Точки A и B называются **сопряжёнными** относительно окружности $\omega(O,R)$, если верно равенство $\overrightarrow{OA} \cdot \overrightarrow{OB} = R^2$. Понятно, что: 1) ни одна из точек A и B не совпадает с O; 2) точка сопряжена сама себе если и только если она лежит на окружности; 3) определение симметрично для точек A и B; и 4) на прямой OA есть ровно одна точка A', сопряжённая A (эта точка называется **симметричной** или **инверсной** A относительно окружности). Произвольная точка B сопряжена точке A, если и только если выполняется равенство $\overrightarrow{OA} \cdot \overrightarrow{A'B} = 0 \Leftrightarrow A'B \perp OA$. Следовательно, Γ MT точек, сопряжённых A, — прямая, проходящая через A' перпендикулярно OA. Эта прямая называется **полярой** точки A, а точка A называется её **полюсом**.

- 1. Точка A лежит вне окружности. Докажите, что её поляра проходит через точки, в которых касательные, проведённые через A, касаются окружности. Дайте аналогичное описание для точки A внутри и на окружности.
- 2. Докажите, что точка пары пересечения противоположных сторон вписанного четырёхугольника сопряжена точке пересечения его диагоналей.
- 3. Пары противоположных сторон вписанного четырёхугольника пересекаются в точках M и N, а его диагонали пересекаются в точке P. Докажите, что центр окружности является ортоцентром треугольника MNP.

Последнее утверждение задаёт треугольник, у которого полюс каждой вершины проходит через противоположную сторону, такой треугольник называется **автополярным**.

- 4. Докажите, что любой автополярный треугольник является тупоугольным, причём вершина тупого угла лежит внутри, а две другие вершины вне окружности.
- 5. Докажите, что для любого тупоугольного треугольника существует единственная окружность, относительно которой он является автополярным.

Упражнения

- 6. Окружности S_1 и S_2 пересекаются в точках A и B, причём центр O окружности S_1 лежит на S_2 . Прямая, проходящая через точку O, пересекает отрезок AB в точке P, а окружность S_2 в точке C. Докажите, что P лежит на поляре C относительно S_1 .
- 7. Две диаметрально противоположные точки одной окружности сопряжены относительно другой. Докажите, что эти окружности ортогональны.
- 8. Докажите, что две точки сопряжены относительно окружности если и только если квадрат расстояния между ними равен сумме их степеней относительно окружности.
- 9. Точка M середина стороны AB треугольника ABC, точка H его ортоцентр. Докажите равенство $\overrightarrow{MC} \cdot \overrightarrow{MH} = \frac{1}{4}AB^2$.
- 10. Здесь должна быть задача с лицейского экзамена

Задачи

- 11. Решите задачу 11 класса с областной олимпиады 2022 года.
- 12. Окружности ω_1 и ω_2 с центрами O_1 и O_2 пересекаются в точках X и Y. Прямая AB касается окружности ω_1 в точке A, а окружности ω_2 в точке B. Касательные к ω_1 и ω_2 , проходящие через точку X, пересекают прямую O_1O_2 в точках K и L. Прямая BL повторно пересекает ω_2 в M, а прямая AK повторно пересекает ω_1 в N. Докажите, что прямые AM, BN и O_1O_2 пересекаются в одной точке.
- 13. Точка M середина стороны BC треугольника ABC. Окружность ω расположена внутри $\triangle ABC$ и касается сторон AB и AC в точках E и F соответственно. Прямые MP и MQ касаются ω в точках P и Q, причём P и B лежат в одной полуплоскости относительно AM. Прямые PM и BF пересекаются в точке X, а прямые QM и CE пересекаются в точке Y. Известно, что 2PM = BC. Докажите, что XY касается ω .
- 14. В треугольнике ABC точки M_A и P_A соответственно середина стороны BC и основание высоты, проведённой из A. Аналогично определим точки M_B , P_B , M_C и P_C . Прямые M_BM_C и P_BP_C пересекаются S_A , а касательная, проведённая к описанной окружности треугольника ABC в точке A, пересекает прямую BC в точке T_A . Точки S_B , T_B , S_C и T_C определены аналогично. Докажите, что прямые, проходящие через точки A, B, C перпендикулярно прямым S_AT_A , S_BT_B , S_CT_C соответственно, пересекаются в одной точке (или попарно параллельны).
- 15. В выпуклом четырёхугольнике ABCD прямые AB и CD пересекаются в точке E, прямые AD и BC пересекаются в точке F, а диагонали AC и BD пересекаются в точке P. Окружность ω_1 проходит через точку D и касается прямой AC в точке P, а окружность ω_2 проходит через точку C и касается прямой BD в точке P. Через X обозначим точку пересечения ω_1 и AD, а через Y точку пересечения ω_2 и BC. Окружности ω_1 и ω_2 повторно пересекаются в точке Q. Докажите, что прямая, проходящая через P перпендикулярно EF, проходит через центр описанной окружности треугольника $\triangle XQY$.
- 16. Пусть (A, A_1) и (B, B_1) две пары сопряжённых относительно окружности ω точек. Докажите, что и точки $X = AB \cap A_1B_1$ и $X_1 = AB_1 \cap A_1B$ сопряжены друг другу.
- 17. Даны три окружности, центры которых не принадлежат одной прямой. Найдите ΓMT точек, для которых найдётся точка (у каждой своя), сопряжённая ей относительно всех трёх окружностей.