# PENERAPAN FUZZY LOGIC

# Sistem Pendukung Keputusan dalam Menentukan Jumlah Kebutuhan Air Pada Manusia



# Disusun Oleh:

Klaudius Andhika Tjiputra - 210066064 Tita Syakharani Alrizqa - 210066072

# PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SUNAN KALIJAGA YOGYAKARTA

2022

### **BAB I**

### **PENDAHULUAN**

### 1.1. Latar Belakang

Penelitian ini dilakukan untuk menentukan jumlah kebutuhan air dalam tubuh manusia. Sistem fuzzy ini berguna untuk melihat seberapa banyak air yang kita minum setelah berolahraga dalam intensitas waktu tertentu. Pemilihan sistem pendukung ini terdapat tiga variabel yaitu Kelompok Usia, Berat Badan, dan Intensitas Olahraga Harian. Penilaian dilakukan dengan mengambil data dari variabel yang diinputkan ke dalam sistem. Perhitungan ini dilakukan menggunakan Fuzzy Logic Tsukamoto dan program yang sudah kami buat. Metode Fuzzy Logic Tsukamoto merupakan metode yang digunakan untuk membantu dalam pemberian rekomendasi secara cepat, tepat, dan akurat. Maka dikembangkan sebuah aplikasi yang dapat memberi rekomendasi terhadap berapa jumlah kebutuhan air yang harus diminum berdasarkan variabel yang sudah ditentukan.

### 1.2. Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan sebelumnya maka dapat dirumuskan permasalahan sebagai berikut :

- 1. Bagaimana Metode Fuzzy Tsukamoto dapat diimplementasikan sehingga menghasilkan keputusan dalam jumlah kebutuhan air yang akurat?
- 2. Berapa tingkat akurasi yang dapat dihasilkan berdasarkan penerapan parameter output dengan metode perhitungan Tsukamoto?

### 1.1. Manfaat

Penelitian ini akan memberikan manfaat bagi masyarakat umum untuk dapat mengetahui jumlah kebutuhan air dalam tubuh yang harus diminum setelah berolahraga sehingga dapat menghindari dehidrasi pada tubuh.

### **BAB II**

### DASAR TEORI

### 2.1. Logika Fuzzy

Logika fuzzy merupakan salah satu komponen pembentuk Soft Computing. Dasar logika fuzzy adalah teori himpunan fuzzy. Pada teori himpunan fuzzy, peranan derajat keanggotaan sebagai penentu keberadaan elemen dalam suatu himpunan sangatlah penting. Nilai keanggotaan atau derajat keanggotaan atau membership function menjadi ciri utama dari penalaran dengan logika fuzzy tersebut (Kusumadewi S, Purnomo H, 2010).

Motivasi utama teori fuzzy logic adalah memetakan sebuah ruang input ke dalam ruang output dengan menggunakan IF-THEN Rule. Pemetaan dilakukan dalam suatu FIS, urutan rule bisa sembarang. FIS mengevaluasi semua rule secara simultan untuk menghasilkan kesimpulan. Oleh karenanya, semua rule harus didefinisikan lebih dahulu sebelum kita membangun sebuah FIS yang akan digunakan untuk menginterpretasikan semua rule tersebut. Mekanisme dalam FIS bisa dirangkum yaitu: FIS adalah sebuah metode yang menginterpretasikan harga-harga dalam vektor input, menarik kesimpulan berdasarkan sekumpulan IF-THEN rule yang diberikan, dan kemudian menghasilkan vektor output.

### 2.2. Fungsi Keanggotaan

Fungsi keanggotaan adalah grafik yang mewakili besar dari derajat keanggotaan masing-masing variabel input yang berada dalam interval antara 0 dan 1. Derajat keanggotaan sebuah variabel x dilambangkan dengan simbol  $\mu(x)$ . Rule-rule menggunakan nilai keanggotaan sebagai faktor bobot untuk menentukan pengaruhnya pada saat melakukan inferensi untuk menarik kesimpulan (Sutojo, 2011).

Ada beberapa fungsi yang bisa digunakan antara lain:

a. Representasi Linear, pada representasi linear pemetaan input ke derajat keanggotaannya digambarkan sebagai suatu garis lurus. Bentuk ini paling sederhana dan menjadi pilihan yang baik untuk mendekati suatu konsep yang

