenta^*, yellow^*) := E - (cyan, magenta, yellow)$$
 (60)

6.3.3 The cmyk model

Conversion cmyk to cmy Based on [1], p. 477, in connection with $rgb \rightarrow cmy$ conversion.

$$cyan := \min\{1, cyan + black\} \tag{61}$$

$$magenta := \min\{1, magenta + black\}$$
 (62)

$$yellow := \min\{1, yellow + black\}$$
 (63)

Conversion cmyk to gray Source: [1], p. 475.

$$gray := 1 - \min\{1, 0.3 \cdot cyan + 0.59 \cdot magenta + 0.11 \cdot yellow + black\}$$
 (64)

Complement of cmyk color The simple vector complement does not yield useful results. Therefore, we first convert C = (cyan, magenta, yellow, black) to the cmy model, calculate the complement there, and convert back to cmyk.

6.3.4 The hsb model

Conversion hsb to rgb

$$(red, green, blue) := brightness \cdot (E - saturation \cdot F)$$
 (65)

with

$$i := |6 \cdot hue|, \qquad f := 6 \cdot hue - i \tag{66}$$

and

$$F := \begin{cases} (0, 1 - f, 1) & \text{if } i = 0\\ (f, 0, 1) & \text{if } i = 1\\ (1, 0, 1 - f) & \text{if } i = 2\\ (1, f, 0) & \text{if } i = 3\\ (1 - f, 1, 0) & \text{if } i = 4\\ (0, 1, f) & \text{if } i = 5\\ (0, 1, 1) & \text{if } i = 6 \end{cases}$$

$$(67)$$

This is based on [15], HSV to RGB Algorithm (Hexcone Model), which reads (slightly reformulated) :

$$m := 1 - saturation \tag{68}$$

$$n := 1 - f \cdot saturation \tag{69}$$

$$k := 1 - (1 - f) \cdot saturation \tag{70}$$

$$(red, green, blue) := brightness \cdot \begin{cases} (1, k, m) & \text{if } i = 0, 6\\ (n, 1, m) & \text{if } i = 1\\ (m, 1, k) & \text{if } i = 2\\ (m, n, 1) & \text{if } i = 3\\ (k, m, 1) & \text{if } i = 4\\ (1, m, n) & \text{if } i = 5 \end{cases}$$

$$(70)$$

Note that the case i=6 (which results from hue=1) is missing in Smith's algorithm. Because of

$$\lim_{f \to 1} (0, 1, f) = (0, 1, 1) = \lim_{f \to 0} (0, 1 - f, 1) \tag{72}$$

it is clear that there is only one way to define F for i=6 in order to get a continuous function, as shown in equation (67). This has been transformed back to equation (71). A similar argument shows that F indeed is a continuous function of hue over the whole range [0,1].

Conversion hsb to Hsb Only the first component has to be changed.

$$(hue^{\circ}, saturation, brightness) := (H \cdot hue, saturation, brightness)$$
 (73)

Conversion hsb to HSB As described in section 6.2.1 page 49.

$$(Hue, Saturation, Brightness) := (\Gamma_M(hue), \Gamma_M(saturation), \Gamma_M(brightness))$$
 (74)

Complement of hsb color We have not found a formula in the literature, therefore we give a short proof afterwards.

Lemma 3. The **hsb**-complement can be calculated by the following formulas:

$$hue^* := \begin{cases} hue + \frac{1}{2} & \text{if } hue < \frac{1}{2} \\ hue - \frac{1}{2} & \text{if } hue \ge \frac{1}{2} \end{cases}$$
 (75)

$$brightness^* := 1 - brightness \cdot (1 - saturation)$$
 (76)

$$saturation^* := \begin{cases} 0 & \text{if } brightness^* = 0\\ \frac{brightness \cdot saturation}{brightness^*} & \text{if } brightness^* \neq 0 \end{cases}$$

$$(77)$$

Démonstration. Starting with the original color C=(h,s,b), we define color $C^*=(h^*,s^*,b^*)$ by the given formulas, convert both C and C^* to the **rgb** model and show that

$$C_{\mathsf{rgb}} + C_{\mathsf{rgb}}^* = b \cdot (E - s \cdot F) + b^* \cdot (E - s' \cdot F^*) \stackrel{!}{=} E, \tag{78}$$

which means that C_{rgb} is the complement of C^*_{rgb} . First we note that the parameters of C^* are in the legal range [0,1]. This is obvious for h^*, b^* . From $b^* = 1 - b \cdot (1-s) = 1 - b + b \cdot s$ we derive $b \cdot s = b^* - (1-b) \le b^*$, therefore $s^* \in [0,1]$, and

$$b^* = 0 \Leftrightarrow s = 0 \text{ and } b = 1.$$

Thus, equation (78) holds in the case $b^* = 0$. Now we assume $b^* \neq 0$, hence

$$C_{rgb} + C_{rgb}^* = b \cdot (E - s \cdot F) + b^* \cdot \left(E - \frac{b \cdot s}{b^*} \cdot F^*\right)$$
$$= b \cdot E - b \cdot s \cdot F + b^* \cdot E - b \cdot s \cdot F^*$$
$$= E - b \cdot s \cdot (F + F^* - E)$$

