

MDPs: overview

So far: search problems

state s, action a

state Succ(s, a)

Uncertainty in the real world

History

MDPs: Mathematical Model for decision making under uncertainty.

MDPs were first introduces in 1950s-60s.

Ronald Howard's book on Dynamic Programming and Markov Processes

• The term 'Markov' refers to Andrey Makov as MDPs are extensions of Markov Chains, and they allow making decisions (taking actions or having choice).

CS221

Applications

Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.

Resource allocation: decide what to produce, don't know the customer demand for various products

Agriculture: decide what to plant, but don't know weather and thus crop yield

CS221

Dice game

Example: dice game-

For each round $r = 1, 2, \ldots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Rewards

If follow policy "stay":

Expected utility:

$$\frac{1}{3}(4) + \frac{2}{3} \cdot \frac{1}{3}(8) + \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}(12) + \dots = 12$$

Rewards

If follow policy "quit":

Expected utility:

$$1(10) = 10$$

MDP for dice game

Example: dice game-

For each round $r = 1, 2, \dots$

- You choose stay or quit.
- If quit, you get \$10 and we end the game.
- If stay, you get \$4 and then I roll a 6-sided dice.
 - If the dice results in 1 or 2, we end the game.
 - Otherwise, continue to the next round.

Markov decision process

Definition: Markov decision process-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

T(s, a, s'): probability of s' if take action a in state s

Reward(s, a, s'): reward for the transition (s, a, s')

 $\mathsf{IsEnd}(s)$: whether at end of game

 $0 \le \gamma \le 1$: discount factor (default: 1)

Search problems

Definition: search problem-

States: the set of states

 $s_{\mathsf{start}} \in \mathsf{States}$: starting state

Actions(s): possible actions from state s

Succ(s, a): where we end up if take action a in state s

Cost(s, a): cost for taking action a in state s

IsEnd(s): whether at end

- $Succ(s, a) \Rightarrow T(s, a, s')$
- $Cost(s, a) \Rightarrow Reward(s, a, s')$

Transitions

Definition: transition probabilities-

The **transition probabilities** T(s, a, s') specify the probability of ending up in state s' if taken action a in state s.

Example:		transition probabilities-	
s	a	s'	T(s, a, s')
in	quit	end	1
in	stay	in	2/3
in	stay	end	1/3

Probabilities sum to one

For each state s and action a:

$$\sum_{s' \in \mathsf{States}} T(s, a, s') = 1$$

Successors: s' such that T(s, a, s') > 0

Transportation example

Example: transportation-

Street with blocks numbered 1 to n.

Walking from s to s+1 takes 1 minute.

Taking a magic tram from s to 2s takes 2 minutes.

How to travel from 1 to n in the least time?

Tram fails with probability 0.5.

[semi-live solution]

CS221

What is a solution?

Search problem: path (sequence of actions)

MDP:

Definition: policy-

A **policy** π is a mapping from each state $s \in \mathsf{States}$ to an action $a \in \mathsf{Actions}(s)$.

Evaluating a policy

Definition: utility-

Following a policy yields a random path.

The **utility** of a policy is the (discounted) sum of the rewards on the path (this is a random variable).

```
      Path
      Utility

      [in; stay, 4, end]
      4

      [in; stay, 4, in; stay, 4, in; stay, 4, end]
      12

      [in; stay, 4, in; stay, 4, end]
      8

      [in; stay, 4, in; stay, 4, in; stay, 4, in; stay, 4, end]
      16
```


Definition: value (expected utility)

The value of a policy at a state is the expected utility.

Evaluating a policy: volcano crossing

Value: 3.73

Utility: -29.99

CS221 4

Discounting

Definition: utility-

Path: $s_0, a_1 r_1 s_1, a_2 r_2 s_2, \ldots$ (action, reward, new state).

The **utility** with discount γ is

$$u_1 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \cdots$$

Discount $\gamma = 1$ (save for the future):

[stay, stay, stay]: 4 + 4 + 4 + 4 = 16

Discount $\gamma = 0$ (live in the moment):

[stay, stay, stay]: $4 + 0 \cdot (4 + \cdots) = 4$

Discount $\gamma = 0.5$ (balanced life):

[stay, stay, stay]: $4 + \frac{1}{2} \cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 4 = 7.5$

Policy evaluation

Definition: value of a policy-

Let $V_{\pi}(s)$ be the expected utility received by following policy π from state s.

Definition: Q-value of a policy-

Let $Q_{\pi}(s, a)$ be the expected utility of taking action a from state s, and then following policy π .