- kurang jelas. Ada dua keadaan fuzzy yang linear yaitu representasi linear naik dan representasi linear turun.
- b. Representasi Kurva Segitiga, Kurva segitiga pada dasarnya merupakan gabungan antara dua garis linear.
- c. Representasi Kurva Trapesium, Kurva trapesium pada dasarnya seperti bentuk segitiga, hanya saja ada beberapa titik yang memiliki nilai keanggotaan 1.
- d. Representasi Kurva Bentuk Bahu, Daerah yang terletak di tengah –tengah suatu variabel yang dipresentasikan dalam bentuk segitiga, pada sisi kanan dan kirinya akan naik dan turun. Tetapi terkadang salah satu sisi dari variabel tersebut tidak mengalami perubahan.
- e. Representasi Kurva-S, Kurva pertumbuhan dan penyusutan merupakan kurva-S atau sigmoid yang berhubungan dengan kenaikan dan penurunan permukaan secara tak linear.
- f. Representasi Kurva Bentuk Lonceng (Bell Curve), Untuk mempresentasikan bilangan fuzzy, biasanya digunakan kurva berbentuk lonceng. Kurva berbentuk lonceng ini terbagi atas tiga kelas, yaitu kurva PI, kurva beta, dan kurva Gauss. Perbedaan ketiga kurva ini terletak pada gradiennya.

### 2.3. Cara Kerja Logika Fuzzy Tsukamoto

Dalam inferensinya, metode Tsukamoto menggunakan tahapan sebagai berikut (Hasan, 2009):

- a. Fuzzyfikasi, yaitu Proses untuk mengubah input sistem yang mempunyai nilai tegas menjadi variabel linguistik menggunakan fungsi keanggotaan yang disimpan dalam basis pengetahuan fuzzy.
- b. Pembentukan basis pengetahuan Fuzzy (Rule dalam bentuk IF...THEN), yaitu Secara umum bentuk model Fuzzy Tsukamoto adalah IF (X IS A) and (Y IS B) and (Z IS C), dimana A,B, dan C adalah himpunan fuzzy.
- c. Mesin Inferensi, yaitu proses dengan menggunakan fungsi implikasi MIN untuk mendapatkan nilai a-predikat tiap-tiap rule  $(a_1,a_2,\ a_3,\ \dots\ a_n)$ . Kemudian masing-masing nilai a-predikat ini digunakan untuk menghitung keluaran hasil inferensi secara tegas (crisp) masing-masing rule  $(z_1, z_2, z_3, \dots z_n)$ .

d. Defuzzifikasi : dengan menggunakan metode rata-rata (Average) :

$$Z = \frac{\sum a_n \cdot z_n}{\sum a_n}$$

### **BAB III**

### PERANCANGAN DAN ANALISIS KEBUTUHAN SISTEM

### 3.1. Variabel Input

Terdapat 3 variabel input yang dibutuhkan untuk memenuhi sistem fuzzy ini, antara lain :

- a. Kelompok Usia
- b. Berat Badan
- c. Intensitas Olahraga Harian

### 3.2. Variabel Output

Berdasarkan 3 variabel input yang telah disebutkan, dapat diputuskan bahwa variabel outputnya adalah jumlah kebutuhan air yang diperlukan manusia.

## 3.3. Himpunan Fuzzy

Setiap variabel pada sistem fuzzy, baik variabel input maupun output akan dibagi menjadi satu atau lebih himpunan fuzzy. Pembagian tersebut dapat dilihat pada tabel di bawah ini.

| Jei             | nis Variabel               | Himpunan Fuzzy          |
|-----------------|----------------------------|-------------------------|
|                 | Kelompok Usia              | Anak, Dewasa, Lansia    |
| Variabel Input  | Berat Badan                | Ringan, Normal, Berat   |
|                 | Intensitas Olahraga Harian | Ringan, Sedang, Tinggi  |
| Variabel Output | Jumlah Kebutuhan Air       | Sedikit, Sedang, Banyak |

### 3.4. Domain Himpunan Fuzzy

Setiap himpunan dalam variabel fuzzy memiliki keseluruhan nilai yang diizinkan dalam semesta pembicaraan dan dapat dioperasikan yang biasa disebut dengan domain himpunan fuzzy. Berikut adalah domain dari setiap himpunan fuzzy.

| Jei             | nis Variabel               | Domain Himpunan Fuzzy                                             |
|-----------------|----------------------------|-------------------------------------------------------------------|
|                 | Kelompok Usia              | Anak (4-16 tahun) Dewasa (15-55 tahun) Lansia (52-85 tahun)       |
| Variabel Input  | Berat Badan                | Ringan (20-57 kg) Normal (52-74 kg) Berat (70-92 kg)              |
|                 | Intensitas Olahraga Harian | Ringan (10-40 menit) Sedang (30-60 menit) Tinggi (45-105 menit)   |
| Variabel Output | Jumlah Kebutuhan Air       | Sedikit (800-1900 ml) Sedang (1500-3200 ml) Banyak (2700-4300 ml) |

### 3.5. Semesta Pembicaraan

Berdasarkan tabel domain himpunan fuzzy pada penjelasan sebelumnya, kita dapat mengelompokkan semesta pembicaraannya.

| Jenis Variabel  |                            | Semesta Pembicaraan |  |  |
|-----------------|----------------------------|---------------------|--|--|
|                 | Kelompok Usia              | [4, 85]             |  |  |
| Variabel Input  | Berat Badan                | [20, 92]            |  |  |
|                 | Intensitas Olahraga Harian | [10, 105]           |  |  |
| Variabel Output | Jumlah Kebutuhan Air       | [800, 4300]         |  |  |

# 3.6. Grafik Fuzzy

Setelah menganalisis kebutuhan sistem fuzzy, seperti variabel, himpunan, domain, dan semesta pembicaraan, langkah selanjutnya adalah menentukan grafik dan fungsi keanggotaan pada setiap variabel. Berikut adalah grafik dan fungsi keanggotaan pada setiap variabel, baik input maupun output.