since $b^* = 1 - b + bs$. Therefore, it is sufficient to show that

$$F + F^* = E. (79)$$

From

$$h<\frac{1}{2}\Rightarrow h^*=h+\frac{1}{2}\Rightarrow 6h^*=6h+3\Rightarrow i^*=i+3$$
 and $f^*=f$

it is easy to see from (67) that equation (79) holds for the cases i = 0, 1, 2. Similarly,

$$h \ge \frac{1}{2} \Rightarrow h^* = h - \frac{1}{2} \Rightarrow 6h^* = 6h - 3 \Rightarrow i^* = i - 3 \text{ and } f^* = f$$

and again from (67) we derive (79) for the cases i = 3, 4, 5. Finally, if i = 6 then f = 0 and $F + F^* = (0, 1, 1) + (1, 0, 0) = E$.

6.3.5 The Hsb model

Conversion Hsb to hsb Only the first component has to be changed.

$$(hue, saturation, brightness) := (hue^{\circ}/H, saturation, brightness)$$
 (80)

Conversion Hsb to tHsb Under the settings of (82)–(84) we simply have to exchange the letters x and y in equation (85) to get the inverse transformation :

$$hue^{\circ} \in [y_{\eta-1}, y_{\eta}] \Rightarrow hue^{\circ} := x_{\eta-1} + \frac{x_{\eta} - x_{\eta-1}}{y_{\eta} - y_{\eta-1}} \cdot (hue^{\circ} - y_{\eta-1})$$
 (81)

while saturation and brightness are left unchanged.

6.3.6 The tHsb model

\rangeHsb \rangetHsb Conversion tHsb to Hsb We assume that $\mbox{rangeHsb} = H$ and $\mbox{rangetHsb}$ expands to

$$x_1, y_1; x_2, y_2; \dots; x_{h-1}, y_{h-1}$$
 (82)

where

$$x_0 := 0 < x_1 < x_2 < \dots < x_{h-1} < x_h := H$$
 (83)

$$y_0 := 0 < y_1 < y_2 < \dots < y_{h-1} < y_h := H$$
 (84)

with an integer h>0. Now the x and y values determine a piecewise linear transformation :

$$hue^{\circ} \in [x_{\eta-1}, x_{\eta}] \Rightarrow hue^{\circ} := y_{\eta-1} + \frac{y_{\eta} - y_{\eta-1}}{x_{\eta} - x_{\eta-1}} \cdot (hue^{\circ} - x_{\eta-1})$$
 (85)

while saturation and brightness are left unchanged.

6.3.7 The gray model

Conversion gray to rgb Source: [1], p. 474.

$$(red, green, blue) := gray \cdot E$$
 (86)

Conversion gray to cmy This is derived from the conversion chain gray \rightarrow rgb \rightarrow cmy.

$$(cyan, magenta, yellow) := (1 - gray) \cdot E$$
 (87)

Conversion gray to cmyk Source: [1], p. 475.

$$(cyan, magenta, yellow, black) := (0, 0, 0, 1 - gray)$$
(88)

Conversion gray to hsb This is derived from the conversion chain gray \rightarrow rgb \rightarrow hsb.

$$(hue, saturation, brightness) := (0, 0, gray)$$
 (89)

Conversion gray to $\mathsf{Hsb}/\mathsf{tHsb}$ This is derived from the conversion chain $\mathsf{gray} \to \mathsf{hsb} \to \mathsf{Hsb}$, followed by $\mathsf{Hsb} \to \mathsf{tHsb}$ if applicable.

$$(hue^{\circ}, saturation, brightness) := (0, 0, gray)$$
 (90)

Conversion gray to Gray As described in section 6.2.1 page 49.

$$Gray := \Gamma_N(gray) \tag{91}$$

Complement of gray color This is similar to the rgb case :

$$gray^* := 1 - gray \tag{92}$$

6.3.8 The RGB model

Conversion RGB to rgb As described in section 6.2.2 page 49.

$$(red, green, blue) := (\Delta_L(Red), \Delta_L(Green), \Delta_L(Blue))$$
 (93)

6.3.9 The HTML model

Conversion HTML to ${\tt rgb}$ As described in section 6.2.2 page 49 : starting with RRGGBB set

$$(red, green, blue) := (\Delta_{255}(RR_{dec}), \Delta_{255}(GG_{dec}), \Delta_{255}(BB_{dec}))$$
 (94)

6.3.10 The HSB model

Conversion HSB to hsb As described in section 6.2.2 page 49.

$$(hue, saturation, brightness) := (\Delta_M(Hue), \Delta_M(Saturation), \Delta_M(Brightness))$$

$$(95)$$

6.3.11 The Gray model

Conversion Gray to gray As described in section 6.2.2 page 49.

$$qray := \Delta_N(Gray)$$
 (96)

