Bell Work

Solve:
$$2^{x-4} = 64$$

Solve:
$$3^{x} = 25$$

PRE-CALC TRIG

Day 24

3.1 Exponential Functions and Their Graphs
3.2 Logarithmic Functions and Their Graphs
3.3 Properties of Logarithms

Objective:

Evaluate exponential functions with base a (and base e) and use exponential functions to model real-life problems

Evaluate logarithmic functions (with and without calculators/properties)

Exponential and Logarithmic Functions

Exponential Function: a function with a variable as exponent

$$f(x) = a^{x-h} + k$$

where $a > 0$, $a \ne 1$ and x is any real number

Logarithmic Function with Base a:

$$f(x) = \log_a(x - h) + k$$

where $x > 0$, $a > 0$, $a \ne 1$

Natural Logarithmic Function:

Natural Base e: $e \approx 2.718281828 ...$

$$f(x) = \log_e x = \ln x$$
 when $x > 0$

Properties of Logarithms

$$\log_a 1 = 0 \qquad \Rightarrow a^0 = 1$$

$$\log_a a = 1 \qquad \Rightarrow a^1 = a$$

$$\log_a a^x = x \quad \to a^{\log_a x} = x$$

$$\log_a x = \log_a y = x = y$$

More Properties

Change of Base: (not as important with our calculators)

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Product Property

Quotient Property

$$\log_{a}(uv) = \log_{a}(u) + \log_{a}(v)\log_{a}(u/v) = \log_{a}(u) - \log_{a}(v)$$

Power Property

 $\log_a u^n = n \log_a(u)$

Rewrite:

$$\log_{\mathbf{b}} y = x <=> b^x = y$$

Examples

Expand:

 $\log_5 25x^3$

Condense:

 $5 \log_6 x + 2 \log_6 7 - 3 \log_6 w$

Simplify:

 log_44

 log_381

 log_81

 $9\log_9 4x$

 $\log_7 49^{3x}$

Rewrite: From log to exponential or exponential log

$$\log_2 8 = 3$$

$$5^3 = 125$$

For Next Time...

Page 224 # 7, 31, 51, 53, 55, 72

Page 234 # 7, 9, 15, 17, 19, 23, 25, 27, 53, 67, 85, 93

Page 241 # 19, 21, 29, 31, 33, 45, 47, 49, 67, 69