

SENSORES Y ACTUADORES

Módulo I: ¿Qué podemos Sensorizar? Tecnología de Sensores | Actividad Nro 2

Integrantes:

- Durigutti, Vittorio | GitHub: https://github.com/vittoriodurigutti
- Zalazar, Joaquín | GitHub: https://github.com/breaakerr
- Marquez, José | Github: https://github.com/marquezjose
- Lujan, Luciano | Github: https://github.com/lucianoilujan
- Velez, Nahuel | Github: https://github.com/Lucasmurua19
- Juncos, Lisandro | Github: https://github.com/Lisandro-05
- Garzón, Joaquín | Github: https://github.com/Joacogarzonn

A continuación se presenta cada consigna con su respectiva resolución, producto de lo extraído de cada uno de los trabajos individuales.

1) Dada las características de un Sensor (rango, alcance, error, exactitud; etc), Explique: ¿Qué es el régimen estático y transitorio de un sensor?.

Teniendo en consideración que un sensor es un dispositivo que detecta cambios en variables físicas o químicas y las convierte en señales que pueden ser medidas o interpretadas. El **Régimen Estático** de un sensor se refiere a su comportamiento cuando la variable medida es constante o cambia muy lentamente. Es decir cuando se encuentra en un entorno estable. En este régimen, el sensor ha alcanzado un estado de equilibrio, y su salida es estable y no varía con el tiempo. El análisis en régimen estático se enfoca en la precisión, exactitud, linealidad, y resolución del sensor, ya que estos parámetros determinan la calidad de las mediciones en condiciones estables.

Por otra parte el **Régimen Transitorio** ocurre cuando hay un cambio rápido en la variable medida. Durante este periodo, el sensor no ha alcanzado aún su estado de equilibrio, y su salida cambia con el tiempo hasta estabilizarse. El análisis del régimen transitorio es crucial para entender el tiempo de respuesta del sensor, su capacidad para seguir cambios rápidos y la forma en que maneja los posibles picos o caídas en la señal. Las características como el sobreimpulso, el tiempo de asentamiento, y el comportamiento dinámico del sensor se analizan en este régimen.

Resumiendo, el **Régimen Estático** evalúa la precisión y estabilidad del sensor en condiciones estables, el **Régimen Transitorio** analiza su capacidad para reaccionar a cambios rápidos, lo cual es crítico en aplicaciones dinámicas. Tener ambas en consideración, sumado a las

Sensores y Actuadores

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Ministerio de **EDUCACIÓN**

características propias del sensor, es fundamental para seleccionar el dispositivo más eficiente para el proyecto a desarrollar.

2) De ejemplo de las características de 1 sensor real, por ejemplo (temperatura, presión, humedad, aceleración, posición, color, distancia; etc). (Buscar el datasheet de un sensor real y copiar tabla de características).

Sensor elegido: Sensor de peso HX711

Es un módulo amplificador y convertidor analógico a digital (ADC) diseñado específicamente para aplicaciones de pesaje. Es ampliamente utilizado en proyectos que requieren la medición de pequeñas variaciones en peso, como balanzas electrónicas y sistemas de pesaje de alta precisión.

Características:

- 1. **Alta Resolución y Precisión:** tiene un convertidor A/D de 24 bits (es decir más de 16 millones de valores digitales.) que permite la medición de señales analógicas provenientes de celdas de carga con una alta precisión. Esta alta resolución es crucial para aplicaciones que requieren detectar cambios muy pequeños en el peso.
- 2. **Bajo Consumo de Energía:** funciona con un bajo consumo de energía, lo que lo hace ideal para aplicaciones portátiles y dispositivos que funcionan con baterías. (1.5 mA de corriente en operacion, y <1 μ A en reposo)
- 3. **Facilidad de Integración:** Este módulo es fácil de integrar con microcontroladores como Arduino, ESP32, y Raspberry Pi, gracias a su interfaz digital sencilla basada en dos pines (Data y Clock).
- 4. **Amplificación Integrada:** tiene un amplificador de ganancia programable que puede ajustarse a 32, 64 o 128, lo que permite amplificar señales de baja intensidad, como las provenientes de una celda de carga, para hacerlas más manejables por el ADC.

