

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
1 août 2002 (01.08.2002)

PCT

(10) Numéro de publication internationale
WO 02/058661 A1

- (51) Classification internationale des brevets⁷ : A61K 7/135, 7/09, 7/06
- (21) Numéro de la demande internationale : PCT/FR02/00254
- (22) Date de dépôt international : 22 janvier 2002 (22.01.2002)
- (25) Langue de dépôt : français
- (26) Langue de publication : français
- (30) Données relatives à la priorité : 01/01105 26 janvier 2001 (26.01.2001) FR
- (71) Déposant (*pour tous les États désignés sauf US*) : L'OREAL [FR/FR]; 14, rue Royale, F-75008 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (*pour US seulement*) : LEGRAND, Frédéric [FR/FR]; 3 avenue du Château du Loir, F-92400 Courbevoie (FR). DE LA METTRIE, Roland [FR/FR]; 6, boulevard d'Angleterre, F-78110 Le Vésinet (FR).
- (74) Mandataire : MISZPUTEN, Laurent; L'Oréal / D.P.I., 6, rue Bernard Sincholle, F-92585 Clichy Cedex (FR).

(54) Title: REDUCING COMPOSITION FOR TREATING KERATINOUS MATERIALS COMPRISING A CATIONIC POLY(VINYLLACTAM)

A1 (54) Titre : COMPOSITION REDUCTRICE POUR LE TRAITEMENT DES MATIERES KÉRATINIQUES COMPRENANT UN POLY(VINYLLACTAME) CATIONIQUE

WO 02/058661 (57) Abstract: The invention concerns a cosmetic composition for treating keratinous materials comprising in a carrier suited for the keratinous materials: (i) at least a reducing agent and (ii) at least a cationic poly(vinylactam), and its used for bleaching and permanent waving of keratinous fibres. The invention also concerns methods and devices for bleaching and permanent waving of keratinous fibres using said composition.

(57) Abrégé : La présente demande concerne une composition cosmétique destinée au traitement des matière kératiniques compréhendant dans un support approprié pour les matières kératiniques: (i) au moins un agent réducteur et (ii) au moins un poly(vinylactame) cationique, et ses utilisations pour la décoloration et la déformation permanente des fibres kératiniques. L'invention concerne également les procédés et les dispositifs de décoloration ou de déformation permanente des fibres kératiniques mettant en oeuvre ladite composition.

**COMPOSITION REDUCTRICE POUR LE TRAITEMENT DES MATIERES
KERATINIQUES COMPRENNANT UN POLY(VINYLLACTAME) CATIONIQUE**

La présente demande concerne une composition cosmétique destinée au traitement des matières kératiniques comprenant dans un support approprié pour les matières kératiniques :

- (i) au moins un agent réducteur et,
 - (ii) au moins un poly(vinylactame) cationique.
- 10 La présente invention a trait à une composition réductrice gélifiée, destinée au traitement des matières kératiniques comprenant un poly(vinylactame) cationique ainsi que ses utilisations pour la décoloration et la déformation permanente des fibres kératiniques humaines et plus particulièrement des cheveux.

15 Il est connu de décolorer les fibres kératiniques et en particulier les cheveux humains, avec des compositions de décoloration contenant un ou plusieurs agents oxydants. Parmi les agents oxydants classiquement utilisés, on peut citer le peroxyde d'hydrogène ou des composés susceptibles de produire le peroxyde d'hydrogène par hydrolyse, tels que le peroxyde d'urée ou les persels comme les perborates, les percarbonates et les persulfates, le peroxyde d'hydrogène et les persulfates étant particulièrement préférés.

20 Mais il est également connu de décolorer les fibres kératiniques humaines telles que les cheveux et en particulier les cheveux teints artificiellement avec des colorants exogènes, à l'aide d'agents réducteurs tels que l'acide ascorbique ou les thiols comme la cystéine. Il est connu aussi de procéder à la déformation permanente des cheveux en appliquant 25 sur ceux-ci des compositions contenant un ou plusieurs réducteurs, les cheveux ayant été, de préférence, préalablement mis sous tension, en particulier à l'aide de dispositifs mécaniques tels que des bigoudis, les cheveux ainsi réduits étant alors réoxydés dans la forme souhaitée, le plus souvent après rinçage, par l'intermédiaire de l'oxygène de l'air, mais plus généralement via un oxydant qui est de préférence choisi parmi l'eau oxygénée 30 ou les bromates alcalins.

Les réducteurs préférentiellement utilisés dans le cadre de la déformation permanente des cheveux sont les thiols tels que l'acide thioglycolique, ses sels et ses esters, l'acide thiolactique et ses sels, la cystéine ou la cystéamine, et les sulfites.

- 35 Les compositions destinées à la décoloration des cheveux à l'aide d'agents réducteurs se présentent principalement sous forme de compositions prêtes à l'emploi constituées de

produits anhydres (poudres ou crèmes) contenant le ou les agents réducteurs que l'on mélange au moment de l'emploi avec une composition aqueuse contenant éventuellement un agent de pH. Les compositions de décoloration se présentent également sous forme de compositions prêtées à l'emploi aqueuses contenant le ou les 5 agents réducteurs au pH approprié.

Les compositions réductrices pour la déformation permanente des cheveux se présentent généralement sous forme de compositions aqueuses prêtées à l'emploi ou sous forme de compositions anhydres pulvérulentes ou liquides que l'on mélange au moment de l'emploi 10 avec une composition aqueuse au pH approprié.

Pour localiser le produit de décoloration ou de déformation permanente à l'application sur les cheveux, afin qu'il ne coule pas sur le visage ou en dehors des zones que l'on se propose de traiter, on a jusqu'ici eu recours à l'emploi d'épaississants traditionnels tels 15 que l'acide polyacrylique réticulé, les hydroxyéthylcelluloses, certains polyuréthanes, les cires, et en outre, dans le cas des compositions de décoloration, à des mélanges d'agents tensio-actifs non-ioniques de HLB (Hydrophilic Lipophilic Balance), qui, convenablement choisis, engendrent l'effet gélifiant quand on les dilue au moyen d'eau et/ou d'agents tensio-actifs.

20 Par ailleurs, on recherche depuis de nombreuses années des formulations cosmétiques sous forme de gels transparents. Ce type de présentation est très appréciée par le consommateur pour des raisons esthétiques et pour des raisons de facilité et de confort d'utilisation.

25 La forme gel correspond le plus souvent à une préoccupation pratique pour le formateur : faciliter la prise du produit hors de son conditionnement sans perte significative, limiter la diffusion du produit à la zone locale de traitement et pouvoir l'utiliser dans des quantités suffisantes pour obtenir l'effet cosmétique recherché. Cet 30 objectif est important pour les formulations réductrices utilisées en décoloration ou en déformation permanente des cheveux. Celles-ci doivent bien s'étaler et se répartir de façon régulière le long des fibres kératiniques et ne pas couler sur le front, la nuque, le visage ou dans les yeux.

35 La demanderesse a constaté que les systèmes épaississants antérieurement utilisés ne permettaient pas d'obtenir des décolorations ou des déformations permanentes suffisamment puissantes et homogènes.

Par ailleurs, elle a également constaté que les compositions de décoloration ou de déformation permanente des cheveux, prêtes à l'emploi, contenant le ou les agents réducteurs, et en outre les systèmes épaisseurs de l'art antérieur ne permettaient pas une application suffisamment précise sans coulures ni chutes de viscosité dans le temps.

5

Or, après d'importantes recherches menées sur la question, la Demanderesse vient maintenant de découvrir qu'il est possible d'obtenir des compositions de décoloration ou de déformation permanente des cheveux contenant au moins un agent réducteur, prêtes à l'emploi, sous forme de gels qui ne coulent pas et restent donc bien localisées au point 10 d'application, et qui permettent aussi d'obtenir des décolorations ou des déformations permanentes puissantes et homogènes, si on introduit dans la composition une quantité efficace d'un poly(vinylactame) cationique.

Ces découvertes sont à la base de la présente invention.

15

La présente invention a donc pour objet une composition cosmétique et/ou dermatologique destinée au traitement des matières kératiniques comprenant dans un support approprié pour les matières kératiniques :

- (i) au moins un agent réducteur et,
- 20 (ii) au moins un poly(vinylactame) cationique.

L'invention concerne également l'utilisation de ces polymères poly(vinylactame) cationiques comme agent épaisseur et/ou gélifiant dans des compositions cosmétiques et/ou dermatologiques comprenant au moins un agent réducteur.

25

La présente invention a ainsi pour objet l'utilisation de ces polymères poly(vinylactame) cationiques dans une composition prête à l'emploi pour la décoloration ou la déformation permanente des fibres kératiniques humaines et en particulier les cheveux, comprenant, dans un milieu approprié pour la décoloration ou la déformation permanente, au moins un agent réducteur.

30
35 Par "composition prête à l'emploi" on entend, au sens de l'invention, la composition destinée à être appliquée telle quelle sur les fibres kératiniques, c'est à dire qu'elle peut être stockée telle quelle avant utilisation ou résulter du mélange extemporané de deux ou plusieurs compositions.

Lorsque la composition prête à l'emploi résulte du mélange extemporané de plusieurs compositions, le polymère selon l'invention peut être présent dans une ou plusieurs ou dans la totalité des compositions mélangées.

De la sorte, le poly(vinylactame) cationique selon l'invention peut être présent dans une 5 composition anhydre sous forme de poudre de préférence pulvérulente ou de crème et/ou dans une ou plusieurs compositions aqueuses.

De préférence selon l'invention, le ou les polymères poly(vinylactame)-cationiques selon l'invention sont présents dans au moins une composition aqueuse que l'on mélange au 10 moment de l'emploi avec une composition soit aqueuse soit anhydre sous forme de poudre ou de crème et contenant au moins un agent réducteur.

Une autre forme préférée de l'invention est une composition unique contenant le ou les agents réducteurs et le ou les polymères poly(vinylactame) cationiques selon l'invention. Un autre objet visé par la présente invention est l'utilisation de ces polymères dans une 15 composition anhydre contenant au moins un agent réducteur, ladite composition étant destinée à être diluée avant application sur les fibres.

