

Outline

Neural Networks

■ Deep Learning: A Short Introduction

Neural Network for Classification

- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it weights
- During the learning phase, the network learns from the training examples by adjusting the weights so as to be able to predict the correct class label
- Learning without task-specific programming

Artificial Neural Networks as an analogy of Biological Neural Networks

Perceptron: Predecessor of a Neural Network

- ☐ The perceptron algorithm: Invented in 1957 by Frank Rosenblatt
- ☐ Input: An *n*-dimensional input vector **x** (with *n* variables)
- Output: 1 or 0 depending on if the weighted sum passes a threshold
- ☐ Perceptron: A device that makes decisions by weighing up evidence
- \Box Often written in the vector form, using bias (b) instead of threshold, as

output =
$$\begin{cases} 0 & \text{if } w \cdot x + b \le 0 \\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$$

Bias: A measure of how easy it is to get the perceptron to output a 1

Sigmoid Neurons

- □ A many-layer network of perceptrons can engage in sophisticated decision making
- □ Instead of assigning weights of the edges by a person, we can devise *learning algorithms* that can automatically tune the weights and biases of a network of artificial neurons
- Use sigmoid neuron instead of perceptron: Output is not 0/1 but a *sigmoid* function: $\sigma(w \bullet x + b)$, i.e.,
- □ The smoothness of σ means that small changes in the Δw_j weights and in the Δb bias will produce a small change Δ_{output} in the output from the neuron

$$\Delta ext{output} pprox \sum_{j} rac{\partial \operatorname{output}}{\partial w_{j}} \Delta w_{j} + rac{\partial \operatorname{output}}{\partial b} \Delta b$$

i.e., Δ_{output} is a *linear function* of the changes Δw_i and Δb

Architecture of (Feed-Forward) Neural Network (NN)

Input layer

- The inputs to a neural network correspond to the attributes measured for each training instance
- Inputs are fed simultaneously into the units making up the input layer

Hidden layer(s)

- Inputs are weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary

Output layer

The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction

© 2005 Charlie / CC BY-SA 2.5 / https://goo.gl/PKrbqF

Neural Network Architecture: Feed-Forward vs. Recurrent

- □ Feed-Forward Neural Network: Typical neural network architecture
 - ☐ The output from one layer is used as input to the next layer (no loops)
 - Information is always fed forward, never fed back
 - From a statistical point of view, networks perform nonlinear regression
 - Given enough hidden units and enough training samples, they can closely approximate any function
- Recurrent neural network: Feedback loops are possible (cascade of neurons firing)
 - □ Some neurons fire for some limited duration of time, before becoming quiescent
 - ☐ That firing can stimulate other neurons, which may fire a little while later, also for a limited duration, which causes still more neurons to fire, and so on
 - Loops do not cause problems since a neuron's output only affects its input at some later time, not instantaneously

Learning with Gradient Descent

A quadratic cost (objective) function C (or mean square error, MSE)

$$C(w,b) \equiv rac{1}{2n} \sum_x \|y(x) - a\|^2$$

where w: The collection of all weights in the network; b: All the biases; n: The total # of training inputs; a: The vector of outputs from the network when x is input

- \Box Goal of training a network: Find weights and biases which minimize the cost C(w, b)
- \Box For two variables, it means: Choose Δv_1 and Δv_2 to make negative; i.e., the ball is rolling down into the valley:

$$\Delta C pprox rac{\partial C}{\partial v_1} \Delta v_1 + rac{\partial C}{\partial v_2} \Delta$$

 \Box The change ΔC in C by a small change in v, Δv :

$$\Delta C \approx \nabla C \cdot \Delta v$$

where ∇C is the gradient vector:

$$abla C \equiv \left(rac{\partial C}{\partial v_1}, \ldots, rac{\partial C}{\partial v_m}
ight)$$

Stochastic Gradient Descent

Gradient descent can be viewed as a way of taking small steps in the direction, which does the most to immediately decrease C

