Analiza Matematyczna 2

Aleksander Lasecki

Na podstawie wykładu prof. dr hab. Pawła Krupskiego

Spis treści

1	\mathbf{Prz}	estrzenie Euklidesowe	3		
	1.1	Podstawowe zagadnienia	3		
	1.2	Iloczyn skalarny	3		
	1.3	Nierówność Cauchy'ego-Schwarza	3		
	1.4	Nierówność trójkąta	3		
	1.5	Własności odległości	3		
	1.6	Odległość Euklidesowa	3		
2	Cią	$\mathbf{gi} \mathbf{w} \mathbb{R}^n$	3		
	2.1	Definicja granicy ciągu	3		
	2.2	Zbieżność po współrzędnych	4		
	2.3	Warunek Cauchy'ego	4		
	2.4	Własności ciągów zbieżnych	4		
	2.5	Punkty skupienia	4		
	2.6	Zbiory zwarte	4		
3	Funkcje z \mathbb{R}^n w \mathbb{R}^m				
	3.1	Definicja	4		
	3.2	Granica odwzorowania	5		
	3.3	Ciągłość	5		
	3.4	Twierdzenie o ciągłości po współrzędnych	5		
	3.5	Twierdzenie o niezmienności zwartości	5		
4	Poc	chodne cząstkowe	5		
	4.1	Definicja	5		
	4.2	Pochodna kierunkowa	5		
	4.3	Pochodne cząstkowe wyższego stopnia	5		
	4.4	Gradient funkcji	6		
	4.5	Różniczkowalność funkcji wielu zmiennych	6		
	4.6	Własności funkcji różniczkowalnej	6		
	4.7	Pochodna funkcji wektorowej	6		
	4.8	Wektor styczny jednostkowy	6		
	4.0	Dashadna nala waktayawaga	-		

	4.10	Pochodna cząstkowa funkcji złożonej	7
	4.11	Twierdzenie Lagrange'a o wartości średniej	7
	4.12	Wzór Taylora dla funkcji mającej ciągłe pochodne cząstkowe pierwszego i drugiego rzędu $\ \ldots \ \ldots$	7
	4.13	Aproksymacja funkcji wielu zmiennych	8
5	Eks	trema funkcji	8
	5.1	Ekstrema funkcji	8
	5.2	Kryterium na ekstrema lokalne	8
	5.3	Warstwica funkcji	8
	5.4	Prostopadłość gradientu do warstwicy	8
	5.5	Równanie płaszczyzny stycznej	8
	5.6	Ekstrema warunkowe	8
6	Cał	ki podwójne	9
	6.1	Definicja	9
	6.2	Własności	9
	6.3	Całki iterowane	10
	6.4	Inne zbiory całkowania	10
	6.5	Niezależność w sensie Jordana	10
	6.6	Kryterium niezależności w sensie Jordana dla zbioru płaskiego	10
	6.7	Objętość bryły	10
	6.8	Pole płata powierzchni	10
7	Cał	ki potrójne	10
	7.1	Definicja	10
8	Cał	kowanie przez podstawienie i Jakobian przejścia	11
	8.1	Twierdzenie o podstawianiu	11
	8.2	Współrzędne biegunowe	11
	8.3	Współrzędne sferyczne	11
	8.4	Współrzędne cylindryczne	12

1 Przestrzenie Euklidesowe

1.1 Podstawowe zagadnienia

 \mathbb{R}^n - przestrzeń liniowa nad ciałem \mathbb{R}

Odległość między wektorami: $\overrightarrow{AB} = [b_1 - a_1; b_2 - a_2; \dots; b_n - a_n]$

Wektor zerowy: $\mathcal{O}=(0,0,\ldots,0)$ Jeśli wektory \overrightarrow{x} oraz \overrightarrow{y} są równoległe to $t\overrightarrow{x}=\overrightarrow{y}$ dla pewnego $t\in\mathbb{R}$

Kula o środku w punkcie \overrightarrow{x} i promieniu $r: \mathcal{K}(\overrightarrow{x}, r) = \overrightarrow{x} + \mathcal{K}(\mathcal{O}, r)$