Datasheet del sensor HX711

					_					_
Notes	MIN	TYP	MAX	UNIT	Temperature drift	Input offset (Gain = 128)		±6		nV/°C
V(inn), V(inn)		+05(AVDD/GAIN	1	v	1 Court Note 1 South Street 400 144 (NO	Gain (Gain = 128)		±5		ppm/°C
v(mp)-v(mn)	AGND+1.2	20.5(11) 225/01411	7.12.09 73		Input common mode rejection	Gain = 128, RATE = 0		100		dB
Internal Oscillator, RATE = 0		10		Hz	Power supply rejection	Gain = 128, RATE = 0		100		dB
Internal Oscillator, RATE = DVDD	80			Reference bypass			1.25		v	
Crystal or external clock, RATE = 0		f _{clk} /1,105,920					8	2014/02/02		20000
Crystal or external clock, RATE = DVDD		f _{sh} /138,240			frequency	DUDY.	1	11.0592		MHz
2's complement	800000		7FFFFF	HEX	Power supply voltage		l sava		1220	V
		400				AVDD, VSUP	2.6		5.5	-
RATE = DVDD		50		illa	Analog supply current (including regulator)	Normal		1400		μА
Gain = 128		0.2	0.2		505 " 0	Power down		0.3		
Gain = 64		0.4			Digital supply supply	Normal		100		μА
Gain = 128, RATE = 0		50		nV(rms)	The second secon	Power down		0.2		
	V(inp)-V(inn) Internal Oscillator, RATE = 0 Internal Oscillator, RATE = DVDD Crystal or external clock, RATE = 0 Crystal or external clock, RATE = DVDD 2's complement RATE = 0 RATE = DVDD Gain = 128 Gain = 64	V(inp)-V(inn) AGND+1.2 Internal Oscillator, RATE = 0 Internal Oscillator, RATE = DVDD Crystal or external clock, RATE = 0 Crystal or external clock, RATE = DVDD 2's complement 800000 RATE = 0 RATE = DVDD Gain = 128 Gain = 64	V(inp)-V(inn) ±0.5(AVDD/GAIN AGND+1.2 Internal Oscillator, RATE = 0 Internal Oscillator, RATE = 0 Internal Oscillator, RATE = 0 Crystal or external clock, RATE = 0 Crystal or external clock, RATE = DVDD Internal Oscillator, RATE = 0 Internal Oscillator, RATE = 0 Internal Oscillator, RATE = 80 Internal Oscil	V(inp)-V(inn) ±0.5(AVDD/GAIN) AGND+1.2 AVDD-1.3 Internal Oscillator, RATE = 0 Internal Oscillator, RATE = 0 Internal Oscillator, RATE = 0 Crystal or external clock, RATE = 0 Crystal or external clock, RATE = DVDD Internal Oscillator, RATE = 0 I	V(inp)-V(inn) ±0.5(AVDD/GAIN) V AGND+1.2 AVDD-1.3 V Internal Oscillator, RATE = 0 10 Hz Internal Oscillator, RATE = DVDD 80 Example 1 Crystal or external clock, RATE = 0 f _{cb} /1,105,920 F _{cb} /138,240 2's complement 800000 7FFFF HEX RATE = 0 400 ms RATE = DVDD 50 ms Gain = 128 0.2 mV Gain = 64 0.4 0.4	V(inp)-V(inn)	Notes	V(inp)-V(inn) ±0.5(AVDD/GAIN) V Input common mode rejection Gain = 128 RATE = 0	V(inp)-V(inn)	V(inp)-V(inn)

- 3) Un sensor de temperatura, que tiene un rango de medida de 20-250 °C, entrega una lectura de 55 °C. Especificar el error en la lectura si la exactitud se expresa de las siguientes formas, indicando el rango de medición en cada caso.
- a. ± 0,5% del valor máximo de lectura
- b. ± 0,75% del alcance (FS)
- c. ± 0,8% de la lectura

Datos:

- Rango de medida del sensor: 20 °C a 250 °C
- Valor de la lectura: 55 °C
- Rango completo del sensor (FS): 250 20 = 230 °C

Explicación de los Cálculos:

Para calcular el error en la lectura del sensor de temperatura, es necesario aplicar el porcentaje de exactitud a la referencia correspondiente. Dependiendo de cómo se expresa la exactitud, se utilizan diferentes fórmulas:

- Porcentaje del valor máximo de lectura: Se calcula el error tomando el porcentaje del valor máximo que el sensor puede leer. Esto significa que el error está basado en el valor máximo del rango del sensor (250 °C en este caso). La fórmula es: Error = (Porcentaje de exactitud / 100) × Valor máximo de lectura.
- 2. Porcentaje del alcance (FS): El alcance o 'Full Scale' (FS) es el rango completo de medición del sensor, que se obtiene restando el valor mínimo del valor máximo del sensor. En este caso, FS = 250 °C 20 °C = 230 °C. El error se calcula aplicando el porcentaje de exactitud al FS. La fórmula es: Error = (Porcentaje de exactitud / 100) × FS.
- 3. Porcentaje de la lectura actual: En este caso, el error depende directamente del valor leído por el sensor (55 °C en este ejemplo). La exactitud se expresa como un porcentaje de la lectura actual. La fórmula es: Error = (Porcentaje de exactitud / 100) × Valor de la lectura.

