!pip install bayesian-optimization

Collecting bayesian-optimization
Downloading bayesian_optimization-1.4.3-py3-none-any.whl (18 kB)
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization) (1.25.2)
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization) (1.11.4)
Requirement already satisfied: scikit-learn>=0.18.0 in /usr/local/lib/python3.10/dist-packages (from bayesian-optimization)
Collecting colorama>=0.4.6 (from bayesian-optimization)
Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18.0->bayesian
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.18.0->b
Installing collected packages: colorama, bayesian-optimization
Successfully installed bayesian-optimization-1.4.3 colorama-0.4.6

!git clone https://github.com/808ss/thesis.git

```
→ Cloning into 'thesis'...
    remote: Enumerating objects: 27, done.
    remote: Counting objects: 100% (27/27), done.
    remote: Compressing objects: 100% (26/26), done.
    remote: Total 27 (delta 0), reused 0 (delta 0), pack-reused 0
    Receiving objects: 100% (27/27), 311.32 KiB | 4.51 MiB/s, done.
import numpy as np
import pandas as pd
import xqboost as xqb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
from bayes_opt import BayesianOptimization
random\_seed = 808
np.random.seed(random_seed)
```

MBBR

Importing MBBR and Splitting

```
MBBR = pd.read csv('thesis/MBBR-Chlorination.csv')
MBBR.drop(columns='Date',inplace=True)
X_orig_MBBR = MBBR.drop(columns='Fecal Coliform Effluent (MPN/100mL)')
y_orig_MBBR = MBBR['Fecal Coliform Effluent (MPN/100mL)']
X_train_orig_MBBR, X_test_orig_MBBR, y_train_orig_MBBR, y_test_orig_MBBR = train_test_split(X_orig_MBBR,
                                                                                        y_orig_MBBR,
                                                                                        test_size = 0.3
                                                                                        random state=808)
df_train_orig_MBBR = pd.concat([X_train_orig_MBBR,y_train_orig_MBBR], axis=1)
df_test_orig_MBBR = pd.concat([X_test_orig_MBBR,y_test_orig_MBBR], axis=1)
   Data Analysis for Raw Dataset
missing_rate_MBBR = [(MBBR.isnull().sum()[val]/MBBR.shape[0])*100 for val in range(0,MBBR.shape[1])]
pd.options.display.float_format = '{:,.2f}'.format
MBBR_transposed = MBBR.describe().T
MBBR_transposed['Missingness Rate'] = missing_rate_MBBR
MBBR_transposed
```


	count	mean	std	min	25%	50%	75%	max	Missingnes: Rate
Flow Rate Influent (m3/d)	332.00	4,787.53	2,211.48	197.00	3,344.00	4,709.50	6,232.00	11,147.00	0.00
Total Coliform Influent (MPN/100mL)	270.00	290,896,939.26	733,941,441.61	1,600.00	17,250,000.00	40,500,000.00	160,000,000.00	5,200,000,000.00	18.6 ⁻
Total Coliform Effluent (MPN/100mL)	329.00	733,375.06	9,402,984.69	0.00	2.00	10.00	471.00	143,900,000.00	0.90
Fecal Coliform Influent (MPN/100mL)	103.00	236,377,087.38	621,705,589.64	230,000.00	8,550,000.00	23,000,000.00	37,650,000.00	3,000,000,000.00	68.9
Fecal Coliform Effluent (MPN/100mL)	171.00	746.87	3,947.85	2.00	10.00	10.00	10.00	24,196.00	48.4!
BOD Influent (ppm)	273.00	152.40	148.02	8.00	68.00	119.00	196.00	1,425.00	17.7
BOD Pre- chlorination\n(ppm)	274.00	11.28	12.82	1.00	4.00	8.00	14.00	119.00	17.4

Data Analysis for Training Set (Pre-Imputation)

 $\label{eq:missing_rate_train_orig_MBBR} = [(df_train_orig_MBBR.isnull().sum()[val]/df_train_orig_MBBR.shape[0])*100 \ for \ val \ in \ range(0,df_train_orig_MBBR.isnull().sum()[val]/df_train_orig_MBBR.shape[0])*100 \ for \ val \ in \ range(0,df_train_orig_MBBR.shape[0])*100 \ for \ val \ range(0,df_trai$

pd.options.display.float_format = '{:,.2f}'.format
#pd.set_option('display.float_format', '{:e}'.format)
df_train_orig_MBBR_transposed = df_train_orig_MBBR.describe().T
df_train_orig_MBBR_transposed['Missingness Rate'] = missing_rate_train_orig_MBBR

df_train_orig_MBBR_transposed

7		count	mean	std	min	25%	50%	75%	max	Missingnes: Rate
F	Flow Rate Influent (m3/d)	232.00	4,882.74	2,204.80	197.00	3,344.00	4,762.00	6,349.00	10,999.00	0.0
	Total Coliform Influent (MPN/100mL)	185.00	315,522,010.81	790,769,090.66	16,000.00	18,000,000.00	41,000,000.00	160,000,000.00	5,200,000,000.00	20.2
	Total Coliform Effluent (MPN/100mL)	230.00	1,045,242.88	11,238,969.87	0.00	2.25	10.00	1,280.75	143,900,000.00	0.80
	Fecal Coliform Influent (MPN/100mL)	68.00	298,124,117.65	669,480,560.27	230,000.00	10,400,000.00	24,000,000.00	40,950,000.00	2,600,000,000.00	70.6!
	Fecal Coliform Effluent (MPN/100mL)	120.00	892.02	4,352.93	2.00	10.00	10.00	10.00	24,196.00	48.2
В	OD Influent (ppm)	187.00	162.30	167.60	8.00	70.50	122.00	199.00	1,425.00	19.4
cl	BOD Pre- hlorination\n(ppm)	188.00	11.12	12.31	1.00	5.00	8.00	14.00	119.00	18.9

→ Data Analysis for Testing Set (Pre-imputation)

 $missing_rate_test_orig_MBBR = [(df_test_orig_MBBR.isnull().sum()[val]/df_test_orig_MBBR.shape[0]) * 100 for val in range(0,df_test_orig_MBBR.isnull().sum()[val]/df_test_orig_MBBR.shape[0]) * 100 for val in range(0,df_test_orig_MBBR.isnull().sum()[val]/df_test_orig_MBBR.shape[0]) * 100 for val in range(0,df_test_orig_mBBR.shape[0]) * 100 for val i$

#pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.float_format', '{:e}'.format)
df_test_orig_MBBR_transposed = df_test_orig_MBBR.describe().T
df_test_orig_MBBR_transposed['Missingness Rate'] = missing_rate_test_orig_MBBR

df_test_orig_MBBR_transposed

	count	mean	std	min	25%	50%	75%	max	Missing
Flow Rate Influent (m3/d)	1.000000e+02	4.566650e+03	2.222244e+03	2.170000e+02	3.343750e+03	4.641500e+03	6.112250e+03	1.114700e+04	0.000000
Total Coliform Influent (MPN/100mL)	8.500000e+01	2.373012e+08	5.924907e+08	1.600000e+03	1.700000e+07	4.000000e+07	1.600000e+08	3.500000e+09	1.500000
Total Coliform Effluent (MPN/100mL)	9.900000e+01	8.833667e+03	3.764360e+04	0.000000e+00	2.000000e+00	1.000000e+01	9.000000e+01	2.419600e+05	1.000000
Fecal Coliform Influent (MPN/100mL)	3.500000e+01	1.164114e+08	5.038721e+08	1.000000e+06	7.450000e+06	1.700000e+07	3.045000e+07	3.000000e+09	6.500000
Fecal Coliform Effluent (MPN/100mL)	5.100000e+01	4.053529e+02	2.779390e+03	2.000000e+00	2.000000e+00	1.000000e+01	1.000000e+01	1.986300e+04	4.900000
BOD Influent (ppm)	8.600000e+01	1.308605e+02	8.921358e+01	1.900000e+01	6.600000e+01	1.060000e+02	1.830000e+02	4.090000e+02	1.400000
BOD Pre- chlorination\n(ppm)	8.600000e+01	1.162791e+01	1.393434e+01	1.000000e+00	4.000000e+00	8.000000e+00	1.400000e+01	1.080000e+02	1.400000

Data Imputation

Exporting Datasets to R

```
df_train_orig_MBBR.to_csv('MBBR_train_set.csv',index=False)
df_test_orig_MBBR.to_csv('MBBR_test_set.csv',index=False)
# Export to R for mixgb
```

Mixgb imputation

Import imputed datasets from R

```
dfs = []
for val in range(1,6):
    source = f'thesis/mbbr_m{val}_imputed_train.xlsx'
```

```
dfs.append(pd.read_excel(source))
average_MBBR_train = pd.concat(dfs).groupby(level=0).mean()

dfs = []
for val in range(1,6):
    source = f'thesis/mbbr_m{val}_imputed_test.xlsx'
    dfs.append(pd.read_excel(source))

average_MBBR_test = pd.concat(dfs).groupby(level=0).mean()
```

Data Analysis for Training Set (Post-Imputation)

```
#pd.options.display.float_format = '{:,.2f}'.format
pd.set_option('display.float_format', '{:e}'.format)
average_MBBR_train_transposed = average_MBBR_train.describe().T
```