- To compute gradient ∇C , we need to compute the gradients ∇C_x separately for each training input, x, and then average them: Slow when the # of training inputs is large
- Stochastic gradient descent (SGD): Speed up learning
 - Computing for a small sample of randomly chosen training inputs and averaging over them, we can quickly get a good estimate of the true gradient
 - Method: Randomly pick out a small number (*mini-batch*) *m* of randomly chosen training inputs. Provided the sample size is large enough, we expect that the average value will be roughly equal to the average over all, that is, $\nabla C pprox rac{1}{m} \sum_{i=1}^m \nabla C_{X_i}$
- Stochastic gradient descent in neural networks:
 - Pick out a randomly chosen minibatch of training inputs and train with them; then pick out another minibatch, until inputs exhausted - complete an epoch of training
 - Then we start over with a new training epoch

Backpropagation for Fast Gradient Computation

- Backpropagation: Reset weights on the "front" neural units and this is sometimes done in combination with training, where the correct result is known
- Iteratively process a set of training instances & compare the network's prediction with the actual known target value
- For each training instance, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction
 - From the output layer, through each hidden layer back to the first hidden layer, hence "backpropagation"
- Steps
 - ☐ Initialize weights to small random numbers, associated with k
 - Propagate the inputs forward (by applying activation function)
 - Backpropagate the error (by updating weights and biases)
 - ☐ Terminating condition (when error is very small, etc.)

© 2005 Charlie / CC BY-SA 2.5 / https://goo.gl/PKrbqF

More on Backpropagation

- With backpropagation, we distribute the "blame" backward through the network
 - Each hidden node sending input to the current node is somewhat "responsible" for some portion of the error in each neuron to which it has forward connection
- Local minima and backpropagation
 - Backpropagation can be stuck at local minima
 - But in practice it generally performs well
- Is backpropagation too slow?
 - Historically, backpropagation has been considered slow
 - Recent advances in computer power through parallelism and GPUs (graphics processing units) have reduced time substantially for training neural networks

From Neural Networks to Deep Learning

- ☐ Train networks with many layers (vs. shallow nets with just a couple of layers)
 - More neurons than previous networks
 - More complex ways to connect layers
 - □ Tremendous computing power to train networks
 - Automatic feature extraction
- Multiple layers work together to build an improved feature space
 - Analogy: Signals passing through regions of the visual cortex
 - \square Example: For face recognition: Edge \rightarrow nose \rightarrow face, layer-by-layer
- ☐ We introduce two popular deep learning frameworks for classification
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)

Convolutional Neural Networks: General Architecture

- Learn high-order features in the data via convolutions
 - Well suited to object recognition with images (e.g., computer vision)
 - Build position- and (somewhat) rotation-invariant features from raw image data
- CNN leverages learnable visual filters and globally shared local features
 - □ Specifics: High dimensional, 2D topology of pixels, invariance to translations, etc.
- ☐ High-level general CNN architecture
 - Input layer
 - Feature-extraction layers
 - □ (Convolution ReLU Pool)
 - Classification layers
- CNN properties
 - Local connectivity
 - Parameter sharing
 - Subsampling

Convolutional Neural Networks: Local Connectivity

- □ Convolution: A math operation describing how to merge two sets of information
 - lacksquare Filter (kernel): Sets of weights in a convolutional layer $(x^*k)_{ij} = \sum\limits_{pq} x_{i+p,j+q} \; k_{r-p,r-q}$
 - □ The filter is convolved with the input, resulting in a feature (activation) map
- Local Connectivity
 - □ Receptive fields: Each hidden unit is connected only to a sub-region of the image
 - Manageable number of parameters
 - Efficient computation of pre-activation
 - Spatial arrangements
 - Output Depth: Number of filters
 - ☐ Stride: How far our slide filter window will move
 - ☐ Zero-padding: Dealing with the border

Convolutional Neural Networks: Parameter Sharing

- Parameter sharing
 - □ Discrete convolution: Share matrix of parameters across certain units
 - Reduces even more the number of parameters
 - Extract the same feature at every position

Convolutional Neural Networks: Subsampling

- □ Pooling layers are commonly inserted between successive convolutional layers
- Subsampling:
 - Pooling: Pool hidden units in the same neighborhood
 - Introduces invariance to local translations
 - Reduces the number of hidden units in hidden layer