1.2 Iloczyn skalarny

$$\overrightarrow{x} \cdot \overrightarrow{y} = \sum_{i=1}^{n} x_i y_i$$

1.3 Nierówność Cauchy'ego-Schwarza

$$\overrightarrow{x} \cdot \overrightarrow{y} \leqslant ||x|| \cdot ||y||$$

1.4 Nierówność trójkąta

$$\|\overrightarrow{x} + \overrightarrow{y}\| \leqslant \|\overrightarrow{x}\| + \|\overrightarrow{y}\|$$

1.5 Własności odległości

1.
$$\|\overrightarrow{x} - \overrightarrow{y}\| = 0 \iff \overrightarrow{x} = \overrightarrow{y}$$

$$2. \|\overrightarrow{x} - \overrightarrow{y}\| = \|\overrightarrow{y} - \overrightarrow{x}\|$$

3.
$$\|\overrightarrow{x} - \overrightarrow{y}\| \le \|\overrightarrow{x} - \overrightarrow{z}\| + \|\overrightarrow{z} - \overrightarrow{y}\|$$

1.6 Odległość Euklidesowa

Odległość euklidesowa definiuje funkcję:

$$d: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$$

Funkcja d nazywa się metryką euklidesową. Ogólnie każdą funkcję $d: \mathcal{X}^n \times \mathcal{X}^n \to [0, \infty)$ spełniającą warunki z **1.5** nazywamy **metryką**, a zbiór \mathcal{X} na którym ta funkcja działa **przestrzenią metryczną** z metryką d.

Uwaga: $\overrightarrow{x} \cdot \overrightarrow{y} = \|\overrightarrow{x}\| \cdot \|\overrightarrow{y}\| \cos \alpha, \ \alpha[0; \pi]$

2 Ciągi w \mathbb{R}^n

2.1 Definicja granicy ciągu

$$\lim_{k \to \infty} P_k = P \iff \lim_{k \to \infty} ||P_k - P|| = 0$$

3

2.2 Zbieżność po współrzędnych

Niech $P_k = (p_{k_1}, \dots, p_{k_n})$ oraz $P = (p_1, \dots, p_n)$ wtedy:

$$\lim_{k \to \infty} P_k = P \iff (\forall i \in [n]) \left(\lim_{k \to \infty} p_{k_i} = p_i \right)$$

2.3 Warunek Cauchy'ego

$$(\forall \varepsilon > 0) (\exists k_0) (\forall m, l \geqslant k_o) (||P_m - P_l|| < \varepsilon)$$

Czyli dla zbieżności po współrzędnych mamy:

$$(\forall i \in [n]) \left(|p_{m_i} - p_{l_i}| \leqslant \sqrt{\sum_{j=1}^n (p_{m_j} - p_{l_j})^2} < \varepsilon \right)$$

2.4 Własności ciągów zbieżnych

- 1. Jest tylko jedna granica
- 2. Podciąg ciągu zbieżnego jest zbieżny do tej samej granicy
- 3. Każdy ciąg zbieżny jest ograniczony
- 4. Ciąg spełniający warunek Cauchy'ego jest zbieżny
- 5. $\lim (A_k + B_k) = A + B$
- 6. $\lim (A_k B_k) = A B$
- 7. $\lim (A_k \cdot B_k) = A \cdot B$
- 8. Podciąg podciągu jest podciągiem ciągu

2.5 Punkty skupienia

Punkt zbioru \mathcal{D} , taki, że istnieje ciąg postaci $\left\{\overrightarrow{P_k}\right\}_{k=1}^{\infty}\subset\mathcal{D}$ do niego zbieżny.

2.6 Zbiory zwarte

Zbiór $\mathcal{D} \subset \mathbb{R}^n$ jest **domknięty** \iff każdy ciąg zbieżny postaci $\left\{\overrightarrow{P_k}\right\}_{k=1}^{\infty} \subset \mathcal{D}$ ma granicę w \mathcal{D} .

Zbiór jest **ograniczony** jeśli zawiera się właściwie w pewnej kuli.

Zbiór jest zwarty jeśli jest domknięty oraz ograniczony.