 $average_{\tt MBBR_train_transposed}$

		count	mean	std	min	25%	50%	75%	
Flow.Rate.Influentm3.	d. 2.	.320000e+02	4.882741e+03	2.204801e+03	1.970000e+02	3.344000e+03	4.762000e+03	6.349000e+03	1.09990
Total.Coliform.InfluentMPN.	100mL. 2.	.320000e+02	3.480306e+08	7.784700e+08	1.600000e+04	2.175000e+07	5.400000e+07	2.200000e+08	5.20000
Total.Coliform.EffluentMPN.	100mL. 2.	.320000e+02	1.036336e+06	1.119062e+07	0.000000e+00	2.750000e+00	1.000000e+01	1.600000e+03	1.43900
Fecal.Coliform.InfluentMPN	100mL. 2.	.320000e+02	1.965840e+08	5.001635e+08	2.300000e+05	1.428500e+07	2.740000e+07	3.821000e+07	2.60000
Fecal.Coliform.EffluentMPN	100mL. 2.	.320000e+02	4.182178e+03	8.256544e+03	2.000000e+00	8.800000e+00	1.000000e+01	2.282500e+02	2.41960
BOD.Influentppm.	2.	.320000e+02	1.585655e+02	1.533443e+02	8.000000e+00	7.585000e+01	1.250000e+02	1.950500e+02	1.42500
BOD.Pre.chlorinationpp	om. 2.	.320000e+02	1.199138e+01	1.246310e+01	1.000000e+00	5.000000e+00	9.000000e+00	1.500000e+01	1.19000
COD.Influentppm.	2.	.320000e+02	3.458931e+02	5.439009e+02	1.300000e+01	1.750000e+02	2.510000e+02	3.745000e+02	7.73400
COD.Pre.chlorinationpp	om. 2.	.320000e+02	4.940431e+01	3.795535e+01	5.000000e+00	2.475000e+01	4.150000e+01	6.300000e+01	3.43000
TSS.Pre.chlorinationpp	m. 2.	.320000e+02	1.756897e+01	2.094736e+01	1.000000e+00	6.000000e+00	1.200000e+01	2.000000e+01	1.60000
pH.Pre.chlorination	2.	.320000e+02	7.185121e+00	3.010609e-01	6.120000e+00	7.000000e+00	7.200000e+00	7.362500e+00	8.38000
Chlorine.dosageL.d.	2.	.320000e+02	8.721017e+02	4.852711e+02	0.000000e+00	6.000000e+02	8.500000e+02	1.160000e+03	2.80000
Residual.chlorineppn	ı . 2.	.320000e+02	2.082141e+00	1.913163e+00	0.000000e+00	3.815000e-01	1.205700e+00	3.917150e+00	5.48000

Data Analysis for Testing Set (Post-Imputation)

 $average_{\tt MBBR_test_transposed}$

```
pd.options.display.float_format = '{:,.2f}'.format
#pd.set_option('display.float_format', '{:e}'.format)
average_MBBR_test_transposed = average_MBBR_test.describe().T
```


	count	mean	std	min	25%	50%	75%	1
Flow.Rate.Influentm3.d.	100.00	4,566.65	2,222.24	217.00	3,343.75	4,641.50	6,112.25	11,147
Total.Coliform.InfluentMPN.100mL.	100.00	288,973,956.00	647,069,268.14	1,600.00	22,750,000.00	45,000,000.00	200,000,000.00	3,500,000,000
Total.Coliform.EffluentMPN.100mL.	100.00	8,933.07	37,466.19	0.00	2.00	10.00	134.75	241,960
Fecal.Coliform.InfluentMPN.100mL.	100.00	147,284,740.00	427,084,482.81	1,000,000.00	12,000,000.00	25,320,000.00	41,560,000.00	3,000,000,000
Fecal.Coliform.EffluentMPN.100mL.	100.00	2,363.05	6,219.15	2.00	10.00	10.00	107.30	24,196
BOD.Influentppm.	100.00	134.13	88.52	19.00	66.45	108.40	188.25	409
BOD.Pre.chlorinationppm.	100.00	12.06	13.39	1.00	5.00	9.00	15.00	108
COD.Influentppm.	100.00	268.66	192.32	41.00	135.75	210.00	357.25	1,25€
COD.Pre.chlorinationppm.	100.00	45.03	47.09	5.00	20.00	29.70	53.55	314
TSS.Pre.chlorinationppm.	100.00	18.00	24.39	1.00	5.00	10.00	19.25	164
pH.Pre.chlorination	100.00	7.21	0.37	5.28	7.10	7.21	7.40	}
Chlorine.dosageL.d.	100.00	809.32	498.65	0.00	488.70	748.90	1,005.05	2,900
Residual.chlorineppm.	100.00	2.14	1.69	0.01	0.49	2.05	3.57	ŧ

Exhaustive Feature Selection

For Imputed Dataset

```
pd.reset_option('display.float_format')
X_train_MBBR = average_MBBR_train.drop(columns=['Residual.chlorine..ppm.','Total.Coliform.Effluent..MPN.100mL.','Fecal.Coliform.
y_train_MBBR = average_MBBR_train['Fecal.Coliform.Effluent..MPN.100mL.']
X_test_MBBR = average_MBBR_test.drop(columns=['Residual.chlorine..ppm.','Total.Coliform.Effluent..MPN.100mL.','Fecal.Coliform.Ef
y_test_MBBR = average_MBBR_test['Fecal.Coliform.Effluent..MPN.100mL.']
features_wo_chlorine_dosage = X_train_MBBR.columns[:-1]
features_wo_chlorine_dosage
Findex(['Flow.Rate.Influent..m3.d.', 'Total.Coliform.Influent..MPN.100mL.',
            'Fecal.Coliform.Influent..MPN.100mL.', 'BOD.Influent..ppm.',
            'BOD.Pre.chlorination..ppm.', 'COD.Influent..ppm.', 'COD.Pre.chlorination..ppm.', 'TSS.Pre.chlorination..ppm.',
            'pH.Pre.chlorination'],
           dtype='object')
# Generate all combinations of the other features
combinations = []
for r in range(1, len(features_wo_chlorine_dosage) + 1):
    combinations.extend(itertools.combinations(features_wo_chlorine_dosage, r))
# Add the first feature to each combination
combinations = [(X_{train\_MBBR.columns[-1],}) + combo for combo in combinations]
params = {'objective': 'reg:squarederror'}
results = []
for combo in combinations:
    dtrain = xgb.DMatrix(X_train_MBBR[list(combo)], label=y_train_MBBR)
    cv_result = xgb.cv(params, dtrain, num_boost_round=10, nfold=5, metrics='rmse', seed=808)
    last_round_metrics = cv_result.iloc[-1]
    results.append([combo, last_round_metrics['train-rmse-mean'], last_round_metrics['test-rmse-mean'],
                    last_round_metrics['train-rmse-std'],last_round_metrics['test-rmse-std']])
results_df_MBBR = pd.DataFrame(results, columns=['Combination', 'Train RMSE', 'Validation RMSE', 'Train RMSE Std. Dev.', ' Valid
results_df_MBBR.sort_values(by='Validation RMSE')
```

₹		Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev						
	241	(Chlorine.dosageL.d., BOD.Influentppm., BO	2100.299445	7556.871893	296.516294	870.813651						
	114	(Chlorine.dosageL.d., BOD.Influentppm., CO	2136.827950	7581.065276	132.556804	443.237014						
	248	(Chlorine.dosageL.d., BOD.Influentppm., CO	1991.224671	7651.991078	124.770157	459.211068						
	246	(Chlorine.dosageL.d., BOD.Influentppm., CO	2117.826255	7677.704257	195.843326	934.008264						
	205	(Chlorine.dosageL.d., Total.Coliform.Influen	2164.685210	7724.491702	218.540663	792.364563						
			•••									
	217	(Chlorine.dosageL.d., Total.Coliform.Influen	2622.006765	9449.279683	160.482385	1616.644110						
	38	(Chlorine.dosageL.d., BOD.Pre.chlorination	3145.176730	9459.540961	271.785598	785.716311						
	6	$(Chlorine.dosageL.d.,\ COD.Pre.chlorination\\$	3860.637185	9509.776645	304.727469	1239.469209						
	27	(Chlorine.dosageL.d., Fecal.Coliform.Influen	2965.036467	9652.201636	297.621937	679.191297						
	193	(Chlorine.dosageL.d., Total.Coliform.Influen	2490.729270	9861.735305	316.960876	839.772053						
	511 ro	ws × 5 columns										
		6 MDDD court welves (by IVelidation DMCF	1) :1[0-2]	1								
	.ts_a	f_MBBR.sort_values(by='Validation RMSE	`).1toc[0:3]	I								
_		Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev						
	241	(Chlorine.dosageL.d., BOD.Influentppm., BO	2100.299445	7556.871893	296.516294	870.813651						
	114	(Chlorine.dosageL.d., BOD.Influentppm., CO	2136.827950	7581.065276	132.556804	443.237014						
	248	(Chlorine.dosageL.d., BOD.Influentppm., CO	1991.224671	7651.991078	124.770157	459.211068						
_	'Ch') B0I' B0I'	<pre>f_MBBR.sort_values(by='Validation RMSE lorine.dosageL.d.',).Influentppm.',).Pre.chlorinationppm.',).Influentppm.', 5.Pre.chlorinationppm.')</pre>	').iloc[0][ˈ	'Combination']								
resul	ts_d	f_MBBR.sort_values(by='Validation RMSE	').iloc[1]['Combination']								
→	'B0I	lorine.dosageL.d.', D.Influentppm.', D.Influentppm.', S.Pre.chlorinationppm.')										
resul	.ts_d	f_MBBR.sort_values(by='Validation RMSE	').iloc[2]['Combination']								
<pre>('Chlorine.dosageL.d.', 'BOD.Influentppm.', 'COD.Influentppm.', 'TSS.Pre.chlorinationppm.', 'pH.Pre.chlorination')</pre>												
		eatures_MBBR = results_df_MBBR.sort_va eatures_MBBR	lues(by='Va	lidation RMSE').i	loc[0]['Combination']							
→ *	'B0I 'B0I 'C0I	lorine.dosageL.d.', D.Influentppm.', D.Pre.chlorinationppm.', D.Influentppm.', S.Pre.chlorinationppm.')										
	results_df_MBBR['count'] = results_df_MBBR['Combination'].apply(lambda x: len(x)) results_df_MBBR.to_csv('MBBR Exhaustive Feature Selection.csv', index=False)											

