Stopujące protony Geant4

Kamil Skwarczyński

1 Streszczenie

Celem projektu było wysymulowanie stopujących protonów w prototypie detektora Super FGD (Fine Grained Detector) do eksperymentu T2K (Tokai to Kamioka).

2 Opis detektora

Detektor składa się z plastikowych kostek z trzema włóknami WLS (Wave-Lenght-Shifting), co umożliwia rekonstrukcje toru w 3D. Detektor zbudowany jest z 9216 kostek 24x8x48 (x,y,z). Koncept kostki przedstawiono na Rysunku 1, natomiast jej implementację na Rysunku 1. Rzeczywistą budowę detektora zaprezentowano na Rysunku 3.

Rysunek 1: Budowa kostki detektora sFGD.

Rysunek 2: Wizualizacja kostki w symulacji Geant4.

Rysunek 3: Detektor sFGD.

3 Wiązka

Wiązka składa się z protonów o energii 100 i 200 MeV (równe prawdopodobieństwo na wylosowanie tych energii). Protony startują w środku detektora, w domyśle powstały one po oddziaływaniu neutrin. Zawsze startują na początku osi z pierwszego rzędu kostek, natomiast pozycja w osiach x i y jest losowana.

4 Wyniki

Wyniki symulacji są przedstawione w takiej formie, jaką można uzyskać w prawdziwym eksperymencie (Rysunek 4 i 5).

Rysunek 4: Event display pochodzący z rzeczywistego stopującego protonu.

Rysunek 5: Event display pochodzący z wysymulowanego stopującego protonu

Na Rysunku 6 zaprezentowano numer kostki stopującego protonu w osi z. Na Rysunku 7 pokazano depozyt energii w kostce, w której zatrzymał się proton.

Rysunek 6: Histogram pokazujący, w której kostce w osi Z zatrzymał się proton.

Rysunek 7: Histogram pokazujący depozyt energii w kostce, w której zatrzymał się proton.