

سلطنة عمان وزارة التربية والتعليم المديرية العامة للتربية والتعليم بمحافظة الداخلية

الوحدة التاسعة : الفيزياء النووية

أ.منى الحاتمية .

أكمل معادلات التحولات النووية الآتية:

$$^{234}_{90} Th \longrightarrow ^{234}_{91} Pa + \dots$$
 $^{209}_{84} Po \longrightarrow ^{205}_{82} Pb + \dots + \dots$

 $^{(208\ Pb)}$ الشكل الأتي يوضح طريقتين لانحلال نظير الرصاص ($^{(212\ Pb)}$) إلى النظير المستقر ($^{(208\ Pb)}$ -2 الشكل الأتي يوضح طريقتين لانحلال نظير الرصور في الشكل:

- 3- يتم تصنيع العنصر (X) في مختبر نووي حيث يحتوي على (111) بروتون و (161) نيوترون ، إذا انحل العنصر (X) إلى العنصر (Y) الذي عدده الكتلي (264) ورافق الانحلال اطلاق دقائق ألفا أكتب معادلة موزونة توضح التفاعل النووي السابق.
- الناتجة من انحلال عنصر التيتانيوم ($^{210}_{81}$) إلى عنصر الرصاص ($^{206}_{81}$) إلى عنصر الرصاص ($^{206}_{82}$ $^{206}_{82}$) في المعادلة أدناه هو :

الفا عدد جسيمات ألفا ($^{234}_{83}\,Bi$) الم عنصر البيزموث ($^{234}_{83}\,Bi$) كم عدد جسيمات ألفا $^{-5}$

$$(\alpha = 5)$$
 $\mathfrak{g}(\beta = 1)$ $\mathfrak{g}(\beta = 1)$ $\mathfrak{g}(\beta = 1)$

$$(\alpha = 5)$$
 $_{\mathcal{S}}(\beta = 2)$ \square $(\alpha = 4)$ $_{\mathcal{S}}(\beta = 2)$ \square

6- أكمل المعادلات النووية التالية:

$$13h^{14}_{7}N^{4} \xrightarrow{14}_{6}C^{4}$$

$$^{63}_{28}Ni \rightarrow ^{63}_{29}Cu + \dots$$

-7 أكمل الجدول التالي باستخدام الشكل:

معادلة الانحلال	نوع الانحلال	رقم الانحلال
		1
		2

8- أكمل الجدول التالي باستخدام الشكل:

		Ra Ac Th
N	139 138 137 136	2
		88 89 90 91 Z

معادلة الانحلال	نوع الانحلال	رقم الانحلال
		1
		2

9- أكمل الجدول التالي باستخدام الشكل:

معادلة الإنحلال	نوع الانحلال	رقم الانحلال
		1
		2

10- أكمل بكتابة معادلة التفاعل:

معادلة التفاعل	التفاعل
للكسابرة يحيى الكسابرة يحبى الكسابرة يحيى الكسابرة	$^{(228}_{90}Th)$ نواة الأكتينيوم نتحل إلى نواة الثوريوم ($^{228}_{89}Ac$) نواة الأكتينيوم
Yahya kasabra Yahya kasabra Yahya kasabra	Yahya kasabra Y

Yahya kasabra Yahya Yahya kasabra Yahya kasabra Yahya kasabra Yahya kasabra Yahya kas	ahya kasabra Yahya kasabra
	نواة البورون $^{(12}_6C)$ تنحل إلى نواة الكربون $^{(12}_5B)$
	$(^{222}_{86}Rn)$ نواة الراديوم $(^{226}_{88}Ra)$ تنحل إلى نواة الراديوم

باشعاع 8 جسيمات ألفا و $_6$ جسيمات بيتا فإن النواة الناتجة :	11- اذا انحلت نواة
--	--------------------

 $^{214}_{82}Pb$

 $^{210}_{82}Pb$

 $^{206}_{82}Pb$

 $^{207}_{82}Pb$

12- النشاطية الاشعاعية للمادة الموضحة في المنحنى المقابل تساوي:

1.74g بعد مرور ساعتان و45 دقیقة أصبحت كتلتها 6.96g بعد مرور ساعتان و45 دقیقة أصبحت كتلتها

أ- اشرح المقصود بعمر النصف

ب- احسب بوحدة الدقائق عمر النصف للعينة

.....