→ For Raw Dataset

```
\label{eq:constrain} non\_imputed\_mask\_MBBR\_train = \sim np.isnan(y\_train\_orig\_MBBR) \\ non\_imputed\_mask\_MBBR\_test = \sim np.isnan(y\_test\_orig\_MBBR) \\
```

```
X_train_MBBR_dropped = X_train_orig_MBBR[non_imputed_mask_MBBR_train]
y_train_MBBR_dropped = y_train_orig_MBBR[non_imputed_mask_MBBR_train]
X_test_MBBR_dropped = X_test_orig_MBBR[non_imputed_mask_MBBR_test]
y_test_MBBR_dropped = y_test_orig_MBBR[non_imputed_mask_MBBR_test]
features_wo_chlorine_dosage_dropped = X_train_MBBR_dropped.columns[:-1]
features_wo_chlorine_dosage_dropped
→ Index(['Flow Rate Influent (m3/d)', 'Total Coliform Influent (MPN/100mL)',
            'Total Coliform Effluent (MPN/100mL)',
'Fecal Coliform Influent (MPN/100mL)', 'BOD Influent (ppm)',
            'BOD Pre-chlorination\n(ppm)', 'COD Influent (ppm)', 'COD Pre-chlorination\n(ppm)', 'TSS Pre-chlorination (ppm)',
            'pH Pre-chlorination', 'Residual chlorine\n(ppm)'],
           dtype='object')
# Generate all combinations of the other features
combinations = []
for r in range(1, len(features_wo_chlorine_dosage_dropped) + 1):
    combinations.extend(itertools.combinations(features_wo_chlorine_dosage_dropped, r))
# Add the first feature to each combination
combinations = [(X_train_MBBR_dropped.columns[-1],) + combo for combo in combinations]
params = {'objective': 'reg:squarederror'}
results = []
for combo in combinations:
    dtrain = xgb.DMatrix(X_train_MBBR_dropped[list(combo)], label=y_train_MBBR_dropped)
    cv_result = xgb.cv(params, dtrain, num_boost_round=10, nfold=5, metrics='rmse', seed=808)
    last_round_metrics = cv_result.iloc[-1]
    results.append([combo, last_round_metrics['train-rmse-mean'], last_round_metrics['test-rmse-mean'],
                     last_round_metrics['train-rmse-std'],last_round_metrics['test-rmse-std']])
results_df_MBBR_dropped = pd.DataFrame(results, columns=['Combination', 'Train RMSE', 'Validation RMSE', 'Train RMSE Std. Dev.',
```

results_df_MBBR_dropped.sort_values(by='Validation RMSE')

₹		Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev
1	116	(Chlorine dosage (L/d), Total Coliform Influen	321.229337	428.798484	7.617849	98.369977
	21	(Chlorine dosage (L/d), Total Coliform Influen	321.229337	428.798484	7.617849	98.369977
3	366	(Chlorine dosage (L/d), Total Coliform Influen	321.235363	428.804774	7.620255	98.377382
1	113	(Chlorine dosage (L/d), Total Coliform Influen	321.236135	428.807746	7.620590	98.380688
3	365	(Chlorine dosage (L/d), Total Coliform Influen	321.235966	428.812640	7.619451	98.387105
1	555	(Chlorine dosage (L/d), Flow Rate Influent (m3	763.317070	7417.047809	89.546959	1610.559146
1	1114	(Chlorine dosage (L/d), Flow Rate Influent (m3	763.336947	7417.231945	89.552467	1610.327706
1	219	(Chlorine dosage (L/d), Flow Rate Influent (m3	762.391358	7418.023906	89.187099	1607.545426
	91	(Chlorine dosage (L/d), Flow Rate Influent (m3	762.420873	7477.601997	89.561682	2265.881832
1	101	(Chlorine dosage (L/d), Flow Rate Influent (m3	772.338354	7494.328554	81.490661	1493.398012

2047 rows x 5 columns

results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[0:3]

_		Combination	Train RMSE	Validation RMSE	Train RMSE Std. Dev.	Validation RMSE Std. Dev
	116	(Chlorine dosage (L/d), Total Coliform Influen	321.229337	428.798484	7.617849	98.369977
	21	(Chlorine dosage (L/d), Total Coliform Influen	321.229337	428.798484	7.617849	98.369977
	366	(Chlorine dosage (L/d), Total Coliform Influen	321.235363	428.804774	7.620255	98.377382

results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[0]['Combination']

```
('Chlorine dosage (L/d)',
  'Total Coliform Influent (MPN/100mL)',
```

```
'Total Coliform Effluent (MPN/100mL)',
     'TSS Pre-chlorination (ppm)')
results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[1]['Combination']
    ('Chlorine dosage (L/d)'
      'Total Coliform Influent (MPN/100mL)'
      'Total Coliform Effluent (MPN/100mL)')
results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[2]['Combination']
→ ('Chlorine dosage (L/d)',
      'Total Coliform Influent (MPN/100mL)'
     'Total Coliform Effluent (MPN/100mL)',
      'BOD Pre-chlorination\n(ppm)'
      'TSS Pre-chlorination (ppm)')
optimal_features_MBBR_dropped = results_df_MBBR_dropped.sort_values(by='Validation RMSE').iloc[0]['Combination']
optimal_features_MBBR_dropped
    ('Chlorine dosage (L/d)'
      'Total Coliform Influent (MPN/100mL)',
      'Total Coliform Effluent (MPN/100mL)',
      'TSS Pre-chlorination (ppm)')
results df MBBR dropped['count'] = results df MBBR dropped['Combination'].apply(lambda x: len(x))
results_df_MBBR_dropped.to_csv('MBBR Dropped Exhaustive Feature Selection.csv', index=False)
```

