# Introduction to Practical exercises workflow

José Raúl Ruiz Sarmiento

#### Content

- 1. Practical exercises
  - Weight
  - Relevance
  - Workflow
- 2. Optional projects
- 3. The tool: JupyterLab
  - Components.
  - How to use.
  - Live demo.

# 1. Practical exercises: weight



#### • Practice:

- 25%: Attendance (70%) and participation in lessons/forums.
- 75% Weighted average of practical exercises.
- Once the subject is passed, other factors can increase the grades:
  - Extra/optional exercises.
  - Optional projects (up to 2 points).
  - Etc.

### 1. Practical exercises: relevance



|                     | 2019-2020 | 2020-2021 | 2021-2022 | 2022-2023   |
|---------------------|-----------|-----------|-----------|-------------|
| Exams               | 6,7       | 6,3       | 6,8       | 5,5         |
| Practical exercises | 7,7       | 7,7       | 8,2       | 7,3         |
| Exams+Exercises     | 7,1       | 7,3       | 7,2       | 6,5         |
| Final Grades        | 7,5       | 7,4       | 7,5       | 6,7         |
| Performace rate     | -         | -         | <u>-</u>  | 21/23 (91%) |
| Success rate        | -         | -         | -<br>-    | 23/27 (85%) |

- Are organized in **chapters**.
- Each chapter corresponds to a theory lecture:



#### LECTURE MATERIAL

- Introduction to Autonomous Robotics [pdf]
- Probability and Statistics Bases for Robotics [pdf]
- 3. Robot Motion [pdf]
- 4. Robot Sensing [pdf]
- 5. Robot Localization [pdf]
- 6. Mapping [pdf]
- 7. SLAM [pdf]
- 8. Motion planning [pdf]
- Robot Control Architecture + ROS [pdf]

#### Each chapter consists of a number of **notebooks**

Chapter 02. Probability and statistic b...

2-Fundamentals-1-GaussianDistributi...

2-Fundamentals-2-PropertiesOfGauss...

2-Fundamentals-3-BidimensionalDistr...

Chapter 03. Robot motion

3-Robot motion.ipynb

Chapter 04. Robot sensing

4-Robot sensing.ipynb

Chapter 05. Localization

5-Localization-0.ipynb

5-Localization-1-LeastSquares.ipynb

5-Localization-2-EKF.ipynb

Chapter 06. Mapping

6-Mapping-0.ipynb

6-Mapping-1-EKF.ipynb

 Notebooks are provided to students through a GitHub repository:

uma\_robotics\_2025

• URL:

https://github.com/jotaraul/ uma robotics 2025



 After completing the notebooks corresponding to a chapter, the student must submit a .pdf file containing the result of executing those notebooks.



A workshop will be enabled for that in the Campus Virtual. workshop Chapter 6



- Such submissions will have a hard deadline.
  - Submissions beyond this deadline will not be accepted.

• Evaluation will be done through the Workshop (taller) activity of the Campus Virtual.



#### Advantages of workshops:

- Provides students with insight into the evaluation criteria.
- Clarify the requirements for producing work of a particular standard.
- Provides students with a degree of ownership of the assessment process.
- Encourages them to reflect on the quality of their work.
- Discourages poor practices that may be more apparent to a marker than the original writer.
- Fosters the development of generic skills such as:
  - Critical appraisal,
  - An ability to provide colleagues with objective feedback on their work.



Harris, Judy R. "Peer assessment in large undergraduate classes: an evaluation of a procedure for marking laboratory reports and a review of related practices." Advances in physiology education 35.2 (2011): 178-187.



Al-Khalifa, Amal, K., and Marie Devlin.
"Evaluating a Peer Assessment
Approach in Introductory Programming
Courses." United Kingdom & Ireland
Computing Education Research
conference. 2020.



Dolezal, Dominik, et al. "Personcentered learning using peer review method—an evaluation and a concept for student-centered classrooms." (2018): 127-147.

# 1. Practical exercises: workflow summary

- 1. Complete notebooks of each chapter.
- 2. Submit there before deadline (as a unique .pdf file).
- 3. Review classmates' work (workshop activity).
- 4. Get grades.

#### Final grade of practical exercises:

Average of grades achieved at each chapter.

### 2. Optional projects

- The student is challenged to develop a robotics based optional project.
- How it works:
  - 1. A list of project proposals is provided, but the student may carry out one of his/her choice.
  - 2. The student send a project proposal.
  - 3. The student develop the project. He/she can integrate third party code.
  - 4. A workshop/personal interview will take place where each student has the opportunity to present the project.
  - 5. It can be done in pairs (twice work to get the maximum mark).

#### Final grade of optional projects:

A combination of the work done and the project presentation.

# 3. The tool: JupyterLab

- An open-source web application
  that allows you to create and share
  documents that contain live code,
  equations, visualizations and
  narrative text.
- Brief history:
  - Created as an evolution of IPython by the Colombian Fernando Pérez in 2014, in the umbrella of Project Jupyter.
  - In 2015, GitHub and Project Jupyter designed the .ipynb format.



# 3. The tool: JupyterLab

GitHub public Jupyter notebooks:

- 2015: 200K

- 2018: 2,5M

- 2020: 9,7M

- 2024: 10M

- Powerful combinations:
- Supported by companies/institutions.

