Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE1801007601 R/C.....: 32674

FCC ID.....: 2AEY7-S8A003

Applicant's name.....: Bak USA Technologies Corp.

Manufacturer...... Bak USA Technologies Corp.

Test item description: Tablet PC

Trade Mark -

Model/Type reference...... LTE Barcode 1.1

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........... Jan. 11, 2018

Date of testing...... Jan. 12, 2018- Jan. 22, 2018

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Candy Liu

Supervised by

(position+printedname+signature)....: Project Engineer : Edward Pan

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: TRE1801007601 Page: 2 of 27 Issued: 2018-01-23

Contents

<u> </u>	ILST STANDARDS AND REPORT VERSION	J
1.1.	Test Standards	3
1.2.	Report version	3
•	TEST DESCRIPTION	
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
0.4	Olivert Information	_
3.1.	Client Information	5
3.2.	Product Description	5
3.3. 3.4.	Operation state EUT configuration	6 6
3. 4 . 3.5.	Modifications	6
J.J.	Modifications	U
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Spurious Emissions (radiated)	15
<u>6.</u>	TEST SETUP PHOTOS	18
7.	EXTERANAL AND INTERNAL PHOTOS	19

Report No.: TRE1801007601 Page: 3 of 27 Issued: 2018-01-23

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB 558074 D01 DTS Meas Guidance v04:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating under §15.247

1.2. Report version

Version No.	Date of issue	Description
00	Jan. 23, 2018	Original

Report No.: TRE1801007601 Page: 4 of 27 Issued: 2018-01-23

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	Pass	William Wang
Line Conducted Emissions (AC Main)	15.207	Pass	William Wang
Spurious Emissions	15.209	Pass	William Wang

Note: The measurement uncertainty is not included in the test result.

Report No.: TRE1801007601 Page: 5 of 27 Issued: 2018-01-23

3. **SUMMARY**

3.1. Client Information

Applicant:	Bak USA Technologies Corp.	
Address:	425 Michigan Avenue,Buffalo,New York 14203,USA	
Manufacturer:	Bak USA Technologies Corp.	
Address:	425 Michigan Avenue,Buffalo,New York 14203,USA	

3.2. Product Description

3.2. Froduct Description				
Name of EUT:	Tablet PC			
Trade Mark:	-			
Model No.:	LTE Barcode 1.1			
Listed Model(s):	-			
Power supply:	DC 3.7V From exchange battery			
Adapter information:	Input: 100-240Va.c., 50/60Hz, 0.6A Output: 5Vd.c.,5A			
Hardware version:	1.1			
Software version:	1607			
WIFI				
Supported type:	802.11b/802.11g/802.11n(HT20)/802.11n(HT40)			
Modulation:	DSSS for 802.11b OFDM for 802.11g/802.11n(HT20)/802.11n(HT40)			
Operation frequency:	2412MHz~2462MHz for 802.11b/802.11g/802.11n(HT20) 2422MHz~2452MHz for 802.11n(HT40)			
Channel number:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)			
Channel separation:	5MHz			
Antenna type:	Integral antenna			
Antenna gain:	2.0 dBi			

Report No.: TRE1801007601 Page: 6 of 27 Issued: 2018-01-23

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

802.11b/g	/n(HT20)	802.11r	n(HT40)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	2412	01	-		
02	2417	02	-		
03	2422	03	2422		
04	2427	04	2427		
05	2432	05	2432		
06	2437	06	2437		
07	2442	07	2442		
08	2447	08	2447		
09	2452	09	2452		
10	2457	10	-		
11	2462	11	-		

> Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

		Manufacturer:	/
0		Model No.:	/
0	1	Manufacturer:	/
		Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.: TRE1801007601 Page: 7 of 27 Issued: 2018-01-23

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No.: TRE1801007601 Page: 8 of 27 Issued: 2018-01-23

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.39 dB	(1)
Radiated Emissions 30~1000MHz	4.24 dB	(1)
Radiated Emissions 1~18GHz	5.16 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1801007601 Page: 9 of 27 Issued: 2018-01-23

4.5. Equipments Used during the Test

Conduc	Conducted Emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)	
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018	
2	Artificial Mains	SCHWARZBECK	NNLK 8121	573	11/11/2017	11/10/2018	
3	Pulse Limiter	R&S	ESH3-Z2	101488	11/11/2017	11/10/2018	
4	Test Software	R&S	ES-K1	N/A	N/A	N/A	
5	RF Connection Cable	HUBER+SUHNER	EF400	N/A	11/21/2017	11/20/2018	
6	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2- 02	20371	11/11/2017	11/10/2018	
7	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4- 02	20373	11/11/2017	11/10/2018	
8	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8- 02	20375	11/11/2017	11/10/2018	
9	V-Network	R&S	ESH3-Z6	100211	11/11/2017	11/10/2018	
10	V-Network	R&S	ESH3-Z6	100210	11/11/2017	11/10/2018	
11	2-Line V- Network	R&S	ESH3-Z5	100049	11/11/2017	11/10/2018	

