	MCAL MT – DS – Sujet B							
	Durée : 1h30, sans document							
_	 Si vous répondez sur le sujet, n'oubliez pas d'indiquer Nom et Prénom sur le sujet puis glissez le dans votre copie à la fin de l'épreuve. 							
-	Commencez par lire tout le sujet pour repérer les questions faciles.							
-	 Respectez les notations du cours. 							
-	 Le sujet est sur 22.5 points et comporte 4 exercices indépendants. 							
-	 Le barème est donné à titre indicatif. 							
-	 Tous les appareils électroniques sont interdits à l'exception des montres qui ne commu- niquent pas. 							
Exerc	ice 1 : Codage des automates (à nombre) d'états fini en machine							
	de Turing (15min, 5 pt)							
_	if de l'exercice est de simuler un automate (à nombre) d'états fini (AEF) par une machine α une bande. Le mot ω à reconnaître sera inscrit sur la bande.							
	Rappelez la définition de l'acceptation d'un mot ω par un AEF. Autrement dit, donne itions à satisfaire pour qu'un mot ω soit accepté par un AEF.							
Un autor	itions à satisfaire pour qu'un mot ω soit accepté par un AEF.							
Un autor A; (ii) c	itions à satisfaire pour qu'un mot ω soit accepté par un AEF. SOLUTION mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l' état initial ω							
Un autor A; (ii) c Des exeles autor Q2. (0.2 de 1 (év	itions à satisfaire pour qu'un mot ω soit accepté par un AEF. SOLUTION mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l'état initial consomme toutes les lettres du mot; (iii) s'arrête dans un état accepteur. emples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0,1\}$ por mates (à nombre) d'états fini et $\Sigma' = \{\Box, \$, 0, 1\}$ pour les machines de Turing.							
Un autor A; (ii) c Des excles autor Q2. (0.2 de 1 (év	solutions à satisfaire pour qu'un mot ω soit accepté par un AEF. SOLUTION mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l'état initial onsomme toutes les lettres du mot; (iii) s'arrête dans un état accepteur. emples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0,1\}$ pomates (à nombre) d'états fini et $\Sigma' = \{\Box, \$, 0, 1\}$ pour les machines de Turing. Ept) On considère le langage L_1 constitué des mots binaires formés d'un nombre quelconquentuellement aucun) et terminés par un 0 . Donnez trois mots binaires qui appartiennent a							
Un autor A; (ii) c Des excles autor Q2. (0.2 de 1 (év	solutions à satisfaire pour qu'un mot ω soit accepté par un AEF. solution mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l'état initial onsomme toutes les lettres du mot; (iii) s'arrête dans un état accepteur. emples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0,1\}$ pomates (à nombre) d'états fini et $\Sigma' = \{\Box,\$,0,1\}$ pour les machines de Turing. Ept) On considère le langage L_1 constitué des mots binaires formés d'un nombre quelconquent aucun) et terminés par un 0. Donnez trois mots binaires qui appartiennent au L_1 et trois mots binaires qui n'appartiennent pas à L_1 .							
Un autor A; (ii) c Des excles autor Q2. (0.2 de 1 (év	SOLUTION mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l'état initial consomme toutes les lettres du mot; (iii) s'arrête dans un état accepteur. emples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0,1\}$ pomates (à nombre) d'états fini et $\Sigma' = \{\Box,\$,0,1\}$ pour les machines de Turing. 5pt) On considère le langage L_1 constitué des mots binaires formés d'un nombre quelconq entuellement aucun) et terminés par un 0. Donnez trois mots binaires qui appartiennent L_1 et trois mots binaires qui n'appartiennent pas à L_1 . SOLUTION 0, 10, 110 $\in L$ 1, 11, 111 $\notin L$							
Un autor A; (ii) c Des excles autor Q2. (0.2 de 1 (év langage	solutions à satisfaire pour qu'un mot ω soit accepté par un AEF. SOLUTION mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l'état initial onsomme toutes les lettres du mot; (iii) s'arrête dans un état accepteur. emples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0,1\}$ pomates (à nombre) d'états fini et $\Sigma' = \{\Box,\$,0,1\}$ pour les machines de Turing. 5pt) On considère le langage L_1 constitué des mots binaires formés d'un nombre quelconquentuellement aucun) et terminés par un 0. Donnez trois mots binaires qui appartiennent L_1 et trois mots binaires qui n'appartiennent pas à L_1 . SOLUTION 0, 10, 110 $\in L$ 1, 11, 111 $\notin L$							
Un autor A; (ii) c Des excles autor Q2. (0.2 de 1 (év langage	solutions à satisfaire pour qu'un mot ω soit accepté par un AEF. SOLUTION mate A accepte un mot ω si il existe une exécution de A qui (i) commence dans l'état initial consomme toutes les lettres du mot; (iii) s'arrête dans un état accepteur. emples d'automates (à nombre) d'états fini. On considère l'alphabet $\Sigma = \{0,1\}$ pour mates (à nombre) d'états fini et $\Sigma' = \{\Box,\$,0,1\}$ pour les machines de Turing. Figh) On considère le langage L_1 constitué des mots binaires formés d'un nombre quelconcentuellement aucun) et terminés par un 0. Donnez trois mots binaires qui appartiennent L_1 et trois mots binaires qui n'appartiennent pas à L_1 . SOLUTION 0, 10, 110 $\in L$ 1, 11, 111 $\notin L$ pt) Donnez un AEF A_1 qui reconnaît le langage L_1 .							

