

Reduced order models for transport

Internship presentation

Master 1 Calcul Scientifique et Mathématiques de l'Information

August 25, 2022

Presented by Claire Schnoebelen

Supervised by Emmanuel Franck Emmanuel Opshtein Laurent Navoret

Objectives

- 1) Test reduced order model for Burgers' equation.
- 2) Understand reduced order models for linear Hamiltonian systems.
- 3) Test them on piano string model.
- 4) Think about how to improve reduction in the non-linear case.

Reduced order models

We consider the problem

$$\begin{cases}
\partial_t u = \mathcal{F}_g(u, \partial_z u, \partial_{zz} u, ...) & \forall z \in \Omega \quad \forall t \in I, \\
u(z, 0) = u_0(z) & \forall x \in \Omega.
\end{cases}$$
(1)

Hypothesis: It exists a differential manifold M and a *decoding* operator $D: \mathbb{R}^k \to M$, such that $u(z,t,g) = D(\tilde{u}(z,t,g))$, where $\tilde{u}(z,t,g) \in \mathbb{R}^k$ and $u(\cdot,\cdot,g) \in M$ the solution of (1).

The chain rule gives

$$\dot{u}(z,t,g) = \mathcal{J}_D(\tilde{u}(z,t,g))\dot{\tilde{u}}(z,t,g).$$

Using Galerkin projection, we get

$$\dot{\tilde{u}}(z,t,g) = \mathcal{J}_D^+(\tilde{u}(z,t,g))D(\tilde{u}(z,t,g)),$$

with \mathcal{J}_D^+ the Moore-Penrose inverse of the jacobian of D \mathcal{J}_D .

Symplectic structures [Arnold, 1989]

Definition (Alternate form)

A k-form ω on \mathbb{R}^n is a k-linear skew-symmetric application of \mathbb{R}^n in \mathbb{R} .

Definition (Differential form)

Let M be a differential manifold. A k-differential form ω is a collection of k-forms $\omega_x : (T_x M)^k \to \mathbb{R}$ defined at each $x \in M$ and varying differentiably with x.

Definition (Symplectic form)

We call a *symplectic form* on M a differential 2-form which is closed and non-degenerate.

The manifold M endowed with this form is called a *symplectic manifold*.

Symplectic matrices and symplectic inverse [Afkham and Hesthaven, 2017]

Definition (Symplectic map)

Let (M, ω) and (N, η) be two symplectic manifolds. A differentiable map $f: M \to N$ is said to be *symplectic* if $f^*\eta = \omega$.

Take $M=\mathbb{R}^{2n}$ and note $x\in\mathbb{R}^{2n}$ as (p,q) with $p,q\in\mathbb{R}^n$. Consider the symplectic form $\omega_{2n}^2=\sum_{i=1}^n p_i dq_i$ and the usual euclidian structure on \mathbb{R}^{2n} .

We have

$$\omega_{2n}^2(\cdot,\cdot)=\langle\cdot,\mathbb{J}_{2n}\cdot\rangle,\qquad \mathbb{J}_{2n}=\begin{pmatrix}0&I_n\\-I_n&0\end{pmatrix},$$

SO

$$\omega_{2n}^{2}(A\cdot,A\cdot)=\omega_{2k}^{2}(\cdot,\cdot)\quad\iff\quad A^{T}\mathbb{J}_{2n}A=\mathbb{J}_{2k}.$$
 (2)

Matrices verifying (2) are said to be symplectic.

We call $A^+ := \mathbb{J}_{2k} A \mathbb{J}_{2n}$ the symplectic inverse of A.

5

Hamiltonian systems [Arnold, 1989]

Let (M, ω) be a symplectic manifold of even dimension 2n.

Consider a differentiable function $H: M \to \mathbb{R}$.

Non-degeneracy of
$$\omega \implies \exists X_H \in \Gamma(M) \mid \omega(X_H, \cdot) = dH$$
.

Definition

A Hamiltonian equation is a differential equation of the form

$$\dot{z}(t) = X_H(z(t)), \quad \forall t \in I. \tag{3}$$

Proposition

- 1) Solutions of (3) conserve H,
- 2) ω and the phase space volume are preserved by the phase flow of (3).

6

Goal: for $M = \mathbb{R}^{2n}$, build linear decoder A and encoder B such that :

- A preserves ω^2 ,
- $\mathcal{L}(A) = ||Z BAZ||$ has a small value.

Problem: the set of symplectic matrices is not bounded.