6.3.12 The wave model

Conversion wave to rgb Source: based on Dan Bruton's algorithm [4]. Let λ be a visible wavelength, given in nanometers (nm), i.e., $\lambda \in [380, 780]$. We assume further that $\gamma > 0$ is a fixed number ($\gamma = 0.8$ in [4]). First set

$$(r,g,b) := \begin{cases} \left(\frac{440 - \lambda}{440 - 380}, 0, 1\right) & \text{if } \lambda \in [380, 440[\\ \left(0, \frac{\lambda - 440}{490 - 440}, 1\right) & \text{if } \lambda \in [440, 490[\\ \left(0, 1, \frac{510 - \lambda}{510 - 490}\right) & \text{if } \lambda \in [490, 510[\\ \left(\frac{\lambda - 510}{580 - 510}, 1, 0\right) & \text{if } \lambda \in [510, 580[\\ \left(1, \frac{645 - \lambda}{645 - 580}, 0\right) & \text{if } \lambda \in [580, 645[\\ \left(1, 0, 0\right) & \text{if } \lambda \in [645, 780] \end{cases}$$

$$(97)$$

then, in order to let the intensity fall off near the vision limits,

$$f := \begin{cases} 0.3 + 0.7 \cdot \frac{\lambda - 380}{420 - 380} & \text{if } \lambda \in [380, 420[\\ 1 & \text{if } \lambda \in [420, 700] \\ 0.3 + 0.7 \cdot \frac{780 - \lambda}{780 - 700} & \text{if } \lambda \in [700, 780] \end{cases}$$
(98)

and finally

$$(red, green, blue) := ((f \cdot r)^{\gamma}, (f \cdot g)^{\gamma}, (f \cdot b)^{\gamma})$$
(99)

The intermediate colors (r,g,b) at the interval borders of equation (97) are well-known: for $\lambda=380,440,490,510,580,645$ we get magenta, blue, cyan, green, yellow, red, respectively. These turn out to be represented in the **hsb** model by $hue=\frac{5}{6},\frac{4}{6},\frac{3}{6},\frac{2}{6},\frac{1}{6},\frac{0}{6}$, whereas saturation = brightness = 1 throughout the 6 colors. Furthermore, these **hsb** representations are independent of the actual γ value. Staying within this model framework, we observe that the intensity fall off near the vision limits — as represented by equation (98) — translates into decreasing brightness parameters towards the margins. A simple calculation shows that the edges $\lambda=380,780$ of the algorithm yield the colors magenta!0.3 $^{\gamma}$!black, red!0.3 $^{\gamma}$!black, respectively. We see no reason why we should not extend these edges in a similar fashion to end-up with true black on either side. Now we are prepared to translate everything into another, more natural algorithm.

Conversion wave to hsb Let $\lambda > 0$ be a wavelength, given in nanometers (nm), and let

$$\rho: \mathbb{R} \to [0, 1], \ x \mapsto (\min\{1, \max\{0, x\}\})^{\gamma}$$
(100)

with a fixed correction number $\gamma > 0$. Then

$$hue := \frac{1}{6} \cdot \begin{cases} 4 + \varrho \left(\frac{\lambda - 440}{380 - 440} \right) & \text{if } \lambda < 440 \\ 4 - \varrho \left(\frac{\lambda - 440}{490 - 440} \right) & \text{if } \lambda \in [440, 490[\\ 2 + \varrho \left(\frac{\lambda - 510}{490 - 510} \right) & \text{if } \lambda \in [490, 510[\\ 2 - \varrho \left(\frac{\lambda - 510}{580 - 510} \right) & \text{if } \lambda \in [510, 580[\\ 0 + \varrho \left(\frac{\lambda - 645}{580 - 645} \right) & \text{if } \lambda \in [580, 645[\\ 0 & \text{if } \lambda \ge 645 \end{cases} \end{cases}$$

$$(101)$$

$$saturation := 1$$
 (102)

$$brightness := \begin{cases} \varrho \left(0.3 + 0.7 \cdot \frac{\lambda - 380}{420 - 380} \right) & \text{if } \lambda < 420 \\ 1 & \text{if } \lambda \in [420, 700] \\ \varrho \left(0.3 + 0.7 \cdot \frac{\lambda - 780}{700 - 780} \right) & \text{if } \lambda > 700 \end{cases}$$
(103)

For the sake of completeness we note that, independent of γ ,

$$(\textit{hue}, \textit{saturation}, \textit{brightness}) = \begin{cases} \left(\frac{5}{6}, 1, 0\right) & \text{if } \lambda \leq 380 - \frac{3 \cdot (420 - 380)}{7} = 362.857 \dots \\ \left(0, 1, 0\right) & \text{if } \lambda \geq 780 + \frac{3 \cdot (780 - 700)}{7} = 814.285 \dots \end{cases}$$

What is the best (or, at least, a good) value for γ ? In the original algorithm [4], $\gamma = 0.8$ is chosen. However, we could not detect significant visible difference between the cases $\gamma = 0.8$ and $\gamma = 1$. Thus, for the time being, xcolor's implementation uses the latter value which implies a pure linear approach. In the pstricks examples file xcolor2.tex, there is a demonstration of different γ values.