${f Q4.}$ (0.25 pt)	Décrivez en français le langage reconnu par l'AEF $A_2 = -$	→ () () () () () () () () () (
		0

SOLUTION

L'automate A_2 reconnaît l'ensemble des mots binaires formés de combinaisons de 1 et de 0.0. Autrement dit, les mots binaires dans lesquels les 0 apparaissent toujours par deux.

Q5. (0.25 pt) Donnez la traduction en MT d'une transition $(q) \xrightarrow{\ell} (q')$ d'un AEF A.

SOLUTION

$$\bigcirc q \xrightarrow{\ell/\ell:R} \bigcirc q'$$

Q6. (1 pt) Donnez les transitions de MT qui traduisent (a) l'effet d'un état accepteur (q) de l'AEF, et (b) l'effet d'un état non-accepteur (q) de l'AEF.

_ SOLUTION _

- Un état accepteur $\widehat{\mathbb{Q}}$ de l'Aup est traduit en un état $\widehat{\mathbb{Q}}$ dans la MT à laquelle on ajoute la transition suivante $\widehat{\mathbb{Q}}^{\square/\square:H}$ $\widehat{\mathbb{Q}}$ qui vérifie qu'on a consommé toutes les lettres de ω .
- Les états non-accepteurs \widehat{q} sont laissés tel quel et on ajoute la transition \widehat{q} \Longrightarrow \bigotimes sur tous les symboles ℓ pour lequel l'AEF n'a pas de transition sortante de \widehat{q} .

Q7. (1 pt) Donnez la MT M_2 équivalente à l'AEF A_2 , c'est-à-dire qu'elle reconnaît le langage L_2 .

SOLUTION

Q8. (1 pt) Donnez la MT M_1 équivalente à l'AEF A_1 , c'est-à-dire qu'elle reconnaît le langage L_1 .

SOLUTION

Exercice 2: Machines de Turing à 3.. 2.. 1 bande(s) (30min, 7 pt)

On considère l'alphabet $\Sigma = \{\Box, \$, 1, 0, \S\}$. Le symbole \S servira de marqueur. On s'intéresse à l'opération $S : \{0,1\}^* \to 1^*0^*$ qui prend en paramètre un mot binaire $\omega \in \{0,1\}^*$ et range tous les 1 du mot avant les 0.

Exemple : S(000111) = 111000 et S(10101) = 11100 et $S(\epsilon) = \epsilon$

Le but de cet exercice est de réaliser l'opération S de trois façons : avec une MT à 3 bandes (B_1, B_2, B_3) , puis à 2 bandes (B_1, B_2) , puis à une seule bande (B_1) . Au départ le mot ω est inscrit sur la bande B_1 ; les autres bandes contiennent juste un \S ; la tête de lecture/écriture de chaque bande est positionnée sur le \S . À la fin de l'exécution, la bande B_1 doit contenir le mot $S(\omega)$.

Q9. (0.5 pt) Donnez une MT $M_{\frac{1}{\S}}$ qui recherche le symbole \S vers la droite et ramène la tête de lecture/écriture de B_1 sur le \S .

Q10. (1 pt) (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec une MT M_3 à 3 bandes (B_1, B_2, B_3) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_3(10101)$.

_ SOLUTION _

- 1. Au départ les tête de lecture/écriture de B_1, B_2 et B_3 sont placées sur le \$
- 2. On parcourt B_1 de la gauche vers la droite : lorsqu'on rencontre un 0, on le recopie sur B_2 ; lorsqu'on rencontre un 1, on le recopie sur B_3 . On inscrit un \S à la fin du mot ω sur B_1 . On obtient

$$B_1 = \$10101 \square \quad B_2 = \$00 \quad B_3 = \$111$$

3. On recopie B_2 sur B_1 en se déplaçant vers la gauche. Au passage on efface B_2 . On obtient

$$B_1 = \$10100 \quad B_2 = \$ \quad B_3 = \$111$$

4. On recopie B_3 sur B_1 en se déplaçant vers la gauche. Au passage on efface B_3 . On obtient

$$B_1 = \$11100 \quad B_2 = \$ \quad B_3 = \$$$

Q11. (1 pt) Donnez les transitions de la MT M_3 à trois bandes qui réalise S.