Policy evaluation

Plan: define recurrences relating value and Q-value

$$V_{\pi}(s) = egin{cases} 0 & ext{if IsEnd}(s) \ Q_{\pi}(s,\pi(s)) & ext{otherwise.} \end{cases}$$

$$Q_{\pi}(s, a) = \sum_{s'} T(s'|s, a) [\mathsf{Reward}(s, a, s') + \gamma V_{\pi}(s')]$$

Dice game

Let π be the "stay" policy: $\pi(in) = stay$.

$$V_{\pi}(\mathsf{end}) = 0$$

$$V_{\pi}(\mathsf{in}) = \frac{1}{3}(4 + V_{\pi}(\mathsf{end})) + \frac{2}{3}(4 + V_{\pi}(\mathsf{in}))$$

In this case, can solve in closed form:

$$V_{\pi}(\mathsf{in}) = 12$$

Policy evaluation

Key idea: iterative algorithm-

Start with arbitrary policy values and repeatedly apply recurrences to converge to true values.

Algorithm: policy evaluation-

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state s:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s'|s,\pi(s))[\mathsf{Reward}(s,\pi(s),s') + \gamma V_{\pi}^{(t-1)}(s')]}_{Q^{(t-1)}(s,\pi(s))}$$

Policy evaluation implementation

How many iterations (t_{PE}) ? Repeat until values don't change much:

$$\max_{s \in \mathsf{States}} |V_\pi^{(t)}(s) - V_\pi^{(t-1)}(s)| \leq \epsilon$$

Don't store $V_{\pi}^{(t)}$ for each iteration t, need only last two:

$$V_{\pi}^{(t)}$$
 and $V_{\pi}^{(t-1)}$

Complexity

Algorithm: policy evaluation-

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state *s*:

$$V_{\pi}^{(t)}(s) \leftarrow \underbrace{\sum_{s'} T(s'|s,\pi(s))[\mathsf{Reward}(s,\pi(s),s') + \gamma V_{\pi}^{(t-1)}(s')]}_{s'}$$

 $Q^{(t-1)}(s,\!\pi(s))$

MDP complexity-

S states

 ${\cal A}$ actions per state

S' successors (number of s' with T(s'|s,a) > 0)

Time: $O(t_{PE}SS')$

Policy evaluation on dice game

Let π be the "stay" policy: $\pi(in) = stay$.

$$V_{\pi}^{(t)}(\mathsf{end}) = 0$$

$$V_{\pi}^{(t)}(\mathsf{in}) = \frac{1}{3}(4 + V_{\pi}^{(t-1)}(\mathsf{end})) + \frac{2}{3}(4 + V_{\pi}^{(t-1)}(\mathsf{in}))$$

$$\begin{bmatrix} s & \text{end} & \text{in} \\ V_{\pi}^{(t)} & \text{0.00} & 12.00 \end{bmatrix} (t = 100 \text{ iterations})$$

Converges to $V_{\pi}(\mathsf{in}) = 12$.

Summary so far

• MDP: graph with states, chance nodes, transition probabilities, rewards

Policy: mapping from state to action (solution to MDP)

Value of policy: expected utility over random paths

Policy evaluation: iterative algorithm to compute value of policy

CS221 22

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value-

The **optimal value** $V_{\text{opt}}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values

Optimal value if take action a in state s:

$$Q_{\mathsf{opt}}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s')].$$

Optimal value from state s:

$$V_{\text{opt}}(s) = \begin{cases} 0 & \text{if } \mathsf{lsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} Q_{\text{opt}}(s, a) & \text{otherwise.} \end{cases}$$

Optimal policies

Given Q_{opt} , read off the optimal policy:

$$\pi_{\mathsf{opt}}(s) = \arg \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

Value iteration

Algorithm: value iteration [Bellman, 1957]—

Initialize $V_{\mathrm{opt}}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{VI}$:

For each state *s*:

$$V_{\text{opt}}^{(t)}(s) \leftarrow \max_{a \in \mathsf{Actions}(s)} \underbrace{\sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t-1)}(s')]}_{Q_{\text{opt}}^{(t-1)}(s, a)}$$

Time: $O(t_{VI}SAS')$

[semi-live solution]

Value iteration: dice game

```
s end in V_{
m opt}^{(t)} \quad {
m 0.00 \ 12.00} \ (t=100 \ {
m iterations}) \pi_{
m opt}(s) - stay
```

CS221

Convergence

Theorem: convergence-

Suppose either

- discount $\gamma < 1$, or
- MDP graph is acyclic.

Then value iteration converges to the correct answer.

Summary of algorithms

• Policy evaluation: (MDP, π) $\to V_{\pi}$

• Value iteration: MDP $\rightarrow (Q_{\sf opt}, \pi_{\sf opt})$

Unifying idea

Algorithms:

- Search DP computes FutureCost(s)
- Policy evaluation computes policy value $V_{\pi}(s)$
- Value iteration computes optimal value $V_{\sf opt}(s)$

Recipe:

- Write down recurrence (e.g., $V_{\pi}(s) = \cdots V_{\pi}(s') \cdots$)
- Turn into iterative algorithm (replace mathematical equality with assignment operator)

CS221 1