Hyperparameter Optimization

For Imputed Dataset

```
# Convert the data into DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR[list(optimal_features_MBBR)], label=y_train_MBBR)
# Define the function to be optimized
def xgb_evaluate(eta, alpha, lambd, gamma, subsample, col_subsample, max_depth):
    eta = 10**eta
    alpha = 10**alpha
    lambd = 10**lambd
    gamma = 10**gamma
    max_depth = int(round(2**max_depth))
    params = {'eval_metric': 'rmse',
              'objective': 'reg:squarederror',
              'max_depth': max_depth,
              'eta': eta,
               'gamma': gamma,
              'subsample': subsample,
              'alpha': alpha,
              'lambda': lambd,
              'colsample_bytree': col_subsample,}
    cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=30, seed=808)
    return -1.0 * cv_result['test-rmse-mean'].iloc[-1]
# Specify the hyperparameters to be tuned
xgb_bo_MBBR = BayesianOptimization(xgb_evaluate, {'eta': (-3, 0),
                                              'alpha': (-6, 0.3),
                                              'lambd': (-6, 0.3),
                                               'gamma': (-6, 1.8),
                                               'subsample': (0.5, 1),
                                               'col_subsample': (0.3, 1),
                                              'max_depth': (1, 3)},
                               random_state=808)
# Optimize the hyperparameters
xgb_bo_MBBR.maximize(n_iter=1000, init_points=10)# Convert the data into DMatrix format
<del>_</del>_
        iter
                 | target
                                 alpha
                                         | col_su... |
                                                           eta
                                                                      gamma
                                                                                   lambd
                                                                                           | max depth | subsample |
                 | -7.742e+0 | 0.04075
                                         0.4513
                                                      | -2.68
                                                                  | -1.662
                                                                               | -1.582
                                                                                           2.026
                                                                                                       0.7673
```

```
-7.577e+0
                                      0.7529
                                                                              -1.339
                         -4.514
                                                                -2.2
                                                                -4.974
3
             -7.662e+0
                         -1.108
                                      0.5069
                                                   -1.136
                                                                             -0.5216
                                                                                          2.693
                                                                                                       0.8202
                                                                             -0.4504
             -7.659e+0
                                                                                          1.466
                                                                                                       0.7294
4
                         -3.147
                                      0.6275
                                                   -2.063
                                                                1.604
             -7.926e+0
                                       0.4052
                                                    -0.3806
                                                                 -0.09483
                                                                                          1.643
                                                                                                       0.6674
5
                          -2.356
                                                                              -5.01
                                                                             -3.144
                                                                                          2.227
6
             -7.791e+0
                         -2.162
                                       0.5228
                                                   -2.659
                                                                -5.793
                                                                                                       0.7522
             -7.715e+0
                          -0.1605
                                       0.6002
                                                   -1.973
                                                                0.8823
                                                                             -3.597
                                                                                          1.193
7
                                                                                                       0.6362
8
             -8.006e+0
                          -0.9486
                                      0.7394
                                                   -0.4943
                                                                -0.4982
                                                                             -3.564
                                                                                          2.166
                                                                                                       0.5334
             -7.774e+0
                          -1.814
                                      0.8098
                                                   -2.344
                                                                -2.07
                                                                             -3.54
                                                                                          1.193
                                                                                                       0.8742
                                                   -0.4746
                                                                             -0.04974
                                                                                          2.478
             -7.851e+0
                                       0.6188
10
                          0.06321
                                                                -0.88
                                                                                                       0.7132
             -7.668e+0
                                                   -2.23
                                                                -0.8528
11
                          -4.263
                                      0.7014
                                                                             -0.698
                                                                                          1.447
                                                                                                       0.6343
                                                                -3.422
12
             -7.629e+0
                         -3.808
                                       0.6678
                                                   -1.792
                                                                             -0.3647
                                                                                          1.883
                                                                                                       0.663
13
             -7.678e+0
                                                   -2.108
                                                                -3.252
                                                                             -1.176
                          -6.0
                                      1.0
                                                                                          1.0
                                                                                                       0.5
14
             -8.143e+0
                         -5.274
                                      0.3
                                                   -0.8337
                                                                -2.395
                                                                             -1.086
                                                                                          3.0
                                                                                                       0.5
15
             -7.669e+0
                          -4.157
                                       0.8436
                                                   -2.202
                                                                -2.551
                                                                             -0.7292
                                                                                          1.27
                                                                                                       0.6293
16
             -7.693e+0
                          -4.902
                                       0.9656
                                                    -2.257
                                                                -1.818
                                                                              -1.625
                                                                                          1.0
                                                                                                       0.5136
17
                         -3.599
                                      0.7227
                                                   -1.837
                                                                -1.922
                                                                             -1.6
             -7.613e+0
                                                                                          1.61
                                                                                                       0.539
18
             -7.611e+0
                          -4.058
                                      0.8756
                                                   -1.732
                                                                -3.137
                                                                             -1.892
                                                                                          1.403
                                                                                                       0.5
19
             -8.014e+0
                          -4.11
                                       0.3
                                                    -2.661
                                                                -2.647
                                                                              -1.851
                                                                                          1.945
                                                                                                       1.0
20
             -7.621e+0
                          -4.055
                                      1.0
                                                   -1.305
                                                                -2.402
                                                                             -1.385
                                                                                          1.198
                                                                                                       0.5
21
             -7.677e+0
                          -4.591
                                      1.0
                                                   -1.503
                                                                -3.441
                                                                             -1.06
                                                                                          1.243
                                                                                                       0.5
22
             -7.817e+0
                          -4.179
                                      0.3
                                                   -1.47
                                                                -1.618
                                                                             -1.126
                                                                                          1.137
                                                                                                       0.5
23
             -7.608e+0
                         -3.841
                                      1.0
                                                   -1.615
                                                                -2.672
                                                                             -1.204
                                                                                          1.906
                                                                                                       0.5
24
                         -3.191
                                      1.0
                                                   -1.542
                                                                             -1.241
                                                                                          1.233
             -7.655e+0
                                                                -3.226
                                                                                                       0.5
25
             -7.69e+03
                         -4.221
                                      1.0
                                                   -1.421
                                                                -2.187
                                                                             -2.215
                                                                                          1.683
                                                                                                       0.5
                         -3.453
                                                                                          2.099
26
             -7.605e+0
                                      1.0
                                                   -2.005
                                                                -1.675
                                                                             -0.6944
                                                                                                       0.5
27
                                                   -1.707
                                                                             -0.08403
                                                                                          2.034
             -7.519e+0
                          -2.831
                                      1.0
                                                                -2.631
                                                                                                       0.5
             -7.472e+0
                         -2.495
                                                                -3.52
                                                                             0.07099
28
                                      1.0
                                                   -1.631
                                                                                          2.395
                                                                                                       0.5
29
             -7.519e+0
                         -2.419
                                                   -2.533
                                                                -3.166
                                                                             0.3
                                                                                          2.466
                                                                                                       0.5
                                       1.0
30
             -7.951e+0
                          -2.035
                                       0.3
                                                    -1.793
                                                                -3.326
                                                                             0.3
                                                                                          1.833
                                                                                                       0.5
31
                                                                             -0.08203
                                                                                                       0.5
             -7.562e+0
                         -2.945
                                      1.0
                                                   -1.93
                                                                -3.168
                                                                                          2.811
32
             -7.547e+0
                         -3.033
                                      1.0
                                                   -2.085
                                                                -3.668
                                                                             0.3
                                                                                          2.212
                                                                                                       0.5
33
             -7.49e+03
                          -2.335
                                       1.0
                                                   -2.08
                                                                -4.033
                                                                             -0.0214
                                                                                          2.903
                                                                                                       0.5508
34
             -7.585e+0
                         -2.741
                                      1.0
                                                   -1.141
                                                                -4.195
                                                                             -0.1525
                                                                                          2.766
                                                                                                       0.5
35
             -7.797e+0
                         -2.441
                                      1.0
                                                   -2.038
                                                                -3.631
                                                                             -0.5648
                                                                                          2.444
                                                                                                       1.0
36
             -7.499e+0
                          -2.302
                                      1.0
                                                   -1.625
                                                                -3.552
                                                                             0.3
                                                                                          3.0
                                                                                                       0.5
37
             -7.531e+0
                         -3.035
                                      1.0
                                                   -1.044
                                                                -3.129
                                                                             0.3
                                                                                          2.404
                                                                                                       0.5
38
             -7.626e+0
                         -2.464
                                      1.0
                                                   -2.992
                                                                -4.047
                                                                             0.3
                                                                                          3.0
                                                                                                       0.5
                                                                -4.8
             -7.566e+0
                                                   -1.817
39
                         -2.073
                                      1.0
                                                                             0.3
                                                                                          3.0
                                                                                                       0.5
                                                                                          2.767
40
             -7.541e+0
                         -2.579
                                                                -2.029
                                      1.0
                                                   -2.101
                                                                             0.3
                                                                                                       0.5
41
             -7.588e+0
                          -3.129
                                      1.0
                                                   -2.906
                                                                -2.255
                                                                                          2.189
                                                                                                       0.5
                                                                             0.3
             -7.496e+0
                         -2.858
                                                   -0.9569
                                                                -1.768
                                                                                                       0.5
42
                                      1.0
                                                                             0.3
                                                                                          2.366
                         -2.578
                                                   -1.643
                                                                                          1.812
43
             -7.52e+03
                                                                                                       0.5
                                      1.0
                                                                -1.1
                                                                             0.3
                                                                -0.674
44
             -7.51e+03
                          -2.875
                                       1.0
                                                    -1.303
                                                                             0.3
                                                                                          2.907
                                                                                                       0.5
45
             -7.66e+03
                         -2.83
                                      1.0
                                                   -2.432
                                                                -0.407
                                                                             0.3
                                                                                          2.581
                                                                                                       1.0
46
             -8.023e+0
                         -2.788
                                       0.972
                                                   -0.4285
                                                                -0.4408
                                                                             -0.1332
                                                                                          2.05
                                                                                                       0.8096
47
             -7.631e+0
                                       0.6171
                                                                                                       0.975
                          -3.283
                                                    -1.673
                                                                -1.64
                                                                             0.289
                                                                                          2.209
48
             -7.65e+03
                         -1.706
                                      0.6838
                                                                -1.886
                                                                             0.1303
                                                                                          2.719
                                                                                                       0.5454
                                                   -1.322
                                      0.9847
49
             -7.675e+0
                         -2.101
                                                   -2.658
                                                                -1.26
                                                                             -0.1563
                                                                                          1.674
                                                                                                       0.7453
50
             -7.53e+03
                          -1.288
                                      1.0
                                                   -2.312
                                                                -3.954
                                                                             0.3
                                                                                          3.0
                                                                                                       0.5
51
             -7.58e+03
                          -1.064
                                      0.8441
                                                   -2.864
                                                                -4.966
                                                                             -0.1234
                                                                                          2.641
                                                                                                       0.5004
                                                                             0.048
                                                                                          2.967
52
             -7.571e+0
                          0.2358
                                       0.7083
                                                   -2.007
                                                                -5.425
                                                                                                       0.6229
53
             -7.821e+0
                          -0.1165
                                       0.4287
                                                   -2.909
                                                                -5.705
                                                                             0.1773
                                                                                          1.876
                                                                                                       0.7659
54
             -7.575e+0
                          -0.188
                                       0.923
                                                   -2.899
                                                                -4.148
                                                                             0.1165
                                                                                          2.943
                                                                                                       0.7923
55
                                       0.9078
                                                   -1.885
                                                                             -0.7125
                                                                                          2.692
             -7.63e+03
                          0.1055
                                                                -3.89
                                                                                                       0.866
             -7.545e+0 | -0.392
                                                   -1.701
56
                                     | 1.0
                                                               | -4.555
                                                                             0.3
                                                                                          3.0
                                                                                                       0.5
```

```
# Extract the optimal hyperparameters from the Bayesian Optimization object
best_params_MBBR = xgb_bo_MBBR.max['params']
# Transform the hyperparameters from log space to original space
best_params_MBBR['eta'] = 10 ** best_params_MBBR['eta']
best params_MBBR['alpha'] = 10 ** best_params_MBBR['alpha']
best_params_MBBR['lambda'] = 10 ** best_params_MBBR['lambd']
best_params_MBBR['gamma'] = 10 ** best_params_MBBR['gamma']
best_params_MBBR['max_depth'] = int(round(2 ** best_params_MBBR['max_depth']))
# Define the remaining xgboost parameters
best_params_MBBR['objective'] = 'reg:squarederror' # or 'binary:logistic' for classification
best_params_MBBR['eval_metric'] = 'rmse' # or 'auc' for classification
best_params_MBBR['colsample_bytree'] = best_params_MBBR['col_subsample']
best_params_MBBR['subsample'] = best_params_MBBR['subsample']
del best_params_MBBR['col_subsample']
del best_params_MBBR['lambd']
best_params_MBBR
    {'alpha': 0.23462247187264512,
      eta': 0.1090450524366011,
      'gamma': 0.2761597227720788,
      'max_depth': 7,
```

```
'subsample': 0.5,
      'lambda': 1.9952623149688795,
      'objective': 'reg:squarederror',
      'eval_metric': 'rmse',
      'colsample_bytree': 1.0}
# Convert the data into DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR_dropped[list(optimal_features_MBBR_dropped)], label=y_train_MBBR_dropped)
# Define the function to be optimized
def xgb_evaluate(eta, alpha, lambd, gamma, subsample, col_subsample, max_depth):
    eta = 10**eta
    alpha = 10**alpha
    lambd = 10**lambd
    gamma = 10**gamma
    max_depth = int(round(2**max_depth))
    params = {'eval_metric': 'rmse',
              'objective': 'reg:squarederror',
              'max_depth': max_depth,
              'eta': eta,
              'gamma': gamma,
              'subsample': subsample,
              'alpha': alpha,
              'lambda': lambd,
              'colsample_bytree': col_subsample,}
    cv_result = xgb.cv(params, dtrain, num_boost_round=1000, nfold=5, early_stopping_rounds=30, seed=808)
    return -1.0 * cv_result['test-rmse-mean'].iloc[-1]
# Specify the hyperparameters to be tuned
xgb_bo_MBBR_dropped = BayesianOptimization(xgb_evaluate, {'eta': (-3, 0),
                                              _
'alpha': (-6, 0.3),
                                              'lambd': (-6, 0.3),
                                              'gamma': (-6, 1.8),
                                              'subsample': (0.5, 1),
                                              'col_subsample': (0.3, 1),
                                              'max_depth': (1, 3)},
                               random_state=808)
```