Q12. (1.25 pt) (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_2 à 2 bandes (B_1, B_2) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_2(10101)$.

SOLUTION _

- 1. Au départ les tête de lecture/écriture de B_1 et B_2 sont placées sur le \$
- 2. On parcourt B_1 de la gauche vers la droite, lorsqu'on rencontre un 0, on le recopie sur B_2 . On inscrit un \S à la fin du mot ω sur B_1 .

$$B_1 = \$10101\S \quad B_2 = \$00$$

3. On lit B_2 de droite à gauche et on recopie les 0 de B_2 sur B_1 au-delà du \S . Au passage on efface B_2 . On se replace sur \S de B_1 . On obtient

$$B_1 = \$10101\S00 \quad B_2 = \$$$

4. On parcours B_1 de droite à gauche et on écrit les 1 qu'on rencontre sur B_2 . On obtient

$$B_1 = \$10101\S00 \quad B_2 = \$111$$

5. On se replace sur \S de B_1 . Au passage on efface B_1 , y compris le \S . On obtient

$$B_1 = \S 00 \quad B_2 = \$ 111$$

6. On recopie B_2 sur B_1 sur \S puis vers la gauche. Lorsqu'on s'arrête, on inscrit \$ sur B_1 . On obtient

$$B_1 = \$11100 \quad B_2 = \$111$$

Q13. (1.25 pt) Donnez les transitions de la MT M_2 à deux bandes qui réalise S.

Q14. (1 pt) (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_1 à une bande (B_1) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_1(10101)$.

SOLUTION .

- 1. Au départ la tête de lecture/écriture est sur \$
- 2. On parcourt B_1 vers la droite à la recherche d'un 0 qu'on remplace par \S .
- 3. On parcourt B_1 vers la droite à la recherche d'un 1 qu'on remplace par le 0 qu'on a supprimé. Si on arrive sur \square sans avoir rencontré de 1, on passe à l'étape 5.
- 4. On parcourt B_1 vers la gauche à la recherche du \S qu'on remplace par le 1 qu'on vient de supprimer. On reprend à l'étape 2.
- 5. On parcourt B_1 vers la gauche à la recherche du \S qu'on remplace par 0 et on s'arrête.

Les étapes de l'algorithme sont les suivantes :

Q15. (1 pt) Donnez les transitions de la MT M_1 à une bande qui réalise S.

____ SOLUTION

Exercice 3 : Génération de graphes en Gamma (30min, 5.5 pt)

Q16. (1 pt) Exécutez le programme Gamma Γ_1 ci-dessous sur le multi-ensemble $\{ITV(1,8)\}$ où \div est la division entière, c'est-à-dire $5 \div 2 = 2$.

$$\Gamma_1 \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{ll} \mathrm{ITV}(x,y) & \xrightarrow{x \leq y+1} & \mathrm{ITV}(x,\ (x+y) \div 2), & \mathrm{ITV}(1+(x+y) \div 2,\ y) \\ \mathrm{ITV}(x,x) & \longrightarrow & \mathrm{N}(x) \end{array} \right.$$

SOLUTION _

```
\begin{array}{lll} \text{\'etape 1.} & \mathrm{ITV}(1,8) \to \mathrm{ITV}(1,4), \ \mathrm{ITV}(5,8) \\ \text{\'etape 2.} & \mathrm{ITV}(1,4) \to \mathrm{ITV}(1,2), \ \mathrm{ITV}(3,4) \\ \text{\'etape 2.} & \mathrm{ITV}(5,8) \to \mathrm{ITV}(5,6), \ \mathrm{ITV}(7,8) \\ \text{\'etape 3.} & \mathrm{ITV}(1,2) \to \mathrm{ITV}(1,1), \ \mathrm{ITV}(2,2) \\ \text{\'etape 3.} & \mathrm{ITV}(3,4) \to \mathrm{ITV}(3,3), \ \mathrm{ITV}(4,4) \\ \text{\'etape 3.} & \mathrm{ITV}(5,6) \to \mathrm{ITV}(5,5), \ \mathrm{ITV}(6,6) \\ \text{\'etape 3.} & \mathrm{ITV}(7,8) \to \mathrm{ITV}(7,7), \ \mathrm{ITV}(8,8) \\ \text{\'etape 4.} & \mathrm{ITV}(1,1) \to \mathrm{N}(1), \ \mathrm{ITV}(2,2) \to \mathrm{N}(2), \ \ldots, \ \mathrm{ITV}(8,8) \to \mathrm{N}(8) \end{array}
```


