ENGR 13300 Fall 2020
Name
Purdue login
Name of Partner
Purdue login of Partner
Section number Yolanda chen3633 team 26

LC1 Ex2_Team_Task 1 Assignment

Academic Integrity Statement: I/We have not used material obtained from any other unauthorized source, either modified or unmodified. Neither have I/we provided access to my/our work to another. The solution I/we am/are submitting is my/our own original work.

Problem Description

the objective is to calculate the hieght and volume and maximal volume of the storage tank

Calculations Section:

Input Section:

Table 1: Given radii of storag	R (f
0.25	
0.35	
0.4	
0.5	
0.6	
0.7	
0.8	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	

H (f	t)	V (ft^3)	maximal volume V (ft^3)
=(\$A\$46)/(2*PI()*A20)-A20	=PI()*A20^2 *\$C20		=MAX(D20:D41)
=(\$A\$46)/(2*PI()*A21)-A21	=PI()*A21^2 *\$C21		
=(\$A\$46)/(2*PI()*A22)-A22	=PI()*A22^2 *\$C22		
=(\$A\$46)/(2*PI()*A23)-A23	=PI()*A23^2 *\$C23		
=(\$A\$46)/(2*PI()*A24)-A24	=PI()*A24^2 *\$C24		
=(\$A\$46)/(2*PI()*A25)-A25	=PI()*A25^2 *\$C25		
=(\$A\$46)/(2*PI()*A26)-A26	=PI()*A26^2 *\$C26		
=(\$A\$46)/(2*PI()*A27)-A27	=PI()*A27^2 *\$C27		
=(\$A\$46)/(2*PI()*A28)-A28	=PI()*A28^2 *\$C28		
=(\$A\$46)/(2*PI()*A29)-A29	=PI()*A29^2 *\$C29		
=(\$A\$46)/(2*PI()*A30)-A30	=PI()*A30^2 *\$C30		
=(\$A\$46)/(2*PI()*A31)-A31	=PI()*A31^2 *\$C31		
=(\$A\$46)/(2*PI()*A32)-A32	=PI()*A32^2 *\$C32		
=(\$A\$46)/(2*PI()*A33)-A33	=PI()*A33^2 *\$C33		
=(\$A\$46)/(2*PI()*A34)-A34	=PI()*A34^2 *\$C34		
=(\$A\$46)/(2*PI()*A35)-A35	=PI()*A35^2 *\$C35		
=(\$A\$46)/(2*PI()*A36)-A36	=PI()*A36^2 *\$C36		
=(\$A\$46)/(2*PI()*A37)-A37	=PI()*A37^2 *\$C37		
=(\$A\$46)/(2*PI()*A38)-A38	=PI()*A38^2 *\$C38		
=(\$A\$46)/(2*PI()*A39)-A39	=PI()*A39^2 *\$C39		
=(\$A\$46)/(2*PI()*A40)-A40	=PI()*A40^2 *\$C40		
(\$A\$46)/(2*PI()*A41)-A41	=PI()*A41^2 *SC41		

Output Section:

Which radius R and height H combination results in the largest volume V? Radius 10 and Height 21.83.

Are the dimensions from 2 a) acceptable considering maximizing volume and transportation to a new site? Why or why not?

The demensions are too wide for it to be carried by a truck and therefore no, it is not acceptable.