The Complexity Class NP and NP-Completeness

valentinpi

15. Dezember 2020 (neueste Version)

Proseminar Theoretische Informatik WiSe 2020-21 Institut für Informatik Freie Universität Berlin

Nondeterminism

Nondeterminism

Remark

The *nondeterministic* definition of the Turing machine mainly differs in the state transitioning function

$$\delta \colon Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{ L, N, R \}).$$

Nondeterminism

Remark

The *nondeterministic* definition of the Turing machine mainly differs in the state transitioning function

$$\delta \colon Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{ L, N, R \}).$$

Definition

In analogy to the class TIME, the class *NTIME* of $f: \mathbb{N} \to \mathbb{R}^+$ is defined as:

 $\mathsf{NTIME}(f(n)) \coloneqq \{ \ L \ | \mathsf{There is a nondeterministic TM that decides} \ L \ \mathsf{in} \\ \mathcal{O}\left(f(n)\right) \ \mathsf{time for an input of size} \ n \ \}$

2

Verifiers

Verifiers

Definition

An algorithm V is called a *verifier* for a language L, if:

$$L = \{ w \mid \exists c \in \Sigma^* \colon V \text{ accepts } \langle w, c \rangle \}$$

V is called a *polynomial verifier*, if it runs in polynomial time in terms of |w|. L is called *polynomially verifiable*, if such a polynomial verifier exists. c is called *certificate*.

3

Verifiers

Definition

An algorithm V is called a *verifier* for a language L, if:

$$L = \{ w \mid \exists c \in \Sigma^* : V \text{ accepts } \langle w, c \rangle \}$$

V is called a *polynomial verifier*, if it runs in polynomial time in terms of |w|. L is called *polynomially verifiable*, if such a polynomial verifier exists. c is called *certificate*.

Example: Path for the PATH problem

Machines

Verifiers

NP and Equivalence of Concepts

NP and Equivalence of Concepts

Definition

The class *NP* is the class of languages computable by nondeterministic turing machines in polynomial time.

$$\mathsf{NP} \coloneqq \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$$

NP and Equivalence of Concepts

Definition

The class *NP* is the class of languages computable by nondeterministic turing machines in polynomial time.

$$\mathsf{NP} \coloneqq \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$$

Corollary

 $NP = \{ L \mid L \text{ has a polynomial time verifier } \}$

The HAMPATH Problem

 $\mathsf{HAMPATH} \coloneqq \{\ \langle \mathit{G}, \mathit{s}, \mathit{t} \rangle \mid \mathsf{There} \ \mathsf{is} \ \mathsf{a} \ \mathsf{hamiltonian} \ \mathsf{path} \ \mathsf{between} \ \mathit{s} \ \mathsf{and} \ \mathit{t} \ \}$

The HAMPATH Problem

 $\mathsf{HAMPATH} \coloneqq \{\ \langle \mathit{G}, \mathit{s}, \mathit{t} \rangle \mid \mathsf{There} \ \mathsf{is} \ \mathsf{a} \ \mathsf{hamiltonian} \ \mathsf{path} \ \mathsf{between} \ \mathit{s} \ \mathsf{and} \ \mathit{t} \ \}$

$HAMPATH \in NP$

 $\begin{array}{l} \textbf{Theorem} \\ \textbf{HAMPATH} \in \textbf{NP} \end{array}$

$HAMPATH \in NP$

Theorem HAMPATH ∈ NP

Proof.

Input: $\langle G, s, t \rangle$, where G = (V, E) is a directed graph with nodes s, t.

Function:

- 1: Index the nodes from 1 to m := |V| (number of nodes). Nondeterministically write a list of m numbers $p_1, ..., p_m$, where $p_i \in \{1, ..., m\}$.
- 2: Check for repetitions. If any are found, reject.
- 3: Check if p_1, p_m correspond to the node indices of s, t. If not, reject.
- 4: **for** each $1 \le i \le m 1$ **do**
- 5: Check if $(p_i, p_{i+1}) \in E$. If not, reject.
- 6: Accept.

8

The SUBSET-SUM Problem

$$\begin{aligned} \mathsf{SUBSET\text{-}SUM} &\coloneqq \{ \ \langle S,t \rangle \mid S = \{x_1,...,x_n\} \land \\ &\exists \ \{y_1,...,y_k\} \subseteq S \colon \sum y_i = t \ \} \end{aligned}$$

$\textbf{SUBSET-SUM} \in \textbf{NP}$

 $\begin{array}{l} \textbf{Theorem} \\ \text{SUBSET-SUM} \in \mathsf{NP} \end{array}$

SUBSET-SUM ∈ **NP**

 $\begin{array}{l} \textbf{Theorem} \\ \text{SUBSET-SUM} \in \mathsf{NP} \end{array}$

Proof.

Construct a polynomial time verifier.

