Тема 25. Операції та властивості графів

25.1. Валентність вершин

<u>Означення 25.1.</u> Кількість ребер, які інцидентні вершині v, називається **степенем** (або **валентністю**) вершини v і позначається d(v).

Степінь вершин легко розрахувати за матрицями інцидентності E або суміжності Δ . Справді, в i-му рядку матриці інцидентності, який відповідає вершині v_i , одиниці знаходяться на перетині зі стовпцями, яким відповідають інцидентні цій вершині ребра, а інші елементи стовпця дорівнюють 0. Отже,

$$d(v_i) = \sum_{i=1}^m \varepsilon_{ij} .$$

Елементи δ_{ij} матриці суміжності – це кількість ребер, інцидентних вершинам v_i та v_j . Звідси

$$d(v_i) = \sum_{i=1}^n \delta_{ij} .$$

При підрахування степенів вершин за цими формулами кожна петля вносить у степінь інцидентній їй вершині 1. Проте при зображенні петлі на рисунку до цієї вершини примикають два кінці петлі, тобто петля вносить у цей степінь 2. Щоб таким чином урахувати внесок петель у степінь, треба трохи ускладнити формулу для його обчислення. Так, для матриці суміжності формула набуває вигляду

$$d(v_i) = \sum_{i=1}^n \delta_{ij} + \delta_{ii}$$

Якщо у матриці інцидентності петля відмічається значенням 1, то формула для $d(v_i)$ має змінитись наступним чином:

$$d(v_i) = \sum_{i=1}^m \varepsilon_{ij} (3 - \sum_{k=1}^n \varepsilon_{kj}).$$

Коли *j*-те ребро звичайне, $\sum_{k=1}^{n} \varepsilon_{kj} = 2$, і відповідний доданок зовнішньої суми дорівнює $2\varepsilon_{ij}$, тобто 1 для ребер інцидентних вершині v_i та 0 – для інших. Якщо ж воно є петлею, то $\sum_{k=1}^{n} \varepsilon_{kj} = 1$, а доданок зовнішньої суми дорівнює $2\varepsilon_{ij}$, тобто 2 для петель, інцидентних вершині v_i , та 0 – для інших.

<u>Означення 25.2.</u> Якщо степінь вершини дорівнює нулю (тобто d(v) = 0), то вершина має назву **ізольованою**. Якщо степінь вершини дорівнює одиниці (тобто d(v) = 1), то вершина називається кінцевою або висячою.

<u>Означення 25.3.</u> Граф називається **однорідним степеня** k, якщо степені всіх його вершин дорівнюють k і, отже, є рівними між собою.

На рис. 25.1 зображені приклади регулярних графів ступеня 3, які також називаються **кубічними** або **трьохвалентними**. Другий граф також має назву графу Петерсена.

Рис. 25.1.

<u>Означення 25.4.</u> Для орграфу кількість дуг, які виходять з вершини v, називається **півстепенем виходу**, а вхідних — **півстепенем заходу**. Позначаються ці числа, відповідно, $d^{-}(v)$ та $d^{+}(v)$.

Петля дає внесок 1 в обидві ці степені. Локальні степені вершин орграфу визначаються через коефіцієнти δ_{ij} його матриці суміжності:

$$d^{-}(v_{i}) = \sum_{i=1}^{n} \delta_{ij}, d^{+}(v_{i}) = \sum_{k=1}^{n} \delta_{ki}.$$

Вираз їх через коефіцієнти матриці інцидентності – значно складніший.

<u>Теорема 25.1</u> (Ейлера). Сума степенів вершин графу дорівнює подвоєній кількості ребер:

$$\sum_{v \in V} d(v) = 2m.$$

Доведення. При підрахуванні суми степенів вершин, кожне ребро враховується двічі: для одного кінця ребра і для другого. ▶

Наслідок 1. Кількість вершин непарного степеню парна.

Доведення. За теоремою Ейлера сума степенів усіх вершин – парне число. Сума степенів вершин парної степені – парна, значить, сума степенів вершин непарної степені також парна. ▶

Наслідок 2. Сума півстепенів вузлів орграфу дорівнює подвійній кількості дуг:

$$\sum_{v \in V} d^{-}(v) + \sum_{v \in V} d^{+}(v) = 2m.$$

Доведення. Сума півстепенів вузлів орграфу дорівнює сумі степенів вершин графу, отриманого з орграфу, в якому «забуті» орієнтації дуг. ▶

25.2. Частини графу. Підграфи. Дводольні графи

<u>Означення 25.5.</u> Граф H називається **частиною графу** G ($H \subset G$), якщо множина його вершин V(H) міститься в множині V(G), а множина E(H) ребер — в E(G). Якщо V(H) = V(G), то частина графу називається **сурграфом**.

Наприклад, існує нульовий сурграф, множина ребер якого є порожньою. Сурграф H покриває вершини неорієнтованого графу G (або є покривним), якщо будь-яка вершина останнього — інцидентна хоча б одному ребру з H. Таким чином, якщо в графі G існує ізольована вершина v, неінцидентна жодному ребру, то покривного сурграфа цього графу не існує.