### a. Variabel Kelompok Usia



Fungsi keanggotaan:

• Himpunan Anak

$$\mu[x] = 1; \ x \le 4$$

$$\mu[x] = \frac{(16-x)}{(16-4)}; \ 4 < x < 16$$

$$\mu[x] = 0; \ x \ge 16$$

• Himpunan Dewasa

$$\mu[x] = 0; \ x \le 15 \text{ atau } x \ge 55$$

$$\mu[x] = \frac{(x-15)}{(35-15)}; \ 15 < x \le 35$$

$$\mu[x] = \frac{(55-x)}{(55-35)}; \ 35 < x < 55$$

• Himpunan Lansia

$$\mu[x] = 0; \ x \le 52$$

$$\mu[x] = \frac{(x-52)}{(55-52)}; \ 52 < x < 55$$

$$\mu[x] = 1; \ x \ge 55$$

### b. Variabel Berat Badan

### **Berat Badan**



# Fungsi keanggotaan:

• Himpunan Ringan

$$\mu[x] = 1; \ x \le 20$$

$$\mu[x] = \frac{(57-x)}{(57-20)}; \ 20 < x < 57$$

$$\mu[x] = 0; \ x \ge 57$$

• Himpunan Normal

$$\mu[x] = 0; \ x \le 52 \text{ atau } x \ge 74$$

$$\mu[x] = \frac{(x-52)}{(63-52)}; \ 52 < x \le 63$$

$$\mu[x] = \frac{(74-x)}{(74-63)}; \ 63 < x < 74$$

• Himpunan Berat

$$\mu[x] = 0; \ x \le 70$$

$$\mu[x] = \frac{(x-70)}{(74-70)}; \ 70 < x < 74$$

$$\mu[x] = 1; \ x \ge 74$$

# c. Variabel Intensitas Olahraga Harian

# Intensitas Olahraga Harian



Durasi (menit)

Fungsi keanggotaan:

• Himpunan Ringan

$$\mu[x] = 1; \ x \le 10$$

$$\mu[x] = \frac{(40-x)}{(40-10)}; \ 10 < x < 40$$

$$\mu[x] = 0; x \ge 40$$

• Himpunan Sedang

$$\mu[x] = 0; x \le 30 \text{ atau } x \ge 60$$

$$\mu[x] = \frac{(x-30)}{(45-30)}$$
;  $30 < x \le 45$ 

$$\mu[x] = \frac{(60-x)}{(60-45)}$$
; 45 < x < 60

• Himpunan Tinggi

$$\mu[x] = 0; x \le 45$$

$$\mu[x] = \frac{(x-45)}{(60-45)}; \ 45 < x < 60$$

$$\mu[x] = 1; x \ge 60$$

### d. Variabel Jumlah Kebutuhan Air

### Jumlah Kebutuhan Air



Jumlah Air (ml)

### Fungsi keanggotaan:

• Himpunan Sedikit

$$\mu[x] = 1; \ x \le 800$$

$$\mu[x] = \frac{(1900 - x)}{(1900 - 800)}; \ 800 < x < 1900$$

$$\mu[x] = 0; \ x \ge 1900$$

Himpunan Sedang

$$\mu[x] = 0; \ x \le 1500$$

$$\mu[x] = \frac{(x - 1500)}{(2350 - 1500)}; \ 1500 < x \le 2350$$

$$\mu[x] = 1; \ x \ge 2350$$

• Himpunan Banyak

$$\mu[x] = 0; \ x \le 2700$$

$$\mu[x] = \frac{(x - 2700)}{(4300 - 2700)}; \ 2700 < x < 4300$$

$$\mu[x] = 1; \ x \ge 4300$$

# **3.7. Rules**

Setelah pembentukan grafik dan fungsi keanggotaan pada setiap variabel dan himpunan, dibentuk aturan yang sesuai dengan mengambil data-data yang ada, kemudian diurutkan dengan hasilnya.