L'invention vise également un procédé de décoloration et un procédé de déformation permanente des fibres kératiniques humaines et en particulier les cheveux utilisant la 20 composition de décoloration ou de déformation permanente prête à l'emploi telle que décrite ci-dessus, l'application de ladite composition pouvant être suivie, dans le cas de la déformation permanente, par l'application, éventuellement après rinçage, d'une composition oxydante.

25 L'invention vise aussi des dispositifs de décoloration ou "Kits" d'emballage contenant une telle composition prête à l'emploi.

Ainsi, un dispositif à deux compartiments comprend un premier compartiment contenant au moins une poudre ou une crème anhydre ou une composition aqueuse, et le 30 deuxième compartiment une composition aqueuse, l'un au moins des deux compartiments contenant au moins un agent réducteur et l'autre au moins des deux compartiments contenant au moins un poly(vinylactame) cationique selon l'invention.

Mais d'autres caractéristiques, aspects, objets et avantages de l'invention apparaîtront 35 encore plus clairement à la lecture de la description et des exemples qui suivent.

Sans vouloir être lié par une quelconque théorie, il semblerait que les avantages apportés par les poly(vinylactame) cationiques selon la présente invention et tels que définis ci-après soient en relation avec un comportement de polymères épaississants de type associatif.

- 5 Les polymères associatifs sont des polymères dont les molécules sont capables, dans le milieu de formulation, de s'associer entre elles ou avec des molécules d'autres composés.
 Leur structure chimique comprend généralement au moins une zone hydrophile et au moins une zone hydrophobe, la ou les zones hydrophobes comprenant au moins une
 10 chaîne grasse.

Polymères polyvinylactames cationiques selon l'invention

- Les polymères poly(vinylactame) cationiques selon l'invention comprennent :
 -a) au moins un monomère de type vinyl lactame ou alkylvinylactame;
 15 -b) au moins un monomère de structures (I) ou (II) suivantes :

- dans lesquelles :
 20 X désigne un atome d'oxygène ou un radical NR_6 ,
 R_1 et R_6 désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyl linéaire ou ramifié en $\text{C}_1\text{-C}_5$,
 R_2 désigne un radical alkyle linéaire ou ramifié en $\text{C}_1\text{-C}_4$,
 R_3 , R_4 et R_5 désignent, indépendamment l'un de l'autre, un atome d'hydrogène, un
 25 radical alkyle linéaire ou ramifié en $\text{C}_1\text{-C}_{30}$ ou un radical de formule (III) :

Y , Y_1 et Y_2 désignent, indépendamment l'un de l'autre, un radical alkylène linéaire ou ramifié en $\text{C}_2\text{-C}_{16}$.

R₇ désigne un atome d'hydrogène, ou un radical alkyle linéaire ou ramifié en C₁-C₄ ou un radical hydroxyalkyle linéaire ou ramifié en C₁-C₄.

R₈ désigne un atome d'hydrogène ou un radical alkyle linéaire ou ramifié en C₁-C₃₀,

p, q et r désignent, indépendamment l'un de l'autre, soit la valeur zéro, soit la valeur 1,

5 m et n désignent, indépendamment l'un de l'autre, un nombre entier allant de 0 à 100,

x désigne un nombre entier allant de 1 à 100,

Z désigne un anion d'acide organique ou minéral,

sous réserve que :

- 10 - l'un au moins des substituants R₃, R₄, R₅ ou R₈ désigne un radical alkyle linéaire ou ramifié en C₉-C₃₀,
- si m ou n est différent de zéro, alors q est égal à 1,
 - si m ou n sont égaux à zéro, alors p ou q est égal à 0.

- 15 Les polymères poly(vinyllactame) cationiques selon l'invention peuvent être réticulés ou non réticulés et peuvent aussi être des polymères blocs.

De préférence le contre ion Z⁻ des monomères de formule (I) est choisi parmi les ions halogénures, les ions phosphates, l'ion méthosulfate, l'ion tosylate.

- 20 De préférence R₃, R₄ et R₅ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyle linéaire ou ramifié en C₁-C₃₀.
- Plus préférentiellement, le monomère b) est un monomère de formule (I) pour laquelle, encore plus préférentiellement, m et n sont égaux à zéro.

- 25 Le monomère vinyl lactame ou alkylvinyllactame est de préférence un composé de structure (IV) :

- 30 dans laquelle :

s désigne un nombre entier allant de 3 à 6,

R₉ désigne un atome d'hydrogène ou un radical alkyle en C₁-C₅,

R₁₀ désigne un atome d'hydrogène ou un radical alkyle en C₁-C₅,

sous réserve que l'un au moins des radicaux R₉ et R₁₀ désigne un atome d'hydrogène.

Encore plus préférentiellement, le monomère (IV) est la vinylpyrrolidone.

- 5 Les polymères poly(vinylactame) cationiques selon l'invention peuvent également contenir un ou plusieurs monomères supplémentaires, de préférence cationiques ou non ioniques.

A titre de composés plus particulièrement préférés selon l'invention, on peut citer les
10 terpolymères suivants comprenant au moins :

- a)-un monomère de formule (IV),
b)-un monomère de formule (I) dans laquelle p=1, q=0, R₃ et R₄ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyle en C₁-C₅ et R₅ désigne un radical alkyle en C₉-C₂₄ et
15 c)-un monomère de formule (II) dans laquelle R₃ et R₄ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyle en C₁-C₅.

Encore plus préférentiellement, on utilisera les terpolymères comprenant, en poids, 40 à 95% de monomère (a), 0,1 à 55% de monomère (c) et 0,25 à 50% de monomère (b).
20 De tels polymères sont décrits dans la demande de brevet WO-00/68282 dont le contenu fait partie intégrante de l'invention.

Comme polymères poly(vinylactame) cationiques selon l'invention, on utilise notamment les terpolymères vinylpyrrolidone / diméthylaminopropylméthacrylamide / tosylate de
25 dodécyldiméthylméthacrylamidopropylammonium, les terpolymères vinylpyrrolidone /diméthylaminopropylméthacrylamide/ tosylate de cocoyldiméthylméthacrylamidopropylammonium, les terpolymères vinylpyrrolidone / diméthylaminopropylméthacrylamide / tosylate ou chlorure de lauryldiméthylméthacrylamidopropylammonium.

30 La masse moléculaire en poids des polymères poly(vinylactame) cationiques selon la présente invention est de préférence comprise entre 500 et 20 000 000. Elle est plus particulièrement comprise entre 200 000 et 2 000 000 et encore plus préférentiellement comprise entre 400 000 et 800 000.

Les polymères poly(vinylactame) cationiques conformes à l'invention sont présents dans les compositions dans des concentrations allant de 0,01 à 30% en poids, plus préférentiellement de 0,1 à 10%, et plus particulièrement encore de 0,5 à 2%.

5 Agents réducteurs

Les agents réducteurs utilisables selon l'invention sont choisis de préférence parmi les thiols tels que la cystéine, l'acide thioglycolique, l'acide thiolactique, leurs sels et leurs esters, la cystéamine et ses sels ou les sulfites.

Dans le cas des compositions destinées à la décoloration, on peut aussi utiliser l'acide 10 ascorbique, ses sels et ses esters, l'acide érythorbique, ses sels et ses esters, les sulfinites comme l'hydroxyméthanesulfinate de sodium.

Ces réducteurs sont utilisés dans les compositions selon l'invention dans des concentrations allant d'environ 0,1 à 30%, de préférence d'environ 0,5 à 20% en poids, 15 par rapport au poids total de la composition.

Plus particulièrement, les compositions selon l'invention peuvent en outre contenir, au moins un polymère amphotère ou un polymère cationique différent des poly(vinylactame) cationiques selon la présente invention.

20

Polymères cationiques

Au sens de la présente invention, l'expression "polymère cationique" désigne tout polymère contenant des groupements cationiques et/ou des groupements ionisables en 25 groupements cationiques.

Les polymères cationiques utilisables conformément à la présente invention peuvent être choisis parmi tous ceux déjà connus en soi comme améliorant les propriétés cosmétiques des cheveux, à savoir notamment ceux décrits dans la demande de brevet EP-A-337 354 30 et dans les brevets français FR-2 270 846, 2 383 660, 2 598 611, 2 470 596 et 2 519 863.

Les polymères cationiques préférés sont choisis parmi ceux qui contiennent des motifs comportant des groupements amine primaire, secondaire, tertiaire et/ou quaternaire 35 pouvant, soit faire partie de la chaîne principale polymère, soit être portés par un substituant latéral directement relié à celle-ci.

Les polymères cationiques utilisés ont généralement une masse moléculaire moyenne en nombre comprise entre 500 et $5 \cdot 10^6$ environ, et de préférence comprise entre 10^3 et $3 \cdot 10^6$ environ.

5

Parmi les polymères cationiques, on peut citer plus particulièrement les polymères du type polyamine, polyaminoamide et polyammonium quaternaire.

Ce sont des produits connus. Ils sont notamment décrits dans les brevets français n° 2 505 348 ou 2 542 997. Parmi lesdits polymères, on peut citer :

10

(1) Les homopolymères ou copolymères dérivés d'esters ou d'amides acryliques ou méthacryliques et comportant au moins un des motifs de formules (I), (II), (III) ou (IV) suivantes:

15

dans lesquelles:

R_3 , identiques ou différents, désignent un atome d'hydrogène ou un radical CH_3 ;

A, identiques ou différents, représentent un groupe alkyle, linéaire ou ramifié, de 1 à 6 atomes de carbone, de préférence 2 ou 3 atomes de carbone ou un groupe hydroxyalkyle de 1 à 4 atomes de carbone;

R₄, R₅, R₆, identiques ou différents, représentent un groupe alkyle ayant de 1 à 18

5 atomes de carbone ou un radical benzyle et de préférence un groupe alkyle ayant de 1 à 6 atomes de carbone;

R₁ et R₂, identiques ou différents, représentent hydrogène ou un groupe alkyle ayant de

1 à 6 atomes de carbone et de préférence méthyle ou éthyle;

X désigne un anion dérivé d'un acide minéral ou organique tel qu'un anion méthosulfate

10 ou un halogénure tel que chlorure ou bromure.

