

Sesión 10: El Modelo de las Máquinas de Turing

- 1. Dadas las siguientes descripciones instantáneas durante la computación de una Máquina de Turing: I_1 =0 q_0 1111111000 e I_2 = q_1 0111111000. Determínese la quíntupla que permitiría obtener I_2 a partir de I_1
- 2. Constrúyase una Máquina de Turing que, a partir de la siguiente configuración inicial de la cinta:

$$i_1 \ 1... \ (x+1)...1 \ 0 \ 1... \ (y+1)...1$$

deje como configuración final: i₂ 1... (y+1)...1 0 1... (x+1)...1

3. Considérese la siguiente máquina de Turing M=({0,1}, {q0,q1,q2,q3,qf}, T, q0, {qf}):

- a. Determínense sus funciones semánticas unaria y binaria.
- b. Ante la descripción instantánea 0(q1)01110, ¿cuál será la siguiente descripción instantánea?
- 4. Determínese la función unaria semántica de la MT siguiente (considerando q_0 su estado inicial y q_f su estado final).

$(q_0 1 0 D q_1)$	$(q_0 \ 0 \ 0 \ H \ q_f)$	(q ₃ 1 1 D q ₃)	(q ₃ 0 1 I q ₄)
(q ₁ 1 0 D q ₂)	$(q_1 \ 0 \ 0 \ H \ q_f)$	(q ₄ 1 1 I q ₄)	(q ₄ 0 0 I q ₅)
(q ₂ 1 1 D q ₂)	$(q_2 \ 0 \ 0 \ D \ q_3)$	(q ₅ 1 1 I q ₅)	$(q_5 \ 0 \ 0 \ D \ q_0)$

5. Constrúyanse máquinas de Turing que calculen las siguientes funciones:

a.
$$f(x,y) = x - y$$

b.
$$f(x,y) = \begin{cases} x - y & \text{si } x \ge y \\ indef. & \text{si } x < y \end{cases}$$

c.
$$f(x) = \sum_{i=0}^{x} i$$

d.
$$f(x,y) = 2x + (y \operatorname{div} 2)$$

e.
$$f(x,y) = x \mod y$$

6. Rellénense los 4 huecos en gris de modo que la MT compute la siguiente función:

$$f(x,y) = \begin{cases} y & six \le y \\ indef. & six > y \end{cases}$$

(q0, 1, 0, D, q1)	(q2, 0, 1, I, q3)	(q5, 0, 0, D, q0)
(q1, 1, 1, D, q1)	(q3, 1, 0, I, q4)	3
1	(q4, 1, 1, I, q4)	(q6, 0, 0, D, q6)
(q2, 1, 1, D, q2)	2	4
	(q5, 1, 1, I, q5)	

7. Sea g(x,y) una función computada por una Máquina de Turing M1, con los siguientes estados {q0, q1, q2, q3}; siendo q0 el estado inicial y q3 único estado final de M1 . Constrúyase una Máquina de Turing M cuya función semántica binaria sea:

$$f(x,y) = \begin{cases} 0 & \text{si y=0} \\ g(x,y) & \text{si } y > 0 \end{cases}$$

8. Dada una Máquina de Turing Mf cuyo estado inicial es q0, constrúyase un Máquina de Turing Mg cuya función binaria semántica sea g(X,Y) = f(2X,Y)