Будь-яку множину ребер B графу G можна вважати множиною ребер деякої частини H. Множина вершин цієї частини складається з вершин, інцидентних елементам множини B. Якщо B ϵ множиною ребер іншої частини H', то $H \subset H'$, причому вершини H', що не належать H, у графі H' ϵ ізольованими.

<u>Означення 25.6.</u> **Підграфом** графу G називається частина графу з множиною вершин $U \subset V(G)$, якщо її ребрами є всі ребра з E(G), обидва кінці яких належать U.

<u>Означення 25.7.</u> Граф називається дводольним або двочастковим, якщо існує таке розбиття множини його вершин на два класи, при якому кінці кожного ребра лежать в різних класах.

Дводольний граф можна визначити іншим шляхом — в термінах розфарбування його вершин двома кольорами, наприклад, червоним і синім. При цьому граф називається дводольним, якщо кожну його вершину можна пофарбувати синім або червоним кольором так, щоб кожне його ребро мало один кінець червоний, а другий — синій.

Якщо в дводольному графі довільні дві вершини з різних класів суміжні, то такий граф називається **повним дводольним графом**. Повний дводольний граф, у якого один клас має m вершин, а другий — n вершин, позначають K_{mn} .

Повний дводольний граф виду $K_{1,n}$ називається **зірковим графом**. На рис. 25.2 зображений граф $K_{1,5}$.

Аналогічно можна ввести k-дольні графи. Граф називається k-дольним графом, якщо існує таке розбиття множини його вершин на k класів, при якому всяке ребро графу з'єднує дів вершини різних класів.

Рис. 25.2.

25.3. Маршрути, ланцюги та цикли

<u>Означення 25.8.</u> Нехай G – неорієнтований граф. **Маршрутом** M у графі G називається така скінченна або нескінченна послідовність вершин і ребер, які чергуються,

$$(..., v_1, e_1, v_2, e_2, ..., v_{n-1}, e_{n-1}, v_n, ...),$$

що кожні два сусідні ребра e_{i-1} та e_i мають спільну інцидентну вершину v_i .

Очевидно, маршрут M можна задавати послідовністю $(..., v_1, v_2, ..., v_n, ...)$ його вершин (у звичайному графі), а також послідовністю $(..., e_1, e_2, ..., e_n, ...)$ ребер, що й робитимемо далі. Одне і те саме ребро може зустрічатися в маршруті кілька разів. Надалі будуть розглядатися в основному скінченні маршрути. У таких маршрутах існують перше e_1 та останнє e_n ребра. Вершина v_0 , інцидентна ребру e_1 , називається початком маршруту. Якщо ребра e_1 та e_2 – кратні, то потрібна спеціальна вказівка, яку з двох інцидентних ним вершин слід вважати початком маршруту. Аналогічно означається кінець маршруту. Вершини, інцидентні ребрам маршруту, крім початкової і кінцевої, називаються внутрішніми, або проміжними.

Оскільки різні ребра маршруту можуть бути інцидентними одній і тій самій вершині, початок або кінець маршруту може одночасно виявитися внутрішньою вершиною.

<u>Означення 25.9.</u> Нехай маршрут $M(e_1, e_2, ..., e_n)$ має початок v_0 і кінець v_n . Тоді його називають **сполучним**. Число ребер маршруту є його довжиною. Якщо $v_0=v_n$, то маршрут називають замкненим, або **циклічним**. Відрізок $(e_i, e_{i+1}, ..., e_j)$ скінченного або нескінченного маршруту M є маршрутом. Він називається ділянкою маршруту M.

<u>Означення 25.10.</u> Маршрут M називається **ланцюгом**, якщо кожне ребро зустрічається в ньому не більше одного разу, і **простим ланцюгом**, якщо будь-яка вершина, крім, можливо, початкової, зустрічається в ньому не більш як один раз. Якщо ланцюг є замкненим, то його називають **циклом**, а якщо простий ланцюг — замкнений, то це — простий цикл. Граф, якій не містить циклів, називається **ациклічним**.

В орієнтованому графі маршрут називається шляхом. Відповідно можна перенести також визначення ланцюга, простого ланцюга та циклу. Простий цикл в орієнтованому графі ще називається контуром.

Граф, якій складається з простого циклу з k вершинами, позначається C_k .

25.4. Операції над графами

Введемо наступні операції над графами:

1. Доповнення графу $G_1(V_1,E_1)$ (позначається \overline{G} (V_1,E_1)) називається граф $G_2(V_2,E_2)$, де

$$V_2=V_1$$
 та $E_2=\overline{E}_1=\{\ e{\in}\,V_1{ imes}\,V_1:e{
ot}{\notin}\,E_1\ \}.$

2. **Об'єднанням графів** $G_1(V_1, E_1)$ та $G_2(V_2, E_2)$ (позначається - $G_1(V_1, E_1) \cup G_2(V_2, E_2)$, за умовою $V_2 \cap V_1 = \emptyset$, $E_2 \cap E_1 = \emptyset$) називається граф G(V, E), де

$$V = V_1 \cup V_2$$
 Ta $E = E_1 \cup E_2$.

