Statistical and Econometric Models

Lectures: Lennart Oelschläger · Tutorials: Sebastian Büscher ⊠

Problem Set - Week 3 (for tutorial on May 06, 2024)

Properties of "Hat Matrix" and "Residual Maker"

Problem 3.1:

In the linear regression framework $y=X\beta+\varepsilon$,

- the "Hat Matrix" H yields the fitted values $\hat{y} = X \hat{\beta}$
- and the "Residual Maker" matrix M yields the residuals $e=y-\hat{y}$

when right-multiplied with y, respectively.

- (a) Show that $H = X(X'X)^{-1}X'$ and M = I H.
- (b) Show that H and M are square and symmetric.
- (c) Show that H and M are idempotent.
- (d) Show that $MX = 0 \in \mathbb{R}^{N \times (K+1)}$.
- (e) Show that the residuals e are orthogonal to all covariates x_j , i.e. $x_j'e=0$, where x_j is the j-th column of X.
- (f) Show that a symmetric and idempotent matrix $A \in \mathbb{N} \times \mathbb{N}$ is positive semi-definite.

Interpreting parameters with logarithm transformed variables

Problem 3.2:

In the following, we want to consider the interpretation of the slope coefficient in models in which dependent and/or independent variables are log-transformed. For the following derivations, use the approximation $f(z)=\exp(az)\approx 1+az$ for $az\in\mathbb{R}$ close to zero at a suitable point.

In the following, x_0 denotes the initial level, Δx any absolute change and $\frac{\Delta x}{x_0}$ any percentage change in the regressor ($\frac{\Delta x}{x_0} = 0.01$ corresponds to a one per cent change).

(a) Given the log-level model

$$\log(y) = \beta_0 + \beta_1 x + \varepsilon$$

with fitted values $\hat{y}(x) = \exp(\hat{\beta}_0 + \hat{\beta}_1 x)$. Show that the following applies

$$\frac{\hat{y}(x_0 + \Delta x) - \hat{y}(x_0)}{\hat{y}(x_0)} \approx \hat{\beta}_1 \Delta x. \tag{1}$$

Interpret $\hat{\beta}_1$ for the case that $\Delta x=1$ applies. Then transform equation (1) to $\hat{y}(x_0+\Delta x)$ and check your interpretation using the transformation (continue to use $\Delta x=1$).

(b) Given the log-log model

$$\log(y) = \beta_0 + \beta_1 \log(x) + \varepsilon$$

with fitted values $\hat{y}(x) = \exp(\hat{\beta}_0 + \hat{\beta}_1 \log(x))$. Show that the following applies

$$\frac{\hat{y}(x_0 + \Delta x) - \hat{y}(x_0)}{\hat{y}(x_0)} \approx \hat{\beta}_1 \frac{\Delta x}{x_0}.$$
 (2)

Interpret $\hat{\beta}_1$ for the case that $\frac{\Delta x}{x_0}=0.01$ applies. Then solve equation (2) to $\hat{y}(x_0+\Delta x)$ and check your interpretation (continue to use $\frac{\Delta x}{x_0}=0.01$).

(c) Given the level-log model

$$y = \beta_0 + \beta_1 \log(x) + \varepsilon$$

with fitted values $\hat{y}(x) = \hat{eta}_0 + \hat{eta}_1 \log(x)$. Show that the following applies

$$\hat{y}(x_0 + \Delta x) - \hat{y}(x_0) \approx \hat{\beta}_1 \frac{\Delta x}{x_0}.$$
 (3)

Interpret $\hat{\beta}_1$ for the case that $\frac{\Delta x}{x_0}=0.01$ applies. Then solve equation (3) to $\hat{y}(x_0+\Delta x)$ and check your interpretation (continue to use $\frac{\Delta x}{x_0}=0.01$).