Références

- [1] Adobe Systems Incorporated: « PostScript Language Reference Manual ». Addison-Wesley, troisième édition, 1999. http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
- [2] Donald Arseneau: « Patch so \fbox draws frame on top of text ». LATEX bug report, latex/3655, 18/03/2004.
 - http://www.latex-project.org/cgi-bin/ltxbugs2html?pr=latex/3655
- [3] Donald Arseneau : extension url, « 2005/06/27 ver 3.2 Verb mode for urls, etc. ». CTAN/macros/latex/contrib/misc/url.sty
- [4] Dan Bruton: « Approximate RGB values for Visible Wavelengths », 1996. http://www.physics.sfasu.edu/astro/color/spectra.html
- [5] David P. Carlisle: « Packages in the 'graphics' bundle », 2005. CTAN/macros/latex/required/graphics/grfguide.*
- [6] David P. Carlisle: extension color, « 2005/11/14 v1.0j Standard LATEX Color ». CTAN/macros/latex/required/graphics/color.dtx
- [7] David P. Carlisle: extension colortbl, « 2001/02/13 v0.1j Color table columns ». CTAN/macros/latex/contrib/colortbl/
- [8] David P. Carlisle, Herbert Voß, Rolf Niepraschk: extension pstcol, « 2005/11/16 v1.2 LaTeX wrapper for 'PSTricks' ». CTAN/macros/graphics/pstricks/latex/pstcol.sty
- [9] Uwe Kern: « Chroma: a reference book of LATEX colors ». CTAN/info/colour/chroma/ et http://www.ukern.de/tex/chroma.html
- [10] Uwe Kern: extension xcolor, « LATEX color extensions ».

 CTAN/macros/latex/contrib/xcolor/ et http://www.ukern.de/tex/xcolor.html
- [11] Rolf Niepraschk : extension colorinfo, < 2003/05/04 v0.3c Info from defined colors >. CTAN/macros/latex/contrib/colorinfo/
- [12] Heiko Oberdiek : extension pdfcolmk, « 2006/02/20 v0.8 PDFtex COLor MarK ». CTAN/macros/latex/contrib/oberdiek/pdfcolmk.*
- [13] Projet MiKTFX: http://www.miktex.org/
- [14] Sebastian Rahtz, Heiko Oberdiek: extension hyperref, « 2006/09/06 v6.75e Hypertext links for LATEX ». CTAN/macros/latex/contrib/hyperref/
- [15] Alvy Ray Smith: « Color Gamut Transform Pairs ». Computer Graphics (ACM SIGGRAPH), Volume 12, Numéro 3, Août 1978. http://alvyray.com/Papers/PapersCG.htm
- [16] World Wide Web Consortium: «HTML4 color keywords». http://www.w3.org/TR/css3-color/#html4
- [17] World Wide Web Consortium: «Scalable Vector Graphics (SVG) 1.1 Specification Basic Data Types and Interfaces ». http://www.w3.org/TR/SVG11/types.html#ColorKeywords

Annexes

Remerciements

Cette extension se base sur [6] (Copyright (C) 1994–1999 David P. Carlisle) et contient du code de cette extension, cette dernière faisant partie de l'« ensemble graphique » du standard LATEX. Bien que de nombreuses commandes et fonctionnalités ont été ajoutées et que la plupart des commandes originales de color ont été réécrites ou adaptées dans xcolor, cette dernière n'existerait pas sans color. Aussi, l'auteur est reconnaissant à David P. Carlisle d'avoir créé color et ses fichiers associés.

Marques déposées

Des Marques déposées apparaissent tout au long de cette documentation sans aucun symbole les dénotant ; elles sont la propriété de leur dépositaire respectif. Il n'y a ici aucune intention d'infraction ; l'utilisation est au bénéfice du dépositaire de la marque.

Problèmes connus

— \rowcolors[\hline]... ne fonctionne pas avec longtable.

Historique

21/01/2007 v2.11

- Nouvelles fonctionnalités :
 - les noms de couleur *lime* et *teal* sont ajoutés à l'ensemble des couleurs prédéfinies.
- Correction d'erreur :
 - appel incorrect de \XC@strip@comma dans les options liées à hyperref.

28/11/2006 v2.10

×

— Nouvelles fonctionnalités :

- fixinclude option prevents dvips from explicitly resetting current color to black before actually inserting an .eps file via
 - \color{red}\includegraphics{foo}.
- Changements:
 - \colorbox and \fcolorbox made
 robust;
 - obsolete package option pst removed;
 - several changes to internal macros.
- Corrections d'erreur :
 - incorrect processing of **cmyk**-type current color '.'.

×

21/12/2005 v2.09

×

- Nouvelles fonctionnalités :
 - \definecolor and \color now accept
 space-separated color specifications,
 e.g., \color [rgb]{1 .5 0};
 - experimental xcdraw option extended to pdftex and dvipdfm drivers.
- Changements:
 - test file xcolor2.tex made compatible with recent changes in pstricks;
 - test file xcolor3.tex extended;
 - driver test file xcolor4.tex extended to demonstrate the different frame drawing approaches;
 - more efficient implementation of driver-specific code.