Optimize the hyperparameters
xgb_bo_MBBR_dropped.maximize(n_iter=1000, init_points=10)# Convert the data into DMatrix format

iter	target	alpha	col_su	eta	gamma	lambd	max_depth	subsar
1	-2.993e+0	 0.04075	0.4513	 -2.68	 -1.662	-1.582	2.026	0.7673
2	_788 . 6	-4.514	0.7529	-1.843	-2.2	-1.339	1.596	0.5436
3	-1.497e+0	-1.108	0.5069	-1.136	-4.974	-0.5216	2.693	0.8202
4	-1.363e+0	-3.147	0.6275	-2.063	1.604	-0.4504	1.466	0.7294
5	-2.517e+0	-2.356	0.4052	-0.3806	-0.09483	-5.01	1.643	0.6674
6	-2.053e+0	-2.162	0.5228	-2.659	-5.793	-3.144	2.227	0.752
7	-1.074e+0	-0.1605	0.6002	-1.973	0.8823	-3.597	1.193	0.6362
8	-2.906e+0	-0.9486	0.7394	-0.4943	-0.4982	-3.564	2.166	0.533
9	j –793 . 5	-1.814	0.8098	-2.344	-2.07	-3.54	1.193	0.8742
10	i -2.633e+0	0.06321	0.6188	-0.4746	-0.88	-0.04974	2.478	0.713
11	-762.4	-4.02	0.7641	-1.938	-2.176	-1.745	1.519	0.6054
12	-1.525e+0	-3.339	1.0	j -3 . 0		-3.317	1.0	0.957
13	-1.052e+0	-4.102	0.6572	-2.021	-0.8261	-1.182	1.0	0.604
14	-2.281e+0	-3.94	0.3	-0.5554	-2.447	1.386	1.0	1.0
15	i -1.253e+0	-4.292	i 1.0	-2.802	-1.582	1 -1.468	2.15	0.5
16	-427.9	-5.083	1.0	-2.177	-1.731	-2.181	1.0	0.5
17	-2.988e+0	_5.385	0.3	-2.847	-2.567	-1.887	1.0	0.5
18	i -446.6	-4.613	1.0	 -1.802	-1.411	i -1.983	1.392	0.5
19	-208.8	-4.976	1.0	-2.038	-1.001	-2.621	1.0	1.0
20	j -505 . 6	-5.747	1.0	-1.442	-0.9472	-2.42	1.0	0.5
21	-537.0	-4.978	1.0	-1.494	-1.554	-3.412	1.0	0.5
22	j -648 . 7	_5.494	1.0	-2.551	-0.2134	-3.435	1.0	0.5
23	-313.6	-5.613	1.0	-1.856	-1.07	-3.142	2.34	1.0
24	-314.2	-5.893	1.0	-1.861	0.5326	-2.487	2.45	1.0
25	-313.5	-6.0	1.0	-0.9088	0.2978	-3.934	2.326	1.0
26	-484.0	-6.0	1.0	-2.6	0.5715	-4.182	3.0	1.0
27	-308.1	-6.0	1.0	-0.6029	1.8	-3.088	3.0	1.0
28	-312.0	-6.0	1.0	0.0	0.03643	-2.264	3.0	1.0
29	-282.8	-6.0	1.0	0.0	1.602	1 -2.3	1.187	1.0
30	- 285 . 9	-6.0	1.0	0.0	1.8	-0.7617	2.872	1.0
31	-208.0	-6.0	1.0	-1.151	1.8	-0.3146	1.0	1.0
32	-357 . 8	-6.0	1.0	-2.553	1.8	-1.917	1.0	1.0
33	-1.649e+0	-5.885	0.7123	-2.289	1.663	0.1913	2.599	0.650
34	-728.8	-5.573	0.7768	-0.002446	1.033	-0.3921	1.013	0.5452
35	-1.988e+0	-5.911	0.3211	-1.486	1.791	-5.844	1.812	0.571

							- 0	1 2		
	36	-313.5	-6.0	1.0	0.0	-1.806	-4.359	3.0	1.0	ı
ĺ	37	-308.9	-6.0	1.0	-1.819	-2.025	-5.751	3.0	1.0	
	38	-310.0	-6.0	1.0	-0.07773	-3.792	-6.0	3.0	1.0	
ĺ	39	-308.9	-6.0	1.0	-2.314	-4.572	-6.0	3.0	1.0	
ĺ	40	-208.3	-6.0	1.0	-1.115	-3.518	-6.0	1.0	1.0	
	41	-367.4	-6.0	1.0	-0.5232	-5.876	-6.0	1.436	0.5	
	42	-394.7	-4.221	1.0	-1.004	-4.176	-6.0	2.184	0.5	
	43	-4.455e+0	-5.714	0.6728	-0.3452	-4.943	-4.18	2.919	0.5961	
	44	-314.2	-6.0	1.0	0.0	-1.909	-6.0	1.881	1.0	
	45	-1 . 195e+0	-6.0	1.0	-2.899	-5.792	-6.0	1.0	1.0	
	46	-308.9	-4.495	1.0	-0.5012	-2.392	-6.0	3.0	1.0	
	47	-1.529e+0	-0.8644	1.0	-3.0	-3.109	-6.0	1.0	1.0	
	48	-1 . 529e+0	0.3	1.0	-3.0	1.8	-6.0	1.0	1.0	
	49	-1.535e+0	-4.479	1.0	-3.0	-3.158	-6.0	3.0	1.0	
	50	-309.9	-3.719	1.0	0.0	-5.795	-6.0	1.0	1.0	
	51	-217.6	-1.257	1.0	0.0	-6.0	-6.0	1.0	0.5	
	52	-309.9	-4.238	1.0	0.0	-3.427	-6.0	1.0	1.0	
	53	-312.4	0.3	1.0	0.0	-6.0	-6.0	2.847	1.0	
	54	-4 . 576e+0	-1.653	0.6737	-0.4743	-4.99	-5 . 867	2.651	0.9358	
	55	-5 . 571e+0	-4.589	0.538	-0.02375	1.374	-2.436	2.524	0.7955	
- 1	56 I	l −2.158e+0 l	l -5. 373	0.3519	-0.8827	-2.406 I	-5.47 I	2.124	l 0.5874 l	l

```
# Extract the optimal hyperparameters from the Bayesian Optimization object
best_params_MBBR_dropped = xgb_bo_MBBR_dropped.max['params']
# Transform the hyperparameters from log space to original space
best_params_MBBR_dropped['eta'] = 10 ** best_params_MBBR_dropped['eta']
best_params_MBBR_dropped['alpha'] = 10 ** best_params_MBBR_dropped['alpha']
best_params_MBBR_dropped['lambda'] = 10 ** best_params_MBBR_dropped['lambd']
best_params_MBBR_dropped['gamma'] = 10 ** best_params_MBBR_dropped['gamma']
best_params_MBBR_dropped['max_depth'] = int(round(2 ** best_params_MBBR_dropped['max_depth']))
# Define the remaining xgboost parameters
best_params_MBBR_dropped['objective'] = 'reg:squarederror' # or 'binary:logistic' for classification
best_params_MBBR_dropped['eval_metric'] = 'rmse' # or 'auc' for classification
best_params_MBBR_dropped['colsample_bytree'] = best_params_MBBR_dropped['col_subsample']
best_params_MBBR_dropped['subsample'] = best_params_MBBR_dropped['subsample']
del best_params_MBBR_dropped['col_subsample']
del best_params_MBBR_dropped['lambd']
best params MBBR dropped
→ {'alpha': 1.854435961006547e-05,
      'eta': 1.0,
      'gamma': 6.220326073224884e-06,
      'max_depth': 2,
'subsample': 1.0,
      'lambda': 0.17135367370598076,
      'objective': 'reg:squarederror',
'eval_metric': 'rmse',
      'colsample_bytree': 1.0}
```

