Computer Engineering

Unit 4. Interconnection Networks

Introduction: Concepts and classification

Interconnection Networks

- Fundamental resource in parallel architectures with several processing units that need to communicate
- The communication efficiency is a critic concern in multiprocessors or multicomputers.
- The network design has an effect in: architecture scalability, complexity, fault tolerance etc.
- Other important concerns: flow control & routing algorithms

Introduction: Concepts and classification

Overall structure of a communication system

Introduction: Concepts and classification

Characterization of interconnection networks

- Network size (N): Number of nodes (connection I/O systems, memories, processors)
- Diameter: The maximum distance between two nodes in the network.
- \circ **Node degree** (*d degree*): Number of channels connecting that node to its neighbors \rightarrow A greater degree supposes greater costs
- Regularity: A network is regular when all the nodes have the same degree.
- Unidirectional nodes: an input grade and an output grade

Introduction: Concepts and classification

Characterization of interconnection networks

- Symmetry: A network is symmetric when it looks alike from every node.
- Bisection width of a network: the minimum number of wires that must be cut when the network is divided into two equal sets of nodes → bisection bandwidth
- \circ Wires length \rightarrow has effects on latencies
- Scalability: A scalable architecture implies that as more processors are added, their memory bandwidth, I/O bandwidth, and network bandwidth should increase proportionally.
- Hardware complexity

Introduction: Concepts and classification

Characterization of interconnection networks

Opening of the property of

- Functionality: How the networks support the data routing, interrupts managing and synchronization.
- Latency: Latency is the time elapsed from when the message transmission is initiated until the message is received at the destination node
- Throughput: maximum amount of information delivered per time unit. Also the maximum traffic accepted by the network.

Introduction: Concepts and classification

Characterization of interconnection networks

Opening of the property of

- Throughput: maximum amount of information delivered per time unit. Also the maximum traffic accepted by the network.
- Bandwidth: maximum amount of data that can be transmitted in a fixed amount of time.

Introduction: Concepts and classification

Designing an interconnection network

- Topology → Interconnection graph
- Flow control → method/dialog between sender and receiver nodes, allowing and stopping the advance of information.
 - Message
 - Packet
 - Flit (FLow control unIT)
- Routing → At each intermediate node, it indicates the next channel to be used
 - Deterministic
 - Adaptive

Introduction: Concepts and classification

Designing an interconnection network

Introduction: Concepts and classification

Designing an interconnection network: topology

Physical structure of the network. It can be modeled using a graph whose **vertices** are **switches** or **network interfaces** (nodes, memory or I/O modules) and the edges represent the links between adjacent nodes.

Introduction: Concepts and classification

Designing an interconnection network: routing

At each intermediate node, it indicates the next channel to

be used \rightarrow path

Introduction: Concepts and classification

Designing an interconnection network: commutation strategy

How data message & packets travel from source to destination nodes

Introduction: Concepts and classification

Designing an interconnection network: flow control

When an information unit moves between network resources. It Arbitrates against collisions and determines how and when resources are used (intra and inter switching).

Introduction: Concepts and classification

Classification of interconnection networks

- Shared medium networks
 - Local Area Networks
 - Contention bus (Ethernet). Non deterministic
 - ullet Token bus (Arcnet). Deterministic o realtime
 - Token ring (IBM Token ring)
 - System bus (UMA architecture (processor → memory), backplane bus, Sun Gigaplane)
- Direct networks (static and based on routers)
 - Ortogonal topologies (Meshes, Torus, Hypercube)
 - Other topologies (Trees, CCC, Star, ...)

Introduction: Concepts and classification

Classification of interconnection networks

- Indirect networks (dynamic and based on switches)
 - Regular topologies
 - Crossbar
 - Multistage interconnection networks (MIN)
 - Topologías irregulares
- Hybrid networks (hierarchical networks)

Introduction: Concepts and classification

Shared medium networks

- shared medium → easy broadcast
- Limited bandwidth (limited scalability) → bottleneck
- shared medium → Arbitration (conflicts solver)
- Control signals
 - BRQ
 - BGNT
 - BBSY común

Introduction: Concepts and classification

- Static priority: Daisy chain (centralized-serial):
 - BRQ shared
 - BGNT propagated
 - BBSY shared

Introduction: Concepts and classification

- Static priority centralized-parallel:
 - BRQ individual
 - BGNT individual
 - BBSY shared

