

HC32L110 系列

32 位 ARM® Cortex®-MO+ 微控制器

数据手册

Rev2.70 2024年05月

产品特性

- 32MHz Cortex-M0+ 32 位 CPU 平台
- HC32L110 系列具有灵活的功耗管理系统,超低功耗性能
 - 0.5 μA @3V 深度休眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器, RAM 和 CPU 数据保存状态时 的功耗
 - 1.0 μA @3V 深度休眠模式+ RTC 工作
 - 6 μA @32.768kHz 低速工作模式: CPU 和外 设模块运行,从 flash 运行程序
 - 20 μA/MHz @3V@16MHz 休眠模式: CPU 停
 止工作,外设模块运行,主时钟运行
 - 120 μA/MHz @3V@16MHz 工作模式: CPU
 和外设模块运行,从 Flash 运行程序
 - 4 μs 超低功耗唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
 - 上述特性为室温下典型值,具体的电气特性、 功耗特性参考【电气特性】章节
- 16K/32K 字节 Flash 存储器,具有擦写保护功能
- 2K/4K 字节 RAM 存储器,附带奇偶校验,增强系统的稳定性
- 通用 I/O 管脚(16IO/20pin, 12IO/16pin)
- 时钟、晶振
 - 外部高速晶振 4~32 MHz
 - 外部低速晶振 32.768 KHz
 - 内部高速时钟 4/8/16/22.12/24 MHz
 - 内部低速时钟 32.8/38.4 KHz
 - 硬件支持内外时钟校准和监控

■ 定时器/计数器

- 3个通用16位定时器/计数器
- 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能

- 1个低功耗16位定时器/计数器
- 1 个可编程 16 位定时器/计数器,支持捕获 比较,PWM 输出
- 1 个 20 位可编程计数看门狗电路, 内建专用 超低功耗 RC-OSC 提供 WDT 计数

■ 通讯接口

- UARTO-UART1 标准通讯接口
- LPUART 支持使用低速时钟的超低功耗通讯接口
- SPI 标准通讯接口
- I²C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC-16 模块
- 唯一 10 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC, 内置运放,可测量外部微弱信号
- 集成 6 位 DAC 和可编程基准输入的 2 路电压 比较器 VC
- 集成低电压侦测器 LVD,可配置 16 阶比较电平,可监控端口电压以及电源电压
- 嵌入式调试解决方案,提供全功能的实时调试 器

■ 工作温度: -40 ~ 85°C

■ 工作电压: 1.8 ~ 5.5V

■ 封装形式: QFN20, TSSOP20, TSSOP16, CSP16

支持型号:

HC32L110C6UA	HC32L110C6PA
HC32L110C4UA	HC32L110C4PA
HC32L110B6PA	HC32L110B4PA
HC32L110B6YA	

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本 文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC 产品依据购销基本合同中载明 的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2024 小华半导体有限公司 保留所有权利

目 录

产品	特性			2
声	明			3
目	录			4
表蒙	纼			6
图索	弱			7
1	简介	·		8
2	产品	阵容		18
	2.1	产品名	称	18
	2.2	功能…		19
3	引脚	配置		20
4	引脚	功能说明		22
5	框图	l		27
6	存储	区映射图		28
7	电气	特性		30
	7.1	测试条	件	30
		7.1.1	最小和最大数值	30
		7.1.2	典型数值	30
	7.2	绝对最	大额定值	31
	7.3	工作条	件	32
		7.3.1	通用工作条件	32
		7.3.2	上电和掉电时的工作条件	32
		7.3.3	内嵌复位和 LVD 模块特性	33
		7.3.4	内置的参考电压	34
		7.3.5	工作电流特性	35
		7.3.6	从低功耗模式唤醒的时间	37
		7.3.7	外部时钟源特性	37
		7.3.8	内部时钟源特性	43
		7.3.9	存储器特性	44
		7.3.10	EFT 特性	44
		7.3.11	ESD 特性	44
		7.3.12	端口特性	45
		7.3.13	RESETB 引脚特性	48
		7.3.14	ADC 特性	48

10	订购有	≘息		68
	9.4	封装热	阻系数	67
			明	
			意图	
			寸	
			图	
			通信接口	
			TIM 定时器特性	
			VC 特性	

表索引

表	7-1	电压特性	31
表	7-2	电流特性	31
表	7-3	温度特性	32
表	7-4	通用工作条件	32
表	7-5	上电和掉电的工作条件	32
表	7-6	POR/Brown Out	33
表	7-7	LVD 模块特性	34
		工作电流特性	
		端口输出特性	
表	7-10	高级定时器(ADVTIM)特性	51
表	7-11	基本定时器特性	51
		PCA 特性	
表	7-13	低功耗定时器特性	52
表	7-14	WDT 特性	52
表	7-15	I2C 接口特性	53
表	7-16	SPI 接口特性	54
表	9-1	各封装热阻系数表	67

图索引

图 5-1	功能模块	27
图 7-1	POR/Brown Out 示意图	33
图 7-2	输出端口 VOH/VOL 实测曲线	46
图 7-3	I2C 接口时序	53
图 7-4	SPI 时序图(主机模式)	55
图 7-5	SPI 时序图(从机模式 cpha=0)	55
图 7-6	SPI 时序图(从机模式 cpha=1)	56

1 简介

HC32L110 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、Low Pin Count、宽电压工作范围的 MCU。集成 12 位 1Msps 高精度 SARADC 以及集成了比较器、多路 UART、SPI、I²C 等丰富的通讯外设,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用,物联网应用;
- 智能交通,智慧城市,智能家居;
- 火警探头,智能门锁,无线监控等智能传感器应用;
- 各种对于电池供电和对于功耗苛求的便携式设备等。

32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2	
流水线	2 级流水线	
性能效率	2.46 CoreMark / MHz	
性能效率 0.95 DMIPS / MHz in Dhrystone		
中断 32 个快速中断		
中断优先级 可配置 4 级中断优先级		
增强指令 单周期 32 位乘法器		
·田汁	Serial-wire 调试端口,支持 4 个硬中断(break point)	
l 调试	以及 2 个观察点(watch point)	

16K/32K Byte Flash

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

2K/4K Byte RAM

根据客户选择不同的超低功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

时钟系统

- 一个频率为 4~24 MHz 可配置的高精度内部时钟 RCH。在配置 16 MHz 下,从低功耗模式到工作模式的唤醒时间为 4 μs,全电压全温度范围内的频率偏差小,可以不外接昂贵的高频晶体。
- 一个频率为 4~32 MHz 的外部晶振 XTH。
- 一个频率为 32.768 KHz 的外部晶振 XTL, 主要提供 RTC 实时时钟。
- 一个频率为 32.8/38.4 KHz 的内部时钟 RCL。

工作模式

- 1) 运行模式(Active Mode):CPU 运行,周边功能模块运行。
- 2) 休眠模式 (Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode):CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32,768 Hz 晶振作为其时钟,能实现 万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96 ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要永久高精度实时时钟的测量设备仪表的最佳选择。

端口控制器 GPIO

最多可提供 16 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16 个通用 IO 可支持外部异步中断。

中断控制器 NVIC

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_P0
[1]	GPIO_P1
[2]	GPIO_P2
[3]	GPIO_P3
[4]	-
[5]	-
[6]	UARTO
[7]	UART1
[8]	LPUART
[9]	-
[10]	SPI
[11]	-
[12]	I ² C
[13]	-
[14]	Timer0
[15]	Timer1
[16]	Timer2
[17]	LPTimer
[18]	Timer4
[19]	Timer5
[20]	Timer6
[21]	PCA
[22]	WDT
[23]	RTC
[24]	ADC
[25]	-
[26]	VC0
[27]	VC1
[28]	LVD
[29]	-
[30]	RAM FLASH fault
[31]	Clock trim

