

Nuttige uitdrukkingen (hoofdstuk 29, deel 1)

RMS stroom

$$I_{\rm rms} = \sqrt{\langle I^2 \rangle} = \frac{1}{\sqrt{2}} I_{\rm piek}.$$

Vermogen gedissipeerd

$$P_{\text{av}} = \frac{1}{T} \int_0^T P(t) dt = \frac{1}{T} \int_0^T RI(t)^2 dt = I_{\text{rms}}^2 R.$$

Dit is 0 voor een ideale condensator of inductor.

Impedantie

$$Z_R = R;$$
 $Z_L = i\omega L;$ $Z_C = \frac{1}{i\omega C}.$

Niet-ideale componenten kunnen worden voorgesteld door een gepaste serieschakeling van ideale componenten.

Maximale stroom

$$I_{\mathsf{max}} = \frac{\varepsilon_{\mathsf{max}}}{|Z|}.$$

• Impedanties gedragen zich zoals weerstanden in serie- en parallelschakelingen

$$Z_{\rm s} = \sum_{j=1}^{N} Z_{j} \quad {
m en} \quad \frac{1}{Z_{
m p}} = \sum_{j=1}^{N} \frac{1}{Z_{j}}.$$

Wisselstroom: oplossingsmethode

- Waarschijnlijk het makkelijkst is te werken met complexe getallen (zie ook vorige slide).
- Net zoals je met elk elementje van een gelijkstroomschakeling een grootheid als ε of R kan associëren, kan je dit ook voor componenten in wisselstroomschakelingen.

$$\begin{array}{ccc} \text{gelijkstroom} & \text{wisselstroom} \\ \varepsilon & \to & \varepsilon(t) = \varepsilon e^{\mathrm{i}\omega t + \varphi_{\varepsilon}} \\ I & \to & I(t) = I e^{\mathrm{i}\omega t + \varphi_{I}} \\ R & \to & Z \end{array}$$

- De wetten van Kirchhoff gelden net zo voor wisselstroomschakelingen als voor gelijkstroomschakelingen.
- Zoek de complexe vorm van de gezochte grootheid. Neem het reële deel hiervan helemaal op het einde.

Oefening 1: Stroom en vermogen (29.19)

Een gloeilamp met een vermogen $P_{\rm av}=100W$ wordt in het lichtnet gevezen, waarop een wisselspanning van $V_{\rm rms}=120V$ staat. Zoek

- 1 de RMS-stroom
- 2 de piekstroom
- 3 het piekvermogen.

Oefening 2: Inductantie van een spoel (29.35)

Een niet-ideale spoel met een weerstand $R=80\Omega$ heeft een impedantie van $Z=200\Omega$ wanneer deze is aangedreven door een bron met een frequentie van f=1kHz. Wat is de inductantie L van de spoel?

Oefening 3: Serie RLC-circuit

In een serie-RLC circuit heeft de bron een spanningsamplitude van 120V, is $R=80\Omega$ en de reactantie van de condensator bedraagt 480Ω . De spanning over de condenstator is $360\,V$.

- 1 Bepaal de stroomamplitude in het circuit.
- 2 Hoe groot is de totale impedantie?
- 3 Welke twee waarden kan de reactantie van de inductiespoel hebben?
- Voor welke van deze twee waarden is de hoekfrequentie kleiner dan de resonantiefrequentie?

Oefening 4: Serie RLC-circuit

Een TV-tuner die kan worden voorgesteld door onderstaand diagram is verbonden met een TV-antenne. Veronderstel dat de antenne signalen opvangt die voor elk TV-kanaal (dus elke frequentie) $100\mu V$ bedraagt.

- 1 Wat is de spanning over de condensator bij resonantie (als functie van de ingangsspanning)?
- **2** Als TV-kanaal 9 bij de resonantiefrequentie ligt en kanaal 10 ligt 6*MHz* hoger, met welke factor is het signaal van kanaal 10 dan onderdrukt ten opzichte van kanaal 9?

Oefening 5: Parallelschakeling

Gegeven een circuit zoals in de tekening. De waarden van R, L en C zijn gegeven door

$$R = 100\Omega$$
, $L = 31mH$, en $C = 56\mu F$.

Een spanningsbron levert een wisselspanning met onbekende amplitude. De spanning over de capaciteit wordt gemeten als

$$V_C(t) = V_C \cos(\omega t)$$
 met $f = 100Hz$ en $V_C = 9,3V$.

