

Mr. Mina 12th Grade Computer Vision 9-12.CT.4, 9-12.CT.5, 9-12.CT.8, 9-12.CT.9

Lesson 09 - Edge detection Project pt. 2

Do Now

With your partner, discuss your plan for working on the project today. Talk about which functions you want to write/revise and how you think they might work. No code yet!

Roll for confidence!

Line Art Generator - Reference Sheet

Good places to look for help:

- Smoothing out an image with a Gaussian kernel <u>L5, S16</u>
- Creating a Gaussian kernel <u>L6, S2</u>
- Merging x and y edges <u>L7, S10</u>
- Prewitt kernel <u>L7, S2</u>
- Sobel kernel <u>L7, S4</u>

Original

Line Art

Line Art Generator - Reference Sheet

Prewitt x kernel

-1	0	1
-1	0	1
-1	0	1

Prewitt y kernel

1	1	1
0	0	0
-1	-1	-1

Sobel x kernel

-1	0	1
-2	0	2
-1	0	1

Sobel y kernel

1	2	1
0	0	0
-1	-2	-1

Scharr x kernel

-3	0	3
-10	0	10
-3	0	3

Scharr y kernel

3	10	3
0	0	0
-3	-10	-3

Let's get movin'!

Any questions?

Project description and starter code on Google Classroom.

Project due Monday.

Line Art Generator - Extra credit

Using <u>this video</u> and other resource you find online, research the Laplacian operator. Answer the following questions in a few sentences about edge detection using the Laplacian and add the Laplacian kernel to your line art generator.

- 1. What does the second derivative represent in terms of edge detection? Is any information lost using the second derivative?
- 2. Describe three ways in which the Laplacian differs from the other edge detection kernels we've seen. (Exclude second derivative.)