6.
$$\frac{1}{\sqrt{4}}$$
 $\frac{1}{\sqrt{4}}$ $\frac{1}{\sqrt{4}}$

1.12 Prove the following

a)
$$\frac{N}{c-1}$$
 (2i-1) = N^2

let $R(n)$ be $\frac{N}{c-1}$ (2i-1) = N^2

1. Buse (ase; $M=1$)

Prove: $\frac{1}{2}$ (2i-1)=1²

Prove: $\frac{1}{2}$ (2i)-1)=1 and 1²=1

Prove: $\frac{1}{2}$ (2u)-1)=1 and 1²=1

2. Induction Ctep; let $n \in \mathbb{N}$, we trosofibitionly rates or $n \ge 1$ to show that $R(n+1)$ to true

i) Assume $R(n)$: $\frac{N}{2}$ (iii) = N^2 for some pat $n \ge 1$

ii) Induction:

 $\frac{N}{2}$ (2i-1)=(M+1)(N²)

 $\frac{N}{2}$ (2i-1)= N^2 for some pat $n \ge 1$

iii) Induction:

 $\frac{N}{2}$ (2i-1)=(M+1)(N²)

 $\frac{N}{2}$ (2i-1)=(M+1)(N²)

$$= [n^{2}] + (n+1)$$

$$= n^{2} + n + 1$$

$$= n^{2}$$

next pase

i) Assume
$$P(n)$$
: $\frac{5}{i-1} \bar{\epsilon}^3 = \left(\frac{5}{i-1}\hat{\epsilon}\right)^2$ for some $m+n\geq 1$

$$\sum_{i=1}^{n+1} i^3 = (n+1) \left(\sum_{i=1}^{n} i \right)^2$$

Proof; vrite sum on the lhs to be croven

$$\sum_{i=1}^{n+1} z^{i} = (1+4+9+16+...+n)+(n+1)$$

$$= \left(\sum_{i=1}^{n} z^{3}\right) + (n+1)$$

$$= \left[\left(\sum_{i=1}^{\infty} c \right)^{2} \right] + (n+1)$$

by Induction of follows

$$\sum_{i=1}^{5} i^3 = \left(\sum_{i=1}^{5} i\right)^2$$

1.7 Prove me Lolloway n. las X LX for all X70 It is true Mut OGX SI of XXI Men 105 XXD of X=1 onen log X=0 how we use induction to show X71 13 true Base Case; of 16x22 Men los XLI H x=2 Men 105 X=1 : 14x 42 Inductive Hype Mesos ? Assume + Mc PLX 42P prove 2PG y 54P FMB B becase y 15 between the limits 105 y=1052+10g= 2(P) Ly 42(21) PC 4 = 2P = logy=1+1024 Mrs tollers mat 10g至一生 =7 10gg L 1+生 Substate 5 will always be greater than 1 : 10女女女士 = 10女女女女

b. $\log_{C}(A^{B}) = B \log_{C}A$ 1. let $\log_{C}(A^{B}) = X$ Reason: $\log_{C}(A^{B})$ must be a number

2. $C^{\times} = A^{B}$ Reason: exponentiated form of #1

3. $(C^{\times})^{\frac{1}{2}} = (A^{B})^{\frac{1}{2}}$ Reason: if A = B then $A^{N} = B^{N}$ 4. $C^{\frac{1}{2}} = A$ Reason: exponents $(A^{e})^{N} = A^{e-N}$ 5. $\log_{C}(A) = \frac{X}{B}$ Reason: equivilent log form of #4

6. $B \cdot \log_{C}(A) = X$ Reason: if A = B then $R \cdot A = R \cdot B$ 7. $B \cdot \log_{C}(A) = \log_{C}(A^{B})$ Reason: S = 65 + 4 + C from #4 $S = \frac{1}{2} \log_{C}(A) = \log_{C}(A^{B})$ Reason: S = 65 + 4 + C from #4 $S = \frac{1}{2} \log_{C}(A) = \log_{C}(A^{B})$ Reason: S = 65 + 4 + C from #4