Find numerical (the first scheme against the flow) solutions of one-dimensional transport equation

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0; x \in (0,1), t > 0$$

with the following conditions:

$$c = 1;$$

1.
$$u(t=0,x) = \cos(\frac{\pi x}{2});$$

 $u(t, x=0) = 1, \quad u(t, x=1) = 0.$

$$c = -1$$
;

2.
$$u(t = 0, x) = \cos(\frac{\pi x}{2});$$

 $u(t, x = 0) = 1, \quad u(t, x = 1) = 0.$

$$c = 0.5$$
;

3.
$$u(t=0,x) = x$$
;
 $u(t, x=0) = 0$, $u(t, x=1) = 1$.

$$c = 1;$$

4.
$$u(t = 0, x) = 0;$$

 $u(t, x = 0) = 1, u_x(t, x = 1) = 0.$

$$c = -1$$
;

5.
$$u(t = 0, x) = x + 1;$$

 $u(t, x = 0) = 1, \quad u(t, x = 1) = 2.$

$$c = 1;$$

6.
$$u(t = 0, x) = 0;$$

 $u(t, x = 0) = 1, \quad u(t, x = 1) = 3.$

$$c = -1$$
;

7.
$$u(t = 0, x) = 0;$$

 $u_x(t, x = 0) = 0, \quad u(t, x = 1) = 1.$

$$c = 2;$$

8.
$$u(t=0,x) = \cos(\frac{\pi x}{2});$$

 $u(t,x=0) = 1, \quad u(t,x=1) = 0.$

$$c = -0.5$$
;

9.
$$u(t = 0, x) = 1 - x$$
;
 $u(t, x = 0) = 1$, $u(t, x = 1) = 0$.

$$c = -1$$
;

10.
$$u(t = 0, x) = x + 1;$$

 $u_x(t, x = 0) = 1, \quad u(t, x = 1) = 2.$

$$c = 1;$$

11.
$$u(t = 0, x) = 0;$$

$$u(t, x = 0) = 1, \quad u(t, x = 1) = 0.$$

$$c = -2$$
;

12.
$$u(t = 0, x) = x + 1;$$

$$u(t, x = 0) = 1$$
, $u(t, x = 1) = 2$.

$$c = 1$$
;

13.
$$u(t = 0, x) = \cos(\frac{\pi x}{2});$$

$$u(t, x = 0) = 1$$
, $u_x(t, x = 1) = 0$.

$$c = -1$$
;

14.
$$u(t = 0, x) = x$$
;

$$u(t, x = 0) = 0$$
, $u(t, x = 1) = 1$.

$$c = 1;$$

15.
$$u(t = 0, x) = 1$$
;

$$u(t, x = 0) = 2$$
, $u(t, x = 1) = 1$.

$$c = 1;$$

16.
$$u(t = 0, x) = \cos(\frac{\pi x}{2});$$

$$u(t, x = 0) = 1, \quad u_x(t, x = 1) = 1.$$

$$c = 1;$$

17.
$$u(t = 0, x) = 0$$
;

$$u(t, x = 0) = 1$$
, $u(t, x = 1) = 2$.

$$c = -1.5$$
;

18.
$$u(t = 0, x) = 0$$
;

$$u(t, x = 0) = 1$$
, $u(t, x = 1) = 0$.

```
c = 1;

19. u(t = 0, x) = \sin(\pi x);

u(t, x = 0) = 0, \quad u(t, x = 1) = 0.

c = -1;

20. u(t = 0, x) = 0.5;

u(t, x = 0) = 0.5, \quad u(t, x = 1) = 0.
```

Draw graphs for different three time moments. Do not forget to demonstrate stability condition.