Wat is de stroom door de spoel als functie van de tijd?

Oefening 6: LC-keten

Beschouw een LC-keten in serie, gevoed door een spanning $\varepsilon(t) = \varepsilon_0 \cos(\omega t)$.

1 Toon aan dat als $\omega \gg (LC)^{-1/2}$, de spanning over de condensator voldoet aan

$$V_C = \left| \frac{Z_C}{Z_L} \right| \varepsilon_{\mathsf{max}}.$$

2 Toon aan dat V_C veel kleiner is dan ε_{max} .

Nuttige uitdrukkingen (hoofdstuk 29, deel 2)

 In een transformator is de verhouding tussen de spanningen in elk van de kringen gelijk aan de verhouding van het aantal windingen:

$$\frac{N_1}{N_2} = \frac{V_1}{V_2}.$$

• In een ideale transformator gaat geen vermogen verloren, daarom geldt

$$V_{1,\text{rms}}I_{1,\text{rms}} = V_{2,\text{rms}}I_{2,\text{rms}}.$$

 Eveneens geldt dat het product van de RMS-stroom met het aantal windingen in beide kringen gelijk is:

$$N_1 I_{1.rms} = N_2 I_{2.rms}$$

Let op: deze stromen zelf zijn in tegenfase.

Oefening 7: Transformator

Een toestel met impedantie 12Ω heeft een RMS-spanning van 24V nodig.

- Wat dient de verhouding van de windingen te zijn opdat het apparaat kan worden aangesloten op een leiding met daarop een RMS-spanning van 120 V?
- Veronderstel dat de transformator per ongeluk achterstevoren in de keten wordt geïnstalleerd zodat de 120 V door de secundaire windingen loopt in plaats van door de primaire. Hoeveel stroom (RMS) loopt er dan door het apparaat?

Oplossingen

Oefening 1: oplossing (1)

• De RMS-stroom wordt gegeven door

$$I_{\rm rms} = \frac{P_{\rm av}}{V_{\rm rms}}$$

$$= \frac{100W}{120V}$$

$$= 0,83A.$$

De piekstroom wordt gegeven door

$$I_{\text{piek}} = \sqrt{2}I_{\text{rms}}$$

$$= \sqrt{2} \cdot 0,83A$$

$$= 1,18A.$$

Oefening 1: oplossing (2)

• Het piekvermogen wordt gegeven door

$$P_{\text{piek}} = RI_{\text{piek}}^{2}$$

$$= \frac{V_{\text{rms}}}{I_{\text{rms}}}I_{\text{piek}}^{2}$$

$$= 2\frac{V_{\text{rms}}}{I_{\text{rms}}}I_{\text{rms}}^{2}$$

$$= 2V_{\text{rms}}I_{\text{rms}}$$

$$= 2 \cdot 120V \cdot 0,83A.$$

$$= 200W.$$

Oefening 2: oplossing

De impedantie van de spoel wordt gegeven door

$$|Z| = \sqrt{R^2 + \omega^2 L^2},$$

zodat

$$L = \sqrt{\frac{|Z|^2 - R^2}{\omega^2}}$$

$$= \sqrt{\frac{|Z|^2 - R^2}{(2\pi f)^2}}$$

$$= \sqrt{\frac{(200\Omega)^2 - (80\Omega)^2}{(2\pi \cdot 1000Hz)^2}}$$

$$= 0.029H.$$

Oefening 3: oplossing (1)

De stroomamplitude is gelijk aan

$$I_{\text{piek}} = \frac{V_C}{Z_C}$$
$$= \frac{360 V}{480\Omega}$$
$$= 0,75 A.$$

• De stroom die door de condensator loopt heeft dezelfde amplitude I_{piek} als de stroom in heel de keten, en dus geldt

$$I_{
m piek} = rac{arepsilon_{
m piek}}{|Z|} \quad \Rightarrow \quad |Z| = rac{arepsilon_{
m piek}}{I_{
m piek}} = rac{120 \, V}{0,75 A} = 160 \Omega.$$

Oefening 3: oplossing (2)

De impedantie wordt gegeven door

$$|Z| = \sqrt{R^2 + (|Z_L| - |Z_C|)^2},$$

zodat

$$|Z_L| = |Z_C| \pm \sqrt{|Z|^2 - R^2}$$

$$= 480\Omega \pm \sqrt{(160\Omega)^2 - (80\Omega)^2}$$

$$= \begin{cases} 619\Omega & (+) \\ 341\Omega & (-) \end{cases}$$

Oefening 3: oplossing (3)

De reactantie van de inductiespoel is gegeven door

$$Z_L = \omega L$$
.