Max pooling: The most common downsampling operation

max pool with 2x2 filters and stride 2

6 8 3 4

Recurrent Neural Networks: General Concepts

- Modeling the time dimension: By creating cycles in the network (thus "recurrent")
 - Adding feedback loops connected to past decisions
 - □ Long-term dependencies: Use hidden states to preserve sequential information
 - ☐ Thus, it allows for both parallel and sequential computations
- Recurrent Neural Networks (RNNs) are trained to generate sequences: Output at each timestamp is based on both the current input and the inputs at all previous timestamps: $\mathbf{h}_t = \phi\left(W\mathbf{x}_t + U\mathbf{h}_{t-1}\right),$
- Major obstacles of RNN: Vanishing and exploding gradients
 - When the gradient becomes too large or too small, it is difficult to model longrange dependencies (10 timestamps or more)
 - □ Solution: Use a variant of RNN: LSTM (Long Short-Term Memory) (by Hochreiter and Schmidthuber, 1997)

LSTM: A Variant of Recurrent Neural Network

- Critical components of LSTM
 - Memory cells
 - 3 Gates (input, forget, output
- Use gated cells to
 - Write, store, forget informati
- When both gates are closed
 - The contents of the memory

Legend

unweighted connection

eighted connection connection with time-lag

branching point

mutliplication

usually tanh)

(usually tanh)

sum over all inputs

gate activation function (always sigmoid)

input activation function

output activation function

- The gating structure allows information το σε retained across many timestamps
 - Also allows gradient to flow across many timestamps
- By back-propagating errors and adjusting weights, one can learn what to store, and when to allow reads, writes, and erasures
- Applications: Handling sequence and time series data
 - E.g., NLP, video analysis, image captioning, robotics control

Difficulties of Training and Improvements

- Challenges
 - □ Vanishing gradient problem: Saturated units block gradient propagation
 - Need better optimization than SGD
 - Overfitting: High variance/low bias situation
 - Need better regularization (than L1, L2 norm)
- Many improvements proposed, such as
 - Autoencoder
 - ☐ Use unlabeled data in unsupervised learning
 - ☐ Build a compressed representation of the input data
 - Attention: Focusing on specific parts of the input
 - □ Taking n arguments $(y_1, ..., y_n)$ and a context c, it returns a weighted arithmetic mean of the y_i , and the weights are chosen according to y_i 's relevance to c

© 2013 Hugo Larochelle / https://goo.gl/hNBhRO

Summary

Neural Networks

■ Deep Learning: A Short Introduction

Recommended Readings

- ☐ Géron, Aurélien. (2017). *Hands-on machine learning with scikit-learn and TensorFlow:*Concepts, tools, and techniques to build intelligent systems. Champaign, IL: O'Reilly.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*. London, UK: The MIT Press.
- Patterson, J. & Gibson, A. (2017). Deep learning: A practitioner's approach. Champaign, IL:
 O'Reilly.
- Rashid, Tariq. (2016). *Make your own neural network*. Charleston, SC: CreateSpace.
- Numerous websites and online tutorials

References

- □ Alanf777. (2013). 130316c lc 05 learning curve S-curve or sigmoid.png [Online image]. Retrieved Feb 19, 2018 from https://commons.wikimedia.org/wiki/File:130316c lc 05 Learning Curve S-Curve or Sigmoid.png
- □ Charlie. (2005). *Neural network.gif* [Online image]. Retrieved Feb 19, 2018 from https://commons.wikimedia.org/wiki/File:Neural Network.gif
- □ Chrislb. (2005). *ArtificialNeuronModel english.png* [Online image]. Retrieved Feb 19, 2018 from https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel english.png
- □ Karpathy, A. & Johnson, J. (2015). *CS231n convolutional neural networks for visual recognition* [Online images]. Retrieved Feb 19, 2018 from http://cs231n.github.io/convolutional-networks/
- □ Larochelle, H. (2013). Neural networks [7.2]: Deep learning difficulty of training [Online video]. Retrieved Feb 19, 2018 from https://www.youtube.com/watch?v=YoiUlN_77LU&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH&index=52
- □ Роман Сузи. (2015). *Gradient descent method.png* [Online image]. Retrieved Feb 19, 2018 from https://commons.wikimedia.org/wiki/File:Gradient descent method.png
- □ Skymind. (2017). *Long short-term memory units (LSTMs)* [Online image]. Retrieved Feb 19, 2018 from https://deeplearning4j.org/lstm.html
- □ All other multimedia elements belong to © 2018 University of Illinois Board of Trustees.