Nombre y Apellido: Carrera:

Condición:

ANÁLISIS NUMÉRICO / ANÁLISIS NUMÉRICO I Examen Final Teórico 05/07/2019

1	2	TOTAL	NOTA		

Instrucciones: Ejercicio 1: (60pt). Ejercicio 2: (40pt).

- 1. Enuncie y demuestre el teorema de convergencia del método de bisección.
- 2. Definir precisión de una regla de cuadratura para integración numérica.

Nombre y Apellido:

Carrera:

Condición:

ANÁLISIS NUMÉRICO / ANÁLISIS NUMÉRICO I Examen Final Práctico 05/07/2019

	1	2	3	4	5	TOTAL	NOTA
Ī							

Instrucciones: Ejercicio 5 solo para alumnos libres (10pt), ejercicios restantes (25pt)

- 1. Las imágenes en escala de grises se trabajan con enteros p no negativos de 8 bits (uint8), o sea $p \in \{0, ..., 255\}$. Suponga que su software toma p = 0 si p < 0, p = 255 si p > 255 y redondeo si $p \in [0, 255]$. Suponga que tiene 3 píxeles tales que $p_1 = 255$, $p_3 = 253$ y se desea asignar el valor medio al píxel 2. Determine como deben realizarse las operaciones para calcular el valor correcto de p_2 en uint8.
- 2. Se desea encontrar la raíz de $f(x) = x^4 \alpha$, con $\alpha > 0$. Si usamos el método de Newton, demuestre que para cualquier punto inicial $x_0 > 0$ vale:
 - a) $x_n \ge x_{n+1}$ y $x_n \ge \sqrt[4]{\alpha}$ para todo $n \ge 1$,
 - b) $\{x_n\}$ converge a $\sqrt[4]{\alpha}$.
- 3. Consideremos el polinomio p:

$$p(x) = 1 + x + x(x - 1) + \frac{1}{6}x(x - 1)(x - 2) + \frac{1}{24}x(x - 1)(x - 2)(x - 3) + q(x).$$

 $a)\,$ Determinar un polinomio q de grado 5 tal que p interpola los datos

$$\{(-1, -3), (0, 1), (1, 2), (2, 5), (3, 11), (4, 22)\}.$$

- b) ¿Es q único?
- 4. Encontrar la constante c que minimiza $\int_0^1 |e^x c|^2 dx$.
- 5. Encuentre una factorización LU de la matriz: $A = \begin{bmatrix} 2 & 2 & 3 \\ 4 & 6 & 9 \\ 8 & 18 & 27 \end{bmatrix}$ y utilícela para resolver

el sistema
$$Ax = b$$
, con $b = \begin{bmatrix} 13\\33\\87 \end{bmatrix}$.