|                  |                | RULES                         |                      |
|------------------|----------------|-------------------------------|----------------------|
|                  | IF             |                               | THEN                 |
| Kelompok<br>Usia | Berat<br>Badan | Intensitas<br>Olahraga Harian | Jumlah Kebutuhan Air |
| Anak             | Ringan         | Ringan                        | Sedikit              |
| Anak             | Ringan         | Sedang                        | Sedikit              |
| Anak             | Ringan         | Tinggi                        | Sedang               |
| Anak             | Normal         | Ringan                        | Sedikit              |
| Anak             | Normal         | Sedang                        | Sedang               |
| Anak             | Normal         | Tinggi                        | Banyak               |
| Anak             | Berat          | Ringan                        | Sedang               |
| Anak             | Berat          | Sedang                        | Banyak               |
| Anak             | Berat          | Tinggi                        | Banyak               |
| Dewasa           | Ringan         | Ringan                        | Sedikit              |
| Dewasa           | Ringan         | Sedang                        | Sedang               |
| Dewasa           | Ringan         | Tinggi                        | Banyak               |
| Dewasa           | Normal         | Ringan                        | Sedang               |
| Dewasa           | Normal         | Sedang                        | Sedang               |
| Dewasa           | Normal         | Tinggi                        | Banyak               |
| Dewasa           | Berat          | Ringan                        | Banyak               |
| Dewasa           | Berat          | Sedang                        | Banyak               |
| Dewasa           | Berat          | Tinggi                        | Banyak               |
| Lansia           | Ringan         | Ringan                        | Sedikit              |
| Lansia           | Ringan         | Sedang                        | Banyak               |
| Lansia           | Ringan         | Tinggi                        | Banyak               |
| Lansia           | Normal         | Ringan                        | Sedang               |
| Lansia           | Normal         | Sedang                        | Banyak               |
| Lansia           | Normal         | Tinggi                        | Banyak               |
| Lansia           | Berat          | Ringan                        | Banyak               |
| Lansia           | Berat          | Sedang                        | Banyak               |

| Lansia | Berat | Tinggi | Banyak |
|--------|-------|--------|--------|
|--------|-------|--------|--------|

### 3.8. Studi Kasus dan Penyelesaiannya

Contoh: Berapa banyak air yang harus dikonsumsi seseorang yang berusia 15 tahun dengan berat 55 kg jika ia berolahraga 30 menit sehari?

### a. Variabel Kelompok Usia

Untuk usia 15 tahun termasuk himpunan Anak, maka diperoleh:

$$\mu[x] = \frac{(16-x)}{(16-4)}; \ 4 < x < 16$$

$$\mu[15] = \frac{(16-15)}{(16-4)}$$
; 4 < 15 < 16

$$\mu[15] = 0.08333333333$$

Jadi, derajat keanggotaan x = 15 untuk himpunan Anak adalah 0. 08333333333

.

### b. Variabel Berat Badan

Untuk berat 55 kg termasuk himpunan Ringan dan Normal, maka diperoleh :

Ringan

$$\mu[x] = \frac{(57-x)}{(57-20)}$$
; 20 < x < 57

$$\mu[55] = \frac{(57-55)}{(57-20)}$$
; 20 < 55 < 57

$$\mu[55] \, = \, 0.\,05405405405$$

Jadi, derajat keanggotaan x = 55 untuk himpunan Ringan adalah 0.05405405405.

Normal

$$\mu[x] = \frac{(x-52)}{(63-52)}$$
; 52 <  $x \le 63$ 

$$\mu[55] = \frac{(55-52)}{(63-52)}$$
;  $52 < 55 \le 63$ 

$$\mu[55] = 0.2727272727$$

Jadi, derajat keanggotaan x = 55 untuk himpunan Normal adalah 0. 2727272727.

### c. Variabel Intensitas Olahraga Harian

Untuk durasi 30 menit termasuk himpunan Ringan dan Sedang, maka diperoleh :

Ringan

$$\mu[x] = \frac{(40-x)}{(40-10)}; \ 10 < x < 40$$

$$\mu[30] = \frac{(40-30)}{(40-10)}; \ 10 < 30 < 40$$

 $\mu[30] = 0.33333333333$ 

Jadi, derajat keanggotaan x = 30 untuk himpunan Ringan adalah 0.33333333333.

# • Sedang

Untuk himpunan Sedang, derajat keanggotaannya adalah 0. Hal itu dikarenakan  $\mu[x] = 0$ ;  $x \le 30$ .

Berikut adalah tabel penyelesaian contoh studi kasus di atas.