Suma skończonej ilości zbiorów domkniętych jest zbiorem domkniętym.

Suma skończonej ilości zbiorów zwartych jest zbiorem zwartym.

3 Funkcje z \mathbb{R}^n w \mathbb{R}^m

3.1 Definicja

$$f: \mathcal{D} \to \mathbb{R}^m, \ \mathcal{D} \subset \mathbb{R}^n$$

3.2 Granica odwzorowania

Jeśli $\overrightarrow{x_0}$ jest punktem skupienia \mathcal{D} to:

$$\lim_{\overrightarrow{x} \to \overrightarrow{x_0}} f(\overrightarrow{x}) = \overrightarrow{p} \in \mathbb{R}^n \iff (\forall \text{ ciag } \overrightarrow{x_k} \to \overrightarrow{x_0}, \overrightarrow{x_k} \in \mathcal{D}) \left(\lim_{k \to \infty} f(\overrightarrow{x_k}) = \overrightarrow{p} \right)$$

3.3 Ciągłość

 $f: \mathcal{D} \to \mathbb{R}^m$ jest ciągła w $\overrightarrow{x_0} \in \mathcal{D}$ gdy $\lim_k f(\overrightarrow{x_k}) = f(\overrightarrow{x_0})$ dla każdego ciągu $\overrightarrow{x_k} \to \overrightarrow{x_0}, \overrightarrow{x_k} \in \mathcal{D}$.

3.4 Twierdzenie o ciągłości po współrzędnych

 $f: \mathcal{D} \to \mathbb{R}^m, \ \mathcal{D} \in \mathbb{R}^n$ jest ciągła w $\overrightarrow{x_0}$ wtedy i tylko wtedy gdy:

$$f(\overrightarrow{x}) = (f_1(\overrightarrow{x}), f_2(\overrightarrow{x}), \dots, f_m(\overrightarrow{x}))$$

 $(\forall i \leq m) (f_i(\overrightarrow{x}) \text{ jest ciagla w } \overrightarrow{x_0})$

3.5 Twierdzenie o niezmienności zwartości

Jeśli \mathcal{D} jest zbiorem zwartym (gdzie $\mathcal{D} \subset \mathbb{R}^n$) oraz $f : \mathcal{D} \to \mathbb{R}^m$ jest ciągła, to $f [\mathcal{D}]$ jest zwarty w \mathbb{R}^m . Wniosek: Każda funkcja ciągła $f : \mathcal{D} \to \mathbb{R}$, gdzie \mathcal{D} jest zwarty w \mathbb{R}^n ma wartość najmniejszą i największą.

4 Pochodne cząstkowe

4.1 Definicja

Niech $f: \mathcal{D} \to \mathbb{R}$, gdzie $\mathcal{D} \subseteq \mathbb{R}^n$ oraz niech $\overrightarrow{p} \in \mathbb{R}^n$ będzie ustalonym punktem skupienia dziedziny. Wtedy:

$$\frac{\partial f}{\partial x_i}(\overrightarrow{p}) = \lim_{h \to 0} \frac{f(p_0, \dots, p_{i-1}, p_i + h, p_{i+1}, \dots, p_n) - f(p_0, \dots, p_n)}{h}$$

nazywamy pochodną cząstkową f po x_i w punkcje \overrightarrow{p} , oznaczaną również $f_{x_i}(\overrightarrow{p})$.

4.2 Pochodna kierunkowa

Niech $\overrightarrow{a} \in \mathbb{R}^n$ gdzie $\|\overrightarrow{a}\| = 1$. Pochodna kierunkowa w kierunku wektora \overrightarrow{a} to:

$$f_{\overrightarrow{a}}\left(\overrightarrow{p}\right) = \lim_{h \to 0} \frac{f\left(\overrightarrow{p} + h \overrightarrow{a}\right) - f\left(\overrightarrow{p}\right)}{h}$$

Inne oznaczenie:

$$D_{\overrightarrow{a}}f\left(\overrightarrow{p}\right)$$

4.3 Pochodne cząstkowe wyższego stopnia

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_i}$$
$$\frac{\partial^k f}{\partial x_i^k} = \frac{\partial}{\partial x_i} \frac{\partial^{k-1} f}{\partial x_i^{k-1}}$$

