Formelark fysikk

Rettlinjet bevegelse

Posisjon: xFart: $v = \frac{dx}{dt}$

Akselerasjon: $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$

Rotasjonsbevegelse

Posisjonsvinkel: θ Vinkelfart: $\omega = \frac{d\theta}{dt}$

Vinkelakselerasjon: $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$

Bevegelseslikningene ved konstant akselerasjon

Bevegelseslikningene ved konstant	vinke-
lakselerasjon	

x = vt (konstant fart)	
$v = v_0 + at$	
$x = \frac{1}{2} \left(v_0 + v \right) t$	
$x = v_0 t + \frac{1}{2}at^2$	
$v^2 - v_0^2 = 2ax$	

$\theta = \omega t$ (konstant vinkelfart)
$\omega = \omega_0 + \alpha t$
$\theta = \frac{1}{2} \left(\omega_0 + \omega \right) t$
$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$
$\omega^2 - \omega_0^2 = 2\alpha\theta$

Kastebevegelse i tyngdefeltet

x-retning (konstant fart)	y -retning $(a_y = \pm g)$
$v_x = v_{0x} = v_0 \cos \alpha$	$v_y = v_{0y} + a_y t = v_0 \sin \alpha + a_y t$
$x = v_{0x}t = v_0\cos\alpha \cdot t$	$y = v_{0y}t + \frac{1}{2}a_yt^2 = v_0\sin\alpha \cdot t + \frac{1}{2}a_yt^2$

Sammenheng mellom rotasjonsbevegelse og rettlinjet bevegelse

Omløpstid: TVinkelfart: ω

Vinkelakselerasjon: α Avstand fra rotasjonsakse: r

Banefart: $v = \omega r$

Tangentiell akselerasjon: $a_{\parallel}=\alpha r$ Sentripetalakselerasjon: $a_{\perp}=\frac{v^2}{r}=\omega^2 r=\frac{4\pi^2 r}{T^2}$

Me kanikk formler

Sentripetalakselerasjon	$a_{\perp} = \frac{v^2}{r}$
Newtons 2.lov	$\sum \vec{F} = m\vec{a}$
Enkel modell for luftmotstand på legeme med frontareal A og "drag coefficient" C ved lufttetthet ρ	$F_D = \frac{1}{2}\rho ACv^2$
Bevegelsesmengde for legeme med masse m og fart v	p = mv
Impulsloven	$F\Delta t = \Delta p$
Relativhastigheter ved elastisk kollisjon mellom to legemer med hhv. start- og sluttfart v_1, v_2 og u_1, u_2	$v_1 - v_2 = -\left(u_1 - u_2\right)$
Dreiemoment til kraft F med arm r_{\perp} om dreie akse	$\tau = F \cdot r_{\perp}$
Rotasjonsdynamikkens grunnlov	$\sum \tau = I\alpha$
Rullebetingelse (kobling mellom massesenterbevegelse og -rotasjon)	$v_{CM} = \omega r, a_{CM} = \alpha r$
Hookes lov for fjær med konstant fjærstivhet	F = kx
Størrelse på statisk friksjonskraft	$f_s \le \mu_s N$
Størrelse på glidefriksjonskraft	$f_k = \mu_k N$
Momentan effekt produsert av kraft F ved fart v	P = Fv
Momentan effekt produsert av dreiemoment τ ved vinkelfart ω	$P = \tau \omega$

Arbeid og energi

Arbeid, konstant kraft F	$W = F \cdot s \cdot \cos \phi$
Arbeid, varierende kraft	$W = \int_{a}^{b} F(x) dx$
Arbeid-energi-teoremet; fra startfart v_1 til sluttfart v_2	$W_{\text{tot}} = \Delta K = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$
Bevaring av mekanisk energi dersom kun konservative krefter gjør arbeid	K + U = konstant
Grunndefinisjon av effekt	P = dW/dt
Lineær kinetisk energi	$K = \frac{1}{2}mv^2$
Rotasjonskinetisk energi	$K = \frac{1}{2}I\omega^2$
Potensiell energi i tyngdefeltet	U = mgh
Potensiell energi, elastisk fjær	$U = \frac{1}{2}kx^2$