Les polymères de la famille (1) peuvent contenir en outre un ou plusieurs motifs dérivant de comonomères pouvant être choisis dans la famille des acrylamides, méthacrylamides, diacétones acrylamides, acrylamides et méthacrylamides substitués sur l'azote par des

15 alkyles inférieurs (C₁-C₄), des acides acryliques ou méthacryliques ou leurs esters, des vinyllactames tels que la vinylpyrrolidone ou le vinylcaprolactame, des esters vinyliques.

Ainsi, parmi ces polymères de la famille (1), on peut citer :

- les copolymères d'acrylamide et de diméthylaminoéthyl méthacrylate quaternisé au sulfate de diméthyle ou avec un halogénure de diméthyle, tel que celui vendu sous la

20 dénomination HERCOFLOC® par la société HERCULES,

- les copolymères d'acrylamide et de chlorure de méthacryloyloxyéthyltriméthylammonium décrits par exemple dans la demande de brevet EP-A-080976 et vendus sous la

dénomination BINA QUAT P 100® par la société CIBA GEIGY,

- le copolymère d'acrylamide et de méthosulfate de méthacryloyloxyéthyltriméthylammonium vendu sous la dénomination RETEN® par la société HERCULES,

- les copolymères vinylpyrrolidone / acrylate ou méthacrylate de dialkylaminoalkyle quaternisés ou non, tels que les produits vendus sous la dénomination "GAFQUAT®" par la société ISP comme par exemple "GAFQUAT 734" ou "GAFQUAT 755" ou bien les produits dénommés "COPOLYMER® 845, 958 et 937". Ces polymères sont décrits en

30 détail dans les brevets français 2.077.143 et 2.393.573,

- les terpolymères méthacrylate de diméthyl amino éthyle/ vinylcaprolactame/ vinylpyrrolidone tel que le produit vendu sous la dénomination GAFFIX VC 713® par la

société ISP,

- les copolymère vinylpyrrolidone / méthacrylamidopropyl dimethylamine commercialisés notamment sous la dénomination STYLEZE CC 10® par ISP,
- et les copolymères vinylpyrrolidone / méthacrylamide de diméthylaminopropyle quaternisés tel que le produit vendu sous la dénomination "GAFQUAT® HS 100" par la 5 société ISP .

(2) Les dérivés d'éthers de cellulose comportant des groupements ammonium quaternaire décrits dans le brevet français 1 492 597, et en particulier les polymères commercialisés sous les dénominations "JR®" (JR 400, JR 125, JR 30M) ou "LR®" (LR 10 400, LR 30M) par la Société Union Carbide Corporation. Ces polymères sont également définis dans le dictionnaire CTFA comme des ammonium quaternaires d'hydroxyéthylcellulose ayant réagi avec un époxyde substitué par un groupement triméthylammonium .

15 (3) Les dérivés de cellulose cationiques tels que les copolymères de cellulose ou les dérivés de cellulose greffés avec un monomère hydrosoluble d'ammonium quaternaire, et décrits notamment dans le brevet US 4 131 576, tels que les hydroxyalkyl celluloses, comme les hydroxyméthyl-, hydroxyéthyl- ou hydroxypropyl celluloses greffées notamment avec un sel de méthacryloyléthyl triméthylammonium, de 20 méthacrylmidopropyl triméthylammonium, de diméthyl-diallylammonium. Les produits commercialisés répondant à cette définition sont plus particulièrement les produits vendus sous la dénomination "Celquat® L 200" et "Celquat® H 100" par la Société National Starch.

25 (4) Les polysaccharides cationiques décrits plus particulièrement dans les brevets US 3 589 578 et 4 031 307 tel que les gommes de guar contenant des groupements cationiques trialkylammonium. On utilise par exemple des gommes de guar modifiées par un sel (par ex. chlorure) de 2,3-époxypropyl triméthylammonium. De tels produits sont commercialisés notamment sous les dénominations commerciales 30 de JAGUAR® C13 S, JAGUAR® C 15, JAGUAR® C 17 ou JAGUAR® C162 par la société MEYHALL.

(5) Les polymères constitués de motifs pipérazinyle et de radicaux divalents alkylène ou hydroxyalkylène à chaînes droites ou ramifiées, éventuellement interrompues par des 35 atomes d'oxygène, de soufre, d'azote ou par des cycles aromatiques ou hétérocycliques,

ainsi que les produits d'oxydation et/ou de quaternisation de ces polymères. De tels polymères sont notamment décrits dans les brevets français 2.162.025 et 2.280.361.

(6) Les polyaminoamides solubles dans l'eau préparés en particulier par
5 polycondensation d'un composé acide avec une polyamine ; ces polyaminoamides peuvent être réticulés par une épihalohydrine, un diépoxyde, un dianhydride, un dianhydride non saturé, un dérivé bis-insaturé, une bis-halohydrine, un bis-azétidinium, une bis-haloacyldiamine, un bis-halogénure d'alkyle ou encore par un oligomère résultant de la réaction d'un composé bifonctionnel réactif vis-à-vis d'une bis-halohydrine, d'un bis-
10 azétidinium, d'une bis-haloacyldiamine, d'un bis-halogénure d'alkyle, d'une épihalohydrine, d'un diépoxyde ou d'un dérivé bis-insaturé ; l'agent réticulant étant utilisé dans des proportions allant de 0,025 à 0,35 mole par groupement amine du polyaminoamide ; ces polyaminoamides peuvent être alcoylés ou s'ils comportent une ou plusieurs fonctions amines tertiaires, quaternisées. De tels polymères sont notamment
15 décrits dans les brevets français 2.252.840 et 2.368.508 .

(7) Les dérivés de polyaminoamides résultant de la condensation de polyalcoylènes polyamines avec des acides polycarboxyliques suivie d'une alcoylation par des agents bifonctionnels. On peut citer par exemple les polymères acide adipique-
20 diacoylaminohydroxyalcoyldialoylène triamine dans lesquels le radical alcoyle comporte de 1 à 4 atomes de carbone et désigne de préférence méthyle, éthyle, propyle. De tels polymères sont notamment décrits dans le brevet français 1.583.363.
Parmi ces dérivés, on peut citer plus particulièrement les polymères acide
adipique/diméthylaminohydroxypropyl/diéthylène triamine vendus sous la dénomination
25 "Cartaretine® F, F4 ou F8" par la société Sandoz.

(8) Les polymères obtenus par réaction d'une polyalkylène polyamine comportant deux groupements amine primaire et au moins un groupement amine secondaire avec un acide dicarboxylique choisi parmi l'acide diglycolique et les acides dicarboxyliques
30 aliphatiques saturés ayant de 3 à 8 atomes de carbone. Le rapport molaire entre le polyalkylène polyamine et l'acide dicarboxylique étant compris entre 0,8 : 1 et 1,4 : 1; le polyaminoamide en résultant étant amené à réagir avec l'épichlorhydrine dans un rapport molaire d'épichlorhydrine par rapport au groupement amine secondaire du polyaminoamide compris entre 0,5 : 1 et 1,8 : 1. De tels polymères sont notamment
35 décrits dans les brevets américains 3.227.615 et 2.961.347.

Des polymères de ce type sont en particulier commercialisés sous la dénomination "Hercosett® 57" par la société Hercules Inc. ou bien sous la dénomination de "PD 170®" ou "Delsette® 101" par la société Hercules dans le cas du copolymère d'acide adipique/époxypropyl/diéthylène-triamine.

5

(9) Les cyclopolymères d'alkyl diallyl amine ou de dialkyl diallyl ammonium tels que les homopolymères ou copolymères comportant comme constituant principal de la chaîne des motifs répondant aux formules (V) ou (VI) :

10

formules dans lesquelles k et t sont égaux à 0 ou 1, la somme k + t étant égale à 1 ; R₉ désigne un atome d'hydrogène ou un radical méthyle ; R₇ et R₈, indépendamment l'un de l'autre, désignent un groupement alkyle ayant de 1 à 22 atomes de carbone, un 15 groupe hydroxyalkyle dans lequel le groupement alkyle a de préférence 1 à 5 atomes de carbone, un groupement amidoalkyle inférieur (C₁-C₄) ; R₇ et R₈ peuvent désigner conjointement avec l'atome d'azote auquel ils sont rattachés, des groupements hétérocycliques, tels que pipéridinyle ou morpholinyle ; R₇ et R₈ indépendamment l'un de l'autre désignent de préférence un groupement alkyle ayant de 1 à 4 atomes de carbone ; Y⁻ est un anion tel que bromure, chlorure, acétate, borate, citrate, tartrate, bisulfite, bisulfite, sulfate, phosphate. Ces polymères sont notamment décrits dans le brevet français 2.080.759 et dans son certificat d'addition 2.190.406.

Parmi les polymères définis ci-dessus, on peut citer plus particulièrement l'homopolymère de chlorure de diméthyldiallylammonium vendu sous la dénomination "Merquat® 100" 25 par la société Calgon (et ses homologues de faible masse moléculaire moyenne en

poids) et les copolymères de chlorure de diallyldiméthylammonium et d'acrylamide commercialisés sous la dénomination "MERQUAT® 550".