Pochodne cząstkowe mieszane to np $(i \neq j)$:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_j}$$

Dla funkcja z \mathbb{R}^2 jeśli pochodne mieszane są ciągłe to:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

4.4 Gradient funkcji

Jeśli istnieją pochodne cząstkowe $\frac{\partial f}{\partial x_1},\dots,\frac{\partial f}{\partial x_n}$ to gradientem funkcji f w punkcie \overrightarrow{p} nazywamy wektor:

$$\nabla f(\overrightarrow{p}) = \left(\frac{\partial f}{\partial x_1}(\overrightarrow{p}), \dots, \frac{\partial f}{\partial x_n}(\overrightarrow{p})\right)$$

4.5 Różniczkowalność funkcji wielu zmiennych

Niech \overrightarrow{p} będzie punktem wewnętrznym dziedziny, wtedy funkcja f jest różniczkowalna w \overrightarrow{p} gdy:

1. Istnieją wszystkie pochodne cząstkowe pierwszego rzędu w \overrightarrow{p}

2.
$$\lim_{\|h\| \to 0} \frac{f(\overrightarrow{p} + \overrightarrow{h}) - f(\overrightarrow{p}) - \nabla f(\overrightarrow{p}) \cdot \overrightarrow{h}}{\|h\|} = 0$$

Jest to uogólnienie różniczkowalności funkcji jednej zmiennej, wtedy mamy:

1.
$$f'(p) = \lim_{h \to 0} \frac{f(p+h) - f(p)}{h}$$

2.
$$\lim_{h\to 0} \frac{f(p+h)-f(p)-f'(p)\cdot h}{h} = 0$$

4.6 Własności funkcji różniczkowalnej

- 1. Jeśli funkcja ma ciągłe pierwsze pochodne w \overrightarrow{p} -wewnętrznym to jest różniczkowalna w \overrightarrow{p}
- 2. Jeśli f jest różniczkowalna w \overrightarrow{p} to ma pochodną kierunkową $f_{\overrightarrow{a}}$ (\overrightarrow{p}) dla każdego wektora \overrightarrow{a} , gdzie ||a|| = 1

4.7 Pochodna funkcji wektorowej

Niech $f: \mathcal{D} \to \mathbb{R}^m$, $\mathcal{D} \subset \mathbb{R}$, \mathcal{D} -przedział. Wtedy f nazywamy krzywą parametryczną (Obraz $f[\mathcal{D}]$ również nazywamy krzywą):

- 1. Ciągłą jeśli f jest ciągła
- 2. Różniczkowalna gdy $f'(\mathcal{D})$ istnieje dla każdego $t \in \mathcal{D}$
- 3. Gładką gdy f' jest ciągła na \mathcal{D}

4.8 Wektor styczny jednostkowy

Wektorem stycznym jednostkowym do krzywej parametrycznej nazywamy:

$$T(t) = \frac{f'(t)}{\|f'(t)\|}$$

Jeśli f''(t) istnieje dla każdego $t \in \mathcal{D}$, to T'(t) zwany wektorem normalnym w punkcie t również istnieje i spełnia równanie:

$$T'(t) \cdot T(t) = 0$$

4.9 Pochodna pola wektorowego

Niech $f: \mathcal{D} \to \mathbb{R}^m$, gdzie $\mathcal{D} \subset \mathbb{R}^n$. Wtedy mamy:

$$f(\overrightarrow{x}) = (f_1(\overrightarrow{x}), \dots, f_m(\overrightarrow{x})) \quad \text{gdzie } f_i : \mathcal{D} \to \mathbb{R}$$

$$f'(\overrightarrow{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

4.10 Pochodna cząstkowa funkcji złożonej

Pochodna złożona to, ogólnie, iloczyn pochodnej funkcji wewnętrznej i zewnętrznej. Więc dla $F(\overrightarrow{x}) = f(u_1(\overrightarrow{x}), \dots, u_m(\overrightarrow{x}))$, $\overrightarrow{u}(\overrightarrow{x}) = (u_1(\overrightarrow{x}), \dots, u_m(\overrightarrow{x}))$, mamy:

$$\frac{\partial F}{\partial x_i}(\overrightarrow{x}) = \nabla f(\overrightarrow{u}) \cdot u'(\overrightarrow{x}) = \frac{\partial f}{\partial u_1} \cdot \frac{\partial u_1}{\partial x_i}(\overrightarrow{x}) + \ldots + \frac{\partial f}{\partial u_m} \cdot \frac{\partial u_m}{\partial x_i}(\overrightarrow{x})$$