Introduction: Concepts and classification

- Static priority: auto-arbitration (distributed-parallel):
 - BRQ individual
 - BGNT individual
 - BBSY shared

Introduction: Concepts and classification

- Temporal multiplexing
 - Benefits
 - Equitative assignment
 - Simplicity
 - Drawback
 - Bandwidth infraused
- Dynamic priority
 - LRU
 - RDC (Rotating Daisy Chain)
 - FCFS

Introduction: Concepts and classification

Shared medium networks (bus arbitration)

Dynamic priority LRU

P_0	P_1	P_2	P_3	Action
0	1	2	3	P ₀ uses the bus
0	1	2	3	P ₂ request the bus
1	2	0	3	P ₂ uses the bus
1	2	0	3	P ₁ y P ₃ request the
2	3	1	0	P ₃ uses the bus

Introduction: Concepts and classification

- Direct networks
 - Nodes connected to subsets of nodes
 - Scalability
 - Router → inter-node communication
 - Uni or bidirectional channels
- Indirect networks
 - Switches
 - Regular topologies (vectorial) & irregular (NOWs)
- Hybrid networks
- Multibus networks
- Hierarchical networks (hierarchy of router connected buses)
- Networks based on clusters

Topologies

Direct or static networks

- Classification
 - Strictly orthogonal (mess, hypercube, torus)
 - Strictly: Each node has at least one link on each dimension
 - Orthogonal: Each link implies moving by a dimension
 - Non orthogonal (trees)
- Properties
 - **Node degree**: Number of channels connecting that node to its neighbors.
 - **Diameter**: The maximum distance between two nodes in the network.
 - **Regularity**: A network is regular when all the nodes have the same degree.
 - **Symmetry**: A network is symmetric when it looks alike from every node.

Clasificación

Direct or static networks: unidirectional ring

• Interconexión function: $f_{+x}(i) = f_{+1}(i) = (i+1) \mod N$

I/O Degree: 1/1

Diameter: N-1

Bidireccional ring?

Clasificación

Topologías

Direct or static networks: mesh

O Interconnection function:

■
$$f_{+1}(i) = (i+1)$$
 if i mod $r \neq r-1$

■
$$f_{-1}(i) = (i-1)$$
 if i mod $r \neq 0$

$$f_{+r}(i) = (i+r) \text{ if } i \text{ div } r \neq r-1$$

$$f_{-r}(i) = (i-r) \text{ if } i \text{ div } r \neq 0$$

- Degree: 4
- \circ Diameter: 2 (r-1), where N= r^2

Clasificación

Topologías

Direct or static networks: Illiac mesh

- O Interconexión function:
 - $f_{+1}(i) = (i+1) \mod N$
 - $f_{-1}(i) = (i-1) \mod N$
 - $f_{+r}(i) = (i+r) \mod N$
 - $f_{-r}(i) = (i-r) \mod N$
- O Degree: 4
- Diameter: r-1, where N=r²

Clasificación

Topologías

Direct or static networks: k-ary n-cube or Torus

- n dimensions, k nodes
- Interconexión function for 2D torus:

$$f_{+1}(i) = (i+1) \mod r + (i DIV r) \cdot r$$

■
$$f_{-1}(i) = (i-1) \mod r + (i DIV r) \cdot r$$

$$f_{+r}(i) = (i+r) \mod N$$

$$f_{-r}(i) = (i-r) \mod N$$

O Degree: 4

Diameter: $N=r^2$

Clasificación

Topologías

Direct or static networks: Hypercube

Interconexión function:

$$f_i(h_{n-1}, ..., h_i, ..., h_0) = h_{n-1}, ..., not(h_i), ..., h_0$$

- \circ Degree: n (n = $\log_2 N$)
- Diameter: n

Ingeniería de los Computadores Sesión 9. Redes de interconexión

Conceptos

Clasificación

Direct or static networks: CCC (hierarchical network)

Topologías

Clasificación

Direct or static networks: Binary tree

Balanced: each branches have the same number of nodes

Topologías

- Bottleneck → root node
- \circ N (balanced)= 2^k-1 (k = # of levels)
- Degree: 3
- Diameter: 2(k-1)

Ingeniería de los Computadores Sesión 9. Redes de interconexión

Conceptos

Clasificación

Topologías

Redes indirectas o dinámicas

- Uso de conmutadores y árbitros
- Ejemplos
 - Redes crossbar
 - Redes de conexión multietapa (MIN)
- Modelo: G(N,C)
 - N, conjunto de conmutadores
 - C, enlaces (unidireccionales o bidireccionales) entre conmutadores
 - \blacksquare Canal bidirectional \rightarrow dos canales unidirectionales
 - Un conmutador puede tener conectados 0, 1 ó más elementos (Procesadores, memorias, etc.)
- Distancia entre dos nodos: distancia entre los conmutadores que conectan los nodos más 2.