1. une étape = une application en parallèle des règles

^{2.} Un nœud N(i) sans arc ne constitue pas un graphe.

$$\begin{cases} & \mathrm{N}(i), \ \mathrm{N}(j), \ G(p) & \xrightarrow{p>0} & \mathrm{N}(i), \ \mathrm{N}(j), \ G(p-1), \ \mathrm{Arc}(i,j) \\ & \mathrm{Arc}(i,j), \ G(p), \ \mathrm{Arc}(i,j) & \xrightarrow{(2)} & \mathrm{Arc}(i,j), \ G(p+1) \\ & \mathrm{N}'(i), \ \mathrm{N}(j), \ G(p) & \xrightarrow{p>0} & \mathrm{N}'(i), \ \mathrm{N}'(j), \ G(p-1), \ \mathrm{Arc}(i,j) \\ & \mathrm{N}'(i), G'(p) & \xrightarrow{p>0} & \mathrm{N}(i), \ G(p) \end{cases}$$

Exercice $4: \mathbb{N} \to \mathbb{B}$ non-dénombrable (15min, 5.5 pt)

Q22. Complétez (1 pt) On note $\mathbb B$ l'ensemble des booléens $\{\mathbb V,\mathbb F\}$. $\mathbb N\to\mathbb B$ $\mathscr E$ prédicat

booléen : $\mathbb{N} \to \mathbb{B} = \{P \mid i \in \mathbb{N}, \ P(i) \in \mathbb{B}\}$. Considérons un prédicat P de $\mathbb{N} \to \mathbb{B}$. Il e complètement défini par un tableau $[0...\mathbb{N}[$ qui indique pour chaque entier i la valeur booléene P(i) associée.

Q23. (0.75 pt) Donnez quatre éléments de $\mathbb{N} \to \mathbb{B}$.

SOLUTION

 $\mathbb{N} \to \mathbb{B}$

 $P_0: i \mapsto \mathbb{F}$ la fonction constante, qui vaut toujours faux $P_1: i \mapsto \mathbb{V}$ la fonction constante, qui vaut toujours vrai

 $P_2: i \mapsto i \stackrel{?}{=} 0$ le test de nullité $P_3: i \mapsto i \mod 2 \stackrel{?}{=} 0$ le test de parité

Q24. (0.75 pt) Rangez vos 4 éléments dans un tableau de booléens à deux dimensions $[0..N[\times[0..N[$; donnez les 4 premières lignes, 6 premières colonnes du tableau.

SOLUTION

$\mathbb{N} =$	0	1	2	3	4	5	
P_0	F	F	F	F	F	F	
P_1	V	V	V	V	V	V	
P_2	V	\mathbb{F}	F	F	F	F	
P_3	V	\mathbb{F}	V	F	V	\mathbb{F}	

Q25. Complétez la preuve (3 pt) On montre que $\mathbb{N} \to \mathbb{B}$ e d'une preuve par contradiction :

Luppo

 $\mathbb{N} \to \mathbb{B}$ soit dénombrable c'e

N. Flors il existe une bijection entre N et N \to B qui, à un entier ℓ , associe le prédicat P_ℓ . On peut alors ranger tous le $[0..N[\times [0..N[$

à la manière de George

 ℓ le

 P_{ℓ} . On peut donc re

 $\mathbb{N} \to \mathbb{B}$ par son numéro de ligne : la

ligne ℓ définit le prédicat P_ℓ .

Considérons la diagonale du tableau et exhibons une contradiction : Puisque le tableau contient tous le $P:\mathbb{N}\to\mathbb{B}$ défini

par $P(i)\stackrel{\text{def}}{=} \neg(P_i(i))$ doit apparaître dans le tableau à une certaine ligne, disons ℓ , donc $P=P_\ell$.

Exemple : Le prédicat P correspond à la négation de la diagonale du tableau. Dans le cas du tableau de la question précédente, le prédicat P serait

$$P(0) = \mathbb{V}, \ P(1) = \mathbb{F}, \ P(2) = \mathbb{V}, \ P(3) = \mathbb{V}, \text{ etc}$$

Évaluons P au point ℓ :

$$P(\ell) = P_{\ell}(\ell)$$
 puisque $P = P_{\ell}$; mais, par ailleurs,

$$P(\ell) = \neg(P_{\ell}(\ell))$$
 par définition de P : Contradiction.

Conclusion : En suppo $\mathbb{N}\to\mathbb{B}$ dénombrable, on aboutit à une contradiction, donc $\mathbb{N}\to\mathbb{B}$ n'e