4.11 Twierdzenie Lagrange'a o wartości średniej

Niech $f: \mathcal{D} \to \mathbb{R}$, $\mathcal{D} \subset \mathbb{R}^n$, będzie funkcją różniczkowalną oraz niech $\overrightarrow{p_0} \in \mathcal{D}$, $\overrightarrow{p} = \overrightarrow{p_0} + \overrightarrow{h}$ Wtedy mamy:

$$f(\overrightarrow{p}) - f(\overrightarrow{p_0}) = df(\overrightarrow{p_\theta})$$

Dla pewnego $\overrightarrow{p_{\theta}} = \overrightarrow{p_0} + \theta \overrightarrow{h}, \ \theta \in (0, 1).$

4.12 Wzór Taylora dla funkcji mającej ciągłe pochodne cząstkowe pierwszego i drugiego rzędu

Niech $f: \mathbb{R}^n \to \mathbb{R}^m$ będzie funkcją n-różniczkowalną, $\vec{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ i $\vec{h} = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n$. Wzór Taylora wygląda następująco:

$$f(\vec{a} + \vec{h}) = f(\vec{a}) + df_{\vec{a}}(\vec{h}) + d^2 f_{\vec{a}}(\vec{h}) + \dots + R_n(\vec{a}, \vec{h})$$

gdzie $\mathrm{d}^n f_{\vec{a}}(\vec{h})$ to n-krotna różniczka zupełna w punkcie \vec{a} , która jest definiowana rekurencyjnie:

1.
$$df_{\vec{a}}(\vec{h}) = \nabla f(\vec{a}) \cdot \vec{h} = \frac{\partial f(\vec{a})}{\partial x_1} \cdot h_1 + \frac{\partial f(\vec{a})}{\partial x_2} \cdot h_2 + \ldots + \frac{\partial f(\vec{a})}{\partial x_n} \cdot h_n$$

2.
$$d^{n+1}f_{\vec{a}}(\vec{h}) = d\left(d^n f_{\vec{a}}(\vec{h})\right)$$

Można udowodnić, że jawna postać n-tej różniczki (n > 1) dla funkcji dwóch zmiennych wygląda następująco:

$$d^n f_{\vec{a}}(h_1, h_2) = \sum_{k=0}^n \binom{n}{k} \frac{\partial^n f(\vec{a})}{\partial x_1^{n-k} \partial x_2^k} \cdot h_1^{n-k} h_2^k$$

Czyli dla n=2:

$$d^{2}f_{(x_{1},x_{2})}(h_{1},h_{2}) = \frac{\partial^{2}f(x_{1},x_{2})}{\partial x_{1}^{2}}h_{1}^{2} + 2\frac{\partial^{2}f(x_{1},x_{2})}{\partial x_{1}\partial x_{2}}h_{1}h_{2} + \frac{\partial^{2}f(x_{1},x_{2})}{\partial x_{2}^{2}}h_{2}^{2}$$

4.13 Aproksymacja funkcji wielu zmiennych

Aby znaleźć przybliżoną wartość funkcji wielu zmiennych w punkcie $\overrightarrow{p_0} + \overrightarrow{h}$ znając wartość funkcji w punkcie $\overrightarrow{p_0}$ korzystamy z różniczki zupełnej:

$$f(\vec{x_0} + \vec{h}) = f(\vec{x_0}) + \nabla f(\vec{x_0}) \cdot \vec{h}$$

5 Ekstrema funkcji

5.1 Ekstrema funkcji

Niech $f: \mathcal{D} \to \mathbb{R}$, $\mathcal{D} \subset \mathbb{R}^n$, wtedy f przyjmuje lokalnie wartość największą (najmniejszą) w $\overrightarrow{p} \in \mathcal{D}$, gdy istnieje kula $\mathcal{K}(\overrightarrow{p},\varepsilon)$ taka, że $(\forall \overrightarrow{x} \in \mathcal{K}(\overrightarrow{p},\varepsilon))$ $(f(\overrightarrow{p}) \geqslant f(\overrightarrow{x}))$ (odpowiednio dla wartości najmniejszej).

