Hardy spaces

Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto

April 19, 2016

1 Hardy spaces

Let $D_r = \{z : |z| < r\}$. For a continuous function $f : D_1 \to \mathbb{C}$, let

$$M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{1/p}, \quad 0$$

and

$$M_{\infty}(r, f) = \sup_{0 \le \theta \le 2\pi} |f(r^{i\theta})|.$$

Let H^p be the collection of analytic functions $f: D_1 \to \mathbb{C}$ such that $||f||_{H^p} < \infty$, where

$$||f||_{H^p} = \sup_{0 \le r \le 1} M_p(r, f).$$

Let h^p be the collection of harmonic functions $u: D_1 \to \mathbb{R}$ such that $||u||_{H^p} < \infty$.

Lemma 1. For $0 , <math>H^p$ and h^p are linear spaces. If p < q then $H^q \subset H^p$ and $h^q \subset h^p$. For an analytic function $f: D_1 \to \mathbb{C}$, $f \in H^p$ if and only if $\operatorname{Re} f, \operatorname{Im} f \in h^p$.

Proof. For $a \ge 0$, $b \ge 0$,

$$(a+b)^p \le \begin{cases} a^p + b^p & 0 1. \end{cases}$$

$$||f + g||_{H^p}^p = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |(f + g)(re^{i\theta})|^p d\theta$$

$$\leq 2^p (||f||_{H^p}^p + ||g||_{H^p}^p)$$

$$\leq 2^p \cdot 2(||f||_{H^p} + ||g||_{H^p})^p,$$

hence $\|f+g\|_{H^p} \le 2^{1+1/p}(\|f\|_{H^p}+\|g\|_{H^p})$. It follows that H^p and h^p are linear spaces.

Subharmonic functions 2

Let D be a domain, namely, a nonempty connected open set in \mathbb{C} . A function $g:D\to\mathbb{R}$ is called **subharmonic** if it is continuous, and for any domain B with $\overline{B} \subset D$ and continuous function $U : \overline{B} \to \mathbb{R}$ such that U|B is harmonic and such that $g(z) \leq U(z)$ for all $z \in \partial B$, it follows that $g(z) \leq U(z)$ for all

Theorem 2. Let $g: D \to \mathbb{R}$ be continuous. g is subharmonic if and only if for any $a \in D$ there is some $r_a > 0$ such that $D_{r_a}(a) \subset D$ and for each $0 < r < r_a$,

$$g(a) \le \frac{1}{2\pi} \int_0^{2\pi} g(a + re^{i\theta}) d\theta.$$

Lemma 3. If $f: D \to \mathbb{C}$ is analytic and $0 then <math>g(z) = |f(z)|^p$ is subharmonic.

Theorem 4. Let $g: D_1 \to \mathbb{R}$ be subharmonic and define

$$m(r) = \frac{1}{2\pi} \int_0^{2\pi} g(re^{i\theta}) d\theta, \qquad 0 \le r < 1.$$

m is increasing and $r \mapsto m(e^r)$ is convex.

Theorem 5 (Fejér-Riesz inequality). If $f \in H^p$, then

$$\int_{-1}^{1} |f(x)|^p dx \le \frac{1}{2} \int_{0}^{2\pi} |f(e^{i\theta})|^p d\theta.$$

3

Theorem 6. If $1 there is some <math>A_p$ such that if $u \in h^p$ and v is the harmonic conjugate of u, v(0) = 0, then

$$M_p(r, v) \le A_p M_p(r, u), \qquad 0 \le r < 1.$$

¹Peter L. Duren, Theory of H^p Spaces, p. 7, Theorem 1.4.

²Peter L. Duren, *Theory of H^p Spaces*, p. 46, Theorem 3.13. ³Peter L. Duren, *Theory of H^p Spaces*, p. 54, Theorem 4.1.