$SUBSET-SUM \in NP$

$\begin{array}{l} \textbf{Theorem} \\ \text{SUBSET-SUM} \in \mathsf{NP} \end{array}$

Proof.

Construct a polynomial time verifier.

Input: $\langle \langle S, t \rangle, C \rangle$ with S, C finite set of numbers and c number.

Function:

- 1: Test if $\sum c_i = t$ with $C = \{c_1, ..., c_k\}$.
- 2: Test if $C \subseteq S$.
- 3: Accept if both pass, otherwise reject at one stage.

Additional NP Problems

Additional NP Problems

$$\mathsf{COMPOSITES} = \{ \ \langle \textit{n} \rangle \mid \textit{n} = \textit{pq} \ \mathsf{with} \ \textit{p}, \textit{q} > 1 \ \mathsf{natural} \ \mathsf{numbers} \ \}$$

Additional NP Problems

$$\mathsf{COMPOSITES} = \{ \ \langle \mathit{n} \rangle \mid \mathit{n} = \mathit{pq} \ \mathsf{with} \ \mathit{p}, \mathit{q} > 1 \ \mathsf{natural} \ \mathsf{numbers} \ \}$$

$$\mathsf{CLIQUE} = \{\ \langle \mathit{G}, \mathit{k} \rangle \mid \mathit{G} \ \mathsf{is} \ \mathsf{an} \ \mathsf{undirected} \ \mathsf{graph} \ \mathsf{with} \ \mathsf{a} \ \mathit{k}\text{-clique}\ \}$$

Polynomial Time Reducibility

Definition

A language A is polynomial time reducible to a language B, written $A \leq_p B$, if there is a polynomial time computable function $f \colon \Sigma^* \to \Sigma^*$, where for every $w \in \Sigma^*$:

$$w \in A \leftrightarrow f(w) \in B$$

SAT, 3SAT

SAT, 3SAT

$$\mathsf{SAT} = \{\ \langle \phi \rangle \mid \phi \text{ has a satisfying assignment } \}$$

SAT, 3SAT

$$\mathsf{SAT} = \{\ \langle \phi \rangle \mid \phi \text{ has a satisfying assignment } \}$$

$${\rm 3SAT} = \{ \; \langle \phi \rangle \; | \; \phi \; {\rm is \; a \; satisfiable \; 3cnf-formula \; } \}$$

3SAT ≤_p CLIQUE

Theorem 3SAT \leq_p CLIQUE

$3SAT \leq_{\rho} CLIQUE$

Theorem 3SAT \leq_p CLIQUE

Proof.

Present reduction as function f: Generate an undirected graph G out from the input 3cnf-formula ϕ given. Let ϕ have k clausels.

- Organize clausels in triples $t_1, ..., t_k$
- Connect nodes if not from the same triple
- Or if not contradicting (e.g. x and $\neg x$ are not connected)

$$\phi = (x_1 \vee \overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_1 \vee \overline{x_2})$$

$$\phi = (x_1 \vee \overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_1 \vee \overline{x_2})$$

$$\overline{x_1} \qquad \overline{x_2}$$

$$\overline{x_2}$$

$$\overline{x_1}$$

$$x_1$$

$$x_1$$

$$x_2$$

$$\overline{x_2}$$

$$\phi = (x_1 \vee \overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_1 \vee \overline{x_2})$$

$$\phi = (x_1 \vee \overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_1 \vee \overline{x_2})$$

$$\phi = (x_1 \vee \overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_1 \vee \overline{x_2})$$

Example for the Construction

$$\phi = (x_1 \vee \overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2}) \wedge (\overline{x_2} \vee x_1 \vee \overline{x_2})$$

NP-Completeness

Observation: There is some kind of link between the complexities of problems.

NP-Completeness

Observation: There is some kind of link between the complexities of problems.

Definition

A language B is called NP-complete, if it satisfies two conditions:

- 1. $B \in NP$
- 2. $A \leq_p B$ for every language $A \in NP$, also called *NP-hard*

SAT

 $\mathsf{SAT} = \{\ \langle \phi \rangle \mid \phi \text{ has a satisfying assignment } \}$

SAT

$$\mathsf{SAT} = \{\ \langle \phi \rangle \mid \phi \text{ has a satisfying assignment } \}$$

Fact (Cook-Levin Theorem) SAT is NP-complete

Proof idea.

Corollary

If B is NP-complete and $B \in P$, then P = NP.

Corollary

If B is NP-complete and $B \in P$, then P = NP.

Corollary

If B is NP-complete and $B \leq_p C$ for $C \in NP$, then C is NP-complete.

Corollary

If B is NP-complete and $B \in P$, then P = NP.

Corollary

If B is NP-complete and $B \leq_p C$ for $C \in NP$, then C is NP-complete.

Corollary

CLIQUE is NP-complete.

Resources

Michael Sipser.

Introduction to the Theory of Computation, Third Edition.

Cengage Learning, 2012.

Questions?