密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计)

太原理工大学 线性代数 E 试卷 (A)

适用专业: 2023 级软件专业 考试日期: 2024.7. 时间: 120 分钟 共 2 页

一、选择题(本题共 5 小题,每小题 3 分,共 15 分)

1、设矩阵
$$A = \begin{pmatrix} x_1 & b_1 & c_1 \\ x_2 & b_2 & c_2 \\ x_3 & b_3 & c_3 \end{pmatrix}$$
, $B = \begin{pmatrix} y_1 & b_1 & c_1 \\ y_2 & b_2 & c_2 \\ y_3 & b_3 & c_3 \end{pmatrix}$ 且 $|A| = 2$, $|B| = -7$ 则 $|A + B|$ 等于 ()。

A、5 B、-5 C、-10 D、-20

- 2、已知 A,B,C 均为 n 阶矩阵, 并且 AB = BC = CA = E, E 是单位矩阵, 那么 $A^2 + B^2 + C^2 = ($)。
 - A, E
- B, 2E

- 3、若齐次方程组 Ax = 0 有无穷多解,则非齐次方程组 Ax = b ()。

A、必有无穷多解; B、必有唯一解; C、必无解;

- D、有解时必有无穷多解.
- 4、设 $\alpha_1 = (1,1,-1)$, $\alpha_2 = (-2,-1,2)$ 向量 $\alpha = (2,\lambda,\mu)$ 与 α_1 及 α_2 都正交,则 $\lambda = (-2,-1,2)$ 有量 $\alpha_1 = (-2,-1,2)$ 有量 $\alpha_2 = (-2,-1,2)$ 有量 $\alpha_2 = (-2,-1,2)$ 有量 $\alpha_1 = (-2,-1,2)$ 有量 $\alpha_2 = (-2,-1,2)$ 有量 $\alpha_1 = (-2,-1,2)$ 有量 $\alpha_2 = (-2,-1,2)$ 有量 $\alpha_2 = (-2,-1,2)$ 有量 $\alpha_2 = (-2,-1,2)$ 有量 $\alpha_3 = (-2,-$)。 D, 0 A, 1
- 5、下列矩阵中不能相似于对角矩阵的是()

A.
$$\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
; B. $\begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 0 \\ 4 & 0 & 3 \end{pmatrix}$; C. $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$; D. $\begin{pmatrix} 1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$.

二、填空题(本题共5小题,每小题3分,共15分)

6、如果
$$P^{-1}AP = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
,则 $P^{-1}A^{-1}P =$ ______。

- 7、设 3 阶方阵 A 的三个特征值分别为 2, 0, 1; B = A + 2E,则行列式 |B| = 1
- 8、设 $A = (2 \ 3)$,则 $|A^T A| =$ ______。
- $\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ 9$ 、齐次线性方程组 $\begin{cases} x_1 + \lambda x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \end{cases}$ 只有零解,则 λ 应满足的条件是_____。

10、二次型 $f(x_1,x_2,x_3) = x_1^2 + 4x_2^2 + 3x_3^2 - 4x_1x_2 + 2x_1x_3 - 4x_2x_3$ 的秩等于______。

三、计算题(本题共5小题、每小题12分,满分60分)

11、(12 分) 设矩阵
$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$
, 求矩阵 A 的逆矩阵 A^{-1} 。

12、(12 分) 求线性方程组
$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 1 \\ 2x_1 + x_2 + x_3 + x_4 = 4 \\ 4x_1 + 3x_2 - x_3 - x_4 = 6 \\ x_1 + 2x_2 - 4x_3 - 4x_4 = -1 \end{cases}$$
的通解。

13、(12 分)设矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
, 求 A 的特征值与特征向量,并求可逆矩阵 P ,使

得 $P^{-1}AP$ 为对角矩阵.

14、(12 分) 设 α_1 = (2,1,3,-1), α_2 = (-1,1,-3,1), α_3 = (4,5,3,-1), α_4 = (4,5,-3,1), 求向量组 α_1 , α_2 , α_3 , α_4 的一个最大无关组,并用最大无关组线性表示该向量中其它向量。

四、证明题,满分10分

16、(10 分) 已知向量组 α_1 , α_2 , α_3 线性无关,证明向量组 α_2 + α_3 , α_1 + α_3 , α_1 + α_2 线性无关。