(10) Le polymère de diammonium quaternaire contenant des motifs récurrents
5 répondant à la formule :

formule (VII) dans laquelle :

R₁₀, R₁₁, R₁₂ et R₁₃, identiques ou différents, représentent des radicaux aliphatisques, alicycliques, ou arylaliphatiques contenant de 1 à 20 atomes de carbone ou des radicaux hydroxyalkylaliphatiques inférieurs, ou bien R₁₀, R₁₁, R₁₂ et R₁₃, ensemble ou séparément, constituent avec les atomes d'azote auxquels ils sont rattachés des hétérocycles contenant éventuellement un second hétéroatome autre que l'azote ou bien R₁₀, R₁₁, R₁₂ et R₁₃ représentent un radical alkyle en C₁-C₆ linéaire ou ramifié substitué par un groupement nitrile, ester, acyle, amide ou -CO-O- R₁₄-D ou -CO-NH-R₁₄-D où R₁₄ est un alkylène et D un groupement ammonium quaternaire ;

A₁ et B₁ représentent des groupements polyméthyléniques contenant de 2 à 20 atomes de carbone pouvant être linéaires ou ramifiés, saturés ou insaturés, et pouvant contenir, liés à ou intercalés dans la chaîne principale, un ou plusieurs cycles aromatiques, ou un ou plusieurs atomes d'oxygène, de soufre ou des groupements sulfoxyde, sulfone, disulfure, amino, alkylamino, hydroxyle, ammonium quaternaire, uréido, amide ou ester, et

X⁻ désigne un anion dérivé d'un acide minéral ou organique;

A₁, R₁₀ et R₁₂ peuvent former avec les deux atomes d'azote auxquels ils sont rattachés un cycle pipérazinique ; en outre si A₁ désigne un radical alkylène ou hydroxyalkylène linéaire ou ramifié, saturé ou insaturé, B₁ peut également désigner un groupement -(CH₂)_n-CO-D-OC-(CH₂)_n- dans lequel n est compris entre 1 et 100 et de préférence entre 1 et 50, et D désigne :

a) un reste de glycol de formule : -O-Z-O-, où Z désigne un radical hydrocarboné linéaire ou ramifié ou un groupement répondant à l'une des formules suivantes :

30 -(CH₂-CH₂-O)_x-CH₂-CH₂-
-[CH₂-CH(CH₃)-O]_y-CH₂-CH(CH₃)-

où x et y désignent un nombre entier de 1 à 4, représentant un degré de polymérisation défini et unique ou un nombre quelconque de 1 à 4 représentant un degré de polymérisation moyen ;

- b) un reste de diamine bis-secondaire tel qu'un dérivé de pipérazine ;
- 5 c) un reste de diamine bis-primaire de formule : -NH-Y-NH-, où Y désigne un radical hydrocarboné linéaire ou ramifié, ou bien le radical bivalent -CH₂-CH₂-S-S-CH₂-CH₂- ;
- d) un groupement uréylène de formule : -NH-CO-NH- .

- De préférence, X⁻ est un anion tel que le chlorure ou le bromure.
- 10 Ces polymères ont une masse moléculaire moyenne en nombre généralement comprise entre 1000 et 100000. Des polymères de ce type sont notamment décrits dans les brevets français 2.320.330, 2.270.846, 2.316.271, 2.336.434 et 2.413.907 et les brevets US 2.273.780, 2.375.853, 2.388.614, 2.454.547, 3.206.462, 2.261.002, 2.271.378, 3.874.870, 4.001.432,
 - 15 3.929.990, 3.966.904, 4.005.193, 4.025.617, 4.025.627, 4.025.653, 4.026.945 et 4.027.020.

On peut utiliser plus particulièrement les polymères qui sont constitués de motifs récurrents répondant à la formule (VIII) suivante:

- 20 dans laquelle R₁₀, R₁₁, R₁₂ et R₁₃, identiques ou différents, désignent un radical alkyle ou hydroxyalkyle ayant de 1 à 4 atomes de carbone environ, n et p sont des nombres entiers variant de 2 à 20 environ et, X⁻ est un anion dérivé d'un acide minéral ou organique.

- 25 (11) Les polymères de polyammonium quaternaire constitués de motifs récurrents de formule (IX) :

dans laquelle p désigne un nombre entier variant de 1 à 6 environ, D peut être nul ou peut représenter un groupement $-(CH_2)_r-CO-$ dans lequel r désigne un nombre égal à 4 ou à 7, X^- est un anion ;

De tels polymères peuvent être préparés selon les procédés décrits dans les brevets

- 5 U.S.A. n° 4 157 388, 4 702 906, 4 719 282. Ils sont notamment décrits dans la demande de brevet EP-A-122 324.

Parmi eux, on peut par exemple citer les produits "Mirapol® A 15", "Mirapol® AD1", "Mirapol® AZ1" et "Mirapol® 175" vendus par la société Miranol.

- 10 (12) Les polymères quaternaires de vinylpyrrolidone et de vinylimidazole tels que par exemple les produits commercialisés sous les dénominations Luviquat® FC 905, FC 550 et FC 370 par la société B.A.S.F.

- 15 (13) Les polyamines comme le Polyquart® H vendu par HENKEL, référencé sous le nom de " POLYETHYLENEGLYCOL (15) TALLOW POLYAMINE " dans le dictionnaire CTFA.

- (14) Les polymères réticulés de sels de méthacryloyloxyalkyl(C₁-C₄) trialkyl(C₁-C₄)ammonium tels que les polymères obtenus par homopolymérisation du diméthylaminoéthylméthacrylate quaternisé par le chlorure de méthyle, ou par 20 copolymérisation de l'acrylamide avec le diméthylaminoéthylméthacrylate quaternisé par le chlorure de méthyle, l'homo ou la copolymérisation étant suivie d'une réticulation par un composé à insaturation oléfinique, en particulier le méthylène bis acrylamide. On peut plus particulièrement utiliser un copolymère réticulé acrylamide/chlorure de méthacryloyloxyéthyl triméthylammonium (20/80 en poids) sous forme de dispersion 25 contenant 50 % en poids dudit copolymère dans de l'huile minérale. Cette dispersion est commercialisée sous le nom de " SALCARE® SC 92 " par la Société ALLIED COLLOIDS. On peut également utiliser un homopolymère réticulé du chlorure de méthacryloyloxyéthyl triméthylammonium contenant environ 50 % en poids de l'homopolymère dans de l'huile minérale ou dans un ester liquide. Ces dispersions sont 30 commercialisées sous les noms de " SALCARE® SC 95 " et " SALCARE® SC 96 " par la Société ALLIED COLLOIDS.

D'autres polymères cationiques utilisables dans le cadre de l'invention sont des polyalkylèneimines, en particulier des polyéthylèneimines, des polymères contenant des

motifs vinylpyridine ou vinylpyridinium, des condensats de polyamines et d'épiclorhydrine, des polyurétylènes quaternaires et les dérivés de la chitine.

Parmi tous les polymères cationiques susceptibles d'être utilisés dans le cadre de la 5 présente invention, on préfère mettre en oeuvre les polymères des familles (1), (9), (10) (11) et (14) et encore plus préférentiellement les polymères aux motifs récurrents de formules (W) et (U) suivantes :

10 et notamment ceux dont le poids moléculaire, déterminé par chromatographie par perméation de gel, est compris entre 9500 et 9900;

et notamment ceux dont le poids moléculaire, déterminé par chromatographie par 15 perméation de gel, est d'environ 1200.

La concentration en polymère cationique différent des poly(vinylactame) cationiques de la présente invention dans la composition selon la présente invention peut varier de 0,01 à 10% en poids par rapport au poids total de la composition, de préférence de 0,05 à 5% 20 et plus préférentiellement encore de 0,1 à 3%.

Polymères amphotères

Les polymères amphotères utilisables conformément à la présente invention peuvent être 25 choisis parmi les polymères comportant des motifs K et M répartis statistiquement dans la chaîne polymère, où K désigne un motif dérivant d'un monomère comportant au moins un atome d'azote basique et M désigne un motif dérivant d'un monomère acide comportant un ou plusieurs groupements carboxyliques ou sulfoniques, ou bien K et M peuvent

désigner des groupements dérivant de monomères zwittérioniques de carboxybétaïnes ou de sulfobétaïnes;

K et M peuvent également désigner une chaîne polymère cationique comportant des groupements amine primaire, secondaire, tertiaire ou quaternaire, dans laquelle au moins

5 l'un des groupements amine porte un groupement carboxylique ou sulfonique relié par l'intermédiaire d'un radical hydrocarboné, ou bien K et M font partie d'une chaîne d'un polymère à motif éthylène α,β -dicarboxylique dont l'un des groupements carboxyliques a été amené à réagir avec une polyamine comportant un ou plusieurs groupements amine primaire ou secondaire.

10 Les polymères amphotères répondant à la définition donnée ci-dessus plus particulièrement préférés sont choisis parmi les polymères suivants :

(1) Les polymères résultant de la copolymérisation d'un monomère dérivé d'un composé vinylique portant un groupement carboxylique tel que plus particulièrement l'acide acrylique, l'acide méthacrylique, l'acide maléique, l'acide alpha-chloracrylique, et d'un monomère basique dérivé d'un composé vinylique substitué contenant au moins un atome basique tel que plus particulièrement les dialkylaminoalkyliméthacrylate et acrylate, les dialkylaminoalkyliméthacrylamide et acrylamide. De tels composés sont décrits dans le brevet américain n° 3 836 537. On peut également citer le copolymère acrylate de sodium / chlorure d'acrylamidopropyl trimethyl ammonium vendu sous la dénomination POLYQUART® KE 3033 par la Société HENKEL.

Le composé vinylique peut être également un sel de dialkyldiallylaminonium tel que le chlorure de diméthyldiallylaminonium. Les copolymères d'acide acrylique et de ce dernier monomère sont proposés sous les appellations MERQUAT® 280, MERQUAT® 295 et MERQUAT® PLUS 3330 par la société CALGON.

(2) Les polymères comportant des motifs dérivant :

- a) d'au moins un monomère choisi parmi les acrylamides ou les méthacrylamides substitués sur l'azote par un radical alkyle,
- b) d'au moins un comonomère acide contenant un ou plusieurs groupements carboxyliques réactifs, et
- c) d'au moins un comonomère basique tel que des esters à substituants amine primaire, secondaire, tertiaire et quaternaire des acides acrylique et méthacrylique et le produit de quaternisation du méthacrylate de diméthylaminoéthyle avec le sulfate de diméthyle ou diéthyle.

- Les acrylamides ou méthacrylamides N-substitués plus particulièrement préférés selon l'invention sont les groupements dont les radicaux alkyle contiennent de 2 à 12 atomes de carbone et plus particulièrement le N-éthylacrylamide, le N-tertiobutyl-acrylamide, le N-tertiooctyl-acrylamide, le N-octylacrylamide, le N-décylacrylamide, le N-
5 dodécylacrylamide ainsi que les méthacrylamides correspondants.
- Les comonomères acides sont choisis plus particulièrement parmi les acides acrylique, méthacrylique, crotonique, itaconique, maléique, fumrique ainsi que les monoesters d'alkyle ayant 1 à 4 atomes de carbone des acides ou des anhydrides maléique ou fumrique.
- 10 Les comonomères basiques préférés sont des méthacrylates d'aminoéthyle, de butyl aminoéthyle, de N,N'-diméthylaminoéthyle, de N-tertio-butylaminoéthyle.
- On utilise particulièrement les copolymères dont la dénomination CTFA (4ème Ed., 1991) est Octylacrylamide/acrylates/butylaminoethylmethacrylate copolymer tels que les produits vendus sous la dénomination AMPHOMER® ou LOVOCRYL® 47 par la société
15 NATIONAL STARCH.