#### Institutional Partners

Institutional Partners are organizations that support the project by employing Jupyter Steering Council members. Current Institutional Partners include:



Berkeley





















# 3. JupyterLab: components

#### Notebook

- Text format used to store the interactive documents (*json*).
- It is composed of cells.
- Text cells (markdown):
  - Theoretical concepts.
  - Equations.
  - Images.
  - Videos.
  - HTML components.
- Code cell: executable cell that produces some computation, typically returning and printing results.

#### NARRATIVES

#### 3.1 Pose composition

Given an initial pose  $p_1$  and a pose differential  $\Delta p$ , i.e. how much the robot has moved during an interval of time, we compute the final pose p using the **composition of poses** function:

Equations 
$$p_1 = \begin{bmatrix} x_1 \\ y_1 \\ \theta_1 \end{bmatrix}, \Delta p = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix}$$

$$p = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = p_1 \oplus \Delta p = \begin{bmatrix} x_1 + \Delta x \cos \theta_1 - \Delta y \sin \theta_1 \\ y_1 + \Delta x \sin \theta_1 + \Delta y \cos \theta_1 \\ \theta_1 + \Delta \theta \end{bmatrix}$$

Text The differential  $\Delta p$ , although we are using it as control in this exercise, normally is calculated given the robot's locomotion or sensed by the wheel encoders.

#### Assignment

Take a look at the Robot() class provided and its methods. Then, modify the main function in the next cell for the robot to describe a  $8m \times 8m$  square path as seen in the figure below.

The robot starts in the bottom-left corner (0,0) heading north and moves at increments of 2m each step. Each 4 steps it will turn right.

#### Example



#### INTERACTIVE



# TO DO

### 3. JupyterLab: components

#### Web application

- Permits us to create, edit and run notebooks.
- Requirements:
  - An installation of jupyter (local or remote).
  - A web browser.



# 3. JupyterLab: components

#### Kernel

- Backed application in charge of running the code contained in each cell.
- Initially only the Python kernel was developed.
- Now there is kernel support for more than <u>50 programming languages</u>.

#### Jupyter kernels

Kernel Zero is IPython, which you can get through ipykernel, and is still a dependency of jupyter. The IPython kernel can be thought of as a reference implementation, as CPython is for Python.

Here is a list of available kernels. If you are writing your own kernel, feel free to add it to the table!

| Name                   | Jupyter/IPython<br>Version | Language(s)<br>Version                                     | 3rd party<br>dependencies                            | Example Notebooks                                                                                                    |
|------------------------|----------------------------|------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Micronaut              |                            | Python>=3.7.5,<br>Groovy>3                                 | Micronaut                                            | https://github.com/stainlessai/microna<br>jupyter/blob/master/examples/basic-<br>service/notebooks/use-library.ipynb |
| Agda kernel            |                            | 2.6.0                                                      |                                                      | https://mybinder.org/v2/gh/lclem/agd<br>kernel/master?<br>filepath=example/LabImp.ipynb                              |
| Dyalog Jupyter Kernel  |                            | APL (Dyalog)                                               | Dyalog >= 15.0                                       | Notebooks                                                                                                            |
| Coarray-Fortran        | Jupyter 4.0                | Fortran<br>2008/2015                                       | GFortran >=<br>7.1,<br>OpenCoarrays,<br>MPICH >= 3.2 | Demo, Binder demo                                                                                                    |
| Ansible Jupyter Kernel | Jupyter<br>5.6.0.dev0      | Ansible 2.x                                                |                                                      | Hello World                                                                                                          |
| sparkmagic             | Jupyter >=4,0              | Pyspark<br>(Python 2 & 3),<br>Spark (Scala),<br>SparkR (R) | Livy                                                 | Notebooks, Docker Images                                                                                             |
| sas_kernel             | Jupyter 4.0                | python >= 3.3                                              | SAS 9.4 or<br>higher                                 |                                                                                                                      |
| IPyKernel              | Jupyter 4.0                | python 2.7, >=<br>3.3                                      | pyzmq                                                |                                                                                                                      |
| IJulia                 |                            | julia >= 0.3                                               |                                                      |                                                                                                                      |
| lHaskell               |                            | ghc >= 7.6                                                 |                                                      |                                                                                                                      |
| IRuby                  |                            | ruby >= 2.3                                                |                                                      |                                                                                                                      |
| tslab                  |                            | Typescript<br>3.7.2,<br>JavaScript<br>ESNext               | Node.js                                              | Example notebooks                                                                                                    |
| IJavascript            |                            | nodejs >= 0.10                                             |                                                      |                                                                                                                      |
| ITypeScript            |                            | Typescript >=<br>2.0                                       | Node.js >=<br>0.10.0                                 |                                                                                                                      |

# 3. JupyterLab: python modules



### 3. JupyterLab: how to use

- Alternatives to work with Jupyter notebooks:
  - Online services:
    - Mybinder
    - Google Colab
  - Local installations:
    - Traditional: install Python and all the needed packages.
    - Using virtual environments:
      - Utilize a package for managing environments (e.g. venv).
      - Install a distribution like Anaconda.
- More information at *Campus Virtual*.
  - Tools for working with Jupyter notebooks

# 3. JupyterLab: live demo

Let's see Jupyter notebooks in action!