复位控制器 RESET

本产品具有 7 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 00000000。

	复位来源	
[0]	上电掉电复位 POR BOR	
[1]	外部 Reset Pin 复位	
[2]	WDT 复位	
[3]	PCA 复位	
[4]	Cortex-M0+ LOCKUP 硬件复位	
[5]	Cortex-M0+ SYSRESETREQ 软件复位	
[6]	LVD 复位	

定时器 TIM

		位宽	预除频	计数方向	PWM	捕获	互补输出
	Timer0	16/32	1/2/4/8/16 32/64/256	上计数	无	无	无
基本定时器	Timer1	16/32	1/2/4/8/16/ 32/64/256	上计数	无	无	无
	Timer2	16/32	1/2/4/8/16/ 32/64/256	上计数	无	无	无
低功耗定时器	LPTimer	16	无	上计数	无	无	无
可编程计数阵列	PCA	16	2/4/8/16/32	上计数	5	5	无
		16	1/2/4/8/16/ 64/256/1024	上计数/			
	Timer4			下计数/	2	2	1
				上下计数			
			上计数/				
高级定时器	Timer5	Timer5 16	1/2/4/8/16/ 64/256/1024	下计数/	2	2	1
				上下计数			
				上计数/			
	Timer6 16	1/2/4/8/16/ 64/256/1024	下计数/	2	2	1	
				上下计数			_

基本定时器包含三个定时器 Timer0/1/2。Timer0/1/2 功能完全相同。Timer0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。Timer0/1/2 可以对外部脉冲进行计数或者实现系统定时。

低功耗定时器是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部低速 RC 或者外部低速 晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

高级定时器是一个包含三个定时器 Timer4/5/6。Timer4/5/6 功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1 个定时器可以产生互补的一对 PWM 或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

高级定时器基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
基本功能	• 缓存功能
基	• 正交编码计数
	• 通用 PWM 输出
	• 保护机制
	• AOS 关联动作
	计数比较匹配中断
 中断类型	计数周期匹配中断
中断天空	死区时间错误中断
	短路监测中断

看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10 K低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

通用同步异步收发器 UARTO~UART1、LPUART

2 路通用同步异步收发器(Universal Asynchronous Receiver/Transmitter)

通用 UART 基本功能:

- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 支持 1 Bit 停止位
- 四种不同传输模式
- 多机通讯

■ 硬件地址识别

1路低功耗模式下可以工作的异步收发器(Low Power Universal Asynchronous Receiver/Transmitter)

LPUART 基本功能:

- 传输时钟 SCLK(SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 支持 1 Bit 停止位
- 四种不同传输模式
- 多机通讯
- 硬件地址识别

串行外设接口 SPI

1路同步串行接口(Serial Peripheral Interface),支持主从模式。

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式 7 种波特率可配置
- 主机模式最大分频系数为 PCLK/2, 最高通信速率为 16 M bps
- 从机模式最大分频系数为 PCLK/8,最高通信速率为 4 M bps
- 可配置的串行时钟极性和相位
- 支持中断
- 8 位数据传输,先传输高位后低位

I²C 总线

1路 I²C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。

I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100 Kbps)/ 快速(400 Kbps)/ 高速(1 Mbps)三种工作速率
- 支持 7 位寻址功能
- 支持噪声过滤功能

- 支持广播地址
- 支持中断状态查询功能

蜂鸣器 Buzzer

3 个基本定时器与 1 个低功耗定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 12 mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路模块 CLKTRIM

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 4种待校准时钟源
- 支持中断方式

器件电子签名

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。ID 地 \pm 0x0010 0E74-0x0010 0E7F

循环冗余校验 CRC

符合 ISO/IEC13239 中给出的多项式 $F(x) = X^{16} + X^{12} + X^5 + 1$ 。

模数转换器 ADC

单调不失码的 12 位逐次逼近型模数转换器,在 24 MHz ADC 时钟下工作时,采样率达到 1 Msps。参考电压可选择片内精准电压(1.5 V 或 2.5 V)或从外部输入或电源电压。11 个输入通道,包括 9 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

■ 12 位转换精度;

- 1 Msps 转换速度;
- 11 个输入通道,包括 9 路外部管脚输入、1 路内部温度传感器电压、1 路 VCC/3 电压;
- 4 种参考源: VCC 电压、ExRef 引脚、内置 1.5 V 参考电压、内置 2.5 V 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 3 种转换模式:单次转换、顺序扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 軟件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

模拟电压比较器 VC

芯片管脚电压监测/比较电路。8个可配置的正/负外部输入通道;4个内部输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5 V 参考电压、1路 64 阶电阻分压。VC 输出可供基本定时器、低功耗定时器、高级定时器与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16 档电压监测值(1.8~3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4路监测源, VCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置,防止误触发;
- 具备迟滞功能,强力抗干扰。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4个硬断点以及多个软断点。

编程模式

支持一种编程模式: 离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

ISP 协议编程接口: P35、P36 或 P27、P31。

SWD 协议编程接口: P27、P31。

当芯片在复位完成后的数毫秒时间窗口内收到 ISP 编程指令,芯片工作于 ISP 编程模式,可使用编程器对 FLASH 进行编程。

当芯片在复位完成后的数毫秒时间窗口内没有收到 ISP 编程指令,芯片工作于用户模式,芯片执行 FLASH 内的程序代码。

注意:

建议预留 P35、P36 作为 ISP 编程接口;如需使用 P27、P31 作为 ISP 编程接口请参见 PCN:
 PCN20200304-1_HC32L110HC32F003HC32F005 提高烧录速度。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2 产品阵容

2.1 产品名称

A: -40-85℃, 工业级

2.2 功能

	产品名称	HC32L110C6UA / HC32L110C6PA HC32L110C4UA / HC32L110C4PA	HC32L110B4PA / HC32L110B6PA HC32L110B6YA		
引脚数		20	16		
GPIO 引脚数		16	12		
CPU	内核	Cortex M0+			
CPU	频率	32 MHz			
电源电压	 范围	1.8 ~	5.5 V		
单/双电》	 原	单电	源		
温度范围		-40 ~	85 ℃		
调试功能		SWD 证	试接口		
唯一识别]码	支	持		
通信接口	1	LPU	T0/1 ART I ² C		
		通用定时器 TIMO/1/2			
定时器		低功耗定时器 LPTIM			
		高级定时器 TIM4/5/6			
12 位 A/I	D 转换器	9ch	6ch		
模拟电压	比较器	VC0/1			
实时时钟	i e	1			
端口中断	Í	16	12		
低电压检	浏复位/中断	1			
	内部高速振荡器	RCH 4/8/16/22.12/24 MHz			
时钟	内部低速振荡器	RCL 32.8/38.4 KHz			
PJ ##	外部高速晶振振荡器	4~32	MHz		
	外部低速晶振振荡器	32.768 kHz			
蜂鸣器		Max 4ch			
FLASH 安全保护		支持			
RAM 奇傷		支持			

3 引脚配置

HC32L110C6UA / HC32L110C4UA

HC32L110C6PA / HC32L110C4PA

HC32L110B4PA / HC32L110B6PA

HC32L110B6YA CSP16 TOP VIEW

注:

- 在应用中,需要将该封装相对 TSSOP20 未引出的 IO 引脚设为输入并使能上拉。
- A1为 Pin 1。

4 引脚功能说明

Pin No.	Pin No.	Pin No.	Pin No.	Pin	D'a Tana	Baranda Mari
QFN20	TSSOP20	TSSOP16	CSP16	Name	Pin Type	Description
1	4	2	D2	RESETB	RESETB	复位输入端口,低有效,芯片复位
1	4	3	B2	P00	GPIO	P00 数字输入
					GPIO	P01 通用数字输入/输出引脚
					UARTO_RXD	UARTO RXD
					I ² C_SDA	I ² C 数据
					UART1_TXD	UART1 TXD
2	5	4	В3	P01	TIM0_TOG	Timer0 翻转输出
2	5	4	כם	PUI	TIM5_CHB	Timer5 捕获输入/比较输出 B
					SPI_SCK	SPI 时钟
					TIM2_EXT	Timer2 外部时钟
					AIN7/VC7	模拟输入
					XTHI	外部 XTH 晶振时钟 输入
					GPIO	P02 通用数字输入/输出引脚
					UART0_TXD	UART0 TXD
	6				I ² C_SCL	I ² C 时钟
		5			UART1_RXD	UART1 RXD
3			A4	P02	TIM0_TOGN	Timer0 翻转反相输出
3			A4	102	TIM6_CHA	Timer6 捕获输入/比较输出 A
					SPI_CS	SPI CS
					TIM2_GATE	Timer2 门控
				AV (CC (D) (AIN8	模拟输入
					XTHO	外部 XTH 晶振时钟 输出
4	7	6	B4	AVSS/DV SS	GND	芯片地
F	0	7	63		Damas	LDO 内核供电输出(仅限内部电路使
5	8	7	C3	Vcap	Power	用,连接 4.7uF 的电容)
6	9	8	C4	AVCC/DV CC	Power	芯片电源 1.8v~5.5v
					GPIO	P03 通用数字输入/输出引脚
					PCA_CH3	PCA 捕获输入/比较输出 3
					SPI_CS	SPI CS
					TIM6_CHB	Timer6 捕获输入/比较输出 B
7	10	注	注	P03	LPTIM_EXT	LPTimer 外部时钟输入
					RTC_1HZ	RTC 1Hz 输出
					PCA_ECI	PCA 外部时钟输入
					VC0_OUT	VC0 输出
					LVDIN1	模拟输入

Pin No.	Pin No.	Pin No.	Pin No.	Pin		
QFN20	TSSOP20	TSSOP16	CSP16	Name	Pin Type	Description
					GPIO	P15 通用数字输入/输出引脚
					I ² C_SDA	I ² C 数据
					TIM2_TOG	Timer2 翻转输出
					TIM4_CHB	Timer4 捕获输入/比较输出 B
8	11	9	D2	P15	LPTIM_GATE	LPTimer 门控
					SPI_SCK	SPI 时钟
					UARTO_RXD	UARTO RXD
					LVD_OUT	LVD 输出
					XTLO	外部 XTL 晶振时钟输出
					GPIO	P14 通用数字输入/输出引脚
					I ² C_SCL	I ² C 时钟
					TIM2_TOGN	Timer2 翻转反相输出
9	12	10	D1	P14	ECI	PCA 外部时钟输入
9	12	10	DI	P14	ADC_RDY	ADC ready
					SPI_CS	SPI CS
					UARTO_TXD	UARTO TXD
					XTLI	外部 XTL 晶振时钟输入
					GPIO	P23 通用数字输入/输出引脚
					TIM6_CHA	Timer6 捕获输入/比较输出 A
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					TIM4_CHA	Timer4 捕获输入/比较输出 A
10	13	11	C2	P23	PCA_CH0	PCA 捕获输入/比较输出 0
					SPI_MISO	SPI 模块主机输入从机输出数据信号
					UART1_TXD	UART1 TXD
					IR_OUT	38K 载波输出
					LVDIN2/VC0	模拟输入
					GPIO	P24 通用数字输入/输出引脚
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					TIM5_CHB	Timer5 捕获输入/比较输出 B
					HCLK_OUT	HCLK 输出
11	14	12	C1	P24	PCA_CH1	PCA 捕获输入/比较输出 1
					SPI_MOSI	SPI 模块主机输出从机输入数据信号
					UART1_RXD	UART1 RXD
					VC1_OUT	VC1 输出
					AIN0	模拟输入
12	15	13	B1	P25	GPIO	P25 通用数字输入/输出引脚
12	15		51	123	SPI_SCK	SPI 时钟

Pin No.	Pin No.	Pin No.	Pin No.	Pin		
QFN20	TSSOP20	TSSOP16	CSP16	Name	Pin Type	Description
					PCA_CH0	PCA 捕获输入/比较输出 0
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					LVD_OUT	LVD 输出
					LPUART_RXD	LPUART RXD
					I ² C_SDA	I ² C 数据
					TIM1_GATE	Timer1 门控
					LVDIN3/VC1	模拟输入
					GPIO	P26 通用数字输入/输出引脚
					SPI_MOSI	SPI 模块主机输出从机输入数据信号
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					TIM5_CHB	Timer5 捕获输入/比较输出 B
13	16	14	A1	P26	PCA_CH2	PCA 捕获输入/比较输出 2
					LPUART_TXD	LPUART TXD
					I ² C_SCL	I ² C 时钟
					TIM1_EXT	Timer1 部时钟输入
					AIN1	模拟输入
					GPIO	P27 通用数字输入/输出引脚
					SPI_MISO	SPI 模块主机输入从机输出数据信号
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					TIM6_CHA	Timer6 捕获输入/比较输出 A
14	17	15	D3	P27	PCA_CH3	PCA 捕获输入/比较输出 3
					UARTO_RXD	UARTO RXD
					RCH_OUT	24M 振荡输出
					XTH_OUT	32M 振荡输出
					SWDIO	SWDIO
					GPIO	P31 通用数字输入/输出引脚
					TIM3_TOG	Timer3 翻转输出
					PCA_ECI	PCA 外部时钟
					PCLK_OUT	PCLK 输出
15	18	16	D4	P31	VC0OUT	VC0 输出
					UARTO_TXD	UARTO TXD
					RCL_OUT	RCL 振荡输出
					HCLK_OUT	HCLK 输出
					SWCLK	SWCLK
					GPIO	P32 通用数字输入/输出引脚
16	19	注	注	P32	TIM3_TOGN	LPTimer 翻转反向输出
i l					PCA_CH2	PCA 捕获输入/比较输出 2

Pin No.	Pin No.	Pin No.	Pin No.	Pin	1	
QFN20	TSSOP20	TSSOP16	CSP16	Name	Pin Type	Description
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					VC10UT	VC1 输出
					UART1_TXD	UART1 TXD
					PCA_CH4	PCA 捕获输入/比较输出 4
					RTC_1HX	RTC1HZ 输出
					AIN2/VC2	模拟输入
					GPIO	P33 通用数字输入/输出引脚
					LPUART_RXD	LPUART RXD
					PCA_CH1	PCA 捕获输入/比较输出 1
					TIM5_CHB	Timer5 捕获输入/比较输出 B
17	20	注	注	P33	PCA_ECI	PCA 外部时钟
					UART1_RXD	UART1 RXD
					XTL_OUT	32K 振荡输出
					TIM1_TOGN	Timer1 翻转反向输出
					AIN3/VC3	模拟输入
					GPIO	P34 通用数字输入/输出引脚
					PCA_CH0	PCA 捕获输入/比较输出 0
					LPUART_TXD	LPUART TXD
					TIM5_CHA	Timer5 捕获输入/比较输出 A
18	1	注	注	P34	TIM0_EXT	Timer0 部时钟输入
					TIM4_CHA	Timer4 捕获输入/比较输出 A
					RTC_1HZ	RTC1HZ 输出
					TIM1_TOG	Timer1 翻转输出
					AIN4/VC4	模拟输入
					GPIO	P35 通用数字输入/输出引脚
					UART1_TXD	UART1 TXD
					TIM6_CHB	Timer6 捕获输入/比较输出 B
					UARTO_TXD	UARTO TXD
19	2	1	A2	P35	TIM0_GATE	Timer0 门控
					TIM4_CHB	Timer4 捕获输入/比较输出 B
					SPI_MISO	SPI 模块主机输入从机输出数据信号
					I ² C_SDA	I ² C 数据
					AIN5/VC5	模拟输入
					GPIO	P36 通用数字输入/输出引脚
20	3	2	A3	P36	UART1_RXD	UART1 RXD
	,		A3	F 30	TIM6_CHA	Timer6 捕获输入/比较输出 A
					UARTO_RXD	UARTO RXD