Ingeniería de los Computadores Sesión 9. Redes de interconexión

Conceptos

Clasificación

Topologías

Redes indirectas o dinámicas. Redes crossbar

- Conexión directa nodo-nodo
- Gran ancho de banda y capacidad de interconexión
- Conexión Proc. Mem. → limitado por los accesos a memoria (columnas)
- Conexión $Proc(N) Proc(N) \rightarrow máximo de N conexiones$

Coste elevado: O(N·M)

Clasificación

Redes indirectas o dinámicas. Redes MIN

Conectan dispositivos de entrada con dispositivos de salida mediante un conjunto de etapas de conmutadores, donde cada conmutador es una red crossbar.

Topologías

- Concentradores → nº entradas > nº salidas
- Expansores \rightarrow nº salidas > nº entradas

Clasificación

Topologías

Redes indirectas o dinámicas. Redes MIN

- Conexión de etapas adyacentes → Patrón de conexión
- Patrón basado en permutaciones: conmutadores con el mismo número de entradas y salidas.
- \circ Ejemplo: barajado perfecto: B $(a_{n-1}, a_{n-2}, ..., a_0) = (a_{n-2}, ..., a_0, a_{n-1})$

Clasificación

Topologías

- Redes indirectas o dinámicas. Redes MIN
 - > Número de entradas aⁿ y número de salidas bⁿ (red aⁿxbⁿ)
 - \rightarrow n etapas de conmutadores ($C_0, C_1, ..., C_{n-1}$)
 - Conmutadores axb
 - → aⁿ⁻¹⁻ⁱ x bⁱ conmutadores en la etapa C_i
 - Funcionalidad de los conmutadores: barras cruzadas, reducción, difusión
 - \triangleright Subred de interconexión entre etapas: R_0 , R_1 ,...
 - > Tipos de canales: unidireccionales, bidireccionales

Ingeniería de los Computadores Sesión 9. Redes de interconexión

Conceptos

Clasificación

Topologías

- Redes indirectas o dinámicas. Redes MIN red Omega
 - El patrón de conexión C_i es una permutación k-baraje perfecto a excepción del último (R_x) que es permutación 0

Conceptos

Clasificación

Topologías

- Redes indirectas o dinámicas. Redes MIN red mariposa
 - Red $k^n x k^n (8x8=2^3x2^3)$:
 - n etapas C_i (3),
 - conmutadores kxk (2x2),
 - kⁿ⁻¹ conm/etapa (2²).

- Subred R_i (i=0,...,n-1):
 - Mariposa M^k

$$\begin{aligned} \mathbf{M_{i}^{k}}\left(\;(\;f_{n\text{-}1},\!f_{n\text{-}2},\;...,\;f_{i+1},\!f_{i},\!f_{i\text{-}1},\!...,\;f_{1},\!f_{0})_{k}\;\right) = (f_{n\text{-}1},\!f_{n\text{-}2},\;...,\;f_{i+1},\!f_{0},\!f_{i\text{-}1},\!...,\;f_{1},\!f_{i})_{k}\\ i = 0,\ldots,n\text{-}1 \end{aligned}$$

$$\mathbf{M_2}^2 ((\mathbf{f_2}, \mathbf{f_1}, \mathbf{f_0})_2) = (\mathbf{f_0}, \mathbf{f_1}, \mathbf{f_2})_2$$

Conceptos

Clasificación

Topologías

Redes indirectas o dinámicas. Redes MIN – red cubo

- Red knxkn (8x8=23x23):
 - n etapas C_i (3),
 - conmutadores kxk (2x2),
 - kⁿ⁻¹ conm/etapa (2²).
- Subred R_i (i=0,...,n-1):
 - R_o: Baraje-k perfecto (baraje-2 perfecto).
 - R_{n-i} (i=1,...,n-1): Mariposa M_i^k 110

$$M_{i}^{k}((f_{n-1},f_{n-2},...,f_{i+1},f_{i},f_{i-1},...,f_{1},f_{0})_{k}) = (f_{n-1},f_{n-2},...,f_{i+1},f_{0},f_{i-1},...,f_{1},f_{i})_{k}$$

$$i=0,...,n-1$$

$$M_1^2 ((f_2,f_1,f_0)_2) = (f_2,f_0,f_1)_2$$

Conceptos

Clasificación

Topologías

• Redes indirectas o dinámicas. Redes MIN – red delta

Red $a^n x b^n (16x9=4^2x3^2)$:

- n etapas C_i (2),
- conmutadores axb (4x3),
- aⁿ⁻¹⁻ⁱ ·bⁱ conm / C_i (4, 3).

