Representing Data: Integer Arithmetic and Hexadecimal

For use in CSE6010 only Not for distribution

Two's Complement Review

Last time we saw several definitions for the n-bit two's complement representation —X of an n-bit number X:

- The n-bit two's complement representation of -X is $2^n X$
- The two's complement of X is the (one's complement of X) + 1
- In the two's complement representation, the sign bit has negative weight

$$111100011 = -29 1*(-27) + 1*26 + 1*25 + 0*24 + 0*23 + 0*22 + 1*21 + 1*20$$

$$= -128 + 64 + 32 + 0 + 0 + 0 + 2 + 1$$

$$= -29$$

Fast way to generate two's complement numbers

- Starting at least significant bit (rightmost), scan right to left
- Copy bits up to and including the first '1' bit
- Complement (invert) each of the remaining bits

Observations

For n-bit two's complement numbers

The largest positive number that can be represented is 2ⁿ⁻¹ – 1

The largest magnitude negative number that can be represented is -2ⁿ⁻¹

- Zero has a single representation (all 0's)
- -1 is represented as all 1's: 11111111 (n=8)
- The number scale is not symmetric (one more negative number than positive numbers): no positive counterpart to -2ⁿ⁻¹

Two's Complement Arithmetic

Addition

- Simply add using binary addition
- Ignore carry out of most significant bit

$$10100100 = -92$$
+
$$11100011 = -29$$

$$10000111 = -121$$

Subtraction

- Take two's complement of number being subtracted (subtrahend)
- Perform addition

$$92 - 29$$

$$0 1 0 1 1 1 0 0 = 92$$

$$+ 11100011 = -29$$

$$0 0 1 1 1 1 1 = 63$$

This leads to simple circuits to perform addition/subtraction

Overflow

Overflow (OF): adding two n-bit numbers can yield a result that cannot be represented in n-bits

 OF Test 1: The sign of both operands is the same, but the sign of the result is different

$$0 1 0 1 0 1 0 1 = 85$$

$$+ 0 1 1 0 1 0 0 0 = 104$$

$$1 0 1 1 1 1 0 1 = -67$$

Adding two positives cannot give negative Adding two negatives cannot give positive

 OF Test 2: The carry into the most significant bit is different from the carry out

$$01010101 = 85$$

$$+ 01101000 = 104$$

$$1011100 = -67$$

We need another bit to represent the sum

Easy for hardware to detect this condition

Sign Extension

- Sometimes it is necessary to increase the precision (number of bits) used to represent a number
- In two's complement this is accomplished by replicating the sign bit to the left (higher precision bit positions)

```
8 bits: 01011100 = 92
```

16 bits: 000000001011100 = 92

```
8 bits: 1 1 1 0 0 0 1 1 = -29
```

16 bits: 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 = -29

- Perform the following additions and verify your answers. Indicate whether there is potential for overflow and, if so, whether overflow occurs.
 - 10101 + 00111
 - 1001 + 1101

10101 + 00111: Sign bits are opposite, so no potential for overflow 10101 + 00111 11100 10101 is $-2^4+2^2+2^0 = -16+4+1 = -11$ Verify: 00111 is $2^2+2^1+2^0=4+2+1=7$ Sum of -11 and 7 is -4 Binary representation of 4 is 00100; two's complement -4 is 11100

1001 + 1101
 Sign bits are the same; potential for overflow
 1001
 + 1101
 0110

Overflow has occurred! Sign bit has changed

Verify: 1001 is $-2^3+2^0 = -8+1 = -7$; 1101 is $-2^3+2^2+2^0 = -8+4+1 = -3$ Sum is -7 + -3 = -10

Most negative integer with 4 bits is $-2^{4-1} = -2^3 = -8$; overflow confirmed!

Multiplication

Multiplication can be implemented using addition

$$\begin{array}{r}
0 & 1 & 0 & = 2 \\
x & 0 & 1 & 1 & = 3 \\
\hline
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 1 & 1 & 0 & = 6
\end{array}$$

 Multiplication by 2 can be achieved by shifting bits left one position (put 0 into least significant bit position, discard most significant bit)

$$1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ = -22$$
 $1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ = -44$

Multiplication by 2ⁱ can be achieved by shifting bits left i positions

Division

- Division can be implemented using subtraction (similar to long division you learned in elementary school)
 - Slow: each step produces one digit of quotient
- Faster: Perform A / B by
 - Compute 1 / B using Newton-Raphson algorithm* (number of result bits approximately doubles every step)
 - Multiply result by A
- Division by 2ⁱ achieved by shifting right i bit positions (replicate sign bit, discard least significant bits)

^{*} see https://en.wikipedia.org/wiki/Division_algorithm for details

Hexadecimal (base 16)

Digits: use letters to represent digits 10-15

More compact way to write binary strings

-			
Hex	Decimal	Binary	Hexadecimal number: 04EB
0	0	0000	$0*16^3 + 4*16^2 + 14*16^1 + 11*16^0 = 1259$
1	1	0001	0 10 +4 10 +14 10 +11 10 - 1233
2	2	0010	Binary representation of same value:
3	3	0011	0000 0100 1110 1011 = 1259
4	4	0100	
5	5	0101	Conversion from binary to
6	6	0110	hexadecimal: start from right, replace
7	7	0111	
8	8	1000	each 4 bit group with hexadecimal digit
9	9	1001	0000 0100 1110 1011
Α	10	1010	
В	11	1011	0 4 E B
C	12	1100	
D	13	1101	Hexadecimal a more convenient way
E	14	1110	to present binary data on paper
F	15	1111	

- Use bit shifts to quickly compute the following in decimal, starting from (0000 1010)₂ = 10
 - (0001 0100)₂
 - (0101 0000)₂
 - (0000 0101)₂
- Perform the following conversions:
 - (0110 1011 0010 1110)₂ to hexadecimal
 - C9F to binary

Use bit shifts to quickly compute the following in decimal, starting

from $(0000\ 1010)_2 = 10$

- $(0001\ 0100)_2 = 10^2 = 20$
- $(0101\ 0000)_2 = 10^2 = 80$
- $(0000\ 0101)_2 = 10/2 = 5$
- Perform the following conversions:
 - (0110 1011 0010 1110)₂ to hexadecimal: 6B2E
 - C9F to binary: 1100 1001 1111

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Summary of Representing Integers

- We can represent 2ⁿ integers using n bits; specific numbers depend on choice of signed or unsigned
- Most computers use two's complement to represent signed integers
- Shift operations are very fast
- Hexadecimal is a compact way of writing large numbers