5.2 Kryterium na ekstrema lokalne

Warunek konieczny: Jeśli funkcja f ma pochodne cząstkowe w \overrightarrow{p} oraz ma ekstremum lokalne w \overrightarrow{p} to:

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \dots = \frac{\partial f}{\partial x_n} = 0$$

Wyróżnik dla funkcji dwóch zmiennych:

$$W(\overrightarrow{p}) = \left(\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2\right)(\overrightarrow{p})$$

Warunek dostateczny (funkcja dwóch zmiennych x i y: Jeśli f ma ciągłe pochodne cząstkowe pierwszego i drugiego rzędu, $\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \ldots = \frac{\partial f}{\partial x_n} = 0$ oraz wyróżnik W $(\overrightarrow{p}) > 0$ to f ma ekstremum w punkcie \overrightarrow{p} , przy czym jeśli $\frac{\partial^2 f}{\partial x^2} > 0$ to jest to minimum, a jeśli $\frac{\partial^2 f}{\partial x^2} < 0$ to jest to maksimum. Natomiast jeśli W $(\overrightarrow{p}) < 0$, to \overrightarrow{p} jest punktem siodłowym. W przypadku W $(\overrightarrow{p}) = 0$ należy zastosować inne metody.

5.3 Warstwica funkcji

Niech $f: \mathcal{D} \to \mathbb{R}$, $\mathcal{D} \subset \mathbb{R}^2$, wtedy zbiór $\{(x,y) \in \mathbb{R}^2 : f(x,y) = c\}$ nazywamy warstwicą funkcji f. Jest to rzut na \mathbb{R}^2 krzywej $\{(x,y,z) \in \mathbb{R}^3 : c = f(x,y)\}$, która leży na powierzchni z = f(x,y) i na płaszczyźnie z = c.

5.4 Prostopadłość gradientu do warstwicy

Jeśli krzywa gładka \mathcal{C} , dla której wektor styczny w punkcie (x_0, y_0) jest różny od zera, jest warstwicą funkcji różniczkowalnej z = f(x, y) w punkcie (x_0, y_0) i jeśli $\nabla f(x_0, y_0) \neq 0$, to $\nabla f(x_0, y_0) \perp \mathcal{C}$.

5.5 Równanie płaszczyzny stycznej

$$\nabla f(\overrightarrow{x_0}) \cdot (\overrightarrow{x} - \overrightarrow{x_0}) = 0$$

5.6 Ekstrema warunkowe

Szukamy ekstremów funkcji f(x,y) spełniających warunek $g(x,y)=a, a\in\mathbb{R}$ Warunek konieczny: Załóżmy, że f i g są różniczkowalne oraz są spełnione następujące warunki:

1.
$$q(\overrightarrow{p}) = a$$

2. $\{(x,y): g(x,y)=a\}$ jest krzywą gładką $\overrightarrow{r}(t)$

- 3. $r'(t) \neq 0$
- 4. $\overrightarrow{p} = \overrightarrow{r}(t_0)$, gdzie t_0 nie jest końcem przedziału
- 5. $\nabla g(\overrightarrow{p}) \neq 0$
- 6. f ma ekstremum na krzywej r(t) w $\overrightarrow{p_0}$

Wtedy $\nabla g(\overrightarrow{p}) \parallel \nabla f(\overrightarrow{p})$, czyli $(\exists \lambda \in \mathbb{R}) (\nabla f(\overrightarrow{p}) = \lambda \nabla g(\overrightarrow{p}))$, gdzie λ nazywamy mnożnikiem Lagrange'a.