| No | Usia   | Berat  | Intensitas | Alfa   | z hasil     | Alfa * z    |
|----|--------|--------|------------|--------|-------------|-------------|
| 1  | 0.0833 | 0.0541 | 0.3333     | 0.0541 | 1840.540541 | 99.48867787 |
| 2  | 0.0833 | 0.0541 | 0          | 0.0000 | 1900        | 0           |
| 3  | 0.0833 | 0.0541 | 0          | 0.0000 | 1500        | 0           |
| 4  | 0.0833 | 0.2727 | 0.3333     | 0.0833 | 1808.333333 | 150.6944444 |
| 5  | 0.0833 | 0.2727 | 0          | 0.0000 | 1500        | 0           |
| 6  | 0.0833 | 0.2727 | 0          | 0.0000 | 2700        | 0           |
| 7  | 0.0833 | 0      | 0.3333     | 0.0000 | 1500        | 0           |
| 8  | 0.0833 | 0      | 0          | 0.0000 | 2700        | 0           |
| 9  | 0.0833 | 0      | 0          | 0.0000 | 2700        | 0           |
| 10 | 0      | 0.0541 | 0.3333     | 0      | 1900        | 0           |
| 11 | 0      | 0.0541 | 0          | 0      | 1500        | 0           |
| 12 | 0      | 0.0541 | 0          | 0      | 2700        | 0           |
| 13 | 0      | 0.2727 | 0.3333     | 0      | 1500        | 0           |
| 14 | 0      | 0.2727 | 0          | 0      | 1500        | 0           |
| 15 | 0      | 0.2727 | 0          | 0      | 2700        | 0           |
| 16 | 0      | 0      | 0.3333     | 0      | 2700        | 0           |
| 17 | 0      | 0      | 0          | 0      | 2700        | 0           |
| 18 | 0      | 0      | 0          | 0      | 2700        | 0           |
| 19 | 0      | 0.0541 | 0.3333     | 0      | 1900        | 0           |
| 20 | 0      | 0.0541 | 0          | 0      | 2700        | 0           |
| 21 | 0      | 0.0541 | 0          | 0      | 2700        | 0           |

| 22 | 0 | 0.2727 | 0.3333 | 0      | 1500 | 0           |
|----|---|--------|--------|--------|------|-------------|
| 23 | 0 | 0.2727 | 0      | 0      | 2700 | 0           |
| 24 | 0 | 0.2727 | 0      | 0      | 2700 | 0           |
| 25 | 0 | 0      | 0.3333 | 0      | 2700 | 0           |
| 26 | 0 | 0      | 0      | 0      | 2700 | 0           |
| 27 | 0 | 0      | 0      | 0      | 2700 | 0           |
|    |   | Total  |        | 0.1374 |      | 250.1831223 |

Dari tabel perhitungan di atas, dapat diperoleh nilai Z dengan metode Tsukamoto :

$$Z = \frac{\sum a_n \cdot z_n}{\sum a_n}$$

$$Z = \frac{250.1831223}{0.1374} = 1821.005021$$

Jadi, nilai Z (defuzzifikasi) pada studi kasus tersebut adalah 1821.005021 atau bisa dikatakan bahwa jumlah kebutuhan air yang diperlukan sebanyak 1821.005021 ml.

### **BAB IV**

### PENGIMPLEMENTASIAN SISTEM FUZZY

### **Tampilan**



| Rules No. | Usia      | Berat     | Intensitas<br>Olahraga | Alpha      | Z            | Alpha * Z  |
|-----------|-----------|-----------|------------------------|------------|--------------|------------|
| 1         | 0.0833333 | 0.0540541 | 0.3333333              | 0.0540541  | 1840.5405405 | 99.4886779 |
| 2         | 0.0833333 | 0.0540541 | 0.0000000              | 0.0000000  | 1900.0000000 | 0.0000000  |
| 3         | 0.0833333 | 0.0540541 | 0.0000000              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 4         | 0.0833333 | 0.2727273 | 0.3333333              | 0.0833333  | 1808.3333333 | 150.694444 |
| 5         | 0.0833333 | 0.2727273 | 0.0000000              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 6         | 0.0833333 | 0.2727273 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 7         | 0.0833333 | 0.0000000 | 0.3333333              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 8         | 0.0833333 | 0.0000000 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 9         | 0.0833333 | 0.0000000 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 10        | 0.0000000 | 0.0540541 | 0.3333333              | 0.0000000  | 1900.0000000 | 0.0000000  |
| 11        | 0.0000000 | 0.0540541 | 0.0000000              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 12        | 0.0000000 | 0.0540541 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 13        | 0.0000000 | 0.2727273 | 0.3333333              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 14        | 0.0000000 | 0.2727273 | 0.0000000              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 15        | 0.0000000 | 0.2727273 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 16        | 0.0000000 | 0.0000000 | 0.3333333              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 17        | 0.0000000 | 0.0000000 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 18        | 0.0000000 | 0.0000000 | 0.0000000              | 0.00000000 | 2700.0000000 | 0.0000000  |
| 19        | 0.0000000 | 0.0540541 | 0.3333333              | 0.0000000  | 1900.0000000 | 0.0000000  |
| 20        | 0.0000000 | 0.0540541 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 21        | 0.0000000 | 0.0540541 | 0.0000000              | 0.00000000 | 2700.0000000 | 0.0000000  |
| 22        | 0.0000000 | 0.2727273 | 0.3333333              | 0.0000000  | 1500.0000000 | 0.0000000  |
| 23        | 0.0000000 | 0.2727273 | 0.0000000              | 0.00000000 | 2700.0000000 | 0.0000000  |
| 24        | 0.0000000 | 0.2727273 | 0.0000000              | 0.00000000 | 2700.0000000 | 0.0000000  |
| 25        | 0.0000000 | 0.0000000 | 0.3333333              | 0.0000000  | 2700.0000000 | 0.0000000  |
| 26        | 0.0000000 | 0.0000000 | 0.0000000              | 0.00000000 | 2700.0000000 | 0.0000000  |
| 27        | 0.0000000 | 0.0000000 | 0.0000000              | 0.0000000  | 2700.0000000 | 0.0000000  |
|           | To        | ital      |                        | 0.1373874  |              | 250.183122 |

