

## Introduction to Stochastic Differential Equations

Susana Gomes

Last updated October 8, 2023

#### Contents

- 1. Introduction to SDEs
- 2. Stochastic integrals and Itô's formula
- 3. Numerical solution of SDEs



# Introduction to Stochastic Differential Equations

#### SDEs and some definitions

Let  $(B_t : t \ge 0)$  be a standard BM. Then a diffusion process with drift a(x, t) and diffusion  $\sigma(x, t)$  solves the Stochastic differential equation (SDE)

$$dX_t = a(X_t, t)dt + \sigma(X_t, t)dB_t.$$

Here  $dB_t$  is white noise as described before, and we interpret it in its integrated form.

To understand why, use our intuition from ODEs, and "conclude" that the solution is given by

$$X_t - X_0 = \int_0^t a(X_s, s) ds + \int_0^t \sigma(X_s, s) dB_s,$$

where  $X_0$  is the initial condition (which can be deterministic or random).

The **problem** here is that we have an integral that we don't know how to compute:

$$\mathcal{I}=\int_0^t \sigma(X_s,s)dB_s,$$

which is a stochastic integral!

## The stochastic integral

The problem with the stochastic integral  $\mathcal{I} = \int_0^t f(X_s, s) dB_s$  is that we are trying to integrate a stochastic process  $X_t$  or a function of a stochastic process  $f(X_t)$  with respect to another stochastic process.

This means that the stochastic integral  $\mathcal I$  is a random variable! So... How do we compute it?

Let's think about the definition of Riemann integral.

We discretise the interval:

and we define

$$\mathcal{I}(t) := \lim_{K \to \infty} \sum_{k=1}^K f(\tau_k) \left( B_{t_k} - B_{t_{k-1}} \right).$$

The important part now is that the definition of the stochastic integral depends on our choice of  $\tau_k$ !

## Why is this a problem?

**Recall that**  $B_t$  is a sBM, so we know that  $B_{t_k} - B_{t_{k-1}}$  are increments of a BM and therefore they are independent and  $B_{t_k} - B_{t_{k-1}} \sim \mathcal{N}(0, \Delta t)$ .

This sort of makes sense to compute the integral. However, we would expect the limit to be **independent of the chosen**  $\tau_k$ . This will **not** be the case for us.

**Example:** Let's try to compute the integral  $\mathcal{I} = \int_0^T B_t \ dB_t$ .

## Various definitions of stochastic integral

This happens because the BM is a.s. non-differentiable; and this means it "varies too much" in the interval  $[t_{k-1}, t_k]$ .

**Note that:** in "normal" integrals  $\int f(x) dg(x)$  it was required that g(x) had bounded total variation  $\rightarrow$  this is what fails here.

There is no way around this problem. So we always need to specify our choice of  $\tau_k$  when computing stochastic integrals. The most popular choices are:

- $\tau_k = t_{k-1}$   $\rightarrow$  Itô stochastic integral commonly used in finance and biology
- $au_k = rac{t_k + t_{k-1}}{2} o ext{Stratonovich stochastic integral} ext{mostly used in physics and engineering}$
- $au_k = t_k$  o Klimontovich stochastic integral commonly used in statistical physics

#### Itô's formula

In this module, we will only use the **Itô interpretation**. This is because it has a lot of nice properties that you would expect of an integral.

However, it doesn't have a very important property: **the chain rule does not hold**. To overcome this, we use one of the most important results in stochastic calculus...

#### Theorem (Itô's formula for diffusions)

Let  $(X_t:t\geq 0)$  be a diffusion with generator  $\mathcal L$  and  $f:\mathbb R\to\mathbb R$  a smooth function. Then

$$f(X_t) - f(X_0) = \int_0^t (\mathcal{L}f)(X_s) ds + \int_0^t \sigma(X_s, s) f'(X_s) dB_s.$$

or, equivalently in terms of SDEs

$$df(X_t) = a(X_t, t)f'(X_t)dt + \frac{1}{2}\sigma^2(X_t, t)f''(X_t)dt + \sigma(X_t, t)f'(X_t)dB_t.$$

#### Back to SDEs

Recall we are looking into SDEs of the form

$$dX_t = a(X_t, t)dt + \sigma(X_t, t)dB_t.$$

Suppose we want to change variables to some r.v.  $Y_t = f(X_t)$  for some nice invertible function  $f \in C^2$ . Itô's formula for diffusions implies the following.