Treghetsmoment

Definisjoner treghetsmoment

Treghetsmoment punktpartikkel i avtand r fra rotasjonsakse: $I=mr^2$

Treghetsmoment for kontinuerlig massefordeling: $I = \int r^2 dm$

Steiners sats (parallell akse-teoremet)

Treghetsmoment om massesenter (CM): I_{CM}

Treghetsmoment om parallell akse: I

Legemets masse: M Avstand mellom akser: d

Steiners sats (parallell akse-teoremet): $I = I_{CM} + Md^2$

Treghetsmoment for utvalgte legemer

${\bf Svingninger}$

Enkel harmonisk oscillator	$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$
Fri, udempet svingning med amplitude A_0 og faseforskyvning ϕ	$x(t) = A_0 \cos(\omega_0 t + \phi), T = \frac{2\pi}{\omega_0}, f = \frac{1}{T} = \frac{\omega_0}{2\pi}$
Vinkelfrekvens og periode for masse i fjær	$\omega_0 = \sqrt{\frac{k}{m}}, T = 2\pi\sqrt{\frac{m}{k}}$
Vinkelfrekvens og periode for matematisk pendel med lengde ${\cal L}$	$\omega_0 = \sqrt{\frac{g}{L}}, T = 2\pi\sqrt{\frac{L}{g}}$
Vinkelfrekvens og periode for fysisk pendel, h er avstand mellom CM og opphengingspunkt	$\omega_0 = \sqrt{\frac{mgh}{I}}, T = 2\pi\sqrt{\frac{I}{mgh}}$
Vinkelfrekvens og periode for torsjonspendel med torsjonskonstant κ (torsjon/dreiemoment antas prop. med vinkelutslag; $\tau = \kappa \theta$)	$\omega_0 = \sqrt{\frac{\kappa}{I}}, T = 2\pi\sqrt{\frac{I}{\kappa}}$
Fri, dempet svingning	$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0$
Kriterium for underkritisk demping	$\frac{b}{2m} < \omega_0$
Svingeløsning for underkritisk demping	$x = A_0 e^{-\frac{b}{2m}t} \cos(\omega t + \phi), \omega = \sqrt{\omega_0^2 - \left(\frac{b}{2m}\right)^2}$
Kriterium for kritisk demping	$\frac{b}{2m} = \omega_0$
Kriterium for overkritisk demping	$\frac{b}{2m} > \omega_0$
Tvungen svingning, harmonisk ytre kraft	$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F_0\sin(\omega t)$
Partikulærløsning for dempet, tvungen svingning	$x = A\cos(\omega t + \phi), A = \frac{F_0}{\sqrt{m^2(\omega^2 - \omega_0^2)^2 + b^2\omega^2}}$

Bølgefysikk

Harmonisk planbølge (forflytning i positiv x -retning)	$y(x,t) = A\sin(kx - \omega t + \phi), k = \frac{2\pi}{\lambda}, \omega = \frac{2\pi}{T} = 2\pi f$
Bølgelikning	$\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y(x,t)}{\partial t^2}$
Bølgefart	$v = \frac{\lambda}{T} = \frac{\omega}{k}$
Bølgefart for tversbølger på streng med masse pr. lengdeenhet μ ved snordrag ("tension") F_T	$v = \sqrt{\frac{F_T}{\mu}}$
Energi og midlere effekt transportert av harmonisk bølge på streng, per bølgelengde	$E = \frac{1}{2}\mu A^2 \omega^2 \lambda \ , \overline{P} = \frac{1}{2}\mu A^2 \omega^2 v$
Intensitet av kuleformet bølge i avstand r	$I = \frac{P}{4\pi r^2}$
Resultantbølge for to identiske, harmoniske bølger med faseforskyving ϕ	$y_R(x,t) = \left[2A\cos\left(\frac{\phi}{2}\right)\right]\sin\left(kx - \omega t + \frac{\phi}{2}\right)$
Stående bølge	$y(x,t) = 2A\sin(kx)\cos(\omega t)$
Bølgelengde og frekvens for stående bølge på streng med lengde L fastspent i begge ender	$\lambda_n = \frac{2}{n}L, f_n = n\frac{v}{2L} = nf_1, n = 1, 2, 3, \dots$