Subred R_i (i=0 o 1,...,n-1):

Baraje-a de c elementos

R₁ (baraje-4 de 12 elementos). 9

$$B_{c}^{a}(s) = \begin{cases} a \cdot s \mod(c-1) & \text{si} \quad s < c-1 \\ c-1 & \text{si} \quad s = c-1 \end{cases}$$

$$B_{12}^{4}(s) = \begin{cases} 4 \cdot s \mod (11) & \text{si} \quad s < 11 \\ 11 & \text{si} \quad s = 11 \end{cases}$$

Ingeniería de los Computadores Sesión 9. Redes de interconexión

Conceptos

Clasificación

Topologías

Prestaciones

Conceptos

Clasificación

Topologías

Conmutación

Básico en las topologías

Conceptos

Clasificación

Topologías

Conmutación

Buffers de entrada

Conceptos

Clasificación

Topologías

Conmutación

- Enlaces y canales.
 - > Infraestructura: hilos eléctricos (cobre), fibras ópticas, etc.
- Anchura
 - Anchos. Se transmite simultáneamente datos y control
 - > Estrechos. Multiplexa en el tiempo datos y control
- Longitud
 - Cortos. 1 símbolo
 - Largos. Varios símbolos de forma simultánea

Conceptos

Clasificación

Topologías

Conmutación

- Enlaces: longitud
 - > Cortos
 - > El ciclo de red depende del retardo de propagación
 - > Largos
 - Ciclo de red << retardo de propagación</p>
- Velocidad del canal depende:
 - Energía empleada para transmitir por una línea
 - Distancia a atravesar
 - > Ruido
 - Desplazamiento entre líneas de un enlace
 - > Tamaño del buffer destino (enlaces largos)

Conceptos

Clasificación

Topologías

Conmutación

- Técnicas de conmutación
 - Cuándo y cómo se conectan entradas y salidas de routers
 - Cuándo se transfiere el mensaje por los caminos

Conceptos

Clasificación

Topologías

Conmutación

- Tipos de técnicas de conmutación
 - Almacenamiento y reenvío (S&F, Store and Forward)
 - Vermiforme (Wormhole)
 - Virtual Cut-Through (VCT)
 - Conmutación de circuitos (CC, Circuit Switching) (Origen en redes telefónicas)
 - Canales virtuales

0

- Comparación entre técnicas
 - Comparación cuantitativa: latencia de transporte
 - Comparación cualitativa: ancho de banda global

Conceptos

Clasificación

Topologías

Conmutación

Se considera (a efectos de explicación teórica siguientes transparencias):

- o 1 phit = 1 flit = w bits
- Header = 1 flit
- Tamaño total del paquete = L bits + w bits (cabecera)
- Distancia fuente-destino = D parejas conmutador-enlace
- Conmutadores con buffer independiente para cada entrada y salidas sin buffer
- T_w = tiempo para que un phit atraviese una etapa conmutador/enlace
- \circ T_r = tiempo de encaminamiento (routing)

Conceptos

Clasificación

Topologías

Conmutación

Store & forward

- El conmutador almacena el paquete completo antes de ejecutar el algoritmo de encaminamiento y reenviar
- La unidad de transferencia (paquete) entre interfaces ocupa sólo un canal en cada instante
- Almacenamiento en conmutadores: múltiplos de un paquete (mínimo 1 paquete)
- Ancho de banda
 - El número de enlaces ociosos influye en el ancho de banda: para un tamaño de buffer mínimo (1 paquete), un paquete bloqueado deja ocioso un canal

Conceptos

Clasificación

Topologías

Conmutación

Store & forward

Latencia de transporte:

$$t_{AR} = D \cdot \left[t_r + t_w \cdot \left(\left\lceil \frac{L}{W} \right\rceil + 1 \right) \right]$$

