

Universidad de Buenos Aires Facultad de Ingeniería 2do Cuatrimestre de 2021

 $[71.14\ /\ 91.04]$ Modelos y Optimización I ${\it Curso}\ 4$

Trabajo Práctico 1

Empresa de Desarrollo de Software

Padrón	Alumno	Email	
103442	Lovera, Daniel	dlovera@fi.uba.ar	

$\mathbf{\acute{I}ndice}$

1.	Análisis del problema	is y supuestos 2 ón de variables 3	
2.	Objetivo	2	
3.	Hipótesis y supuestos	2	
4.	Definición de variables	3	
5.	Modelo de programación líneal	3	
6.	Resolución gráfica	3	
7.	Resolución por software (modelo y resultados)	4	
8.	Informe de la solución óptima obtenida	6	

1. Análisis del problema

Este es un problema simple de distribución de recursos humanos, consiste en seleccionar grupos de desarrolladores e incluirlos en proyectos nacionales y exteriores cumpliendo restricciones de disponibilidad y demanda para optimizar sus asignaciones.

Figura 1: Representación gráfica del problema.

2. Objetivo

Determinar la cantidad de desarrolladores que se deben asignar a proyectos nacionales y exteriores para maximizar los beneficios del mes próximo.

3. Hipótesis y supuestos

- Tanto los desarrolladores como los recursos que consumirán por proyectos (conectividad, ancho de banda, memoria RAM, espacio de disco) son constantes conocidas del mes.
- Todos los desarrolladores son igual de eficientes no hay mejor o peor desarrollador.
- Los trabajadores son ideales, su eficiencia se mantiene durante todo el día y toda la semana en el mes.
- No hay inflación, la estimación de beneficio diario por desarrollador en cada proyecto es constante.
- La cantidad de proyectos para clientes nacionales y exteriores no son limitantes del modelo, por lo cual no se diferencian grupos de desarrolladores dentro de los proyectos.
- Los proyectos son ideales y no se presentan inconvenientes que hagan variar el beneficio recibido por cada desarrollador.

- Los beneficios obtenidos por la empresa son proporcionales a la cantidad de desarrolladores y recursos de hardware disponibles.
- Los meses tienen exactamente 30 días y el beneficio diario por trabajador se considera un promedio para evitar discriminar entre horas y días no trabajados.
- Los desarrolladores son modelados como variables continuas, pueden ser asignados a un proyecto de forma parcial, es decir un valor no entero de desarrolladores implica la existencia de un desarrollador trabajando un porcentaje del tiempo total necesario.

4. Definición de variables

El modelo utiliza las siguientes variables continuas:

- DN: Cantidad de desarrolladores asignados a proyectos nacionales por mes [desarrollador/-mes].
- DE: Cantidad de desarrolladores asignados a proyectos exteriores por mes [desarrollador/-mes].

5. Modelo de programación líneal

```
Funcion objetivo:
    750000 DN + 2250000 DE = MAX Z [\$/mes]
Restricciones:
    * Disponibilidad de desarrolladores [desarrollador/mes].
        1. DN + DE <= 48
    * Disponibilidad de conectividad [conexion/mes].
        2. DN + 2 DE <= 75
    * Disponibilidad de ancho de banda [ancho banda/(seg * mes)].
        3. DN + 3 DE <= 100
    * Disponibilidad de memoria RAM [GB/mes].
        4. 8 DN + 10 DE <= 500
    * Disponibilidad de espacio en disco [TB/mes].
        5. 2 DN + DE <= 200
    * Demanda de desarrolladores [desarrollador/mes].
        6. DN >= 22
        7. DE >= 15
```

6. Resolución gráfica

En la Figura 2 se observa el poliedro formado por 3 vértices y las restricciones del modelo que los forman son limitantes, restringen el análisis.