14-يعطى تفاعل اندماج كما في المعادلة التالية:

$${}_{1}^{2}H + {}_{1}^{3}H \longrightarrow {}_{2}^{4}He + {}_{0}^{1}n + energy$$

حيث تبلغ الطاقة المتحررة 17.7MeV وتعطى طاقة الربط النووي لكل نيوكليون كما في الجدول التالي:

nuclei	Binding energy per nucleon (MeV)
² ₁ <i>H</i>	1.12
$_{2}^{4}He$	7.07
$\frac{1}{0}n$	_

أ- اشرح المقصود بعملية الاندماج النووي
ب- احسب التغير في الكتلة ل نواة ⁴ He
ج-احسب طاقة الربط النووي لكل نيوكليون ل نواة 3H
15- في المنحنى المقابل . ثابت الانحلال يساوي :

•	معادلة الصحيحة لحساب التغير في الكتلة ل Fe_{26}
	$\bigcap m_{Fe} - (26m_p + 56m_n)$
	$\bigcap m_{Fe} - (26m_p + 30m_n)$
	\bigcirc 56 m_{Fe} - (26 m_p - 30 m_n)
	$m_{Fe} - (26 m_p - 30 m_n)$
$oldsymbol{t} = rac{1}{2} oldsymbol{t}_{rac{1}{2}}$ غير المنحلة بعد مرور	17-عينة تحتوي على No في البداية . يكون عدد الانوية
$\bigcap \frac{1}{4}N_o$	\bigcirc $\frac{3}{4}N_o$
\bigcirc $\frac{1}{2}N_o$	\bigcirc $\frac{1}{\sqrt{2}}N_o$
الانوية يساوي 200000 وعمر النصف لها	18 عينة من مادة مشعة تحتوي في البداية على عدد من 2.3 . احسب النشاط الاشعاعي لها بعد مرور
••••••	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	19-في معادلة الانحلال التالية :
$\stackrel{226}{=} Ra \longrightarrow \stackrel{222}{=} R$	انحلال التالية : $2n+\frac{4}{2}He+{\sf Energy}$
	•
	$Rn + {}_{2}^{4}He + Energy$
	$Rn + {}_{2}^{4}He + \text{Energy}$ $84 \ u , {}_{86}^{222}Rn = 222.00 \ u , {}_{2}^{4}He = 4.0026 \ u)$
	$Rn + {}_{2}^{4}He + \text{Energy}$ $84 \ u , {}_{86}^{222}Rn = 222.00 \ u , {}_{2}^{4}He = 4.0026 \ u)$
(Where the masses are: ${}^{226}_{88}Ra = 226.025$	$Rn + {}^{4}_{2}He + \text{Energy}$ $64 \ u \ , {}^{222}_{86}Rn = 222.00 \ u \ , {}^{4}_{2}He = 4.0026 \ u)$ $MeV \ equation 1 $ $MeV \ equation 1 $ $MeV \ equation 2 $ $MeV \ equation 3 $
(Where the masses are: ${}^{226}_{88}Ra = 226.025$	$Rn + {}_{2}^{4}He + \text{Energy}$ $84 \ u , {}_{86}^{222}Rn = 222.00 \ u , {}_{2}^{4}He = 4.0026 \ u)$
(Where the masses are: ${}^{226}_{88}Ra = 226.025$	$Rn + {}^{4}_{2}He + \text{Energy}$ $64 \ u \ , {}^{222}_{86}Rn = 222.00 \ u \ , {}^{4}_{2}He = 4.0026 \ u)$ $MeV \ equation 1 $ $MeV \ equation 1 $ $MeV \ equation 2 $ $MeV \ equation 3 $