(3) Les polyaminoamides réticulés et alcoyés partiellement ou totalement dérivant de polyaminoamides de formule générale :

- dans laquelle R_{19} représente un radical divalent dérivé d'un acide dicarboxylique saturé,
20 d'un acide aliphatique mono ou dicarboxylique à double liaison éthylénique, d'un ester d'un alanol inférieur ayant 1 à 6 atomes de carbone de ces acides ou d'un radical dérivant de l'addition de l'un quelconque desdits acides avec une amine bis primaire ou bis secondaire, et Z désigne un radical d'une polyalkylène-polyamine bis-primaire, mono ou bis-secondaire et de préférence représente :
25 a) dans les proportions de 60 à 100 moles %, le radical

- où $x=2$ et $p=2$ ou 3 , ou bien $x=3$ et $p=2$
ce radical dérivant de la diéthylène triamine, de la triéthylène tétraamine ou de la dipropylène triamine;
30 b) dans les proportions de 0 à 40 moles % le radical (XI) ci-dessus, dans lequel $x=2$ et $p=1$ et qui dérive de l'éthylènediamine, ou le radical dérivant de la pipérazine :

c) dans les proportions de 0 à 20 moles % le radical -NH-(CH₂)₆-NH- dérivant de l'hexaméthylénediamine, ces polyaminoamines étant réticulées par addition d'un agent réticulant bifonctionnel choisi parmi les épihalohydrines, les diépoxydes, les dianhydrides, 5 les dérivés bis insaturés, au moyen de 0,025 à 0,35 mole d'agent réticulant par groupement amine du polyaminoamide et alcoyés par action d'acide acrylique, d'acide chloracétique ou d'une alcane sultone ou de leurs sels.

Les acides carboxyliques saturés sont choisis de préférence parmi les acides ayant 6 à 10 atomes de carbone tels que l'acide adipique, triméthyl-2,2,4-adipique et 10 triméthyl-2,4,4-adipique, téraphthalique, les acides à double liaison éthylénique comme par exemple les acides acrylique, méthacrylique, itaconique.

Les alcanes sultones utilisées dans l'alcoylation sont de préférence la propane ou la butane sultone, les sels des agents d'alcoylation sont de préférence les sels de sodium ou de potassium.

15 (4) Les polymères comportant des motifs zwittérioniques de formule :

dans laquelle R₂₀ désigne un groupement insaturé polymérisable tel qu'un groupement acrylate, méthacrylate, acrylamide ou méthacrylamide, y et z représentent un nombre entier de 1 à 3, R₂₁ et R₂₂ représentent un atome d'hydrogène, méthyle, éthyle ou propyle, R₂₃ et R₂₄ représentent un atome d'hydrogène ou un radical alkyle de telle façon que la somme des atomes de carbone dans R₂₃ et R₂₄ ne dépasse pas 10.

20 Les polymères comprenant de telles unités peuvent également comporter des motifs dérivés de monomères non zwittérioniques tels que l'acrylate ou le méthacrylate de diméthyl ou diéthylaminoéthyle ou des alkyle acrylates ou méthacrylates, des acrylamides ou méthacrylamides ou l'acétate de vinyle.

A titre d'exemple, on peut citer le copolymère de méthacrylate de butyle / méthacrylate de diméthylcarboxyméthylammonio-éthyle tel que le produit vendu sous la dénomination DIAFORMER Z301® par la société SANDOZ.

(5) les polymères dérivés du chitosane comportant des motifs monomères répondant aux formules (XIII), (XIV), (XV) suivantes :

(XIII)

(XIV)

(XV)

- le motif (XIII) étant présent dans des proportions comprises entre 0 et 30%, le motif (XIV)
 5 dans des proportions comprises entre 5 et 50% et le motif (XV) dans des proportions comprises entre 30 et 90%, étant entendu que dans ce motif (XV), R₂₅ représente un radical de formule :

- dans laquelle q désigne zéro ou 1;
 10 si q=0, R₂₆, R₂₇ et R₂₈, identiques ou différents, représentent chacun un atome d'hydrogène, un reste méthyle, hydroxyle, acétoxy ou amino, un reste monoalcoylamine ou un reste dialcoylamine éventuellement interrompus par un ou plusieurs atomes d'azote et/ou éventuellement substitués par un ou plusieurs groupes amine, hydroxyle, carboxyle, alcoylthio, sulfonique, un reste alcoylthio dont le groupe alcoyle porte un reste
 15 amino, l'un au moins des radicaux R₂₆, R₂₇ et R₂₈ étant dans ce cas un atome d'hydrogène ;
 ou si q=1, R₂₆, R₂₇ et R₂₈ représentent chacun un atome d'hydrogène, ainsi que les sels formés par ces composés avec des bases ou des acides.

- (6) Les polymères dérivés de la N-carboxyalkylation du chitosane comme le
 20 N-carboxyméthyl chitosane ou le N-carboxybutyl chitosane vendu sous la dénomination "EVALSAN®" par la société JAN DEKKER.

- (7) Les polymères répondant à la formule générale (XI) tels que ceux décrits par exemple dans le brevet français 1 400 366 :

dans laquelle R₂₉ représente un atome d'hydrogène, un radical CH₃O, CH₃CH₂O, phényle, R₃₀ désigne l'hydrogène ou un radical alkyle inférieur tel que méthyle, éthyle, R₃₁ désigne l'hydrogène ou un radical alkyle inférieur tel que méthyle, éthyle, R₃₂ désigne un radical alkyle inférieur tel que méthyle, éthyle ou un radical répondant à la formule : -R₃₃-N(R₃₁)₂, R₃₃ représentant un groupement -CH₂-CH₂- , -CH₂-CH₂-CH₂- , -CH₂-CH(CH₃)- , R₃₁ ayant les significations mentionnées ci-dessus, ainsi que les homologues supérieurs de ces radicaux et contenant jusqu'à 6 atomes de carbone,

10 r est tel que le poids moléculaire est compris entre 500 et 6000000 et de préférence entre 1000 et 1000000.

(8) Des polymères amphotères du type -D-X-D-X- choisis parmi:

a) les polymères obtenus par action de l'acide chloracétique ou le chloracétate de sodium sur les composés comportant au moins un motif de formule :

où D désigne un radical

et X désigne le symbole E ou E', E ou E' identiques ou différents désignent un radical bivalent qui est un radical alkylène à chaîne droite ou ramifiée comportant jusqu'à 7

atomes de carbone dans la chaîne principale non substituée ou substituée par des groupements hydroxyle et pouvant comporter en outre des atomes d'oxygène, d'azote, de soufre, 1 à 3 cycles aromatiques et/ou hétérocycliques; les atomes d'oxygène, d'azote et de soufre étant présents sous forme de groupements éther, thioéther, sulfoxyde, sulfone, sulfonium, alkylamine, alkénylamine, des groupements hydroxyle, benzylamine, oxyde d'amine, ammonium quaternaire, amide, imide, alcool, ester et/ou uréthane;

5 sulfone, sulfonium, alkylamine, alkénylamine, des groupements hydroxyle, benzylamine, oxyde d'amine, ammonium quaternaire, amide, imide, alcool, ester et/ou uréthane;

b) les polymères de formule :

où D désigne un radical

10 et X désigne le symbole E ou E' et au moins une fois E'; E ayant la signification indiquée ci-dessus et E' est un radical bivalent qui est un radical alkylène à chaîne droite ou ramifiée ayant jusqu'à 7 atomes de carbone dans la chaîne principale, substitué ou non par un ou plusieurs radicaux hydroxyle et comportant un ou plusieurs atomes d'azote, l'atome d'azote étant substitué par une chaîne alkyle interrompue éventuellement par un atome d'oxygène et comportant obligatoirement une ou plusieurs fonctions carboxyle ou une ou plusieurs fonctions hydroxyle et bétainisées par réaction avec l'acide chloracétique ou du chloracétate de soude.

15

(9) Les copolymères alkyl(C₁-C₅)vinyléther / anhydride maléique modifié partiellement par semiamidification avec une N,N-dialkylaminoalkylamine telle que la N,N-diméthylaminopropylamine ou par semiestérification avec une N,N-dialcanolamine. Ces copolymères peuvent également comporter d'autres comonomères vinyliques tels que le vinylcaprolactame.

25 Les polymères amphotères particulièrement préférés selon l'invention sont ceux de la famille (1).

Selon l'invention, le ou les polymères amphotères peuvent représenter de 0,01 % à 10 % en poids, de préférence de 0,05 % à 5 % en poids, et encore plus préférentiellement de 30 0,1 % à 3 % en poids, du poids total de la composition.

Les compositions de l'invention comprennent de préférence un ou plusieurs tensioactifs.

Le ou les tensioactifs peuvent être indifféremment choisis, seuls ou en mélanges, au sein des tensioactifs anioniques, amphotères, non ioniques, zwittérioniques et cationiques.