Conceptos

Clasificación

Topologías

Conmutación

Wormhole

- En cuanto llega la cabecera al conmutador se ejecuta el algoritmo de encaminamiento y se reenvía
- La unidad de transferencia es el mensaje
- La transferencia se hace a través de un camino segmentado (nº etapas depende del nº de buffer). La unidad de transferencia puede ocupar varios canales en un instante
- Almacenamiento en conmutadores: múltiplos de un flit (mínimo 1 flit)
- Ancho de banda
 - El número de enlaces ociosos influye en el ancho de banda: para un tamaño de buffer mínimo (1 flit), un paquete bloqueado deja ociosos varios canales

Conceptos

Clasificación

Topologías

Conmutación

Wormhole

Conceptos

Clasificación

Topologías

Conmutación

Wormhole

 Latencia de transporte: (buffer en entradas y salidas)

$$t_{V} = D \cdot (t_{r} + t_{s} + t_{w}) + \max(t_{s}, t_{w}) \cdot \left\lceil \frac{L}{W} \right\rceil$$
$$t_{V} = t_{cabecera} + t_{resto}$$

Conceptos

Clasificación

Topologías

Conmutación

Virtual Cut-Through

- En cuanto llega la cabecera al conmutador se ejecuta el algoritmo de encaminamiento y se reenvía
- La unidad de transferencia es el paquete
- La transferencia se hace a través de un camino segmentado (nº etapas depende del nº de buffer). La unidad de transferencia puede ocupar varios canales en un instante
- Almacenamiento en conmutadores: múltiplos de un paquete (mínimo 1 paquete)
- Prestaciones
 - Latencia = wormhole
 - Ancho de banda = Store-and-Forward

Conceptos

Clasificación

Topologías

Conmutación

Circuit switching

- Desde el fuente se envía una sonda (flit) que reserva el camino. El destino devuelve una señal de reconocimiento y el fuente comienza la transmisión
- La unidad de transferencia es el mensaje
- La transferencia se hace a través del canal entre fuente y destino (o un camino segmentado) reservado por la sonda
- Almacenamiento en conmutadores: los buffers almacenan la sonda
- Ancho de banda
 - Cuando la sonda queda bloqueada deja ociosos múltiples canales (tantos como la distancia del punto de bloqueo al fuente)

Conceptos

Clasificación

Topologías

Conmutación

Circuit switching

Latencia de transporte (si se establece 1 canal):

$$\begin{split} t_{CC} &= \left[t_w + D \cdot \left(t_r + t_w\right)\right] + \left[D \cdot \left(t_w\right) + t_w\right] + \left[1 / B_{canal} \cdot \left\lceil L / W \right\rceil\right] \\ t_{CC} &= t_{sonda} + t_{reconocimiento} + t_{datos} \end{split}$$

Conceptos

Clasificación

Topologías

Conmutación

Canales virtuales

- Permiten que varios paquetes compartan el mismo enlace (a nivel de flit)
- Mejoran el ancho de banda y la latencia al disminuir la probabilidad de bloqueos
- Se aplica con el resto de mecanismos

Conceptos

Clasificación

Topologías

Conmutación

Bloqueos

- Algunos paquetes no pueden alcanzar el destino
- Capacidad de los buffers finita
- Canales ocupados

Conceptos

Clasificación

Topologías

Conmutación

Bloqueos. Clasificación

- Interbloqueos (deadlocks)
 - Recursos no disponibles para el avance de los paquetes
 - Buffers ocupados
 - Bloqueo permanente
- Bloqueos activos (livelocks)
 - Los paquetes nunca llegan a su destino
 - Canales ocupados por otros paquetes
 - Sólo ocurre si se permiten caminos no mínimos
- Inanición (los recursos siempre se asignan a otros paquetes)

Conceptos

Clasificación

Topologías

Conmutación

Bloqueos. Soluciones

- Inanición
 - Emplear un esquema de asignación de recursos correcto
 - Cola circular con distinta prioridad
- Bloqueos activos
 - Usar solo rutas mínimas
 - Usar rutas no mínimas restringidas
 - Dar mayor probabilidad a caminos mínimos respecto a no mínimos
- Interbloqueos
 - Prevención
 - Evitación
 - Recuperación

Conceptos

Clasificación

Topologías

Conmutación

Prevención de interbloqueos

- Estrategia muy conservadora: se asignan todos los recursos para transmitir un mensaje antes de iniciar la transmisión
- Un flit de sondeo establece el camino
- Si existe bloqueo, retrocede y libera recursos