×

25/11/2005 v2.08

- Nouvelles fonctionnalités :
 - more flexibility for \fcolorbox
 arguments, e.g., \fcolorbox
 [gray]{0.5}[wave]{580}{test};

- \boxframe returns a frame of given dimensions;
- new implementation of \f(rame)box and \fcolorbox as an extension of bug report latex/3655 to reduce pixel positioning errors in output devices;
- kernelfbox option for those who prefer the previous \f(rame)box approach;
- experimental xcdraw option uses
 PostScript commands to draw frames
 and color boxes in case of dvips.
- Corrections d'erreur :
 - insufficient expression type detection within \colorlet;
 - wrong calculation in the unit interval reduction for negative integers (affecting color series and extended color expressions).

×

12/11/2005 v2.07

×

- Nouvelles fonctionnalités :
 - color model **Hsb** allows to specify *hue* in degrees;
 - color model tHsb (tuned Hsb) for user-defined hue configuration on color wheels;
 - easy generation of color harmonies derived from Hsb or tHsb color wheels, e.g., \color{red>wheel,1,12} yields an 'analogous' color to red on a 12-spoke wheel;
 - additional 317 predefined color names according to rgb.txt, which is part of Unix/X11 distributions;
 - svgnames option extended by 4 colors taken from rgb.txt;
 - enhanced syntax for immediate
 conversion, e.g., \definecolor
 {foo}{rgb:gray}{0.3} or \color
 [rgb:wave]{478};
 - \@ifundefinedcolor and
 \@ifundefinedmodel commands;

- Changements:
 - enhanced documentation;
 - several changes to internal macros.
- Corrections d'erreur :
 - wrong calculation of color series components in some cases of negative step parameters.

×

15/10/2005 v2.06

×

- Nouvelles fonctionnalités :
 - color model wave for (approximate)
 visualisation of light wavelengths, still
 somewhat experimental;
 - pseudo-model 'ps' for colors defined by literal PostScript code in conjunction with pstricks and dvips; an illustrative example for a γ-correction approach is given in xcolor2.tex;
 - substitutecolormodel command for replacement of missing or faulty driver-specific color models;
 - improved detection and handling of driver-specific color models;
 - dvipdfmx and xetex options to support these drivers;
 - generic driver test file xcolor4.tex.
- Changements:
 - \XC@strip@comma doesn't generate a trailing space anymore, which improves also the output of the testcolors environment.

×

30/09/2005 v2.05

- Nouvelles fonctionnalités :
 - testcolors environment helps to test colors in different models, showing both the visual result and the model-specific parameters;
 - \extractcolorspecs puts model/color specification into two

- separate commands, as opposed to
 \extractcolorspec;
- color names *pink* and *olive* added to the set of predefined colors.
- Corrections d'erreur :
 - \definecolor{foo}{named}{bar} did not work in v2.04.

×

23/09/2005 v2.04

×

- Nouvelles fonctionnalités :
 - preparation for usage of additional –
 driver-provided color models;
 - pstricks users may now specify explicit
 color parameters within \psset and
 related commands, e.g.,
 \psset{linecolor=[rgb]{1,0,0}};
 an illustrative example is given in
 xcolor2.tex.
- Changements:
 - color model names sanitized (i.e., turned to catcode 12) throughout the package;
 - \@namelet command deprecated
 because of name clash with memoir —
 please use \XC@let@cc instead (more
 \XC@let@.. commands are available as
 well);
 - simplified color conversion code by using the new \XC@ifxcase command;
 - some minor changes to internal macros.

×

$06/06/2005 \ v2.03$

×

- Nouvelles fonctionnalités :
 - fixpdftex option loads pdfcolmk package in order to improve pdfTEX's color behaviour during page breaks.
- Changements:
 - some minor changes to internal macros.
- Corrections d'erreur :

- due to an incorrect \if statement
 within \XC@info, \colorlet caused
 trouble whenever its second argument
 started with two identical letters, e.g.,
 \colorlet{rab}{oof};
- argument processing of \XC@getcolor caused incompatibility with msc package;
- prologue option caused incompatibility with preview package.

×

24/03/2005 v2.02

×

- Nouvelles fonctionnalités :
 - \aftergroupedef command to reproduce \aftergroupdef's behaviour prior to v2.01;
 - xcolor's homepage
 www.ukern.de/tex/xcolor.html now
 provides also a ready-to-run
 TDS-compliant archive containing all required files.
- Changements:
 - \rowcolors and friends are solely enabled by the table option;
 - \@ifxempty changed back to more robust variant of v2.00.
- Corrections d'erreur :
 - \psset{linecolor=\ifcase\foo
 red\or green\or blue\fi} did not
 work with pstricks (error introduced in
 v2.01).

×

15/03/2005 v2.01

- Nouvelles fonctionnalités :
 - prologue option for comprehensive 'named' color support in conjunction with dvips: on-the-fly generation of PostScript prologue files with all color definitions, ready for dvips inclusion and/or post-processing with

- device-specific parameters (e.g., spot colors);
- dvips prologue file xcolor.pro to support additional 'named' colors;
- \colorlet may now also be used to create named colors from arbitrary color expressions;
- enhanced color definition syntax to allow for target-model specific color parameters, e.g., \definecolor {red}{rgb/cmyk}{1,0,0/0,1,1,0}, facilitating the usage of tailor-made colors both for displays and printers;
- 'deferred definition' of colors: \preparecolor and \definecolors enable decoupling of color specification and control sequence generation, especially useful (= memory saving) for large lists of colors, of which only a few names are actually used;
- dvipsnames* and svgnames* options to support deferred definition.