Dit betekent dat grotere frequenties overeenkomen een grotere reactantie van de spoel. De reactantie van 619Ω zal dus overeenkomen met een grotere frequentie, de reactantie van 341Ω zal overeenkomen met een kleinere frequentie.

Oefening 4: oplossing (1)

- We zullen de gevraagde grootheden eerst voor algemene frequenties oplossen. Daarna kan de resonantiefrequentie worden ingevuld.
- Noem de ingangsspanning hier, naar analogie van een gewone spanningsbron, ε . Kies de fase van deze spanning zodanig dat

$$\varepsilon(t) = \varepsilon e^{\mathrm{i}\omega t}.$$

 De stroom die door de keten loopt, is de ingangsspanning gedeeld door de totale impedantie van de schakeling

$$I(t) = \frac{\varepsilon(t)}{Z_{\text{tot}}}$$
$$= \frac{\varepsilon}{R + i\omega L + \frac{1}{i\omega C}} e^{i\omega t}.$$

Oefening 4: oplossing (2)

Deze stroom is ook de stroom door de condensator. De spanning hierover is gegeven door de stroom maal de impedantie van de condensator

$$\begin{split} V_{\text{out}}(t) &= Z_C I(t) \\ &= \frac{\frac{1}{\text{i}\omega C}}{R + \text{i}\omega L + \frac{1}{\text{i}\omega C}} \, \varepsilon e^{\text{i}\omega t} \\ &= \frac{1}{\text{i}\omega RC - \omega^2 LC + 1} \, \varepsilon e^{\text{i}\omega t} \\ &= \frac{1}{(1 - \omega^2 LC) + \text{i}\omega RC} \, \frac{(1 - \omega^2 LC) - \text{i}\omega RC}{(1 - \omega^2 LC) - \text{i}\omega RC} \, \varepsilon e^{\text{i}\omega t} \\ &= \frac{(1 - \omega^2 LC) - \text{i}\omega RC}{(1 - \omega^2 LC)^2 + (\omega RC)^2} \, \varepsilon e^{\text{i}\omega t} \end{split}$$

 De teller van breuk die hier staat is een complex getal. Het loont hier om dit getal in poolvoorstelling te schrijven. Deze heeft de vorm

$$a + bi = \sqrt{a^2 + b^2} e^{i \operatorname{Bgtg}(b/a)}$$

Oefening 4: oplossing (3)

Gebruikmakend van de poolvoorstelling wordt

$$\begin{split} V_{\text{out}}(t) &= \frac{(1 - \omega^2 LC) - \text{i}\omega RC}{(1 - \omega^2 LC)^2 + (\omega RC)^2} \, \varepsilon e^{\text{i}\omega t} \\ &= \frac{\sqrt{(1 - \omega^2 LC)^2 + (\omega RC)^2}}{(1 - \omega^2 LC)^2 + (\omega RC)^2} \, \varepsilon \exp\left\{\text{i}\omega t - \text{i}\text{Bgtg}\left(\frac{\omega RC}{1 - \omega^2 LC}\right)\right\} \\ &= \frac{1}{\sqrt{(1 - \omega^2 LC)^2 + (\omega RC)^2}} \, \varepsilon \exp\left\{\text{i}\omega t - \text{i}\text{Bgtg}\left(\frac{\omega RC}{1 - \omega^2 LC}\right)\right\}. \end{split}$$

 De boogtangens in de exponent is het faseverschil tussen de ingangs- en uitgangsspanning. Een faseverschil tussen spanningen over verschillende delen van de kring of de fase tussen stroom en spanning door/over een element in de schakeling moet je dus in elk geval apart uitrekenen!

Oefening 4: oplossing (4)

- Om de resonantiefrequentie in te vullen, dient deze eerst te worden bepaald. De resonantiefrequentie is die (hoek)frequentie waarbij de absolute waarde van de stroom maximaal is.
- De stroom is gegeven door

$$I(t) = \frac{1}{R + i\omega L + \frac{1}{i\omega C}} \varepsilon e^{i\omega t}$$

$$= \frac{R - i\omega L - \frac{1}{i\omega C}}{R^2 + (\omega L + \frac{1}{\omega C})^2} \varepsilon e^{i\omega t}$$

$$= \frac{1}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \varepsilon \exp\left\{i\omega t - iBgtg\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)\right\}$$

Deze berekening verloopt volgens precies hetzelfde stramien als die op de twee vorige slides.