#### Proposition:

Let  $(X_t:t\geq 0)$  be a diffusion process with drift a(x,t) and diffusion  $\sigma(x,t)$ , and  $f:\mathbb{R}\to\mathbb{R}$  a smooth invertible function. Then  $(Y_t:t\geq 0)$  with  $Y_t=f(X_t)$  is a diffusion process with  $(x=f^{-1}(y))$ 

drift 
$$a(x,t)f'(x) + \frac{1}{2}\sigma^2(x,t)f''(x)$$
 and diffusion  $\sigma(x,t)f'(x)$ ,

i.e., it solves the SDE

$$dY_t = (a(X_t, t)f'(X_t) + \frac{1}{2}\sigma^2(X_t, t)f''(X_t)) dt + \sigma(X_t, t)f'(X_t) dB_t$$
  
=  $f'(X_t)(a(X_t, t) dt + \sigma(X_t, t) dB_t) + f''(X_t)\frac{1}{2}\sigma^2(X_t, t) dt$ 

## Example - geometric Brownian motion

We saw the geometric random walk in one of our problem sheets, and a similar process is the gBM: Let  $Y_t := e^{\theta B_t}$ , so that  $Y_t = f(X_t)$  with  $f(x) = e^{\theta x}$ .

Since  $f'(x) = \theta f(x)$  and  $f''(x) = \theta^2 f(x)$  and the sBM is a diffusion with  $a \equiv 0$ ,  $\sigma^2 \equiv 1$ , for  $\theta \in \mathbb{R}$  we have that  $(Y_t : t > 0)$  is a diffusion process with SDE

$$dY_t = \frac{\theta}{2}Y_tdt + \theta Y_tdB_t.$$

## Example - geometric Brownian motion

Alternatively, suppose  $X_t$  is a gBM and we start with its SDE

$$dX_t = \theta X_t dt + \sigma X_t dB_t \longrightarrow \frac{dX_t}{X_t} = \theta dt + \sigma dB_t.$$

So... Define  $Y_t = f(X_t)$  with f(x) = In(x). We have

$$f'(x) = \frac{1}{x}$$
, and  $f''(x) = -\frac{1}{x^2}$ ,

and we can use Itô's formula:

$$dY_t = d(\ln X_t) = \left(\frac{1}{X_t}\theta X_t - \frac{1}{2X_t^2}\sigma^2 X_t^2\right) dt + \frac{1}{X_t}\sigma X_t dB_t$$
$$= \left(\theta - \frac{\sigma^2}{2}\right) dt + \sigma dB_t.$$

This is something we can integrate!

$$ln\left(\frac{X_t}{X_0}\right) = \left(\theta - \frac{\sigma^2}{2}\right) t + \sigma B_t,$$

... and this gives

$$X_t = X_0 \exp\left(\left(\theta - \frac{\sigma^2}{2}\right) \ t + \sigma \ B_t\right).$$

## A note on gBM

We have that if  $X_t$  is a gBM,

$$X_t = X_0 \exp\left(\left(\theta - \frac{\sigma^2}{2}\right) t + \sigma B_t\right).$$

We can show that the law of the gBM is a log-normal (like we did with the gRW) with:

- mean  $\mathbb{E}(X_t) = X_0 e^{\theta t}$
- and variance  $Var(X_t) = X_0^2 e^{2\theta t} (e^{\sigma^2 t} 1)$ .

The gBM is the most widely used model for stock price behaviour in mathematical finance. You can read more about it in the Stochastic Methods Handbook.

## Example - Ornstein-Uhlenbeck process

The OU process is a diffusion process which solves the SDE

$$dX_t = -\alpha X_t dt + \sigma dB_t, \quad X_0 = x, \quad \alpha, \sigma > 0.$$

We can solve this SDE analytically by considering the ODE analogue:

$$\frac{dx}{dt} = -\alpha x + f(t) \quad \Rightarrow x(t) = e^{-\alpha t} x(0) + \int_0^t e^{-\alpha(t-s)} f(s) \ ds.$$

So, for the OU process, we obtain

$$X_t = e^{-\alpha t}X_0 + \int_0^t e^{-\alpha(t-s)} dB_s,$$

which we can also check using Itô's formula.