Radiated Emissions						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. (mm-dd-yy)	Next Cal. (mm-dd-yy)
1	EMI Test Receiver	R&S	ESCI	101247	11/11/2017	11/10/2018
2	Loop Antenna	R&S	HFH2-Z2	100020	11/20/2017	11/19/2018
3	Ultra- Broadband Antenna	SCHWARZBECK	VULB9163	538	4/5/2017	4/4/2018
4	Horn Antenna	SCHWARZBECK	9120D	1011	3/27/2017	3/26/2018
5	Horn Antenna	SCHWARZBECK	BBHA9170	25841	3/27/2017	3/26/2018
6	Preamplifier	SCHWARZBECK	BBV 9743	9743-0022	10/18/2017	10/17/2018
7	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-248	10/18/2017	10/17/2018
8	High pass filter	Compliance Direction systems	BSU-6	34202	11/11/2017	11/10/2018
9	Turntable	MATURO	TT2.0	/	N/A	N/A
10	Antenna Mast	MATURO	TAM-4.0-P	/	N/A	N/A
11	EMI Test Software	R&S	ESK1	N/A	N/A	N/A
12	EMI Test Software	Audix	E3	N/A	N/A	N/A

Report No.: TRE1801007601 Page: 10 of 27 Issued: 2018-01-23

13	RF Connection Cable	HUBER+SUHNE R	3m 3GHz S	N/A	11/21/2017	11/20/2018
14	RF Connection Cable	HUBER+SUHNE R	3m 3GHz RG	N/A	11/21/2017	11/20/2018
15	RF Connection Cable	HUBER+SUHNE R	6m 18GHz S	N/A	11/21/2017	11/20/2018

The Cal.Interval was one year.

Report No.: TRE1801007601 Page: 11 of 27 Issued: 2018-01-23

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

REQUIREMENT:

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

□ Passed	☐ Not Applicable
----------	------------------

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: TRE1801007601 Page: 12 of 27 Issued: 2018-01-23

5.2. Conducted Emissions (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

Report No.: TRE1801007601 Page: 13 of 27 Issued: 2018-01-23

MEASUREMENT RESULT: "GM1801225062_fin"

1	/22/2018 7:0	8PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.348000	38.20	9.9	59	20.8	QP	L1	GND
	0.586500	49.60	10.0	56	6.4	QP	L1	GND
	1.189500	40.60	10.1	56	15.4	QP	L1	GND
	3.664500	30.10	10.1	56	25.9	QP	L1	GND
	11.422500	37.80	10.4	60	22.2	QP	L1	GND
	21.457500	35.90	10.7	60	24.1	QP	L1	GND

MEASUREMENT RESULT: "GM1801225062 fin2"

1/2	2/2018 7:0	08PM						
1	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.339000	33.40	9.9	49	15.8	AV	L1	GND
	0.586500	41.60	10.0	46	4.4	AV	L1	GND
	1.239000	31.10	10.1	46	14.9	AV	L1	GND
	2.697000	27.60	10.1	46	18.4	AV	L1	GND
	11.436000	32.60	10.4	50	17.4	AV	L1	GND
	21.264000	32.00	10.7	50	18.0	AV	L1	GND

Report No.: TRE1801007601 Page: 14 of 27 Issued: 2018-01-23

MEASUREMENT RESULT: "GM1801225063_fin"

1/22/2018	7:12PM						
Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.334500	33.70	9.9	59	25.6	QP	N	GND
0.600000	47.20	10.0	56	8.8	QP	N	GND
0.861000	37.00	10.0	56	19.0	QP	N	GND
2.724000	33.20	10.1	56	22.8	QP	N	GND
5.568000	29.90	10.2	60	30.1	QP	N	GND
16.831500	29.90	10.6	60	30.1	QP	N	GND

MEASUREMENT RESULT: "GM1801225063_fin2"

1/22/2018	7:12PM						
Frequenc Mi	-		Limit dBµV	Margin dB	Detector	Line	PE
0.3975	00 29.80	9.9	48	18.1	AV	N	GND
0.60000	00 42.90	10.0	46	3.1	AV	N	GND
0.90150	00 31.90	10.0	46	14.1	AV	N	GND
3.70050	00 28.40	10.1	46	17.6	AV	N	GND
6.39600	00 26.70	10.2	50	23.3	AV	N	GND
16.83150	25.50	10.6	50	24.5	AV	N	GND

Report No.: TRE1801007601 Page: 15 of 27 Issued: 2018-01-23

5.3. Spurious Emissions (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGIIZ	74.00	Peak

TEST CONFIGURATION

➢ 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

Report No.: TRE1801007601 Page: 16 of 27 Issued: 2018-01-23

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120kHz, VBW=300kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST	RES	ULTS
-------------	------------	-------------

☐ Not Applicable

Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.

➢ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

> 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

Report No.: TRE1801007601 Page: 17 of 27 Issued: 2018-01-23

30MHz ~ 1GHz

Report No.: TRE1801007601 Page: 18 of 27 Issued: 2018-01-23

6. TEST SETUP PHOTOS

Conducted Emissions

Radiated Emissions

Report No.: TRE1801007601 Page: 19 of 27 Issued: 2018-01-23

7. EXTERANAL AND INTERNAL PHOTOS

External photos of the EUT

Report No.: TRE1801007601 Page: 20 of 27 Issued: 2018-01-23

Report No.: TRE1801007601 Page: 21 of 27 Issued: 2018-01-23

Report No.: TRE1801007601 Page: 22 of 27 Issued: 2018-01-23

Internal photos of the EUT

Report No.: TRE1801007601 Page: 23 of 27 Issued: 2018-01-23

Report No.: TRE1801007601 Page: 24 of 27 Issued: 2018-01-23

Report No.: TRE1801007601 Page: 25 of 27 Issued: 2018-01-23

Report No.: TRE1801007601 Page: 26 of 27 Issued: 2018-01-23

Report No.: TRE1801007601 Page: 27 of 27 Issued: 2018-01-23

.....End of Report.....