• De absolute waarde van deze grootheid is het grootst wanneer

$$\omega L - \frac{1}{\omega C} = 0 \quad \Leftrightarrow \quad \omega = \omega_{\rm res} = \frac{1}{\sqrt{LC}}.$$

Oefening 4: oplossing (5)

Deze hoekfrequentie kan worden ingevuld in de uitdrukking voor de uitgangsspanning. Zo volgt

$$V_{\text{out}}(t) = \frac{1}{\sqrt{\left(1 - \frac{LC}{LC}\right)^2 + \frac{1}{LC}(RC)^2}}$$

$$\times \varepsilon \exp\left\{i\omega t - i\text{Bgtg}\left(\frac{\frac{RC}{\sqrt{LC}}}{1 - \frac{LC}{LC}}\right)\right\}$$

$$= \frac{\varepsilon}{R}\sqrt{\frac{L}{C}}\exp\left\{i\omega t - i\frac{\pi}{2}\right\}$$

$$= \frac{\varepsilon}{R}\sqrt{\frac{L}{C}}\exp\left\{i\omega t - i\frac{\pi}{2}\right\}.$$

Het reële gedeelte hiervan is gegeven door

$$\Re\left(V_{\mathrm{out}}(t)\right) = \frac{\varepsilon}{R} \sqrt{\frac{L}{C}} \cos\left(\omega t - \frac{\pi}{2}\right) = \frac{\varepsilon}{R} \sqrt{\frac{L}{C}} \varepsilon \sin\left(\omega t\right).$$

Deze uitdrukking is wat men fysisch waarneemt.

Oefening 4: oplossing (6)

 De amplitude van de uitgangsspanning op de resonantiefrequentie is gelijk aan

$$V_{\mathrm{out}}(\omega_{\mathrm{res}}) = \frac{V_{\mathrm{in}}}{R\omega_{\mathrm{res}}C} = 7,45 mV.$$

Voor de hogere frequentie is dit (noem $\omega_{\rm res} + \Delta \omega = \omega'$)

$$V_{\mathrm{out}}(\omega') = rac{1}{\omega'C} rac{V_{\mathrm{in}}}{\sqrt{R^2 + \left(\omega'L - rac{1}{\omega'C}
ight)^2}} = 1,51 mV.$$

De verhouding tussen deze twee waarden is gegeven door

$$\frac{7,45mV}{1,51mV} = 5,0.$$

Het zou kunnen dat wanneer je dit getal berekent, je een lichtjes afwijkende waarde bekomt. Door de scherpe piek in de functie $V_C(\omega)$ is deze berekening erg gevoelig voor afrondingsfouten. Deze oefening werd vroeger ook gegeven door Stefan Gea, hij bekwam 4,9 in plaats van 5,0.

b

Oefening 5: oplossing (1)

- Deze schakeling kan worden opgelost zoals je zou doen voor een parallelschakeling van gewone weerstanden.
- Schrijf de gemeten spanning over de condensator als

$$V_C(t) = V_C e^{\mathrm{i}\omega t}$$
.

De stroom door de condensator kan nu worden berekend en is gelijk aan

$$I_C(t) = \frac{V_C(t)}{Z_C} = i\omega C V_C e^{i\omega t}.$$

 Deze stroom is ook gelijk aan de stroom door de weerstand. De spanning over de tak met de weerstand en de condensator is daarom gelijk aan

$$V_{R+C}(t) = Z_{R+C}I_C(t) = \left(R + \frac{1}{\mathrm{i}\omega C}\right)\mathrm{i}\omega CV_C \mathrm{e}^{\mathrm{i}\omega t} = \left(\mathrm{i}\omega RC + 1\right)V_C \mathrm{e}^{\mathrm{i}\omega t}.$$

Dit is ook de spanning die door de bron wordt geleverd en dus eveneens de spanning $V_L(t)$ over de spoel.