6 Całki podwójne

6.1 Definicja

Zbiór $P = \{(x,y) \in \mathbb{R}^2 : a \leqslant x \leqslant b, \ c \leqslant y \leqslant d\}$, gdzie $a,b,c,d \in \mathbb{R}$, nazywamy prostokątem. Jego pole oznaczamy jako |P|. $\mathcal{P} = \text{podział } P$ na prostokąty P_1,P_2,\ldots,P_n , gdzie $\Delta P_i = |P_i|$.

Niech $f: P \to \mathbb{R}$ będzie funkcją ograniczoną, wtedy definiujemy następujące wartości:

$$M = \sup_{P} f \Rightarrow M_i = \sup_{P_i} f$$

$$m = \inf_{P} f \Rightarrow m_i = \inf_{P_i} f$$

Suma całkowa Riemanna:

1. Dolna: $L_{\mathcal{P}}(f) = \sum_{i=1}^{n} m_i \Delta P_i$

2. Górna: $U_{\mathcal{P}}(f) = \sum_{i=1}^{n} M_i \Delta P_i$

3. Pośrednia: $M_{\mathcal{P}}(f) = \sum_{i=1}^{n} a_i \Delta P_i$, gdzie $a_i \in [m_i, M_i]$

Całkę górną i dolną definiujemy następująco:

$$\sup_{\mathcal{P}} L_{\mathcal{P}}(f) = \underbrace{\iint_{P}} f(x, y) dP$$

$$\inf_{\mathcal{P}} U_{\mathcal{P}}(f) = \overline{\iint_{P}} f(x, y) dP$$

Jeśli te dwie całki są sobie równe to mówimy, że f jest całkowalna na P, a całkę oznaczamy:

$$\iint_{P} f dP = \iint_{P} f(x, y) dx dy$$

6.2 Własności

- 1. Jeśli f jest całkowalna na P, to dla każdego ciągu podziałów \mathcal{P}_k takiego, że $\delta(\mathcal{P}_k) \to_{k \to \infty} 0$, mamy, że $\lim_{k \to \infty} \sigma_{\mathcal{P}_k}(f) = \iint_P f dP$.
- 2. Każda funkcja ciągła na P (ogólniej każda taka która ma zbiór punktów nieciągłości o mierze Jordana = 0) jest całkowalna.
- 3. Własności analogiczne dla całki pojedynczej: addytywność, mnożenie przez skalar, $m|P| \leq \iint_P f dP \leq M|P|$.
- 4. Interpretacją geometryczną jest objętość pola pod wykresem funkcji.

6.3 Całki iterowane

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy$$
$$\int_{c}^{d} \int_{a}^{b} f(x, y) dy dx$$

Jeśli f jest ciagła to mamy na P:

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{c}^{d} \int_{a}^{b} f(x, y) dy dx$$

6.4 Inne zbiory całkowania

Całkę z funkcji ograniczonej możemy rozszerzyć na dowolny zbiór ograniczony, biorąc prostokąt w którym ten zbiór się zawiera i kładąc f(x,y) = 0 dla każdego punktu spoza zbioru.

Możemy także całkować po obszarach normalnych (tj takich zawartych pomiędzy wykresami funkcji).

6.5 Niezależność w sensie Jordana

Zbiór $\mathcal{D} \subseteq \mathbb{R}^2$ jest niezależny w sensie Jordana jeśli istnieje całka $\iint_{\mathcal{D}} dP$ taka, że $|\mathcal{D}| = \iint_{\mathcal{D}} dP$, gdzie mamy $f: P \to \{0,1\}, f \upharpoonright_{\mathcal{D}} \equiv 1, f \upharpoonright_{P \setminus \mathcal{D}} \equiv 0.$

6.6 Kryterium niezależności w sensie Jordana dla zbioru płaskiego

 \mathcal{D} jest mierzalny (płasko) w sensie Jordana wtedy i tylko wtedy gdy brzeg $\delta \mathcal{D}$ ma miarę płaską 0, czyli inaczej:

$$(\forall \varepsilon > 0) (\exists P_1, \dots, P_k) \left(\delta P \subset \bigcup_{i=1}^k P_i, \sum_{i=1}^k |P_i| < \varepsilon \right)$$