Fluidmekanikk

Oppdrift av legeme som fortrenger et volum V_{fl} av en væske med tetthet ρ (Arkimedes' lov)	$F_B = \rho V_{fl}g$
Trykk av væskesøyle med tetthet ρ i dybde h (hydrostatisk trykk)	$p = p_0 + \rho g h$
Volumstrøm gjennom rør med tverrsnitt A og væskefart v	$Q = \frac{dV}{dt} = A \cdot v$
Kontinuitetslikningen	$A \cdot v = \text{konstant}$
Bernoullis likning uten tapsledd	$p_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$
Bernoullis likning med tapsledd og evt. turbinledd h_t	$\frac{p_1}{\rho g} + \frac{1}{2} \frac{v_1^2}{g} + y_1 = \frac{p_2}{\rho g} + \frac{1}{2} \frac{v_2^2}{g} + y_2 + h_f + h_e + h_t$
Tapshøyde for rørfriksjon (Darcy-Weisbachs lov) ved væskefart v	$h_f = f \cdot \frac{L}{D} \cdot \frac{1}{2} \frac{v^2}{g}$
Tapshøyde for enkeltmotstand ved væskefart v	$h_e = \zeta \cdot \frac{1}{2} \frac{v^2}{g}$
Trykktap Δp for væske tilsvarende tapshøyde h	$\Delta p = \rho g h$
Maksimal turbineffekt ved volumstrøm Q (væskefart v før turbinen; turbinledd h_t)	$P_{max} = \rho g h_t \cdot Q = \frac{1}{2} \rho v^2 Q$
Sammenheng mellom kinematisk viskositet ν og dynamisk viskositet η	$ u = \frac{\eta}{\rho} $
Reynolds tall for væske med tetthet ρ , fart v , rørdiameter D og dynamisk viskositet η ; kinetmatisk viskositet ν (laminær strøm for $N_R < 2000$, turbulent strøm for $N_R > 3000$)	$N_R = \frac{\rho v D}{\eta} = \frac{v D}{\nu}$
Relativ ruhet for rør med ruhet ϵ og diameter D	$\frac{\epsilon}{D}$

Elektrisitet

	1
Coulombs lov	$F = k \frac{q_1 q_2}{r^2}$
Definisjon av elektrisk felt	$ec{E}=rac{ec{F}}{q}$
Absoluttverdi av elektrisk felt rundt punktladning ${\cal Q}$	$E = \frac{kQ}{r^2}$
Elektrisk potensial i avstand r fra punktladning Q	$V = \frac{kQ}{r}$
Potensialforskjell mellom to punkter	$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}$
Elektrisk felt i platekondensator med platespenning ΔV og -avstand d	$E = \frac{\Delta V}{d}$
Elektrisk felt i platekondensator med ladning $Q,$ areal A og ladningstetthet σ	$E = \frac{Q}{\varepsilon_0 A} = \frac{\sigma}{\varepsilon_0}$
Elektrisk potensiell energi for punktpartikkel q i homogent elektrisk felt $E,$ avstand d fra nullnivå	U = qEd
Elektrisk potensiell energi mellom punktladninger q_1 og q_2 i avstand r	$U = \frac{kq_1q_2}{r}$
Endring i elektrisk potensiell energi for partikkel med ladning q ved potensialforskjell ΔV	$\Delta U = q\Delta V$
Kapasitans	$C = \frac{Q}{V}$
Kapasitans for platekondensator	$C = \varepsilon_0 \frac{A}{d}$
Kapasitans for parallellkobling	$C = C_1 + C_2 + C_3 + \dots$
Kapasitans for seriekobling	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$
Kapasitans for kondensator med dielektrikum (isolator) med dielektrisk konstant κ	$C = \kappa C_0$
Energi lagret i kondensator	$U_C = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV$
Definisjon av elektrisk strøm I ; strømtet thet J ; resistivitet ρ	$I = \frac{dQ}{dt}; J = \frac{I}{A}; \rho = \frac{E}{J}$
Resistans for sylindrisk leder med lengde L og tverrsnitt A	$R = \rho \frac{L}{A}$
Sammenheng mellom driftshastighet v_d , strømtetthet J , strøm I , ledertverrsnitt A og tetthet n av frie ladningsbærere; ladning $q=e$ for elektroner	$J = \frac{I}{A} = nqv_d$
Ohms lov for komponenter med konstant resistans	V = IR
Elektrisk effekt	P = VI
Elektrisk effekt produsert i motstand	$P = RI^2 = \frac{V^2}{R}$
Polspenning for batteri med indre resistans r	$V_{\mathrm{terminal}} = \varepsilon - Ir$
Ekvivalent resistans av seriekoblede motstander	$R_{eq} = R_1 + R_2 + R_3 + \dots$
Ekvivalent resistans av parallellkoblede motstander	$\frac{1}{R_{eg}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$
Kirchoffs 1. lov (strømloven)	$\sum I_{\rm in} = \sum I_{\rm out}$
Kirchoffs 2. lov (spenningsloven)	$\sum V = 0$
Tidskonstant for RC-krets	$\tau = RC$
Ladning på konsensator under oppladning	$q\left(t\right) = C\varepsilon\left(1 - e^{-\frac{t}{RC}}\right) = Q\left(1 - e^{-\frac{t}{\tau}}\right)$
Ladning på konsensator under utladning	$q(t) = Qe^{-\frac{t}{\tau}}$
Strøm gjennom motstand under oppladning av kondensator	$I = \frac{\varepsilon}{R} e^{-\frac{t}{RC}} = I_0 e^{-\frac{t}{\tau}}$
Strøm gjennom motstand under utladning av kondensator	$I = -\frac{Q}{RC}e^{-\frac{t}{\tau}}$