Les tensioactifs convenant à la mise en oeuvre de la présente invention sont notamment

5 les suivants :

(i) Tensioactif(s) anionique(s) :

A titre d'exemple de tensio-actifs anioniques utilisables, seuls ou mélanges, dans le cadre 10 de la présente invention, on peut citer notamment (liste non limitative) les sels (en particulier sels alcalins, notamment de sodium, sels d'ammonium, sels d'amines, sels d'aminoalcools ou sels de magnésium) des composés suivants : les alkylsulfates, les alkyléthersulfates, alkylamidoéthersulfates, alkylarylpolyéthersulfates, monoglycérides sulfates ; les alkylsulfonates, alkylphosphates, alkylamidesulfonates, alkylarylsulfonates, 15 α -oléfine-sulfonates, paraffine-sulfonates ; les alkyl(C₆-C₂₄) sulfosuccinates, les alkyl(C₆-C₂₄) éthersulfosuccinates, les alkyl(C₆-C₂₄) amidesulfosuccinates ; les alkyl(C₆-C₂₄) sulfoacétates ; les acyl(C₆-C₂₄) sarcosinates et les acyl(C₆-C₂₄) glutamates. On peut également utiliser les esters d'alkyl(C₆-C₂₄)polyglycosides carboxyliques tels que les 20 alkylglucoside citrates, les alkylpolyglycoside tartrate et les alkylpolyglycoside sulfosuccinates, les alkylsulfosuccinamates ; les acylséthionates et les N-acyltaurates, le radical alkyle ou acyle de tous ces différents composés comportant de préférence de 12 à 20 atomes de carbone, et le radical aryl désignant de préférence un groupement phényle ou benzyle. Parmi les tensioactifs anioniques encore utilisables, on peut également citer les sels d'acides gras tels que les sels des acides oléique, ricinoléique, 25 palmitique, stéarique, les acides d'huile de coprah ou d'huile de coprah hydrogénée ; les acyl-lactylates dont le radical acyle comporte 8 à 20 atomes de carbone. On peut également utiliser les acides d'alkyl D galactoside uroniques et leurs sels, les acides alkyl (C₆-C₂₄) éther carboxyliques polyoxyalkylénés, les acides alkyl(C₆-C₂₄)aryl éther carboxyliques polyoxyalkylénés, les acides alkyl(C₆-C₂₄) amido éther carboxyliques 30 polyoxyalkylénés et leurs sels, en particulier ceux comportant de 2 à 50 groupements oxyde d'alkylène en particulier d'éthylène, et leurs mélanges.

(ii) Tensioactif(s) non ionique(s) :

35 Les agents tensioactifs non-ioniques sont, eux aussi, des composés bien connus en soi (voir notamment à cet égard "Handbook of Surfactants" par M.R. PORTER, éditions

Blackie & Son (Glasgow and London), 1991, pp 116-178) et leur nature ne revêt pas, dans le cadre de la présente invention, de caractère critique. Ainsi, ils peuvent être notamment choisis parmi (liste non limitative) les alcools, les alpha-diols, les alkylphénols polyéthoxylés, polypropoxylés, ayant une chaîne grasse comportant par exemple 8 à 18 atomes de carbone, le nombre de groupements oxyde d'éthylène ou oxyde de propylène pouvant aller notamment de 2 à 50. On peut également citer les copolymères d'oxyde d'éthylène et de propylène, les condensats d'oxyde d'éthylène et de propylène sur des alcools gras ; les amides gras polyéthoxylés ayant de préférence de 2 à 30 moles d'oxyde d'éthylène, les amides gras polyglycérolés comportant en moyenne 1 à 5 groupements glycérol et en particulier 1,5 à 4 ; les amines grasses polyéthoxylées ayant de préférence 2 à 30 moles d'oxyde d'éthylène ; les esters d'acides gras du sorbitan oxyéthylénés ayant de 2 à 30 moles d'oxyde d'éthylène ; les esters d'acides gras du sucre, les esters d'acides gras du polyéthylèneglycol, les alkylpolyglycosides, les dérivés de N-alkyl glucamine, les oxydes d'amines tels que les oxydes d'alkyl (C₁₀ - C₁₄) amines ou les oxydes de N-acylaminopropylmorpholine.

(iii) Tensioactif(s) amphotère(s) ou zwittérionique(s) :

Les agents tensioactifs amphotères ou zwitterioniques, dont la nature ne revêt pas dans le cadre de la présente invention de caractère critique, peuvent être notamment (liste non limitative) des dérivés d'amines secondaires ou tertiaires aliphatiques, dans lesquels le radical aliphatique est une chaîne linéaire ou ramifiée comportant 8 à 18 atomes de carbone et contenant au moins un groupe anionique hydrosolubilisant (par exemple carboxylate, sulfonate, sulfate, phosphate ou phosphonate) ; on peut citer encore les alkyl (C₈-C₂₀) bêtaïnes, les sulfobêtaïnes, les alkyl (C₈-C₂₀) amidoalkyl (C₁-C₆) bêtaïnes ou les alkyl (C₈-C₂₀) amidoalkyl (C₁-C₆) sulfobêtaïnes.

Parmi les dérivés d'amines, on peut citer les produits vendus sous la dénomination MIRANOL, tels que décrits dans les brevets US-2 528 378 et US-2 781 354 et classés dans le dictionnaire CTFA, 3ème édition, 1982, sous les dénominations Amphocarboxyglycinates et Amphocarboxypropionates de structures respectives :

R₂-CONHCH₂CH₂-N(R₃)(R₄)(CH₂COO⁻)
 dans laquelle : R₂ désigne un radical alkyle d'un acide R₂-COOH présent dans l'huile de coprah hydrolysée, un radical heptyle, nonyle ou undécyle, R₃ désigne un groupement bêta-hydroxyéthyle et R₄ un groupement carboxyméthyle ;

et

dans laquelle :

B représente $-CH_2CH_2OX'$, C représente $-(CH_2)_z-Y'$, avec $z = 1$ ou 2 ,

5 X' désigne le groupement $-CH_2CH_2-COOH$ ou un atome d'hydrogène

Y' désigne $-COOH$ ou le radical $-CH_2-CHOH-SO_3H$

R_{2'} désigne un radical alkyle d'un acide R₉-COOH présent dans l'huile de coprah ou dans l'huile de lin hydrolysée, un radical alkyle, notamment en C₇, C₉, C₁₁ ou C₁₃, un radical alkyle en C₁₇ et sa forme iso, un radical C₁₇ insaturé.

10

Ces composés sont classés dans le dictionnaire CTFA, 5ème édition, 1993, sous les dénominations Disodium Cocoamphodiacetate, Disodium Lauroamphodiacetate, Disodium Caprylamphodiacetate, Disodium Capryloamphodiacetate, Disodium Cocoamphodipropionate, Disodium Lauroamphodipropionate, Disodium Caprylamphodipropionate, Disodium Capryloamphodipropionate, Lauroamphodipropionic acid, Cocoamphodipropionic acid.

15

A titre d'exemple on peut citer le cocoamphodiacetate commercialisé sous la dénomination commerciale MIRANOL® C2M concentré par la société RHODIA CHIMIE.

20

(iv) Tensioactifs cationiques :

Parmi les tensioactifs cationiques on peut citer en particulier (liste non limitative) : les sels d'amines grasses primaires, secondaires ou tertiaires, éventuellement polyoxyalkylénées ; les sels d'ammonium quaternaire tels que les chlorures ou les bromures de 25 tétraalkylammonium, d'alkylamidoalkyltrialkylammonium, de trialkylbenzylammonium, de trialkylhydroxyalkyl-ammonium ou d'alkylpyridinium; les dérivés d'imidazoline ; ou les oxydes d'amines à caractère cationique.

Les quantités d'agents tensioactifs présents dans la composition selon l'invention 30 peuvent varier de 0,01 à 40% et de préférence de 0,5 à 30% du poids total de la composition.

Le pH de la composition prête à l'emploi est généralement compris entre environ 1,5 et

12.

Plus préférentiellement, le pH des compositions de l'invention prêtes à l'emploi destinées à la décoloration est compris entre environ 1,5 et 10, et encore plus préférentiellement entre environ 1,5 et 7.

Plus préférentiellement, le pH des compositions de l'invention prêtes à l'emploi destinées à la déformation permanente est compris entre environ 6 et 12 et encore plus préférentiellement entre environ 7 et 11.

Ce pH peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants bien connus de l'état de la technique en décoloration ou en déformation permanente des fibres kératiniques.

10

Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les carbonates alcalins ou d'ammonium, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxyalkylamines et les éthylènediamines oxyéthylénées et/ou oxypropylénées, les hydroxydes de sodium ou de potassium et les composés de formule (XIX) suivante :

dans laquelle R est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C₁-C₄ ; R₃₈, R₃₉, R₄₀ et R₄₁, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C₁-C₄ ou hydroxyalkyle en C₁-C₄.

20

Les agents acidifiants sont classiquement, à titre d'exemple, des acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, des acides carboxyliques comme l'acide tartrique, l'acide citrique, l'acide lactique, ou des acides sulfoniques.

25

Les agents alcalinisants ou acidifiants peuvent représenter environ 0,01 à 30% en poids du poids total de la composition de décoloration ou de déformation permanente.

Les compositions de l'invention peuvent également contenir des agents séquestrants comme par exemple l'acide éthylènediamine tétraacétique (EDTA).

Agents épaisseurs additionnels

Les compositions selon l'invention peuvent également contenir d'autres agents d'ajustement de la rhéologie tels que les épaisseurs cellulaires (hydroxyéthylcellulose, hydroxypropylcellulose, carboxyméthylcellulose..), la gomme de

guar et ses dérivés(hydroxypropylguar..), les gommes d'origine microbienne (gomme de xanthane, gomme de scléroglycane..), les épaississants synthétiques tels que les homopolymères réticulés d'acide acrylique ou d'acide acrylamidopropanesulfonique et les polymères associatifs ioniques ou non ioniques tels que les polymères commercialisés sous les appellations PEMULEN® TR1 ou TR2 par la société GOODRICH, SALCARE® SC90 par la société ALLIED COLLOIDS, ACULYN® 22, 28, 33, 44, ou 46 par la société ROHM & HAAS et ELFACOS® T210 et T212 par la société AKZO.

Ces épaississants d'appoint peuvent représenter de 0,01 à 10% en poids du poids total de la composition.

Lorsque les compositions contenant l'agent réducteur et le ou les poly(vinylactame) cationiques selon l'invention sont sous forme anhydre (poudre ou crème), elles contiennent les agents principaux et additifs mentionnés ci-dessus sous forme de solides ou de liquides essentiellement anhydres.

Lorsque le milieu contenant l'agent réducteur est un milieu aqueux, il peut éventuellement contenir des solvants organiques acceptables sur le plan cosmétique, dont plus particulièrement, des alcools tels que l'alcool éthylique, l'alcool isopropylique, l'alcool benzylique, et l'alcool phénylethylique, ou des polyols ou éthers de polyols tels que, par exemple, les éthers monométhylique, monoéthylique et monobutylique d'éthylèneglycol, le propylèneglycol ou ses éthers tels que, par exemple, le monométhyléther de propylèneglycol, le butylèneglycol, le dipropylèneglycol ainsi que les alkyléthers de diéthylèneglycol comme par exemple, le monoéthyléther ou le monobutyléther du diéthylèneglycol. Les solvants peuvent alors être présents dans des concentrations comprises entre environ 0,5 et 20% et, de préférence, entre environ 2 et 10% en poids par rapport au poids total de la composition.

