| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | А  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 100,00   | V |
|-----------|------|----------|---|
| Sequ      | enza | diretta  |   |
| ZA        | =    | 0,5+0,5i | Ω |
| ZΒ        | =    | 10+5i    | Ω |
| ZC        | =    | 10+5i    | Ω |
| <u>GN</u> | =    | 50,00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | Α   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 36,00   | V |
|-----|---------|---|
| C = | 0,50    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | s |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 Il modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | A  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | A  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 200,00   | V |
|-----------|------|----------|---|
| Sequ      | enza | diretta  |   |
| ZA        | =    | 0,5+0,5i | Ω |
| ΖB        | =    | 10+5i    | Ω |
| ZC        | =    | 10+5i    | Ω |
| GN        | =    | 60,00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 34,00   | V |
|-----|---------|---|
| C = | 0,70    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | A  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | A  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =      | 300,00   | V |
|-----------|--------|----------|---|
| Sequ      | enza d | diretta  |   |
| ZA        | =      | 0,5+0,5i | Ω |
| ΖB        | =      | 10+5i    | Ω |
| ZC        | =      | 10+5i    | Ω |
| GN        | =      | 70.00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 32,00   | V |
|-----|---------|---|
| C = | 0,80    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | A  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | A  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =      | 350,00   | V |
|-----------|--------|----------|---|
| Sequ      | enza d | diretta  |   |
| ZA        | =      | 0,5+0,5i | Ω |
| ΖB        | =      | 10+5i    | Ω |
| ZC        | =      | 10+5i    | Ω |
| GN        | =      | 50.00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 30,00   | V |
|-----|---------|---|
| C = | 0,90    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0.01000 | s |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | Α  |
| 5 il modulo della corrente IA1                                  | 4     | Α  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 400,00   | V |
|-----------|------|----------|---|
| Sequ      | enza | diretta  |   |
| ZA        | =    | 0,5+0,5i | Ω |
| ZΒ        | =    | 10+5i    | Ω |
| ZC        | =    | 10+5i    | Ω |
| GN        | =    | 40,00000 | V |
|           |      |          |   |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 28,00   | V |
|-----|---------|---|
| C = | 0,60    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0.01000 | s |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | А  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 450,00   | V |
|-----------|------|----------|---|
| Sequ      | enza | diretta  |   |
| ZA        | =    | 0,5+0,5i | Ω |
| ZΒ        | =    | 10+5i    | Ω |
| ZC        | =    | 10+5i    | Ω |
| GN        | =    | 80,00000 | V |
|           |      |          |   |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 26,00   | V |
|-----|---------|---|
| C = | 0,75    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | A  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 500,00   | V |
|-----------|------|----------|---|
| Sequ      | enza | diretta  |   |
| ZA        | =    | 0,5+0,5i | Ω |
| ZΒ        | =    | 10+5i    | Ω |
| ZC        | =    | 10+5i    | Ω |
| GN        | =    | 30,00000 | V |

| Esercizio n° 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | Α   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | Α   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 24,00   | V |
|-----|---------|---|
| C = | 0,30    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 Il modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | A  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | A  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 550,00    | V |
|-----------|------|-----------|---|
| Sequ      | enza | diretta   |   |
| ZA        | =    | 0,5+0,5i  | Ω |
| ΖB        | =    | 10+5i     | Ω |
| ZC        | =    | 10+5i     | Ω |
| GN        | =    | 100.00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 22,00   | V |
|-----|---------|---|
| C = | 0,20    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0.01000 | s |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | Α  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =      | 600,00   | V |
|-----------|--------|----------|---|
| Sequ      | enza ( | diretta  |   |
| ZA        | =      | 0,5+0,5i | Ω |
| ΖB        | =      | 10+5i    | Ω |
| ZC        | =      | 10+5i    | Ω |
| GN        | =      | 25.00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | Α   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 20,00   | V |
|-----|---------|---|
| C = | 0,10    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0.01000 | s |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | A  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | A  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =      | 650,00   | V |
|-----------|--------|----------|---|
| Sequ      | enza ( | diretta  |   |
| ZA        | =      | 0,5+0,5i | Ω |
| ΖB        | =      | 10+5i    | Ω |
| ZC        | =      | 10+5i    | Ω |
| GN        | =      | 90 00000 | V |

| Esercizio n° 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 18,00   | V |
|-----|---------|---|
| C = | 6,00    | F |
| L = | 0,05    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | s |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | Α  |
| 5 il modulo della corrente IA1                                  | 4     | Α  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 700,00    | V |
|-----------|------|-----------|---|
| Sequ      | enza | diretta   |   |
| ZA        | =    | 0,5+0,5i  | Ω |
| ZΒ        | =    | 10+5i     | Ω |
| ZC        | =    | 10+5i     | Ω |
| GN        | =    | 120,00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | Α   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 16,00   | V |
|-----|---------|---|
| C = | 0,35    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | Α  |
| 5 il modulo della corrente IA1                                  | 4     | Α  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =      | 750,00   | V |
|-----------|--------|----------|---|
| Sequ      | enza d | diretta  |   |
| ZA        | =      | 0,5+0,5i | Ω |
| ΖB        | =      | 10+5i    | Ω |
| ZC        | =      | 10+5i    | Ω |
| GN        | =      | 65.00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | V   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 14,00   | V |
|-----|---------|---|
| C = | 0,95    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

| Esercizio nº 1                                                  | 17    |    |
|-----------------------------------------------------------------|-------|----|
| Dato il circuito in figura calcolare                            |       |    |
| con interruttore di SX aperto e DX chiuso da un tempo infinito: | Punti |    |
| 1 II modulo della tensione Vc                                   | 2     | V  |
| 2 il valore efficace della corrente IC2                         | 2     | Α  |
| 3 la potenza apparente trifase sulle impedenze C                | 2     | VA |
| con interruttore di SX chiuso e DX aperto da un tempo infinito: |       |    |
| 4 il modulo della corrente IN                                   | 4     | Α  |
| 5 il modulo della corrente IA1                                  | 4     | A  |
| 6 il modulo della corrente IC2                                  | 3     | A  |

| <u>E1</u> | =    | 800,00    | V |
|-----------|------|-----------|---|
| Sequ      | enza | diretta   |   |
| ZΑ        | =    | 0,5+0,5i  | Ω |
| ΖB        | =    | 10+5i     | Ω |
| ZC        | =    | 10+5i     | Ω |
| GN        | =    | 130,00000 | V |

| Esercizio nº 2                                             | 16    |     |
|------------------------------------------------------------|-------|-----|
| Dato il circuito in figura calcolare:                      | Punti |     |
| 1 il valore della corrente iL per t che tende all'infinito | 3     | A   |
| 2 il valore della tensione vC per t che tende all'infinito | 2     | A   |
| 3 il valore della corrente iC (0+)                         | 2     | A   |
| 4 il valore della tensione VC (T)                          | 5     | ٧   |
| 5 le radici dell'equazione caratteristica                  | 4     | 1/s |

| E = | 12,00   | ٧ |
|-----|---------|---|
| C = | 0,22    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0,01000 | S |

Esercizio n° 1 17

Dato il circuito in figura calcolare

con interruttore di SX aperto e DX chiuso da un tempo infinito:

- 1 II modulo della tensione Vc
- 2 il valore efficace della corrente IC2 2
- 3 la potenza apparente trifase sulle impedenze C 2
- con interruttore di SX chiuso e DX aperto da un tempo infinito:
- 4 il modulo della corrente IN
- 5 il modulo della corrente IA1
- 6 il modulo della corrente IC2

| 4 | Α |
|---|---|
| 4 | Α |
| 3 | Α |
|   |   |

Punti

2

#### DATI

| <u>E1</u> | =    | 100,00   | V        |
|-----------|------|----------|----------|
| Sequ      | enza | diretta  |          |
| ZA        | =    | 0,5+0,5i | Ω        |
| ΖB        | =    | 10+5i    | $\Omega$ |
| ZC        | =    | 10+5i    | Ω        |
| <u>GN</u> | =    | 50,00000 | V        |
|           |      |          |          |



Esercizio n° 2

Dato il circuito in figura calcolare:

- 1 il valore della corrente iL per t che tende all'infinito
- 2 il valore della tensione vC per t che tende all'infinito
- 3 il valore della corrente iC (0+)
- 4 il valore della tensione VC (T)
- 5 le radici dell'equazione caratteristica

| Punti |  |
|-------|--|
| 2     |  |

- 2 2
  - 2 5

| Α   |
|-----|
| Α   |
| V   |
| 1/s |

٧

Α

VA

| E = | 12,00   | V |
|-----|---------|---|
| C = | 6,00    | F |
| L = | 2,00    | Н |
| R = | 10,00   | Ω |
| T = | 0.01000 | S |



| а       | 120         | iL(oo) | 0,6          |
|---------|-------------|--------|--------------|
| b       | 602         | vC(oo) | 6            |
| С       | 20,00       |        |              |
|         |             | iC(0+) | 1,2          |
| lambda1 | -4,9832211  |        |              |
| lambda2 | -0,03344557 | K2     | -4,585930504 |
|         |             | K1     | -1,414069496 |

| EL | ΕT | TR  | OTI | ECN  | ICA |
|----|----|-----|-----|------|-----|
| Αp | ре | llo | del | 4.9. | 17  |

Nome, Cognome, Matr. CORSO

vc(T) 0,070272804