企業情報システムにおけるWEB APIの利用

株式会社オージス総研 齋藤 伸也

自己紹介

- 齋藤伸也(さいとう しんや)
- 株式会社オージス総研技術部クラウドイン テグレーションセンター所属
- 以下の業務に従事する
 - 技術開発
 - 案件支援
 - 提案支援

本発表の趣旨

- 企業情報システムにおけるWeb API利用の 実践を通して得られた課題を考察する。
 - Web API: インターネットを介して提供される アプリケーションやプログラムのためのインタ フェース

Web APIの利用

- Web APIを利用することで、企業情報システムにクラウドサービスを容易に組み込むことができる。
- 従来の企業情報システムの構築とWeb API の利用は以下の点が異なる。
 - インターネットを介してAPIを呼出す。
 - Web APIを自分たちの都合で変更することができない。

企業情報システムおけるWeb API

企業情報システムにお けるWeb APIの利用

利用の課題

- 1. Web APIのプロトコル/スタイル
- 2. ID・アクセス情報管理
- 3. Web APIの認証・認可
- 4. Web API変更への対応
- 5. 利用制限への対応

- Web APIのプロトコル/スタイルは様々な種類がある。大きくわけるとSOAP/RESTに分類される。
- 課題
 - Web APIごとに異なっている点が多い
 - プロトコル/スタイルに関する情報が十分ではないこと もある。
 - → Web APIごとに利用方法を学ばないといけない。

	仕様	メッセージ形式	定義言語
SOAP	W3C	XML	WSDL
REST	なし	XML	WADL
		JSON	なし(サンプルコール)

SOAP

- Web APIによっては提供されていないものがある。
 - 新しいWeb APIの大部分がREST APIとなっている。
 - AmazonやGoogleなどのクラウドベンダーはSOAPによるAPI の提供を止めている。

REST

- 仕様不在による実装のばらつき。
 - HTTP Methodの使用方法
 - HTTP Responseコード. 特に例外/エラー処理
 - URIのスキーム
 - データフォーマット、XML or JSON

- Web API提供側に期待すること
 - 統一したプロトコル/スタイルの提供。
 - 現実的にはかなり難しい。
- Web API利用側のアプローチ
 - 利用者はWeb APIを受け入れるしかない。利用しやすい プロトコル/スタイルのWeb APIを選択する。
 - Web APIを選択する際、以下の観点でチェックする。
 - 利用するプログラミング言語用のライブラリが提供されているか。
 - Web APIのドキュメントが十分に提供されているか。
 - Web APIに関するQAが行えるコミュニティが存在しているか。
 - サポート窓口が存在しているか。

ID・アクセス情報管理

- IDプロビジョニング
 - ユーザ情報の登録, 更新, 削除
- ユーザ情報の変化(入社,退職,部署・役職の変化)が一時期に集中して大量に発生する
- 課題
 - プロビジョニングAPIを提供しているサービスが少ない。
 - サービスごとに異なるプロビジョニングAPI。
 - → 良い機能を提供していても利用しづらい。Web API ごとにプロビジョニング処理に頭を悩ませる。

ID・アクセス情報管理

- Web API 提供側に期待すること
 - 標準化されたプロビジョニングAPIを提供するクラウド サービスが増える
 - SCIM (Simple Cloud Identity Management) の策定と普及に 期待。
- Web API利用側のアプローチ
 - クラウドサービスのID・アクセス情報管理を統合したソ フトウェアを利用する。

Web APIの認証・認可

- Web APIの認証・認可はWeb 画面による認証と異なり、認証キーや セキュリティトークンを含めてWeb APIを呼出す方式が一般的である。
- 課題 APIごとに異なる認証の仕組み
 - トークンの種類、数
 - 認証キー/セキュリティトークン/アクセスキー etc
 - トークンの取得方法
 - 事前通知/Web画面/トークン取得用API etc
 - トークンを含める場所
 - URL/HTTP header/HTTP body etc
 - → Web APIごとに認証の仕組みに頭を悩ませる。仕組みが異なるため、どの程度安全なのかよくわからない。

Web APIの認証・認可

- Web API 提供側に期待すること
 - 標準化された認証・認可の仕組みを提供するクラウド サービスが増える
 - OAuth 2.0 の策定と普及に期待。
- Web API利用側のアプローチ
 - Web APIの認証、セキュリティに関する正しい知識を 身につけ、安全なWeb APIを選択する。

Web API変更への対応

- Web APIのバージョンアップやAPI提供の 停止など変更が発生するとAPIを利用して いるシステムに大きな影響が発生する。
- 課題 Web API変更への対応
 - Web APIを利用しているシステムが停止する。
 - 変更に対応するためのコストが発生する。

Web API変更への対応

- Web API 提供側に期待すること
 - 互換性のあるWeb APIの提供
 - Web APIのバージョニング情報の提供
- Web API利用側のアプローチ
 - 変更情報のキャッチアップ
 - 変更による影響範囲の局所化
 - システム全体が停止しないように縮退運転を可能にする
 - 腐敗防止層(Anticorruption Layer)[7]パターンの利用
 - 代替Web APIの検討
 - Web API提供の停止のような大きな変更にも備える

利用制限

- クラウドサービスは負荷を抑えるためWeb APIの利用に制限を加えているものも存在する。利用制限の例は以下の通りである。
 - 単位時間あたりのAPI呼び出し回数
 - リクエスト/レスポンスのデータサイズ
 - コンピュータリソース(CPU、メモリ、ストレージ、ネットワーク帯域)クラウドサービスの価格にも関連
 - データの利用範囲
- 課題 API利用制限の範囲内でシステムを実現する必要がある。

利用制限

- Web API 提供側に期待すること
 - 利用制限の緩和や廃止。
 - コストの関係で現実的には難しい。
- Web API利用側のアプローチ
 - 利用制限の範囲に収まるような工夫を行う。
 - データサイズ制限:バッチ処理のような大量データを送受信する場合、分割して行う。
 - APIコール制限:呼出頻度を抑えるため、まとめて処理を行う。
 - コンピュータリソース: リソースを多く使う処理は別の方法で 実現する。

おわりに

- 外部のサービスをWeb API経由で利用してシステムを構築する「サービス指向」の時代が来ている。
- 優れたサービスをシステムに組込んで利用することができるWeb APIは非常に有効であるが、「作るから利用する」の大きなパラダイムの変化により従来のシステム開発・運用にはなかった新たな課題が生まれている。