3 Поля

Конечные поля

Теорема 1. Для любого простого р и любого целого положительного п $\exists\ c$ точностю до изоморфизма единственное конечное поле, состоящее из p^n элементов.

 $\ensuremath{\mathcal{A}\xspace}$ оказательство. Рассмотрим поле разложения E многочлена $f(X) = X^{p^n} - X$ над $F_p \Rightarrow f(X)$ имеет p^n корней в E с учетом их кратности

Докажем $|E| = p^n$ Рассмотрим $f'(X) = p^n X^{p^n - 1} - 1 = -1 \pmod{p}$

В силу теорым о кратности корней: $HOД(f, f') = const \Rightarrow$ корни f(X) имеют кратность $1 \Rightarrow f(X)$ расскладывается на линейно неповторяющиеся множители в $E \Rightarrow f(X)$ имеет p^n различных корней в E

С другой стороны, множество корней многочлена f(X) в E замкнуто относительно операций сложения, вычитания, усножения и деления на ненулевые элементы \Rightarrow множество корней многочлена f(X) образует расширение поля $F_p \Rightarrow E$ - расширение поля $F_p \Rightarrow |E| = p^n$

(От противного)

Пусть $\exists K \neq E | |K| = p^n \Rightarrow K$ имеет подполе, изоморфное полю F_p

Ненулевые элементы в K образуют мультипликативную группу порядка $p^{n} - 1$

Рассмотрим $\alpha \in K^* \Rightarrow \alpha^{p^n-1} = 1 \pmod{p} \Rightarrow \alpha^{p^n} = \alpha \pmod{p} \Rightarrow \alpha$ - корень f(X) в $K\Rightarrow K$ - поле разложения многочлена f(X) на F_p Таким образом $E={^{F_p[X]}/_{(f(X))}}$ и $K={^{F_p[X]}/_{(f(X))}}\Rightarrow E\cong K$

Теорема 2. F_{p^n} изоморфно как группа $\underbrace{F_p \oplus F_p \oplus ... \oplus f_p}_{n}$ относительно сложения.

 F_{p^n} изоморфна как группа отсносительно умножения \mathbb{Z}_{p^n-1} .

Следствие 1. $[F_{p^n}:F_p]=n$

Следствие 2. Пусть $(F_{p^n})^* = <\alpha>$. Тогда α - алгебраический на F_p и степень минимального многочлена элемента $\alpha=n$.

Теорема 3. Для любого m|n поле F_{p^n} имеет! подполе порядка p^m .