Pin No.	Pin No.	Pin No.	Pin No.	Pin Din Tuno		Description
QFN20	TSSOP20	TSSOP16	CSP16	Name	Pin Type	Description
					PCA_CH4	PCA 捕获输入/比较输出 4
					TIM5_CHA	Timer5 捕获输入/比较输出 A
					SPI_MOSI	SPI 模块主机输出从机输入数据信号
					I ² C_SCL	I ² C 时钟
					AIN6/VC6/ AVREF	模拟输入

注:需要将该封装相对 TSSOP20 未引出的 IO 引脚设为输入并使能上拉。

5 框图

功能模块

图 5-1 功能模块

6 存储区映射图

HC32L1: HC32L1:	HC32L110C6UA HC32L110C6PA HC32L110B6PA HC32L110B6YA		HC32L110C4UA HC32L110C4PA HC32L110B4PA	
0x2000_1000	保留		保留	
0x2000_0000	SRAM (4KByte)	0x2000_0800 0x2000_0000	SRAM (2KByte)	
0x0000_8000	保留		保留	
	主闪存区 (32KByte)	0×0000_4000	主闪存区 (16KByte)	
0x0000_0000		0x0000_0000		

7 电气特性

7.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

7.1.1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 Ta=25°C 和 Ta=Tamax 下执行的测试 (Tamax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下 得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

7.1.2 典型数值

除非特别说明,典型数据是基于 $T_A=25$ °C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含 AVCC 和 DVCC)(1)	-0.3	5.5	٧
V _{IN}	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	٧
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD 静电放电电压(人体模型)	参考绝对最大值电气参数		٧

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. linj(pin)绝对不可以超过它的极限,即保证 Vin 不超过其最大值。如果不能保证 Vin 不超过其最大值,也要保证在外部限制 linj(pin)不超过其最大值。当 Vin>Vcc 时,有一个正向注入电流;当 Vin<Vss 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
lvcc	经过 DVCC/AVCC 电源线的总电流(供应电流) (1)	300	mA
Ivss	经过 VSS 地线的总电流(流出电流) (1)	300	mA
lie	任意 I/O 和控制引脚上的输出灌电流	25	mA
lio	任意 I/O 和控制引脚上的输出电流	-25	mA
	RESETB 引脚的注入电流	+/-5	mA
I _{INJ(PIN)} ⁽²⁾ (3)	XTH 的 XTHI 引脚和 XTL 的 XTLI 引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
Σlinj(Pin) (2)	所有 I/O 和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. IINJ(PIN)绝对不可以超过它的极限,即保证 VIN 不超过其最大值。如果不能保证 VIN 不超过其最大值,也要保证在外部限制 IINJ(PIN)不超过其最大值。当 VIN>Vcc 时,有一个正向注入电流;当 VIN<Vss时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\sum I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 $\sum I_{INI(PIN)}$ 最大值的特性。

表 7-3 温度特性

符号	描述	数值	单位
T _{STG}	储存温度范围	-65 ~ + 150	°C
Tj	最大结温度	105	°C

7.3 工作条件

7.3.1 通用工作条件

表 7-4 通用工作条件

符号	参数	条件	最小值	最大值	单位
fhclk	内部 AHB 时钟频率		0	32	MHz
fPCLK	内部 APB 时钟频率		0	32	MHz
DVCC	数字部分工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与 DVCC ⁽²⁾ 相同	1.8	5.5	V
P _D	功率耗散 TA=85℃	TSSOP20		283	mW
т.	TATE	最大功率消耗	-40	85	°C
ТА	环境温度	低功率消耗(3)	-40	105	°C
Тј	结温度范围		-40	105	°C

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间,DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_J 不超过 T_{Jmax},T_A 可以扩展到这个范围。

7.3.2 上电和掉电时的工作条件

表 7-5 上电和掉电的工作条件

符号	参数	条件	最小值	最大值	单位
t _{Vcc}	VCC 上升速率		0	5	V/μs
tvcc	VCC 下降速率		0	5	V/µs

7.3.3 内嵌复位和 LVD 模块特性

图 7-1 POR/Brown Out 示意图

1. 设计保证,不在生产中测试。

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1 65	V
νροι	BOR 检测电压(掉电过程)		1.43	1.50	最大值 1.65	V

表 7-7 LVD 模块特性

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	٧
Vlevel	检测阈值	LVD_CR.VTDS=0000 LVD_CR.VTDS =0001 LVD_CR.VTDS =0010 LVD_CR.VTDS =0011 LVD_CR.VTDS =0100 LVD_CR.VTDS=0101 LVD_CR.VTDS=0110 LVD_CR.VTDS=0111 LVD_CR.VTDS=1000 LVD_CR.VTDS=1001 LVD_CR.VTDS=1011 LVD_CR.VTDS=1011 LVD_CR.VTDS=1011 LVD_CR.VTDS=1110 LVD_CR.VTDS=1110 LVD_CR.VTDS=1110 LVD_CR.VTDS=1110 LVD_CR.VTDS=1111		1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3		V
Icomp	功耗			0.12		μΑ
Tresponse	响应时间			80		μs
Tsetup	建立时间			400		μs
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000 LVD_debounce = 001 LVD_debounce = 010 LVD_debounce = 011 LVD_debounce = 100 LVD_debounce = 101 LVD_debounce = 110 LVD_debounce = 111		7 14 28 112 450 1800 7200 28800		μs

7.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5V Reference Voltage	常温 25°C 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5V Reference Voltage	-40~85°C 2.8~5.5V	2.438	2.5	2.563	V [1]
V _{REF15}	Internal 1.5V Reference Voltage	常温 25°C 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference Voltage	-40~85°C 1.8~5.5V	1.463	1.5	1.538	V ^[1]
T _{coeff}	Internal 2.5V 1.5V temperature coefficient	-40~85°C			120	ppm/°C

1. 数据基于考核结果,不在生产中测试。

7.3.5 工作电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、 产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- FLASH 存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fpclk = fhclk。

表 7-8 工作电流特性

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
I _{DD} (Run in RAM)	All peripherals clock OFF, Run While(1) in RAM.	V _{CAP} =1.55V V _{CC} =3.3V	RCH clock source	4M	220		μΑ
				8M	400		
				16M	740		
				24M	1080		
				32M	1400		
	All peripherals clock OFF, Run CoreMark in Flash.	V _{CAP} =1.55V V _{CC} =3.3V	RCH clock source	4M	670		μΑ
las				8M	1300		
IDD (Run CoreMark)				16M	2380		
				24M	3410		
				32M (Flash Wait= 1)	3530		
	All peripherals clock ON, Run while(1) in Flash	V _{CAP} =1.55V V _{CC} =1.8-5.5V	RCH clock source	4M	700	880	μΑ
				8M	1350	1600	
				16M	2500	3000	
				24M	3600	4300	
IDD (Run mode)	All peripheral clock OFF, Run while(1) in Flash	V _{CAP} =1.55V V _{CC} =1.8-5.5V	RCH clock source	4M	550	750	
(Null mode)				8M	1050	1300	
				16M	1900	2400	
				24M	2700	3300	
				32M (Flash Wait= 1)	2850	3000	
	All peripheral clock ON	V _{CAP} =1.55V V _{CC} =1.8-5.5V	RCH clock source	4M	260	280	- μΑ
				8M	500	520	
IDD (Sleep				16M	950	970	
(Sleep mode)				24M	1400	1420	
	All peripheral clock OFF	V _{CAP} =1.55V V _{CC} =1.8-5.5V	RCH clock source	4M	110	125	
				8M	190	210	

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
				16M	330	360	
				24M	470	500	
				32M	580	610	
	All peripherals clock ON, Run while(1) in Flash	V _{CAP} =1.55V V _{CC} =1.8-5.5V	XTL 32.768kHz (Driver = 1)	$T_A = -40 \text{ to}$ 25°C	7	9	- μΑ
IDD (LP Run)				T _A = 50 °C	7.3	9.2	
				T _A = 85 °C	8.9	11.3	
	All peripherals clock OFF, Run while(1) in Flash	V _{CAP} =1.55V V _{CC} =1.8-5.5V	XTL 32.768kHz (Driver = 1)	$T_A = -40 \text{ to}$ 25°C	6	8	
				T _A = 50 °C	6.1	8.2	
				T _A = 85 °C	7.7	10.1	
	All peripherals clock ON	V _{CAP} =1.55V V _{CC} =1.8-5.5V	XTL 32.768kHz	$T_A = -40 \text{ to}$ 25°C	3.3	3.5	μΑ
				T _A = 50 °C	3.6	3.8	
IDD			(Driver = 1)	T _A = 85 °C	5.4	5.8	
(LP Sleep)	All peripherals clock OFF except LPTimer and RTC All VCAP = 1.5! VCC=1.8-5	V _{CAP} = 1.55V		T _A = -40 to 25°C	2.2	2.4	
				T _A = 50 °C	2.5	2.6	
		VCC-1.0 3.3 V		T _A = 85 °C	4.2	4.6	
	All peripherals clock OFF	V _{CAP} =1.55V V _{CC} =1.8-5.5V		$T_A = -40 \text{ to}$ 25°C	1.5	1.65	
				T _A = 50 °C	1.85	2.2	
	except RTC、 WDT、 LPTimer			T _A = 85 °C	3.5	4.2	
	All peripherals clock OFF except WDT	V _{CAP} =1.55V V _{CC} =1.8-5.5V		$T_A = -40 \text{ to}$ 25°C	1.2	1.3	
				T _A = 50 °C	1.5	1.8	
				T _A = 85 °C	3.1	3.7	μΑ
IDD (L)	All peripherals clock OFF except LPTimer	V _{CAP} =1.55V V _{CC} =1.8-5.5V		$T_A = -40 \text{ to}$ 25°C	0.9	1	
(DeepSleep)				T _A = 50 °C	1.1	1.3] "
				T _A = 85 °C	2.6	3	
	All peripherals clock OFF except RTC	V _{CAP} =1.55V V _{CC} =1.8-5.5V		$T_A = -40 \text{ to}$ 25°C	1.0	1.1	
				T _A = 50 °C	1.2	1.5	
				T _A = 85 °C	2.6	3.4	
	All peripherals clock OFF	V _{CAP} =1.55V V _{CC} =1.8-5.5V		$T_A = -40 \text{ to}$ 25°C	0.42	0.6	
				T _A = 50 °C	0.75	0.95	
				T _A = 85 °C	2.2	2.7	

^{1.} 若没有其他指定条件,该 Typ 的值是在 25 °C & Vcc = 3.3V 测得。

^{2.} 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 - 85 °C 范围内的最大值。

^{3.} 数据基于考核结果,不在生产中测试。

7.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

■ 休眠模式:时钟源是 RCH 振荡器

■ 深度休眠模式: 时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
休眠模式唤	休眠模式唤醒时间			1.8		μs
		F _{MCLK} = 4MHz		9.0		μs
Twu	次在从四位职员为	FMCLK = 8MHz		6.0		μs
	深度休眠唤醒时间	FMCLK = 16MHz		5.0		μs
		FMCLK = 24MHz		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7 外部时钟源特性

外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fxth_ext	用户外部时钟频率(1)		0	8	32	MHz
Vхтнн	输入引脚高电平电压		0.7VCC		VCC	V
VxTHL	输入引脚低电平电压		VSS		0.3VCC	V
T _{r(XTH)}	上升的时间 ⁽¹⁾				20	ns
T _{f(XTH)}	下降的时间(1)				20	ns
$T_{w(XTH)}$	输入高或低的时间 ⁽¹⁾		16			ns
C _{in(XTH)}	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		40		60	%
lL	输入漏电流				±1	μΑ

外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fxtl_ext	用户外部时钟频率(1)		0	32.768	1000	kHz
Vxtlh	输入引脚高电平电压		0.7VCC		VCC	V
VXTLL	输入引脚低电平电压		VSS		0.3VCC	V
T _{r(XTL)}	上升的时间 ⁽¹⁾				50	ns
T _{f(XTL)}	下降的时间 ⁽¹⁾				50	ns
T _{w(XTL)}	输入高或低的时间 ⁽¹⁾		450			ns
C _{in(XTL)}	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		30		70	%
lL	输入漏电流	_			±1	μΑ

高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率		4		32	MHz
ECDavid	大块的目标 FCD 共同	32M		30	60	Ohm
ESRCLK	支持的晶振 ESR 范围	4M		400	1500	Ohm
C _L X ⁽³⁾	负载电容	按晶体制造商要求进行配置。				
Duty	占空比		40	50	60	%
Idd ⁽⁴⁾	电流	32M Xtal, CL=12Pf, ESR=30ohm		600		μΑ
g m	跨导	起振	700			μΑ/V
T _{start} (5)	启动时间	32MHz @ XTH_CR.Driver=1111		400		μs
I Start."		4MHz @ XTH_CR.Driver=0011		2		ms

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个管脚的负载电容,用户**必须**按晶体制造商的要求选择该电容的容值。 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容 值的两倍。

如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 4. 电流跟随频率变化而变化,测试条件: XTH CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。 这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容**必须**按照晶体制造商的技术手册的要求进行配置。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率			32.768		kHz
ESR _{CLK}	支持的晶振 ESR 范围			65	85	kΩ
C _{Lx} (2)	负载电容	按晶体制造商要求进行配置。				
DCA _{CLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 kΩ CL=12 Pf		850	1000	nA
g m	跨导	起振	2.5			μΑ/V
Tstart	启动时间	ESR=65 kΩ CL=12 Pf 40% - 60% duty cycle has been reached		500		ms

- 1. 由综合评估得出,不在生产中测试。
- 2. C_{LX} 指 XTAL 的两个管脚的负载电容,用户**必须**按晶体制造商的要求选择该电容的容值。 如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容 值的两倍。

如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 3. 典型值为 XTL_CR.Driver=1001 时的功耗。选择具有较小 ESR 值的高质量振荡器(如 MSIV-TIN32.768kHz),可以通过减小 XTL CR.Driver 设置值以优化电流消耗。
- 4. T_{start} 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

晶体的匹配电容必须按照晶体制造商的技术手册的要求进行配置。如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了匹配电容的容值,则直接使用晶体制造商所给出的匹配电容的容值即可。

- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.8 内部时钟源特性

内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
		User trimming step for given VCC and TA conditions		0.25		%
Dev	RCH 振荡器精度	$VCC = 1.8 \sim 5.5V$ $T_{AMB} = -40 \sim 85^{\circ}C$	-3.5		+3.5	%
		$VCC = 1.8 \sim 5.5V$ $T_{AMB} = -20 \sim 50^{\circ}C$	-2.0		+2.0	%
FCLK	振荡频率		4.0	4.0 8.0 16.0 22.12 24.0	24.0	MHz
		F _{MCLK} = 4MHz		80		μΑ
la	т ∔ .‡⊈	F _{MCLK} = 8MHz		100		μΑ
I _{CLK}	功耗	FMCLK = 16MHz		120		μΑ
		F _{MCLK} = 24MHz		140		μΑ
DCclk	占空比(1)		45	50	55	%

1. 由综合评估得出,不在生产中测试。

内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
		User trimming step for given VCC and TA conditions		0.5		%
Dev	RCL 振荡器精度	$VCC = 1.8 \sim 5.5V$ $T_{AMB} = -40 \sim 85^{\circ}C$	-5		+5	%
		VCC = 1.8 ~ 5.5V T _{AMB} = -20 ~ 50°C	-3		+3	%
FCLK	振荡频率			38.4 32.768		kHz
T _{CLK}	启动时间			150		μs
DCclk	占空比(1)		25	50	75	%
Iclk	功耗			0.25		μΑ

1. 由综合评估得出,不在生产中测试。

内部低速时钟 10k 振荡器

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
٧	Operation voltage	-	1.8		5.5	٧
Dev	振荡器精度 ⁽¹⁾	$VCC = 1.8 \sim 5.5V$ $T_{AMB} = -20 \sim 50^{\circ}C$	-50	-	50	%
FCLK	振荡频率	VCC=3.3v T _{AMB} = 25°C		10		KHz

1. 由综合评估得出,不在生产中测试。

7.3.9 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
ECFLASH	擦写次数	Regulator voltage=1.5V, T _{AMB} = 25°C	20			kcycles
RETFLASH	数据保存期限	$T_{AMB} = 85$ °C, after 20 kcycles	20			Years
Tw_prog	编程时间		6		7.5	μs
Tp_erase	页擦除时间		4		5	ms
Tm_erase	整片擦除时间		30		40	ms

7.3.10 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO (IEC61000-4-4)	Class:4(B)
EFT to Power (IEC61000-4-4)	Class:4(B)

软件建议

软件的流程中必须包含应对程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 EFT 测试时,可以把超出应用要求的干扰直接施加在芯片电源或 IO 上,当检测到意外动作的地方,软件部分进行加强以防止发生不可恢复的错误。

7.3.11 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		٧
llatchup	Latch up current			200		mA

7.3.12 端口特性

输出特性——端口

表 7-9 端口输出特性

Symbol	Parameter	Conditions	Min	Max	Uuit
Vон	High level output voltage Source Current	Sourcing 4 Ma, VCC = 3.3 V (see Note 1)	VCC-0.25		V
VOH		Sourcing 6 Ma, VCC = 3.3 V (see Note 2)	VCC-0.6		V
Vol	Low level output voltage	Sinking 4 Ma, VCC = 3.3 V (see Note 1)		VSS+0.25	V
VOL	Sink Current	Sinking 6 Ma, VCC = 3.3 V (see Note 2)		VSS+0.6	V
Vонр	High level output voltage	Sourcing 8 Ma, VCC = 3.3 V (see Note 1)	VCC-0.25		٧
V ОНD	Double source Current	Sourcing 12 Ma, VCC = 3.3V (see Note 2)	VCC-0.6		٧
Vold	Low level output voltage	Sinking 8 Ma, VCC = 3.3 V (see Note 1)		VSS+0.25	٧
VOLD	Double Sink Current	Sinking 12 Ma, VCC = 3.3 V (see Note 2)		VSS+0.6	V

NOTES:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 Ma to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 Ma to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

输入特性——端口 P0,P1,P2,P3

符号	参数	条件	最小值	典型值	最大值	单位
		VCC=1.8V	0.7VCC			V
VIH	Positive-going input threshold voltage	VCC=3.3V	0.7VCC			V
		VCC=5.5V	0.7VCC			٧
		VCC=1.8V			0.3VCC	V
V _{IL}	Negative-going input threshold voltage	VCC=3.3V			0.3VCC	V
		VCC=5.5V			0.3VCC	V
		VCC=1.8V		0.3		V
V _{hys(1)}	Input voltage hysteresis (VIH - VIL)	VCC=3.3V		0.4		٧
	(27	VCC=5.5V		0.6		٧
R _{pullhigh}	Pullup resistor	Pullup enabled VCC=3.3V		80		kΩ
R _{pulllow}	Pulldown resistor	Pulldown enabled VCC=3.3V		40		kΩ
C _{input}	Input capacitance	_		5		pF

1. 由综合评估得出,不在生产中测试。

端口外部输入采样要求——Timer Gate/Timer Clock

Symbol	Papameter	Conditions	vcc	Min	Max	Uuit
			1.8V	30		ns
t(int)	External interrupt timing	External trigger signal for the interrupt flag (see Note 1)	3.3V	30		ns
	3	,	5.5V	30		ns
		Timer4/5/6 capture pulse width Fsystem = 4MHz	1.8V	0.5		μs
t(cap)	Timer capture timing		3.3V	0.5		μs
			5.5V	0.5		μs
	Timer clock	Timer0/1/2/4/5/6 external	1.8V		PCLK/2	MHz
t(clk)	frequency applied to	clock input	3.3V		PCLK/2	MHz
	pin	Fsystem = 4MHz	5.5V		PCLK/2	MHz
			1.8V		PCLK/8	MHz
t(pca)	PCA clock frequency applied to pin	PCA external clock input Fsystem = 4MHz	3.3V		PCLK/8	MHz
	appined to pin		5.5V		PCLK/8	MHz

NOTE:

1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

端口漏电特性——P0,P1,P2,P3

Symbol	Papameter	Conditions	vcc	Max	Unit
likg(Px.y)	Leakage current	V _(Px.y) (see Note 1,2)	1.8 V/3.6 V	±50	nA

NOTES:

- 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.

7.3.13 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
VIL(RESETB) (1)	输入低电平电压		-0.3		0.3VCC	٧
Vih(resetb)	输入高电平电压		0.7VCC		VCC+0.3	٧
V _{hys(RESETB)}	施密特触发器电压迟滞			200		mV
R _{PU}	弱上拉等效电阻	VIN = VSS		80		kΩ
T _{F(RESETB)} (1)	输入滤波脉冲				3	us
T _{NF(RESETB)} (1)	输入非滤波脉冲		20			us

1. 由设计保证,不在生产中测试。

7.3.14 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
VADCREFIN	Input range of external reference voltage	Single ended	0		VCC	V
DEV _{VCC/3}	VCC/3 精度			3		%
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		mA
I _{ADC2}	Active current without reference generator and buffer	1Msps		0.5		mA
C _{ADCIN}	ADC input capacitance			16	19.2	pF
R _{ADC} ⁽¹⁾	ADC sampling switch impedance			1.5		kΩ
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	kΩ
FADCCLK	ADC clock Frequency				24M	Hz
TADCSTART	Startup time of reference generator and ADC core			30		μs
T _{ADCCONV}	Conversion time		20	24	28	cycles
		1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF		10.3		Bit
ENOB	Effective Bits	1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=VCC		10.3		Bit
		200Ksps@VCC>=1.8V REF=internal 1.5V		9.4		Bit
		200Ksps@VCC>=2.8V REF=internal 2.5V		9.4		Bit
SNR	Signal to Noise Ratio	1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF		68.2		dB
		1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V		68.2		dB

符号	参数	条件	最小值	典型值	最大值	单位
		200Ksps@VCC>=1.8V REF=VCC				
		200Ksps@VCC>=1.8V REF=internal 1.5V		60		dB
		200Ksps@VCC>=2.8V REF=internal 2.5V		60		dB
DNL ⁽¹⁾	Differential non-linearity	200KSps; VREF=EXREF/VCC	-1		1	LSB
INL ⁽¹⁾	Integral non-linearity	200KSps; VREF=EXREF/VCC	-3		3	LSB
E₀	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表:

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	М
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R_{AIN} (k Ω)	F _{ADC} (kHz)
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.15 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25°C 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00 VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11		0.3 1.2 10 20		μΑ
Tresponse	Comparator's response time when one input cross another	VCx_BIAS_SEL=00 VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11		20 5 1 0.2		μs
Tsetup	Comparator's setup time when ENABLE. Input signals unchanged.	VCx_BIAS_SEL=00 VCx_BIAS_SEL=01 VCx_BIAS_SEL=10 VCx_BIAS_SEL=11		20 5 1 0.2		μs
Twarmup	From main bandgap enable to Temp sensor voltage, ADC internal 1.5V, 2.5V reference stable			20		μs
Tfilter	Digital filter time	VC_debounce = 000 VC_debounce = 001 VC_debounce = 010 VC_debounce = 011 VC_debounce = 100 VC_debounce = 101 VC_debounce = 110 VC_debounce = 111		7 14 28 112 450 1800 7200 28800		μs

