COL202: Discrete Mathematical Structures

Problem 1

An IPL tournament is played between n cricket teams, where each team plays exactly one match with every other team. How many matches are played? (This is easy.) Assume that no match ends in a tie. We say that a subset S of teams is *consistent* if it is possible to order teams in S as $T_1, \ldots, T_{|S|}$ (think of this as the strongest to weakest ordering) such that for every i, j with $1 \le i < j \le |S|$, T_i beats T_j . Prove that irrespective of the outcomes of the matches, there always exists a consistent subset S with $|S| \ge \log_2 n$.

Solution: The number of matches played is given by $\binom{n}{2} = \frac{n(n-1)}{2}$. For the second claim, we proceed using the Strong Induction. Consider the claim:

p(k): In a tournament of k teams, always exists a consistent subset S such that $|S| \ge \log_2(n+1)$

<u>Base Case:</u> For n = 2, there are only two teams T_1 and T_2 . Say T_1 wins against T_2 . Then T_1, T_2 form the required consistent subset. $|S| = 2 \ge \log_2 3$. So P(2) is true.

Induction Hypothesis: Let P(k) be true $\forall k < n$.

Induction Step: Consider a tournament of n teams. We will construct a consistent subset for this tournament. Choose any team T_i . We will consider two cases:

Case 1: n = 2m. Note that the n - 1 = 2m - 1 matches T_i plays can end in a win or a loss. By Pigeon-Hole principle, either T_i wins against at least m teams or loses at least m teams. In the case T_i wins against at least m teams, notice that by the induction hypothesis (m < n), exists a consistent subset S_1 within the m teams of size $|S_1| \ge \log_2(m+1)$. Since T_i wins against all $T_j \in S_1$, $S_2 = S_1 \cup T_i$ forms a consistent subset. Now we have, $|S_2| \ge \log_2(m+1) + 1$, or

$$|S_2| \ge \log_2(2m+2) \ge \log_2(n+1)$$

As required. In case T_i loses at least m matches, we note that for the consistent subset S_1 among the m teams, T_i loses to all $T_j \in S_1$ and proceed as earlier.

Case 2: n = 2m + 1. Again by PHP, either T_i wins against at least m teams or loses at least m teams. By the earlier argument, we can construct a consistent subset S_2 such that,

$$|S_2| \ge \log_2(2m+2) = \log_2(n+1)$$

As required. Thus in either case, exists a consistent subset S_2 such that, $|S_2| \ge \log_2(n+1)$ and thus $|S_2| \ge \log_2(n)$

Problem 2

Call a non-empty subset S of integers nice if, for every $x, y \in S$ and every two integers a, b, we have $ax + by \in S$. Observe that the set of multiples of any integer is a nice set. Prove that, in fact, these are the only nice sets. In other words, prove that for every nice set S there exists an integer x such that $S = \{ax \mid a \in \mathbb{Z}\}.$

Solution: We will prove by construction, i.e. finding an x such that $S = \{ax \mid a \in \mathbb{Z}\}$. Recall the result from problem 8 of the tutorial:

For every
$$x, y \in \mathbb{Z} \exists a, b \in \mathbb{Z}$$
 such that $gcd(x, y) = ax + by$

By construct of S, $ax + by \in S \ \forall \ x, y \in \mathbb{S}$ and $a, b \in \mathbb{Z}$. Thus we have, $gcd(x, y) \in S \ \forall \ x, y \in S$. Further, consider the set $T = \{|s| \mid s \in S\}$. Note that $T \subseteq S$. Also since $gcd(x, y) \geq 0 \ \forall \ x, y$, we must have $gcd(x, y) \in T \ \forall \ x, y \in S$.

Now, $T \subset \mathbb{N}$, thus by Well-Ordering Principle, exists a minimum element (say t_0) in T. Consider $gcd(t_0, s)$ for any $s \in S$. We know that

$$gcd(t_0, s) \le t_0$$

But since $gcd(t_0, s) \in T$ by minimality of t_0 we must have $gcd(t_0, s) = t_0 \ \forall \ s \in S$. Thus, for all $s \in S$ we may write $s = at_0$ for some $a \in \mathbb{Z}$, or in other words, $S = \{at_0 \mid a \in \mathbb{Z}\}$

Problem 3

Prove "Claim 2" from the proof of Schröder-Bernstein Theorem discussed in Lecture 5. Here is the statement of the claim. Let A and B be infinite sets, f be an injection from A to B, and g be an injection from B to A. Let $B' = \{b \in B \mid \exists b^* \in B \setminus \text{Im}(f) \exists k \in \mathbb{N} \cup \{0\} : b = (f \circ g)^k(b^*)\}$, and $A' = \{g(b) \mid b \in B'\}$. Then for every $b \in B$, the following statements are equivalent.

- 1. $b \in B'$.
- 2. If $f^{-1}(b)$ exists, then it is in A'.
- 3. $g(b) \in A'$.

Solution: (1 \Longrightarrow 2) Consider any $b \in B'$. By definition, suppose $a = f^{-1}(b)$, or f(a) = b. Now by the definition of B', we have that $b = (f \circ g)^k(b^*)$ for some $k \in \mathbb{N} \cup \{0\}$ and $b^* \in B \setminus \text{Im}(f)$. Thus we may write.

$$f(a) = (f \circ g)^k (b^*)$$

By definition of B', $b \neq b^*$ since $b \in Im(f)$ and so $k \geq 1$. Also, by injectivity of f we must have,

$$a = g((f \circ g)^{k-1}(b^*)) = g(\bar{b}), \ \bar{b} \in B'$$

Hence, $a \in A'$.

 $(2 \implies 3)$ If $f^{-1}(b)$ exists and in A', then we have $a = g(\bar{b})$ for some $b \in B'$. Write $\bar{b} = (f \circ g)^k(b^*)$ for some $k \in \mathbb{N} \cup \{0\}$ and $b^* \in B \setminus \text{Im}(f)$, and so we have,

$$b = f(a) = f \circ g\left((f \circ g)^k(b^*)\right) = (f \circ g)^{k+1}(b^*)$$

Hence, $b \in B'$ and $g(b) \in A'$.

 $(3 \implies 1)$ Since $g(b) \in A'$, by definition of A' it follows that $b \in B'$

Problem 4

Given a set A, the set of finite length strings over A is denoted by A^* . Prove that if A is a finite set, then A^* is necessarily countable. What can you say about the cardinality of A^* if A is countably infinite instead?

Solution: Let s_P denoted a string over a set P and l_s denoted the length of a string s. Define the set A_i as follows:

$$A_i = \{s_A \mid l_s = i\}$$

Note that,

$$A^* = \bigcup_{i=1}^{\infty} A_i$$

Given that A is a finite set, let us suppose it's cardinality is n. Then, cardinality of each A_i is, $|A_i| = n^i$. Thus, each A_i is finite.

We recall that if we have a countably infinite collection of sets, each of which is countable, then $\bigcup_{i=1}^{\infty} A_i$ is countable. Therefore, A^* is countable.

Problem 5

Prove by mathematical induction that every graph has at least two vertices having equal degree.

Solution: