

Communications in Algebra

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

Support τ -tilting modules over one-point extensions

Hanpeng Gao & Zongzhen Xie

To cite this article: Hanpeng Gao & Zongzhen Xie (2021) Support τ -tilting modules over one-point extensions, Communications in Algebra, 49:2, 739-746, DOI: $\underline{10.1080/00927872.2020.1817470}$

To link to this article: https://doi.org/10.1080/00927872.2020.1817470

	Published online: 17 Sep 2020.
	Submit your article to this journal 🗷
<u>lılıl</u>	Article views: 58
Q ^L	View related articles 🗷
CrossMark	View Crossmark data 🗹

Support τ -tilting modules over one-point extensions

Hanpeng Gao^a and Zongzhen Xie^b

^aDepartment of Mathematics, Nanjing University, Nanjing, P.R. China; ^bDepartment of Mathematics and Computer Science, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P.R. China

ABSTRACT

Let B be the one-point extension algebra of A by an A-module X. We proved that every support τ -tilting A-module can be extended to be a support τ -tilting B-module by two different ways. As a consequence, it is shown that there is an inequality

 $|s\tau$ -tilt $B| \ge 2|s\tau$ -tilt A|.

ARTICLE HISTORY

Received 19 May 2020 Revised 24 August 2020 Communicated by Scott Chapman

KEYWORDS

One-point extensions; semibricks; support τ-tilting modules

2020 MATHEMATICS SUBJECT CLASSIFICATION 16E30; 16G20

1. Introduction

Tilting modules are very important in the representation theory of finite dimensional algebras. Mutation is an effective way to construct a new tilting module from a given one. Unfortunately, mutation of tilting modules may not be realized.

In 2014, Adachi et al. [1] introduced the concept of support τ -tilting modules as a generalization of tilting modules, and they showed that mutation of support τ -tilting modules is always possible. The authors also proved that support τ -tilting modules are in bijection with some important classes in representation theory (such as, functorially finite torsion classes, 2-term silting complexes, and cluster-tilting objects in the cluster category).

A new (support τ)-tilting module can be constructed by algebra extensions. In [3], Assem et al. studied how to extend and restrict tilting modules for one-point extension algebras by a projective module. In [8], Suarez generalized this result for the context of support support τ -tilting modules. More precisely, let B = A[P] be the one-point extension of an algebra A by a projective A-module P and e the identity of A. If M is a support τ -tilting A-module, then $\operatorname{Hom}_B(eB,M) \oplus S_a$ is a support τ -tilting B-module, where S_a is the simple module corresponding to the new point a (see [8, Theorem A]). An example shown that $\operatorname{Hom}_B(eB,M) \oplus S_a$ may not be a support τ -tilting B-module if P is not projective (see [8, Example 4.7]).

Bricks and semibricks are considered in [5, 6]. An A-module M is called brick if $Hom_A(M,M)$ is a k division. A semibrick is a set consisting of isoclasses of pairwise Hom-orthogonal bricks. Let $\mathcal S$ be a sembrick and $T(\mathcal S)$ the smallest torsion class containing $\mathcal S$. In [2], the author called a semibrick $\mathcal S$ is left finite if $T(\mathcal S)$ is functorially finite and he also proved that there exists a

bijection $\Phi: s\tau$ -tilt $A \mapsto f_L$ – sbrick A between the set of support τ -tilting A-modules and the set of left finite semibricks of A.

In this paper, we construct semibricks over the one-point extension B of an algebra A by an A-module X (may not be projective) and use the bijection to get support τ -tilting B-modules.

Proposition 1.1. (see Proposition 3.2) Let B be the one-point extension algebra of A by an A-module X and S be a semibrick in mod A. Then both S and $S \cup S_a$ are semibricks in mod B, where S_a stands for the simple module corresponding to the extension point a.

Moreover, it is shown that S is left finite implies $S \cup S_a$ is also. We say an A-module M is a support τ -tilting module with respect to the semibrick \mathcal{S} if $\Phi(M) = \mathcal{S}$. As an application, we can construct support τ -tilting modules over one-point extensions from support τ -tilting A-modules.

Proposition 1.2. (see Proposition 3.7) Let B be the one-point extension algebra of A by an A-module X and $M \in \text{mod } A$ be a support τ -tilting module with respect to the semibrick S. Then both P(T(S)) and $P(T(S \cup S_a))$ are support τ -tilting B-modules.

As a consequence, we have the following inequality

Corollary 1.3. $|s\tau\text{-tilt }B| \ge 2|s\tau\text{-tilt }A|$.

Moreover, we have the following.

Theorem 1.4. (see Theorem 3.9) Let B be the one-point extension algebra of A by an A-module X and M be a support τ -tilting module in mod A.

- *M* is a support τ -tilting *B*-module.
- (2) Assume that $M \in \text{mod } A$ is a support τ -tilting module with respect to the semibrick S, then $P(T(S \cup S_a))$ has M as direct summand.
- If $X \in \text{Fac}M$, then $P_a \oplus M$ is a support τ -tilting B-module. (3)
- If $\operatorname{Hom}_A(X, \operatorname{Fac}M) = 0$, then $S_a \oplus M$ is a support τ -tilting B-module. (4)

Throughout this paper, all algebras will be basic connected finite dimensional k-algebras over an algebraically closed field k and all modules are basic. Let A be an algebra. The category of finitely generated left A-modules will be denote by mod A and the Auslander-Reiten translation of A will be denote by τ . For $M \in \text{mod } A$, we denote by ind(M) the set of isoclasses of indecomposable direct summands of M, and by FacM the full subcategory of mod A consisting of modules isomorphic to factor modules of finite direct sums of copies of M. For a finite set J, |J| stands for the cardinality of J. In particular, we write $|M| = |\operatorname{ind}(M)|$. N will be the set of all natural numbers.

2. Preliminaries

Let A be an algebra. In this section, we recall some definitions about support τ -tilting modules and semibircks over mod A.

Definition 2.1. ([1, Definition 0.1]) Let $M \in \text{mod } A$.

- *M* is called τ -rigid if $\operatorname{Hom}_A(M, \tau M) = 0$. (1)
- (2) *M* is called τ -tilting if it is τ -rigid and |M| = |A|.
- M is called support τ -tilting if it is a τ -tilting $A/\langle e \rangle$ -module where e is an idempotent of A. (3)

We will denote by τ -tilt A (respectively, $s\tau$ -tilt A) the set of isomorphism classes of τ -tilting *A*-modules (respectively, support τ -tilting *A*-modules).

Definition 2.2. ([1, Definition 0.3]) Let (M, P) be a pair in mod A with P projective.

- The pair (M, P) is called a τ -rigid pair if M is τ -rigid and $\operatorname{Hom}_A(P, M) = 0$. (1)
- The pair (M, P) is called a *support* τ -tilting pair if it is τ -rigid and |M| + |P| = |A|. (2)

Note that (M, P) is a support τ -tilting pair if and only if M is a τ -tilting $A/\langle e \rangle$ -module, where $eA \cong P$ [1, Proposition 2.3]. Hence, M is a τ -tilting A-module if and only if (M,0) is a support τ -tilting pair.

The following result is very useful.

Lemma 2.3. ([4, Proposition 5.8]) For $M \in \text{mod } A$, M is τ -rigid if and only if $\text{Ext}^1_A(M, \text{Fac} M) = 0$.

Definition 2.4. ([2, Definition 2.1]) Let $S \subseteq \text{mod } A$. S is called a *semibrick* if

$$\operatorname{Hom}_A(S_i,S_j) = \left\{ egin{array}{ll} k\mbox{-division algebra} & \mbox{if} & \mbox{$i=j$} \\ 0 & \mbox{otherwise} \end{array}
ight.$$

for any $S_i, S_j \in \mathcal{S}$.

By Schur's Lemma, a set of isoclasses of some simple modules is a semibrick.

Let \mathcal{Y} be a full subcategory of mod A and $M \in \text{mod } A$. A homomorphism $f_M : M \to Y_M$ is called left \mathcal{Y} -approximation of M with $Y_M \in \mathcal{Y}$ if any morphism $f: M \to Y$ with $Y \in \mathcal{Y}$ factors through f_M . We say that \mathcal{Y} is covariantly finite if for any $M \in \text{mod } A$, there exists a left \mathcal{Y} -approximation of M. Dually, we can define the concepts of right \mathcal{Y} -approximation of M and contravariantly finite subcategories. \mathcal{Y} is called functorially finite if it is both covariantly finite and contravariantly finite.

A torsion class of mod A is a full subcategory of mod A closed under images, direct sums, and extensions. Recall that a semibrick S of mod A is left finite [2] if T(S) is functorially finite, where T(S) is the smallest torsion class containing S. The set of all left finite semibricks of mod A will be denoted by f_L -sbrick A.

The following result states the relationship between $s\tau$ -tilt A and f_L -sbrick A.

Theorem 2.5. [2, Theorem 1.3(2)] there exists a bijection

$$\Phi : s\tau$$
-tilt $A \mapsto f_L - sbrick A$

given by $M \mapsto \operatorname{ind}(M/\operatorname{rad}_{\Gamma}M)$ where $\Gamma = \operatorname{End}_A(M)$.

Recall that $M \in \text{mod } A$ is called *sincere* if every simple A-module appears as a composition factor in M. A τ -tilting A-module is exactly a sincere support τ -tilting. We say a semibrick S of $\operatorname{mod} A$ is sincere if T(S) is sincere. Let sf_L -sbrick A stand for all sincere left finite semibricks of mod A. We have the following result due to Asai in [2].

Corollary 2.6. There exists a bijection $\Phi : \tau$ -tilt $A \mapsto \operatorname{sf}_L - \operatorname{sbrick} A$.

3. Main results

Let $X \in \text{mod } A$. The *one-point extension* of A by X is defined as the following matrix algebra

$$B = \begin{pmatrix} A & X \\ 0 & k \end{pmatrix}$$

with the ordinary matrix addition and the multiplication induced by the module structure of X. We write B := A[X] with a the extension point. All B-modules can be viewed as $\binom{M}{k^n}_f$ where $M \in$ $\operatorname{mod} A, n \in \mathbb{N} \text{ and } f \in \operatorname{Hom}_A(X \otimes_k k^n, M) \text{ (see, [7, XV.1])}. \text{ In particular, } S_a = \begin{pmatrix} 0 \\ k \end{pmatrix}_0 \text{ and } P_a = \begin{pmatrix} X \\ k \end{pmatrix}_1.$ Moreover, the morphisms from $\binom{M}{k^n}_f$ to $\binom{M'}{k^n}_g$ are pairs of $\binom{\alpha}{\beta}$ such that the following diagram

$$\begin{array}{ccc} X \otimes_k k^n & \xrightarrow{f} & M \\ X \otimes \beta & & \downarrow \alpha \\ X \otimes_k k^{n'} & \xrightarrow{f'} & M' \end{array}$$

commutes, where $\alpha \in \operatorname{Hom}_{\Lambda}(M, M')$ and $\beta \in \operatorname{Hom}_{\Gamma}(k^n, k^{n'})$. A sequence

$$0 \to \begin{pmatrix} M_1 \\ k^{n_1} \end{pmatrix}_{f_1} \xrightarrow{\begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}} \begin{pmatrix} M_2 \\ k^{n_2} \end{pmatrix}_{f_2} \xrightarrow{\begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}} \begin{pmatrix} M_3 \\ k^{n_3} \end{pmatrix}_{f_3} \to 0$$

in mod B is exact if and only if

$$0 o M_1 \stackrel{lpha_1}{ o} M_2 \stackrel{lpha_2}{ o} M_3 o 0$$

is exact in mod A and

$$0 \rightarrow k^{n_1} \stackrel{\beta_1}{\rightarrow} k^{n_2} \stackrel{\beta_2}{\rightarrow} k^{n_3} \rightarrow 0$$

is exact in mod k.

Lemma 3.1. For any $M \in \text{mod } A$, we have

- (1) $\operatorname{Hom}_{B}(S_{a}, M) = 0;$
- (2) $\text{Hom}_B(M, S_a) = 0.$

Proof. It is clear since ${}_BM\cong \binom{M}{0}_{0}$. Hence, $\operatorname{Hom}_B(S_a,M)\cong \operatorname{Hom}_B\left(\binom{0}{k}_{0},\binom{M}{0}_{0}\right)=0$. Similarly, we can get $\operatorname{Hom}_B(M,S_a)=0$.

Proposition 3.2. Let S be a semibrick in mod A. Then both S and $S \cup S_a$ are semibricks in mod B.

Proof. It follows from Lemma 3.1.

Lemma 3.3. Let S be a semibrick in mod A. Then

$$T(\mathcal{S} \cup S_a) = \left\{ \left(egin{array}{c} M \ k^n \end{array}
ight)_f \mid orall n \in \mathbb{N}, \ M \in T(\mathcal{S}) \ \ and \ \ f \in \operatorname{Hom}_A(X \otimes_k k^n, M)
ight\}.$$

Proof. Since S and S_a belong to $T(S \cup S_a)$, we have $\left\{ \binom{M}{0}_0 \mid M \in T(S) \right\} \subset T(S \cup S_a)$ and $\binom{0}{k^n} \in T(S \cup S_a)$ for all $n \in \mathbb{N}$. Note that $\forall n \in \mathbb{N}$, $M \in T(S)$ and $f \in \operatorname{Hom}_A(X \otimes_k k^n, M)$, there exists the following exact sequence in mod B

$$0 \to \begin{pmatrix} M \\ 0 \end{pmatrix}_0 \to \begin{pmatrix} M \\ k^n \end{pmatrix}_f \to \begin{pmatrix} 0 \\ k^n \end{pmatrix}_0 \to 0$$

this implies $\binom{M}{k^n}_f \in T(\mathcal{S} \cup S_a)$. It is clear that $\left\{ \binom{M}{k^n}_f \mid \forall n \in \mathbb{N}, \ M \in T(\mathcal{S}) \ \text{and} \ f \in \operatorname{Hom}_A(X \otimes_k k^n, M) \right\}$ is closed under image, direct sum and extension. Thus it is a torsion class. Hence $T(\mathcal{S} \cup S_a) = \left\{ \binom{M}{k^n}_f \mid \forall n \in \mathbb{N}, \ M \in T(\mathcal{S}) \ \text{and} \ f \in \operatorname{Hom}_A(X \otimes_k k^n, M) \right\}$.

Proposition 3.4. Let S be a semibrick in mod A. If S is left finite, then $S \cup S_a$ is also.

Proof. We only show that $T(S \cup S_a)$ is covariantly finite. It is dually to prove $T(S \cup S_a)$ is contravariantly finite.

Let $\binom{M}{k^n} \in \text{mod } B$. Then M has a left T(S)-approximation $h_M : M \to Z_M$ in mod A since T(S)is covariantly finite. Take $g = h_M \circ f$. The following commutative diagram

$$\begin{array}{ccc}
X \otimes_k k^n & \xrightarrow{f} & M \\
\parallel & & \downarrow h_M \\
X \otimes_k k^n & \xrightarrow{g} & Z_M
\end{array}$$

implies that $\binom{f_M}{1}$ is a morphism from $\binom{M}{k^n}_f$ to $\binom{Z_M}{k^n}_g$. Next, we will show that $\binom{f_M}{1}$ is left $T(\mathcal{S} \cup S_a)$ -approximation of $\binom{M}{k^n}_f$. For any $\binom{M_1}{k^{n_1}}_f \in T(\mathcal{S} \cup S_a)$ and morphism $\binom{a}{b}:\binom{M}{k^n}_f \to T(\mathcal{S} \cup S_a)$ $\binom{M_1}{k^{n_1}}_{f_1}$, there is a morphism $h': Z_M \to M_1$ such that $a = h' \circ h_M$ since h_M is a left approximation. Note that there exists a commutative diagram

$$\begin{array}{ccc}
X \otimes_k k^n & \xrightarrow{f} & M \\
X \otimes_k \downarrow & & \downarrow^a \\
X \otimes_k k^{n_1} & \xrightarrow{f_1} & M_1
\end{array}$$

that is $a \circ f = f_1 \circ (X \otimes b)$. Therefore,

$$f_1 \circ (X \otimes b) = a \circ f = h' \circ h_M \circ f = h' \circ g$$

that is, the following diagram

$$X \otimes_{k} k^{n} \xrightarrow{g} Z_{M}$$

$$X \otimes_{b} \downarrow \qquad \qquad \downarrow h'$$

$$X \otimes_{k} k^{n_{1}} \xrightarrow{f_{1}} M_{1}$$

commutates. Hence, $\binom{h'}{b}$ is a morphism from $\binom{Z_M}{k^n}_{\sigma}$ to $\binom{M_1}{k^{n_1}}_{\sigma}_{\delta}$, and the following equation holds

$$\begin{pmatrix} h' \\ b \end{pmatrix} \circ \begin{pmatrix} h_M \\ 1 \end{pmatrix} = \begin{pmatrix} h' \circ h_M \\ b \end{pmatrix} = \begin{pmatrix} g \\ b \end{pmatrix}.$$

By Lemma 3.3, $\binom{Z_M}{k^n}_g \in T(\mathcal{S} \cup S_a)$ since $Z_M \in T(\mathcal{S})$. Thus, we were done.

The following result can be found immediately.

Corollary 3.5. Let S be a semibrick in mod A. If S is sincere left finite, then $S \cup S_a$ is also.

Let \mathcal{F} be a full subcategory of mod A. An A-module M is called **Ext-projective** in \mathcal{F} if $\operatorname{Ext}_A^1(M,F)=0$ for all $F\in\mathcal{F}$. If \mathcal{F} is functorially finite in mod A, then there are only finitely many indecomposable Ext-projective modules in $\mathcal F$ up to isomorphism. In this case, we will denote by $P(\mathcal{F})$ the direct sum of all Ext-projective modules in \mathcal{F} up to isomorphism.

Definition 3.6. We say that an A-module M is a support τ -tilting module with respect to the semibrick S if $\Phi(M)=S$.

Now, we can construct support τ -tilting B-modules from support τ -tilting A-modules.

Proposition 3.7. Let $M \in \text{mod } A$ be a support τ -tilting module with respect to the semibrick S. Then both P(T(S)) and $P(T(S \cup S_a))$ are support τ -tilting B-modules. Moreover, if M is τ -tilting, then $P(T(S \cup S_a))$ is also.

Proof. Since M is a support τ -tilting module, we have S is a left finite semibrick of mod A by Theorem 2.5. Hence, S is also a left finite semibrick of mod B. Moreover, we have $S \cup S_a$ is a left finite semibrick of mod B by Proposition 3.4. Therefore, T(S) and $T(S \cup S_a)$ are functorially finite torsion classes. Hence, P(T(S)) and $P(T(S \cup S_a))$ are support τ -tilting B-module by [1, Theorem 2.7]).

As a consequence, we have the following inequality.

Corollary 3.8. $|s\tau\text{-tilt }B| \ge 2|s\tau\text{-tilt }A|$.

Applying Proposition 3.7, we can give those forms of support τ -tilting *B*-module under certain conditions.

Theorem 3.9. Let B be the one-point extension of A by X and M be a support τ -tilting module in mod A.

- (1) M is a support τ -tilting B-module.
- (2) Assume that $M \in \text{mod } A$ is a support τ -tilting module with respect to the semibrick S, then $P(T(S \cup S_a))$ has M as direct summand.
- (3) If $X \in \text{Fac } M$, then $P_a \oplus M$ is a support τ -tilting B-module.
- (4) If $\operatorname{Hom}_A(X,\operatorname{Fac} M)=0$, then $S_a\oplus M$ is a support τ -tilting B-module.

Proof. Assume that $M \in \text{mod } A$ is a support τ -tilting module with respect to the semibrick S, then T(S) = Fac M [2, Lemma 2.5(5)].

Note that $\forall n \in \mathbb{N}$, $M' \in T(S)$ and $f \in \operatorname{Hom}_A(X \otimes_k k^n, M')$, there exists the following exact sequence in mod B

$$0 \to \begin{pmatrix} M' \\ 0 \end{pmatrix}_0 \to \begin{pmatrix} M' \\ k^n \end{pmatrix}_f \to \begin{pmatrix} 0 \\ k^n \end{pmatrix}_0 \to 0. \tag{1.1}$$

For any $Y \in \text{mod } B$, applying the functor $\text{Hom}_B(Y, -)$ to (1.1), we have the following exact sequence

$$\operatorname{Ext}_{B}^{1}\left(Y, \left(\frac{M'}{0}\right)_{0}\right) \to \operatorname{Ext}_{B}^{1}\left(Y, \left(\frac{M'}{k^{n}}\right)_{f}\right) \to \operatorname{Ext}_{B}^{1}\left(Y, \left(\frac{0}{k^{n}}\right)_{0}\right) = 0. \tag{1.2}$$

- (1) By Proposition 3.7, P(T(S)) = P(FacM) = M is a support τ -tilting B-module.
- (2) Putting $Y = {}_BM \cong \binom{M}{0}_0$ in (1.2), we have $\operatorname{Ext}^1_B\left(M,\binom{M'}{0}_0\right) \cong \operatorname{Ext}^1_A(M,M') = 0$ by Lemma 2.3, and hence $\operatorname{Ext}^1_B\left(M,\binom{M'}{k^n}_f\right) = 0$. By Lemma 3.3, M is a Ext-projective object in $T(\mathcal{S} \cup S_a)$. Therefore, $P(T(\mathcal{S} \cup S_a))$ has M as direct summand.
- (3) If $X \in \text{Fac}M$, then $P_a \in T(S \cup S_a)$ by Lemma 3.3. Hence, $P_a \oplus M$ is a direct summand of $P(T(S \cup S_a))$ by (2). In particular, $P_a \oplus M$ is a τ -rigid B-module. Suppose that (M, P) is a support τ -tilting pair in mod A. Hence, $\text{Hom}_A(P, \text{Fac}M) = 0$ because $\text{Hom}_A(P, M) = 0$.

This implies $\operatorname{Hom}_B(P, P_a) \cong \operatorname{Hom}_A(P, X) = 0$. Therefore, $(P_a \oplus M, P)$ is a support τ -tilting pair in mod B since $|P_a \oplus M| + |P| = 1 + |A| = |B|$.

Note that there is an exact sequence in mod B, (4)

$$0 o inom{X}{0} \cong X \stackrel{f}{ o} P_a o S_a o 0.$$

For any $Y' \in \text{Fac}M$, applying $\text{Hom}_B(-, Y')$ to it, we have the following exact sequence,

$$\operatorname{Hom}_B(X, Y') \to \operatorname{Ext}^1_B(S_a, Y') \to \operatorname{Ext}^1_B(P_a, Y') = 0.$$

Since $\operatorname{Hom}_A(X,\operatorname{Fac}M)=0$, we have $\operatorname{Hom}_B(X,Y')=0$. Hence, $\operatorname{Ext}^1_B(S_a,Y')=0$. Thus, $\operatorname{Ext}^1_B(S_a,Y')=0$. Fac M) = 0. Putting $Y = S_a$ in (1.2), we have $\operatorname{Ext}_B^1\left(S_a, \binom{M'}{k^n}\right)_f = 0$. By Lemma 3.3, S_a is a Ext-

projective object in $T(S \cup S_a)$. Therefore, $P(T(S \cup S_a))$ has $S_a \oplus M$ as direct summand. This implies $S_a \oplus M$ is a τ -rigid B-module. Suppose that (M, P) is a support τ -tilting pair in mod A. It is easy to get $(S_a \oplus M, P)$ is a support τ -tilting pair in mod B since $\operatorname{Hom}_B(P, S_a) = 0$ and $|S_a \oplus M|$ M|+|P|=1+|A|=|B|. Hence, $S_a\oplus M$ is a support τ -tilting B-module.

Corollary 3.10. Let B be the one-point extension of A by X and $M \in \text{mod } A$ be a τ -tilting module.

- If $X \in \text{Fac}M$, then $P_a \oplus M$ is a τ -tilting B-module.
- If $\operatorname{Hom}_A(X,\operatorname{Fac}M)=0$, then $S_a\oplus M$ is a τ -tilting B-module.

Example 3.11. Let A be a finite dimensional k-algebra given by the quiver

$$2 \rightarrow 3$$
.

Considering the one-point extension of A by the simple module corresponding to the point 2, the algebra B = A[2] is given by the quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

with the relation $\alpha\beta = 0$. The Hasse quiver of A is as follows (semibricks be remarked by red).

- All support τ -tilting A-modules T_i (i = 1, 2, 3, 4, 5) are support τ -tilting B-modules by (1) Theorem 3.9(1).
- Since $2 \in \text{Fac}T_i$ (i = 1, 4, 5), we have three support τ -tilting B-modules $P_1 \oplus T_1, P_1 \oplus T_2$ (2) $T_4, P_1 \oplus T_5$ by Theorem 3.9(3). Moreover, $P_1 \oplus T_1, P_1 \oplus T_4$ are τ -tilting *B*-modules since T_1 , T_4 are τ -tilting A-modules by Corollary 3.10.
- Since $\text{Hom}_A(2, \text{Fac}T_i) = 0 (i = 2, 3)$, we have two support τ -tilting B-modules $S_1 \oplus T_2, S_1 \oplus T_2$ T_3 by Theorem 3.9(4).

In fact, the Hasse quiver $Q(s\tau\text{-tilt }B)$ is as follows.

Acknowledgment

The authors would like to thank Professor Zhaoyong Huang and Dong Yang for continuous encouragement.

Funding

This work was partially supported by National Natural Science Foundation of China (Grant No. 11971225).

References

- [1] Adachi, T., Iyama, O., Reiten, I. (2014). τ-tilting theory. *Compos. Math.* 150(3):415–452. DOI: 10.1112/S0010437X13007422.
- [2] Asai, S. (2020). Semibricks. Int. Math. Res. Not. IMRN. 2020(16):4993–5054. DOI: 10.1093/imrn/rny150
- [3] Assem, I., Happel, D., Trepode, S. (2007). Extending tilting modules to one-point extensions by projectives. *Commun. Algebra* 35(10):2983–3006. DOI: 10.1080/00927870701404556.
- [4] Auslander, M., Smalø, S. O. (1981). Almost split sequences in subcategories. J. Algebra 69(2):426–454. DOI: 10.1016/0021-8693(81)90214-3.
- [5] Gabriel, P. (1962). Des catégories abéliennes (French). Bul. Soc. Math. France. 79:323–448. DOI: 10.24033/ bsmf.1583.
- [6] Ringel, C.M. (1976). Representations of K-species and bimodules. J. Algebra 41(2):269–302. DOI: 10.1016/0021-8693(76)90184-8.
- [7] Simson, D., Skowroński, A. (2007). Elements of the Representation Theory of Associative Algebras. Vol. 3, Representation-Infinite Tilted Algebras, London Math. Soc. Stud. Texts 72. Cambridge, MA: Cambridge University Press.
- [8] Suarez, P. (2018). τ-Tilting modules over one-point extensions by a projective module. *Algebr. Represent. Theor.* 21(4):769–786. DOI: 10.1007/s10468-017-9737-5.