Synthesis of Computability and Analysis

This report is about summarizing the book [Bra18].

1 Introduction and notation

- $\mathbb{N} = \{0, 1, 2, \ldots\}$. Identification of real numbers with $0 = \emptyset$ and $n + 1 = \{0, \ldots, n\}$. $X^0 = \{\emptyset\} = 1$.
- $f :\subseteq X \Rightarrow Y := (\Phi, X, Y)$ is a partial multi-valued function, and $\Phi \subseteq X \times Y$. The inverse is defined as $f^{-1} = (\Phi^{-1}, X, Y)$, where $\Phi^{-1} = \{(y, x) : (x, y) \in \Phi\}$.
- f(x) = g(x) means that either both f(x) and g(x) are defined and equal, or that they are both undefined.
- A word over X is a partial function $w : \subseteq \mathbb{N} \to X$ such that $dom(w) = \{0, \dots, n-1\}$ for some $n \in \mathbb{N}$.
- $\varepsilon = (\varnothing, \mathbb{N}, X)$ is identified with $\varnothing = 0$.
- for $u, v \in X^*$, $u \sqsubseteq v$ means that $graph(u) \subseteq graph(v)$
- for $p \in X^{\mathbb{N}}$, we write $p|_n := p(0) \dots p(n) \in X^*$. For words, our terminology allows to define $p|_n$ even if n is bigger than the size of the word.
- $\hat{a} := a^{\mathbb{N}} := aaa \dots$
- A preorder ≤ is a relation such that is reflexive and transitive. A partial order is a preoder that is anti-symmetric.
- A equivalence relation \equiv is a reflexive, transitive and symmetric relation. We naturally defined the equivalence classes in the usual meaning.
- From any preorder, one can define an equivalence relation by saying $x \equiv y$ if and only if $x \leq y$ and $y \leq x$. A preorder induces a partial order on X/\equiv .
- In an partially ordered set (X, \leq) , we say that $x, y \in X$ have a supremum or a join $\sup(x,y) = x \vee y \in X$, if $x \leq \sup(x,y)$ and $y \leq \sup(x,y)$, and for all $z \in X$ satisfying $x \leq z$ and $y \leq z$, then $\sup(x,y) \leq z$. Similar definition with infinimum of meet \inf, \wedge . We say that (X, \leq) is an upper semi-lattice if every pair of elements have a join, and a lower semi-lattice if every pair of elements has a meet. A lattice is both an upper semi-lattice and a lower semi-lattice.
- An upper semi-lattice is called distributive if for all $x, y, z \in X$,

$$x \le y \lor z \Rightarrow x = y' \lor z',$$

for some $y' \leq y, z' \leq z$. If it is a lattice, then we call it distributive if

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

• A map $f: X \to Y$ on preordered sets (X, \leq_X) and (Y, \leq_Y) is called monotone if $x \leq_X y$ implies $f(x) \leq_Y f(y)$.

- A map $C: X \to X$ on a preordered set (X, \leq) is called a closure operator if it is extensive, monotone and idempotent. Interior operator satisfies contrary definitions.
- Let X,Y be preordered sets, $U:X\to Y$ and $L:Y\to X$. (L,U) is called a Galois connection if

$$L(y) \le x \Leftrightarrow y \le U(x)$$
.

2 Computability and limit computability

Turing machines are considered to be operating on \mathbb{N} (in the cells).

Definition D2.1.1 - $\{10\}$: (Discrete computable function). A function $f : \subseteq \mathbb{N}^* \to \mathbb{N}^*$ is called computable if there is a Turing machine that halts on every $w \in \text{dom}(f)$ and produces f(w) on the output tape. Also, this Turing machine must not halt on $w \notin \text{dom}(f)$.

Definition D2.1.2 - {10}: (Computably enumerable and computable sets). Let $A \subseteq \mathbb{N}^*$. A is called computably enumerable if A = dom(f) for some computable function. A is computable or decidable if A and $\mathbb{N}^* \setminus A$ are c.e.

Definition D2.1.3 - {11}: (Computable function). A function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is called computable if there exists a Turing machine with one-way output tape such that on input $p \in \text{dom}(F)$, it produces F(p) on the output tape in the long run.

Lemma P2.1.4 - $\{11\}$: (Restriction). $F|_A$ is computable if F is computable.

Lemma P2.1.5 - $\{11\}$: (Composition). $G \circ F$ is computable if F, G are computable.

Lemma P2.1.6 - {11}: (Computable points). $p \in \mathbb{N}^{\mathbb{N}}$ is computable if and only if the constant function $c : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ with value p is computable.

Lemma P2.1.7 - {11}: (Computable invariance). Let F computable and $p \in \text{dom}(F)$ is computable. Then, F(p) is computable.

The topology we consider on $\mathbb{N}^{\mathbb{N}}$ is the product of the discrete topology on \mathbb{N} , i.e. generated by the cylinder sets $n_1 n_2 \dots n_k \mathbb{N}^{\mathbb{N}}$.

Theorem T2.1.9 - {14}: (Continuity theorem). Any computable function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is continuous.

Definition D2.1.10 - {14}: (Tupling functions). (i) for $n, k \in \mathbb{N}$, $\langle n, k \rangle$ denotes the Cantor pairing function,

(ii) for $p,q\in\mathbb{N}^{\mathbb{N}},\,\langle p,q\rangle\in\mathbb{N}^{\mathbb{N}}$ is defined as

$$\langle p, q \rangle (2n) := p(n)$$

 $\langle p, q \rangle (2n+1) := q(n)$

(iii) for $p_0, p_1, \ldots \in \mathbb{N}^{\mathbb{N}}$, $\langle p_1, p_2, \ldots \rangle \in \mathbb{N}^{\mathbb{N}}$ is defined as

$$\langle p_1, p_2, \ldots \rangle (\langle n, k \rangle) := p_n(k)$$

(iv) for $n \in \mathbb{N}$ and $p \in \mathbb{N}^{\mathbb{N}}$, $\langle n, p \rangle := np$.

Example 2.1.11 in page {15} gives many examples of computable functions, based on the pairing functions.

Example 2.1.12 in page {15} gives the definition of the limit map, that is not continuous,

$$\lim :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, p_2, \ldots \rangle \mapsto \lim_{i \to \infty} p_i.$$

Definition D2.1.13 - {15}: (Computable sequence). A sequence $(p_i)_{i \in \mathbb{N}}$ of elements $p_i \in \mathbb{N}^{\mathbb{N}}$ is called computable if (p_1, p_2, \ldots) is computable.

Definition D2.1.14 - {16}: (Parallelization). Let $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ be a function. Then, the parallelization $\langle \hat{F} \rangle :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ of F is defined by

$$\langle \hat{F} \rangle \langle p_1, p_2, \ldots \rangle := \langle F(p_1), F(p_2), \ldots \rangle$$

for every sequence p_i in dom F.

Lemma P2.1.15 - {16}: (Computable parallelization). If $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable, then its parallelization $\langle \hat{F} \rangle :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable too.

Lemma C2.1.16 - {16}: (Sequential invariance). If $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable, and (p_i) be a computable sequence in dom(F). Then, $(F(p_i))$ is computable too.

References

[Bra18] Vasco Brattka. Computability and Analysis. Version 2.1 edition, 2018.