Осциллятор Ван-дер-Поля

Цыбулин Иван

Данную задачу разбирали на лекции, привожу здесь краткое изложение. Уравнение Ван-дер-Поля в виде системы второго порядка имеет вид

$$\begin{cases} y_1' = \mu \left(y_1 - \frac{y_1^3}{3} \right) + y_2, \\ y_2' = -y_1 \end{cases}$$

Здесь $\mu \gg 1$ — параметр.

Определить тип особой точки системы. (y_1,y_2) будет особой точкой системы если в ней выполняется $y_1'=0,y_2'=0$. В данном случае единственной особой точкой будет (0,0). В окрестности (0,0) система ведет себя как линейная

$$\begin{cases} y_1' = \mu y_1 + y_2, \\ y_2' = -y_1 \end{cases}$$

Собственные числа матрицы

$$\begin{pmatrix} \mu & 1 \\ -1 & 0 \end{pmatrix}$$

равны $\lambda=\frac{\mu\pm\sqrt{\mu^2-4}}{2}$. При $\mu>2$ оба числа положительные, и особая точка имеет тип «неустойчивый узел», при $0<\mu<2$ собственные числа комплексные, с положительной действительной частью, и особая точка имеет тип «неустойчивый фокус». Таким образом, точка (0,0) — неустойчивая.

Решение на фазовой плоскости. Изучим поведение решения уравнения Ван-дер-Поля на фазовой плоскости (y_1,y_2) . Для этого полезно изобразить на ней линию, соответствующую $y_1'=0$. Условие $y_1'=0$ задает кубическую параболу

$$y_2 = \mu \left(\frac{y_1^3}{3} - y_1 \right),$$

траектории системы пересекают эту параболу вертикально ($y_1'=0$) сверху вниз при $y_1>0$ и снизу вверх при $y_1<0$. Вершины параболы расположены в точках ($\mp 1,\pm \frac{2}{3}\mu$).

Вдали от параболы траектории имеют вид практически горизонтальных участков, направленных вправо ($y'_1 > 0$), если находятся выше параболы, и влево ($y'_1 < 0$), если находятся ниже.

Отметим, что приближаясь к параболе траектории решения круто поворачивают: вдали от параболы они движутся горизонтально, а параболу пересекают уже вертикально. Чем больше μ , тем круче поворачивают траектории. Такое поведение траекторий говорит о жесткости задачи в этой области.

Рис. 1: Фазовая плоскость для $\mu=3$ (слева) и $\mu=9$ (справа)

Изучим жесткость задачи алгебраически: найдем спектр матрицы Якоби правой части системы дифференциальных уравнений Ван-дер-Поля в зависимости от положения на фазовой плоскости.

$$\mathbf{J}(y_1, y_2) = \frac{\partial(y_1', y_2')}{\partial(y_1, y_2)} = \begin{pmatrix} \mu(1 - y_1^2) & 1\\ -1 & 0 \end{pmatrix}$$

Найдем собственные числа матрицы Якоби Ј:

$$0 = \det(\mathbf{J} - \lambda \mathbf{E}) = (\lambda - \mu(1 - y_1^2))\lambda + 1 = \lambda^2 - \mu(1 - y_1^2)\lambda + 1$$
$$\lambda_{1,2} = \frac{\mu(1 - y_1^2) \pm \sqrt{\mu^2(1 - y_1^2)^2 - 4}}{2}$$

Из теоремы Виета сразу можем заключить, что $\lambda_1\lambda_2=1$. Если $|\mu(1-y_1^2)|\leqslant 2$, то корни уравнения комплексно сопряжены и оба лежат на единичной окружности: Задача не является жесткой в этой

области (спектр не распадается на жесткую и мягкую компоненты). Рассмотрим оставшиеся два варианта:

•
$$\mu(1-y_1^2) > 2 \Leftrightarrow y_1^2 < 1 - \frac{2}{\mu}$$
. В этом случае

$$\lambda_{1,2} = \frac{\mu(1 - y_1^2) \pm \sqrt{\mu^2(1 - y_1^2)^2 - 4}}{2} > 0,$$

Оба собственных числа положительны. В этой части фазовой плоскости задача не является жесткой (в жесткой задаче жесткая компонента спектра должна лежать в левой полуплоскости), более точно задача в этой области фазовой плоскости является неустойчивой по Ляпунову.

• $\mu(1-y_1^2) < -2 \Leftrightarrow y_1^2 > 1 + \frac{2}{\mu}$. В этом случае

$$\lambda_{1,2} = \frac{\mu(1-y_1^2) \pm \sqrt{\mu^2(1-y_1^2)^2 - 4}}{2} < 0,$$

Оба собственных числа отрицательны. В этой части фазовой плоскости задача является жесткой.

Показателем жесткости $\frac{L}{\ell}$ будет являться отношение собственных чисел λ_1 и λ_2 (считаем, что λ_1 — жесткий спектр, λ_2 — мягкий, то есть Re $\lambda_1=-L\ll -\ell=-|\lambda_2|$):

$$\frac{L}{\ell} = \frac{\lambda_1}{\lambda_2} = \frac{\lambda_1}{1/\lambda_1} = \lambda_1^2.$$

Если принять $\mu(1-y_1^2)\ll -2$, то выражение для λ_1 упрощается до

$$\lambda_1 \approx \frac{\mu(1-y_1^2) - |\mu(1-y_1^2)|}{2} = \mu(1-y_1^2),$$

а для λ_2 , соответственно,

$$\lambda_2 = \frac{1}{\lambda_1} \approx \frac{1}{\mu(1 - y_1^2)}.$$

Для показателя жесткости задачи получаем оценку

$$\frac{L}{\ell} \approx \mu^2 (1 - y_1^2)^2$$

в области жесткости $y_1^2>1+\frac{2}{\mu}.$ Решение уравнения Ван-дер-Поля имеет предельный цикл. Это значит, что начиная из любой точки фазового пространства (кроме начала координат), решение будет стремиться к периодическому решению, изображенному ниже:

Рис. 2: Решение системы из начальной точки (0,4) быстро стремится к предельному циклу. Случай $\mu = 3$.

Таким образом, находясь вблизи предельного цикла, величина $(1-y_1^2)^2$ не превышает существенно значения $(1-y_1^2)^2\approx 9$, то есть показатель жесткости задачи не превышает $9\mu^2$. При больших μ можно считать, что задача жесткая в области $|y_1| > 1$.