- En particular se observa que el punto A es un punto degenerado con la intercección de 3 restricciones del modelo (1, 3, 6), esto quiere decir que no habran recursos sin utilizar porque se encuentran saturados.
- La solución según la traza del funcional es en el punto A, necesitando utilizar 22 desarrolladores en proyectos nacionales y 26 en proyectos exteriores al mes.
- Se podría maximizar aun más el beneficio si se relajamos la reestricción 3 ya que es la que esta evitando que el funcional crezca. La reestricción 1 y 6 a pesar de estar saturadas no impactarían sobre la solución si las relajamos porque el techo del problema lo da el ancho de banda mensual disponible.

Figura 2: Solución al problema de máximo beneficio.

- En rojo se destaca la traza del funcional.
- En azul se destacan las restricciones del problema.

7. Resolución por software (modelo y resultados)

Figura 3: Parametros del modelo de programación líneal para el software GLPK.

```
* Declaracion de conjuntos de datos */
set recursos;
set desarrolladores;
/* Declaracion de variables */
var D{i in desarrolladores} >= 0;
/* Valores de datos */
param disponibilidad_recursos{i in recursos};
param consumo_recursos{i in recursos, j in desarrolladores};
param demanda_desarrolladores{i in desarrolladores};
param beneficio desarrolladores{i in desarrolladores};
param disponibilidad_desarrolladores;
/* Funcional */
maximize z: sum{i in desarrolladores} beneficio_desarrolladores[i] * D[i];
/* Restricciones */
# Disponibilidad de desarrolladores
s.t. disp_des: sum{i in desarrolladores} D[i] <= disponibilidad_desarrolladores;</pre>
# Disponibilidad de recursos
s.t. disp_recu{i in recursos}: sum{j in desarrolladores}
                                   consumo_recursos[i,j] * D[j] <= disponibilidad_recursos[i];</pre>
# Demanda de desarrolladores
s.t. dem des{i in desarrolladores}: D[i] >= demanda desarrolladores[i];
end;
```

Figura 4: Modelo de programación lineal usando el software GLPK.

Problem: Rows: Columns: Non-zeros: Status: Objective:	tp1 8 2 14 OPTIMAL z = 75000	000 (MAXimum)				
No. Rov	name S	t Activity	Low	er bound	Upper bound	Marginal
1 z	В	7.5e+	.07			
	des B		48		48	
	recu[CO]					
· -	В	:	74		75	
4 disp	recu[AB]					
L !		IU 1	.00		100	750000
5 disp	recu[MR]		26		500	
6 dien	recu[ED]	4	36		500	
o disp	B		70		200	
7 dem o			22	22		< eps
8 dem_c	les[DE] B		26	15		
_						
No. Colum	n name S	t Activity	Low	er bound	Upper bound	Marginal
1 D[DN]	В	!	22	0		
2 D[DE]			26	0		

Figura 5: Solución al problema de beneficio máximo usando el software GLPK.

Por software se obtuvo la solución esperada gráficamente. Es óptima siendo 22 el número de desarrolladores que habrá que asignar a proyectos nacionales y 26 a proyectos externos. Según los valores marignales obtenidos, de las tres reestricciones que estan saturadas si se aumenta en una unidad el ancho de banda, es decir a $101 \, [\text{gb/(seg.mes)}]$ tendra un impacto sobre el beneficio percibido por mes, incrementandolo en 750000\$.

8. Informe de la solución óptima obtenida

De acuerdo a los resultados obtenidos gráficamente y por software, la empresa de desarrollo deberá destinar 22 desarrolladores de proyectos nacionales y 26 a proyectos exteriores para maximizar el beneficio percibido mensualmente bajo las condiciones, supuestos e hipótesis planteadas, particularmente los resultados obtenidos son enteros por lo que todos los trabajadores estarán a tiempo completo en su correspondiente proyecto. Si la empresa quisiera incrementar el beneficio mensual deberá aumentar la disponibilidad de ancho de banda permitida en una unidad, obteniendo 750000\$\frac{1}{2}\$ extras por mes, siempre y cuando el costo de incrementar este recurso en una unidad sea menor a el extra percibido.