数学符号

本书尽可能地减少了和数学相关的内容,以帮助读者更加直观地理解深度强化学习。本书的数学符号约定如下。

基础符号

x	scalar,标量
\boldsymbol{x}	vector,向量
X	matrix,矩阵
\mathbb{R}	the set of real numbers,实数集
$\frac{\mathrm{d}y}{\mathrm{d}x}$	derivative of y with respect to x ,标量的导数
$\frac{\partial y}{\partial x}$	partial derivative of y with respect to x ,标量的偏导数
$\nabla_{\boldsymbol{x}} y$	gradient of y with respect to x ,向量的梯度
$\nabla_{\boldsymbol{X}} y$	matrix derivatives of y with respect to $oldsymbol{X}$,矩阵的导数
P(X)	a probability distribution over a discrete variable, 离散变量的概率分布
p(X)	a probability distribution over a continuous variable, or over a variable whose type has not been specified,连续变量(或者未定义连续或者离散的变量)的概率分布
$X \sim p$	the random variable X has distribution,随机变量 X 满足概率分布 p
$\mathbb{E}[X]$	expectation of a random variable,随机变量的期望
$\operatorname{Var}[X]$	variance of a random variable,随机变量的方差
$\mathrm{Cov}(X,Y)$	covariance of two random variables,两个随机变量的协方差

- $D_{KL}(P||Q)$ Kullback-Leibler divergence of P and Q,两个概率分布的 KL 散度
- $\mathcal{N}(x;\mu,\Sigma)$ Gaussian distribution over x with mean μ and covariance Σ ,平均值为 μ 且协方差 为 Σ 的多元高斯分布

强化学习符号

- s, s' states, 状态
- a action, 动作
- r reward,奖励
- R reward function,奖励函数
- S set of all non-terminal states, 非终结状态
- S^+ set of all states, including the terminal state, 全部状态,包括终结状态
- A set of actions, 动作集合
- R set of all possible rewards, 奖励集合
- P transition matrix, 转移矩阵
- t discrete time step, 离散时间步
- T final time step of an episode, 回合内最终时间步
- S_t state at time t,时间 t 的状态
- A_t action at time t,时间 t 的动作
- R_t reward at time t, typically due, stochastically, to A_t and S_t ,时间 t 的奖励,通常为随机量,且由 A_t 和 S_t 决定
- G_t return following time t, 回报
- $G_t^{(n)}$ n-step return following time t, n 步回报
- G_t^{λ} λ -return following time t, λ -回报
- π policy, decision-making rule,策略
- $\pi(s)$ action taken in state s under deterministic policy π ,根据确定性策略 π ,状态 s 时的动作

- $\pi(a|s)$ probability of taking action a in state s under stochastic policy π ,根据随机性策略 π ,状态 s 时执行动作 a 的概率
- p(s',r|s,a) probability of transitioning to state s', with reward r, from state s and action a,根据 状态 s 和动作 a,使得状态转移成 s' 且获得奖励 r 的概率
- p(s'|s,a) probability of transitioning to state s', from state s taking action a,根据状态 s 和动作 a,使得状态转移成 s' 的概率
- $v_{\pi}(s)$ value of state s under policy π (expected return),根据策略 π ,状态 s 的价值(回报期望)
- $v_*(s)$ value of state s under the optimal policy,根据最优策略,状态 s 的价值
- $q_{\pi}(s,a)$ value of taking action a in state s under policy π ,根据策略 π ,在状态 s 时执行动 作 a 的价值
- $q_*(s,a)$ value of taking action a in state s under the optimal policy,根据最优策略,在状态 s 时执行动作 a 的价值
- V, V_t estimates of state-value function $v_{\pi}(s)$ or $v_*(s)$,状态价值函数的估计
- Q,Q_t estimates of action-value function $q_{\pi}(s,a)$ or $q_*(s,a)$,动作价值函数的估计
- au trajectory, which is a sequence of states, actions and rewards, $au=(S_0,A_0,R_0,S_1,A_1,R_1,\cdots)$,状态、动作、奖励的轨迹
- γ reward discount factor, $\gamma \in [0,1]$, 奖励折扣因子
- ϵ probability of taking a random action in ϵ -greedy policy,根据 ϵ -贪婪策略,执行随机动作的概率
- α, β step-size parameters,步长
- λ decay-rate parameter for eligibility traces,资格迹的衰减速率