Magnetisme

Magnetkraft på punktladning i ytre magnetfelt	$\vec{F} = q\vec{v} \times \vec{B}, F = qvB\sin\phi$
Magnetkraft på strømførende leder i ytre magnetfelt	$\vec{F} = I\vec{l} \times \vec{B}, F = IlB\sin\phi$
Biot-Savarts lov	$\vec{B} = \frac{\mu_0}{4\pi} \int_{\text{leder}} \frac{Id\vec{l} \times \hat{r}}{r^2}$
Magnetfelt rundt lang, rett leder	$B = \frac{\mu_0 I}{2\pi R}$
Magnetkraft pr. lengdeenhet mellom uendelig lange, parallelle ledere med senteravstand r	$\frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r}$
Magnetfelt i sentrum av strømsløyfe	$B = \frac{\mu_0 I}{2R}$
Magnetfelt på innsiden av strømspole med lengde l og N vindinger; n vindinger per lengdeenhet	$B = \mu_0 n I = \mu_0 \frac{N}{l} I$

Induksjon

Sløyfeareal: A Sløyfas normalvektor: \vec{n} Ytre magnetfelt: \vec{B} Vinkel mellom \vec{n} og \vec{B} : ϕ Strøm i sløyfa: I

Magnetisk fluks	$\Phi = BA\cos\phi$
Faradays induksjonslov (indusert ems)	$\varepsilon = -\frac{d\Phi}{dt}$
Lenz' lov	Indusert ems i en sløyfe motvirker fluksendringen gjennom sløyfa
Indusert ems i spole med N vindinger	$\varepsilon = -N \cdot \frac{d\Phi}{dt}$
Dreiemoment på strømsløyfe	$\tau = I \cdot A \cdot B \cdot \sin \phi$
Absoluttverdi av indusert ems i leder med lengde l som beveger seg med fart v vinkelrett på magnetfelt (strømretningen er bestemt fra Lenz' lov)	$\varepsilon = vBl$