Cálculo del Error:

a) ± 0,5% del valor máximo de lectura

El error se calcula como un porcentaje del valor máximo de lectura del sensor.

Error = $\pm 0.5\% \times 250 \,^{\circ}\text{C} = \pm 1.25 \,^{\circ}\text{C}$

b) \pm 0,75% del alcance (FS)

El error se calcula como un porcentaje del rango completo del sensor (Full Scale o FS).

Error = $\pm 0.75\% \times 230 \,^{\circ}\text{C} = \pm 1.725 \,^{\circ}\text{C}$

c) ± 0,8% de la lectura

El error se calcula como un porcentaje de la lectura actual del sensor.

Error = $\pm 0.8\% \times 55 \,^{\circ}\text{C} = \pm 0.44 \,^{\circ}\text{C}$

Resumen de los Errores:

- a) ±1.25 °C
- b) ±1.725 °C
- c) ±0.44 °C
- 4) Durante el diseño de un equipo de control de temperatura se ensayan cuatro sensores A, B, C y D. Cada uno de estos sensores fue probado tomando cinco lecturas mientras se mantenía una temperatura constante de 18°C, dando como resultado de los datos consignados en la tabla.

¿Cuál sensor ofrece la mayor exactitud y cuál ofrece la mayor precisión?

Sensor	Lectura 1 [°C]	Lectura 2 [°C]	Lectura 3 [°C]	Lectura 4 [°C]	Lectura 5 [°C]	Promedio	Desviación estándar
А	18,10	18,05	18,00	18,10	18,15		
В	18,00	18,05	18,00	18,05	18,00		
С	17,95	17,90	17,85	17,98	17,80		
D	17,90	17,92	17,91	17,90	17,91		

Exactitud: Grado de aproximación al valor verdadero Precisión: Grado de dispersión entre las lecturas. $\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} \quad s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$

El sensor más exacto es el:

El sensor más preciso es el:

5) Determinar el alcance, exactitud y precisión de cada uno de los modelos de sensores que se muestran en el catálogo

	Model	PSE570	PSE573	PSE574	PSE575	PSE576	PSE577
Fluid	Applicable fluid	Gas or liquid that will not corrode the materials of parts in contact with fluid					
Pressure	Rated pressure range	0 to 1 MPa	-100 to 100 kPa	0 to 500 kPa	0 to 2 MPa	0 to 5 MPa	0 to 10 MPa
Accuracy	Analog output accuracy (Ambient temperature of 25°C)	±1.0% F.S.			±2.5% F.S.		
	Repeatability (Ambient temperature of 25°C)	±0.2% F.S.			±0.5% F.S.		

ALCANCE	0 Pa a 1×10^6 Pa	-1×10^2 Pa a 1×10^5 Pa	0 Pa a 5×10^5 Pa	0 Pa a 2×10^6 Pa	0 Pa a 5×10^6 Pa	0 Pa a 1×10^7 Pa
EXACTITUD	±1×10^4 Pa	±1×10^3 Pa	±1×10^3 P a	±1×10^4 P a	±1×10^5 P a	±1×10^5 P a
PRECISION	±2×10^3 Pa	±2×10^2 Pa	±1×10^3 P a	±1×10^4 P a	±2.5×10^4 Pa	±5×10^4 P a

Se realizan las expresiones en notación científica para que sea más fácil realizar la comparación entre los diferentes sensores.

Sensores y Actuadores

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Ministerio de **EDUCACIÓN**

Observando de esta forma, podemos distinguir que el sensor con mayor alcance es el modelo PSE577 que toma valores desde los 0 hasta los 10 MPA (10.000.000 Pa). PSE570, PSE573, y PSE574 son los sensores más precisos, con +/-1% sobre la escala total, por lo que en número finos, el más exacto termina siendo el PSE573. Y los más precisos serán también estos últimos, manteniéndose el PSE573 como exacto dentro de la comparación.

6) Ejemplifique gráficamente la diferencia entre precisión y exactitud.

Precisión: Se refiere a la cercanía entre sí de un conjunto de mediciones repetidas de una misma magnitud. Un instrumento o sistema de medición es preciso si, al repetir la medición varias veces, los resultados obtenidos están muy próximos entre sí, independientemente de si se acercan o no al valor real.