Final Model Training and Testing

Optimized XGBoost 1

- · Optimal Features
- · Optimal Hyperparameters
- · Trained on Imputed Dataset

```
# Convert test data to DMatrix format
dtrain = xgb.DMatrix(X_train_MBBR[list(optimal_features_MBBR)], label=y_train_MBBR)
dtest = xgb.DMatrix(X_test_MBBR[list(optimal_features_MBBR)], label=y_test_MBBR)
```

Determination of optimal num_boost_round

```
evals_result_MBBR = {}
```

```
test-rmse:6376.64259
[0]
        train-rmse:7938.34661
[1]
        train-rmse:7589.48878
                                 test-rmse:6275.62083
[2]
        train-rmse:7222.34557
                                 test-rmse:6248.52757
[3]
        train-rmse:6906.47431
                                 test-rmse:6284.50982
[4]
        train-rmse:6670.73687
                                 test-rmse:6279.04361
[5]
        train-rmse:6442.15273
                                 test-rmse:6250.27330
[6]
        train-rmse:6213.12298
                                 test-rmse:6272.63744
        train-rmse:6013.79024
[7]
                                 test-rmse:6238.05461
[8]
        train-rmse:5848.91577
                                 test-rmse:6218.43112
        train-rmse:5659.89979
[9]
                                 test-rmse:6215.80775
[10]
        train-rmse:5529.18883
                                 test-rmse:6245.50303
[11]
        train-rmse:5385.88174
                                 test-rmse:6255.62951
[12]
        train-rmse:5233.01081
                                 test-rmse:6307.45699
[13]
        train-rmse:5088.77098
                                 test-rmse:6348.19896
[14]
        train-rmse:4925.88947
                                 test-rmse:6364.94993
[15]
        train-rmse:4785.09633
                                 test-rmse:6430.27950
[16]
        train-rmse:4664.35442
                                 test-rmse:6439.32849
[17]
        train-rmse:4585.26810
                                 test-rmse:6488.78365
                                 test-rmse:6542.51794
[18]
        train-rmse:4489.10982
[19]
        train-rmse:4385.58931
                                 test-rmse:6663.39762
[20]
        train-rmse:4272.68376
                                 test-rmse:6674.47286
        train-rmse:4180.72574
                                 test-rmse:6702.99268
[21]
[22]
        train-rmse:4090.10598
                                 test-rmse:6785.68805
[23]
        train-rmse:3954.38341
                                 test-rmse:6841.78496
                                 test-rmse:6862.51487
[24]
        train-rmse:3832.77041
[25]
        train-rmse:3759.10478
                                 test-rmse:6869.74787
[26]
        train-rmse:3681.33131
                                 test-rmse:6916.94729
[27]
        train-rmse:3575.49641
                                 test-rmse:6905.93555
[28]
        train-rmse:3500.32614
                                 test-rmse:6922.27536
[29]
        train-rmse:3452.88837
                                 test-rmse:6969.16661
[30]
        train-rmse:3367.96491
                                 test-rmse:6994.86683
        train-rmse:3327.38264
                                 test-rmse:7029.83162
[31]
[32]
        train-rmse:3244.12376
                                 test-rmse:7040.08481
[33]
        train-rmse:3176.35687
                                 test-rmse:7105.66843
[34]
        train-rmse:3091.76204
                                 test-rmse:7123.14758
                                 test-rmse:7148.74169
[35]
        train-rmse:3033.65153
[36]
        train-rmse:2978.83142
                                 test-rmse:7133.92043
        train-rmse:2949.62726
[37]
                                 test-rmse:7124.16713
        train-rmse:2896.83021
                                 test-rmse:7145.00846
[38]
[39]
        train-rmse:2861.69180
                                 test-rmse:7181.31705
```

Train the final model

Make predictions on the test set
y_pred_final_MBBR = final_model_MBBR.predict(dtest)

```
train-rmse:7938.34661
                                      test-rmse:6376.64259
\overline{2}
    [1]
            train-rmse: 7589.48878
                                      test-rmse:6275.62083
    [2]
            train-rmse:7222.34557
                                      test-rmse:6248.52757
    [3]
            train-rmse:6906.47431
                                      test-rmse:6284.50982
    [4]
            train-rmse:6670.73687
                                      test-rmse:6279.04361
    [5]
            train-rmse:6442.15273
                                      test-rmse:6250.27330
    [6]
            train-rmse:6213.12298
                                      test-rmse:6272.63744
    [7]
            train-rmse:6013.79024
                                      test-rmse:6238.05461
    [8]
            train-rmse:5848.91577
                                      test-rmse:6218.43112
            train-rmse:5659.89979
    [9]
                                      test-rmse:6215.80775
            train-rmse:5529.18883
    [10]
                                      test-rmse:6245.50303
    [11]
            train-rmse:5385.88174
                                      test-rmse:6255.62951
            train-rmse:5233.01081
                                      test-rmse:6307.45699
    [12]
    [13]
            train-rmse:5088.77098
                                      test-rmse:6348.19896
    [14]
            train-rmse:4925.88947
                                      test-rmse:6364.94993
            train-rmse:4785.09633
    [15]
                                      test-rmse:6430.27950
    [16]
            train-rmse:4664.35442
                                      test-rmse:6439.32849
    [17]
            train-rmse:4585.26810
                                      test-rmse:6488.78365
    [18]
            train-rmse:4489.10982
                                      test-rmse:6542.51794
            train-rmse:4385.58931
    [19]
                                      test-rmse:6663.39762
    [20]
            train-rmse:4272.68376
                                      test-rmse:6674.47286
    [21]
            train-rmse:4180.72574
                                      test-rmse:6702.99268
            train-rmse:4090.10598
    [22]
                                      test-rmse:6785.68805
    [23]
            train-rmse:3954.38341
                                      test-rmse:6841.78496
    [24]
            train-rmse:3832.77041
                                      test-rmse:6862.51487
    [25]
            train-rmse:3759.10478
                                      test-rmse:6869.74787
    [26]
            train-rmse:3681.33131
                                      test-rmse:6916.94729
    [27]
            train-rmse:3575.49641
                                      test-rmse:6905.93555
```

test-rmse:613.93280

test-rmse:594.33781

test-rmse:597.11881

test-rmse:597.56308

test-rmse:597.40967

[2]

[3]

[4]

[5]

[6]

train-rmse:70.43796

train-rmse:27.93794

train-rmse:18.52827

train-rmse:15.76184

train-rmse:13.52992

```
test-rmse:596.67337
        train-rmse:10.31418
[8]
        train-rmse:9.66591
                                 test-rmse:596.74222
[9]
        train-rmse:8.30679
                                 test-rmse:596.69133
[10]
        train-rmse:7.11336
                                 test-rmse:597.98079
[11]
       train-rmse:4.92182
                                 test-rmse:597.47689
[12]
        train-rmse:4.31951
                                 test-rmse:596.61404
[13]
        train-rmse:4.01964
                                 test-rmse:596.87693
[14]
       train-rmse:3.80004
                                 test-rmse:596.86808
        train-rmse:3.48637
                                 test-rmse:597.21718
[15]
[16]
       train-rmse:3.29071
                                 test-rmse:596.98130
                                 test-rmse:596.96556
[17]
        train-rmse:3.04450
[18]
        train-rmse:2.89239
                                 test-rmse:597.04921
[19]
        train-rmse:2.70107
                                 test-rmse:597.04948
[20]
        train-rmse:2.55136
                                 test-rmse:597.04933
[21]
        train-rmse:2.37817
                                 test-rmse:596.86476
[22]
       train-rmse:2.27732
                                 test-rmse:596.82348
[23]
        train-rmse:2.23002
                                 test-rmse:596.75120
[24]
        train-rmse:2.13802
                                 test-rmse:596.83475
[25]
        train-rmse:2.06868
                                 test-rmse:596.73689
[26]
        train-rmse:1.87541
                                 test-rmse:596.94704
[27]
        train-rmse:1.78322
                                 test-rmse:596.74861
[28]
        train-rmse:1.72632
                                 test-rmse:596.86226
[29]
        train-rmse:1.63567
                                 test-rmse:596.83061
```