### **Source Code**

```
function tsukamotoFunc(){
    let umur = document.getElementById("umur").value;
    let berat = document.getElementById("berat").value;
    let intensitas = document.getElementById("intensitas").value;
    let A = new Array(27);
    let z = new Array(27);
    let u = new Array(27);
    let b = new Array(27);
    let b = new Array(27);
    let o = new Array(27);

    function IsEmpty(x,y,z) {
        if (x == "" || y == "" || z == "") {
            alert("Isi dengan lengkap!");
            showResult().disabled;
        }
}
```

```
IsEmpty(umur, berat, intensitas);
function getKelompokUmurAnak(){
    if(umur <= 4) {
        return 1;
   else if(umur > 4 && umur <= 16){
        return (16 - umur) / (16 - 4);
   else if(umur >= 16){
       return 0;
function getKelompokUmurDewasa() {
    if(umur <= 15 || umur >= 55) {
        return 0;
    else if(umur > 15 && umur <= 35){
        return (umur - 15) / (35 - 15);
    else if(umur > 35 && umur <= 55){
       return (55 - umur) / (55 - 35);
function getKelompokUmurLansia(){
   if(umur <= 52) {
        return 0;
   else if(umur > 52 && umur < 55){</pre>
        return (umur - 52) / (55 - 52);
    else if(umur \geq 55){
       return 1;
function getBeratBadanRingan(){
   if(berat <= 20){
       return 1;
```

```
else if(berat > 20 && berat < 57){</pre>
        return (57 - berat) / (57 - 20);
    else if(berat >= 57){
       return 0;
function getBeratBadanNormal(){
   if(berat <= 52 || berat >= 74){
        return 0;
   else if(berat > 52 && berat <= 63){</pre>
       return (berat - 52) / (63 - 52);
   else if(berat > 63 && berat < 74){
       return (74 - berat) / (74 - 63);
function getBeratBadanBerat() {
   if(berat <= 70){
       return 0;
    else if(berat > 70 && berat < 74){
        return (berat - 70) / (74 - 70);
   else if(berat \geq 74){
       return 1;
function getIntensitasOlahragaRingan(){
   if(intensitas <= 10) {</pre>
       return 1;
    else if(intensitas > 10 && intensitas < 40){</pre>
        return (40 - intensitas) / (40 - 10);
   else if(intensitas >= 40){
       return 0;
function getIntensitasOlahragaSedang(){
   if(intensitas <= 30 || intensitas >= 60){
        return 0;
```

```
else if(intensitas > 30 && intensitas <= 45){
        return (intensitas - 30) / (45 - 30);
    else if(intensitas > 45 && intensitas < 60){</pre>
        return (60 - intensitas) / (60 - 45);
function getIntensitasOlahragaTinggi(){
   if(intensitas <= 45){</pre>
       return 0;
   else if(intensitas > 45 && intensitas < 60){</pre>
        return (intensitas - 45) / (60 - 45);
   else if(intensitas >= 60){
       return 1;
function zJmlAirSedikit(A) {
   if(A > 0 && A < 1){
       return(1900 - A * 1100);
   else if(A == 1){
       return 800;
   else{
       return 1900;
function zJmlAirSedang(A) {
   if(A > 0 && A < 1){
       return(A * 850 + 2350);
   else if(A == 1){
       return 2350;
   else{
       return 1500;
function zJmlAirBanyak(A) {
   if(A > 0 && A < 1){
       return(A * 1600 + 2700);
```

```
else if(A == 1){
        return 4300;
    else{
        return 2700;
function aMin(a, b, c){
   if(a <= b && a <= c){
        return a;
    else if(b <= a && b <= c){
       return b;
    else if(c <= a && c <=b){
        return c;
function fuzzyRules(){
    u[0] = getKelompokUmurAnak();
    b[0] = getBeratBadanRingan();
    o[0] = getIntensitasOlahragaRingan();
    A[0] = aMin(u[0], b[0], o[0]);
    z[0] = zJmlAirSedikit(A[0]);
    u[1] = getKelompokUmurAnak();
   b[1] = getBeratBadanRingan();