Exactitud: Se refiere a la cercanía de una medición al valor verdadero o aceptado de la magnitud que se está midiendo. Un instrumento o sistema de medición es exacto si el valor que proporciona está muy próximo al valor real, independientemente de si las mediciones repetidas son consistentes entre sí.

Para ilustrarlo, pensemos en el ejemplo clásico de los disparos a una diana:

- Alta precisión, baja exactitud: Los disparos están muy agrupados (precisos), pero lejos del centro de la diana (inexactos).
- > Baja precisión, alta exactitud: Los disparos están dispersos (imprecisos), pero su promedio está cerca del centro de la diana (exactos).
- Alta precisión, alta exactitud: Los disparos están agrupados y cerca del centro de la diana (precisos y exactos).
- Baja precisión, baja exactitud: Los disparos están dispersos y lejos del centro de la diana (imprecisos e inexactos).

Sensores y Actuadores

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Ministerio de **EDUCACIÓN**

7) ¿Cuál es la importancia de la sensibilidad y resolución de un sensor?

Lo principal para llevar a cabo esta tarea es aclarar las definiciones de sensibilidad y resolución:

Que es la sensibilidad, se refiere a la capacidad de un sensor para detectar pequeñas variaciones en la variable que está midiendo. Un sensor más sensible puede detectar incluso pequeños cambios en las condiciones.

Que es la resolución es la menor variación en el valor que el sensor puede detectar o medir. Un sensor con alta resolución puede distinguir entre cambios muy pequeños en el entorno. ¿Por qué es importante estas características? Son fundamentales en los sensores porque afectan directamente la calidad y utilidad de las mediciones.

En conclusión, en escenarios que requieren alta sensibilidad y resolución, el HTU21D tiene una clara ventaja sobre el SHT1x. Por lo tanto la sensibilidad como la resolución son esenciales para garantizar que los sensores proporcionan datos útiles y detallados, lo que facilita la toma de decisiones y mejora el control y monitoreo de procesos

Parámetro	HTU21D	SHT1x	Diferencia	
Rango de Humedad	ango de Humedad 0–100% HR		Rango similar.	
Rango de Temperatura	de Temperatura -40°C a +125°C		HTU21D tiene un rango ligeramente mayor.	
Precisión Humedad	Precisión Humedad ±2% HR		HTU21D es más preciso.	
Precisión Temperatura ±0.3°C		±0.4°C	HTU21D tiene mejor precisión.	
Tiempo de Respuesta	iempo de Respuesta 5 segundos (humedad)		HTU21D responde más rápido.	
onsumo Energético 0.055 mA en modo activo		0.55 mA en modo activo	HTU21D consume menos energía.	
Interfaz de Comunicación	12C	Protocolo propietario	HTU21D utiliza un protocolo más estándar.	
Tamaño Físico	amaño Físico 3 x 3 x 0.9 mm		HTU21D es más pequeño y compacto.	

8) ¿Porqué es conveniente que un sensor tenga una respuesta lineal?

Utilizar un sensor con respuesta lineal es conveniente por varias razones:

- 1. **Facilidad de Calibración:** Un sensor con respuesta lineal facilita el proceso de calibración, ya que la relación entre la señal de salida del sensor y la magnitud física que se está midiendo es constante. Esto simplifica la conversión de la señal del sensor a una unidad de medida útil.
- 2. **Precisión y Exactitud:** Una respuesta lineal asegura que las mediciones sean consistentes a lo largo de todo el rango de operación del sensor, lo que mejora la precisión y exactitud de las mediciones.
- 3. **Simplicidad en el procesamiento de señales:** Con una respuesta lineal, el procesamiento de las señales del sensor es más sencillo, ya que no se requiere de algoritmos complejos para interpretar la señal. Por ejemplo, si la relación es lineal, puedes simplemente aplicar una fórmula directa (como y = mx + b) para obtener el valor deseado.

POLITÉCNICO CÓRDOBA

- Precisión: es la máxima desviación entre la salida real y la ideal. Suele indicarse en valor absoluto de la magnitud de entrada o en porcentaje sobre el fondo de escala de la salida.
- Linealidad: La falta de linealidad se mide por la máxima desviación entre la respuesta real, y la característica puramente lineal, referida al fondo de escala.
- 4. **Predicción y Modelado:** Los sensores lineales son más fáciles de modelar matemáticamente.

Menor Riesgo de Errores: En un sensor no lineal, pequeñas variaciones en la entrada pueden causar grandes desviaciones en la salida, lo que podría resultar en errores significativos