— Changements:

- higher accuracy: most complement calculations are now exact for all 5-digit decimals;
- \rangeRGB and similar variables may now be changed at any point in a document;
- \aftergroupdef now performs only a first-level expansion of its code argument;
- \XCfileversion and similar internal constants removed from .sty and .def files;
- improved memory management (reduced generation of 'multiletter control sequences' by \@ifundefined tests);
- several internal macros improved and/or renamed.

— Corrections d'erreur :

- \XC@getcolor could cause unwanted spaces when \psset was used inside pspicture environments (pstricks);
- arithmetic overflow could happen when

too many decimal digits were used within color parameters, e.g., as a result of fp calculations.

×

04/07/2004 v2.00

×

- Nouvelles fonctionnalités :
 - extended functionality for color expressions : mix colors like a painter;
 - support for color blending: specify color mix expressions that are being blended with every displayed color;
 - \xglobal command for selective control of globality for color definitions, blends, and masks;
 - multiple step operations (e.g.,
 \color{foo!!+++}) and access to
 individual members (e.g.,
 \color{foo!![7]}) in color series;
 - \providecolor command to define only non-existent colors;
 - \definecolorset and \providecolorset commands to facilitate the construction of color sets with common underlying color model;
 - additional 147 predefined color names according to SVG 1.1 specification;
 - *xpdfborder* key for setting the width of hyperlink borders in a more driver-independent way if *dvips* is used.

— Changements:

- extension color now completely integrated within xcolor;
- override, usenames, nodvipsnames options and \xdefinecolor command no longer needed;
- dvips and dvipsnames options now independent of each other;
- \tracingcolors's behaviour changed to make it more versatile and reduce log file size in standard cases;
- \rdivide's syntax made more flexible (divide by numbers and/or dimensions):

- code restructured, some internal commands renamed;
- documentation rearranged and enhanced.
- Corrections d'erreur :
 - \definecolor{foo}{named}{bar} did
 not work (error introduced in v1.11);
 - more robust behaviour of conditionals within pstricks key-values.

×

09/05/2004 v1.11

×

- Nouvelles fonctionnalités :
 - switch \ifglobalcolors to control whether color definitions are global or local;
 - option hyperref provides color expression support for the border colors of hyperlinks, e.g., \hypersetup {xurlbordercolor=red!50!yellow};
 - internal hooks \XC@bcolor, \XC@mcolor, and \XC@ecolor for additional code that has to be executed immediately before/after the current color is being displayed.
- Changements:
 - \XC@logcolor renamed to \XC@display, which is now the core color display command;
 - improved interface to pstricks.

×

27/03/2004 v1.10

×

- Nouvelles fonctionnalités :
 - support for 'named' model;
 - support for *dvips* colors (may now be used within color expressions);
 - internal representation of 'ordinary' and 'named' colors merged into unified data structure;
 - allow multiple '-' signs at the beginning of color expressions.

- Corrections d'erreur :
 - commands like \color[named]{foo} caused errors when color masking or target model conversion were active;
 - incompatibility with soul package : commands \h1, \u1, etc. could yield unexpected results.
- Documentation:
 - added formula for general color expressions;
 - enhanced text and index;
 - removed dependence of index generation on local configuration file.

×

16/02/2004 v1.09

×

- Nouvelles fonctionnalités :
 - color model HTML, a 24-bit hexadecimal RGB variant; allows to specify colors like \color[HTML] {AFFE90};
 - color names orange, violet, purple, and brown added to the set of predefined colors.
- Nouvelle page web de xcolor : www.ukern.de/tex/xcolor.html
- Correction d'erreur : \xdefinecolor sometimes did not normalise its parameters.
- Changements:
 - slight improvements of the documentation;
 - example file xcolor1.tex reorganised and abridged.

×

04/02/2004 v1.08

- New commands:
 - \selectcolormodel to change the target model within a document;
 - \adjustUCRBG to fine-tune undercolor-removal and

black-generation during conversion to **cmyk**.

- Bugfix: color expressions did not work correctly in connection with active '!' character, e.g., in case of \usepackage[frenchb]babel}.
- Code re-organisation:
 - \XC@xdefinecolor merged into \xdefinecolor, making the first command obsolete;
 - several internal commands improved/streamlined.

×

20/01/2004 v1.07

×

- Nouvelle fonctionnalité : support for color masking and color separation.
- Nouvelles commandes :
 - \rmultiply to multiply a dimension register by a real number;
 - \xcolorcmd to pass commands that are to be executed at the end of the package.
- Changements:
 - more consistent color handling:
 extended colors now always take
 precedence over standard colors;
 - several commands improved by using code from the LaTeX kernel.
- Documentation : some minor changes.
- Fichiers d'exemples : additional pstricks examples (file xcolor2.tex).

