Identification, Authentication & Authorization

Dr. Mukti Padhya Assistant Professor, NFSU

Identification, Authentication & Authorization

• Identification: This is an action in which the user (untrusted party) declares his identity. Identification is the ability to identify uniquely a user of a system or an application that is running in the system

Authentication: This is an action(s) to prove that the user is who he claims to be. Authentication is the act of proving the identity of a computer system user

• Authorization: This action(s) is required to determine which actions a specific user can perform. Authorization is the function of specifying access rights/privileges to resources

Identification

- Here the system has to trust an untrusted party and hence may appear irrelevant.
- However for authentication, proper identification is mandatory
- Once identification is established, the system has to validate that one individual
- E.g. Automatic identification of personnel by scanning the badge at the entry gate instead of manual identification by security personnel to prevent delay and long queues at the entrance

Authentication

- This is the most attacked process and is the weakest link in the security chain
- Authentication can be performed in three different ways
 - Something you know This is a way to identify a user using something like a PIN, a password, or a passphrase
- Something you have This is a way to identify a user using something like a smart card or a badge
 - Something you are This is a way to identify a user using biometrical characteristics of the user

MFA

- The three authentication mechanisms have inherent weaknesses and hence cannot be used alone
- Each option has different type of weakness and they can be combined to create a secure system
- Hence Multi Factor Authentication is used to provide two or more verification factors to gain access to a resource
- MFA reduces likelihood of a successful cyber attack
- Multifactor authentication combines two or more independent credentials: what the user knows, such as a password; what the user has, such as a security token; and what the user is, by using biometric verification methods

Authorization

- The goal of authorization is to be sure that the given user has clearance to do what he is asking to do
- There are multiple ways to grant privileges to a user, based on the access control model the system uses
- The primary goal of controls is to ensure the confidentiality and integrity of data by disallowing unauthorized access by authorized or unauthorized subjects
- The main access control models are
- Mandatory Access Control (MAC)
- Discretionary Access Control (DAC)
- Role-based Access Control (RBAC)
- Lattice-based Access Control (LBAC)

Access Control

- "The prevention of unauthorized use of a resource, including the prevention of use of a resource in an unauthorized manner"
- Central element of computer security
- Assume have users and groups
 - authenticate to system
 - assigned access rights to certain resources on system

Access Control Principles

Access control policies

- Discretionary access control (DAC): based on the identity of the requestor and access rules
- Mandatory access control (MAC): based on comparing security labels with security clearances (mandatory: one with access to a resource cannot pass to others)
- Role-based access control (RBAC): based on user roles
- Attribute-based access control: based on the attributes of the user, the resources and the current environment

Access Control Requirements

- Reliable input: a mechanism to authenticate
- Fine and coarse specifications: regulate access at varying levels (e.g., an attribute or entire DB)
- Least privilege: min authorization to do its work
- Separation of duty: divide steps among different individuals
- Open and closed policies: accesses specifically authorized or all accesses except those prohibited
- Policy combinations and conflict resolution
- Administrative policies: who can add, delete, modify rules

Access Control Elements

- Subject: entity that can access objects
 - a process representing user/application
 - often have 3 classes: owner, group, world
- Object: access controlled resource
 - e.g. files, directories, records, programs etc
 - number/type depend on environment
- Access right: way in which subject accesses an object
 - e.g. read, write, execute, delete, create, search

Discretionary Access Control

- Often provided using an access matrix
 - lists subjects in one dimension (rows)
 - lists objects in the other dimension (columns)
 - each entry specifies access rights of the specified subject to that object
- Access matrix is often sparse
- Can decompose by either row or column

Access Control Structures

- Access control lists (decomposed by column)
- Capability tickets (decomposed by row)

An access matrix

		OBJECTS			
		File 1	File 2	File 3	File 4
	User A	Own Read Write		Own Read Write	
SUBJECTS	User B	Read	Own Read Write	Write	Read
	User C	Read Write	Read		Own Read Write

Access matrix data structures

Alternate authorization table

Subject	Access Mode	Object
A	Own	File 1
A	Read	File 1
A	Write	File 1
A	Own	File 3
A	Read	File 3
A	Write	File 3
В	Read	File 1
В	Own	File 2
В	Read	File 2
В	Write	File 2
В	Write	File 3
В	Read	File 4
С	Read	File 1
С	Write	File 1
С	Read	File 2
С	Own	File 4
С	Read	File 4
С	Write	File 4

An Access Control Model

Extend the universe of objects to include processes, devices, memory locations, subjects

