Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №11 "ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПЬЕЗОЭЛЕКТРИЧЕСКОГО ИСПОЛНИТЕЛЬНОГО УСТРОЙСТВА"

Вариант - 11

Выполнил				
		(фамилия, и.о.)		
Проверил		(фамилия, и.о.)	(подпись)	
""	20г.	Санкт-Петербург,	20г.	
Работа выполнена	с оценкой			
Дата защиты "	" 20	_Γ.		

Задание

Целью работы является изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя ($\Pi \Pi$) микроперемещений.

Необходимо построить схему $\Pi Д$, которая изображена на рисунке 1 и провести математическое моделирование при различных значениях параметров системы.

Рисунок 1 – Структурная схема пьезоэлектрического исполнительного устройства

Параметры данной схемы указаны в таблице 1.

Таблица 1 – параметры пьезоэлектрического двигателя

C_p	m	K_0	K_d	T_u	F_B
Н/м	КГ	H/B	Н.с/м	мс	Н
$2 \cdot 10^6$	0.125	7.5	$0.9 \cdot 10^2$	0.15	4

Анализ пьезоэлектрического двигателя 1

Рисунок 2 – Схема моделирования

Для соответствия выходного сигнала уровню 10, необходимо его домножить на коэффициент, рассчитанные коэффициенты: $K_U^{-1} {=} 0.033 \\ K_F {=} 0.008$

 $K_V=3$ $K_X=5600$

Рисунок 3 — Графика переходного процесса $U_p(t)$

Рисунок 4 – Графика переходного процесса F(t)

Рисунок 5 – Графика переходного процесса V(t)

Рисунок 6 – Графика переходного процесса x(t)

2 Исследование влияния массы нагрузки m на вид переходных процессов

Таблица 2 – Характеристики системы при различной массе нагрузки

т, кг	0.0625	0.125	0.1875
tп,мc	0.259	0.326	0.379
σ , %	49	63.9	70.9
$x, 10^{-3}$	0.113	0.113	0.113

Иземеняя массу нагрузки в пределах [0.5m, 1.5m] получим различные виды переходных процессов с различными значениями преререгулирования σ , времени переходных процессов $t_{\rm n}$, и установившегося значения выходного сигнала $x_{\rm уст}$. Полученные значеня представлены в таблице 2.

Рисунок 7 – Графика переходного процесса при измении массы

3 Исследование влияния постоянной времени на вид переходных процессов

Передаточная функция системы:

$$W(s) = \frac{K_U K_0}{T_U m s^3 + (m + K_d T_U) s^2 + (K_d + C_p T_U) s + C_p}$$
(1)

В таблице 3 приведена зависимость характеристик системы от постоянной времени и расчитанные корни передаточной функции(1).

Таблица 3 – Характеристики системы при различной постоянной времени

Ти,мс	0.15	0.3	0.6	0.9
tп,мc	0.326	0.393	0.536	0.773
σ , %	63.9	44.3	14.1	5.63
$x, 10^{-3} \text{ M}$	0.113	0.113	0.113	0.113
$s_1, 10^3$	-6.67	-3.33	-1.67	-1.11
$s_2, 10^3$	-0.36-3.98i	-0.36-3.98i	-0.36-3.98i	-0.36-3.98i
$s_3, 10^3$	-0.36 + 3.98i	-0.36 + 3.98i	-0.36 + 3.98i	-0.36 + 3.98i

На рисунке 8 приведены графики переходных процессов системы при изменении постоянной времени.

Рисунок 8 – Графика переходного процесса при изменению T_{μ}

С увеличением постоянной времени высоковольтного усилителя снижает перерегулирование и время переходного процесса. На установившееся значение перемещения постоянная времени не влияет

4 Исследование влияния коэффициента упругости C_p

Исследуем поведение системы, варьируя C_p , при выключенном питании U=0 и приложенном воздействии $F_B=4$. На рисунке 9 и 10 представлены полученные в результате математического моделирования переходные процессы при различных C_p .

Рисунок 9 — Графика переходного процесса x(t) при изменению C_p

Рисунок 10 – Графика переходного процесса V(t) при изменению C_p

Из передаточной функции (1) мы построим ЛАЧХ системы

$$W(s) = \frac{K_U K_0}{T_u m s^3 + (m + K_d T_u) s^2 + (K_d + C_p T_u) s + C_p}$$
 (2)

$$W(jw) = \frac{K_U K_0}{(C_p - mw^2 - K_d T_u w^2) + j(C_p T_u + K_d w - T_u mw^3)}$$
(3)

$$A(w) = \frac{K_U K_0}{\sqrt{(C_p - mw^2 - K_d T_u w^2)^2 + (C_p T_u + K_d w - T_u mw^3)^2}}$$
(4)

$$L(w) = 20 \lg A(w) \tag{5}$$

Рисунок 11 – Графика ЛАЧХ системы

Выводы

В работе была исследована математическая модель и зависимости переходных процессов исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений, от его параметров и внешних воздействий

При увеличении массы нагрузки m, увеличивается перерегулирование σ и время переходных процессов $t_{\rm n}$.

При увеличении постоянной времени T_u , уменьшается значение перерегулирования, и времени переходного процесса.

При увеличи коэффициента упругости C_p уменьшается влияние сил системы и как следствие снижается амплитуда колебания и установившееся значение $x_{\rm уст}$.