    o[1] = getIntensitasOlahragaSedang();
    A[1] = aMin(u[1], b[1], o[1]);
    z[1] = zJmlAirSedikit(A[1]);
    u[2] = getKelompokUmurAnak();
   b[2] = getBeratBadanRingan();
    o[2] = getIntensitasOlahragaTinggi();
    A[2] = aMin(u[2], b[2], o[2]);
    z[2] = zJmlAirSedang(A[2]);
    u[3] = getKelompokUmurAnak();
   b[3] = getBeratBadanNormal();
    o[3] = getIntensitasOlahragaRingan();
    A[3] = aMin(u[3], b[3], o[3]);
    z[3] = zJmlAirSedikit(A[3]);
```

```
u[4] = getKelompokUmurAnak();
b[4] = getBeratBadanNormal();
o[4] = getIntensitasOlahragaSedang();
A[4] = aMin(u[4], b[4], o[4]);
z[4] = zJmlAirSedang(A[4]);
u[5] = getKelompokUmurAnak();
b[5] = getBeratBadanNormal();
o[5] = getIntensitasOlahragaTinggi();
A[5] = aMin(u[5], b[5], o[5]);
z[5] = zJmlAirBanyak(A[5]);
u[6] = getKelompokUmurAnak();
b[6] = getBeratBadanBerat();
o[6] = getIntensitasOlahragaRingan();
A[6] = aMin(u[6], b[6], o[6]);
z[6] = zJmlAirSedang(A[6]);
u[7] = getKelompokUmurAnak();
b[7] = getBeratBadanBerat();
o[7] = getIntensitasOlahragaSedang();
A[7] = aMin(u[7], b[7], o[7]);
z[7] = zJmlAirBanyak(A[7]);
u[8] = getKelompokUmurAnak();
b[8] = getBeratBadanBerat();
o[8] = getIntensitasOlahragaTinggi();
A[8] = aMin(u[8], b[8], o[8]);
z[8] = zJmlAirBanyak(A[8]);
u[9] = getKelompokUmurDewasa();
b[9] = getBeratBadanRingan();
o[9] = getIntensitasOlahragaRingan();
A[9] = aMin(u[9], b[9], o[9]);
z[9] = zJmlAirSedikit(A[9]);
u[10] = getKelompokUmurDewasa();
b[10] = getBeratBadanRingan();
o[10] = getIntensitasOlahragaSedang();
A[10] = aMin(u[10], b[10], o[10]);
z[10] = zJmlAirSedang(A[10]);
u[11] = getKelompokUmurDewasa();
b[11] = getBeratBadanRingan();
o[11] = getIntensitasOlahragaTinggi();
A[11] = aMin(u[11], b[11], o[11]);
z[11] = zJmlAirBanyak(A[11]);
u[12] = getKelompokUmurDewasa();
```

```
b[12] = getBeratBadanNormal();
o[12] = getIntensitasOlahragaRingan();
A[12] = aMin(u[12], b[12], o[12]);
z[12] = zJmlAirSedang(A[12]);
u[13] = getKelompokUmurDewasa();
b[13] = getBeratBadanNormal();
o[13] = getIntensitasOlahragaSedang();
A[13] = aMin(u[13], b[13], o[13]);
z[13] = zJmlAirSedang(A[13]);
u[14] = getKelompokUmurDewasa();
b[14] = getBeratBadanNormal();
o[14] = getIntensitasOlahragaTinggi();
A[14] = aMin(u[14], b[14], o[14]);
z[14] = zJmlAirBanyak(A[14]);
u[15] = getKelompokUmurDewasa();
b[15] = getBeratBadanBerat();
o[15] = getIntensitasOlahragaRingan();
A[15] = aMin(u[15], b[15], o[15]);
z[15] = zJmlAirBanyak(A[15]);
u[16] = getKelompokUmurDewasa();
b[16] = getBeratBadanBerat();
o[16] = getIntensitasOlahragaSedang();
A[16] = aMin(u[16], b[16], o[16]);
z[16] = zJmlAirBanyak(A[16]);
u[17] = getKelompokUmurDewasa();
b[17] = getBeratBadanBerat();
o[17] = getIntensitasOlahragaTinggi();
A[17] = aMin(u[17], b[17], o[17]);
z[17] = zJmlAirBanyak(A[17]);
u[18] = getKelompokUmurLansia();
b[18] = getBeratBadanRingan();
o[18] = getIntensitasOlahragaRingan();
A[18] = aMin(u[18], b[18], o[18]);
z[18] = zJmlAirSedikit(A[18]);
u[19] = getKelompokUmurLansia();
b[19] = getBeratBadanRingan();
o[19] = getIntensitasOlahragaSedang();
A[19] = aMin(u[19], b[19], o[19]);
z[19] = zJmlAirBanyak(A[19]);
u[20] = getKelompokUmurLansia();
b[20] = getBeratBadanRingan();
```

```
o[20] = getIntensitasOlahragaTinggi();
   A[20] = aMin(u[20], b[20], o[20]);
   z[20] = zJmlAirBanyak(A[20]);
   u[21] = getKelompokUmurLansia();
   b[21] = getBeratBadanNormal();
   o[21] = getIntensitasOlahragaRingan();
   A[21] = aMin(u[21], b[21], o[21]);
   z[21] = zJmlAirSedang(A[21]);
   u[22] = getKelompokUmurLansia();
   b[22] = getBeratBadanNormal();