7.3.16 TIM 定时器特性

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM 输出)的特性详情,参见下表。

表 7-10 高级定时器(ADVTIM)特性

符号	参数	条件	最小值	最大值	单位
	中中界八地中间		1		tтімськ
tres	定时器分辨时间	fTIMCLK=32MHz	31.3		ns
f _{ext}	∕n∖ ☆アュロ→ś₼⊭죠▽ シ ッ		0	ftimclk/2	MHz
Text	外部时钟频率	f _{TIMCLK} =32MHz	0	16	MHz
Restim	定时器分辨率			16	位
т.	选择内部时钟时,16 位计数器		1	65536	tтімськ
T _{counter}	时钟周期	ftimclk=32MHz	0.0313	2051	μs
T _{MAX_} COUNT	最大可能计数			67108864	tтімськ
		ftimclk=32MHz		2.1	S

1. 由设计保证,不在生产中测试。

表 7-11 基本定时器特性

符号	参数	条件	最小值	最大值	单位
+	中中界八地中间		1		tтімськ
t _{res}	定时器分辨时间	fTIMCLK=32MHz	31.3		ns
f.	hl ☆Ω□→Ś₼ψ즈☆		0	ftimclk/2	MHz
f _{ext}	外部时钟频率 	ftimclk=32MHz	0	16	MHz
Doc-:	定时器分辨率	重载计数		16	位
Restim		自由计数		32	位
т .	选择内部时钟时,16 位计数器		1	65536	tтімськ
T _{counter}	时钟周期	fTIMCLK=32MHz	0.0313	2051	μs
Tury count	最大可能计数(重载模式)			16777216	tтімськ
TMAX_COUNT		ftimclk=32MHz		524.3	ms

表 7-12 PCA 特性

符号	参数	条件	最小值	最大值	单位
+			1		tтімськ
tres	定时器分辨时间	ftimclk=32MHz	31.3		ns
f _{ext}	61		0	ftimclk/2	MHz
Text	外部时钟频率	f _{TIMCLK} =32MHz	0	16	MHz
Restim	定时器分辨率			16	位
т.	选择内部时钟时,16 位计数器		1	65536	tтімськ
T _{counter}	时钟周期	fTIMCLK=32MHz	0.0313	2051	μs
_	最大可能计数			2097152	tтімськ
TMAX_COUNT		ftimclk=32MHz		65.54	ms

1. 由设计保证,不在生产中测试。

表 7-13 低功耗定时器特性

符号	参数	条件	最小值	最大值	单位
+			1		tтімськ
t _{res}	定时器分辨时间	fTIMCLK=32MHz	31.3		ns
f.	外部时钟频率		0	f _{TIMCLK/2}	MHz
f _{ext}		fTIMCLK=32MHz	0	16	MHz
Restim	定时器分辨率			16	位
т.	选择内部时钟时,16 位计数器		1	65536	tтімськ
T _{counter}	时钟周期	f _{TIMCLK} =32MHz	0.0313	2051	μs
_	目上寸45.11 %			65536	tтімськ
TMAX_COUNT	最大可能计数	f _{TIMCLK} =32MHz		2.05	ms

1. 由设计保证,不在生产中测试。

表 7-14 WDT 特性

符号	参数	条件	最小值	最大值	单位
tres	WDT 溢出时间	fwdTCLK=10kHz	1.6	52000	ms

7.3.17 通信接口

I2C 特性

I2C 接口特性如下表:

表 7-15 I2C 接口特性

符号	参数	标准模式		(100K) 快速模式(400K)		高速模式(1M)		₩/÷
105	一	最小值	最大值	最小值	最大值	最小值	最大值	单位
t _{SCLL}	SCL 时钟低时间	4.7		1.25		0.5		μs
tsclh	SCL 时钟高时间	4.0		0.6		0.26		μs
tsu.sda	SDA 建立时间	250		100		50		ns
thd.sda	SDA 保持时间	0		0		0		μs
thd.sta	开始条件保持时间	2.5		0.625		0.25		μs
tsu.sta	重复的开始条件建立时间	2.5		0.6		0.25		μs
t _{SU.STO}	停止条件建立时间	0.25		0.25		0.25		μs
t _{BUF}	总线空闲(停止条件至开始条件)	4.7		1.3		0.5		μs

图 7-3 I2C 接口时序

SPI 特性

表 7-16 SPI 接口特性

符号	参数	条件	最小值	最大值	单位
		主机模式	62.5	-	ns
t _{c(SCK)}	串行时钟的周期	从机模式 f _{PCLK} = 16MHz	250	-	ns
t(cc)(II)	电气时轴的声中亚时间	主机模式	$0.5 \times t_{c(SCK)}$	-	ns
tw(SCKH)	串行时钟的高电平时间 	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t (60(4)	电气时轴边低电平时间	主机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{w(SCKL)}	串行时钟的低电平时间 	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{su(SSN)}	从机选择的建立时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
th(SSN)	从机选择的保持时间	从机模式	$0.5 \times t_{c(SCK)}$	-	ns
t _{v(MO)}	主机数据输出的生效时间	f _{PCLK} = 32MHz	-	3	ns
t _{h(MO)}	主机数据输出的保持时间	f _{PCLK} = 32MHz	2	-	ns
t _{v(SO)}	从机数据输出的生效时间	f _{PCLK} = 16MHz	-	50	ns
th(SO)	从机数据输出的保持时间	f _{PCLK} = 16MHz	30	-	ns
t _{su(MI)}	主机数据输入的建立时间		10	-	ns
t _{h(MI)}	主机数据输入的保持时间		2	-	ns
t _{su(SI)}	从机数据输入的建立时间		10	-	ns
t _{h(SI)}	从机数据输入的保持时间		2	-	ns

^{1.} 由设计保证,不在生产中测试。

SPI 接口信号的波形和时序参数如下:

图 7-4 SPI 时序图(主机模式)

图 7-5 SPI 时序图(从机模式 cpha=0)

图 7-6 SPI 时序图(从机模式 cpha=1)

8 典型应用电路图

注意:

- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

9 封装信息

9.1 封装尺寸

QFN20 封装

Cumbal	QFN20 (3x3) millimeter			
Symbol	Min	Nom	Max	
Α	0.70	0.75	0.80	
A1		0.02	0.05	
b	0.15	0.20	0.25	
С	0.18	0.20	0.25	
D	2.90	3.00	3.10	
D2	1.55	1.65	1.75	
е		0.40BSC		
Ne		1.60BSC		
Nd		1.60BSC		
E	2.90	3.00	3.10	
E2	1.55	1.65	1.75	
L	0.35	0.40	0.45	
h	0.20	0.25	0.30	
L/F 载体尺寸	75 x 75			
(Mil)		13 X 13		

TSSOP20 封装

SECTION B-B

Cymeb al	TSS	SOP20 millime	eter
Symbol	Min	Nom	Max
Α			1.20
A1	0.05		0.15
A2	0.80	1.00	1.05
А3	0.39	0.44	0.49
b	0.20		0.28
b1	0.19	0.22	0.25
С	0.13		0.18
c1	0.12	0.13	0.14
D	6.40	6.50	6.60
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е		0.65BSC	
L	0.45	0.60	0.75
L1	1.00REF		
θ	0		8°

NOTE:

 Dimensions "D" and "E1" do not include mold flash.

CSP16 封装

BOTTOM VIEW

Cumbal	C	SP16 millimet	er
Symbol	Min	Nom	Max
Α	0.496	0.533	0.57
A1	0.148	0.168	0.188
A2	0.037	0.04	0.043
b	0.18	0.21	0.24
S	0.3115	0.325	0.3385
D	1.565	1.59	1.615
Е	1.411	1.436	1.461
е	0.35BSC		
D1		1.05BSC	
E1		1.05BSC	
SD	0.175		
SE	0.175		
n	_	16	

SIDE VIEW

TSSOP16 封装

			<u> </u>
			ш
B B		b_	<u> </u>

SECTION B-B

Complete	TSS	SOP16 millime	eter
Symbol	Min	Nom	Max
Α			1.20
A1	0.05		0.15
A2	0.90	1.00	1.05
А3	0.39	0.44	0.49
b	0.20		0.28
b1	0.19	0.22	0.25
С	0.13		0.17
c1	0.12	0.13	0.14
D	4.90	5.00	5.10
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
е		0.65BSC	
L	0.45	0.60	0.75
L1	1.00BSC		
θ	0		8°

NOTE:

 Dimensions "D" and "E1" do not include mold flash.