×

15/12/2003 v1.06

×

- New feature : extended color expressions, allowing for cascaded mix operations, e.g., \color{red!30!green!40!blue}.
- Documentation : new section on color expressions.
- Bugfix : color series stepping did not work correctly within non-displaying commands

- like \extractcolorspec{foo!!+} (this bug was introduced in v1.05).
- Renamed commands: \ukfileversion
 and similar internal constants renamed to
 \XCfileversion etc.
- Removed commands: \ifXCpst and \ifXCtable made obsolete by a simple trick.

×

21/11/2003 v1.05

×

- Corrections d'erreur :
 - package option hideerrors should now work as expected;
 - usage of '.' in the first color expression in a document caused an error due to incorrect initialisation.
- Réorganisation du code :
 \extractcolorspec now uses
 \XC@splitcolor, making \XC@extract
 obsolete.

×

09/11/2003 v1.04

×

- Nouvelle fonctionnalité : easy access to current color within color expressions.
- Nouvelle option : override to replace \definecolor by \xdefinecolor.
- Nouvelle commande: \tracingcolors for logging color-specific information.

×

21/09/2003 v1.03

×

- Changement : bypass strange behaviour of some drivers.
- Nouvelle fonctionnalité : driver-sharing with hyperref.

19/09/2003 v1.02

×

 Changement: \extractcolorspec and \colorlet now also accept color series as arguments.

×

15/09/2003 v1.01

×

— Nouvelle fonctionnalité : \definecolorseries and friends.

- Documentation : removed some doc-related side-effects.
- Réorganisation du code : all calculation-related tools put to one place.
- Corrections d'erreur :
 - \@rdivide : added \relax to fix
 problem with negative numerators;
 - \rowc@l@rs : replaced \@ifempty by \@ifxempty.

×

09/09/2003 v1.00

— Première version publiée.

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

${f A}$	$\langle plus \rangle$	cmyk 5, 6, 9-
\adjustUCRBG 9, 54	$\langle postfix \rangle$	11, 15, 19, 21, 26, 44,
arguments	$\langle prefix \rangle$	48, 50, 53, 54, 58, 62, 66
$\langle color \ expr \rangle \ \dots \ 14, 16$	$\langle spec\text{-}list \rangle$	cmy $9-11, 15,$
$\langle color \rangle$	$\langle spec \rangle$	26, 44, 48, 51, 53, 54, 57
$\langle core\ model \rangle \ \dots \ 14,\ 15$	$\langle type \rangle$	gray 6, 9–12, 15, 17,
$\langle dec \rangle \dots 13, 14$		44, 48, 50, 53, 54, 57, 58
$\langle div \rangle$	В	hsb 5, 9–12, 15, 18, 21, 44,
$\langle empty \rangle$	\blendcolors 25	45, 47, 48, 50-52, 55-59
$\langle expr \rangle$	\blendcolors* 25	rgb 6, 9–12, 15, 19,
$\langle ext \ expr \rangle \dots 14, 16$	\boxframe 24	21, 26, 29, 44, 48, 50-59
$\langle ext \ id \rangle$		tHsb
$\langle func\ expression \rangle \ \dots \ 16$	C	15, 18, 39, 48, 57, 58, 63
$\langle func \ expr \rangle \ \dots \ 14$	\color	wave . 11, 12, 15, 48, 59, 63
$\langle function \rangle$	color expression 21 color functions	'named' 15, 21, 66
$\langle id\text{-}list \rangle$		'ps' 15, 63
$\langle id \rangle$	$twheel \dots 18$ $wheel \dots 18$	color names
$\langle int \rangle$	color models	Fuchsia 31, 32
$\langle minus \rangle$	Gray . 10–12, 15, 44, 48, 58	Gray0 19
$\langle mix \ expr \rangle$ 14, 15	HSB 10–12, 15, 44, 48, 56, 58	Green0
$\langle model\text{-}list \rangle \ldots 14, 15$	HTML 9-	Grey0 19
$\langle model \rangle$ 14, 15	11, 15, 44, 48, 53, 58, 66	Maroon0 19
$\langle name \rangle$	Hsb	Purple0 19
$\langle num \ model \rangle \ \dots \ 14, \ 15$	15, 18, 39, 48, 56–58, 63	argent 6
$\langle num \rangle$	RGB 10–12,	black 9, 10, 18, 26, 32, 59, 62
$\langle pct \rangle' \dots 13, 14$	15, 19, 44, 48, 53, 58, 66	blanc 6

