最优化第二次作业

1.(3)

将目标函数乘以-1 化为极小模型,增加 x_4, x_5, x_6 为松弛变量, x_7 为人工变量,则目标函数变为 $\min g = x_7$

约束条件变为

$$-x_1 + 2x_2 + 4x_3 + x_4 = 4$$

$$x_1 + x_2 + 2x_3 + x_5 = 5$$

$$-x_1 + 2x_2 + x_3 - x_6 + x_7 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

取x4,x5,x7为基变量,得到初始矩阵为

	x ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	b
X ₄	-1	2	4	1	0	0	0	4
X ₅	1	1	2	0	1	0	0	5
X ₇	-1	2	1	0	0	-1	1	1
检验系数	-1	2	1	0	0	-1	0	1

经过变换后可得第二阶段的最后矩阵为

	x ₁	x ₂	X ₃	X ₄	X ₅	x ₆	b
x ₁	1	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	0	2
x ₂	0	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	1
X ₃	0	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	1
检验系数	0	0	0	$-\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{10}{3}$	-1

所以,最优解为 $x^T = (2,1,1)$,最优值为 1

1.(4)

增加 x_4, x_5 为松弛变量, x_6 为人工变量,则目标函数变为 $\min g = x_6$

约束条件变为

$$2x_1 - x_2 + x_3 = 8$$

$$2x_1 + x_2 - x_4 + x_6 = 2$$

$$x_1 + 2x_2 + x_5 = 10$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

取x3,x6,x5为基变量,得到初始矩阵为

	x ₁	X ₂	X ₃	X ₄	X ₅	х ₆	b
x ₃	2	-1	1	0	0	0	8
x ₆	2	1	0	-1	0	1	2
x ₅	1	2	0	0	1	0	10
检验系数	2	1	0	-1	0	0	2

经过变换后可得第二阶段的最后矩阵为

	x ₁	X ₂	X ₃	X ₄	X ₅	b
x ₃	$\frac{5}{2}$	0	1	0	$\frac{1}{2}$	13
x ₂	$\frac{3}{2}$	1	0	0	$\frac{1}{2}$	5
X ₄	$-\frac{3}{2}$	0	0	1	$\frac{1}{2}$	3
检验系数	0	0	0	0	-1	-2

所以,最优解为 $x^T = (0,5,13)$,最优值为-2

2.(5)

将目标函数乘以-1 化为极小化模型,增加 x_4, x_5 为松弛变量, x_6, x_7 为人工变量 约束条件变为

$$2x_1 + x_2 - x_3 + x_4 = 5$$

$$4x_1 + 3x_2 + x_3 - x_5 + x_6 = 3$$

$$-x_1 + x_2 + x_3 + x_7 = 2$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

取 x_4, x_6, x_7 为基变量,得初始矩阵为

	x ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	b
X ₄	2	1	-1	1	0	0	0	5
x ₆	4	3	1	0	-1	1	0	3
X ₇	-1	1	1	0	0	0	1	2
检验系数	3M-3	4M+2	2M-1	0	-M	0	0	5M

经过变换后, 得最后的矩阵为

	x ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	b
X ₄	3	0	-2	1	0	0	-1	3
x ₂	$\frac{4}{3}$	1	$\frac{1}{3}$	0	0	0	1	2
X ₅	-7	0	2	0	1	-1	3	3
检验系数	-1	0	-3	0	0	- M	-2-M	-4

所以,最优解为 $x^T = (0,2,0)$,最优值为 4

2.(7)

增加x₄为松弛变量, x₅为人工变量, 则约束条件变为

$$2x_1 - 3x_2 + x_3 = 1$$
 $2x_1 + 3x_2 - x_4 + x_5 = 8$ $x_1, x_2, x_3, x_4, x_5 \ge 0$ 取 x_3, x_5 为基变量,得初始矩阵

	x ₁	X ₂	X ₃	X ₄	X ₅	b
x ₃	2	-3	1	0	0	1
X ₅	2	3	0	-1	1	8
检验系数	2M-1	3M-1	0	- M	0	8M+1

经过变换后得最后的矩阵为

	X ₁	X ₂	X ₃	X ₄	X ₅	b
X ₃	4	0	1	-1	1	9
x ₂	$\frac{2}{3}$	1	0	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{8}{3}$
检验系数	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-M + \frac{1}{3}$	$\frac{11}{3}$

所以,最优解为 $x^T = (0, \frac{8}{3}, 9)$,最优值为 $\frac{11}{3}$