9.2 焊盘示意图

QFN20 封装(3mm x 3mm)

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

TSSOP20 封装

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

TSSOP16 封装

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

CSP16 封装

NOTE:

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

CSP16 recommended PCB design rules(0.35mm pitch)

Dimension	Recommended values
Pitch	0.35mm
Dpad	0.210mm
Dsm	0.275mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.235mm
Stencil thickness	0.100mm

9.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

QFN20 封装 (3mm x 3mm)

TSSOP20 封装 / TSSOP16 封装

CSP16 封装

注意:

– 上图空白框表示与生产相关的可选标记,本节不作说明。

9.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 T_j ($^{\circ}$ C) 可以按照下面的公式计算:

$$T_j = T_{amb} + (P_D \times \theta_{JA})$$

- Tamb 是指封装芯片工作时的工作环境温度,单位是°C;
- θ_{IA} 是指封装对工作环境的热阻系数,单位是 $^{\circ}$ C/W;
- P_D等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 I_{DD} x V_{DD},I/O 功耗 指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 Tj,不可以超出芯片可容许的最大结温度 Tj。

表 9-1 各封装热阻系数表

Package Type and Size	Thermal Resistance Junction-ambient Value (θ _{JA})	Unit
QFN20 3mm x 3mm / 0.4mm pitch	70 +/- 10%	°C/W
TSSOP16	105 +/- 10%	°C/W
TSSOP20	91 +/- 10%	°C/W

10 订购信息

Part Number	HC32L110C6UA- SFN20TR	HC32L110C6PA- TSSOP20	HC32L110C6PA- TSSOP20TR	HC32L110B6PA- TSSOP16	HC32L110B6YA- CSP16TR	HC32L110C4UA- SFN20TR	HC32L110C4PA- TSSOP20	HC32L110C4PA- TSSOP20TR	HC32L110B4PA- TSSOP16	HC32L110B4PA- TSSOP16TR
Flash	32KB	32KB	32KB	32KB	32KB	16KB	16KB	16KB	16KB	16KB
RAM	4KB	4KB	4KB	4KB	4KB	2KB	2KB	2KB	2KB	2KB
GPIO	16+1	16+1	16+1	12+1	12+1	16+1	16+1	16+1	12+1	12+1
Vdd	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V	1.8~5.5V
Timer	6	6	6	6	6	6	6	6	6	6
LPTimer	1	1	1	1	1	1	1	1	1	1
RTC	✓	✓	✓	✓	✓	✓	✓	√	✓	✓
UART	2	2	2	2	2	2	2	2	2	2
LPUART	1	1	1	1	1	1	1	1	1	1
I2C	1	1	1	1	1	1	1	1	1	1
SPI	1	1	1	1	1	1	1	1	1	1
ADC(12bit)	9ch	9ch	9ch	6ch	6ch	9ch	9ch	9ch	6ch	6ch
Vcomp	2	2	2	2	2	2	2	2	2	2
LVD	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
LVR	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Package	QFN20(3*3)	TSSOP20	TSSOP20	TSSOP16	CSP16	QFN20(3*3)	TSSOP20	TSSOP20	TSSOP16	TSSOP16
脚间距	0.4mm	0.65mm	0.65mm	0.65mm	0.35mm	0.4mm	0.65mm	0.65mm	0.65mm	0.65mm
芯片厚度	0.75mm	1.2mm	1.2mm	1.2mm	0.535mm	0.75mm	1.2mm	1.2mm	1.2mm	1.2mm
出货形式	卷带	管装	卷带	管装	卷带	卷带	管装	卷带	管装	卷带

订购前,请联系销售窗口咨询最新量产信息。

HC32L110 系列数据手册_Rev2.70 68/70

版本修订记录

版本号	修订日期	修订内容			
Rev1.00	2018/01/23	HC32L110 系列数据手册初版发布。			
Rev1.10	2018/04/04	版本更新。			
Rev1.20	2018/04/17	修正 Flash 参数。			
Rev1.30	2018/05/03	更新 VC 电气参数。			
Rev1.40	2018/09/25	调整版式,更新第7章电气特性,增加第9章订购信息。			
Rev1.50	2018/11/15	第 8 章中增加"丝印说明",更正 QFN20 / Tssop20 / Tssop16 封装尺寸。			
Rev1.60	2018/11/27	修改名称:UART2→LPUART,第 3、4 章增加"注"。			
Rev1.70	2019/02/22	修正以下数据: ①ADC 特性 ②ESD 特性 ③存储器特性中 ECFLASH 最小值 ④QFN20/TSSOP16 封装丝印说明 ⑤封装尺寸中增加 NOTE ⑥更新订购信息 ⑦			
	2013/02/22	引脚配置中加入 AVCC/AVSS。			
Rev1.80	2010/06/21	修正以下数据: ①UID 地址更正为 0x0010_0E74-0x0010_0E7F ②更正编程模式			
	2019/06/21	③更新 QFN 引脚配置图样式 ④订购信息中增加出货形式。			
Rev1.90	2019/12/06	修正以下数据:①典型应用电路图 ②ADC 特性单位 ③外部时钟源特性中 XTH 和			
Rev1.90		XTL 配图与注意事项。			
Rev2.00	2020/01/17	修正以下数据: ①增加 CSP16 封装 ②丝印说明。			
Rev2.10	2020/03/06	简介中"编程模式"增加注意项。			
Rev2.20	2020/04/30	修正以下数据: ①ADC 特性中增加 VCC/3 精度 ②7.3.7 中修正笔误 ③7.3.8 中			
11072.20	2020/04/30	RCL 振荡器精度。			
	2020/07/31	修正以下数据: ①增加 7.3.16、7.3.17、9.2、9.4 节; ②7.3.10 等级; ③7.3.1 内			
Rev2.30		部 AHB/APB 时钟频率; @7.3.12 输入特性——端口 P0,P1,P2,P3, RESET 中 VIH			
		和 V _{IL} 的值。			
Rev2.40	2020/09/30	修正以下数据: ①简介中时钟系统描述; ②7.3.8 中 RCH 振荡器精度; ③7.3.13			
Rev2.40	2020/03/30	的 V _{IL} 和 V _{IH} ; ④增加 SPI 特性。			
		修正以下数据: ①修改声明; ②I2C 特性中 thd.sta 和 tsu.sto 参数; ③简介中串行			
Rev2.50	2021/05/31	外设接口 SPI;④存储器特性中数据保存期限;⑤增加外部时钟源特性中 gm 参			
		数。			
Rev2.60	2022/03/09	公司 logo 更新。			
Rev2.61		修正以下数据:①上电和掉电时的工作条件,修改 VCC 上升/下降速率的最小值、			
	2022/08/13	最大值以及单位,以与其它产品一致;②内嵌复位和 LVD 模块特性,图 7-1 中			
	2022/00/13	信号名称与参考手册中信号名称不一致, 修改为统一; ③内置的参考电压, 根据			
		考核结果,放宽全温度电压下精度范围到±2.5%;@RESETB 引脚特性,输入滤			

版本号	修订日期	修订内容
		波脉冲时间修改。
Rev2.62	2022/10/25	更新"3. 引脚配置"章节绘图显示不清晰问题。
		修正以下数据: ①修改章节 1 简介中 ADC 和 VC 通道数、删除 1.2V 相关描述;
		②修改表 7-3 温度特性中储存温度范围; ③7.3.8.内部时钟源特性中添加"内部
Rev2.70	2024/05/15	低速时钟 10k 振荡器"部分; ④删除表 7.3.15 中 1.2V 相关描述; ⑤章节 10 订购
		信息新增"HC32L110C6PA-TSSOP20TR"和"HC32L110C4PA-TSSOP20TR"两个
		型号。