TUBO THOMSON

EXPERIENCIA DE LABORATORIO

TUBO DE THOMSON

Desviación de electrones en campos eléctricos y magnéticos

OBJETIVOS

- Analizar el comportamiento de un haz de electrones sometido a campos eléctricos y magnéticos.
 - · Desviación de un haz de electrones en un campo eléctrico.
 - · Comprobación experimental de la relación carga/masa del electrón.
 - Selector de velocidades. Cálculo de campos eléctricos y magnéticos.

TUBO THOMSON

FUERZA MAGNÉTICA

Recordamos el movimiento de cargas en campos magnéticos:

$$\vec{F}_m = q(\vec{v} \times \vec{B})$$

Fuerza magnética sobre una carga eléctrica puntual

$$\vec{F}_m = q \Big(\vec{v} \times \vec{B} \Big) = q \Big(\vec{v}_{II} + \vec{v}_{\bot} \Big) \times \vec{B} = q \vec{v}_{\bot} \times \vec{B}$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi m}{|q|B}$$
 $\omega = \frac{V}{R} = \frac{|q|B}{m}$

Radio de curvatura

$$R = \frac{mv_{\perp}}{|q|B}$$

· Comprobación experimental de la relación carga/masa del electrón

TUBO THOMSON

Haz de electrones en el seno de un campo magnético

Comprobación experimental de la relación carga/masa del electrón

$$\frac{e}{m} = \frac{2(V \quad V')}{(BR)^2}$$

Sustituir en la expresión los valores de (V-V'), B y R y calcular la relación carga-masa del electrón, comparando con el valor conocido.

Fuerza electromagnética sobre el haz de electrones

<u>Fuerza de Lorentz:</u> Fuerza sobre una carga moviéndose en el interior de un campo magnético y de un campo eléctrico

$$\vec{F} = q\vec{E} + q(\vec{v} \times \vec{B})$$

Selector de velocidades: ■

En presencia de un campo magnético B

- Se aplica la expresión del selector de velocidades y se calcula E para desviación nula
- Se calcula la tensión entre armaduras del condensador para conseguir un campo E
- · Comprobación experimental