Untuned XGBoost 1

[29]

train-rmse:237.97673

- · No Feature Selection
- · No Hyperparameter Tuning
- · Trained on Imputed Dataset

```
dtrain = xgb.DMatrix(X_train_MBBR, label=y_train_MBBR)
dtest = xgb.DMatrix(X_test_MBBR, label=y_test_MBBR)
params = {
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'seed': 808
}
# Train the out of the box xgboost model
oob_model_imputed_MBBR = xgb.train(params, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(dte
# Make predictions on the test set
y_pred_oob_imputed_MBBR = oob_model_imputed_MBBR.predict(dtest)
₹
             train-rmse:6774.97495
                                      test-rmse:6412.99024
    [1]
             train-rmse:5770.09905
                                      test-rmse:6457.11577
     [2]
             train-rmse:5015.44845
                                      test-rmse:6499.64560
     [3]
             train-rmse:4239.47156
                                      test-rmse:6661.99689
     [4]
            train-rmse:3505.53341
                                      test-rmse:6949.86112
                                      test-rmse:7060.45223
     [5]
            train-rmse:3005.50509
     [6]
             train-rmse:2704.06248
                                      test-rmse:7150.26573
    [7]
             train-rmse:2487.43675
                                      test-rmse:7210.79102
     [8]
             train-rmse:2251.59427
                                      test-rmse:7240.25033
     [9]
            train-rmse:2082.37840
                                      test-rmse:7241.37554
     [10]
            train-rmse:1967.15108
                                      test-rmse:7230.81001
             train-rmse:1734.87011
                                      test-rmse:7363.53215
     [11]
                                      test-rmse:7407.48252
    [12]
             train-rmse:1666.30993
    [13]
             train-rmse:1449.09812
                                      test-rmse:7500.17073
     [14]
             train-rmse:1318.81378
                                      test-rmse:7462.01234
    [15]
                                      test-rmse:7533.92873
             train-rmse:1219.04957
     [16]
             train-rmse:1085.66512
                                      test-rmse:7536.15376
     [17]
                                      test-rmse:7593.12216
             train-rmse:926.50254
    [18]
                                      test-rmse:7655.21627
             train-rmse:819.67148
     [19]
             train-rmse:719.95313
                                      test-rmse:7647.35010
             train-rmse:649.38902
    [20]
                                      test-rmse:7629.97257
    [21]
             train-rmse:559.19661
                                      test-rmse:7623.78415
     [22]
                                      test-rmse:7621.62974
             train-rmse:537.70667
    [23]
             train-rmse:462.07056
                                      test-rmse:7610.48868
    [24]
             train-rmse:443.26464
                                      test-rmse:7614.62903
             train-rmse:384.78671
                                      test-rmse:7627.31332
     [25]
    [26]
             train-rmse:337.20520
                                      test-rmse:7622.59160
     [27]
             train-rmse:308.66206
                                      test-rmse:7629.13639
    [28]
             train-rmse:273.01383
                                      test-rmse:7636.48918
```

test-rmse:7635.30295

Untuned XGBoost 2

- · No Feature Selection
- · No Hyperparameter Tuning
- · Trained on Non-Imputed (Raw) Dataset

```
dtrain = xgb.DMatrix(X_train_MBBR_dropped, label=y_train_MBBR_dropped)
dtest = xgb.DMatrix(X_test_MBBR_dropped, label=y_test_MBBR_dropped)
    'objective': 'reg:squarederror',
    'eval_metric': 'rmse',
    'seed': 808
# Train the out of the box xgboost model
oob_model_MBBR = xgb.train(params, dtrain, num_boost_round=1000, early_stopping_rounds=30, evals=[(dtrain, 'train'),(dtest, 'tes
# Make predictions on the test set
y_pred_oob_MBBR = oob_model_MBBR.predict(dtest)
₹
    [0]
             train-rmse:3285.90197
                                      test-rmse:1972.13232
            train-rmse:2491.86203
     [1]
                                      test-rmse:1350.86454
     [2]
            train-rmse:1890.40368
                                      test-rmse:882.46196
     [3]
             train-rmse:1434.69235
                                      test-rmse:530.50741
            train-rmse:1089.23724
    [4]
                                      test-rmse:271.13085
     [5]
            train-rmse:827.19850
                                      test-rmse:110.95618
     [6]
            train-rmse:628.42406
                                      test-rmse:145.68109
     [7]
            train-rmse:477.61786
                                      test-rmse:244.78122
     [8]
            train-rmse:363.20811
                                      test-rmse:327.83422
    [9]
             train-rmse:276.41784
                                      test-rmse:392.57120
     [10]
            train-rmse:210.56042
                                      test-rmse:442.21873
                                      test-rmse:480.15992
     [11]
             train-rmse:160.62375
                                      test-rmse:509.01315
    [12]
            train-rmse:122.74358
            train-rmse:94.08714
     [13]
                                      test-rmse:530.99817
     [14]
            train-rmse:72.49401
                                      test-rmse:547.73121
    [15]
            train-rmse:56.29042
                                      test-rmse:560.44855
     [16]
            train-rmse:44.09137
                                      test-rmse:571.05711
     [17]
             train-rmse:34.56327
                                      test-rmse:578.63850
     [18]
            train-rmse:27.08168
                                      test-rmse:585.16928
     [19]
             train-rmse:21.29454
                                      test-rmse:590.21965
    [20]
            train-rmse:16.81378
                                      test-rmse:594.13136
    [21]
            train-rmse:13.31715
                                      test-rmse:597.16654
    [22]
             train-rmse:10.59158
                                      test-rmse:599.34566
    [23]
                                      test-rmse:601.10263
            train-rmse:8.36481
     [24]
            train-rmse:6.71144
                                      test-rmse:602.56967
     [25]
             train-rmse:5.35205
                                      test-rmse:603.70925
    [26]
            train-rmse:4.32974
                                      test-rmse:604.52702
     [27]
            train-rmse:3.52537
                                      test-rmse:605.18638
     [28]
            train-rmse:2.95408
                                      test-rmse:605.73921
    [29]
            train-rmse:2.37729
                                      test-rmse:606.17067
            train-rmse:1.96153
     [30]
                                      test-rmse:606.51057
     [31]
             train-rmse:1.65902
                                      test-rmse:606.76755
    [32]
             train-rmse:1.40335
                                     test-rmse:606.94973
    [33]
             train-rmse:1.19908
                                      test-rmse:607.11337
    [34]
             train-rmse:1.00331
                                      test-rmse:607.22956
    [35]
            train-rmse:0.87806
                                      test-rmse:607.32988
```

Naive Model 1

· Always predicts the mean effluent chlorine residual of the imputed training dataset

```
y_pred_naive_MBBR = np.full(y_test_MBBR.shape, y_train_MBBR.mean())
```

Naive Model 2

· Always predicts the mean effluent chlorine residual of the Non-imputed (raw) training dataset

```
y_pred_naive_orig_MBBR = np.full(y_test_MBBR.shape, y_train_orig_MBBR.mean())
```

Model Evaluation

```
def compute_metrics(y_pred,y_test):
  std obs = np.std(y test)
  std_sim = np.std(y_pred)
 mean_obs = np.mean(y_test)
 mean_sim = np.mean(y_pred)
  # Computing correlation
  r = np.corrcoef(y_test, y_pred)[0, 1]
 # Computing KGE
  alpha = std_sim / std_obs
  beta = mean_sim / mean_obs
  kge = 1 - np.sqrt(np.square(r - 1) + np.square(alpha - 1) + np.square(beta - 1))
  # PBIAS Calculation
  pbias = np.sum((y_test - y_pred)) / np.sum(y_test) * 100
  nse = 1 - (np.sum((y_test-y_pred)**2))/(np.sum((y_test-np.mean(y_test))**2))
  if nse > 0.35:
   nse = (nse,'good')
  else:
   nse = (nse,'bad')
  if abs(pbias) < 15:
    pbias = (abs(pbias), 'good')
   pbias = (abs(pbias),'bad')
  if kge > -0.41:
   kge = (kge, 'good')
  else:
    kge = (kge, 'bad')
  return(nse,pbias,kge)
def compute_nrmse(y_true, y_pred):
    rmse = np.sqrt(mean_squared_error(y_true, y_pred))
    nrmse = rmse / (np.max(y_true) - np.min(y_true))
    return nrmse
non_imputed_mask_MBBR = ~np.isnan(y_test_orig_MBBR)
```