Evitación de interbloqueos

- Los recursos se asignan a medida que el mensaje atraviesa la red
- Un recurso se asigna a un paquete si el estado resultante es seguro (grafo de dependencias acíclico)

Conceptos

Clasificación

Topologías

Conmutación

Evitación de interbloqueos – grafo de dependencias

Teorema: Una función de encaminamiento determinista F para una red R está libre de interbloqueos si sólo si no existen ciclos en su grafo de dependencia de canales

Anillo unidireccional

Conceptos

Clasificación

Topologías

Conmutación

Evitación de interbloqueos – grafo de dependencias

Anillo unidireccional con canales virtuales

Función de encaminamiento:

Usar c_{0i} si j < i, o c_{1i} si j > i

Conceptos

Clasificación

Topologías

Conmutación

Evitación de interbloqueos – grafo de dependencias

Teorema: Una función de encaminamiento adaptativa F para una red R está libre de interbloqueos si, existiendo dependencias cíclicas, cada paquete encuentra un caminos libre de bloqueos para llegar al destino

Función de encaminamiento:

Usar o $c_{\Delta i}$ si j $\neq i$, o c_{Hi} si j > i

Conceptos

Clasificación

Topologías

Conmutación

Recuperación de interbloqueos

- Estrategia optimista: supone que rara vez ocurre un bloqueo
- Los recursos se asignan a los mensajes sin ninguna comprobación adicional
- Si existe bloqueo, se liberan bloqueos
- Se reasignan los recursos a otro mensaje
- Detección de bloqueos en el nodo origen

Routing algorithms

Routing algorithms: establish the path followed by each message or packet.

Many properties of the interconnection network are a direct consequence of the routing algorithm used:

- Connectivity. Ability to route packets from any source node to any destination node.
- Adaptivity. Ability to route packets through alternative paths in the presence of contention or faulty components.
- Deadlock and livelock freedom. Ability to guarantee that packets will not block or wander across the network forever.
- **Fault tolerance**. Ability to route packets in the presence of faulty components.

Routing algorithms

Routing algorithms: Classification

Routing algorithms

- Deterministic routing algorithms: establish the path as a function of the destination address \rightarrow always supplying the same path between every pair of nodes.
- The simplest progressive routing algorithm is the dimension-order routing:
 - Ortogonal topologies → defines an order
 - Deterministic
 - Ejemplos:
 - Street-sign (source routing)
 - XY routing (distributed, no tables)
 - E-cube routing
 - Interval (distributed, with tables-loopup)

Routing algorithms

XY routing (dimension ordered)

Routing algorithms

Dimension ordered routing using tables

Routing algorithms

- Turn-model
 - partially adaptive routing algorithm
 - Static (ortogonal topologies) and dynamic networks
 - O E.g:
 - West-First in 2D meshes (distributed, no tables, partially adaptive routing algorithm, both minimal and non-minimal)
 - Deadlocks: deadlocks can be avoided by prohibiting just enough turns to break all the cycles.

Routing algorithms

Turn-model

The following six steps can be used to develop maximally adaptive routing algorithms for n-dimensional meshes and k-ary n-cubes:

- 1. Classify channels according to the directions in which they route packets.
- 2. Identify the turns that occur between one direction and another.
- 3. Identify the simple cycles that these turns can form.
- 4. Prohibit one turn in each cycle.
- 5. In the case of k-ary n-cubes, incorporate as many turns as possible that involve wraparound channels, without reintroducing cycles.
- 6. Add 0-degree and 180-degree turns without reintroducing cycles. These turns are needed if there are multiple channels in the same direction and for non-minimal routing algorithms.

Routing algorithms

Examples of west-first routing in an 8×8 2D mesh.

Routing algorithms

Fully adaptive algorithm: virtual networks

Routing algorithms

- Self-Routing Algorithms for MINs: Routing in butterfly networks:
 - Always deterministic
 - The destination address D is codified in b base.
 - No deadlocs (no loops within the topology)
 - Examples
 - For a given destination $d_{n-1} d_{n-2} \dots d_0$, in a butterfly MIN the routing tag is
 - formed by having t i = d $_{i+1}$ for $0 \le i \le n-2$ and t $n-1 = d_0$. In a cube MIN, the routing
 - tag is formed by having $t_i = d_{n-i-1}$ for $0 \le i \le n-1$. Finally, in an Omega network, the
 - routing tag is formed by having $t_i = d_{n-i-1}$ for $0 \le i \le n-1$.

Routing algorithms

Routing in butterfly networks

Routing algorithms

Delta network routing