## More on the OU process

The OU process also has some nice properties. For example, if  $X_0 = x$  is deterministic, then  $X_t \sim \mathcal{N}\left(e^{-\alpha t}x, \frac{\sigma^2}{2\alpha}(1-e^{-2\alpha t})\right)$ , i.e.

$$\mathbb{E}(X_t) = e^{-\alpha t} x$$
 and  $\operatorname{Var}(X_t) = \frac{\sigma^2}{2\alpha} (1 - e^{-2\alpha t})$ 

Use Itô's isometry 
$$\mathbb{E}\left(\int_0^T f \ dB_t\right)^2 = \mathbb{E}\left(\int_0^T f^2(t) \ dt\right).$$

- The OU process describes the movement of a Brownian particle moving within a fluid with random "kicks" due to friction with other particles.
- It is a mean-reverting process (the mean acts as an equilibrium state)
- In mathematical finance, it is used to model interest rates and currency exchange rates.

## Other examples

Other examples of SDEs that appear in applications include

Cox-Ingersoll-Ross model for interest rates

$$dX_t = \alpha(\beta - X_t) dt + \sigma \sqrt{X_t} dB_t,$$

Stochastic Verhulst equation for population dynamics

$$dX_t = (\lambda X_t - X_t^2) dt + \sigma X_t dB_t$$

 Langevin equation (similar to OU with a particle also having potential energy)

$$\begin{cases}
dQ_t = P_t dt \\
dP_t = (-\lambda P_t - V'(Q_t)) dt + \sigma dB_t
\end{cases}$$

... and many others.

## A note on solving SDEs numerically

We can't always solve SDEs analytically, so we must sometimes revert to numerical techniques.

The most commonly used numerical integration technique for SDEs is the **Euler-Maruyama scheme**.

Using the Markov property of diffusions, we can assume that  $a(X_t)$  and  $\sigma(X_t)$  don't change too much in a small time interval, so we can write, for  $[t_n, t_{n+1}]$  with  $t_{n+1} - t_n = \Delta t$ 

$$X_{t_{n+1}} = X_{t_n} + \int_{t_n}^{t_{n+1}} a(X_s) ds + \int_{t_n}^{t_{n+1}} \sigma(X_s) dB_s$$

$$\approx X_{t_n} + a(X_{t_n}) \int_{t_n}^{t_{n+1}} ds + \sigma(X_{t_n}) \int_{t_n}^{t_{n+1}} dB_s$$

If we let  $X_n = X_{t_n}$ , this gives

$$X_{n+1} = X_n + a(X_n) \Delta t + \sigma(X_n) \Delta B_n,$$

with  $\Delta B_n = B_{t_{n+1}} - B_{t_n} \sim \mathcal{N}(0, \Delta t)$ .

#### A little more on numerical solution of SDEs

The Euler-Maruyama scheme is often the best we can do, especially with constant  $\sigma$ . For example, it is possible to show it converges (in some sense) to the right process with an optimal rate.

However, an alternative (for non-constant  $\sigma$ ) is the **Milstein scheme**, which improves on the approximation

$$\int_{t_n}^{t_{n+1}} \sigma(X_s) \ dB_s \approx \sigma(X_n) \int_{t_n}^{t_{n+1}} \ dB_s.$$

This scheme gives

$$X_{n+1} = X_n + a(X_n) \Delta t + \sigma(X_n) \Delta B_n + (\sigma'\sigma)(X_n) \left((\Delta B_n)^2 - \Delta t\right).$$

We will not discuss numerical solution of SDEs in this module, but if you are interested, see this **paper by Des Higham** or ask me to borrow his book :)

### Some topics we did not cover

In previous years, lecturers covered some topics which I chose to leave out. These include

- The definition and properties of Martingales (sort of a stochastic equivalent to "constant" functions)
- The definition and properties of **quadratic variation**, in particular the fact that the sBM is a martingale with quadratic variation  $[B]_t = t$ .
- Relationship between martingales and conservation laws
- Extreme value theory (things like extreme events, or what is the maximum / minimum value of these processes, etc.)

Let me know if you would like references to any of this.