اصول پردازش تصویر Principles of Image Processing

مصطفی کمالی تبریزی ۱۲ آبان ۱۳۹۹ جلسه سیزدهم

Mean-Shift

Mean-Shift

 An advanced and versatile technique for clustering-based segmentation

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space</u> <u>Analysis</u>, PAMI 2002.

Mean-Shift Algorithm

 The mean-shift algorithm seeks modes or local maxima of density in the feature space

image

Feature space (L*u*v* color values)

7

10

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean-shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean-Shift Segmentation Results

More Results

More Results

Mean-Shift Pros and Cons

Pros

- Does not assume spherical clusters
- Just a single parameter (window size)
- Finds variable number of modes
- Robust to outliers

Cons

- Output depends on window size
- Computationally expensive
- Does not scale well with dimension of feature space

References

Mean-Shift
 Paper: "Mean Shift: A Robust Approach toward
 Feature Space Analysis", D. Comaniciu and P.
 Meer, PAMI 2002

Texture Based Segmentation

Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi Contour and Texture Analysis for Image Segmentation International Journal of Computer Vision (IJCV), 2001

Texture Recognition

- Texture is characterized by the repetition of basic elements or textons
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Texture Recognition

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What Laplacian of Gaussian bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What Laplacian of Gaussian bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank? Gaussian
 - Typically we want a combination of scales and orientations, different types of patterns.

- What filters to put in the bank? Gaussian
 - Typically we want a combination of scales and orientations, different types of patterns.

Root Filter Set (RFS)

First Derivative of Gaussian (Edge) 3 scales $(\sigma_x, \sigma_y) \in \{(1,3), (2,6), (4,12)\}$ 6 orientations

Second Derivative of Gaussian (Bar) $3 \text{ scales } (\sigma_x, \sigma_y) \in \{(1,3), (2,6), (4,12)\}$ 6 orientations

Maximum Response 8 (MR8)

Maximum response across all 6 orientations

Gaussian ($\sigma = 10$)

Laplacian of Gaussian ($\sigma = 10$)

Rotation Invariant

MRS4

Laplacian of Gaussian ($\sigma = 10$)

MR4

Maximum response

Maximum response

Gaussian ($\sigma = 10$)

Laplacian of Gaussian ($\sigma = 10$)

Rotation Invariant

[r1, r2, ..., r38]

We can form a feature vector from the list of responses at each pixel.