# 大数据分析

Scalable Machine Learning decision tree

刘盛华

# Outline

- Decision Tree
- Random Forest
- Gradient Boosted Decision Tree (GBDT)

Cho-Jui Hsieh, UC Davis ECS171: Machine Learning

# **Decision Tree**

- Each node checks one feature x<sub>i</sub>:
  - □ Go left if  $x_i$  < threshold
  - **□** Go right if  $x_i \ge$  threshold



# Play tennis or not Outlook Sunny Rain Overcast Humidity Yes Wind Normal Strong Weak No Yes

# **Decision Tree**

- Strength:
  - □ it's a nonlinear classifier
  - Better interpretability
  - Can naturally handle categorical features
- Computation:
  - □ Training: slow
  - Prediction: fast
  - □ h operations (h: depth of the tree, usually ≤ 15)

# **Splitting the node**

- Classification tree: Split the node to maximize entropy
- Let S be set of data points in a node, c = 1,···, C are labels:

Entroy: 
$$H(S) = -\sum_{c=1}^{C} p(c) \log p(c)$$
,

- where p(c) is the proportion of the data belong to class c.
  - Entropy=0 if all samples are in the same class
  - Entropy is large if p(1) = ··· = p(C)



# **Information Gain**

■ The averaged entropy of a split S → S1, S2

$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

■ Information gain: measure how good is the split

$$H(S) - \left( (|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2) \right)$$



# **Information Gain**



Averaged entropy: 1.51
Information gain: 1.58 – 1.51 = 0.07

# **Splitting the node**

- Given the current note, how to find the best split?
- For all the features and all the threshold
  - Compute the information gain after the split
  - □ Choose the best one (maximal information gain)
- For *n* samples and *d* features: need O(*nd*) time

# **Regression Tree**

- Assign a real number for each leaf
- Usually averaged y values for each leaf (minimize square error)



# **Regression Tree**

Objective function:

$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(\mathbf{x}_i))^2 + (\text{Regularization})$$

The quality of partition  $S = S_1 \cup S_2$  can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

where 
$$y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$$
,  $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$ 

Find the best split:

Try all the features & thresholds and find the one with minimal objective function

#### **Parameters**

- Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)
- Single decision tree is not very powerful· · ·
- Can we build multiple decision trees and ensemble them together?

# Outline

- Decision Tree
- Random Forest
- Gradient Boosted Decision Tree (GBDT)

Cho-Jui Hsieh, UC Davis ECS171: Machine Learning

## **Random Forest**

- Random Forest (Bootstrap ensemble for decision trees):
  - Create T trees
  - Learn each tree using a subsampled dataset S<sub>i</sub> and subsampled feature set D<sub>i</sub>
  - Prediction: Average the results from all the T trees
- Benefit:
  - Avoid over-fitting
  - Improve stability and accuracy
- Good software available:
  - □ R: "randomForest" package Python: sklearn



#### **Building Decision Trees using MapReduce**

- Parallel Learner for Assembling Numerous
   Ensemble Trees [Panda et al., VLDB '09]
  - A sequence of MapReduce jobs that builds a decision tree
  - Spark MLlib Decision Trees are based on PLANET

# Outline

- Decision Tree
- Random Forest
- **Gradient Boosted Decision Tree (GBDT)**

Cho-Jui Hsieh, UC Davis ECS171: Machine Learning

#### **Boosted Decision Tree**

■ Minimize loss  $\ell(y, F(x))$  with  $F(\cdot)$  being ensemble trees

$$F^* = \underset{F}{\operatorname{argmin}} \sum_{i=1}^n \ell(\mathbf{y}_i, F(\mathbf{x}_i))$$
 with  $F(\mathbf{x}) = \sum_{m=1}^T f_m(\mathbf{x})$ 

(each  $f_m$  is a decision tree)

- $\blacksquare$  Direct loss minimization: at each stage m, find the best function to minimize loss
  - solve  $f_m = \underset{f_m}{\operatorname{argmin}} \sum_{i=1}^N \ell(y_i, F_{m-1}(\mathbf{x}_i) + f_m(\mathbf{x}_i))$  update  $F_m \leftarrow F_{m-1} + f_m$

 $F_m(x) = \sum_{j=1}^m f_j(x)$  is the prediction of x after m iterations.

- Two problems:
  - Hard to implement for general loss
  - Tend to overfit training data

#### **Gradient Boosted Decision Tree (GBDT)**

Approximate the current loss function by a quadratic approximation:

$$\sum_{i=1}^{n} \ell_i(\hat{y}_i, f_m(\mathbf{x}_i)) \approx \sum_{i=1}^{n} \left(\ell_i(\hat{y}_i) - g_i f_m(\mathbf{x}_i) + \frac{1}{2} h_i f_m(\mathbf{x}_i)^2\right)$$

$$= \sum_{i=1}^{n} \frac{h_i}{2} \|f_m(\mathbf{x}_i) - g_i/h_i\|^2 + \text{constant}$$

where  $g_i = \partial_{\hat{y}_i} \ell_i(\hat{y}_i)$  is gradient,  $h_i = \partial_{\hat{y}_i}^2 \ell_i(\hat{y}_i)$  is second order derivative

Gradient boosting (Freidman 1999)

## **Gradient Boosted Decision Tree (GBDT)**

■ Finding  $f_m(\mathbf{x}, \theta_m)$  by minimizing the loss function:

$$\underset{f_m}{\operatorname{argmin}} \sum_{i=1}^{N} [f_m(\boldsymbol{x}_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- ullet reduce the training of any loss function to regression tree (just need to compute  $g_i$  for different functions)
- $h_i = \alpha$  (fixed step size) for original GBDT.
- XGboost shows computing second order derivative yields better performance

#### Algorithm:

Computing the current gradient for each  $\hat{y}_i$ . Building a base learner (decision tree) to fit the gradient. Updating current prediction  $\hat{y}_i = F_m(\mathbf{x}_i)$  for all i.

#### **Gradient Boosted Decision Tree (GBDT)**

#### Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient  $\frac{\partial \ell}{\partial F}$



# **Gradient Boosted Decision Tree (GBDT)**

#### Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient  $\frac{\partial \ell}{\partial F}$



$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$

# **Gradient Boosted Decision Tree (GBDT)**

#### Key idea:

- Each base learner is a decision tree
- Each regression tree approximates the functional gradient  $\frac{\partial \ell}{\partial F}$



$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$

## **Gradient Boosted Decision Tree (GBDT)**

- Key idea:
  - Each base learner is a decision tree
  - Each regression tree approximates the functional gradient  $\frac{\partial \ell}{\partial F}$



## **Gradient Boosted Decision Tree (GBDT)**

- Key idea:
  - Each base learner is a decision tree
  - Each regression tree approximates the functional gradient  $\frac{\partial \ell}{\partial f}$



Final prediction  $F(x_i) = \sum_{j=1}^{T} f_j(x_i)$ 

Questions?