6.7 Objętość bryły

Jeśli bryła \mathbb{V} jest określona między powierzchniami $z=\varphi(x,y),\ z=\psi(x,y),$ gdzie $\varphi\leqslant\psi,$ nad obszarem płaskim \mathcal{D} , to:

$$|\mathbb{V}| = \iint_{\mathcal{D}} \left[\psi(x, y) - \varphi(x, y) \right] dP$$

6.8 Pole płata powierzchni

Niech funkcja $f: \mathcal{S} \to \mathcal{D}$, gdzie $\mathcal{D} \subset \mathbb{R}^2$, wtedy wzór na pole płata powierzchni przyjmuje postać:

$$\iint_{\mathcal{S}} \sqrt{1 + f_x^2 + f_y^2} dP$$

7 Całki potrójne

7.1 Definicja

Zbiór $P = \{(x, y, z) \in \mathbb{R}^3 : a \leqslant x \leqslant a', b \leqslant y \leqslant b', c \leqslant z \leqslant c'\}$, gdzie $a, a', b, b', c, c' \in \mathbb{R}$, nazywamy prostopadłościanem. Niech $f : \mathcal{D} \to \mathbb{R}$ będzie funkcją ograniczoną, a \mathcal{P}_n podziałem P na n prostopadłościanów o objętościach $|P_1|, \ldots, |P_n|$. Wtedy definiujemy następujące wartości:

$$M = \sup_{P} f \Rightarrow M_i = \sup_{P_i} f$$

$$m = \inf_{P} f \Rightarrow m_i = \inf_{P_i} f$$

Suma całkowa Riemanna:

1. Dolna: $L_{\mathcal{P}}(f) = \sum_{i=1}^{n} m_i |P_i|$

2. Górna: $U_{\mathcal{P}}(f) = \sum_{i=1}^{n} M_i |P_i|$

Całkę górną i dolną definiujemy następująco:

$$\sup_{\mathcal{P}} L_{\mathcal{P}}(f) = \iiint_{\underline{P}} f(x, y) dP$$

$$\inf_{\mathcal{P}} U_{\mathcal{P}}(f) = \overline{\iiint_{P}} f(x, y) dP$$

Jeśli te dwie całki są sobie równe to mówimy, że f jest całkowalna na P, a całkę oznaczamy:

$$\iiint_P f dP = \iiint_P f(x, y) dx dy$$

Własności analogiczne do całek podwójnych.

8 Całkowanie przez podstawienie i Jakobian przejścia

8.1 Twierdzenie o podstawianiu

Jeśli $T:V\to V'$ jest wzajemnie jednoznacznym odw
zorowaniem mającym pierwsze pochodne cząstkowe ciągłe takim, że
 T^{-1} też ma te własności (dyfeomorfizmem), gdzie V,~V' są regularne w
 \mathbb{R}^3 oraz T(u,v,w)=(x,y,z), wtedy:

$$\begin{split} \iiint_{v'} f(x,y,z) dP' &= \iint_{V} f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| dP \\ &\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} x_{u} & x_{v} & x_{w} \\ y_{u} & y_{v} & y_{w} \\ z_{u} & z_{v} & z_{w} \end{vmatrix} \end{split}$$

8.2 Współrzędne biegunowe

$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$$

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r$$

8.3 Współrzędne sferyczne

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \\ z = r \cos \theta \end{cases}$$

$$\frac{\partial (x, y, z)}{\partial (u, v, w)} = \begin{vmatrix} \sin \theta \cos \varphi & r \cos \theta \cos \varphi & -r \sin \theta \sin \varphi \\ \sin \theta \sin \varphi & r \cos \theta \sin \varphi & r \sin \theta \cos \varphi \\ \cos \theta & -r \sin \theta & 0 \end{vmatrix} = r^2 \sin \theta$$

8.4 Współrzędne cylindryczne

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \\ z = z \end{cases}$$

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \cos\varphi & -r\sin\varphi & 0 \\ \sin\varphi & r\cos\varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$