Oefening 5: oplossing (2)

 Gegeven de spanning over de spoel kan de stroom erdoor worden berekend, namelijk

$$I_L(t) = rac{V_L(t)}{Z_L} = rac{1 + \mathrm{i}\omega RC}{\mathrm{i}\omega L} V_C \mathrm{e}^{\mathrm{i}\omega t}.$$

 Om de fysisch waargenomen stroom te kennen, dient het reële deel van deze oplossing te worden gevonden. In dit geval gaat de berekening als volgt:

$$\begin{split} I_L(t) &= (-\mathrm{i} + \omega RC) \frac{V_C}{\omega L} e^{\mathrm{i}\omega t} \\ &= \sqrt{1 + (\omega RC)^2} e^{-\mathrm{i}\mathrm{Bgtg}(1/(\omega RC))} \frac{V_C}{\omega L} e^{\mathrm{i}\omega t} \\ &= \sqrt{1 + (\omega RC)^2} \frac{V_C}{\omega L} \exp\left(\mathrm{i}\omega t - \mathrm{i}\mathrm{Bgtg}\left(\frac{1}{\omega RC}\right)\right). \end{split}$$

Oefening 5: oplossing (3)

• Het reële deel van deze uitdrukking is gegeven door

$$\Re(\mathit{I}_{\mathit{L}}(t)) = \sqrt{1 + (\omega RC)^2} \frac{\mathit{V}_{\mathit{C}}}{\omega \mathit{L}} \cos\left(\omega t - \operatorname{Bgtg}\left(\frac{1}{\omega RC}\right)\right).$$

Het invullen van de gegeven waarden leert ons

$$\Re(I_L(t)) = \sqrt{1 + (2\pi \cdot 100Hz \cdot 100\Omega \cdot 56\mu F)^2} \frac{9,3V}{2\pi \cdot 100Hz \cdot 31mH} \times \cos\left(2\pi \cdot 100Hz \cdot t - \text{Bgtg}\left(\frac{1}{2\pi \cdot 100Hz \cdot 100\Omega \cdot 56\mu F}\right)\right)$$
$$= 1,75A \cos\left(\frac{623t}{s} - 0,28\right)$$

Oefening 6: oplossing (1)

• De spanning over de condensator wordt gegeven door

$$V_C = IZ_C$$
.

• De stroom door de kring is gegeven door

$$I = \frac{\varepsilon}{Z} = \frac{\varepsilon_{\text{max}}}{Z_L + Z_C}.$$

• Daar $\omega \gg (LC)^{-1/2}$, geldt

$$\omega L \gg \frac{1}{\omega C}$$
 of anders gezegd $|Z_L| \gg |Z_C|$.

Oefening 6: oplossing (2)

Dit betekent

$$I = \frac{\varepsilon}{Z_L + Z_C} \approx \frac{\varepsilon}{Z_L}$$

• De spanning over de condensator is daarom gelijk aan

$$V_C = IZ_C = \varepsilon \frac{Z_C}{Z_L} = \frac{\varepsilon}{(\mathrm{i}\omega C)(\mathrm{i}\omega L)} = -\varepsilon \frac{1}{\omega^2 LC}.$$

Het minteken duidt aan dat de spanning over de condensator in tegenfase zal zijn met de spanning geleverd door de bron.

• Daar $\omega^2 \gg (LC)^{-1}$, geldt $\omega^2 LC \gg 1$ en dus

$$|V_C| = \varepsilon \frac{1}{\omega^2 LC} \ll \varepsilon.$$

Oefening 7: oplossing (1)

 De verhouding van de windingen moet dezelfde zijn als de verhouding van de spanningen, dus

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{120 \, V}{24 \, V} = 5.$$

 \bullet Wanneer de transformator wordt omgedraaid, zal de $120\,V$ worden opgedreven tot

$$V_2 = V_1 \frac{N_2}{N_1} = 120 V \cdot 5 = 600 V.$$

Let op: omdat de transformator is omgedraaid, moeten ofwel alle i'tjes omgewisseld worden, ofwel moet $N_1/N_2=1/5$ worden gekozen.

Oefening 7: oplossing (2)

 De RMS-stroom door het apparaat kan worden berekend met de wet van Ohm:

$$I_{\rm rms} = \frac{V_{\rm rms}}{|Z|} = \frac{600 V}{12 \Omega} = 50 A.$$

• Ter vergelijking, in normale omstandigheden zou dit zijn

$$I_{\rm rms} = \frac{V_{\rm rms}}{|Z|} = \frac{24V}{12\Omega} = 2A.$$