Greedy algorithm [Afkham and Hesthaven, 2017]

After iteration k, we have $A_k \in \mathcal{M}_{2n,2k}$. At iteration k+1:

1) Choice of the parameter g_{k+1} maximising

$$\Delta H_k(t) := |H(z(t)) - H_l(A_k y_k(t))|.$$

- 2) Computation of the solution for this parameter: $S:=\{z(t_i,g_{k+1})\}_{i=1,...,m}$.
- 3) Choice of the sample with the "worst" projection:

$$s_{k+1} = \operatorname{argmax}_{s \in S} ||s - A_k A_k^{\dagger} s||_2.$$

- 4) Obtain \tilde{v} with Gramm-Schmidt symplectic orthogonalization procedure.
- 5) Set $A_{k+1} = \begin{pmatrix} A_k[:,:k] & | & \tilde{v} & | & A_k[:,:k] & | & \mathbb{J}_{2n}\tilde{v} \end{pmatrix}$.

Application to piano vibrating strings [Chabassier and Joly, 2010]

General model:

$$\partial_{tt}^2 U(x,t) = \partial_x \Big[\nabla V(\partial_x U(x,t)) \Big], \qquad \forall (x,t) \in [0,1] \times \mathbb{R}_+,$$

U(x,t)=(v(x,t),u(x,t)): variations of x on the oscillation plane V: real differentiable function of \mathbb{R}^{2n} .

with Hamiltonian formulation with:

$$H:(p,q,t)\mapsto \int_{[0,1]}\frac{1}{2}|p|^2+V(\partial_x q)dx.$$

Linear model: $V(u,v) = \frac{(1-\alpha)}{2}u^2 + \frac{1}{2}v^2$, $\alpha \in [0,1]$.

Non-linear model: $V(u, v) = \frac{1-\alpha}{2}u^2 + \frac{1}{2}v^2 + \frac{\alpha}{2}(u^2v + \frac{1}{4}u^4), \ \alpha \in [0, 1].$

9

Application to piano vibrating strings: linear model

Figure 1: Numerical solution of piano string equation with $V = \frac{1}{2}((1-g)u^2 + v^2)$, where g = 0.537. The reductions were made using PSD with k = 5.

Application to piano vibrating strings: non-linear model

Figure 2: Numerical solution of piano string equation with non-linear model, where g = 0.8. The reductions were made using PSD with k = 5.

Application to piano vibrating strings: non-linear model

Figure 3: Numerical solution of piano string equation with non-linear model, where g = 0.8. The reductions were made using PSD with k = 20.

Hyper-reduction

Goal: faster the computation of the reduced model

Kernel regression: build \bar{H} of the form

$$\bar{H}(x) = \sum_{i=1}^{m} \theta_i K(x^i, x),$$

with K a kernel function.

Loss:

$$\mathcal{L}_{\alpha,\beta}(\theta) = \alpha \sum_{i=1}^{m} \| \frac{A^{+}z^{i+1} - A^{+}z^{i}}{\Delta t} - \mathbb{J}_{2k} \nabla \bar{H}(x^{i}) \|^{2} + \beta \sum_{i=1}^{m} |\bar{H}(x^{i}) - H(Ax^{i})|^{2}.$$

Hyper-reduction: results

Figure 4: Numerical solution of piano string equation with non-linear model, where g=0.783. The first column represents the piano string position in the oscillation plane for different times computed in low dimension with $H \circ A$ (top) and H_{θ} (bottom). The second column represents an estimation of the errors made on the string position through time on H^1 norm (top) and the variation of energy during time for the three different solutions (bottom). The reduction was made using PSD with k=5.

Conclusion

- Symplectic structure induce particluar constraint on the reduced model,
- · useful to find good reduced model
- PSD and greedy algorithm good for linear systems...
- · ...but fail for non-linear ones.
- Hyper-reduction gives bad results
- and shows that we have to take into account ∇H (take $\alpha \neq 0$).
- Ideas to look into with generating functions but theorical difficulties...

Afkham, B. and Hesthaven, J. (2017).

Structure preserving model reduction of parametric hamiltonian systems.

Preprint at https://arxiv.org/abs/1703.08345.

Arnold, V. (1989).

Mathematical Methods of Classical Mechanics, chapter 7, 8, 9, 10, pages 163-200.

Springer.

Chabassier, J. and Joly, P. (2010).

Energy preserving schemes for nonlinear hamiltonian systems of wave equations: Application to the vibrating piano string.

Computer Methods in Applied Mechanics and Engineering, 199(45-48):2779–2795.