Lecture 06: Harris Corner Detector

Reading: T&V Section 4.3

Motivation: Matchng Problem

Vision tasks such as stereo and motion estimation require finding corresponding features across two or more views.

Motivation: Patch Matching

Elements to be matched are image patches of fixed size

Task: find the best (most similar) patch in a second image

Not all Patches are Created Equal!

Inituition: this would be a good patch for matching, since it is very distinctive (there is only one patch in the second frame that looks similar).

?

Not all Patches are Created Equal!

Inituition: this would be a BAD patch for matching, since it is not very distinctive (there are many similar patches in the second frame)

What are Corners?

- Intuitively, junctions of contours.
- Generally more stable features over changes of viewpoint
- Intuitively, large variations in the neighborhood of the point in all directions
- They are good features to match!

Corner Points: Basic Idea

- We should easily recognize the point by looking at intensity values within a small window
- Shifting the window in *any direction* should yield a *large change* in appearance.

Robert Collins CSE486, Penn State

Appearance Change in Neighborhood of a Patch

Interactive

"demo"

CSE486, Penn SHarris Corner Detector: Basic Idea

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris corner detector gives a mathematical approach for determining which case holds.

Harris Detector: Mathematics

Change of intensity for the shift [u,v]:

Window function
$$w(x,y) = 0$$
or
1 in window, 0 outside Gaussian

Harris Detector: Intuition

Change of intensity for the shift [u,v]:

For nearly constant patches, this will be near 0. For very distinctive patches, this will be larger. Hence... we want patches where E(u,v) is LARGE.

CSE486, Penn State Taylor Series for 2D Functions

$$f(x+u,y+v) = f(x,y) + uf_x(x,y) + vf_y(x,y) +$$

First partial derivatives

$$\frac{1}{2!} \left[u^2 f_{xx}(x,y) + uv f_{xy}x, y + v^2 f_{yy}(x,y) \right] +$$

Second partial derivatives

$$\frac{1}{3!} \left[u^3 f_{xxx}(x,y) + u^2 v f_{xxy}(x,y) + u v^2 f_{xyy}(x,y) + v^3 f_{yyy}(x,y) \right]$$

Third partial derivatives

First order approx

$$f(x+u,y+v) \approx f(x,y) + uf_x(x,y) + vf_y(x,y)$$

Harris Corner Derivation

$$\sum [I(x+u,y+v) - I(x,y)]^2$$

$$\approx \sum [I(x,y) + uI_x + vI_y - I(x,y)]^2$$
 First order approx

$$= \sum u^2 I_x^2 + 2uv I_x I_y + v^2 I_y^2$$

$$= \sum \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
 Rewrite as matrix equation

$$= \left[\begin{array}{cc} u & v \end{array} \right] \left(\sum \left[\begin{array}{cc} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{array} \right] \right) \left[\begin{array}{c} u \\ v \end{array} \right]$$

Harris Detector: Mathematics

For small shifts [u, v] we have a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Windowing function - computing a weighted sum (simplest case, w=1)

Note: these are just products of components of the gradient, Ix, Iy

CSE486, Penn State tuitive Way to Understand Harris

Treat gradient vectors as a set of (dx,dy) points with a center of mass defined as being at (0,0).

Fit an ellipse to that set of points via scatter matrix

Analyze ellipse parameters for varying cases...

CSE486, Penn SExample: Cases and 2D Derivatives

CSE486, Penn State Plotting Derivatives as 2D Points

CSE486, Penn St Fitting Ellipse to each Set of Points

Classification via Eigenvalues

Corner Response Measure

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

(k is an empirically determined constant; k = 0.04 - 0.06)

Corner Response Map

Corner Response Map

- R depends only on eigenvalues of M
- *R* is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region

Harris R score.

Ix, Iy computed using Sobel operator
Windowing function w = Gaussian, sigma=1

Threshold: R < -10000 (edges)

Threshold: > 10000 (corners)

Threshold: -10000 < R < 10000 (neither edges nor corners)

CSE486, Penn SHarris Corner Detection Algorithm

1. Compute x and y derivatives of image

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

Compute products of derivatives at every pixel

$$I_{x2} = I_x I_x \quad I_{y2} = I_y I_y \quad I_{xy} = I_x I_y$$

Compute the sums of the products of derivatives at each pixel

$$S_{x2} = G_{\sigma'} * I_{x2}$$
 $S_{y2} = G_{\sigma'} * I_{y2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

4. Define at each pixel (x, y) the matrix

$$H(x,y) = \begin{bmatrix} S_{x2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y2}(x,y) \end{bmatrix}$$

Compute the response of the detector at each pixel

$$R = Det(H) - k(Trace(H))^{2}$$

6. Threshold on value of R. Compute nonmax suppression.