18mi أصبح عدد الانوية	لنصف للمادة X يساوي 3min إل في نفس الوقت وبعد مرور in عينة Y تحتوي على عدد من الإن داية:	أت العينتان في الانحلا	يساوي 9min . بد المتبقية في العينتار
64N□	32N□	16N □	4N □
7 يساوي:	$\langle Li$ مات . التغير في الكتلة لنواة	ح قيم الكتل للثلاث جسي	21- الجدول يوضح
		Α	4.99841 u
Particle	Mass / u	В	0.04216 u
proton	1.00728		
neutron	1.00867	C	0.04147 u
nucleus of lithium ⁷ ₃ Li	7.01436	D	0.04077 u
ي البداية وعمر النصف لها	 □ بروتون □ وتحتوي على N من الانوية في 3N من الانوية في البداية ونش 	` نيوترون مشعة X نشاطيتها A	
		A 10	000 years
		B 30	000 years
		C 12	2 000 years
		D 18	3 000 years

	التالية	النه ه بـة	المعادلة	<u>. i 7</u> 4
•		7337		<u></u> _

$${}_{Z}^{A}Po \rightarrow {}_{82}^{206}Pb + {}_{2}^{4}X$$

أ_ ما طبيعة الجسيم X
$oldsymbol{\Delta}$ ب- قيمة $oldsymbol{A}$
25- وضعت عينة من مادة مشعة بالقرب من كاشف الاشعاع وقرأ الجهاز معدل عد يساوي 4800 عد في الثانية وبعد مرور 36 ساعة أصبح معدل العد600 عد في الثانية . احسب كم عدد الساعات الإضافية التي تجعل معدل العد يصبح 150 عد في الثانية
26- عمر النصف لعينة مشعة $1.4{ imes}10^{10}$ والنشاطية للعنصر $120{ m Bq}$. احسب الزمن الازم لكي تصبح النشاطية $15{ m Bq}$

27- الشكل يمثل منحنى الانحلال لمادة مشعة:

1- احسب عمر النصف للمادة

•••••

2- ارسم نقطتتين اضافيتين على المنحنى بعد الزمن

10 ساعات

28_ في المعادلة النووية التالية:

$${}_{38}^{90}$$
Sr $\longrightarrow {}_{b}^{a}X + {}_{-1}^{0}e$

قيمة a ______ وقيمة b

 $^{212}_{83}Bi$ تمثل نواة $^{212}_{100}Bi$ المنحنى التالي يمثل العلاقة بين عدد النيوكليونات والبروتونات والنقطة

m أ-ارسم سهم على المنحنى يمثل انحلال النواة $^{212}_{83}Bi$ باشعاع جسيم ألفا وارمز له بالرمز $^{212}_{83}Bi$ بالمنحنى يمثل انحلال النواة $^{212}_{83}Bi$ باشعاع جسيم بيتا وارمز له بالرمز $^{212}_{83}Bi$ على المنحنى يمثل انحلال النواة $^{212}_{83}Bi$ باشعاع جسيم بيتا وارمز له بالرمز $^{212}_{83}Bi$ بالمعادلات التالية :

A
$$^{243}_{~95}\,\mathrm{Am}~\rightarrow~^{247}_{~97}\mathrm{Np}~+~^{4}_{~2}\,\alpha$$

$$\mathbf{B} \quad {}^{243}_{95}\mathrm{Am} \ \rightarrow \ {}^{243}_{96}\mathrm{Np} \ + \ {}^{0}_{\text{-1}}\alpha$$

C
$$^{243}_{~95}\,\mathrm{Am}~\rightarrow~^{243}_{~94}\,\mathrm{Np}~+~^{0}_{~1}\alpha$$

D
$$^{243}_{95}$$
Am \rightarrow $^{239}_{93}$ Np + $^{4}_{2}\alpha$

31- في منحنى الانحلال التالي:

معدل العد خلال خمس ساعات يساوي:

A 960 counts per minute

B 600 counts per minute

C 150 counts per minute

D 0 counts per minute

32- في منحنى الانحلال التالى:

معدل العد خلال 8 أيام يساوي:

A 0 decays/s

B 125 decays/s

C 250 decays/s

D 500 decays/s

إن لم تبذل جهداً يساوي طموحك لا تحزن إذا لم تحقق ذلك الطموح ..