Optimal decision making under communication constraints

Aditya Mahajan

Electrical and Computer Engineering McGill University

March 21, 2013

Contact Info:

aditya.mahajan@mcgill.ca
http://www.ece.mcgill.ca/~amahaj1

A bit about my research

- High-level ▶ Decision making under uncertainty.
- description ► Sequential decision making in multi-stage systems.
 - ▶ Decision making in distributed and decentralized systems.

- Research areas ► Stochastic control
 - ▶ Resource allocation
 - ► Artificial intelligence

- ▶ Game theory/team theory
- ▶ Operations research
- Queuing theory

areas

- Application ► Networked control systems
 - ► Communication networks
 - Sensor networks

- ▶ Electricity networks
- ▶ Cloud computing
- Medical treatment scheduling

Conceptual questions

- ▶ Trade-off between estimation, control, and communication. better current performance, better future performance, vs better performance for others.
- ▶ Online learning in dynamical systems. how to help my future self to learn better

Research projects relevant to CISCO

Admission control in streaming of smart sensing measurements Selectively drop packets to reduce the network load

without adversely affecting higher layer application

Bandwidth efficient distributed anomaly detection

Communicate local events to help other nodes in detecting anomalies without flooding the network with diagnostic information

Decentralized sequential hypothesis testing

Algorithms for decentralized sensing in smart buildings and cognitive radios.

Admission control in steaming of smart sensing measurements

Objective Choose admission control protocol to minimize #(transmissions) + estimation error

- Salient Features ► Trade-off between network load and quality
 - ▶ Receiver is oblivious to active dropping of packets
 - A tunable parameter to control the fraction of dropped packets.

 - Research > Can we do better than randomly dropping a fraction of packets?
 - questions ▶ Drop less informative packets? How to identify such packets?
 - Introduces a coupling between application and data layers. How to build a modular network for smart sensors?

Bandwidth efficient distributed anomaly detection

Objective Choose monitoring and communication protocols that minimize diagnostic traffic while ensuring anomaly detection

- Salient Features ► Communicating all events floods network with diagnostic info.
 - ▶ Only comm. critical events leads to delayed or missed diagnosis.

 - Research Verify the correctness of a protocol
 - questions ► Systematic way to synthesize the protocol with smallest communication overhead

Decentralized sequential hypothesis testing

Objective Choose decision rules to minimize obs cost + coupled false alarm/missed detection penalty

- Salient features ► Based on limited observations, take a decision right now or take a costly measurement and then take a more informed decision in the future.
 - ▶ Correlated obs and coupled stopping penalty across sensors.

questions

- **Research** How does performance depend on the quality of sensors? E.g., two medium quality sensors vs one good and one bad sensor.
 - ▶ Trade-off between measurement cost and stopping time.