La composition de décoloration ou de déformation permanente selon l'invention peut encore contenir une quantité efficace d'autres agents, par ailleurs antérieurement connus en décoloration ou en déformation permanente des fibres kératiniques.

Bien entendu, l'homme de l'art veillera à choisir le ou les éventuels composés complémentaires mentionnés ci-avant, de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition de décoloration ou de déformation

permanente des fibres kératiniques selon l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

De préférence, le procédé de décoloration selon l'invention consiste à appliquer la 5 composition réductrice prête à l'emploi, sur les fibres kératiniques sèches ou humides, et à la laisser agir pendant un temps de pause variant, de préférence, de 1 à 60 minutes environ, et plus préférentiellement de 10 à 45 minutes environ, à rincer les fibres, puis éventuellement à les laver au shampooing, puis à les rincer à nouveau, et à les sécher.

De préférence, le procédé de déformation permanente selon l'invention consiste à 10 appliquer la composition réductrice prête à l'emploi sur les fibres kératiniques sèches ou humides, à la laisser agir pendant un temps de pause variant, de préférence, de 1 à 60 minutes environ, et plus préférentiellement de 10 à 45 minutes environ, à rincer éventuellement les fibres, puis à appliquer une composition oxydante et laisser agir pendant un temps de pause compris entre 1 et 20 minutes et de préférence entre 1 et 10 15 minutes, puis éventuellement à les laver au shampooing, puis à les rincer à nouveau, et à les sécher.

Des moyens mécaniques de mise sous tension des fibres kératiniques peuvent être utilisés avant, pendant ou après application de la composition réductrice et ôtés avant ou après le rinçage de la composition oxydante.

20

Des exemples concrets illustrant l'invention sont indiqués ci-après, sans pour autant présenter un caractère limitatif.

EXEMPLE 1 :

25 On a préparé la composition de décoloration aqueuse prête à l'emploi suivante (quantités exprimées en grammes):

Acide citrique.....	7,4
Citrate trisodique dihydraté.....	1
Hydroxyéthylcellulose.....	1,5
Acide 2-oxoglutarique.....	0,8
Ascorbate de sodium.....	5,7
L-cystéine.....	2
Polymère selon l'invention**...	0,3 MA*
Sulfate de magnésium.....	1
Eau.....qsp.....	100

MA*= Matière Active

Le polymère selon l'invention** est un terpolymère vinylpyrrolidone / diméthylaminopropylméthacrylamide/ chlorure de lauryldiméthylméthacrylamidoammonium proposé par la Société ISP sous la référence POLYMER ACP-1234.

La composition de décoloration ci-dessus a permis une décoloration régulière des cheveux teints artificiellement par une teinture d'oxydation.

10

EXEMPLE 2 :

On a préparé la composition de déformation permanente suivante (quantités exprimées en grammes):

Acide thioglycolique.....	9,2
Ammoniaque à 20% de NH3.....	9,3
Carbonate d'ammonium.....	4,5
Cocoylamidopropylbétaine / Monolaurate de glycérol (25/5).....	0,4MA*
EDTA.....	0,4
Polymère cationique de formule W en solution à 60% dans l'eau.....	1 MA*
Polymère selon l'invention**.....	0,3 MA*
Eau.....qsp.....	100

15 MA* = Matière Active

Le polymère selon l'invention** est un terpolymère vinylpyrrolidone / diméthylaminopropylméthacrylamide/ chlorure de lauryldiméthylméthacrylamidoammonium proposé par la Société ISP sous la référence POLYMER ACP-1234.

20

La composition de déformation permanente ci-dessus a été appliquée 15 minutes sur des cheveux mouillés préalablement enroulés sur des rouleaux de mise en plis, puis rincée abondamment à l'eau. On a appliqué alors pendant 5 minutes une solution d'eau

oxygénée à 8 volumes et de pH 3, puis on a rincé à nouveau, on a enlevé les rouleaux et on a séché.

Les cheveux ont présenté une belle frisure homogène.

5 EXEMPLE 3 :

On a préparé la composition de décoloration aqueuse prête à l'emploi suivante (quantités exprimées en grammes):

Polymère selon l'invention**	1
Alcool isostéarylque (TEGO ALKANOL 66 vendu par la société GOLDSCHMIDT).....	12
Alcool benzylque.....	10
Hydroxyméthane sulfinate de sodium.....	7
Ajustée à pH.....	3
Eau déminéralisée.....q.s.p.....	100

10 Le polymère selon l'invention** est un terpolymère vinylpyrrolidone / diméthylaminopropylméthacrylamide/ chlorure de lauryldiméthylméthacrylamidoammonium proposé par la Société ISP sous la référence POLYMER ACP-1234.

15 La composition de décoloration ci-dessus a été appliquée sur des cheveux gris naturels à 90% de blancs, préalablement colorés par la nuance 20 (cuivré) de la gamme L'OREAL MOVIDA avec un rapport de bain de 10 g pour 1 g de cheveux.

Après 30 minutes de pose, les mèches ont été rincées puis séchées.

Le reflet cuivré a disparu, laissant apparaître à nouveau les cheveux tels qu'ils étaient

20 avant l'application de la teinture.

EXEMPLE 4

On a préparé la composition réductrice suivante (exprimée en grammes) :

25

Acide thioglycolique.....	9,2
Arginine.....	15
Ammoniaque à 20% d'NH3.....	9,3
Carbonate d'ammonium.....	4,5

Cocoylamidopropylbétaïne/monolaurate de glycérol (25/5) en solution aqueuse à 30%.....	1,3
Peptisant.....	0,8
Polymère selon l'invention**.....	1
Alcool isostéarylique (TEGO ALKANOL 66 vendu par la société GOLDSCHMIDT).....	12
Agent séquestrant.....	0,4
Parfum.....	0,4
Eau déminéralisée.....q.s.p.....	100

Le polymère selon l'invention** est un terpolymère vinylpyrrolidone / diméthylaminopropylméthacrylamide/ chlorure de lauryldiméthylméthacrylamidoammonium proposé par la Société ISP sous la référence
 5 POLYMER ACP-1234.

Cette composition réductrice a été appliquée sur une mèche de cheveux humides, préalablement enroulée sur un bigoudi de 9 mm de diamètre.

Après 10 minutes de temps de pause, on l'a rincée abondamment à l'eau.

10 On a ensuite appliqué une composition oxydante (eau oxygénée 8 volumes de pH=3).

Après 10 minutes de temps de pause, on a rincé à nouveau abondamment la mèche.

Puis on a déroulé les cheveux du bigoudi et on les a séchés.

La mèche a été ondulée.

REVENDICATIONS

1. Composition cosmétique et/ou dermatologique destinée au traitement des matières kératiniques, caractérisée par le fait qu'elle comprend dans un support approprié pour les matières kératiniques :

5 (i) au moins un agent réducteur et,

(ii) un polymère poly(vinylactame) cationique comprenant :

-a) au moins un monomère de type vinyl lactame ou alkylvinylactame;

-b) au moins un monomère de structures (I) ou (II) suivantes :

10

dans lesquelles :

X désigne un atome d'oxygène ou un radical NR₆,

15 R₁ et R₆ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyl linéaire ou ramifié en C₁-C₅,

R₂ désigne un radical alkyle linéaire ou ramifié en C₁-C₄,

R₃, R₄ et R₅ désignent, indépendamment l'un de l'autre, un atome d'hydrogène, un radical alkyle linéaire ou ramifié en C₁-C₃₀ ou un radical de formule (III) :

20

Y, Y₁ et Y₂ désignent, indépendamment l'un de l'autre, un radical alkylène linéaire ou ramifié en C₂-C₁₆.

R₇ désigne un atome d'hydrogène, ou un radical alkyle linéaire ou ramifié en C₁-C₄ ou un radical hydroxyalkyle linéaire ou ramifié en C₁-C₄,

25 R₈ désigne un atome d'hydrogène ou un radical alkyle linéaire ou ramifié en C₁-C₃₀,

p, q et r désignent, indépendamment l'un de l'autre, soit la valeur zéro, soit la valeur 1;

m et n désignent, indépendamment l'un de l'autre, un nombre entier allant de 0 à 100,

x désigne un nombre entier allant de 1 à 100,

Z désigne un anion d'acide organique ou minéral,

sous réserve que :

- l'un au moins des substituants R₃, R₄, R₅ ou R₈ désigne un radical alkyle linéaire ou ramifié en C₉-C₃₀,
- 5 - si m ou n est différent de zéro, alors q est égal à 1,
- si m ou n sont égaux à zéro, alors p ou q est égal à 0.

2. Composition selon la revendication 1 caractérisée par le fait que le monomère vinyl lactame ou alkylvinylactame est un composé de structure (IV) :

10

dans laquelle :

- s désigne un nombre entier allant de 3 à 6,
- R₉ désigne un atome d'hydrogène ou un radical alkyle en C₁-C₅,
- 15 R₁₀ désigne un atome d'hydrogène ou un radical alkyle en C₁-C₅,
- sous réserve que l'un au moins des radicaux R₉ et R₁₀ désigne un atome d'hydrogène.

3. Composition selon la revendication 2 caractérisée par le fait que le monomère de formule (IV) est la vinylpyrrolidone.

20

4. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que dans les formules (I) ou (II), les radicaux R₃, R₄, R₅ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyle linéaire ou ramifié en C₁-C₃₀.

25

5. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le monomère b) est un monomère de formule (I).