3. **З'єднання графів** $G_1(V_1, E_1)$ та $G_2(V_2, E_2)$ (позначається - $G_1(V_1, E_1)+G_2(V_2, E_2)$, за умовою $V_2 \cap V_1 = \emptyset$, $E_2 \cap E_1 = \emptyset$) називається граф G(V, E), де

$$V = V_1 \cup V_2$$
 Ta $E = E_1 \cup E_2 \cup \{ e = (v_1, v_2) : v_1 \in V_1, v_2 \in V_2 \}.$

4. Видалення вершини v з графу $G_1(V_1, E_1)$ (позначається $-G_1(V_1, E_1)$ –v, за умовою $v \in V_1$) дає граф $G_2(V_2, E_2)$, де

$$V_2 = V_1 \setminus \{v\}$$
 та $E_2 = E_1 \setminus \{e = (v_1, v_2) : v_1 = v \text{ aбo } v_2 = v\}.$

5. Видалення ребра e з графу $G_1(V_1, E_1)$ (позначається – $G_1(V_1, E_1)$ –e, за умовою $e \in E_1$) дає граф $G_2(V_2, E_2)$, де

$$V_2 = V_1 \text{ Ta } E_2 = E_1 \setminus \{e\}.$$

6. Додавання вершини v в граф $G_1(V_1, E_1)$ (позначається — $G_1(V_1, E_1)+v$, за умовою $v \notin V_1$) дає граф $G_2(V_2, E_2)$, де

$$V_2 = V_1 \cup \{v\}$$
 Ta $E_2 = E_1$.

7. Додавання ребра e в граф $G_1(V_1, E_1)$ (позначається $-G_1(V_1, E_1) + e$, за умовою $e \notin E_1$) дає граф $G_2(V_2, E_2)$, де

$$V_2 = V_1 \text{ Ta } E_2 = E_1 \cup \{e\}.$$

8. Стягування підграфу A графу $G_1(V_1, E_1)$ (позначається $-G_1(V_1, E_1)/A$, за умовою $A \subset V_1$, $v \notin V_1$) дає граф $G_2(V_2, E_2)$, де

$$V_2 = (V_1 \setminus A) \cup \{v\},\$$

$$E_2 = E_1 \setminus \{ e = (u, w) : u \in A \text{ afo } w \in A \} \cup \{ e = (u, v) : u \in \Gamma(A) \setminus A \}.$$

9. **Розмноження вершини** v графу $G_1(V_1, E_1)$ (позначається $-G_1(V_1, E_1) \uparrow v$ за умовою $v \in V_1$, $v' \notin V_1$) дає граф $G_2(V_2, E_2)$, де

$$V_2 = V_1 \cup \{v'\}$$
 Ta $E_2 = E_1 \cup \{(v,v')\} \cup \{e=(u,v') \mid u \in \Gamma(v)\}.$

Легко показати, що виконуються наступні співвідношення:

- 1. $K_{m,n} = \overline{K}_m + \overline{K}_n$;
- 2. $K_{p-1} = K_p v$;
- 3. $G + v = G \cup K_1$;
- 4. $K_{p-1} = K_p / K_2$;
- 5. $K_p / K_{p-1} = K_2$;
- 6. $K_p = K_{p-1} \uparrow v$.

25.5. Метричні характеристики графів

<u>Означення 25.10.</u> Довжина найменшого ланцюга між вершинами v і w звичайного зв'язного графу G називається відстанню d(v, w) між цими вершинами, а сам найкоротший ланцюг називається **геодезичним**.

Очевидно, для неорієнтованого графу виконуються наступні властивості:

- $d(v, w) \ge 0$;
- $d(v, w) = 0 \Leftrightarrow v=w$;
- d(v, w) = d(w, v).

Множина вершин, які знаходяться на однаковій відстані n від вершини v (позначається D(v, n)), називається **ярусом**:

$$D(v, n) = \{ w \in V : d(v, w) = n \}.$$

Означення 25.11. Діаметром графу G називається довжина найдовшої геодезичної.

$$D(G) = \max_{v,w \in V} d(v,w).$$

Оберемо деяку фіксовану вершину c і позначимо $r(c) = \max_{v \in V} d(c, v)$. Величина r(c)

називається максимальною віддалю від вершини c, або **ексцентриситетом**. Назвемо c_0 **центральною** вершиною графу G, якщо

$$R(G) = r(c_0) = \min_{c \in V} r(c).$$

Величина R(G) називається **радіусом** графу G, а будь-який найкоротший ланцюг від центральної вершини c_0 до максимально віддаленої від нього вершини — **радіальним**. Множина центральних вершин називається центром та позначається C(G):

$$C(G) = \{ v \in V : r(v) = R(G) \}.$$

Наприклад, на рис. 25.3 вказані ексцентриситети вершин та центри двох графів. Вершини, які утворюють центр графу, виділені більшим розміром.

