Differential privacy in statistical databases/datasets

Statistical Database

• Statistical database query scheme

Server wants to compute f

Individuals do not want server to infer their records

Differential

• ε -Differential Privacy: A randomized mechanism A is ε -Differential Private, if for every pair of input datasets that differ by one element (*neighboring datasets*), for every output S,

$$\Pr\{A(D_1) = S\} \le e^{\varepsilon} \times \Pr\{A(D_2) = S\}.$$

One element difference in two data sets

Randomized scheme

• ε-Differential Privacy

$$\Pr\{A(D_1) = S\} \le e^{\varepsilon} \times \Pr\{A(D_2) = S\}.$$

One element difference in any two data sets

 D_1 :

nent difference: simulate the

One element difference: simulate the presence/absence/change of a record

Every pair: guarantee holds no matter what the other records are.

- Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge
- Privacy without obscurity
 - Attacker must be assumed to know the algorithm used as well as all parameters

Post-processing

 Post-processing the output of a privacy mechanism must not change the privacy guarantee

Differential Privacy Mechanisms

Randomized Response

Randomized response mechanism

• Survey the distribution of a sensitive attribute in the customers without revealing sensitive information

Randomized Response

- What is the privacy it guarantees in the framework of differential privacy?
 - Consider two neighboring dataset different in one row, Yes and No.
 - Two possible output for this row: Yes/No.

Output Randomization

- Add noise to answers such that
 - Each answer does not leak too much information about the database.
 - Noisy answers are close to the original answers.

 To achieve differential privacy, we need add to the true answer, noise following Laplace distribution:

•
$$Lap(b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$$
.

- Mean = 0
- Variance = $2b^2$

- How much noise for privacy?
- Sensitivity: let \mathfrak{D} be a collection of datasets, function $f \colon \mathfrak{D} \to \mathbb{R}$, the L_1 -sensitivity of f is:

$$\Delta f = \max_{\substack{x,y \text{ are neighboring} \\ \text{datasets}}} \|f(x) - f(y)\|_1.$$

- E.g.
 - Sensitivity for COUNT: 1
 - Sensitivity for SUM: max of the elements added.

- How much noise for privacy?
- Theorem: we add noise following Lap $\left(\frac{\Delta f}{\varepsilon}\right)$ to the true answer, we can achieve ε -differential privacy.

Theorem: we add noise following Lap $\left(\frac{\Delta f}{\varepsilon}\right)$ to the true answer, we can achieve ε -differential privacy.

- Proof:
 - Assume that the output for both datasets x, y is the same, denoted as z.

$$\frac{p_{x}(z)}{p_{y}(z)} = \frac{\exp\left(-\frac{\epsilon|f(x)-z|}{\Delta f}\right)}{\exp\left(-\frac{\epsilon|f(y)-z|}{\Delta f}\right)}$$

$$= \exp\left(\frac{\epsilon(|f(y)-z|-|f(x)-z|)}{\Delta f}\right)$$

$$\leq \exp\left(\frac{\epsilon|f(y)-f(x)|}{\Delta f}\right)$$

$$\leq \exp(\epsilon)$$

Utility

• Error: $E(\text{true answer} - \text{noise answer})^2$

$$=Var(\operatorname{Lap}\left(\frac{\Delta f}{\varepsilon}\right)) = 2\left(\frac{\Delta f}{\varepsilon}\right)^2$$

Laplace Mechanism vs Randomized Response

• Same ε -differential privacy.

- Laplace mechanism assumes data collected is trusted
- Randomized Response does not require data collected to be trusted
 - Also called a Local Algorithm, since each record is perturbed

Composition Theorem

Sequential Composition

• If M_1 , M_2 , ..., M_k are algorithms that access a private database D such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ε -differential privacy with

$$\varepsilon = \varepsilon_1 + \dots + \varepsilon_k$$

Composition Theorem

Parallel Composition

Private Database

• If M_1 , M_2 , ..., M_k are algorithms that access are algorithms that access disjoint databases D_1 , D_2 , ..., D_k such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ϵ -differential privacy with

$$\varepsilon = \max(\varepsilon_1, ..., \varepsilon_k)$$

Composition Theorem

Postprocessing

• If M is an ε -differentially private algorithm, any additional post-processing $A \circ M$ also satisfies ε -differential privacy.

Differential Privacy Applications

Differential Privacy in Chrome

 Problem: What are the frequent unexpected Chrome homepage domains?

To learn malicious software that change Chrome setting without users'

consent.

• Protect user privacy.

Client Input Perturbation

• Step 1: Use Bloom filter. h hash functions to hash input website string to k-bit vector

Randomized Response

• Step 2: Perturb B to fake Bloom Filter B' with randomized response, with a probability parameter f.

Instantaneous Randomized Response

- Step 3: another randomized response $B' \to S$
 - Flip the bit 1 with probability p
 - Flip the bit 0 with probability q

Why randomize two times?

- Chrome collects information each day
- Want perturbed values to look different on different days to avoid linking

Server Report Decoding

Estimate bit frequency from report

- Definitions
 - Guarantee anyone's privacy
- Mechanisms:
 - Randomized Response
 - Laplace
- Applications