* - copy flag set

Access Control Function

Access control system commands

Rule	Command (by S _o)	Authorization	Operation	
R1	transfer $\begin{cases} \alpha^* \\ \alpha \end{cases}$ to S, X	' $\alpha^{*'}$ in $A[S_{\alpha}, X]$	store $\begin{cases} \alpha^* \\ \alpha \end{cases}$ in $A[S, X]$	
R2	grant $\begin{cases} \alpha^* \\ \alpha \end{cases}$ to S, X	'owner' in A[S _o , X]	store $\begin{cases} \alpha^* \\ \alpha \end{cases}$ in $A[S, X]$	
R3	delete α from S, X	'control' in $A[S_o, S]$ or 'owner' in $A[S_o, X]$	delete α from $A[S, X]$	
R4	$w \leftarrow \mathbf{read} \ S, X$	'control' in $A[S_o, S]$ or 'owner' in $A[S_o, X]$	copy A[S, X] into w	
R5	create object X	None	add column for X to A ; store 'owner' in $A[S_0, X]$	
R6	destroy object X	'owner' in $A[S_0, X]$	delete column for X from A	
R7	create subject S	none	add row for S to A; execute create object S; store 'control' in A[S, S]	
R8	destroy subject S	'owner' in A[S _o , S]	delete row for S from A; execute destroy object S	

MAC – Mandatory Access Control

Advantages: Mandatory Access Control (MAC) High-level data protection **Centralized Information Privacy**

Disadvantages: Mandatory Access Control (MAC) Careful Setting-Up Process Regular Update Required: **Lack of Flexibility**

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist of security clearance L(s)
 - Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- · Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

Reading Information

- Information flows up, not down
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject s can read object o iff, L(o) ≤ L(s) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject s can write object o iff L(s) ≤ L(o) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Role-Based Access Control

Access based on 'role', not identity

Many-to-many relationship between users and roles

Role-Based Access Control

Role-users and roles-object access matrix

Role-Based Access Control

(a) Relationship among RBAC models

Double arrow: 'many'

relationship

Single arrow: 'one' relationship

(b) RBAC models

Example of role hierarchy

- Director has most privileges
- Each role inherits all privileges from lower roles
- A role can inherit from multiple roles
- Additional privileges can be assigned to a role

Constraints

- A condition (restriction) on a role or between roles
 - Mutually exclusive
 - role sets such that a user can be assigned to only one of the role in the set
 - Any permission can be granted to only one role in the set
 - Cardinality: set a maximum number (of users) wrt a role (e.g., a department chair role)
 - Prerequisite role: a user can be assigned a role only if that user already has been assigned to some other role

Case study: RBAC system for a bank

Role	Function	Official Position
A	financial analyst	Clerk
В	financial analyst	Group Manager
С	financial analyst	Head of Division
D	financial analyst	Junior
Е	financial analyst	Senior
F	financial analyst	Specialist
G	financial analyst	Assistant
•••	•••	•••
Х	share technician	Clerk
Y	support e- commerce	Junior
Z	office banking	Head of Division

Case study: RBAC system for a bank

- b has more access than A (strict ordering)
- Inheritance makes tables simpler

(b) Permission Assignments

Role	Application	Access Right
A	money market instruments	1, 2, 3, 4
	derivatives trading	1, 2, 3, 7, 10, 12
	interest instruments	1, 4, 8, 12, 14, 16
В	money market instruments	1, 2, 3, 4, 7
	derivatives trading	1, 2, 3, 7, 10, 12, 14
	interest instruments	1, 4, 8, 12, 14, 16
	private consumer instruments	1, 2, 4, 7
•••	•••	•••

(c) PA with Inheritance

Role	Application	Access Right
A	money market instruments	1, 2, 3, 4
	derivatives trading	1, 2, 3, 7, 10, 12
	interest instruments	1, 4, 8, 12, 14, 16
	money market instruments	7
В	derivatives trading	14
7	private consumer instruments	1, 2, 4, 7
•••	•••	•••

Case study: RBAC system for a bank

Attribute-based access control

- Fairly recent
- Define authorizations that express conditions on properties of both the resource and the subject
 - Each resource has an attribute (e.g., the subject that created it)
 - A single rule states ownership privileges for the creators
- Strength: its flexibility and expressive power
- Considerable interest in applying the model to cloud services

Types of attributes

- Subject attributes
- Object attributes
- Environment attributes

Subject attributes

- A subject is an active entity that causes information to flow among objects or changes the system state
- Attributes define the identity and characteristics of the subject
 - Name
 - Organization
 - Job title

Object attribute

- An object (or resource) is a passive information systemrelated entity containing or receiving information
- Objects have attributes that can be leveraged to make access control decisions
 - Title
 - Author
 - Date

Environment attributes

- Describe the operational, technical, and even situational environment or context in which the information access occurs
 - Current date
 - Current virus/hacker activities
 - Network security level
 - Not associated with a resource or subject
- These attributes have so far been largely ignored in most access control policies

Sample ABAC scenario

- A subject requests access to an object
- 2. AC is governed by a set of rules (2a): assesses the attr of subject (2b), object (2c) and env (2d)
- AC grants subject access to object if authorized

ABAC

SK_{Sarah}: "manager" "IT dept."

SK_{Kevin}:
"manager"
"sales"

Attribute Based Encryption : Two Types

Why CP-ABE?

Efficiency:

VS.

Summary

- introduced access control principles
 - subjects, objects, access rights
- discretionary access controls
 - access matrix, access control lists (ACLs), capability tickets
 - UNIX traditional and ACL mechanisms
- role-based access control
- case study