强化学习中术语总结

除了在本书开头的数学符号法则中定义的术语,强化学习中常见内容的相关术语总结如下: R 是奖励函数, $R_t = R(S_t)$ 是 MRP 中状态 S_t 的奖励, $R_t = R(S_t, A_t)$ 是 MDP 中的奖励, $S_t \in \mathcal{S}_{\circ}$

 $R(\tau)$ 是轨迹 τ 的 γ -折扣化回报, $R(\tau) = \sum_{t=0}^{\infty} \gamma^t R_t$ 。

 $p(\tau)$ 是轨迹的概率:

- $p(\tau) = \rho_0(S_0) \prod_{t=0}^{T-1} p(S_{t+1}|S_t)$ 对于 MP 和 MRP, $\rho_0(S_0)$ 是起始状态分布(Start-State Distribution)。
- $p(\tau|\pi) = \rho_0(S_0) \prod_{t=0}^{T-1} p(S_{t+1}|S_t, A_t) \pi(A_t|S_t)$ 对于 MDP, $\rho_0(S_0)$ 是起始状态分布。
- $J(\pi)$ 是策略 π 的期望回报, $J(\pi) = \int_{\tau} p(\tau|\pi)R(\tau) = \mathbb{E}_{\tau \sim \pi}[R(\tau)]$ 。
- π^* 是最优策略: $\pi^* = \arg \max_{\pi} J(\pi)$ 。
- $v_{\pi}(s)$ 是状态 s 在策略 π 下的价值 (期望回报)。
- $v_*(s)$ 是状态 s 在最优策略下的价值 (期望回报)。
- $q_{\pi}(s,a)$ 是状态 s 在策略 π 下采取动作 a 的价值 (期望回报)。
- $q_*(s,a)$ 是状态 s 在最优策略下采取动作 a 的价值 (期望回报)。
- V(s) 是对 MRP 中从状态 s 开始的状态价值的估计。
- $V^{\pi}(s)$ 是对 MDP 中在线状态价值函数的估计,给定策略 π ,有期望回报:
 - $-V^{\pi}(s) \approx v_{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[R(\tau)|S_0 = s]$
- $Q^{\pi}(s,a)$ 是对 MDP 下在线动作价值函数的估计,给定策略 π ,有期望回报:
 - $Q^{\pi}(s,a) \approx q_{\pi}(s,a) = \mathbb{E}_{\tau \sim \pi}[R(\tau)|S_0 = s, A_0 = a]$
- $V^*(s)$ 是对 MDP 下最优动作价值函数的估计,根据最优策略,有期望回报:
 - $V^*(s) \approx v_*(s) = \max_{\pi} \mathbb{E}_{\tau \sim \pi}[R(\tau)|S_0 = s]$
- $Q^*(s,a)$ 是对 MDP 下最优动作价值函数的估计,根据最优策略,有期望回报:
 - $-Q^*(s,a) \approx q_*(s,a) = \max_{\pi} \mathbb{E}_{\tau \sim \pi}[R(\tau)|S_0 = s, A_0 = a]$
- $A^{\pi}(s,a)$ 是对状态 s 和动作 a 的优势估计函数:
 - $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$
- 在线状态价值函数 $v_{\pi}(s)$ 和在线动作价值函数 $q_{\pi}(s,a)$ 的关系:
 - $v_{\pi}(s) = \mathbb{E}_{a \sim \pi}[q_{\pi}(s, a)]$
- 最优状态价值函数 $v_*(s)$ 和最优动作价值函数 $q_*(s,a)$ 的关系:
 - $-v_*(s) = \max_a q_*(s, a)$
- $a_*(s)$ 是状态 s 下根据最优动作价值函数得到的最优动作:
 - $a_*(s) = \arg\max_a q_*(s, a)$
- 对于在线状态价值函数的贝尔曼方程:
 - $v_{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s), s' \sim p(\cdot|s,a)}[R(s,a) + \gamma v_{\pi}(s')]$
- 对于在线动作价值函数的贝尔曼方程:
 - $q_{\pi}(s, a) = \mathbb{E}_{s' \sim p(\cdot | s, a)}[R(s, a) + \gamma \mathbb{E}_{a' \sim \pi(\cdot | s')}[q_{\pi}(s', a')]]$

对于最优状态价值函数的贝尔曼方程:

-
$$v_*(s) = \max_a \mathbb{E}_{s' \sim p(\cdot|s,a)} [R(s,a) + \gamma v_*(s')]$$

对于最优动作价值函数的贝尔曼方程:

-
$$q_*(s, a) = \mathbb{E}_{s' \sim p(\cdot|s, a)}[R(s, a) + \gamma \max_{a'} q_*(s', a')]$$