   o[22] = getIntensitasOlahragaSedang();
   A[22] = aMin(u[22], b[22], o[22]);
   z[22] = zJmlAirBanyak(A[22]);
   u[23] = getKelompokUmurLansia();
   b[23] = getBeratBadanNormal();
   o[23] = getIntensitasOlahragaTinggi();
   A[23] = aMin(u[23], b[23], o[23]);
   z[23] = zJmlAirBanyak(A[23]);
   u[24] = getKelompokUmurLansia();
   b[24] = getBeratBadanBerat();
   o[24] = getIntensitasOlahragaRingan();
   A[24] = aMin(u[24], b[24], o[24]);
   z[24] = zJmlAirBanyak(A[24]);
   u[25] = getKelompokUmurLansia();
   b[25] = getBeratBadanBerat();
   o[25] = getIntensitasOlahragaSedang();
   A[25] = aMin(u[25], b[25], o[25]);
   z[25] = zJmlAirBanyak(A[25]);
   u[26] = getKelompokUmurLansia();
   b[26] = getBeratBadanBerat();
   o[26] = getIntensitasOlahragaTinggi();
   A[26] = aMin(u[26], b[26], o[26]);
   z[26] = zJmlAirBanyak(A[26]);
function deFuzifikasi(){
   let temp0 = 0;
   let temp1 = 0;
   let result;
   for (i = 0; i < A.length; i++){}
       temp1 = temp1 + A[i] * z[i];
       temp0 = temp0 + A[i];
```

```
result = temp1/temp0;
       return result.toFixed(2);
   function keputusanJmlAir(){
       fuzzyRules();
       return deFuzifikasi();
   document.getElementById("keputusan").innerHTML = keputusanJmlAir()+" ml";
       let table result = "";
       for(i = 0; i < A.length; i++){</pre>
           table result +=
""+(i+1)+""+u[i].toFixed(7)+""+b[i].toFixed(7)+""+o[i].toFixe
d(7)+""+A[i].toFixed(7)+""+z[i].toFixed(7)+""+(A[i]*z[i]).toFixe
d(7)+"";
       let total A = 0;
       for(i = 0; i < A.length; i++) {</pre>
           total A = total A + A[i];
       let total_AZ = 0;
       for(i = 0; i < A.length; i++) {</pre>
           total_AZ = total_AZ + (A[i]*z[i]);
       document.getElementById("table_result").innerHTML = table_result ;
       document.getElementById("total-a").innerHTML = total_A.toFixed(7) ;
       document.getElementById("total-az").innerHTML = total AZ.toFixed(7) ;
       document.getElementById("cek-total").innerHTML = (total_AZ / total_A).toFixed(7)+"
ml";
       document.getElementById("rumus").innerHTML = "Jumlah Kebutuhan Air =
"+total AZ.toFixed(7)+" / "+ total A.toFixed(7);
function showResult() {
   let s = document.getElementById("hasil");
   if(s.style.display = "none"){
       s.style.display = "block";
function runProgram() {
   tsukamotoFunc();
   showResult();
```

```
function resetInput() {
    document.getElementById('umur').value = ''
    document.getElementById('berat').value = ''
    document.getElementById('intensitas').value = ''
    document.getElementById("hasil").style.display = "none";
    document.getElementById("tabel-hasil").style.display = "none";
    document.getElementById("keputusan").innerHTML = ''
}

function showTable() {
    let s = document.getElementById("tabel-hasil");

    if(s.style.display = "none") {
        s.style.display = "flex";
    }
}
```

### DAFTAR PUSTAKA

- Titiesari, Yovita Diane. (2019, Juni 30). *5 Siasat agar Kebutuhan Cairan Harian Tercukupi*. Retrieved from https://www.guesehat.com/5-siasat-agar-kebutuhan-cairan-harian-tercukupi Direktorat P2PTM Kemenkes RI. (2018, Desember 31). *Berapa banyak takaran air minum yang harus kita minum setiap hari*? Retrieved from http://p2ptm.kemkes.go.id/infographic-p2ptm/obesitas/page/8/berapa-banyak-takaran-air-m inum-yang-harus-kita-minum-setiap-hari
- dr. Kusumoastuti, Astrid Wulan. (2018, Mei 2). *Berapa Banyak Cairan Tubuh yang Dibutuhkan Saat Olahraga*. Retrieved from https://www.klikdokter.com/info-sehat/read/3496557/berapa-banyak-cairan-tubuh-yang-dibutuhkan-saat-olahraga