Model Metrics evaluated on Imputed Test Set

Optimized XGBoost 1

```
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_MBBR, y_test_MBBR)
print(f"Final model metrics:\n\nNSE: {nse_final}, \nPBIAS: {pbias_final}, \nKGE: {kge_final}")

rmse = mean_squared_error(y_test_MBBR, y_pred_final_MBBR, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")

nrmse = compute_nrmse(y_test_MBBR, y_pred_final_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")

→ Final model metrics:

NSE: (-0.34682405277278616, 'bad'),
 PBIAS: (95.33041309754255, 'bad'),
 KGE: (-0.16342687661455702, 'good')

Root Mean Squared Error: 7181.3170116709125
 Normalized Root Mean Squared Error: 0.29682222913412054
```

Untuned XGBoost 1

```
nse_naive, pbias_naive, kge_naive = compute_metrics(y_pred_oob_imputed_MBBR, y_test_MBBR)
print(f"Final model metrics:\n\nNSE: {nse_naive}, \nPBIAS: {pbias_naive}, \nKGE: {kge_naive}")
rmse = mean_squared_error(y_test_MBBR, y_pred_oob_imputed_MBBR, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_oob_imputed_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
→▼ Final model metrics:
    NSE: (-0.5221262784296814, 'bad'),
PBIAS: (87.55809769151664, 'bad'),
KGE: (-0.16388927514051255, 'good')
     Root Mean Squared Error: 7634.384140509057
    Normalized Root Mean Squared Error: 0.3155486542328287

    Naive Model 1

rmse = mean_squared_error(y_test_MBBR, y_pred_naive_MBBR, squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_naive_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 6449.829297729834
    Normalized Root Mean Squared Error: 0.2665879679974305

    Naive Model 2

rmse = mean_squared_error(y_test_MBBR, y_pred_naive_orig_MBBR, squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR, y_pred_naive_orig_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 6360.4231309725865
    Normalized Root Mean Squared Error: 0.26289258208533467
   Model Metrics evaluated on Non-Imputed (Raw) Test Set
   Optimized XGBoost 1
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_MBBR[non_imputed_mask_MBBR], y_test_MBBR_dropped)
print(f"Final model metrics:\n\nNSE: {nse_final}, \nPBIAS: {pbias_final}, \nKGE: {kge_final}")
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_final_MBBR[non_imputed_mask_MBBR],squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_final_MBBR[non_imputed_mask_MBBR])
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
    NSE: (-2.5417735835004196, 'bad'), PBIAS: (640.3145618721967, 'bad'),
    KGE: (-5.488498017135118, 'bad')
     Root Mean Squared Error: 5179.166317292788
    Normalized Root Mean Squared Error: 0.26077067203528465
```

Optimized XGBoost 2

```
[3] MBBR - No effluent variables - Fecal Coliform Target.ipynb - Colab
nse_final, pbias_final, kge_final = compute_metrics(y_pred_final_MBBR_dropped, y_test_MBBR_dropped)
print(f"Final model metrics:\n\nNSE: {nse_final}, \nPBIAS: {pbias_final}, \nKGE: {kge_final}")
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_final_MBBR_dropped,squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_final_MBBR_dropped)
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
     NSE: (0.9529564714433267, 'good'),
     PBIAS: (16.684295860631067, 'bad'),
    KGE: (0.7280603314656273, 'good')
     Root Mean Squared Error: 596.8970121341724
    Normalized Root Mean Squared Error: 0.030053723988428198
  Untuned XGBoost 2
nse_naive, pbias_naive, kge_naive = compute_metrics(y_pred_oob_MBBR, y_test_MBBR_dropped)
print(f"Final model metrics:\n\nNSE: {nse_naive}, \nPBIAS: {pbias_naive}, \nKGE: {kge_naive}")
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_oob_MBBR, squared=False)
print(f"\nRoot Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_oob_MBBR)
print(f"Normalized Root Mean Squared Error: {nrmse}")
Final model metrics:
    NSE: (0.9512975997533456, 'good')
    PBIAS: (19.473279272703255, 'bad'),
KGE: (0.7073986846553662, 'good')
     Root Mean Squared Error: 607.3298725710008
    Normalized Root Mean Squared Error: 0.030579017802275857
   Naive Model 1
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_naive_MBBR[non_imputed_mask_MBBR],squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_naive_MBBR[non_imputed_mask_MBBR])
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 4673.109335864129
     Normalized Root Mean Squared Error: 0.2352907374182634
   Naive Model 2
rmse = mean_squared_error(y_test_MBBR_dropped, y_pred_naive_orig_MBBR[non_imputed_mask_MBBR],squared=False)
print(f"Root Mean Squared Error: {rmse}")
nrmse = compute_nrmse(y_test_MBBR_dropped, y_pred_naive_orig_MBBR[non_imputed_mask_MBBR])
print(f"Normalized Root Mean Squared Error: {nrmse}")
    Root Mean Squared Error: 2794.705983743531
     Normalized Root Mean Squared Error: 0.14071325631859075
  Feature Importance
# Get feature importance
importance_MBBR = final_model_MBBR.get_score(importance_type='gain')
name_dict_MBBR = {
    'Flow.Rate.Influent..m3.d.': 'Flow Rate Influent',
    'BOD.Influent..ppm.': 'BOD Influent',
    'Total.Coliform.Effluent..MPN.100mL.':'Total Coliform Effluent',
    'pH.Pre.chlorination': 'pH Pre-Chlorination',
```

Feature Importance

```
'Chlorine.dosage..L.d.':'Chlorine Dosage',
    'TSS.Pre.chlorination..ppm.':'TSS Pre-Chlorination',
    'Total.Coliform.Influent..MPN.100mL.': 'Total Coliform Influent',
    'Fecal.Coliform.Influent..MPN.100mL.':'Fecal Coliform Influent',
    'BOD.Pre.chlorination..ppm.':'BOD Pre-Chlorination',
    'Fecal.Coliform.Effluent..MPN.100mL.':'Fecal Coliform Effluent',
    'COD.Influent..ppm.':'COD Influent',
    'COD.Pre.chlorination..ppm.':'COD Pre-Chlorination',
    }
# For visualization, it is better to convert it to a DataFrame
importance_df_MBBR = pd.DataFrame({
    'Feature': list(importance_MBBR.keys()),
    'Importance': list(importance_MBBR.values())
})
importance_df_MBBR['Feature'] = importance_df_MBBR['Feature'].replace(name_dict_MBBR)
# Sort the DataFrame by importance
importance_df_MBBR = importance_df_MBBR.sort_values(by='Importance', ascending=False)
# Plot feature importance
plt.figure(figsize=(10, 8))
plt.barh(importance_df_MBBR['Feature'], importance_df_MBBR['Importance'], color='skyblue')
plt.xlabel("Importance")
plt.ylabel("Feature")
plt.title("Feature Importance")
plt.gca().invert_yaxis() # To show the highest importance at the top
plt.show()
```


- Data Visualization for Model Evaluation
- Optimized XGBoost on Imputed Test Dataset

```
# with imputation
plt.scatter(y_test_MBBR,y_pred_final_MBBR);
```

```
plt.xlabel('True Value');
plt.ylabel('Predicted Value');
```

```
25000 - 20000 - 20000 - 20000 - 20000 - 25000 True Value
```

```
# Create an x-axis range based on the length of the series/array
x = range(1, len(y_test_MBBR) + 1)

# Plotting
plt.figure(figsize=(10, 5))
plt.plot(x, y_test_MBBR, label='True', marker='o')
plt.plot(x, y_pred_final_MBBR, label='Predicted', marker='x')

# Adding labels and title
plt.xlabel('Test Datapoint')
plt.ylabel('Fecal Coliform Effluent')
plt.title('Comparison of True and Predicted Values on Imputed Test Data')
plt.legend()

# Show plot
plt.show()
```


✓ Optimized XGBoost on Non-Imputed (Raw) Test Dataset

```
# without imputation
plt.scatter(y_test_orig_MBBR[non_imputed_mask_MBBR],y_pred_final_MBBR[non_imputed_mask_MBBR])
```

```
plt.xlabel('True Value');
plt.ylabel('Predicted Value');
```

```
12000 - 10000 - 10000 - 10000 - 10000 12500 15000 17500 20000

True Value
```

```
# Create an x-axis range based on the length of the series/array
x = range(1, len(y_test_orig_MBBR[non_imputed_mask_MBBR]) + 1)

# Plotting
plt.figure(figsize=(10, 5))
plt.plot(x, y_test_orig_MBBR[non_imputed_mask_MBBR], label='True', marker='o')
plt.plot(x, y_pred_final_MBBR[non_imputed_mask_MBBR], label='Predicted', marker='x')

# Adding labels and title
plt.xlabel('Test Datapoint')
plt.ylabel('Fecal Coliform Effluent')
plt.title('Comparison of True and Predicted Values on Raw Test Data')
plt.legend()

# Show plot
plt.show()
```


Exporting Results

Determine the maximum length of the columns
max_length = max(len(y_test_MBBR), len(y_test_MBBR_dropped), len(y_pred_final_MBBR), len(y_pred_final_MBBR_dropped), len(y_pred_final_MBBR_dropped)

```
# Function to extend a series or array to the maximum length with NaN values
def extend_with_nan(data, length):
    if isinstance(data, np.ndarray):
        data = pd.Series(data)
    return data.reindex(range(length), fill_value=np.nan)

# Extend all columns to the maximum length
y_test_MBBR = extend_with_nan(y_test_MBBR, max_length)
v test MBBR dropped = extend with nan(v test MBBR dropped.reset index(drop='True'). max length)
```