Fysiske konstanter

Konstant	Verdi	
Tyngdeakselerasjonen	$g = 9,81 \mathrm{m/s^2}$	
Standard lufttrykk	1 atm = 101 kPa	
Massetetthet ferskvann	$\rho = 1, 0 \cdot 10^3 \mathrm{kg/m^3}$	
Massetetthet luft (0 °C, ved havnivå)	$\rho=1,29\mathrm{kg/m^3}$	
Dynamisk viskositet vann (20 °C)	$\eta = 1, 0 \cdot 10^{-3} \mathrm{Pa \cdot s}$	
Kinematisk viskositet vann (20 °C)	$\nu = 1, 0 \cdot 10^{-6} \mathrm{m}^2/\mathrm{s}$	
Coulombs konstant	$k = 8,99 \cdot 10^9 \mathrm{Nm}^2/\mathrm{C}^2$	
Elementærladningen	$e = 1,60 \cdot 10^{-19} \mathrm{C}$	
Elektronmassen	$m = 9,11 \cdot 10^{-31} \mathrm{kg}$	
Protonmassen	$m = 1,67 \cdot 10^{-27} \mathrm{kg}$	
Permittivitet i vakuum	$\varepsilon_0 = 8,854 \cdot 10^{-12} \mathrm{Fm}^{-1}$	
Permeabilitet i vakuum	$\mu_0 = 4\pi \cdot 10^{-7} \mathrm{Tm/A}$	

SI-prefikser

Tierpotens	Prefiks	Symbol	Navn
10^{15}	peta	Р	Billiard
10^{12}	tera	Т	Billion
10 ⁹	giga	G	Milliard
10^{6}	mega	M	Million
10^{3}	kilo	k	Tusen
10^{2}	hekto	h	Hundre
10^{1}	deka	da	Ti
10^{-1}	desi	d	Tidel
10^{-2}	cent	c	Hundredel
10^{-3}	milli	m	Tusendel
10^{-6}	mikro	μ	Milliondel
10^{-9}	nano	n	Milliarddel
10^{-12}	piko	р	Billiondel
10^{-15}	femto	f	Billiarddel

Matematiske formler

Størrelse	Definisjon/formel		
Løsning av 2. gradslikning $ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Trigonometriske definisjoner	$\frac{c}{\sin \theta = \frac{b}{c}, \cos \theta = \frac{a}{c}, \tan \theta = \frac{b}{a}}$		
Trigonometriske identiteter	$\sin u + \sin v = 2\sin\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$ $\cos u + \cos v = 2\cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right)$ $2\sin \alpha\cos\alpha = \sin(2\alpha)$ $\cos^2\alpha + \sin^2\alpha = 1$		
Skalarprodukt av to vektorer	$\vec{A} \cdot \vec{B} = AB\cos\theta$		
Høyrehåndsregel for kryssprodukt/vektorprodukt	$\overline{A} \times \overline{B}$		
Absoluttverdi av vektorprodukt	$ \vec{A} \times \vec{B} = AB\sin\theta$		
Volum av sylinder med radius r , høyde h	$V = \pi r^2 h$		
Volum av kule med radius r	$V = \frac{4}{3}\pi r^3$		

${\bf Symbol forklaring er}$

Symbol	Størrelse	Enhet (navn)	Enhet (forkortelse)
a	Akselerasjon		m/s^2
В	Magnetisk flukstetthet	tesla	Т
C	Kapasitans	farad	F
E	Elektrisk felt		N/C = V/m
f	Frekvens	hertz	$Hz = s^{-1}$
F	Kraft	newton	N
I	Treghetsmoment		kgm ²
I	Elektrisk strøm	ampere	A
k	Fjærkonstant		N/m
K	Kinetisk energi	joule	J
m	Masse	kilogram	kg
p	Bevegelsesmengde		kgm/s
p	Trykk	pascal	Pa
P	Effekt	watt	W
Q	Volumstrøm		m^3/s
Q	Elektrisk ladning	coulomb	С
x	Posisjon/tilbakelagt strekning	meter	m
t	Tid	sekund	s
T	Periode/svingetid	sekund	s
U	Potensiell energi	joule	J
v	Fart		m/s
V	Elektrisk potensial	volt	V
W	Arbeid	joule	J
x, y	Posisjon	meter	m
α	Vinkelakselerasjon		$\rm rad/s^2$
ε	Elektromotorisk spenning	volt	V
η	Dynamisk viskositet		Pa·s
ν	Kinematisk viskositet		m^2/s
κ	Torsjonskonstant		Nm/rad
μ	Friksjonskoeffisient		_
θ	Rotert vinkel		rad
ω	Vinkelfart		rad/s
ρ	Massetetthet		${\rm kg/m^3}$
ϕ	Vinkel	radianer	rad
Φ	Magnetisk fluks	weber	Wb
au	Dreiemoment		Nm
ζ	Tapskoeffisient enkeltmotstand		_