Inner product spaces

Assuming V is a vector space over \mathbb{R} , we define an **inner product** on V as a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}, (\overrightarrow{u}, \overrightarrow{v}) \mapsto \langle \overrightarrow{u}, \overrightarrow{v} \rangle$ that satisfies the following:

- 1. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$
- 2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ 3. $\langle \vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$ 4. $\langle \vec{u}, \vec{u} \rangle \ge 0$, equal iff $\vec{u} = \vec{0}$

We say that $(V, \langle \cdot, \cdot \rangle)$ is an **inner product space**. For example, (\mathbb{R}^n, \cdot) is an inner product space, as the dot product is an example of an inner product that acts on \mathbb{R}^n . As another example, consider $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ where $\langle \vec{u}, \vec{v} \rangle =$ $4u_1v_1 + 5u_2v_2 \,\,\forall\,\,\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \,\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. This function also satisfies the inner product properties, so the former space is also an inner product space. Note that we can express this inner product as a modification of the dot product: $\langle \vec{u}, \vec{v} \rangle = \vec{u}^T \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix} \vec{v}.$

We can use the notion of inned product spaces to generalise some definitions that we have discussed. Given an inner product space $(V, \langle \cdot, \cdot \rangle)$, we (re)define:

- 1. $||\vec{v}|| = \sqrt{\langle \vec{v}, \vec{v} \rangle}, ||\vec{v}|| = 0 \iff \vec{v} = 0$
- 2. A unit vector is a vector \vec{u} such that $||\vec{u}|| = 1$
- 3. $dist(\vec{u}, \vec{w}) = ||\vec{u} \vec{w}||$
- 4. $\vec{u} \perp \vec{w} \iff \langle \vec{u}, \vec{w} \rangle = 0$
- 5. Many formulae will carry over, such as the pythagorean theorem $||vva\pm$ $\overrightarrow{b}||^2 = ||\overrightarrow{a}||^2 + ||\overrightarrow{b}||^2 \iff \overrightarrow{a} \perp \overrightarrow{b}.$

Using V from before, consider a finitely-dimensional subspace $W \subseteq V$. Given $\overrightarrow{b} \in V$, we define $\operatorname{proj}_{W} \overrightarrow{b} = \widehat{b}$ as satisfying $\overrightarrow{b} - \widehat{b} \perp \overrightarrow{w} \forall \overrightarrow{w} \in W$. By the pythagorean theorem, $||\overrightarrow{b}||^2 = ||\widehat{b}||^2 + ||\overrightarrow{b} - \widehat{b}||^2$, and therefore $||\widehat{b}|| \leq ||\overrightarrow{b}||$, with equality iff $\vec{b} \in W$.