USM3D-ME Buffet Simulations of the ONERA OAT15A Airfoil for DPW-8/AePW-4

Tausif Jamal, Brent Pomeroy, and Seth Kelly

Configuration Aerodynamics Branch NASA Langley Research Center, Hampton, VA 23681

Contents

- Introduction
- Grids
- Numerical Methods
- Results
- Summary
- Conclusions

Introduction

- Supports DPW-8/AePW-4 Buffet Working Group
- ONERA OAT15A transonic girfoil
 - Well-studied geometry and results are compared to Jacquin, et al.¹
 - Buffet Working Group Test Case 1a
 - RANS, range of alphas (1.36 through 3.90 deg)
 - Mach 0.73
 - Re = 3 million
- Time-resolving technology is in development

Grids

- Utilized committee-supplied Cadence and Helden unstructured grids
- Differing gridding techniques were employed
- Simulated grid levels L1, L2, and L3 for both grid families

Cadence

Grid Level	Approx Cell Count	Target y ⁺
L1	47,000	1.000
L2	89,000	0.670
L3	150,000	0.500
L4	235,000	0.400
L5	353,000	0.330
L6	517,000	0.290

Helden Aerospace

Grid Level	Approx Cell Count	Target y ⁺
L1	10,000	4.000
L2	35,000	2.000
L3	134,000	1.000
L4	528,000	0.500
L5	2,076,000	0.250
L6	8,208,000	0.125

Grids

- Utilized committee-supplied Cadence and Helden unstructured grids
- Differing gridding techniques were employed
- Simulated grid levels L1, L2, and L3 for both grid families

Numerical Method

USM3D-ME (mixed element)₂

- Developed at NASA Langley Research Center
- Successor to USM3D3 solver
- Strong linear solver increases robustness and efficiency⁴
- Second order in space coupled with Roe's flux-difference-splitting FDS scheme

Setup

- RANS, local time-stepping
- Automatic CFL updating
- Parallelized MPI paradigm

Turbulence model

- SA-neg⁵
- SA-neg-R (rotation correction)⁶
- NA-neg-QCR2000⁷

Grid Convergence

Simulation Convergence

Force and Moment Comparison

Shock Location and Structure

Summary and Conclusions

References (Presentation)

- I. Jacquin, L., Molton, P., Deck, S., Maury, B., and Soulevant, D., "Experimental Study of Shock Oscillation over a Transonic Supercritical Profile," AIAA Journal, Vol. 47, No. 9, 2009, pp. 1985–1994. https://doi.org/10.2514/1.30190.
- 2. Pandya, M. J., Frink, N. T., Ding, E., and Parlette, E. B., "Toward Verification of USM3D Extensions for Mixed Element Grids," AIAA Paper 2013-2541, 31st Applied Aerodynamics Conference, San Diego, CA, June 2013; DOI: 10.2514/6.2013-2541
- 3. Frink, N. T., Pirzadeh, S. Z., Parikh, P. C., Pandya, M. J., and Bhat, M. K., "The NASA tetrahedral unstructured software system (TetrUSS)," The Aeronautical Journal, Vol. 104, No. 1040, 2000, pp. 491-499.
- 4. Pandya, M. J., Diskin B., Thomas, J. L., and Frink N. T., "Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids," AIAA Journal (2016), 54(9), pp. 2589-2610; DOI: 10.2514/1.J054545
- 5. Allmaras, S. R., Johnson, F. T., and Spalart, P. R., "Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model," ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, 9-13 July 2012
- 6. Dacles-Mariani, J., Kwak, D., and Zilliac, G., "On numerical errors and turbulence modeling in tip vortex flow prediction," International journal for numerical methods in fluids 30.1 (1999): 65-82
- 7. Spalart, P. R., "Strategies for Turbulence Modelling and Simulation," International Journal of Heat and Fluid Flow, Vol. 21, 2000, pp. 252–263.
- 8. Wick, A., and Hooker, R., HeldenMesh User's Manual Version 4.14, Helden Aerospace Corporation, 2022.
- 9. Brunet, V., "Computational Study of Buffet Phenomenon with Unsteady RANS Equations", ONERA Applied Aerodynamics Department Châtillon, France

Questions?

Tausif Jamal tausif.jamal@nasa.gov Brent Pomeroy brent.w.pomeroy@nasa.gov