Linear Regression: Example Simulation

Example

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

Assumptions

Regression Equation:	y	=	ω_0	+	$\omega_1 x_1$	+	$\omega_2 x_2$
----------------------	---	---	------------	---	----------------	---	----------------

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

Error Function:
$$e=rac{1}{2}\sum_{i=1}^m\left(\left(\omega_0+\omega_1x_1(i)+\omega_2x_2(i)
ight)-y(i)
ight)^2$$

$$egin{aligned} \omega_0(new) &= \omega_0(old) - lpha rac{\delta e}{\delta \omega_0} \ \omega_1(new) &= \omega_1(old) - lpha rac{\delta e}{\delta \omega_1} \ \omega_2(new) &= \omega_2(old) - lpha rac{\delta e}{\delta \omega_2} \end{aligned}$$

Simulation

Initial Values: Assume, $\omega_0=0.5$ $\omega_1=0.5$ $\omega_2=0.5$ $\alpha=0.25$

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

$$rac{\delta e}{\delta \omega_0} = \sum_{i=1}^4 ((\omega_0 + \omega_1 x_1(i) + \omega_2 x_2(i)) - y(i))$$

Slope Equations:

$$rac{\delta e}{\delta \omega_1} = \sum_{i=1}^4 ((\omega_0 + \omega_1 x_1(i) + \omega_2 x_2(i)) - y(i)). \, x_1(i)$$

$$rac{\delta e}{\delta \omega_2} = \sum_{i=1}^4 ((\omega_0 + \omega_1 x_1(i) + \omega_2 x_2(i)) - y(i)). \, x_2(i)$$

Simulation: Iteration 1

Data Sample	Predicted Value (p)	Expected Value (y)	(p-y)	(p-y)*x1	(p-y)*x2
1	7	70	-63	-126	-693
2	7.5	85	-77.5	-387.5	-697.5
3	5.5	80	-74.5	-223.5	-521.5
4	6.5	100	-93.5	-654.5	-467.5
Total Sum			-308.5	-1391.5	-2379.5

$$egin{aligned} \omega_0(new) &= 0.5 - 0.25 imes (-308.5) = 77.625 \ \omega_1(new) &= 0.5 - 0.25 imes (-1391.5) = 348.375 \ \omega_2(new) &= 0.5 - 0.25 imes (-2379.5) = 595.375 \end{aligned}$$

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

$$egin{aligned} \omega_0 &= 0.5 \ \omega_1 &= 0.5 \ \omega_2 &= 0.5 \ lpha &= 0.25 \end{aligned}$$

Simulation: Iteration 2

Data Sample	Predicted Value (p)	Expected Value (y)	(p-y)	(p-y)*x1	(p-y)*x2
1	7323.5	70	7253.5	14507	79788.5
2	7177.875	85	7092.875	35464.375	63835.875
3	5290.375	80	5210.375	15631.125	36472.625
4	5493.125	100	5393.125	37751.875	26965.625
Total Sum			24949.875	103354.375	207062.625

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

$$\omega_0 = 77.625 \ \omega_1 = 348.375 \ \omega_2 = 595.375 \ lpha = 0.25$$

$$egin{aligned} \omega_0(new) &= 77.625 - 0.25 imes (24949.875) = -6159.844 \ \omega_1(new) &= 348.375 - 0.25 imes (103354.375) = -25490.219 \ \omega_2(new) &= 595.375 - 0.25 imes (207062.625) = -51170.281 \end{aligned}$$

Simulation: Iteration 3

Data Sample	Predicted Value (p)	Expected Value (y)	(p-y)	(p-y)*x1	(p-y)*x2
1	-620013.373	70	-620083.373	-1240166.746	-6820917.103
2	-594143.468	85	-594228.468	-2971142.34	-5348056.212
3	-440822.468	80	-440902.468	-1322707.404	-3086317.276
4	-440442.782	100	-440542.782	-3083799.474	-2202713.91
Total Sum			-2095757.09 1	-8617815.964	-17458004.5

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

$$egin{aligned} \omega_0 &= -6159.844 \ \omega_1 &= -25490.219 \ \omega_2 &= -51170.281 \ lpha &= 0.25 \end{aligned}$$

$$egin{aligned} \omega_0(new) &= -6159.844 - 0.25 imes (-2095757.091) = 517779.429 \ \omega_1(new) &= -25490.219 - 0.25 imes (-8617815.964) = 2128963.772 \ \omega_2(new) &= -51170.281 - 0.25 imes (-174580004.5) = 4313330.844 \end{aligned}$$

Simulation: Iteration

Data Sample	Predicted Value (p)	Expected Value (y)	(p-y)	(py/SI)	(p-y)*x2
1				0	Ò
2			^*	o xo	
3					
4				0 1	
	Total Sum		· Q		•

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

$$egin{aligned} \omega_0 &= 517779.429 \ \omega_1 &= 2128963.772 \ \omega_2 &= 4313330.844 \ lpha &= 0.25 \end{aligned}$$

Linear Regression:

Example Simulation Using Linear Algebra

Simulation

x1 (length)	x2 (weight)	y (price)
2	11	70
5	9	85
3	7	80
7	5	100

$$X = egin{bmatrix} 1 & 2 & 11 \ 1 & 5 & 9 \ 1 & 3 & 7 \ 1 & 7 & 5 \end{bmatrix} \hspace{1cm} Y = egin{bmatrix} 70 \ 85 \ 80 \ 100 \end{bmatrix} \hspace{1cm} X^T = egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 5 & 3 & 7 \ 11 & 9 & 7 & 5 \end{bmatrix}$$

$$Y=egin{bmatrix} 70\ 85\ 80\ 100 \end{bmatrix}$$

$$X^T = egin{bmatrix} 1 & 1 & 1 & 1 \ 2 & 5 & 3 & 7 \ 11 & 9 & 7 & 5 \end{bmatrix}$$

$$W = \left(X^T X\right)^{-1} X^T Y$$

Simulation

$$W = \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 3 & 7 \\ 11 & 9 & 7 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 11 \\ 1 & 5 & 9 \\ 1 & 3 & 7 \\ 1 & 7 & 5 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 3 & 7 \\ 11 & 9 & 7 & 5 \end{bmatrix} \begin{bmatrix} 70 \\ 85 \\ 80 \\ 100 \end{bmatrix}$$

$$= \begin{pmatrix} \begin{bmatrix} 4 & 17 & 32 \\ 17 & 87 & 123 \\ 32 & 123 & 276 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 335 \\ 1505 \\ 2595 \end{bmatrix}$$

$$= \begin{bmatrix} 17.625 & -1.5 & -1.375 \\ -1.5 & 0.15873 & 0.10317 \\ -1.375 & 0.10317 & 0.11706 \end{bmatrix} \begin{bmatrix} 335 \\ 1505 \\ 2595 \end{bmatrix}$$

$$= \begin{bmatrix} 78.75 \\ 4.1148 \\ -1.58345 \end{bmatrix}$$

Thank You