6. Composition selon la revendication 5, caractérisée par le fait que dans la formule (I), m et n sont égaux à zéro.

30

7. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le contre ion Z⁻ des monomères de formule (I) est choisi parmi les ions halogénures, les ions phosphates, l'ion méthosulfate, l'ion tosylate.
- 5 8. Composition selon l'une quelconque des revendications 1 à 7, caractérisée par le fait que le ou les polymères poly(vinyllactame) cationiques contiennent un ou plusieurs monomères supplémentaires cationiques ou non ioniques.
9. Composition selon la revendication 8, caractérisée par le fait que le 10. poly(vinyllactame) cationique est un terpolymère comprenant:
- a)-un monomère de formule (IV),
 - b)-un monomère de formule (I) dans laquelle p=1, q=0, R₃ et R₄ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyle en C₁-C₅ et R₅ désigne un radical alkyle en C₉-C₂₄ et
 - 15 c)-un monomère de formule (II) dans laquelle R₃ et R₄ désignent, indépendamment l'un de l'autre, un atome d'hydrogène ou un radical alkyle en C₁-C₅.
10. Composition selon la revendication 9, caractérisée par le fait que le terpolymère comprend en poids, 40 à 95% de monomère (a), 0,25 à 50% de monomère (b) et 0,1 à 20 55% de monomère (c).
11. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que les poly(vinyllactame) cationiques sont choisis parmi les terpolymères vinylpyrrolidone / diméthylaminopropylméthacrylamide / tosylate de 25 dodécyldiméthylméthacrylamidopropylammonium, les terpolymères vinylpyrrolidone / diméthylaminopropylméthacrylamide / tosylate de cocoyldiméthylméthacrylamidopropylammonium, les terpolymères vinylpyrrolidone / diméthylaminopropylméthacrylamide / tosylate ou chlorure de lauryldiméthylméthacrylamidopropylammonium.
- 30 12. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que la masse moléculaire en poids des poly(vinyllactame) cationiques est comprise entre 500 et 20 000 000, de préférence comprise entre 200 000 et 2 000 000 et plus préférentiellement comprise entre 400 000 et 800 000.

13. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait le ou les poly(vinylactame) cationiques sont utilisés en une quantité variant de 0,01 à 30% en poids du poids total de la composition.

5 14. Composition selon la revendication 13, caractérisée par le fait le ou les poly(vinylactame) cationiques sont utilisés en une quantité variant de 0,1 à 10% en poids du poids total de la composition.

10 15. Composition selon la revendication 14, caractérisée par le fait le ou les poly(vinylactame) cationiques sont utilisés en une quantité variant de 0,5 à 2% en poids du poids total de la composition.

15 16. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le ou les agents réducteurs sont choisis parmi les thiols tels que la cystéine, l'acide thioglycolique, l'acide thiolactique, leurs sels et leurs esters, la cystéamine et ses sels, les sulfites, l'acide ascorbique, ses sels et ses esters, l'acide érythorbique, ses sels et ses esters.

20 17. Composition selon la revendication 16, caractérisée par le fait que la concentration en agent réducteur peut varier de 0,1 à 30 % en poids par rapport au poids total de la composition.

25 18. Composition selon la revendication 17, caractérisée par le fait qu'elle peut varier de 0,5 à 20% en poids par rapport au poids total de la composition.

19. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient en outre au moins un polymère amphotère ou un polymère cationique différent des poly(vinylactame) cationiques définis selon les revendications 1-12.

30 20. Composition selon la revendication 19, caractérisée par le fait que le polymère cationique est un poly(ammonium quaternaire) constitué de motifs récurrents répondant à la formule (W) suivante :

21. Composition selon la revendication 19, caractérisée par le fait que le polymère
 5 cationique est un poly(ammonium quaternaire) constitué de motifs récurrents répondant à la formule (U) suivante :

10 22. Composition selon la revendication 19, caractérisée par le fait que le polymère amphotère est un copolymère comprenant au moins comme monomères de l'acide acrylique et un sel de diméthylidiallylammonium.

15 23. Composition selon l'une quelconque des revendications 19 à 22, caractérisée par le fait que le ou les polymères cationiques ou amphotères représentent de 0,01 % à 10 %, de préférence de 0,05 % à 5 %, et encore plus préférentiellement de 0,1 % à 3 % en poids, du poids total de la composition.

20 24. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient au moins un tensioactif choisi parmi les tensioactifs anioniques, cationiques, non ioniques ou amphotères.

25 25. Composition selon la revendication 24, caractérisée par le fait que les tensioactifs représentent 0,01 à 40% et de préférence de 0,5 à 30% en poids, du poids total de la composition.

26. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle contient en outre au moins un agent alcalinisateur ou acidifiant dans des quantités allant de 0,01 à 30% en poids du poids total de la composition.

27. Composition selon la revendication 26, caractérisée par le fait que l'agent alcalinissant est choisi parmi l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxyalkylamines et les éthylénediamines oxyéthylénées et/ou oxypropylénées, les hydroxydes de sodium ou de potassium et les composés de formule (XIX) suivante :
- 5

10 dans laquelle R est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C₁-C₄; R₃₈, R₃₉, R₄₀ et R₄₁, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C₁-C₄ ou hydroxyalkyle en C₁-C₄.

28. Composition selon la revendication 26, caractérisée par le fait que l'agent acidifiant 15 est choisi parmi les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, les acides carboxyliques comme l'acide tartrique, l'acide citrique, l'acide lactique ou les acides sulfoniques.

29. Procédé de préparation d'une composition telle que définie à l'une quelconque des 20 revendications 1 à 28, caractérisé par le fait qu'on mélange extemporanément au moment de l'emploi une composition anhydre contenant au moins un agent réducteur et au moins une composition aqueuse, l'une au moins des compositions anhydre ou aqueuse contenant au moins un poly(vinylactame) cationique tel que défini à l'une quelconque des revendications 1 à 12.

25
30. Composition selon l'une quelconque des revendications 1 à 28, caractérisée par le fait qu'elle est anhydre et destinée à la décoloration ou à la déformation des fibres kératiniques humaines et plus particulièrement des cheveux.

30 31. Composition selon la revendication 30, caractérisée par le fait que la composition anhydre est sous forme pulvérulente.

32. Procédé de décoloration ou de déformation permanente des fibres kératiniques humaines et plus particulièrement des cheveux, consistant à appliquer sur les fibres, 35 sèches ou humides, une composition prête à l'emploi contenant, dans un milieu approprié

pour la décoloration, au moins un agent réducteur et au moins un poly(vinylactame) cationique tel que défini à l'une quelconque des revendications 1 à 12, et à la laisser agir pendant un temps de pause variant de 1 à 60 minutes, et de préférence de 10 à 45 minutes, à rincer éventuellement les fibres, à les laver au shampooing, puis à les rincer à

- 5 nouveau, et à les sécher, l'application de ladite composition pouvant être suivie, dans le cas de la déformation permanente, par l'application, éventuellement après rinçage, d'une composition oxydante qu'on laisse agir pendant un temps de pause compris entre 1 et 20 minutes et de préférence entre 1 et 10 minutes, puis on lave éventuellement au shampooing, on rince à nouveau, et on sèche.

10

33. Dispositif à deux compartiments ou « Kit » pour la décoloration ou la déformation permanente des fibres kératiniques humaines et plus particulièrement des cheveux, caractérisé par le fait que le premier compartiment contient au moins une poudre ou une composition aqueuse, et le deuxième compartiment une composition aqueuse, l'un au moins des deux compartiments contenant au moins un agent réducteur et l'un au moins des deux compartiments contenant au moins un poly(vinylactame) cationique tel que défini à l'une quelconque des revendications 1 à 12.

- 15 34. Utilisation comme agent épaisseur et/ou gélifiant dans une composition cosmétique et/ou dermatologique comprenant au moins un agent réducteur, d'un poly(vinylactame) cationique tel que défini à l'une quelconque des revendications 1 à 12.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 02/00254

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K7/135 A61K7/09 A61K7/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 A61K C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 956 430 A (TAZI MOHAMMED) 11 September 1990 (1990-09-11) claims 1-11; examples 1,J-K	
A	WO 00 68282 A (ISP INVEST INC) 16 November 2000 (2000-11-16) cited in the application	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

7 June 2002

14/06/2002

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5818 Patentaan 2
 NL - 2280 HV Rijswijk
 Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax (+31-70) 340-3016

Stienon, P

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 02/00254

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 A61K7/135 A61K7/09 A61K7/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
 IPC 7 A61K C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 956 430 A (TAZI MOHAMMED) 11 September 1990 (1990-09-11) claims 1-11; examples 1,J-K	
A	WO 00 68282 A (ISP INVEST INC). 16 November 2000 (2000-11-16) cited in the application	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *C* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

7 June 2002

14/06/2002

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5816 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Stienon, P

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 02/00254

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 4956430	A	11-09-1990	CA	2014353 A1		01-11-1990
			EP	0471743 A1		26-02-1992
			JP	4504874 T		27-08-1992
			WO	9013577 A1		15-11-1990
WO 0068282	A	16-11-2000	US	6207778 B1		27-03-2001
			AU	4200800 A		21-11-2000
			BR	0010360 A		13-02-2002
			CN	1350558 T		22-05-2002
			EP	1194460 A1		10-04-2002
			WO	0068282 A1		16-11-2000

RAPPORT DE RECHERCHE INTERNATIONALE

International No
PCI/FR 02/00254

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 A61K7/135 A61K7/09 A61K7/06

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 A61K CO8F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	US 4 956 430 A (TAZI MOHAMMED) 11 septembre 1990 (1990-09-11) revendications 1-11; exemples 1,J-K	
A	WO 00 68282 A (ISP INVEST INC) 16 novembre 2000 (2000-11-16) cité dans la demande	

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- *A* document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- *E* document antérieur, mais publié à la date de dépôt international ou après cette date
- *L* document pouvant lever un doute sur une revendication de priorité ou clé pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- *O* document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- *P* document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

T document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

X document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

Y document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

& document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée 7 juin 2002	Date d'expédition du présent rapport de recherche internationale 14/06/2002
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Stienon, P

RAPPORT DE RECHERCHE INTERNATIONALE

International No
PCT/FR 02/00254

Document brevet cité au rapport de recherche	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 4956430	A	11-09-1990	CA 2014353 A1 EP 0471743 A1 JP 4504874 T WO 9013577 A1	01-11-1990 26-02-1992 27-08-1992 15-11-1990
WO 0068282	A	16-11-2000	US 6207778 B1 AU 4200800 A BR 0010360 A CN 1350558 T EP 1194460 A1 WO 0068282 A1	27-03-2001 21-11-2000 13-02-2002 22-05-2002 10-04-2002 16-11-2000