bleu 6, 7	${f F}$	pdfborder 29
blue 18, 20, 22, 59	\fcolorbox 24	1 0
brown 18, 66	files	runcolor 29
cyan 18, 26, 59	.def 65	
darkgray	.dvi 19, 20, 25, 29	
foo 20, 26	.eps 10, 27, 32, 33, 62	
gray	.jpg 27	
green 5, 17, 18, 22, 59	.pdf	xlinkbordercolor 29
gris 6	.png	xmenubordercolor 29
jaune 7	.ps 20, 29, 33	xpagebordercolor 29
lightgray	.sty $\dots 65$	1 3
lime	.xcp 10, 20	xrunbordercolor 29
magenta 18, 26, 59	color.pro 20	xurlbordercolor 29
noir 6	${\tt dvipsnam.def} \dots 23$	3.5
olive	rgb.txt 19, 63	
orange 18, 66	xcolor.pro 8, 20, 64	3 FITTER TT
or 6	xcolor.sty 8, 18	MiKTEX 20
pink	xcolor2.tex	N
purple 18, 66	30, 60, 62–64, 66	C
red 9, 11,	xcolor3.tex 62	
17, 18, 20–22, 32, 59, 63	xcolor4.tex 62, 63	P
rouge 5-7	${f G}$	package options
teal 18, 62	\GetGinDriver 8	Gray 8, 10, 13
vert	\GinDriver 8	IIOD 0 10 10
violet 18, 66	,	HTML 8, 10, 13
white	Н	RGB 8, 10, 13
yellow . 5, 11, 17, 18, 26, 59	\hiderowcolors 30	cmyk 8, 10, 13, 26
color set	HKS 6	•
color stack 32	HTML4 19, 42	
\colorbox 24		${\tt dvipdfm}\ 8,\ 20,\ 25,\ 44,\ 45,\ 62$
\colorlet 21	I	dvipdf
\colormask 27	\ifconvertcolorsD 13	-
\colorseriescycle 28	\ifconvertcolorsU 13	
\convertcolorspec 31	\ifdefinecolors 22	<u>.</u>
•	\ifglobalcolors 23	
D	\ifmaskcolors 26	
\definecolor 20, 30	V	dvips 8,
definecolors 23	K keys	20, 25, 30, 44, 46, 63-65
definecolorseries 27	$citebordercolor \dots 29$	dviwindo 8, 44
\definecolorset 21	citecolor	, · · ·
\DefineNamedColor 22	fileborder color 29	,
definition stack 22, 23	filecolor	
700, 700	linkbordercolor	
${f E}$	linkcolor	
environments:	menubordercolor 29	
testcolors 25	menucolor	
\extractcolorspec 31	pagebordercolor 29	
\extractcolorspecs 31	pagecolor	· -
<u> </u>		, , , , , , , , , , , , , , , , , , , ,

	1. 40.00.11	1:
monochrome 8, 44	graphics 19, 32, 44	dvips 8, 20,
natural 8, 10, 13	graphicx 32	29, 30, 32, 33, 62, 64-66
noxcdraw 8, 10, 25	hyperref	\providecolor 21
oztex 8, 44	8, 10, 11, 29, 61, 62, 67	\providecolors 23
pctex32 8, 44	longtable	\providecolorset 22
pctexhp 8, 44	memoir	
pctexps 8, 44	msc	\mathbf{R}
pctexwin 8, 44	pdfcolmk 10, 11, 32, 61, 64	\rangeGray 12
pdftex	preview	\rangeHSB 12
. 8, 20, 25, 35, 44-46, 62	pstcol	\rangeHsb 11, 57
prologue 8, 10, 20, 64	pstricks 11, 21, 30, 60, 62–66	\rangeRGB
rgb 8, 10, 13	realcalc	\rangetHsb 11, 57
showerrors 8, 10	soul	\resetcolorseries 28
svgnames* 8, 10, 19, 22, 64	url 61	\rowcolors 30
svgnames	xcolor	\rowcolors* 30
. 8, 10, 19, 22, 31, 41, 63	5, 6, 8, 9, 11–13, 18,	·
table 8, 10, 11, 30, 64	20, 22, 23, 27–29, 31,	\rownum 30
tcidvi $8, 44$	32, 44-46, 60-62, 64-66	~
textures $\ldots 8, 44$	\pagecolor 23	\mathbf{S}
truetex $\ldots 8, 44$	Pantone 6	\selectcolormodel 12
usecolors	PDF 25	\showrowcolors 30
vtex \ldots 8, 44	people	\substitutecolormodel 12
x11namees 19	Arseneau, Donald 24, 61	SVG 10, 19, 32, 61, 65
x11names* 8, 10, 19	Bruton, Dan 59, 61	
x11names 8, 10, 19, 42	Carlisle, David P 61, 62	${f T}$
xcdraw 8, 10, 25, 62, 63	Goethe, Johann Wolfgang	teinte 6
xdvi 8, 44	von	\testcolor 25
xetex $8, 44, 63$	Kern, Uwe $\dots 61$	testcolors (environment) . 25
package options (obsolete)	Newton, Isaac 7	\textcolor 23
nodvipsnames $8, 65$	Niepraschk, Rolf 61	ton
override \dots 8, 65, 67	Oberdiek, Heiko 61	ton direct 6
pst 8, 62	Rahtz, Sebastian 61	\tracingcolors 31
usenames \ldots $8, 46, 65$	Smith, Alvy Ray 50, 61	tracingcolors 31
packages	Voß, Herbert 61	T.T.
colorinfo $\dots 45, 61$	PostScript 9, 15, 20,	U
colortbl 10, 11, 30, 61	25, 30, 32, 50, 52, 63, 64	Unix 10, 19, 42, 63
$color \ldots 5, \ 6, \ 8,$	\preparecolor 22	
10, 11, 19, 21, 23, 24,	\preparecolorset 22	X
29, 31, 44-46, 61, 62, 65	programs	X11 10, 19, 42, 63
doc 67	Yap 20	\xcolorcmd 9
fp	dvipdfm 20	\xglobal 23, 26